diff --git a/Audio_Captioning.ipynb b/Audio_Captioning.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..d61f9ca8a390f6bf6081cd21a8ed5a7b5c529f3c
--- /dev/null
+++ b/Audio_Captioning.ipynb
@@ -0,0 +1,387 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "55df6d0d-71cf-4110-81ed-7c0d3ce58e43",
+ "metadata": {},
+ "source": [
+ "## Import"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "0abe9574-05f7-4684-b586-033827b89c32",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "74e70729-b658-4ffd-9d8b-ae42a2d1b212",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "import numpy as np\n",
+ "from fairseq import utils, tasks\n",
+ "from fairseq import checkpoint_utils\n",
+ "from utils.eval_utils import eval_step\n",
+ "from tasks.mm_tasks.caption import CaptionTask\n",
+ "from models.unival import UnIVALModel\n",
+ "from PIL import Image\n",
+ "\n",
+ "import random\n",
+ "from torchvision.transforms import functional as F\n",
+ "from torchvision.transforms import InterpolationMode\n",
+ "\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "# turn on cuda if GPU is available\n",
+ "use_cuda = torch.cuda.is_available()\n",
+ "# use fp16 only when GPU is available\n",
+ "use_fp16 = False"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "ce03a870-2852-410e-97c4-59461d08f60a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ".register_task_cls(cls)>"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Register refcoco task\n",
+ "tasks.register_task('audio_caption', CaptionTask)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "58361680-3e90-4fff-962e-2ff67c1e7289",
+ "metadata": {},
+ "source": [
+ "### Load model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "id": "adb79611-7563-4fb6-a576-f31050f8438e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "self.sample_patch_num 784\n",
+ "self.sample_audio_patch_num None\n",
+ "self.sample_video_patch_num None\n",
+ "self.with_cls False\n",
+ "Loading: all_resnext101\n",
+ "use bn: \n",
+ "load pretrained_model /data/mshukor/logs/ofa/best_models/resnext-101-kinetics.pth\n",
+ "_IncompatibleKeys(missing_keys=[], unexpected_keys=['fc.weight', 'fc.bias'])\n",
+ "Loading: pann_cnn14\n",
+ "load pretrained_model /data/mshukor/logs/ofa/best_models/Cnn14_mAP_0.431.pth\n",
+ "_IncompatibleKeys(missing_keys=[], unexpected_keys=['fc1.weight', 'fc1.bias', 'fc_audioset.weight', 'fc_audioset.bias'])\n",
+ "load resnet /data/mshukor/logs/ofa/best_models/resnet101-5d3b4d8f.pth\n",
+ "\n",
+ "unival\n",
+ "task\n",
+ "getattr(args, \"stop_on_max_len\", False) False\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Load pretrained ckpt & config\n",
+ "\n",
+ "checkpoint_path = '/data/mshukor/logs/ofa/best_models/unival_audio_caption/checkpoint_best.pt'\n",
+ "\n",
+ "video_model_path = '/data/mshukor/logs/ofa/best_models/resnext-101-kinetics.pth'\n",
+ "audio_model_path = '/data/mshukor/logs/ofa/best_models/Cnn14_mAP_0.431.pth'\n",
+ "resnet_model_path = '/data/mshukor/logs/ofa/best_models/resnet101-5d3b4d8f.pth'\n",
+ "\n",
+ "\n",
+ "\n",
+ "overrides={\"eval_cider\":False, \"beam\":5, \"max_len_b\":22, \"no_repeat_ngram_size\":3, \"seed\":7, \"unnormalized\": False,\n",
+ " \"bpe_dir\":\"utils/BPE\", \"video_model_path\": video_model_path, \"audio_model_path\": audio_model_path, \"resnet_model_path\": resnet_model_path,}\n",
+ "\n",
+ "models, cfg, task = checkpoint_utils.load_model_ensemble_and_task(\n",
+ " utils.split_paths(checkpoint_path),\n",
+ " arg_overrides=overrides\n",
+ " )\n",
+ "\n",
+ "# Move models to GPU\n",
+ "for model in models:\n",
+ " model.eval()\n",
+ " if use_fp16:\n",
+ " model.half()\n",
+ " if use_cuda and not cfg.distributed_training.pipeline_model_parallel:\n",
+ " model.cuda()\n",
+ " model.prepare_for_inference_(cfg)\n",
+ "\n",
+ "# Initialize generator\n",
+ "generator = task.build_generator(models, cfg.generation)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e79aad39-1424-47d5-8cd4-6ab77ea46fb4",
+ "metadata": {},
+ "source": [
+ "### Preprocess"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "id": "576a3e84-a6aa-446d-adab-fef9499318fc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Image transform\n",
+ "from torchvision import transforms\n",
+ "import torchaudio\n",
+ "\n",
+ "from data.audio_utils import get_audio_features, int16_to_float32, float32_to_int16, AUDIO_CFG\n",
+ "\n",
+ "\n",
+ "mean = [0.5, 0.5, 0.5]\n",
+ "std = [0.5, 0.5, 0.5]\n",
+ "\n",
+ "\n",
+ "\n",
+ "def process_audio(audio_path, sample_rate=48000, max_audio_len=480000, audio_cfg=AUDIO_CFG):\n",
+ "\n",
+ " # audio \n",
+ " data_path = audio_path\n",
+ "\n",
+ "\n",
+ "\n",
+ " audio_data, orig_sr = torchaudio.load(data_path)\n",
+ " audio_data = torchaudio.transforms.Resample(orig_sr, sample_rate)(audio_data[0])\n",
+ "\n",
+ " sample = {}\n",
+ "\n",
+ " sample = get_audio_features(\n",
+ " sample, audio_data, max_audio_len, \n",
+ " data_truncating='rand_trunc', \n",
+ " data_filling='repeatpad',\n",
+ " audio_cfg=audio_cfg\n",
+ " )\n",
+ "\n",
+ "\n",
+ " waveform = sample['waveform']\n",
+ " patch_audio = waveform\n",
+ " \n",
+ " return patch_audio.unsqueeze(0)\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "# Text preprocess\n",
+ "bos_item = torch.LongTensor([task.src_dict.bos()])\n",
+ "eos_item = torch.LongTensor([task.src_dict.eos()])\n",
+ "pad_idx = task.src_dict.pad()\n",
+ "def encode_text(text, length=None, append_bos=False, append_eos=False):\n",
+ " s = task.tgt_dict.encode_line(\n",
+ " line=task.bpe.encode(text),\n",
+ " add_if_not_exist=False,\n",
+ " append_eos=False\n",
+ " ).long()\n",
+ " if length is not None:\n",
+ " s = s[:length]\n",
+ " if append_bos:\n",
+ " s = torch.cat([bos_item, s])\n",
+ " if append_eos:\n",
+ " s = torch.cat([s, eos_item])\n",
+ " return s\n",
+ "\n",
+ "\n",
+ "# Construct input for caption task\n",
+ "def construct_sample(audio_path):\n",
+ " \n",
+ " \n",
+ " patch_audio = process_audio(audio_path, sample_rate=48000, max_audio_len=480000, audio_cfg=AUDIO_CFG)\n",
+ " patch_image = torch.zeros((3, cfg.task.patch_image_size, cfg.task.patch_image_size)) \n",
+ " \n",
+ " patch_type = torch.tensor([2])\n",
+ " patch_mask = torch.tensor([True])\n",
+ " src_text = encode_text(\" what does the image describe?\", append_bos=True, append_eos=True).unsqueeze(0)\n",
+ " src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])\n",
+ " sample = {\n",
+ " \"id\":np.array(['42']),\n",
+ " \"net_input\": {\n",
+ " \"src_tokens\": src_text,\n",
+ " \"src_lengths\": src_length,\n",
+ " \"patch_images\": patch_image,\n",
+ " \"patch_audios\": patch_audio,\n",
+ " \"patch_masks\": patch_mask,\n",
+ " \"patch_types\": patch_type,\n",
+ " }\n",
+ " }\n",
+ " return sample\n",
+ " \n",
+ "# Function to turn FP32 to FP16\n",
+ "def apply_half(t):\n",
+ " if t.dtype is torch.float32:\n",
+ " return t.to(dtype=torch.half)\n",
+ " return t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f96f776e-9aa0-4271-b881-311851cc033c",
+ "metadata": {},
+ "source": [
+ "### Inference"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 114,
+ "id": "6f8ddf8c-82e2-411c-baa3-850da02f1996",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "torch.Size([1, 480000])\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ " Your browser does not support the audio element.\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 114,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "save_dir = '/home/mshukor/ofa_adastra'\n",
+ "\n",
+ "\n",
+ "\n",
+ "audio_path = '/data/mshukor/data/audiocaps/test/KSHpYhuTotY.wav' # A man talks while bees fly\n",
+ "# audio_path = '/data/mshukor/data/audiocaps/test/6cS0FsUM-cQ.wav' # A cat is meowing and a man is speaking\n",
+ "# audio_path = '/data/mshukor/data/audiocaps/test/6CDl4CqOgMg.wav' # A dog pants and whimpers\n",
+ "# audio_path = '/data/mshukor/data/audiocaps/test/_BSmz3SEW1w.wav' # Pigeons coo and flap their wings\n",
+ "# audio_path = '/data/mshukor/data/audiocaps/test/ZsTZ7jqbd9M.wav' # A man speaking with birds chirping in the background\n",
+ "# audio_path = '/data/mshukor/data/audiocaps/test/5OM3tJh51pE.wav' # A woman giving a speech\n",
+ "\n",
+ "# audio_path = '/data/mshukor/data/audiocaps/test/AJtNitYMa1I.wav' # Food sizzling in a pan\n",
+ "\n",
+ "audio_path = '/data/mshukor/data/audiocaps/test/3MoF8myFs8Y.wav' # Wind blows hard and waves crash against a shoreline\n",
+ "audio_path = '/data/mshukor/data/audiocaps/test/350OCezayrk.wav' # A motor vehicle engine is idling and vibrating\n",
+ "\n",
+ "\n",
+ "## limitations\n",
+ "# audio_path = '/data/mshukor/data/audiocaps/test/EBCH7TPgiPc.wav' # A motor vehicle engine is running and revving and an adult male speaks in the background\n",
+ "\n",
+ "\n",
+ "sample = construct_sample(audio_path)\n",
+ "sample = utils.move_to_cuda(sample) if use_cuda else sample\n",
+ "sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample\n",
+ "print(sample['net_input']['patch_audios'].shape)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 115,
+ "id": "4651039c-b8c0-4687-871e-b42cb13b2984",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from utils.eval_utils import eval_caption\n",
+ "\n",
+ "with torch.no_grad():\n",
+ " result, scores = eval_caption(task, generator, models, sample)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 116,
+ "id": "712150d4-f28c-4538-870f-b33f775725d5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "A motor vehicle engine is idling and vibrating\n"
+ ]
+ }
+ ],
+ "source": [
+ "caption = result[0]['caption']\n",
+ "print(caption)\n",
+ "\n",
+ "from IPython.display import Audio\n",
+ "Audio(audio_path, embed=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "303d531f-dba3-40b9-a1ff-1be92d8c188a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8c5eb1f0-bca3-4b9a-a8f1-2f4468c54025",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "ofa",
+ "language": "python",
+ "name": "ofa"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/Captioning.ipynb b/Captioning.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..dd29e39d33cf0be0d7e9f329836a6158b879e929
--- /dev/null
+++ b/Captioning.ipynb
@@ -0,0 +1,384 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "55df6d0d-71cf-4110-81ed-7c0d3ce58e43",
+ "metadata": {},
+ "source": [
+ "## Import"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "0abe9574-05f7-4684-b586-033827b89c32",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "74e70729-b658-4ffd-9d8b-ae42a2d1b212",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "import numpy as np\n",
+ "from fairseq import utils, tasks\n",
+ "from fairseq import checkpoint_utils\n",
+ "from utils.eval_utils import eval_step\n",
+ "from tasks.mm_tasks.caption import CaptionTask\n",
+ "from models.unival import UnIVALModel\n",
+ "from PIL import Image\n",
+ "\n",
+ "import random\n",
+ "from torchvision.transforms import functional as F\n",
+ "from torchvision.transforms import InterpolationMode\n",
+ "\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "# turn on cuda if GPU is available\n",
+ "use_cuda = torch.cuda.is_available()\n",
+ "# use fp16 only when GPU is available\n",
+ "use_fp16 = False"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "ce03a870-2852-410e-97c4-59461d08f60a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ".register_task_cls(cls)>"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Register refcoco task\n",
+ "tasks.register_task('caption', CaptionTask)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "58361680-3e90-4fff-962e-2ff67c1e7289",
+ "metadata": {},
+ "source": [
+ "### Load model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "adb79611-7563-4fb6-a576-f31050f8438e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "[autoreload of tasks.ofa_task failed: Traceback (most recent call last):\n",
+ " File \"/data/mshukor/envs/ofa/lib/python3.7/site-packages/IPython/extensions/autoreload.py\", line 245, in check\n",
+ " superreload(m, reload, self.old_objects)\n",
+ " File \"/data/mshukor/envs/ofa/lib/python3.7/site-packages/IPython/extensions/autoreload.py\", line 394, in superreload\n",
+ " module = reload(module)\n",
+ " File \"/data/mshukor/envs/ofa/lib/python3.7/imp.py\", line 314, in reload\n",
+ " return importlib.reload(module)\n",
+ " File \"/data/mshukor/envs/ofa/lib/python3.7/importlib/__init__.py\", line 169, in reload\n",
+ " _bootstrap._exec(spec, module)\n",
+ " File \"\", line 630, in _exec\n",
+ " File \"\", line 728, in exec_module\n",
+ " File \"\", line 219, in _call_with_frames_removed\n",
+ " File \"/home/mshukor/unival/tasks/ofa_task.py\", line 144, in \n",
+ " class OFATask(FairseqTask):\n",
+ " File \"/home/mshukor/ofa_ours/fairseq/fairseq/tasks/__init__.py\", line 71, in register_task_cls\n",
+ " raise ValueError(\"Cannot register duplicate task ({})\".format(name))\n",
+ "ValueError: Cannot register duplicate task (unival)\n",
+ "]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "self.sample_patch_num 784\n",
+ "self.sample_audio_patch_num None\n",
+ "self.sample_video_patch_num None\n",
+ "self.with_cls False\n",
+ "Loading: all_resnext101\n",
+ "use bn: \n",
+ "unival\n",
+ "getattr(args, \"stop_on_max_len\", False) False\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Load pretrained ckpt & config\n",
+ "\n",
+ "checkpoint_path = '/data/mshukor/logs/ofa/best_models/unival_caption_stage_1/checkpoint_best_test.pt'\n",
+ "video_model_path = '/data/mshukor/logs/ofa/best_models/resnext-101-kinetics.pth'\n",
+ "\n",
+ "overrides={\"eval_cider\":False, \"beam\":5, \"max_len_b\":22, \"no_repeat_ngram_size\":3, \"seed\":7, \"unnormalized\": False,\n",
+ " \"bpe_dir\":\"utils/BPE\", \"video_model_path\": None,}\n",
+ "\n",
+ "models, cfg, task = checkpoint_utils.load_model_ensemble_and_task(\n",
+ " utils.split_paths(checkpoint_path),\n",
+ " arg_overrides=overrides\n",
+ " )\n",
+ "\n",
+ "# Move models to GPU\n",
+ "for model in models:\n",
+ " model.eval()\n",
+ " if use_fp16:\n",
+ " model.half()\n",
+ " if use_cuda and not cfg.distributed_training.pipeline_model_parallel:\n",
+ " model.cuda()\n",
+ " model.prepare_for_inference_(cfg)\n",
+ "\n",
+ "# Initialize generator\n",
+ "generator = task.build_generator(models, cfg.generation)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e79aad39-1424-47d5-8cd4-6ab77ea46fb4",
+ "metadata": {},
+ "source": [
+ "### Preprocess"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "576a3e84-a6aa-446d-adab-fef9499318fc",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/data/mshukor/envs/ofa/lib/python3.7/site-packages/ipykernel_launcher.py:9: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.\n",
+ " if __name__ == \"__main__\":\n",
+ "/data/mshukor/envs/ofa/lib/python3.7/site-packages/torchvision/transforms/transforms.py:330: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.\n",
+ " \"Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. \"\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Image transform\n",
+ "from torchvision import transforms\n",
+ "mean = [0.5, 0.5, 0.5]\n",
+ "std = [0.5, 0.5, 0.5]\n",
+ "\n",
+ "patch_resize_transform = transforms.Compose(\n",
+ " [\n",
+ " lambda image: image.convert(\"RGB\"),\n",
+ " transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC),\n",
+ " transforms.ToTensor(),\n",
+ " transforms.Normalize(mean=mean, std=std),\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "# Text preprocess\n",
+ "bos_item = torch.LongTensor([task.src_dict.bos()])\n",
+ "eos_item = torch.LongTensor([task.src_dict.eos()])\n",
+ "pad_idx = task.src_dict.pad()\n",
+ "def encode_text(text, length=None, append_bos=False, append_eos=False):\n",
+ " s = task.tgt_dict.encode_line(\n",
+ " line=task.bpe.encode(text),\n",
+ " add_if_not_exist=False,\n",
+ " append_eos=False\n",
+ " ).long()\n",
+ " if length is not None:\n",
+ " s = s[:length]\n",
+ " if append_bos:\n",
+ " s = torch.cat([bos_item, s])\n",
+ " if append_eos:\n",
+ " s = torch.cat([s, eos_item])\n",
+ " return s\n",
+ "\n",
+ "# Construct input for caption task\n",
+ "def construct_sample(image: Image):\n",
+ " patch_image = patch_resize_transform(image).unsqueeze(0)\n",
+ " patch_mask = torch.tensor([True])\n",
+ " src_text = encode_text(\" what does the image describe?\", append_bos=True, append_eos=True).unsqueeze(0)\n",
+ " src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])\n",
+ " sample = {\n",
+ " \"id\":np.array(['42']),\n",
+ " \"net_input\": {\n",
+ " \"src_tokens\": src_text,\n",
+ " \"src_lengths\": src_length,\n",
+ " \"patch_images\": patch_image,\n",
+ " \"patch_masks\": patch_mask\n",
+ " }\n",
+ " }\n",
+ " return sample\n",
+ " \n",
+ "# Function to turn FP32 to FP16\n",
+ "def apply_half(t):\n",
+ " if t.dtype is torch.float32:\n",
+ " return t.to(dtype=torch.half)\n",
+ " return t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f96f776e-9aa0-4271-b881-311851cc033c",
+ "metadata": {},
+ "source": [
+ "### Inference"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "6f8ddf8c-82e2-411c-baa3-850da02f1996",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvcAAAIECAYAAACdeQEMAAEAAElEQVR4nHT9XXMkSZKljT2qZuYRASA/qrpquqd3XuFeUXjBK/4Z/n0KRbi73OmuqswEEBFuZqq8UDUPVA9ftGRXJhCIcDc304+jR4/K//P//n91BxQBAXcHQBBEAMAcpsCMH6EKyOPvNsEs/u5O/J7GL+bbISJIATfAH78v+U9wTMA8fmf9AT68x+PflXgvkfj9OaDU/Lc/rkOAMWGqU2rey4Si8cFzCluLax0zrtMsfh6/67Qtb97igt3iBorGZ8wJc92WPNbBLL7nQBGJe3VHBbQIYxjmUKugrPeNa8AdRxA870UAYeZiKILhsc5rjTRep/FS5MOa5RJj+e/B49og7tcs1kc0noOqYObxPggzr6806PkcLd933bfZh31heV0S76uS17OeD/k9jzdZl9odXAXRWH8V8lriOuLVcX2xhxzNexPJvTpj/UqJa5G83qLxoSNvXnIfqcdriq5nnOtXwBBGfqrIY1/F78c1TItnIeWxpvBYj/JhbT48jsfXWpt8jQiYybFeKvEec+b+LY+9Tq7jzDO41tHcYy8X+S+f+NhTj38DeJ4nrXGmPNe3D2iVXJR/uXiHkpfuM+9FYw3/dHbzuSvr3Cxb8+f3it+J5+8ItjYLMEcskFY9LsH/9BcBChKHIezOcdmG+QQM1fUsHQV0xhmsIrEXHJo+9rGo4AKYhG3UtX8l952EDVCBIgxfmyQ/P69limDAdMFzIVwLjuSZcNTzzMXBwMwp6nHeLJ51nIC0M7k/dNmC3OtrXddeXX8/lmvtubRhy2i4FETiYU83PDdlvF7DRq7lPs6dxM9m+fBE07K7I+K59ut7aQspuEuet1hsN6diTJvgAxXDmZhNqgh9jnhPjY1mZjiOi8Y6AuaGilNVsTkx97CNJZ6RAWUTOvF3VHAp4Bumy7mBloqrYiZQGk7JQ1JABiqdeJAKXjBXcDnWyXPvSn5u7P6Kzwac8O554Bz8BtKhdJAez5GCm4Fb/FfTSNhE1KnF0QJowfkM4wIoBtjo6T8MtQG2w9wR77HvVeP65kREKKq554w5J4KnjxPcDJdYc/dwFKUU3B2fsQlVFRXFzRAcMUOPreC5D+Kc2Qdf5+6xm8WREus2RhgSVU0/bbg7tX7cX3H9K2bRD4GJ2Yz9pYpqyT0x04XHmVznJa7NwoeVgs1Jd6eU8D+kr4nrXv49/HLJ35nFueGoCD7D3zcEN0dcEBTRgnn6rlpxX+cNjBm+VwBxfKbx9HV9D1uyHKuStms9cXPEHfHDOoS9lQ9x0WEQOOIEt7DbSuxTyXUZGe+YZ2yi8jAgudRmD7922JsPcRq5zlVgdj/WXNM/rN86bDgZo+HUDcZ4XOexPsT3iSMZsV8EV+H/NJzYGOnP+a++V9KWuTtjWthelXg2RWN/po8c06hNsRl7xFCmGSrKNEdy38VZ17Bp1gEoWgCYNnN/foixZe3V+D3/uAjLlx0+enmx9Z8IfjNC/POC51f9f/zfSgalcmyG+P18erloonI8vPUKdyil4uZ5GD9eOLiP47Uigqimw18BvB9/psE0Y9hkdmMMY9pj87iHYTQiKDAz9tGPRGHHEAeVwszbFY8Ap7jx9n7DagvXn4Gru3OiwIAxBkWEWhu4s0xIH53ijTkGZmlkxozrKfng5qScKuaxSSyNjtkyJYrUeO3oI67O4vccZ+bP3CaqQsnggXx05o5PQUsFcbQUVBXzcbyHqlJKiftSYWuVokKtQi3xfrHxIVylYzyctJkwpzHmQBCGDYoUhk1sGqVUqhvTjDk9ksHIBo/7nMAcM4K9UiMoS8c13XENY+d5mFQ0zJWBmYWTNmcKUEsEQ2bxSRqfWGs99pmWEk4EQ8QimI23Y7jRWo1AflqshcT+8VJAC0XyYIxBbZXTtqUTdbRIOAUnnLoKIjvongZXEU6InAh3ewe9o2ViVhBq7HGbIKB5yNdZyNNI5jUrYjsSKRGhiMbztHSKGk6v1ho7w405IwsJx6zHe9qMn5lNTufT8Tnr3K2jfRwgieeBwD5nBEcagdMY4zgvhzP2ZS0Ls4ehNDOmPrL3YZZO9rBIh5PvfXK73fJnik1HtIR9sDB4jjOnsc9xGLU5Zr670GfPiPORZD3WL/aWqmaA74gbWoxale1UOLVKq5NSnUvb2GrhVJTn88apFc5b4bQppcB2KtRWqE1pZaNWpbZKq41SCmU7Qdko25l2ekLaCW1nRAqqldZO1O1E3S5QGtpOSD2h9RSZVIlgujhxPizW0WwwbeBjMmePgNcc94Gl3VyWYgVrZgP9sCK67LJnACT5/NXxDMpnBpJQ0sPX+HtJwIUFNsTrLcGHlUCR71PljKx96/H8zYx9vzNmZ4xO7519v9P3wRzO6Ma+d/p9MPZOv995f/vOfrtyu72y36/c71f2+5XZO/f7zt7vjDHY+6CPfoBCM21U2B6jZmYjAqUopRa0Fc7PZy7nZ7anjdPTxvnpmXZ6pp1eqG2jnjbattHOJ7bzE9v5mVLPSDmBtHiuIggzVloqQsEpiJTwl6IRMNbC1iqzboyyMYdye3fGrvhQ5jDcO1o6tXVE74zxRr/dGPc7/baz7zu3+5X7/QZmqBqfPj/x3//7f/Af/8ffsem8XxvTnjET3l7f+e2335n7Tr/f6Pc3xu0H/fbK7G+4DWzOsNc2c/8IKss3zvBHecqnjQiIimBmiEdwfyBE02N9pQBOUcX6juXZleXn54xka0YCYWYUjecybFKaoqoBfJnlXlLcPJO4h32Ecvgfc8uEwdm2Uwb2Qik1rlPC7/UxmXOgDqUWSlHcjVpLJi5+2Ecj91KexfW5D9+egbUq1hTOlbY1Nq2c2olNMt6QiCZKqXH9Rdm2U6KRsXzDBmNOxuz0PiLJdcfHZPROH0bvg/vtho2B28T6jpsFGDBHfH8ObHYww+bOnCOSrQwIzSe4UYoeiZqNiEkkUasV3KMRQE7I+y2ZTDtIxUWYGCaJYqKYzfBJhA2QQAqBifc7rsqclvGkUEr4efG01QmM3vZr2KE+8YWoESBaKQU1ow/D7uHDJ5b3Gj8vpR4ghB0xp4e/QLhee4KZsW9WYH7f90haxVEUKQUzS9870n8GyFpK4e3tFgCNf0hY0QDUnExGyb283uOR6K57Wu+xvh4Ja3l8M09j2P2RS/LnuP3jVz2V7483NMcWdOiPjEqAOoXqD/R5ZV2lFMyc3sefMhJFEgWQzJIeQc36fXPHLdDraQWzwsygZE4PNCmRdLNAUOc0+jSGAiSCI0rB6HPinXB+ee1jTmyC2ISZBsoz2EWQvOYNodaCmjPGQKaiUihjUOICKQ6NMBKOo5lcy5zI7hHI5WGOLDD+3sfAR4+kwYVSIwusCWPWXH/DYUY2XrUkgh/P1NypxXKDGj4cmx0lDI2WQtOGuODTqTpRh6ZKAdQzXcsM0YggOjZqooPuYCOC1dFRCtUs0cIIst3C8EgeHif3jEs61xHI1YdUeY6J2YjAPAPMUgqCYYmMuMRauMBwZw5HRSkriJxhZG3vuYfsKCFJGoXhdiATjtNHIIZMw4oeyQVa8VJoBZzBnHfwgniNA2qC6kaRlmjHDSmGlgkSNQ+3CPaFPT5QBqI7Xhy8IoleHU5BIxF7BELkWeERJKWDXejWnIZLXLOKhDGdE23leB9NxEFM6Pt+GOiI8OOZWX+gW5GAxjVt2xYBeTpZcu1EFR8jklczGAOtNRJ4+ZC4pkG0yZFQjBnJkQM2jD7CkYcliOdlCPs+HomKRLDvCfubOTYjEFjGbDkfm/NhGKchlMO2BD4Rwa9oJDzFFBUJhE2cKpOqwknhqcUeOFV42qDKYFN4UuG5wfmkbM0oBWodlDpRdWq50rRStdLKhtZKrfH8RQdVJ/gNsRulPSH1HM8Vz6B9C8epnojnhrhlwhlnxHgkUbKCCwFJJD0CZztCeF2VQWacYSkH8u8e8Jz7CtA5KhoqiotTdHl1j+A/rFE84szRFyLo4kfgKhL7L5KoQtGKaoIPNrIisJJTzecdz0q1YANmdVrbGC0CmbFtqMLeGqWGXS413vdt/KAUp5E2nXSemZAycxvn2tm0SG4E5hyMDlzhdn3n+v5OvWw8PT/x/HlQT+/U0+9spxOny5m2nWn3C/f7E9v+zHZ6YTu9ULcn2nZGpOHeiEpRBD4iic4aiDhShKaCbBu1PeFy5j7h6pPhFcoJY+LWqbWj207RBjhlU3BlmtK0QCm4xLqqGPcx+ccff/Dp6yeen5+ZdCY7aEWKUGvFhtG2J8Q90HsfmGVQKHFOXDQqP2k6SlXUS5zHPOsqaXPzWYokCCVKqxXTRL49gn91p9RKz32qqn+yMws4CFviNFGKOlULtRSKWPiNcAtR9bAA4RxBi+I2IvhPIMTV0/9mJcAd5mDMjuFIKYg7NeMRbDJ9ht9PAMCiPJz7WymqGUNMJAG0dT8r1hEVpCqelYuIWQa7GUyj1Rbvl1WQSK7DaJo75glqmjEzAZY8fCtBFiJ5UtWobpSoJNoYGb0aUmvaSYfZUQvgy7A8DwPxSNiKG2LgHucmfPiqCOR1RtEkAIcDLS5RuNKE1TT9snvY90IE/DNtk+czE0eYRMw7EGLfTOtpx2IfiivizkmjirpLVO49/cAYA3XLatLIRMNxAcVBJWKi2XH3WHvS/2UQ70AryvCVpIanntOo6ohYukKPxNcd5kpSQGzZYaFqPu9VMfHwM+IRT2O5TzxsdCv12PdhmxM4CaP8Z/YGPPzyn74iHuAI7iPW/tcAvzZ/zQ/yKJNboEZukiEs4UBdqMRB8nUTWpCZ5fXxCLRF8sbkYQiO4D49ha9swx13oXdlzkIxTzpLlrlnIvozvq9z4mNCK2zkIplSRRHfcReGgZNVgt7DCDmM3uOhGFnSrEF3qIXWCuITZ3KqYaAKyiCQ/nFsqHBunosQCZGHE7FApIuCeqCgRQyyjLyQsyqF+0I08v3jyxJxTOeVm1JFmHQqjokf67hlMGtiiDhqmQngNDfUhTYX5cQRc3QuBDa3SUbDglAsitoioDLAZgT9teIMzAMBd5xp9wwMSIOisQ7FEFfM+oEWG85WFcWZPhP5ycMy7YFSp6GcrhEUuK9VeGTehKVZDsRRRjcGgdohWfUQZ3pHi1JLlLZ7HpRaFe+ToRMpE6TTdxhD0slVGANho5SGW0fmHS1B5zAMN0V0ggV6LOpoMawb6hM8go6FgngaHEQe9KT8mh8y+VLC0cx0ekXD2LlqlP/m5LZPpMRri0Zp3DKQWUFU0LPCAFh/oAUHSoHTb6uClmXJD8m3FqXPGcZWhNv1PRxXVqXmfKBogY74EZSvv7sLNiKIX1QF84JlqXPOeP5jDvZ7jyBRlEXTOMr1njSLUpAszYiAWiKjy8mS1aAS9I2qEsG4CEWdrUAtSlFjk85FnEtVThU2uXNulfNWOdVBk0GdN85Fqa1QRGlSaFXQItQSVJkqUU8MfzBQc5oJqnEmyQRYmVSiMqdFMb8FQs/EGSANpDClEX42HLtboHFBheiozwj4CacnSe0RTyTehFnkOMeSz9oyDU9WWtiZojgRzKhWXOxAttZ1jxmeNQDwlUDFfz2fadAD8nokbdiyU/l1Pp+ZczLGYOieDkyhFeYMcKho7AGAZ3kJVFUX1ywSw1o29n1n7zd67/T7TkHoMrA50Izvg+pAgI2knc5Klvlk3uF+veJFeXt64u37O6enwuVZ2M4bp6cn2ulMOz9RThe28wvnpxfOT1/Yzs/Y+Zm6fULrp7gPeTj5oBSWpLEoUit62qjnT7g/M253pgp+eWL6mdEHNu/s/sq0wrko0pyqDZXKPhJMqEo9Obfbe5w9MV7fr/zz2zfa+URtG9Y7PfkIp6dnoHF9u9Kngm7U7UIfV+bckUUxI4AuhQjwkn4gHtwJJWzPtMG0GRRTUcQjgT63LZ4T4GYMT2pZUt7MLNDfOZl9RJVZC23xZCETsRlV9+SHWlaJpWQdPSK8RFmFlpVzOWKStBcWyWwEzvk+NqltQ4tmlZPDDlap+NgjAUgf3/cJGj7JsporAFkd85UgJGfE894PsHLZVZvYmLTWqKuyOqEnUDJzvcINC85k2sASFGE6zMlwx0wIF+AHbUoExowAP5jQYXdXsiLJ1xM3bCQoKZ4VwrArmypSHJd4z0XvXZUMc0FkIdB53YwABT0oby6OuLJtG07DRgBZ04zdje7GJKo0JpY00yC8Tku6nid9xpxWTmy6YqJ4vsOMWgTzqN5uW8UtqitdLM6apD+cE8MpaZdMInZaFJbhE8kqRn40bkYrDzrn8jtBMTWqxjq4GAwyRkzYShTPZCjue0DSCcOe+gGGIh+C+7wiNz/W4OOXiqzMivXDfCXpXo4461+j+3rWoA+YG9MtqBoZqC0ETiWQQUOgaL4+Ay/z3MySWYtgIw6WikT5ZxWJjw9fQVt+raBfx3GzZnGALB+Mqx3ZuJQZmSmB5AX4W5BhjJ4GQQrThH7taE1mWmaIADId9RkO5H5nv8filCKczyemQVUi2zWB3hHRzNQIlGDmtZEBGvkcmTDDOU/fqQi1BD4/snR20nI8WvWZQV8EfnMaOhNBN6O2SlXAJn6U0CJ7rLUEXxTHZw+DXQQdAy2KohGASKy4uoabX4iIh9Ea7mCriqAPitGMzR30H2Jzm6FulMU9NMd9BseS9KyLL7A2nSZPPze/Jk+2rgSQlelHErmQN9USBnraYYw9NgiSiCSRh8T+UMElAvDpjhdByvxzKazG9c7i1CqYClIXp88R6Zh18DtVK0UMleC4cviZMAxuO24SDk+D84gpmnSRUoIGYWnAIsnNnS+Gu1Bbe2ToNagSlpxL1ygba5anx+xBMLRAIg8qRqLc68s//CUS9YftWIal1nJ8zxaFJo1MqzXKp4lg7XtP9x9l2aASeD7qMLDuyyD60YczRvx9fc70sC9kFU5kMKczhmXV4kOAmV+2yPuuB5VKyPPCI7APdCSQkyJQJeh1lUlxp+FcMjBvxXlS51Kck8bPTjhnMTbgVCKQP7VCq0HTagqFBhZVsuKVyoZKQ2g4FaVRvSKm6FQokyl3ooCdC1EM3c7xexkApYkPJ+xxHtb3kKxi2DzQ07TQST0MwCKSnqBWkAk9LEDOjoqdLKRnJWBAKfGThdhnyk7VE+sKSR65iCQdLPa4pu2KxHJRUkhaREGEowoT51+pJWgsq8enaGWUGvS/WpmnjdIapVXO5yfuT8/s1xvvb++0+5V6O9HrnV3vFC30vjN7Z5crQzo+jWGDmRXThUoGgJEUt+mMe+e2XxnXidSd7Tw5nSvn52dOT8+cn18o5zN1O3F6eub0/JnT6UK7PLFdfub8/CvbKRIBlYqJYK74TK63wJQk77gwhrN3GDRKe0H1GWkTu78xbnewziaNrZ0iKSmT0s5MU0yETYXT04X7/ZX3t2/Mm/Hbt+9cni6czi8YkzGFOStaGlIaWgZoA9+C2CoVF32AUPjxDNdhDbpJbB5h8fMLw0e+Nmx01ZK2eCHLNWspzrQe9o8SdLplf8mKlJD85qD+RUA+mSN9COGTPpBbIyHIr7KojCvQTu91v98SHSWpRpFQV43egUWzKDWprBJ7ZSUN7mHHlRLgm9bAao7PSwpTKYGiq2ScEmdwzI5J0HzdJ00KYxra53Gmy6xpD9P+ykqoBZVYB58TG1HBGHPmzyQTFCjUTL4cG5LxwsiqasYkMyhLEihp2EZV1CMGEDeqaCD49Afo5ODTKaWy1ZaVlujNMScqSaKYlQMNF/QBFtVAtYoI0grFlPvMqoHEvhr9DkkOjn6cjIgsgvKgI9/jOYjEPlMJqpekrcoKctWkxmRlt6hwalsk9B52taRVFQSKp11K3+fRmzZnVou04CKoBx0p88rcu2t/SPSA6QcTkxtS9BF0B9s16WUzKXCBlmC+7LUcbs8ztoYVMi9v/hGRfexVPvj0j1/VbXGDLRcmA/Hpx4e4aJTSS2TcwW8yiuvhgkyDUhObO7LTogW1kgc8LvKgDSTqvi5q+iTaXZI3rRyOZ+U/rsKUoJPMYRSp2ICxx6E5yvkj0DU3yUxQI8hwqFtN57RnNWvSexiaViODuvk9Msy6jFs0z2oah5Wrm1giZnEQPAOwooll2WPjiNgjCCY3D4FSeJa0orydhjBLXW6GVDm41yR3q9ZA2syiycjcmCMMby0VKRGQFM2SK6tstEhF65GESy+JQqx6jYgfSO3ib5eyONFOrY2q0VAyfOAHXSIQHSO5hmn0ImAN41FUSLAhy3H+CNBye3hy4Y5mruUMVoPVagizMIyWFB4ziz05nVIFhrPvdjQxo0K/R5mwIAxRbCpb2Wi1BC/Yeuw6McbcqRnTr+6lXJYDlXGToD7JggvT2EnwtUUjOAtE3XjQJRJNnRxI+FYWGjPZSlBWwlFFstfHpJ6FkQ0/tQaXE1YAt953NSgLKtufDn0UkZzb3o+gLPpeHE/rvYvRthYoVr+zuO0QZ2yMR9Vqtxm5nPvRTD4zuF9BPnGU4jNIVGcSiMZyAmiekQxOV8BoCRwUjcqRybFvwlqtNspIskqJAKNoJLYVo2BUnFMpbNUpxdmK02RyUjhvlVagyeSyVbYqqEQZuUaUgwhUPaF6QqVRVlDvlaLBnVfZKHIGqeGUNOgGy2vqMtHmyMzGQ3GSqkxWefMUxv4gm0N9ZTCrY/YopSf9JKs75V+bs8QP+mGREgF49iRMFjLfUCl4VhzJHqf4Wb6XruRBH/TNtc/8UV1bHN+VjB/2KoM7lYLWgqrRLaiKVKitoqVQ9krvHc+qkJYWfQq60bYL1+uN1t7Y9zvbdqNvZ0a/M/Y7t/fCvt8YvVOm0N2T9z+iaptBqU1ombiKF+w2mbZzf5tc207d7tTLK9vlO9vTmdPThfPLM5dPb1yenjjdL+jtje32xvOnLzzzme30BLKBxn4opVJaZTttnM5nTuczZ3lijIq9Qc9stOqG+8BHoZVGrc4mBfeK+ImTC+gN7op5Z447ZrCdnyjFuF5vvF2vSK2UslHqlo3njmph2870+860DlrQsrFtZ9h3xGci8HLQl8gKrbLiiCVYIMj0rLBxJNirgbbKaoANIG36o3KfhumgHT7AlvCrc2aQOpO+SDmoL0o9KpLRcyWZLCY9bRofwRvJ4AsPNPngfrslCBOAi9tkZGPyssfDVvWzoPhR5VdRxrR8vUL6tohn8jOIOKr3Gee1JFhnzhh3etIjVZXaWvy+Rv+XGfSZAEkCoVH5i5iBpKFOm0d/1egdgQCH0hbaDGpO00otyv12xfsOErGbZqWuqKJWopqclQzViBnicVnGCvEVPHaNqrcUnGwmPeDqpPgthJPwab13KhUm9OkUUbIFAbPVk8lhBwmrhs3JYGd63K8WpZJ9njXW3HxGb2ApYOkfagBj04zZ76jUSDzTK2sGGTZGIPEI3SzYDaIhdGK5F82ZMxD4rZ7pNphjpPkValEsq0pZc8lMVDPxfFTFViV9+vLLyzcnWLncKyuUz+CeD3Y8v1ayCyup5di/H7+qa4nF8FALiAqABHc4fYhL8pXJ0lBpELdClNoNS4Rx7zsiFYqwJ99RiUD/aFiZCyX6QNfRio2eXcXx+7MP7qPjufBG8I6lVnxGQ4SURm2VPjyUHUqh1kbvwUmknqOyZYYUjRKnR4MoFkF72yQNYWyQOTv3PmjZ7BMNDxwNHypJc0u0udaKujJGNr9ZKHmsDFq1pvLL4HSumEO3QSlZ4pcwZH3sEfxuiXytzmuJBMvF2c6Xw8iUWoIfqcrod7Ruh7sNNK6FcocNiju1BUVljHE0AkVZ0Ci1RQOmL8SjBnUiex3MldmduhVaO6VhhN4HYxqLTz2nJ71mKYBEkD6WY9U0DjqjGuCJ7mWQ4ckDDMMXSR8axgUSxcWTmx9ZcCkNvORaOfvckRLBx7RECkSYI4xlaVA3BW04F85PXzlfPjE9ehXu4zu322+4X1M5qIA9Gs8FAlUxw4YhBwXFIkBCsgFXQvqHrGQViwOeZe9A9ZV+fzS07T2MuZlTZDwaQle/i1T6HkGfA/fpLO2jSIaSmnLIVChz35MHLXGdidKTe+BozM1ArBBJ4e11HDSbQOWDYCIEAjnnREoJtRf37JWJwN4t6E/rd2XBG5L9Ax7cxojjH/04j0rEI7hnJawe6774wUFb4kOzL7RaCURnsJSjWm2cSqUVo1UoOoOCUwunKpxPwnmrbE1oFbamlOpoqYEsIpRa2M5PiJyAM9I2KBUvDaknLFFSL5XJFtz5TIyR1ewaqisqQvESQZBrIBmSjZhoUL9MjkSLI1k7MPQjsHALjrGWdX4M9xmNWLL6lbIvqWRQ4vEnuNar4bhlhUcOe6uSKdPhP/IzyGbKfDaHMgywqEh/6q/yRwPiOsfu+feS6JMHbbAtVDR59qVt9H2n3nf2baffblA2WjuHqsl+5fb+zn67MvqOakPe3xG5IXMPF9b32Gu5e0spkRyLUgRGgkLqp7AVu9G7sb933ttE2zv1XDi9nLl8unB5vvD8+Ynt5RPt+Tfu+2eu109cLp95fvmZenrB6hmtWd3I0mJh5+l0pvx8op3gNivXadzvO84bp7Pzciqc1dExMDEsqxxs5zinIwKh8+WJ3m/MecNdeH29oiq8PH8i+lBA1fJsd7atMbzR9xvn84WhoQ5XmAegQlJFNZNDh6DkBNpCK0Hf0NwbEMi9Fj04xapQt5bg1ESyEZEEasaIBs85J/f7HSXOp3pQZzzpr6dTo9bG6B8VlvxoTBSBfb9TqjLmwGwegb+WSBQ/NjGKC3MMtu0UweGxN419H1wul4O+Qwa3Ngal1aDCeDQgL2S11hpIr420zSG+0Fpj9I7ZZIrSfcAwfA5IWl5RRfsN0bCPUmso6SCRXCPMPhEPumorgAtLSsATwFoUZ8sgXFQ5P1243zXoT6dnWjuj/c7cdx7lPafPSc/qej3kQ0gRBx7PvLUAYlBaO9HqxrQg+BUACUBmjMFSOVpNoGrOtm1c32+4GVu9RMJWIk6sGaBH3BP7CAlVQwdcjFoK5pN9jsOOmVrGAaAt4tLbdfD8dKIU4daz37AGSLDszQK/EKWWiAkVZ6vRNzpm+OdTVfakkp5ao/doVi4SdmmawTCs71QNhS6SwSIiobCXLAaxBXCAE4DdEg9Z1SVEcH2ox62kdvnzj8pbi2mRONuC9g+Q9lDoAuoseyLjFvxpl6MEYfiRiWlEqxEkeCCKkmUn8xGNogpoBA4qNeHORJ7cUNeQKJyT1RDGMiLaAuWb8pDcmqAjNp4jyOL14inTVxCt4a+mYUy6xT3sA/oUREMf00sgz+aWpSqihDk8eVzRINu0oFVR3YPJo5mVZ51yNY+oBv9TiPLRsBFlOY3AflrQnM6nU/wdC0qTKr3vkS2nlNjI0qdr+N0iywF6SriFI/JsUA7eVgTJlpUFLzWpP45UZfigZxlLReO6JJPspc7jgWLUlc0WiWpMOnA8aErihEqCkwF/ZNM2J67xuaskVVfG6Y/yZjh2o5ageux7JHCltUwmkrOYwRhpdCOZtDyEq1oRqI2kxJktaURZCZhT3cPgFkEmKUsolNpopw09Ge3cqNsXavvKy5e/c3n+St1OSB28Xf+Tf/72/+L1x/9g2s5WX9jKJ7TUcFbzzr5fsX5lzHd8GsXAp8AEr7KopOCL97kkPR+MpVLTibgEQrtQaPmQ7R+IUKwJIkhb5QOO84MnXSWR1SO4d0Fc8b7oLQttKkejM2lAVnBYVZPbueRHV5CqLO786LEXtCSRQ8A9KXtJ5+sjq00rGJDUWJJIP0UfSM+hQpFNx0vyToDSQsFqzp4cyNXsBkkWDHRGovfGbCYiGo20tQQ/87Ip5+YR3G/KaSs0tUiykwsf1WYJtFuV0rbg/GqhZwm1FCfKOfEstClWIuv3ongxpNrBxw10q8bhtkyGrGRQHzZBDhhk8dWj7yGcfUlAZNnzxHYSgXuct/yZyGEz4yuZ1RIkJSRVXbx8QOHSSaUjCa/iqK7PkseeOxxIuhnJtEM0kK6l3OT8V0fGo9IEcvSMrD9alF4U3ydI1FuQirOB7mg5IeXE2HZ8Tvp+ptRQtNnvd6RuSL2g13fut7fcm7H+c+zM0Y9zEp8ZwWyr0Uw/96BIWtKobJ9QJ/fr4O3Hlfr7dy6fTnz96ROnTz+oL78xrj9xf3rhen5hv/3g/PyVdnrh/PQTBUNaQdmoXrgU4fL5M+dz4/fXG/b9DWRQ6s6mg08no2IYndtM9RMLWoWQrEAtaDvRijCGgkysrybGsDGtkA3nHS1RYZ66HleNJEhroN4z31sKpVVsjg+CCJ6oYvi8lrYiKCeB8EtWhh6Um5A9Fckm5shIwI2+70dQTfrSmX16KiS/ngxuLIP2duy1pb5kFgp949Drlew50rUlI4HUEoi0yEOWsAdgpKpoKWwLUPDsL/N47yKCWsRGSz2sqDIsKTOyQLj8MIu+vv1+D5APo4970JvMKMWp2VOlqrSsVCl+UOvMA/AKEQUNND79Gq5QI7ifYzB7D1uZiXyfI6ojJeKiOZxhgldAGjZ2xpyJ3hfYCkVhH0H5qVlFkOwrKipBOyIDzNLCdklIecbzSJ+iJdB9OERRfE6mCeV0DinJHoDQnNEQrgXEHipHUbmdQavVrMBn4o8o2lYzqgbIG44fFeGplACD7wPVeohFHHKt7uv0JOC07D6MseKTqM6AJDy+FJeyEurLI3FYVkSW+FgG8Bw/z5Q0qkgCmNPtITyTl5/JUwIj/nhvkfT7WDx7/M8Nt/LRF3yoB6Rtq5QevywOtiSnnKl+JAZCcLSqRmOYfrhAR8AflIxSjOEzuUqPDnkHvFR8DGwk82k5I09HZJpN5KGpi4Pa4kkFo7V4NLlSn7hPY99DkaMPx1KxYBh0E8Z6SLnMJolcroWwwrRs4nKhT4s9rxWXGQ2FNkMBQvLAUWKtNB5hrIMFepGdkuKEdrCmg89geTWfWjoxkmoz5kAskfTe49Cn/JfI4pOt5xEF8VWCt7nK9WEd08ZQWiUaOpbkVwRCRhx+iASkEM58X7KC+UxmNtM6JVVbQqe3tZYo7eLgZ8TKg0azjG3cq+ThXQHMBxlM1cxWsxHNI8RdJcHQEBcgDnP02gRFK2OObIJKaS1ZZd545KVVtCavVCplu/D08sLp5cTp8zPnp585Xf7Cp69/5/LyldP5kg1r/+Qfv33lj99/xuYVlU80/UJJFGPf37ndv/P7b/+TP/7xP7n1G2M6MoHpDOsh57nc4xFExLXZMt6Doyq00rb1KCWbuRY3z5Mm5+JUW16aI6gHUk6SYx3ywwOJS+k5JytCmuh70swW8mvmdMLwmXnuwQfyEchyJChzxn6b+byXgVlIYBjRaBBfAefiPi/7oR9+ZwWv0WyV9+0c8m2iUIi+l1LSmbsdCUMpmr0RkaCcaqgibAVaFbamtJqNsFWoBWqJ8mqpUUqN3s1IerUUpG4hQatB7hEVrBraDC8eVObmISmhwZGmBJjgssKxCKadepyDFJFhERbLCqiJJRKiWielhAOY0cgWxiXO0XJUgmAf1M3cc6NlUisCpkGHWXJ2kt0IcX0av79oKquvCHvsJVkJQrzOLW24rHkDK9Bf9jbs/78KKnysHC8Zzkce7Gk3BKioGIghuoF2pDa0dkQrpfeo4rSQINX9jtYbUk+00wvl7Q19a3G794KPPcGC1D+vEkpd9ih8h9pPUJYClAp1mdAcn8wJt73T3zvvf9yoT4Xnn87YrztffurwvONzsF/fOV0+Y70jtlOkc9kcTh2fO5eLcjq9ID6pYkyToJJSaDKYe+f1fo37c6GkP2wCVmpWwmJvzVqiOdadcRv00875tNFaC0pIj90yfDJkHDtHpdK2E4gwRj/onpJqI0uxSzN4jYZpP3Toiwhuj6bORz4Y4EsfI8CxORljD169DcyyoVYUaTXpitH/40jQPtyzaTQC5JDi1SNQI/1OySp0UEZKUnVibZKtFgl4nrkVpGmqzUyb9DEppdBHSkoXPRRsWgtALdS+IqBVVbCJirC1FpX9EffbagaUScudmdAuRDcORwgGRKV0UgmqzbCRbjNsu09/nPcVkyW4YzMo1GP2NB6VVqLyt2Y6GMIQGJnMiSRRU6MSMvoOXoIPXwX3DZGBVEGqULbCVkvY/BQfkaTplZoIdvphM4c5D2nU6Z1Wo3/mfr8zy8S6Q8r6LqlaN8kEq+XnSPbOpbRpxvVkhdFFICu4izYTYG8kCUWV1gIkHiMFS0STIeCP6n+CjZp2biHriNA0zpeqMYyUkw6fefjpTM4gaI0P+/GwbSIf6Td22OIIB+XDPo7P1wMkWbYze2BKxKYRawZ9zvAEYP/r10FNE6EKvvpEMg7O5rwgSh8lOPVQYxGZaYTXGylaYYyQshOVKHuZHzz+6bFAknxtc+GhiLGa/RwsnNVMyoDoGnASPPy4Tj3QwNEnfR/0Ydz6CDSitD817yy00uaItohc9APYTPRI0Ci9DaMvA2CPhV6dziGHFQ0oYw8Oeds2rC/ZsODLx8NRbB+PEvkMxL6VEs0uFpSOoGpZcraDG7+ksHCyE32m0ZpRWtYYY4XGRi+aFQiL15eW5XUgos5o0gMLOaa1CYmkcI4oA4oHz1BnlLZKq3it3PdJ32+BGqmiBM3JLBQQVnY8LVWItMQhNcum2ZBwK24ZSFp+pqXxjQYgG/O4sqVIIAhFSiZXwpJRs54lwCIYI5GfOFghEemoNM71jLYL2+WFT1//wte//pWXX3/h8vyFenrm/Okzp6dnLs9PtE0Y/TOfv73w7Y9fsNmZdgKeqHVDqzDnO6N/57d/fOZ//r+F3/7X/+L2xy34musgHZk+h+GwybGf3aJvYE5PXvEKdDPRsZmIU2biq5tehP4vzbOHCTlK1nIgBwKpCvBoqp1JqXOiWQwc21ejYcXGTJ67H9WdOMsZ7NWoMNQiUaFb53WZs9x4rWg2nMccAtyOa30kAnIYRQdKS6Qlh36UGmfH8zyEOkLI4dVCIvbxBqV68Okxtqps1WkNTips1bk0OAVTja3BqSlbcc5VaU1pVQJdS+RKE4EO3fJKbefYu9k4qDW44JRTyIYm8uXrz6LASIkmYkm6lq697bg6roZJBDkzLX7YxcVtjyBfDp6kJ6Kf62Yfql8eroIpGRykU8wEIOZg6CNIJ/9kgpYNOodh8CPtjP3pGXygC8XX49kh67nmzpO0g5rNZP6h/yJfciBw+VZGyDBWkUiW1KEYUja0Dtpp0k49qA9z0nqnnu5c369Q77Dt6OnOrGe81qhyvSr77RXxEdSTRFUpqXLxoRdEWzZReoJN3pgWTZ5aC7U0GDGH5f62c/22s38bXH/Z+fLzVy6fdranN07Pr9yvP7i+vvD06TOz/8Icn+n9GSk7zy+/8PmpctkaSMOsYGNwv0/evaMy48/BFk7lD2LNWE3yFEqJRlnvxv6+s+mkbYYU4XRyxCY+A8GvBeZUKC1VRzwqyHNpq9s6oGm7FjUuKtGrvjQzIJpmMVAyQa5QuBlB0yhkn5gz9s4YIYfsc/UD6COjT2PpGjFAtwfYZN5puoV9VAm7jlCl4fseoh1JD3EedAYcWokekypKTXEGMmENGxhqNUhQfkfGJNo2BpFcrcpk0ejjqi7RvzF6zEyxGeAJEbhC0gsJQKzPkT1ZEdivfhc3ofeZ1fBInFYAOnug8EWW/Kaw96SjWMYwq2qHp/67RvPviF4wBLZWIwazSWmR3BdR2nY6BBm2tsXZsB3RGVTlqpQm4EElqjV89NKRp2RvQ1K49v1ReatEslVrixigKjs7KiUra0IZkol2Br6uh00Romcj+Rphf0YkXGRfIwjMGeuWSoEhlxv9lGNOtrbFPs7ePJIREVqWEk3KHjGdkMOqSotYs1akR9yKyFFFCGpYgIomWW1IvEWlHFXKh3VOY6eP83TYy/XjxEQOuvcCpCUAu3U8HiAKWfX2x/t9RE3yq8rcWFPNwqGnxKAvh5pNBz4YkgHoUeJK6gWKyTx4Vy5+OI1ZCmO1X7mCFowYXDJGqjxIlJdjGmg0lizZRa16dDQvc9ansd87ew+O81Yq9/tgzoF1Y+8DJzibj8AonOdqGVUJx7VVCV1cT8NplkOPgssLkWVblmikDJQWQdKw7DxXmD0DqUTe0k+aL60gxYiNb5Llp+zab6ViPoN7v1WKaJqdTIZsUktq6CZ9SvOBhoZ9aF9XDSjQJAdNaXaiT1CXRHVBfFCzuTNK1Mq5RRVgWGJ5FWQYPndq3aBFRWLMGA2nRREJSlYgOOtg2vF38HRSgd6OEV3uIsKYHXGnaUlUQSnuzJLoBpJoc3a7Z1OiaGoa5zprBkpoUDHCqGbWrFG1OF2eOD9/4dOXX/jp17/z9Ou/8+nXv/P5589sz43LlycuLycuzxfA6fdPfP7xwufffmbsg06BslHridIUuGHzGz//ceH5k/M/nyq//X/+kx//+Y53ZctnNqcxcxgbnsFzpv+WDUAqknq7iTllPhnIU1R+wmEtSs1HpDEPeiKmi8pzlOiOaN6ycfZDILYS86RPrIRaPaarrj1LrqUSqkJ47re8n1rkkKSM905v7U7Rgh17LCpMUcSJJv74nQ/BvVsmgQkgBNbKGg5SkjoTOa2jJZD8opG41iqcKlyqsKUqzqkJrQT6uemgSXDuN1VOxdiacGoR3NeQEqfUqGRo0cMGhFJWDC+KGuIZ8Q38hNgJ0ej7wAtikRAcRqCk45KUnywcc6K8RHDvGmX+nEqRVioC+wDVK5pB81wqUZ4BUu74COzjBEaAEw29R+StgumjUe+BIiy7SFL/MqRf1cnjZK+on3jvfFtfu8QhISIWdzpeq0cQEFWgpGCt5y6Z2MpK1GKSL7pQskCNtYRMoNaGtmhukxZqMtou1H3ndr3C9comFanKtgkilrSrCFJHd2bPanIm3qpB03S/45QEoMJnFQkKy5wzGyxjXJXQsdl53Xfu3/+T19/f+enXr1y+PnO+vnK7fqddTry+Xrjf/8Hr22dePn9mn1d+7m+cts/RAJmUrf2+c71fGfMefUF71FrJvqUVRAaSO4ghkUs4IeSqfcDsPf1b7JPajNYnswnFGx1BzLhbx0qeXYmq+lK/kwy6DolTPDjQunokclpnSg7aDGUi/1CZ8xwY9VHRQ0SoibIvBH8hq33O1EgPzfeSiixVJZqttWA208ZFZaql0tiiai4axwraam0Hyq8GPmJYVKDg0ZdmRCKEag5xDE5932+sUeAPFDa++t4Zew/ufS2HuEQEaXqol5VSY/4ORELuJYLcdJFzTMaYMXl+GiOR9QjgA8SM/wbCLqbh1yT650SCGrN8pQoH7S3mIYTdrjMAiTmDdtbaCbN2gCtNNzY9A0GZKcWj70hzHoKQQWrSV3xm4B99mqVEIFyTzjNGAK9rEniphHxzCxuoo9C7RQ+SH3jQYY8WnXT1FXn60DE7pQSdSSYUj2D/dG7c77ejylNrTWbAoyn4IQP9cI8Lic8cIoAzKUEzyp4xWYCiB7U1dO4DQBxzAcYPAHj1l/wp4F7Miw+0mo89ZTNnvKyquCyg5GBtPDj1q1rw8TP+y+cBFdsOtBhfqiCSXOcoi0845AJnOt+6hq24RSOLbpjvB70iJPOFYBCmAk4i9nPGOPuonIQDzbOFAfekC2yEoegek2glBzvNYohXJEd32+IGZLl4jqRpOKFoMidVoRX54I1CLrFpBUspLltTOVNZR+uDW56BR9+jIzoaY8rRIOn2GDIxj6QHtq2lo3VaK9Ra6HtHiWaSqiGnZfPRuBRj17PciRxoimbiZAkPu1mWEYP6NMceDl4Mb5FFF4lgrKRRdQsqwxLwmO6IGZtK6O2uqowKprD3zj7mEbK3HJ6hkqUvj0arKO1n0mQTWyPiJWk52axVMmBSND4vy46JN0bSsFynk0NoNKs4xuyDjz32czhSMrwQDr6OA+28sZ2fuHz6zKevv/DLr/+Nv/7Hf+fl1/+DT//2Vz799Ew5G+1ZOT0p26Uy+sT2Zz59fuLr558iEBCFtrFtJ+pWcL8xxzd++0dha4PzVnm6fOa3pz+wO/gwZt+53W/crlf2vWNjHhQkkejlqKVlghbNc4FYRyJTPZ73wuAj8YwbWwnCUepNGtIReC1LRQZZroeqUxgNTefiMQTFY2BInNsRAS6ecrdpGyQGq60+GbM1tKbkoLGVNn8wmxbc3RXjknZkKWwtyEPS5mieNZHQo19BRCma/QEBAqQUcfDfJaYwR5Ux9ufTVmip6HEusLVwIFuJZL4W4dyU06a0Ek20bQX2JZKINZipLC4VCatoo7AhviHewFrYIm9gwWfHFTc90Jq42AeXfdF+JFHyx3NZKFJS8oxIai32tXgkwqt0H8/a8/nL+lc8fYVQxckG7/ye+zgcWWyjrKyUNTwrHYmQqPrqA5DMxpZD+oBNybqSpBs6iVDG66I0nld23GOszb4Gla3vJIG11EISUeP+1JFRqDTq0ssfkzpHTP0uBd02XBVThdo4nRu3krRHDYUe8wRHSmP0oMDYQTcLRx3KVPEcloq/DUO8BFDhSzJvoYVw/3Hn9v4Ht1vn5ccrp08nXr480y6NtjXev//G+dMTp88v/PMf/5uvX3/lLz//jdP2glkB3bjfO7e9R5VGol+s1QjEAzVPwYP0aZ6UNGdN7owge4weSWkGhrUIozptS2qWe/Z7bIzhjNEj2VkRrMjxPD33hCStwHkMn9KkgY4ZXPq+3yD7sWJo1WD0mPjZWmPOyb7vIVFoQbNTQrfchmXcEbZlKcpEEO9JQ30EfKUW+j6prbHvEXcsRaaWQX4gyY8G7vvoB/1hgUaqQt1imvqRxNri37eDyrNmNMw5QwFGSwT2IsFIyERZkrYzxmS4QVG2dg5NeZsMD/CtpH0ZYwRa67FPp4U8d6s1hnlp+IuwlwlwigRzYMT071oL26nFEMEc8rRQfHOL6sUWvmaTRik1zqM7tbXwM2apCd+yr8hQndQaiV4MhZos5kTMVfkQp2Qc0Ps99lAKMJRSM+C2pFGRMuQgljQTzyDcwxZFhZ5HlTsD/yIBDCuFgh5VDOBP1JsVw61gt5QC6lk1DCWkbpNSs5qY6LjWwhwWjEYe3Hwgq+k8+gAOI+qPZ3JY5f/zr9Za7sfH9UXgHn5hCVs8wK/Yu4+4ff3AD1Dv/w9oD0A9Ghfdj5KSEZzRw3IsdM3DoaqGnNjBnfNoeAyUPbJuSc6UOexj5NTUhkjl7jH8J9DE4E3drhNPpEaS29pTaaTUenQpjx7vNUcPriLOPmC3CtpCNWfqoQ/bao0hNjm5MjiVsaCFaCKZSUMoEnqu+9ip24k5jTHmERDZzIxMJHi4hGG83d45tRNrTLKswSkeyi2lxLVHk+odr2FcW2k4MEYMfFpSUvHfoEGs8tbb7cq2xcMd3RCZtFYPtGDxZmPYiKXWtmQPSZZHKNQWaihuYbCbRBAyk4NWfB2S1X5CNGQGsHDIcwYPlQxSNJQ2LFVXHKJpKx2BzSMR6onYl1KR7LLHs39gdcN7qrlIQeuGuTAij8MyzVcUlYa70hiIZONZgXbZ8FbZnl44v3zl5etf+PnXv/Hv//Hf+be//Te+/NsnPv0snJ8GrhPXQUvFo62CtIKbMp+UEHqoaD2FKlIBkRPIX/j00tjaM2X7C+3TP/n891fu7zuyD+id6+07b2+/8fr6O6/ffuf2dsWtULxR5YL6FufjfGe3WzxvQqZr3geV4NrP3aOSAliHExE8+loTIkmLknVItI01ZEpqUuVCBQobgQARhivHLWAeCetWCm4DvAdOu9B9CT5lJJszvxf0mQhElrnJBCaDg1Jbzh2I36nZQDkOqT7SeIahVrIqtIwrgc4s+mAVpWQfSi3h8IqHHGwrlaZBK3ScrTW2UjhpNMq3JmwtOPY10f5ojA+UX0tW65LDW1sL25PjzEvVaIovCiUrRSVoepMYmiZUXFtQQrRloJYcd1ei5bwRDbYVtdB7ZzWspfOPRHUlaprVw0DJljoQEGitc4AzmsZeso/JAv5m8ann1KTJVFaPjlskUYYcKLtqIIQBpK2kP65FEmX39X0Lud0IDtsjqclag7kHZYm1XxcO5dEsnclqJBVCadCHRyEk/4cQNtcFmY5xp5YWSXDteG1I75xU8Vqh3dhvQpnO2RquF0wv9Fkxb4z9yrz/QFSoalSxEDsYGipJoiFNmA1tUoMWM+c9Gk7z+fQZAadTcS+8/rNz/T6op1eeXt64vGycLyfen3/QPhfq543fni6cL0+8fPrM5y+/0LYLaEh9DlP6dJ4un3iqX6g8cTptock/nd73GMbnHIH67KH6US6O0bGZ5Bl/yKKetgJu7HbHT5P9vjPZsyeJRF3Dx1lXGKtqmoO/DE71jLkmOl+QHhX+oNPWVBVLlZwR0r0zr7mU8A9Mw7Sz9ztCzNNYaD9SKAQSjjk+7JBzxpZUtx9IpxOc6FKFtp2OStFHbnUfEWxqMgOmTXQrfHp+YYzB7XZnjOhFG3u8v1nQM9oWwb1Z0D/2HpN9Swkb6MkVLhp0O0okEHNaUISnwRTaVhh2D1uWAEIEkKETXJC4VyfofgQboN93BkKrKYFqS6YzAL9ImgpmI3sPWvQJeCoaSjkqL8HPX71+hUrq1gOiLanDml15yaEWC7zCBmhHcEa/R4CtJ9QHfe6B4Eug9fHMR7AFUpFQXXM+QVQBtq1w84mPeI2YhyhFUWo50ffOTNqvZxISFXlo2mJo1RxI0ZzVEv0ZkQeumTJJARSOxEH10XdRMsYKIxrPlFTmw0fa0BiaVUrF0ZCX9QRTEsBVCNU0D7BzevS9TQ+g0smEQ6IqhIa97XOybZH4FC0x6DE/nsKjn8ACZFk9VAsUyzpr5uGrarCGp4WhreaPAT+IHyo5a+T7yuadzPpT232VqvSDAxAxQjQpRrybwWBxrokD4R6vEVgc0jVJzqck4hD85DknRTTklSQ2MzPKNHM6fRrDhd5hH6vyvcXYbZuIpEqDDdo5smxWEpOBivHQbx+9o5bDR2zp0y+ENBa71kL0V0X5LBCxGF6yOsEhsumVRSJhMKIFLQPZ8ZA5dB6Z3BrPvlACt2jMK61G0uXBe62torWy9/sRaHWL4T0iOZjM5Hj4i8NbawtefQ7ZiqFWEcQtbr6LH30NJRstJZOIJclIZryq0YQ2fXWWt0PGkAwESSQ0Es2IJmcaTCckE0up9J7JG6tS4gg5zr7ETAVJykZQyTIZtYEWj0mi5zP16YlyeWZ7fuH568/85a9/49/+/e/88rcvfP6p8vTphup7Kk0AKuymbKeNmNQp6bQy2JQNfOIzeMulVkppfP70lfFXxeVMOf3M6fMf3K6dOhx1Y/R3btc/+PH9P/n2+z/4/sc35m7IrDR95nL6TN1O7G2ns2fSNBi3nXG/c3v9wdjv7NcrYw+O8bzO4D2nzrznnpZsWkdX1r8aTUN+schGaznTgpGJIxwIsOXzsoUMrzMeHBIXDqPpGqoxkkFcJK4fmyeXdFc4I8vn5YkDh6zlGrZiWbhZuEfSOhKuir1m2ZYqORGW5E2Tgb7SVNmKUkv0lGxNObUa3FFmVqtCdnarJWg4TXNKYgAZ67ojEF5BbqpbSBANjYkwkkboIEFTW/s0EO15BNax/aM5SktBtVE0HC8hERBO2FMOFknp2zhruAeb0bOSkQ2oyzEdgT1yBNWhOrVe92j4cjL5S9qbsPStI+hOAkC+NtHaD98hz+76uR/AT6L0mnwj1vnXw4cs+uVKSBfyddwzi1oUXiESm0QFLdbeTVArUGMtF9eYoshWKX0c0ZOXkPq0ITgFtCZQEMG6Zt+Ujzs275HQ2sym4+x7Sb3slYHODJBKSXUTB6Tm3UgkbzP8Zx/Gb6/fQIy2KeenyvnLxvmnE8+fnjk9nfjj/A9Ol//F5fkllLpygmwpjVs58dY+caovbKcnRBpjSBZMVkNi9CGFgk4M1JkePHHxciRxmoBWUagt3mOaRwI1o1KYAPnRTLqCPJHouyqi7DN6ooSo4qmEhKjPAI6KBlgxxo3R76HwlMiumTBH9EoE6zQikAAYMkHOJFMyIY2jb6E7rh8lgeNnp217JK7r9YnefqQCRdNmMg6Wf12Vl1bZ93E0qy7VpFUFGGMG8KCK1oZnVf0QpRgTdYdW6Xv2AtVK8fJBEtHDr7iFbbDg+QfLYSUjaTcsAZ1E/wVj9AARVlwTcUnYXy0Zk6XtNBzRAHRmnk1KJA21lg8JUDsS+Vo2lgyviKUqYcfHziSli5WoPBDsiCKhsDV6xAUm63wkBTQTEFvzXcjG1Oz3aacN10LvAymF2iKZW+/t6YeFefRQrorOgVZ7QgWeyoup4BgKgXHvMWwv9uDS8Mc5JCmjCVsP97O09MU8evnMQ3Y9KYlB/kh2hwWLw8mKu3sMPpVITtdwysWGqDWC+bU3FzXtX5t9NX2vy2GJ8Q+2GYgq4/G9jOZXbJa/X0cGo1GSXz86mLPHhUQ0nn+XNM3iH14ND95AFDTdPLIzraFLPpYkWhope/CgbD7GoujhWMPB7/d7IDqFGG7i4BR6Dv8ZM4xVoAz3SK6Uo/QVhtc+oNwcKNS05NIvblOigMF3nzm8aSF0JQ1HUH88r1iA3mc6ykD0Y+pm53TasuwWgdPkMfXzowTcOnSrb2HpQi/ZsChzhjb8orrMOaOaUNY6TiQD8kepP8pQmjSM3nto2UryEDUkS+fYD6N5lHmyShPU75mlx3DGS5nF3WJAmK0MOZH4w9gmv9Y9ufexYFFejiRrJtdTKLS6nHYeWo/mNyUDMZ2R6ZtnxaiBOroVyvmJsr3QLp95+vIzT1++8PXXn/n7f/yVX//2F7781Gjnd6bfmPcO96jAlNpQbTA31oSNFYAIimsDPcVzKxW4RKN53Xh5fsF/EUrZeHp6ij6QrBzd72/s95/5cv03fvq377x+/8HYBz6EwolWL2ipzCopvyrBCe13bAx+fP+D/frO6+t3rq8/uN2uvL+94rcb1ndGH9l4FMqMc0SPgxgHVUclVFYKoXPs6wxXyQQw1l215jOctNrWSYxnmEoBWiQTLw90mQhcS61/crKLezhHNoGvuqIvu5J67rlH5IjiYXH5g86RlABW4piTgCUb6jQa5lrV6ElRp2lw6E+tRNKoOa1WJSk4gYSVGgi46qPhUzUGtWitx9CWP/Uw8BHI8A9o9Z/Vbo5DFPAVS7b1CBwtzo6uX/mQFKEfgpUopyS1KftJPCdP+ofr0UTUycCeTIR5vOeRxB3mL8PqrETGXXGo7uD5LD6wbz5+mS0q1kqQP9COZH1ekFsi4JCjcexjWfsRhGXF+AB7lst68FJXJ0iknPG5kqVyteDJRrU4knCfCiMqoetZm3WEwb0EMtfvMHZLdbDJ0g4XQko1XJA/+NSa9MlsipdceztsOYE2ErbS3LmPzv3e+fbjRv2H8unLjcvzidPTidPTG0/Pb9TTRqmV0+WZ7XTCEVo9czk/s23PaD1HJUhOmCke3SaB8qrmrA/AKtaFwUyes0VgRgTOKjGNXHgMFDKJ6sMYHRNDWwgaj6ymUEtQPMhgyDn6eyJhjL64Piaj9+gnSyRzCSBEzKDHTJNSYrrq6iUIjMIP+tbHYGcF5OsMiUhOhs0/Ikfw969qOg9ec9xL2zZEYpDhdGNm8mnZ0NpOpyPY6qnyI5mYiwg25ZD9jP68iY8EC1tNoK0ys1/BffW/KCHdlPsp10vRzJn1sBuLp64608BEFb8zWFV1/XBPnvtyVdJUhW0L2cppk0X3K7UcMVWtNQQitFC0xanyCMrMQlp16LILMevDfNGtowISSohkwpEcfPFkYCyGRDT21q1iJviIBEbzPnpfUswp95HVsj5HMgLieR7Nw8fzJffMo4H5o622D83hugCHFZM67HM/3m/p8runel3unwDDnN5H9lGmDV29j55AjKXgy+r5SMu1lCLXHgoWRvQ9lFLovcdchDFyIvxKYlYMFns+ku5HnC0ZRH20nStkC4XBeG09JBaX1U5nE1y4RefgcCp1Ic0kGudB08jYkaNsRIk8UiLYD5sZU+s8nmZke7mg22nDkdRI9ZQgimzEPPiPY4+u7PqhTDIzcF6+cNsiMAlkJTZ2LVlSsdAshUAEVuPecQ+15CCMQIORKAsuzXA7ptl+fMixdpfzhT56JB/Jv6+1ZGNrDloip++Js23nI1hfm1NVuWcis5z5ko9bD3wFy713xpD8XY5GKDsU89ZQI4mOfslnnBnh9NU4NR6l97UFMrtdmNoaN27yQMvb6i+YRu8jAvfyGBS1NpNmiSo2bsrQZXKhWdnoM3R73Wc056hHeRFFPUelV8Wks2QkbUZJbKuKnp+oTxdOly+07TNPn3/hp1/+yqefvvDTLy/89e+f+fy1Urd3+vzBff8OhKQeXil65rRdmPeN5aiRxb0umDSkPbG1C0WfKF4DNZuVbTvx9aeN8+XCT7/8FMZ8bszu3K5Xbrc3bu9vvL2/8v3bN+73O6MP1GtM+S0bJA9SNEqafb9js/PT3wd937le37ld39hvd67vP3j78T+5vn3j9ft3rj9esX3HhtEs2raLC8XDUDIDQRh9ZONVoHMipCOKQWmacq9CKL2sM/9QswnnFxm5fNgkmqVr+5PBPdAIfySZx2HxaAiLJO9hff7cIJTBKou+E3tJxchBw1QlaTbRFF8kVB5OVWjiqI/g2lel1ULTpPNopBcl5TNLkaweldS6f1TdPv4JJy+goD5hagaOGsGtagz7W/eaayypxkUi0yt4zFpYLsuSis3P+RDckkF6BO8LtcsHpOt91pplIGwcNmQ1PCTwz4clj0/IxMIy6PMD5FnJSwZxH7+3rk8Wtz8VcfI+ZTkZB3HBsnFjOS0/Pj0BDPxD4pJNgujR8CqxmCyBBMveg9IKTWJdtUyc6FQWjenBEEIG2KS4c0mfEPMjEqFcVRDuQf+wQL/X51omOVttWAIPWgpS5LFWiWtFe9FkWqe1lCdE8T6hC/0m/PF65Xt5p2zC5Wnj/HzmdNnYLhvtFHSQ2iq1VdrpxHa+UNqF2s7U+oSWE6VubO1MKw2lYjTghJYzZsY+dkotWJnUtpBsg6wOigUXO6rljtQ4w1ockYbpCOqZpHKcRKXLymDu4wj8XRWxaPKevpYh+6ZcAnTL4L0UpbUtVVoEkXL4hfstlIpm7kfVx3nQ2pADhCmJDGtQ/RIJtmwUXVW3dV6BpApPyrYxLPsWiKTHZkwW7TaDbqMR6EcCVMIWHCosg24dt8G9jyDYlZrgXk5lXmRyrWzthDfo/Xb48ChWxu4P/f48dxJzgqbPTI6ywbKE/ZhzBh88q60xBOwhYkJNUC/XWTR6R0qCMiqV8/kEBMjaWqOW8DtLWlWIyfGScUOpoYS2ZrEMByMoiL3vGRtUhu1JvYqJ6WNOIGjDpSrmg8ChIiZBoOWQujVYKoZ5KcOFsYfyoWrGkHMwh4UIxxEbRXITPRSZTPDnJG/p3H8M+D8i6WufrAA+Zh6VVCd6BP1zTLatHcG3sPzGQ80x7iEGoo1hnE4bvXdUnLbV4/PrkdwKnkNUl7CAEHR3YYG9GSd7xmH5jBDHZCXEkv9druRBja0P9k4Gd74ywvRO+f3VSDBX0OeCiR0Ijy1kLn9uS0rv8TYRWC53nWBeBFJrQzyMP5mh73tHpIXxmEZpF0BTAtPTAZS4Qnf6GEiq35CDP45x68fUxtTQtRx6kTBRTF2MRqCZUnwxiS6oQTHt7L+ifSLC7f0eB0tqSNslinE+n+BDoBPDVx9yjiugObh+mVz864YsWrOUFlJj8iFTfGR58e/Rl0JJQLi6FKA8EAPNICAMSh4K8cPJLQ71mjGgKiFNJzHFLUpgchwUkQeSV2s5nPMaXHMEGawsexnd1LxfkVoGB+aBGtRyYWsnSmu0UwEZDLsx+z3KeRQu50/o+Ux9/sSnL7/y8ulnvv70Kz//+iufvj7z8rny6YvQTlfG/J3e/2COV2KqawErmJxgP6OlsbjiiDM0EA8vFypfoHyJYI4t5jjYRKRFkvJ04fx0Ai24nYDGHMa+77y9vvHt23cuL9+53W7sfafVwsvzhcv5iaZn3KKxbIzOvu/c950/vv/BGIPTfaePaBy8315R+Xeub9/48e0b3377nev37+zXG9x7qpeHdO3c471637Eq4I3q4aQwjyY2J3sl9gMNTtA/IzjJvbQen1HkgwMWPRxA6AOvWRmWzZWeTjeC0+XIDpQj1TZWEiF5vh7nIhxaWWiWWAyaE0E8VK2K2tFY2woUCTpfEaeosKV6jsikSEqvCon2c5znj2j2+vpYjThQW1nzGaPkq6kEdCD5ydsXKQe9aMEk0Z9bM8omSucuKVzjB3d+mfvHH/3w1wy13VmNtPFLDzpDlKBj3ReiZxbqYuvVj/h+WeUD23l8PI+1eFzAWiP58OJ8q0cKcCQyjqd9+DP69jHAnywfE68P2s1KlD58LuHQSiYVMViusK/BRKVRmzBNaGdlonSD6pbzCrKqqbE2gaJVRgnlEJ97DAiaQXc5+j6yd+JPNlLWDI+VwEawoa3RqAdfPfbaBibRqzQs1Od04lfn9Y8bpUI7R5WnbYXT5cTpXNguG6fLE9vpiXq+0LZnatuobeN0vnDeTmxbo9UNlU9szZESko+aA8Csr36mCKhrVh1dhO6BcArCLC0aQhGsVMq2zm4EC+qC1o3RejQj95B4BIt7lgtlKGO/MnbndHrCRk/lu2xOx7G+QLWZFeQt5G0lh06VEsOeNJBwLTVmzXxIIo9qmMqfnsdC+T9+b4wBU5AqvL2/cbunpHOpwesehFqOOMMiYK5qQT1KO7X3sM1zjugbGI5WpbZT5M5mUBuGMCyqlnN2pCqlbkChd8/AffnfoONExUjAjNFX03SAXdu2aIESVUDxrIpMPKVFa60UXZSjsN4iTqsPhSoknnOphU0rrTVa21ApjJEBpUfvwIrhxCQDz6gUTRQvNanbirqlYnoNSWD1BA1ngIseTIUFAi1gEfyw7a3VaFAvMXQrpCWVcd8TBM64zcOnWUpzSpHjPkX0AK2WVYm9sZLa3HdHvCJBI87YY+0bVQPXpM/MBw2VaEqPZ2UfDGd+aaZGKtTsOyzqDKKPq9Wl2uNYziZwc7YYPUyrYReD5loOutaiKT5goKxMaPi+BXysWD2AEg7fUMd8oCZLPkqyxLNKoysYjwVaptaPbO9AU1Z3sQVnPmjbQeGwI8pfv/3g2iMSXGuX4IRrNklYJBOqld4nc8Q44/u+s++TPtfDiQ09fU20yy5zgpsUeCaJbOfGkjAiMTzh4fBGDvtpWwxWmHMkd10OWa3lKGPqaFBmfC5aTvJYM5gRl5yIa4ekU8nG44eTfATx/1peenRVr56HKKOWUti2jX3fWeibpjzpnJPSUk7yyPbW5l/ONSkxYkEJKau8k4dDFFNHkydnIjANt+Aaiwj7PXVytxjR3HugH7EnPgRNGioVNgaLhy2hn0Wplb2HPnCpW5SktaHbhW17YjtdaKcT9VxAOn1eud/fuF9vCIXnyxf0/InT56/88utf+fnnn/n6l5/48vWZ85PSToPWrpj/YPQfjP4KdmXajptQ9YSqM8eNpR7vOCGtGf0Oun0FgaFLISm4+UrDbMc9uvGjVGpQovzdauV0alwuTzw/f+J+/0uWeie1KedLY2sNHcFldWLNhkVj1rdvP3PfB2/vd97e71yvd97fvmPzmefPf+GnXwe3t3fef/zg9vqGpspAKYJO2G837rcrw2/8+P6N69s79/cb3G8h43W9UTyk82yPRufgaueci2U2PFDhmo1Dy4aqHT9MgxqoEerYjIDIspl7NfYFx/6hx7+UkyKwXghWVqymZS+HH4GBitESaa+qtFYoEllzSF7GwKtWtuDgJ50npC6VWoLHGo2oK+ReFYMHAiOH0eQ4p1GRjFuOil5y7O1RCXFZMpialJwG2oL/7WHUg4LmoDH7ypMrefimbKI6aB7+qLrFn0Dm4puaAMuffc6yJSoPyl/oij8SqZnwu7sfkyiPROFwHB+C9YeLyUf+5zVyjwAdWQ7mARoFzSJ+f9khyIoey9ZZ3n4GM0dg/+AGOTElXVZTcN5/SU3+6oHcOwXXyhBly2LTbC0zMOMsUY2cc9BL48b34IMTtJ62goYUEZgGfY5IPLIa6ba4ztFh8UhBksNrgc5F2qURFE4P6UQEm4P9GgjyrCEqMQ22DdrpHnMbToXT+YntfI5+om3jdLlwPp+op8rlvHE5n7icn9jaO3rekbZFoiQbJhsuQZtRbbR6pojQagsZTKLCPVNYI9o8/ADmDJg2GH1SauV8bvjF6bcb+/WOzEljY+xKv4VEp5RGbTEibcRDPlTd+t6jL8sGfQxqDWEJUeVu95gxkTFIqUqtG7VuCQ5o7uMA3AK5f1T7aq1/ksZc1NbFw977HcMOiti0oCS30wnNQC6QUgeV+L4IY44cZMXRs1IlEpClW68aOukhWRsVqHj/rAbmfjqCTiSVWSoigf5PD2EIBaZEuhuD1RQ8e/CyRwIkAb+S8Uh8L3jmMeCqJkU4aMAeoERWRFa1MpKXlFgFVANwW+pA7jMSINWkZ0Z1g7Jh2WCspdFqweY90fVQNpoez74mEu72wQ5BSK5bNJZOhbvvIQxWC2XURUlIw+a5/pKV1aTesJqx5bCDpH1aa7FskyTVs9aavXsPAHL1ZvR9TUQOpkZQaTKo56EQFeqEAVgs2lUphVILzTxFRDxpaI4wQzZaNatAk61V9n2nqND3mXs8ko6HelPcO3mLq2Kxj9UM7Mc8oIf1iU+sziqPZ9SemZNlQ6lqyWloqRrji/+ZwaJng0kqQqxAWmvIe8weGvF9jkwWwmiXFo0gvjTmp6Olcrt3er9zPj+xj87eJzJ2pgljwL1fExlekpoDZCKlRFCTwfVytgVPZFKOkvSciRi0Gpm4J392oYrZuPKnprVcQJVKHz0fZj02hXtJhxeUoo+oQfCrIvA9n8/Jg5NHmSdRwdPplNJY9jCwifrXptzvUd5b1KPb7RqoeqL9S4pzjQ4Xotnx3i3EPTS4ikv5NaQ1w5jZCOWQotGkNbPZUQTG2FOVTqkaztemJa1BcIsG6nbeGD21qOUxkGPYCK6/Jno7OnVrYcSm46Xy9PSJerpwfn5me/5KPX/lfHlhuzyxnc60S0XKZO9vvL1+43Z9Z3bn+fkrz59/4fLylc9fX/j5L098/cuZ2u6gV4Qbfbxj88rc3/D7zph33O5gwvA7xls24BAyomI4I0qsteBjMkZwLIN7F4hSVLKCX2m5b+Iwdyh7GG4arVYuX86YbZHk+MQlGr5VDJ23QH7ioRBySxt/+ekX9g63u3O9Tt6vO/fbzvX6yu12pe+d6/WN1x8/YqiPeSZQD/1zs84+3/ilX+n3O2+//0G/vnP99g17f+P24wfj/Y1xe2f2Pc1D0N1sRhPr9eo8NRB6oCyhaxvTjUuh207bNMfB79FvQ6L+h1JBOrKlHJVTrhefXrWkCqKHbKoQwXstrFHlgf7FyPRahFNOlRU3am1By8E4nyotg/qaVB5PJxFD9wKxXz1DH7/+hNp/+P4BfsijqoBnm1UpoZYhEgHnoqdINq6KopKIoj6C3AWRxPtHELuCwRU8R2+CMrJfwvPMLjT+gZ77wf9fwYx8uIPHdSeSltbaMsmIoTeLghiG0t2ZGZQc7yeB5h2UCdGD414S9V3/c83X+XLED1563LMfg4Q8E5Vohos+H5LTikSyEza4Hr83UwoyZC4XvkjoeoswRKgGpwQS9vsW7dAW17WhfEK41SdcYoaBjTd0v8VgvjnDRyVtcKF8w8Px42FD5+y5N5J6lWIEVQtVl7iBg6zhgulrSyoouTN6PlvgfnPuN7KfZlLboGzv1PNGPRVOl43TU+PpufH8fOLp5cT7aeO0vXC7/JOnp2e2tjF7Q8vG1i6InhEuiBVqOSMeTbFlU4zomXl6esLMuN5vgcAuTjmV7XJCxB9DqGxDEPb3K310tBa0VQobWqDfowoVaKswVq9douVqpGKV03Ptaj2hNQUnEPr0HFgXE1ZLgda2rKZHYF2bJtW1ZsNpVAkkAYYxB70P9rHz3m+RxJbUoU8fHgCeRdKM0c4tAiSf9BnOfwF6rbWoWNSwRXOGUuCclqj3SNUpodWS9nFy7zu1FLbtFLHVmt/CUpQLBbFhfpxPM7jebvSZvQqqWd2NfVlKVABFAHVcjNP5hLvQ95jB0LaGM/NchVpNKYLKwG1HZENlMjziIFtceh+gOadlHwl45RRgLbTzKRti92P/w6qMGbVqoCDRZRhNvknRiibbiHlaC5rQ2lunc6jukPKYoMlTX3SZHveSQXarFQfm7n8CZI7K2uQD8Jw2Z+60U0v692MgZIDbwr7fDx+6Jp+3GjSbSBqjp6S1AJ3Xfrxer2HrkzpVSzveOyoSAX7PEWDQ/XbD3JPalb5kUTuJZKhnQ7cmeBsY61wYDwdOm1KsgfbnzAGzbH6zVVKNzFCOjmCiYTVYMyhxYYtrKOkIQvLUs5tccO+YPcaii4Z2q/fYMOZEUOQGKeEYB7wxJ+x9RABdG9MkeXIRWCLJi00pqXUcAMackd/rogDFXQ0TmIEOLX1b+sxGzxyeItk0hRwc4hg4kSXu4/urGVWPQ0+WNleHOBIUlfW9kkmHLZUd/+hw/U+BxUfk/lH+nUcJ8kBUU0Z08fiDvxel46V0IR/wJCeGNKxkwrJMVjw/I0ulvqgYuagRlGdVZmXIWaVYzVOW2aojR1e+WUhduoQizhruYVm6MgRUqacnzl++8PzpM89ffmZ7+Yn2/JVPn37i8vKJ0+XCdm6UZuz9lT++/c6P79+xffLlyy98/vwLT88vPH+qnJ8mp8uO+Q/m/M6Y7zCiAXXuO/O+Z2A5kOnLjhIl2YHJjMOljhdBvGFyx7ih+obKRq3nKBe3iXmNNZeCeUWsBK3FQqHDZQOpgZpJSVnItc4T987o38B7ZpGaageN1p5o5cTzqWGfnhkm2FTu98ntunO73/n++p1v379zvd14u12zKpUIjhlj7lR7w3yHMfn86zvVjP76yvX3f/D+7Xfev/3O2x//4Pr6yuh3xtipDv2eI7yNGGDnIftWUBb1imEJ4fuidoc0nK2m8EDdQx88ETbNxqVUoIle/ZDOK/ksRELqMrTHc0qiRgBZilOXo5I4B63E5Ofq8Z5p8Y5gU0s20RYNvnrE3sc5+xh0QgSjY8QwvFqFUN7KZrdMgikh0SsfptIuxRjX+kDwj0bZheY/Xocs9Zo01AsRX2BUnsXlIh5JQd6eL06mrJpsOKYPScqfU5g//2vxM0lg4ihN5E/lw2euBspYH0+bs5DBtJG+EoQHur+criSyf6DDx+WkU1Y57tcS7157+VBgOlbjcV2sfohMvoqE1W9EU+h0KGaoGzomJRVwvNQEmxqUkGB8f41GU/MbwVm2RFuD/z+JgFWLPqowwmFHzAL5j31V/vQszSYmPRIkj+9H722iokmIWxxepiIGvTv9DrzfY35JfaVW2M7K80vl69cnPn164nz6zv3pG/3lhcvlmdPlidPpiW47pXTKluSr6RTZkPpBgUay6oJzai2SJzN0RFVVklZZNMAhjwwb31qAIJPoybGgo6k3Zp94yooGTSOAjSWBXSWANxsh81haizWEow+otkrb2kGBra2ltGDQecwnp/OZULYZD59qkfwtYQYInz3mA/yY07ju70FNzWccPj9BLoLnPS2ofLUFEt5aDa63B/q/4oA5B5fTS6DQvcc9tpLKdJrn+QHaRbJInpdHhc2BrZ2S592Zth8c8BgUFkHtarCPXoaoWNxutwj6U50mfMzq95m4F1QjhhnzjllQ0BaK3VPK0zxmK1gqia2+mBWnMQ1a9N65bdjsjNERD037OMsW+9qdog1tS2p7hA9O/7B6iLQQjAMBpKDDsmKScYcRA0Ml1a4AzarA6VQhQelHI6vT2nbEaKvJ9mBDLDT/AFgCsHkAro94ayn4HVgKYdaDhhzr9/AlSUMrK8Gwo29z2bulaR/PTzh6soyk8+XPNKqYIXE5ch95glPhA450UB8KaSJO3dekvo83mPzWaA4lAwViw0hoGi/ZHT2Mby6CcDR3BgIVN9HHiCpLokVzelJgMvzWkp3KUXbZ+8ygKW8WP7qA3TiaARctQAjjtPzSvzqPCHyXA9XMgPLg5yEjnaKLxGbUxRV/HMpV6ltfnq6oCFl+CuSm1EDiLRu0ajYd7vsewYE8uIEf33Nx8dfnrk0Wg0nWxMyF6C9VoeXjliNdrOmV2i0Xnlr7a4dm8DAlRohH+TnW9yOVtxRFPfiIJRYa15zul30C7rDv0ZOAa3LWLHRoJZMKJRrVPHsVtKCnM+cvP/H551/izy+/sr28sD194vOXv/D06TPtfKZthdKMaTdO/zxz+v2CD+eXv/wbXz595XzZqK0z/Qfmr4zxnTm+YfMNu1/xPbTj5z5w78CO2EzumuEa8mMuErxCVYK9XqG1QPl7565v1LZFRm87Rkvkq6Fzy2mknn2nEbwV3aBuqG6H2kOoDMXIb+bAfE8UYVHjKj7vlHKh6JlNL5xag9b4dHmiv5wZc/LT7ZnX989c73f2GUFLVGeiarTPnft4p/cb43bj+v0H7Du3p+98+vyJ/for1++/8/b9V25vr/T7levbK/v9zrfffqffd1qdWB/MHrs9GBYC03FZWvWegcnqrFjczZhJIHDYiEiiF982K20ET7OoJi891LE0P+vQoz/+G+j9mtenKcEW34/pjcHBT2k69QQxwplonpOwEf7Y7Hyo4OmHUefrvOcZUZJqFHBHggAVLxW0olJBC07hUSpOVFwCzCAbbRe3MnvNjnOf/ifWMytFi4dKgh0uy6A/SHjr94+nckDl8LibDymDPxxW/IId9iFfcTifP32lc3n8alKJbNnkh09ZgUiUnD/QJcwWKzdeezirsFEfuf3Lca3PAjmoAoiE5N/hF8KOz6w0DQs51WrZ+JkfpNOoXjhrNrGeKtf3byA/6HLF93vYwFoPhS8nAA9L6oUc+yYRfSQqDIB7VGPiMET1RcQR0/QVa0/khFnSSXmkJyGvmoFxjymwUpxRnPt1sr935q2zv+6cL5XT5Tvvz89JBXzh8vyJ8/mZdtoZ+46WK6fTJ7anr8SI5FTpYnF706/4geCEQtUR6KzGUcJvtsrwyfTJGszmooiXCMaksCpkwVcfUaGenbHfQxe8NtqHADcC3kJpldoaddsIRaDyoUEyqGTHOE8e8cbaK2t2T0+aSqnC/R7IdD007GOPba1moJi7XQELpbwYaBXIaaDKcS8+yepK0PTOZQMmRQqn0xaf3W9rd/yJjoZAbdEzMIdjktPrrTLto0ywZ6wVvj4qF0qpGTz7ONZlJqU4qCQl6X8RR5hZDJjK6bOmMQRsxUZCDNG67/e8zqgcBAshI+88MyUra54UIxxcCuJKky3WSoLuxZqnao97UErMC7EeKLgR/ETRqPbpqqwaQ8ZBBY+9FFTqUG4LmVadcZ7wRdEOMOahJvOgX0afQ4LQJOh0AKye18wH28+D4iWpa6+PXgYtQa9awX1QH2dUEZf9kkgaAkBNVgdhpswc8RkqgQ6WCe8SLikJAsn0B01KliRn7nP1Q6LcElBRoN4X1yd5aGbEG83Bfd9BcpTvUnkQojys2SyRAfFWc9KZRLbX+54ctOAteh40kSgB2grKc3MIyj0bmQJaC777mNmcmwvezRi2E0NhVvNjGnf3Q4o5Oo/jUIWjKOkM48bDcX4oyXxMrFgsiYczW5KdqxxinoMaMjFws4PDJ/rg3i9jGAbO4t+po7/Q77W5lnrOR67gQhRlldNUjublMIYRsC9aUby/sqowEdKvvZ0ImGqWgCMJWKnAR37/wdNNyT9bJuAoV2Vz8v7oP1jNaUhq1GeQRsa7BU+N9EY9naBunD9/4cvf/hs//fXvfP23v/Lll1+4fDrz9Hzi8vyJdrqkWoIjZTLM8fJEOYXizF9++sLlpBR5o893xu0bY/zA5zs+O947837D7jve7/HvOcBjUJMwEcnEUxSXE24NKydEX9DygvICbEwTet+53b8DEx3vOBuwoXJByhkthVkDzXaPwLbWjTY32C45KG0LHWrAvKD6jFvF2ZnzjvWOs7PVTms7Xm5MXpGsAFBOqFbOVTmdlM+fGvtQkJh9oKmAMGas1/TBHJP93vn+RzTf/vj+HeZg73eur3/w+uM7t9s7474z++D2/sbv//jffP/9n+zXV16//YaOicyJ9xHybynFmpsnqHqTDHxD0tRSuzj43zH12HxQSlbMSigUiAftqZYs12sG+hmUawkkv5bQta9l5VHhiIsGmh9czxwGZuFaRpQGKB4GV7OqZWuPf0DTjvK8PJpsWWfDPBXr1plazqHGfPWUVPUM7BGNPpmkI8W8gMJqDPR19v8USP+ffx1VvDxHkSfpgZIlD4ZVnsWXXEJaNnmAHx+tmxP0KyeHoS1zcYAAcggkHXKUR1UyBgmKP5rqA1TI4JtllvWoWomng8WTAx/XefRlSUwg9bTLC81yBPGSacmqFuiR+CyQRvP+C4VmAUxNN1wqRlTapgnTAxkvNKSc0Fbw6nSHzZTWzozrK/12jaZxi+qa40FLU6VuWyYrDzu8tPR9oUkLT8lrivj90Q/lB/Qf6+Ae8xTciebE7PVwJJBxyMBvcu/w7T65f3vj/FQ5PXVez53T+Z3L8w+en79zeXri/PyJp8sXzpdP4INWQNoLok+o1LhuiT1mZmCGmn+gY8ExYBAoqWzjpdHVGN3ZmmLW6P3GHBWrFrK84UEDoBo9lGhqZas15CRHABtVg8oU9NKSAV6qWCXNrpSM5UUwH9SmjLEDwnZacoKWGaulUss9VOiKELMMCLpg+rR47wyCs+Ex1H4mp9Mp/H1AA8BkutP3O1UqW2vUrQTVQoPC6lNyzsLaC0EJDn+6JqjOBJOCTrNwyrpVGpXRd0ZMQiJrwan3L3Sb9N2yl6hCUfaUNA8gbeAWz3SMmUyM2IrTgva8KhcRaAaNstug70krSjpdTD6unEoM14pKVQnNf885By7ULXXfp6X/n7iN8JMq2D36NsRzFlLGBxEjxIVLkUc/Ux4JR3LSFviUo8dAJLj5py2kxqs/qsm9h5CEpbztanqHBZiu+t+fgdqHjQ0bGopDkYybB/AWcwXivgHMRiR/SQsPsKqGfLFmHKcJvEgq8KVPWcBONBLbcW1Vg5IaMz/kEWMihw+yZZDTviyoRj1mNzlQxxr+5DnVMtJf9jFyEmpQQoRwxpKPXiQ1rC24QlYzy/AldxSLMGdMGjU3Ro8mkWkxbS+4/cmBp4YzyO79QwNbJJyCr2QAYpRwwssLcjoCU46gPxCT3NTi2eyWY4sPJZ0wXAutW8o/s4/M4JeTfzjJqpWl970+vtaHfGBrIZ1lNrIpI6gyTnaHp/rO8IeG79qUHzm/6/5Dhz+b6ORwmXEttTw+I2+2rGaWTMQ+gEEEgvBQDFnl1iNjzdMmGoHC/BD4rM9c1CYnpAFjHUP6M0ZNRxMR5OQ4z3vwlaRVtvMZPT3x6evP/PrXv/PTv/8HX//673z6+SfOT5PttFOrgd4x2UEieXLfqXXn+Sk4o7XtwI3hP9jvV0a/gYUurU/FO9h9xvf7WwT8MzjfEdwPRGM6nMvGlBoVIjuxbT/R6lekbpiG0XKfjH7lLob0CmyoXqJ5pgpulW4Dowe3HmPTjdbOXHxQy5mqjuo5EAypGGfQJ1RvjPnKtHfMbmB38IHXnkFZzlkowe9XLdSyZXBsCDUqTlJXhhmGWM951oS3pxf6MH68XTFz7n3ntz/+SfntN9r1ndvtzrxO2n7n5df/C+/f/8H+/o0fv/8vbq9/YPcr/f2Vfr2xX2+M+0CHZkOw5+yCxfkng/YHVz2MXMjTHjKXiRa6GK2GPJhIUHRKLVHOVU0kPjXtiWeoKK0KKmEQV19HWeiPEgFKnp/g3ObZIDXY+bjHSaO9RrlnguEFmIhHcGVHYKZZ1q+wBn5pyB/GpO1Et7KKk7WZCJjyjC5DH0n1SiiWA1hh8IfGsQzc0xjwESU/ficDZv/zd3nAFx9D+wiilkRc2As/Pgp5JBbrVyRQnuO9jltZz3lFM/kLZvYnV/pwcI8rw1ffwAe7znpWPJz90WD7qFWISsZzji+AR0Nyb3rCOMUhm3AdxUtjaMFKY+wVqYaUGI5WS2VeX9kzYBebzBn9VmXmJEqEoAIsKqNBTUqRR1IRbmoBKZJN1fH9kj0GxqI8RsDhGj5w1gicEM3qV/R8RVCViZ1ZUPU62C70m7Gfdto2uL7tXJ93zpd3nj9dsZ8mqk5rwisD3SZtCzS4ZJPyAvrwTOOWT5wz55OlgAQFmVHxdMveARYFzrBZ8UoEfxbJT7F2xBLRxzcQm7RWOEnIhVbJwYnAGj607/sjuK8r+I9dI0v3PvfLol/MGVNbj2GQ7vR7P4ZLRqAbAEzdNrAANEcfyemOLWg+0RLUipGUGCFkIquuRMvzM3v0FHkAkLU1TqdzTg8PmrNmg+y0RYeFGQ2MmEHfczBWUZqmqMfYY0+2irN000FTqOL+fiN69jZKqYkew+gTZ0ckwJFSwh+T9haIvkGg22AGBpLBsCa7oGTVNGYqUEJYRLPfYK7R8au3Jvn67iOuO6e9luSV4ztigvudVStaQgUfrVKt0fgrCnOuvgphzftZ/qXWLc5CVlMPyeJkQNzv9//SwyiyqG8PDXrSZpaabIePYdhhZuUALD0FJxa9qpRyTK4OSeXs0XNS8ekhFw1REdEj0LfjQxalXJKm9xj0GT7MzAJkTIsbdv5xjR9tbl0G0iwGMVkOTok+g0CYeo8DuegZvnAEfyhb7HtMkV0LDMIYoXbRamrVzskC+g5NZAlUJjRcN4rHdXiiN0oEDmOPyaWiSm0FG0ufIG/FAz3X1DuN5jUhdmw4yMgIlTEeEoxhiHNhHr4tZBGPYDiBgDQ2SzLTF2KTyOSaPiZSojlmTJ6ezrSthhzhUg1YwwpGNJu0LTiO0Uy7NlnQFtyd0pTzFgfbl2PNB1syiNYirNhkjfpO/C5cry0eq4OFtnEMc6yR7U1PHnKWRTPId4tmal+1MXtQFsYIBQWb2cCRiUrv83Hg8+G4G0Ygl3Xb2C4vtKdPfP7pZ77+8jNf/vKZT18vXF4qte6oXgPFHiWoYFVwmcCg6M55M1qZCK/s+zfm/M5+v6WEnTL2Pbr5751+vzH3d3y8ZcCcygvWgZFwc7S0TDFMFS1nin5h236lXjZMB2Z3xrzRx53pydWUTi2OlIrKGVwZNhi+H9r9s44s1zu1DFqd1OIUOSPSkPJECCA0Wj6xMQWb0UjOiCYkPJ6tlUGZsbatNmqJZ4AL3iO4F0ooTZQzyAWk0sqJ8rxR6plPnz4zs1rWnl+oz5+53W/s987te+ft9QeFyfn5Ezbe+PqXX5j7G/P+xri+cXv7wduP79y+v3H7dmXc7vT9zn69RXOmzjRWDh4ttpHszAjSa8FGSMZFKbak4fQjYZREtEoG+lUKReRo5E53E5Jv2eBYVGlFs/mWh2JByWChSDYsGfs0aiYABinrRzjUGQFWZVXgSrBhMoEZZjkyPRWKgCObOCLd1PpOkMiwHBjUKbWknBuHvVrD7f4UrLhnxSx//3jz5ZCSK23LD3k2Jj+MvB7I8LIR/uGnC2RPQCR/LqKPZlY+vt9C0wMg8Azyj6qCL/5pvmcapSXYENjRWiM5chSHI6B3yN8LWqbLSl1C7OFjwnLQQotmufXB3xclRtR75URB1DLJDZs/NeT8BsGBF7uj7cLzZ6WWxl4qW9tgf2a/vWGz0/vOPqMqHVPUHekDJ8AgKUL5gKYF7TMql6DRw5NATwTCGokDMcIroO7U8dfEim1VczX3VCQPke8pUwUx2PN6xm5onVxvnett5+ll53bfud3uXK9vfP3pndPlhctLwTkFUFeDMrhog5m3gOc08dFRS868FtQ1wZYl6VcOUE7khIgw7gHoRdAjaPZozBl2sU3DZk+gzgPxPJLsDGATtHKyYiByTLQdPZ5HaxtmxvV6PSitvfeYKTLiuYToRCLNNiitcjmfg1u/aCZzDUssqcOuSeepwfXO3enAdtoQh37dQ8FGiIFENoKi0xqIML2znU6Asu+DxYWPQC/3qz9Ul0JZRxmDBDoDeV20j6AcBi10jDs2A2xcqmM2neGDLaVdew9JzpDsDXAq1nUNVQoqz30OaDWSWnPcOlILWyoQacneDC2czidEskpSl5/XUAU0Sx5/UHRjFk8kRnI0O8cAs5mJXgSmsRbimQaXUJQqKtgsMdTqA4XmAYIGOHmAECtWyxi9tmiytrmm0YZNlbQ5a3r6+lrKOKuKm54oIAVJtRzzqFqlrVwDD7s8AKJWagzKcj8ET0KUJNkY4ofoSMw9MD72V62qRoh2BFW3lYJNxcegZDQv2QS+KsksWWWgiiuMJeIf9Q9jIFKxMelzUGogTqPHxddSEkkJxRQVoaUzmO4xrldgplLAbffkgy1VhEQDjpKJQFX2sYchk+V0QvsbCU3ZLHChIvRphzNeqgpF64EqHVx5CUPYx44sjXaipDrc8OmpyJHZIR4yZSaJFgYybnOk3NPO7XqLwTlpZLQ8+PEigXigGpRGc66v7yDOqUZjkLkxPAJpG0afHTRKtsuQaW0UjQagMY33a6g1BPcvLa9Hh73gWLcjgyzi1O1jKhflpDUSesmdhj2ZR/Y5xwiUKEtuWFZnRhxKLYXpk30EP1pdmXu8piRasPi7WgpFC/twZu/IQrBqw7dnePrC+S9/4enf/sLLr088fZ2U02+4/85+e0eZoBvTFW0XkFOU7RAqAsWx+Z379crsdzxUeME7Y1yZ/Q3b39lv35n3V2Ts2N5RywFpKSXVSqEWCbRPHzQno1C2F7bnX9ievyBbpd9fef3xv5njd9xvmN5Q2dOpNYQXlDPNK94nMoN+ZfsMqdf9O+30zmgn0O9oudDaZ4o0aj0FIiKnNMA1VF1YAdLAZTB8MOedve8InV6uVI1SJ24MiUY00Q0djaInSnlG6ymSiXLBpXN5DkSpdOdv9Ymfv2yBugxnfx/cbjuvb298+/Yz377/4PX5B/v9js0dH52XvvNl35m3N/bv/8nbt9/47T//B6/f/pNxfUVmh+7MPWk6tVAoqCky43q3U2FWD6ReZ8rgBb1HJfZcVedUjHM7H3zbmDwdz7vqzEQgtMQXH1WzydcxvDhWcmjeCqITCV2OtWoMZ5lzZxNBDvQkYX6ZSVgPJPVfg/Cg2oV3UQ3EhUT83UoEn4umU1o2mqXNWHQSJdWaMqHwB3cYEUL7S1M9QTOeD8V9TzEAz/JxNAFGsLXmCCCkGzhS/gykM67WcjifaOwuB0nfEyARPIP+SJBWD4ClMwyZP/CklSy36bLmgkgiZiFz7FIPkEdYKDZIIorrIsNtxDWprAB/XefD/qoKPo0qMEtwbGMO6TxWq+nGXZxdJlNfmKcLdbtwe5OY7nq/0S4NbU9437F+pe53Zr9S9yvbGKnA5owRPnGOzhg7Nkc0F/Y7OgZeZiJ4nsorEbAyDfGRlW+LQYsIZpoS0o0pk+n9oFWKPMr7rplLSpwZ4RHY9ynRnNiF623y7fcbTy8bX3+ejD2Agi9fJ25n3Ao2zoy6UbdQwHHW/BbNxt/Q68Y6Mgc2sidGBaZRKFxOqWI0Y2+SwVDbwG1mtTgepo9+TAT2WSKI8vQTKZW7mjynGaprE4RCnltPPxvxxH57D2WVTDL3aQEaTMeHM3uo/kTVJpBrn4bJwDUGN42RjdPES0wNH/eQy86pqSU13sn4wIZR2il1zQP9jupCxCrTB9UFnYXpcDnFPJPeR5w/Cx7/ltNJJW2HWVTXxwiftLULWMw4YQpPz89xnmeAgVpSyrvHOZWqdJ/0MXJfDsxGlIwWMKuhutda+MKBggleJDTwz41WG23baK1RNAYultKOM1jaFo/Fgu2gVphj0nuAidoKrZwjKT7d2Pf3nJNUmKNQ5DkC00T4S1UuVZEq3K8dQ6iizLRN7RRVuFJCaTBiGGMyaFtQvGyGvWcBJqrYPhMkCJpRNMc/OPlL1AWXkJg0o9WYnxES7U6p5GtChKVqVFpKDfW3+/12VJMAxujUlDzvfU8mh3M6bUclKhK0PW1ilBtXX9aYoYp0OpWs0CTnngSzRlYdPJtukVQ4jF4wlUK1ufjSdnCTZqpCZELN4jLNubhsaUzJ0co+sDUcAyDLBkOMRXfy5EyOORFiFLIQBz+0jsE8uZWysiUJ5GB25iQlh4S+x3Q9pBxdxYsTvzjqf1a1KWy6YQLW4z4jEwukZUmQaQ6aMgIJWfxC8RnIKKsLejmpoCBp0m6OrDJ5iqJRpqqlpE43WaKMjEsl8Igoe8b3T6cTPeUwl1OvdUNX0JwlhofCTqaox1ekB6FZvoKPhRDG/y+0f5W6aimBLHkgdqtZzPI9ynLY03K0emxAkT/z9SE0nNvWMPPgvc1UQVHBS8PbxnY+8+nrF37521/49W8/8/Jlo20dCDlGsz0mmPoJo8UwDdPkcU9sdnze8PGGjfeQrHMY3hnzSt/fGPcfzP3KvL1Bv4dahjnims03sZVdoqEam6F5rVEhqkSweNqeOD19pWwbvcRo8ts77Pvv+IhgyS04yzWVU9YAtyPbJybVjf6Oc0fGDZOG1ju1G5en59TuDXnWjTM2T4i3QFDNMN8x33HfY40W6sWNKR1hR5nMokdwXzR6B7peKeOEzjO1vVDsmeIDLRtNnVKdS4Ucf4W/vDAGXPfBj9d3fv/2yrcfb/z48Ubfd+63d/r9zuh35v4OXz7z5a9/5ae//40fv/8vfv/f/4Nv//z/sr9doTlbO3G5vGBTsPsNGT0bA4XqEsifjdAGXvKVqY7TirBlL1fdNrbTGQHMbhQdNJ0UDPW4+lLJ4F4jUZPYeyR3/1GZCvqOqmDJY22pnT/FjmZfT4qbTcO6IS1RRvNj8JR7lFnRpYoQ5yNx9JBJPaCl9fOF1a2/cZxnOaQQOPbpgrfFVh9TGPb1JoHyPE55WTKLiQWZr9cHaVnWS5eqltYDOcceaHgrJUcePHjfK5DMC+bIriCC7cPFyfFtspF4NcrGCN3gp3oidl5Sxnch+ehBSVxrNqZlIpCvUA5ftdAuSHDHFKYGkk7QSmtRqjaKTyobvQij5hwSf8L6iOFGtTLGCRt3bJwpY8fmnTaiAis+mTMCQ3ePBtG+w4wJpqPfub2/cb9fmWNnzrGKWXhOZdWkHZgvRO/R6OueSXEJ6VdSiMBdsiAaqdBq1nPCdgdkKbhB3w3vKzjegR9YNlyawX1X9mk89Se27czWN/DQdy8l/h4T5YNaIHPiOXTOTZPGE0meUpLOomFH5CFnGgokmeQwGbvQ0ofZiOFQNmdM6xwTsQAXQ3o4aB1LmlNSdABiijnpp1asgsP93oP2OiIoD2nKkmsW9LolaCCA6Ak3skcwBhYppI752uaFWiKjCmp56sBLiUBWA6EWqUfMggYDAJ9BxwkEggdlbdmOhxY7ROziljBf/j2aeit1CW4gtLKFuptELGMSVbz7PhIU7IwZa7v2nEhWN1uJ6bwKtbSgtxC06qaN8+lCqzFLp7WoAAflp1G0Huj3Qy1x5joEMNGFVEWM9aeE/LnP3N+aqnEpYxqKSjHEK55tY0rQt1n0HJvYmIcIw0wqW60FsvHZJFSFqiouA9vj36tRf4xJH0bZkqrJ2qOxd/ToVzyMUIANB9KwUPw4h3N+QPkloyHPWoYuKcxFKQqK2aI8LhsaADJ8lNMN4Ghmle4jZTT+u+Y4SX6ekXHsh5fV1egavT9xkGfqXq5GydgYHOhMcKqSIkI2qCpY0nLEYWrQZta0raMBSjNR6HZsXJGSi2sPqCdXtRSNQT+SzQzh2qNc5Y8muKVjGgZfjwM058TGQFvLa3mUWxa6bzlIZfG1bE4KJakO4RTMjG5OOdUsXUZ2ZhYPOigp81jDWJvDNGSStLJFOdZbRQO1T4TtdrtFclWV0gIN6XvH5zwqBdGNnqiUWSDW8qgcrP6AP1cwPvwc/ty5z2qG47GefAjYS46/tiwnJ2rowBq2s6a5FYlEq+89tO1TMjS0bYNP2hp8/nLm55+f+PSp0loH3/F5Z3DHbQ/0Ui+4PiFWUd/ywFnQVfoVG2/YuEIO9xjzzr6/c9/fGPdXfOzYfkdzloGPMEDuNcrw7onkxwHKgvhRqTHbo8HKBnijto2X569UdV5/wOivKVu1MT3oL1qecZ8UaalWkAOhdIelq2tBryhWELuzlyulBEJSWwn03gR86WAbM52ATUE95b76js8r+A38FrJ9Kb9VdMNKw+qGy5lSL5RxCcm6UwSbwY8HsUHIjRkiG6V8jgmYlxNPzxdePn/il9vO2/s799udt9dXru9v3K/v3O837tdnRv/M5dMXXr585enzz1w+/8K33/4JU3g+v/D09Bm8MPZXxv133l+/hVrG/cYQQa1wbhtNoEqq3xD9I66g7UJ7+cr56RPGpO9vOFecO9igkOVpiepLUTmUdkRCFzocuRyviYpfNLZOdYp4qCRlsu+WDbORugEFvKAmgcwbofvvZIOVU+JQPAKtP5nk+Evm5+kqHs7E4cHDFM3tvigLgQYuZM/xROtXr9AK8PO9kg6ygm0khus8OJoruciUf6nOED1OECV4zQ7GNWhrBdlLrjS5fHlrH7mz63VpfI6gPt9FNQCFDNwD5X9UQvyDk/3Yh1SO6/ZMalbjvh+ft6QJC4U+JQABTwUKM7QYbVPc9Eg22iaYV2Y9Y8WYBcpQfAhlFtw21M54UkrEPeVek440kopgIfPX+057f6Xe3hj7zuidsYcc79j31OhPwMFGBtBQBdwXF38GakmgimbJtdeSS548/0yOZu4rzSY68+xrcYIS8mrgMWBv3wd7j96669vp/8fXn3Y5kiTpmtgjupgBcPeIjFyquqqbdziXh///38zwKzl9bi+15BLuAMxUVYQfRNSAyCoy+mRHVCzugMFMVOSVd2FZFl4uL+S6kO+Rhp7kQKrdiSq44eb3lTtEOU0EKcHRTqQsLurXCQLh6P3oLhCO+9DM0Jh4hviz2XVD1cX3Q4yuFtk6doBb8xzbWz+eKQf0vEburTkleDzuUUkSuQVR68XBOr+HfJOXw15RtXG/uz4wW9ynkypozmUfYRQguRyCXLfZnFx+v+/NQFSORFW3NszHczJ7F44T1X+kLBQ8PXbSRHJZyMkzg2qulFpBp57P/+2wwX3baN03yn5mDHxD7xuiVHJk9HgDnpdETU6ZFSJ8sbgN6Vocwc/Z74mZFDxtJecwLQjdfDhKGeiG0hnaGObbEgcuvFY6KBm7x1zI4nQpDZGvzRIYto6ZRCbRemNmdSSRo162oAYb08AF157NPlUi6Thr6NMs6vpERx4WmLOnOahhRxmXYzsYi9m4/TR+HbXLfKNXin1TuybY/DBvGMfffyRdB4QiD90A4fZzbInFNR+9jwOUn2f5dCUDo7gt2KzZ4Vwj7kHf1ddV2SSaPX+oh3LYVuZAqpoSkb6O7ViCnvxGnxzH+UYmsj4bSqd0PFN3LFB8P/xSStTMIY5Js6gliYc9h+jt6fCzx0MxHRo8CtyosRKZzJQHZ9SLhyGIzkNyXhu/gccwRranFaSgyWjTeSea+PkBrXV15bspS/i/D3Uh7dBxiHo8OEK9kY5AiUlD2LaN07r62t6U0br7LWejSIJsLkCRqYEw4NsEXEe4gjql7rXsFpbhD6wTCQsEgrB6G04Hms/A1ErsMRC5i8jjQfdsBP/fa/HthakhJZEWQVbhfMm8vgrns5LzndHf6Xoj5Q2kxdo1k0p3u0FdfMiKwUnw1WxvN2x8IL1hvTP2O32/0bYro92x3tG2k3zPjXULz1lH25386CtQt/OZD6Jh1tF+Z7R3tttK0k7NCzWdSecEWvm4/cbeN9QSKq8+iJQLpWQSXqzEdkx9veeBIPfY0lRqBZZKyjd6XRmri6QkO/1A8OLth4yys/kmxIykHfpO7zdEb4htQHMXKny4zrmSy0oqZ6xfsNFJtpBZMBYY0QToxtAb0FzomxK5XMh15VIzp/MZtQttf6EPd8LabnfutyvX+8b7rfP+/pWPrz+z3X5j/e4nLj/8Kz9db5glsizkvJDTQpIbbfsPvv76N26//cb9/StpDFJvrBirCAUD7cg8JMvC6+cfefv8E2W9eG0ZV/r+M3r/O2N7J43dSSshWEuJsNI0p3jF4SYxOMz7uYujPmVxLvRug5oS5IJJRpOLnpNUBtWdXiyhmkETMkCGPJpsBVDSdJeIIX42uHLUlKCfBDLD4STD4x4XIt49P4ZyBJHHltDNqOxw5kBmwx7UFZkNt9fwdCDbs5H3+jdTOW1+fyG2UCm0ktMHPCz5JNwc5ubCZpkMdD6An8frgWNwCCFhAvRJlCgWg5VwvI7Hweh1OEcImKo9mqKj4Ttmh3j/8wT2hnYMYWSnQ1gt5DzIVel7I+eFsp7Zu5D2hGwLvTdyb4xJt9GBhj+355ngw3cSRAdFRwBOA2mN9PaJum/s+8Z23+jXK3q7st2ufn+NTtbhVDdzmqmfi1MP5g2e11l3mPOjf/YRPoC5taxQZmqxzObeGOqiy4w35rf3ndF/ZdsG+97Y7+8spxPLsnA/n8PtTCjVwYaU8iRfeTMlzpnOubAsZ0px+8ciFSgHNRaT2AZFhkwuaHbx8Qyb8hTUFhvzBfpgT5m0+/WQ7hzkOQyough3Bky6h0U0jfJgF4gURDpuh+j3hcFhBelZFQQs6VsYp7m4pkttZ2iLQK3qQVxza6HeEPsw4Ha7doTbJra2M80lTHAnlOq3oY4eNrFzqxbe/RFANeL9je7vz4KuZLFhl+zMB4wjjIuhCPkIWGpjuOZrDEf8JziAU4BqrZzP/nnPM3td1qN5X08zJCyx5MpS6rE9cue8GLZwG06bmQ6m2HAa9xhOJ+va6DRMXKxsOh2kfGs3hbtq83nyjKIyaUrJ7zeNDUDKidPlRO+ebhytNNu+YxTfNhGptGbUVJiCdl8/Krm6a1/XHrViboImTSYE3zZ1CZHV9GgEea5Mzw13lLGjHh2VaG64AlCdjohzSG1tHPfxEao1N6JEP/kM1Nqs8F7wJDYZU8kztwDlsAmKlYIGFjBfqOFN9kT3PRpaUDIluYf5UEcW0/wPGFj0TnGYxSHQmh5veIqbRnefz5xyUMm/XXnPQ8NdNHzq3DdvruPMeBwfAYtNhXzOhRKOCYLz6yVQyyTuBZ4mUqbKCJRifmBOv3FeeSkZCy6UI0jzQ3Oe5+Pwm/ZaMaUdyNzj573t/+B7KwilVgzzhzSQb9+86tFMT9W1C1zmLSchwPXrNoO35jkwfVsNXNT3NBkKT+m2cz0cXxOdE/Hvb2AJxbl/QDPhFXzbkquv+Pa94VZZC/W8sr6+8OnLC5e3Sl2NXHbUbu5Hr3eM3R8eKRSpSPImz1cdKQpVrGPH8FTVfsW2G32/M/YNa5uLUHtn7DtmgZZEYTWNdVroO7IaltQdc6pCGog1bGxovzLa4vSbtKBpIZdCrRfWoagsQc1anC6RErmeQ9Tsdp02BmofsBNR7o0kylrOVIEkw4caKzHQTupENA7zoosfPH1stO5hU9o7yZq/XtuBya10sXQuO7kaqQiqC7AHkm1oOCkMu9P6ByKNnDuprCyikHbECoivkpclcRJB5IR9PtHbC/emXFvidtv4+tsv/PrLX/nlb3+lnN7Y98bo5txRq6RUqHXnRGX58oX948r961eKGQtKNaPowPaNdr/Ttg3InF+/8Prlj5xff0CWE6lmkI39/jfa1/9kfPwV2T6QdnfairhNnusP/RCCoO8cT6AEIi6E8jZAPYPsKI+kikjFfQeK02skY1K98ScxAv1J8fw50KJUsRDuzicwamr8TtzFTz++BRO8UU3RAD8N6eGe4KB8OlAom6BKPKfiIw0Kx8YSg5qyD8xR86K3j1c0O+54AYfpgQRaPMWW4a0f329SN7yu5+PdzhyBwEai6Y+CPsn8IVCbDasf6EH3jH940AvlITjzP4yrG7agMOkRcaUNcvZDsy5R14bSW6fvLZrg0AKUTB4ruQm5JlIp3mi1zkwwne4aqjOIz7DpMxBCQueiKDI60s5I27F9x+rdk2LPr6zXd651ZbRJUfPtkwbVQ2JI8PN1bn2j9uanfBY/BIIGiqPD9vj7Ixy0MI1G1V1k2l25itfLtl05X87UZeFanG5RigdHlVIPlymL0bLWSl1OLMuJ0+mFdTlTykovC7Usvim0QbFBqmeeTqBAWYsDFMnPqZRTuJP5M1QDZe2thau12w8Tbb4etDLDGJg+BKL+/KQ4+/LRh3ki9kTyQ1QavUySemwW/PuoU/tSaE5ikJwbEsDpx7FxSiLs2qAHK2HgjW5Y4R7PHqCtB3VvyvfdIXCm3T8qgb/wCU66WYaLrhHxsK8kB21X1emH3ZQ2erAC5GgUk6TQKfn57nqGOB/ydEsq1GXlsq5+/ZKbHpQjh8TARrg0ObiqAU5K9AJ9dHqEYLUxaGOn6Yjn2ZsImzWOqLVI2Gk6W6Sk7E5COQdIitvuDjf2WGp1HUQ8c5N54s97sA9CpNJteEpsPBMjwGH/3Ioj9Cko1fgz1VpzwHq+SHFmR5ZHYz1ZIt6/PShW/ll6H1Tqo6GfIO2kQefsatGZT3CA1snPj6kL9bobJTP6tfn9R3zOXrLdtVAFtwr3hpsyQkxgSPDaLPhU8jgAUsJG0HfijfQ+0KAA2PBHP5tPWklcNNJs2mYG/w5iVQg9aDmI8zqHOt/uaNjjQvqUH5OzeRPp3NwHd22CX2bGvrVoRGpcUD2ECF78/aK37sp/M3Mnn3gfmKNu/kGkA43GZqqde3unHB9OHHhd3fbQb3RlxiPPm0Xw73lw5cN5yC0lzRXYQxnbTl08UMPMhT9H837sh5zDX0uK9zSblXlj+Prt0RSGBiBe27y55oVLKfnQEwfJTKgDvhkAfNCzx+cQTQECOcIhNA6m0WfjH0hFLuS6cHo9c3m7sJwqqSjDNkzvmG2I7GD7gUAKg5xcma6FCJayCEhxZwDthu03bP/N192tQ2wiioFZYjJjfF2nUbADRcCfz+kf645MDWl32vaV7f4LmhXRO2ILOZ1YT6+knFnWE5aFPvw+LdXtxiQZKRVMjEzF8kJqxQ+R4WE0kpwLXJNRivq60PcxzDbNUUIjSce4o+NK7x+05qFUrW3Y2MkMR6OtITYOnqpp93ROOSE6yDoCzfSGLpeCJWX0cKiikYtS9CslKSWvQHbkIlbXiq8EsxRSNSQn8rLw8nLi7W3h09uJt9cXXr/7lV9/fXenLauUcorB6obZC6NvtNuNj19/oyao+DaimGGt0baNtu9gmXX9zHL5gpy/Iy1nyrqQyk7av6e+fsauP8D9N/T6G6lvJHUhmVoHGZjuYN0dCjjaylgNOlWsW1irhp1vNyMTCbjJHTpKqViqEA4bbvGb3A2HabPrz8hs+e0Y6mf9F5459keti/83+2qS25gCkbzqVLiU/C9N3Yj2nUkom/D2FLlOGDvNUypsSTWa/0Q60ODZPPsBRTTas8FJj6Y+/vBAxI4DLUCh9KAcPNoUZnePHXf31DpNmS4HkuXI5xwgHs1ReFTE8KKkCK2S9KCSPoQI/i3LwdePQ7H5d8upkLKRs9IaqGbGKCy9sm+VZVkCIXSQpY+nFfpxwOrhlz56D5qm0+6SDkg7lhtrHZRlh9OF1O7kpWI5M+53xn5HtozpTtFOqm6p53UO0PDon0N/aL0OKkbQS6bOap7lvjWpzA3shO2SuH/72JVdDfSD+/uVlDPr6RS6IW/ujLicIRKtS2FZF9bTiaWeuN+vLMuJ8/pCXU70eqLWFVtWtKwsSWIoDkve2PoQQ7IbRLjL3OjDn79cY3sA0oUcZ7OaPvj5Ub99ppsbsJkGHbSZaMCGPhJL5QDH5rUCSUobexgizOFy2kWXsMB0AWwplZIzJHe0sclIiDPRzIdb5/Nr0EbSwbgxMyR6A8/u0UgetW+awOecm6PRiy6g1OyONr0jyZDkg9BRYizc/Q7Rv/OzS3L3n5xcQ5dTodb4Lxfn3ScXDyfJFHFWREwrseEL7YQBKH102lO/trdGG26SsrfO1nZ62FaKOeinA2ZsnRv0uY4BK55hgA8JkiU2GMa6rlAr1+v1+HqlFP9cRDjlzOiJbXd6rm+ckgtXIYan0BLqo+9kuvzYpGjNADqnDJn6k9W7OlgZ15fQoFoAmb45DZOGaOiTygEwT7ecGfg5GRNz+Ho2ZoCg2XgpjVr3oAPZREGipk1Lz3kfZcmxvTeKyQMdmDy+6dHrXDU/sHKpmCrb3uOvZHrzohPSWG/wjxk/hcWUHRy0Q6xgOJ8zetVugu67r35ypQdPLGd3hxjaySkz9kYuldZHHH5e9Gcym4gHWai6onpSYHIO1Ef8Ao/u0fWSHlNpBqSkx9QTfrituVuQWExcwYHyjYcj+knyMc3VGtSXEZHVpfqHMLcR4h/YMA+xmA+wAstpPR6UicxpDCQpJdreKDWzZLfFxCIpUTtdG6pyRGOPPiC7cBk47DcR91fOObmIsNY4lB6puCkJKaKcTeyYGGUeIDwBcCIHcuU3sL8/n5gV0YGVlXR6pVzeWF8+8/Ldd6yXM5YTneY8eL+vgyOWIVV0FHoTaioIi3NkzRhNGD2DrbTN0G2H/RoCXhyBH4PRFBm+hu9HkZwNPjjFzDn3KZo6wNFQ6zBu0L5irdPHb5guiJwZ40pZV3LJLAVqFVJqlHKllklLCI6vdJLAsizoeqFvH1jpMAZ9u5Jf3hDd0PZOk4bqgqSTf4ajeRPDzhi/st3/xnb/mXvY8pntGN2bWNwu1nUCD4RARoOhlDVRUwGtZFsgn5ByQrWx651uFWOwbzuX5Svb/YYOT4ZUcws5iUNAS4liJpBWan5BKFxeMp8un/nhy5nr7Uc+Pu7cbju1nDidXxFJ3O837rcPbvcbv/36C7fP7y7O7XtoexyJXkxZzLBeYCxoviAvP7C8fiYtGZON1X7A3r5gtx+R+wepbb7FaTcP0ml3dOyIbZ5GjG/cMo7M2BiIbWTzIWmuHRPEfe7cnsP7O5BkFUe0ExJiT2/2h5qLhHN1AGMMNALrBHls02RuQL15zrk6h0hmwxuOKXGoWwAsEoODiUBySg6W41mcDW3cfynHvWwc6LuIay6m/onJr4/mYTb187UyqRWBYIYpgidWPjj6YnLUTeI5sgAt5utPye+XPLd/cVAaiRn4ZmaQDJ1pAAdqP0W6cvB3VWeDO3Vajzp52M1Nbu6T7igFFaJ3RUohL0JunjyqzdGzIq7zmmdFj/OlD3dd8UP76KYCmBmM3oMeESh8dh5+H52Wd2Q5kcdGXU+cXz/T7zfa9YO+Xdnu74x2Y4nQJR2NKk5xGb3PCckbVVyn5uOU0yMngGQhYpXk52BrEdqEA2xJ3Fqv74MM3Pfm4vEyuH/d3ckn7hWJLTrTzWmFZS2s68q6njmfL5zOL7SXnXU5s6wnTucXYFDVRZ2lrm4IkSqSl8OWVeJzdbCJON+HA1vF78vJF8+1su93muwR7mNBTxykXJlUX8MoS2bvN1KtjNbiDEuM0b15JSx5VYNVoNgQFHfgEQtzi+Te9scwG59/Pp1D4+bbAMV7jT4GL5c3Jo3WJ2/cGWdNgG+A6lLwtPPu9M0UoJkqon7vWXI0d60LI3Vaw9lf+NZJRwswzs9+d+eavOx09Fm1uE8+ZrxcLgFUuqPPUGVBWJaVl/PFezJ7cuPDDq6+6Mz68CMyx+tro3lm0cwTiMFp7529N1qPQcAy2pU9GDDenNe4H1P0kRrPubnwJIGl7s3wutJao55OgG9y8rKQ68L1dgVLpFw5rfXQhbYI9Uol9JwaLjdLiYbYn/mUelizOhX6fLoAStvu/uc5vPVD+4B4Bkat5Rjyvfn27cPxv1MJAMm39Sn5cOw5QP7r2eCbhYA4mv2cHzR4ETB5sExmn5aZ2UpCNyP1QR9eH7JkpAhloiyT4+5TPlGUYXLLjRCRiTftw5Rtb0AKn9WEmLsZzDVYKplcPFCn906771GACy6QebKTk+z2RHHCyESuYtK3EKl5uIMQblIhZp1BFvG6o9jPixNvJ/6+/+xIkbHERZ3DhIgX0ySxYSXs3Yax75sfTvIQ4gR2gKq5p6q5x+7oHVZhbD4clDxXfC5Ilvok3ItDYk6VE1n3ydRvJlOlFFeBE1Z4HjH94PrPeQ4keMfpoBjNS6BqqPgqk1g3mro4z2xuByzefIQLqXnwXHwuJUR0o2s8GMbDjs4PYW/RAj0oF/LpE+un7zl/9z3nty/k8ytUjSbBokGYq8qEsOB+yYs/KBK0ABNGKogUhIrJwkSXdSijGTbcGtSG+EcVRYmjsZi/kWa/T7iJx83hot3ePtjvC0NuHjTCSsoXJDWwyih5ylRcrMML3W6kukE++8reDMTX+1PU4yhsp4+dff9gWSu2d0a/k/JKLp2UB1jBDRqv9P0XtttfuL3/jf2++RpCG+iGWUet0Zs7dXhwnG8UUg4nglEoVGZyqhF0CvFClHJhaMX0zv36d0YWRgRlPX4ktFanIEkgWGmhlLtzU2V1RLR6iuzL6cLeVnJaOJ1OlFwZ+onejOv1zq9ff+P9453tfqdHMTbxw7W1zt52xqboXqj1jcunHzm/vpFqYeiV0b5CO6P3N+z+gd7vSL+D3qljZ4wdbXe033HHCqMmv7tEfcsk4w7jA+13rO+INegbHnImkKs3uCmHGwWYJGpeHFVMntTJHN7N4VZvACwapUCP5XEPDjM8F80pYYePdlDtDvRbvq3PTz2lbwySeIPPvI+DCnTQVmajFtsXEUc5CY5mIH1p2nFFUzepDRKoq6O4c4DICLO5Tw8rPAhqCEwXnqgaTBR+vqlvNgUab0oceU9zMJWJXB0lDplUH5m/E2BCeQAT8/fMAqwJlHueCyKQS3oMMZNCmYcHDKUpVFNGCVRMldaV1nvQiGITasPRco3Gv7vF4xhK2z0pc9837umOaYERicVldYFkXhinkzcw+ztj7LDf3EoTkB588GjunZJg8T40Bq8QNs6N60TeY6CSOGfG6DE4xmZEG2b+GSfcxrB3O86dKaidYMhIRl5gXe6spzvn8531fOP2eudyeeHl8hL6hI31dCLVM6oNHSspryxBD8QeFFMRpVbXybRJr2pQ10qVisUZk4ocnuXxoui7+4irjcOZxRulcdwv/jlNR71xDD5J/N7oQ10IzEzBTaTsQ+MWyPGyLKyLA28SVBCi38hCiGq9x9HhrjajjyOMyhtyGKMF62CnDfeAT3HWi3gz/thcVf8a4+GLrxKnqnivpbGRmP1DkkQthWw56GfuNb8uYUaBxGZE/D2tazTZE3iM7doEv3CE20HfGQ6mNPPXs8dmy802HkNvVx90rQfTQ6EkF2i7ZalrOVtXNLtrzAT3NHm6+dBBWVaSJLY97ChzZfZ3OftudA03nW2fQ++jh3FZ3YjeKrKFtB9DxaN2VCAHYEb0QWW2QBBayActZlKMcOE5rheaACfAkpdj6JnfZ24c5o+HsNb7DePBz/fXHlSwAMiJzyiJOLU3WViOJ6R6T31sfQzKZCaoejCLK28fxXSYFy2NojA5U30YDqC74GDfmtNVcOFGkupc/Rbc6OHiFk8TG9F4O6oyBbUyHK3yAcnFaDk2CMP8yGx9hEuBi2LsGBACHZd8CE+n2EPiIGPe4s9nSRyH03kix8WyKOiGuv94cc5g27YD4XW1swbS5NdGLQQTZuHR69ZYPYp0EkI0q0/o1ROSZcexfgw+KSU0wjjcn1WneyMI7muac6xxJlUnGvvHeeqfqUaQjujhCoQq5Aeff6Jwx6pI4m4JxwxJwVO3sOs0R+/mYe2F1Pc4qRTS+Y3100+8fv8H3n74nvXTZ2TNkDuSF7AKtiLSMJqj3pKQdHo09jn6UmCoc2JTXshpZaTq98jw4DRrijYfGGRqPp7eh86mIx7k2WCYdiQpkgdoQ/sN3Rck71hOIO7HO/YdrLoVpsXKXhO1nFmXF+r5M2l5QdJCEk8NNHU6UU4LKW0Ma7Sxcbt/xWqCsvjfz2fKAqVAkoLSMX3ndv0L77/9Bx/vf2G03UFmMefnhofxPhEjA8mVXLLzviMlUkzJSZG0M/Tu9KAMSPf2azoRbb8wGOwptCOxhpZcsLGQy+INSnL+ubR3LC+Inkn1RJJCEc8PKCKIbFTcYi3VF7QunJbMy0ul9c8+JAKSXby3t87teufrxwf7rWE9c1rfeP30A6fzK7kIQ+/0/gr9E+32he3jne3jRt+uMO7A8OZl7E5d0U7CHBQKZJcxSLrBuDK2D8Z+RdsN298R3XEe5kSXJz/bEchcKrkUJLvLhMocaYfDbNHgO70xaC3R4E/0e6L4B1FH0uHKNp9/iGBym78XwzDqDj2RBD757AdYEF/3QOxFAoHNLlwlDvFwY4r2N+4DL3Fug1uYvvZi/kyRHjRL4yHmVVzERryWByHIr4FOdD9oGZKTWw4fNcfPBEnu1Tzr8/wxXVokauWzSO2B1j/+vn9v/73D2CEKv7v1+P/2exwsKyVnRn2EmOl4bJ5bGwfFc1oQWzi8qU1DCAeKelfa0mltZd9XlmVlb1faniAVUq5oLkgq1L5S15W2LXTdSNtKaxup76S+O/0wpjsL4MxQ1325AT2Tg2+TRoV71M/Nx4iaaoFfqAmjJ7I4EJDmpt2MI8gqhIQ9NmqKU1J16+x35XZt1OLN/dvnO/u2cbtdudwvXF5eOL00luWMjY6I54z02oJqM8Vi0bRQDn4x2UWVKSV67qTutLiWM1Mgij1AL0dDo8kcg1IXptbNTOh46I9qZvTYQmSnvPbxCJByEGsgvftmbNbtSbc3Cx3DDGx0gE1yga5OCzEL/nxo8RSGtjABaOho5OIKoCw5muqnWiDeeIskbrc7kMgZ9r4xhqe6Zhxl6L15U5+yuxDZJGTNod6foZSmy6BTMdelsixuf4kl9r2RJVFybNuGBavCATozdwybw7Hn9Lhrz/0pAda3VvbQEga+oQxGSuRUHGTAba2JjZ+l6e0f29Ds/d2p1qBkN2pdqLnQWiclSEFZLGXBTHAXc38+iGdebYTo1CIjx2KzIdTi/UbvXkd0WHjou9jZ8oj+0QeCfW8HcOAIvme37Pt+1OzZqz2LbJ9r1KxZwIHYe/15qK8ez51+8+8IcMLiMHBXvKhv8XpEXFPqYKdRRtdoSi38WwlefUy78aYfDjZGN3VOm3jwRu9OgbDh4VAF8TNj4HzFWCum/LConE4H0/nBldhRzGNlLAp774dHfEqZ1md8cjk4avOg6t2/XorD5+HgokA6bCcPXrzMlLYSfD5HPUsp3O/3o1GWaKh7dx/u2eRaqLxtCCKVPlXu4huLMdxmahajyY0SworreO2Pg+rguItQs1uNYZO35VWmlIJgHpRQS/C4cmzEH7y4bwYF+/Yme45klonSqCMPmDwU2BGt7uUvDrym4T/rGos58KmBaoh2KeRSWV/eqJ9+4vTdn/j8h3/l809fuHw+k1ew1ElFw1HG3V9sdNzasYNU51fSUdnodNzdZveBSoBUXOgqC8N2RwEGmPr9I2F5qQeSau5tH5xJC9QwAalMgZF7zic62m+M2x0VAQqkD8gJy5CKh1Ds244O4VTfOJ9fqZcz5fRKyW/k8pl1fYPgTAs+rHgz0Lhv71gyynKmrOfgaFbQTMoD042+/8Lt+l9cP/4X9+t/o7cPMiGU0vicDcQiFl48QTKFpzOyYe2K9QVtlZY6qh+ktITweYDeIzvgymi/oepDrNtRJkrO1Loy6gJjgVSP5p5UvOHXFdoKqUJa/XWI+ynvHRiFuryS8itLydRk6AJDfSiWJOSy4pu+V/btE3sbDEmsywuX9YVap2tUBc6M8Ym27dxvO/db4/Zx5fbx1TcvfUO7I/iYUiTcpOKgsx7UKWvo9s7oH9j+zth+gX5l7B+0+wd9jLCwg5x9O2HAiJqVnJgfjbsdtotzDwlOnkgT7hELWkCkmqqQ7VuOpYW+4fiRHk3A5NSmFE5Pc9v6TXNrkJ7EqPF7ntVy7PeQw8YthnUs7BddyK6pkES/GRScUsQxzKsKgjfL0/LPa2R6WPDOYTq+TkoOAk0xzHHQEdf0wBUCmomNiMCjeXj68TwgfFP34s80wKU4ZAJMgUMTEUNsLkLueoj0goXpCO7Qg96YxPUCOqaoz40h3C0kk9sg10TphXoqLHtlbwutn9nvG2PaYtY7jJ3WTqTTQtVGbld63yhjI7UN68MbpxZuK2Ng1mNY97tLR0NKDYcmpyGOoRRzutdQY8QG3BvPjKWMag13Ezyc0oihNq7jRMrx5sw56ErblXRrmOxcrxu365WP13fOlxNvn17YtjdOt3deXt58IE8nemqU6nqjUhx8kITHEYzdBewpIYfVM54CvXg9kxJi0OEuMuf1HOGb7WjsW2uUZfVzfAxy9B8+yxv7fsczMhSKuRyMcgy5bkzg54QzDJy3zxiUHIFxhN6ueA9ClkiUNUqp7Lvr/nLO7PtGmKT7Mx/BkC6+3VlqDsQ+HZk8ddKYLIfFrlB6oQx/XrN4c98QRm/eD4WQOIlFlpBxPp392RiddV3imfPhocRrP6jSYgxc12C4o5BKjtnrIf8/rmMfXG872/3OHCRcI+jfv4dN6bqunNaT9wZzWFCOjWHOmWQVMW+6Sd57LEtxsXX3rU0uNcTeEaQlctyXQ5VTLrS4D8Q8aXbfnY7MrMMpRiMLnUKAuc6srK4JUHcZ8hVtWL4j0VPFPTmtjnGTiQMA10EA9Qzbn5p9MBsHJecBSBAbxxjAx0yi9j+fJicZ12D23p3mJRZMkACgvTRC0JZTcuOIMq0Y1Qe2g+ujZse6deLbihexrj7xqgUPM6AiSY6wj70dLx5m0+eFIn3jjxyHHRYTZsRLB22A8PCcoS0pKAU550DfHv72bis5wwJ8ipnff3I552TsLjz+QbW2H+mqE/F2LpxQqg8EueDJfjoo1UVK/gon1CAM9QNsNubepAn7vh/CW0LBPlr3TUBw/J+V0PNAOo71J2TKmyWChuSvN8f6ffIOZf5dHu99TpB5Toix+rb4/efpMmCU302bwcM84Dq3pZwcgaB5MpE6JJPywnI68/bpC+v3f+T845/47qc/8/mH7zi9LlhRSI2cDLMOw/+z0RD7QPWDfSjNBtZvsLuTUBJQNkjDeWW1MLbMsEQfQldBrHhTEEPMo7kP8Vmgg8R9MFGWJB7oVSQjYoy+sZtAdxccTyl1FGYkd65RbRG84mu8gWLyjtkHI22OKO2KZOfoe6MQzaUofWzkHiilgEglpRVLzXdC/YPb9Wc+vv6F2/Wv9P1nuP8a62FH5zyYxdMA3dllQYdAVywbRS50+cqWFOiU/o7klbKcKK0EFabRe6Pdf0X3r4jt8bx6USRl0J2kldEXLPuQklNlrSeQhtEZfYuGf4n1dznuYXpi9DtS3iPxsJJCemokRBO5N3KqPgxVYV8zIydyGhS5UrhTECT5ENuzkU9CqRcul0z79IV939DW2NtG2++0difhqEaWzGFRqUYbvl7W/QPdv6Lbr/Tb37D+jt5/RW6/oX3z6jc67nKRwqkqGk/cv9q3XwSSboG5h/ARmfpdrzM+nTHpHQ964gOrfrT2cjyDU8N3IH2W/Ywzp9hJNOnOL4+vMZ/lp//zA8dpHHF8xSv18yDuUN8MMRv6oD9mCTvXeIVphnRB0MSjv5+H4OPd+FERu4oAFbLNCPbZ2Af5JtBSjBBQOsI3KZiTBzx1S8917FhPM9GuxzWc59l8QRaInswzIkE2/9ZTkiD4DDwFvo5I6rGiV/XtbBnekHU1d+XpTjErtZB7oezuGtVzpUcgkI2d3AqtZ8x28lgYYyPtH6Q9MfpAtkxLDVTdsXd0THe/XmS0A+aIvRmkrnQZzN1HUovwIQ+M9A0DBxCGek00m0gvh7mFEOYVUtydRkPMGSL++9UFsfdt43Kv9H6ntRvLunC/X3m53FjqC+v6xunser5SiiefFiEVR+YV9fM1aAmTUpSyD+RuaOE0UseSCzl1eimHW0sp7bDYnAJGD6vK3FtHSkZHBtxSuBRnN/p5occG2t1gHmdxzpla3HnInWQKxIafOGNzUC7NJiprYc1px+CtNhCN96vePErywaqEn7zXc1iXk4cuNedRl5Qfjaf6UD6HVO9TfJhO4nz3B/AZn2IuIfLNQY/OHGGcUQt6UId8eLdgZugxxKoqrRt7U+57Z9u2MH1IrpvoPrysyym2G8LoHSUhE4xN3iukLNGQawzLASCkfFCOJVVqigG9P+gxfmYYSVwXodqOay7JO7RcZm8T20l76HRScptXp533w5J8Mj+GDAd11fvMdT3jnHo9dBK994MfP3u4HHbauilHZgkcQOqzWPpBIXqEYQEH68JsbgmiFh8gTVTzp9rlX/QRRmtAmaIA59pPVP051CpQZeVwF5nTWxuPYCkvFiHyFOdNIfLNgHB40Ov0mH80lmN0f6hzJuxr0aE+1aZCb86b1aEu7k1+g2u4nxw8Q79vjuZuDiXOVQuU2nxQnxd9+qJKNMp9NOriolO3T3JR7uV0DkRfYsh4WF+iQs2F3mH05h7bJmz7pDqNo/EutdLVEwrnnmReB+feuUR5xI2QcuJ6u7Ou1R/GhodRJEGy88lUd7I6567kFIikH6RJfA3mN7PbIPprIVZ6rnx3rm18nhpFNGhTgtBj42EJJBfnOXY7brAkhiaDVMl1oawvrK/f8/bDH/n8p3/hy08/8fr5TD4llN0Fmv7kejjMGDAaopUxCv32ju53RrtB6ugImz3t4WO/o3oPZC6hQxhDyKEPIFDKiULZvDlS0AsskCzzQWefMdV0svpAqEk9ZTAnJHfIfr08Wdm5794wAv3OjiKqfjgnf1B7y0hRTufT4/X4ERv3ZkX7nW6gOOqd4vq2+69c3//K+2//zf3jr9B+pe63GHx9SA55DT2NaKwbKQ+0VP+824KZB4RhO20/Q66U5UQunqJnOhi90fav0L+S4vBzDqofpWMoJp50aCMa8NTwPY0hagxLKAVkAymHHidJoos4ij5u5OzpuUL27Yl6KA6pkvPqUefJvchv1mE4wg8gOQfK4gfwMPfJTunM5bLw+uL8WB3qibr7DbAY3J4El2p0S2xd6duVdv9Ku72xX8+M7Stje0POv6LdhbntfoXWEAjqYY7mKTn5Ng57kejixVEwT6FOR+N9nMiz2xcNR5RokUU43B2FAzeb/yRmBaZ7zQxdmSmgzA0C7vjjfUtQb8T936fLQteB2jjQf2OCIHM74AODWy5yOAf5TJyPQ8qLQgCgTzUtuoQ4xKawdQISQpZyuFhNqklC4n3EYawp3r9GqY8G9olfP1Mg5/kF42i8vWGAqRPw6/loanwJEc19aA/k+J7x9Ux4ttlUVZJJaCWCB1wTZSRU3Yayd3+GvUEr1L2ybQ4mtbLQ6+42u22nbQXpCZOG9AUdFSnuJqNDyXWn1D1sgT0vYzQlicZ56SmXM4k10Q+np0MAHFSLOO58IEpuo5fiLHZ/8bivVeJ+CNekcEQzS64VwfNwQGib0XqntcHoxv2+8/Jyou2d7bZT6weXy86rDmo9oZrowxu8UjK5FtSWQ5CI4LaHKawKUwqxr38CRTLazReT5pukLI+tjoZFJkztRqapkvMa+iw3HiB5PUEFU3cac1/zTs4Wgl8XEWcy+37nsp6QnGljHIYTOReKWWz3Cy02BiKJ0XcsWQwMDsjl6p7zJadYJkk44BUmfbnUGnz7HXD6bQ99B7ORfQLyJpqp3e9XC1vOWtwO0h1yHEwRvBfrozvVWAwRo/Ud1eGDM0qtBbeI7MczO81CZmPqRhZKToXL6ez6lRhua83UXN2WNzmSvu/9KUHYkerJUpDQD/VoxGsJOs7WSDWqbQAbSXwwEhvQp6tU0NPiGS21Osg3BkQT7055zTn8sR0SEVIpHq5q7ihmmlBzKprUhPZxbE3V7HiuJqVxfgSCuzUGJIADC8TGeTb2cNDkeICwD869v39f0kyKuacye7fh9PmH25J/r7kJGKqUNmJqmC8uZW9kcNL+LPatdQz34dZBcDFh212xnuvJGwkLAW6gLj7xBSUn+Y3SIxDCHwpvOl11nlDx1VsRd8q5790TW8VFkylnrvedUrwoIIE8BKJkCO+3OwIPsYj4BJmlkFOia6QMij8wh1ew13VHwJIcB5qaq/QFo1ZjOTknLtfKMFhPJ7T4bkR3od2Vvm9oU0oNzZuBiAeEtK4Mc3GVT7d+aPmkqQxt/npC6d2tkU6JkQSjhAtRR1IjpUFdQi8Q2QPJ1DmrFm5BKdLdtu5hUskpQ6MTrhEJTX7o994pEQft1KUcyNogjUFRoxfhKh0k0giHkMytFEmCnFdOnz5x/vxvvP35/8kP/9v/4NOfv3D5vpDqjdavKLu/xuH0Dire9Ktg7UJqZ+ooqP5Ca7+y/foLIwJRRF3drrpjfYN9J/VEkYVhgza2Y6PBbOo1xX2QsN7CctAPTi+WxalUzTcJqXiSLnmAOqkCNaefJXFOu7gQR0zIJpg2b/h1YbRGKndyvXuKbBGWpZKSRQPT6baBDfrWKfnknMPUIG1R4G/o/jP7+38zfvsv5PpXpF9J44KNFIUxBT48YFGG3LG0gWxkFkqq7Pd3cj5j44Xe76TyhtRXR/fFOYzYYOiO9hvWr+4WhFDMqTdFxG08+x2RTinDh+yc3L1IBynvgSIMhu0YCaknSJVh3gxLSYh1BwfQaJAjfzAVkimWjEHz+7c1TO+u29Hp2xwJmpLo3Qc60sJSLyDFbWbFQ3jWknk5v8zjjyENz/LsJPHm4E0TyJneV263V64f37Hfr/T9yu3jF9r2FRsb6f6O7FfYr7TWmXkLKSV31WE2rcoQp46ZiQ8jyQd5E28mRrTfQUH1+xI/jLEQX+NNiYibpDrNxg0KTJ0uqYFymtrczB4IlgXi5vTH2WDvjwPONKwCn7U2POpyzjRt/tylTCGsJWV4Yqc8uLl+iMX7O5oNmFRCBwAsPu+5XfD7j/wYECZv1mRSQ6ZAOMd7iECb2HTaRNgjv0LVQLxZTHNz94R4HeheXDM0mDpxBiQpzuVOfu2GjgCqiKZR+T2lERzh9EZ58q2NMVKgyLBtPZDShYQLekdNtOabMFkr7NWbDt3pbSevF3K/0fed3Dp93ej7DRmdvFT6lrCxYbb799WM9gQ6kJLIWeljJ1fvy8dIiHo4njDIRenaYMhBgyqpeKhOCPFzymQSvSs6tkcTrf7+c1pp++6f24C+Q7vBx2nw2/krr287nz4NlvXG14/f+Hr9K+eXC3VZqMvKsq6snFnkjFihTZBJDBuNJaxBa12chhtbGKqws8P6APKqCkUr2jOmldG6c6LVP6eXl8oYndYyrVWnoKjboxI6vrbtmCVqPSHWotFNB6uhnl7pJKwpkhdqcSrTPhzlXWuNG0XQbvS2u9hyKCktnOqZtS7+PElChrCUDOqOfdYaKReWpQa9plOL06W3zXVDw1zbUZbMfguXn5yOVPiUEkteArTynmCp1TeX7jfp/vPJwcmGoL2xbwGClOxD2gBdgy6jEpqTCNQScye23jxlOXawo/WjWV7XhfVUaa2F01Zyyk5oEh1lTyHgVjIrS81IyYyspJrYeqd3WNezux8NJeWMWvNsmjLY9ztSC4lCTniegIkDROIArWgimVs41/PCx3ZjAt4pBh0sGn0SubpLWBqKEjQ3HfQReicIfeUc7rzGTZBb0mCOXQd6T7j99Yc7UClOPxrWvB8NYeHhHCeJMnuZyUYJtozFZ6WxgU7ivYiaP4vF5h6SQO7FaXZjdI+sFrdXlOy0EoYXyK7GPozW3dNX0zguEJqcTxoN1FRhj+6FfiL4s2JO8YtzN2MzkInpsh92Xll8sp38zzYeaE1rLQ7+cI4QiXCVKS5Nh43ZtKHT0Q83mYmYTdQM8WuAKtnj2egYZV3IpxXJidPLG2WprOcTVpR1XWB0fv7v/+brLz/Tt07GLexaDwEchoW+RbI5sycS9wgOpa+CsyNmFhZyOQ7KEOKScbszAgmbKHWsLrGNkjI1iryKgTXQjPuwGzmNOVceVCgJZAwTX/vpoKsz3xF1jmIS1rL4ANeCGWyGpOxCleUzy+V7Xr//I1/+9G98+eMPnN4EkyutXxn9itGxkTF114hhFrZT4kNQSq4VTEqiw7jTR3NLy+ErM0+X2ynS0eRtbhL3fNcxfYbnCt7API1w+mVPEBXx0CN313Fhd+qCtU7KiVTU45aTNx2O4ltsiPzu8WGhxaGUQvh2x+yDWs+c6kqKZt7GnTHcxUVM6QJmC1ncp1eGuUtG8GtHa7T7Rt8aaQyW2UvFoeYzjLp9pYDl5M+kKTYaCUPz5tSnJkjNyKi0nsllpZbiz82ooJWcTpjuwYssqHp411BvXJSCqP9dE+faC+VAaR3NEFJaQCtKQc1DnwQXLE3LNud9u04gZ28k2pjIxQjh7Ec4MnjR9kClEo1iwSgk9euIuGNVTp3ESpKKWTm2ctiOsWM4jShJBNZQfJi+JMryRt/P9P2V0/nCdv9gtDv3j9/Q+1ds+yDte1x/YrWtnkBp3jAEGQJDENMYKIKGgx9QksO3PAsjefPrJchrsvnq57iuSCb2f5HnFnYANik183aYK91o2qPxlnDWmAmfB/d18jYPFChQI094w+V/zpkdKkjqpABMvHwGIo8dWh2v8w/6oKo3BCaxSQhanx00zdl9P1Ble9IJxR9FjfpWSDt/1rji84ckD6c6zpi5Fo/36c3Ng7boZXTqFp5QtKdm/vmHn21P3++4Hv7+/R6PRtUKhNYn4cDUWJTaFe2d1iply4y+MYa7VMmYg2EjlRYi7srYb2iDyhkbwuigfUfITvXUOW45sGPhve+vyimiSTIDP9/8Pca1jXsiwHPvCSycWg+UETS5QBWEUhb/THDkf9+Ufd+o+2ALPcx69kbvev/gcr94U386x38bS904F6XUU6St+zdr5qGVYzjtwm1cnf6R54ofmBTR0CIyaaySF1D/DO7b/bC4rpFMPIaSlkRrbjOJGcUqtQo9nNeIfkMkkZYS2TZPTn8Gqfizoeq8f4PY7C8Q26HJeTdL2PBUbJ/tJfomC0AgtvGAMfxswhNbe/MU2z46Jm7M4R9IDNDJa8V8piUQ6PlceYaNb+uku+Rl225ob1G/vEGdfZHZ7oJzcbOK+32jNUfqp61XtEt+XwXlR3XQeiNtTpkmQdvVQy1VqPXESJ6HIzPQYdIZ4wvaBGy7se0bVQrDlL03B/ekQRoeVjUpwfHc5xIOWN3p3BKWxGYenFZqdVtdM+qyRNM9yNldirpqDLKeZ3O/X8MiYQrsgzEiXm81ePg5S5idGI/SYN/UIK8VD+rbFOjOujFrxzwLHra+cV8nf8ZHDACPbcAjIyEloUyuj0UxkBAouKUl3yAzD1FtrEWC2/7MJSJWEENBLC6syDHpz9jz+Xc1OKjTcWH6qKuGKKA4T0yf45Tj7/bRDmGt8eAPShTlZw6XUzcc+Ssix1SVS3mahizQQWNZyhPq5gd/roX15cL57ZW8Lnz+/gvr5UQ9LZxeTrxcTogp//H/eeU//v3fub6/k8wRz3G9s992RqQbShou0hTxZhs/WCaBPanE+mXqAVqswifHKqFWME5IPTmNqPh0Z+0d3Xcsm/PcMogZyQYEl6wEZ9Jvmox2p1G5v71/JnMFrzrcZzf7EJgtsVphhPjE75+MyIlUP1FOP3J5/ZFPX37g0/evvH7KlNNOG795Y293UOgWE+rwZDXJiWUtFAYig1JH2Ft2hm6MtsXkOW9gReiINkxvYHeyKKlmRrMjzORw+SAciuQRROO2fr6WzUyrQGJjIiRNJM2kkaEoljRcCZx/Pe9bd1FovhEKpwXfkBdMT84j9yfS/fP73RNwTbBywqhIWklpWn8WjMbQRNdM14LaShJ3XWA2IDzCziYtxIYyuiNSIxs5D8grUoVkZ2oaPrgNCe/pUzhv9JAsNtQ2VAeM4q5FtiAs0cRnBgW0QDpR8id/zWmiz7ExkYLKipg33CBk86/hKbz56deziXVXLu2uA2jDi24fIYwjPjNpSCqU4sE7JKdC2BgkM0ZyX+t8ONWAcyY31DbMNoxGkhGrzdjs5IXL6YQthdEz51Nlv78w9satvtFuX2n33xzhm8/ybKVGx63WnIbng5C5G0QACiYZcnb3pQQkw5I5hzmQbZubM5kWsH5tLBqJqW9xYNyHu4NbKhp/IVYCPFB6F+M+o/RzCAh6ZAA8LjL3QyWbI+ooMIIzPPxZOiw+5xFmSq7l2BJ4Y+tNFoFyz2Z+UuVI3yLrswmZh+Hzz8zBZ54e8XUOMwLB3aGe/v48NJ95+b93sHi8/th2BDr//H3mpmAaHjxvR37/dZ5/PLi4hQUjZ+g5U3txbn4f7jmfAQY9u4sNgIeVecq09gULTvZICc3xX3dqZgdMvWm0w97FgZI40nzIE6dkYM7sFjVyihTyoyb6aKoDpi9+gsNYA1z7ocGFbr3jXOUU5hdhhawSfHzjtA/2rbNtnfu9sZ5W1tPOctpZlju1vvN6vnE5n1mWhZSdd91TYl3P0BMiNdzGAJRSJfqrGBTjmvu1DOpWkcfzgR337KTMpOZbAbnvIOq1R823ZCWT5ZGT4FbGcU66PYtfD/GewwI8PLzIl3r0Rmk2rfOJebrl/bbXAMjEtyzR3CuDZruH8qmzHva+M0anj4cJxwgrYZ3GHylTyoKaMrTTBtieDhrWpLiZ+cZgb665sqjdtWZUI+cnJ2ouAd56L7eH+f4ME53DTg5bUALFvt/dK96BWtct+tcYwQ0PupIJvTdy9tyAEtvJkhYQnHWQpz9+Z5hTZGw4TczmYB3ghjtxGdQAkWJo6a2HDsJ7QDdzeeiCUrgCeQ/5cEbyzziTRRj7iBTddNSgQwsUAtox+qPL/aZxfzTiR82B4989ap9/zZwfG8pv7pbZC88aHiCTqvftZkaZWmKb3zx6J/e+9i/VBrThnNAeamgfNCey4U1xIhxIhsUFc37fhBKmPddETaP39ok8GbFz84Nt6HFBNSZO95PO3jBjB8LjxcoPpbkR8Ht0BKech2paHF1IOZHCN/dYrUo40QhOQxHIecFISFk5f/eF86c3fvzzH3n5/hM//fkPnF5PlLWi5h7JWcBeTujLiV///rP7UbTO19++Ir+9u6POGCxirhkYnXb3dZMMnBOn8vDAHk4LoSiSjVwHiDf2yonz6Y9cPv/A+fMZqXe2/iv71ZD7oPedboPE8MZh8bvGCG/6+anrgF69qZhTf0rkugQ1qGPZsOL/Ilti0czARVtOvVoYUkj1zMt3P/L9v/zEd/9yYfl0RdOV3m6M8YGZWwxiQrbq3uu9Yd3dHJIalneyNER2UhlI6ozhBS0FcgNGU8P6QPoWvOjwJid7oyad6ErC29/f80jiXNFoKA3cTehJAAP++ZjhQUg5O8EtOwfYFEYCS2Hrxkw8Hgi7C8ZSIssdxi/stw12pzqMQO8ZHaxCOZHShVJeKYv/l0txHqsttL7Q7ILaK0MF0ytp2nzNgTBEZrO4oeYC0Kz0MpyqwnAPZwOxzLq8sqxv1Hrx3+sDkcUZ07Z5Q1gW8vJCXS5+sOYK4gi+e9qfqKfP7vMfw9/QHrHkxT2EJfugTHI6U57ODTWQey+KvjL2I80RcF+/tl7pXdl7bAdxwVfKxiklTwGW4psBC8BgDuopuLPm12PojTFuqN4YupHMswF0GJYyua6s6ys5rZRypuSV0/KC9sTl1Nhv79xuv3K/3z2VtDXMQmSlFkmlEYyiikhj0L3GJvdPtpQY07kruMSSE6TiDX06YSFitiQBAqTHsiZ+FiQcIGDyM2dybfRxxyFmc5Nj4ZRiD77uZKHDI8E7iq8PDCrBQwZLXl8lJuD5uEzkX20KySZS6YfkI1Fc4jV4g/G7HucJd3807c+HoYp+8/enmMy54ilECfBAsL61pjvSuef3+2bYieHKvqUpza83B4Q808MDNXseBJ6/7jPNqdZCLoaac6tLjxT0PQTEaUXEGKOiw60ze99QbWjbHVnNrmPJpWJ9oW+Z0RLSPD9jNHcyG8PiQqp/ryJYKWiPdb46H7sbINn5xeLNxGCQUwk3vDDQGIqlEpqZCNoBhhrNjMt59X87hkdqibpzkhVaU0YbtF25fuzkRVjWhbpU1vPK6XThdD5Rl8rH+jdeXy+cVn//p9OFJIXRGyka+1LscKvKEsBcdHWBlbktbQpE9RCpQFnXw/koi7CkhK0VDBYKuQp1Le7Ip8pohVzzI2E0wg4nlfj5PvNAukIaidxT2KF2tDdKeXigJ5n3JB40KfbILkhuq6g9qDdmdB1s+0ZvroGatUVV2bbtoNBNRkKeeiRTtn73903CemdYGIQkBwHc3eUxNKg+NaI2XW18C97pj+eAxFJd7DuGDwJLXYFJQ2shUnWwKxenY5acqcm1W9o8cNLMXBwu0PeODWdUnM5nP5NKIkllDOW63UJr5TQeqXYMgRaBqsMkBL5EWCkculHxGmxRN2oJbVYwSpZloe8OyrhuwMXAhlLLGsDyDNBrT9TA6aPvuxYBGJPuN4fsB0Aw8wJmTZr6U9PJ3X9sUzUG0vmxaOhMfRj37aip09813IMkUrqL29ApE3H3PiGoM+JilsnndF6oHjZG42iwA6lKEsV1rhVc6a/BfxDhYYdmcegQQJ/6BOecI5/sELd2mqOuO76UQC93f8jNnP8q6fDSF3kU49nMH6ePQ/xMO7dpIMMTAjMbXxfyGJYzZT2zvL3x5//5/+Bf/u//xvnzC+vnExRHo7DhNKGSufzhR74X4/Lj97xdXmjbxs9//Rv/9R//ycfHB23fOacQYZqyXa/07c7YhqexdrBm0Pzrmg2fZOmxMjUsVVI5c/n8r3z/p/+N7//8PZyufN3+k/efK+PXv9Fv10j+dOQuJ3F7u9GxsBRlrjpDr2A4uihlIZ9ekLqQqmAlVmQJihmpN/bN6NHkjO5R9svLysuXVz7/dObteyWd/srW78i+Y7YTKh+ESkkvoCd/WEd2oV53q0tLO6P7dWl79yaD6kW+LP4AjI22d+gZY8WyN5E6HB3NglucjhuqO1hDkjEkY7kis/jbFI4W327YwOh+UKkjwWj34KOhiGbfCKREKgupLrHVWHzA0LiddJBojP7O9eMrQ82TbXOJLeRsRComZ1K+UOuFUs+RCA1bekfSC3X5nq7C2HyLJNqcA28ujsSGWzuCoz9eOkBh77Gi1gxaooBCKSslr76iD15qkpU2zgyc8kW6kOsby+kT6/pCLqtvFQxECrmslHoh13IECY1AVnKKEDtLjxCO7C450yZzOsSk0G+oNtxFwhHJNE5IavGgJowp/kwkFiStvpVIxbckIRbXo7B0Jnxh6p73ozstauiGqCfjDh2YCGls6NjI5cy6dJaSyKVQizf7dV3J64my3Zy/21uI173A972FPZ/b6io7os3X5zIpRXOw9AZewi9fpJBYQRavRRIi1Tm0BQ1stpxT3CUHlQ/frJjrSHxoGgGGhBAPZhHmcG06BFu+XZgNsTfOrn3y7zw/d3dl4aCypAMFPFK/xTcHfotPwGVuFGJCmQMD31JzHqg63/54Qu6f0TAzb5iIAf2ZZ//c3H9T359+74HG6wPweELWft/oP379z7/u8/f+5nuYr/Sluo2phH1iouOCWBeQavIGQ1Kiq3vhS+4cacHddXGIOirq0e6k3LHc6d2vtZg8KJ8ygqLjTaqaIuQHMqgSTZ5/1q13F4uKQWx9csq0PnNo3K1obpE7jqSWEJdbfN4lid9fw9hHJw3jfruRykZd75zPO+fzmfVU2c/O67/VyrqeeXlplFLZto1aT6zLmdJdCJlTpln1ujEH5JQw8T7C6Tv4ZswmYSuG4RiwUrz3+/2GJhdf5JQZacDwmjmRcf88OPqT2ZN4snnshJOFS8sC5oLSbcOTsNPjyTWfgh1hFXMAwIY39Aw0STCgQxNDR+nI+NYfff7ce6e3RwI95gOOpaAMUpguJb7VcRGvc/S3uN+d/it4qv3MCcrJkXK3E53nVViBZkKvNtHrEVsvp74ewO8Y2GhozSQp0ZT67tG1nBo0oNiajcR2T5SysKuDm9oH2v39DDVfSg6copt8MCh4sKaGzrCHjbprQxzIm/al2tvTc/t4hiV0CJ5NEwYFKVGGU7+dJ++259jsj71nnuYxYkaRmTIe/wUYwHFNnEXgrjjPAlo57rfnGvjYNsrRyn5bg/z3PTTLq1jZ+/wwYqWQ3CdX1akSav7ChgbqkXCqigQ/lnGkcGURLzrHRBEuBVE4VEN4NEfsOBz8cfTvlQKWUpsfSiyXfVXgyDeKaud0Wo6bfV3XuAHnRenHOlS1IZEUJ+ZRv7kWX+8cE5QdK3y3UlJfPeGcrHo5Uy4XPv/LT3z3pz+Qz4VWBrsGOu6pQ5SlstTCl6WSMN5eLvRt5/LD9+S3C1+/fqVvOwuFkjNixvXrL7z/+gu3jw8qCdsbtnX03hn3QWou1Oqq9PB3TzWTlgssL6yf/sCXP/8Pyqedtb1Q/57Z/vLGdr0yWngqt07B0NawtqHb5hQRNDje4N7aFbWCLC+kty/U8yvpvCJLwYqvI2tSaO/k63/T36Hd3hn3jMhCeTtx+ryyvhr5dKXbz2i/hSjXo7NNIaczljJjdxRY8inQrYriSvr7bWO/b7TdNwOSEpLP1CX84Pcr+y40GZAyLH7IZRayrEBmtB3b39H9yrC7o/fl7A2pSES7d2pO5GQwdmzcnb6hewxX/sBIHODeuFdyqqR0IecXJFenZdhGSS7YHGr+ntWbwNu2sfYzy+nFG1MyRsbkhMgLKb9Q6is1mnsU7uWFunzHy6d/Rc+f6Lc3ZPs7tBvDdnQ0wAXGyaudo/biTa2qoHIipRNJLpR8oZQzKS/eXKf5jPpKmBxDlww0F5bTK+eX7zhfPnNaX8nlBFIOSlOpJyRVai2UxXUiwzpq/QiEG8NoLbjoyV0i0ky1Ppoh59hrHJSKW5amXKj1FWPBbCGN7hSonKh1pdQXSjmHzVsBenxuOPoftMEcA7hnOcRhMbqnGY/Y9CXFbHO0aUSapVRyStRcSWWllhPUguyr183hvsOCOzK0trPvnbb3QLE2Wt8cDQw0wd32gmYTh46kaJjxbQaBph5Uilj5HkEqWDTr3lxED3Y0HQfFBhyx8hY6/kyPs8Gplg/3GW+Kqnv349uEFHVxWufNw8abmzkEePMwOe7fHjzeEDwYmf55e73/toP3jat9c5AdCH6S5y/59Dqemvung/r5z5859892dM8N+PO/e7zuaZH3+Mbf0noeX/v3//b3zb43xN6Mu5zCHcZGdlQzJTmSTUUSjIQN/wwkDVKKpvaeIjfBm8Yh4jU1V6R2pCUHOLSDNdq2uR4hpTB3GK4fCgqoHev90H3l2BjFa9Y4rnPxRn6EDWpGYtA3DipYAIK+PXAxpyRv/FqUJzPnNI/e6LvRtkFdC9fr4H53NHpdV97eNkoprMuZy+VCP+/hz16puWL5TJEc6G1hCtakOF1yzs/zpvBU4inodoc+DE7nlW3319gPZABP1G4OqAk+DNQImJrUm0nL6GOEQdZ0lSEGjXjy5nNizplH3SHG1F2GunaadQau6SK76HXvDbVBUmFJlUkbSzGEp5Sc428PakjOGRNlmPPbuwoyBBsCsVkrKfsGYCg1u0nH3rr3QckFtb55UxfE9s7h12++wah1QcIB6H7fjq3OGE4zKzWsJvugVBcVd939Ps4VkQetLWd3H0TMxea9UYrnFey3jUSipMK2bQ6oZLdQHaHtHHvHcqb3QM/F+9eSH/lAXk/d+el8KUc2gkxdjvqQMbrXfsqj1o322M6lSOh2aswsOL69J1KxLWXPOonN0awFtdao93FfSlAl935ch1lr559POrpXRLfJHDhjwqmgRP/uINkUK5c2jLqstO58JJlr15yQsjh/tflB27s5IpCK8/J7fyCY8WZH87QzD5zgscbLU0Aw02lnAZwVE0Sy2wF2T1tDcHU2sbrMKURTmVKSiyvFEde9+dcdo4d/rqvr99Z80GBEYI8/NNocrZ1TqgainVLy4I9cyIuQFncyKJeF1x/e+O6P38EKexq0NJC1IsMTe3MttOST3Xl1frSUTDmtfH9eOX//ievHB9t9p3Lh9eUVScp//q//i7/81//i03Z14dr9xsfPv/D17z+j90HqlbFXRAolbVhJpPpCWS+cv/+O0/ffc/rhR97+WHjLn/j0/oVf//MvXL9+ZbTdBZnXK2PfsL2hfWe7Xh29H8poH/TtV1ozUn0hpxdOn37i0w9/ol7eqC+fGClBLSzryrIoWa/8+tu/0//674yvP5O2DOMFq59oyd1AWr/T9Fe0Xynmg8zoHdXEUjKWG5KiEORwTckLItD6htpC65WPq5DtwuX0xrq8sCwXb3iWzpBPpPqJfb+DJk75wlrfyOkUj4Kx71fe3//Off9gWQqn03fU8go62O4f7PcPlkXIqSN2Y7R37rdfaPevSO5YBCGJ4ZqEkZxaIi+k+j1l/Y68vLBIZtuuoF+x8Y5K494UeqePxjDYNkc1chZyWsj5hVw+s5y/I9dXYCHnk1vAmvD26SeWsnD7+Mzt4xf05Q/Y9e+M7cp+/2C//uZWoXIHdoQO0hjqTSpSqPV7ltP31NN35MW/T1kv5FoxBm04YukgXKLklbL4GnxZXjidvmNdP5HrmVxOgd5Pz+JMztW1MQXMWjSIvl3JScgFcnaHB8M5sbWGPsDCr364a49kBdux3iCpI3Ld499Pp1e6Dkd7TFlPJ87nF3Ikxo6h9G4g2depw2tHLY50FnE0CHxga31nDHcPScVAOuD/TlFau4O8U8Oqv5SB+/e7K4ZZcorWtJe1wkkXRve0xrYPF+p1d4hofRxc2oNDPxEaPzZIssARlWNB5YnmP7aYIt6ipIz77ePixt59kAQlZ28EZIrhbf57oR70GN96jqFHk2sGXR8S2ZLzY/hIeaIvh67p2b7tmdcOEzVPcT/EYPFNMxy2uk/NMgiPhvjRrM8fz435bDTmj28HA9fCWO//dCswf/284X0eJib15iFo+3Y4mAglzGyU8g9/d36N5wGh5Awpx7k4gOyc9+y5Kn13QWYuhaILmw56a4x9p8XQVlMi75neEtarhx7VFRkNbQ1yjUG20bcbWRNJdqID9EYtC+viz0xrvp0vJR3bN1VvmtalcloLt9uGYqyLD/a99yPcbQKJEjQL91r3xHAZQUkxr3dTo2LDKXZtKG2/oqasVbheNk6nlWUZ3N89fOl8ubHd3vlYKufLyvlyokmlnn6kdSPX6k13Ege9yJjl6EUlmmzi97tvCLsGAJE8n2BxNz4p4qzDPhjbYDmtj/v9sIKKFFrx7Jh938klUSSzbT60SBLqWpEs9H1j33d3FdKgHA5jOxgS/iwM63S85g0ZARYujKHc7ztNGiUXBNddlXDmqcuJusD9vnkPZkGnMQdM5nbGt6dGTovTHPfmAZ5KaCP9vnSNzPA+pRZ6VxKeLXS/3xz5DgHvMO/b6lIgePskuN5v6HVwvqzBBSc49YVcEm3b6X0E0CM+aFhnWStt33h5+c5pOuoBnqOPcDrqsWl0MGPEZkoU+ubbhVK8fqZcIBB4PdTgYDkhubiWMqs/hoAUoe27B0aNyP/ITvXLS6UKodWAsi7c7xuSZ92NupfkyGdaSmXf97BSnxkdky5YIrfDswWcShyo/hZgojxqaEpuA+6PsAfJzeRhZyNqXCML/UGmdDMYcUPIQ1XtwLodFJzjEJoFDBecWHdKjgSKY8nXO76SdkuhQ6jjJCTnZcpzEZ9D4ZyOYmLBhwlf+T79J27NKUnD83gW/BQN/qMITxedUlLw8FzF7IFMFut+CzTNi5SKv+fT5Y3z6wtyKnz+6RN/+LcfyGfDagt+toXbRiRfhqiIlELp7tct5UI+JV5q5fz2hqlQ0qcYOjp/PK+cf/iOvl+RsUPb+fWvf4H/9//F+88/Y3sijxdPoE27N0j1E8vlC5fvXzl/OVNfF1gz9fTG50vhdPmR6/sHbbvTt43temNsG9o67X7j9v5bIJgd3X+hbxc+rje6LqT6xvL9T7z9+X/w6fufWF+/w3JxF5aSqVVINJavPyGvP1H//leu7zvWKiWdGfnEvRVqh7x88muijdF3HxAVehykOQulLkiqqGWG+fVK+YTagrEi6YWSTyznL5zWT5R68mtgSlreKPfvKNsdHYmlXng5f8e6XphuHft2o379mevtN7LA5fwDn15/RMT4+PorbX8np07JHR1f2e6/kD/e4ONv7NsV9hvWbqiM4EovpPxKWb9jPf+B88uP5PUNUqHsN0b7K72t9HEDGmY7Jr7eNK1kPZPLK3l5ZT1/YT1/YTl9ZlkvTscJbYtIodYLcknksrKc3ujbHT39wNiubLcPpP6NdvsNbe/YuGJsOF/+5nZhmmljpcgrdfUhQtYLUlaUuW73XISZwlfKGsKr7OE7NRDb6YmdJbo/82ewKim7pmE2zoYLjyf1YmofBDDJzACgQ8QYqcpOiXJHGxdfeUy603YSC0arvv51e7zQPDhEDWaHaH2Sd1QdfbQSorziCdtp4IiLLW5Dm6aQeHNHhK5IakjaSFYcyQ+ke2jDg1M6gutzZIbD5ERZKqdTZW9C695Eu5Vcp5sFwslR3yaNcW5N/YrZN0i1xfub3tqIMGPYE8LsvT399tGEeyBUJvy3vK4Gv7PUhVweIMxk4ctE2A+xXCBKQRWaG9hHg+//znUXT79/iG6fIff563Sgqw+u77we/9jc26Q1PDXwc5X9/OPxvXlsPeQhPvxn4td/hr4//97v/+xBW3p8/+fm//d8/ePfxwZ60oDcdtnc5EHE8XCJZitcbrJ4xoiIoM2tZ11jo47ql+L6jL6T0u6CbR3I2DETlnoKX/zdufDitokSjUGplUeGjd8btZZ4fpzGU6ufaT14x7X49mGEDWJKHHbKMUPgu8RwWLLIFpBMG/EX4l7G/N/cm9Fb4/o+KOXOshZOp8Lr24XTObOsmfNt5XJfqHlBzsK6nMnZzRPIQk0LIgtdu4dTJc+VyQUf9sW3F77w8vs8Z4nwcu8FiM2ZmESfkmJ7FZuw6fQXg23SAC57J5dEyjXEm43ed7bmaHPrDwqgDgsnHm8gu7oDjgTNqgcPfVndRECHa2pGH8cwbZPJMIcYexp6FUp2qmTJKVqquX3LDuIEwtuGkvqA0N30Pu9pr521rj4UqnG5vHKwG6bGKoLaHCgIHcHTlvGhB/BhpO0tWBzhvjapOzZ8SCrZNZLiZ42YZ/7sz9Qg8U2FxnMlynE9rZtbvJpvIWL05PA6n59p6FGw+EzjZ9WgmsfWYZhyOq2Hlqj34Rul1a//c02Z55mocB8R5prc8EWSa05ddO2gs3v2p9BifLtlnM2+bzhmTX6AGBpUWpuvO+4DHU4RLX04D0unxaK5haRomLaZX8BkvgKycNJxesxcJT+KXZqxabPAp/hms6nO04R/1rmJasBc74rp8YFMLvDR6Js3FmaEuDLcXI7CPQ8qCYGI34Bz9e/fIL73IYZ5vFanfhSW8xtlXVleXvjy5y/88X/8kR/+9AmpW/CjhESlxJrkcI6YDxeBHIUwOON6gZIDKUwnb+By4uX7L5TXFRs7BWVsd0bJrF8/6KVSZCXri9/0ttNao5YLy+UL6QU47VjdsXzy5mUtvK7fsbzuaOvY6PS2M3ZHgK5f33l//9VdVVpnv/2Ftr1g7x+0linLJ95+/Fc+/+nPfP7yE+V8QXJGE8dK2YbCuiL1jdPrr1zf7+gOaGJdEi+fCqfTwORMG39hjF/ZW6M1icOgkvJCrheW0yupnIKmkHEfnwXSmZSV5VQ51Qvnlx84nz6DVNoYZJRlfSWt37G0hlnitL7w8vKJ03r2vSyeQlzevrB+fAU1Lufv+en7f0HEWH75O6PdENlJsmPjg33/jZftV5bf/sbX3/7OuL0ztvcQuHlQlOVPpOULy+UnTm9/pJ4+Qa7Udqftlbad2PcrOu6OZlsnjYGRSfVMqm/k9RPry4+s5y+czp85nU7+wOdw4WkNo5JyYj2fKOsbo+1w2Rn7xnp7J5++cH//O237FRvvmN6wccPGFe13RodSPlNOr5T1lbye0VzioB4emJYTSQNZP1ABb8Q1FVrzNL+SgitZnJLjXQiM4b78BF3OaTGOcKRovA9rtpSQtHhIWXy/+Sw6KOyFT21zQezoiCmSnXucQyvT1Tm/Zi0a+mkJFtaWGQ5xPeHegdtPplwo4vSzLoLYQl0SSQaqd7b9nT72MBbwa9Fz8+RjdYpi73u870ZKDlbk5Pd1luoIW62UWmia3MKux3/jERw4ghrxaEKjgbAwbA3ahHs7PzePEgCIFxvDD+5S4vDoM03XfKvAFJLN7nQy6YNnq1Nz9GgQvC5mpm3pA6EPoIZ/bPJn4z7fy3Oz4b83D6fpcBO0sOPkepwdz8390Szbo3l/0GWON/UPTbx92/cffz5//L5x/2eDwvOPZ3vMiUj+nvrzvBH43Xf33xO3Ipbk5gmm6uCWJASLLbWRrVBUaTnRczh1pMTImZ4zqSU8W6MiuTL6hvad1Jsj420DMjI8V8L6jFTrmAy6+QAs4noqD/eJBNbYOoSVFLVmb8SbOXUk7jeLcKM8OeXhs41ByfPpM7rFAJt8xOwiPtAzI4A8OLM3oTdlY3C/d25X91dfVmE9ZV5fT7S2clpX5O4ZFqNfyIvbhKopbJvnHMT2s5k3/zloTSqR9GoeIUjcQWIPWos3XL5t9voETrtwh715q0rQrA4xZAymEkN2a82dvkajDU8zd8Gp1wEzdSHn8E1IlYpqC4TagUp/XBXKTJhNQduY2zavJzkSYEfXxxDZldZHbBly9GdT3Dmfb2XqjgW3vPS/6+yM4rs3d82p9Xjuai2MZGy6OQf9aD4tgDU7BooposfkqNVghxuPu+A4r923nr59LLlSJDm/PxrjQVBVsDBZcXDDZr0wc2BGCGMHB2Anrc/1GZ44/BBLewKuC6YfVMRtnkNYDIKPftev4R3Vh1B2bkhyXmh7C5oNQXN6WO/OPIxhTq/MEuAN324nH9S+f9QJ+QWfAINT/CxF32lK6epqYZVZQKNYumXGsf7wcdzV/s7HD7roU5FM2Vcb2n01MszY236sArzZtUB+nvntjyHCS4S/hgT4SOZI1+zNwT8gkkRDONEqSHnygYN7JCEOmQ/dvEAi8TanVaKvM7IAObO+fOaHP/6BP/75e378v33H248rLArpA9ONlPymqxikMnXEfi1i5a6GUx/0ERij6pHJ2jdvqqpb/+V0IueTc3jLyuXLn/jhX4Xvfmqc1lfK+uLJd/tGu9+dB7ysNFVu+t/88i681O9Z7UI2RyfTUiiLC0gEsO48rcvtxuvt6g+gGdv9Z25f/4uff/6V3367U+sr3/3hT3z+w4+cL5fgYndUlFycIjW2znLOXJaf+PLdD7ESCvRClHVJlAJt/Mj9euZ2+3dsg9bvJKmcTy+czl84v/zA6eU7yNUt1yo+wWvn9PLGerpgQ8mystQ3KBfMCpKUXBM1+zC3Dp/Sl2VhXU+PdVYurFxYX154/fRDbAtW1rdPCMYJQ8crSTwwxHTjpC64zK9/Q05/ZdyujNsHrV3Z9xutd1K5UM5/YHn7A+unn1jOn0hloetOu6+0/TuW/eYhWziXMeXswSDm/svL+sLp9Qunl+9Zz2/UpRyTv6mRSmU0wUIIVLKjae1+Q/oOp0+MekFOn6j3r2TxEKrWPtjbFds+GPcbpS5oSWzW6GPzptAg7XKgzajQO/S2Y+k9muAztW3UvtHandPlDbML5NNR/DDnmjv1wz2Ze3ctgFmEqc3nWYSUV4Ze3E/YFWVe0GwEGuOezi7i8pWmWHK628hhQeeFfJBJaQ33Hefce62uaAl0Wj3t0URQqeRUQIwsnWwnqISDhFCSYcNtSW2/+fdvmZEzWYU+nDKkY9D3O11jcMMbPW9UKyVVlrKSy0pKJ5ZaqEUwK+5ype5XPYb5/aBRkA+kPIKpzFEx95b35j5ivGarSLdvOeQE9zzX6ejyxDM3Ywrd5uZ0on6ecvw4PB61Mj0QynRU+2gK46V4Z+Q/Tw4qj6/t9XoiaP66/RAO5P6Jx28PauvjPfEtmvUPr4/p4vGPTjjDvkXRj+/zT9B7/7Nvkf3ff//5a/+ew+kJ/2RAmI3W489wMEwSkvQAtlxZ781gSrht6oASSFzVQUuCL+6hpYTWTK+JfcuefjqK2/Ymz63Q3rHRkFRJqTLaRiGR8+rJ3irksjL6jR50QwjkU/xpTfFZzOuXptOT+ajsc7g6Nl8ySdMhXlQzRjLPdZEYLpXIY/Eh2KT4YCNhuDHsqNkOzA20KVtT9vuVUuF0Stw/Oi8vg8ul01861+0rp9vK5fzK+fJCHWdSqRSt5K6kNEPtFPJASnG70HjW/CNz37Gcs2++YqMwwnPeRZXzMwxQIdoSzBgW7nsktm17NHk26NoiuXdn3+8Hz7sPt2k2M8bugKmaD0EaYX0lV6xPibeB7NS6YjgtKudKWarTQJo3ZF4XvZFMQNsiHKlk8F0P7djSEtkyhZkUC7hWMk9haVB/amUJP3h/oP3zNPHvK9lIZIYOHy5CjJ1EqEv1cEjnI5JTxUzozW2Da03UxT/3fhh9BHVQh7vijTkwu0bJNz6Pfi5nD0idQK1q9/f8pMOYCcdSiifflur0V/GhoafOuN38Hq2FJTYbKTkdJ1chhZhWeoeUWWUh1xzOQU5t94so7rYTQ0zvRkoatpoSA+MEtf19/x65TymxLMs3tUjENVO9H6jHU52VY6uUEhSTmB6MEMpMVGbO3HEDdyObI80u7LJQFMch+hTmMZE4NyLRpxfhX/vB79Rj/TFxpBTF5TGlzJubuCg+ARreSMpx8KSwqoq46vjAjp+zOFpyoCf+OstsfEOxXWulLiunyxv/43//n/zb//wj+bwzygc93UkYNlKg6RXpcWjZA/X3+pRRr9ZBNgoUDr9Js2y4s3phOsggBUPIy8qXH8+8nH9Cd0VSJr86FaXfG+1+J6GUomztiorS+eC+LUipXJYF007Oj0FGRNAUq/hz4VRfKKVSUualn+jfvVEvP5PX38h55dOXH7i8XpwKxA654UfMIDNANtAKLKRaYa0hiMmM0RwdkMoiL5xOsLx3sMS2/8IYhuQzZXHEXi2CjEoiVYBBOgQ5IWy0itgK5j7gtWbWy+rCsDbQ7uhPKYmUDSTsBwUkZYpUJKZlSRlb/F45yYXRujvbCKg259f3nVVXXnmFrWHbjd5v7O2D+/2KSeb88iOXty+c3z5T1xdkWVhs0E8V7Y6y22jehiZv0Ft3sdmwTF5OXF4/8fb5J86XN1L25nr6AY+hPtzmTK4ncl39PkqFpA1ZVsjV0fjtE4md0W60dqO2G+l2JS2/IfabW2JKx6kxwwdQvFk0CwG75kBVdxiOethhJafOT2TH0oqMdPz+DG9CFNPh9Ku2MUZ3jmXQ1UoqpHwmDyXXE9MxC5mrSmWM5nQiG/5rbWCdRwR9CfGpu8vktDidKS/+n1QsPuPpD+/1JPsQHuFLlipSKoUQ6JuiIqS0uNdyEkf4DMbIjJ7dYUQ9GEz7jo6dobs7KU1EhszIK1Y7tSppMXfCia1DxsWK3ghlbFrODQvrO43PJraTAmnEBnM2IFOcJ4LMjUvUVjMfkKbGyevrgxbStR0Hhf/84N9Hmf6mgZ4I02PzaceZMA+i3yP2jx/z3nnQfObPBxAvv0PMnxesB3r/OFt+L4B9fF05MNj/X7Sb37++f/Z781e/97l/btQfv+/n4O9tN//ZZuBh0SzHpsWikfStTyB3MikHuE83uC1qLcf3GKP4Rhwi5Gc+vx5y11NDW45tuwdiDQDJ4Zij7kBinp5q4a7kW3QNgWHAbCakuSrnwWeegZXLEqn1Kdybgjqm6sJIb15C2G8cm4JkEtzgGNByNCnh0pJS8LoD7W27o9E6Ovt2Y7t3tF05nSq3urLtG2101r1xurzS9k5KOzkvrOtKXqo/swSXetr04mdyys45R6b5x/idHuNx39qB5uvjM56CR3kEWfXR/QEWi3TT7u6BqgxTOk5nu7cWdDfn/8cdHTz/oATlhEh/ILYHKi6YhfuSBI0DcZtQjFr8c8yBSEsgsrO2j/Ctdxvl2FxIBKFNukj2TcGk7tVa3c0ngAWJLY4LaTMi1fupZKGvqk7RjPAv1Rj8zMOy2t59W5ydIlXrEkPkLBLuCjUfThFngaQAhyGRLaOaKEEhHSOxLDXciIxSS5gEmANlYergZwlMG9FvqIZ5amkILWoA3Rh8AyTIY+MzG+zu7/uRe/CoMe6k5jXZA9ViE/REvZlf98ih+qZWBZBidlA4TfimzogIRaJRngp3g4ePPFHsmVH3ToVRm1NncGjnxHcME+ZJZCKUlDwmPR4UMzua7keRn4m1Dl+k41P0m9DdPwJhQ9HgS43uk1pOjk6PqYzA4rD1YiSSfQWoRpYHciPg4VgWwhPxVEgrgy/fv/Llx09cXlc2ubkdlTZmOI2YMqwEV9gbTlIlVSPH+l8SLt4ghgmZE7+7Erjl40oqThPIpXohH4nlNfP28iMyjKadm3hsfJJEDc/ynHby+UwqiVwrag1tN7QXctZwPsIbxCRup5WnPRmOIIX7UT298N33hbK+IJJ4vZxYVr8uJiM8mjsjAoDQK9ozvVeQszdr2QVEtchRmCVXzut3LLXRR+K3d2NvG8oZk5U2hLF3soX/LhGRnb150Sh2WCFRgYKYUNfMuuYIj0pYnlHQ/iDOBzQn3JotCpUgaHbEKNXEy7Jyv/k6OItATwxzG9hySryVF1JXaDtmjdauXG/vvmVKK+V8oZwqeRXS4g/Wsp6RsYYzUMMdKJzC1uaGwxJ5Wbm8fGI9nVnWNcxUIlESdyBwJLewXpyPr6rUtTCsM/aVVhdOpzPadrbrB6lsSPXVvOYbWn9Bxn+RsoZt5xnSguEoXy4nd7xRw7S4U43u3lyr2/Sl0Zy/u71jNAYV0qSHuGOMWgfxBODeNhdvQ1DRXJyrpZLrQC0ET+LiQtRD6npzazbVHfDmQ8fdKTqjxSGWo8GvCIVUVsyaR41nR8uR8NIvFYkt4eSOP5VjPxhFwIbbuUYatG8zCiLT2s2LrCg+iOtAh7jLzvAaorZHPUyUvGNdYSSSAiVSQbOjZ344+8DpB44/L0Nh14zOZtqEniQ0RNEq22ww3H6t1nqs9AUimn42mPPwm+LCqUGYYtB5qE0ryHnAPBqalH/vJkNsAH73e/EjHY3+0yrzaPwfDfv882ce/TdNtjxoPUeTNXnbTwOG6Tj2AUxEeTbUz9/q+RXLBJ2CJoQdr/Rwpvgn6P231+Fx2E4rzfm/f8+399/3Zvh5uPGhMzRfFuDP0xZg+manZJQs0ZCGp3lz5HTUQu7VN9YtaJh4Yyzqw1kplZ2Epju5LqgJ23ZFcEcU7Q1kRLviTTnD7a9zND9+bjvFwV+Dv5lMjWb1+FRCoD0iBNOF+mOEwYapg05JSOrPgUJQG9z/e1oI5lqOa9X7Tm9G2xvXW2e77+y78emTi2+vW+fejJdLZ73v1HVlXU8s1QMRdWTXFpjTJpx2aHDQaWtYYzIfrkCtp6/5fD5mwx/Ayxxe8OtTSjmoJZ6nUzwbJHU8FVu8UVQ3DXFxaorXWumt+7dv3Z8lizT57HpGbwgTqRTmRjRn37wmSQyUXAXtndE6dVmOzV2KQRIRSjSUHvzngaEj+N2ecuzWJSkLl/MZM+N2/eC0rpxOJ6dUjsak3QgWFqyz13NgYbRBSo0iK+v5AubC36EtzvtIae1uzOK1djb2ATr35gYurXE+X7w+40JpUvbBKAzzcp70QViWhaGuBcvZwRUjLJpnwrk5Ej4b/JeXF/Z9Z9s2dsIAZkTNcBgId/TxZGb3+XcHttGVmhN7TvS7Zyzdrze2zbcR7sjemfkfE9juvUfP+6jt80xg3o5P9UXE85Bs1pVZTeO+nMBPSYEi6IAUEfG9GfrYt0J8gNsYyFB3UAxkX0Qoa4GhNB2ONmSP7Z1TvDfSLhbyJMlQbh/F8IF6zBdqWPiHurfsRKW6QZZIUU0nEDlCthJEypozbGejNE39NZDCpC62yiKcaqU1T46tS2KpmZw7Kf1MKX+n7XeabIy802zzwz0JmgamI26SiqZXLxpdWZMrsU2TIzIpxb8hIqq9EKRc8NWg+78O8//tNCNDbXM/3qos6sKakZReNF6Giy9T8OBL6pTyFWsNsxeQisiIQ88XdsSwVrIwRsMdrgQbnVwGb2/O45T0K9v9g5QqdV1j4vaAj10z2OIpxsMTDpMClilyoiyVrkpTD96SdGLNf+Tt08qvv1X28RuSv5DqJ3JdqcuJUqr7iadKrglLnqw62mBGxpc0RX1KqYPMO8k01r3hsx7uHJ6eF7ZTmgK5JSgkPkDKaOQivFw8FXI06GEtmCWRJdGTQOnU15Pbqo7Bed9jG5S4XFbKkkh5Q/LdB8AR1zt5EvGkLIxhaFJEMhVvHhmJ1hZyyazLQi3leKjP50fOhFgj2yCVzK7+NfLygp1eaPed7d4o+c7evNEbZpTRWfcrY/8LHujF1Cv6wZwL63qhrheyVNLSkXZnu79GIJgfcJIKFuKq7e60HyJYrPfmfEY0uP4bYh136zBIlcFCSiujnqmrsOLJiZr8dYwB29ZiTdtQvYFdgQ3rV8Z+81oww8nyipSVXM6UsnNrzR0zykIq5/j9E0VP7uUvqzeW2o8VuzBI2tyhou++TSu+CSErUsKzuw9M77TND+IkntxollBNtC607papIm61qua+5dhC4UQmkNauWITBpCSQ3dlkWoaKAMU3BhIo6KnEARTIpzqDwQ9s3Au7Z4Le4xvQ03Lmvu++JZpoTngDCs4ZLkkwe/ClRScqBUwtlQg5qw9thzA2IRQHguJrTxEaApbsOLymoH0iSdEqH3UfwnxnZozoM6ouTAGc4M++iRxCuaO5fvpaj/49kD1CSC1gNo6v69vbCV7N02ZSSiYH3L+YqkbSejpevsXzk4xDhDn99Zln1/H6Hhx0EV/Nj3Cn0qjFx2sWIb6oN3RhMzmGO2FI922e61Zq0AUSPSWyZDSfGKnT5E5Jqxs/jIbYoEimbws2GmaFVE6I3kn9Rm93p4m2O6WI11Tz89QC/fdGZCf6TafSaGhERNzyFwNRTDoavvc5Vb9nxO+zPZyA+jD24ILXnGnqFL0snt6sQWN1essxCWHmLnk/v3euHX55v/HyYry+Ctf7b6zrjZeXM+taOJ3ctW49LdRyIqVPHoRVhVLcfaXUTEnJnXPoiPqzUHJl4DQX384MB2kCOZ12kqpuKzoUcs3BfXf7zr330CaurjVcKhJ0QQ/Pc8vey+tCKSs2jFzcSW0sO7fb13itQldFKEeAluDAaSlOw+vxPOacaM33E2V1l0AVjRRv83ygnFnDZjKJC6p7211nETkBlkNziXLvGzVncs3svZFuNwdhJXNaEnvbuW/ul7+cVvZGbG0XB4EsRw8hmCmnpZJMud9b6IS875HseShCxsZG+7j6tkG89pEL121jXVd3Z5v6q95Z1sWF40MpqYBVSiqU2NRmEWoqkWfjrlWTJUIAHgI0dSvYSUGyuPcc1O6eLTNzk0yc9mROqyzFtZU1Fa4GrQ+kCksEd4l6Lzv6rAeRLdGDcZBm0rAPbDrMffxlajqP5jj6P3E9BTw0RhZ/CJQe4tPRI3qZcMh5Ql5soiyBvEgSx4BkBmBMljyEkW68giiedlwLRwH0wROdiWoWvz+L4mz2Z1E94n1xQUZOk5s3ERSLh26KFlII3Dw2uyRfJUlsCAQ/O0Zz8ZHEgdn2nabw88//zc9//y+6vdLrIJ+FfHaXDzDfXthANGPiq3ZJnZRWTLLHHGvi/PrJ+axztZYU1cKYDadloCASayL8hZknWTkyPbca6hzmvJ7cM7b5jfDY5fhxb9Y81S+JJ5LGe50+7Y7OzjPVKQ4jUCOxEcElocKX4nw3AdQPdsN5kkoPacagj4aMQsW9ZXMRZIx5bGIspPzC5fV7SGde3z5xurxS60JdVkp1O8VaFsg+IZesWH34YTuCNNBxB3V7SaeEJBLehKbsE3nK+VjZPdwOhJGm9qP7ija5VqQkF5UlsnPb1dizuMWqCrVMb95EXbwJKDWTs6HsKO6Xb6OxbXcYXiT90A6EzsxF1AxElAKobkiISHt/NBvHv8Gc12jmAmhzy0hvMCIkal28SNaVvXVaoJndjNHfGPfXoxHXQOtcmJpZlxOn00s4PKi7O6wvru0IHmApyW0utaG2O3VkeEreGJ2+3RA6YnfQPX6tTw35iVwjWKTtSFbfaohrYVRxq7jWsLFj9oHZOzq+Yv1G6v4ZKLEdK92dROKeVhS1illHxiA15XwR1rq6CFg03B6c6gMDZMQzPO8jc9vIGjVIe9CL7qi6fV6iYHmJxjeTkzBkICxuPUpC0vDwtORpiUUcOZ8NnwYa2/tA0k4pi282grpz4ClMwwBx+1X8cEgZF18BSKKbuMuUpkgTdQS4jaADhiBSY2slE5lnIj3Tq342wdFYH7XfC4Uj6z40R6Rh/FvcDjTPuv1MvXmg8hOpn5SiKRI7XHqeqD3zx0QB/as5SjqRxxkA9/x353U7NgIisUlwVPD5x6SVyPPrIrnjSyC0ZoalEJYe2wo7OOoxHTwO1Xgdv+fmP8R3obs6rucz3Yd/+PE4CwXydIWb14/4syl2zjQPK0HkhJbim7hesdEYOsgm6FjIJljKMDK7dpTmuRcoYx/HNnvqYSaP3mkLs7kP4MGEEqJBpQdY5ZSGvsfEF4OLJciRfZMjZLAH8Gcl+/bQ/7ZbLFpoJgLkc3tHH4jcIWeyDXZaU2pJrEum90atiXUtnE8L59PKspzJubEsJ9a1UpfMGIne00FPFT0Bnsos5mDc8x01n5HJlZ5/emyI45Zw6tLqCLN0klRgd0AgXn+igbneoRTXDPWm9N78PJKEmVtFSxpkhIdGgADb3HkGXwQcjR/hwjQzfMyMITyxFjRsJZt/ttktTlwn6cOtC/5dD+LXPUS8EpsttUigfdCRJitjIs+G8+tzzuSS3eY7rlIpwrI47VFKULvEwu7cG+gsU38gh/D1QX/xHyVlylKc2ZGFUqonz2oAzPHsJXGAIOcp6tfjs/Nn0a9TKTk2D8HhF9+adMsMzU6roh8aploLSy2M1hm9s1S3ZVfL5OFD1Wgz82Qwk7lHbIOSJN+06LTXtfh8PDG4lIcI95va0EZY7X5bO2dyMkBR9SJoTJHJXH3KbIE51nL6JDCJ3n82i8meS/PTC5nFlSdgBb55sb8vhs9/x6cZn5Tmv5khDvBYoSYHmuLNTqGW84rnkDHda1LctDOtTpI3fyTntmpT/vrXX/g//s//F2/fvfCn//1f+OHli1MskkdTmyiqiR7No2lD6kpKF3/SxJM8t7uRciXXGuIVYttx8YedcAUTPdLWJJr7wY5qR3B0X3WK/5zyI3XeiAbiVlI93l/KnWw5qpFflzlwKvPmiiFIkifHYZCUzHQgCn2Digd9Ik45SgXJ5khb6AXcutC5bmOUCEnyIu1ODd6ZvH367I396cKyeLJrzstDIO2fMEif2sDDutRUMW2Y9uD1d9QiKU68SU+SoiA+nAREKohx5DGMLcSa7iLh+WMFMy8gOXkgmUhYco7gzEdzn3OsS7MPG737ehPMw6pu3tzPiXsmKookiMZbvpm0Ozp2Gj1cF/xAr6U+bbG8mVYUiiOLKoWaIZVAUU7V0SJfw3msvJ5p1wvaBnvbXfwVVIxlWSnlRF1OuMexoroz3l653z/YtvuBBqVs9H5n6E4bd3rPDLszxh7P1A7R1IuNo0b4hio70i/NLd/MqKsjUJa8kLdukZ2xMfoHpu+M8RXalTy80XDq24JoJ+uI+qMk64xcUR3Ol68Z6yumOzYSJj4cjNHZ2z0oPp5CrOGxrwpaOtZ9ndp7o7U723ZjjOYNzFopEI4VGaE4P5RL0JTE791UIC/kZXVqUPZDcdqVHYdfgAutD1IOKtDigUUBVfjhE2CCMRtdItHW8wTMPPVxDNgFhsJaE5KEkYwu5qmOwLTz9GcDP6yfgByOmu+dsurEDiaV0f9tzoVvf3iF/6c89qeGyC3wfAB5pv88fi3Hc+OoVn+icT7cKv6ZwPb5DPHrFkOSOBj1DXdfEo9k9qfvbcA318Me///p3x8N/zPv+p80+c9glRlBE/j2oP7max7XTL75t1MnRgAD8HBHmeekiCOSXifdMan3jbG7qUSTFDQmIaXqSdXqhhdJW5gr+bZnfv4yG3ycRicSKCV+zpqJUzQCVT+cO5J4rTu4URzNiqq5xaFkJISkNSUXhtqsd3gnKMG7d6Y8mRmuJQzdnUVgg94GJQttSYzeqTVxOi9spxP3c2dZd0p9Z11XTn1l7QtLdVerWhZKWvycSe4NMxNTkccwrEI46jzdH0FbEgPUGBJ5ATmQZYScjVIqLy8v9KGe/jt2SvKUdD97Ei0P0i5xVmXGOHmKdliNGhKoryHFr8EcxITI6xl6AAjP9+GzfkBEPJjq6ffavtPb7udeciAyR+/VWycjh8c+ak/3t39Ggm81h41j+BRJlFxZ6kLrO4o9aRx98yspUao7p+nwOth7B1HflMfzVcPTP0dgmb/n5EFa0cut64qYN/g6vI+p1amZggVd147PcFJcfKDza3G/78w6lpIPPCmB9QkuP+wsTZW6VpIIPTVkjev9cUPJpK6UnBm5s+8NkR5Mh8wQjbrmQ9P9vjFFtI9aoMdA/48/5Oh1Z2lSfXzOKSWKhODGRAPNl8Mv8/FNHr/+B7HSgWhMWB5m3LOkWHtooP7zgBA5+FaTc/SMYhxoBva7b/W4YVUdyTmQdBWns4TXaTbBsr8kF+qFHWf8Ows/Zo2V63RscAOPxLYZ//kfP/Pbx5Uv//I9OSVUPDzCxL2tJ28fgJIQLYy20PMrKb8g5YT0EylXTNe4zmBUaikY5fgQ56HqCLPRx519/3DrQwpiFyTVQ8VfSmFZ1jgo3KVEtWFEklwy9+tXYn0KqjkEOAqEKp2H4EQC8dJo2KwbmgbduhexBKlkclrRlEmpMXILK7eBSEP1TmuZrIalSpIINyKxSmFZPV025fIAGrK47d9QhqjTOqR5oztmElvYiky9gnpjlsTDKjwMpz+Qht5DbJIPsaVR4o4aiO2Mfo9ESC+wSRawjuBoQ8lQSmWMfAy1PrDPxDhvepNAb9D6znbfXKBrPjDVslLzmVpXhERPnibrh6Bfe9XdA2AiydlsTuDTe3jqYgLJEL/3VBSxKZ7yApfr8GQ8GZTYXFzq64EYzMfZv547JeSyxKEmmF1QO7Osr2z75rS25KeXmQtc93Fn367cbu/s5hQnG2usmZs3z9pJYTk3zIfeIWewC8KFlF9ZTtmHhrZjcjsoAq37sKN9w9rNG3mT2MzsZMJRRxRKQ/WE5MWbiUqgYO/sG043S+5R31rnvt3C0rT7ATNriRojL4zF19a9Nbbtxn27ot3F6b0trKfBskIJp55a/bnOvdL1HHoBkHLyxr4UpPqh6AFo+OcT6K2qune4+lBfIuDMoRUf1CU6HTWnOyCui3KR7htJLpCnB72Fu45QeqYNpSd3N8Me9dCzBfxw1vmH9miu0xFS5s/QgWA+bQmfm4WJ+Aew/g81e25WgeMZgm8FshaNgX+db8OfvhU2fnsW/DMR6+PXHGKz54HggaZ/26iYPf79M/f+nwNQ/4jQ/7PXcLz+oJf+My/837+f5x/Hezf8TDuux6Ri5HBPcdG3103nKMs+UV4DySGcdXH52I1lHaRUGNsVbUquPngpm4NYFp/1rEH+goLb/ACLMHeaGQFOeGNndNMQCzuAlbP4YB3vs+Tp150YcbsNjURpJivAt35Z3C5xWsKm4qngYkD3IElT5fZxZ1mFy32wnQfLdadWYb0YdUmcbgun04nz6cJaz6Rwt9IxyHklSaYu3Tn/wgF0+nXx+9xv8oQdz4V/Vim2FC7U9Od+jFlv/XPovaPDw8v8D3wwTxKOaObGAqV0ZEiAd55F5EnfXktqdQrh1M9MkND65Mg92TOGS483uw+Q1Dn/Gttc3zAqTl991kqOlEKU60OEQLjePHJFQDBfd/hAbX6NHgO0xr3ivPW6ZFrvjP4QHENitMEStJvH/e9nojf37nrmPZA39y5Mrd48x+a9HFqYgTu5DWb+RzKYQYyz7zGUUuVBNbSweREX7JaUsZTdSjrAxoQwWkdqCI1V6cNYVqF1Byf61qh1P7j8mA+5bmDhdWfFB5J44p0yleSb2vKoS49aOk1w5uc/wWOAQgpaiT9K/gHNnyfYYw+awCzkIo8vIsziM1fPUww0USc/SJ459c+F67m4PTsOTMTmubAfxTwQeYnTZH5lR6iiQZoe+eYOFARd5zlAS+PizIfUogirFnI+U8pKb3C9bpSTi0udMuNJo24bG+JcFZplbnol5RM5n1nWNyRX8lg87QzBrLpvdloCIfbVu1jCJIMavd3Ybl/R7lSfnBaKFF8fB93I0Rvnmc+McCPHJ+x0BVOJyd85Zr7e8q3DbDKTQ+Pk5Ny9vd0Z246pUxpSJIWm6nZSIo5aJjEs+wpwItKYoFpJuZKoTpFJCWrBirkI5umwlafK6IOPx6qb7i5ybI3RXLQp2PHZHcEwIlhyXYE/G8roAubiHCSjQe/JE3ExpzyJ7gzpXlwjcgUbpKQYbnXqK04vjBqUB5DjQCp5Qcj03Q56VymLuxykhZovLPWVpZ78c2sbY2yRINt8PbpfUeshKBrhVOBpip6kV5k2fxNFBa+RI5o9v+5+T/p/3bdBApLagab54eT/bwxH/00jFCZ50RS5UMrKep7IgTejY+yodZZxZ1/OlHqm1Qu2XT0JeeyIdXr38Baz5BxVKZR8ptYLef1MOX/H+eWF9eT8Rz/IPrjfF0Zr6LjSaWztRm/O5ccczcql+vBH98/GXCgm5s4/QqaTaOIHjLYG4imMvTW2fWNojwZjBI/d3SIsG6YjtoXNh47RMe10DSqReRFdFheO57yS8wqpIL2y95vTfyz75sRV9cz4+SlaZPgGUOUx2Augw1FXrMNooA3o/qxN+hc4hSxXah5kaUFHq84rFfdEbwlS98+gKEz03TU/gpk3g8Ocusi02JT0hNU8tFBPj+qDLiMSg0I04tEEftPo4qLKo87HxgDwzds8FMyBiuez5xg2jnPh0fD//2+8Q2n03ChHM+xe7g8O/Wwi7QC1Joj1OEQfv/d4V49rIt/8+lvx27fn2z/7N4/r+M++5tNrkEl7mp/JIyMGCsOGA2nqepZMRm3x5n6YuzAN9XMRyOb1zoxwxfJ6kWPA0bYz3e5M3DnnOKcFB1JUcUmZe5k7A84FlZQYNg6HIHd0yqXQ2tz+u32izGuAISrQ5/AT2+NDiO59BuK6uRHXwd353IXF1J/p3nZut06thboY612pFdaTmxCc1o3TcuN8fmGtTm9Zqg9JxkIacoAmZkEdTsVTri2eEfHzNplvKkhzQ6SU7O5bQz0YSl2EQC2LX6sYclSFPCR0cIN9dw1QLSdKLqh2hjqQVdKk1Sg5P1xY5v3ql2ccA9Zxtz4Bs78fRs3MQ7L8LnedCo9eaw7BI863fCDYdlz3+TkBhxB5qL+33o2SCLCxP9LDTY7hYjboBkgt1FxAjVoyJVdSStTiPy+lUPLCsri4V8S3slkyiDfcGs/NBHGmTbPh74Hhm6OZ0zGvz7KsmLktdI5NqQJLqfNCHrRyMz83dv6/fP1pk2RLkp4HPqpmdo57RGTmXWpHNxpAA2ATpAxlROb/f5kfMF9GKIIZAUiAYKO7urrq3syIcD/HzFT5QfW4e2ZXM67EzcxYfDmLmeqr7wKyBLWr987z8zN9Qh2B2BeURzeeOUYCGZJUUafWhe26x9TFj4npnWt/NAF3SphwX6sOuuPX57XOrPbN05lGNQNTFL1dDPkWb+hGHIiZfz9Q78eLyJ1gZD90jxwXytGR5+J3nODjhT0ebPcc5TwsmsfF9nWDkajU8XpvF3t0jwZJwXm4oA+rsWMzkTjhpS6U9Yn19Mzz85nz0yeKrsz+Fi2fRpd3y+vCmd7zxg5e7xydWTb6/h6+u+uS9ksKNGZ65d+SJkcWA6OhEtxkxjUU9RLiS5FYqOoS0fJj7CESVscyGfQ4Ji6WxUv6i8vBPY8FUpFEQWK8ZOJ4UaZd6fs7fUurTpmoTopVqhSsNrD8XQu3EJLPjAxkgpYF/PA+txgl5rhW9K7dKBzHXMIfd0axViSK0zmuYQ3ZB5LP4RKLY0mnE9VwQrIZrjThyXac/sOWS4NXaGlVNXesX5lzC/qTCEKlz3BQqElqtilxXgkakI0jnEMTbYnNTBkIgyJOWVtetxFWVstyc3JRUUxj6uAWtoRy8Ol9BN/QHu4NH5S6oI2MeY8xr1m5Nbc2PalJwQ0k/frD1SjsKbVe477lEPdFqJNqC/SAisuSY9cTyjMQCIlITAumhcvAtH6bvNR6wtaP2GaM/UiUjfj167axbXugV1Jo9cT56YX16QldK8saMeQRjHJGJdxvmIETb1oZ22SfP2H7FUnvZqyhHs8T2RSBKyoaqIp1fLZAnvrO8CM5MTd861kb3GkiZiCqTI5Fl0SmskBRD698N8Ye3HoO+1atafEZ4/xwDdmj8JFjvTxWp5jmHKFSU8IuzubhyOFBTaDD3LFxxecV9w2VTDr2GdzlloLxMjC5xPSlnFA9USQatQOVKggzi5PRc4PLTZC0JFQ5trKj0YiDEJz4x00j1tVjo4pvHHoYv9FO/m8LW83Hf9gzjn3mXlTfhabHuDnG1vJPHu9xQ/u2AL+/xltNmEXguPHVIZw3PEQiONm8+MPs2G//uxdHfn/eb1/Ltyj+QeM5mqBvX/ef+/fx1/tUwY/9/Hac3I8pzAF25MQ7L+DaGlOUssSM23Sic6KW4ss8vk0EK8rYkvrpWSR7j4mtHzD93ZrPyeZM4rzgmbCcrzdcmLLYzQLdgWU5IXLloAQzomAtegCHx+Q+gLeaXPVhEfYVxVJ4g8c1UW6icBGgRC1zvTrbddKa0RZ4e3PWk3A+d7ZVubRJazvPz4PTstK3fhNrruvCstQbOCVaojnSis8I8OSwUtRww2paYg2YATZF8F84Cy0tTAmOInmMo1mKQs4UaAV8TcedhuS53LYL+74DBguJ6z56mwABAABJREFUlN/plapBzxEpN6vSaUcxaLfaKcS4egNNVfUe4gTUXLPUk/9+3InpYGgzaL9SKlpr7tlhLBEhVFFoHhQazdfowHUfLDkJl1LY+pW5h5ZpjMg4EY064Ea9GYOlNU5ruPWs64laKyV1dbWkC5kGhai1ysimcJ+d3o0xYx/0LO4hwsGaL3l/fd0AHVTUW4J0XqLBBsxJHwfIFynAELQrS279hw9n9mHs+6CWyihxPscY1Fq4Xi/MsVFrwVH6Hg5nvQviqbMq2UDZvJ3HO7Xx2LfCee/Yy+BA9YVShBpR0JnoKppKfnLhyHCARAhK2nA9LlQQdlmWAUmaz3ILm3HPEU10kkcUsapmYAG3C+2rhRC+/trDoikSPD+ySLxtA8edAiEYOjaqW7cfYk8Rx2anLEsWLsH3XU8naltYz88sH77nV7/7DX/xL3/Bh4+FOS8spzPDenbPEgWlKKDIDKGVi4aILmeFIhZhIQZlT9cfBOqZIiHS1FwUIJDgWqMgdQtRxUA5nV+Ie2bgGcoTHWmgLmPuQVOpYZUpYoy5oxRKFYomV9Ocw4/c5h5FqxmlBlpg44LqjpYB8/CwrSxrQavSR9yUtZ7y/GqsTE525BFXPXqEVdW2BFJ4ePlTvkIUNJMQDz9X8uYJBwPHxp6+4iMoIjVcmMQrdljHqUHytXFPy8JAVVo7I16wEeEdS11RcpTYd1xicTJzfDqiDfNJtwj+GLODRBEu6kHLMqekuHDfRgigikNLVA1FZMWtYCNsyVwHWhuYJS/d8DmYjAiZGZXWaqYdRqiJzw6cIz5cQi/AIfglUhFj8qREynY6gtiMsBo6Wpx9m7kRR5iGSxSl6/ocrwnHR9wfpTawzsNANRppuztoxP1aqU2gnvBWbyiP5eZ13jv7Ppgj3ABKaSznJ05PjdZCyCokt1aUUs48nVfO7YXr+sz18gKj4ttP9PEPjG3H1cE66hPlcDWJAsKmIh4uCfig6GBPJtc+JuZ6Ww+QYwwby0LkWyyoSlpxBn/3WAdjMpnCfo+odmvBGdVR0Ra5F7UWqofgXBiMcaXKArPEZqmSfsmBbDa9FzwjBfrYBAvqkI93xv7K6G/YvCI6KMVTXxIWwLt8obYXWjtR6hktT4ieKfWFtT2z1MZcggI4puGrMmbY9YUgEbzWpA7kiFoPj/xAuY7CMsCVo6D02zouel+zH1H2eAy7FRjfFv2PBbm7IwWO8JqDnvZY2Mfno4Vnuf3+YwT84/OYe6LScbKj9kvlgHnazpKrr94oPCoJQh2NR+6HYwxumi+RtFW8T5v/nI3mHZX0WxjPY4Ltn0P6j/f19eNlwZa0hsfnqEUzMIewTLQISySDc0opXK+Nfdtoh3PS2OEUgN7oFbsaWBQ/PgZWJqQnufukagj4j6K6HlTUSOaDXLe11tt7rKltkFZY1sa+dbDJ2mrathqusf6TzeNhX32gxFPDRrAkzfCgttTcSyUreiOKQ+QQo8dxncNJ8y+uF+fyNjmdJusqLM3ZrrC2K2+v75yfFs7nUxT3pQYvv6VjmIZ1b60hli1toUjNpifqISGnGllgHYjq/Vw/XGu5R40xGJ7UmFJBgnoZKHJc2+uyMHro0MwsTBuKpDtOOHS5xXUhpVDkvqce1+vx95Yg46FpCStGTw1UrI/luL7njF1HY1+qWlL3cmQecNNiLsuCC2z7TmuN5+cXtm2j9z0or1K4vG9xrXhw8R2HusTaJ85p1awnd9YM4DSfnE4nalGezk+0tlLrcmtW3AWzPe+z4M1fr6GrG2MHMaYNpm3UGk3APjeUwh0ojusomqhvm+570X1QhGo9zGQCDJqzU5fKeTlHEW7O0/PK09OZsXeul6DliMC6NPq4xhqfzdD1MtHnU57bnfDqn2iRYCLnlKMUqFXY9rBM1RJr1DhufnLsYsS0NkCKo1ORG8rBgUzfkN8IJTgg68KBph+L9f1wuB+eCgfWc3c+eFzQVO/RzX8OBeH4/YcF84bgPHxfRG6oNPmzh18uHshcqxGJfIxlp1sgTZq+9OmfXduZX/zmN/z6d/+Cl+/OUN4DiXPPYj6QCDL0As8bOqsFiXYXJZ6DAxGS3LBw3DpDJAN+ChqSFUwbs65AZRiBfKJAIMhONCKex74tLTpoi/dSBGoltq/kpnfvSO03j2S34KRHR5sahNExOrMH79ln3ICimW6X6nyXoOXMeeQRFKDgVuJ9ukbUd9mZZYsQiFIofkBOM5EPomDNMXMtJaxYc1RsdvjfTmQOxAc2R6Dd5tR2ptQ1zptLIld50pOfHwB7xwiqUxFFpAWH2eJ1mHfEDheCmuVNnJeqFUXoj8WFGXOMaDxEYO55AyaaIgJSiVj4zhzBPTWNefdSCVsxDarI7HtQSuaAkYUS5IYYE5XhjtcZ2gFdqBmudBDK/GZLF5vz6FfG9TWKT82AEkl+6Iy/o6FBqVJouoaY0xUZhkjHPNyejsK2qgedxSbTRgIC4dYkZSTSmy485lAL7VwJIUzwJWttLNWwucXxd3AvOA3xytLOSFtpqXfYr1f6+wt+rWxjj+esJXnojgyPhMa6xPWRY2oJ/1lECgc9NoTW9bZWHUVcaeGTfMSEO4Np6YZAAh1HgZd2lPik9J2pSm2arhgxlVryrpg+8LEzCXqVZ0Ffyt1RJgL9Svq3G+6DOd9DUDwujP7G2F6Z/ZXeX4Ee66/4/XfLSm2vzPZEbWc09T7LyTJmPRvRdIyw5PZLUijkuGXGsTZJFPT4TY80M6Ts5lj2zWTVHwR2mlOto+iK5N5yL5ItvaLzOTjmBaK3n5dba5lTZVOOMJjj/B17yPG8fy50SkQ4vnps4Mf3H/eS409PoOS25xz/fwCcjg3ltld+8xiPj/vtv5H7a348jv88defYU52jMT2aG0kA6f5W8njf0MVo1iCKay3hTqKyJmKrzC21DcQ5kdnD9jOfTbVgZWNuF2bvt7ohhzpRRCvMERkyXzdi8V5rDRvNMWfaBdYb+onfrxGzwt5HNgUhPJzp5FdLoxZJTVLQRorWr9dlP+7zwwjEcR6mPB5mGXM6Y3e2606rO7UKLx8mp0Xpe2ffdy7vF5al8XJ6oi6N1sKrvtSGtsqocS/UurCeYg/qrpzqmt702SRi1OIJ+ARRRMUDpPCg0EZj2MLUIb3XRaJQLqXQ+04pT6gI18v7zeq7lKgtws2ssu8lQrJswJwRrgfUbMaO6+sAVx8bzOP+GZZuNSLRhHKf0B2UHC1hwNHnCAeeWqiy3Go0wxlTb/enSAhc3Zxt62CF07KwX99zjcg7XWKirxy6nUTjk1f/dH6i1cbT+TndhQIQvVGDZjQ8vQ/2bWfbwzDj7e0tqNTxyigFWq1UWWgPeTg30HgcAMbXQMGj805JM4MQjR/6u0NnEPf583K6AX22tFsWU6mF0Te2zekdjpBOvND7zGZLb8V0mLXE67gFvj64mX37EWtJgOl16/PhjeSIJxe5++Jz1Mz3n5M8EeSbie/dAz0mIT48AIa4mLID9Dsl5saj/HOv1PPg3lqEh9fwSK/xQ/gQfPRIzb17QMTiEYX5nFGgtKah8nen5EImUqntxMunT/zyN7/mh1/9wHI2pl0preKypZ3kscAeYkcPxCmtuswPHZpQtUURdrT0TqC2mgIPG1GYaUWojLmFkJAaimupuIe/OEQgiWggzIgyLdBz85Le01Hk1TIwm4y54z7oKrSm93NmwpHy4oRo1hnYuOQxUoouwZ0vS/jz4+FL3064NdxGIMc3gU2MBPdtB9/Z9419e4tCvK3Jc5UbOidSMCFCPg4+1QxUHTfGHpx79UElLiabRrdrXmslHXAEkRZ0lxk2jcwY+YkqEXIaxWQRoUnwOm1YJAJqbCKtRaBYkUbVlaUt8d4G0fjMSL0dKU4y4vVEHHki20KIQaN/QCjoOWwMxSZVwYkGq4rfhMI+ByO1D4drkJgHyp9UHdfBlJ05tihc0Zv4PfymB24bc3tje//C6O8oRi0nRGpcr97CE60UllZoXmmUSLnEmLKhtXMrJtINSkRg9th4+0Yfe3LXO1oSdUt6CqWF+0s6JsWC04MbzsTtgo/ONIhSoiGsSHVaKbSlgJx5+fDEuDzTvxR8GDZ21CPFeU6JSHGJBGARx2cElNkMdynPkCj15OuXimpN/c1DpWIRle4etqpjeEy0Zvgwh4Qlw3yywhk9nLNCz9CxekJ1SRpdZ84LY25Un6ico5mfg6uF4D2cGCLgS6REQq11bL4x5hdmvzDHG337zMwiHwZTE3VREpRYKO3EaE/U9kypF0oN3j8ItcXPFg17QtPgXB+tuY4Q4OKFkWP1eIuSGqCgF9yDsb7aSmINPtaR5BQfCP/XxbQ8/JZkgXjfOx4/wxGm3OxrjwI2BJzCY+F8FCzH/nAHog7k/m7Vd7yWrxHyrx/L/Ot95uFt5muIgvmYMsrDc/25j6+boMPJ5P46HouIr5/3+Hq8AL+/vdsLEuFwq4wJ62Pjo2CH93QaLJSa9sAaVn9YxVmocqfziAqmSWM1ifySaXEt5B7hx3MnZ7yVgkmYVkjeVyLK5pYanock07QatPS3NI4CPZxFjkLzQEdFK3PYbfJhlvkbopQ1pgYzXXnMYeox+eFmb+15n9dy0EknYzdswFCj72+cVuV6rpyfGuupsSyD/X1Qao1ciFpoS6OtC8spaCK1Fcwi16VKC490zXU298IJ+dqTkkoCgeXOq641mAAH/3vVdgdXPRyKaqkUdfa93OgwR1HpqTEULahXIDj62D1U63Ypy9eCbklARlWjtrHDWvh+bgRopbHUmGQctVVReTBbyMfk/j5uwadZEBetoSEsEUTIbepFmkBkUziddanUopQU+p7WE+dTaCCPwn5OZ/QZFs822Lcrl8tG75197+w9invziVRuk9NRnYYzdHxFL7zVrnPehKq36YBaNrOKe80mVW+UoOP3j48YKgYpsiyNZTnR3q58+fIZtxlgpq4cU51Sjb5Ptm27gSg9kuqCjCIC455Gflt7s7G9/Tv3J3enojWQSDNULBDWdNa4+4nKrcg+4nqFCPH4GhE5EAViqakSxZZ7CFVzPz1Qs9uLu5X2/3SBPBZB9a83l1unmBfQTCS1HIukkJ7OaVWZNlGSLf5jh2PuMEPl/FQbn777nh9/+wPLB0W0UzC0Gvu+IaUzPOySwoUgigfVO9In+X+8BFUARamIh+jIUtCpHsISiFldWPY53XtagpW4Yaej+h21TqBGwVQkFhBdbhd/L+E/rzh4CAHneGfOjd12lOCAFakUWcAKWKZT5ijwSOAt2iiyAguzBzJhCGs983T6wFpXtuuV7RJJaiIVIXze93FhesfHhev+hVLPtHqm1TW4yaLpYNPACioePr4kOtqDT2bDMx0uhL1hsTiYBp0UFGpFpQZaPGB2w/YozEwHdRiUGaFj7sGvV8W74dMDsZRAM1stFBpFV2pdWeoJT2tDJ9T8ald8Vkz2UHK4YT0oaZHo6unUE4tv0bDC6npFfEE0veFHx8eIx0h+L+KxHWTUdWgMyCkNdL/iJpRKJh8GtzrGqYrZBr5j8w3GK7a/YtYZXjJIqSGyIiXCnqYqWGduLSYAAlIkufCHzoVE2DTf06CPjX3f6PvGtCsiW/Co6xKJt0uk3uJLAgXxHkNgKtjY6X0PSzitiJ4Q1mgsa0HLZNobQ96YdmXfdmYf4VpDkF7clOKDKSmEBryCTaVrpYywc1Ot4T6TjUepC1qXRNsjATkETgPxSqkT6XvuvOGIZEhurgXxCJAx3+nbxuifuV6C/rXUc0baT2y8Y/PK3i94XQCj953r/h4ZFCUQt1rj/g3U87hfX7F5iePRP2P9nb69IzJuS3gstgVdF8o8YePMGBdq2ym1Yy7UtoYLVAmIVbSAhwlAy0CuomRxH0mMR0LoMT0qNZroJUGGOS3CVbhTJo8iNcJ+7vzwmxjzYY84KCyPRfu9wL6n0YIFfeyG6IO7PhQSB8IeYuobcu8ECk3sYzbve8bja3ik8dy+74nMfLMT3eiCWeiUg7IDX/nn3xqKh+Lp68mC/5PnfHxdX9OUHgv5A6H3WwHiCXzd/o0fNTx++zMmIyrR2LnmwM0VN2XOKAZrurGgdx7+SCqhSaNWx7Ux+zt99OMwM2zekP4bP/lwXEJCpJ9NR6t6OzZZkUZz5AkSarwmzX21VPAStOBRRoAZHsi3FQfVoHLkNWZRycNMSbbE48O9mUQitCn04odTirNdO3NM9m2yXY3zE5xOsNVwLFFVtAq1FVorKdBttKVyaZXT+cTz6Zkpg9ZW2rKgHta4QuzZ8mB6cdQkRe4U1eNciQQIF9QnYVlLXnfG+bxyWhe2PdZOgL13LtdLBn0FW6AUYWln8MGcI6cnd4vEP0ePq1ncBx8/LSDL8nC+7uJaVEMgS+wH5oeJisedly5wTq6hFhYP63nl/bVzvb7Tqsbgl9CFhUbP74GcRVjXhdPpiXU9By2n1pywana1d7/+vr9x3S5cr6H1ulw2rltkp4w5KEvQcUSSbqiK3jzkj/v8KOznrYgO4XKYiQgeph0WuTQqMRk8tA8lQ8bCZjqa2L53lKDU1Kas64rbxG3BGffm3UZo8mwwRiSZxzXATc8yUzge2Q4lw2DzCv8GLACoEWSQtYUqB91DjxOZt7LkRXmMTYVEFr9epm5Fc1xEITA7FtjbgpoLU/jx/vOF/f2iv92nXyMucn/M26ccpfXXgq7D8P94X57oAJCsGYMxIlVMleWskSCpO85Ot3cGF6qkPyuOaiWyBkE9LSgdyI3QHIosFImETi1rouyDbq9gO3hQTsJnNYsg6xHuIdH5IWsc06NBIGgH6gu1nBPNV1qLjrrqAH/j/bLh1sGu2Lwy5pWBUGWh6BPqC2Ituu1K6iVqvp8KXvFZcVoUkaKInDArIeSgsLQTlCWGErZxvXxBZUcy3MnpwXecAWWLFpBCLYNlOUeqqAhSlWIwXHFbmHRcVyhb0jBy+jNH8MtMcKnhRCSxUMzdGHtnbHugvOL4YugaRatpCeGnh7+4jaSzqAbX0TQcgigp8IxgJJV0qtGJthapiz4Rm8yx0fvG9BIuLn5cEbnx2GTfOnO8cs0QkDEGbuEqkHtO/o6BJBKFx2YnksI9Y1oUFdMO7/kFJASrRQTzjkoUlrO/0rfP2NgoYphUVBdUTkhdcTvxLhutn5CatqQiaCnUlva4HnQNSEFZJqWYz0DvtxBfY9e43+uJ0jq+OpwELzMfIzQTSjY/1tn7Rp8TSqRlaomk4ukKY2PfP/Pzl/+Tn37+B97f3pg9HDV8hs2nHPQgCVcgKUTTWk7xeNryWs5cBi3hBlRPaKI/QQszVHacGQ2kBmVpu17o+/VWmGppMdmhRaHHoM/O2F4xm1RdWNtTNLDiTL9iduU6Z/CQizDmTt+vQbkSZ1e9IX3usenM8YbZa3DsfcfHKzYuiEcjKMfgzWPyNXtnpv1omYM5o/lDVka/UMo5pm5pnTm95xRjuY2XixfMYoJ3JCJHkT5J8/MEbpLuFKv5AyKdLidxdWbxcjzGwZ2/R9Lf13HD6d/sL/ci0MjJ1cOaf0e074XJI+f9thPJo+POHUF/LL4f0fbHwv/x5x+L828LpMf96ds9659OI+7P80ghOr72T79+/J5/9TPHxyOl4qv3cTtK0R2YkPaT9yl87PeKeUsHL0mBzWTi2DzBGMjM5HERfA6gJ90jniHSNPMcZMAVFs91TzTO5i7fxzwomRx1Ql6DAvt+P75Hg3M71rkHRP0RHHPBEb356Nyfyw/HpqMwEpCwkg3sMb/mB2Ie0/6+hW5s353L0lnX0DJpItS1CbVAa4XTaWE5NVotjG1lnHZa7VGIzkgz16IUq7SWa2tS90Kn0m6T7Pt0JorhODx2Q9TnDES9pVWl6EKzxsGlF1FKGze0uY+BtRr0zBHP9+hr/6241twptbKosvceIYV+5+qXEqntYwxqKSytYXKwIex+Nm/3RPx5OGFp0aQThfUx5pQa9JgjZ8TT9a2UaKJEgsJ1Op04n59YlsZB4zru7dBeTPa98/rlNXNJOu/Xjet1izApM7Z9p8zICZLUhdeqCRjH9fDtJHBmAKeK5/p+WFfHtWi3/IeczHiJRscKZqELqSXoSoih2mitsSxhUdt7CapaUkAlqXKlaGoajushqbHRU8Vx5b6efDv5e1x/akRLH4r7KDJuIRbc0W03B7VAT46byBK9yDf5OCaEeLyRPuVHQW9mmdT6wPvSf2ahPCYDfL2w3Rbig/8ud2tElaP1uL/RuJg1x+zxvd7n7e+HvnPOnX1/47p9Ybt+pjWltsmwnWFbOE4GyB+FcHIAxQlkXBNl9UBSFAUNykKlgZ6AcFPRsiI6cNvBrggDkcGwHfP0ktWGlAp6ZlrFvFJ1fShSFoqegi8tGvHHWeTP4VwuryHozObN0hZzOJhElHahBMJZsrhM/rbRUG/B8V4ClfTkjClZdNaCSfgDhw1jQ8oTAqh2cE21OqA5ITm4/mohbKsNagsbK1VQwVq4sYg1mEsg7DN8zaUkhaXHcVJdaFUCsRkXbH/Dt1dsvyQ/cNJqpGrOLRxUptebp2xNDUErBSxcSsQ21Eue30mMRivFC1qXQPg16Df7lrw6KlODiz5GRz00J/jE9xCQbr1H4TcmiHJaz7EJHjQRcrG0UPcjGlST7qjMEG+pY+MtRGjEghXglXOqBRXDxxX58g/w9hnbLpFSrIprw44ms66MskI7obUyDq9iUdrpDChzROBKFPxh5VpqZiWMAf0K1w27vOOl4uXEXJ7wp5iKcAgzZ2f2DRsRPIYFcr9bZBRoO1GWE32sLEsF2Xm//omfvvyen7/8gXF4A5eWzY7m2pAUONEovpcn1qePlOW7EAqrgoSzQwSSFUo9UWoU+7GGxERB1CmaYr60mdQaY39BaEtjWZ8Qa9gI7q7PnTFemf3K8HeGfmYpDSGcqiQdrIYG4jjmxhjXXCdiyjcPap/FYj7mNWhLviO+g1/wuVF13hb3o+ZzqfgsyBhYnTAcZsObouVE358D8ZQNHRtHTkZpwbvWDFdTg/NTpXSl7NwCxaYJ0y0nNrGFC8ck9GGDuTHbA6WVHMvHPZ+pi3xdJAcydgTw+Q1Bcw+Lw7DTO9Zvvz0TYv90nyCcWW6psh77j+aO+O3PPxbcX6OY8dq5PcbxrEEVnGMiKlQi0j50CQ5fPXw2OnJvMOJTIAuFx0nFY+NyKxfyMV0OUOsRZX18zY/U2SN80m5tFjcBagINsZGHHWUR1sO+T/JVj4apUesJXSIrxrQwrsL0K1oWSt0Rk5yg5muXUIW5xloWTxUX6QGqmd+nGVXLjS5lCWTgTqly24zdc8pA0iUOCq2G01f4mUelVjLPZqgwcNRjz7Pcc45jFzPpPP/msTcat0YkaJaObQHyvV9SI5NbU4gZoTWlLVdOp3DVubxvLMvGhxdnjrBdrC2zUma7TSZQpaTrkFPCUltKTBNuhXGAFlHFRIaKlMPNaSbqLKythhtL0oXq1sMz/kilVXJq4JxOJ67XS7qXxcE9ina3dO/Ze6YgxzGOSV804EXDiCSK2p0+Rzp2CcUOANeSHn0IcQ1mPE8thb5FIKAApULfN2SJJkmmQT/Amrh3auqFpm2MEcc5HHkCuZ7D2bad9/d3LpcL75crY+7s+2C7dvYeGTFxnqO2GZlJ4yrhgiaKZBjSsT7NabhF1kJMmx012CR+N4JIczxENBia+RVuKYquhY8fnllaUlpNsBlTlHWp9L0yRgMNtkiUsEH/rK1Qe7k1toenvcp9XVUCjPakKj8U3bf1wHDq5SEZqx1etcFCZ98O/9GKSUc1rIm03B0eOEaOJU8qnhcJcXceYx1iKuUqDJ/B+SyV29ro846qJ5VHS0k+7ANa4g+IxsMifdg9WqruxblxvlotjP2KqmdMe77HjMJ2d0SNYTtv7zv/23++stef+ff/87/l+eOJ4RunpzNzRgOg1AgJmSGGUAmv7vB8z/MeOlO650nQQtUF90ZZz5S2BNduXun9M9jGHFtw7hVEFur6QiknXBZ0+YAuz+hyZllDMU7SdkoGPow5MIzeHbGF8/oDcyjvl59xu1LT1WK6UNsTpZ4RClod10ju3C6GTViXylpXymnldF4z3Esi7CodgNzmTVhqWjA/Ieszq3yP2Yb3V8RecSalLrR1xcekX6/MfmWfM7BVN6bEKjrGZNg7xoVuhrQFqQs2VnxeGdsbk/dYbBHmdcNaCKwrbyh/ZPY/YF9+AhPayw+88Et2KhcTpJ6R+oJRWWu8H7OB7m9hVTp35uVPXPeGnZ8RadisYWXZguLQZ2fr4fow+0ZVR1dlv0TCq8wrc78wR8eth4B4DpYRlp7tGCf7T5gonNawSq2Vvne8d44U0eX8FA5PHguF+c6wPwJbNNwzGqawkyjYMHzfqG+vnK5biIYl7zEJsdkUZYgGR7Q2XO6JhXpwDIl7VWuNMJdWqOeV09MT0pTLvjHNaK7UDi6NuZwZ5cT+/sz28gldVkotMW3ZL/jsqHU0aUxmzpCClYbWRjuv9FNj+sb7+2deP/8c7h4SN5QND9G75z0s0FTxUvDSoJ2o6wvr8ydEF8w1KUjLjUt9COLFZ7hKKQiN0tIC2M5p9XamrC/sfQeE0iplWcGfKNaQ/TuQZ9QXrvvf0rd/oNsXhl1Q9/Ca1xoe8jYDofaOyAbeKRpTjOnRrBznV0Y0BioDpSOyI4zwtM61NHzwHSgUi5C40gRpBewVs8DD38SZ40KpzzHl0YUhhTKfcB+cJPi+UitNQvhdFfYNRi9MUXafYaF40EwkXC2mWRb6gla9NRzlVvBl0Zfp0fex/WFGF1ohzSI+ytqwJTVJdy0/vp7/E499Qo9NbN6ahfGQ0vVI+Sml8ZjceBRRh+vNjXdcSp7/+2M+ouPhQhLF6D7S8e0GJD1OFpJrfExek8t+vH85gpwOXQICxs3f+r63JcL8UOw+0lBj4x+I+O14HEyUeYT+iWfTejiKZIpyvp9WnOrktKox9RR6FC1Q8/xoFKfDA4ldTh8YY6P3CwVjjp2RujEsuPlkmgNquFpMeCVNF2YU0yaGMIMKYs7EmD4orWSmiKGlYnMGwiuBYKuDq6FSg6M9ekwsFVpmqFRpsSyaMyVAISc84oXDua/iTdi3wSFWPAYnIpJroiFDbqf3aDKXZdIWYz0562o8PcHTyenb3/PxwzM2P7AsC0s7MVqjX6+0dQ1/+1KprcbacGgRPOjEShoSqLBfr0H5WNJAIQGB2/WNh4YuLXhbrWEpac62V7btgjKxOdiuF2yOCGHyOK7iig+nSoRhBjJtD4YJRqsNUQM57I8Pnr3QXUAqdamIGZ0eRbqDJD3FstFjDhaNWu6wCT2fT5QqDOv0uUOJZs2YtKXx4XnlKdNflY74oGpjIGzXnbe3K+/vV16/vPN+ecdk8na5Blo/nT0zOmcXip7CZnUztBbW84mi4R423MPRT6DvPcLgtISpwuistYArfa/UphiRiK4adqtuOQEYce2F34Hz5e3Kdp08nZ9ZigaNddsxcy7bG5ftynXvYb+tgspkphh4H53eR1C1p7Nd3pOyEzW1kK59HBqg+Jh+XMAkCHHj6xyqXL75CERRSwkbtocFptaaFpjzYRGON3ls3jHmvI/YDg5XAhI30EMlqDKHmruIJmXnrno/CvkD7T9QjGP1u23gB9p/G/FCkVPSSuKVyoM13Zxh2Wem7AO+fN74P//Lf6Ms8K/++i/59P2Z0bdw4YgnjYMtD2+EJV6fptestkBIOQEnnAXRE609BcL4/DGeu19o+8q+v2G8UThHWFU5UdsztZ2p7cR6OrMs4WpS20KpYS0V/MTwWtXkA1etFOJYt/bMsyhj7hkuNIIDuT5TdCEU+zGOdYLmUkXy+VdaW3KjdpAZxSvhqDJnWHiZKMgShZSEw0wRRauBd9xneNSKhFNAUfrY6PvOeybFllqhVOY0hm24D9zuopV6WFjKFpuqGcUnZQ5qa1QFGZ2xvTG+/JH5+Sf6dVDfNuR9YLrQveBtpZ4uUYxWkCoUMUoFqYqLRsGlDTs9Jydcc8JQmSqEcDesx9QiCVbM4e2NeX1nvP0R29+yuDckP7EJM3QDpBDZcUpVpEXOAX2iM67vRWs0HMcGb87Yd/brHo3VnEF56QOZk7dtoxjIMNh2fGRyoRML2SE+81CHBGId9rfbvjGyMT40MFJDDFRahaVS1kY9rZTTkvTRoIDU6kitlPUFbyfk9IK/fIecn5DlFKLUOZiWBX0fSY9VKB7IVAlHDRmBaMl1p3WjW7K7VZMuVZDkcGoZ+NzArmAXxN4Rf0flhdPaMiF2waXEe4ujERQXOVIZl6BgqQYHvTTOp4KWgZadWiL1uLaa91zoRFptzFoYVfG+0bdXRv+MjQvMK5V0jhEJLU3qbGBDvCeylmiqRYEX9IG4rz2Yz6h0oCPFQ4eO3MJhOELZ5kby1jLRuVPcbkV5qRtago5lWik2EVcKKypHGnOg8rQW16mDTI/0XJLO8rhek3Vnor6Ht7kctZBk6Xogyxwgigb9zZOy87DTeO4dx15yoGm3td+j+DhoEsfvPFI3/WgKhFynuHuVP1BpHuk3t68nd/3x41try8fUzNtr5o6g31754d718BgH0hbUituGGd83e3i8KBCm5z0q9+P47dTh+PPQrv3T1/P1MTo+5OgECCedFtwRqja6VroKQyR9IgYt08Dn/s6cO54pt+YBMkjug5qXpSghvnTL+92CDy7KQenKWcnximLyMO026S9VbpQQd4KP73mdEsLLUislKkhchIay7wPVRpFjau+0JQwr4HAdianoLMdxTC/0dOO5X8x3fYZqnNc+nL07r2+dZR28bEZ/rmyL0/vO+2VjXdcIyjqdWJYTq03mEkJK84UCWGkxUZTA2BGNY4ewlJjwi4UjjWP02RN5jwlr0dRFeUypat6Qx6Shlphwqkim4iYN+qDezaiTwno0QIXSBCkLInZrTLXG1MKP4M48j1GZhaFEKUcQWdAbxhiE9jlAjhoPEM3DnPSxMSyaz6WFq5nZiMf1gY0dltAPlBL2xn1svL1u9BF5He/vb7y+vtLnYLed695DQ5fhY621sBg+wrdKgKB9DEqVWz13TDxiH+y0UpJtJLFvjmgmp0WjU+q8Ud1Gn4iklbwZWiwnPIXy8SPX6ztdNsSF6/bO5bKx95Fp6RvdZmQNWJhr9MwSGGn2MftMgCi+NvtMHRs5L837Pa+f++oJVY/xtB62dw/jPwWw7Cz8xhz4ViB1oPdyWzWyJJe7z+ucDwuS8NUoIQ5j/O4/GbnG6nxHcR6+/7jAWs7ob6ij+00QbOYI4TcdyZ3h8CFZtOZyGyJTrVgX3t423l7fmTPcIvYRSAOVVHBHoWpzprPQihO8+FqfqO0JqSf2XSntidPTJ55efmA9vdDWM3Vd4rnnM2YfGfuVt7fP7FuntYXaQpi4rk+0dWV0S35iCT7xIcqp7eYVHwtD+Nq30qIJqYUxVnrf2EcUhUKhLWeEmoJVZ4wl7BYzwa3VhdaiMDObcWO0FKFYiEj73NhHR0plXWu4nLjcbyRONN3Dn5ewSKyilKXiU9j3jev1yrBLFLGlZBJoBHfVsgIx1qpVcK1YKVmARmFdALlaKMi2V+zLK/b5Ffv8hnTj+jp5+7tX9il4Wzm9fOD04WM4RxSYBVzC3Uk1phPmgWTJ6TlszmwLGpFqAlTzNqbHQ5/ifXB9vzCulxDd9i1GtBYi7kBzBcaIcKU9EnjdJssMdnjQllJQVgq2LOy3jS8obvu1c32VpPNHge/TQpcwjeZCcU9HFKhoTpxmuENZEMZuDb1ESrOMEaF1ouwjUAEXgRKL4BSJQq8qsgSaL0Wx0uE00aKspxOlNMp64vThE+dPn9DzE3J+xlrD24LXGtaeFFwrWhe0KhTBp4BFMMk6V579BeSF4W8x/ckE1gATJlUWNCAXfHulv/+RrS5oKbRi1Gq04kg5YS2a8pnhVnPudBdMJ0WdpkvQe7SgeqJWZ2nnRISjgdbSkAqijvWGjYV+qdh8Z9s+M8Zn9usfoV+ZhNahcKDIGV7mPQgA+TXJjfZwHlFtSRMIjv2kh5C8BK85/LzTJUkUKwPxidoA35G0zO0eAu85JlI3tD1R2glta3izW6HJM02fKMsC6UwhjVxjnD6MOSL52Q490A2B9q/XbI9kZc8196vvyZGenHX3DUHSGy/32DO+Xdvv34zvRqEskWJKFsy3n79Pdo/6zHzmva08FsPfimq/Lo4P9P+fOos8ov8HZfSR8//I7f+Ws+8SNIlv+bHxtaMIv+d9TCdFxbcj+tDoRKN0A8zwdOz6Zv/86hB+/f6O8KsD6SutgkpOAqIJNgkwQjCKRDDlGJ2ZWR1aWvrr35uaeDMBKByC1JDNBs3jANbiK7GPVZJKY5amGMk5xhApSFIqyPtJXJkaKbw4zBkZJ6oR2JZXEUKhrsKyhmhftWZonDCHU2vPUKlBHz11BDkdScrmQUOL8yhfuTON3fnyeWe/dp7O8L50zueeXPGd83nndOqsy8ayrrRWWeeJZhOtZ2pL8PK4d9QxT595BB8wbCAaWi6RKPTMJ7VF8xNTXs17S9Git3tw9sggKNIZEto+cjqVIbtJ541zdlBDSlGm9RCUVqFWZ0wLbY9WxCeWhT7E70138AjDU49JSNz+YQ0qSoZuKW0pyWfvnNeaIFM8js2BzY0xAjjwY6pFAFDXS+dyCYccUadfr7xf3xkedFA3qNoi/LQFl/24NlTJ6VxkAYiEWcuYx37u7GmjqTndrZopyqlLkSMXypzeHTxQ9VjLJqKDtsQxW9vKUleKVIYPLtc3+jC2MdhHD/oPpPU40XQS90vQoBwpJYr86XmvRT1+O8l+ZDrxAHBDfUQiji46vIm5LUSaiaxmGVKh96S1IvcwER4WjpqUm+OZHmPDjx99XIdm3tRHWu2wCEy4vb5vV6oEu269iqcvs2SHqJLoTTQXcMQrRyiRa8/sJYdCuGBIIIPDZnRO03l7u3B6bbSn4D9ZD4FlreXmaxo3W7jLFD1R9QNL+0g7fWA9V9bzB07PHzi/fGRZ12hWJPsbWwN0W426fIdNsvAUUFI9XhCfIBGgoVIxEzy5xpocxmPcGoVZ4fT0Qlka12uNZD2tbNsV1YVSnxAKUhMZT5T5CK6pyR2LxWSApgsPgXIXKn0q3oOTvK6V82nFTYO/l3y/ollA9rB/1CoP9oiBBvQxmL6DBBN5qU+s7RS+52RIigdfsEosIm4zk0pj3DbnDtefsJ9/wj9/gc9v2HtnvzrXizNMWc4vnL7f0MsbbQ1rtJCQT+bY2RPd6D0Koy/aMIervTMJHqQTi9xN8EX4PI+tM/vEx2Qtawh85wzRefqjuhkyB3NMZu/4HMgUnuZKnYcXuKSopvDOdrcTkxQ/zUHJexPPZSDqVpoWKjFqV5Smx8IEc2aIUS62iDIJ7mofk2HRmKEl0hQ8TO/CEs2ZAsMDyTVGWLnidBX8tILA0AF+pdRX3p8+w+lv4eWMf3yGD8/Ul2fk4xlfKlIX6vLMsoRXfSkV8Yp7iJDEGq0LzS/p8mE0ObG2E9rAPEKt3IkOrcO8XLnymTkr1gfjaeP88h2ns6ToPIJxxnT6PvAxELmEp7Q+IeUckycttFo5LYU5g6IoktzMEu/di6C+MttHfPyCvv2Rsf8D+1uE24lfwglpVoQ1UENT3NpNFEi6SURhHJa1rrE2SRZe4gMXD5RJS/DsKZhEITA9chJ0hjix+I7SYcbErM8dL1fq8gG3Z6o+Jwp/YtaNWUMsZpJTLI0pUlGnmiN70BvGGPQeYSnmTsvAGs+MCSPdWMwTsSfeD8k7P9Z87p+IUG4r+NfF/U1rdRTgGveHflVoTQ6h6A3xT9Ed6dryaG/3z4lvb8X3n9lovhW7PjYDj8jzY8H/55B1EbIxShvlbETsqIAe9rXQlUSxdcw27nqCe/NwPH9oPCzpWkkJ8hAj3zZa9xtNVjybATy43OKhyXEC2a3hDqLWYr23Q0MGNU035rvjM2hcIlfcRhpkEOucc9M84EmzIYTlZrF2HA77R6Gsxy1RCkUyh8Yt6eqajUdN7ZvAFiCPzQipiwbSWNcWYJxPzqfK+lRpy4rqx3CRQZm5Pl+vO5fLhTE6Zd8y9T3OUdNGNBlxDQfXe+Le01wgKKxjwL45e4fTMtjHxtad6z55u+ysp/DNX9bG0hrn0ymCMtdn1uUUejPAtOK1IUSBXNKhq49Ax9ty3EsxlXMLgXDRWJui4XcoabWrYV+JLTlNJ4StJKc9m0mRnaWRyeyGlnTzcmPIDJZWFVQ6Uya1Hs3XTDA39vgBXLcdt0KRFa2aOr9giCM55UVZmyIadqRLjXR10yjmTUL/hHX6PjGtcW6tsO/Gvk32faRV9obPgUJasjpiwtIarUXoU9EFt2hKD05/GELM0B0tSwiq940j2Ms9m0x3TJ0iO+qKyjHhIQHrzHEYlteNxXSjGF++/An5+DFCp7Yr+xxMJu/bNQIeLRo5d+GwJTfjRo2TIpDTFaL8i/bY4j0cYXwWpy0Wj+MaAOrdriwuHM3Ut0PxTPLVjq7xEQF5/LgtOscapVF9H7zFUsodvecY/fvDanog/jz8zH0xteNHhRslJvjjueDdFlO/2XXagYooiG4p+knLx+JhtVVD8OG3uyM40kPg85cLf//3/0g7NX44f+BIkKtNgy/Wt0SfexT15xPL6QN1+UhtH6jtAy9P39HOZ+q60tYVbWHhFWl2Gp2bV4quLOuZvQ/Q4HeKBiI9j/finpSZCN0KIUcIBcU9ua2BkE0LxMwlLK1qiwvJrgOVBhL+2qWE4t9Kqr1n2JvFiC263DEHYs4+tuCstYZ6oqApFLm+fUE9dAU2jTk25tzo/Yr1jvWjuSoR+uQF85LyLxgW3ORWG0t7YmmnxKvjuphjIt7BBj42rF+Db25OMUf6hfn2GS7v1H3Hrhv2vqMXYenKSYSTwfO2sxandbARQs/ZN8a+sV+3240aiW+FPiabxWjsmBAdMdsxsVFGH/RtB9MYv/kJrOQkhRCezyzGHcQF9XCuKWhMlPzu5HSkXwLJnb1hSbS60rTjHhZkTiISElHiJe+cIoVCCYqXGJrNmRk5klMWrWw2MO9gGS5zc0OBcis6QoBWuI91ZzbTaDhCuIc/NvKMLCu+fAR/RvwFlw+4nxn2hM8TfrOIXRFWnBbiJlE6gIfL0+47JgvUX6CitOUD5/MLVYQxr0y7YLJhYigFpjC2K5PPMRree042IgAMLVmARhLsGP1W+ISuAUpNEXkNsW0sIbHwTDdsHzmVbGG56M6prjy1Zy7yxDZWbDvTDBohKiuy3Btyl7SDFWDiDKb3FNJecbkiEi4kpK0k4jFdKgIlArEOavMc2XhLyJ60ZcCYRjPto2N1Bwaig9LApeFl3BrOoDdEYYUkihc9DatUygyRnYpQkm4pWWxPz/VCcnL74LB2IMyxr5Tbeozd9487en7fC74Ffo513f1emMe+cqf3HGiqW4jnkz153EZfoe7/d5SVx+8de90jheewyLvtdX5/H/BPaTzH7z3+/RB0Ho07+bWvbAqVDBn7p3vt/Zg8PJ4fCOc/j9x/+/tShGNaH8cqKS9myFSqtzxVeawgXF9ap7bQhs0poGnRmimjhx+nloqqxATIgkN8d8KxLO49a5Kg3Ng0CkpZhLjIswAtSsm02KBwgJTKnAHIaMv1fFqEHPXJdKGdC08vK6fTEyofOJ8+oloY3di2TmvXoG+Mzr5fw/ksU0dbabeeaAxj9Mks4TSz7z3WD5ySr3/fIgm3j8H16snN3zk/DZalsiwhfr3undPeWdo7p+XE6XSi1QVqw+YWa7lW3Gqui0lt6zkNCqEQk2hgtER2SdRsiniEWWpRrLZkF6RDW4aWBZVkgIQFetUosmPr8WRrGLN4/IwS9UUB1Zn0mWMiFSnhmFEsgqq0FJzKJAK8+m1CF2tV7EBGa0KTSTvMNOYIZ7vUqpmDUcLycgRSblawaVyvV7ZtB1GWJaiV5o5KYW1r7oSxbvWeWTM5sYp7xZIiG1RPFdi3jTFjEk0JOucck1bIiZNRJWk3JShIMyk1UdzH8bI5sFIYo4d16T7Zts4+OiOpN2YHSODU0gKYwHNKVpklmiKfztBJaWF+sm970oKI5ilrk1hB0yVMoEZsMfllTfQiR2jiwReWwyXjjrLcFjTnPrq0u73YsfDOGZSOWmP3OBDPrwt70s0mOMmHqCRQ8Qe7zSyAjr7jKyQD0sozkQ+iWBQCoUUC6RNNn2wJVOh0fuLpvOYIYCJi9CGM8kwfwuv7ZFpF9IxWaItRanhSf/nyxh/+8DOvX9759a+fOL80ltMzpT0Fb62EiLS0cKmYviMENWjaRKWlxzTUJfxx0c6YHZNwz5lzZ45IUT2O5WPameexQwCNGHkS9QsEHURrjKYoPD+3RCaD8hLNCphemWPETe8eoUGHlZ2lqG44xSumYf0kRLrm6J13e2XsTquhGQi/1s7ok33fGPueMd4nKgq6hkBtDKqE/+z0QSknWnnGXW6BDmDBy+caqZ9jw/YLjBg5NnNke0Pe32h9p6ZIMaIqoKdIsXDBzNi+GJ0Z1Jh9o4qAT1qeC+0D9sHoxtwO7n/NDdlv7jQ2QgQkU5E9009dMZekeETAhWQjoA56E08F/aQKFDl4i3GfCZmGfGu8g4eqEjzCp2UJvYPdOfTuwpyhGSgAWlBqTqK2wN007xE57vX4+TSojHs2k0/NJSkjyZNnEvrxgud07HCQwCxE3+v36NMvaB9/y9Ov/xXPv/lL+PAR+/CR0QqzFWarzJb3cJlhmaodyo6tztAr2Ds23+kGfcTPFl+oT9+zPH2iiKPjnWkXpn1h2BWXyTTF+gB/j2M4Q3zkcxJer5V2zqwFglpiFpzg6+VC75GovLSF1logtlnMmVnSn4QqQYsLDuuGX3/m5G88eacPYe4L6yysDu6dWkoKOyvmYUMZxzrG0t0vbCbQBSi4V8QHcqPapDiyEgFkKkg1MKFIi6JJIsgr9paBlyte/UbdUnGsGmOsICPE/4mwHsB3tpP572PTSfcaKeFUMmO6Fmi43VA5J6aRcx6gTN4jlpNjt9vGcyuo5c4RP2rSQKUP95vjZ5O6BKjGRDioa/fHUh2JaM3QI0CicBFLX2v9qiB+pOTcwCp5GGs/7nH5M48iXPI96j8DdH0lxoXb+7x/f3LYQD82EHNOZlIjRYKKeCu8DyTx1jR9U9hzR/UfXsx98+T2NgMkO+gyGoCDWHxt9EFZCqJLZERkgW0Y+xxhq9tOiBImDlII+m4UJscGve87LV1jtMVLcMvCMffgyI4ICkIRwZO+ZWYhulVorVKWhXY609qKC8zhjF7DNc0UlYU5erz20pIm0ZEGLy8nPnz8yHn5FU9Pn1Ct7Fvnctl4e3/n/e0tgo/6Sh8bltScIpEiHnvYZJeRKaLBGYhrMWuatHnuu9F3Z2sjppJ1crkM2hLe58vSOJ87y/qGqvO0rrw8v/D09MTSFkoW9qc1ckjECY1dCS2BE0i91gQkVanLjEZIJF3AjMOPXg9g1iwczmyiOnHrmO+ITLQKopbprSVNzpw0I8r6Kq4v82hKNea6QYVxwaYgw2ixzeDsGEYRAwpqPe47ySDJUilqtKpUnSwtgsnGiMJ526NGspxguV2xYbSycOkjXNw0jD/CGScbVJRag1lh06glNGXu83YfhVh1kGZA7Nv1NkErGNvYmAOsxp7eqqZWIOlQprQadqfvo4dz1OwJ9gE66PuV8/ljMAFGsD2Oa0nQe73r5Pdivz9uV5HQnCy+ZA7VoRcJb3/NtXQOv+kDgiBwX5uqxPwMPA76YbdzILdaNAUX98XucZGcfdwWlAM9F0krJOSr+OLjhc98UzebrAdO420Zur3LryYNiVbeF338/pyPyMqjhsAxtMUAUEpFZKW0Jz5+9yPL2vjxlx9pq3M6T8Z45Y9//BOdT3z342/4xa9+5Be//p6Xj89oM84vjTGu2Oz8/OUP/Jf/+kdUhN/8xQJN8Rb8YSqITowe1I1pzP3wG4+xUTiZZMCWGVKV8/MLb+9fcGagdXNjzkHTlVoCTcRjA5OZ4zGF0ipricXo2HgPpCxoQ0Jdz0hZYwPJAtRQxnzHeGP4NRoil0T1nKKHE09wH2tpwWfThthkJ2xNC+D7hk+NkBGgUjAP96ODy+cC+7D4bg3BVS2VdT2FCHsa+7UjtnHdOubO0ipjv9DnKzpfmdsb8/LG3DurF3x2uLzB+yu2XfD3jfm+4xfH3qF5Y2kLY+v0faeKsvfJ3MOy0kVpGuFeONTZWGcKPLcr2gvOKW6IHKN53qixPyunnHyZGyadUnNk7dGA4CEWq1qpB80qbfHqErzHWisRhnYvAJSwPyNzCNQMxkpxzca1RphFkDZxD0fEQ3zTq4cQnigmZi4msQEGpzUs6OJaEsLNikRLYd5QCVUN1MeTc61RYJVF2EXxl088/eX/yNPv/gPnv/yfGU/f09czlyJMNcpSqadTLmaGqKE18hAGV6Zs4BuqG6Kd6e9I+Rm1d5iCtQ+M+hKiZ3kHLhR9QbkSk4wZVJgiOOHdvm0d5w0pDbSy9R5TtLagdUV0MufO69vPIEatylILpQitCiKT3jdGDzFbM6VNBYzR39gvP+HzZ+blT4x//G/YH39PuwhtNBgKviGnsCFVPWGmyAJlWVifTnQPQbckH/bcvmffdmTuYbW5vVJkUKph244Xo5xDT2NTqHrGtKLqSHHok71PZIlJAdUx39muX8LWkJ3ziyaNQbJgFvrYqFJxj+C0kmI8yWKiaGzIkYgd6/Cckz4TMYxqlD5Iez1nDGGSa7RHIJjmiCG9XTAbt6L0CGOKGyA220ceud5Crb5G3KM4XrKYj4nITGTs8Os/JmKHx/fjxw1Zz/v32EMeaTxHg/BI84k7/77vHK/l2McOB6pbgS8jm+hooMlETh4sPI/nbpraojluG/Zjgf84QTi+hx/HjZtjz+OnePDmXe97tCRAdxz2uO0FkRrXmMT0sMxIX5beWZ9eMHXGZlAC0LKxxZo2Y42VfLAxo2iPRnnEpCkbpemG1BSUzphjtWWJiZiGZk6q0M5PPH/4QF3SzYfII7EZiC6+0/s7fb+gBErrbpS6sD43Pnw88/HTD3x4+QW1PiESa8O+R4Lpl89fuFwubNsV857TgMFalwCZrj1cWXRHNUwpjknRGEcj125NpUiIH/swRCatSRRqS2FZJ9er09qklM7+tHK5vNFa47yeOK0rrRTWZeW0rtRS0V2TChx6nCkCI/R2UoMaWwnaoXk0AEom1t/CK42hlhk9RmuHjzuczsqpSSSIH7x4Afe4Nw8aF3he0zObsdQ4pP4FhbrUmHb3C4WGllOwFGSGmYaFtWYrHrTaabRa0QyxOjVl2k7TmIpG8zBiGAnpCBR7YVHwoiw05vQw9lDAZ1oOV26hT7mf7nsEWynhulX0WE+S345TGYmYZxJwBy+TkxTWpbI0EA/A9bQoNkLcfd0jGbytSpXgyZe10Eql92gulmVl9Gs0cafG7J4OjwEcHOf4CKqbYmiLhu2wF22L4sMQL8xIAguNxvQHvFyoWhIg9GMzv4ugjiI6Vuevk80OtB7uBb/wMNb0h0XzWHxu6MEdtT8e4zayhRudIRZ0uf3uAfi7GZ7V/l2wQ4gpjkfPRkVTEzDdKcvC6ek7tH2gtBc+/PALfvzFj/y7v/krnl+E1q68X/6B//Jf/3ekfuK3f/Gv+eEXP6ALlKa0NUIYFgbvb1+o7RO/+d1f8/33n/jhF9+xnFZMjO4bxZw+HHsfnDhTlwru9D3cec7LEyIN8QUQbF7Yd1hkoZS48SLhNEBH8RCyFDXcd3xORB1M2OeG76F6b63SajoMlBzj2dG9Bwf+cCy40Q1ssI93bG70fTD3CRYIwtKiZz8O/hzGYCAFfA4qnsKcoO7IrZgvER/eGm4tJjBH+m1pgV5S8CqIF5ou1FK4vL9x+fIzZq+Jgjv7DtiGzAtzf6P0nTIHjB2/hkC1XK+wXbHLlf75yvZlQzZF93K/bqeDzxgXz4JOyWj1wCmHJ0JJC6GuGS0Nk13KTQDmSRmbEtmoM7SGUfAAI0VL00Zey8mbSz6w5hj8CCCQmS4J0zJVNYrsOWZMAKSkFX6KlWcg/wb0I449RZa3uzgMFYLvXyaHM0uEO0rYeblQEBbR8IS2pNuMGc490aOyVGW40M1yw5e77RaxIOnpzPm3v+a3/+HfU3/7b3l9+Y7x9IGn7z/x/acz7QzPz8rLh5rCUA8Ezi081cdg3ze2S+f9fef6+sbrl5+ZlydkXkGVnQUfK0up1PopeJBlo2ii1kRDrSUAC5UWqbSyIFJwCj4EozJsQaoiOsAvQMNmWJONawRaIT3saccWzkdzoNcrcrli44qNN/b3P3D58rf49Wf89Qv2eYf3wmU7cZJnVJ2xKM6OlMGUwnKCdhbYa1DuCE6ojsrYF87lE31/xfsVdqHITp1RSAkD3xw3CaCivuCcA+0Up2NMmbjXEIYTUzY3wXuhLgvGCSlPmXCsQa9K+p3LgahHoyiqKebLYLdbIJJEoA1Br3MLxy3FonEoTitBO5wOI+lMRugn3MHTxvHYJlTlKwQf/CtqzX3vOP78GmWPfUa5CTYffN4fdWLf0mSOfcjhhmg/0mzGuIc1HRTTwyP8cIr7+jXEnnQ0ESMTq4PjflC9YtocbjDZ6iQIEHtn3P/T7haej4GNx/Mcr3HmlOrPkXiO/frxvZdSAtxxbmvD0VBpSbE9sZ5rjU+3SmlxDZyYzKrUVtnfPjMhCrSDLirC6CNpX5Mj+0U0KLlawS2sBUUUrQXroagUFbQJy9qoa+P8/IHnj59Yz09hcZu2uLOHVsptY/RK39eoQTwEkFqE9bny8mHl03ef+PjxI7WcQUoaOgxOp8r5vPD29sb7+9ut2QRnSWvm67XTWkX1jVd3ei+YFQ4t3zxAtnkP7/RDQG/G6FH82Rj0bbLVwbI6tU2ul531dGVdGq/ljVqVtS2c15Wn85nzKRNvUw94WLaqJk3JghUhPvPclDjmyRt3v4J1zMJ1S5ngA3xQygz6ITEhqQUO9kIs/0FdmTM0QCEO7Lep3mE7fgCsRYV9v4BVTm3Nq28gGk4zrgkM4VQZ6Z8vtJLWvjZuFBchinchCnzTMOOYIyhBreS0AM/GuzBm+tQnjSvejafTTDjU7Htn70HvjfcstCI3nemYO+475ARKcw0qEpSmqrBWZVkD9B47cY/E2I8xJkUn5/WZdV1YWqUWwUZg6BGCpmAHMSknjaLRDPrgCLhQEZYmuc6EEL0tlVqFfulgpJ7uoCp68vBz7y4lDkB0+prjT2EeCy8Z1HTMbx8WxfsC/MAL486zPxaV++jw60XnK3GQ3gfDwbQ+umC5FSy435AdlXsE+BFUETzC8vWoVMBQ2vod7fyBD9//gqePP3J6+Y5Pv/iRv/kf/z3/4l/+EpUrzitz/MinX/2asjyFF32r6BLCUw5Ou1eWc+Hf/c3/En6iTbhc/5QLA5SaY2Lecdu5Xt/RXtB6V8EPM4SGlBUpFlZ3Ptm2EB0JgzmviPeIep5ho1WLYbNjPjiS+Pa+h8VlEdb1xLJGMVOKRRFQ9XC3iwI10RrPyYZ6Y+vC3o3rZcd6cJitCD53yJAsFLzvMLP4syvCDp78uO7MWRAWluVEeT5HCEgVtn1wvXYmhWUNUaTSqKUGwj2v4S/b3+n7G+bhL37w0AoD7zu+XZFto+wdtg6XDb1cg2e/74xLh8uk9gK94HtkL4wZ6bEK4bAykus+Yxxt2eDqcR1mgmGTBWMgTKoUjqvu4B+aRJE9p7GPyT6Dn2/zNtOMTVwOwfp9MnYzAhxZYGRQkdag81QvRB6xBqWHuBG8J40NY+5hnUk5HESywLfgRkZgzdEtx52kEm46EAEcRQuuGhkDM2y+zEO3MXOEN1WYpYZyn/yeGbMOygJ2Mp5fJr/57crLXz/z5alhn1aef/XC+bsWlLbVWarh8p6vJHmZ3jAa7mfEQ6j0+tn4/d995qc//DESavdwpnAvQQtTR8pEyuFAkmiwWnxdI95dS1CTyNTA4YZ1wa+adVTHUdxWDr6jW0fscGyo2FzZtyvvn39CLhvy/pnty8+M60/M6z+y//x3+PsfKftGG4XSV3SHXWtMAZYsa6swES4rnD8UxvOCFYXamFbBIw/iqT7xx9cN3wf0xpyDsghlWdGlYPuARWjrCdEPuH6C0hitYrUwVbgw6QSCR/JMy1xR+QGt31PbJ8ryHOd99gjpGwaaTldScA/KhpZym+CplHBRSsDFJBrJY6KjNRvfGQhxgE2SUzxhWMoob847t93g1qC53/9+W8TzZ4LXKt/8Xmax2MH91/Q2n7l3Paat34vdb/coIJNWv3bE+fZ371+X1FIYj0X3t79z3//CqeywyXQ/ePdJ93vYIOcBYMn9MQ5a0Lev5bHJ+Zbvf9uXH6bbkHv0gdu55ATz/ngx7w69WlHBqyLemLMhJkxfQYJLv5yfsB4hgDZ2Zr6XyHkYxCQlsj6OIKashTicu0qNsDnNQqutldPzmdP5xOn5hZeP37M+vVDrU+wGfbJf3xl7JEH7XLAxCM1ATAZQp63C08uJp6cnTk8lRaMCFJZVKNVpS+HpeWHfn4NKOgdug6d1DfrO+05r4SN/3d5pPa7rrIA5RJq1HnoliTXFa56bnJCkZmn0RPv3sNdct51lMZaafv0liv2n8yXEt+sSCL4WlnVhWZbgfNvAvYE3bA5OYhSCYx/mDoHcm/dE4Xdgxy3+feh0ggdfbmLnOPtJ1vRDQHzoQzJ8UrLEtzuDAjT2lhIaLyQnaGPD0m1GDwtzU2oraUgR9D4/xNMSe4CIpjB85vSghQmFhbe/WOrfprP1HTe5XT9uRp9bmD6MSd8H29a5XqO4v9H/FNYGp6WgrVBksLRoalIVThFhEeHUhPMinNfC+VxZ14Zb5XqpvFWnlR6OP0Xi+6dKWxSYDB2U0vHirCsBgCKhm7Jo5pmeNFvLxr9GHooWlnXNYEFjiLOWU6THC4xOTidiOm85EaxHhsjEYd4XIj3U83nSjlHst8iBc18w8NtQNRe3e0cR9JuvkfyvH+sBRZHsyPz2w18tWCRd6NEFoZZy87W/twnxOmpbef7wKz798tf8xb/6K37zV7/j+ftnnj6d+fGXH9HlypxbiBvHiR8//g4pxnW/MG3HWkTVGxLuNVTq4Uajhd4vPNVIU8MzDdcno28o4fcqNIQF10IRYc63ZGs0SjtTlye0Lelnnzfo2MMV5DYV8xtgFcE3QQ8Ri+RPm87YB/hCKUuMftG07tTkv8a5jOjjQNhLbSz1e7a36IaLhCjFzenTqdXQFotTjKlmhCj4hSIdnxtju+JDwjFIVrqfKHoNi6v9Hd/eQ+RqINcFXU6UUliWhbU1sAFzUK/vLPuFMSIZdllOwQP06Mr36858faNcr5StI5eOXje4bIz3d8b1ir0PdBMYBetBUXGdtJYuATZhpJ98AJX4jOtzEs8zD8GeGYpl1x7xbn4UKBI3MkUZWeW4T8asWApUD+qNlyPxr2IZ8mIeGpNOJ8IxwobTKXhRmmZbm7z6WGgiEVBCGQopKHNXjnTAG6g5A+E9irSox3ITz+GZ8LDgqtyuq+nOkJQ7i0ajpxWvUdyHb74xdGD2DvvO/Pyf8Z/+v3zcCz989zu8fmItr5TyCVTDdtUroguYRPFSImTGXDBCOyIVPvyo/Pb779j373i/CJdLFPfqgYL53EN8RnIOPUf14njx2zUfk49wIegjGy+cYbDNybZNxn6MPMIn3nvoRfp2Zbu8YyNE4/P9F5Trz6zzC4U3Rv+Zefkj+vkj/fPvYftMcVjLiUKj2soqwuISPHmtbHMwd4nrswb6Xvwc96XAh3WheGdeJuyODmFuzlBDFmCN0C49FXSuwIny4RPt/B3z+RPl9ExbzpzWM7uEr0boXyJhe3n6nuX8C8r6CZPGPibTruz9FfcRke/thEqNtrKCWoFyQmsgq5oWctM9fckHzrgXtU6AFYnmGQKlZd5CpEtOm0zz4HAnOnYk2d7h57iQ7wXrYcQgt38f+0bPsDFIf3QikLH39Lp/EMV+W/DeCl/uRfTtFRxF/zd6s+PVycPPfSumPVD+WxPh5fYcgWjb3X/8Yd+Nnw2UPxT42VDk7ONOQf3aojPWm3uD8e17qLXeXqels4148N/JPRdx5uwh1lRD3Wk19rxZHGPFLXQAVuP8zqrMveKjM6XGBN0nc/aHIxSUJ7e7HWhRjXDDZaEsjSkRmldboS2F8/MT5+cnXj584unlO07nj7T2DF7ofXB5/0zf38BWirwk2lkY+8xz6Eg1llMUR21xSr37sbtXtAp1Ucao7HvLBiqsP5sKWwvaRh+N5aTUKrRFmaY5JYwQt5TC5LGNK0Ol4EQxr2lpFlSZWH+sRwrrdnWgUwssTVib0lpMME+nzmltwU1vynpaOJ8CwAvR6CnALy0M5aaT8tGT0z1Cv+NB8azFQSMNeKlOqxAMsIlZUISjiRYO0entvsmaTHIihmgUlH53aypypFo7tUaq+T46NadKKtkATSKqViU55HGNhh1m2JQeAMDtM5skRVA/pk+T4THFGTPcklRjv0sidgict8F2HVyv4YdvFNwnRYyxCEKkdS/NOR/3bIk6U0VZUNa1cD7H5+msLC0K8KUKInuYMojeJl9LE0qddDNq6SwttRwlam0lhyFT4loknAPtMDZoklP7OKZhkymMplhX9j1ruGKMPaaSR/zJdKOuq7Ifi6tLCOlEb2PN0GWU7CDuBflXi+PDAnJDSfxRPHVf7L5FFu6L7TcLErGu5Q99tWAev+c8agCy25T7IlxL4fn5mdP5BT0/89u//Ev+l//X/8Sv/9WPXOwndl65li8pvRfWcmKYRzFkG9IGVQrddvr0oJPUU4hRHXwGYrScV7ZdmbMRct1MGJMQWogUTtpoRYMLPY3r/h7K7tpYnsJeEjf2rSNywsZg7O8RAJINzOwFGx1JQZ90T2bH4VghQPDT5hi0tiASdloQyu5a73+fnqJIPXFaGvO8orwhFsmBZpHCWpvc0tm8D+bc8HnF7R2RnTku7Nd3vDulnFjKM2O8s12DVlMskmild3xMxiYRkKTRVO4VqkzmfmF7e2PfFZsL6/kjDaVaoXhH9x6JtF/e8MsF9olcOnLt+GXD369IH7QuWFesC9LlhkjKcU3nAniny8QVF1zySpQjgR6GoKxQJT5VJL1pU/RmsSEqgc5XjYhxl8LhRIVkVoTG390O151wa7lK5CMUhOrCtPR9TnFsRb5C/q06xmSIMYtmoqfd3HbEjwYk7iFDKTcVeozeh3sq7gN5UQTPkTgzJhwlF5OZcMrwKDC6O90tAkJGZVxWOoPt/e/4T/7/5vf/+//K+uuPLD984vyL73n67W9Zv/+B9cMH6tMHTi+fKOsZWRYoEQ5VtGbBr7hUwrsXaEJdF54/FPBycwYQj2ARcaF42mhOZYjTE/3RpDHd148UHQVIwp7iaDfBJ3gWnrZPZje2a+ftp1eulyv7daNfP7CMZ57ZqFvHv7yz/+M/8g+b8HYF90plY20hNC4yWLWy1rCJ1OZUm3RxVN7DXEROWQS0CHLzydvrz6EjmQMZzkKFvUcR2AmrQivEdu0szwt1/YH10+9YPvySfv7Eu6affbRMYJ2qxvml8PLhmaUt4E63nTE39n5lzCtt1rimqeBKW8LjX6oiBPceKemuE24TloIy80lNp6fYQ2oWpoqnF3RRZ5ZweZgG0uWO5MsRMJSfHAK+/LcE0nucy5jvxrrf+8jnvGc4qCpLis+/nSI/FvvHvhLDra8R7uPvY4wbXeeR+3483qMf/rd71Y27zz2DxcWJ6KJI9z5S2W9I/UF7PRBTOf7I13mAEpauVbkDPuysj9vm/T0eEzw/Cvqj+J7HlwiyXpgyuHBoNfEUT4vGNXGkLA8Jup8XjUkf8bp3e4v3qnHsJOmi8VgOqqynlfV0Rmtl1ko7LSxLuxX3Ty8vfPjwHaenD6zLB1p7ASp931GdbFtojZoGJUGlMvaRtr+Gy4hgoaponVmYZsMmTqnOuTR6D/pZHYJoiyJ139JCcdBaYVmU9VQxD3OQoEREom749nscrMPekGhYR/rRu6dt8pgMUyaFMQNIcDM6zqbOtUyWZbKvk203tqVRahh5nM4L2/7E+XTCzpFQXNIooTOx0VPQGpaNYEAUlarRLAtxHzphyKAVIOl52bIKwVGXW3N9ALRZ7BO1YpgylNtkyj3WUVEHF4pUlhJNaTiXcWteu+0sp6AkHlPsMaOxriXWJ8zR1Oj0Get6n2GROcaCTadvHXfo+86+b6AeVKUS2pY+whltzyyDPiZ9Rg1QJPJn3INO9nxeOZ8Kpabwu8YeUq1waoXlLCyL0lL/qLazlED0K41S48Z0CwaHa2RFtJYc/5LA6XA077Q5NCfEMeUaw3NyIpzWCBEdk3CMqgUbwvUt1rQxZuit/GhuooFkOPVpKRSfdD9ioB9GjimuKCUWdZH7Qms3ZN2Tw32MRzUv4vCoNY5xn4TF0YxRqSbHINgPcSAzgpF7vMVRdx1wteXz8DBulUTKM902NxMtleX0zIfvf+TDp0/88Jd/wb/6m9/w8deVUf6Rff49ZQmnCjNjuw72+sKpfsAJYWN43kYxEA4mkWSGd2oNLlzwwgynh2DKe1BZvKME4uemTC0UVywqJJoEymg4Njb2q+H7GybO6E9hCzZmvOVMLsNhthFWX9piVCYlUTBDEqVVjZMs4qhMkEgf7N3o0lO0EW4oEX2ttOWZ9eMz1/ZO37eYBPiOzZ1SZgj6rIfFk70y9j/h/RXzjm1Xtvd35m6UsmDrB/BQqduclGGsGb7TZ8Q6V4VqA9ve0Xnl3Ar79s7rl1esN5b6HacffwXP72xz4LYj40r//Ef6Tz8hlytj78j7QPeJbAPfB4sEx3pO2PYZN4XHJlQd1CwCIEpuckNCWDgc6xPVQPpKolnuUEVp0oKPLyGyFITJTBQ50MfiTlOhYgjjXljmnn0gDoLFpMJ6nFMWTEomUkZCbjEYXViLoq3S0pcYgsI10/JUa6EYyf1NFxqRm4QmFPSBjPNQkIjCejTrZkm5COpV1eDiumWAkTndnN2MMaA79BnIK1bR+YFqg0Ln7X/7e37+3/4z8mS0j43RwJ9OlOdnyukJns48/+JHfvz1r3n+9AldglN7/vgRpOBa0NoodUVUubix18p6eqbUJceVoecotVCk4mVBdEVlifC1EtzTW/GSx+Rwa4kK5kBRY4PiQDBdYcZEDAPbTuwX4e3L5PWnQXnvrNs78/MV8yv7vrEvV7b5GeufEbkyrDPVwuVDztAb5pOyaEi1itD7G759oSxnxK+4Luiycr3ufP7THyJUrE+k76xZGHiPoDKmhHDYO0M6ZQhanjk//RK++wvG8/d89/KJq99F2Z7FfVs66ykyPfY97P8wYXqPNWTAxkAsJobTlTpbXueS1nglXLOwLBA6o2/0vjM0NuNS1qAnlpbNS04vJER8LkE7DUFeFJKWCcqW3FU/eNopOD00K35UtwRVUghKxDGw8kBe4loR0sUl/7wFIvoD+HSgT3A78RwI+H2vga9/XnO/O75+/HkU+jetmB+v9/j3HRxrbcli3e4FqRn9wfvZb02J3R4DUhvwMHG4BWB983E0KI+T89v9Pm/vNNYUt6QeklOftDu2cdvfFcEsGjdNC9Vpgg3FalYiPqjLSphFaNCdWvCoawsOtmhMv9fTCdGKLY316cR6OrGeKufzmefnF05Pz6zLmdbO1LbiXqDAp/rC5TIxbywPrk5jnzfutc0dl0ltBzUyrVyxQLUtQYIKVUu89AP8yea/ZQr3uginc0xlI4DpyJexdF7xrJXC/WQeKaNzBn3Lnd7Do11N2Wdh7CGMVC249xToxhVoOMMne4daJ7UeQYSxllUNJ5eZE0BsYKrRYCsJNBoqkyIDEaNoBGLV6iATYVI13o/n+4hgscNNLBPVcy+LQjx6zqPRVjIHhEDaa+oOJEXHrQSLo6eupSTCLRJAkqVf/+FOJiKYzAwVMxoVpGB9UMuJftwLadM+bfJ+jUBMs5H3ZIpPW8OnZ91yOMyFw8/RTBeNYO7TKnx8aTw/N1oL5L6UTJ4dwlIKdQngRjSmLTYHqpXTCkuN7BG30JiU4pgkS6AmLbNEfhDTb7XX6MK+x9IjAhuR81REUJnUViNxvQVdd3RHvSJimBV6ToYiXDMsTN2M+ovnJ179wtU7VmHvxraN3NwVdEnUJYrtmZ1baYcArSMO7SYgijTOKY5rdLDz8EbmGDeCS1ijSY3x7jwqICsp9AuLrGi0756skFZtBqdWo+gNA9PwrD81jMKHTz/y/fe/5K//7b/nF7/9Jc+/q7z8qLz73zJ/fqWWDcaOjQiwEFd2vuD1Tzw/fUTnytoavXfet2sIc2vDxxXaGnQb6zersjF/Zox3fIbA00enoLRYTiKoQSbb2IBABdbTE7U2zD1pLmH/9X65oqYwBPHYHFsVRKPTv+4TrWEfFf7wgaZICS/pZRHA2PcL6hWVydwmSzsBxBishmMJ7mg1incKwlvfcJ+czitmyuWyM8ZG7xs+N/r1C3P7Pey/p79+oX95p5hDB/pkqrLXn1nayoow93CtcV/wtPBkDs5FGD//hP3pHxmf35givL1fed86p9I4nX5CXj8zzmcmzrbtzO1Kf3tDrp0yJva2ocNYKJxoLLYgA6pUxkzeWfXbiHltSlFLVEEZUxlDmVvBugda7IegzFIELIHYOzAsYsJz4uEiMeFwqNmwLmlFNmyiQygeKCuucS9YbJolJ1pHQqQdBYBNZjZ9pQZFR4mk2SpR6Ixc3IsopkJFKV5u0zIRRYrcrLvUgxtbaw3/XotFK+LeY9PXGgVXLLZZbHkU956NDulmFOKeKCxiwd/DIGoI9U14WT6wXAXZHVTwEoLSPq+82+CP9b/wRwVJNwyvMclZn05IU4YN6tJoS+PNd65loktwcqUqda20tdFOjfXUOJ9XTqeF8/mZ8vQBPT/T1jPttLKsJ+rzM2U9IbUipSG1xGOVGjqFPJ4T4aYtnIbPHknM13fe//gnPv/+9yyvr8jeYTP80tn/8Qv9p/+D+fp3jMsVdb/TVkTY5IKZ3O410biPTWLNW5+fOL28oEtDn5/DrePnP8EcLC74mFDDCSv0AAPbJjIEGwvUMz46ivPDDz9w+t2/gKcnZFWspFWpGGNuwZ1mRiiVVeapcN2cy9Zxvmf0V0b/TB9viG/gHeuFaStMhVnDfrIGcmvp/mI2whJx7JhdKUu7FbEkild0jeJQYmQet1EUE5ZIrtdUPRjsw5kT+nBm9+Dq+2ERe6DNlkh7ULl8BpVFRG+PP/1r+0o4rCQPJDsLaM9pHNwsAI/iXhP1F4K2dofRo7AYc3xVzEczcS+2v0LzCfTxABey3AeP4MBpgbyFQL4mVSnpEZ4uaJkwqnCjHP25lNzHj0dHuqAtpPg2tuxYZWwyehRVwd89DDMEqjL3yVoLmOPLgk9DagMKKpVZF9CF7kr3d4qPoDWUEtSVqhEYWUI0up7OPD2/sK6nSKpentBaeTqfeXpaqC2sI0+nldoapSnIYFhHPQKMllVxb2jJxkNB18IcndkNn5GGbnMwr5EILjk1UDwmyq7Zpsa5mweWqEa3jd5fmf2dosbzuVJ8wU5hs6wJMB6AZk0xsY0R+Se9M3q450yHWmoUt3s0TK06e0+6kjjpvggiDFO8C9OhueADGJMmndE6oynbJfRo53WNpGlX+ojWLMSxATi1ldBDzA3UWEqAVFoknGuyLTafYYmtEjq6GYV9rQt9CxvH03KKMLvYDPO6b1xHNNWa+qei4bJ4CKo1r3W3QamVWgv7vkcjpUHJPNJg+9yRqjFBGXvw0feJtthPiwtjdvYxuY6NbXa2GbaUzWNivSwNnQFCKxMsDANKk2AZKJxWOJ+ctQ3Oa+G7j4Wnp7BPlwwDG8NYVSMo05MOpEFhGjox39ECJoew/dHLP66jw/FKl8qyxMT5uB/ngM9+YWl7UNk8nXlSP+numAyWVVjXqCNaGzeAa9+N68Vxr+y7YRYp7vW0VOy0UIty3WOMo6oR4ZwnyT0t/9I2aNrEegh+DgqPk4WKhR/0MDKAoWTRn2p9ckXi+HxYhIQ4oB50hxBZxKKrjxY6QAvyczgM6EItJ+p6Ynk68/z9d5yeT/z2L37Lv/l//BXf/+IjvfyMl3fGeGOON9Adp9PHJayvPPheG8p+eeN8/o66nIlo6j1CGXygdQkqiRnGFc+gjSnGHKAe/uJjDvrsYWu1nhh9w8qkLcrlcqWWcM8xMwaHAM2YzECdLMY8VcKOjBlFZyRUBrI4RyBrZk6RinhBvICHz3zEKc9Qo0twUaMzjpt4ZLCFu1GpuEEfW0RPj86cewxoXbm+7+zXN2bfYTjjrTNed/wyQ2DTO7ZdmDbo7ll0gu0TrgvId9BW6nnhV7/4jr/69Y/89///f+Q//sff89P/8ZlKARamrKxnwcbOO5+ppyvDjdfXN2bvNJTVwHZDhkCHrhOaspbgcU6PG02KUxuclpW2wKkJ1jfmmOxbIs+JPhxjcU0BmcR4KCdUeqy3eZ1KbtKB/galIHbt0GSkc0jRcOQZ2eQiTPXbSPMQpgoxvfJE3j0RpliUcgGNAWhMFQ5B9A0RzP9L/OTBr9cSm1Z45Afi1tKC78btTe6tjVDjH0KjqAh4EOk6Po7E3aR6iGMmSDY/6slvnkrp9wgyLcEbNHcWLymqNAYW0zAMU2PWN7QpY+50FS7i9H0Cym5Gn4MpYakpFVydli5Wy1o5rwvWlK4ZRrU02rqyPj1DqQwHrQ1dFmpbqK0F5ckDrTKTjFgPR6s5ghI39iuXt1deP3+mzsFJBN8dBtjFuPz0xv6+UbzE8VUFt1gjbA/O+bHfRlWJqDDc2L5cuJxeKWulv7xQm9Jfv2Bjx0VYEHxd0dNKkaAVYc7cjdkvTP6W+uMLz/IveH4xykfFG4yowYJeBaxhCg+yUDT0HOYxXj6tC+e1sO0L20XZrkLvMOeF3gd1zgj/M4MWU58xOpOBMfFu2JjhuYxj+6DPK6VAbUptC9NnXg/Kwe0WiPUtr99DqGumIIWRvv0YiMZa17s9OJJwR/09NWEcXh6O2AwU+mZveS9yw6M80XH/WkB7L1gOTj9I2rdaEmIPIOsRqT9+/9vi+l54xxv14z+L5iCWlHi+mJ4dyLAyyUljUiZUJ2MQk8GH54v3dXw+NBNyLyIedQOHHfVt+833eTQ98d4fphVmQVF0xTXXDGL80mqLQiYWBZYD/d87TocSDUJZKlpDuLisJ05PT5zPz5xOT7T1TD0/Y+6stbIuhVqFZamhoaig1SH91aUOdHHKFObhQlYOylReNB7odMihIsMl3LEycC2bpmOKcLiRxbQh3rdK2EguzTmvBfGF87owp1G00lqIFuc4bJGTV27O2Heu1y2FnDvX3kMoqhVz2Pqg1KBi3mw0b2yJ5G5r6BrCISasGFtt1BL/LslZ7x3EZwhvRZJHH2Co5LkpLXzlVSUcxdBA83k4XhnwF5OH0Ex4BlZqUYpWRGtMwFMvfNiCavLNb53x4UDl0GrFJbV+HvdL7/12Tc4QBMa1nFOmpjWaDAtkuq6RXzDc02hiorbD3BIkC3fBWsIFp4rj1lELylQrwpmobYcaVZzzKryclZdT5eW8cFora0v6Ifd70z3DARP4mR4UQjteN8EQONLj4w6K+lSM3LtjcoVFvVm13GxHn85Rt5UCfamhfawxNRINo5hlUWqLKfrTU429rxUul04tldYWLu89gr5mp5YinM4ry7pQtkGpMRoaFrzImA467jH2itFJ+vFm14rHwnx4ft8qIT/WjcNTPVH3/N4hvxUkFjkhR4KxWONJZRDh8AQOTcAdvGntxOnpO8r6zOn5Iy/ff+Qv/vpfsDwLf/Gvf8Wv/80L79uf8PmK9wtiO42Bz429v0U3RjQpWKBE12GMoaxnv1F+bBh9dMqciOwgF6BEfLG2QJhGoZXwFw2leQR5HCMTrYXWCrPvmC/0PqmrQnvmVpHZjtuIkW9tFOJEj5mCFFW0NGpdKTWiq8dIYWyLxaYtC/u2gfRUu8eoaNqViR0gUExT0v1EmeGXX3tSgjo+Bk0AbYxZ2C8hrmuc8L1xfXd8m9Hk7Vd0u0Df8d7xaezTsG1i14auk+dPP9K0sP39z/z3zxv//T/9nj/97Suf/9A5V+d0OoVV3+5cmdjc4K3HeHLMmAaUBn1DXHg6PeG6s/Urw5OHPS2aI63oaaV9WFhfllCuVxjbhfLljfIaI9nLPhi9oxp2YvghTk37qxJ8dfG78O5xw4PUhniMJ6sWWlLORAUJV9GkvAWSbQLmSp/CHAJ3DCmFukl5s3gO8RJ5E9lIW46Ms05M3uUjukhap3kEJWm7I4vZBcxp3+RMHO/Ns8Aix8N2u0s1F9WDGuFOuGrF7RkNSE7VIok3OhC/AQPR8NEjEKcQ3sQmyfeMPj748yUKtHapyHsJMfUcIWJuFdFAaY8CsjVlWYW6GrSd4e+54Bd6a0HDORJwRfFEO5sqi9wFt9dtcLnuYfNmGTwWjBJOZlxt8od5FLRQLBo4Nc1NueZmIDDi/IU3t9yOhyUNynwyL5P+uuMqXE/vUTj0awjgitKqpkBw4iUcZ/o0tjGZMhivf2I5Vb58+sDr737Fy8eC/vAbtD2nZkLxGYnAktSYQgK2GtzbtcJ5qfR55vokvL+vvL0/cb2+cX3/iTE1PPAJ2sJ835EJLj0KLY9CFSmoLHltHDqqLKKIhsduLglRdFu6p7jPB253epwDeKKuqT0CveUs+MP15UfzFEKYLBKi6Hh0mIl79+4nn7vTDc2OsJtjAnb8hjz+dmzbZrcJxLeUnUeU/OvvkY1EjAYshYd31xvyPtRbkx1WoTH1PlD6WksCW3cU//DFvj+O3/58fPxHHYBwmDLYrdk6qK7uCem7Q6kp1PP8Ukz8jiaNFjRW6TUnORWsMWZNh6dGbZX1vNCWRl0WTk9n1vMTy3LmtD6xns+UdQ06g8JSHBEjaPrhVsYciQfGGt/qYMokokEOAw9JZ6dYmOMaiXV9+iUps5bgSVy3kowBz/vWs0kEoVRjXZT5HEFST0/neB67p4kfXuqgoXUrhVoKY+9hsfl24b0J9RoZL/s+GSYsPUDPoAYWjiDDVjUTUCWvdahqLFU5nxfOp7C7rlWTNtLp+wCrWK0stSWbYeS07jiVwb23WPRJ9CYoop4NpB+RhvbN9RKamWEOI/aZVutXWpOw5Ezqjlui93le8p4UlRtglA+c0zfJljf3GimoF8TCatSSqxSuS4q6EubGnaqRVxPJvM5SK+dWOC2NWgrT4ri/bYOtW4qFY988r8KHs/B8apyXlYLG/iXgnvehK0WP9Nl0lppRU/mcN9tNgZim5/pyJP1W0XCCUmUOC90kkQ/kNnGLhuR8KpQCl/dBF6NVY1lS8FyEkKg5OlPTVWJ9j3owxOI2OzA5rUItNVwr3JWJQlIatkxiK0RcuhkxkgdEPSONY2TETLs+0RxFREyuTEvupOeNECK5R9uvu7uN5amNVfqoQ2I9jFRNt5gmhE+6sqwnzi8f+PDxe2iN7378nn/3P/1b/s1/+CuGXvByYZM/4fUd+mfG+8/Y3NIrfmOMay5qgT4ywloQTZRAKm1ZYvN3Yx/7bWMwizCO1iJkoOkTRQNlUYLnp9V5fX1l217REgJGw8CFwgcc56m+0E4nhIqLhjVmm7QiNDn4loYNSXtDo4miurIsZ9blzHXfGTMed5pQqTyfz9iSBf248r5fuG6dulTmNPoMtKIUZXhHiClDK5PZBwxHM3q5utOGcUraChPG9UK/vOL7Jdj0fUe3nbIP2BzfFNuF+W4w3+jLOz99/kyfT/z+92/IWOA68OszZ114WhpFwMZ7jOSvwlySl7tUPn38yMeXFz6cz5RhbJ9fsesVV4njsYOPENZNhOXTmfbhmfWXH3n+9XecvjuzfFioOMs//szrf/yv/Le3/455cPQKzlIbRZP6ZRaFnR4bWVYFD/P6Y7OTRH6rhEN+S1oPDlYEK5bWkQGlusYG2acyiiAzqGTmwbM0d0yCV13THcCdKIxyXTbLggpubhdRrCdtTrJXlGgMv03kfPS9fiwA3LlZ2R3cT/L+rBbv2XNN9qRUQFINHIpDMQv0vhQOey5J54IGrBr802GTYZFyeEw+hgUPVGsBBJkLWlamQ8HoZoxtRnNQNSZ9JlRXqiysOtD0S0bCulMs3vuwPQXzedRUOLXCqVXcI9hMrx3et+CY27G2ESiaS6xzpmSIJYzg+SqCzCzcDpSGGvZ8HvaMJCLlNhnkNK2UoC4JMCb72xX1wdKUdVGqO9av4c2sjYmyd+faQxTdffB+/QP/8Kf/D//tjz/x67/7//HLv/lrvvurv2J9+SVl/R7jE86HfA23Ewo2bptWiAuVVl9Ylxfa+on39wtK5fr+zmWL9WtRCQrBPpi+Z8EQxY45tKVGI6flhkDjMxA/ud874Xs+6f2a16FlcX8vJuSGjEZjqD3C9+xWuAeqKUTI3s2eL9coN2f4uN0TBxodr0PuX3tAqY9G4ECvjw9/aO6PhviAuh+R8m9FtY9IfryMwmG3e4iObxOE+A3sdo0+Hg9u4E7vB73k/p70FsYjXxVcj1OE489yeNGr3sXKScM71h88ncSQW9F/t22Lwkhymt6Whh65d2LYbGFfyAmRRqnKsjbOT2fW88L56Zn1fA675LrQWujXXGKeV4ugPrF5RRgoFlaI+VolJwP44bl+2L0emQEh4L6RniyoE+ZpsZyGEUdxH2FHMD0aVJHQ8pgItSqnc0HkxLoGFWUMWNoSlIpkI4R+wQPMI4r0fk1+vEQqdWnO5RJWlKUbdYlpbkwICNFuC0R2aZkTk1VQVWdpJZDlpQaKqxC5EqlTSY69FeL60E6TpJAk8Ugl7CZFw/1Nj2tghNuKeOxRsfh7ZFGUSm0LnWBkLLXGNZH0M02KWTXNgEyPCW/uQZqWuIcO7DZBemg0tZbblMnMg9BsYTEtBAW0z04RZamgHhTDtU5OzTGUpVSKwsu68OFp4fl0ulHJ9z553gtbjxCsbQ+B62ktPJ2UD6fK87qgbqE/9nI7DEWDkmapPRA9JuLpEEaNayCnLJLamELsGeAx1XaS+z/D1alnxsuMwLPaGksr2ApLK6znTIgWQJ22QK1hJ7z1gY3BaRGWWlnqBCazk3WKUNfTEovmdNZcJCJZLazALVGSqbAfPLyE6sxmFMXpHRu1zuFBonyNmuiNp+THuJU7snDYRt0CNcgx39F2UhCp1HbmdH7m9PTCy8cXvvvxA9/9+IHTi/KX//o3/O5f/kDn93R7C37qLrjtMH5mbH+gj2tOzXNDMYJWoGtQDKyhuvL09B3r6UOkqnravVmkjKlIojweKWbsrMsTbWmUArPvDAuNwOm0sO+d4HBHGI5qQ2TBPS7oVlamL0yRaBCKoWWEUDOL+zhWaVdl8XrGGJyflOYNLQcf0+jbfkuZrGWhiNFrAyZ978FdNcLuzmqE9Mx3ZgnBp88Qgdi2c/n8Cn1iW0dmWKONcaFfnWkVpdHnRulG6YZujl5ANqHslbZVbML+duFPP/+et0vhp587z+fvkWGodz6cK0XXVH3HWKF6oN4FZdXGx/MHPp6feVpWanXkfefL9kqZzrkoxTouk43BKMLTk7J+Wvnlv/k1P/4//wfab35AmsH7O/a//lf2//x7zDRSaUvBh+VNQqBhIwrEI0vgwBSivveDJB/XQlJeVCpNCqd0wjBxpkbhWlNgfOzS5tGEmZJuAyXCfm6FT2zaJYuJ0UcKux0jQtnc/DZNE4yltBvyVLJWMELTImkde6BNYaWXATzpcHKMQy3fo+X4LMv+EBmnRqDkWpHzpDs66IHIiwWNDA7kKFd295x05BTABXVNe05BDKoUsJINgLNpZ6YmwF1jkmUwZERDKEfRNKnqUVgemgDNWaA7WDRCRzFUa+pRxo5KTUFevDeyYQqf70LTWKPqAE0OrXg6EyC0TBaMt2rH/BEn0K6DY6nuueFnQZAie3Nn7DOeq1bWUlhcqUl1HDZwgT6F99257E43ZXLCh/L+x9/jf/eP/Jf/9B/57q9+5C/+5l/zq7/+9/zwL/8Hnn/171g+/gUmL8CSFIRENJk57fHkylaoystTY2lnlmL84/w918ue/Glh9J3Z3zHbMB8gUdAbyr63W/CV1oMWEIi9H9SQY+0n9S8HgGH3jT+EnWErHFSEQODGnOlSkim4M7j4ohGu5iRtNJHtb4vv4+Pu9BbX72Px+/j3+5/3ZuA2NvY4y//c4z868jwW8N9OEh6pM4+v7Zh6/Llm4RAuHkFdj9ScAMfuVKFoFg5k39MTO9BvT2qBPEzV8069PeacIao8EkvjGNxe0a05OJqdUsBNaOtCqUJbGut54fn5idPTiafnp+DQ14Val8hVKAXRmOIUCb2L+xaIvYcGALG7M1BSLtwUaITVdFxtx5TEifGie+jjpoV9Lj5vaxAm6TiUS7oQ6LLE/a1awrJxsRSGKqNbJFzntBTiXI99p5ak1WJgk9PpmA4lLdOEbTeKzqBciGK1UlRYqrI0ZVkq51NjWaI5Fk89V8vk7KK0KmgNiiR+iIdTrzWNqmGm4RzruMW1otEYl6NW89jvYu0NOgequQdFwXpcy6UqYoq2BUa/TY0Oy2FPJzgXz2DLY9BiuZdxXyMPoEnvDfnxd3WBGa5+Ip707wNwJXUv0NxZFni2WJd6jXCrD6fK86lyWjWtq4XR4FyFbtH4XbeOCOGAtAjnJVJ6G6Dm4SYUSG7QckfQa+IWzolK2mfH5Gdm8naGeJLBVgTIEHtt1BVmDhpuhe4OqmFJKnGcTksAbCodrAdQLgnieezBrRR8cVqNaVPViK8qulDVWFehxkIYkcW1BuKiGjzZMTLud86galTwEfzd+HvClh6FQ5jwC1h66pplh58nKS8ywbPA9xzJFNziggprQbmNCfEofkQa/xdff/ZkWZad+WG/tYdz7nX3mDJyqKqsQlUB6MbYanZTbJIyioORokiZJJrJTA8y06P+K5mMzzITHyQTKco0kFKL3aRIazUbqG4ABaAA1JCZFZmRET7ce87Ze6+lh7XOdc9qGL0skIHw6+7Xzzl777W+9Q2SZqbjC443L3j28Yf8jd/7df7Gb32XFx8UTstnXN8YI/2Mu7svORxnRuuc7jc/yNavGP3W+WhS6Dpozek3STzZteQDZZqZD88Zo7JuHjDgk4LK8TDz8HDrPrz1cTSKdtp6yzRNPlJlYdgC2pmmRErVEeXum2Qf6geiFARjzpUejinuD92cRtM7hJI8JS86LKLqx1iwZXBnHSRT6uSFn3p0thQvhFwD0WjrxtCGqXg6rEzkdKDogbYuPNx9iY6FOcXYaV3RZaE9nOkPZ3TrzLlQc/UxvX7C1eElYg+089esp19yUEHGim4bNKWYjxiXpbK87zx8tXHeBpWZYglNg2mqWIHOoOCVWpUUTi7+Ox9TIQ/F1s772zvO72/RdUOXjRIHbO3DR3jhj8/oXNfC0YT+2Rsefv4zfvnV59x++RX9L97SfnrL9jBIo2LdmPMUXDqLIq+6E4XFxY9RufNkvUj3QzFEVeLtLCZI9w1gYDRxAXnardoAopgdyTt+tUfkM5uh5l72OzVEs4sgd3th40lSpRGOTRKjxP3c1ctUoZaKJVcCsK+pKCaMxyJEVQO13zeR/QQPfnTOTqsRnyiUUhz9Y0/0zJdxr4gfFsbeAMW1FI1RsQdp9VjnI95TsbBQTMWLitQYefOEx93ZRgwJ7iZx+DVLVFXa2DUH6cL1N3WhXIqEQzMj6fDmMeOTluRFzUhCTSkAACFl59HvVqQ1F2oerM259J1deB2bfBxEu4uGGN68BApqAX0MUy/yzQvHnNxm1Z2ZognBD6d4yhjDaM1YV2VZlU0T5CPu7VSgKQ/v33D+s895+//7E6aP/yE33/uUT//W3+Zv/iv/Q17+4Lfh8BEiN/sZBeZIpaP6AcwIzNl/10N5xeid5bhwNU+09Y7T/Vcsd29AN79u84zUAynPdHNaUspCroXpMIFVtu2BlELILN58CS5cg8S4NF7pciD6BK0hQUWpkjFzl5Y+jG0bbGtn6+7zPXQPf9qRZcKF5LHge0S0wy/ef1hwZ0cUy3shvU+5ntJtgvL2xIL5aVH+tHD5VW98b2Af1+4/30B8kxu/T+guNp08EcTKE6zfHgt5nwbsk4YU7+ObP2u/BjqiyRCfPPrrAkDQcXkthucZWGen6O7/g33y7Qhuwc/zUiomiTpl5nnicDVzfXPF8XigTL5v5FwotVz0CzkrvXkQlvaz2y3jYXJm7mF+6SpSAA2Wo/Dx4l/EqYYIJHEzBQttXt8aqh6k5VRL/30Tgdi72vcCKPp+5ftXSdlTyqUylcd76vonY2jHdEWkkcRTXqc6sAOXOmFrg1bcFnGaFXLCzJOCc4aSoGan3lwdZ45ziZApi8I4gJvs60Zt0M2diUwdTHLXKcOKA0yeuOrXbZ6qo8ca+hlLbgvcBzIEthFmGw72uOh1csp1UJ9Syp4hMAbJPFk2paAhmQWH/ImBQJwrfo+e6E/iPqacQ5QeYvbsxfewhCTXM6yL6wNFIu3Z/AwUhENNlFSoDbDEXBPX88RcMjkpNXuNNbqxZaOPsEM+zn4tk08tqwzyaC4CNgv3UIXu9POxOeJOEp+8X3Q2dgH7LEdz06NRzk5Hv1DyJOg8ZpdpSxJ3PGp9o7dGmSbmqYamxddgzQUpckkQRsOhZ/J9U3snTX5apHAya0MpHv7hD1ASXPCSBDYv4mtJaKRvWhyaw9xW8DICNedxSUlux6i4kEGEw5RjcxyumFehdz8ML5ugKKSCtkDHsi/cHOMcSQVLlVIPXD17wYeffMIP/vYP+Vv/8m9xvIa7u59zeNnZ+ju28ztyWljuNrZlYbSwx7R7YHPhKgWYWFdD5IDka8yuGXog5StyfQn5SC4HT6gVMHMrqblccX195OpqZltPnE4PcaCvDH1AN7C+YbYCI1AlmKfKaAtb65RcaNuJXAp9PSHWOR5uaCo03Xxzsw1wtGQMH2tPk/P0xzj5ohdjXTulTu6DmxNqnbZtPu6Tx/FbNqNtylQPFA6sizLXI6+ff0LfEj/54o9Y7t/Sk5LHRj+fyG1jwkhtY707kaeJqV6xLK9Q+w43L54xX22c7n/Bz98s0O6YR2cuBbGOjjNLb9ydB+f7hPaZSeYo4w9cP3/OPENOC6ruTztVqMM4lErKxXmTrfHuzRu+HoOaXGQo3RMP19ZpaSLL0QssgzSE+y87d+8/489+9HM221i3lXU5+yhLElflwCQH0BqWUz5OE/UiNqUcm5pTqSQOvq7O1ZQk1Nh89kNYzRspzOkJZ9zTnOybdsaCny1xiAjdzLmkXia4CHk/oGVPOIxChx0NiXlnCHbMIJeCmRejbgfr3Meh0DY/GHdEUImGPDamRHKKzFBKKW7XilxSFYM1iSTX4UiIu3JMenISpurWiGouJDZ8I+49NvkkYdvnu3xJHkzGiOI4EP6UY4IwXIA5JUFUyeo6IDMfwap6om4ORxjxmD7ECtkSx+PRg9tCOCjsIvEQE5tRxe8JQxHtpOHFdsnVUbZmiAqVHAJ/5yOPuVAkkg+zb7B+cvnoO/D6KMb2ECMPqXJGSCRAm3+hBG/XRJCayZMj30C4K/kBZqoMG05jIqg06czoRhoJWyu5PiM9GPnBWL68Y/nFH/P5H/8Jv/hn/w2/8ff+Ht/9e/8ur777O5APiM2IHF3MZ/liE5nC7cHw5+HD1x9wf7rj9usvefflz7n76udst7/E2pkyTdSb5+h8RZ6uSKP6eLok6iigyUOOVN2dKD3+yaVS6yFQQc8wkNAnWNrRZvXp6HBb4lwypc5c1ZnDPNEOxtZg3Tpbax5ahUSf+Ug52ydV/v8/QQ/N4ub9Klf+0X3maeG9/919731vf0pt2ydjRFHzqzSdvUAX4VG0Gfd/99J3Opuv+8cmIsTK6loZD0PSoD7Euv4Vrv+vCnv3n/X0tXshPNRF0Zjzdp126zSN3RZY8hQoeFxj832JJ+djyl485iLUw5HpUDkeD1zfHDgcJ2rN1LmEXaFg2sCam0XomdHuaeuC2AZjo/UVU/dz37UULnxN7NNAI6Fp9YlRoNFiu41nc6qIqu/lI/5EYZWCwgPJabEiDuTs98oGIr7+UqqkVBj9sdlzQKQDnWnCue82YGxgjuTn1Jin4YWlJlpPKJlZ3Y52BxicUz9zdZw4zpV5jvT2tIMAYSDC/txmesosY2Ebq2NQAZjubmc5Of1Q1WhtDRobob2zC/CSeXzdGOri5AsI9KgB8WsbDZ05Vbv1QW8tLNHja/Ym8vHhuzy7OfnerUF9BaOm7BS8lOhbR0p2wCslJPZYt5517dDoPom4qjNmcNw8k0hQajaup+zAa9/iGYapJkZy/d4gQDf8/EgCtq6YVkSgWWTXIPTWsJHQDiknuvUQAwu5ZlpriAilZrR707QnJQ9TegiOJXttHGPbsNVOjObi4nmaPJemNVLKTNWpqSnhk6fNz9a5ZHqAGEPdZjXljKbBYYL6YmLdOqU8EUX42D4uYgoeLWB7LHR3658+zEcIBC83bI78V/JFpxcBqKMI7jvr3VfOvlB1h+axx5/JTkWQ4Ds5XQGM6TBzdXPk9/72b/PDf/ET9PCGu/WMlTNLu0fXB7blBO0B+kLqK/TmYt3sXKWhTiVQSyAzuT6HdEWen3M8PGeer5mPN+6RVCLpbLjoQWxwfX3toxD1iGp3LTAknHd6d5eNlIRpruQk7ie9nOmtk0lY684FW0+sp/e09Z5UZ7+C1hA20I3ezrRtcfrN4cho4fIwQMc50uUmTDdGU5xsFwivnYipkh9UQ5ksU9VFKtdl4te/8ymffOtTvvrlwteHmYcvbmljoVZhWk+MhztOpxP9YSEN2FLl3OF2OTG/+hZXH9zwO7/zQ968ecXpqze8+bMfgWZeHq9RVj7/6nMezitjSywNUrompRsKB66uXvDqwxfM18ayfMFYv2aSlaMMplG4yuFzvi60dfWNKMrbEdZGSf3g6WNj0CiWKWqOnpMZWxRBSZnHYOoJtGIaY7/i7kJ5D4tKiRy8YFVDRwhPiwtlkGAgiAR1xV+3U2QMo5uzRB90o8/Qi0CBVRtXJB856mNMOUYUvco+10o7/B70GQ0On6pP0Ej75pq8mDRPjLXYCFL2xERDokFpcYjvNngSVmd+WHYdYZOZ6c0dEnY+7ZN3GtSNoByI23Pm5KmKtbh1m1vdpqDzyePBsA/kwqnBI+iFacq0oZEiHDzHOKARoVgmqbfj3YQxhB6uNqm7uCjlPYU0O9cfoZjTf3Kgi3vaYha37U3ZnThqTgz1JuTiuJENJJqfERQn9QYnJXcNsZRgHR4BnhylIQXSqrsw24mme2Gvki4HtOHBY/u4VQNpJEOZC6MtKInRfLrlhe3EjNJMYtpqTLZgOthsYjVBW2EMn4DZYpSh8NB4e/cn3P3kS/70z3/J7/4b/w6//pt/i+MH3wMmCM9yIRiWLjYgCQzLTKWAKbe3X/H2y1/w/oufMrU7pK9uiYi5M9c2qHhYn0wu1NcOJubIXHYr0lwOlOlAtSucj+wobwIkZt+PjifOdXVHM6V3QfUA86DkK+apUKJgqDmzlubWxuKez61rUEwekfW9SAGiIHxM794dMvyZeUTVv0mdCUpPigfjv+PjV1H9mLGxI35Ri+ED6+x7zBOEz/eivdl6OhF4knZrj+f3r1KELvSjJ+9/f834RqH4jS/yKxD6kD111akxPmnZGyMh3i/DC3/r5OKixjoXprlwOBTmOTNVX6tJ2r4qudCaBoz+wGgnR+xH9xTqvkUdEmNIEyyKXdWgTEonWcOT4hy9F5cPoiPRwtULq3EH3EXJfxOvWUSyg36WHDUVfxY9JKhQi6ex9rbvxbtAlEhPb5gtPmVQz4cZbcPUs1NKgVqMkpW5+qR2qHFznINbr9TsPvqHOXM85Itryz6lsZGiYYmk+DEQ65QElh05SGn3tQ/29C48D6yboJkm8uVZ9j1LLtoxv6dub5pTvtAcAdcMKj5J0V0M79fSxPnfkoI+N3pw5uPMdEUsZHeecsDHJ2Ekn6S4RsnPma03Ru9+9qbCtiwxuagkS6AErx2mVMJBJ2HboLUzU62MrV2mX0kcpEnDKPnJ2Toib0hHZDH4NMbrRKM3ZV0HORJ1wQGk0Qb05HYBSTB1HYtPcpRufT/ifT0FxUjVTTOcGupTziLV70GcYwL+vswnMikEtGJ+brPriIYDSWbmWpUkbM3r+CLRDaX0hHMX49qLP3O4blhyZK3kRFGPQ26b8/WdYxUFmIEVLsU9CGOk4O55sa8jPO81Ni3bO+lA+CSF0KBxuL5hGwNNGx9/5yW/87e+z1Z+we3DX/kWp4O+PFBN0WVB14VsG5lOsg3tnaUdsPyM6XBDKge6TuR6xTQ/J2cvNq+vnntRCJRDvXCdsERMoEg0Wl/Y2kbfTizLPaadra0xMvICtFb3s01F0K5s50YGUiqs69ktm6Swnt7x+c//lGcf3PP8gw+pU8LaSm9n5wdqI+lgPd3T88rheAPqSbclFawAktxTP3lHp9pQtliEzuk/FncsGNtgW0/AmXef/znvvvhz3n7xp+jpLZzeYesJmTK5rUxtxcbg9v6ELoO7pXO6X3l/vmP+YObXvvuK7/3eb/Ph1zf84T/4z+gPwt19Z1vfIkN5WDLLmNHNgyt0ZHrr1AlevnzG937tOzx7VXn3vnD7Rul3b8nDSN3obXWEqTVi3g6B7o6h0MNRKVDuKsYkRlZCYe+cZ81CF+eZhgwi0FkvdGvK7piSoKQRxcWTgycOV9mbpP2z5pS1Yd7g2n6Ai0CprDI401npvHh+Q1/PLOeGDGEaiSy+EaRkYX0plzPW1NfBMLug9f79Y8wfCKcIEfUd1m05xyb9WIT4IRzC7N0BIa7jHu8twPHoXOm77tHrgd3Hz7IY3Tua/xQtLDlRxSjJeeae9Brplk+KCcMum3aSGFkG1z+lTC0JkvPslWiuVN1LWZIfMvthHoFKF+OVC0IeVnhx57KAXMbELnzLKTEVp1W4gC0zhjBsu3D0CzsvXhiyuyTEe8/BMc2R3hvvV3IUgMl5tdZDLBdFg6WEirBFPnjr4/EpE71MNL796SdcXSV+/pd/ReuD0RpTnRndbXTL5JPEklxwfegN68IimZPB2ToD80RpNeo5wTJhd0L76p4//fL/zV/+4Z/wu3/77/Gv/I/+57z89d8jXb2CQJJlpyRFbZ3wyen18YqchPP9Hev9Lbk/ULX7Oswrwyp9UyxnmLKDPGqouS/5MINUIM8emGfX8XxmT21M4d0ZR2FOe6E/UG2RAzL8+evuApJwY4GShXyo9JKZRqZ1H8mrDSdymJcluyj2ss5s/3mX4zdW22NR/1jv7nSZvTj3Jkh/pS6Gp9Sfv67Q3mtnebKyQTSoq3vTIUbvYbGo6k5bF/qN/x3bqUc7/eZRS/O00HfayzcLff8CvzYWCGvCLq5XsIvtuXzv/mRSYFHUuWVnR60BngZbMkyTcDgUDofKVfCfS3HqE9qDxhLourpgVvuJ0Vb3Vld3a9PhxhX72lYTxLI7kI2YhCXDQxcN5+cH91mV0TfGxaa1BBDn9zppgA0paGmSHk1CtGPJxdiGfz3iHH+N901M8lQ72lcv7MfG6Aujrz4BseGgg2TmSehNSEwcJtdNOJLt11zEOeSHWZgqlOLo9D5VVguP/qD5XEKqEpQq8TwoRgdJj+fF/tRKjnrGwk1ttzZ3Yac/il4if6MZhgArQp+w+9/vz9iTBrgT2h2RcLzysyeQsNizAxxKXmyT/F5oTFtEElMSt9s9nffhkNueNiUXb8tQB3fEYuLdu2s3VWitQTG3bNf9NPPa1LVvTh81/IwgAGVy2FX7ON5d/7ZOygeUxLIugDLNs6uJhluzpiLY5KCR7+mPGo5SsoM7qpdJn4Zz2GidlGGuNa5lcn5WrEtJex3vG4eq0bURnprRsPm11+KJtXMFpkxxTmLwyx6HKEylXEZPADUVpuze4Iqj4E2VXkN0E8mrLhxzz3fMua4iUAqMvne8XDjGO63AK9EUPF0XmvUOhUzKxlyFehhMVwPSPfT3HOyBvm30bfER3ujotjLayhgN0YF2pfdMKy85HL7N8foF0/GG+eo5V89esDWnHOVcsbnEg2dQ1PntCcQClegLbTsxxhmxlW2953y+Y3RlWxMlH1z1by6OO1tnVB+7mO6uRDHBiCCgYSfO4y2DztpuuX75DMQFTkW6H1BhnWQqjOSbl47EpgulupqdUtkTUNHwsldlWwcinSqFWgXGwnVV2nbizc9/wXwoPKsbP/vypxzVNyh9v2LbSmlKP23kh4GelOXrjeVuQ7jl3e0/5g/T1/zwN57x6lsf8Zc/+iPufvaG6dQpDw0bMN/ckA8z67rSm0E3snQOh8bV9ZlpvqNMM6V0GMbpa2V9gEMelNycMx3N3ujQWveUWEuOWqsxcJeakooH5AxHDZrC2QZbFkZxsR/myORsK1ndDrBmmHIImaOY8BPakJx9XOkntpdisUxUNVxvHLvTKMRNjJUOx0p9fuT5R9d8/O0PuP3ic97/xc/Iq5Ic8yalHJOpHSkTR+ajME+SYlMnhIN+sJdcdnDNC8wY7z++P1/HO6Lig8xdPBXNN0FPMA+lWpsnUI7ePV8ntsOAcS4IHTsKSFxTIRpVuQQzwW7z94hqxvYfegbzDY99QJFJxVNMfZKgHss+jB5rcBjunETw2zHf38XIk9ORZEqkyVxvgn+ulOyJjWSyuptBKUEJEB92EXQYhiNbhNBebS/q/b7kuB9JBpIys6U47JNX94DgegGKI/dDE2qZIcLYETjZC6vdQ8jvndvfGmOsIfyfnHXfDOlOX8yTNyXH4gjlTTpiCic17sagjsZmPfzTjaIzY1RMjtSeeKa3rHd/xY/+4ktOn33F3/13/z2++3f+JaYPv41ZRrWS04RIpOlYwoZxPd/w4Qcf8cU8swB2Xt17W4RslSyzI8/jzNiUTY3UwqVEO00NSxUpR3bP9JQqcEDV/batj3jf6iEygUIKPQrIEc/9CI1CjolJcPyL+JothsjEMGWQwrFtnyI/Ft2PXPanCP0/X9jvCP4Ftd8/Id983ePrjV9F0S82s09Ww/7apz/7UneHSHGkHHSiEaFBwZn+lZ/3+DOC/54ekfqnaD2Xd783MRqJnV6AJXvC+89OTUyy0wmIpj2+WhwAcc98p8jVKZGzUQscp8w8OWJfpCPWUG24RfOuAfN7bmNAWwOxd691G46oDcOfR/FQP4k6Q7o39P6+ekzTQ6OijsA7YyCsuM1pG26rOBzYMKJGibNZHTwYtmK6hNVkYvTzhZbTe4u9VUIL5MWuhkZu7GFR2qIG8pubc+JwmMgZ5mg8vPiHqZagdBm1Qs4uir7sEYGSE/qeDOEp71CM+K8cDbFh5g5gHjYYxf2OSIdhg9ckYCNQ5+AN7tQrVZC+10G+qdpQN5sYjyFnuzBdcBeX/fkVc2dBR9/lQufBHDVIOQpY/wKnRwbwJtvGbG6O0PtgNKUMQbaENNeiodHYBt2ute7nQS6MVdi0IzhIfWmaNc7ZvXkFLlsdAuJ7jI3hy9vw2iWAv635N9JgBWiAZqkkbDJSDhAt+xkoKaElziqL81nA0uM6tOTGEaCM7MwWyf4sEGi/aboMCc3czWmfoPfQw6ScyWLkkjGUMroGWlPIWWjbRmuNWurlxhneLaVUSCOCfVSwGG+oZkb2cQ07klkeR48XRCE7quVA/SMn8NJEqG9g7j3rXNRcKktvHI4Th2thPg5u7z5nmk/Qz/T1HrWFJNE5h2frGIK2jOk1wjViH/H69W/x4Sffoh6O5MMRsrD2xnlbGNpQUR+hVeeuj97Q1mOj2Zz3uZ0wO4MtbO2O1u8xTczlEw7zC+bDgdbdex28cHIRa0HbwrDuMcWtoeo2o6UYoz/w7usH1n7nIqSpgkFbO9vSEfMACxehemAXUtjaYFsX90+9joJN3War9c56PtH7wpwmpmNnbCfUNnLeyNzy8O6W9w+3nN5+RlEl943UNlgbeu5wVmorjLNip4Lex33a3vKz8wP/5//df8jrb32LX/75T5lWI23CbMWDNR5OXpCkAWWgfSBWGa3w1Re/5Ov7t2jeXHfwsJIeGjc6oxlGMS+mAkUY2whPeHG0XnerM2HJykZ32y+chzbUaHjwjY2wRovCNomQ6yCjbuMpBLeyg3Q/zINKYYmL0FcDyfJSzFFO1N2f9uRZNcOKsIyF3//v/T7f/7f/Vez2DV/8Idx9/nN0HbGpup2jCWiIxXwMuB/4vt54Ote7lAbRIJvz2kcgb0P3MjHwKYFsEZwRGy57/foUmRFhXddLM5CiyLg48ezTPLigljvu4eBn+EbHT96Lob1i2QWAOXtoUpJO9p0ZDz5JjnyEoLMY9OQhRiPtjg+Dtbt2JBm0ZDQdSFJ3U5mEeYLruXKoArj/dVFj2i3fUgn6XyD5aiR3cuSQKgPCKcxpMiMMj0tw9EPbFoWiILWScA6uRmOWniCvqNEJqpaFRgt3HjNSWDo6vKPiv9ebX35Gyk4tOUwTU56wDpXkNCRplAkOUwIxriJJ2rqi2yA1T7HettURKHFh98ZGa8r1vTKfVs6Hxk/+wT/kq69/yd+9/Zzf/bf+Ha4++BTyM9dNWPbMgbSfAcKrF6/45MNPWD77K5ZzhxjBJ01gYV3XF/q2sOFFnIjDq00VKQcXjJfJqWJ7KIztzecOfvgomtE9KMs2zHbkXqio6yLSjEgN/YKvHRf3JZiqqx5SZd0a27Zd6Ax70XRxsLkg+pdS/1cK/Ee0++IMw6UH/+/8eMrZT+EXuwNpj8i4v49HO8v4qQm3/LsIsglEND2it9+g5Dw2IY80oG9+PP2cc9FHeIc7zSJwW9gnAhLUPjGKZdpwl5QcDfNo3R2lJFGrUSehFJhLZp4zc03uYGVOszFdQDaGrkEX9KJ89IGEUNM1FuFoI+ITV69Qv1HcJ433B5g1NMIDVbk0xpI8e4RUME2Xe2zRfI0AC/b74hNDYbAy5J4RVpamKaYHPn1O4SgzhqP7gmDdJxl9bNho0Uh4cWtWGFYB34MQ8BLL99Z5dlGqW0+Ke5uzr4fYY21crBMvj2cAPrmkuG/mPHu8jnLk36cSKe67ivJYZcYkKuGvw2A81mW9B5U67VoHvEF4ou/4VYE4EJqNxykSZheHHsQtRU18EufNhj4CVGrYplR14K6JsXZ17Vgzt+1s6i42SemtByJvLNoBr6163ylrocPAaS2YW4vuE6uR9ALQ+SIx0EGWRMkZHUIbq1/DOBz7smER6mKmSFa0BYJuCsWC/hr7507dxKIJc0BCwupytM0pWMn1fbl4iNueuC1JGdmnQGSc9h7nGnGdXQvne7JhTsvZFfG7ACnHyIYYJdjwxVUiOc0QKkbVGl/nF5YoDpxO+7iBXLiTxW3M/CMFUhc/d/hG5z6p/qCpZkwqcz5wuK4cnxd++JuvydM96+kL0rhlkk7rC6f1jlSEZemMVlE9YHpFLS84HF9xOH7Esw8+pRyfMxJIKm4vl4UyZ5I1xmhs7cQ6OlMStuVM2zZHJcTwxLEz2s+oLrR2h+lCYmYuR+b6jMN05WPm3Lwj1IbmMyPfc+4Ds4UyV7bhyJxR6H0hp5mreWasd2yb0FPx4s4cnchBgUhkapo41JlhA20b6/me7QS2PuMw33iiX3ZqC+uJ0QTNlZ6NsS3UoozlnrG85f7tz3n/xS+om1toprWRu9HvN/r9IOmRdg/37zrrSemL06XScH73H/9/f8RI/4y5VEofjr6ZkmvBxJhL4tlNYdiZ09cbrIr1zHIr6AMMOm194JgSN1IILTVCZSpHH0P1TrJMToUsOahc/jpNjohaMgo+NiZ7h9wDffD9xCdDXqcL3RLDvPDJMZlJyXCyQ1ij6UCHi314YidnsRFoH27J6HWcT5zEqWr5WHg4vSe/LJTvfZfy1Z+SX0yMc6ObID2mBKY+4o4Jlk8D3ZrsYlVJODZkF/vo8CZiqAeFNdMorf3/7kz5XSewGSRS8M39dV2UhmLJJz82nJN5OFwx+hoOQOlyEJkYwwYXDqcayTwNeFOnTbVhzp/X4AnvFl7iUd81G3NKoJ7QaHOGuWA5MQSSKtmMYsZkxii4Q45AG0ERMUcSmypdnSN/OHgs92FKXM2JmtyLemgnafZG8AJcOtpI72BeoJbs9Jw+3K0odb++3Tw0Ke+FWIhefULqvtM1C9vmE0ILvccljQlH7USNpO4cpuA0rJgMuHuDIJogCw93J2rp1BT3pPjvW3N2kb1aUPB8MjGkM5Jrg+ZsYa9aWC1xaitboEqpANsgL52bOlM2w94tvP3Rn/Cfff0ly+k9v/ev/Zu8+sHvIOklmipdEnOggkOF4+E53/r2r/HVn/8JqwrSHF0cpxMtwZoMxsoYC13PYGski/o+LuqBK8jkKGiuiDh9MSdvptNwqk4S17y0ttGH2xiCMc1XmLquoPeG6omUPbROcFe1JH5Pr2ahVljWzLoKPYIIe1dHu9SwizAzBfG9Xxo4fN7tTW5Kl4Jqp7rxhEbz1xbQ0TvsH4+v3YvJ3abwEbH3An0v3vx97XQg9kLIvNlVcTqLiY/nhwus2GcETwuw/Tze3YBSEqcaXjBXCdtf1xBFRem0wYAMc3LKytAn4uIoLIVMLj5xmWpinit1EnIeAZ5soCvomRHc9BFOLrumwsdzBO1D43cvARrKk9HG/jtGQagDtRZ/XBNYykzKRw9fk10YmwMsCsGpRgGOQRTMjwBOp9viqCy7o484l7z73qY6aG0FjJInZHg4no3O7hSIPQpSHVUVRkxCslRqLY7wik8U3bxh13UFvVH1EnE4+kprAx2PD0wS39/3KWukboRTl08cbbdrTjncXvCiEYEsl+fdXYmKN3u2h1EFsLHrp2JPiPkpF+eYMB0QuIBeYk4htAFelXrBmzCfzAw/UPWyvyrdjAMZGowm2GqwgmyCdKEvnbb4M28itCUoLzmzrJ11XWOfyWy9+8TL5DINE/NawcyL+qDvO5UzKG5DjYw6eG0+ZWyt+eeIezLtyesOhPUaExQ1ykFIJcWeH9Ow4gJcnyi60UvKHlyF7W6VjvLXCsw5wLFdm+L2wlIEpLsv/jT5fb7sEzB6RzKU1jf25aIjRtAIbWsX5b6HLzmH2bccR5mKOZ9PSjji6EXyE2FyCcmDMVYcyDdadyUwkhzFT9kPuF5ipLYycBGsagIS8/Vzyiz88Dc+4dXrzLr+nCxfMvQ9rSlbN7atYNtMtwODI2V+wTQ95+rqFS8/+IjD8xtGHdxt75DsnOc6O0KvdmZb7+ndE2x1rGxjYz2faL2700kugJLFaOs9oy9k/IDobePEe6bpGbm8Yjo8Y7aMkkjZGOPM+fQlnYJwxsMXXtPWjb5tZIFiSmqrK7SrU2wsOs7ELnRWJ3RYxlpHxx3Sbyl65w3VuWGr0kic5J7eTl4skakcPTm2w9aUbFBH4prM7d0Dp3d35Dbg3LHVGKfEds7uOLQVmjOf0OYCTk0zusJRDi5WWh2B2ySRSmVTH6l+fPMhn/zghnR14hc/+QXvPrtF1oVqM9vJ1fJHOVJ2msvk4yZVWBa3qvK8nzhwBHdlwq0Bex948F5i08fXAL6JWgjBECy5001XA6mIJTQKuamEoO8yVdoLbUd30uXJD7s9DWtGtZ3+6kWbJK4ss95v/NN/9N9w/cPK3/wf/8t8+/e/y/bF5/zpl39Ibo5zJ90nLSAjTv4nvMTHumCfUfgiLnmim9IH+L6XPSyLEIgppDYoMhgpo7VSBGoyavZDIjMw6c5zZ5ApZCswnI4kuEXs3iCM5Lhzt+4+yrFJCpkNR7w1RuiIUEqOkqEzJaNkyNJIWyFzpE+ZpWTSzQGZC8k6tEbaNkqLUa1Ap9D8NGCIUBKM5DZ+mcw8JaaqzAUOVZjKoBYhV3g4d7Y+GAKlVEqpqHo+hNhwYWxWRhYPwxKljIElBxhy3YV2LvlowwsfNcg2OCRPiMx0uoS17gDJlSGZLgOGx8MjkEsiqzKJOcothbEM1w9QXOhthVKcYmbqDapFOF7JQp0LpSZ3ZUruGqHJBYJTCjcdQCeoyfM7cp59jGxA7Sw60K0wWUEU1uUNf/Af/R/Rr97wd/5n/wHPfv1fYEuVno9MOM/YqJBmpsNzjlc32NY4Lws2dcxWlrUzbibor3jK200kJB0o9SUqR+AGkRtIB1KZKHmiZqcqWBZ0uIuU2xU3epfLlMx19DeMPNGa0PqZnJdHfVOqmB1IMpHS5G5IBSbJtFJpo7NtxtIayxqNlYqjwUnQQaTgCjv/3fY9J0bs+3pUjQN3rzejOHJxbkxk7AkdQGLi9ysTgafhcp6Z8FQv8zhZewQVgn+exMEmC7tpwunFHvn+F9pgWLKWFNOxaB4S/ozkklDJdDas2956YKhTZhiQvZhK2c8O0wYYtbr4L5dKTg6C1VyYSqbUR0oVNHQsjLYwxtn3ZHV7QbV+2W/Z53/m1qY2QELoKjkAr5QdjMmEG45PdoY254KTGH2BtJDSgWROzdORUasOuJnT33QsZFFGaw5cDqUFtWRHvk0GepmEGKCsW4fgwYNbYYqVYB60aIidKpJSJotbZ+tYfF8tNRoJoZQ50F9f1+ZDTT8bLrqvgfWV0TcwF32OXXRthPGD05lBQmBeqNntlr3q3J9Ht00suXozmAqI0ftGbyNEo5m1OROi5BQUKSGLhy027V4NGmhoGlAHiEp48Ys43dWbywO94a462RPV+6ljw6h5JuHOZiLdjVXUkJ7JNrGdO+M82DZhPTe0g7aMtsTYDBuVZN6MDHNAtMVU1FJmz6XYZ8sZCfKtN+jgExdBYipVqamiw2gx2XD7gjnWuD+l2mOtiWuqCJHusEE/234rvBFNhqTBfPS9cafRO/Umzvo0SEWoU2JMQl6UlM0F48lIldAkQqo++d365sybLFhzjdHuhFMu3QzhIapKyW67OMZwik71RLKhPhbYXTB8yh8cvyxISRck/jLaN+dz5eQjkRwcV91HJCmRNKM5u08+wQMLfl3KR8jwwUcv+d73PmaME9t2h/SGbpmuBQ1eqzEzTc+4fvYRh6tXTPMNx+vnXF3f0KWhLK4ZGIpt4aeqG1hjLHeMfqZmw7YzY6yMza0TrUw+fnORALoZjEzrjWVxp495XlmWW+p85OpmZp5vIE9IgtNp5er6mqvrj1nXW2wsyNZJ1hF15NY9NF14Kj3EHATaEA9blgmzwroOzueVrd/T2zt6f6CQmDShycXK5+VrknZKdf/eTiNVmKajj7Q3wTbIHXQV7t+BLWDnhC1CPyfWc2LbiGvmRbLI8INkuOjQ9u0npjwiwhYhDjVlrq6e8/0ffJ+X385ULTy8+SOSFc4PJ7Ic/HkB9zs3KH2gybGHtrVoJEcU3s5vTOGXPswYEDzJJ7ZbPEXCHkXbj7ISP4Bb7y7qifHzpWiPgl1jdVrK7MYYvbm1msYoP8fImrgOyQYHJmwbPB+Jf/x/+Yd88q2XvPj4I06fvSUvxjQKRSO6vA1HzeKQl5SfNMnGBVtLO4ougXRAw1H71dxJhuzoTDajyt6KuGDTEesQN4VAdppmV94r7q+OC7e6NkrKTHjOgCT3f99wb6hhckljdSqR33fitc7v9I3TubvQMVpYs1URRk60Ap98+i2uX7/g8z//U0wb4Urn3y/2jN1Baw6E2nQD3OFnqnhqYxVqgVwGh+NEniqWHri7W2jdvdL9Mvhh6IUWdPU7N6wjKrE5hkohC1iOKUkUzfFwWexhO6IlCUdlkmFkTAIRFgIZtYujxR6uJBZOPClGuOKTubzf9YRfgzgkvLjjgqyKihftOznUwhlGhCEGdSIfrqEcmTZF64SeG4zuNIMhlE0RBrc/+Sn/rf7nqCT+tf/1t8kfXEEKQRwJHUapUPJgW285n75kOnVy3RCuYgx/JE+v3c2EGohvJeVnHK8/xvI1Mh1IuTI0syyDfFBKGY+oYBJESiChhWnuTtlico62DdQW2oiis3fWJtTqfOicjuQ8U/NMLkcSszuX1UwuMf0MH+91HWybr3lH/XcO9iMdcA/z8Q0gioS9eBfC6Yon9JsYuScPTyPW8mXk/ysfTy022QuOJ239U8rDU4rPN5D9GDwEZBoFn2L2GG7lCDIBnPhGmHOKM80iiyNBFIPOJU7Bx99fYz4lSBrnfyJFmVRyohQP46mTu2iJNdScez5sw8Z6EZ66y8pwvroFLCFu53vRoATA4APMoP6Jg0a7531vC109Kbn3hbZtTHUCKVgyanb0P0l2ceXo6GiMtrGtZ3o/MdcEOmh9XM6SMZSSp4t9KuwFNxdNkKO0USbmFCAUF72LqtLa7q7VSXjGQ06ZXHLQcvdQwX2nT98UXepOv3r6/Ow2nHZhWwDO+4szw0FZnzgYTi0iCa2NAG0LfSh1msJbHkqe/XkYfgeyeLEoFxDLXFoUzbepejNg7lA2QmS867tituKFaXLTj6bdM38MsmXQwqaRb8SgVmGevVZYH9xycrkftC2jA853J0bHdQJtoD2mAdilFlFx/36LterQnJEs6KV7gxyn7C5SjuXDPvVghN4uztxotS8gNzvkF2sxyCvOThkp1ktszQImyrasEOYLZGHHC5yfL5QijFkok/m0NTn1NGUjV6EUIxeoGhqLFM199mcwhcMjWXa3nJgL9G9uJmOM4FyJW+ddNhS5bBSObARHPrqUlPfNrsdNI7qnSsnVe5/4XhZdS0pGjmJNkfA2Fe92ria+9clLXry4Zlt+SW+DZM8ZeLdUp0q9KuRy4HB1w/OXH3A4XpPqRC6VdXvPujyQiwvshnlHvZ68WJ1qQtoZ6YsjasuJbBtTMmrJPrJrzuXrbZCkktOMycSUZuokTHNhWd+xfnnmen3g+tkrpvmK49UV87Q59iruK708bPT2QE6dq4Pzp/rqFKA8H9ERoV4UcprI5RrTI73vPK2IrM8Htm3nD59ppqTUkC6U8z0yfMS8NmP0zDnfcvP8Ndc319i2olsnj4r0Iw/v71nvBroW2Cr9BH3LLgjEk1YlDSQbRZWiKYoknhTNQinVx0LiVl/vb+84fvgtfv3f+1f58rM7jD9jWTvYjIW7jy8038DcbnUPezKS+bSkBN9PDD9cUpiZxeHlgtYYC8rTw/GbiJlPLgWxAZrceUGNTd2JwNN/PUgqRVE91F0NnJqitOHFSApuo6O3vgkkE6qBWOJKJ67PJ378f/jPuT4eOf/ynmd95qDOT57EbSBHSZ7gaY4WEesn5xLo3WOkvBpYEjYzNlWW4X96Asgx2dk3FMEYtHVFk1OGxs4bzIVtCd57ChqeGljnUNXzBESpyVGsLl6INjItJR550r6BZv/2PmpMkKoHFlkpWC2MlDzkpIf3dDbGnEhXlcOHLzl+PruNrfiztt/LJIkJt8OtCHOFKSXWDkKj1MTxMHE4VB9piiPu81w5HGdOy8q6dVoLZxYxsIhZNwPJWI5D1St0b6T2nBd1O9QunjR78SkmseEaXNQP0PDVcYRI4+sFrIR+QyQcwTxwrYjzL7MYkocHqpBiNPwI+aoaDcNkkIejcru1G0FXMvx3UTGnnclA68zxxQvmF6+RZaO9+xqVE9I2UhPSMKS50PFoSvvsS/7R/+0/4/jqu/ydf/9/yeGjI9gcBQn0tvDmzc948+YnPNx+gZ6VXJ4zmZA1XKcOB0bONBIjHZmvrzk+f83180+gHOkqTiVSsAZbXjAaRVO4a3hTlLOjwcfjM7pWtvZAX27p4961O+KOF7sXfq01ipkTJc/ofGCSF2TL5DyRS/EpZsr+95ypubMkt0Htau6+gocYqUbxHg3afs8vRR6RTRBpuDvnnSfFuojtN+eRxvLX1/iXj6d7l8TP3V19du3LZaLw5PUulvwVR6AAW/YfvBczl2mBBWVA3WUlxVRUNYEV14Hsgj5zCpYkb4CSJHcpknC7qkopxuSB32TpwMDGyuhr8O1XTFe0ezHuRb1G1eRBbCFVCb59AIRpv24jilmJhnvx76PdHWpGw1R9ymjqLlQZkhSc654Z1rzJaIsLWtvG5k7ZjNbc6EA8tGikb7oe+aW0AEHxQnc3KCgOkmK7jsYBAU9s5fJ6tyJOj/XSjtfYbgfuBb/a4FJD7s8DYTiwe6lLJiX3pefJvfXnJJNCGO9nYoqzzK2OcykgTwWxHkYoNmFjuIXtSKA5ilXXD2oO6jVu5DC2x2vA8IkSKbmzIvj9zd5Y6QA26BtYcObpigxhrpnj8chBlNkceBwPns0zHhLr2Vib0s7pcn330YHIvvc64KI+pAg9m9NmxPw1GXctEwvxeHoilBe7gNf79MPiIUz2TcDtUvvsz4f3p9FMg0hld4zzVtRbgrE2JIdu5gLaeKMmyelyZTFyTaRMAD/q047Jm+dSoEyDUi2CxoRSE1KgLR5gmkrywMn9bYOjFiaO4gOXQA1HRr272h/y/WHa7aAcsdi5Te5P7IVfYqiPjHKdIIJd3Ps03HQmqGnQhtK6efE6/CJ859OPeP3RS1rfaH0g6QA8B7sil8w0u81jnSvHqyNk42G5I/fMdJjY2sq63HkBKT7CaqOhppSS6FnobaVvK6fRWE631NxdwS6V3pz/mVKl5Nm5crlSZFCYkZyoh8SybWz9gYe7lfv7L1ATXn3wIcfrmxg5OQC0bep2jeruAdo2RlvobePcN0dchiMZpUxQDCtXlMk4vrhivn5Fo7H2QR9XrP2OZXlAxx1DKgerzE3RtZMcFkdsQnKi371Ho8DQzaAlJrmiMLF2hTGB1ji43NLO0EBfCP3OTlPhAjLtfd+OKlkSmg4+f/NL/vzP/pKP/vzX+IN/8se8v9uYmJmmA6e1OTqYUmCgg828iBKEYinSTCOaPn5uNvEgKJ6gxbudw74LX7rtQDnjgM0CBS9USzSWnsK8xVg7xvOm3nAC6LhwYz3fKTbQKGYdzPCNLYFHQ68JGYMrO9J/fuYkK5mJKR1AvasnOWK+g3W2o+y+si4oIOwHtl/bTY1VjVX979tOh1FDkzGJ0FKsbDOSDLoIK27FuDu6SC7kKfuBbgqt+/egk0S9kYtDf4912d18etQ8KntDBUV8LZPFM7qmQq8VvXqGzgcWA9Z76voetYYl5as3n3EoXuhG4rhvkhAIsF/TvNvwZWPOYH5qeyrmnMjFRbCKuL9w25AE01ToI7bXEZtlFDo7D99t8OJZiqJZxTzMa+ddXARo8XVijK4hTt45+UHlsn36Y46gRyx5koSkGpBLJEom3/hTViRDxhutC8ff/Pm0BJqU1D1FNWdHy9JOIcPjsxSfkqgUNAlpnrh6+Zy2Nu7bgraDfz1K0eGj+g5XJXM6D+6++JL/6j/+T3jxwaf8zX/9hvzsO8Qjz9u3b/njP/ln/PRnf4kuD8hZqVJI5p7100E45IleK1kqrWTmq1dcPf+Y+dlrUplZW2fYRpkC0KmJrS80VWp1Lr6Hr2Wm6UgqE1kFa52tRRBVHOU+yfKHpm1gBXdfGUsUrwfmMsiiMNxBwv2gE9eHmXmauDq6IG/dGsuWaC2zNUd390nCPjrxg/pxPabkwEw4g0eDpZd194j4PhXkxn75BIX/5sevIPnJz4ynFB1H4vWbrzXc+zuAAHeRkW/8HLFvFqv+4U0SEr/r7l4nILIHau2Pfo9i3/n3uTif+1CFUo2S/Y/gNonulHQOtN6Re9MQR+te3BMFocEogCeE7u/QYsKgxoWD7hq/wegLSYwxNtblxNCoTUJfldJwd5SUwaqfa22hrSfaevImo/vUDhEPzgtKCsPYtpWneoW9gdPg56ccAFfAtQOn++yuTCPcZEpA/u4d75N0/3oJFN1ZEDk0Sq7TiQ0Wt9ttW6Ov59CjOXA2xhbUIc8h2oHanF3bIikmGJfJiFDKdJmwz/PEtm2oQk7zRajsPqNe2Hvv5XuZhv2wYRHM5KLm0VwjUVPx/URSvJ9oljXRtzAX6cGlXwa6JeiCbY10UG7EwZtjCJubFUo+QMlso7FtgzzARyR+fkryKnuM3W3Nn5O+N66pXLZuR939PFElqM/exEt6bOB20fwOFO5p2d7U+Pmxm0/sfIGLDTZeMw9LBEqHXoi9egEP9n5sdy4ifq2OsXVIa1CxY8q47/mlJHJWSlVfc5NRitvSpwokN7/JExQ1u1hO+SBOLovKN6Yo4yRkN6Hov/gEYZdFyn4JzIPZx2i+WKWgkoEKNjslpxRyLc51ynComSrDKSEblDpRmSj5yMuPPmS6vmZpDwypIST4EJHn1KkwTcU3/OTcOOf4earhw7t3tG2jJve93XqjtxGWSZnRGqe+ufXR8HQ+RkZHY1nPtPbg/s0kcqq8fPGaHrZthLBCJLEunZzh+ugc3XU9c143fv7Tr3h28wrSRM4z03RkXZVDvqJtyrpu0MdFFLGsa1xaH32JdZIVxnaL9sLN89f++5qxjsx8uGJsE1vrrOf7KLwLBy3IpiTNFGZS9gYo10IVJUuhNeN87z7ZV9OBrTRP5kQZuHtKlux+wLqLNt2GUXMcDPthFfe/jz38xkfBS2v8l/+vv8+f/sk/5pc/+wLILkIdjc4u5fKF5uW5FyxiXqzVnRpjzvmUC91h9/EVkivDvjn6tn1T9o7EI8T9MKrmYUYQbjOiUfyHqHUHBsyF3pKEXQnu4bI7gicXgZovGxcRndOKznBMM9vdPdeHa9DEIDFqpYmHZSjqgW1PlpMnJgYapF4sSIihQNAE2xhs6il6oRUiro4jyMGH31dxis6rS2YwoXlCphk5TByvZl6+vOE4Zc7377l//xVpOA0nJcdzij6KRS9oUwJjBI0iGqwU+LXEaDQZY544fPwR+cVrROH87jPG7Qm6W8CtywO3X77hShyd1xhHSzQ7QnjTTxNFjER3G8VcfZoobl4abENP6hP/Hia4iCknf3Z32zjCZaDkOGBdEyAO2fqTKFDEcxJc/abxYOxknHhW8CLoUsiFiA6cJ5/EgqudvfiK6Y7gkyANAdk+GiYcK3Zv5iedXyDKrvlAYkqi+/oLjml45qeM09jaxtjOTCnz8vrA6SEjI1NHcq6/GBljWR9obeMqJd799Kf80T/4+3zn137I89//EM2FYcLDaePhPOg6Q7piGxunpvR+5jiMNB8YH5yQdEOZK1omSDODSpqOzFdXlOFC5nnOpKR0W1jWxvm8sG5ncpop+YqRE1CYphlJlZQncj5e7Pr2HIT9Xnrj7sivjcGQjEYSow0Y1unqzksp+yS6pkw9FGzKzHNiXo1lU9a1saZM3918cKqFRQPtFD+5IPKydz879c12ISuPe8OO4O8HOX9dYf9N5P6RfvMU+X88l/UJMv/P2W7a4xn+TSvMy3ePvYWgBjymW7hrjIv79qkB0bibxbUriRpOOPMkpORhSlnC7Ug3Rj9h/ex/HysWCL4E8Ldb5e5ufar5Apg4KhqUndjbLd62Dx1G5Jk0WlsYvT8ipcNtYt3eP5KwVdHWPRRycyBthHUleJBfNkGHXuiZKQp3w583p+iE8Dia+X1NSragDIJUp3yoBZId51bOmVSqF3jie1VOj7SclPZJ6Ihkbd//TAcC1DKxLhvr2qIgL5d7679votZKrZmUJ1IEQdrFmMH37xznl8UvMHqLqtZ1ARaCZi+C4xkYUeDHNEJHgCIGSX1HTBr0HRT1AuESuKRdGBv0pmiHsSTaYtAU3VZqz+SbzHXJPDtmz2xZBttW2QysgYxMshqUR5/YeffmqfJKhCcGlUD55nPzZJWxA//fsLeNZ12jwfVAS9fpEUA0cT0sVtd+fy+i/GjsVYMiZE80LOLPgeJ1hXnR4WtOHu894/GMZdt/0k5vglyU48FzI1I2Uh5R0FtkoQiluybWN4noRvYf7PZn3mLsqVs7eymlfcN45Dn71N83Xi/svLv1B7liUkj5ilwPIInDzRXXz27QpOQMH330mpKFN19+xpdv34BAThPH4zMOz1+Sj0d0JOZ6xXyoXF1/RJmfcZgrkuB8vqO1M6aN0QZdN7btzBiN43xAcIeOUg+UWS4br2CMbYNh1OiObo4Td1//jLv3b8NdZqbWGSGxLidUR9gQATaQnmjqSZJ1cgtReiebciyV0Rbmw8xUrsAmpuJONzI9Y04LwpksG9bPbP2Nc8w1bDmTktkQzrT1a9ryArEXHOeZaX7GtjRkuYZ6ZJzPpO0Etnn1vSrY5PcugzE5CmCD6fqGmmaSTlwdPqK9ekbT9zQbrOuG8CXt7p6xKUUzc5oYowCHGDH5VCbtm8bjyeI+s8M/n3PhdFr58Z/8gptpBoNcD5zPjZzdi3rH7bMFShtjQlGjRaFVA6V3nueO58Z/RS9lkB9qckG9dy/YLI6g1Jwo6iJl00E3Dwopxakmuz2Wu0f4eiDG2GYWDjAukkwRJOEpz4OhziXcxEiTN3yHckQ3RxU0JzaFDaPEZKOKp7DuXHC3JiOQM7lcWQ90GnQzmsrFVtHgMnLdqwiRhCUNMXAIBssBm67p0w16vEGunnH9+iXPv/Wa7//6d/ng9TW//Oyn/PGP/oC7t28ZDOfMrifKciJtvhvqXnzaiGuT/ToIjkCH9H5I8rV9feCD737K1Xd+jTtL3P1yYnz+wLh/j60rees8fPkVqU5Ia9Cb61yw4JInrCh1KuTqyGJKRqnGHsNoYX2akk8hUsaFmNZ8A6/OZFd1PyEBJGesZko1ah4RJIM369rd0SCcaQpGZlBsQNoZnK4/6HFI+JbnqH4eSg5opspwXq3hGhXdR8IS3zW7fV+cP2ZKicbughqGDeCjpzeghojbte2ORvuqKFG4YR073bJ+mcjHKz4Ie+LxxD6v5glRYVal1Imvts7VML78yY/5/M9+xLPf+l2szrRRSNMzXn30m7z/9hfc3Rrb+R26NtZFaemM3t8y3n/JnKHU54iZW1A+3CGHGYqjTDkZDkgZkj11+Lafubu9o+SZmxuYpkzqTqucSmGqR+b5OZqvSJLorbNtDUyoqQbIU71QG55qmuSAO6S48HgMf2ZTFCmSE7UUj3SvjnpOc6YdZ9Z182TxvieCeiryCOH4fr7tAlaJ5Ste8UfBpjyWAd5U2l4w7s33fr4/Kfqffph9s4DfJ4jwlP6zn8eP33sPmXpa1H+Duy/eUKbszWfScAHBIPQHpiE49gfTbfvwIrTWxHHyZOpavCFO1kEajA2zhdHvsf7A6E6FsbG5kwyKRYjVpUBKClocOAlAcS+yxgX5fLxGKYr+bVsZvVFqAbiIYSUKrjHUC0r14lCDK78Xc6b4pG4YSJg0tI7k7BRTHWyRcoqJe+AHgp+eTDosKaQoJp0H4o5hdXdZcvqS06ecXruva0IYPUboHi08/nGN2egdbS0SxX0fUO1s60JKiePxSCmZWgvzPMc6mMi5XqbRl8MRvRT3vTUXtm6dbTyQpTB6Y/QF7RvguSfWXaxqQX8dfXgjEGd0ShmxFHSe4WBu9tTnvkWjoDPbAut5MNrwQn9RxrZRZVBuCi9vDnzrw5nrq8QkN0xy5u1Xg3e2or2BFpLFWbrn0Vyeeafq7ZbF7qsf9ymq+xSAnz9FO/Vxf668IfCkWT9/dvqjN0/+9ZrkUitbLD5nB0k0Pxrhk3sdsf93B2B2CvF+Lx+p6bvA2rCL1uxCoQv3MIuAxIc1RLbRVKZilEk4XlfqlKhNKKWUC7c+7370qhTJzsXPj5vKzsMPbT5j7FScFONovWxUOVWUQh8JVNCgmFidmQ9HvvfDH/Cd736H83ZGrfPs5Qvmw8z1R59w+OIXrMtCzoUXL18xP3tBLpmar7l5NrvN1jw5rygljxtvSs2JbQU0R3IuzNMRSZVpfskYTjma58ltp2yQxZXd796+5eH9HXYekUB5Q04roIhUap0Zo7m6eXjEdk7KsjywLo1SntNUWU8PmLpC3kzI9Qa0M19VpulI74UyHcnTNfNhwsYJsQdEHzjdv2HdGkmdE2h9Q5KybndUU4wHlofC7Vdw8+pDnr98yWnLrD1xJUdGOtD7GW0rS2/oolSumJJQpoKMRrEJbWe2s5As0VajzN/ig0+/Tf144/hy4tTe8/O/+hE//7M/ZP3qlnbfmEqm3yuT3LDZ5gXGhcqQLssjERy35JutI7GZlCtbg0KhdUi5ugI9+Jx7Mas4AuAN7WNHvfNNHcmVCzKN7R2wIwl7oTXiHbl+25u2qRRKgkmEHEKplNxnXVLyTVS4jKFTTi7AS3LJttqpZ45gQcqFb3/n23z99Vtu7947Eibqm1xwV4XCPiLXSG8deDNjlmieQnX5/nsa476B+Jbsrj27Vds+XcjyaN2ZSr4gmSmEoilncpm5ev0Rx4+/Q/rw2+jNK+TFS1585xM+/PQjXn74nKuXM8fPX7OtD6xvPuSD65lntsIXf8Xy2S8QPVEVcpmQoEaodiQZI3lRpepzH8GpMW00ZhSqMLL/zuVYSFMGMbIIWY3UB2gjx30mZx/7dufNtqQsvSHVR8xLa1RxD2RwLr9lpxb17iPoYW6XacWtZHUPPTMjlUKuEzJlt1G0M0M7OTma7vfQN+Bsbheak1KdOYZhrl1wFZM7KuyHyPD9wXon6XBXHhkUMqgy2iDXzGKejbClTBrGNgZmiZJwWlQcLEO7I5lehcSUJizXBJQRk0ujbesFvUyWOUhF1rM3Pw+37ja0nkgRildSppJow6ipcEiFWWEdxrsvPuOv/vRH/Nr536AcnyH5mhcvX/GtT38PPRlfjRd80X/M3fkzcr91wWQ7MR6+It/MTHqgMrH0Mw+3C5YbavdcXx0pArYm6uQ2qG1dWO7vWM8PtLxxOFwzT9fenFgHiu//04TkCTFhKsbxGI1aEnLKTPOEYPTRo2F3bn0uxV2LVF20PWJd9U5TFzzm4pNZkcxUKjXDWfx5HiKMlL0Qkp2WEeCXPopWfa8joOUQQcojkr4X4nth/xjyJpd/fwpK7CjrXpCrPoo7H/eKndoBqnLxFR9RjF1eyz8/FdgpRI/vQWIS50XPHhqWI8EzZwf6cvKQqlKNWrw5FmugDdWF3he0hWV0PzsyPDZHya27TkGDpgHxXJvrn/pwZBbYA5xUhVKngDJBDAeP+iP6r82bcT84wtdeMtrdHU1sF79LIOBnRKpP+npHUg3xpZHL5E4k20BEaE1Jkqi5svXOaM5bN1Ey6THkK86qbd1AHAgqJDcomSdSSmzbSs6FMh1QU3/+kpNf3ahhXIKinAbkBbMO93ZflpVdl/INypXs2gc3QzHqBfTJocfwhNvgZkTT6IW6/+l9YbQeBh+d1tXfy3AdGtG49NadoS81zqKBab+wZdjBvwGjDf/vMljPwnruYeUZ53yElLbNnYA+ePWam6sEY+LNmweWdh+i3BHry4XqEuf9XpSbaVi1how/+762T8bRHQC5gOVcJqxhoOD1rU/Ks4ifuvt605giizfwFkU54vu678kOdCXn/ATYY5cG3fusKOTZ6ZQ7LSf7fnKZ8PHk/eyTAWLo4AwKDeG3iGKbkjbQkchVqYtS9sJ+jMEgRr1RRVk8rI9jiBhPxE32As4LjstwQ/aSyrn1KkbKM/PxBssTaa58/zd+wG/8zd+kTJlpq0gWuglaK89ef8R0c8Pe6+RSqKX4+DhlDsfJhQa5M1iAhFTDUuN8OqHDVcfTfKSUiZIzKVXq/JxDvmKYR1+TE9cHD1M53d1S5yskL3z11TseTg8cUsO0kOq1b3h54jjPtPbAum10bcwH8QtpLtSVQH4Z6j7W3UA36vHK5UKSmK+vSPU51y++R6kZ1RPL6Q3bGeph4eb5B7TTOwaDtq1si9N0PJgp8/7LhXdff8nNy4/46KPvYG2jtoEMQS0z0sS2PUS3byTraOogA6sN0QbDON3dYV0Y546WF/zm7/9PeLOutOPKPN/y7Pf+Bld//BG//PEf8O7Pf8bXXyzU4xFMaduO/OxoYcBWhHNMLAiNTWSYN3fuUR40mxj5mnCZCIntxBIPvMji16yICzyLOGc+y46aRDccPz8Ak8cPk6BMy+WAzClTskTxFoBG3heeP+OSXChWS/KEU8JBPjYDVW8olnXhO59+m5tn17z58otYB8akCQYUKYhU1zKgqLi3rS0L9XAgk4Lzuff3j4fw0+CoHbAKm36SuRYgI043u2xAgQbYTnUK4dt8zQeffo8f/ot/j/K973M6XJNef0ibMscPnmM3E3dp5X57yfG3f4urH8Df+PZHfNDe8e6fTLzpJ9ZtJbVoNEQ80dUG3dwadSDu47zP+bMf2H2snB7e0W8nboeyfPU58u4t3N1xNYTcjQmhxu+o0RxCPCspoZJY1ehruzQURY2qMcqOjbqPQTO3llSD1gdN3anaElAKqVSUxJoSo1TIDek+C8opxuXJKJKdOtUG1p2Tm8OWZIhf/Z4KI08MqWhYV9oYWGseUjc6qT0gFo5IKhTxQ63bQMIPGzwOfoBbLnr78EiBCvE2EnbEqpFgmHwPKY7CNW2OWgWPFxRGC/64HyxpbExzIafC+rBx3kaMigttbeRSkG1gp4Vf/uTPeffLv+KTDz4l2RVzzXz/17/Li+tn/MG90dYD2zhw98Wf0eWWbdtI6z3P+plCJ4uHEa1jo91vrHKHbBM5FaZSmeYjmifO24nz6cRoG7VUDnPl+bMrcj4Gn9j3h3nO9G0D9YM856BxJKglo7qCZA6TC3PVDMnJrY+TT2DoTts03QvmFqK7XcTrNC0RyKlymAu96wXB791dVUaPoiecxEbYmzq4YV5o7vjDXoDF+eoGFvvhPS5i+aeF2mOTvwMK6YLi/Soi//RrH/e+x9d5cWDf+DeLN7bTS74pGg26YbiKOI7j5LeclHlynn0tSpKNLANYUduwfoqifsHGElScDmNDdIB5cbx7o2tQLNW7ZkRK0ABy/HE0PaW8M9bC2KLTtzOXTBDziUMpFUie2i4OMOUUZ0FoZCQVJB8Q23waqsPPnmjKiCatKxf+upmxdWXbuheKO7CENwCIXEKKdkDYJ4GOwju9WZnnx5RbySmanB5laoA8l6nLCFpLnG8xJdidcnZdlgaNSAKd9wnzTvPx9ymYc/+DdtPairZojsRAG6buTpfFtTsS9Bvrwmjmkxb1JszwZPX932wYDCNJ8vURttujK6MZ7dxpa6Z3pzjv1KssibU1Totbmqtl2jBO92eauv3xaTtx2hqp3sSESC7XPBYXHkXjTQfi9KoSoXGPLawbFogIQ0ZMYMKow22ALpNyoh6JxbS3EDGl8zPHQvm9T2Zi2T1+JL93yfbaPJgx8gSUjOeIfY3u73Sfyj1t5tlrJInaxhEeJUIXVR2kypAXobig4nFz0diANKXLr2kx1pAkFxTJDLfIFL7B/fMfmth6ppQrpsmFXfOzI89eveTb3/0On3z7WzBtLGNDyo4WVPIcsbrFDf1rFe9chz90JWdK8Xep1tj6Q2xOxul8Zts2jvORnAolD9o2YgTiY6p1U7a2YQxaNx4e3iMMHu5ueX5zzfGY+eCDawR3ijlcP+M6452ZbmztzLJ1Tmf36l1WKNmopdC21XnibfOCNMb3GRDt3N2+5dzh5evK1dXE8XqO2zWjNgMHDvMzsj3w9d1bt+3aBlvbSLj3bC4zBaO1jeWrE+/We17evGAy4SDCosp5XbHeGVuHHsgFnXF+4HR3pl7dcbi5pvXE+jB4/9WJd+vnvP6B8MEPfo+fts84fOvbPH/1fa6//5Jv/83v8eP/4u/z43/4T9CTsZxOpFouzjVuvxcOLfL4cBu7AOoif/PNO0FJ+8bo1IsL3zzQlQJUCYRdjCrCoSRqSpcExSRgKcaktiekPrEUM0fq8Dr7IhKdpzn2Si/uhyky/Hs5ArijLZGumH30aNlRVF9AvqFnMu/ev+f+4Y73t++ZjgcYg7l7Y2dFaFNiCzR4W84cNSOjkdqEaaJ3o4t6Giq7SNA3r1LCuzoaD40moIi3QH7YOad0AN18088xkcpJqKWQr65otXKfjJsXR+qHHyIfvKSnzKkKzYFN2rNrPvqd3+bFfM3zNDieK+PNK97+eWGkHkwPX/sju/PaoFOT3xuTjIXbA9kFjG07cff2M6qeeRiN09vPqbfvqKeFromqOZoDP4W1uOg0jRgDA5q8kG7J9yWCMy0Y1QRhkHCP9603F1OpMIZnEZD8fZGzJzvXyiDRBBbzbjFngv+KO9ngnMUkA8mDZBpj2YLmiZ4PjOkAh2fU4w0t7iWq0Db66YH2cM/UTzDOWHeqTmqGdLcqLSiTl/QUKZ7iijevXpQNt81LnhsAuzuLkzJTSdTj7JOgzQXvqRRKLey+0e4M5JQuRJiuCiM7vYuDQS60RRkKy6rkPFFaYzoP3vz4J/yz//ofcP3R93n2+gWrZGzKvPzkA37j7/yLLA1eaCZdF97+8o9p9p75dObm7o7D8Y6i+MRhnEhSaZrQcyWlmVaPtPkZWq5Z+0Y7LyCDmuBQEzU79UrNtVN+Mm20dse6noHBNGdK8cna1jOj+zlSy5EkFaQiuWAi5OJe9rkUd4AbjTGEMdoTBH3DtAX1zqfCdUpozRw1QozU6G3QW6d1Y+sOjm2b0dqgj/GI4l6OaodAVBtD9TKVgUdN2zcK8cu568UH7A3/4/6664m+UUzE9/Pvk5Anbij7u9h/1qVACPGimZ/7+/fdba71ghgaooOaBjW77WzJnUQjSUPHGRtnRj+h24m+Lox2dtvL1kAHnlI7nGIS0w7b7WeJwDu62+0E8r5nJqh2p6WEDcoIDZQj/8VzN1Kh1gOIc85JBVXPTMGUsy5h/AGSjljKDF33BXcp7GF3BOqXvXgED35ooEhe3fmzFbJEdyfa73h8v5imbOtCnWey+Lk4hhMmxxje4LtBvn9PHWG9PXhMIX6897oXpeLob2vuGlZ6prWGJGOSTM77pFfBRmhU4n0O1xA5jcXDHDFlD260AWgOegiUmBgSjjKq7pajrdNbo7fuCb1m9G2wnt3tx4aLaRmeIm2hO9JAjzMehrhp4n6pvHmrzFW5f+j8xc9u+fnPv+b97WBpBdrik+igJ+YdKBTfK7HVp4HJw6tSKY8C2FiTbuaTvHFS58aj+/pzH//HD7ms4BTcegckvcAWuQz0L5/z3s5ZLSqPfP9LQ50ep3j7939c8o9r/1c/5PLH4mdJ1FBeb8evgUXCuiQofvY9plv9dT9mHxnunq77JqTBC32Mxw4hjPdX9A5Xx5nXH73k408/4tWHL7h6dgXlnk3dQrD3zuiujD7eTDx/9py2QetnR2Ksobr6QqCi3YuBOlfv4PvwUdKAebqilgmirE7ZN5OSK2bCYZoo2Wj9RO8L63aP2YbpmdPDCd1W5ikxuiKHA1InUk7UJOjYWM8J1pVUr+lqnB5OCI15MmpZyCkjorhDfxQLwX1VGmYLgwdM7jHu/CrLSq2bUxJG4q6d2c4PHuZjseb7YBQvHIoZxRqtnbi9uyVdvSKpcT0l1rt3LA/vQAfLaaXojHRFRkf7xjY28lzoJy/u777eOL1vfP7Vwn/85n/L3/33/6f85r/9L/Fb//oPeeCMrd/m7tPXwcH9grc/eUMbJ67yDdYlOlmcp5zSbp8ez4CFQJLgfXszkNQRCjNznqLZRaWfEIpkKlAlCqAkTEmYcwrvdhfQOJIZwl19bBD2aZuZf86GF8bJBj0Zbbggs6TARzXEjMmDTjI+MagiXmCkkGCmRNbM1v3/zymRa/FmUQrHmxsUc5/lIUgqrCWzHArLUVjP9xxvEtI3cjVWa+7XazVEkNGx246euaPPY8c/3A3FjGweHJOSRJicc79bIAOZFBMOR3DLYaLL4Ovllmkynn/yjGV2n+K1bYyeKBXm4xXHqyMzBu0EaaX3W7b1a7Jt7qveC4OMiv8ZpPDhTcieGZByoKUG1un3X4MsYIO03EJvzocc7jizmdDMkJoZeS98vHHrApSKzbPbaSZhZEHF+f05vM6TdhiNPvpl5Onhh9nP4SRuEZkSNQr8NpR1zGjw1nPy5yJpR3qnqDJlmFCfliiMMqHzFRxfYFfPyM8+oDz/ECEj3cf0tI3l7pb29Vf0h7ewvIP1TNkWpm0lbxtSOpMYmj1mvZnSLlkNOZBUR2xL8gmSHxoutIv5sFt1KvQBQzNFKkZhiDd7SSR82wWp0Ern+ccvESm8fXtPe1CWTdGeMArZJo4q5D64e3vHP/n7/wUf/9rv89v//e8yHV+zKNQZXn/vNT9cf5urF9e8+YuKHIX7tz9hbW853T9QyjuOW0dqYpIFu2+0DXopSLliTM/oB6FcTRjGlIsDSyijLzzcfU2dVz+41NfHGI1tW3g43bJu95RqTLM34iKZko+UdENvULNQpomuStLhYsZcLohw+CXFqH9jDEdQxRqIOaWnzGTx4CS//g7WTKVgs7swbc1Dj5YinM4rYxkx1ZTLc7yj3znjpg+ql/Tpp24s+9n6eO7KZaT/lBr79PNPJ3x7sZdSJKXakzPdYjOGv3YCILK/NlAbCzAvgBBQn2RmdaRePXAopQZjgXHC2hndTlHUewqt9giWCoqaqKfq7vv+Ds6ZOdJqaeDWsupgAYVUPA9lDIWx67EEycUdbhDqdIiCfop0WneKGUMu122y6tkpYpQuSF79NeJJtXIpsGOCm6tTh+Rx2iG5up3kExTLczhgN4e49EO7/3iC1jameWJod9Gt5Eg8dX3ECIemHWV39N6LfYn9yT0AJqfAPGnUgNCFDFrroe1esf6kkQzN1j7VFXP3pNGd0+9OPx1VQSwz5UrKB9B8EcPqcAexPga9DdqmtE3om9E3n2DRlbYaffXvI1bZwzgvbY93V/6s5oKOzLvTyo9/8o6H+4WrY+L2ofHV24XTg6EW99Mi44PmhhiWSBTIDt7l6iF/kgVrrr8aqhcxMLEGXV+VaN01NDbc0ER0n3fv/1Vfv+Yaj0dc/cnH/hiYceHUxN4dMKMDhxa4vXKhEcPTeokLov/Nz+xo/WXRxz/rZdrv39Obpgv3QdVDrC7Cvb2btl/dRPaNJLrr8MYGoisOdED2gKuMpAPDKtfPbvjBb/yAD7/1Emqn24k2VpA4kIYyTQe2dWU5f01OntqqtoK5N67a4rZFkhgNkImtXUGuzNORMheW08K6NrZ1eOOfSlh0gqSM9o06z+6H3BK9+GVwUcrK+f4e+oYVHznl4xFyxVIiTYU5XVFnR9sPhytGX1ge3nF68HE0tpGnyQuyHl2yFJw32qh1YrDw/vYL1tHIk/P+k3RyWkj5zPn+a+7ff4VuZ3IfFDXXLmShzMk3hraBdUo3dDtzWjfnV0+Jsd6zLXfYMLRnP/jXgfSO9sG6nOh3K/SNmq9p7+9Zvm7I/T3L+b/kx//Nxie/f420T7h5diAfX/Ph4Xd53QY/+n/8A77+8zccyiNSvI9595ALoglk57lJPDx72JWBivOeLcaPkuITBM0gCQWPwPHi3v9UiUWpvkjyvlFcRpkWxcGTcZpJTAb0IvbuYzCCtuCbpqPDOTsto+B8a6caeXOIejqig1ohRgyefso7IhGOC3VyERbK12wcv/UJv/Mv/A7H65mf/rf/iDf/7E+YBU/ak3Kxz9yXr+x0J/HidD9s/Xh1GlMWLoEc7tYRIk0FzXIRWbo2LTFdzVy/vOb6g2vKVWKUjZFdaFxMyRh5RGEriowHkt3z7ouf8Iu//CPOt7/kSHerOitOczHDUkGSung3CZYTljImnnjo8eud7eE9vd9hBUrbfPSbCo9xIIHQqluBYUbq5tzF7CI0TYWeC1orMh9I2cAa2/ZA2xbS1khjc/5nduR6byrHDttkD3mz5Ja86VAQmdF0wHx27x7TY4PN6QQSY3FP50jYdECPz0g3r5CbF8jzj0ivPuY4X3PAA8jYNrh9T//qDXL3S+TuC/rd14zze/rpPXZqlCwcS6ZuQm/uQtpGopmHhGk4c+QQ4fmUxgVfariAeyTWdXO/6e6NjJJp6hSBzaIBFHEbzSy8+NYLfuPv/i7rOvjqH/0Bp/MDqzgnOZcDookDlTygbcrbX3zJ27/8KdsPv+L4nVfk5M/h8Trzm7/7Az54/YoPnj/j2Ysb/uKfDfoXD7RNeXh/z2id6ZCgbKwP99gEMs3kecChILZQDhbF8oE2FkZvnB7u2Eonr6ufJRlSlqBjuLCsbZ3WN3qHUjNJJo6HiTK57aHZAaO4DmN0UnYbQtvH+SmRLMTnkSKsY0H0jIhhdQJTUpnAht+TQJndmcQLfkeLPeU15YykzLqNyMIICmvwhJOEd/WIPTKaFgeLd5Q1DngB2d/fr8DzvyqS3Yv8p+46XM5siebor8MFJbRhl28WxaU8uoDgYJ1ZCsTeU0cdtGqYbthYGH1lBBUHXWE00B199ukRu4XnXunZDg45QDTU0zbJxff2sEF2dDMcrpQQ+uojZS1ncpko5UAqB0o5ImnCJJP6rrUApKIsfl+rO3olTaQyI9YR7aj1Cy3G08sVdlorFmdGcg/9MYIO4bS6tDv9yCPd1HVdQHL03yEl32t2sLR3D9XaHXIwjfPH99C6i4yzT/FENp4GWF1c3lTpvQeNTVBaWG/ySBk2C7qNF/W9d7R10iRMk6dZlzSTOZDswGjC+aGxbJ6yLclCIO01xWjKtib6Jr4HtcTYfE0lqwjV902aW6NiOL80QSo0zdQ0kdKR87Lxk796AFaaZkSuSamimuh9eFOWXO/lOr3itOucGLlQjhOpFtSMeY61PjoMf14SbvZRcqaYIq3TBJ9aDKI129fCN9eLXc7ifWLzmLNz6fPsUSNn7HW1g0satYPtZ9Huz3n5IY9To8cO4q9ZtZfCXi+f2icJT/+uFEoS33g0ukS/gXgCWHQge7EhGL03So6gj+EPNam60KlUpEzkMpFyJRXh0+9/xIefXKNyy/l8R9cFEcNdmgEVHk63pHpN0jNj7RHBvAR3fAEaJReSFHQItbjrzrJujHVjnmcSwly8QyzVve97LyxLKKDHYN1OlCIcZ487f6/v6euJNm5Zz18hw9iGUOoVtb5kmq7d+WVXyQ9hvn4JesNUQPtHvH37Je/evuF8/znFdtvEgUoiJ2WoYAMO9UCSRj8Pmik/+aO3HA8zNRlzUXQ78e7N52x3t+TWyQE9Jsmk7F2+2YAxsG5oU9hgbQtTqiyn5IFPo7KeGrIV+qasDwvSG9aNbXMB2XJ7i8iZ929PWK8kg6OsvPnx/4f/63/4Jb/42R/wb/wH/z7f+c1vk6crnn3/Nyj1hm0zbsiMrXtC3ZNnTsW54PsTqBK+40Z4gXuh3cNPheS+JXm3gxK3eTTZESOJSGgveIkz2ekp+8HFxQjAw4EcaUqEa8llkT4WvPsEykMjMl0SlowtZ6y6MDGrC4RURyjts4+48OZElcvCdg6304vW0ehrY9JEq5nzNPjo+8/5wb/5t8jf+Zh1fM3P/+zHhAl9KDA7GXvkycemkjTcYoSwfNwpOhYFRoSexFYiRIFtzpeVcK+yZJAbhyvh1bOMtHds74T88iVkd3fydE4/QCqda+5oX/wlP/6v/j5f/cGPeHa3IS3TzRgJusulHNFI7jGfckICQQ1qunMeBdq2YMNDOJIZNh4RZUqcZ7tYdDgXMinU4BlrjMKtCOkwU18+I02ZPhaW90pf7sHE/dBNILvFpOJc3I5AMqQmqIUtQUqZ44uX5PkVvd6EdWSM7FuHrcNQtjbY1G3+Ss0wHeDqhnzzCrl6iVy/xJ59QKqHCElxncjh1Svko49J5+9j91+yfPUF27svWN5+htx+ybQ+cGwrh61hy8ZYNk+W7sK5+/pB4z4nt3K8oKz7VMOG004sIVaoycjEKBq3RO3mnE9tPlWokdq6nu853260xYtlzCkrY7fgHEKZZj751g+4uvoA2zxFcsrCSkdEyVPi2999ybde/y1ef/QSYeNPz18w2sp2WkjnhVY6VldsapQ5k+ZBurmCqiEQF2qZmfCxeGsr9+9vkXwXYX05QJkDSWYwR9JzOjBUGA0SlenwjFpeMB9eU8szEnPQPVugvl6IgXOXkyctkvOMqtC7MUaKxE1lWEJS98wBxsV0wvnMmVrd2jhRPRQrwmRSFsq5c14ba/OiYZjzYbsNUuhukrjdn4Uy3vU6MVyP8aNbCkbIn+xIbRQGgdLvRYUXjRr1+SM497Rwf/q5i9jXCJ2qXd7LTi3Z919HbYRS8GlmVnLyVHULOo6N4NiPDUZDzNePd6IEjSCDOVcb5WJ7q2FkOwI596lkubw3UUi1kFPFSLTmPO+REzJNpHJA8hV5uuZwvEHSFEVVYhQXHRqDYhUpmT7c1Sw1R6fFPC0X9dpj7Cm2Y/HzqGTPSehOy0xBXVJ26mDQRKp7qlvUVMR9b12Z5krbOrl4YTt6v+xtnnMTDi379d57UIlAo1RJ7ZElMTScmwJd1RDru+uRvzunE22OuO+ovTqKb931PoKDaTYE7YmSjojcMPqBtVUYswNi/YwY1Ay5bJTZmBjcbXeeP3Hu9DawHiLZYE84oB3ZIWG1eXkeo2kbamzqzVaxAxJ6zWGZ3r3+TLn6/hx+9CYGuZMm1x3VQ6ZeFYZBH8qhVLoq9Ewaw21JEQ9eSw6EmPi0wTqX75kuYPWTBhqvSfbdlyS4BFouNvAWr9u/aj+zBCNifcNli8fvI0/X56N9NZfvGCj908meRHPEY5Pw6LH/OCERg1Jy9cRI7YE+eKfbw9IH3BUiCZSS6W0DFWoqMQIsrEOwUiFfc3zxmlcffcyza2G0t3zw8czWv2Ibd6SiiDZswLq6ujpLcvHDs4ptC60t9HFGWVFtOFess3UPIylpoiRINObidmNjPYeDgY9TUz04z9SU1k/eweOR5NM8o2MhoVzNheWh8f7+DX29pzBT0xWiFVHjxbNrkmTevXuHmDGV7Fy5nJmur7m+/ph6/Zw6H3jzk1vW8wmKuwr0riTp1FI4TJVqiRTIzzg9UItg2y1N/dr38wPr+3fMIeZUdRGOyqD1Tkq+oWVx20W6eYBMyuji4V9jG4wVGBO6GNo623mAFpIW2lY5r+IFS1tAiouiky+gYxt8/Yd/yH/yT3/EH/w//1P+F/+b/xX/wr/1P8BQHjaDdPDFZ6Gs5LH7NIwhchlLGuFFbY5U7JOegTkvO+3IsxdEmKdwnsxHZFl2r2BHXXJ4ADv6gCP1Md5MxYviJAUZxmg9bO92kC4FtSzcoEanSUfyxCgFpgmbK+V4wBjOF12VtHUqjr41G9RcoVR0NHpXsiSGGJqEjrGMQZ4qfS2MBFI3Pvh4Ir8acDMwVtowyshMKbuYdixoyRDNya5l8CI9+Lgx1tyRvWYuwHLff2+QktjF6cdE8ZCqxMhGPQwOUyOd39K/2OjnN/T31+j1DfXFK/LhmlSPjoS096Tbv+D2j/8xt3/8Z0zvlINesy6dzWBkxXL0Y2YXAadbua0EfEUKdxprhojfwx7NUh6OgFkiTO7k0tBU/Pm3InFIJnIXT0hMg03PqCauDs8olhkPzh+3IVj3kaxGrL3XQcnzWKR4Q1kEK4U8V/TqGp69QKZnJGlIP/vIO1ekXpHLNSnNbNbYitKqFxlpPiLXryjHF/RU0SLkFPSDUsjzgXGc4GpG9APK9h34+B39zWc8fPYT7O3n9PN78npHXu6oD3dMd7fosmI5M1LMNHocDrgwdGkjvJKLc+yboRKJk0ErUhqaNA4Ab6QYkEdC18Ev/uQLvv78ntGhv+1wNkqIT8/rAzIVusBIhl7f8OLb3+f1936T44ffAjLSYS4Tks6ond0+b0p85wff5e273+YvP/sD1l/8jHQ6OT2p3cKxwWzkw4FyNZFzhxtzu7yUMJmQVMKuNHG++4pUO1KNMh0gPUfJ5FSoIogl5nqN8AxSJufKNN1wOLzk6uoVpcy+ZhgeprY71+wH4n64kkhpopTCULdDlDQ8uVQLaoWuoLrR20rrW2gyDFVvlEQOSKrkMjNXVwz5TNibgg11ow71fyMFTzYQ60R26k24TMUoE9Dw2d/lgDk21p0C+8/nzfj/Bo/yP7yRTimyOXwaZBYodOyj4+IZ7rZ6IhYuT27ZW8Rtgksykqxg3Qt7PaHDvextLLif/cbomz93apHw6zbUTm/MqDV/r6JYGph1TDqWgks/lJo1tFmeel6kIjLTcyYb1DTTsnpeTpqQciRN16Ry7T9jDA+nym6dq6pI70xzcqBiniFV0oTr08y8uO+doSvKCZld9JioVHCbyDUqwbDHGt0o1WmImvd0WGcv7NOY1g2kU2v1wCdt7iy226mqc9X383KfeqZsYbagTCVTJDFUgAk1oWdH6oNs7ftFTInWbaXtE51hl/uRSYiqp5b3Rg1v/Hm+Ic0vqPUlpb5mlBvq9BzUrSnTi8bYTox2x9hOrKeV++3EQ7vHFsPOQjZ3fNnBYBOl45kHKXkx/NRZD1ESblvrbBP1xG/iWdWOxEm3Z6yAc95JINVIx0GqChNYTCzmqfgz3waC69k8XMwbdg/+OlKnid6Mtmy4HbdEYJxPTSw5LU51BNAW3TApsHPXKlzqnfjtRcSfF7NY2xrnO5fvYzYuzTZwuS6XqVz8R2Q/AS7VPYI781xagB3wD8Bvp5AVG+MyOnOUIDy3Y6zn26CwbRtivpBMjVQntjFoChQPKbl+9Zpf+xu/xceffsqzK2M7fYGUlWEn2uauEz408FEaeOAR2GWsRxa3c9SVlNw5woMmUkwyEmhjtIfwonbbqLY1xhjudysvSEkZrdPa2dXuyTBm59k+3IM+MMYd775+x/m0oi1s/uSakq688NoWUp1Io8e468h5XVwrsBXux0bbNj744APS6Tu8ffNzwG2wWu+UnJhE/Nq25vSJlMjJk0l7b4x18Y1UjUMpiLr1FTGBQMR5xOqCvj1AB8G51+bCwbZ0+rnTt+7uHz2hTWlLZ0866s0YTbBRSBTnsxrRyRvWVp7VmSllfvlHf8L//X//H3Fg8Or1S77+/A1puIh0aGO35Xv6sdvA2b66dwQCeezYCdW/akRE+4JI5lSbQfJDRTK51LBhMxeLdnMnouCemxGj7uI2dXGAC+bUrOgeHpFs8zRWyehUyIfZ7RCvDhyfXXE4HhjrmcbmI3EKW+/hBDDQUKpbbLJ9G1DjWU6Qp8J63qgjI5ZBjbuvv4bWYGt8+fMv0HWATag6XUKK+PTAJDZ4nzwkhDTi0A4xbaxtJFDHHd3Z12ktmaEWjbnuXRa0wXh4YH3/NUPP9O2edppYp8rL9i2OH3xIna/IqXIcD/QvvuTtP/0x44v3POsZNoXu9eIQT0vdjSH2TdmR+HDaAsy8OfV6xO+hSfLxfGxVHm9PoJaPz8pOMRjqDl5eHOEC2d5pq7KevHlfzw9s2xnRFoeG0DWmQ1FAqHS0r7Alny5mIdnMnBWZjGkatH5ijFu0N2QINT/j+OwV0/E5qxkbnVENCWtRrg6M6tMM07NP2mwgzGjyXIE8V6wlbBKm44HrQ8WqMJ5dw/s32MNX9LuZIQUGqJwdGVxb0KN3AS2oVKxYOOo4Km/iYrqcCynncH8YSE0s6xa6Bz9wPZhGWO43Hk7dnV46VCommaV3nwSouWg5Oe3sO9/+lFff+oR0dXysiUUogVwlDLJQrye+8/3v8cGffsqXb98iD43l7s6pM7ogzaAbmQk5NvJQ17iUSq1H70WGCydTq374Xdw5gr+rGbVElsJ8uKKUyelVuVCnI8erK+a5QApHkRArOufYj9+Us4uTzQ/mEePwmg3qAbOGxgTINAoLQlAZQke1TkkJrYqkTskTJCXnmXmqSMqkopAaSEO3wRC3NE05P+o2Y1u0HdmOfxAeqTqXi25PXrOX8pfXGMijp75cdBaXl19oLW6n6Q2wtX4BDOwJWulZIoma3DCisD/b3qg70t2f/GkX8ecj7UYvPGcHKRI2CFvLOaan/ZL2up8LwZ95Cml6gYUnZbswOpGpSFIkF0qemeoVOU9xtR7fp6qHaY7gsyt+HQ6HiV58T+l7zaMTlEHOE31k2nCGQhuLCxTLjE3ufuOptxlLLty0lFy0L7u1cgBd6ji6SPIJgmr822B3N9sv2dOUU5FE8cGV3zdzw4icPRTUSOSiyLoxto6YNz0uhzD2cMXWujeteyMXdJzR2qVELTcH8jhSxpGr+QXH+TW5vKaU14jN9KWxPTzQKGzDWKM5OD0sPDx4CJ0GSv3UxnkPEsxZYpIRNKJoPtOuCcKn/judfAfNYwAcIlghJ4ucgkHKFva4iemQsWqkmp3GrD6pmyan0kqKqRDeNEn2kL8kHsTWa9ikxrlrUeCb7JQbi6cqni4NPSEhbsYDrnR/VZzJ+/q7iOclnvFYjxKNnMW5vv+k/UP2L7JHYW5U8Rcw375hDwiXnB4zimlnH4V5nR0LUrwgsvhGU5kpMmHZN8TFfHFYKpALpVRefPiaH/zGD5GSEFnJxyvu7k50U4YevFMToeTCPGeKuCNCYrBsjTEe/OEbK7kYte5FYSS2aadrY5VGG+bJorLDle5oMbbEeupgC13FR8RrIpUjtSREDrR+ZlnuuLv9iq++vKWmiVquaK2SbGaarhER3nz2M2qZuD5eMdWCbSvb6YHzcs/bzwfrupAzfPzRa980ysS6rO4DXCdqObizhQXvO2yoMGM5KaM3+rqQtZN10LfmoqNAb5u2uGEWFCgXIPdzQ1el90Y/dVIXihYXPDbDtoF098Xtm3PsfKMRSqqOZF0Y6vGwmB+iy2nl5uYZN9MV+d2J//L/9J/StXP7V58xd6MtJ3KubLEQHx/+HT+Kf9wpXcKFx+5lq15cXzCiU3cUuLOn0pqn6KqGn6wv0GR7lEm833hGk8P27skrA8sxys6+0ZL28ZjBJMh8hc0TesikQ2F+dmC6mZnmijVIpdNuBz2BLRFe0T0NsUjB0wq7F7NZKLUiNNrqxWgVmOtMl8GXP/mcr/7rP6KkP+UXP/oJrACJtXmh4V7/2TcGU3bsLwN7guBul+j8/CfTEj8RHicTsdmMPtzPXX1qsnz1nncZRtu4+vQ1hYZuRlvOfP35T5EPPuD1yw9op42vPvsFb/7pP+H+L3/O4b6Tz6Cbe8MHTyTm5MH1lx1JeNwz9ph7VQ0xkaMtu/2gY5P+vD3a6D4+L5YEHRaJoh564+J0wdpgfX9mPd+iqpzvH+jtTFafHJkld2UBYETBoqQ0PGRnnNCl01OnHTJTgcPzV9TxwP3yJcv5HhuZaXpOnqGnztmElhKlzkCmu4yLJJ2B0fri0xN8xK7JmHKlHq49aVUdcRV5xsE+QZ4fqevHyLsvWX75OUv9JS0d0cMDaXvA8i3KgKQeIKMGRVBLznTo6qJiVUiZJE4/8nPAvauHxGHOcLROPHlaZLqYGDhPxQESZ4BZ+Iybx56r0k93iG4uBBXQAJAL1RFGogDPwvMPX/LDv/HbnH7+OfrQaPnW99u20PsKKpSpw9aQ5URaF0rkn0hO8dwcWNsVrQ+SFDJXHMoN8+EZJV8zl8NF65JLptSJXEsU1Dn40T1MIpxqkFKKc8Uj3XPK8azFM4ciVHI6eMBWmUiioYlyYWeSAvSLiYMyMBUkK1q6T8smoxRhrhXwcC6L6i3jFKRh+FpIXJ76EdxFL2zSZdTv6FyM3cOW8rJGoqj3PWIHTr550F8O/Fhje6HhNbQ+Unwur/NpqbDr6sytW8UpOzkp2PBi3jZ0bB5MpV48OyXH6R4azjFeuEZ0nMjlfcM+lY19nEJvq//eyQW7qNPOfKChngIr3tymlCiTT2hSzkzV+eiq3e+Pxvtkf789mgfn9NdSvUAyJc9ToN/mongp5M6FnoxWlA3mjFDcX988RjD1jZyz/zySg6NBJ3RHt+zFvCWGDnr3RmgX4GpYpu5FsRfvEnoSY0qFWiZKnkgyIVKAgilsW0O60JK4Lky9vvCwKb+ffdVgWwt99dpCFWyEXexozLmQrwrXx5kPb55z/ewGCEZHV94tt7z76g3rwz3bcs+6PHDeVu7XhfO60nr3vcA87VqigXrsYvfn9enzuKPgF7b4k7/HVDqAYBEHvlyrJW6FXCRocEatiel6pgWgpINwDYoplPhAGYg8C6dPkUF7cn2iY8YhXtqf0xxfG015nFuYgxoa4KKa62kuHfuTiujx994LfAn4kWhxHj/3z61beXzN5fvxuJb9Wj55PQTaZliComPPR+TSWbHTK2LDN1MyM23DHQSmzGbOd5NaKIcDV89vKNcHOg1R6Gz0YWieqWXiUD1ICNuxkE5iRVhofcNs80Onrc7nzAVtfnO0b4zuAhdT6H2mzDUcrBR0MPpAu3Nkl4f3TMcrynQV6m7nsp3P2akDw90Tcq7kdIwLU7m6fsFxekFOlZxXpuL+tuf7O5IUjocDDKWQyFNhroU+Nk4PD7w43nCYJ96+/YzT3VvIibZt1JQcDUDJFimmbbC01R/l8MFtvdHWldE2plQpybmBINTqXoVJhLZ02sOGbop0GGeDzZFtaUAzkmZ6B23i1xAf27uRZI4mwx8VBEcQRqeWykxisgSbwdcPvH144LQ8cDXEQyvisNv9Xby73WFc36TsKWqDj7qmOJRU/IAbwb3fg6suzg4p0yyxGchQuhmTgBShSlgVxmNewuXJhDgQzakXrtXxrrZ4oaLmBY9U+f+z9e8/kmRZnh/2Ofdh5u4Rka+q6up398zOzsxyd0kBEkCKgiARBET+JgL6PyWIALWiRImkSApDCtzVvh+zOz3dM91dVV2ZlRkZ7m5m995z9MM55pEzVM1EZ2VlpIe7md17z/me7wO5O6DHA/mQSceM3GV0VnTuHI4VSUfUwlLR/AAYW3hjS3hbq4dfIMKHp0fysfLjn/6Ep49n2tuVsblGwh4H3/6zv+C3f/kbzl89crQjmUqj01Tw4ycWqUIxt/4scV0Se7O9L/gQ5hFpvsnXVUrC1rbbat9F8glBrivruw9esMxQx5meGmm78vj4yGNrfGWJdr6wvP2IfVw4aebYE2U4/3vTAVOCDFICYLJP8AwLy7Fhz9ALz5MFbwR3sf4zFmI4D1Tk2cILSYyMixhtoGxUFaQrbTSubQm+tnuNS9ynbm7P2VOJDXC3Td03RW+wVRtjeeL84VsWHUzblXoQxvqRtnwEcT5mWmZqySwUNjLQyIcH5npHmSr5UBFR+lVpzdH73grNYJQjab6HOqFqbsMrgtzdM9+fmFDk9efw6nvYF+/Yvv6a69tvSU/fUJ4m+vQRrhdYru4TLrsrTgjShyPPOWcPmwHmuTrFxDwP4LKtYHCqBw6lgAq9a/BPg7s7nOOdc6JYYs/3TID1zu9+9ec8ff1rXnz/p+jxxBbPoacqT2A9Diwjz5Uf/PT3+eqH/5q37z+yffiO1Ad9c9eToclTONcN+/iEHR5ZXp4p5Y6SPdlbUvbkaj2QMGo6cpzuOE53lHpink+3Y9GSMNVCnT3p2iQsBgW3A02T68EksVtDPhtDhAAyKWN0sgqqB3IWJp0x60hQCry39nJD1ejDp4wpDTJOyfMa3hjVSGUiSeZQzYfOw5+7NsTdEfGiQMLCzhHlOLrNKVViCvJsR02859tBHlQakZ3p+1wC+J8HIq9x3u4Y2A68xNZv3k3jqOVz3oi7s5gbDeBFTZLhRb2u7oaj662417GGrajz13V4GOQYnlAqAkIJ9DIQ/n2CO2LitE9ZTFxblgYkt3P1AKaOWor9JTOXiT6I19jYUf/dPnvohsZacHcit67JOIe7JL8HqHi+lpoX3gk0H1xjMhWKHBhlo6WJnqf4ec3fU1sR8WTZVHxSlrKEkB2/chpwxgjhqxHJrp+gutEQ7Kh32p33UiSaSHFmAY5Oe1h2pmgl9+SuRBre8puyNcXaYGyKmTtObVdH8Y2QewFDhSkZp3nlbn5Cr+9YrdOZ2LZC74nHD0+eVbKtXK9nLuczj9fO+/PKta0o+ommjdvnERNQB/Oe0Xi/LsJewD+fVfvk1am6+ZOzBdzq0tyZLRmlCqW6+02dCrkI2zYi1KmQC4ywPc0Zp/HuUyFJjv6XxHTwxmhkYySjrZExsLcX4mvfbKe9hiV1TAJD2RdSGbmd2IaDMvbX1uQ+0dmvhlN1uKH3f70911iou0bm+dSM1/zke+02JfD9sbhntxf0pnGJb8jA/qs7FYyeIU9AYbq/48XnnyFT5eXnr/niy885HmfyJGCDOs1IMw73J0jm8eB18nClvrEujz5iH43z9RHdFqcl9AaMENYrpUgsph1pEhiBkOFcMgtUxoUjig5HZbIkai6UXBnJX280V8NPU+Xu7oHxZmDdufwPpzec5hcRAf0BENraKTlTix/Sp9MdrU0+HspGGZXL5YnfrY/cHUu4hciNepIYrixvm3fWkQZXRai1kqQiozO2BBEz7fczOkENxGMzLBljHVHYC1kzU8m0raObc2uTZUqeyMVTPkdOiLoYaQwP9rGO00aieU6pULNTfJDMJJm2dsb7J3pyf+KDJt/ApHAew7nB+5EidmszExKFuoZwzKUn+TbySl7W2478e2E2br8XVozigJdzDpORh3O0JTsikLCY14VzQgKKNzAlC1bcGaVMhTwVRoySpVbqqxdML19RZ6PbwmJPtN4Ykhkp09aFy3pGu9LaRh2w++h388NZUuLaNo6HQq6V15+94Ysffh/9zVe8e7ewXK/01rnb7jj/9iNPv/7AtBWmVMO6KrOqsgFtR7pMKebWnzVBFRfM5njsE466pLTvUV7U78h9khS8a980EOfwp96oLSHXC9t334EdSDOk9Ux+/571wyMfHs/kppzSTOqV4l6K7hAi0MSgJqTIzRUiB1d03+ZMQyxoMWmJjWjvBMws6EKwly0WqOWO7KV9axKwTPAald5WxDpLa/TeULyh3V9eYzLQcWcYYpJQMo51qP95LYVUChvCdd1QuVBl5tALWxefRKZET4NNVkQ2JGeSJIYI5IlyemC+e6Ae3Cf7una2fnX7USb6qOTRWXsH21BTtrGxWaQhTtXfXzkix1dMr3/I9PKHrL/7hvThN8h3v0Xfv6V/+I7x4R22nhHtPkGy4U4d4vaoaLqNYot5sZ9jwrEToAaRD1CEPIhiyw8LNfccTyVRRXzKFQ49Zsby7i3n333FWD6ip9d0sh9nCuwJzMWfgZQzrz/7kh/+/A/4+Je/5emb35JGIuUZEU/sbk2xy8UpB8cXbOePbNMRmWenIhRhmiqSDpgpSaq72phifaNHxoEPawVkPFvLRdVgIvQ2yKmTklN8XJjsC2mMEYVrvv03j50vCD6V680LuPZJWJXz1QluPs//bg6O9G6UBqUOcp6puXKcy4326lx7d4DZBfG7203ekcGd1WLcmtbn4kCD4hKFfJBtd+pHMH6jbtiFdrubjhc4tzCtFFaEupMJnhtsRG8obBILZ5yB2IrqgunqX2NFx4ZYcwOCT0LZ/PvzJ+WHv66DuZ8imvH7ETRC/GPZUDQrSX1iqqG/ITuCm8RdW0LB6hRJUnxuo/eN3tco8HtcZzf6wLLTv1IlTYXRYs/peKI1CpJRBKpB7YzRqfWEDnfR6pvrC3JZ/D1vy62OIoo0R3QzpRRa2zACNTZQbchOzZS9sOVGI5uqp347jBNGBWnyvVIyIkaVjEhDrXiDv3b6CrrBWJSxuiZgjO70ow221t3JJoUmKgmJxssXTgsuuLnHsCu9QR/Ccv3A7779DY8fPvLh/ZV1HQ7AaXZNBw7C7hPCFPv4buMsxP4ciPGnRX3etXfmdcJekxTi+SWoNOKWyzlykcqUqHMiV6FMnlMyHyo9EnVLyVgfNIupAl6PdXW6TamVVDM1OYQ/itGLJ6Kz+dnHvjb2OsQfVvb/80Xqn8bL5P30iiJc9mblNpf2M872bIfn5kXTX2/P4/d7NkFcL2It7+X9Xy/ub62+GSWlGMT51fZNLJ60/UPoGIgmJB8hzaRp4ud/+Ef8wd/+Y0YRyuzhUqOvSHaf8OkwQTHmw8ywQSnVi/vNiygdC5YrQwt5Nfp1QYJP3cfGtmyMHqOVWCQizjkrSanlFKsR+ugunjBI3XyR905fFnKZyFNBUmKqczQYO8KZOEz3HF4cERWGJroM5ruJZUmUNDM0oc1QyWxrp9QDx/kOY1Byoo+NNgx0RbJwf/8S61eWjx+x5o1BY3GOainsQ5mcKhkXQwZbjZoyQwrWNaYYSt86G1ABSYWxDKwZ2Vwk25cBTSjmRaPbdwlZKiMmA9oNs8EI69FEYYowoGGG23UOUilUK4zeaW2llgMijfV6puZMU3e4eE4svk0z2QMcVHimzEggGTb8i13NLeTogAdKU5wvL16YZSCbQArc2iCNOOhE2JMMkmowf+NQy4KU5JSCmilzZbqbKfPkHvGY0xhOR45vXnI8CZfLWy6XTi7G6Bee1sby/sp63pAth5YjUcnBD3eqSU7O57tuG6fTHT0Z37z9GqrQ2UjFO5b3v3nH+9+8Q7fBLM4JbTroBkvvbCKO9IbAqooQ7u3xTHyi0o+NsvXuAuPY/LF9Awx7yxgVqgFDmTFmAVrj/LtvWZaJ6eFAznAYiSozFk1c7gVTF8CRYZWBJpDjxCjc3Ar2lFy8ZghkIZq85Mr/mzGCDhcem4ZL0Y5uxCYnGhthunEsnWArgfg6dcRWH60ni5/cWtAcvKDz5zGKnXCZsSQ+GaiV6e4l08s3aK30YTQyY3pJSy9YO27tmU8MeljcQW8LYpl6OHA43pGO99T5jlxnSEofjWW5cF2emGsl1xrJqSn2hc2nXcH3llTpuWC5QgGZQO6gPHyP+y9+gjz+DD58jXzzFZdvfk3/5tf0j2/p5w+k7Yr1FUHJ4g4g4HaMhgd4aQOmTJoqh+ocmoR7Ogs+Neub75VTLsxTjUPCC1YHCiWsI0HPZ9rb32HLR5KtIAduEfbqTRMZnGgnTId7vveTn/OLN/+UUQuiE6f8krEtdG0sy6ByJWcjXR9pH75hK0YaR3Kd3Ho4K1OaI+gn01tj44KlC3kUyhSx9wqyVXKdmKYDqc5uMGB4Iy+DqXrjk4L2oAqtqZ8jpQSiPW6HZUqez9K7ulXg6IGS7xL2oF4gmGa6JXKuvnd1PPG0rdQK06EwlQIH871+My7EYW1yo9SkaKpUo8kI281xs6UW/74Qrnth7HaAz7aAXhxboI0p0AARrxqep2Y7V/+TYsE/jRdWt2ah+0RXfXKGXsFWxFawFbe73DDdiA+OJx9FAWQW75+YAqTg9/fg2/tn8gIvYVLQ7XluZDwX+KMt5B1UwfVUAmzbQs4uYO57E2aGMVz8qvtcdG9a3P9/6OabVvImLGV34QHXmVgyeqmkEc+ZubjT5u5TgL6xrYu7gG0Hf35SJScH73zrEnYxZU5ys3IktAM7NdbMItnWJxr7c5kk+bOXEjVPHKYTKc+hQUmu/dgGthq2KuM6aOdBWzrb2umL0lf1kMSmtGGIZoxKSu5YNLqLmD88Gb/88+9YnhZevHpCRbhuG4+XhfePT3z34cq6hQNXN8yS751ADe2PT6SMHJkae/gWBJVm3+vZkXjZ+6DbZCkFt1SioM9xNkhylD5loUyZlI3pIEg1NA9UnCJbS2Fsfm/GMM9A2s8b8cmeJHMQcFJSGZ7O5YaPoVnP9OrXbrSBhtuV7uYW+MbjAyRvJNUc8HI3cLm5ciXZA+WesXqLkzxZaBSRmL7xbIX7yT97QOyz/vW5Fvj0nx31v9lxmlHCBysWonO1cghChsYYSRUxYapHptORl19+xg9++mPqaULHQpmSi1/FBThTLoHeO20lZbc13K5XVN1Pdp4yULleFNFOwdMsdTjHtje3pMJ8Mexj2yGJmjKLuljkeDjuEaS3BM2UEtKVYXtnv3mxUYxUYJpntm2lSiXNhZwLy7agqhxPE2lKtEvncl3pzXmqJsk9dOuBw+kAOMUm9UQ93mGbUYohTORc2XmR27ZBF6ZUyeIpp+AF4jD3NnArrObpn4ojVSrYNtB1FyYmj8nuiaTF3UFUGJshmsCyHz0JkmasAV0QTR6PPjygQoer8Pdx7l5ICZlm6iIn9Xj767IgMqjiPrM5JdoIrv7Q20OmhJWb+AOfbO9SuT2sO+Vi72JTSv59u/obt8LSvQARD2WKk4k9SU/6gOQhNZsZaTj/zgsoR/bTsSBzpRxnysORPFVyqczHo5fH9cjdyxOldIZWGBXrF/q20K8L1t2eclgUZPEOXQe1L09FE+S5MmSwjY2f/vQnfHx85Le5MWgx5hWKFYp6st7ztOJ50e+FuBiMBC14zCWHbDEOtn0TvF1PkdtiTrJ3+buoNdAEc9uz7Xx2K0HJtLP7SZepIKNi3ZM1UadOSMouQBfCux5GtvCdNlKkcKo5ijJiYwkKZfDog6bTI35LopiIZ9liQ9IcHOBAIt1+Lxr15Km3jfTsJGF+wLQ+HK2S7GK2qDO9ZfAgF0sJteRc5w4lVcp0pJeJMRcsH0mnL+D4mjxV3K9pw/oF041RE1oO5FIRydRIvRyjs64ORvS+ObI4mte5k3A4HJwPnPONEmRqkJ233w26JKbp6MFKlshHYytndLrj8PpLymc/pX7+W5ZXv+D6zV9w/fY3tO++Qtt7pmKUYeQqLpAPUKaNwehGzgVq9ufdlKyJ5eMF60rbwHExb/hzoN0pJWpxO9qGgioThXa+8PirX7G+/YbTlz9kSgmRPV2bGCPpjSObcublZ59z9+YVrSbqKJQRactj47KdkaywbqTrE7l9QM/G4ESvYaU8HVGp5DwhJFrb0L55A6owM+POV9ktmEdz1J9ys5c08XTp/fzIQXnQ4Ymao4vTTENc55Ml3wdhbwwzokLbfF/0leYoKmaoZkwqJXlTkdQbWlWhmZKkMU0zc5lJsyOPJp2VjpkXfFmcZtXHuFFtNHzW971zz+TY17sf+hYFot0KhoD04u+O0LS4xiCFOxUWz6KDjuHxrTck0qxTkiIynAqhDbMrphcSC2KNZM3dbazBcNrLzqs3c/1GEqdlZFxD4LQRjWk27FoPdHdXSUieHEjE6w91gUOg/ZsXhVnRonF2eSih/1wHIfsYtLZ6M52I8yy4++bTRjc9y0gyXNOTPvH193KzJDd02Js+CZDTX69TtpX1ciHXRu8bpcx4grK7v9SS41lb/akpNQTZXlOlnBEl6J1y+zm7V33OlVpmSqlAYQy/plMutMU1d+3a6eeN7dLZnhrrRbk+NZbr4rS9HnQSTS4S1xwA7g6uTKDGsoJug6cPj8AHLEEzZW2dZqDidF6z7BQfI1xfHLDJ4f2fb3Run2YRUyIb4xOzBf+sfpWdaYEQDUCK51NJxWlhEvkc05woVVBp1FkoByFXo84FqlKPGTWlSOGUj6xrg018MpXcsILhzkNkox4ji8WEVEMAn6HMwnYdpCqMFVob4ZCUb+c26Xka5sW+Oc1Z/bwxEYYNr6v2c/oTmjLiWrPnGZw/63+9uP//F3B3m7zJc10Vu9fz76MmKIS4CNx1JuUSHGZDUvEOqiSEI12F1y9f8Tf/6A95eHnC7Mp8gJQa0CkZahGwzp4qqOZcM20LfWugShEFu9Lbe85P77h+/ICtV3Tb2BP5RB3tsGiDnkVB5h3rGKSgjyRiLOeVUzQ1TknwYIjGtjyCFqasiKZw7jFqqeRcsVkY2ui68vF85unyyOXpApY5HF5Qaubu9MB8OHFdzm4bWgrr9QwpMU0zSTbG5lOKeT5wvq4c6pEqBTPzhW4j6BOGbpt3pckLqqbdkfduvqm14ahjFDcWCXGi7hxhXfCI6IR2t8ncr4V1GF1Bg5ph++H77IRh2M2tRlEPX7JdQJYows3dZC8aU0phjRZ+57YX5gQKtBdYzx24/5cYqwZVJJayC4hvFav/MkQZwBDHCB21EboJol54DIOS/Ut3YWfQcA4P9xzfvIC5sOjAponD/T1pnsmlIJIZrFjbmAqU44Hr45ltbYzrytgGOU2UuQb1wzmkPuHKpGQMG3Qd3E0znYFU4doWlnElnRLXc2OYUZn9HoYq2PZROYmSwxp1ODywA18OqCUXCe8rO8WI75OlbPas0PfAo7AbC67j/ufrukHH6VCjYluiD6POjgTplhg6+/tKBqJoCmsvwYuCEMOLfoo8SogE/RlKcedzNHAoPk6PM1PDTWIP1XG0IYKsBE8WTLHBqYENp6Lp3gD4Cw2MkQoUd4jpY2evxeg2phiIYFlIpcI8IfPMKBOrZFrK5OOJ+vpzyosfcjjeoTbofaH0M317wmzFMhFm5xqYvjw5vc+cgtj7mbGunsiXPNY8JaNOiXxwXZCYuxhtw8NPkmQQbzgt6CoqoNOBpSvMdxyPLzgdX5DnI+nuHg4nKIVNBR3fYW2QkoSpgN2mYoJRSmZ+uON7P/oB373/juvjBRNl681BgHApysnH4p6Pk7AMXYyhuHaiNfJT4t2/+QV//id/wt/+6c+pDyXudH3uNOO5zNEEH45H3nz/e6S50tcLpnCc7mBU1p2ffb3QH7+jfvwdypWmJ5gP5OODU4tKxbE7R7CHdVQaIoOuq08Fy4EqTvVrbaPWIzW7Da1ZImcvDrym8KlR753WXN91E+bV5PuUJSAzhtLaEom4G8u6YNqjEXDOs6hR6olSPQvFBYR288NXxSem2akEh3mizIKllW1b0OFI5RCLtRUOV/LMy5WUogjfV36g7liAJDvSuR/q/mc7VeX5zjitYW/AVITntiD26NjHQcEaZo0xNlLaELt6Ci1r8OydmpJwOmTvI9yYgmccTU4txYXHZq55Cu67n+NB4Ygi3oZf/53W4UjQ82czHV6fWALbHIDSjRTX3nYnGHOXnN43WjgPOe+6sHOpdHS6JPcFSOY+9haajJSeTQvyJ0BU0KGGKm1bncgtmVy8oG9rdgHsXDDttDHc3S4XWlt9qnA75Pz+3NzSb/c0hQV0okih5uoTYhNP5s3hOLSNcLBZWT+uLB9XlseV7dpZLo1tsyiDds0Yz1QvEjug+4z++h7L8M+oyVwTpy4Md21Iup3hzu12i9FkhP4kdGBmNz5/iuJ334uVfVoTtYHtzNq9FvBC39kt4YhTk1/qolhW6uSFvRf3iTILecpY9tMhZ/+f6ngnrfdwjkrIwItucde3Uoo3ziTynJlOiW1RKA3L3cPzupDnxHV1qrjoiPNZ2APgxjCvxSQENeb1FXFddtOJW5tot1LHATDCjEK4TTfY1/Snv9+Lgzgfd9qS30KLfU5udVjptlMlCmmaSCcmT1oAAQAASURBVCmxtUadHNTftpUco87716/52R/8Ht//8RekadDsyUWto4c9kLBujmyoukJ9qG8ULp4e2NCwNbywXN9y/fg12/ZICeRS1C+KDInXifeuFgErxjJW1n6lTjMAx8NMb52cEtM0OYe7ryiNPM3knJmrUtLCWFcuHxeuS0O1MB9ecji+oJSZUjJbv3C+fODp8S196zzcveb+NN/EMe4BjPvEmrsE7GJCMVdpo0ot1Ue8bSMlYdWVkr2gkyIx1mvknDkdD86n7p3L0xkZHsgj3eHIpuraAvXwr2LVx2OrRmEP29KpSShS2FpHV4eBRSHjqI3tiYdRYPrit1tAjuG+05okDkh3rMlRPOTkStVkUAZ0hVWVvhduPCP1u7odc8cb/eQwujVffMrJj8c3ZsZDfINJQBchmxeNmCeOFiwoK25BluK6Sk3UFyfuv/iMTaCNRpPERZJHaygsT98y586cQJdHbD2T2kZfGmMd7M4UUoQ0pRjLalhhpuCXG/N8cDeSktjGwl/89s9JRRhl5fBqYvto6NlHfUQRrMkLZ0GYcMu5Ugtrby7UN92t4p9Hl/tmYDta32+btSfF+oGRU75ZbfmYz/8OaaZrxy4jeKVgT416aC7YEucVGvlW3Ju4wEiTIxW+AT9zek2EfZCxjmdKUI5iSzAXhAtOl9o/FCEIJXiMYtE8xPryHY8bf9g63XB6DTEpyNm5pGpe2O99Pe5QQc5YlkAlh1s11gPzcSIXQ8xDidCF4yFxfPXA4e7NbZQ7s7GuH2jbB0wXvw+5uvXuOGNtYSwzOoTeFnS7QF9jc98wXTAWMLfhrSUmCKuybAsmhTpl6uSTjKHiup9JmPIJU1haIh0f4IsfcXd3T7p/QCbPyR1Dab1TFdffWA/OuDdn05z58gdf8Ed/99/iF3/6r/nl9ZeOdGYQcU7+lBI1RYqxcHPYQD3sBjNoRr6snH/5F/zZ9Cd89vu/x5f/i38POSmkO08SNS/C3DjW70M+Hvjxz3/Mw+sHrk+PoMI8H1ASSQpje2JZzpRxQYsxv3qgPNzB3T21bSATh4cXpHqk5Imhja1d0b5B9yTTnCdElEFDROipAA1JPWLk9/TPDUmQbcJMGKPR28rWPEdF0qDWRJkyQmYM5+u3bQ103qkWDjoVd9opfqvLNJPr0ZOtS3GkuHVac7FlEv/5QyXyVyqHQ+XUZpZlozX1gnLPUt6L7HD48KuZbj2UmdyEic5idPxzL+j3s51AB9kb/dvhL6GDiYKZsGREP9lrLArOhphz69EL6ILaNSyrV1S3eNYjhdYsQAVujcW2ttskGJ5pGt747xaY0XLkOAViwrs3Hqr+3LpbHkgEI2l36lDFNYC7xaSYi6pH29gFjDnlKOx8X7OupGGkquQMuU4OYooEzScK4LTntOBGCjuYUp1SW0iIFEycviPJhcKqDZEONoLdtHojkCao3Z1qtENvN146JmH3mGMv97WSUxT4pDB1gL5sjGujnVeWp4XL48ryuNFWZVvBNMckYue3R0ih5BsoFA8FOynYAZEIxdqBoiLIzi7YqV9CtNyu0XNFAGSNMytQneSPLjvnXHdoRnimqtg+UfPnbgcRvYlu5MkoU/Ecmwq5Qq5GPkA+ONe+HiqlFgYxuZfkfPuaoCaKephV75tz7XPxgFNtWMX5zig3oXJtHow2JTdK2DqyJefkq3qBLxLJuBkNXYJtXo85PcyhDi/k41rva29nMtzugP+TZCcX6+2/7ZO6/2mRL7f7uJ/HEpj2ruMBKFIKYjG2iKr/eJp58fIFZcp89923XC4LUis/+f3f5w//1h+S6oqlqx9ifcXMTbB7hzEK03Qki4Je6euZbTuTchzcGl7K24Xl/J5teQJtjs51ja7GG46ay02Ao2aM7sX11hrNFAuuU0u4j23J7g0eyLTgaE1rg+OxYmNwXlfOl3NwyO4YowAH7k4zpczk1Kl54uE0syWlpEZfPrJtTzx9eM/9w0umeaYk9+GuWVm35kKiZKBK2zYX0MZYRdXRAh3Qk8Cyukijd0rJ5B2xHp41UGIxllS8mB2Ntu0hJ0HnaYo1o5DRoe6i0RrJnJNPN7J58Swxltp58Qg7XuoPtrltYs6uadAYK1mEqHjq6y7Q2tF079BFhCZOo4kt/K9sHmI5CkHZ9V+3bQXzsKMcfPhbNDPOwQ53YzQEKCOagt1LPSGMlF1kUxMj+SFltUKtURBOXK5Xrk9XTi8mpimh2RgsXNaNcfkI60JuPnWR5Ae4mVOoNAmSzY3d1RGojJBq4Xh/pNnK937wBVYHH67v0D64e32kPsy8H2eezptTH2IFmrggUvBpSjY/+IXOFmh4jk0wTj+/ZeHWsTdG2PMm/VfHd7H098LfoA8Xh2kfyDByESwPaKsLyMqO5ohvyPl5TE+M2Z0zBDuvt8fz1HGq3K78S2MgXXeGAJL5ZAN6bgzUwn0g6AIq6gURuzg4EAi31wCerQS3Pujix4Xd7JO8MfQU5H16YYHke8Li5eM7qnQ0ZyR5IJO171B9ZJpekfKJNhKtLwxRv0Yj3yYBvWmICRttK9CFbVvo2xMpimIdF1p/wpZ3iG7kfKCWiZwKfSh9DCQNzDJZZuePS2KmcDg6mNHbQBdhFBhJyYeJ++PkIlRTLm2jrwtbe4Skfr2Jw/QmHDV/fm04NTIZ03Gmr8EcT/59u2ZlaI/QFQv0LCHdqAU4byy/+Yp/8l/9Pzl+8Tmv/ta/DamEYLe6PsaEzO73bLx+84rv/fB7fPXN78hLI4uHUCXx67AtV9am7hurC6Nf0HWhj4zll+RJmXOhHu+ZkpFbJW1CG1cvQMTd1NrolJpJSenD/fRHPPdpCIJPSqUaSSol+XTZqV0rrV3ZCkxzJqXKUKE1tyysqbgnPp6M7g4mXs64G0rmJhKJ5WPJkOJrG3MnHtsdimwi5ZkX9wdyEi7XFR3dzSAsTCHCQtKL0me/9H3jFgmnDtvR2bjxWAACe+mwu30EMh5n6I1zvxdU5gWpN+fxGoSIlhHP+4Lo4jScnV+vn6D1A6eR7nVM7G3jBkAoz5v/vqftnwNSKiTJToMKlH7Yc0OwFzE7zVDiefP0adcI3P7e0DDtGOyarz0LZldWWBo+8VbDkltKZzdTR6TsPg0uXA+qsknyxmAXYFO9uCej5s1kzkpvPo2vtWKj08SY7ICNzugtNHFOL8uSYtvdz759H5ebI4sONwZBktOO1sby8cpyXrl+vLI+rWyX5jz7JujwNtsTzyNXSGIP/isVpcXZHxQn58j6M3FDf938wl9r3Apon74LyWoIr+Umqt2fvCTmIOJeY+xZAvHnmFNL0l4X3HBt35NKwZ3dpijqJ3EDA2lINSjmGTU1QXEhvhe8PsXZxVijKRTwIFZ1RnEakBOWnYboH0lBGkyhEcgVEbe4VenUkknDazmRcJFKCa2Qh9xMBdy4Q7ARHH17/lz7/d3Xyafnd5ZwDST9lb+zX5pPC/wdvN8pzvtr7Mf0PucrHtwUwRB5IpfCm8/e8KMf/YCHFw/88pd/xj/8x/+YnBIv3rzi/uU958sTo5/p/QPCFgm3CbMJ40DiyJQdrW00tJ9p2+ILc0RX1xu0BWmN3lcXLjSJcbwfLnnOjGaBKnlx4QmUhhQPgZqmwratga50VJuL2koN3UCjjYXleg6keoAI0/SCaZ6cfpEqOc0kSRxm4TgXHvs7Uu+09SN9aYjMCDPbJXN9es+bz14xVWG9LpwOmXFpjN7jofXNa64Va4Z1X6TeADXWdWEuoSHoxvVy9hs59Lb/WeyMSRKD5JqDcPxorTvNQjI9qDu1TmyXjWVdmaR6oIVIjPkyqEcl38TTyT3nLSYOYs7jJCkDoZuSdZBN92PFx9j7+xPvupO/FBmjibq3c3TwuwYAojA3bpvHJ8YCgRzs36fBn3eqiQVSvqPEXmg6z7vvAszg6am4Bd58d6Icj77xj0Gajzw8HHn92feoNXvh9HHj/N0TJkrJCV2cKxvtPwg0BkOHNz6SUPGGzkQ41JnreuXNl6958/lrfvGbP2PkzuvPXvLzH/+Yv/hXf8nXv36Hpnjfgh8OEkeMOQojqug2wj1h7EsVzLAcHRNyo0/diO37ZhhUqZxzbALcEH5HA1xMmVLB4mcU9vGpb9xOCzFvZCyFLla9cHTDfc9cMYdjnCMoNLWbDeA+StgdD5JE4Iy4O4Cor4mbS0j8n+4PQQgJLdwT/BRIkHzU6kd9NCziEwUr4tqPISTFjyJxoVdOhqERjqIka4z1I/a0MmoNgdSV7fwSzq/Y7u45njJzucOolDpBOvmzqu6W0XsHu8L2kdG96dy2FUZzL/WuLNfQgvSGzBdyuaOUI4f5QCr1Vrj1sbBt2UVeuVCmiTK7Z711w45H+jrxMRljTdQ5I9sT4/yB8fE72ndv6Zcz8wTS96yS3Sp44/37d/ziT/8lv/vdt16oToVi7tHt9agXio66RooiekPjzAA1UhvUDP3jE7/+Z/+Mhz/57/i7r19z+snfoFPYj/YU9EmvC5TT3ZEf/fhHPP3pL8jXKzUXmkjEyAu6NVpbkffO2e/aQYV8euM2eFYwqyCT02ayT+fS6poHfwaNkjPzXEkZ1vbEsn1kn0j6/ufo50GNaXJXmmmuGMPvQfMEcM8JcGWdBvIvKT+D4NhzkazqdJCcPLE4ZdTidZoX7GCUBGrd9wxcDFskUaeZ49HF9b13unoWgbI3xV48+BofRMzurTjYC4PbFxYj/Z0SsVNsblhOTNbdppJAUW1//X3XCZrFXqihHbUNHQsyLshw60vXwrmXvCPqGnx6p4Hsjj97g+4sQQ3Xu+7T40+Amhtw5MgCu81yDj2H2E7ndIACiRwTyc6JHo1SSgB5PWhVMZXEHcXEzOkbSCSkpxuKPEbHzHkckno8xIrSn9F68Um8IliX4JhnuiQHqcQYEkm3eFCljuRTQonwSB2oxAQSZyZIrMM+ngXP+41THTQVHz7awBpsl4XLhye2s1Nx1nN34WwzdFS/hpad7hpnq5+5SjZj127soN4+CjIyalP8NkP44Pu+PvA5bcfEQUaJAM0bvVYc28xJQjcVjRkWLjlRoH5q/7SfYoHap715NaXpRhVINZGL+K9VqFN1qlsVSi0OTGXIc0HN6GELbAaWwbrXiqVW6BLaGSjztBcpftyKeThnSdHEC6g3e7lmWAfZJM7AaIKThwDqSOQKZhtDLbQk+5G48+SF5+7K64zbMcezmNjg1hQ9n/L+u+fyPnz19w33di5+emWFkucT0zzz+fe+5Ac//BF3dydevLqnFEc93j3ds44zB85czl/x/rs74MzWvuN6fcs0S3AYYZoeqPPkOmpzjq93Z37DRlsYvXsaqbmV2zbUXWiYSOYpbkN9XNlk0LbGrZnEE1INR623sVEkM+juGWvQlg1lIZUSXGy3p4S9cBRqnam1kMxT4EpSTBfaBqWYuxzUIyMvdNsQ8wctS0eXC8fjgd/99lumQ+X156+5Xq+08wfadkX7As051EkS27aAdafT5IlEYWyO6uSUEZxDJ0FMPuSDP4TD4nHf/XjBhrL1EdfQUbDWB8k8Er6Ji8VKSuETKzcuHEDS6Ar3DdcEoThqmpzH3nr3+HmxsK+KMSgp/Mj33iDGiJKo5iK8SRM96U1g689zDtR97wp25vTzuM6Hw7uvgTcAqs6X9ofdC+Rm6s5LsfknU7o344ys9GSYLjwuF7aPH+hT5azC/PINP/jp73N69Zqug2SvaI+vsN98xdM339CePmK9QJpIaqgO5lIpOjg/XdyzPrq2trNVE0y18ubzz/jN19/wy9/8lp//nd/js7/xe7z+d/4O//hf/BnfLRdmTqh60aziPuKGe/amoKktXf11oyCxOPBI+zEtQZ/y51dSqP7Fkb0wPiLwLTTFRpudXjSDI8em0AdZg2sdm8wYIyiu/tlu92MvHsKdwncPL2rbMNqAZpGSKv6aJcdmDPEEukWje+D765QkvoZT/CTJqGQkV0eExRh0pwPtbl65oNktGosq0j1gRfvANo3Jo/NgwRiph+Xj6siYFNQ60hrIEcqBZIK1K+vlK95/m1lPZw6nzymHO6Zq4WLh+gTtjWYLMhboSxRVgrWNMM2jr0bbrrBeSeuVcjgz330Gs9GTU2FSWOUaMR1rKzQXG9Zan61eDbIMUhpsYlALvHhJ/d6XHJ/esn73W2hPJLl6qE4PtHgY/Tr47qv3vP3mPVvcm6JC6ys1TeRcKBITkWjeUyBTI4RwhGXceV2YypHD0uC7R371//pveDjM/PF/ck95+IwuJ1ROBB6HJfMhdz7y2Zc/4/DqX9DOb0m5MLfOnXg+R29epC9sDLmSzJinmWMyXt9npqPC1Eiy3ortkr3EUA1LX4GSJw/BYnBdzrR29abFPME4SaWUA2avkZQp9Q7JB+bDEaUyrLC2M31cwYya8ZF7dVcRw0OmmhpmjYyviZKUnI25egPamqG9s64bOnrwzSWKXW+iyI4o5qGUUjgdM9ta6K0F5dILdMwwldvElaBTwifT16hghGcE3lDP8pCMK6qep30WBYDq3tglnnFWDYRWSWwk2Ui2YHZF+wUdZ2ysjM1/ddrOM3KPEpbUeIMeTdAI73WNKfBQFwvDc5HpO0GHMf7KZ0yy+74P1NxmcWCM5sLmlAtSPTwKc4cbi0lArdONGpHzwfNsciWXuxCC6o3mF1AFyVr8XhBxAEf3QivoLC4sy950RCWVDUZRbBQsz+QpOTtBhhdtZXcIwwOXrKBpYL2hfUWSo+KujzL6EHI0mdZdoNzHAltmLMJ6PnN9OtPWjb4Np/tR/H3u+kkJ7x+9faLYvy1qMgknmjiSfQdArQS3xpOghwl/1dK0YObUzSQlbI8DPBGnyub0yfMpPuNw8ChFpRqmDFEe3Gi8EuVvNKdmSi4T8zyRJyFNLnatR79+UmNav09YgvXggmW7nZPT0UNZhnqzk1NxC9ySbnUlYa2rmIMUCUfiJwcPsiXWD74/ZFL458e0pk5UCnmDpkYZwxs1LFwKo966fa4d0PykZDevZZ4bbtinccYOreonfysasqDSEYCkmTcpmNd35ff/6I/JtfCjH/+Y11+8Qa3R+0KahW278vDZzJvvHRjbhUN9hPGONs708REdK+tqLlqg+IeVTt+e2KwxxsKyPNGac7p7V/q2ecQ7XqRetw540ZvVkUqJDWxbm4t1zMIiKtOj+OodEoW+qhfqQG+dZelsrXM63tOHuipeMjLPkMR/jhwp6QGhslyfPLVMN1QH69r48MGDrj58bGhrVDNa+0DNifv7e3Q9M5Yz350by/ae0+HIXQWTyqUvXLbuI78+OEw1Nm4BbS62reXmKFIkU6YKQzxwYhdidWPtRqOTxUOgkmTmLJASfXXrOxtC2xpNfeRXs6M8FgeL6xRitBadNoGw7IvJSIwkt0PIxNwBJQkqhQakEfx7OiU7V7ckFwBlE8pIYW3pBewm7kPezItNTRaiVL+3KZTkwyy8Z3FnlrDX8ymlYDmh4pOEgZJj8A87Iuyc2JIMmSd6GjyuHxnjBFLhdGJ68wa9u2edjkitkO+5qMDnJw7pFdPq4r4Pv/vaUcrlSioZW1fQK6XOLOsGltAipDLRVbmbD6gJf/arv2R69YptPjL93t/g8eOVf/ivf8kkhdSNKTqUIUKz7BSlaHrNlIagqYDtVm4OC0h2Dn0PgZqvYaUki6lI8vGggOluNepjxX38Xkti96FOSdES7iopk0pF02AkD21SUYYZLcVYOOxT/V6kaJgTSxssi7vV7IXPLkqcKkwiJFGm5IdDFbdMix3URfspRqGJaCILqZ5I8x2ahW4Lmpp/Ji1YmbCSSdX3GdYzefjaHGtHraBMfv2SAguEK4QWRaeBzBWpE5YnqCcs37G1AddHzApt21iWM/cvPkNqQmxFbcHGSm9X+nbBWoMmmA2nHg730SauecpGHhm7PmJtsPWMPMxonjzQ73BkWKar0FVuEyvpw12tdnRyW72BWTf61mkCkgt290B+9Yr68h79MDPWFdsyaUuIZvIA29yqVW2QNGSuIhQTasnu9R8i1CF+b9X2MXpMEDGkCHaoNAbzsvLCwPJb/tXf+884vT7xw//lv0/97Mc0y5icXEDtKxNk5sXrH3P3xU95++HK6FfydubUr4y1k/pM10RvCotBXtD5PZcPX3F5/wBZyfqI2QssTWHZO5x3P6DITKoztcy0rTP0wtYesXHFheODMTZGSTDf07ZMn07k8gByQEqlTjOHY/XnZhR0LECKouKEpMzWO9avXhwEkmjq/F1JHUkd00RNiXo6ISYsywIxLcV86qo6aO1KG1dsNA7He2qZeLg/kiSxrH5ura3RWgswM4EESGUpsBFPsfAiam9ieiCSesu+EB8f+z2xoGBZjkmYC79Fi1sxSyMxEG1gi68dzmBnsAvYBnhKse0KTYhzLfm1DqtVhjH6LqJ1G1iwm2GDc5bjXu7pscHGnIrv+45mu4f62KcCaS/YnhuatjYIukzT5qi4uOi5zhkbhVyO7l6XJsp0d9NQSLJwy9HgvrvjVc+bi2/zhOUjuc6elaApmiw3ZDCD3ptbf0+KjILoAUkV0wbavJbJSsqKjeCCJ29Qmm6MnFH1EKxcJNB6p7tYz2gbTsXryvakrI/Gsiw+OcG4e/mSKg/0tfL4YWO9rrTlCuLTGA2dmheQO7iGT2dT6JMsx7kc+1mASbADa7b3C66pCRDJwQen95kMknRqjr9l5rx/Mlh2sS4Sf3ef/doNvd4NAdywA+J/yLn6WcGI65ydjpNAqkAR+ohUl9BzpBwsTh3x98JOO+3GMM81cs670Yk3Bg5nu3tRqpHrkxOtNepdpm3qa6e5uH6MAXmE65kwdaWNwlC87hlOZEqp+jrUmA6yc+n34v1ZhLznSnnWwj4tN25cOgiwyov8neoqIUDf7cJBKH/4x7+H5EyZMmt/9Atdja4buXamufO3/q3f5x/9/X8JupJT5+npA1v7iHK98WGnSRBZWK6bJ4X1jb5dQBwVWJYzNjyA5no5wxiOkFiOyGS7CdrcB9fiTRNKdUKY43enZLdn1K5uf4bQtrAnQ9iaC+5yxS/+dGQ6ntABuUzcHV/4ZjM2lusHtvWDu6Bo53L56PT5tmBtdVqFdpbWKcnpBtYa1hvt6cplaeQ0Ya3RtxXrFp1ocmRhL141voZ/Jg95yqCJ0ZS2Km0d7oaDJ9Rpt/C/dV5z35S+ueUdI0Wz4ge5kH3i4pW5F/ZjxHGbblx1M0fSdyvOkFQBFkE8/o/KM9/TzOg6nDVlLprcx6gphFS7O4tGF+yvH843yW6daDyX7DxAi4d1p2o4pcSFv7tGC+GvWDzeUJXsAqycPY48zTOlTl6c58ThdGA+zlAhzYltbO7M1Bs5JU4vXnKye7Y60daVijLVShqDtvpGP7qS68T1ujHViflwQtfO8XjPv/gXf8q6bNzJHfcvPuP73/85/+//0/+V/j5z4hBuKVEA3jbZhNnMMPeT17QFDz9hjPhciY4jcjI83IqcqDmFpagvDrk5H+CIr7gjkiS3AUs5QfXP4Iw3xcIxaYh4cJcIap2uRkPpkl3sGs3hiMPZULbuX62Lpz+b0mV4zgSDacoc5kLJnkLsxYM7LGTxhGHN2Rmc0bEYfpjKfM/08BnpdMdGZ7MFtQRjhlSRuTAdDkgajOsTY7tg28qYBkVmKAcvKGzB9IKNJ9AruaxINjRlb1rDbtNJ21e4Ckkzug2265X1+kg5VKY5kQtob/Trhe3izi9iz7SG0Tqq621MmjMUMqUkyB3tK72v2GjezGd3y8mRlokZtWQO8wwY24B1REz9tsRURZBSHVGcZ/LxxOHFa/LrN6zXlXFtiCl5lBCye3PYdhcmNPjEyQsmV9k7lUscLDHV2xSoFH+upGRUmge64OhcP19pbPwP/5e/x982+KP/4D8mH+5Ixd3Usu0oXOHlyzd87wc/4ONv/py8XEmrUpKndW+oFxXX1W0Ba4aL8vj1X7D1hfuP7zm+/Jz54TNSOfgeJYlcTqQ0U6YDdXKa07ZeWNYP9PYRG1fPANDB0IZkY7QFscRcDxymI6VmH21VJaWJWu8458F6duOC0RMlH5mOR1hW1tWRWC8IvajtY7CtjVybT2RTJqXC/X2mlhkNytsIC0hvThKiBR2J0YVcM/M0U/KRUx9c1oXL5cp1ERfl7oe9+YF+4+buFLZxK7MRohBQC8epuA9p5+MHFW7IJ/tFFAYkL+6j6Bpji3XkHvaqIQ6NbsHdrHz9ppub2jOf360x94IkHHR2mlQUS2bPuKSFgUEP62rZJxQ7jzgnRoBTpc4g7lAiIwqa2Cf9PEo3GlSqiVT8OifJLpbNEtS4EYYYLk4HSMlfI6Wwday+RnemzJ507P8eU/EwczBgQ9xf/9m+y6coKTsSnJyOOlJ2hLyb05HVGEMpEHoCYDhds6nSt5X1cWV9cu/+6X7m/sUbXr/5CTm9oS8T929X3n39LR/efkPfnnB/+BGUB9fI7ZOePTjrNtEXp33yiR+9g3+GqIXWbZ/+ENfKrUgJy9SU3WY8h7DfRkxSNLRR6kwAn4wQ6P/+ghp1wD65d1DWjRUGpSRqFZROkuRhVeLPzunu5G5a/fmZ24EpRZlyCez7E8qTuH5m4OLrHpOmnd5qcd5JJeg5ynQ6kmti9I3TfER1kEei5OKfpQjz7OfsaEq/buTgMJt1JLnmaAfmxZ6vJeIUtGePem7U1GdW/X4Hbh+BW7Fv+/N/m5/ip2q+UOfJueg6MBls3cMpajYyC19+8cDDXeXd2695+/aESCx8Gjm7WKb3jevlHa0NHynaiIUPa1tZr1cXbwwlj+7JhRpx3uu4uQs8F/Vy+zUl56KOQJRyyuw8QzO8qMfo3cdJKdJTyUaeCoeHA/P8EkmzI5vFx5Zug2WoXenrSjP3rF2uHznVmReHCZsqKazszk8X3n+8cn9354IaVcZlYd0a56aOoJpGA+AcbXcTcKcFC/6cjl1wJPTR3F99HejmAT0pJhjWBr27GLdZJ5u4v31PJDJJXHBcSkUFD2IYXvxPMrmjSKAou1mJBjer6bjRZ5QUHbozaGfCmk9xBChsGd0lRpCIeU+qdIkgJcT9uzE2gw1lM6OjkZfwzO3fn0eSPx+Z4OSHzeK++VgiCktu3Ho1l9liwiRepO7F0iGfON6/4P7hNZQJrYkyCaeD8eIOrKyMsTCu76jrd9A3sjoCtK5XSJm1DZIlD91Klflw5LxeUINSJx4eXtOvndGMX/3q1/TREMlcHxf+1r/1P+Mv/+Wv+Cf/9/+R+XFCsosHWyEoApBNQUtsIB6qomw3sdvOg1RgHT34/rEOAkFJ5ks4a9jaCYD6JCOLezSnHNSFmI4INAmUPAmpJFZzgWfrg27N3WCA9ToiatuRs+5bHWaJtQ1aUMbMsuuWsh/oBPKvCIc5ueA77mEfHuaSSmJLTlFIOcdGn7EyUed75pdfMr/5kjb5xGhQUa2MVEhz5XA6kpLSro+0yyP9eiFvnVwOlHoEXbH+kW35wHp5x2gfsXT13AEGUjNSChRoeYGmpLM6wl06xpn18tanRFPicJwxCzGtJUgFamWqR7DGwGiL846TCCN50ZXqbukHbg28of3KaBOWCirFi3WDppunqeZClsrdsZKmF9CObFtj7RqBdIm+ndDpDo732PEBzd9CclpNThlrET6EF15ZYHe0cIGnRbvtXt8lkquD8unTtK5RmEDZAl1L0If5PW3Ch1/9ln/8n/+XvLj/Hj/9X/1HaF+pZQbdG07jdP/AT3/2E373b/4R9vY9VLu5XqRkFJQ8Glw85TOXAzIn1gTrsnB88567V+/JB19LlBMyf4/DKXM4CCVBG1eu53es23t6P6P9goSnrNjw5iyvWDOqCCUN6vySOt1R88w8V+aSmfKRbZpozUAKZbojpYkkwjQptRwj7XRlaKfHtMDI3N298DAcH4MwTV7si2lQVhsEaOF9+0SyCRsu3C85U6eZOlUOh4nrUjlfLiyr0oOi+VwJ/DU+vQgpBZ3iU9KtEQ2GF6Upu9/8rh/YufqflAhEuxqVx86RH85JH9stpElDUKt98/KjtzibUxROXn2MYeyqWsEBLUEYKaydlb/yDsw6kqOgTgHeRC6G4CJ4sjtGSRJKiSyST6x1Jf4s7dPlArmon/WBYht/TR/ADpCE9rAUSi2EvVRcmkBbYzpiauEIiJtpqJIip4VPqFO7lsWb491VyBtcy0FXWROmrnUq5s4+2gbj2hlbZ71cacsVG0q9K7z5/hd8+dM/5Isf/h2wz9nOR9687bx69RVv/+JX/O63/4b1+g3Gk7+JoMXUHe0NDdnOlXfYeC8K5UYPE0JkjT9eI6h6/sEUyUbKvq/XKbsXfRZsGD2016NL7B2+/9yQ+qBxOk1LA8Tdz34lFXMRfBHqnKkHwTLk6kGXApBdRyg7Syp5jThGpw+nc9m6+u1L4cyX43Mn0O4hhEM93divgE+K9u8tMT2fcsVq5nzZOBznG5VuqjOjOUpfq5CzktJgPro9+bYN2hZaDIkemXAIkk9WXjQmN6H8J3Sl53/2f7fbe739Ll4/7bY5IpTL8i0aoSRDN0SM0VdqMrbWkfCI//nPf8hyVb57/zUPDzPGitwEJE6xadtGa81HiGMwlcwYg8vTk8cUx0Nfyegw1mXBlGefYHHk638aTy0RwhB0AzXY7d8obE39z6VgJszHAw6MKZSE5GgExuD+7o7DcWZdrwhKW69Ag77Qtwt9bOSxsS4LaTrgfLtK18RlHdQ00UditMa2bM497M3pJLs/cWxsfeskC8EZPlEQzdhIjOHIZ9sa62Wltx6hU+5eJCrBkZco6NwnViwTBookMm101tFgj7LGAzOyeOz6GE6NSbGAnP8eBZvtm6veRmQR2Lbj6x4yESFBIzoER250x2vcqxkXZbq94T4Z8J8z8KJ1F3l+qgn18eA+XrYbIgLhbb6PpRzf9TPU3I97s0EeUKzSG6xL4ziEu+OB6cU9WxXWfoH1A7JOLNe3rMsC5w9M6xU2Jffk412MXCqX85k8lNwHsg365gEW1+XC/d0LXr/5gq//8mvOl5WMj+5W69ydjmzffOAf/Pf/PdfffeDB7hkmNCrIAWTyplbdKpW0hRJfbpuer1+/phqR9e5378+QCq4ZwJsuBRfCSgA04eSwpwOL+EHsCL3fp1V96mOYB2bpYNVGZwR6Imyb+U4rnparlhw5NWjqtKtYYARjNCZHia6J1PEQkhzj6+HWcw4UD7BOnRNz3gXR4VJRD8jhDnl4Qz7cM0qFVCmpYLmgucBUgI4cj0wPL6htoayNlCqpHMjWSf3C9fwe/XgHyyOmZ9ArZitpwhOM825t1rFtJaUrRYHcAjn0Scale4iMyMw03UM9kA8n5nlCx8YQp9iM3oKnK3QymYqQKMkpSr0vLGs0YskTMXM54PaMg7Y4TcTEQ/WmlFyqWhJzKXQzkiW2w4F2OKLTHVs6hAWk3dC3od0d68SLmyzu7CI6YnrjiJuaC79S8ufmtt8mg+waBgGqxRRAjfVyRUdGdOIoR9Zf/YZ/8V/+13z/b/7blB/8FDMh2XwrMlPJvPjsNa+/9xnffviN5xhkR1JzdkChDg92oicP5urKWAcqK+N8Yc3vSVt1S7wj5KmTsgAjmqWFtj4y2hM6zox+hT1LJM4OP/CNJzH6dkXqHae7V9zdv2GaHzATplKY7u/oI+H2GhnDhcx5OmDWae3Ctl68eGGwris5PzHVgtjRCdgalnbixWypJZDHQg++uEgJj2wXWRpAONVMNaNWac1Dgxzp3q2QXUege3Ks7oqlZ2vBfcxvMenck3l30O9TJ7Mb7i9RVKg6GDUaYrsrjjrF1PDwr7b43q8D65t7nIsXGjsQq/tIwZ4JHruIFHZ/8EBsQ2vmvWtYGiffW0QKSAHJ5HoINyMcwCOBdnKccWa7fkSQ0Ob4mtBAsXENU3yWqPjwQLK96UmffHkbIOITLrdJNUeIhxf3N8tY9uZF4ivAMN1LMnPqVPe935kJDTPFujvnyHAkf7SGbh1djHZp9LWxXZwyPB3g/sVLPvvBz/j8p3+L1z/8u6zrG/RdgeuVcjxxeqgc3q4eGMrV7wU7g5tnBr7uhXwAaba3et4MuNb0k4bSCAccv2WWBlLceWov7OeDX/PRB6TQwIWVMsPtMnc3qJQg5RTOcDslJ4VrkTJyg6RYUlQGiGu5ypzZtJFKIZdMGxupFL+3FvJe9U9bUoqwzQDF/KUJTNCnDWG57kevMUZoPKOvyyVRLbM7PqUirvEsUUztE+iUSNk1mzGEpXfxMMzb3juCluO14D452adBdrtPnwLcUSzt68RndPtK4saEkGd2PtHElZy3eNjcEkpsoKMh2Tn3Njrr9YmXLx6oZTD6hXVpiDRKJf6uO0n05iFM+zttzUIMVVDdbry8mlx007srr2veO/fnOcWOyruafafjOLI/RiOnEbHVCdXsdJzkyN5nn38WHd7G2i5ITpRCIMMr63Xlw4d3rMuZoY1aQLUxevDfFHozrq2HD3dBSiUfZg7zgVoSZh+Bc4iQXE+wjwelFErOfkPHvl6Sj8hl0LZBwi1AtJu7izmsim4dwelKOZqhZHIr8MSS22jG2EsVxtaZphkBH+/VzNbcc3UbgRbcOlNx39f9sUihdo9QhHTbAHwhatyTnaIzJNCg/bviedvxiRHb/O6gvOc6CkKOkJJdSJVlt7V0Dt+woAbIc4Nntwdbb8932tXTToOMpkJZt42PH99z+G7moXa0Cs0aT+MjrO/ZbHBdrtj5kWl0bIM5nxjNXVbKVKmHAzMJu5xpdvUR2zY4Hk/85Kc/5e70gl/+2V/y+PHCnKq7PxTh+rjyX/yn/znffvuWSnGU93BklcKCJ12eKLifwYYQY37cDtMt9nb7uBEFitxc9kIcgcUaUByBt33EGgU+sjfGI9wW3KFhpEQXYRNjHZ2m7uLQhaBO3coCbyLZBc8us+1mrJvzWgeOuBiO8O6uRjm56G1pIywqfVoBIw5JIYXj0+wPGDkbdVYona2vHJLCXOHuDqbTbe1KndnMGzr1QAAOp4lJJuq20odAKtjIjC1Tponj4Ui6PNLWRxhXt/NLKyoeWd7ZvCmm+B6TXJiv6mnTlqCPDSRRayanGeo9eX7Asrhto7hTgzcF3qQ6nWzGqG4k0BfMfH81G+QyAwUbm69fNWxUer+Ssidcd3B7QUIbIcJcCqVW6uFEPr5EDw9YnRww1kHq7rE9SSGVOLDS3vS7S886/P52U3R4smzOcJg9zXaMwbbZTeskg9DeCD2KxLx15PHCgcRX//if8md/8t/yN/93/xHp4XMQL+6dZKAcXr7ii5/9jHe//gXSVsrhSJkWSh2wNN8ZLKGWGT2jLaO9uCZK7tAx01cHd0p29D2L0Lcrmw56X+nLI217xPSK2hrFQyXnGTMP+Rt9cDl/5LJcaZqYj694/ebKi1dfUuu9C+eyRMhd8akarlEwjDGElI5ui4r/XN2u9HFlXTOmLVJK3bVl5OLhiHhVYTIw2TyBNRI/IVNygbBVHuoN9pQLp8NMrQ4CLUujbY3RvCFF/H7sZ6Z78Ie1JF64mO33PlBy9n1hL+EC9RPcwIAB6naNjA2xnTfeQ7QaeixVn/Br930qSVAw3AJQTTzfgl1PEsW8EmANOOUUpzMgN50AJfv1zwXnRFRSrphUUp7JZXb5ryXEBAuXvFzC215bGDm4ZeltxhGw8DBlD1L0Agvn0u/FXbjrqPo5miIRGYOcvBHRKNQkRLW7hWFOyV9mB+/287N3n360hvXN35ENkgQtrXckKLa6bPTrim1Kv3b6dbgTzurTiHo/8/qzH/HZj/6QVz/8Iw6f/wG2fs5pOjD6R/rlyLgIDy8/sK3fcFnegu1px7DTAPcTObhbzgiAT8A+54PLp81ZCrpugAhWjDTDPCXqnJgmoU7R3PTg66fQPyVjbHbTQ0nCM2SK043TXraK3c6wOnuehEr3H1wyltxQI5xBo3bxwrhOk9c2rTFau9mKp9sEZe9nzI1BJteI5SI4TXa3oSUodnsj4iF029b8Oa3i59Q0+6AKB6RzgG3zMZPyDGkjbb4+JBenXLfhtqZ7ibzrVyy0KzsHX/Yi3W56lOcJErhQTaNO3tu2uG9RKwGUrZ3RxflKOXnhndRHGn1ZaNtCJnG9fAAycy2OKKaEdmFryugWI0QoeWaaDkyTU2AKhqSVxw/fMWwlI9Q8MZ0EcqVvzZMThyvoU9qtiPboZO/MBee7qToSKHnn9nmn76h94u70klevPifPwrCFx7N39KoXGMa33555+vjEtq20deMwe8hMEl+ge5ee8szWE0omTffU4x3H0x0lwcPdxLje8e7rlX59pF07tc7OtxpK2waanGtfpMbGmNAWDjTdQ8EwyEzBo+6BpjVEwy96DEYLy6rirjPJwBpYV6ftbB0x4e44R3re1RHF7qh71xE8NhdteHH2HCQkvtVS5BmvSDgIZSbxmEi4MASeYZ88bLIPHuO4CBqI+5jbbUK58yeNZ76fq/a9UN+LSd92n59jjQtl9lyEpgJTyaQpUacKxbCqWIXL+pGvfnPl23eZPCdkciHO492RepjY1hVr/hz2zTjUe4a65d58vKfmidM8sbXOdfNnu9aJh/vXlDzxp//qz/jVr37NqTjXL0thbJ0hnd/+4rekWsn5BXp4xcOPf4AU4f3FKSS0hbsOU/NGJ6UcgjSNMA9hxPMNjrxlc7RbJMUoMzvCJt4wSojnJNnNcrPjhdtmg1UHW0o0jE2UlqCJsAHXtvv9epM89g0uuQMCsQZvz0t2VGxPwI0HwBsZqZAzah5qQ3e+aJI4KMQcqRmJOhdEDYoyFUPokC70p3dM63cc5UI5voKjexGXbOTJhZ5t3WjjCnmlZqA6YmKtO4XIhHzIzA8vqeOecn3Ben7yVE3bGP1CHwumGzKWQCWDTpNcaGrhRmQJuokLouoJmR6Q+hLyHdtQ1u5OFameqNVH/6ZOMSy1kkpGzdjahTRWslZqMTIdpDCGR7mnVMimaFu5Xh9JqVJzJUkl5QmVwdaah+cMR63K3QPl/jXj+ECvE8t6xYb5NCSE1s/Ui2jcyz4123NDBsmMXCbefP6GnIWnpyceH8NOsrlIu5mLrHvKTjFZO3fHCe0DXRt/8vf+U6YvHvj5v/+/gXpHx4PlhmXy3Qte/eRvcPjsX2KWSFeFS8KWwmV1oKax0TUheqKmN9TDF5S771FOr0nzgWEbTQfWJw4Ko12c7rYtgd5/YLRH1Baw4em21f3pk9w5smeDYR5O9bQ07LwwqEi95+50pGcj5Y1pAmhYOC/dClIx5jlzOByZD0ZKG9fzBbML6/odbavkMiFUkEKts/N61alvvW+gKyIN53VP1HrkeHyBpOr7nPk+WGtlnmaGGss2yGJcUVbrqDnCaZaQZGE7GU5bacdaHSiwG/9+L3PDjWuvGG6AgRecphuqLq41627TG/7sppsnC3dPp8UGMhRNPsXWoaGTCme3G/roRbR4r+/vbadfZBcM5+J8eMsOoqVSEAqWJn/+zc93KQfmenANzxhoWf09mrkYduyWtQ3d6eYpOTiXCm2LVNWbP3NQl5LbXKbsJgaGO2SJrjFNzpRc2UM1HTuJovAm/G1Ro3gD7E6i4fbXG33dsLGSd7L1GD7oGeZ65S6Ms9LOHXpnOzf6au7C0wtSK9PxJS8++xGvv/cTTp9/n/TwCuqJLCeOF2F5f+L8TuhsKOMGnO2Oj7cicS9447y1T54a9tpzL4TxGizdslq8trSq5GqUQ6JWI0+QilJK9tpMBOkJKZ3RvZgfPaYFCUp1b/oStZezMyLYTKDeVfKkUNRD44oXJWtbybML1KV7AFnXwbZtQctxV6a93B2RcJhDR5FzdppQ7z6tjlrGcwWUlLM7vqXM1iK8KwmG08ZTSW7CkCXOjoFlgx7hrGyYwHwnSHGLzPmQ2ZbBugwyxVOGh8XX2EchtwbH9SlxtsqO5yfctk5iMhHajwBY98bIG7mgVPZt8YstrgLu0aGLiIdvdEeISwqupKiPyXKhd2O9whgVsxlIlHLicLx3n+gsYI3L+dGRLfNkxlKT8/G109aOMcIW0guenEoUye2TYI94LtXcs9u6PyziFmRDF6b5xP39vW+SJhGHDYJyvrwjm3M5t+UJM2Oe/EbaiG6fipmPy6W84HS4Q3Om3N2Tpom7hxM1w8v7yuV957pcGNsV0+YLVCNhTv26zXVCNNHbYFs3tCmG88NNB21dSTiyRLjEZKnBd0u3kWBJyX3CFWy4YHZsSl/7bQz88eM5/ITD5SQWkiZHX31KGsEYUXiDxYbraXuO+niR7RPToIWIT1py8Q63m5LCo9dis1D9hJKj6pSH4IHtBeBQ53RKShGrHagAxk5P9o3RboiwL9Dg3e9BFBJWgiMi25OhqTOVzHQo1AlEOtY6bdncIew6o7W693pxwWgi05tz8iQl1uuFkgrX3uiXK9u6kUncHU9cns789rff8OH9hcPhRNbik5bhKKF2JUlBRqWlB46f/5i/+e/9uzz87Av+9a//JX/6z/8+/e3XrE9G2TKlV2xLJE1MRW9BSXtkei5exPumtC9vp1f1sE7bOakSAkgbnVzd8rKpMpKnCI/kzjZNBz25PnIAWvZGLJovSUGbDbvPEPcaAtkpQTo0GsP93iZft8X9Ms1hLG/21KkGKZwZdLgAV2Q4ajIFWjYM2gr9ieXpG67nr7h7daRKQXKNZ7Jxd/A0Sm1OaVuuK+O6T/Ak3EYUKdX3qJqBE1OZvEAZjUOG3leW9ezCamu3Ysei0dHUMLpvrLVAPsH0QDq+JM0PaJrJKXHIx5vYsNbMVF2O5imeG+54sKEaonw6bTFGu+LZIgVJFSkT3RqSMlXAtNFH8QJQjGRGkYFuK7r4pLXMB+5ff864u8dOd7RLg6zM04QtK32025q/ZRcYpFzpGGI+JjbzA2uaJ+7v7+ij8XQ+oyga7hmUAimxjcZQZQL0usHo3N8f+fo3f8G/+JP/hi//8G9y/OIVmk9s6rkJmYnjm+/z6oc/5/21kU+N+1cTtviBt9nGOip2OFDvXlNe/pCXP/gb3H/vR9S7V1jOXK5PtHZBSkNH5/r0ngRsyxltF3JayWOht+vtGew90cpgOhyY04GUOuBfB2n04ftca4Nlaxxm8cBdW7yxsYSquDub+XM8MpRsmG0+7Z2FZVm5Xq+4W1xBkochjnFknk+00blcr2zbgtiFlBZyKpRyxMytEEs+ImmmVp/recpmpaZELp66qurN2BhyA5FcS5X5dJi/+8XfKCGSSMmLphTiWtWxs0m48XyDBgjqqeujOXofvH0dziu/CQHDunP3VknhziNAyjsl5XkPTymRS4WU8TgYL6JTrkhyRzvq0dd78akHaXLQjoykCSmTJxNnB0V0XcIVyaditA2kAa6dI+FuKyYMS5TJC/Sbni8Xcq10J4SHEUEkkI9xo6vIjfrophXOFd8nYp56m1PyQj10Y7VWGAdPs+4trqFPSMboaNuoUikjsy4NW41+6eg6GOvG2BQdmZpmqAc2u3LeGpsq9ZiZDoZOV471SOKJfvzAdHpPmr6lyW8ZvCeJRv2zV+s+k3XrZAfWEjtjQqNIBNlF0uL0ytacDbBPdqWAzIaVQaqR2JyFMtcoTge5OqVQk2BZ/V6UQJXFPGm2ONAzTQUdRmsuqDYBjSmqZZx605S5VpK4hS6hw9S2oYiLoiPoy/n3idF7FMzxqMszE0RFomiPOihBlkLvbnMpyX30nQLHzYHK721B1QPCsggpe82TJ5hSQa8b2iHHGZ3UAZw6Fc9tcncAUKNtriFNqbAHUeno3rDjVGNPDU4OUptEDVmf6WXszQDcOBQCxXqDHNzpLUS15kKBkisyOXrXmvu1mzmaMRqsm9BaAZlJ6cA0HzmdHqjTASkJKUbOSp5OpDLR1o9kOjU5M1Uxtr7RFi9GvVbYNycN5xxu9lneRXqa3vFQ6V0d5Udo28bheKJtC7175PB1/chludDXC5cPb8ni/sI5+fimD0/s1IE/NCVRkgdL37/6jNOLz1lHQ1Nmvj/y8OJETsrHD9/w7ndf3zykcymIVsbqvuUSm+a2NKz7DVouK9aEnCdqqcw5B0lD4iEpXhhoxGwHSr7HZ2sb7kM9xMXICCUlR3nNr5HiDkE7H9sLcW4WVIq5buGTgyARExLDBY7hK+5SwegMY1FrbHi7M8jucKPx5xYrKaVoFsxHe10IwagXCz4m9ozclIQS1BK9Pa0WlKC0nz8uuJWw1Qxe+hiD1v3v1EiwK3NmOkyc7iYM5Xp9oq0rfdHIA5jJ84GmynJdyWqc5kIfbgVWkrE9nbl8eE8yOE4zl8ePnJ9WzldvxsjJD7KUsa6BuPmzMywx5kz5/J4v/uBn/Pw//F9T//nnXCbl+rvfsP36Lxlv3zPOG0LnKDNTNHt+7QqpREgLGYiEYCNGwi0OyhRiMUc1JAnkTBcLkWsK1FBZ2saQ5N7A5snISxtuwUlMUwLJMTPWscWo3FsKlXQL5/BmIOY54TxB3CMgwne8CfdnIgS9w0ewNcRoUpxe1rbdegxkLLTrO9anrygfD5TUoD6Q85E0Qb2bOeQTm2xc2optYS9X/CJMJTNkY9ONa1spybU85XBkTnfxGY1qxjQG27YybGPYhoWrFChdV1q7oCh1PjDN90zzS8r8gjTdI+VAKTWcITRCdITjXMkyWK+PnJ8+MPoKMnyv0+GR57qyO2gkKV6wlJlcJnKplOQ0lWEFs+H+9TRv/lpnW6+3IjbPB/LxxCUntGTMEl3DLScQWTMQNaf2xT3zhqtQcybHTPx8PfshZUou4eYhgpXdPSOKSfA9o6/cn+7o28IrKt/+83/K7/7R3+dn/8HPqMUnGisFpTAdX/OD3/tbXL99pJ0Hx3xH34RmcH0/EN2Q0x319Ze8/tEf8sM//Lc5vv4+Vo4MNQ7rI8v6xBjfof0r2nbF2kZbXUBbcgPZsNHYk3NRGGQPHBqZWjM1V0oaSG5OHTO/d77hjkDAOym5iK41b4rVNDRGHayDNUZbGeOJ0a8+QVBBZCJnC7ZDdoArDl5fuxdEz5RS2d1g0jZBdd5ySp5knFL2ojeaejtUb6p7p7c9KXTcaKw7N3cvSjCJIit205iAi4Ug1vbPGl86QuPjfHvUi3s03HJ6Q3vHhtttBl/WUdIWXPvgcJNucI03KrsgVgopcixqLphXe0iq7mIjBeqJlCdSjhC57M2AakKST0RSLkFRhVyOcU06bBtqC8rGNCdaWzBzEEExRDPTtHP59/wAP5+Ox6O7q+iINRP0o8h8SMnNMZJkb/pNyKn6dCTO+5ozLQpXHa7l0bHTcv1a9K1j3dOiiyWsDcYy0LPBJvTLYGwDG34va62ITSAHDlOlTIraQkkLou/Impnnxul+5u6zJ+Ttt7wtv6LZn2N8hwTavN8R1M9crw9SFIQ7kLYHR/rn15i0kpOHK4a5V8rueJYmgSqUaRcti9tVZs/FNbqviWLUkhjFzUIkJdQ6pQiHY2WafY/uQ6FnxlC21knZ2KPaU01IDZOUvXklzEJi6q/DuQNOg9J4n2lfAF5L34pgf04dMJZPqC/cwtB6d5eenP09YXjGQuyDW+9hKez6GxMPSUslMzRHc2OUCdDs4uLV2KRHaGr24r65k5MOv7ZOxZEAKYxcldaU3hQd5toMwDlL+1kc+zxuxVyKUwzLaFdk+EikrZtTMlJBwgt5RDunQ10hbINhJRDdA6fTPYe7V5zuXnG8e0GtB87XK1u/MmyBlLi7v6MWuJyhXX1D1N5p3ZPh1FKkf2kkzBEjGglkIRaISBT6sCyDoZB2nmJNYBuPH77l/qFiyfzzdOHx3SNzFGJj+BRgdCWHElqD76LKDele28Z9Co7nlLg7ZrKuvPvmK3731V9w/fiOsXWPKqYw15lNHVkSNZZlsFzOFKn0zblzaPbNWuTZBlD3EtoL3HmavVOUhA1uiXuou3DQvNLNxNSh93itFB23F2vdQjAYKNQzkyLKdfND3m9vvhVyPTROUhzx2Fqj4EU/ISLKsnPDn5XdZnIr9lPgWCAekGXQA8WX/e9Ek5ZMKBKjOfYRswtAFfGNXcJpJ8ZPpkZvSpKOTtVtMGuKov7E8f7AYZ7dJnq+Y9s6fRjkjNzdUx9O3J9mLh8+8vY3X9GWD8x14lAyaSi6PMG2kQ2Wpyvv335HksyUCoPEZemONEXjI4SQSL0BOr4pHL+o/OI3f077By/5YIn/+f/2PyHbhfWbX/GX//B/4Jt/+A9I776D83u0TzH6T9SpkGRylECI6dNAzCiWseH5AlMWaoz9TIwuHRWljcEw0JTYVLlqYzAwUSxlVIUhSqeHUNYblUysNY0G8YYSOBVK1Rj6bE2Xs/vep5TQzcNqRLIXhjFVMeecsCd7Osrho9pUHG3v5shGNUfvx/kdl3e/oRwmpwbMjTG9JI/iLil1Yi339GIgJw6TH/hdPdBoqkrTC0Mbu/0euyg5xEw1zxxzRc1otjJYMRNK8gZ7Wc4s60dUm2+UdWaa7pjne1I9kcuBaZ5j4x+sy4KOjW10aupYUjyAWum9oyMsLY3YA3ycrzkhY0L7itUD1jOWiSJixmRiGxsNyDbc9/66YZtrUVQgH0+MPLNaIo+GtEE1H5ruFDrdz7OUePn6BSa7lsDICYZ2Ssnc3d/x3fvvuC4Lx+ORi17ckQlFFKpBojKhvr76hn5cePP6jo/fvuVf/z/+b/zgb/4x849+znF+BXZkyITJxPd+/Df4+M13fHNtWH7PiYTOmafk+pPD6894+ePf481Pf59X3/s+TC/olkgoeb5jbsa6PPH0fqWv7pI01ivWL0h1pBBVKE5lyvWBcnwgz0dyLeRsLmweg2SdOYG1C315jx0m1zeMTFfnU6/rYFmbY50poaOzrQttuzDGGkX+FdUzvZlTjpJrTLR7WvcUtIGpCtvW0a0yRgrU25iLT3GTpCiFdwqbYnqLy2OqGe5mbyT7rkW6wXaBKEaya5wpN4pD7Kn+7c/NwKeGFX4QRVG7u+apB0uhUdQPt6e+gbze8QXIIc/uKhHp5umyXojnlL1oTxPiinYQL/RTmjy5OVVSvY8CPsS0yaeJU941EL5HSoBINgSRSk6JKfk+UFqjjxZGbJ0bUhwNq4djRdhdcM1TStDDcz8EqBaOQQRVka7ho59IqdwAR2LC4+eWg1Vula0obqTROs4573hAJYMxjNKF/nHQz4auifWxYVH45pw4nh5AHuj9yJCNtn7km7/8Lf/mn/x9Pn/8ivvPvuR09zkyDjx99YFvfvHP+eYv/7/0yy99v9CKB1BFc+r+lqgKGtTLfYDj3J0IX8J8glshlZhoVNDgnyO4G9jk1JpcnRaqdByi13BD82JfEMpUbhQSyJQJ6kGYZm8As0JVFy1zjRmBOG00TzWm7eNWP42wozW39INI5N1tV/c1kHOQfGPKbVH0aDQzvmCeDSdLLu6HLz6Z2c/lnDxHKYU2rvXm+z+7lsCYJkffa1LQQgmUXqy4rvJg2B2MpjeQxHWpoCbk7M+GBC1nGKSaWRdYVqc3mYZjYgRgqv8Ap5tlmKbMPIs7oWm/osmLxN42F+CIp8AOFbauz13niMWcCzkfmI4vON2/5nD3iulwx3y6o0wzNglyWbmcF+c4D6GtF66Xj7Trmb5c2NYr2ppzx0cUgmEvJaKBRsR/G/57EQsunXjAQNp/VaZD5Xr9SMqDr7/qvHjxkozx9rsPbJfG8XQiUQLlHjcBqWVuCnCVQdcNeqKf33K6nyg1k7Ty+O23vHv7DeeP79mWi7sE9KCiqCHZrZFEomvKXnD33kETU5nJ4iKvkjLb5WMgOkpy3y9sGDU5nUkk0Xcbsm5UneLGenEvxGhNoqUOX3jBnEetzlH3otrfi8amlS0FKzNEserI+s6V00DhJfsGO6KwTAx201vHiuLBju444MLY4uW2kfSor0yfeWK3iYD5KBPE6TioW6ZJhMDIjkK6UCwlw4PWegjsEjUXskDJlflwYj46nUpKJU8CbaDdoM7kl684vr5nnoRtfEWe36PnMzI2xvUj16Vzfv+ErYqMzHa5cqgTo/nUQvFo+BSOT7vKf9cPTFlYtw88Pn0N39xRf/0l5YvvY+WB6cVr7t/c8eaLE1+9zPziv/uvWdp7IKMWXMCk3pTkxDRVsrmbgydBOsWiqFKTUwRIIxw0/D5sNugx3lttMPLzYa5E/HkgMMPPvWd6VPx7zVNYYUpsPLB7UUt80y2XwDSCESUMdnZer69f59o7LSvlTKpGKgPL7sIjFHdTArfxGoO+XOnnj8zTPSL3aN5IdPevNiNPE8eHF2QcMUPco75bdoEXE9t2ZVh3LYI2NutgGs1FJldPalWrmDm//VAPFEnU6cy0ntw2NfIJcpmYDhO5uld2qT49oSu2Dgad0Ra2cUEIJFlWxrjS+gY63DvbfCqDdRjPvseuk0gR1Jax1DCZMHPx1JwMXS5s5xVaJssdOQt3L16yvn5D+3ilbY/QVtR8PJyDy2gYllyseDjOkJTrtYWHvms+avWRdCmVw3ygte4och5k9ZjBnYpXRJlyIqVOzUJ6fOLzlw9sv/gl//K/+D/zR//hf8z8kz9mLgnNleswpvmOL3/6My7vvuE8Fueipo1X/Q3NlPsvv8+rH37J/HCi9RWVJ9oYGA2RC709Mtbfwbig2xVtV5KuXpD17mCDJFLN1HrkdPeau1efQ51Cm7Uy+sJoV3cqGcrgQktGm6DJykgHjIyasG5KH+6gVSfnZA8RF6OvnltgtuFtVkakuN6snpA0kWQGJnI6MNWZqYDlDbqbKdR0z2F6xf3pFVKcDuqdmPPqXXPlxVculVoLp7ujBwIZsMDGiJE9MQX9hCrJczCPV2p6m9LuLjEqipm79qjssFAUVoHyE68v4CJWMwgbyxQ6IBGiKYo9wgRJPk2T5Ih9LgdSmvy/lQmTikhB8uQoeCpInaPg92cN8fMqJcJVyHx6gk+3JNWYLju9JEt1g4V1kC0FcOifJyUvIolwQJECtz1KnMasXiyNcANCu2vVktya410/NEZzmmSaMFO2rXtdlARqTCa60qRgIzkyi7u6jHWg60YeCb0OxlUYqzFWRYpQSub04p77F5+R6muWZfZ6qRc+fvXIPz3/A+Z/8o+RkklyYEp36Nn4+Lt3fHz7LbpcKWPi1olFg0Mkjaedwr2DwGaesxLWRyIx4auu00mDEMIpUsNStTqwlIt4MRwguVqElYnemlZwbr2FlWbOjvhbHvTUKLUgFtWIZaY8u55HxYP0Yg9T8+fOAuQdPYCoAA1LCapU2kXT8U/ce4l8F6/1Y9IU59z+3cvaqHVy6k00wKV42JWo12vD5GZs0mwE/StDCftMqgfEJUfhk4WgvHkpdj07nawWn7SpgSUPF+zDAnRxYbrkDNl8Et8TWEG70LZIYGcgom4GUN2CepqNOinF1FEr7T4yGsCmgrSVPqANKGXGmquMc56o+UiqM9N8otQZw1j7QrsOss2+ANNCyQtru3A5LyyXJ9riBX1bV9plBTWyFPcVF+8MDbl1X+7RHpsT4XW7d89INAG4+E07STrb8sRXT++5fHwk15m3v/sWUVh0ME8VcHqBpPLMVxHFRBnW2MaKjJX28T19PFJr5nScWa9n3n77O0RhKpVaJrbmXaipsqxL8KMTUqqH0tzhmoImbp/V3UEHDBv+kO+ts2/KbmXniERybp5GuJE5yu3iIXeH2XUKvoAFdwnw4n7fgH3Xz7fOdO889wLdLaLSLVTHEqSpMJ2OzKeZtm1cP36E5s5Gu4e0ouyR2bvK3otEeebtG0EB8C/7hGKyd8Y3/Nv8RXarroQv6shdZdfz7MKxFGh/ydVTfgVynshpRvIBmSeszkieKSG2lunA9PoN08NMP39Ht0qZjui6wtgYTdFloYpSDxOsgkwzh2Nhu24cH17xzXcfuF6vGIpYCr6cH8xTnZle3PHFH/0B51LJmljef+D1977H6cXEqx+/YLuuzMfPOf7qM87DXTjKPkJMEiN3T3wtd5XZFX4sl6vbeA6j9hFuAcP1FDY8sCylPRSTzZQmBsWDpNAooFVu6JL2XXPxaZHv6aZmFlQc/AUhDn7BBZk+KszSmeo+BbJAvhyFuCn5xW0xS8mk3KEqSsMFQjkmFJ3c3Wlhu2xcPzxRy4VUzvQpM7Si68xoB1Qqh9NMjShxpLAuG9admpQGaF9R9vclbtWZBKkJK0JPngeQyuSFQJdw5ZiYZl8hvReu6xNDG61v9L4hOXnipIjzgPPwZqVvqC6oXmFcGe1M387+PsYWlAZg7JzfZwqW4kgPQEFdgqArA+eY+rNt9OsT69MVsYnjXEkpUw4zLz77jPZ44Xy+Ymmlb82F9znf1nr2E4jLcqXO2devODIkKnz77i2PT0+YwnQ4sPUz8+GIXa/R+KWb4FhkkJMwTxnSYGydw3VjTsav/z//Lev1I3/nP/zfc/iDfxeRwmE6AfDqiy/58mc/57fbE9vTO2ZOvG6v2VpjPs6UrOi4sq0fsHH11FG7ovrItr6jXb6jr06zZDTyHq82Or2rN++pUsqRUk+klDlfvuO6PKHtwoj8lpSiIJZEspUzV8b6Hbm+gnTPMLehTHnyfYZYn6UyyoRuKy0ElCXNGP79JZ84zi+p0xFPRD0yTXNMIAvSlaY+hj9M98z1BTkdgeRi37ZhMm7FpKq7UCXJ1GkiHwpinm2CJFg3nwwFbz7n3Yhir2pCQI2xc99v4Gns06433ItAR6t36oGqOiUjJm9mbsqwG1ti3Irn3vf37c9vSXto1EQp9YbOexL1DERBL55hIClccqJB2SM7BXNnIotGhpjGJQ8PGvuuJP6zEXOUODvKOYK26QXofm5ESmhMtvapeUru2iSiqMZbiEkyQXsVothXt9m04GTv1WGK5kpxl6CaK71UrBzYWqfHs2oxgWsXGEthrK67K6lyd3/Hj372E+5efkmub1jWA5f3K5e3b3n3/s9Zlrcs796jY/XMG53I44htQu2VpC/8/iXYE09T3sGZHYSRHTcLcM0YojdqrmSgSOi5gByTmTkhQ0kldBYpprHJJ0Sutxue3homEa6JMqS6oDVlD0qVbHTb8ObLzxxLUKbMSELqeKKvGTL8hvTur2skhrkeL+1zndAXSHIgKe/hZ2GUkmpB2J/ZvMOLt7WyA/lOCdeoY5y3mEXIdWJdNwdzxUNUhw6m2UMzCROGXAvJijfMlhygU9fs2NY5niZ07JbWTlXqatQpISNozSXTWmQylYQUL+pVEzqEqbt4WOPhy0Wo1e1ISzVH78dwMYnF2MY7k4R2Ze2Q8oTJ7JSGUinzgelwItdKnQVSWARl79r62hxJHFCmB0wT27rSe+cwT2hKaOuMycdZGpynbTQXpgaSZGPQW/fNqpt3QT59geSFuI7Vb4B5jPk8V0Z3RfLHD2eUMzW7QLUF0q/DOYSH00RJ1RsKCfqKtkBIN0SFjx9WtDemUr296M6vyxmsu/9vqRWSsPQrUUdguFhkPlRePrxkNGM5N54+LB6VbpC6j6DcaYSgm0Tx3oP/q3gBIxldcQunTzjy23A/Z990xo2GkCRTklsWpt1aEovJgt188yUQZ8mZzgmRew6vvs/rn/yUH//BTyiv4KvvfsFv/uyf0f/ya9KHjWu8tbSj9BZ83r0wFD+QkLDDFJj3VSN+2GQxahKPbBeJZD4fj+2bjqJkkvsYm1ts7qNlv87Ot3b7skzNhakkLCKX8nRizPek0+e8ePUZmitNlXw3UXOD5ZH5cEQfXnK+XnwkPgZFCvf390wy8dSeoPpm94d/+495/fn3+Pv/4z/i47szk0fPumOLmfuRHw/cv3rFq4dXfP/L7/Pqy+/zfgwev/5XfDe959s/vfL1r/81j3/5Cx7/zb9h/d177sqBzYo3hkndX7qAnA7k1w+U+3tKKZTzE/rtV/SnhXU41j2iQQo9HV07GkjH6H5IlyTOUIznIksm26Bop1scjTH5GXFYa3hHj2FxtX0DSVigcwbigXdgTuOL6cDefHmQTBQCIuGIkSG7SNvZaMPDdZJzgrVDboZcL1zfvyVLYsq45SeF3gZdZvLhjkN+TZnv3NmnGBOC9c5hEiaETRPaE3mulHJChqcr1/lICm/4QaPmRCmF7dpQW+nqiYt1iowJFOud1huXMciTC7Kn+UCtk+uG1pV1cUcesZW2PbFeHxnbQk1ePDO8cR+ykuIUyrlSbCXrhOKuG71vaOu0llEqtR6hVLac0HUjYUxJKGz0PlzHlI35mGiHjKzZDQZM3U1CkqNaWZiScH56z8EOPqEpmUOZMDWWbSPXg6NywPFwhN5pyddsSSkKRQ2xWUZijH+cJ8bSmJIwf/0dv/zdf4V92Pjb/4cjd3/wd71JTCfy6Y5XP/s9zufv+O4vrqR2pR5nCoKtjf7dI7RGsjN6MAYr2p/Q5Qm7foTr1YWeyyUcpMKS1RKlntA007dCG1eenr5CvvkNvb/nevmAjgVJjSTKPM/Mh5OLi8eVpZ3R6wkpT2h65U1eOTEd7tgFeIfDgTIdmMegdRcWJ6mUnJyXP4SUj0zzPXU6QLhZuDmFkZO6i5xMQSPMqCrXy8VRP4ytLShKyhY+217wGgVkUOrEgUwfk9tIJlh229IoVdT05vATZT27Ne6eRb5743vR7/x7CY65W1ruKbS+LtEegluByG1xqi6oNqZaKKU4Yur/7zSpZEiKfT8E5Ig35LYjqwmnfIbjFxIp6DeaTGOM1X3ih4N9SXzftzw5OOAefF6iOVpFEZ9IeCaCn9NiLv7H3Gec2K/6HnqWxK0KJfvsWV3oqebrfxfe1zK5gxYlApD8/BERF/hac3/9BNQDpQqaM+hA146ugm6ZdmnoFXQxPGZEqffC57/3ip/8O3/E/PD7GD9g245cvr3y8e4blpG4PsF2XphUqBR0E8ZmTsFRTzmXpEgeUe06ALrTZIi1bBAgjtcdJt0DovKuZTI0x9gmO6UpTxkMSlBySnWdW07ZEftmjGaejm1Oi0nJGGmjToU8ZwTn8Oca51F2DdKea2PZG6dOgK4oHp7pbnI7yr4/QrIP+G9UGwfdciqe2ZDM6UUpWAbBlnCx7E6497Vyd5zpw9PLJeUgg6kDpObsDvPwXLZtc8BSqmeKJMEzExw4MkJfpjEhSsYyBjknPGNpZbTm5jRq5Ozr1O+XUOdEqjFRKTioqwqhEbUbs8aP8FLgeHKntMOxUFofdPWRv/VAEusRs+IuOfMLJB3RlNFSadEF5ZoZrIy2MayQ+8G7KRK1HkBOTIcTh8OVaT5QSqJdPjI6UE/UlFGpdPWiM1unL2fWy5kxBnlHIjRQMnYk2P+9WaMews6NQi0zovmGbpecyLUwTGmpQxp0lJyM46EyxWY0H490Uy7Lld47dUeEp8lFt1Zoq3eFNpx3NQ7ujJGTeGiMCGWOMZjvfwzzFM5hbl2Xin9v64NKRXpm683tAWsKvh5o67cuMiIekA4SKWioF+VjGN16NC83SStZEiXbDZFJu+evjdtiMBvk7CNCkYSVE12+YDr+lJ/8nf+AN3/0x9z94A757JHfe/hD3vzyS/7V//E/o3/8lovPJzlov81TPNrcx0vPy8QxQzOl/BXKji+C6Yba7yfRcwdtpk5f8DaB7LVRiIu5jf2MylBBUmU+TKRk9HF2J5v0Cjncc/zsR7z88qdYzjxe3lFkYVweWT5+h2jj/v5E+3DAVEkU+ui04TFNa9gL9m68+uIz3r57x7tvvuGYE1MCVWOq7oY0zxO5ANq4Xp747GFm2BNvHmaWr77m1//dP2J5+5YPv/kLru++ZU7waprpQxmpBNWnARs2ZcbBeKxwLoXT8cjLh5lZH+njkda9EN+Shj+3C3JHczGNDcWaF4Ki4eFryTn3kuLAF6cWYKRaInhMfBNTL/pLjkAWXJPjExh3uzFaHN7FBd83hCRFgaEufpNAd25j8eqba/JDV3J3wVSGXH1KUxiM9ZHlscNckXRCeoG5kw93yFAuOrC+kqfJfdh1eGiRwqgG9Roi3onT/RuOsddg6iJSBtt6YduUQ5oo/z+q/uxXti1L78N+Y3ZrrYjYe5/udtlUZmVmZbEasRHLEt0AlmzTliUDlCnrwTAh/T1+s1/8YpgGDMgWacEWYQOUbZiwQFkWWaREl0hVx8o+87an2U1ErDW74YcxI871TVzce0+es/eOiLXmGuMb3/h9vtHKxikb23ueIl02RDohCq006vaENmtUtu3IqVdDszqMTtMySqHW1RbqVOnZiO90GcpjhmBFVNUz2gJVzMOrTenbirSOSCK4mUBHWqIRaVWZQiJ4h5Bp+ZHz8TWc74GNZefo2ZEzeA1oGU2EdOYEKVjRX7cNASILWgZ1C6G0aumqHXrLdJQQjMPunBsCUCfGOD5vARcpl9yFcyY1x6s58MU//scwJf6F/zGk7/0OWTyZCXfzgt3LTyiP92znIxoC+yWwbZ3tzT399I6+dvSmkHmibEc4ZdzZbJDONaZeqVpt/QhHdzOJG0R2OL/Dp4naO+vTO9r6JfX0hqonXGiGA+0LjkxKN1YYN2OQEzIuFsTNoJnqzApSaiWXzG63HwLX3gpvzJvuVYnTxLy/QWJkq43WDMspYohU74QYAxIm8/7XI+WcCd4bH19MuXXXBXVFKZZk3jO1iAWwiTBPHufs60Dl3AqXHQxtQ2F2Nv3sXcdEbRTvOor8boE6FrBjqcaiNjW/uDiufPTLP4dliUHTc9fzwRTG1jutWqhQ60YvETF7g3Qjv5kyWk0YEI8zZWtMqrfrIj7ajDLVTygneivWaDSPyoS4QA9iy7febFBdgi0nYso+IxzPmh4h6nsLq9nl7Qy6bKoxbB/2nl1soqZsdzVKlRXLDWl5LEAnhGD1H94ILU6RydNxULxNfDpIKyQ62lZyLfQ+hLrcSeLYtCJ7z8sfPuPmN76FzL/D6fQJ5wfh8ekN8mLP8vSGp9Pn9BJILkFuSBabzMqoO8SsykjDR494sYfoKKjFO1sZwYRRN5q6JtXEP2f46K6DjOatYbimHDtsb8DeWKSPfJtuNZZ4Z2rzqBW76zjfkdmgDqYnmaoegtHdXLfE8lbNfkkUmharCLynquK7QwZJUWTs9jmbpHhnE+xRvdN6pcuwC4k1aDoKb+cFT6RmMTFnjLNs6bgivVnDIQ3nlJgmzrlRS0Mitve1bWipFhIoHWplniZyyTiJJnqO3cSajWro1c7Qph1GxohRfZrtujnD29ZqzXScPEhHYiWMnAXbqTHAiojQcx+CgDlZiA1JAU1KqLVaSpoyNnEDvTt83HEz7wjTAVxEgy3ZisCcrBtbT09jROHxviE+2ZLeHElTp7QNpxshBeZ54fz4SGkelcj+7jnPnn+IhEQHohROT6/5+Y/+DHqjnk6sT4/QOlNIoEIumRhMLYspEEIEraRgTOFeR9c0LmZxnejUiodBjPDOOv/LgmqME4LiS0HWDM5b1zUwoK32q2KOejuYRieWaxuFsmNZDrRa6a1YAe89IQTKWjgfj6zHTFcb75pfyjxbymDbOyFGTx54SzesEE6BZkunRsMZ3ebXLDCGavLGjPUWyx4iUGQsdNihrM5CGcSFkY4Z0Bbw20v2u9/kxa//Hje//Zdp3/0A+bWZb/+G48MPTtQ/S/zzv/23qds9Th21T9j554yYMupzd1EDZCzXqo3LvIwmwrZvucDbnHvvddNxU9p0wRZOGC4Q9H137px52y9/rqtNSZROqdn02GMjTTvidEsvT3gpLHsLB8qnB/r2QOgbWz7x9O4d2+mRWRlJqJ5yXNmKLbKG4DmeCr//D3+f0/0RLZWbZU/dbHkuCGiATqHXTqiZsp747Jc/pbnO3cs7ysNrzp//Anc6c9sbN9NCSH4svV48pAUnFR8CNSVySGSJiJuoYaG7gjz/gO1stJS2VaKD6BpR1EgsYyQOjuYiraulE4ulC28KTzmzVfNFSvA4tR0HZFxzzhFcvTaF4tz4p033vGcU7WGoZO79oq1gS3Aj1Mq2/63YMEXCpgntMmFyGJEgmK+wa4em1FKsuc0CpyficmLa7UEDLZtNhm6km2W/A+eorQCNshW6NkqFWs0Cwf4F+8MOFU8txRQcNX53qZXWkhUBslkDnuvA1ZnnXqSCKxbwU00ZUhiNYPvaSLqAFnoraLcHA20bqZaF1jMwgnGGclp7HftuppTSitUP3s7V1guWkGs+ZhfTWCir5LLaGUtGQictHi024teittDnA41AnhIEwfWKQ9HaqHkF7dSSicuEfVzWWDsrkfBTNBpJHxx/Md+zczKsk52q7Zpt4ZonBk9cN37xX/xj/G7H7/y1iflbv8naIxDZP3vJ0+1HtIcTkiu+Fnh3z/rVV7THDb96trcrK0dyO0IrRHWjeLKAMnX2wJcwMy3PmHcvCfMNkiYbh5eNUBfatqOzkkuBBpMkOgulJaSNhfDS6Hqi5xWXzszLHdEL3ltasDqbhL17mwkhkWIipGipuO7MMkfCFJgS9L5RSqXUbIVKtdT3/TKRwgHt8HR+TS7vEFmZJk/oMyIL4vZ4N4Mmm+E7o0f03ixgUuywEYGUArCMwljYcjZSktMrrc36ahmjZrOStH4hpsk4c83uqmJqtjIwmt2KP0NcmiBgdoYLp95+9wXZdzFUOo9NxsTjfTR0JcEag0H3GLusiFSuq8GqOB/G/pAFadZyovYjtT3ZVF87ThNOqhX3zQq/7marPySBmkJ/yU6xf4602sukEnsdl++rDN+2mFXO+1Ej1jaeM9XsENqhNwtyxFRaN/4ceFALmfO+2tTT2TK0T0oNjc6J1jxSHZfI7zAUt14rONgfZj7+9rf48Nu/zqa/xvbVS/q54WeHzLC7eUVrAe9mtBWcjuAlUVo37HOI4zV5h4vOGtro8GmE2znDf6uO6UvTa1CmhXHZcrLlG9jD16y31nS5SyaD2N5RByMtXfbvRCzEcPy70d247mTYVEMu0t6ltbr8dnNYqF59/Pbr4/dem077E5ccHJtA69gZGO9p71xobgYc0autewwjDP988aYOQdI7C/a7CFCtVduTiUYwy5shO6OPJm6qg25FvPRhqcm2G6jjc9aKoZrPG9r6EC0N6VxyBRctOoFB59LLnoiYc8TZJN2cGYlymZSP7fYQBRcgRG8AgRgJvdpyKSpjXG1s2TQdSMsd+IU4H4i7BQlG6JhioOSV03nleD4yz3vCtIAEpmnPstvRtHBaX3M+3ROkQy24eGD2ExMLz59/wrMXH6LOE2LAu431dMf+9gU9b5we3vGjP/4jzo/3lEFqIQpZjfsZ1eFkYooTUzIPE77axRmFLqYOuGAHXDkbRtKSxDprqajA/Xo09Q/Q5qibUns29JxzRIn4aKEkIlDrfgQvCK2fab3hxQr5GAK1ONbzE/m8mYqukZwLtXWCi4YddWVs79uFWmpBi6kGOXdcBelKV0GaNV2ziyZfD/U7DP483Ri7ztniHQhpNF/qla17G+s6saVfyii1PLQZ0T2T+y7P9n+J57/xL5N//RM+/L07fvcvHzjEDf3sM/4v/97/jp/94Z/xsjsmF8e41vjEtrTH1dvpBkKvjR/0gsdsYkti9ssXRWT8nqviPywfF1qOjNv2ErYyFCRx78lAtsxVyFXZLeCCclofOL/5JbJlzrUwT8pN+phXM2z1zJkz57by+PCa+6++oJ/ORBfpPuLFWOytFKNFtc562uhZkC4clgNePeLzGC0b3QDXiHNkf0i8efMFr9d3rPnEso8syRF7oxzvcTXjg8PHRA8euqfUM55iioj39LTQl2dw+xHhxcf4mzuKrBw++gbiJ4r7Gal3dlPk6c2XlJptfNeFhsd5C31pDisOXaYhnGrn2Bt5PJRS8HgVgreHexA/1DjzxzMsYOIM92rLs9Y0q5qa08UOKeA6atfxILg8vL1wRSkqggt+WBHGiHP4Kls1NaI2O9haM7Vr9p3d3oKJnnJh3TKtnGkUxBUQZctnei1oX2klU5tQNTHvN3bzDVMI5pEXsalXrZZqKzuc3II0Uqo4N5NL43g+0tsGZIwZViFYUqdcxr/0ocyOcJtudkJUzdurHdWV3k4j6Mc2SPqF0dw7vRr14HJfeOljSUVpIqgL9JAIYUFUyD5AKVArW2/UYLHsGsFNEBZPOnjyWenV06cFCYm2WyiihPUR38byv3a0ZQKdXlegQvPX5juE4R1WQfuw3DW5sqBbtwfRcGvTMTumK8pNmgmnwo//3v+T+y8+51/6G/8Oh1//LYocmF684On0fTZ2nGIkv/ucenrAxUx/uqd/WWjaaa5SXKH5whYq4iZEnhP7ZOeCF9K0J+1e4KYbiAuVQC6Z0gXCDWE3cZhekcoTVVerwbynYlQqJ2bHpGQkNCbx4Au4DdUzqhEvAXWBmjt485Mb0/xMq+/ITdFzIsQdYdrZdEq8NWDZ/OJoo0WjtJ1On1H7VyBPHLeM95E5veTm9rukaY+TPbUlo831TCtmITNRyYg/4HAusszzODcd55Jp1bIoVC9Ky2UKoBY+pw4uM1MFIeJdtCA/gtlb9IKq9EgffPNB3BEZ2RVcvs7wnRO4+lLFrERdjVHvnPntg0/mnW/NLCCiXPj64iI0uzdthyJT65laj2z5EQZg0cmEd1bcqzqDX0gmuIzzMyIRJwm62SIuKrFIGKnZ71luTod3uxn3/yJK2ExZwSdrWtq4wjsoDm2D0Y/ZYMR5kIj4GR8CfUx0YnSk7jm7leQTzUVUPTRnlrmq+K5j4RvSJDx78Yxnrz7m9vk3eLe+osmeLo04VXw60pYb0IhzE2V9spBD5+ws1UaInjSZNdOFgI/e9mqSJ84JFz06CGatYbjxDF4W1AdKsWlud2q/dyx3O8WK4GGxxLWrMn/FWH/NJ3PBUJpl2w11fexT6EBqXAvx98V4rfWyfnd9lvTRqF6K+nZBco+6JwRvdKfRBFz2/ewZ9F4ItCbPktTp1my4IKPZtb9sH9O+pzbDgffacH4ZzZ1d+14CmM1+2HI8FmZuqdI0oedqOwJVKFslrwU7asoVBqFqi7Y4m9zqBUghRk7Du0EoDCYWmVpme4QwgFTm1w/JG5LUlFOCu3Q5zVQ1FwTvJnxYEL/g0p7l8JLlsKBujMZGOleabzhvgF+oGql1KD3Nk+sTXTdGphM5K70n9ruXzMsrDjcfgp9tMdQHJAV6PvP8oxvOT/fcvXhJF+EXP/4zHt+9obdCDJaQKHSkB1THqA8ZfHePny7LNLaA4ZMVaHaj6/VirbWgHvJQsgSHNGf82WrLveLUKCnJs9zsWXYLORcj2KAQzO6ym2fiSA5tpVBzNSaqM2aqE0cKxlyWccF1G2pdHDj28+c2cFmO0P0In3FjTN6Nf8tlKdasPK0Yj1Vro7ZMiIEgHi+NIJ0mnoY1L3YljphzVUQjk7tjTp+wvPwBp5s79t+e+d5fONBiYTt9wX/6f/0P+C/+47/PzW4ygkwWpBktZdTmY/FIr93oRcXtYCPBC2pqLEoLxgfvw19/YefY8sooFvqluLeRP2oFYkPN745ZLMyfBm4UOT4Yw7xLQdsTev6C41eet/oVU4J8fMfDLz/j+NkXPL27h3UlNqVtZ+63R1wTa7TaiITPneASS9wNNa4RgycNHm7TTpqDpef2jaent5xbpeUI0ohpZp8mfK+0vNriunhUI617smJFauh26LpIm26Qm1d88L3fZv+N7xJvbvC+sE9K+vAVP3XK8znw8nbHT/+wsr57jS9KaEKvna42FVAvFAtxoKiSgebs8LAQE8V1CN4OOnsgmOrlnY3v2+Xz4n0arnnpdUxv7MC3fITLSJ2rJcvOeJvgaLfchXbd9L6g1wKK4oJH3fi6OHpXcs6UuqFa8X6yz1h1LCCeWc99qClHS9PuGemFvHWamyyJ+PiCEiIuLYRpoffOtm20DiHO+Hiwdtd1pnnHmldTRFSwbJyjqdVcVEq7nuuwo8hoqDxWjNtsv9LrOmhfmVoKvdkhDRZMRTd2ufaGx5QqdYoSTWyRiCRLxm2yXD2XrWaSety0I+xvQCutnKnbEQ0Kk9mbpEemuzt2N88J00Rdj7Qvj7jSEbqRnkQJzq5j6R2qIRUHVBpixEWbMsoFMzcesK2P+y9Ea/DUVPx8WumlMu1m9mw8/dM/4P/9N/9X/IX/0b/JR//Sfwd1My8/+Jj7k9LXDXUR6pl+/3NqOxFqZSLgwkSIO7bYaKFSJdC4QzHPeUiJuLsl7p9TNbIVx9YKpRUToqYbQkj4XpF6ZvZKjPb+l1IsVEcyvT7S1Eo+1ZneE+u5AkfCBHHq4xoVesuc1yO9N8r2lrK+ptRGJyJ+IaYDablhmg9DsQy0rJzPhbI+oq2Qyz1N39L0Nbne05qw3z2y7F4QDh8T/Q5fZ5oG8Gc7S8dzBOdHMWqqZAieKaXxebQR0KPmUx5F0iXwygQRZ0X8QD2aUhpRl1A30f2MhDNCQttqxc1Yrr2MUS1Ab1RDthbIRT8Vgl23zpppFxacTNZIDbZ3qxsqxU56KairOAl2bbexlFkKtZ4p9UhtJ0Q6Xpzt5I1AH5qltlvR2ZFqRX/wlyVl+yG996iPKAHDPvdRwJt1xyxnF2VarKAfKE5j0172yowiKGKhkk4johHHhcE/DVXcns+mgnuCZKLzNO9RsQVL3z3UbKCKMb1NU+Bwe8vN3XPmwy1JbpGQkFAJMVktVau99Ip5uTsm5Llhm4wQoqDOznKfAi5ZXRSWSJwns02pIRhbM/x4Lkdy7cQgw66l1FbpDfu9dC7hpiYu2uldexuLyHqR3QlO8NEWZC+ZLLh6LaAvzegl9VaHMHgV70bB7527KvQi9jywiSHXZuzy522yeZk0y7gy1VwEwxam6HWyjNpkBeS6kH5pUhxfz9wZ957TqwgTvdm/a39vY3PijK/fhZwzfYO6NWrugxZZ2c4Vh6NuhnHXYPSl3gxkwhA0nXBFz4YIKhYg6oIHNdCF7VpiQY/OLEAxBMSbp061ERwe551FN6vHS8J5Yyy7sLDsnhHnWyqNWi3W3lUbJ+AXlr2Fp4S4Y384oOJ5/fYB51dCsgunlsb51Ahu5iY9Y3fzIXG5GxvlViQTEy0sFCe0kIlB+Mav/xAXI19++gvevf6CfD5ZB+oiuzQTnC3+VjX/V/CeNC9DULAggTibP6ps4wFrQrOlNCJM82wFRxnTgK+N6zx2M3uf2O0O3N7cUFvjdD5RtRK6eQt9jByWhfV4JIsjpYncIa/FOMbdFnSsULKfsw16hhtUgV6r8U814lRwGvAMRNTXPOjXpVOGa8UZdlIEXAjMUyKlQM3Hcdxal3lBP6ka59lpxQM7P6Fh5rhMxOeJ7//6Lc92SuDIu5/9V/yj/+jvks4d52buayXVSHKR6qwo16EMXTQPu18uN4v5kVGzDjV53yFbgNZQ/EeDc7mRzbrRR/l3WdQcXnwBxL1f/u6N0hyKcfl7bUzBWYhahOhWyv2v+PTNT2n5RDk+0J82tjcnypoJCnlr9LUizTzqfjwEaunU3PA9UdSW5pY040Us1A0jOUQc4i4Jvhv7KVGkolpZNLIXpbZCyWdqUVycDTeZZmorVL/SfLM0xukWd/MKd/shH3zvt7j9zvepwYPLeNk4zI5npzeEeoIpkH8+kbeA9MxOPLRshxDDHtOrxcS3Si8Wwx2dIwhEGzjgxXz0Xex+NLLR+6Q+8+g33IUBfBlb25PV7qWhwrxPpBwjcQFxHfolLEfN+z58wA3BvGOGTkOs1TZ7gKOVxnk9czydbGrkIvOlmXaXJk/HRA6kbVBPSOu07cQxZ97GBHTm25eIVyN2OOPui/PI1T5gAUbz7pYQHSKFdY20R6UUs9C0rrQRQoV3BB9J02yvuRYsodIKmHw+0t1GZaWoGzdsQNSP+yYPRbRd92YsrdojYk3HdPMBcfeS1oKNb2ux4sF1QppNtQt2ftTzmerOdA8tCjHNPP/kFS8//hYdz5effUp++yUX1NoUAoGxpDWaC3EGDXDOlN4wBVQcdcuUaktyONMtL0qt834UgHbP1y3Tz5XymNk9WyArv/iDf8J/+nTPf1MdH/6Lf5Wb+Rt848OPaV0o00TtK6e3v2R7eE3VJzsXfMLHA/Oy0KKnhYTEW9I8gbdlu3m/Z3f7ktodp9UsUU4aMQV2+2eI27NtGzln5nnisDvQgfV4ovVMaY/o+hW93NuDvu3QdqD1r0XZ64bKSh3WqgsPXlpG65laBfHJgA9EpuWG6CPiEtFD8I28bbS60Wsm5zNrfiTXd2zlHa05etuxbSda3Qgug0RrvkKy93RMS1QsDE6HxVScs4TPPhmlRC8YRyvKZCiYahL2UOtNVe1a7R4dyrrzE6KLTSTaUMbVLDxXNVQv9hy7t9FRUJkfYxTxFsgmacbHhUBCJI4moA2kYUMZBZ8zAKxz9rxV7ZZf06v93Wx3wS65xohVGwn1DifV3nuxBqZfzw/sNXQ/zppmllTUqGp0u/9Hho4dWcML4uzM69h00xqiS2Kv3SuOiJeEFzuXdDwTL8hYGQ1VdFClQrGpIrURupjSm/XKNbfFBLWl5OCIsyfOgk8NnzacXzk+fkkrK21dWWRklndb+LxQgnBi+0vBEedA2k2EeSIsE2k/4WJgG/k5pVaz8JWIZhMBvQ+00tGckdZw2qkdalMjBFn/Q1ML3PKEYe0cEyJnjc1lmVvHr3fstdo0V0C8WXMHba6OPSUn7+lFl4LfkpgvS/R9YNPfT+/dmO47uyQubejVonbBe0PD9wu44/3kQMc1bVYeP+w+WOPSzY5leG+x63EU+Spmx6nNPPkxBMpaaatS1kbZGrUqLXfK1rkk0zoVujNhqjUd+2uCeLG9CFWrS7ORiSwW3BpVj021VS20StUCrlozgdUOcAiOOGgwSuuBkHa4MINLuDAzLXfgI+dtA69M00Twge28AhsxGaP35auP+eSbv8Z5K/Dzn7NlR4gTKd3QS0dkxbMQ0gGJC36acdJR3xHfqSL4+ZbWKmHnKeVEnD3f/sGf4+VHH/DZL37GF5//Aq0bKThul4mnt+/YqPZQjx4XImHakZaZ0jo+eabdAk+PPD19YUEQ48Os48HunR9qhwU9tVzIm1lq1FtnezqufP7ZF7z56g3PX76gtIJiE4zeO1vOFO/JuZBSYje/5PjwxLtyj2tD2XMeCaZaKhDmZFjMjo3p1Dq/6JKp4d0h3UMz9KUtAZpM/X7ZySTSVs0uEZMnWatHbWI81jGWuiyLqBaEeiWmpF6oQdGd5/blwq9/K7LUlUnv+Xv/0d/h9NOfsmzK09pxyy2uOqQb0eF60ImpqXZTXg5+vTYgXWRQWxiFxPvxmeMyNuZrNxjvyS0yxqVyAbBdOvxO7p3aw7BgWPy7E0fwpvxrXs2D1m1hLpaVqVVy7pRNcRv0BvXc8T0iXaygN+gz22aTlMkLfc1mm1BHGZ7kZZ5QqTDoEylG/BQpIuxSIobZUks7nLZMUaGESDrc4F98QFwOeAdP+cDWV/ATy91HpBffoiwvKLtb+ryjeqPxiPfMyzd4yV/g+OWveP3uSx6mGTnsiaL0rdg4RQsyBkNosQdIawS1cBTnTK0PYyHPPifz+LoQDZOpY2zpBxkD2224kD2amqrTFZyEEed9GVHbv/vxZ83HbSmtodvCmaopGmDLTk1timBf33Q1+3qR1h3nrdlC1jwRpwMxTmbdaJlOxgWHS4LqReXr1FY5njL3r+OYCpgQJ2GxxcixCKzSzCZl++pM0x4fHaglntYq4CZqyTZ9koDEREwzy+7A4XBjD8qcr41NyyvHp3tODxO1R3rbjNk81tBVGlLPqDuZHZAVR8fLjPhbQrgjLq9YDh+x3H1Ebo5eOjWvOLcQesFrp7kZiTt8hfJ0Jj+e6KGCQlom5rsDNy+fWSLrG0edI73OI3XSmwQ4vMXOY7YssAcgjvmwB3Gch13K462ZKBbuY0v7VtR0VeJQWJ2fyWulPjZaeeLZnfDuRz/m//y/+J/z3/0bD3zn9/4qH7z6Pv7bn/D6K+GoqzWm8cDjF78goIQ4M+2fE5fnSDpAmnG7iXk/0zRzzkcTNG6egYuEXKnd6Bhxcsz7O3B7tlzY1o0UF+Z0ADzzvlHLxrq9xaUDa36HV8c+3TGniVJXTudH8rpRyhmVQqlnmm5jDB6IzhrQWhrSwCVhSgv73R273R0iFtrUqrKtK3V7JG9KazvWbabVhTFjgbajFMd5PVPbG5QTihC6G/XEuKHdIM+IFawOW0qcJhm5KGZ7QRWh07ThR86EjmHnRZQU3rPkcRHcPAgrM8Y4M4uOyPBpaxvqtvHZuExcnQWzdQxLKz7hwoTEGednwCw/Nv65LNVemlodmTO26D4eAUbeq90AHBKtKUDwBIMDDCQgF7UW2xFiNDOWcD589g0YhdjF8GHF40gHHfsFV6vSEKRs2dJUWsWex2KkCqQbJcyS5T3OQaPCuMO7dsPf1orTM1oeKes9fX1E80bNlZ4FimL8GKXVyul0ZN0egDNzXLk9TBzv3+D9a7p+wdO7n9K2eyNzeRnvuw7UcLTnr1hSqsww7SfSfiHuFtJ+MoeEWLK59krQiGuCL4pbO62a5QsvLHGhVrOWtVKvk/eqjeAsEOqCw/beJru12dKxjvewoWgzd0Rr75/9fUz6zR7URoHuxs6Cp5Z29dNfbDtgC+JGcht7DzI+M+8HfvliDRrX0bVBtxA7UUF9JUSzkV32AK9Xs8pIGO7XhlY69Frwo2kz65saUUkddas0tV/DwbZWyJ5yUtZzZVsNdlFLR7ojDAgFMGhMep2YMwhB6jpOzEmTJk+YPSEY5jVEZ3lMIlxSeV3oI/naPj5nk0hLUNMR+hDjgouLJetNs+19VAtD8uIsYEMxv/3pzN3tC25un3Nz+4zajJDx6qOPqOWG4BvOwfl0Jk5nprhnmm4RCcQ50ik8nt7hk+CYSfOBWjZqht3tgtMNrWcWOt/+XuKDjz/g7evPKduRROHzz58AscTOuBDjHokLN88/onZLad3f3KD+kfuHEzlvqAuomGfStroj0xw4Pz3Rm1L7Ru2FEBfj0Y6Rz3re2CQTUmS331k8s4MqQimZY2uULTNN0+j+hd28w6u/Yqq0Qel2IRjOyHCWpVSzy+PRqjBCL7xVxmNUODyT48o1Qo1d/M6b4uFG8ZtLI3fDAbquFrmug6hjIqqNzgRECsk1dqJ8mCIvI8wY7eH1z3/KrjbcuhKao5AJPsEFt3YZxl4Ke7iezpf/tUEY8M6CYITLwW6dto6bU3n/710EHSqTMqwg169vvGMvl5RfW8QCT6t22Kmzgk27pXtKDARV+nmjnla2+0JfBSmBtlXqGXofUShqzaod+B4VZcsQUYI4ttKIzpql3hvzMpuPd2wAt1oJUzKbRau4HlD1nJqjzzfovENvn9OfvyTun5GWidP5QCtnfFq4+eb3Obz6FkeNHHsn5jPpMNGdkqZEDIG5fYPl+TPe/uInPL9/Q/5igXev6ffvcC6DZMpptbZXFK22qZ98hGjpzSKV1jNCJXgP3sagLplH0+pyU9oYykhHbZ+lg6gneI90KGr0phBmwrRY8IazwkGEK52m1wrtBH21EBjvr77zSyPhvL+Oa3GCCxE00nvExwMS96hfkDAZ/pROXo9o3aB7Wn6w6cBAjk2To2vmdL4nrgfC/gaRYDznEIni8LHjfBvKoEcYuR5YboKTmZxXm/yNEayPiTQv7PY37HYHFKHkTO+d4B20xu7miaf9LRIOSDrisSlc8oLTQt0e2M5vKJv5bm1muCO4W9z0nDg/x8W92T1CJO4Tdd0IMkFe7YETd2bdadBPZ/pa0PiE5kr3iddPj5TPfsmWC+8e3oL3TPs99EYpxb5vsBG580MNhqEK+4HITFbA+eGxvFjhGPWajPNkIEZrF3JRJCy0Dr06puZ4mSDkjf/P//5/y7s/+zF//n/4P+H5b/wFdh/f8tb9Gq9lJuy/TTn8Ka6eCB72+wPzfEeMN7hpoXpFIkAhtpsx4bNAtJAWnCbEVUI076mfHH7eWcolgRBmhNn2CVIjTAvL4Y5aHil5I8pkmSk4plkI/UxrG60L0YvZQXulV2NPB59ovoNPLMsdNzev2O+fM8+3qJhi3YMQZGYTQDfK/Jy5WUhZrxmiZ788J/gbmwzlRxpP0ANuswRum9Jac44aJUaiKcrBebooKQZ6j1ZU9mbkHNGrNfISSNdHkXbxRddW6M2oY7ZLNbJC2oRKtI5YzTJp96a7FnoKtiDo/XXRnmHJiXGxQl8j2h2tF5vUDRtMGwWeU5vkyQhaFG/Fqas6kIKZ1ooJBWHBSaKpM4sF0MXh3Wx7OgrijVwnY8LbcLjB1WegLnH28zoXoNkjVodaewlVdCGicslZEegep2NHsSsxxGsAoBNFxRJmW1HaViEbpCOfHu1cKkdoI1MlV0Q9tQkRR6fSu3L/9h1P928gP9HbV+z9jkk/pddf8u71n/L45qdIOzJ5Rz4f7ZoMnhgTEkbI3DThZ3AL+F3CEg+FHkZSvRjiso+msUuHAGlOI2PIwolrGTtRvUC90I5swtFHQYwzmbxpJ7hADKb+X5XxbmGoIpecAvs6tdq02I9nANj12MfOhY5JkNl33LUZExFK+drybrdYMz92xS5K+2XZvw8aoxW9Du2XDJ1hCVWzX8qYTnn1dm+ojB2V8XqLTeK9C9ZYjuajbI2a7V5zEjiVlbx2NEe2Y2Y9F2oFrUbdE1Wa63a+it1LRpMaezKXkEgrIZHcKQVStTTfWjvOW7p4iEYXUtsgGuSvsQ8mEMTPtFItBS9MhDiZAp4SISVy2Wg0wmzLdrk0zqeVbSssuxuevXjB4XBLCGko2o79fkfvM61kujbm3USIB4JL4BK1yVBBMssSCMmTi43EYpzRruSSLQBEGkUDTQLNRdy0IwrU9R3TzY7j45mQIn7amfIQd0g84DXYBRSecfP8lu8dZj7/5U94eH3PeSv0mNgfDhzubnj27Iaf/uhPOL97jYj59LecETXF3anh0FQ7T09H47UmwxqVnCnbylPvtFxZT2fmOOOdZ54WWm7UXkz1a1bcTimRz9kKUwUvRgmo2Yr+oAHXLcTK6WCZY4fZtYsVGSNAs7FciiGcBT9txS4a78BLQ7SZAiEzFcX5G/A7Sgj4ekbffIX77Ct2/RmldhTP7nDDPljSmrDhtRNdQb0HFxjuCita5L2qfvnrEqBhDcBolHQUBZcWQBnpiBcFX8aBodcxsCG7uN4QF7tPcN5CHrwnREuS9NIRbcTobQzbTJnutZEfz6wPZ/LJ0TZHy0relLI5ogtGfel2+HcVylDCZIQ5ebohzUY6aVMbs116Lns/FPUbqCN3ZcsdWYQcbuj7ifjyJe72OenVx9y9/IAmcMgfIC0TpwOvvvsDXnz0TTYVfvX6DVs741onjYM7t47MN2hI7D/8Nb4pwvnFS+5//mNq+JRw2GiPTzQeaT7jkqM2pamnx4ifJ5BKLo2URhBSDOASDYf6SI+JECwEZEDOrMjXZumOQ7IXscmH9MA8T8Td3jznPhDm3Viksl0I0UbJmby9pZ9fo9VsXDKSLXUcam6wk10IxOjpLuDCQppurBhiovYJWmK3v2VOER+PlPUJJZDXt5Qe6M5UROftNbUOx/NKWDeWdKCLJ7pkSlFQfDBfZm+KD4EksxW53rPfP0eAUgq5VNQ5pmlHmqZR+FqwkIuDKjN8k/PuGbubO9LuBcfHRysMtDJ5Bd04H7/i9RdKLpuNUUXoeofEZ4TpjpD21rQ2S+C+vblF93BOC9vTkW09UetK6Y0eD7i7D1m6IucjPRd66awitPNKa5WWIt7dMqWEX1fK/TsbkXczV4nYDMqBpUoDa84sYcKnhN+M726X+wh5GYACO8tM1fVjMVu8Q0cIlC+Co/JyCrx995qf/L/+Lg+f/oS/9O/8uzz/4e/x8ctbpuUl//Sf/YgXv/4R2/aW5DZ2SUjeEUIiph1ba+A7vW8W6lKL0WnKSDZ3o1FDqWJ7BCnNNnF26arOxXmH4KltpumB3m8p5ZFyPnN8OrGWM16UNC2IzNcCpNRmloZaKa3gveIjSEjcPf+E5y8/IcQduGiNoYs21WpCDQtpurUCzM+k7Tm1FGKYOBzuWHbPEG+qXOsF0TgWCf2wGphq3y5Vuphl52JhsKltp9VCrZkmRmtpTa/5BVY9m7LtRqiRGIfWBBdXbDNbJmCETWGLsTblu4hK7/+62kOD3fs+RHyMjBLZinVnOwtKN/uhhKHGD+VfAo3BrXcRjxKZBlJ2Q7QgYg2c9xOhO3Kzqb0bhJdLuKXzA5Chl5/VWaPl3ifmirfXpv3i69avvZrxz9HIiAazkMpAR3qFalPri/JrC9YN1KEFNBf6OdNPR/LxgZ4f0fJEWY/UvKHNaHuo2XdMuVeO9ye++MWv+OHDO4SviGtiV3/Fmzd/wqc/+SdsD58ySUHLSrjcq7WgYtkNIUVL0p4V2YEYAxedAkUsC0XFqEqm7tlr9SOEqdaOd4GgRn6idobj/vrOyBAWdZAILZjKyHnOv/e86zg/HY7Wsp0dJtGjjOl8a+jI21H0WgsYQcxsOLZjokNAMnKYE9s9aa3h8bbv6S8W3kuBcSnOBwmqjc8rYg0do4EYO4GqmN1chnoxBMzWO96ZRbT0Qi1msxE866nQi1rj55RSOvncqGdlWzt5G5biLpaFgdnYu15qN/sZ3NdFznGbjgBlXOmUXDinZoj3IHbmeJvAuAClVtatmhAgZoUKy+4ZedvsAu2O1m1h0AdHLivqZ8JYUhUnzPOMxsQ8zdwd7ohxGmpAsXTIQb+IYaJ3Rz4/gijzbja2OgFdM+f1xJbPxganU6onhMw8z3gXyG2jHgvBe6oGTufK6Wkz3q9MpN0d3/zOjs9++bmprTLT3czh+UfE3XNKE2JTSHtCdKS955OYePEq8/bNkTevH9E48ef+/O/hfWctwh+/+4e4fmYXA71cLuYxywS6NrbtTCkzgqdpYTsfKdvGFMLAXBa0KnOa0dI5PZ6p21BRiqEePZ7oPAx6hhcrFHtr1Gab0Izi15RP451eOmLGAStcVhJt0SQmT4ie3PrwTHbEVQQrUHv34G8Iyy2PzeOmO5Znr2gKr9/9Me0fvOE7/wl851/9BrjId779Az7jP2GOnhAaSSvNKUXtoB4kZXvoXHYBhhqkAg4ZhAGs6NFLWTAO3a9N3C4XuQ2T7XUZXm8sxOhY13IQfcCJjUDjFFl2iZSElAKTd4hUVCq1ZCvOa8M1bKG5BVOIFMp4vy0Yw9OKWYLEM8ayQm3YNEDGqLV3JDcLiSIRh00Kdx2w0KVQHHSN9DiR4h3pxYfEVy9pz56TXrzg5sOPuHn+nJgiS93I2vFp4cVHH5sVYt145qrRDgYSr1ax5T1nD06/f85tTEzzLZJuOR0+xK8n2uMj/fYr+sMD5ZjZnOL9ZAtdycKHpJ0IrtPzmSJYGqefcHG20XkwRaZrRSmgFaETYrTPrttSZS+dKZpiv9y+gDjRfcSl2YLvLox7lFALcYvwbqNu1hz3Wqlj6mHhSIEwkG0hepgnDi9e8urDT6hxz0kDTSYk7PDzM8KUkLgQ5j0dj57v6fFMKRsdR5gW5v0zfDpQ3UTtHud3IDPidua1FyEms8NZKrYyyXxNH44+EkOkNfNW4s1y6Jw3jnG1I9n7xRqi3mjVFu+necLHhf3haIu1+Qh9peYjvmV0ukXTSvSmUkZ3S0jPcMvB3MXbaazeN/puIsaFeb9Y4uc60Y8PtHJC00y8e0GYJnRbLUyw29ecYkTLxun4QC+Fw/4Ajw8cS2XrFc4rQRTFEfxQO5t5jtcGXTZSMLVTvKE/nfahIiulZJpa7oUft3WIal7qQb9y54YvDq+OOe045pUv/+Af8P/4X/6Mv/BX/zo/+G/8NV5+8tv85d/7i/z4l695eLyBfkT8RneZKh18x8eJ1gudQkeotZGzKc/Ofa1e6Z2WG61YfkFKM81tODaUzWhRaUdw9tBVMNTzJNRjpfSMelsQ9ThCmEhpwflErXA+b+R8pPczMXn2N3cc7j4gTjd0hFI7ToopiiOoJ007QhB2hxsO9QWlmN0hxollOeCnhEoltzNdM05NlGh1s7pb3Fgqt2I5+PcoYe9tzH/ZddHRaNnS8/A5IuaOoY/0zH7dq3HqgQg9mWrvZ8RNqExjmlkQHUGTF8/9KI6uCEIvSLB7140wPXEO58y6YgvZJgypWICkNdAJfMKFA0hEJKJdCL7SeiG4ThuNRQgJQ1564sWqJHotKr0IPkTcmCYaX9D2QlwIA29qBKTro10v4V3jdYnaUnI3G9KlyLoOzi/2lDaaeQTVzQrm5iALulXq6Uh9eqQcH9ge31HOZ9tdWSvrpmx1RG+JWANHI58yP/2jn/DRR/8lL543ju8av/yj/5xP//SP+OpnP8XnI6nbblNIE6XbNSauEWcj7jjfLc14H3GTWUX9NNFs+GJF+Ki7tCodw/H6MJaL1RkCXN7jVL0za5L53+06CwHimCbjB5VGLsvVlx0cBtrSoe0y07e/ahsBb95SWi2Q7lJbC178pZ24WnFLKVeV/fL/Wf3wXli8JPFePl/7d4MzZM2EEljm2b6PQfuvNYhTS/XWYc+ptQ6IhtkztQh5M6uNNqWsSitj/wOlF6VWoWZoVagtWm3E5XlqF5IOy5LBJgyYcrmfurrRTpnoVeloacjWxoT1EiLmbTfMjQm916/hioXg40xfC2XL10RJ563DLuXIbp7YHxYqjaaNFBMtF7qacqrDVrJhKXBhivQRmKTCiM9VQrJCsNWhSgjsd3uWZTLby1qpxZS8GBJpf0utK146wXbX2M0LZXvi9HRPkNmmTVOmZMX5HYebF/jpwJo73XvibiHMs6mBAfZhIibltD2w5GfcPXvJh5/8Lg/3n/Lqo1/nlz/7CU9frZTeCSlY0MNlZCiWemfb2sYc7b2adKmN3tzwM9uSb9mKeeGdR8TSKcsgZkSvRKsHx4XqaN4Tvd0Qpm5c/OtyPVwYIQbvO+NxQY2FHBUh18J5bWgPCAVHxe4qD7KAf04NL4kvPuCDH3yfD777bdbS+Of/7E/p7z7nn/y9zN33/nVefHtHf1TqyUgR0YM02BCaWtAXIxjFbp6xMOi+3n3K8M7363041pWMtzyK4UsHrVw8fEbFuSbWjba6m8HbEFiDRpCmxDwHvG84Z4p971AG9xzMn1ezNVc0O7xKMxXWVC3zCvaxPIbaZ2CL2ubB9yoEsUK/DQ6/gmG0xuuwZsfUiNo7+Jkw37J79S1uvvdD/Le+zdNuxt/dEg87cvCk3Y67IGy1UlSp3lEcuNlz9/L28vTBhzQUr25qlhgKkBiJzyeeTXfcffw98v07zm+/Qp9/ib57C/cn2otqGNgUefbiGTEo5/vXnN5+DqulL4ewWHEfrHA0vnWBttF7BgqijTBPRiFodtA2Ct0LVTvqHcvNAY0zzSXU+6uAgnY0RBw7pmWHx3j2ZSydXZrTS+iK4bwsdGXe7VgOB/p0i3ZP8Dvc7oa0v0O8LbC73d7sgtsjuVVaPwKO/e0LXn74DcK055QViXuc36My0fqEczNTDMxpNw7wQqv1ei/rUDwNQwYxBlMokaGGKnjzjfbaabkb87kPH6mfSNNiFr7sOOvKdq6ct421NHw8cLj1RO+IITJNN4Qw44N5qms9oRS8q6wnT59vEDcRl0h3nVodLQpuSUzzHZPe0GpjPRdaM+vAMs/0cqK8fcP5/h1bikjOtGVG84S0Qqmr3VfixxJ8N6uaD+RS6a0zO4f3ZiKI3s411QbicM3Z8n/zthzo2yAuOVwLsDm2U6adBD1Y+mWUzvFHP+Uf/Qf/Pr/4s1/wW//av81Hv/l7fP87B97ce15/BQ8PK10qaXHsp2BwgtaNJDbU4tgVDYZCMHIEaC/QO11NbW9btiLPTaTplnkaiaq90vuJ2s7DNuKRNBNGNsGWbddmShBlZponFj8x7zql3lDyGZ8Cd89fEFOy9HHvh9KrIMNyFtR87cTBZN+ZINa7LaD6BD6OJcWZ3iydN2+PnM9HxDH8tjfMs6VWC1aYOBTxwawoOKYU6cuE9sJW8vUMGVuv+ME61TroTwP7jHqzrF3pOREhYt57P/z6l8bBShMLijJve9eGdJtOtT7Czy7PJ/S66CrOCDBuTBycHw3FsKA5SXiNRMZzs54RuQRn2TTEEZAyOPRD+HLuohwP601TXB/qOzL+f0/wQ+AxXfb/b8JszHN7H1Xevz8qYyrbR8PUK62s5r0Xh/RKcGLL7sUjudPWQjmvlNOZ08ORfN5opVO3Tqk2AWYo9oInuJk5wPGrE//53/99Xty+IT81Pv/ZP+Ph808p9xuhCmRIRFus1Dxe/wZug6CEKRF3M24/41JEQkRisE9gUHTEq+Ejh8UGbQRhoBz7CCEzzHbwHo1hPIONImgLUva2WaP43ubFpbCmj0Aw9x64MC5Fe8xe7GF6XZK12saEIx0ZSvK139sH+tuaMHelX10XSRgTFi7LsGXcJxcUrDU4ZbNsoUt7PAKa3y/ZDjpPK6NIX5VeQZuyrgzUcLcgrOyoeQiZXegqI/X3ogu76+tovV/pgnY+mFDitOPwozlyY+rE+O82vu5wDjSlZCVFoYRRXznMHqzv06qDbbFbcts0z6bMo7S6on5CBiIuTTO5FsqaOT4dcWLMb6sybXRfa6OS7ebzanxb31Eq4jHfaAxsW0HUM8VEkIj3geUm0LtQasHHyLIs5HJmyyd2u0SOgftS6Hj2h2f0vJHPKyHdkaZADDv2h2dImK04jxNpvzMPsRNwM9N0y7LM5PxEaUfm/TOqHpgPn/CsN37rt/8Sf/QHJ56+/NQ8bLy/Zi6BS4Ia2QaHd+b372Oru1bbQNcGHk9KE+Id0TVqKJz7mbyNkJrOFe3VBrnCL4EqDdccTm0x1BsPkvfpr30QZi6VsV6362WE+ZzPK+je0HZyUV0nnF8o/jnZf8gH3/tLvPit3+DlD7/FzbcD+huZf/S3/kNu/uSed3/8A/IvHX/vb/9dwpNyLp6kHt8DkUT1DdVsHaNey3IYizJ6VeAvi7J2MI4nHhfV5/qS9H23//7+ey/rX25Wf0Vn2WLJnBLzlMxS4SpKptZOrRtNC2YRbmxbpRwb/dTR1VF7YM0bWy44wkjGu6DjdCQSGiO+daWrp42f0YvASIXtmPov3boWHxxBh4/cYQpS2jM//4hPfuN3yR98SLrd05Z0bZbrlFi8EH1hyxvHvNKTLdEYUM2itMXvqOrwTnH5bKmsOHqacHFH2j0neaGvZ/aP75hff8H0+jWnx0fb+QiReV54+fIFySlPX33Kr/7kn1Ef3yG5kJgMYeensZzlEGm0ciLnE62uRvtg+FzVdiMYQSlZG0ULgYaK0gYhwQULdhFRes54nZh3Bwrgwmo+72Is5JhsNNxog4vfqDXz9t0b3OE1z75xw83NDW26g/mAT+azFa1E6ey1Uepq9/56xonj5ctXfPDRJ4S0Zy1K1khcbnFxh48Ly+SJzvYpoo848RQ2DDM48ixqHZSUCtWISmBeX9R2V5zrFrzTiiUcOiF4R710N9JQySimctdeKLUzpT1LukXUkeLEvN+NWHalbCeenk60srHqhnfK3ArL4TlpSpQGMSl9Hng9ne3+qkASvI9M88K8LNA23N0L+qc/Jz89WLJrnJA0EbUSuzPrVBsqkVrBEad5LPRb6+pcI7rAJA7ViqqQwrBbdIEcqRScHKmsSFOcRraTI+nCu6fMeduQO7No3jbP/elz/smX/yf+9Of/lP/2v/0/4wd/5b/HJx98xCE947MkfHn/mmPZ6K6xE2HE5uA8TFNkniZLV6+V2jK9VkrL1FZRN5uN0kGuK41CShGVE63DVja27USXZk1TuuP2dkedj+T1ke14T++GbtzKE74qS7phN88oB1q7wYeATzZNa7WZYRlIMY4dkvckJBU/cKeKeGOJ27TPpoe2UBBpGul9JZcz5/Oj2baKt8JchBlrBi/BQF68oZtp9G5YvGmazO5Gh6L0YjSddhn/q5mwLuKKCUkOfMS5RJc4FndHsdHHIrxeqxagjxTdho7QI6+2JOoIODUbpxMTQcQFfJxQbzYtLx4/1HiX7gjxgJMIMl2fZ7I9YRgUg1OIMza/29p4Rnf6CFbzwRJxnQtIG9ekG9hsdOBfxw7DoK/pYOepjGfZsAh6Zx5ztY1xrqFB9htprULrqBOk1JH86tCs9Nxoa6WcNraTTdK0Kr2ANm+9hzMBKTrPfnfDh996wd03Z7ZUOL/N/Oqzn5MfVtb7z6mPj0j26Aa+R4ILtJKNjBeaYcpZ6dKJS2A6RFhm4rIMWIi1aW3sYeHMbsM1I0dt96/pheQ7aFEVsCV5LhQatYYVgTqmr95b8u2lYVOsEG6tjSn+pQnU90W8dWaoQik2ib948GVcz3xNpReR0dTKWMJ1hBDovdEYUAa168GN4lybARtQjLgzHAK12N7eNfCqMdCgbVxno7hvjd5gOzVqUXqDshn5RnugnDt0j7aAdDdgIEodP/v74n4ARIz2YQ0jI2RL5fqsFwkGQukmbo6bBhlCk9JHMJawNYNjXEU/1QtzzSZfrW44EVKaSCnhPeS80qMSQ6KUbKMQ79FaWaZIlJlSNmq5t/GMN3JA7eYb37oS50KMiVZWatvwmpj2B0LwLMkPb54lQ+6W/fWDDi0Ntdy6x9Ppkbw9ks9P1O1s51RpeJkhBp5/OLNMC7V1WndIikg13x3iKOVMaYVWFHrES+Pt40rY3bB/8QGfv3vi1auFuLvj2z/8c7y+/5SH04N5zwZXNV785M1sCc4LEhwuRWIK6HpGNluobc0sJF2MqEATphRxumO/7Lh/+478lO3ismqRXoyHKtXj6ng4Yxz4jl11QcJAdtkEhFGIyvCmxzCRYiJ3xUmkNyEaIYvsHdEHZnmJDz9EXv0Oz37nLzP/RuKDv/BtfvsvP+Oj73zBH/6d/w0/+s/+lP/jL/4IP0Xe/MlP+TgGeoXSraN04pkQ0EZTO6Dk693yUEHsYSVX5OhlAmGvSemO98U/1lUPd4YRWK7aONexr3eOIGoKsvMc9jPL4kaoiXlvmyq1ZCuugkNLpx4L21Ohnx2umqIgRl/EiaX/qrhBqTIVujcdizk2Dh/lnIX2qDPaSrQ5Z+sNFUum85NnjrbsVp2w6YktP1D7iTALH37jFXmO3J9OxOCYg6dvZySC843SKlsrtNzYzZEgFjLVUXopFpwxBYRkC0JinvreGq1V5uc37J+/Ynr2AenFW+L9AyKeZ89fsCzJ7BS9cPPxh7QYeferX5Df3eNzISlMUyJEMS8xcLzvnJ+OnI5HfIymJPSGakG1jeVwsaJFG0IjeEWkcS6ZFGYLy/KO6hzCDu0v8TLj8hGfzsShzLlg/lFptgRFVaRlyvFL7l9PzM9u2e9v7Hv3THSJFOPI6IA47bl5+Qm7m+fUYlbDm5s98/4WXGQO4DWQlonlcGBaDoh26nZGeh0I0YLoav5ZFwkx4LyFvZiile1hFYbKOShbORdKzUM9tWWrtTS6BlpXcj1TykqpG6VWunqcn5kmo/bUbRuWpAkfjV5WKzhZqW2lnM90GlUzPippEmJo+P2C9FuKD2jJlrEhjTLUdT/NyDyZwt8qz7/9XcqbLzlqh+0RJ2f8KeO2jBTzDotzBD8R/UzwEb9YGngpmZ43GMofteO7Iw5LoqpwPhsBrNdAr94KwuaRELh/PEOYaE15fH1k3s3sWJid56YdefcHf8C//8d/yF/5N36f/9Zf+xvcfeu3uf3+x9w+3PHLt285no6cc0b7md6PdN2IzjGH2dKnO+TtzJrP5H6kNrOH7nd70hJxebOdAp+otdL7mfN6JOez8eJ3e+b51hYz+y2n445jCJzPDxxPD9TTicftxG3fuL29I4QbfLwBFzivhjVtvVNKRpxwcziQoo3/O0qXQu8btW50zSiF6D0M9nqKxl4P4sDbfklKM94/mWc5b5wfM217oC43tgvi9vY30wALdBT72uIrIVzGqRZaZNQSK+CM/HTFanFBF6LjfpZoWS3DutSRsQrV4aJ4DxtFbx7VSpc2prlD5BmZFkb/iKO42RF0Z6qlMyuYSCTtnuPDDhGz74oIvtk+oJVCfQhB9hy62hh6x2kdk7LRcDs3FF9rfrQPTCDvbSFGJYEuja6VCyJUGMGQ3qYVHWe2Eh3Nj1azIckEWiyIrtq+Bw0kF/qa0fWRfnwiPzzRzoW2NupqSOWAIazxjeU28NF3P+A3fvfPszx/xbunRlsPPH5x4t3Dr6hlI2eFXuhacJPZdHtrTPuIukaPjeY6zRWYFJKgMeKm2V6/mLPAD3w0UqF7wlCJu/NUzpRuYYoS1CY7ruPjCDFEh8Jt9i7xw9YCo8nkik5m2Ie5QDJo4C4oTNvGuHwQvdlzVXTUBuPZewlju4C/W1OmyzNI3bD8BPplKuPCdanWCqT30wJVm6pYEd8HXtWNRWn7PZfniA7HQKs6nq2Q10DOhrusudkCOsK6gmcs/WKUuXpRz02RvGR/DV1TxzNi2IfU6orCKOT1Ii7au2TWJB1N+NgJZMBtekfVFr97V0qvF5nVLJloJgRArbuutY4xWhhFpL3pwXlctJvIRzXWajnhU6AWs1m0Dl2dbct3QTSzRKF7R88bj+tGreZNnXd3iCilVda8kZY07CeOVirHpwdyPuKjUs9njud7KJXgAqgnN/s+PnnCkui5UDZFQuJmd4Mhspp1aecTD29XtM3Me8exZH7zN3+Llx9+RKkb08HTZSGfEx9+//sc64nzL3/J9uYdydmb6xHiFHEhgPM0bMFX00LRQGwbVCv6tVVyqxzXE0k8TR1LWtjtF54eHq1A3GwEY4FTtrRR14KUiO9jND4WI2QkodlF8R7RNFZNrdPt0LJSs0I3n+OkEZXG0Sk7Zm7ch6j7Ae3FX2J98Q2+9y8kvvsXX7Ftn/KP/+//IeHpS15qof30x5wEPp5mpmqb2OqU7ozt7LsQjHVlneIYhTu96D/2s5ULTWF44PoY4akTzEk2vHRNCc7ZTdKsOBBkLIaM0ei44bwfSW3aWGbHnCB4Gwnm9WykiNbwCk0CFKGfFDk7XLFGRQRmP1m+Q7aDJUjAi7/6/J02K964qFBmQwuYFctJ5PnL59zfv+V0Olm4Snd4EQ4JYuw81TNC5OHdz/nTP/p9vnHjufnOK2K65ZwLTZWtO+bFgwohdKRb7oGdOY61ZSgrJZ/R2ggpkdIdPkZijIg4w5Vt3e5RZw3KcveMaX9g93zlnLGmNAquZ3rLSIgsn3yHt6eCE0/KZ2I5knzhvL1DSmZ2jp6fqKc3tNxA9rgQ0AtzmDZ2vO168wKuj2tEKosD3xTdMs1ZYisIEp7hpgknwRa5qgJnUFs+tyevNdNJG85lXH0inx/Y94If1iTXMiGMIBuEuByYdju0Gu+8VlO7qw5ZRsRsfi7j3YaXSMsbraw41807L0aK6q3amdiNfqXFqD6NaqE7GodVwJTN2jq1jeLhOpISG9/nlVJW2lC6u3o6kWW3Y7/MSC+cXcZJobYNBv6ztoCPN/SRiFzbysPDl+T8RM2PHPbPCemOuH9OiHvaunJu90jbCJop5yNPraLcEJKp9LlW2N8Qnt3StwPS76m54EohSMOJIhIQMc755IQYPC4l8I6eAlPykE9WBOHYLwvOeXKtbH1Fm6A10Qr05qgVNlVkP1OaBfxFcfS1szmHjwt36pj6mazw0//b32P9xZf8lb/+P+WTv/Kv8OHzO6abb3N/XDm+fs27t5/xuJ05nb4iAR/efYBvgZ47ddsobaP5hksTKS7sllumw4GpGwPd+WEdQhGKNaTiST7iveK8MIW9TW2aUrrQToVjLmy9EJbKfLkW2ob3faRvelvojx4njhgWnESzF3hH9MWWyttKrdkOtWC2hJCqka66LY56D0VHyJqfqFsGzeTyQPUN6g4vJ1y4BXdLiHc4MYtro5LrmZxPtk8SPUKkd6EVGffDUCe1WAEuRv96b0UZS7Y+oT7QBlFPxO59I6YVK7arEnSEPgkoDfHmuTcptdJaofsdwd2gLeHcjPO2NxC82e9C2CNi0w5xVtynGCnFm03zQlkbZ069JHyqoj1exaAgpoQG975Q06Eo92bLq+iYEneH+jDSo81vLWrhYKWMrcsL798ZKU5dMI+7F7Rv1JxpuaBScb0ia6acTrTzI7oekS3jsiLF4BMq1h94dWRp3Hw889HvfMiz3/oOXX6Nu/NHrF8F2uk1/eYF+aGhbNT+FWFSiq+WreWFFjvOm7deYsQvibA3ZCzLjJ9m1DlqV8QPsUi75ezUDYi05uwaj1bptJLRvtG9WY6NROMopeLxiERab+NzGi56GR76Xq3ZGs3+RRmvA3eJc1fUJJhC7b0fgVViCbndaDG5VqsNRhGurVNaNaEZ+1o2hRLozlCTasKUdstXuvLyq6N3MaGy8D5QVPWqhAvO9u7a+3q2NWPK54ztvGWodVxqFsZBgxEM2i87vNfJhDBS3UfTaEFYVq+E0aAW/VpEYr+IpSY8Xqx0XfVa8FstaOCGjsFeLoTBPvqHLhBqyWOZwz6A4C7dVzU1zXVaMzxlH4UBWmjlTFfbBkYcIcy07sB7lmmP98486aPbRzu1dEppVGde1Gm25ZbaCn3rRuKQCM7hQyIOTF/ZFsq84JLZXbZzG9v4ChRcMAdabZ2mwssPPyKGwNv7r8h5I4TIzU0khVv2Ny/ZH5QPPnzJzd0dx/MjXQu5dKp6pv0zvvXdH/BO4cdv3xKDhSPVBqKR4GbUH3BpwS8H/DQT5oJfzmjJtLJxfnogn1aydrN7lMKc9pbA1xvzPNM2IQZLJkgpMvuFc1tp1RZo7dnTUecR6fhxzgiXD51rESHOoa2Tt0ze8mCUN5pcfOoO4UDhOZvcEF88J7xc+O5vfkDaOz79r37EP/39/4xdEJYUoHrerhspwGy3M53xYESHyu3pOpZBRqPunFiB3mXw6a396GO6AFgW6YWKM8KqrJYzK4xzdig7xg02vHYyqBuqUEtHI+bLFrUN9yZAoNVGy2pR4wp1bWynDsUjPViB1ocC3y9tutl3wJKOtV8UKTucgrNQiSBCco7k7CY8nc6c15VSG2m2qO8m0NOO7BpFLXjn3BpPb1/TfvETttsdt9/6BpIC0httbZR5NmKEjuTJMQp9OI5mRSu9bKCNkBNtAV9W0pRIyQggMShFK3Vgv6YQmXYzYZ6J2Y3XV+ygJEFv3PVPeHx85ESFJ2UtT5yPDzw9fGUZAa3QTit5bXg/4cbyTx2oSSeMBTXjYLdWyfk08GzJRte12sKivqdJOAlWIATzJlYRKwLLSq3dGMoXXa6D14jTRK6eLok075E4m3eWjtYMAnOccCFRqqc1jysg2NJWrcU4y2I/bz4JLW9WpLRKbtsI1mnUWoCO954W7QzT0XBKHJ5TrVfrkEgYIo0V+VcvqTA4zp1WOrlWSusIgRTtgdW7BbqEEOktW8Ek1ZjVRFtai8L5XGwquq2cH09sp8zdbeHmhXntnZ+pJNBAXVfSXMmlUFtjy/awjHFBZk8tynzzAX07c3p6S48zddtQKugoUOh4l6AlTg/3FAU/TRxu9tweFs4PT9RaTfGeIyjk0tjtZvJWyedqilgblIp28S1jslE3DvjWT4TomBZhl2ayVB5PK1/84R/yd//m/5rf/fQz/sV/49/iZrrl9tktT9PCfpn4xa8q9bzSzve8Xn/JPkR6tYlJipF5ekFIC9EvpCmSUiIgFNMOrKkEQut05/DB4+NszyscMST8wZqcECdEEj7MlHoGNX59cInWnX2/eSYORrftZFlDebmWUkw4iTQqNZ9ZtwY0pllJyY3rbr0qh612SltBhDjN0IsVkG2l5I3HXthaZ1468y4hfgGNhlcsdUwmrEhNKRG8o7dCXq2JHgZHtA97hgy1m2AFQk9GzXH22sWNnZ+ex6pVu4ZlGZ7Y4aTZtqV4WhkoYzEhhiB4PwGdEBLOL3gfCcERok1ZcRGbF44LZZy/cZrw3Yqbdi3wzRKoKtei/30Iog5E5ZgqXELaUMTZxLxfvoWaTQfvzKbTL6ptHe+NjGtCrgnUEjxCpfpqTYHroMEW6YvSzoW6bpaRkLNlQoylS/OROyQIXQpM8PLXPuaD732Xm4+/QZdfg/wt7qWQz4W8Rvy7jtxXfLfdQx+s7wox4KL54f0SmG4mdncz8+0N6eYWWfaENNEuwUnej4emGrO/CK1dRLqBxqx92JSsWQ1B0GaiksHxTSepZUzoL9dPw6yXQ2oJIVytrs57tFkjRr8o8zJoQwxSjFztJKrjM+v6PtNnqN4XLHbTYR8ay83B2efX+4XMZxYAwdJhawFtgVaEkpt56UsdNjrwBLzEYetVSr0APZTaIefL94OrVaZfpMwhPl7+HQZO9WJIGcW9jivpa3aga/0xJkriZFyXVwvD1d1w+acV+SbwdrHNQtsuHBSjgasPtdr2uw+RIAy+Zjd/KRXvOtpXttOJVo/mMxPznddSDREYFubdDh92hDgT/B58o5TMdt7orRkD1QWjUoin1pX6VPFxJs07VCdQh/e2ET8vEyI7aj0Z41bFvO5ZCa2Q0h5xkOsJcYE42fZwLrBtK9qTLbpgAVG7yUaWwXW29Ykf/dmf8s3vNCNyiHWs6iaaTqTlGfPtM2TZ0VzAqSdGWyya9s+ZdnfE5Zbl7gXzzZ15tssjZT3SS6ZvZzRvhN5489mnrE9PHEujnlbwxhnX0DnX1Tiw4nHVFoCCC4am0/FhDP+ZE0HHlrp1xYyHSCd4jxNo1Ra0QvDm5xMboSVNJD4g64ecb1/AC8dH39vz7IVHpfPlV7/ifHrkg+hJzkK5Fu/xtRJx+HETViB0E1q9ck1/s7mTLdkG9x4h5S6DzqGSuUuzO/5pjGOxCCiB5kZniiDazV+OacTSHTTrYMPA72050zTZgfpk16NFcvvrNKlvjl6tyHDqURw5n025GJQcxvfQ3scNffH8c/UJupEiZymt5sf//LPPuXl2wxw8pVdcjOTeeL1Wlptb+rzg5gPT3Ut2H33M/vbA0/Et/SvY3+5x3pTPfs5ISCZy2Q9DbRWvijjoTSna0dZpbKzc42NEdUHUxq69m3pQy0iAJBJHLPp8uLGGpTlo2RoXHGG34/ajj5gnT3838aadub//Eu0BmjN+b7VxdwgQBo1Jm1CqXYM+BuIUkRBo2sjbmYYaecQN6o03n2GvlardXuslmbB5Wgl0jZQ22aHpAzEaZ737PT6+QNJLqu5Ys6OtDVczMVSCg1pWnEANgtPJPKaoWYZ6pbdMyRu1tuHZ7DaZSYs962i0stqC8KBmCKBhhJ6MoiI4h1PzSpuCaXMd7W2Mg81+pN0Wp3pvtKrXv03xsYVHVYVmSaetD1/nVhHfaXSCJFKYWJZI9Y1ttSIk+WQH+NZ5fPNI17e8eLVjSgkXF3ZxT99bcblXpWuzTAGBGCNxH6jzM8r9wpYr9dmJbW2sp0yQQvSVoA36EaeZmj1OjR5H2ShPJx7LO7x05mhBaPcPbwBIaeHp6Tw82uZXRWUIJI1SLZ3Yd5hUzKLnOrSKZNtZ2TlHcI63j0/k/gv+4d/6P/Dupz/jL/73/zU+/M2/yLPlJbfzN9jFwK/CzNsvf047f0XejpTtCC4Q3TNCT0Sd6HXjeHxLbhmJiT4UaZ92hBCZvSe2agJLWox6oQDeKFC38wimuuHF85es2xHnlN1uYUoLIpEYki1aj4yG3htbblfyEtg00LsZ73bUciJvZl2J0fjcqt0Sanuj1UouJtLgIMSE9hkotFJAOqUXemmEWa3IFeOSG+nD21LqxcroExICaDT1sSglNxNlEFsEHD8nQBBnU0830Z1RpcRteGe2kM5Q7LspkaqCtEwby8PaPdorLvVrunpwkeDAe8ey2+H8HidpVDxjIXAUNvYMMKiEu/gZxNn5KJdwKjVf9fBXM5RgsODJi+h5wUQbnGKk2w7LqPRuzSzNCGntsmBrqaJXNU3sOaFysVOYoOa8R2IyxHQw203bMuXcyOfGdq6Uk/mz89YopUM3UkCTSvWF5fnMs48/Ynn2gvnFh8TpE+6/9PT4yHRTuP/qDef6C9Q9EGIjOCVEZZoCcU6EYbtzu5npdmZ5NpMGSMTPaXweBoRwwY8GSQdW2hGw/UiCw21h5JZYAGZXQxirDgHVKTgxJGQtQyBr10YshKFPf00g690apdYU1I2axcQSx9h/6M6mwYq9P+NalKs1Vy6/RCkV10biLGJ1iJNBG+xIqyaIAqg3kk1RarYl2pJtZ6puOpZhGex7Ha/VkS/FPdiunV4Hv9aYjSkD8rVif7SAl0r/fZl/LX9GLT8yE5Qrfa+hAwUt4zYYr9cKKfT69fSq6Pbxd1Oli4FL2tcaAEUJOr6JFRajkAx+FJEd7ztOKr2d0XaE3iwR7rJ5HyIhJFq1KGRxCdUJTyOGSo9Q1UYtDStQQhBCVHovdhNtHdcLaT4Qph0xJlRN6apVCGnH7iDUXGihk5Ka70tgK5nzagpSDJFlmXh6erQAm2jb1LUGuyB65u3rz3l4t/LsxczTwzs++Ohj9vuZVs821rlTwrPnLNIIPrAez7z57Cu2Y+Hm7hUiO8LuOcvNK+b9cyTMdBGm2wMaHuhlIxwakc4kENKBhy+/5N2XXyIp8K1vfMj6eOSrn33KdjqZyp0rbSskNw/vugyLi12ItlgyeMbDytXVEjhlqBRjNmThSQ6qFJoD14S5zURe8uRfoa8+oj0TvvXDw8gZ6la4+U5tK4szKkxaFvK6WRptN3SaByu61Q3+wOVCtr+N7z08jRc/JvZrl6peFfy4Wy6vVUXpzugvpTdcb0Tpw6MmuH6JTRecBCOPlMLD4xPTTgkTNIotGMVI9IlaKnql43hK7Ugz5diCMTwqVvT3flkWG1vz+t6XaXeS4c6M58+YIAjTtJjyGj0hTpjmAZL2bHGBuJBunrF7+Yr9qxfcvnrBOjmbfG2GiO1AmA429XB++P+Np+y9FYu9ZVaUmjP1QmmQho5u3EbYYJvy5iVU7ZRabHGqbcQQceIGJtXe2wLsnz/nbj/Rb2cgs61PnD4vNnt02Tjx2gZ3u1ghJt4KBjF0pThrxHLO1LIhZaN08CGwzDvizc5G5WK+xm1d8TGyXxa8RLxOtFrw/YT2Qgzmw7Vp6w3L8pJp/4ow3SDdkU8b6jZ6cuM9KOAd6/kB32f8vEO10NpGH15lbQWPWrGfG5WKV/PPV230MS71yLBFDY+qd+S8sW1nzgMH6rwS40QIkzGziVf/sSVbm/eyaR9TDvOqOvH4aB71C/C1bivn48bpdGJbz2x9xafAfrkh3rxAfKL2TkgR1YhTS4MMbgK8NYDa8SFYATd2cy7XqvZKzSvSDefmNLDEPWcEKQXdNs6PR9b0jpAz0huhF1zPCI3oZlKMKJ1SN6RudHXEyXaaJCWkC9u2UWvn8WkjhERHiSmZR1Q9XrGdhF5x3QozG/0I3nuCU6gNRydEAw1sa+ahfMWv/sHf5/zLH/O7f/Vf57v/9X8Vf/cRr27vOKTf4qubF3z68z/i8eFX0BopeMN5lkxRBVeo7cQ2QuLCtECc2TYZSEDD+PmUCDENq8V4GKsQXEQmW4692R9sYXf4uy9EJYcDp6ja88yW8LJlccRwfah773FpZp4WupriuyyJlAK9Z3JZWdcz27ZSaiGmPSktGHO+0EmGgBUGHjPSh2DRVej1QjeZkeRxbhu1acS5QEqBw17oTTmdVmoVpCk0a4QvIU52PhoxR/yC+D3iCxILonZPXcyKiimsnTrsPULXSu+FOJpsJxCmBe8wG04wLCVX5HO7Lv6q/QDDyqnvJ8B6KfLDtYCyhe7Lgu9lwmuUObkUR1y+bn+P8RyqqQV9mS3JqVn9bKphFiXRYS2SC71OrhMOVOjelnb7sCUqES2OshkisaxK3jolj2LRVCN7fjul0HCtInHi8Owld89f0DSg7oRPJ3BveDz+jNP2KTGtiCpeGt6bqJLmQNxNhN0BWXbE/UxYZnoIFvLVqk3HxxO6X55rblD55GIlMdKhczaBcziqOLOK1IwPo7bzDGSlEqdkAhkmJtmkyhr0PiaVznm8CKVbYBcIXS1oqbfx7HO216iMEqHL++evuusenuFHxf7/MTGotdHiRfBUczg4QYLhxVFHWRutCFqFshbWcyWFhb6Zjc+yh8yL35oV87UJpTtrcMb1x5jEXlOQx3mvl8L+aqq/zP6u/zkYepdayLC1IjZNaTpc8nohBXEVl77+9S4F/kVsbNjPVocY2YaCP34sFAjWgIyNabGliBi90S60GpLLObSdUV2hVWp1Y7w9MS0HluU5+BtqDTSNNE30tiI+MM17RMyXxnjA45RaNrpa6qZ35m1sNaGt0FukVGXNZdRWHtxEnCZSHKjJnKk9o2Jb3hfV8vbWFh1r3jivxfyQosYkbsLbtyeeHivL7o43X37O/ubAixd3LMstbYpMfYdj4zAJH3z0Tc6PRz57/iv+8L/8I2S5JaUb0uE58+1z0u4WCZPZiHxlF6ORLZ4ebaHPCT3e4G/gNhx4vr/h29/8Nr/86Y/52c9+RpgEV0HKYMr2hnfRVAUTignjM9ahFvhgZXXO7bpYaqq43aQiFrMcBcR7QpvZ6y1BP+YxfALPn5M+8Lz8eIzqXOPFyzvSEi2YSxp+ChZINnB4OjpI3IWJzGgqTFlX767hCnK9Sy/dt41mrzHj2DjO/h0jEfjAdFjwu5lMoa8nXLFrptdGx2LCbcJrkepdK6e18e6hsuyCHSpVRwduV7uFr4yFGsZCbzX7jXPBlmtQI0g08xqrjHCNa3U/irahBrTarEPuI834XLh5fsvN7UJ3lhqXbp/h9zs0TKTDjribLFgkmLpR2sr51PEmmSHnTFwKIU2EZCFydlebPc05T2wC6tGyUXWllpV1jC5DSgNhmOBCz1XMNy4KbMiw3HnsEFIVQpiNKhEE1cLdBx9Rz0de58J2D7mc6d6DNkrZyGfBFa7hSmLlMoKp8vl8NoXDBVpVXEp2BcQREd87WiCvQoyOFO8IPrANhJu/UWpZ0V7xIrRe2Yoj5MbOCSl4DinCFGh0nLMdoC5G/TifV8rpnjBN9FZoZUOoSK821VKzElXxZBc4e7MgdCd4b++FkwBhJqVkNK9kiSdb7pRqBW/v2AJzaMS0EMOFdXB5KJnnV8TZwn0PlG5jdYdS8xnnOvPs0FYo5ch2fqI2G2oHCTg/GaWpi1EonO1z6FikUwTvoOYj6/mBaTeRloXSrQ11PlpTXQtIs+VkGQ0sjng4IPIJrRWm85nj4yNbqWit9LaSmlpmhB9qW90IWpliwnklIOTaiQFSmii5knNm3i2oOOIcuXk+kbfCw7snCz6sxQQJLqE1AoMq5FTR3NHckAgvbnacSmEWZXv7Bi+Nf/p3/j0+/9kf8ef/B3+dm2/9Dvv5hvCN7+PnGz7//Ce8++pnaH60bIZ2wtADGRWh54BsE7HsCfPezCcp4CK0ZmF2rilLnAg+mLVla6OQsPIIUcsgcZeittH7UDBVh7Ww0Xujt2afm09XRKBqxbnAzc0N8zIBFR8UpVpTUMfiahdS2nE4PCNNe2rOaBVqbuabDhPqztTW2TbFnwoxFpKfCDERwriOsc/uQglxzhkNT236ez6vuGISt1yU+G6UQ+kT6is+FFpchyBT6HIGNmCzp85QaG3J3rzW0kHFbG/aR6pts90GEVvGtW+kGMNGh1vACjRxnkEFHIWTt9+nmLe4jfXa8T17H6oMVmxddjmtARjFvVZLAx7SuypXCAEjC6C3apMGuVgjhuAqNhXQ633N1TKEC/b+ScS1ghahnTttU+qqlLVTimLfZqCsGeKkCuenyvq04mqnnR+5P57ZnjLl9I7Pfv7/5bOf/TPa+S376BHbJSUkR5o9086Ql35ZcIcdbjcT5gWCULSOZka49qpcUsMNBGFG2z4aJLEyVMwq3V3FeUuVXebdCNqzWqAJxHlCNrUmr2MujoEMZ3wtHWAEUcbrtY9euhXt5hBStDa6t3+3iXqnqg7hT8bU2c4uf9mdGFOjJmrhFs2URHFDrBvFc90gbx2tjlbEPpfa0Rxom30mtnsCtXZKN9ykFc9+eN2H4eXCvL7+5S4l+6hrRvM37icZKvvXVXw/SHtmLWpD4HTXa/WCZRVxX/tz49ewuqs7U+rtfjAiWxt+/D5+TlUIqmq2DufwMSCDzHGx5uTtSG8dx0Zv52HF8eASIc324fqJNN/gWyRXRx2bxDLc/W2kfoYUQC3gpbcyPH5wPh7xYY9zgbwGelPwiRQiHaGUDBJtpK6OPtLVNJtipxjhQWnUdmRJE9ozT/dv8d6RvCHEnCr7JbLlzvHprR0Yg2utXenNEcLegkKi57G9pgfP808Snzw17m7uuLt5gUrAhYiPjpACKc2cHu+Z5oWwW2ilsHWQKdGnyhx2PPtwYr8c2ELkUSPPP/mIu+DY3txTeCTGQDsZr7hnBe0kHJ5qanEyP6cPgVoKHX3P7B2Hjddmy6pudJIuMrUdh/oKCd9Edi8Jr/Z88O2F/Q6CKo7GcnMg7PZIemDrG8knehN8SvQ1W3foQF2/hlTRzGPsMU+9C4Pz381Sghq5oIsd/H1MfOxBYJ548baENd3uePVr3+Tuw1dUpzy9+Yzj6895fPuO8/GMuGZ2iG4Ho3OKC96aiatFaYRhjBGeBb4Es6tQTc0TGctCdrO00a3Xr9k4L+MuHTfl9bYyadwaS7VxLuJJk2fbMuuXXzLf7tjHPb2sRE2GfGuZVs4E36Fv9OrY2kZplehNBWo0fO2ktBDmik8TKsEKjbSY7uITPi34fKasQqmZWhqrboRqKvn+cKAHNw4dN4oMo2eg9v5H5+gukotN65xz1HbGucD+9o67H/45ZoXPf1xop3u0Olzw1FpNpbzkDIhNArwogWLhbdsG3ax1rtuqkbBRmlnELvSh2XmiZKY2ETXhWsGLsxwLhG0r0CvaKwEhbY/s8yNLOXCoR9wEuWfj+3qodGq3jqaXjdPpzbDirGjP9Go4WO+E6MUoMi5QxdN9sCYsZLoEhAChQE5QM9Nu5rI8bFhgm8W2UukXu02oTPOOmMbi+AgtcWLTSmMh2J91DmrP5PxEb5VWM3m7p3VLKk3pQEgLvQUeHzdOrhL8yNUYw+jWN1o+4SXa8rCD+TCxvz1YcqMI63bGA04qzldKPrFuG7vlGQWxQmG/I7z4gFtVtnXjLB7CTNZAaCs9BIoI2gpCIYbAMtnDvzS7BbZNETUaWfATfrHwMlUxBOoUyA/vaEHRCClOMILham80VXKxm1BawwOhC3F2fLC/4b4cufFCe3tPWZ/4xduv+OqP/4R/+d/6d/nwv/av4NJznn3jY+RwQNOBN5/+Gcf7T5lcJVFsQdU5grf01muZkyKhz2i1ZHFVQX3ALYvtRPVLONb7HJHeKs67ERpklUpvRo0Cw0G24UG2HReoLRoq03m6MxtTTJ6QIq2JTa+LUksHjUwpkNKe/f7A7nCLc4n1vNGqoxYIvoJkuhxxvZPmPbvljmm+IcgO76bLUYWTjtnJA71XFLNsLotN+VqrdG0EwkAI6iW2xRCmYUa14pMt/2o9W/K1nkyl1mCc9W7hjKbk23uBOnqxYlpbsH2SZg22ZSN0UGyaj47z1xYNL+f6xR9+IeD0fiH22BLk5dx/X8RfGoLLjo81DGYfuRSxfYgfwy8+VNn+tcLKvs6l6BoPhIGPNDyh0da+7usOeEoDilry+blQ1z6sjQwvuRWCZncxS0zLjafP3vHVj37Cdtx4OFXefvHEL/74R7z58U9I+ZHZJ9p6tomiM8CG+KH+efDJGWErJXB+LFUqpWwDUmKe9TbC2rx3Ix1Vh5WQcf2aih5iRC9NjyoxTWYd7G14wC+FaB/PRkYD+zW6jZp//0Kg2bY8/PFjoVQcYdBitJt9sA/rqVWtbkiWjOtLoDu21hExKl5Th+8ODc4UcIHqhO5MPDRXZrCCvkDPQm+eXDu6VXoZO4lwndpf1vBwzizqw/TuMRH1opxbg2RTsPdd6NcsOPr1/7bfI3C9Tq/To8v7+LUO4NKbuvGL1j/r9dft/R2Oh0tRr2NvgktDCsGCIawI8zERJk/vBbBirdVKyU/MSQYzVECGoqSOjmctja2dCPGW/eF2LMyslPbIup5MPXGOOAVicKzHB57Oj1TpBD9Dr5St2sWFUErFouahaeO8nvDeUXwiSAK1BcjcCp3OWgs3KTJNHlzl3f0782X3FSce/GThJtGxP8yk+RZ1O+K0o+aV+7ev8SleFU/Uo8y4dGPs+fbEt7//Q7wIu2U3ligNpdZqRV0mBTu401iqCjEQppmblx8Qho0h+Rknnt/8i79H/nDCPb7jq5/8nPut4TKsrYIXJEXKecULRBWo1aLTxRL4cqn0UohTsjGPM/VDvSk0KraFLhLYuRt28SNyesnuo1f4V4lf++4zJmeCnqgRaPZ3ezZnSD+loSFxPq9MqkhrZv9nqPTOAkqsW7XxqYRxAApIEAZ3bQTFDBVEsUNfhJBmqrNkunB3y8ff/3W+99u/ydN24vz4Mee3n/OLH/2Iz375K/LTSj8bScJf0EHjYBMfLPRILaDDe0/0I7a9DqTWoLQYm72bV7LbdOqyAIQzD7CNbS932bBIOfMB2j0/FpIkmOJWKn6MZVttrOuKd4XcjsR8C7sD4gp8mXj5bKESrmqldsMr4iC3kxXQOUNI+GQqTOtKraZMi4uEJGazoCPd0vB674QOp8czuEhMkZQmvGvkvBEFoxC1TsfbA7xaAxS8cF4L68M9k1S+88PfZO/h/NWnPH5mB1MQR8NB6ziHLXYFuw5Cz/Rzpp7PyLmgXRAHMSSCKp6O1m0wkzudM02PqHO8fvqF+X0rxBA4xQRaqXnDO2OYp7QjPiguOVrNrOVMur1DvRCXRNwvnGphLZWqIFoIbaWUDdcyrWVomd7NT1+04x2kmJiXhe5nWq3gxs+uHk17ekxsZ8e2LsQ50UoZeyLuemobysw8pdu6IhKIcRjWxFmDghGfTCzB9pDWR7QfeVzfQm/kkglhYpln5sMLms6oMfrovVLbRu/O7ntLY0NrpmimN8NeTm9t78ilxZScDhICvVYCnd6OlHzioWV2+1uCDzSFcHuDc56PxfEuTtQv7ywFuJw4VjsLZr+RBJQVVSG6SO1iewyb+fm1NlxQ3NLZ7fcgwsPTEecTtx/cEZaVh7ePUIV83MzG0Kwp82K0qN5GUaeB7VTI24ZLdm047zg/brSHzLb+mP/4b/1Nvvf2U373r/6b+P0nHG53/Nr3fpPoHL/cNs6Pn5F2AW0ZbYWIHzaOs3n910CPwfCZxRr1HiJT6NTQqaWRc/4aHs8mH8nZ0l0pNsVhLMGHaCz1C8bO+N5qyb3VGxZaOk0KPsRRGPTB0u5o97YDMJIzU5rGwq7iXWS3WBZCcAquMNWzUX2WPctyg3OzPbe6XDniMU7DJ2wqs1MT7ZxCmgKpTDQ1ibq1EcTGKEScx4eIsBi2UxsaDkg4IHVDtaCSEQk0CsOjYCJ40yHK92EjVWrNlLISW6G3es2/acgAePSxh2NYQ/EyHhoC1wVPd0XPqntfDF0Lpq/9t/bhZ27tWkA5L7Q6CiIdc+XxWo1o5K+1BWq/Tn+v3DIK+96A2uml0rZK3y6EnDPltFLOK9txs1yBqrTaadUmfnZ8eELzZptYN77857/gD6lMdzNbKRzvzzx+8YA+bfjS8VVwbkad4AOEaMV8SN4axeAI0Tjza97oTXGh0Ps6uPaCuvdwihBsP0TUnp+WYWBUGB1WHpvCyKAGVUSE2usVJ9pqGzx7HQGew3bTGk482qyA98HTmuLELDzXhshZ8e3He1+bNQ9WxDogoM2PxXvsmTWWUHobG33e0bqQV9ulMPOJXXNWqQuikV4CdWvkFWjeztXWbedgTAEaDPfExR7TueTvmJIuXIDYyKWxxAK+rtff+wIc/XoxPgp8jKPv3Hvuvf0pu7ZEGNhtGXkMY8o+uo7rVX6tUeT6fS+Ltvq1LiFYYIAzvGNTG8n5QK3ZxjpNbBGkWcBLJ9Aloi7SNFDxeBeZ0mTc4v1sXtQQ6XjiNHE6Hdm2E4hcEY+1beYFdnkUCtDrkbJ6up7pzFQEFz3P7m5x3rOeNqZpppRKKaYs72/viHFmngLoRt4eaH1jO6/UXJgOd9Rs3sMYPXOIxGkCSbjgWddH9F1n3u8t3c5BmiISEl12FrYxQZSAaGNrhdoLTY1G4PA431jSwQpA7abuBE/tjcPdLQ6PNsjZkGnTPLHcLDzef8GzZzdMH2Ty/YrvK8enanYM8UgzxTF4oZYNh7ervDeCF5If4yBRDEc4lkK7FS+tRyb/jMCHvCHy8vsv2X134Qe/NhEuM7KGFSXTTPaRrTYcjVzscDKf2cCGeQwv6g35ZMs0HR8EpFF7ZZoTu/3C4/FIqY3qOuqsGAaPOJtHtDBxePGCb/7gB7zOR/zL58wfveJ4/46Pv/mCUL/J7oM7dj+65f7Tz3jzyy/ITxtSLR15SrZfIc4NJvnoZqvFhtPH4s9WKFv9/9H15z+ybVl+H/ZZezhDDJl3emON3V1dTalJNkWzmzRlyrABAYRseIBgGDbgP8F/kf8BArZpQDBEEYZFUqYoimJz6ia72UN11at6850yMyLOOXta/mHtyHurDd+H++57NyMjIuOcvfda3/UdTLvQ57W1Nlq5Ijdi0w51ZuXa3h0Sxq+XRwj/amglgm0mEgzJ7hHz2hqtZEKr+NrQ7YE1LeR8pk6O6YMjPLlBvcP5QAyhu8lUo/00Qy7EC0OcGYOlgJZqKXviHC4Edodb0jqSUqaUZlaWYca5SAiRMY7M096GriWj6UI6nx/DiGj2OaVSiPsJQXj16g2a7vnkxQ3PP/mY58cDX6YMqaC5MKmnNqAWfEuEKIgkE8ZvD9SUIFXTY3jbYJKueB9QZ4nBpRRDOmtCVLhvZ4LzDCHYJjuMxODsgAgONwXCtBHba1pp3L/8Fp0+IxxvkMlG0uPNAb8/mP6hCqkuBEk4rQyYteaaVloxt6HWTKy4OYHjATfcogHU10c3hFxWWpxsaphGhrK3XA4f8IRHjmjpXsw+eGop3N/dM4xmEPA4usdGpeIcWpTL+czl/JZWHyjlDaEXHN55hhjZ724pbaI2wbtIrYVlveeyndlyg6r4zgW20BPFu8pyecPrbyrz8YgLsdN2LEG81MLp7o5lWQjjDeLheHxiFsIhMu5vcDdPiGHifHyKxB16uutuOq+o2wPqhJ04fHQ4H4kSwTXKVvECvinUgusi5mff/y6788LXX33F937lU775+hWgrKcVaQFXbXIW6MLkjoDZ2X9FkNW0EBR8NtOBuFSWhzvebn/Af/3mZ/z0yz/gf/F/+j8zzd9hng/sf/BDQsp89Xnk7aufMQ3x0T++FdOkoInkLgQXTDxYCi6O+Cg4KtRsdJuykXMXWAsMQzD3tpLY1ntazdbMqVCLIZ7eG5ihnu5S0g9xdSBKLivLuhD8gA9GX2sNvB+Y55lpmk2IXatNaNUsWedpYh4nxDVEandVMgqJc7HTaq0Yogiug0GtYmip43GacD3/53nCu8CywmXJaDU9h3ahqmJaC6cTrhVq2BHHJ1QK27KhZUH8iFSMc492XrhRybyzgq+2iuZMzBulJlxNSMtY699d0Gi4EDq62XqR1QElNWwcCabpEkAsKNCQ16sQ9hF3724+V7TenkuxOkfrO/RUuze9xXteN3pLp+3GlYbWwmORZfkbrXP2C3lb0cvCcv+W8/1btssJLRnXGx7thVnrTQcornlGPK4Fzt+85rPlNWFWfLT7XleIbSLUgKuB5oyxUKWQGwzYtHaIRkO2vqQhWszUo2S0beSWDbl3QpM+JckO9YNNWpxHa2MtDVUrtHNKOBWG2PfutFFyopZsXuqiRqbq9U7Him0ycdVGPCKldtZIt3XRa5EugBe261Sl+8mbyNSm8zRz2Wq9QdKqFkyHJWc7b+SiUq1Gco7HZpJmbjb2vtVMN2qny+CsgYF31pWPpbM5JCl90nIF5dUAvvcDtWxC1t4V3P3vH2nL/f/f1eTd5CEpzfnHvzMKzlUvIr3Ql19+Xt5nElx/q1kXdz2Adsi+ywDMLccihY176KqJh7zTR5GhibcCitmFxTjghokw7nF+Io4zx9tbhmHXqTFrF3k5xnGmVkMQl/XCumWkZHa7ofO2E3lLeJ9JZaHkzDA+Yd7vUB9ZU2G/m7m5veX+7kQpZr8noeD8Du8ieUto3TifXrEl8xJuxeLGz6cLrYB3ShwLw2A3hlCoZcWLY7kYsjbOJopsLTPvjoifiIOJM1oIttmvF8R5pDbz7m1K8ZXkGrvJXCvmlAhroNXC5XzPbprxYml9Ts1TuXkhRE8cA23wMAhpcBCUYfaEMDFoRfLK5eU9XkZDXqrFRMfY7d28f0QnUCX3AtGHycRs7NncU+TjF/hP4KMfOF4887hWqWIC6mk6st/d8OqSmcY929tCC8GmHp3+00JDB7MMK1rNR3UKiHcUzdTWzHcmgnqlblbUq7wb9zXnad5T3Yg73sDzp7SnNxyGp3B7w8uc0cOeeoy0LNz+8FPGm8j5O0/5k5B5/fk3sFVaaoivj+Ncbe5xrFq17yBNqKnYWLRiXErssKW5jrB1b9huw1U7d5brYumF/OMmAH1U3GlnfZVdO3OtxYRELSJaGLDPqM6ROSptuSPuHSUruSrjbELT6qR7xxcrNBz4OuLawiAjVczf17lI9IGbJx+yrSvbtrEsG7U0YhzwPuJ6SqDRBWyCEnzA7/bUdWOKM0hge3sipcLzFztuDt9nOX3LT//kK/7NP/9n/NoYePPZz+B0ZlchnzJBLFyuaALfaH6h1kzeFpw0tFakYKgIjabJxElih0pWu15ePZM7mtAqL0xjZB9HHMosA0GdOYWsDV0rfg+HsaEXmwDm00p684ZMg+gZDjvmpy84vPiQpzdPydLIrVDJrCVRciJKRdS0Gs45o/tpZXs4Q3DEOTJMxmFv1cwDWjqTVXBxh4gw7I6EEPEEayJbQdQ+a1Eh5cz5shCHHYfmCNG8zSuC9wNx8khVtssZrZA3Sx51omxrIziYhsKtGC/auQnxA7VVwjTiB8clOsr2AGVDczIEdhqJMZDWM68ud9ysB8ZxZBgiCW++6qnwcPdAq8KTF3suDw/EOPH0+Q06mYsZ48wNwnR7y82HH7G+eYWeT/j7b9i++jO215+z5AWXEplC0wnxnmEMSM1W4HshOiVKJYye/c0Lbi5vqW3lOz/4lNF7Xn7+LUuutLXvIT09tAabxnlxRvcLJmprTVnOmXbJUDxeRqKCe3vG1Xt++g//Pv/lw4m/9Z/9H/jw13+b0c38+o9+jd008fV+z+tvf04V47A6b3SZUhouVbY1oWKl5egdczSf+CtnvpRMyRkRYRwHxu64ltPSxZdmT+qdaTfi4BniSC4VrYY+e2+0zXGe0da4XC7UWizAbtzRIu81EM5esxQD11gRV00g60ZLZfWuT4wcpRZyzjgpjOOeOHgrsb0hgCLeKGvZJgStmdmCiFgTIsaxRgq1bUbduYpqg+8+9YHKaE1bOlLzBu6CCztqu1C3jLryiJQbK7s7imAASisV501vUatRcrUVxLXHbJQr6mniXNMzqFypMg5cQCSC+l6ggXPGLxa50mpadzURK+qvtJtrcSVdV+htImAuP30K3H3ZrL5rncpiRb7KtUmwhsH3+jWgViSWTFos0bikCxbwkPteYoWnNSfGcleAHv44dr2OLImoShzp6Hok+IjWAaqJZNVXxGWay6SqbCkh64UABFGo0aZDmmjNfhfN/eNzxgpQc1cpLiMq5GqF81Yr6oNNX0plcAO5iok++7RFWyWXZK2UYum8GCJypdv0k9Gep4JqJadqqa75GoLV01ZbNmE9AlWM616uVJnWNXbaKdN2tuRs0x2xCtoocOoo7kptMX5Nq9rPfXPjuQpyHfSapD+2U2gepznX873fl1cBtqp2Yaw1r1YKXPUf71D1xyL9vSKc94ryK5P+kRL2WND3JrWDiHrNARAeufvvF/nvBLv62JP2/+Na3QffOetGO7DI8qFvcmm7Ji56E5LOR+I4ISEicUSicYPDYDHXW15ppRl61dNnayt9hOLRbEVQ8Bb1riWxnhe29UIImS0JzhXQwLy7ZQgTtVZev/yWbVtxPoKG/j5H4jgQJFLzhXXNbKvxFqULQ0IIXM4FR6DVTNNEU/P9jbHhnDno4NW4udXRaKRWEReJw8A4zhA81XtKcl1t6WyM2kK/OSJJA8fdkXGeGLYFEchL5Zsvv6QcdsxxpOVCqo3mGs8nxzyNbG/uid7h5xGaUJzn9sULPvn0Y8rpxN3XX6Apwck+v1pN3BW8J4hpSXhEOMwm8hpCE/2A90dk/oinP/4h8qnn4+8HhtjHx92GbRoPHI9PuZw2nhItUwhD/czyCxPTBulWbw2Jjvk4UaSxZLXgKKB0ZDRLpgVvyEgTcB5CwI0z8XDLzaffY//Bh+jNkecff8j+6S0ajS/3oMaRZxoYnx8Yp8zzb5+wnF6SH4yKVWsiZSEOOxspXlH4roYVHHUTWrHN0zpxjHrR7avalarTrp621+73qsynNyjdjlPoo+3rBmYIAH10CK1PaDJDb76G/Z4lOvLywPmN5zhBHAPkAvWM89746HHAxQEYyHlBNeGk4rRQ21XMNTLEnS18sdTAYWwUZy4P2qkNqVVqWjvapEzzhA+BVBdUswnmm5JqZdzvuH0y8enlu6zLKy6/+BP+7e/9C06ffYY/LUQV3KIMzgRHrinN146sJLSkLt4TaL5buNoIXZzvjjFmKYmDQMQX100kA7MIoyhDgP0gOFFGuuOLCyaJXgqUzG6MNG/OLEteaU5pd/ecvn1D+/YNNx9+gj/uibOF47Rs9oDqlMEbF12b2hheGjlnylqAjcnZvdrKZoeyCAWzpc3bRIg7CIKlPzcLi3NGQWtNu3DQP27Uhqha5seosyVTauG4f4bmM6/TK9JmIsOcHHilVSGGyO64w/mJVIQ1CeNuz7gze+C83tO2lXwxAKWpiYadKnlbOL08s4ha8JQLlkaKpyVl2t0wD3vul8J6SfDMM4zm7d4mj39yyzBGDs+fUpdPiSWRv/wp37QTl/Vb8slTjFjGtq6oGzpSnBijctyNxGliWVde//EfcfPRR4wevv3mS777gz2DU6RlooB6YZhGWwbN9kScjeud62Q5UVBHKZXUhfA+VHKpTDmye53wuvDyH//3/IOffcuv/fb/lL/2t/9zxhff5Xs/+A5+Gom7Iw/3d6yXE8FZimirG1tqNBJ+MLvW1kwsn86r3be1dvvCgveecXQMcbRiotucStfeGFjpuPrHu07JoiPF4BE1auZuHhhCZRxmxmlCmzLESqmZUhLbtlgBpQXljPcVJwZEicQe4gdNs03NSiWEkXGI7zjDnRb2vgDwuq+BuYt4b6CGEyEOkalO1likYtildO0WDmkBCdEoX5tNvX2cqW0i5wuIFa5XOz+VqzsLttde9TBXT/TuSHMtkkVsP74W9toqVXOnTLZeAFlxL0To0x76PWIgz7t8CauT9Jd4zIb2O1uzXZNktP9mHH4sT8a+r/U3boBLj4yHTh1yesV27TyQatkFJV2Qvh4Fyypx3dvTOYdX/4726QrNJ5o4BucJMhFaQ1I2asnoifNglqH+iMSZ3Bo5P5DzPaVmammUnGhApsIqVK+kbmMuTrt1qXYZlu1T7eq1jzdqWFUSlerN7Su6AGJ5MuZVb9eE1q17a6WzSR+vnxOHtHeTCtFmiHtV8taL+wSlayVqUUrKZiAi3kgEj+i9mP15R/6d9j1VBQg9SV6pLaPQNRl0BsO1oO9FkVwtNqXX8mpNI6bjuGoGLKGn08neK8ivlBmn2qky3SnyHc+Yx8a0l9/Xx/Y5/yNPH5E+zbJa7Yqwa1+gylWEq4/A4rtZ1PXZuynN9T5//IJ56lz98kEIw2C+ybVU3GgFg3PGy/UustuPUCPj7pbdzQv8MBo32QezCgJSyWwPb3Bmks9cN1rbW2x05zuP4wSaui6lUlNlWy6cTg9oSwTnGMJkgrO0sC0nxnnPED2n5cLpoRGHHeO4RwmEOBHjDoeN6ubZM8VA2iaWy8D9m5cMYWKOA04GSjtTWrKitW8aIsb7Ox5uiFOnObSC85FtW5jmmd00UDdhq41CIYYdrTjQSHB9hOIjMu7JbuScG2u1zSaXjcM+MrhCVBuZ1bJR08qrh5X85g1+Xfn+Ry+4//Yt65JIZUW98hd+569y2I389J/9U37//C+RFihrYV3Nn9icT9QQaWccMpWOuPgJdTNODzh/Q3zxHcqHNzz70Q2f/MoBL9a9Z8xd5u6Lr/nmZ18wyYCmyhRn1gqK77w7RwsVgsd7G7O6GJBohb/x5uw+q1umNXPc6UYK4Dylwbjbc/zwE6YXHxCffYC/vWW4vWX+4DkyBqo0XHDWhIkgbqFJYHQjzz6+4eHVjguV4ipltZFUaw2VAWkeLY2cCrW0viAdNFvcpb8Zh4Vy0Lv0pnYIWScvPdzEPR4U3b0Mw6OvTYI+ptDJI6xvdpnOeev/8HawiyCt4VuBdGF7+5JhNxAxZ4CqsAUH48S4O+LCjqwLa1qo20ZeTpTmiNPMbt5T04WXb96QSsWHwG6cHpd9b0GQVt9DBhz3D8l0EiLUklmzIjF0MbIhzM8/+pCUvs/PX31G65tH9Z5wyvgWkKRMEmg4s3SjGkc17GgMdjiqTUWMKw65FIJzBIEqtX+2QkuNSmEaYXDCPMBuDjjJoMrgrYimVWpqLFVprtF8oYp0SpwdglUba1PWr19y97PPaccj/tkTdk9umI57Bu/IZbNJ2RRRr306I0Q84icc0YSVbNS6WmHmHN41pCXKtlKHTJi9UePspja71VrBm+bicJjxYei2vGZN6XxkCANrNd7y8fkOJyv3d19gHukjY5wJ7gnjeGScbIrQtJG3wpIyzlvOxjjdMMYJdpU0rLS0cbm8pOR7aDCIUJYzaGHZFjs4/YALO5SI3zmO+yeIV9R5lvNKxVlT6aANntIiMY600VySnt9GLm8+4/LyT9kuFdkWclW821nhVdXQZQfeNcrpxLJeKNLw2pBxYLm/4w//xe+aXqpmbuYdzRWowuoqpVoapLnnaA8+6gicCqWbHdTQOOs9wQ2wOJ6GJ2yfrxzWQr38lH/7i6/57I/+kL/2v/rf8Z2/9Nt89N2POTz7mDevXvPNV5+T05lWVup2smDGXBk8RO/IpdGWRC4mzA8hIuo6QGLOWttqwuiSjTLjXTUTAzFaTdoSyoXgJ7zzFHXU2liXjZwaw7BjiLOJksMA6hCq4R5Su71xRtmoutD0DGRa3VAd8H6iFG80F5K5YaFoy5y14MKA+IhzI3qt5yQSgqHbtQFiDkDOQfChu8/4PgmOFurTBbK2tVn1Js6jLuLDDj/s0XQ2kX8Yzb3J2STL6pR3vH/paLmxNCzUq2kX/WAe9VbbG2JsjkOFSm9wxDIkFBN1ezeaw5czNyBDbHqR1P9srVnGjesixmYUDHGxF1zOCver972CUo2SbE/A1XVM6cWqA6fGU6dkCxcsmVYSJW2UtFLyYv9fVnJaCRo7jav0z9BeUpzgYsPNhegnJtkRNRIBkQS+MOxH9s+fEfZP8OORGG6QFlm3e04PX7Eurykl41IiOkE3C60kmM7DppTmONZQqpidsfZgS/N2949nZfGNLJkQBjTO1M1Am1obaKO0ypY3TJ9Rqdka2eCdGQVwFYzata61WWp3quTUSBusi5JT4VF7VwJZO9BYrRGwADJHbeVxEuD0Og/Q97pBoarx7sV5StqgF98gj6P2Pq+3E1K7858IrdeqVxrNtcx27l3F/Sgctlb1vYbUPWr5rqFT70rqPhmztrg3u79Mz7kW+9qdmbT/3ZUNIPDecz7ybR4lKFfkvr8YNhG/PqbRPQwJrSbr1L2wm2fGYY+qOYtM+5mnT59TC+SmNN8MSXAO5yuuqfFOi/nYO29dWK2Vy1LwfjKHGwcxRIofaKVSmidn2LLQmo2CSg2M40wIM1t2pHRNW/UmqovGQy3F0gUdA04DgiEqwzAS/Y6Hk7mnPNwXxI/c3D5FVaj1SMonaqcrtJaQ6pinW57dPmO3P/LFV1+RawYS67Kwiw51t3hxDHHC4Vn1hIRGcObcUwtG08HTSmVrxRxOQncNkUaomXQ5EZJxxuv5geXuFe3hgYPaTbucTzy8fUN6u/LZmz/i779+w1/6y7/Jh89uGKJH9p4QMUu9ThsJMfSUS+lq/GrohFlhMMgt4/wh86ff4/7ZwPd+fMv+VtBFrfBoK62d+L1/8v/m5//y93kRRzY54YKNUodxpDolB0EGMXeg6PHiKVLJkql4qgtUTK/gQjBBVVMkNQKeJnsyI2UI6OgIs+CHDKzM41OeHQ8UJ6x1I2u2xMpphxsyVTdEMxoD8+0O3zKLX2hDo6bWDwAPahtV2ippK7QKwQ8EsQPgHbr6LhCDvnk37WNGuaq0zF/52nm/z727evDav6vpJtXQHxELMmoKpSpbWqmbolPgMO1w0ZGWEyXRNxEbA28iuLwjihAm8M1T2kYD1pbNlivPaL7Huciy2noMccQ/fcY872yTac40GdfDpxaj0mTFDxO3xyeoc5wvD4zTgZtPnxEHaFSmFx/yvcNM/vZrlj/99ww3e9ZkzzUMkbY0m1iFSPaeGh0yBkuiZSJpI7VC0EYslbhujNlTqWytkoolAmpHsbQYBVBzNT/oILh4HSeaq49kJdfGeclsRbmkQqpWTA1DYBiiIXfOIamQTvesr0+sX3yLxMj+9sDx6Q3DcSZMA+NxR9zvKU4eI79l9wJ/84IQFE13lPO33aWngWakbUi6oOkMbYNmBZFznpozrTRcNKHbFIYuzFdC3yevwUKjDzA6YmhUdajfMx8+ZR4Ggp9x7IjDjvvzhUUbzk3UGhjH0cK8SgIVm6qGRk2roVtslHTCxnqbARdiHH9xYsmN0jrithHiwO3uwJoS67ZStDDtZ8YhMg6NrW4sy4lX33zJ8vJrPi33vP7i37Gcv8VpYowOFxxSjTHtB0EJVFEupbeXYc9xHGmLY7u/UN5sbKkwj0pUxziAxADR03xCCjYRarUXYQHXoFWldL5uP8fYWuZyStzOR2IWjsMRvWS29Y4pbWx/9Pv8w//L5/z4r/+P+c2//Z/z7Lv/AYfpOTf7kfv7e+7XE68fXkFdqNuK99YAZRnJ6sk1EdUSasdoblZxiKS8cTpdUN0oZTGEtlNpUHrBU2yCOpg9XVOPD6M1wT50WsqZYRzxFKMKOVBKTyfeEEk4rEAULTRRajHPfD9Y0dO00DRhAJUj554vESJhmBijuUg57xGioYVX5F76Hubse0ttSDPdkO92xrULSg1kr0Y/I9JkQOKO0I7UtkC64H3tVrRXPn95LPC9szwRS4iSjhoXWlsp7WI6KD9x5burSndlyd3Uw6wzm9RexBRUCi4EgowIw3vUB0NUFSvEu1jMekSMtunpAUIG0dgUGguPtCmFdrDOchZqq9bMXxF9wGHc71oKLW3kvFDKSqsrThqFhJaFVtZOifEQrgWZI7ZG8GYFHDzM00CQEU2eUs2b3Klnnm65ff4x4dkLwpMPiOFjfH1CWu7ZPXzF5e3nvH35M5bl3jIK/ErzBXWV5sxisVZ61oOjipK69kKbJXZrUTT3KbdvFFeRQViTPSaG4bGxy6WyrtnuZXFm/qCgpVIFQjCzD+mAL9Vs9ksSyqasp8b53Mipi5UFnHZhedPHFHMer2d4BIZVpE/ajcbnnFlXipqfvqXqOtNoSEe/FZuYyLVgNo1S98Owe7sj7k318Z51/Ya6ZiU46FSZa47PIx5vQ6XHO/BKC3r0WLLXdddaQR+nANfv8u+h7tpNUR7rkmu90XODDFDsUx/tz6DYBFx7kyJWx9jdDcE7tdQ7FxijiR5zdajbo/GAzE+hNtL5DdrOOM14Nc6fV+PaWnEP2iI4j8hMjJEwWuF6VeF7P+D6uK6FShwUsIOrNUdpI46BYZoJw0jOxcKBipAU++/mGcLINO77J1CZ5kirG5dlo9ZAkz27wyc2whx3tKb4OqC5GlcuWKHnXbMLUeBm/5TlJnFa77lc7vB1Ybn7lrpcCHFnjYsTxt0MDmrJRD9QM5wfLhznmdl7Eo1pf+C8KrBjEsV3igS1WUdclYN1PITc+PLLL0jbynGcKa6Qlsz21Vv+4PzPWX71ewwhkEPmeJi5pGrJerWa60LzjyMn6HHc6vHsCe0pMTzD3+w5fjTz9AOzlnLROGi+Nrw/8yf/wz/kdmvIWpCh0VImDCAj6BBZpYA0DkPk+OwGfOXt6S1uiDg/kVOllIqL0p+7UtZEiIHB79jkSJyfMh890xFcLGh9i8+FyyvlYT9zfPYMXzfWfLGwH0ZQmx7FuMOHmf3NkdFVvBQ0wXKq5KUYqpcK21osWrqY+j830J6Eqly99ltPsPNcfxnXrq/46+bSO+5rz87jb6Vp6YFMZm+YSzEOK9ZoXUfniNlQasvUNCCrOfUYbAbqDGGpVaw5DAtIZAwToSPH3lWIkSar8V19ZGqesTlKStSz0Jw1dVoyLSV0u6DrxbjZpXA5XUhxIE97nJ8p6gjjnrg/cozfxz/5FFUhTEbPeruemOcBDtY0sDS0JOMXBkfxET3e4m6eoH5m9HvibmC/E6IU4sMD5csvubx8RU6FTKVGh3ODcSGFLkLGhqFNWBIdobOMhpoLbitsqbJUWFNlSdlABhyXZJxdBEK0wjRGK2TdsuF9Ip8X7l+9ZtgN+N1MvjnCbkcdJooPDDfPmZ9/wu0P/zKHSdjuPuflz5VXn79kCtUElCLUUjl3+96we4YfDnYsqFkLirjOC61MbjSnDzUXmckNJrikUUncny88LCsyHHl6eMoURkN4msO7wLolspfu6LPjuBt7QrFDgsdRLHBPT6zpFSm9ptUzPhilzQ/m7OOGjsrZMYnzDSeNKs0ShVtBSqWVjboW1qUSXWE9v+XNt1/w8usvePnZH3O++4Lh9BKnF/COrBYIOHuxyUqt5uIzTIT5FhdGCwwsjXrauNxvuCUwS2BokWkciCKoVHIpqLdwHZwg1dyHLKTO+NjROdzoqRUuLRM1MEaH1oILSgyOeT8jw4GFRLq/h7LyxX/1d0mvvuS7/+n/mh/8xb/Bh89ueXpz5OTgdntg3R7IDw/IWs0eTwLEwFBW6rrYuq+NOY7sdgdkvbCeN6PjSMVLNtGnnxGMOlRUkVIoLnXj1IaX0daQU2pL1LqRFtfDH6PtBxgdrOYF2obWREsbTrTrw0ykW9MGzsKvmm5dIOuoxfWwyUotZrwaVLvDWjMH0CvTpCeTeucp1d6l6/7kLjiGqQeWZaVlQ/GlCYEBvJJDwbUjoSSK3zoffUM7En+1G73SEd6h7L5PUhslLyj3tFEJQ7MpnZXeBta0Yu5nHYMstdgeLpWqG0pAXDFdoAS8eNQZXZeeeHs1BrzaZ5qQs3Tg13WTxWt2hJj1YS/DHNIBzgbO4TRYIXylF6rdG6bJMCcuFUV78F6IHpkiOTVzRnOB1hzXU2f0wm6IxOgZhj1FRlIHpWN3lxv8xPH2BdOn32P67g+o+in54ZZ2f2KKH+DCC9Tdcnn7U9b1a2irhY1iAtrogk3/SjNARrFJklW81OqoKSHVkOuaG0QDdYuYOLq2bgPrPA1PqdLP5IHognEgtEArOAzBNwFspWWhJmFbG+nSSKtSk7OU+NonOy5wTfN+v/nsYTlW3CKPWglVtfRxlc6R7+1Wa4h3NLk2B/0fJ7Ymr1x71HztRd6j4Lzj4VxpPe8qg/dC1Ky66ve368/Z9R+P9Jn30fv3mgSqgS7dbOXqQ9+jruy5RTql5h1//1rUvyvy2yMn3+k17FLxvQmx5e3szlclmPOMEl00TpHr3+z81S6EGCJ+AzSjrZkvsZpKV9WKnFbV7PLEU/PW1fZW0LdmPZK2Rs4F1BFGc5RwwRxgzO5IUBnse9R489O0wzXBxxH64afVEtW2zd6PiC00RcFFXJiQUI1yIQEX4Hh7IOeF8+WMD8bTKrVw9/CGLQvnZeV4e2SeBi6XyjhbOtu6KlFhHGecM69+cZ67t/d41zgeb2gl2XtIiaKGLIhA7aEYNW3mfFMyopWb455IYqvF0MDoYQj4JBx2M6m3+k6Vt29e8+KDZ7wqL7m53XM67VgezgzjZLZ9ajeQ613i1aKyZYfGG+ruhnJ0fPyjGw7PhNSSdd9VCL7Rzm8o93eMKt2C0IFThmmgeswtaBjJFML+gNsd2coZph0y7nBxxzDZe41TZJgCaV1o92ezgg875vkp47OP+eCjG4ZdYSsPhhCmE20p5PUZjpmWT6TzW2oW8lkJteDzSlkekJoJTmmiDNEoJkFmzpqpl760mnH66pWrZ94X1oDa7o7z0q20rhw66Rs4No59XOsd+embR0Ms8bcLuJRrnHehtGqLrTeuQwiMc7TMiI4+nM8P+FoI02QBICq0nA19VaE2YSsVTY1hPuCHiVoLeTnjhoEwjYzTyOClu69Eilb0cs9WNrz3pMsZ3TbK+QFdT4wC+wC8/ILl/oFLGAwNnvfUOPGgjjf/euS7P/4xH/zWX0FT4u2//V0evviCaSu0BEFHQnC4MTDEgeY8t4dbDp/+gOPH32U6PGH0E/dkvtne8ubuNZfTA8VHOD5hLYm1NWOgNqUlOwx8STiBITgY7EAuxby3azPepU+NVIxOYAmyfQrfRdqt2Ig3bZXss01lRCxxdIy4wdNWm4ppcLz56mtWF2GaOBflw+//Cr/1F/8mv/bjXyNEYX0ZuLz6jC9SQbN59oOiwQT7iyZCXRn2z4xi4aMVolrRJuTNUcaRKJHlsuJCtabPFWqz+6S2Shh3PPEm0Izd0SanbPugB1+LidW0IVMg4FHZDMWs1ixGbwdYyiYQjRqgWWCS+sYYI9uy2EGujXVN+KmAJmo5U8tiSZHNNDMtJUq6UNcLy7nQcuAwv0CXe2rMaI14yThX0C1BE3wzpKg4IfjJnHdGo/a1vNFK6fkFIzjBx0AI15Aj4zZ7FVzXEXln2Qy0xrSfuCwbvnNwU27kXDnGgHfC4DxT9MyDJ/Z1PPnItw9vmN2Rm93A8tM/5evf/e/49OPvED6xJM9Q4OP5A1SfUp8taCrdHjFQnVBonO5e8/mf/YSWs7lylGr2tH6m5pWSGl49QxwM3Kil7ymNWhTLHjUahoZCE7vGqpnaVlSh1EDTgaDDLxXFrbvkqCqNDbQgREuAV3NHkegIbiK3jZyMatrIFM04LeTciEERmYiDtyKqmw2oWkGPU4JYGVNbxYuJgS1kJ3K5LNRi4YrOCa0Y992ceUac2+HdgeYSzq2Ia9THvbOh4hA3EdyMi9FsmmWgFrFAJzG/ftVIcMaFV6m9RDFIBYxeKKqG+HcUurVCziBxADWr4tAbBBFLK1catV0tLA1ZNWdAK5tULckbpNOJrBhEDclVesAT1VwDr3aY4jrea04/6jwSI37YU6KiUYj7mXE0imgpSi5Y7oeAqwknmTAI8zjZRDHsmGYHKeO2lZYKURKHyfHkdsf0ZKYOE/lm4rz3bPuBZdgRhj3j/sjrbyOX5We0co8LBgxoxVytPKy1IkGIfjSHLechCtknasrUbNMWcY3abBqtcqXFtT69CDjXOtotvcnRR4549xCnDw77dMPEuqVUu+bVaKA0s7N8DHnSa4l7hdBM+2iNb2dJ9YrZe7uXqfWxmDZQyAwbrhSbq9ykvWeOUelofHdiuhJ23nfAef+XYnVNc9e70WxRUboF+NXS8vr+3/nV+yum3zUWxu33v1xfXOF55LFwf2xq5N27eFfwX8cO71F8rk3FlbHUv+pECOuy0fAMozwqooNzlJqgBWjJipu6UMqJ7XxVgLvHtEtxpsz3LnTByobmE3iHhNHGemEg+AAhmIiqNppMuOgMEQuGXIU4oxq64ElIpSJh4rA/4sNIyq/IKbNtiVpbH5OYPG+YBnzJlC6G0tYIw8AQI+MuMswTWx0RZ/ZwuWZEPVteeP3mW/a3EyGYB3DaLlzWhVYDU2tseUUcHHWHauFyecurhws3hyfs5hsUT2lKjBbz7dwIeeEwH9k/2XP3xS/IywO78UC5f0tKKzUnWlrN3rEVSrF4+3EaLAAmGMr5wx/9GsvdPctytphnNZs87emVBnwZ/1i7V6trI5kn7D76lPDpjic/CBRngpkqjaAFx8JP/+Xvsr16w6hmeTqIUSlicCSBpIVGwE0zJYzc5UaViO5vKX4AP6GDJ8aR3XEiDg49P1jKJp7DfIuOT6jjwPjswJNnkZRH7u5fcXn1mqaFt28/ww0rYQxMbqWuG9t6IeXECMhyoi1nNG+0bA4WZE9wE94pqRa0dpxHupVVLyCuIze7R7QfvrYQtQdy9f3+cclILxaM+tsb2J46VzH/3n4egDMetqFDljDsYmQ+HAmzkN2KBMitIq1QcrIuPoPzzRxGxBkCskGpb2nrisSJ5hwZgRAY9zum/Y42jAS/Jw4zgziWJbHct35wFFza8JcH6ukBqPigTN/+lPWbbxjGHetSSC5SKvhhhxtGfvGn/4aX/5+/z7Jt3H/9JdOaYc2kSyEVoyloqeS8ICESQ2B7eMOw2xPEcdpe8tnda366vCUJzAR2zz/GP7fk0ehtU29bpi5nWlqoyxnWM1oTY9kIJSNSrSBUQAKhOkov7K9Jh06v16wjFNfDobU+PbRmPydH7UMSN3g02qjd+QhJCVXJL1/z9R//ETc/+DW++6PvMQ2RMQSmYYSSWdfNxIdUPCbIX+tGaxvDk2d4N9NqJMhAI9By4vTm3kKcwDIYYgMfe5COIdQh7IijI0aHl0bNqbukZKTbuILQ6sb57ULue1rsGqbWAZZ1rVQG1KtZ23mH94OBMyIcx2c4KVwuD5R0x939PV99+VMOty86F9WmJvZfgtPIND9l9DvIA5mZECN1+pb17WtrHlm4LPdsubDzgWESgq8UcVy2jW1bkFIgFXxrDKMwTLO5ukRvDmHicZNNcfyamHwvqloDNfvkaZ65HxyXNbOkQmmZWVpPKg7McWCIwZocB2ilqvDhvGdJhqY+u30Cn/+M/LM/ZPr4YxoRJwMRcHg0zhBbH22bs9GKcjtHDoPnqy++JOXEhFGF9odbnFZOy4pXx3w4InEg3d+Tc8YHzzyYi9CWM1ordVuhVfuEpeDYjINdPbSIhrFbQXtUtIsmu2sLK5rv0DqgdUKYzHq1eIbJUMOSC6qZpisVIUw7xjESpFE1o3nFSXck0opqd6lxFryEBJo0amgMYsqiGI0DnbdiAE+zuVPV0mkzoBpRHaHtEA6YFWaxa+hqL34GXJgNiAoRwmAaEBlAg3nyV0PWjZ9ceoFkxf3VoQbBGlG6FaF2i1RjdXTetOMqsjXNFFfos/dOnTLyXpAVj2m0/lHUq/0+NJT/ykwo5otO5zaLR0LEDzPgmYh4Dgg3SDgROj2xpkxKhZT7vl8TFHOVkyDGlpgnxv2empXl7UptF6IkND0g6S2znhnLPbKbyTeKDwNp3KHiSAjTEHk6RPRb2C6fo/UOr80KSR8JEUJdiePAuD+ibofITM6wXC6k5cy2nVC11OGm3dK0N0Bm9WzXw8VeLFNxemUM9LK8mfzZ443S2n+7Ts2yy9asZusnbdNGcN66HjXkRjpy/ximpUrJRsuyVOt+7XoV+y7V1b7/etpf04UN9OuUll4sN7X7Ta/3Uz/zH4Wv79UBXAt0Zzoyms3xTUzsH39O6U0P0r9mwrUuepXHx2l/b3SHPrrz07X4ePf68u7ne+/r78p3efwZH7/SC3zX29IwDiPjfGDe3yAOclpMya2Y+wXmER+kkOvKcj4hNMI8mbCgNjvEnEfVxsY0IQZHaAvb6cyaGnHaszs+ZRhGVIWt2QjZyd5u/JItdMVFSlYkDIyzpdZeP3hx0r1+DU2dph3zbgSUdbugamLKECZ2B7OpG4YRtHFZN/COaXdANaHLgngTZHrXSPnC27tXOC+knAwBF8V5UGkWv0wjhMa2ntCWEKmcTm9wCPuD7TQxehOYhMAKrMsZoVLzRkorab2Q375lXheomdoSUs3tpGmhUbk5HhmniZsnR3Y3E+M4cDzu+PIXX1FzQcSSV1Hr0Jy34ofWevcqjOGG1T2lPXnG9N2R/UdGFXH90Agh8fCLn/L7/+gfwf0ZyTbK80V7sVSIw4jGSIqB6clT4vFojje+sWmiqNBkQH1kmnfIfg/D1f6sWTDPkw9ow4H7XHmznGAdiFEhCOozLReWc+H+9YWnz57gaqYsCywLZVmJ3uPSgubVKCfF0kxVHLVULueN8/0G2dsIVl2ni0o3WuhiqMcR4DtxU9OrZMUaIo/Znj5OBvtm0Fth25AwXp+Kjd2DD0Rv9J+qRpU63Dxhf3vAD42kjhYKXhouWuHvvBXzrRS0qlnLinkuu04PEs3kbKLYkmBNJ+ppwIWBaf+UaT4QYqQsC2ldCQqDNkZRdsV42Ol0x3k7Ee9f8swpklZuQ2S/2/H11y9Z3t6h4qyg8JZ8sKsVOa94sXF6884OVjWRKSqcH97w6uEEn3/JsH/CBpzmgfF7H/Pi0+9wu3/K5GaEQAmeMgSyNtbLwnY+kS/3bC+/5vzzn7K++RpSI6Bo6oh1MwS1VdMuVFWjBNXuHdwPFDGDFeMjYxRA45l7vHcd6a60tdA27EB2jZbhZtoRLxt//M/+e9I0M+X/iNPdN7gt8WR/y+nBxts0kGp+FC0n0rbQSEyhoOMeZGKan+CjWQee1wvbpTEfDgTxiFckGv+69QmN5WB06hYZxBmoIxVNCa2CDw7nCmk5cVkvbJuFH4U44txAKYK4iXF+QmuFcdgR3Mg4zFi7KRz2A2m9J9dfMJRCqZmHu1fEGHpAUbAkah9xYUQkEHwkTpF2VEqcCcc923wL8Rv8/R3udMe2QvOmCbFz1Sa5qkouC64WBhGmMfSgG6yR9mLpms7WWex7GONAa2aXLOKYDranTzujLral0HxjxuOaCa7nwTH0oqC2QqkVRBkHzziOaHDowwPbZz9h/cWfcPydv47qTHRGGwpOUHzPUy20stCaMg4jEgSdB867kcvScTWFMc604cAqd5StsF4yRO0iVEVrM7qmUwYPuWQ0F9AI4miSaG3rdoKWdVHDQBxGZBz74W7iftWGeLPbrKVhbh6RlFc0NUp1IEarMsGo4Icd4zCx2+8Z4g7vvXnli9GzilZqSSZSLWJBhi1YmF138XA0mlNCHHriN0Yn6oW9aunOYoKqTR+aDlSNlBZQ9UhTqgrqIs4PxDgTpgl8NPpMR9nNdU4f35/zxh9yj+i62VDW9s722G6mwNWL/ip6tAreLBbF9ag5ZwmozgtVjO9PNxooataGRhPuTizauvmZOfo42ns6ASseWxfdig+EaYcPIz7siIMQh8qwOxNaImKi01IqW9pYlzN5vUeTY5DM7AMTAT+Mnd9d8Jpxrpoz2XLPVz/9Y4ovfOIyz3YBP1fizTMeVJhypMgL1vNADsJRMuNpRz59iZY7mijqIs0lxEWGeWB/84Q4PEXcDdsKLp5wwz2yRUp+QKtQSjJLVO1UrX4thIb3pidziAXPFUCMK270nO5E094B+eb33oMuexV7reXefw29MnK6XqhyNQqx53TOGrNa9fH7r5aRrTXzrvilc/taCl9pM4+neW9croz7/rg/V9jbWtTH4rqpmZCgZuRh9fnV9vKKq7+bRDxayvYKXB9pOl3Dp+9e/c+95cdmxRrNXrG/9z7f/yZ57/t7yQ/YvR1ubm4JcbQRQysUrUhoRB9o5cxysoOypRNaVkQ3Gx9nQz7N19NTUqNUxccR7wNLXkn+gXVrnNeKHw6sW2LePUFdwPuBEEdC8IShsq5nfI8tF22Mw0xVpZRCjIF1XQlFmYcRnCOr67QIi1Pe7w6czycsgsnZa8RIGEdKSlALw3hknHbUuqL6gNZK2I/EOLCuifP5xDSOHA57Lkvi6uLlFcR7xjhb0l7KDGFgvp0pW8Y7sSTM1qg1oJv5GAfv2U4bD69fwnIHaYO0cNhPlMvJfLWbjbB9M1EK40CInlILt0+f4ILw2U/+jG3baKWLUYhW4Fe1gkDtT5wVPoGJyT3BP/0B7clTbn9lx3ADXhRyIrgL56/+hP/2//p/4yf/7T/hZrMwmt0wmgexh6LGzcsCbt4Rbp4wPntOEccpnSlExI8M04Fh3LG7veFwuwMya+gRWW6gHg+Ecc9UKpf8QLu7MA6V88MraIkhNIIoLinp7WpuA2uirom6Zc6lULeFdH7L8vCWbTnjW8DrRN0qrZjyv9bOqukUMHE9HOdK5dC+EYkNuug2cMI7T9trAuJVJPOYbOiky8WsGQTzcY7Bd1cfu2aiFe8jn3z6XXTX2MqJIBENgpeGOmt6nXOUSue82hxT8ThvIdfiFOk+24P3RHHUkntOQmF7UMp2ZoiRsmU0JStmc/eProlwPsFygvViB7jzrEtijp50KsgKkw7U0ph95Hwy+1YP7NxEU1i0ktTuKzeIBZdQCCr4qpT1THKRNB959v1f4fv/8V/n+Y9+ncPNC3zY03KjBEcbPJVGXlfW04mHu7dcvvmSL/7VP+PVv/89lm8+R7bEIFfbM9ueijqqmpuFEyF4j1Oh6juLTQcWnNU3N6eNAAydXqBqgTxFQSSwVaVuGa8rtbxhigPhm1/wr//+57x6/S2/8qvf4+n+COtGKr7fVJYa6Kn4Vsin19yXlXE6EqYDtMQ4HZEw4VWRVkjnM7LfE8cjSsP7sVv7eswBpZFqBe2e2K27hzizy6vVKAqlLmhbKWVlS45purGmWwZunt7gvN2j03jAy8gQZqPM0JhGIS0zp8uFLSecGp2HslJrsuK+iRVceTPXKx2JceR4e6DsRs53iuwbOw3M+1vk4TUPpcCbl9SWqa3gyL0xhjgHXHXMPrIPA7UULpcV55XWg+60Fpo4026hRnf0zlBkrSjZEoi9MD89sG8T95czkhsxGcUhOAjO+MJNLVhxLZkCPRlzYN02aIk//sf/Dbd/5a8x/sZfY9OEyGD9SHfXEOfIWnj78iV12XBa+fkvfsbh5oYffvf7PGyFV3f3FBdxrTEMM5fzhfu7B/wohADBWUDatqzUbFSRWrp/fYwdQM62X1ezh9YYLQ9CMkUK3g2dqtrDrUpAsaZLG5S22nRdjeblurWhVhjGPfN+x7DbEX2AVkh1IW1GT7kWYbV2Bxpx4IQoPfncOcv5qL247YVJqYktL2jpHvXFsjhqTZRaKU0pVSjFzC6aNLtA2POL87jg8TGCj526251sBKCiLfWGxu55m5JaXknDMj54BHSscPHOBMoQuFpY0qdj173ACjuPemdp3cXyCNDa6RJd/yN09xOjbl4LQK6OLY+oai+2cIQQzW6W7nWeHGmqxP2e0JK1jb153baN9XJmu9xRL3f4tjHhcMmoTGXbICW8U5viVFv/bz7/nFdvXvLF55/xwzdf8+GPfsx0+wnR3/D8ww8YjjNvXjvcznSKbf2Iev6S9fyFXXvNbO0tMW6EKTLtb5nn54g8YZxH3HQirq+5rIHtEiGP1FooeetsCpuP1twNU8Saa4cjxgFEu+uMZTVwLY5V4DF8qk/L1Uw/6Ej2YyHbKk0E7+x3CA7nPblaMGWrBngFL5aU2/nu2tFv72wNt35N/3xx79zVwem94vnxz3fQt1G2/hwtpxf3TTrpRwyYsAyud046dlr1NXMV83LVnHRqp15dl9wvv5kOHloAqRX0j43s4/uwSfUv/2q/9Bx98PT4qAYERVnXBSQTB0vNo9/wtWxcTrlz7i60vEC14r5s2+MiLUCp3ZuYhGMipwV1GzHM7Gc73EtaKUMiziPiTHxb1ZFrZRh3zNOAE8+2JVDH+XImbZX9/pZSCsOQLYlSeeTsb9uGE9jtdgzD1KOOI+u2WKfkPX4ccM2oI9pR9FYDKa1Ia4QQOBwCacsWib4Vhjiy3wlbglY60iaRaZ4I4qh57eEcA4gjhNAHM0rOmeAGvDjSmkHEbEG9Jyuc1wtDTx4tJVNLRpsQnXFS1/XCOO747M9+xpv71zw57thODz2SvRGIfcZj3MBG7Tecoa1eDtCOHF58l/L8wOGTGRdB28pAob79in/8f/87/Kv/8v/F9OoNvgRaNqEMNIjRDsl5RxxHtnHHxXkkjMT9nlF3OBLDdGC3u2Xc7dndHHEBlvWB6Tnc9rTFZ7cvyKWR7++QMDNOCm2hVNs0vTRcy2znC5c3G9KUKMG4c1ktrOlyIp0XOyx7vDqtkVMmiGMaJ3ITUi4diXN9D+lMuNZMTNb59a2nyl1HZGau4K4RJl3oaQsUnDU68i5jwKYkYiiQ6/QGFZyPFuGNM/SiKm5whGEgaybnTN16iMg1fTg4qJacWSvUmpHsTTzpI86b5VuuzTYzURPsqsPXiqMgvrIPkaCN9PaOh7s3yOWMrxmpIH7m7UMyO9VUWB4eoEArlrA6DgMt2zoIAtRCcJEpBESq0b3gMU1VpTHgcQornsPH3+eHv/Xb/OB3/mPCixfIMHcRHQzOgDYFXLGx7CfOUR/u+eiT5/zxzcQv/nlh+cImMwPOfj4CKjYKjR6iOEpTcoV5GFjWZB7T/WC4brZGcbCRshXI9PvMJkr2zGKNcl25peK//gU//+pLklaWIXL83ne58TfcJSFrQZ1jy1bIrHljyfcowry/4cmzD3GtUdcT6gPqhHVLnNeF3eHILn/CcPiAefcETyTGiGNgS4mSroK8q1BTwHkLV2oJ5wulLpSyUcpG00htSlBHiDOH/VPGndnVeT/h3URwI7U0c7KJyuiEef+ah/NbgosMISDNknudFMDoeFttxDCg00RtAyVX0pZNI4UnDhPT4BDd2OaJ08tE0EypiVErWiupKjiPMWCFKoGqjVQShPBIhxAP3jkCnup6U+M7iNQaGtQsS0U5fnRkePGM/bff0E4L5dUFTYVWKp5qDZ8LbKUQMceX3Czh9DCOVKmcX77ij//Rf8OPn3+P+MGhi9MECt0jO9Bc4Bc//xm/+Ne/z+08Mu9H85K/2eFdwJUL6gbLVjnOtDSxXM7QEoIn+mrBU7VSWyO32nVnGF++KbW7a12RX5VAU0/WjZIXQrCAOdPgNKPiqKHnrSZSOqO6IH6DvOEdoEbvCW4mCLRSWPPJJl5FSEUppRKnqVtTqyVIt0YuK0q7FYFqAAEAAElEQVQmXCeKYiBGa0Z39V3sm/NGTZYoX/OGFqV0p5icLuSykoq5N4mzaYM06WGH2mtc2++1NcRbxoyJvK9T60ZJxYp6ab1YMiGi0dkCKh4VT2sepz1x1OljENYVjKnF6CTSgZrHwoorR1oe7wHpRGXB0Hu9wsiPxaO7cjvogcM4PMENjD7iMOevOigaNhgqvrmeQWOGiG4r+P2B8DBR5x2kCyFnQqi0LZG3EzUnfElEm+mQUmV/3IEPvPyzn/H119/w0a/+Kb/xV/8jnnznB+h0x273KepvON3foAzo7gn+yUccy3dI6Z6Hy0seLl+jciIMQggHxniDC0dCHdHgcRPI2hiGQF0PpG3BhfVR19NqprUFJ6aJASH6iFNHlWLsg1o7Ndh3qorJO1Vrn85UC6HqWLV2Tdz1mjmxBj8GA8wkGDJvkUJmNuGdo3ZnKu2NHKYgAOeQ2n6Z3vJIX7kW2u+h3n0Kc6XRPJbL7xX4f77Qp9cSV6jcZkXXf18dba5OZUbLkU5H+qUX+aXnbFzJ9dqbzXdcG/uM3r2edptPesMpvPeoR4LB9T0GICzLidqEGEdyXo0/2gBZcdH3GSFoTdS0WEcnUB9T9Wxc4lwgDoN14bkS3Ii2lZYV3IS4iBMbd/mruCpax5m3RMortRbCGDqHUtjtZlq74P21LpN+0yhpW/DRnARSrTi3EUJgmib2+z3bNrOsa/8wbBIwDgPLemEpwjAoKRWW7UROm41prxHJpTLsHfvdEUfjnCqikVo8+/1TvATOD3c24QjDY4fnvFlELctCuiyUbQV1eD+aun+cLfAiZ3COVIuhj046dUSIw0haCzWbGG0/77m/e4DuBtOKx8cBEU8IglJpTaAKSsS7PSE+pdYDdR6JTyO7J2ZdOrQE6z3//O/9P/knf/f/wf7NyqEJvlhUei2VhhUOcRho+xtkGvDHG24+/R7HDz9gOt4gg5B1w/kJXJ8ixID6xu7pM3Zyy3g6IeLZ8KxlI7XM8XDg2ZMD23oHbaNsb82Ocz2xnC6UbcPjzSPb2aEdxpnWI7G1ZpoUc5koEekdfXVCkXcIr8jVi/16618db/qid9dR4rsFcS30rwvcP1LBMMcUrMAfooUYpVLYUmGaeuR8SgzjQGmV3/vXv8ftJ7fsbzyjKiGaZ3jeVsARvI2P0QwSKKVy1a6Y6LfrV7TS1Gy/aq1WFVWj8vgx4cNAdA5PRTcLB8plM7ePy4W0mVjKBeX2+IInx1seXt9xvktcQwhaqaRi3PJWM0UgqlrKZbBiUGloFKgFF67TjoDTgRQn9h//gBc/+g+Jn3yXHLxxv20/pNqSsjYpWFGTVAm3N3znt34L6sL9qy95dX5LqgXfHCIRmo3TNVsIyzSODOJZtsxub6mxy3JFGKHVYraFsacfavc4cobMun4wtM67FbVrXF6/ZNONG4WHdeXrP/gjZolMT27xyWiCEswKMVdn9I1FWfPKds60rKR1wcVA0colL5y3C6kmpvnAzeWeF5/A4M1dTEKj5daD7Rupp3Yi1egq3tD9nButZXI2EW4tVpQ5hBgCNzdPOBxuGXcDKSfWzaY/4qOFK4nSJLOVSlFh2h2IoRHUCrfg1EAFbaRkwV2leGAmV7snjR60Rws0THfUtoVUE350SDZXI/FiXuetsqRCENfzDC52fnhnqcH9mgQ/IN5QrdKMe5ubobRu8PgxWFMlipsj7tmBsL7h/v4N0+DI1c6fdhVJaiXVSmnNfl4RXKv4LAy7gVsXePVv/4C73/h9PvibH7M6R3A742knhShUidw/nPFbwmtFNLPWjZc1Ibs9cZzN0bEXxZWNxkrb7qAJIXi0JUpJSPfqb91fvSDQrKlXLBckUi0VVgRzeIi0WHFhRIk4cTh/hCq0tuHcBZEzuTxQtreoLgwh4hkJbo+WjbyeKGuiNCt8axWqCj5GxjjivVoolwS2tBoSWtWANXc0MpcIQ+zJ5yVzPg+Asm0L6JmynaEKOZldZ6kXUn4gpRNNV1zItGqmDbklCtUcwbTiab2WMXcvK1AsEMwSgQvGg2/mhIMZIYh4m+jIgAu+0zjMhtS7gPbQIpt4GQXyHUJsgJChomb/6f11T5JHExHE4cQaCe3BhB5nDU4xypcXSzt14o3CKsHqBRraNqrfIG4ISowjwY9o8+gouGk2geg0w3bBLWf8asi6Kx4XhFC90RNLY4gzgUjeKrEI+dXKT1/9IQ/ffsuPf+c3+fQv/AbDU6XGxvDiO4jsOT1MeH+D6p6Y3vL0yXPCwy3b+gohE2SHdzMxjCDC7AfcsMMNTyjDSL6sLMuJmLuQW6vZAscN7c5JpRRwAe883ldKTdS14UM1AKVq11JAK2LNZ0+ZfbR+bcYwcGLiX+9tchecwzkT2vo++bL8zK5nQ/p05bFNeCx2vXOPzcK1oNdfKqrfFe1mG92FsdcG77GGf+9xV6rO45ffwemKgYAq13q821FZkIHRPUyh965Ihy7ytofYXzfqtentP39/tscGU7uzU8dzrYqR9/SC/fkVmyxc33/wHlLaSDnhg2Nmbz7ywQqJlm1TLmmxNEon1h3nRNWGJdz2FzTqIRVH82bxV8pC3N1yfPqEcTdTaNCSoSUFWha8U1pZDdnMiVIbMVoa32E/Mg626Vw5nHW11645IQg5ZTvQxpk4REIItNbMe7iWR6R2CJGlwraY+Cn4QIzO6A79A9YmPR4eVIVazEf/cHjCvNvRqhKHPcejIVHRmU//w8NrKObj7cMATTnsn7A1wQ8jWzMbxrh31C2h24oLA7ndE2iM3tDTWivbsiFakCbknDjfL/gmGO3fkWn9AM9UzTa+0oFWB5wcIH7A/MEP8R/u+ejXD9w8w3yV64mf/Ot/yj/4O3+Hp/eJ4VzYz3tOy4XgJmqF0hzNjYTjM8aPPiYcdsiLZ+w//YgX3/mUYbfj4fKGloxziVhwio8RP4jZkmpmVTWqjIJrAwd/w+3tDfv93gKwXCMtA+vpNeuyoHGHZyJdKgmIQ2AeZkOTw4QrVvCLH5BUKZuJ1Ixgb6ElV59dFcyWq1NueFz0hkyZQLYLapRuIWVf0D7auy5uJ8JxiuaI5FxPxusbmSqSrSBVbZRaccFzaivFZbzc4L3jogUXGhE1WoJekeZCXatFxlvbivNCGAzdrdpsrAxd7C7UdUNjwoeJYbdnfzhAa6TLhfO2UU4rroBqNPQvV273O8rDA9++uWe5v5CXjSgeqRVfio02nU2BXJ+m1d7kBD/2RsiKNNs7AkpEJeLnHfOLT5k+/B4aIiW+2wuv2n77ZSQ3EaEUBS+E44FPfusv88lnf8pXP/8ped2QemZsYiCAQgiO2sN6mprt7bZdSHkjDtLXbMV72M0DPnq2lLpNGtYQiY1SS7Pmtamg1Zwwynahnt6yu3nCAWH56lt+tv0eTz/9Djcff8LN8+eU4HBtxJEYnRC1EcWSRF998Q1vvnnJeJjY6sIlPdCouEHQtLdDLjnq5cTt0w/Z37zANUdOFvISfLNNGBOY5gphnE2EvRRag7qZq8zgPLsYeLKbeXKYiaM5tkzDzDQ0arNJk3bh5JoWUk7EaWTvbs2zv3bdgBo9pGYL13KiaKtsqUIR8z8nEmowlLQU1tMZWVc0etxuR7lUJAeK931MbjzZdU1Eb+PnbV0JIRhvWoxCaeFwto402KlUa2Xe79jtdmw1sS6Z3XFPuDlw+eIXDFPk5sVTaBdKKvjBmv+SC8tysbWJo1RlrQmplVFGpMDBD2ynB+7+zb/g6W/8BYYPf2j6MDd18TIgkY8++R5f/uQXpOUBauIm7Elv37APRttxTikV1suZZXlN3t4g9d6cQYLr/uym6ek8P0P81AT+4gYTW9dC0ULtKaY4CzsTemEbDGxz7Gglgm7meMOJZS2kdEFkwRNACloam4TOJfekUii1e3+7wBBuIDvSBrlYPkbZLHgpOE8cFNWA8xODRNPaqJJzYp5nhjhwESUtJ7bzG8sfuGy0nChpJaUHUjmhrHixcC9zkrG9uGIc91519MJE0c7tbrXYOZ274JdG6yLOqtV+dgnd1jj2csbhehK79Ckfao1eqcma5cfiz2Mu996oJR04utIm5Mqt1obvrkc0RZpN/CrVvMRNgGffrzaZVW0ULRRdyeUBoTzSkFxoNCJRAy5GBMWPA7KNEAJV7nDJ4VJFfcP5ZmJgH3EEa85qJdTAVBxBA2//7Et+9/4lp7sv+PX/UWV+5tCwI3zwCfPhKUvNXDYHeWZyhTA/Zzu/Jq/3+JZoydHYGAdPDDDoiAsHkhuY4oH5cNsDuVa7DiX3yY3RsXzJBPHmnFMymh2jE0oOtC2jxRyOaul2m1kp2Tzva6dcduIJV3cYxzWD4D0HHd4BbHotdq/0lSs8re9Tazr9pr/EFQi/JsM+IvodsX+/Zv/zXPv/X/T+OgeQ9w60fs+If6zdG9p98tvj6yCta8Ts5zAqmNjESa4BVte9813Tou068Xr3M7Zel1xjHN456vT3TZ8e9P8LMZpPblOhtUytycJxDKYwgVsplgCm5rHQmiXJeXedGXQxSxc3KNJdBaNFtntHiI5hCEgVK7HqSsqNWjzBR4Izrr+2zcz9mwlaQ/CUutKqWKHnR1Sr+WMXO8RrzmztKrobaG14RO4MFSisy0ZNC5fzwrot+GKjwZvDQC3ZfIZrMRS8ZFyMUD1aHNrCu9FHv5hxMk69IORt64cWxGnm448/tVTCLRHx7AfPQxi4/7bYCCtMuDiiw0DzHjFCMClnlocHNFmRupSVVJNtzEnREnpypzceJYVcN1yMtOrROiP+Fo0vGD7+Hu7jmU9+NILHhG7LG/7VP/p7tJevOF4aQ3IsmiCOUG0MthSQZi43x4++y+HDFwwfPScNjtVZOmiWRvOQUqI1ZRBn18UJqVZ8cMR5ZsB4z5Q9aXkgqXC3Zryf2T/7lLjOrK2x3j8YetUcsguMXXfgQkCCJ+SV2ARCpPkB1TO5nXHNxlomhjVR2NWsy2h/PZyK9xa0grrr5LXbSkofrj3uPTa2c+LwAudtY+cdYQhs64rr6nnEUdScG0SN/ypNiTGy3p+57BzjPBGoeGfPpc0s2OQaBa4K2rMftKBOCB1R6AlphjY17XZ7FR8d4qp5+28FUaVuG3ffvoKtIrnhK2j2aA1E9dy9fsXl4UyUSMAh2hicQOc2X1EB58GFgarmxGR/39BSiUM03quaJ3VzgRZGGHa43e5xAnLdal3fV6+bIzikCUPn2yZV4pOn/PB3foc/+cN/xylXahNayqgmpFXE27VQaTSFH37/B2xb4heff963MDXPc4FpijYtqN6AhWoi9aJXo7L3d0G7F2LwsBXOr14TphmPsGxfkS8Lb1++ZPfBRzz77nd48eGHnNbVGuF4y264IdfCuDxwf7ljvbtQdSM4o2J5EYbaKPd3vDz/KQ8vv+H22Yd8+Mn3GPY35Ip5dMcRH4KNs70JwkOIjKo0X9kFJQVz4jkejuz3Oybf0MtbltMDDxI5PPvAvNhDoLRGPS9s6wUlEQeHMLORyGsm1dpRWDXLvI56NW2dS93snvOBYZhxYSZO5rS1bmd0mPH7W2IItDiSuOM+Z5o4xugZaCQqPis7FygSWFfbH11wj4dg7RNLxAr7IUbmyeyGXTM6w+V04Xa3w9VEywvz8Ybz1xdEfA9/dh3dNYpZRQ1wclbEoUZvqG/ecnhy5PTv/w3f/NdHPv3b/1u4+RRLutvRxNzevve9X6P8yrd89oe/j2rifFmQzU7SeDjgY0S8w9WVlhdavuDqmVYrFNdpOJbcLN7hpHPta7MBhmgHJMyVTlsPHfOJWj3a6TBDjDgJrOs9JQem0c4frR5KhDrSJeeIWFLt0iqlXFA8pV6d08xO+pTfsJxHqnqcGzkcnnba7QMEE3q3Giz0Slyf3HvGceJ4vOX08MDp4S2pKVqMTpbTQk0XtuVCThdqWcBlC6wkEMOMdxOIp6rgqq19czKAayiPaHuc+ghG0dGegGQOJ9o1A/pIc/DOxMjBT7gwgTpadTTNgFq90BJNs/HzfcT5EXE7myo6/zjhdSKUUh+tHXuFZBtYM9TYSzGktht5WA1kE4dSEyVnarKMAu+0TwISKuZFXquiXpDIox4Ac6VFYkVCAZfAFQsz8gIEywgp5tXvNDIwUNLK9u3Kv/vH/5b1BH/pbw7sPwiMx0DcP0FWYTkNtBWWVBFGVEak7WjpFSk9ULcHhrnhZmvkBnE2IR9MBN7GEW17y2ephVoyOWXylmil9r61kbcTj6F5qmg2bnoujZyhpkZeG2VT6rXZ7P9ci2PBmSOZFzt7+jW/6t6u0y5VrFm8uvOovOO8K2in4l6Bg8Y75xy6KPaRyqJK8O4RxHv3MH38/csC22sh/o7TL71puKZpNzEbTLlyxGrrh590Ie615rCvX33pRWx/8T2A7Zp8S9fBtD5hfxSNI4+5PY/GEn+uyL/+zMFGwvbD1JIoyTEMJmxtrVoCWS3dYg5yLtSSrKvrF8Xecn13gDqHDx4fZ0rzrNuKe3gAGUnV4WNm3u1xYPHETY3aIEYN8cFD9yZ3PrKlaqg1Qoyz2VqJ7wIFb44WYmPEU9oYNkPwmlZKTt2dIJNWoyCFqNS6MY6N4AutXKj5TNkyLZmd3Jv7M9PulhBvmXcH5nlknEeaqiGAasInVKi6EkJk2zZKKXgXmOdgI7VhRyobqQrD7gaZJpxWYl3Q7WJCo2Kj+lrMgqxlG5uHENHaWPNKSWKHnu8hEFJBih1yijVXdaSWHUudidPMzQvP7iO7z4KH0+UtX3z2hxya4u8yoTnyNJAw3mJtkNShBObxyPDsI+KLDxieP6PqytIM5ZsOMz4ruMRyqaS84Usk9uLaxcg4Tng/MM0HRDOXB89l2cjN4YcBv3MMu4G9VJaqUBpSAvNww3E3o1IoKRv60hLDfk9+OJDuX1P8QD4V0nmxsWgTpDmCOJq7hm/QRVl9casYimvLgcZVMPvegpDeFDS7o73YwhxE2Irh66U15nGk5NQBgW4laFGTdj9shU0q2znQtoAEE3EidlB5H6C1Hh8PqMe1LuyVhvRr6/Wdb67rxX1TpVxONIUMXPB4cQTxnF8/IBVcc0R1xokpji9+9iWuweQnNFszYmNMC1gZYzC3Fq246GkugJqFmfOOVr2JctUSSBtCBpIIzTmjPBlIiaf/7g2SXJEU3GNBPQC5FhvdS+P5r/wqf+lv/Sf83mWxVOr7B6QWXKk4FSs+sACQt/dvbKR8mK2oahXtAksnjZwsXbl19xITWHdv6veQErt2riP49hd5WUi1IHFEaby9f8s3X33O6e41v6L/AfvbJ2QNJB1t8hqU/bMj++nAq7ffsmYhhJkQsLVZjUeaykY5FU4UnGTifKR5swmM455h2DNOe+IwQfdxn8KIHxxrWdGmeOfZIcjlxPnhgRBmJMwwPGUQYT9FCN54zuq7pkORaiNyEbMBrVrNhb0LwwGsA3bQgk08xDP4iRiPqDsa2BMHtGVK8MgwItuOJgOlDaTLwlYXZieEyxtcc9Qts5TNrD1RnDaGjnAVtcYvYAe6F2E/7QjiSavpD1xzpG2lfvOKcJi4vPyWZXlL22w6Woo+0pbA7tXSk9LtHLHCKISB4lY8C+vpJX/yD+4Yjwee/43/OTz9Hs35d+jq7sh3fvMv8+39W7ZXX5Iu99zsJ7bz8liklgBbXqAmXMu0tBp67p25OmHBUy5EJCqITZ1jiOBCd/voTak2ajMqomom10aMgRIjIoVcFCWAHGwiXhyiBxyW9dLaikqmFuO+JxfeTQv6xMBKsWiWxQRi3DOEQowTJb+ltkCIgnjPINEm4s0TwoT3gd2853A4cjftWMXbeqnGtdaaac3SWVWzUSjwxDAxjQfiYOGDzk0gAxCtOLsGQUl7zMqRa7GmhdYK4ox7r3R01BmR7UpfNVpIxLkI6nuBZZOAWhK1LZ3O5BBn4ZnO782a0fuOCne/HLl2/O8QXtHue4+YLqAXna2ZcQa1UVum1EwuyRKkc6HzSMCbNajQbVyc4EJGSEhL5jYlK7gNcZvpKHwBuk2oeEruExA8pZmmAyKxQvo28Wf/wx+hyfGbf3Phk9+MyLDB/Bz2R+7fFPLZ1kHwB0LY0XIlb/eU7Q7VlUEm3HBkcDt0GMnWKnenroFaU6fuDfiUcSF2QbEgmsE3ctdVSFMDZ7mCBJY6W7J2S3r3S1Woucx0JPp6TaWLm/vZEcSmP7UHHyJXcay9h6tLFAoN393vDOd/3yby8c/3uOrO/XJx//8Pvb9+j4i5EF6f7QoCGo23nzAOcwS7Um6uD1ejKuHMutYBEsRqZN+t5NWmpdcptfOhU/0MsS/VakP6raq1N0H9gH2cNvDuMw6lmGiqqXEhNQYTUYhSqoVetNbHY4ih3LXgPWi1w9S6cOliXGehFW7EDa4Xo1jwRNlo6nHNmQgoeKiZ0gopV1QdOSWGcSTXSm2w293QmkPV0ys5vB+Yp10HWC1Yo6l14DknFGVyIzgbNWst5HaxsQ+O4NX46rqRypnL8prLw1vKJSMlEMPUP9jVbN80EIb5UcGtFONiB0+MA9NuJutGTpn7t3f88fqnfPTRp3g/sFwSJSVcmDg8m6BujNII5UI53SHOUxVSsbh6FSWGQJCebJkqZWtoi4hEnMTuBGNiQe+s+BGJxHAg+lvycIs8e8qzX/8AfxDUKd4Jr7/8KQ93X/FMlQMjMQTObmApKy5XmkYkjLhpz3j7jGff+QHywTPWAYYwks6vOS0XjiEwzIOFNLVMSsbNQ1yPMPe9SHCPKKDfj8zDRMkQx4npOJLLxETl48MNt7tb2iakRRmCo+QLl9MZoTE4xZUD7WbHth9IPpDvzpy+eYuuCiUi1T3y7hpdJ9K0O+j0jaEHSr379W48qGILpCq9Tb1uFICzjfb2cEPeEpfLhejttWqtiPP4YN2063x9r8p2vvD2ZWbaBImVaTcaraw2ak1m/YcwhhnBuKQm2M3UbJusNtsotWr/PiWt5pp0RTCuXi7beSNIJLrB/PEraHHs/N44tltidIE5znjvzXHDe6rz1qz3xL3WBcSKhddovfItraEvomSE5h1NhPPDHenhxKCHzulWHpNH1Brx9z5yy2EQxULrBR0Gfu23f5t2d8fPUqL99KfQMkqxBj4ITQvRj7y9f8uHH33I4ebA5XIhLQs1G31HiyGirl9z7X7xiqPJtfnq6AnGW6yChQxlo0iEIJS0sK4n2hCQPPLFH/0e33z+E55+8h12L17gDwfiNDKMAw7PHI48v/GclzuKbj1duPOur65MwRGkUZY7Ul5ZK6ibiOOB3e4ZT58FdtOReRxBC/vBI7nxcHqgni8Ep0afTButwe3NE8J0QOKeKQR89BDMztW5yN3dSm0Fr1cnCm+OQd4xzCMtFRuvA3lNtAreT0xhJsSRYdgxH2451YDGgMTAKIofRsows759TZkdPh45+Mjl/gGfVvbLgfvPPyPVC6MqrlWG4G3y0pvn1g9ns7Nr7KeZ6B0tmTVu7XP8OYy8/slnhF00gCaBW6FslVosbdyLuaI53+09U2JL2SbI2kipMe4h4phLgm8W/uDv/V2ev3rNr/4v//eEFyMNR1QLJRo/+ogf/JW/yh//7n/H5esFt2aO4vBbpuR7qocq1lRKqTZdEu1c4n5Pq/mkowN4W0cxDuCN7uKcrVhpCXqQGM6hklkuD6Rc8HHq1qGOXAvB7Ql+YgjPoHpyCWh7Q+OBkjfQxNUSQJwVDFWhmdUV4iZq82yXO8p2YhhnUksmsr1y4N1ELplUPDFWhmEkxsjTp88o20J7+JZ095JUVkrPZjF+tFFVvHdE74lhZggHxvHIMB4ZhhkJdo1a055NYxN/baClp+jqFT2t3Wde+/0CUJBWH5HV66YtXF3RqiG2Wux3y7SWbQtSBRlseuR8Fwp3Sie2P1397t+dD1ZwIeDV9wlTtulAq72Yk66X6/tJsyJQS6FI1395MXMBgSYLygZcaFyoXBC34WOCWHHNgB1Rb4LoDqC2qqSayM0zxye0LLS00nTh3/2T3+OLr37BX9u+4jt/+W8yPvsxT+fvMU8fcLmLnHSjlYW8Otbzzzk93NH0G/Ztw7kDgzh8HA2xd4rv5gcNC1VyMdjndk1W7+FNpayoq0yi5MWRFFpWxFWU0s/avvv2CXjTd9fcOWeCcHjvmpr+5jrdNrTcsmtsH3WPiPo7JN+E92Le1o+TFbMXve41PDYWTa9T5D9nkfkeYn8VWfc62s7169mh7z0e+gSyI/buer2v+lD6hMGS61HMHtkJ3oMLguuPDzikAvjHqWYIRiGrTSElo2PbDMl0Y8i7JvTPdTKqzcLhVAslFeIEjsFsnPSqlO5jBFVaSaRlAxHiOOIo9phHBNK8bdVNCDPDeDQuoU80Cst6R+mq6W2dGbxZfCnGgTZLzu4K4qw7ScsJcXP33Y09Ic82SXGO4OJjoq3zShwmfPTs9jNX5fIwenMukUZaKzlnWhMul8z54Z7l4Uy6XJBqAToyFoYwULbEmiIhC3Heo16Y9kemad+vtAOJxCFS8ondcbaudVtMeCSRrRUkRg77kYlEOW1M80w77lgf9sRpZrs/d8SpoVLxQ8QpLKeF9ZwIMqC9gPRewffmomsGFI+2gSE+IfhPKC++w+7TG57/cER8NucBVb74w58SzhsjhaUkarwh543d6GFJNIJtwsOEn3aMuz1ht2NrK9M8UPXAugjjvGe/H010Jw9wOiPBMYyROFo6L62SciZtGyE2nC84MZFoKQXt9oKGMnqyOuI04NQcb5qbjNeYDZ3y3qFJUTKNjI8OHxzNq12GPp6zYtdcOmrttBfxnfPZx63dc7dWs/vU61hPbOzaNeR4NeeCc97Yxcizjz4hrSsPP/0zEwTZgNaAGTUuXFWIfdGlrXK626jq2N+ObOeMCDhvI3iqNUOlWYCTcyZELRmyZqKYeLdV7XHnhlKX5Urt8Y/0I+ugDTF0LZDXzHrZqDmzatck4Ixe0SrF9Qa3YGFpzSZ0rgJOcV1IK92irqatQ/PB8h+9o0kkTDvuLmfu37zmUD9CRKE7nYBtQJa+J9ehohU3EljSwjAOtJbZP/2IX/8b/wlyKfy8efLLb2mXC5zeMNVEW5LZronn0hwJh98foSqhwuQduSlhHGge6rYZcq29YQKaOENfeziOl2bCTm+HVqutFxLmgCRFcVqYolDfnvj67R8Sbm4Ynzzh5ulTjk9uGKaBYRx5Pk/M/sCaI1RzWKqhozI+oC5Ai5QcaQWkKsFXQsvsRjgS2Kujnt7w9uUveLOckbRxev0tUZQwTwzjgK8m0pxIRBLr+Vvuv/wjvL5gOO6pdaOmlfr2S5rCMB2IElmz7fHzcKT6kRq6CYKLuGGjpMo8zo8c6xgCMU7M8YjznrJeWGvmdD5TGEjhQJkjNzc3/OBXf4PXr15TlxP7h6/5+rJS6+fMLuPWTHAmgpc+nRUEFxTxldYTs3POlNSoTcml2KSsiJk6qEfVUddCS6axatqYp5EQIqUWSi6M40gFlq1QqxCGgGphGAJP93tO57f4LfHVH/0Jf/DNPSIzv/G/+T8iu+c21HMjA57v//DXWB7u+LOaKOsDyVVizXh1BDeABDZ1NN3QsiG+QlFaXRHMBhltOFlI2VN9QLuNawhzt3wGV3eoHAyMqBVxlbQlJCVCvDchdYNpvGe/f8443hL9Lctl5nLekbaJ1swRSPWOQEFqtsbHmbMMRFrLRhFRT2uFNWfy4lBn+6imeyQttG2jtpHKQPE72rxnv79hngaev3hBXj5lXU8UBoqOtPWMloj4iGMhBCUOkWEcicPAMO4IwwE/7Hp4VTCusQdLuzdaZ9+Zca4gBBzm4X9NMbZiDzsfm4VBqUtGq6oJRWz/ahtVaxdph0ewRdyAuLEn6w6P3Hm95lj0KaZ0nnTHbDtLx6YgNJv+evGGwvfz3weHr0ILFY3N+P4loawEMuIX6Famsm1oXi3Ib32AekbUuO2PoYhgeyhXPYKQstBaQNWou54J70ZabrR14/Pfe8Pd3X/FX/r8xK//9j3PfnhmGr/DMFuQ4vnuLenyGeeX/5bL23/HMLxB3AjegexoXFBMuBy8wTy1tt58GyDgh4Fo0AGC4INZwHrnyM4TCCzFkX1FXAdmru4xmNmF13cos3nlGxVKC1RRito0xWgzdu2vn4f5318n5F23022vvXhz6rrOiJV+KvfASd4V5dfpTH0Pxb9+8dGz/tppWmqiAXb9vG+9oL/qRnCWT9McON9oXvqZEjpij531zXj0cTL2wPXn0U7tEe9wvhF8d3+ShnOZYbBzqbpG46of7XkMveG5dikOm7Rrr9lDa9pfvJC2hdC9uMXHPvIUcAEzy8jkVLpgNCCi+CY9Ec0U60U9JY9EPRDCDSF6lnTHsl5o7cEWg/NEEi2OCEIMAwQToPjR0KTaxce1ZEQGxmFkHmdc2PVI50qI/cKDjTGiJbsisN/vHr3fU/asy0bazsZpjgPLUnFMTMMz/C6wMeF0YbvcsWwP1oTIQNM9GldyOiMhMh32hMHcBKhCcBFxjWEfWfKJKJnjbmKgUEQ4PDlQWqaUlTevXnP58ufcuIyvK60LkoMLxCCUuhAGT94StRoP28nAOA7kkvEDiDd6iHPeRMdsjyEdIQ4M4Qnzi484frLn8NyDvLVNKwlf//uv2GXBk5BDoDARDArDRU/JXV8mwpY23r59w34f8JOjZWWMM3GYOd7eMM4DtWaqRNwQLWHYC7mYsj54xzQGUkqk9YxzGS3KsiZKblzuZmKMgBIlktcNDcU89qstojAGqoDThq4L6/KWtD6wrQ+oZsQLuWWC2pi1ti4qdB7B07SQmzVCOG8dvhNwtR8G5kDjwgDie3ctiF4l/bZdVHVcSuVnX3yFtEa5bnAowUcTNPexrmgvECtEbPqS1sI4OcLggULLhrAGGQ39d6vRgJoJlFtRyqZstdBKs8OuCbVY0Uk2tKkBuU8OQoyW2CnRmmaBli+UZWMK0V5HmzmM+Eb1zsR1wegag3edJ2xx9NKEXEofgRt3FPGo89RqKJ9zE9Ptc25//CN2T570zdL8sk3xU/FiY3LnbBNqCKhxcacworXh1D7D/Sff50f/k/8ZOux5/bPPWF+/5u1Pfh+/vuVXfvgRb754zcNl5W6tiDQO82gFWTRKjosDT54euF82tpcvCSLmt9xs/F6LmJ2emhbHeZt8XTf3EAdD+VtBqUZ9yNUSbV3AC2zba05v37B9/SX388S037Hf7bi5fcru5oYnT59Rx8ipFeo4UMaREiJJhSoQQsQLpHriECfmYebZeGCnjvrmLXX9Fn35GWwbc4xMUfBNcWnluBuJux2pWDZGVYiDcv/FW9LrAT8N5sjkO0VNIpRKGI/EpuzjbOipxxB4tb097A2SGqJnDBDFuNXr+sCLJx9wePKcllZe18Ly6jXej7gRiHvk6Qd89Fd+h/HhQro8cPrZH5B+9hOW9S3T9g2jXxi8R2OEEGgykNXSP5GMG2GVZG5l3mhrzSnipfuad3vG1HAaHh1otB/AzjWkNXaHER9nE+3JRq5KyhnxmVnMN350E6orH4hnOC388X/xXzD4Az/8T/8z+OATQxhLpCH84Ec/5mG556uf/AGzJtbLGckZP+2ZP/gYdk9Z/Yj4mZIfqO1Ca6VnISitGje9Ok8bZwojlIT3M+N4g/M7yiC4mMg529mkD7R6R/CrdfipItWR2x0LjWEaOD59xrif8ONzHt4e2LaJVjNVzRqWbE06rnUBnmXKeOn20wGaVmo6I3Iy1yH3QF0euDy8QdyOMN/g4x7nnrL5gnM7pily8/w5+4ePqG6PxIXtcsIvr6nlDegdQ8js5pH9bs9utyeME36YcXGP8zMmfoXgq9F5iqHSXAOJyKZ/9+6x+G5SgA3nXfcCr5bFIgkttgauHGSbqDvEjQgRqKbTG0bCsDcqm4uP3ud2L/Ua5yrIovX8E9cFs/IouBVVou+OAZ0GZHVHF7+qI60P1GJULSEhpSNFFSQX2pasuL88WEJ33sx5sAiSFVcKvnmbmBalJKUkRyq2p7rJWahYU2oSXN6xi3D+ycI/ffOP+Oazn/EX/9Zf4ekP/kPc/EOGeuS0vuL+29/n4ZvfRdfPiIfGuH2AX3doXGCMBAeteWuUupTzmgZs9uLenNOaIdEuRLw0Wi4QFZk8dVEufutnqVKq7aNNS8/fcWZb+ZgxY+esqsnLULqFqbfk5VB7DoVlWnjvqNVAUOlcd7l+T6ndXKF1gM/qGMWML94B+AYqvj+t7zV6N1Wx5zc1tSLeXBBDMxZCLqYtuHL7XZCO2CsalBbMFEOC772G6fCkNZw2uAaOOkF86Ai/NQiiPcyxXwXnCtNs9toEwQULdaQ2skArCs70Wq3xqDlqUnEOwrIWtBqtoxZlWQsiG34wIYr3Aw0r2gmB/ZPAMAx4UdbLaxNkicO5QNVAaoYkz+xoejC+d6iM6rmsD5TSkKCkfKbkC7RmvqnjTMMzzXvmcTa+tQYe+XSlsC6LhS9IoInZc2lKDNGSCS3cQ4kxmHWgh2GcLNWvwrrma3+DNsdhf8v09ClOF5bzG9bzK+5eN/Lq0FoZ4p7KjAgM0jiOjoHEcv8N3gfjc0pgCMLy8A2nV1+T7zeQCV+V3dMPGQ4H1pJJl8bWYM0Zyj1zfWA7nZDSmONEbEqOgneRy7ZSSkPVEYKNEZ2nczjtRnXi+6bTO9GipO6BPo17dreeOF8HUPr/perPfi3NzvRO7LfGb9j7zBEZOWcyWZyKVUVVlcZGt1oQrFI1dG8b8IUBAzaM7hv/Iwb6rm9s+MYwuu1WA1IbUksltdUqqdSSauIkkkUyM8kcImM60977G9boi3ftk2wSkSSTJyIy9vm+td7heX4PKM3t3Y5lzZg1snUdtSisUTIVaytc23V02w22c8S8kkvE25G1ZowzWK2k0UiyivK9oSqPNaKd6zGkEFiXhe32hFI8d7cBpTShBKFk1MwaA4XK0PecnmxIceEw7dtqTBCnsrKqckznxLSXz0wwPDItt9rivBMsWaqSiI28cF3vsXimeWlr1cxm3HL56IwXr15ifSWEzBIDxnYcz2F54fRDF6/bmvvV9TXeGimcSlvFHwcCxwVebRQFBEVHlYP6cL+yPesF49kc76rqZhw3rRtXggSMkEMlr4mShSRwTL0TVJgiF9H/5yKrVEE7elltFtlgdL6n0w6bRX9ecm6GYt3QtJWjHlC5BmcsWQpQ66lVP9B9rO2al0HJxMo4bDdwennBt/7qb+PfeEwthawF61lSwOnKuruHkshaUVNCaY8zUZoi3/IUjGMpCW0tw1c/4DeevMb+88/44uOP+OWfOQ4//wG3WCZvSYthM55SrW5EPQuDYp9m6thz9ugKu1sI+x1pF9EIjSOGgqtOGrIKmrYlAZKhTVoEmafacyXit/wrTVsFA6YU0rRnnneEnSV0PbsXLxjPLvBn13ByStlusecO3fX0p4+4vLzC9pK8muNM3N+S5wNpDdy+fInBc3J6SnUDebjAbRRlXUBH7PE5xJMjpFgpGqwqqBQ4G0ZiWJnvb0WeYzTW95IKW2aG/pTh4orDEqjGsKaCH0a6zQnadewPE/M8k9OK1p6+d8TlQKmGZ8+fcZgXTMkcpgNZgek6ri4uyFWx5MqL6xuuXn+TeHLCsrvFvfYO890L4mIw6ymz0qxGprhKO1RacTWQTMaUmTVLQaxbqZVK4sg/LjGRQ0WlgtGS7/GQKaIUKacHMto037I/RErOaAXRaMZH50SruY2BwThilSwNn1e2ZuKP/uv/Jx/+7Kf87v/6f8PF+98Es0X5gWHc8vVv/BYvPvyY3YtXXNSAiSslRk7feoOLJ5e8vFWEgyZOihAUqvPkNDGnQMkR4xyb7SnFOrJ2khpKoBDo3EjXDbhulDCodEJJJ0yTJ+U9SkWqOhDyRJkFGNFvLzm/cCjdUUqHyor7urAsGyhbkSCmQilCDMjHMCqtqVrLO6cUy3xPzhGtZauijEA1akgUHCbcszl9hO8NMWiUjnTdhstHF6C+wvwosrs5cH97w7Q74bD3xFVjTGAcO7bbLUN/gvYDxnbi2dA9FYMkv0e0stTmIaMczY++SRzE8yMBdqmlZbdpbHXk4lDZYnJBk1v9oUVipAydMi2Iq+CtofMe54c2wZfNcm2SgULTbsuIVShrDwFbzSdUaMMeGfjQ9NS6BRLqRgwsWhHI1HklN5BHbcmtqiAyriAyXZWTqCGap6gWGY4SSwttLCxzJQVFSpLxoZVIJgstrbVArVbQus6yTCs//9HP0aeFq31mUa+w4Yr11cRnP/8ph2e/5NTf0FtYZwODRseKiquYelXfGisJ9JLmUD9sfVRzVNX2eYjESnJJsKXJuDzWeqx1ZFOoFryXoC+R3dD+UltOSaNbZLnLjtJ8sY80eUyVYjznLGnNWv9K45HFB9oaKNkWmOOoTeoJ+BUyjWo/5O6WPu1XC+oiyGGrwRw3u60QV0ZoYov4+lLOgq+0CutkyyhG/4LSkreAqjgvn1upSX7fUto5JqhVfXy2kSTfetweKIVxYKxqskMIIZHTEcBR2uSf5oU4DiQraI3N2VBy00EBCkfOhhIqyss3TqnGVrcO7Sx9b6lp5v5wTYrC1zbNv1e1o+tP2W4f03WX5BpxzuL6LX4YmKdblEpNdhNZwsRuWVFaJi/LYcfc9TjXo3VHpcM6yCkw7XfU2mF9J1z8mtDGo5XDWmG/xyhR1S5YjLP4rqPrRpaDEAimaaXmincOpTUhRE42PWcnb3D7qvD8i18SY8Erj6LD604K6XVivn1OWe+Y4yLfbOPR2jH2HWV+xnr3gvl24vo+sT25423TY/sNKQZImaurSzZqQe0c3T7S7XpmuzKvE3mu2DqQQiUHQwrCkdRVjGPWWmRhVtphIA+YNYaYFblYjO7QdsR0PXasWCfmtYpIQcazc65dD/1AWEHVY/qvSEcSoKzBdY5CYV5mxhwhrxRTSWFpqbgdGIdxityoBDEVus7JliEurHFhmvdtHW+aAcRgXY/WWVIprRUGPJlcIiEuxBhQVeGtGJhzFsNYWhfm/YF5t0MfFpZZ4uKtsTglSZulJULmWshVsYaEPmpKKzireeetN/i93/89/vEf/AF/9oPv492A0a75S35Fl6cEa6W1IpXM1o+EUnHWYbWmhJUmHebogm99FrHQ8IGC/1JFsy4B1IJzGmvExCrpekoOTi26+ZoqeS3ENZNDkaAppdEc15WyXSjtYtDa4F1H53vR5JdCyJG4BDQwjFvKFFnjyrqKyVIbJ0WWLlQSIRa0EXRcThnbpDjyPTLCQI9yqaQswV0xZbau552vfIXuYgMbT9EF7QwxrXijiYd7/vQP/xU3Tz/DlsxymOh9x+X5Y85fe8Lb3/kduosLKpWiLGjNnFaGs1NOx47zr7zDWx885l/9Nzf86N9/j5ME56dbzh5dkGslLjMlB5YYWHUB67hdJrYoxs5xexMYbAdWk5eIsY7SaCBaKVTND3QYgWW0/12/JLkYmgFSCVnJqIprBQBKCCiuJnRNpMOeFYN1Awyabjzn0bu/xsW773L1+lt0Qw81kdYD8/VzPvmLH1L1gtOWGhbWvWZzMtAN5xgqc1RsNifCB8+RqiClRGpBfcZ0MmyMKzolBmNw1gvzfZJUyqoLXmm6YSCHzCFEhn7D6cUV/ck5KCUSqcMspnQ7CByAlUIFo9nPE6YWhpMNl/o1SoykWvHDwJDh5u4Gvz1BOwvDKeMbX2He74h3G1RewXQYv2XVnTyvCBWNfKAvew43N8T9AVeK5Ds0D4gFcoyoErGlgK3kIre/NVbMaG0lvS4z65qIoVlIraF2ms3jK04vz3n+i4/lnIuZDk+cZspSOB9PePqv/wX/7OOf8p/+n/7PvPaX/irkM7TZcnF2xQdvf5M/+nd/jjYrV72irorrT3+GKRPJOEzv2AxX1LUnpZV1HohFyDEX4ymb0wuWdWVdF6pZqXXlNiws/YFhc0nXn9GPG1BbajllWM5IeSWHif3uC1J5QamBqiyhFA7zBEVhzMhmM5LTGTldNanXyJI1ORzQGpyXQZtxPdps6MdTlDasWbHOoNMq72wpKLNQVULo7hEXPGEVxr21YsL2w4aLi3MeXfasjxP317fcXp/w/Gllv6uoutB1DufESKuMF5mgFoS1SB+bo0nQIigl00uhb9WW8SHBkCrLvWBNfphnirRmANXx4C9s1aBVVpoHLWZlhVBRnDUY7Rou82hkzpK2myM5S96DkHsgFyPYZTy/opVpU2XEDV6/pIEprXDeyWCpRFKaBQmZGze/FMhVqHipUjPoBoKoVaSppWRy0QIwiYUlFpZQSbGlr9eKM7UVdfUhoTsXibGsXmOt5ux8y5tvvMPm7C3uwlukdIqq9/T9m0T7S1JcmacF6wPVrzi3gtVivNcejJyFRcmgTGtpmAQj2rCjbYB0TGDWbSNrjcFa1354km0bCSdBm0cTKM2fopoUiCaTPDZcSonW/0FTXiW4MkustHwNX8pgS84PUp0HGab60lpaOJ4T6kHCcvw/jwhUBaBEMuY6g+0AU9GmCuVLiSTIeNC2klIhRvmMjFVCsLPSYVQa1tJIMKG2TYZT5BkqDU5jbcUYkZfr1oQfpUVHUzGqyGZeiyS1KinoTVZC6isyvEqloJCwVarMxK02rplSi5hhjEzsSm6Uijal03YLfsB5jR8NcS0kCmuSBNZqLQWNsR0n23PGzQX9eEFVhRD3oFZcsY1BP5HCgZxW0dRV2R547ylpYc4BMyqKEvNRigFN4uTsivOrK3b7A8t6EOyWsUi6Z0Ih2k6jBYOWUyYq6Yq9Hzk7NSi1I8XE0PfkuKINHA4TNbfuyHiiilg7YnSPcx2dtagaWe/3rLuMcopu3KAZyckwpwkTD4T9PfEwU4Jif3vNpx/+nPFuT7cdcaZgtMShe1txKRFu70j3EzpqWCvhkDnsVmIoUMAqHg4Ud5R+HKXlTcNclSPFQq6WUhwpWVJRaC9GjVKPmnJ4/+vf4Jf/fiS6laoiThU6ZcTAZUfASnoqlbTO1Ltr1HWHzT16kJCeisJvWjePSFykOE8sa2JdZ9Z1pVKZ51m2QNrg/ICxnq6rx7dKEh1J5AzzfOBwuBcUnLHkJZKIdAZySdxev+Swu4eYyGsgrREKGCNhIlWXljpY2qEv6FW0QUd5cUNcefrFZ/yjf/SP+fDTX2KNJ2ehHxnr2/quhekgJjetJUTqGB50NHNpfTyUOPqyHkw2NANvjBWzVqzXgGbaR4xRdK5SO4VzzVSkKtoKaCEHRVplHVujrN6qqjK9ba/+g62mTausdQ+0kOUwQ5FMh7AGdnfX2Orb5F6W3/OayGWh9wqt5M/gWiOstaHERCyRaizGSuOUZP8tlj0jTXQplfHslDoMKFVJlOb6zwzGgvO8/vg1fvnd7zHfXKNLxlWY/VO+f1h49+NP+d3f+7ucvv4mRRnwiqqt/B5VdIibN9/gq9/5DunpNbzYobMie9nIYTOZQCoLVjkycHdzQ1gSZZ7ZDh2uSiE+bDyhKmLNhJSE8lVl+wEScy7MBSkOjJEGQCZTYloqyIbDdE4mOxRySQ9M8LUaNo82ZD/izx7zze/8Zd74ze/gL84FMoBqATsrp2PHs49/jspZqDE5kOdKGTrBM+aEHxRXjy5QJXG4vaXUhKXgioSopZQZvRc5BopljYRlpRsGSV8tlZgi0/0OsNSUIBd66xi6Xghl1nN+6bm/u6fzZ1xcXQomDsXt/R1j14v2tmZMTngFY9dRFawx47UB4yV9VTn6iyve/PpvMvQ94fopnorzI9iRqix91zE6TZ7uiHdfEO+essueKdzQ10JPRcUFR6KmSCgTqmR0LaQcya0Rto2ApBV03rVGtIIKTGskpYqxhstf+zXe+Gt/hfwP/yG/+MlPUUlx2O8pIeN6S1hvuBxG0uef8M/+q/+Sv/2f/xc8+Z2/iVIdSg+cnT5GF8/+9prOzpw+HkivKlOZ4eyK8eI1zi4v6OoZu3kGP2P7QFkCOC+S0CWwLomsJpSdOaY3u87RaymCawXXj7j+hFLgsN8zLwFlZ8iL+IFqw22WhFGCHO66gXG8IC6FmhSrmck1orXGetHDozuM2aDdFq0dyhXW+4BOM0a3ADWTUFaDsfiqSWHPMjlK1vhOE9bA2mRFm9FzcrLhZLPh/HzDutyDipQ00flfQU8ajzamgSJEDlRLpqr0wLhHyYZWtolGSEOmk6JPZ2qNaJ3bwEWjdY9WvcAltJWCqP080NgqU1S5JDNGHae1x2RyKSRLknT4ksJDYVmbFKUWIU4JB0x4+A98iKPEo4DSpRWZFV0UVI+xHfgBdJUQJ23b2SKFrvjqjBT0qUrWT5Ztb0qVEqFmTSyQaiFVRSrS2hggVQErpCI7RSkFlZzHsXB18Zivvv913KNvcZG/xvNfZtL1C4Z+ZVd+xjLd0GvHspewODpFIcGykzRYq1FWU41GWUu1SZ4hJX4NKaIVCt98BzI1lrTt2ArtLylvslVrc2nxxjYEpIAxj/p26buOAMxKSeL30roZeltRXGsR5Dkt7bo0Uo/68rN4kNI3ibE+NpNNM1+PWvhfKfCPptj6qz4sk1HN+IrKGKuEKqfApGaeNWKQ1UZRdGnFdksA15LyrG3bcBw3CVqkRtpUlC6g2zCJX/ENHC97I9kwWhmq0piqUaVKBG0CtDQFRsnPSiVyVBFYpTXjOArvuVRCkIfeeycrFucFP+k26O6Uk7Me41ZCvG8vaxGzp5LJuNUdvR+bQ1wL/qfxbbv+BOsc86Qa4s3R96doOokTVzw470NcqaVgnaXqBV091CKBKLlFtava9LGyMktpJYWAMUFWtwqWdZXLWnvWuAg6XDlpYIqsem5fveLu5guMEmqEtj1FKXJJqLDiKjijsWmmELG2x5WIM5pUHfM8kw4HDoeZuARMdcRl5uVnn3C6LDx54wndaNFlT7h/Rrp/ye6Xv+D606fYxWBnz7oLHO4iKYBqa6WKaE+tFlyXPJrHdZOi+UEBR8WxrlDIdBX04KgamYKQ0cXy7b/xn/DzP/mf+OJP/phVBQYSThyEpIaQk0wCI52FSqId1IkYAtoK+1gjRICqjrKSRq4tTYdWNb0fsNZTcmFdA2HNoMA5I4Sf3GLHY+SwHgjrAUVCV4XTLWGyalSu7G+vOdze4Y3FDyNxyeAzujOUIumjyoiJ5AiQVc0om9JK5+USMLoy73f8Yl4pRWEaX8JZRy5JtOZKEJhGg9FSRnfek2LEaAmgqUoK/RxDexXbn7tpMVEyMYuhwiHhk2obikrWhTUWKS6swhpwXqG0pHTGUMmxoKrBNOGIbpMKuaTsl9MqMRMQQiaEubGIE94Kjz7myrSskApWSROkKaxB3hWlPNZWSqhieLYOp7u2sbAStFIqKYpBsahK1ZqcRI94f3fLX/zox/zW3/5bKCCtkcNhZhw61jViquKdb3wbc1i4fvaM5e6Gw/MXrLd7XhvP+OLnv+Dzn3zMxWvv0FvBUt7d3jOHPecnAyHPHD7+iG6OvPX4CfulEvYTu7hn6CuBGUOgd5oUEmWVSybMEzUtnA4OlQvzEsjeEEpllzKrLWxPRjbbETOLyb0k8Yl453BapmDWiElfNyqGrMSFAKa1ItdIjFWMvNahfYfzPYcEr7/5Lu/91l9GX5xTnCG37bNSFR0rX3z+Oc+ffsa5l4lT322Y5jt05+jOLyBFerthOLsgTDuG0xPiOpFShJLwumFxa0ZrizWGSiHESM4Fazs2mxMCilwyh/2BaizOal68+JyXNy/Znp1zcnFF1bbhBx2oiukc4/kFa8lMMTZTd8BS6fqe7ZPXUFpzd33DtCygYQkrY9cxnp3TDT2nV5fU5YB3Hcp0hOooyuCtxpEI0w3r9XPWF5/iTz4jX77ErAtp2hF3rzixlTTvCMuKywGbU4tTkc8r5IRKkoMyGItG4Z1Bby3OJeYlsK4LT7/7A4YCdy/vWaZClz0pFLwaiPtI7yzzsiPf3UNc+af/t/+Kv/dfnHH1G3+TWitLVdjNOcurL3jx6gVp0fjDQN1tyGe3hPsDpIQ7O8drj9uOmDPHepgo64JSle3Woo1idzhQU5HzdLpnXyUYyPZbtN0yjopKR4iKwwJzHFD2it5H1rSyrLKNrEUQo7pIoKQ1njlr1iWTigbbkZWcId4NVHqqHllTj7Ujw7jF7kRK67gllZlaJaXaODHlCRkvkwhYHcV8GgwRufO9WzDKsl/2VGPxwxayxenmZXEOjEVpCZ8S+V+BmihlpSJFtdDUFLoaihGvnzIeMGhdsbUhn5FBjnMbVO1EhmBTexeNFPut8tLNlCmuw6O/qpDrApSWhruSoiQK15waZ12jbAu8qscgIimuRJIvxazotyUt1bT0a2sVGUNJHSqPYBTFGEqKsk1eV0pW1JipSpCzNbd/xKJIWZGSIkWhQcm5AqkocmkFawM+pJJFwlJpyFMwWjyQY3/CO2++j338Hp/dXPHKTvgu49wdxl1RzCtSuicsFT9r9AQli/elmixeF6NR3qL7TpJhbUYZT8qRFEX6q7VspktK5JiILTDPKEXfeUpfqLFQEtSS0CUJnEErTJHCGJTcJVXuM6OPE3aR4Ikc1cizUWSLba2Vc7glvRqlwYi2nlIQOGbziNUmx5HVqzSIzdhatTQCR9kOSrwW6LaS0fLcYWRSb6zC+ebfcooYQbUMpyMyNVPIWf5eLgnXNSJkqxHMcVCojNQZEuhEoeC7XrZTVYhXR/2XDAzFUK5M/RJEoDVFNxSo1g+biBwEzKG8wXZ9S3RNicN+Twyy9t0ox6AMuYp712rP0J+x2XbkKoU9iCFUVzGsaZoOPCdqjYS8kFNhXle0yXTD2Lq0Ae/P0TZhNTgTyHFlWfZopXGuJ6SjFlkqtpgSt7d32O6GWitd18nEvq1lZKVeWUNEa8d2u8VYWSE54+j7DqokSeck/9zdxrMuey4fPaHWRFzuyVoR1xnrHVYbMWrUgMayHT3zkigxMqcDIThsd04JmnH7hM6M3L14xXo74Z2ld563H51xYisbnShhz+HVZ9x99kt4dkO8myA64i4x3wbiqh74whLkESVrQCuRXNRMqqXpnkU3HFNpq88epTusHfD9gOtNk4k4WeWVytmTN/lrf+fv8U8++4zlEEm7xByFBRxTkckNghPTqtD3jqG3+M4RkGLeUAjLzGEpOO/oB49RBucdzhpiiKx5lYvDdoQcSWklpoi1omPPugont0bWZSKnBavhdOgF9zftIQZUHFhzZHdzjdWaYRjxzlKShgMEdi0bIBNiJpZMykX+LBqs6+iGHm00IQZULMQMscoLrhF86xLWhv5KWG3bn1uaojAHVK7EmBvlQdagqWS5sBB5zNB7cowPDn6UmF/qKnKfktUDJSCpTNRCS9EaNqO87CVncpR1rVbIYZWki3dWtJ0xZEznyU2Dn5NojiX2Ww4/pR33u4l5mjG2o1RLzGKotQhXXKK+5ULIJXKYJbbeG4XOmWG0GGsIMTLNkZiFWKSdlfWoLszTnh//2Z8y/uG/4e3f/Q4vdzd8+OwzTGc5P92wNZa03/PoyVu89+3fghxZX93w9Kcf8dOffsi571G+Z50DUylUJXpTHWeWl7f8xXf/lH/zj/4B37w855tXr5P0C2xvWWpgd/ecvK74OWGLgnnFeIfpBtbafD0lsemFzx6WBe1HVC10naXfdJxebkmHiaALNYJ3jrHzWC0Xhda0S194O+m4/dAWbWTi0xlNKIqpako3olyPG094/M5XsGcX4DSY47QKWSZbg7EGpQr7u1vC/R3l9JLNyTneKk5OT0TuowpzXMSgZyp2sHhEJhVTAkXDC0pjqLzDGNnEdX0HzuJtR1aGWASrqGphGBzaObTOLPOOWMWQvIaJly9XxnGUZkGD9Z41xUYZgVgy9/td09lajPfkZqIOMVCUTNb15oTSDeAHYrVk5UilECmQJko3Yl97g257xunZ62x3O/R+x+6Lz5g+/5hkMrEogt9j8oJKER2CBK41JnqukRorWgXhnmuNNQqj5b3yEW4//IQ///Q5SntYFEus6DIQYiHFIiZ2o+mtZXp1x275MX/w//i/83v/l3e5ePfX2Z6fcPb2Wxz2Lwj7pxzud9RwwO131LuZ5WbCjRtyiCg3sKLxw0a2KUqoH0Pvcb6nlo6wLsS4EtaFsE6kuKL9BuzIsqxou8XYLdZZ+uGUWjr6XnN7/4rDYabzK85Cjgu6wtBZvHLoyRJzJSuFdp6M+Mu87vHuFN89BrWh684xtseYM8ryOYebn5EDMuXXSSSubTqu64CqHRqPNp4QI6ke0dUrVM317Q2xSPiSwoneV5Xj3KFJ2mja80SpgZwXqI0cpi0a4bob6QpAWUAa10rBaI82SNil6dB0Ig3RTVKidXNDNn5ZkYIt50I7UBveu0DN1BzJMZDjIqjhkqlFYXBUZUEZtPYCMmhDK1nYfonhlO25NFDWmOZRkndMO4vWHUUrsvEtb0NTYkHpQK2Cio5JhjxpieKvCpWSIWVNyoWUIbWsAoPIMSsykExZhmi0zABVJRso7CMqK7wH6w8M28wyJjAL1mvU4LDK4JxsgGoKVFsogbZBQcgvpcqA1ooTppZEiQ1d2poKMtQsDZvRir5z2KJwVUESnX2tBqMDeVkEZVrazz02YaVJdI4amlbYHhNahZhzDJSSDYx87RFbKc+XUPHk3D5+j77EaapGQWu/epvyH//7wz1O+TKEzLQpvgaMwniDMqVt2pXcVbVg7FFdoYhF7uhSZDBnnejqj/k0VdUvpV2IBEhpJQoEK0AQRWsYlNS1MWaU6AgeUK/KGNkiWCip6ey1YEC1E3mUcRqrdCWGhf1+x3JYqVWREvRb6RRjhqIKtmk8j/hqmWRVQJOzIi4F62VNkksk5pl1AaU0xkIuldvbvUzm6XHOQk5i8tMJ4xY8lloysRislRWX0uJwV8pjBI+D9x3kjPXyNTlLWmrnByEmpCavqPJy5lyZ04LSBud6cl5ayELB+Z6+s3IAxBOWw46w7NCslBSZp4VYNdFYxs4xTyuxKrRVmJRFP217nrz5iE1n+PyjD7nWn3LWdbx2esb+5TV3z3fY056yvGR5+gn2sGfZTaQpUteKSxqnHcYd9fPyUEnQRqEUiRNHV0HsFcE9CsIPWe0ZMMqQI0zzTCqReuT2Ki2BW7nwwV/5G3zrJz/kj37xKX50qKVSgqy7dHtIjFb4zrLd9KS04Kvj6vKcVAvLElhCZImB6TCRwsjJdvOAz7PKoorGaEdOmRyzrN/aMyPte0LVBGSMyvheIu5jmInLRDgcICSSnkXfHDNhXlE18trFBcqM7J7vv3xpshT1x4CUIr5Hai0tPKZiiyEnjew9wWiHppmDlWoNleb0ZMv5+Qnf/MbXOT3d8Mf/7o959ulLbJsYKr485BVgrKX3jpPTU/b390whUHVtTF4x3qZY5QVuWu0jzisXRVaVqURouEjVzHBycchUqNQinyGalBNZN71lLlJEiIgVY4T4I1PLiPD3PaUYSUZWtFXz8b2VQ7WgyUEubGcUvYLCCqGwhCDm5yLFvcWg+w5VM1YX9vf3fPhnf8bJ2RmlMzzZnvNq2rMumWrAGc+EQc9CvLAXl7z9u5ecfeNbBOMx2xMWKxJAXSunZyOuKD76/k/54ff/lBRXXt3c8pMXd8TnL9hYzfnFSNWW+3klLytrkrW20RZzMtKdb1nvr1l3d4Qw4zpHV2UquC4JhcKugbo7sO0d7vUzlsMBVaskzJbyMMmRcL0qm52aqRUhGmTxVgiFSVOVw46n1GFL9QN23Ehhr2glwoOaEgVcXl2ilSKEFe8sL14+I5aCurjCTjs2QwdOc397gyFjdaZzGskbSOQSMNaSVQVv0dUS1sASM1lpvHfchwWDxnhL0uLYsUbhm3fKOEusgZCyeEOqpeTMGjXKDrjeUbKiaxuClBKpZtK8YKwEGsWUsNbTe9+My7NcxkqRtcF1PdY41iXK1E4bqvVom9GqI9kBYwaG84hfF+zJBWazhd0rllQgJtJ8zzJP2KqhZlzTTlMtuWSWNaCVwWgpekKI5FzplRETclCsOWOTJmVDzZpcIFXDshSyMaQonpkhLjz70+/yJ//wv+Nv/++f8PjNS776l36d/3D9GeH2grpLqOVAuH1G9NfEk2uefOtbzGHlUCvzHChRiEUlTNzHA4sH1yl0CdRlxdREVWKodDVQYiGmhX2K+OGCs0vDZnPFxekbLUcmEaIi5ltSFPxujIs0BnrEWdBON1O8BFGpxi/PeHTt0HaD0ac4t0WbjnFbiGXP9QxrLIyuBUwVh2JEsUGrE7TaoBjwvhdiXC0tFBKc6/F9RzcOQIYkHhRjo9BDKKKrrpGSKzkt5CJMfhAjrz1KLqoCK0X+0dhe27RfmYb8ow0OlUzrRXNzLNBkOnqs2mSxn0VKUhIpytZd1UzJMkwkJ3QtbctbH4YlSpuGU5AOpdYWhtf+83gHyCBMU5Vtg5IiRlAspkLNRmhEuUjjETPFRapZRIaIbEFDSHIHF9CqDQ7I5JrITX5rWmGr28CzVtkoKGPRBXJN1ARffPaMj/7iI945fY1UDhhnqeYe42eGU0XWjg5L31WMq2gVpcbIULOlUMlyzMhWpEllMvI1WkndlmuR7q2IH8jqClZhe4culXWOWO/wqUqOQZRPVPwC9QHXqLWmICCHo0RHa/2wmXgQ2zR5VUrHrIPj91kUHMfBGUoJ6hwe8hRkACe/0vHXOaIwFfLHqO2fiyLmXNUO7qqk6JfsioI1IvuWzan+FTQnYAw5ixdSa5nYH3GiwmWQmtlZS8oymPbGyMfIMbUbtDYPMjFtjl2PbIqUVrjOEUvF1Uoh/gpxSmraTBZE9Dod2O/2LLNMW2u12G7Ad1tCthQEs5MOK2ZM+GJRWhETLKFSo8FlS9Ueo3tsN4DVxLS0FEpLN4xyyc8rIUg8OMVSs0ZXmUoaO3L15B1yztzcXGO0RWtHzAqKoRsG+mEU+QMVZwXF6Lwhp8zd3R3nZ5rt6Tm1dUzGabreE0N8WP/0fc8wDDJZjYGSVnKYGcdzau452Z6zLjvW+Vp03iHjaZcBlap7QsgY5XCqx5sBdEcuG7rtGduLA+H+jq5E4uGGj3/w7/FpZe4tKuzZ3z6nhki4TZS54IpGF5moyWrckFJGG0XnDQZBCULDfana5Bg8aLxFKyhmOq0tIazM6wyqF7ZlrVSjwTjsyRV//e/+Pf7xf/3/YtNbejxlL2EqNa3yoqqM0xWtMiUt7HcZ7XXLNpBV2OX5JdYZ7u/vmHZ7avIsCqwxhFloP+saoILtxMBZa0Ih02GFYtpPTPsbOis+/JoznmaSqZWapUgehy1l2lOWyDyvHF7ecH+3k8K5VFKQELScBNtVinTd3jq6riOlRMihSb8EaWW1mE+ycywxEnKUw7NW/tbf+Tv85n/2n/Gj//4fsLu/o5aCri3yuXXdtUoTq6nMWVaTOcVmulRtkoS8+FlWgDlmMKJpLM2QWaqkEzcvvxzimKYVVM3gVIlJhjTKOHb7Wf5/pTDqyGiWQ2BdA4dpRimF7zr280rKBnLFyH4CbyCVIg3RsRDLgp7LWXChoQQSK2tKYlzXhV5bYWanVVbXBU5U4t3O093dcvrGY9ZhoOs8hyKR7X5zAp1jj4S0aO9g8LhHl4zdQEIoEzksstXIgVpWPn76KV/cXPPbf+Ovc//LT/jkRx9yngtdLpT7hRAWOjRR9yQDofd0b7zG1VffZ3ux5Rf/4QfcffIL1G6PyrDxjrQWzjqHUZpzv8Um2Aw9dUzATA6SCqwVpJpZU6bGIpHqRbwcpjVaqYocp1gLviP5DUX3KDtS+5Hi/YOmU9UiTdqvzKZ015O05vGb73D/xRfMeebC9fTjyDofuL99Ke9fnPFOcbrpWUJlmfccDntyEBpLtz1jPDujVIhRY8ctBk3Rnuo82TpCrayxfT+cFEY6F4yKlGMQj7WElKDIIMCPPVobTKgY68g5MS8Ty6JZlgWTMuuysiwLQ9djraUfDCkvD1NHlMbXHqcVp6NcWKXpwSu9mMwHQ0qFEBOuKtT2jNO33yfc9oLEPBkor54xP39GV8GmVYZKx5j2qrFKdN4xHvG2cjGbpBizZ82VEIpkRWShg9WqCQWWDCGJIXG0A9ucyPcz3/sn/1++8p3f5IO/8bd44703+PHlJen0Nfa7PRz2qOs9w9ax7g78q7//32IfP+b0vffonzyBvCeR2R9uuN+/ohIYth5bFGWNYq7TiZoh1YmsDVlblD+QWEhTha5g3WNUtwV6Lq80m5MzQphZ5j25wLTMLOvE6cmGrC26G4EASQs1STvW1RBXSbPdbLY4X9mOHetyx/ObG2IDHaxrxHSGzm/w/op+eB1jTynVkqrBVo/3Bq8LMUWh73QdJ6ZvHj1JK60EMpmQopDYSpvAp0yOEynPKJWQXA/XDJOiR0ZX8RQg4YMU8dGVlKR4V5ZKwOoBrBMalDKoI8mmoYwpkpRac6CmhZRmYpxJaY9o3wM1RVQrkLURBKT4jxw15wdYAWhRI5TSMJyZUsS0bbRI9FRpkAucyBuRNFMJBdRibi4K45Mk2VpHVuZhI1CS8OxVquT233ORZNecizQZSjWzqAzxikZkm1kOmVIUKsPzT1/xL/7p/8TvOI969Dbz7gKjHZeX53TxTRY3k6aEUgHnvBTuNUgzUxoe1IhRNO0nlA+4vkcpI32Tsk12Kh4Jo7R831SmULHOka3Ce8MwSu2lHRhvIHz5/c1HZHQrjGXRdfQJSiKrCFPUw2RchnGZY8jiURJ1bAGOslxlNOQikAxKG2e1LrBlGpBSo9bIVS2NU6PcVfFQKH2EgsJhCnSdbQ2fCPaPIaaxXc7OCAFqTVr8okajjReKXwtZSynJu6kaurvKny8fg+zadrQe6Wxtu0EVkzAtoyFV+XVcFciCAHgkIFakWxEblkhcMwpLLQ5tBzbjBcpsybXHD1uqci12XbVo9kCollR6avVo5fH+BL+5ojs9ozpxXZsWtOOMw/cjXX9KTsJMzSkxHw4SPuIHjK1k3VPIuF7QgyUfqRU9rhux3UBBpqxd1zPNe6ZpIayRGFcO0x5tDX2/Qem2FrXiyE/I5MkYg/MepSAYTVwhxYjvHHERE0yMhhAN2p6wOevpbI8qCN1Fg1kW1iXy/MVLbm8WrB9xmxNu9a4RjDK//MVfsPvkY7ppZut75t0MYUbnyu52physGGkfTHvN+VwS1oLrRB+rchVMFlpeoCoPaC3HzYl8RjVlis6CMG24SmlKj0J0RZJlEds33uL93/x19j/+CVlXTPt9EpUUVkr88oeqvVzs04GYEko5lNLEZaYWKwY/DSUtpBSkkFhXUizEGPCuoz+9wPc9Ia3UvKJrRFFwuqBykMkb0HtHZwzFWmoLM+mdx/cjNgWCVhymPS9fviJmKbpqlRcwF1r4lGDJqBL1fH93zzQfZFprxQzUe88SIuscHlBsnbHEHFmnmX/2D/97/vUf/AFPP/uEmBJeDQ+6QAVCKKFlDXgPJbMGCU0y2rQJUtMPVjiuu2pVbWpRZOui5TtkTGsc2lz9uF7GyCq3VJEA6STbj1gLxsjkQIgLcq4tayQVodygxGC5xozSHTlJmNm28zLhr4WYU5s80ZpH+VdIcolloCqNtR7noe/EN5BypLKgLeTplh/8y3/Oxx/9lHf/8l/i7KsfMD6+omhFtZ5ukOme6CQz0SpwjkjGFJksSzhKgHbwp1J5872vcnZ2ybd/41scnj7lxR9/l5/+s3/B7uaacFiJKTAMG9zpCdNaqKennH/tm7j33yX3jis78PR+guK42J7xxuVjfvKDn+C8x6Aw2y2WjOor2APWS5FQYyWkRFwTMUsDlKrIHapWqFxQJZCUIVRIVYN1oAfccMZaNedvvMnZk8cURbtWjkYpmQZWZdkdFkx/wvbqguvrHa+9/4jzR69h/YBShawUMaa2aS6kUrFKVuXOD1jbif9I0Qx3Cut7umGDwCMsGEfSMpzRXkgWuTXEuoBXplHGFCFlUGKgXmNmvb5DtUvc+46cMyFHMBbtHOu6PqAWQ1hZlwXvmiwzRZlCGodTEY8SYhiZdT6QcxJDbi5oPdD3hpI9YZ2oFFznyL4jdT3j+RVKVZZlIZVEzKExshVVC8Y1lYrKYJzHGk0tRfB4TQYUopj9l1xZU2r0MS9T4rbXrxhyLKS5oMNM+eIzfvov/wfe/+3f4vTklLe++jXuP78m3uzZ395zbgfKPGFMIVy/oJrKzhaGjUYlzzzdsy73lLCn6MgSFVZJ4BEUqimwVKKBbAzVOHR/Qk0TkwpYHbBdoqgL+uGEceybTlfoWPN8T6mFEBbuDqKX74dLnO+JIYiEs+FDT04e4bsTnNXktJdnIL0CNbPd9oQcWOLKGiq+9wybK8bxdbTZUqomFtnuDOPQhmaRXAvaOIy2bE4sy5wI60rMs8gEdZCtVqpkJWjpWsQcnMosZsLqCFWCe5QuqKIkjT5VmUbWREWkQKpt0rTqqGbB1gFlBrSSUDFFlSK/ioa81ERJCyHsCOuBnCZKPog0qATIUbJGtGlkZQEkYDJV9BKoEps0pxX3WRqNlCWhFqPR1VGqFqllbtQTjmDF2oAW8kM2ErRQQsESq2Nh2ybztYjnKqdG2qnqQToi3hfRxQjtS85+q0Wap4umc5anv/icZ598wevnb3N5/oi5OPZLR+ovyO6caiesCigqMawtQNQ0I3Ftv1eS1NoIMS1YJwQjY61AhI2l4qBASVnQ4w/hUhGlC8YKptlYTfVOwsWyDMCOUuFj+GQ9UnBKUyz8Cmf6KEMuHDfNcOwIxCTdCvumEFD6fxlydRyAVumC5LN+mOI3qVUz6Ip3QX95VpcieTDOodpzIdN6+exLzRhrWpPRtizGYF3XPktpEhUQYyBlCKvIBk2rR3Km3dsN066On4do9KWmlPs5pUQqzbhMEW+Y9a0RlOR3CSfT2LJWLJ6iNLFoqB1KjaBHhu1jHj15E9dvWLPBjyO6r7jOcVXe4+Zmz3q74GrHuL3g5PKS7nQLXsnBogxdt2Hot1h/LMw93netg7ljmWZc15Fr5W6SwsRvHmO0PDTWWtCOrpPwqCJ8JlLMnJ6cE3PmNt0yDINg+4oceLrRLYZhpOt6rHPtm3hs7kWnbG3HMNB0tpUlFmr11DpwcnrO1aORzo/EGHHWPOgd4xJ48dkz1ilSayYcZhaV2XiLPh1ZR0N/uWHsHeqwEEMmTMJpNQw466RhqEZW553C2AohYvuOzlmJPNZgdMeSZF1UQZoBbR6c01ZrYhLfQecsw9BBrchdrNDKyQNuDMUMaHvKb/zVv8w/+/6fs1W2TdLFe7+mlbgu2GY08q2AtUZmyt57jHfspnt204L3Bus7kVtZOSxqWVBktBIzUwwO7RS9UyjniGtgnSbCvCets+ACmiYtFkQfjaPvB7yT8JdSFNZ4NudXLKd77l/upLh4eBERjZwS3Zvo9hQpirzlZLtl3AxM04HdYc/Z6RnOd+ymiTVm4WUj05HrF68k3KlArx1H+K5qznuR3emWtHvMwpOXuu86wpopStBUx0Q/am3hWF9OL3RVLVFOmoUj2aj9BZWhJLnYjDm+6EWm/22qlHNuq2KN1QZyM50XoRFZ5yQIDI1D0/WdkJfCKiE/jSShtAFjMAqRhyjAGpy3eK9xTkI1asnUEmQzoDucTtzvnnP4PHL98YjeWDauknxPtp5SElqdM242KKuYYyAuK33fkcOBVCJd39OVhCqF3loinq988Ou4rqPklct3N1ycv8n1x5/z6Q++xy6tDJcXLGhqtphH55y+/T7br34b/9YbnJ2fkfzPePt3Mq8+/Cm7ZeWp9qQ3324ED4u+OGczelx8SZk+ZzociDmT1kRcEinU5lMwZKUoWghRxzlRRLMow4oFeqzbYscz3Mk5733jG1y8+YSixJf+MFZSkFGgLNur1/nqb/4uv/zJj1Cnj+lPzjigSLuZWgLGyEHlfY8isy6RqGST5f2AVhIJX72TELYq03ejHTFGeYSU5FegJChQWYtSllrk52rb6Fg5kxJo6xnGLSkXdrud9KU5y9mpwDpHt+nZ9B2bLN6b+XAgzBM5BWruSTmyrmubohdqnDEUvBGZxDQfmEKQ4kBbrOs56Ud6D9orljUT10AoiUilOovfbjGbDfH+Ftt4+KrI5S1dvWhTx2HAOkMqsuJeCxyS4pBgqgg5zYgsUDZUVjI3i8gHMxrnTujrnk2c+fG/+Cd88Du/zTd+/3/LN771WxyeLTyfE/PtNdSZskS6rhJSZLAw2Eo9XBPnyrK7BRZGB0VlUpA0VooE8AhpA0H2WQPWk7LowMmRsXcYt2EtlXndc3py1RLaB3S/EczzMLCuCzd3d/J96hwdJ0S7Ms0TsSx0wwnDcIZzlpvbV3z++UcYn+hswZaINRGjMiUkSjV03Ujfn2HdKc6fYZwj60jOazvLwOqE0RVlBI2ohpFuWFgOB0I6CJyhFogLiohBpqLkBcpCLTO1VlIJ4hVyCCc86iYNAkql1th+rAiLq4r+3wayShAVuqr268vPLUWes5xWUpxJ65647il5ppY9qiZqTqi2WcwNjZuRSbqyBawXeRNBNgNKzt2ShfJDTuK5yhpVMzXrJs0z8v1U5ss7o/nlSsqy3Q2JGKIAAHJuv25uCH0jJJyYH/CORousVkkkqYQ2teJXFdnC1QymasCxRgnBujp/zJtP3qb3b/NsWZlURNNTqkfrHu8cRS3kPLdCWOoHjhIkJf6IVLJIP8pKVQqbpaEje6p2kAWfTAGjnNyJFFTTrnd9owXl2gygmUwbcj14GOTOO07qaRvphxqeo9xKTKiq6GZDre05aeGUx0ZdK455skqbRsE7+gXkbn1Qu7Tb+yj1qa3pKFWSb4WGg5iJc8TmiveCSE0pY2ul8x3W2EbKqQ86f/leRhSWGCvLIsOatSScVyJtLFWQlk3+XisiBcXwpdmXhiGVAVlO6SHQS+wm0pimKEMVYyUfyca1UpXgL8fhlH5zznhyxdnjtzi/ep3zq9exvidqi+4c2AXvI673aL0h7FZ0dHR+Q7cZMIMl6ci8O0AUCkTnRtCOGBIxBkKSjmPcbvBNNlPxeN1hFKLfqhLHjVL4rsc6Wf9lQCVZAXUonPNstydsN1uMFUTfPE8y0TaOfRbSi9Gif/bOY5SWMBbn6JxDM5KjrKbimtlsHN4MOOdx3QbnR0Jc6QZP38H+9gXORd59vyMtgfkQGbRCrQsx7BksvP7onKwj9m5iSpXVF2zpGlbRUqdCPgTytBBTlEkUla43olesLTxIGZS3FGspcSWk1N4F6eCVbrIcwFtBzQ19x8X5ljZ6bV8jnO5YxNTxjd/9S3zvnzzBPL1HKVmhWqM5xEQ4HNCHibQs1MlSygJxxTlBJXaD4/RkIEXFNO24u73DeYP3hmU6ME0HTFs1LSFxmO/RbsB7CfzKcWZ/84r97poSFjpryDGw6GYAzKIlzDGx5MJ0f0c8TJgUoCamw8S6rOiGhivCg5JXVbWU1SwLOckH0KzLSsmJEFZ679mMPVePH/Nahs+fPeN+d4AioVopBSlKrYOKsLWbf0PT1ngohq4XzWCKeO/ZbjY8enzFLz/+lJqqMJc5Um6UUAMUKG0a/UC0paFNQI/TC/nPlr6pFd51LRxD8HmhrGhjkPT0o4IemcIaK1QAXRi0IVFxzrEZRnpnhY4UV2KJshUo4k9RthGZdFthaoV1DuMdmEKpSdzoNcnvq5KEHlnDWT8Qyp7Dy08YX51hT3v8o9fQ1pHSgoozrnYoDBZJ563TTF4nrKq4lEnrLJQM43CIhj0XhdGeYgx0it/4T/5TTp88wvQGvx34wQ9/RGe2fOs7f53h7BH67JLblHixas6/8m1ef+cDfvboddL+ns1mpI+RNRfGUVKWvS68+Hf/nPL0nsP+QJiCmNoCkjdRDUU5ijbEYoROVSWYJmrFaj3Zn+LPHjM8fh19esH7v/UdPvjmN3F9R9JwDMWiTZzkh0Lbnre/+VtcPHqCR3P9/BU/+/GPGdYVtU7kGlFkLq/OUBo6L6ZCo76cWuUkBriqMsbKRm1dIzGJB8X1FtN1WOtIKA77mVgtZ2dXbE9OQcEaI4bCxgs8wfuNSOPKcUKVQNVmwNUt4dvhOkWOcq72XYezVpp0JWeSUlVyTPZ35GVPDRO1RmlIrCVrCUpL6577nWJQFpMrebnn/vYVOq8o2y5jq/FDT+4kyTynJIbIEFG5YqoMZ/bTwn6ayTmzrivTopljz5wqCTkHFYqqkpj74ipNb6NNlOLZp0JUK0OXSa+e8e///v+b97/9H3P1xq/znb/2H/Ent/fc716RP91D3lPqzPn5OeM4kHPg5ae/wG97SYC1SfTQIQEJrTNUmVzqYlDFUNDUJMhBbJUh0LIAGT+vDBfvAhvWxXB68oSKI8REKQZrN/j+lOHkimk/ieQjR4yN4i0rC/14grUDIUy8fPEZ1zefYuzE+bmnx7EuC9VElK5Y67m4eszm5BJjzlBmQzFShHS2o0ZNWguV0CQQBqrBGBj6M8I4UfKeMN8Sa2ljaRmaWFUlLyUvUEIrzlRrtI5Yw0RTl4uhskRh/NcFSmyEFEW1AzZHkfW6ivUy/T9us1WtxPVACDuW+Y512aHqQi0HDKUV5AlVjoWYIVUjXjYv0kinxS+gWxaJblrtoirCbI+kXFE4AV4ojXKCjJTuxIjsyBpUhqiTFLS5PPwozZMWl0gNoEJinUU7X6u8f6ohENVDEGFpJfDx3xBrwmiRDiughoKnsu2hpImaZ6gH7g/PuL1/ymB2JFeoTBg/k/VCSIhU2ggF7JhyrFRqfpu1EWssWllycVQt4ZFSSssmOqXSEKWFQsJ5S1gisd13pU3Qy5fH2P/Cw6Yb/ScVAbmIMfbLwXxpBXop9bhCF/1+m6EoLdlM2ojEpVYJEAPZgNR2fuby5d0M6gFPqVRtX9soOKrdzUoM+1qLhEsh56Buiee1SrjWA2mqKpRxpHUlrGtDbsvk3XlpzIgFU2vzdSlSA2goffSKimxMAjNrM9S2+oD28xD/BQg5TGvdGpSCraanqA7jN1y8/i4n54+x3ZbTi0eMJ2fy4JZE0YaConMD2npMgctHHepSUYNovpUVwoIqIvKPy0IkSseeIzGLLkhVkeY4J6lfIWRQglm0VsuDlDKu91gjxZkMvxRWO8EkOU2I0knrmtG6SDjM4cA0Lah8wmZzSsUyr0ICMcbAMGBlRotB+NbKWlkZaU0sBa0q/bYnzgt1LSIjWYRfb8+2xN09YVk4HU4k5ZYZyoTOC2m9YzrcoOZCPCTSJNKU2hd6B8564iJpq6VGco1QxWgmGj9FTe3hb6lj2mt0LxMKXzwlG0wupDBhvCFTsLVgQ0F3muQypyc93gIxgTPiPDcKozXUwqO3X+Nrv/EBn9z9GdkmXO+hKEwsMM3k2zvi7R1BRbpHp3TaUFNgvtmj8gluHEgxkMMBaiLMibhkOTjjnmoUThtQkRBmUtyT9rCgUCWTpz0uJuGzhoV1XmTK2A103ZbeKPKyYzrsWO7vcDlSY+D21Stunr3ECveFzBGJJSZkDRRdGo+4tOemsqZAKobtZgNOkQ189Ztf5+vf+Cbf+94P+KN/+UdMOeNyFja60qQc5JmTndOx1X9AXqqKJGeiscoQl8jNixt0kqm8+VVu78PWSC7LI3PZGCupzeim4xcUljYG7WRyLsuJSixJ1teDJVGxSqNcxRbNph9QBVKUqO/cAlRizvRjz9nphu3Y42ohrgcml5gOmXWN1KJJKomxWGmcFYpwVnJg5VzxaJzuyElTjGJGU6whpZVT5Pmq+YDNExuzcrqpqE0hzzN+WTDhOWhFuN+xu7sTH8TujuX+RiRd60xaAxqD9RtSNhTl2V6cEVPAxsxpN3DqRuh6jN/y9ru/wcnFY17/9m8LDrDAtkYO4YAae1KyXH3tN9Bkus1ALJF5mfEofNWsr254uc/oAPsIpUp6JTnijMVl4UpTNQVNUApVEroaguoJ+hTGJ9gnX2F4923O3nmT93/3O4xPHsn0qNIu+gzFNZO1yGSLNlTb0z95G1sSb55fsObIyw9/is6GEjK96+jtSMyBNQp+ttRIzZGt95gm3SnVYEtEAAilYXzlbLM1UYtjXiOHaSGsCa8TQ1fx/Yj3hlA08xqx3mO7DmMNqRnIUIaUk+SNlMoyL5TDRJgP5LDgDAzOQlnZ7/bMYWpbLk3NiVgzOc8c9jfUFOh6T9+N1LbF6KwlzjOLasbdPGHYo1Vlc9rjg8aWiOss9nRA5450H2GVCapGtpgpi9mfKoFvMRhCqKwpCoygscJrqULIKYWckmxGbbtctSKUzNBtyPOei+rY/+Dn/PAP/hG/8797g8uvDDz69lvMN2/A7TVdzuT1C9ZdoN8UOue53t2K8c0XCUiqmTUuUjx3UFSklkpMCqUduRopkm1FdxVnM9Nyw23a49YDpnecnLyNZqHWldAkJK7bgMo4J4MCpy05lYdiaYiBEIKYE2thvxxIjGh9jnUb1iURwg6nojDaGbDmHN8/ot9ekRlJRUt+TBSfhDYWjPgctJHwM1meVjabEVXP0Xrmrq6k6Ehpj9GiHS4AWZGCgirun1yk6QHxd2m7EYlNm1SXHMg5UMpCySu1SAhfdR7qJGjKEsilAz2ilJGirxbSsiPOd6TlhhoO1BIgB9motsCqWisZRdVGGnlaYmjWYixWmpJFz1yzZLmUklt7LuZ6QTqLKZLctNLKt2qUtqWRwOXckIkoi9YDtYg3LWYnk/wly6Y5a3QRua4YWuXfqSKplBzR06UlkwraMeeKMz1xKjz9iw95+503CesXTJ/ds//8ObeffZ91eoEbJM1eu4Q2GV0DFVFIZI7vvTTpBt02TlI9l1TIJQg2WlcJP2yJ7tUk8ShlJQjMlMixQo1ojg1VxrTi/gH6qFSTojSNe83SDB8x28qglUioxBirWu5DQ/egoMhzrgut6G9a1SNHv20wxTsnAMpUj1QgLT2ZAW2hmEJqX3UMszw2D7Ek4iKfjbWWvtMUEqEkjLUoh7DrM5TSJDtZ3gHrWwN2JO7QJFtHP2X7swgw4SiRarJqXahZ4Bep5TIcjeSi+m0IzoYMzjljq93QbS44uXqDq7c+wA8npGpgGKlOvtnaapQtLCmggsUZRy0duWTptGyLb0aQTLUambzqwhJnwRpiMaZj6DcPTP11CZRS6LsBjEdbwzB2gGOeBa3knef+fk+OQVZJWZirOVcwhRxWwnJPWHccdrdYDSUrljIzGPDdllS0JLWWQlwyS1qxxoKyJJtRxrKscnjKKi6xLnscCdbE9dNr7l69JK6r6E2TmIEOm0tON+dshh7SLTWtmBh49flzmA4MeKzqMTZhXcSoiNUBiHgj0g2t5aGSDlTYtxrpEEvOxCQP+j7scMUxmgsCClNWXGeYmCVy2zh0qOAMhxJY9itbRviVrvbL/xKZ1x23dy9xg2bxEHLGYugV9BpYVtTugD/pGI3GmsLaDslwWFiWnlwzMUUhBxnR08U4o6poFXVJWBJKVTKNaFFl4txZQ0gQ1xVKYrCyUi0xkpmJqRDmA8vdK9JhR1pWVEyk+xkdCmQtTOBYIYlZ07TiqSop7FNuph0tZpdhGLm4vGIpC9lUfvThT3Gbgf20ZzrsMTnTKY1RouN1RjcHvZhkhdMsh4FsCY+cXDHF1FzZ3+7wiN/kKJ2w1rQgJFjWRVjC7YUvKcp6OOcWpqVxncM5g/XC319C4Oz8BGd6tNPUMWOdobcOh8Vm6JQlHBbmXcIpQWYWKr11ojNdDxSTcaMXnWkyYlAzmZIF3+Wsa5OtBNaQO0O0bXpUFTVFnO9QzoBTXL7zNplEme5wXtObippvSa8+41D3XO/uSLt78mHH/sVz8mEi3N1J2qhCEKXrhK6RbWdQMeCUBbuh0qPthrkbScpgbU/dXFDdhkV7Sh9Q3YbdXeKnP/wpw8U59J5sE6YD152QqqZ0WzbnpyivZWp62KGXhJoLg4dHb36D6+mOakYON/fYlNm6gtpPeAqmVIIupJTJLXmzaoP2F5jNY/zr73P+a7/O27/5dd75jQ+4ePsxxRr580Fbp0c5n5Xo/UORAv+o3aRGepvxXSWsd5xQ0SWhl8J6u8Nveug77sKODJQcSIeZThv00JMKTKvIYFItYoYrlTIZzKGjas+a5Hzeuo44PePFFzv600v6k0uScmQtKLw5rdjSntfGHa+x6UvFLg5ZkLGpFOYwE+ZAbVs1yRQyzW/SqBq2SMNtkWlsmiAlwhoEi1sylcy0LizLSokFpxxjPzJP9+SbV6y7W04saK+JRqgkxkmoS8kNm6wtVCH8pCibhRQXQfUaR45ivq8olPZNRgG0NX8igLWkqvF5QB1Ex/3JH/1rvv6/+o+xX/0KT37jdX723R6lHxH3Txm1hVRQM9jBYIIhzhFMC3VTBV1lAFaNGO0EjEAbPjSNb1GUkDAl4QkQF+pk2L34mBoLZ2eaMpzSdwOpSjOdYiKGFVUzg/PQewRZp8lF0pbXZWGZF/ym8s77Zzh/iSaxzrdM68/o3IxSmkfnr3F68TbbzWOMGwlZkrnRFadlchzLQm7bPa2bzliLjKPvLEadUomEmNndW3JOaGKblOZWG9gm/RAUI6pQyyLYSpk/Nm9TJedIiisxTpS8okjUGmRjVQ+4qqEGiI5qelBetgClENc9cbqlxHtUFlBECfFh2KOPRiWlqMrI5L1KcF4xkgzrjWTJlCIm2lJbiBIyAlZVU5tBWwM6F2lcDF/KRYtsEpQ66sUVGQuqp+aesAZS7lhDJqxVSHNZQtra0PiBAiMSuuPmWGpY1egquWYZxKRKKYof/8/f5fDyKVoZ5mllf79jmQ90XpNRJGNw7R4ysrJt7I1yHIhTU32oLcVY3IJBg4AptM5k3UzsZIyx5FQl0yYZSoT10DYsRUEW35fVmqIE4HAMl6qltNApSaLVupKQxslpI5tDJU08VSQrJYlM9JjuXop4ecTA2rILmnZf7G9yjuUmwcmqEeoQv4JgocFWSQ4yuiHktZCBCog0SvPgmcs1ibwGQZUrBUVLINmyCpbdeRmQUJFAy2OPp45Tdrn/mz6JGBMx54fBmrWe0rJmYijEmPGdlU1VKbTF/5eSoiJ0Svv4zfd57c13Ob16A9udsiaFU4bt6QVD3yOs2YzSFts6uBAyNYFWDqpE3udUHroHox3enQiPvEpiltEWax2gWNeVUlowkq70/SgYoKrokgFVyCmyTwtjPxLXFWs7jFFyOJuMGzpsZ8i6UvKBsMprsy4LOUYokdlZcloo1WD6DQYnD1lKlCJMWwVSnOpECRO9XsjhjrQ84+OP/oKbL76gHCY6BZtxg+l6tHb0w5bp5hW3n0c2/Ybt0KFyIk4T+X5HmWb6vseiIRVMm1KRM2sILS0yo49ar6b7VBgKGVNkBVepokV2HYPbYOjAHfFukQVHLZa+OCiOw37m9sWejz++5/SrI250UsABiYRRsqIrMfHo7C1+udyy6Sxhvcca2FrH5eUJwXtiXCjLzO76hrAXtdzJdiNrSTVTlBLOsDLEWlgjrIv8WZXWzMuEqplu6IQykBMaoemEeQ9FVrSix6zUrEA5lnlmzRM5rqgiL2kpmbDMLPMsOrbsqLlSYvrShKPENAvCdBd5usa2InscB4zVfOebv8kvn/6SZ8+f8YuPPuLDn/5cClcrJBVTZWKZG2arVHkhj/o/LeOGdgmpB+JCzplMZVZNfFGF/Nwbg3OGZdozz/NDsIVubPuqFX7oGdwg5smaKKoQc2B7umX0p4ybEd95xk3H1VtnPLq6pNcWFTP76zs++fnHTOskW4ZSsbWgnZYUxoaq3edITQPWAFnjVU/OmWW/MNqOXuYoRNOzWMfUj+gnVzx65w0uTjecGbj79BN2L17wxskpb739iMPtDcsiB218+Zybuxuefv+7rEroEt4oTr2lK4mNs3iVSWkSI5j3hJolqGg9Sp4URUWmXAm1wmAwwyl13NC7C+z2guo61q7HbDe48zM2jx/hTzdUA+thz7Lb8Wz3FO9HrHPEsOK9xzpYHWRjWXRiPH/Mhf+rPPr6B9y/fMH3/+3/TL55hSuJVL9Ax4hrh+/56chdtdzFAuM5m9fe48mbH/D4a9/mne98m8dff5v+apB3rQaMEq9GNTKhp0ooUAU6o4hZkjdNXvE1Eff37H/5E57+yf+P1Si8chjlSWeXnLz+OmUZ2OeA6jtq7ZhjxGnwdcHoIxXiy3AW6T0zJSqUVfTG4v0ABdlSxkSZV2oX8X3P9mQkpsqyBqxWWIVsNY1wla0xkgpd5T3u+551uueoVy0lYbQ066nlc2jTmgQKtYiJHhQliV5/OcxQC85ovK5te7OikSAlozLLOrG/u2a6fk5MkS7M5JhQSTZszki2RlFaJGlJiSFacD0456lonO0wWi6+GIR4pLRkNuQoFZM3GpULkcyiwaFQIfPZ937MT/7HP+Q7773P6aNHPHrvfZ792XOM7WRTQmJZDrjVouJKOqz4rscpyFXj9CgS9JAIFNABTAQ9CQ2rOlTtqdmyhIrxHqMsZYmUaWIuz0hTYp4mzi/fRvkN1vXkEAjzircdyRa0L00eYCRnpPM479huN6SzU4xRPH70GuTEhz//EfP+M3KNnAwjjx8/5uLqiszK4f45xZ1SMFjt6YceaiYHOb81NOReG6hoRNJiPScn59II50KcMyofyHVq09uAMiuUFYhS3LcMkBwrOR5EgtIK11wk9TTGCXJAqYwYbDMpBnywWD+jbY/RPRUrqMScCetEWHciSykBSqKmzFG7rdrcuAJFaZFgFkchAgu6ZEJNYvysv1rcSzFN1a2h9FL2aQt4malXadaOVhuUDH+0MRhn0c6SlCYmyU+JUVDXORdMabrxchzGVRB0BMf8FHX8+1VMmChFiRFthHGeSuXlZ9fcXL/AWzHSGwlpoXiD8RVlOoElFCVNhKkUnRAtzFH6kimK9mep5FTIKVOKEqlOmyCX9r7L9lmiBUrSxFBZlwLFkhbNGhIxiEesZLmftTYPDVDTpGKNQauM0oacxBIrQZK5bSqaZ7IRZJSsFDjiQaVve3DHyeS94U5LledWadHxVyoUJfjYKqcoWmE7+R7LxoamYJEhgjWGXOV9jhk6moRRQUqREARDXouoS2heEDG4K3JKVGdl61oyvnPUKhJiGUgqtLGCujaOWg0xFvn9UhF/lNEyHCz1IXtAsPOOkiQ8zL7x3gecnl2hbSeUk6LpxhP6rsf4XpB5UT44TRa5Q5T45pZiIDzz3MyMSqOtR9ExDj1DT1vpGRRVkmdrpqLRppDzSq4LxnZYK18jpoFMjAtkCSNQiLnL+6OxoGBMJyEq3YCqG5xOHHaJlYRSKzneE+oimKhwwBhHtY5qOrTtKNoLr7uupHighlu6uqfkWz765ff5/MMf0FfF1bAhHA7U5UCKBqU9OZ/Q2Q2aTNzdEfMZg+uY9nf0FYZxYGssehEjSi0wTzNhmpnvJ/Qi/HbVzJCyThRyjbxMR2SavMgmCst4iitnV5f4/pRntzJhyIujZIcxA0VZSQHOSXwFBnKVLrnUhCOjleX7/+Mf8vmHn9JrSSk1fcd6mOmcxepMVZmYJuY7sF7R9ecUp8nVkuaMc2C6Hj+MmK6XcBq/oNxIXA/McUZph6mKaVpYlhmLwSrY7+5Iy56xE4NyCCvLHFF0ot/18vOiKqRk5LLqOsqaGEbN6DRhn7hfJ5w2EjCR5Tmz1iEcW4Akkg7rGPsNV5cXfPXXvsrv/tXf5Rf/zc/xWvPy2RdcP3uO1xaVhUKjUQ8FPb9q1qli0n3AXDZuLUUaXFk/V4pWJCV/f0mZKQc5YLJoOKsxpBixRmO7XpJ2KSw1oK2EdfVDj/OW7cmWzXbD49ce88a7b3P25IqLE0+cD9x9/gWvnr/i5tkL7l68JM0rDo2qYKowdGvMInWpoovMGUpRhKSoRYMbGE86vDbEeaGgWbTjZs1s3n/E7/3n/0dOH59Sphu6dc+LHw18+r2F+flLXny8x6eMnSeUMrjs6JOn11BUxTqLSokuVgar8XnF6UK1mWldUSHisrgGDEIiKNoTdMeqO7I/hdMnlPPXGF97g7N332f7+AllsyU7hx46+u0WfzrSOhZYI8v9xKsXLxtGNJPCjDksWFvoVSEaQxgNYezJ+RHZiTRxfO/XeO3XvsZmf8dH9/csecdJP0KCBUvutpy9/hbm8Zu89t7XePLu13j8/vtcvf8mejRULRMsrb+8kFdR7mKoOAsOMftZEjrMrC+/4OO/+BEff+97/OIH3yV98QusEV/OuDmnHh6zTne4x6+hTjYY57D9SH92RVxm8nqNkZNdMhScJcvwqkkO5Ex23jGOI6kYUbQUWFPFxoIfJZVTqSpr3YTgSXOksw7vLUbbpvXOrGHh8aMzchyJAXIozFFCVFISoyCqYtqlW3IUDXMR/nLKkbgu5CyFaclRhjtUukbjKDFwe7uyv7lB50StlcMykdaIzRqyhpzl650iBGGCh5RkSqYVzkrq4zGbg6IoaJQ9rsOlYFJKNi1dVTgFN2VlMVC0pUdhDpE//R/+BV/5u7/P+O4HvPX2u3zh/wTde9ZdpJaIXg/4xWJqQseIjRasmJ2NH5hrJeSFgORf6KaVlWyRQs4LRvcobSVevihsAbXOpCxT/RQX4nLPcHKJH05JUZGiJrHQu0int+TScLy2o1Yv76XrZMNeCsPmBKsq/bglFkvnB4btKeu68uLZLyXozZ/Sn2WsP22aX5GUdd1IynIPiyz4GBikHooMbTs22zNSykwU0mKliFKJUg4UFVB6pZTQtv1ezISloHSUwrtRxkrKDz4CSQNPUEXKI8/aNT4HrOuxdgAcqYUaxjCRwkROM9SGvWySpTZNozZCSi4FUz0UC2mhlh5dxFsgWEp5pmS6qrC+o1YtBmfXo0yH0VtJHtVWitIqd4bi6GWShtV6j+86ijUPGy6lZFNvTJZwVH5lOq++vGuO/xIcuLQmxwwUb/VxVdh+P0dNVjwSLXU2lYDxFd8brJOvq1U2FtpVqs1SNCuZIgt1RmotCWIUd5fWuhF9kkzLc25fQ/s6TVoS6yLbiFoyNVpSksk4RbTjCgmZau6LJj6qeGMfkuyXRRK3c0rSBDVgfa1t+yWfArUmQWbqY1GvHyiDonYReU6V3eeDBFq3XJwHHX+GEMrDUM9a2WhiZBsmjZWklceQsM6QsxFAjVIt0V0au1IgxiZj006kSU2fXzLSaGSBxmgrac4lrU2606b2SrwgMrEXyVNKimlOD5+3PCdHQ3kiJ6GF2W7ciC7wcE9IoEwnTugSydmQ0WAMGgk3Ok50co6UEjhubZQSmsRxmulsj/GOUuTCMEaL5MB5cgnEOFFrQuncOg4xdIp+WtM5B1VYykM3ooCcIuPQkwvM8yySofaiW+vQfUdaHTUvqBpJcU8Mwu42ZhD0FgbnN/jNKXbYEg8r2lS8DuTpJfHwnOn2c+6/+JATU3C5kvfXECIlaNAG43oOhz0zPWO3kSnbOhPnqU0oPV1VnA4dcQ3EVNjvDly/eEEOEVc1JlucMVilBRajFPimXctV1pQtzayW2hzR4DtZPUbg9LUr0tqTdo4xbNmYE/K2Z3j9nKs3tmgP2YAoU8FVh60rZMUXP/sFt599zsVquNyesZgqRtW8sp/v0YyYXLHZocLCWT/iz065n5dGTIlt/WNRSoJMvFGkEsnrgTTf4UhM99fsXz0jxYz1llyFP5tKZIkrsaXcVaVwrsMYL/KcKgdGjIkak5Behg2+N6gF7sKdaG6VkuAsGgGkYbCs0VRnJNAiJ9Zl4tnTz9gMPZ9+fImuhWW/5+7VDU5rfAWL4Opoz7RRmqIaw1hJ4NQRv9k2axyjsGtp+n6tiO3SUEY9TFmOsxdyQTnHcCIm8FISc54xLZVOG83m7ITLywsury54+523efTu2wydZ93v+PSjj/jpi8/ZvXjB7atXhN0CKaNihpQb0UUwaSZnbBErtTWyPs5VtdmUwfQdZhD8qdBFKsM4ULNBaxhPT3nj7beYDtc8+/wTXv78h8yf/pJuueOsr+hwj80V55Wsz8OKTobeiP9mdB21JnpjONt25LCwhAnlwdqMcU6a01wk4dIY1qJYjEWfnHP2xgecfe23GN7/Bv35Jf3pOXa7RQ2e2gJsapH3QzWvAq6jv+h4/eyEeZl4/vQXvPz8Y7q88Ph0w2a7od+e0I9b0qbj9t6yWxZ2+x3nb7zON995k6d/+m/Z58Rp37NXlnpyyuMn75HOHvPWX/vr9O+9z+mjx2zOL7CDR/eWonNbX9dW9DQtqbBdMKqii/iPTF6Ir57yw3/7r/jwu3/K/dPPSDe3mGXmJK50EUoJxFi4nRbUbsc7Z6eY6DkbBraXl8wxMa2aQ0hkWx4uNYWBtg0UDrXQLXrXMQ4jCQ9B6BrKj/huwBpPCG29rQxaSZBMaZd2yQkF9J2je3RJzqeUFHBWUxOsKcjQJkVUloLVaI1GAm5KWjCqmbFLoqaEJUu0e0lQM05rjLOEGgWwkCqH/cIaElen53itOOTM/vY5fVEM2hFL4TBLlkaS5Z+E02iD7QVRmNe1ofTk8k4PFBLhQUux0l7mKFx1ugLWULWiroVuSTz7yYd895/+c/7W/+F93n39MT856Zh1ekC8ruvCfNC4AWLOxP1M141sT59gt1eE+4Uy3ZPTPdCh6kJKRsybviEFq0EbS4xRJI16xcwHdFckPXTNHEoEEiHMxOjQqkPhGbzHmixhTbVllOiKUpbYCg2FxhohyvXjlvOrN1j2nzFNgRwWalpw/YDfXIDVjFYLrU5J1oE2nrJmKLINEglBw1Rq22huCudHzs8NOlUmGf2SUyTmnUwjldxvkshZ2/OaMWYFlR/uupqTYFVzaGdUQNUsOuicUa4hNGsUX5zycneGTI6LfBZ5gSK6fqNMm0q387rpsWs94luleI81olJGl0NrXGSLnpuHK66OiiAI1bjB+1OsGR4kMlVrGSgq1TYQpXH8NbpBCrR1ON+J+bP57bRqhBdEDnJkrem28zoK3x/Quo1sg1Y455q8UxQBRhl0daRcMFWjMagsQ4CsFWmBaOWiMw8b6ixhVVqCw6wWT2QqVXxhrb8QuN1xY1d4WFG0BqAWQUimLLVXTgmylvdQHRNdBOvc1ObYL2dpdMYwDl7ey6KYJ/GPNFWsULhaoyP/TJVKEgCEMe33NzKIq7YNoaWZ0VqgBKkNVeV5qA+DOaM0MUgzt0ZwXvKSSpUBg9YK57TIh7IMyEr7B5M7XIIk15hIbdPB0cuhdfMTaGJsdCIlEhqqIWXZgOVSoBTBwlZLKYI2D0Gm/yGVFnTVUKDNYFuryHtKQUiQKMFvzdNMWKKkwdYZ34H2I7obsf0GpytOZyiZNR4o+dAO/doipB25ZNY1EOOKNZFxPMEa2zqOjMeBFh1byhqUxzlLrZW4JomD7lz7kDSUijX2y2lqKczzRC6Voj0xyoutasEb3R6gTM5BdK6FhpuqKL1iVA+mpxZLjoGiZpYYyWnmbKjM10+5/vSHvPrsQwgBW6GEhMIwqJ75sKCtIa+SbOttx4aOs/GE6bAnzDOdtsT9HoPlsDtQ5kA8zKy7iTStIj3yHmc0ne0pVRFXiQp3vgeUMKXjIomiSnjtOVaKKmy3I64zDNsBfepId5pcDBvj8V4Tx8T5k4533j/F24dzDWsrNczosvLxH/0hH//xn/Omdow1kueZ08dvsBTD4f6eQGa0lXXdg63Yteed8wvGR6/xw5/9XApVrTF2wLmRonuq2eLHHqcKarOi8zlpvmd3vwM9MG5OZMqmqlCM7mGZ7zBF5prG9XTjGbZuWJcJVQvGe7Zn56gUSYcZZRLrbub+1Q3L/dwebOTFtoLjLCVTkhQYJUW8VTjrcFazTDs+/OlP+PSTD3GdRaVIWWY67SCK0UeV0jZFLVwDJeEspcjLmjPCB+CBgvOlXlFka8cDQ1GEmNMO76IUtuvYnp5zuj1hHDfM84Hdqx2dNVxdXfHue+/y7nvv8eTxIxh7lrtbPvre9/j+97/HNO1Zp5m+FDwKU0EnMRFZFLYqas4o52TDpgq+Kmyt1JhYaiUqRRp6Yt/x5Nfep9t4Pv7Fz9E1cH76Jm8/ekIfHF+8eMUUF/75//W/5O7uJY6ZJ1vL+xuH9ZZpORDrihtGlnWleJnq2BaNbYxi8Eris03FbwzJW9ZZcb+7RWmH9T1agW0M31Iq/dhx9vg1zt7+Kptv/Tb2a7+FOX+C2pxQjGatiqjbx6zAGZFPHL0cIEPdgsOPI+9u3yE+/zkf/ps/JhrDphu5fOc99Guvox+9hjsc+Prblzyv9+S7QDxc8+kvfsqw6bBFk+vIO7/+V3jtm3+ZG7flg7/5H2EebyUCuRnBIlUmQ1UmXrpNZ1WVSb2qAR0Xwv6e+5/9kJ//+3/Ds4/+gvXmBX0pXKwr6SBnRcmwIl4PHRN5nXAY3DqjJ0V+8QUvb17y6n5HKhnbe9gOzdRmqNURayXmSsVijYNqCckQkuYQM8oNnJ9fsDm7oihDKgoV5Sw3xrAderz3TNMe68SoXkpqPOvIOk8c9vcYXVime/b7O4rs4jG1NFmE4BMhYVXBWwUlUmOkxCABglGKKQ3kYogps6yRnC0oD90WvdXQdYSkWew9ym/YXd9QsKglMadVtsVaDPYVQdIqNClkWaVbMTbVnCjqaE5syaRF5AZCFIOcKtYbknyDMRq6krkMke/9f/4+3/72r/PaB9+krF8Q1ltGY0nJUFNm2u05707Ydht2KbCsipPxMf2T9xnOK2Y+kNZ7SlqIcWWe96AUm3GDM5ZpuWOabqjqgGIlTnsqGacSVVWSCpjOsJgJX3oKSrC1JnFYFWU3i+RTW0Z1Jkx6qyk1kLPkDqQiuS7nV4/ph+/w3T+55sXLF2z7jKkTbr2nKyuhVNCOq8cnoiOulRQClCYxaVQtr8QX5I0mJ82yzpQK/biFsyJc+BSJdSXnrUzc84EcoeaIUYWqArUkUl7gASGsGk0mklMihVUmrkokYDkjSN8k57MMepzwvlOhxAgptPO8Dc0kKpFjirl4USWvpJSjoRFqzszsoBmUSy6N3kMrAuXnO99TyxmdB7oBpUehmjSFwwNhTYt/RVuLH3oxmg8Dfhwx/YCZV1LMoBK1KRcKzcipgEaAE9Keko1+FT+HTNZle9J3opgIIUqScZEBqcpSeJNUkxZVFiMBSi5rXJb8BWUryiq0k/dJaD3qwaR5lCPVGI/Cv4e/1geIQzMCay04c1OawfM4aW/bbUp7wyqagtPmgQzjjKL3HcsyNamyfA9Q+qGgLe37Rvs1ja30g8EagT7kZEmxPEyzSy1iHjZF1AyxtmbJYLWQampVst2ripwqNRZ0qKIwOXLojUKbKFp8pchWocJRwigD8FoVMVZikp+TUyaXiHcOpaoQhGJAqYL3jhiEc19qbJ+3yHisdYQAOcMaFCFqKe4D4lcoX4I6HjomrCg/FNj18JIUIvNhIsyLrBHVwuwy1faoYcNYzsFrjK2kuDLPO1JYpdNtkxKFp9Rm0tOenKIEGAwblJKQg5jawascXe+IcZUuuha0qVjjUOgH0ofSls45rHEt+KoyLxO1KvymEzdyc1PPywFKQWknrv4WMy1oo0JcJ7STRymuMxknDZ3SEtC025HuX7BOO3RNjMMJ6RDQypKWQE4ZZ3u0csQkl2DvHHWO7OcbvC64WijLTJkDVXcc1oRJEJcVQqJTHmM0nfUimchyYOZccLbDWYN1npiCGJVapag0mM5QdUc1hbIs5AnmtCfsd+R7Rcw3rOaaxEv6YWYcNERQOXD36nPWcMPb755z/fPv88f/6L/l7c0G/fwWu2qSAeW2vPO1R/zwe38OXc8hruAMedrz/PqaaV05f+MtFgz+ZEtxDrd1ov20HcYNGD/KdKWZ8/I8U1SPcSfUKhzgbvRszy/px5G72+dM+ztyBmNHlDkhZ0e/8WgtVBBTKqRADIUUK4cQeXW/wwSRP7jOorJu05/jQS4ddt/7RmMK1JIZOk/JiXm3EBaLLlXgDynSmw6dQZX6YMg9phKnFpiVSxLUWsltQ6Uf1qe1Ffu1FAbdia6uHicG4pswSuGcIZfEtC5MIVByZDOMnGw7fu299/ngq1/lZnfPv/vXf8QXTz9jv9+xLDMpLHgvxpoUK9Z42egkkSYY7XAaqhJzkNEaXY1oIUtBW0PNmTVVuv6E17/yHr/9N/8Gp+++ydeef8Ly6ilxnQh3O+5+9gnpcM9gOthd845VjKbib++xU0HpRG9BKctKoHhFKapNUBMpRLQCbTIxrugC95NDG9DGsvEbVDWYpMnzCvOKM1Zkq/PC9PRTdjc79Cefof70h2zf/xaPv/4tNl95n34ccFUMYblNgSJiUDXIJEkXhVKZkg4Ym3mtU3yxvyXf7bhfEvZmx/b9mXCzI+nMq2tFXyOvrp/z4cvn+JrYdo5wvzCebLB+4Cc/+wjz9q/xjXEji90iBb1qmnLBlRmUWOFEApAzOs/49Z4vfvxDfvKv/5C7j/+Cen+NiwubdUaFiImZIUHFEZQllOO6XS7Xsq787Af/geHxI9g8R21G1LDBbzdU7Uh0qLa+TcmA86Qq5r1UDCoLyz3qBTecUbVliZl6mFAt7ErV2goM5NdAErOfPXuO9xLCYrTGakHZlrhSVSIsB8I6o2pCUdCpQpVBTU4LVhesU8R5xdQsBI2wktYgd0SpUkxlGRKtSXFy/jr95pIYFQezZ86VzRvnXJ5ccB3+hGcvbsAZiWBXBrQmFag1P5jLckpS6LYdW4iBlHLT+Yr5/Ti9LznjlBHdNQpdKz6LFllr6Jxh23uefv4pP/8H/x2Pfv/34fYjyuEFthZU0qQqoT9xCvR+gzeWuXRUf8riTjAnZ4wp4tY9OSyEsDLOC0oZhr5jux25v3/GixcfkYoll3tCumc/3dOpSqcdxg8YM5CjpXY92vWEskJd2a8razSoKiSdkjwly12otExBUwqS+q01281GBnAnF+zXPTnvyCmgtGdjxJyY4sKyHCgLUB3WeZz1IiNoTHFlZbtR25mrm5m3lIrxovuvB08pI1o/Aj1A3pGKJa53YALKRmpZqcSHCSSN9lSSFMqyqJPDViPftxwzmoQyiqQUkFqQj6GmVpAq11CDLQhSKmR0m3yXWjHOPTwHD7zzHFAlUJrMLCdpAqWY0qRayCngO01YOtJwKrCMZKhYarUPBXI1UqjXTvIitHe4zUjZRrrtzLws5JipLrfJ97EYbXIPGbg3SltpbHNNbYFW1EIpEaO8pEUrw5wTpSrBvCJjcWUdqUZKCuRYYBWPDtqJPK2AKmIUFut8w3wm8Y/9/7n6ryfb0jS9D/t9dpm9d7pjy3VVd2NmMJjBDAeGAAkRBChFUJQuqH9OF1IoKCl0ISmkkCApSApGAEHCjwPGYqa6u2xX1bGZuc0yn9XF++081cyOiu7TdTJz5861vvWa5/k9um0hVcvZqSa36XJpWz7ZFNEkb1orTPOinZn3VAnpSkmetUrlB8mMbDA0KUem6STPvZhbgd6Si1tboRofU4ZChb43jGNP5zcscyUGhVaVeV6lcWvP9DNCvCrLgx6/yupOtRAujWnP+9yAHbIpEIx1RZGaqVyRrDzfz4GiD9uNCjkr2bjl81S+YK3IkEqVWlgX8ZuoIueUsbb9SoWoFWMixso85zYkr6TUUokepF/qwWvQllGSSXD7+ivSGonLitGarb/E2wD5npgO5HBLmN9gnabvZBS8LpOYIJUYXEGjTYcxPdYNGG2ECMJMKhq0/JBKI8EhSkggMR7IJaGUwhgp1EpKrKus+pzr8Z2XFZM2GCPhJDlXYpRUU20gFelCrenYXT5ing7C10b4urUoWR9WOTwKhV4NdE6zvbym7wzhWIhhQ/Q9xnnWJRDXQIempizTUYFKS/+fIipGrLKwJqZ534pFKRhjjrhqIEFdI6SC01aQl0iKaYiRkGQzUKv8uSphocpEuq0QlRKKg1JS8K8LBIfSlU4b7g93FLsnpBdMs+Mnf5gJV1/z8W/8Kut6z+/963/I67ef8v4zx4s//T3uP/0Jz+KAyRazVI45kO8mfu1Hv8zFN99Sa2DoDHf7W1lzp8zdd99we3fPzfsfMFxs6TY7rB9YYwZd2PiOYRhZo6GZ59FuZHv1mL67kCldzljv8IPF9RtwI6F+I1m01ZP1iFYd/baj5iPLciLFSEoQlKfbOMaica/uKEUCUlQRRGCMpWnuPaiW4GekyK1F03tB/C3zAsqSQybljFUt8KHd6EY1VGFb8cdSSCXLSrYRFgpgm/wHmu5enVP1ROZiUTjjJK1b8qYkETYnfGd5//3nLCGwzDOsJ9bDxGd/9ilffPpT3r55I9sLRFupNHitqXNA54qtXqgKNLJSMXJtKYX1shK1jZVbKhhnSDWJcae3OFO5Gj2f/sHv83E+sU57PvuTP+R4/xa9TozTQl80Ls90OLoVvEoYtVJCwO06tHMUbwVptiYoBQ0irdPygJpPx8YO1kynI13f4ZVFq16wfbFQl4xLMGolhV6KlDVS5pV4ODJ98ZKXv/uHfPvkOZsffsLFx5/w0W/+Jt0PPqI06URKUZBjWqFzbOvtRCnCjI/ffsVFOHFtK0uayS++JnUdWsZ/vF4OWBKHV9/x5rOfsgsLvkgKZV1PfPoHv8u9vebHN09gWYkq4weH8rIpPJ/oJctaunO2bXYq6fY1/+b//X/hqz/8Qy5VYXu4R00ThIW6zpSQMUVjikakrlVkEEqkabVKDL3KidF1TFkxDpf4R4/JzlOdcPiz0ti+I2vDeHGFLpV03kI1qVluBJqijUynSsFqyFlCyXQLgZvnA8u8EFMg54mSFWFZqLUwdl6eAdM9Oa2EMEGRXAijxCSuakLVRF5PxDSz1IQ3suyoOUlh/4AxFo1tRkzsKSa6YWB7ecP+FNm6HXlZePT4MembL4QE2CahBcBowQcqLWdRe/CRpFmR8DHVsJdtUl9y272Ba9eQbjSS4pxsGqoQdGotFFa6AB+5SvxX/4LP7l+xnV9iOrDHQq5CEglFMZ8WlHNkb6kbx83T9wmPnrHaDWVaRDtbK6EWioPNMOA7z+Z6h3KZKe45niTIy/hIKrOAeK2j67dYt8OPj9lcPBeE43xHUieqkdTmzgzCfK+JKuNxtMokKjFIGODYC5N/XgK73Q3z/WvidKD3AykX9seF8RJizLx88YqY7+i6LUPvGceBzndyyTcDH8h0VinVNMgy6bZe4XovagCzpbcX5DBR9RGjOkyFFF8RwgkQgp1YmAoltiK/aeQVWjZjTe6mixYqEo3/rtLD6ygaSpKtrjbiF5HJgmvTd9kXiShIAt6oNB55bnr+I6WsUthH0TGXdEZPigHTaE1cF+Iq2n5lFpGmNBSmhA+qhy2jcSKTwRrMMOB3hXEVGlpJlRryuxTa5luRQiBxJrKd5c3nkDuKUPVqLpxDjkoLtKTQBLli5Be0JS0AS4KzDEqK7Fa8l1TINbXGR6GdefjeWkk4qWwjNKoINQmtSDU3SV/TuLfiXiRbCuM13on/IsbYDNSpNdOmDUckbTesgeNplfeiSkNRShFRktIP965wOEQW65zj8eNHXFw84vXLA/v7SVLZ2/OH8z9NMtk6BCmMpdt7+Hr1vDuqmlzPSEpJDVf5jOeUFyDG/bP7+fwhUqN3Bb/IdXISj09MjUCpDTG1xq3KOV0agU+agSy1biiENtwsBUrLPqjIJkmdu5x3tgxKBfvmu28oubCuK5cXV1zfXONsRbHgmn43TPdMKXKyBiuie6yzcjHkilJORhzYphWFHCRZz/kT3g04O6KxraPTaOXx3YU8YBV4b+i8JoYIylHJMuU3ukUuK6E2+I4ahEJ6sRtJKbIukevrZxhTcKrwxedfMB0Tu9G16T4Y32Fsj9YepQa8G/Cm43g/MWxGLp7+gLr1DLbSWc/bn38FemkP29J+XUJ8kBhqRSpJYK1rJu4nLAqUESmREi59CZmyJGqsWOWwyohOWIPtJMq9tOjgsC5i/KrvAhYqlVgLIQfGJ9fsNtdwu+LGgdv1nvvTilJwOr0QvXJ6y6t/+Tv883/6kic/+CH/2f/yv+RvfPxL3O0s/8//6/+aeviO591IPZxwSWNNpVOWt9+94Kd/9ue8/+FHvLp9KTiqbkPnLK5AtpZFKZnKGovbbOl3O05J0vrCeqIeaytIMs46hs0VzvaUEFmOJ9ZVkilDBet27B7vKPZCpoZLhmzQeEyvCGvBGo8CsrrH6Z5d5xmfyRRwfXNLPU0s90fyej50oZYs/gKjmxY+0VmDNVDSilGSPkeWQ0UrhGne4se1UqQsxsCoqqRkajHSysyGZkSq56eEXM9tmlC0pVNWChklaCyjoepCb4wYc8LM27cvKAVOhyNdyaT5xOH12yYtEaV2731DKRa5ho3DWotFcJbmPGXUis5ZyKk9eMXnUkrBeMvChOs7Ypq52my5ud7gj2+pYeGLr39GXE70ObGjUtOKYhbNPh5NpmhF1JXkKllBJmOqTAU32rEDAqtMqpUcvUXJ9NlqQ46RcHvAjhl7dcmiDYvMRshOEiKXGtFppcaKth5fA04XnniPLQvT6895++1P+Pf/NPNH20se//gv8OO//tcZ/8KPqVqxhJVyPBLevmHd34sptaxMb75l+foztvMBVxLdoDjEe17+7I/o1yOXP/wl3MVTXn37NVt/wfNf/cucPv8JJb+FlCl5IsWAtYr7T3+Xn/yLJ3z4n/xNdG8o84TuPVU5wFKVxinQWQJ4vv7TP+CP/9v/G9O//3e445EUAp2q+JrI6yIP0vPgqkjq6qBWXFmJqlK1ISknZvW4cn1xSe83JH/JcPMDkvO43rLZjdwejmSlMMbiNpdsNxtyiz4HiCFQS0E7Sad0zmGcxNaTUkt7Bm2FEKGJeFOwvScsM2E+sEwTs66omtFVMIaGhNWFQkbXQoorYs+NOJ1JNVLTAoVGBEukVUxyqiLNvtUsMbLOJ5zuudpuuLi8oOsrWjnevnpNyolPf/LnzLeSHn2aDlgl718MAaWsTPmyku/fQrist8SUBWtnHFmL8ZMiyd5WSdFYc5aJmtL0ytC1wMS1JqquhOM9713tGKYTL37nX6NcZlsdtiUYr8aiciYvkbxEjPGMxvPBex/gPvkL/P53b4hFE0+RaCJ6m1A1UNyJhQOryXTXFjcNlDjg3FOoA6YcGIYR32/x/cC43TFePOLi5impagKJU1hZ0wkdM055tFGSHO5kmh1j5nScOZ0WyXrJM8u6cpxOQunabIms5HjCOMv7H/4yTz74IcbtOJ4Sd3cnpv0tyymRQs8wDDLp1IauG0R7rixKuebNkzMypYB2iqtHNwzPd1xtb1Al8fKbn/LNVytTfNEStheMSeSsm4a5yUiqyDZyiiJzVBpzprlo0MpTcwtOIj7o1mNYqGiM8zjX4XwngVKmk0DjqgX24Dqs7dBKJF0hBNZlZV0Dpb4l5pWiIVYxl6uqUVTRfyspUufpxDR4huUIZgRb0FaGPbUGanWS8NzyCXR1mDJA0uhsuTCuIRahhEiMEYJMcmsRsosz8pyiJJzzGFPRRuoohaZkkTDXCuu6EkISKZE6P7F4N003ShCOTYtP1dLwxiZ30VUajZxIGRwezNkgWlrDUchF9PRipJXKUjfQhDEa2xvW1nBZZ6T2sVKQumhIqcpmSRmsduQoiMcUBa8pKblSJgMyKa+SSfDwIXoxlFIM/Ybr6xuGfssbdU8lg8oYK51VKdIk1Gqa10I/mOqpzdCr2kYEyUDKyPYbJfIyeRtF1kV7Tud8fk9+8UN4eTKhNWcgB6rlpkhcRKmIHOrsrWwb4JJzC6xqnoUMKYqnSJpSTWqvocjLeDBenxN4K2CXKWCsxbgRO1yAE+IKBQkroMiUuhYohpqFaEMS37ExXtabTWspux0xUcSyNqdzJXvNxvaS4qV1W4dZlBEXedc5Om8wNokxKokGNDdWuSmqbQs0/TigjW2dYCFq235Yi9WabrghBtrGQN5mYwzaepzuUFXig2OUqUvJllws2l4yXn+Esz0siakaCJEUwWoYuw6jFEuYqCmS1yNpidQlMtoNpoCplRIzqQYqGZ0hrpEUJAW2Ork4Uy3NjCVmJ/HBNLNMFZKCFPiA1ljT8+z9j7l+/AE//5PPeR0Dd9rzXYi8N/TolAnxNev+wGZQ9OrI9PnC/+d/95b3f/Rj/sbf+sv8l3/7f8W//Wf/X07ffIs3npoXMgtO94y14+XnP8P+hU94/4P3qUbzR3/8p6SkwTr8uBX0TjeQtccMG7LSrHGlGkNcTqS0iNlFwW6zEyZ6C4eo3gMW43qZpNWEsRt2doCSSEugZiW+D6ewuoiEyTuMH1mPB4n/pnL17Bl6u+XN119y3N81I+27JEFjDc6KsSVGmWKLEasw9B1hkghsrRrLlkauaIu/XIvw29suVCsxupXzL4szbktuWGmBaRIcRVQK1Ym+znpQLc01hJWrzSXee8LxIAf+aSaUglVCEjJa5AI1ZxxGNj1tUmA1GC2TKGuMUMta6i1ktBFjkTYKo2Uik6koY3Bbx4+evMcHH3+EUbDME2uKVJ2oVhOXCCljvWEuStCCZ1mI1qKdNDIFrUBfFT3C2Te6su1HShFpQikZjMVawzD25Jw4HPbolKkxkcnowWJdR06F4z5zWCbxayBTa1nAWow6ktdbdIYr2zF0hml9S/rzf8dnX3+KHzbtQSvBKsa0a8BorC7k+UBXV6yWBnnYjGz7gXBaWV58SVEa++h9fvTxD3nx+aeM3hO7nhkxp3nr6FCUurCeXvPb/90/4qvDPX/1f/afcPHsph3iMp3LMctBnlbivOcP/tU/5vTFT9mdTuTDEZMk8KVWCTkDA6qtjNtX0irRmYo1sJIaRaZQ1yN3L7+D3WPssMMAkYJ1juubR2A75pyZc2FNhd2wxTqPUpoUQ5seKUIKDH7AO8dxOgrFyhiGYZBByRyJYaXUSuctMaxMp3vW6Z64zEJB0m2iiGhJS16bObWIrj5Fclwp4USOUyvuM7pIPDtJUorPwVjHaSGF0Nbniv2bFwz9jsGNnA53TK+/5u1hz92LL+gIOG9Q2dBpwUV2vhNDsIiH0GistnItOHm+pDZhKyAUp4Z1li2DFD2pip5bGydfqWoMotWvBabTTAkLxWR8r9iMnm4j25OFwv2iWPKKSRmdC/E08fbzz/jkox/w8aNL7rvMXdK4UREi3N695bu3LwT7HJ7w+PqxJPf2O7y/QqUdad1TVWSZV+blJae5slkK1g1sr54x+IEleJweqGoFFNZa0fdqMbqvqbCuMykuqGKZS+D+7o5YMkPfMW4vmHPiGAoffPBjfvDj32TNipev9xhl2QwDaTkS1ntO3JFjj7UebT05yfDO+hGjOyhCX6mt6rDe0FVD53u2lyPeKrruA96+/XPym9Cm8YUcE8b2Iu1tBctZaolyKJVbSqxcd1Ib8GDsPGvVtRKzorFeijVrZKtnnaSMYjDaoW2P7bZ4t0EbKfDXJaLcRFYzISUMB4gWnRZqDm2IU4gRFFKI1mVmmjzDfKKaPV1f8dq0Z5JHa5lclwpVa5S16E549toMdMNIKZV1mpnv90RzAqXQuj4MkqzR4iksFWcqrjVuorsWlHIKCFoxCFK6tiFM02jIM4sW5oTBNgpfWiWzpyolCFPVDLVOAi9zTCKRasV0pRla6/fe+3NB2Qp7hUhuvG8T61wwOmGMkOeMq7iWDyCOG4UKYvRVWgAZNVbxZbRi2rT199lOTBumZQWqWKbTzJs3dwx95DSdyDmQ8/rwd8UTdXbOS4FfmzxG1fPYW70b5J63JhpAP6TGyl+tD9P/c8Lt9z8qUM9DBKUpyjSaTW1NWCHF0qg4IuUxSozuueSHhgbEbHsuO9oV8W5q/7AxePcZ5/9VqVhrN2wvrxk2F4wXl6iuIwqYrnUFwj1+0MDVNolUSKw6VfT0RZCDxijRzmuLLhljehTCIg4uCoLJSHEn4QPyRsZ03iwotBE2sVxBUYobrZtLWrWHlmKZZ5lOWkMIhWw0xcD1zQf0/Y4cZpyu5BTIJYqir0igQk0JnSJ+uKBUy5IKnd0yXDuGfkN6c4s+ZUI6yfeoCqcGemvINZFCRqeKSQZnLKPvqbFQYqaETIhRpvrN0Oqtx7oO0OSS5OdXiHveSHdYV3Gl15LbtkJ0WdYYdOm4u195M73g9d1Evhjof/AjPvjoKa//ze/x3BRszfg0YdYCJmKTYSmZ/qQwB/jBf/BbHL/6it/79BvYWOY14buKLis7Fem15vbFN6jeMNw84vLJU7bba3bXj9jePOKPP/sZq1GY3SXJSJqncRZrNa5NqTWFeY2sxlLRlGrAeuyYWWskG4vvRpkgkLDDyKa3LLNg7nJMOAWnvZYGURmKH1B9Ic0TS1oZLy/px567V9+QVW6yLtsKBvmn5b9htZbVe62M3UjfjbyeD82gI4VWRjwhVqkWL91ubtOKe63loaXE7X4+0MRg1G6qKlIg5z0MPeP1JTmuhHCkpkA/errBkuLC6B3kxDKtbKxjXbMcrCmLVq63dN7JhkxbaQrP+2QK2ooZUJqR9npQoCsxx5aCq1FGKAS267h+dMF77z/Cm8Db169QNeOAZT6iq2LTWbIWY49RnUzikGlc1YqqC0WtsvmiijxIKUwVXF0/9Ji+IxVDKgnJxlB0vcOYDlWTEK7ChLaCGs0FkZrZSnEVtMYgKblyeIokwmwzJRTCcqRG2OgesqNXI5dd4ng8UBEz0ymsFK0lAbs1SyEeWepKVoklHdlc3jBaRz7dE1/9nHVZ+ZVf/oS9Krz85hvm+z3OOOhGQjVkbwlo/Hbk8vKan336Gd31BX/l7/4tut0ok0ClUaoFwNRILQfm118Rbl+h55W6ZtK8QN9TjSJmeXDU9jukZhSFVKvoWa0SaUVpTZc23H/zOeriyNZp0qNL3NUV82Hl0z+7p9vuePTe+7CsTCGyLCs2lyZ1KDhr8M5hs/gw5uVEiislR9a4NrJIoiLnT1WQtKOWQAoTlIiujV6iYU0LtSZyii10BoxR1LCQlom4nMjrkRoXVA70RiZlGvndiHTTsebKPC/UGLBKONFf/fTP+OKnn9H5gbSuuJqJpwMDB/penis6O0zIVFXpOic5K42UoapMfnWb/FpjsEaKF63EJFuLPMecNugijZxpiZLWtOyK8wS/alzfUZ3mlFaGrmOjNU+3V3ROk73jVDLYjJ0zIQXMMlNPBz7/3d/G7rakZ+9TzSWX19dYf8G3LyLzK0NSW0Ke+fKbPXd7kRf0m2shegSDypoY3xLqnpBn6uGe+/2eXCqf+J6LccO67piWQkY0uvd3e+YlypZbWWIurKuYmGsWmtJ8uiPVytDf0PcbvHY8fvoRj599QMgbjqeV+32k92BIgi6tJ+Z5IgSL9z3Od4Cl77YMwxXWjdTi2zRYxCDWd2hdCeHEz758xeHuFW9ffsnr7z4lzm/p9CpnlPFULFp3UjDpBsPIGes0tQgXv9I001X48JyHok0CkStSWJsKSlJlQxZvlLaNWmINyjlc1+P6DdZtUNqjfKHomVRPxBzQ5gTaYrJDq4StQE7kDtY4k8pKiZkQEjEuuDhhrMU5CdTSqqCNyHMeikdtJGttsFiv0V1mWFeGuwvcOJCPnQwBliDpqVWY8GhwqmIpdE7he0ehENrEHUqTFMl1e54EU9VDAarQjQgExnmombiuGAPKaBrlnaRkkl2NEia8EWrcWXoq5mP1C43V98rah2ekNganNDWIHwctig+ldJuRaZzpqRjWJVGtQcWCspmyNClMySLzbbSbRrlolbUU5qpUTqeZr778OcMwCG1Km2aE/Z5kRkJAELuIbhP7dyoJgNLOPjmZz1wi8ZWeq/tazxjR75fh7z7ObsnSnmPnSX9FfjeibhAJEEp+x7YV/9I8qHf3wPl7KETyhbzvZ7d1PUuCWy3zbm4P9unzH/Ho6ftsrm4IFeZ1oWjQttDZgjOZGE6wBkmsQ7oMp8WQUItoHVNGTszeoHFyseiKsz3OdYSYWZaJlDO+H0Eb+nEglUSOhb7fge6bbq/ifC+TnRTa5Ene+BRW1igGSYpA/rt+kECRlDmeJlx/wXZ3TQ4zEipdiSws04k0J2qoqNrhug27y2tsPwjRwxXW+S2v377k689uia9nPJbBPOHxxSVPr6+oYSXfw2FK1BDxeuBy3OCsIiOIx6gCWclBlEth6EeGYUvnJSYoq0K3s6xrYD4F5imQSiGWQlgDSgn542yO0FWzu7ih1pHPvrvj8ZOP+NW/8x/zg//pX2N8/5Kf/z/+Hn/wX/0fiHdvsTUSjjPWjgybHV/fTWyBcnjDP/4//bf87E9+lzqvlPES112Tmcnrka7ucbtL4lr5/Cc/I/Tf8oNf/jX67TVXzz/i9eHET3/+mssPnnOIhTFnbq4uuL65YF1OrMtJjJzG0jvxFtSqUMZLN06WFNVVoX1HP4yIAWohEdBdx3Yzsp4mwrSibI+2MiXQHfS2Qw8jajrItG2FzfUlV4+uWF+tWO1xyraGUa7F0lLhaKtd1XeEsLKuUTSiujHsv9d5S9EslCKpDuTQlCl5iwf6flNfhEpjlKFznmF3wQe/+Wuw7dm/fYVVERUn8nRkvn3DZX/Bo+0lL3/+HSknwmlGuQ6UpR+8GMSRDYBxDmuskBKKrKapUFqct1IKpUUbroy8XqUKymqqLhhnGLcjF48uuX50yX7/hhcv9ninJF8gRYqXaeoxQbEaoxwqjahqRSKlnLwXJKBlIOQZkzKFiaUUlCsQM/0w0vUeWy1LWoghcMwnLoYt/eVAMQWdEl0srCkz1wmlNAMIvlApOm3JQTBjqSZCWLBDJTZjmzhWIhrL5Wjp+4nD7bdM80kSb1NB6w6NJRVwfc+m08ylsIaFeT0R5hnPwFA6KhBV5Kt//g9ZYuJ4e0sMidNSsLpnzRZ//YTdzTPqxSPS9hG//OQ528tHxFgxVZOQs9ZZUCVCmSAfYXrFUDN1juis6LsNYQ0UWvqiqbJiVxmtsxhD9cisRB5qe01XAuvphKsrAzM63XH6+k8odc/2gw95zcCke57/4GN24Yab6yvstDIvE9NU6Lue3XaD73x7YGju93vmZcZq2V6lMDOtC6VkKS77XoYKunKaToRlQnCV4nWithTj0tCRpTGXUczzQbCKcZVNlLfogniRhIsFGM4BQMp5kdDYgKmZoWvGtqIJy54+B1gmRp2wO0diYE2FOAdySnjrAU039JQESVXymoXBnZr9rknFOt/JmaSkkFG1olFYK8QmtME6K6jAnCUvAkUthnmOLCiM7aBadtlgq6bzhVOd8d6xU55aA3bJlLCy1ZXD25d8+q/+B9T7H6Hf/xXs40+4vLmmH57zwx9eU2tlPs1M04kUJ0qdUT7T9RodB9LaY3XG2kxnhEGe6p6vvvxjQlD86Me/wc5fUoNi1Yo17FnWPRxFimdMjz6H5lEpJaBRbMaO13f33N7e8ejqmpun7zNurijKk+jYXT/CuB2mBn7++Z9zf3vLuFtRRrCUKUwo4zC2o7SwnbPCW9MLAru0ybNT9IMDIi9fveS4fIPrVlTVkqhWBQeNc1gjpt1zQnvOCVUExpFCFKNs00HnLGWMUhVN/h4bHoQ8o0lpoSpp/LWWqXQhC1fJGezQo02PMyPGaZTdotwW7WA6TKAMmh7Tg0qRvAZKbWdnCVilUdqKlMMokQ1pCUmSP3PWeyDeb9FaV1NRSYNKdNsN2+tLpqtL1Lw0bTm4JtVTJcuGVkujahSiqUd06tlI4+Kcl1liaqbNh6JQdOqqGTCFfCVb4FoyYRXPQjUF5eQcFgZ7oYQsz5bmG7NafBFnclwtrWFv5uFShFTnvGmcfHBeQBZKQeeluUopiwqj9yjlsX3BR1iWxGk/k9s2OlZ5lp957t//UJUWAlrpu57DYeJ0mjFWsxkHMfAqSeytRbJvahXfzblYFrlSa4K0+oWpeVUiVRRdfoObUFvxrwAZQP5iga/O3UPz65ylMrLtR7dNb3237afU1mIY8Vc2b98DvameA9HOTUJ74JwXqOeCXiE/W/uw108/5vLxE7rtSF0CQckvRZtKUYm1LEzrQkoO6GXqYRzKWpRW4k6vBdcSEFU1kjNhJITAGtF15xJIYWE6ZWIccH7E6yuc7qkJVC5YkPWHle7OOofznrAu1FrbZEl49zVXZL2iKUVjEflCjBlrDbuLR+L4DwFvFUVPghOLEzGsOKUYBo8zCtUmt0mLCXRz/Ywf/vpfI+/3UAUxONiCtYVy+x3DTnN4MaGLwpsNurgWuhUpeUFrYednwNoO1w8o79GdwxpFjCvOOU7TwjyvnA6zpPmhAXFf56pQzpEwJD1g/DXzaqhqpFM7nNmwv91z/9WfEO5fMc9HLBrjHJ1X2K4nxAmvMn/++/+QT/8kYn1gmSbG7pL9PtF58IPB9pq8ZuZlorgbtN3Sbx5zO8HaK8o08+L2DW4z8OTJY8ZxYLPdstlt6bxpgQ6RVBIpBYbtJf2woWqPdh6FIWfotoaycVTl6HyHcyPTBKfjDA21ty4LuSThhzf2q3Eb0RCmFTNcYPoevX/D1dPnlOOJu+k1epF1vEYTQyYszYSkDDlrUjbsDythjSyhoFUrds53i9LNDi+oMYMcrqDIZ9Zxw6U9kCK0lXVmLmAcmA3j1VN+62//bfKgObx+yXr3mj/93X/Di2++w6WEr4af719w++otHo81HShDrWCz/O5RhazBGIvqDb33nPZROMXImq4mKEqhc5YVIAqMsPitMyJtcpbtrse7xO2br0m14HpHyivrEqRBaEVZtRaUhezp1I6seybXkXwvXUyc6NLEjkinlNwLTedalSLUhFpXtNMYp6SgcxptNLrzKGPoSkXnQgkBTJbXrnQjw4hUwmpLMJWahaKSYiQukVwyvu9xQ88aIvN6IL6c0K8lNrwzmpISPldUWUllkalh35FqoKTIxnhpwEOmlBPaFsoMxmpe7o/UfkctnikaTjExbm+4ev8DhqfPeP/X/hK7jz5Cby4kROp6S7KS0miMRpOIy16mYHlm/9nnpPuJMWa6psBJy0pYg0yvBMnB2axmtWkTey9T/ZywRdBuxgZUVUKZ0Uqm+Ye3nL6FfPGEx5/8MuPoub17RemFN65VpYZISJmkFbrzVAqH+cSyTJQUiLU0WUTC1IyqhRoToQZQmpwT9/evSGGlMwpnKp2teKuZplUmkqqQaiSmLF6rXAVy53qUGdFKJBelwppFalgalnHcXNF3N/QXiRKO1DRDySxrEPJPB73x1CWw2W1xyvHim1cch1tW/xZ7mulTxK8BtSacA51mqpKww9NaWJZzIaAwXjUgYsY4RQ4SJOeMQjkZWnnnmEMgx4DGoIrCKcEDyqYlEdaE21xhO0vVK3EJhJSxzjH4DgMsKZJSwOue5XjgkdU8ev99XrsN2nU8/fBHbLY7QsxMxxNxWakl8PLF10zLHbvrDalfWTZ7TvOWVG6AkygjzUi4j+znxJrh8uqSYgwuVJgCKgolSCklgwfbS9Kla020tVA1Se24ffOW4yEwDgnXrYwbh7YVYxN+51E41qfvoY1hSbekcqSoSC2BukZ0ilBnrJ0xqsf7EaUluX7orIRUhoRXlsvdDfaTX6bmzJuXcJpOeN23TISEMhatHcaOODNIplReWZY7ihKjbEq5bTBlCl5bgKaRWgutFTkkkXJgcZ1Dqx5FT61GaEmt/tLIQWoein+LwrW/Fyj5PTQjUR0xOaDiTKyJEARbiRZ/kLEjxlxg7DXokVK31DqQGzlLqwpaDK4KIZvlWsg6Yp1Gdx1+c0F/cUE83pPqBKpiS5IE2QS2yhRcadkqG9POzUq7ftWDGVkAIwjMpGU8yOuQ+6Ai2EqiDLZyrGQdqC5jjUe3gC0ZdIsHULTpmpTfFcRKCRVPNcOz1loklxq0lWGT8wLTz0G3gZoVg7WVxN+QF5yHbuNw1WA7DbqwHsQjZHOTqRQt8IwiMlpqw4HqSlFKwq2UBIihYAmZ0Iz2pckBzza5/K7KblsP6Qprlq9VW0FuWgFfvyfDOYtxzwNBZQz/4/l9VZqkakvPPc8XBYxSz2AOGnqzFeVN0d/eWyn6z5//bj0lf6oNDKDq975v82eeP6NSsX68xg4jyjkpaKDF38qaOSdDtqkRQrxIMDorD+4WJiEXrsXZngcUUhEuqlGKWlZyOjCf7uSFlwFdMll7hs2IUZa4BOZywHVCqxFkpm4SKdEX1wp9vwEqOSQxX+RMSoInMsbI2iPLhZ2TZo1KZo4OMoVAJtWCVpE1TuR9wjovgR9O43qPG3dsP/ohpESqbcoTDuT1DSV+i+kDXR8YzYBTilQkPEBRcU7RdQZKJSZNqRLwVJUnkljDyvFwz/xqoWSNypZOd3S9dF3KKGJOQgDQwqC245Z1uODzV694/uQ5T3bP6Bj403/4j/nsX/w93N1Luljo3SVrmrHbDrf1dFj201tGI82amFFGauop1pNrAAKpzhg/UDBkHEpv0N01z3/4F7EXI3owbC08d7DdDnTeYr0UtjFXrO8ZdpplWShxlZWfnCT0fYdRjmXKVBSuG1jWRIorzg70/SgSlbmyzCec8zhnCOtMXAoaT2c3JKdRutC5TH+1pbsYiSpz+vnXEjSBIsyRlCvrHElrZRx2GGMpWW7JeQ7Mq9CJ0KJ9K6miVcEpWdmiWwhbNRIGgiIqTUSc/6rxbdsgn9yazFwtFzdPefTkfYyxvHr9kk9//9/x5svPef3lZxAWNs7zanqLysg6UllKruhaMefDCtkolFSJDn7w0Q/4q3/lt/hv/t7foyyldesGVbV8TmlRHEZJgTFYApVN17O72GEclHDA6ILrR5HLaY23Dl0jnEMvVEfVHvQI8ZK0uWS9uoDnz3BjD4c71i8/Qx9eSQqnChQLphPkasmZZZ1BJZy3aKPorMU5j9KWkCJLynjroNOgI54iU6IkBuwUk5jOGoZRsJYaFYSITFRkJQ/zpvCWB0vV1AwqG1yjTCinybqQdJNtrQoVM7YooVkpiEqmYfE0s7l6RuyuGC6f8fLrO2Ln6D/+JZ7+2q/y7Jd+yOVHz1HbjmptG/rIatabCnVClYV89y33r1+R7+7oTjNPzEhYE4SZHDI1ixm1JsGinrc/6oz9soK3M7XISn4V2YFVHu0MxXtK19MPI7pq0hLxlwpvFOPgic6y398SUiXFZphDcbdMguw0iqIKSlWcKqQoiFVtYDpNaKMfHiQVWMOKojB2jnPSbFoX7t/usVY1LXFpvzeRSw7bDSEmaim4rhP5TSqc5oWckzSDBbzz+EfvcX3zCdPhyHR4xTLdUkj461H8XcVSdCcI4e0F1noef7jQvXnF+voFvH2Dun/DOJ3g7pbl5WtqTSiVscZQ14xSPblIs64qOEXbOFQuth5rFKUmSs1til8YlZBAyEXeL62pWok+1sm5tuQjd1Ngqw1riMSaGVyPdx0hR1CaSMJZTW80el55stlgt4+4LxmMJhoxfY7OEecVTUW7TnxMujC5PbbbsYuP0aZQS8R7Q98NXB1P5FJxmwv00DE4hZ4jIZ9AGeFmo9HKUjFU5bH9QNdvmtcFLvOG0z5xPJ4YRyHWvH3zNV3n2Wwv6fwGZQYuLq8xfmSJ73FaD6RwIoa9/L7yyhoSPgScS1gvKeGSmpylwcZBlsyBvrvh0ZNPOJxmuN9Lds0609nKphcfjndblB5IWayNkTtJWG/SkEptE0pB8NYs5Bsp9ErbpEpCtjUD3m7RZvieTKJpvUuhxoi2EQhoJa/dd46UNtT8HKe3zPUNrHsgkxNoVzBepLb9uGXY3jBsnmH9DdoMVDpS7ahF6gCjUxvagaoaq2QSXqoEx2nnccOG7mLLeuxl8OQtaonoWNBRoZKShOiY6S3Yep5Kp4aLtIJ41YWqK1QjEo4Hv2cbStGeX63Q1caQam60oyq0mCy0Q42SwZMWXnvVRuTSyj5siU37HrqeQ0hFMlJURZmKGyR93TgHqRlpq2zJFAlloRukCctJXkOpDlWy0JBaH1dipabaQisVNUljpqlkVUjVSMharZRUZOAGD5LWcx0sz235Og+Db4X4ANu/Oz9bKA2VqVq02C8YZ9vWiDYcawW+NNRi/pUjvkmX2laJ5u2TiX55KMwflPaaBwkPzUSOeijx34kMan23yajvmg+Fat9LYftxB8ZREIxg11sKGmMtQ+9QOtMftsSQcKbDOfERlyoauK43dAPkWDDKo7WncwPKdhStOGOYqnJU5ck5EXNFpcQaIy6tWNOjcmVZZmLKjFuZ2pciGv9SVKOFGLx3spHwhbCujWN6jpJWdL0nhsi6zljr6Pq+FWUB3w14u4KTKdXh/jW9H+RhaSxWd0KGQaNdh/I9VTWKSqdwPhDvB6Ykq7Ryl5mWCW8Um43HO01vehyC7KrVclw1rh+oynCa7lnmPYmV03QS0+n5NVbDskxSYIaM7TxFd4QEF4+2/JW/+9f40fHIf/f3/3v++l/623z4H/+n/Oz/9zOWknAdYmDpHZ31YAOawtAZeqfIMWKtIaTEbjMybB6x3ws/vXBi0wmy0xlDRBqkcbvlw08+IQ2GYAt541g8uO0Wt93gfSf5CGHFO4v3jlpFszr0A7kqlnXBeociM00TylgKEoeei5ggrTNst1v6zjJNlhIXap6pYYFc6TuLNQHjPCkv6Lji00KeDpzu3pLXBW8sxhlKhDXKul7WhaK7jTkTk3B4deVBX3dOmjVGplm1CfK0EcxkLgVdKyonrGpTaC1K99RSO6mFrt9QSuHx9Y6ewn/9v/2vmKY75ttbXM080hZvLwRFp6C2mPLSjgj/MFlRzesi3b1GMU8TYVmJIdA7h0r5YXCFOlN6xMSsrEF7y+WjCy6vdjy6vuLJ+8+Ir74mhpXTGqQZMYYaFb3zaKepypF0TzEDxVwT7Ae4x8/4+Nd/hZvf+nX8sxvK6Y5P//f/G/Z/dMtWWQorttMiEdJidPKdp5TEvMxsNgNaCTGD055lXgkhoLXCewst5EmdzWNeIsdr1RQTiTWRqRQllABdhZ+dVrnPvfYNeSmH4VkHisyQQMlGaV0CzpiGehM5iDGQlSJpS0qwX1ee/+CKve3ZfPiM9370S0y642/+5/8Fm+urh7V0JBMJgmwrCacyZTrw9s/+lJ/929/l2z/9E8LLV4zAD5+9h/rmJXZeqSlTUkJi5lWLsW8Pstwofd41jJwUJt7LeSJ43I5kLP3VE1brYNgxa02xI7p63r68Y3v1hMv3bzjlDCUIkhJp3mKOIjHTgm4z1uCMIiwT6zyjNYRlleJea6rRONfR973QQ2KUgMAIOWm0u2BZ5oajrCglxJXNZgdq5LA/obVhs9ngu46+HzgcToBsVrVWbDYbhs0V2WzZbhXjo0843d+SUmK7vcK4nn4YSDGQlyO9VRAnLnrLTkeyz9hLzy4+YhsWPv3t32EmYr1IPGKccU6kjzmLH0gZh3HC6vfOMAxOciFshzGaHCI1Vjabgc57UpR5mjbC8Sxkim6oQB05zoFYVNPkb+i6DqcqxVTychJ0nvTdHO9vmac91+9/QplnpjSzTgVtPVpZQUiGxNX1DcZZDtNRhiTGoGrm8mKLVkKV2213hBCYl4UzWk9C4XZYP5PLSlwXlDYMwyXWdVg/0vUbfL+B5oHTG9hsRvZpkm1OKZxOd3SdY15OOD9gzZbd5WOuby7Q9j1Oy8x8uuN0fMNBGdblKBItJH281AVte4y3UK3ct2klBNmoOG+5fnTF8fiYHPbEYyXEGasLKUWsK6ASMUwsIZLyiiqlBSnJpFYIOcJbFmy5zCxzaf4VVSXUz3m6YWQYL7B+S8Kwxii5JblReRC5L2UFJYFFvlcoZencBcFb8RzoTKizYAibX8R7y2Z3w9X1My5vnmL9BaiOUrUMfkqhpoCk98hmQLfME6tAOUOJFW2hGz3j5ZZ43BKZ0b55CE/CaVf1wejImiL5JD//OV/DWUm6ZZlZw0rCUbT/nmyjFbX6PBmmwU2g5twm4hJ4V7JsWKlKBnmDx3hH1bZtwSVPoxbTYBJythqt0aWgbBsiGLC9RxmNxVOCZlmi5GlQ0cqidG4p8HIQWu/oq4FcWypwBRIJ2Ujoar6nqBFTsQK8sSSaabVhfkXRU9+Zf8/D4salPycOn6frVbXPq1JN1vPXOw/Na7tevq8PaoCEc9Vd6lmFpR9agDP1xyCblaqaRqNJimRwrh/m/4VGLjr/ne99O6WEkGdag0arWR6K/QdEN1jrPblUUkriwlUapRzeD/iuQ2nRxOWYMcpirSLlSAgTtShCLsLJj4Ibc85gTMFbmbzHmCgFlBroe2G4a21wbgCtWKMQVpRygjPMiRCCrPG7XuQ5piAaaunYi2oTOwXWyk2qtX4wU2ojhcDoR4yx5BKpVYyysztxDHtsBW8tsIi7vDpwBqeEe1soxJKJpYhbve+wDCTX4TdbmFfC4YDvPaPzXG4HMY+lKBHIVROzyJbW00mmZjVgPfR9B6XQGYfTHqKipETnjRTooyFVhfEbllCI4Z7XL/6c4eoRV7uBrz//gg/vj+A3vE0rzhRgRfWKm+sr1vXIfDqwnBauLq+Z14XjaU9WCih8+IMPOU4L+8O3nJaFkFdULBSlJHn36gq/2dBvR9LWgcnstp48OvpeHP7GamKMVAqn01HyCqCFjxkwRorSFlSmyDLBjZmur1jn29VasZ1j0+2wVrO/e0OKk/z9WtBlpoQT5SSTxnC6Z3+4pd6/obx9I6bORmDqfYfBkJfK2qaHudJY+XLTGmM4m4yMMQ/XUW0FtXTHjaXbHs5WNf1iEZ3uOcgqZ/lZ83qkVPjq8z/HWkuY71nnAxvj8NpIrH1shJRzmm1J1Ea10dU0I6l6IMUkJQXhtz//jr//+u+TUyHmiK0K42T6LuvSZsoxCjs6xqsNw+WGftfTbTuKN8SimUIlZBjHDd4a4nzCqCrmdd1R1EDWA6u7Ybn8GPPhD7j+jf8Q/8P3yCqha8Q8fczBKq61xpaKdZoQpHnves92t2GZT6Si6Hdbasms89I8M6JBLVXSmDFQciHGyDqvjDnR9+KzMaWibcGWItNs6wkC/j3LEcVg3DSUooQ8ryMF7yZJg5VQAliNq6qh7BBhRlFkFMp1XD2+xowbYoIjib/8n/1PoBvprgaSbkg5JXYz4eefhPB0PPHTf/rP+ON//I/Rd3cM68pVLiz7ez7//EsomUHLPSHEI2kQa4UQAiCbINkFODnDrKaS6b2lGwZMKSw5E5Smu3oC1lOGLQHNcHGF315yzJn961ti1ahRaFRGFXTNKJMZB/EDHU4H4pLIqkkfS4K8ymCG+hDWU7XGKI33HWZz1RqmyumwJx73GKPAWNlyKU0/jGx2F3g/YP2OWI7SQDtPwlDMlu3VNUpp5mXBaM1md4HuBpaiBVMcItfDDRbb4u0VOa14Xdg9ucax8PKLr5jfvMLEFXU6sLx9zbrfc3c8cNy/YewtqmbWFEipYq3C5QRkQZQqobttt71M9Gpm3PQy8a2FvttQI5RU8Nq1QZIiphWswlhPKIGYFdYb0eob1fB5lRBW/Djw+PEj3OR5PZ0QvF2m7yx1PXB883NilW1yWj1FGbTpGLsNtUBMlURBO8f1o0c4L9uYXBVd11NVZl5E2tWPW+Z1YT5NApyIlRg7GbD1I90w8PjJU4z1yCDzjKsW+ojqOoaxZ78vnE4HUAbvZQKc0iI5IK7QpQGXO4wesLqn73Yy9c4y0Ct5lfAdKiHNuGQwrkMzkHImxYVUFkoNxFwxTvPo8TXL6YrbeY8xF6Q8UVVgnY8tWbQjpURKK0pFKFkIR8hEVHEOJFINCdmm0WiM0xRtUNbRb7b0wxb0gKqeohIqJ7QxKGWbTCNT8goqY1RGG4t2CqsM4EnBU4ITuUVRIjf1A77fsLt8xPbyhnF7TVUjKEPMQswrVZJyaxaKltMy6KrlPB0WSYhxGj0ahk3Hsh0wdYftDUlZAjNZZ3SssEZpLEUZQ8kCM3HK4n2HwhHWzGwiNUvaq0iB3n2UpjdXWja9NctgiGIgCQISKzWjNZquk5rEDT1Ve2LShKBwXYfAItX3/oPAFNR54wXKetmgKCe0NWNRayLGVYylSt4HacAFjFFs24yairHi2ahZkJ01lrbRoSEkDVpZKaYLDzr/s6yFqt6ZUs9F/Lnobg0PrW6X1OJzgm59GBif75zz53//v88G2/OfHyTz52n9w0RdtgFa6bN0Xl5Xra0G0Q9yoHdSnPb6Hib/0kiU1jwIWZGHYv78es5bBRuz8Ka1kml9LfJFlBLtGVWj7YhSuSU/ii5Y646ixRmdVZbLtKUFSnqgLBq08YIWKxnweF9RWmOtRaEIcSXnhLUDRjkh81ThIZtBEluNMRJPjaxzlYJlPgn6SvOQbFZrbWYw4cWGsOK96MJKFv2qtZ4cAyUnNhdbQfPFSlEOZwwmb1HWUZwn50heArUWvK2kWunGLddPnzEtCwwLGxyD0tS0koMQH4ztCLFwPK0sBUJdqRY2o6YfO3RN5FWMZt4qQogs84QxmtFYhs4TC/SbgTUUbvcnvvv3v83SbXly9QGH08JhP/MX/87f4Xf/h/8jy6s7jEp8d/eCTOLZo2tyjLx8uef6yYdcv/8hP/n8U5YYWEPiTz7/Gb4bePbec7piefXNz3DGYYcRM27or64ovadYzXCxo+qEsRB7KUNKldTdsC5YZzmdJmIKjGNPjJG0L9IYKtHAVy1FdYiSXppyoes2WGuJsRCWiXGU8LOuGyBNrSk7shxnlsOB5XAHaaUsJ9TpgF0X3LJglMYaQwlFiBlZCDlZa1m9lSoHWE6t0203qzpTdWR+XupZ764eTLamaSZtm/6f+bOKFg2uwXt5QDjrOR3fSsOpM10H19dXHG8P2L4jrVGainbjl9Z9G2sxxTQjGug2TbDI9IdaiWuQNEKlJHGSZi4vGaMK3lnc4Lh4ckl30bG73nF9fQEUXn/zJVopJsBtNoyPrkT24mSClIomqo5oN0S7Ye0esfulX0d/+DH2w+fEQYzRWo1c/vqvsv3J75FuvyLOBWUszko4h3P6Ie6eajBdJ3zkIpprsTdkYkjtnpVDPZXMmhZMQuQXukigna0i+1Oa0hlYK3EtTSJe5b2hUGjN0rkZ0waKPOh1UdSSH1BnWfRZgjhVMsWvyjJsdsQgJuvT21subq74k9/7A17c3vN3/xf/BWsQXrd3hri8xZjA6cuv+Lf/9d/n7R/9Ke7VW+rtHToLxciGFVULhUqsNK2oHMDa2IcJfm162NpkfTElet83WZP8M4wdcVll49KNbK4ekfqRECWHQqPpVSEcDpzWhf76imo10+nA0DucA6UTGBmaeNMR55XplGUK2h4MnffEnEWTq2h+DJlq98NIWBceP7tg+Ljn9u1bXnz33cPGxtgR1MgaFf3ljrEaUkoypSuBqFa6bqDvPd1uwDmLdp5kDN3YsywL29FjQmG+nyBWkaDYQt8l0uGOb7/5CT/9g9/Gzyu+FGxcyft7OB7pQqSmCWsUoUT6TU9xlnVJ9Erhc4sNLAlrNOMozO2cEl1nWOPKxdWOy8fPefHTr0ghYI0RuIPRxFIYhoHt5YaQVw7zgZgTqIqxDoXhuATmcMuYI9fd9UOrWVpzsR16Ol0I+YTFYpDiJVVHiYUlFZzr8H4ELRsRlGLc7FpIj+HiYitZKPPUZCiKXKBqg7FCmxm3ns0wcA6OHPoR6z05Z9aQhAmvNL4bCDWLthoJzAFDSlGkLlSqyhSlmZcjucAwOKzZYU3P0MuE1GhPCCeMrdQaWZZZ5DiuxzsluQZxpuaZlBdiDrjicd6hjKNWT9ddE6aKyitrPqFCxLpRzktWam64UqWgGiC3dOEqAYFVJu0i0zNy7mgHtsP6HuN7Kp6Sz3JfKzI1bVuRl4T1TqKqjFFOpDvaYazCeIftxPxdjUfbgc44tpfX7C6f0I9XKDtQVQdVoxotLOdMzSuxLDgDVVus6tA1kKsEcJlqcViULdhB0216rNriUkcxHdZMLGahTis5R1IsTZrSwtlybd6XJmPWEtZUkSmxhH+JfkLeH6mHNEKPSjVhO6Ey5VXOVV0ruqEwrdE4p+k6j3YjuXhCsuQzEa09S0FkrjpF2XBJyQ7GoqwBJTr+zjm0y6hFERMSnGeUXO9VcmlSytT2/1svwxoZ35QHhPi5whYCjQy6VJZUX5pUWqlzou07fKYU8nL2FipF1bMtQab5Sgrj3LZB53jgBwnN+fuqc9H+jqjzUMaL+eEXmwDOVM32bDqrB5RM49W5mG8Ngq6adFakqHcSn/PAsVX1D43bu8XCu2bAphIoNQu+sha0lpV5zBIEYo1p3ZVqh5VwZ60T3VSMq9AfahB0VQzUxdL1Bucd1jpyBmrCdWOTD4keL6VAzDNedzjVoRCjCLUyTUeZpvTDwxtKLXTOYowmrrPEz9cKiA4XFN57us5xPE5NPhElvdN4SsmM446rRzccb18RwkRnHMYUqMJnDvMMLNRO1mZaSfFpTKbPMpXHWmIt9NsOpoWUAiobyKCUJUdNThKY4LylHxzKFYZRYVRg2s/01uB0Rw7CQFckUkzEqFHGg9Kk9UgpmstRo+2KVZ65VvrdFV//8c/41V/7qzz9wY94+fZzLh5tcLlnWiNf/PwF/XZDGna8DDA+ek4+HZgOt8JHfvoxuTpe6RXVXTDtbrg0A7snH7JnYPGOYjSBQs1RpD/DgPUdMSbCNFNiYOg7nHcsy8y8LoS28q8toMgaSTVWVhCLMawSwqQLioiqsskJOYtG18khYPyAH7eEZeF03JOWPevxNfl4wOdEXyqsgfkwU9aExlBLJoUg/GCkiJakPqQwLr+IvKJI8QUyUdb2PPkBOQqVpABqmcSc79LzjLg0TekcVvFs5ID2mpACiwkMlwMf/tW/yHSY+Vf//b9ka3s8Bq8MTl4AWqyHOKPQRWGqKM5VGz5Xq5jXGeMlJbDvelQpPOA4KfjOcfVox+7RDr1zuI3j6vEFysHhbo/Wiiln6tbz5IMPGJ89hrTQxRtuX77kcFo5pQrbAbt5BNvnPP1Lv4r/0QeUjeKUJITDGXjyw4+YfvgRKb6GLMWns6NQrWLkeDqI5ERBOB5xnRfSj6poCt7LwWt0u8+Nlal1hWHoMc6hnMVTIRuKqU0S4eg7zXxcWE9BjHPKUaoYqVJth/T5IK+KGjJKZQxZItVbso5Ef2doTZvxFmclXu8iZt588TUv/u//L/7sX/82X373ku7zz/i1v/O3cI8u2N+/5vT1Z3z5e/+aL//wjxlCxu6PuNPERilIGddZxosNL+/eclwXbFJ0yqLQlJKxVg4zXdukpmHySmmZHqXiupGcC8dlZXCOVGRncDod2ex2KN3jvSbmiVIXvDP0nSV1gn8LJWMopGXieH+k1JVx18umZV5Iy0op+eEhYayhIDQmkXA4ck2sy4lus+VwPHF/f48CdtsNtVR2V48bXz4SQiIkmbadplu0NdQSKXrFd55+a7BWtjGu91hrJfNQZ7KZ6f2KLSdO999x+913uFroNLx4+XNuX37O4dUX1PUePZ3YZs+0rKiwwrLikmjLbcoikWFl3F6gisWFQrdGjFKUnFjmGd8pNhvX6GtQiKAy24sNdeg4HPcMfY/3nnWewWisA2MLrlNQLV2xpCUQQsM0G5nrrSGS9gcBC6jEMA4kb/HbDTUlvvniM8rpxOo7ovPY3QWRjpgUtViePHlfcKIahs6zrAuxZHzXYQ3My0yOgZSzpAt7R9d1dOOIUrZtOwp911FqJsRFZIpVpqJi4G4SQF2JMbHdXnJ9/YQ3b75hXjObYQOq0PW9sOKNFMSSAF3QRghkWneiT/cj03QAHVnDkRCOrKFQaiCEUzPFH0nrPblMiAG7w9uevt/y7PknhPsDr6ZICK8ERqGz0PCUnLclx2aYtdQkidDWCoY4F5G/okTWVpTCeEu32eD6DUsulHWVc4R3zyalDEoXtBbduvDNBRPaRq+ybfSSq0PZEtPCsp6oK3irubx5yvbqCdZvydU+ABZyzaQs0+mcjpQ0kTVkZbBKCGS5WnKtYq4tGlMUuEx30VOcwqZM9T3YnrXcElOC4tB4Ss6sksNM1fpBI15KEW9TjISixT+nmm77LBspFWpGt2CqXBUpJJGKWIOtSiQ5tlCyweAElmIdyjp09VRtMVVQnFornJVMiVwSa1hIJcrWogXd1dZ4GaPQpm2psajSUdJKUUVMx8iwIVEwVuF6Ta2WSiGnjNKZqhKlFlSTAYHCWIM5NyVWUl5DbbKac/FdAXMeBEnBLO8ZDzKcXKs01rWKabW2SpuHt+8XPs5ym+9vANrMj1+03X7vcxpxT5p3Hn6GNnB/qFEKksGTszRz9XtVvEK1VOFzaSyNwXl2WVvLYSsJaiTHiOjVOvlhiyStCt7orGk9dwuqoeukCC1VtdAIqUqqatHgSnRnIomQDss5ueBSErkGLZSi1ii4oqQRs31ink/CHzYGUdJWpknjneNcbem2hpGE0koIUoDrFjqglETCoxQpK5wfGMcth9tXTMuC8rLeV9ViaiCHlaoNgsty6JrpjMJbmUJPa2AOkWINWAh5psSK0Ru0Ek1fyRFlOpSxjJuR7sLTjYY17GX7UWHwHTVBCKtIdJwkXHorgUspB8IaiFm3DlrSEu3mPUxXIQT67YZf+xv/Eac/+x1shpvr57iq+fk33xAxqOsbjrnjrtty9Rd/nXJ8w2E/8cZ5jBt5+v4nPHo+4L56wt3X39Bf7FhqR7GKZ8+fQO+4Ox6ItnAxeJyxqKzQXSVrzbjZ0nWOmDPTvHA8TTKd8/L7qWTCOqOyoLqslrUdRRGWE0lbnOsaG9iK7r1ksD2m32H6mb5EmSBNbzHZo+aMSZnO9cQe9qdAiqug7HLBaCuJlzVAbaE5pQhHp3X1taqHJDilFWgET1ay6Eabs14pCWRJRSRLWQnqyxjJXMAYKgmMIZWKNxKqlnRiSoknH33Ixx//iH/z+39ASuCSMLhNu4mNMQ/TJ6uV5L8VYd4qo4m14I1FVUEaUgs5RYzXKBIaGDcd24sNrrNsLkfGqw1LmFjuT1AK49DLqlVrisqcpnvycsIaxebZI/Kc2L88oDpHtJpE4uuvfsLjC8N2fMK4MZyOt3zzzU+wL37GtByhJLauE6O7qRiDSPViejgf5nkmpzalt4bOWnmfa5WkVKVJuVAUWNfhXCeHsbJgK1rPWGMlD8IoCUQZHboU8ioPrJLlmFS1EqsY9mQMrihZQuO0ruQoU0ltxdibVUOgpiCBU8sRTaGeAvow82f/4L9B3R34oXV89Y/+AS9+55+jdwNBJeKL79gtC8+NxuZCTZlaC3GNKCCSSGGWc0gZSo7ELNQGYUPLprG27U0zTYge1xhyBd+PxCQY0GUNVCS4ppYV0oSKGm9la9J7SyRSlcFbR1WZwXqsGolhhdLLBFIrSoykdZYEVyUaZ5F2GY7TkVgq3bBBuYUlJJTt2OkB43quLkfmeeF4OnB1eYWrimEYsN6ipkW2Tc5I2iiWqjPUFWsMzqT2YNLENZGjJaaEspqLyw1ORX7+0z/k9Rf/Hl9WrIVXb15z//olKsw8YqFyIqUTnPaYXHFKYWzDRqXatsQOPzqySiilcL3Be49zUhR2ncYZI6bDKtpgitCSbt+8or54Q0yBvnaiw1YFmdgUlrBQ7zJ26Ci14DtPSpmYCs5ovB+g6YdTiOA1Q9eTuh5rHSklvvnqS8q8YK6u2Tx5grdGyE1JihtvlZz9KeFH37ZigTVHGfwEKe4VkuzrvEhXtRV/WoyFWALLGqWITqE9E6UgosnYFAabHKVmnBsY+h05ycZ9M16ScqDzPablsnT9hs32AgmOEtmMbQSecbPFWMc8H8Gbhr2eWEOmNsNjWAPrfELrgDKgsqUY2F5cMSfL/csD0yrmTNvINRApWfwZMpARKhbnkKRWQGmtKHSgOimujabbDPhhwPqBXGCNGVMCWhdSljAzhWujTt0IMnJ2lCyRdJKn085pa/DdQNePWD9QKIybgX5zifOjhHmdCSgFgQHURM0rNS2UuJBVEU28ilQ6CpZSNdpkqjJSL9mCHSVXRIcimw0sXUjEsBBDQXkLoTatvTy7YjOsW+0kxdRIeFRtXPRzVSgSpCKgArkd5f/P8rQ2VUg8lEzVhbhoSnYNWFBkgNtQtuI/kzrLOitJsEWha0KlKpLAVnrq9mwtyDWYipyZxuhWgIv00RmL8T1KZ7I1QJX8lzmSSWRVwEKJhRrl+Wu1azSbitFto44Uzamx+EubZJ8DNoUTX1slrt5Ja9q/qw9aGvVQvOuH6vp7Ep/KQ1EtdCoemgl9ft//R9X9eVOqkQ3C+Ws+yH4eqDdNdq41WTUpupIvqNqgm9YIPHyV1mycTb225olCJKeCSivGDCg1SmeV80NhJN1Pafq29uNpkRM4P9D1BmscKRfR71ce1omi4xMOrnwNsE6TijQGhUzOUZzlWeG8Y+g9aCuyBSOowJIS03QkWtu0VVU0V1o1Dnj75VTpaksuVC2UHIxA0GKuKNsx7q443r2hGimqa0U09jm19LZCDUECZIzCGYsujvs1sxbFXCTlsytBDs6g8LqXJkEbuq5j8A47WnwvSLCx71iOAWc8rFU65izkDPEKSGCVMvJeC3NdpqIlVjSWqg/YYaJOd9Q3d/zgl3+FP+svWV+8oVx7NrsLLmPmVUjYi8c8evIxH/zWb7J5suOb11/x5RdfUnPPBx/9mA9++BF+p3j6a7/CT//w3/Gzn33BqhTvvfeMR598zEIl1EwMkbisQr5A4/uBSSHmPO/Y7C6oynC/vyWEmdOy0o8Dm83IdDoy74+4TuNshzcG7ySZcl1k/tD3A0PX0fVDSzj14uJPkW43clQZdzvgaiUti0hllCYWMVsrbbAGTCvGS8oPf6cWId4YreUaaKs8pc9Hj9ys53Xf+eaQSaok4lbjiK3IVwjXeFlm0BqtHSG3wyNElFa4Yikz/JN/8E+4uPl3hBCxxsl2YEkyNVJnNJeYxbyxD5p7ZwxKqwfpjQTxKByKVITXrGplO/ZsNj1KF0qNfPAf/AaHrz+jakvNFlUKXivStBBy4U0K2L4j1kjVlR/9xm8ydgX1ZqIJWRk6zcVQOL34kiXfs/nghtc//ynLdz/l0XJLjQs5B5S1Qk9QmZAkGwMjAUnUSoyRmBJd57FKTsLzeUrjU6dcyFVRlSVjSbHiyKR1ZZkWuk5M2rKG0YKW7bw0V7EQk0zIaF6bWmSboc6yEmGkkItwhUEJ/Y2KqRlSpoYZwpFSI7ZUnl10KDR2LuxvX7PtOpZv75i+XrHecZEzQ8oYBQr53WUqRbeHR5TD3hfdgslk26mU+DNKztBWwrWtUKlgrWWz2RCBOUSsdfT9yBQXlIbOGZlcxRNEMFVM2VRHzInb17dEN3Dx5AO2l4+F/GEc6I6ispgSY0QVKVhjEJO2UkLiuL/fs8bEuLug22wpVeGtYX/7Au0847ij7wSFbI1IxEpZKDnQdZKk6G1rOmNisBa8JqeF/auJcbtDOZHklaq4u9+Lv+Ri5Pjm57z56k8wy0tiuON2PZCmE+Y0Y2JBx0SeZ0zIOCylxDYTEsKUaTKDSsVYucfPf1aloJy8v9YOaJCGEaDJoaqCZV1ZZxkkLetKigHvxN7eDz3KaFLNXN/c8PL1K7lnu5G4ZkI6r84Fx5xiYF0nklaUMVJiYXzuKcpJWvmyUvYHpgy4ke3FDcO4YzM4iiqs68p0kHs/xpUwT+QUKDlScpL0aQeqDeaaWBhKJMWJlIKY2UsUgEWMhCT0KSp0Xc92c4kxA+ua8P2G5+99ROcKjx9dEJvePqTEGiW8LpcD1lTZelUn77NSGNOz2exk41Q7lNpyv3/D6bRHWzCqsK6RECLet6IZkac57Zj0SqoabQeZ5JaFlBLmTDMrCqO7NlgUbxVKUVMU2Z52aD2CGVDWo5ylG3q0s2jrm7xYpsqlBnKRRtNUeS21iIxFoBxntKZQZ1AVq2wL4+specdp2qGtpt8MWNe3AY94/GqKlFxIcaHGhdKK+5pniirkYqDl34BATFIBbW0zsleqyVQLpWqs8jgUfY6kOKPyQglBjKBJNpClFe2naUYhstuMTPRrkX93Bjc0C7IglKnfKwrl51epkAGdK4XMMmfCnMljJrtCVglMxjrZVmUl0snazK7nlPDz/vssPxTNB7JxLuJBqc0M4LyVKX+pCETHYL2WAZDREniKyHQwFeNEYp1qex91M93mpv9XVUK8tH4n31Tvwp9ye21n2czDJh95zOR2XdCK6dowN++Y8+3T39XlrRaWqvhMIjrLeL4vh+d73+vcK7wr9ttmpRHzJEtEcgyAd++hoj3Vzj6A+vD11Pf+DGDX+RZjZQVQ8kpREecVfb+lMwqrIDbnsdKyWjFGvnwqYrZ1zuG7TkIUYmZdV6i5TburJLLmSG6hFH3f0XWyglfVNmpibu14QutMN/RYLzHXIu0pQg5ZW3iK7rG2w7TtgtGxUSgkfrsUCWE4J6lprRm3l8yzPAj6fsC5gZpWdFXEObDMEyFlOtdxcX0pur5aqKmCdWi3w+4es0wn7LJKqAVg1sAyycVqnWUlU2ug3w6YUaNdYZ1mMYOskr6Wjis1KVSWuGVjRK9sVOPRWkutYsyt2pFDwWrHYX7D8vYnzGrit//PX/Lr//O/xMfvf8iLF3tigFigu7ggHxbs7oaPf+uv895v/mVeHF8wDIYfPHrK65dH3PMPGD/5MaVLXHfv85fee87mZ19yf0o8fv4hfrPhNJ9YY2CNC/ao6fxAZ3t819NtNqK9jwHXD3z45BlP1onvvv0533z9Jad5oupKWGdqjVKMLZMUNt2IUg5TDaZqpmNkDSvDsJHfubdYP7K9fIRKJ+x0z+7xE/zpwLoEynqAJEgpZwyuH0j3J5yxhDWxzguDG9okvDwE1FB1IzqIllvoPaVJI+rDSqsiSLWihMu9xpnSiDwpFpYQUEbka7nk1hQIY9kWxRDFiHf84o67b+65GXfE4wlnNKrGh/soCi8WasFq6LTFK7kOColcikhatBj3vDF446lqxTnL82c39J1jTjOju2D68nMunz7i7tV3LEtg8J5ymDCHI72yxLWgqmEYetacmV8dmNZEnCO6zrg6MF4WdHxDnQ68+uwL7t70HO9f8cOnW3o0M4HcObyyov8zlhyCyKmMQdcqaMSUcd7RbTakFDgd99Ra2AwDFksulbUAxpNQ5GxE93payOsqxXwUTrJCNm6hJpT1EnAVKt3Wk09T2waIJDCuQRo3Y4lVgfIEp0nWCA/ZiLlyYy2D1iiniOtEIpKNIerEOG65tD0p70mHt+wy7EqlLhLgZE1rFB/kU1qoWhFMAl1AJyDCCkQjs5zGvHwY+SilURSZMjtL3w/0xnC/3+OHDufFX2SsaD/X+chKwJeJbDVzTlRr0ZsNh5BZ9IK5eIQJAa28BNWYDq0Sp/nAGhZsCdQcZKpbC0YLwcY5Jc3SKiz1omT7YXzidEiE4y0XV9dMy8r+7iW77YWYs31HzYlvvv6Cb3/+c37w9CmPb2547/n73Gy3zGvkbj4QXr+FbuC24Q9LVZymEylHdLjn/md/josv2doVFUV3XaeVmiQU0WeHxpFqAFUxWsuEV2u00uh2C+cCqj1YJVVSU1RLqe0aUjm1rIMsKFvdDDTeDxhnZaPXTNRLDJiicd6zhMB0WpmmyLIGjBHa0nycSFX8MFpLIZKIBHVgnRZCd+LKb7DPPiSbgWG84vrp+3SXV0xRAqBKCNzfviHVzGmZWXOS6ajVpLASwoJWlXHoZZgVj0yHmfnUJrRNpreuE0sza59H3LnhbnOR67D3Fq2lvby8vCQOns3oOB5vudtP7C42opFPmZwKd7d7Xr1+y9BnhsFi3SjeEitNoDEKZRwlVlTRjMMjoJNtWmpBUMrjrEY7Td9tsVbMuVfXlnm/MB/vScsINRDTTNVJgpCaYbZkEUSe9ce2ZWhYN+D8DuMuMK5HOSvRw41ikotIISgZa1viMwhEI+sG55DNXq2GoirGZFS1pBLB9fJ8dp6+37C7uGZdvBCudCPUIN6KnAMlZuI6k5YjOe6p8UjNsxSVSlPo2uChQ6EIOVI73QYZmmI0pvMyedcioVG9we88umwJx4kQYlM6WNAFbSs5IfAKjDzXMmQtoX65mUtLhaxEEqJV83+plq2jm/S0yT0qinWG031E64k+Q7VGMKAuYzrfksuhFNn4hrDKZl4JHEK2qzQsuuj7U5DtRlXNOC6YHvnHVJRVGAwhrLLBsAbXnWWNgZgS1imMtlJh1/Z6jRDGumEkJsWczh452nagFcDN/H4Wr6hWqOtW0DedVyvE1cMmIH1/mv89E+73P2qr5s8/zi+W2vLv6lk+Ix0DtO9d6nny9Yufpdpy9/zXoYHPzjr99jpqa1bOEh5VweZ4L5IFZyhJk6usky2XdG3lLl2IaNVqKRIq15RFJUthk1MRc4QSs2wOEm0sjvfYWg+5iEIIlNKkNbXIBZBFrpGyxJmXWrApoY3Fuw6UIqdAzZFSraA4H9B2grdTSpL4rPVtqp9EflEKMRd2XU/XdUxHTwoL108M8/FAjYGUj+RwYi2JkhR+lencOosWNVeNNpC7a7pHhe24gb7jCMyvXzOOhlodtVrRHJaI0x3GVKZF6C9vXt3ii2O+nfEFVJEkRqEAyUWlFJLa99CrWVR1EmikKqNdWNM3pP3EF7+z5/XX/4TN63uGarHGUjQY77i6GmGz4+LxU7rLG8L8Ft2NXFzs8LvHnBY41YoyHaEU+pvH/NKj99jvV9ZYWNYFvEVXy+Bl/V6RuHfRWji8c5IgZzzDuGtIUQl1ONy/4XA80Dtx21NmTtOJZQ4Ee2K3u8L7DVaJvk2KwsCyrCit8d5hvCGkgu179GZHPokPI60LNSTSOqNqoBYhVaSUiMtK33V0pud0XJrGTbWVdHuPaaSCDMYplJPAjpKRoLRasW1jVApCfUmJXBK6mZgEQ2kfOmkaiagksPoCpQxZV7JOLCXjB0dJGe+kaKrFoKyRnx0aulCKLa8RJjMGVYzg+qqYHZUqWAfj6PBWYXTBW03NkeN+z/j8Mce7e8oauLs7MBqDWTNYg+17TLeDbgCreXk7Ce/A9g/bq0ricHpDLj2dt4T9ia7M5P3K7befM5/uGJz8vDE3baTpyTk2/ChoWyXcBiX4Ma3RTnTOWEfKUK3FeI/fXYPpKBXmeeZ094ZqMp33hJqoxmBaoT7j8N0GZXvCFDjOKwGDtwaLTPY4o/G0sL2z6ThkyNaBt5QSMA6UUS2pVhSrvnN0m55X+3vW48LVsKPfGOZDglRQMUOqYDUYxxljBgWKLKut0qAKpkqwS0XjtAJdKd+j+sjhWx/OSucl9fF4PDFsOsiBuCROpz1m7LF2IKbEaqDGRIwimSnGMseEjYV+c4EfLkFZTvOKKhGjNNuxQzSr52lupiQZhFgjZDFdEp23KNXL1KpE2VApjS4Lu94T08pyuCPGxLKuhNOBeLFj6HtSDLx98QWvv/mC20//gMfXN3xxfY0xjsvrGy4ub7DaklfDje/Q1oHS+Msr4u1rfvLZp6xvvmHTJ/J0hLCI4T2CwWCUaZSJSklNNd4S0pWSRqlqMSaXJtMSJZpCNeNlNQjYIVdSKkLTanJRwbEKVrY0FJ5sqOXZNM8TygZSLkxffENVGm08p+NCjImYihinVcY52mTTkGIl1Yj2PdPhxMWHI+7qGdkMKDNycfGItD9wvz+QYwJucV7kY+SV2rZNOSyUdZahQAdWG7kelkRMmVzfnT8g2/aYArmdY9L3iNLZOY+1hnVdiTFyczOQtTyXjdXcvT00g6Yggje+x6fK4bgnx0A0kNIM6oB3YH2lHwzaKcmkADrb4X3HaZ1Z5oqzI6aLeKewncO7EaM9RnuGjeXi6pL7NxsOoaNkTyaIxEJbSQk2EoQkofS1UVg0vh9xfoPvLjD2EmU7lDVi9lQyVDxXREK2F6VArZWaEzk2YlXNUgBWTVEGg0fpDlUt5CS69qIQJabDWEfOoTU/UbaQUQymJSVKnCnxRAkTJU2C2dTyLC9okeNUjUWhVKSkQlAr2niU7aiqeRuTNIlRBaoF3Vl0cA2h2WhwKUGGWhS+HxnGDcsSWQ+zyLSQ4j5XuW/OPPUzJe7sITNao6tM9w2GUiEFxbpU3JQxLlJtQqWMyYmyynDDOiOJ6G1TlEqWybmRPOqSiyRFq0iMCyHK/aqtSFoTAeeERmisxTjb9P8WbS3OV3zfIZ7EKAMqZWQm1raisr1IbLsN3aYnT5lcZUNxHuYVJcstIZ+ddfE0eMA7Tbs90+zOcpsm61FthF4fCn8pwh/K8NYb0bT89Vzdf7+2hwcz8Pc/D6RB+f50XiHDBdW+p67vmgldefjdtTbjQU3zveUAtqaTvAFBsa6ZUjuiz2L8MIau7qBkiVU2qk3ERfpyxs4ppclJdPPOSepmVZGUIzEspBwaIlOhNKQUSVE3eYISAkY5S2kkjbICJoQHEom1cqM38H1LElMtkvndCghECyZYJY8CQozEkphmMYGOFzeEaUZrj9Y9Na1YPzDudrLyRDN2V5hicX5Fa43rO1JN3Lz/IRc9nL77jMV7eu/5Nvwh6bCgs6Sw2d7RjQPdxhPrkWnak5bAdthyeHkkL4VUEblTmywUFEVX1lXex7N/QcgAilotygR6F1AlkeLElc1MbybUCfri5ddrCmFdcMoTc+Hbb75l98MfcvXohrvTS6xz3GwuGYMDYwkFOt+TlSMXsFtPTZXqHSZZtmaDVkKbmaaZNa7k1UmC6BpRWjO4njWKxtMPGx4/e4bzmhxXVM2UeE+JEU3CkKklkMKMKlBzQdmecdvR9RuO80IthXU6oZN0zmvMlJjIMbHMC2k6YtaVNC/kNVJXRYmJkmTluhkGSqBFXsudWs933/nmbFr3dyERcgM74/HeMw4jpgXU3O7fkNKKdxKLPi9JdLS5Nq+HBGBVCjFVTtHSbW/YPNtycaF4/eZLjodbyBFjwFQxqWZE/2+tBMaJLlEQbhronBVOeRUdqEIaaO81Q28peSUrg3OaEldOb17z6b98KdODkjGloJzG2o5jTBhlcZtrVu+YasFse6xz+HlliYrae0qnobcorxg3Hfk4M3aW5f418/0blMpYLxjBaiqqs6hUKFlSSJWxQrzSmnVZOU4LWmWUFvlcKg1RZhz4HrO9QHcbSQHW9/LQCo61RElFdVY43tbjx4FQFKEY2I1kn8h2ImahayUKRcuoKFWD8jum4tiXyuMPPuHm/Se8+u5L6ryn1EDXpksZMTBq7yjryjqvxAwmRDpj0E7LNaiFUpSjhLpoozBUxCMrh2s+b4B0Jdumq2/nVj0/Dpqu0jb5nuscpWSOxwPLdIf1GoUnpUBNBsWIHUaS1cwKlqwx1WE6T9cbqu2w/RVme01xI9YNeNvx+PqCkhb2h9eMo+c4TWRJq2kp5C3ToRhiCjiryUUMhsY4TKPwXFxdU0uihAmLplOg0sq8T5zuM5rKptP80sdPuf3pn5LuP+O7258RU2G7u2LY7Li4vGZ3dcPF5SXddsc4bJj293zx6e+xf/UZvZpRIbGcTmz7nrAmSR43mqwKmdSmUq1ZbBtbGhavpCSTTlR7PlQpWlUlKUlRJ4s+PyWRnJRY0VUKhUzFaPFQpBihNdrSwGlyBq09pQiJI62JdW3YZm0bXSMhGxooOZMyhKjABOI0c6E8rrvi+ukzTDewP6ycTishJMiRuC7UZBl2A05nSYlPibzuZaBhNMsx4pyEVIksTYYtpknijJFBUV5nuS+MlYm2UW1y/04ym0vhbv+yUakKOS8YC9N8wFqHMhZvLRcXW5w3HPdZEJrG422HtooQFtAaazyuszhtOfs4XHYk64UApArOSmGWWs1dtfDe+6Fne7ljOozEdKBi5f6pVb6fdlhlyVrJBEZnlFX4fovzW1y3RZsNVdkmRzlLQHQbmDS5a5XSNhdJuC8posjv8JKt0SvGY9mh1CjlVqlt8KYk3yWv5BKoZBlGlixFNpGaEuSFmhdKnMhxQpPQVnxUNM17yZFSFcpmclpJuQjZx2hKAoqkWFed0V6jBkdNnhwS2lmUTuQqjV1JoqDoegGYpLoQUiQWRSyV1ArDXAu5bXPO5aWu4nGoiO/DtMYjp0oI4FdFTYaSzujRRCmZtckRZcvuUFakrqIVb0PKKujKHBMhnAhhFoylsmgn3pdCwJgerY3QGo2ipNrOJ4Ox4FyCAtFabJdQWdGihB6m1ilmlrKiw8K0JuYYyEWTaBLIlqrLubFp57SqMrk/z8FNQ1Vm6vdk3vX8pjXZzXn23ig/3y/gq3xeVudq/+FTH5oFQXTWh68niMzy7i+2v62huT/ODdnDMq4V++pcuvzCp74bC5e1ubojy5xJ2VHKkfu3B477AzePnmO7Dt0ZbCcsZmtsm5IbSltC5FKR7ZYCrfDO4ZSHHEQ71AwyNWVpCFqnrHDS6TUuqhzVkjIIqRljRW7jnJPNSVZCmzjjn9CcKTy6kSlE995jrWVeF5Y4E3NiCYmhH1BuIC0B21+gSsD6HmcrnRXiQFw9ujhGv6EbRmzfcVgngqnMGsr4CHP9DBsCm2f3XFzOmKUQTgGvPbvtiDGZ6bRQyspmHLDBEeeMUz0qB7k4ihh+tUKY3rXx05VcvaVEihaTjVVBwp3QqHBPP3rRoYWCSjBPe8bHThJbjSd2nlfffcfy+7/H9cePGK4tNUVSWXHWk+KKco5cxF2uiqLrt+R5ZndxQaWnlIVcVnJSuFo45pkYF7z2VARxOa0rsUmvoGCU4dGjp4TlyHzaU3CsqzyArQFN4bi/JYQ3aNOzu3rMxe6C3luOp4wuoHJiPk7ASolBSEbLRA4reVlQ60KZT+QlkIMjR9GTbsYR7xzTEmR11wpo0R7KCj4nIVD43hFyYJplbRpzRDsJY8ml4KzDGsP15ZbjqTAOGx7dPOHtmz2v3rzFakPVWnT23uGcJVXPwT4jXz/l1/7zv8Uv/ZUf8rv/5h/x6e/8M+KXXxHuFh5tr7nwO168fouzpmH6mp61SGJrrhkzOLRWGIRa5b3BGY2zkc5pvJVJO1WkCaYhwdBQU6G3XiaLzlK2G1ZjmRtScTaGxx+8Jw3tPJHe7qnactQVyHRuYI5BjM6NZECJjBvPWKtMvFMm5IjKkZjlelXKNfmJxfoqRKyU5MCv7aGrLWiR7y3HI3UtFCXouue/8quUMPHi85+Ijt925JrYXT+hv3nCV9+95hgyT97/CIXh+PoNy+0t6XigVoMqnpQD2m7od89gVWyHSz78m/8R7/34E25++se8+umfsH77JYfDCa0zbhTG+OHFW+wxYEPC55l6DOQlUlFEVSneYGvB1oylYksVikf7SEhBGSkkyWGBWNDvnqitsFdYY9hstgybjpgjyzxTakKx4pQBDYP3zCkxOMfu5jHDuKU3mtlYFq05hkBvPI+fPKe/uqZ2I9UPoAxOa5Z1Zp7uWeaDFE11FUqRdlQJW3gIAPRecidCkom/dZacM4bKsr/HuI6+H1lCwBmhlSgNNYN3BodFO0v3qJLnlZwLUwikeOTu25U332p2V9fikTGWy6srXn33DSZPdCTCOtHbjs4LC19rTzWVZFuB4wJKeVRwUDTKebQyVFPk3slgdJUU2VoeHnCxSuFaSiKkBLFQ1kJucgHxtpwf2LXdy55as9yHRXxd1liM6yTWfg2sKWOsnLW5tAyLtomuRTVZnxTR+7f3PHv0Hr/xH/5N1qsPeTvNxFC5P9xxu79jGHouN1umkgjriVxmnNcMu4GQFubpIJttozksB6BIY2ksaJGTpCwNdwpyX60xoLTIWbV29J0jZsUaMtO04juNMZrTdEfJkWU6si5HwrpQKTx58hSlCyHMDKMUuboaKBaKSHH7cSAk8Sqtcca7DlUlXFIbK/QV3zGMO8gWirDNl1kC8IyuKKvpNz1PnjxhPT0hpiPkJFumvDakskH9/9n6rx7LtjU9E3u+4eaca60w6bc7/tQp71jVJEWoSaAb6G5B0pUu9ZP0AwQIupTQEiAIkNQXooRGQ4asLoJdLFYVT5njtt+ZO11ELDPnHFYX31iRWUVlYdc+O01EZKw1x/jM+z6vCYjVOsHYinEGG0ZcmPB+S7Oj+mqaqC6ugTHamDnr8Nar5KJvcclqlK4tUxCdBFN64TVgxGPtthdrtSeR6ybEe09rHmNFlQlJN/WmRn3vlYVaZko8kuIJa5WKIzYAmuosuWnNlBPFzDRbSUVLUakDpg6YarBkfDCYFjQXZF4oNGIt6qHo29GcCsfTzOE0sz+dmDNEAqkXr1Ug0fpA9lyctnspCej9I2KoxiC1kWMjngrzkDCugktUW8F1ubIRWrWUonIr450+k1JppUGFvBb1XyVNqJa+gdNmSTHV2mhmckldbUEv7ANQGKdG8PqMhRDISyavBWxT2EvR2vEwz9zuV0qx5O7Ha/z9s/dc/db6btp9Xz6/r7/vxb7q+LUCva/V5eyZ+vsF/jvefLsHyrz/456H3+U5cjbPNh36SP+58x+7L+LPU/v3ivuzAkH6/38XrPVunu/OYTACGEnUNLMsN/j1RJmE6CvJeGQI2M3IMG0Zxq0etEbUCY3pDmMBKxgLYhqFgviq3VFVAkxOEWsNRiwla0HgjMM5XeMYsUirtDz3v7Bqbp2Err3TwBFroFKoJRLXznMVi3NnEJE+PME6nPeYumK7wXJZTqpzHYK+idfaHfFKldAtYMVgNbJ8GBk2G9x25NWb5+zTymgt0/VjQqsM1rE93jK/eQM3N/haMaGS1xMtrXz07GNkha9+9hzvBkwVkD6JapVq1HBXm06RFWvWqD1noLWClEy0iWIcXi6BjDMOawxyVbBJsCkj0VJCIA0eRmEaC7fPf0Xjjg/MhzQR/GakScI6S0wJmuHMg/VBswOaVJVXVU9eIg2DD44wWDVIpQOuF48mG6xsEBGVDHgNMbGlYYaCMZYUG+IKFjVLpXRHLZHluOfbb77im89+xeOnH7C7vFIX/OAZbGY+3TKSSGXmeLilnE7UJZJPiTxX0rHQ1obNmlMQnKOWjLEarJSz6mqlNnRWXkAKQqZkLT5rzog1Xcaw0+K+VbabkXEYefvqNT/54W8TrOPzTz/l9tVrdqE3mrVirddNQIXgR7abZ9hHv8lv/d5/zo/+xa9x+esfs3lm+en/9f9MiAkbwRSYsFSTcNbpJqQ1qlHTT2mNuCTsoFz7EBxDMGxGQ7CNIFmd9DSka3PPsosYF6bBU6VgB0cyFjdo2vLx5gBmJHzwAe76Ge7JQ0KO+PCKskY0xsRwvDswDAMPrnaw3rGkTClVjWg9vKjRyGvWDIvu0M+t6nS+CU0szfluEip62daKlKTfMyfUdSWtDfzI7mLHOAzksjA5wdSEQwkYx2Vlv1/Zh0um73yXh7/7jwjbCy7evuXV11/w8svPON28xVrwIbC7umazuaSdElE8bRP44vPPePX8FZvhgu2jj1hypaSF4fKCXBLHwy2uZd0wSmWNM9U0gg9sTNVqUEWc2H6ApqwaUm1Z0cFFl9ipM0l9NNUKuSmIT8TggiNMg8o34nKfWluaIVeHqSonKbaxppkhr+yuP2Zz9RiuP2CdHvLFi1fU0xvM5RXT9QMKcJxncooc1oXj3RtqnWltJeUT4+T167LqNyl5IeWkBYnoV2t73omzniaQ3NLJQx4jymx3xtJqRGohSMOsEbMcqPMdpIXBCqnB1nvM6Nh2pnkpCYyQ0onjqwNbyYzeQq4U73Vj2wx+VM1xzd3+JobGAMYio8pLiniMBKSKpmvLpIbGdEJa7Lhv3QqriVcnnOYMcWh02ofq8HPKKmMxXvXVg6PVxv5w5DTPSGrIqvLO2mAMgTAFLRQaIJacMvGMhs66jRVpTNJgPvH6s7/j5uc/49NXr3jyo1/DPnzIBx88Ydoqv/7CGu5uCqfDDW0QTunEXCqlOi42V3hjmI9vSekOSy+uWsDbS5BAWWfW+dRDIDXITKRCWilpxdoN0zhgbeC0xE6ig+PxwM3tS6bBkcqKMY3tdqRUUYJdiuRlwVuhlJllPuHDig9PmMYrnL1iXi0pwpwTtXmmIdBivB/i5dy3XnkmlRmTE857WgkMYUCunrC7/ojDcmQ+ZioJ2ye8IFjraUaDpDRMRpQtbwPVWsSKymqaGuiNeDANMUXDkGzDoMMYJcZkimiTrvk+PaROtMYoteBs1sKvFW3YSgOq0t0YKGUl55mUNWSLUjSnJM/k9Y647qll0VqnWJTG2zfJUlTGUqIGhRqgJYzMOKmIZKQJtWY9O8Ugzqsk0DodkFghS2VJkVxEp+mtkav+vlqNwko4n9lyPzlvRelEKk8tePHY5jqZUCio/Pq0JOSui3VCxY0WvKU6baJK1+gbzD1RprVyL13PtZKLSpes02EbRhUcIoZYKuuSCEOl2IQl6uuE4LzvhbjDmIyb1DvX6ZGUWLWWshYnlriurKkbovGaJNylOHJfLp+LYS3Xz8t8+qS+I4T6lLz9vWL5XmvPO4nM++FSnCfyfRp//pT35bo0WulFfHuPwCOK4jToWXLW2Gu/8e4r10ZAZcbnBNwzZ/8MEHhfu++scd3MIOQ40+pMzTrNv3udWW9fYc3I5vEjxvYA2wquNV1GmwE/bhA34KyuSq3XSGPpyQBiVCOXe5paa7WbZApitEM3kvUNX213tyfiXLAuAoHiBqxxGGvIBWoTpqAEnVRUg2rE6dq0X1IiFsSo6z8l1eE11VPXfok5Z5Eq5HiWwQzUKgxDALtScyLFTIsL1YJY4WI3UdZEOakeOGwvcSlx3O/ZLyupJUJbVVKSF7bjwGXY8PrVG9Ip4hi7g7wbwkQ7UhN0WtcwSLV6ieTeLZaMlcRSG6vsGOoDWksqndpu2afn+LggSyKeKm16gLt+SLjcsTYt3t068+qzr9k8fIgLG6YLSyTScqTJwDBcdMlVVO+pNKWQoK77dUk66W8N56CUSIoZHwa8nxi8JQwjOemktWEQNyE2Q3UMWz3kDTNSZ0o6kZYThsTkDbYsxP0rIivNO5bZUvMR0gnfIvnlt+TXr8k3t3BIqqubhXKySBKc0eK+9rV6LYZSIeduqkKLe1rB29blQgXbKrsw4EIAo5d+PiRztwABAABJREFUzoXHzx4SxoHXr99y82bPF/k51sB6mJmMwyNcXu5Y10w1htSUAGGNQ9bGzddH/uy//4zN7/46H//Ob/NH8p/ys3/93+CfG/KhckorzsPcTtjxCslOJ7xiqEZo1lLR4iPnjDhLmCzbrcfXCBSMrVQx+FHTlXEqLwkYYlpp9DW9sT0UaNSp490R88QQ0ZV922ywa6HdHbBZZXBliUgT1nklGMO03bEOA1ZGrElI05RHlhVnneJuq2YWpq5rLrUfPp0iYg14U5GYAWFwA8no5iinRFpm5m+f0+KBbbA4o5dGxXOswjE25NHH+O/8BjfTE2rYsv3xd/jgN36Xy7vXHN6+oiS9kDej1yvieGQ+zsgwcnr1FjZbrjaPeXk8cRPhcnOBm7Y8/+KXlLggOTMNI3YKFN8nIrbhS8W3SrVowmjW6VTJnadc9NC11mKbcB4NS1WTUz1zlZsy+Z1XTrQGC6nMp+aCGI+YQEWIOdGMMM+3yI1HHj5kvH7G5sGH7D74deL1kf3LX5DKHftYKXFhf/NaC4yy4iUjtpGSEszmu1WNkN5hbN8K5git0BTAr4na84Ixrhf0tbOjC8t8ZE0ZMVb9GOuJw/GWfHyLbZkgFarFWm0s9Qg2FFaoQnCBWjPBaaKksRaXlf+dvetBRYbcGvM8s9teq3+qSp8INiWKVEjJkpplcCOjHzAlQ1TpCmWh1ZVcC9SGcwGaZT3NmKZmvCJK+xKjdBtpjRK1+W+nFa9aT5Yl9uC1Rmv6vq1Vee+5JZroVNZYr1uymEmtKB43VXCKUd5/9Q3/5n//vyVuJj7+gz/mif8ex3yi5A1LTJyWxNYr+vB0WDjsZ/Lo8JcXjOM11k7MpxMpCaVByTNQcX5HcJ5SVS7SmsXaoCZsZYQolahkjINhHDBhosyJeU6Kh0yVWoTD8UStkcvdBmstKSWkWdbDQll10BLXt8zrDcglIkeurj5hc/2AZicljRjPbmvZ7DxvXr2kWUexnpgry3Ki1SM+qKxXut8OO+DCls31B2zmA2s+Utcj3jYwFu8GnJ8oEig4Nc12OhfW66TZaINNVTmu6jZaN1crTazlRs4LKc20uuIaYIwGXwHWWJpoejWxUNpRN5HV0qoal8/sFyNCqpVcVmpdkVxJa4Uayesdy/GWZdljjWI3RZymRhvNKakt01ok14xDyS666oskVpxRcy9NDfeUoJ5IAeMdGPduS4h6BVLpqmUxFNRMPgRPbCupZfUulfLeKBilADawreEqSuBR5RsVyNkQ58aJgh8aQwuY5jAOmlXjufQaIcd8LzNp1She2ohKQ1vQTWHTJqrW0pGOnWqToEimmhURB6gsPJdu9jXCcA6fGxpiE8sxUpK+1HXVsxNjKVklVkivY+6LeAO9cWgGHazeF+09+VjM35PivJ8+ey7w9VsnXaJT38lt/sHv02Jf2wPpBl0lufV5+/0moXZqpLYOHXJ5Lxv6h0Qf3Sicu4x2/jT645xADDg/jFhTKXlRCUyr1JyIy8pymGnZsJku2eUT4fCGMGwZpx1+3DJurtnurjF+oIrRQ91pfHVtKynNOg2sVXWpYvT3AVJV62WNUVxXVhOVtQExQTec6nYg0VgWjxiLtQNibCfvVGIqHZfVekKmI6VCCJ5hcKSciOvCmbAgTgtr0ZsWEaOrv7N8Q7QTHPzAMlcaqtePx73GkLMy2swmWEIVjsc79i+ec/fLTzHLievdxOA9EmdKElgzX77+nFA9j68umPermv6sTlpL7WYmA8109ndRnGPNvdhsqFbRW9ZsETMRhk+o0yXuyY7t+JA3X/4UL5Xj/oZHzz5ie3mFmUbicYbWWE5HltOJCJgpIKNlKRkJjloaoXPGS06MmwlxsMaZVgs+BDWspoizgTB4TZvNBe8craoezwi6gisJ0/UKwzghzpENWHNFK44ShWG6ICeDMYWpntepQswroWXquuJbYmsa8c1bls+fI69OuNtEO1XKqWFWIdShH8iWsiohqeTSA4GEWnqHa/X9J60qbrUaxWUJfb0elP7kDB89ecrTD57y2RefU+6OXI4jy3LCW8GPHtMcDx5eMQwDZp5pCPPakagm8+jjKy4ff8DmyjNOjRgrz559AN4RgyVtHEShegHvSQ4G65GqhXymIsaylMLgPGYYMRuP3XlkY/F2SylRCzIR1chbS6HghoDBkdXMgXWBWDLeqDmemInLTL27Ib56xRwsfrvBGYsfR2UUh4CRxlJzN7SJki+cwdhRt2SdVJB8YC2WVbqxzwaqCIlKc+j7ZxRKXqk5MnmLcyoVwG8YtteUYjieTthhqyt15zFmIpeVXEfS7gHJ7hgefsTmkx9hHj7h1NN+a0yIH5muH9GcIx5OkLRIyyVSxMI4UoeJ3Qcjjz/8mJ0V7nJk6x0Tkb/927+iHA6EmplEIDfWOSKoNCV3zGE1SpZouXCeADVKD4bh/gB31vZztP8u0e9haGo4LiKapjovesmJal+NMey2gSqZNWdNhm5KIFoOrzl9/jNChmu35Td/9NuEzWO+5S1lhhwTsbOjg7NqDCuC4MjZ0IjM84kcsxqArQ5hDGoQL1WZ9ylmYk9T9l6nhFiPDUJzgSahh/UoqWRtBxBPyYVYG8ZsSMZQtVJQIYBTKcJZIGr6NkOALIZi3L3u2RqLsZ5p85BUDUsVrh885mJ3ybImUi7UHrDY1kxtghk8dZl1ApqTolZzpSZoGVLMlBjJqbCbtngJ3OzfUpMGyZ1OK2MYWNZC6xsUEXnPr2PJufYrVcPGWtImVaUU9ORhHQAZZ/CjIy0npmHDnBaG4KkpIsdEevuSN19+xsWPf5sXr99wajcM0wXJWE5zwW8ecHX1McN1oJjKxl+xCTtu37zh6y/fAMoHL0k3hc5NUEZMqLScWKM+A0qT0WCnIDooEATvLI8fXbLd7Dgej0zThnGz5e2bl3gvXF5ekIsnZ512K9/BcvfmlQbY2ZX1OHPHTFlXBjti7RMup52eQ23hdHdDzjNiDJvthpRmDgdt0lJMtFKwWJw4Tcs2hqvLx8ynPcvpDae8B1lo4nHhAh8usTIgOC3qTUNaRrDQBKk9RbQ2vFUMbc3aYBeUnNKihlQu64HWVnwRwGFMwzgLuC6lglROmFSUiIMHXN9quk7GSbSSNPm8FEpKpNNCWmZiuiOtJ0qJSlto6tcoJuk0vboe9pfRL1902tvUu1RS1nlsU8iCMYItSo6qKI4Sl0h1UVSyaVDOgU3SxTcN6kpaEkjCS2NwE0H7GGJL1KYeikbCet2i5RJYEyAeKEgrlCwsJyHmRjKV4JJKgVvBunf46UrR7ZvopsWFQYd/Q+gS40bJmVJUgpNLxRqvv5YLCTXBW9MoqZGT5gDVoj6TYVAFSY5NN6Q4SobllFiJ1I4TRxql1j7VVopUk3cpuPr86Kb5TJlpvS6mF+vqG3nPJ/Vu/n6vdAGUxPRO7fP3pvvv6+o5J5Qbc1+gn3/tHbfn/fbgP/4h0n0NjS7Jevf1gDZjIucZPzjRMbuaCb0WOdYuKhVpDSwIiRoPpDlR1iPxdKfa7GUmnu5oYnFhIgzTPe+ztkypCWvVFGXRdY2+6bperMP512WhlgXnBPyAdRVnDNYEmimUqisXsEwbh3eenKMae1FXvfMWZw21ZXKpxLRymg/EFPUCNbrCMedEsFqVuUrrKE3bI+LVOd1E6QFhCKSUlPhDJceFFhopHXn71ae8+fxXpG+/ZbOshAyhWVwVanFYPDkl1nnFSGF0AfGNJoZivBp/aChPtycBV40+FqQ72IXchISl2Q1ONozjMzaXv0H4zvd48k8/5vJ7K3/x//qv2f/ic26+OjGcDlzQurmn0GrjtK6UMDB4y2YYePvmDX4cMFTVnq+qb6R7HNY1cnN7yzgGfS2sBk5RKrVy77vQuHJdu6WUlE4kDWeUyuCDhRxZTEZkIi6R3BxNlMBTq7r9rZX+9kxYMpNrMK8c37zm7suvqK/e4E4RSUKKTXWzCaTjQnNBm6LO+2pVmcjGmc7LhSpaiEkE2xuK0gMwamtstxvc4Mgx8vyLL7l58ZJBVFNvx0AumXVZsNbw+uZG2cDGKFpyOVFqYZjgsP+S2Cz2xYR989uMH17z6osXbBadRBlpWpzLirUFm5Vjb819goRGdVv0gEX1iRe7LQ8fjFi/sN+/JdWGDV6nzK2xzKuGzzmLGyc6gwxDpNSIl8wwTarBNyobq7dvWdLC4DyT1aTBmUoJFmcD48WEJXLcQ/UDa9IpVWhgRUhhosiOhtNQqa4tHYwGk4kRhsFz3N9ye/OGY42YkkAMbrjAXj3FGEfb72kXW5qHuu6J656WF5K5JIUPaOMVT37wa2yefcIBr89+UVPkvArFCVVUUuSA4BxrVRpKaULE4LcThzVxyisXP/41nvzgu/DtVzz/8lPaOkNacMawHhNLyX2joJtGby1ZWsfm9YTMLvso5V1UzHmCI8ZoM9XOgrd32Qo0yItO7YwzeGepteJsX4jnFURRwuIqYgreVmKduX3+Ka/Xwie//tv4hx+wGYS5BkrnfvvBqR/DOpY5qSkX8F6xmjllgg9AI6UFzTFRI2npBZHtW9ecMsaONPy9vM16S7BqJpcs1ObBjPp8kXVAAtqk9U2ZDQ5Tc8f8Wuh/19ZUyiRWyyYxFhcCIYzMUf0nu+0Vm6tHWD+yaZZaHJTG6C1tWVgPt+T1yFo1iKzmqIAEaQxhYllW4po166oIh8NCTTNxSQQbOC1KX1tjJeez/0nDr6y15KyhUrVIhzYYatW8FsFgREMZjTSVo9pGaZn93cywme71xXFdCUb9NSatpMOenTOsw4ivnuOaOC4HDMKDh894/PQaP2ZyOUJqbLyhjAGhdltNuJcsrHMBaximK0qr5KUgUnEh3EvFatOCphSlJbkJHj9+wsXltQIucuThg6f9dYG0rqozt55cIoe7A9TCaDW11ZSFdEqcauEmDAzjEWsvyblxWk/EnPDDFuMGNtOW3e6C02FHik1xxq4xeoN402eVDRdGxs0lw3jFOl8guK63n3B+i3Gav1NQbr0w97yD2u8gw709KC7kNEM9F+ARUwrreiIuB1qLyrjH472lNKN3pai8V4yj1QziqOLU4IrrklndhNAytueVlFKJcSWti8rP+sRdRRFGvTlNv856Tkc3SsvSZ0JACs0UrFEaTskrtWgz7qTixVFNQVzF+oZxrUt6tIbQSbMWt1Ya4WxEpxK8pdWMaT1sqal0K5bIuBGuHg1sp4mSrnn7OpKWSGszrTVKT1A2Ymip0nLGx4LtUtSctYHKVY3O1jucE639vAabtSrkAsYkSFEn+C0r26Jk8pp0c0nDSiFFQy6iz3MruvkwekYYa7DO4ieDKxqyetwb1cH3YK9adNjIecreZS9nJOi5GD5P3d83xrZ3x/S9JMe0d7///sNqAa31rqBNTi+uz4m17xff5/tBm4B3/w0qIfz7o/93Kh94b9jA+Qv4+zie89d1/sJaa7hSKrV7ioP3bKaJ9XjidHfANoczA1YK5BOmFMawxdiIKUfmu5WbNxov/ODxU0b3kJJhjVFXSqJhB80rHrGm9b6ob1W/EWJEQ3Fq1O47dwMLXboSDMYNPeynIK3hvSMmDbcx/S+toUD6YHhvKCVyPGrQgbU6yTJoGl3/btGsZVmicvvtu25oWSs+CEbUKFlrIaWClYYLFttm4nzH8fY1bd1zOTo2bmS0MEqg5JUUG/PdjIkZ2zcNra4EVym1IIxK/GlqTLPGUlrVBMWib7Ym90Z9zDCBXGDcQ3x4htn+iO3Hf8CT3/8B048zP8hf89PT/4306mtubl/xLH+f7cWWb779lmwdYh05Luw2E5e7DTff7hnchtM8431QVGFvvHKOvWhXs0vMhRizFk7OE0vCGCEMnpT0lbJ+0KmbsWAVZWmMwTpRakU0Hf3oqTJQTMGGDYNRcswQLOu65+bmOa2s1Dzz5ovPOb14yTCvbEvF9OTY1hnAVRq5Na0hspqeTDVoK6nECuMqQ3D4Qb+unESJJvWskS5kKTSSSnu853B3R15WLZL8QC1Nk1nFMI2DXpK18uTpB8R1odbEECytVFo+ML/+BfV44vVyy7/8X/2Mj37zAenwM8zXb5nWxtZZ3NYpgcqpxMOWrKCyqoWvaYVgHbFkxs3AR8+e8L0ffMywtdzdfEa2+h4JgydMA6kWalzJVjDO9yJEDa/VNEqOWFOYdhNm2JEuAnVjYTA0r1SiRiW2xiqC3024YaJ5g/MjT8L3uZHI6dtISStzLpo4HHaY7Yf4YUvL6KRtmDA2YJ1jmka2mxF/vKO9eUWa78inW0pulDBRLh9hw8i4fYjfTXgPy+GGeLxFyMj0FMYPcZtLtt/9EXba0Y4zRrIGw6TMvqxalOQMp4WQElka83pkSSvFBwoQG7jtFm92tJawprHbBH7/H/+P+L//H/53PB4Cx3VmK44Ss66WS+ssew1OGVxARKfbJVVSUkLKmaKgDZ825iKG2p+jVjLdzKJGs1IQKzjphAl0+LHGSK4LMlqssxo4lhJ+EMiOwQ8cb7/hF3/5p/zO//g/42ITKMlwaomYF1qNlGLYzzPreqCWCO1sdodp2jEMA8u6EI9HRfjVommRVXQSfr4kmkHsiPEbam2sqeLF4Hyg1UaOEXFblsOMqR5nB6Ug0XACJc7UtOjWrInKau7pJYo3LE3PPozDeM+42TFMO1gy++OCu3zK5smH7LbXTMMFL7+57dIr5W9LyczLnqUlJidI8JSaiN3Qh3imcSTFzPFwxxxXgvEYP5Jyw6IJl/vjCSeWdY7UkvG+4kOA1iiaCqT3GY2Yqp4tVnDOo4omDWc0VqOCBud48PCSN7d3BO96KnXh4dUFP/reJxx3I29efMlpekgNF9S18uTBQ20oUuTVi29ZlueMQ+Zi84DTm5e8ePGS5XALJtFsYtxdYG2gFPDOMkxbmrEUGfDOMHjHvJxY14U1V9qy4rzBOg3DCsHj/MiyrDg/sNlc9lRYy/F4oKK0uVyF0xKVwlMKxmRiOWJ9AwpvX1m2u4gPD0jZkHNFuulUm0Kl60zjBXlNOKfM+RA2mkpO66muA37Ystk+ZJ1voAad0LsNLuxwYasM9CpIWrE1QStKRaMgRp/DmgqkmbqcSHEm59T9GDM5reSy6LReHMVVUnRKsrFOIR3WYpuiuXVgoPp1mpJ7jCg9Ru5xIqpEqDkpa74m3dbpjhNnVZZYS+6oVQ0AFGMxYcCKU7iIrbptKBVkpYlBTKTk3jSbRpGsAVsOVSFY7tmI7xejpUs3g9Gv7fFuy9XlNfvDzM3+QLW6WZ1T4dGHD/j+r32C81vy6Ql2PPHq6+eU5WudFBegeWo25Hkh25lpYxgHbSSaefd5W5diKp7c9CRbzeqxoiW2rSp9BX0/6f/WqT2t0lokrmqSp1tXS9HMpGEcdcuebTf1qhrDBkdd0n3ThPRsJjnXu928qi1glzxxX5i/p1R6V0DDeymy/EeD9bO05l1hrUjv2uU6549xn1Z7/jCNd1U77/2e90g8//DztaaSzrPh1vyD4l547+vvv8+lnLCihasmpJqe9pjJRTWbRvSQazX3riUBkZKFkhSJGU9CmnQD4EQ1TTlnYirkqFO+1t/c9HTZhgZ/ULOigKoWvqVkbFPFoAPGzYDzw/3awRg1FLSW1QCPrmm0Rrd6YLSG8cIwbPSXU9YOv+X+MSzWWDbT2A+XopuFjtOsSf/+1nbUYFHKipRMnPfYtPDwYmQ9TUhKmrpXheW40miEsCWFSE5HQjC4krsOt/SP3QOqqBqS0VfAxoiu/5uAcer4ro1sDaVMDO4DkKck9wz3+LuEDy4hZB79xh+w+bv/gc3z1+yfv2D/9jWb3Y5WEs4Zxq125ikduXnzUl9vdNmY44rxDtsc3jlAA6IG75UU4XTNrqQki60eMeCcZ7MxmijogoaY5aJdeVWdLwlqjRr7bR1ho+av1hRXacSynUaG0LjbG5a8h9OJ/f4lp9MrpM54UalYaxm8YLaBMI60tbLcHZGSO8JLMHg1H9GgZZxtjCOMG7VArqYQm8p1aivUVhRbZRtrnXly/RAXHnG43ZOWFakaejRVhVGmnKkYpmmi5sw6H/EGtla6vKsiZmV/+py63nB49TP+/Z+8xvs9Vy4xlcDGNqbBEvyEWMubWQtASl+5SqPZTGqZB48e8OzDR1hf2d++Ip4yazxhS7vXS7aqXF+cw04bzDRRqqYGNjym6KHjLyfMxiPOYDcGv7XIZMhOKLUogUEMZtpAmDDTVlFrwXJ5ccF8OPDq1VusqSALlIKES5rd4v0FbfCEYYeMO903WEfeTCzBwXDJtHlAOL4h71+S1ghugu0VZnvF5TBgvWqyZ9mQp4dM04DdPUWGR/hpwzJOtFqILVGKGhdLKfqMjgNGGmtZiYdbao20VvGbET96ZqpKvi4vmbZbltOepSQurx/y6cuXHHNhQ4SYuRwDy3zUqWwTPa9KYYkL1RkoVafBRTXDppuLW1V6lLM6XSInjYKngzqqUrFMnyIZFb4jxuizWVaWtJBNYTCBZhy56pRrmQ80Gm7cMtqBL3/xVzx69gT/8Ampy67GQfMAUlo4HW/JcenaXiWDhDDSfCBhWYsQjUeC0/Cd2nAhYGqmxJUxOK6317jLDxguHpJK4+4wY51ns9myrgv2+hFPH17zt3/xZ8z7W3CesL1EjLAJwnK84XTzumenQKNQqjL2a1HxQC4dEWgrzgi1aj6BeI+bPH66ZNhdMxfh+dffUldHMIZlXaEslLKy5IVxM+HKipEJU4V5f+B4yoxmpBbU21AMgiVXlYPc3N7wj37/D3nx9XNefHvDYDw19cl1Lti4KuVEpPvF9PbMWbeXxqhCZBgMYdBB0GZrKZKY1xNKnXnMq7c3mpDthNwyL15+w4OrK7yr+BGirIyTYTQLTx4/5uWrO/7tn/0px+NX7KbGo4cfMA47jvsjMa/4KVBbI0WPuBmxlmG6YLvZsr265jI+VLXeECglc3tzw+3dDTErRrI1vYfiOtNM0IRf47tUxIJYxmmLdZoQff3oAc40nv/yjvn2liJ6xo9925rTgbjeqOHZbhmcZhk022hSqSVijGO3vaKVyrpYkBVrhq4X1vO3ttqxmNfE+Ii0WKTGjvLUTJHWdMsuvlGWSs2LFu+t4pxK4lrOtLKS1zuOd3slAFWdhLeSqS0rNKN4atX6ww0BFwZN946aZO0s6qHC9tfegXiM+E60U2mnaUDVifZ6OlHKTHDgXC8ek9JgKlXNviZg7IQNE8N0iTUBMLoFTAVKo6RIzZGaEiXOSolLSTMWvMf4AjaptEQUiNGaaEPeNBTTewslcnWx4fd/67e52F3y13/9dxyPR6zAXArDxvLbf/z7/PY//ifM8YL9q2u2j+7I8me8+eYWWyMuFVhRiWsESVCXQq6iQZReg8ycE6qpOOs1UCoMeO9x3iF2pFRDjGqqTSVjquYmSdN6zhlRpUIurKeZFEuXukELjrFncQyDQ8m2UXG53inhikRBJVamaLXeuueiV+oo0lHL4Xb+qS4fbL0b+PtFvtxP2gXto87F9PlDyn3F3n+ttt7IvNPLC3250v/j/D9be2ewfb+gb5yJO++FZkHfBPfh0Xv1vy6GWg+z08/rWi0UOnYSRQDWpshCMZbBO4bB4iaHBGgkUsnkRO829TAobc+adMVknKOmSoodfwTaNPRvoPVBG4KUIal7I5VMMD0mmEwQj5ioTFwZCYMHEU7HvYaSiIZs6AFkzq+DrlCrdnvOBC3gciHPqz40Vc1rYRgokglB+fC1VH2YraF2LBNVL5wheCyBdVmptRHjQpkPyGHPcneLOeyxxXBzc8A6y4OHD9hsRjbTxOnta9bDLTVWjLMs64wNjpZUDmKt8r+d1VWvMRY8GKum5dY7ugWQNDLwBPwTVjOy+2iDXEK2DvfgYzZPP+Ti6ae8/foz3rx+weWjRxiBZZ0ZrnZcPrwEA6fTHjtO1JIITjcGOUVccICm+8YuRTJAmDaMm01fm2lImOlJxec3b23Kua8VYlE9fquKDhNTMS50w3QhjJ5WB4rXjnVzcYExkbGtXLYTdlox/kh6/iVrXlnuTgwr+Ka+jrDxxLXiWsX21aSTRq7KmBZjEdMYw5ZxoyErVkEhxKRGLisayuVaUSJBddSYef3iKwRLsJZpu1GTU1GsZMWSilKYlriSjbBxjsEJXhpOGs5ZisyYraGkE5vNA4y5Ys0Vy4ppFtdEPSbG0Mg0B5vdjrSeoHoqEGsljBPheuJYFm4Ob3n5duV643iwHRlwtCa0XNUfUxvNGOw0IpuRlAup6fcmWIM3ljqORNNYTaHZhK0radmT7aLmeBf69EqTNymC94E5N8oaOZURmR6TmsP4pNQUN8L0ADYXIA4Zd5jpQuVlYlidYa1Vsy82jpJmipKfEQzVBMaLa8bdFTeHE3NJzOEav/OYix3h8iGleWV810JNKyUrRzp4LaJFGlIjh/2edb7BtZWcZry3iDhSXihYxG/IcWXfL+IpOG72M3/92edMDx6x3t1wETzz6dRTSrWxxqL8/bQSs7mX4hhMN2DdH+v3Ei8t3nXa60TZ6LXrTp0IWN2s0IOsQM+D1BrNBZJ1FKD6QHMNcZBbo+WIC5XTfMfP/uYvuPzoe4TdhfpBjMazn9YVZ6GKbkHFqBfJhxHCyHFNDJfXPHn4iHlZWOaZVjKbKXDa31E5wBDYPXrMgw9/gB8vSaXi3t4SU8GHkSZOt14M4C8gNKbLS9x0Sa2Zy6stzgf92PGg08+zYbiqJloEnBFKTfcDpZozzli2k6cROdzd6OccJlp1SFG9P0TW+RbiCSOFi2miLWBxHOJKOkFbhX1aKLFzsiOkZaHEwnbcssbK8+evub09UfHErDKrIQwqMcyAV8wg0KknhdrDmkqzWisk5eq7VJlk0PTUkgnDxLOPPiI1mGMiXDgWn4m1cDje0ozKJ4rxfPjBR2x38OKLv+Dnf/tT4ptvuJgKrAuvv7ljCFt8mJjGwHYzUp1hzgvxBG5onLosQYYtpd+BwzgwhoFpe0EYR25vbsg5KypzPmHcADbhXEDEqISrNdaoG/BzMGQYPI+fPqEcv8cbaRxPL6hkUs34qsOvJS6s+YYwwmYz6kYeBWUIKr0VLNO0pZV4b0Y5b7l0d6U5INN2ZLibyPGA9EaitIzp92HO2jCUrGdBSiutrJQExao8Is4zy/GO9bhnXeP98I6qGvZWqrLQs4daGZoW682UsydR6V5GjaG6ufFa2eL17G22D+CglUpKUQM684pUCx21KqVQTSPXhnUBG1Rnbm3A+xFrB1rTbsDapn4EqwSelhLRzlQzk+VEiTNYg7EVaxPWoZkAXa5FD/ZsCDFnHXy5C0oVvv7qBW/f3hGj+qOSgAuG3/qD3+eHv/NP+fbuiqXBtO7ZfbDnZv83tPUAZCRWpBRMAp8N1p1NsI1OAlEZkxP8IHjr8da9K1gbWguIUEvBJUcrjlayNgDO4ew7HYrpRW3rvgBQZUWKEWeUoBiCUwqRyyjQt917F7Qm0S1aaRkrBiPuHT60novus0yp/9v8ffX7GUFZu7wS6SIfORfU7ySZ549n7j0UXXbBWV3yrqC///39J98Re87dwv3KoS973zUf52bi3nTL2fj7TtYLglPHelI5QE3EVddYGPBWTQwmiGIsl0yRAWPdvXFCmlN9GoviDZshH4tO1kqi1oJB8Nap0QzBt0ld7qXRrO+mDkNMtRdnGomOyWAsLDMig9Jy0kmZxt4zbjZq6GxCTkU/l5yJJ5klLsyL4pBMKnrAl4wRLeAxSim1zqrutOubdZ6uh0FeC1ILrU/ASol4C6XjKTfeYkIgl4U1Ri6nC3a7Hcty4ri/YTncMRrLdHHFxho1nM6J1Ko2FEZh0dr86NetIRzKnW1GjVrkysCGTfgAufoE/8EjHv7I0Szqbh+vePDxjzg9/Rlh8wW3t284HvYIFecMm+2IdZDJ6kYXjcm2fkCs1+CoWbFeYj3WO8Zx7KtB0bRAjCK0LISeeZBzxjlHLpmUIuc0YH2YVeaCGFoTYow9fU4YtyPBjVixGlQU7xinHeP4Ae6YWefXpP0BiRFXYeMHKLqqMx3z1sj4mrFGUwzdGCgEivU0C+E6sLmwlHritJzY397i8BqCkQuUTLDCFDpP3jrqHLVZtAGMam5LbaSUsVbJAKN3DM72tWzDZMWHjoNyuvfrXd8mNEiGMA1Y77Wrrk0RnaUpUqzpQT1sJwqZVtRMJdXgNxNzjpxiwreEI6mMq4hqqlNiXmbakKlhIOw22HFSGYoH8Q7rhFzulKzgdB1ZLOAqx+WGGAPNjbhxS5VOZoiZZh110UvAYlmzoborNo++R90+ZBocwzCQEAhbxHqOcyQbT/IDrcMik4G4nnSj0eV4OesU9OwFYX8k2okkgRJGcBuSc9zh2YonS6WllcEKrawYyTj04mqNnkIIKZ6IeSbXFWM01KgR8VZTD+0QoDbmuwPBOr5984avfvrnnFCG+ebqGlLk7u6lBjV17WZdFow31FL0HqvvshOMvDtMzxeQShd6KErXibrKvR9Fw74MsdV7r9C8noglkUEbLBSFKeIoFFJcSaWybY3NRvneJN1SNDIRTTG2ttLyqqQRbymV/k9jiZlUIvjAww+/wzBN7PdHLbRp3L59jSlqGmRwfPH6ln/3s/8Pl1ePefTkKZuLK5qx3M0zIFhxHNbKxaMPceMF1w8esr1+zPFwx+5i4HC8xfiBaTDMt6+0nROVQJqmtLBaEqMP2GAVHFASeTkibsDWxmAstq3qPTSeEAZKWphPbyjLDYMUNt5RUyQeTpjY2L8+suxXLI60JHJMtCaaNp4KphlSVITtp59+AVXNeWIcxuv3yfuhowMrpaFTWjE9PV29W6XRi+GMSZk5zszxxMXVRNiMHE8rX371DU2EJ0+eMDyauGkzxRtefPsVZf+aXTpineez15/y9vUr3rz5FqSwC4KsGeOhYCjzHikT4/hIt6HF0orQXMYOlpYrh7uMm65U49zgdIjMcsRazziN6kfqP1KMyHygGsUfttaISZssEUspgnW6BY+pYJ3jw+/9hIvLh3z1zd9xOHxNKm85LVlNxKYgZsWW8z1ZEGcQ0/DedO+KVT7+OKqEBpWL5Zz1bNQlGcPgmbYb4jJo+nhSfXiTSq1BPdMlq3Q0RVJeqPGEtBWh0FJkWRbm44l1VSN1za0HbbZeOGowZ80DVizWRjUc2x6SZkRDEQ2qwRcDJJp45RijfHcpVV+frO+zvKqMRmpT+plVQ/dZMy2DoVk1y7c+XTbGI2bA2436x9ZCsQmpBQkF5xayOxFlIC8W6xbEKjFGTKNJ5t7+eZ4+o2eMSOB2f+Qv/sPfUGJhjom5NIq14FSj/uzj73H17Ae8aheczJ44DFx+/Gvs9t9j/vZOFRxSsBhsFcqsplTjhYw+C85pgyYCLTWWk0qwjTO0QZOJrfUYgyohxqDBaVmDSmvTu/1MrJmmDcJKrklP1tpY14XWRBHl3eBcS1HaVTfTitG7una0tAh4Y7HSQQfGsGY9g63RAlwLe23uzu/D848G3Yj7ThKjZfQ7Rv359L+f0neJzxlted8q3Bfy7f7f75NwWjt7AHpT0X+ttB6OaOjSH1G097mwf/cZONt+WwNHzZS0qlYzRQ1TKYVhHBl9IHinLuiODSq5Yp3GDje0yG0U5qWR8gkfBtXcdQyf9NVLqYI0D+hk0njB+Qnrtxq7HAxxXnXS5Ry5NnVT00gpIjLjg+3a0EyMDYxXIwxWtV4iSNVkv1KKBnmkhrdWzR9NWbupFGqLOjFrGWctpSRSUl2qNVYNwFUJO/RwppIzwXn8dks8DeS+ElvmhZoz1lmOxyO//MXPCBauL7b85I//E17+4uc8/OQ7lHnh25dv2VzskKpGW2ohxXz/wuTcM8nE9HeMtm5SPcFeMG0fUa4esf3hI+wHBunAlCqOJz/8XV7/7b/n4ukXPP/0jvl4x3h5odrKYNgfbmlDYBosFENMCd8qIai5N2fF6eEi03bLOG3ItRJjxFmn7wV1BmH790yNzaXTMMB5A1ZNy7Z37iKuX5aOUnJ/KCxj2CDNoCJkq9pr71huvuH55y/Ih8rUNjjJWFFDa5gCTiynt3eYmPFppcZGrRNZhGQdl88+YHp0QTYzixy1aUlCdB5pA940vEGL97gSDLTcEFH9dKWRTWUViLkhwZEFPFqMGNMYvKWlTPBOUXxAKYXDXpN3t34AN4A1XZPnkao4vdqEZhxrR0cOY6CsIDVgsHjnuNrtsGHk7e1blXkUh5dK2meiNLItxNZIiKbE+kB1nlUECQE3jcg4aork2oglaqNsPThNoG0UrBTVcHbzlaOoZU2UF++nnZrISqZaRwsT0h6xGbVh8Q3MGLQAsCcQhx23GKt/jzB41vnIcrpjno+kXKnNYn3AuIFU4Ha/Z5GA21xw/eQJdtoSgcPSjf1ppuZITBWp2pCJabSq26HSDWoirZ8rgdEGSoo6takFZz2jD5gw4U1gM07clszjT37Aj7//Q25/8Td8+9d/yc1nv2Jz9YDT3Z5RnOqtS8aXhkN0HVy1wD8HiLQeaa8XQOsmNH2f0/MHMB2DZkT51a3hrDa2iJ6juWaaU0Nf7kZgdHFENQ43DAzDwNVuS7h+wiKB2CIm65mY0kqWci9ToFMrmqjUxPkJN+2Ya+Ob17fAiWHast1dc9gfGB98zPZB4c3Lb5hPe1JZabIyzydubm7YXF6xvbwg3R2wNqgR2hgefnzFMs88ePCQYdyxvXyAY+W4RApqsB2GATd40ulELhoAJa3hOuteG9+C5MhyuGV7ecUuDIg15LKQliMYz3DxgJhmynLL6CBUqKnw1Rdfcnz5BpsgHRZsx2TmWFnmSM2qZzbSUZ21YVCyGyLUos3X4INOYhH1GcSsVCzTE9UrQCH391zr3opShbgUljyzXxIXVxuwlWb3bC62+GkkL0K4HsnBEqg0Vzm+/Jy4LizHA2k9Yk3Fe8FUoXkDVZHNFQN5JR0KeZ2oTpvylh2ZlbC50PAkIsIl1jhy1KyUuUJrF4ioVGO72QBwOs36HI4qv8npCOhQRnMsPCIj3g8YFyjN4S4M7uYGloXgLIYTNTeaSdTWjceA9Rt2Vw8xVs3iajzN5KwhH2Lpxl1N+a00htGAbRjTGMeJUwgc7vbQVmpbyV121arvsoyqDXOppLxS0oGaZ9bjkZISJRbFIqoKCamWWqpKRGlghSKV1cR7s7QNXj14KCpWtcC5a691Y6QISE+rnopQMqSYNCU7FdKSaDFD8OrFahr05byj1YWcM2EjhGHuIZ+jwjO8x9kJ7xWOQA+RM3ZUKQ8Dpo4ke6RFy3oXMS4jJoPRICfVrOduWFV5yFoS891bgow0LMgARsPfcoJ5jjg/YEZHuJpoh8zm6Sd8WP8Tnkskmk9p+Ug6JUjgWyCuhRoLPus5NRqDGz1WFOm7HhdKLjjvqBlGVCGgIJNGcAaqY5hGbdJyoaJhYsaoz1FhEDpc1BBEUQJX375YDKZVzbp4N2KH9p4Xk8bQw0FNg+A85j68r5tU+5l9DpJ6v7A/r3GqnFlZvSQ7F+bmvT8g8o6Ec95AvFfUv78RuP8cXaJj7puybi8X1HsqWtgXav/DQhcdK2FNP8M7Y+57X7wr60xcT7pSafqmPyfBGuvAaGy1cRqY1GpVhJhVNzT9k5a8knLEGbA96ldE64nzN6kV/XPStPOydoP3O7CBklSuU6kY77icNhhryaWSs66wa0kaTtFf+FpqTxo7fxt15aMcYtEk2k6sICecGFywGlXeGiKVtB5ZSulru/puhSQajGBC0GJVVDAkTR3iVoSUK2mJWLFcPbhkdSfW+QhxZkBwKeGNUJaV48s3mGYwdoPxG0w4UudFV/9SVd9vevPStLDXi7FQmye4h4zhEjuNzINheqS6d6kqlbJW2D76iM2zH/H0u7e8/Oqvef7iOT94dE3xwhpnojWYZlVyZCy5CqRIW1ewjbDZYINXg0nPJTDWklIEZ3HBIU2nJmdNfX2PfASKiRPj1NNgLUOYNKNAhNValvVEyolSE0vUgI/NOOCHkbhETqeF01zJssVtH7OuR5qtlDBhNoa3+zvifKdu8E55GNyAtSNLtuSw4fv/6I94/MOP+frVZzT2tHTk7/78L4gnSIuwHRwmoD6JjsF0Rt9rzXqqDUQMsao8JrVMKaoxNRSKaOy4M10KVtBArKKT/dAmjHVUN1DcQDKGuGYmv2E3jjRB8XJhwvSJ/ryuyBQUxWcMfryEMLDuZ4pUYt80WRr7qjr7LJUWLMbqKrD2eXnwqr1nGPpluaVFoyZ13bVjKJqE6gzN9qCOWvrGYaVWsJsLdtOAcaNewE6oZaSklQXFWbrB68cdYTvs7ou+UirOWoYpMI4j3lvWFFmbYIYLnPcM01blKuJwg2ZkhGAIG0cQIeaFlE60dISzX6cUUlXTuTWWaqoWzk1NnI1Jm3HTlKrpnDaZbmAcJ/zmkqEIzno+2l7w6MlHBAuPnyi150UzHD/9JaRGTdp0D973KWHCOpXhnGPEz5vXWlSyZm0PpmsGkfoeNeF8Acn9IW66v6lKVT0u9d0B30ov7o1iXZumU7559YriRh64DdmNtJYR1zTUKC+kvOpZ4j2myy0ETekM4wa7uUQKiA1Yt2Fz9QDrRy7cBbvtxOl4xxM78fWXn2Hqke1Ob4pcVnKOOG/YbDbErBPl3ITri2vs5oKLB4/ZbbfE+cBXn/4Nb29u2FpDzJltcHgaee3fP6OrbSuO42m+13ojBV8Fk5Wus65HjscDIsKwuWQ9qPeJrISY4/5IvN2TlkxcMq5wLwO11oAz7Nc9rRSGMEDVNOdSCiVBK4KuP7VBW+Kqd0GBaZoYjNH7xOiZbGyf3lcNJCv1DB9U7Kg0x+mUiWXGTYLxlWKE6WrLDo9tKhHNNdGSZZ735LjS4sLGC9ZCXGfiUvDbCWmOVgw+qP+pxmPfhm+xYsk1k2vEScYMWZPm44GKpzLgp0uCDUoq8l43w+hz0WLSbV1pNAolzRo4NI5stxf6Pi4ZP15Sipoi3WjYXj7A+4JtFyynb5kPLxGJlKqhcFYSbrhg2EyYaom1IE3lK+s6U+tKCKLDOudoUe9WY3QTKmIIYWQIGw7tLbVoUJyh9WnrWYccdIouSbMPovpFaunA94bS1HqCMdkotKO+m3DGtWJMwYeqMhq4v9OklV58tfuQzorFNv1az8VWbdLfM01DlaqhtEZqKj7UDVWjmUaqSZNYraOkA5QdwgQt0Uqkx2r1sLuurfYeWyetMDNIbiz+CFb9KtaLymRy0bOk5O4V0DPdOw/FYcUjdkBqo5AYPCxp4eWXX/PD+Vt82HL1MHA6Vha74cl3fpdN8Hz7iz/nxemvKGmPdcJaGzVpfYc0xDacb1hvKLEirpvkUyPmlZbV/2WC10FkrfcTa+cEsHqHiPTNaMUPQ9+Yg9C6pt/rprZ7R2iGEjM1FdZ5Ia6JWt9RrQzoa1iySqvFkWPSDYQItaOxdQ9xlrTI/bT+Hdmmy33Ov+OdYB7bz/Pzf58LfM5FPlq9a7He7mU1/1GRz7m4P6s2miaet0qm9XwAlYm5pptPZau9N/0/L276x3TrfGBdF6TjkwR6vPL5E3Tz0ArUqtHuVnDeMG4Cxqo+SnFujXg8ElPStYQ3SlewDm+DhkU0SyuKNGs1UNuIlQ2b7YAAa1wwFi6vrwBY18i6FHJppBipRTDikLNWvupBfr7EFMXZ8M7jx4Cm4q19woJeztYRl1V56DlRcsSIEl76+5XQtwE1RmItGq8sYJ0lzxpWkpNOgnYXlyzfnnBGiTBlLZTDzO3Na35+8xojnpubWbXDTaUj1483xLjSUlZdbNViyDlProrqzF3fXarB+wcYv8XvRszVyMUnEzKegxcSTTLVjbjr7zA9fMUf/tGOP/mTf82H6/eZtlesaWXcXZFt021LSbSehNty6asnQwiammm9UykJTQuQWljjqgdDydRSKSWjOjGdGhhr9RLs1AL1EyhS0dugjQvq6YhJTaQGx+DVZCPilEawvWb70Q85HYTsDwy58fb2Tr0hDx9gy5bDN99w4R2Xw0g5FkrxxBaYfWD66Dv4Dz+iygyyhXVP2l0jZUs7VJKzrHkmzzMXF5eItaR5pYpnzcJaKyUMcLHDeE/rAVutJnbDwG47MFLJ81ERWbUQgWIszg54e42dBmIwHAw053C7S2IuTNtJt1NhJE87zPYC64VlOWJo7Pe3LMvCbRi4uLrm8SffYTt6Xn7xC16//JKbPHNVKs5qMq04y2aa2D19QvKWMgSK2J50p5r5FC3NBhpNpQQ166FUC64KtjkNeQGo2gieIuznlWos0+4hzViGaQQC6+qY10WTm6+uKLlgrNfpjzjWJRKXE8461tRZyQjGOdzmAhkmwjhweXVNWlcOxyPNNqyrHA6vqcc3mCGQU4a6IPmEM7rNalY56LHp38VYNY/VVjG14I2jzCf1kOBRzrvSjWystEG3JdP2guA9q58pzmGx/Nb/5CnPPv4O/83/5n9N8AOh6qTTisHW8wSpDws4FwhaLLx/qqr8QVO09czt18d7ExzTjVulZVrtr2UTzjLJexaH1Qbf+KaAguMeefuasL0iXDzAOks5KYZOCRlNz6G+SlazmHRpgcfZwOW0ZZwuqDIw7R4wXVzz+vVrfJj44bPv8vrbrwHHzesXql1vKs+alyNyd0Nujml73RnkA2F7SV0jp1SZ39zQ0pFffvop+/2ezZUnxYVFIrkWle61poAPY8ilMa+JYVD3YYxrN6wWpmlU/9M662vsHKcErRqcKBIzJ2GdC/MpU4rgBDXUGXST06wWIoC3ntM8g61QTQ+dalAF0zximpKvhkBrlcPxwDCOKjnMCRH1eDTaPYmuUqjdsydnpKEx1NQotuKtYY6RZV2Zkmd5e+CQFk410QYlpQ1GNzdlTpq8ahRdKLWR55VqRQtbMRSy+reyYEfNZSkUTIsMrYCZqXmkMpDbqFjPjYNaMBK0OCqVcQxMQyDGwuHuRCpH1rTvG7HEOASMTCCK+4ypUqRinHBxdUGbGoc3Rw63OmwZhqwT7iLkNSISSctDsJ64ZsZxizWG2lZqXcjFEGSD8x5rtZml6V3YiuDNwGa6Yt0emZeC90JwA84O5KYBT8ZOWqibRMPRqtFsCU0oggqlCCWLZh6kXoz3ULRaKzVlrMmkkMlRPVytB01Zum+FSpPaP6SmwFrb9dXG0sTd47SdcySxtFw0G6GTc6BLgpzKSuN6ZJ0NOU6aVC0eY0eqJHIp+vmkqezFalqrqYLkRu0ADBcsdRRIjeKV6V9LI6d+/qDErTM1TZxjGjwtVyQmglhSavzNn/853/uD73P5ox8SHz9C2o7X347cvChcPPs9vNki1fHy87/h7tU3GHF9iJuohY431W2MCwrpaKY3SS3jjSPOJyXZdbysbhVdHxJWEEWxW+couWDxWFv7PVa1uPdeSYIVKJVWIuspEueVmlUhQuuptFUHK050e3G12WGN5+16S66t02l0Q2fpQ2qE0k/s9wt4AW06+s+dlwTnX3tvdo++0jpVR7r+njPz5///9B7uLb86MEJx6KU1ogrEKefWojbAEETuNw/vF/Tv/3C1ZE1ztpZGIee+oqg6uS2mQUHpEEl0dWoq2WnW1zAGmlTFGteqznQM0+WOIqgeql90tQJZu2ArVo2lLRDClu32gvl0pLaIQTjNGiGes8poUtJVd/CGzWTwYcT4EeeGvkbsujijBrszY7tWXQG7YCk56qUnylhNKVI7Hzo4p5O/puhM2x3UtajTvWQQU2g2Y2MhzlroBmM43dyx7I88u3yAsxsOpzvEGNUkHxfEo7SfaihZePydj9hceub9Dce7O0rWVb2YHhyTC2ufnCv33mDqhiIBmRzmYiA8dUoKA7wREolULcPlB7y4i/zzP/4jfvnLn/P1V1/ynYsRMyj5pGHu30CtaUHuw0DzIz4MDOMG6zuZwGi6Iejkcp6P+gDVRi0qQVC9pj5MxuriKuVE8DqVXNeFtSa24yU2WIL35OJYs+r3c46sce0sYrB2oAwXyLPv8nh4yJQMeX9i+eyX7DaB3eXEpRe++euf4m7u8G/3tJuV+SCEOJLHa9IwEact9eoBMQoxrvzGP/lPiS+OHF4f+PLV10xXz7gwhofbHS8+/4rXL14yjFvWCuHBI77/W7/Lj37/DxgvL1hefs3P/u2/5utf/h3L8YbVG6QW8EZTPO1AK4bUPOJG1rBjHzztwcT1dz9k+/CauCzsX3zLfl3Z7XZcPvuQN1loV9c8/bVPyGQGb7l5+0YbH+D6wSM++uAZpmWuvvmML37+19w9/4Ll268wcWZ3seXph0+YdhMS9DUSb6kW4jJTUiTkgXVZlcHtrCLnSkF6rLxpRicgqVKjx7hIjVkTfo3j5s0LlpgJ05bt7qkmPRdFiuZaCK0xTjtSKj1JVCjSkadGNYw1F1KuWD9y+eRDmlGTqb/cUY4HaoyKXz0lbLKscSVMIz54vIVcVqiWlFVm4IIjlQZiGNyAGwdt4nuScz5F5b5bw7x0XIDNHN/ecekvmS4u1YQeRsZxx1oay7IwDDse/vg3+fE/+xf89F//K5492uL2M7cvvmXMjUks0moPEulheEg3wpv7TWatldKqIteqKM6P2kkLomtj1xO2kxqqrbM4rG4HKZyFn2JsjxxX07iYRj7tefHlp4TdDRdPnoJz+hwPTsN4WiPGAhb8GPBhwLgJ7yfSkgkULh9e4jbX5ObIsbLdPOTFi2/45svnBAfDcMXDh8I6JFKeSVkvpzVGwjR0SgcY7zisC+uaOBxPDK0QJEFeeXi1w5qZMHpMjKSc770xNB36NGO4DCOtCWktGkRoLDkmjjkh0gDdnB3iW9a6Mgw7njx4RFsTMllyyMTylmo8jUIqim3MubLcFUqqbLcTwzBwd7PHYlSmU5TUIaLT/CYV09nr8RR5/PgxDx8+5G/+9m91EknFG00WzrVS5Mzn6AMnDKkqUlSqarpNECjw6vUr1nJLMxG3HfGDZT2t2NF3TGnTxrQUfZ/XgslgvZYeeYlaBPmJZgq5qjeoihDrSssLVhq4AeO3GFd7gbviTCOtM2EYmYbQ9ePCOGzI64HD8cSaD5Q6Y2wl9un4g+sPuLzYdi20JZeVdTkyH2+Jh1e8+PyXvHr+Kd4cuL4QXNCGqpqVIroJKGVgvz9pseEs63rAB9upSQkjI8a67sGo1JopRX0+47Blt7tGJGIl62YEJatYGkPQsC0plWQOGJkxEom5UGOlJC3sW1FdRav0oZQGXZkewLjMSQsxZ2im4oNRVvq9nrn2zb6m29NEvVLicEYlIt6pH8QaT6tCykUFE7X2oSLEJeIGi8OxHI+0tuC9JbfGsCmMO8H4RmteU6FTUQkbPdzN9cm2NDAN6yFMFoqlVUcYQLDk3KgRRXmWSs6wsQObzQ7rAnVJhGKJcSEg/Pmf/Cn18i3/2f/yv+Dhk3/KNPyI3eYhNQ2sh0umx4GPRcBZ5hSJx7eYsmBL3zrmBHOnyFXXE6w9PgzUVnQzJBoQV2pXTZhuVO/J07oVU9O/8404px4w6VSqo+s+Ss5dytSgWHKM1KIGcCNW6W61Is3cF9YiwhojdA8otQ+D/4F0ppkzEOGsZH9X4J/L53b/33Q5ZbsvrE0vqu4/b7tXVd9P5OVeat26KVc/9vsFf3tvUi/3jUcXBYl5b5Ak91X92e8g7d1mwYnTjqnVTI5ZWay5akgRlrTq4Xj/cHTturWetAqtahqpGH1oWnVst5dsNhcsbeGYEqkWpBtFwWqkeVWihJdCjXtulxviumqfUiw5i3ZxRYjJUKqjNc/gdoTpAcP2mmZ9X2339D2j07XWKk13MojXg/dsxFZsYKahE8BatbER5+6/6bVV1nSAmpGiYSU0NdmKFDU31UKwDdKJsryhtcjhFBlFGLyhJUOaZ0zRtS41kWtmnHZsriYN6onqb3DnbrZWNTa3gqNSehGeWia7IzU17HzB1l1rSiyJsToaHuNGvIUHDzfsb7/g5rnnw4cX/O3PPyd98D2m3Y5iLwm7rb5BjE5B7W6L3W0p2are0DulGQnkqijQwUMukfl01MPGaqw0At734p6qpqyoBhnxAe8EQyWtK+t6h6SqEeguEFl05dQKcT1hxejHNhDGK+XahoeMJrCcTnz/k4/Z7gZuX3+NiTM/+J3f4pd/+qe8Pb7l2m4orXA5BcLgePX1Z/gnO5w4mtty+WjH9z/8DssxsWZ4enzNs+8+wxlDWSPpL/6Sb/7yr4jGMF1c8eEPf8xP/uiP+NFv/TbjbktZbrn4rY948Fd/yc3nn8LbNxxevqTcHdlNG8Cw5AZhYvvwKeXRU8pmw7MffMJP/vD3uHz8gOV04vj2DfF4Qozw4NkHfNgEhpHhcuq0g8JlKYRBN07OOpyF9XjL1fVE+OQZ+5ff8Pyv/gfafMe02+CuNopPzDOZpFNJUblaTo1SnT4HRieBpicJW1PJLSvzueokrJSIELAuMG0mWvCUuhDjETeE3swZNeDnBamw3DXsprKsCYxjGCZELNbKO6xt5zkbOgPeO0peOeVEMWC2nrwkYpyxDWiFEjMGNWOnNeqFiuo7c04UBOfHTjB5t4pdaiUC2RiKGKU0GQduRJzDOUWuLfNRQ+88xFgxftTt1qOP+a3/6f+Cix//Bs8uLvj63/87fvWnf0L89humdcZ0HDDVdg1oL+rlPJvpQ4GqWzfnVMrWihr11bAouuHrXiaD6NaBjg60gnUG4zqWzVkqsBlH1lZ0mlgWDq+/pOUbdpdXjBcPGYYrljWTMBTncIPKrlT205CiEo7jvGfNke31U4bdA7bXj0Dg6tEVKY6MwTGfDkgruPaMwVSaGFJtVGPUGzNtaE0YvOpjx453vWgzLz7/Geu3f4fLB4SEdyidwqqR0vYAP2stBsXH1lLIZdYtLH3qqsl0SpWqjWU5gVSCG/Wecp48bGgXD3n0/Q3L27f4ZaHs7zi9fY3LjWXR3IiLi2usPRvYA+uSVP6I6XIgoRlLs5a7JVExmO2OGWEVq9JC6MWDGpQTjYh6LwxK4ZIeSSqtQayUGTbeEsSxrA1xgilGaWm1Ik5hCk3fDVSqauwFUlNPialWf38uirV1VZG5JLBGJVkxMR+E6gI+RPyUCaFi6i3EgLVb4tHgwsi03VKS5pvstiO3t0k31GnGBUEMRHPieLphGDcgEWNGghUNdFxuWPbPScdvaMtzqhzJ3mGaB+exzlDrCu2EJWBlIa8Wy6TYZXEM49CNg5VpE5AuX8lphaJhS37wjJstMW2pee2a7UKjYrxuSa0VqAljt2BncLrBqk35KVbUS5VbIxelpJSqibUmKwnHNs86N6xP+EEDkoxRCc6Z2KLy2I4abE313r5iTMVb8NPIOlxgfaQxdzZ9w3nb6TylJ6CKBqrRFO5h9qRs2Kya4ROmhMgIzZGTTqObEc6BtpVIbpFqGgRPKwNOrJ5vtW+hclXTcRLaErGtMjhPML6H1GVC39RbBpa3K3/23/0tlw8v+S/+55/wYOfYPWk4rvn8yy0vnz9l9oXtk8aHp8rLX/0b6mlGpL/nu2TZNK0NTQEpojJksbp5rBVzT4I5R3erNFrOKdjjQJi2xJghVoZpgNrUrLwmconEeUGqJtsr4lYhHiU5WhZKz0nS+lcHphGIp6XXn9ogFXTTYYQOYdHn0RtLao3cJS6ll9Zy/rN0os25pDZaG2oNpFW1Atb071q7sgERjH0n/FEPgTYG54A5ztN4uK9X9WzRTJ7Wuwut+Ho+SuM9Fn87x6iANFwTxV+u60LLGRFNlHXG09CwlZprDxpBneBYAqp/SrFgnR4IOYM1A9bscGaDNwY/RNrZBn3+UsXoQ9dWarojrRqk4qzFWdWnlSLk4hAzgIz6F28GxGHsiPMTrU+KG5Cqus+994rh6uY201m0pTYwnlqUcuHChLQKLDr5Nzp1FIPyZd2JGldaipjSjQsiVCotRlwrqnFdbqGcMCZxnA8sqbEpjqEYnAmsa0RMIZeVU0yEmrl98TltPVLigjOCw9EkY6QfbqLGD2s8a0ITav0e1yzutIW81dArtyLJQ3WYamjmxDBkannDX//7r2n7wlTg9PpEeGQZPnjE9sEjcl4BGC+3sB1JImzshLGWNWeCc4QwIqXr7ft7p9tb9A1qzH3ar7HcmwpDGPThqpllPpwlZ+SseMxhHJjGkWgGTuVEjRrKYQdN0Ey5IhLw/gK/CVjvcdPK4AUhYtKCXw/sgiNcX2IuJk53CTc42nIkWMeLn/+Uo6xcfvSM3CrLmmF9wXB1zdEa3Mcf8fEf/QGlNu72e3780YeMv/s7bC62PHj0iAePHnN5dcVqLXNL1AcDF//4d/nNn3yf+uYth8+/4pu/+xn756+pMXJ7t6c5x0ff+x7f/Y3fxH/8XeZx5PrhA66ePMF4y84IYVVfyjyfkO2WDXqoWOuQVlljxHmnNJ20EteZVCLJGhhHxD1EKDz8vd+hzXskz+zTAaJgqyPPJ4R0fwoYhJoF8R6agyr9MNbX0IZGMRlMVN26cRinqbcmDOBtP4ATOS98++1zxlGJQARDXI+0OXE3L4g4hmkDDpo4pDVyybRasYPDSLhPLMxVI8gP80GxltKQoBPPZT7RaqJ5jyHQmiVHDYBy3kOrOvEzFitg8Jo/YbzOvFtjuNgxtAtK1RVuq6L4VjfgrBrkWxPiciKvEUwAhCgOwoA8/YSPHj1hNJXvP35AcYVf/rf/knZYsMVgi9KMWlGdeDNKEys161DB6FnVqkpIxOiAwPYgvdKnQ7pJk14tqto2e0G8wXpLs0LVsZ2GvbRGTBnxwtVuZKqF4/4lp3xkPe6ZLp8Sdg8RFygtIsVjWqY1183FivertTAvN6xvC3Las0sn/HCpUiBpDNstDx4/4u3rV8z7ida1x5RMpRCC13OtNcpyQiikNXJ3uuHf/Yf/L7cvPqWc7nh6vaOWTHKBiidXQ8qNzWQJzuNcIOeOqmyacdKZG0oPa0JtDgrU3AjNMAbL1kGJCyueaCwXH36MzZAu7zB3e458jZkbp7c3bLc79rd7jqeFnAvGBGJC/THtnVSq1EqqsJZK6TCHX331HIwQe8luEExRQyAi5KYNpFApLQPdAGlMl115ci3EBD5DXnsQny94tIjMawZXNazRqIm39ek0aPaEP8MiRJCU++WvWnlnHThDrIn1dKC5gVYSRgrm7IMSwQyFdTkxiyXFLWINaziQ1kJab3GmsJSVVrqM0kCKC/vDG6zfgDkR18YXv/oFNb4h3n1JPL3AcmCwkRxnjJ1AGjlaNiGR857J79iO3VTbJWNUFFRBI6YV04cGmhvRkDMaunp8GTHHqTfLkRhXoOBs0Km/GKwbcGGLG1aVfA2aVguzNl1FfVJifA+6sppm3gQplrgWrAfjCn5Q1GQYLE18n7jmc3Wnd1mK4C3e6XTeWcHIQBgazp4Q0aA7WqEVpV6pFs+Sk9LCKgbJjbt6Ip9TX61ufEQmKl7vQqO+EVMbpik6GVMImwHqNXXShPcSE7WUjuTMpGLI0VLmBVJGUqEsWQPgitY0QbxuQLEsr2f+1f/lz3joLvjDf/rHXH985PGD7xPlKdE85HZfCZfC0w8S4Xjg5sVfs5y+pZVVq7qmPkWjWkNy1G2UGzw2OEptPYVaNKPLNPV6GcEPA+JG3LDFTzuqiaQYyVUn7bpxgXVOrKfYmwbd8MQYiRHyapBiMbVgTT9jOzmR1nX0vY6RVnTAhdZ8pr+wrUlv1bVYryKaPEvDNOm6eXroVffZ9IwT6YL3c5WrG12o/f+kT9q7rYBGu5/0Q6V23CfSf75vhXUsY3h/um+p+Peaift/yzvJUKWpLCenTIoFZxzO+XPpT+2XlQ2mIxu16K5VZS3a2apMQ1CdrxWHMaott2IZB7TrLsq8NUZXVMZmcj6Q617/ouIQPfJ0sCzQSlZXtFF6RG5APdHqES+XgNcXsRZqzuRSqangg8cYnXZVg4Y4BY8dLTFG0hoRaeS4MooGN3X1rBotrEM2jnh0LPlATFHfmGKUADJuiacbjscVSRrG4JpR1Faqqp/s694KfUW86jc9Rl5+9TVSV13fGEOO+V0TUnLXdooaZrrTP2fAOubjSrxdSfOOgHsnthJFmIXNjsfPnnL7Z/+OKXouNzvuXr0iPLtlqk050uJIOaox2DiqCGEIeigkjatH6IQI6dp65X47pwxdaxXTU2phcBr0sq5rJw1Y1nXheFy7oTGoLItKyglb1KjtQ8APw33yIUaRpjkXnPOM20u894SpkPNKycLFg8eMy0B+W/EPHnMnvwKOPNj0ZMJouPtmz8v5lu3LD/joh9/Hieerz3+FGTdweUE9Tfxg+U0ePnqEDCOXT57ywfd/QG1q5BnGEWONBlbVRnYWsxnYbK/YfPgJH/7oJ3z8e7/H6XbP/vaG1ze3+Gnk8Ycfcv34KXa6IDbVF64tU5eouQqmYYfA5FVGkUpW0ktN+uBb3avFFInrqpdI7UbSdqbCwLDb0lxhvl362raRS+w64D4pOB84KCqytS7BOZ8CRR9E1QwnPWNs1S2eNCoZS8M7NXyXvDDPmXWBx48ekNcjb1+9wIcR67eMw5ZwMSEtUUrEWs0RyCWyv5lZl4XgPVfXD2gNvBvIZiXlk05MrMMNI3OK1KhTrBoLpSX1tjhD1ZjPTjiQe/xqE83AyJ1ks7u85PLiCpowx0jJFe8HctVV5xxXjBhM9jRr8d7iraHmTiEYBhweI4VnP/kNbr/6nM//7N+AVMrdHS4nTNP8ydppPTTuecTnZ8c6g20NXwRvNANETYeZ1pIabqVoQ6BsNowzEERlO0alcUZgGAJrLR0GYRG/5TuffMxP/+rPuTsulEPC7k9cPToSthe4zQ6zWppYitEmrrWECxODCzivjXMxljRHxCSGYUMqmbu3d8R5oZbGtLsAVHa0xpm7/R23N7ea7WCFvK5KL4oz3371OZ999im+zmys4/bmjpYTz54+YxwnSjWkmHBSkXgil4WYVp1wWk1lNsL9yr3EqHkUpSGlEpwlLXtmCxvrGKxBKmwMLKcjW2958uEz/sPnn3I6nQhDYAoTVDidTqQ1MQ0b7m72GCzO+PsBResXrRUtunXgtXapoV7mpW9kpP/e+2LgjLg7r8alTyirGqHrWaYhRb0tc8O4Dc47UkoqNzUqHQXX1+oW76Sz5jUDpeRCZmWwFk2NeWcElNrwkqmp0upKqlmLripKmVoimJHcKodDJgwDYbjgxYvXXF5eMIwB2xbKWhmHKy1axXC4O2GDIaYT+/1RN9+5Mq+J5keyCbxdZnbWU4roZsXDHFfy6zc8enyN7dp4RVUbDvs9jcrF1RXGCMuyYMUQXOtyN22lWtMNZBgGatHmTNGJRQspiYCGLG53O8Tk7gGsxJMjnQy1LjQL4pSqUrosGKMT9JQKMUbNUFkLbgYTvDYb0vomv73T3Lemmv1WqLbQbAGn8lXnO3hDqsog+z5G72b1/CkmtKpUrzbm40ypenaHYaI2i7ErrQ2KSzaaveONw+HISc+NzXZkG0ZqKkg1lKLvXWcdiGFZKqd9ZN3viXdH1rsjy2nVzUtKKh2ziqMFxyADt1+d+Jf/p/+On/305/zhP/9n/OY/+694dFVwwxMmO/L6Zxvi/EPadaUcLDb/B5blllaV7ENRmlQtikKlalFsEazrHjxrwFSq0SRkPw4MmwuwA2JGjPGEwVHGSFpWlfI1Q62Wda3EFQWiVAEMMTfiWolRG5om6Lag1Pvn9vxsmq6E0IHV+dlVcy0djkBP5NWdnmaSiMYA9/fBWajF/cfv405tFOQ8eTeUWt8V+v3e1Wagd4n3zUDDdG+H3BftKuGxjfvPeVbjnKU8Z/3+Gb15/nrO/7i4RkQs3umKW4zrxJaqxpHBq3/byL0JKqV3JsvaOsJITOcEB4wbqcVRMXjZUoyButKs/jldTyjpJLeMmIa0QEsDYfC4wWKahrakJWFMwpgt3lQk37EeX5E2k6ae5aLpjyK6nioF29TAWZsa6Vo2VCd6ifugK/5aaCScH3oUuk46jVFzVRFLMZFMJIMmw1lD8Hop1HHL2s194jxpmTFJD6dahTVn1qSrQS0CCs5YBmuxVQ8tZzXRtZSK7brnZrRgiDWTGopwrJqYt6QIHKj7I+nugrG686t939NJ2PH4yYe8zv+9dptxpeG4ffmK4c1bomgBa51lmWelmVxcauw1dMRlZT7NWOcYBg3aaEX9CrWISqGsVwlO0UQ6MbAsC6XUe9NW7Xz4nBrDqN/7UgrLqomYxro+jdUCKQSNO7/Z76m1EqYBbz2DWFIOxNWQW+Xt2ze8fvGGxY9c/fDHpDdfc/r2JXafsEtlyA5XNrTTAdKC3VjEVOb5SKmF8WLg7nDEjRvCEDDOshkDYox25b3+NdZqImoseDuQjeGIhkvZDz/i6kPYlszlsmKCoxrLqYE5V5kt38u8UisE73DeEcSxpkjMOm0xnbGr5hjNCUg5qQ+hKpmDWkhZzVwxLuR11gvKCssaIWeC0KUBtXPWdVKfUD5wrefPoZpRHaEFBH2GVQIQqClicTRZEXFY4/FeyVdxXbl59Zzj4Zbj/gbvA409c9hgTGWctj0bwXA8zcynE+t8Imc16UmrpCYMQclAUlVuIE0ne8EYmusWp5SoLaGoso4UFaMIRhqlZlLOOt0ypvtiPGHYMm0usM4zZL28jfWsMTGfFmJKWOsI06SzkZrVB+D1Uqd5cslQE8ty4KMf/Aj7n/+XfPav/t8sh5+zcQ5XDVJ6UEm3YSG2a7C7xlTncziUs6zvrNrNWX2mc6+t1LO1ObTAt1ZFnJIR6Y7NVpU6VYWXtzOf/OQJTz/+CV998UusSYgs3L75gmG5ZJefMnUedLMF4z0hVGzzalYDgnWYYaAYCzlhfWYYHKfjif3bPeMYEKfs6OW0gjSuLzasHmpaFVMsjePtLXc3bznuD3zyvR/T1jvWuzfMN68wVXh7e8SfMtO4wVtLaIm0Hkk9E8M6B3hsU19CLWohi/OJ4JRDbqoSM8RAPB24uz0SxkvG6ZIcC/PrO97e3PHidGI+3FFa4s3NEdcOeO9ZTgvBDVDVWCuogbnVdi7LccZqE0nT0Ld+idb3Lk3aubhHC3fOnDblZtvOw69VLXDSuXatNUppeleZglkig/E9XdQQo54TpRWVroly7Gs3EwpWCzHDfYGQc2KOK1jBD0G9V3HhTD2vYSRWS7VKMPFD6UOtA3EujOMFNR1wUolzhZJ12xU9zU86wSwVi/rRTFm42Fwj48AmGL59HnGbxnDxmO1W74CC4kFjUlhDSgnntoQQsMZrcnbOlFJwzmGsI8aVWrThb610A7NOoWuXttWmHjS6pKHUhORVJYDO4ENgqBta7dsTHFRDLBaaQyh4AyZmpcrk1iUTOkiqpRDXwpicft+zDmdalwLV3pyUXqTlWkgm4VixeKoYUlwp5QQtYYxiH0VUYker97IezkVarxBVQVwpKZKWWb19LSoVSBrVCWIH6FtKY3TIaJyFoBScUgRrHM4PWOMY1opzC4dSqWsi+RnrDFm6nrsXnq3/Y5LhwkzcfXXgp3c/54vP3vLNy1v+8X/5P+N6N2OfXbKLgc9eBYx7ym73HWT9lpaEnA+KYc09h8ar4VwMVBKlVowPKgU+V1qir9k4XTBsdn3LZe4xtMY4nBuoVmi5f9+aB1of6qisKGVDXBpxVb+oKgq0eq71XaN9piPJPdL0bIZ915yj1ozeoOtQ5cyrv//1JvdafeGd3l5AB0YiWNGBdDtPfMT2DVAfCPTm/QxnOJdw0qXNouWs/vnzNJ5zR4BuHNv5nfNe/XcPUNAfbl1WhmGDsxqBbOyAC56SoyYG9pQv6RcVRvuW3N/smIa3ARcCzk4Mwwbrg8pnevdhrBpq9XDsQQctayRzi1AV4VdR7Jskqw95zsRcMWZkGDLObakxs79Jihe1o3bR1jNOO0LX+zrRkB/lqncN/aJvsiEEhnFDLZqEWHLFdk2cNHpqqGNJmSIBE3YMpuKNPqRXu4ldqLSx8Xb/DfvDK1KuDF3s1HJVygVoF+gU29da0wuqr6dqD95Ka9IpqjHkquELuU/+C4bS+uq/WdaYEU60/Yn1zcpVGcBq61bpFweO7dUD1mWmGYMpjsEKp5sbvv3qS9xyxI8Dj548ZnBCfHuLi5ntxQWtf/9j0mInhEBtld12owSd6u7T1+4vO9QUKOb84KjnQYsw24v8jAfEqWFMABtCNyEqMvOMx1rXFTcOWmgZNd4ZDFY803RJDp6cIikXvvejH/F0N5JuP+P4i7/l3/4f/1tMarS1cjyd+PDHP+Bit2ERaIPFVsNwsePD736X6fKSIuDHsW8RPKUW4rpSasFLwAWvuQkZfA0E68hETrXguvwLA20caVYfYIthwlCXSExRi4FeuOdWqUnzFdbUZRwo31u3ONKnMJnSnw+NyWyc6VVihGEzUdKe2iw1WmKDEBwpakNg0FRaQdDVz0orZ66vTnMruiUwKA2j0Y1OraDMgEKtEZISF0x10AyOwjqfiMseaStlTTQ8S1p4/SIyTltNqG6Kii0pEbwleGhlYT7ckAnE+YC0CGXFtERrSb0w6URJa98CGoyp3SMjnYCgxkZjB4xxmq/QtIjqtRdLrByOkWnn1Xjvxj4xWsFYzLpSaiOWhBXL0L+/rb9GqTZiyQRjqH5gfPgU9+QjjtOOMm1oMSNZja+mVRwqxZDOPK5NZSZSK9ZocIuGH0HW/TVVVLddpFGMFmPGC9YbDf+xhmqqFoumT2qcQ8RT6sTdAlG2/PC3/gmfP39JWl9ysYGajsT9wlwqgxmZ/LanJq+YohtGW1THmnLBxpVTquAG7INHNOeZnOdi67jbv+Xl7RusM6QYGcaRy4sLpCSCFVoueGvYp0yMmYurBwS7I5gPePv8C968uWMTNphpx3a3paakunkybT0hrWLEUdZMmo+0mpmGQW2TzWBrIy8LpepZGWk6oAkTeX+kHjPTtcVmy+n5C96+fMVyt2cXAqfTzLqsfPfDp9DguFd6U8mNzbRVKEAHA+jtqXLRXKs2jE2ne8rDRsON4H7CrzWe0LmK9+t9c8bwiZBqvS/sc+rITGvIqbHMhQq40aqPpFZybmqUdPq+rrZSvW4yjFWvgumZADllYiscl5lK4/LqEucEWWZtfK3FjCulOfWr1ZXSwFkwNZPjkTe3rzDOkU5a7CkTQzjtqw4DiqG5Hc40xs2W680VJSUg8+aN5elHgdPxLb/+Gz9gv39L65CKb775Cho6SOtbEU2S1gbXeZX0zvPCOG3ZbDYYcXir93Ajoo4GwYeBkhfO4XCCeorU3BoxvEuoty4Qxgs1UxIQvP5jZ2xOUCrVJ9KaNNwspfvKKMZMlUqKQooWa7MavpsWS7VjaaV1P00uLPlEWQrrMWLEczok1uUAkjBWmzvTtFCsZ4XB2YxZ6TJWy+C02c5x1s9hkkp7rMWYhmmuT8QzBos1DWt1gFNQ4la1TmuN4CnisCJMxbAcD5iDRawWscaqeuJ877SmzaIgbNwFrAV7qrz5+S3/z//6/0Fej/zhP/8XPHv6O1w+vUS+G/jVawt3njZc/P+4+rNmS7L0PBN7vjW5+977nBORkWMNKBQKBEBSVJNs0qzVkkwy9VW3rnWrXyPTT9DfkOmyZZJMpr6QrNEUKYITWCBqACorx4g4w97bfU2fLr7lOxJdsERWZUacOIP7Wt/wvs9LW1c2bBDc60YrDR9v2hW6dmpvBPWmlReTfckUWI5HDscTLs0gRgMqxZQgzkWm5YQjj0CshpIotY0JfrOAuSbUYvjwDkYKGyoT6WPr0j/w6+2MllsBzfj57vVM32U2MtQjuk/p92bA/r7bXK3Y3p+iD1N8GZsZM9jumVCdm7v21hTsZLM+6qkRRmYuX/Tv/OIfynAce/rzbgewAYXctoxBZHBa1RPCjA+TFecuDP0SqJhujQ5djLvpRAhpQjy2/lyOxHjA+3l0aGoNgq5AGQWDdVPd3nbEYVpYB14sJbVumV66Fay9E2wcgNQ4sE6dfNn4vhRwCz5E5vlIcJUojSbRUHIlE9Ni6blqE/myVVvFRlvPhTCRgm0pqhS0WupuV0UkEMJMmB2udfae04rZYpMMJ5agph2/rxO9J7pojVDv5Gs2WolCdGFgJ6HUYvr/olAMOQpqJkSU5gwnVe1fg3hLBW6Z7fGJ59+/4ZP1Hlk66s3wpirgZ1598gVxjuhauVtm3l8qBx9oayYiHKbZHurSaVJZ6xOtNabDAeeCcXjVW6faOyUXQ8thurOSC4i34n+sr8EQqntqbRObsKToEB+YlmXMLRUfAzFGSils69WkN8km5yFFvF/szaqGstMKjjAamML9pz/m8PDAkhxTUPyp8PTtb3m3XVlWSNyRQqL0xnMr5GXCHe55ff8xy8NH3H/6KQ8fWcCKceY7pRkgO07Jkk93Drf3nJoQs6EWHc5+Vm2/6ME1Wz1OYo2KF6VN/ka/kIFhNX1gIRGpLY8GxrFdzzaValh4Wy20ZnxexkRbRMz8FRM5K81HSt6oziHLkdZWZKDHXO+GDxPorZi3pRaTFJi41AyDdqYMmZ3gQyLqgvPQtECz2U65Fsr2gniLCXeqSN+grYRhvg0uctleuIx/1rriRr5BdANpWDNUMUnemvEUvNjHfrk+4qXhsbAhVfP5uOhpzjjXXYtpEyUZmSM4tHtCmvAhEFKkaqR1x2VrNNmYZ5immTjNSEjEWvHXC+u2DhmUHZd+kIRyrpR9u+ECMjm++/Ybyt0rTn/8p3zzzdds5yd0swA4pxWhD1O+YTNVBVpBuq3oq7cLoqhhzcQN3Nl414soVTo+KdEbktgkOUZwsaTcYs17sOAcwsLjVfn0pz8hnD5jrc+s9R2Tq7hWKC+PvC9fcn5a4ZioqdLYCP3AlO6QMDEdHwjLHU/XzN2rj6j9CU0TuXdy3nj3/j3rdsV5x+F4QuvM26evwQVOdw92EYsjLve8CgspWfJ1oDEdPqLJwpuHO37y2adcX5747V/9R75//w2vknLAtlLOW9Omg08uduGYTLQr55cr55crLbfblE3UJFTSA29/9Q2BSB564uO88O77t1wvKwHH27fvQYUpHUgxEZfEdt2wOHn3geI2ChG62ip8Z9/tcgr+zp1sE9lxNYvsmttdEudvRS2yb5tgYD8Ga77bTrd1OhUJ5r2KKSJ48papUnHN0bxpr0MMeB3YTFG6QK+Nqo3rywsSFNerTc63DXImLm84nj4Gf+R8yVxeLkwxEnVmLS9MAV7efs00T+TWcXGio5TNgunSoXJGOBwrh8PHhHhkzZnT3ef85A//zOQkKTKfXvDe7sop/o5vv/kduXxDqzapFyphJN6KmAfrfD7jfOL+7g5wZjoPgYCji6fXlf27PM8z6Mq2biiNFBOI4k2gTO0dHd+/XsWCn/w0iuQXal7xPaOt4L0ZXmX4qfNa7OfpPMZwdAieXnaJg2m3zQ/Rx+Q+01oGrjg5s8NHSs44PwpAMY/hzjd33o/moN+CmGKI5p+rRuDT7ojBBgTOO5p0enWDTx8JznJFKrZNFu9RHfSXlCCmIVNsaLBk2DhPxGmixiEV9DZcQAfJRwye4pvjzr2i5pX7WdguL/z5/+X/yeXrr/ln/+VX3B3/gNfLiceH79jStxRXiEFBvGURoeaxyRX1QnRi9KuBCnXekyaTA3Y/DNHONhJIMGlkq/RaSHHGq4PqqF7ofSNn5XJp5BVKFnLRsY02jK6OTeh4Fdl3cj98Z/cJvg4TbN9Ld9V93zVkO1ZfN1vR/Z33f8CFzTT7w0Nh/0Olj5ygOlCebgyn9s/hg7xGxljeIeZb3D/PYT5WHXBO+fAJdP7uH7vX/Te/8vjcgvcTYHzxeT6R5tmYy80zB6HrAtqQXnBVqXohamVZDsQUUTFDrYV82EfvdOgV1ZWSL9R6BW14b3p8GdgwrA+1qZruawlLgt25sN4HRBqtruTVjxcnUvKZqivTfCBNnpyfR4dsRpgtrqRpIYaJEBMuTTRVtvVKyZae5p1jnuZbaIUPYaTVVvv8bChDcI5eK9t25fz4AvmRQ3uG9YLzgDNKzCLJvtHOVmStVNOx18YSkhVRKKrVJjWlQzVj3h4nXLvS7Y+m9UZpFoahvVDzStELci3k7yqaFZl1rIusQ3R45vtXqHdsJXNMShTH/fGOJzEj27KYnOn5+ZlwOsDY1NQSSLPFkYv3zJM9C11twivOLlVrSLuFo3hPz1aM+jh0+j6gYpSKkCzJ1HT63kyX4silAUKaZtPpizfTs9jUUsX0ptEYIvbgRo9ET5OC944qjbNmNEz8u99+SZ9PlFAJckCOJ87OE+/u+OQP/4BXn37O6dUndB+JxwWfolEpdnnE2ByIF0Icsb9jgk0vaK2mdR64w1IqEqJpUEvFeSu8gw+0YPe7C/6WW+ScY/ITLsMemNZH8yy2tR0YvGLbqzE1FAHx9nx0cagLZGXIxgLExUJ5MiPESdEmxsNWW8NrLbhBEKCZ8Vwk0Hu25n2ExGioECaqJEPqhQZUal2tAPKBFqyBc5qZghCC4KUSQyB229J4ZytH7QUnnpIvODHmcKtnts3Y995Xtu3Men5Hy2eC68TgMdOsWkqzRjR4xHl67WaK742tdqbFEacJ0BvSNchMnE627i/2DIrz5l8ZjbtPkSXYtK9mpRYLott51t5HxBmvX7UTTg/84f/0n/Dq4Y7//qu/5fqb/wjXCy522DpSBRciPkTO22oMdi3M3lPVcamZ+e5ofhNnUfWCWIgadl42D+ostMT5QHeO6mwtn4IQkk01XZxZ5I754Ue8+vTHbLLw47/3P+E//ptvaPWF2i5EDAqw5icu10J/FtpU6C6T+sSFaI3c4YTEha0pl+8XHn9/JM1mXryuq23Rgnmp6vEOnxa6ixzvP+Ki0CQicUEl4g4zYV7wwbFdzri7yE/+9MD9YeGwzPzqy3/JV49XLmujX87E+4mgRgiqJePU9K11zTi1QQzNUdeKbp26NbZrJm8NrUryieQmejHqU8vGFQ8t0Koj+BlpChhLe5qSJf1umVwqjM3Qh5nbaNSxd9X1PbLGNjofYHSjUBPZSwGGc3pMDLF8hn1UqB+2ma32Ic1pNHWWvaIYQUeEVhTvoEkf2nBhrQVFmZfF7rcReJZbJk7J2PFDwlK0Er1tFHLJSO3czSfu7t+Qlo+Jjxfe1res1wvOKUu6x/WrZbYwvCO230PrBYlCK54szRCzQSg98nK58v7pzPP6wueff0FpgvcnFBv0ffHFkbwqz+crMZqxvNbGNHlisgGBjAljGamu+z8TbJrdnefast0DMTD1mVYS1xEqoBjpBNkLJaPlOfFMs0e7gT9qbWNYJ1a/DHSpODfkpfYxQvB4bxKgmBKCHwsaGdLZPeTSzgetu9GzUntDxAp0wSTMt0RbFXrtYzo+zlpVGOhc25AMipY3qY7WSu9CLYpid0R3BVErwkWEZTnAZBvMME3gEzhP8ybr1a4mNUyRkGzj41Mkpgq147TQqgX9QTcNe7fhX3KOU4yon3g5P/PL/+7f8vib7/n7/+Af8uruc/p5xcsj4i6IW5G2Dv9DHVWdqRh6U7QKYTZST4jRPJ3i8CEB3lDBTQe1xr5H0XuTxfhAdVYg1xES2Trk0qlFDdfcxfSi2oZ0y0iMKDcN/F7x3kzpjO/zeMNvsrvxv2U32Qp4tZq0ftC+jI83Pu7o4J1gZmKswbdZoQyJ0P7b9km8yW9V9Sbh2Wlw48SxZ3bId3RM9v/OxmFU9Aq3kNw+top9NATBxSMxmpxmOd0ZmxRwPRJkRtUMd71k+rYhQUgHZTmdLPRJKr0Xcsn0sqHdA5kYFUdG9UrOz/TWSHEhRW8/iy54iUQ3AXLT1sowNqgaWqnXHV2ZEe+Ik+m0O8Os4hSks+Y91nyidYevG60f6NOCygEnHcSuU+226my1sql1WIrJUJwz/0AQ6zSDTCSREaCVuV4KUgttTJ5w1uyr5yZDac0mvL3Z+sT7YJHnuaHO2WGBERm0mabMEjeFepsUKFWH/EkrtZ7J+YnYngjrxvbNRt/09vDKB44NcjjSUySzUapp/Wmd7brCy5lwXJgOC0EcyUcKpt/U63WQhGbuH17x8PDAmjdaKQMj12iD/99Uua5moJWRBsfQQ4uDGUfrbejxLUnNOU+IyR7A3m8viK0996Q1I4MoHU+0l3xoql0MyBTY6pWGpd/VLrw8F/7yb79FNfJwPBLiK/pHbygHo3785B/9Q+aHV6wNcAHxga1sqKRbt1+rNQxueCsEoTVjMWvL9nMpHprQvbPv0zAPObVpH/nK1jo1enSyNL79UvDem3G4V5saiV0MuVVDckqjDH29c/tqfyI4RwhCWa8mMesgbkFCw80eiQuimdiO9Osj3QkUT60X2laRWknjwHVi0wF2rreqTZhVca1Dy2TgumYkToQ43Sb9EiJeZnvHnR9ma9DReJaqhjTAoxia1qoha2LsvTZjuVDxrrG+vGc7P9HLGacFn2x128fhrBKgNWoPuGAMc7zS1NMAHys+NNQ1Zmem8KbJJmQjZaj3Tq6Ner3aVqk3M+kHS7gWN0jCaoZu793AvArBGcUod+Hchdd/+Ef80//mf8v7f/spf/F/+295mIRJLZuiqac7hx6OqFNkFXK54n0iekW9bSqXJRmhZ6ug9bYx8i7QnMelQAszLSZ6SuS2UXTjGDtdKmuDl1754pPPOb75nOObH/EZhV/9zb+hvZxxHdr5Aip4r4hr0BpaMz5WZqlIE6ie8vSIUY49+MBZHN7H25atbpnSldPdK+ZJcdKQ6UjqhSBKiAmZFopLqIvIfGRaFqbDa7bLE5pXmjTe5soXP/8HPL9ciNpp737HZV05uI6XQtvWgb3EfB/qoQq9wvZcWC+FvBa2a6VXDx2urbG2sxUR9YqTwLIs1Ko4iTxfVj56uMeHSLtubFuhFoNHBLHnt+9V/ZBIOMbggg86WHdbxI872vkP1/zeEahdyDaYNwqSFQnO9NpNqbWjQbFYa2d+sGrXvB9o4t6Ukhutj8ZhNOQueMuhkEZyHhXLBBDf7N87R/TGbB9QQpNX5kzeVmjKR6/ekMIrgjtxvV55fvwOeqXlC3RhuxbziWijlEJHmU4mgSn1wrq+4/L8NY5ASAtrXimrYzk0pulECJOFR+2+huSY28w0OXI2Q3MtzVLO9yFEN/KQwYeCEaJ6xzsdyZsfMNfeGz/9Ni2xpZEVYmJbUtRM69Hbpkt7o1ej4mmzwCUbmNUhk7O/QnCD+Kem3w/BGil231ixQmzvBFQGecwqqt6s0ei1juJsr2Hsc3VjG2UT5XEutV36JPRm9UPvUNbM2ssHoz6d4IXoMl6Sfb3OEbwFaTkUp4ngD0afEWwI5G1DHg6JMNkdvOvPnYzgz4GCBIc6hWYqi7vDxI8+f2CaT1zWI98/PfLuL7/iX/7uHa9ev2aaT5QcqL2DXFFWkIyo3WuiJk/1KrjuCUSiC0RnGwZcxIWJjrfsBu0EOojVmajSq473tVDWzeSypY5/3ijVGjodz4Levu82kXdD9P/hXdXb3/cCf9TZVtLLh3d8/x7tUurdXLsX3065JRbr+LUeCzm9Te/RQcwaBeKQpNl9Y793zy9RHXkbP/BjjAOE4P0HBOs4a2yjsA8f2L8AM+WKbQhUO2E5vGZejkzTzDTPdvC0PtYScUwqOr1vVPFICkQxFnpIHu87tV4ptVB7A7K9lKK0fqWWK6J1SAQqTSq9ZRCPXxzepZHUWAYP3r6F3tm6qlaltBH7HCZUZtQtOB9JzhGnAy6aeVad2AFR7fMtuSNqkiDpDR8WfIyj0LIJinagG08490qvtkJqtRoFSBwpRlKM+OTBNXyPTCXy/DYa59g5QzGOYrWsBa0m3fDOI946TxULBqqqqAt0MTmEUX66kXpUUWfazCY6puSNWp9p7ZHanuDxiaffPtLfKnxssioR0FbposjxQLi/o71b2bKtmrfnMyUGfKvghOPpZAnCy8JGJywTh9M9FSWmhbvTyQIkaqHvLvc+pqnO43Ssl8fLMqV5hIk5gvekOI8XzR7CMJ5Ch60nfTL0U2tmePR+OP0xrn9rinRLNrWD3N8OzF0O0wcir2rk8z/8U95+N+PuJ378i7/Pwy/+CP3sNfc//xGnzz+zj1MacV5wY7W9lY2dLGN6SBnTvtFQYIarGutYlym6F63iqGIvpvk/zGS1ble2BgHbSOx0guBHQMZYxwZnxXXJ2aglO2EAQ1KK94h0M+AGjzaIU4eY8AI5LYZN1Ypogbay4U2y4IKlG5YGruJaQPZJpITbZJrWqLXQa7a1nppJtcWG1kQvERcshdTJjIj5ScRHfJjsAmpDA1scisOF6fYzV2REoVvDhprsxJFp5cz29C0tv+Ap9p76iOUbDrMjRtEK3nNzaDlH8InuJjP3t0bwuzPtQ6iUJSSPNfSY0pdSKM0uIFcHwUL9wFc6JOzyp3Hie7G8igaX0ohT4uN/9s+5e33g//3f/3+Ye8PPK9qEtQhf/OwXVODr3/0Nx9OJ7f23HEiD9hOZlolSNmL0UDZEIagjOccGrN0h0z0vLpAePuP48ae09YXr+Tt6uzAvgtNAXwP3X/wB85vPWf3EFhZe//hP+fKv3hPEEefJvBPirCAX82FI72jbhj7c06rSNjuLuzjWXOgKKdr3tit4n+gerr2g/kA4vKLkhsuKzCvTgxDvJ9tiibDlxhQDEhZQa2i6bMQws7ZAIRLTQr5eKOuTJS12TNrXheQn+zyro6yd53cr55eVVhStI7CnKb21Mc2C4GwifFk3/uRnPyfXyvab33K+ZM71DK0zz7M17KMAcM3MyeiYpo5L27Y7g3q0j8T0BzKL22pfx6/j1hzsbOud5mRDq05tEPqHokLHn9v6vvWxoYgbOrneuvHRsbyIrp3WOmnIfUQsm4Yx+Qs+GZ1DgjVqTqA1tssz777+kvNL47A8cDh9yqeffMRXX33Pt1sh4qB7esF8XmSCOrqzNGEXHMkJpV4orXOVznJYOMR7Yuis55V3352J6cA8nQg+sfoErXPd3uF8x7kJkc62Xdi2zHJczEAtJucIIdkASAxX3QcVSMdZyJC5yRi2iTgMxCIfUkB9QLCUV8HdghajjzAltG1sTuneNoDiRgXqME17NC26+Tk8PjqcH59Lse2dcx8UBuyyjy4DtdtBzAQNRmzZTav7tn5/RnaCmTibWtemFvJUbKtjw0dHbyZdEmkELzRfCa7dzrO8qn3OAq0lvDQbRzuQLrgYSN7jtZEPMyFFqw2cbSmo7TY9BssDcMk2NOo2fvzTn/IP/uzP+OVf/or2S9ienjh/XXn55nvC/IKbIxJMutZo6F7Y27yagMepQQc0gzQj59h02+PUG2AHA0A07Pvcs/krau5sa+XycuVyOZPXK3kdWHX2oCi93ROIvzXZMiQuXa1h29/fvVb5oJbn75hp7d38UC+LdEQUP/xYsIea6a0Ed2J4cLdP1cevupESd6UO4EWorYzfZ/fmLrIJPg3pl51Ffkz5e+/sXH0d551570azIh86FPuzrRbECWE5fsS0TMQQbC08TB+t2w9h/EpiWsAt4PMgAkAfkoU2OK62gmi0utFrpfXVppYhIqpoM7128AkXOrUWStkQL5bGqh3pNoV23qFqUwpDQx7x8Q433RPme/y0oC4QQrhNU1yI1LHe6NrJ68W4uA7S6OKatKEnHwdta6MbtlO61Uwbk/BtK+TWiafAvMxMwUJhtETCBvH0gF9OtPSMxmYv53Bqt1YIGsfay5O7XfA9BPyUSKFT64tdWjCKPjde8H2VNC4LbYheEH1B+pl2vrB9c2X9shN/4Widm4kLhqb97p5reKRlNyQfSowTMU3My0KaJ0orQ+cqeOc4nQ5UleG4d1yv1rSp2uTRuUCMNj1oveGDXTa9q+nBQxj6Qn+bEnTDC9iqzZnUpFdrtUWMVuGdNVu17Ol14NWq952640OkN8il2soZJYmndjguD/zT/+J/zdPH3xDzxJ/8/f+M8PnHXCLUyYgTQTynZaJFv9usBrJrX0V3Q2xpG1M4ixYHRb0VejjTVDufiCHRaqdogd7pwUI76B7ZYx20WUNbC/TxjA8OrxtbIi9Dc6y2+bFn3VCu4iHFQIrBjksX8U7J68z55YnNr3gPvWXK9gxToddqRnctMFtMfd2AVgGxBiwYLq2xUUu3sKLxnNGFKA0VQ2HSO9ROG6b6qg6ny2i27DnQWkEcIc7ghb20DyHivRVPZS/uXadvZ17ef4vmF1zbYAQdSS/jPk+2WRgcEu8cfS/ux3TZuUjtfUzcG9dto8kzaXbc3d+BCtetcr1eQGCaJ7x3tEHKMuoToBYy17pC6+b/USWMoqL1zvFwwEXI2O97CQfu/+jvc/3d39C6sfv9q1d89k/+C9LdidPXv+fX/+Ff8yLQmqdeNn7yi58RJse3X33J5emZOQlJLZVWndKkwjyRwxHuXvEH/+i/5JNf/Bn/6cvf8Ku/+jesL9+wtiviI+nNa/zdG9zpFdfSaOnA5z//hzy9/46n3/0ld2EiLSt0G2wExkRHhwwAo6DUYu9/CKYKjYzY823F+cByOFKa8PT4zPbde8J8x+tPPEnGG9SUMC/M/WjXW4d5mvBAd47HyxUHvHn9QLk88Y//yX+OP/+U/+///f+MW61QrrUQfbxh6twobi4vGy/vr7w8Fepm4UPaBOrAyzlnBnQnNgjxwnI8kbUSp8ibj9/w/dffEvxMWTf67dIbK/Dd2CjYpga1r0Ecbpjr9ttadbwHY7MncNPKgg497F5A2Fa4K6jt/m9byj7MmOxNwtgSemchWd5BlwrScOLNu9Y7ecuoh+UQxvngOE6B0gqMeWKrjW5ZpqAWqtXrlfryLfly5W/+auJw/znp8MDT4wsxmDcnt2ZEuV0S20ZhUgvb5QIuomI/69oz1QuXZkbMej3zUp5JaWH1JvUKMaHA9bIR3EyvHR1Skt5tIBQ9hLERbK1RSrMBWKkoFe0VrSZd7X34yTBDsfcGVKi144IQGNtisSwPwdkdXm1DanjVhgyU5R4WZAXDXiTZMCckR4zOTMdhHH0Nolj66X5W2HPCrUj8UMANCZK2m34abOizG0zpI6ZIA4ozGaZWfLAMAMGDetsyVONg9yA0pwRpxOjxydkz4m1sHNJsbauzxlGdZWpEcfjeSdOET0MKZYJfK4LFZGDOOaLD7sDeidFz9+qel3Xl2+8feX4prJvQ9YBK5OXa0FLw0RpkHUCUEGxYMhT81uy2Zlk21UzDInbXGwUpUlqn92zegl7pzZDhJVfyWtnWKy2vN/+Zbbr2Oovx3MowwpqkU39QtO+v8YeSfSjmdY+L4lar2BTezgLVcc6I0PyQzChjM6Yf3vv9DBhNn9z+tN1MP4ryH8qDnI6fQSV4IaVAcGKQh7zXQMHOkDaGDB/+NlQSxvGX/evamx2ssBcgpOkeH4Qubbw0xvbu3VaXISykaEi0KJ00V3qpaFsp5TJwfYb8cxbFSB8pYc4FQvSIVjP/lTqmQQsiZg4txcJEdPzg3XA6l9LIvYJMqF+I0wN+esDFe6bjR9x/9CkS0ght2G5FUyub9S9OLP7byWDmZ2pXaMVIAm5MAapVYiEEQjBTpyp4P5N9o7dC6Y6g3kyuEVrf8NOR+eFj9M3n1FrhpVAuq70sXkwPr1ik4Z6E6CPNBe7u7zgdAutaydtqyK0wJom9jbrejx+jo4sSfMW3DcdKzxv9rPz+lyv3/4uTaa3Fur0OhBA4fPQR7+R3HEa64jQv9BhtOiIGP1y3zV7+48I8m3Z52zZK69RmB78bJmYrdt1tLahi+kRVyFu5rZDNtxAAK2ZNHmHHXPDBDNla0WYPvBvaw9psHdx2NCSGSfTj8J6mSHfCWu15C+KZvEPDRPF3xOB5ffyC0/KGePfAOgeqGG3Gt0rohteLyTOnGVExnJZ1T2jV8eeX8eyaRwBn2kEGuQAJhATBe5sQ0OgCuXfQRnUDpyr2b4OzJGDUStWd+lBQUkyEQQvyIdhlovazNxSY/b7WoXdHVwt68W4hhI7KRJwSUMjbcgux6N7R1rHKG0Si3gZLP8bx+QyJkGcYP5sFy7mGo+BFBspsSONaobZKl4hXDz7ifMIN8oUMLKflTlScxDH5sKImJCvYe31ifXlmfX5kitgqsTWihMEmHgeVC6hYA0GD7oYRtSniu6Vi685O3rF7FR8rtViYTckb13UMGPwoBodpcl9q7q1Id7Yhc7YsRmm4nghiQUWtNWQKaJy4+8mf8F/97/73/If/x/+V3/zrf8WmnuX1Z7g//BPuf/xT/OWRL51w/OIz2rsXUof7f/D3uGwvHN+85tu//hXt8YVyyYSuZG1cfCK9eU18/Sn18Ab/8R/RP/o5d4dP+PmbH/O7v/pX5Ldf0krl45/+Pfz9p3x/bUynhRIS8e4T/uBP/hn/6Zq5vv8Sn2RAEMowQNtwBT9R1aQipdl7Zz6NNspbT20d7wOnwysygbV0kleOpwcOhwNxilSaZXWUZ3RNaDsjfiGXzpuPPuZnX/yUr6bI7373O16en/np55/i7iYuX1/YrlcOdKIXWne3u3BbM9ec6cWTr8rj45V8Bc8BIYxB17jYZWw498YoOOYJLvXMn/38z3j7+JY4J+6mI+/7O3Ktt4lrcP42TnOMfAnAmNd+TMuGOU+sWGd31Ta9sazNC6T7Vvw2udwvfzPFWYPYmtz+twy9fm3jeQtiMg2n4Pow3Y4gJjFD4nm9sn77lniMnB6OHNOCU2uYe+/mL3EzIh5PJUgnSsPJmaaVl29/ydtv/4ZweMX9R58SY+P6/ETtGfF2zvZmUhmPwwULj6tPF6bljlbhsnbownHxTFPE5ScCgrZnXsqKimm88QFVT9Z7SnEshzuW+cDlemHbVuJ0IsaAit0ftVRCtKm0iqeWIZnpnVLsXleEGCcOhzszXWrDS7RByPjztNv3sWyZVjMlr1AvaDNsa63FwhS7JQFb0IuOsx6mOZKSEbpEFB+FhEc1oA3zRIx72bdRaHXzQdhFIcNX0a3w8+52b8LAro5JspVkhhXXVgld6ANaYdgik+t0NdO0l06VTi3CpBGoNpAMnulwZ0MJZ+qFPYNDZGwRbs/o+HNHJbrTc4IPHKI35GRYEIF/9Rd/jfbf8vbtC9dzZ9NAVmFrjeYcrnvcapIaB4RBeiujKI7J22BTbANfrldWr/gF1E+4YYItrSPeil3zgNkdoK1Qh9RbeiN4iFEom91VVovYe2kY5zEz11vyw/+o8LYNxV5+7/z5D9+PfSK/NwE2gfdDzqRdqKN7H9yrITXVca7s7zu3j2l/7t/9POzjdRgI+BCFaRbm2VOKhQSqCjGZHNBS5rkhxsH8HLV/2ALtH3+vWWQMDAOSqN0us60UW9N3QB1TDEzxwPH4GvWCREG7Jd31urFdhevlguFnbbohTcc0PBLDTPAWgKMto9307H3E0gdv6Y1dK13HRC4EM1RppVbFh5lpec3h/jP8dI/6E3evPuP08CkhTsanzSu1bnjRkex5Aa24abY1Z7fPwUlBfbhhufbDVruY9OQA0aUhlVGm+YSfravPKnZgNUEJlgswn4in18T1Slm+p61XMwA5T9NmU6bRzQUf6MMMOd3dcf/6wFfffE9jG5p8062HEHZXlxXGKoR9heM20BXaRmqO3//yG/7k+YTMQ86j9rlOy5GPfvxTfuv+LUXGStlHrpfVgqy6hYMFbybC6/XM+98+mpnOCXcPH/Hw6mPEOWqxn5VzMkgHlhS6ByI554iRDw86mCGVoe/Gpg+t2FQ5pcSSEjkPn0bbcVwmVbHezvSSWi01UqXgoselRAweLxFKg9JJzpOmE+csNFEuybP1DRdtU+DWStuu+IbhPJ0b3TeUnO1rE6jNtkitFSvEHfQ2dIpdrejpQmvK5s7kaUG8HwQMa5aqGtoyOFvXhuCZU8KLkLP5ExzQaqGVSsV8HmFM0nMu5HVDcUyT4FIan+PgpXvzCNA9aXJQ83h3PYQDcXlAaGhy1ACrWnJfD1bcC6DB0wS0Fqp39OiRmofvxOhUrVztvxNs0uk8TpJ9DO9oPUMOhGQyHIYxrNVG7RUIpCXQtNOKSd5ev3qFE8+7339Nuawk53Fq6Ffpjl6hje7EmkdP70aCwMltAtO7FarBeaYwI2G6mZxFoPXCu8e3WDCSeTZqzWzrlRCMyLVXY6KGrxQnNmVl+ANapzF0m2qHZamFa+9MHDnOrzh+8TOWL35G/82X/OKP/5Tn7vneLyyvPmadZ372P/9fUc/v4Hzh5d0j3/tG1zvmLz7j808+5+v/8EtevnvH4m0biIf+cE+N96TXf8Dpx39M/PinHFslvvqEeDrxyVH43a9/RfMH4qtPqGEmes/d6484xcgf//wXJBH+8l/9d/TtG3rdkFaG1NGKj46nYOefj4lOGZMva+jdQMEpCSWy3H1EVCuspvmA88k2barQMz2fyc+KhIiLBy7lhfL8RHl5ZM0b5fLMy9tv+f1/+g/89b/7F9S3f8sxX1EtVhiIeSxiTLQMl7rRSme9Wj4GainFgif6gFDNgCzVZBXRIclzuDuw5ZXH3z/y7dff8vL8wmcff8F337+llMphOSAI67ayFnsXPN68VWJSgg4m9RjX+4429d4P/e0+btnNuKbLdrZuGprsse0bEgx1jto6JQ+e/0Cm2nbcKkTXHK7JKPRN31taxTkL+3POkWLi6XrmZbuSWzaIhWdM/q1hcXGiOw+tIlLtJ90qIhvb8wW/vCafz1ynjTAvOF8IyUK7RBS2avd/65ymI1UjpUemcGfyyS3wiz/6R1zOj7z/9hu0RPKWmRZH6CbPqGvDTRPHuzuEI72buV7EwphSjMzTRIhhYG3D7fsrmLFyb5IA2+Y3w2J7cSzzgZKvrOv1JnO0jWimZTtv8vVCqxfW6yNanrDU7jLefatBvHcQ3U0vHYNnmRMhenafEOLGEGEUrQ58iGiDHsYwrZmXzOGgyRgiuEFXHV9D79ZAOkOvaqsm+Rl+A0aade2Aml/P9T3h2s4ipA/JkuU9OG9SNhevlLJiRIUCvYxncMh+aqbUjdqyIXrZSTB9gDIELyYZ8WG2lOZN+dWvz6hG1HnL6/HQnLJpowpEDfg2jURdG87mXIekW2il0xwmrXUdpVB6JVVY7hNBhct55VJW4hSwTMxqTXWz4d+e8yKixODQCHJwg8gHqo5SGrXZWW15Sz8Uz9jPbpfvsZf8tyJ5L/qHZFb67dfaMzuMzjIMs+O3utsEf9wRo2mwc8Ga/6p95EaN0hgdcytFtZCScHe3ME8O75XjMZHz+EgucDgeEDzXtVBKY1s382juA4IPa4MPX5sIyVuBrziC6NAu4+g93jS1TiZcPBHmOw53r/FponuHaiUdL5T8TOZC2zxohF7peSXSTRt3K06bPUyymxwCjhmV2XSzaUKkQamAw4mFJvlgU1MXjtw9/Jjjq8/ofkHDQpgf6M4mBIgh0eboCR5qNRxbziNAytmFb28ROLHVpj3QFkVde6dVoWiDZPQHC/PyxCg4adRWqNXMt0FH7Hdc0LSwiTe0XxW0dHr1eMxRTzXnejzccSayqUcP93CMZAEJAd8tPMV1RV0yaYNAriPqHEEkkOMK7htm/Y7p8kz+9T3Pv+rcfeQpzorkqIKLBz7+0S8IU6S8POOJ5PWCi47UM+Xpe65JidOB7oTSVnrNVDaW0z2az5SrPQu5dlQspXaaJ1KaLNBsGF9FOiHYy916pVwzTTtTmnDRpq5la2x5tRdOOq0b038rK9uWzQQVJ5Kfbtq2PSG2dFtT6QoTByNXtIYXoY3nO7jI4fiKGju1K9GB10YvzcyLzdLwem/IdiUAuTW27WpUhbFxarWM4n4gwpwFxwhDztGsg64iRiVJ8zCcjgd8yNVatslPLw2Hfe9arbdpvhdPbpl1vVJboWMmzz2BEbVtTffeWOk+kNKEYjKY9fzCHrzUWzPEpJYxBZkQf8RPauQQEnX7blw0arICWynhXDCxTVejg2ilDt09LaDMhDihBLo2VEZojwt0dZSuxElNbjbEx711nGv47klTJ2ulKdRypVXhcl3xIZLSHdfLe1oDr55tAxdngjtgDBVPx41QoUr0kxmfmyLVZCXOA61Qu016PGWQpsw75KM17m0QkWobzVdMYzvnbgmkiKN1NzSPZrpuGHkgRPv+1+uZy8sz7tB49+6R7yTy5h//c37+T/9ztu7gcMLfHUnJs9Ho08yrz2eWxye+ffudfV8F4vwZB3ng8auvaTFyvLvjtMxoDMS717jTK+KbV/jFM1dliieO8y/40aev+OwP/pSn88rWImuHEITjwwOT96R54pM//GPev7zj5dtfcf5OmWRB84XYC+KrTWirjGAkuyhKNuxe3H0t0hHvLLmzCYf5iI9pkM68/fop2dSsZLKadGI5OZwELi/vuDx9R/Twak4c7xa2xwv1lee7xw3RzJY3SxfOOqQ4YvSwsTLvI+EyDOkaXey9dlBbIwTwU6RoY5kOLH4hO8+1NF7WjJOFr796Z5e0D5Q58r/5r/8bfvnv/h3/6s//nMO8GKdfIblgevu2y9NGSOMYxO3TuV2y5YCANSZOrZir3WR5ltlh25I+ZDlCoJdGX0dx4TutFbroYOs3IsPkq0ob15VGpWsG75jmiVfJ83R5Jl8yj++eOd4dmGdLlI5xwk3mnSiVwcz3aHP0IXlSbfS6sT4/8tFyIM4nnl+u0MU2PRJwzmSQoo6H+zc0OeHmj4l3M/efT3zys5/x+9/9hudvv2X2iZ4vRBW8NNZtZXn4mNPrLwjzA2UTK1JF2dYLrRWmw5EQhMvlQldHmhxruaJ1xSchJU9wAZ+C4U6lUsuFWi/gGk4qQUwCVupqJuB+gTGxL2smn6/UvJK3F3q74J3VIGFs5Kp2Mz2LM1OqCGkyvf2+1emtsjNSRCwfwKRdJmwRP3620Y2oGUNBOsxgq73dNkMq3dj7MnxmnUG0GYoHAtLHZdatGGyDQb9Po42Gt6sajKzjozUXrWR6PQ/qyhUnyeq3Lkg+o/kZ+gWRQteN3kcwnjO1QIq2ZW09WxZCmDgdDrw/b/YsYZNiZTRGym2r5ZzdwzsMQ1Bqg201k2hMQwLthHJpRNeZ7iJsSr+s9O1CO0Rc8pai7YYXpmFoWJ8MUy7NeCitcjh6aoWydqu3Rko742cguqsMGEPPH2zZRoEtjtGMGyOfIYXR3mi94aTjpN/eUVv8yhg6OWo3qMg+5VctTF5I0RrlXA3bbXjyYJJIrMlxoXG6i7z+KDBNAtKYl4DfOhIXnAukyXKalua5XjYuFwvustlUH5/3rjnS2xnlvcE7nBMCQ9snLhH9geA8PiTjR/sZP9/h5yNxOoDzVN2gOzR0Qj6y6GsoE+VZyMXczmZYrCN90MgYuKG30gAyEdMD6XDAzwHVjVaeaVuFbnpaF44WmhTumI6fsdx9TneJ7hMuGMkjpkCtDAmR4r2jayEkC+WxPXQ3wgiVXsaqzmGykpgsnKc0WlZa3mgpE8KCaqUIuEPgsEQrfHLBdTe0wQ3XbbK+XlbK88p0qfSiVqyLcbO1NXsYtsLVe0qYyCSKEzQ61pLRrbNIwilki9mki1B6GyFcniaOza8U9x2pfUe6PMHXn/P9v79w+od39Lg7szuQePPZH5COM/75ipRMKxvH9IZT9Oj6wvUR/OtAmBeWKZKamSOja7TtzIWGuoSPkxU+RchjguoGBcUmrHYotdHx7jH1teWhWbdf64Oj90qpG9c1k8tmujsfmKbJDj4xWc/OjC7NDX1ep7aCKxu717zjaKpUAW2OMJIKZUS+u7yNP9r8AlmEnAuSTYNsYTWrURW0INrQbhpk7TaNU+9hbCv2dt6locV3ldYvtGJpejFMhvdqDEJLHjHf5jeIIVJyNp2sMx1eaYXSMltbDcUm1kw4UZxWtssTiElBvI/gPU0Vl2xNDBglQzdDytWGx4PMSHCEeaI2T14t8dfJMKrTLQW1NXo/05sjumRZE1oRj23TejHZhFhBX6lj/V0GOq3jnKIaLSuj2STFfBUv9ONiRncC14vgZOF4/9Egnqy0ktmqrT6jX/DTEeKCTAkXHKVtNqHFNlLaHQypTq8dHxo4T2+bveO+UeuExIV5Wey5qhVBbn4Q7yx12bwcNq33u6GxOaqa3IoYrSnoHR/UaA8t0M4XygbMEz/5R/8Zh8MBWRZCadY0iBKnxN2rN+jdR7TrSnyYeB2P5mEphRILb/7Bjzn+/Moyz9w/mNylaqcHzzmv6OSIseEDtBpwyyvenwslQ5VISJ5XIe5GJ0reeP/ywvzmU/7x//K/4vGb3/Ln/6//lu38HbTv0VBwoRj9wZWbOTT5iMpmU+11pbRKjJGYArkVjijeWUy9uB2HW3FaqavJ3Y73r+gCSRu5ryxpYkmR0Dby+Wuevn7k+9/9iu2rv8Vf39K3M94JrQuiJkFrA2rgJRoVJgZq+BBf39XY4L1tTCnQhzEwucj94Z6ujnUr1ItauqhLNiVzli1wvH/gz/75P+ev/+a3XAeBRPBDAtEHTd0aWxkkqW57MG6pkXaljubYPi/GX7ZRAwkyJtBDXtAhOJONtKaW8yBmJHRO8UFoWql9bKJEyDnTSqP7hkvDGO4dEhJLXdhKZj3ngYkWfAAfoZTVMlJ6QbGwOsuTcQMvaAn0TgXdCiEeiG6m0sdWfRqbgk5vyrLcke5+TDj+iHT3Kd3D0/UJf3rF8vpjvv/ylxwTXNcLwoZzgdevPyGcPuV8dZZhEhTnOkilaxlBTQthNES9N0pdLRejK71HSzIWP6acFdWCdxUL1TMfU942VFckN5xmaEOumivbOdu9O0hnRcv4eUUa1YIJB5FL/E4ms+bHUk67+VJGEWiDkA/FuRn8BRcgNGgRwEAkiuJLplZuUkxXTdK1s8i7WMPa2TOQxaS7yu2J2tksNhDyQxcfrJkZCa0uVyRk0vXC+fF7QnhBuyOFmSkeyVV4/O4tz+/eUq5P0Fd8aPiJ4WEyjwuCbYC1WM6Lh56VEGwab1ZxO3eHZxcVpbshbhz/T4f0RIrJzVwfQ04cWQuZSnKd+pLZ6pmX52dcciBKax6NChEIFmLqxOAJ3ivi7Y4OmP3Nl8FyJxKksw68ch9yJLl9Z40cpGrfdxmTfbm9ukblsqBJN4ZgJhlWZ4MO5zt3czLEN55ahVy7hdCrmikbmCfHPAVA2bbGulW7D2lDL28J1GmG40GZUiFN4INjWkzSthwttdk52+YDxBnipJRiksk+5M697/IqhrbfthxuFPghnN7Y1DgNpKE3NnfempEqppkGSB8rW4XeBZHI6fQRhxRZn99yWVdINo3JvVAbFHXE3gherRjwFlDkYuJwd8fd6zdkyfQihJCp5UquDZcLXhu1W9qs88aeJS10sala8OEWiGGmxY3STa/kfcRNph9sraA9U8tKvl6pNeN6xYkyBwsREqxL6jmTr1dEItvacTjq/YH4+gEJgag2NXLdUj/beqWtV/L1CmNaot3Cb1q3YBoJ4H1kLYU4HWgo68sL12NCVbhcrkhdoDcCwlpXqM4m6t1CGux4gapiTUfZ8KxcXy58+et3/Oh8R7gzyYc20ya/+uQz7t684frdE1ps+jBNEyKerRT61oh1rBSTJ18rpTekVDMrtmonkXO4kEwb3YtpR8fqmX2qNf5uWlXTopX2gS8cQxh0GDPQbdvGul0BIRzCWLM1tDRinIZcywJPbOVqGDML03KEYEFbrTWbaKtxlL3ftY32c+q6E2jsMKqtUnPDV5vG+vHyGAvZwohQS2lF7fe0atMJ2zrYhEZH0EmpSm+C94kwpl6tW4FQWjZnfFe7aKnUXsl1RbHESTy2wrX6ApGOF08bjUerHRFPnCoqOnCQyh60YZPnCaXRerXn3swXg+4QreyoT1zPj9Zgh4hqA98oRak+00bioToLnhOxSZH2QC5jbR2jPYtiF3LTbHIPD46Kk4QRC+pI+lUkuOHH9bSSWRbh/uEV101o9YocoWsihMirN19wOr2iNGgiEIV+PRs6sxfDrlmXQQNKt2A5L3at5FzpOJZJOB4OHE53Jr0bpJ7WbU1qWRuGrC2lIA2CBkKQmzzsdpGJJwR7pmqt1FpvPggfAh+9ecM0zfZ+tis558FUn+z75aCWgncLc4poSsTWbtuClAvLspBSQr19j/CONM/4EKi1msxusjyJ52eDFyzLgePxiDjPVhshRPv6VMnbC1pWmiof/fjv4duPePr6t+j6jNOKlg2tmTLSPsPiSXNmvZyhO2LspBhtSzctrD1T8guzOzAFsWenN0L3RHE8ff+OL//6lyyHI7/44z9lSQtf/vZL7k8HHr/9in/zL/8Fmi9MdA7RcYqWLeE7eB9uPOjdy4NTZBBjbtSlH0wJEYeOYneaZvxk6NO6NS4XKxJN4tCIU6B0K1i+/vL3/J/+j/8H3r17zxQTrTYmH0AtswJxNOdYd3oWhrQcpwce2wA1uBnyP1Crh4xHzGvj3E5V6bs4ACMX9ZsMDFVUTJ7Ra2VdO95bIJShGSckKS7ZwETGh5ynGR/t6yq5IE6IkyeoeV76MFbGEG7FpYqReZBuhZIqeV2pbWI6nEjepLLdCet6RlvnfK3c58YxRsIUSMlzrZ2aYUkn7k5vuC7f0tbveLqcmSf40U9+zJvXn/LdufPyvBoUNzpS8EgznOe2XrheJpbDHa0o67qSJqs91nU13XF1HNJkOuM2QiMxzTx1x+o2ynWl9Qu1XGj5BS0Zr3A9bzc0oWql9YwqTP4OSzodNMChiV+WCefGJnA0c7tMu+tYzHo3TM+WiBtCN6mtOlodU1+1wU4tK5I3eqs2ptc2IBJ6K+e9t+dgzEjYjdG7h8IS68TQxqNwo1dwfdxTMmg7lcvlxcg6arS0FGZimKm58fzuiXpeaS0jruCjPRO1mdHZKUa76dUwum0EUZWxoXJuBAjavaNDVy7GITUvzz4Zt3kTfSTNSle0N0oWNCrVd4SVUt+xlY2tbkynyTwizZlMEgvBrLmhzTI29lApRIkpmF+PEQ7p7Gds2xWbxLebkXUU+Gr6dadDsrObZvdYc2FM78e72X/w3hJwTlAqMVoGD6VCUDuLeifGQPCOOQYjG/WGjwEXDcrSx7AX16naWRbPPAsuCiE60hyJUyBONjzZ/aDKIP4ER0jBMpMGztfp2P6gNxiBZUONvB4RwuH1F/hpTD2dGQRLKTRW6GbQKFop+TImFGauc16I/kANHeSMhJkwZfJ2No1Xt+9BbY0YjHgRY7Lpphj+K82JVsHXQlzuqOLJ2Z7rVrpd6FGpY4rixd1SJVX3yZuMB2JQP7xNUlXNaKVabV3T98dvR1QV1mrayyUtpAhoo5arFWzNpjrruwvfvDziYiJOB6ZpYYoO0UK+PNHWC147uGDYMoSKSXy6E+4fjtAdYa1IDGxbZz2f8czkrdg0R0yuMPlIoSMm16e2XU1k3eeepFh7NXLBVlifO/VqDa/JukxnFk+vePj8R3z7F/+eQ5uJ3QxzuTaqszTi7pLh92qndmf88C5molXThl9z4XA84WO4JQhOaTbjUinGsh9Jq7vJ5FaUV0NIuvHPoFtAmFgyn8mNhn4XazS8H4EvraHdHvTgGb9Wbge7jsmXda1661yt0DLNZG3VDLp2Dtk/b+MnFPwHlq3IoBSZPEeNP4rN60yb2GncwkF00EewhNTmmwUXYYdK1QJOCZOHZnKfy3YdE5+B1+wW6jbNE9O0mBGrVHKxePSc7fvkfRgyiY7rY4vQTZfovCMET2tmyp0PJ3rNtLzitCEhjQnt56ibbJMkQq2b0W9mzxwOlOsTNV8sxpxi0yYxY66CTQDxVN2J3zpWukJrmVKvxLiATHYuuGBFtDiqKjlbZLgPHeIBcLh0ZEpHiix451le/5iHjz7lvFbO60ql4w8LkwMtme16seTpVmlqRA8dh1pnmKE7pMWavDlZoByqIxys4t0gHMhYZ3cdRKZKZhiOZeB5uzJNkwW+9ca6Xi3oSpSUrNjew23sP/IDnCmmIW8dN0J7XGu4ebY05hjJpZBzxogx9bY9zdnwrHszYdkbH4zsKaWbT6OrUaSKCq3DMi+IKk+XK9PpE/7kH//PqJcn/uJcyfqWJQXW53dI6vac1EJ0Sqln/CEwzZXgwEk3Hfdk9LEqla1daVuh5sx6Xk2W2OHl8Znn52eexaOPb/mbb76i1MycEpHOXF/M1N4bQWx63LcfbNW6JY3qIH7hwHklpYmWnIX8VUt81BAIczLZ3zLjop0hpTbOlwvbdTXDoxO09WHIh7ZuiHe8vHtCurKkibIVuraBv7TiJeuOprP1flOjByGCx1CiSYTunBm81VKlnTcZnR8vzj45dENSMU7loc/dOwFrHAQMzxwtKT2XPAz2plXfhyhGjRFC8OP7Bl0b22ZncNKET2YP93BDPJucI960yGaUVwuzC4XltODTxHUraI6suaO9mma6dlovbOf3PG+FrXjSZN6FV/dv+OhP/yF//R/+Bx4fheOrez795AtimCjrZciYOilCCnafa7dnfg2RFCfytXK5FoKbWA5H9tRgM5PuEgQ7t4VGzrZ5ijFwXBa+/f57cn6hlwu1nOl1M89QbfYzFLFJNzasKTXTdsKWjMm446at/pDdMc55sZ+ceqPYeB8shAmTPYib2LXt4hOIo9ZC3q74baOUDS0VpFApaAOnfRyfMoIFB0FuIMBNXmEU870pxOpa+1ydWppxNEpX8LZlqqWgraBN7CzrT7ScoRoPX3zDJXuWu3Zc1NFImwTOB5OYtQ65Vkqzba331tQ6/aDRN3no/hmO02+X0zqHY9CUWoNNKRVcM2jIuWYu50JjbKVyJ8yGwVYs0A4nZvTvlkskTgcFWbheVywRPBCiTd2nJVnm0ZD3aRvvrfJhQLAPI8d7UF0zzvwwFcuesdQ7KgN9rQ43/JAqZ3xshOiQ2Ihdcd6+7pTMiO/Fo7VRtzYaESPrtdFDqECQwHzwxAm8N9N2SNYIeBeMAoa7NUyoTfbjEgzRWgW3Ac2eUW6SKG7PpV17nTDdfYwL4+kRwxKJOlwYpr+6WcED7LxNgGBzM1rxODeT5jszAYWJypWtZHLphpVykR0t2Htnyxd4fIfEAGPCIOLxYcarrWhEAmk+mkYvTmO62VE3GPq1Up0Yhi6Yjh61ztLJzgkvgxAh+JAQrRZA5B1ts8AOB9b5l9HMdHDYulcQWl55fm6oJA7HezgWptNEbc+c37+lnZ9wrdE1DHyRclk3XO+c7g78/E//lK//9ve4tVNqJNXKHAPLvJg+GTMidvNJjovFqCN1IKOMiWokHFWovVDrkDW8ZMqlEkrABXAhAAmY+ewPfs6/7Q1fLSgmrCvHfiTFA3d3b0jHB4oTim6E6UBw1S4cBa0V8WGYnwu7za7XDH0ixTQ2Ixbc4ZxpD33wN8e2cw4fAvM0kUKklDAuK71JdqzoN/1bjJYaa+lzdqg7CUhwJmcoxbRoLtjnCNS24bqtDT8EYf3ggO5K7W3gJnd+vX19pRdKscNCtQ5dqOUbeLEwEw0jzGSElu0pcKiMC9aeM6qyNDUmfPig1wVnZAeE1o0q1NVkQd0JEza5MZ2lEV9yKdRmun2lormY8TrbhCuFkRo9CsNSGlWFlGYju3QzbYkIGpS4vOEgM+t1tebKF7QX/GTEEqYn1vMj0JFm0jpVw9O13syAnbEUViyJdYozSCAPc6TqriscHH3vR3Fk6a0Phwc++uhHPHz0ObF3a3DKC80dqDmzsVDcCRJou6JUpuWe0zLT1kyaz9R6ZVvP5HyBaMZgBp2B4YlYr1fevfueGCOnk1GUthX2FOraLBHTjY2JGzvN2jLaB2EiyGBMy4i9t8c2xQQh3AgKMUbmebHQnxE+VkeQTWvVDnW7sfExchhT+tYaXhzJeyviS2GOEUdkWRau1zPPz88ApJTMODdyEVSNaKWqxJTQ0VTbM6OU2nDxyDVvpPvPUX/kzc/+EbOH45I4v7zj/PzI1199SXl55OH1PUuCvp15/+3vqOXK/SERxFDFhmVTarfwMXphu77n8XxBs00mH+aZfL3y9a++Y4rC3RTZrs+gyn2ItG5bAsmVWoSeLTm4d+hUO1u6+XhQm7SlkOhRwHnakDD46KmjsI+HmVa7hbxU5eXlTGuN6K0g6L0jqqQQb/KHNVtCcN2MBtVbQzAjrKhpaNWNhlGMd2/n4WAqNZNq7EZJGT+PsE8Jh2bekkytELIJgkl2tJlXRJzDJ48GRzwEXDJdtnodDHbbCZRiAXHOGZ8d7wlRbsQXRMit0roHmnnB0pB3dIjTxA4r02563wpQKy4q0/GOdEj4uJDVwoYOB8f1fB6SPKh1o7sz25px/jVRTH7ycLrj+e0jL88XS5wWR86Vy9t31OIILlLzlet5pWWTWkYPW81oy/Ra7IzqnSBKCoHj/T0mthAolc5K8NFkTY0x1DCv0JQi+XLl/PxI71eC2PeqiUObBUCqKhVLuxccc2g3KZ7I8FB4rPi/CWK4Te3Bin27y/xItPW2oXSeGJch//KIn2gSyFuGMOFTJpVid/TlivhML5Wixmq3/q6NbUEbn5MV83VoznVsjw2paGQf8YJPnrRMHO9OTMuEcx5tfTRkjZZNouI0Y82qeTd8DDgvVBiFqBXHXZRumXq0vtNnoLRqSgjBcLGqRt5Ry+fpaltNu3JNbtabGWnDmDwrJvHKl45LwYaEe+vS1WAZySGh02ujuoILAmOwZ1tON85X81mImAy3qKLScMEKfdRj2StGxhKx2sLq+v2dxWSxKDrkViF5s2+itnHQZk0CAcTqjflQmWYhTo6EG/6pyjRNA1Xt6dXyB7SY3TYlk/GUandOpzHNnjQZDSfEbk1a8sPzYp9gvz0fxs93Aqlb4yUlIGI4cZtT2fZJVW+12D6kCn460PvQHYt8eOiwcKqtFrpzuBBBgl3eLqAd1rXQSyf6I5Jsau+mA7FlaruQEKYYLcl2rLa9D3TtPD1+R22Fw+meEKMV7T6SUqD2gA93LKePmQ4PTMtipqVWB/JR0WKdWPAeP1LsbCrf8NEKxUlnsjets6dTPGYcFdCaB1ptGBK7WnKhCHTofbMuK05EmSjd48RCYFqptPWJfHmGfKVsG1FtKlV75rxlTscDr7/4jNPPf8bbd+84nGbevc/4S8EDj99/Ty/VTGzNDKil1oHkG1LQPY1vPNwdK2Zqz9S+UreV87uVunZCH0U5gw8ukTdf/IjpcEDXznZ9wT0/M233hMPMlA4sywNlgR4rS/SUbeN8frEC2QnzYYLrSqsb3plpq5TC9XLm7i6aNEB2fvsuacECVoCcM9fLhbxt3B1P4zANpCQ4Z0ZZK+5HYIM2FKM39BZtGyOYlGh74fn5ieUw8/HHbwyfWeuYcvZhjDXJjun7ZeAqlW3L49nzhLCjohp5W6klMyVbT45vumnZdKxTu+l2uxYL19HOSIKGLoCFkdXs0OnANCWKKE2GuYoC1fTwvZs8xFjVCe3C9VLIrhFDshfVR0IEH0wi41wHDAvWmuUJ1G0DccRuU8wtF5rawQQm1QErHLciBDmQjkeau+BaJUUz/QlmiHayME2viNHjekPXKzlf6FrRmmn5SqPjYwLnCCmxHE90MHKHC5ZVUdUKlxDBRXYmcIgH3nzyGZ988iPcdH8LHsl5omugbBsaJp7XanHq83H8zgrhyHQKzIcGsvH0+C3Pz9+Z2clGM2ZAiglV04Zvlxe+/er3bA9n+pBsmVnRDvgqpldGzN/gvb1jPjjCyBhgTNQulwu2cWq31a/2D4FjT09Pt8s/BJOY7ZM4N1jFI+PGchGkjSmd2M8cRw3NJp7V5AOn0wnvPdfrdSQc69ji7MnA46ISAbUE6nmKJg8rnuwcp+M9TqBcL9w/fIpoZ5kjrWeen95x+M2veHr/PT/69DXHyRH6lb/69/8/vvvyV1zrFa0ZHZKfFAM121TUR89jz3gyIVr4oJaK65VDNH113zZeTzO9NtbLi00k67iuQrJ3ZoT3iYxE1wE80Ka0amZ0bR2HJziB6PFToqCEaaY0kycdliO/+fXfUEuzIn0U3TDO9mKFZ0rz0FGPyeWebjm2nbYy6EP67Ng/xK6od6NJ3wuw/YxE+zg2OjpM8yanGpvm8VGaxaMi1SAPTq2RnGPCTY6tZ3LL5jvwHh9tSGKozQ/yn/25c2OQZEx04XLeiNVxHxa7I2rjsEzgOuu2mkzSFfAR8ZHoPI+P3xHuHnj9ZmaeF5M/aESbQ7hS8sbL8yPpXlGJxHDCUWljS/abX/81T4/vcd3uhO+/+xo3P/Dw5g+4bLCpI68v1Cy8fvWKFA+s1wtl28jblRhm4v3CPEWCN027cwlRKL2BivHwMea7DM10bxUnjiUuvBS1cKNg2GMDSdtwUFwYpsl+K0BvBBS4hdyJDDlN7UNyjHXlrt/8JgZGU/DNBpFeSLMlrosk1C9s1SNqE9w4mbxMayVOlxHCdKVzpepqwxXMGEtwRmLyHicB3/qgwYxGoxvUw6RDQpwSy/HI3avXHI4HVCFfV4rLNNdsK9szbRToIThkclA6rok1gOIp68j1ARyB1mHbyrjX/K24FEz+7TDz97ilQex+tS23oZdtUGa/wd7tbttRBC1+SOZMzukR0hyoucGlI5MSFpvil743YDZsCdHR8CzHAyWv9DG8Em/NtA8WuqfVGpCODqS2VfcfxtL2Hx9Nfu4DxFlMlglGBVKhlDH9b2py65F5EjAzv8NM0ykGYrQhZB9psrEEcs9G+HOKBAwugiPNDhdAouKTbegsr8AaubZL+ZwjhJF3UzEiZbOvy/dxJrkPg9TWmm1/fzDJD7aaGnxQsW+o0unlSllfrAOMEZoF2XhvK8HW1TCxYmuLrTlKEXATcT5BF1oupBGIlLdsCCi3DiUT9HylXBwyH5GUzOzjI8FPpOXE4fRAWu7w0UgZXUxvZnrgjheHNru4vVj6oBPTK3kfTXfovF3qfbaJf4hjUtMtHKFYoWREOjemLaNEdpBiRPsMawdp9H6lFfB9ZY5CvSiore2EwHV9MQnPPHH3+hWbNi7blc8+ekX9/mJmy/XKu+8eadvGFIx2YJQRWwfrkISY/svf9OxddKyNGkrGi8Wz17XiSUOfhqUUNs/dw0eI83YwiFKvF8rlikwTda2kYBeLX4S7ZWJbrzYlNPs/caASa62s1xe8E5L3lNZ4eXnheDzesHg6zB1gWLbaLXn26enJJii5cDhY8WtJtsU6VDVpjenl7eCNwQ54k9TskwFrFkL8sBWwiWkbU/sO3cg9JsvqTFMEIq1VSsk4ZxIJ74Sas03RxoXZe/vBi2IyAMSZiUZNk2tTCNO1ORmYLbEpg0oD2mANx3HomcbWUYb5xcyDJinxg/wjhrEbiFE/otZ9EPLqaG0zI5maQawNGhPqUHGkeTFqTx3yIZNEGy40OPDdTHXBE5lJoqToaTXjg0mZ3HQHKDF4pDfq5Zk7OqWsvDy/g/WMjK9NxnSzYpubrpY22ZujNsMLiga7pOKEo1Fb57pubLkwJbusVDoizvTp3jTu25bxDtIyE7wjl8q2FuLhyHJMaF8pvdClU/ILtWy3Cz/GiMPjHFRpbOszz1SmZbbyrBkZq40Ju441bFObLHmf8CEQw4cMDEGoQyaj4xJr3iZYFrIH62o5FTFEk1Bh5nI3kjBN+2vniij0YtOVvVB3QXAzYzNnib5rs4IxjCZ5L+h1/L5dBpdLMaOlNqTapDK6QHd+aL89Pi3Ebsv0eFjodeM0nfjpdMfL4zukbVzzM9Ia8f5T/OMT28v3BPEsh8DiPB5lLRC8sF2fTbYTxPjVfbWhg5jkw4ypUC4Xm1bVsY9WZxr77qg9DIkctJZtYt8FrQWtihagjbTh1ui12eCiCP4w01WZYuKjjz7m5emF56dnoou2ou6M986+p9ElFGVbVzuHemeZZkodSZHsmvkh7esj3XhIcxhyPS9ipn2UMJI27fnXcWbbxyjVCCt7wQNDlug8XRhbtW7EQoHrZUWa0OMYq3XLn4gi7IGoIdgmDO9uviYfRgJpjGw5k7OFIYWhcXdBKVs1icEYvOiYesfoiU54ujzx9P47luWe4/1nlhTuPMfjCaFTtpX18kQ8BpyfyNs7Q/CpgR/uTjPHQ+L6VIDCutrPQdtmGxjp427oXK8XezdLpjuTXySfmKaJaUoISl43xBk+uuTNpHbZEr73VsuoY44UJ+4OD3yvX1GzIbhRJSUDcsQ049zY2owk8bJu6J4U7HazrMn2gndmph0FJdLGxHovXPdOz4NvNgSIQzcdAuonagl4AuKNKOeH9CYtG9vlwuXlGdwLLk5oudLzBdE6UrIF8YE4TUQ8rcmg6lh7GUSBjDhYDkcO93ekwx1heH5KsYmxOvucKCYNHYh9wqDW6G7o7maItb/Gi+A8Mnxjqh1HtHdDPhhR1Q3EazdDNPKhATa/0o6WHdIwtQHYnixs/jZwEcQJ27VQVJGiTN1RO4Ri0/g4jYFJd2Pb3VB1lDHhDlMElJoNJmJfshF6dOjPEctGgVH0yi7FMt9ZSHbXIvYMgIEh2gj5Q81bh/e3IEvnLGROPYTocH5H43p8FOLSjNpUr8QUiZO3wrwb8cdHN2RVA7UqDBqdyWyc37+pRi1zOuSkvSHOVAa2QfTDrGv3CM6b2gAdk3thBDfZYWUgfMe1FXq+4rTRKEhPqE/YsKMR/EyIgevlynm9sq0VlQkXbcKXwkK9nnESqGWwzIf72P4cww2JOe5ovtO9s0InJGI6kOYDcTriQkKd6ZWNVLCbHTqMQiuYMNtWXv3DtM75YJgwrTTvCH2ix4kYEzVfyNcX+rbahHLgzSyuvhueMU604iEXynalt4qvldSuBDVijiOQq2NdC94l7l8dx8RV+e1f/GtKMTzktq7EKXF/d09vjxa97gWZPH0ETPRqF/u4L2+NzE5jMARVBQpBoPWAZIECEuwh6Hi8mzjdvyKkQG9XgmakrJT3T8yHI5M62prpyROmQCsFUZhiwNInjE+PFuiN8/MTNWeCj+QKpQrPy4HT6cS0zATnKa1SSuF8PlvgUe/2tfYPJg+w4tkNGU7JZVy0pjkthdsUL0YzTIcQeP36NYfDQkyWkltKvhlmdt2EiOnTUvJjimzTzmWZ6d2099obW6nUnOnj14y+YBTeDG16t03SNBvRom/kfKVoNx3leJ6dWCJhLdutOfJToLZmBsnh+p/ng6XHql0Q4gIuTPjgCcEOXO89FTGiiXfM88x1reRsODjVYhIZDYCl86YUmWIghGHeaZYuHWJkGrHw4ocEKttK2DnBhRHUJDCF03i3HNorh/kVwQnb+kKWGY3PQ5LRqWWjaMO1aP+bCZFg5i4Czh/BH8BFpuMJXTfOj2e+f/8eFw+8UrsIQ3JED37ytKDUzYyFwSWiKK2ZkVY7rNtm0ycHaT7iAlwvgev5CW3VNLnj8Gt1HWhOpebMFLulWnYr5bz3eGfNpZGo2piAq3kMvDVd2m1r01vfN7pW5Dd7x7yaScrv03q1SR2Md1TNDOixZ8xoqXKjP7XWR8iNZ4r2+boY6erILRNiIByPQ3ZVbkWdSQb0g8Gtdi7XM+I8y3Kk06yhwIo5L4KfZ3pXSgeXDkYnqsKMp5eN61vD/hV3JMuJcHQsESaUuXUoG9lVSl5v26FpmhCtXNcXauvglN6FKRyo65CK1TFsccE011XIvVswS9sxv7uwGjQrWhWpwuQThKEdjePjxIiGAN7ziz/6Bd9/+5a//e3vCDJQgoNeYetqK9zqaMabmpzGO29JqH1X4sptMm5Nu5m0EbA0X0auAkQXcKKWdq6YLGAU8uI+hOJYYzh01ONjuSHz6cqtQKZjRXlraMIkC0Nv2FqHJuMuMJmdC46QIn5scfcN0X4O9iacXzb6nDgcJ1ob02AHrlsC/ND/UXNmDo7H776iVeGP/vjEkhaaeGqBvCpr3sjXyvlJkThzXd9zWM58+snnlJyp5UxKjnA347yyrs+4OLOtj1yunafHZ7QWhM7lfOZwWGwoN/wFe7aGH8VMKwVtnfVypWcj5FimThuDRytWvfM20e8ebQE03jYqMS6G0naRrqZB1pF/0/s2PFOW5bsXfH8HCtGwzMm91ugYy12VribLkeDp0uium3credQFol9Q123j5Cw9V4A4V0I6gJ8gzMh0pq+RdrHmVtSIYdM8czid8D5ZE1xt6OpcIDil9xWA4/HEcjgypwnnHbVmeqiDClMQqfSWERcIkx9nmDUhTj3l2ijbZuCFZDLOOmAkTRhDoj7+7DGYsHUGfly59v3WUUiOI3KvzcQQw44h8+kmu2t9b3eFXiBrM5yyCl6xolxMEhtSYE4RFxO+2Sa+jHc5xAF5lDAC5pTaTeYjDPmb62PLY0NhJ2J4dRQfHM01YnRMk8fk6G34UQQfZAy+bLOLdLasxCkAwbay3hFjoNYOWpHQrG6VCA62djY1SDRkqZV3njhyJXz4YJJvQ24u2ofm3p7R1o0WpkO2ZXlQlabVDjjpNw+ZyUz7GCw5uz+CNw1as8SEW8EsOhRTrbBeN8Rn/LTAMDqG2Yyvj+++57qemZJnmo7QE0pB/IyoETakN6YDLIcEVM4vT+SSrVNNCz5MdEyz23TQa8I0/ooWkCLWXZlkWgaPtFCbR4am33ub3tfWaLnQdRQ/84RMibyZxATpyHJHLyuX8J7NPbFdXmhlo4ttFVBLQiv5itZB3KgXkmv0ejGN8rt36Ptn6tszSQLXkjkeDxyXA4/vv+Xbr7/m27/9G7749HO++/ZbzuuVjz/7lDeffsrTN2fmEKz7mxLqTWNZ9MMPafzkR+W5/yDBPBAb9Iw0cNkZEecwFHbiUR8Jd684Hg68tO/Q/EycHiiPb5k//4xPTycqytYqfatcV9PWBqds5UprhWVJTNHhtLGumbopYQbvEgW4Xq+EEEgpGa9fTXdvoWE2lfdDGtO7GbXNO2taZhFhbXkUL2LPYS9UVwguWrE5LoFlWZjneUhb6mgOJrtkarEUP+foLVCLjLTZyjwni3iOjpxXcu1sm6XQ+jFxdQ5kTDft/zzddUI0YogLghYZWMXBAtduk/2h5zHE55l0fSGJY8uVkq94gSkFpuC5bFc7MLwjeM80TSOu3eRF5mmxnAnbG9vqTRVaNVGkSeYU1YrvYg3qNuHDYtNBpzRnXX1MkxmP0gSq5G1lW69jyhIp++R7rFJVHF0CfjKMoGjk8JBY7jZEi03yrmdKzuDHMGDyqFSkC7M7cDy9ZpqPdkh7sbCTmOmqbCWz5SsS+tCpNlTzLVo8es8yObzr9G3F94JET28r52sdq/H90onEuFDaBR3nlk3XjSohzVJBVyrTchgaUfA90usILBoYYMO5dmoTpEDo5oHZm9CbHKAP1sUPPCW7RMM0+GZ03ZOWBTcmNoblbXsBMYoy7/3NnNvHZNVIR+7mDck5s23bSNAOf0eWE3yg5UwIgePpjnk+cL6uBLHV9raVcQlNZipubUzhLFTv1auPmSfT+W/nR2Kc2XLj5e3XlJ5JwSG+sW3vwR/IpVoyN52az1ZMO29BPmKTwVIcJQul2ffGEKlGV6t1NyqacRblJoNUZ8E8rdm5ZyFZu34dk0d4h8TIm48/5dX9A3/xL/6Cp7ePHNJi58pudodReDhGbM8owrmFv+guw5OhQsDkPOJMWnAraJyZ/qMToji8M/a+eXiw54cdlbnTcsZ7POR9tnWGqt30zsHhB4Kwo9QOLZtsx0db1ZemtNxBOt6NZO9B9RHZEZLVvDtq22NrGhUo+OBJyd8QsH33C9WKymYZLHNgPb8nr4W7wz2nh08R9bbVrFdoK2VV+lMlzAdEZvIqrJfE1199w3/8y7/g/uC5Ox1wkq0Qd0/E0xXvZx4eHri+nHl5eURVeT0v4Dy1dkrNdHGkXsx34YMFYHal1g0dPq/aMrVl6BuOSgzBMNO18nJZKc1+zuBvRafBGiJ0B87ZNqRutu3sld5HQdoVkdFod8Z21Z5JcWoFXuuoN/24ffxBz+oNWsXTjbHuhOAnA34oOHG3KbZ3jnTY8PMBvxzw5xfqOVGDs5qkG7774fVrXr/+GB8SXQKtG0LVSUKo1HIe24kFH6IpF+ggG352RCKubGjb7IzXMSAc6abJR5uC99VkTMHkYYjJgbuzLVQfqFdBh+FchnxtvLZq/w4xfKn99/HeYtI32RnyTWn1w4DEPsKobbo3nX1meGq61RDO2TE+1CEWbGhm5qaNSeYxzHGgzd6X4evRXAyk4roV8/Yq4h2IG0YG3wkRQgTxY9jSG21reJ/GGW9hiV0zvcPlqsRpJk0mu7JguTACPsMo1Is9J74zLabX98FZDpDI2BQZlWnAhgbJSk3S5xzO7bAOayzbGJKKs6/VpM02VfR+p3D5HzSqJttTVULtDTDHdB+pYK028IGQZroo18sL5XLFX1fm6WCyF+mUXLmc31NL4Ti/4jAdySWPwCJPdabtcovncFh49epEq1eK/I7r43u6n3DTARcO9gntaCl14CIS9oRM+0580MfuIQ9m+HVj6rh3PL3XGzFFBFyaBjJxTxDs4CtIYD4apQKXqNcXeinkXpHmzLR7zbjuOM6JJYLvV1x+oTy9I3/9HTxuyLlRy3iRxdkPqivb85njsiAd3r59x93Dx/zkF3/M/d0dX/7yX+K6rUllFIrNCTGMYq7tVwZjBaMD+2QmFJGCozO5hMMhA5fTekO9BVARAlP0bNJsDXh+Yq0bb//2jpc/+gYtG1uB9cVSWb0XYnKUcsV5NWrB0JkPZzIheKa0kJZIGcbEvdC4SQXEGPFdP6zDRORW3DvxXC5XLF7cVo27cVec0KRSyCaj2JNVf2Dm9mOqnWKiZJvW1rJRBcQprWXWdRsXmjH0t5Fq2GqnlI53lpSYpg8Un96tQTC2eEecRyVQWqNUKM0SPi3swiaqOjSeiBmdt3Ilv1hsem8F7zCOrhr2zYVISgoa6C1TMZOU/fRs+okOza9CCIllOeA0U4sVJ9KzPefqKNcLF/VMC0zzaejw9mY34vyQovxAs92rocNMo+xsSzG08mYiNISknwKHtBCcTYS28wtp3uxCGgz/tBi9waYcM4fDvZlM68r58oSPE4fTCfAsx5mQPK1X8pZZ9UrrdhE58QQ3WbGvHiiG2HQVJA//ga3cRQyp612jygZSb/rzVs0HtM+I1raifcP5aCdqC2acFMcUJ5yLhk7rnVpNuxiDvZfAD/TZViDZWtaSQ3GDgKK7LMO2oJa+afLFGA2d2Wq9ITl3Y6yK3kJ+WmvUWpjTgSlNtwI+prSPxfAhGEWFMV0D/DQRmGkdnl/OJtVKtuV04zKpLVuzoXB+ejKDqwjT8YT3gftXH9NPd3z6yaccj3f87jf/iXp95tUykd9/z9uXK34yE1lrEJY7WyMXoQ1TXgwej2fbOtvWLV1chpSpKSkkO2NkJ2eZHK7kPFbl3t4D3+hiRaprHfZn11mCtYrwyccf8ze//i2Pb98zhTQCgORDg7c3q06NmDJqib20ED5M+Pf/iO5v4D6NNEOsOAgYztep4UadiCU1YzQo2T/47an7MEkbyBWb0+wqHwZ/m27heJgEQ8dZ4EbHUS2ghWkKOLEBwkY2f8tOFNv/ZO0maQiJUjvn88a8TPg2NknIGJaM4hOl55WDN6LM+2+/tG3mGHK0loe0AUruuGAaZSeevJ25Xp7I20aJgeyVFE1+VUul10ZaEnE5cr1kWhNOpyN396+Q8zPv3j/S8kpywf6MATQIwZFL43ic0eK5nN+bsbcVaJYtQ/Boa1y3TO0NFz1RIz6YxtoFR6mFGCPeW9FnMAara3SgG0VAS7PgNMFQyGoIZh3Gbm3GTXd9SA1dxPlkaGg3gYvUJgS1sKWGG6nYttWzv6xR92lGvakfuo8U72wY6Z5peUWmieX+I04ffWKUs7AgMtPV09VbWF85jzvBcJzaTQXh3UrAPAauRHoZ0AmfzGs2CnSvQs8NFyFORszS2vDBZDba7FkwaZLgu4wnFRQ3BvOmSLCaeXQPGB3mtgHpA0igQ+LKkJ38cKsm+/bKUXOjZgthDIttgY2VK4Tq6BrZSmXdMrka7CGMzcCeUxBmj9aVRkfi0HVIQ5JtBYIbk+7ecEGYDtFqKjFUeQe2dZh5nXmLXJCbrKxLJ9dCKZ4pmrRXmz3vYBIj8RCSqU98OlBqBTpxoF5rK2Pjau+6+XjEfH612oZ3DI7EWcrxDmgIwehz3gma7CRzo8noHQv9G9ur1jtlXQmt9yHlMNsQYpqx6fBACJG6nSmlczm/NVb2qRmGra62wuqbhYnESAgzIhO1RwzmVBACMS48fPSau/uFdX1PuF6RrePmE+H4mhSO9IF/2qrQ1Ay8PkyIj4jbsWD2IgqMsB+x9bca/s7Yn+2Gkau1jP/dYLEALfUT2qsVZDHgJTANrX+OE/lypq5XhIrmjvSGV0XLhpOVOVT6dmF9eqS+fyI+ddzm2IbhPm8bvWVm5/G9cX+853K+UGvj1emersLvf/973r39Dl8KfhyITpJdfN7CmQLKbVSvQnbFLuvWwVWcr4gzSsT5q5WPWkBqhSi3CwaE4IXJi4VU5Cvewfd/8xv+3f/w55x++hPSj06Ejw6INw0ZXah1xSd4eTrTuhppSBzQWLcrkchyPBkbXZWc8ygORwLfQAS64Acf3RKDjfxjk6darSP1waQSpayUal+jE0NLWRCMOeuNY28Pc62GgPM+EkKkxzCCjAbZxzEujcq2WWe+rsYht5fVCvtpXgjBUVpmKGdx3rTT4ho5V65rBe9QotGcRNGslHI1/WjNhkHzHglK0wLVnkknNinY1o2cN1rrpDixAxxLXunqOJzuiZNpiXO2A8C5MfGfHckLWsxA3WrB6XVMhxK1buTVk9KRGAIxzlasMjwETnh6ebFalJ0hXobcoMNAkZq/AwRPmGaWZTEkXt0QGq1upEMkTp35UCnDpBxC4Hh3pHWhZKNeNRHUOaYFum7Mo8hxHis0u9B7pbYVNI8Ji6PUzUgyztmFTiN6QRK00hCxDYQVzoLzlmbd6fR2pXUzqjk1ixjeJnU1N2P+u4CLEzF4OrsR2yaIzic7crvRQOb5wE73ajpWvCh7iNr+irnB0e/aKbXcpGAyAt/U7cMII9nUQe0JIVjUfXCoM7lGd/B0fh5SssUKlOBRIqUUk7qNtesuzQlxRsWhrY8tlPD48sKcTM9cS2HL6/DGdGgr0iohTvS6cX6xFW/eukl4pgc+/dHPqeuVgFGY6rv3tLYSkqde3uHITNpRd8FLRKpJgYwgFamtsa4N1IABwXsLNHIOHwNejPGrw6jsXQQMYViLTVFrzgQVArZlSDEQYuDluvH919/z6//06yE/8sxpGjQKK7B3I3fDJubd3a6OMdUfEe19TOidTdl3uodKN770kNMYkYLB9O7jEhWkGztbPzwRo9C2AnIfzYlwY9v3fWppfY/93GUgM3X/+9BHKyMXpOLC8Lk5pWm7SUgRMUmY2z1Aia6Z67rx/HxGmQiTGxQ1k5S5EAgp4V0jlM2wnu2K1JWabasJFnQn4shrtYddCrJ4ynZlSomP37zh8vKWDUvijnHicHrFlBZyMc9TDDPHu9fc398NDLYNfVo1E3bvNsXfr7bWlOPhQF07j++uwzh5E06Bqp3/uaBihRPeG6Kxd7rmgWc2FG4phVxsO1y2YpPekZOgA5jgg6GQHYIX8+g5HDWrEeichx4QmfBuQtyEiwsqhv8VPxPjAS8TzidEAozt4n4+iAv4SYg4lkH7qTHg08y6XXHBk473hOPJtrDphPgDvQdqA3oltuNoTExq05upLNiuRMYQNBhdLvgEboJ1s3/svaW5SkE00bPQsyPnzWRSHYozmZQZkK3QcgqOwVtXkGE4dtggTYfSY+erozYQqVXHj8sGIKbDF/bwvP2D15EB0HZIhSg5deTakaD4KtSaeVkz58vZhhYe5jkypQHPaA7F0uwb1oh6YcAIOt47QhzvOeY/MJCOUYiMjONoXahVb7KbNPT4qo1cVhALnqxNkCxUMeKiD4KK4IMSUiTEiNsSuun42YPzVsB/8FXapt5C2sZRUQ2eIc5qIvHWwJlE0JoM9mFqCLYZchb4ZV6dPiTGhlIOJi2wb7qKcbuFQIgRWQ5oO6FiRrHr8zsEi5J+eX6mD9Ph8fBAbVZwTenEMs9s2im+IhKZD3ccP/qUOHuKd0z3Z05MnA73vHr4jOgO9HaltI3+spGrjDW6EsdlqdKHntgepjB+UFbQmU/AIp/NUe7VG786bzZ97o4YZ1v/OZvIeO8gFXo0A05MCyEeaNOVUAr5+YJScK0h3SQWdT1zfvstz998hX/aiNdAvYDEROmV6IUUZ+6Whdkpj99+w9P7Z8J0x7u3b/nm8V+znZ85lELaxd7dDhGcENoItlDLAuDGPW1soiBWtIqvhKh4Vd59s/KTehzfl0BVHVIDK4ZDAPUdpbF4R6+Fr3/zay698+A/5ZOHn6DecHAMxntvnTWvpGkaxYvxvQ35ZBQRN4LEEMilIK1aCJraJsX7nVYwTGFYGJKIJ8Z90tVHIcdIXDRDlQiE6D8Yiryx08GRczGSjlMrgoICmXW1FETT8xZK3lhrHdNSu1Sd84Q4MR+OLIcj0KlrZQ+MQDyKp7bKdcsIgk/RtPxxwcdowSJj2t9ap5diPivnRnPSqWqJir0VIxLUK6hhT7M2cr7S8ZYA64ST93Qs5VmB4O3QkrG1Uu3UkbAc2cz/FBytmpa5Lht+PNPSlLUUWi0mK6CPBnI0yGORbRNiR66NXCvbdmYrjcPDK+blYOvh2+FnRU+jMc0H0qSs16uFobjFpknYlNZ5R5wnYjxxub5jzVd6a2x5YyvdLskg+GEYNemCablbryOsYzM2twfthtXtO/0Ei4jXrgQX6SFQO2a4921o78tYVzq0jqKvN3Jv+BZxPljT2D1dPMkNfS5GxXAOLLHSGNnO24FrG0SbzFrRmWi937TTrbXBsk8UqVaUiEnvJHh022gjqVirDvmSHySXDzrqnbqzE6VqrbfmNIRgRCoRrrnQ1KZJNWdenp8pNfNwf890mOlNrQiaZ9brhTk5opssDDB48InrVsZF5/Fh4e4hUuYrJV94NQWyE77/+nckKahXLu++IXZPIBDwpkXu1oC1arr2lCZasRC33itOOilE5hShN2ozfbUXT4qJXtSC6UobErlRQJsIjd46ecucX1b++uWvyJfM3eHEdl6RZvdBG1MwHRN2hhSm9yG5scrbLk9nUg63FxzOUmOb5bWyq93BTOSt7Sx0y35p2kEsvbf/3dremrmRd7BvLW2oYf+u6zD5NWv+xqNvEp+BdHVOKNWM6D54ljjhnKGJq7aBd7YGQFQHJ9yz5TJW/o7v353BC6/ScWyXLK13LBpJIXB+ecJNEVqmbC/cne7Y8kbOJjdwPpBrp26ZtCRqzuRtY54PPDy84fr8TKuKdxMpTDakcoG7wz0+TqT5SOvw/umFrWYrmHxgK4W8rlwvZxvkpUprSvDJ/Et5swbDMfDE5oeoahP42rLJFiczwGux/BdKx4uBLXo3ylwrhVI2ymhcYvSk4McE3O6r2ssILTT8o4hYuF8H8ULs1nQJEecnnJsQfyDEO6bpgZCOiJ9Aws3DhQg6ZJXaFQkTccguNUW6jyynV+S6UnsjzEcIC4SJ7gbSVRwES3p1Em94Z9uam5HTBzvHccZs715xbGiFMBCLbkyW/XSghUK5dOKk0EYSuDMvFgP1KuJMEdAHLed/1LziZJfYj5aa8YyNVlf8bb4PtnlDzCtpZYbeEn1NpxJRhG3tNLLp5JOSmIesqptpWJsBRVTR7imlsq6Vl7WzbruET8HtHqehoZ92UzDEJDQqU5pNunk1dcA0TQPgYed/TBCicf3TnGyrL2I4aYy0M02JEG3bj6smDPGGSg3Rvge9N0OYhj1QUUGM8rh7Psxw3MekXvC+Wf2njPrc/AgyGu/WTYcfxllU+57Dw2jEHUGwKamxvJ05pqUD0cwEOjHdC8euRoPolX65UroV+N5Fet8QtyEchvPY1g3iPWmaWe5O+Dkh0RH1ntOrH+Hn15wOr3h1/zFOPKWc2dYXNs70tZHrxrpdiNOEJ9sD5mytotqG0k1vy1hLJGWsxRwi1dYwaqY5k+/AjnjyLtwmnTQzO+ZpI84rbdtgPRPShbplpGW0PkMXnr5aOV/O1FbwUmlUgguE6gjCCA/quASXy5lvv/mGhMdr5nz5jou+R3vnAcF3a0jskh1mXlWijq5YhtZeFd8i1XW6uyLyQvTPzPGRtHSi2oXTncfTiQwmtpu5FEGnRI5XvDd6wvGwEA8z6/fveSHw8Sc/Zf7inrWviI+WK+A7ISzgAqU2lvnI6fiAl8g1N3IpLCHiUxhmx2FotvKIEJMV5CERRHFuswCpwWW96cNkp9tM4/ePqZ7aIWIFmrBnJYDgo3XXEmzI1buDkMBZcEjdMgxeOyhUpTYlhIkYJub5yHE5EUOi1G0sHhm6uT6SZIutfcVByUY0CJHuJpp08BAmT1vP9JIJrhNRYm/UnmnlaiEmrdLVppiKs+ltzZYXP4r787M3hGiacN2e5VqVrTlbo5Lp5ULJL5R8pteLJSu7SteIemV9eUu7v6NuV9Yt83I9j2CrhePhyFo6tTRTpKkFyc3znU2a64ZsV9ArW7lyPmecrBymEynM9O7J+f/P1b/8Wrama37Q7/1uY4w511oRsW+5M/Nk5rmVy2VjU5ZtWmDLNpaMhWhAAwn8d8A/QQNoICFadJFoYCHjBiAZg5Bluy6UcZ2qU+dSPidzZ+5LRKy15pxjjO/20ni/MWObkDJzZ+yIdZtjft97eZ7f0ykKRU2a4gWqg1Iqt8vGPLkxHR/891NEfGfvDT+t0CyxcS87KZip1YeDmtLQXmx1iukclWzT8LUiGEu6dYGkLNMjjsB2zaYP1mIHejS8Ym2F0iq+B7xPpmOszRQSghn0gmHsYkg09Whp4ArBR7xThDqCxWyyLM4PI7MxjaOEgToUUojQlcu+D3a6vQ8OlJliG6vg/H1qWw7CyUhWtjWtDBlLozqhji2O956cM2Cs/d47+7ZzOp9HoVSp+cbr5YWX54/M88R6U6IfLPTdUKoCOFGyNkPqRYBGCJ193Yw2FhwtC80Fwnzm8zdfMS0PnN58Ts+vvHy78PLxmY8//DWPZKJ3ZDF+t09pUJg8wTn22u7j8hiTNVMKziL3EO0kiWh2lC1T14YWHdNCh1gACxIj1Tlu68a6F3xvzBqYixII9ApVzIciDtyYwpZmJBAFIwqpvdMdfhT6Vth7NcqG4BFJHHW9NRhHQd5t3S7mozBPAKNR/lT6DMX/fT2OHuhF2w54FSQYY7/Xhp8CLnjzBgignTbY41vOXPeKrBkZpmsjdCTonbKPBsMbnYyq9L0Sp3G2FKHtjm01Y596wFlT7hyk+YHmZ3LtzJNS6gZuYT4lbvvN5G/Os6Q4CEydvVxBPmM+nXnqkffvX2n5len8hpQ8pXSulwtfnN4Rp5mYCl08Lidy2UgxMMVoqNWyU9crOSYSJnuUIGy1sa+bgTLSzH4xQ2VTRTC5I1SIAUmzbeea0n0kVwNAeCmgHS9meNS+cwRO9ZFYKj4QvQxq2ycSmhnprTj3XUy/PXnmYZSd04SfHpDwBvyZMD0S5jcoFqpWW6MPt4c7SFtOTVLpPFP0SJjo/hHtjVh3Wi/E6OiaxqXWUL3aon4gQh1+cN0VpdKaBe4FP6HZfBviC13XQfmpJnt0hgt2LuKOSzMm1OchgwOVTkhiMArt+O5w7ZOkrI/tSZc+JNF6l+wcBbyOQhTn6BzS0mPTeUz1la59NNLcN09NPVLsc+3VVBxG5DLZp8PTm+O6VpTAeoWYdpzv3NZtDIT9fTMQwvH51e4GhrpjyLdDsIGd80LrDvGdcGywEWL0RrNxSvCWEm6+Pk+thVIyqGdvihCJwULkEKWUTK62YXHBDQWnbVO0G8WI4cdw8mlza0OcRhmbjF6sJkyT3S/Ow+ELrFrtaxnBlCFGrlcLWjwGeOGYXzgc1dwLdkRJQ4IgMrE8RVwILKcHtBof3KUnpvkjtXSCj8TZsJUuznSEiAUaLaeZx6cT8xLthxtsEzCfOvN0Ji6P9tInDyFwchMuZUJI+CB2Mfc6NMZmpjziyGXg9LQe688DYze6NFFaM9KEqPFbtTpUHbU101BiPNEwzbi4gN+pPuPSifk8dLLtStsW+upZ2k/p643b60a9fMBHJTlPe65suRijOTZquXF9/wPLtPDF+R1UT32+2CrdB3w1DZsOyXaXg6Nt8qLo7OJtvaFVTNMXBbwySWeRzNlvVClQxjrGObxWgjYKoOJxMuPmBZ4E/ExcHvns86/ZiyN/2Lj89Ue++/I9P/38C7qfWc5PuMUjUdjbzrbvJPU8nd8wxwXXA+lkps0wpYGelFEYy50VbGEfdqB4Z5dZG7KLI069N+vevZfBoDcKDEPbF+NE9Ml+SGMdpQp4068pyrpdKSVTqk3Ie1mRekN6HuFiaqi5rOy52WRpcfSmbPtmZkfGWqx12iDaHPKQlJIZC9WmarUKvSfwJg3zrdpkko7WTNVG08J2e2bft7EpHdPHPighOCs6JZiBbfNk73CcEQJuUDb2246GDmQulw/c1o+IFrTu4GwDdSys91vn4/sEzrPnyrqthBRxPDK5jtaGdBBsQlKLpXoup8kwkr4hUthb5ZZfeP14YWXhPL8lTSfAJmOdbgzf3u3iUIVeyfsVdQEXEuKhtEAMiTg9MZ0KpVxpbceFOmQYNmUILlAwKpMXRy0btWyWtjhkSkEWJE620SpKcIngbDpbi/28mysU7L3edahCxczLojIQeEaoAUcrFR8iwTl6xTB51TZPfvfU6TSaL8tLMKS5FZANaG5o7Vu3DcSQcNRa2ffdLq1uiZveeXyyTZYGpZUKIaJ5N0O4jE3VkE6UkhmKQ/NQOFvDt+GLsveBab29V/BqmMQ5sN+g1xuvLytoZlnOtrnPZcgRlFJ3XCuEdoT3OFJylGIaUbwjuAm087tvPzItDzx8Fmn1hk8T3/32d3z/l3+G08YcI49ffM5tu9K6oK2yXVdid8TxvkGsmNq6NZhBO1oVpwFtnrpV6lrRomNSaAY6uhX24hN7rVy3Qm+N2B2hK7RC6EIdE0tVI1eJKClG26g4e90czop47F4Aw9nZNM/QlqI2aTsSs0dJwj2QDzeeA2PwH79+TFwxvvYIbNRDojO2jwfFSM3X0ocMs46k0HtKKjIIUCZjKl257XU8EH1QcA55kQ3nFGXLxUy5mmyboo71aqF150eTo+EarRiPv2kgLG+NxOMCTSvrdiWmidIr+XYjpo7zyTb53TIItu2K+CckmE488cTykGjlRq1X+uWZ1+XEYzwznxZmOXFbbzx/KKzrxjkFwmSZKWW74aOBBR5OTyZN3HcDWTRD405pptGoe6W2jHedZYnEDLE7GgFkorBT643eV7oWRAf1TCtB1JKFx5T0OOMPmlCaAjo6Qe1KbbDnOuR2zWSVdbfJ/jB9Gzkngjcyj8pRewznR690HZ4S8Tb5xQ8TZKI528i6lu1j98yeC6FlNDDqnooFuc30FsBXerTtHjqDpQnh3AknN6pa8dnyStuvXK4vOK+cH848LG/wOMpWURcgRLrLtLEh9SoWBlWsHnTukIr9WOamjGXzj4KqdAxRTYZjqGPH/Q2ExXShZpIdmcHWVNhVb81WH5u6BreLKRPQSpgh10zeC3mHUu3ZD7khLo/3s9y3BuafsM1rDIY590GI0WqVPjbFtVnuUkymx2+tjhBOYZos2AowVHPfmaaAiIWLih8Ki95xXS1naBh8qw465KChhQFIkO4x5Lz9UGyo1aw20BGUJgHUPH6td0LAvA99yOS8G34De22c8+Q1U0sfG5FPEqlwrFVMrH+8GGP+Ohy5PpihiPMbw2iVzHz+jDfvLhYJLc6MdMsZcZ7SOpMoLhoR5HRahhzDPteyLMyTWIFjfjOiS+PejaRYELG/2wdSDsws2scXftc1YvpmwQ66e8jIwBrar3ovDLXLkPLYyr3WzrIsTNNM8IEwktKiOxvnVpTWFkoMaDSdmNsy9SVTrobEWtfGJlcyDdfAXQprK5CFs59Zb0ovBYozU8teGC6XH72BGC/KwdofRI5xOfbumGKg+USQQFDDKXXvjKrQ7hJPRBteO9Iz0/j5pmkBP7M8PeG95/Lxhdu204Lw7vM3PD49smodJBBDWQUCKUFwyUJOmj0ZyzxTsMK598F87UfBoWP6WE0zNoKp7hOwPgKBRuCCqU6suId4N90c6ZFWGDD0e0cpa/+/1cK6Xml1Q4sdZj3fkLZBy6agrWqGpCrsZSX6BZ46TRvSRpZBijjf0RSBbrx1OikFzqcT8zzRqoVFHaE4zgV69bRgWK9eK/t6IauAVHrZkGYFq2uN2uzAcX0ot3vFD32m6EavKzVja2Jk6Dzr4O1urOtKrZ05BnxodhA425KpGO7ttj4TwjRkaDstF7ZbI8ghaLTCNmeTkVxXmLd5hI51as2UnAfCsxqhZ+/wUInLTNCG0PC923TVO4gVoVD7Tsng6oRi04TW7etc0pmAo/vF/rxW9n2FpoTgQBx1GP16bVBNroGz5MTcCz5aMI2i5JYRcYQp4Ehs2bMVNTmaytBgKmoaKdvtdaitIGK65W3LiI9Mi61La5chldmRLGbkFuP1hyDDSOnpPRhpZJyP4jy+mdRgmiabojYzrFrCKHe9u52BMpKYA86Zgdd7uT/XQ4Vlk25Vk3HlfQwr7NEPg4CScyZKwkxhgfP5zLatXK8vQzI2jLPThPfN8h5qNqkRRhNKMRFjYDrN1ig1i3avtXG7XqmlsqtQCHQ3MT99xe//zX+Rb//yH3OKnUUKEWX78AMxBE5v4fr8QrlsuNLpAzvZh0HR5G8KanKythfyajxzp2OapaNw6MocEyDkdYNcmSQQh35XRbC3dicL9OhNby0BlxKsG74PWdUxtFK4E2fuyXX2ezqKj0O1bwwmsY2sc0OzO85tcWNGfxTwo8DBchS897R+4DBtfeGGWVYDllA7m1Sii6ViCm5MFz1oNanYtAzpX8UHy34oVUmTeRC0Ky3bzzWkGZVOqSZHDcnjvKfkSsnetPbeE7zpdbXDspxJrTK6FvK+k3NB0CGNsQ2PT5E+kpXzdsOHCzE98e7pzBIVbVdu24XadrwESrnS287T4xeoOLbdKF2tVjLdAnaAVjJ5X/H7RK5GuGOgJ5FGqYVadxvkDbKJeWwa83RCu+EdswZc91DUpsVtpzcHYjK+4AJNBHHdpL4Mmkw3eWeKERG7L7QrMVpjbfklpvu3u8veQ1p2XDIWPt0kTUoYfphGr4V72rm3weWR3O2cDfaO7VEMjuo929bJ2fJAinRUM8hIYZYdmkddQXNHxRODfX+HRt6GNp3brZBfr9SXF/Z8selxELwPuF5ZL8Ua/FHv2bDXvGx1PMPtMMeOarD1Pkg6DOyr/WU5/oyajuIgit1d5sehZWXBmNpbyOOP73ULUGNsL4VeLeCxacfvUIe2PwSozbTrjNckTc7gH6PRaHo08KZRF+dwwePCj0Lueh+whEaIBn7RXC3UKjjSFEwOriPfpXvmZaF3JZfGkX6rzt7jOWczX9+Xs59Iakd+zj2jYqCpe+9G0cHyTZwzupVv3GmDpVTEmzJDhzdHxrPUuo4hoRKCDdn3dQPs8wbtzdY0wuD7ysD22DRWVE324BLiZ7vUY8PFE/P5Lb3Zw5emk9E2OuRqunB7po2wYusuuzzAmKP2hinji7FOOCWx7mWYBXobGnrv8SI2zREZoQEyCvxPhbIbRaMVSPZgee9wzT7eoeVsbYQB2JjPcG7OUk9btW65i/15dRN+frJurTf8w4Xp3UrYF/wlU19XLpeNdau4WyNJwmVlYuKSG6/lFW0wx4XkPHlfzeA7GhHkR4Wrjq58rKWcHwdGtQCp3cSh1G5EmdoakhtS7LVriE01W0XKaiFdpeG64bVSXJhPZx67Y5ULNZ346S9/yuNnnxHrBklRb9SBPlBXh0FDq9JbtlW3E1Q6Hj8uBpt4tN4sTY06ulJL+UM7B8aUQQcBvUt0/PF9qjVXrTf2Ytr649K14mfgJweuVWuh7Tek3tD9Ss8bWnd0hOO0bh87SBgHuphxVwtR/Jj02iTOB2eHe61Iq6SYOKXI+bTQmhJDIe+ZUpSuhdqL6eq70Vxqtcmj97YKFGf+htLtcvAjEEi1I63hteF9RHuEFum5GymKgIZITNFMYq2NMLhHgmsWVtJNZwcjrETUNlgy6CJiz3YrnbyNrYfYzzHXSi2WoHpbV/RmTYI4Z1q+roQx7fBUnFbmIHiJbKVDqzig7hvr7WJbjBhpagxx8UJIibJ3UopGgIkTpezs6wu9rrhBJ8oF0Aq9kW+FWnYcOky2dpFXzbQ6mgl0EAWsEMRbI7mXYuWYGD5OxZrP1m0ab4VBHeFE9gz4bPSmkIKhCmu24k6V1otdrupwXhGxFGFkAsS8HSOgSZqtZc/nB0KIrNs2nnOh08chXe6FuV0a/Y62tAZnjCGq6d9tI+YprrBvGUUJ0RN8wgzphVIKPljidz+KlJTY94T3fRB/Pmlue3dsm0XSW3N4JCEG5nnm1le2bUfVztuYEsvjE6/XGz6dcBppm5KevuCz3/sbvAmdSXfy7UrQmaenByZRnj678s0//TX9tpFOdlZPKbGvK9IUXzr75UpZd+rW6blC+5HsRRVplegtHXfbdspeLCG32Zmk2miqNAdZlB0sC8Xbz7J7QDqLO3Q5n4YEHQb+8uDrmExAxd4/ikmDVH5c4Bid6sgrODaJvR+0F71vlBnv8QEWHKg9xobSLlqJGPwgjI5OgzUGKM4pcWxEgzePUesmK5B+ABPc3fynombi84FAB4L5XlLAuQMy0QmtM4fZZHEhmOkypHEnK9EHci84rzwsC6o3hEbeb/RWCFPCpzNlXynxapNDKilEbttGyTda3akN8j7TyhXqA3vrrNcXastEOqUUXHSE4HEx2HYi71Q1jnv03gIUe6HVna4VL0pInimdaDVzu+0mrfDgpOJdInnFTcJWDMXca6N2Jfdm7HMTi5icbqAbrQbUIZ8Q+3mNZs+foj0ZKvckWzNgdlottLqBX23g2W62pTp+HYNFEUNTt0gXxbtDN2/NXO9t3B07rd5o9UofEAPVaiRA7+ms9CbgmzHcg5l71VVMomPnwb5VtltlvazU64XOTlDhdm3kLROY0d3T2uD4j2FHFSW3Smn2LLdWzW+gnt4PjOshc5P7s3r/dg+T7P09MFQJY2xh0JYx/dcfEWOOv8cIEBtDKFXLR8JVnDZriL1lwMRkr0PwzqSdfWQDHZz9sckT/HhPjy/teH83CNEoeTpgCT5AxM7iGI045r23DRowpYVP6dCOUishhiG5s/A5mproW5xN5Z0NMdv4+dTxdZbW7P4ewxf3aQpNDIHWlDwGSDqGpf7whI0h07KcqdU21zGa52JbV2JMd3xmaKXYQ+2HxlGt2D0QhwxtVe/ekjdFUF+JPpHSeXQ2Hh8iKs6wZ8kCqvzdcXFwdtso0gTrNk0L5r39gKR7YrS1iHV0Dr2bMJ0x9kdBGP1I+hyF3zEtuXdF4ySPMYAGaLZ2PR5EVWMqt1bJ23Dvu6MJMW2jiiHPxEV8FKY50rRSTjfSm0zPC8uT4ylN/Oqf/yP+/O/9PX73j/+SRSa0CNtlw4nx2HGdUiqzg3OYEOohQ0PlzgIwWUg/uA9+BGpBCJC82Bq6dXLdEV1p25X88YV++dqkI5hZxElB1lf2642FgDaLb369Fc5fnnGtM4lwfvM5N3Zku9KTXcLqrLvu48K1tNmNMKQgpewW3jEIK9rkXnhps6lLGXzvpsW2Ks7fp5XHg20PKmM1OtZV4wehh0JsTAMOzbE1A+0gEY4gL9Oka9uh16Fn1RHoEInxRIhn5pMnTCdaa+z7Sm+eUjK1GmtdjmNrYAN9K2jZyZuNNzxWO+ReKWUj55WWN3rdaGU3qQEOJxFRqLlw2y6gndMy2YSgW3CbtkqTgjrDFIZe0XRCJSEumU6wWZJj753z+YzIQt2vaICyr7Ria2rpDSFT9httmnA+2OcR0NrY1n6foCiNTh/N+7E5MxMxmGkshQTNEKNCQ3RmnhyPywN7zazbjXy7st5uvP/wPS4Kp4dHnJ+N++sDU5uNFYzntJxw4nh9abxcXsjbDzg6vZnczo/gENGKF9Osc4TzaMfJYAF3QbUQXYdgfOq83djWZ5smJkt49POEc92wu3Ud0y/B+W4bmnEuOGcyGu9N/690pDtbhWPNam+ZUgZ/uGd8BOcTfcgDVQVptrqOOdsGMMRxeTpUTV7kRhF96OdtEm+HtVGiRlpvtHRlwYYSwZucwuhQJjts1bYAMSYLx9u3ITGwi2VZToQQ7zjAo2HxI1vBe8OnWXZHo7jCn/7pn9qkCceynJmmidIqMSXepJkDuhjlMy4p8sf/wr/K93/1Z/S+M50+47PHr4nB8eWbhdcfvufjSyW9tYFEEOH9d99TtCK10nMjr5V829HNWYiyeOPI3ysDmGMi4Vhzw3WILtr6ewygmgh1yC3ED+NwDEPn3ElObLApDvWfdMA/SkWwSaLqaMJsFmm3k00S1VlJ2HWY+ZDhObSPwb3AGfO6MaXvAzF9FDe9Gy5Qgl3gEjApo1fUgdc+jMYKLZsvwEVj6geTFMmQ7QBmID+IGzLM6RIodRtnakTBwsS04Ew9Qu9K9JZwLOKopZP3Ys/O2O60Ycj1QMmFpsp2u3F+fOI8PbLtN7TeKN1IJx9uhecPv2XfX5lnT++NfQ28fvwd67pTuiOvO9IaXRoeNWStVlyY6b2w7jvTaTF6Ti7gnAWHJY9oQutOzf1ep3TN0Bn4bkW6s3RYiWzN07LSit1htTZEKzGMAZNasJKopbSKE7SCC3FMd+3Zat3oWA6DRvTeaaXQWqbmlcYzbq90kkkeR9F6pEg7b0nkrQWLlgvJkLx3I7enlsJ2u7DvN3rbbdChJscxWRG2fW62SfLJhm5eFO2Frrs1hr3Rah85LkrOBhWodSW7TmqRZRJ8sHPDNTXvl3Samr+sgr323pm8mD4G8DYVP+4QwZQe7vi9cW2bbMBkL2qdEMc1btP6oQY//rzYJW5yUXvv2/vHUTr4JkPOVK3x004K5gvoqvjoiTFxvW6UWkcPb82QDyal9H5Ihh0GZRnvyHDUnI6R7yMjS8SMsGka9cgYIovIj85gN5rnSB/sebkPOO37M1ndjzCZ4gbFychnJRdToYyf4XE7HxvCo7DPOdvQZjkkXVZLaTMjfmvgXSSExL6aWkEOiXdveZhHbLJpEyeMXzwmyOIcOiLZD2mLjClE78cXb92UEQTGFzsmSsY47fdv1IKJCoc23qbvRqKQoUO0os4O5mMCr2oTp2maLAlYZOigTdsqMrrMamzcI/0u+GAa8HZ0PjJeXOOZfzqbh/YRKNsNDQmnybSQfljeJBGmM+enz9mukEj8/Bc/5+FzIeWV21/9jn7bkdW0oRKDrXzEPq6TjrSORpsg2kxoPPBqHfLxMHRk0CMapymOiRa0Uil9x8uNXleu3/3A+l55aEJ3jooStMG2cbltTARyFvz5RJOFvQeWd19StTJ9/hXp6UycEm6KxCnQpdLEeNW9N5wqOW+4I7G3W+BKb33gD4U4wni8s9ek92FobjYNdUcwk47J3DCbKQyZgP2qtdpriZBiJE0TpRqruLc6nPMZJ0r0gtadXq1ANzSYIGLYQ1VHnB5YHj5nOb8hTie6OjatFrvd2j3foeXCvt7sQvGmxX3eVp7fv4cQLNAqzrjg6b2YMaYZWq23Sq/VINYS6B3TX/pk9KVWKe3Qx8q4KJqhJqUZG7qNCw9DmOWYLbxGbe3qZ9NsGhNbaQgqmGlGbRIAoLVbI266ujG1CEO+o/QRmIUcMh2jFwVnqLfuIyKZtq/UUsn1yvUK4SWyqAV5eJ/ofQWElBbikpjSjEoYw5tO3ldiqCZl6yZVub78wMvHbwn9leBHajFj6tNM2mSITJvkyzjoOp3WHEIxOs8eiPVEUGW9XFhfXihVcfKAm94wLe+YJ8e6fuD1daXlnegZk7kAYhuFowh3apeEyJiC1zy2OXU8lWIkl9aImggpDxM4ZrQdFJVSim2Jgpl47bm2c/TIhDgmvMckP0a7IExnL2ZU3jN+SvgUCcGPhtNSuJ3zdO8Zi6/hA7CP57udjek0WQCXeHo7NhIWmnVaznjv2bbdNgLdQlqs8J8xiWAzwsMocx0wTYtJfKLn7XnmFODDh/e4thO0szwE6rZz2QvfP1fSw5f8/s9+xvXjM/v1yvwIwsxenrm8XNk/7siu+GaErzhM2g7z6zjxJB+gdVyHgLep/0iAbDLgtbZRR1SZQuSzd++o68Z6veKaErqhEpsbPzu1IuIuo1FD6NUxZwdv/oxRtOtxJYrY7/UxxT/KnE8XmBXeY0hxaPCPYZMV/JXabSovzpjizjlSEIILqItGkcnVyikZKZXOmq46/EGIoza1hldMm1t1J8XO9XLDOSGlSG2F3CpIIyRhnuMo5BUfFtti9HY3cm/rzpDyUvvNBnaqTDGhXSh7pZfKdrniwoQSabWxX1/5/tu/xrvK9JO3KJXr6w+oLhBuLKc3PJ7PbFu3QExnQ4vb7YqEjflRrQjORoCSscXumK8pBAMAGE2k0FWobQT4bTs177Rc6TlTt93MxqVQto2uld4q0Y2i20PwRwNp21/PwGj2IcGwA9rOXWcjH5w9DHV4DtUp5AayIi4RnMOL3YVumnB9gkGSMla92H0QJmPpd0vkRmHbruzbjSAd75SSN9CGoyHaqQxkZwwEZiMv0RGqNQSEYdiU+3u+D5nuJ/+h1VXD74o6wxIjZm0tvVAxqZoLcs8KEQmjCPZ4CRxP/4G3PNrXTzJpvW/JOtaAHlD0/3q7O0Q9o94SHdtjTBAXvJHaWhkbMK/ExVniroD4iPOR1uH8MNPXnTIOxQN16rzAGGZZJzi2bdrwXQyvGzzijkHzwF96GzIzxn2osG/7PZ+j9JHNoyYb8978OKo2eP1EvzGYi/H0BxXHjfNYOwzvRy2V6E0WJaHfiWmH96fUyr5nFPu6girX20bvBoYptdF7IcZERdFqSbyht2qymzr0P9aG3Kc9clyIocNAF4k2S15ER2Fh34SKLVW0cy/oDyf6Ma+X+39ZEXCYH0ysY5Nng/hjhdBB0GidT6mQn4xHdqha19RaGxepoa+QbpKgqCR/MA3a/XML1rGJ6HizjPUQCm2335eONjObdSr1csGpyRD8NFNz5/sPH9Ca+fD9dzht7JcVt3XmdCKdJgqNXBrdm45PRgyz6pA/jYuqj0NNx6rwIC94gVwLexVKw1jcupHbK77dcHknf1BcARc9TTy4wFYa161wKkKpgaie+fSEPz8hS+Q8e+K7L3CnE7kXdCtctkqcAz5ZEe66rdlsW15QtTCZMtZVvVbqgR4MpgMNMdpkszeOQA9FyWW3rlfGGmvo8Eop94d/2zZQWOYTy2mx9FtnASd7tQ1C2W9mOPbOVqPNGgKw/FbE04cMwU0PzI+fcX78jDSdyLUhbSO3jaI7MRrfvOeCiE2Ccqsmp9mtKOoiqNgae1pmTqdECJ0UPD1jF0FvNnlwHgtFi5zmibOD23oxD0Iww00veejkbQNh8dcFqpmyes2U0nE+mk7XCdvtOB47udjUuHel5Qy9EZx19NIx/GbHsK/qCC4SUqL1wp4rOFtnhhBNEx6C8fclmZ4VkF7peWMrG60VmkDaCg9vPsOFSJOATwtPITGfTiCOXG1FbOvDwr5viG4E2VivFz68/4ZWPhLkRm31fr54b76Bmve7OTqOxg61wLrWQatRa+iw1SuUndvLK71BdDPsBf8QmZYn0uypLRPCTMnFpuMCyCjAXRyvN/TumaaHIcuzs6OWgpdxdqkRDJxzUBtVN5zzxDARw+El0sEkd0zzkWI8HnDU5H7tU+hbrfZzWpbFCrFa+OGHH9jXG2jn8elxbO0Cvdc7U7p1tZsZZ8bdH5nRjY9/GsX7Zpi2YDkTny6LQ89vz+q+b6gqv/rlH6CqvLy8cLvdbC3vHKVs9KacpmRJs96yPL7/4YO95qXZJHoY6cRNKDM+OkpLxPktvUfeuon07muuyw/8gz//LVI8SU377NWCovxYUTsxPbg/imQ1TnfdK5WC84GiDZcsITL4SHKRL7/8ks/eveN3v/mGrV5xEonThPpA7h0/LWjtuG6ft26bNS5iidHXbR2DHIcb0fMe9wm73Ab9BkNgjhUTBxfejLPH68N4dvRTkeWxwLd72ngHgRCEsEzDyNpZt4113Yde2NjbQ1nE6IOHZ6xTGZjO2llvI5nUOXCevG/c1kqcbIJfSmPfK/NpQvDQzdMRnQcP67YhauhfVUhhthA+rLG8XFeWU2NbN8KygmRqrqzXF17efyD4xtunydJP684u71GXefvmiZSE2zUjOgLG1KSeNgxqxJiY0kQtlsPRWrO7XwzZ64JlIWy3G3WHroFpjlwvL5R8pW2VtmfW642aN/J6o5SdXHYrdE4B5wIx+nGXfcqLMJWVoWdrMfnTUYbKvWkbd7cTQ2qKomIhez4U1JvkwzQezbbWOPqRYes8TvswfBumu+4b2uzsd5hhWroR91rLRmRhbBvEWOyC2rmOhWyKKzhfRmEKU5Q7U74NrHXwRvbSboVy1cK+F3LeLPdElL0WclW82PfoortLmVA/JDzWfGsbg98hddFRuxys+kP+2UbdZ/IcGQZa23ZaHdlHQzAqLz3k1SaJNipYJXQlnQPRyZjG27zKkOfOBna1WsNFH+9hcG6QpNpRhx4yYO53j4zpfggeaMTk7lLyUgbIpWMd0cg9cc4Nlr/5KiwIUenFZDYh+HHeHpK9fh9Q55rt54uhbOxIseIdHNqzyZHGYEA1YN6CxmHG7Wr0Nca2oWobABA//HNK7xC67ne25hgLoKMLubPKxwrD6QE6tG5PVHHS7U3YzQzaVWnDeGlf1NHR2cTh6O4+Te3HwUi3CwLMxKKHYcM+4zE9OV6cT1+v8cV1uLoZh6AlBH7qmI4tQqlGXAB7UA9GcIy2ELZk20qUgusNik0KWi3ktsO+wrYyifD49MA3f/HX/IP/7D9hWr/hsVWWxwfq5ZmmnewLaRo6SmFIMWwb0se7wI+1qqUV2kS1dzE+9eDtijdTYSNi6/oOfaXzEcoH3PrE9dcf+OL2FX6CEgKdypYrGeGaC14SX//kp/zsj/6YqzZ6DHz1i18wffElnE9s9UIuO7UVQhkYKC9MkxmpVGyNl9t+x416503/x9hIMNaWtZCr8Zb94J/rmEBpF3QUl078uKSOZo2hc2s2cRlSLuchJc+2NWpZYSS0WmxzwaklURqdx7YXWoWujqqJtTh0b0StZgIe04U4mYck+GCXOUqvpp9vahhNd5hRxV5DGatZeqO1lbpn0wGKJXSijlJgejhzenrLNCXi7cL1ZkFSohXnd6pstLxZWqjH8Bf8yOEktoma0kTrmevlBe2FKYUxTYE7h71b0FZvFQk2iRfciB1vTHPEyWQHUHXgdESXi73HOvRSx8Qv0J1jLw3Vjd4utGJNaFWPxIVpNi5xmE5E7zmdnkCEPW/cthu17OS80cpGK4rWj7w+v+f15QciG61f0Voo3UK+nPc2zRoTaGPFOxB7tuJ4D/fWEG32d9sOdaXnjegXHAlRYUkPPDx8gQudbbvh/BlxebyfOq6NJbMzc3CthbZmHh+EEE3HGsOJ4rNd4mMG1TlISn5sncQkFTpM5cOd1ppN4Y/i3s4izycTv6XpmtHyyICwvIjeO/u+o4MD//z8gd7rkOwkpsnyBIKfWOYz85S47RvizDRrWs/hafLG2y653AfMx+eeJkdKE6fTiW2bWNeN19dXDib76XSi1sq63YhRiN6ZObwJ+3blu++/4Yfvv+N2u1KvL6TlxCktnJYzl9cLWm3J/v77j3gnfPX55ywhIDnz//w7/wVBEqdlQi83YhArf5wMmsgoToJDtLPnRt5tUxLTIIw5Ydsyb04PBCBvO1+8+5x/7m/8Lf7+3///8PK6Qpzxp8mM2ikRY2Jv4PH43NFtYw5Q9yt73YmL5xQTpVqKroghq4McNfxBKPkU1oMzeYJNLcf/Wll/n7rxo224eqF7K6ZMBjM2wm4UPW78eafgwSWH9xFXzV8g3dOOpFUUHGNVbxsknH561rppc6epIU65XTPQyC0O6WskShgNr92bc0zc8g61E+cT56fPERd4frkyT4F1+8i2G1K4tsabN4/ssrEiNrkshbLuxJPpntv+gkvCdn1PqXVgE5t5CMpufpzziVIz4jx1z6g6K+YF9u1GbY3gPcv5xJQWenPkHURMRtnqTi0b2/VC2TK355dhCt5BhlQrWTr2lIR5SiCWjSPY+cgAN/Smw59g73hlTF2DJZb62I2o1rtNe73RsmrZ6KKQDAntpIPudDwSZ3AWUNn7yLfooL1Q99USmseUy6mODBX7ZysaBgsdWxSXaGOspg3JKyl6ou8mDWwFp5noOsUL4oKRhIbvo1fz6VEa6zWbUV+Vos0m48kjzeGbQ8SKdSNYDfOxDKqLmvew//8V933UK6pmyG2HPGdsmU2xNt4Lx5Sf8V76ke5cdEy57U1jsJDm0KqEyeGjDX272IS8VivavR71IKO4t40rjNpjDIAFJc6LFfQydPfDY+q8EdFqta9Nx7ZGuh9fL/etnzi5ew6NhGfPkmLDCPu8Ai7Y9Y4F0PkwjSG4ZQtZTZJHc7mT6xgU3DeAVj9ZbTtG2iP9uw5p693zM36U3ntCyVdqHZOGUYBb2WuO3EM64bECWTAcEihexkT+mNRjh8qRunf8cDim8TLQLXIcgIMp25vRMYbBw77GPpqBT2tPS0kdKxYdLmjnEfwo7m0KZzQTj2rFeUYhYzHsOW/Glj7kPwoxgMNMEDXvlnLajJ2rGGOW3uhlx/Vqqxs6t+1K6ZmHpwc+f/sL3ibPx9/8jpfnC2kxXd1Le7XGR4dhkzGlb1bIH87ujlJ7M0mLmuMbNV1b7aPwHNouRwO5IbyS/I3edy6//h59/hJ5EmQE9OCsaMrtxkMKnM4L3/3wHe/XG+nzNyw/+dJ0bb1T8sq2XnEOchPqDtOSKFqG5MNMRL01qrPC0wfj+vYRdOG9G4nCVgy23oaHwKKozcRn3ec8L8Qp4F2w+2yYob33o/kyKRDScdEurhBttdxLoW4re94sldcNjWs3mUgY2vWuARcXKvByuYDP5tcIMM9uhHKZ4S+IN39BXim7WJ7DmC57jCoSBrmjbDuZnbxf0GbTDz9eq96ErlhyJwFxkeX8xoLgBu+++UjvI3K+lfHcezoBJeB8wofEspw4nRZu6ysvz4bNas2kPdqhlw4HuWZogmkeFyNIpCn0PmRrQWlNME67mY16semGUoxI4zzRzbjQ0HKhlxekvQDeDL9loWw3k6+MwmXsvwg+sszmWbm2nZozIjbZ2LbKvj2j7Ya4Qisr2to4C8TcjaNgEgQXAjKQlTLCPqKY7r73hraVVlekrjitSE9jEhQJYSFNZ8Qr0/yGOF0p+zqkSI1aTKtKFJx6hITDuNraIYREjEO37yva+x05WkbitYyhwf18Gwew0RHG9Gjo3x1+JCV+mp4fRX9rjdvtRqnZJtAhcDqdaKXQeyHvGznfcM6zrcIyn5mmhRgrDs+8nEgpmYUyBHpT9j0TghpprJsev+tB78lMaeZ23WzSFyemtFBL5+XlBTCZUEppXGqV3goOR71lpjBzu114/fiM9srDebGiuHX6dTUGeukk4Ha1jJJlPnF5fWEX+P6vf8M3v/kNX84Lc+5oTEaiERDtBMeYOup9i3qffttVSddK6zCdFkKKlFqZTyd++vXP+Ef/6E/5/vkCKUFKbN4R5hPx4YwsZx7Sicd04vbb79l/+50VsS6CCxb41jtRo7HoOcZcdl1bCNanKbyOVfuRuH28to1Pl+z9Mh6b5iomB1SRsXyxPx9cwIeA2cosfTZMEfWOqmMiqQIDc6faEDFDtjhvOn1A1dm0FodIICSbJrZWyUWZmiLqyNtOnkxfHlLgkFCEGNGc2UtjeliozUKbpvNnOBd48+7M+eFMWF94f3nPG/Gczg98+O175nSiF7g8XzirZ3lMTLETE2zXj7jSmc9vxwbglW29kpLHRUcBTo+PaGsEcZxPMwJs6xg4Pe9472zLtSyEvSJ548PHb3l9eWa/rey3G2XdyftmcpduuRYuYiFD0VkQUQwmQ+5toBuh6pBbjVpD+5ClDTqPFyGmgHcJLwF1Opp58+S0asMo7X5syhQI4BJRvIXXOU8rfUgoOo5KK1fqvtvz0u0sPMIag/OEMAPWQHZkAD4WcoZtz7ReiTGTQmJyAWmdml+p+ys1b+O585R9pzvBBTHIRfHk3aSuMuoOO3xNVq1OEW9FdO+mzjhmzQdt7EDGiuqQqB01HXc/i45C2N4IIDo2YOZ+AdyxnOH47z5qPxnyblWTGZXdQrbi5AjpLpozeYvatsOPYVA4jOvO7rnaKvteqRWWxXE6zcQ4aIo/GhofmvtDbSJyDF0YzeCgmo3Jewj+U3iUgnPmc7FsAuUAiJhs0wry1rCtjwq1VdsqtGap6U2NhlU6OH8PBNXj+4T7WeK9N+z4kI4aZUso2V7LEAKhlHWA+62wN058GEW2oXe0OZo41I1V5dBbiTOZQVW1Ah8rbNrQ5B/G1SMm17uhq8dkPBZgM0x1wdZBdqoqRzwVGB3FzLVtdF8DFYiMgIcwHo4x4euGrDOSQR3ykWKH4rBTde1GUhEjpOxjDZZzRvtgMSuIS6QRoKSHC7tZWeOT5/x4Rurn+Hwhe8V//RM+O8+QN8rHZ9rzK6w7odhEqKkOo55iC9Y6TBrH124c496GHAoLBFM5wjcUJNs63l1J/oZIZf/2mes3rzz89MmSC71wejiRJod3ndPsaO3G5XnHxUArKx+++w738BkPp2C68V4I3v65lkbwQ+PfLYgp50zNO4riQiTGCR0poD7PTArnx4lpWii9cltvdml4R63ddPvjdWtjVWbYvX7HRYUQ8CmBNq7bStsakYjzyjR5pjBRrjuvt0KvGwGj2+Rtp6sjukCchfl0Rl1CJbI32Eultw0k0NWNSZvJ5DsOHycmNb19CA4XnCXMqWHo4tBW13akGFa0NVoxbbZx1Qf6yjm0VtbLlVIK02kmxGkk1RpNyFBjxruv6DCrm5k2pBPztDAvi0lWTA2A9k7ZM3hvn7uaPG5UxSbLwYpl5ywlDzVKQ8dMdmkS4lg75n3FWMzWwGW1TIWUHOX1O9r1O8gXhKGF9TNtu1JdBCeoFLQ3brcry3IiJk+MFmpWq1pT2GwyFbzJLlouSLVvyHIpbDqJC2Mi5gfSNqHdjGj9yEuIDupO79kIFDKMWq1DNwJCaY69dk7TzPn8jl4LPe9sqxv68nUc3MW2T3HGS6cW+/0WrME2LX0gpGifRxvqTCLjRrFsAuVPE/oQDhNWN8qV+GEQ8+NM+nQNWkFoF2ypo+mMES/QYwBmkDPblqg1D3zsJ3397XZDxRFSJOdsBBIXOEy+tdoq2PtAL214Nwx9eL1aw+B9GXSeTxuzUsq9UPXOEabFioZtnEsVnAohRHaUUjPPH55pHy/MeIL3nFzl/Gaxi79ecV7IpfKb3/wlb98suJvxy12AVuw1t+2fDVxsm2uEktCMKITKkDVBTIFdG9ftxtPTG3729c/59be/43fff0DPJ8o84R4fmd695Z//2/8SX//q97lVRVzi68fPqB8u/Gf/x/8T3/7jP6HeXm0QdCBenTXPctxbIni4T/IPuoUTGcSdPibnVpnoQQI4mpRjIik26VPv6F5o2BbAdfNTSDsMkYWq3c4L9I4zdd42paF3e0+MrwVhaHTt3svVpKgdMZmsGDnKNMV+hPA0w/1OgegaPiVk5GOEaLpwlchlrXaO+ok9N9598XO+/unX/Olf/iP65YXalfPywFdffk1fC68fKreXj0zTTJ+EW/3Im3nhdH4kLLOZ8deNbb0NPLYbk3OxYKoGe9vwV9s25fI6eOSdl8sHWs9MaSFNkf5i/gtt0IpSc6PslnDcSrPzLsI8R86PJ87nE9MUrTxT49vjHDQznFdh5CGMRr51pNURfOfwtdt7KoxtTTPfYGuVXoeue6SyWnCUSXdNwKDWbNROzdlQjlro5WaI7IGWdDL03iFiacTDgxgT4s2LFcKE5kJvV7Z9I+dC8TfLtamZ7fXCdv1A3q92N2I4xS5i0+/WoUUL/VLuz+ghjXQyePdDnp1bMTzxGLK7sSliZAb0UeAfcuoDDnKv6EeRfyREH4W8ir/7G0UwgALmx+wIuDY21Fb09qxUp7QdeuQuE/qk3zeAy+E9sDRxw2VboJUR7OY5Mk2JY2HlfMD70bQ7N7xP9ly22kejZhLlXEwxIN7u3FoP3LdJd5wfG/NhblaPBTOOr9M+35DzqSE9czHfh9NhDh/D76MWlEF2kiM3ABuk0zOtj60CI5OAY/htg/Ag7igy7TDTbhHzwSkq7tN/CMPlbN1X45iUy/0HcLx8OiQWI51g/P6Ywg2zYm1lrKpNmlPIqGtWQLsDY3nMT0zuoN3eeKrgLG6Pw3jkhuH36GJU/TDn2brK0HbVJpV+FB6qeBesaC15IITGg+yMZS7e2fqp25qqVTO8pFqZlpnlqVH2zNMXn9khyk7sN1xemdYb3/6DP6F/9xH/amhGj0eD6eXuJh4/On6FrRbDdB4+X7FOz4u1OqodnGlwxd1wemXGUoOf/+I9p99/wP8MKsp8mvjisyd8vvGQoO0fCf5MzrB/2AnnR4LaIbZMkV6Nrd6rJVpmLcZx78Xwk62iLWMSomwSCTHTkIw0TOc9tdqUc8s7y3nhdDqz75lt2+7Sgdaq4TWVQRaRe5ERvEU8q9q2QKpFhk9zICBci7e1ZtnRVuh1p6wrpQm9FPZ14/xYefvF1ywPC1Xhumdz1KthI3vHOuQR523EqIh3AwEZPWWyIjpfL7aaRAne42czS9WgbDRKNdSaS9F0qniomb4bmyY7BedGDHoZLPlqb2rvCSEhccH5hJPEPJ85nR6sE6/2MzsvCzkPfbIYyky7PedeFBRLmlY3GkOPcxO4iIveaDQu4DQxpWhbq95Yby+UvuEolOKXVGkAAQAASURBVLpRWqHQuT5/S11/gLahLlDWnVQN2xlCJMwTSKX1QmuJ1j1BA+LaHQWqY0MweYebzpTrxl6vBLVVseCgm88ACWYYVkvCtomLjd7S9Mh0ejQDbN0oWzDaynWj0fFxxvlHXHqiS2KvjRnHND+agUzh8vId2/pC3hQwtGTtO2W/EHsweYizw3nfVxTPvJw5P74hpGhpobcrvWy4QdPpAxNr/3xwIawIUBTnOkEin3IcPjHq6yDkHCzlI/UxxYj6A73XUd2pbSdEa3oO7WYd6LvpNBPUU/KR3Gn+oJwL8zzZz3LIPY5p/LpuxGhmyRjjXad/D5gTowiVlrjmG14C85IILcACua5UrqxroG2N68cPvPz1b1kUqBvLMnE+nXh8ekRRXl5f+PD+B6LPTI+BqJWlwPPHK6IWqqZ0uA85hJgmEI+vBfF2/jvXLRG3FKbzzO/9wa84n9/w7Xfv+e7lmbbMPP3qF8SffMV/93/0P2RPkX/2X/lvER+ejHVXbHL9j/7j/5TfvF7pKjag6BXnHZNLuB4GEtrOXyfD+yXKEdlz1Ot9sL9l3FfWZ+tdBnUnYRzrde9w0aNODufX2Fj1IWO0u8YFj4/mJ9A2JoVeCE6o3bZYCCMQz/w+AOIDbT/CbDZCENI0Ewk41/DOEqV9iIOPvyOu4oIbsglhWc58/Ys/oMmCT2fefvFT/qtff0vVHcKZ3AK3rKgkttygXfn5z37F+2/eU/K3aHdEAmUrdNl4+fg9exWe/IlaLRH26c0TX3z2juvtlefXZ/w0UeuB0mxsmZHArfjoeH19ZttfKfUNX37xE86PM6098d12Y987t8tOvhV67lYjdBsoTSnycD7z+PDIfJ7svup1wAiGP9DZ1N5ADUNu180H5miWr9E7ec8gNjBJyYzEtRhlzV7zbihkZ8O6w8Arw89Ru8kKtTVazuRyg7aCNpIziYh4I9n4QdRRxYrgsJDSA+IWfJjBVWqdKPU9rV7Zy8bL9QP5cqHtO76OdNJuBaMTj2DeDJoOcMGnSbk4I7/QMXJVd0gRtCshCBoEraaRdwwQyCGr7p8SuQ/5EEcTPDZZxxj/KE/tq4Fj0i/6Se7CeK9ZEFgFtaDHXoWyVeokxMXhxnuvaTWz8WjKDR8bBr0PJA2QR1e87yzzZEAWtSrWeQWqDTlGIW20RjfO9zF0iIE9ZzqdMOrM1tsw0tqAqRyQA1X7/G4M5cbWr3eltAEaUUeuhdbFvHutcuj1nRN7Xsb5bLS3YyDU6XkHMXJXbR03hkdOHHFsGkSE4EYKah+TNB2GxOPNbtgfjzo3uAlKbgZclIHbO5TxiGnOxJk5wSYKQ3bSrRE4invD9XyKA66106SZmcm5YYoYk385+NXu3qW1VkZzoYSuhGCNuNzpOjI6sB8FMNBovY8H0g7pWq3orHkbExn7mFkDyU14FzkIJQrkUiE39pzZO4SUePP1T0Ec6SExzYJPFVeu9B9+4Ku9cAt/TZWPhK0bkrPZG79jKWniPWkyF33OI0b8WEl3pVEJseOc2kbEg7pGY6W0F1J7Rfcb3/35r0m/OPPFZ58TzgIx8PVPvzbDafE4qXRXiR2aON6cZ75695aSPLuCo7Ntq8kIsMOuFSNKHMWGEVuGdM4d0iqTSeW80y+CCxnEuK4hN3RxTNMypFLKnjOo4If7/Lgoj0CfUiu17ECh98p228lOcXSS6+zrq6Eg80YtK65XghZrTvcr13Wn5KM5yKTlgag2VbA1noOqHKFhiJi2X9t4ozb2beN6ezHTXasEtTVlmhIhTUCjVcM3utahKXM6Mc9namtstZgvxXW6NNJpsYtY7I0fQrREPueQ5QGXHnA+AYE4LcT5BL1Te2FZzgiZ9Wa6WK1C2VZb0zMIQag12nZ6ciC8tKsVq6JmCI5W8IVoCaIbzZIlWdG+43thfX1hf/meXl6IvuHchGqibR8J4YzvT0SxRMvaOvhMa47WAtrN+CtYwxTTQnRCyx3nJ5zMxjIX06I7H8wg5s0r4JoOLKUY69fP+OmJ+fxuMNwv1Lai+4L6mTBPnM5fMs0/xcefMJ0eERwl12GCmzif39nkrHfoRm8SV0EbiPHsa93wNYxGyCRApRS2fWPyzsJnfKCPhGsZq9LWLBegddtohWDFqmOACegItmJ13igZBxrzKBJrM0Qk6KB0uKHhzORB1ZHxHlHXbOggJiHY940QEy55a1ZxYzig1FKs0fNWcJZS2GoxOYcI1+uVx8cHbreK987MYRKY5xM1eKQIzQNdOIcH6q2wnE6E2fHuyweia1wEtvCtXYTamUPH953tdYV2Za+Zv/r1X0FXZucp+cISHPv1iqohHy0Gw2SfiKcpROcIaSJJJGyNPTdqayTniSHwB3/4h4TTzDff/IbvP7wQTg8sn3/B2z/8A/6tf+9/wld/828wvXuHTBNNMcNjhfbDzv/l//Dv8/3zK/NeecL0wN4LdIj2ao1yxZ7hH8mB71KDI7BKZXi3xsbuKPidyNAbj8aKPrZf3gpKP6bxweGTQ6Ib63oreLZ9NyKQDjxvN1+cDagMHdu6GgZSrOFfS2fPlSlFtFRU5Z6hEGPCuT7M1bBvGULjPC+2rfbK8vCG7mdy6bz96jNqj6xbpXah47jcduaHypc/+QXPtyuvl5W1r9y+v/Dbb37LAHux3nYmgXhy1JpZnz+wvPkJMS1QO9u68vzyzOvrB7a8MYsSUrxvmw6pQRBPzhXnlWWZmOfZmrA0M01f8/HbF0oRbmtGswVIinpr1KMMidlk6brY5h83XoNx99bSSCH8qJBzA3LhoRu1RbBNpJRKGKbJ3urAcJpktYtaj1UrMJGmiBMzN7ZWKCOvJYYwXjcz7KNqdC2xYt4kqX5sk4Y8zDl8mPDhjHMJcbCXjrs8s+07ZX8h314o6ytSzWAeo8E+qoqRZ8bQkO5sIt0Y4JMxORYzqgZn3rFDSeBnQ772DFrlns57aMuPocH9f+/SOjfUH0Okc+dfMoKb4FBaHPX/Mcw9/rFb0WibY4RWq3lHoiN06E6tLlUlRo9zdp+HOHCSYp6UrorLJr32YtlJU5zGgKyN9+ZR7/qjP79LHduo11KKwwDb75s4g7gcnoNj0u7sXnQg41w5IJzCSMht5uFq3SExkaIb5DPL5qGZpzBGo7v5YF9faxaMKE4RH3BO79ImCxAb2SXRE3rZTEqjIxnPeUKY7CJ2EReSXVKDrdSHJk3VSn0nnwpqJ9Zxu4GNOlaPXQXEGx94rDu9i8bB7gcT2KQu1lEO6sg4ZKVbge+PR2Cwo9u47OzhHJpnGdo5DBXWeqe0PjTOA/bphVGijonbcDZ3tQO2Q28B9RHvEtEnqngq4NMykFGJrCAx4WMippk0R8IckNCp+yuanpjcjDy9Zf+nf0X/9TfweiHuEHtgWxuSDL+XWx0MX6wJEaWz053DB4HgbZJHNkqM82jy9PDM5v8rzvNCf638+u975s88j//cApvn6z/8b/Lb1bG+/8g5RVKwae/WBT9FbuWG7p6tXCwKXMAH8zAYjrMZAtLbyso0yEqIgTgl9q0MWcpOF+tGXZgIaTQr686HfuH0+MQ0PZH33Ro4b0grVPGm+qC2TN0yQTpOGl4reX8lb6ul0NYdacU2C7crPWdc77jWDPg6uL9eoV1WXsoLlw+/xc9PTKd3zOe3eD8RnEU4K4IEbFukNvXXvJJfP/L6/lsul494OhOCSw94f0KJVJnxAZuIyIbzBe8El07E5YyUK1VXS1fsN9OEywa1kZw1ElvNRp8Sj5+FFBI+LuAn4nRGQqLUiiRoxePnzjme8KKU0ojTjJxO1O2Vsl3JeUV6s/ekdrquOJdxPtB6otLwk6Lek/NG3ht5u1Dbjdpe6fUFbVdy2enrlV4voDZZsOml0suVsr6H8hZpE73ZYeVoSFvZbzokJMXSnftoxdXj4oyPZ6qshDiPzAOPd2PKMi42L2rbra5M4iBOiLc1MsVkTUIixne0YKvk08PPOJ2+xPkHXDLvTi+FIuN8ChPLw2eGBtxecWRkYEyJdiiVliHfEOc5zQtOLSjq5fUjcrviQiREo684DeTd2NCIDTO6QG5qP2cf7CJxAVW5BxB5cUOOZWFTFu6m1OopmEysqL22tazcri+UXMcwy8hdckyPx3Rsu27MJ/OPeExz3WtjntIdhgDWqAQXiCfbvJjpcOPy+sx6vRGCSaq897ScmeYJqY10qM5btSmmc0zpxH7bOPkn/FKIv9dpl8brd98waaXsO+fzwvXlIx8vH5iinfPkneA66+1GvazMMTC5jtMVCaZh1d4tIwN4fHgg+MQf/cEf85//538X3xOLF37vj34Js+ef/MU/YV+zbbp+8gX69U/52//uv8Pv/cv/Kj16NEa670PvLISu/L/+w/8Hf/53/yGft0BqgisZF9rQEott6EaRfU8RPaoN52i9DvmYbbS7KL47ejWDp23sGziLi1cMgWlAgURumTD+fIoenwI+BapWM806P2hX3eLr5ZBOmE/LOWsdzTtixSxdqd2RV/AsNnXUSs+FEArTbJLXpkqQwLraxtV3R+6W8OmnCZkm5vkN0+kNp/NnfPvdR27bB+p2g94ooZPePDC7L5l/+5HnH37Dev2Wv/rmr3C5sLhErsL1siJRYPJICDw9PfGwvKO7M8513tcP7M8XuqHG8Ah9q3gS2pRtzZzPiZfLK9N04o//6F/gtDwxTY+oOmpreBeJ5wvq/inKs53D0mhq1DZxHrFDGjDu9+HfOIaOYBjEUg2fGJPJe3vrI1xQaFlwUWwyvxey21A1JGRtFUEwD1LBPD2FKUScJstaaTulPROmRJoeQM7gA9k90ftm550AzVLNy77jo2Xu9DEgYIm42A1ROTC1vWVEKy1vlO1K2W6gzSa/IQy4g1hAopocuvVmtVQfQ4R7nTQkfM6ZxEabafSTyc+amsxJgqBF6VXt3u5u6OiN8mO/fWjTraIbvk8GYHTsNg9tvtwHHYzXR3BE56l67z5QaaNFFmp1rBclVMUlISTFe0jOfCzBi20bLO6WvRhFJqV4r0N7Uwo7wbsx1B4wlm7bMO8MXR6CQx2UstkQKlhy7tDEQW+44SMQJzi18733TvLeJNjVqHpu3APzMtE65FYN9etsCxHmaM1it4/VFeoBfhln+NEctdpoNKZ5GeQkC77ThsEBQkDCTBBsVenUTDhOJmKciWm2NZSIdWPKQBeNiQUjbGbofEQtQtteEw9YCAMy5D4y1iiHccR5vEvglS5tTNZtxW1af492P5oH/VGasekxO22sQIyprlrRkbR7YI4QTMMbLKpXvMMH8wwEp4hW8u1qjcSQTbQx2Q1xQdw0tL7xU3yxD0wPfbypTedrOuOAeDPPIMB0xk2PlBhwU2SahcyV9s2FcFNaHoYL79nqTt9hTvPgwna6jDS4AJb/7XApUhAkTbjTI8vnX1JiQh8K+5sPuCVwu/3Ar//hP+KLPuPkhjz9BP+TZ0QSXgaPtTsWJlyK3MpKOs0WDFEncI5cMvtmsiGLrk7E4PExmaykF9K82Gp/TDtaawRvJIGarZiZp4SKeR9q6RbKoTBPC61XtJeRaWBF4b7dAEjeDDL77cLt8pGab2jZLLmvFbQ2as53PKrScL3iejFzK53ed2TfaftKu63Uy0Y/V6b5CTdV+jQhS7BxBZb0Kv1Gvnxkff872scPxLLhRUgEpGV6qJAc3k+oE7pmnE8kP6G9UWrltq1Qr2h+peedWgvZwepsZebFG5YulyGZmNj2zqko88Nb0jkSRIwpHPxoMAMyLaYNbxnJq/GYtbOvD9xen9lvr9T9Zhq/Xmm1oFKIMiNxoteO+Aq+sm0r+3aFfqXkZ+r2gVY+ou2K1B0phSQdiRG60IrS+oa6V7p6yvbCNJ1xTHQntLpzJC1bcJltQMQFcAH1ZiwOZyW2Tpwiy5TsUO+GxKu7JVvqkOvYh7NpV62FPd9sMqhtGKGfKNXjJOHmdzDNIIK6aums3uyQdayLXYwQEw03ONFmLmu1oGwQrIDO43LybjaDc2tmZAsJWU42CfTBLrr+icZll8OnqRNNwfWB7rQJf3cme/Q/MpaD6dfdyOjw3o5dMCrJvl/opeGTIXS9c5xOZ5A4ihIzoG/riogQQ2ROwxsQHMu0mPStFGpp1GaF6TxPOJTr5RVB2W5XZFlQ57iWSi8FH4NhAZ2Z7Hy0wqqJkoviw4mHN46HeeHD64Xn6yt+q0gtvHz/Hm0rD95xu11JMbDeVtgaujVCNxO7MrwPIkbzUKGKZzk/8rM//COWp7f88P4jmzZ+/+df8cvzQu2Nv/jHf2oI1xA4ffEZn/2zf8gv/rV/jX/xv/dvUWPCq0OCcKurEZBq4rf/5W/4O//h/5uv0wPcfmDumSANF2xs2dXZZlWOKeMnuaBJjg0eUAYNzjkBcdQ+fAjjEm6Amz1FGupgnmYzXSYhzd5MtdppCqUKRSq1V9SbHMn7YBP94CnN0mmdN0YdHPLBhPZM3q0AaM2ksU4iJRcjn/gRyDikJrl0alM7h/xsPqrejAjklL1mtBZSU67XG4IyJ8fl5UopK8vj53z/+pFTSnzxxR/w/N0PvL5caGVlcg5tGRSCT5xOE26Ga658fP/C23eZL7/+OR+vF0Q8TQTnA1o7wUVmPxH8mTQlovd2thL5yU9+wR/8/t+k1oQSKUXRfac1iKfPcfENtf3GyHbDG9abwSdca+RSmarDlwPN/YnIJRghx3uDcjixZsz6uICECdNyCzjzLmht5K3igh9NXiCGZOQV14j+gWV+Az1xu+zUfkN94ZyEtMzE+JapPbDlbmFgbafuV1q5UG6Zsl8GZKGbl9F7cnllr404Z1CTBF1fnynrK3W/Qi0mJ3UGqBA1zb5PVsj31tE6gAStm48kBnKxwEfn3SAiKvQBBnCMDAnznzgnFvDnDbmt1T6mjOGPmeLt3NMxgP8kabOaQ+Gu0bd/LwRvkpTZR2hwmif2vNsIQxzd6ZCxWAHeq1DXhiudOCnzKRAmR81lTOwZdYu9b6cYaJinoNXOuq7W7yWDxnSt+AOzowZVceNrq8XUIeKEziBKirHqGXKinHdwFqhau5pBVpVWKiF4vLdh6DQH4pDD+SHVcsnjxNQLIXjUu0+bg70aKttj5l/XB3FnbADEJv1FMzI8YiLOZOQYYj707kYXa9NyH7w5tp1YGmutYw3sR9Gu92JexVzBRqup44Axg4wfuqlDd6hgGnsZ4n9xSAiWwKdqAR293fVXB7XH/q59rPshq1ZY96FxvEP/nenLPs1bhkHTD21r7/YmEFvS0Q3PZT2lI4slnAoeFyYkRNQNRq0Lpn/y/v7x3JAtiRcLN0IpQ+5DmqyR4HM7IGi8fPyB18szhUJ5bfTTCD7IBakOSYZIcm6kv4UAMSIx2IWRJqqAO5+In79l+cVXzA/v8E9fsPmAX0Djxu/Kr/nuLwpzUur1mRYgniZbdXePVuVxPqNauF6eKb4iodwNNh1G8WqTCBcEH2dO5xOtN14vr6g2ahkR2c4edO8BsddSXCMlR5gStULbr5QM85Q4xZOZusqO1kapu2n8t9WeESdDD/7Kvl6g7fS647uxgNu+07KFlah4qnSQYohC2pi4mZn62NDUa2a/FeJTZj+f2DUR3GQGIW++A5dX9ut79ucPtO16l+lUjVzXjlbHQzxZcdUtaTY4aGIH9b4XNgdRV7TcBrM931dyMZoBrI700hiTXcY9cNs3yuWF0+ON8HlnerTwlg4QEsGlO/ZN94ZPo6GMEzqd8ECPhpBrZafdrnbIEJEe8eJxXaAWdL/Rbs/0+krLL/TtGc0v0He8NMLQh7qxJjwOsm4GCXreaaWgwaRypVYKh67cGvjazVTqwyjwBfx8ZhEhRWEaxb32im47uRslpFcTfnoZpmcqXitUHZMMe41rb0jyTMsJ5kCb3NAxF4IWPJiWXQ1tJlrYWmbTjNNKHLMgJ0p0EMc2T+tOXR2EjovzMLuB04rvFWke6Q7X1KbapkfkwL3qMElK72itZmoePHGcSdF8ckRvh3iDoam2i1ga5D3TqxJjIqUZFyPeO27rRlszaVJb+7c2CsA6DLUjVn5o67fNEJcwfFFOyLVSS+Hx4dHWzMtiEe4lc3m9UGvltCyE5unSIETqkDM5ZxNRPwltCaTwyOwfkfLAw8dveXz+jv5nP5A/vhC0sQTHdnllUaW83nBrxRchkFCCydKW2WSTxYYqPkSWacKp8vHbb+m1cvaJf+Fv/CF9W/n+euHjd98zhZnoT6Qv33H+W3+Df+bf+Tf5o3/jX6c9JFrvBLUNhAuOJIF+rfzd/9vf4/XXH/CXC1FuyGT+CZOCeOjufs9YTT/GV87d7zDnBNdHkNzY8taxcRLvISVcCJw+e6L4xsv1yks3jrsEUMynIt6oI13rIG+48awdhKCxGXTDnzWmnbU3I6nECR8Lba8DI1vsjhal9UJy0cyzpbCRaS2wjUyDt+8e6N043aGPFOVm2SWlKB3Ptmcz9wcPuuF9xUnjFz/9mug/I9+ypRjnRt4rURxDD2jSy60xh4SrnufLe76Z/pLHp3eUbefp8YnWF2otVHa8t2A8Y83XEeZnTfwyL4izQto0yo7cOvteeHp6y+ObN3wDyCAFCSN5nmJUmw0DQ6jVNn1IXY3hrsMvaCm3lU+SKztmbMIdVA4x+lAsDOnyoOtIEqZ0IqTAlJ5wnNhXG2jlQdvRPkyzLuAJhNAJGijrxl7t7ivbStlutGKgg0a34tpVlMj84HAaKblxfX62zWveoTemmMZGz+FaQMewpXFgGm3AoHUMFzxAQ3sxyY+XsTk1OXR0Y5JcbNrWxvBCjlFYbSOX53Ci2PvGaFGHLNq2izq2XLWLbQXUCt4jXyi4SnSNFIS3j8Lz887ahaqHSl/GG1JAzCbcmp2VtTlcD7Q9E1MCNVmi85b0bWmxhsOkN7Z9s/cwcWCuza95lIx2hloz0ZpJdH0ItDqoaYcxeDzvh5etYXJiq6WdEcqw7//wXIVgzYF3ATfODgZB0gWT6HpneQ6jqLrr9+1rNAmQ4Aku2jM78MZhKD4EwaeE9koo1Yyi3gvT3dBhl3TvlVLqcOpHc43LQWzRYUCzbs+wUsanFzBNocMMIYf2qlfrOLB1hDiHC8Zul1ZxvaHtMKONjZqpiYb2UO96KJucfzJw6NA8OXNooHp0j1a+ex9A+zBdONMrt2rrFpeQEPH7ZrITPC48EMKCT5YU6QcJw9VpfG3u/syJGHO1HYX9eCalJ2RacOczrrxB3r6hPj5Au7LFq3kWOnaJDqJBiJE5RopzME3IlAyJ1pQSPC0F0ldfMP/sa+Ivv0IfnuB8JviIpk73O/NsF7a0guZIfDrjXWMBynWnU4nJsW2vlPed2FbiEsbn94Y1ddaY2XStU5uZai3QpbNtG3oYVN0oAIf+zYlQysrtJkxqhg/Kse+JVJdt25I3Cy6qO94JSQp73cmtWiZA3hDNONcQLaZvV0U1E6QCHa+Wrte0mjwEewZcc4h6nBrCtO+OFm5oLbTyQN09+RogOpyH0BvsG/v795SPH6nr7R6yUWXiVgOaIT684+GdmdNCCPTguWml5wttW02CIRnKasaXbs2P8w6tq+FVVfAhgZZB+En015X19kpfV6iFvq3E0yOKMZabE9bbhcvrM7ls6JwMWYjpQv3iCSeh1ELed7qkkRcgeCamNBGjo7cVrTciK/v+iuRX3HZF8opoxUuHVk3mdGjinaU0F2HQK8ygLsx3iUgr1Z6HcWH2bhM5j1GAcGKFqgScFPQuUQmINFyIJOepzogE6mQIQoTQjQ+i2sgjjbj2hkvTwK/amMgGCIbJO9ByvSsdM4KXnEeUewUq0jteK8FZMJI4kwDCMLeJDtmWQ4InBmte95FsrGqFXwjDFNvswqu90nIhF6NxudEEiLdD24x13Q7w4/IawsngnIWhhIh3p1F82nZDr5lcK9frBjLblDc6eh6XgDu0stjnGWbxQ1vba2dZ5kFzKBbCFSPOOap31OePlJrx8cEKod5wvVD2nVya8Zex7UDNmSg2ifN0Hj7/nF/9M3+TP/0nf2KkkbwzLRNSOmXLlNtKkMgkiUOjrHiqelpVXHcswXj0zgekVZ6//R3Xj+/5/LPP+dUX7/j2d5lvvntlSgtREm/efcXy+7/kF//6v8Yf/5v/Bu3tI1nUYBCDYpMk4W6O7/7kO/7B//XvEF8yLm+EsOHDBr3QqqMXywVwI2DqwBP6Aw7BkZvCmNhDFSgjp6V283M9LE+c3p344lc/xT3M/PD8kV9/8w25d/MFtTLW+kpvhX1vTH6ysL6D4CK2dTpoc9qtqOeepWAa3BADMdnGR4YExJ7VDu4g5njT8BalFGvEn5oVwNIa0mwDSDePUm3QX4R9y4hP+OBJE0TneXg4oa0grrNMibdv3/CP1x3tDuJIZpZOZ+N62bledsJkOvvL83e8PP+WOD/y2dt33G6Z2+1GxwORUjuNzHq78nx9z3RKzMvCtu88P78g/gwyYaw7+8/54YG3b9/ivW2IwQZuXuznte8Z8UoQxRGZT/Z+0yH9tbpBBlfdnmXGf2xKbLr6Lo4gJlMdhAtTKABNK7IXQkrM8cw8P9FKwvtOiBb4dls3JOzM54wPlhhsn94Gaa0rVTuldmqzDXBv29hIC/vmSOkjKZzoROpeafsV2o4bjPbgR7KyeDwB7Y5SCuue6bnSsxl/VZTcMq4O+tRA95pefmx/ghyCDTtLuhzf7FhKKrqPcEdMQ2/Me+6/7rWZjrNHzLd5kLCQjpPKkjzrtfDmceFv/Y0/YL++Qnthe7W0dh15R/ah7DxX52wrW5Vts4DQNDu0JxqWSWRhT7DXjdqKSeTGa2tey0KPck+zPfxTMQa2bbe3ITYdb03JtdzrYi+Hpv9AUqoNTWo3jX43P2qRivPeak/s9YhDNjrEScdYCHEDzTmG4zF6RGZrNuVoOk0mFX28G7RbqcQYh6/VlC9eEq1km9wLMuQngZTskqs1G4mkm/kRV830MfiudsBV0+s3+zKNaGBaWoaGVMEeOseYPpjmW3U4YMd6OohDWqPLMJyJDgzgYRrU40kbK1KHU/t63OBL917p/VMXdpg+zABjH8P8k2IdkvPU6gizN9xl2LEEMo+O1ZYGTx8vpBMxbeIwsx2EDBGhDAmSO9ZQqsOA7HA+UlygP75h+vpnaPgAH3dq3whNiFMgYPp2DYKbJtJpwT894U4zzTlKa2yquGVi+eXvMf/8a8LPfoJ/+8TujfDSRBHdmM9nWvFo6YQ+4/yJpit5Xdn7btMfzZTVkvRK6PjwQJwSyzwRkzHZey82va+ZnK98/GFDtbPnPDY5/b/2UIlGko/IFNlrs0J0ryzTTMBMSNe1cn3W0f90SxDs1TBlIlA3ejX9YghGQqIrEhQdm4LgDVnnulgTUApV848Ke8VXRarQtxv7pZCvnS4T1x/eIw8LZQpodODFqAza6VumXm7U20rP1YK2YqIno1u4WHF7JpTCNEdS8OwoUnZ83VnYUS2kvqPtatHg1UzCTu1Z1GamwaC2CbDnOKPd4yn0m/JaVy4fv0XCRMeNAkzYthvrtiIhsi8n0jSbUTMGQkqk0xnvMzHM+NOTEYlyY4oPLEtC2Lm+vNDqFfqNwJVSX40X383U2fPOlm/E4JlPJ9sE9EouO9l5uiRCy1QqKViGhNOGU4vR1qETDN6T1BM1EJyFQ2l01LAAFpZWSxnXtOKpqHR8jHb2HCb/1vBSrOilE5oVqU5BSkP3ip/NpG7NnuBLw2tDfLRzRTzdOyQ90Jcn9ltFW7dhgkIVY7l7b2dO8DKe62aXund3n4jzkTYkhqLY1H2KQIBaoJlx7V4YYIex4W7t8C7FthsuJgx3qwOz64neEZZErcq+F1btxvHed0RgmRdccJRazHujQslG//Hem1Qlmd6+NQvFqtVMcK3bBS+oTUd7vDeIrUV++vOfsW3r2KYZ5rS9X8k507pQaiNXo62kENla4/l2oeeNliunx8+oT2/5/vtvSXjy84UHsSRfYif6iGuO5jtu8ogk9lzw4jnNkXOcQDt52w0bK4LEwDcf3vN4OvP2zVsefvF7/NWf/5p3X3zO089/jz/8t/9tfv4/+O+jb062FVaTtJXe8C4Rmp3V//D//neZPl5IJbPmVxw31G824SXdtbNgAwvu5cRhcrVtUdMjtG/kGNh4jtosF4PZcfryLV/+8a9YvnjLT5zjs2+/5y//4i/59i/+lNhsoxmTyTjc0HrHFJFgaZo62Nktd5raxspoOuNzeih16NU9dK2I7yxn835cr53WM0IkxQXzXGQMLVjJpXG5rpy9QvdIU3CN5B1VOqVcrXENE717HuYzOMfz+/es21+Q0geCP/EHv/oVf/7//YrXlocAzrZD4syg6pp59NIkLKnhuNKbQ8tsk3RZ4AA30Jm85aOEEG1CHsyP8/75Iw8PAR+TZcE4R5gi0jznxydimtmvHjTQsPBEqz0MFZj3YkXsGMYZFW9QrizK+5gQDsP7KDWaBb/ZFNzyQRTbXkJDnQ0dc650HCE9cJq95aGoNZhXk8Kzbzu3ywXvToTkQBJpSjineJr5pHKmlJXenZk4nVUwvexsl4+GstSIdmehgyhmx/MmaxPFDyhDrpm9VPZxJguYLwzzTxqta+B3/TFRto2iG7lA49HmyO9oZXwMVdS8whiAQumVu6ad0ZSCzVi0HwXs+FgoaMVpp+w7v/fTd/x7/9P/Mb/42Zf8b/7X/yueL1f25qlDmcFBbkTu2wIItDpIdTSWnkCK6dOlsm2NjoUd+iBEURtgT/7uYzn8F7aQ7hYIydj8VBt4qzpDrA6amYiMCb79GcV0/aUazMCNQrwUo6WBJcHHYLx98+kNpLozQlvXI0xN7iAb72yLWUun9s6B2zzwqNo6LVfzTki/AyCmKREGyjP4YGFVMSZLItRGLXUkvI2OHkAbiqONwraJYfxU5G5OcTIm8ocoCbEJOfrp/6qt1roGWh/JsnJIbT6tRRE7WmUYBg69/50j3D+tTP19AtZpvYzm4vAfjAdtPGS120GtR2JYN0OMj6C40Ql7VD0Hh1u9M1e2jGdtvMCd4VA+cpflYMeCxTR4ujNjbsHjH97w8JNGI8L3r+ylEYoy64JXb3PnGHFPj/jP3jJ/+Rnh8ZE2pD9rbWzRk376E9yX75DPnnBvH9Buk1QjPjSyrqhfzMQ1O4Kb0C3S9itbviEdghYmsGkuHc2Z4B0zkARyyVxvL7RmxJpaC+tI7PRpZj494mPCOagD7yi+E8RWes47pAmuW4HGkIvkvNNbvWvtS9mt+ToCggSct4lp7224/K0IdN4OCO+cFeO5kPcbvezjgFRctyh2KSC5U1828vsrfVeQmXq50H9IaLQmhGCmuNaNtqBrHka0yPnpTJoeuEmgDkN4u13Z3n9PXxJ9cmyXF9bXF9p2JUpG64qWFdpOaMZE51CTOEGqjqmamTF9mgYr10ZBvUPfd1y7oQQjnGDr/Fp2VBzx/CU9OJpA8cEm0AjEhriIpAk/Ji/xBMHNFmDSGgShu0bXDdhpbaO3ndCtIN22ndKrET9qxSE0CahXJFhyaPdKD9CDmetd7UzOEUYTqjom4LkivhG8I4UJXKDiQRJVCpWCc9BjxWk07eUUKTWT942Sd6QbJ7+PI8SrY/IzEagd2JVYP4WjiAs2rBh6TxnpryGceEgzCXgR2G8OkYh6hWDmtd7M9+PGxarOCAsW9e1RZ2SfaCeFfc5uWQMxeGIUmhd6dVRnHHs99P7iTEbobPIqvTFhG8CaG6UZe7uzoiOR+PXlPbWuaK9cb1dCTJxjRKSw58aeb8zThHMWsnaY3lsbvoRBOkvepvMl76xDY/96W3l+fubx6ZHlfLpP2tbbjVYq5/OZII7QHOxKro3YleAjD/MTy7KwXW98KCvrTdEKxTt+8bf/Fb785S8p33/Hf/of/J/55dsn3qWZlneid8QYmGJCS6ftyqxCVCFR0d3wsEEt7TLEQNst2EhKpby8kvedxTvevz7z9PaJn/93/tu46URunplArzaZu3UhefAbtG9ufPsn/5CvYmfbP9LaFfVtnN8gI1TIix+EG+530HHRGkyi3z1jIraVaX2w6LuivrOVDY3CT37xM9KXn5Gd5+FnP0dPZ7779teUemVeJuLsEQo+KC4wts5iSMbWaN2YU6b1xjC+WDhN8rb2V1ErFL3Hz4HHN4/spfDXv37PdrNGzolN1HsTky1g+TLrrTIviV49vTi8E8OtOmsOt9LoJdO7Z73BtCxst1dEzmgVTu9mkg/84vd+yZ89v0fK1eoFZ0ddyZ1ZZjxC6xu9rXi3U5pQ6olp+pxperQznhUnyjzbVmmaTMIUY7QArusrvSczPvtInCemmMhrY5on0ryQ3YQLJs+tPYM7sMoe7WLvsWD3y1HQOUCb0v3BpbHiqXeT7ghGPdFRvEhViw6x/SQhjmyeobGutRkLvSui5snq3ZrknBvremGaT7gQwYN3C2FaTNLUlbLu7OuOugxSDV8qRmJreWPnmV5s09GaDt5+ManfkDtHP5GrkrM14va4WlNi8rERNokfr3nARw/djKcxWHBpq9XyWhTzSwrDKyJUqajvaPT3DcYA2wxJ2adp+/FGcmrvERlZSR0OUjpf/eRrfvKrP+Av/uLP+OtvX9gqFB3hYspoquzjiQvoAUDBti2qsG9CLrtR4JLD5WryzuBJMeEdiFiQaK1lQEOsectZBjBGud128wF0pbVqz0DpSDg2PToKecjZ/v2Rz5PLIOC0xjQ5ptnSoMGampSmoQA5nsE+FC/2PPkhIXdyYBOcSXm6AIFSKiXbnTwFj2tQtFhdkjNlL0zR0cqGj45gQSeCSKfkjV7FBPltH5Pwav9ezT1uL7ZJMQ76TFeHuISLJtPR3rEBpRkcRotnc3S10I5axIwPLt01SMe3pNpGEW+8XxloOPs1MHqj2DJ51yHFGX+3HfmZbhzER/E/Onc9VvMy5D5YoTWFsZKzh+ZITT3CtTpjzW2PK2NHa4aTETjgj5Amyxmkdfs5SZghLcTHt8S90s4n9PVm+t/ZNF0VR18Wwk/ekr7+Cv/VF4Q3j2aowGQP4j3uzQPy9kRbIk2NBkSzAyVhnaAEUK901yFAnANFOt519suNKoGYTqScmM8ncmtwWym9UKSxbRdq34kjBn7unWDxaogkFvWc0oJDWPOFy95oZWV5TMQA0hzG0QPflN4LdduMVDPNaKvkkpGmaK/Gdx4IJ7DnjsEQPuhMMqz34q20atm2ClryyHbFLPul44pS18z28YX8ch2R2pUuG71HmgSIHpLlDgjY99Ps+4NIiCdcWAjAyXm2fePy3e8sF+DxxBYd+/qR/fUK+YbXFfpqE3usq+7VGiLnzHCDCD5OOOLAkJlZsgcr+mrfECkmU9OOjik2bcNrw8UZ1UeSeyQlR3PuXpDUYRIzrJmtA81NH2hiNI7mFHUdlUbrO7kYUrS0jpRmJlg6EgJd/L0gtVRNQaIbXOxOxfB+Idn02ftgpstqnPWy2+TorI5F/GA0e8RFVD3eTzY0a40J+xjTlJjVLsk9b7T9hpbVYrarGYy888ZKzpYKWXMn3YswZ1IENX2cqCf4RJgmvFssgMR1XgXqfjXKAEofg4ZWhexG8e0dk4scwWe9C1oh4YcOuJpcolVQYZrMW1Bax0uge88uyi5mYpvSZFuEUcSqWnHhJSDOsV5vvNw+0PuNfd+43V7QtuME8nZlzzdS8sxzsGluqaT4lvPp0TZpas/bXlbQE9O8ME9Giai1IU6suE6R9vpK2Tc+fvxI65U0Jd5//wM/fPcdp2Xi6XQiuoBKsmcm9FHAdOa0cJrO1NuQ9pwcNe94L8Rf/BFPf/jH/Bf/8X/E694p3bPtbdA0KmEY/+yYrEi52QUuQsRTc7EJnRdKcXRxxDBTpBBQesk8nidq83z73XfcrjuPfsJZHiBxcM6XKIRNeP0nP/Bf/Af/Ec//9E+YPvyA23/HKRQKjqr2ethEsQy/lQ1uzFh4TC4PWamBrC300eaHWip+bJRTioTgWPcbf/aXf8aXER6/+prS4N1Pf8qv/ubf4vbtmei6Ber1HecqSmOrG9RyJy/hsUDBMfyykEc3NsP2e4xBR5wDzntO50DswtvrxLPsrJfGtq88xMg0Tag24/qPgJ6PHzaW08Ry8kg1uYr3Ykhe8dRuONpWlVbNyyG94H1h315wYeHd28+smHNWN4h2SqvUBi0cvDu4bRdy3W3QVXemxbHedpTCskRq3bneLpaF4u29lJI1GuoSue60vZGWMy4ana/2xnI68dlnn1NfPpLXYtsJV4lJ8E6I3tvGiMa+Fyu2dMhq1ab4qKWhOudtUt6N3NXvk1bz/xwDwuM8127/39uRSSk76/pKrzYht2TqAlope2G7BdYpEZO370swCXBamOfONu9sKVN2+/nBPqSotqnseadXj1Lp1QafcaBDRa1Y3fLKtne2fSdX86j1gQE2/7dNl11wzCkRk91DrZjURIZB39Q4w3c53vdqtkiadPxsfoqcu5mYReneGU1mNBRWb1mKsxcIQ/7TRyqj4mld+fN/+g3/u//t/54PH9/zflOagols+SRN46j/ZEzwrfhFTU7c1aFl8OZLJ0R7XVrQwSORUZ8ZIc8NUlnwiZwzKYWRu6NUBRHLHkJteG1Y9mPwbE29iilVaq3Dy2HS6ikFlMo8J5ZlYkSckJK997Z9vWvxSymEaP6AnPNoCibWPROjqWACcUhyAmg2bwSgIdy3MKa9H1KdXggEAlrsoqliuq9eR1dUzexGs3raBSDci+w+sJkqYUzLrAi8y1VEbNrvLAjBfjiVXhVtGemV7gveVboPBG9IPf3R33cSh+ngYEKPlQg26Xede+iVjHVIV4uVthWHmQ8O6cwhyTmGM/fPhR3kXgIMt/VQk1mR0IaGX43BfciDjuZ0PG4YIVYQAgd73BNpWHEv6WzrFJ8oyNCsWTFWvaOmhH7xBD/9HPnlV7iffIF/fMJFR90vxlv3Dpkn9BRortFzh9bwHUIzjGBxSvOFlARHIu6Z5oW9ZTRvsK5cXzfSdMZdLbZb00RumRZtmp+8Mnv9NE0fJhlF6Dv44pFlMLjXlbTv1NbZnndqWsazYXShEoXuTDJjl1Sl5Z227/Ru04Qj2dS1hvoGQVECvjey1jEdA612mBSt7NeVclmZamMWwavQa6dulbIV8m1nf76RXzcijhoU5yc7vDFvQEgRF6JJsUSowK00trwzTQtvvvoad7sS8w6l8PrykQ+3K7eHM3GZoG9oKci+o+UVaVfEV2Pqt0bNhcO0E0MyrV6v9JpxcSJKRMJkpsJeDe2pHXpByw75Bm2DlofZ9QHmd+g+o64RpjPdY/z1YkmzMhKaXRiHaLAglt7MIF32TF13QhOcjraoV0S8pcyKST9kTCybOnoFHz1Bok2aipmwfYqEkShcy27GamfvzbIX8p5ZSyZcnjk/vOPx7Rd48UiIGHnAEYLiYjTGs7dGOsaZeH5E+07OF0reqdnwoX7ILwiVWsz0L5LtY4inh0aIEZeGmTdGZEqE4FiimRi7Ni7P4GrBD+28YvpJsvlgmhaqL7gUcNE2VOpB4mRcZfF4N1Z1ztGOsyokvNdB3yrkbASGMAy10m2l2qXjotBypebChMm8Pnz8iKNxnhMlG/6wt2jkpdsLl16Z5oWHeeI0eRyd6+V1yAPsYirZNprHpQbGQ3739g3SlX0zf9GWN66XV9abo+Zs8qetsL9eCMuZ7gKnzx7tvLxcIO98/+E9H16eoVSit4FOWW+2wt52dqf86stf8C//rX8Jef6Bz5OjKvR9My8CHWk27fTRk5yj3TZLZg2G42Pg4GSYhPNAgqpmggpJHb/9kz/l3/9f/C/5d/9n/3Pe/eGvIDv2baVeC7/5s1/zD/+Tv8dv/v5/CT98w3z7Ftl+S9u+o/dsQxs1qYWXhvhiAyKJ9wJfrBe3++5gSGMvtwp4hUkdKg16I4jnvCSeHk+8Xl4ov/kNPzs/UCUSpoXf/+f+G8gf/ZL19SPX1x94/fgd2+U9tazgbMqnqrjWhv4+0Ef+wRE0JKO4F2dUp1otzCz5yOttZ14mvvzqiWna+EEMYoAcpA8wQswgenSlZDs7xEEvNiRrLZNObzhNZ1yauG4r27bTSkfrDaqnCdxy4XpbaV3MEB3NLFxHoE9KjtoKeGFyE69rJS3w+vyB737YUPVMk3HJ6Y09m0pAx8/6tMw8PCyIO7Ht0DQQ54D2ndfnF7ZVeHzzwE9+9nNevvstra4IHVrGRbBTXsY9f2jIZeiiqyX+ekPSOnFDamEynlrLQMlaeGYbWm0dcgoVzBsjJqnrtbJeX+mtDqqXTfRzybbRLzv7Tbl6JUbFBfP5hWDoUh8mTg/vECJOApePECVxnsA7axJqrWhv1NqpRfG+4YNl9dTajLOvAe+mgYYeCFBbABl+2AocQnCE00xKyZ7tqNAt0bUNU2jplg5swhfuXkInRpnr7pDY2KC2F0WiDVQsdFRHFWWyVz9G9V2gqVCHGff50vjwp78mt8qu89DmMybWNhA+NosyiEaH5PuQ+fRm54VWQZyFo/pgmO1ppLIffkjXMXmdmCzJaR/UGsswaK2Pua3d2yHY9qwfW2k/alERk8uJkIakvTU7p0KcRxpuQByEYKbaPlbQtda7QVdHvTtNyZ7B3sw7RUXV4Vy0pmwkz7chm+yD0S/j9aUzUpOFWiFoX2nVHLtHt6ra8GL6ZtVqaxAXEAljUj+6JhctVdPPVvi3imBObYszBhEzORrPvtgFLt5+CC5BaOAjGqAydKoDMYVW0Ih30fSuQ35zuNQP09GR2gjHCzCeRJEhATv+zDC8jkfOfrX73xUqojIK99Fltk/0AsF436NLuHenHNqw0dzYVMfc8SnOtDrj54rOC3W7cdkLH28rPRdiN+pGT5H2eILPn+hfPKL/P67+ZFmSJFnTxD5mEVFVMzvn+HH3GDIiM+9Yd6wCqgdqajQGwgKETb8BsAbeBgs8AghEwCsAWKKIACrqKrpVqPmOmZEZGeERPp3BBlWVgbFgUfOo9iDPDPdwP4OZKAvzz//w2R3t5Q1lv3MnjT3u1iGCaQDNPSWvudesRRSfYv3iagwhEVIgZN/MRGuMCnm+cH7/TNaBJU3Y8B06TZg09ocBxkgLvsYqZWWLLRccwcgkSnAf+5oLy7x42I5GYhqBBCGhwS813UVqXz2H0P20VdDWwNz9IfQp1axCMHRwIUnsqENoXjCteLKilQWWzLgKw2rovDrXuUJeC3mp1LUSZcfd3Y6IQPFhrYWIxQHdjaTDjrgbUVWWefUGvxjnJXNujVPpJWhd3IJyXZBa2d3esUuTuyrVRNVKLcdeeKuHGSLuRtG6FqP1E2eFKsa4j8RB0eoBRJKNaPiQXAtSV2xdaPmC1cXtsCRQT89YEfeTR0iDQAzUywUJbtsqLFtFh6ki0kilMBRYMy4ObpEgO1p09CeI0zug87OrC4EbnowZamSUkVQjYTGGYKTBnaTMlFovnnppldAKsbtRLWuhrAurGW1IWJyc+ubkJGKI3XMYWu78w84lleCi5VaDnylpRHFbyIpDSXm5YLUw2OiDX8240YKAuq2cSqNgUM6QC6NGahhgzoSlEMXr1po70qWClBVrF2wwbChUCZQh0Q7GTndoEFrXAtAaK/QtXxehiyIloHOhloW8qJ/rXLFcWfKZMHq7uJxnrHl67JhGT9XO1a0sa4Y0YimwLiunx49QV2Tak0Og5UxZll7SnB5Iy8zziXk++wWokRgC6zbgrW4HWHJmXWa2u3sKAXKlnGeyJNqwo1RH9ov65T1fZupp4dXtLawrL+8OvDpMvP/+e9K8ML9/Rzqf+KP7z9xHva6cuDhVKbj1slXfLsrofHW14Wq5t84zYRyIaaRJYFkcPV5q6a5ClYMof3S449t/8x/4f/yf/s/8L//3/zt+/id/yV//f/+Kt3//Wz7+5g3H373hZjlTTx+w8xvy8gMhzkyamBegbd2KX9htK/3SXbm3ZmSLhd9++Pq656uYA1cCQRvTFPjii5eU2z0P64V3799hcc/h9hUvf/Y1y/mGRQNRfbCU6s2ftdWbnpZdQ5NGfysDlBohu32hSui0nerDtwpWjWFIpMkDsXI29jcDpRqn40rJC81CT37ueS/FnPufdoT+XLVmn7RGXS82DTvefvjIw+MjQqPkhXF55uVnv3A6rsA4Thwvb9GwUtvCMB0Iw8g5Z6bbHb/8w1/y2VdfosPA83nGtHE8nUga2e32iPXk5jGSS2FeF0px15x1uRBjYEx7QhwprTAvc+e9B3IxtweOkd3NgXXJ3Ymr88xNnW65aSqK50C01iA49WeeF6Ju/cWnNOmNarL1CyJCMOdiV7fqc9S+BzTlZfEtc3Vxe5CAmtexgrJeZjfxUMNkII7CONyADNQmpGkkaGC5nHnmA80y/pCsfhZxd5R1qX5fSCYEz4exzojACrn70nchEh505LTJoC46TkNknCZiStTWIAhtacy1ULK/RjU7qdxwEHWzWpSmHpBFdaqydoF8T16lOxKJbe72DqQKG7iqrpy0zmmvQm6wtkDpAV7S3J3Ia5r1P997rD620d0YN1vIjeJC/3+3/VSsBGiDf/7mrlxWV0y9CXbQ2q3gpZux+EDoph0grHPXgKkQ5BPte82L67TSSIo+qEYVTw6PAY2+NdjoOE7hSSzLCtCTwd1yPEbfAtTana+s605x6l8ttetFfKhEjDREVCK1BnJZGcbEOCZiisS8nrr1oHNuseY2PeJIYq1rt/XZIu0dkTWJSOhqXnObnqpOnXBRQyANEZFCLRfmyxks+/Ss7vWr0novXLuF1+IWS9VQjdQSaWkgpYlo7v9rm1ijdgxF/a329Y07F3yqw1683YO7N/aynVZH57WvXJ3x0asVDaz0sIh+qBBf+VfckUC0rxyl8+s2dlC9Oukg0n1nR4IU8pC4NONhnjmroMnXqRL3hGlCXt7RPn+Fvn6B3e2puwFJAVMIOvQmvnmEdfXm3u2pAkii4mIan5SUJhXLZ2RZkFJIZqynM5d3b2lPC41IJrjdHY2QlOluT04wt0yrufu+9sa+Ca3C2oRlu3lqI5dui9mFLuiAhpE47nj5+nPC3YG5Xjhfuo99F4huCXQxBFLykCCfegNhcGF0E4OgxCHgGpCMlkJdVto80+aLC5EuC3mtNFEqStCR/e6OeNMt1kplmRcASkdz0ziSpoSoW6Mp5gFZ80ow4WaYuNsdWJYL8/lIvZwYTQhx4iZFbvY3hBSxOpLrhdOze/XWar4WC/6c1Lp2qlgjqMA1adkwLbQ2u3C0VVKITu1qRllAi2I2OHJUK6xg7dnpQ9acY7wrpF2DqoS0bQecCiIxYIsLjaQuTJeKLUJeAu3S0FWRmiAHFGHSAcwbLsyjuN0vXpBqjFqJbcHOZ/SkcGzkFF2DcnqkXI4oq9uE9rAYlUS1gDxdWE8L4+EOCcnRntaw2JF1+YRkWC98SEbzkaH4ViLgGRkqwlAqlzW7+NMMGwfi7kCII7YsmJ6BQBsmckys68J6ecLWE1Jn4jrD+QLzQqlGLXBZCmsRdwrZ3bCmR9YmWEjEaSLcHhhf3qN3d6Rho8W5mD7E4BdGczedqIGwNvR59k3SUIg3DQ0JRZiPF87tRCmV0+nkNSM1vv76Z7Sy8v7tG09XrY18yaSoaAEtFVkrpplj/kga96gq0ziRt1DAVlnXlXV1i9shjaQ0cs6l+1wHtMuXrBljij4glAY5czqeef7wSNsfMA388R//EYcx8v3v3vDw7kd+78svGdYzL8aRA4Xvv/0Np999y/zmDccff2D98AF7fCC1wvPl7C4sOhHGyalUAaoIizhSfXsQ5uORJo3D3auerxFZcqW0E9by1fJ4Nyb2YeD4+Mhnw46Hf//v+av/+/+NV/+H/yPzb/+GH//Nv2X3XHn59Mz5+Ue0PhHCjB0CdVEse5jcxvltSNeCdDecjT7aQZ0Nvleho4YGG29bYRjcNz7sICYhDYG5eU4AHWUUCcTDC2aUUAr7caSJkMtMsUqZXQQ7jhP7/Q6zRm4ueiT0obeUK+e7mdE2i0z/LMQUUYVLuaBBuX+1Z7cf+fjh6GGDGKoJxQMRl1w4Xc7s18QUlaSKJulU2opZdQqkBmKMUFfOp48UO3O4vWOIid00Me13PHwoLHnFrPKz1/eM+8/461//mt/7/T/kv/tf/2/Z3b7kw8MTP757x/zme8ZJKMvM+XQkyo4wuKPI2j3oaULOC3m5kJeGcSGEsRt4OPf+fMm8evE5L17eM4wj1VZCmJDYMJuRpoQWkBz6a+QUE18MORc/r574WdnEldb51p2e01pvUDtDgI4mi5uKqOF6J+O6WXYK8mbD7XqbaL7FrHkhxGdi+sjQhFouhHiD6h4NI2FITIcDaRwp88ySMyk4GpybZxWsuZFzRaiuQxNH4jVEahXyUjo44vdMIBBUGeMm7A8M40BIbghMp/uGFBiK0eqFbJVqXZncug2saL/jhdUKxdwwoKm5Y5lJv/8cZPMgP0+ILR0dVW/CXF8oHWzroMTGqnDdYt84ivdqrRsvOD+d3qN1MOP6s//atA/kQl5hWSoxNTdgCe4Jby1gGHmthCiU0pzvHnyLu2k/W6vUapTsblWxO9/UVsglu9FCFGISpikSFN8ShK3nbN2DHrbMCdXoWh8RREIfhjzZeRhS3xL6PYGYb2wX122U0jpFuWHiTkmbi5bg2z1Nrn2Ny/LQ+2OjZ+sS1NNlW83U4tx7USGm5BenRK7qcYNmESQjUtwicBzQ6O47AShLYb6ckOaiqhgiSMG0INWRutIKpV26f2rnFxGoZfIpMlViHHyiEWHzJN486lXdoeYn5+H6Zm+UHPrh2Hj9tO3AeCNvta/u6DzwHnohuMUUolTz0BVV7TZejtNbcI5YBIK5IroHwH1CUOOAThPpxR37r35GSQOahTTdEA8H2qsXrJ/fw/0tdRycmoR7ohdT35i04ihPWWhlZYN3iiUKg29SZIcWPDJ7OSPzhXY6c3z/gY/ffcflwwcO2XmWLRvTfiJJAyqyPCODMkrr6ZZgVajFKLnz2Tp6cW0MqnUbKP86zZKHV5EoT2fkdsdlOVFqIWqghei8zJyvmw7wabmW2pffgYqvQXWMTPsdwxTZH0Zu9yODZbhcyE+PnmC7LKzVMI2Qduzv9wR2TPs79jc3LOvC8uE9OWcPJUvBG9e6kk8X1tNMvWTyXBlbIOrA/Nsf+OHhRM5HWn5GEYZxIsVAmxfWs0e4W55p54pUJZrz9IJFYhHqkrFZoErfVsnVaUNq43I+YvHSj0lAxpHYm2VpidYEZKLKSqkr5MBgmaAXKJX5eUbiM3G8JQ47NI2IeCBbM/f7zWEkqzf39fRIOx3hslBPM7bOhG4h24CszV0ZmiMIpRcaE8XChRJnZHyi6Y5s0b2INbrf/3qCciZJJanbzi7Z0zDRRA0jJe2oIbgwqidIhxC6ODv2wdgvCncVKAi5D+OfSviWmmIYTY0qDRsGxv0NzVzcpHFEZKBocjH66cTl8QP58oS2lWSVQOcSo9QqXNZKbQphJIx7Whg5r4WmgWl/Sxz3TLsb8u0daRx6c9h1IENyGlr1UKLddGAUp6qs68qMMO8nwjRwKZmb1y95/cXntKDc3b9g3E0cbm843OyhVV7s7/n13/8njk8nlAah9hW3wlLdKz001svJwcPmA7aEwHLxf0/B7UwNT1qkGDFEbnc3xBQZx5EhJU5Pj5wuM1E89O/h4zPH5yOrfERD4GkcGZMSHh94kVf48XseP37kzcf3PL/5kbff/o7QCvX4wP1u4MUwwsFtGO9e/4zhxUsuVWlhz1oiOSth3HP44nN+/PWveP/bb3j5+hWXyzPVFvYxonhysEZlH3dOxxG38Ht4/ki0RDwufK3Gx3/5z/mX8yNP60r48IQ8F8bziVSesNg4lZnzevYNjygpGMGqh7KJUMyTwn347khjp79sG+Ng6nkMrSdmirnbVlION3tk73SuwspSjP1nr3jx6h5Jdzw8XXisRhsT4+0rdre3pCnxfHxgXi4EGrvhwMv7W0Tg6emRFI1BHJHLObtVY0fxmhnVGrW6FV4zuMwLt3c7bm52nM8LtWb2h0StAx/biXVewMw1RabkUlnyhVInTLwJdd0TxKTooJQ+pMQxwZq5HE/oUDlfPrB78ZJpciG394iFcR/4xe/9kvtXv0f67DWHV1+Q4z13h9/n69uBp8t/pLYHbm4HZvnAcj5BPRBkoCBM0452Wa/GC7V6KvqPP3xHrfDy/qULx02Ybj4nV088H6YRot/nBaPk4rqlrNS1a+XEkW/dwn76sKjIlQq8Ib6bhSwi19d9ayJLragaKfk9ZWZQnLTlXvtun9mab4RyLqzn4inbobEcF87DA00rqV4Yp4okR8fR4Om+IbDWTC0XxtiIQVmWxpyb3wl8yhwCf/Y3St4QN2vHBaoPr95/eHMfhoFxt0dUyc0VsUFGaIrZSimQXYLiNfjaFfnm3q0tHXgz9QlXkpI63bII/nFbd7cxp/Ws+OAstiW/OCbvLjPuTObMEBeut+6tKT/50yqC8D/apPWe3vHUbnnZm/y8Fo7PKyUXLtEd0eKoWGxoBBFjfxhprZGSN48p9tCrDpC0VpmGERNxTYK41eqanX6bhsA4RaZdQKyCZO9h1bcBZu3qnV86ECWdar5ZGLvDTmEYBkouNHEwL+fsNuhr82UV0sFzu7JS3HVHHTDrXEJRIdblwlWras359/hk0Gr2lXB3yml93bTlybofvAsVa+s+9bhgKg2DC+9a6ap1dRqJrVhVgmRUM8SKULCwUtrFkXKJWNiEP0LehojW0J4GpkSa+IWPRCLefEu3rNx8V3+6Yt0wjk380ON0XfTYKvRDaNv2wg2i/eGW0rcXbq2HOvohuNiwSkLUBacmjnbTOY6oYjESdnvuPv+SKShzVB6Ggfo808YdcntLfPWC8Nk99XZPjh7o4XHH7o5Q2wrNhVjWZqw7iVQJZEuYOEVqQAjZaLnQzkeWpweevvmGH/7Dv2f59gdui0CJtLWhLaCze8kjjZSEKUWGKKTouoHaGrlVcjVi7T7muVBLu07IyTy/YM2ZnBcqvk7/+PBA2I9sUU5Fhagecz9sNqbdXrWUzHy5+FrQnNfZRCAF2pgou4Te7JAh0MpMWS8s5xNaSy9uQgmRGjJBdtwelGDK5Tjz8fGB9w8fiUEZYySoW3/RCvPxyPx4ZH2+0DKM4w2NyI8/PmJDYriLjLeRKMKqkWEu2OhezrkZJZ8I6yNpfUDzGbPSRXmNthakGkGCx3bTs511wKKw5kwY3PLNRLiosmhwJGXoz5qYv/6luoOCXUCenSZikSYuOotxxzCM3YFldrvHEDhlR0xCK9hywdYzWhfIM2U+d84hWBeGUnuehXW/e5zzWy24smS6JQwH5tWY58J+2CO1sl6eCDYzRhi0sbkCoMF5++ZborXhac7yCRFSTS5g4lPQjPfwlaDtKnjrI7oXv6iEyZP+slXyEKnDjpJhXRvj7oaUduQKdc2UZcaWMzEvqK0EcTcFhuQUQQvInMlLY2nqr2scWA0kJnI8MrYRY2KNg1M2enhRiBGJkTAMEJWKsQyjU76mwWkmYyJVYdDE3at77n/xM+6+eN351d4o9m8QNHL76nN+tiz8+m9mnj+8JVLZ7QfGcejUmQvD3YFs1dE8XUACUTyX4BqaFSNm3mQcbg6si3v+ny9nRJUhRlSE/bhjHyLr85FyuVCOJ/7iT/8SMJ5/81ue84WQZ8JyIS9nHr79Lccff2CP8PMojHHk8MXPmcbIfJ6pdYdME7K7pR1ecH/zEt2/xNhx/+orvvxHf8r+sy94/9d/x//z//p/YVzOrB9+INiMBBfC6X5PXhbyZeH8eCLPBRkCx1KYIkxRGJYnvhwSD//ur5DbA0MzbClEFqw90SwQRRiHyfms2Qe7pNvdEZ2aWjLWcm+AHcHbXIdqFxlaEajWA+LwZNlSiOKOHOf1zFJWWhDWZebN998RpxONEUmDD+ChksLEzWFHXk4MYyRfnpiie6M/fvzAUgr7ffImchiIye1INQyEMTHtb1jLwsPDBxqNYk5DXNfUm4nsbZEZh5uRdS3O7WezsfZz1qxRrfj93iq1gdpALjOtGvPTM+dcaC2jOGUtBmU5nbmMJ05PJy7n01Urs9snXn/2iruX97z+k3/E7tXXYDe8/+jmDJcZQtwxjg3aTJ4vXC4zQoIQefX6JfntidP5yDTt2O8PfHj/6CBjheXy5HSHYccYI8vcNQmindqQGGRglkjL7uLUmjdXEhyIawi5I6AqwcXmGwBKb2ZdaNaX/F1z15vKWgshQNTofPziCK3K5uRirJap4jqbZa2czyvFqm8VWqNKIXPhcOdBd2tpxFiIcUezlVxn1rIQbIVWqRJYM5TSEAlOUxbrQUzSDUnEgbj2SURbS+nwZ8NsdAOAVr25jBGt3ksNsqO2yrxm5tUHkdqab0ndbxUXsvagKl9x0YpRrVNWUN9+W6Na7Y5ivjXZXJ/cNK5TB8HZCNsG10tWHwjc4KATIDa6f9+euZ7SGTiuA5Rr4fwJgg+IRGrOLK2yqucnjSXQQmOcAsMQSGGgtsW/1la6Z4tdz4TbIw/e93SwOMbI1LdrQDefgSgNVaEWdx8KKtSuk2jNPHtBNkdJx9M3us5u2mHmfyYNibVmp3BZb+a7HsCsEeIm+HegWtWp8G6Q40GrkWX2Tr+vHLdvqNZCLStBrXOkBGtKKfQJRnB8f3WBCkaIrkpXM8e0O/8sxZFp2nOpl74JyOSuVE7sae2ExEZhpVVxCooIZhFPgiudy+UouzfQvh5xf9VIawkJCdEE5i9ekOgBFbV717L5iTZaXbGWcXcdb/K3KadvovpA0H32O4Lfupe/mQuMPUUw+HRpXjzcukG6hRMIEWOA8Q6JE7thhwRYpoHT4zMXhLbfMb68I94fKAEMD22qPT0QBOqC5Zlaj0ib+2vh4mbRycW+rVHsgtUZnRfK+/ecvvmWt3/9tzz++reMa0PSwT1kUQiJhnp+BUql89EnJaSCtE7QbkLNQl2NWqGuhXUtWBV/zcOAheiFRV3dv0/iwtC5OKfP7IqIFFHW7jA0jpPbbtVGKMWDsqJ1RwhBtCF1QU8L+fzEWlwXIta6AKh231gXt0ksnNbvOb9722kS7mDSzIhpoITAOHjqZ1lXLqcTZVloufkFaSdXwveGbTkqZerJzXEgT88wjBCcr9jqitSZpZ4dEU6eluwUE39wg0TWJXsBlIDYBd3QlyFRaSxl87Tdvm+9DqnFPlFVyqW4x38vYdpXpRaS26biBb5UF5e30pvlTWSF09HKuuA5Fr1EdsRDxcWYImDFRUSKrzMd2jg7CmTGkI0WEnVdsbJCbDQVsvhz5u4b7kJB89oxqb+Whq8qgwZCSh4KVt3xYBO6bzZhvsUJV5Sj9YHDgmAKjUYGFnEvPjOhpYE8jN33PfT+o3WnrNpjvZNbVabIQiIMeyyrr/c1YWngEGNPCm1ITbQ2OtVia466bZqqshsGppsbDnd33Ny/YHyxZ3p54HB3R9iP6DgQpkgYo/vj9w2EG6Y3qAtE8YstCZ///tekMfDv/sW/4Id/+Ade7AdevjgQYiPuR1cMDQNBhLxWT4Ru4jagFUQNmm9GTWAMHnx0vixEiRCUH378kVGVXQislzNvfvVr5HxhWGZO336DYjz8+Ia6HLmdErbOnB7ec/nxB26D8urulrZ4eFAicHxaaGnPze/9gocmlMMtn/3Rn3D7+ee8/Oprpps7t+4cDlATn/83/xN++a//Mfr2B+7/4Od8fju6UDkKLQVsHFkb5Icn5t9+y5vffsPTt984slsKhZXAiuTC2AIWAs+cyIOLYnNze8Io6psaEUJKXqEleC5Gda1Is0YxIwbFtJHb4lS5QfsavpHEm8O6bZxr5SaNFG1Id3c7DDvyUnh8eEOYnnjx+nPu96+YcatmCYlKYnz1c/YWWc8fkXzkMj8yEwjTjhqFy3LicHPDuiy8ffdES4Hf+9O/5Ms/+Ef88P4t+e23HD9+S2HGSmXuYUUxOcd4uSwMQ+SwH5gvK/NSECohCeusXE6FskIMyZ17DJZldh0RhUsudDMcTOGzL39OqY3l3Dh8feDjjz9wmZ8cMdTAMN2QayZOkDVwyY0UKsUWhmjUdqS2mXV1kKjUyvN6Yl5nbm521BzBKjc3rxA98PHhwvF0oVFYlmfGMLO/u2E/HjgeL8RwQxBlXo68ejFS1sKY3H66lMZSC4gQh4GlzWhyDVTZ6L/erhF7SmntqL2IQXAKULXeOBu06vTcZkIu/nw1nGcdgm9VNl5wsYXZVsx6UKKpb1uykS+FOV0Y04JyIiSn9ZTlzPl4Ahx8aLlSO/2iFXPDDjP3x1clBqeyWk/nLaV6Qy++Cc1tA5s8DVgFCJEwJTROLpKWhuhI5shaMo0+uPaNhWwDIbijDt05x/CBRQPDGKkF8jy7K1w/MHZt4D/R2ujOiFsT7sLS4OCfibsSiuvvRhWSGaO6p381B/HmJtQwspqSm+ekKK3PDJ9Qfd+6Jdeo1EbTDjgFY0yBpCO2CjEk2uzbUOjhZGqO5gOCa128kze/F5tzN2Jw8LiUjA5uvxryJlDPfUCsXajrtPVaoV4pXz2ArCnzPFNLI8Z+r5vfj7W7O3poVqOsxZ2Oihu7hI7e+9bfe93Y1tUnAPU1Y7PmsdqdmuIez90BBldBa0i+8k7BPeBr7Z6uCyXP5OVCiIr+5IVRiWgM5Fwp5YSH12wFZfD1mxoqnYpQnLMMOMdcMuBe0B4ilTsLS6AGWtxB88lMxP19RVvn53i0ctsEwlacw1kXfG/lb5RtRvY+8vlU1Pn3sLnqCDCA+tagmTdFQQJC6Am4cuVsBVHQAVBsCLQ2wTCyH4xy2MPRLcIIAruBlsTFct12rVkfpkyxslLWI5ZPjt5b6dquAR0C2jUPIg0olPVIm49wuSBzRsxtKKtGsiaG/cgUdyQVkEpTQQ4T4W4k7pWoZ9r8SF29wLUWaE3JubFWoxQoa/ecjRULQumvWaQxCgxuHEToE7nvTzqv2nyKl9xdPoBJY19LtqsXrOW+RekNFT3aGYxo7hFM016A3Ke8zaerNzrmzhbSBTxnayziiHFrrT9kLuoSExcRA9ICshi2CJ5O7w4Ws34E9VRAP4s+bDiJt7LgghcXyPXQtS7AjuLc9mjuQKSilBjI1VNIS63XFXHpY72JXC0pnSvqNrCKEa3QQVr3KMYbW8y95qXhdmmtXbns2/kOzS+3bYjdfphAkU5PcPtfTISoPhRI8ECdiNN5TN0BZhM+hyD9J47btB4MJJ2LSkCsr8WrB5IlSQRCFzN5SJSHQNk1CEWqO9Q08PyEjcIjnwp6VCVF9VVxWRl0ZRh2Tudz83tq9Oc4TQl2B4ZXX5DuXlOHW/Jww1lviId74u5AHCfiEAnitCojYKY9R8Bf51oKZh5wN+xv0d2OtNsxHPbIoOgU3O6se+dvtbZKbyKsv9DN1/ONRtOuHYkDr778mv/qv/hv+X//zW/4/l//NfMh8vLlBPc3cLghvnhBuLkh7ARTF+JKrASN/f30ejTEyPl0pMyZpRbCmBwcyStxGglWeHp4z3p8YDJjOT/x99/8mqRQlwVtK3E/cDME0nLhs8MOpZHEaEl5enhiGEZefvUL2u0rvjkV8u1L/uv/zX/P13/+Z5CivwfmAUwmEcsBPRfSixv+7T//Z3wZhL87PhK10YJyBmR/4Pazz/n8xQt+/qd/xGe//xXLP5v5+LvfEgdlrS6svrm74fOffc7T5YIOyunjR5TqdnTVmOfZh8ngnmbNxLfD5gnYwSpYxMzoocdO2ywrVSCFhFXPAPH1eHBdmhRWqUy7xPTizjdQmhAJ3I4jBDh+fAODMr7+iuOxUHY3pGHiuDZ2L78g7Sbmpx+grezv79E2ewp0W8nFg5lu7m748g//MX/0X/zPiK++prz9EW5u+Hj+QCiZqME3yObiuyAwjK6LiymwP0zkeqGU2TcWyZHVUoy8FhrNfdXxDX6MgRHjtJ4xMW7uXmJ4E6Q0LK+8fDHx1devefd+5fmYOZ4Xfnz3A/dfvGY+7bAsjMMJM2FdL7x8mXh6UGpeOD6fMDP2+4GSZ56ej8QEd7ev2R1eczxmzpcZDZE1F56eHpFyYQyNpDv2N1/z4eG5JyivfHw4M6aMWKasRl6MnButChpgLRk3ixEXYDZ/7kK3Q43qiKeHJjVyW32LCJ9qDf53TYVcoS2VWGGozcW60v8Y3dWFhqgRu/FAqcHBKAzJQj4vUE/EEWqs5LVxfHxmPT9BLQQ2sMLrjXbHv9j9230oC+5rv2YP9QxCyRs/u5tXBCNEIU6BOCqN4sYOCNWE03zhdD6xVK8Na1n9zsZYinuph54pVJvTUSQGz5bBxbpGI43qPvFZaGtwkS+CtIo1+9Tgm3kt3Ho4AQ8fkk6dVoYohLYwkPn5/QukFk6nM6ecgcRc7crWsI2XLxvYtXHmt3vNMxx8SGvUsnB68iDPdZ+ZpggUhsmQJkgyQtJ+b1tH37ctEQ5EAiFGdnEgasBKYa4r61wIOFW16QYA1W4BqpTm/vataXesWtiPg+sWi12/Tgx3v9t6jehc/ZpdAB7VB47WKleDSlwILCLE3Kkd0typwJoL6dyftPNJ+4l1sSjdlSURwwTRUevW3KJntjO0RFMYdWKIbpsUovM7rURadTTdD9jS14oZib4q8ua081gldN6Sup9+R+Wdz74tazykwdeG/gY0aVfajRPxm3PVrYCVLhZde2PWm8hGRzF/+sPT6ITWOb5uGyZBOq2g/74lpAsdxIUIPTHOE39d9e5fsxrQdoyHeyyMjN0XXUKjlLnbGc39Y3eusSm1rLR8puXTdesAff0eKtpKb/C7N68ELE7Eu3tuv/oFMd4wEhhQQmnsh4mbYeeFDPeaH8aRtBsIqREZsKDkc2NpF78kFNZoZGl9vVmouUFuWAlU8cm7igf4NHXEt20N5ieKPZsIOue5/1rRNHiwSPuJLWp/Pa0jKIJ0S1YvFsGCJ0x2rqx29wJvdPt81+c862iye+P6QzD0Jt3pIRBi6lsYvDvu9cFqwyT7kIj0oOj+HpnHllkzUnMFe1Rfh7budDAOm+UrvSj6MEqFUJ3nGMoW2GQk+xRz7dQw146s+NlQzBFaeqNZfYXXDGhy1cSsrXZPZX99toknauh+64ZsWys8Cl2lF9p+xK58VGn94257KX9eIv2Z3IqROFKuvXf1c6wE8eKPOS9TtoGtGVL78CweJld7gbtOJM2wbpfrB6a/JrKtYB1Baa27mNDRcHObQg3qtnXNKWJSCnNpNCJpd8tw84rp8JLD7qWn2aaRNO5cmGY+NBdt7hojm5CuUbMTFTUNxP1I3E3EvbswhY0CsekDxJtt+8k/W3omGhELVPNLT0WQAlKU28NnfBUPrOeMPn5g+SGTXt5Q7u8Jn7/i8OoV6f4e3ReaRiQkCIG8LlgUanS0up0bdXXOrNSF0gotr1QquTXqfGJKQj0eWecj+zFyGEY/cbmQRDifTrCu0BrD5NaytcGLVy+ZbvY8r2d+9/fvuf39P+Mv/uv/hp/94o/8Tih+2RGGfkH62ddmPH74yC4mUsuUyxkpM4HGWAoV5fzNb/i7VvkbKUQ16vnElAb2MbGejuwPB+7u750Ouiy8vL9nFLDLwHq5kPOKdp//0O3kaq1XpDUqyBAxC9Ts22ccFHNRJEqrLuSOMTGv2bNtp4FFCrmtjOpWlcfTiVYquoPhcIMOifn4zId3b7kfJgiR87o4DUGVXZp4PM4s52fOx0coZ9py4rKciUFIEV7c31EfT5wuzzTLHA4DX4YvkHbm+1+95Kv7LzkMiXc/vmW5uEYjBUd5c8ns9iOiiVyN5+eLO6wIaFKCW3T5oLJ6lgS2MqWJYRw454tncvRn7e7FLeul8vz0gGjg9mZPrXfsdoqxcjw+8/jwgenlHgzOp0fSeGApmSFGDrsb3j49UdfCLg2MwR3DwnTH7e1rpt1L4nCDRuHm7hXL/ERdM088cDoVkqyIZKbBsxXevnvLw+MTLw4jecksunr4YXarXGt+N5TarvdArQa102aloU1RtU5L7qJp2/zUOzViq3it22k3I7cOOgG1VDSFqzMfwtXcAO/30W2oNyOIepJ1qNRQPFuoePhe6Pk6YuJC3X6HbFVaJBBiICYPINXo1JiQEkULa3ZwK2hAg7hjTohM0+RBWn3bGUJEa3Pxcl6um1IXDG8e/12bsNXaDgZHdTqlp0KrW3FWdyGyCo1Cqe7mp+gndkgv59Yc5PA7xDcCapuvvWtjlEZSeHV/R1L4sXk+DmoUW0ndxrKaP6xbzrTfCdaRFL+EWv8p/fcvc2WeW992JELoZgcheOjV9a/alenhuhwfmEQ93VeJhC7Qbc01H6JCiwKNHpwqaEiYuNi3VaM1oVbDWmXtrBWz6kYSZu4oFvw7cnqU55vUVq9bBOlZTKqRmEKnOTt9PFZbt9kJ9Z2FN43qLYM3RL25F197CJGgE0H3SIhgjbVWcqc0lMUbisluuL05kKLbTKloR03oHp2wlgW1giTFql+8khwV8fcrEiRerZjowtbt4TP6ur8n6ap2MWxfdzRdieKobiN3Kosj9/5z+3W9vpHSD54/RAbSV21ieLScN5wmjc0+KUZ3IVDbkE7/uloX8qrhXH3phzfsCfvANOyodaa2mVpO1LVQ60ItfZ0mjuBTPXir5QutztfvV3S4BoBZP8TSwxXiCHVn8CLyMt3zxS9gFxIJuDx8hHlGa2NtCzUmX4uFgRx9NaoC4z7AlClaaGqEMZL2kd0w0pZC5Ug+Lt7cX7mKzg1bMSwoQV2Q6SdpKxDSH7hyndSleyxba52IIdceju5PjLmtV+tNqkdqB0+x7DamIj6s+rTcn3ETtK8JvZlq15Ii3aeXvmEIXS/RO0h/r3uBNrqe41qd/IzI1gObEiySSN789eKl6ut86U3i5swRghHUnUOySUdS/POW4t/rFWVsvsEIUmni2wvVTd3vGhBMfCPg3B4UyHwa1p091s9Jp6JJa71x9tdUzYfXTTfizb+gPS3P3+KuP9meGenUoG0jsV1I2ikiqPtGb+e/mn+s1p8XvPD61kt8CMaHsY0uZL1uqNmnYaVTfaQPuQAED2oJGGouTLKS+/bOE0CLuZCLeMNud8tuvCEOe8Kwh7QjjHtI7vgk/ay6Z5/2C6nzPJu7inh+AFjJ2PlMO0HbVWQ3oUOAuAmf+ofqIs1mbrcLDSVQF2GIHf3rjz4r0CJ3S2Z6PjKsT8R2Yn14R35xiz18oL16xe7zz5hevSYdDlgYsBjIKsw0VjWIkcN0y83tHWZQamFkYC6ZejkxLwvBMrtBeW4rh33i7jAhpTK0EZ0ClheOxxPBKvd3d8yXMyvC689egxm/+vXfc1wKh9c/549/9jWv9i9QIhSfkwNA7BdnhXZa+NX/8G+IT2c+H3Zcvn3DbauMVmhlwXL2+l+NU1lYd5HnpyOHcaTMK+dcoMGcKy+HEQmBw2HPUlamMbJmdcvDMRE7d76W0lMofcMWgzKEQBVlLXhdbz6o+0FTTCJrM2qI1EE45cqcz+wmdxkheA6EBjidn1kuZ0Iu7AQiO9KYyLXw9s03pDQx7HaM046UBj7++I7nx/cspwdOzw+09URdzyx54bDfYTlz2E2YVD48/khjZrePfDwdubm55Q/+6M+4HwVtKyYD0grH5weW87NbzC5eb0MK7HaJXDKXi4NgwyBu59g3zbU60lzKzND27HYTh/2OtWbGaWBIO5oJy+nCPGeGcSKvZ6Yh8uLuNaVcWJcT3//2G36uAzKcefv+menuNa8//yVpOiAaGYYJG3fso7FLcFoX0nDwzYAFbm9fIWHg6fmZ4SYSCNS5cHz8SF4juUTK6UyzwLt379wR6Lxysw9IW1GKbwzLJsS33jdw3Rha7UBL4Irkq1jXHrTOEvBtczVvXO26Dg6bSYnTU6oXo9jBP6whQdzfPEWa1esdkoKSgtdoNW+SA/41IMphmtBSOfUBRcWbVU/fdSCyttB1jgEloTEShuT3hjWIAW3idprmrj6Cbw+CbnpAD7U0W0EaMQqinsI7SHTaXutpstYvOF+KOoimQrBu+t2clkQXBscNmBHBitu1Oj4lXAmlG+8e7182ifAGfVALg3dcrPOZ2xe3DFGZBkXNKV0gNA3M1rVsP23sAQ8bdVCodVDIqjnQ05GjZW2IFKbJhf5O71UHWdQ1Va2cYQtINbzf0z60NIECqqlvgfq2wnz7Xqtru2IYqNUIGGstrEsBCcSQWJeZ1oSUXO8GW3/gQ08zceCs+f1KdzAUoNVGpfjAVt31x0IgIqWjqXa1IAK3BtwYDyJCiBsXdySEPSncEuMNaKBpRtVjz0spYAtlEfLRYdNpGlApnsBZmyv/S/EwgOoChCgDzdxuUYISJCGyueP0oKz+ojeB5DsjH0b8lgRc2OsqeKPgVpRV1IMI7CcofMtYXX0is9oFtc6TFtuauj5pqjeDfmCUaq5KVmmEkAiBnt7n3683j+GKErId2v76CoEw3RDZO8c2H7HVWMvJ+SM1Y+2C1TPgHMq6NScl+3bC/HMEib1x8wZqsy1TjeguUW8iYgeG+4mbcc9uTOyikH58Q356QJeZdnmitJlBIjfDgUPaMSKEPJOPj9h+YRnO5LKy343sXuw4vNxTTgvZKqWt2KU5Ah0dNfTm1wONggQwIXZf5t7V8ClH2KdP1ANWqjVqX0duPH3fYzlqYrY9tFvP5Q2yqjfeYkLqBCD6YOCotl0bdY3+gG9JhdL9o73ofUqjU3Wx0obibCj8Riny8+QIegzdI1nERaAiaN+8BLG+VWluUYoX0RAbUc0pMqFQu+sCAiUbItW3NnVzcWiexGu9OJkXkStq0ZXy0g9dtW6ChQ++dNRYsC6Wd8s3bCsa/Rx1ag+1v95Cb9i3Ac2pCwa02vcYvemmVE/L7WJTDf7+BrR/TfVqOyf4g2GtOYohrjXYNFdhG85U/c9cE6J9UqmNvpL0FSrRHRw28ZY1t471Pry6oOz6DQXW9UfOl8gP0/c0Halxx2Iu6Ce413oKGzjhgjW3n/X335o3i9UME0XiyLjbs797we72luFmz3jYM97eEG8P6H6HpIAOznsNk2s/QD2ga1mpS2Z+mlk/PNPagp2e0R++5fk3f8edzWg7I+WMNiP/cGR9/556c2B5ec/02efsX73k8Oozhts7dzkR8SA8M1pcPJ5dAyUL2pGmmjN1PpGsUS2z30XG3R3jAk9vP3CYBgKBD88P7KeR3TiyLjP3r1/z1c9/wZs3b/jXf/Uv2EvlH//5P2Y8fMbH//S3PP7mA1/99XfMbSTc3CPjHp1GisD89MDbv/53vP+HvyOdH5h/8/fc2sxoZ/L5I2MUbF2oa2GUSIyBp/OJIUZazqzLwu1nX3I8HtE0sOSCHZ/J2YWm0lw0m4aEtYU1L27feNiTl9Xt+lS6CC2yohzrTAnNaQYdrc1U1lZYUU555tQqOQrjLjAcAmk3MBwE0UKuJwLCbrqhqLHmM8tx5fDilkRlmY9OYWXldH7g/Xzh6eEjtcwMqUK+UJYTYoUo3ogez88OAFnDRPjdd7/i8OVXXM5OwTrcfY60zHp5Zty/QKmMuxvyfOT92++Zc9cxCRxud4z7kXn2AMGYhNpWzufCOLmTSs7Zt2qnZ3dDwYGA0/Mj4V7Jc+EyH8lrw54gKOx2I+MYWXOlPh15/PiOPJ+pFnn7uLC7/5r97SvidMdajdv7zymLu8Hsb3Y8vH/P669fkXZ3pLTn4fGZx8cjJsLL+wPTdODV659BVU6PRx4ezrT5LYebe7793fd8/HgmH5TzaUVZGGIhSCFII4b2CS028dCtnnGwOdyoQBRxg5AmWClUg9YTj1vzIbz1YlqKu6vEqN2Ew5vdnGsH17yhNvW/m9dCUUNDIEYfMtY5gykxrFihI8GDJzjvJlhnCg44mTXWvLAJdukb4UJBLBPjyO5mTxPFUqA1YXmemWe3Mnc/dafRlljR2Bt/NcQyQnXXl11Cg28hWm6fNjYqNKvk4j2OXzWtbyasD7deqx148hqjAZa1UhbBqmuv+kzU71268LZvwvsW09SpRdpda7774S01r3z99df8IiW++d338HTCsoOTAYfajf/8hwvht0uEDlIruVZE3Lqy1Mrl4ndQzishCcMY0OTnYZwiMURSCIQubI2aHDDE3CnJnJ8fQ0JUKFb9rNTqYBeKNmVdV0qDOhdKrm54kCKQST0IS9V6unGnL4uHpFk/UIozJkCIKfb725BuY7ttJaOZq6mlu8Lo1tQ2jwA3c4s+I3jzTcBIGCOwI2hiGBoiMyEUSmsMceehSCE6V9tcsCNpJJWJEEcPutFw9fs0U7e/1IQrpT123H1rB6R7hzpn0/rhcjSt9cbchYQ+dVtrfmiCDwalgFkXE9IcwW+b1ZZb7fleyd1fpNtcimyWWO06EVrtgluhaxJa591uv+/ep2j4lELWS4l1S7+6pY0hVBVqEG9KtGK20uqZuj5Dnd06qk/snwJV3F3FavX3jo1WEtyGNA6YCsPNDhuUKBM1jVzEKTPnw54QDFkT7cOMHReiBCYd2MeJQSNVIksqtN3KvHskmzDsJtLLHeHFiAUj7iPD3t1ntLrFoaaB2kVLAEmiO+R0n9LWCqWfO5UtiKxHipvhzDAfFrYgMRrON+8Itm6K8y1kDKdImfZGToxm2S/E5u+6bwd8Q6AiBKRHbZt7EmuX+djGlbcrf+/aSEMXHwN9P6QCSYwp9ZTJCGjpA587MYTO3dvERA1HdjQKIhmpLhAW3bT/gRS7S4A1tIdjtQqxdsoMXGlOW0SD9q/HudxOezlI381tX3e3+/sU4dATAXuBBBfkut+0r3Zj7BQeH6ucbyiOHDio4NSUDXVwLr11mMdR2lr9UihWr0iQ08c6N7XpdZgW4XpBbsjbtsL159LpX9vK1TcvHtPnw1O7ri5rXvvXUK9n0h0FIsxP5KNRLJBboErktFRXjXRKYEyxC74NqU4NVFW6A2AP5vMNQpOAxoE4TmgaCeMNcXfL7nBg9+KW6fYAQyKMiZtXL7n54nPSYc+yrFwenygfPnB+/56Hh/ecjo+s54+0+ZmJFVk+MA0L1RZqO1FrZVyEMM9QXGw/n4+0h/fw9MTNF18SX9yz249Mw54SlapCWVeGYXQr1tPZU2VPZ2JpjMG3WNM0cXl85vHtAwPK6bxwfnqgrgtTt2r97Isv+OKrn/Ht777jP/zN33C4ueNPP3/By5j4/le/4nQSqv2Wj//2H9DxBdPdSxh3MAwUYD0+wfsfuDs/sTy+5eV64W4ySl6Jg5saVi1oEhq+Uf5sv+O8rDzNKy/2B/6r/+q/ZM6Zf/Ev/yXvP35gNybmy5GoHrjkK/ZACpEhRIbkdoBWco9K6ahhfzZN/d5r5tS/1iokwVR4OD7ymAslgaVIGAI6jYRRkFDJ9UwrA4GRFIFoTqOzTK0rtWZuDxMg3B6c+vebd7/DliPr5YgM0OpCzUsHk3zTF2KkNA/9GmLg7/7+P5BevOL21S8IYWAYd4SSWJaFNAl5PfPy/gVB7nn37g2XeWFIkdiftzQqcdyx5sU3w8HrXSluSFCbEdOEUTmdnn07r0Jrlfn8zHJZKetCzV4Td7sdqTvjKcZuHJiX4udFAnc3r5ExEdJImna8+vxnHB+fmPYviNU3xrv9C3Kp2LpwOmd2+3sONzvmeWaej06b6uYeT88nzm8/0IaRYXzPr/7hO54fz1zOjj7vJ5hGiAopNgaTK7AGG5jRXXG6d72JA0m1+fO8luJAYgcPHPH3YcAdXXxT7e59vlVXCZTqduBeX5x+2Ion32rwu8equckBlUJmYUa0kEZ3gsvZTQ4UCFFpuVBqvgIrWxVs5nw4WzPNlDSOgBFTYtoLdW3I6snRzYR5zoh43dAUKNXQmJzqUfyc3d7umeeFy2Vm6YGgrhuEmms3DpAOhPKTeuxgVYu9IVXryLbRlpVKZy30rz90AHW7/6+MCTadYZfIiju0za3y8XThF/sDL+5f8qvvfnDb0U6/DFdpdAcEe69FR9Hb9evtjbC6ZXEzPMCQymU2UgbTQrh0XYEK0z5xeyM+lDW/94u622KK/vtxjK73Uq8pnibcKavqqdulZGotlD40pRi6Y58Rh4FhSMSolLKQc/azWirjOPp248ouUNZ+51t18LP1C3VIg3+OVoittU/rebaD7I22NfFmTQdvuiWRa8CD05RgAzFMpCCENDmfHSPGAdJAC4GkkXEYiNrI6wxEVEfQQkgDKXo0oOoIEhEZiGlHGvbEOBHThCZv7lGl9imWVnFCqtMcas204uq/jce7CfO6cqCL+2r/veoBXfkTei+UvuuH2LcGXgw8rh4M0YRI9Majc0eFbdISmmREw5ULvfmuts2lpOOOLkni+qBab0paWyjlTC1nWjlB9nWQNyXS597gTh59C1CbuLd+8EhrNIEkb/JvRpQJDTs0JrDKWi7k5ciqlXVxP+vy40eGYujNCruVGBMmsBJZhgPy+jPk5kQdIuPdDhvg8nFhqSsaPSU1NGWcdmhILGtl7THS2iAKV/5xM+10Lhe3aYi951R3CKqto9eb5Zxz1NzNyb9nNfUgM/OEviDVXR2iIglyvkASqI1WGkESeV58GNVPAUq6UYRqu9IvrBdWM7B+pjYqTnPmi28aeu8a1AWkKUV2UyJNxrqeunWrb29iiJ1+ITScQiQdw1D1yTyYc0FDDLBRuCo+zGzNtBgukkpI503izAE/VapgzVEZPKEv1NjXzEKlq/xTwGJAVJ2L2mkzzi02SqmUPuSIGWn7nnGf3RC6c6P5pVuNT2vPLhTN/XIQXHdh+PfSru5VjrIH7UOfVVKMV+eKDd0P4gjztpVwXn1xUXFzNG6bdEy84LldXUCvA2X1+rBtC5r0VNsFWcyfxybuNLNWf496Kne/D/pA0XwwFRcO+/DuK3zrrg9SAlLcUavVG1q4JU8TbZpY9hMyDoQhcZwG0jggGljzynI5M7QVW8/U9UIsM6HNwErQjNqFoCtxzBQa9bwwSXCnotCQLMyPK/V8dPvImmnnZ+z2lqG9Yrx/wRIqE0Jowny+cHx4ZjlfaEtmGhMlzwxxJB8fefr40YPIME7HZ+bLmZe3B8Qah92OmCL/6l/9K5a18Bd/+Zf84uuvCT/+hu9/9RvmxydYFF2VaZwJ8wk9v4eYqCpIbcRlIZ6PsJzY28qQClZngnqtXGrDVCm1UoowBkXWhVgL+xRoGP/x3/0bwjhxfH7yTc/9gbR9fHDAYpy80WrehK2XsztbiFGsEoP4NrcYwYTWhHEYWJaZtWbS5GBNGCsaMuMuUOLqNSrFnhtYWcrMXiO1rbx7/yMvfvYLfzZqprbC+Xwi1czz0xPr5Y4//7M/5fHdyOX5PVG6m0dZKXklRLfhFAxUKK2QpglS5Ply4cc3v2F3uGca7pimkZYjY91zeX7Hw4cHHj9+pJWZDx8fvQlSIVdHB6s5bxdthOjPp7NNulhcodRMbs2bjhSR6I5Wl+ORZcmAWzFaa3x8/5bPPnvFOCrzeeFyPrOuMyF64/+Hf/FnjC9/yeHFPTqM3NwPfHx4Ju1vmBg5P74jTgcuy9yDsW65vdtxOp7BFlJK1LwyzydqyxiV8+VMWwv/4T/9hjdvjqgYz89HxiFyHo2bg7LfwdAapbolpVXf5LbWhf29blcrHIYJje5K4gLkxJprb6KtJ9VbB/C8KfUtQOucdtdthb4Jsv55zMw1Oc2Isdep6v2TSHLXlMsCrKxrZRgckS3L6qCBeS2z5ndgzk411Si0tkCoNJtJQ+amu6WgEIfIuJuY5+jhjg1KrpzahXme3YAjOL1VRBnSjjQMEMceJqkekNi/5ppXT+TubmaOYXYaJZuOqeutkkCQ/r1n198piHQtW6f6hG4H6VTbzeOePjgIGifWVlGLNIOHS+Fvf/OG+P07Hs4r2bR7/vuAEMUprdLfJ++XNpf8DUTq44gJEPsw0WmdPXwLEVhbd+szlnWl5dRzDZy6FYPTmW5vRmIKUBp1dQp4M9d2BPFMBLfr76nG5iDztjeCgrXObqjSsysMqtKsUKsLvkOIfp5ade1QSE7TreYaNoGyls7Nd7psdPpxR7+6IE/M3GKuqjfjNmBMCDtEJkwmCBMSJ2LaE8boHu/aEdEQkZRoGogSGKIr+M0KmmYIu077GQhpJBBdXFAMkwF0+/gjcXAEjA21p3rTnjvK7ow4mjmH3pM1O7Whc5OCuj2RqVxX9CKtT1fulmI1f+K396Z8o3pYb/gMkNbchacZFryx8MCCzgM2dxzy9t0bURekbPx+ny8bEa2G2YzZSmXFJIMUmq3UdqGuJ+pyxJojtr4lSEiYnHYTRjTuCcMNIe1BR9AJ7a+dkKD5e9fiiHbnj7aORFtpQwQrTE8XxmXg/OYtH757x5yO7G9uCLc3rEHJceLw1S8RybT1zPH8QHn/jM0LMQZIyiEldmlHCCNGAFl9Im/i0Xr2SSRr/byV6sm2ouVT49vtG6VPu3SFubGdz9YRAG9I+wLFLcm00cxR2ptXO+7vX/DixUuen0786u9/QxK35Kp17e5GsKXH0Rwt3pBgwa7FuVjpASPyiTainQ4UpCNEypACuyGRrDDpeHXLKR0tChJ9Jm2QOpVERdyz1lxn4vSdSBOnKG0hINaH8Aa0HnBGL2RB1J0eujNDxZHnYsW58kQXtwYcjbLiG4NuH+rUxfhJSFyNIp9+gvcwqs7y0wChJ2VabYQmHhxjjdLMA0gUtA/kpTfXXGlroTfjnQdpG1Lv9CMz33Z07Rabx29Qp3ZtdJtqRoGrkJi+1PNcls5TVH9txVxo3Zr1TZc7NAWrBFkIffhIrRFt4zh2C2A6TUuEpo2oXmO0c1nZtjrN6TXWFMuOJ5F3BNuhOaFLgmVEp5EWhaZKUUEkdBSuUG1G2kKsmUTz9zT6ptEko82DtwZtWIAh9m3KFNABnteFy3mmrjNrWUnHe+TuBVYWWGba7sx8WTGNnC4LZS1YbYxpoKwZXTLr4yPvvv0NrCsvxj0Pjx+hZqY0cDPt+OL1a7751a/49Tff8Przz/if/3f/C27u72FM/PDbv2FpK7tDJE6B9bgyyDNtfYCl55AoSO3DVmm0PAOFJg7YaHQ6W8TrN10QHzUQamUQcXBgSFyOD5SjMgV3M2rr4mI4K9yMO3a7ParBG/V5Ia+OimnQvqLv4rMUiaWRLo2kiuSKlEoKitM9Gy9f7tlJokSDFDhfKu/OR+6HgUAjjIEWhEvJpMMLbl+9wtIEJTPXzLg/0JrxfDrx2998w3w6cpgG7vYTs1RKmcm9Rpace5PpABZBCUMkTQN3GpmfP3B6+IHdZwPL3LicVwKZy3zmcjljbcVqZtzt/O7FfcspGVEjRK9hISiYUouxLgbryjgNlLa6/a40whCRXJnnc3++PCdGCZyXC0+PD7Q8k8ZAKW5aEUMk55l0EIbdjtu7Oy7LjMqF3eEeVJwaYZVLbQTxZHKRxm6XiKGhkomauRyfKXnmdHymlMIwuiPW3PSKxq8ZalPWS+E8Ny4LHPawn2A3CmMSWm5EFW9+erPlLmyNeV4RGdzlTx1YCEE7Qu/PfkwRDOZ5Icbenm00xS5s7LtWOo6Ig96uiaq5b+1p5GyEYStwDUSpRShLBRF//6uj334eStdc9XqUPTTMB7TozX8pVO0gUIq0MRKHwYdLM87ziorfWakG0hDRIKQxErRdzTha9XqchoTiQVAbPWd7DXxb2V/LDo61hp+Lbgdb1gpaGabeYJeeA2RuKd65EZ2aI9fQT1OlmNsBN7qvPsbcGuc37/z1xTcvDnIFpAuU1F9Nb+yFq16gXbcGnVJr+tO3CifYOP3MmSM+rFhzV8BWjKgO9A1RGEclaCRHoQSBUCk01DwvQsfRe0/5ZArS+jPjbPRCrQK4TXiIow+d+km0ba0DgO0qdPBSgJtVmPq9eKU1mweNDpoImojSXUak+hrbDSgi1qJb3JEwma5NvcQ9YdgRh4kweKBGnFIXYzgtJAS3vbT+iT3ApyBhIg63DLuVVTwilzihmtwFJwIkQtqTphuG8UDo7gIOzjmXvlntSHrtQpXV+fPNXXC2N39bYpltWTza3/luydRRPxfT+DG6xg73a317sNnWR80vfQtKQ/sUL/2y6M+2dsU53py15s48rW5hWYAELBjNFszOtHqh1plSL5S6OeaslLJ2T1Vx7UHo9Ba8yQ/xwDjeEcc7JHqEtaYJDSNuLeWWbBoiGqN7eoeJ1F5g0YMlmIWhTNRz4Xh+w9PxiaVmohnx/gVpfwuDo9FVVvb7O4IEnp9WiAkZClIhJGEcIzl7Iym9+ZPewNWO5H563Td0vH1Cczvi4W+UXIcB5zr6eRITtiAIFesNuhfh1h/Q27sDL1/f8/HjR0Qjn3/xirdv3ndajToSTN/ydP5lKz8R3bR2/XdvqT/xrjtW8GmPInR3loY2IzQh6Y5MY2mZzSVgW+/6VO0c9K3Rz82uRYXgCYqyrTV7kRETRBs5zKBCRElNSeLJyNq3REGVRYRWoIpRzdAYSMm3C0kTHrrSB5qmfUPnX49VWHFXmLw194M6KiX0TAF/s5pCbEoJsNR+7kUcmepWtrnzVMV7bUKfoc22NXl11wGNnQrROhdau94BNPTPH0Jfl1dCc1ymNKdhYT+9sOk0t+1zdcymr9m3Ib6KN/naKVeIEaPXj2pgtdMj1G3LxITY3O1C6Lzafs5Rd/dqBT8hGjBbMHmkmFKrEvKAhaFf/N1gQDZrTSOXi/Otzd/TqC4Ktn66xfCE6OZ81zAEGANxl5Co3gSU1bekKpTlQn585PzwHjsciJ99Rbi9J+wOpGnHMOxow+B808uZ5fnI+d0H8uOR23Hk/HxEmjGEyItpx04jb371DW9+9RsOMXIbBj5+9z3L8cjz40cef/yReZkZQ4QohAK01QOUaul11h+EYkJBqaxEqwzWiNovL386vcFpLlwLdcNrHKUbx0RoldO8cjtFcm5ozVjxpkiK8fzhCVXtCa/daclchO+OIHpFZ6MohxjJ1akp+/2eHIw1NaYhYCOYzUhb/SwEyElZhwENldvbHW0akTTx4sufY+OesLthHwI/fPstRmUMkWl3x/nyHX/zN3/L7331JftdIgYlrz7Iiwi5GpTidpWqVDNyMYYGN9MIKbAc3/McIjHdYDWzZL9DYjSsKoYw3uw5tUxrjrxWc5BgiNE3kq1hTWnVB1nMdUAeElTc2np1amvODdXgifHFGNPE1DMWnp+eSEMgJX/nrMNbadwxLwvxfGKx6oFhtZLnk7vXSfOgPmu8ur13SsjpyPl4ppbMfNk8382NBOqKUKllZdq9JMgzIKx9+2j9GZ6LIYuDEEEFMXVaknbBpOE6GTN204iJgxOCYq2S10xMg9sjo24tWct1sxqih2Z5M9adWFpvPTo+vDnchA5UtFoJwcOGSg9t2gqjaE8wl9Y/Z6BaQdU3TrV6psyn7WV3n9uoMyF3EXdgGCeGwbMZ0hCoOTpo1tkF1sTtcnGLTl8PK7Vl1nVmuWRq8fA0TDyJFQdffKgxanG0W6PfUb7BpVv9djehaqTRnRJLzwtwYr1vdjdN3BVd7/f/JhTtbRxNtgBFI2q8UscbbqiuG5hLby7Yhqbe8/X7t9/4nqyLA9F9Iczm4SPijIItFHMDiluLrA1cVOvbB3dNLVg1htTYTx6aiQplBlHvIl2r59sbpLhk4WokAVRY53LVY3za/PiQuVLQ3O9B/BJ1ShlYN4gwc+vOVioZMGlEqeJq30oXz7nSVoggA6I7CHsIOzQdiMOBNN4Qxx1xHJGU3A4zRTREtwkKQ+cObw2L9lRb/3hpeoH0oKoYRhAlanL0SwIx7kjTgTQe0OjSyGYeApB7g2ytq+Et02qm9ga65t7ci2BEP2SxPxRoL+zSD1jwVxa9roPcG99t/a48ZDZ7SaGKuMWkRFAPwUGj02FEelMG7sbiAVluu7lQy4q1yqe4+0ZpC81OWDuS1zO5LI5+tOJiYduaUH8dTRRpEWVAdCKmA2m8JU63iO4IaYeECcSbeukUq9AdRFqPqI/T4dqMSE2I7LgJASKUx0fKmslt5TZGdBhBjCSV+8PEbahcljfMRRELjqKVTC4rJkJeHWlopWHFySc064Xo08G9Fprqk2rdOC90QaVsD/n2+AsbrUL6esxF3hFpjnBpFEpduZxmdn9wy/3rz9Ew8N3f/ob333/sIhj3C8b+c86fcwS9ETSRznHzcyPBB9etdIs5QhLFPAGiGWTn8VpMrFY5lZVTWZi1UaRRWiUAY1B2GkkmSDVWIEuBECjSkJSwoJwuJ2/gkqLJg1Ykws1dIucCc0ZnQWsk1gQt4OvHQMXIFilBqdNIGl0oNY7KEIE8o7W4l3JfIQZwbq24i0PpolkQUpJe2H0NLfKJopSae9c7Au8hQjZE0EBI7lFd1uKOMl0E6B9VOqXIIRbtxc6F88InR1P/X1VH71HnRpdtWOwr87aJrjdCf9guCvlU9H2ccP6+Sa8t5kOZetMooYtlnYDb0TL3bwotES11PYVfaNC3df2MbAJlCYGWMjVkTDw2XmqkluSXi3O6+g6qo3zi/54EkhnRmtMJotK6VkKadecZIQz+MTQ1jEKSwk4qsRqcnqBk2rJSljN2PFJOC+32BfHVa3affwmi5KYuNK6Fj+/esn78wMuU2ImwaGCpKy/2t6Ra+d3f/gPv3rxhCoFxHFnefuBv37xl2O04X07sR1AqJUItM23NDOp0xYbXNTMfUqoE5uqBMVOnfrXqRgXuxOGXMsEDspxbqleAR8w99kf1sJvSmzAHFIS6eJMWevCZOzo1WjEKhRAj2umHpVWqCIyCykCNSk7KY77wcT4TdORwd+fASV25vblhQJCc+fznnzEvT2RWsgppvEHvXhPuv6Ro4lIK4+uvKfMFyysSZ9CBx+dn3k+PtLKntplluZBL7tSHDUWsILHDCMqQBkJMmMJ6euDdZWbav2Qt5tuZPDMkP0RrdaOIcRr8TmOglEyuK3EYaN1WsObmNp+qfcioxMmfgVoz67oQkz9L67Lgo5GQ88I4jNzsdzw/e5PjZaBvK4MxDAPz5YQ9vCWML9yesgqanxlS8EFjUMZhz+3NHa0+OS0wr/SlMPOy+KaRxuX0TF5ckD8fZ96/eySX1u9wu27ZrEEosGQH31qD253TO9g09fjwv5ZCDOJpobWDHlF9KAkueFQV8uq4u/Yto6h0NoE3lW5h612qmQ/8rXmzlaLTHYMqUQaquA1zbR5ESfOGDMzBTlW3qS3uD58rBIsOcvVhwYcZBzirFtbqGo8AkAavY1GJKWGqbMTeoGDNBZ0iRlao0b3XL+eVko2gI4qxLJllWWjVt9dSnaYc1EWmm51162YkGh2sqLUhUZliYl0qKXUHu05Z2fI9mrUruGa9mUesh83572XFBdAWyX7Erjx778voeknbRgL/MP0DfGrquSL3vtntJhJ9WBB8m2o4C0PNAYAtZ2arIbk4pz7QoAbKnAmhkveRcnBLytZdh7YNYetfQynVQbufOP6ZCLV0favKNUCSrg3cOMHetwSclu1fdi0dNO0ahzjEvlVpRMsbXCpIFeeTkwhhhwwHdDgQxoMLw6ZbxvGOtLtl3B2Iu8GTFlNwybwGTBLoAFKB4kNCn8Q0TFgthGhonFANDGny/95RUiwQo9NKqvhF2bAulK19Teb2c3Sk3pqj3HblzgvgQhd3OwnXptLf+W0lWzti6QfSCTPbC6vQnWicisEVLXZqTELD4D/T6GLf6yrIOuJae2z2Ss0zJc9YD1zxNqNR6oXKmWZn8nqk5o7at8rV07u5FaEXLqeHBEsgE5oOaNwRhwMa92gckDCABNSCr+gMvyhqTyRSIcTk3rQygIyUaUfaR24maB/fc/n4xNNx5uPzI/fDxOv7V6gFnn94w8P779HLM6k4FWFdMlYyS2tcloVWpQ8gel251S5m3nzMXQiifu7MG23ZfPDlU4Mm9L6sb1jYENjO9QsCEQ83ql0YXVvm448f+I/rv2UcJ2jK04dnkkVSnDo1y/oMKNfm3hFjLzS11uvKfrN9ZBNx9r83RCUGCNJQqwRPmOCkhToJ+5+94O6r38PuRmxSQvDQqbDM6PMJucxINaabW3TaMd3fYkOAIZApjC/ukNRtOYvT0FDF1guXdx94+O1bnr55Yn03U44z5AGTgWYTxSJxt+Pw2UvSV1+go2D5wkghtpX18QNhmbGzN4KjmaPBEsjx0/DiQkNlGNTtwzrUINIwTwZDqv+9JMGpPtPYg5wm9ocb5nXl6enI44cHluOFkeGKWqhsgmVHxjcrTPf390FuEyNvDkZX4bOEawFHPFWR2osy+DZwS0ns2Q+ti5I2EZJJYBOpYSBRGLWLrs3TdtfirjzWB08fCrpIzzbXJ/+1bV79uFDKch9iu4aiNbfmDEGIsRGrO+6o+UYkRB82B4EBtxFtwTcwrWceuGuKNyZNDY2ev0A1YudRp2LUvPiqtzVCGbGcWZ+OlOEty/MDoa7Ezz4nHm6IGjgvR+rxkTBfuE2JXQiMaSJbhEvhzW9/y+XjB/ZVSaUS88zyeKK0iu72HIZEqtW/5nZhWWa/+LdhsLROsfGh3p2wBFeHWefE+pZSol+6sl2QzZ0+CM6TLXXlfHqmteJDp3jzpwLm/DMXFLYuyu41v3Y0rBXfgiFC6aL3HGEdoY6BsyqXoJTdZ6QUaDHy1Z//OUGEdz/+yOtXL7kLgZtW+NO//GOen97y97/6W87zhfH+c+5+8ScsDBBGqI37V4Hjux9pzw+Mxfjiq9/j4cfveHh4JkgjRTplKblNZ1kJWgkB37iGrrMxz4ooee3aFOHju9+yNuFmHJiCsrHeZAgsl5XDfkezSozq2o6yMIyJvFxYLPegJ4XWqMkIqRBGHKDqdNpSFKu+GZrGPTFETqezc35jZBxGlvnCfL64+F4Sa80s84zlhXJ+JJgw5ydCHIltRpqQc0Zs5fbwmvc/vmfNng0zxOiNtgmWC/OcQSCvK7VA1MS//Kv/yLffH2nV3E6w9rwa76/JFdaMO52oMl9mb1N6PU/+Cw/8UvUQweKveYzKOKXuzubAgNOGhHWdez0KDkYGQSX20LMu6myGSe3e5Q4kxBAdIa8G0cPSSvGPH/qWUfUTZagBORdqabRslB50aNZc6xW601NULFf3lBejpYE6rTSce68itLWymm+n5dr8uulILY01Xzr/XkhDQixwejqzLrnTRbpPvTVC8IRxoYdA1noNawyddldr6245AXJlmhIZY22Z7j/g7Z5thiObi5v/E7tDYd0KswpYuG7T3SJa2XIJNnMLsysce/0km15ua/K986q9dvtWR/oGoF0Rpa0P9C11sexbXXULSpqfo1aV87IgJuRz5fQ0E5Oyv0mYNtIQCVFAHSAsuZEGF/VXCqX0zfFmJd0244/t3HW2ifjGaQOrGj1N2bjqFXLOni4dhGkaiZ1y5nZ6JCSMjszv74njDZr26LjvTf4t4+6GNO5Ju4k0Ji/CHZVqraLqVpOqHrKzTWjeICdimtz3tadopXHXv4HNGi8QdAB1Huq2TvXwqerTbW/+zLbi40j+5lmPBa4+/X0c1P+RcDPoplwXpGVv8lv1oUQEv1Wc6yTSxYBCF9kNqKYr1SVo7NOgdyytN+bOv89dJHshrxdaXn3KbAXRRqkLJjPGTMkX1vlEWS7Q6UWqgmlwLh49KCgqZgEYUJl8IyIDMTmFCQn+YHXbJEcQMhRDiD0YIXZ3SaMOE/mmEuU1+9iIL2+IP77j8u0PPD9d+PDjDxy/+wE7n7GnR2R+ZgqVRKGtmZQSEkN3LfJmMJhbNFn5yWMldFqLdBqFn5vNt/XKbQY2Z6P+C7dM7U2f+jNHVI9+libuc98xUB0m1iacHs882ZG2GkMYmeLeUYMQPi3pxCk+G3IfOpVE1Pn/QYNjZn3I20S9qtpXxUbsBSn0gaSMhr2MfPYXX/Hqn/4ZvBxhEtblGVtO1I/vWd/M2NEYUHQS6lCZbzIyQTwkQhxZQkaCn/u2rlgpBFWaVuK98qrds2+Joxw5s/D0dnGjV4u0OHJ48YrPf/8P4Q++wAYhnx6Jy4mwnjBbkCf/uMEasfUxfAMygr8uioEqY+rNUXWkaGMwum2lN50eWCZIcnvA/YsbwjAyF7+Y05C8MdhQcXOKhoq4xZj1prsX4G1FqQ6rdISoU7M6/38Tvfe/DLatW3uT3euKiSLSA8XMhzPte2R18Yy/l6bEzml0bVpCLbOUhgUfRIplNrqeqDcUbBeIeU6CauyCJ1AbuvdxR6yqIkEILRCCQHVNQIyx03SM2IwEiBZKRwVRxbpFo2F96C09O1yuFz5R0CSe3FpXKKGLnBu7YeR4fuLyZmEuK7vlws2XPyNOe56++x1yfCZezpzen3nx5c+oaaBWGNQ1NdkCtpyxVjxwsGbu9nu3fJuNSOv1rZLEKWa11E6V8g2k/xFHp5MIZbWeQu7R7G0b/qOfQ1OcmlAqYo4wp5j6hnNlNx5YV6cvSnM/aZqylgq50ER8u6HRPe1JV9poqZlcC4iQR+Gyi9z+/HP+8C//kvT5l5xC5Lk2ssFXX//C6Qzffc/t4YYqsLcKNwdubm65L0Z+956zRNL9Fzw+XtB0QAYI48ihQY2J3e7GxbKt8uNvj2yBcBqiU/C6JW2phWWFKQ2kGJHgAVtRlTFtnuaVw25gRKF6Mq3bJjevjVKJaWJeMtW8omrwYaE2I5dCqQ6ytOIUuVGdu9uk84FVWdeMykAK6doc397cYgan45n9/kBQZZ5nt+NrlWFUzqcnpH2OWIG6MMYBWJHqacHU0mkrrsGKYaQVfy1qmQmouzktZ25ub1EJPD898u13j7x588SSXcrjaOW2Zff7ITe4rEYMxpSCCye3umDQrKHNwTLngTu4QN9W/hRIcFGtg4vDkLq20BNtQwzdXKBdVWDSN/9eY5xaGqNTPmrx8Kicq3udY1jqdzXi1pGtkltlWTOl9JCtCrU4n0Nbv596mGaR2l3SGnld0DnSYmQYEmnaY7lxJJCXpW9jC1DQALmuVKuM4puIvKy0UrjMC6U0F3sivsWMMA4JQam5N/bdwU866i0ihODovQc+VlIakGIUadQOGG2gmgMjHTRDupOd6zqa9SyATn8ufSjo74o3+9015wqyyCcg1/4zNN+uv6dX5zrtve+2Ke53Tfu05/VEYk+Z9bBH6RRZH9acieG9zDob61JZ8opJcXpUUkSNmBwcdCAs9VwpP4d1Lt1CqKEkhO2c9K1CZxo4xdxZAKW5o07ogtpKp16VviGy6sEIook03SLjHbp7xXDzmjAeSD2CXdJEGCdSGjzlL4KwuvK7+aQDAdPqNjzdAUNwgQL45alxwCRt7RAS+iSkBbNynZisZkprrF1YtPG0OnhFxbrNYfawk3pBakarrzF92klOGZFIiIM3vOpvDFaRzrsMOjn/HcGtQQV0oGnENpRfgwsO1a9SFXfS6Mshn2LNraJadWRTpdHaSsszZT3T1otTc0qm2goUzFaazbRy9hCryxOxW/ltllBCIWqlFjAptGwe2247AgdSuEFkxFBfQYteJ0Hnr+PDUfWVHBa9yUExnZAYnAJwo4SUCDd3pDSxr43T/A1Pb37Ffs7cN7hphgYji3+PbVJoHt3s7lANrQGtAqVRYueaJ0dSvYkSYq3kXPpWxRdtQf1ib60g1B4m5ZO1ifSH2AWsgiOr0UrPNRNSwkM0YiKIsKwLofVVO4JIvj7AP/VdFwMNwa3xeoMamm1mTD5oQn/Nup4gfFob1s6f62MHJYDFQLh9gXShs6GuqpcJ3Sllykh2D3W5vQdVwv4Gvb1Bdztkv0f2e3+sakPXFUpBMEJ1Z5RwcyKWd3D5gcvTj5TwSKlKNoMYGG4O7L/4nOWrr0k3E+HhLcub31DXEyZeMIOorxebc0xCiASrjGnwwt3RiyCNNRdf+8qnABDUU4mxT8mKZo22LuRlZZgOvLx/zcSO5/LMB3lHGDxtueYTKeBWtBV36OrnVuNmj9qug6F0J4ptSAxRO891E28YQT+tiNsWTNM3A9dMgI3ceUXie/aF0a1cXaDUWkPNGKLXpFJdvwB9HW9dvGvbkCPXAaVS+wWA15TNO1f6hdFR/Nw8/TAGDzAZx+jC59JoVrkGxjRh7EhNa9abQaVkoGwXnA8tRPVmZ+pokPolLuL+EJpnpM5cvltYjxfiaSHGkfW331I/fmCqlbBe0P2e9yw8LsY//fN/zOcvf8b/7+n/w7IsIBnTmSE2rF66OCy4x7VsF2t1Prd1zvDV1ag/V/64ItHFlXOuRJShOWUzSfIBvttV0m06t0bM60niMjfEUr9o1dOqEac2DXpF+pN4Sm9Qx3/mnP0+Kd4WzEuBu5e06cAf/7f/K077F6yXhWFtSC5chokmmZd/8hm7ww3ndYa8IDcTIpU/+/mf8PrDW/7VX/1r/ua7d3z51c+pBmN0EIibW1BlQphzY5Vveb4YL+5gv080O1Pawloyay2k4C2Ji+UqMURicv79Oq+YBYbxQM3COO1Y1iO5zN70YJzmBRWo4vLx83mmFHfdkQKXpTqdx7puTH1AbBXWcyGObgGbTwsSkrugKEhoSDBu716ARc5zpeTmSOUkIJllPTFgDGHlePrIIe2gGdM0dfrBzNp1IdNh76LdcSWokNpAsMQ8H7E2I60gtvD0sJDiwMeHIx8fLlyy4PJy7wVka0a2Ba9ANWExYS7N3cWaoYmeVAzS7YJb6a4kUUkxUsuKGn3TJ/2/RTdt2ADH0qAHF8UQfGjHOghhmHSqinqAmAjXIMbaqnvlh4k1r1hV5rWQBveCL7VxWVdK7TrD6nouxQGJ0imIMdKfL2MYHOC6zDMyRXdv200cdneUpVFaQOOCVafIgVDbgiRIRGqpLEvlfCo0i+Tmlt1FvNGG4s9ihbHTqkPwnso3MP5wt85M8IwXY0gG4rafIfrwulS3+3TlmHa60gbk1A7UuKg+qlK7nsr59X2LLuJUxQbBFZDdgoBP/51KtoVRkxtJ4E5rGqGYEDQwl+Y9oHXtXK+7wdo1lLSJXd19rC8SautOW9o3xOa0I0NYLhkTZV0M0T54BRczl6WQRn+uGyOtLpgUxjESirJkD5aNKZC7179EZbVG6wPVlZePb0NT8nyhy+xug0GE6MNMgDAi4x1h9xnx5gvG+y9J04FhNxGn5CthDT12twG50xu2eSk6ihbc/7PV3oX3xpge7ECfAoXQL0QXdfrg27rdT6GWSin5itCD+59uia9NiqPRGzpVF6wsPkWpAQlT5yi5ojqBdLW5ecPItnYJPjSJBL+IRTqn3iPcTaTHuceuzO5cdenBOrjjRK3Fuf9SfHOhDWyh5pmW3d6urgulLJR28ea+rXhg1QJtJdSVoI2yVSfx9U0Ics3RahVKhprlykXz178PRn2K9EajebptJ0ibVUQHd/ro30/snt2WEpYSbZxQhV2+sH/+SHt+z1jPxLX6liOoN1bSSJOjQNRIKRnJFVsN1oYOnsanRGp1n1e15taRKaGDiz6FQM7tukaPrhUBPvnZC3q1BotBUHwFGYO7DkiCEAMShRqa+40HFwpadZ6tUtntJ6d3lc5ibf65rNNAivStgTUCRlSB4Pxz38SAqQuvmmx3if83qhAytGNjdxhgPXC8TCw1UFomn2bs+Ej+8S3P3/2IPT3gONb3XEpDYiLs9uzuXvDqiy95fj6zLAvrMiOtshtHdvsdFoy6FE5vH1jePNKeZuaPZ7T5mffB1y3ICMKQJkpurOeVOhfCUuGSaUsmtNaTdDvn9Ip+93m9P5wqzhvdXGO2LYtXAHHEwQRt1Zdna2F5PrEsRrPE6Xlhflo5WiQOCaKxP9wQyoW2rExx8HyDjh6JGeLKJVp3nlKNTmcJzoH11qd5YxvcT7gZvtJudC0HGE69gdA5ir3OXDtNOrfZvf9zhdI2qpZ/v0GlI+WfVseIYKKYRRqdy7nxKP2L869RHJHx3/Dhx1rnpXYqStMAoaGxklKgBiFnHyZElai4K1ApPX3YP24UH1h0ozSpICGQrSJh63JKr32O7EhbGTDy2mhNKWli3N+yWxYuz0e3MBbhux9+4P10yy//0V/y5e//AeXDI7cvXmLLM4dBCXZBqVAhr+pIZFt7c2+fOKX+Al+pkdKRTaWH87WGRXf4KOLi8igdKMCTX3fDQAuN42m5Ui88KKfTHAy0i963oxtjp0iqQNEu8ndtQin+elSBQiMNO6ImTrlxGA98/7yid3t2P/uaMQxMmqjLhdPxyN2rexgi62MPytqPbHaoX774nH+SbsnrgowjhzEhIjx8fCCXlftXL3n68T3FhJevv+TX7d8R04hEWJfK3IrnnlhkHAdiUkIaGSbn2TepbkEYIqW47uT58YQ8HREKtc3uUxHdcx0xmM+da1/IpSDFd42bb7uJn+1m1tM23Q7UgoMquWQ0qluUiusXGi4IrR1IWOfMeZ5pbWY3CbsxcHc7URp88813fNZu+L0/+iVzEcY0YOKccsy4LEIVL8QaIikOxOpI8Xo5k9cLKsa79+94fIK8Qq2JykxDfZvfxdI/Ad17swW5GnOpDEnwx9xdkIL65ix84og4YisOBGCtU4xC7zVdjGz0cymeOO0NvdeF1gP6Whc5egCo9zr9SaCWRi14k15cR5I7tTH3VD5T75GCem1t1a7uL/QexptzF467kUKnsOFbyRCFYRzYHfbUSViWBhIoeenDtVHy4t97E2pplLWRi9fHtRilbhv37qwUXKVYrBLsE4joFtVe9zaQQbT7uEejzWBjcPe45habpVgfyDbq5acNbuu2wr6lD8Rrc1+vwd0i7pGD0LV02renbpnuFBthlAEx77UcGGwMEnj9+S3vPl6oxSkvxaw78/h3cpX1mlM9rX9tV3KMcN08bP2pdGe/KgOYgzda6TuZRgtKy42zzv5MxYDh+QznJRNjp06LDwW1fuq3QvRBKkXP67gsF0ppnqtjnXFi7na0zoXYTNA4oGliGG4Z9y84HF5yc/uKtNu7C0Nylb2ZT0juQ1p8AjR3fxGpbs/YIRkzd5MhdCcIodMfKhu/itZ5tYL7lPeHYku6LSU71aNfwG77s72oLqSlZqw651tqwRct5hcbW8GP1/X9Rtmme9WjFa0+uEgbcJ2AOfqvnZoj7vyx2V11Zj7Omc/UmqFlSsuUmoGMBnOLQzKtXKj5TM5n8nIhrydaW2hthZYxWxErqBRCX/+4HVUE8UUNAlUDtUUMYW2NVD0UYaMBub+GXd1pWvMQhFZr9/h1FE2DENXtS2Xzmo2pC116WAovCPVnSMnYfGHOmaNdsDgwRvf7lqCEKbpDQivoquQlUztCrgLSHEmz3EgxkUanRuWc0VFouVBzZdgP7GQkL5l8yZ2r3Kd4cT/iYAHMw5G8QXDxskX890LrHN0uuk3KOExu85cLy3nGWiXErqEoPjyouSYAOrWvr/q2ovVJ4ONNbzV61+iIV2/hPJykVnYE8jeP/PrDP2cd/gc+rivnmlnrguWVWDJjrexpJIyyAhpJ08iigQf7lrfj3/tKNAaSOrq+WuOjwDn6utIumbEIEwM7GTwwTnr7kjOXpyee37xh2k0seWZ5/yNy/ECYn+H5jKwZ6S5EJrhItdPcNt5fCKEL1TyYJfewthD8kt8ctvwl8EsfMyhKrQvzsTAzcanC+OozXv3RPcPtHi1nHr/9O/LHwn4QWAtD6Hx2o8MlmzKV/t44ipO2MBjrTbO4h7SqPxu5eeR3rc0bcrYtFuRer+gNoneiSuvUnFaMLKVf1F5Nti9A+GkN0j7kdPFca9fNDv3P8ZO/eV0TW+vNb6cPbByz3ox8cm2Q/+yndqqDozY/oY/haLj20KPNZWgcEqU1tHKl9Ri+EUiixBipqhRtUFeGXWS6OyCnPY+Xs1PNRPkv/+n/lC9+9kvy4wO//eu/Zjk9ETsih20Xf8CCD+qlOyZtdMhrErEIV4V0503YtvI2YxwnhmnHWgunyxnwpMXSoIhQurONaK/hrV+AgLRPVIcQBCvuzGEKrWuhmplHuatSs1Fao4hX+6wBHRKZyu7la375j/7ETSI0OModBtbLxUWFYrz/8AEZIhq9cYnRgY2PDx8BOBzusL1Tzg6HA/Mys5ZGxBiovH/zW+6GyGe//Bn/LvatqibuP/uCuMw8nS7kYjzNRyqNJE7H0aQkEWrJpKRd7G1EzdQyU6txOh8xq+z2ows+W6Wsc3/ZPWiqZqdmuJ7bN29ObXGf8uaLbbR6QSwZ5+PbQhgC004ZxsA4DJhEbm4P5MVtFmNSbg4juykQ08SYdkwvbji8/DnI1IcxtzuOMV63AKKO9pZydlpJiVzmB5b5CesuLvOcUTnw2evP+d33315rzvXh2n7Yp/9rzTM7sgi1M/hag1IbQ/TnKHTA0Jm4G7c+Qc29uffBtUn1AWQDFrqWxPuK2t1N6tW9RPomk+7IpOogQ8PrpkZlmVd3ysmVaTdSqg8HGrs7G4pckWx1Dn/d+hgH7WqvP8X9MNj0RaHXgRhDpxTVXn86HUVit2D0Z71mKLVQiguBS7GeuAspaQ9d8vvQN6Jbc9vrnXi11L7F9E1qF4CoMYyJUiDnShpcGG/dAnt7B13H0H8l7XpuvfH/tD23Dg4IjqpviIr/m3WBsgPDot6oH+JICgay8Htf3vFHf/gL/tW//XtaqZzLyV8TDf2rkS6klb6FgKu9H164xT5ptbwj2b4e748At8bEhwLBe41SmlNq+llDoCYhrxUNjaDq/UhHc5v4XRGiuxVNUyLIwDr38FINWAugvo2v0iilEr3oJTTsCOmGaXrJ7uY1+8Nrwi4ho1ElI6U5J70VME91ba14LK65N7eFCDiyYOITL60LAr096E4HdHS8N854gbOaKaW6B2hxz/ra0Xvd/Gmj8+lb8/US5ScWk6113tr2+m8Ym9MPOvAGHdHfAn9MyxXRoV++6u1c/zjK1c9qu7DNLS5raVgtiK20limtIOSO8jWUTM0XajlR8omcz6zrCSmzW4FZwRX4vnFwDlnFSusXYMRkoHRBnYnTmqx/P+5C5BcJrdstbcWtNqw5Tciav/5OHdnEupVmeqUUuKI+EGUg6gFphSmvfJYzl/2O/O4d8+MTpcyMCYakaNJuN6idzuD3rgbBYsOyI6ZxGD0Q5TBgYrT57OvWUqiXmQFhECEcvZBVcZ93RyGqO8aI0nkq14av0Zv1KMhgLq4L3rwPw8g0jqgoeYEkiVIaq3mB6WrtbrXpVAnQjoBqD0hy1wpV+9T4439HJVxRb+DK59aLMdbAcjxTghJqZjCD4py9MURu4sSk4oOpCTWDtEgYBuc+NmUY9qgJoZrnK7SKiTHkfggtEhw+I6+FIQ1k2wpv5fL4wJu//Vv27x9QNdp8JK4noq2EeSFJQ51v5La1sQ/A1fnZ9EFWmvXUZ7poS/vw7GOuNm/YmjZQRyi0VgKRRCRPe/Z3n/H1X/wTXv/5nxHvJ+TyxN/8s/8XH/86M6xneHwiIeiGmOPFWfCmLAb1MCuhu6n4M6i2FXqfxQ0ltEDRRtXa5wO9CvMJ7qQi5s1+25AnJ3ZjmBsvXIGADXH3jYBvIvvz4m96f9/9AmnXh+9TQ/upsb9+KKxvFpTW+fjOpW+1sbRyFXfHGK+Ulm122H5fRK5uGv75+rAqMA6RaEapkFsld+YVVdjFAR0n1GAVJUrm7mYiTgMfzs8sQdm/fIlKYJcSP/zD3/G7X3/L0w/vmKQxRiEKxBRR24LGYBojl7p4s+A3PojHx/MTnUB/gpxQIX6KUoxM04Tk1UN2HEp2XnxuXOrilC91BNW09VosHbEUhhhIMZEXY10Wb6qS88XNjCmMxBA80KgjdRYESSN1TCxN+Mt/8k/4+o//GPv8Sy7Tjg/PzxAS63xhEKEF4+nhER1Hbl/cUXJmnoV1Xd0msYs0PcvBHKXUxLg/MDRlfnrk4cfvqUPk+8f3pGTsbkaqVvZ390SDnM6sp4W5GKeykLIQh0AyT8jMuVLbQl0zURaG4AFVTZWWK/N8glbY7Sdv6Kqv9kOIZCvUYuQ+lGpQWpGeUFud14+v+7VIHxDchcu3XY029jrX9TZDcNe5EBr7/cjhZvRNsEx89fM/4/Nf/DFPq/B0zogqOV8wk45aephkaEKKiZYLy3zBlsa6PlPKibKeOJ7OTOOOm/1n/P/p+rcfS77szg/7rH2JiHNOZlbV79b9azbZTVIUhyONZkYaQZYFGH4wIPvBT/4jBb/5wRcIMAzDNmQDtjQaj2aGHA7Jme4mu/t3q6q8nHMi9t5r+WGtOFkk5GxUV/0qs/KcjNix91rf9b08fhSePq5RUwQAcCsPP3nOou4fIxq5HjqeHFM8c7tbz7PxwqlOwrJMqDp9IhXcnU/6rXEeCWw4l3zsSK653eqeibM35UAkZX/iAJcSilNvu/nkdJjTcEekaEs08fv3qaVgluimtO65MO6anAJUGfThe5PGmSbmIVLPjx+4XnYmhNM6PEnXUE2oJg9FEuh9ozelq4uoR4+kdlM019AdwZ4rsusVUvbcGNP93AidQlTcwxEIpBRyFZDM6D4lICZII8AyFReTumumgzu79qrsDnoBYiVzwezAf9+rbQHn6qdM19WnWbiu7Ge//3v8b/5X/wXvv/+O//6f/TmzDFZTksx0f6deX1mKmsmC4iK3NSbGjZa7ay33z6p5qKPXn6HxlAClA9oW81p4tGCk9IzZDOYC/x4aEpG9efFJrSTlcl6D7mO+Bwe7oVRfC7VA641ihGiMhZwOlHpPnR7I0xGpgkpnsGLWkBu/fXPkebSwNzQ0FdIo7uGcN4gkV1Ima0Gz89PZiyHxsdIO5Ize6G2lN28a3OQ/ClPxvigl6C0H28cTwmxs4R0fvZOGaaKYF2fqKOwYnjLqzOgMuYbfrUBxx9SbR5a5yM/UEUvZC3vxjlZRZLhwabSGjQ0iSdLU3QUkdcY2EBq9nWnrC9v6wraeGduVtF3AQngrOPKVdmNOT4JD/JCQvPh7z5Wc7pB0R5mPTIfZBc1pwNjCRs59ekQkuu9+84j3/IKMSvbCOuWglbh9IeJxzyMLkg7IUZm/8LS+6bBwebhn/fARuTxSx5VSMkl8iiOq5KFouaJpcyZAV6yD6gz5iBwP6LEyHSeO/cr55SOyXqjXiXxdkXXjKFClcH0OfiLBr04ajcPOwTYkR6+cDKqRanItSIr7L4NSlMO8oIfCpQgv54t7oZfsFribcwTZC3crvDom+WaRxYtCp5W53/b45L3tm9Peu1/OnZomeu+UuXKXKgcgzZm2behYvaNPglHJU6X35oUAE7nW2Cnkhop7EVPIIhy0YEPpw/3vh1lk/fiGntVYJKGXC9f1yvjhPadlpop6YZ8GJTIdkgQIuqMt7MiUxTrKcYRGqBd+D2wMkoTexARNhjntlISRxqAgWJ3I8x13v/eHfPWP/gnHP/n36aWTzu/5+oe/4eOvf8H1m2feLJXSnVe6vx5BAXp1LJJwpDCnkuVXrqOnVivtlli4o9p+WFqgU36IC0k8bGuoozMkt7z0A8ovukaKcUBP/naSfIIz7Ru73V7PnR+ifA0qSowa2duhfVKyNwIZAd2DhDqIF/fTNDFNKcwKlNdgvcTNyakQRgLi9zPtv3wfkeR0Phn+syap1Fwpy4ytkdB9eeLy8TvkeM80V/7B3/sP+d0/+fv84s/+nD//Z/89+vJCXxunrGQb2LbS2G66E0ieQl5mLueXW52VQsRs++TC/NruvHmTSDnGaFsjXa+OaJq7hBQBnSsDCSqORmKmN5zJ/FnP2Yv6XArLtHC9gMpGQ5HJ08IRJWclyyARPGsbbCb05A5VI2XK55/zgltOTqcT09rowLGeyKb03vjqJz/2iYJu1Kny/PzMuq4cjycOx6OHOCbher3QxkbKmcPdHZwH3/z2W67XK7kL7z98z9sv3zLfzZQC19Epyz1vP39gvhPm3/tDLpePXNZnLAvP29kdjy4bSTfupok2Gg93B6al0LfMsxTO3RjrgCXsgsNRJWUhd8Pw4jDnyigFtkFrjcvFHXhOx5mh4iCMQVenz9aD88bbNjjLmY8f3mMI2zZwH33nfedw0Tq9+Yx3X/6Uw907nj5cuX/zhvP54g2pVHcayxNdG1Oe6OtGsoyMwbae2dYntvWJ6+Wjo7115unxI3/5F9/z+PziFRYRfvB3PvY6b6fKDYU2hHly62ZF6SNoJyjTvFMfovgXp4Nhw/n8WV2ILBlJQmegI0SWw2klt13hNomzm9g05cyuBjU1JLngPZWwgcjuZAROqVLVOFG8gE+5eDO6WbjTGBIcf8Sfdc+V0hvifr1cuFxW+maUPHM8PJCXmeuuDVQv7kfPoI4ctxZefwGIWPjpN4yyOZ3pdgakdKMu3hznIFxo/NrvIYwKrqVLHlamGunAQaVENcDUHbDZw0B91pHiHueU3CI3zi0VDWOQKNHwlGk+QfazZMQG2gan0z3/+X/6P+E//y//l/zX/9V/Reu+38ypsBo3sEg+pXjFi7mhx47O2M1FaF9oun9KXIe3u3QlSfE9BR0dz9ZIsR/GdFMTObsb1uibG43kTG9bpPsG0IwnDW/rlWnKTHOhVaNUn4ZMS6HUShalhAWMH14UsOxoTx/QQdkYtpJ0JVnDxtVHgP2K9e2TsUxysak2dFQsFUyKCzzzRNZ6G5vbfgWigBLwgJO+MdpGHxt9NB+Dhmw5JSG5KtOTJoMaxO0myI2DdfOgjvpAh3e2lhxZtuCpwj7etvjisNgMJM6deHAREYFe7gj52Oj9Sh8bjA3bHkF6IH1uzwnNi/vtzLa+uI99C6/j1dEpCWtKNDnyYiDFkQOFGCW7U4LIRCl35HxiWo7Mx0MI5QaGOyR4MeajHKc4+UMs5gdtHzHqKxXRfXoht9jlocE5C1u2vJyoZvRto5rBciCdT+TLE2h/PaBHR8ag1MbGC7qp3wMVmk4wPTB/8Rn1bub49o7cXtCP3zGeHtm++ZY5C6dlon18pKdBmQvW94dsOO1AxDnhGLkU33xFsOoBWqWk1xGreZdb58zhbmFrjZfrBebsBTCCZImJ0aBIgWEMNK7XDjwmUjFScdGtBM9yJKP34EfGAeIbjDCmTJ4n+kXJ2UfDW/NgIgUsV0bygjgm32h1a7QrSolNMBnUlKgpaCXmgqJkzh3N6rx/Td6MDh2UJIjqzd4tJRcWTm042spwFD8ay1rrjWqCgY5OKf586T5sFLsVtu4Z7QeMJqguS75x5TVEj5IcDe8DWqo8vPuc/NWP2ZYjNikpKzYt7g1Q3JEGHWjed1R5BebYkbAo5pK468m0j39h9O4BTqMzNFJiA6VqW3e9cLhIyQ1F833FHRNikBNJNI742U2QnqKotk/dv4Ius6P4Fvdn3Oz4jBt/Nwp7p5PtsCJOTQxtg6chmjeokm7XmSiOc3Yeq1vouQ5nKsWDvSwQIXZEafApxWdPPhRJpFp8xLsNim70rfP4za8Z9ZG7euSnP/t9pCycPz6zffzIF4cZS/D0/j01J968u+f89AHrjabD079xAwSG3qaO4I0vSozU5UZh2p+XJE457FsHuwTq7QmdGs0nWcNiz6kBph3E70WKJs/tn400JbJVbPVDcsqVZTpieSWHi09OypQLncQqxpgrhzd3tOXIh2F89vCWi0F/OZOXA6UUzAbJBsfTgqTE5dpcoJj9Pdw/vCHnwra5jfFyWHj72ec8Pz/yw4f3tK1xrDP5cMfDZz9ie3lPPZ6YTomnyxOff3FPKh7wZJp59+YLvv7dn3F6c8dvvvk1/+pf/Qt6qpyOhe/f/wXr85X65cL6dMH64FAndBSfpHdFc2Ss4A4nhAd6LW5PmFJGyW4NaoOtNc7nlYTb6Km5vSJRBJOMPCdkqItn2VjXFTN39VFrGJ2tKWvLLMuCWuP799/B4Q4NTVipE4f5LWO7IjQOh8LaN1SVIoUMXPXqIIi6/3zOCaHz8vLI80tiXS8cD8aH572Ytk+A+xt8e0NWiW1k4ALcoY6cCy4Y1aBq7kVr626tnVNYIofTUrLsazfAM4n9oGtHSZRSb1M0jUmn02CiuQ+67d7Ydh0+be0eYNRXt3X180Rue4JPDPdAzD3I0/ckR7C5AUtOOTLW68raz1F4F04Hv2461IPCLpcAtDxksmljvYZNZSpRY/UARIJ2GNMCySmm/hYTyMGekLoLkHcGRZbY35I55VMSqQjjsjlVMMCB3SGt2yuQu1NiLDa1JEQIlt/TFM1n+AgGRYUbJZBoTHI0HjVlrpcLf/6v/4L/w//2f8f//b/577iunVUzI9wD9xrDwxPdyS/efkyNo6GJpmWvf9nBGnGgzyR7LYefK0JMwwIkcrDJ11BOGbUc6ewGlhCq0x3TK7B2OweTO4z1pozesUNFzS1dwbUHqlByjHc9fdWRabTT28Uvqm4MucK4RPF9obcr2ty/HdQRmlS5JcayoslDnigTwgBrqLgrSpyX5OJuNWN0xrqhvQWFJCwtw7dcMawL5EphjrGWIqJxKDutYrfG271KUyy2PkYcihqjcI+VFsu3h9/23SAmC9bD9UHsxht1Kkt3B5x+ZXS/JjpWZLwADYJeZNow82vU2wUdV8Tc01fHlTSaowKxUZhmF+9aAnP/fYlmK6VKPd5BminlSC4ncp5cL1AUtQbmqK5zzYI3bYrYiMM0hQe0O4NY8O/MzC0co6hxJNYirrlCUizNsNyT7l1QJbWQ58XFwaqknJiSj6/Wlyvw5CKfYeRUmJYHxnKHPtwzTjPXQ0V4w/HhgfHxvQc5/fYb2tNH0rqiKVMOPsbQ3sk4DUCHQx8le3R2mSomRssK1QWfOzduL6Je1gsvm0fmas2cHj7nqzf3PD0+8fE33yPbQJofCJnXUaJrBoQyFealYGmLgkyCirF34IaquNVejuKwZFbpyDHfkMoiBnTfKEWwHAVx2LOVGC8nc96ke8xD1oFYJ1uISiXRyVgSLH0yjRIoMXjKPdDkGBrmFGsgCZJTiD+d22caRWMUXYm9sN8PRXMu3+TPbuvdG1xzNwhVoebKyNClQ8lghW11jmk+3TG//RxOd2zz5FOgSdAP3/P+tz9QU6XUCdOVfCoevtV6vBcfSu33REXj2nlHKZMXtgynAg4bWPMDtI8WyNO+4fqUw2Pld8vJxBZC+P3QvB0MWDQDiTFc/1NrCduxQHDMr0+PCYNEIb078oj5HudAxJ63YTfUXc1fN8dE05sJH6fuVr16a26iME/cnltwtL6U6uP5fQ3Fe9qFxcGwig6loCIMwmufgbWGPT2x6YXDZz/m45//Be9fNn77F3/Jg0C6vmA6qLry9uEtP/v7f8IPf/mXfP/tt6zXSzgQDl7Ozz7S78oei25qjNb9LABQQ0xuEmczPzB1GI1GLjl0FYVtvbJZJy2ZlJOjYaqUWkGya50SHnCUhXmZWPvKZWzYlEAyqST3mk4wLp7SWmUiT5VmcJwnLuuVcjoyv/0ce3jDNVdUEs+XC9o6EqDBPBeWMlGq55sM6wxr3N09kEvl8fEZIVNqZZh7krfWWaYJRuf5fOHuy59QlyP/5l/+f3n4qrLImd/++kw3YcpOIRrD2NYLX/34d1nefYFOb/n+ybiuLywVtlb5s3/+3/GLXz7y9lh5bJ1WXaQpkjgcnI7Tx2Cai+/hZs7NFadHbb15Ax5GF2traKy73hUTt0BU8/UvwGjKtl2xpByOE+t6ZZ5nLAooqcWzP5IDLX2cef/4a+Z3DxwffsK1OTXkfLk4HaQbUy2U5BMI0c62XkELvXnJery747q9cG2bp67Lxu/9/IGvf/8n/PN/+8y//dW3zmFue1EX5/nf+fPosIpSkmurSqC80pTZcR1fX8M4X1cEp+qmJBDPr3vEJwd5igMbpDD8GOGQYz5hM+C6tgj+c2BoDGXbArAszu8esXeM4AeNwBkdpNsNMoTWRuwzUKZK6g6c7UYTbbgb0GFxC97rdSVlB29cEzd4evzA9bKyrY21dfYgrt6aB7+RGGPXzTiQJRmyVCyS1kvOTHXCbNC3jVtuSOu3EMKUUoR74RTqPmjaGbv2x1IEPEGdhCEWltlu+NFVkSE3OotFY0TojDRyahzw9fMhJ2HEBAMJMWw0PnttIwZj7fyzf/Yv+af/4n/gvG50rQwmVGqUfp5vIwx3FrOgx1h0GVGU57SLd8PVkH1K63Wkrz+n56TQDhD0RWw3kpFo5PZ1uruK+SLovUdtanuF6hMdAzNnWrTN30NeIRWf6JgKKUN5TRjzgnW9PpLOE5YHSfFxhrxg/YL2C229uECnrxhOx/BCfXJhbqpIKo6cSUZtYowJy07TSakEaGXuZ2yD1jZsa5HmGr719LBfekW49Ob3XDzwIXsxblJAXOd8U1iKv75Da35nvQlx5BV1trrsyNkuXjAPmUpBzzF8PDQ0PFvNBbLar9i4evLsuJD6M+zo49hcD6ANGyvar6huGD1sbvxB0GF0dQGND1AKdTpEoSlILm65mSukSikT0zxRppmcKjknpgoi3e9fFNM5++Zs4diTNHjDsk8j9NZ17mSBHbm1WA+mwRkd4YlfZmQ5kYFSJvK8wraBqtN7csGG0XhB5UTG0aFpWtDTG67TEV0q21wYNTNlZeor5XiPbcqla3SuIJOBZRd7bhLOKUYZ/vCWmpiqc8ycRw02JWrNhN7HHyyFroZmb0am0x1v3r3FGDwcKkUyH379Hdk2rk9XhgVnWoQcivT5UEm54wJsD8tqmzdlvfmGk3JCg8M9km+IIvvkYlDCndURbRdidsKjF/c0T/HnJB6GVcTpGhJjyl1tYGasAlpiXRPiHfMpRzYjVSFR3E8+wZq7U74k0Qjk2YxqEnQWiSkSPg5VRdnFTPF/QnD+JCzBonUYRsfTCNNcfQKRClYzVu4pbz9j+eodz9b49sMPfPbmxPXbj7z/s3/Br//qr+B85SgFWY70Ann2IKTz8xN6uTAnoeIuSJJD+5KMIYNhmVSqx1iOSCpsRArmuNnI9THQ4YWPU/ciCj0oM24r5tf6tTB4td0U2QPO/MCymNb4yNX5sF63BnKddkpfXF9zACQlY3SLiaQX4yLq7lcdsgmSlDRcDJdTcW9sLKLp/RDYfaRzjpTDBKVWRIwRCbCMEaX+q54iJU94bLpb9jqgwuaTHxpc1l/z1z+88LQOxtMzpCtS3G95Th30Sv/wPWNrjKYQgvkpJTQXrrr5XqJ+H8CfWQv9jDeRFvsRjmaaF0wlJabiNDXVTt8a2+pc9mVaWKSgVz98p7mSkjCsoyjzsrjbjm4wV2p1nvzVjLvjQrtcXWRWKpfLyiagxyPv15XDVz/mUiZ+9z/4B5z++B9w+PxHXFQ4SGY15bpd3HN/be4atTW2zYsVqcJ13agRyng4TJRaeH555unjI2qNuSaeHy9cuqfl1vt3/O6///cZ5w9888t/xUuDct5IpXI+X7lelZ9//jWHuweutrA8/IQ//Pt3tLBU/vzLn/H5Fz/ll//6X/Dxm1/RdaWtSs1CmRLL4ciwFuhwaD9SWEWIkxWatVsxNk0LtZ55Hp0sfiLseRakfdJuXC+NNlZyhcNhCoRQ2dYNUwvdxMQyeZPweP4B650PP5zoUpB0z7auXM8Xakrc373j7du3PL288Pz0gbQOeusc5iPly68wWzkcizfOeXbaWnvki8+/4Iuv/5Af/9HCf/1/+X/yV3/1S9fbqAMKvY+9rL89zwZsHWTtqBlz2f3JnW5ROmwt6KvqxXgW13uM4dSfkicv0vvOv/c9w6KIrSXsg8cg10oNsGDbHBBEJNDchA63TbwBEArs+6ruzlu7MN3Bpj1V23MuhN3mV/YfPtgF69qoGIdaMUu0tTPama0N1nVjRCE9xkBbAAAkD2iK2sjiPFL1RHIP3XNKkponH7fRaa3dLnUJuuB13Xw/EUjN3QeluPW0Na+70gTFoKtTkwgQZQxINTNGhNzte3SUaDmlG0VHAoyVXbwa56N/Niaw4sLY3QLFSKxtcBlClxOaKmbVZ9Ti9abY8OuqI1x4XqeuxJ9vDo8mO+vyhg0j7vrjvdin/3Jfi3Yr4J0OC9hrsCayl/O2QyDsH/tr+WQn3cTUI4M0P1t0GNOUA1AcncGVvj2xnWfncuZOsURSRdMK44y0C+v1hb5dsNHwhDPfPHQ0pLkfbkoFsjvMdK2QZ2zMJCmQq3c27AXzoDcX7O40ErPdum0/EGLMPqJbzbh1YSSTisP0cUMFs+JNRi5RTIHZjgaGBddezGYPlHFEbLhIePRwT/EbpOYTDbPuaNu4YOMav1Z0XDF1EZONgfU4NLX55KOvjNECqRvQB63j7hKuG4uO1z3kd6QuJ59E5KDllOr2aLXWCKKy21TEmylfdD5S24v4EciDF8zIjk76w3FreGL0r7FwfHk5NcdS9/tWJ0Rd3DcsZCbmosSWqkPOLKS5BZWoIstCvXsDywEt+Xa9EUXb1V/rzRNyfvEU1pKgD5IaujVYvZjS3sjdn52UIVWJe+5885Dps1tyueux0ZOgZWKUBZlP9NMDWTZqr4wfHrm0jbkI83FmDE/zHPhGOqQzUmVafOzVx0DURVAq5oyKlBxRCH1HIpyDzNMyU3KlSTYvsHxa5UjMHp4jcpsl3jjTvs/bTRSOEc4Ig5YNy14AJhHnGJq55Vo8CvsoUTFScZcRwcVKWFAkNNwV8NeTEJTu1Cz7xMLxtskkFymJ+OarKQSlcW+tFGQ6kOod+fCW/O5zxrs7Vtv49re/4tKead99w8d/82dsj4+cUkamCeYZOVTObXXq1eg+Hh2KDHd4cn2Ju3kMgS4ETSvRx+DSGxsKycVVumMe+8EYFBo1C5FhCfH0vn3uuRDySgOKyYgkFzAledUEmPkYNIeJvB8DBhoey+rj3ZQdqREEyZH7oOOV0jM0RrY5DlSn85RSPdVSogBgd+F4fY9ubeh0nZL9Z/Mk79csEBVfd6XOjAGjediR7onfZmjfmKwi2umXJ6ZtkHSjqHvw+w+98fL0nn/7539K3xLPjy+OxNdEPiQPshJhyvWmV/ApvbBbhEoU+H72u4jOUTGfqqq6GDuJeOqpJRcZby1QSyPnEXqEhW4tQsUSbQy6ALU6uANsw7jUmWsbXKfBNM1ca4V5gbt7JhX+4f/0v+Cblxfe/N4fsHz1NXK856u7Nzy/XPjuww/MtSLFD/2nx4+MppQ0kRd34crFkXwLsOZyOfPtt7+lbWeWQ0WrkBicjjN5OTKuG+c2yFL54uufcb48cTn/wNIFKxOnNzOahPfPZ+bPviIfEpNl9HzmcPcZ7z77McfjG/pmvP/+kWZnej/z9jAjRSMg0Kfbfm/995E6PSZXXaFibOsGowYolJhm9y93epAG9THTe3+dHkWB0fug9UB0S6EUCZqr0lvjMGVkSaBXxvbMfDqS0ogiyrUSSYR13di2ldPkFLbjaSHl6tSYmnjYlOPdO5/oya+Z5ozalT/647/PX/7qN/zyl39Db45ce7J4eqVLBDio4qFWthqmHZlSJNQYU6304cW9qZCLkFXCYMH54ZhT5ne6XjZuWiDfOhSSkKXQ93TWUjzxtnpgmBheiEOAKl58ukOYF/ieNhruRbEXOaVOg4e/wzzE5NT3bdltcCW0Er6FOnVF263Q3WsLD/C0vwVS7A23hCWcRQ0k4eNfIqzL9yv/WTzEj5sJhchOD/GJ3FCjlEyJjIBIE0Jw95t5qjASrRnXq6JbwxgO4IYeSi32/J16GCM/jeumQeUJgnWAlnHvxQXu/llQDVQ9VUyqA8Ea/Pd9byKmJ6a377o79hA11muxLfGzfvKXexFO1Pq3leh/41fBblP7JPiEYH/Pn3wPf1d8sp5fm5poL3yqNJyuO9bBaoaoBdFIOqZnevlIatnB5XWAZBcvpIZFQdu3M327grbgQe8oTPaCbhTnbJVEUufdkxopdy+4m7vdiBjIJ5aaQcEYw1O3JLjTLnKrYO416zysgpHRIeSM+9jLK1+W5CmtliIJNQRUpkZvO3IU4+Dk38OL+84YGzY6fbRbh8Z+OKGhKbiCXkEvmG6gK6ZXr9ZVw3ffEfrRIzSihwe++UM1rjt3LrrP5JMGCdFNismEpyoWSnFKQ8mZLO6C00Mwm/McD9cr7cmsOQIwgiuHBY1pbx786/e0QvcLJ1DdqJ4SpDQ5ulYqmiojFyhKmvbJi9Alo8mTessxtsxcIEfhthyp8+KFX3K0XceGluJUky8uZNuwKvBmgfUKbcMuF7hmUh/ImrC1eUolSsp76iWRymowxMXCkjBJbGb0MsNyRA5H7OEdeveG0zGxff83nPuK5hiJhrdsXQolJffxTcJ8qqSaaFtYhA1lmNIYkJNzxJNhxZtQAcY1Qj8CAd4dAMuUmKo3Upt5gI+K0JIwzB0nTMzXbeK20Q4cmBnEJIKOW7x6JkC+hcR5oZRi3KfqBzS9+5g0edPmbgmDqXjKZYrdLAZht830VozJvuU4BSuXQI110Dt0S4xkDBIjFfJyJL15Rz++Qd49kO6PvDncQTEe//qvWL/7Bjt/5OFuYU4ntGeucyKfJlSOVHN0Z1wvjNbDTo59KkpD6QpbW6kYuVSGGS35/dg9uCV+ZsfIx40O6AW/i05ht7A0R5pS3LPbZioxmofwfICgmxghqALXZuyIDPic3y194jD9xFv/NgVxzY9qDzQnirGx03G82fDeb6cHjhCR+mtt3e13t+62fXkfh0s4cMSfU87kWqiJW9FtKQX4oWx9YyqJqRpzUgqda19JbUPUEb3DsaJkehtcr422ecjLsIFmAx2IugsK2Sdcuy5qP6wkLvKecno7oFSxPuissW6h5Moo7g6jKrTmE4aWlD47OjXVjFhi6+oalpShTC72yzObCj/kmcOP38G2cgYuQ5nfvuP3/vhPODSwn/yct7lwPdzz8eXKKR24e7dQqjHF92rjGlakHRRqzdQ6AYk6LwC8f/+ekgpfffkl5+eP/MWv/oq7+5nPPrsnWaPTuJ5XxBLTPLO2lR9/+VMM45f/9k+5hInEcTlSH95yGR3rG4fjPdPxxLUbI7kV3tI6f/D3/iG//He/4Le/+DdkTdynirDR++aaiskT5BPuCmQ501sj1YlcEnfHA4/9kfPVz6VpytSaHYRCKdmD94bC5box+uBwnMjJ08fH0Jv39hg+yWwteeibmTtcFUG00dYXyuQhjvPk70ntytNL5/n8HlKj64baxcOFLHgbUnnz9mtUlcv1zI+GJ37W5Q4SLMsU56fve7vD2uvHa1FkBs2ADiUZOVvQPhxJb5ui2UjDs1RKSWFuIVFbeHAj5pQ2xCOYwGuL1jemaXYtF1F0pkTJ/sw4OuzFYlIPbcTCZlyd3tEJWqTue0DsY1HMyQ4i+DHuxbIRhb0X2aU4kt9XpVYH4CThk12Ht11HgcQ+7tOZTycJGgCra1okCup4n/GzkTz00nG1dLvcpopkD/3qrcf3U1TUSzPE8zlqQlTo28CSsmSos2fijE0YTRw8iKZjf48paqa9sI/hpd91wSen5nz8173HzwLwTKOyw38Gnmjj19KL6bi4MeXC0m3i5WXpXlT7C35awEtQBwS75fLALireya57kxDrZLgl9u19frJ0JWh0+99/yvEnqJm2TxcMhOxBVylTbIwYAwy0P2MtMzZo14FqwUZGiqvhVa9RrLpHu9Jh7y5LJqc5PMYVGxIdY0KlIamRZcLwTionIGmg2WHtNBSlR+e0j7UjtcxqFKkuDCUKOBdchfuEfdKhRpc6IskmxeEzduu4KIY6hiepdUfux4bqYOD+6ikCuBzH1uDTXzG9IubBU/7f7n7DUKR3rDcYymibk/lU0a5Bw5EIoHIxDzE2TXGQi1jQyxwxTeIbRMbV1i3cf7xBLpQ6ovv20bbETubjvV3wCYgycC9Vi+JhV2ErjkSr4R1zhmSJ4aRspE7kxUVTZgNtjWBfs/PbU8qUaSFNC2ma0JzouTgCWSenUITV2ugFakFqItlnlNrhlNDnhbyeKduV/vKMXFZK6+TLlfF0pr280Jtfo9E7HobmyKmzj8IPu1TqPFOXO+x0hx6O2Omejyr85t/9O97/2z+jff/EfakkBQ2OpwStJiGoKF3cNkwTlMNMwi3P9LwyuqNkkn2UKJLovWPdx9/dfB0ncw50ykqWDpJJ1cegat4kyQ4HiI9AUyzhnXOJ+N8VU6duCBRxD+ws3Dx3U0nBq8dF0gPmFkLSMjEksdFQbWjctx6Ixe5PvsfUe3PhHGlHTKJQ3SdMsm8+wjAjTzPleE968xY++5xx/4Zxd4dOiToL2TYu12eWo5B1IdmCpo7ZhB4ydn9iWQrbD9/THz+yLEcOecLaGsIi3x3ctMgLxBGTk6bGGu9bA8VCAsJPfhC5a0Z3gEBcgKxRWO58e9N0Q5odvXcAIxk+aRzOabTYeCW97rW3w1ckin0/LKaphqWl3kS7Y4TSFHUxKO7aJOIWmWM4Z9v/zhwYUEdPcwHYA2FGOCd16jQx1eKTMXudXjk4GFO9OOQdj0lYKgzZqMvsB71sYJvzdUvDtk5bGwlhnmekTmgtXF6uPo2w2L5spwm8Fh63X+xeUv6R4GbfpsOblT18ykPndo0UN2FiLkHn7O7bf8kbAtQlo0XYtGOlYCWT6sS0HHg4vUHygXxY+PpnP6WjPK1Xvn16ZssF+70/oIzEb9LMuy+/RmthPp043L3hux8+kvHpwcenJ67tmaGN43Lg7v6OsSrn85kxCfdv3t6e323b+Pab3/Kbv/5r2vVKK53Lo7K1M1rEaXyyMBVhurtnUJiO7/j9v/ePUBo/vP+Op5cXjl9+zbsf/YguhWu/QiocHu5Z143nraGp8u5Hv8PP/uhPuF7PsD5DWRl6DbtEB3KkCMe7I4hno6Qyc//2S0RgSYnL4wWzhuTM3d0dc61s7UKthXmuzHNlDZEwatTk+g5tLmB3Vzbjel5p2xXrM0u58yahdcrsuQpmiraNLMrartQkXK4vDFXO67Of0WllnhOWrqwNlsMDuSwIi+/zcuJ09xm1Cs2ED83TzFP2/cmtSEsEaOqtEPoE9AzwArZulOTvbWvc9oDdaWqUhAcC7YL84aFXRdDeQl81mKYS+7UXsG2nofhBjhBuKPC33oSAU4Lxc1qH00i9SivszIauipm7+eUU+ih/uBnDJ4O5ZHJyAwkNhD9LBD/GOW+hAdF49omawG4FYpgk6Os7zft0uDi3HdSzhdToplhMcO3WqLuxgQQ3fgynSncdDB0ufHeY2mk+kpiL063a5pSctTW2dbBdMg3QvTkQ5917/Zg+aXCcVkVMA4nJ/eC1CdG9KDY/l7MYs20OgFp1Me1eaLNPKwTCZMbCpCTKbPYcIcNuAlvw5nKfcKf9UAhKkYXt6jAHniztNat/r8In9XrUAa9rJb1WWuJNiH4CHgreoPonE2advgnlRtDHQBujX2hXcQ/UURGr5EmwKO61bYy+BWI94sBPTlmnYbgjS44iw7mlA5GOiUfySkoxXt+bBr1ZVu68gn28gu4+6u7oksS/1i+ip4b5ZXfPXL/4yYsuDSGveRKid55xgKgLN7J4R451THvc8BhthuBobxv9UByB1K+34h7dUFuDo2UwnJ7D0HAcwNH67vw9HYLZdLuRhsbCeFXK660gl7jr3fuoiKAf3RiayGVmdKFvbtOVJSHV0UBVC7RpF8i4UDkN53Xvo/OU5XYdFV94+4PjyG4Fm/za9A1tXvg285AZt6p08WGeJtLp6I4/ifB7hUzQN4Z//xQuQEqF05EkbykT6P1EuZ7J1wvp+QCXC1Nr5POZLQtNV0yGq8Pj+pR4/5gLPFNOpDyRj3ekhzfY8R47ntBl4bJdWHVQlwk5TIzzoJtSqotmmrloeF5mdxWZPBnSef/+IOWUKZYY64bhPPHpePBY+JeBzcWHPOaWqaqKqLGKI7QVfz1SwrqSNBABvGDMJJLEOI4oUpOLAxFIdIThj725EBgRFxpmwVJis6BmqLFEg5Wnhe5cIacsaUdu19Fi0wK1HFWYe8InjXsYHsPphsDuUwl//urxRHn7DnvzlvHmATud0HmffJzJqfLufkK7b6rXZwFmylTZamZbKi2Dlonju885lhl9/wNiw/eELB5KVBwxkmWhHE9MxwO2bfD8gr1cMTv77jAUIvSlFG9CttYD4cCb1ECFVCLrwBPK/pbHtCPnckO4duDApyCKijsR7SiLb/rRLGDUklkOC6ruUb1usSc5TObPvni4T04Sxf9wGgIxoYqjx7n2+6FKTKnwAy9nUvBiRyBsAXL5IGH4fmDafSSvfth0VeZpps6e6Nw2f8ZSNSzjtEn14ho1Si7UUshpIyPU7PaibrUpjN6De7zzX7m5aNyuaQAsjM7OajVzP3JRY5oLKSfqPCHFD+m2dQ/EM+C6YSi1J5iFUeI8MRf9He7vmb/6CXJ4A8uCfP4FtWaOKA+XlVEm2psvqHUh54knMncPbyjTTEqZMTYXBqo6T1mVXAumyuVyxjaj2aCReP/+PevLymjKYaq8PH3k/PyBmh3k2a6ept5bpwvc333O6TCRcdpVH53T/Zc8nt9Tt8Hv//TnvPvRT/j48ozSyPOBlGf2lPXrtlJE2MbgP/pP/gk/+for/uJf/TN++PWf0S8agZPGvMx89tWX/PTnf8BlbXz//gMKnN694+Xpket2vWm5kCuSPczPxMOoyhQUyuQNPdnXd++dHFNg2wXhKmzXxouaZywUg9I5pIWyKOPa6OOZNgQdfvau2yUAggE2+OGH3/D5Zw/kDqMn7us75mlBx0QpByRPHI8TuQrXNkj2hv/4P/7H/Omf/gV/+q9+5SJ1Jc4CP1lvH36UsR9tY3hybRsxlahO/6gRZGUK2lvQ+Nz5RFsYcmRHwXZ3E0k5nknjfL5QijdGwk5VIZgFjtJaoM023I9sDKUNR5pt7PkzhCg+mo6oszKvgM+ulxyqEeKX8NyAEeCGhCjTvCkJ/VHK7pjXY4Kbs+vJiF3N6bpOsaq5uGOROLiZxV1v9mJ2v8K5lNs0TsDXem/hNOWz05S8oL8BRBgmnTIlUslsm9IMCp690FdH+2M+4YCKOcCbAoh0C+BEluGT65QCUEueAZQceBoWQKdvRhQnWWH4xFpx57kexbefEMmBN9xshlszxCfrS9ntqokmwy0wfR6QEUqAjx249C0SDryGQUKcG9baNwjkVty/Mv5fC397pVE598GvfUzuERdVl2FgLZBw3OkGhCaGakWs4NFuDdMVeiPFGJl9MQYXlOS2DDksHbWnKI53dbDTQNAU/DUv+EyjZTUweixk8x/afMzgD+a+mLv7dFvGBjdbOhk50EffLDrbrZND42ZaFLWjOf2GTs5E579FwuyrGntPcBWS89K14x6hHbMNrAEd0c3tPDUiqoe/zi44uaWejujUzYtKF+pBIlyL/CgkdpeAXztDz0gXNLpWMSFZRrcVKYuPXQfOpbWCicc8967BofbxaZLMULfxzKli4clMjPSS7Hji/rM7NGfMztGtw12NJhcF2gDNE7keKIc7prsH8rxEdy3IGJg1urmntpHIUoKvmEiyYPUtLJkhMzbd06crvV6gPjHdvVDGBfnwHWWsTOtM62dvkmpy54/i77ikGZHKlUK9vye9fUv98gvk7o4NC+FvYjnM5DrxkpWRV2wC7Y6GiBTqPHO4f0s53NEVmm5eeGUh18lPhnrG6tXHjfOEHY9+CGaw84W+rj7FESWNTs1O2+jaUBmM6q5PXQxap6TkxTuKZXul0IQ+JGfDpATHXJ3nDWjYX+XsnEYv9txppmTnGvakWBVaGawMWvGkTdqrJaHdnkcoacICK3ALsNANjOTIAJ72qJKdViQZPd4x3n2Bffkj9O1ntLt7bF4Ad/2Z5kQJDufVBr0o+e2dx4pLcYHw3YE8VaY3b5mvL4zvv2MkJX187wLOlJAyIdNCz5m7d5+TfvQl47jANMH1zPabX2O/+TX23SPlbMxkliRce2O14Y3gGGSFWQprzpzFC30R5+0yAgAQASmO2JhrG1SMnsxH+RrJgYRQzlxDhEWGQDKqJaqCjOHSjMm/zilyQggCfIpnICpMNRxN2kqq3IRlQo4pmwtQcxGsx+aeoS6uD+k6HEHf3B43l4yUOLy60Tq0taPdHZMOy+KYSgjrhiUPlyGTF1wMbkD3ddDahUWUUQbalVJmLwqS408jIMiUIsE4mqEbZEj0qwnm2ZOxveCpLjRsxmaQF5gOC8dD5ePTe4Z1tq0wp4nejaq+Hvu6IpJpYqTjwno8IQ/vePOjHzEkYWWBN+8YyQWGdYHn52eWfKIsE8sy8/TyzPX8yOfTVx6od3fkul5BE2WaOS0nnh7f8/Lywv3xQO8bqSYXJJaFKR+o08RXn9/z7W+vfFdf+Pj4S+QwUTkhVthGIy0TCSPPXvS0ocg88zfffMfQjZQm7k9vONSZD48XeuhO5gXyBDUbslQHF64rHz++8N/+9/+cv/l3f0ntTxxkc/RbnATwh3/0j/jR7/4xLd3x5Tq4bleu2yMv/Dv68wc4FraP32C5cTmfEQbLsdJ2G2gTSIPjqbBdjWtbuVtmWt84nz0o8Ljc0a6Dvnqp8fzUydWY7jKHdGBoAS3oHmhYC+v1TC0Ll8sLRRLturE+NcpnMwxhzoXTXICNa1+5bmfX7skCMlMyzAO+/uwdX//ox/ybv/zWaWAopOGTxmAN206dsVcv9SFwHdA35STiQvMBUxZq8dA8Yu/1AEMvsoYpU86oeXGW8uTosDonvAcSOy6ep1Ii4TvnEtPmFXBHGn+wEueteRJsdB+3PA5xai57gyX75FHdJSxc4XJN/n5I1JRvaPI2eoCvruvJpey8Q3KpqG0MdQe3iIEKrDoAMhGSdZZcqZNPXywpRY3cs5sUINRamSNRtydvKPzZnoKytQMVCZlqWP1a2E12zxtQcxZFhZrdLUmqTyBMhXXzaR7qYFQxL+TjxkbT5iCaW4D4JrMj90NcMzFwalvXym4efBO3ImRLsSV78SyhXdwbGbcxDXQICa3UDs7p65TbNpaUWEgci5DLxPvrmSuNkb3QlyEUTRT7tM7iBoAQf46R8q1X9SpxerWolpAU36ak/uWljY4kt3hLOVIPR2eMFbbOZoKNAuKotuzcc9tHA14EM1yImiRh2bnEPaXbQ+G0gkRWd7JJ0RFJFBBD9zFRRxleZAYfrmsJWoEn4Dp9psfF9yUJ7vnZhzvW7E43DnybF0W2F/duuTm0+e2J0A3rnjBrMdBOeyEdxT0peTd/O5z3RqB7w6PNx3tR2O/K+d2ZRkOk5G/FN6Aknyiizdi2jVkEmZwTmCSCsPoWxXdcN8sQ6XJiA01CT/6wpFJcUGiOLowhIBW1jKhQxYVzpg1tKwOnVUkU9I7ORmdou+q8YKlCWZCpU4FUO1kFSROlHqjzEersiPzeeOL0h4FbE7rQa5Cl+DhPQMiozGhSes4wzYgdXINQM2XzYnckQwtQA4KJbAByOIKkiqQJTQvjdMQe7pGHO+wws/bNUY8uTIeFdHdiPT/7g909cKyQQCZsOqDLHdy9I+VKGo0+Vpoqmr2oa6myJheRlrsj+f7k6PbLQvv+ewadNIRqQup7wWiO8KTkbjkYFGNK2RvM7I+mizDF+b3iNmzE2HXv15EoxgMVkhBTEu43ak4FMwadQdNBTlDmCgO2c2NcVkouTNOE5Mw2BtqUbQtnB3Haq4utBRHXrpAKItBRtpSQ5Uh98475qx8hX/+Y9vCWVqoLlGN8adZp1ul9Ze0Xb3qmRLeM1YW8HODuRJ4nit5T2hWtlb5euVwvrJZI84Hl/g3pdI/mjP7oS/jJj+D+CMsE64V68Enjy9YZ7eLFycCpZRL2k4BYJzB6P/x35MNxPefDF7ndkxtd0rihKBJCgNuWKOprLO2brE/FSIrg6ZzHmpmmicvV036dlukBVmbZLT6zJwB7k7eXxa6nMQkXqOH8/5RcxyI5hOUZL4J7ZyQJrY77lrdto2/Oje5bZwx1a7t5IuWCmdDUFR1aHZlVBmkoukbK7erPytgaNQ3SkpmX4nOFru4JPrjRmoDbFIQ4HN0ist3oS/65HBNLpakyemNJC9NxYb6rrGnxBuXjHpQjEbjTGLmhadDygqTM/NkXjLdfsB7vua5X5sOClgMyHSmpsn584v3zytuvK4fTPanC1BLFYH154fuXb+nq04c3797yoy+/AGu8/+3fcH7+SMUbuPlwZDJjXM8s01seTndcn5/461/9JS+P3yLpimlnW40kR3IplDJzvV6RNCjziTovzDnxzV/8G3q78uOvvuD8fOHxhw8+QUtulGra0LC6FDpbW9HWeXo683xeOa+DY8rczUe29kIqxnYefP7lT8nzZ6x2zzwfOFRB5ML9uy/45ld/xTeXvyAtV87ffeA0FedlF68icoU8CWWaWA4zbTXOzxfccc3PKxvKet3AxB2DSKwXt5jcBH7+J19yOH3GdSusTZhyoalS60wyZWzKslRaV949fM52Hnw4f+v00uG2p7UeIU2UCvfHhTIdeXx6YX1+D134z/7Jf8p/98//io+P52AAXP5uLwmWo0n3TwziOcKw1ZiSsGWnKtWSmIoH5bmRhnp9ncQnGKZMk9c1fbh4MVV/UOd5Zls9dTylwrpu9KHU4lakI3RtW9doNiysJ9Ntn3EU3qmFJfb3fR8YLUxHHLv3addQllqcuhviW7MRE8H9rPA9Yy8cb8BESbfnMyUHMBPxumGXPNUUMkY3StmaU0lLKpjuwKgX6Wk/y0KAqupBXyXcsAgnthTnnVNbfdqcilNrFefmUw3VDlbQKBJ3QXKMxgO4NVLyzCDPMHnloGfzOtKB03DTN6FLfS3s90rFfDqyu0hF3+D1oEV4F7YTGuIe7H/2OtYvt5/fqp1DPfC//l/8l3zz/Xf83/7p/9snD+KHRFKhWKIgjJhoeEH/+meCuKHc5vj+vnX3CArjGXld7Ckm8MVV28OTSbWF9U/YJEW8stqIIrPfUJjdjQUckdYYW+zuHZbdStFjwuNHlsRQDT5aoPpxdUbbN4wIzrDdbq4wVEl5o+Ccft9U4nATD6Iwde6+U2v2MKq9IzO37FQNsUpjdOewmvmkAHGqjmpYasYYSYIPLYQFoHqllqLT9UvcSeZC3N0TX4e7/9w88qPY310jMEc5kOB5G96JiyMMwR9CtYfnr4WgUAK596mGh/UAkoNn3ZFRnfKBd7mqu9J7oNbIqTN6I0kjSUXE0yBBfAzLvim4AEh053tlSqlgC0kgF0XN6TWlLqQ8OfdOYtGBT3W0R0Nl7C4OKsoQt4xKEk3P/j/15imXTKJgfR+ZeTFr2e+LWXLv5n1WWWZSmkllhlqR6mK4ro4MkPzre62MeUGXowt0U4qNPyFpwQ4HtuWAHE/IcqCrW8CZGro71GinXB+Qkpnvj0ynk9N7Xp7cLz/B2DaKuetPb43cIxOC5GtT3Q+8jXZLF845RWjKTmmL+xEt4E21HzvPLszcR7R2Q5GcbrEX+UN9RDnlhLXOWBtzrq4t6L5BjCjEc2yAxMap8RyxJzWnGHeijJRIy0Q5Hpnv7+B0ROca92f46/bNHapGQ7crfbu6/ae4xiQVgalipZBKoaZCrYV2uWB3b7F3jTKM48Mbjm/eMd0/sOXs/tlffoYeJ0ZJ5PMLcnkiP31ETyf6szvS5FIZ6k4hQzLaE3Rha76BzJYg+0Gwv2fJCSm+f7kYLCiIFs5HMaJVXCuTYr/IodnwS2d0GayyYpYpwwO7DilT58q6da422IZPUjQbRMNoWZBst7TM+L94jsMFRx2azDgtIBdxy1BzRBvbn/8RO1rQY2I9DDVSzbDM5PnAdXgSpUXIkZmSSeQx2B6fuLz/SBqdYh5HX2uhzgtlWtwnXV7TQjXWdkrp9uvTvzfbQwHjc2J0Bj2awCkVpMyU2Smc7mzk1M7RB7kU1IxtDKQmRsosb95Rv/wxb3/v97ke32LzHYXM0Mx5XampoBm2vnphYe67jkFOE6bCd+/f8+tf/5pvvvktCeWP/ugP+NnPfsK2Xrg+/cD1/IyMC2bKiQdkmUmWKDKYi/H4/MLT4wculwulOGg11cI0LW4HXSbUHMmbZqcESVLevvuM1q7UaaYP/7lyqe40kiNtfIs0TnMgK4lQ5onf/dnPOC4TD1Pn+vGv+e1v/pJ5Kqytc+2d41SpUn2vT5DKgbu7d+iXnR9+/R3LXeN090Rpz/ijGJ7hxTUnORdyhPxNc2GZXQ+RcxS4Pe67Jq7XBmIsp4mffv1jvvrySy6rZ5C0oRh+TuecKZLdOnOZWS8vnJ9WrpcndAzSUnn68AM5Ze4f3nLdlOV4ZTy8ocgg6UqVjaUUvvr8wUtjt5jBQ0QCLbxVbq/I581NxUsJNgNLTlOztNOaQLMX4Do88CrHtEmHF4s5JXoZAbo4yFZKZUTTnoSbzkbMC+u2ud7muo5bUbY3HKrBeRf3wC/izUQKio3nEHiwUc6ZnBKjN8yCd+8e317+RZ2WYgKscRbcnklxxD1Xx0L3lNlSEiUlSgoaToJSPbV3p2gNBRkObuy0md2Cd3fY2ferWy0mbmWuXUHUHd6imTGV2K9Cj9QVxJsELXuB6xo27f02gdl1O5J8ouL6H3eiSVEV706EthfFUUe59fcunfUvMghDAtnLZgfgbo1iTB3Ny/q078e3Uzq+TNzJba4TTYRza/zw/MQ2xm1aADszIkWbpnGey14+sQc07sfvq2rJm9OwZ7gV/XsD4BfMJzDxI7QQeHoBrr0hw634+kgxqtoPrehmg5PYIjDJi21xxNWcIysqt5e3EJkY6eY96hdWaGMXuga/VGPslSJ5zHr4t3vKoI5G8CgYDFQbFm4Dzpv3RRAscpKa/zuzCK3pUew3ugVXnh1ld6Hv3y3uVRI5LDfd69Xfg4dFtRtCL7FzWNh7eHGPX4t9pQ17LeyD03xDdk2x3tDuB712uTU90Wb40pIEUrGujkCYTyOSVo8yDrtQiV/gYk4dnW3zgsORv4JhFAcKQUqo7yMBVrwrLhkS2W1IS/ZO2vzrUpoQyTeXl6G7YNBpW6/Niq8VD3ZI/vW3cLDBaJ5MnHgNptjMu/8eG0cqKUSNKcS+BXLB8kyX6s4+1Tnqto+6UkWKT4BMV2hvSGMwcqFfLqRq9CHk+US9+wy9/4zt/g22HDnrxhAfsebi1J4KWNu88Dgs2Dw5JeNyxzJXWCrby7MLgi7u/iOt0fogD6OkTFLnJkr2ZycTLlHZJxPJUnA1gwM6Ar0XHwea+uOcLHaxcGMZGsWfvfKuxYTRGi89Gqlhr1SwXJBlYioeurV+ePEGOrYSP7ctnkzng+4+xtSMLTM6V1r2tdLp3iIkR+q1XZHREOuINmw0WuuuEZkylnb6ESAZy4VN4UrlKR9YD+84HI+kd5+hxxPc31PqBKcD2/EOloLWhJSZ1M7Y5Zny9ZXzKHz8cEHaQPJCqpEo2jfG5cLz4zO5DcrwLIicUhTYguWwQoWbm45kfA/DDxvX/niBbUk8mKZ4VDz4PUMaNnmar4pTV2rdQ5kMGz4tHOUT94Ts6F3esxyG3mzrUhIvusoOEw3KVJmW7LaFsX5yqr4Oerx/yV7IrzGVmFyjU48n8vGeXgpDBJln5tMdUitdlSkV0rax/fa3XM8XSuvUIlTLvoZF0K60bg6yBJCh3SefpdZoFF61BZoC+JHEiLNAddBto7GhWWHKWBkone3a6GHdWaoje5INfHjp13uemd68491Pf87pJz9DpnvkcCJfz3z73ffY9ep83+qOL1/Nn5MzTpscmZQnJGU+//Fb3r57B9p4/92v+c0v/4Lt8ddMU8LWZ6akXM8XrtvKtb1w9/Ytd6fM++/+ht/+6hd8/Pgtjx/fe3NLpkxHjndvGSMzJFNSZXRvyPowruuFWmd+/JPfoW1X+ra63s0S2hrFPJtCUiHPkxcsLcZIIsyHIz//wz/i65/8Dj/8+hf84he/YJMTd8c7tP/An//bf8c//Or3yQeHSveo+2V+Q/5i5vf+sPOL9i/ob8/wDFVW6uQGAubK53BLEXKB43FhnjJ9eGGZRbyQtYJ25fy8+f6QM+tl5Ve//AVbT9w/fEnbhDwdOCwzz8/PnFujrVesN8bolOzJv2M0NmtUBg/3D3z4/je0pjwcJsp45vHb73m5XFET2jbx//l//Q+8vP+AWsFHxmFfeCvu/+7vrzWQmdtRew0XokfxQLxpROK3JPagTA9KN9bNk6QXHG1uzeuJ3gxI9Oa22lOdwJTWzKc4mwNlr89lmHZgjHBDdNDU9/7dGlljQphSppSY1oo3WDtCv+fW+OeiKrx9n/QKHBKaijqhBtfrRr+2W3kqMvzMT0Dy89ZdlJx6lFOmTIJooncL4b9Tp1vbQKCWGnUB4ToUdpvi1OAUTkFeD0oEkTllUANkyTXObSuMBiKDVTtqDnwptjOW3Go0QMkU4+y9Ht8tkQcSZhE7zeoVoNkL9Ey64Vp70b0j9kQpbkGyF3n9qsBCX4t7g0vs7//7/+v/mcu4cm6DEaCrTw0+aTxsfwevBfxOuXn93P6ZcLjDYv4vtwm+19n+ezHTm+gjZbdYS8lbBQsBqlgOB5kdfYnCOWzcxuj+YmbBVRq3wlX3ztRw68X0KfK4j5BCQKrGLiDzbiWRQhyKbmjZHMm35LzZUhkJV1HrhhEBUtrYhbG7r2pvzYNdQky7L3IRd2dQ9eKZQLrUwj4QiY7QmxMrKSg+4/U6xPd6VU3HwlF1LnfcPIvDLyA0dsW3hS+xT/kN7QMt/n7MhvP0x3pbYgl38CEVUvZGY0TXnHVDdUam2Ys3CkQR5+lK2ZOF7YqY+9OLFG8kzMdEkpQUfuyyo/c5lr5k5/dbRtT2mj0ELxaWoz3QQp88yI0zFlMXCy/vEEBpNGJOlXKU0Z07BJrStbP25j9fFmrdh4cJqRXqwkiVIQWjwjyR5sIQFwcOrWjK/uDmhB1PwGckEpIn+uMLbB3TxHx6C2+/oN+9pZ3useWIzJVprtTsY2sLqpKMBjlhtTCm6pvGdiGfTqTTgfz4yHh5gZcn0raSL6vbfHant2jrKO4uYMMdmtTUm5vuAtZdQGjBY/bNxyldWVz0tKfy3dbcUBcT+a5+O6TVzDm+kinzzLZ16jSTjgc4TGzJ/anHsSIRACU47zMXwZIHVnU61WBKntSoJQqQ0aBv9O73rm+us9C2elFvHekNthVGI+dKMsE00XpCr9URmuKOU10K480XsLyl3L+hvHvLEGFdFvIyk04H+mFCizCy0QT0+ED+7CuqTSzLZ/QPL9A7ZarU2ROXta1cPz6yffMN+v6R/vhC0nHjtqZUkByCrNDPcEODLKZnFg2VP5Pu8Q9WBIrve2KZYuo+8SKMnNDTQr57cHeeyxW7Vg/wCxFdFaHOlVqhFqUkb+q0eTWSd4u+mkAGkjOnN0emZaabJ0H25AdZnmdS+DkPdZBCLcGkHKRQDgfK8Q6tM1cV0jST7+6oD2+QaSIb1FSRdaOmSvrw0fet1inayGqMtXm+QMcFYjsQEgh9zjlEdb4+ew9rTNsHEp4o7k2oUiYhz4W6uM5EtbFdmyONkqmToCWsYrPvaVczugo1FU5f/YRxekN+8yPuHt5x/fgDHy/Nr70p85R4uLtjCJAqdTp4IyqJy/UKQ5mXmWnOHJdCGhfOH5+xufBwd0SBp7Pz0a1f0e1MOt6TMEa7Mk3Cl199xrr53vzw8IZ5OvLy0mPvdGthKRN1WqhTZlkO5EtlzZlydxdn6hYiOaNvK12v1DH7RFwS8zKjo3OUO8rDGzKenfGzP/7HaH+i1MbzX/4Zf/XLv+EP/8GF09xQce9wp45NqGR+9kf/iJf3z3z/q19xqAdEPdzMcyUgT9UTd7sXTaPtDneOMkvO9KaYVtDMaK65GJtxebny8vhEXU6M4ZkmSSo6hKlWB7E2eHz+yPXlmWK+X2PDfedRdJpguzJLIvczT9/+ksfnF4YZqSy0beJP/4d/hTaf5gzbBYhxJge4cVtv/yMfptDEC8QmsA2lZRjJmCcXjFvgolkc8PTJkwMvABo00a56E/bqMEaGFkJcLDG6+HmrHmKYgiO/h+SlsOYuxRt7CbqJKUSJHNfeKZdJIOcS+4dPDlPy6Z3n5uz8bYPkz6GIOBUzFbQH44ERSLibZYgMz//JQq5Ok9EBSTO1uHEHprCO8J/3CQ/VJ3G1VL9O6oJxZ7L5/umItCdZe6OjtE3p284ySECnTm7TqS385i1oTeq0FFPXsKGeFix7rcZO3eP1XDQHV14L6R2E5WZmgbhF557ibGE248OUdOO432wCdqCcXfbq/2cipHnhcr1Q68IP1zO1VjdtiImqv6kdud+/517q71Nabm469voWw0DBp1MaVMZ9GiUxUUgilNcCLlTi+Mh2p7B4e+I8XgunBjPCUjIqO/bRhgWn3B+AlENpvI8zZLi38j56uI1uvGTd3Vv2B0mk+Jgtgq20N6D5v8qFZMPRtLCwFBlou6K63ig3Fh73yRNS/P2FOGG396P3EMpGJxdBVpbC55ZQJ6cUMck7KrD3hH5R3XrSbl2eJ0WGFV103j4wCOFj8KMliTuy4GP1Vw9oYwxHNWrZ0W+wgPrF9p5z3MaJWCejPp7fUcX9XUqO6UnGpKKj0tsFSJR6QHpG983GnC/t3u27eEVuRbwrfPxeqfmo0cwi4TB8cjGQaJpisuDXKHQM0ehoeGG7sCWxO8L6RuPbtOaE5gzVkwPz/jjVipWKpcnfm2TyXMhzdrRZBzpC0G0wJKGlwvGEkEhpIpWjp3SmQrl/R377ORwfGMc78uFIPh5I4X4wWr8lFDqnOlOmQq7Z7eKu17AcFKbTHePpI+1jQa5XmM/kNpO2jX5ZaRYohOJ85V3EmZw313sn207BChRHCM2CN8s5eVaAmLsx6a2bdwRas6BT8euHH7w23JvepNCn6j/bMjMmn6TV+3vGumLX1QtbASmJOmVGX9F2wXDPe8mJiznlRtYr9vLE2i5czSlinvY8bkXD2FzLU8TcarT7RiUy+3PXuruuIJTTHXcPn6MmHoJyPNJa42JGEeNUMlYz1MQQbzz0cMLsSyydmE9fctoclXeLUwcerG/kp0f03WeM3/yG8dtv0JeL5yVsnYSj5hJ6DFpHeieRGMIr1TD2SSz65ijudQ9VIzHrTE2ZJsKYCrz7nPKjH1OXhTQa+bxSz2fOL09slyulb5QqlGJk6STr6GY3m7WcvbBPNfaZkil3B+phYWyrI1zVR6xSZnJdkDw5EECmLe7qIrkyHe+wurAppHqgzAfkeIec7mGavRhNE7k3ymWlvv0Nermi4wVyukW/WzdEE0Uym/ab3mjfT/eC4lN+665nGnuojPl6rYeJ+VRIxRsZ+qBfVveUD/AnFbfoTdlpXN0G19a5LzNvf+f3eD/fI8d7dDli5wt37z7n4/mJTTs1Rdx9mAiQ3BTAE7+VNjovz0+8nJ/RsZG1UYq59e8Gl+3KdduQXGm98/S+cX56YZ7vXfNDo1TXEEkyBpmX66DMR46ne8iVPgbLcqJMk0/lRMK2N9O3zf3WuxdPu+3d+Xyl9MZ8OKAIU4AJUgsimVwqv//H/wH/0T/+J/zrP/2n6HhG5oUB3siPTtcLtSw+NegGsjAdHvjDf/8f8Nu/+gtevnkmqxdeIo7KS3FB6HXb6FewPly8XcutaBrDaFtjXRu9K/NUebh/i7bBD99+z5DvuXv3wpdf/5TDMfP0dGVZ7tjWC603plJY7u94/OG9p36P5oYTF7c+PsyVz969pZ2f+Pbje7atuUVknrjqHXeTMmdYzRjEdDwMQm4fNwedvUjana+IgirtmJt/D2/5Qj8CmFCzn9VtDKYinpi7diQNprgeIFwu7fY6l2uLZle8uI8aZ706gFqKxXTWbh71cnvfMe2O8zbl4mdy1Ao1l9s0XMWTsvdEawlQwdO3X8HWFNkaOQutN9Z1c2vnbm7JK4mcoE6Fw6Hc2AuKi4JTmRjD3JAk8hAkeTrxPC/UOjngFNbDvXdKL2680ewTDaKDub13euemPZKdtloiG7K5XkwsNJc5SDdJHKzodpvAeAFPuNFEOFTULZ+GmgmhSbv9N+yW4D5Q8K/ddYPukhgAtNwMMaNR8O/zd0OsrquDV6saIpURQmDXA+xazldHNkezef3vfQXc0oI/QfFlD/Vyy88R2o0R+2wyv89lRMVfwsrJnR6iWI8iNsBjiKJsf0ratgG+KFMMN26gfFe0xWX+5M29/trHRM69zLnShvP/d46ZAWobKR3cWq5vmCUsDXf0GJ3enYqiY/PFZhvQQ+X8yq0vtvuNGnuIFYQ9Y3BI95GymCJDHYEOPpztU4hoCHzq5Yt0T5KrpbqguLuQdgdU/UoGWmXB3ed1JPXKwcokqS5yyS74CGdXtAd3fYxXDqtkUh6QKuR9I/BCuoeYLpXdckqAho8siwu0ZKP3UA4YdFUqUCdxsYykEL8EB1d8WZqGCAb1yGh79fEd5tdUIHj0waXfH6Y4UyVLNHOes+CMrULNGaoHVYkqpjM9Fa4GkgtpXpC605METYUuIZASIdVErk6ryMlCR2GYCkOcwmN1ZqSMyEIpJ9JxZZJKyhPMB+ToxUE63cM8U5ajo+tqbq/Y26t4tSSYKpq92Sp1IReBw8z69EjLPpGRdkWfK2Xb4HqlCaza0ORrKVkKa7mwP+sDKS6gMu1exCdhF5tLEjQJQxTRfeOJRjuF2CYnZCr048ImLtqxXNzaLazgFJjuTtz/+Eumu9k3620lXVfs8QXZulsSZjgeZ2ysPH7zW/r1DJIYvWOjM9Yz2+P3jH5mzJOnEavbgSXxtSnaSL35xEK88JFsJCYIm1XyAnWmzBPLslCn2YPJUqLroDG4tivSBtYqh5GodQo0Q5DlDuYj+aSUbmSF7A+pj5m1M9qVZb0w3nxOe7jH3t2zfXxE1o5dVqcK5ELJidoarB1bV1gHmY5I2NxGI4sOpjJRSmJPyhbxQzStAjpjy0T67IHlD/6I8rs/Jd/fgRjpslKfXyjffc/jt98yHr+n64WUHQGkh/fy8Hj7VAqUhBZlGxuWCy9ebTFyxmrZIR8sF9KyMC8ncnC99Th7ry0FrQuWZxIVTRNSj8hyguUOqTNIRuYT2jbqZ1dOP/4J27rieMgTaTgrtYjzX02ETf3Zde6q0tsWo/nizZ55OJIDAkYKb+0xNtLs6//u7o0DASZcX1Z064zhaGHfn7uUPN02KABrKTydr5RpRqaFHx6fmRrclUI93UPfEE1YymjO5Fyo0+L7grpT0rQsrGPl8mGlTJXj2zesH90Pu4/G48cVy36wT3OmWnabzHaFafbpI5u7gKXqAvzVmOeJspwgVZRE005Rc11BgE0PpxOWlA8fP5CniT4G7boxtgbJpzXzXKk1kcpErYVpqu69nrJPaLOxkXj75U8Z/YmHzz7jr/7dX/Cv/+Kv+J2f/yHTfMe6XiDNPgOcJ755/5E//1d/zrcfnjnVO7b2Qi2HCDiDFuDCujZsBMAzOmUqtDEYdOc8j87lcqEP41TdXmk0hWKkKXF++cD1cs/hdGJZJtejDbeSTWikxCeW6UBb4fp8xkZjFZjevaVdVi7DeH5+ZttW6jSzWeLtV5/z5m5iqkLrEuyBHbj7BFoNMOrTEkwcZr0VTPv5ZOZ7YxbQzSmkRQKlN6GGlsJ95P0837n0DtzlONssUuZ3L3Sffo9wONOw0ySAErdeJXzi015ZunMPma1ZaBY9HVhQploc1COFS5XbT+4AoWcNuXe/Ow16M1FKmCL0jTF8b3SrXbh/uGNeMqX6Gd77IEkhSWVsLqLG3OXPg88S0zRTawlXoOxBiX1EI1EQy1xtQ3Jh9M7aVlofqMK6NbJUt05XrytSclReUuZ4t3B5cbOSHECOV764thENrUL1PxP70RguLiWaiSieSULG79GnH6b62g5+Mu2RqI8ckNw/uX9dCjg9KmY1Bw/EG7pmvj+amrsT4lz4117DNW0+JfYXCFVlNBTy+nr2SX0tTlEfwynZ4RMVeQROQy8uVOI2alIbMYeQKM68+0lZ4iL5xdKgsuwpa7fRQIxodlcXR2Md6Xrlg/nIyDuf4GiGUsN5xDk6GRdfJBmIdZI1HLM1tAVtJagrnoToCKLtIT3xy4b38M7H9zGWEA/I3rmHB+3Q3ZrTbhOEvftzGkmPJisWTMSP7ul4Zob1Ea8Tdnns04nXBXMTj5qjzX69CkgJrnv1wzU2p6FBD/hkUWAjgi/U7UxTJ9VBNkMjIMm7UrsptG8ydXFbKacBCR1PI07RdROeuoniXq8hSFIDxcWSe2Oi+3KUfawU9xXfvMWcgkPw8oif38d+JTiD4m/P2wcYjdE6PRU6mZ6KF/d5kK27uAaj95Xwa3RhbRr01BG9usTAGmjB0giO8wz5gNWjuxLMAw7DJ0HVC0vmAzIfsMPR0y6nhTA7h6xIKqQI5qBkKAUp4WpR3Ytag4va1tX55FullopFONfaGpsOki7urWxK6h4OpquPpou4SFZS4AS32V8gFMkL175f8xgJ7o0xWdCS2aaJtRRYFsrpgWk+QJrIXVFJTHcHyudvyafZUemxImujPJ3ZPr4wiXB/WkjJkHFlEWP97jv3TC4FtY3eoL90TFdkzORaQXcvmpg64doJ6T5RUtxa0pInWec63Zr7XCfqslCOxyg0zQvFYuTVD0SVwbBOUsdfkiRGLSgFncBUPO3SsR6fenSnCdnYYDpSDxV5e4c8PpPWxrheGZer23fmQh2GXa+sH565/PAetgtFN6x3rCcQHzlnXDuTcAEomgIUmZD5jvmrL5l/76dMv/8H2O98zXo60FNC1438cmZ++Jzl/i3bdyfy9gh2pbULenn2tamZMh/QXBmijNRoozJSYVC49Hi+y0KZJ3oLL318UpjV9QOXYnTx4DfPt/D9p0vxdZyS52eQIc/Ick8qnfR28O7nG60UnlNyb3DdonkSck8MM+ZpcjXZfvYJTreLPSEF1TGFZZx1jXWdUTqH5UAtC0MHHz48UqQidPrasZI958BcICjdC5Y+Z9JUuTw/8f0336BfH8HcGer+4Y708sSd3xymw+yOTGVinhfMhPWysa2OYjIlvvjyS+4XQS9PfCeDcX3EembbzhjOQb5eL9RpohQPebqsz9Q608YgUSnTzGE5crp/i+RK77BF8nDJM6VULucrL0+PvH37hjplLtcNM6c3TMvi4sHemKaJru5dPi2ubQKfNBJNbUqZOVdaU6bjPYxK7y/U5YFrXwN0GWjYwBaZAaVOE6eHt9TDG9bLxhc/+X0u5+/YxiNSjcv6wn2GMi1cto25uJbjsq2uGxnqiRtZ2LpxXY0HcTefPDJzqkxLYdUrbTsjdJJMXLdGb0rJFTFjW1/YtoFuncvTysvjmSklptMBbcL775/BBuv1gpkxH9zV6csfV47z0VH0FhRHG4GuWpRm4UTztz7+zn/b3/4rA3eHEofDVF7PcBGcprgX1GZRmOcwv3BgL6UUKa3j9s2HKn14Ueu0Hl/Lxfx8ySWAG/X9a9er7CCiabjsheTOaS7EWdud+pRcWJskxK0R6CU35oVnNSg+KUjJp0RTzXzx5We8ffdArd4MqSrreeV69WekbcM95HUjV/Om3Zy+U6cp9AN+5YskpmmilsrlZeMS1uSQQjsg3hx3ixGJcjOMSIOpZHpz44X5OHF5aZ5qG+WP73fuSmSq7tK473eOmDHCk1+SF8yWYoqofxtwdpDmk3sc90v2on1EqGn8m91N0LBA+KMGxkcIiX1i4O9p9xlxNgS39SjsTYfrLnZ6zc4J8bM/qqqoeXaWgwdghh4jvk/34iuAxjIjojcaiEWQ1KcF6R4nvKeY7fz6G71mdzqJwp8YufDJ99gXoVf3Ye/Hjn47feJTRH1PJfMGQSJyOAQNKeNOIvtjqJ+45DTMNsYINxwdt5/LNKygguu+C2x3TYAjCc57LjmR8GmGF5z+M3s0/F5kv3LSbXjhYhadbSyQnbe87xu2IwuZ4LhlTAopVVKp7hUtGREXpEQrxuhxKEbh5gyduN6qDNswKSGKTYxUg38WE5KEC2HxTtNnLSmQ9ATDhTBpZNJwCzaTRJHEiE3CO9i9KfOmjtuIKRq3BNjwRskIPh63TjQUu8Tu9xp8IZ+6ahhoQmXF1ormQs/VpxnFCwVik+ymLtYEiBBnFx820noFq6hWepqgeZqnVKcr5HkO67DYnHPBSoE8IaU6EhzTFWLSlCVoMoFU5pSDCe9FnZGw6YgORZaOHK+gHavVrR0vnizKG6UsC9mUIkrSjrSOnq8+atPuDVv25oygsYgRTgbgBqOBTJsfJiGpCmFlwkrGDify8UR985b5s88pd29I00JTgZzJcyUfJ5gKlg1tL7Bu1OOVlj/4ZO3zN6Rs6PrCxGDTzvrxibkWlObBRWvzBpMNaSWC7SymN3p71szwJsISPVnc84LYjKSDh6zhkxqZKmme/LBKRrHJUQtzTugeaCYWCGbetRfuwU80n25Tpm55USumnVQmZE5wnClvzqTWSetKXRtZYM6FGdCXK/rN97zkQv/4nmlsHGqlAH29sr28+IRFBE05nlt/ftaR0Wnm4eEdh6++Zn34gu30Frs7YrX4hPB0JS8n5sOJ8nDH1J6w7Zn18Xu2j+9JbTDnSjncI6XQxubZCzZQSaw5syVxJK1WmAtdVrfiFTAGoj62PYO74ZTXvUTxZhTxUbeNThnKNGW3yZ0W0ume5eufMGfhfH7h6dvvmIYx6cZRMiWBdKMS9qb2aoW5O4b9XeecnIya1PU0vbOOzqnOXDfjujVSPbhYcbjzxAjdl2vBHGkwVXfZEWG7nnn8/lu++N3f504KKRvXvqE5cXh4w3JYOJxOdFUen565Pp3RoaHgC/tA3Bp2y5VVhZEWpBrLUUjbC61f2NqV777/hjcPn/HZ51/S9YWug7kmanbRXqoTp4d3zIc71jaYjhPHaeJ63Wjrhg7l8vzkKHgS1uuV6/l8s1UspTgFpznVoiR3RPGk0UYaxemFeHEzzR7QZiacHh6wPnN5MX7yOz/j+friLi7ao8jLSHKU9ng88e/98R9xKvDy/tfcHeBf/sv/lmQT9w8z229/5RaHMjHNlTEGz5eNu7uJL7/6kh++fc/o7nB03gZpEt68OwGD9dIDcJpRaazXF3q7UurJz9rmifE6GpfzheenM/3a2C4r22qTXge2AAEAAElEQVRIEXpLrBusl4uLbpOH9fWesDTzl3/5K37xi+/R4dONZiPAxNDUmdcPboghn4hs5ca5fgWkuEGjBvThRf3tu0WSdEnC4jvUrbh3CopgFNcs4kDW0IFkT5g3S9Ci5tjRW3sFgl7rodBX5eIA4fB/s08AJEm45fjZ4PacbqTgYXsBfqhRSgpQNXE8LtRandp4WWEYpTqynkQ5HWe++OIzTvd3vmtr0G11wsxDO3Vc0N5JRZhmD0DbQ7NMIoE1NJS768/uNz/GwNR1N33ozUCk1hRTFG4aAW8WStRwXvSnLLQ+2LqG27mH9Yklr0nzftooe+2/Y2KvLAnfM3LKYTTB7WdV3B1sn/hEze571+tgh+ipQCyyerymM42JEaFr2dF+uXEzSDeOfeTLSOgVk9dUequjuQHLNxB8r63NNYsjGguLd6tiN8c7gJLLBPSYLOwF6k5RCQA9aDQpxSYd/LIc44ih/kCZ7kWtxcJNN6D5Fl0v+0V7xa8xQ0IgkXZleozRXdDrh/OOAqbk4Q9emfrG7MV8Q8TCp39zIW5c7G27hlileAKjupmR2zO+FpxJcljJSVTkfiGJn22n4Gj8fEl88fbWbrzYfXfY+WVO53qFBUw0nB+qIxeEqGzAXB2xN6lejMcClTwFBc/vQR9+3XIKhb++3nyxjOC2pmLhmZ3MaRpIdIqJdEv/LUAHyzi1qSHqVhRDX38eSTGz3K+WeZqcSMHSK5rg68apBGoJIi3Xm6HgyyX3HTckdBihBUgp/GYNyTOpLsh0gDI7qm4xTxkj+PjDs9NsxEbuOgVtCTZBdEJw+oEpSMo+aj0UcjmQ5+rJp3gAyYinN5lShk+MSO2T9b5PQpwHvY86tQdiCyQpUBbS3Kmn5g/8+oLmRB8dGwdKnZAxGOsKtrqTTOvOkx/enBpOacjcHHpvG53sDbR19tZxt0p1w32CvpFoZMrhnuXzr1i+/pp0/wabD5QS1IvQfIxkIA2xmf58JqcDeWS0N9bTHWUW1qtgqUFf2dKOhF8D+AoLua2hW8i/bnQsux2Uu2//LpgG8ZF/y2SrpPmAtQOjb2ibYmKDe8BPhSwTEuJq11JEkFNyN6QcOo2Bb3YjhFHJzCkkJYKTmCC/8WCVuxXpg9QaNob7bGffk/R8hdOJfDySzo8cUI5TRXrHPj7Svv+eFocl5tzYMi3kacLqRD+eaL/zI9rnnzMO90g6YBwwqeRZkFjbaZ7Jb99Q+5VxeUTef4PO36DrxlQXOD24oPLmCDaQ0W8gRhZjy77Jt2SYbBTx0y2Jp4J2ybf9KMhvN5ceol83LBAu38NKrYx5puU75MsvyS+/S/r4A/rDB9rHR/rLitCxPlBz5BQ+pUXobQztyJzdxuMjrHLTVHwvrAsrmdW8qF3PF67qe/q6bRSZfEdXiYwQQwYUVbR3fvj1X/PwB+9hueNZO+PhjlwnUp1QKWwduiZaF16ezvTWOCyV03FhKpM3xEO5rp1rF47vvqIK1KzYh29ZH7+jzsKXX/6Iu7sHtjF4H2mvP54rD+8+c+CgnijTgTaEtStzFg51oaaZLV85vzzzN3/z13z722+4/uHP+clPvkZy8uCfkumj+1NdJ+Z5Ymhj21a269WT1UsnqwcJpkjAlOLNQ+/C/XzkeHrjme21otJ5Ob+413gtYBtmV8wKZc588fWP+eLLz9Bx5ettI8mVLCvfffcBtZV3b+45HO/58PiRl/XC4XTPw9u3PD4+Y5Yxyzy8W0ko09EL0vXS2D5eqAssbytzdXclU3W9xjAu55UxLvRtoJZ4ednYrhupFzYVnrSRbOJ6dsppzQUjMndy46yN55fNbWdHv2kp3Jv8tSCzWNz2yUkst8/F2b4X3HtRh5+tt0KsO9am1SvJnbfvBhJg+qkjjRevqiN83/17j6H0vjMcAv1VT1E1daaCNEXVbZFTgH1memPqqHpS9U7R8DIhgLeoZZxbv9toOoL+8PDAsiyM4RqO8+Ua6baVnAd3x4kpbE7VElDZm5ScoGQlpSvKYJ4nDscZIYfeDrYtmBGpBC3RLZG35ue/X0+foHvGx6BE0c4+jYsaQ5LQdaAoQ+Hlpfn+kDygbbfRVcPPAczzbvbmSD65yzvbxAJoUAOZAqDcpax+j3PaEfW97gkee0pRW+1ovoMLruPippElCvtkws6oSQGCO7QaDBn22DCvOZq+Mll8n5Rbnbyj+XuZalFz217Yi+/5CvSoA0WEovraFexo/c4Pe0Xjhd76TSQZIA/gBR34IeA8OucQpgi6uT1EQU36Wxs+e6FoyPAZ2BC9dVI5e8HnMu2EjRWVnQufwirQb2bfi3tzQezYUXt7PaQkuUp9p7c4bcY+uTN7Z0S43ERXTLhmmJKDD7ffLlVH9XXEhrKPbHaEcm945JPyXsyfmx38DmRYJaMkEk5T2JP1ECWVinVDccut3aJphEe538dQpat74BOjm5R94Yt6sU8WslYf95MQCfGxFR/d6iCFY1CyjFqKBiu6arzhcuA+3VadbyT7IlUkD0R9oyKujXfzKR5SiQbQUVaTfQowvDlSpwBRJupyIg0P8mIFxTd0y75+cmzo7qVrSDNYjaIubPOAn4k0OqpCSQu5HJCpehEsI9ZQbLpmYfXp9pyGhB++3NbDGMF0G7GuszcpJWdIhTIfyQI9C+OSoWQaMPYwtN7R7Mi/aIfWPAzuWhjNJwRS0m1NmYF1cTFc9KT7AZVE2LEHn9KETiRlVAppPjE/vGN69xXy5g1jPtBsn0gEGmqDYVdf/9XcGepwj/XGkwh1qrR8JGUXrg869vgBzj6d0BSCb/X5qASCC+aNasYPq32jUk84dS9i8bTkfMRaQ9vGtq6ObpfClCZqKuTJgjsfE7l4ZkwlAtogZ/XkX3N0Yxf5Y3hOQTgHkRI2zXQRbyTVsDGQ5MyShnJRhWWhTxPl/gEZGyn595W2wfnM8emFdtmwPsD8UJvmA3VZ2JZMmyvl+EC/u6fMB5JM0DO5+nTOinPm8zKhVw+pYX0iH+7I9UR/PnuI13JHqtXR+OyuX9Iu2PUF7T2SH5XWV7eNjZAn96t3PGufMiWEoYaHoyXIbrtLzchcsanQi1OatuCiXoD5dOLwBz/nd6aM/uY3rL/8FfqLX9HHCsmtdndk3vc9X7+fJtXuntqSDMvDg3JKRU146YPT/RuW4wO//c1vuLycOUwT57ZRlpmtm++/NhzNxkGgYk5L+O7Xv+Szb3/N6Wf/Hpt0mq6IVEp133xlCuRudhOB2MKGNiaUeTqyNaEuJw5UaikR0Lhi05mRPnojXgqXrdEtMS0Hlrsj9+8eON6fIM0gC7nOTPXA4S5zWa989913JBM+e/uGfH/PMs9cXh759je/4eHuyP27N4xhN/SxDz9vpnlh3WBrz6Ts7xfz+++udkJrV3RsHm5mhZdBrMdCSj7t2doKOdFHwRiMs1seLtPCcn/H+fnMqsbbH/+cZVbWl+8py79h/fgdpRz47PMfUeYD333/DWvv/M1vfsM2GsvhyGE5siwTz08febl8oNbKUDhfGnfvOg/1QArXmYxQq9Oi2roiEtbHxVi3wfllI5vTOloyrpcnxtYoOVHqTvUVDqeJb7974em5O9iWgepg0m1/tKi89qIlCqX0CWq/n8tpL+Jvi9eF6a67c5MHLxB3u+FETbJvRaRUGDpofSNnqNNuQ+mv4/mMzvUeXdDhRgkaNOAR4W++qSs5B723BIiZXF9lYUdcJAXdI1GSG0igUEoOT34jB21lnivTVJnnKYDagqSYIiMkWUlF2bYrW1OQOSbqFdPBuj6zXq/00Sglud4jF4SEmWcdtNbABKmR1xJnVmsjrGztRsneBbci7n7n11mY5xJNjjdCKWXvLNhzMfINGBBL8Twkdj9/Mw0xfsF0sPvZo64fzeJghiRB41lL4md7xsGcTwWte3OQSAEkR826s1qGRhEvr3WxBVPB9hM6xL1AiabRSSq243Ix2yZqYrmJeEV3YwL/+v33W9ka9aOK76v+o3qdVrxoH2Td/VS9a/HCNGgl4iOVPlpYIO1v2VztbwQpLbqevduI7tTEnI+aXi/aPp5H7Dbm2Gk5Gl2shHWTo7RByTEDSYwIUXA1N5g238ziBshegBq3i9zbcLwqroqnn72i0TtCb+b/1m+ULwS/hHtn70WR3a6TkiU7t9SUIrG4U6L3DS8/o8CX/UEvGNA14upzIKjsCELCzFMjncvuYhG/pvGARJcqSLjU+M9qo7O1zV0YREjqi0XMF73beQRud7M9Hah5Ue/N0yCp3rre8AO9FZPiu6F3qFH07vkPKhEwESN4Cx7eLhaB8Js1wIbr+zSujQQlQ6F19QRAMmU5kfGku0+5/oQrkgZ60ns4dWxKbskT6lKmq6B5Qlrz+1MWnwqUgk5OciElD+zyruKGAjhlbHjB7IsNxBga0yEhLM0iM8B8HJnrjBRHTRt6i5IfamznZ8jCdDdDT6ANy4mxXWlTpocswgcuga6qOZI0dL8D3khm8QAmVUf+kyf3WiL8b/39eNaxHwBqwhbUrpzcd98AVbdxS6UyUmPkjGI062w6yNPEGBN9qvRlIm2FoomxerJoUvEkQ9xKUgn1f/KpiRQXZqm4GE/VrT9VGlnGbU/QQHRH76Q+qAVkb/bDh9mbV421Y3RVSnJVjq9Pcaq/4OLXnesqIaJMArn4rltd7GSqnoQqnvRqalArTAv57p6uG2ty/mpShcsVez5TR8SQSyGnSp0W1x2UQS7OY990IuXk8346uZZbhoDVDNOC5ex60flALTPNKr1+ZL00rCyUaXKHlMnXDOsTik9XmDzIKvcrlEK/PNI3A3PRYyqeirhPoHzDcB2OlOKN1DyRDwesLr4P9UbbOm24U9lpybx58zlfHE+0uzseVXl+/Ii2q6OHZ4FU6b17o4SQSqFBNJG4rkt8zypVIGUaGU0T5f4dv/sf/Se8+fnPeftnf8o//W/+H1zWK6bGQd0/WtRIqnQZ7okvA5qRtLI9fmB9/IG3ojAal7OxdeN4qtzND9TpwCaN1DZKLXHG9XANwe0wpZBT4nj3wDIvbOuV8/MHumWkLtScyXgo2mk6OtqfzAWzERNcy8S7d1/QhyOQLUIaW9/48PgBbRtJlB//6AsOS0HHlSQnLpcrqVTyNJNSZr12PugT05Q5nE4+lewukjQdUdwN16BVT5q3Tbm2S4gNnbqYc+GwHMhRuqbs4UTr9dkn4rl6E5cK0/ENuXS2x480nRhMzKd3pPmO8XLh2iHXxMenF45zJWVjvTwzLYU39Y6PH36I3IoSdJOMUWgdWjekhqY7CalkrCvbuvL0/pHreUMDhFrV6AkHDoaSk5Gan53zsvB0Tfzmh43Hi4beil3p+lpnwCf/bZ/87iDN/9iHg5y3qhzs1XVnjxTpXRlanN5hg94GJbleKEUB+1rnGDD8fc8ObvTNKUdjGBKT/NvXmgN0jvD3oM54YnDKCcyL+WkupNAx1RLucMPccSemBznlG6++tS0AU+GyXhg6yLXejngQT7HWyKahYUO4Xi5cnj/S+xWsIZODElM9kHPicrk6d34oLlB2EXpKXvus15XtOrhcNnf4IZBvL9J8X8rOUl+Os2swx0Aks61KkomSBx8/XlxMm3DEfLfeTZkkdnNarLmQawqtQzR4yWs6p9EIKU1sbcQ+pbe6Lu3FfyyaGxVGP02Hv/2JHsL/vcl2zRtRg0bt+7fqpmjU9uVKhB9GNoPpTl8lzre91v7bH/a3/u616Ui7fgAo43rFGKRa6MkPy5sXvalz3aO7TJIpuTA258OXnMMxIkZLHVKq7F1WkliMOJI7+n5d9g6EGzWjN3X9LHunDL0pWf1iFrwbtdGdwoGEQOiV6783XLsK/fagYIhlRu9eCGeJrtHHvZ8mfnqXJp+EHKjbWQJIoq8jOND+kOzuO9YNgkOGeBJdyp6e+xr5vCNWCRve8ZfqXNlh7oPcLVwlxoTYRKYgMjuVQK6obNjYnGOvka7IcP7dvmCS0qS517UFtzAWsEj2DTUP/2XBRJOBiIeBjZFJuZLMPZkjf88XbgQsIeLobDbSiCKKVyekRKJYRiVBnr1wFhfHIBGStveqe5MVnMIWBZ+NARQoR2y6RyWxJQ/b0ZIYW6atZ6bR3XPbWoiKwioS1zOQ3CeoSyLXCTkeGHcHOB0cqcyJbIMpT/TmQkELoSeluv2XJLZhJOlO1bGGpitmLahShWQHKAnL5qFakn19TnfkVOlWGOqe40pGeqNZJ6kySGgV+t2B1g8MvSAM0tadj589X2AY9Ox2ZSMmM1l39xZFcsFS9sLaMiYDk8a2PXv648szRmacOylVL+rFaNkYedD0io6VWcByp3Gm6+br9yLYashoWEqMKdNrYivC1nztDxRtGyX0I8MEy54zUJYD9XDHRrhKRfFuCiYTdjiRHo7YktFZoISWZH2hYWSbvZEf6lMqYjqnIFIQXehy8AJZBMk5vNIdBVUdaHcRehIhl4JZJ/mYAaIpwwqCUMQ1CEiFPNCpU0OY6Y0Q6NyR03DtRditWipYmUnzRA5P8BRBVE0AuZLMeeZJlnBiSi6sz+Lismmi5LfMUtH5ge18cQFVykxTARlId4u6NpIj9/PCtFSSDfLhmfHyPePpe8b2SNeVLMZc/VlUcSeGERMey8UL18Md0+ktI3koUd42ZIA15/eXcSCXSh9QprdQ7zgrMRVoSHL0bp4yjOIe1WpYyJpVjLCsRrIxC+QysZYj5d1XfPEf/mM+/5/9z7n74z/i/j/7z/l+OfJP/0//R358est4OQPCaJuLtGvsc7JxnDLCxvn997z/619Sf/xj+PwrEhOH5Y5iwvXlhbZ1F5iOjVLdzvn58QnZ6W4RvKUKOQ8owv1ppqYTj48VlYkhhWmp1ARv3r3hfvuSx5cnpFTWNbvQPF/R8T2Hwx0pVeyq1JS55isfHr8laWf0J97cw8vzN6yXztj8+H96fiFP92Q8FXagSMks08LL1uhtMLQjuKBxLzhKugv7ve3WPHdrlJqodaaUzHa50Efy86373rVelZQmcjVvVLTQW6fO9/z+3/tHbOdH3v74KxcGrsKf/MP/gh9+/QtePv41c8kwzmSu3N29QW1hbQ9czhtShTRl3n35U37/j/4e9f6Oyx541huaG03PnM+PXB+fef7hI0UzrSdeumDJr+UYPRBmqDkxZQdhvj9f+O15cBFv+lCLffEVfNqTux3R2At/+zv8+/8/H/oKonh5DptCNaEMITXYRkwqm1Fto5TkSLt3sY4siwOlvTVMJcLU8s0WkySfMAC8lhmbgxBSknv3Z90hC/eeT5BRcvI0dx0rnish5KJMycGHpVbKVPzMN2HrTv2UKZMytN78vppwXWOKYOaTntUnIOt1o2+dJIneEhc1ptnI0iglMzpsF09hH93rjL2GVB2sW2fbEn0IrW9R9ymYoklI2cg5AvukU+dKomJdvKFLFeg8P7+wbp0yObV3qDcTnsHkGhLJDpiO5mfWTjsqOd9AOXfvadSseGqWV05tc5rbzoP3AFYJF5+9Lg2wSrxxG+Y+kX6GxRxIiHODV969+eRgpAwmN3cbDSpxDqH0bqWuO1AeEw4X0r5OoFJQcXZAN+9wuyoxB6GMtkbTFt7OEVTkHuZxszUQYhG6KTqcy7WLNR0Fd+FK1MduCcSrR6e/hNz+ex/XaghRM7Hh8Oq6YyNU7yLkkXza5sRp5yvJp4Wz3qyNxnAryl3IpaqUlNzfWSS6S/WLoxqcKItWKNo8DStL2f1quKHkWDywt+lE3Pid6qUxIjF3R9jR+rjMroAfwUG2fQbi/xvDhX7gKWwweyJldOxuiO+UjZSErtdbcxMtj6P3PvBgXQclN2pdPMFSu6Pdw50YNDVEOuQB1uI1cqAlzScHJUZV6vw4p3G9vk60VrdrIXhTV1MFIRotTy12VbxPCSzckXZ3IXcM4nWNpIRQoR7Q2QvuoY3RJ1Q31DYvisI/d1hQx8yTc33CY3TtbDUhy5F8/xZbjvSaGaVQpkou7sC0tc3fR7g1SWzoGmvOvbnDuko3H9Wri+OSOTc8W4ap+vOREkbFsjfAaR6UGJlpLViEOUmesLFirDAl1w8gTtc5r9jWPRRKhI3hKKt6I25DSTqQ4c+gEumCZfKAqTwoM0jp9PbC+Pgter1CmkkyseG8Z5ZMPlWsGDY2GgNtF7peGGO9UY+SCIkNG41hje6WRPRdphIWcMkKZPFCdzpAnmB23rjk2W1Hh3vI39DjaSY/HMl3M7ZkD4WyAWNFNxfLuatXw2xFbSWZrx2hxjPle5KUTN3F2bcNKLiKbfhm2AdWNATjwh7Stj+j+6Rx56VLaFZIQpbsTg2TU4JujS0ukqdUtBSniw3P6BjdJz1i3oj1oaAdkYqUiZwnb3xlOGe1Hqh3BU0Tab7C6NTkaeGqDbYrq4FVYyRjTDNjOviErByoqUDKbM+Jvj1hDIb5Hi+pomlmlAUrM/l4R1ruScd7yvGelCs6lGYfnJ42T0x5Yqjw4enMh/8faX+2ZUuSpOlhn+hgtre7nyEiMnKqoYsYGjMBLixe4II35AXfgYuPxnfh4gtwkbggCBIEGt1dXZWZkRFxjrvvbWaqKsILETX3SHThgvRapzKOHx/2NlNTFfnlH/78A/0f/57nf/2PbF9eSLedSx/U2ABy8TTnA+gtuKkBak1tTs4gS8ZKoX78zKf/6D/h2//8P+f+q18hy0r5/V/x8X/1X9L+7/81f/zzj3xYobaNpRa0D7ZjJz0KH777hsenK2rC/dh4/ekH2v0r20vhSCtrWSlppUtHwn2tLLAuK0cd7Pdnxh4uJIFd9H7w/OVnfgaul5Wj7Rz7Rq2VXDinh2Nk7vsBrKzLEwrUi2uovj5/4X6/s9SFYzt4PZ5JK6w1MbbOwyL89MMP/Hf/7X/Nzz9+A9x5+vQ92RbGkV3wjVMvx8hBs/Kdvo/hezkadov+7NUlO6WqQ9dGPzq5LO7jjzBSZ7TGPnbGaKQM18fEsj4gYtx33wNzKjw8fubh8ZHRNv8d1rl212C8/Pwj1j5Syoaa8vRx5cOnB9rIfGbl+qT89Kc/szytfPzue/767/4DXseAbef+88/s7c7RG703ttvO159f6OYuPJ2M1oWtD7qlmDEHO7crpjtdB394Fb7euxfzXjpEbUJYP0sIDidC/76Yt3c86X/iw/zpf/9XNdi7gQy3qY68kzyc9jZ0sABLFn8GMsEld4MO553H6kmO2udSHbkOk5DRuzfefZqQ8AZqhHAVfKJbl8I63WJ0agIHORWWulJy8QJ4GGQlSw0vfA+qzIvSWqPdPfywHZsXy70zxgQthMvFOerbdnC/b+gQ7utBLh5wervdz/pLRELs64Li3pWjeUovWDQgHrjl0kmh1MTD40NkMxlFKgPj+rACmZeXPyPZ3YQ0aMgO1Naz88pZAmAJIDOeHalGrkLJS1Qqgh2+9j1LPJ0U0r5PfV1+Y0LYrBnDgUkyp8l3FN82V0rUQxpULElCVl+/gr83Y06A7BT15mCw+M+ZDYb/sNl8nat31vlRc3ndF6/R7wAGlH3bMBEKRsH9pCcf8pcfUxDio+158L0Xdryn48wCbYaZzLTC9y4Kb045evokm3lB5Wh7WGrmEMjFRZQpYpRp+8RZ3L8PUJifT+KVhwSHzsLlxQWqcfHi/U1e+AhEP8Vu/0YjkvP1z+GN4UlzxHt5/97ev1e/XjEiG4dzoocf5N5PKMMaUjq5D3pqpLQAFaSQcvXbpoRtaI8bKaBTI46fTsNRKZWMFnMEOw9vmKLA9lCpDuPw4jsF/9kAy2FxNTci33yGydlAOH1Kopl5mxxkkdBcuNg4KbhHsCG4balaD3El3mSZN1U5TXwiCvTQEuRSGT3H1CaaJME5w2IYIzY4R7FVM2kIvQstZVgeWD9+w/XTd8iHj9TLlVSrO7KET1WejWgp3tBGkwg+bRCZry2aVx2e8Dc09B8DSebTklDdp+TBYJiS6kKxThbFSkKXBWsHlBXThtpBHqsLksqKWmbwlcM2v1A5oxWWuqLD7+VoO3Z4omSW4mgQ+KizeqKypY70jeP5z85fzQspXViXB3JZoGTS40rSxRNWk4f5cGweCtcO19Pgz32hY8fxFuh1is31FOGnuWmWSlncYjSvF9JygXrxz+mA1pySVgqWCnKpyOKb29DhjjB6MHqjNT9okIFxAEegHYLQGZmYuinFaqzbaBBwtH+M+FmqlJSRYd4vS+wPqbggGm/oMPfh1tgsXEglIVL1JFuJYD+Qk8uaTpeIEIXRvfkcO0zXLkmYHiCFrBdkCRRPhh9akqilkK5XH2er26P6obUzAOmKVCOl4euorjG2zo5uj4O+3eitk5NCqqR6DcrYFeoFyxfy0yfy+pH88ASXK5Kqb45r6JmGIBS2l439y537n3/g/vd/j/74M4+aqPnCmgplGK159kWncSR1AWLQ7sSMIkoOUONeDP3wgHx7hY8r92rcx+Eceyq/+V/+5/xv/g//R378b/9f/PB/+79y/+//n/R2eGGwrHDNsK70sKo1HbT7K6nv6PbCyI3t5Sdv8qWy7y9YFi5XRwaP404S4/HjB1LKvG53f782OI4t0tcHYzTWJVFSovXN73V5QCIFvLfG6+3Ox8+fWK8Xvn79Su93eruz74l+HNz3G4ut2HFw//oTeex8/fFPPP/4J65l8I//6r/ju/1OvX6mrA2T1fXmJGQbPgXD+c6FhWOLdPjsTXcfG8WulCRhUbuARa6KSvxRtLtg34svI93vgY4WEtBUqbVgCq0dsT9aiHmPmPQnyloYYTP96cMHPnzzmcHK5WPm9bXRrXPfN/7HP/wrfv2nf+DD5+84WqPmBRvCfhvsL4P9Rdnvxqt29jIFmQvYwTg00M1wvDHoh7L3jll9X564y7OkE+X/y49fUKnfffzbAfxZrsn/5LNtuFC29xHFvU+gIj+KIgLJ8yYmxaLkRE7ZQeIIppI0kKSk7MW/qJGSnuGLR4M+3DhgWcJtKqeZxQom9O77WkqJmTBr6knkmNcZIxDrVDMPZlzkwkwvz0kY4lrJ/bbFJNUdES+XC8uyclkuLMuV+33n9nrn1jrP45XXW/GgOaD1/s75jpOW5NFFwWnPTv89L6nwzvXHT4xafaqbrTCSsq5XTBO1esJ4637WIs5KKNnFu/v91X9v9jrCYgKhKWoDpujTa9KUotbIrvV0jaVSlkqRjBA2r80LxPSuiBcLzsE86HhXtPtXeBK3hF/9BI3jjOAdYPy2NqM+muBzLFhf9zApzbMxmHixxOuZDBpPsPcLXGZh4wvZeT8upJxCSd487MN+zG9g+UURPxH20/aMNxR2OsakcEnxItirSO9a3JNdbQQKDuAhGi5+8NlW9IVh+eRvTie6H//noT+Tm+4dj8bvm6MVHRajMrd6khjRTfFwSkrBdRxmfvEIFP7UDZzIvUaB68XM5M65iMw7+3nwz43E7aqisx0R9SzixZoZow9GdhuxUgY2pnPOQk7un91HC4syD9JIgeRKvC53m3F7wByjSe0dsQNJC1gHG4gNRJujvtkig0dPTryUEal4Eh355BNaTB69IZhhXZLkHc/aEItAjRy6A4Y7ASA+wpeZS+C0r5RybMIhnB6AZqfiiJzhKgS9R3SgdjCsOU2pD6Q7gqPD0FRIlyfq519x+e43lE/fUJ6iuM8lfL4jkTcvviHPgp5EFrdDNUlv3Xm8z6F2CskzQg3+nDdgASe9E626gPKCZUFqRnvFekcPbyIyDeyRuj4glw8ctnBnZeMrGNTLSl0WlsuV0RvWOu32lXG/U/wpd7X/6L7Z5ky9rtSHBVsM1Vf09kxXHC1ertTl4mmkPMK4MDJYFhgHaewROtXo3RGyJEKXAcedvh+OMoVyn7n5pewBVRLXL1KENQpeckGLZzrYUpGSkaWAJFoRhrXI0RB3ljLPvvCGKazHUiOCDHDXqhWrnuCam7h+SPw56OYOSq3v9LHRewsNRfLRa/ICyPeZgeQeIt3IXAh3pPB3A+Qc0fo6do2M/5NwOmNop+lB6xvad0bzaY+EAs8nVdP2dtClIVJd9BgNtOs4EmVZzs0c0xO5KSos4t7jtS7k9RICU6VHYMy4HD6pqT4dSfVCXlZyuWDlAmllefxIXh/JyxUtFxS3wO2yolb9WSJRSmUphdoPctuhCNenFf3xz7TXZ+x2P5+nozd6doTQRoyL1bVCKSU0wz0PrBpPnx+xNXHbN1bg3gfLcuXpV7/jP/3f/e9J/+v/iv/xn/01/5f/079gjI01F5bHJ9bPK+unB2zcGbcNGw29v5D2F64fL4zR2Z4HNhqyPDJ05d4OXr4adSksS4lAKBdmXx+ubPtGysJyqby+bNzuzySMpYLazv31Z5bq7j7ua564XK6oGH/44x/po2Eo18UbpP220/bd9/BesN5ZS6akzMeHK99/85HKwQ//8D+QaTx9+jX18kq6XMnXR2p9orU722Fcrh95ePyIqfJFlba/RnEHxRKmD3hWSmJdrtRydQCiN/rROPaN0XdMG6V6cb5vdyBTlys5L4zhe3XXQW8dESOXxMvrMy8vXyhTJ1Uqklcu60fWp4+Uxw9c1498Kh95eT14+tVnnl+fycvK+vTA19dn2mGeX7IP+qZsz43Xnw9ur8od4frdRzIrY09cUmXoK637k0Z2pZjFs90mP9kfiaCD/NsL+//fPqLIOP9/fCa2gqH4tREfeBeBS0luaZ1Dwq49KqEwo0heV3TVYCGoB1GaA2h1Eb8vfUTAlYNobUDug7pEkUqiDUNUKcUzctxxztFqHcP3crxR0HB/8/BJIS/VXbbMIsjKEfbtfgDKulbW9crT0xOPj4/UtALPLOtCXXbaoRxBc577XSn5pJOkFE5j5nVRKZVSlDECGA27UjPft2qtXqMMo6wFRiLlHE2K8fjhiSM0eJAdROhOTxuH65pSiuYiOU3cdLAUr1OH9dBk+lqhQ0meOh9DW6QQ92HSkJkuuf6/KWor5gTNy2m3Ev6lvbsGOOn0r3lqxLUSTtB3Vuk2nNPvzZ8DH28Qciy8d993ov4TXo4mYIKfiFBUByRx4WKHvLh9UUpyWlL23sIFx4uaWt/Qa41FKqd1mv+9pImyegEM/vOmOeabp70w3RSIBsEBcr/oGggx4XhxOi/g6KhOHlB8z/z98w1aUGSIwmBaWrq9VFhfRqFqQ99oRkEpmtH187WeTkIhuJz0G2t+YacCWyTGcfKG7/v3GVn9eqUUtCQGWRJKp9SLd/Y6KMYpLqG4WM/91RVLC5aqI//m05Rskz/vzileePgu5CSpTmJ4Qdw7BC/fM8aGi3CyOmXGJiXrQlL1ztDcnSLnzHTF1EDtnZLkRY6jqznsuRxtkuSsMEmZYmEf2lM8UcVfe5rOMH4HVDPWDRuO6loo51NJWPekOo2i3rR70aDMLDOwjDw8sH76Fet3v6F8+s7tBOviNBeNsWf2B9cfzPBMSCCRjIr4VGRSssySz91EGHGviMaOmCDoGbMd61d8009i/q1ZSNXFZKMQJ0WnWCNdHkmXDyArR74g6wcEYXl4YLmslLJibcdaw14eGbdXSvbCtmZIbed4fXEe4nqB6+LotA6W0ZzKonfScaC6McaKSSfR0ZqdOqLtLO5thPBVZ4Pdod/pzYsp0RnY7gdHSgXLBVLxBOFA3FAjj3mPBrKUSAzO9Oz8cdOd0scJJJiou/lPOgnukAAdlR7PVSHn7lQaq37QWTqneSP+mEWWX2qoDtoIAbB4bkFK3niIBWffoWbkzRAbEW9KMFygG9u2b7RvAUt+oKhb8o6dMXaG7phu/vwNPxhTcgGuq0IqSS6oRcojnZwXUqrxe+dWJ2iu7oJRFsrVbQRLruRS/V6o+//rpZM+Zop01iVTrk9O98hTj1IhL6zXJ6SsSF6c44sbGDxEdkIT96iu10QpV66l8vHDE/bT70g//cDx0w+MP/+J/X/47+HmXthyHKT9QMb0Hp/Pj9CzYEumPF7Zc/GmdVnZjoPjx5+o5UrblK85Ux6uIImvOrgXnK9/Xbl+/sTTb77hV7/9zO3nP/H1+Ee4d8b2wsuf/5HHbx447hubug/2Q0nUnEkBZLd+596MZbli6+pNVC4seAhYqZneD277zZ+rhwU3ZAg6yfZKWh6pS+XltnG73/j6+sIYjet15dPjFdNG2weXa6UuD0iqDHNgYnt+JafE48MF01dInesyWPKdZEI/dqhOcdqPgsgD6/rA9fLR/ct18Px10PsLfRxhL+zPgR/rGU2JLriDXO+R2L6DNVprmMWkO4KXlqWyXi7cXm++BkqlHxvtuCMlexNZCtenD7z2O/u+c/nwQM8Lm1WQlXp54ulS0JeVj7/9K3KtvGwHry83+j7QQ8kGHy4PPFNom7p95/ff8OG779CW2b52Sja0Z2S/00fn6IO9K/em3I/BfXfXGAfJHWk9++9/y8cvXVDePt5Th//nPuaPniW/0yWi5zfYBJY1+Z5nYOrgxtBG65ExYNPtZyBpUBehLlEXBFOgHbMWCnDRwd44b53m2vvUDwx0CLV6kV9y8clr77Tmu9NQB0iyme+lslNbp3UPTRtjgAa90Fx34kPV7i43w2jaOVoj58Syrqg1+jHOHBt4l2mT0hvTwpzdYRFkmE4A3VHpMTopXU5Wx3E0Dxe1wrSDSalgYpRaXM+AC7FTKRhGr4O2OxBoZnFPQpQbm6YO87CsuJ6X5QKBxo/R0TFoo7OUiqURlBsjFcAcqCV0hdikIwe4e66ft8WXgs4kIpTJn4fTnvVE/v9iDU7f/bOwF98zZ1DWHADI+bVxLeOayrQBFSi9N3IpLrIyJZkf4o5QT9vL2Z1ZbM6T1+5CCHCxQEqzuB7OST0fJnlXCI548+n8mSOSXd9z8s3eOqHZGc4xiOrsdGYAjpxNhn8v736GnUm0STLaQ/mQ/SHJ4oWHI7163phYQ4H+6XkdmJ0edhrtTK5bmdcCORdVtFvnTdeg1MyABWKjt+Ds5erTiNE7Vh1xakficnk4UQqRSioXig5HISXsOTUSd40Qm3TUsnPRiCRii4N/dIzNH4A8YqzvHGCTA1J3REG7TzXEVdgFxcp0CbBonnzNzPvqivwlFOByFrhJ3lx0Mo5oW3bOITHdcaDUmxGf4FWkVFJdsF6hF6RUD2eKqciwgdDdqtO88RpdkOwHann8RH74CJcHdLl4GBYeuCE6b2Jw2HVObxyBnw0uyTmCicyh7SyyJu+tW49pykGy9dwoY0V642vzoZ5ITnbfcsmu/cD5wFlXUrlAA+kg+eLUssuKloXy+BFrnpJarx9he2GtiRRNju23iPk+OETQyKcQ8ylRogUFLEJMygWtLnZsvYM2Ms097I+7u3MYSK5xrw+sb0El6u5lL1HcJwnxr1NtNHjqnrA8nC7WOl3DpScQmxEoDAa5+ETDWnNhoDQ8rdmLe0tAUpAZCFNgMayuJFvJUsniPFTVHpalIJgj8zIw6fThqFqO4t7vi4uqZHL3A7Q4t+fk+45oCqcpINAZneF/c78zZYyNEY2QN0Ohs4hrJlIYUqi1IfnCaAMdrrlBCiUPcvFxvZHOffQMssmFZGDiPHpJydew+WIrlijXJ2oxasnU9QFSjufGm3BJxYPd8uL/NkIjYkb1yEOqmYtuRfw+PQrL5YJ9+wlu35PuL+iPP1AfL3z9l/+S1x/+TMVltHJw7u8DoSXxtNlaaBSWy0dMFtdEbQfHn3/CeqKl7PSyD0+07caXly88/uY7XrVx/fQdn3/3G+pj5bW7k1M3RzZz6rx8+SPL9h3b6yvbSNS8AMKVgZZEx33Rt71xbI2cCpYXLLvxwr5tqA2ePjzSL4lju7EfG8m6mw4cjdaNdL3ysHykVHjKjt4f+87DZUVIHJFO+uHpA8vliaMb99Y4dqN1Zb0+cLleud1eOY47X7/8mWPf+PDN96QHIckRWg3jw4dHPjx943SNPkhSyak6mm1GbzvoTikVxaeSdDunUl2csoZ1hh5+r4ExOse+RyP5gVwruRaKVo59577vPD2s3O+J1uG33/+Gz3/zd/z5j/+KH/70rzG9QVlYrt9SLh/Q/EAqFy7ZtQqlrGy3r/jj79bCKfbYPhrH6KRa+M1vfw91pW8Cl8E+GuuaOJqfL4car125d2UbitSENedfz6lhSi5W/KcoOP//fvxlGzDmKWBOE1ZxRL2PQcmwVsFGAAH9rTYQgbo4XSUJ7N31E4YDf5k334o0zSiCrtOandQ/SfnNUtqZOAwNQ67k52G3FM5JrhXrQ6lJMJx+NYZ6oT4MkUzJCbXObdtPuk9KhX3fEUmUkimL2+NO2rUGEIMkSJNXHvVKdoBMArxN4oABw//ee+d28+bHrcb9nFUV1stKBl5e7gwzL+hNGN3PL78nBlICHLIz8HSo16MlRD5do2YFhI4tbuvtlKVEleJWoSYuTYyJh3dx+SzXmPWoEvWsnDWnnPXe/Psv/9cCcfepxpvuYzaN7/876nriJf7ia7Ff/tw4hjgDWoGyrqv/SxHWZaGsLriY6WRnsWYSfHHOgnn6t6ZYRBgh1nC3CQtO+xTeuoVjCiGgeRoZ7jUvk6UbC7n36YqTOA4fO6aUXDQ3LH6f+6uePH+8gJwFeDCeWEqmtRHjfZ8dtNbDYSSuoAmRK4YrsIPiEmP5lJxakiwsi8TvtIQ411XjI17322RjdqTzcHPenBcaYpBd/YMpPl6zaKbAx6l5kCvsWyeVsNg0j7pWqvMy+450H814AyQYhVQfMBJNE1mT81xjQmGjuZWmdKR3clFUXdxJqk5NMMWPQW/YVFsU+24hOa/TmWRnM4a7+PRh5BMVxYDsAWFZhJQXF/WZkscIpDEgEOvY8OJ7qCB58ZTDvkJb6ZpO2s0wo8dCE3PbT9UUfPWMLBf08kBblkgATuztoKtRFx/LjeY0h5TdQUBS0LRiyJNz8kYitt/Jl+bc3Jz7N+kbI5BsiU3FokkwlN58E0+4yEmYGhOiKSPoIJW+XEmfv2N9eEIUlnVhXR+QtJL6YPSDevlA6TtJD1LfqMnI2yt9XbH7K9t291Gw+WQntlW3yKwZuV5Yv/kGvX7gkIqgWH+lbzv9uJGaB9OIJPrRXEw8Dqzfsb5DZEqkuMdTWJ0Mllyg5AivcmrMuL2wdHXEXla6Nc8ZYLjYNdZCUkf3LLmrhof1VEoKKzUZiBsPYBTaaNSc0LUgeHHvNCJvIsYIvryfg1hyUavb33rj7w4+E+WP5zXP6aT5RLNc3JYu+RpvoyOyO2oafHtIoV0ZDL17SE+7M9oWTVHH1PeJnCuUxZvIMa9Tx0MBalAGM6bv6IUYObkDRPK8+rjufiDqBCIWvwcixlK8mCqpxiEjYaXr+5RpNKJhoJzxQ3jBk64zRlMYQjRt7q4m10fk87fQd9KvvmfNkGqmC/Q//MDSBktSck0cpozrwnh8pC0LPWfUCvbwmVu5UtXIZjwU+PrDH7i3HUnCa/HskqN95bt/9rf86te/4W9/+3vqUvl6+4nt5QcXdiejrpnHj1fWNYEdPD1cSM24374ySAzryHqhXJzi6BiDJ1/2tqPFixvnsic+ff7M6wsc+w0MbtuN1huXy+Lo/3ilaebh6ZGu5mm76jQyswRW+PzxiV//6lfcjoO93TERUnZry81euDx+YNgrgzs/ffmZh96olysZ4VIuPH74DCN73ob6mdGOHR1eBPXDKZapGNv2GnbAmaV8YN+HF5rJ6O3O/f4C9kLJro2S4vQHM6WF1iCZu/Cgi6fjlsLl+hhOHJm/+pu/45IzD9cnLtcnfvzxHykLlMu3fPv970jlkfvhe9zVlGN/ZVmUYoltGIc0ro8L2naaHTRR9j74/Ol77s1TjlM3xA72/ky+DI7XwfPR+Lof7MPo5pMlyROb8YpmihBn2feG9M2izE40HP5pNB8Ivc67Qkr+EmyEN5MB42iD55eGmnJZitNMugfiDZQsIZyMqv383uT+7s5OSGdiq+msH5yGK2HBK9lZFENxW9Yo8Pejh3h1sLcRk/D89gbUaZs5J0aYTQwzrGsk/C6IiAM2udLb4MuzO9Rc18sJpNXVQys1DfIg9jt1nnnQhSbq7IGV7uLjNpjOvLAxvN6RGdjmAYROU07uBiXZE537xn4cmHk68cvLLaxlhX1v9AH7zZsoSVBLioDDFB1SZgxjvV643zY/y3S4Vi2JU6sSbllsB6aQSiEhjMNfz2TUzzMO9eZFwg1yJiHPBTOB6jndmZz6lFI0JX/RJsobvyNahLfCPqg8RIEv9mY+Mpd2gPqEAhMDSl1KtIezeA8bzOh+U04kqZh1j4oOu8dZzMxnYwwfA0/fef/lKbhI0V0z3Wve+O0nRzy9LZA5gprUkPepXfPdpGgGME6KTyKdRfl7uyK/L3ETiN83P20+EnO3nPk19vZki3BaEJkwgrfl9/fN2cdfzwjhBefnW5vBX3KKMnS4o6RE90fCnWRMQMM6LtB1HT4ChkShOueexAgJtEpFqSDNbdPU45itrpAvSA7bQak0TW8d/vCAB8FH5m791iE3SAuSO5IVGR0ZMVlQpwB5YFE56UqOUMa1SAUXOrnSfooU52aZzIuQ2QDlKExUvNiAAToRQkXVUX1N1d+rFCxVd5iRSp/ikzSLekcttuF2mXVZSE8P1McrIwv7vpHyQk4ZmA/uicG/3X9/Z4CP52x+zpJTcebxETQyi3U1RsfaHrkFwTGX+RNDYR8NUW/u7NP7jqiSVR0hN29ELS+kSyavV0/h9WQULF3dxrQsUFdED0eE+4rqQeuNkQpWFmRVDncRDyRVHIVIlfz4gfTxE/njZ/LDJ6cMaGd/OchWYSyYHvTjCPR70twajIZZe3ut5pMdF8I7fSuZusVgP+jM8XXD2kGuFe0L7E61UnE6mAwXCWaL0JjUGLlTUiUlTycdKBIFoySwVLF0oEdF+4q2ysjeQmm85vMgDl5mSkKPADwbikqkfRbf7KdOyMYUyfv+KJYYI1HKnFZMjmOKn+trWyEmgTs2buhxpx03tG9eiKU3gwFVtz7zdFffByECWMIr5PTNFl+hKTsilooHyahFdgSEe09yx6QQrJF9T++K7y/2Bga8FUaRyWFe8JIKVp9QQl9injcicSZIBnRB5MGnN8sD469e0ecX5H5QZSH9+BPj+dknDCWhjw98+l/8Mx5+9zsOKfzwp2c0VbbrIy95YV0Sv/n4wOOy8/qHn7DeGUfHZJAeCutvvuebeuHX3/+W28sXxv4Tt+NO215IHCxVfPqZBs2auxCd54U/dzIOLyZyppZCWRbUXBToZ4ZSliVAiISkQq4LNoxjeJPztKwOVmSl1OSZFEBdKqN5+I6QWeuFLJWf/vwTr8cNy9C701zG4VSeXAvXx0f29oyZ669eXr5SOuTlCbs2rsuVVDOt3R1QiL0ySdAQhkIy+rExmrJtiuoLvbvZw4enFaEx2o0cdoNDOzYaOVdS9mYxZ3/P6+USYkW4PlzdMWW98OnDN1yun9DjYNiFun5DveykPBi2cLsryxXWyweGul5JhjBko+k99CYDlcG9bbBkXnXj+9/9NfnyIcCHhC6DMSpjbbzeX3lFuAG7GD3Ndf6XOPobSHJ+iEwR3y+/7l2B/2/7mEjo/Nr5098m8n5mZM5yAMx9/G+3wejeUJdMOKfgk1lCbJpAxCjVKMWfTZ9wQ5LQGE0OuUN9rvuJCs+Do1ygauYTi96OuGdh5GByAhXO9XewdN8HvTtYum0NTMPK3/3yUzaKBQtBB/fYI2qu8bPc7WbBz1w/FxK5GL3paVH5tte6ZiOdzZW75Xmo1Nt0f7I4BEi5sO07++4BZdOgoI/GfWs0V5pzHE4LNnMKsBcAGnaoyro6/QY1LAIzh4kzFeJ65hx1brh4MWtVtQhmdCMCC+j+PO95ux9+//7p9TSX5akFTen8WWqnFcrJBon+ISbTs/pwgEfgXQjbuzV6Tpj9rZVSnFecwrpMcsQqm4+IUiDLaYbixEH55i0v5w93qkwmFYmRxVsxP11k3ieTqU5emeP2FgJFR8kdRZtBSDlLFLa4e87A+cp9nNz2NEfS82mT981BitfpSN0U3Z4aAAvu+by38wZEk+OygbA0mtq5FCvBCF7/RHTne56UniiCdeoPQghrIDnEEDbdHsIecgy6dFLvXminoEQM8e49FU9crRfy4gIuB7ANSYVUH9Hy4EI8cb/xyZ9LNhzJzb7ZSPhrGyNs+oYnpqrCaOShpDFIw7nY1ncvkLOcPqy999hk3MLNtDgvWJxGk+Y1TG7xOZHvuaH5VfEHO6epnPd7M0RIZcVSZUhBg6c/yAzzzSVitPwBSAlbFtLDA1wvjCI0BugRj6S41/PAKU3m91KjwFfzh8dCpTXMBaMJL+50eDMzhcNuT6aONvTma0NzoLkZ0nym/P5OgY1PohTaHT0O9OiB5gcvv1ao7pKUi79DjcYoKrY3etcwVDq6G7sNjuGTFwTG8JRSOXlBQk8RyPPwCB8+kh8/IRSk7wx9oNmObSn0AYmM0lo/kXvVAxkHaIu9Ip0yIzELS8yOdMHCNs43puQUCApGRbQ4lUeM06JVG8yflhqWBlIWb2aH+SQtG1YTVgTLXtyPnOnrQquOVpMrns2a4vmXoF+EJoI5CjdQb16yptNhZ+5HZjERlNVpDRLe47FGJvdSxJE2CWBgjI7Q6G2j7a/044ZpI4m685V4uaDqTjrJQrNhbm5g5tMBEXPhuxCNB4HUdyzM3M5nKYSFFovMR/eOJHg6d0f0nd3wBPVGi6YzeLLF7QhtuaDi+QUWY/QC5Ow2n04riAC7S+L28Ve0T99h375QpSLrlb7+mQbwcCV/+szTv/sf8N2/9+9jl0cev+58uW+89sbt5YWdxLWao3APXmDbMIYI1JXWO0dZ+fm+8eXLz/z484+8Pv9I7XceFlguFdbEkTraD6w8Yrk6LbHUiZ8whrGshcu1slw+UOsDtQ224cnXdamn4UKpKw+Pn+j9zoMNaluDepa4Xh+pdXE6QKo8Pa1k2RCDh/XC6/MXfvrxB3QcbOOGVJA+sNZAPe2zD+it0feDUjNrddGy9sbx+oo9btTlAyaN28sPGLH3WuPYnhnNsymOSAJd1wfQRDs2jsPpZ+v6mVqUkkBHZzTPis3Z3VhKyU7Fydk5yObnzOVyRbV69ooZYonXrWFd6RSWyxPr5QnDzwTFM2uMTuvuutKPTts29vsrR0wS22ieIr0ufP7db/i7//A/otcHnw7lzDYO7pa47Ss/ozzb4I7SmRhcnMXTXON9of5vK9r/8mvef/k/8fmzWPvFv0dxFZ+eO0uOCZCZcbQoYLuwFEEnuiszQ8cL+mVxu9luSso+VfMpYwAm81m2N6DVQxOnaNTpPH0MrqtT+Vp3msxMdz8NTiLc0LKfQTBIOXEcbv1YUj73Afc8cZH51Djux0G+OCXHs3Iglbk/EpbmwlolchjeILNa3NQD8VrJAeDsydT14rUbs6bEJ5jmFNH9OEASdcmICcfROI7Bvvu1GSNubUwJEEhFqNWLdUQZ/ktdh1gdaNR+eK1YhFoKdS0sxYO+fK8MkWyKkKowMbA0K8lwLRvTHv1s8f5nLVanrfY0J3FgLP2ywGcm0FpoFp3yNZuBt9/0lwv2l4u5zKJYQjg1/8mpFo4Q2FB6c5cTcDFH792Tz5YSh47TabyQTTFmflOuv7fJ/MuPlN6oOWGHTCZ4Yqqx2DJD5kFsoG+C31ncz9c9f997G0qRN897jSKYqHUwcfRu0lrwaGcsnDBkXjONZDS/urFWo3OdGgH/Mw/OieTNa+4vzztUp+ymc0GYGklCQIuLUIZ0chks4t3nGJ6Gm7J74zZTch3vqDE45WX9gCwPWF3CFk+Q1k8E1u/rcE5suMFoDx6zCNIL5E7OF6w4EosFL7qs5KWBRlaBudvLUOfspebBTyVX53HqSiHS36LgTeaLeGonZE5TIgm3SHIOrPnobrSdXi6MsqJSUMt0y1ig+Sot0Es8KKJekKcH9Lq4Hd/YKL26SGtSd8a8iQKRcopANudt+s6qDI9XBiReN7EAgjNpejarQzsyAOskzZAziRoFn4ZY+G1kOYYi/cbx/DPbl1fY3fYzVZ845OuVerlQSnBQVOlsbhM5QiBqAxkH2u/QPHRq2E5vN8wa2O72oB169wZht0IjkevKsq7k68UnPtsgPzwwxgbbirWpNnYowUOgGmMcSDi/mLmA2y+L5xlMIb5Tv3CRtj+YEdCayb2Qjiladg60I1FedHsPMyjZGPsGI8EwUhG3d80GSw6B9OI5AEtFU/LsjOXB7TXTGuNTfzZ9muT8ff/f4Ey+JY5gpqGhcLvZWnwUTRZ398kuztfu4tx5bydIqMOD2FAv7sd+x8bhTlw5kWOvjNbAp1/RTM+C3egIHaz7gTEnO8R+Jb7WfW+L7AvmhMQPkRSNr+8P0Ti9S8Oc+11vxzvzASji+QxNNzTE8Elmk5MDDfd9ROJ3DCt0eaAtH+kfv8MujyzffCb/9juO/aCngj184Of1Izk98M13f82v/+Yjy/3G5dhIz1+43250SVyuj/z600f212e+vvyMWafdbtTPV/b7wY+3G7fXF/b9lfv9K0tpXNbCcimwZnpxhy1TQVKl1CvL+kiuFw5Tpy30KKxquINcV6y5SUOtlf2+YQL18khdL2xbYblcKEV4vT2z742cnhB59GIlF4RMkZV9u7Htrxg7uXT2/Zm2/0zunpCeTahJKBW2ZiRTRjvY7jvaDj58+EypF88hGDfQV/bt4LaD4hN27Qdjv8G4kxiej6KD1u64AHuguJhbeyEtlVqM+9Fph5JLOvc4n2oMjmNHysq+99MK8XbrrJcraoPtdqcduwdOipM2L09PtMMLyGWppCwc+ytHvC9tr2QOlqywJtb1wpeXG2m9ctPE3/zz/4z63e/46Wa8LELXxI+H8eW+8ZN1fsqwZTgi/CxFLIVBWDraPIjf1Ru+R0tYFP5Thf3/3Mf7UiWCUc8cBBHeofZ2UiWmVhEzWvfnqUagUU5uh5ljo9BNgw4iZMUnxGGxSdB0UwpdTQLFLS9zyqfWcTRvuof6Wp9ghAWMO+sgt8iEvY+TZnLcdojCuos3flKdljYtxt0kxM/3rkoqhZIESYViQk+d3roHbomf1ZY408CdmjJo4mFbOWVySZScvT5IPpkfvdObJzmPMTiGXwfJfoVbm2nmBJCkruEIXXGOULyUYFkzy+I2n60dTA+VMUZw9h2oU4brpDKkmpASLI5krgcwoaaCdmF7be/qOx/TGZyAMOf+/E+W3rGmwqDhtPT2+2QaZ4G96Rs1aD1OPf2LUZP9YrmfL+E9zayYRmfjdidknHYzi2SA3udoZBbuTmfIOQdqzYmci/jB5shkjv4mCjmzE1k/xanvDkP3rYlCOV69JMhI2DnG9zvG5p1wwOinK010uvNivPm/nljg/+Rim05hKG8HnkTkcwwKRcIKM6YOAc9yBiqYC/LeX9y5Obzx/OS8oarR8U1qiCiiTk9wtD+Ef/M9T+ed8+VPOoDTXjQ5EkpSpFyxfIX1iVQX7xQRSp6R8OpBSeb/7cWXxhCiMxSQhiSFxX+XiOsBfMw3MDvQNCknwbuPCYlIIfUFLRdyHWTz5sFbmeR6ifzLhehUKF8SEtcri4TgVCjLxcWA4xHZPziVpW3ocWf0V5J2FHOLMUmky0q6LHCpyJKdQjCaI+NLIrHGE3J2aHTzRsPmqo0pyxCNUyWsGNPMV5BfrDEzv45innpnoud684js4AKaRfKkeVJvu6H3r+xff2bcGktZSQ8PrEt2brpWTH1q4IXz7g4Mw20oXQtxoO0VO16x9krrN3p/RawjskUxlhHz9M3utTqHJHcqitHtSLM5WsmXK3YstP1GPzyAqY9O1+b6DBsBs7zf0AbJHF2ynjxdV2IKElBXs4GQ0JHfuO7Jp4W+4XYQxRIsqqQ2GB5I69S7ZFAUy4qsBZYLmqs36dmz7ZsaFzUkX8i1kKWeiIo3t17YYxbTDy+SFdejjHivqsPR+HngpXTu3yZueTbUUXeVCYK4G5WNhg4PrxqtAYO8CEmW2Be8ShmYi1hTPxtcB0oSvR+A6w1MSiB5OFQYQIWkJVy/nLKXRN5tc3LSwEY/GH2LhtA3qBn40oYny84phcewF8QjhRzAwUjD0CH01Hz/T075sxTUunTl8vgd9u0g6Z3EwWq/IR+NvcNhldf6QNoS6Q5Pl0x5+MTl+sg3Hz7yqR3obUPuO8sw0MyDVNJaWbc7SZX08oo8/4htX7g9F0x35zPnzEhBo1syLCuWF8rywLp8YL189Cni6FhOpPBbFyk+7RRPcp1iZVWhH97I5rqSh3urL5fFBaSHYj2R5YnrwwNCovfmfubjwMZgP1758vWP9P2VMb5y3F44toOkiVUKx/bK89c/cr/9yPb6zHHc0X3jWha3nT1eadtXpGS2kTlUsLCZ1bajxxb3x6cduaz0dtDaa9gXD1JqvN5+4tgzx37jfr+xLivXsvj+ryOKwoNt3ymWuN89HNGWlW3fQZTWd75+/dlbua5c1uIFUxRWrW+83r6QU/VC81COtnvzoTslK2Thdn/l5y8v/Pgy6PnK03e/51UrPzD4GWUfgz8fG89946s2jiKMJWFLJnXX44j6NOftNJdzB7JfuFu9AXz/1Mc/6aITPyeJN7IlEfz6idj7pNdpvcRU0s9ljQn8iPNbBLRI0O+c5iZDWVcv1E2N1j17wNkNTgXUaOgNBxlL9jNo1holV8wGR+guBKhLYahxNOetv12YAFEzqAltvHvfY1Az7idfVyRN7Y9vJaoediWA1BqJCAGyhhPNJLZqh9HmhDGGzMkbSEnZrWfr2541J+GtNQfIogZLOVFSQaTQu3EcGgCiJ7RbemOO5CJB/xFKNSR3DKOuuLOQQbsNn4yosSwLrgXuIfz16lCte1Vm5s9ZylFiJRi/NJUx06BWpnN69E+vsrdVan5Bz2p0TlnPax3vX4mjNT4f1TsC55p7W6z8svgHynZ4yliRipQUow49i9HpG5qjsG/N44NT8nGbhBChlsKk80x0WSSdNxybo+D5FmMh2Gx6YnQUiF/N2TUA8Z4mZeUMxbLhG3MwU086jk2O7ZvTT8pOXzC1KJDUn1jzYnMK/hLTs12iQYmGQSwO9NAYTN9r3iXRnmQpzimI4X62cTHDI95FsRq2Xem8c/EfUWgRSPZEtUfv/v2SSbi7Sse92TV3UlrQ3CL97UrXRC4PlOXiLi2mIAVJbuXGCMEz4sV/jtAN9WBkF4U1dBQkNfIoLgM1R2F79wTP0xTp5I/5YQmOLCYxRlR1yeRkEnvj5nfXTiqCRcPESduR5ALcnCtluZLsA6nfKXQO67R2MPZXtHW3sKog6Ur98IkcYVWSY7PUsFANdNh0akICvQz6ymQ5ii8Gt9zMhZLFaSpDgxcN3sVbbLjgupK5FN7a62Su9M9Szw0piTg/vyRKhpo9rrzOjSp462652BkBF5hMBNaLRx0HjN0LiO0ZvT/TtlfGfnOBbWp+8IgLXEW9KBuYexVvG7LcWZcLoHTzIJvWe4wnBYpw3PZILjwgrEcFD1qJd0S0d46whHhs5kg4n1Hp2gAXbOYo7oXgqdMZMrCkEyAhK9BcSyJJglbQIBvJpibDdSl29yRFSckRpuLrPuUam28K4CIE87F2CRqiB115ce+px4pk53vaGx/PN9kUDV8KJL0HSt8O97S3Dr3HPRqQ3Lf+dNbNLoQzEbeoQyApljIpuUC8x+HnxX2E8Dkxl54L0poLrFMlp0JKjh7H0Hg+nIzR6X33RGuJiazZ7F8ZbtrtX56Li/eSkq2R1KcxY/STBjlKodQFyZWSwVMbB3W58vThGwRltK8exFcEuvFUPcEUuVLKEz///IKmheXDA8doDIyaL2iBbo37fpCXRz5enqiXlWvbuL98IZEY+wup5HB7SkhRNBttuMuSjc5iUOoD6/rE5fLEenn0SY0qUjLNhMtS+fjNdzw8fua+H0g/Tq6zqdMWvj6/8uHpgfXywHHcOY6OauJyeeL23LnflVLErxlOcTn2Oz/88I88f/0j2/0Ll6Ik3djvz+wvdzKFVBf69sLLlx+5v/6EJH+mrA+ObSOXwpFeeX7+katAk0p3b8woIg+EA0HpfVDLhc/ffouUwk8//8i276cIftt2ZFkoNehgY3C0g2bQh5Fzw9KO9sHl0adO262j40C18fL8giSj9421XtiOG+v6QFncJvDh8YrYYNvuvO4vrMvFm5vtBe13amqIHpH8+8LrrfGPf3qmfP4rfuzGz9b5h9b4ce9sR+dr2ziS0S8LfQ/YvmanDx9BMUu/qGVOseGsA5h6rADR3n/EMc5pc2vvPh9fk+IvWYSSHAlO4tOAX9QlQZVzEwn/YUMnBSWdlsvDPGwup0SJn3vfBtsxqAVqCbSeABJl6lzUg8iyhWA/Jv9JAulvMTUJDUnxibA3B1H3JbfSVoWjOe2q5MpxdMyUtRRy9p97tE7KSk2+10maNEOjJSXnAGumzXB3HaHz6/3sn1MEVa9jrg+ZpVbqUj2Pw2Oe/XtjDfp1cr3AUgp7a5HfkUhVoDXatB9Org2QoBNJMnIOO9AqeCDnmz4yIBRSVqcsxaR0TutTTkHncQrxkIEmP6NGN9LjgvU5kZ22mgGCqGsgzvr2rVbnXd1+rlGLhtBLYTmbgveNwf9EZ+rF7KxIHWh/9w1vdX08AGKUbp5ypqKsxXlbSYRluXAcO6/3zV/s7PrI6Bj0NmJ841jn0IHURF2KC/N6Dw6UxGGUAt19EzFOO6CcEpREM78SeamBhoqjWyL06BwVC/TT0x+dDC3ntMAIT218TDQU2t68IE8W6Z+Z0Zxz5kIk/04NFCunSOo19zGXE88F7e6MYxaFu/hIReLAj+orOj8BdbvQlDx2uungUKNGtkBC3HsZQbsiRRja3CnEsm/gsnghU6Yi271fJWX31R+JfoBZJaeFnFZSXgOGraddlhQvEkUG2g76vpNMWGqlW3ujZ43dEagMIx3BGXdaSeOA5PxVugsbUzQ63khVzBK9NUwPxriQeqPUEYKigemK5uY/J6UQF/nq1GhoTJyaND+XcqUsDwxT7BFMKthCliuqha4PNBq2JpbrB+qnb10wWi6uaBrG0XbyYt7gpOY1WkrRrISAuTsCkiWR1MjZhanOexsU3lKOTQqSV8ZIQd+Y/Gj1QyDNWYUHtRUpEWzmU62h6uFOdYGHB9LngVybX+uUSVkpDGQ0R6nyQp92lbjOYeybN2t9g9sr4/WZfnvG9p2sA+uK5UyXxBBxoemSSLV6gm3bsOOO3gtHd/6l7cOt7IeFfafR2h2zA/QgWYuGXDxSfDahYiA9AqiSUwGmKGzuPjZcUCb+rI7YtOam5MBXOOZkp5WM2SCDI/jJm0BJwjiaI8pLJR0Gr0IaA9WdNnaWp2+wLHSBsj7FFKFjNGBze1B1rqmqe4CPcfihZeraliKoOTe6lgKWIkodoOCJ2c2nG8ed3l/Z789o2z2N+JwGCt0WhBUnlRckF3JekOzIuqUMJZykSidJw6xw9DcuqkFYylZIC7k8UpcrpCua3Bd/Ins5AdrRvmP9QPvriQoyp6f4RFA1nj9LaPYgnHI0UnLqV9t3b+SSa1bMlLIKvfmYPqWEFaN+fGStMNqjFx/qos/14QMfl2t4aA9aV173Oy1FGJEODsB6uH3khJXKw/XKuq68/tR4eb2TjzsiHVuUD99+ZEl/zf3Ln/iqB3ktwGC971wOQx6uoC5y7bLRhmG5UPMjy/pATwtNCr0UlrIi+87L168g3WGH1unHwc8/bnz77Tc8XR+53V4oKZNSYX1aMDO2sXF/fsbGxlKNP/35X/HDH/8lazXWPDwl+HhhHJ2aKoXM7csXbs8/UsUYtdB1ILlQLk/84cdnnlrn0ydluT2QlwuaV1JxoM163NOxOY1NjdY/8PDpe54+fAP5E8+vN7789DNtuyHZbWeFg5KfUe283F4c/NnvbuNs0PNC6r+CvJLXKzmtGBs+7S18erg6yr/Cl+cfeH35QinCf/of/4fs941j/xOjvdKtM9or2/4F1Q1boIrrntKxQxtohu2a+Rf9K3+0xA8dD14rxlaDRlETslywfCfVBakNXaaUUdzso3esDaZZhNfxwQI4i5+CBSrr/uMR2Gj+9Rko2YOoZNZScS6dNMqT92xnAea9QQqujhdXM49nFpY9BPnueKW07sBCymDDKCWxSmYfRm3wcKkkyXhsnOsCRdw+e4yGpfQW+mShDzGl6yCpBMLsupiptzJ1pxuN5FqxxDgUO9TZDxi5Rp0yBrlkLJlbdJpSIjl2b64Luq4Xtt11FZIKTbvTlMw94nNNZ3ptwrCmlLVyXVZSdhpnStUpst0CfBQGnmrsjMns6fWq1LqSV1hItNedpuOcsJni0/4OUhxIHMPP9yQJikNOjx/ddSxnnypl8ZBCbUo7ugMv4SaUa0Kbn0OlQs2JTKYdwrZ1+gF9F9qhHjrWfOIgId6dzoQpGC6OxscaFTtbzemK5A2Ir6+Ev3diuupNqv+8cxL1zpFvTnmJ+YMb2AwKKRxyUjltiEyEFt66KWUPuxiOaDPMCwaNCOWSYcTN6qBldg+++FuMhFOMsx1FNVpEAKcchb6E73gc8oqB8kZ3iEI6hahWT4pONOpx+L/Z1klQKJwZN8KPVCaXLDnNxWIkBt69QSD3J/w6pxhRm4S9jQSC5zxyOXldMCOng0uLo/7T3Ojk9OdyFq5evLigOa5cgPghfgmufQph67kQ1EIrEK/JggWoXlJaU7p4AZmKC1uHHiADKZnUC8lcTC3mo1fTjp2bmaP0KRwOkBnuM60rO3NG4bQawfQAKpLcJSmbb8KSEsdu6GjkclDrQ1hTBgc/CkDF6DJcaCr1XN+IW3WV/IFSqmcz5AVZriypMq4f2LadMSCvK/LwSL48IHlh2gsq4Rc80/HCOxj19aA9/J+nL7oaqm7rqtkDz9Rjv/zeDkczPDxlgA1HECymId6y4WnAEgm8oeqPdSMlk5aVdLmQesdKJUsK14McnENHgob4xjnM69th3sgmNaf5BFfT13mJh92jt1Oq7lNe/NAu1d2DRDt23GkpeWgOQt8P2v3Gsd2xdnhVGYLh0XfGvgcNLQVVzZ8LY1LN/M+YsehTUIy4mDtP2skbje1EHsSPZdeA+iY49IyKekPWEicv0lJQfwCTmyPXooyS6CVhqYKmEAkutL7RdWO0O7ROGoKNI1DKPbQM8UDnFesZTc4lFTaG2Ls9wbDRYHhz2PtBP+60/QXrB916PBsx4mVO/AaSPIiq1EG2QiKxHaB5J6fiQs26eJLycOQvWImM5BO8TiFXb0xqVVK2QOD8OnVR92YPBHa0/Szu53MpYRXn6yZjOmhH8+yB5I2umbK3HcUPsGW9AG9TxgkYlUt1oCiD9ksUW8Y4GppXhlSkhKYqu2jZm0E9qYcAy2Ul5UQtlbIsWHKrzm7G/dgoppTHB5blM91eAq3c0SSTgAvmNAlFud2eud9fkFRYHz+CKh+ePqLlwmszXm87j48fSKlSF2++RIQPT0+IDV5fnjm2nctSuV4e3Aq1LFzz6g5T+4375oDV6/1G741vv/uW+9cfud03GIPt3il54fvvv4NuvD7feH7d+PDhQl2UYze++f5X1MsjP/+P/ybcwbwKVHX/cx0NS+7a1ttGUkd2S6mU65Uvz688ff413//2r9E//MhxZEp9JEkjF2DcqPXK0J00nE6WxUi909vBMYQkHcoD6EdqekCPnb4fPD64DmC3wT7c4vHbz9/y6dNHjk3Z7p3Hh0+0bdD3jeP2go07ysHeO/djo9937vfG3mCzzk9j4990449SaPUBDRRULxnwCRI1wVKRvpKtgQy0DORuIDH1VZh5NCR3sXHrWEdKEShZEPPdOwWQkIBSnHJTs1DOjcT33Lc2IuofJr03GodAYlOwHHqIYeeHmaPmxB45BXwqTg+JsgBpjuQPG/R+UItxqYmlJlJY6+lEmkNraFEXiOQTmENSaCLfgih7Dze8ucfOanKYAxtmHGZIHizLGmBkwkGWMELoPom3WRPpwbF1jt5isumhfUTR6biunQVpKTleb2dZV8pywWyKt5UeegBl2lK7bkoVhnWO4ROCvXWvNUvUWkyLc6+ddIAVYzqipYm54oYZRx+eKq0u1PezVSZ2FLWlC8FrCIqTQE1ODS/VJwutCC0bpSZsgOogaUynhyHqzbI3GF4JEjTOSZN+O+9izclbPXt2pfbLv8u59uLctJgGBO31TUcllN77KZ4oZXH+l1l4luLFfhSR3v5NRwVDRni2RtcfqykKsRJC2fdC1slRsrMAz3lax/l82Gxu8BMtf7OWdBFiOn//SX3g7d/n107LJZki3BRd0iRHMRsBR/2Z3TYw4ucTP39SfPx6+GtTVfScAXpx7aMWO4t7ZhGCMGeGp4e9Knki5e+/Pi6jxaHpCb09+OIZ03w6YiDDOb2qJ0/XMwQ60jp9bNASaYG8GjnG9YZgIyFWSBSyZCzjD7MIKTVUlLf15+8rxWTDwsqMOFhkwn6SITuKIBkPlSI2HPEHoI9GGd03m7GSciHl4mK0NLvP2UzgRVHkHUzaQFli48ApV5qMvlZk3xnqSXZ1vSK50IbShwuBDYEBVS8nzxy1QKX879rHmciKKiMP3wSquni0eHHvHGa3bRzqNAAYp9BMwlMrgKFTzyHJ3aTSdFrC9Qg5L9R6YVgLznOmqcWBIkEJ8VZqqDeNpwuAZYzESJWeF0a5+GZvixdMpfr3p4zDECspXJQQYxx7aBVinbbGsb3Q9ztybNB3L8DGCFpGICVx/cA3ynmoJYLnGXoUOxEwL7Q4UQf/vMq7ZlK96c8l2sbgrk5gLAlkS6EPiWcmhOC+4R0Yd0oG24rTR9LVi+c001vjeeo7Y7tDc3tXrGPWsGnvCTDcx5/RyXlHWwNZgKClge8z1hn9oLWNduwc7YB+IIyYaAlFZk7IoDefcrjH+EC14H7MyohEZtHh7jqpvnFRT5afEwO6VMq5dyVq7EcWk01Vp205yts9vC7cjaZuSlI0huJBeJaGI1+SsDTO0Jk+OhbUBCCckzSEtn4ujDiNUvaQHYy3sJqhPs1ITs1T84rDguaYaz7PDNEI6So5Cp7OEGV9uoI8sVKoY0XvK9o2LBe076h1TIR6eUJrpYvTSPd2o7dBrRcuTw9s24385Quffv2ElMoxhLE3aoGHy4U+XCi9riu1fseyrtzvN45hbiSRsme9MFjWhctlISXh+flHjuNOG8KvPv2Kx8sDf78dvG4/8+PXjQ8fHvndP/vnLFL4+Ol7/s9/+IGvd0dzv/nV7/n3/+P/hMeP39Dlv+H56w/k9QNleQBxGlRYOdEiNV5S5ujKMKGkwpcvP/P08Seenr7h8eEKCPfbK6PfGe1G6wb54kJNfaFvr5h10jj8mZbC9vKFgxv7dqdtT2COIN9UyeXi00eDx6ePPFyvXNYLt/urr2n1ADBRP4NsP2jjhnKERsdo+KSCy4VeEkdJWC4s+co4zF10tKAjo/2AmpBLcQqeVmwcYMaiiaRCGwMrnq6DWaw3B5YGXick3ChhCmJLyu6HHpkmng5LzGW9CM9BtZhWuCcANeztjMbOKVlKyVHv5OCOmdFHnI+8FXR2FslOrzBzamNI0aKp8O3aacTidVdUe8LA9K2Gmc9+Cj6/H11Ta6hIuII5xThqpChoR1BM6sX5/Hly+tUi9ClCqoZP78w8ILKnHsW6v5661KidBjk5CEvQMXNywHjEm6qrC7WPZpQq2LZzdE8Md3HYTKsNCnaWcB4rvick6OJTCBHX2jCi9lK3+Sw16oM07YaJM9t/j/TQTmSJkC3fl92l0emoqQTl0kcDQdeDVIysfg5ba/6eLsK6JHrvHNbi0JsC47emUqbjwtxDZ5N4VvO//LDZ/L37nA+7U3zXX9aNc8gtlJwzy7J4YRiOCvOC9d5Pq6Mkybu8IPIncW7YDDtx+rSc3a28K8hLKSGWeHO2mQ2EqlJrjVeX3l5kjOv7LCpjYWIpxmtyXqA3BPB98f7OnSeoQTnPxiAaFPXLo1FEibwV2rOH0tlAnJ2T86fPqi0+633N/F4978LJzZvvLxaJjh4Jk3kKp5lJqF4zuUe4H5oa/OrMGNmFmj5vR4eGxsCR8qbDPdHTgYkX8EZBzejd/WnVlKRO50EKhB1hTgrJefmGL/CaCXSkMe2VnSrVmAKeySH2dLQpIk1R2BeU3bvh4saEdN8ciw2KXaJ1CD0ExGhvBLprSK5+jZwQ7KmVKUPYbPY4KHTfKeZCnBQbwth3eoypVBW6kvoVGRd0pOj4PVSD4OKP7mI46+7Vr2U4zzKyB86AiuC763D++3wKNVDahEFYJarEpCNnn5bMKREDciGtFx855gPr4/Qs1+y8ZkvFOdpmWPJRpFKdz5wLBmTx6HPNFTF3P0DA8i83Ek0FKd5QDVWOdmdsryGqNrIq/bi50Lfd6fvN3V4OFzxNOZmpYc0PKFE7pwYnvB7PjI5A4lM0M4GGWWRi+DNBUPdmoTgnR/4sqU3kSU40yHMi/DBXxO8fDWSjZ0GTODONGhHgibw0p9CMjWN/xvY7ufXTt9+LX3+fCsycBinefJGv4b4TDkgxFk0orb3S2kbvuxfH2qMpMXLY302+qk++QEeC0bHhU7ExhC4JTYkuKeh3M4wmnbkKp3i2PoBVf4Y1o+oHuknkhoyD3u70vsWaDi2RJFL4mMfddNQxmjXPPCkechSTl5QzJD8M30JrohkNk4VBgEDBVxXAshdPfdtorbkeC+g6KMn95pdloVbXbfXeXbznm+3pAFKWwuM3H1muhWwd7Tfk+MBaL4yXn9D9RtteMZR+vdCWK4/XlZQyRxdeby/cthfqZSHXR346BteHD1w/fufc2N58UlALJcPoiT4nxQhHd5edrsbl6o1qbzupJq7LysPTE/uxcXlofPzUKGvm03ff8/HTr/j5xz/y//7v/lu2fWN5+jW//vZ7Olde+sqlJH7913/DX//tX/Ht7/8Zn779Ff9uf+KPf/jXfPqwODqoDnR5geKToqWu1PXKGDgiqWCj8Q9//69B/sDf/O2/w69+9R0//5y5vSSe9402Mmn9iFhDrHO//4yMTm93SnIN0v3LwcgXf767T2cfLotPKO4vIIWHx8+spbK97mzPPg069p2Xrz+xvb6yFCP3zvZy47Z9wbJP/44+6LKyJ0EvC2NdSOuFtV6hZ59Oq2A1+Vk3Mr0k0lLd/NguaDLyMqhZkaY0G5h4A2KOSQZVlJNz7qCAPzcpObd9KYWchDEaM0vcGYIO5k0+tcakbmZNeH8VWrspljWLYKWJGiefyHevhVIJe28Lq8vBOZ0082msCXQ7+xO6DfbuOQo1CUtJ5zmvqtTswtreLILMHNhy0MGR6tb83DPcZGBy2uczvq6ZUYyyKqV6a9NbZwx7OzPlTZQP0A5XzmWcYpJLxin0DjoJ/l480V3Ohn2YsPfG88uNug6gQl5o487RhwfkiQNn06J8gj7CBIKdDqoojTkZeKNBdfUkYBNnUNR1cbvR0YOvP7WYbve7LIVlSZCUY3QqrgHMKVFKYVkW3xvbzcvTbD55lESNxGAzB0DEQNpAijHDy12DOjUJsz72823E+TXe1bKzdjo/LJgt745UB8beQG3/rpg+RD6BAcXRay+4pzhpBGUG3hI4z45vdpySyBB8J8hSXJwYKtHRO4o3CTM1NoU7BdElnyEU9oYCWXCvpvXU0DdxrqmC6NlsTDW7ng9ZjJBOEUgIYHKiq1va6ZgJotEAqJ2OHfPSpeQd90Thz5lNPPwzsEkgRj9yLvz5/iSEhH6QG6HeYXL4zkCrieCL4+PMX3duHl6Y2jiQkZDmATJZinedk4Nl5tZ7o+Fd2CtYR4qSV0W6C6ZzSagOsmQyzuVX9VRZk3gwg25BBDiYqfMaxdxJxxpJdjANXUUIPfFoaEeYswsA1XUSxvD7ZSN22YREgq2KueB0Uqamk0/yxZXMkU9H98O3O5L5KIW0rsjlgm03pxWZ+vg6CkiSBg8+msLRsNbCO3aElWfDNFD7cDfR1hg5g3pYTE8DNM9b7M/G8EAnX1MTHfGuf64ar5d8Iw4OEEP967IAw6/dEGUwPNJchLIu5OWCpYJGIWmq4SftglKR4t7VpSLakGUhH49kfKpmYhzaIVApNT0dn3zDbbTdkWYb3lBm8zRL0T2Ke/fht96Ch0iIzsF60JzOR0ROkerMCfDPCZaSo7wxehX1+zORDSycm0asAZ9pzlkTpu4RnTGSvXE6TWPciXhx79AOY/cZkMqKpMVDvYq4m48doDvWb9ixOYWmuxB26OGHRhKg+NQjF7RckHpF8uq2gzFNmana7dgY/e5ou/leFZfCOZLqnEuCijLDXiwltOfQfySQHNMMF/GazAnY1PbErFk8l8TGiukCemBjQSVyMEKizKSh4eBNkuzCPYFwC48Ruv87JgjlbU8Up4/lnGdvFYB8h+G2dhITCcnTwzmAC4sHICnZOZu+D+Oj61QSZSnndGBSKHL8vlIK+7FjanjgomLyQBYweySl70kfv2PdXtjvLxz312i0B5q9QSoi1GWhLpX2emO7P3MlIVX48uMfeH5+JtcH1ocrx+bNU1kW1suVWlbGGLQxuD4+0ZpbQH/89AlssB93eh+8vL7EuVlYL498971PFEiJp0+P/PFPX3jehIcP3yOXb3k+Ci1/5Jvf//v86U9/z3/0V/+c3/6zv+Pxm2+gXvn4q0S6PNEP97FPafif4eBDQqjlwuXyifXhA02F7eikXHi9vXDfO99//xseHj5wvT4AQhuNVFZKFtrurlraXSNkA3J1Z5IsiQ8fv+HhwyeOo/P69QslQR53uiqlXEk8ITpo2+ZAgw63x7XGZRWs7+z7nf3YXNSbO107t/1g+XSlm6P1KS9clgtWryz5AknpKXMoHKlhucDl6m41OWxz68KixlIPODp7zVjzsMV+jEgExSevY5JohCVVpmWWN+TD64x8VlLxb15/iNkJVBhzjwsLj6g15pn/vkzwc9sL/UlqELFzAu4uN1EMvzF44mz133d06EAzqMBIBhpnYAhWg/HmxfvwFyA4VdpOANXPc/EOxEvvOGtLKeQlCmY5/JlRfxHOcgid5Yn2O1o0VM8k8VyENXlSrG9L/jqFQaoOTIyY+I8xOF4Onl9eqZeVy+Uj0HndNo7hrAHrcd0ESik+4ZNELpPx4IYfKSXW1QW5rUWzcRbIce6qMbqbsIwRE5YU1qM5ux1nzUEh9ul+ThJAIj6pPByY0klz6m6ljQi5wIfPDxzbERPXRs1wfVxjrSV6H+xbpx0z5NWdf1pTRo+JAE4Ue/fK+UWBD+e+67q2WeJz1o0nzWeuYoMi4jd5djPzz/Q79g40xsE6eV9yft20kTwPdnMucgqnmxP0NiIVlJMvJnEw6uR1SQhGJ38MYfT9jO9Vw11cBGYi5iyqe/DRbBb2EuMpM1IIDpJkBl6cTCvDPty6zL9+vr90Ngxv1AP/qLFgdQxmyImq91QyuyjjrWO1uFaJ4Ku7ICqLR5x3M/eslzfO+fwZs8D3GOvmCF5KlPjfk8oSXepQRwTnWFGno0mGnC4wnHM2hlJSpSRFaiKNipQczj5zk/HVNEaM6/00dY6z9eDWB0KfnJdOIOSIW3CpZpKOkxM2egRDmJDLEg9Uc86z+SjRV1H3aY12UliQ5nPj9EAu36sSKhWKlwtJhZme6rYFgZREYExCQ4zd8cAkLxuHuZjRaWdOYdDpeKKOrGaUbs2LbAsOuIg3E8NpHSF1dJSeQKpn8yXBk5OM9Xi/gKbknv6S6JZoJE8VLRU1p9pIWA7O5vgUdKlCyaSakVKwcZBLpVxGXDdHLCR1ZFpw9uZIsQ5UnVbUjo1+OLKbzBuhvr/GNdoZvbnbDTnWYrhFxKStt84Unb1tRuaow9vWMPejE+06rSlnt2TiAXVmQTnwJim9O2xnYVlwSsIEHPwJVIgCSLv/XRFSuaLlii1XrGSMjvUN7Ttt+0p/fXGazrt7CYqJ053UgJxI9Yr1HfLqgnJJQEayh2aNfmDm9J4UEwcBnyioO1uIeYM2WovYdV8DbsWZ6QpKDuRbPFTQxJUeYcUqsVeYZEgrKV/QdmB5ZQqfSo2MCPPgu3m4+n7oazfnKXSOfdSGI2Yyy+/uTjTZjRJKriDhghFHioaYfoIu7uIRlJ95f2M6kwMZnCmLkMnVi/jWO/1occEkOMzZvacbNHWnDBFhXa88PD0hOaNDeX55QK6fWZ4OT18Vox13Xm/PKI60S1ZyWVF9Zbu/+nm0Nu77nWGF5fqRy8MTe+/oED5+8w3f/+Z3PF4u5FKoERZEnJe1OFWqVqdVHfeD1j2jotRKAvb7jbVmju3ObYff/+0/5/vf/YZ8/Qa1zNO3K//lf/W/5b/5f/zXyPIN5eE7Rnpgb8KH7/6ag8z9x2gsakHNRdGYUPKCWWZo4fL0Ldd64fjhT2A+oV5r5eXlmcvliWW9IvJA18ESdoZ9KOQrbQhdIUnh47e/5vHjZ5plHj/9CikL//Bv/pHX++GCwrKRioMTrb2Qkzt/7bF/1ApmG619IWmn6ebZNOFq8nC98PC58tIzY/fzOw+4DJ8MPahQZEGWTLeC5oX80CkfO9zvsG302yu676wKeb1Ba55HcDSsDY77ho4R636cjAHMJ3+TJTt1U2cxJG+UYNdliffEMYF6TwXOJSb8Ym+oPpAtM/RtApZSoiz+uUkJIbmZgtPz9HS1keS6F7eadn2NdWhmdHMqkybl4bpQckFVObrngpSSQnMgCK41GX24ztCyn8lmYaMpnEmwSc69wKcZ3kzPj5lzNPcb0gSF3NBhaDA3cmUWpLn48+D6ykLKid68sTMs8BDhGEq/39m2V243f0aHebZILU4XutbCpDWsy4qZ21q6baaeacoFFwfP48dD2YpPk452nkHppAMatfgzakR2T4CPbTi/nuTce9SQnOkjwNbu9Yh7/XvjQg4taBoIxrJmisS0qPt/pDrDOzNydAYj7JMhRep9dDK82UBNADvemOhbgf6Ovu5/5zx/Jc7Usq6rd3A5Ec5ugESnMzmeEn7y5gKwCFCYCa7DzBNMU0QfT4eIeXDPCxto4V8GqMxR0fRQ7324s03J1MsliujJsZezyXj/wKWUz4akB51idpw5ZY7eaO2IQ62AuV2Upwu+Q+Oj4ch1gTE5Z+r9ejzkPo5WllwRXNxksamKeDyCxWKVd5x7Cd59144ilJp81B3XKc3pBDENIHhiY5yhFTk7b15IHhsuCSmDkYpvBN0LN9LwFFkyNqbyO5xHcG6cC1ESxR5ACylH+ugIihHhiZ9S6PYn0uCceBnjfIAVb6ZSLoF4xr3CmysET7m0jqqj5OQoeqLAsKBFORI8zUkPF5LFesrZwEJ4LC4c9YZioVaC89wYTdHmHvuLRJOHkkZD2w5pp0c40NCGqXOr+353/rw1bOzeqC4Da4NhGUvpRIV8fXtEnp0QTKIPg6V7IqD5NVHM14C6UNZRWEdetVQfqUvxxOJhkNy2LoUYOqf4GaOTKJhAzZllqeQUG66t7uFtLjKT4Z7zCS9cW9sd/QKOtkf4lpGSYn1Hu0eRD+1k6Qw76H1zr/U+GIf793tKr3iASh/UJJzWXnP6RLhgBRBANJ8qgWaZT+W0eWpgrjmQET9ovcHGHaT8XJmM/eDFTkcq883TxO3SujI4KHOEzoG2O3rc0P3qLkHJnSPGsTGOO6m90va7F/ZYXAcLr/cQqefs0528YbkiefHpFBLFvdPdJPj3XuQHNcqiybKBDXcC88apORpjiR60IRMXg4ZGEHroN0RQ8SAcyTmErxk97lh5wHLjuG+M4WmLuRi5FJblEnvi20FnQTyOIdsp8p5ZbZO2mCnn2J2YgOZSkBE6KIjxdwu/eP857vL1tqcJYRqQneOc9a0RTBmO1tjbwThTrv1wFu303YOV9t11H9dS8TNrQa0w6NTLZ9LosA6uS6Im2LcXLH3h5fWZ49gokhDuJCkcbaePg4seXD98ph+bF+fHM224C1bTg3qp5CXjoVHw8HBhjMp23/jxxx9I0j0p2QxQaskuSCwFHcqyXFhrpT8e/Gf/xaMDSzENKuVCvST+5t+58t1v/5o27uS10hAP1pIr3/3m7zAp/PHf/AuaNsboZCtOvSgLj59+xYdvf0d9/MztGCzLI/24sS4L6+Lr9fX1KyKJZb3y4emj02K68uNPX7htystmPD0+0vvG7/7un3N5+sigMNICUnm8KS//n39JqYOn7I1vSgrSEDkYOji2Z7btlaUot9cfwe6IKFqV7//2d/ybf/h733vWlcvDB/bXzj/+D/+Sp7/+9yj1A9fygZ4vfLN+IHd3E5M19Bmm5DFIHxq6b4zbxth3t0Vcv7DfXujLBW2Nvu3YdaXdN8xcFL6J1w7OXZ+VfDjgeeftgv0ktBZJsZHzk7O70an7W4aTSqGUHHXAiBrB9/ac47xTOZkIqu7uZ8nFq16OKckkpqnFp4sn5dVd9RDPvukGoymLzOaksaxeQKcInmqHshSflm2bT3UkJXqYiMxaqx+eSZCz1xeuY3NjlCxvk3OQk37p79UBz2UJcxVzx8Baxc/14Ro7HR0LiraI0EandVxMH6YqRTwL4v7ayLmjmsOJTLnvu1+/nMMtUKh1gZTofdr5ugZrFvCzprw+LGdhm2s0MCaUXBjNAU2BAEhActD9RidnI5egEYW8z8zcPkn8fmyH1yVuNxysBHPRbxv+/AM+ucyeoJ5QpODBnc3v03Z/JqXKw2NhrJnWOj3OwKMr93ujLpXeYjIUE835McHs9E6sPKk777/GiIRa1fDpDapB750eCO9Mjo1j+0SICX5uqZGWJm8onU/iA7G0tyJ8bvjn7Ondi50hAvMgmwcYgRC9/x4LFx9Pc40xWPDQcvFYdCIoYmoGci3BmfvlSKM1F4aIvbO7IvjaqkHLIdBa/28dbs+ZmcFXgR5OH3x4R3GJ9+wEXuddpTdKwfyw2TREYTwLl/PnhbDQ+fcuZp5uLZi7oSD5bD5cYe9BXzk8YMleVBy90617sSuV0jplffQmMFUvVkqB0ejdUVk/9J2DaEEkLKkwNMUGVkCK003wYou5DALtdRGfkMPeysaI8NM5VIppDOocSAXE0X90OHe+ONfZUlA2QnmezKckdMW6ot3j62QYooonVjgv0eRgpDs6QihoLRxyhof89BDI6u4I4jCnwcQ4TuJQOClXxrn2BbdjM7o7rAA28ht/W714k+Te6wkYEq895TMpr0SRkHL2giplp9QUQXtC0nE2lCkJaHhApATqUyWVjg1ClOk0Jm1eZOYkjMPt9HRSuRje5IwG2umjMVpnxDWF5GFLTU+xdEoJ7N04V944fy4mm2t+QvfyC6qfc8nzifqe48dJWpzfaxbIh68XfyzF9w3z6aH2QFEE9AghdDdUbpR0xdYdPXbSUmLyoIy2c9ye6bvTzLwWd8Rmpi7O0Zv2wx2H6kKpV1xPItCj2YwGUiSKfPd+8L0yiv8+uu+j59QxCu2UHf3GfGIRtL63cDg/mCy7RZ5q98mVVoyF0RUpnUUzKS3oMkKXEk2DCqpuKSzqHF//34EMJYlTHnwtvQEyxtQoBTCgIeyTWTToSYkEwZNRCe6tMZOAJafgF7/fZ+N8YDr35KA5OvVuqFMom6oHZGV3I2HfObpBKtEQF9a6gA1KzZSUMKus18zQFfjKOJ5J9crl4YnWXl0vYwfQIhDnwDMuSjhebHz96Qf66JTlQoqmomafkP35T//Isb/wcHX6juRKrqv/DEks10uYX/hE9/HDJwaDrR20Dl2FkjKXp09YEp7/dENF+fDhA+2+04dwXa98/Oa3bK93bl//SC64gPbYeFo/8vGbX5PXR1oXSnnk6cm434z7682vk/o6HH2HZaFkn8JLzXz+5jvoz/z4w2NMj6/I+kR9+Og0TaukVPnVb/+G3/7NT/z8w79hvGw8XI2Hp8x6WSneRbG3V7btZ5d+jFfa8RUwlutHrp+f+Ny+5cuPP3IcneUC223n89NnfvPd78jf/RXj6VssXSkbjM3pcW3cMc0sqbIsAtIYo7CXRGuZkQ7qdZARtDb0OGipMtpOOafWElNbjWZ9Er/8CTwDkJLXIWVqk0ZYIYtzsafWzCdcgzHijDvNMGL7TFDFz3b/Hs9sGafwc675mBJoaATtXZ2AA5X+Kn1KPOk3XaANYxG3r3a9y5tIM4mw1OyDe3ziqUH9Ez9ezhrIi93jrEWGKq29vacWYXzTcTDnydYw1tWzRcRfLIadFs8j2EuTmsSse0PAK6IBkKlTny2xb92tb3Fq+BgKA4YIDcXEkXpPMLdwrXtjbcRvPPfMWXjkPA0KRtQoDvj63uUOdxZ7fi7Za+BZcwUbQoOtkMsC5lSlrhF4aWEWQ1C7c3JHppzp2sJyNTl9VtUp0kUR6Ti7rHDlcq7I1pVSCdqPU3e8dk5RG8tbc3LSxOb7h+m24xHOUKZIxwvBWOw507u+Y/EQ4ybnbgqZEoitI5+GiUcpJ7xw6eE48pdm/HMs9It00jmSj/EtQWEY4T4zH4AAweINt3cPRBR5af6bn2nTO1Uh7Pom3SgeKHXqDRZjuvj3iWp7setUBCwWk3ouQEqJ8c7ObwqJ/f0EnzVN+7o4tMU5V7PYUZt+3mGLqRpil2h6ZgJCUJ/MDBvqCYxGIOx+zVME2CAZI5PLEu5HJQRxUQQniQ0KSnKP5qHmItxo0iQ7t3+cOgaNpzakdyaBZpXTfjOxIhGSAU4xcFajX25vEmOUmfyBE5nah0h1xaMmhB6uKoa7knSSNpI2ZATyXUqIGZNTj7Qz2oH1DkMpQa1yxX8PZDtQdnFHFUkunukhioHh/PJ+BCLTQg/hVK7BbLicY23xcItGcYIX2O40sPvaESDQX0kFIoxI0kIpvgnbdARKEv7ZmVwXX1fR5KYgb56UO2pMLGYjyFkMM9dyoDbuBDRiDOwOS6LDr3Z8PscocvSBHluskWmF5o0dc8LVlaweleQIujiVK9aX8wDDKpe3wy/NAl+c5+nPr8YI2fUBXvNLFIEw04rNvPXzkbr/rokcT6RFdGoeFDkGFomYJgdH2qhlY12e3L43ilwbHgIzAq13R6U3+9uUJ1HOGx9NgcCf2ofMzJ5wzUBweQmdRnMNSEoFqxkrNbj1PtlTC6/miFn34l7dzjGmEydaU/K7xjIO/7zT26uP4PNAzYW3KVefVsUI3w//SLMWoZud0ybBBYbu0hc8e7/gZyNiqtAjeVgm8mfvhHZ2nh0S3+9J4+/1R3OP59wPhUIyN3GaYsTTQU3dnjZlo6bsRgbdQ5m07Uga5OLuNbVMTYsLjSddaX1IKMbzccPEXbRyVmAJYbCFE5XQ24GOnWzDUcrjxu0VLnzE9sTPP/7J10vbGfsG4+D+fMdG4/L4gXK5YOqTBgecOK9DTt6crHnlos7HVXUQKZeFFALtWleOQ9GuHLtyWZ/47te/dxBx3LF2J5WDD9/8iscP33Fo5tjci7vUlcvl0T39b3d6O9i3uxcncT6MNiAVPj49schv+eEP/4Lt9pXLujBIHEPoUrC00E1YHj7w69/+ni8//ciyfmK9CpeHb1ivT2hXtv3Gy8tPHPuL7w/7jfvrM8tSee5f2XrnuG+Yupf4Tz/+zI8/vPL993/LX//69+SPv6XXJ7ZDMBlso7MfUEYCzVQRysApnhSU6sBZEqQo6ZrQ0hlpI1umS0EGjNawYizFn2sdYWH8bj+Za3YEM6CUaG4hhJT5FHN7f2BxNhtvKeVeO3TC8jvnAEPDFMC8WJO5r836hwhA8pE2lnAvu3Pf9tc3y1dJQi2JWjO1RsMTYEKOfTInzwUxhR6gp9NYvGAtOV5temtxwAt4B0kSrbWwzlRnBqS558wA0e4FZrAc5vsxM1TEc2LgnG5jUHJmyW97l7MgXB/RDsWo5FQZ2hhtxBTX6D2aKVVaH8FgCM3dBIMImlOWU5A/gr4nIuc0cLJDJu1o5pt4SRP0ntAjzntbgv0xa2QbTv+2EXUjHm5GnEGS/QzvQ0GdbeHUShATp5dnb3ByHiwlU0PnSnI96MPDwn1Xjh3ud+V+H2/nrwjkCAGN936C5WJMV0cLiLS05v63o6f4h18W5M6JF0hh7N+do+wPTA9QK4pGs0hv81GOvrvI82fNFzQPnPn5twcuRXE/i+Io/NGTcz8iJWwewLO7TKlwHMf5+yZKBNBam6dK0FGioA++vOEIuL+EGC/H6yPemyIh/PIi1+tvo5YIKVCb2lL/Xer8PYnfO63z/IF3f/oUvHCJqsX9jFMUGnMzUU80lECFVUA9Hj1JibPY0ftluZBLJZeVWq8syyOlXoKbb84dU49MJmVScXGglEJZMtoLZpVxhLBapsjZ/XRzrqgsjNgUcq6UUt2L+3T0SFAKmouj10MZRyenSi4CZE/cIxosiy4lGjKRsMJUA3OrRKelHEwqC6MwQ7B0FvfD01PNvKAaNujxR80FjSIGY/cHRAS17r9fDKwzxj3cb3rYWwrWj6CnueBVsBCJR6esgnOmg3pmro6XcCVQkguB8wKyQKrkZJhlTIqPbPPUXCQIrYYHmUQRi57TE5Lz9zy4xN+rmHPU35ye/P2odvI4omnx96XH5n7n/aAfx1nctnbQ20HBi/XJHfW9ykizP1KfkIzu+0Au5dTMzGLRInhjanCcWhPBVDLhefz+qmJDYwIYz5zXaV4ghdLMJ5Hm1IaBU/dqPqcCZj5lYRiaDEpkONDZ9BW4cH34SCqZY99pez8nbz6MfNdAq3thjxi1W4xIWQ1pPiVIufukS4rvReYovVo7HZ8IJ6vGQd99IlPWi4MXZiF59ftHNIjIdKJ52zsNSJqwEYgXvk8YL05jE08L17Gw7wlLQuk7dbkw/f/yUllqmBPgnvFT3N9OO2DmRjy7L+Is9WZ2dM7cgvOcCCTUEoHTh8At7Pji/3Te9onci/N1Uy7k+pZPMumeqkauCyXokdYbUvNbo6EDbMeG0QMcMBJWLr43LCtrzUDn9prY70GvqCtBUmaMSqoX1uWBnO7s+zNjbIyRGaa0cbAfe9QpA1FF20EyxVlgnf3mB/nlstI1cXQvjJDEUgu1Vrp2Ru9eOIjvF9rxxHeDj08fHFkFHi5X2tbcajNlrtcP5O9/T9tfkHGQs7AsK3sX2jBEM9p8+v748JGaF4Sf6K25zW1KjL3AsvqzoYPLuvL4zTd8/vgNP7WDz58/MO09d/M07d6hSOE3v/4tS0ospXO0F9ZlRZKwta/srZNL5kN9RMbGcTT2285aFsyU15+/QB8sUrCt83y7oS3z+1//nu8+fkvLFzoLjM7elLYdjKOxlAiP642juw1v70azRE8FTWDJHV5Uup+PVGraKVJC6CscLe6ZekDVbLbm+j7BTziBCacWOy3QbYcdeFCdhX00/1G3DJv215w2sa668mZ1WSe9x9HuKUzXPoJxEBRDfQ+nEhaz/swUEWrJXC4LZRFKcevyRHfxaSoOzPQIUMwVS/47VftbU+PlDcsSzULxdc0shs/CNYWgPXRW2pFklEUwG4g6hbirh5WmnFwnwDtwSX1/KTjol8T3bt+aC01anBfJnd5w7rm0gWhmiF/HrhqUbQmgJGrEoPc5gGknpXACvqbQWj9pRe8/VB1AlAxlcVF/qcmBp2jKh46zzkQSKjAYb3RQk3jWvM4jucORtU4tmUSApRJ0YhJ9cTF1LUKtRsk+6UU0XIcKqWSWJTPGzr7P1+B8Bub9HVFIztGI+d8dIHPr6LJtO9eH6sWvJCS5h64riye9ItN1ONrzbsNHJm8zRWEWB+Q4yIHAvHW7bzaY7z/eHGH8Np/AkfgFnV/j6N8bX/+9Swy80W+cqpBjgb39bn9Yoniwt+5ZNdDJWPSzU3PBDEG7+KU+4Pzdwf0vOZ1+sHYak8YmkXk3TnFucrdBrWETNxsdwf1c1Xl0xtvvGWOE/WZw4fQNuZ8+uYijdctyDa7WSi2PUdx7KtywztEHpRgMIaXFm4DlyrJcWdbESAdCpWXvgId2XKOTqGVxl526RDpx8kYiV0p2bpyJo/VD5mHuvL46kchhHHvD9EapRi7LKTz1Z8r1AiKzuCeQkB4PaPZRf3ZrSEmJLI6Zqw3nUmunjwPFffgHbi0G+HUcPrJlNrPiBbuF17n7Aocl4hDnRodY2aYwKDhv/kPci/gUFiei+Mp+PRRyXjxsKQ1SUKSSHHTJ5OyceiAQ7+zQSw1+e6yPSYk8y3d7p7EIpNgLUZ8IjbDq5H53i8Dheoe2b4zwYEfDLUh905q5C8M8CGmoOxKMrpSgXM3nx4ZbsU7aSC6zGvdNVsTO51Mmx3MW6DYtydL5rM7xtVtjptMUYBI35kHshbZTPMjq0yNzAVSeILLEtA4lRR7EzV55vj5zVWXrG9t2cByN1pyKyIhme2jwVr1BP/02Ek7XiTTibH6gzP1BYkIi1n0SZeM87E3V036n2K4usS1HqmaOEba9NTeSEjmoKoade+iM1sklo9ZJMshJyVTMNoZWti2RZ67E4kLYXASzcJwKgMEmzca86AtwLaaRFgJbOfcub9be0PpJRUzJ3SqCZfcO1CGmNBPycIDDUUu/95JLoIpvHzO06UQIEW/SVdHkk2KzDgO6NcwySEXJLJIpyxXLmf3+lf148dyNIjGNdCO/9fKI5Cu5PnJ9/MT99mdUX5Epqs6FWoOa0X2Kl5KnfJs2Us7U4OiinX5sHjwVqFqp9U3ToEZrO70d9CYkWShlPd3kLuuCRIjgWlbKJXHbd/bNw9WQhFIpS3Xqgin71r3AcYd3RvPnx9O2/awc7aALbEAdAyU7R3g00io8Xlfk82e+/+5TeL0LlUQzT6HfzbhI4jff/4ahgz/98Edebgc6NrZtYz8a18dHrtn4+U83Xr7euL9snuZJuCaZcd/uTjNoRk0Lj49PXnz1g7Q8UCi8ji3qjkwqMYku5dzn9Dg8cX74FDXjVMOUExTxBPBUqblwpMJpO2lgtnsDHGvc9LSueEPhY4OZRa6fZ/56HAwyd3MhBK+jBzXWsz9K2BszsYmwxNSoJZiOOebg0OnPPiltKay3YwI4aRa+gzgtpQ8hN87zdzr6pIzvI8nOUCVTebfPSghmhVzhcsmsS4rAuxZbTwpA9E0z4wj+fKh9YO7NyHir95hnKeHeYyddNYm4Yw8jBthvtZcglFzZt0EbnVzc+e04Dm+k4r1PDcLMEZjnyWksoMYQJZtEHejueqOpc/UVkjgY88YEcZviUhJ1qa4rSm6Q4ftWiprFMY62t3PqOMTBLlNj73fXEeXEuqyUUuktQ7egGeaoOb32uFwLJUlMiRJJ3rKYzAbLWhkmDpbazc/woBy7U5DvsUXeUYiIfTbKI3//UMzU+dJYILPBzwwUuc/FmHxsMfAFjdh5KEyP+BQ0hLfH5u0wngX5LPDfh1z5GCWfD4IODbMW8zHK5HoPzmLPziLHi4bp+jAPkfmGT8vJMQuMODyGvjn0EPx1a/HA6Fty7sTh0/Rgj8IG59D6z5mUJomuRM/vGz0cP5IjWEMdTa3Lxe1DCRV9bAZTFDzHKxCC5eD/yzAsDXLwyFXxQzCKRIvbn8sjpTyQlgckR44AjVyNhUpq3gCkXCl1IRffJDWEcZgH28hEJWoCKUheSOUK1TmoECjzslKXxV091IvL05N3GHpy980nJLliozlnOZpDL2wHJC/ILJD7LEKPAC4kIZpBC6Ixvg9Hg5mSqgKawi1J3KBSYwOaRbxOtbmMs+u2cMohQotGP94AZpvF/fTDD4QgKBk+aiwgEs+JBnLvHD0rA5NGKrE2JCERVkSrSA53HyxEigJ9oOoixKS+YQmg3S0LRzvoxx62n86vRYILyKC3A2s7ur3CsWORpHnsGwkXT7udrVOX5qa7H41+dL//0Zi6CDQOHn/i/P2Z0Pp043nfsAaiQKQ34s+tb3Z2FrkiPsJ8c+Fy8Zk7ZCXefO04D1je/ubX3tKJjDlqVXzjw4NdRA1h0Lc7zz/96HS4bJ7Eu3daG14YnRtWOHPZ3AG8+cySTlSfsBk1Gz76VQv73kHIy4Gwu4y9yOlsg56ae4oTh6SIT+LMQN0AIJUSqF1YBIu5jh2fqEw3nZQErKNjh/YCqThdyrwJ6KKIrG5LJ87HPSPRVTmOg9HHufc4l9POfdDmfQthl1PQoMXU1l02AqsX8RFI0BIwOfew3ifBIDjF6s+yqUWQ3bQjDipZzj45Qs/iJdlg1yMQNaeWEfSgod5MtgGWE0Pgvr/w0w//wP31C2s1D9qxJd5f5nL9wLAFtcyxD/bdpxJFEntvCJnLVbyJ6ge97WSJxj4Zap2cC3WpqDZuL18ge4OR60ItwmjGPjwzRHtDe2M0g5K9KAhhs1O7wlXFy2If+ZPp4pSdnBKt7+zdOb5mnd48n2GtK1Lg2A5eXp7Z953LUqKQHbRjI+VMqYtPM4/GvQ9PQf30yNPjld52ai2Umtm3zc/M4qDMUlbux6AdhVuEYlnfsTF4eLqwMNjvG/t9Qzvs9z3Al44N9b+nyt4Guj6yrFdyvZDHgpCx0dmPLUTHoAnquvJwubgd6n7w+nrj0C9sTem0cOWbE/owmKiAKqkqde1cMG8e653b7YtP/exNs8M7QHD07vaIuTpl7rRQhDN0MHlB6qj1eEPEzUXrOUdxGGd4SkI/Zh5MnKXDUfpJwT3BywBNk/ju8TaFjZ8/lNv9wPPmKj5G7awlPNbNxcBtKK0dHF3OqXQtmfVSqFnI2ViqUKuLgHNknqjC6+sWjlcTbIJcKiKZ1rfTy38mWiNvJimpVp92moaPfwqtWJTyInGdBkNhb8ON7WLvGN3FuiDhMNTP35FzjsA/osZ5B36qIvkNAnLku3LQzmmhEluT+FleS6Zko9Z0GlJ4AJm/FslvzYOQoPr+7NMdZYjXjLUuIW51625nnDRKrhGQ5fuTAz9Qi59NXjZ4reI1UdRJeTCDyLZjc9WWCGQhBVtkIvYym5zka4tk3kDh4WAllULrxuVyJWff+FzwN8jJaP3OsOYbVlloh8epa/BVr5fVb1r4wkuZSOrklBE+o14o1Or2Wb33cwRba2U0R85iqOMq6Ymgk08rwd47OjwRrY8WXDOJBzBTV7dHy9GNH4cLD2vxB3KKW3MUUsfRHWmZTYG6qp3Zbccsyw/u5EhYcbSt60CyJ+QlEUY3cnZETXCEr9bi7awoKZINB2DNR1RTJJmS/0zftGNE6FMi30xypWEkGSQarb9SZXFUTQMpZqGsV1JdMRZSvdBTcXePlOi9oKU6f7M6BzEvCTP3hPfwp/TWuaaCHN2DQfKCpUfG8ol8uTrHv17cVSg7RcZK8pQ7M0pvtLZz7DfA3XGcohSpuseBjCuaaiAkTmNIxUWwPZx8VI1m5iPIoP2klElW/ASQ2VimoCkIlrx5cJRzIOmgpI4Mt8AkiddJOou34OWPwzm9vaH9QHsPNHsKn0YIHUKYO6agxik0KRUUfAPEQColry7G6Xdfv7qTuKDJD3xpzr3rm9MskgjWfKQoEFzAsN5LEmJPT8889s1tKlG3jMXHcWbK0MMdJG43ar/R769uCzeax84noW93jvD3F5xSN3qn3ffzOezHgYAXo2ENZk05mpLMC9GlFH8ueyNZ9UdmuB5gbmZO13D6zbTJtTi13o9y/aAtJ195ijqHOU2mhBuTTZioJ4dSABtCzwZVHY0zxUZDDsXyjpSddhu8siFL9SRnFUxLFG7p3AMcq3MqIDGu790gRyq3eCKB+9HnmPr5xqrRFPjbi4YG51fb6OS5lsKIJ0WvkkXoA5SCjeriWVdRhvanBNKbvbnSxDjMUUtTRHcYP0PaYHlA8yu0B2z9QFquSL74z45pXEqJmisqGY3ALb8mw+03DyPlR4Y0ynIh54sDKyJk8eeLOVG0mCSaYbYjJC7ZnXp0HBy9YSPG9NkDq3LKse6c8ocUPBrHi5siKWhLww+wkrFeGUnQKgzxKd0Yjl7m5Bt1H568etxeuL/8TD821nwhlwspVYqbjLMP5ThenXP9+iMiw4XSpmQR6nJByOiApV5Q3bltjqZJhkUEfX0l3V8pS3EtQvGmpJQLmW8o5UrTFPuWcamFJSe6Cr0fbn2qja6bN+Pq9CYCMEpJqCmooKVS6oowuL9+dSu98cpPf/4DT9cLn7/51vcMO8gynF8P2KRzZEPH5s+hqvvn606tiVK88RTr9P0ljAiE/T5Il0cKC6NDMaG9fmG0n8j2Sn/+CeQDXc3D4HonpUHrDbGC5cSx3VGU/dj4siv/7j//L/jm93/Ly3FlvXzL/ebP/8NFKNk1EJf1ynp5IOUl6BeJ66VyrML9ZXBZErnA7fWZmt3muvXGw9MDWhOUhGXQ6eRmyqM9cewbx9iZVLehgz4nZmXBJOhqkgM4cYDCzMGlHNDiGBq2uS7ITN6XniwBnRojfcsBSYE261CfnoQ5RsJ1I6ZG64OUfE84tyP1cKutCzKMveMTk0viulZUhX1zUGHWPWQv+GtyW8zE4FLhw+OVnOHQzdv2XCll8WdtKGPJ3HdPdU/F0+vdNMN1eq4P9MZm9Dnq8BfaDk+BH8Ntr3Py+yA1oTlzG2HEIEtQeDLDetBuDFMi2FOQ7OeLO4f55Gs/etCvZ0M83N2oZp9KJnc7WpdCKa4rWlbYN4Ki48m0y1Kp1UA6lv2MTSm0MUAN/n2KItpseHE/jGM0sgi5FhqNWhxIWdcLJSd34boksmhMTPSsL0VCe6VRW07t1VDWWjwPAAchnl9eoQyuT4Xnm5+lbQykCPROCaciCZF0zolSY2IxlFqEcnoS50Ipqwt8klMa9+MW1BKhtwH2zv0iePce3OGfc8sp5w+XQMnfc+3f//f8e47RR542kAIlF0rKtLDt8hXOO4Q0anFzgcrk8hi8/S7efr8/IHp26QR3DouyQt5ReMwQHWR7C1yZICHRwWu4CM3f1Ub3Qlh8ijB9vKc4rA/nT7pYI6hGgygCJFAb/xVT0OOLKvjupvTenBqTMthAh6f3lrr4NTDnhHXLJM2kuiD1Eqj84ofnGJQomjyVz7isK8v1QllXRIKGoQRytOBJlwnEU1KtVKgrJVdKvZCX1cV/qSDRHHiCbfCte0fyQHPwY9WRwtETI22IOK3HkmHiSbFvlKtAV0g067G1ehHtYp93NoHu8eWoNxYC51gF8Z5teBiYxgR2UgZ0NPqxYxFIpaOff4gHUSRoW9q96NceIu2gSElGJcabMWZ1f/aCiG96BG1mdMGkgtRo6lqsO0+t03C7EXDXkOJN2XSNEfPivu+7TxfURX4pbCZRRbUxWqNtN6zfOLZbcOrdUi8lopme66ufidTuJ+/P9ug9npHgTyfBMsggqE3CCNFTEomEUjcnyvmtYAeddSDpRHTn4fWGjk3xWsD0TM2B4KIjM3d9eUO73k3XZiR7jtPanFpCGoGobN4gJbBeOfrA2hFWaY7QZxzpny2H508Et3aECCu/rR2bfPOzuH/7mCNTUwLljz+qvrZmBxeLdK51wjvb1AEA4Z3D0Fkk+Fh2XgN3zOiB1PrvsOKTvUQhk5GSvKFIQYkR96Uukj3+AD0t53KgoaYTwewkefeMx6vV+X7Ur1+yoEf9f9n6lx/LsuzME/ut/Tj3mpl7RGQymcxiklVkFasLJZTQEKAWBGjQE9VI6ALUUEMD/cU90KRHAoSu7q4nyXxEuLuZ3XvOfiwNvrXPtWDJCWdkeJib3Xvufqz1re/hmSMMB8YMC7sxYrrjlKyzW/S2QDNB/37qrlgHPaDz9nq5KsGWA58HfU4mcqjxuJfm0Fre768yLEiJul24Xi9x1xn7vrO/v3E/lK4qvmtW8WJGtswlCkxHAM4WBgF727X/fISV3UHZpEm7XC9Md/a9M37sPD19x3b5hLvR56DmrDyL3nQul0Tvd8aQPeeIkLiEjBdyNp11OUT3KLcj+eT924+8ffsD3378O+ZtYytDQuo4yzxVwnFRNCYb517EBjnrfHl/f+f58wuWE8dx42iNPhNQGN643fVMC1e+/+GF/X7ld//5nf3199zffuL9x99hY/D65SeO+y1cfYz77eD56YkefvP3YbzfJ7/+899Sry9s+YU+N00bLXHZSnjyZyxdsAC6RK1w3t5u3O87tQjU2orsSduxY2OSzRltZzbDs52OaivtvpSq88w6w4PvTgRO8ZgcpmgmctBxlgnHWoruH86HcC9ZO3hlR6ic0H/Izolum/H4GstkoLemMyQbW+jt1gGynMCYKFNCIO/5mnrrlORs2alBAZMGJ52T1WVxnsP2uBSDIQ91hevpf88wQSEmBsfRGRO286gu52sbXVO9HALiOT3SfgdMC/MTC4txkGOH9mlKD8HscDVey4bcUliVz7ij3GjrfsmZMQc+CFqOh95T1Ll1CA8fJFeBLqG+Xot+E42Kc7lKUyDwWYYwY6q5ys45gVliVyX66vto8jwCtCTEvlCrHB7zh/vABbzjLvrOcnj0tO4o1YQ56bXsx43usjzdri/s85WjRThbCIrzBjXA1GQe9D+ZMdQtq2H/eBmtcfrJbDn/gwqTB2d+HcQpRD+iInh87VZqXNqTf/j9Fzd9/feF4Jf0GMnCuvA/iPRWT7CEh/6gsvycfx/F+j/4+zOcNHTBfrw4fv7rvKTdT548rAszkMT5sF36yOtfGoMVtJVz4jgaLFQ8nafA4/WYnGrmcMjiKC4axCTG+ZolsewwfUiMyzQsyWHHkhA9PRul2GIVSxu5XuXGMFdipgvRRLQnecVrw/YJTpZHfn1ijB0bcvmxnM+GpRSpvHNOUOI1R9jSnECezCx6wWyycfQxGPPOaHdwZ1rFqIwiTQBpMm1KMGuibC2h9OjRBJEV4JJHOExoM4lvJptJIJ5PCx79otKEReQcQR1T6ThHo+9HcOtlg+nzMdFxTILXKK7H0IWeMX2NBdWAxOrTjIzloFMgWoEKFlFm8K4KuQw5b6Ry9pBzPpxtDKeXxIji3t3JSODUW2PEhKG3g5ycEYiGj8bog3a80+6vtP0uXvlcFmAGkUTtQc9oTdqCGQ4vY3Q8kKkZe8CiM/K4ZGBKRARar46+h0+yFdYFt/ac48woes2WrZeEUmE2GzHpnIXqOiTNhegyH1Hop2NR/AWbFqLBQHIdMlp/fSIRbB+E+orpM9wyzo5CpgCWdEE9GCaxt6MMt3VWBI0kHLB0LixQwUIwrsJ3XchTSj1Bchanqa3OBxU7jAhrU9GqmRdqVpBbk+7wNfXQlEL2o860Cd2wWcl2gbypOE+RjjzBslGSGswSFKNpSfoU1+cyk5+/R1JReNLYmCyKmlwtHtNXZenlKFBCmzEmFkXrnOufalKwuLBZLfnH9m+dyaIQrGc+g87lE0qp5KzpyoxGEs9slyu4Uy9P1G2LAsKpgO1HkJWjgVv+1QHSOEnnXqlknLJdqNerAKitQG98+d0fuN1eaf3G3horMG5OONobY8DTcFKqOlNqYvpGH4lSKyUr3fPoOz7C638gi8+aGcPovcUUfDL7wX57w+bOH/7233N7/yPjeGP3jftdrjvHcUi7VS+ahgT9sM9wQln3JEKEv76+8/0vOxlNuqc7qWwB8nVmG4zkWBqUS+a7H77n9ev3vH75A07mfn9nHG/cjzfwKevfDtk2vEPfneOY7AOu18/86le/0RTMjf0umokoGAgBLRfGTLSue/E4jrDm1nn19PRE4oJ32EqYcVinJKMdxylUT1kIa7lU5tyU2TAneUzG3LXPcyLNBQTO8xwRRTRowr4sj7U6UwhizwPb1p73SFJXUb2AjUU/XueUhfWxqCeqbT7WKiPqi5zXD5lxZsb3ib/XmugvDcQ2q2rUMwEchn4v58xWoG6bqG8BpMiAoovlEVPvUqTJUFOvs6S3wXLHmkMA3NJHWfjrp6TXM0ackfH+dYdNrDiWPSYL80MDxEnFWUFiOpw+1H728fwMYMgX1TEoQjbI8KjBXAYN26VQsr5+dDkdeiDkKVVRmbtSuZNlervF3ggQKxq+Gc8sF1EbOxJze5eDz3Tx4UutZ/13NosUAWbLnZH1ea8GQvdgLYVxl0g5l8zzp02GDeveD/BBWgFZadaayQEwwSAVY9skyC2lbJQs3ltvGsf0ruCgbbuy7+/RlchY30PUpPhrpYClvNAtP7tKC86zxaJcH2Jrg1prJIgtwUZZQB1m4pb5OKi1nsW0UP24BOOCXKi/BwJ/ilNXgfGRxxtXRUrpVL47SRSLsN9Ma7LwD5qFj//b/aED6L2z+HozOJ+OfnYyXdTTFWJBEu9b3b5Fge/hcBKi2ZTprWGeo5vOusCzkg/p4hr6VAfo2bAOXhK1yLXGUmFaES8+X0V7yXLoyPFcVLhVpWiaMTxJ2ONxCZUnKAd502hV/uHlQzGmheRTCbMSIko/wEJPHZQWXMl1w/tG8xuz3TmOL9jYmamQrJJ7OPbksOQqgcJP8FSYqSDbOMOsCqWUdYGoMOGOY0khUzqdQ1Da7tD3M7V2iWZ99vPzk7WhaCWMruJ6qCEAvQ8PrQVTaAdjfnDAyFipOBLC9KHUYTk4iOssH/FYS1MPKA2nmGOjxYGjwnx8SJDFR9Ci8rmOx5ih3VCI1BgRwuUKiRpTdo1zDka74ccr7dh14AdKmqNZcZ/0PmKy5GdhteLTLbQisoDtyhFoDu0hntSIUZt3icfcoEXxCpEmGFOW47RLe+g7hAKloGT4eXOu5OmVUnuK5OY8/10/3kIMHOsi3A1mnrQk+hylypKT0Ghkx7udaJw0RGChKXJ3jtl0eS+6WqBJD6R+aYn8LA5EE/PHmRhakNOqrAcPP3j7Z6V1FrUhrk26ZNRYJq1Zl3CMmRnWSFslhbhLnvryy582IGWSXci1keYgBzpIIXQ6U0dz1j5NE8qQK0VKYGU7x+pWM56UCeE9mlkbYJHUzcEYjbEfGCpyZDalz3cV4TlXZkkMLyQPbYkJ/SsWlK0YLeOhXnLdIYtytia+tQrdnbN/mPqIJlVrIj1LDzCHQmLIVetnTglvr8+kuv1Mr1PqJuu9YzDIdEuUJE3AdjE2FEyYcyab8bR9oh13vn77kT/+9Ds99xEFxITXb194/fqFp+dPbJfK9CJf/ZkZM8Lh+s44bprghdjfGPiQnuV+v+ns8Um/37Sn543f/92/ZbY3LmWyj8T+ZqRtY98bfcI2n8nlQq5GG3eYkz4glcJWN3wOUZXqhZkSxqD3XeCAH3QPKgMZ8xv55TuOkXj+9MKf/vov+PF3v+P+/kYqmXk0zKRlau/ArEwm7/0d3CVwnoO/+Iu/4Zc//IYv3bgdB6/vN0ZL9H5wuVSu25V6uXC/D/Zj5zjivOuD5+dnai7c3t+puTDtQhuNnDc524xGrZv0GCiYCSPEn3JdycNJRfShgCNIRU14svCiN5SRYR6BT+GMx7npP9QF2i8mJozOqjjn5bEewWz2cJgaQ7kjJSWO3igp9tOqA6K/zKueMKekRLbCsBmOLZHxo8ErrUMpg1o8KG9GyUbJiVoTtYoSrSTp0AB4vP7e6JaU1ZALMOht4i5Hvn0XOp1Cz0WwN9xWES074Pv9Rm862zx0ULLhVHhVQki9KGoP4HSGYyH4WXzXYuffrZvqjn3vlCLkOhknuKiaUeewKGaV5eBVa8I2GQiMIb5/b2po2jEEGAStd04PBoIAT1bd6IgfHwneq88rtSr6JoeDV9SYbrBtFwGMrnpPVJyBMmbU/Ogce4S7koyZdCZvl0Ielfd7I1mEdtXMcN3RrugzLCna0dGk43KpXK8yAiiji6pwFoweqFsmLnY5C0AEQ9gDgRPFZFExYuRsK7Th8eGtX3M+kPuPFpnr76nATsE9HXLhwcL9JUQR8XOElmoXzR7BMIHmrfCGOefJ8T+tN5OJsuGTEZeJ2RqRPO7ZEej9WeB/GMlZjMo//noEWjw+4DEmdZNYecSBn3PCSiabRkAnlceD0sTikVtsItEhFuqXXCPjlHN0dfK2t3C+SbniVrF6JderwpC2K6ls0XgEhyxlCTA9vKj1drXB/cLIF/L2RLZK35s8XBcq7OESYBA3vUS7WYFEtlwDkGgo1Y3sV+b8xnE05nhlHq8aMdnGpDLHRfZxyJaVIq/8iXz7pxcgCheXd/uYjqeh4p6u5xhrU51yl41lv8PYoS0ai9x0xugnBG1h88fs0TiMh6CwPII6mB9Gl1FopoX4Ev4fKZOKQm1yEec+l6xDeeoyIN5DsgCRV5HUD7w38XpXA4U2/LK6TMMiKXD9HY11U2DfIzQBKu7vzBj7z6nPX4du4rJdY7yo/Zoi08Cj8Vx7ZkwiXVFoy4zMg0zWR36i8ydBJiY48zFJQERSTwiJ/rBXT6raGrEGKjDnw253Ymcq93J5WfsyQN349FUMJ/LZOMyhpow5oSjx0uIzNB4IEfElDCDp5HuYAQSvdurAX2LbR+hSrAAPpMklvFrP5RTKJ07LTFPkpNAdmSF/KNKDMjUmWMddwTZyMNP/njjeBu4Fl01CdFodUmhh7I63HRsNi+A6ogBZk0mLDi2XynYxctKZmXIkKFvoi2LqaZhsBWOEM6ZoF22/M/ebipxBXDqcwItMExwhEofoVaYAsBzn4Go6pN8OWtVqvpzg54fALqaIYyw/8nkicAtBzbUwmmxCc5WbVQv3q1wvXJ9fqLWqyZ1DF7Y7910giiWlR8/ewlWjxDloTMtYfaKkwmUOrvud1m4Yg1qM3hpz7Ize6e1GSvocc4acr7T9nXagvTl2WntXJoUZbYJ1k0NKO6RlMpjcgBtt/8Jmd7q/M9uBe6LvF0p60dkl9jC4ULzr0xNOhWMykLYjW8LKxna5su934I67hPfCQmQ/mVLiPm8c/o5x5eXySz59+p5f/eq3MHa+/OGPtLaHg5Fze28x4ROYVzZZKLcGT0+/wPIT40i8vr/z+tbwkfAp0G86GJm6FS4zgXV6389p9mqoJw4p462TcgWco3csZep2kaFCyQ/ACDXV08F6w/c9SnsLFF5n7CqsxzmZjKMhiloj81Dexy0XNf+Z/eCrwNU3kDNK/tl9YdGoysIxsRyVltPf+pkPhFfvOi0wZbEP4uzr0xlN/2zubEV7JmXR0Iob9za4IB6+AIgSZ5w4790F8hyH+PUOwQmX1ionXfFb1dTNkyxgnSia+1QUhiHNTlfhnpMmOXNMiU6zkTNnrelTTVROSgl2myQrLMc12Ynq3FUqsO6RdCL/Qr3dZtQcAkI0mRjUGnVUUkOQcuK4L0BrBrWFmCAGSMNkLuoPQFKzTlq4YoRiRahgKgJgRoAPnhIz0nSXhefsXfami3kV5xWmNTp80KPIx41jNI42BMAsYNCnHHFMAYStzwCSBNhtWw6WwKTM4fTZ9LTikMtRnB13dZi1bBxNPONSQnS7ivn4vToPeY4mJLIK9C+K60XBmXPSWuMaSnghqDGSzYktV1LvWsSxe5Y1nkZiEyZxsI+zCPn/92vZUbUm0WiQLALJl58vMRkYPf5UN/TP0PrQe7NsuXA7u88xBtu2na8lraZkzug2y9lhrsWYcv6ZW4+vcQ3r2WqPSxWeWK5GW924PikRcZJJZVNxbwXLKvbditjDWQKsnMWd1wRGkxCJtmZw/0XFmN7JNZx3titpOs6u4igZWGfSVEz4EooYDOkAGBLFZY/uFxUQPrToZc14Z/R3GG+xsGuMcS+kchEtwExuEmXT+HIksELKV1bC3gSyOz6Tihl61OkrFdTjNUkc621ntrtEUrPhriJe4/4Rhb4KvgWJrEP6pJpEXLXHdCjZcvCxWAey7yMVKBvUC5QLFjkCPg+cJju+WIuCFOR2o58/SN7AG2MczNnUQOGs4CwojH2PCUOn9wamAsksXAamEJpx7PT9Fg1A4sOmYvR+7p2ciqZufZxrThdPlkPUcPpdVKW+kn9TJrG8+GO6Fn83WzqLVw+HFS1xFWkjUA1NnqNY/RDKRfx7H4Ni4mkLAYsGIwq+dKJpkU0xHZp0PwSNZ4ypn5engkP6oEyJ3+cHdEaFvcwBmIHko6mbz7BRjOTcEWJqxaAnHrB/XAgWRXuK0Lc1xZwqJpY3ks1A8BNIP+KBroGQmWgkg0omOYdGucmFaM45znG77rehm29q34z+xBwHuR/MVlQUuLi5bqsEz9GIF0q6aL2lzAxg4ZgdcwttlqZUxKR2dAUUHfsB7QZJaaAqIxeVM5HzpqkkHT2B/uGz62f/ZUmTr6XrOhujNUn6AAo9rInVTNW6zv1Y5tsW1npDhgZm4eKS6b3Jfu+yqckbnZSLROC50w65lQtZTOx7x/edXDKX65VqiaOJ/uYkynY9LTO3TYLMUiQCn/Ng3w9Sy1yuWQJddD9mc45x0I83+cBZkoPT1ITO52RLm/ZK/0a7feX92x8pfmPOd9rxxtOnJ5LvZC7kmiFXyrYtFQk5JUp9olSJeefU1LDNzvV64bi/M+c3LhdjHu/MECqrYU/09sZxM67Pv4JRqfOFl0/f8+XHZ6CIYrQV7Bh8bTfmMZUCPAf7MShe2bbPfP/DnzFRmno77nGOEg4nC+CJQrgPiTRdd307BMhcn65Rj2cltfpkNOXbtPuN4QdYJlXYYmqecpGgOxf2MbC7JhQsQI2JZFspUF9YYYz9wzn5mNZxNplqhBdi7x9+P+i5QACOC9DzMBmBFSy5WAEn4OmJUyPRnb5sJ9Oar36gOkad0ofRfHIcouQ89cGcBZ9ZiKUnvEoUXLLyY5gtJmDO7d403UmZ3lV34eL2z+T4MGoyvIgiV+uF3px9P8TD16hBYETck2ZyIlpgZk4z8m48piREumthjv18JsuSkwCSn5836QBCl/cR9S5142gHrQ3MZBwxh9DtnAggEWl9pjGy6Hg+J0eTmUAO2vQC3JZDYg7KIlHPMBe0ol9jOlsppJKYPik5c9+bJgTmXIpqVk8BztjSI2p/J8RUEBdfr3VOuO87b+9qthTTJDrRuUbwczpQlj6nWACgQ8W9uPMS4YFTaqLGob5s8uaYMe6QjSXTaUfTyKVUUVMIy7PgatUiKocU54mSN1pr4nUdg2T9VFynIgRndqePSEGzFB/yYLboUALJzzlHmloPtbo2whHuHsvurQcFIKV0igZVzOSg04z4foWMEKjL5cIR9pQnVw4h/pfLhRY2gauQX8jfQpPOgimQ7JzK6ZyTc5YVYVGnZm6UTYv4dr9zfbpSbSOnorFoHyTvpLxRS+Xp+sTlKg79tIKlyjH0+ks4a2CJer1KJJbjw54ehd8yjBJHVsUq6ljz2kqoWSib3mPbaaNhfWLNOazhOZOsnHx/b1HQlw3zLS7iSHgrCQ4w04Fj3ujHG5q3JEq6BmXmwFKJtWTMsQcimZhemH4w85VSr5A6M+nwFbJ56LOCs/FYTjLJB7MdtP0uFHmIX38e1nOEwDEO0qnGwJAN2BgdyzXoZyX4jjdWAqjlClawYqRa8Xpllo1RK3m7YttV05pZ6H2HPnDPzERQmbTvfA5m32nHnd528KZGZApxtaCkHcdQMNgMe86YPHRUGIFcdfoH55/RehR1Wq8JjfPO4K2xJgoLfQ6+NI8pGJZUkAS/vI2hsfI13K2mc+xdyGt9IFWlCEldo+SZNWdYFrXDpyzIkoJMyPEzTbxZJQLGFMHV2C9xoZud72FRLsyF+uLLAWjS5lCi5T7o98Z2uYT4DGot7Ks5mwnzzIqPV6PvD5jIoFRNkRZPmDjmRT3KevbBD374GYfewkNvM03NjymqXoV8jGUNLMel3YMGZgqKyQjl7MeIXRxIdtJnShQqq0D2uTOOV+ZR6Yi3TBnUbWAbeHUJ3dLGSrJewXrew9ptdNnZeVKuwHTK5SJ0LckeWSp1ib3bfiOnlQEgJ7HpBvUadJ1KT3FBhlBYtKNC74f848tViFasxwWm/FxjRdwRS0IR1IP1K2gZuVQl+K650hzkWqkxSpeIT4BG/ElMmQSC5Cz6hLvsDr99eyOlb3x6+URvg/v+TrLJEYXoGIPXbzdqybx9+8qx3/jhFz+wtwO5rkj/M4Ne1/s77+9fOO5f2Yr23L6LRldqUQhTP2izQX+lcGfcf+L+9kcSjWqHQJr9zuECfH745XeUeuF1H8zW+fLHrzx9Knz+/k/IU9x0ZsODinPs39jyTrvtjOMNfLDvhyZobmCFuW0cqWJHkfj66LR9kNOGe+V+e+ft9U7bB2lW2jFigm28f9351V/9BX/253/F7YB7m5TtyhPOdas8XSp5Cw40WSBQ6DRKKcy4P7daAmWVHqAfjeO40cck5cJ2vdJzKCZ80vtd9LSyCUWud5pPWm9wh9kUgmaxVlsTumokBqq2PDlW8jlFv9+P0+hjBa6NMdlMiPxx9KDzyFlG1OOk1NuoQ2KVqd4KK9kZYNMyVCD29VKi+EK/s8w0ZLP7sGuc+GmjuMCP3CAlfZ27yBxXz2zJ6F3Ndy2ZaZnj6LQGPahtqt3AKGxbRcGOjdvbzmaZVLKa+mPQmuCKnOA4lNeQk8L9jkOcfXfdAynp81z2oqXkoMaJUuSuvbSoRKummj7ZthRns+7CHja+9/sRWgd4f9tFUamVMRr70Sl5sm0CQS/XCq5zV7WtPocZ/384mtZFboQhkeqcg+MWmhRS1Mtq8kZQ3iy5BOlHTGaycZs9nnOS448ZtVTq5Yq7qZb0FPVT4v3Ljff3TmvLyhS2i8VUAUhOqZXel7uWwOJ6rYS3NT4HRYvUA22yD13mICWR+Nd4ZG0o/IMtXRCJT3TM5At8mr7AzxD+FUQgVHvncrlwuVw4PV+1juVP6i5P5xgvGUloI36O89cY/8Hfj4Jy3cVxEaQsVEwvX6jpCMRr2wrE5qi2AXLsGfF9daeLMtRaezQ4cP73c0QWM4EZDYGs/DTG6UO8cEtCO5M9nH9Symw1nzqCx8GhB9KHc7EkQUX4YJdUgi+vtMY5xddTHHXHPOGu4nhpAHyKUz7GXa4vo2GuC1JOFlEo5YwP2feJZeEkE09xjsYYWQK0lAN5TWBKxvUySHNCrio2vIUAOsSoXTaNOowSMyVGdpiVVApjGqOh7+0Zp+BegApZ68xzV0FtGafhvgtZX5/HlMODB39+dgllkwXHflGoFn1lSLSGe0RWqwNfjjgp68TsTVasOkQdKOS0keoztVbytnHH8LJh9YLVC9QNLzmQjRKTAPkB22hcUg2kTIU4swtVnUrlZHY1Xu4SM+3HiQL5iIbEPLh92rv9OGhNAr0cBceHqgfzQdqKvs+AMcLC0dL53uZUQTq6Mge2suFHPH/LlJrIYZvbA7VPYTN4jBn+vyrIk0X6niEf8jl//prssVeWXkaR8drDFheFrHBDM4D2jQGeha4mC2R8aZYxjEpNmT4797cbqSQuL1ccJYTOKe6lB22JsfZCPic4AZjr/XQVjqO7GrQxQr+Q9LmxJn6rOfITJBCNR3ZoI0buDyMADX08h3g+3F8sxxQkBmViquiyG/7IIpC4PgqFAbS7phfJaHtRgatRBoxDtpz9wPIF7NDUNWeyieIzXWe0tok+A+qTJgYWFbWhHIHogcwPfN6jGZzi6eYc0xfAM71vkLT+U7rE+yE0Gfrd8vVMr7VI59aksnIOayacDiRliRjThyVl0cCCjUWZcFnl+jiLhoXUBlsTJ/iwSU1cCrOAFgFUvQ+O/cb9duNSL2w1c7Q7zEEtGeZQgQQYzrHfud/eRcHKxnHs4O+4C+nrY6ftd477O2mTaO9SFWPv82C0naM79J12+8bY32DuXDdNjI7WFSLIoB93aIN2v4MXvDnDdsiJ/e0rJRW264tojWNnHnd83LF54OOdo79x3L6QLCbUKTGn6DvTO8OeaPZK74O3rzeO+43jmHz98Z37t6+MO7TDoB84TvNJqgKgfv2bv+T5u1/yeu/cDoX7pZyoRUm+IQCJ9ZZIVihFKaPrPswppnczKLVZQGAqsioEZ8vP+OiMttOHNGWTzPXlE3nbghaomqIdBW9Cr31IjzVHV1O99vy62d3Ffy/5rCs4KTQPAGKuKR7LVU9CTotnOsc8aSIECLF+kKjLi47jymmZosPF/FKAarZwnIpQshg4a4+tO1BOQ3dT4FQfcHSl9l4qbMJRGFP8+dac1iIQPGqYlDTt8iEjjxMxZ4ESAk9GD/qjOCMnMKweRY5POYSjS5QVoDPJFw5urFDDXGbYYpZHXRo1qvURQ/YPBjC+AOrQWoJsfYOuYjlhlPj6Qc6XAJ8WgBvvrUS68Ay6bUz2Z3zSHs91BK1zGSiMoedXSgrdgkkYj0DTUjK1FlrcJcMttDVJFDLP+qz2zu3eud/VLKxzKQUtN6VygmUJTVuYD2pkLZCQ409xXwv3MUJKyc4Hl6ZcSla8srqjpaZ2VrKK7g2HlGRAEGP0j4X9usTGGFwul7PYNxO3UKE1WvBymCAOYb07W3vJIhr45LHG+CQ/Np2vFRqHPKavy8VCPxubqYuXr2JCfr+jdwg0cE0E1qTtUTz6idyXIo/Sta/iWAj+4OO9zKWWjsWfUqCZrUl6WbfYNErbtaLwkjFdTjoRTUxayyyEfT7FOx/BLc1OThNzedSruDLpCuag9YPWbniERmQKqYKT8BxUE59aVDnhSUWoj844Bp4yKVWcVdzLWcKpjNzIVcW95YnEcg087AjHZDb97nPIMSA5OQ9y6djIeF6XfAYKHkiXoxjyMTspX0hJzYOlLoRy9HATCUWEqla8d9lgeg/2xIj1oYJWn32M2fwxrZkf7QsjlfPY9zh4U6QoVvLlSr4qlCWVSmHi+YKVyjTjUDTpadtqwb+cc9DmEYV8Z/QmKzcRFGOpx76Z2qO9Ndq+xyHWWfs3Jfkz4zq8xPMNysBclKFAdZGGoHe55viUnkBTrElriwqxWlahUys8qW6bXGmCbhOwl86RFEWoFj/LaYCUxHnO6cN+mOfzXeL39b9PrvuQqLYEzWuNLj8K1DRomWp0FtI1xCNNZkERSjCTRJ89BNNxMCtQLyP7UJgHJBI1FxzT5xYmAb72eDC4iMC/EkX1CFctaZIUzmcJlnvXKgTkfKXCdAEBOT++P6bPfvrEZifNEkW/h9A2kO+YLPh02f+JmK6GJCnUzs1p2bB+SHyb7oxSGccTeXvC8oZob0WBNpbOz6GNI96vkfJGuuxkf5FDUghNfXY1IagY9XFnzCYOrDnJC7luARw08IM5tAaVl/IAcWZc8CVfKPVCqdL9pJRPfdSZB3Ha6K0GkJhefAB1TpvkD8/elzsSZ3O1BL/TRMvIqUB1jFVgJMa2UaNBvSV1F1uBkiSuLwa1JkaTw1HNicu28WZJdJ0iEbIFmCYHjyZufmvMdjDMaGHFqP4p4Yhe2I939ttXjrdvtOOdrSrH45xYzsGcjdYPvvz4e8r2jtuFOpztyegHvH0VOKPi487s76TZKN7xdue4feV4/woMjtYo5YJbZvodr1dsPpHrxjwax+09BMCFthf2m0E3mFOff3K25wtve+PzL/6U/8P/6f/MTJX7Meku2+KcxHdmDvJ2YVjSGd8fhZuoV9Kplazm3zFmH9IkLNqMmQKrTNbI0yd5c4nFU+OYb6S6cX1+AYynpwuj33n/9pW23xj7HR+ZPo3hLc7L9fM/nFMJkv9cY0eUCOtrYbm7RbEfSPPocpQpZWWS/Lw+GkN2tMEe+9kvd9lYllqU1Ntk6bmoijlsZbFIlo6CfgZI2jrc4/s+b3DZEltJVBtYTowpIFcJtESBHmBmkqNhjmYspQdNmXDvUi2s/TaXqNw1FVuWkR/rI0sqigcTL5M0FdSmWs3ORmeZP+ScHs87nuuy2sxFzXDvD6qTj6Ezdep5yPAgzFjSiHosMjRMwOrStbXeTy2E2dL/qAD9COT24ZTQqo4AgpJBtcwIUe/S5MkuOMBz7Pxsjja43Q8V9++No2k/p4XUnnz7c1ar6WoARzhUC+K4Lfcip9hZA0fh7Z2EuKRzdo6uMfG6nDw23xyDNOwUnZhFVLNL5ezpwUtb41P/UADDgyu5il5LGndYSsHFXYppvTEV0BrTHfvDCjO6CE4u5vTz4v+wM2BNKJYDiNalCuxAmtzk1R0Uq1PsN1cy5drAi5+VltJ6fHhPj1+iIUWUNoRVlFOrPoA+Bn0qRS6NwcxZbj4mweWy5MJlhZdy8D3rBmS+fHsVpQShiG4XrBbM9yhuO+47w+RCMnun9V1CyyE6CFbUIFjSpZsMY4qD6oMxD/q8ge9yYbFET1s4kqxYjwy2QRaybX2S6sBK1VjQFX6mtMuNMQqjxegUZ5ROnk5Gl4WlEq9NcKVTmJ6ZLv58zlc1P244jTkPcexcGztF4c6YLFsv5Q3IMi3F5/QQWyugTJ9tDr/uCKQKK64Rfs1qEjOWCulyxbYnKE+ky7MKpN6YLo7jCJRVa29EASQOpRxfOodrIrIsJEdw+0tWm+IQyMhgHJ3R5KoxYlIhByhj8QJ1SQjtMTKt9VO0lAJxdYc9NDVmmlr1oaRWFfxZTZVZGOEEtSslrLhsFm1dahqJzxm0vHhNZCFMIIqWxIgWoWsf9h1Eg/FhosIqbKJwXW48ljD3cJIcmIsOk8P/d7rTj3AciUp5EpOPDFutkanhbFli9BbnxQixsc8UoVnz/J6CvNN5JgllyOcET4f3A2VbHNbHJaFLS4ncyk8InELrMOwue4SspW0J6TUZyFl5IzNN5gLN44w8fw3H6TKssoSPXbQvgoPfdtI4QmyrKVs6rljeYp8WTRbRpeNTGh2GB5pX8fbMPJ4Z1xdyruESJepOYqfPndnvor7Rw6igkGxEEacQJomNB7Pd6H1EwNo8m8VanoI32ylJRgE5Fz2w9Lg7BLxYUEbTf8HJ/2gfzOL/R7M8Zzsds/Rjs4RxhMtISeCZRQEoddM965Psk/vtG1//+LfA5HrdMO+8fROl7nopWIgJn5+f2KpAmTFnOKId5GwhuWlnWFxOhKh+kGumVIEjCv/bOe7vctlhqHmfjeGTvR3Y/Y1an9hKxceN29uO5Svug0vNlAzH+43j/kXNSt/p91dmfyNzYx5fYX/F+p3b/Z3b7c52fcGp7MekXr9ns530fNfkj51rSfzx287tzWn7BXqjN1EFn7//hNfMsR/8y3/+N/zyN7/hj3uid8OtUFJiw8i27BUVXtjaOIEHuSJVLOAjwzU5ZkahI8MBN9jKRpUVCdmg1o2+Kdej7Xe5FfXGsSk3YFwq3huXsvH29SvvMzF8VyhmSUyLO2TVN3MGYiuw0Nc+cZVsi0KWwl9ebLoUf/ZwZJHQk0gvXTXOow5aAOv6lVKccUk/35Djykg6r8yV6O3Yw+xjLfOpvWvuRCmnvzuguXOZTsVPvPDoQvtXw5RzIed1LgnEKCmLbtU9moCYokZjnjPMove/KEkzKHC6n7QPx4i7OjIcUjRxImP0aMBDl3Ki+ut+WyJejzvIaV3TZk0WYvo41Awy9VpK0T3is7HyiHLWPsu5yKGpdVpzclGzXsJ+ck251Uit15vibDJstgDWnIxEyEo81l3X+wi6d1KtOTr3o3F/H9x3rQmfRrJK3UpQkwl3nUkLDct043Z0Zh+MDlvVWi9lOw0ZDKf8XIxqQrZGp26Kt8ZG3Bs6VKfPiFufXNIWF9a6oaJzCIRFF5D97MJeaPdxHP9FIcxUIWszne4sBI/NWA3Go7g2Xyj9ODeZfehgfubIsyoKfo6+A+LfnWOeEFmeY4K1wWLC0Hss4HwWhiPG8ieSbo8i3z+8Lnd1mok1lno0H6pDJ3nOU/ilhgMhh8B+HLzfbmCJVA7GmLzf7swB27ZhgdiRpHxPqchCMxDH4UPocD8YQ/QPM2dYEf/TMrMLOZfArJH6Dl1OG9CDB2+6bCwHtUgIO2lGc2cwEjY1GvISxaHLP7zmjX0mvFtMANQk2hxKDHUdYIT/y0S+2PKDyUzP5DLIYxM6Yh2nwVjPeYkkA/GOsRtx0Y9AW7Vkwy1giOd4OjKcgMw8UZseibU1EPhJTBesMFPF80Vj1LDTxOTgY3mhFHqdep8u5NujYLOYhnVNFST0UTOAR2hICJakJ5hBbxunk8Rj4iZkcs5oUqM59GkSkC6x7YQZotkRhfZ0J1uJUBPlDngcFjlJhC16h9BNaV96FFEfkKg5IwuhskLNxkQorz18nz824B8RrLPp8nUBjp+dJWk1NevCXd9jNXUOpwFWHP4q7IipxsHmcQHEOLe3AVPhNeL5e7hJiCa49AxaWjonQnP9sFVdY2vTlGT0wUwaMS8hFXERu0sT4FPNfHFO1y5vMZEIIb6vImAKOJlhD0p460un63igU1hi5hb4/lTqsR2kechlK1e8XqBf8JQp2/UxWfpwKFXZ1ij/wgujv9OPJ3q/hQ5lkwAMx6YE4D67Lk8iV4HJ4Up/pGykcZVeZoSorItGNqK4t5RjAhcfYIHi6mP6SMRyWiczciIR1VGBSJmll1he3iNcl1JeU1ziM340yBr7x4WfUlC+ys8oVZTMyJkv9zt/+Pu/4+vXv+Pl6cql/EApiY5zv9+5j8xuk9v7u+itqZBqpkDQHxpmlVo3bjdNi2sxtloY3mk+mH3Qpqnwnwram11OP4b26oji7WidVHYhjSmcjQYx5YT7PXGhMaZxP2RgUSwx2w3GnTnfaLeveHuPUKTEgegYE9Eg7m87yX9i7DLgePt2cHsbvL/dOG4wWia7k1PHkjNt8um77/n7rwfXl09QCrOJKkVKlFzZzKgYyZ3WhvjwLUS0pVCT3E2YE+mg5HLnuHjgxOfimgJkEzCY1jTZDbPC6BLMUiOfJSXGscFoAtG6M9tgn5DIpFzpc6efbmKrlvCzWPc4XM493U5EMArr+aFIXyYFD92IRb2wDDwE5aRoZghNlSautWZKce77Ibqjqfk0Ezx/Tnnjdo45GqfwUuVVTAoR4eIIlNqgMAP0WNOKBcRJiOrD6XPSLJygXMLd1Vx7nNOLGqM66EPNZx+FxXpuYzw0A6sU0vkeQ3sXRWfOmOAGPx9PJ5C1rIdHSGrSsp0W+ZwVjCq3zXAicjE/CCeeXB5OTNsmsAKLpOAAmKbr2Zye/Dwo04uFsaY1fUylkM8BuZAsHLZM9vJ9qDk5+uS+T+7HYMwUzY6cD2fc+UTDlky0UlANebTljMeag/CYTxqYU05HkCii1wte4w1LUqn3OShb4bpdKaniXWmEnpdDhy49S5laLjpg0gx/0RB/TXXk2ya/4W27AHAcxyk2WZvCCJ58fIDLKmrx2BZSvjbK+udph7nQsvi1xrDrz+UuIUvBJQzOIXbRQZ9OriyE4CplBiry+mjkCB5SR1ii8XhYHX2k9YwhXq+ZeMmtyzHC1+jERRFqNthSwVMIaxD3dnrDb++UvMa1maN19v2Okck2MDrMBtbJo5FyZZQQNs5wXnBRQKbLCz0lx6mSD1nCq+zTMMOGrNxyLHQVQIcQtuIUKxIr2dCl6oZzMPCImhciqeZKRaucG4qoIt1PKgJznkVUjrG7UFfZe8nussh/Y6YYx4ty4jQgvHttIaRBeRhTYtLVf8Z6X6wT1f9qeuTXy4O3Z0YmU7IS6pY7kAUdKOdKLlfxwWcIY9Z7Gc4cEryQejyHgXk7x5VnwmsfdA/f/RD2ZpzjfqdkIee9h2WYlfO1jL7cFybzLO55cNZdJ3myFAWvxToYWHe5ngztz4GrwcJoQ5OOeT40PdcRzjUlR/E0pw5VS/I39kcz33tnqyWQ7xDCBlUomYr1j6ipwsrS+Tk9UiGVBugTSo51mdahH5zWNYQLCkYyDxRbaHgxHXbDnbYfjDSoe6W2otA09MxGD2EoOaYFMWKGaFxWwx5TA9NnuqgeFofqx6mEB/q/CoJsOZCsmMQQaJzLpi9v4a7TdQOXJKoMaTU2ESDjCv2S004KFptzuknNDkOJku5TTZ01fBwKoysVnxcoVU5aPaxyiQsy7OH0h+FE5InZr8z+BL5DNAkpgvCSDbL3AAKGaIGo0e3zoBiatuUtqJEN5Se0AJWWe1VGyio/pxMqDJK+pxPolAXFDdFAVMKomTnBpEiS9HkifymatDEeBYj43DkuUyGK2SKsiBTN6xDXuSTeXr/xt//p3zGPnyg/fMcf+xsvz89slws+DvY+2Pd3Xl+/8t3nT1w2ZZbovNSCMh+M1rDZNSnImZoLpMQIXcBsnba/iRPf77HewvKxXkV/HJ1t2/juu08wO6+vb7ThlLJRkkTOt7cfGWOn1AszHEf2NphtF8rInbHv1Lzs/ES3bEdjeAfbYE7uNyVdj2m8v3XaPShELtDATOvQsrNdMrfjTr4Yv/j1r+jDaX0C0ovVspHNsTmDUppkcxiT+DMw8ZxMGudIHa2BFHkHHmeiplyL9hhOskniT59a1yUlNeVBNy71yvVp0g9NTBqaqMweTmXnxF6/R5gtuNnaHgIOot5IOUeZFQBE0DXmXPdSNCJrGjlXSFSiz5h825p4quFLWfqgy2Zslw33xPttZ06XIHYSoViPSSjOCXSKvhiEmCG6zphOm4OCnNaqae8TjQEJJaOOyfNWqAWMwXE0uiFXu7jD1nvRY0iU8phc5pSY/cG0yNlOoPTjL13NS0Af4WThgd99kgaqPV0aMB+OuZD/EaBrSlmATAwKeu+ynk0Z0CRU2S5qeq3ASsa1ZBQSs4Q1pum+bK0HyBfvF+ius/2ylQhY8xNc8+nkWmlz0qdjfeJZd1yuG6037nvjvg9u++DoUHN5uISlpPya2blsm/49yvYxHMZgzKVDUD3T5mQ/wg48OwWn2CqW3YnByok6L5945ibDuy6v1JIUsjTcT+7jCNcZrMA1xQUv2sfwyRHpl2ZGd40rerhA5JJpY5JmoP4gN4mFgPv6sLKKfCZ14/TAdnf60aSsJjpiN4Uv+WNTXupCYVZ67BEcOi0gR8EEo3dyElLplgL1dg5vpC2x9ztYjIJ9CRkfFk06uwfu6RRflFJjwWuc5CYqTV6FyoCaK9YNy2gclrTJhk+SH6TRGfvkzl0bpx0R+pJp+xvMio+Cjwt2+SSx6uld7kwPOlWMeebsURDXSLHNzOZYzdEY6YI+2o71pmZgyAFg+GRYU/rbnEL/ivicli6QOzbiFLFKKplqhWNMXebB/WcMEmGdOHVRC3oRV3jF2/t0uu/kSNrs90Yvmy6hpEIojFTEKA/aw4Mv74/icx3IMT1Z9I5+NPFrEX96uUIFOxefWRHmI5G4gG/4kP1UYuDHWzRpcjPpIfxZFILLZRPa5hqtnahDP3BGuCDGVMmdGq4xfTU5DntrYCmCeNbXTgowWqAtGHTwQPfbGLKQHRbNayGXzHFXU6uRMyHynHh25W8H3zEHynq5PmuqkPR7uWW4K2Bl2sqxkOjMTSNCN+N231EICHiXreLDwlCF8xgeDXCOxlbF+fBJLZU+5ynkn1H4W46GpQ9yMnJWIzjnIFMoqWJWVGz3Jhebmihpox2dFpHrvQ1KLRFqJbGdmvseZ1JmTA9PZKGBFrWGB2JkPHiZsp0Tmp5qPicnvhUZQZrcjdpQg1MjgG3Z37lpLfjoDIHKZAta1ZSAzabCbVLSRUyBoRoYW0BFETuT7qKzFIlER7/T92+YKYAtWRVy78ZIOahtalYMcUSlDKu0XphdfHhSIZcrtV5CIL5De2fOXVqY1ORNnbJSsZsmIHneMdsYbvQWtJw5WP7bcMEZeJrMvAQOThlTF/DCKJeDBJoghtpGbslBKRzRHOKiGjU/mC7KjzkkKtUu1HohlzBSMAnr5vATQcUdGzo3S3L8+Il0+zte979ne3qiPT2TSub50wu5FHw2Sr6z3++4f+X55Rc8v/xSAvRjZ7Sb0qDbGzbupGSMe6fde+jZJolO7jdev/09Pu+4wd0n+fIDv/xH/4xPn/+Mkp/Z0ga+c7/9xK3/O+731xARAmEvuL/dabkySaLfDTUWqUQKuD9xHx33yr2902zDTXTG+/1Hau30fud5+xM8XTl85+1+Y9/f+cUvN17/+A1w9ls0UtVpHNSnC3/9N/87+qhkz1TLGDXsvCctCYDYjwP5N0wutUSWS+LYd0iJWjfcM30cQGRDBEY9Y647fXC87QKDpgru4YO0VUrZBIocjWt5IuV35nYl541aNlJSuuf99sp+vNNvh9yvlsBmair29CzTjTZQuJsb7WjkqvukDVGsLAvUkoYjgXcyk+IIbJhh2rD81G3IDMPEA5fbSwfbSTlxqXJJacdBO1RL1aLk1WNMSsrSGkxNRsyNEWt+FdZOiEEN7gPuQdWpKVFLpuZ8Us+8NbI512h65SYmavbIMk0YY1Ky48ViqGl4MgaDXI3LlsKsQk1IKeF8MweXq6a+4tKjatxUTNNUV9UiAel00fpeQ2/mU8/0UsJ6fUbjYgHUBDJvSTVEG0L/a4BItVTwoYa6JMwGpWiqW7ILyG2T3qccyvqIIjs0kEni20YjpcnTtpEcRjNK3bihVOdjDLaZlQTumfubszfj9c15f2s6xy1FE5KY/a6wtZz49LKJDYFyn0o2ZjZaR45uTc1tm5P77grqm4laoM1G0YducTim4L4utfZDgYypwJZLTYS2nLQSjyJABa+uNCCsLPVlnR5UgTIdr8sqUvzgHEXaOqxTsrDQ1F25RiSixEg1v4/GWMVhINRrXrs6HYU4JHn5x6/VNKSk9DYBBcFfM+NyveLLOvAc/2rltN7ItZCjAJljUtKDZnD+hfgZa+y7fP71mnRoKTkv3GqnxQgpaRyTmg7dojFiG3K2Oe6N0XKMZNV8SQS3QV4848xo7xpVR6LwmCNGWX4KP87ikk5ru1BkXFzPrM9DhXIIZOdyknGsRqx22IUBsl5kEnk84mtnWWTOGMFPl71nD9HwcHEGpy3FfFK3m8KBxNZ17Sqa+8BSZU6jOLIE7fHeVrMZ9AuPdbwu5hPNCxR7oQRrFCgWgA4FNVzhvmPaRMpqTBJo5Q/uLSgcY+kwPPi8M5wR1E04TPGaPd5X9BvMeXCGZUw/6UNzytM2xygy4N/z9S6Ei3h+S3Q7p4vCM4giejmJiIKzUG/zZYEZKZSmz/2YO5aFXGbTaL61Tlk6iNhflo2yFWaX3W1ratoWLUWN7IyLTBZxjMG2qE/E+Nwe6dDrUS27s1R03uytkS1Rt8qYEjYbdnr+zimusmXH0gyd/6RNsXIJ0GU4HL1ztM7L05MEkKOf2gO3B33n41mx6DY+ZaOnAJp0noVLXOZuZNd0oaRowgJQIBk2ww95hpAshWuGpQij0XpJC4UKOo8BPpw2D2bvWFxuMwS0Mz9C3dxctqwzkTyTs/aYr2lYa3G2ZU1Xp84bP600E90seKZK+8SyLG1HjVHzC9MGbhVzIfMgrqlEtY25hPSBLs3Z8XHA2NUohI5jjh4R8BPIeKpnHIN3YyRjpEQ3aGnorsgJT0EZIDG9nY49a6/MuSZh4m8L5Oj08U4fO2M2mSjkJ7ayUc4po4Vb29q6KhDEhx+0LuOCkp0+7ioe9k4pztGcyc7L5084OzkPfDbevn7laAqxqqUGNSz49ziXqnUw5qBHsmlOThuNve2Y6dxuY+DpwtPLD1w//QpPT7zviR9+/WvM77TeKPWFdBzgQxRAW4F8hqOi1/tk9LsIHPWJcn0iXz7pTJqQ65W3b994+/ZN/v4zx9hf3Obnl2c+ff/Ej7/7Qh+N19uNcsl8e71DLdSnjU7hfT/4l//7/4bumbEP3C5sVZoPLAAn11mYklKQH9a7kmfmUtZ21L6Zuvv2o596KptIJD/lzuR9MFymDQpFCp60Th0BZ3VjhjsL2ZgFuCTsvpFvF0iJfL9x+B2fPSiecVdYohgqdC0a4RmuUQFYLE9zIcl6diXZCei56xwcQVuxUlh0Mg+BejLx3OuWISZKw1SH5WSimM7QdKE1aqRwZNNUxIIJcTpLJc4p3UmHGZM2XAm3Oel1lrB/7GpQapZNroAl8dqNQTs0Ndm2GsOLHGeapusJJ5VETnEvDhlpjCENlNa6mvp9P+LOFaffAqUfIchdteFpfb6LzqeaISbAwfgYYZpRa2K7FFmOxuciulOg9va4t8WmiadjmhYv22WBanaeCTa1fmuNZiZVNdH7TqphCgK83xs56y7f987o0Nt4TJaYwfnXvblseyc9hLN+Np6LcusxWQmmLPvR4G3SR+Yly+a5rOr5MWr+uW/7o9C36IY+8I78gTISHDI91MHwhls/RSRgrIhloXXRTETR5TxGSoseAf7hcuXxtR5e7VE0k+zkafbWKaVSt4qh4qV3uYCs9/Xxn+vn/ENdgIQp+pqJkxZ7xuWxn1FRoNAkAi8VZ04bbZ5fv0Zs4n0qRljhThrtECP2JQYB0TYI6ygNFsYpuOQ8AFZK7KSbWiqfVbz+NOJzVZc84mflFIdBTCamh/VVBAnJDk5oHibuPlMUrBQowIwOu6SFmgfKaIgLTNalkeejsVnIeSqy0AzOmoDeeaLtGYMB0+SPvpTiYwYf1+KgnM5oPcjQ8RxZF3KsjaGDwT58ruvzOylotg46cZzTSU/jgfzH/+lgkB5EjY2mMObO8BWFbYyjicrW+4Oe5ELYLXfpSdK6LEFTh3kW6qspAZTUmxIWxaTnFIEcMdFyQym2nKp8val0joJ7HBYf95zQlHwKvM3CKQs1Ax5FV0olphkSmmeTP34LmgJLSJ+S6CNRlGsNZo49eILdGYfsI1O1eM62eqxzHWkvclLiVjqvvK5lzbiaUtx/NtotpltrTl07eI4GShNCywphqlVBTCvYwWIUvUT7GT/PiMdr8kC59ZQlO5DjwuOpL6H+4uEGtxPEjWednaIbaJ22EHeKBnVqlqJQVV2s81M0qM5sPdaUhGEWKD8JPE0WRS55luWhE8muQri6r31QsezAiMZKk5R18eOQics5Z4yNMPZl9BLnpPQXPTWdSya+vexDPSyIE8kq5mEBOjqwg0Xx3buE/0Png8Zd0cCSooBKGj6UwQyXqmREc6T9LxoaKu7HokKEU9ZEY/K+09obY97p42AOZ6s7W4JRMplL3GWhO4pm77QuzJlt23j5/ImXT5/59prkrOKDeilcauG+3/n2TdSkWiWQ22nMfuf97SeulydGH5p2j4Maomz19ZMeGqD9ODj2d9p+kL0wfQNL/PDDr/jhT/6cUp94f9v5T//xD7x9e+WSJ7N/k+Uvk9l3jr5TipODrjVc94wKnx55ColEJdULPjO9D56vn5XLcZ/cXhs+ndfjzg+/+gWfP3/Pdn1hS0JjR0687gefnl9gm9xb572Bvw3y5Tv+8T/9l3hSIT19UreKW1aROLSXcBjtUBM2H3e13Pnm4zwY46QRzvSYqkovkfDkjOZ0m6J2hWBzy4mKaX2uzzNL4J9sUgqwZXiq+P1KeruSqRT7xtv4ymg7oPu39RZFlZ3WtHlCtnKuF9Ewg17Kw/Y356gQppGKuPXLulB31DjPFW9BNc2JYgEKOazAz5SyAIKom5bto5a/Ye5ysdI1x1zYoy1PfA9A63HP9eb4kH2ujFo0QbdomnIygY9Dz330AIjm0J4xKDUApaAhadssepLumlrC4SfrDtNrFK1O3zkMQKJx6RH4VWt+gGpz1W0iCLhDKZMaAJbPwZlhkUVzUx1kXLcSd+Litsc6DEqmnmcImUsWeOZ6TT78PONLTqJKu+rbVDPHLotqi89edcfDztWTivmLG9um91pjggMKiBxByZ5xj+RcSJtCW0ek0mJiDcwZYNjUdMNnZ8xOOasnAs1cF9W6fKPIkLL/NDo6T/8Vl9wj/tviB+XyEJzONsOwIZ2hBAqIj2RKn+fF6CLJ6ae4FMuJFJ95pIS6+ON6WIUldsopMfKMalgF2/DB8IUmPhqEFWhV6+U8TLaq79XaI5xgLbR1gdakD78HN3r565ZcOUV2/hDmrpCLBw8fLKnLtPlYyCB6SEKeymXTZTK9MbuahRpcNYUBaWpgPmFmkoW7hw9sdJy7xK5RzKtbHvSzUDUaBN/VKVXWpJYSPSV6yfLzhQff1IyalbarXIOHf7pFczBskmciVSH2eUxE6quU+sScL5T6zPRC61CCDpIATyNEhAYZ8Y7t4ZZktiAHJwUXm6EabVp/THri+SciDe5c1VHG+7Lh++Au06N4/uCVrZ87sSQ/fX1u6UTyTlSPAetgh7BbjOCoMc/iL/uQYKkDSe4ZZsaW5LY0lgfymizlpZfQFMkSMaWqjJTRN+I87JirKNGz632GXZpEWeIerkZe7GTienEPDuQw8qYD9JzSxToSIiwB0gzHBcIxqweatgpzHZxad3Fek2aMd3tiRrG9LNXmJPQQeu7ifFp8fdjGTdbtpIu+PxKwl93tclNJZF0Vy1bWkOuLDSobtVyopdJOVOiB0Eed/A9AhUChalZY3BgwZvyMGQUgwaXN5xkzXY1xyZVSq6ZjI7w+ujjV5iEeLEoJ1jTHoWmPawq41m5oP6bcQojLMmUTWl+AcNGY+p/y7F9AUlez57ikNTkcpk77WW0TxcIPPN6TWSFP1wTPJn44M1Us9ziz1TDf/J1kq5GspLRRkpKytX8TvXVGF4CSkDMUESCWTHcI3U5hY5qdNBqkhGKXBskECGQLulJYmU7vKjzmAmsmzMHszuiN43intW+43+l91z2wf8PbO63tXJ5/INWNlKuoDZHnsCZi5MRWLlyfX3j69Jn78wvt/ZvOAzOuz1d8JXBOj73QacnxcdD3b9zHXYmdQ6P+OUQV2LaL0MLLhiXjuA+8bjzVX1Bs4HOwXV54/vxLnj7/mnL5zNPzhd4zbb/z9dtXqrXTbaUfO9l2+jgYYYyxLKwdnbO1XMhFNqztaHx9/cb9daekK6MPbq+D41Vr6fLphaergrtev/2edjhvb2/89OOPvFyf+fH94Ff/6K/4V//8X/Jv/91/5H/+X/49/+3/5b/lt3/1r9hn5u39Tr4USppnET+aCsrpk9Ga8myW4HTVINNDnwPHiPPMjJEl2l3nusCtye24qalDGRF5Cz2FB3lnJk1+lCKImfZm8SvlciXXKz1fgSeqXWEWuRT1g8Gh5tFWhRFuYrmwSGHr3JhnFZIivElIXe+dMSebiZ6siB9NpkecJYYooZYSmQJTzmt9TCUnRxO7iuWSpSVR0SyetyWHIU1SRtvCQec46yyNJjrAronOjnAKjlwBsfoaUzVJd7acWXaMZZOxhoAWnQXZdKbUVCNI0wPYEMiw9GG9N3JWs9lG53otofdc+Up6paplP4CzVljOc6onw0Z0GNZUr+LpfJ8rzyKFZsZMwNzt/WBOIoi1BBhtup4TmmzaozawqXsNonGbnX50GQ7URI6ze+wCVVM2tk3hr2uS0HtTfRI6TgVjDrovW9spEw5bKcZrSpy4XgTQlbKJtZK18vFBLplty4zRRB1c0KWKiZ8LUk8Oua0uVIfmqpY+CkYlQn0g98tacv06haxBYelxuJ2iVyM6sYnZOLv01O2k1jzAtHjNKZ2X+6LxrBTdHlxWQ77cve2MENuUSJvLEfO7Cv7T33zO0yqR1eBEl2ssgFXvOZnRRqc18SRPaoZmd2eDdI71WZMHXaZKlvTwYV9FxDoWljByki1EPjzQCxWW0UWGsM7XlGCOQLVSFEI6FFcwwxL8zTE1hg5fYYuACu8JD8qDucN0RggCU4Zl8dW7EtfEUR5B+RmUNCJdU4h72SrZJ303ifBSZU5RN2wugWtMJM6R5YwNJn6lfHcfdCIfUzQiRKdYa/PRXKVQyccoNQrH1XWv74Xr0huxXtbXetGYbdqyqXTyor64shBUBMX3jXRSpsJQPDzVmaIjbfWCBbLiY5yoj+V8Umr85Phrf7V2YJ7PwlCN7WMNrAmWT6dYlu5gCr3W60p4VwJsprDyGdTEPJrq9ctNyM0q9oRSO603tqucUXItlMtG7wd9D+u6MWTH50EpMVNC5ZzSzwQ9aFlEmq3GK0LTwhMd+JmdmwWi3Psgp0Qthd47xyEahvZxYQWtzCVsytHErHRbW03gZL/v3N7vbE8bxJjZ0fQv58QcsQYsIskNTYjSozEvpaz7nTn8PM98wmBNNIPQGlNNNzWk01TMp7Soe0HZmzOKkHQieI9MJo9iOAq0lYNgFj2Q3KmUPaCGNjyj1DQlA0Y0Cdpny/pVZ2cAGOsMj0khSetzRny6EyhUGkw6uXokLUewirVw3TFWEFiyjWxbCJMd9x4Ag1PWXpgTJ4snnR/UzNUslZSDtqGJ2WwDm030ACuqTiYhqpTrlNJxJ6NJ8CZA5B3vN8Z8x2ektM5Mo+lsN6jjiXK5QipwUvDW9E+OWX0MhieObkyqGjPTRZ1zlUd5POslthMgsTOOPZ7DBE8MMlhluiaa1+sVnq7c+06yjU9Pn7nWomeQLxyjkPMLubxQy8bleuXY39kuG1uSCHa5x7W+Yx6mCLaaDU1IHDVfcufI7Hvj65d39vcGc6ftjfvbTbzjpM/md7/7I7d9Mkfm++/+hJeXFxjwhz/8xJ//k3/G//W/++/5y3/+r/j//q//gf/69z/yV//kr+imz6w8gad8TrPcUYE6IwnVsgIwk5rABfyd098x6aGRSTnrXJ1T62cMURF7x13rPAUggxttDkZKzJwYF+Va4NJQbLlgyIFrWiGNRNsK+zWTmlO747nAccNLpvYqdL137WsguUnra3YKugV2rLNH63gucXtKNOOhKwvkfLiaVUtJe88SM2Vp1eYQYNMducHoVykP4xFZmEO2oOCirb/E8TNAWfcPsK7BOIFdFeIzSp4RzlTNnX2KjmYOxxjkqFOKO8ZgNLnvtTloXXqAWsXcKHW9zmiUT2H0Yyqes1GWwNWMMT4EeuZ51hyYimJnhLbRgroTQKYPSlEuEEQjhKa2uejcaW3Qm3O/O3MYl63gpdLagTOpm1G3SQqTAkl2dLZagAm1pKDQhi6pC3ApWboIaS49aD66D1bqsruaMfnqd3pvnBTg9HP2gLRkkNIkXcT8KEWhV+kErVfGU+xvjII/6AqPxfKwuFsuNB7R5T5E6RDna/mXcqLBc4YgwqZGUKfLg7qQFRjVWmMFQK1grAcFSK9jOdekkZglHqolnBljbS3gnHUg3O87SvCSGGf9MjPqVvD5sAx8WPHFEnPnaIcWUsDsfp5AnIhxb+LnfkySndNpu8brH4O0Yup/vn9LGaI705g7nZezxi8q2voYWO9qtkI6NiPxUIWIB5oWExMcaZedGX8vlcXrU0HRe2f0hwp/+dimlBWKccSoPoSDA8O7Otn1s5QJJVqJRXLxR2RxxhhdIONqCnMU3PqtNVW4Xp850hssZNUnsmqcjA7NexxyOhRK2JeRUWNEwmckCQ79PXxJTKPATypzFqL/QILGzyg6rOLWheYvJkVOGctCJCwmWyMNCNrR8HEWjmp8Fd7CaPRIhz0594gTnlwR0zBVIIyJWyR4xrrrMWnxWOF5FkpdNLPBPA6OoP3ksIEjeN5jCtnxJv63dDQWVCmJF1dIWgpqkDHPfZ4sqdEbOiRzTuSqgLVcqtJGg7I1PFx+BPNLgBwOPaMP5tB6MiwQ6aCGhMZnWXSu4lfg0ToIY+8G8LBtGyOKenePZk9x8b0PnSOWolnJJKvamyYXlemTLRW2p2c8Dd5vN8qbEo/bWJ7Kj8b9bM7XeRG6ixTairPBnK7n5aKe9dk1k8yFtG1ytZlqrL13UWKShU1hACkfpqT6I63DJaxlTXJcE41zbBzAiCM3G5vrLP8wCV1vav0slm0bERxo0ouwCmrd3h4OMx6AhKA/OwvWZZGYyHjOml6RKZvQxuVoJN1PxofObVH/utB/mwxfdqZxzWdRqlIqWJYbj1yp9E/qhbGEgqETY2lHRoAYTXQf+eTf1WDH+T3HwRxvzPGG0SLoJZHo+CyMVsl5MNvAc4W8MWbobfJKdB4Md/L2RLn+QN6eeXq+6BwdRmth2mDRYEYxVooxXNMcy5HFEeN33BQnT+JyvbJdrpS6gRmlXtUMUvjy9cY+Op//5IXL9TOtNwZOvVxIMzGOd6ZLNzbLE69fvuJ9hJeoR+Grz+fz5z8hbZ9p3bnvk313ejP2o9P3Tj8ao0k30XvHj8zR4HYf7PtkjEJvg07mT3/7V/zr/9v/nT/7q3/B11H55W//K77/00Hbd97u7xDgE46mNDFKMksYylnxsIwtRe5jq7m3qVuwz/EADgn3LCc878V/dp9cLlswDPR+R4BOPXtYy1ZSqadQMg1N15gKUioZjgzv3NnrRrte6Ux6gp5cHvhDdqWui4XpGaLInh+osGNo1WeLKRUo/LAabboyXnzo9As+vc0Zad4CT2eAT304s0Of4Q4YgEFaxX2cCUYks2pAsYaz4BFqxaOwNxMQZKYMkRNgjLvnw18VOj31NtscWNiPWg9HIXe2EMz2Fu57STannuZZN824Z1WXRZ2ZTSYMPmNSBsup0P28oUWlQlrQ/dA0p9RCG1NavmA5XJ8SuW6LxCEU3zgZG4gJyP1drMC2d93pc5DS5PqkiXVhMpM9QkpRTVNSoeQUmRMoZHFqKlvLlZI9dAcegIBsUVvT3Vuynf7/c05yOVEcFpVnDn2GtZgyb6T+F/0nxecb1r6jq5UzM7ZS6dMoC97/iKS3IPuXEuOCHsE9WX7YY3bq5aJLPC6IFJfA0Q6mO1stXKpU5cdxnIghs1OKXCxGBDilTQE0aRWBXRdQMamaxxjMQyhu83baLCm6Wnaaczrb9Vnq6DnpwXE6kdnRw4IvOKumYsQNUsmYJyTwiiTP+XM0H9cVUFIOtXmINubk+nRVEukehUfSAljTBtGCRS8wM8omXvziEx5NfNWcjGsk957x8wlqqbps4s+XzmBNDowoqMYDEXF3pnFSjhKyi1udUw7LzjE6R2/n8+h7i1FXCfoApG2T3V3WNpfWYIliHU853AIu58TDF7rcO2VzZERlXLaN4yhR9CeFfHkKKoXeB4H8prREjHKfmSFQMl9iuXkidvqcHwjGSriTYDnHa4pJx+K3E3SWoHroOT1oFeMYDJtQC95V7B33A8sFc7morLHg2A+OIXutko1232VpNqEdh0RhNsh1hNOU7Cu3UiluUYz4zz7j/b2TN3nOv79900GOeJklxFdrypRS5jh6IPdOOxruamZ7c2BQMhDFtgVMqRrWWPkTa/qRiigJEslq9Dqnkvfqtp3OP20fjNRVeLdGtiwuuIeb1BSqRVIi7pyDcpGPrxwChMp6cCuX97CF6FZaFOf9/S5xk+vfc66UXM8JnxJ2e9AznNkbi/+aa5HtoA+KZepWme7cbje5sdiaUGZyCcR7NaNjkKYuSTNt+1QXArXOvUGm0t3xA7lU9fD5x8JxQ/7HbsToPYXlJLiLfjPmZCxLuZhOLsFzKQ80k5gSTexs5sn5pKGJSyzAoB0dy3rP2rszRH8arC4ebMqaQk16HBHSqlgotjwmfz6TQIqk7+epQSpY2thKYTLIlsBLAAswGxyzC02L6fCYB5NBj2lO2S6U7ZmUL5hdIF/J2zOWNlLZKNuGp4qlSkmZ7IhjPwRwzN51ifbO6Dtt3+ntjdZfowiRu9Hod3p/BbuB37HQDhlXSC4B77Ez5wW3jVSupHollSselLkxOzUl/vTXv+WSM9C41Mzt/Suv334kpyeKOT4P+r4zZoKRma74YyOQ/5gYDYdcG2kMcrlyHDt1u/L8/ML72ytjOm+vN7JVanni6dN3PL98B6kyaXz+/heM5ydsNG7fCuWSqfkT92/w9vpVZgBzF/0MaWi+/+HX/Oo3/4J8+QW//+Mfud3ueH/nV7/5JS/XK//pP/xv/Of/8B+QlenB9emJVC/8o7/4K/7nf/vv+enbV378j3/PdOMf/+U/5d/89/9P/uTP/wlvY+PmV77eBhzOPIzuF1E8IgE056rinYJNOMIBZVFIMaNethMElBW0C9AINsGYk2qF6ha5FAp382zA1IRvTvZdeS+Xy9PDGWt0ZjLKduVgp5mouMMnnmDPifeaOb7/xL0aN2u0PJjVmT2x31+5v+54jWJ+TvKTGpLb+13WjO50JvkibrcmrgIj01z3dtSdNs8J75qkMZva82FkU8p28hx04IyNAAOGAKxtq5TMaSFLEa33ui0rYmfp03rQsjIGKTHTZLidk76lBxtjLJLEQ3hrsHeBDBZnRI4JLybaEEFPrj7JffJ8TWxboeZE7xFmF+DDpRQyOvNrrYHo2znNEAadT8RbdGwlw+77UEJsc1oPu2hfAaxGb86tNz5/lpFFbwctAj/bDeYwSt6YHV6/iopdq3KB9v0gpY393rk+wzGaphiuc/iwg2st4J3rUzk/t5zLyQjIJXO/3zBzrk+VOcdp4AKRe+Px4KJukhYkx0RA6cOy8z1CdCy3uJIhX4OaYwmvcLtpkpTMeL5ulN51sciIP50escvSzizesPEQh6Hk1a3Uk/YhikiMhuLP9r2d3KqcC6UsdEofWs4liv/GsK7uJwS7va9Op530IJacazq1ltgE86QxrNey+MqyTJrxPuxE+EUnGWcglS5qP38vPu9SZRtaOIvWE7X+SY/w2fC2XoN9EM+kk4es4nFRixZSlwItVlFrOMfR2S6Fum2kDEdvCq6YD5HfdGe0pR7X980lnzxhLZYH/391v4v2pF/LT9ZOZL23Dw3REBJiUQA7wUNetNy0uk5nCTtT8hNZV8MhdwmOnVQKNSmmnjEYe2M0+dRPD5GKDbChkfGiGQSCbCnENAsxtRmHjkdQE+fUZ/kOfww2I56Lx4QksbIRQj8w5LgzkCXZQrFTEbJAyhLOLGpMeP0LFVo/d8JMtCbPZNwVtBaqZcvhX2vhK4/oKN09BLe+gGshUcsH3tGQzSzGg0tcNhWY5TzQ8UVNmOvzjc/DE8szeJ5suQWPE4e4R4Nroh3FAe6ItrU9VbayqVCaBjER8NnEh5+OHK80Up4rzk/XCClLgNZH5+H/rIN4ZVhgagwf6Dgn1WjEZaIpWLwD3UbkrOkcM/bqye9EtLLklCqBtgf/c/SGFYNiohuFlhN/8PkVCqTn0XvDu4CIHJOKUjZGCu7/wgs9xH3ho0002udFadCOTgA74maHsHmMDnGIZ5O+IhnSv9gSmQVWqfFLnGGPpkC2hvEhx/mm9eDak3EmjiFEqXdC1KnnXoLO5xavDYmpib1jScAD4R4kPmwOWtMlJp8h1vaOT1n5uSc1st7DOlk2jAJxMyVvpO2K5SuwYSnrnPWuNWPl5KhiShTWvh/M0Rhtpx83+nHXP/s7k1tQpWJ8PQ5G/4ZzA3aMDjlj806aTejvvJHqFU8XbDyR5wvFVXjnvJG3QuaZS8k8XZ7ofYfZhBraG0skbaYAGwkk1VwSVsTGwGdfJRI+s84/lx0i07luF4njdul3SMbTp8L2dCVl4xiDPuDy9Ex6vlIt8/z8mf32ld6+cr+9Ytt33N9/YiuFeilCSUvl8y//kh/+9K8Y9onnfuHyMvizWsgJLiXJcrE1/vi7v8UrfPf9dzx//xtue+Ov/+Zf8N2v3vkf/9//E3/913/Dv/kf/l/88k//nLeW+OneOfJkEODQ1LGQg3WXPZNT0bSsd9qh7BRZ/bmck1tT8WeGZQFATjAKgiqq6Z3WfEKfrxzT5DhlJpMKUg4haia1EQ5gAi46kxtwmwe9OLs5t9bYc2Ns8oG/F+c9w5Em3Tpj7ux955i7ivGkiZQNpx+Tvd9JM7OCEZMHaGox9bJAoeO8fxTGLrprTNmMJJMKnxJnhnSNOFsWB30Jv2efpCHKSc5JdKSzHhBoI33TkM03uvfmFGXTYiqos2JRVKNWIaii616NoL0Zr3tNngx/UE0RpacmDY2O3rlNOSNerzWSvf0BKsWdV6to1fvRKEVnaGvSKMhJRl/Xh59hUO6EdiruOzP6hDw8Jr7O/X5QCvi0cPcxslWMypwL3FRzkXxGsJX27nEIiJMWK4TCrvWQEyGm1b2hyX8U+b5yDjq9KeumVmU8tSZBcCmFUjfGUA7LupbXFH/OIYvSqml/zsblUmKdDGrWXuhjUJImtSUbW84U1VrLXmeeI681HntcVh86i2SnIGgtoCWCIcbIS8Htznn5LBvLhbatv5tzkZhk0W18qaSTENqgT6zvtZBpPAoT/YfHpg8v08VXFxPAPnzfpaDOgSY+3GfOkbwRyG8/l3iOhgE4JxEjqBjiFa+LVsjfiAIZYIkMAf2ZEXxALbhVEKe4jEd/UExAB01Svfzhz8OByNbUeVGbHhtRjyZ+7gSP3beQyfV9Tg468nglDZgqbEbv+kx1ikYtqOmDz7BUdLA0SFbiBcaia51pdx1sqTPuN9rtxn67M9oQqnsyV1J0/XoeDDs57XmzoFxp09nQiHO2yeycvPZYflgKa0DXOJBV9EfTsZ7ZjEa2t4Xeat3p7znZFTo2pzjKRIBMsiS3jfnBLjM5JHXao3cRRFI+7TzNYbQum72kkeqItZtYSMzPKXJqBjStODmox6KARRbCmEr6HH4KaReC70vlP5zlOrG+/0dHGI1lQ6jmjyYw5wxJvuqvc3nbH+Scud1u9H0wjqAfLQux5OeVoAGBJk0We0A2nLE3pj5DgQgPbvNyMDgb2jG1+OdaH8FzHOH6ABIIu0b/gUGFtaWs2CxbUOXWhMT02wXLrwPVUlKhxXK++ECXcVfwcB7ae7F+xKuM4KEZ6dysxRiuRr5eU5wfoZ5N0RjJtz89Cvb0oSHFQk9jYTUbz3ZEI7Tok2bhuuIs2oMyBPSsZIk414uTV7it5x3PNocVZNAJ9EANy9EwTCdlnUT63GOkTiFTSDyoBNM70wabbSpgPUqFeO+z91OjkVJSmEuVHkeTqaYz3GWhbGmLxi7WvQQm9HZjtBv9eMPbHRsHyW8Mv+m5kuPn7fT2yuivuN+ATs0ZLxdSuZH6DZ+fyeMFT1csvUig5pM6J6VqElhzIj89k9KF1u/0/Q1LGx6F1DDx/Zdey5GN8DjuMm5Yxb3pniqlUsMZq9bKtRa6w3HctYSysfK6k3Va3zl64miN69MnXp6fYEK9PHP99In7+5W9HVxa5+vt4PnlE7/97W9FqfPEn/z6H/H0/Z8z7InvudJ7oxTj/fUL/+n3f0+tV/7RP/4rvvvhO+6vP6ngyMZv//yfUJ++g+srv/zNT/zrf/M/8Ivf/jWvb41pF47RuB9NU2NZeHDSzT6AXHO4hIjBU7akScY8za+0J4fLIWtMl+Vz0F7HGGeOzRI7jym3qxH7JeVKypHfkBIbVUWZNw4f3Ebj29j5qb+z47y2g9djp82B98Hx7SfGfqfdX2nHO31/Y+7vtHbHfZAzbDUsIWeiMxm+aYIwU7DYVtE2H+qmE0hxxkJzhoCd5ASHO7qi6Kltck4QmaLDZtIpJiUQ6WRQKwF8hsMbOo+JeweLWmV9KHFvJou16jPAxsevld+x3kOU9GcttlD/9TGvt2WTKMgzZjOaWuQ+E+erqNojaNtRFAs70p/PSFOf634yelcjODqQ5JQ14zXGNUEfahzaFKJdSiWnQqedVsMApQTVpmgymnOibjKOsJnjnUYNEanmC5C5ZAtEnZhsjqizluZCoGFrk7oV6VdyUVZLBPdhk9M/3IKdgEdArwTAtUSNpXens2xOataaNlwJ2U3ufQkoS2ywEPUcVBAFPMmO8Hq9amy7q+CswQdr+3Hy6EsRooVlBcWkTJpaqIsfZm7MNoOvX0/ed6kVC4rIQschRbBJRA7D2QnBUs+n4NcHXzglhdYkjaG6dyaTYrLEW5fpx3jydelKpRwXbxzG4GFJp8MiemBIWgQlqfDrTYLX0WS5KZTKGbNRsqhJSxCkrSZR1kqBNES9yUGFwDW+yjx4iq21R/NB8H+TsgVBIpoUr89wehsnMq3nZxo7z8UJDFTAF5LgYduoamP5b5tBn7J0zLnq68P5SPHtOojO5/hBAOVDIVgw6fNgjBvt9pX964/s72+0/QjaxrKm1M/OQ8ENI/i9k66D2pQKKx6in8I2ppHCtWUGSmv2EDQtl4KFbGbk/9/CQ3c1EB612Go1AuikJDVIPh25FoxwLhj6DEMA4zZpwfH0aCJHEBbdlTA4gRmcV7co2O2B4MyhaUkOsfjoQ3STqSZBLkCcz9gW394Sc+qwGF30ifWZJB7pfPrcA93oD8H8o2XUfpuL4pVM1qRzckyY3dnfJWLd97t0GHu4Fq0pBWssqTdvMf3yKUvZWmq4KwScHe/nbLimR4G6KGVRHKOaEIK6NNYaF/2jDaV3+nBmoNA5WbiBSB9paQlH9WHPOenHjAI3zoMegXxpYVaRrbFV3EKsPhGVqiNx1jHwHkjS0GRhJj8FsdMlyHZT0a38ABXcyZeGKQshSiY3oUDqzU0hLIKO9LoRjQZkZLj4973P0+M7lYKTgp8uKl1J4iifRgno+37ASOKiXwLgENQnnSvu9kAFk1KmR9ZrtJEDqXZWUI2j99bnnTQS3Y3pI0bSzmUzqjslXL5sdorLz30sXYJrssLozGlY3nDWuFoC9nHcaMcb/fiK9xvMRpt32jwwq2z5gjv0dqPdvzHGGz7emb7TLdFrpW5Xir8DN+b8BOkFKy2Kat29PiZmyhWxciVfrlhN4O20yNXUsDH6ndHvogvNxvv7G29ff+Tl0zPXqzQhju7DmhNbEZp6f3sjT01CrA3ojeydWjdqlc1xazdmetJdZIV6/UxKVZPycfD86TOfvvuBP//Lv+ann/7A02Xj13/2G56fPzHdGDNzbzAt8/zLyv0uL/d532lUIJMvn3n5LpNTZb/fuT595r7v/PH2hf/p//O/8q//u/8Hf/IXf8O3lriPwm0/+Pr1Tt4+YTaVO+Fd62XqfjQ39nlwe7+LEumGZVEpLDjZOYfWaSjc7GgHmCwHpbWL6i2tXAxjpsRIRkeiWa+FXAvTMt2dtzF4Pe7c2533441bu3ObOy1N7j543e+8HjeO6UxLpDnAGp46c5Mz3CRBqpQt4X3Tvg1r3H4fzHClWnTZupB0olbqh85FE5VvehhwxLmcZnjxe9K538c5GRtMmotSN6W9F50lpqN5GZ7gpNlZKbBrjwtoiolcgKtiJpRzspCDyprW/l9n8VyA3qPQP4FG/znYWOzjuQRMw0emH5P8JHpgCgAs54yPwaBH3TDpK7siBMt9SF94vSbu+0QanpjYu3J5RBnhQe21xfCA++2gFKekwjjWXZQoNUBIm7x8LqQkVzoz+eLnbBzHu6aKlukTWkOdSh9kVPPJZSeR06ORnwEswpr8ymGw1ho6uSQcLKidc0Lrh6aXpUSYoTSIJUegoydqjrqnd9Vfc0KOz9aSjGdOhgqU1hofqSJ9dLlrBHK/qDHZwys0Dv9SMrMvpxx7FFNxZC2awUeUcCHrqo/TiYQfx6FDaaGKUUyfl3uIpjxGRYqG5ywKVLCnc+NIrT7P9zRcF+hy1wChba01arn8F0jmQuPWA7MphKr1xuVyESq5bBEBI4SNUyjCR4ec031ifHBwCceTPO20JzRSbLRJqQvBV82l4KbMyQWO4p6UaO04u714OtqoZcPQZzL2Jo5za5Gw6oF4rg1r+FBKoDE/oP9CoaTwl3BV/qpOnuIVr/e5lOHqaIcspIjUwOnQGn680+83jvtdtJUpGgv+cEuRw4uRfaED6lqyFSH2llYFrjCj1sizYF4kNnUXPz49EPBFR7B1Q0PwwvU8FwV/0XpOahNa1/v9kN9t+CKPrgjuOSe1lih8wLKLJqPyM9BhsQuJ57qK+jGUwEqSFiJniWoXrzeZsdJzJ1BcKb9rstJC5LY48got+flhTBTDbjz+7KMrwj/4de6DZKTHBouv1sHZ90ZzjU97i58/XYd6LrB8nk00HPnf6wmMYTCG0CcPqzYcsxxi7ZXN8OBbLp2ERWN2OkuYn9PBU/T/4abR5xgWuSVTqpFrvJYUUFgg2LZEyXEYixehwvEfNj9jqIEnSVSnNa9JW+/yN55hIyer0IEjVHK56JhNBTCxRm6asImn25nokCalIDQRtom6uFgy+0BoQMj7NE0qnRiru67YESg+C8HzRTmKKeOYpzgxJ8NTZjklKbBJ5+0yCNB1IXTPcVLwp6Egrj1yhRn6jM3k4yzRfXj1B+Lu/ZCQ8MhqSKcoBgud80AyWTqoASSFGi1E35iM9s7ob/T2Be/vzHGjzRZuIZXuQ+4p3kk2GLMxxs7sd03WvAMN7MD9II2G5U6+mFymPAOFmY2cNqUOg56LaU/3edDHTjYlv86x494xG+zHG6+v33j99kqphZdPz2xZxclxNPb9Dl4p5RqNQSclx3tntoPRd16eN16eK7MYt/2NfN14evlEvTyRciWXCylXRs9kcz6/PFFs8Kd//o9jImgcyNWnTZhpsAdlamYFItl2ZXv+BP2QsNMTkzskaMPZ397Yvv/Ef/1//G/4y3/6X3EbAqTuY/L6vmPIEvI4dumSStD0olkX9XOGo4/Oz6XTkpuWgJjVILp7uJ4IvJMnLpCSaF84wxR01lOg57boLJ3ug/f94Ot+59+9/cjbcWOP38M7pSZKFSA5XXSVTCJlGJfCzJOULrKrrAnrlQoqoF0psgbst0a/a3qZkwLszF3F4Bjstzu9HUK+TdN7MRXi/bvC73LcxXNoSjqafrfc8dwZbYoWY7G3nbhtogmPu0B6GZ2hyXQH1QARbNUQwOKKl7wAGNUyCuDTJGRGzga22BlqWkQR9JOPj4UjFOusIfbzCKAuMlMMjr1xHCqm171sBnPubFumz2h+TLbqNW04B60nZg+QJg2ZDKypqFn8uWqhFRA6p+jOhtxvwCmFWJtQN8hFVpW1FmQGAyRZZLY2aW+T+30yD8cGXKvjNZ207RMMjvJkjB71rYp5OTSq8B5jchyN1pQN4IQOItz1RujNDKeG4YcmL1HbWRjJJ2nQLD2cLrWWVIOVESOY6fIMPp3shwRwOSdxkeYkFYtYXo016lZJJieLiTOa0Ita5AQzjq5NhqzdLBnbpapgHePkUhN8U+1bC77rZFnFGbr8fDhDk3O24GpOn/hYXWo6R95mi/Me7yOpAxLPXofIal7G+HlxDyH+mX4KXaS8TScFYDUaxEatqVKr3BRai0j5sp1JrEdb7jQR/mIEcvv4ZVFYOYEK23LmkFBNG5GzaJwu15DY33LgCER7FSYLOYsvEQ1prM5yNU6BBJQCHp9L9FhjcFpopjyCYjIhqbjFTZfy+gHRVducpLTGfjN42f2cEC1kz+aiCKkocZ+MhC7U+HfLrsLQMpY3zS7Hss5DhSF+NlAnrSU9miuzxSkMRBhCD7LENyMazqXBCE1FnxC0DDmqJDUgWgQnJcZtUlFhk6PpO5Nw4+dgKLF3fQ4+RYsgPT6jGYFmlsiWdMjNQcdkw4nT/Ihx5oa50Y8mXQBBM4GTCuQQlKNH04nuxrNwXZzHFRiyiuY5Y2GsvZEyPdZ2CV9nzPAsv+5gf6ofcLVmKQVPNoP1AU0XA87ZqOQlgp1a18t+7UyDZIlsHwCB6CMakfYxHkU9usiGO8lC8DUNUqFsReJTwp9+PetAZOfUfmLpFVg/UyDG2teWHtO1gZOtyqu7BdXHiX+upiQHlz82SFycH0fDcsPQRMiZMaXxVY7jPmIEn0k1RN8mXinonOrh3pHC4UkDZYmNVWSvXiymQ4u2Y0I/fa5nPugWASqVU0uzFFeKtdf+dpzkiMucwurU50kNEuqd1FAM8fx7lx+9udxJzBtzHGA3enmjbk+Qqiadq8k1w+cd7wdu+UMzrvNov39j9ne8v+LjBvOuCduc9FmYaafkKlTSORur5XY1hzH7pK1UzTGx2qPxQ/oMh1KBCrVcsEjwJswJlPQn6gHWwDo5yy1pv3/jvr/TfULOXJ9e2K5b6BLe+PbtjWN/5eVFFsD4F3Iq5wTNDC5PVy7bhbc++PrlC88/XPn++z/l+VmWmMdwkk1SLmR7IqVObzspQa4pnNh0Px1Ndqb3/Y2n5ycul0JPxhxXnl6+Y9zeRQvqsB/OHInebsxy5X6/8at//M842uDwjpya5FBVtkJru4rblCgFZHvscX5qnWFhJxhTe91T9VxjeNjNGhQXzev0R0cOLK3L8rMN5/DJweQwl0DWG613bsfgy9srf7i/8vdp540bw+7MuUNvPHlmm5mn7crzdcN6rOWSaPMiE4qnjtFJPrDRsNFJc6iAymHRXN8p24EPP8+OMQYeINYK01pasOEuS+FU4o6aJHJMP2EzY5vS5hy3nTSdMif39xvtOLSRh3rsFFSwBVLZmhb3R52STBk0ZrKXKClz6OATU8ISfXSO7tQMOcc9YK5C12P4HUBICvBME404fm39vNV8BFDanduA19x4fpLVq2Wn9Zvqyd7XYD1cmDQdzEVNhy83LBezRAFbHoCq0QnB8Kkn5Jxa11KYs9HalAg1lyiEB1vcBykP5SllKClqxDy4VFl53iOheXSntUme4IVTv6np6qJ86/mXLBOK1qRp+Eg38pTCEMNO0xFLqkHaGBQT/Wqrqr1LzuQcQAiDdLkob8iMoymM0rIxjqn6xVX3lcEqaqoKJlvOAgvFFuqsO3GG9ZIKZcvE5joopXC51PMNtnYwmBEYsPzsg0uGk8Mqk5QjECfSBOcHS7b4G3sf5FLkHxohV8ldWFEV77X1HcuE1ZIuOUuEF21cun2w1YpZ5v39pos1hVdtwNirCbA4UJXG8Ii/Hq7XYhO6t0C4dYlOhoRC7kDi6J26XXl/v0sgWgpj6GfkOcgDRZ4HBzVl8Z6nTH+FoDcV646cOYyHKHQ1RQpCGbH5NLmglDjUdaG1djCbJjKzz9O5x1kTjYx3WWXlXLXZ+5CdqVXSTNAS1iHVSUmy9cMTPtSuHsdBRRalOQ+N0Ojn6xUt28AqpV4Z22TcG6MdpBPJFBVpnwM8kU2uTPuoXNjI9YLZpFolv3ba7Z0UI8t1YaziOcc0YfQRhVRc6EFHmpM4wKJpHSEkPyc5WoH1kiDsM0UHslVy4ebkUuEsKIvQqegAxIEOikM0qa019tYUVubOVjK+D/qcarbMaHvnPqU1KXlTkzCIIjrRW8OH0MjWVJz0rueri5B4X0l8xNDVgId9ltF7iwa6nDeqxDl22tJeLpXWJQ5mDiwbW11/hiZYz5FC7athDIqcRaIeg4xCuzz7KVRPLlTmuN+ol4soHiOa0RkgQzT6arY8OKPpTDxOlk6EZ7kjlU3c7oYa0K1upJJUDKBpQu+Ty+Uq7mNr8mgOHFxN4pr6hdVeNMwr+Xch38my9sEsjN1DLJw5jrB6KwoVWaPTESBHCTeP1nS5plwFgiyvunAfay7h7TobFuVSzVoKuo5aGp/rhk2kmYQyYVQTJVITN5ejERZhahKJiQ65KI/H2cSkdGGMGNOnEG7ZmmoVLGVmH/SjcXlKeIpzyGHuCh/LhPvD6DB20tjBhdzex2TMRXNTkQABAABJREFUQjWJodM0WpL16yRhWz19wee4QNrI+YKT1fAHXWv0XU44403Iuw2SN1LfmTMxfMPKE6RNa3RWbF7BI019dmbPZDd87OTcScc7vn8l18+U6y/o8440N0b3K2UONbRTmRYJabS6N5Qc3DFvtPZOKfD0XCjbE8+fX8jXF+r1Mz98+iX7+Due/Y1+HNz3g1oal03c/tYP2qECmvJMuXzH3G/Q74y3nQ25ksx9x8K+2pjUJMtHY9CPnfvxBvNg+sH9/k5rB70dbFsFdnJ90tnlcCkbd9slwJ/O0/XKt5/e2d++4PkNa/C7//S/sb38CfnyS3AVJj6cY9xYmo4tZ0quZ3PsJrrZ+36nTwmHK5OneiGlTKfGea0QwGzwtJWTktq8xRRHhVI/4PV+sNO5WefbuPNO56dx49uxs+Pc++TonV477/6FNt7w+07dO9s0tln4lF/4XCov2xPZjUrhkpXWOwxuvnMb7+zzYMxOO+7c7jf23hjd2XuDPsnHm86mXGkjUqTHQZkHyQ/m6KoBDDVAnsj5AAvTiGAppFTIkd1gNeG24W1Cm4ztLiDJjNwndkCNO7ib0Zh0U9NZH9gSPmRliTvdlNYM6GelwrE6g6JCOU1NWFOGmo2SikT/Q5kHxTKzu7z6i+6aHg23B+gz4z6XE5JzDCePhPfMPjbej84YTh+imNQMl012sskmz8+iesstTA5ZvTcyxpYhuXHg5OES605IprAqpuPZaL2Dw/NV4vZj72yb+PVM1UPJDboMEVQr6N8vW8V9cElgTdTfpIEjx4DunXx5ps9D7AuT1nSrFbxTEpStCCByfd/toud42OC6FebMvN0O3IxLTRzHYCuJ65YZvZHt4PPzSwBhFfdOyQZF9/hq2JYJymIR+IRSyoeLPT1CQ9bo1MjBBddINUfRr+RKO5E9FUOLI6Txhrl8hzU7CoHuElKkGHEP8Z4f32N976D8lMKqG0agspYl8lzje3HuH77zi4NlluPybVEARBFCj4tMxeCKiBaaHIgmgezNR6If0XT4og/Ee85r8ZNUxIe40YH9CPtJIyxGJ1iR92toM1ahOGKSoQ0ZrWzShefx2s8IZ1AHHTHPPsDTw0Fm+c7DYJoKXKHCQjlLdHgLMcXVuJ2i474QqVDzR1HhFmO2NMmpBOIX43eCx82APB4CPHVJ8p116FvDSmFi8v2OTpV4T312Wp/kWbEsaKD3EOa4xoFidOTgVxNiSE7XkT70vuPVq0nzGJXOdMZXp1jvvS/v93RulkUvGb3FZkqynVqF5dJWjIFljY5bBPIQxd/aHYZSXH2o4MwW6Osc7LceSJcF71te1Bp7NsbI1LCVnU12bSMisFNOKlDJKlBU6ogSgfaMeWEFyK2QtN5HFGhrHyzNxEdheVCq1voM29uH7VfGaqYHCruocR4TlGkK7BpEIxr7fsGnJWkkPqc4gpYyecCc4nqP5OLSdlnYpsQpYnXX+mNNC7R0dL6EgL6WSt2SEhQjWVde36K1jelyIhkKhxEjoMQ+iyY6qHYz3C98DJiJlKpSlBkx9Ynpw5BuYoRuRM2JVII5B0gQQtM1bZyBaK+wNnPwHpMtk4ZnhBaDvJBFXRqzLSpTrAmdSvreyyvcH8jaTB/G4J7OPb0cFxaVSU1mUGGYkSUBlnRGYrKotemy8hud0Q7qy5PoMibHlRQofnbZF7Z2MPsOyOt+eIeZcVNDkkl4KqyQOLPBSDAxhjdKrlB2zDM+NHWdTGZv9LHTh9JJzTrJO94OfBjYAWVi1SGJ67tEmBiarpCZXfeSp07KjTzlHtVGovoVz99DaaTe8KQ0WHNRa273HSeRy6ZJxKhYckq5cNkm4xku7jw/f2a7fKJ7ofXMdvmMs+H2innlsiXqpRBIAMOMXCptOO+7nGVqLWQbvH35A/3YuT4946VwDLnO1W0LmtjBOO4ct2+M9obT6O1dDjX94Hhznl4+8/TyPUeD/d5kkTruzPaOjzttf+f27Sfub1+xWmFutPJHbt++crVnsEzvKdxxhnJJtizE0dLJze5BMcwlUeuTHK5CdGbJ6NOVQNuEjuvYkVg75UIxuaLsfXDvg93gdXa+HK/8vn/lx+OVV99584NjynEnkaip8JQzeSRGrnhxPn33iZd6FeHBpO9qjHAuGXzbX3GvHD549zu3cefebhxtF/VyilrbxuDooYsYhwCcUvGtqhDcb5Dhet10Fk5nWqZcn/BxcD8OnH5qwjCh5tlEQUteSB7puu2QuBTHwi0uswpqITrKMAj0fGlpQOJUfMWK0ONmsgmp+znR8kDoF3psSRPSM//C9D2ljTDyiOknkOYMMwaLXA+BETmpsTgG1KiZ9jl5OyZHi5Rt9DXDNTm4ZKMNWQkvx6A+lAED0hvmDHVO0USLzswxdSOUAtsm4CFbOBgu/abrPtl9MGembjk0Ci5dR0kkW4wHFd2XWhm9ifqLn9bIcy5q0TI3UT1Ya9TMM6g3rqnoVkt81DnqUTEQju70MblsxnefnthK5vY+IvjrQT+dM0u3RZyrZQWVwnKfsyQdalmXtegMKmj1AsVv8yl/WctOKkI6T9QqRuoK4wi+T1pdulbVCG7lGqkvocY5Uk2J0yHFYhwe/1y8TNVSKtIkKIwOZYGFHimLPd50FCSWjJyrgo7co2mJEKmk0W47DmrdwtM/vn9ScqxA3GhGzE7h7sdmRu8hq0OMC9RCwe4xYlt+93PFos8ZTi4qMsxl35XHVNH9D389fuRJqxA1x89/tkPaCQmOJq33M9k3ZTunISud9PE+7Hwv6586LOJs/fDzVg6CGdATVjUqjWoBolE5Q6zIpKTRl7kEYu5G2S6kbSNvlTkmqUqkbUREcx+0HuE/8fr60eSu0DQZSDF6WrQMSx+E20SRtIqcWE+rwbEQGlskKPfekfZEazqlj3oJBxvn+lt/9LEQzhFII1HjiuGOJuvjx7doD1FQ+BDdqYUTjMW0ZlGq1kQAU2NC0BvGaGpkovCSZafRjxhqx2BnsUCsDzWdxtm8SdAUabn+WM/ZDCyT0kAmSY9nuHiEHykROQ6WCSci7wa0sHVE1KWxvj7ra7atypoSpGOJrnZ27ZMeZ4plKDxcdM7XGUnTEkLP9elg2aib9mopiRK0kjl7UL00Fi+lMIbTetd+PN15+nkOrIfpy8pwKqNAWog7YCGmkihtRMH4cNyKS85nrEktoDnlG78oUfPDPss5Qr/QOslJF7PlJMFmyaRaSEEBTClFAmtnpY8uatr6/ovStKaBiwefDYnQElzqhT47SwQLMEcLGqDEXavJWxMt94m5XF/6ced+K3CtZ3NUikK8PCapY3iEjkmkmrPjfjCm4SFS9VLJeWNm0bmU3qKfp6nZhL5DAAmjNfrojCG0vPedOTU5yy7K3BwO1hh1CD3NS/TbA1gJF5/wDu/hcJFzIs9E9qE11MMieU0+iyt7IYGTsVTBNkiJ5EPUl6HAwqeXZyxf2NsB6ULdXhheyOXKdnWOBpNDDliXjXrdyCWRLwfbvuMmZHbvDZJzvUoEeL//hPtOYsdK1Zh+uwJXjv0NnwrqmsdX2v0Lc9w5jjeOdlfC9Ji0/Qtt/8rwwv3e8Gm02067v3F/feXtp9/x9cff0e+v1KcXLF3x453RbypCLYrJmMpbFvBxuV6Fhka6qpKQgyYS4AAxceveaEyO0eTc44supaLn+rxhkXlzb52vo/P348bf7X/kb7/8nt/ff+JmOz1PUhXoWCe8pMrnknipT/DyG/q10bc7L09PbJcL395f+bsf/8DRD7btzqfLE94G72/vHHMqvMo6fTaOfsd752mrooT0QT8O0tFFO03gKZG3TbqVPiD270w6mwzx9Gsq9N3YpxDtKBziGo1JnjuMdZ+KZphKZpJOB5k0A8AZQsyHwYhp8fTw0zfDipEKmqB/oLBMgqY3PWx5H8FX+odJt4LOCpXORrc1zVvarIl1KKbzZnRI00VbDFrP4Y4dOwW4t859dFrQsbOAdHofbK6JKXswP2LK24YFPTdeT7gFFZyZJ20eouhONT1mxqVmtlqk8RgCzXpvPL9Ulj5t0bJTfFZ58eD7DECpcL2WoCELaNwqXGqEUSWLgl3TTAlao9j3fJ7r+qdqkRy6JoHJlc2zzkUzXp6vmEFrmmCu5+9LQB7NxHSnT1GgxxhiitS40M1U3J8UmLjEuk8Vu2M5UhRKEnVBl0eIk6KwcwOb4yzkx5Bbw+kzrid0FkQ9LtSVUNvpcbl+KMZw3BIrObKcIUpa6G3veDUKKlbXSPnjJCENNMooMFqLomTxrFexYKdrz+kYlEXtWM/GVirlKQLWZuyBopMsBG66vD0ttM8pedOF4M6l5jPsKqU1MVk+z+utLZgtnFDwx39E43xzoUt9PkKLxggxqIcdGH6mvqUJy8J0XcpzCp0zU/HPWbBxFggryTfnsJkKqkYJxH60GQnDVZzVIftIHUYJXNqLlESL8HEAiVw79fpMay0WoQ48XBzDEqjn/tYC+XTm0Thud8oWR9JEFAbWazcWV96DFhWr4Cxel9uNPqZwG4qibE1+PorA1+QmpfUNRJd6cL/X+89CD1fTGHatxO8Un4th5Pg5vXWcSb5ceHm+0FoTmh46C/E1pzipXhhNJ28uKV7GCrSaD9Q9OOuiSsYJfWpookhbiM3av74aHXtoXHLR5+kSg864mM9JWUqYbeE7nTAujCmnq8XX15KNZ5nWORA9is2YBprG06XG2SLazojQrTFl+eamonaF3p1OPEnfc41EVcQOLhedB2XT2hZNIKzbAsRwN9qIDA3sRD40qQn01okPMYJhCL7whFOY7IaZppVaU5xOFGuveZybY00PURAJ7rFn0mMtHv0sxlPYo3kUt7kU6vXC9rxRLnIwoTeO98ZxHGeOhxrV1ZxG2FakAa8p6Io+L0lTgMt1I/WDo93xVd6bh53jCG1IrJGUTk2HzlxZPN7cGbngKVOyAmr0GGakNXft5yZ7TD10CWqphXq5ki+fyfWZvF0o9UIqyhhQ+KBSn/vsQurbnXa8K/nZZEM3uqYr2g8JejRT1vB20MsNWSfJdtJyAcvSK8WUg+CHj+SUSJAtyRViFLTRUotcn8Jx5LvvfmD+5i+5bAXmHZ8Hr1//wNvrFzDn+nQhXz6ztUNCa7uyXV7I9RPbdeMlPfH03Z9Qa6LWDLNTt8TnWrjd3rnf5S6zd/G8SwZzJfHu9zvH/oVtE4ru3pi2c7x/Y/admZ15fGMcXxjtxnH7Smt3jvZOqZlb+5H7++95fv6Bdjv48tMrs036vfHtp5/43X/+z7x++YK3wdOc5PzEuLyy397Y76+QjdE1YbcQ0euDTyyuvTJnHm5qOnNFW5g+uR0HI1dlAaSw8g37LLPMbTj7PPjpfuf3X7/yt99+5H95/yOv7c77fMW3ztNlE2I6uu4US3y+PPHd8yeu2zM+Ng5vvNU3HONt7/z9t2/8sb3TGKTj4MvxhrfO0e60NHCTzWDYY5FcFDQm+N6w28HWtZdmraTrE/npytGngIStMsdO652nmnl+unDdnsiWuZMoVvD7O20cqi6LmsRcNt3FyWGfkJz6XBlkbrvR2qGplk9mk2EI7mFha0iPpun42TfYsk/286wD175pFlk9ARpqG1CSLGhbipRdU90wTMPwHLVjcm2rZaddN6PmNYnWz++O+OtHP7UVaU1yMXoYagx32lgUaBXQKYt6lLOK8qNP5mjn3T5XQ5Ji4qDLPCiQ2k9uJkeqPuit04eeQeliTFy2DFU6EQEzfhoabGUyL3JInO5cN/j0Uvnu0wVQGjYoqTbnTB/GVjc1YX2SS1aeQFColwjYkzSqojDJQUsNwGS7bFFb6jNtU25o2yVLQ9HHSbXCE7leda5lmY+UFVGvwAAtSI0bZtBmpBx2h95VrSwENwVVRBxe2UueKHcUpIvmoHS6EJn8g+LppIJE8Zpyic/78bXr562upTdnhYQIFStB9emkQBd7nxJKpAzJFQSirw4RQ+L6/2Prz34lyZI0T+wnZ1M1s3t9i8itqrqra6YJDAgMH/hAgA8ECP7/L3wmAWK6q6syMxZ3v/eamerZhA8iatdrMI7wTA8Pd1tUj54j8sm3LKvbah7vY4WBoY6OhB8iVlXvwIah32rorDUAyVD5w6f8gHixBWRepMHVzuKd+WA6/SZ40XgUUnOaFaU9ZBbnbKYRdm3nGJ72dhy68YGYWwPjoUnTbLw0OF/ZSq//iCgfNYx6AXNsZhKd4+ijMXVvbcXdVA5YUb1hMmGpuZEEbx78fqaMxIiGyOydvJwozVyScogsxTrjEXekdtLe6cEKktEnow3aVumnDDLprdH3xoNvgItWvWA6vlOQw83H7l/yNTu9iZr+nW16pbw75fxwaY5mhWNy468VTf0f/PqYNZ8j+tM/mh6C5OOFjumGXa/ZBkMih2D3oIaZzuWYRNmGaei50OckZcwu0WcKj0N02DjXdYK2wfk9tX72PY/C7CWFYw84JlOKZ0P875pBezl9NOXmnqXOzcw2RfFnScQQ9ePXx/TKmodAn2bnNcag5IIesxFRJCoylRC9IfgB2DIxnmlcxJHzo4m1BlzJCy7kc/eCYHz/OR58PZrHkB8aFj0+gU+E3GfhsU5wbFKHHXLRXTLmnIbG6g9IpB+0iFERDgu6qZMkwRJzEXPCOCaJcqRzWjFuoxBvlB1AiTlT1hOnpzNpiQyU/d4e/918lv0Jf0ys7LMc9BN1KplinFWJkVQyMUWmJJJkd+YxYCQ4XiLiGoBxUHsMoY2Ki+xsUtPq7k5dERVDwJmNOXam0y1kmn+9SieEgVBIcaWcPlIunwnlQsgLZVkJQdFRaW2nckPUqDe9d3rb6PXGaDebEIxpTWx3xyg1FbCqGjivwZI9g0BMSMiEVJBYEIkPT38T6auLIztTOho6cbHzIOfk9s9H+CGkXPj808+czovbX+5cnj7y2y9/Y4zG6bRS6w3Cnfp2Z6vC03qirM/ERXgOkbIspBQZs7NtN5TBuiSavhDmG8TuGiGjRKE2ibjf7Xosy5n19EQSJclA6KCd+/3GaG8wq9N07sx+R+sdMJCmdoW203ugvr0y6qTdG7eX7+xvd8Y20AZb2AnxlbRcqfvdfPhDRmUlhExMiZAclfTp4nAtSAxmSa3h2BOiT7Ls/O9aPRBIbN2BNfYl8zYaX+8bf7u+8Ldv3/jX77/wa7mjWclB+BBOfFwWVoms0feCGFguZ0LJtAb12rnfKrfaaW1wnRvfeqUt1pCO2dm3HZndQY3dwIHeoTXChOTGwgXTE8Q1EYYww+CmO12FsVUDb2wjJ4RILoFP5wsflosX94lt2fn+9kKdSm9Ajki29HYVoyyuJSFpIi1RUqDqNFcgCSgdtKHB9A7vamSn04XuAY/KYY1nxrn2TEQHEY7tCjdFsIm2Pty95lRkmEbCNHhuuxjEtR1GFczBErN1dOPFpwgJaptG7ZmT2o65oEA8zgkH3hwwmBiTe2vG/Q9iZ5EAuQQYds6M9p7pQxIHLSClQMmBkjPh0DMedE2fLI1uk48YhT7MAWcp0esYo/yEMB+18Bw7OSqLu96UIlzOGZ3NmiWOUbnRzI2C7lbc0RqrMbsZYPxAKbfaODFqdURMsFwNfewtUcw8YR/DGCLZMgrMrtiAoxAjOUdabaYTm4N0CKmOLg7sg8WQaXT2vrNtOylHlpgfxY+4O8J88HyssBS1N0rROMOHT9KBrI0+Hl62dd/NjjJnd2rxsbQHWTGORFjlELTpHE5/kIc94ujdUFW3QYohmUtCa48CIEqkexKZBGHfTSx6v98xjYClpvXeHQULP/jCmnvN4c38jvq//xg/NCqKHXgRKyhisu5ouMd/yjYV6dO4ZHEGs5CaxpfTKT/QJZTDx1yHFfhGOHcxn3uVHw4u5mFsFpjBw5aOctVoL935aoaqT+ePm5DYqTuOfJvA9Qd+h+qDViJezKhaUBViyZGPJi1EciqUtBJiQVIkhgIpo2MQ80JeT5Qlk2NkWYrxjlNke72aF3ewps0OW+Mx26altDY8B8HGtgwf//klMzTannwrfD2sTAIpF3SOd4TTC78xhze6PAr2d1pWMHFYFPM5V1uHjymI+zQbVUYZU96vl84HImjBE9YUoJ1eB2Pu7pHtot7uzWMKD279MdbrdTC0c3hay9Gw6dEsm9e6hVZ5oeebxOEfK96hDSbxh8IZUadw2bN63N+jQT+K++N5nlPZ6w4ySPk9ORL0UQTpMM54TsmKZt/Qeq+Y1Vgi5cS+V//M9lmtSRzE5Gu/m06mBHPemjqcu2ubbXIBuURYFiv450Fx8qaldxPEGt++PygwrfX3HtE3SlW3BtQjDdYeg+ioyBF+dqRnz2Fi1WMvOK7ZeFByPK02BHMXG8Ma+GlAg9GaggcHuof7MHeqRCSkRFlXltNKWRbIJtJuc0AMhJTorTGdN/rIQMDG5/K48Wa/KNPd0UIkpkwsGUZgijJ1gwghJRLGp1adNE9jDmoe+kzMvUeiN/PmYpLkcBNtRiEbldk3mFY40RvMakLrZSGGE7k8s15+Ynn6gpQLGjPLupiVbtsRuTEb7Nu0IKraaNtO2zdGvWPJ1zC7ZR7otBwOUWtEQhEPM7LHwAKkzEEgJiWl1c8da2bmeNedSJzG3U6JtRRKSc65tWqqt+HrKfD0/Bm0o9pZTx+Ahb3unE4rbb/S+wbhGxLOSFiJ+ULJhZgtkRcxil86fUICrCUz+I28bJQU6PVma7JviDb27c717Qpzcjqd+PT5C8u6eGvaafVOG90nDBn6Rh+GXM5unO/aBrVN+rWS8hnd7mzXxnatbN/vtFun3owhxTDNVRA4rQuX84k6EkgipmK6Es+32GszYMbBlsPeMiQLLjqsAg8Xqtn6wxpSReiqzGCN+G/bjb9dX/l1u/HbvPP7vPM23shAGsLT+oG/nD7yeb0Q1IrgNwZ3Ai9b5fv3K2mP3K9X6miMqOyh09ZEG80cTjA6UZkmar3kRA4RqQ2lkkPinFcCsITCORXyFKQNmja+zzvfrnfetmbuWW7mkGLk6bTy86fPfChnzmGlpJXbUk1QL2+EONEUCDmTohl2lFT4sJ5ZiSQdnJbMrQ/4+p35+saedjRsIDuzN8yeVh7Ijog+hv6OIYJOuml4CcmtmT0XxabGTk0FODSA02hVXd1bP1g4mSgUNbDSxNOJtCTUJwlLikRJpL2ZhG9Ekhhw0qeyt2H052lrIwWfGus0UG86NcZWDyKw13lAeU69AVzLcAzsYwqsJXM6LQSd6Gh2Jg+zGg7xAKnw6bE19MtiQPAcPqGIgqrVHeqWlmWxfSDnYAYyY/dpyI+JtHYG7rsZE5xOJ0SEfd856K0H/huC0UsPMN0wVgvvHK6ZOPaF3gdtKGnYvlSSTR376MhUs3tOGcWmx+nwmp/T3FoINiofYXJ4yx9j7G3vNl6QxL63H1D7YG4TRwEwKpflQo7xcfiZur2hAs0LqxACuRQ7iEI0lxaOkbg+OOLgXf4c5rhAZC3FvOdnRQUXRA7yutDa5iOoyBwu7gqRlOy9rHM67O6glPJ4r6Oo6R44dHhvv9vhWVCQWSrFx4YFTl1x5OGg1BwFRoxGx1Ex0W1T86qefSDNRilxml1WXorxv/y+tNpAEof4c982d/tYTDOQEkHNysoKq2QHlVM04oN2AykVHhZO850KdTQmY3QO0bPZhvrIcQ5fjD5Wilh2gBy1v4lKUzCBrfGYbU0s6xnJyQQpDFJeOT9/IOaAzEYQZSnFUHeF0TrLuSK9ok3M2i0HcjSRmCRxakaiyY+UKnsAUUudO1DM4MgtnhbcfApyjI05/MyxaUOQd0Tu3SbS1phNKtyppDUvxuaDDTZGRzAtwege5iYRneYyIM7lm934uiFFZpzUYcKbGBO92RoNhwhdA23374kSklD3bpazCdcn4P7I9rlnVb/3R9CL3VN7ln0jUZsAnELBBFrCKS+kJSNibgC9dSQZTeh8frLCdE6mrwW60Ud6HT4ZSSa6nrZ5lnXx3kMfz5utN58MxMi21Qd6bmFhboWbIeUMFBv7z3H0MY91ncuR/2CNYUqB6OLnhlMEfPqwLAu1DVpvXqTbM7+ui/HB63iI3o+i5HDEMTtUG8cce9ojsGhOYpLHYRGcZBpCQMpiguIAy7qQs+koggRkgEZMJIrae87hDl2OcNnwij47hPAfNm/E9s8+d4ZTfeIham7Nm1xH2sT29i7m3Qw4jz8yg5CXxcbyIyKpkHIg52IAyrC9am/VgulyQSQxwoKkEyqmZVjKCSTwfLkwerMR+5zs96sV9WNDtBo9Zmw2NUjPnJ+/cPrwB07nL5TTR2YsTBKt2qQtaEHmIGhFNDNHhJGYTZhVCT2a/3ef9A5zWGKo0Z2wYru5HaEtQXsOhjW4I4CUQMwZgokLtRuFZCmJ83ri6emZD58+sV7OxBwZWmnbIIRs05/ZmRro0/aOmDK5PPPxc6A2A4vk6QtRBh8/Vd6u5hCVy4WQMjEXkOiiZfPCtkHSysfPJ+p+p6RAlsHsO22/Mtqdkt/oXZi98eUP/8DHzz9BCPTRkL4wYjQXld340HGBGV+51Rvz3gij0VrjdqtcTsn0E1vn/u3Gdh+8fbuzX6cF/3mYTu/KSuJPf/kLy/MntppQFgNxHhkcg/veuN12DDCMjwKNHpi+r9beqN0DGptl3kgISC7MHKkS+Nv1O7/c3vhtv/K1bXybd1jgDynynDNfTh/4y+UPfDl94JzPXLfKddt4qxt/fbvze9vY5yCMysiDKh2LLRCamllFDELsnadY+On8keecyTGQEUqHMJQSCuvpRCrmhpMJ6N6Y942mjXO/8ZQbv31/5Vu/cWtXCOacYtbbhSUtPJcz2oQhmUs5s+SFXUDWQlz9HNx3UorkFLiUhU+nE6dl4bUONgo3zcx4MztLBgRrLoMGtCmMSSnGPZ/Tj79peqZj/zQnvuH7hDKjWaXKPBgCDvKkZPqV2RnDpjziz0lzJ8WRrZFYPbApBiGVbJOLKSyaYZh2IURLeNZmDjIj2OuYntL2uTaHTSsPyigHMXJ6mJlNUOzDK3ufpGT8/YAFDe5155TNUltEKCXYmRtN6zCH0vqkN7F6gYzOwJjBaWkbIpOSEyWL2VtGa3JjUOZoNjH2/cTcBaGUhdfr1V3QIrubNhxaujEGzZs+vOgPMT1YH80poTFbJlGb+mAFSC7UbnWa4oCgmja2jepNg2sRLAE2+IjMCvrAQVGwVK3WPVLXkX2iOvfqSBZ1SgTOeYqO4DqiZqhZBxEXspntn6UPqou8jOP7zv/XR7E9hkXqphQppTyK7KNQUEd5YzQP/qmT6BaZYKhv88L7AKJzLo9pxdFAHO/de/+hqDtG3T+gdMcD9cPfBTF0clpYlE2BwmOsg7ggTsIjSluc93aI5VS8iZiuqn+Mbgxd624JFmNiDovuzjE9wmoi5qBhh7/ZHOo0tMpQeH1wjjmKcvuluco4En1cfxNMemMw3UXD++Y5B725PsFpAUo328xjghIjOSXjUx/crpmcF2ZiW/FRmYorpIOlE0oyAZK6gOZYsOrNSCrZMgiiB450a0DHAJxCFMVlXocjkE+c3ucuJpa06zC9WT2Q6eMaqV8Pm1A9Lhq+buXgo3tx3/FxrM+VHfU/kujM4ShZWBBCbZ3TaTWEYdq4MKZo97gbgjgZnjrr49I5CMmlw3KEj+B/fzKqMmc0Ko16YYg+ntGHeDMlVCe1dcaEItHX3PE82NTroCs9HHLkvSEc7g9vDdZ0yo+NgInBGyTnaftzO71hPlyxjkTf6EEqIYYHRzT45k6JqNqfrdWEnmVJ2P74KNlQXFgaHoOLB9XJuPPBNlJvTkKyzyiYCku7qxIC703e8YR7oa9TmWM8eJRGV+Q/XJ/pGiRVN6M+/rsjYdOsMJBo+gsRJRbXMIQAbvklwelSUR+i2OCc8RizuYlJZQgEXzfBaVfH2XeEQIUUyXYy+T5i319CsMmjjRwJMZNzZl1PSMzMaVSl4PScsqzu+LLSamffKyUvxJQo5wuX52ej0Wx32r5juUWmdItg07NUSOXE8vSF0/PPrOePSEiGgjdzEJmj03S6c0hHNJBjZsTMlEydkbEL2hSZAYY1TIzImKZNwa9bCmJhW3KYEIxHs0xoTHYTfYolGouLE2Y3WtvpdOJyPhFLdHHljaE2eYq4DksSSuKwCA1EYj6RY6GkbHz6FMn3OxLfkBBIeUFitpR2SYZWq9B65X67sy6Tp8uFkiMxKJYdEogTQ8rTClIAZTk90dQsCieRkM4sz4nN087Rnd6BcGbqnVZfqW9mCZ3DQq/K7Dvb2871daduSquBOYxyl8qk9kkIhb/843+iLGfL7YgR1CiyBG9aMdps73da3W1CmyxFdTDROq1ozIk1Rk9vtzqjC9x18Hq789J3/u3b73zvN+4Mrn2nzcplSfxPTz/zcTlxuTxT0oVG4Je+89eX7/z2euX7tnMXmCGQSmGuw9ZEU6dpTOIw0C/0ztN64R/Oz/zx/MRFAycJrEROGkkzmCNeDNxG5W3c+P71KwnhORWKJNbziY9nJesK9Xfok7u4iFyVrXW0GNjUhz0POSbWZWVL0JOBfn3fkVqZJVOWzPPlxMfzhfNypmjkpSd+vynbFGg7hE7Kg9g6oVv+ySkrp2KFuw6MityU1hQGBiDVyfC9awcqNik8in87K8KD2REkELOQijMVfDJtk7LJHNWow9M0hrWbC1wMBj6mQ8voe/Ka3CbTyiNnPOhDLmdwk9ed/jzGZI1BSsG59ce+2HwfVxf5uwA+vJsbqCp9OoUpFgc8FE3Dz+hEH8rYOuYTPEjZ6r3Tks0dyLZPDh2xTWeP+sLO+dbNgGMedZME2w+Cn6VOH1XEpwmTpBZkddQ6E3MHMhDC2AETNZBDbKocOiAHfd7+7pHPpHOQwDg/pZhCePb+4AwfY36dWErZQRNBzV5xzkcww/HDxgwmtJ1A9uLckKZjwVjhGvzATBIs3teL6pwiR0LuUWiJvjuYmHWdjdUt4v640nZgHeNoe1+jXgQ1msjxfQwR/JF28f4djpv2Hogkj8bkP7gKcRR+B4nFxvBWUPg4OFp0PKLEbDd41O5CM1/qR7KkhnfLw2n/DoEYD96Xi5KmU+jcE7v7CDlgEwN1DpwVE67kxtJlj9AW9Lgd+vi87z+8UAvin8e6c3s9E0sdSWhg9J+ph0jE7fvAAiIO5PTRBPlDjMerK1gElWs+JCIpEnJEUoDhyaI5k7IFWBkFJrFvuzVEMUF3uhDiQiw3SNR3gezx3t3X9YNf7/fevpInvYWjEJbH9OL448c6tsL6CCEyj/NaDys5HhvSFFszwX13dRgNLGejJB32ZAhMzzWIEoxv7M3lQVlBDp9ysCbLutU5jE63a7eGYCi9uzd7PL6bcjglPWxhozWSx+Y6dRBjRoJQMAT/KOCPZ/+Y9g3XfQy3sz14+sEUxDS3aQzRUmKnuosT4lMi9es23RnGbdy8GUjRAAQL+pggkxRtpM/jeVUeguIx4KBzBQ9oUmjNJzv6XoDbKD6wLAsmQjXrvanK3O0wEIX/I6G1cVfNWMB3Q0e47CC0MauwbRv41K4US8k91pHadmX3NyoxWSR6jGKUmMdpZ3tRWVeWpbCUwlJWiIbWaGvstcJoB7LiVo6Hb5S9UYiRXApSktO9bD8WV5+13u25UEAiIRZiXonrk10DCZxSoSwnC2DKZ1KM3G435tsbOWVKWVk+fGB5fkL2DZU37nuHXEmy0OsbrYPKIMVEWJ+gPBFOz6Sy2ui8bkYrdD2CiXnxJsVceWrdaXul18lsMFuEPjkC6cZwtw1Vstr1n1Esq+PYb9QKBkutHIBZHI4gjBE4XINC7Ga7PA4B4qD1nToMaMFzO5DI1OxObjZWDzGT15NRRzwwUUIka2IZB8Kfji0X9YZSYmJRSz1OKVlOAwpi+gWJhVSMG53KCYnl8VqDSe3VnLoiQELDCZJS74NaA8qZff+d/a60u6ECIu/nbq+Ttg/qDr1C6+7/Pe18//z0mT/8+Z94u1UYV+5bJITJUrA1FoJRMKWxLmdyKoSo5mbkVNmptu7UaaB7a3Qit9G41p1vdePr9sa3/cZLu/HL99/Y+g5RWc8rf/r4B/5pfeZcVmYsfOuNr/uV773x76/fud0rQuSUF05iurm2BIYmRjYRPqglng4bjz2VlS+ff+Kny0fOKqxtcNLI2oQ4rMi7tkbdO2/XOy/XK6eUuaTCuazm/lYis0a2e+ded277xgiRHeGtV3YbK4MOS7hNiWVZSHXSZNBxz3s14XgMcF4L56VwKgsiKzk1NLwwJcOyIGEnjMppiZxD4ak8cV4iJToq7xTmVjv7vdL2Tt2MDjXqYPe09SPQzxWctkerWlaQGDCRooFsOYfjUDFr7DHYO/RrQ1QpCWYMFIGEEOYkJ9PW6ZiesXI02nZUPkqQINCOSa4DkzbGsomuiOUkudOXUUkNqJrTtDfBgczWmrvxBKO+oU5bdhtd17cRYHRFUnDHrUaM1nWkOB+hg4TD7VEe56nVyUYHJ0TXN2U7/oc62Phea1m9mrD0cDtfVU2bAHZW8tCiWJMzjql9CAzEQ0iHNwiO6gsEr4FCDKQx3N3G7+pU54vmwNaaU1giBONjiri9pU62WkHKAw2VYKPfR4w0UEen1cpo/VGsP9DQY7QNpBBozTddd+FJKdJrdXs+8U3I1NOUd39+sBG9iXGDdU6j4xpA65iaPm7mYR9pxZlxgkEfiH3O2UeQjpwfn1ne+cjTueeIdcUmkHMEEnEv8k5Oxe7lj4XPcDRtqqF6RoZ7IMwHJeT4dQhCrWa9p+q0pXFYex6ds3qRaAv1SOMUmRzJo0eh8L/nT//HX+vjmh7lk423rXNVfzhCMERZu9i4TicqHQnJULFhCO3w+PTgheJh33lcRz1swA5hd14YORNLdB4wBPdtTmWBbPxZRE3EHBvaD0GrZx4clKt5UGvigxr27oLyA//cBCN+eL+7JpnAWR8x1Saaeb8vR4GpU1w8htnpdZuAcXwOv5DD0XN1x5R5FF+jE5LRJWytDeO26sHbnDZudVS9VqfQYZznR5My1WhDGqzT9/Uu4h9HrUk4UPjWKssa3b7M7weKRLu+sQSGWhS4iqEe4s/InNMtCCf17tqWJOb2cKAke7VgrvDORZxzuu1pMKvZABAZc3Cv9TH2TGKUkZwjWdRtacOxWO1ZAHfz8mlaeLd+DdGsbZmBMZtNJ8Yw7ce0RjKEbA14sInNw+GH7ohVeiDxB6DAgXgHszwdfZBSImcDGnIKxGTPZRoCU1jW4rxLNxQQ27BbrbTZSCVRlmzIe8JMAI4OArsvy1pY1kIphZwLGoR1UfR5MJmEYu47OpW6T2+eLeU4xchSCrlkE2NFdwjT6Q1FcmOASEw2UZKYIRby+kwsZ0Is5GVlPT+T1zMxFHprnPMHSG/MMVifnigfP5MvF0JvpPMdLU8sT1/QcWe7fmW/vaDjbij20xPh/BHNhaoDbXe0N2ZvtLrbPqE2BBu+dnpv3K+v7NdX6vVG3Rr0YSnRKiiBqZb0K8x3S2ILJbD90bnF4mI9E59OxrDmSIcwpoFcEhJ137nfr2zblRgWmmbaCKCN2TtDEhIWICPxTMpKnMmao5x8fzksY83KdD1FLOjq2EYEJKAhWlDfGng6nxCGTT2cftDdtCLEhJkwZUrKLrCdjFoRyYaQqyF6Ka7U1mkV5sikeEFn4e21krqt7W27cT4D2rjdGttW2Xdhq5ParAAuZWGfcHr6wnr5Qu3CVndaN4GxyHA+sxVMKpHz8zMBpbeNOROiC4NOn4Pa2kNIOFPilgK/3Cu/Xr/zfVQ2OnuB6+jsc2f2O59y4U+XlX96uvB8/ok2Jr9tG//t7Ru/1o0bk9d5R5LynBeeFuUkBtZ8226W6TAtNVRF2NrkXhuogQxfbzeYgS95obtANczISRLK4FZ3/v7td/7H73/jvl35sGbOS+Tz5z8hGhkjsKYTSz6jJLau6JLZovC171z2G+dyobj26ryeuLQTb9K5H1PTCASlj8qcjZzMZz3HRNNCCIUQVtIymLIzxgsCfHx+4o+XzzwvHzivJ0oupiHcd+YY1G0jl526V3K5237cB29vb8zN0nWbe8XP9zIAMHBxTAPGwrD1mpLxxcUNUObwvJFpE+y2DWKYxNApKlxK5pQLkqxWNAcvn/aq0LvpEIXJyd/3Udw7ItKH5eckL+wPND2HI8kWurxPUh96sRBsN5jDEHKgD6NfzuE6vq4mPp8NxBxxymLmJ+uaDGwKMNX2zunJ363NxzmLGisll/Kw7tXHtbSJahD7LHJ8pzk8/dZEt2naVP2R6/NDzTTcZ/8diDmo41bb4UJbr6ndpm1MLPXQ33z+WPAdTijmNGBonkIbBKkEMc7oYZ1YtT1SEB9OOEfx8EORbIvGGosYrNM59IF9mBOAPmzlbBySkqXgGr2nO9/VRGrvY2blPWSie7d3oO7qaF5/IIxJDkExj88bHmiuLTzTBfBelKrbhPqI2834DS3zz3t4whvNwJFSMVRScAtRCc7XjY+CTcTEvAMPG9J3pNWaDadFDOc2S0CPAsdrST0Wk5qQ7zhAfizsf1Rs2z33JoAjx8C/t4gfQu9iEaPTWFE8dT48vI2uNBmzmXtGb0hNFtIkRnnqtRlq0CbYMndrveBc1YW5FsYC2idxGi1JxSwQYwp07ebyURqzzsdaO5qHgx+th57kKC67i3/D4fk/HwdsTAcsb/atxhNVYjxyGoyyMed4XN/u/HtzSHlHi8M83ErsXjwK0RjNtlVsc3ESGofwOwWjdo3mln7TgoWO7zHnME68MzcOhx3LB3CxL+EHfqWYTsXXX2+HrsS4+jkHo279h03c/H1TSqQ0GcO8/82nvD3+XO9W3B9M5jndBWjoA22QeDRUhpQHhBmMWmboh9+XgY0qBXDrs5ysgLH0abePdKTClnOwvycR7UrO0S1V1fesA5mZJiB0+pAh6dkpR273qe+uPpYqC9bovQd/8T6r86tlhX4pJgpOKTxoiCLCumZatwj14GtXdbC3Sm3NaIhJiDkSl2xoSzZhuMteLEckJg9WcY7/sJA8wSZa6+VM8nTwvreHCA5VKyCWlWVZjLboazlEQ39iTCDiorDI4mu5lIXldKGcnsinD4S8EONCXM4QCpIXQ5EZnJ6MCrScL8zTM3O5oLER0olFCuXyzGxX8vnCsr0w240YlOV0gtOFIcKod8b2hvQN+m40nAdFIDzG3HN2lAoy3MJvoNUtMBFUTB9AcAqITmb3Z9CfSQkGENm0yWcvw1zFpKxGUXUgoLXKtt253d4ory8ULYx0YkhCx47MjaaBEBaUYkBAiOhcfJ1GL8KxiUgw+kqUwOgRYXiB4o5ZiLnNEJAwXcxYH4e87asNa1esoQwpoRro++7rfBJytGRgnaSU6UQCmZCsCfrw9JmXmGn7cDOBybZttKpcr5XbvdGqYMMns2acAWIu/Pkf/pn19ExbnrjdOlvrzNlIYdKSubTZvoSBAmqNdc6Rkhba2NFqNKijxOiq/Lbd+fftyq/7jRqVWSzQjBH5+ecvlNH4lIQvy0KuO7+GO28Dfrm+8W+vL7yOalqwADlMltLJeeecM6e8El7eARftStXBbANJ2euTyPftTm2Dfrrwx2Ul4lbNsaAxMCrMLLTQ2XWniZhjz5KIc6E3IcZGLivr5YlTrmxho0tjU+XX25WFhU898zEsLDlzPp8ps5pwtztBPgZLw+07QSYpBHfDCQiJEAoSbHJNDFyezvzxjz/xh/NHVs4EOaGywqy0Adt2YzQsLGlaMJxgzmSnUJBTplTldt/Zt+7mFfGB4D8yX3CAdCrHg2W8+EjKTlN0i+E+lNkslKqCTW4ZJIEskxyFHJMJiIHmXHRRIQwscFLsjDiYOdGtVkPAp/hKDIaOM8UsMV1pGyTYVPiocaIBwlN/oJSqofBjeBDdrRIjHBEzIRi1uNWG5uChUjhhSGhdH82QOv1zzMng0IfpAeHZ2eYAw5xqE/6pNOfqq1uMTw1wTBYe7otWo8wxPfjTRMmgD+Tfavt3hkRCjedrCKWNq9R5YkMtOW20amNO5w3ZlbXNsTcbJ8UkvCeodpDVVb7TD49AjOZMMeZhPWkb9uEQ0lq3TlBBh7kzFC+w5hwPn/3eG4e4rpTM6XQipmiR2kfyqAe+SHdEBKHV/vjirdVHYq75lRtSB/r4HBNHgomITzSOgCL1roxpyD06/e/bIjbLv2ii0gea2S1dLPrh4hSJowOO0RTigoUSHU3VREjFkLLRJykmS9TrlTHVg6/874oJN01E4j72jszGKI+bfxTAtvDt848+HxSD4BOY94bMVo8lcfYH3Ul5HxcdlAMRS+C0dNUdmqARoip1u1H3K/v9yqjVum8RZso2piMYSljO1Kz01MzaUQ4emcWZiwopZ2JJ9FjNDkyNs2lJoXadgus/jrHVQZab6mO/4A1DFIIodrXNhqyU4qh3d/Q5mo0fysP5iuP9TIw02jT3I48AAX08nNbcmYhJVUk5u0C12jMwrPAM0R7svEakCoglOzK9sfD0PJEfm02hToPCBSvym7vu5OVwPhK/RuquTLjri1kIyjQrEVFbM4/0at80tm33acwh/rQNNQYrqNWvy1RLQjYhVDCnBXfNkaDUvZmjjRhXebROrfbMBTUqmW1WQiqRcnqi9+YuRRYedNCMjg10iq2HfDo5D3Qa6unP4pw2mWuHI8HFS/V9elNnk4SJGoDh50Xvzd0b9LidpkFSa7rM+k+QBCEH9/0HZqDEhWVdmZhtal4yEoPF1s9BcHeDnDNpcXchI40/GvXoDYcEgcO8QC2pU2IgLSfSabWPNqHuO3XbH2mKOSYulxNrWWzq5uJeo1M5rdIM4ki5mB4Bu5bldCGdPpDPH4nJBZ8hMwY0D83qtbOUE0/PT8SyMNcn4rIyou3RRQqijdlu5NMzp/6Jtr+i3WwGh5jgtN+uUK+EuSFtJ4pT7CTYYfcQppvDxlISoyRCCrRq/FRbfkZHCY9hr3ghYqwWO77CY6pFtCZ0qAXmxThJqXiqphk/6O1Gfn0hnr6xSiGsAnkFNSvCh/0tahSZR5hWhNiNGx+yNbwBcvJzNAZQ16+pT71tJ6d5KFcQS6kco9P2nTEare2oTmK3M+MwORi1sm1XS7DtJg5WNaptmJMcA8yIhsTz0zNfPn3h79ff7TuSaF1t4tctEHJ28ymfChICL293/vN/+kf+T//n/wvx9JE6zSHkdDqR08kFyTB6p/VB7VZbMCoBM5OoY7dpXbSU2iCRt9vGL9/f+BuN3+uVN61oDOQISZS/fPrM59NCqg253Ug62Rr8t/tv3ELkWu+8TDMBSVHIOvhQMl/WzMeUecqZ51L444c/wFC2Vtl759YqS4OZEj0GqijXVvk2K6MLc1ZaXIjxzMccWULh0hs/ffzEjIPfv2Y+nlY+ffiISCblJ7MGLp31dOKn8BNJTvx6+43WN2Tf2PbK9+2Nc34yPcblzOdT4i3C6ws0AmNGwlS0VtpeXYMyOMLn8lIopxXmldkC6XTipz+c+eOf/sLHcCLeI/tYuI3EtXZ+fd14eflOrTfmrLam6DA7kcG6rDyvC6VOJpYU25tRfpn6cMDywabtn+JFcZ00tYYkp4TmgMTCkgBVWttBlTrsDKmzkgKcl2hpxwHXxFgznjAXnJTMZtfOa6OwqAi3+2bPuBysCUdBNFoz4M+TPCg7R8DgNJMUzzga3anTHqxpTjRmGpKL/YwRt9I2NsRE6Q9WBQ4SW6AeEt7pQ5Jo3eqidwaGFeDRs5r6GN6wTGqbpDhtIuvTCZiM0RwE0wcgPDzULZbstc54sBGOeuA4tFOWQq13TudCLok+qnVLAdKSrCtgItM8TEcHiZkSzXUliNXveOiABcgkxjxUv93H3lAdGF5yRINQ9+EuG+YCs8TInIPtuhGTIV6HBWb01bXVOyGY+83UQe+V+6YPx5vRGxKMczm8EE9RUP8MrXe3pxRHbYxvZ+mE76j5nMOsDbFTU8W4yYRIm+oxx3YwRldZPBBzdcFJnxxJmrVVt2KzcB26xS5PnYSU3aM6UFxY2+YwtDgJt/udRQoTMZTLOVZTApPJfW8P6omXm8i0jRpsKnygrkfhbhrXgy9uXq/OtuKwlgr4wxWsMNNgyFgMQhah92YYZgy2+HWgdMas1Fv1JmdAyiw8A0q9v9H2nXp/o+47OWaWsmCCRhMESlgYYSedBn0I23WnjY0SEnlEFgopWflcl415MieiQ8swJxZP39+tUU0TMIxvPN39x2oGQlG3v/RKFkPph1pqbRvNERzx/2zIcm/daT+GIDMGAUsw7V7cIh5w5hMF8xB3W9gxeHu7kVLg008fgUltd1IJTC9IJfhkRgVmQMdkzE5ZFxNmNXcjVlurXSdDhVhW0mi8vW2oa2OsqfOGbKjz7SciyTbGAad8QmdiTns+FfN8Vho5KzPAbDaZy9Gmbb2aOHHKtCjvJI8ppCl9jwbYvlOOFgsu0TajVjvbfbAsGU3C0EHIgYFZfwWnMhEnOpyiEKNt4jGimig5UvIZLTY+zxKJfXC/3pG9sZxX4t6YWzW+OoFaQYOSgzUzfU4XdsPEQYlse5vlTxg9RIOHt4giSe1ziaGPj8PFqTvrcvYRtz3rt81CotbTwsSQ+/WUOF8WUs7u0DUZtdFrY4q5QpV1ZSLssxNyoWH3e1nMwSiljKiwOJVyjMacnRCglER2b/2pnlLbO9HdGwzkEIiZmBdiWSwdOWTC8gHySszF3MGGheQZSDNZzxc+fPhggtq8QMzoUELIDMmENduEIq+EfEbbmWV9hllh7NTd9oFpluwmitVsFLiYH5ShPgU0kmMhloWhV+75TiyR7WaUAbO+dEGnTEfekmk5EKT52RuFIQpEWugmJAQ0B/o+GaOynrLlmIyBzAm9M9tO2+5EWdwsoYPYId7aZo2zp4vGvCB0ZCabLiBmRBHVugxvTkfv7MPSxIvnscQUkTGMpuCj/jE7ve1s2xUdzQpPNaMJc0mb73bMU5nVzr3ZO3W/MVtj1J376yvaGt9+/5W3by/MfTI2pU1YljN00B3mtZtz0pgs68p9DMaS+Zf/9X8lnj/w27cb+fIzHy7PTPevF29KRc3/vBfh+vZKajtPOVjDloSRChITI2ZuPfKC8qI7L+OFKndU7hQiPy/PfCkrn9KZp3Rik8a/31/4637j97rz1/vvzMXuIetgLZFV4KlF/lhW/hgv/Ck/8/n0zCms4M3Va9/5vl25y8ZPrOY4lSO/zcp/01f+vd/45faNrWTS+TN/WgshREoP/CQnlhz49OHEdv6JNUcupUC4sPPE19sLI2U+//yZ0gqf2oU/XT5Q642//fW/U+WVchaeP11Y44rExKf0xEsX/v3rjSUmdt2s7hC43zdutyv18kx8WqljIz8nTu3MGF8JaeVUIp//8gdyeWK+CWnLSFl4mTf+2++/8P1+5S6DnowmKG6nKHWQxuCpdz6umTCVNpQ9RMaaYDTibDwV+FQCaQbogdaFbcLbvTEOaokKdYgDssFti5XzYtrG22YMjTqsDmyi7MEyCtahFBolwDln6NXWihjUpjSUyAyB9bLQhwEHOdq0FFXmEHc6U3KJrKeF0TtjKCVnWp/mOKcuKbAIDIaa+0/vRodMAdISOJ0iOQ5EGvd74+njyr3ujM1YJhAta4lsDkNBzDt/TE+JHUaLJhiXYSqocBtG6YnJJhZ9dPamjBGp9bB+NuoPGJVlen2t/j2HBoYchi7D67kfdWwGwqbrW2M5n6i1U/tmI8QSbdSt5siiU0gxmsrd6Sc6bazbdaLJZIVJ1UYjok7ncBs5+gP5UlV6nwyjSjKOwJbH2Nt8TA9XFrF7ZwcE4siY2Ejph2Cdw8fcaCry6JrsAvjIPZkTxKEzMJFqdxGQCf5ETdBQa3MK0kFlkcd4xwDgd5tOVbWiQ7yr9e4OfbfNUz0EntPNRJwbdVjXOQp5iIofTj/TvGiHOiXAC8yjeAopPigi1iUamloePPP3sdRBVTCbK5v9m1jRaVbOUZ/DuvXRBjO9o/gixrkTNRunEDzLwJsWwQreNjaURA13RANxXY3jLdC2jd6qIYu9M1ToIYJ/HgmQgonz6tbR0Az1F+Pgx5wJyYKsIpO8LPS9kRcrPLQZlSn69dEhRLML8t9w3/GjwclGx4kJo3Q9GCrvHfBSFkNOpz5GeUa3Mr6yrfN3X2OvK+z6h/d7+6C5HfcJQ0AGwn5vhITZORazk7S8BYEkzG7CoVQyMdt07Qgqm2NS6445NduD3btSu63J0V0Yj01AbCqRCdHcN0Kw51skUGsj5UCcwZ2IElkCkB+qfJXAaDidR8E9nc2b15reQyCacyIciLn6WHEaSv/+fFpH2epgTiHOQWkwRiT5mFI8jMzSL+HIunBCE0ImFUO0zGVJaduOxE5eFptOEcjTxHvbtlPWFVGorVPKER7z3oQdgvcjSjw4kqPu7oBfO5sS2rNW62YAQYyG1hazZ1RMUL+sK6Hbd4jJ+Pi5ZPLiNCGM1tVTp8dmmHoym8FYFmJZvQi30CNzqcmW8iuRvNqG30e3qyPTr50LrjQThiLDaHMxeIp1ysadTfY+kjISEiE9WSZFziZunhNJgxDN+zpm+3uSkucDHGvcx9GKBRKJu/5ohB7c3WkSZiOORpjtURiCuemYw9hCjhmZRiMzmorZTkrwyRx2sDOcIBaUGMTkJ+6rjWtXHlQ5pu1/jgCq4BOa7voDowlMVc8k8ITd0ZHeIHYkCiEWpw5ZSLwZShzJtTyQL0UQtVTNTnyAVmZgMQiOjiOH09V8OPqM3ul9p9c7fX9j9J3R7qCdoNaM4O8yH2eAkgKM1uhtp++V+9sb3799o24bX3/9le3XX2ivN9pQuk+fR4W6d889CczZqaOzjcYf/+Wf+PKnP/Jvf/8bTZ94WgYpBupW/ay08z9JJuWFUxB6tr1dSnTKLAy1zJAqkbe98ut+5xuNm1QaFUbl1AqfSPycL6yhUGvn223j31/f+Pv9ypWOpvQOJEzlPOE5Rv64nviHy2f+dP7Ep/JE0sjYB1EDt/udpkqYgTUkntfC83qhoiza6SQaia8Trr3x633jMl44Pa/8YX228yAGoqxc9AlB0d74dr3xy/2Vve2sBT48rXw4f2S0C60NXm+vjNMbv9bGlIxmE1+up5UQFj48P/Hh+SNjv1PDZI7APuGehG0JtCSsE3JMnJbC5dS5nM/sOjmvnbCc0FAgBTRl+oBtb9x7ZZudHgTyghIYPTCbgTyxY/tpr2if1CDokv2QasQpnM+JL88XVhLMzJiZ73tj//ad7pboTANE1Pd5VZ80JmNt5AXCMDCpD3PqqaOSBEYJTA9ETGrIvVGmXbTrNVLC6Guh26Q5u3FLb50xrE5JnrGgnoNi+55TaXwyPabtERqsgRYxGs66COsauDxlzmuipE7AhMf3m1FDRSK1dmv6JfmZ9j7hDRJo5qbBrO52g58REh823L13WrBJiWpwGqiDbR4SaFWeUUJ1HnpLC6iie6CXBmsEsXq0Vvu3HIX0/W3wKa1I6IYSOofXyPmBKMlrt8jo1VAf7QR3XDBus13kkIx3GwUPYFHnkTsvKPqodZrtj1EwzFWn94bZEtqHmwSmRpI5tVohe4wgjcz3+PUhdlMOX+9kYwwvaIGHGO4o1o3Hb12RrR9DLqeLGfUo7eRwfPHiebzzrY8ifPRhKWL+548DxGhHx3g9oMF+HcRcU9IPQs/jh2kf3ukzImKd5xyPz63HZxal90Efw9wUOF5LHrSFQytw0Bx+/Glq9HfqiHgBasvKfq+1TpKITHHxqwnUuuqD/qP+QKZo46heGykn+l6ZDWKzYLAgYqOx3hndEMYjNXSqIeMSzMmkNwvbWpbF/sy0VNC0LMRcmGLJb3GsLBePZNWNiolTZ/esBIJFcwuEYA9LDGY9GqN4EJKJcpxw897QHZW+X0sr2G0TOShVR2VwiF2PDj1gYkC/HbYK1ZvOBy3OrnH08LQUPAzEvfNBIVnUNx5UEWMkFCFmt6wdOL+xE8WEqXMo2zbZd7OMNCs0K1hiipS1sK6FmGCMytRmG55EQ9bUsiSMg/5uzxjV6AcUu5+1VlvT3vBMNc/wlBJ5SQ+UNFonZAWzN+QhpEcRatMDfL1Npjb22qlVSMuJJRfnKTabKvls2DQt0W/RcaEDU9xKM0FezZKvyp0x7oSckNEdFDFbSYnH9GU63Wo+nrV3Gzix/jO/61bANuIYjafee7ccBgI5CRoH983yMmJK5Bg5LU+cghW/qUSWtTxoNyEG2oSJkAvoadhYPEaz7s0LaTkRygrZBK647WI8Gk03KJhjOjVF6X03kRjmJIOY53bG7IUtCCxBdHFcLoSUCSFDOBPTYsh/iCQvdkcexDGcAjZpfrjptIZLOQTk6sDNjowdGRva7sx6o+9X6u2bebbvd0SHe2snUl4xlfmKRss0CUxa3+mzMjSgklESOqO5bPleLy6QB6XNTtdptBe1DI4wBocFzxQr8lUU9SRJkUkLVuRzgDlixTnTHWtGI8QTJZ0IIZGTRcGX5Uwuq4EQQZyeOJizWsHjQu1DxxHdplPESVNj0Npm+7aaVkVHg16Z+xv99krb3+j1hmo1ytNogJprmLslzT7ofjbN0dlvG9fXN7bri9EbQzUqYTtEyEq9N7NL7IPrzcCtcipsDIZO/vGf/zOff/6Zv/79SptC5RsfvhS22qxwx8AUKYlzyqScWJKnWBejqG63u4FeVWgMXvc7v7UXvsvO27ySw+Tnpw/8l6cv/On5Czlmvt83ftlu/K1e+WXeeA2NuBTWJZNzhJEpo/NlOfHzsvLn9ZlP+cwlnwmpcO+Ta69cX954u1+RYs5xYSpPJbNihX6SE2MYMWRJiW/jO28T/vvbKykt6FJYizVhOUSYiX3feXnb+Nevv/Hv91eSTD4tmQ/5Jz7mT8SYqFNJEb6vP/H1emefgR5XwrIgJdNrRwKclsxrv0O1MVancw+R1wCbwvOInMuFT/nESxOeb0/E0YmpMkOgpcjpUoDI2CoBWHLhpANmpUpziXlkSAQSMwsazIpUhtJXCxOlN6LCUyn89OmJz5dnokZkLgwtbNsNaXeGmod78ADTGews2KfRe0I3t74lRVKMNpWaVle0Pu2rjklPQhVrks9Lts1bnN6sfn7JYNSG6LR6yqkuZsxiH9uG7+YDf2jb7ByfTuVxjWWwwj/INOpjEp6fCp++PJNEEe0kwcw5pgVuJQdeWp3oEEKc7Nsw97YpThuE273jWYTvoKfrZQywttep+3zoLo+Kc87uZ8q72cxBo3+n+AhRDrCl2/px04l9s7qip056fZuMeeXDx8z5UlCt9gJ9ECSSZcHs8oUULcjgKGoeXO0xCT04JUIdtbKiXX6sbqZ53A5Vo6jwfhAQsALS2nDMYmgY9zjbAWQR8zCbW+PhvK/hMfHiCBnGXcYt9eAQ470X0Yfnd0oufNBpLiFDqW3nSK8MjvpYUW435XC6MbGtjVbDY6JwAH72/Q5qkNlxGsfZ+GnFqEVzOrfXRRWqdEdfwg+izta2dxpNP6wJ5ag9j+rR/tFDxOjqe7Vlf3CyDhGmhGO64YUmcFh9JqfvHMhq7/ZQpJKd5uOCt2mFuXZLruxtMAYEGmOaX2ye9nlCkPfCvvmmEAz5PoRBMSajFmMHYZBEToa8xpwhJsJS7OCIUC4X9rfCFTWeoDdh+7W5f64Yyu/NnjmBiAkZkwlkUpRHgfdjY3MItg2RCz6Kt02lN6fgCKi6sG/6c0HydW2Fvl1Fy3EwcbTPqJzG0dpA2TmFwiIFkId+gwkyBz2Zs8FB1TErV7sPR8S17QLmKFK7eqNim2xJQiomvkvJxHpjdAuBEkVlOhcWYlY0dLqCDnfTIbKuKyqQz5PUdmS/0e+dTUFkICOY7WaG5Wx6BRNYKaGbHkQHxJgtCKYBszEdcbQ1ZY0w7ih0iMdDil7gCUd3FFNCptFyTEzpz45byqbgELtUEx/VhlaQaMFXcw6Y5o4lhwMSVqyj0wVSFjaW3AVHHGGy58o2tYkJnd87OSuYJCT32M4sa3YNSKCsxezvcnoX0Qfj37dpou3ghxrT3J5jTAwNxLyynJ8JZWFKMOpMLKTwPkUSBw9wNHpqZFD9fYy7bha5SgzOAxVvjyQC0achkZxXQlrM4SgljknoGJ3kRX3vlTHMcSS4Tash4T6J1Y5og74x2425v9L3N2a9MuorY78xWiUGQWIhhIyETFwukE7UaeiUCGiPaBowjtAocYbjgdiZHaYE9ftinzeHbMnlXR90yUNHNJ2K5WNXHt58MomeJj66oXWMhsxOZJqPfTizrBdOwdKkNYg5hgETR+l0erJvIgVrVFUHOrtpRfy8HGMazfR+Z7RKCp0YGuhg9krfXtivv1O3N0Z7tVAwGnPsBJSQCoRI7519bxxp4rNPbrcb9+tG2yslFy5rpJWVKUoHaqvc+mYyAlVuVQlZSevkXjv/6X/+L/xf/+//N56//EzVJ/ZRuLfE9X4zylZKD6Brr40cd0qvzKD0FNi6sLfJXpUlZq73yre581t94e/tO1/nnVMcPMXMX9ZP/OdPf+EcV75dr/x23/n3fedvfef32KgMlmy8YwRSF55D4Q/5wl/KE/+wfiLNwGiBext833f+/v2Vf/3lF9rsnM6ZcxHOKGsSLmRWyaxDkJdGfGmsORKXhVtvvF5fuM3KPXT+cnrmOWTOUhywy8y40nLypGsHlXqjtEEeC9LgHJ85n34mLjde2fmlTi7rRBMMjZxOJz5/eGbvldvbd2JcSCnwvCYuy4UlncnpQswXwrSQs32v3NpOHpVrLZzj4LQkUlhYl4WfcjRzk9srsr2hE5rXYNY42zMzJLB3hWLNOqMj284pRr48n/n88YlzXpgtIrqiI0JO6BKggjSrhwJGc8UR5u5UEpmW5ZHDIJdkidgZphhFZe9GA97VP19Q1pBJos7BV5JYWzJGJyXTD9YxbFIcIjGLa0fsrMfNSMzgwBr4Y3p5TJjmVFIS0iWyrJHLeeF0FttzB0YHHcGZK5nezF5apwne54g2qfd958hpwa/vPCyk5WBEGIAT3TSj9+rTRAMUYow0r2tzcUlO/qFG80bDgOXE6FCr2XAGp+8MN9dq+yBd74O9V2KBZc0uOBIXDVqxIOqHrNNU5lTabL4PTi/0TWA2uhWkQYKFkHiYUghqUeliB0iIbtfX1XlVRyPw7kihXqhGH+0cB2oIgaHjvbgN7+jsHCa81InxjMXFi+G9iOX9Wj1sMO0fuxGEA4k96EXvxdbhlIMXykfh/qNP/vs5cVCE4Ee/9+Ac38Ch2vbJgx4UBfu7Zi9mfyanbGPvORmHn7+Y+8aDoIcLyjgCluTxmQ+E/oHcB/vTIsY7E/fCNjT4/fsdX2uOyQzvNAXFaRVydJeebqtiU4xuY3IJAr17Bxs50uN0dCuegDE7MiNhdKdsBGLMNCwICBFPc8xOSymEnKwY1UlaCufns4mLcyWE3SYyw4VqE5D54MBJsinTYaMlEXBajYlsrdgRd/hhykN8iljybO/Dkvm8uZ0uSp3DPZQPV4ZHweeIvXMU7Y7ZaLTVhhI4aXlMco5QudnMSjIZddG8eKNvIFiTktSaxN4meUmMAblYg9vbJGUllUBeEiFFkmUgucg1uvuAINkQhBDNp3v2jg5hNgjJXINCiazrmbRm4hoZp0EKG/cc6d2s26QE8qm4GB5kF0IwXvAcXgBKcLea4KI940cmd77KObg3eLSGTIwqaOFAtoYgugNCZKo86DohFUJakGh+xzKUtCzkU2dvu/0eDi2Irwl3EIqBh1DJxPN2KGSxwty0ANOnIV4LPnIATMcy1SYCy/mMxkBaEsv5RM5mZbmsnojN+5QAsalnygskc58JiFMzXB8zHJ11GptIJOSVmBZSzJZP4MU96XBB6T5tSkbJS5kcM+kR1NTdrs0nhRPznhR7FpKqZ1E40CEWqAXW9KAmlp5j0kczo4rH2jZbUbRbOuh+pW7fmdsbs9/RfkPGnbnfmX2YaHYRGJmowexz42oJrjMY1aT7JFYnKq+MYSPt3gx5jGIi7gmQBEmWoyLuiGH2dA7Q2OaNumvaMWMXDcw+keho4F7ZbxvldDUen5sUTC1IqOR0Yj0t5BzoqrRpQUSWJuwgl8jDiSmIi4C1Q1cGlhKMTl93O63tzNAIVHRURt/Ztxfq/srsV3TcoN+AHeZm+0a1QqTuzTJApp21vU22641eLam3j8aoytibhRlNaNUouMEFhsEeK2aYxFPmX/6X/4kPX76wtcn6/IE1PnGZK9e7UXJiTHa3q9HeZn/l6VLIS2YMYe+doRHJF15r5bftzre58bVfeRtX6tj4OWa+xMKnciKGyOte+fv1ysuc7DnRJDHVDBLuutPuO1mVZUw+np9Z1xPn0xmmWsLo8MJ1G7zcd/5e7zTpxLcXzrHzZV0ooZvV7pxMFkSVjHCOhUscfNt37rMy9spyjSxRyenCGgKneCafT4R4Ylsi0hZib/wUM8/5TJQVNNN0MGJkpJW5nLm1wX9/fWMfN77slUu+UKRwXs/8+bNwIpKiskblFIR/uHzhw+kzafnIHhLXW+Vlu3OrG7unxn693phbh4vwx/Ni7kAxUmcjLol4DcgW2GejzsSYjR9dwCYe1jm7CaC18nxa+enDhU/Pz5yl0EVQXWnbsARq7SZ6VttLcjA6tQlU7djvh/ZP1UxZ+kTFLIlTEEIajNrpJs1iNGXeO41IjkKJsAZsqi9KyUaNnGq2430YJXrN2UAvtxtXdVOVcDA11GmoPNgjgjk4PT0VyhLIaVK3VwMC9QCO1ZqUYBbrvStoNFBzTiaB+2agVM6298aUSXFl67vbqx8aLGc9uC17bz4IVEudJ0AfVqeFIaYj8or4UV6qD1a6U/aGem1pOtEUE83tPtO9drIq19vGug6W4v7vwW8E3dIEs42hVGG0+fAnP3jefaiPzgdzmsCNGemzPg5QnPIRU0JC8s3WC8sRfDQvD/qAdUIHyiKM0QlYUUDJ4DZ6bTi9w8cW4mhq8C5njEEXK3bMWu7gYNvVis4VNWqPCTJ6HY8D4PC6fqSxTtzz/714jp6+xkGzsebQFoAjtCbknCbkaOPhvnM0TEdY1X/0nzceVszmDT71h2AtcGrLeFAUbJxjrihHWJHXqo/mIUafunCIc+0a55jtPfo8jkfXMGCoaB9QoQRLxhx92GE/7f1abcxpQi4bByspGec1zAklWxgWhkyqfyYe/FKj17TaGR7EEqLRnSyl0wKuYs7EJZu9YxCidkqAkAq3fEPE+v1RO1o7sw0r1p1qIQHevc0PZJ3HWF+90TP/2UGUbHSNeXB2g1u2Hmibiad1vmst3kdo/hsHVesY9Ys8rL6SJ+7lknw6M5wSY5WmRmFZzU60t44keYTKpTWRDcBijM6Sso3GmcwZeHvdjXLmDkailtIKgfOlMHVQ226vXzJpCYiRI9Hh7hmAdGWMG+t5NZ54ThBXKLCkE2Ut7NuN1jZDQxYr4JlWJEWNkMzycnRDLoOjxiFO/75CynYdUnb6Uwju6Z1sJ8Soc60rEibRR5jvze0xJfExZ4hITkQtlDnIzdxrggSWHB/Pd86HpmDQ9m7fD7VUaJuzGPoTTXBPBPGp22GxiFPmACQG1tOJeMpIiizrQlmcu+7NvRVz7zS54Z5qMq2IDjEQc/QAP+P8HyP0IN3cd4ggydD7XB7FWSyeCt47MjMyuwltJyYIiwmJEx0BmR0dfthPRRhe8AZ63VyL09FZbLoZsPsahODFO7NB3+mjO0XQ74YOhE7vd+rthf3tO2N/g7Hbz361Kd5UUl4f/u0ToyhlKaT1CdFoyNyw+y2jIWLpuUdxH6dN5dQ1EkTLxMi5MNpkv+6e8xCNa4tpH8xEwDNPgj9b08CmkJz2Viv1fkfF9uxWK1oact+p9cbT+EhZTnQ1e7wpgZQxfZDrL4IEu5dh2k9RxLn3qAfXuWGBpohot3CxtjPqbunOOo1/v12tOdI7zDtRFIZpc/atcr/t6BRiLLQ+2W+7ifGGUEflft25v072+2SIgQAK5LSQIuRSuQ8IKD1Mvl5f+d/+7a+cPv0D63qitgbBmpfe5w/6E4EGe2+kASImaA5V2buyT/h1q/zSK69Subs3/uec+ef1I//4/IWnp8+8NeV/vPzO/+/vf6M9n6irNUB5sTyHfb/ThtE79tF56pmv7c4SIjE9IU3p+0RDIXZhDYn1wxmdd+6vL8y283EVpChaJrtWQsiUc+LCiZCFNhtve2O2ytYrv39vfGLy+QlmDISyElNgLolnPiJzQdvOU7Q02N+2Tm+Te1fucfDrbFwj3PrkrW68ofxtq3zJO1+WCx/Smb/84S/85fMfWGKg6ERq5WlZmCHz21De6o1/e33h19t3rmM3AwICX1+vvLXvjH1yWi6UZWE9n/iH01/4afzEL9+/svz2N277na3v7HV3MMYAtBoGI1vNJ0E5lcgfP37kT58/89PlmTQLLQq9Ra73V0KfPMVEeLoQdJJFWXOyFN8ZuG+D271zvTe2OlAxQKy1icxK0uDMhMPMweqavUPdJptWliScEmgxameIcFoWxmiMAbFkyjTN1KQbOOPuMqpQSnHtlJ/B6AOEPiiVKcKyRDOLGBVhmDi3TotKJjJn5O7GL1ODbXVjPvadMSbrWpiarOkB7tvd9KpqVu341H1d88OpTKeARKdPWpZQcGteCRlVo/oZoHqQQY6zzoD34xpOdwszq3gDp1IqCZHGtk9ut934nRgf2TYcAfUwK6d+JB9Pm+f1O697WRYbN8eD3sDD97l3U0tLNDHVeIy8E0OGCwmCcy59kxYoy4oY+YkQMqqTNkx0O/WH6F0PuLEbZ+/HnOYkEQpCM3vN3gkpujMKLKflgdRLCgQ1+o08xjv2RXptDHEHFJ9YDC/2ckoPio1givFabbIRcyIcEwA13+oYovvST0OoWyNGO3BaG49mo7VhY3LvIGFYcefUjm3bjBIlx6ShewOCIf0HtcYXc4zR/ZT7+6KYluJmnWh3RMoapejfCadFmEAluCe0mlvMxLzNp5pgZSit++s5jcIKlACjO9LtLesw21QpmQiMutNDQIMVhSHaqCkopBKt6HMhr3WqkGIhrBdD6aL5MZf1zNPHxvXlyn69M2tnNLOSi0TM+dC89XWal3lwHuz4Ab0P03QldXRDjZ2GYXuFGH1ErSkIwVwzzIv6KOrtYTwmJ7WaX7XwPk2RIJQcSSV6d27NpgQbcdt98zToMElJzG4M8yjftx2RQF4T6xBaHRAMHZlzsJ7kwW8PEdaTOwyIUQCmDEhKWjJpLaQSSGWQp/lAt6Hc3q5ANP/t3glMnj5duFxOZu+XoCyF6zUy+uIoi2dFiFn/tdHos0Gw9YBPCHVOQoKnD2ffT4RYgglxk/39oZOEodpDp6E7xvtAmUaxii7YE3ErMTsQ5IemMK2F07ww5iCKNRHbfSOESF5PxGnZAil3wh5ob80nMoM4I0tcIAZSiYQp5mYzmm+ytqRVzbkLsenHx6cnNAXWdSXnzP1+J6XkIXfDrXttuigSSWL2PCpOx/EE5N52VKKjOzvFm8MQDP2fcyIxPgwDEKMRqST6ML2UxIiECSF642lOMKM1d2AxipeEANM80edQ9mrX6JiYxWRBdUYtqWgzZFl79SaimWuZOEd9VLTdafuVuV+h35ltR/sO7Kgp3NCpjK4QlRKy+eqnhRhXUijkZAjofoft5RujK9e3O/e3DZqdNdrNmi+kSHIgxyY/dng2rfTacTMksCGbc1+tWZQGIdq0y4a5wqiV68s3Yt2I5cpyusF6g/LK6C/09o28XpCwMilILDCFTGR2sUYjKW1WtNn5lcO7NsAyDAxsKEsiiCHgTQPElXyyaU/dbuxNmd0444xB2zd07uSZkB7ROpj3Rq2DFCd9CHM3I4s5A7f7zuv3G+0qxHiyoLBp1AgtlngeUqIUoaXAf/mv/8I//cv/zHWfbC93Lv1MWVYrrGun9UpqiVKMepbPJxPdl8G1V0JtjBqpQ3hB+ff9jf9Rv/Omd9p4Y4nKf376yP/y9BfO5cRf3+78f79/5d/vd/4ulXlv9r2k8/F5ZR+C9p0BpA8LzM41Cf/b/p23vnHLjT+dvpA1kkbiJMLP6xP30vi+dfZ15ZIW/unzF/7xpy9cYqFX5XrdWU6ZPz6duc1O//bC61Sjf9CZt8FL+4WXFjityvn5zNTAPkArzGvkehv8tn+3/VeVOpVtKq+j8ffbN7ZQmWkwJXAPsI3Jtr/y+7dXPuQT//jTHznlTGiQxZqS77ed1/bCNQjXPvn7ywvf6g0tDh72boGBY/LbywvP56/Ic+QshZIKZV14rie28zOfzk+M1nh9eaHuG6UkWh/89fbKK3dojTSUz+czf/nyE8/rE0lWRN3Dfg4WiXxaLpyLgVIxKCXiCbQnepu8Xitvt8a3lxvfXq7c22ZyKzX3xdpt/8jTk8mz5wA56+BtH4b8Z8d0ZmAW8T0s0no3/n1MpBzJCcuwYdj+y1EUGwCcstkwW704STm64YOgoxl1rjditGTo3qyeGUO53Tvt0RxE5hBqVfbdzEhEQGWwd5u8mRPeoUk1Z6KUbXJ3u+1ehCdiDNYYA2hg37tBjGIWtCFGt6mfXq8qIUIukTZs0i0CvXZiSAaw7dV0bgjJkxGYE/YKZYcl243SYGhVDEYfYJrwIBBgCK3BweM+gjhiPCg3w1NLnd6g+k5D6fNBb5xiaJmovCOeGKKXkqF/xsY5vEKdZhONuyjgAl7jWBkYarv1dOEGgM5uHNOUnHNqYtDeJiG7oM2LoOm0CNF3tPvwKo1HvLt6QeGLR4IJTg8kPIj77Ac5KPtGMXFqzruw96DM2Hsd3uIHPaPW6roBexHrdK0wODxTD6s383O197c0tUQu+Z3jqfqgGB2jqSPsSQKs5QRTuffNi1Ir7lNKD0umgIsh1fh5R7jK7ObKctyD4IXvGB1aNdGKUamtU4X3/+kDPfygxQb6w0fkyrSQn2j+58YV5uHdb0MRs70pa3KuYqUuFcmJvBbmXtnvG/e3buP24oFhft3nsMyA47QXEbecdPekaJ3xewKfjdVSwO65azB0Glo/9YdJgbj1pLrY+yGUPlBrQcKkLAshCL1XUs5+bedjJBejWLhHFEiRPhshKmVJNsHaG+t5IcSJqjVX4z/Qy4wudPjoHzStGAKkyHJayEsh5kBaHMHtO9JsEx6tobsiat7xKZqoLBaj+gQRxliYrr0RbA1q62xjNztQXCMw1a1onRblHsEhZkourGtEoq/XEChlJZXMVHWLQA/q8ufTgAF71iSaq8KB1ohAzBElEeZgPZ+Oh5HL5cx6tiY85cSYAWYglQRJbKSdg4lkkzWAaSmkNSNMRm70GOi1MmojxUCcQkhHorI1RGldCMkPpGH2vYiHUfX2bjcsidAnMRXLvsi+n4rQeoNgQAwhoTEwcyXkBcSoKW0PUPBG1QGRaHqJqCZwjiRSEEvw7t2KpHoDHQRc0GpzX/rYCVJQxJDtVAg5u62qgnoSeNsYvVpY2tiZ7sQjc4CL+fp2pVUXzs6GYILRENyUXgWRZD9DJARr1HM2YeaUyJiCNtMi1H3j9nplu97tcJvRLUtBxcGQOQkafcJr09zeTZsTJdr+Ew6dl2NhemifhBBtX5t9GFIfjMCgs2M2lw0dd5hXZn+j7M+k8gyyQjzZtRYDpHpQSIEYfYzuU8uDFtF9ehmiWBElQkiZJE/M0YlynL9nYrqgbbfgr2qTpqCKTEWa0nZFm6BdqM2+Q2/Qdke69wkt+F7VnDphTZ2KPKaluSzMKPw//p//L7784z/x+5a5tsKY1jAGSQQGo3Wb7IxGI5DSQlysEQ4SGPeGTCWVwtv1Oy9SeYuDr/c3crvx5w8f+KfzR74sH9mH8ra/8vto3NdAXC8sEtjeXpHWeIpPLKKMlHnTZramMXKVya3euLXdpmGx8DmeeQqFqInPq3G4byUQLx/48uHEh/PCGgLalbd6hzEoqaDJrLH//OEDKXSe3gLkSdTJfLtzvd541RPrulFC5NYn1+vg919uvN2vvLYXqlSqdK6jc++NHqHqBnmiuSMpoyro7Nzqzv2+8Tq/c+33h7V2OuyG2+S+bTSUGYStd3YdTDmmZpNQTqaBUeX31xdkBr5cPhF7Zb6ZqDrHRImJcn7m0/rEbJ0Uhd++fufbXrnPzmyTcyr80x/+xE8ffiKroJrZ26TvBqTmlPjDh490XUGMzr0sGcUcqTaaTW+jspaVT8+R/jbZazfatGFjgIWJDjnyis6ICnXfbVLWLRQqinCSRHWWQArRsVzlcIwIIbibzXGmO9loHO4V7xPSiZ0/6uu+VQOj5oCqk5RNL7Y3c38jRlq1zzJ1oCMw3JKyu/shw13BJjYpVyuq0iKWL4G5iyU3ojnMN4ypYc+84swN7GtFPcwyptl0Jq+r4HF+H05uwqGlPGq8SEopEcQO7O1ufO0gSv6QyAmEDkEpMZodWXu3O7JkVZtrphQe3cXBSQ/ZFNlWwwVkGnJuH0C9mDfB5yPQxg+64+A+BISPsAK3CDL+kqOsPobvffDghE9DBbsaZSJFO6CMF20H00S5PF0gKH12ul/0GJz+4hfqPa3VrSOH2Xz+KFzdN4tLDz59MDHX5Ehx/Q98elGSJA5hcvAJwcHv731QSuYQb+ZkLhjbvruYdz6KbivkrBA1rnb234cjeTa4L+R7cW+F4/SHIhRbcK1Vorhwcpjg8iH8nMZRnjM8HhixqbuHGtm9slGUkpM8pgDBqVdmc2l8/TH1UYDN1pghkaIdUMchOl20GyOPdWnU1MHsFopi6H0k5DMgxDwJuZJOjXxa2E8LbdtJt4xkC2TL0aYI1jUbPWnqfFClhGCuM3MYouY0o8NKz77nsA3GC3rmD4U0x4g6GrrPsVZ9bXvzRzjoFzYajJ5UH4JYDHVKLu6xplai2yQy/BkAySaQDCHQqulcHtSjCGA0ghDVGwlPQA3mbqTBKCR5LcYLXzLLk2k7iHckbuTaGOPOfrfwpTG68apVOH94Yn0uSISSMm1a8TPnAHFhods72fjQvOLxYj9E28hQ26hScbFzDIRgnPG9VgiHs00gpkSc055R3+hCsGY6Bk+3VndECbYOUz6mF8KKWQTGlAnu1Z+SkMGpPoGl7hCPUChL5U0ns9pMp0ISYeZGk8AO1DFIMTMRCO6C4xoGex9bQzFGamu02gzhbu+BfCGYv3lKg5kio4fHevAvavaPwdRWWiM9RjRNc2oYxkMtZUWCedcHTBxPCoQZPTxF0dkYbTORa9/QvnuDoW7PijcDfugg8NAyJBccWNWovTJ7g1mZfTcHptH9hB0E7Yx2p9eN2TbEm8OYEikXZsQaq7hYg58Wo/IFo0BF8XUiUOeg7xvXlxe+f/3Kfr2ZdmBMS6NVF801Q7skJYZMtCmtDhOMDugeQiYPpOFouLPtM1izrsM0NhKM8oJ4SKM2ZO5oL0jfkFGt4M47eAHexeYuKsXWGcnEeT7NNqCr+eTGphw5m7ZDxCxglWT6jNHpPSC6kMMZ5cocCe2R2axADSJohdFwj/pIbZNW7ee+Dfb94A1nUrRU3qnDcmBSZKpNDJ+ePvK376/kTx/4L//yX+H0zPrzF7a+0oZNdratMQekuKGzstcNHcrp/MxyMken/V4pZUFT5LeXr/xy/86v45Vr3EEmf/zwkf/6xz/zD+cv3Fvgl/vG73ujR7PPLBJZBPJYCD1S+qBvO+sQrl0ZcZg2Szp9v1MlsYbMuV+JOaFqgVAf4ok/lQvptLKEwBLM0WyOwW2v9GoNXUo25QtJuFw+8vH5xD/2n5lMtu3OS/mOzMDLFOr9jdQa13vl6293vv/WeNtufO/fqKEyMnS3jGWYhWyMkSTNshxm9om3CXF7mLyOV7a9Q05IMMeq2YC9eekzIZtddxR7JkftaGukZaUE4ev1hdfrje/PG1kiYU4SgcWzN+K0ojiX1dfbDW0TaudpOfFPn37iTz/9ATRRu9IIXLdGILCsGXSwxMhZomlfQuRWJ9dt47bv7LVxv+/c3u7c77tZpjNQ17A8pmZq9FycEr1tOyUv5LyQg9D2jdaUazWDh9OIlBQ450AKwTzpIw9LdHF6i/HZ39OPf/xx8O8tn8Im9XtVd8UxbVdvZtEuYQFgrzt7Nyve3t2CGqPncgSIirhduSDTAEgzggmIeuCjWDDW9LrX/Qltqt8aprtSryPtteYEH2iTEv6ZHRgAZ3ZE9moi+taUnDxhPoptOK132hxm89MbS14Jl+QcILfaCvbh7MB2BbAeiLI7j+RISkLt3YQtU330bAX7YVF4IP7Dbem6c9ItRtx/PYU45qMAeHDmvRhWxd1a1EWh4aEFEJd0HW4lolaUyrRYnlRMROesE44k1ylO19D+QFkPdN484gMpZdS7qkP8GPCb69cjiDm/7K0++NXH5zbajwV2WTcZfem9u+AcVosHLad3G5EbRzw4/ej/aOEe//8+DVDlISz5D777+j5BML672TXFkEhiYsaDVx7dyUawIiWIGCjXLZXVFpw4B3j6uHs+9A1dJ3H0h/ZizP6YGszZmbVCTExpaFKz1HIk0RZ5o3fAfchzNneIQLTxmYIGNbu+9USS1YrVtbDf7+RTJp2SUXRqpd1uxusfHeaRUmfyt+DTFVWYwTixrb8X/8f9MfG26zzcE92EPNZAWcNr33eOo1lUo6QIxOCNdBIkGG0mlUyMwrY3533D4e9u2hWhT3NziilY6nII5JLRMajRrgOPBD+BeKxHMUQlGZodc7SCKFrq4XpZKZczy8ezld7llXy6mesHja1W2ujIvnO77aTSkNTM6i6JCT69Bx9juuheHxHgBPvicbFcAGS4sNuazRwX3/GVckrkAl1xfm+kFPePT4U07flr04K+o1OadDRDUTANikxhyjDBbLYiKC/LQ6x7iFVTDpb0LLYG8pLQoGxbJi/m5bw+nYmnlZgTJUSjj/XOaJUeojdV1lBItGbuaEDmPMCKQdt37vebuSU0o8Mcz1dog5kHmhI94I5O7ouutk+lVOg/alfKQGJh6qSJMkcjRisojwZSdFrKtg6Ugc6dOTa03ej1xqwbDKcZafeURyjJnq0pAnEhlJUUzdFJD65+2+26z+YWjTYVmKOCDueDm45mtGqNek5ojIS4WBDZBJWMxOzUImsiLZ0zEKKdE7RK2+7cXl65v75St400gtsY28RPBLPd8Mkxqsw6GXVaUJZTulwpzCFotuPCnhuie589UH87O8LsSJ+odNRTPiVGwkjQTHSnYSOmjTkarV3J5czp9EwsH5B48uns4cg1qLXaGpAfxfSKYOGOjEndNu6vG2ObaAXdQZqQRmB0YeyTJtMR+ukTism+Wc5C3SfbvZv9nmL7cISQeYi3xQEsJFBr94yayO3WWZZIq2IUoZTpmzkWLamQnz6g2HcYY5jNaoCoCUlCm51ftxf+9fobf99feZONoYOPpfA///HP/JcvfyRX+P+8vvI/Xq58qzd6HoQxyKGzLoUdn3h1oZhpEXFi4YXa0WgIai6Rt/3G11iQCXuywLj1Ejl1szMscaGEwuyT2iu7Cm9942WviN5ZL8JyKmg3CtVTPNHrIJJYfv7Et+3Ov//+G6+//QYiXN9uvH69ktOFu1y5yQsaByk79eJ+h9mIKXKJBbQTNZDTaqBR8k5aIC2QskCORhd1gfycMO6V2jayJFI6LMWt+dQ+adEAp6r23Hz/fedSVp7WM9TBIol9KrO/0rdGDIGUM99ur2yjkxT+9NMX/vkvf+RcMn3vSC7c7p2/vlw5LYU/XlZiKpxCpMTM1ge/3678+9cXfnl94eV2o/ZmdV5r6BwI0GXa+QxuYAGWw2RN6ZywbTttN/7605pZi7DXzrZ3XjblPiY5Tu45sCY4Z+ESrcgPIqYjIj72WtNvuiOhTh55PcFSxgEv6gNz2NlQq1FfEDVWCdNcnjrU5oW2A1Ei7/Ta3ieH+5YhyPgE0unSCUp298M6EQ2oJtQt4ffbxuFO6FI814IJIVRD7k1miATTGZkTXKG2ydvNwPngW1sIkEazOPneQYcpeWVO1qUSgpAXJWdPI1Xj+QYXAcC0LisFLxqMt12b2WuJO9x0u9o+eo82lhfjbx8mBb12WnunLJjGQul7BYx/nVKilHfqCo7u927uONn9z8ULbQtqOig65i4Sna4S3Zau1mYUgWSOEqoD1MUYrT+K9WMjzjk/Cv3hyQNyUFicEmNjFWtyslsWzjnNwnMOBqbuPpDeo4H4karzo1NPa41+uOzESAqBOaN7uUYTuekx4jFaSA75UeTb9ZyP11T18fJDdGvvmXNmtP5oImII7jp0HICHEBQL7ZpGS5nDRktwhG+JXwf1Bw9QQ2FjSLiSwQtomwqM1uixerEP0+sSu/ZGg7IxsKK90wmE6YEvAbPRTFbAhWhouCx2uKQlMdpKWQt12xjbRs+RkHe22067H5Mi8YPPuM4q76MzDmqV+/KrI6nvbjh+YHKEpR331DZuE4ceQmZDU1NM5p0eYMzmY71AbXZdWms2rJpKUAvyEh9hdh0e0OPhRPKDtWeKtHgc4j7ZEDXLT/E9QXAbxuDhSguny5ny/ET88GQbcBKWU0a1M0a1dVitie5jst0bkjZaV9a1OBDgDcWEri4W9/Wh0yg0KRklQoLZ3IpExjBbRlvjdo1tehacBmLNU0wJpqcMAzLfXaH66F5UBEMjmcZT99cSgZAtMdQQ4WippjHamDgGox9iVLeQA1kLMRmP3WxEE2lZzPMYGHm338sHLGXNXZ+NMLM9e8OE53ZPd7Zto7XqzWXzg8cmRuocCmUaZSTEh+UqPuUUHYh2mBV15xMNlZhWm1ZidB1DwaNZcupwyuEwsbzxTZijGoI/DL3v1T5TcDBnBKMpDgmEfCKPC5TVUW0vvttmxb12Wr0iOoya0xqCuUrFaM4/Vl0DriU4og/6dDH0UEMaxSavrW5oreakQ+B+faPejUIRsFG4IQveINixRJ9m5xx75HCZ0qMJ98Y8iE/ufN0a6OBAz0HEx8f3wwLWwhRvAjzXhIC0BqmhumPs7IrEnTwN4Ucr5zUQ5WKC4WDmC1Ns4oKafmkchxrvyOYYk3bb2N5ubG8b87ah+067N9iG7Q3DbmefxvuttTtaP2hVmV2o1cCJKIkYs+1dZRLWiLTOuJq7zmiTundero389MSYgX/973/lQ0/cgbAEQ3S3Tm9GvzitRp0yXrGltj+mDinzev/GX29f+aW+8Pf7N+5ZiQofzis/rRdiG3x/ufH//uuvfJtmT1nqIG4bywJrsWC/ppNPz8+Ei/D95ZXfXxutD5sMe31xToXPpzMpZr7d3riGTikn7lL553RiG9BJjBzoE1525ddb5W+vd976jTgbC521Z0KtyD5YyEQ1W9v7CPzbtzt/vVde6u7gRWUvgxTfGHJn9h1Rs2oNXQizEXRQJsRW0Vk5L5nnkkk5E0+ZLBOhE0uyHShk6NFD5yx46m3beL19h6gMGbzc7vR7e0z19m1nGxVJQjxbYNXL7cpt34hE59tvfP/6zdLhs1HutvuNEOF5feLzx0+cT2fLWEiFTuZ7r/zydufUKpePZ366LJSYiTPStfLWBr/cN37dGnuItDBRGsg0cwaf1OL7u1ldG3req6356GelTsvJGWFQMixLQVJha5OuSq07Yw5aUxhQQiREdTcay+s4XJ9w6ubBjjgcF8dU+oOmmqyW6kqv8PLaWU92Pt3r3baAJNQObZjjj/D+lXCAdszh57Bt0yW6rlSVUgI520+xwx9xUFIDzCnuEBgf9UZKyc0XjB6YkjFYYBgFdVgNUivs26DuRr1FYHSrNVIbxh8eA4Jb6u375O2tU5bIOQQXyE6zT5q28QcSy7JYx+TFtwYbd6p2jtn/QesQnOfuHuuIWGHDO9KdkinhzR9cGW3yGF6oIfHNjW6s8DXkuNZGkGCpXJ58eVB7AFQsrdBsoZOJXH30GcV40KN2Ju8OM4gTgR7FvaFwxrm3AiCn5VH4H4X4EeWuasVGbe2BvAJmN/lDyMqPzjgHsp5SfFhZHhz/tZhAtrWGCm5DN8nJ/nurNl1J7mMOZpeZsvFjxzhoOyaoPfxSjSM2H6+NWgHVRmOv1Tivyfh0rTeSJKKYlzRm7uGdsnedU32BWZMRJDCj6Sq0C+Rh4mNPCVafscxhvG68MRMVghd+OOo4erVMAUnEMYipIGK2VBCRmM25Z9pDGJPZIq4pGxiXM/FWqNm8domZMeF+f6NVc2ISjsLXqAfauxUlPmmyVGNzlFK3BhUxVwmRY6Qmj/VljdX7pOq4z+HgiHvxP7syI3Yfw6SU7PdpwjC72OkjvJgT2hoDeTi9KAGt3pQlkGRNOnocuMrhztJdcBmmjaBzWVnOZ5bLhXJ5Ip0/2QEhGV3vNhrsjQlst52xK3N27tsbKpV1JIKOh3/+nLYeH04B8JhaiQtAwQS3KRuNbHSz5VzKwmRg7j52bcz9BtfvJHNFUCc5HYWxIwIBnEJhaaAik5DKI3wupkLtu00egyVsi5hlZgzZJ4SRFANLWSnZDobebK2mspDTYs+AKi2vxNwI2ZBFcSRqjIE4ajXmtCbX6UeCGtpfdxfkCpGEioUWHbW3MogtMrtZaE5vcIzH0pk9Im2nNqPr5byRyxlzy1mhnJBhaPh0ykrv7ic/j6RmOxC33VJPp1NnmOavnlM0IZxEYplmODBNKGbPrHG/Z6+IdkbbMccJK/xR4wl31cfULYbACCYw1b2jMo33rYbOZ4n273tll0gfCtg93veddn0jMTmXhVlWczTyxgpH7GxqDPvNJ5XDzhPtVhQYzc8nGsfZIEJOVpyKN/BzAM1sPWNUa7YjxIcTUDPbSwloagxJ9gdygaEEDUQiIpb5oaOikv1BOCxeE3NWn7gEc+7onbrt3N9u3F5fGPsdrXfa6zf6/Rv1+pWxfSdOu/ZjDCbCmIHRoddpdpsNehsm1hNhvWSenp4hwkgTWTLpNqj9yn7t9NZ5e9s5nRb2UTmfP/Df/9v/xtO90tJnyuWNZblg+oiIEujXCTJZl8zlcmFdT0RJ1BG4bzsz2lr8fbvz9fZCD40v68JPn7/wFCNvt53/8fU7NyaXz5/46flMf/vGy9crcxt0On/6wx9Jl8A5FqROcuy8LpUrO00TEozu+LGc+fnDT/Q6+dvXX7i3N6Qk/u018i2d+dP6zE+nj5x7JZFhzZT0zClMRC8MOm/3N379+ldKv3KJmaIrp/JMlcJfXyrfGdT1TE1C3d6YcaBrZ0hFckfqRPaG7I3UJxeJPJ9PPD1dKNkK+g+Xz5zSE+cUWYKSZDBGcwBzQbQwqxJGJJGoCl+3jbfbKxLNjejXr7/wVm602dmrN5YzMHTSUYjQcmQ0C0Z62V4Q4L69okDPge6BdIsEymklLIX7UKoqtU3urfOt7tymTQe2XiEaNW9M4d4nbwPukmilGA16NMuDYKA+AdPebEotUMSSYIbCXNzbvhuYkcQAm9drI5VAWQN5OXEqwr5vbM248CrWk+cEM1vQYlaI+MRa1GoGNxwxLajREsc0IwHznM+m0ZmD2iZT4L6ZQ9oMZurSqjX9/tJesTidzbcdq1lse/Zei9bs3M85miaqdU5rYWr0iYGDhSoGjnmtd+gpjQrefwBoPUNBDM/obVJbt+mcyfxcO2q1Rdp1GKoVDiqHJWK+3RvyTYnpmRgSSCcmKzRsLGCCyujINNHCB/ThJ25csjGm00gio5uPqU51TrC5YtRWSTGDRvo8/M+NcxRzps9BlsjezAnBLq+SghU7OSa3sNu9Y7Nxi4kmrJCYMh2dUyaNPmBdFyuW1TjQMSSYTiMo0UJbpvnmh2Cx0316kRCSFUrd+M85RneuOKw14X7fiDmZ04kH44zRSSXRa/OCzxbAcLcKExFDKcnpM66Unt1EZmJhUXb8GPITUqT7QRrEiriYIq1XipqgyxaM2ckdEwd1KlOSyGzuDiRCd4RPckAjDHGrthj93guQ3JYNplpRbLZTx4g3EcWQh1kHIZoeQLuhDnNOszOUR29jQhfMr3qooXehRNq2MXxyYxaGqyFpYyMEi71nBnqPjJCMtrEsCAkwXtwMQFFSXMiXC9vLCyMGTgjbvRnlZtjafEy8YmSKu1LsO2C88j69SG7DheRuNxrMkz74+O1YB9MtFhG3svQWf2KBTToE7Xatg3PEVTtDK30MUkiUtPAgm41pqLMCMVKnlX2DCVFZnwpdG7dZPTQnWKM8rNkKamFHISTyciKdT8R1Ja4WkLSWT7QxyKeVmTdGNx5jKAvl9YXt9WqWabMBDR0r92s1t4x86DeaTygPapUhNcuSXchkHN9lXe36naDNzqQ9mmBCYsln5jBf96niVpeGAsUcGcM2wFGH2bO6Xex0Hqa2yah3K2JFaPVK8gmiNQODVjcDlqb7z4swvOhN0cTkyeAm85J3sf4kQlwYoUJWVAPMjqoYojQ6db9zPj8xdVL33elsk1EbbavoGORciJphBEPMDhtam+3SsACFEBM5rf4ZDTWa2xtT7NkbmzBycRpeZqwXSjkT0sLE8gJUJ5qiI2iZyUJMCuGN3q60bSOMK2HuLpDMVnwSkTUgZGZT38+soWn7lTF245fvJi4e3Tj35jvmB+Kx7g/HtN7J8f5wDQKQZaVtV4ZkILiQzShLU4we1GpjXG+EGYHM1nfbc9zmLuhEOs5VtwM0hORr5fBytzOIadzboEISZWolY6JenbYjZU2me5mWSplLRkuCNBHZ2TZl9mqhZCkSciLnk60BVlQv1Nog3A246daMj2nONFMDIWUOHdQcynZ74e33r2zfXri9faVtHvp1f0HbHe0bvW5svRkQEk4GSvWOVkVbQKvQdvO8jiWTToGPP5/58z/9AU2T62i8Xs05it+F0Xb6fieFnTbuLE+Z52fh2+//ytv9xvnLP4A2on4grc8MzXy9VlTNivXThxN1QroZQLGlRCPztg0Iz/z5H/4FvS3M+o0/r4V/Oq9kifyqk39tnacQ+LAk2rjza31hC53YOx/lIz+z8lO+8DGtTG28PZ+IIbGlzgyVHu1M7024fd25bY17C7yMzt5uRBl8fYH/kRb++eMX/vnjT3xZP3AuT8QYWPMn9jn59euvbG87a7+xpt8IojRZaPLMjROvEtmlcG+Nrp1JRecbEjZygaKBRQpZI6fQ+XCCv3z5xH/60585L8+03e4/uhJjATqz3pmzEeMTWRaWeUEo3NvO6N0clAL8lDM/PX8ihkKvlb/IF/p8o85XtvZCyBGVwH2b3GTwOnau1zfu9xvb/Y5guhRZGqkUYulev1T2Hb7elNo2vn/8SFTlw8dP3Pad369v7FqhDrrT0OYAmYmULoTcaOOFPgPmkNUIOVBSYtaGjsFQWFb4IMLPa+EcI1vt1BB5acp1H8wBZQizTt5aoBLZ98aK8nxZyFFZQmC7TVqDN4URCx/SmUAjjzt5DkoUcpr0vdN3KEtAhzcFIZPSmSjV82isOpekSLEJuaoBSuPQ01l5S4pidaRPibozRw7lntVUQsTAcgOhhftmRXeKmXkT0OggoiP4okw6KUDrnVIMsUem0V0dIDIAI5hT4cRE+Ia72PDxKKbiJJVEMuGbUTBSyhY81Z2m8NqZ+sKXL0+cTuExQhzDRay9m894cjrGIYacfgC78NNQ4mlolHmOmfuCc717H8YbPNxbOOgL+t4nqW3IoystDHLEX+PdUjCExBFgIH7TDMU/SEyGBuclH1RUcjErSvOzHo+AnWkZTFYAH+0ZTolow5BWnx7YwWFc1sdUQsIPaKWLZuPxHfVBvTnQ3IeHviP5BzceDFEyaoUhf3hDEEN4iHR/pNcc/HoJ4oX9dOT+WID6+BmCPqgi0znBj2TJA4E2I1ZCCIxpDkMyLTDl8O4HnL7ibjPT9BExRbNL7Lt956Do43NbHzwOFN87WUk21dHkArhpjdm03oGm6oiXEEK2+xqC8XVDfvDlQXycb2soYE+BCCyXs00PtsGyLvSt0Ue1hisGe2CikJIVXTotK4Hpaw2x8ZgYR8+mJEY/sDClQ/TNgz4WBPPi5l0DEYJ44eD6j2E8P9FhFrBM57wrKURyTIw5CCRH6qwJJiRCBlHjNyzrYpoONbqHhcr52nBO4Zg2EXp6fubpw0fyeradQoUUsmlSUNbTBfn8hWUpvESzmNS90Q8XovtwbmMnjegUE6Py5WyjxtaafS+xyUqMiXVZWJbVrmGAFNKD/mbcSHuGdPAIJEHek5stzc/0EZYA6m5F05oDdcpfdCqgO60xcRcnd5SZwwTaW2/EEMkpWYK0qbWsKBYr3oVmUxtHcUI0N5zH3jojUYw683iepgmQORpZByh0qmVDDEPRc7IgIAl2WihKmLb2dCplEbdQMPs7ORpxmfTWmL3T3CY258VErPlEOT0T82I085DQHpgOghgVZYI7pYw5abUiY4feKK4jMCXURoiZvChINsH9aA9amE5Lajaqp1FGVA5qmIFAh7vUmNYY1FE9K8J0DSndyHkxv+ppjbfV/UKb5slunPBBawOw516HgnoTOY4bbbotnWIE7QMpD8c51h9773T66JEUq1WZDDdZUHdccksM5gOYoU8TI6eODrOjkzhhBLMAdZHxfr/ReyLmScwF1UD3IsI2t85oN2Zt1LfG9fUrt99/p758p95fGfXG7FfGfkW0ueVoNbthiQTJ9t10MscxuZq+/obRAHOy7xFsj00hsZ5Wtu/VqDraXVRo1MDAoM2NmIQxmtE31o2YC3VCHZHr3umeNbDXjdN6Yl1WJAS+zclIC02hhcFyKvz56Y+s85n/dDYUvY7E933nBeEmd+r+OzPBnZ1QAp+envl8euKn5w98DAupQwuBUznxX8fPjDSZqbPJzrVWrnPy9a0y9k6xnps+p5GlZuBlVH5pV8qWaEx+GsqiK2kmSshoWhnLiRYvLKkZwBISVx1837/xdYMtrqhCno2ilbJETuXCKUcu6cRpLiwNniXwZc386dMnPn/4wOyF1zn5/5P1pz2SZMmaJvacTVXNzM3dY8utMvNu3bf7dvcQPQRmiCEBEvz/AL8QBMkZdvetqqzKzNg83M3NVPVswg8iah41HUBWZkWEu6upHj1H5JV3ebo05kuFfqH3lS6aRTIMI4wOV2BdLpxOF6R30hAsO83oYq7TC4x9YvTCPsLw6pZhGuh4eh+oKfCYL3z4+J55vrAuF+b1zJJXKp04jVQRns4XLqtaxzrxPJ1nlmVGWuPm6UStwjwvNJoCN4NjlkqSwGQIcQhJAYqaqV0nRN5Eya0pvZoEN4eJb3c7fry9ZR8C53ll9YlDg9NSKGuhnWbWvpA0vg2hUnJjCY2b/UTa7Sj5mZw1M8WVRlgyY7R3NHhtQLpqNcfJDCqkK1XM6qEA1NqVAYFQW6Uhevw1MaGz0e6cZxw8eM0Vak3ZJRsxT110dLruULRfz2XoueMNxIzR3vUrwu6JXvU10qtap5amIYhmiqFb9AZ1bzqLSu6YPbpTgKCjtY3t6dIqMWDcdkMMNlvF3jQOuD42YlpwTlEs1yu9FWJUqo6vHecjrjmz6jJbnq50hm43yqNWQs642c0O2xgS0+iY5WUjfUl7FbUc6ur1rRSnrvaWzeFEU7+cCTkFx7pmxIqnGIO6iQTH4KLVev5qm1d7MRGddUFdkVcNQtCxqYhaEG43eitkY1L0qdYt5VUFoptdXzAxpfNK+9m47n4jU15P+pfCfKPl/O9/b6ODgHGSvbewI8g58/UvbQ60eHZ8nWS2FfgvXqxX2yjRAqlL1Suz7+/8SyCXWisldSJpxbyptWgS2cbhugA32hICsXfEqVrct62x0QVbLeiqbQ0dDee8snEFagbXA00qdBuhA8VpQxJ8QMyVr/ltxN5wTRGf2irOGoyQooq/vdKFYkikqI5EQxq4eE+pKjJKRFQcY2LpCDDg1oqGDkUwSy/tG1VQOgyJkBw4bdu9U4pA8yaEdp4etqAjXQ+tqYOL8pd1Y/BeNSlqdarIKc6Z1w74kAgpIWCbgQqJp6SBOU4cwzARhqghad1Ti0Oa2lSqHaZn2u8ZdgPBvMtDiNdsAxf8lViYxoHgbxT5ybcq3GXW5+y90pS2DdIyFPTW6GRnmxyJFYG6loKJWj3KI9QJSDaKxYuYGNKg1pJXByVNUdKiV7pxuTEBtlEh7V3sTahlowaqQ8uWCm1+GXTzvbcXnFIrErKNe5MW2vb8nN0nZ1aKMTrGKRGDoyRHb1k3faPkhBiNAqJNXW3NLDG1mNzExqVk+zy2NZiwM0RPLZ6eVEMUfVadQClq3+kb4lVUV7LSc4IPyDDifKSkkdZm0rgDF3F+0MMjJIZhuDahwzDQxpGyRMrir64ysKHvZn1cBsIw4HqjtkxtxaiU2jBt930bUwdrsisKIjWBdtX6VFzd3KcqvZvPM6sdmo51rfSmh+JaK80Cy0Q04bzmbs+4odkkaoig4MnL2Pva7GOp3pgQ3snVL1qco4szkRtGnQmWIlmRagW/ZbZEMTqecA1RDNaACkA4g9/h3A7vVkq/kGvHrUnNF7pqslKM+LrS8yNleSbPJ06Pn8mnE7I8q+C5rriekb7gaNYgVqNaVUrRNOm8NNa10Kvxg73SBKcpsT/siEFdbsgwt4b3SmUc08Czm8nNQtsc5NZ5nhf+6e1bSLes7oY03ZCmA2GYqEuBdeVyeeb0fOb5/JHb45G74xGfEufueKqdS6/Mo6ffJqYh8s3NK366e8eNDPzp4xPPK6xp4smdeH76CyKNKQSOPpJ65N3xyN3+wNA9a89cRPVrxzUSC/Qp0oaJPMIS4bCeeGLl6EZOMnLhwtJX4jQSArTg+H0+K5K7T3w37Bmqo9fMepppa8a5RJ93iIuU0HhaL3xZLyw4cjuTwsCuZI4ifHtz4N39K/aHW0a/w5dAyLDzkdtxZIgRWuRyaTyeCu8/F86Pz/j2zLo+sz8M3N/fqNf+6ZF1/kxeO+fzgkhjf5iYdkkPG4lENyhrInRwC843dvtbxnBAg8UG/DCwGypj2dNuMjFA61WLe/N1f7qc+dgf+LQ8UERBiM5KWTOtFXJ7tJRUh0+OxVce68K+DVAE8QM9BHMp84rQt6yVjYeKUJ0g3rGfRn76ww/8fHfPUYT2vOD2I4NL1NzxvtKGRsaxeuiXFUo2MFp4Pmdq7QwpUrSPRxqUkslBOF8gHtRVsFXVXY0pshsV5Fmz2sUKSstR5p5ao+O5arIwCm30Rtk2ALJLu7rybCGgwWNZR+AMtMMmlGLmKBqNo/tJMIC4w3Wfd86Zng6i1zDYFOuVYqOglFzNMHqHXIRsUgbnxTIqdHl4p7oZ19A8H0USMS64bqrNRHy5wadPK4gwxp06HyB4cQQvZktoiKbziviJp9eqG5hRHTpa5JesItVk3uUC1C28Jjr8JqySbgXniz0QyrCxorrhmga3bMWyhv0oshKcjj5CUEWn8xGjSNsowyEuUKVRRTaPFLuZX/kg84KwKrJuQj2tgvW+eUetxqu3BkXdQfSQUTFt1c5uK6itWN9+fY3ab4X3iwBW2A2bQHYT5im95urAY7//ot7eArfM539DKbtcpwobSrp9vQ5x3LWwZxuy4F+oCE1zCpxEtmmG/gANVrI7pgWUKD2DIIoMXg9Z7Ypr6dfrVG2BKstjBx/N+9ksVrtv5k5jjkUhQXwRJUsAT8K7iJOIo1OWiognGM/xep9cJ42JIY4Mw0SfKuM0s15mLT6TtxG70pQcIMnTJaj6bwhaUNQNle3mD698dxXPanOAgG+oN27t9sJiKKI1fmav2lF6WIrB+KxoSEdIBKeoNsErtSgNuq6jWa15LejjVKBrITssA+uyUEslVkdvjmjNIc4Td0ndeVLER/Xh7L3j+7bGC71r8RZi1EC523t9p6u+g6l11vmiDZyY5qLatCkFG/u+cO67ocTauJvOwmsRjGiug/cbpcmed1BO7wYWOLQhdyak613F2q1CTAlvISfe6xSuVLWd9D7SW7CiX1Ff2T6rykzpJnSuFVrRdFMXza0oeJpEEKXsiEHsKQYVBgf1GMcKQZw6QbWyQtCpYvCBOIyImwFvUeWah7CJNmVzcrHN3fmuB42F1UBRilfwNK+opKLmmjgZYqSuqpVxMZIvj4RhIA07xulOMacY6X6vtn+WZ+K85kV0lygSdPLaCg61nXVB1fU+RAZGdbMxDmurSm3bApGUDWlTJRGwNOsuQrVmwDuPL6a36c20O02bNXO9yGsD0anWWho1QGnd3iF//bfzmkvSuyg9zQLFNjpQs+eNbPbKmLe0rp/NrWgzJLCNj9bBdxuxi3FrvZCM1+4tByY4kNooi4ZGubJSmtD7SAw3xKnRXWOtM7Vdrpoq1xIuOlpZ6JcvlMuJy+mB5fGBvpzp+UIrGhCGVHxv+r6L7iEgNm2p9OJo+UX0H6I+s+AcaUqkYUTEc35alRuNAy6cPp15+rRyOp2Y5xmJEG40J8MNI9/++CN+vGflDj/esz/esN/fcJ4XHr48sOQZ6SvrmplDYUiF0EfOVfjz5898ygvtOHHkFd/EO/bTnqlHyqXx8fOZ95eZB5c5s5DDii8NWR378YZ30543456xOaV3dtVYLUvBz9CDt6ZRKF3tjd+OB+7jgXLTKKFSXSFTmWtjkcLTeuLh9EiVRqoT427HviXqmnn/6SOf5gfGFLjpHlzgIX/hw/KBSyiwH5nSxNvjjns58s6N/Hy85+7wiuJ2SAvktdKzMLiIkx01RB6XzK+/n/j1wzO/vX/k6dPvuPwJ7zLDFBkGzR0oq1CrByJ5zdRamHYD+92ozm7iOUw3jONICEJMnf1xVF1RHRlGTR2flxOlVKJPjCGRXAAat6Ou/bWs3HLkXo684sjD/MxpPVHEsS4nSCpgFtfJXfVgtVd+vzwxHCIOT4pAHJA5mCtVwxUFAzYQ08WIGzzTTkPOfAg6fUjqtnc6Z87PF9betYBNgXQ7aZDhRahdyE1oomLxi9mBx8HjmtCrnhmnrjVjGSODgylGUkhIcLoZBdNAOdXLCOBt0tcd+OiQKsRo0z2C1sG1Wyii7l/eyRVgbV1wzdH9ixuaonpQsX3D6rgtKFesuG/XOlfr7EG/jCaY/kjBQawR8EEIFaRrYY8xZJzRhxr6zTezL2mo3tJd60wxgaWm+zVDxuYVHr9Ukl+4PST2+x3BtyvHsbeGNH2YMWy0ErFRtlypGsot16JdRZ9GubFodbz9fEC62tJhFJ/NoUbs7igDxApl1Hu0s83KtcBtfOU9XjJDUjpOqeo0gjlItNbpTqzj0hJVXTi0CMLA9k2sIP0r1FAr8xcKjnObycK19n3xuPf2UP575P5r55zta17+6awlK/p3vR7Rn2sjZbWTMjHyNuoVjNu/FXT6rGVbBUY58nrLEML/7pDrL0FdXahZI+w3SsJWrOlE5m9tQLfmodaGEyEOwQS4+nN17KXTHnHbM9waEU8Udc1AvKrLbR2B/qxtLC69mWUVRlfRqHei3u/WIJSBnja0w9OcmFB186vVhOWQ1L0ppMAwRpx3lKZrhOufe2IYdIKUhVrNaWgKDKNaXymkZ8+hOyRsUyANp2qlaR5AF2pvbPZWLvirQ5DaaxolyrQQHqXOBZ/UdSNpAxu7CkPTOBIH5dg7gWGaGPJCybP6abdmFpG2QEMg7hLjbscwjvp5awW3GAJbURqMvhXinDYbo2oaQimE3glNOda9NXPB0k2zNkWv3VdNsnPeVNhiWQoN16F6UUSpFJxvrKuuwRAGQogGIyu1yaFNYV3Xq094q1Vt5bo64bTe9F4F9WUW0ZwCS+m2V8gESwKld3ptpBhhHE2Yq5u5E915XQ3UoiFVISovG0tuTSnh3KiARavUkjWcz6FrzWPvrgq/xQea0yRinAqGe204CddDwNv6QdQ4oCwrrVTVxnhP8x4JjtxWtZzbmpbScNGsA4NOR1qN6jHfBR9Geo0gBZ8GBSWkqcDMfOZbauACUi8WqW7rJi+4WSce6iZllpVWUHYzZ2hVgR1nFjb62RWFqtuEU4TQggXOXGEma+q8ubiZ8KwKS9bivlZzjDDU3Dn7PbztC0rZcyg1RdH5ZnuWt7G8NnN8dYB20wt1K5yVK6yTsRg93W0TIKWGBiekqOtI6Ba813GtI0XFrSHNtLzS8oqkQOuqe3LWwOW1kXuh5Zl8OZGXM+vpgT4/41rB90WzA0rW7+2cvcuCc0kbNdnWst5DH6I6wAVFHJvo5HieM7JUStM9WxDm+ZGHDzMPH1dqUWqDmzzFVxqem1dvGY93+OGIcEMlgY+ENLDf3Oic53hzUBqgF0tg1jTdz89P/HL6THmG/fkD9ekd/+7fv6I9F06PMw/PZ049c3YrafLc7e/wtTPOje9uXvGH19/Aqh7zdSnEMDL0SPMjn+VZG/W1KlDUKj0XbqcbpjByExMhJlza41OkNs/n+Yn31ZMSxh5wfMkrD/OZ09Mjf3n/C58vn7lJiZ+mI7We+e3LH3l2z4yvdyQXeXV3wx/evuO+73ndR74Zbgh94lw9p6eFx8/PlKWawDJwXhYezzO/vv/C58eZx+eV/PyJ1J/YTY6wgEjVhlgS0qPWP0BthWV9ZrlE85fy5Hk2AC+Db+z2E58/f+H27p797ohzibwq7XC/mxjHyDQmQtDGdBgTN3HPbrfjPh25jTe8LQtP+cR8fuDzw3tqyzzOJ1yIto84XEyc88Ln84lpP3E7JYiR1QsFBRr3ux1jmoi+UVphblVrqyCcl5kHccTdDWM0erN48to45wUfheAbu+TY7yPDeMNlrZzmQhVPbqqHRNRxbYiO5opOZrtOJnJp3Ex6Poam9Un0GNAqOLPnzrXjg+q/hK5JvWL5LbZTNKMne+n45NiyjgSulFuxyYLzdq4YGu+6owdM3wOgNedGanBm0iVW5orYVNOA82pFv/fbWQpUuTYHDqzuemkarvWrKFwV3RUk0m8uveODHly5tWux/Xju0DLeBXb7ZBuZRiQ77y1oxwSzYtzzoC+PnWx6OHtHrsI8q4vMzc2B3X4k14VSinV825mmaLB6vr8UPd1tVpoqktONeUM/xQ4RwCuC39G/n9Jg+gA9dPvm+rChOcJXNBgHaNHXDcGWboJhr3aLrWnXWEohxvHFk5aXwvxvOPGYk0trKsz7inbzdXG/Oe8otziqLZ/fCmmj+KAPvm8Wl1bcXn3tjZqjSL2O7jfLJg1h0KJ9SFGDdbpyZ4PZ/em0YaPR6D2WruJo5f676/ffRt7XAIbwt5MHfUaG/HdRf3ybAvSuz8HZRCgE9SanacHvbYGKUYc2JL039TdvXXCjHWS901qhkgkloy4U0FxBStZr98GoMYqGOmuknEOtp5zSa8ZpUJR9XVlX4w57TccbkqZlOq8biPO6OSSLje/asus2EfSt1/vnrgWID2qlGKJDqgqgffK4COK3ILCBbq24bB2Vf5kiBa8uAVVEp1jRE/1GG3HE1kk10XvSwKRW9d7aBCUME2nYGZ8YE7o28lyordDEHAXsDO+W2utDYtzvlSLkIHq4nC+apmxaD4wuoA5YunY3rrw609jhZTHktYmmyxpXvmSlBzjn7dqbhWFps1tKUX/wZsmaJnxqtdr76q3gr9ZIdtP2vLxbWDEcnCdutJzWyfNM8OrkU6zx02pfN1oXAjGN+KT0KBVJOpukOfCBJt6K/NXeGWsCpsjOBZZirM28KqGwa0q3BgBrk+5wONEituZGzVkbyRRVD4BDvIXbSdf3sncqwNCuIEMcE6FGyrzQlkpIE2EYiHVHnCa14/OKrMl+j/SmAWc1Q4G8znTR9e5wtFpZ55kQTQxWda/2TjUael+DNis4PV+8rrEmelBtwT6StanCKZK+jaIRrtMTUOpXb0abEQhO908x5yrvEtuQYLt/dLH74q7nmLP/2exc/Veasdr6Nd3XsBPdw5oDo5ta+XwFJpyNw9umLROBrvohF9Xvv+SV5fxMH4Tq1fwhoA5gy+WJOp+peaavZ1peKecTkhccXV2RcqblrGdsiFd9jhDo4qlN/38zCmwIXhvQ5Oy6GqUK5/VCKZ1StWEch5HLeaUslZy7NTsKgIRpzzc//8h//p/+L+yOr3n/oMmrRVb2y8KyZNsvAzf7o4IqKSlI4T3NOR78R8bnZ4IsnNdH5OkLc5xwa2WVmefLheILcRcZCezDwCAFKZ3b3YHD4cjahEvr9F7oa+U47tnHkd3NgcfQeZgfeTw9cMkzoTdGgTF6dgFG7xiIRAlERkr31JII8Zbvv3uDDIkSAp+ezvzl8a/88v7PfPjrv1JPn/lE58mBtDPn9TPf/fyOf/rmZ27ffMvbb3/mbv8N8uwZl4SXiZodnz994dffPvLXX/7K8+lMLep1P+72nJeFjw9fWErVM+QmEGVA2qJnx7BnXQrrqlOjUjPDMDBGT60rvXWjMzpwq+YSlaLZFjVTauPzpydCHLQpXg24847dbuDd29e8fXtHSpHDYcd4e6si0OYZicTpwM1+gtsb3h72lLbw66cPPMwX1sestJTBs5xP/DqfOe8WHhcYphs+PT0x98y4G7mdbrjbJwKV0/kZOT2xlMylrVxuRkpw1BjZT3sOu0CNK+m80paFeV3AF8RHXh32vLk5slQIn8+UL8+szyubpqY3Ie1GhgjLpdCacFmxc0SISd0bBydMQWnGXppOSX2kS8WnQF4zSCelRK+OUpqBBspWiEGpkbkZbQS10PVoYa7hcwboaoUHzpHMUz/EcGXBdCc0by5BYnWnfVUI6hjnMPtmc+JRpzAb1G2glFMLYbG9la0l2eoZm2rHMSkqltLAvFaCHRqb4LEB0Wlo0lqEy7nwPGX2O0hexX20SnCBmAb1KO3gwguXGzZaDtfDf4uNb11w3SwanXruX9M8a6N14wiLkLy7HsL+WjxyHa3Woghrd0LoeuhjfHURWP1KMFFhDC/x9epJv414t85NCx1tdoIV0jqC3ZDsjQYDuokSDH21ZmFDr0ELRydOCyAr9pv54m9jnu2f7fc2brBSVup/h+5votuNwrD9u5ZOchvNBWrdbDI1wGHjM28hVWtekaCJpRvdZyvOQwiKftLUk7ptOgptWkKwzAEbEW1WkQDbpbbW6atSr7xxo7akX5Ht73UruDy9qOXeJmRsoul93osKJb0dbmZPKllpPspT11RY7/kbNDPXotQWwA+DNmeinL0uOnorXa3/VBitLjXO6TNttWoBkjxxjCQHffC05k3D4Azdj8QA3VUtOtDwtFo74zRS1oIPkdbUwnXcJ8qijk0iKOploqBu9IVgzkNiBURpSjHZ7rH36kzgg9IwtImN1FIpWddeNz70hkqIeECbFHyn94x+ROWe1lKoNsbc3t8UI/T2otL3HhcCaRwYeyMOkVaqOVApz1wNX15E3mLIR62qh/BOaRS1qVOUWGHuLORsLpUy1Jf3w9aY9E7ygSaOUpt66etOoBuwDzjXr3uZ9G3/8dc1aAQfpHbWuqq7UzB9gAEWOKf0rPDilS8Oph34jevtPD6oVab0Crzse9t0bRhHhv0RcZGxCj6oW0ZdZoJUynym+0BeNNFxE+221sz2Fvv/FYeYPz5qfWeTM5yKp3urVDFxt9PAuLYW5ZSvHcLMME3s5MWWU40JtIGPIeKHndJnZNBY+6LC3+i1kSx1gWE0vYyopqU1XVc+0nqh5Er0EU3pNuGXQBfdm2pp9LVpge49Q9JJRTNBbC3aCLTatHCVaJQzZ+DCBjpgTcWm9TCXC9kK7w0g2gp+4/3baqF72xudIWvCsmQ9d6K+30InqHU2rXaKq7ioLlc+aY6va5bMHNWdx4mjlsrlcqHJHilAGvBOBcSRSj0/cDk90vKMlAVaxRXlGyPoXlvAtQBdHed69/TuaQRqs7F8Q3NZ7ExtIiSSnrHiKE2Yl0ZeG6oj9uR5oZbO5VKICdYuDIeR++++4e3PP/L9P/0T9+9+4vNTZq6OtTbWtuoZUTu3h1uGNNGrI7gJx0ApDXGBFgI93BD3r9iROV8EXxZeHY9Ep7SQUz2zuqxWqcuJMHiiS5TeqD7y+/nMpcLr8YbJqSBzCgNt6UQfOL46cHJnWDz5eaWtFyqCu7/VEK8ojMMNVSqPj194zlp8uaaOSrULZ5n5/fmJ38uFy4AaPjw/U9YnPvQnkMKb1zv+5Q/f8R9+/Ad2N98w7b6n5IncR54vhd8+XTg/X/jl11/445/+yMPnj0hv7Hd73r17q8Car8SQeXccuX99y/PjZ54/d7rX6U+gMSZH9AOtOlzvDAlwmvUw7PYEhNrOVBN0uuSY0oh3EaEzTjuGYeTh4ZHT84laCq1pTtD7j3/hm29ec3d3y/F44ObxYEYOMAwj02HHYYxIT+wO9wiF4zDx25cH9uPE03pmLhcKIzUvfKkXPp//G7gRxCOlsXee1h1jnDiMO63VmvC8LlxqZ+3C45rZD5Vp1L087UZevXnNuWbm55nLPNN84vZ2T5oGHAPHFjgXeL5YepnRsNaS2Y+e21cTZRWenzONzvNSqLXx6nZHcUp3TV40oTcoaDtOiTUr4KWhotoQTFiuSHeUXG0vduySugMqDVEMkIQhRdasjnCK7GsznfAKKlSzthQDmL23fdUZLU4nhk024wfMM98pWLGxPETxpQ3lVht3d93v2LSUTgESRyDGlDQJNgRi1AOi20hy4yRuVKIKnOZKPK04l4iHwQ5QpXwoCtuNJ+vxEpT/uNFjrLgPwVNrI+fKZV4Y+qCpbNfib0O6A0msuGjylWepNwcUEKf4fnThGpqFAx8D0alFYq9NEVIbfeOhduXP981P3iu6tvF8y1XYCltUsLcgmm4HiqZF+uuDal3RxU0MKQKrccScjaY3wfCGHm7/DS88/I0LvzUPGwJezC4uxqjo9Vd/frWSc0bHKSr8EvQFDjESQ6C1os4Spjz0Ti0mxVLytrArZ5MREaX25KJuFhsjaLumbhYk7iskP/rNy38bGXWkWWG0+eG3bS7jzIO7X8W1TgXk1CaUIoSI8UfB08BsRzc3labxlIaSqzJei6Jk1p3KSRanVINWBAIEPLWsrGW1xNyqVARnBaONy7QJekkbDVEFoZKiovpVLO0vWCBaIkWlx9CE4irBuG+KRuv4O9oEKU3pikyX3tTreBxtSuGgqwd47928s81ZyQk+JUUVvQWmhYTfxtFBi3yR2bptKzjt+W3vm7dwDOlZn0GZyetCLtagBI2I7qWoYKdpVHZMAUblDDsn5FwoW/PQRdNXrSoN103Jq8/61/fDMAl1w9L7rsW5jsyWZcEZ0phi0r/TGsEH1mU1DrVahOmkCFzQwlqsMH1Z09oYYhNBqQoiqEBaEx69U3pSq5opoDzupgVTDOAd1RdcxGgvmRDVcQJplJw1sM20Kx3AB8bdgbQ/0iUQd0fSdOD85TP5/IQTIS8XSj3jraEOBkJcG3u2cexLU6xiUxP3d0WUvAv0jDk+6eSoO52o1rriQqMYqNF6w1nQlQ8KWrjeNfE3RErGhLz6ntJUON27OmapmNvr8xWvE8nevkKVbROoNiUFmmjWQi2iWi28PT+1Uc25GmigU9fauyJVBgxd2zKb4ujC2p6pXPcn5xzeveg+nHsBrroBGJ6No446v9mcW2zzvzqJ2WTIAy6oLsNj4jU6aRtOB0P4XdAzQSDhEaxBq1XzYuoKonQcyqIFfS06wanNNAoKCEltZiGtJhK9YVZ4jtqF2tQaz5lDWe+dujSWomh87UKpnWVR+oomnwolZ6Zp0qY3BnJufPPNO/7H/9P/wvG77/G7I6QbgkuMUXVWcVXdx5oLZ3ehD3pNl/PK2hfWJvg0Urznw9OZz+cLaxe1PW2N+/0NIQQeL2curtJGR2kXXFtZSyQ3dVoKO7i0woenj/wanjimPUe/4/uxcRsmjmHkGBJvw8j++Jp7CdTlzP3Nnrsxsc5nKok+Rh6eZ/708Ik/fn4kiuMmBL55/YYU4NRWPs9nFtfwY2C/n1hiJD9dkLAy7QN//9MP/P33P/JquCf0I+0UWWfHl1Ph9/eP/PmPf+X397/z9PyZnGe6d0z7ibvXd9y9uaXmlfOnL7Tyhfu7b/j5+4nL8Y7TcWRZZub5mVorKY1ApFVdt61XnBPS4HU/XlZ8hGmf9JyxAKfgNem59c75fGZZLjTJ4CouKPBU+8pvH3/j/effGIaB/TSRQmK/3/PdN9/jvNAXjycTfGUYPG92B6Zh4nV5zcenR748fWaJE/PyzFNrXERrKO3YG9k1ltI4nYXobthPO60hHh9YzjNPp4VyKYSm++7Oj0zDDbfHA8fzDef8zHMOnHPj49OZcXdk2u0Yxh0pzuZwuL2PjXntxJgYdjv2Q6K7mXmeVZMjHU4Lh52KbJ1zDCEpm6RVWi1KcxOl6mieoyeOCjDWqk2xF6UqO+8UaPBiaLozGF1/r3WtURGdZEcRpFkgqAjRcS28qWqX7IOnC8qQcQrE6HbtrhNGvwEZbKCuTXQ3mM5h0wL9E++dgawQ19zIWcNTWtORUDc0cBwDqVu4ETqUmIvgTysaqbvn4JSK4NwmgDWublXP1S5Kq9DDG3NiwZBLofWFJvqgNQTnpQhwrhsaoYicM/FSjO5qYbRZMbouBFB/YgGviVp4L0TxyoEqDfGKFIawHRJGjdkO/C7mOKHFJICzw1TRdnV08Jjo0RoaZ+Jg2QpsQ6dDULeXLXpeDPWUWq8H0FbQb0j99uvr4n8rZDeB7ddNwfZzt1+K3lc2S1JnVBZErR2dM1ul1mgonSNY6u+WwLgV+uua7e92Qz01uVW1aVqoinHhtSBjo7F+hcpbAbJRS7aL3homjF+M8mu7M+u9jrrhOFCbJwsjq8ads5eldaWM9Abe26Ht9KDDuL7iOkWJzagpR0d8VMpHr0o/SSqiVj7wdk3qUuJDv46eo9EivDcXDToxaMIvJtMIQekxBE3pE1H6ga9NP7f3SIoaypUS4360pFS5vsjddeNdW9FbG53KGBO9OA0q6Q3XB21UYido9QEmKPdx1LXvyhWBlN517CfO6G3gUNSv5gXqQs8zNWuzo+LRoBMfa6BfdArRvP6dUouMfldzNUpYv+6D3nsMTNfPaeJb7Xy75gs4LWgRZ4EjSoPxonQQ1502DV0btF46uSmyL17t3NhoYIh5qGtx5l1/QaiNikVz0PXrWu9IA9XoaWHZsyZKi3MMw4CII88ZesAnHQErT3wlJZsAtobUQnWZNO71QPKBkEbidEOuMB5H0qiJpSfbXef5Qu2d3TiYU5LTdNxuto9OiCbIlq/2VMzirZdmDmQGUohy851gVBF1G/JBR8PZXbSAsCAzgrdnoqKmXrL+LFFEvRe50pycOHNscAoIWdCTdKFX1ZTUajbCsnFV9XqLdJqBNU62aYyaOLQm5K6i7uAD1VDn1rVZo5tnlGyaLkuI3BAo+xmdF5pls4TkGGyS2fpLkOB2baJOSy7G69roIngxd6+u76VKntReN+iyhdppumR17aDvTBr26mJyuCWNezo6ga2l6r1tGckrUjI9r0hVLn4vjZaFSqNWRykOaZa42XQCUqoCUFrY6/0ZUyTFSGmdeV3JS6PbBDeXRslmhoByhlvtnHumiDZs43HP3/3zv+X1dz8w3L9jkURzB8bDkUjgvGacz0hqRBxBvL2LMK8XLqUy1051nsc18+t64VQWss84abzaH7g77GGInOeFZw9+P3KPTkPXWrlcZmprPF8uCMJSMr/nlTEOHIc9X9ITb3ZH/t3tj0yl8zpMvDne0PevoFcOu8R8+cJj7/hp4tk7frnM/JfzM/91+UJfV97ECf/qwI2feKwZdpEoib444pQIhwl3SQz3B/7ln/+R//iP/8Jh95blnOjiOc0L89r5L3/8nf/3//pfeHj4rELMIOwPe3CRcfD4BA+PH7icTsyXLyznB9ZnuJle83c//Ixztzw/P/PXX//C8/MzwQ8MwwHpnt/++oHf3/9GbqvqWrJqP4Jz4DUcapgmbo+vifHA08PC0+msCexVA6Q6Zu+dlDIqaM7OeVb/+xgSw9PAl4cnpiGxHxKvbyfubkbczY5hN7H3gd3NPcfphtPhSMkzT6cv/Hp65MM8cymVjoeg+oCn85l8rizLmTf3rxinA8fb12TnOM+PLMvMU3hm7z3HVxNT8uyGgTf3d8x55rksXMrM49LxDyeGc6NmYV5WfZ/9Vvh6Op3TUphr5c3tPbv9DkE4n2fWJtS5UXrHe9VEifO4aFNuKilA9EUph1bvtKoU65gGfLQcI0VySdGRYlLKuOkHNazT4Q2IbCoNY0i6P8WNrrPVbyIMRj1VgLaD4kVsQYPY1tRF086V5aJ7l/uK0WAw6Qangds0aboXx3kp1CqIN4sgbRhIYSAEZx7EXV0DAkhwXIpQvlS8n+nHif0U8IMNOb2ig7VbcA+KdLgrEocV1B5xjdqhlE6sDbzZ/8nGh9cDLURHlPAVSmOCWAX2iEYb2FDh1oVeOjgNBxlivHqpqzWYqpKjV599rXu1W8bGKaWXa9mslFtv7Y35hvtI8JEqzQryduXKd6f0lVqrWuyJPjiPt4JTEZev0fuv6Tbwwq/fEPwYlX+vPqvt+rUbur/994b6d0NxNu4o2Ijf6TRmm5BshXltL0Vxl04ztBPQyHIbr4uNiq/WQ1v7yjbleCnswdkE48X1Z2uSrjza/tLMbE1R71DF2QiN6yTJO7W4qk3oruHl5WvA0em4IKRBw2Q6ojQJr39vK/Y8eigROr1rF69aAXVSKVXRTNCpTwO8T6QUmaZJ/YhRhw3VJ7Sr8NV7zzCMynn1umZ80JFZdYWwNaPWZTevRXz3GlwWLRFUtJ/RIqNVmhR1dOrK1ZVayK1Sc8ClkVAbDc8oKuptbLQ4IRBMp2HTKjERtL0/2HuvU5oLvi5IWZBSaQQtlMXTR01KBSvu7Zl3BILHp0jcrB7XrE4ssr3vwRoJc8BxGz8RtmwGNpqErSFvTV6r+i6XXGkYZUtQ20ztU+yZqW+wdEVDWtPJXP+bqeHLdMxvzYCICXx1JNoQQnxJd94ESjlX3RuKgiGh6YSga79GXbiKj71lUVTXYBAaTtNLfcKnCFS8j0w395R1QeqqY9pNe+G0IWkiNHHkWrWB8sHsUlVgrfoJBVXApml6pOOvW5ZxM0ULbxr2jnVCLfghUtZVKZmitAXXuaJbtTYV06/lqq2iQ8vmuOI8NdrkzHGlobWqI07pynN1m7Wc+fw77+nVhKitfoVNeS5LVvez5shZxYbebRYRqlewrsVE/6qN0npdtQuOzdzApogOo4I2Q9hho4lujmi2+173rGoOGqo7eQFipDVIlmltBz1eKaaKtGmy5v54z+7mDRIPlKzrseVOXTNSZso8U5eVuq6qUehCyY1iZ241jQyoWLlm1cF1USqo0gQUoVcer7pyrbmxZPX5b91RqwqJ1fii4YGQRp7OC27UM+sf/uln/vFf/pndq1csEimSuDm8Yjzc8/D4jPeBaZyIE+yHRHSOuq6cnk9Mew890nImrzOP6wMXcbRYyfmCbyu3+zvKOvOvv/zCb88zv+eV+OaG4+2RGzew1sLgPYdpgrVQygLLmVIurN6Rpx2n/p4/S6C7mX83veXgJxKBw/7IGDSkbkg7bl8l6jDwy/PCX59nvuAphxG/TzyVyv/29J4bVkr0PK0ray1UKUis+PuB2+lbfv7DK/7Tf/gf+Pb+e1zds+SJz1+E394/8sc//c6f/vwL8/mRSCX5URvx9cJan2ljoOVEzSaslU50guuVfXJ8+/YV0+4PnM8zh/2B0+kZ6Z4Ud5yeFj789oWyNk2499qoT9MBHwshQBw8+5sD437PMgtPzzPzJStLwXXSppPqgKiLkDhzE4sRmmMaJ6TDx88PtJpJrnK3H3h7f+Dd21e8ffeO8XDDMHhC2jEeIm5fuRv3pDAReeBTO5NxZKcCWpc8pcPDfGaVzv6QGYYDw3CAJuTaKWumLBcG39lHfa9fH/aU+zeclpkqnqV33j+vOMnI2miLmi2waa8C+EGtsNfWeTqduJ12jNNA6Y11yVQRiqBi3O6Yi2ps9mNiTArdRa/7izbKlZQGLahROs8GzEoRUooM46BTFasnLzWTUmBIjhDVAz/GwJg2sa4Co80mniIwRNX1lKIUyyHq9HwLqlLkXSmJMXBlTOg/zvJIbK+zGtVtmGwz5goQnQ8Mk2M3jZwvFxVueGNtiHIIg7l5dGccdwV2eHqsBDIhDKRkKJGZ7/uqtBpwFkBjgqpuTgnBE60AdHhaVb9vb2OGrUhMKZr3PlfkWzueupWEengBNEV+1H5TlccBnSAYoGjFjP6d7h21qYjXBQtDsg08Bkcz6kA0IeAWuiVdQ4V62KhIWuw6o7ro2PeliLgW7lbIuODxXYvNF09//aXi3I0T76/F/0tB4v+777slPF4FuSKGuKqdnFrwOTbY1Dn1GHfmEOSCo7pmyLqhflfE31+pPs45a1q0mO3yIhwWK8B7F6VI2Q3fmhPYaEfu2gT0LteRuE4i+kuDYWMmQfBs/G2nwTgYyts3MZ27LnDvXu5Nk01QbFVswNxuomonnKj1ltmMCpvDhyK/G/UqeI94pWiklGycZo1PjCS04HBeKSzjtGdTrSv/Xzm2raiDS2tV/dq9I6YIMamlq3fEcSANA845yqoOSS0Xa2h0RN9bVfu73sk4XG2ELuAT+AEfBnx313eotGqNcWOjF7VWdBPzXikuQYlurS70MlNXtdBsEsEHOp5a9H20JXh9n7psrinqmLCFAl1pW6Lpud0Hghfz2Q8Em/T4oMXTBgpgEyIfAqkJ81popdKaNsvBBaQJuVZrSnTD603FTQGv4ssGvW8+6vYuGz1P3yWlZRj/Sged4qmlaCaDiPHtVe+wrIUYIr1qk6RUkUoOVQPPgjq0IOrQMEwDvWTyvODGhXSZYWqkaWfX13FpYNwdWJ8fcSFp+unmqe+E3Mr1UHBONQ4qJbL15pQDrpNNTTitpdCbRyTqDigKpOj0SBCFiZSb3xqhR9M8RIJD9VN2P9XyVfVMraoIFnH6feiI0/CrWs0zOqC8b9PUKGVITLvkdQXat9mmxGpNWtmMApzt6XpWePuc/joRxCaPYkW4tk7eDj5zN9oOOxEDGNx1z1FxbrH92Fnx7vU8EKXZaBq2M80RiuzjTD1ge4ztRWJ7Tw+ozR9Gc4oDadDgnc5Eb4XSF2rJ5GXV6dhl0SmuIfbSnerOurdphp1XtldqcJce8832gS4dcVqktFLJBZa5shRPrcrwEXF29QqDNBEaBR8TLsFuN/DDzz8xHm7ITciKbTIvnfP6zJIr0+FATE71MLVRe6b3wrSL+N2eURqsQlsKu+o4f3pkJuNiZyTgKXz8+J5huOdPDyd+K4UhL9w9PDMgPPYLx/3EH96+43j0SCk8nh7446eV55aZT58514IXx//nL0L6Bu6Ge46j5z40pgZ9qfoujyPn3Pjt8xMfTivnJvgQyfVMlcY0elwSLnmmOKG6TkmOsnOM3x35+e4P/Kcf/p53t+/oTMwl8PFz4b/98YG//PrAx98/sj4/sg+Z4yBMqWhqbZnxToO+qKKBcw12aeL7H/+Of/rHd/zww/fsd3tKE0rppLgjhsplWZgvM3/617/wl7/8zrIUdS4MwfjZSg893Oy5e3PD7nBLKZHn8yPLqvaxV7MFVywHxlEt1+HmcGR3OFBbYzmveJfsbDAr0bqScmMukct85suXyBFN3XVhMLpx4na4IdwFJj+yj098vDzz+fJEdUKcBlyDUguPeeapVqZh5Xa45dXNK1oKDG7l7asDr4837EOirp2bOJBvjkxhR5CFhcZaBNfUXpOsIX1DimiuuNAxtoSDNRcuIuwOB3b7nQr3qzpDPc+atu12icNuIqUR3xfoSk/sTUMCg3M6nXZeXfKkIVaT1A7BMn58UBqqD45pULexbgCuo+sEd0oGUOuxW7O6yXVxLxNkb/WvMyNmxTwJzhmYoTSd7tR23rsNHA7k3K81znYOy1bj2j2Jw+AZpkRKiXlx1KIlQK3aEXQRhiHQ8Kyl6iZuRdQlC/HSGHfCNHlSiESvh2LdzkxQyztzMLAJrxY2g/ITwTMvmVwqwzDYVEJpOP7K0ZWXhRscpVph6DarNEWLNrvEbUhbu6JNMakNoTPkSA8eRd18DHgXcOhYuktn2CX1SrYDp1pYUPCK1DbpVhx7UrQwGV4KWsQCvQwx3ATEIIqExwHMrWezu+xdE9O2RE1E9N4hmh4suiiUHmDUG8SCvb7yE5dNNvlS9IakThdd6nXks43pg0TcoJ+10g35V4GtiPKNweGCpYYGLeydjZy0eLd7kczhx3lqV8SvG1LXZSuitupw49BuEPLG1tHipku7OmcEl3AYJ3/7PnbSbopxH0TpKR6kqzjcBR33OzrOB0LyVkQWfeZOBaE+RASH69688h34QAyROERzrVGnpmJNLyEopcmna4MSYtKDtirCMAxq5ShouqaYFqN30ZRIlxj3N/ioQU27/UGLoNrUjcd5algNEa20XGhLZnMe6gKOSvCVuqwEF1lx+JBxZrXY1gWcFn8Yba73es2AaK0iXg+GlldcrVrM5WbuPNoopjRo8Ff4qrBo+uxq1aJye6PDFnDW/RVh6GoFo4WeVz1AQDu9LtpkDuNEGgZ8SCCi3vWhcnp6JtfV/PSV1tcM9Q1BJzW1qq2gD/reNaMzKUVE6XS9ueuaDWFzmLE15nV616XTq04npPQrip/CqDQPigoYrZnFq0h+mgbGQackWbR58y7RWVieHoFEa57dsSiY0Cq+m5sUDkKEGGlOf6bHkfNsWpstfXpDnDfAoNOcTWNEm5lWFFahK786brYuzj6vuiKDeJ3aVP03V5C4Y/Zc1KL3Wa6FOuZKuk0NlBaCq9Qg+tuoX3dr+hm2KUvw2pTXpteqAmDbvxsvYWMu4J1OW7U5NPMD0HwHulEmDaQRp5oJ1697TBNt/nXW6q35MyqQs4mbCCL1BWDwgRhHRKoe8LXRWqF3bai8gTNB9B9Xhe46znfEguq6i5oEO+zwaQdph4Qd4vf4uuL8hS3Zu1ZF6CV36qqi5141GJHu6c5bZoB+eLEAvd5VDKoi436duuWs07nSIHfNAyhFg3G8i9rAOy34Oh3xjW++f8dKZ3p1z+1337GIWiHXCmtZuJQHltxxcUAcHHZ7Jhf1zKlCSIlhGAlSCa2SBYqP7O9hyo36/DvSnkkUjkPi3e1b3j9VHk5nZqlUKeSHxi5F0v3E6ITvb274x7u3jB2+PD3yj9/8gV+eP/P/+vN/4VN+wk+JT8uJ/+eHP3M7PPHu+Jq3y5G9OI7BczsNBAJ1zfS1EcURWoP1TPQNgmMRYV0XilSgk+uZXmfSGPnhzU/8H/7+n/mBI75EHp87f/3tmX/90wf++tsDnz9+pi1nbo6RV7uB2G3y0jtD9Bx2RwVVageJfPvuW7775h0//eEd795M+BD5/Cmzzg+cnk4QhLzMXOYTvQu5PYGfub0f7TVszJdnSjmzGwfevvuB73/8ARd2fH44M00r025VGmWrDEHYjyOBgcu8kJdGcJG741uGYeTL4xPz+Zl1eSbnYsBOI6XAd3/4jp++/xZa5cOnL/z26cQwHbm7f8Xx5obkwVMZBd4Oe8LR4XtFyhlujvo8s+DSQMex5MZSO6ldmGQihsjNYc+rt28YDncMbkSkMXrY+ZE07IlpIfSVkhcoBVd10/HmtR9TIqWg9L4r8wIuuRKGwrTfMw6DcupxrGujlU4KnqV7YhF2aMbJWrvaTsZAGAKlZmKMZjqSKMXAWm9AatX8F82hUVDCiTd6TCNFzzQGas9XKg2mx9P9uapltxNCcte6b9vgvHtJsnVsYKfY/q+1oSPYmSmEr0C8K4MCBU3iYd8JSTg9P1KL4AiUAiIaMtWkv3h9C+rr201D4RxrFZ6eM+MYuY+DaY2dRm55byhhVW7k5uWNcY0MQdvar1Y91biQrXVS0LF+8spfU2S40MQRGCxESA+DWlU0FINXxJaO9zCM4JN5C7ug4ynpyufckH7RUbKm09rmlnXcGWx0vyHx+ve3EW63jbbioznWxEAw1xmcJcTaLTeZlvnVbtHg3Yp5f0XLpb04QoB2eiWvpBQRMVcgMCW14knBqbOLdEcphYCKMENSvniXTIiO/TSZFkAPCQz5DkAcBtVCVL2+zV5QE9KUay+C6ibss+gz0GTNEDzioLSsKXIA3lx51AbF0Dl9ZjhFEhWjfym6rPIwVNcSJY3Ss/GNN4Fup+FcNDS2kZKNxaPSfsYpEr0K+K4vQIykccLhqaXiQmSIAe8HyloIcSC6SF6L0k2Cx7usLg6tk3Z7kh90PRSzjnXOGkHHUrM5zXia63SnqbqMSdFQPOI8watA0wXHtDuA8ca7C7hxUDqBd2Z9Vam9kaVpmqAVPq2oG0pdGmlp+CZEgBQ0DKNnpF9IxutrhqY7UI61WJPgA7111nmhZZ3OeNtIWhUdCjgN7vA+EoZJm9z6TO8ra1Ze7boU1ueFXhw9e7xXOWHvle6bNhhoOFJvmJ2iWijGGAnjqP+kpMj72hhJ1J1YAVihK3XDBY/kRmkNX0V57UGbBILgqgo9W9dirbVOyZkUkwqxpauANmhxuOaCx+N7MAGlxr3nVundmyc9+JDoVai5qGuPNeTluVBjwUeHCxC7h5zxrZt43FPxlDUTx50i3b3gelEb0GlASqS5RvXG6Q6qGWm94Ik2fFOtShdt/HGOKo68Nnr2BBmuzYAU8NEr/zN5ht32znjCMCLOU7uoHiDaKFK2qaOlXBcL5TJ3Jemb5bG94Pb+ik2XmoA0pXMVoxdi+phaiiWOm8uWeKRBzY5avCFaibVoeJViMWIHuDVpHlK0P+PFXGFrsEFTrrtTE4JgAII4b/uJoX4iti95RDTZsptrk0Ppf85ZyrBNLH1CE6yNLhaSwyWPanga3XvCNJAON6Sbe3o6UNyEuFEnhyHSfcCFEfyqzkHmgAOJXiu9WIPSxRA68BbyV41i1sWoNjjSMLAsK2sWXBho3tFjoeRCD6hoENWvVAQfB3LP7A6e1393i9vd0YcjJwZoHr8Uc02DtZ1YK4S0Y7cLLK0ACbpjro0+OG5cxLfEwMStP7KGShPP4+U3mjRoC7dD5O/efss3dz/xOT/g0wNpWQjzBSKcvGPIC/LpicfjDTevvyUVhw937O++pbk7/rJfeaq/4/bqSf7r6SPvywf+/Kvjm8MdP96+4e2wZ/fuB6TrtODvXr/iMI78dhLerwNP64Wb+zek2yOfLyedaEpm8JmBzt+/+p5/efcTP7q3HMOe3Dzn0xc+f1746y/veX7+wt3Bk44j0XUVFje9P+POkWIgBHUNGsZErZ3D8S1hPNL9Dad1ZK7C0D07P3C397hYePVq4n4dqD2T9gvNP3B+XmnNcTk3Sv1E4Imff/yP/Pt/8xO742vWHPjyeabXhTEVXh8Tdzc33EwjjsCXxwvz8oEh7RmHA48fV57Pn1nWBeeFZV1xTvfm6DKJzrfv3vLT3/0dj6czv3x85v3vD6SYaS2xnDOHXeT1qz3RUOQKtCGR9jtaEJ5zwx1fQRo4zyvr5ZHaOs/9xPnxPbvdhB++5fMaWWoh1KIJ6g3+8uE9n+aVRRzURizZ2ARCc6pr8d4jgzanvVu6e9dcE/FwXhdcCNzsRgYPl9OFTZ/+MFc4Z7KL7Fslik6T3eTN6UZzTvSIqiSvdOjaHAz67ramXvXXAHcneK81ZYxGDu4zIl7B4QYxjQTvKb0S/bZfKqjjvNpj0q8DZKVvx4D0jHR3bd43kBxXca4TvcOZocum/dyE/8F5Ykoq2ErRE0IjG7KxobcvIqIruGojTkUNm0CrsCyFJXU7wmzszcso2QAYttTOl186Qg0hss4FaQXvHZe5sNsJ4zCZ7Z/a06U4aCHRm3U3eiBojLBu3Clswkg9CAgq5HNWNBrF1pBFNj8fG32/oGKt2TjZ28jFbX703eghcu2mtsK8NbV2A64c/O3X5gCiqFG/0lU25HtDv6WLLta+cUKFIRndwXhZSn/QEa7abmoxIlsYV+/kUkl4xqjpmGKNltKLqlEVLAirZUrXVM9hiDq2tWAab2NxvXvdKAnNPqPYZzNG2KYfcGyrX9E0o8dsn+FrYbBsi9omM9s9M4mGFgbBo3IF/yI8ke17NwyrpCFUXy2lVm30QIta7zURtFmwTUqecZwIoZsnsX8ZXzvwUUWiOLVVjd7pQY8WudrweOPOafEbulBX9eP1Qa0h6V9pI7r673rRhL8UNQk3BGe6D2eTi22aoR17jJquugUNlXyhlaZNYRdqWwkxUdYZH8CXgOagNFxfqPXlXm/3P4RoomEQp8+05AzNK7fXdWJyhGFUxMCyItI4aQhTXumitpa56Lsrdr9jCLikAsDWKpo1oWtNhdDeCr6g6cFB94kQR3yaCDHp+FMqpS3gUKvN1ihVgYbN6UppN0UdscLmvmJF/ldrckM4ZHu3RQjRaGTirJj0bNS1bu8/NknxUa9furMa2HzpcTbebgRRLrxHOZWeiHNd701ZaOuZEoJpD+JV5zRME/ubW0pdESrBOaTY5CTotE7NAsw9puv7XF2zKZwDCVc6UjRnLikZfGCYPLvDjsMx4QctZpfSqA3GEK+buxbCKiyDgORMcJHuFVFWml+k9vJyGm1aKJw2ifbb6klv2R9iSLP1Ds0ZuNO6FbZbYnbHUY3GuVnu2n6C+uO3KubwplPEgIIeIpu4bNvHt+cuth4CAV6oghtN8jo4dNdr2KZiMdqaENVqbdqQVqq9o4FONYcmjydo0FLakeJEcAPSVRze86o0qBBpIeqEwid6SPRctKm2qUbb3IW2cwp1D2tdJx84Z3uSN3DDBPOuq46tNnUNqboWtowKQqD1zlIbA4HD3WvS8S1PObDUQFiFQRQkct4T0WwBHyLrOuNjZ6CzLIVPpycuZG5v9tzvDxyGAxXHmiuPTyelAJTO4Dzvjnd8c/eG3XhAeFIdU1SqVaXSYtICyXuG4Lk8ndjVRCuB2ruiz35i2t9Ro7qQeAo5X5jXzPPTA49fPvL3r7/jeNhzE3dMYeKb8cCrtOftzZ7/lkd+e3oi7A/0NEJ/oiwLQ1Annx/uXvEP99/zzXjLVAMigctc+PzwzKfPT5TW2O/3vHu1x/WF+XLmcpnJVdjtEnFQCk1KEyKF83nGEfj9t1/58OE3Pn78jd1u4g/ff8u/+fknvO2XcRyRADdpz+F45Ob274jhO96//8zlkvntr7/TdmfevnrDP/z4b3h3/z1hvOUkjde3nfNN5pu7b/n+m9eMQd1a/vrb73x5/I0uosGGwbMuM8t6Vnoj4FxjvxsJUajrgg9dAQwP+8OBu/tXPJ8K82XlT3/8E47K99++IYa33B2OBK803SkEvn/1mi+XJ8q6kOKIHyZaFhVd02hUulTy5Zn8u3CaV47Dnl0YaFkNAz4+feHLfCH3Qui6B+IcVYM0FBzEkuvF9oZudUaDMCiAepkvuN4Zx8Txds8yLyxrpdTO4/OZZV15t4sckoFVqM+9GaFZAvtLqiyCGaPoFMXhcSFa3acKWu8dQ/iqfqlavHSa7RXB6OUq7t/qTOeUhiP2+TazCvDmiviie30JCXVXA5RqVpuK8XiumUQixFK0M/LBE5N29yoY61eu+8ZXFwH6SzHWmybsnXrDUQhO00HHZGQbrwi3oPSzbYSotmwveO21SMcZl69Ts1BjJ6+V/X5CueANnxK+C33lyvneijy17duUyQ7nky5WnPFUN1KSWODK9rle0jRFNqcNRaNT8srxMg9jm7IopcHoRS44s1n012Ad5VYb5aZvLh3eqAaa7qh9zVc0IrvGFy6p/rmKvcK10AsWElVKNdGt0YyMEtSlkbwGOL0UiCZg6yYobltAlSU9XsVkcn3Yzumi1gLX2biYa2pts4nOi7iXK/3BbZ/Nub/p5/6myLL//tpXf3MGspthjYMJhrtOZLbAGQ3l0gNMWgEnjFPCy6DPsnVKLleLP5VGdEQC3XWIWuw71C5000zUuvF/u3qE10qIOolyVtjhPbWYn3VQfnIMkRgTUpZr06GoqOpGRMCb+D64wBgCKUSagLcCxm9OIkX9xzsOJ13/vOs05foedqUabJMkL+pmUtYZ36NOz1zHm1hIix+9Z7U1hpiujdSm5aAL67IoLSsNeKe87uA8h/2eNI5gzXr0SkkrzjibxYp7EbzodKLRFSF3qp3oKN0Lr6JyqR0JujmOccSHEe8GQhgJcUBiphUVakUSS85UscwCcwcwl3HVCoXNklSpUq3pNFL1HeoIpl70W86Ffm6/BRfZ77mvNtotsE6cNre9KbVIGzf9XCEEpWNEs3ZtnbxUDVwZBCEifsXlC0RP943B7XF2L0Ic2O11rO1kVWHlkjVttkNeFkp9oU9t4MrlvNKqUmukRm1qzaVM3bAqvjTCpOnF6XBkOuzxMTFmLQB9iKxZBWsxRTydej6DFHN3KUrPaZoU62l2H68oie0cqsu6+jdccY2vGiw9GTZNrTbL3TQusgkA7d53nT5enY28otTewqfAwJntEHZbDWD/B65N8pX62Oz52fd0RvncmoDe7SyMyQLcdN9t3VB6tzn/qHsWxUFzBGf6MDeR3EggErqHUml9ZikzbV2hNlIaaXlhC7LxQa1ri8tmVBDoVXMmmjVD2xnVlNOqr6oVOR7b29Emt5sIXqcjHt+gWj6CIIgU0uD5u3/6t3z347/jYenkJUNPrKuKn6dhYhx24AJzVprtMHqCE5bzmdPzmVJXtQ50BXyh9gtr1bRskczkPDsiYxg5jjfshz0epR/GcSQNRZv02Dnc35Ja4ZvDkR+/+Z5Bogrcc+HT45nH8yP0zpASeGFMO2J3xJsjS818efzCp7JSn37H/R75t9/8yHdpIKwLk3hepYH/x4cHHpcL/bLSQuCyPhNj52ZI7BJ8d7zn7XRklIgTz1wbp0vmeVmZ19V0QhZ01BulZKQ3pnHi/nik5RnvPctyplUh54sWhVWYl2cevvyCd47HL98S/Jkfv39H2o+QBlqL5OxozztEDrx6dcC5L/z++3u8v/Djj//Mf/p37/ju+++Yhhs6ieQ9x+nAzbRnP43s0oGeV5aS+fzpxHku4IMmxa4Xgo/s9rq/xehZ18CYHMtyodeMHyKXyzMfPv7OtLvhzes7au788b/+mdP5mSE5fv3tV1q78O27d1e69OGwI9eFw6i0m0spnJ+eCC7w+vaGz4+PLK2bZrNR5mfmUhgJjD5SlkIXYZVGSxFxUM+N4StgVEGO8FI8O0wbp4isi+YT3zrz0uh1pvXKfhwZpxHxwpob57noRH711OMOL43BN3ZE1fYZAExUCluVDmbKsVnhCHINDN3qGBBz0DMGggtXbdpGFx+GZM6TVodutBvTqXb7EVvjEkK8YqReg3/U1tMLrdVr/pJYYe+cp+R23W/j6Wll2CmHvVYhbJNZQb288XTR4ICNHx/MGkwLJSFnOCOMY2W3V5TY0dG+w2kxLRvf1wpHsUIap2PDDrthRymFtWSGCF7U7quD+b4KuapTgnjd4PuVzmE1KdCroipxVJSw5KKpmCb0E0SdTVTGcLVv03FnBxeIMVFqYe0N77sVQIFaMi4F4yH7K8q/CTLhRSSriNUmErNxcBO1Wxr89XCRviHUL1+nVngaYOSDuwpmFcV1ZiWaQbxNCLCOz1x4grMUXB1lO6fppXoocBWaOoeJ6f7WUx+n6Kv3zuyY7NB0m65ha3g2t55w/Vp96i9iYH0ZNrSea3G/NVt/IyoWGzMF8wcXFaXCSwLulpkgDisMDN2ShjRLRK2miUA3BI8z71pNpqM7s4XbitGXqc2WsNx7U8RbAKK5PqFdeIjkVtiNO9wg5CUTgzdP8HjlpIMoH9doJ84HXLV107qK0nxUgV+r1K482dKMF907wTukN6RUpKmOAdR2spmGIkUNDpLSwTeCa4ZqdN0kmwXT9W4uG5V5rVbUb2Fl4eXeGsLvuyKsW6KsjhKxABRtJPu26TidrtiP0XvQVP7snfKTq5hmx0e18hSlGvjeiU2digRNLA4x4EPCD4EwRsRDWANutQlS75QmBBdIUQPKVATliCkQQ9LixmVt2NtMyYs2htYo9yYUaTriFBUYq73iJp10X00ancbcF/V2brXZxMYoZOZB3qTTndoYSlVdT2srVTrNdSqZKDvC6BjTke4C1ISLnf3+BicRqUIkQlZ7ziwrpRui47fplzD4kSKNtTRaVvK6ANIaaXAqcEW1LSElCAOEkTjtCZMjVxv1Dg2fdWpKb0jW6+99IS+q6XEu0qryXl+QJG1u9D1XF83tdl1F6mA0qGZTONhyBzYhWjObVj2wgmUTmAjYEHkn7kpH20K+rrastoX4cN1IuMpdt4O466Yhdm0bhoDnqg3QPc7MERByyfTuSUGb6Cr6TqoALkD1VlyoW4yXgBdPIOCl41oBWSB36rIaJzowjhMljfSoeRa9xGsz3BGqQBXVDmwgEt0ZjW7TdxkNs2bWXK+uOYowKl2Brpky0lXjVn0D17l/fce//x/+M//0L/9H/vLxiTPvudRA6okY9+ynG24OR5wf8GctGH1oTIOK39MQ2bVM8R2o1DYTRB27mjSETF0v9GVmkWc+AL/tfiUNlcvlTBg8u3GHiAJyabdnWGaO055dGol5czMJ0ITBJyY/4ucTvc+EweFrJ45qYRvu9+z3e3yHX+YnhstnxMFtG/BL5zFn5lx4ej5T/cJw2OF6w5fKlBw/HO/58f4dt25HmnVyd8nCv/7ld/5//+2PfH44EWNUa0OB6AI3uwMpqOGA8yrgHIcR5xrD4NjtPJfzM70W5ssTIpVpN/B89vz6YeTd93uGceK8LOQ18nwWlvlsic8q3oxJ+Pnnd/z8w4GfvzOxKKpnS0PheBv46ec3OqmrDXGeGAZ8HBAGWq/E4BkChLDVH5p23MrMWgN5nRkHmKZEp3K5nHB4dvsb3r69pyyFz+PA5fzEks/85ddnPn75yNvXb/nmzWtaa+yGkXc3r8i18OnpkfbwQKuV2DuuNdqaFQCNATcMdO+55MxlvtDWjI8RSQGX9KxzNqVXoO1FD+StLtJNxRkjwONE9Vc6pdM9+HLRjKFhSAzjRO0Lq7lNtdpxMbNPTil+hr4nYKPp9a77U7UpKXaGX882uCaFb6yDLdR0s1bfahz9+m7Tv80UResvH7xq62ojOAU76dsZBB4NDwQT/mOAKEI0B7Wr86B0q00dMa+2ATrdGEPQja0VRd67oLZif2N9aONMDAntQml6E5p4qniGK3p+/Yqre6IGPtmGio7DpTpcFQgRGdRdJJijRq0NvAqnSq3XESzGPdUnrxubtG5uLjrmBx1Tl1YJ/UV0Gm2q4MQb8mXCiqaLI3hvY+R6LXB17BE1NGJ7iIY057peC1hEXW82yk6z6GLn1BN8kzV/XfxeXT4xSznZDqBgB5c3JGZLD1YhYbc0R70eb4Vzp9RiNBRHipGQNKRGO0J/dS0CcPZSKIJui88b4oUWm7oYxQpetbd78eR3f+OKsx26Gy1Jf9sQJ4ch0Ar6WRWgDYHfhHNb9a9x9cGake37aDGvTVpvwuaQ4lzU579W0uDxyavTRNUGq9WK+I4UwSdh7Lo5hBBIKVFrsUKhW5GgHXqrQghJR/Si6XUiW+HneXEBUq2Fdtfe0NykVA67H026iVSVl62VcKOuq9JN2NadXlet1QRPKqDutVuxiLkCbvakqEWm03fBoc+q10oPAzSlkLTy4rDRWjMXKMw9Sje+kjWwydVGqBrpHoeBdZmJUQON6N1s/3SfDTHhJsF1pYrkqqJzHaGqANJHj4+dOEbGaaI7pSiEGHQfsI2v9c6yLFZQqjNVSEoVUx7rRFmK3stuE4+mlC9FeHSCkmIyG0ZNw3UhosFNShnZbCK9qMj7minhuE6kQKdcLmhz2W16JQZaI1jKNgTRqU7ryu12Di3Imr0rFXyZIQsSOzlP+JRwQQ/51gTvRmhNE1SHgTok1nm2d72oneFmu4vDE/HidPKA6qDEfOGjD0Zv0glVSiPTuGcYdwxpVEcq3/BdcFV55q1uScZBm8wi1Aql6EHQjcq4uQ95J3oPne2PNhHV+yPXd7l3nVhqA+2vHUCxzIJqLjzbVNT7QdevbC4TOs6uNkHp1wngNlnt12wAzbUQA028NZtdAQengXjepnTOqdbKsU0C+lf7s6Lo4UqbU8RM2PIk5KV5MX5tL42yZvLlTBwmdV0KE62oPbNzgRQHBj8h+QbXCnVx1LDiQ0KqTbrYwv3UhShYGrNU1d6IOJyPRotrrKVqo4QJaZtXoDF3sPArDLt3yXH35pa4u0HSgZtXO+7nyOX9I020odYQtWiTV7kOdFvv+O4Yh5H97kAzvV4+nxWEcJF5WZjXmbVcWNZnmD/x2/mJv0xvuDnC43kGMt7rHuW9hisGvKbe50rwE94LPgXe3g4EuSHOI/FZOJeR2hdKn+m1EYPn9as37G9vKMvK5f0X/r+//4nf+Z1/ePMH3u7vuATHenIQB80pGQbqmqFkJhn4w+s3/PT2ew5LgF64XIQ//+V3/tuf/sLzZWZ/2LPf7ciXZ91Dy4JzqrkppbAuM8knehf2+x3BCUMEJyuX80xwmXGf2O0izmVOpwfef/iIjweenlb+/OcP/PLn37mcMykl3ry+5f524nCI/PTjkdv9SO5C1PEza11xHtLoefP2Dmnqria147rjm+/+wKVG1jyT8zPn8wOtZ6StLMuZFILqsIC02xFSZy0ryzJzc9zTeiE4OB4OuB9Uf/bxw2/0Xgih8/nxd53+DokxRe6Pd0xxIOKI928IPvLh6ZG6PjFYHd5CgKRuYN11Tf32qD5q0POwU5GWcc5o360aNdJdm9wNfNRXtl9rla2eSUMgWmNQaiWmyDiO3A6J8zyzLJm1CI9zxRE4jOE6UR6Dp5amnvVmR6sE8xcDlb9hGTiuQOx2xnsfqGb4oPWm+eU3rVlD1P2y9a1228pqMYaJv+7z23729dkUnFPg3eg73jubclp+k94OIgK1wrSH3U5FPWsW5lZUBGez1a2I5FriO6NzmLhWQFzEpz0+eWrNeOMC6TB+uzkvvGKlSrlr4V9btejzkWcLznLOsywLSSIxbvQbc/io6pwjojejdci5KP0ibg4cuqU1Ezv6oLy4LXBHqhWg9sC61VvzktUeybi/vVVW0wOIFEO7lQKgRUukSyGlhBPrwoKOnGttJth1Zv/nyHW5jmSujFWx8XXfUOSt69Ob7r0t2FKvaHm7JtNu4xv9GXEc9UDzKlrs0ilrteIsgDO/fCtEvY16Nt7Wxrn33qnq336pd7jgXDTLTr1vKljWlFQtfl/G3BtaH4K/OoOUVq+pumwr6+pa4a6/Jxuy1za0Tw9qbTBMvd6EIahHvNRGcYUhjWqZ2LsdhmbLGcBFbQodGg9fc6YE7d6FqjpWuE4jljVfP8M1bCwX49zp1CClgf1up5QWMuIcKY0MuwmAXLI2oF5oWacDuVd6LcQwkPPKMq/GnTa3IHvezWvQV87ZJjj6+3SdTCB6wDggdBWXiGiB2GpRrYJogbmsluhqG2Xw0awCFdGvxSwMrTlREW3TQ9Mpbc4ZSo5zuC7ElBRxqJ6eKy2vbOFCGyobrDmddpHdzcjNca85GJpMYhvuTBySoSGgTiZVQ6SskU7DyFiFVhQxvKYS904I6twxjTu1O/NBLdFKJ+dGa07RGEO9NcwOBmuMN+TFW0O7NbrdhPXdxPfekHOH0iqqAtJ0tYpRaom9z7l0Qu0EcSSngkxfHVIDeXnG+cS0S4xpTxsGWllpFUOHFQDpTdicvFpvhI41jxFXMcGk7s+tdnJRpCtqp0HtQl4Ly7xw0zuu6abfRZ2nNFRFkfNaM2XNtLyyzhfyUihZqEUMRRPbh8ye1htA44w6p7D8dd/qV22SniHuK6qmghFVrzVFEG3QUgxKI1G5izVJ2uinFOiL7h2K1WgA1gaGBEPhRNQmNaaBVjeHKPPo9zoJ3pyjnKhgNfrANCZtGnUBslm7hqiOIrU6MLto8R3vGtAIXUGiUiAvMyEZPaxnJAwKAlSH9Eh2e6JTWsd8mal5tVAqnZCUolkR/brtOvARfAffCS5Qmq47XRNKb5LaTSemZyrmEhS8p/VMlU7pmix9eHWPG3Z8OWdWSYyHIz6dOZ1OLOdnjtOOV8c7docj4jQcaykFR2D0A8f9kd3dnhwUfPi8qgC3CsxrJXfB7zyuNPplpXSh9krrlefzZ85ypp5nal0I+wNhOnB/uGM37RinkeNwQ6kLucHrw4FdDByPR757c0+VlXk98eHpI78/fcYViNXjLxUpneQ8GeEkhfcyU4c9FQ/7Hd++fUP3wsPTZ2rL3MTAISWOcWSSgO+eKonzuvLlceHx8YwPnjdvX7EbRj7nC3VeOD98QXphnBJxDBxubnj7+luWy5nb454hwm5KSPuGh4ePnE4P7A475vnC6fREK5WyQsuN09MXfvnz/8r73z8w7TQjZZm/8Kk0duO33B5+ppTC6RJ4Xjs+aNjXdDgwDpPSTppjGGCZV3qBN+92fHhsfP7zf6XkrDXN5UyrC0N0vL57zW63w1lC9HQTmdcvjOPIOE4MQ9I6Ykgcj4l/82/+ibvbAx8+/Mbz+QGXAg+PJ+bn/43lh+/w9Qe+ffNaPd5D4H5/uCLUpa46yYyOIp21zMquCGZSEJRSKc5mbU7zZ0pRe1icIw6Dfr+vOeKKLtueEhSkbN2AIgVYLkujyYKPkZvbIy5FSnsk18J5FYLrHMdAHcCN+v1r66y5UlpAnDaCvRQzk9D30TmlP5ayosnXBqZ1nWzJVzq7EDYA0HR/wYTBtX/FRtB9RAHfLV+ls+UQKS76QmmOHorZEatttCP0F/DdOYgdVf4OScVyvXs0rVYLd6VqbHaHJmLaUC4UdfROR8GdiAs7cm+U+QKDJ9oIdhySovzmHe9QTmjtug050Y5LulgUc3hB0IxzqHSCrNzWoB7uTbRDyrVQsoqJWockigTq2EYMrRNGQ7HEOYqJ8zZxlQseh4bEKBirY3ZvdBi1gYRaM0jDRfV+7V1MRKvBRxvXsdaKF/XIrxtvyFkh5mFbq70rxSAGXTCt/y3dxTl19lDxRL++NDlbMchLI5BS0CIWVetvHaaOavR+ns8Xai2M46ipqtSrg47SrJTv6XzAkXComGvzs9+mFluRo/7mSofJRvXQsflXdBu4drXOCgHg5Tk203mEoMJBlOfd0QYhG2VAuf5YAwGOYNMQDOXW4jhnDaaKKSiajSPFQddQqThX9FD3ziYj2uSp46UYH1YFauM0Mo4jxag2u/1eNxWnwmUVvmjxrfqEAfFCmEb8oIL1Ie204XWNJpViRbRIp+esAUECTjZHJ0UdY4x011hLphQtzGtxlGz2iDbFiDZxowstF7XYc5quOy8raL1Oy80E7sIQEykOpEEnDp2qE56yknNRm7Q4MAq0oRO7us243q/UC3EwxgEJgeYduW2TEMjzYpsa16lOMGH0OCXUfUXRjtRQu8KeNVSvK7VAE6jrVaQuTT3WHUFtJlsjxsF87zuSdTNfZuU2h5CoFfKqaOeG2ku3EWsrGh9OxwVv4qR+5bWLqP2tNrHGOdmKRKfofOsCteGjNjGYgwzWDIjz6i5D1YPL6f3zYcC5C7VAGArBD4QQWHGUnCmXzOVZk4LLWlWgiE6PHIFautoxti1QTJ2VtoC/UjI+KX9aeuP56VmRtsuFcRoIw4CPAULA90rapn7rSj2fqZeZslaWpSjX3vz+czGdTYrgFZTZGrjW+xV8ANVVgBCd2sT23sm2hwWvuQ5b6jcmhA6jx3W75zhE4rVY7129vl0W8qraLDU98BqahYbGga7/ZgljSs+xNYROWdRpQxuLcRhwrpOi7j1LzpSqNCGC18YiRPDq+y9VA/NCqNeAKwU+HOs80yl0VxnqjEsDPk14SSzZca4rKTjOz488fP6kFCqbsrjQ1I5XFLFDUPG6TS1jGu3nNzsP9WxTnRxXO1QxiljJlS1pW7qwOs8//PAj//jv/gNht+d5XWke1lJovfHl8RPz6Yl9jJxev+bNm2853N7jh4m0V4cx6YFWOo9fTpzbTGkrKU0M40SII1MNjLuFKI+ksKOmO97t7zkcD+Qysy4n5vxAl2ecV2COpfFpLjztj/TWWdasSKc4hqjpolUa69y4mQZe717xKkz8fPcNi1RmKcx55cLCx7zyVFaqE357+kLeTWQcz3XFLTDnmacvH4hS2N0eeHN7SxKHl6CTqh758PkTf/31A+uauX11x/3dkecvXyjLhfnLF8olE4OQ/QohsJ/eMowDnz58YJlP/Pzjt/zw3Vum0TPPrxiSWipf5gsfP37icmm8uf2GN3dvefz8mbubgePhG+7ubnj96hW3hwNSG2NM+JqQuuM0e/KTUo5rc8iXGc9CionkddJScsYTWErDh5Hd7siaL/QeiHHH3e2R7799y9v71wQfGULicLghDMLj5RPTEHj16h7vk72DA57Objjwzds3fPr8jt/f/5W//v4rHz9+ZHl+4k9//AVZKn2t3N8diUNEvLCPA5PzvDkcab3zlNUu1IsKWaVmCw6FmlcFCozbru9dh1Eb1xcBqZoz6NDc4YNanMeYaBbw2Wql4sxUAHLtXJaV/fHANE2M08q8dPDCvHbOS+H+MLFUaDTWXLR5ro5GI0THOCVK2cDpQCnmILm13869uLC1LedDG/UtwR1gGAaipWCDNjEbqLSbBvuMzZztVFO2NQDOKKNddL8bkoGAG2PE9lrnIMVAPOwj+5vEdEjU2hRBmytNmTDgmqIBaAUe0ARQhyOvq4lF9QNe5sqHz2d6z7i60A8Dhykq+mXIyobkKwW/G1pt3CWBKhXn5SWYaBOZ9q1YUSTCicNFh2vQXQNnIVlNw2U0NkfHKUqbVTFXaCoY7qKc4RCDWr05URqPaACDv4o1tqLW49mQuwRObf9abaSUzD9dUVx8u1JINn/+NEQt+qVfeZ0blaUbTaVKvfLeX8Yw+j2c0XE2tHsroEMMRgHy5mjiroj9yzhHXUnEXEU0c0BtTmurGpBg9p0bqquNpoYoiBGo9KsUaf2aiqMH21fWmV3H3RuqvxVC3mKXW1PUMCSjSeRy5dp2Cwjz6DRluwebXkF6h6aF79VlaMs2kI2TKvRu9pfev4zwHLoGgkd6pebOOAyEFCk1s7lhBBNOtaZTGvWC13CxOCQ0qj5cXyScZQ50Vd0z6Lixbjxf6969i3gSvhfo5mzSQUpTyk0TnDQLsbGCoSpyUWo129FOycr9hs1W1Vyr6ITu8dFBdBpWhKPmpoe8jf9SMGmrUxcPqopftfsTm1gUEL3frVbyul6djoLxAX3QZ6qdsdNchBgpriC96FrpnZQ8u1G9iUOMjLtR0doQlYJSG5toulWdiiHOUEmHUhA7wakQs2ZoVSkTrfZrCIn3mjtQeqeUC60+a4p07azrNvEQNvGm7ya4dU1dQdxGv3PX5lMF6oLbXHACuCCa4uq0KejyMom8ehazodaAc0rbQPcGXEEB6wg94AdIzdN8hp4VGe5wWVbm01mR9FLNSUbfxNqr3pO+UQPBBYezhHCc6g9UytFUzFw6y+lEzwttHUjjQJpGpY6h9KMyz9T5rC45pkVS/Yxc6WgO9YjPZsYA+vNb6fZ+y5WSt2l7tnve+kvehVILVYg2zwvOBaZpUvAEIQ3BUKxGTBMxRp4vK00UmGnSbdKdEBdYS8F3YRyNgnht0uwM8ZqwoS5XUKumfzZRZ6hxDAyDNmedjVZW8c1r2FtWfY4j6tfUpk2RIWQJkKXRfaWKFgY7qYz7g06hGOjVkcUTh4khOoIT5nWl+6D0KoJOwZymJE+7PTFEnT61Rs6dpaw6kepCLjrFVJqZUJpOKGvvWpxoN8uwm8hS+eanb/lf/m//d17/9AcufWStQulZm/1Bp3i1rDw+P9DKhdYyb6jsb1/ho2N+Xpglsk57WgS/C4QU2R0OjOMBL4H0XKnykTAkdsMBN73hzeENh8MtH35Xt5aUAmtWJC44pSLO5wufPn3i4fGJu8OAq0IKE3PJzA0ueWGdZ5xEpuR5N94hCGvNPC9nVhIt7rgdGufbG07SqPsJF0d+e/+ey7kSd43uu9rVlg6t8ub2lnd3bxjcwFNeucyND5+fePj0mSElxiHw/PSZh0/vmZ+fdGrrVCC5PwwUVnBqLbk11e/f/0aQlR++e83NYcfrN68ZdxOtd755+z3LLOzHe2jC3fGOf/nnf884Bm5uDuymPVPak+fK/LTSs2ddGp++fOL5fOEyz8zzrOd50UCxFAJDGlCv/cQw7ThfzpSyst8fWC6F+9s9f/jhW969eUUElnlR8Gbc46Jwe3QcbyYO+x3rsrIuFUfDk0hpYBwHXr95yzVTowhP3UEpfPj0BY9jWTO3dzea/5ICx3HHNE4sa+b0fKa1rGdPrUqlqVXDJL0mpKj5gk7RWlTtnBLHDRS2oNEuWiMEqxtE3FdUYq5aLwBvlu5fHp/MOSiqgH3ONIGlCqdZLV6PQ6QSqVLpTuuBZNRm1UFAqVlpNlaDXENK+frsMLdJQ/tjVCOUYYw2SeuEpk24HRFszBilJjoDSF80hpiBhDfjmE0HoBbuXKfGmxtifPX6hv3NRBMNSlgXHS1uFpOtG2KC3rtg6VwIBB/I3WgaHZ5Ohcv6QOvCGBWJ80Ni9JFcG56GGq/IddNBHOL1kKhSaVJxwZGCFnphS3506g0aY2AIOm5H1DFG6Qpm6m/ocxeBuoWibGNgFZUUb+MOJwhNkS5D+btYcekjbjusvxqRlFIZx0TwCcGRs+oDdj5dR/j0zX3GBBPmia8HpJAGj/ORzW40paTiXpta0F+oKVt3qI1Htyr1b0W7m3vOdqA6r2JE56GUagLJlz/f0PfNgcF6mJdI46uYkOvB0fs2anfXRbh9PunafDi/LeyNgyZ2XVyL7utKdu7q/CIYTcYZ4okFT9n1NlN4bk2kc5alYNzav02vfCniaxekNd0Mtu9s92lDlB0QpZJbtQ7bUv6u+gVHjIoy4lWcVy3Qp9VGLotZKapOw3uoK0hSqoLzgeii3bJNYO6uhWOthdA26pZeZCtKNfIuKC/fKU2qbxaMghYgTQzbdJY6bcxhEXME6VTnoG6bjKIfzke8U5cUfMQnpcL4kllFwzd6MwqI87jicD7r5wsBH5Unn1JSP3FRbQxo+FPNWowG54khMCQd608bQkoirx03aoPTqui/SyVbkA+oG1HJnVp0M09RA8F6dtRVeeBlFbZQJu89ueWvQq4qtV6oRcXyKQ5KtzFkXRwGMvCyNtkyLGyiJnKlXnURohdb3foYfdRkj+1Q6d1C1qwhrU0nQRFw3TIbeqflTHArXhbCqNaK4JFayZez5Q1UPFCWbM2jrn26s+K0EQd1BCs5k3NHbS/ValcHUjqqxnsonToXqEXHzDnTS6aNarNZS2U9L6yXix58y4rUjWeqhgs5K0+VoI2WD3poCULJimJr46/No7Mbta7Z3kt9B529Z72X6x4p0nXM7WEcE5j2JYTAMEaGUSkQaSyIzKzrqiBU8BQTlPouOF81I8BtU86XCeImpAXlqI4pqr7GCSGCUIgxEUeHr5jBAwomibMwLyGI8l5dhB40MdOL0Jv65fvg6bmT51WBjDjQfaT2qNaUvut56FCRfOk6tdsmem0DKhzNOZZa6eKp3TGvhWXVQMlcmhlhJN27zTmtdUuv9KqH6R7Gw5H//D//n/lP//P/lS95YX3M+KJuaUNKvH39hsl7PkZ4+PAr9My6PLOsz0zccD6fePj0iDtnbnZ7bl7dkvrI4bCDqKYccy6stdO6Z7+7wcvM8XjgH777O965V5TlA+nLJ6KvDDdv2A8Tax95Xjv348Bxd1DkvhTGkJi78PHxgT/+9p6Hy4k4CO/e3HK32xFRm9E1V2Tt3E9H7u6PfL9/y8PlzBohvn3Nh/nMh798ppk+UAMMhbubPT+9fcNPb97yarihfGnk1XFZhYfHGcRxM01QF76cTiznR6YY8Psdo48439kfR5bmef36FYebN7x9/Yr18oUvn37llz//kcjKN//xP7AfJ7VGjSM3e8/5OdOKY1lXbm/e8PbNd9fJdAwTv/zxrzx8fOL8uJKXwlkufDx/YMm65vNaWC4r59NZA7SMpy69Mk4jt3evEZfwHm5vDniZNHj0eeVD+6yBfSIcDvB0elLO+ZhAGnmZaSUjzTGNk+p0hp3WRl2tUe/vXrNPO85vv2U+n3n68pnHy0r/+JmKugyqfhPG3cSrww1FOu+fHqjLBQmjOtyJUnwD6mgXMNtr5+i+X9kbreu9GYZ0BTlbaybEN0e0r2oLzJHRB6cTWemcLhdSKUzjjjFozlEXWLLwtFTSMBF7hDgqGLkFtvpOvV6r0YLblo/7ooHEbfWQshZC0L0mpaA6gOhtf1SWglhV0kWZHxuNRwt2rSUUuLU909n5FBzDOFxd/RBva0eBa+91whqHMYATLueFyyVTy0Z52IRICtSmqOPL6D21ZGrpV/74drg16ZRVD8PaYbg0pp3y1gfv9dCjXzmSG/e+IzSp2mkFFRCpKjng6ARv41bQ8aVX4ZimdanDiHJyVVylSZiG1LiAC4EtOb1WwXv1j45ROVPKWfJXrmWIqtC/pv9t/NGm11ZqIxdzyPCKRq9LJSU9VFVF7RGaBU81nNeH6TykjXoiG09LY+M1KMvbwuzXglxErkm3W7qrClorEtSqz3ujpZgnun4ufYZ+C7gyLjfIywHX5foch6Qj8lqbiVM2YQdWrMMmZvbeKx3CRkabmE2pJi+Ti68rbqXNhCvVC5qKIOVltLRRf5p0Q0edIeUvC9yJXozrRtNwNj1ymzOPINUU916bx41mFYKDWm2i4g1JMEEg4WXy015eJpyK8JacKaWQxoFqQjCyIghDSupY0wpFhDgO+G4iS9CCVbpGzZem11e7rrNu19y1EOytQ3c0tsLMGRKrgvXNxrTWqpueZSNE7xHjjYrTTVicCoo3ulPtRu2KW/OhNDIfA9KriZjkWoRJazTnCK1TiyWq9o60l5Q88R3xjpYX5nmm2EjdoU268sYb0hyBQC8a3FOz2oyua1ZrL9TBSG0+G+tayHOnZEXuV69i5drkGmCnzqvqmqU8f0HwKmgycX2vL64FrXY2ZwPxDrq3P9t42/a5pWtxqeMcc3wUQ6JNTyImzLV1Ir1rM6lcCqMdqoOSq0abEgvt6kJdGtnPsGZcuug0LVd6VkekmjPrZVEeaTVaia1xPWV0yhiDFpleMMEZSBFtxqTTS6V1T0EnQyULYS24JZDWRBySXr8o3UuqNiJKC1OaW6UjonRBcYJkFbQHszHu8iK0x0bKYuNjJ521lisggXcWA2V7ee/sdjvTExVi8HZOdFKKqkkYEyEF0qT+98usKHtvL5TNGCI+mNtX1WJdTQK2Rh06ivZH5668+BiMbuphmqK+uylQmlrG1qKe/4GojWgxS0bxtE3I2s3Dn85aOylXDs7TbfI97gLVVToQhh0td9racNIIBpq0phO8ZmBMro36PAOaIyN41txY5kptUJqo8M/Qei96TSp8rgraeOiuk4vwb3/8if/0P/5PjDdvKZ8+kYaREBOxNCqOsPe8OR6ZvDDQKFmzM9Z55unxCzkkYvKEMZKSZ78fqXTm5WITus7SIs/nhctlZV5nsqy8++Y139z/wF294cu+Mw43OBp3bw+8vnvNp1OlnQuhzOzTRCuFi1sYbnbkAr8+f+Evly98upyYH545nj/w9u6WH18Lu2FS/dw0ISFAbSxzhh6YSLSnwvn3j8SnTAydIiu9L7iWOexveL3bk6pAK/QZpDi+fJn58y+/cfryiMhCczOXyxfasnKMe0YZCKNSKIIP3B1uefP2Dd5P1FK4v/mGn757zfOXD9zd7DgejuzHHT7uwCUua2GedU05n+gVTmfh+enM58+feXx84v3vv5HXleQdt8cj99/uefPTt0y7HbvhSF4af/3lN/70r3/i8+dPnE/P9LrQfWFME+O4Y9qPpDjSW0Uo9O55enriw/szrRamMXF7VAee4+0b3h5eqQNac8Sw03O/B5ZL4fmkIulcZ3CeKU7sDyOH4UC+zbx585bHpy+UPJO7ru0UHNGBi4lXxzuGuyOMkfr5A6t08iyaKm/auG7nTnBOwyNND8iVWvwCGn6NmGsoY38R8Bs441Fq71a/gCZl02EfJ5gStVRy6TzPnTQ0OoHdkBh8wIeiutFe8EF1TzitqWrV691MUbpR5MCmvV1BkRA2oHarfW2yZhRrMaA2DuH6+a48/C5WtAdejEm+qoPcRnfVnxWjMwBPqctxXc8sq+d0WlnmRm9qAaTcTqWQDINT60bvYeMTVTFOgDrq0MGMBa9OBae5M5xmgu8MN+pe4VD+7LUpwAJOrJPxwUbjJmrcrM/0uzulxtjvpTgSRyHlrxJbZStE3bXgDyFSu1JxctaNceiOafQ2Lgl4pweNotdOO7UryGq0kC5qkVma8um9IyVddD03gg9GXHkJWShUnG+kzT3DqEZrXpVS0K2g/3oFXotiMXTrBQX/GrF/Qbq3z2zcLIf5M3P98+36lfv10nHqSOeFByZXOoTec63xtzvP1dVHursW9tv3317AFxedl8X49TVu7hUvf/by2b7maL+M9F/0H5gqnL6hrs7477y8SK7TpGlglN3LLh3XzR9btmnMRqMKxmcz4bUoqnt92ZoWoe1K01KIvTXNNECEWlei10I2JPWCb2RK3ygI0HtVK8Y8U9aVVtS6snVNV0ZpgLre+4ZmahGn4iOHk45z5UpX0/dIOfSbTsbqPkX7xQLXpOPC1qw6LGIOtlFo5Yq2xhAgjeYU1K6b61Uk3TZEW9RVx0fmkmlloZdiVDsbIXoTsHulz1zOK302W9peDG1ylCzmymFUoNLIa6UVp9zPKuRWzL1gE8CjiL+omH5LQoXAWrJNMbCpUACCiuyvRbwdIHz9jnfdaa5Tom0fMSrctklv9C/bjLfAkc0d5jpKclypKq4J0lQkG6KjZ6GFjHiHFOgIZal4UfHuellYzovSYmyfNBaYbube0dpCGjzJJ1wQcFFdHkolxoiXatkhjeB02ql6+o6rjVwrPhUrgoNOjxq2N3mjaWxNt957ZDuANkeXboeQWu8FS018mXrqz73ua+JsmmhOM3HTMwW86CS1tEIKSjFLQ2SYBtLgKb3gYydERxwcbu2aEn09/IxCKHrYarq0HnxbGJT3hui5oKLukPDe0XqhdiF5LWLTEHCLpxehlabWlEWMugY4p2YK3W+DOd1fmtrDhqSC3VJUWE0Uxl0EIq0WNQPolZIzLStlaTVhahM98fRc9drYN214tXF1Oq3uzrzwu1o7Eq9udGbOAb4Rxx1vvv8eN+z49HQh98ias6JwTqdwh8OOMcIUPK6s/PbbXzk9naj+zJ2P3P/wA8fDkZSFvmRaW+lOAa91nQlhBBc4z2een088nD+Cf+ZJEpc3K/eH19AGvR/A89LwKXNpAdKeVCsRR82FUz4hJBYJ1F3kyTc+95UlVHav7rn5+x/588NCn1d6rwzesw+RmyWx7543x1sGn8ilMBbPfTrwPH9muah7DGQuUjmlkXb7LZJ2TG7HHALr8oXT08zl9ExKle5n6nKh50xDp521VHCd+XIm+cBv739juXRi8NzuI3/45jXffvsd37y5Zz9N1CLkZaHWhdo9zum1rblzOq/85S/v+f39Z4TGMHiOb4+M446bm8C339zz5s0bYpygJVrx5KVzCEfGPvJnBp5CJJcTaz4RfKeWE5e5EuNIK0JZO9ElXBq0bvCQa+b3DyfSEPmegcP+Ha2t3OwHDvuJ2jJSKpfLhfO8UGom1xkfOjdpIonqaF6/vsMn2D3e8Hx65PTlE2V+5u3dLftp4ri7oU4RcZW7u3tOdWV9fFBmR0wqLekv20PtaOiflCuY2MSBKLAsdp7ZAYNzL02+HgpWkzgL6NzAXjSnY62F/ZC43e9Ya+F8uXBZG5xmau84NxGSs9BFBTRjjEaL9KSUaLVTML2dvvJ0UWC0FgjBBMCbWbudH603A3TbtYZzToFmbz6+pWiNIYgaDeCM8rxZoVto6vUEZ8Mgr25CHohPJw2sWVbz6EeRKRCCE3zyqvp2Ks7p2/ggoAWRnadNNm61cYKcULPw+KXgeic58PtA2vwwnSJZDkVSW1OHB+eD3QD1Gad3DY60iy8mcK21EmLFB+16ujRa7QzjJkqQ603pVRijWu910UWjxaFHo4s73at3rUM5jBuCd+V7W9FZcgFx6qEtUFZFqn3QsYj6/8iLENBGMSkGvfHmQx2jNhS11qvzi/QtHEuuqOoWUZzzFlilNBMNdFDkQDvFbeSo4raUgo7krXdQREebn63YEHujtquupajFnQ9GE9r0FMqrdhtiaL82/v9GW9DJhHWyVlhtf9t7h3eRZojzVijOy0IrnTQkYgpG4VUBHlsp6iy8y3sTOytPVix8Da8jsBiNxoLxpK26c2K0nW4vvhXx3Ys5WkCn0Yt1/11tVX1QdNo7x7os6rkeAo/nk9Vtm92hlsuDV67vMAqudYp3SjEbhmvzkNeVmhezU9Puv4vQqt5D15WiojPG/mJT27Uq2VABfY6Kjqs3OTin7jaYYHRr0mLwakPoO/H/z9Z/9kiSZOma4CNEiTHnQTIieVU1vd0zmNm92P+PnQWWDebORXdXV2WRZME8nJqbmaoK2w/niJrXxSYQyMwIDyOqoiLnvOclrbqsuDLbNZacETKa2LA2vdgnTsFqY60To2Ihi8hZ7BaFBuEbOOyeKHGiccLbzU6a3VwKbac+9CUSxiAK/sYwHSZBx4EwhhlhrRoBoSo5CefKME2JmBLWN+IOgiORhHecBSEVFFWeBd94FSZJCJg1Utxlk5XAlGeqSCkypcwpk9VeDN0bRNIhQVlZD5Z6VQxW1mUWcpD8fVkb1Y0KtPHImWIL0SDWpSZqQ5XBKau0OKZpkoC6JHSLmrKsn142eWdm+phta5hZltTjtqWUKEndWSYKuWRSMaQpqeuKkfsfrKDdatebFX3PSSgfznZMMSooos9HESS4pqlaG2jbVkwQbLUMVqesbJWfr1NRh+prZF+QZqBhmEZ51qwl5kCh0DnJTMklUnDgPM5mQft85bEacrS6p8m4vmllzxQRcKLxeUYApaE3NE4EtCEmnBcPf3HbUW2UHlNJp1k4EXJjjIS7OS9i4QmdZCptThsdn4046WRL01nSlCguYmLGBqHupFDY7w4Mh4mcHSU5cpKp1hSEU59MwHpH27YIoCD0qBiE8lWQNR5RHjRH0wpkCdMvPWevzvBLzw8//8AmDSxPr6QBmMTNqskWesNUMk2zYnXyks0hEc0DU4L15ozT9QnLxQLbZJ5CYAoDZ6fnWOcYDiMhBQKZOD2QxgdS3OGaiae7a+7vPvFm85qmbchDBlN4/HTH7vaRZnXBanHG6eacpj/Bdhti9myLIXcdv3z4wIf9lrFzLE8vOXj4jw8/83gQykqOicYYGmtprOXv33xFtA19Gln1K/zphvH+M7tpYNjeUg73mKUjLyxlGpkOT8TcY3NLxpGAtm85v9hwdtbxsB3ZDZE0DOzHzFi2NN6zPlnjWWCMY/+0Z7tLhOHAbunZrDqc7dmPB6yTKdMUYbfPjJPsOdc3N/z88y/EWNjudlxdXfK7v/tWmAUMODvR9eC8OCSRGuLU8Hg/sd8G4mTpulNOzy7ZPt0Sx4JtFnzxxSvW5xtuHu6YxsjpxTmNaznsJm5vbgjTyIuXl6yWHTc3H9nv93z49JHb+5Ew7jk/XfPqxRVebWQ/fvrM9efPUnDazKJvOekXmFQ4O7/g5WLBfjfw+faJnBKfPj/ydP8JZwybVY9vDE2/5DANXGzOiGTut/fkvsEYR5wSOK+uhOLvX0oAkrjeWM2HsY4cxR5X1rfUXJKT5DAJCbQMUngYB8WjjYHqCJPUqjsG+rMNfdMwTmKxexiDTA6sk3wHC1ZT2nOsVBwBrJpWxO9Si1lMENORGJLavCtgLWNQYQ3UIPBnWshKYQ5BsoZqsc/c68jeLIwIaNvaBCi4/gw0EQFvPTccPsZGuJoU2hYVnCWcL/Stp+m8OCRMmoKYhS5SinA+q31k0V+myFjFZGidJYfM011i00Z676BRayAh48hGD9ikseWJuTATsZug8BaDyY5R0tTBOGIOyiVOtJ0kBMYglo+mVPRXjmBB5NJc0CYsEfGEdha8A1zBI+lt0QjCLEmMWsjpjU3VYacoEuc81jnGoHaXxpCD3NAxgE9Sz3gvaKkpiL/0zAdVWlM+BrRYZ5UaUfR9Zczv7DEcCnSMXmkyThJHXY7ieV4ECa7OCvVeyaJLogFQZxkp8sUBw1C5pVpUFGY0vr53qmE5ilTWhVpTb6vvKkbQZvF4lu/pnBNakfrCGl8IaWJM0kw4Y2ntsWMVL3Yzp9KillmpJBXH6EFGhauKdN3Gav1WaKyISJN6TRekkbCokCeKn7ZB6EMpZtq2pToC5VwkKdUWLI0cvEEjslOWNd9aTCpMYU/pAk3figNDjuL2kDLjYSRNSdDAqeg1m9S5RagvgjJXz28nLj0xy9itQo9ZJwtJChAp9C0mefW+N5jicMYRR/H6NQhiWnUC45TxxdG5Fu8bXJFiwPcNY5zIJKz3kGE6RHl/X4hJxUbOgo10bcQbQ3ZenVMi2IJ1GW8s2EQy4sbljOEwjZRxwpBF16LuI4DQ56IhZS9e3bFIQElORK0Ok0HSOksCPBHLmARprmusmERIhbbxYCwpBVIYxXpNmCaENMnzUQR9xB91FqK50LVSUZ8cZ098OFI9CqiLlVP9gYRD5QyNwjpGDwGxRFZxaZCUU+s8eRJ3hVSSAgPo/iMbu3NWzRAyxgglrOsbhmzJTnidmEJOE97DyelSePuKEBVjCaVO9OSwKpPQmKxD38MIX9wawpTISBrnFCXHJBWjAmoLYVJhrOwbY1C6S1OzDfQsyerqZD0xitWxwZBCwnuwDZJqa6RZdEjSr7FFsgVMAW+E216C3ANfKEayB3zbEqYZtmKaxByhacXu1xid9CTR5njNnIgx0TTiRpVyYZoEXDoMEcwo1KkinP+sZ4G1hWz00E7i9pZKJGZD1zpCSsRUcLbgItIAjzJlcM7SLj1ThDLUtZ7J0WJsI4LZIREmSxgLQ5Bi3bWOBstUxKK3bRqmaRIqjjY1RptFy/wAAQAASURBVCmFkUQpUSaLFtoGioPTqxXf/N2X9KeeIW3x0z12bLFmw9PuwN39Pb71xPRKUEEDtCecXHlKd8phONB1Gzp6OrPALQwZyzDsMcVhAiz7FcEJ8/lkZTjpAkOTGcKWpu9YniYO6ZaH3S0mTKTdE9k8UcxIc3rAnQamk5d82gVudzd0vsd2I7QHPh72mGWHswnfdwzDnsP2gdjI5K91jnE/sS8Bt+756/SR7eOWZoTOLtnHws/pibBq8N0p4XGiWXicyTSNwdgkIXHjlslsOKQDQ3iiswOn61OmfcvYLCRJ3CSMiWQbsH0LvhEwynU4k0lOKps//vnPXF1uWJz8HYumIbc9j/uRKXvef77npx9/4frDB/b7By4uVhgbefPmDa9fOLxtiEHoOqZ4ht2EWfa0qyWpWG7vP/KnP/7KzedPhPSI8TtCN7FYrnnaHTCrC7746ntOr7YcdqI5cs7xxRcbxunA7e2Ow7Tj8uqUK/uSX9/9whgO3D48kWLkYXvHp8/X9E3L4bBnCpMAGU7O4/Fp4PHpFgc85ZFP2weur+84HAbaxhHHPdM4cbe95/WbDdF1MDY00XHWrwjdgRcnJzwMe57GiewcxlfnPQF8KBIcYb2l7TrAi0uXs5isgZtEGu8ElBsNvjgoAviY+ZhUG5AM4MTQIBRGMqOPbLqOTWnYbydCLDztA6kMuLaTgLQwsWoMKXm8bWUSbqAYdeOq6H3OOOOZdB80M3W5IZegzAKjZ4rVIFJx3rIKXqLTdO/d0f0qVZFspVO7I8Cn504Nu4oKAsl+Y/AiUlCRQJQyve8dq9UC5zwhRMZp1I1akassCFkt6GGmOSkCltUiknk0vt8HlgsvBVedI9S+RUOVjnnlR+pJPT0L0nHJmFIQLAmXEtu9EKIE5+SEbyqdQpDJGKM4QijPfXbi0AtjCops1QAViyuiESimiBCnVOFiFXEAKloSBw9FkTWgICMFdNs4fa+iyL58r6yCjDpJSjFpTHHBmIxN4sxRES73P14TmCkxz3lfs8OOdAYSLFLEyq2ie8YZvG+lcVAKVdIChDpOL8wUm8oTE279kRsmdBmlvWRpCjNFeOX6/rWvtJUPN/Pl/pZDhjE44+biXhyS5GdjSrPmYB51meOUQ2gy8j1t9b3Vn5XvlOeCra5HWQaqpcgVtlUhtgBLgqyb48+Jy5BwYlOSRWm9ZBmEGLApi2jGG4JRWlffSUGd5Bk67A6yVrLV4CkZpU3jNFtgilOPiKJTSs9cacosnjYanJFKVBGd0CqMsdhspABXYbdca3Ps8gugHMeo1C+jtqutd0xjUGRbUP0c5HkrqWCTE22KusrklNgOBxaLTrjSRjIfqsWoyehUxdP4lgI0pTrfiAVsSNNxJ5mnqkKbMDaTQmEKUSY0XqxNs2oVYo6EJDoecaos8z5keMaRN+iY1czCNWcVVKncxjqd0i2oGOHoy8dRxET3P+Hca8hf1rXh9O9aq9RCpZrUYSVyC2IWoVaMWahJoLqbQjGSglpUKJaVhiTIjwqijTQeGDPraWQfb4UukIUWYo0Rl5eg1pttQwyD7FOaxVGKFLnTJLqWGIUnH6NkC0wpzRzwOllJWZohmwVFliChekCZ+fpXih9I+FfOhezqOE+mSlaNG2QLKMfn16pQ3lrNpHBUL38Zc0/6Tkrjo+ZyKL0uyf4gv1cAR6VslVIIUSiKJSVB51NBAyFwTjz/QxAKp0HWsCTuFA7DBCnQdi3GWcYQMdbSNI6oQWO+GHIKYsDQagYHEAJYJy9qrRXKTZbiHGM4DCPjmDG0AsRMIuYztuAaRy5Vr2R1r6YSxeZ1aJV6OQZYrRq++Porsb5cnXCQqCgO+wFHw+7wJNkGaeSPf/xP2q6jX/Y0bat6h54xjBwOB3bbJ0wxtH0nn7lYSIbN6Sn4hsnI/nR5sePF7pH9IbK/ueewGziME2M38bTfKYhSwCRK3HHYRqY4sJ12NE2PK57GL0Sb0HhC22CWTm5E6zClIQ+JhYXWwdIYBu94nEbSuOP+NpN9SxcdvlkTmx5/1tNNQmcy/oJ1Z1k7w2K1xjUdwzjxcLdnP+55fLgj55HziyWvX19wslnwwx9Htg+B87MzmkaSwQXIammbJWFKTNNISont456+NxwOE3/+y6/sdokXV5YpeK5vHviPP/zArz/+gneO07NzMImHx8+M48R2tyeFKKBTbmh9QwiO4XHP0hS2j4nr6w/8+u4nbu8+sj6xvH6x5uLyglIyf/rzz9zc3WL/4vn73/2Gt6++4t37d9ze3JDjA6enZ0oLiTjXcHW5IYTE7cOO/bCXdTOOlJTY80QYR7quY7VesVgtWW/WsoeakRQHpjEyTg8Yd8D5SRx6ph19m+lXhm5p8R2EMbLwPckkVm3H12++5KeP7zmM9/iuYwqROA2KDitPQEGVmPR8z6IfMlZokJSMpxBLAq+Bnioir4WHc+7IIigynSxqbDKMExfrFf3ZGXG6ZVKbzSkltrsDC2dpFFzrmlYdgqRxts7QeTcDL8kJOCt7GHqeWtVeFoyVOmqaNJdIgdAkHSNeaz2h6DiapqbF13qpgtWyj4YQ57rLuSOt+XlSrg9h0kVqaFsRY9aibhzF8qfGV9c3qAX9zPVRCsvMv5YTTn06DbEUtk+Jth2gNHRZkHKxxNQRSjFzxH1BxWNFsWEdCSStyoy6z2QvIihnLcU1RDMJJ6lrMCQCaPhMoKh9nzGai6toTAyJZArZQYufrZWyovMza9sci1XUAztZpSaAFjZaLNYDp0hnZshYG+aur1Fv9up0U20erTVU69TKOQcVe85ONOhNPSbAOufmG19KwXtL23QivFSvba9joOqfXy02K384hKBWncxcdzko+ZsivFpuCpJ//LlcbTGtOmVwbDqYhbL5WFhnnVTU13CqEHeaNqvVUP3Of7vGyqwpODrfZP0zKyFd1OZBC3YlS8jAwx0bhSIF7GynmY+vI8JVGQ0WmHntSRNAnWtkcqJrIChtwWFonZPDNxXNYpAJUAxCOTFZkm7JBeeLNtcatmUUMQ6Shtl1LcZ7cg6aSyCFen2YwUnTm3WkaATRl2bKMAWhOVjX4FqhkQidSOgZKUGcRO+CkSLGGoc3hoiMQUspaguooWBWCuVsCl3XKq1IxpSNb2kaqZxNkQmK2OHKvXLO0Si/ULjCRZrbKWm6pgQT5ZoErKhsroJkY+YCRyZrqkUxx7Vbm2CZah2bVmNr0anZEkohrBtZFc8bFV+Xonbb1IIUDR9BXaQU0ACZUiC/74oEtGR9LuvGLc2LMiaTNKbm+fPVOHKKmlYsBWrTiP1qKWCNIM9J+ft9ry4WUahGjeuk7ktH4AEttFOUMLiqTRARZ5mvYTIyVpb0RN3zilq+amkt30caScn+EKeCXOre0zDDPqVqj5gPpWlK2gDLs5dSxlQNhx5iYr0pidM5wTgURHxvZMqRDYZGnXRkymxTpoQ4GxXEICiXjEn9fI+kuZeTX7YwFRKHjB3k3BIRqjQAR9RMROqSETHpd3tu/ynT2crxctYxzVPfwhQmfJLUbGM1cM47UkJ49tkSkiVEbaayTE6sF3FcJmFDJmVDCIYYHClpc4nqGnIRvYwpZJu5fHnO17/7nm9+9xtOL79kMg3jEIljgy8drrEsVw1dv2IYRq4/P5DKSGJi4zZ0vcW4zGF44vFxy/7xiZdXrzi7PMd6j/c9zraU7LC0Ihy3hsavWfbnsL2nYU2aDtx+3rFmpF+s6JYLTChgIvQG00FxI/vxVxgtjV3QuDVNWhOmhjG2JGtZnp0JXXCa2PQLvjxtuPANG7ti97Dj55tP3AwPpPDILibs4oT+xZrUGVDhdjEGv1nSNY5l27LcnNEvTyghkNLIsN8x7h/xNvHy1Uu+ePOCGCL7/R2fm8JquYBSCDEKTTAY9rtIKZEcJqwWmzk59k+RYX/L3d3EMLY07Yof/vRnPn58z9WrS1KYaFtP0zbYfc/j08S7jw8YZF1NY8QUMa7oF4bi9pTkifGBXB756qtzvnh7iu8Czkeeng70rWOzvsBhOewmvO0Yh8jHD59pvOf8/JTf/Obv2D09MY0RZyPL5Sm7QyKFB+IUxKkwRhZdi23b2Syibzsuzi9oW481E40/7oNhijw+btlu7xkPW/rWcHm+Yb05F1pq8cRJJp+rric7w9XJC3JuBb2PB3IjuSWUogYPdY/KUIIITL0hHwZSnri8POH8dM3t7T13RbNAsoTfOQuuEQqpQcMzY4Ig1BrfGoaniVseudxsWC03DNOWaRAK4m53IK5WNKs1LgcJoEuVkulmcFH2wqLFONhlT9fJmqj7t/MtucgUEaQxscbrni4OkMLqUJvwXBNoy2xzXhkE1goQa63sWbOYXkvDWtznnPHWSkHmqmvGXNir5zlyOOcZMFYjOXNEXDHMGzOm2vkoX1cDpIZU2O0TjRf6iLVQUhJ3CYfwvOcDuSJvVSmMjjOUo1/0S5RCSUkLOkvrG7wplCJWY0WVc95bQkpY5TrJDs8sTCskYi7YmDFGCpkaHQxlpshUkaVVK9CcZOM2VpIRS0W461TBHrHAqGJF6+Rz21J92utPSKEmk4Xa1yjCXQvoufCs17vwvOCv/1T/2xBUy4Cd7S2FOlBpEIU5NdiKT3rtFOv7hRDnRsOoH3H9O0YRVorFmKyXVXUK+hnFb1ARez1YsyYrzu41z5qhnArJME99ZkGtvu7zycVcEOkakYfJz139vJgqD2P+X7UEjVKsYGWqYGoBqQmPdbpDSVoMyecWy0rpyA+jHPR925KNEaqFbk5NFp1KUl/gaQqz1Z1VNLSipCBIZYiJTKZtG91IdEPRhqlkSWKVr6f3ylht8Or6OK6Rarcq3uMon1qLLRNpEDFhNlBzCsIQSJPwr1NMIoBHuNORTCpZZYtyvSKJ7DJt63CNhpLEgFVLW2uqbkVT/pxX+68060hmV6Z6n5AJXcxZAtSMoMC1OcWY2XFAihxDTUa2Vgt6niEaXihKxh6dc6TEk42gKF1H+ogi9J2iYK/qZyTLAVkLdVmjxbruB7m+nq/7SwYiJdeGWvbGmOuzpvuc7qXTbhC6mZUmLKZCiJOmQVsSOiWLEWNGXHbz/ZZpiGgPWt9oIV8bgsI4SqqyNJFKI0IO5gp8xCR7QYyKsM8iMKV9WYdznnEI5KIosTZqMSfspJNJ/W6oLqXuV1XP5PTwDnFSsORoQpCzwWNJSehyYcoMgxyibdfOvHMBeoRX7xuxzi5KaSoF5dxLET8DDjr1azsJN3PWKVCQCEFQOGPFWTsG9aE26h6XdH82snomRc+6rkOoikXE7SlzSCoWb81xumlUx2blnIxZrJWHEElRCnbrPS4bDpMU+S6Lpoh59A7jKB72cjYcJ+GmZBwwpUSzWPL3//I/8T//3/4ri9NTkuuIQ6FJmRAt3izo+wVd1zFNI85bXPMC5zypZPpFL+5v2dP3Lff3ic+fPtG5lpPTNX3fc4iJ/X5kHBOmGQnWcbCWu9sdT9uJ1qzo3AafMiZ72m7B6fkJl69ecpvviOGR0jT4RYsphpgPtDgu1huImZhHwniga8+JRvjxaWfoQuTEW75dn/CqX3HRbgjLyNuTU+7igfthyzRNQh0iM4UDMUeMr/7ojrFAKI4pGWK2NK6h6zq1p42sFi2Xl+esTpaYkvnt777j9GTFw/09w37CGplEDlNkHPb0fUNjRQDatI3UTNnR9Wug4+dfPvH55o7rz7c471hvWu5vnrDOc3FxwTQe+OnnD/z4469472nbViy+Q6TtWr758pKuW9O4JWdnDednnt3hlnfvr3E+sjlZsOxP+PbLr1n0F3z8cMN//z//jcVywfnZKRR4etrS9y3fffst69WKf//3fydeB968ecubL94SQ+HpcYstMOyFWtM4TxwD7x/egTHc3d2x2awpKWGKTPC6rmO5WmJLy6o/xZuGRespxXNzU7iOj+Rp4nS9wvcNyRYuzs/p+1PI79n+/AtlSrTeM4QIREzjMDqNlXNL/kM0fWIH4YHT1ZLOOVJ55D5tyUl0Pa2HtvNge8Yxk6Kg7qlIuqsphhAK97cHWjx9t8BZsRWOMbEvgYenPV2zYOkNrZSSM6hVsuh6ChIYihFbX3SPFEe1SM4WbxxOaTVmPjfq/mhmtD7nxDhKE1DFtRUMa1s/139lKvMUtQKvpQjt2zyrFYUSq5vvNE1z0VT9Nouix7VY0IpqLryMjvTrB5GiQW+KqSLOymcstE2ma40Koaqlj1UKQaUdPC/ajBYxdi4C9UPIGLKIUE78lgslpzmMSTbDSQ+m4wFjShGVtVckVwMQUimYnCixOn0IglmMHMYp57nIp45enBG0VH5LxcRWuy0pXMXcxcyiY5cL2TAj73V0XRurMiNftUAuHBHqI4Jun133+vtosVHRwJoIW1BXo2eImvz48XqLM5F6y6fn71UXa/mb9yvq+5yfLdS6dmohRsk6JatUnmMjmEtWBLq6Wqhnf0UH9bVmRG+m5fzt5GK2LtTflyJM8wHmd5YGMes0xlmL0XCLrAJy67xaXKFTlOP0xNTxTTYqPpT/nZ+PIkgzytVOalNnG539FMOkoWd1OkKpSGBUnYlkE0hxolZaVtaH8JUhxajPWy1e9aKq8iWmqAFbQmuS8V11ljlOq4QtmIQOgNifGSvo7357EEpSKRT9tzPH8KGsvEFDJsfIbox0fUPjZXRebUstzPcmqNe8VQChqPixZlIcsQOdgKm9YspVnK7OTc+0HTEmabJKUR2M1e+a5ua4NnfVjcDYPE88rCmYIjSW2aHLqgOKU9qQZmH8zYQSM3/e5xSzSn+S97a6LDJFnaZMrmYF6GRK0OuQssabJ0lsRcfPRqgezkmmRtXNgKyJISRsEhpi48QlJSdN7E5RHM2KVfeUqBNRQ1SRrdHif9L9zhj15U8igC0FmlaCkWISNdo8EUGEyhiEV6oqqkkpKhRmOk8pyr+Xo2MOD5uC0DNcTb9+tkdXwX96ticVMl7FsWFK+vsZ54uaOziGg6wJiiWEjDdHl4yS6/NyRNpF4CtrwVqx1IuC2hCiNJYYOQckQK5SAAvjGAWZc7K+DYXGy72xqMi2FLJmaGAtyQh3X6h1qHOKuLnFXHC+UzpQJiU7gw8YaVRCEPvXGOUeSCMqxULbOFnTGNZna04uLzH9gqFoo4Sj7Tt6Orq2p+8acJmu62i7TjNPClOK6p4mZ/P5+QW7/cDjdE+cDuz3T6SS2e0PpCnhfc+YHtiFROha7h4fub99ILVJbHitZ7M54fLqiiE2nNx/Zj2cEaYDka1kRaRCOw68Pj3nX377j7QsOQTH9W7kP96/J5mJ4e6e7Dxr19AvF5yZl7xZnvHF+hJWllenA08msk0HYk7cPe14txMe+RRGphKISZ67YQxs08Tt057H1ci56Tg5OcHbQiyOi4sN1iZuPt/RtY5Xr15ydrLh8eGRkiz7/civv35k+HjNNE4Y9vRdZLlY8PW333J5+RrnFxwOiT/88AO//OVPXN9c47zl5HTNbnfLfnfL2aZjs+w5bDb89NNPDOPAb3/7G7788i1P+y1PT1uurz/y4cOBcOh5+/Ybzs9XXF6t2P/yCe88333/DZeX55yfvKD1J3y+3nH98Z7dbsc0jfzTP/w9m/WSP//lB2IK3D3c0jUduUQet4983/+GL99+ReMa/vif/8nT4yONcyz6juEwsD/sJOzSOx7ub3m4vyNNYJKlaSR/AptJMYi7VhxZLVeAsArG3RZXdnz3zStOL89xbcvly9csupbteuS6v2ccRkI4yINpM5hGQCAjuSGFCGRSCLTe4i3sH7cc1guWyyUvzzYQRiYCrRUf+H6xYbG54OOnex4f91qvWShZQiD1eNjtR3J2tG3HAsvhcICSedxJHsLlyVJquSwUPpfkvDXF0LcNTdtQsIzDRM0Bahqv4FMNVRWub9t26kSmDAqOtbbirwoMyx4jDA+oQGw9L4uG4jTN0dmtsioEwIl46c6rR2f15hSUaBwnxinPh3Wt7bXqe/afz/jNCEeqChiKQTzpjdiB7QdoO3EnsBwLuppCJt718iW987LBz7yjigBL+1XdZZyi/lLwFqwRFDF7QzlMGGMIqSJsx18y9s3SVHijwU9WdBdoEq4e5rZIamAucoxRC3jl8IbDHofYEs4obwFjFClXmoTJtWhzMyWpFsZiD3gsfq06T1R7o+fFbKWlVKec579XbZbEpqkiclmnHLKonKnNhyycUoSC8reTgSrAs4pA6lQg5xk9ra5G1rpZeGGtk/upiPTxPczxf3k2+dHPXKIh50TrvIpu8/9fpF4Q9CPFo37e+u+kiaU5SyFttTivf6dxFtcomq/XvoBYPKqIsQpZsvp4G6UopYimwxpSEJcbY2EIERsR28dSYAjkDE1uVbAouoHGtWQrhZE8pFCMkxAbU8SFSR2b2lZ0ETlHSk44K8/DNA7ztMJ7DVtDrl1dU8f7Uwsl6exzbrTZUz5+gjQlIjKdsBjCEJW2UhsZK84DxShPvhBLkGudyyy6TTGRIrS+oeu8bGhYxmlkHCV11roCIUKWtGSrD0ApskZjLpLumY9uLEIDk2LTWEnVjakglpWViy3PWuX6y34pCL5TvkQIAeehWoxaLz/odMTqG4+zBe88vhEE1uaEPgHQSFGZpjRTclLK6pKgUz8DTfL4RlBg10iBXx2OTEk6AcuYLJ9ftn5DxnEYA1ixUnNe+KLTKN7vqQrOne5TKEUnGOGConbBxnM4TDK1tLKnRBW6T0Eap6KocVKhaSpG9xm1Y9NnMeZJQA8jrk/1eRvGUfZlU3QiKgW980pHK1Cy6FNAotydgik1KTjlhLfHpliWrFrbaSMTpqoFU8qVSzhXwQW5l74x4sqTEuNo1B3LSvR7IyK7ugdJMygHrojyxBwA3WvHMUlypBG3mjqPtEbcd2RyqUBSkbWS9BCvei1Zg9KQpiChd613SGKVOrG5QovDWI9tCiZMgkrimeKktCi1FI2VSw8xGWJi1rw5/Xy5FDmXbOH88oQ3372ltIYfP/wK7ZJ+dQGmp28b1p34e+93CddZ+q6j7RY8Pm7Z7Z6YYiY1Aup03ZKrqyUpGXos1mTu768xW0/QScWyL9w/PPFwGLHrDeM4ctht+Xx/Q5huKD7x8dOvnG0uMc0ZD7sdIYuzS0mJVCT34MRbfnv1Lf/61T/R5I6bhwM+3fGn8Vcedw+UIgipb1penZ5w0a1pk2O4GwiHRHSGdtVy6j3GwsqvWa0vWex3pOv3fJy2s9tcjIk9hvvtnu3mwLKxLEzHovNcnZ8Blj/+8ffc3X3kdNPxv/4v/8LV2QmvX73C246HhyceHx74fJPwKdB18M03l/xP//o/8/r19zztMlN03D2MPO0GHp+e+OLtS/a7e7bbT7w671m3hY+//JnHm4+sVhtaC7Fk0jhw//kjHz69k7Nlf8vJ4hTHkhISL1+94Ox0w5dfvcK6zLfffYWzHkeLNUsIPW9ePRFD4OHhjsWioWlPGH9/IMSB/NPE65cvsQ52T4/8/MtPXJyds16t1JQk0Lfd7GDYdR0+eZ2CJaF5JgsRUjI07ZK+afDLDsjsdlKMl0r3sI5pCNze3bA+XXF6dkoZA9Y3vDg55+nFF4Rp5Ppxx4yiFKNhVlY0RFortF0rVq0piNFCCBAip85C02BO1pxtNmxOz1meXvJwSNxeP5JGeb6wVil7Aih579gNgZgHXrx4Qdo+Mhzk+doNon/se4P3GUIgRWkyvJF9s20b1f4pXTkLkOkb0b3FFLAxK2ArCfYhCvAik3uHyQKECAVTMpcMtbivQFaY6xvRvaJU+kYZFrL/P6doe3UIo7qQVDpJrgLGZ7XVcy/zitZXSk4tMo9BRJX2IWEoFd0dQ+HxcaLExHrlcE1L0fGuhLyUueOhK2IBVlFDLZRzTuK2YJ10/SrOc0bs6OQgFGTYO0MiC38yHQ+FOh7xqnavlJ2iiKdwHePMT8XotKGg4ygpkKy1pJBo6w1Rag6mYIpYvsUsxcYs+BsjtkiYlRIBZq2DXD8pYK3xeuHzfI+e23MeRRR/S80x5sjREuQ5UUHP2kk65zHG6/+HGVGU63O86dL0yb1tm07cW8KkVCSvBYIGWylNI2s4Q0Xd0UZBaAhGizDl72pRLl2npYLSCrApz6yOtGojkOfvLXkD8n1qOnFKRZoXIwLo+h61AMlJ7A1zEdFq03oRZoYk1oMmMI0BaxsZexcRHNZCOU7HYByrTUgsErgTsjSffd/T+EZAt2wkObNYNAwTK/ZMGkRV7bqK0Na8IwQpnmOI4r6hSLJvnFoFGg0vMwIKIK4uot1wxCy+8s8pEZUCU5EAa6qFYkVNJYOCLE47ZW4aCiFHCRtBvI1NjsQsMewUKDFhael8g3PiOGRMIYSJcQxUAef0NNI0tenUhjtlYiwaGqQ0imzEurEIquwaP4u6p5DnZivGKLSdcpyYiRtKmDfGlNCUaxl/Qg0SkSRF691MSXROFl9FMecmqaCieItvLFlFVYVESEGnGirizAWrWoMQJ/FZRgW21Hvk5yJ2pmpZod2klLBJufvOKKXqmVg0JH2+Mk73LadJsQApBuIkCHpUwXwpBWKqTrAUYAoasNR3Iq6eItZ6NUyQItIZFbRbKym7StOJOYGT6ek4Rbl21hK0+RPfaTkgZAKhU8ySZaKANB7TOEGJdJ1T0bWTpiYrnzcX4ZbGJOu7WoHaaodpaJqGnCC6TL/w4gM+yjMfpkSytfGXNl5oSvJn2UshXvS+O+v0nBFdAVncf3IO6mjnmA6yf7ddTwbRO2hTIt76njGInWnbWBrridlSgjYeJouuyGqjVplNUexepyBOT9bIWSZe4PK6xjlSrhaq0ky5BoiRSGKzWfDq69d0Jz0Ph61MDRYb+lA42VzhbcPHh3ccdgMZw/psw2q1wlhDiJFSROPRdT1N09K2HQCnJ5Hx8ZFx2JJyZLlcsGxbhmFkmJ4wNnJxvma0BjsEiHvi/p4c7hmbxH/+53/DFs8XX/4zT09P7HcDoQXjesiWEg0Gz8n6NSV0OBa4XDBZKGApJoyNeApXZ2ecrzvyWHg8DEw5Y2mZHBzSgWwzfSvuX/YQaZ4mTnPH1G9wsWX3tJOzysIQJ4q3+L7FBhEbU0b+8Psf+PGnjzxtb5leLDHW0S+XrBYLNqsz+n7B97/5hmICD4+f+d1v3/L9N6+4unpB03q2+4EpFv7600/c3N6yWPZ8981XvHsXCNM9cdrROcvt4y1nqyVfv3nFzedb/rK959e//MB7D998+5aLi1N884Jvvv6aRbuk7RcsFkuwhtVmzTAdoDR0zYpxH/n8+TPjIXF6csr5+QN3d9fc3nzm8uqMqxenvH+/w7rMxdUFWJjCRMyBw3hgvVyzXC5plBIkSLzTfRApOp3YvYY84nyh6RxXL5a8fHlJyqNOx84l4LIYnp4ODIeGEuDibEW/WLDse1prGIYDPhl65+idp8Exqfo1kjCm0Vqz6gSPdeiiX3CyaCV4M0QW2fKyW7DsWk5PT3FtDzh+/PiRYTeAupsVEN2Lsg8yjpjVujpF1qslw24nrjcJpmz4/LBncbbAF2i7TgAi4lx/xRDUXEEEs7K3O9Gk5WqJWXM3MsaKa0+Oohd1Xix+KyAbQhBxMBXVVw6991R78qPlsJ3vTz3rxV494adJyPnjKC8uoUwV7ZJiXTzjK49VOqhK2q+F07GrUDqHjhGsqR4lwtE9jEkL70QqltOTnozEs3vtJI5iuOcCOTs3EJV/LYVemQ+NmZdvoaQoSKZSF6zJ86mWSy2Os04pNIwnMccVW1ftk0SS4dRPvQQZE5lShXwyKXCNIwxyU7xvhZM5BZrGM40R66DtBWeJWcQyxed5c39esFcOsqEu6oItOprV0Ustcp/z7ufphv738edU3GGdfJ5wTEoTKg5z8XxUXMuiCSGqHWUzL5wCguDGow1nXYTWOLFDL2U+TCudqibTzsmhpczUJnEykg40lULj1Ndev1PT+Pl7PqfmHKlCwnGr/8yj/IKK2tB1K1aF1XWmrk1x7SjiWpMLxjaIcEYapXEU5wuHx9lGiw1ZHdJ4gnXK3Uei2K2pUy8pYEuSPy1zgSX89WkSlN9ZK6N5vcfSH+vzqEVrSXnmtRu9DykKP57itEivlCoVnLs8N+Ryl6SQmSdB5RnNSnn5Y4jC19YGNKYoXuwqpnTWYvE6+RCLQa+UOquFbIgTVVCZQiJqE2NTFXOjlrXilhVDISmdolorykRFAuMMSnUhzgWkWAJq82LAGMlLmHn3RfauivLWZ8w5R6OFXVIxsyllFpbqTqeghKpiqsg2JVKKgJ9NAITGUyQUqsi0TQg9SXcQnn0mach0WIrR8LMqtM3apKGUnowACMaIlkefcEyWNOySI2IHLBHzQneROWIpOiVKKi0z4umsCxYoMwKru7xQkUwRHVTjcUa+SwalSUHb9gzjSC5BKCtF7C1L0v0ZadIq1c86p+tOrrkojYzuv5DViQ1ThfwyyaqgQM5IYJliLXjh5Vtbm5pCv+gpJbIPksTlvJ0D4rzzOgmWSZg4Y2UaYyTgSps3jNCnKjJetDlxVWyeRCieSpZiGMTwwDkJ3wqBYgXJy8YwxUIuSSZZSfYYGZuLvWvbWqxryDlJ8nnSzJGCUorEWcr4Vt26tMFXJ6JiRCTuWrkm52/OefHlaybvSdbS9D1F9xPvHSFO3N3f8Hi/JRbon9acnJyy3qxZrtb0XScU1CSr3xrZo1MqGOex3pOMYYwjoUiTIYFOBmMTKYy4MrHuG8z2gHGBnAd2uz27pzsetrfs9zvJ3/Ad2TjSlAkRRtdyyJ5dQEA/n9kn8Os1/WlDt3As4sDmfMX51ZlMa6Ij25ZoG+7CyO3uiWITJ23Lxrf0yXLl17hVT9ts6IYnLI1Qi8YDQyk0fUO3WuB2mRwNKYrjzfZxImXHNEXu7+745svXLBa9TKqBL99+wclpT4h7zk5aTpctXduKkBrD/cOWDx8/0bQd6/UZX759S+cjLk+8efWSTbMiTxFHYRp2LHuPIxLSyHq94e3rSy4uTzEGXl1eYk1H1P1rCpnDITBMQnsKk+VpO5KzoW1b+kXPy/CKP/zhD0zTRNu2bNZrDmenrDcrvvjiNWfnZ+z2Bz68/8Tj9pGuW7BcLfCNU879IOnX6mDVOuFcFqoltVGQ0DIOI5KMnFivN/RdzxQiZ6enmLNznA2cnfS0rWe5WlJy5vC0JRVPZy0nyyXbfc+YPNlJrZh0cjtTV7JQartFz8l6xappZX2mjJkiF4sVJ+sVXdeDazkkpF7ThqG6jhnV3RSsPKvWEkLk9u6O15fnnG4WPDzsmIrkYJRSGKbEqvH41kORYt5aRwziDBiV7hqShGc23tB2jQJqUWtrpyCOgBjVyCGlhHdisS6UvCQViXVzbSV7kABkzh6tMP/Hmk/ATjmTfC2MZNxbD35xcajqXKsKWqPCrOdOFP9jga81lBY1YG0GnIxDqQJGw5Qyh6mwLuI3XkJA7JnqRituN4Znaav6PlIQyyFZstJ26tFk5aI5C9mh3H8thUrRxqJOFCSRURJ1s3JIHcZ4squTB1O1TKBjEuF0CpfYIYhT11gmI/7QFOW1FgkkEhoEhCC8VWeVB54hz2FCaS6snxeoWRd033pFbI681+o9X6/HsfmRMXzTNHIepaSyAhU5lwIzE73STo7crSNtyeCdJ5LmrjHGOP9sDdepjYnY8/2PQg/lupbqUHR09ZmbCUVxC0fHJUr5m88Ra9AZaMHq/qbJqU2l6CSkWKxI5vNkSmMMzvpnfPBCGIN68qugNYsAUwRy1CNe0WyjfvQZ7xocjoKkH0uYq35fRpkuOSuMa504zXaC2vbEKEK+WVsyBbzL86Y6NwOVL0y1LWXm1xpt+iqFJhfhnzvn5g2tTuSs8sqFf/23zy1FCvyQVIVflJco26FYbmax5nRGHJ+s0kS6rsEr7UAoSHUCh6QzjlnCMLEzRUSKbdECxAgpWUIqGpBUxCZQOsl5DFmF/0WDuqzVjAq1BhRUPs6FodFtIylFC3O0wizl2DDkIs8Mpej+USdispHJPmKwCDfSOIT3qBM9mSIJgFARlBAmofIh0z5BoGTjzlYoOgW1frWWHCNFm7CSlVudxK4SVPSehRImUy6ZZEphKQd+QfYM72pxr0W5EZ1ATGV+NsX9KcnUxXj1mZcpUA3QKxSMM7MTSlIevKTKSnMXVJxfimg0Zp0O4txinl/HIhufBKwZWtfhG0PbQtOKNsJ7KRpk1CzpuSHUBsWKE1CSRjMlmZh53ygo5WgaOfxyhOoqlZFrmbNkKzhvIOp+4FoBf5Q+lXXqLKYRFpJQg6yeVbN7jt6HJIrduYE+0iqdTogyxSZczhCKpF/Ok5+MtZIlMIakQJrG1huZPjsjwsU4TeLJH4Qy6FuPsYmYIr4vLK/OOHv7hquvvoamYywO16/YjZHd057x8JHVYs1y09M0jsftnnEaGKeWU3+C95ZxHNgdDhwOEzFGVqsNF5eXtE3PanWKdU5E9SYzhgAl47uGtjh81+Eaz5gCzTaz2qx4PDxCSJyfnPLq1QvavuH0dM393RNTkKlWnuSc3OXAwzBy97TH9C3bIfB5+8hooT07AR+JTwd83+Jbz8qsaFxP3615LIVfPtzw+/d/IaSBr8/O+McvvuTV5oJNNixz5uP1rzzdbhnGPa7RJtEkbCM0qWEcKFOLdQ1tu6QUeRqGceDj9Qey+R1t17B/mjjsD3TtklcvOoyLkA+s+o79kPh8/8B+9Pz66yd+/eUjKWe6JtH7Bd++/ZbD/R02O7786nug4d/+7d9YbR/5+7//Hbv9PdfXHxh29/z5h/8kjF/y8uULhsOeXALDFGj6BcU4hlAI0TFNnjAG9oeJ9bKn9ZbHxz3OdXjXs3sacLbh/OySx8cth/3IbndgtT7l/OwFP/74no/Xn9msT3nx6hX39w/snp4wThgXbdPQtg1TmAghyFSnXTLuR3aHxPv3D/z60zUWOS/EyrGRhqBtaPuWxabl8eAo08DF6ZqT1Yq26en6Ht83ZC543D9ys70TA4dO6g1SeL6JY5zoJW7CIw8Yet9wvlqxblvWJyf0XSd7qXWMh0TX9SxXa4ZYGMMIglnIJFaUuuA8pUwMw8Cw39I3TkDgDDnIvnb/sINVg7eWxkLnPX3fK9Cj+TlWJsRFHeqOjZGd66Qwhb8Nq9JzP4RASoK4Cz2nw/tGg0JF1yn1ZNYiXhgV9Z/nOkyp+4L43Eugh3LHY8QkUeyKn7H4dqdQuZF/W3jOLjno59TPawBntIQ0ygks9RBlFncexkDfWXrv8LZa+clh5JxY/EmiF3gryIsUbxpFnwThwWgTgjQWjXNiw4dMHvrOApFpyrKZlEK0WfmkmaouE/cFQyluRviq9WUdlZAleMDo4mpajzERZ3usjex3IzEIChhIM4KasoQZtN6LUFGnEs5XvimUosEy9nn3mokpzohsLWL/R1rO0dddiqhKffDeq4uHWC1RKSvpKNStPYUUmcfXEf55nikRIkjWScyzzyNaAeF8llJRSIG/TJEiWYp+uYZN0yjdoVJG5LDzzkvo1TNOvasR0vN3/Nui9Lnew5h637Spmgv/Z247MgSZNRVxFuxpjavfu2SlDqUkSnqfGYdAHKM45rhj8Z31wUtForlB0UaOScvGGHkopIVWioRRdb08ODlLMZYpUrQpjz4j4hpvHcUcBZ7Pn7vnDRUI6u4wFKvPiK0jA2kYlXunaD/aeMn/O+eVjlPHgI4pTIgvfQTE+aPxQrEytig3XSZouWRyTISgDXUSfqZVvn/jZJ1VYWwMYj04jFH0MThCluKm9cfnwDxzDimz05O8lnC9Zb06Te9z3jHznzV4TaZf0rI4LWIjRR229BZ55T6Wo0sPDqHDOGhtQ4qFaAptaZhCpJiac+Bw3s90HOntntnA1m4Cmeoob0ayKKJqHFRdJetX9TMwPwfCUW84HA44L41SjIFckvA6kxaoCHAhCLOEBzrv5/0s1ymO0fmaNnTiXpSOYSyV8lPvf3VfMkaFu8wjdNFf1MNHNT8xUW3ajPXzsxgqxa2RNOicJYX4KJJXTZQTcCkEOdySAjTWGp0YeQ2Ag6aVxkByBMQ+sxRZyw5p3JmfIW2qjVCqutZjnJ332+fxECmLy1hMmRzAREm4ns9ojvukUTTfFEQLMIUZKHJR3HoaaxlGSbDMqRBiYhyzUAIyNLZmnei0oybPWuHaWysCet8UXr6+4tXvvueLv/t7zl99wRgLvWl53A7sH54IqeB7WUeLvsdt1ixWK2KG9XrNYtkzjgemKfC0e5rd8tq2wdpMv2g57Je0xdI3juJhmgZMVnewIs3vMERWbcfL83M+Tp+xxsskTxuh5aJns1nh7gs5jpKUDZRYyGVkHLYM+y1DsAxDJE0TBRj2B2Le8dVmwZdv3nK1uWB56EnBMaXMQwpchz0f4o4p7mgH+DJd8GV3hcdTsmFBS3gcGYY93YnD5MDIxK/vf2R5mWmCpzU9/WLNxeUV64+feXx8oFs4zs6XLJctIYwEFRFP48RhP+K7wma5gtJiskzNSrHc3O44DImTzYkAfiO8fPWKr998z/X1Z+4eR3x/wurkjJv7Rz5cf+Ly5RVffPmSDx/e83B3y+PjE+dnF9ze3pMQ8adtOhbrU0J23D/u+fHHD9zf3tCYzHffvuH1i3PatuHNqyu+evMtT7sHHh72bNYX9N1n7u7f8+7dZ778asXpyRXL/pTdbuB++8BXb9/y9su37Pc7Hu9uGYZBxLTFitGA8YQUMerUFKbIU54oU8RbS9c07PYDmBHnDVM4SKjcuqG4SJlGVl3Dd2+v+M2330l4pFvQOMd6uWazOmcikV0gFqEGVWovVuiRIYmGcYyJXRqZxsCrb7/CrpcEY4hTYBgTN497svW0bU/TjIQwyZ6SBRAgZWJFgKxRwwdY9A2bVcP0OAo9NBuMbUhZ3tubIyiFnpsxRJICgwISF0IONK6hadvj+WME3Eqah2GtofGOzgtwKHWK2gzrGZCTgs9JE2jzfIzPdM3njI4KtHprHG3jFSWQsUpF+MS/01MyDDkdD6dS0deKlsoGWSsNY8Hm6jhTXRLkZ4yR0WoxEBI8HSacb/FG0A/vlV+sH1ws4I7m/Mf3Po72a4EngkEp5ICZeuGswURDzlZGRykwjIU4BKyvjgk8K3A1iIdItXMsWqyKcFRntilhi/iaF30fq+hWzAWjxbmxc5ejB4pTQa0i8UHeX2hCbi6iK/ddhGWBpj1SU57TYZ675RgjiGZREYbRMXgt/kS8bOfGTMbPZb5mlb5Q32PmOU+T6gKc0jnK/PfmohLU797UmmauljP1kNJrTL3HRzRe7rOM3wr8TRpvtXuUNZCOU6Nn1ByZXqiFqxYbYl15TIXzrqFpJPxEQmEKUwwi0pzXjlGOp4SuVRFWSnIfhG4sgu6qLxBGgRxiggoLSog2OmS9v8bK4OfZw2m0psqlNnXMBeX83ezxGfDeK5qB8qOrq48yB5S7IFQnsLUJM5VbXykPz0Z6Segp8mw2My0BrLrVJP18gqZPMdA48CrqzDHoJEA576pXCUE8n3MtvhFxeixFNvYsnO4Ykk5NpO4NucwFam5ESCymRmZe73XVHX3rET9wp9e2yNSwCmiFYlH3oipG1zTjOllyhkanGjItcEpFyTNfmiyTkcrRz6mI2NQ3SjcTzr/Qcpyg5dpIubrPWG1AefZZbaGkmi4sz6UxYJyvGIeMDKiceFl3Vq1ulchH1dIUzbCo+7RTzc3zPbzSK5vGU2lts+NUSTSt0DMlvE+epZgq2KA0Lkmdkc/yzHJ2npygbkZVI6JPWUQCc6JamcYMbRIEX0TUBSjzlILiAdX4qFibYskaCFcnzU0jgjbrhC5V9yhrnei0DAJi6aQwxqj7rzRIpsgeXgC08TZGnoMYlcpYNQWm4Nyz5F/kejtjqVCYvK6Kwz3gPClDnqJeR2n4QkyMU5GgK52aYAyZJFOdItfDGiPiXJMwNrM56fn2u695+w//SN6cYdoVXeu4uXlkHCKn6wuwDt+2LJZLlsslq/US37bc3t6KJsbIvc7FSHKwazDG0faOmCZKDAxDZAqWrukwFJ6eHthtt0y7J/EvX69ZnZ5ycbpilyZKBJMtFsdut+dpu+XipWO16Gg7K05BTh3MiiHtHgnbO8rynMYsOOta/u6rL0lPHZ/GB4bRct50nLolLxanEDzbHDgMA495YpsDw8JhmyV7k9gzkV3GW+iSpafFTpDHyHSYKOkJZwOfPn/gi+UZl/4Klxuca9hs1vQLz9NOXMX2h0fevf+JzeKc1p4SB8c4JLp+gS2RnDzbQ8TaBZv1KaYpeL/k5PSKZb+gsYW72y2bruPq7Av2T4kff/pE03n6zTlP1+942O35l3/5B15cnvHt99/x5x9+EM1V07PdPXFz9xljPK5fEbDcP468e3fD48MTJU589/UrVpuetgeTF5iyom9P+Pnnd/z840f+6b/8HV+8/pppyuz3E4/3O/rFmvPLV9zfX/Pp0yf6rqNfLnnz9i1t47m/v5e9TCkkxghXvpSdgAB5Ik8Wk8Rgwrslm3VL1ztSFmS/OAiusBsmOld4fNpxcweX5yesV+e0q5a+6zjbnPF5uyMctgK8VMq0Zps419A6T5omppjIY6QEAQfupok+DLTOcdjvub3bcfuwh3ZNypm2aSjdQrQdJVKcJVmLSXL21bPxaXugt4XlwvOwGwlYMJ5UJKMjdQ3dqqfzUh8nPbPmiapvIBWMram07hmzolKFn7sfKp3ZOoxRulCRZPAUy/z35n2vFHWyOmrCnqP2MilUzr0xhX7R6UFcD0xFZnMmBIn0jqmijZUAo4e/FpQVj6xvVMSRWQ7UOpZNivSUrGMRuH/MFAJlaegamOsQI1QOZ+VXXVhyKGdiSojVmJnpFiIOrOisnC7eOWUFJYyFtpPkPWsCIWZCkHGCKQXrobGezjv6xs/i2KzFqtWxSsmywRojaaKN90wlyfcCrPM4r5aKxur42OiGjYRTGJlKWB3pey+j2NkecHbBEaFa0aaraWRU87d88+ecdilMLFUAqCN8anPldHoizZlz4tCglRMVTa1UJ+OcItlRrpFeZ2oTUL35bb3uz9Bgqy5DyN/3Rny148xXlbXkqzZbF7c1Ftt4cdIowpF11io/O0rQRe0SsnJelctcFDGWeyQtrnTkQtVqG0MxkaBNmyniHCIOHkoryiLgaztxX8rZEEOUULekh6vVAAudnzsVFBrrhL4yBSlmGuEaS7hXIpEgSaGZtftPUVHBkgWFdIAt+l5ywNfRTqqTkwLOOLIpJKL2ZjpFUwqc1efIYcBkXDFywdSj3+m9lWTUihgXseULQqMpWKKOHruuEQ2NkWmM6AHKzMkUkbJs8lOUwjopNados2CVvx4VicjKp45FEI1s3MyTzkUaMtk0JeVT9oBAKUf/9Pq9U8rCQVZqX1RkpIqpREybVXgr+xsoxz0XHKJtKc6SoiAx1kujU3nzlEQMAYM8ixnDpP7GWOFdp1QoaolbkiDhdYpmjRSXMhnKirinOeug8R7rrFy3XKkeEIKEP9ViNRXIMcrziRaduidMGnxirAhCq3tWpSNWa9GmaXDOiwVyRaiLNJKukekl1kkid8i61xTxZE/Hw6lpOkWyokwW9PtKiBSyTopTAEkORKFpy/4VYyZGWGQLxcvUsfVUzZSdcygMLS1hikJ5ShGDUqFK1umWAFVN5+gTjGO1zSx440hGcjScdXOTnevTYg22sYjrnU6xggJJ2cy6GXBCVSppppHGWHAu42yDfSbkFpTNzg270MAaYjQyfVZesSB0Okyz0DaNhrsFlF0ETidMWRuIxrBYes5eXrC6esEuwrRLTGUEPKbZsNycCr8/JYxt6fsNi8WSGCJTGLC+Yd31WOsZh5Gub3mxuCJXXVgphLgnpcJiaYmPA4/3j2QKIRxobMH3HdZauraBImO6zXLJYnXC3XBHMSMYQSsbn7k823B+fUo+ZCYOuK7QLhxTWVHUeto6x3q54mLzisvygv/2p98z+Javzs7YlAXD3YHdp8RuLITNmoecOSCTs4WHNgUam2i9pTMt42RY+BV9u6RJLUPeQtixc5G7wyO7acfl5hJXMgvjePHyjLPLNa59ieWR7cOO7f0Tb66+xGSHaXrJYIiZHKFbbQgdTJNhHAzXnx+5vn7kcXtgu9uzWbf8558f2T585B9/+y0vXr3m0+NfeX99zZs3V/xfvv+vhHDg9mHLMAaWixXf/t2/YK1jt9tx9/EdZ2dXFJvBejabBbm0mC9avniVIQ28fnFCYw23nx+xGA67kQ/vP3F9fcd2t+P8/IKLFxe8eWN5//4jnz4+8tWX53z/9d9zvdrw8y9/4Kdf/sKrVy+5fHXB6ek5D3f37HaPPDxec39/yziMMh0vicyEtZnWtjgneRnj9Mi33/+Gf/jH35HSyPX1R+7v73maMolLLs9OMHHkdNVxcXYldQuJ3htOlwtW7ZKH7YGSA6YB9yyR2RvHNAykSXQ+ddK9P4z88OuvTEROlmse77d8/HjD09OE8Qesb/T5yfNzKJRKzVAyRw3BkBJjhtOTU1aHTDxIUb09JEaTsX5i2TtSiAw50/pWQOPcYFxRIFdyYLzzMjVMhRwLZFs3BLzztF7A1rZttEk4mtHkJJbyQrHJVGty7xv9vUF/T84H64RabYtVkMPgKYEYxX/T2oZpMkwhMRxkxCCoRYekLUZSFcJZozZFgmq1Tsj/zlq8b5hiYEoRsqKcRkKSohaiDinKcjZsd0ApXJy1NNYRUqB1IiwkTOCdeOcnB64R/3xFyB1QnSdkE4v0Xa+Iu6C/U5xwTgqgFDONl/ErOVFMIgXxd26cobWeZdvhDVjviVqMpiwWiM5YbCsHHmRCmshDBu+YYlExpgW1zSzVE/wZsqszcoryl0KQTaJtpVP16vkeQ555pCmWmfNeRzC12XmO9uesvFuDUC+qZLRo3V3kfqA+8kUFhagIqGkEJQwpPqPMyOeQWOxC5zpM5pmVZxHaiTvqE2LOGBxJ0SxjDaEoJ1y/D0hzY6rGIxVJa3MNJCmwRLAsVCbnxCJRsHKpRqpHfQwRUxzeOayvqLq4FlUUz9mENZGmlYawFEGNU3HiSW86qjBXNHpSqDSuIY6ybttOUNGYREzni6QTF+k6sWjgRGNkElbku8UYaX0j3F2rqHoutK49Ium5xrJDsZByxDTqQBIztmuEvjTpJKJRqkZKinJ6ierWSUdORZ/HLFQIeXIFUVWlfUxZbTlVSI6hyZKw6WJmGjMuG5zxmAAxB2xnNGFUkjcLFt/24viTIGdHjKqvSPJcjiFCserLK9QMmQpEIiK0HWNmiolxTMQsdKUC5BJkulggTBMpZvH/j5k4CV+8Ng2lchydwZa6mee5F4xB7qn3UkR43wIwDaMgIdrIOys89pIL2VoSRrUEhpxUA2Rl8lSsUm/IZBVSlmIZp0gMga5rhKYjgh9JOlVBltXmveZeTOMk4nWqCFfdaVJWFxlpBL1asGXdh44BZrKuh2Gam7GCVbqjkXThgjSnukdkjDRrQCoqiHXiXnJQkwBjHK33pJQZxknWj1oJY1FLYXWeikH3IWkWSkGCuY5Y9rw/G2NJQSdf1mNNQymOKSRyUSqPE/mt9YVsJWQpT9K0i2RCJjw1BFFSjgvZWBEtm2PwYMkySbVeaGcxR5laWMNQXcCc6jeyNrCIYJhcnk3c5P7kWJSCVZRiJNqKuu5q4Y5xYr9rDOOoFEedPkhSthgwaCQMKU606k6VcsH1Db6zuCYRDpE4ii5kc3bC2RdvuA2B/bvP7NMDvl1wefWazekFKWUOhxFrHR0ZHnbkbCTkzMCUJJSnaSzdYk3bCb9697RjZ57mqY61lmnYUzaZdgBnPW13RQyBYRj48OEjN/tHTs7PsGngECaapsd3ayiBcbjn/u4zaXxis3hBlxsYW6KNmGXhQKC/+oJxec69aeimiTN74MV6yWpM/OPpS/pFS+cca9vx9HAQa8jOkRYbfvn5I++vPxHzPcbsOFktuGw8vWlwLDjsBg6HSMjgVkuMnyhNQxxH7qYDn54eeLk80JiGEgaMO9AuGszBk0aPMUv6/kTP2ZH9fst2f8C3a1abc+7GwsftlusPtzxd77j9eM/9/RbvHf2moVs5xuGej48HVh8tX7z+hldfvOR+e8007Tk9fcPJyWseH5/4619+Yhg+cfnyJcuTtVz/7lRd3Z7oly3kxMK3vP3N1xwOO54eP3LYPnCzfSJPLTFuef/hM3/4w+8xHna7kX/7j9/zfz35r7z98ltStNxc33Lz8YaTzQlX5y9pOsPnuz/zy7u/sOpPON+85fLyLYvlklQeyaVluWgY954YPVWTYKM8V85Zskm8v/1I/37ByXpN151web7kVdvw1Vdfk6LonPaP98QQoAyMu3uK2zJm2cc9DTmP5ElA1wa1So9RJ/JiU0wuGO8pwBASAccuwPV24P4ghi0lBOHtuwI2gROQ10QBHm0FEJyAU1OChyHSrmC52fB0uCGlxJgtyRl2MXO/39Hbwso3akHs8M0SysiYDhibaZyj71oMniEGSbLOhRINKUXa1ivlrUBJMjXXf8/mMqVQUqHrW8ZJgWhNhTdO/nyagoI+Gqqn4LbzHr9Y9OL0YGRcf+T1FFISnvqxO0B8k5+N84012IQWtLJp1xGuhJiUmSdaSpm3d/nLRpwgMhzGxDAmWk2SzCkx5oi3BV/k0JYqtVKAFCk29m8nBkUSGK0Rq0A5IOTvGSfpuE7pGiXDFIKeQPLSXuPeYcQ6i0dpIEYcfaYpUCpFwQmSGqcJkhy8EiKT1KNd9AGUiqjWQ10EajilBCmifnSJED9h53SU7D1tU20r5WCoxb1YDh4pS0m97L1383UR4WAtxo80Gr0FCgrLAVY72+oCU7JRiodMD+qsfbYm1IOV+TDTw1MVw0kPVKEr1fVwPPxmXYfTcX4uZJPlwTMyzZBEWeX7UzQ5UdJja7IbigTOycDFEA2kJPdXxMF1yiNVhxRNyqkuen0wem0txmb9u1LJVUpZKrIRyHgsq2bl6AMcpgC67otWOCllgonkuUAQS0C5DnViJe+PFnaSPaACTRWXCkVJdSlJ8gV844lxnKHX+vmLrmljxM0GxM2FYvCmYZrU+ajIKLCO/VRphnVOUYWiRYoUckbAdJy3NK2IEcX9Y5o92EuWRjoVnUqIMlaLviquZtbhCB1IxK0CnYobTiwiQJd77fHWMws4dCpYqnOIEqTDJKFUXdfoSLfMjXMNCDHUZ032Lu8dtgjoAPJZjDFzMm7UdesUjY4hkHOQa6fouwjTW23mMqVYnfoc14FYbooF6jTFGamptBFji04ljw5hIMI09PNgrQqtGmnSjTQKUHMniv63jHCr6HMeaOp9MFgoR2qbsRanewoJnGuEBqQj6xA0qdaoy0050sdkL5Hi1dRmR/c90Qyp77/VtO9c1BpO1hFkxlGAC+MccZjwDXgvTZP3Bt94zYSI+MYxDZFhyPPzVJOpnXf0tiNEQfctMvGwxSrdqoIk9RoLNc48p5AaQ4kCvOSUZLqJ/Hzd45z1WG/0XssebpxQpErdU0pt0+TxkWlRbcLkec3Ppm6y1+jkXPUp+ei2j/UG6zMmJkzT8PKrt1y8ecPnYU8oiLB6GnnYPhAxWOuFTpClOHLA6ckJ69UG17QY39B14iCGdzjbUrI0vW2zYBgGKIa+X7Ls1ozdyNSPWCOuLDlFrm+uCTEwhpEQRrwVKoxJUSY+MRP2AzfXn9je3bFIPXE/4BL0TUtixPQt3eqcDw8HPn74PV8tzvjHr75jsV5ji+Gs39D5FhszjJlVs8H2a3ZT5PrhgV8/vme/fcC6A9lNfP3b3/H1V1+zXJxy/2nk9umJYDO2szTe0zYdwa8orrAPhZ8/feLKX2DXnnwQNsHJ6Zr7h88MqXB6/oqXr78h5MJwGLm72zONcLZcsX2K/OeffuSHX35mHAYebj5jSibmwGqzZLH0LBYNpT2FGLl5HCn2MxfnV3z/7Td8eP9X/vM/fs/vfvdbzs4uuLi44vb2kafdnuu7WzanG16fXVGirCRnO6axcNjDziceH3eUBH234eH2wC8/fuTm9hO3dx8Ywp7T1Qm29Wz3v/LHP/1/2R2+5PTsBOd67m4/chiu8e2C4uDrN18zXl1x2E18/njHndnStpkXL17x9s1L7m6euP54YBg9JbWEPBDGCWsMvmmYcmaMEz/+/BOnmxPiXlJuTy/O6e9uGYfCfjdw8+kjy96wWXpOzxeMYWAsjYrMYTwMFDsic7WMcLyO+rpqUWxqbeoN292ebR553O3FkrqIZXLS1DfTGcQDoGCUol00NLQmtDtrGEMipEzXtnSNJ4XEhJhgDCGSimiqCpK5YLKcl3F+cpVWlwsgKHyYJsnQmOtL/bOc2Q9B8kGQLBo3l7oCtlaL+JyT5NIolddUmqeyJ0Sfpdk3xuCdawQ9y4nhENTRRYsCKy+os0t1XDEy6k3HUUah8rczoqNSfqYeiCnnWbwo+9hcdQjVIGUOqbAfEn1vWXirAodJkCSlIhQyKP+qFqQgo15mJxW5mVbdE+omnovAoWL877EGutbhW0E2coZFL4d8iokpD/SLBoMhFQ3NKRLghEYPOyPJkTFKyJBQmWQXt0YEjVn/3rzJGxDPb0GMnLM4k8kl6ZhFC6HytyhRTAGvCm1Qf28t7J9bkD73g5VjwswNRq3KTHUCKUWIuMXijT06hqB0IkWcpeaSiYKzkpo4pmkulMRGTzjRXsdlRilY1kDWwpKidJ8iyKaMrZPY0blGxKMVNbQq1nTKpy5Hl5bnB2HOUelWah1pJKGyUGhaiy+eoimeTnKn5T6p3eAxQU6cawqCvNXlKSOPRIhRHDtKHZ0LnalQC7TKa5Dv5FSaYUylS1mlTghqXHUtBYNRRxRxkEEbCqtiT/Tz1GJdnsmmUfu8kOai3pijk5UxIpgsRtIypRjUmrhALFE2CSuuURhBf2MSylT9fuL8JAWnCBetoL9JGjznJPjJKDKac0VS63TAKBp6bGCrV7mMs6TxiVHcpKaATqmYi8ZavKeYZC2juoIiNoLVCrO+fzEGoQQJ8mqsvKb1BmOqbqXOMUBSTsEWK3KaXDM7ND3WWop1KqiacMh4VArDyDhKke+cJwUR8Be1dpRiNs9OT6XE+Xk9jmGP3EmMIcdakEregVMqTgwR28jGLfapRQ4Ck+c1XF/Pe6fhT3FG8iVN1c7Tw9o4Vm1Kfa4qsp6iUJiwzwTJhVn3gx4w8/5jCinbOaCtXmM46kWoFE5rVJgvNEXnDQttYMZxwjnDOAamUGYve2c928OOaRRaVMmGGGSfmFSfkkqg6YQeFVNk0XeEUfYxh0xKjHvmvFDkuW+s5H4MQyQ3QbizCiZVF6+iP5uS8IGdb5RqJAE51gulSLIXlHKmQMZMZ3zWwM87tKmTJau/L/tJLJLAHrJY/QWOibu0FrPsOP/irbjjHA6k7JlG2B8GQgyEYYdve5lSxcjj4ZHd9omb248sl2tOTi5Zrs9ZLhNdl1gkCa5bLBZ07VKeFbWW7ZoltrQ4CotW00LjxBj2xACLfqVNSsbaQpxGLtYb3n/6hd3jFqbA480dH375hS++XOFTYHd7w2AH/KmjPenYmS2HMdDkiFn1lL7hevvIyfKEF1ev6Z0U92k/kmLmPgVuph2/3n4kkWj6lpIG/st/+Ve++91vmIzjp+vPfPq05+YQGLtI9BOlTCx9R+kuGK2n8ZFtzPx4+5mmtPTJc3Z6zhdThhzZPZ1wcv6K0p7yuN0y7B2+v8S1nsenyA9//DP/7X//PzEUNhcrLk4bLl6ecDhssRlO1yucaZmmjoew492nB969u+G7r3d8+/Ub4nTOn374A5+vP/HNN9/x8uVb3rx+zX4a4THy8d3PPN088duv/47zi1PuHm/45ecP/PzjLdOQMUT6PmKZiFPk6T5wc/crTbfnX//pG7797ltc2/Djzz9zc/tn3n34PVcXV3z37W94+cWCaYiMQ+Lmdsv2fs/J6ZLXL9+wbCMPdw98/PgL2+2Bb755y9fffM8Xrx3397f89c9/IA6Rs8s143Ag5UDJmdV6w9fffMnZZsO0O9A4z+LsjJ8/fOLnnz4wHiLjfkdjAm9enbA++4Z2uaBfnvKQH8g3Ra3Mg4rxKsh2BDHrXiV1h2GMic83t2LcEMRVp2hKePXC9tYrUBTmurRoXVIHbJLjEzkMA91mQ9N6GCbAkG0hZCjW0682tAV601KSaHhIMvk1WguM40CKhhTlbOh7p+eEUzBTmCZVI2ms1Ql1Fhq2nuXiFCgAqVUHvDiKnrLrWqpVpvfNbIASQsDvdgdF4YTaInwL2XxnRwerorNaJJZaNJqjXZ+iQllH4TEfuflGDx2ryNBzQdwsHs0wjLA/JExnca2j8S2WpMgtFCP8a+P8LMwCQcuzIqzVhYW/EQyKyExqiQJEvDeI36mgvCkVFr1YHYVxJJkJl2T8mCsyregMyPi6xIzNRZAbLWikuFdOb0GSLnVKIK4PUuA0WoSHEMgG2lb8mnOJstiyIkFG3D6OB2Xt2CrSfywU5t83hhyD/F0dx8u90MPVVAvK+mdaaKD836RYkXK+qNz1ohQotIAqmaijc+scljIfgvN43+hEh4oQS+EmNqaGnAwxGkF6rMGrLaAzMhlx6i5T9F5JEyQiGvmzolQDFVwi+gVjLI2X65dSxFlB7qUwVCFnkECkoG4uz20nRQErFIqUAuOkvOjK/9PkT2P8jKIXfW5ySTiqePDZNMGoXzRV9Czvaa1cOym+RDfgNXm15CTEKitIOE6sH31jyUkKIJCHXNxBpEEUVFw+r7WSRoqpYlzhTBdF6Ct1QuYiVugo5ZhdUKlbMr6UG1ksuJwZQqSx4h4lU5Qi3GT55hWKVKRFPNSZm34pIKcpMo5i/TiOwlU26jdZVMTojSHkOIuGpPCU6yu8ZbmeISZxdXCGEDJd2+CdNIE5Hff6ow2mIB66i8mhQX1/mewVK81cUFqN9Z6SnepBLBSnNKsadqYoPKJZEcRcno2ql6l73/MCWYCIo3NSdV3JiKgspTxbdMqUTn4+/w+WaGLDKXTLmpzaNI62bcWqV+9J0QJcLBuV/53Lsz25UIwnJbnG9W2MQdKFjYbu2boHFbBeKWIqnjeSIVFdourUUA4jKWa99xQyYZKisW0dNV/FN6JnmaZCKQPGaFBYER/9kMBNApoYi2oeojhElUKIQRtOvcYq4BcBsZ7outd5LxNjQczt/EdF0fSQBdHLWWmGOc9WeBZHSQLCVFcmCbDRe0x9Hb028w1TE4JcP0YFTKQ4EbtSKWJSKSQr5+dqs+Hy7RsWF1e49YbNak0OhnhIeN8wTIFusaLtFtIkxkROiWkaMabgGifJ0gWxABwGnp7kTOr7BavVYhbped8wjZGcLCV7GtfinaSp5iL74PnZJe3UEdPIYtHRn665fveRBoPHYBvh5VsKpIkX5yd8vPvMYbsnOMs0PsF2oF9f0HWe95/eY0Pmy5dfsNycs8+Fp2mPidBax6EEfn78zI+3N/z4+RO0lq5piQfHlBL//T//iAuw7l9yODg+PG75VB7Y5ycwiTQk+mXH8vSKOA6E3ciWjN0sWdHRFc/ZyYYwRawxHIaJ24c945Age7zxfPz0mR///CMPt/e8fnHG1emKl1++oD3r6E96fv/v/8b1z+94fJpoTUvGsT/suX96lDyAHw84Bt58ccX6X/6Zh8dHdtstf3r4A199/R1vv3jNctXycH/Nx4+/YovnN80bmRblwP3jHY8POyyB83NH38nefHZ5ysnFWzYniX/6l3/i1etXYA2XL874+Zdf+OGHP/GXH//Ehw/vubx4wVdffsf5yRv6ds043HN7/5m7z4+QO96++ZL1quXj9V+5u9vytB3p+zOW6xPefv091+/esXu4x3nHerWiW3cUm+kXCxarBW9eXtE6T7M55X4cOd0HnrYHmr4lT1uWpxvcomOxWtJs1nQPe9rOM/SdouoC4kgxL4m0s3sO4iwjQGFUMEfZGc6TyKQQdW84hozmeKynSm0YEIvjqKDObren0ym0scp8oBALRAzFSm5GGKVei2mipETjhO4ZdFpbsqZ1UzViEMKE950CcYbVqpNcHKv1Vk6q1zSM4wjWzeBInpkCzQwIPQd3c5YzoW1bvBQYMvybaTPm6GpSkBgV71osyAFXZHwhcb7C18wIylAUUq2Xr44PjDEiWKr8e30da0TolQocxkx5GBhaKJuWzcLjrRbMtqLZWfjw9mj7k6uoSj+0n/3PhQMpY287H0xWDyNjI85nFispZtpOFlFMEdOiBZ4glAUpWoZp0osM1mZ1yWiZxgMxyfVrGhmRy6EYpXiSlSQbfxYfV0gSACLee0IjiiqQ1VHzccBxVELX63n0l68okBYRSFOiQystBOSANs5qrW6OKLYWWTJ6D6RcxCUCp+Mi/R6ICDGWLOEP6q7kjMUVKYiddcJ/rg9TqZOdI1pVipFAp3pA54xFqDceA40RgaeBYtXLHQ3XqW2Uio1x0ggUjDrXZNBo6SmO4sNuBX0slWcexCe2uo1UqhDGyzhN0bqsSZA5q+hSvdWNkYdVlnodicnrOIQj3fgjwlDtOQUhjUf3Gc1YmNec8dJoZuEWei30TWNxOi2yOJpG1rLzBhelYfCNJ+cwPwO10DMVeZzRWnmmRXyKIuRHVxVp6ryuI0GPTRGKUi6VemKUyicIsvHShDlNVE5aNFVBuDyjRpu/rK5c8t5RfdPFClOaLDEYV2pDTuBE51KLwqZRX/KC5khIwRdzVsuwgolFhZFZMgVKUY65oNzWWdnDUMvF+qzN9Z5RbYsnxGPomncN3jbklBknQewzhjQFXScFVPvhGmmqpiDTQ++l8ZYQIxHsFjhu3LlQSDLxK0Lvw4iQMytX/Pnzn3MWysbzBgoBWOapgVLsvPfEqKFlRtCwSm1Dm3AJ2FKrS9UEJKVrpVSk8TZ1IiETBJyZLdgq9lP3oTrJqqhbbe6fr025n56UA4eDTpN0ImfVX79kyzhkYpxoeodr3JwYDZYQpfl3XmwwUw5AxjeGwyHVqvmI1hXkcyPcVFsbmVxmdwvn/DzZC0GavxTls3kdoedUET850JM2yFmb0qwzKrm+Zj4Hau6JqYtNpyNHMN+C9VrYl3m/zBSKLVjvOLm64tt/+EdOrl6C7/FWrottDc71tMNI0/dqA2pYr044OTnl/OKC/X5HyYau77C2ME3DbOQwTSPWWk5OT+i6jqbxrMIKAU3WlOwJVvamnGWq9PLlS25uP2GjpW16pimx3w8Muz1d44nLJc44ht2OD58+sj69YrM64+r8hEPec2AQfVBKpPtbDkG9/IeBp/0Tf/r1JzanF1y9eKXgkuXpsOPdzQfux4H7eKBZrokhEE3m93/6M0wTFycXvHq5opgln+KO63CDMQkbM946rs4uuXz9kr/89GcO0yOpbYje0HYd4X7EAWka2D4+Yp1jtxv48PEju8ctH959YP+4xeTExdkZf//tW755c87F27ekbsPNds/h8AemnaXNgWVvsW1mcAO9HxhL4PF+4GcmLi/WfPf9d8Qp8v79J37+5T2//PQT03hgue75/usv+SvveffprzSrA99//yVvvr7g4eGeUvaA4dvvL3n79orGN5xvXuENHA73LNZLUrI0ruXLL76lbzeslxecrn/ml5/f8f7dDftt4YuXEy8uX3FxfkZKI+/ff+Dh7jN3t9ecnK748su3WGv4+PEjn67fc3JywdXlKzrX8FOYCOOOYgq73Z79uANbWPYt/uyErvVszjZcvnhBvziH4miM4ebTz6w66PteaIelsOo7+rbh0HfkKZDiJFocPTtLjMdNpoKVVmfFqpcSs4ZJ/PKpdaHup4jtrBXT5hn4rK+Zo/jVD+PEfhhYdD3dIoguM05YK4DCGJMI0YuFFAlBgGOrlN1irO4hWQGdhDVOa0O1WTaFtm2xzktzUOQsLklo3U3bSmJtSkxTxnpNs3VW6zGr4aLHM0Rt8WWfstaTqTxuQSuEe6t7DFAj2XNUJxJkc1SoXjsHObAFZS1zcX8cN+uGruNYKQVLZVRRjGGYCuOUGRyYIrSPZedwJmMzimbJBxf+uNWGRDbIeriJleZRCCrdUhChphEKgXWJQsRaESwYxHotxZFSkiLJRQUPWsQpXxodsYaYmYO3sohUMZrahqXkIE4TOso2uohKTgzDIPQgJxZIMQXKFGb7znnx6kHZeOEW1+/13Hf++cFeEeSmaecCpXL1U8nYbChUJx7tR8uxKTjOWhzVEq9ak9a1McZIsYau93Rdq3aAgkhaI4ELFnXZCVm/hdXiSXm4WS5XTjBlEds5hwpRC4ak9AqlEbkjYilWUZGSI84JNQqKOomAbzzeiUWeuNhw1JJoo2dws9OFs2pnmfV8VR2HdMl5XtOCYh8RSGOrTZUWLOpGU+3ka6JznajUkX4NJstJGk3j7GzDKhW3EWRaneMN4rxiTaX0HJFTa40WAHqDjj3U3FBMigiDxGPLdO2ZpWYVG9Z7pnaH1oL3ysUXL099foRfaZRrb7XRsa5aeclrHhHqZ83oDLEWXd4ymTJKCzJw1O/kTIhFDuSKaBqxGyta6Ea9nrNlZZGGNiWxOh3HQDDy/FQyjrXzPBH7rCCtl9+qo5SsDU8w4pLivdD0sjbHJcu1CWr/6r3wI1OsCKmZ3RBqgVufKdlU7Mw9d1okp5x0EqQ8fCOuP94JRS3VBOdG3Xi0kZKpj0xOKNIsyffU7+EQO92mPd4j9N7qHm6s7IFhkga2bcWSLQQVbFvh96cEbePn/AtrNEzPelL19jfM+9Xzgp763noLrDWM04RkWghCNk1JBduGGEWT5ZynsZZpGASEiLJenWuQMMJIygZXdDqWBZ1fLYRzPo4TqQ6MjY7RG6cTMplAhCnifNEpTHVRqoxPFccazQ9BCgpjHEV96kWboGiaVdpYqWei7q3Fzo12QWmuRgTDGTVNSBEZk9SFKaiiMQa8wS17Tl+/4uXX3+AWK2LxONfPjkRNY8H0dF2HdR7fNKzWG4y1LPo1t3d3jNMkI31jwSTaTpDAEASY2mwW1PRgyZTJbHdP7HYDhsJquWSzXLBc9sQxMMXAer3BNZ7H7SPrZc/vfnvGvgw8Pl4TcibkxPXdZ74pkd5l1quW7smz30VsAz6MkDJd09F0HUPY88vtgZJh96d/Y3F2CU3H2YsXvHj9ivRqQ3zITGXHlLZYmzi7OsMTabCsz15wlzO78Yk7MzC5EZMCPht6vyKOgY/vPnL9+YEwHWCc+OO7H1m9/ZbL1YrT1Yazk1P2+x0//fQTYQrc3Hzmw4d3PNzesF40XJ6fcHKy4ouver746oQDif/44Sd+ev/E+3cDb09e8boLXC4y+InmAQ4xcjeOxBh5eAz89//+f2Bt5h///p9pmiXDkPnrX3/k9vaaf/mXf+Sf/+XvyQamHHnY3fA0bHj1+jUPty/48ccf8DZx9XLF67cnnJ+es2jOOewC+XMhhsxmc85iueDpcYdJHV+9+S1fvPyew78Gpiny+fqGD7++4/f//t9ovOf07JTXL65YL3s+fvzIL798ZL+/5bvvv+Obb77m13fv+PXXX9k+Hnjz4ox//i//zM2nX/l084mHhy2xZB7vt2wfHrk2mavLEx5/npieRqZdZLs94IxhfNoRn0ZWzbkm0mdenJ1zc7ZjN24ZgxgvNI24puWSCNMowLDSozHSRLumpxbuhKSCWzFGAJmA5XRMsJe65/nGL2CEMQbfWtIo6bTnpx1Yy+72HlIhFNgPgcenkdZ5fIy4LMADFD2TvXD1c2GII6UI4CyuYqIZnMIgdaiF/WFPzlrLFmWnkLEm6L5oWa091jViQ1wreNTQoRyBXqk5MiFk/JFGIfSKascFcrBYLxtZiuJ8U0cUc/lpKnJTqFRM4T4ei+IjD1hGzNnIi8dcKLEeDJZYik4H4HGXWS4SfdeKcphMKVGLZp00GBFMOmP1/evkQAq6WtAYY5jGSNN5Hc9LYY8K2QxJ0fEyFxAirBWf8xJQHm6p9C9AhA9kwxQl4thqAFeeVDAYxBKpWto5a49Nk6mUE0mmlMCQVjfn6ude7T2VT6opiPUfOcyzjuDT7GoA0sxYa6FphDOdk3BErRNNgn6Wqp2o6LV5JtacUaZSmwd5AHzTkK2gsalIoIRFBGal1HCs5790GoEILUtWSoaiUjFmvM8qGkTTZStX/SiCrIVRSpWvLJVCVj6+d3V8p+mqFOaESBVoVu9sq41iynk+VDFCtUghUh1tnDdCyck1ClsmVhLK4/R7FX3fhNP7W60LvXdzI2ZVuCnXwRKJ82TGWQNqf2UQqy1TVFCcDBFBf503mk6nY/EsT6OgEopEg9IaZL1MUxCEwFpxGsnyLO72g3CHnSeTmUKQYt01ivKW+VpD0c8u2poaDCX2o6gQDxW+y6QnhEBMEjPvRGAgz6QWeTFVzmGNMZdwLKEjRaE+6YApJ+Hby5BfX8JacgkyKSi1QStiW2iU1uHsvH/IXlCOz6lyjFGnmbreQF47jOJiZYwHMtMwSbHja8iI0cIwyRg4lflZL9q8iGhUhZg5Y4zTDVmET3V9gtVRskyFcslzsW7UWUuSYI/8bT9TdHSyMAMtRfcAFexb5udQnh/Z46sFmzRylhgiMWqRbczcYDjrdEpXdK0e13RNrpbnRylcWtDaKqytU62ZTqQjaNdQTJZJmUFQJwqtc5Qkrm0+CbWxxVGKo28XTDHStY4UMsNBgAFjLCFmio34RixvhVqlCeBWbEn10kgzbaTxTSmKQ5k24xgnQTkZnG9o1MmrFNFupKxhZc+nx1kc1YxRh6ZSs1jqIZyPTaT+fF1z1dpSmkOnE+qig+PaFhhMY3CrDr9eUBYdD8Mg3Fvf0/ZrvOnFptFYvFtgbctqtVYBHxgcq/6UcVGg7GhbS9taVuteATIUoBGgLMRA13XzPQ55YsyP5JjwbaTLBTtGfGM5OZHC3lhtXhrPYdzRdh2r0zMetpHStYwUrm+vWW1OOD/Z0N44mS6QSSmwWvXYxrMfB8Y4kcYE+wGansPhDsoC9pZ26unOTkmjxfSWnCbavsW2lq5dctiPfD7scb3nYIGlZ2GWpOGAn+R73t3dMQmyRRkn7odH7nzLp6c73n71CvNkMSbw8sUFH97/ys9//QMpR3LYcnXRsewcLy5bXr9aslx7bndP/PDLe/63//cv7PcNeSh0pw5vHznsrsEG2uJYFBisp6walqueaRr56aefubr8gqZZsFisIBfu7255//4dv/ndVywXK84urvj13Q+MQ6T1S64uX/L21ZeE+MT5+SWb9Sm5FD5dXxMHSaNOKXN/+8inD58Zx5HFYgHZsl6fcn7ak4vh8uIF55sVf/zPwF/+/FeGYQ/lBZdXZ8S44zA88P6Xnwlh4re/+443b654eBi4vv6MKxP/9X/9L7x+ccKr25fsDgduHh64v7/l6eGJpc9sXSKZjmVzxg8//ZlffvkIKeMJnG9a3l6d47KlM56nQ8CERArqbe/lTB6mSWh81gon3UgYnVGgTXJOhDZZJ4r1TPDOKYNBKY6qnTPP9nsqoOq1iS4ChI3TpCBpgdaSY2aKhSEkHrZ7TnpPIWEai1E6olP9TiwySfeqxeEZpJ1zUrccgy8wjhVEFADPWadUV3EvpFJyFET11s/nR80BGYaRaq5QSsTHGJUWc0Td9HiTzU6LILQgF09wRXrkTMV5GUPnJOmCVtHWinJX7mjlDB3TbWFm3xcz180GSbEdpsJhzLiF+DWXlGm8I0cRXYqfsBzUPNtIY1B7ICtiBBE/aWFlLMYkpvC3gjZjBKk0iiY5kzHlWDDVFD4qupul8DXOYbMW6ZVGUAq+qYVxmhG7WXfgPBLSIIViQgTC1srUwZrj4ZpzjV2voTtHvcLzpqneNWstDhG0plwIhxHjLE79uotaXDojRUEKcV7c80OiC18WZL0/+nvaBBU9tLMiv6XSGLTgl4dNrgsUUo7inJJEo5Bi9YFWS7mshXgoNA06Qo9yMLtqiSjr0liJdZbroqFoFKr7RS6IHkJV5DHkCicrsiY8vaBhD8YK/aSKwAUmq17Vwpu2jSbDZkXxDfqg8gyKVJvRUrtpdd3Rn6182lIAqxkDxs6ajplLWKTIiFMkEinJs1jKlKdqOurPl1LUk7sipXKN5qY9FknrLJNOIzT8zFlJ+0QsuGRaYvHqAFUF8KWo+5KztK3YkeYcRFQfoyD6RTagUsBkQTAF5XR6jbTgNDK9qkWjJO/J56UIZc/7ZyiENpZtY9SNSLUspLlAlsmUbJbFVOclryLk2nQx6zNqMRzCiDOGYQhYIzTDiu0XozxL73DFYoojR7HElEmJFLrWOKYpKLJ8fH1JuBYuf8gJC3jnhcJohGdYmzAMNJ2nbVoKhca10tw2Xpx+6kStPH8Wn9NcZD3I3mX12TQ0jcPauqfL2q+AgTwTolt4vl5izPM1zbkwDmJMUKdNDqtN8RGJF0chWUcxBqEwPkPrRRtkmKaJqj2a123OOH90OqvgTMmWmKWZjQGmMZA6MUJI1mBMI6/rJMQpagZHyUI5tFkslp2CPFlR74QCVzpFTrLhqd2pPEMxikOPqU41OZNiZhzl2iwXC02/jTM9Tu6RTuNqinsRAKruAa6u02dnYb0Gtb54nl1S3UAEqJD90DmLXXakVcdN3NM83tH1G5pomcY9bWPoe+HfUwqP20cO+5HVeqV7n/wyOE5Pzolph3OaULtYIsJroeg8Pj4yDINODMV2t1+2nJYl42GQKZ3LZJPIMeCcE7qca+gj7MOIt56zzRl32zvu9/cULOM08unTR7779juuLk45/3zCwzAwmEjpgU3HBBxSoiyMbHXtAt8saLoFIYOJe8LwxN31gG091hfisOeQ9hy2CQcsT87AFUIeoWlZdB0590QkN+difc7m5Iy7h0fef/iVMk0sNysShZ8+f+TN+Uu+XHxBGSdOzzd8/5tv+Hz9iRwn7lo4Wfe8fHHOq1fnXFycErH88S+f+d/+n79nP20IhxEfnnj36zVP5hMufMZhyO4M8oalX/I07bi+vsY6K0CE/zd+99t/4Oz8grPzS969/4XdbkcYRs5OLvl4mwhTSxwb+uaMl5cbFu2fub95ZP+QCOdSDHu7IDHStoVxjDw93VNyYrlc0naGYdwzjgasZPisTjp+s/qari18vr7labsj58J6vcA3L8T28+GJu8+3vOtbvnj1r3zz1Vd8/vjvfHj/nsf7t3zz1StOzzYU6/n55/f8YQxMhy2f3m9x+ZzLqzdAxqZInkZyzIzjnrzPhN99g8MKjSbL1M0gTk+YpMCygCyS9F0d+cwMPsp5mWdLb7HPFUDJeIM1nlKqO1hQhxt9VBUtEkaIWEMXCzEl9ocDi+WSxltGDbOMIbM7TCzalmJFB2hSxgLWNXjfMmk4ndQ7UZ9nZB8sAibnnLT+OO6ZMRdMY2mcm+l/c+L7s+9urNQ8XtPGQxAqIojGsJSMlxdnRhmtWl2OY/ybInymhBTlJwLVncMo+d9aiy/KddcmYbZZM2YujIpe0BnJkLMdUzy1s4kFDlOmHRKLvoEiaE7rPSUnUhGut7UWX/lYilrFGLBWxowpJ5x3igrLRcg5EkJUf99GiyxFLWzBeej6RqgdWmhZA84YHNoRqwBC4ukNYap7usF0Rl9PvlsVHmf1FHfO4L2gsPU1Kior7jkVgdaJhaR/zVSa50W9tVbGr89oOTEm+qbH5syg9oTWOj1gVfjm50sviM3zA7towayNiZw2BvJsMCHFWZGF56wW/Nko+g25WG0A5HAyxivClvWXw5ikjVTBeymAU04k9UY3FnwpM4JZEXgZk6tzS8rkJI4/0ag7Ty7KCVXKRrGKmMr9N0jgTF2X1tjjQ1qP6VK53DV5UidPCcjSHFknTijP3EClaAhylGZnKK42RPJcyH191kAZKZoozCO3pNZ6OWWl60iCZskZitP1Kshg5a7LGlRdRFGENiqaqKPJooWINHnSGIHVCUpG3HospaK3VmwchQ5kyXGicQ3GgTVFJyVO3tfGecJSEdDq/lOK+KvLd/XSiFShUbHamMivOtGSJkSK0saL+NI3bi546rSk61qaBqYgAWG5yDSArCFmTgoEp+EervM4Jzer61udEBhdm7p/5ESJ6nqT1K3BoCFlFYmVwkxQGaMTtAi24FGNhTO0jZ8niEmF/2DE896ZuYkcp0kmIt4xjAHvLNMkxW8tDJ02qxWBqRt+RVql5zty2Y9Fo6ZGU6mFZV4jdc1WRP3YDAhVSLQnUvh6Vxu+TNt2sg8r4GC1QZ5iEHMGeWFKEQpZfb+6JxQypEqrys/2NGmsrZFkdElNFiH3NCITqjqJKHJ/K7ZhbFH9UGEqBmclPFCaadljij0GSqWsB7IVgbxTMfw0BUHKkjg4pRlcKYyTCNhzrqndTpO0ddIRI0XF9EcfhKLTJpl6S8qzjOALz4p9BRfqtcslky34zmM7Q155hpUnNImpDKyagl+0lFHADOcNUy4cpsBw2PHzX39kGg8sehHHnpye8+LFK5q2Z799IpaBNlm6bsFiUTd2T9s0LPpM4xesVmsMhm7RsepOOTk75Wn7RJwCq8UKgxWRY5ZmKQRJ5iwp4XJh029YdGsMLeAoSagVNx/esfiq48url9zvBj5v7yi+J7UdEfEvb5oGpkSbHNP2gHOF9XpJyJm7T++YFicUoGsKTY6Ew4627/FtR+sbxmFgioPYPJbEMNzTNZ5cLJOF3XTg3a8/ksJE27ZMh4GD86yWHR+HJ2y8Y9l09Ocb3vovWa17GuNoneP07ISzsxOxRDSFP//8gf/7/+s/GSevCaeJtstc//Qz7x5/oYwD1hhW65HF2rNPe0zv6BcLzi8u6RdLQsz0yzXffP09v/zyHmM9w2HPze01q7Ov2T0F9k+ZTx/ueXf2iXV7SQ4N29uB4SnjWNL7DudX3E03tB2cX5wyjQeyWkLvd3uciXS9w1qh5Yy7J2yGvut5+eIN+6ef+PDhhsurNV9+9Zq+X5JDx09//Zn7z4/stjuGfSSFxOHpgf/49//OycrR9z3FdCz7FRenl2zvE3HY83R/Tw4Z151xtlnxr//8T5jieP/rj5Rpx5u3X9H1LXePB0ppaduF5I+EUU0n5BkKMci+gVBrC2UGyESTYtQuWiQsMk20s56s6q6KNgVGx3jFVM66FDaS2QElFsYxsN5Y+qZh3E2ULObw+31i1000NrBsJSNJHK4KaZjwbatFNrNtuUznrNZ/rU63I13f0DStMjCCFPAcHfuOzj4oeCXi/WpHK1PUQLWBr/uxN0b+Qtd34lubC4dhlITKVFHtipzm2dqr/mONbAo5SeKh95YpFFKpQR1aOBahRczk4joBRUApQXD14EREeYchYRnomsKisSroEqecEAZBwqyhPDv0yrMbWdE/a4VvWpFpkGKQ4vSXAZOxruC9pWk9fedkghBFPOqsvJYzbnbKycZKUlssjAd0tCn0JKshVl3nMFaQvezUEq9ktTQS+46mccopRyLTNSjMFvWBlhUp/OxnyNnzf1dEX4oKV2FuKdYyhBx1hKPUpKzuMrloUqPaL7rKT1N00lbryQLWkIwUi1aLSLTxQ+9z0WlHAaXe6OGYIRuvRZ/HPEO9WituQdZK6rBMMazSMOz8gDvrSEU5ado8TWME3OyFLrSLAk2lF8nER6xKteGY/eehIlriwCMFaa50Ef1u2QpSXycBgsSJx33W4Cmrris5V2cc4e2mmElGNqT6veq8akZftVnASTpu0RGadObSdJsiDYD3nqhhO7IXPac+oIVjISejhXMtJ5kRe3kOJHzHWEeJCbGprJxtWeumzDMCvJFr0HopjiSwBHIxjBlc1iLG1GmfcOKFqlAbRy1alM9cszBykbVS6qZaDKh41+lES66xzgEUvSAX9TIXob8xIoYMz/IYZjRdn0HvLNbJdEEaGPXO1yLY2hq0p0Fdpl7HQtVh1HUwhUjjW4RSI++dSqV0CaqStMEMoT5/stGHUGiojWvSaZBVao+gMhnwpupmdN+Sh4bKE68uTKWIJqo2rKXIJu+ccMqtcVjvFNyo1KRK95MmpRoNJE2gds6T1DXpyE+VjTspivUchU5RJ23GzgJNq8V09XrPYhsmr6GaqFyOAVSlyOYvxXOlsxnClNntRhofxTkqKWhgRYsSYyTVHJEsi0YKgL81ikBpl5hjyrjRPUCmNoZJdUs5ifDeII1lLpExCMWtW/ZkzUipUxNKJj37tmW2NdbJrbFz6A46cakbUQFpVOr/G8jOgLfk3hGawtRkcpeJK8vARD880p1ecbnZYPdIYRFHypAkBKtvgMjDgySLjsMBbw2L1ZpxmtgNOzKJp8eB09MDfb+gbTvAEINM9iYPm/Waq4sXRFvYDU+E0VPCnmkymJJxKMqYE1Mc2B+e2G4fud8dmGyhMy3LxYqnNFJSYXtzz83yE2+v3nLSrVj7BbsuEUogHjLJW1zf4dueYhLDw06upTMkWxjCyDgFLD1929AZue45RqbPn4j9mjgkUjZkGnxzIMVAt+rpmyV4y+32npISJk/YaaTtOrqupV/07HPgr58/cR93XCxP6YrBhcRiuebF6SXnJ+d03YKM46df3/PL+w/88a8/0vfnvLhccri/5e++/YpvX1/x4ZfX/O//n/8Hf/7jH4HMuI+s3R3NYonzay6urnj5xRcCFpqO5fqEm7sHPt/c0nUdZ+fnnGxO6JcLDocdw7Bj97TlabslWsPhaUsMAykEWu/pm44UjVAhndA/S5Y9fgoTFMfZ6QnGevaHUcSaMTIdRobHka47oetOuH+45u7mgd/+5jsGlxl3iTxZiI48FZbdihwjw2HH3e1nbm8+cXn5grZtWS9WnKxOGB7viBke7x+4vv7MycUbLl58xXJ9SQpiSLLqLbZpOUwRfMPhKRCSOEPFGDBGzCLkzJrUyEMO/6wNsDMClpiCJMZrgV5yxjVudnvLJaNplhCLCl/1rM2FYo5sFKP1aSlCFV90DVtEf1OsZUqZp92eRdtoiGWmwdGo3jDGSJgEqBOmnTAT+l5Esk3jyFlovb5piOoAKAnwAjiaeX8qoA54RYFi2YrrdPCoR6xUb2st3jkZeYuNXWaaAsMg/sKVpkNRpP3ZL0NF6+WDOFWmlayjlYrWl7rRHTupihxV/I0ih1kx4GqxVQpjBPaZxgzCmess4xgElU2oBVzBqBCv8ZYQpvmLyoXTi2RBqDcyrommUc6kXijkEPHeii2l1UNUCxyn37HxXvhgOiKhyEGdU12AYt0JUrx3/z+y/rPJkiRL08QeJUYucxbuwTKSF21S1XRmB7vYwS+GABABPgGyIpCV6ekd1rSqspIHj/BwdrmZKcGHc9SuZyNKsjIzMvwSMzXVc97zklaK6ZIq65yV9aX2fMbICN1p0VE0jmRBMKtK+FcpFDTuwNc8cDZ/aoXprSX1as1oDIOKaY07KMSNVscxlUlMlibJlJGYHYu1Q+MEGTsiTMIrziQr7iPjldTiMcXEoc5SyoOukUNwTjqEWBlzmAYZK2I5DTsqv+e9ARxBRTOFYhNS1rGYFPnBqhNTEgFgUA67RDdLgV66y5+IPS04FbLGVJ7yJA+SZWyajM3EXlTw4v8vkfTOOUIvD2KMGnbjtWlQBxCnUxahXsn1sK5SrlzJoFdHGxXYjuFLRtB6IaMbQTcj94o/O1JWDFabHWkcyqi/CLJLUSibgqaodj1ebRytMSMlyltDVdcipExBJlFB6RrOqf98scC8J/rm4AQjIyJt9rIlBsS1aIhjoq0Q7AsHGaxOs8aJR0pC/SsC0yzjJLlnBpucfqeEVfG8oB+RytixkDY20/ci3iuFcoyHXb2In8WpBIZO/tlVB/sxg9iqRiQhWgrMjLUypej7gKvEdarc72IvaO2BXjdamhkwzjLxnqHvx+Y0KWo/IkCk0aHmJ5NRGJuM+zTAvu9HhL0g6OVzyHeRDI3RvefewSZCd3XGKcJbo8W9hqWUXyU3oRxkoiM6HFIj5c8c9gn5+wFEgjJ9FW6ruEZlApl9JxMVnDhiZAOukoYhJp02YEg4UlQ+bgqK/ovWIOcoBb5avlq9L0UHhJPm0ukzIPTCQ4BXaWwMQvsx+rzKRDuOh3HRY2R9/WSEfpnM4flIWQXnHIAYo9OVkCPZGUzrya0n+MCuSnRmIGYLYYvbrXhEojmak2JH30VqVxGJ4hTmEmgi99nJOWcPzoHIh6u3OFux73u2+47Nume57Dg+Oubi4oJh6HW65knREQbD8m6PbRu2W0MMzRi2462gllUtRVReJW5udnS7HcezObXJdClws71j6PbEEBlWG67evOXt0XNOnnxKlSz9hyV9HUmNwRxNcdQkoPINs/Mp3WZD3/fs9xuSydiTI+rO4vvI9uaGOKzBBOg6YjQIeboGxIyjrWsePXiMaSveL6/oY09TVySVAB23LSdHR3QkVt2edgrPLz8QsuFPP/sSuw8Mt1vWm47ry1d8+LAk2Zbr5Z67zZ6bZaZuEi7v+Os//4yff/yMqW8xA8yPrjDtQDI7uu6SyqxwDurmhAy8e/eejKOuZ7x8/ZbHD58wmU45e3DOfH5EJrPe3BHimroO1G3EVwPd9obMFmcHUthgjWiottu97llek7UbTHa01QQ3sbRNy2a/I4ZI1yWW6w6TEpiG07PHvHl9S4rXpGjpdgGLZzE9ZTXpmdYtx/NT+ii5NN6IlmV5e0ddtTSNpa7nzKdzzMNHLN2e9arn9m7J9eoHXr+/xfk5mYq2dnSLhvqtxVUeW025Xm243awZQsQ4cYarm4oQOvohkqOCA2oWEKPUAamPaoUtU2lSUq2SAsjS3cuzbiWQs+hMgJGvX8DncW8iMwy9mHfIUSyFt5fxQNLXjknsr43mBoVONI/ee1IO96b2Qt3u+wMrQpJ6BVh1thYKbOXwXs4Xo589q828yXl87RiD1muixSvUXwA/mU7E+UJ5kUOQwtVpMRFiJoWI8bJB39NzqhOJ03G11W5FfEizIniFo1kQxKzCxJHGIFdQ7S0VPUEO5yHJxXNdxnuhD6VhoPIG68tNSASTlWMqKLzFin1fznjjqJyj8p4QMl3XEYNsoNZWOlLV21g4oVFQEC3r5Hs7cXOR9lA6HEEdxSnHWgk/6PusNaMIufq9FPypztSNFPWSIJbH4C1T6UGbMwb1NEXHREjxHDTEIBn1ho9iCVV8iI0erilmhlKUIxhSzkLX8NbRdWLlaRT1wgrqmcvIXpe0N1aoO+VjmoPbj4K446KTos2MhVFKpTASiosgs5IUbKzBV4ci1RpLWzuqyii/s1BRylRCinMpKIodp3ClQ8hY6xliIgxBeJ/ZUhIxrYVKw2Yy4u6RssWgn488ignBqLWhClIo4lRF6rPW9VmKrWTKZEgsDmsv6aLOWpxP4xQhGVlTRosYdG/KWWktKWMrldukiDEJci82fEMkJ8NgJQI+e0ffDVTeasOcIRlFGCUGW9w2GNOhcwZXSaNi0oGOkZTXnZJYszqltwWTqauCAkgzR0a941E7Url3ISmyqYhzIuN0hDhoem7hOocsFl+CcVjCkIS7rDaLSbn3WZ95o0WRdxo+Jtid2JwltRmUyomqFtvAvhtIWZxlQsiU9Fay9NvOiCbEK1WqMpnGSappSpEcDv7kh0A2DWXLCWccWYWGGEFcui4Q8yFMTgACpZ9pg4yJjDiCiSogF4pP0s9YNDYhDPhaBJDimZx0r5WiXRpi1QRke08bkUfNE0b8kSWhVmlPBKHdYPVaHxBn8bmXpikn2Z+kiE0jok42YzEqAi4vCJk2Ec57qrpmve2oaoN3nmT03sZS9B/29/KaQv+UAl72V226cxJGlQZ4ya22omEwsvdaL5OxlFUPVSZtqVisqm+1MWKzWjbzCIEk9r0a6mWsJaZMP6jVc2V1jy96lqx7l2foEyH2tLVMd7OKi6V40BCvcEDiEgcgxBRaVNRxpE7vjNYZoyVthr7KmEmkPWvIlWWgZ7AD2BpTeXb7Hd+//BE/eE7rI5yFSeWpK0f0mWlt2E0qnDkhp0Q3bCSlvTYMww5DhLBjs1uyXV2zXx9hc2Q6PyZnx34/sNsnrq535HxJNfH0YYezlrOzM9pJy6xtqKsKXwkNrWparPWcnW7ZrFbMTMbVjm2/Zb9ecbdaksPAZnPH8xdfE7yh9RWOnrhdYaIXvRyWtO6wRwtSlRlSpE89OfaYyuOdoaoy+82aVGWqdiZ1y3RByo52MiNbD86zOD7i6OSUWbPg5bs3YDNHxycM/RY3aaispZ7POD4/5+LhY2xdE6n4Or3g5XLF2e6Ok+yYTCx18nzz1Tf8yz9/jW+nGN+wD4Hd5j2fP5vzv/7tf+TjR5+wXUeev1nyT797xw/v9rjpBTZfM51FjqY9+06CAkOSacuHD1dUdcPnX3wu57Xx3C23HB23VK2l73dYk5hNF7T1TGgocU/bZlw1sNresNpuiNZwvdzR7S3eTpjP58LIGCAjYZzbXU9dt8zmp9yuVmx3kvhsW3H72oeO7eaazX7C3fqW2BsuP7zn6uYtDx9/Rtcv+e6HD/SbHZPpEd2QuL7t6PorjFlBFiOSymeGUJPNEZNp5u7DLTerD+DWYB0mD5zMaz7/7N/TTqdc3W0ZwsB6t2UfOmwDxhmGvmfYb0mh06ZZQRIjRhJpiGp9bKXYDgLS2LqSfVGBQaNAFoPWEWQFr/Vwl+H+objPwiDpQmQxb5j1Pev1ILTZJFba4iQsOi+bDCH0xD4R1RDBWgi95PA4L7o5a62e16LRiSFI0m3WetoZTboWCm3MhW4kBb3USXIe9LEfrbsldyPfo8gb6PpOUhaTvFlOGlya8iHyGB2D6v6YER5u09Sy6cZAComoYsvDFdJfBcXPh3/1AuQJp1cP0FCQe+Xn2ww2Qt1nKg9NUwtaHMUbvaoclY7bc0w4U0HUcW1OIq5pG/ZdT0Si7LPNIzJDTlhEbBFjJBirhbkewMZJQqXJ6gQRBPnxhmEvsH7VNPTb7lCQJkO3Txo0NOBrRTa087LK5xKup5f3j4VvKZz/qjoE1ZisxYWrBKWyYLJlGAYGpGEwHARbGeQmW/lORUSZU6atakWq5KC21ogIzVUUVKp0taK/EKeY4rggr5fUn517CJUUfYXfX15rTGj0/l7RnkeevjPgKynoK69BXoN85xyTen4Xvq4cwqEU6dqY9IPoDCoDXl1HygQgxCxFW86QReAM6kNvtDkM+toIbaUU/r6qMNFgsxtFuS6LhzUaRlUKuJBioXeT1WZVLB1Fw+Ksh+wIOSm6KF7LthZaQRwCGXAukZy8Vo4wmViq2gldzAvVyIwcHIstTYhy2LtuwLiKhGMIEmudc5ZwJ6ULYT115cWmNUYRkiZpJJragQnilGWlWE2KbIcs3H7ZH4O6mzgcnkGvsbFCCev6gK9lc44xjO4GIrx1hDQwFDRf70MiC61C3VRyhCxDFKEPpQzGCaVNN/kYBsLQ4bzDVoqYJqNBJaKT8cbiLZIgaC1eN+HsLTgRY9qYqPQ6Bv1chT6UszyvUWJRpGHDCvBRrn9GbW2F8mF0Slf469JAlglBxPuanEXMrMeVFOqIc5JVQa0xpUlLlJwLa+2Yt1E0IzKqVRtdK9c6DoOgn02ldMDI0Acq78bnWZo4p6EpjmSk6SqvbchF1IExpbCXNR+TiNHRqYVzjspZ0iD0I7IlBrXPDIdzIev01GqB70wRv1m1ZhRAouSohCDcLaOTzah6EYtcI6trweRM5avDNBNDthJqWMC+oh0r4/dkkop0VXBqnEyHuiAHqavIiDVnuXfWyzUPSs901qo1rOYXFEcLL9OBVER6WfZqp3Ch8W5sILJOpgrKaCyEBuI8Y44se58ZklNkwGC6iPeZzWrJ2+kHJk+PuJhMOaobUhxoFnO62uM9hKji5NgLwugqJtkTdntyP0DciWWm27PdXrFa34JpSNmRTMW+S3jv8PWA9YGmbvho+pDJpCVnQx8TEUvqAzE5qnrBfjeQQw8M5C5Q4Tk/uSD2e66XV2zDlg/Ld5z0FyzOHnJyVtP3EE2AuMWuxAwgdBF7MsO5iAk9hIG6bpjkjG1kcnt88oBnn37GdrPn5bc/YvaBrkskOmYXU+xxyzLvuXm3Et2ZTYS4Y7u6w9ceM2vpKktvHcY1TNyUH99e82FI9DHw7duX/PrinIvTM8x6YHFScf6w5frmA95aLk4aPv7VI3792RMWPpHjhKu7nv/yz294825Nqhz1NDGxnomdMXET5m1NNTuiG0TE3DSezfaGqw/PeXzxCGsd/ZCpmpZqYjmaTJlNjni7v6bfVnRbw/H8mPOLMz5cT3j34YofX73nybOGXDV02w197GHXCRiUEvPphKqupIGvhWZmLJydPSDGzNXVHS9fvWLTXdOeNpw9OibmgZu7NbthQz2xHD9oqacR4wLzE2kah37Hi1crrLmjbVrImaauOVos8HZGMo66rTl7UGM2O/ok9uPEHYt5RY47TPQ0tWW+aGk2FS4YsstCOer3KPdS9kfnqFTDZzPIUxOluM4CuAoAIoGNAtAJIyEOPYwTf61RcxbwUnAe+XfFZVKGbC3ttGG725E2PcbpeTBAGBJxgKQgSe0d2Ti23ZY+CIukqj3FwQwsSZNzRQRrRxZHilEaEiz9cLDtDEEAoaapaepGjChiZBizghJ9jAo2i4uaswYvo/FE35ViD0rgkED8h/qcgjAoym6sILI5RbowMISgFkOMB175ZRWaSIWPo79n1fLQZqOjzaRNlI4qgT7Auss0PjGtK2yWohwd96efvI/VEWxSfq0dC7WEUbBc1MQiIqxUDCWHIwL44ZTykNU6MEf585UXLrX3EHxB+wdyLpZEqC80VCExnQuKVRoa5yTx1CgVQ6wIneCSWYNl+oEYpRAVbrzBe6FtEI2OeBgL0jAoPxxF75NEBplUxr6MI3qvnDTrPbvdTlwf6prMIYLeGisWqEauSVPXP0HtjI7fU0ZLemkuMEXTIO8q4s0DF9oIfI0xYnVpjCTTlsbH6MlmrcMo2h/SPWcVlLqDw1WefiihNwfKwjjz12mLJOEe3DnE5YSReytCVRETppw04OuATgvSrS5F+lzcDx0y+j1Gyzs9pK0G4cSQRuu/Ik4v1ykmUeJapz7+zuKzXN8coXYHtxHnpag1iK6hINLyUAu/e7fX66EZAaNbD2nkbacYJcGv9nRdT0oB70UIGYlMJo1MkGzxzAVDGj39Q+hFk5FUdJ3SaB+Wi+i72MhaS8zy+ayXAiwlGUOqJJ8YI0MQNN4ZaXSkWBUEP8RAHgqCq+4BqFi60NJikuCve4iOqCd1WmQOcxhMxjuPNRU5BVJQ7jiyZyWKsF7SCVFEyDtpJEXqJILvYj9ZmkLUGUn0ECKwLXz/srEbbZpKyq6sjXtSpPuKdX1uQacJ5kDHk/3kwHm/n1Z4cOU6UHfKGpbfyiNfv6xLcXU0495fnuOCmwuArk5eVmhuzsqUTATqZrTYNeYeB36k7Sh/1Ag1RSYxKJ1LUCnuP7+IJZzw8uWTBA31slb7DfXod1WlLk7psDZSAhWu7vfDKHwWSpKYC5Sci5TF07oI6fXq6i2Q5kdCwAJBr2/S80umX6LTsFYQt7rxQusKcbw31liiEcclI+4RKJEQ46APAwYBgfb7gG0s/nwKT47wF6f4HDH7jdj5REvqAptwR5wZ3n54x2Q65/Thp2xjT9jvyU40L5PJhDKlCbFht9/ShwGA+dGE2mc2G6WUmsTd8g0hGxaLU7IRkMDX4oTjK0tdN1RVLWd+17FZb9jv9+LEUleEGNhsVmzXG/oh0JOZzo/4xcMn3O7u6PLAavmePHiCzXQxcVa3nJ9fsNtEVtstYRcIcUfuIyEO0GTsRIS++xAZ9h1DJzCgbRtOTk6oqprN6ooUMrXzGDJD6Ei7PWGzhbrmZn2rIUUZ5zKL6Yy6rpi2U/p9z/VqSde/xLuaq+WO1WYH3Y73uzseVfB0ccSkdvzsFz/jwYMLXvz4IzHuefzojCePzgldYrmt+eP3v+fVqyWVsaxvXtGt39FUO2YnFhMT08WUaBsGwLuatvHEcEffRXa7HVXtWczn5CxhSjfXa+bHLaenC04WC26vr3j2+IInTx5xclLThyXPX/7Am7fvWJxdMJ2egDWkEAhR8n1yFqvstm3Zbnas1muskzC+/X7PEBKnZw/4cHlDNgZf1WKvuThhvzG0zYx+37PbHYDgrutQiTjbXcduu9T6KOKtYz6bS7FvMuQtgYGnTz7i/PFjYh7Yr695en7EbDYjxMRkMqM1hsl0R7117LqeFHo5E5zToMAoFpheuPMmOXCRFJJO7gSBzsgem7UW1bGYTKFdRdLEdlPoKCkr4FmKSdkHQ4zs9nv6TrJzrFp9F92V1LsO7w2V83hXkUzEDFIzel9RVY3sHSGO7jbjtDQEma7GSMpiACBU4jjWK1I3HkDTnCND1yuqW6i1hxqvsDb8ZrMf6RXWCtcQX2x3ykEgSL736sSRxH4vDAPWCuIoQscDWJ85FPH3DyJbDixzEGIhNZ3wlLPwK5MetkFHJ90A622ksYH5pMIZGd0e3k9+payR49ng65psnRzIhbdUDoUsFynnUpBmHXtUUhAQMSr2y0WcCkw01Y9kyGmQpMSYqJyMdQsVohzI1liqyuKsij2NoKSz2XwsOPf7PeVsA4gpkLPwpWOMMolwOgbPeUTJsZbKV+y7TpJupavShcl4gI8UHf35FCI5yQZf1zXOC7VFaiIn10bRVAnH8ey7PYVvW7pgccjJWmQZiiDaqsitvHcM4nIh9poqnrNKLCkItFFOmRG6VwpCE5ACp/jTWw35EW9kSX5LQhHQiYBwqpMg0SoGdFagMK8zt5SkK44qujHG4byM89K9TjEMxTFK0dvSKGjhY8gyTjNyLWxJlDVONxf5S8SU8vvyna1a2xW0zqpewGIrIFdk9e0rdLay2WAzjkqThCND0JRR48ZNSfoQ1VOEBFp0VdapCAm22y3i8BJHv+DQB5x3NFVxjxI3lKA8dfG+jro2lZoW1VrMCBc89kJHs94qfUamaM555QXK5xqGyH4fCYPsDU1Ti/NUDGqnC23l8ZUHGzBWGvqsG7EADebQ2FltMILFJPEllkmC7N2uknVgHdjK4qkYehHijZavtggcxSknZUmd9V60GtlY+hAVhT08C+VQkXuVqYw0nxhpDGUZKy0DyCqOTooyCd1zGGkf5Dzec7F8k8K2GAWANhCFMZMPxXg5FMTc4GCxNuZjpAIAqKuNURev4mSTda2VZ5yD+9E4QQhZ9wZPDlHdHypJKzZeP28YpwIhBEmHvle4Jz0s3L29aqSule9nLTlGFaBVxDiQctAm4ODnb8qEcqQ4ZRWyCp2xNOgGh/fq+T5SmdB7iU6Q7tk2j0AF4xj9fnNVzrDyZ+UgNuU/cV/7BWC8JzmvQFEWAXSSSVCyErrWO4c98lx8/BD/iy/YPj6DSYVPA3F5y/LmirzZQewJ+4Gu6ujzDd/8+DVtdjxbPMTECLGiaSrqqlaue8AYS1tPmM5mNE3NrJ1Se8ftrfip361X4AbauuLoWATYVd1gfS00ulAxaY9ICT5cfpBJcsxsNmv23Y75fErTNMxmrTjcxSNW+46haXCnR7CdMXn5I/XJBd3mmmHo2QdLyJ66nlHfNbgYCCbhplNSG0k2sVuvaFJD1VRk1xCNBV/RVBWuqYl94urte8J6y4P5gs3VDfQDDB3D0LHabRi8wy+OcE1N7R2T2vHxR0+prOX95QdOL844Oj3ndrXlzdUNd5sNbdVgo6W/W/P+yrB59JTT08eETeJBNeHzz7/Ek+g2d6y2gdsu8eHyln/8P/4r1+/esbm75mgx4dnZhCdPPqUb1ny46xkqx2qz5ej4hKP5E3abyG6bOT9zPH70EdO2wtkIOXB3u+bH7y95/NSxmFTUPvDm/Su+cZFf//xjvDV88vHH3Nxdc3Nzxz/+wz/x8NHHXDw4Z9LOmLUtTeXJObJcbVhvdljr2XcD680N692OGGE6PaKaWrpdjzc1Q4BJu6CdHBHjUs5SU7G82/Lh/R2r1YbtekUGmtqTc6CqHaRAjOKetNlGdvsVKUZi6vCVpZ0ds9/tqSrDYrbAu5rVek8fIs3xlJQMu+0WQsTGDEmQbWsgqZW5n9REaxniIHa2Rp6dqCGrQqYumkG1ok4i+Eeny76ux2c5jaFYil7rnlsmymEYIGYmdUvld8SQ1LEmSm2AlfpMa82QwVe1UPg1C8M5R13XDMq1r+t6rD3FdEBYEveBG6cBp2VPETedoJbRnmzs6Fho8sGVx1tLZS1eQksKSqsYrLrjWOHLUPiGhbJQUlfHoktB79LNxHhAdAv/R463Yj3ImExe3BqMYUSCs94eZA/H6r/veljtAs7XtJWTNC9KAV5+RvhVKYtl5b4bxC/diJdsCIXjK97WEmKjegKHLBAB4WDkLauw1shBklwm1U74XjEwJOFEp32EBJU/1AreIVaPTi660FHc4YBAmgBURCnngCZSWou1cWxYnE4+on7vTGaIAesclfWQ0elJpNJDdUTz7qF3lRPHhqZpANjudhJAUvitSRDTIZYsYy1OKD7hh4NPrC4V1fdeNQx2fM/CH0XDgjAylicJApgTOgkpgWPqO50VrdQ1KTivoPYhJUzWwl5zAcaD3hhFF52itlo0j91TxmWJui6OQMZECd4pzZGRSURSW6kYCwJ5KCZyEdEha0mE1EU067W7lw7dqwNRDGkEZUvDDJmegDVShHidgFhnFH2X56pMPgoFY9glnVpY7d6l2y+NHfrsZfVUT+ohLHQJ6DTkrDw/xgg/ebfvMXgqFbGWog9TknDlYS8OSUYnXFg06l6e/Jwyg+YUWOdEwJjk+RqGSI7SxGWXhVKUJOnWWIMzaqGp16FulDuZDTkqCnCvKBdBv1PhUuEyC8XNGHG9qSpL5YzQDRExY0hCkXLOjvdFivDisiIvFWKxHY1ChUsinLBWff+1uM8hiHBd90RjRXuUdK8sVDfrdcIhq0z3ioK0Z3VOMOr4knVdio+/8BRzucFjY3EfvR9R9/Lz4z5TtCD3UCfdW0fMSg+04hKR033x7WFfq6qKqhLrYnk/zeTIQRs5oUIVtP6eL+S4p47vUT7g/ZC+sofkrObIWekqhQKoaw95E0lTLYCRfNcUxaGmaSy7XYdBkn2LCFxS1aWpcE6u5U8AkX9z7crErnyHEOWeWD2IszacUUGJqpJxfAjSkBReLDmXOZI8n1bEdMHA/GTBJz//nPNPn/FmPuO68nQ5YlyNmxrsuid6g20bMh1WtQ6bbsO3r3+Ex5bjyZyJyUybRteyNHCo+NzisNYz9JCjw/kFxyePmMxOwESMM9RNTQyaXOstXY5YpICyVmhddS2I5God2e3WGBNxLtNOWpq6YnUb2G0Hbpcb9qsVfZWppzOaxQmZxH694v3VHVVzxcNHj/jowTO4/sAyBI4/esSQArfXlwybO7pVD0NLszghNi3ROhGdh8zy+lamhLue7XrL9sMNuevIKVHNWlxsMN5jJ1OOzo5YTCfYlBh2Hev9nu12Rzs7IXvPPkNnLa6t6Va35PWScHPFy+2G8+MzUrIctSdM2pZ131HHTNhG3r9b8u2bJb///b+QNpdUzZqnTxv+43/49xwvTpjM57z+8I70XUtykXkdOD17wKPTT3j98obQv8c6DynhbGSxqDg+mrBdbbi5qjk9PZXnxXQYel6//pH/x//9/8rf/s1fcHJywm9/+xdcXt1wu9py9eGa3XrHrG05Pz2lriqqytHUNdbX1FVDiDuGfsnQdbTTOWHYc3d3w363xWTDbLrAGEWiU2a/EwfFtpnz7KPPGPq3vJjcqO24PKdhGIihx5pMXTejrgggJMMQ4f37S95/uMTaxNG05qOnF0wmLdEYGrtm2Rvu7u7o9x0ZtabOiZBFc2mdo25qsrEM3SFxtUwDM1KomdpT1QfqYUxBD15hE/iqPkz45CATnnvWuvVeHWNyFJozkqMhAHHWOimPGrcgBSNhGAhBaJPeVzLZCwGnz03OYhk7DP24PxpzAGmKKUKhFx72btkffe1xRrRTQz8wDEEBVqfAowELvhz2MUqhVPmDs0NxXYgxjsW4vJGegfd/L9/byO9hjeVDylVW5MnIBzig3FrM5cNPGj2+S0EWc2YA9tGw6fJICzJROPnGiUDKmpKAKYmOQwq4XoSVeUQaBYWNundHdemwIPG4OUkaIDJJkLrPqF5AFpy3WTtWKQ4zFlpDJirXVjj3s3mDr7K4vJgyhnE6snd6KIrDjriCgASocBj7W0cYMqjDZRkdRy3CnfdKTxhbKmIWwaO4OJbiRQWLVsZuGKt2U/cPM22u9GCTsb1wf8XWsjR2UhSZA+4piGMSsakU2EKBccaMyLIg3yKM9FUZ4UcRROt7GIyKY8oiEw5uQuguJmaKdaVRVLFQSMbiXB1xjNIyUGFi1ushwmURAmYMuY9CA4pR1pCFQVOJhTNfSSGlk4ek90nEt1JUOuVnx1haEeEdF1elGEVsjiK2MeikwyECdN1kinf20PUjJcA48eEXHvOhSMjqLFKCh4oLkIRjHWhIFhFvpag8ab3HzgmF4FA4qb1o5WVaGdEmw9B3w6gxyGVSl6QpIBoqI/zG2AdprJzVoj5pCqty6rPcW2sN3ol4PYQoiavOahOtXb1D+OMq9qRs9pqg65xTmtC9bIDsxsRRZ4ShI1b/WakaovHwdSWfJd/zYM/arGmzlzP0Qy9leBHegm6iJYDEEGKUvSJnEXinpOtQpz4JituTtU4pOYcJaaGeYBKJQ5F78JFn3OwP6LAAMfdpN6WAryo/HiRjI677rcEqtSWPr1fXlX7/8lqQo3zwYhMn9mxZ0TpJk/bOkKxMIgTssoqgo0LvQf58e0DKJNfDjs8C94toReLImlTt3WjWAEkFwrIWxAJZinijf04coKR5i3ofQlCeui2TNVlHZWKNAlLGHJD60iTlLNPMYht633KYslua4qWt20+ZAFm5Xt6qXgl1v8iIYYGRXBXjAG9wk4qT8xOefPqU+nTB7e0dbzY7Yo74aSsNqqkwtoa0w/paUq2j6MCW+zVX3Zrp0Zz6aEY7XTA3ntRMCPs9Xbdns11z9eEajGU2PcMQsDZTVSdUdQYiTVsL0BUTbdtqOFlgl2G12tA0LbapIQfCsJd91IkuKOXEfr+jcp4URONxc33NZb+meXBE27acPbjgxkTha+87tps10+pTHp09AtuS1rdkVxEJZJsxKdJYR4Ol23Z0Q4J2KnojY1ivVsTVGjU1w5iErQRQIAx0N1simiycIrFtSTnQawpq1U44tjCkzGa/Z3NzS7y9xjSGOGxwrefsoyfUZ8c8v/1AzZqLxRnTVHFWT1lv9vzrv/4L37++xPue848mLNoJf/qLX/CLT3/FapV4/faWH18suV0ZZqdHnDyoydlwu1xyeXkjgXF2zzdf/4Gzk5rPP/sFVx8+4Z/+8XdcXd1ydnbEfN7wZ3/6SxrrePXiNa9eviSEjj/5s1/z+KOnXDx6xhDhj3/8kXdvXvN285J30ykPzh9wenLCx8+eMZ8tZK+tah4+esR5Smx3ezabNSlscSjybQzbzZZ4cjyaYcQktLjjo2OOj7a0jWfZbcjWMp+3bO1Av48CWtlMP+wBpR4aJzTaGDE2413CLyZMZ3OGMLDaddi05HYnFDkBTns5u61QUb03eGs4mkypJ1M22z2rzYb9sCcZo7khAvPbSibFo+hWUfysdIySsI0+r1I1mXHieH+fjVHCPvthENe0mIka5BSimEcM0VCpkYua9VCc6srrhRiofIMxYnhQdEohDAJGmYObWnnv8u/3XdFEI6UURD3zUkrgdOu0ohXz3nkVPoo7g3NuLJxKhxFCUOs5Ox58Wgcq5QEV4x6KemPE8q8U9+VgCSHoxvzT5qCg9akAxVqgWDjwvQ30ybHei0AoI+ieiWACRJNxyKjEGPFRThqQlGLUcKiSbpohi39y8mhAjIx0QYQSuSBcyjmWAydKY4PBO0NTey0wKlKEypsR/arqQ8y9rT3O1QdkCzcK5FKOVGoH6ZSfn6I4vkChVtlStZI1Ch5TCoBE3wfhLVvhR/Z9R6HhjJdZUaXc90BNjD3WGNq2pQ89OWf64naUD/x9SSx1P1lwIsCzGJdR2Jti8+StqO598fTOMEShciUtFmTNOJyXwzV44QMPIYmryb1CAiOLOKYkh6IWAdZosxaCnqUG7zK+9viqIqoWIsaiXJfPE9QRw6gGYQyDCmjCqqw9QSBF2DW6YKRIUt/zpq4x6ouP8mfFtxuEgmNVzxJg1DSYES0PKvo0TlIT+xzBFO65NK/O6nOn+ouCisvnkbC5vks4L7z7EFXArMVcHJI4PdUOk7KIcJI2fCMyHUlA03ic86QwqD+/IqBawIQgRbI0eihd7f66VFRV6XKGktqcSSbirMO7CtNAioNmL8jkpkxWkmphvDW4qlI6ZB6FifleA2Wt5kfEKIJhg1B7csTVtTgwIT7DxYQlxAGtu6UhMxVe94qcNJ5cERmMULJEJyQTNFfXmAz7bpB1REkjVq2IEwJ95qCLKYhSASxSLpqOPDaCosEYcB4RW2tDNQSZZtUqvLbOapGqz1AuWpKD33Ghitwf8ZamZeSLJnGKKlTBgjaPfy7JZ/T3Jqwy8ZAGvtD0ckojOgd6iIWs+6ggUt7dp6/I4THSVsbGNN0DFOxIfXK+kmc2BC2i5eDMoxpAqGIx6aTGc/jezuGtgDzeCze+18bzsCUavf7Ko3c/1QmMtNF8SPB17l4wjYphY0qEISla58b3KvckZaHeVE4mT7YgZFbAIVMZ2kWD95n3l28xuyUJS9X3hKEj9lspWkKkGRLDXpynQujpdzvcpCH6zOXdJYvZlD5HogXXTJg2c+wi0e93uGVFHyPDEOkGaS6IWRpYk2knDUMvsfd11WCzZ9hvIVUQBQ0nJ4a+I4aBqvI8ffKYdtqqLmEYtVxN3TJrB1Lfsf5wyZB2VEcNPie2yxXb1QoXE6vrD7z54TsWP/tTjtsFbzZr3r5/T0p7yAPWOtIQyDYyn0/xVc06RkIYWK1XoNoGUoahZ7qYkvqB/c0tebeFlHFNjVlvWG03LL3BHy0wk4Ynn35Gcp710HP14gU3V7d4W2GPjqj8jn2qqaYt1ekR7/sd33/7PbNmxvnsmi8ffkzVTqhPT/jln/6SdmIwbHj8eMHDhycs5seEtiENnm9efst//9dvmR61xGrH0dkUYuT7H37g/dsVcehxruPVq1f8+Mjzq19/wZ/9+c85OT7m+ctXvH//jrZ9yKRu+Pzzz6irhrvbJVfX7/lv/+MfOP7hBxZHp0ymR5yeXvD0L/6SNy9+5NWrV1x9uGaz2RKGwMnJqSQST6d0XUfOibauyNGwXN5S11BXlneXl/zu95GmsRgbWJxMGIYtt9cfePHiR6qq5fz8hM36FmMip6dHnJ7OWN7d0vd79rs9IUoqejHFSCkxaRsenp/S1I6PP37Kp59/ys1qxXG2RNfw7o/f0A+d1HwJ8Z7PSVz0otg3nDRTFrNjdm5C3Wc+xI7BOqK12rzL3hjCIBRfBcKkZrQjCGnuswyUkVKKW8kz0X0pZGUYHBzakoIZfRCzCqkJBBzz3lG5lnAPzHNOUsg3G22OrVI9yQxdoKo93nvNGzmI94tu6r6G6kABFXDU3bMhF6MYOSP9ECSIoy6FaI4j4iMiAEW6UdGRAmoFyU85Kx9GC34jxe1P6Dj6YeLIiZSiogT6pJR/+poodq+HgdX/EDPsh8gwiOVjzgasx3iDVwGpOBZoEUbUzdPJDzu58GQIQ6+jVPlZaz0ZQQS9E5cHiUZXRDwmoR0kKeRkQxdOb+NrMp7ttsO5LCFSSKPgRms3i1DBJSQFe+BuWuuJORM7KdCLp7lzldbvBxFZRiYOUQu8UnxLH2BHHlbhepVRjjP3DlBF5+Q4hj4EUkwSFpF6ucfOjai50UOuHMgGsU0sTSAgtqPWYlw1Ti6MEe5+cecpNqkpCi87qr2mNRAGZT9bpwi5TE3Ihf/myDnIIW8PzZvQLiQLQND5XLpDReCNWmDJd6m8IE4iek73uupiKyqNCCmN3x2Em5vU+soiTVgGsRbVgKoQD/7jhatexMSFf++cVd55oQRJWkPbqIORiTRVpW9vMM5oQVqCz7Kq7TWMTIu8YYhgLbu90G2a2o/XrugognKrpTiUC991vQjMKk+Mia7raaxTJxxZIzLyFKqYNBdGkFBTbPzUCSen8Z4YYxh6saYs4lqLpXKVNIDeE0OWoI8klqZY2QQxEe8tmEwfxE/d+5qoo04prlS/kgW9dlbuvTWSVhhClCmkzcrfluso00SPt5LmJ5QgSKOOALIRFF7Edw6vzjIhCB0nxKBFeSl6pUlMOpIVnrxqbpw0TMYWlEjdX3R9pyw5I6UxjgkSBm+crGu1FM1Gi89io5tLcXxAfMpaLmhPeT5LYVuK7QxyICWhqZh/A8IwDLKXZgh7cUkyKVN5TV51fnQGSvf2gKiUNOeyprweaDDD0GlzXRyrDsXz+AxmFYTpdTKKpI2ZGuSx+JasCJlAHDjwliEkSX6VrUMaFF80ORIY+FM+vTodaVCd83JdBVWzI3Wn7H/SWArAIjqjPF7vA4LtRwRw/JVlT5G1azSpXN6vaiqq+YRce7a7LevXr2iOj5ien3MW9ry/vSFZmdY5LJX1tIg7XNL1ErZ7jA9cDW/wMTP3DfXHX+DnnpPJguPFEVXd4puW4+NzEaobRzuZst6subu5YbNds+sjfW/YbsRK1WRxOppMpmSTqZ1j0tZMphNd+7IujNiMUNcS0pNTJm0jR7Mpi8ZzOqlx3lA5S3CO49mctN3S9yt26zte/LDnbHbC/PFTLo6P2O4Sqw6iIqXeevarNcF4/OkDTLcnm4yfTLAYSWCNgewym24rphCNpZqdEfoB0w/4zYbJ8YI8ndJbQ58C9bQh4FgvN+Qu0yRD3G3xVWKXttjWMZuecLPb8fLDNVuTiCYw7G6ZdyfM0xGnkymPnz3hyycndPtb5qct85Mj1rvEauf5529+4F9/+IGzJ+ecX8y5uXvJbPaYu6s9H64uGaKB1BHikpNTy9GiYbe5ZT4/42/+9i+4eHjG737/T3z1xz9yenLB55/+gr/4q7/h+uqad+/fcnn5lrvVkpev3uNcy8OHT1nMJjy+OOPf//t/z3K55M2bN/zDP/4Tzjk+++wznj17RjtpqSpH6HvIHRfnC2Jv+fHH55wcH7PbbXj99jmnx2c0rcG6wOWHK775xvOnf/rX/Mmf/IrKG96/f0OMPRcX5zgHV1eXuN7QTtrxTEnR4Lzn4uKczz9+wnzacHSyAAzNZI5vWm7WO7b7PbZ2OFsTbYDYi0DXGHE0M9AmyKstc99g2yMGt+fDsIWKsXAXQwtDv99LSZANOeTxvMillimAJwf7cMWyxufXOSRpvJ5wtx4Y9gPWW3FOs2LTmrOA5KTIrGnIuViUKzCBkb3RW3b7DeKmJcV8Xc/GbeIwMSz1d9SaIYxTxF6d0rJOIIpgP8U0glaYjAcJEaqVKC5obyQMooY/cDQP+1QZm5bNLuuHOriGKFqVD38VC0Wjxf/9A6mgcyaj1ExBzYptJmqvmQpnE9gG8D3ghFLgXUXjKqFCpEEKsSze3OQKY6JQIRJSKOIY1I4yJkY3HCl8pRGwCS2EjHiNBkmlNFb8r60TZbOIJ4dxcwfDMPSEEDGmoaoq+l5EbKB0IqsBXAYtZOTCDlmcK7weMs6Kp2kfBknGzUm/m1zmXl07sBZnK2LKhDjgjGGIEk3vzUHch7J8gwpDDUYdfJK4+BinBYBR9FkanMMZJTf8J0FU2j2K64iOdLTINqZ4QqDNTSZH5fgmuX5SNAUqIwFiBrnWQglRAXEembZiDWoM1qkHvXKuM4AexmLnh1JcHCFGhl4oV+K6Ip7iJVo+q4NFyofvW/rWTBm1ScZAzJFoLD5p6qlaVArPPGoxfaCiFFRf3HLSiGxnYzDOkWKQgkEFl9EmrIw2AI8xjpgiMcvUKCEIvexVFuulAU6pWBW6nzx7fUjiDKL3tKDf3b7X58/c48Q5shWKlHxeWVtFtIhy/YQ+JaEdMWaCCrTL2hG+s2gfQPj6Ah4UjUIeG4MSnJBSGmlU2YiVoTRmjhgdOTspZpIhpyi2okrj8VauowSnCfpSV2Z0URkGtSzUBqUP8vnBEtI9nnZCYX5LykHbeJ0iekWJoxR2GCl8UhLsQNbpYfJ4sIv9CfOE4lAj3EpUMyL+8tkm1WKgEycvTfW9IC+h98iaG/ogjRGIzV8qQu2DuFNSaWUthhhHhy6ZOsi+4O8FUllbBORZkqSDABk2ictWoXJmzOhGkcmqRSlngTY+pqQJ6/5jDmbSKQmPPkoog9xLZ8fnvew3uew76P5BJpIUAJF9J0RF7nWXIOfxABcXMtV1pUO4lwiOSwCcUUF8pO8HYpQArvsofwlTC2rraVX0W2wuszZOISkNoLx3zmCFUpBzxrpMFokU9axmfnLM4vSUwRvW/UAXI7u7DRPnObaij9kMPX1SkwFTYepW9+FB7oFTwKXb8eHNS/7QBcK254tnX7JqN9y0M1pfM2lq6nbOovE0U0/dWmZrQzuJXF527LY7uq5nuV1S+Zrat9ytl6y3dyzmC6bTCcN+Txg6mVDlTNftqJuGxfGJTo0HdQ0x9P0ehh4/dKRNj6vh0ckJxEC3XhN2K0xKrNbXLJcfOHp8wcOTY95v72RCHzJNM2N/cy0Tg9UKs93jjo4wk4rGV6TQYxRYiSYymR9hnWHxyRNsgLv3V6xfvcYZy/F0hl/Mebdfk/YD756/4MHjJ6TthriLdDdrXLTENhNcRzOf4ydTSI48gJkZOgMpDXx7+Zzl8o5fPPmcXx5f4HaZ0+lTJscztjHyL199xb/+4TsuL+/Y5y2PHj3i409O+KvzR0zbOe9nW7pty49fPyd0W3xl+c2f/5IvPv9EshNiZOh3HB1P+fyLL7hd3rHvIu8ur7m+3lLXNUfHDzg5e0A/9Dx//oLnP77k5fOXeJu5fDPliy8+p20nTKdTpvMZL16+5M37d3z04kc+/+xTTk+POZrPAck3+vjjp8Tk+fa7b/ju+b9wdX3F8fERn33+EUfzCW9ePefqw3u++/YrPv3sl3z5s08YwoZ3796w3284OT3mF7/8FddXN7x69ZrY9VpIFUZDYL28oTYLlmngw+0dsZ7Qu4oPqzXJQFVXVI1lvwvE3SBnXpB68OR0xrSqyQGqZNjvI2YfyWEA5wXkS1kmtmQlJCNW4yFBMoyOshxoM5T9zknA1X0KnrNi5GG9l3ok6c86mWQ7tRaujSHteva7HU3bEkJgv99hjKGqKrabrdBOFQyQRrgg82Xa17Pf7+8lfDvqWqaXh31cgLpJ21JREQZJ6cWL8YJM+cHP5sK5DbHDueJlnsdRq/dS2IyWZOXw0gJdkFej/EIzbtplYx65sCO9Qz0Y7E/RpjEYCcTqUrBbUGqOAdkoQUbnGZZdpksyAJ80IlgNXSANYEyFRbhS3TbiJsKjtsaDMzgnnVHXFYuiYjmosK8KkaQmleIk5iBUmVgQXfExNtmSiRibVMRYDqPMZrOnaSqKk4J3liEEXC0oVFV5MF61cQdOL0YXTvJk54hp0JAZCU8QLr4UGxj5PKPNaNafdV4Dxsw4GsrpYKdXUHxrK8AyqD+1iGPk2jsnnuyMjZZUKkmRf3HTEZFgkfmOgun7I/2U1QGmjOprSjLo6DahjjgiiFZb1bGxNGNRMDZImJHXre0IWDMe5EYR7ZAlEVUEneLtG6PYRkpjKpSQmPL4XtLFFyqRFJQxCk9eumlkGqOtfnZmRFSzJtLJtEAFLrnw4eX1ywPurMU41Qxk1A4LSb7MCefioRDKmWTseO9kjUmBIYJxsd4ypnCgFcEtQjrnyOFQWMeQZRzohItY0qZlHFqsLe0YmpH0HqSUiEE+l8Vo7L2k7xa3F0EmlXOvVKEUhbogonYJsJIphjzb1mlZLH6YSp+TzAhjgoQHDeL5mxSxMEjEuFUUOSUR6NrqYBFWHgoJN9O1lKQNtVkng1moODHEMck5IU1/ysITxaC0ISXZlGAn5VzLqFX86yFR+YpC2SjPAFr4DiEAB82AdRZfefqwR5oh2QuE/pGVEpkQy10Hmopb1tR9Lnih4fz/8/aLXaxMTI0pgrdMiAGT7FiwWiDbPB7KTl875Ew/DMq/V2AnK3UqAUnpV96NqH7SaWTU4KZyn8s6LM1EofyUz13W+E8QcB1Fi6BVKH7F0lOl3OOeQ5L7KMV7aXDV8rZMMXSvzlkaUglfKwh9oUXasQHw3ozNE+TRnKGI3st7l0wJSV7WRFsrlLw+Zpw31G3F9OyU6ckJi/MLfNNymuButWW13VInz6OTBU/OH/Ld69e8/PCe3HUMacew26kAULUddUXq91S+wvmWD2/fkHtoqhnx4gm3m47WVjx+cM60MqzWS4b3S9qJpa4rJpOap08fEobAer1mOm2xtqZpJpydnwn4FRJd1/Hh8oqQAvOjuaCRQ8Vpc84wBJyrmEwW7HZ7fNMyPz7myy8/59GjE+42t9hpS+8NV/kGkk6IbcQEeP7qG44envHxr/+Mu/0Fw35guRvYDXuq2ZywWcHQ0bQT8tCTvGHo7wj7jsV0Qjtt2fQRV1si4KYNmw9LsnPUJyf0Hy7ZLG/4xWcfY9ee529ekz7csOkzR5M51WTCPsJsMmOb9/SLY5LxTNojrGkxfofdrYm5w6bIdt/xen2Jv6qwMfDp7IjWej7cdFxf3/LV1y/55uvvmM9a0nDH0ewx/+5v/5yLB3M2G4jhht+Ft9SN4+zkiE8/fcxvf/MlJ0fHTJpzus6xXm9J9Dx+9oT/+eQBv/uXr3nx41vevf3AJ8+e4axMxx49fMBf/PaveHj+lN//7g9s17fc3d7wz/+84uLiIZ9+8QVf/OxnbPc73rx+zbfffcNqec1f//Vfcv7giMpOmbYNi/kTan/C27eXkCvev/9ASpE/+8VvefbkI2qXefHjH/njV3/g/ftrTs9OqCrLYjHnbnnLZrvmyy9+zsfPPmU6mfP6zTvu7pZ0MTJ0Wz68f8vtm8DPPnvM8YMHrGNma2ruhsR2CLja0W33iLbRYLyyCRI4Lw45QxzwtmLXd9ytN8Sc8XVFtCLir6oabzKh7/C6H0QDyRgx8zCGHMMBAJPRrZ7RRqRP9mBOkIHNbstkAlGFHUmnj84LEOuccO6jMYR+oGNPP/RCDdIpp9RK1bi/QRHQynuFENT7ntHprBT1xhgmE5mW7XZ7SjCetY62qaicmIR0XUcfB0IM+EwcveYFfXZ458XisaBrGLUxy2PFZrS4d0ZQrZGfnu6LjjhcwILEoBexlDmF1sHBF0VNRLTwSod/5lBjYiz7KIVBXYlVpkkRMyTSkBWFzzKWBzo74CMYHMaIm0kMih4bM47ZTRK0MLmsyWbSuOTC+0Q27JjE9s1ZaQq8pORQ0lkPXvQiUBQBqicF2PeROot9kzQU0l8K59RCTCrOkzAkr1OLjIRpYQ6uKxijCawHtxRnzCiqM8YwxIjJeUS3fzLG10IshmLlpgXDKCAr6/4w/pcCXsYspUlLUQpap8LYjFJyKB7jdrzHKWsnrQW6rawiodoQInaJIUkqqLlXdMtBmsda3xRkX5Fhp0VyKXLEHqtQFRzDkDQttHwXMzrz3P+VKU1agqQJrFrUaV/D6HWbMmEc6YtHvDFgnFBYYpQEXWPcSIcqP5u1KEpRpgkmQ7Jy3U0uFnwyWSiUmKTFSObQuBXdgDGoBkBRSwBrJDcii9hTdBXCG/bOj0110TqkmLRNS2MRJgFQXrnpeSycU8jKOBPostRhUvuUz4aKDPUZSvcb4IJmWtpJI9OwPOj0MBCDig+zULfCEITTjaGupDlyozhR3HCsq2nbGufE819oMTIxKZak0liq009pdpMI99EC33mvDkEZqwiyFMReLAyTaJWMKzQPq2CI/IzzUvyLZkia5JyEh50UeU4UNyIOk817z+i9rvonU9Gyv1ijrl1aFJeDRPaqw3NQXtf7CnFHlYLXGi/PT0HWjDwbpXi2thmvm1U02ljDEIKsGyvheDHF8Qm3+SD8KuCNUBwLcJJHYIiE0taE9mmz6ijuIffjlm+KtqG4ssk+CSWToew2SZ/hPNpOjhQyW8TLRdCs61u3XmthMmno1VM7RrC2BN1BXZfY9+JeId9J6DiHoL9/O+0eBegOXOWppw2TozlmNiU1LefPPqGdLNjvAx99PGG/3wvH/GRG5w2haunrhsvbG/brFYSBHFX8GAPEvUyosiNUE5KbcBkd/+J+z81qy/nxQxbtDO8ajpsJxKBWo7A3PVUd9RyrePjoYx4+MlRVzWw6Y7vd8/zH56xubsl5wHnDtJkxm88YYgRr2G63WFcznR3hXE3bSjpstoZZ7rAMDMMObMUQEk3V8uD8Eb62rJbvCH1mub3h7dsfObp4QBMyk+zZmBrnIqYCNwmk/Z603wGGGHpJx42RsFqy3q3pcyBsHNk7rK/IMdHHTDQGOxOv+zB0/OXPf8XD6RGvXr8hL/ectUdY5zg6O+bo7IyTJ+d8c/mCu9UeEy11VZMqwxAGtvsdvlGnLCLb3PNyc8U2rLlYnJO3UFctn3/2BWGz4vLtjzw+avmLX/2S88UFocv8w3/7PX//93/g8u0l5ycLfvNnz/j1r89pfMDbBlJDXU1Yb2/o057aVXTBcHr+lK+/eYev5nz1xx8Yhj2LeYOzlrpqOX9wzl/85re8f/uS25u3XF5d8fLVC/Zh4NnHn/DRs4+Yzac8//E71psVHz685/HDM6ZHLZN6yvpux36b+PKLX+GqyFff/AO7bc93333Pk4tHTGcLHj58RHp3yYfLt3y4fMPJ2SlnDx5wdLzg7m7Ff/pPf0flan79J3/O2dkTvvrqj1zeXmEYyH1PTpLOXnmLy6Ij68LAcr0iGxgGsWe3RrUy2eN8ZrGY8ekXnzOfzdmu9vQxsAx7VkOHqSqM1jlt09JUhn1O1MYyDIE+J52WObKaI5QCnsLVB7XGPjTqBZzOxdzBIfQfL9he0olk3++YuJq68jTOM2hdZYwlhF6Dyppx7xPAJVBVFcY0hNBL0Z4idV2P1MD7zJf9fk+x6DRkdn2HN45JPZFMEK0VhNVgJV/JGukoBFXL9H3Hfp/0YFOeIgXJyCNqL5zHgrL8FKn/t6NoeVM9SBlBXd350OJPjsBM/sl/K3+/X+DHLBODkDO7Hax9B7XDJ0Ps8xhcJLZxinBMLHURuOUyCilIpoj15JDKeFdjLYp8C59SwmdkijEMUsRFm3BWpgzFPz0j9AJnHN5JQZmTineT2LPJtSq0FEF7pbky2hVmYiUCjrqWGPmcSxiWbOrCJy2F/uGqJjLe/OQKy/tqAVsi6w+TFnGcsK5YnRXUaRgLMzeibYKfOyveuVB4+G7sZsEUlz4ici9SkAcnRdELZOWLu0q+f8wRm0Sg6Kx4Zg9DIHktMO8VDMZJ84GRQ5USQKUTjDLWF6QS7lveJUVPrSvXSxA8ONAYkk4/irOPoHpaUGsRPYp5UXcgK4W/1YZDn0G9znn8vdFJZyx0DM5KQFlOQa6PogNNVemaVMGuCh9jFhtIo411SodrkZKisPrdYhYvd5nCCI3GV9UoojQZUojakIibSBiihEIZFQdmoQNUVUPfB6WbCX1qTEUeha4qaOIgoMw5U6kGRHj4dkRxZf3Itej7XiZAJo7FeBhEBAti81UacutkLVS+iG4j3hmc8Thbq7BI9xx1bBCkWTQ0sh7E2izpGDYjaz3mpE4clmyCTFRKk2oOQVQFQBgPA6NNjm5SIQRxBXLlWTzsMwcnhbJfiGhaGqioaI48g9ZZPShkbFyojVanhpU5CLD6QQJmSjruTwSdSgUK+n0L53MYwtgMFLvHGIXK1LSQkzgvZQxOp5W9ihgdZhT/e2uZqI97jFEcbLQp/ylnPR6mSpQzozgClcdCpgvjLyPWsDEnXFIr2lGfZLlvhpDTgTsrz5cbp6LSoJTvKOYLZR+4//0LeIXuJRJ4dQgHk4bkwNkdm0B7cLcYkX/vVHgrDk3UjmAlEbULmeVqw9l6z0VzymR2zNHshBQSyQaiDwQbOb14xpO6YV+/INUVYbeGocPnCEMiR6EvhH1P2geYQGdrXr98zt3dlqdPtpxOT1jdbvjo7AETV7Pf7HHWUFWO6XxCO61YzGcMe0837MlpYNUMVHXNxcOnHE1nLG+v6Pte9FnAru8wrmK767i7uyUmy6Sd0bQzsnV0IbDZ7Nivt6QhU9WOtm55/OgZnbFcra7pglybIe958eJbFsdn/Po3/yeMbVlttvQ54GtHt1nCfoepG4btnhQmULc4YLtZiSZnUpFPj3CTlgy0sykmGEzlSHOLjQPr1ZI6Jn79+BlfHF1weXVDFxOnZ+c0D89w8yn/9O0fWHZbul2mC7CJHSFH8JnWV6xurzg9PuaTzz9haia8fvWC56stF7sbvjz7nI/aBQv/kEftb3n38ojHjx/y0YOnvPr2mu9eXPH/+d/+B9tdT78f+NDd0v3ijNmkYdJMSUOFN3P6wdN3GeMNGIdzDavNLW/e38gU3FT84pdf8uBszurukr/7u//MfDLjf/p3/4EvP/+I1eqS33/1R777/kdurq/56OOP+Zu/+RuWy1vWqxvevn7F69evODuZU5lH3H5YcXPlaafn7LvIYn7K06ef8vL5d7x4/ortcsef/PLn/PyL/8Afv/6K7777jrdv37FZrzg9Oebo+IS2mdDtA7c3K96//0DlWz7++FNOLh5wefmC4fYtRzU8fnROu1gQdwPLbWAI8leOPaZ20AdSDGQnzmZ1WzM/PWZysiDjiLXH2gozn+BMpus7qb8qS+08i2nLrGmxwM3tHUO/HkG/lDPWq9W4UeOVLPqSzHhoqHg8gzMCPHmr+jPdzRMMAXzlmEwmNDjccDDwmEwmoyNOzjIL3m53gvJXQm/s+57NZk+MArhUlaVtC2WnUqtRS9/3IzBorIV4cPypbKBHXIFilIBWYw1+0rb0/cB+16lzhR2RMedEDbzvxd7IIDWVzrMxVt1PKCNUZSrkcoGyul7KZlkcPAqO63SIaksRSOFVlxJRCy3u41eHErZ0CLsB7rZSUFTZQQxYDB4DMdLtIjXQTqwKLzPeAbphD6EgZo4kClD6IIhujfBby3vFKME2OaOF8EDCMnQDkrzqcNbjKrCITR4xMqRMHwTBn05bUu6lQE6W0EvxMQxy+Mr17EfBrjER71vaWikWOYMvXFRBdw1Ku1G02TijjjWCikcr1IkcMwYZ+Uj0u/iwChNCEkXlsLWEPmOdaDJKoZpTZEiBZKUoKsi5UZAxxUx2qCAO5cdnjBX0znmxh0QRwIxQLIowjSwcbeslDa4c3veTjdHiRZqSiEVoIwZBYnOprxJYHCYVa62o99GM60q6XKe5AiqyjPeaw4Lem0i54Clrs5E0kMtA4dTLtTTg7zcNFl8ZRYtlWuC8IKzGasKqVj7eWnztcCZjXNlk7rlyxExIOh2wVl2MIA5BcwqkeRFEUzctTcMji2i55A0YRYuHEJSOoZoJ5e1jDNaLXiNE2bTEnlVERmMoUzr8PeUkYVHjREEbHCykTI6GECFHg5gDZZyiNMaY0d4O5debBF2X9DrqexlBd4tWXYn5slkXLnkM0iBYEceXwitno1PJQOXF3rSg4KPWAg0CQ4XqmcP0yRxEnDJxEMpQXTeKYMuYVaxONQWxpCe7UuRaYkR0AJKQLs+GM6OtmexzIj5Vlg/ZZmwW0XzxfB56Gfta5yClMWBQv5Dcb928YgrEHCU9Nck0IhTE3JZJjUwfrLU4r9QX5LqKfmNgtMrM8n5kFZmmTOsdQxZE3WbR/BwMlYzaaxqlRVnERlabUxXcyuBXGulCw0GReVLQQl2eQ680Isr5UzYJPYNKsS77QqHQyIwhqP7FmML1j6SQ6faD0lB1SoCIyq0tDYZa/RbtgRoUGMIhhGwEl+SzG++wlcPNp/QxstpuqJLB1DXb3cBu/Q98+tmOxxcf8aK7IsbM2cUps7M5R48eUh09ZHb2kHZ6xPfPv+Xq6g3DYKl8JiVHCp68j4dD0/XAhmQzq3XHt9/fUduGR0cXDE8+YYKncVPmswWpqam8ZQh7drsNrvJKzZlx/uCCbtPTdR0p9bh2yvmDh5oqGth3HRnDEDOr1ZoYelKuCWHHZnNDVVlOTo/Is4rrqw/s+oHF/IiLkxNc3bJerTHRslo2hP079v2Odx/e8vO045NPHzP4zP/43b+weX+FMdLE7NZbXGXJwyAUJUR8Xs2PaU7mbE3CtjVdt2ewgkY9ePAAE1ridsV+v2F59ZbsWub1nH/3J3/OOmT8yQlvdxv+6b9+xU23Ymt7wItAfxep6kqNKQyfP/uC6WTC1eU1P169YLNdslhUPH//A3eX14RPfsknJ+dM6zO+OJ3ikiGkijcv3/CP//mfNTn3jrqK/PavfsWf//bXhAwfbvZs13sqW1HXM87PH4HbsYsOXzX84Xffk6Nl2HcspjVX71/z/LsruttLTs7PSfsd/+0//x0fffqET794ypOnj1ivd7x8dcn1+xXv33xgNq/47JPPWF4v6XaZlCx3yx2r2zWGYxqzp2kSJ+ePmU4NTy8uePX8NTeX1/zX//o/+OLzZzx5+pRhMOx3gfX6jtubawyZ09MzPnryhMvFHbe3a66vbume9zx8tOCj8ynNoy+4OD3mk88+Zd1HNrcr9uvX7PtepodOhOKmT+TdjlwNpBawDW3jqZLFU2NcxbLbs1lt2HZbUu6xJlG5CadHc47nR0KjTbBciiYyR0k1NinQ1Eo5TlG1h7rnFIBQwWqhzsJ8Nheb7GxGzMGakmkkrpK73OOCBPPtu47JpMU71PO/ou97eufouo7tpqeqpBYtVsd1bcShylSQi/3uoK5GmbZtSQmGzU7AwFI7R51M5IyvHA5PPwz4/b4nDFk5xcI5tdbjlZxfORn5GyWGJApFAi0eCp3kIGdKeqSUP+fGwk1+X0JnrKRqabckfPo8FtEmF6+On/5SIEiKWQ5I/i4YbGeZ1ZU49SRxxvDWYU2WwJxkGfqA8yI6M2SCjSKKs4IKDYpcx+hxJtD3UDcybh2Gg5gq50TolUfvvSDfxkCyQk3R72SylfApK5SRMsYRJLQGoA8i9uy7hG90rJ4UpfKSztlGg68acggYM1A5Rc9sxleGnCREJSmi64yMkIxDw684FOApSoBJNlROosTJIkKVKYekZoo4WaktMVMrPzupG4jNgogNodNJiMFmSaNFx1omOXWFGMTFx1hytsSkJJ0MaZD7I2IYS0S+s/NmDGUoWg01ZcBmKQ7jEMB6dfpRwaB18j4pU3nPkHqqe8I6KRjUyq7wS7J48YqQSXztS5JsTgGngUQ5FcGjUm+sHQ/wbBTlJ+NtcRMRtLbQawod6L7mpLISXhJj1GLRYbylj4OEM4E6VcnaS6b0ziIAz9mwGwZ94OTzhCAbjrUWG+1o2yhWW0anCIHCMYw5YxTRpYiCSfTKGSzPdwkzGqkazuM4jDBLEeekcyizEeIgKbne1sQgE7qYJYkWA94ech4sXpx9BmkOhcYjhVKW3kOXVyTkjMtmtImsLJgsqdGCXoto1DnxWU9REBqJCnfCZ9RAo5Ebn6XQLgkOGUQEnsRWN5fvCqPjiWUgkoUWZL3QvzDiXhWEGmStVzqOxZrMECNVaVIJsmZSwjsOky1jlRJlSdEShyRiUuekgbSOZLKsAyP+xt0gLkOtsbgsVxTN/xhiGEPnQizNH9RNo5kXjPu4ZCBkQuyVW650lwzFQlk47/KMx5jY9YNOQJxMjXLEel03WdAwh8GpQ1gem9giYi57lO732QiQlAQk8IqcB+JI/xlTHsdHuWgRJH+gUHuK3iCJ0lZSnJFnyCRtMpU+hk7psHY8l2QpyokTNMhRwvmg8l4Kfp0Meu8hy+snEs2koT4+pl4csdvt2MfIbr3D2B5rPLubO96ZF2yu1zg/wdUTbjcrFstjHobE7PSIB+0RnD2FfsBbeH/3jlwnqsmCfr8lb3rwO0n3bBtsW4E3xKEn7C4JW8NN3nE7dQTbsAqJ9bLBVo6z7gHNbIL1nn6I5Cwg1fJ2zW6jPOCpZTFfQNWy6TMpGoYgEydfVSyOFhig7zqGvqPKgbyP2ElLrj22aUghsVmt6YbI1Hh++8vf0JiWrzcD0a9JrHl19Ya//4e/42/+/f/C2emcJ+fnvO46BjNAlYl5R4w7nMu0Rwt2yx24mmY+J+RMPWmIKTDEiK/lHLh68RLvEjb2VHXNenXH0WlD7T3ruw09DXfbJc/fvuP67R37OuAeVOyHPdN2Ru08k7Yhx8xuN3D37o7X69d0fU9V1bRNy/76hhQiJw9mvF69ZdUteXLykNoYjuoWg6ELHZYdJrzn4QPLFz/7lL/+q1/iXMWmy7x9t+fmasPPvnjIYj6RbJtUEwfLf/8v/8rrl5cQYN40pG7D3d0N5B1nDxacLCZcvr/i9WYDPvCzX3/GL3/1C1Ly3N1EXj+/4mTxI7/5y5/x9PETfm+/Yb/piMEyPzqjbWekZOj6a2KMLG8iw37HyeKI4cGefrfjzesb/vX3f2S12fHZZ59yfHzMm9cvePP6Ba9evOTy3XtOTs/42c9/xYMHZ/zu919zdf2O7ttX/OrnD/nyz39LM1uwMQ1LM/Bu23O764jGYLwhZwshUOUs2QTiKE12iUlTUUWD3YHfW+wWzC7JLu0i3sHZyZRnT58QO8ty1bHbJ9ZbxzDUqifb43LiwWJKVYm73CaFg9lKMkKnzWIGgDIPhj4Q+yDuZBlMNDgPpEzfBWLjGYAu9vhstKZyY12SooRY5SiAYwwRazJtW43BlCFknKvI2TH0gmwlpd5JMriYgVgjWkqH6Jr6IVDXjtlsSmXFgGO5XOELJ1h4h0bDTxrCINxca52golZcKUJI4gagKEgZYYziJy3MKeJCCvpefJjVZz5LalgJcik6N+vupSzqKLOMWMeBQPm71YMoZ/qYsd1ACpGJdzTWM8QeMrRtJWKMECEP1LUIoyBT+Qpfif1j0uIvJYjDHgtUlYgTxOHikMwrtANpaqSmUeeFlIlDVg5yFhtAA7U3ZBxd39P3A86LcDGBWgJGhkH45iCBYnEQ+s+0rUakGlDrPDAhKEfMja4+RojuKgIT3qhT0Zygqna8pikm+twzDIOm9aLdYlJdwYEba0wJOis0BKEwCbooh2cpVsf1pIWAaA4VBUtJkcPi+CEFitUbLEFKIoj1viKoQty5Sqkm8tpDHMg54aw4yXR9FDHziKZLwQcSfGOyFN8xGXAO40pK8GFS1Pc9QxjIyWq9bjRF1TAUCpKzVJUUNMVKMyvNxDmrHteDNJElgMoUN6IiMDwU9oXKJuvRjJznuq7pe+GY910SQZE6vVgj5Pqx2E8H6pIEjlnl7EX2+9Kg5/GzlHCeElI3Pk9Ziv5shLWc9fGWHiKDScR0T2cQsmzEVTVSotD7X6Z1kEf0NCkKndNB5JkNOjUyeo/UjSdI8xxVHI3UWRgDdeVUT8JIfyrF20inyPIMloCrQUOw2maiLiaSrKyrVKlPZuQhF5bbqIkY3aFKEF/W71c2JH12Egfk3VrNKDgkvqaY6TuxMmsaT0k+TTExYKQJNYZUbF11EjX0IojNWdylcp+oq4RvSyaEIPdI/UoMIiZPrkw6ZO0Mw4FrXiiZmBKAJjabUS1TBeQ4gDklKC2nTKSkIR+oV1CmoOi07qCtkgRic6/INoc9A0akW17mQDdLOYFSvWRPsON6LdTC4vM/es+XqYq1P/n3Ebk3Vj6LajXk96OCHV6E41ksfwtKNZ47OWmjp+Fj+q1yZkwWNrook0ngRGR9fHbK/PwxbnrEbr9TMO2SlAacTcS05cPVd2y7BYvjU44nD2hnZ9iq4vr6Ock9wIUWQ+aTj57RLCaE7y1Xy2ty9ELxBKqJPEt100DlicYyeMfgEuSO1e6GFx9qHi5OOJk0NAuLrw3r3Xs+3PZMpyfEYIjZE/eJfAZ1PRP76b1ju0okDR2MIbHe7IhpYDqVRNKmrXCulsldkn13Pp9TNxVtO+dmuWS12RBNovY1DRVHs5bFfMImVGTXksi8evkjz55+zJ/9+V9jA9gQefXuFdPTc+62V9h2hp1O6DCYek7rJvT9QEgD8eaOej7FDgHuepp6QeUbmgYenj7m4wePmKea1Ycdg9nw7Olj7m5X3PV7+v0trdmxD3vurjJDTmyu7jC+lnCPIWCqmnYyxTnPR08vSGTefP8tVZbp6MtXP/L+8j0PTi8YYuJXn/6c+ewUu0s8+fmnmMbz6seG42N49vRTFvNj6vqE7759yX/6//4LrnIsFmfMjidsdx2r9ZLf/eEVf/jqNdZ41aQNaisKTVUxnbc8/eQRH3/2MV9//R03dx94/vwHHj95wDB07PdbtpsdNzdXGD7n5GiGs4nb60uub97zy19/xOJoQoqR5XLP7d2SlCJVLQ6B0xl8/uUjjk4833/3PV99/U8Mcc2nn3zGFz/7GcfHZyxv7/jDH74ipSVvF++YTKccn7bc3Fm2Nx0xZ7Z9z85sGVzmdt/z6t17Vtu1GD5k0ZSZypObCHWFcQl8YrKoqactyapDm0lU3nM0XZB2AxnDtKn55NETpr7m6nbN0AXu7jbsdjtyDgIamkTt4exkASkznzgWs8jNcsNyvcXZRusjOZ8E9EMmV2rBLueL1DLGSa3lqwqrGtA+DkzrWs6PlJTpkYgKDBtjaeqKpq2EFRJ6PT8S+/2eFDusNVS17E+FfhPCHrLDGU/BwavKY1X/td/tiHWDzcLX94JgSsHknVOEySjKKcmq3psRFFSl3VgTGS2CchEl6S9rCvdZqQ9FvEBpBEpA0r0fy1pE2OL0IemXRVxVUPqy0ZZDJyMc/F1Q4VNKZO/wAMZKJ9VHqtpQeafF2IEK0nhPyEB2oDZCKcjnHAYd6Tupckp6LLmI15RvnhIliTMTtFjNVHWr43C5dCEm+j6xqBsp3uKerovEAGCJvXBf69qRQ2TogEVFToZ60hBiYLffk3OiqmpiDoIwjwesoJ0h9EBxPTIqlnJiB2U1zE3/F2IpSCzGOhmdm6z8fylYrJVQCJvEUSgmRejNQTiW4qFYElpGEYNACV4S5FooBVLgxjGUJ8SIDeZAszAiGJRrLy41peoqhbVVJDWqmjQnKUCttgI5SKNksoiSlXii43TlXmuB4L2n8p6ui8L/VpqAtVKAjkE547ovmozy/aSAFpG5FEh9L3kK94t5OIhkpCEWDrt1xT8/s93thN7iPM6JtZ418jp96ke0Up6DYsFangZBE+W5O6CWhQ+MIvDFfaUUS/IPnrquKD79QhMJ2hxU94pcpVkkowFSbizCDQaTwFjRGVCoS1pPidBU/t2awrOWyWERmEoD5LRJkGuLUiO8L0mk8qyWdOkU1ZNd6Rbo/lNSjyX4K6qgOElTonz/wk8vhWhxRynaABEzqzjWlL1Sud6adGyzuEzFeCAXWhWcFjRZ9lJD30vi6hAjdSMAQMziCEHOahObR4rKMCRggGwozlt9joouGYy3KqrzkAcG8iguj1FpaSmPzZU03dpoYjQh04mOSPNMsit7rIym0WlRNgcNg1wvWXdmbBLkltt7DV4BgvS2j3tDaRhG96d8uB/yzY0K3+S9QkijW83BdYJxjY/TOA6AxP3Xw8j97fue+6mQ8ofK040mRku2tzwHclAlJ+dh5UTkHUMaH56ojbJViCY7+UxV5agnLa5umcyOefT0Y46Ojjn5cML792+4W16TEdrHfG45OXEcnzp8G1gsHDhHSntiF3HNBGs9s3rG0/Nn5Oy5262xMWNMxHrwxY55L0nTbTvFVVAdnRG3gXdv3xNt4vzpJ8xOW4Y+0G86Js0EkyKTuuX2ZsPrmzv6/YazBxcsV2tS8hwfn3JycsxkNtEuXWyoLU7WUzRYW+GsZ34k1pizyUSnfR7ra5x3dKHjbrvC2MTnnz4Gt2fz3R2bbkllIOw6Xnz3DQ9PzrhYnPP07IzY79mEDS7V1NUEc3xCM5kz7AOrdzfE1R7beFy27N9+YHZ6yuOHT5g3Cypf8/NffMGsbql6yMvAEDrSBr79/QtOH16waGFycsaDXPH99VvOzx7y+vKK/WbN7OiIIUgI1GKxYHkn1qCzyZSry0tyTuxXd8TNivb8guBguV/z/PI1l1cf+PKjz/j4wVOwgfbxMb959lsW1Y7Wn3L1ruOf/sd/5o9ffS9TcLvj//n/+r/xm7/8c9rZjO0u8N23l9xe72jrlul8ikkds8mc7TZj2NGljkcfP2E2XfCH777l9YsXhL/f8j//n/8nptMp7aTm+vKGHPf0w4b3b95ye3eJcZHJxOMsNE2NNU5tpEXX0u07un3PycU5YJi0U/a7PUPa8dUf/5UPV5f8+Z/+JT/72a9Z3m7YbjJv373id7/7PQ8ujvjyl5/ym5MvuLs6oZ3MeHezxE0Cg93z7YtXfLi5JeSEt15AK5EVMlQD1GYMomsmE/Zh4LK/ww0t/S5S25rzsxMmO4Nxc9rWcdwusEOiAvr9ltXqlph7TFXc/BK+tkJjDZnJfEpbV6w3vZxlavFqZOSJ85ZJWzGdTtmv93JWjRQ/RuaG9zUTDzVOckJQsAE5F/suit9/KqnkZRIqZ7rkTRkR/3ZSkzRiWEjKUoeLZjPS1FILlTOsgFAhZlLXQRLDAx9CVLsuSDbJARWC+ulqB6OWbxLik+9ZBo5nttBQ7iNZ2gCUmoGUSSaPctkRdbx39su4OwsP14toKRvUFeCnv3LWYFTy6IefEAOlLmbIgcaJGNYowlhHGIaAzVBV0DaWyaRWW0PI2eIUxRHhnHyJEBJIzY335cvJwSXiPAm1Kdzx7BxeR+/7/UDX9zrpFSGoddB1g17fzDBA38nB6apy/GVsKqEFkFrLvhPBrXcVwyCCU7IIKULIZDTF0hotopwe8Ek/uyMK+K3ndBppTlhxhUWbsjJaFgQ+HQ5No0LkWLjXwvUpllFCOVBaDOrqkUsxcZ/SxVhcCsqZBb0cBuUTm9Gn2lmxa5XvKwd+KcpDEPebuqowucTIo65CUpBVagFqjMVnyzCu3MOvgnRntMDW0VBKaUTvpUGw4ETwLH7hsng1Lw6TMykHqsphbTUq3k1BgWWWTymGII8UmKge5BgpdHOKVL7BV5Y+BvnO7iAYhsNrFnV9ceko7+m98JxzFoFnEQQexOSMSH9BJEKQUV8pSkuyrtC6jSaQCo0qWUMfhpGfbExWFwlDjkK7caYUiaV4s6NWp6wNSdaV6ZEIUdFCttBfnDjUoIh0sYmkcPTLFE32j8Kfl/Q+d2ikxqLQ/JvJRUF4D1OncSPTKZDQXvJok1mK55QF3ZJrfJiKmKy6gKyi8lTWl8PapFQXhALnhFYSg4y6RqG/oj5OJ0VjsaqTE6vBfEZDvWSWBl7NAKSA18lOKsJnq9ddffqLH39lZCxtqrHhKm5lBxcf3XPN4feKIBog5jSeBxTK5ThJ0edEr2FOcVTQjs+HXvKQhnLpMRwK8GEI2uwV5xzLvy307//zKFwff+Ow9wjWcF/cbiFbSiK60WbGZCn5YwYT5ZpXTmlEsR9dc9RFVrQVZLKzGOcIwKbbQ7enQbICTs/OOTk5FqqlccQ4MJ1OeHh+wen5Ge1kwvH5Q84ff8TtasOm60jJErpIDAmXHRdnF2AM3fPv2W3vSKnDpIGBQZ6VmLCTlqqd0rYtvm6hkcZ63Q9s0kC1mHHaLiAYjtoTdqsOh6P1N7y7fMfd8jXZr3BVBanm5sOa1d1b5osFx8cnTGYznKuoXIu1HmcqYoj0Afpa0sC32yVhEMGjc57T0wfcrW6o2xrXODa7Ld2w48ebc3aXe8LQYwx8uHrLP/zDf+EvfvPvODua46pP+MN3f4TekLYZv88cnRyxTz1hltklS9zcUlees08+ZXG8YFJNNGm35u6mZ0/CdD3n9YJJO2Oz3fL0yRNM7Tg5OuLk6RGd3TJ5f8KbkLi+XlIfnzJdLLhd3jGZTdkPHavNitXyhsZ61sslYXVDNpnq4TnVdEK33rPOie1+x6yekl7DyzevqbPl2eOPOH10Br3hdtnx46sbnj9/zXK5ZL7w+Ba+/OwLvvz5Z+w6x7s/vGS96vHO4G2i9obzBw+ZNJF//ufviGlD1UjGCt7x4PEjYs48fnjKkyePyalhvpiRCGz2W56/+JHV7S2YyPxoytHRjOlkwbw9Yb/vsQzM2hnDvsP4gXZumLYTbm/vCJ3n5OgRt3dX7LsNt3fX/Pjjc371s99w/mDGk6fPuL6+4ubukpi3HD3wPHv2mPbZU6p6ThcSt5stL96/5nq1Iluj6bA9Jicqbwk5QJ2hOththz5wfbNk6FdMm2Mq02Crismk5Wha4+oogFo3EKKhqSpIUdaSFTe2nKD2npPjGdNmwhA6+u2efdiz3+xIOt2VQkbqO2cNbVNTVw0708l/0jBJa9O4H4ZhIBgzGgjIPq3hqFkq01RYC0WAryBoXVcKijnIDmuUwloZ0eoVPZqJCvIc9rkSDlvXjslE9LMpy2f0SV0YvDfUtccYS9/1MpKpQCgaA1j1s04aoJS5x0hVpGbES6F44uRSOGYZfY/8RbhvE374q/wqqCpi0Rcpkfbjrk3hx2bdxG3OBFBhm4xJQ4LBQlNbjHqWVzbjs4TihCgjVGcEtXFZRsvyXna8eSX9dLTMBEUP0aRLdULJciBYL1QmOezN6HLhrHSnOR5cNryLBFOKG/lzQx+pjINcsd9Ftj7gB2iaZhTs9ZrqKoUginIa5XDlseDx3muyo9gJxqDe21EKiWyNWOJFoZAW2pXB0Iegi9wqOq3861waHPsThAwYhZeFl11E2kNfClLUStSIDWs2VCoKlFGYcLlLWq2ku6ZxZJ+1MHFq41gO8SLHzkiR4RDOvDfic2sKzWaIIwqb86EYCOona4xD+SkyxtciwHmDo4z+tWHR6tTqZpC1aJAxW8ZX8joxJg23Kg2OFHspictLsecsjaNznmK1WBqnLBdDUPpcJg4FATDj5yrCUtlMgjpSptHzOyQJfiPLNKOEGpUiMMZMGO4XvfIsiDZHi1H9+RADIEVkHAsmEKFQaQblGUCLZ5nGHUSs0tSXr25Ha1IpZqFpvNJKZIpichr1Ajk7XfNSBOeccRymhIKc3GtO9bAo/310ILhP53DiRlQEnfevQ9nyrL3vCFaec/2eMDYe1hmM9SQLIaHoDRjjSDHrfUbyN5QSgzyWJB1Tl/UAov8IiqxLc5vxIZM8Y3rraFdrJavDaAigiJqVZmeNTlsODY0p9rY66RtCGIW0pWEsTYeIgrXxsp6xwdeLlPT/hK6Vx3skvy2jgyLqzboOyvWUZ2o8CCh0q4MrToldL9MquJ/Ie3+i1TTN+BwUVzDKz+o06NAACL0plwOOLABI1mbJydTJV+IylDGYQeiTxosJAEYApiFGAVcmLa7y7EJg2CxZv33Ou8u3nJ2ecbw4wvkZi/kjTei2rJYVFkvz6IT9suF1t6aZTZk3xyRnSd6yizvm04pqVlPZwO3NhH5n2YSK0PXQdWJYYCyxH9iv1iTfkdMdxtVUvmYYBv7lj9/iXcv/9Ndf8mB+xtROcOfQ7TacHB/x8Mkxd5sPJNdxfDIn7Aw/fv2a16+vqOopjx495fTsIcenD4khE4Ih4XSqY8hUZJOkwMqJpqmwbUPlaib1HKxhu99SMeHjx1/wbrPGWMv7D6/obWS9XbF9vuHBs4/52Zd/Qhsyt3dLltd3dJcrwm7Lq9cfOLl4wqPjYy5Dx+CPmSwadqFndfWB2ckpLkY21z1HLzdMcLhhx7PTYz65eMjRxZzYdSTr2ewSq+d7ejOwj4btfkdtPK/fv2Wz2+LqShJlQ0+/37J7/x5vHO1sztHpCdvlB/JySWpbQhqYtC0PLx5TWc/ydsn3rz8wqVpy42hamObMUXPG6bOGP7UV9e8job/lt3/xp/zslz+nGyq++faK599esr7Z4I34my8ve9Y3U6oqslrdMJl6VncbXr9+yyef/IJnzz7n3at37Pcd5w/O6XZSdNZVw93NLe/feKUCRoYQJDhp27Nb3vD+3SWQadsJcYiSKk9mux5Y3i5JAc6OL7DuFzS1592bD7x79Yr/9l/+niePPiLHPYt5zXpTE9OOYbcnDIGT80c8ePwpP7x4ycvvf+Ty5lYKe2fJpoRGBVyw5NSB6TEpMW0nPJgusMmwWe4YTMWqu8Zmz6PFAxaIGYbxFcYktvuO4BNDAUmGTs5KMs5EThdTvnj2lFmo2LJjud6xvluy26pu0DnRjFokpRupP3e7HbtdRxgSplKnOitTW0C47zFDn0h9j7WZqopk5dKnDFVV4ZwnxsB+39N1Ee8H6rp431ud9Mm/Ow/TSU0mKgOgAAqMNsOTSYt10Pcd291OdJxaf/pid1dVldA8YmLo1XLQQN//1NoylZqR8vfCc2WkeeScR5cEo0TZmJKOy/XnrBb+ZLEXiqMuUX4WM27E5AN3U89WSdC8V2RmRVWdHtKRRJ8zJmZpLrSgrbzFVp4uZPqhp9oFqkoCZCQ0J4+Ha6YkfiqS7gxh0FhxY1WPYMA5ekX7U4pSGKWIM+KJjNEiNSUJyomGaVsrQg7OZao6Y03Dbh/VejCQMFR1IiNIxvFxo8hpIMSMdWIZWSKVrfVY42V6kDIhBXIW3ndV1QqSDXKgh4B10l16PdiiImpDTiPFJqao4/VyOFvlFd9fA2ixYamqRigdIYx83bJOpAA4/HNxfwEpgCQWWmwPpQOUpnDQGObiGlPGYSnpZ8piAZVyKZjTGA6VZWmp2440UCVR0hh+4i1euvugllKG4tMdyWpTKGFJWtynkropPP+yTnxVIbap5dkpCL0fx3ElyEmK3o7ptBr1GWiBI4LGSEmJNsaqyPzA1U86Iiz3oPj5O+tHXrvc3YP9KmRNuxNagfjqlwIPXFVT1PjSTKmXVSpFtzS7JmVStqoPEJqDM5Ke5/Xzlv0g50PzgRZzzqLCyyyJxFmnTkoV1N1hfMZtQY2txSSnDZMdOY1lSmS8oAZJxZvyhtIYCMUvU+gf8d5kST6XubeuD8BFueZCndJJhxbIUqQbUhabTZmOyL3uFYW0ioY7pyFf6pbjjYjWrSmThIAhUhy5SiMtguxxRgq6N6UoUzs/iJC8qioMQv+zxo5uNjllSDr1QACA7BKlyRSNjl5fbRqFcnIIGjxw12XNjQNVhbtCKF2fTjQSKAlOtRFKfdKCOo+Fv9xnK3HiCACpxbf+bGmeC69+PAvyT+lUh/unWouyX+u9NUoTKxHtReMla/OnlB6JV5DJsHWSR1LXNa7y0oDGTLaG5CzZOXACJkRjMJXDtQ1+MlWRauD2+gNUSxazBX0Y+PDhmsq3TKanvHn1huVyQ9s0XF9teP3qiqqdc3x+wW/+8i84O7pgtd0QcmS2mFMvakyVmH76BRcPzvj6+6/55vIl75bX5O1OLl2SfTjsdiSzw03neGfpuz2kxC4nvnrxkvnJd/z6s5q5S7iQqYyhnS84uTjmUXpAF1f4ymE6y8Q1WBf55psfuLn5wOdf/JLJRPju6/Werk8YW2GsZT8saac1YKh9JRqgXc9sNsPZKQZLYyty6Ll+85y0yhw1J+xnWzbTiv7siIzhVbfkoRmYT+Z8/OxT3v/4mjfvr2C5JTm4vrulOzkjtBWDN7S+IVlLc/KAkycfc7Pc0u23vHuxJG+2PFhUPH604C4ucRi6GPn2jy95/f6Gxdk5D59+hD+eMJ/M2ey2pH5gfXVNvZhCnrBaXsse39SkrieFgap2uOmMJz97ymQy5f3lBwyW2/dv2XUDfdeJa96w5x/+8I98/fXXnB9d8Ksvf8lRU3P25TH/y2d/y7yxHM1mbJY9X3/1A3/4/Ss213cczSq2t6/BGs7PTjAMvHv9AucSaS+TnGm1YHW94/f/+A1vf3zHxekvCENGTLs8XReYL1oeP3rKgwcPWN8FfvzhBS+fv2JStazuNtxc33BycsLp6RmVr8RqGNmnZzNPU09JKTGZPOXR2QX/GP6RN69f8w///e/Y/fznPHp4wYOzFmsfMJm1/PLXv+Tk/Iy9q3lxecWLy0uiE7Ajhg6wEtiYEjn0DDGTQi/0pbrik9NHPD19hMXx5uqaHz5cst5vIATWt7fMk+OzR0+YTY6p24ZsYUiZLg7MFjNOT47Z9x1dt8UkWDjHzHocntl0QcyO6+UOYzSVXdka1ljJ6ckyWe/6wK4TVLywHiyaem6dmHjEpOdVOd9E3JpzVMtmK171ztG2NTGpA5N3pBDvZdocUO4YxTQlpUL1lH2wqqRBizGw7+Tsretam2rZwHzKcSxgC7LhlKcyDAebshQhjIVV2VkLAlQoFoXbakZfaPRAKGmgUoQjXcKIcCqvNoPlnv2Y2v+Vr2rK/ymSY0pRQyn+VRyW4ygNIOcRJc/JEAe1qzMJozeonTjqoKKHMpJNTgXFUNVeDxeL97UUTVFClkpj0Q8Br1aU4sgB2SSq2klhhXiPVrXBw0GYUQqHlEhGRJhxEKefGBNdN6iwIoNxI33BOicCYaCoH8VxKJBN0hh7EXuFEDF2UEtPg/VG3CdUMEdJvEzFLjIr+h3FZEPvqVFHimEIAmxjNJXQKQKZ1QPdjEmpIYgS3VkHVWK/H2RNWRl5mbEoLm4rUjzlJHoL8ZMXZwah4xT3Ewkikhh5R7IByuGuU4eM0LsyWZwuUibGMAoFvfeMlzBJuuvQF2use0hiylRev6NktkiBoGv04K8dRQgdBryvqOv6IBxFRMrj90SukfeGFIWKVBa5sYeiWETgqAWbuKQMmq4rExXx+y1I9ygwjAP3eYEFdS38/xBEvV/sGcvPZgz7rh+fOWnEVXxs5J4b58ciykvlStSRKkacfQSpkPUXQxrtFWOCnOy4dySkQI0pA5IJUSYVGIs4Cx5CmzIJXyhAMu5QOpxMHKwx49QiakMnKIdMowS1t2OxaqzwL2USJIVj3w+yObsD11uoH8iIV0WdSTU4xQa4cMetMWMTkZM0jVCmW6JREPciKbatsRgVqDqkyDzkhchUoDQgZVKATmGsFfefFMVZoYibRYOgTmBRxVzqSMMI0shniKlQkYRuJjQtM6LzZX3IcyfXJYbMPTYOY9qs2ubae838KLJ38txaFcfWtSWkTNZJhNP3zPemOofGqvz9QEkruhOZYIRxnRcKVkHxxwbXWpK5R2nTK1J+LsQgupqcqb1OB6zFWfGfdq7CVR6cpesH8eV2Ft9KMmUi08VInzI4y2zimLVTFsdH4oay37Lt9wwhUrcVp8cP6PaRbteTXaKPa/arG9zWMJvOqboj9rHnu28mpNSDd+ziwIk9YTqd4ipH5RuqecPwJLG3jh2wt2uG7ZZ+34M1+OlMzrZhIA0b5ccncIkNG/7+n/8Pvvvhe7588jMen1wwcQ2niwXz3GJMzeL4I5rGY9rMyeIxTbNgOjnl3eUVMQ6s1jc8fPyUyWzO69dv2e527Lqe1a7mwfk5ta9J9YToairXULlI33f0IVLVLUNwVCx4fPSEs+qEyXzCi+0bhiYzGMjzOb978ZxfPv2Sz559TPiTDW634+b2G3Z9R79N9GFH9fgRuW7ph4EhDOz2HV10dKYmDT1Vk6jriuwzdl7jj2aEqubH5y/48cMVwVi2d3e8uLkh11DNDbEyNL5iyDBsNrgceTBfcHN3C2HAeEc37Oj3kbpp6Ld7uu2O9fU1w2ZH3O5w8yOqqqYbthAzfY6kAGbY86+vv+HjixM+vjjjrG3Z7yO2zzSTM+rqlsoZTs4q1ndvqPyO3/72L3nw4Jyvv/ojb152TJqWs9MT3r37wPJyifvYY3pHXc8hW03ztpjsqF3N0eKE3/7mr+m7Dmt+R+Un3N6uef3mJSYPnF8cUVWJugkYAsb0tO2E8/MzUhAE+d3bSxp/xNOPfkZFy/+++n+z29zx/vIHjo8tFw+POTmbUTVTptMz1mt4vXrHd+/ecrdaEkiYxoMV57kUBmLfAUIFNSQqC4+nC57MTjn2cx4+fsbx6ZrL9X9j3QkvPsaeXYAPmxt2U8fJ9JS2aeh3e6gcsYs8vDgnxMDq9gaGDafNjLTZyxTT1mRjGZIYuljvJaldq4c4oAwGMdDQI4pi+WytUCKdtXKWi18xlakYYod1HnDENJAt7LuOfdfjvVBojJXGoR8GQhhI0eB9Le8dI8TMZrPHV1ZBIQEdna0k6DRluqGXz6G5E8MwMGhyt68qQe5LQSWbpVBxCt0jZ+loDFBZPaxyJoxoqNYlxYtYD7fiK571cPw3mtvxX+6LFO///mFTLy978D3POZOMMPij/ojRzR8jKv2E2Cl1KZMGHa0aER5YRAzkrNBQnIvj+zhrqK0jxhI6FPA6irHGMgxRPe4PiYRy3bImbDot/GC3l8LNODR86f6YX66fdQZXCTc65UEDq4yquw11U2NdEJvLAjyi04VwcLzIWQqImKIIQiqnjZodEddSjCTEmSRbQe+D2ucZ0ICHfK9gzIf3ozRL6kKDcJrFQk4sPaWAlCPeGq/dsPhn17WixGiiqDaWwtG/l5RrpYgIqVBEtDgMgWHI5DpiatE1HKhS8hogXtQpZZIWTeO1tlbpArKGwhDHJss7S0qBQziOJ4ZAMgHvGy22xUEqhKTTiaSUgYL2ZWqvFIocce4et9tIE0gW8ZL3XsKirMFV8n3L82Stg5g0LExF6ChiYAy2UuVRlg65UH6KU1Hlxfqx64KEbyQJGoppUFTZgDaz4uQijZ/GCo/Pokzl5D2GYQCjuQ+67mMUsW/b1vp7A8VFKgRxchJEttC5Er165Reuv4wj01ggqpGuXlPRjchU4qD3iEkdO2KSw8B7qqrMDpUSY+T6pHgQ9h+ETDr9yZDzQfBf+NtlbRpfGoGEtV42dw6OM8UJqDS14mQlTWQJO5LrkpTuxKg9yXqtsy0TsSyHiznwKQslpSA2Kf10WpaKxhyjRW2iOL8IPU6oTUn/jKG8931eOeN9L9fFWoe1QrvKHGhT2UjTXKZR46aJABCFNy8srHuWyLlM+6J4xsuupPQ7M04CgXF/v8/zN4af3Lvx/o3X6P5st9zrw+sdEP2kTe7h85apVUrSTAtbJ+GMwVkxJbDOgrdE3ZP6BH1WEa01SgHN9CkRgDhE6AMnVc3s6ISHDx/j64rNZoMxjk8+/QznPH/46isie84etQRjuL3ZkMl0ec1ud82qvyR8fU0Xrjk5PWc/JFa3V/T7jzk+OyM7R0ieNp1y0qw5n66422eWqSf7RqwwSaABdkRIQ8CQSK5nx47dJrFcvme1XfLZ45/x9MEztgPYDytm7YRP3QUMNd5kZrOWLz5/xMnJJ3z97R9Zre8wNrE4qjg+PSK7JW/e3BLNmu0+071asZgf0VQtzjRYHEeLMzCeqp4wnTVMp404CvUNse5pj2akZcP77o73q1smpubqZsX3wwv+5D98wX/8v/yvfPzwhP/tf99x029IR0fs2oY9kPdbth/ek3HYxREhbXn48SMG19Hnd+T9ntVuz47ENnt++P4tX339QihFZqDfXZHCTsScXYuZNDx4+JBdbziZHfP0k6csV7fc3d1RNQ3DbkfIic8/+5xpO+Xy8pLVakW/68ghcvToEdPZDGs81zHR7XaCuLqBZXjH6gbe32Z+fHvCo/kFM7PgwfSCs0lFe7TgF3/+ObOXiav3S37zp3/D3/7Vv2O72vLix2+ZzRsMiau3b3B4vvz8C1y2DNsebyw319fcXF1h85QUIt431L7h+uqWzWZNU0+ZNDO2qzsqX/PxR89oq5qu67BA3/XYusEie+iknRKHyIOzc7qdY79Xmqbg1TRTTzXz2NbiUkUfDS/eX3N7t+XV8pKb/RJclnwIE6kmXtahnO7Y5DA5MptMOGocHx2dM/cz2mrB8mbPtz8+Z327EVe1FCEFgvd82Cy5JnHd75h7x8RaWlsRQ6KpJhwtFpzOpsTtktoMpC4w0BNS4Or2js1uL+55Clxk8djGWJi0YoG6vNtKhkhipOKUSXlVVdRVjSeJl76R89z7etyDJF29aAhkwgpR97WEc0L1iwPjvjoMA5NpTQFdrLPYKDVAVpOBg7pIYPDR0sQYfNNYqromReiGQEGiY5QdekzmyxI0ZcsLWotzMrY1ekLkrIelYaR4lIuQyxlwr7ovQlgyGnZUDq3DH1JdlxTv5jA2d4rolCMmj/8vhUU5tcQ9IxNNxmdBGrM3uCydUE6ZPIAJekQ58E64VJWvMSYT0yC+oznK4Z3KCFcPrQi21gmCKZaPahc4ZCnsk57MujAq63TikKkq6f5CMETi6I1uDPiKsVAOQyLZw2mZYlberFATYkhjMya8Zvnn2kjnZ42l64PQfkLUgBr5nPteOKlNXUE2DP0wFq6Fz14ceUTgVwSlIlYsnupVJU4rvbr+jKK3VAo0KZqzWtCVZk3uu7R4IiQUKo4bQ22kGwXULUUmCDlabAZLaVxkHUWlSmQtmg7jNKOHtzQFfS8FuLWWQaW2UoweED8pkntAnVSC8MxL0SGFoIpJVZhbXvNQOJQEXSleC8IoRarVadWBVuS912eiFDiCiuec6cIg+hajQUlIMVZ+rtwnYwxtW7FX3qTkBhSBpeHQ9BgNWir8fnVCMQfqSs7gvZfk4DBgrBXHmEqTik2h+iQRQ6P+4zppIkA0WcX7dlxbRdQbg2hkynNsjNwzZwyoj37OqE6kNHPqADQKgtUJZYgUX5aiiZDrkcUfXq8jOY9r6r6NK7o2cs5quSnXsqrFUz7qeqNY4YqHLEL5Ks+uGcepKQnVSFDiNDYfAkSUe6z0pbKJW0MJPCvTI/3jFMcl9BZZYzWETawcvHMMGs6SYtY1b8eJ5xi6VCagRqYQh+so907ci/I9IAJF+Etiqx4qBaS5X2RnkEA6FCiI+l4CZnivk5JR2B1HCk3O6hMPh6lYuef/poj/t79++t8Pxfv42fQ/RwWeUopYq8+5kf0/J8Bmss066bTY2jMkWS9dTKz7QfZMvV8hZ4aUSRasr0gZ9jGz7gI3yy1Nu+Xi4oKLB0e0zZTjxQOqpuHXf1KxXN+w295xdf2A77/7infv3vP/Y+u/viRJsjRP7CdEiXFnwZNWZmV1NZ0eYICdWQzOngPsAx7wNwN4AHBmZ85sTzWpqq6qJMHDubkxVRW2D1dEzbNmozsqMiPdzdXUREXu/e5HlApoPMb0oO74+OlfWT98wtZz6s2c7XZDVc/QtmYynRN1Ivg9X6+eo1ZP+eH191zdX3NIA5hAM22xlSW4QNj3qJQYTETPFcwq/D5yub3E7pZUiyW7IbC72TFRDftNYFK1LFcTJpOKpqmoqorTs+fMFkvqRjObTZnPZ3zx+StOT+d0XcfHT/d8/HgDaZDk7dCz23a8f/+G2WzF2cVTdJWwdS2UBCdN8LJecjF5ws3dFn8z8OH9a+p2xpvrd/yvs9/wH/7+3/LVr3/F/23x/+Te9zxowx/vrnn98SOuOxDrKTbCdDrn2YsvWJ6ec3Vzxd32DuUH6qolWsPdoeP7dx9YHzqqugHjqZYaPZmiasvi5An7XUcMA/1uQ+z3/LBdUzUVT09OuX24B2No2wnvLz9RqYrFYomxHZPFiuAcSWkO+46mbkQvp4W62/kNKQXq2ZzDPvDu9pabO89Ub1nWW6b6Dd9+/oyTVzOefPlXtPbvUF7x+59+4Pf//Duu7q5RlUFFz+x0jgqK//Zf/xfaZsX67hP9/p7DvmW3u8doj60Uw7Dn5ibw8eMHvvryK779Bu5vHlg/fKLfe4LTbA8D7WRCZSuSr1gtTkkp8dMP72jrlt12R9tOSaqmc9d00fPq6y9pTixffvWK5emSzgX2B8f9bsvdwzW3d1sGBjq/lSRlpA4y8wl1W2GURUdFHAZqZXjx5Al/8dkrFs2MmCYkM+XHd9f89O4K78W0QmopgECqZL9bP2zYBk8LnEznTJsZPhxQSlMrjTa1sEO0ohsSu75nszswJAFCo5Izhbz/1ZViMW9pq5pP+5vsM484+BiZ6B3PK5XtdS1GK7wiNwM56E+BsRabWSAxCRBjc0MhCfWKIQp4WFUVPpT8lkKxLXtgdt6LSehAlWT49N2QGyd5H9ZYSerybhA3EgSxlk1Wj2NgoUAWO7U4IqspH2qpFGVJaC8SUMK4oSqOSM7PtueCruTCPz5GbFA5xTSN3y8WlnJw6sffBzlEKL+oOh4+CjmQQ0KEq95QaQl6KsilvAMp/EIQ8eFi1mCsJbqYDxnzs7G4z8V0iIGaHF5kKoySkAJiRooz8paSjMghQhgE9SNzdK04+0QMQ5+LsVpoPAkR7IpFVW5y8qEqHtcaUrYALQVySHnRSDMyDF686/N99D5mH3sR3RUnEAmBUtjKCEIb41FsG7MIOBcRZfz9mI97jLE/Wj8+dnYBSRdFi7Ck/PeQhZ/lEBahY0LWp9BInPMQE3VdPfqao8AWpKnCaJJKIkgMcGxKEiSXm9VMH4tiO1qKJhE4W0FZfcw8+ZhjpMVpxg1+tIctgUfGiDuQ0vysmJAi6ejUYqwZLS3lc69ISNZAKfIUCh1zqFgiTxzseE/LvTyKczO/fBTRhoz4J4bBjw2WoN4pI+qKum4knCMUpD0weC8br1U5MdTIys5UGZkyZAtYLZuKix5NEA61kQJXaE/yzMVQuO5kN6NMPcmOAWXiFMvzOloUSsP8mHIBUe631rnhLwWqenQ/0hhIFTPkXCw0xyYg5YAQzSiSLjZlpWGTnjM30jEyDEmCo0wRyEvhHPK0UJp5l4tXg48BPwRiUBkp1tm4So+Fp4RA5UMgeJJOogvKFBX5rIUi95gPnkvZHJwnE1aly34nfUfK+iEBSHJ407gnH/nl46upo7g8BJ+dqPR4WJQZ7XFy8Gi/zX+MnPz46FrIewd5+qKykYC1mVr487V8dN857h05AWuc0jF+9kfnnMd///jPx89HsViWV49jXktpZvMgCVtBVYsNn7Zy8PdZB3VwgU3n6X3+viR5DSHfZ6O0TG5DZP2wzWYCkd3mwLSZMZnOubra8OT5C1YnZ0CDNRNmsxlPnzzlYXOJd3u6/cB+39N1Hu8VxgaW84p20uBTz/Zhi6lqmjrStA3LBG49MJ23fHX2nND33PotykbMtMU2NWpwoBIqKibtBCYGP0SSDQQbuOluSTc/8svnv2B20ZA2nj99/1ssmvlyytnFCefn55yenuBj5GG7p7/tuH/Y8uzZU+aLOfPJc2ZtYDF9ymp2iTGGaTth6ByXl9f84U9/4v7DJZvuhmoSWFWnuOA57AObbgcTmISaxdBwGufskiPuZB/9p3/5Z4Zhx9/++le8fPkdbd8TD3tm3rLoheLY3V0zM5bhcODq00fuH7ZMZzMuzl9y2G7o93v+9MMPmGhZ315RTSfUE0U7nzNbnVJPxP0qRkP38Z7OGuLgCV5TqwlVXbO5ucX7Ad3UKCv5EyEZ+iDBeqDQVS3rXOk8xROALgw9hD0h7Dj4jqcvf4VmznbteOj2XH58Tx09a3fB8/NTvnj+nFN7ym57YLE846//3f+Zf/fv/0f++Nt/5MObH7j5+J776zs+m7/i5YtztvsN5n5P0yZubj4QQ8Mw7Ai+5/b6jn/558hs0mJtw8npivcfI3/4wx9YTCe8evkSayr8ECAp+s5x2O+5vrylbVu00jR1wrSKdlmT2hlfLL7ll9NfEwj0fmB/f8+79Q1XN/ds+4FopXZMzstzbCVFPEZHZWvQGrfvCN6xODvl+dOn1FUFuiLZCR9ud/zxwyXe1OjoSdt7aX6rDCBrLdPsJM47+0PHsO1o6y1tM6PvHG1V0ejI1AqQdXA96+2WXd+PqYiS9SSBnjHCtLVM6obgPG7w4xlW9rmY61nvA0Pfo4LGxFwLExmc2FsqLXudseKeF6Kjd2Ja0+iKlCKpF42f1FfHvI6YazzyfqK1QWPwfUciUTcVk8lEMnx2O4ZitmAsFhVwbqDrPT5IdHxCFmNERF/FPUEjjjmJY6EWMiqKnDE5nCr/nZbiW/jux9H4OAp+DOPnIqYU8Vrro71m4mebf8phMQXTK3u4UBdCeanxYJGSIFtlJlBBkmNBYXQtmx1yrQlJqtRJQrxMRhOtFbRxGA6U9kR484aqrqGgvkZTmQqVJNlQ3F+yk0vMeoMkiJQxcnUheiRARonntRaxrKlTfggCPmmCCzl5tsTByIhGXkfecwwpj8RLcZDH87lYVtaIsLdQI4SCy+BcpsMIct20DZXWDF0Pych4PjdeSltS8jgXMLY0bmqkqlhrR91GjMdJRBFGHicBcUS3XfawNFmUVvjhpJzo6+IYLhSC+KqTSsEUhZ6Qo5ytkkmBzwhqII73IkbhspUmMsZsteVDRhfT+H4kuyBhLNRNsVQUBxyx8ZeHbkTpM1e4biqUEktHPyLrYpMoxUOhfQj9CV0xDF0uSPToRS5FrdwDk19bmgzDsVH6eTJnDMWhSJqsEFLWbMgzHLM/eaGMeB0glIyGwOAitoLkU6Ynyb2TZsqNTUIRj4csxkQl6soSfGQYPFX186ZLaFWG4qAkFrIpoySSmyDLoxRa8tvk5lMsRWNuiLOAPkS8ksacJO5UpdkryLsP4nhQ/OUlYOu4HgvyXzRB0sA9DmYq98pm+844rqP8SFH0DGl0h1EU0TQxN5jB5YY2HSkv/rhXxRzol1Sirj3aiDCWJPuS54jWyzqRZ97qPDkbHGLjKGvYeyS/YnQ2ygYF2a5UP5qGooqlbdnXs57DPKbgqHHPKXuNXLfwTMfdPGWefZ62HcWq+Xwo169LEJ4Wx6yQ5HFWRRNR3q/8LpOWwspRavyJ43X/71FzHj8rULRhuYHI4Iq4Gmkwarx/VQlKy8161zvhXUd42Af2g3RNYtWM0LVGN4sMsgTP/XpD33n8kOh2A/N2xskqkNSBy8s9i9Wp0CNVYNI2nKx+wV/88u9oG8V+d8Nudytx9Yee9WZL3Uw5OT1hMp0SIhz6A4PbsNt+JO6BLuH2PYtFzVcvPmPiHnjzcMnOD8TkCIMD77CmpqnOSbSgHdUkEcOag+u43HxgObM8m55wejqj39zSdQNqmNJ4h9p09GHNftfz6dMN2/Ue7xKff+749V/8FU+fPsH7nrra8vyZgIGnJydopTm/WJF0z4+vXxPSmt5d4WIgKIVpT2iZEZPnVGk+ay/wsWO4/cT9wz2pUfR7zba7Y72+5X/87j/QLE8xUaGGLSpMqEzLsy/POFu0uG7HP/zzP7NLgcX5BXaT2F3eEqPj9uEDSkXs3NK0QpFwsWOz1egD9IOj7yLRd4Q+oXZ7wm6PN5b+9ITZi6d4o6Gx2LZhezgQh078xeuafn+ArsOFyHS1IrrIdr/DD47ZbMqqsQze8vLVN3z21d/x6XrH3eZPxHrH5DPL4f6Onz584sP1ip/e3nA6O+NidcrZAlaTGdPJlG/+6i958eoJ3eYO1+158fQFBMP1/RVdtNw9fEKZwFdffo5SM377z7/FDxvevN1xcrLki8++o51UKB3ZbNb87l//AaV2fPHFFxz6Lc55nBM9VzMN7LeXeOfZ7ipmF+foNOHufo02DWf1U27ut7x+947r9S171xNMwDcyRbUBtDNE1Fi0mdqwP+xI3pGcY9G2vHguNCafElZbem15fXvH1W4P0ZO6ntR7jIksF1PsrGXvI8MAQ9eTDntwnmiFErw/3NO0PcvlgpNZy2DEUMOlxMPuQOc8qqklb0lB8r5s6swnLbPZjG5/wBdQYdQByf6nlWboe3Y+EJOlCjKVdThUDrA70hwNdV0juTGerj8wDAPeOQEEgtB/R0CQmEMXU7YAls260MBLDeWcE/1NZbMuVp45m6JE3foBiIaEIIuVBU8WGOXNXiURs0XE7stHUSaX4l628yPnUpWTi+Of4zGhEiXdTzjg2a6QPDoum3YsvtVHNGfc8wtql1JGp9TofZ8xLvknBSm7hSgYCwIxzIjYlBAihnR/MUrwiBSruXhJcUx4LeLRUgzqmPAZ/YkqEbQUPWNYQaG3GDWK7cSlQez9yC7pCQUqUjUaYxVKFzQThr3L1JGI0kHQ85Sw2UovRohJFp4PQUK5nAhsVUE6NYRDvrYkh7YqlJGksQpUEnR36Jx03DqSoghro4lEHwkqiSguC5+Fu+5zsWQgKIY81ShOQTGJm4fOHGSJVTZjUZqyGHFE2UF81DNlQ6bosrj7vohZJHVYW4VJBhA/cGvE4i9mSzsR3lZS3EUvorpYeN/gg2Jw8llZIzSCglKXpWtMI4Vz9OLQkqRwM/aRtWIUNFtGr4KQO5cnKEoC0oJ4taJVAgQdbdoKlEwyiHLdQwKFyUKamJ2KEkpHNCICks0lF61J4QcvAltlcINMuGornL2Y77Ggs/JkDENP9OKHTRKdSq1NpiuQN7RS4Gd6FRmpjk4eaS1FoNiVZj1EkoLYB+keC68+lZFnCFkQbIhoQkZKxvEl4iWuM+0lePBeGgSlFC5IEVah5GsVJBURfx+hcfnM6UcVb3rD4BLKZ8pOdjhKWkmDqFQG1BNka9KU9yXIVK3Smed7mXI4WwriTy+NQk2K4tISA1RW7mcIso9qJSgOCaIpVyy0GTkWxB3JmjgGgyWg0hqXhcMJldeTTCRk8pUBioxApSjrk/ws5Wo7n2AFHMiNEVm3U/bbvA8L9SZPLQs/MgMH0hzlhr3QkjLyX16T9IjrXnRHWoFNoANRaZmmBnBeKFsqa3H0I05/oSFJUc5x6qDIDZ18bmPRzvhXCJ/V5GZQ9p2Y5NYYk1BGziKb13GKUujbnLESE7ikGKKmD4nOJ7peUie1KQc+5VQb9zL50BOhP3AYPDZA2h7w1QYOgc4lXNRcPHvJZLYAbbiNjndEXrx8xtn5ihgTVbVguXqCqfZ0wyVNW3N2dsGrz16CUtw/3HH3cM98MWV7uYY2oSqNbgyL5QVqHXl4uKbf7DmEnhQHkkp42+Cd4dmrX+D1wHa/YbFY0u22hEPHh8v3DLMd57/6a/7qP/wbQucZ9lvOVitq21DZluVihlaJd26g33v6/ZY3P37PcOhoJy3VLKGrBjf0mH1kOq2Zr875m3/z9zx79ZyH3RoUH55vAAEAAElEQVStE8YOtJMZrq9oq5a+27F52FB3A+Zhw/DxPfR7qCB2msPB8M8fPmF+OvCrv/577NMnmLsBf7knVIF31x0flONkNcNqyzAM/Om//QMqtKjaooIluZ5mtWDS1mzu7rBKE/eRYbcl9R1ozeTknGrSstttURNNXJzQTudMZwswhm+//pZ3V5fcXF6hJxXRH9CTCdFYVFOjp1OUc9TLBW6/xe9uicOeYBdEowgq8v7TRz582jKZntPUie2wlyk2PXpiCYPn5vITu/qBu+0124cHUj8wsYZXF6ecLRd8/eXnPD/9Ft8HukPgu//T/8Cz+1/whz/8hr2y3LoDaqG5+OqU/UMkDFv++MffopTm4ulzXn79jKuPez5dXzNbGL7+xUvQAw+bW2bTGWenF6zqBdc3kuJeT6fEScX79ZpD1zNpDddvfuTDp4887DZ07gCNxkwF5NIpEXtFqm0GESKh2xL6DHIqxdnJOS9PzzkxE+JDR/vkCZsBfnzzmndv3hP7DtIA8QHdRE5XU7755he0kyXvPt7x7uM9Q+9QyaJrg0qJfvBoXXE4dPRDT981nJ0tOFnMUV4TrSFoqWtDQYtVErZCfrC7ruf+YYuLKvPcxXu+tvIzppWhylkYYsgiU0oXBmwlZzEZ6JPpoTARrG2oIjgvdF/vwQ2BGAaaRgCPyWQue28S04W6sig01HIo9ENPPwx0zlE3FdoaKlsxOE8IARuDxQ0e4UfqnJRaNtEkG6ASr3ClFH70GYeQxOOhJH/KoZmj1/9shCFHc+HQ5sND6YzGREIp6AvSn/9eEPVc1iklYoqMn5WCPeV6Xysl4s3HCH/Z6BFkSHwp5DpTLjJTGTtrTaUVla2wNjIMQoMpnGljxM3jMSWi/HcJW5LrDDEQCYTiRJTRYJMpOuIYIoWf0gZlLCHKfQnR5TAU4eprI12fysWtoGIJle34fJB5sHOeuq6xlaUPHT56oheqhEELipdiRoSlWbJWbAiDL6hwFFvSymBquWumks+vaiwYRXcQn/ICrg59TyW+pKQA2sr1hig0DwEL5T+q7HwyDIJSCl8bJKUWYSulJC4rSkQ8McRsgSkWi3nJiFOIKQgy4HNeQ6WI0RODf0QzMJkGAtHrLDKUz0pbQz+EzIvOtc9YEIrgLwZZC+PkwuQmsPinq0hKenRv8WNTIQ5E4jajc4EonVj04oEbUyQeENeYZEg+ZX2Cxg0Rkx0FEhLWpXQSS9n82ZYmG2VwQXE4OPFGDyK+DiZiail+yRuL6A38OM5KMRF9AHQOS5JnTecmvDzDFNGpItNepOlQGlIQOk7VyHSj6Hdi8kRjCFl8bIxCIRuptoYYYAhiuyjNM9haAjzqSpGChABVeeIUckPjckOSogTLhUyPUyqhdCUUiShodXDy+cYohb00ZErcsowmZm1ySUJ10Y/Pa4gyibAWcSlIieglPE4rTUiKFJQg9EkTlc72pbL2gs+NQK4UtU7E4CElKmOzRWtGgRA6HDEQfaSqrDTE2lOpihSy/WR+/kMOKipi6ugVRlWQoiRQVxBUyNMKeT+dB/Vnxb3OHcQRPykNdkmajtkZpyD5mRJX9t4kr2FG2pjKBfhR1CoNVBJBnVUkEwkqEKlkkhjTuP8LYPBIYctY54+c0hjEfQwtk7syyj7Ss9J4LTIxkqmVJu/TCrQWt6EQJfRJRwF5jLFoY/BIbkrQCq8j233Pvhe6n0qa6COqkn26bIjldCuTaZUgdT0OjUkabQ5imac0tp5w9+kH1lVDF0TwXjUNzh24X59ga03TWiaTmD+nBdErbq87jF4zXy5YLl4ymT9nNp3y8f33XH96i1KGxekJLiWUPufJasUPH3/izdU77vZ37MKBFHqUSly/yQnhKkFn8H0PSdHj+XB5hfe/5W/+8u84X57yZHHK0/mS6XSC94HddsOzZ6cMhw2vf3rDh49XbLcfmM0itjon+hX7nWPoBu43axYLR9tWzOdzlicvSKrisF+DVyKiCwOuD8ThwH59jfY7Xl1MafRzfnzzAzf3N4TdgJpPMdryrx//E/uHOy6++BqzWPFM17y9+sg+bTE1zCcNk3rCsLllag20EWUMIU0IocY0DdWkZeIg7PcM60s47GG3Be85bHccjMZenNKcrwTAay3TswXWNrx9+5a7+y3VdIGpI818ia0tu0OgXs1omxnrd++5v74i7NagBqo6MOw+4gbF/Nlzpk3LanICXtHdb7GDMCim8zOWT1fsPt4ya2pccuz0PV21wx827LaOu/0nXjx/xYNK1B+u6LvIfHnOyeoMtTznb/6H/wnTGAKBi6eGfzdJfPrhR7q7O5aTGa++eMH8/JS0+EvOP8zZXF+jouP3f/oTz5+/4Otf/op+cOi6pQuBycUFrdZ4NFe7get94LDrMIcON+x56O7owo7EAKqS87Ey2LrFNpYu7onOSZ2ozbjfNsbw4uIpT6dLuk/XtNMlnFccnOf26l6MJaIjqY4Ye5qp4qtvX/DNL75mf5dIyxmun3HJNW7YQ+zxfS8ujt7n4jpw6/f0Yce+X6DTFC/bNipFyTbRAowSxOXQGMvu0LPrHMkalLXytToKrTslWmOolRGgKUl9p5NiWk+lnvOepBVKxVGXKOi9QgKrGuq6wjuPNYkQBqluU8S5gbapSEmSbonC8qiahm7oOQw9xbJeFafG7Lhgtca6wQmXuwj0UhzLdWPkgLJWo4KkGSYfxTotCeKlkxTOY/Fd0PKyp2ckvhSDhWohQgPhuAoPXGoNlUphlAv28YXkwCiofeE8yRD5+BPHpiL/zHjcZ3Odkoiq4OUwJEkWNVoS3oy2NLVFqSD84SCTA+Hq6hGtOoYHCZJVRsbe+/z+BC3VWkJPdE5iO6ZFZsu+AMGHkXc/DCJ+0dqgbBHAyfs9ZE9+pWAYPHVdIWFj1ci37geJOLbWikOHz4c3Ir4MsRSPYo1W0E25d0Y4YbnQq2orPqwUVE0ErkmJc0rKdnjaIiiVRxTsRoGyUtzFmMV64LIgReoC8YuPOfinUBlQSHE62vDFjLxnZDtBZYuIk0wREQRA6AiO5I/iPVk6woWWEK0SlCWFvHeSFldVOZk2iTA0r9zs868z3z2ORUdKUlQVkYvOoUXeBypjcW4YrQ+1NqNSPreZRCe2mSbzNWXBy4ddPrdYikYtBWnM96m4WiUlTUNM4lozuJgzFkCFMjGRggqVxnsk1yQ6i5RTlUUYLfSXkEBlfcFxBlm0C2RqTg7ZigGdTBZoZmuw3MOI3kNoaTIByF7zoVA9yrOZxqKxqi3GiONL8GL1KSnNnmEQXYZF1pZK4p6kUm4qc9MhUzbZWP0gn3VVFVF5Xiuk/GyJzkSpRG0s1ih81pOA+K3HECXgzOYgM2UybancE2lAY84DUAkqbSHbqiXhcAm2mxIp+tFAoFAWS9KgCUo+ryguQCWvgRCwSg4gsWqV7AWllIhpVRGiZ9FXUnIQlWUVY+aIShaIHjn36mdFekHEy1S0UI10dkIrQ9PHv8rWXHb+gtyrjPKXc4CUMnqeiJkXVICiIkDW2QZ23MfJjWVZh+q/d9NJkBvPvM/n91Y+30IDk49Ujc9vEcMd+5FCO8xNA9ANjl0f2A+BQ59yIw2olFOwKbpqxgvMYBS58Y/IvuS0InnHsHEoY2jDjNRrUtLsup4QApPpAr9fczuZ0czmnD19ymq1RCvYb3f44JhMeta3A/PFltnyBKUtT57WWH3O2bmADFXbYpuGV1/PSSbx4uYXfLj7wIfbD/zhzR/Y9nv2DlwYMo0o4F3KuhmLMw5M4s3H71nv7vnm82/51bNfYcICXbXUlWI2V5yfnTKfNFgL93drUtLcb6/Z9DtUNScpw2HfsdsdmM8WPHv6jPlsSoqR7dYAKyarJTpojDmA2pLYs1haJk/OaduneP85z/405zf/8o98uPrEcLgnxMTgW/74L/+V1x/e8vSrbzh7+YLTFDjc39H7Le9316Smwk7nXDx5xuWHjxmAlPeItsRksM0Mkmb2wuK7A77vePn0Gbvese32dO5A5wO6qWhPFkxOZux3Hckk/u7/8Ne4lLjd3PGwv6dup5w9O2e93uC6Hki0k4bV6gWqmzPRkUVraZuai9OntHoKg+Xmak1lZuxmDetw4GE4sE4bfKNgatjvegiRaBOcTiA0VNM5YTnhT5tLur1D65bZsKf/6U+o3Y7nJ0vOLs7ACNeiCp7Z0wvOLi44nS3wKfDm9pouBubnL2mbFcTEYrHAVTU/3R2EauYdN9sNVBUeeH/5iaHvcYce7wbaxqKVTPSJEVW3VO0EbStJaO4D3eae6DzEQPLidJO82BWa2UzOMAKTxZSmbRncQKMbGjQcBqr8iHmleHG+ZDVbcNgcGDrLtJ2zWkb2rme7cfSHPSkOQgEKZLMIRXCBh/WB7bajUhPc4EkkyVspe6KUMtRNjbGWw34vuiAlAIopdVxKzFpNW1XYlITqjaJpKgnOC4Gu68Uu18upL3WF7F3WHsMTVQaE6kq0jSEEJpOarjugkKl21/Wyb3qhMPfOgVJUWX+ock1WdGPGGKzzXkj7WgqXIhIoAj4QLnix+pLSX+fxw2N+e8ob66NCP9+wcbPjeIBE8qGYP7QyhM16JlDi1TyOlcv354MnjPSNdDxw0p8fO+Tmg9HFp/yKjw6gIQlfts4AQp8iFcUJKJWTK7vLiCZBiiTZ6VMUBD6mJD+oHBhkylEUqyNTZdWzpErkD7oILh+7tEghp5POVncizpUpgITnxBjY74dctOTk0SxmRRmsFh94sezzFJ6yeNRnOgwpp6NmZxOlBUGOR39sgiCsmjg2ZckLMpzfIMEV3moRSkZUpnIIZUM41UQoWQgom9HUmIvWzKdV8jkqFaRwz9OKYumnlHCQjZV02hiSoNl5ZSotIlxrVeaeC9pttCbqHGoTj17YWufCT3gYsmaUGrULRj9OlWV8T0qZLL7MiHwq4VdBCthYAnWOlqLASNF5vKpDDLk4yOLikHA+CUUqBSnyrMF6KTxUUqhsb+qzl7nPRZPkCeViUsYQ5QHN/4w05ZlnrrTw/iVFL+Wi6Cg6TflnpARt22T7y0hJy5PrBZvFQvt9L+4t1uaioRR5mcM/NkqSKBpDcXHJxWaU4rgUnxJOloPHdLl8jUbngvlopUryQhvD4TNlhnIojJz9lEWdmZqXFLaGSduiiDm3QURXMUgCdGmOyXaYMlUK+KwfCD5IkxVlTyzCTdC5EBfai1DS8jQhux+UhglySnaUCZfRQl+KJKqsf6pMfl5JKJOIRopglfllKeSmvKrGpsdolRO+pRGRdxTH6edRqKtyXEam5RR7zgx+CCXqCG6oPLExj5pFlbsBme4UbYT8Hs+BFLPw6ShiK5z4IjJX+V6ncrhwfPaK7/5jj/vyDCUURdOlixYlhqxnEFCjcPolhCxPw5KM2m1tZIKoFUEpuiGy2Xu2XWAQqU4W/R9bHLEHZvz30au4ULhIYMDpKCLsClDCuU0hYmN+TtzAcBiI3Ya4b+nrFjNZ0A97rj4YqkzlIimWixWvnnzGs2efs97s0aZmcztwv7nh0N1TNw2zJcyWDRFNPW94cvoVy9MXvPzsgecvv6aetby9v+LHqw/cPtyxvr/DdztMU2MnDW4/UE8b7Nyy3a357Y+/IQxiY7r2O2o0F6tTrJlxcXFCU5/xsL7l8uYTV7efiMOG01N4evEcrZd8+HjFZr3h+irSbZdYW9H1PW3bYvUMUmA6VcBAaDSLRYVWgbaxnJ6tsLOah2EPE8v13R1d1+P3Eb/b4zeXvPv9nthvuHhxzg7PA57Y7VDtit71vH7zIwwBZS15NI7vHEM10FQVv/ju18xmUz59es92t+H85RecRc2uP/D66h1Dv8OHnqvbG25vb1iuTnnx2Uv27oEPNzecnD3hYv45VdNw/uQJu+0fOHRrFtOG86blxXLJSfWSi+Wcs+WcNioqp0l9Qk9b3PQVD4c97++v+Li94T51bG3iav+Ar2vstKXyCTf0NHXJwkls3J7D0NHMplhtuFt/QkVD01S8vrnip9uPmGwZXaeEGTz0Pa22DD5wiAFVWQGmesfZySlz07NZXwFiunAYeq7vbum7jmSLyK6n2GEPcSA6hxt6lDE07Qyiwj84qCA4B90ekxxxCCgfaCcNxtSEFDnsNnz89AF94TmbzNnEHrvfszxd8cXzF6gucnd7jdE1zXzOSbvk4WpDmNWslp/x/sOay+trDsMerSN1reiDANHGirVlsUMmCYUy0JdNBR88KoouThtxNZvPZpiqysnRKZ+nUiOpPKmcTSaoJGGOKko9+BjE1kaPrl8xpdGOuIRdHi2Zdc7ckQLHeU+b6gw25nM41yCFXlvVFpQa3QqBsbAfi3vZVMkFEjRGjf7lKWpR+jvhBseskpU9N45c+QxkCCqW97hicajGg1GKJV+cQxj3KtmM0xGtkVF/iaWP2aJIGohyAJW2oJTY5RDn0aSg/CrHQ+GvH8tyee+heEUrUDHi+56JUWKbqYsAlOyJnhvhfPExpPFAfPxT5WgT5MplJLluskjOw1GNlQviKOI/maokIGQbOkHj2sqgtMrFuRppK8kgFpkZkS8OLCEg6Z9eUKMS9iTpn9lzPGa7u4wcin95nmnERAqZP5qvU2PR0SMNdy3e9FGaFZttMEvUu3dutOKUw7TKQTvHNeSDyyJCJEcAjTalqJDY5oK6pfxgxCTNSpMnAyF46kp89WOZwuQHUD1CI7VS45hOaCiCLpsGrC7qD8aHsfMSNY3NHuVaJllHx40SNMRR0Igai1x5BrQ8Oy4cR2Zk8aISnDMEocvI+tHZeUeKBu/ItKSIGUQHgpLJhdbqZ1MWoYcJDUqllGlcme+YZPok15ubbi33WOemJ0RxA1A6q+DLuo9HhLRkB4wgQM5XiO5YrIqwWEn6arEz5FioKyJVJQ99zOtWaCLZWchFqCxWa5QKeB8Z/IDP4tsj2h0lDMgIgp9CXrNRNuzgQm46iqi0hPUdg5EEBZZ14HonlrTGQvL52YioyPh5qwTRi+g1BKnqtMpJsVHlQj5JgftITyRTohLilz+HmP8+ryFrzEiTM1oE/IW+pTQ01mCURSgTMf+fNA0xCVUoZFjZ5AZZ7qroQHS2TwspZMMDeTjjo734uF+qcZpG0RIhZ0R6tKEWAEfpsv+ByY2nOHgdqTnyW8kkyidxU4uB6NX4XJQmT4TueQackfjy8+LPrpTxjBnpOOXy0tGcoeS1jGYOyES1BDCOWgGrQYvlczd4NgfH7iCFfUSJbiCvmxGRGn+rTLHUuXmW9RBzCF1UEC3YWU1tLL4f8K7H6IBKibZCpjbJUzOA8zjluL854J2nqWuaupVp57Bns37GfD7l6uM1g0+YqqKZyb6/HXpi7HDOsl73HEJPu5igJ5poAqaf0EymnC8UsWlY7s/4cHfFenuPaSs+/+oLfvrDnzg8bKX5wbDf7vjdp9/wafOWlxdf8erkC+7ue6ZsmNUTzk/mtM05q+XAELc0rWE+bbg4mzCbLZi1hnfvP7HdHpjOFrStZRqyRixt6A8HqljRdTL5nM1mDP2BCPROUTcr/v7v/z1nL77gH/7pN9xvH+ico9sdiLset7vn7tNPLOeJb15esElLLvs9u6qimS2p2wnrq09CVRwcDAFdt7RtxdnpBRcXz9n3Bx46j27nMJnz8vlnvHn/nqo70Fyco02i3zxgUmC2WPLp9hrnHSdPLqgnU+7uOqzTHLr31MZwvpyzefuObrNjMpnz9fPPOJnNaaqGOir8Yc/gJNE3OseyXmKWmlcXTzhUif/84+/pW4W9OOP63SW6C6zaOSTPzh0wVQ7s3N2zv7/Dzk6ILjGbLmkqy/0hSFZOUBAcBxQ2RoIbMDicDyRjaOsJQSVCrfno97gPNyTnqSP4YcD7IECr8yhn0FYRjcNOLUZFhr4jhiBcdyW6uuACoRtIBw+uQ8WBGBwV8PRsxcsXLxlC5P3Hj1wfDtzdr4kh4s4Dz86f0rQNRmnOlytmX9dcTVoO+zu07tCDnJXRKy5vbnl/dcvdwxoXDygOqNRhbZ7movDuCGqN57AuqFOU3B4rNVHwgemkYT6fQ0wMWTdHpXK4pNQVplQxhYKr5O/dMOCdp24bOSPz1EAlofAU171yHsrEO9MGY5TgS+UY3CBUR1uhY4RGNirnJBdnCI6qlqyc4nAmk4HjvmjlB0WMgaqWAk0rS9eJj68bxKs9pESRXxUqwiOqoRS9agS5859yUxNZLJlSFujmUxFGnZfOr1O27lFAW9DPHDhSKDyC/krpMNoDKjmA1c/3//KKFCQl5tcIiswJz5ODCJ6AVUIHIBVEOwcc5ddPSueJwZF3GkN6dDgJ9ypRIpRyUzPkk1EBUY20JJLExAfvIaO+ISgsQmNIMeHVMVo95AUlfu+Z1sGxkYqhcK+yxWAW/0rXWOLbH/maJynKCipm0OK/mhGO6ALBiZCz0hWeJBSOXLhEjxhm6NxhKhFdep9TLbWsnRghBBGsiQBTiQgYRYpyT9GK5PPhXKx8SLmAkiJSIxQxSeiMxCwYFq/3IC4+5vF7LTaHAW0EcZQgioLC6zFsSGV6Q7FGHAaPzQK70UknSHso4mgpKkUXkikFeZoT8lRDaDGF+yvXLYJpPVImRkvH/GAaoyAZXB4BkgTtJgkn3mQ3AKVEOJkykmnyqEoZaVh00Xzo4iITKDaTOlt+iqOoevRb1tfYmBlBpZ0LUvyr4kYjOgelRfQqgGt2RonhUcASlITTqKXgNdZgiksO0kRaa6hMXvOZUjL6z0fRQMg1edlkAWV1Lt6yT3vu2K1BKEdJUOiy1gsa/djyUpHwOtBS0WDzIVDoRHlf8JnbHmXqV9aWVgmLTG18Int1AaEgyzmdWuUtT+nx2kU7IyCAsfLMWZSIupWSzzhFUnSYSmW9khZ9Q5LrqCqLc56QFLrKbkjxiFaIICvroVDUVjQaPucFmLxnhfL1WhwtIqBiwurqCJqU7ViDH7rj5j8W+/EI8qjiXCQ/efCOcgimPG1DJbw2Iv6X1l5QVXU0HkgZDdPyophkxvWSEC0OZFQ9kScL5fyIo1AfpUS7kpEonyShXIIQhcqmk4AOIcLmMLDZR/oAEUPKn1vSEVTMrmIF91CUvBdthEusjcm2vILGCS1KGmhb2UyN0tTaSOZJjOyDywBHwlSK2cJgJlBVLev7e3bbS5p6wv39Df/5v3zk5I8XDD4xnS1ZrE64sE9BV1hVEbo9hxDls9QKFeH+/RpTaapJVRA9Fu0JejrhMChSNSHWmsXFC76ZLmmMYXd/z827jzzcXmOrwF13h44temj48dMnNu+2/OL51/zNL3/JallTmRnTakkYOqJV2FQxb+boM4tGMwyOrt+D2mFsBB3RVc+srthuE9sHqAzMJktCkP1yv6/wYcnJyQWHMOOX39TcHzb4eeTq6hO7m3vcesPm9pqN2/DV86/4+2+/5nJ34F8/XHO9dWy3HTYbQSTfE3cHGBxKGR4Gz++3O9rFgocP1zSzKd2y4z//9F9xJGaLOWdPz0gE+tkJQ7cXyo2a8PyzL3Apst4MNPWK+4d7ND069PQ3n3hWVfz9L7/hL158wVQ11Ep2me2hY+stByLoCl9rGqXY3nts59kdtvz9i19x6Tv+f//0jygXUErTTBo2uz37mzuUCaQwoFLAtjNmkwrVavbrO7bdQESaVXrxljeLJZNmhm8sbhhIndDjVG2og2P/cMfgXAYxBroQoe9E7TmfohuDsQoIBNfjg8WnSPKDgDxaJoXaBGEOBIvrBlJy1DqxnDY8Pzvj1ZOXTCZzHnZ77qo1mh1JGfYh8elhi2pmRFoIG7qHPY2qeH5xxu11L97vVqHrlpv7DT+++5F9nxkc8QBhj2kSpycNq/mCSjc8PHQ8rDv6zuVaPBXkS4AYbbLoXopRW9WEENnttnS90F8Uks+RgkcDdaXFZU6JQF8bQ13VAtK6QD/4nNQeR3ebpq4JoR8nlKXmiBFxWTJGnG+MwgUvwJE3uT4RcW7K+77JwaECqsWxyJfJupzzVmB9Ga/MZi3GWElgDUFoBh4SRj68cVNNeSSbD8GY0XedUXdVUPJc+JIReI5ODAXqEasx8YoxKEHpH4/pM4GhTAky4DVabGba48/Gt2OD8OjPfCSM/+0xWpWQ4jTkhi4pSR+M2Tteo+SIUUrG5bnoUMZCLo5RphzZ5RhEqXzAF6Qto3BGS2crtXE+ACMjNaaMsqW+KBQgQaeraiIprY8tEZMsEB9KkmYEbYjB5+tU2U4yUFVZmJqbEEG3hG4gCLd4O9uMJvtB6AfRJ4iVNGNBphjD4B4hYcVeMhdu1oyTlxCSUE+Syo4owhUXvnBGUlUpCEVwWWzsYoQYnAQ0KKH+qMzHh4TKlovee6rKQnbCKRx4aV5VTiEWqtKRbwuFZmONpMpKYJOEQ1S2WClKsaHztYri3Y50KmtFpCcOOR5rpSh3g8c7OVCM1eMEKMSQCwkZ0blhGDtSJXoYtK6yX7I8H84F7KBBifBPYq2jTDdSSRKWgqY0LUYZKd404/WS13EujaX5A3LS2viMjpSR/AyHsaHPTUlBQPLf1XVLjIG+Fysx2Vd+HiBkjJG48egxhdqh0kiTAinWTV6DlbUkVYlffBwEyc4bgNIluVaN9BljbXY/KYh9yBMrO1qGyv0s+Qw5tZlE0xh8UKToaBqL1jVR9TkNMWsZCBikIVNapirBSxMtxbvK1ogRMn875T2k/NIZyTFGEfO0VCsDOpsNGJH8axJNZVBRAuVSyKJWlak5MRHI4vEoz4JWglIUapUpNKCyr6i8TebGNoEkeSsNUcSjwIjyjxTKvJeLVa7Kzxhyr3MDUewuVUbPyZ97ImZazjH0reg/yvWM4My4W6usnSgaAAlH1GSkLTciksvhM2gkz2lZr6WBVfkgL3tMmfMam7Ma8vVoo0loPIn9ENj2kSFA0galKmkQtDT148Hy+NiJwsGPQaY3EQE5Ug7rIipJxuw9ujVMpjNUKyP9adNireGSfO6pxMnZKWcXK2wtzaHRA4ed6DX6fs/Q7+kHz3xxwvI0cDi84/s/vsaYltn8lLado8wEW8+omwlV3fBksmR1dkJIgcO+o9UV8+kMNWzwt55DHwiTxNvXNyzPljx7+YrzZ5+DnaKmc7bdAycvpuzuDvzDn/6BiZvw5OyUML1j7d7T31ksim6f6LrI4WGP27/n/rZjOp2hUoUfHMSK7X6Ltgltoa4r0IpPH28YOuHxD72iO8B2v+Vhs2a+mjM/MWg154vPfkVzf0k4henpKX/47e/oVaRp4Nrv+afXfyKtpnz3q7+lbp/w+z+848PmE2vvMSbhhz3xsCWsH1jf3oKL3BpLe3qODwH30PDH2wdsM4fK4LcV7uEBXVmZUlvLanWGrmqePf+ct5cfWc0tp8unPNzds99tCdsbpmngf/oP/4GvFqfYfeKkks/kdnvgtkusk8W1Fapp+Hj5iTYlnpyfMtGKM/VMuN+942+f/or/9v3v2XcP9MOBIe5JbcXkdIVzByZtS1s1JA+HzYFqZvF4LBrcgHcHTFNRmUB/uOew2+XzPKGbVu5Ht0O5AzZP9yoTwSQRkuagpBAGhmGDNlaemyGANdjpRMwMUmS+aEiDx3c7XLdjVjecPznj1cUZp9OWhprh4FlfP2CaidyzAbauI0TN9fbA/e41L04OPJntCIeBCZapsSQitrLMV0vuDwc+Xt+w9wOpqkk5dVlXitnE8PTijIvTcyo7oa03EO+5c1uC9xjTELQDLQCOrSzWmGycIBS4zXbL/d1aKC6VAWuojcZoy9TCcjZhWlnoBwFwoiKSqdd4OjfgfMgp9h5rLFpbTNVkENhQNxUxBEmtdzIpHlxP01SjvfngHMW8wdqj0YfYrzPy7OFIa7RWNiWbUqKuDU1bZVpFYuglkTVFoawINUbhOVogFrQbFBihM5RY+mFwHH2KSyGdi4NMRziiKdIJUsbf+YAUpwl/LOrHVxv3/xGhFwA/o2x/NrYdG4n0KM02Hf/Mw4WxmQMYIuy9p8qIl0qJIcqhalGk5DNtQJV9XZDpfFBpLV9rlM4UfDkUlFKS9JuFeFqbzBWWIkBlLtYxSEaQxsK1J0Hf9SPaLiKxMHpUx7HAy/hxUpl3DRpBYIki4B2L5yBhVloXpE8agb6TFNbKSFGRRGRBdFmEWjj5+f7J0Zg56rLS0DYSnHwm4rqhid4RgqAK4vmtsVWVi4CUpz+ZxuGPdJzim1+KFXHGySN5lFyflcJEigfhO4eC5AF1Zenj8LMJkfC1pYArFoVaJ1K25SmTk8KZF72DCEePnbL47MtkRD7PQvTROmYufgKNJBznNROcxyaDH6ldYsmntXAgtU5ZtCuCN0HdxX3HOU/vB3FlsUZG/T6iak0KCYumMlLU+hRyGFcWRuefGZOEu6EMUQVcFOcMncrYMI3BYqXI8zleW2XdxlFUnilrZQypJAhJ/ltpUuRJrls90uoEbRdNhKbQVbILTxJ3ALF1lAmJgjFLQaFxQWzIjNb4kNtrlcY1fhSDHqdU8rmLbz2Q0zGTjJsT4BKVlalSEeskSl5ERFlJWPVeOP511UCSBt5qLY2S1PdU2jDmXeQiXCGTpoiEklhjjuh+HtkapEmI3kuonBGdQSJBpYXC52XqJxkcIRfx0nkUXUThlxtjCEm0MDZb4IrrUebUZx2B0IKyyCsVaswRBokhC+R13k+AYisaCl0rFfF2mX6kn62DosB6rIEqVMvy/T74kSpXGsSkZRqT/uwzDVkLVmQzPo9mjYJay8QjJZmQlU1eQtZk0lccuHxMeK3YHALdUBB5M9I+5dDJ1xuP5wd5mkFE6FfZ+isZhTZ2DNUztoKgUMkymy7RJMLgMVW2a7IVQwo0bUusa7ANF2cXGKtprFgyHnYbdocdPnrOz094+vwZ682GEHc4t+ewizw8fGQ+P8OYOcbOmC/OqI3C2poHN/Du/TseNltOXz6j2i7xBJqdgV2gomZ7uefq/TWvf3jP8xfP2e8GulRjp1/w6utviM82XNnf0sbAs9mUVRMxzYZaL2jTjBgVm3XPuzdv0DpxcfGU0/MLTk7PWCyWKOdQKVLbmmE4sLmP3N9/Yr3uWS5O6N0B5xuePD1nsm+4ubvm5uaGXbfDNBZjDfPJlO8v37AZ9lTTOU/PTghp4OOHn/jp+pLb//xfuLze8/d/9e/5m89/Sdp07Lc/sllfMqkl0Kvb3Mmzmgw4T/f+HTQtoFEnp6jaiZHPYkpyLfViwcPDlpdffs1qds7rj5/4FK+Zzk949vwFu/WWk+kC3APeGp7MTmiVgsOA7hU3d9fY2RlmuqRqFO6w46fbG366/ANRwdPTBcpYNvsDT5oJNhj8IfJk+oSz5Q0PYYdLDj2tmcxm2CpRNZraGrpDL0Cc9zT1hKapsFHJ3j8VPdHh9ipreiy6sWLqgPDgnetROenU2obZbCKTyiD81e3mQQw0gLqqCC6DCVVF0pKBYmpLUoGqhth1nK4qvn7xnLPFkmUromnlFaqKhLZG1S0XkxPcZM7ryw9stmtU1aK05mq95v76npPJnPP5Eh0Ds+WUxWJG0KC9ZzpfsGNPNwRMFBrjtGmYTyp00hx2HQ/9gaGHtmqpa0/Xb2UPVYX6LdVpCAKSTOoJ1lh2uy3eBbQR1oW1Une0lWXaVNTWUhlD1U4JPuIG4eZrk9j3Qn30UZGSwdqKqq7AVFTW4t1ASDmcKgNy1lYMw0BV18cgTCPnG1HcwMiAbAqB/X6PzlToqqrGCffj7CCbUmI+n6IUbDcHvI8c9oG+z84GWRgkBXFGQVJ2Sck2eVIoilDQh4ALgtaW8n7cwzO6mTKqofNeabQeC/RijyT2aHGk0BTPYcprZpRIvu0o2M15h7LxI/iUzsiTOEfIDx1FkuUby2vnn9OHEhwjX2JJVCERlIzEqzLSRviYggaOPQYhV73OxVy85FFzLrrH2YEQwymiD2tspgQUBwv57dwxyfFYpKjcJAgyqzKnrPBwC7VkdP6wNo99TD7ghMJCsZOMiZgT2pKJWB2pW0FIQ+ZDpxz/bEhgZfE5DzpFbCXUAinUBR3PznUywpIuYNQpHKcyYfwAopKTMz367EvTUe6LzkFDSuVuNwaa2orVnRG+rjaKyta4TAco/G9pQOVnl+lFDIkhu9uMKKhRI0qvtBkpCSYLbnzumN3g5HOzNSaHFMUcXiQ/MzAMHheK4C/mhFMp2l0W/cYkQUt1Y1FJ44aArQxD3li0NsQkFKHi8OJdgqJt0YZhcJLsZyEMYuRnTEUI2ZEli26lIUkom60LC6Kr1FG/YixElx820UJI0SU8NnH1LLqMbEOp1bjmyuf7+JcEd0klVRDWx/sKZCDBJ/EfFp0y2QhsXA8xJlwKeCXFtM0NV5+F3FoLgKBzcV9eV56d/EFmaML5yOASJkLEo1XEW4h1TjyMZbKQMFGhrViMJp8/NBLByxpQSfQbKqP7cbRWNISxwFe5MQQV81RHl7FyEKvGjIwF5yAmptMG0Ph8v0KEwUd8kKY5IvSwkEqlKevLBSmym6ZGa8PQddiqEooUYeSrF6pk2aOEhiV7e3oUQKfHXIv8O8p0UynZN2UKkve23MgJPUdngmKBHeRLUkQCjGIp/gPJyGuoDPMXa7ci4hUXsHB0Skv5Y8gT4DJVKb9+FmyVz1KV+fbKyF8aI1OfIcFm5+TsG183js8IZU0fe518u4/rV6tjarvSGqwm5Jh6U1mG4Lnd7NBVTWMtja3RtqYbBpr5kn6/IVUN633PyapFqRMUhpOTGZNmy7Zec3omgrqLp0+omprBXTOdnqGN42F9w+3dBmU8i6Wsm8P+jrevN9zfrTnsO9zQs1idcLqaYmpLpRIvqjntSc3bzS0PDweGcCBMHT/ebElWUdUtxhjuPjoaY1k9+4rny4aZibQxMJkvWdZL2tgQ6g2TqPC3t7x78yM3mxO+Tr9CV5+zWNXMF1N2O83D3YaqboX26zTLVY02O6LqSaam9wlbJ56+WHB7e4Nij8EydAMP2weqGAibnto02HbC7rAmNBOUUTzcPfD969f84sVf8PLkM/7mm2+ZnDt+/wepB+wUfDthfX2L1RYwuN5TWc1h/YALjj6KaCcdluwVHNopyja83zs+2oYhaTbXW+xsjl93nKxmKD9wNl9wu7vhdDGnUYawH3C9Bj1h5zxv377l3W7HzeHA9W6HbzTVrOb3b77nd5s1bfD8+stf8M2Lr2HaMmlrXlXf0m1arq/fg9/hN3vC4YHT0yX4jr/47CtWy3Pu7zaA5WQ24+1PP/D+p9eQglChosO0FcE7khtkI7ERjZHGuW3QbYttWxxRGoaDQ+330HvqdkoMFnpIQyDVFWHfEw47VGOIZoIbHKvFgldnJ3z3+efoocfvOp6cPiG4isOmwxGZVuCN5XazZu8iQRmSEiZEVFKc9n2Hcz0hdFwsFrTzE8ykZuh7Ts7OidWE+3/9I0PosUiz/uT8lPlE6EDbw56+S6RUsT/09H2XdUMBU4sbIQl8P2CUZjabsZov6Pt+dGaLSYFOBOepG0vbVMxnM1qTM4KSFPG2meGT4m69Z9d14tqX9w1rNHUVqapAW1fic681fohZU6fRtsqOQBFUGKeRWsleLuBSQGuLtRWBkivj8t4p+2PTNLmuc9imKYFMsN8Hhj6IkC8LkKzNqLYAomNBrvOeVsSBzjm6MGQUpfjf5w2W4/eUDb5wDtGCZqd8cPh45En+THj754X9o6LhZ/8sXQIlKlgw85Q5/ZkPTyoY2M/qj/HQQfJm/aNrPzYWKRevmqoAORkZKjd5FB3mCURCZ5WzcB/lIJXrSLGg83LgP34tOB6kIQdhxUxNkEaiWHSazDeXg1UKoDAehlpltyPns7BUj6I+azQq89kJahQP2uyQ03cOKiOiSacgWRprqRrFoRvoPcX4Qmgk3mNN4edKkW2Uznk6Clv0CDGjlPkTkg9ATumYEjEH9pRT2Vqh1whqKJaEpRiPWn6W94FKWQkZC4mo5f4qrfKCl7GbrR5Paso9K0VvDu1RekR2tc6fHWRuf8J5oflYa3E5XVSiKrN4kTgKiEU5r3A+jvVBfjWKu0htDVWtseaYoio84yDaiiIY1jLGrlCYKuRk4Zi/VjYuKWASCS+0nRzYJYm54k4UQpLitdDocsOdkL1ABMOSOqy0iLhtnjqovEZkoqLEnaXQanITFoKXAnak5Ohsc6lwvhOkO6osRE1joZy75Tz9kGLJKynwYyr2k4hLgdaEvN5zFlGutVKmjMgDVPyF5cmDErjlXcBFsTdUKRHwGC0IrkwVZJ2qYtuqoDZ6fMZlY5K1VaaI3g1oDEZboS1GjzYighbnI7IvvYyYx4ClKMFsMXhU1NRVRWUbQnTEKKh41gzjfKTPCdPaxDztzIh91tfo3LAbI9MGYsLHiE0aF4NYtOWdsFCwjo42sstpYk5tlWe3gCgp64UK0XF0nylTnhjlc5E4cPlAy6amjsh9VPzMqrg0bpDGs6bsx2rcidX4DKEe6QDUkTqmRgBH7leZPiRGrXjea4/ObgkYhshuH3Ah70hapkAUpE8BSovjj7zzcijkb4gZUNISaZ8biaSQIh/wBpzviQ93nC1X6EoEc8vTE5ZKYe5b7h7W+BC5vFqDn1DbitXJAq3m1I1mMmlISmHtCefnT7HNBYMb8GlDPZ2xOA8oVXOyeorWDZvNntubO+pWU9U1+4eeFHe8/el36A8NPYnUNpx+/opvV6d8eLjj435LTB39YUuoNbGdMJ0kPtyvCX7gycUZTxcXOG1AR7Z2RjtbsJgteHa24uKrM2Zne06fJh7ud9hpx2SV6PwdnduRVA84qrqh7wfqWlHPLJc3n5i0Uz5dHfjlL79jtVoxX9RUNuDcQFUZYrLUFqbdQBUVnUpcbrfs1g9oXWMbg1sqDkPH/+f/+/9maVd8++03PL94QRgCxkBtLR8/vEfVNdEHDtsd3vX43RpUIBzWsqF4TT+spQjUBmUnuHqC6xPJ1KjZgvnzF9xs73m9X9Nrx+nFHBMDq8mU3f2GmZkzsS3eNKz7gX9++xM/3d5Qty0uRbrdALcenzrOnwpK/dPmE/XZkhdnn3N/tePt1Uc2/Zo6KWosfjPw6uwJ3778nMVkxsXpE/o+slvMOT1/houOU9PwcnbCxw/vuL7+RBcHXIoc/ICuLEpZEWsGAWvxHhMienAEN+CGAZUSy2fPSM6zu7vHeYetG6Zti1YapzW+rjHThtOzU85PT3i6WvHF2QXLyjDcrVF1YL91uAhJW7rkeHd5xfuba+77A33OvKDSED0xDKgge0vvDlzd7wl+jzKRuq2oqgZSYjmd8BfffsXNzR37+zXzpuJsucS7HpTC2hZ3ONANic3Dge6wRzcaXWs5epGzuZ7NmDQNq8US1/UcDge892irx33R6kRtxWQleMdhSOCCcN9NzaHz3Kx3PGwPDDkY8jipBK0PWAVtUzFpa+bTCVVtMu0zkeKApMo/ppIK2OJzKFW2aJDaTRcqZGIYJAirpM6XabrVRnE49DKaipJOSkZpbPb9Fq/vjLSnjMqUgzRfvVaagPhLx7xZlhMvcTzkC2JqiuVZbiKU1gze/8xNR5Xi+XgujH8qBboI3h4V8nLePuLW581cpREzGqkco/NBpq48BvGDKkdKGoXVQT1C3IkQtRQVCFe9FOYpSQEeSDS1UHNiKKWkoHXapqPwV5U0SoMLhcdeTq3ynsu1aygFXKEipaMNIxSqicZ7scDUj9xgjDaUb9KZmqOtlSCngqbmj04pmcYUS0XhvKoRHbMWGqSwcCExOIlM1sZm8V++51roqpEktCZSFtCWiUfK+QoInzwXV+PDoYS3m5IUzMHI62idVeFajRMNEdlaQgyZFhJHq0/nYqYfGZSK42eCynQapHAXYWpxoMkPU6bdHK9Jjd1yaSxSEupPSrI2q6QhF1cxC0bFTSb+rHmVdFO5V4Iwx+wVH/PkQzQuGoXSia7rRPiohPriQkIHKbJTfjYrKxyFIqCFwsPWqDyNc15Gf5EkhU5GwIvrjNiIZkqUyh7yqqzvfF9QGaV4/IwXXcIjxywVHy/nsVBPxVIpMaZaa62wWmfKnqD2RimiKoanpbBSGUwQYZjVGp3USOkwI23kuEdIQ1EQXyW/5YKEHVjQlgA28/hUknskk0kRYoroXmFLV5HkNZQyOUhK4Z3YMCrEutUa0YQoJT+usrIZe+/ypEFjlCX4gEtO6DpJCUVOy0Pnk6IP4KI0KyEkTG7y0TJWj9limIwgD5mykxB9gg8hf42ww2NMgsCT10be5zVJ3MLicXeV/S1lDn0RqnMszlX6WfHNo71M5b153JxVAVzkn8taKfvBzxrw/EUxiP3puMPn/b0MZEY3HaUyvUih0nHFjC5uOus98nPonaPvwbvyXJdrlGcjqeJ/pPKKhGN+sazjlIv+EckqC5qEKtScdoIK4sJhFi2T+QKTYLaYs91smbYT1g8PqJi4urqi33mWyyVVY5lMWkI09E7JVPuuo55EHrYJsMxOntDMT1DKsN/3VNMly8WKkyfQzD5y8eyMSsNPP/6Bd+/eogYwdcOLz79gtlrx/uNrVNtgugN2c4ezYKJHtQZ8j9/eY3RFUjX3wfMn1dDOliznSz7d7mirHa/ODzxZzTltG77727/l3/7d3/DjD6+5vXlgNp+QYqDvt1RtxVRptO7xboO2ivl8hbbPub9fs93uePv2HUPvmc+m1LYl9J7kIovZjNV0wfsPH2gXK/Rsylm/RwfPp4drqDWTxYrN7R3X+2tu3B2Dcfz19Nf8+pd/Q+97rm4v6dF0WuO0Z/b0nNPPXrK+vqNqG/xuy+7+hjR0pN0O6gYCpH7HcJ/AtmBqUtzj7cD6ocWrRGg127uORkdqZVlM5sztgirV3Dwc2CQ4WMXQKA7ugdgP9Hf3pM09emrY+SW0hmQM//DHf+S35idMqOm8o2lqzs+XtK5jfnHBt09OaXxiYSd0nx4w1ISHPboOaJ14snzCQrecTZakX3zHp/tLfvz4hsvNHT5FiAG/H1A+QnCY3tK6npCb8UlVUU8nqNAxDB1Pnp3StC9IztMEzdPVOQfveXt1ycF7UtCoWHO2eiG8+vueuPF0DzseBs9mEEvabvB8vFuz7vd0yF6EUQLI9B4VAqkXjV5CwJnNfstkWzGfTCBKXdJOp6zqGruc46qK5By+k9yG2kzo+8TdzY7eR9GCaYWqFKbWRJ2R8QSTyYzZZEqMkYeHBw67Tp7lSqbMMWYqdYgE7+ijx0SFTYZm0rLedFzebji4SFSVTFQLPbhMGEn4mNjsHfvOsdl2TNqKtpGMCEMQsXfKdprKigFHDGNtoa0VWnWQM6VqqlzcO8qm6pyjUK6tcy7bJSZiMCgqyMiy2AuGEVXL8su8+ctv6RKUNAcUPv1xPy6ipZ8V6aUojVlsphTJGFzmfJYSekRlEMOR0aY7CV9Jvu5IGSq8/PT48FDlYBmvXjbvvNEXt4XHEH4qlUbmYgbkAAlawNlywCUVCEphSFTlQv87JKpcT6YJaKGF9L2ghDoLdFNGV8kFq3lkPZTy6KSMvLU6Is8ppmyFKb/FW1WPRXNKsjgKF6tMAgpaXnz2yR2kSCojXon/e1XJ9SplMFVFVAYXB7SGdtqgXcSnRPKSmorKCGuuDq0mF0BCc9BGFn3KdnkhKAYf0NnvtDRcKnP0R1FfjJkawvi+YkwYK/xbGVmJ2jwE4cqFIJ7lIlqOtK3JvNxMA8pk2/J5ijgxUTIexAYyO6NonR12joWiQo3Iu7Ui4JUcg7KcctOQKSHFL72sQeFweypd+PBesr8okxlG0Y3w7y2JRF21DE4stRbNXKZduRHxThadDIYK/UllRPTYDMuGJZOAkApHWtaTyu5NCTWKUcVHPOWCOQtltcJqxdCHPIkC7wdG5x+lsFXWg8TSyGWheCoWrEcLw4KiHpvWPNVCtDhGa7nWfG0xlqIuU+9SwqY8kYiMCcKoNDauMRVhbZ7i5QI4Ekg5t0MHQcejLkVubnSk/RLktyqhSbnxSkWgKo2hiJlNpgHF8fpFKJVdKpIg/SnJBE2mRlkH45MI2nKhKxQRg0+KzkVcLIBAxOXG7TH8URrFkJCAuZDzLfLzlZTOgnBZk2V3KcbtmrxvGo1XZRp55N8rZfL6L3udIiUt6dVKZ3tMddwI1dHEMhXQ59E0YNyBH/2McT/O/x7yc2SNQARDnj6gs2ZJyT0dLXG1ydTNXJSrND6rdW3HRjWlRD+4nD5u8vM5nib5vsiaU5jcvEiDoVQ+eR69iSQXK8VgkHwGZUBPG+yklXH+vpeAotZgksJFhzWKSiuWbcvd4Z6k4ODv0F3P1a1jPl+IM5JP1M2EH+7e8scf37BYnvL0xQvOJk/ofMfu0LE9eOr5lNWTV8Q44FXksL0n+j0vv3yBnSS6Yc9iMefiyYq6bkmp5W69Ybj6RO0HdKWYTFt22y0+BYwJaGtJ0bK7veSw3dCcv6SanFDXMypd8frjwKLZ8PnZCX97NuGXzy44PZux271nv1e0zYT5zHD18ZLtZs1sPmWxbJhO5wyY/Pl49rsDPzx8oK1OUb7hdP6MZXvGYb9lNV0yaSxfnj9lvdlwd+hYTuY0SjOva+67W4JN1BcnXL59j10ueHv9mqv/1w3fffcd3/7lL6mnS775y7+m/vSOq/srPv/6a9q6ofn4idura1zoUK2mWi6Zfv6Uuq65efeeuN4JsFV7qqYisKe/vCdFhXnxOe10yuH+lkFFPrx7y9eTE76/umLWrFAnFwwx8ml9S5cOJLXHH7aocEC5HewTD6+vUYsGKguTJbbqaJgSK4uLgSomVssZX1+c86SqiestJii86/lw9YlARbM7kKwi7Hr6zYbV/ITTkyVnT55y8uQpv3v9R77/6XvCvoPeY5WlruCzz5Z8/fVXWGOxtaWp2lErdLY8YTGd8fHtO05XpzTNCmUn3O8P1NM5P777wHq9J3R36O41T6YrVqbm7qd7TILQaD5dXbE7dAQ0t9stXkeY1GgbsRNLWzVE4wg7T5y0pGgIgxTUXe+4vrmm1pblZCnJw7sdOiWmxuIry912i9KKytQMfeTudkvXRVxM6KpGGUWkx0eXJ52ZbpwC3js2dw8cdnvREubzE4WwDxJMJzXz6ZQqQqUMrW3Z7Abu1ltJsTUNElJiCF4citSjfTUpRWWl5uhcoHMddtczbTTziaapTTZAKVlGx+yiYuOclKI2DZNpg1IwDENmHIRRm2St6FJs8GJHNwbwKJO9baXAjSFkS69jIa1yaahz0Sa5JEloGQqsylHj5SAstmjHU+NojZmrzVKo6z+rtQs/XeXDYCyqih1lLuzLcfCIbplR6+xiMaJLBfMj83iLCI/ct6TjAfSoSchnJDH/6ZGGw2TESZi25AJODjMSRB9GJCgUWz+VpElQCqsNKaRM2UjZFg2SlgWks/uFiLWOxVp514XaEpPwTdGKhPirV5XYQwoNIVMJ8mFZRBchBEFVqfJnnvI4WlBNl91ExohyJYmmqsr3OgVSEL54QufzUAsVQglH2asccpOR7mqsQxI6gLIKXzxOgeQU2TZpbK5SRs+UFfcgmTwZUlRS6CQpDH1Q6JSolB5pSoWLL2IUKfS0Kb76VpJ7Mw9dLqEIjgVld95neo2mrkuhUOF89rCX2y6IaPRoVeeDPzvjGKiNuNuIaNbIgougksHqOjdhUYTJpnxGUbyM80OhTUEMwQVPConJZILRin4Qyy6dXa1cjPk5LVkMQnkIQdySQizPkKI45aQkBb/V5ZnL62xUDx6Ll1SaBa2OdLLy7KQjSh9z9sKR/55R5pg53HnjFP1OHBFqioVkBJ0SdX6NmIIUmzwCAFJBlwGVPelBJhD5nZQ9IqSUQfqYn2eNwuQpmjzoKSr8IH72JUxLgQRcJLC1FnpZEvqY/FglmpUwEE3A2oamMXJvUdkDX2zXxNs/u/VEQaJj0pIQGsVazShDTCZzLxU+JiSNWO4pMYMCqgT6yTSvoN/WKkLOz5CCVxCBkLtG4drrRxOXP985BZgxOltUkhF6Jc1UzAjTqJfIIIpORSSWC2fKGVm+qNAhU3ZmOm74x5p+nFNStFFlj/Ykxomw5lHTWoLMZMpnohyQPoWx8SOJ6FYnQeGUNURl6bxj2ycOUSa2cbwOjmfAeOVCvSvzo3J+wBGIKtMzvEL7BDqhrEGripiE5xoN3O576vrA2WRGNW05Ozvh6sN7pgeNq8FUFc47dNix33hqE2gnE7b9gdvbO5xLVFXiYd3h4hbHjmg13TDQHTpSJsceDnu6bk9dG1arU7781Vecv/qGbrdnuVxycnLCfD7j9P07fvjpRybzJZ9uP9HFnmra0HnDwfVcbTbst1voI+iGsI0crh/w7ZLeTjH1lGG2ZK0s76Ln8mLBH58/5XR1RmSKco6FEdplO5mgkmcyqXn+8hlnF88IasL9/YY//Ovvufz4lovzM3abS4b9PRenT9jtOu5utxx2mhfPLqiIzGYropkRhwFVTanrKev+nnW/5u31eyan53TbDVFFvO/5/e//V374/l/48qtv+Pf/8T/SqpZuH/jw/paoEzoGgndMTk6oVytSisxPVkxqS5qv2N7cYVwg9D37zQ6CIxlFtWhJbk3Y7FBGkbxnt92wPD9junzGsA0c0LRK87Sdi8XxvEFPK+puStzVWAL77VqQ8xhIhw3u7hbnIiznqGlDtzUsvvwFy7hCd4qqmfHpZs2+auiWSy5v7/nDH/6JdmKYTiwvzp+yU4n7D59YLed8++pbZs2EYbPnY/zAUDvsZMKzZ2d89fXnfPfl5/j9gXA4MDENbTMhRsVhs2fYDVzYc070khCmPHQKzZRXz75mvU087N9zc3XL7naL/foXBGOZLGecLZfsomdy2LHZ9UTv0KFD46mUx1aai5M5Z8slD5eK24PH2xqfDCFYsEKJ3ANvbi5ZznYs2znL6ZLFZCZnIQpbTaibCaiK+90dXUg4PE55hGordtgqg0vUolMchp7QOfYPe1KeYGM1mGzuYuFsYnhytqKtWvzBo5Ph4BXvP93ysOuRtPhIGA7jnq+1QaUw1kwxQgiapp5grabvdoTo6V0+X7WlrrTQ1HOtFFwQoCi7H4YYqWtLZSW8ymhN2zSyF0VhBBgjm5yNWAbXEQFbSTmQYhot+UgJa6Wocnm8mSfYubjL4/qMxJqMhug8blfZZkxp4eGrjFSHILSVI3Ae83b+aKMsBT5qLDVyyS7FyqNDu3yvJhfcKovD8sY/IJ6/+dSR70zH7zn+ZPmxhiLufLS55+I+5S/S+QO0CRpdZh6lVysiNT0WO5KwWewBDS5GQXkzimq0JKUG74lDPhTQGZ6UZktnm6LiIZRyE1HeSGbQUNcmj7gLjz5bUmb/7aqqiXGQBelF1CfXWiTJGh8hJElxlM/HCyJrVPZNVygrTjkxHhuwGHKBlEQroA0Yk6clJoye3imvLZs0wyDFdQzl9c14v3W+m3ItCmMkLMtoebPeyyJPvnDki1Vm4ckLN5yx0Mw0sihceu/TeJ+kcFeZr3wsfopdnrHisiKcOpX9r1UuwnKqbm4mxTnHjw2fj3naoCzeBbyLaGU5HLw8zDoQK6gr8T3PqQ4YI9x37xPWVETCaMXovQOlcYOj+OHKJ5KRCXzmYBeXHnkOVDb9Lq5VCXEOkWI4ZkesgsBnYbHKDjExHovBfE9FJxAzVUqNT2YMEoCilMpOK1KExtwpj7a3uWHzIeIDhCjPuY5JOKG5skyZ6y26Bp33INmvxNc/P3upPKjlaQx5+pC53vkJEt511uQk0f9QfP8zFUqa9oSOwkM3mBxdoEnGQEwipNUKKmnqjHJo7bFWwuOCJ4eZJYIXC01Ju60IIeG6PHo1ZvSaT/nzCQkpBrJ71lhuxyTis3y3NSVTJZKC2BePzTFWniFiBucTpJK+nI4olSqUlUJpSXk/VmNhr9QRUFG50I7Jj+4y0kcci27U0R3tuMfmn0lpBI77rEwdimGBysV8nrAoGLKeSOmyBvPpEBgnEDpKsyUTNyRFMon1ZAxBrkkpgjZsXWDjEgNkt5vjtYxnUDk6SoFf7oceJcSld5GzUyNyg0HAk+gj0SmS8dj5graZkpxjvXcs5hVqOmG732Erw7Nn58xqzTAM4rajNPtDx2xiefr8gq7vub69o+8HYCAhGrab2x9ZPX0CeO7vPqJih0me09NznLa07Yrzp5/jQmA/BEx1SmKK8zN2nWFIc+Ynz6Ge4FJkiAeUibz6/Buu1/e41++53/U49qTDQLz9SAofsbMlqaoZjMXP5ujZjCFG/nE35c36I1+8+pJFs6ANiul2w2dnSy5OVqh5K/uqrjj0jtPzJ1hTs3vxhPRv/pLd7p713RtWyzN2e8Xd3Y5PVxtev/3E/f093/3yKYN3fLp9wJuaatpSpQkntWI1W3LYHHhQBwYOxCqA3rPfb0lxwccffuT/vwv8+m//Df/2m3/Db1//kcuHGx7WV7RtRTs/4erqlvmT56TJlD2B2Ysl19vfgwnodkqqGpSXbId6UtF3DwyHDWY+F41Fivz47h0nZs7p5IyL1Sn99R1nyXDbO7Ztop43hMqjZzO8HzAtVAFc3+G3W3B7UA417FHOcL684JeLGc+NxYSaUM+YX8y53W753U9vePfTD6TkqWaKunLcui/54umXvLh4xuFhx/3vf8Qoz1k9ZV3VhFrj5xUf1xs2v3/DavmcZ5MVtWro7vboiWG7dxx6TXKRShm6bc/BO1Izp1rMmE6WnJ53/Pj+ExhDlwbeXL7m119+wfMvXhAOHXWsefrsOQ+391zfXqH8nmkLduh49uSCz5+dcbY6Z1MteZem/PRRPPejMuJgpDyqEur2nd8Lfc5VOAXJJypdYyczPBWbXc/9YWAXPN54knIkFYqQVEqZWmfb5Yr+4Aj7AXxiTJBMiAWoVdSV5vxkwrypMyPdoKopu92OXZ+I2LwdJLTKYC420wEDOleeZW9yPmCNpZ1MiKnjcHCi++qC/EydL5WE1ZbK1pla7NAIkKoyrUqlYtWeMrgj+2WIHpsVnnKAGdlMQ0rCTwKsAmsbgkqSVJZdMiiOBWnE66TYHNHxNHIpR+SLnPZZRs3xuHOmfCCPhXoBeig850cCJpVL6PzzC9ouwLUUwNrkAzAfimKp+QhdHA+Sn/+JtA4UmmkGsuWf1fEEki0+UeLlh/w9Roldps4iM7FvK44Ux5TKqhbroxiD2NxZ4ez7jASmlBg6R0lStNl6LsUo0xSVQxXyAWmUIqIhPUbjVKZFHZ1bpFg0lDRR4fwKNaCI+3wWgwidhTEIaOSrmoxYaWme5P1KAX3YDzjnqeuKw0EU420rtpdmXDs+q75FkFpS7dwQcINYcGq0hHw9+nyFCqJlDeZ7b7XFVLWsl9Fh5zidkbRMEfXqjMx6LxOS4D2HocP7KKFlZaSVnXLK+iyWU/LfjMSwl5Aiju4w4z3PRaGxGosUUDFJ4FAI2e4RDdmScsje8NokVMqBXCYLcbVcc/lZYlV6nLx4H8aCy3vxsVeq6BlStjrMGQzFWzzfI/msfablqJ8luMYY8vqw43p8nAb6+FdVVYAbC3ejj3zs8hwIBcvh/ZHCINSOI23PmixizQ1wKg1EnnwJp13SXAOZf63U2NuSd4hRSxtlGiAyghKwpguIe6R/pEf7QDpO+7TKQAHZkUorKmuorUyHJNhME4PPzU+hM+qRKqSMiMAFXSobmyDuZGedmEKe6siKTZkuFFPChSiN3Qib58ZKGXETCuUzz8BJKoL73MhAFoMrkpaJCCSh4BUHoXzfVFIkJWF1QlmUvVplPUixn5Rn8bgXxgyPjOvq0do4UmyycLr8W37/jzUs5etjGbOWJiNfq9jDHb9OfsuCfmxNXDQBICnYSYkQ2moLqYTOVCQU20NH5zxBk+1sebQ+H7+P49+N618di/ojKPXofYRA7LOgODtaaWNJ3R4fPNZW9IeerveYasb5y6ecTCakvufND99zv7nHJTcidN4YdsOACx5b18QEk+kEa8Tzulq0GAPTeYtbztF44rBnt1a0kxmhP/D+9U8sT05RKdF3Oz68ecPyZMFk0qBrzXy+YjKdEULk0G2ZTGq+fPUNX32p+e6vev7w0/f8429+w+XbN5DWYOHgtkBNihb2DUbP0c0UHSM3V3vWd7fM2yXfvvqK1fMXDMDNeovf72maGkeL2q152ERsVTGdLvmP/9f/mYf1DTfXl/JcGYOdVGyHNfubG95eXbLbTanrCYuzZzRNy2G3o46KShkUlrNmhVtG7qoFV7tbUt3AIqFSxa5X/OHja96u7/jyy6/57OIJXzx5ztuP7+h9x4fXPxC3O/a7jsVnr+iDY5cC7XROP/QE16NXS6azmUyBDEzMBXG7lmn9fuD2+o43P/zI4ovvCLbj/u4SpRPNROGv7plUFfv1hm7YoBpNMoq6MTSzFWxb7GSKDp7oOsKwY9JUPHv2jOAD97cP4GrsTBNMzU9/+pHN3R2n52eEcODg7jmEno83l1jVMrFTZkqzXK1oK4XTjkFHfrz5gIsaO58QlOLHt2948t2vsapmNm0IseLj9RrbTNk8bGjaCs3Avg8MqmPz9g121pIazXSxIBBQvme7f+D9x7c8WU5Q3hOpOV20XKxmDA+ViMMnmqefPeXlF6+oJnNwluVsSXw2Z71/zcOn90KHbFpS6lHGYGxNdJ5971FxT5wYWiOueE1l2W73XN/cSYhUGB5N28Jxz9Gaqq3R1hB9yM2+QrdVBq6qnGkj+3lTWVSAw3aP84qUalJw7LcHvHP5DMjgtAZSMbUQ8KO2Sib+yeAH6Iee3aFnPmtYrWZotWG/C+z2A3VVs5jNsDoShoHKVlSVpR96MNDU9cjD9z5m/dQ4D0XbAlUrrDFJHHEijBxXk0fVqMzLTCN3vKDWMubPf5fIQsUyBpdd0Gh93KjzYRn8Mf78EbYjAkzF8TXyzxJwRo8HQ8pfVqgCx8JejQWKUvL9Ph19ziNHtGncsPk5jednB8+xlRi/9mffnH/FFPGIdWYArJJD1OYDWli6Waj36HDzeUEV7vWxqJLiCJWL2ZRH9MVTPkVcKB7eiH8q4rAiXvSZy0wYHXiUyjHGWqxKQ0x0fYdC0zTVeO9GpwpVBKIRW8nP0bnR0vnaVBpLAigoYzg2bNJQlPRjPWoBQvBSeGTkU2sxOtQqT4iUzv7d0pjp4p0N2NqIeM4PI1qnCDlUKXuiJ+Eim8pkRybxiych6FmK4oaSKvoh4AYplobsix5DpKosdWOlwEllhcg9kQyHOBavhe5CXrPeR+paeNhkGpWIe1MeAQZBn5VhGETkq1L+vBNYnW0Xg9y/svrGwi8VL1uD1rnh1uR/F94dKeGTFOgxglWSgPn4eY2ZnpL75jHFdUTS83NTypbitW+tuGu50aVH56kD6GTyPiC/dLbWKvai4z4i28Nok1p+rjV5qkJBk8nJntJYVCYLoZy4E2l1THuVxl7QjpI0WAqtIqgn6bEQzTw3Up5ySBOvMLmgt5oc5iZTvCKerY0AHomI1pIaKWJKn69Zpj82ZwyElOiHAedkqqPzwyRrXKg6IYmeAaVwZYpAHvOmILa6Sj9qDorLUaa6FeealPFtpUbBrLiGiVg8xYxMj4XxcUcsxXD5rEsmQUAOuNHmNKU8qc3akZ/tknnaSSr/P67flI5/ylaf10bKz3FGvcsUoVxPzP+e8vsaUfJH72Hk9pcntRysWixOZdHnGaASYXZSmiEEdgcvgYV/vtmPBX5x53nUAZa/59hklJ87Xo8uN0Dlxa7RBExyJB/wrkc3U2IyrO833N5tWU1PODjDfhtoV895cnbB/f6OGANtCLiuJzUTprMlzcwTnKOualIQd6ph8NRtzXIy4aGSAvewe6A/HDCbDaZuaKczSck0FSF47tefuL59z9NnTzhZrVCpJaTIy6efM18u2O/37O8Cz15eMG07+tU9d08uGLoH7q0Xm0+jUHWFUobkHMHfE9IeqwOkRs5kO+Py/pJ3b39iVdX89dffMLcNvofhtuPq5p7ddssvfvE1bnDsHiLz2ZRnT7+jrhS2hdv7j1zeveP+0HH58T2fXfwt89mMSVtzcD1uu6cfeh7WNyxPFzyfnfDiyXPudjt+8/1vWesN9WKKi7BbbyF6Ij2v3/zEsp3w6osvmL5qiJUm9Z4r/xP79Zo3H95DU1M/PSfVFahE1U6p25Zm0tL3Pd4o6vmM6eoMt9vR39zh+8hmcNI4msRmc4VqW54+mfH8tuXt2zd0m2vU0mLPZ0Rj8CS23Z52OqeZrUguEPsOlTpmjcZOpjwcHMlr6AJNmNCZSNj2TJSh67YM/RoXt1TzBohc3V6xuX3g66ev+NXnXxCj48WLl5w8u2Dypz/w0/UHUm0IyvPp7hPr3Wec6imr+Qk3N3sOPez3e+53e6rBsu+2PGw39F6mdaapGELPYXOHBBQ6Urfl/bDndNHw+fMXVCqhQuDVs1OeLBpicgQCqyfntO0KY6dEXdPtIijNYnHO9GHDdnMHHmwzARLeO9pqholw6BytjTy7uAAS11c3XN/dse9dBgk8KYnYVKbulTTX4mcGMWfpRMBobNMQvEMnIdypEEQX6RWHnSfqCkVFUgkfHG7o8/mTaNuamBJ9Lzk6dQOLxZSqBoXHaIPRDX5Q3N6sGZyjHzqmHlarBTHs6DrPfu+YtY5q3jJbtMRitmAYwyqNtgy92GvH6KHQXrVMu6UuNlilPFWVN+agCD4nCmpBpVJOYfSpeAPkQrIUBsghXYpTKXZidvZQqBwxXwRa40b5578SgsiPiLMcYJFyCJVBf0aaUspHVkan8zhCaD/HsJVymKSfHTZ5g0YOtaPbTpkISFNRjoz/vcstxINy6Y7cHyZBxShFTmTsrArwn0hEH3KcfQ44ImYkE8hiYbLbiDGWwfXyYkrutTUaa7K7EcIrj34kHufwIUFuQxljK3UMY8o6CGm0pCkRFJjRNaWgrDGCCkiqZhTOsTKZN56bvBImY0zmqsdIVUkSrdhykjntR/53QZpJcfznEoKUCNikMfEo0q7riugj3eBzwQUQsiuJ/OzKWrl3URwqTEYbx3YtKYJPdMnjhoRS4m5TPOJ9CoCnquXviz2mMWksZKWIz0FKSlPYASmBc8V7NgGVPHwZ9TTGErxMfGIyx+tKmbqVEt7LZEGbSI0IMkfEM6XR+lHrwpOW915aXFkPeQ0pI9xrVxxR1FjQx3BERrU6crWhaDOkiIwxHQscwJgKrdO4ByjFmOqrVEE75RqNMXl9lCaIcb0oQ3a7UsjETzz0rVIZyQZvIyY/o6P2IWVEPQtSy3MoNbMg26g4ukOpTLUKOQykTBSLIcBYrymJiDL6WNjXVmE0QllT4m5Tm0gldsyiE1ARbXIBGuPoOpNyQUfexwS51aNFsDgdCdXNRymiSQnnPDpPuUIUKl3Zdwvd5XHzUiZFxZigTCyL61hpvMu+UIT24/eX5i3F8Z/H6YySYCvyBKZ8rkdtthr31ONE6CiclSV7/Fn5cvJE4ef7YZkQlussrjnlt5wnJUPjEZUo/wrRP1rDss40UJkyMUjZFUpJVokP7J1nCOALAn/88f/d9f9ZDyN//xjFp6x9eZaSgZS5u0lFMIYURSfTTmaihwgDQ5+4vN/QbTp8F7g4OSV0PSlE2tOW6ekTBjegE8zalrPViknd4L1n97Bhu3ngYb+WwLTGMG+mnC5PCE8lByPGiLE1q9MzrK2ISlO3EzbbHd2h4+x8yeFwYDqpca7DPziWqxNWixO8i/R7SdD83W/+RFN5Ll5e8H/5P/5HXnz1Db95/Tvu+w1m1kpzse8YHrbEQ4dOmph6mtkM3cL97pqHw4bYefxkzuurD5xPV1SpRscKoxvOT56yf3DsdwfqeOBedTTthlefPaHqA8Fpfv2Xf81f/PUvub36yEotSKHi0Cfa2ZT5dMH15SXtyRl9t2PYD5jesahqnk9PSSlxSJHJas7qxVMOmz1sBx5+uuR3v/0nhv2es2fPOD97wS++/Bbrez6lSGc0PkXcoWfWtPgUCC7Q7+8YtCJqTbVc0fUybUymQa9OCPsDn/oNP9x/IllF2xiWi5YTPSVtP6fa7nh/2BMMuG7g0DlS3RB04LDzDHZOYxsqO4OoGdyB5elTzqoT0l2P6wPeK16/ecfbn17jrWNIW1TlqCuhBe22G0IN22FLozWfv3rC2XTK3c01kcTL02fc3D7wYX2Dtwf26x3/Ojvlrz/7DuM6fFB88+2v+C//9C+8u7rEzmseNjcS6kQkeI9NFUO3J/UdEAm+Q6uEj46r+1tevnrBxWJJ2A3UqwV6NWdwPS5GXNLU1ZJoWu7vt1xfbri9vme9uyU4D0l2pbpqGcIASYzNRfuoWG938P4DbVtx93DPEB1Ki3c9OlG3Dd53YpaQJHle62yVHRLJ5+dbK4Ly6EoT3UDoPZVWTFvN3FaczGbCJvCJw8HjEjnvB5TRXJydkEhcXt3gXMAoxXzWMJ9PiGnIcrKKwcgUQUAkaconkwnT+QTnthz6yO39HqMNs/MpzostaZnMO+eYtrNscZ1rNy31urHyOwQJM7NlkxopFyRiyAVVDjkKPosZtTgMEFI+dMtmprLtXUEW5SaAeJ+HmDDp6F0vx8TjPTMXyum4QVIK/Izyl0I95oPZJjAIR13usLyGL9Hy+cAp9Br1s593/PU42ascNEBOkDyKUMuvsc762aul46ENsgBjIiiNTVK8ao42b8WrPYe+ZhqGPVrYZaqP1sLW8lHeT/Ce4n8elXSdxgqqH30puMQVIhOAgMzlze5HzklR3TRCtwghi2VHlDZllxhGn1VVgrZiLuRDLupTOgYj+QyOoUUYqoXiIm47hkTIRUmmjUToO8+gvPjSx+z4kSJo4elbW7j3WUCbIj444fCr0oSJM4d38VjsIJx1M362BTUO2V0Iki48e3HYIckUIeZrjOEY/lUQeREtymRLGpUjhcoYQ12XpLjytdniUss98D5bpIaEjx7vIiFke9JHwnGxIJXiXF7n8edDnqpkN6R4RFOLcF1r4d2HKA3TY5ReaVPkkYyVVn6TBRGVoZImJkUKpWgXak3Xu/wgGdHRpIhWkaO7iEIbM9qsSletcuNTpniCmpemN+TxgdGayhihoCFUGKsNlTFiPjI4NBqTNJ0PP5uYaMS5RyZ3ufhNyNws5R1HKQrzQiqzR2JIlEyPcnFf2URlMnKvhTJUWUVlNG1tiFHeW4wRo2SNjq+thNqYvMdH6H1+v1FoUDGCrippYFwiaslwCFFCzZQymCBUHnHQycndlMlLHCdoeceR913oZNIv5a/Na38sqfMeqn6+E6aY6U2q/DnW73kfTTL5KB0dOhf0ZUPMTUwqE8af75tHhP347zHFcerGuHrkf2Rd/RkNLMkTUt6X4lGDE4+NpcrAhoAokSprxlCamC1v971j23tKfJ4MOHTZxMZ19egj/dm1H9fQz/+bUgX0kWmlyhQypXUOzgEXHCGp3BSDJ3B3d8k//uOe2WTGyXTBi6dPqRc1jZ6ijKW2lpPFghSTTPwGj60ntNPIYZDiYTqfoG1DVU/45Xe/5nDoeNhsqaqG/aGTsL3K8PCwpZm0fH664vr6ipsoHvJnZ2cYY7FGs3lYc3t7z6ePn9jsdlycnfOLL75iap8ymRi++fw5vj3np+v3rPsND7s1AYNuaxIHkvcElVBTRawi3g9oC1FF7vyaw093fHXxkr/47DvUENlv1rz/fs10Moeo+PDDB6qq4uWL5+zu10xmhmqiePnlE+pW8/zbr9B9jw8KW894/f6aD3/8nmEYuL++ojtsmMxamQJWPao7UCPP6+7jJelshQ+ezeUHvOu5cjse/rRjef2Ov1R/x4vPP+Pb777k7bvX/Kf/9L9w2O/QdYXrnGSWbNeE9Z2cnZVF73vS/IRoNCENEiQ4tdz2Hb95+0cGnXhRLbi7uuHJdMlfPP+KL89f8fbTG77/+K98uH+H6j3egp3UUBmc9/TB4ZQmxgOt9jx98oKnk3OaU4Paa+7WHe7tBw79ARc72lNDPzyQQmLanPHyF1/hHXx6d8m6f+D7dz9gPvuC+XyKHwLTdsnT6S0f9zeE/oBuJ9ztttxtN0QU8+aU6bQl9DuiO3DYbpjMDfuHS5IfSC4wdAYVI6p3slkaJbRj1/Pm8gPNbIr+oubJZEWwA/1+i1KwWJ7QrM64OwR+/PE9r99dsl7v6Q57otvj/TYP2wx91xGVsACcdyQn7nz90LG9v0dVeYYbLSplyqKMKkfUoJyjwUvxm5AG3NQtCdGDxSCmFm2tWbUNi7bFkJhP5mJ8oiKu7xiGIKh6QkTYbqBpKtpKi5WxD+x2u8xIECCvdx339zvJjgFCADdIllA7aen2Bw77yG4f0WqHsQqjxCKz6AW0sjlI0mSEPlFyjqwRl5xijmPr2tJ1XmzmfEQbgzGWvnMMfZKY+igbutGPUETKAfHzorwgS4nsHpIPgxJ6ovLurcsmOdIAHiHsuRBT5VApmyrj2TGO4WX0f0T4i7+8bLJH1Fe29EcHCFDoKON7ScefFzMSafQxPKdcw/EGkL9WBIFFM+DGL8zOLKjRszshojelJGwgwuhwIlxRMj+/HJxyRcraTLnxuZhDxs75NQXhVRlZS1kTKHOOUsiUgsp5UDpIQ5eS8NEf+boXfrVQeoR7VmgaMSSG5HNhprICPBf3SeUCVlD7GEV2XVUVKZnRmQeOKalQ6CPyXhUKbUuKq82ccwU6QhR7zqgUKgdEqcwN16PoVByaGlVll6QjXzeGlEOc5GEA+fcQyToEKPQHH6XDljWq8yRDmqUqFZqBrL0Ug/ifO1nvtiR8UpJlpXiVJkD8a5VPpBhyPaHkATUKa+X7tc76FO/HB1iE2Tpfe3ayytdRJjEFrQ2ZIhWz+4ornO0o7xdy85hSRjUiKhaRYimaj7QHmaTF0XKrpByXf9bZuktrQ2UrisWgojT8+fXI6ybTuEpTrnShfMlDVETXeZYAWufJSiI4ARdiBgpQov3ILKBxGqGyWwwxSjOYi9qITDF02QMyaq5UEo0R8lxZlai0vJZVmbdtSiK0yffiSEUsz2HZt5L3DCHhMiNEA75QQ6LCB/E+jvkziTGRtFgxxqwVYNzfGHeEQqHSWmVhdwlUMxmQkH08ZpRbPvo07j/ls/056vxnxX4qgtmfNxXkzw+Vx9mlGi/XrAo9iHwopHFNli8tzXbZP1O5nscba0qiK8qTF9Lxex5PA3QZm6myVsnPgSARlRVzAbFaloCyPkX2Lgp1bbz+LHcbHcn++18/t2lN43WP15P/PauzUVl3SzYgCEkoZcpEdNVkf/58LvQ9+/stllPmT5dMp9BvtzRVy7SueffTW6614uz0lJPTEyprqSc1VduQrOXQHRic59nqnPMnL4gJ2vkJya7ZbHeous0Jwpr5ySlN21BXluXKsVisaCcTqqri/v6eT5fvCSFw2O9J9KyWDW1rMXbCjz9dYaYNk4slX55/i+sN95e/o1Ez2nZCqB29PTAMezCOnT+gaos9ndJOZxzuH+gurzGmAXtAqa2sjejQac9uvWV9dwcpUtcV1x9/y8npKc+ePePi2VMusUxnc15+dir0msOB3f0dn27WRF3RzgxnXNBU50xnNYdhjwfaxRfsbeIffvuP3Lx5w+HTJdVyCn6gWlbY6QKVNHfDlt/88R+5erjmZLnkxdNn/N//5/8Hb9685ocfvufu7pphtxNt3WqBxtNtHvBXPbVPzE5P2ZHzmLXGLucoU/P2/obJsuKrxVOW7YLazDi4A/P2hFcnL/ns7Jx9v+Xq7o5BWabnz9n6xJ9++pFDt8fUmi46fvjDD5x83ZLiBEtDMorF6YpXX33G+817uvhA8Ft0MyGR2Nzfs+sGBrcjKc3t+pqHkxnT1QXDocMPPWezE2b3U7pqQNUNl3f3hM8Sy+Wc9adr1tc3LGzkyVRzs7tH1ZqJOjCZicNXZS3TyZz9/sChG+iGnuAcyViCUby+ukb5Cc0vfk10kUPvmE1bkq243+z5L//4e97d3BOUwaeAaiS7w3uXwSYFMaFrMRpQMeQJZMRYjcoW0QpNdOJI1jQtQ79n6A9AQlcaW8mZ5ZwnZndCZRSqtmJQ4SPJO+qm4slyxcV8Ruodh+2Ww3aPMZL03TYNioG2adjtO2JM9N0erVtm0xpSYNdFtg8dh/2Azbba/eBxDmymo3oPfRcxxmGbhnYiz2jfiabgYXvgZNmgrMYPHqUUlW0gCZBjlSGEYaStKl1o3p4UwbZNBTFhbcPOdRT+bExHcafSUnBG53MBWDa7lBH/44YXoxR6I888yfkUR0RENnwNo9eoUlp4p0k2xRgLHsVYycv2K+CKUYoqldFxLupTDkLK9UEs6D2Mjis/26gfjX7Lxl0OGDmk0xjCQzy6BD1uNR6fAeUfy3k3coFTwuaAq3K4Ri1+0DojoiEKjUiplFHefD0qTwri42JSRtNaGZLSdIMIroSOkUfnSpyPYsrovsm5ANpgbMTGUKogSXVUCWkuVS7SBMEqn2dhNpcmzDuhR5RDf+jlMyuotQgzhQLwv1H2X02ybdmVJvYtsYXLkEdfmQoJoAsoFEqY1QMfaM0m+Vf5A/hA6xdam9Gsq6xRhWJVAUh51RGhXW+1BB/mWts9bmai2ZF27jkZ4eG+xdpzjTnmmGN2ncd7kXgVhRWnJS+DFmzKMofB4xOFZoyiSKx69NIUmGnEqBTKGBlyoRM4UyIBUjpiC8mGY4R+GHDeSe4Z5NxiSopEIpUaFl04ur0QUVrcMoxI/xicR9yZjus8RFLCqFKZT4DekGRNMTWQKqWxVjEMwhJ45wnBJLCeALwTNxtxVdEYkxjHkO1LAzYlBBlMqmSLJBl7GCszAqBFRpSbbnN6J7lmTsYCxtoxsT6VQOTSVK5kPfsZiNd+zLp/AUTOuSQTYuw1kHspspx+SAxHet69H1Po8fNlup6C4JMOOyUwwRFDYPARlBGZWS9JUsjEAsktJR5lfyrdG4I4C8k9FjlfQI0Tk3PzM0GeP61iJp9Q0Y+DvFQ0EgdUrmyoJHWKoz99VJrBe4gBbS3BH3txok8uLPFYacnJtvOSbBhtj6RI6uuQAWLHpC2mBZ3rn0qTmoAVxhoxA3CgtBaIEbwULtLzmxu/nsXCkzh4+r3TuIZwAyP5QkqQFJo8mM1nNwoyaZNiFgkEq2MSANmx6ng8avy8owVp5DlxlN9v1Omnq6JPEp5cvQPk+VBSzVJKnsFucOJUdnJdATFH+GNNWOlTTmU/YSSrTo76dMMJItNKTA6koX0YC0WJrSeyvruBqKSCEbqetlmzPzxwaBRn89fQdBx2LX7fMl3MuP3hI0PT8eLVNYf2gCoNpiwhTUa+vX/C65LJdMr+cCCipK/HFFy9uuLq6iVN0zC4gUldMpnMWK0eWa/XrNcrIFIUmpcvL9nuNqweH5lMapq24fu7D6BnXCymbB9WdLFn0kW+PntFsSyJleb26ZZvP3yL8wPEjuJ8gfM9XbOne7rFlCWm8tjYsl69R797w/XVFQcLdJHdbs++eOLp/oYQeiAydC8Iwz19s2bzsOby8i2hU1A3bJo9upiwvLxG24rN4x1Xr15QFRGjPV+9+oJqOuXTwx0/fPzEn7/8jJ9dvWTT71m7hvvJgbVyMCno2p7gBh6etjS7DVWc8HB9x89+8TNm5Yw3L95wuVjw8eO37LaPzGcVk3rC1g50TcA3G9rYY2YVSltUVMwnC5rtgWbd4u4a9DtN8aJm7/d88/4jL68W/OInf0G/f2LzeEt8HPAYulXL9XLJ4eycx8rQuZ6SksNmR3M40LcNzboj6orX717zyIb1zVaGHPpA2LfsNlt2TxvsZIYqLN1+x3oLj09T5tpSmQnnFxfM5/Df1x/Z2pqzuqR3j+y7DlsqYjgwryb81U/ecXUG9/uChgN1scTGgbqeU9dzlufXfPP9B379u2+kJ0unx8A7Dk3P73efmLDgbGYx0RO7juGwZ1AlzTAk28kA2tM3W1S/A+3BSPyNFiIOjU5Vd9FKaKtlu9EGSLLZEBm8GDyYwuB7N+JDHzxoJdr7IGy9G3rAgZf9u9Sa8/mCi+WCdrvDBmgPDdo4irLC2iqRWCWb3Y629eKA5j31pAag6fYMfaTvPUblqrqmKrILXyR6z+ACh32PLRshaExBixOiNJERIfUpGmUharSy0ktKkoEqSVIinugl9hWFxXoXKMsSELbRh5gme8qX94ydwyDNhiGcbO55E0jMnHeRLKXOvUyZUTtqKHPgPZZdTSFTRV26wMLMMbJAJqF7Y5LzixMgkpOCXOLPjbrxZDOS5EBx0ut3LOeegJdje5lI5nUE9SNZTv569t0ElDPgF02twiXpSIwhTS1LGufkgDIeByRf/ThqikVIS9KWpYqJOrKGLoIbhiQfSrRgzJIQSTGyvl5YVpF5SNe4TgAwAXEr0hTRu58wthyHJ4g1U3ba0MJUq9RIm1hqYyyFTVUCjnIY51JSZhjvfx5u5pxn6OVnst6kmdT3keAcpgBbFOm+CqBVVoEPI3jQJqLTaE0TEthKoD7f03wttFHije/6JKWxCZzqsQJgjTSoKh3EOQebQHGe9ip/8uS47EpEAhmSE8eT+yAQWxuZOeC8A2XJMgJt0jnoKMN/RnCksIUl+jxpVifnDPm8PFDKp2bZkbGMKjUuiwTLk45JpWdDMTqhjM2TKWnXOiRtfhYXHNe7BM5R/0DON7PVZ1WVoCJucKlaE9OcCpKkS2wgY1DSJIqcq2BwT1CKylppog7SIA0eUwgzn6+1jl5kO0WqZp0wp5LwmXT/48nAO5WY4JRgZ5Co8iTWNLFZyZovrMKkilVpDYW1ZObc+dOKmAFtkv4xVwUiyovFqsOIXWVa91EKCQnAJ8Ig5JhxJCpQRymd1np0BsugkjSgSxPFNjUB26qeoLqWfsgJPOP9CiPAzsEn39v4zP7xuZ49s+ESX4Q0iehk/0YiIWJ+Lk7e/lmI/BNVgmdSHY6HPB5cek1O8sdE83hQsu+kipn8ggy6ssbifS+9WyaxZz5w6N0oo3y+wp+fb8phUsXnOUsvR3haCRm/Ob5dduc4vmFCPBh0WWOsxesWulZctewcFTxPhwdmXcnV5WsKKU8zqyu2T2ucG9DnS9r9gWAVBEUfA/ePD9x+uGE+XbDeH7h+8RLnI4uzcxYXZ1T1lBgiD09rZtM508mUsja0zZ7trqUfAlfXL9BWYTUslwvOzuZM6oKmO2Aqi5mU2LJmu/6EGwb6vqEsNAvf89v/7z+yiy1xonHNGhBHH917ir7HTOcoq7HeU9UFarPnpz/9ivN5yU++fIPxmvAXX3Fz84Hf/Mbx/vtHurZPttxPrFY71quPvLj6KeuHe5rmC4qzgsnZgrbtwWn2TQPWYMoaU0BVKmwxpSgnvLh6xWcvPqP96Z7tZsPj9ombw5r//P43NLs7WucxdcF0OqV72nC4uadbRda/+Y4ffvVr/upv/5p/9zf/impa8p/+/j/y4eZbZouS/f6Rp90DvT+gfU/fD8TdI9QVuixY3TyCKQhOcd/s+K8YVm3Hq+t3zF5f00THf/wv/53zSnNWlrx7+RVBGTqlWPkG4zx+f8AazXBo+d0//ZrpAK+WV5xPLykKhZ0WXJ4vUTcwW5yhlOXQ34GLRAbcfp0c6jQxWGazAqMjy9mU5WTJYdB8+fantLtPXMxLbh43fPv+W15PJljdUxcF+MCff/mWDyuDMwOV0cwnE7QtWG32nJ9dst32fFPc0DxtJYbVNfhADANNu+e//eM/8Iuff86riylRR84vzrDTc9487Wl++MDTbgVqgGFDDC2qKDCVDJ9ywRGdA5WHB3pwjsElMWSS2+ElkZa44oX0mxjOr84ppzMeV3uCA98O6CT5jX0r5I5OFVoUcehp9w06wKSqURgOTQvDgLWFTG4vFLNpTdfvaYeBCSVVWVGWFd0A210jknYsZVmymE8xRaQsxF1ntz2w27cM3tM0DdaW+KhAFfjo6QdP6wYmBmxpsRSoKLjOBU/XNaA8k0mJLTRD3wpjbzVaW2zfOawtgZBASfpllzYYkwGp/FvkFtJQmAF7djzIDheKI7D/cYCX7x1LwiPA1irJA57HSI1MAbZWHzWYUeF0GkgzusPIL4URbMkBZMbQ6ONwgHEzGZONPyzFnux1I4Mkx3t8xWlpmZPgLqaXjA17wjDKNdJKYdEi7Rgt5NQIPsKPNo3MDqIF2KkYKdMCT5dyZNVVZvZjYOiFHS0LCyi6tqfXw8g0K2SYUchVgZj7DpI8SKvkRiKstYCSkMo+0pfhQ8Rakd0Q00RIpRiHRajjXfQ+st83FIXYXwbviWT7v1x+lzVjtRa/2MDocqIyMILRD1+jKawhKnEb0Vol9Y5KWvQsY1EElaobRrS3fpDyUp7amS0wI0GuSy8ZcURmAIjftBKmPcZRliHTcM0xeQ2MPRMhhPRcpOSNXNGIox7eFtJwLABfobQEGa1kMi4RBidNuVVVHO0XgwB+GaKlxuFIMQjwzE2s3oNXyVYyofFxUnE4AiUBMAnJpKqMsLVH5jUz4yolESJdkynBZWnGZ0FrPY7Blob1E/Y2ZivKnOQhwFUdmVftJY204kmZbEEVwcvz420Y14rSGpOeslFKp8Qy1nuZrp0nk2YnmZiuLzDaXZJlbkr6h4rk3ANakoMUI1z0Y2NmtgntnWdwcj4+yNpTUeOiYggpTvmjfMcnOY5cD7ne4qAjr4jErMZJz2EiSXT291eI046cm9YGH/3Yy5MtMUeyQuXkLMevk3v6z3zlKm7MBEQOczGx74J4x6nd/9zXqZxlJFT+1Oem/46f+Ufi8zEVSPEK8uyz9HkkPb9CW4uLcBgch94xBKTZ9cQiJ6er45p8Vs1QP/r/jPFqrEifxH+lESYyZXIio7IyYKcscMHTNz2q8BhbMJvPmU0qohvo9lv6ocNPKnxl8ATWT2vW+ycuzy+YTSdShXI9dT2l957Dbkuz3VNaQ9fu2W/WvLi+ZjabcHf7ifYHh9IFdVHx8uUbQi8GBp1rmcwqinqCqSqqwjAMPfVkwmy2ZDJ9ydnZJXf3t0Sgi4Gbu4883j8wrye8urhAa820BfP2DQ09W3+g1h6nA4MfcB5efvEz9m3H09MDzdMji2nN3/zlX/Hzt19yXp1RlxO61jE7m/HCBHQJf/Evfo7yA0Pfc/Pxlo/v7/jm95/47od/YBg0d0/f8a/+/b8jhpK2cdRzaSZUsQRdUljLMLTc3++pGzDWMFtOqQrNQTnmleL15z/nl3/zb/mf/+7/w3/97lfsmwPe7fGrNXG3JYYCXRQQW7797a9ZrR5YXl2wvFjw+edf89VP3jH0B3774g2//s2vCUqzf1zTHA7YQfoBtZX+Ee8cZrmgUT2/+fR7Pq2fmBRT5pOaiQlcXl4RTMn54pzLyxfcPj6y+fQdu13H7v4RW9eEpqVzT3ynNOZth5vsqMsZF7xhpjVvzi7Zlz1EhT6H3hzoD3ti30GIFKXCakddKlTsca5ld9jQuZKL+Tnd97/nuw/vGZo1vWv4dlbxxfKKenrG5n6NLTSlqjg/u6YwBSpqdocWbQq+/WFF0xuuX33O3aahbxsZEJlct1Rl6V3P7cMHZtU1ipr2sOPl+SveXL9kszmwWa3oQwveo+tKZlRYTVlV2BhlGmvXC+GasvMxpsdIPE5fEhyqJZpeXJ1x/eoah6XxiqYZxLXRD0Q3CFEYRPl7eV5zNptRAF3ToKOiMBYXPD4OEGBwHRGR3J5dLDh0HU3j6J1jcI66njKfzwRz+eRcY0vm8xmRFq09ujQYPSWEwGbf0jQeW/TEUAAiP+q9p+sHbCFkKDEQB5cMN0j4KU9sccgslzQM1YL1g4z3RenU3KeOZX0j0oIYZWM0OjVY6kjU6tlUzzxYSsoGclHzgJOsjRTQyLjZn7pwhOybPwZauU1GQWE0pbXC3gUBjgJqk0SC46aT30AYvgQck0RC8YdA3qf3SiE8b4cjgzQyzTlwJ/AutKY62dXUCXt/Cu6PmzoxyQJiRAWFVUHAq5bNM8niBcyn3oI8dSyS5g8k+YhOnuD+JIHJSZJWFghJlwZ+EDa/0MXYuKq0RvlBmmG9xyZ5i8gBjo3GfT8IQ6zCuEEbY9FG0Q9eyt25HHZ6HTNzlc7BJ7cdSQ58anwUBwlrY1oj4ntu1HF6cPQKR0hjogUYDUOeGGvwMenUrZSmUDLiJ+YJnkGuHdokwJdBgBJAlJlozci6SqJ7lGXlKcqRVCYLJ3Re+iNrMdGygVFWAMemweAdIQEKkaZIQhRJjL3OSbT88V50dnKtbKqSBIahIw+RiknaQQzS3JyaoQUMSjN0TGssr+p8f+QZlAbUfCpocdfJ6o3TypXWOnnLMzaz5t4A0LjBUdUlhTWi103TSjOIFecnGW5GOPFnh3GAW14fkZiFOWOym4GhVnIdvPNoUyS5VExVqyyf0jLgQxsKo8bXoCUohrSmjFaURo0x4OjEMwrKJTYljWbQEIzGFhaUwYVA76Q6FVNFzDlJDH2IyUEr6czTeYQkwxFbUDUSFkKSBMYJrLkhLP1bpEY5CIkrjjHCInnnGfqePZF2cOKP71P8UrJOooKx25bnrPkf+1JKEdJz/weWl+O6yHJFGSn2z73jqQQSUiUhuR6Nrzm+WEJ5kiD9AQkTT99vbE0Y3yXGQAiyejSabnDsm4HOZXnUcaeR1fI82fhjDcE/lnCOJ3vUYo6xM8hFQhqbFcF4dAATU8I+iP6eacHgNbteTAH6PhL7yM2+Z9a3fHZ9zouLN1y8uaRSJg10U/Rth2t7tNFMtGVWFDSrJ/q+o6ss//jf/p752TnnVy/AOx7uHvAu8nh3T9f2VFXN2YsLXrx5KYQBYCYzzs+vUUpRVjPmswVazfj0ccNm84QuHWeTklc//xoCVGUFUTGtK37y9RcMeD7ef2TX7qinFbePN/zw8SPhZsW7q2vmlcNdlLy7uuTMzrn7/g6/UBzW33F+8QI7uaRxHa/e/QVDs+fl9QXNbserF3tevHiPLf+Bb775ns3tHe8/7fn68Q1fnE9Yzmua4YDrPIWxrJ62tEZz2O8JEWaLgXpaoZzFDR2UcyaTc6CgGDT/17/9v/DTF1/x+/e/5dPDe5pyxrp+gKh4/PSJw3bHbnPLDzczXrz5jK45wHbN9z/9il/+8uf85OXPMKHisd3yoAqxWUSkIV55YmGkOt5tGZo9senZrR+JXrM4O+Pd5+/otw/UxZRX0znf3Nzwv/3H/42m2dEPEVMvCd2BMDgYWn745td0qwc+f/GGV5dvqLTmbLHk66vX/Lf3v2G3fsBOK7QpxKLUapTTGN9R6IiJAypK5cVrS9Qa3/a4VUvXbFCFZ4g9i6sly/MLTFFx+fI1SpfEeokqKlZPe+7u1szPzmij44fbRygtXk8ppks6n8qRzsEwEFyLMpbHhydensHl/BWhbzisVpTRcL244r68Y7Xb41UhhITWmKKirGXuQt97cBCVAVOijMEqLTbqpUidoweGCDFgjWF5vmRxvqDpOrbtlqBKqumEoWtFophkm5XV1FpxMZ2znE5REdq2IwZolVyrDNJ89FhbUJQFy7JkdzhwaLdsdz0hbrm6LIT0MgqQ/sRhaGlaAzSgBqq6oKwmTKcF7dAxJLIueE2Igql8PMZxqyIqWiFwYxqYmXCZcwN9rxLIT86DEaxWlr4fQJk0pl7Y3NzgFqNsvNbmDVTQkTiGZFuyHAzVyMqhj6xRZkKegfkMhFIQ94ie1Z4AZvEpBxMV0fkEYjJ4kfLwqAM92Rgywy/adDU25vFsE4npOFJwTywj8cgA5i8d89DKXBEgAbofs0mZPRdmM3GqI4MW00YQiBREfEyfGY7u29JsGFMzXG5gkwmVWmlUsuVSXrTBLihUEEmHDF/SSducGmGVSAC00ZR1xTAM4yYVlfRSOOdTI2UCMBFIdozELBVR5IFYMZ2/Ta4xzsmwrSzrkc0wadjThdeJOfb+KNfJunultFgAahk0o7XHmmIE0103MHjRXbuYnXOk6dX5yGQCpkgM4+jwY9BWJCLDkDZ0Y6TMqyP1pJDk1OWGUAEsWZqjk1einI4e9e/SzCr+9NJMmp+NnLQqghMrLJFQhGQb5kWO4sV7XukEhVRmlo86fBnCpkSukZIYpYz0OgSkLJjeP6RR0gKKU3KmjQyPUqJj73o/VgzknojWOber5sRQKhVqrOZEnveqSPIXR82gUoqitGgcgxvGKbYhTQfWyQUohmybmfX18rmSI+V1q8RJxnm0j+Jpn+ykitKOT4fWirKQia8hRIjpeibQT3b4kTpZShpkhp/SCmWE0gmAifI5VaHB5zUpscAqkeHIDArpk+gHR++8xBwP3TAwDJ5hCKl3BQYXReM8NsKKK9ZIgEAapCUVlpjjhajlMUps0rSW58uk51LaSlM1SymsMZRJrubS5N1h8LS9Jw1nxYUUYo9k1hg/n0WtU1Y6X8f05U9APJwkyym2yaOY6o0qGRtwJEdyKnGqoc/vf5RDpo8+jc8ZSKfrREz9P+pY1czHldfqsU8qNX8HQBnafmDf9XRDim1josu410iSGfGnfA35JOLz750e40myAXCc7gvHlEHkbMO+wR86BhQhWQm7PuBah15MUYWF6QWhctzsetTjA9efv+XLr7+kwrC5eeThh0/EwdG3DcuiYDmfsZhOWM7nvL2+YPAt9w+PDBHevLwkKlgdNhQmcFhv2D4+cHl+yfL8jNIa2r6lKmsm9YT1ds/NzT1nZxdsNh37faAqSurqGrWYMqkdVSm7Wj2d03YD+92eq+u3LBZzjFF8dvkZfd/Qt3v6q7e4X/wLtk1P5z2r9VbS267H7Xv2257vfvUPfP7lL/h0NzD52HN+fs1+X9JuHevHwNnyBeezz/jiy7fMF2/5/Kvfs1rfsdtvuLqs0TQsp3MmTFjrjtXjlm9+8zu2qw2FLTG6oqgeePXuFe9/eM+XP/uay1fXbPYt3VML/cCn775BxZa/efsTpr/8S3o78A8ffsVW7/n2++/54ffvibHEd/B094mymtFten79v/wdH/7L7/jXf/u3vPvZZ1xcv+T6/Jrf/vpXdL7HmUirPKGQ+OG2HUXjMEGGUqp6QtOs+M3vVvj5AkWF+v57NBXWGs5evKRoZ0Rgu15jqwKtHSbAbv/Eo4LzsuJ2f8BOz5m/vOar5St2qy2bfQMlwtgrzWQy5ayY8PN3bzlfzglNZLV5RKmeaBy//tW3tI8rgnYoZHDWx/sbXszPWDnL9fwVu53jYRu4+fYTv/3dR9oO6tmW+80D3gRc6BjocX6Q2S1+wCCSx2JeoXCo3rFe3/NiOSXOL3m4ucHHJa+X1xxevMMdNuz7hiF4VG0gWnHV63t8FyGYROhEoh7GJD8P90xGaRijZdLwpGK727LvOrqgUabGmFKq+lZDNNRRczGdcjGbUQK1rfAuoKIjxCBuekpmCjnvia6jKAuRJxrL1fU1zsN6vWe9adB6zXRaUFcFQ+/ph0A/tKw3HdMpGCtkmilKFmcVtlKsdzv6AdqDxFQhtkQpk+f0CAlmiFYqtcZolLZoHdBGHQlJNEZbbIgalCVGg1IZ2Iu3s8JLiSeBIu+StCFF4ex1DRDVEczLNgY5DAtwCaMWPVd0SVUClWwDbUwWh6lx0aayNzGmkrW8d1TJYjPFZpV2kByy9biJpGZCochONpOTDeXZNiFRXoGUVZGSmuRD8mGaxJQS0fH0mJINZf7/x3JA2lSPuUUAeqBANi8zMvcxu3oeN7fx/eM4wMsjLjdjWSpCdMBYlpdzNomhF7IoioQjM8/pLuVcaggxyWpkMxJclZr6kp2UyP4lKQnpZgsrf5yNkBtTpceA1MwoI9QFwMt6ckNiD6uk448pIdDhWLIZ3x+6NjI4IR7zXAUx0hC2SwHSIyrAnjTMSqZ8pg5v6T6UB5tIUJGgAoXNoDetExfHZs0QI7ZIQC0BW5nqO4zNexmwi2OR/F7UkTwteIginRAwKpC6SPZVPuQqhtz7KKQDKor7iYsuXYd83xRlZRkGj3ODSIgiDENaLCo5q4waBQHtIVfYUnKWGV2QYpCKYQQmUWXLw/Q+iQn1uSpAqhzlBCUqgpMpyb73DCEQo0En16AxRpzYDCrEQtMoGfhmVZLCRIVWwrrolCSPk4m1rHGlItoqilxtymSANngvE5ZNkuF4P8iS0lHeG/GCN0qhrBXNarZNTBUyeYbk2AfnhC3VhgHN4CMexeBEnjY4qfL4mCo/XqQ5KuYkykujfzwNUnJfdGqef44lVQrkkpxIEofEYNIzmap/Lm1qLiVPEWnOR6dG+cTWS9zzKbal16rUSJwDoFJjfAkn4D47cKUbmOSWKUFQ+Thz3BOwewrsIYH59CY6x9dM9oznH09d62SDU7makdduils6RdgswQGikSZprUFbIRmkz8TQD55+yMnkyfVOBxljlHM+Oc6coRwvz/OM6JlDzsnr8wmppJWXxyOke6mJUSfZnZYiiorCrBKJQwdGXLOiUqzWO+4ed7x+4Rj2O7qnA4oa+oZ5uWQ5XVJWFQ/7NQc9UE5r/M5h6wmX5+dEAk3Xsjyf0LUt0RdYO+N8ueDyasZkscCh0ATa3Zbddk/fDvzu17+TSablhPOzS16+fIW1JZtDx7KYcmha3izPKFQgNjBZvGAInqbv2e87Cmuw9RnTOOP29pb9umG13XB1dSWytxp2bLiYW16/gE+3D7j9ltZ1XFwseXra83SzZfO44c2rF3zx2TXKdihd8dmXf8Zr/xVd37HerCgmC8p6wup+y6f3t7SHnsvzOYftI9vtinfv3lKUPfeffoM2FUTD6mnH2cUF2gdc13Dzw3f03ZbZ7Gd89bO3DMWAV1/jJ4qfv/s537x7z6fbB+4eV/QvPNv1FpjBTLM77Pj7f/pPfHv/O+Zvr/nJL37G//Q//t/Y7Db87vvvCKVl2zc8rJ7oZj2xdMSZZ1JMiL2jPJuz7xqGpoOqQLkDk4nFDgOb24/SS2Z6WBi8DUztjMIYwm5PVxr0+YKhDzxt7ngzr/jLL7/gF5+/5bePH/jm/ge2a40NnstpzbvLM96cXXNVX1AtFzxOex53Ax8ft6y3T+jQ421EFZYQC379/fdcn11jlpay2bLed6wOLe8fb7jdP+Cjob35lGSxA8E1UBvAYSuNUZagC2LQeB1wbYvWmpum4aW1fPXqNfuVw3Sa0iguZlPO6wXu0BBMS4we1xykkpsbOVPvmezNSVaMFwvAID8r6wmTqqawltVqR9d3iZAwOL/Hc0BZhcFjLcyLgsWsZD4tCZ2nLEqcilS1aNtt1HgnvZ554nphLNaIIUhlLVfn5yiveFpt2G8PaL2gqGaUzjD4PT5G2i5QVIZqMgEKvBe5zmRa0nhFNzQEHAqPMVDaSImljEqwoo8oBixSzTdWYa3CWNAmMiRLXKUNMSis8wEQXbax2V0iJsouYrURgNJBDDJ0KZdh40nj3cgxKyFGdJTx6+L8FokqJJeRbEOnUrCTy15KnMMasIURFjSBM+eya3t2mogMiWXRKdfIm4nJzE4Uv1LZ3Pwohzi11lR5M02HHvLOopJ0ILPYz6M66gTE57guG+aPWK4fbSTjRhEhtyyLk1BqLFSM2mMVRTes8sYSIyF6ccJQxzfUJ8fvXRDbtRGXKVRQGCUDLbq2GzepbP2pVZ58mfUgcu1i6sZWUZIJk6zitDEYLdNVXZJjZAmPT5Y32WUnKvk9nxCrNPQqgpeMUyHOSigoijI1lMpNHYLDB2FC+yHQt/J+OgFAk5i23JAYo5E/QaRf0h0vjKY6bWrL4M0olBddt60sVhlcJxZZPpUUVdrwh95jyxIpNiX/dasSFsjXXyV9mAxhGpwkbSHINNKiKIjBY4zYdsVkTamjMPMCACLRR1wM0tSrQCxTs5uSAK1+GHDO4YIfKwC+92legkkNn9L46ZKTS5ZoHeVxJ83wMbm3hAjJ3z73zIwN3ylJyBWufEmDd2gi1hgIKelT4qXv0xCd5447MSXwuWFbSo5WKQot9zaEIEyM1iMYzPp7nxyUVJDpxTE9T/J8OFC57yPFgtwoZSRRUFGhgmwMOskcgkoN1UouQXZViBH63F9k5F73weCT80kMEKJNr4+JoRcWXpIaEYYeIWwC9YrRUlgplaZox1RtUeh8nKdJnc4QWO7XEAJDL7IMoWFUsvNPbmMJ6WqVvPWTrCcD0Jhi4ShFzGsBScJGQK91en0cP3skLDgC9ryOjk/Zc2AcQhgrRONrk9znmeRl/B3GhCNbKx/lnkennJgBeqp4ZRIkonAh28GqMY4r8sI++TAkMZDrk85BHY/99O8/0P4fsxNZh0EIA3kXjS5EP2uMxVQlPihQAVsVIm0lENwBvztgJ1WaRh7xztHuWn77j99R6yUXsyUzu6AoekxVsawqzs+WXH/1FvX0nl9//Jb1+sD59JzPrt/go8NYxbwwtF1DVZ7j31zLgB1jUaqntBGdJmF3zhFdx/rpET90dActUgC94Ob2e9CGs+sXtKrmfrPj0/3vKIuSYejxccLibMZsPiMUAxvX0jctE1Ox70qe1h43WAglUUXqyYT5m4VM6VWgjWffHphdaqxds5hPePiwZ79/5Fe/uuG776CoIl988Za//Ku/ousGbBk5e/U1zns2+4NMD+9a+q7lJ19/yXyuWa8f6Lo1d3d39K1nufiCb371xPJmyZ//8s8oSsvVxRn/4//0f2J/2KIrTYyG/dMe9+SZTKe8evGGs3dXvFw88OHqjlW/ow8D77//jrY90B32rDZbnm5/x6x7xON5vH3k4uyKr6++5GG9YVGe8e7Lz/m0fuBht2bvWrZNy8QaZmdLHj5sUKUhhoG4XdFtHvER8D3egFOe6Zsz/vyv/5K/+uVf8L/8v/5n3v/mG6p6wo3vOD8/w1rND7fvCb7nizdv+WJ6RnkVYPkC2paL6YRFUeG3EVWWlNNLFueKTdzy+P4BbKSsAr5IzjQO+uD4eH/Li+mSQ9zRDR2TeUU1A1/s2XcDWAGjRI8uB2zCELaSicWHgLBusYfaEhQ0MfD9vqe+u6dwljo6Ydf3a1zvcF1ATSD6ITlOBSlDxijPlxeLzIjG1hXGFgyuYbE4Y1pPUWiGToahuSGiKWU/6Z3ITBXgIUTHZFZwfT6l1oq+3aF8QT84vIsiXVYiZ64K2dNMbWV/cl6cDX3gsNkRPZzPZijnedzueVodmM3FQU2c04YUo6bYYgb6aBve9I7tbuDQyLCgsoBJqZhXhkobpqagUJoYZbq9NopodZIhi7KGGAnesN0NWBMBjzVWjU4WlRWrwqh8cjYRgO2dbOZS7j3qlEVGEEbAIyyhBEmtpChJ2pSF+fZpc5WtQhFS+UECd2HFHcTagsF78S1PzJQkFMJohBiF9TiJsyqxPkoL3D3KIONp/AVyIpI+98TG87T26sfN9/jeWY5idGZhRPv0p1vDjm+p1PO/iXlSad4G0uZgcuLDuIlmMJA/JWv5Q2ILtZKhPyoi9pExNQwqJaPp45GtH480hHGzFpZWNMhKZccVkfqgslOLorCGqjboKCWgoR/Ijjl5Smm2w8xANLvUHKmtdFcGRe7BMFYaTaOOhNBjC4XWktS5ISZpilyl3Dis0xManKxFpxQ+TarNGvIMIFTyqYfUb6AEvHkfRzmIDwNKaWxlsF4kMN57rDb0SX6Wr02MmrIsGAZJ0bQ26Rlyo02iT97lJl0f51ySWKQVmGYQKK3EPlEFrNJjQ6AXlDkmTS5ZdhZFiXNDWpfSh6GUoqoMgz9KJkJyVxJWO1/3ODZFZ4lRdkPKANyn5yw/HyGeNncmhhFPPBkMdUqHnnr6H6//sSFRQKxKSWQCbkGuVx88NjHuMm/j2CfTOUce7KW1wgc3atlDzDJCg8aILjM4fJT4YgsZphaDH58LEiPtUqXJWgHfIaFFF3wC7IqgjJgzeCcEEfGk0ZjsfHgEzTE/a0egmGORxM2IToNNpP8mN86q8XkKCrHLTamBbDSkfprjNc6Wv0Kc5J8kOUg86uHHeDTGNDUmr8CYNP04lklC/oegdvz9H339qSbd03Vw8mLRpPO8D+pUFpRnh5zGzdNonnIArE6N/cTU5CrXZnCyTvIeE9UfvsfIj6SKxI/dfE6Tj+eGDD8+9/R3iGMCEb1CJxMBbyJDGaEsMFVB9J5w6ECBrUpqBQyOvmsJTQsuctu2HA5P/OSLn/Czt1+x0CUuOFY7RzWf0Rw8q4cGHSa8efWCuS3ZbTes1ltsqSlLy+XlBe/evaPretarzSjFvH9YcWharBE3j3fv3vAXf/HnOBd4eHzi7v6eYWi5urrCB02z7fjhw/f4wbHdbDhbLimtZa1XxMGzunsCI3LJ1WrF1cWMP/vlT/nyq3ccdlv2uw277Ybl2Yzrq3NuP33gw/sfmEwK3n3+ExbX1yg9Yb92fPnVWw77DT98+5H9oefsfEY9+YLetay3e6pqxm7VUFY1ihJix2K2YDaZcXF+xhefv8ENDQ8Pt2y3K77/4Tvu7z4wmUxBB/7pn/4jRVHz13/9t9BZtJ4QXMH9p0BRXxP3nu1Dw+bDLXpmeXnxmqvPX/Ld4w8cYkulFB9uf8BeL5kvfsr6cc3tt7f8+r//it8W33O5uGRqa3abLVdXL/g3//Zfs5zAx13Prg98fLpnE3um715y9dMvadqeYdcCUFsL/UB3GGibHfZ8zuzyGqemfPP+AYol9fIlD6s1q99/x/XlJW8vX1EuLlj38B/+/lf0Q4MykeW05nw+RfUWTE1dl/hYc7fasxkCt5sdj6st+67B0eFDKgFXBhM1zWGH7zvMZEqpoaprvnr7ls57/um7byFEopcqcllaxBUu94zJsEWlNQzSPB6NZbqY46LmH3/7e5b1gsvJObEL3G0feeh2tEUkeqlyKmXE9lsPgm36gLJifR2R6m1pCt5cv6OqJ7h+4Gm1Yr/bJedFnWaBRFShEkYKFNpgMczKkmlVopy405SmpG97fICiLtFRkgmDvI+KQZJjK6RH33WEtD9XVc35+ZxAZNP17LcrRvVKIrWCc7T7RqrpITC4gX3T0/RCylgNVaWY1JayMON8pBCFqIveo4ITlUUKXH0apkkUEiuTjtaaIFpkNDGIQZ02FmvFts97NU6ZHUKQ0rPQHwKkSABZ58CdPjK5dmSUHWNMrgoyKEYpyMdUGEVZWhmSFRX9MOCDDBlxQZhMLzscRBlSFTOuIP+txsAcTyKtSpveMYA/D8iZyZJjTMd5fPm4YZM2CJOGqsjGmqQlqCPr/898jRuHQhje7CV+PARhJDNblEvZnGw4CawdN6n85vp47COTlKBePEqm8meSrmE4SRqk1yDp7Dnpj0BkDYoA3YAxjFaa2e0mhizlEfZekkl5A2tFHkRMPWYhJFnOcaqx0qlZ0giQEc9XQzAR7X16GCD65Luf3HmMknNwgxoTixByfUamw4nDzNENyJrs8e4TCy3g1KjsCy/SIB2FVc3Mf7ZpRQX6QaYQiz1lZHA+eZwrkQPlhFfLpEqtUvO2Esu+Y7Kn6PucjCAVG0LSkZ8Orcre9cK8ocRFph8ksADSMExIQE0+QxlNdMdm6Azsc9KglHjXZ0Y/RgXOHY9nXLsao9WYuGmdHKhQEFwCYM/B22kTZE4gjBHpiDYpTsTUwEpMLLsQCcbIa2MIKfkSK1Fr8/OHBFtt0oAqBVHe24UUAAvRHmprMUanZzSkxDx5BKfnKfRS6UFpAWIxpmmx+lmy5knTZ2NMyUkcqxzj46jGx5RckctD4uSbMlU5RpV80CVBjSpXdGIacBTI0weliZ30DMnET+dDGsySfjdKg71PjcXP5IfP2IW0Fsbt4VhbyL+Xv/RpYnASPP8Yo/1jR5nTr9ME7/QryyTTUhjj1Tg34SQOjX1Jz9ZlTpzk+Q8hz/yQmBSiHhPK3FgdXRh7A/L9Ghmfk/P8584nf/aPyZsxmAP4IBUBI4mh73tiKc5LfdOKHno2IcaIazt2zUGmbitDYSw+9kTbs1t/4tvvBpTreL14STVonj4+8I+//R1/9bf/iqvXr5gvr4muZb96IjjP2XzJoT1QmIqqnNO3MPQaY2b0XUvbOKwpeff2mulsSlmWTGczQLHZPhCi4/LqjMXinMVyQXvoMZ1hXpYchp44NNy+f8JoxX694OWrlwzeM5lMmczmnE0W+GHghx/e8/h4z5uXL1kslvRdx+PDmuV8wfX1GxlkGCOL2Tm+kyFGzb5lNqv57PPXLBaWqgx03R5tozjuNI56MqfU8xS3FW37SD84ptOKruuBwOXFOS+vLbPJGUYXTBeG25tP9EPg7avPqKslbXPAFDMG13L3cMd61zKZzmk2aybREdTA7GIOTxvK84pJFOnfF5dvpcHZKhZnM96rW4rqmuBgf/eA6yPffPMNsXfsntYcHh95cXHOF5+/pVxccDmb0JzVhLpktduyb7bgPKYqcc6BAV9YqOa40nD3/iPrTaQwln6zxoaIqacMfceHxxXbg+fzV59xPV+gXIndb4ndgXbruT9siZcGUxoeV3vcpmHrAh8fV3x6WvO436FiQ1A9MCTMFgh+oGn2bLdblnpKVdSUxvLm+gWDtXx4eqLr9kSv8Yce58RbHh/xYSAaLT1OCJFUmhKnNHU1xxQV+8Oe/eoTd/4G1ww0+4agDHpeComhxB1QOSHa8A5baIyWWSNaRWodmRSaiS3ZPu1Zb1b0fT/KDmMMqGzkpmS/KE3BeTFjWVcYBvp9S6nlmTPJGMaHgBocne+IwVFWEyFuQu4TzHLcyGw+o2s7+qFDK8NiOaVyFbtdgxsGujTHJ8bIdttwODRj7AgBhiRTLzVMaiUSoUlNaTXR9RkAgpV9y3lPu++pJyVVXREIdF3PMDgZ2BcFH1mlkoZJIU0MCsqySBM7hzSqN0kj3POg52NMTa+5VJ/CbxDNsvd500mBNFX+xUtaorXVhqqw2KIgEum6nj6PBlYaT3KcUDBOWXxORj4Lqs82i3ii9z3Bxs824fx3YrjyJpdjteC61Piavnu03wwpqfgx0v7jX/GEMZJNVI3sXpTLwRAjJn8vJTAGCWD5G6N7RXpRQI8frxL4cDFgc0ZysgH9mHmK5OQnyXmy5Egh7GwMSQsrw636LqC1ZPfHik1M1QI1fpwxdpRkiLe4H6+fgDwzNteCuIUYI04/MYjjiDWl2FASiVHUodqYsSdD8pSkxcaKzEJFQhjIE2WCD0lPK0EGYqrK5GbwwOA9OoJJ/rM+hKTvTuyDkqZk50IaJZ2HXiXHoiAPnA9ponFIwC0xwYoMWo8AF0he9EiwIA8QS77zOELQ0jgUSa5GgeAD1lqU0WhjRx16jKSqlXja+6TN9iGKNWNqdvV5MF1aR0cL0uR5f2J4rvIiTK8X4lmOM1ulGqWQFfocDMV4tAs9BfiSHIQkg5E1nV24gvfC+ozPk7A3YkMqCZsPcs8iYGxBLnXI9OEcN0gqs2w96nBBmmpF1gFRpWFaYzOuSe8PQ+cFJIc4Jj29C3ivCOp0GnaWr6gTdBePwDc/kSpr1I9VMVkbYYw48hx6SQRUmjaI3McQFSiHjscKS4jHylgEGXji0sTbKH0nmayQ98rP/Qlcz8THGIXycz8ugT8Jbv8YmP/ngfCRAR/XSF6HiSxRJ68dD4bnIHps8I65KJxkdsj6yROUgZF8ioDSCpvmcCjtpSLswmioMO4TJ8H/lMn/U1WKH/88ZuFnfnmQypTrOlmYRhP3TsiwshznRuiywKhS7puPhLaVmKnFMnize+TjXUltKxZmzuRySbNp+f79R/adp5yUBH9gu36gGzqqqsIWljBEHm4eaHY9VTUlBI1zhuvrt1xcnTFbTOn7jgjUdU3fd2hjaNomPYErDu2O3WZPtw/MJkuGbmBoH9lt1/zyz37O+fmS8/OaiEHbCoX023y6eyKEGfPZJcvlNW4YcMMDv/3VN+zWHX/2i1/w4vorhr5LlcSaiS1R84LCFLx6fcnV9QQ3bNluDVUlVbvlYs5kUhPUgk83t3jX4YYBW4h0YbV6AGBST6SSR8Gb11/Shx3NvpVmSWU4W55zeXmFLWd8/PjA3c0nPt48MjgoGHg5s1SVpTCe5qmFO83sesH5bMLDpzVzO6d1jl3XMymumH0+JUR4+S//Nb/7p1+z3R/w2z2H1ZrvPuy4/fgdjzcf+Pf/9t/yf/53/55fP93yuN/y6sWS81hy8+kTm+2afugY2gPgYV5hzpZUiymqn9De3cueFhzK9wSjuXhxzZuXb2HQfFhvWH96ouo6Xs5q5ssFPnoGVfDxacWHu1ta72m8Z9cN7HvHMPQU1mEqlRrKHQSH6zq2rfRS6KJE65KqntBEODu75PWbt/zw/Tc0Q5+cZxy6UMkkZwAkpuIGFIUQxd6x2+zRlaM9NIR9B72XP0ZjzxdU0ymub4nOoZwoI1QwKAwqiBtMYTQvXpxzfr5kGBw3n25pWp/21IAPjkhAF4aisIlEDNjCMi1rFmbCy/MLhm7PYfOI1Yaiqjhse5R2uBAZhoHGHTBaUVBQlxXT6ZTJZIJznv1uD0k+WU8qqrqg7weGpmNWV0zLghAC292Ow74VXCb2/KMEFJDBVloxnVrms4q6LpOhxCB4RuhVAtJn5U/iaMYUVVVhTEHTtgkXCak5sh+6siit0iRRRfCRYfB0rdjxeAQz6eQbbcwR2JvUAEdE5BUJ0B8dOtQIUo0WVrksDJOyIoZA3/fIBMpUYlaJHY6ptJzAfUgAX1x0+BGoF/YyJrD5jN1WSVZ0EqMF8x3BCMeXAmlaaiFWexlcuezFLwghsfrxuOn8qa/4/G+XEoPjp8VT8mjEClqpcZJiLvGMbkZkMB1wUa6z6NFV0qIfKS6lxBr0yDSplNxkLe3xSPLGidJJky+boCZbOmZAcqrNFm1ZHvuOEhBurcFYxF0m3yMUSRgvCUBKTgYXcH7AmkBVakwZyD2YRhnR3OfhV4MjRCeyEmVSY6GchEh1hBEanFgm2kKkf3LuWpjQBNyGwYkjjU4TZ60wxkFJk3E/hGQ7aMhNccc1I440RkeCkuRYayOstlZIv0ckaoXBEAn41A+CClhTiIZ7RAS51JWkT8PAiAdRKdMPRB9Eyhh0ej5U+m2pbGXnHwGNAavsn2Qic0JxBPcxMRip+nbC8GoYh7uJH5TAxT/23rlCkL+892PPS+o1TE1R4g5kbSpDpmdscE7Ow1jRN0bSQDDkUxV4l4Z4JVQmeYH8/xACQat0TRifH6OzvEvcZ3xMuvUgfSTey1RTn9B+BLFhS4lQ9hLO92RMkI74+NmzpHQ2CTg6RdnkZnWcLiiViIAwt6N9anruu8GPlSalFCFq0OKx70KuwiFxOx57eSJxrGz4EBDXz+SDH4/SHk7A6zHd4Hm8OP06AePHbz2PoacQPTcB5zVxZP4NehRRHr/UySHl4YOKZHST/r9BkjKTqmPBB3ySr8lXOsfUu2R0THpzcFHT+oHh5DxOQfkfnu4f7hPAuLke179KDj/5xNOV8BEOHutFex+NRoeS4JX0ltQTikmdJidHKnNJoQLbxztCiBRFzbrZ8vHxhvkXS67fvOLTtx/5dP+J+8cHzs+WaD1gjZdkLsiMkrubT6w2W16/esfbz75kubygKCe4IfDh/Scms5rBDZyfn7NcnOMDvH79jovLazbbLav1E0VREeMOW3gursQd5Ozcs9+vefv2gtlsTgieST2hrucQJabZosJ5qKuK/QZWqx3vv18zn75is/Hc3Ox5/eoV52cvKcqSfSM9JGcLhVKO6dSyPzyBqrl6eQlRs910mLKkax3tsGPoetabJ7bbe+aLmhAdRVXy+PDE3/3dAy9evMKaCqU01xc/B7ekLIo0C6MQuWQxMF8Y/uXf/IzPVys+3txSaY/b37Nd3bD54XvOzy/xu8j9++9xSnP95i3/8l/9DU0M3D49sdY9jfbcPNzw6cMtbXtg9uYF/mKB/fIVT58+MATH73af+Pb/+f+g/n8vOVtccHX9kp/87Gd8VS54+crynVM0rmc4P6czkWI5o4mebtWj244w9LBb45st1BrqAs+Mx+0dq4c93apDdZpyGLi52XB9fclkPmXzw+9ovYPCMIy242JIQNcxDI1Msp9YvFYoXaBVRRwiWx/o6wm2nOMmU9brLU9NS1SWrvcMnQMMuiowRY6rPmEBD8HI3oz413cuYE3E2AozMUTr8KpNoHxgGA4QPTE6QnBEHNoqtKmI3rE8XzCfT6nrip1zbHYH1m2Hbx14JwyNBjsxKOWZ2ILlYsl8NqOqSkpVUHQaek8RFbNqigZmkzn4XnrWnBOZf0j9ey5gJyVVOaEqJ1jjcYMw5s4PlGVBWRbE6LB9pGDAlAXORdSsYFYbidVJJmitpXeOEAKzaU1VWcpKBjhCIDiHc/1YcZYp7T79jmdaZ/wihJdIly1lWeMGkcrburbirRnAJs/kSGDoh6Q7DskBIvfbqTEbOILL5E2dwH1IJexsr2+SVlcr0QAqIHqHTVKSfhhoe48yNvN1IrUIwtiPTVOJaRKHGfF5lgavOAZ8n5nGFK3zhpBlM6csEPHIWWW2Ov/bGoMtpHlUHFt8ciY52WnG9/rDjW7cpMYfpCsVc2XgeZYxMlM6c5YJqJIGtKQEQnN0tchs11ERdLKlqlztSCmEUEwE/zwRkU0ozwFI10RlJjG/JoODxE6NaDMes6V0DpI1HiVHIQhQtLZgGAaRDIQsD0re9nkoVxB5CyFSWrH2E82dxhiR5Tg3pOsud87HKA47p1lcrhIkxtRYKApSV3mWe2S3J2H3XYSgE4ssehq87+UGapXkLQKQRr01MghM7DMtymfWTqXkIV2PPHk0V7m09AGY5D8vlUxxhMq/H5JNagatEUkuYmJ9ZS2pUTLkXUgDQ2QNJCMWqQikSkEG8BmECNhMkp4EuE6NBlVKYEVdlBno3HeQrkAkOct4dJJTZVbb+0hRSAlz/GwF9aREaT06DmmVGqVhdLZSqXmWqJNVa5ommE4xxFTJiMcJyRlAKyUTr5WR7xkrvQx5boAb5FmWic8lBEU7OJwTT2JtCgIwpEFr0rCqR7bA5+ckLTdFqhKcSFTydGKlNUYfG5ljZmFyMgXjMLEYpf02eCdJegb4IQloJHCOMYQIyshqB6mSyqU4svM/linG8fgS+I/p+U4/Cyev05n1OWXnT56yU5D+z7H2YwLxo+9lo4DnoVClmK3G9XgMueLzH7OccaxiyrOcp/66VJ2SfSR9liYBDS1DEZUhFgHlJKE7PS/UHyYzz89Pjf99nqikZ08pQl4uwjwhCbP089BFvInoQrOcX9DGQKciylaYwnL54iXXV5fsH24Z2o6hG9DW0h06Pt7f4IH1fkdlLJOLGt/02CIwm1VMp5a+77m7u2Oz21HVE5aLBcbCavXAfr/H2orNZs+uOVBParz3zOcL3BApq1LcwLzn6XHFfn9g8mLK//CX/4JJXRKDDNV5/dk1D483tO0BrwJFXVEvpvTNQHM4MAzw/v0DWsnUV+eF6Qw+sl5v2G63PD6s+fM/G/Cfwd39I20bmC9mTGeW+dJii4CxYvaxXm9o24EYDEo5BrejG+Dx8Z6HhxsuLqd89tlrjBUv/6bb8/SwZr8/cH5+xeXFS54eeoKbMkR4Wj8mF7RINdlS1RWfffGCixc151clwbV8fL/B1HO2qx1Dv2W/PrDfdQQsB1Vw80+/Z0Axmy/ZHva0fgvNDuNbzucTnkzL9M01ptDEKcTgOGw3tA937LYt3eM9q6c1N7c3aKX4+qc/5d2rV7Te0eFpo2dQEdM2WGWxVcGAI2gPJagyEuhZ337PegBlZihdgwFVGerFnJ3uuX14kEpAWUHQ6LpGhYhvW+h6eVCsR8WSQpfYQuFcj1aBYDUfVluqT5+YTc5ArTl0A49PG25u7ug2DdE7MAZlCoqqTPJqT993DMOAqRPjHgOmrgWMOodyEXFuT+SKD9AeQFcy/IuBwEAIDltUWGOZTy+p6hofPDfbHdv9QSJDWR4ljiXIcL9IgWJqLOd1zeXijMoWMrnXQ9PuACEOC/HSZj5f0nYOuh7lO+qqJgYZTGWtpes6sY4HmqbBGCv9X97RdQM+OAqbjV4cwfeoEChtwkBOzlVbSx1rQpSJtUZ5mczuB0IUi+2qKo+W8wnPOSKF1cm1T0jIfhhkmjO5v1CwkS2Lgp60KaRNuR96mmaQrOMYy2AEJmpkykfXjRPgG+LRqu3UjUYp0TXrE/qlG3rxDh2ZJgnIPo45RP5osgtnDv46fxbHTSdyJEuy56lOIDeqeNRWpvci5yopWcmJQmEFVMYgic6xMfQY7I+NuSd00snlev71481PMx55PILvTDrF5PQAArZP78O438Y4SmGUUmOO4/MFSxuLGUvf8v0skFEZnYyWeZAbGEMCo/l+RbLcJB6TCiVAf1wPzo9lap+GHYkFX5owGuI4aImYHS+yvEeAvlURrY8g1WhN1BGH2Hzi5Nh08i8PweODG3XaWhlCtlhVoDSUlaKqQOmILTRaWdpWnHEyQMisbVWKh3xUEWUMw5DdoaSxW7B+7nQXgGmtEfCmBEBnVt55YS9EdhOTTl2lfoTEWg8e59XImGe5y+ADhRZWPleOTGpuDD67R2VgzjG5hqRrP64fY6yAuJE5leBnjPmDNT0+W1psQ1WUUrgxOlnWqvEZk+cj3+cj2MrrIVsX5jVjrcUU5mi5GSUe5Gfo+D6MP5dETqVSdBwdt2SlqhGc5kcsT0SU4U7SQzE4LxIObfBR+hSG4CmsFSmLlx4HjyQQOYn3IYNljt708fmTrJD81qjjoL7TV+hUwZEQmWJk7tVJ0qQsldJ5TkCSauSF4no3ysROgW5McevYLC/Jrj7xZRdf+GOEzEl7tv0ccwb1o5imxLxA/REAL+kJ430+XT9jUpDXU44Np6z+aZUgM+cZIHMkPvK/VQqKKsrnhnTt8v0NqWIX0/ddema11eSZJfIWSTqQelgKTbKhTBUhrdL6+dPJyh+T52T5ofxByICcaBqTbJUFUAw+YgrLZDbHTidim6oNmki76wihIQ6K9e0TvhU9uIm9NO4pRR8Gble31LOKL19/RhEUu7sDrduiOk00JW4YKCeGMzvH2IK226P3iqoucS5yOOx4fFwTotBzxhhuP91w8+mGqxfXTCcTzs7P2DxtODs748XlS64uXrA4W7Dfb3C+B1tRtj3NoNi1jmF74NBZwgClnXBoGz58+I7m0PBXf/1XaBWYLyyHxnF7e8Nuv2XfFFQTxfbwwHq95+mh59XLV/h4wFaOl6/OePHyEmstbRtoG3munVFMJhM223sOhzVFETk7X1KUhum0Yjmfip23sQx9JOD4dPMBPxSUtsC5jsNuzXRe8vQEczelOYAtIkVdcXG+wIWKixf/Eh0jH799z+r2Efwt28cNm/Udj58+8fDpPcoWLM8vWVydc2EU5eB5aA6UiDzy6fYOJobJYsbBtVTTSyZvroi7DjY9zdOa+/2GcDiwCz3z5YKf/Pzn/OXP/4z9oeHu9pZiec12sufpYcWWgc63VJXBh47QdVAUaFtC6IjeoZVliIHeRHRViZ3vtMZMZvi+B6uIXQ+xQSzjhAwxWtzDjLX0jjTw0XB/aFj/+tdoU1HWc6bTOc2mZX9o0PWEEAwxDmnqvMRl5xyuj8QhEKxJPUYe53uiEpvMwlpoerrdntgeEk1usJWm7xqp4pcV129e8ObNZzT7ltV6y6YbBOeUUwwyDyfs9qJvKQQBmRhQwTMrayoMqh3oH9a4qAku4JxiUtfU9ZTD3jOZzCiKCqhAi+ta7CMTA+BxfsD7EpfY9xih67qEPwZJJAo9SovPpgtCiJRdx+HQMDiJO5NJNTrY2aJMVYGOoe8hWjEX4TjvxiS7TdASJ6ylKDTa5N6xI36MUVGWVZIbBmwIwhgGBy72OOdGQKMTEDFKBiZFSFIPaeywSefgvU9NXJn5SPKZBCIgjht6ZmxRGufdyJp4FEdGKTNMKcBr2X0ix+a0UYOedqw4Bv2cFCTmFuQi6LwRHXWWqdUgOfYIczh+M0RpzsqM40kwz5/1LOj/0a3gj20O+XgTakjZlmxAaYCBIg32CePmF6MwhqfuOiPYVwnqpPM+Jjo57VCpUUt+QZ/+Isi9ITNsaZM8Un+jE0e+liplFzGB8/HaJKAH+W85Rhd8kqiINlj84jmysYI8kw47DZTynrquRLcdAqVVDE5cnMRd5KipBodSAZsb5qIWVxTkc6pCUxbSgGoLy+Ak8DqXIHJauyFANTEC6p2TdUNIQDkDe33Uv4fsX8/IXIfg8dEne8bMMB6vmw8CLnXM/Rw2nb8eAYj3UjFTxOSSIwA3JiwumkY/uhgpLZKodAuE6VV5KqucC+gRsGTw7Jz7A6Al4MyQJ8OiSM5Xci91Kvnn6b1BtCBjopArAVpLY6pzwojLOlcSqLy4Yun0rPlhkOdZZcY2zURQmt4FAvpYRYrS1JQBfW50VUoGO2U5X+h6YpR+npBJgcRyBDTKWHoXGdxACIKSR2JBurWI6BMQLPEny1nG3oPkNhTIQ8vyvU9A2MeRPR6bxENqekWqNmEsTR6thfM9Eomi+OrnR14az4/x1KfPyxtrSBdKJUnSSAbkdFBKmZw2zmZCZoxrMY6zSiJH8mFsJFYSw54B/xSSxcErfZ8j8P5jX5LUnZBAZKIi5P+T3MNSgpSqLyq7sMVk45oCfwTiuC7TM6AiWsk0YokR4pKkQ8CiZfJ1Ii6kMn2sbvzh1x8/k7HyJaWsdD1knZuqwIWA1wZVT7BliSoKvJUJxzEohqYhhogpCvzThqKeiJOWUnjM2AtjKksxKXnYP9G+b/nJ28959fVr3K7h6e4WZZecn50xm88YhoG2bXl6WlFXBq0cd3e3PDyssEXJYnHF/e1H9vs9RCiriqLQnM8/Z7mYURZvcc7x/bffMXQD1f0SW0zQ1tIPAe8uKas5P7z/LZvNltcvpixmc+pqSQgDX//0NYdmRVBP6EKzXq0oJ4HLVwa70QII9RNeaUzhsBq++/bXbPf3nF1PKOovePPZa+pqhtY9h6ZlNhFyptkfCKFjNi148+YdVVVg0Oio2azXVOWEr7/+ikk9p2la7u8e0RQ0zQHPAW07tpsVD/cdy7Mlk+kMbUrefv4l2lgmk4J6MaMqCt68+iVPnz7x+3/8ByZFxbe//y1dd4DhnjA47ta/Qe8/w4Ypses5qxVXkwn6/IKdXfLd0w0ffvsd+nIudihlwfzNK7aLhumbSw6PT4SmYdcP7Lonbv7Lf+BX3/yGty/f8pO3X3JRzWjqlvViykT37J4muL5lf9ihl+f00eO8p28crmtx3SAgtwZVLdCXNZPpnLPFOYftjv16C0BhpwKNnUdpS+8jQzcQ+57gerG8qcS+0ocBYwsCjn6/RcXIZFYSlcX7nsF1WKuoKkvXHOj6Xhh9Hwihg0phFjXzszO8g37X0R866DpUCNiypKyM2JFaWC7Pefn2NbPpnKbpOLQtn25v6Ycok3dtgQwI9NJ0agArrLCNMDGGiSmptaEA6Dxh6DGqFImqlmezTA2ppqxQpiR4MW2wRUQPneyCStG7ln6wlEVJjNIbOhqKRI1zPRFPWRqqqkIXBt+LuL6sS4pYgjLYoqDvpTfMWov3niEadLR45whRBlc5JxN5F4sSW5Q470VSVJYQBowSdh+lKdAYU+J9pOuH40BQYf1kwNGQEL9SisLKQUtfoiPF6KQ9thSFNN0OwzBKVjLTlpsFMiOutDDARqfNMsRU9g6ib0rOKioeN1FIftAxNyeKb34iRlCjDvmYCOTN5aQnMAHVTLfFUcM9AuT0nkZlLa6wZ2KFl2UM/1xYP77fHwv/MSVJR5edNCgsdWXH/CIYva+jzqx2fr/jxhlPPkOln2VG67SxN/cbZP2n5pgscbL5jmX7sZQR07tmli6M10g+UM7jFDDka8vIuGamLgMc0tRXfbJpyoRG790InE0CuEYLk5qlIFpHVGHEnUiJf3tOhlSqgOQJrzHK52VLSrHQFKtKZVJzadQozPjZUfZjCitAXez7BRRrazD+ZK3Fo+TCaHEyEYDoZYMxKZlNw2lMAiWDG8aeFAFZcuyKo/RCKhLy4CgtSU1MzGVMnvUh6SXlM/TJjUkJBMfrTkq0Qniejp4y7KfgPrPlAcb7l61i4egccwQ/Mg8hN9Mfm4Hh6CYQxuqe956hj2nirB/XrgryNHp/qikPMonX92Tj01O2OYZkDYZO4FEJyE9sBz4wOAF1VSEWbYPzYm0JYpeZ1N6eSHB+7B+Rh08lWWHuExEBZmaCM7OdZYJ5IjMck1UhEI7N7vKlCakPQxRIp5KV9HkqzXALYVwXmcvIwN2nKlmepTE+i2PjfySXQY56cXnN6fyN/HdOKk6/chT4MXHxLDb9CYb7/1/JTpbhQDz+Oz9rKSsL+Wd5DkaMeAS8oyReSmKVJwArSHuN0blxXKpmeWBgcI6YPDKNAqsUQ74O/0ygP/3ZKb90vGKkniPZy5yTicHKCivhfIc7tBKkrEVNpxhrib4ldgNu72WMzWxKUIFQCBjUGgpbMJlU6FKqAdOLBbOrcwYHziqq+QJsRRdgZguC80wXC7Sx7PcHtrs12gQ+//wNCs1+3zGbagia7XbHpJ4wqRSTSvF0f8Nqvabve1arNbefPnL98gt8FEndfLHElhWbXU/fWiblOTFY2qbHDw8E3zGZVAxO8fh4y7/5N3+L969ZbzYYY/jhh+/RWolkxzm61rFYVJL8G0tZBtabez58/IG6WjKbXnB5oVk9rSB66knJ8mzO9YsLvvj8c/o+DRXUcLa8pm1bdvudkJXe8+L1FbPJhJtPH9ntegiaQ9Nwd3/DMLRcv3jNerXF2HuMKVleXLHZ71FELhZTyskZn//kF/zkp1/z2W/e8Pf/6T8w9DuCj0wmGuW3uEPPq8sX9DievvmGUGnmb6/5q5dv+Xx5zsPQcL/fERyYOmCCyJnr2RQ9m9K0ByIwPK3Ytjv+4Zvf8t1vvqVsHOdX58xfLNEB/vp/+Je8un7J/d0dh75l2+zZ7LZ8+PY7HtY3ssZrw2BacI1IZbxnfX/P0A8E16MJAqYJNL4leIfvPVH0i/JcLGqUtXilE/kU8O2OvveSSJFyah3RhSeqSO96+m5HdJ1EDiVxUWmDNlESgabHD1JpnswmBKsJrsdMSqbnE3RpmZ9fYouap3XDh+++pzt02KJCofGuJ7Zi9hKHHoYelMcqj1VQl4ZFVTEva6ZFydTUVKrEOI3rkjFGWdD2HdpCWdVErdluDzKDR1mcd8QoOMnaAq86YnTEaMd4VtiCfuiT2mUgdgPeF0AlWNql+SWJiFC5xyHNHIlpmGZK2wUbOvmeWFTD4XBAaU3b9mTjB8LAZFYl8lEd1TOIlXjIznJp8olsNImBM0nT44NKuufk1iLU3ejXPQyD/ElOISOwZ3zpyGLJniPC/4hoh4YQZViU6EgQH5IMenJVOklB8oYFaRDB0acdjoA+b3QhA4f8WyfTMfOMrnHYU2ImDSrv62mSaxgZw+Onn4by48/yxvSsTD3+XB1BS9rQjTbHBrO0axzL3gm2p41GpUzkBLuPTPqxdYyxOTiDndPrFdM5qnQ8crvywjqCv1N2N1t96uM7HcvoJ9dTfhQZpT/Prky6hyEnLWILqU6OJl+t3PYoLGxijHV2kZH1kN1X5BA8IcoQFmP1iewHok/A1xpisElWJcjdp+qUc9nNR2OtoSwL+r5HB3m4euepigJt9djgF6MaLTBjVAzOMQxhrFgUhZUhEzG5tyTLTrkjRzAeo8L5CGnAmgD5gCE1qieHE22kfOeV3DEfXBpEIw2owqqkIGKK4/MS4wjOBKAfOy3yOZ82N44SCwXZvSTfi4zvc4UopOQmJPCZgfup+87p1+lnaJ0SmeCQJDPpE5NfWS415p4IEhjP1aPgc5UlJgLhRHcdovTjGJ0cvyQ59F7Wsg8RlLg0STVJkjnnw1EiExLhkEBwyPA2HpNslBplLLlnYyQy8vmSYh9ZmpKbgf3ov5wT9qzVjjHKMDMtID0/RTr1/eTKygkcluQ7J/4xPSsxN9/LD1Q+Vk7+5hh7TuPaKXDPT/KPwb3c0z/y2vj89f8cqH/+Rjn5yP1PR8IhO97kAWomVSPGuKkUGD0aCgQ4Vhm8T43LiWBRMgkZdSR2tGZ00yBIQ9+zizLe0+OJjcldPFYoT/IzCY06PSv9QHADaiLARFtNOZvI5PPkCuFjS7QpOWx6KCy6CngVoZLeLxuiaHKjx7tA3zc0v37isNnxF3/2L/jZL/+c3e0T28cV26blLFrQloBitjijLCfkwZF1PeGwOyQg0HN+XvGzn73jxYtXNG3LZnNH03R0/UBV15RF5Pbme7774T3z+RVn55c0h0umswVFNeHNq9cQHdv1I4/rDZPa8NWXn/Hq1Wfsm9d45yhMzdlyynxxwd3tLbPZAjcMtO0wmhm8/eySl6/mvP/0LZ6O5VktTjiFp+t6rC14/folqIHN5omm6VmenfPw8EQMiuXyHB01Xe/ZbHvWmwNFqWi7nhg9Coe1mqou2G88i+WUs+XXDIPE3sfHO9p2oKim7JseW85wbmA7KXD9gfYg3v2Xb97w8+Evebj9gYuzOV2zw+oat7esn1asNivWmyc8gf36Cbfe4qzh68/fsXQlT7sdfj2w3ayJ0XNYr1BWUbw4xy5muOWcaTWnuV/T3m9Z3W24+fAtej6hLGsePq54+/INb998xvXFS86WA7OfTrh/+xO+++1v2Dzes49bGn2QXqLdnu7gUMqio8b1Io85GEAHQnQpIRaqgyCa8ugs2ZgiOhkoSe9RyhJKk9wVA6qwAnz9ID2bPtk3BgWhF8xYWBSOrt0xHFq0qZnM5mgXmcxqZvOa+dkcPdUcuo5Pd3va7RN1VVPWF7huAy7g+g7lPcG75DQlnjy1jSynU5aLGYtpzaQoqKxlXk0pdEXsFbvVgcNmy2HfEIuIKuQ5DURi0DgfaQ8dWkvTvVbSFF5WGoLM9PEhgX5tUGjKosIbTSTPzRFc4EMkphjhnR9JxKos0z6X8JcWKc2ARSlDP7QMg8yRsYUoAYwieemLDXaRAFmIgrudl+OXmCxmIdYYrB8C0auUrB318DFGoo+o5LqhA8m60ImW3ssm5bIuVScwn5BAYRWlMUQv0ybFS1y0zM4Hep8sLhFYaSA5w0j0VCRNbwzjYB8B20LZRxLLchJwUQmwJ2s0lQB+ttyLZP39uJ9gk1f3+BqXmK0Txl5r0vTJP9yb8kamxnIFp/2943G7ZwAnTeY92cxGIExqmMsbZd5I0oaVQUMMYRxslTf853ttPN2fRrBndJ4Ye0x+hPGTV49ErToeO6NtIYRRdiDrRKl8/Gb8jGMPwvEIYtQ4D8Rs15jY7ZFBPsoHvA/UpRlZYaJnv+/SsKtjEibe9Z4QDMornIt4F0VmgaydzP4PvUcZSQwG5+h7uWplKWA8qMQlp4YUraC0pSR5PojtZPJv7XupZIlkyGOsNG265EZitIXgBaJkXO2PiWcMMTVRkta3FbCXV4AXBtxakyoRGVnIEKcMObPrgawpO2q3YzzKLMS14Jienbp+HNfzyWrNSUGuDkQBobmpM44LJCZZzXEoljFmlOeMjAWkIVzJmQZGyUV+3mMQNwKi9FbkYXddN2CKQlyaQv498fJHZSCbNed6TLKJSXahDcroNNE39QsokWMNyb0hKklS0momxhMPoPEapUANYhWr1LHxNAF8o07kS+nxUErunUlJrQ8qXRdpEpR14NNzfdJjAKkpKiXSqcFb5QckBT2Jc4JQIxF8TiSUPKdp1eQ4AxKifIjHpCV/nVRxjssiJRTpc4+JlASnU4Afny8hclLzv/d1TADis//G/AEk8kWnOQtKZGNRBZGTxvxquQ/i/W+lYpKrSDEm0ijtK1pRFprBSaw1SibJQiQmu75sk/rjc8vHkhPK7M727EzT9ZLfl4sUQ0B5mCpNpTX7vsc7BzairEHVBaaa4l0BKhAqSzmdoCcVNANh39DtD/htD30PZ+f4esbNakf5zQ9czF9AsLx4/TlaRS7OzwhuoDBC5WzXa6xSHPYNm9Wa6+tr/vIvf4EtFH0/sFqtuPl0Sz8M1JMpFxcXoCTebTYFh8Oahw/f4octZ2eGshA7QG06+q6j63bsto8Ef+Dy7ILLi4JJfU6zN7TdnuXsgmYnRMh88oZ2YvGlmCNUVcmk3DIxkTjxXIcZUdXMllOy1bIP4nl+ODR03ZZDs+f7Hz5xfnbF/f2KSb2grvZYW4DRGAPz+TmvXl/z+HhL0+zZbTbcP6yoSstnn31Jc9hxe/uBiMP7A1VlqWp4+eqMsiz54Yf3+BDpmoL9YUPX7SnqV7x59YI/+xf/mse7d5zPZxgFq/2Wjw8PTL96ycV2y+/+6Z/oDw1GG/zuwOA8+2B5/fIlL5czQoz83//V3/C0fuK7u4/86uPvafaOUAWq8znbtkHNK9y+ofz8FTTnhK6n2zb88P6Om49b/vN//i1aa6aLOVcXc64vl1ydveJqds6gd5g5rNZbmsahdcXtzSOb3QEdQOmCBGsp51OiNRAirmlRtRE3oRgojOxHpOS67ztUaDG6JFZID5VxeD/gjRAmpiypbIWJGj94Ls/OqWYVWHBRsdkdsLoWeYyPuGHgqd1xd7/BTAuiNkQzAzul6x39ekfY9ZLguwGDx4SBQilmk4rCGOZVwWJaM59PmU4qZpMp03qK1gV969gcGrZNSxMCVBUuHLDJav3Q9fSd2HW27ZDkfFCWUgUOPrJYzIkR2qYfSZTm0KUqrMhehVwLDIMXmaxSaWCcDLvM1pRlWQphmsw4lCkg9sLue4cbWnw34LxmNptijKEsPWFo0BGm9STJYyPBe/peJuo6D30/jAS9PbSOYchNZwo3RIyJ2EIx+MCQNgyUANzMnil91MFm1io34hmtZTCV1XhkCNZ4oiDTRJUMPRIIlJuqQrK8kyZQa7Ro1GLWg4pzT2adT8vLObgakyZ3nTIvWqGjgMkxefEJLqVmgpiYMxdka/dEAR75vdWRwc6b5imLFmI8vvB0o0ogPUQpGsuI+YhK4E8IPHXUuvNMWJHeR402lNpodNLmjlqbtANl5jBnOuMmnN9HHd2ETLbxzJcpHj9L5SQpneyoCc4/JwjDmIB9Zq0lKQyjpn9MN3S2zEyAHgUhrReV3TwElCgluvzBK2yE4CLt4Bm8EscaAtro0UnE+5iSzKxvTtKbxACLFCOQJ5M6HxODKoBc5BxCtwWd1hwkq9ZCmqlTj4AtCkjJR/ABaxgTCZ9vRZRSvFWBssg2nSk5RBIF2fT1CID7NB00y4xEgpDWuZIKWQgkf/xAWRWjt34MKVkcswiVmrFTohQgW2Jm1pb07+y3r07+mwcpjbWyyDiAQ6XyUZbnHOs+MpQq5k04rYvg01C8DHTzKhkBWbpmIdL2LouURmtdHzUEcdvJADkqjwn6xCI3geQYRAJl5N756OgGLe+BSP+yd71Mnj0eQzA6eQeHk4xarkmIx2cor+tTi9mYnjeJFUd9eo5qxkgjlASJbNObhojFDLFTczCJqY4QyT1MabBbejby63JwyfI+nTF//HH0SL+TwtLpdF1O1oP0OjCuhASr5Zjya9LRjsfAj1///HfHz38WaFKTb0zAXoURdKuTsC2YWBJzo/J1TAmW1ugY8NonlxyJo/HkqI6EhgctMUWeA5MGv6V4Q8RqSRaNkWGEWkEfwKX3SbMTT56dvEZikpQeP3MkX9LxRy39XoSI0gHXtzgcgwZVFVRXZxSTimboiWVBAfi+x06nmOmEqDXd5gkGJzpoPNQGU0RCdKAK7j585L/6ghfzK7rZkuB6to9bLs/OKLT0KaxWW6wtqOspi/MLXr39gsl0yma7Yr3Zcf+4YTe0zOZTJosJyiqpjIbA1atLbGWZnU1ZnJ0zmc7p+w37bc/l5UuM0UwnFZdnn9Md9ugY+fT9ivc4nlYH1us1ZfGei6tLvvrqS7ruQNeV2KLm4vKMvu84O5/QN5949fIlrz57xWqzZbVpsGZGuw80/kBpaw77jujh7nZLGJSw0N3A0+4eHx/GZ9NWlvl8yqHZoFTg7GxB9C0/+9lXlKVh6FpiHFgsl+KNHiJVXRN8y3b7wGw+cHFVUVYVm+2Gs7JisbimrioeV2uuzi/4t//2f2T9tOLTh4+4wbCYTjjst8wWM/7Fv7qk2W/YrB4Z+h7bNmzWDzytHpnNFiync777u//KoW14/fYFZ1/8GfsistKOUE34YX/HYAyXn7+hbzoOhz1u6AjbAv+4pT8cwGmUi7QPax6+3/FrpSjLgsuzJZMXCxZfXPPup3/NxfKKwk749tv3fPj4iUOzJ9rAfFnTuT1tt6Np9viuQ6XprWeLJYW2eOfp9i0DA971+DQHJ7oeWxpqWzCbzairCYfDAa0MZVFRlzW2KDHaMJ8tmS2XDCFwe3/P0+NA0/cE19K1LbFrsZOayWJKZWqUNqy2Lf1ji8JB34I7IDNsemHqC8ViMmE+m1DbkiIqzBAYdi29U1hfYEOgKAJD5+m7HlMYluczvBvEilwDylOXU0pT0bYDbuglTgRx1QyhROY3iIc9RmOVYRgcXgmbb60lorG2oqwKiW9BhlYODCgkcVIxopUd5cnOi5LARHC+J7gBqxVFXUtB0qRmfyegV2tLdhc0phCnNN+LwsUEFAFbagprsAZs20f6TizgiiKOG4hPG5G2mjjEZDmYuv4zbNNq1LMbJZufVck8PziCEwZkcAFthFl1aRPKetXjRpA2nZQhFtaOjVSZsfdIchByAD3dM+KRVRGrxXykGhITa5BcQSlxjDHaiAViDALCUOOm7zWj5R25XytlS0eoy7idxJDYuoxkUsQ/bd6NKje7+eQNjnj+o/FRNqkMzEd7tfRpI1jS+riJpH+cKmTkGsi/A4yb+nGjlQ3an+62JAAGiQU8AnuBjMnzG8YqgiI1mJ5cg7whH8HAkQkUkJAZtCi2fQFp7Ityf1QC+CF6eh/QPqB8pHMBbQWgeC8Npjoe74D3MTGliqMRtmjEQ5SG8SztcYOsQZUTDgLGRgoj8wEKYyBpon2yRxx6qVhVldhmaS1Ms/ODJDOmIPiI0jLZtEj++4W1xKgYgpNzDkLfW1sQo6Lve2moSxIMH0mSH9HWee8pUnKbqxRZLyjyJkXUAjvjSQIWfGYN03o1x0ZNUgKewc9469IiyvDNqMzKjpBGgG6S7kXSMxYiMfo0OVbAvTUyOISQJswmy8dcnPAqybQ49tl46eAniFcAISUSvvfyzNos21GpSiZTRkXPGKVCqOQ8Ai5Nc/Uiv7HSeBRDsvVVOSmToS2DytyvYhSqRPW8KTRGIjISZ0ya80OYLShhZPAV6pgwx1MZSVqzQWZ4jM9wIgd0VHJN8q1RoNH4RDqMGRekawf5w3Ovwvgwpud7tG4d8XY+n3yPf3yvjzzFKaiV8BR/9F6cnBdjDCAz26myQSpR63Q8kdxLkI0Snvd/aBWT/DNgtRmrnZHUwI5Oc0tE6inHG8fro6KwE7nx3vtIiIrBK2nK04ZErkmvTRRyq7RhlAT2Q0ps8zVJhyfPQRAZw+l1iCf/N+0bklHFRHBEujgQKVCzCVQlTKaY5ZzSixW0Gxx9t8EdPMZ1YC2+99STKVVdMLiOznXy3DdbVKUZBs+3333Lpl6zqOdMy5LaWvbnW2ZVxfXVFfP6nCFEQizxsWDXSPx9fHCYYsabz3/G7PCALaEfGg59Q11OuJhfcr64Yj7fMcTI/GxG2w+cv7jADZEQNJWp2TxtGbrAZtWxX++YLzzb5g6M5elpxWKxxJYT/tf/9e94++4NtpzQdS3/7b/9msVyyquXF3z+1c84P5uzP7Roe0UIazbrPZoCW5T07cDHH2447PaUhayN9eoeNzTs9ge2ux3OBb7++mt+94/fYQvDl1//hIuLC4ZuYDrVOOeYTs4I5YRpPef6+hXb7YamOdD3HcYY6qpgNq+wdYVSYMsZfT/gXcf9/ZrF9AxFyXrd8unjhk83B3wfqcsF55M5gYamX/Ow/sh2f0AbsHXFsiw47Fse7+/4sPuWiamZzWfEGFhcnXOpK6a6pK4vePP2nLtuy2Zo+X61ItbgJxpVlxTLM1QzUHgYnvb092tQDTEauqbjzsm8A2M1a1czqXcUZsJ+29D2Glst2e4fafoNffvEEHqxYBzEFtP5Ad9vef3yFYtZzcvzkrqo6ZuOZn+ga1sObsvAIGRVG6irmul8TlnW4lI0eLrB0zrHan3P8OGJwSOVl3ZAIUPlJpMFThVMJzP6pmd1e09wjhAsxkUB97pHFQ7CQFVpZlXJcjZhWk7QUVEoQxWlgbXSNdNyQegVj/sNZVnJ3uochdXUdYUPwpbXkxrnIqWu6DqPdzuKwlAUBd47tIkYK5tW2wmW9QHado9zjrIu8M5R11UiiSWmOueY1TO6rpPYZgwBGRZGVDKbxTvaNg9vgxgcSkXKUhKi7ELo0nTeGETym6fJ5ylHUSUbbgP4AeUCRaEpC41FZRkKGGtkvK8RQ3yXxvb2epADl6gqbArJZzNm+zCxAips8rlOrOowRJnIhbCrPh4DYVZdg7jDRKTBpChKrDH0XT+WbX08WvvljedU3XsE9klSRDj5G6pKjU2zYmsnZfrgZBqZ7Ed6dJMYBy5lcE5mVpOcImTQeozl0hx41Njmc8tszgjIOf6uNEwqdNSY6BEzKU7cahKD6h3EiHdO2KKUZFgtUidIzkbmxJLPZ4nBSPSNgCVzkcLIjsj9uFGNu1XW8J5sYgkCZgbu9Gs859NrcMKKxpyFjZppKO3J5p2mdnofaQ7dWInJACCi8UNAWTlPEVVl9s+MbiYRsd8kSqXJpeYWH+SaB5+am33EhogqNEWR7ohSkF1rnKcoRCuu8NJ0bRWhT/RcAm7eRQIyGdeUwtorozHKiLuNDxgtlpQ6S3+CIvqAj+7oBqOTRl/p5Jgj0jFQZH/5tm2TtIOxl0BnXf/JPcwMsvN+XKcqSQROQT4/uocycCTLffJ9ef5HbmtKGJKFoDwjqSE9SYTSCcv7RWGYZZJvZmZ1YjojPjhJ8FCjZarO7xmSjO+EbVZASM+F9MzYUX5hkGxeVrk+WjzGY2IoDbURle0Pj2wDkUDQpz0ScVxXckxqBKyZhc4VLxLbrBJ6HntpRub+tL2Z43uo47GplFmrdD2z+xiR8TikgfpEThOfN7GOlYQxyZbfIX9euven9sb5d0///j/yJWTAM6yfjuH491gBPV2rgMqWkkjyLVPBdYrNuR/CJZIkPnMWGj8gQEgeyEaLe4dS4pblnLhJSNVKJRlZbsCWUm6lpXReWegLz+Hg6IZ0jCfIPSfPoi0+vU6p8pn7xVKTt7BLFlVE6QOKEfqew2ZDHwPlbIoaHFZbzi5f0LYtPgpQUCjCpKLB4g6B0HXSd9Y5vB4IWtPu7jkcdnz++ktevXhJqRSr3Ya2kynOVVWjjeb9+2+4fbhneXbO1198zWfvPmO6mID2mIXmafVA12pev/yai/NLsbXctISu4sXlO3StmU5Tom8DHz9+4u2rt/jQ8P7jDbvVRjTGuuH795/4s1/+Entt+Pa7f+Th/jdMplMUK1brNU3bslwuebqP9IdXMHzO+2/3NF1HWYltZ9d6prOSsgp03YblhaeoBrabFRhHXZcszqZ8/bOveXracnvzwMePPzCZ1Hz55U84P79kNjtDRcN//y/fsllvePcuMJkW/PQnXzCdKrarX+P6gcJappNK/lQz0FWK04GhFSA7ny6Zz+d0bct//W//hQ8fPhF8ZLtaY5XYjNYzSzk1uOAo6gllWYpMpJoRXGS/bYhuoGu3rJ+e+HRzgyosM6WpZzV20/P2xRVX8zNu10/YqWOoYesPUAep0g2O0PXsbUE/rdjd3eHWG1AapyP4Nf6h4ZubDxTlhOl0ydB62u2Boi4ZXIc2UZphDQxxAB3RtgAj8pPvPnyktiWXl9e8vKxQVU1lSwazRfUQXEvTt3SrPbc/PIIpKIpaSF+lUcZgqoqiLInWchg60ZhPLP3hQAyG9nDA9wNDfxDXnmTKUEaHjgNER2Ej0/OaabXgfDZnOZsyLae41tHsWgzSBDxbTilslarcltl8yXq1YbVa0TQNi8WCup6glWVSFZwtz6jKCUMXebzfsJxZLCXDMNB1B8pSU5iCtmspayuNtb5jv98zDAOTyQRrLSEGSluO+2VVlPRNP/bmVYUFSopChqaJI5sbDSeUUqIScEmqZySeaK0py3J0tVNKUdc1dVmgYzyZayMxST4/hSWtsBCxVqGsSkBKtL6TSU3TOPqupyiMMB7eoVLQNCaBDhXRST8sYC+kgxZk59KmPILhFAdPtanAM/15CEEaFUUPIJt4orLyqegsPRk3MWH/TBpclAUHMf3XGotB/EV9FFnFc6cJaZ51CYTknSkD8nGoij663IwDgH60wT13p2DcnI4b73FjzeOLY9rI7bjVHVmvDOoUAkDCaVaBSJHET/t0Kyex1SNaydvS6PIishY/govxFSfvr0cKMZ3IeL3TxqWyw0U8bmw8Z7FyI9e4ANMNyrIUpfQ4CY6I2Pwh00cVEWuTzlxKPoyyq5iSnDzMCTX+L8aTxXXyZZQkBB5J8HyyYtUEeiN1oVGao6Ao1HH6MsLgRx9kUIVWNCFKma8nm0fijVS6XPDia28NtpIhGd7LpLkYAiRgEZyT5yNkbbuXBHpszM0VG2midb1P1RmVJDPZu/543BlkG6AXr8jj+kv3S2s9VmjGLwVWG06B3bPGbo4gcgS7Ks0qSGBdwHnul0jYJzWQqhixWkqOeW3m35fPiOMTYFK/RB4GFPN/VbrT8ZhgicTruNbGBnd19PYnxLHKpdKxqUia6Hw8wWPDdhjLYHly6Hgc6eVRkWRdEpNPCkqIzCaJCEdAnaUlzy97PsMjED/eJ5/o49P7dwrq//e+clVgBMInsSPHpj94/ck5/h/5+hE98PxnKkmLcuUhs/lRYrSI0n706zFbicq+4j0ysVudhCX94xAlzL01OpWxZdP1XlytpBosG6tcWnnvQlkKY3BeJGKF0kwKiyLQD0nqlk5Speat0SSJ416glPBqIVUOVGqKp1TEAmJp8InJp+9x+wOu7+HQUiyWFJMpOE+pDKFzFGfnTK6X7No9k+WS/sNHvFfY84UMmjQedT2DXvPQPFA8Wi5nZxAC/eAI8YnLs3PKoqBpdux3Twz9geWkRIWByWwiFsHBs9vtZerm/o79eeDV9Rvmkwsu3rxCl4GP9+/p3UDbNkzqmlcvXnJ394nlcsFb84LmYkJwjsJazi+/JPg9po68eVWx3mxwbo9WNW/fLjDmivV6z+PDE9tVxT+se+p6SlVXKNNQlJpqUjMMB/b7PYWNHJp7ilLx+VfXnF+ciWxms8cWsDyb0nUtxloWiwsuLpesHh9xg2M2u6Ao5hRF5OOHR2ypGPpAWQi5RCzo25ZJoaiKCZYKpaYMwbGYlixnF8QoQ+3WmzUKKCrLu8/f4H3g7+++5+7T9ywWc3Q9Rfua2XxKPwwoZVjMLzG65vr1S6yy3N9/5OHxB6JRLMIFVVnR7RvWTxsoDOXNE9OLM2oNb9QcVRa48hxbWrSKdF1H2zZsqwl93/Iw0TzeSeXOuQHXbuCgoJowdAe2zSO6nFKdTbEW+k2HTYOZfJRhbqqSnqnQdGgjzdjt4Pjh5pa7+0dsWWJSb9fgegIRowrqsyvUPHLY7uj2e0jWxxQluhJWW89KvBEZSnCO2LQyk6Mo0BbwLXVZUpqS9nBAdx2x3zOpSmZ1zXxS8ubVK+bVFBM1JhpCUVJOSrFuVgE3iIR2UtdU1ZSuHyjLisXiLHnYK5pDO7pm7bcNodIyJTpEJlWN6xx92yJ+euKuU2hL33YERD9flgLk+74X+ejY6yY/L4xNBIpEJZ/m3UDqHTLZJCSkXjWFVL8tVSX23xlbnhqICMaThlkVw+hQKXbIidBIn+28x8qUTtF1xiijq7WW6ZFA0h33RO8xABqskc1ZJ0CqFWk6oB+lA1mD7ELW6R+Df94wshQkRGH087RK57xk/yPgfx68hTkTd3of/AlbD1plza/8Yu7/GxtkdZYSpIQhl9UVo8+zPvkcuah5UzxhRvOmmDfCfIx503+2gZ6MqD+56Rmkj+V7BaWxZFujXM4PycFDKUYtdT42LybXcv9AGigDMjhJZd/358dhtE3DERzOu/GcM7A/PfYQT5i2XM1AwE62Js0XILnUjdd+ZIVVcluKoNBHf3Mv4Jp0/4hy3JnoClHOJc8gyA3ERmlheJOHuCCXnFhk3bow9pCcVU4TUNFIodAyrEqdNCLm7m5iAvc2HY9s5C5IgluWlhAihdZYY4nR0w8BF0CJRg0XnDTZWosnJP9Zi7IKFaW3xDmHMgqdQaxcaLIUBBTaWIxK1pIRjD1OoDVBEUJuMFacJpGn/z/yHFTJdTnpjzj9vR+x9afr+Mf2mSPagWdrJ5KBfhyb7IHUqCxBqu8HiAqrNSEkR6QTllwSFJHNiQQwJQLIfbZGEZFzyDa20gSq03HkvoF4khQGsUJVAidNhsqJaRfJmPQJyVuENGDvBG/m0z4B++OlSAg6A9XwR64h+o81r6YKQrIbSyao8vwnidnxHvwowRrjyY+OhePzmZbSHyEiTsH8HwLyP/X1J0H/8SL86EhOqwrCVpnUWCJr9zRhSTEt/0DOThivvC4VScYpiVquDObYr5Ap0fk9fZoLkR3YhsEdiY/E9CsUBfk59xhtmdYlZRHZNx2dCwwJzGuQCnDIF1GPFzwP+0saLjlXLTIitEIXhdh3Gi1jsxG7vfp6gS4K8Z1vPUFLLPzs8y+Zv3vJ795/j2sOxPklYbvHtT1RBYq6wCMzFnbrDb//bkXz+ku+ev05V9Nz3GHAxcD26Z79fkPfHdis7un2a15cv+L16zdMZwv6IQKatnXc/vAt89kjdxePXF5ccXa+ZHY2IXhN33hev/mMu/sb7u/uidHz9PTAbFrzs198LW5kXYtVmtubG/Fj1y0vXk5ZLBaUlWGzeaDrAsSC2bRis33i7KxEacdktgCkOmsLzfcfbtjvnygKePPqJYVVfP3Vl1xdv2Jwnu1+T98NNE3P5eUL+t7x4cNHtts7lmdzzs9rBtdiqx5lW/xwoNk3PP3jDywXUwoDwfWiy3eOw+7A9XWgriPWFkznE4rS0LuOtmuZ1jOKqhj3ee89v/zzn/Hu7ZKua6gmFVcvXtB2Pb/+1W+5OH+B0TWTakHbePqmY7XeEZSink0ptGW/2TKfzKltzXZ/4LBfsf70yBA8GEO5LDHLkunFGYvlDFWWdLain0yoZxVPm1d8//E9+3bHar1iu1rR9wP1rCKGSLc/4PDEocGbKdXVBFvUtE3HZDHj7csvGFzPzadPeKVQheXVqzdUZcXtpxua1QrlZGK7KSrBg7bEFgVuGIjDQGz2MHQJ9AUIXhpO5WGBSuIzzoMRciZu95iyoLaWWaGoreHF7IIyeBbla3HH8p6qLJloizs0tK3HqpK6EI1+jNB2O84vz4hRsdu2hNCNLL21FdPpXBj3XnoF+tZBaBhaTwia7XqXZMEQfaC0RSL5AmVVgmvl2U0uc9YKThNHvMgwDCO4H7oeyxGg5xhdFPI7MnVWmPthGPBBptNWtfjYZ2c0773EAo57tnOOXolZQN/1qRJwtLAvy0L2sOixMjlUNgxrLdYKIPQ+MPSOtgu0rTAmWkk53aaGxlHjGYM0sfkjOAzAkAB9Zj0Ttk7g/MgiSU9+OoHM4PKHG1EG+qis51ZI2fa4waX4OZYoTgGfvKlo/b1HmgfV8XizBEYnlJr1+bk504+b4CmI+eMb5ukxn96ckSVPwCdGksRG0IPHj9Muc7IT083UWjEk7a45xVcx4AYpsZ1+FmQGV/8I9AlbpY0MTIghJBvN4/llbPnHzi+QwI463pNIZvpyNjXencRgyhtGJY2EimwlJ5NpxyZOJdNa/cnwH62DODcphUpTWmVRJ1b/GaMv1zKMGaFKGjZhXYRZ1cdG3nSiYgWrjiAz3fuiLCisRqckksQ4x6joWkmAjdai39UW4z0xulFCAknrG50weUb42ZwFqQQOtBF8kO6QJEpBp8msMsjJe+kdUAZ8HAAl0h9zlDSh0qTcGFBkr2+RpeSgkVn8kHz0fzxRNC/gUzCvVBiZg9Pk4VhNkfviR7CmU/9KZvjzWolYpbBKM6SSpE29CcEJbPfOE1OzcEjif5Uz9ZgbkuPJcWopzSYGI8QjI2KMwWbbyZDWhRYv45AWckzyJxJ3nu4QiqOJQPpEciE0V5nyk5aTbZVjRk4y0xMkgPSEbTj5eiZ5ktsvv52rBmP/kLC9+bUS1HMl4SRmZhCf/pMdjuQ1Ccim5yMnCn8M2I8kyen3/uBVf/hzdXJdcvDIcql4ct3ykET5vZOkUQmTFU6OKaRG6NO3HWVG4yfHUWqWpzvmtdi2Ld6HNPcCytJI1S7KZ/sQ8L1DW2EFIcvXNJUtMHNLOzjavmfI1nYodDRpGaq0f5wcY5RrEX3AuwFdlJRljbIFIBuqT8+fRVEWMsjGoqEE7Tx9P/Dd736PfXpC1TVvXn/Frjhjc3tL2G8gDlgLQQcG61DFhOg0j80j+s4SrhRu13E5W9AcdlxcnjOfl3z33e+oKsVkAuvNPX3X8fLVZ3z6eMd207Beb/Bdx/vvfkddFXzxxedMFksoShZnC0z5xGJxztdf/YJhaHl8uqcoDc5r2k4GKhWmYHl+zWdffsVmt8K5VuKS1kwWc9rGMZ9fsnraAZrd4YkurAnao02BtjVKl7x49ZI/v/wLbj59oj00VIsFpXlD18zYNweMqSAcKIsBYwKF7Xnz+pK2OxDCjqf1E857Vrs7egbm1wua/YGqmjCbGKKLaKbUheXmww0Pdw9cXV7z05/+gjdv3tLsHKuho6wKiroSw5CyJAKDcxz2Da/evOXNqyVtJ/p/7yJny0t+8rXl97//nvu7LdEbVvcrrq9eMp0ZsI710xND1zOrphSLksvzK176wP5wYLs70HtHiJHddsXu/pa9fU/34prrVy84W8xQZc3VxTWfXb7h3eVb9s2ezX7H3eMDt4/3GKtpugO38Q7XHrDTgsliymazpx86qumcFy+vKbTi4eaG7uYGO51hypLVwz2ltUTfi2FCEHm29z34SGhbKAuRBoeBcmrxVXpukptfObEszpYcXEPbH6iqislsiu97Sm1Zvrji5dkFlSlQMeLajlfXV1zMzzBKMwy9VLViwHcDh92BbbOn7x06OqqyoCgKprNrlIau6zk7O2M+O+Nw6Gj3OzabTdK2H6v6Q9ego6fdHWRI1r4RwsgWVHWFtTCrK4rScmj2zGczUIqmaeialr7vGYa0/xvD0PVUVZX0+p6m6wFGKQ4EjKkSxjZ4b0YrebFSlhjc9z1t2xKj6O+zxv6UHHaDQ0WS9FX2lDAItjFRMylLFAabQWQ82SSkaVEAftd5kpMPWoG1mrIUtsG5NOgp6eF9OAW2mWE6AhaV2NBsGafSBqKVShsmz/TdOUiPm2n+HRRET3Y7kPeR4G6MHj3ApfTvhcHNm3RMPtvkZtf075PPM0ajM7I92UzlOMJ4FKebz+kxn7JyeTOLWR+VAHBISUl+/7yROudFdx3jyTVSVKUVcJGcUEYMppImPsaxqRh9KnPIWto4SnFyRikLU4NGfj+BgJDsS3MZ2vA8oTlusJn5kvOS2QIJhJPB0P+Ptf/qkiTLsjSx7xKhSoy6h3uERyQtMtXdaDReerDw14G3eQEGM91rerqmsrNIZqRHODOqTNgleDj3iqh5Zg0wa0Fjebi5mamokEv22WeffeKMw1QKZETjy7wx+3wMRMal5/siW+U0eQE7CsksIdp7YbiFHgupW1wO1JZAIz0ZLWz/iycVkaAverGbjMIkeheJOqZ+D0Z8ZtMYsEYKasdRMkRaK/w0EYOitJXYapKbHaUakMnP2ltpjOYXIK2lSFfml5yf2PAtTKcPntmWEJ3YR/mZsQkyB+lmK89ZMT/iBGrzo/tak5/nQwbtSvFyXCdwP3ejPR/fadz+a4xvltX59D6dGEw3eTwenz43pzWNNQkCijwujy2XWIy5EPO8gDyNER/9zHhn29iQI/dEW+e1SCEBmUtzepblzPkr5nXlbGgS+ar+RD4mSyQBCDGHOWoG6TGtTXKv5OtzMJ6D/LmzaZSxsqx52bUmpnUsB+HLc82vHGRr9a8QDy/Gwlc/iy+/n8fH+ff/4u/MzyIu9ex5TVP5fqa4Rp3V6YQgEsEcbJKDlpj6psQ5UAlZ3qnSmnZ2ZSE947yGmpRNU+maYgbx83OU56SUpqpSUxrnZ6mmNGcUi1KtI8FPaGWprE2ExUg/ZMnoeSH6Mhfmz5KTlw1ZRYJOrH8KMpQG34/404mp6+U91mKVgDK8h65EaYt+3PP5ucNZTTCGUBaoydGfDmxXNdW6QdUNDLC/2/Pp8TN+dKxtg1aBVV3w7hff8/b1Da//8ZovHz8wDCe63hG3MI0d3719zfqvNvyv/+t/4dOXj/T9HlO03D15LtV33Lx+x2azoT/1VFWFUoYYDG+/+QEfPM+Pj5RlzeXFtbjCXGylq/jde56f78Q2uLCs11uGYeLxYQ/WcDjuiepEu6owxUhRFXTdkX7o2KyuGEbPenXN4fkj+73jP/2n37HeXBFSMX+IEze3F0yjYxhOwqzGkEwMPK9fXfLqmw0oxXZ7wcPDM8PgmAZPf5qobcPnD1+oKssvfnjHly9f+Od/+nseHz6grdggX1xecXF9jbUFTbthtV7z8PREXW2Yhme0LrEWqspQVjWg2WwNV9dHfvzDj0xjwFYKH3smbyktvPnmLXVV0VYtfvT4GGnXa9rNlotrkSbv9jvU48hwuGf/uGPanbBjhNsbyrZhUEdMVXIRVlzWW75fW/bbI/tvTkQc73/+kYvYUjUVzWbFFCb+5H4iRI3Wlvt/+QOH5yfwjrqoqKxkisehQ3uLDQFdSMbfeS/d4yth78fugC0MOgac74jjSF2VVHVJVdc0bcv24oLBr3He0TYtTVEQRwfO0diCVVlTaY0fJ0IBddCU1Iy9J/qCtlqjdUS3sNk4Nusj+92BcZjwUlpPP06UZUmz2lDYisk5hmGQvRMBH13XUdcVZWGJTuHciA+ecepEfqsNSoO1SX4bDSF4xqlnDA4SSZBZ9d1uh9aa7XZLXddzU9dhGDApO5wBvNhya+q6hlQPCiQJjktyMk1RFJRlyThKvan8/vkaLZIbyXgajIEYYHQTPjigkALeELCy6akkkRiJlSKntXPnUGvlAHnTkII5Jz7BabPNQDARtIkhlZX+XF5D+rY62yS0FnnBHAikTUCT2oenjSCeHyfCuT43b56FFd2YLSRocS7gXUhZBdkpfDiTl+Q9IjNMiSm0iU32SR89YyWVr23ZPF8EI+qsOO0sYJrZRhKQnjeFM8YtHUNYbimtleYrKkV7HmvUTNtPbhkkmamLUXTyymQxTUw602yleB5QJIBoliZbkNxEXA4IpPFLCHHWpwNzIKez79uLC1h2Uok/UkQXszxkCVpiSqOoxGDl8tj8rIkR58UeUYofU7ffpOHPzhUxJrvUyOwOksdSUv4kUJFqGAjziZiZyRavWOccqEhVabSZmKInTF7YfrsUJYd0vGzL6KPI0rSNKfBMwUZymJmZ83xP8t8JgOdgJBfoWq2Sl3l6tkG0wvgcvIAxSwe8LAcQyVU639TXIN/vXPOQx+xyT5bPz5IYmXYLkj4PDM8LMM9B4jyGyJ1FmRs+qTTZXZpTKqE/nzJXs3xNSaCZteK5YVWIYZ57KC1Fs0rmUBqu82dI86uQpFmpV4c2KJPlPUBMBcvKpE0iB6VhHs8mzdCY5DK5L8e8Dp2B1yiHTK3Y8mKmz9aJRFQst0vu6dm9ywETObOS79tXSDx+9R7gLzhjyWfpORj4qvbzX3mdA+Hz5/uXnvOLQI8kL0vv//NjxFSgzbw+ar3MvyUbIexFFsuEGPHzupvqa4LUoUiwEOY5KeBbnrFznmlyLHrXZeMJQQpV87ysKkN0LgXeqVGcNUIk+ADKobWh0JpgNNF6XPLZz7YFM5mSTBykmVVyrIqSKncxUFqLbSq0NniliUZjypZqIwAozw/KArzCDyMm9lTNCqss7arl+fCEO+5RFhgdoxerRKs17968Y1Nv+Pm//Df2PtLcvqFzHd++/QFTFYzRY4qSy5srnh+fuL59xV//1X8nILeoWW9qyiYQ2NOsAtEeUUXJm+9ucCHyj//4OzYXFyhj8CHy93//92zWW375y1+xal/RnU54U7Fev6GoGobxSFW/guMEBkxZsLl8Tffljn33QHtxSbtZY82GooDDcaQ2louLFSFYxs7z88f3/Pz+A93hxLdv3uImz//2u//Ger3i5lb08M71rNcNV5eXhDhye33LMHQYq1lvGopGmhUO48R+N7DfPWFNQWTAlIZv333D8enA8+Mzw3Tgw4d/ZLvdcn19y9XNa6apoj+VDGPg0+d71ttLTl3PxeUlCoOxLbtTT6RgvbrmabfH2Jrf/PavWa83/PT+PZ8+fuDj5wd+9YsfuL685e2bt0zjxHF/YHu15eLigrqp0cZyOHbcPz5QuJLvVt9ye1Hz+PjAx49fePjwhecvT7z+5i3+2UkHWFvQNCva1YrSWbZxw9X1lne/fQt/49GlYnd6puuP/Nvvfsup7/hyf8/9wxNue8Ew9nSnbgaYar2iKApIpM9+t+dwPFI3NZt2jSHweHfHNJyoCk1R1azaazarFqMNV9fX1E3L6TRSt1vadsM4jjx8uWOaHHhFg8Z1R3FVG0YKbTgNcLjzbK+/oW23aDTHw45pHFitWpr1BaaoGfqBYRwYux4fPP0wYe2I1hY3SbfX416KX1erhtK2XN9cYYziYB3OjcRoMUZjTUHOLPZDxzj1nHCEkxDYhJKQHO4yq940DeM4Yq2d5TTSZV1W+mmaZs281A2SGH9ZC/u+lz3PCOifa5C0gHyt9Sz3Oc+YhwBhSmsOnoDYg2tj57XYjQ71b78tovfgJgE0RSELoHPgJtHKayXds2SzkXSkFAbKIjb736cFbSlUFc4py0wSQpGF9hzcq/z+dPKZncna1MR+xBRBaFmpyduiUhm4JM12uhExBpzzjCndH5I//PmGer7XKYVs/kqKqcibTWL6I5mJEmmPS5tmZqu0UnMTnxBCshM9AwJnn5fB1tLRM0GAsDBl4n5jsEZhVQIMkCq0oevHs4zLsilrLTaMeWDliuyiOAeYOcuRinHPeL4QgkgVlJJBplRi8uW9LsDgpDuaQmKN+ZwTS5kxoUobntJqZqZJQFyd3Xz5iUqZmtSWeR4jKm3a+b7oM3bwLNLiPFiSjT8omQy5i+u55CJLH7SW+2usyE+IMheslSZXSnLrGK0oTSFWkFF0u+PocUFJAwknjZyU8RiTz1Mmb1EUSecbXoA2pZQ4JKV7DTANY7JtjC8kM7kYtGpMYiSW2pOQMw5Rvjf0U2LbIz4ux8j3mrxg/BnYkwkmkoal6AeYz++FjOQrFjlwXpeygKdpkor/wmhUqn/J0gmtNDmrJ/NdshvC+qu5UV7IQFsBqTA6B4E6psqMs+g/It6/EWFzpXhZFiildCIlUuES+fwVLgVsnpj6XaQCzpilTGkUzetOkIAhkFx7pC7EKDV7Gp+D9NmuMjHQLzIfGSSnTIkUEC+B8nlW5fyVw+7843A2J/Pi8zXr/uKpf3XY/Cz0V/Pw5e8s/56ZqBjnOZ+JmXNJ4MssT2r+hTjU+BjwQRojkpzLImdrL6n2Jd0Tk7wscwFsLqQ1iJ5fq4jHp+BaUZSLK5dSam744l3A2gJNSPbNEaURe7tU3BJiQBlLllOGEMTa2UUmH3BR6sySp+8sW5zvvwJVaFRVUK5bilWDKi0nHG4aMesWXVcEwBSWqR8wbYWuK+g8xikIijE4ggrEAkxlqMuC8cMHzOiY/EBoK+x6S2kqVFC4w0gRDTfbK/5v//H/ytX6AgVMXUehIqWKPD3uKG3JarXhw08fKEtLu6pp1yXowPP+gXa1RrHhcIB2taZuVzzvDuz3J7Qu2Ky2rFdbvny+5+//y3/l2+/eYWuxk7y5ueL21TWn/kDfnyjrgnffv+Pm9poff/wj4zji/Ui/f6Sta079gA9wdX1DWVT8+OOPHJ73/PT+Txhgu16x3z1zGjqccxhrWbVrbq9fcXV5zffvfsAaK1KLVF/1+vUr+qEXsKQjDs/gByKOddtQWcP++YHf/+53PN59gTCBl+zE5uKKdnWJUgWTE4tUMQmwaFNwdX3N5XZFaaWJUFk33NzesjscOBwOxOjYPT+w3z1wODzxcP8Fi+Fye0VdNgTizDR33Yl21dKsWqYQaJqGm5trLtuaWkWmaeTL53t+fv+B/+l/+p+xpuByc0VhK9brDZcXV1xf31BfXTEQKauSoragA7pSjK5jCj1TGLl/uicSeP3mFWGceLp/YBwnCYD6AedGyqqkrsR3/XDYz7K3x4cH6rLE6Eh/2tEddhAmNus1r1+/om1XFEVFCIpTN7Jqr3ATHPY7nh4emfqB4dRJx2jv0RH2z88MfYfRBf1UcvXqrQQ7bU0IE9pIHxqlwVhNWVZA5HjcE12g7wec8xAU0zjhxongPEPfJXWK4/rqksJqyqYixEDfdcQIbprQwPEoz0wB6/WKcRwBhfOKYRhf6O3zetY0DU3TEEKg6zqxuHQhjeuUlTZiw5mxl3MTx+NRpDeFTiRSODNHEbTTdR2QC3GTCcokktsYYXQDU+oIbAtDUVrqssJPE3aawqw1lqpd0TvKCYnftqKYgeO8NGsFXjZe2XQWHXZMi3DW0Vtt5hMLIQGcZc2bg4JczLbwissmMG8oJAZMxxlsa23mQqlc1LDoUiVACSptEmebizrbANWyLifw6WcwnRX7qcyRnK4+P0vNsqFnmHwO28/PH5IVYAK8KgGH3B0zb2Yx/c8EhSkSy50ZTkUqKNQii1riphl4Zt1xlix97YwTomQ0jFGpV5hsoVqrVCgtemgtg2Fmx5X3op0Pi8ORABJhzXyIyTGJFK8k6YdKUqSYmT5ePOsX+tsE9uZnA8LOkmUQGc2Ld/YC7s//JDY/JCvV9AQLlrEpwWVi7n0kN1BQSvzYx9Gn4mQDASYFiye8lkI2JRByyqAgCFAJKswjx80tahHtdy7wRhq5aaPQSuad93HutJwzKtIpOAGoQuZejNkLXK7DO5cyBdk2VqRVvGDZU6CU7VLP2N5zwK7OAtWFMQgvAH0GbZlZn4Pm/IxJIC0RACT2Mhdi56ZSOgHBHBjOr5gLKJfg1atF1eyTg1LWeEsAfD7Hl4A1B6dSs5qDGgkGpJNvIOQC4MSeq5ifMnM2ScajntcquW9n7Dl5zGbnm5ffJ88/lb6G5d+o5M8+H+TluD5bu0TDz9nsWd6T18X8PpWPdfYsv379a9Iq4jnw/1d+J78/nXpeczKBIcH9Wcffs6gjpnmSswohMjcECzEu/ThysKDEicmkDTDX6eTPVkqh4mLzGnzq+H12QUoxExtS6JoK7mGey1a8WufNOcgiIo1ljMECysjaYQvDFGB0ken8+eZTzykVH4mjYzychHBpKskEGkNZVbgQ0NZQVCUueGnKQkCXgIpM44iqClabNcFAd9hxej4R90cm51FVxcXtd1RVxe7uPsnhAoMfOU4ld8/39MPE9eUtm4sbptOOx6cHotLYqsYUJb/41a+wxrC93DIFx6k7MEVL1w20bcnVbYs2BV134vnwTN+PuFGeR3/qeLi753h45stnxWnqaLcbTsdbwLFebzgdRrqTw0/v6U4TeIM1JYW2dKFnv/PYoqUsDKfjyOfDPW0r/16tLFUhcpHVRjH5FdM08fS4Y3f4QvADdV3yxz/8C2A47ntUNNii4MNP99xcvcIHT7tdgZU83WpbUZaGwoKPT9y+es3lxQV3n39m/yQdSLVS7HZPHE8DZdmyXl3Q1DV/+vkD3nuG/ongXvPu7be0V2v2+xPPuz1lVbNaCyhW2vDNmzf8qvmex4cvfP7wmba5YN2s+Hz3hc9fvvD8/MTpdMRaw2azZnuxYf3uO4bTgU/PT2xXa169es2r1xVugr/6q7/mxz/8kafnR6zS9Kc9Y7cH33NTW0LT0E89ulwzDhP7hz11U6Kt4diPuCFiC83u6YCePGUoMCim00j/dEArGA4TfThQN6W44CR7xndXb7m9uUarwNPjHXfxA323p1Y1rVnxavsNwzBx9/iENSVmKtg/HhgOE8NupDAFF22N1ZpVXbNqW+7v7nn//k8SgIWJ+0/vebr7yPXNNdvLLbYoUEa6jjvncaN0ozamIkbPqi1F737qOI5HuuMxmRo4rDa0TcN2K85QPhqUNsRgCUFIOm2ki3hZNWJ0oS1Fqem7HmsLnPOzm03W24s0Tc0Me8685p9nZx3Zi8P887wW53UzE0V5rTm3yczZ+EyUeRVTobCYc/g+MLkBdKSxNUprjC2wCeYszHJanLQCbS0xWJyTwoacLs1g3mWdfSbX0yIMzNZ0CtJCLBBZNuQwKzeyTnp2RtBqZuey/VxmZLJbhgAzKY4zWiXwxQwoszzhnAF3UdLlMwOUdd9nNhjxzLlBn0UyeWNNOIlc8RzDYlOU2dC8yeRSuqyXXbazdIsiko2YhfLy/iwTzocLAYIWoCDXKJXZGbBLMyMjOCDfrzO2NReVLXKK5TmHCC51dSVZPWstjHU+f+fc4jWegeHMyqVAA9nAjZZCa+c8ikA466EggVVY6Ky4BCnLtrsMenV2I0Q/rIhKbPNyun4pMlykBwGkUDoubK+4IMWZ3ZTcE+Jynu7xUpidgrmkZXMhQNSpUBLc5EX/p1KhNSlIIqKsBJEqAiE9fyk0IDhJnS0gSC3PIIidrEKKhL0TRrOqLdbYZBWZ5CUmk4nJ5SplQyR1J8/kPJuDYl4k/pIsh/NAKd37zCafS3JIY+Ec2M82pmmufeW6mtjY9PtaE5AmIAKwczAqNRbWLGNqlraRgX3WnOt5nZkBfxoDKj/XdOE6T8Q853TOBMp3/FmBkJANORCQN+WAQSNZOpVqbXKhbExsfThDzjEFNSGtXVJgqc5AfJyvS7IH5z9biIvze7jEAcsa8gLk8xdeirPPYa6lOQ/M/n9+/WuYP42bc3mOSmPf6LNeG8zL+svA+ywYiqlTb4xqXh58XGqhopI1PCiSvCUvn4ElYxHJgf55YJEzxlql7tAxF/JaisJgbQlIUOz9JJ9hl6yxTtc6y+rSH+lyDbbQlGVBETWMkzR2OgP3uaw6PRSZJ6NjVIPssW1Js1lTVg27/oibJnCWsqkJpUHXJXjZM69W13T7A/1xJy3snZcI49Vr2R+Dwg+BKUzUbcvYnxiGjhACT48j//N/+c98c/Mdv/1NxamfKKLHe3H8OY2Bi8uWwhZs2jW6KPCTZ7O9YgpPnLpHfv7wwO1rmctKW+qmZJxGdAjEOPDNN294db3i+eFnnp4/0YcjQT2xbiP7p5r+eODTp3vG0TNMI3XzD7x79y3tSpjhqZcixaqB1brEO0/brPi7f/O3PNx/BhxWTTzcf+GwKnFuZBhGXr265f7+gf3zicvLFcFp/vH3/0x3mri+uERhuRsmxmOH8w7bFLz+7hvKtuTDzx+xpeHiYkW7vmBVr3BupK1rHlclbhy5ub1lGD0hPlLXNdc3W1Bwe9Py4eMH7r48cbEt2B0a3PMjKMu+O1HXwsA7F6ibNd733N8/odHcvHpN22xp6ob96UhRFOKWUliCH3m6+0Kl4XR/jysrNptL7p+O3D/8C1dXF3z7wy949c1rlI48Pz2yf37ifvcz98+Bj/d/QP/zf6W8uOL1N9/yww+/xhYVoZM+OkFHilixKTYUtWbdttgAw2Hg6fSAGjWrYi2a+mFgGka8V4z9iJsmLr9/x/XmlsY0HI8HQqcpYoO2lnXV0u8Dz3qgKBua8oZp8ByfRvZ3e2KMFDTcXt1weXlJDJ5pGCjrmttvGqZoeHq853j8E9PY4Z3HDc/sHteUdc2rV9/Qrtb4GOmGDmXs3FvJGAHZp67De4e1hovtGudGxuGE9z273T0+QlFconRJdtLzXiwmbdFQVkoyLhQ0TY2iJK/EGQfNxbBnUttMhmmlqapKZNSJ5c/SaCEL4szE55qzSJDahfR9l2sGvJ+Jtpw5VyrVT6a12FqLtqI8ELWKgxCxUpy5sLtO6hzEx97KKuq96I6iEmQlmnWRuWTgGtPiNYOIKClxAbcJBCcgkrowobREYTHpO2Ztqcq6xbPUf2bTYO4Um9nrMnURC97Pm3Hwi/Q7Ya1F66oUaJEDEKcXG6cUhenEki+L9PxWEtOrpY2hd+6FY4UPft6gc0o+vy87QmidwHbMm5xEU0qp2RUmIuARrXAhMEwTVb5O52eWy9iINlqYsZACHDRm9vdedhqtNVVVpAYr0qRpSsWeWgu4D0ECiKgj0cM4eVSEwqqk2Wd2YDGpvkGY0GWTFSlWYuINKAwxnjm/pHurYvyz4s2olTR+/LNnkoJARIKRGVClBNif1y5k+Y2PEa/iLOc4f5wqTRKVgWwqeFnOZQmKJhcToE5BQTjzYE9N3EKMlJWRexeE3c3zIUaRBang0UqKmOR5BwGNRhwkZHFwRBOxRaqST6BXpcJ4YzS21ExOuuTG5B7jfUgNL0Ja6KTjZpwlSXL+AowkqDLGzLawsnAtwCjfC+/DfMMkmFkkJXODpbMunmc3UAKqyc32uirq5OKTjyX3Xqfn7qKAanSWX2RmVp/R0UuA5oJHnKDOQDghAf0wP2uDrFk+Sv9bo5ZnZpRZFokzYKjT0xYHIuagPZABqJybzgG5OmfMxeEqioHPDM4zC5PH7by25Xg3/TfXYXx1U+URxsXj/YwXgBxopN+N8ay3yMsD/XlmlLMZ8vIDXxTMqpc/zOBZp/NVMaJ9EEMCbZJLxMJQfS3jma3i5kkpz1ohzkn5vqIUIQHtkG8oMPmUndQmR+iytpy5nllrk5uUE8u5dM7ZCtOeVUMHIsoKMxm8pzAyB93kZO1KGy0xEr1n8pFoPVpblNaUaIKOjB4mF+dxKda/Wnz3C81IFKvVyRN95HQ6cegO2LZGx8D0PGJvb4StKwtioVBGUV1sGc0E/ZHWWoKTLEBxc4292NJ9eKB7OnKYehQTti0JricOE9MY+XLs6U4OF0t+8e6X/PUPv8BV4qn/8OWO//H//Z8xuuC3v/krXr16S98H+tHx08cDP3/8TFWNvPn2Ld3QU7eK7cWaH37xjpvLS3739//Aw8PPBDdxc1vz9rt3eN2xvdyyai8hGEpbcXiy3H38jDEFD8/PbJsWEzdMbsBYjTaGrttTlKlWSGv+83/6X7i4WPPLX/5AGHuIJU19QQie5+cnQgi0zQWf7Cc+ff7Adr3mmzcbHh8eef225f7ujp/+8HsOu0t++OUvuL59Q1UP6CJSt5pxcuye9zRlRWEsbbXl+x+2fPv2FcfDjv3hxDCeuL1+xWa7wVjN/rBj1Rpub1qM1Wwvaw7HRyKW1eqS5+cn7u8f2GwuURqauqRttxADbVtRFtKkaxwGbl+/5ub2hj/+8V/48P49r16/wt3coILDes9KGwoMYxSp2vPhxN39HW/f3vK3/+7v+NOf/okvXyJNr1mvW6qy4OOPnyl7zeO/nBg/f2HVXnJ984bKG4Zp5GLbokzBuDsSTx3OWkpb8c31d9R1SVNXjMPIly+feP/jnzg9H9LaYdk9Htk/TdR1CzEwjQEVauqixaiKyta4seDxYY8xFc7BYb/n40+faNqGuq4pigYfFIqC43DCqYmqbrh6/RZTlph4RLkj/eiS1n3AdRMf3w8UVUOI0pSubldsNhtW25YQRbFglOHq6oqqsFRlQdft2YWBstBSsG0rTn3Bl/udEM2TuNmobsBPozSKajY0jfQBMLakPx3Q3jGO48ysZ3Y9g/S81mkrUrCiKGjbFrF9HqRDLTCOwwviTAhUMfBQSoKMTDJam61y7aJ+8Z5+lDqDqDzKiETRpKazUkSusJPzGB3FRlF+Iq1sVdIZRj+DCtFbJwkIagYKeeMTSBpZ2KevrdzyZhZnJhQV0VYa3/iQmbokoUgWm8boeTMUoCDMbmYhczMS5yM+igTAnZ2jsLcJzCXGVce8meZNWSUWWM4x9/Rc5BsKnVh+HZeagZgZ2LRBSnZh2aAJMasU5HgqSyIWWYbSC6sje1ySd5CL1BQoMzNCeSNW6XcNisIYMDARUpvxJCYKQu7k5gnWSBo5BIfXUr7qnYDVHGzEKMA+96IwWsCk88uA1CYmpx1NZHk+IYrjMiYFcIltN16Ks6NasNR87/PerhMQTyBPfj+nroQ5FelU0uSrDLESGFPC7ocospgIc+CVAZvKf5ScolGCLmIIc7ZCG0NUit6JD7/RChsWfb6PUuRLsnXzXrrJhlQUG0hgXmtMClpzrOhCwBBT0y2Za4UClNyrIjWH00qyBApQVi/BL9Ltdkra8byoFJUh+EhUEsoUlYx356EqDM4tVrVGS0AYosjjJAhVZ900k9QugM8Wo0onu9IMe1M2Qak52M6MqmIpnA5RQeo2C8LOwqId11qn4m8F0UMCQrlmRqVC1ixXkUJbqWcJec2JEBOYn7X7ZJCewbgcJ8Rl1OnZHScvYIFcqI1KQaRSaa0gXVVIDLOaAx0ZmmfgWIkMLAY1N+cTZ6f883hGNKQ7Nk+CdOy8fqWz9Wf3DOFY0vw/+9B0LTkrlOfLXGmbwPp58WkG/7nUfj5STAFW6nws15nmc8rW6QToVZTxZI2R56BkLudGLTPBkta8SA6IUrGpFkDvY0i1DpzVOGUSKc1hYwg+W1Gmy0quSxL4yMKRe4OU2qC1ZRzTOqHtTBApFZPTm5+DTBGhQtTSbT3vFS46kSEqqduyJkoju0KhEdMGGwO11lilOXknNVk6ghUyyAWH8lE8vvM67j30Dl0Z1m3D4B3dfk88HFChZnQDdr3Ca3iOe2zRsnpd8Otf/Ia7jx95/8c/YtsSN+wJeiLYSLnZUtcVRsPYNfTHHj94GB2n/sDPH/7Aqq158/obhmPg43vxz28Ly9h33H3+KNfQO7rRo63h3Q/fYszEODq6bmCzvqCuKzbtlrpacXV9zf75ibLc8O6X77BGcdhLZ9BuPzD0HZt1JE4HhuNnLi6u8KFj9+VPfHvzV0gTT4uLktloypJxmvg5SV8K/QP9yTNNH7XikAAAvyRJREFUgRAr1hcrrDVcv/qWn356L8y+0UxuIBpPuy3x1Hh14s27a47dLcprjt0z5tGyO3VsLq5wHvGc9wGcRwOruqaqFBdXRSIRDHV7wXZzycXFJc5PrDbXRBX5Nk6M08Tu+VmKGrWm6/b03ZHTaeB0PHJxcUFhNtSVBWXoB4fSBdpYitqAGvFu4vLqNcYU1KWlrgxDf+TLpw/sH09UpxNtc02X3Fr6oSeEwPXtJW+//xW3374lKsebt6+oqoI//e5P7H5+5ve//z0P9z/j/QllThTNWybnedpVtKstAYs1DeM00E891mgmPzL5iaoquX59gyoU3k84NzGOAzFCdxrZnZ4JbiKESYKX7YqqrPjm9VuUtvR/+JGuGyhsiVaRelXhwsjD85F6VXOlbui6kaf7J6kN0BDChFIT17c3rNpvCMA4TJxOA/d3j+x3R4ZpkLVVaaIbKFTAWpHPFsL+4Yae6DTPjz1lWbBaXVKl7EgI0DQl65WnO50YELWDnyai9/SIZWfwI4MTaZaLE1nYO/kJNzlcYu/bpqGq6iSLjRS2SGuNEEchRiYXxEI3quTUZTCmSqRiSVnopeZuEimhKSrZA5XIbCIK5+UsnHeiGAgjOmgqbVFRY5WVjGeI2BgD2mqKwoKSIiH80nXS+QmFojCWEAQABCVAetGaKkxi22aAn4qPfJAiqZiKJrLmyGg1bwCSvtezu0VI4C2/dM6Re1IQEimslbR4DEyjZwrgo3yeC+DRoMy8qSgCJi4gnpgX9ix5yT6isjG7BEJNYobnhk0Z9aRrlaKtc6Aa57/z72dAKcBeNlefflMlpCmsf7K/TJ+tlQRdBqRRUvCL00/6wOAjVRHTxEjZFaNxKcgggZ8M7I2WTdkHh1KeslQEE9FoVGEIMTIOU2IXk5uF0ctmiiYEcXQwRgqWlTIp1Z2sR4No4aRdgEd5j0kNIjgHgWeSKufc8sQT0MkB0zlTKfczpEI8Cdx0THdbCSDySlj78+BB7r+wf5rs0qHnYs6gmFlfrTUxubp4khY/iDNN9tn3Scub+t/I/YsiTYqAOyObtQKSRWuIS+V7CCKx0QSsEUDqfUyFel7OIznnaK1SnQMYDNKbIs02lYCUn1BGnnWpS1mA+iBjSMmil4ZuCiaSYEBplBcffYUiRLcAdBQRg0bjBOGRaxVQAvgyWEzTSvzIldyVOeibPzeBsDmSlf+J7j1dJ3JvZj0i4nzDmQxKAikZFDkrqM9F6PM55bAufZkkgdl3PZDmTHpF/JxVQInUQc51CWwVUQKrPC4TebAcQ/4hLkVzhw1e5jeWr88Z8UxIzNdFqlnJ41l9dYRze9c4n90cZC2yrTCTD8SFgMmP4Gs2XwI6sezNzzkHASJZlHGg09Mp0FitcFlqpRXRqCWYUme1IGfjxcfU2VdLxtCd3WmTM5jp2mLSxss9S65ZaSzJ0NIpuEj3wIc5IBdZjTwwYwsxJQg+bZI+ye0UlU36xJgKqYNs0kZrJMmjcDH3CFGYIs4NHK1HulMWFuUDJ+cFrCbGP4aANuLehTGy9mnQZcEUHMcf/0QoLKYoGJ+eiacDsW2w2mLrBhsLtK7Rqxa/ahmbgslGpucHlIb1t9/go3TWDJOnOxyRdhiF3NVRPLVPRvGnD//E82HgcvMaXODdt9/SEHj/T//IT+//hc8f33Nxfc3m+obtektUmoe7PU8PR56fdxgsf/d3/4ZXN2/ouhNXV9/w5u073r59zTQN/Lff/QOHo6c0a169qok+ctwfWK8M3729AAJ/+9e/ZrVqqUrop8CX/RPr7RW3N1cEP/H0cMfD508UZc3d5zuaZsVqu0Zbi3OKla0IwbG+uCEA/TgyTiLx2KxXXN1cUyaf8GlyrOqWT5/vGNyIrVfC8pqG796848unj/zzH3/P9cUW1x/ZbFtef/cOFNStxiBgzNgVRWlxYc+xP3L3+Cz67KgYjk9cX1/hJs9m1bJuVtzfP/Lp48/sdw2rdZuINsXhNFAWNYWtWK3WxBh5Xa148907Tqc91sLh8EjrR+q6wHcTbtijCQxu4nQ6Eb54bFmyvdyybV/TTyf6yRB1ydt3v+Wbi5EpBO4eP2JrTbGZKDYjeBjGHuoL1u0NipJx90C33xGjp2orkVDGgLGaatWy2ayJyU5yGHrqU8eXj5+IOmIxnKYj5WAJRJ52jwQPY9+hQkShqRtLWWvKas3F5QVV2QqBFxTRK44Pe9zUUVpPXWtYaXS7oq0bpnFie60o65bV446+7yFEmqql73rcuGf/2AnOU8J+W2Npmpa6qqnqmrIoGfqRcRSsN/qRi4s123VL13ccDweOB4cPgb7rGfojbiip61qcCoOQ3MooTDSIQ1ch5AWpXlOLPXwIHmsrnPfs9we89ymLGRMJGMid3EFjrE3qCyvdhZ1Lwb9mchPGCKEXJsc4TtLstLIiDXJe+rlog1FKsoxJmm61EgeLwiQNTwYCaKYgkgxrjbAyUaNdIPTSyCMDV5SAT5OKmFT0TFGii7yIaxaWHXJKN8sWIjG4xP6JFlYpNbOemV8zhTT6kIYEhhDOIiKUsMiJGcoAhiTz0CkAkVcqrQzZoeMMpeWteSHJeMFzpUgsei+a8gQUc5YlZ9kzLtHprRLQLHZG+XAxMltMCqvKnCnIKeAcicU0MPL5zTgGkruKML3W6gSy/FJEGDXew+nkWa1r2rYlBM8wDLgwEaPD2mQZaBLDG8UGVSmPThmUGCLjlG9F7vya9Mjp+Uo6XDhEaX5mqApDGD0x+rl2obCWqq7QRAYQeyx5jOgohaa50C137MzXm+UA3i1jTLEwfihxoSGmhrM5+6JFsiSBU+qWG2TMSwfYKNIoTJIW6eQYkh0yXHrOEWttmsyBorBzK2qlFwtFFUgdaNMckGRHAtXyfLWGsigxxjIM01yMk3tNeJ+622klQGSQ7Iik6bJNqUfAdNaFS5F5UThCtKkeIuD9NIPGGDLYWwqtQ2ZWian7ptzVEKK0Didlz2CWYrksV1AiWxGGVi1F7mmRiHkRTAA/p6ryAnku1fDIeSmkSZfRVjJ6gvrl2CxzSaPn+fASRC/AN8ZFny83OAHfOQ6QiCwoiMmadykRSTpultqbs2k8//31K3LG0n/1mh0XOJOspCwnLz47JjJhuZzlAzKU/0uvvALFr/4srDgpaJjZ/DnSkO/76OdMmgQHagbT+cKzFaskaaIUNivZcLzyuHBWCwUpg6olw5blgyGPvUSAGCPjnZisX+UzvQ8UdnGOOD9nqzU+LO5g2U71vE18/to5hw9OnMUKC2SZp0njzINj3oiDl4s1xmCtzDNTKLQRckE2d1BGCBJDpC4UoxeyiODwOohdbiQFRyJDGf0EVlO8usUWBeMwMjpHHHowmv6nDxQXF7QXlxz3B7r9juPxgFHQXt/QFq9x/YlTPzGcOhnA2kiDn7KiPxyxRsizaAyqKbg/PfHQTfzNtuUXv3jLzdUVx893FOuaLx8+8t3bb/jNX/2KwXlO44mPn7+wahrKQlFaxXYjjjX/8k//QtcNvH79DVdXl3z68A/0/YmrqwtuXimmscO5iWbVQLnGri3/5j/8HT///J5pmrjf38MxUpYNLkS64Yi28Hj3wPPzM1Uj7mTaBCbf8eOf7qS+CcO6vqCqSr797g2lbdCUuJtvubhY8/rVK4zRdPsjtrD0p8Du8DNvf7jGBQUYnnZ31PWKygSqreff/Idf0VYVXXfk6uoKlKI/DTw/Hzg8Hej7gfX6guvrW6KG5+MzwzRyeXVJVSqqV1dsN1v2u5MUGk+epq1FUlWVjONAURdURc04Og6HA03tGcdAVZUiF3QT1jSUhebqsuDd2+9xfuTx6RPH4xOfPn7i+fDMRKQ7HBl+7Gm/bGjbDW2zxpoC4ojyA2E6cfvmNX/z7/4abSOfv3ykLEtuLq64fzhyOh4Z+sDT4wmmgeH4jDIKa0tW7YqrmxvGKF779CNFURKpMb6gLUp++9sLnh8f2D0/UlUl3keGYeLp6ZlpFCBaFqU0ogojtjBsNitWbUMIEaMN24sKN0z884cPHPaPXF1UGLtmGoH9kU3QWG3Zri8oizVaf+Kw3zN0HVEFPBPjOKKCYZgGQM3Fr9OXidVqzXq15vLyktGP7I6DZI9VwWZzkWw/LaxaCmsgOqZppO87/DRyOp2EZFMmrWkFVdtijUERKYqCvusJs0xnYJomnJfutZnIyzVI4yj2l95PWGupqkrwkkme9dEs6ong03pj5z1eKUVhLQRScGqxVuYIMWv6Zb+ydaWpa5uAhEIXhhg0kwtYLX7xWdeaWeTkvgcqMduJ2ZhTo2fFkFlTPgNStYBXyEWwmfnKYIOkQVKSGk3MU2ZgIFkxuoDzUqQnG6IAx/w5On0Rk4vLuX3Rwgr++X6oYnLeUJntXYB23jBCYtpfWM6xAPv53zlAyYXCWQefjp+k91+996sTSzKhDKa0TkXK+T4mdjTb5wkblTZEHWf2NCZmz00+6UCRNGCt8c7N0itjk161yOcizKst5L45n+6NFobVTUnykTZIkVFpQhShuOit1ZKRiIs1odwj0bkaLSwXMVKUhsYWnPqRfkwBzZmWVrT+ihikAVWEWaefCxpf4CCV/MdjlE7xOskfVOqSmZoPqQQuNQGdgszCFpxbQso5pyLiM8mYsPlhcTXK6CdE0dhHRFKSMmNKi1e70blBlLD1VVngPXgvuuCsYUZFgk/NqswZeE4BogAY+blKDLSiQCsz/15Iz86YFGFoJUB2HnNhLkiewTNxHtMqAc/cPErG2CIzExyaswpncHJ+GBmk5iLZXDOxAOb41YSKSUqiAigVZoA+18Ww1P58jX3nKcR8cikQVCkjFOdgMMowSAFJGqznwFqG4IvPmB2COJu1Z0vLvwa786G//jrXIZy/WZaE+KLY/v8frxf1QGdr8vnPZVwuocsssFRqLkwXY6ZEmKRrz5kGlPQaCeHserUcaXZY40xmlP6XMw4qRJmTOeObalBC8HixYMJoySxLDUlInWdl/klRm5k3Pa3N7Brmg18CfmNIokx88BRlSVVVQn5MnhCz645s6EVZYAo970taBVz0+GkkKkVVWOrCMgVPP44MPszFwSZ1lA1hgmjBimZ/mBzdOBFHh6pK7GqNN6DaNfbqisfPd6xuX1FdXrL7+SdccASrCNayrivKqBmjZCRVXmOUptmuWa9WnI4njodDMgBwKDPy89OPRNMReMu2rvj2Vz/QrloM8OnuMxHYbLf89tc/4KcJow0Pq5YPP7/n7//r33N1ecPl5Q3v//QTu+cDP3z/A6+u32IKxakvGMaS1aqRoDl6Ju8YY+Tm7Tvx/NZGJBAhMqgjqEBRai6vNqzXDU3d4rzncDxyOO449h273Y5+mJgOmqpq6LqRb15dUxYbnh4OfPn0Hj8WbDdb/KgxVjP2ci/eff8dRdXSD563AY6nATCsLl6joufx8YHtq630Gzic2D8feLh/4rg78vj4RFneM/QDh+OBKTiqVcN2s6FcrZjGE89Pe5pmJQ2y3MDN7a2MwcKiNAQE8JWlJuxGds9Hfv/pX9hs1lys1wQ/0baVdBO+WlO9rpmmSN1siIXiwjkcSO+eKWCw1JVlUzfEKbK7f+bx4RkX9vi4p64ttv4tt69vWG+uOXUdp8NEdCIzHsYjbjxSEoluJEyRfffITluRvAaxjN1pS92sqKoaWxYMbkDrks36kqZp6buO02FPU9doFMNwwAVPoRRVUXJ63ievd+m7c3PzimmE43NH1ZTUTck0FUQ8x9NB3OCMoioasJbdoac/DXhvWK0u0RiG8Ui9ari8uQSlGYZxJoD2+wPOjdzff2a/f2QYT7LPK0VVNljbMI5iRzkOHUZLJs0WNev1WuoRxwHnJqbJSa8dnftBBaKX6wge+n4UkjFtdNaUHJOFpTD/dtbn569jlHVECm8zq7/USWa2vyizJbWficWgNH4KqWaoEFOAaARvRZ1k6kHAfZUO4LWwK855SWkqnaIGkXFIBli0hmVBpn9EyJ+aGYWQpTUvwX1+qcz0sKRpM2aat5YoAYQ1hrqq0EqaBzjnGPxI8JE+NRA53wBf1sDGtOjOO8Z8Drl1fH7fuWENqCTbSAzoGYMeUaATUxqTHCcsh54BwNkemTGCfG6Ytck6dyjM+OHsd2MG5rlGAAFvGmHldU7DpKgwBnnosw9q3siMWgKzs6AqD5LMWpV1TQwDuQo8BIctzAzYtFZMU5jBvvPClIpcR6GSgWfwC/A2RqJL6RSpGPtpLiLO40KY8oBRkpHRRYlnktRgVVIUFaPz6CmkZ5109gms5qJIP4+zswBpfhgL2FBEHCLfELgSyRZJGmEL8wFUCjB1CizPwX32oZX0mZrHslIiM4rRLwz12XMVmZIUSAciRZIM5GPF6CFmNl7YTKmSz6nlkbEPiTFMeuDkBiIZBHkuEXBOvOXF6tQIGDFWMk5BCuSrVMnvnTgomCiyoKhSEJDud54vIkPRc5CVWV+VAgRpvib6a5Sag64Xzlicj3eVKeEU7H7lu5/At/OSEnUxznNjiRrSLFbyoP+iPeT5ZEx/58BE9N05KxTn7wOz4iUHxUuQ8hJhx3/laxDQqvlLryVgyDHHX3r/fL5xAc4vj/J/7DUD+RfHPV+fl/GcC9Pzp87PTMv7Q4hnY+RMPhalgRTIsxfWPh1FL7cwxDj3oSCvTy/ss+LsTjOfX8pexZSik0zYIjfMgatK1wDMpIe0cmcuhssSnhngp5Sa0pq6qWmaJp3XSIgyx8aUXbSFRQW9lDPM41LuR1kXFHVJJFBaOHYDHdADRYGAcqMwVhOsptlsefXd9wSteHp+ZvDSnAYdcOPI8f6e+uZW1pQAxWot65NRFEYJINntMOMkdsTRgSkoqwqjNe16g1ORw2mPnxzUFtuWPB0+4qc9ZW24/uFvWJctpij59P4nRhf467/6Dfv9M21dUl9teLh/puuOhBD5u7/7G64ub/n97/8Zo0umceT/9f/8HxmGge++/46r2wt8cByPgd1+x3q95s23b3Fu5NSdmKImmi3YGqvhu4sbjoe9SCq2FW3b4pyj60fKpsJYy8PuieNpz9XVLd/++tc09RprDV++PHLY7/j04ROFtbz/0x1tc+L64pKmqdhuvsFHjRsNZVlRGMX19RXD5Hh4eGK3e+L+4QvtasUwRU77AzWt6Ki9n4tM97s9//j737HZbvjhl7/g4vpK5DYK6nYj5zxFFCeKsmS73QKRD58+MrlBalOsxpiVGIooA2h+/ukDnxRcbjd8//13rNs1VpdMQyR4jSoaAC5vKm5ffc/zwz2H3ZPIwLzCmEB36ulOe54ev/B8/IyqRn7xi+8ZvGe37xhHxenoeXp6RCvNer1Ba89oodQBmij+8Gai74/8+IcuydUMZdlwdXWDq1uiUtjaMPaaorQYXWFtpG4CdVULIZsY4GEYGPpBALvy2EJjC8PhcMB7WSuqquDN29dcXNT46YALPaaVmoR+8HTHE+Ow53Tq8ZOX2gU8q+2G9bpOpKBmGIbUe0ayc5eXW47HY+pv0BNioKoKYiyko3tYCvKVkkLXcYpUpbDpZVXTrtY453l6eibGSNedGIaBqigprOU4nlJPgIkYZK8ty5KiKCQ76P3M2sPSKwYWvBZCmGvJZpOBhI8a+9J6M8bIOE3gIAaNKUVo7H2c1/NMpNiqshQ22fH4gHce7/zMUAXvhKmJXtwmtKIsTZIaOJyLqOhTW/MEXgOpAYws0Jlt1bmr6BmNk9k+SLa+COtqtbjg2JwujhE3LkWoMaqzdPcZsEt/srbaJDs6f7YxZiadIAW4gQxk1AxC5jR/QiO50BaXCnTnzUY2lNRT6AxIpzPL2uGzbfn8PM7t4qw1SerhZlvPuQtvzP7RyVZULZuX0YskRmQxMun8V4AUYBxzqihFnlkzrkhdfS1aO3GgQCdtqaHruvQ+qKqYagA0zkVikQojlZ6DQ7mmiIs5ypU6inTbJaibRNtvjZo38NJYirLEWsOUgGhhk+NMkqfkezQ6RzJwWsZCBkoZ4EfmjqQ5xnOIJMvoSFQaYtrUEZBCKpzTUXS/wS/NzHJjnq8932d9dAgpva/nTEh2ClEIcIg+d8j1uMlJM7AEIr1z6bkrnJdaCgFLITnhyEjXUaNCJMbkzuQjwTsUEnC5MRCcFBfHEDAmSG1ClGxUkZh/pYRF1F4Y+JBcqGTSymcpRD+u5+shZUnkv+D8PKajWjT34ey+kJnyCAE5l+zQdZ5lCYn2PgetEcl2oNUsxxMplTo7tjoD9l+Bb0GykII1SMxymteS0QnkbEK23pxdtM5B9RwfqGSx+ueAO748+b8oy1HzvM8LRXbJerk+5L/TKPszMP91JuHFz1gCi3xMMwecZ3dKSWGrANtcwL5o2fOxZPzKWh69tP2KCZBnTblSGh+YU8jiRa8IuX9ELkaO0lX4PMuWGwjOgWRcrm8mP9JJm+Q8o2JMhEmcN1KbGrA5NxGCZ5omikKyb9Pk0Vrmk6zdPgXlmfl3czAwDENizwqMNYzjRN+PQGCaBpHbaI2bfMrGGaqqSIQF2OClpXxdYpVj21hOOtA7z6QgGJimAQgcdk90MXL5+jXVZsOwP0CU1H3RNAzDSL/bo5KTj61rCqUYjgcCgT/d3ycbzdnyjKlp6RLj5bxIMFVVyjwm4vyJWAVOeuIPn35ivbrit9/+ivWr1yhdUgCDCzw8PKFQbNZbxnGiqiqe+x1dd5RAptLc333h1HUUVgBtDCNP90dCUDw+fqJqW35+/zMfPxwoqwqtNevthmloIJas1zWH/QOPjzu881xtL3j75p1ovMdnwuRww8R//I//PaeuY78/YENFP5x4+PJMVVRoHVmtW/bPez5//oxWmvHVyJcvd3SnHX/7N99TUvPw4RkfFesNbC4u2RSviWXN9t0bhnHgeNpT24J1XbCqa+kvEARPeD8Sgue7715xcVGjGfAOum5kHBxlWYm8NBl/vP/pPcM0sNlsuLp5jS2k1qPvZZ8sKsubN6+4vFwz9T1NXUpTrdJSFlJXeNofeT4OqKKmrlYoO1EXW9Q6UhaK4XTi7sufmAZP7yd03fPq4pKL2zXX16/op0A8DmzaLU1jUPRYBcfdnv3+mao0WAvtTYWiph8q7h8eeX5+ImqYQuDhy4H9cc1ms6VuVtzW3+OnGj9Jl9iyLrC24XDqKUsr8pWqljkznlJ9icGNEx93H/n44TNtu2FdXzD1E2VVUJUXGNNii4hpK4YAKloO+4F+d6DvvOxxSmEslHVDvaoYuk5IPicyYKWsOD0Cb95cpnXAMSSXmuOxQ0dN8LJ2bbdSnH08ynoxTtIctDAF1gb6vse7QNO0sNIY3dHUNVVZpp+Jc50PwsA755IFpoD5jFdkHbIp2y9ZgL7vEumgiLk/xxkuPCdim0YCvHGU7I1SPhXresFptgAE07kQsGVp56U/pwKyq0YIwmuZ3NY2RFSqCPfeJS/7mNh3L5ui4F95ADHrU4UFX8BQXBjWtGhbUR0QonxdFobCFsmNxItf9hloU0rPrHl24TE6yQsSe6JiXDSs2Y97tv7LRYiZrcubZxZTnG+2CxCIMfnlx7PNJm+kirmOQCVA4XI6N7KAJnXmHpLel5uq5E0oA+SYwIEhBwwxafQXHZd43oR509b6rOHLuekywvw7FxmGMf3bCBAtLNPoU8FnAVFkNaLlMpRlKw1hCLNFqnxtyR1Rz+3+hCnTaZMXqcnoHD4GCsTNyM2gNjKM0iHOlopgYJwC4yTV5zq5sSgjQd8cQLEA+5C+p5Wamw+dZ3ZyjWdmoiUbFSmsIIiIkmwVwr6TxrQ2eraDXHBYJMug8iQ8bw8tY0we9NxpNGls5XdlImcUmG0LF2lEaj6FaH2dWjo0iMRAJDwi11myBj6PmWDS09Zz0ec4OJFbIRmdbBGYnZvEjz4kC1ybgjQpsA9pjJkZRKcmbylQcBkEkwOkHNDo5AokP5FMGDD7mb8MysNMgS6xGTr1mZ2BXXaQkiPOTfMgNZWKL1j95cyWZ5+/n2VBMUV9C7BfZCVn757PSZ2Nga+B/TnSXgjxP4ffMa81ORg9C0tykJKFRn/xc86O/BfBffpmSAA9z41cd5DvcGba5/tzJq/Ja1oOtoQh18lZSzG7hMYlszD5HBzqxHYHXP5Mle51DpZSMDU7oOWfJaA+P+c5MFbYMtvBhblHhgsRbcJyPlpIkJz1ck7S4LK3BayVho0qZarjbIMrjlNiFuAYBylua9qGwpbJ8i43thL5zjQ6vJvm+pyyKIjRife2ChRWGj0aIlVTUVaa4+iYIhx6YTV1jGy2FwwxsPvwAeqGaCwhjKADdrWmaRompZi6Dtd1DM9PchONBu8wZUnTrojDwNj10nSw7+gPe5gcbrsVi0Et2YbQ9xChubzAUNL3E3fPO17fjExGo0xBfzpx+vlzcuCwdL1jmlI9kjYMQ0+MgaenO55291xeXvLq1RWb9ZpxjLhhoi42TOPE48PPOO94un/g9TffUDUN4+jY7XYUZQH+grK0RKfZtGturl5TVyvGIeDHQKEr3n/4mfX6M9evbgBNN0hxpS2hbqSOYrUqCa7k48dPPD088vDlI+1qxelw4B//N8/37xxdP7C9uOLj42fuikcuLq+o2xo3OJ6fD9zc3FBdaqwa6E97mqYkeo9zhqpWnE4Dz89fuLpZcXf/xP3jA1W1YdVe0d8/yh5sNEVVYK3h9vaWzXYtY3H2PoeH+8903Ylp6FHAdlOjCHz8+Ceen54orJmzUFqt2KwK9vuB4+mO9dbSbgrAUa9q3jZvGUfPOAR+WdY0qwptImAZe8/QO06nib6bOB46dHQ8PnwmxpHLd28obMTYgqZpWBEpmpr1xQqAU3fEqwHnTxxHhyodp/6Sx+cTxlqatiEO0iHVA/v9keAcViuqqqKuytTHJDJOI9ZaxtHz9PDIl/EBqwqaqmC7qmmswhaWdrXmqtlALFg1PYV55lE/pbVjYnInHh+f8aHCWkOpa1AwjRNKa6pqLcRg0Qh5hmazkQyLUUeGHrppxE8Tu2epk/N+oqxEjme0ZNC99wyDw6YifFnXI+c1P3kvqOuabI3ZDz1aq7k3TAb4Oeufs4fTNEktapYqhqV7fd3UQCYRcx2bPss2ZvI3EdguME4T3gX6fsQKiBcrr2kSqylYQKGSyrllw1UmSUIiZSHR7DiFr5ovLcB1AZuZacyM1cLap3osKQDUAjiLosBocb+ZkiVh3smktilTO2nTiCm5njaD3MTmvNU76SYxn1duRMX8vnQBX21ALOlXNf94AfZhKYQ990rP2vr8+7N6NTJbaUKWz6hlU1Oi5fb+3C4zMXgxXWvMAYKclE4SDtG3h6R3XwBnZvbzrVjS72JxWRSFbFTBCQOvz1TYPlLVNZOXwlujFd472ShyUHR2fEj3WSlh2pWSgutCo8ZJvPN1csmIAsyck6+HcWLyE9qmYtoMFGPW2y6ATTb9JFdQkgGwWhp6Be+lIyRLECDNpTJDHWYANUWPRoqGC6MwSlwssk848ezzzqLqF9rwFz/3szTqPNhRanGayVX9Kj1/56Y0F0zSwMu5hQBx8inrkDIKqfBTjiUe3kohFffoJHVQ5LRGRORLOiTHjzQ3tJnb6yAWhxqMjB+RO8T0feYgem5aRQbVYim4AHKZe36emgnIp0Am3/OYH0zMxaRxlv9kYJnnSpjncoSsk05z4WsZz9dfvtTvnwVTGTCn+xoSMXEuRFlY+XPEvoy/uHzr7Nq+fv1F6P3V72VgvxwhfvWbf7bmvDylF58izzOP0ziPS7mfaQ1AzW/KAXYueM3HmDsGqwXc2yxfIY2rnB1MdVNRRbCpGNYv1skmZYFmLX76kHzPicxZFZUyCbMscS5AX65bvpfOLa//fnkiuRCtLEu0loYwEpAniVAM0vY9NfkDpJh9mJIk0xCiYxwdIXTCuKXMqrEW7xxiX+BnWRBEnB8JfqKuWumEGSbWbY0tFZNS1HXLal3g0XTTxP3hRBcD0zgy7fcEY1HbALagaGvW2xVegSosV5dXtNsND0+PVGXNOE083t8TQsGqbVHTyOb6mtPhwP5w4PabbzBK8fHnnynLgrE7MXU929tbxhjpfI81JVXRcpxG3n/8wOEwcNFc8Ju336NDpDaW66tbdvsdz08d282Wb998z6k7cOoOFIXh6nrDr/x3FIWlriuOxwPDNNB1e+rC8PabLT+HA4Wt6PqB0/EOrTecDgJ2rrYrKhv57u136KjoTx3vf/zIcd+z2WypihU+eupyhZ8idbmC+MT19Yb3Pz1KNiWOKB2pGsPd3QFjHb/57TsUAvhi7Hh66FDJuOPLxw84F7BVBQpef/OK29ev2LYtFuiPB/rhmbqyrDdrgnfYAmwhTjPeex4ev1DVFb/61Q9AiXclFxdX7HbPPD49UIWKpm0Zx1Gy6OOY9vaCGCeuLle8ur0gesfueUd3OvBwf8/xsKO0Jet6m9QOiunU8/DpPWWhqVpNUxhUiEzesb3Y8Or1G7StOJ0mHu6fGKYT27amUCXB9wx9x+EoLjOFLYg+pvlhWa0ajLEEFFEX1E3FTXPBatvh3MAba7h9/YbDfofS0HUDT0/3jINlvblge7GlqCsigdoaBgVuUDRVhR9HvHdUZcF6VRNV4Nh1nI4dCsvjw47JOfrHI95VTM6izRrTDfhYMg5H+s5RFSVXV5eM48jxuIMomXytS6yxdKeRYfAcTz1d152pIGCaRow1rFYryrLAmhY/avbPe6nj6A6Mk4Dxqq7E0cZHDoduBuTOOfpkQ5rX1nEcGYYBY6RuJDeu8kHqF51zM/FWFIWMg4Tv5LiJ/EvHerG+KcEhtihQSs3vlT+RaSJlHPUcLAohIsqOoiiwkxPx/Tg6htHnDsNzhJFlCNm2xzspgDNotE1AMrjkgb1s8POmoxabycUpJy+wqThUzMYpKyPV5WimyTOmYobRpbR8VGdFWDGBHRKDqM82vsXLORe/5uK7c/CdzzFf7zlA9Uk/DMIERbUUz2bgkeuKQdLdkTPgkJgskSYsG1NKJrywvJzPM4RZL2aMmZsPpaAusU56bj7kXdqoY0xdHBeWNAP7F80VkiVYZsNhAasueat6J6nH3EDJO7kHxhSMo0+pb3lebVunf4M1FdM0zZtoSOitLEtxsXBictc0FnRk9IHS6hlUWKPwTgIJH0j63aTHlb2OohA5kfduLkwO6R6joShLSmMhSvMkh0sBXZIBpbsTQkx9EBBZkbydQpHkH4HSGhRWLDW1yGDyc8rHyPKo/P05MNNJ954efhKoEVNRjrHi0iM/DmjszH4qcoRu5DrPAomsUTemkKxaOgebpBSmEMeCaZTuqYUxKKsZw4jRGmsFjBgjzKUmF+0urlgSsDlc8vdXhTSpcp5FxhMhhmQFqSH6XIqY7kVmiENE65QVOQuYcyYgj8uzm7hIWuIyV+aQcZ4LC2A9JxJkLpCt4//iK2T4ngEt4uWfgXCu21nC1JcHimcQPL74/p+D7KjTSce/dDJquV/52cbl3IhfAfj49bvzOhtfsPfzW8LS6TefYIwRq84cu84+n7gcJzd6Qil0zG5UAmCNFqtFlEgvz7MTWoEyBlITwLyE5rMMKZsVMumRpUBRCBKMEBRG5Y7osibmrKUKEJ2MnaosiFG6devUcC9fp4w7CRbOO0jKZeSCXOZnTvo959w8dneHU3qDZgqBoetRiuSuURCR/bGqqxTwgB9HlIoYAyFMGF0TojCRl23N3o20zQZT1ihrabYbHo4nfvrymaeug/Ua1dTUmw3lak039jzefUYBtm3oDjuay0uCFjnSOLnZcaPf7RieHtgZI/U43vP89Mh6vUFZy2G3g2GECN3jc5LGBvYf7tijIWgwDcfDkTvzhbquuKxX6HLFYZqYguL1zWuuNhf0Q8ePf/qI0p5f/+YHbm4uQXnev/8T3dBx6k/YwvDm2zWEHus96/VEWSpuXq24f3ggxpG2rWjbFU3VMYxHfvf3j/SdS9JET3/sOW5PAtCD4+b6mqqo+PTzR6yx/PThPVorbm+vKUwhWmk0r26u+fz5E2KZrAjB8byxxH5k93jHMAwcDifqpqUIJfv9HsUzTevwviG4hqIqKauK9VakKKVV9P2Jx4c7xqFnGAee9+JtL80DDWXbyl4anGAFotQnIL0CCltgi0KKJGNEBcf958/snp+BSFWX3L665N13r6WRWoh8+viZL5+/0O/2mOCoqoJ2bOimhmbd0m42jIPhy11PVZf4ULI7ao5HAblXF9dUdcvz45Gu63l1c0tpNQ/3HxmnUfa3qEA17HYjx+Oz9C/YrKibS7SWpk7r9Rv860myL4+PjL2T/gAx4PyI8pqiLMnZ0MFNECMmZpdAwzRKvdhmtaVtthTFmqrc8Hj/yFPX0XUd0+QpSs0UNP6po09yJ2sLcQJSkavLNdAyjCcK2xAj9N2Bz58f6E4n6qahaVazjKWqDEVRYnSJVpamKXk8PGOMAH5jFN2g8UHwze75GWtLhtFzOnVYYygLsYiWYnpL9EEktX5CK01RGJwbKauS0E8UhWG1bqiqKun+T0T8HCCEIE0ns0tjUZTkrrrGGMZRHHvKWJwZj5xtjklt4KOXpqYJKGkj0ndbWmw/SJdSN3lpDZ/y3EYL+6JMahIVIQRNcI6gw6zdnEXbM6O1bBwvGaOlIGx2xNEC2Kw1EL2wvKZg8tKR1U3SrCcDsOwN6qMsTNm3HL2A2JBW+ZiZ6ZhS7CEVTs4M+OKZnGUs59p4z/J6wfKll86bIJmJzPrcM/ZLQU4ckN8fl5+dv8612RmAExftab7VMaZW6ASSN1D63EWeEWMqbjUmaZSzU4SegXlmu0AL05yY3twgKJI83ZVkP8bRpT/TnNaWIk6BxqJnFc2a0rnDsaIoDYU2THh0VFRNRVFp+tGBFjun4BTaGoKOBA9TlG6iSi2AskifuVhvxpf3k6X4WUV5/pnFl8LJBD+VIqKT2bSM15hETV4lH/oULGot2jX98tH/2escPMSYjxnn80KpxEIasU/1EiCjBICM48TsfZuCuBASix/DnAWQwnXRnHsvRTjG5F4R8hxRJIeksywVZx12E/IN3ieG30sAF7N9KTR1xeT83PhqjB413y+5JmGUJBcVVUTFHNwvXWwjCjX7OcIyM87AeP57zkLEswGdxn16znNYrrJfjnpxrP9vr5mVl0Eh8oQocjt5duds/XJ2L//95xKZP/t8tXwv/sV3vGTOYckwRs4IhAzwzwgFyPUjuSYozmvJ+e8IabHYQZ4z4TIO0rWke60VXz0dKUA3LNlQkVqKk9RCUKRgIb3faz2vuYv1pZIQRC3zI/vf50BhtgmOEoCJq4SbzzVn6RRyT2Y7yyQDylmi83NlZsSWIEeCck1dl0mWs9jbqmwlq0z6bObMgdE2rXFu2ZgReZo2peijpdkIRVEzDD392FOUltPpSJ386uMYZV3UJUXQbIqaN1c33FzDZA2Ppz2naWA6eOlfQcCPI6MboCjFnrooOajnNIoUbr8T+831itXFmqHrQEF3ODLuHNpq2nKFKwrG4wk3jlKzAhA00UIsDBFP9BP9NPCPP/2eMhjeXr/m3//tv2Vze413ht2+43g6UFYtr99c8927X1AWht3xCVusIEaurrc0VYn3HafDDgKsLyqKomC92bDaVOz3ey6vtrTtiqfHJ1Q0EAqxRR5H+u7E0Pcc9zt++P57QlR8/vAzt69fgVZc3V7zq1/8Fbn2Zeh6NitxBfr04UOSKHqaVYNSlr61dH7H6srw3eW31GXN/nlPP0xsLgz9sOd594EpbOinEnSFrbaMTjF2JxSeujSU1YrJBYpC8/rViqIqMabg9vaaT5+fpOlWmNhu17SrVvbiGOm7gVAqHh73PD49oYJnXRVoAq9ubqjrktW6pW1bTscjyhgUhqfnPVob2m1NZRyrdctmswFdUFYt1jQ8PR7pP+6pqh2r9SWrak1bGsrK0zQNfgpoIzKqu/svNFVJP/Spwzx0XY91BV3f8/j4DMDxsGG7ETmYjoFVW1MVKx4+f2DsDReXW3wIPO/3DMOJKXrU2NO2LUVRMtlB9gkjzeDc5Ng/P1MUhsvrS6ytUCjW6w1lUXNzdUlVwudPf+T5eQdPHVNi3Z33FEVB07RUVcnV1WvqquLxCcKUsJOS2g9TtNR1TdPWbDYrjseO7KV26jriKe8vYkoSg5iKFOUWbRTtquV06ufaGq0M4+RQBJQqEjHt54Z+VVXS9x2FtbhpwgZDVVcERApYliVKKfq+l/qds0JbEExmrKUoirSOx6Xg/wzTCXGYSWiY3IhS4raX3cNCDJgoDSm99wLunZM0hNZGmupo6YglkYC4EwQvBQvBR7zyVKVKTiJxBvhKVkP5+8z1ILsu5PRrdpA4bw+ebQzHydGPE30vNoA+kJrn5A1dp01IOn1qpV6w1sELiMtWkJndlQ1z2czyq7A6NVJaPPhBCghn1jDHLHHZaLVCbmz69nSW0iZvNkp0Zpm5n3/G16xcnDcSYGHsVdqgI+LBmoplYwpWQhDAl27rkjFIdQbSJEygadZ9ZbYrPSoBzzoSwoD4LuemWUuRbn6Pc362tbNW8fR0wBiNtcV8/31izaxVaKOI+OSDHlm1Dba0MAXKuiDEyLHrCTrgRimGU5CsTQUQa5XHSgqmjIAHacqEpOJ9wIfINI6gvIylpJ+XY4rtJFr+lpEjTTrEGWaSMRMSePABJo/yTtKYGiwvX+eE88vvS6G3kJIqPW8p0DbWpOckGnettDTvcZLgz1r8OEeESwCaq+AhJvmVDEbvHUqHxaUnMfQxJGlOhMLo2dFKGyu1KXEpQ1Z5nGXJTZQ+AEYjTWNzhieExbM+hPkezDKNDNySrEinDFokM+ZnlpvnSBTOsltZ+y7fD5Fc75zeljoFRwkcvJJ5nefA/97rHGjP8wU4iz9eMNH5e/97L7X86nwv8ypyxhX8K29Mn3sWHC5PPq0zZ786rylKzVa2Amr/vGRXwezIlTuE63Om4OyY8rd6sTZKvxE1mxwoOVAKhBVZn6iVSjaS4BVMPkjQmNei+XzOIpCY9g5kHOZALQbR54NkkfLYnz8uyDzMm533fpZlKS1duhXLmuW8eOxnrWwmR7Jmtm4qAPq+F2ICmTMvHNxUeqOJ6TgyJ6fJE6dAxKGiS97kFrzI3Yw1hDAxTMKmjW7ChcA4HmmrNRfNBm0MTdXyzevXHKaevRv45ptrPj4+8LB7RqnIcRop1yvqpmGMgeF0hOi5ePUaY0ue7u+JWnH9+g3d/pFq2xKKZHywXVOXJeOxYzx16BioaEXOcexpq5agFIMb8KcDGI1etdjSMnBgcAqzgw/3n3hz/Q2rCFrVfPvuHd59w/3jF/70/hNlWVAUBW/f/pZpcmhdUFWWiwvD3d3PfPjwEdu0UsunLaY0FHUgYjGm5ubmDW294sNPj3zc3XHYP+HHibatudquOeyeGP3IsTsRfM+nuy+8fvOGv/03/x5bVAz9yP75yM/9PZv1Cmvg5uYN1kQUnuNxR1lXFNUGa6AwBQZN7QuuX1/inGRDlbU8Pe8olOXy+obDSXP35ciXzx8Y+gOX2xW//uX3vPnmB5yf2B0OaexZ2vaCyyvFMI4UpRTNioF1RGvLqt0wuSC1ZIPjpz/8MxbHxWbNu+/fUZeSfbi6vKQsKlyAum44HHucUxg9UtdhZsGdA2Nr2noLoWf3+ImHTw9o8zPbzYZ227DatvSduCMZrdlebBj6jlN3IETHervBGk3Xj1QcWTWaeFXRdT1u3LHfjUS3wcQthzEy9COfPj0wDB3T2KHtxMXFinazRRUlp34EpaiaRlZ675m6nv3+RHQBfKSqCtwUcG6grlsBzGuRcq5bS1UJCz/0gdNxpIsR78RvPsYe50q+fHZcbK8oTIkylr7vKauSzWWbahUj3XBgGLtUW5jqv5Ro3YOLTMcJq1MvmNqw2a5EiRAjl5c1+8OJw+EBn0g250bA4/0kagWkd4GsRY66Kmka6ShbliWnfqLruhngN00zS3PGcUz7tOCxoihme8zcLdsYQ9s2ycAgYSvvUl2sT0RwwuxJBpKcx+fGoHZyCWqrCEonNtBgirS4JvAsxaRSjRwAq5OeUpAYSoPFEEgAIUXUi0QjzovlDI5NYvWDbAjReaLzTKPHpcJXpZWkY4GlwTxpa5DNIe1DuHDW6vxMrz0D5Qys04koJXab+Sb73JhL5+6TcXZjOU/1K842WVRi3RbQoJYdTaKqfA5pExK2bSnwPd9kQ0qnC3MuACkXvWYUknWrOjmp5HoAEvAxabuXFsc2ZQ+i1DBkUJrayNtCU5ZJYBSjaFlToUYIsjFJZ9ZAXVvKUif2Ss67LArZ7Malw6xKDN00TQTvJRxL+ts6lpK6ItIPA21TEWxkNx7Fa7aw4NwM2jQ5S7JwoZmpRoOOHp02bTcJ+FDpXse0o88SA6XR1hL9wi7CmeNJGh9ODiYyGpiLJZRK4xEZTAsOTM8r/ZI29kUKLRdjD86fBX1aNI7+zE0+JDAfJYjxzosXfmqY4YNPnWtlUhsNMUpBTlkWDIOfA2mlz8C1mu9G6tioGEZxAompXsQYK7rL4CRgmANNccLSQFBn/uMJOEqNR74HpOA3g3s9awphGau5A4Dc2ri4GZlcDJ0AVprxi4RN5ptRGRzOt/gFWP76dd4MKqYTeQHsM7BNY26GyjH/JYXEKr50j8ljPT/qfLyYyIRcxP2vvb7+WTz/flqvZOwzkyZa6RS0qnkNysH71xKuucA7fV9rPTe6g+XnOTuwMPmQTRAAue6ceU2kRy6azWy7jwLMfcxSp7nEn7nuIqP0FDBoSJaWUWR7WWOvmE0UdFq4588OUgsyDkOyik0SMJVrSOJcp6W0zEXI2bCc5RBGXxuRDVaV2M25KTAMXvzcjU3BUYS0pzm3BMQyN8GW4l5R2klqkaYRH5L9sDEYayjbWs7fQX/q2Zd7Cl3SrFesrjboAAwjYey5ufqGVQK15eUF/+3HHxm8o6hrdscjo46oSQo9q3qFSjrhqe+ITcnm1Q3/4Te/Zb/f81//l//C/W4H3qPHUdZTqxgOJ4rKMkwDVlmauqRHMfkeVE80Cl1owuT4/OmJ/+HTZ/7t3/6f+bt3f4tzIx8/f+D9+/cYo3h1e8O7d7+gbQuC8/hgeN7tgMDN65rLy1d8/4tbtpsNf/jDH3m4e+Cn9z+xWq1Yr7eE2OAmx+nU0XUnjrtH/NQzjT20hmk6in7YwO31BYfTie/evuHd97/k/Y9fCFGz3+0ojKXvOupfbNlebykLLQXJYcSamtevX9P5R5qqpG1qHj7fs97K5m5MwdPzDqULXn/zDl1WnHrH/cPAh58/sd89EqaO/tix2WzwqbDRe0VZVUyjZxg8RVHy7bffoo1iv3/m1B2ZnDjoKKMZjh2HwwE3eaqyYVtZbq4vKW1JU69wU+DDz5/ph5HJBaq6xdiG16+/42n/hT70rJs1pa0oA+ioGEdPdzwyHHe44SCafKO4Wl+yurhi97xjd3jCO4c2sNmuJDvSG9brhrqq2O+fMdbR1FDVlvu7iaF3FFZTFh5iz6ePn3h62DNNsjc83O3Z3jS01ZpxHChtIft6yFaz0lHVTU7sNINYUAcfOB1P9MNIUbU0zQYVoTsdxaa0KKnKS8LKEC4VWgeOpz2f76QgexwGPn/6SH8caFLBrQseih4QVUH2lj8cThhbCpkZdWpupeiSLWZZNhSlEWvpJFmumophcNR1zfX1Nc/PB5SKDP2ADyMhiqrChQhIRkFrxTj2UvQ+TYzTAEBVVcQY2e/3tG07F+Fmr3tgrlmSBqXSJyfjA8lKSQ2kMZLJFJ3/hDbFosTITmQqJkfFVHMUnEgn0DEdOM6Nj4wWBVXuZJmb86DARbcAIg02CmMHChu1BAMJIM9SFb0A+8IIY25UVrFqXBC5wOSZ2XbZlBLL4yNz8WDeNNLmlD3U8zkt2YLMfudPyZKCvMGk46aiMLIWM2+IZzuvImcA5BshgWSMQvl5f5wLZw2LtjiS0+kKZYx4d6edNReM5s8sC4tCmCdFlI6IWgH2hd7cWINLxZZq1veKTaXL5xs8itxcSZ5pMKC0FllNNKjcBc352ds7pMGrlGi327ZFa0XfDyglEi6jLdrAOE2Mo5/rJ3LRa04r+aAITtyTitKg6orgeqIXkEaEuqwpTSkOG8FLd7ZkaxdSg6YYvBS4xZgaqmlKHcEsTGlwubhZCLdAnAF+oUg1HDFlWuLMSueHnPXGIbP6aUyNKWCQwmXR/qehtoC0BKhCrsRN3V3l91IWJQZxcUpdWqP3VNrOmSvCAuAyZjU5G5aAenbxEeZTrnkaAuOQU3iS8Yo6oKKimDtspgDWaIxKLbRNynwpCeCsNVKAlAq6lQJrI85FYQTSPfMhZe1SYKN14o9zs7IQUgfBReceVcrGpCgqZyhyoC+NvdI8VVECvLk2JwXcIaLTuMzeVhmsLkX1AsrmbEBaR3wG9DOwz+e/rBk5wDtfTHK+QQ4rx87PXMPS0Os8MPj6dRYA5K/yWrKMoVScrDIklgBt+R1hawz5fmS2fcm4vMgChHPrYGlhPgcxKi42mV+tP1mrr1gyUPn8iPlpGtCaaDReKSYfGYMnKDVnPVVeS4hkfWIO0vKcM3OBdiQHHCrJLHNNy/z7aVLHVHsFso5J7CNzw3svwWziQpQW28eQrHRyc+QQAuMwEtzSXVnut6cqxT1MCt8mcjXCNDNm890QS1oFfgoMcUo/k2Da2BJjKlSUjXi9rrDWc+oH4uMTK+cI1lCvWi43N1zXJdEq1kbR2hXBWt7++/+eox/446efGcYBv10x+InBd4z7Tu796QTDRLXdsv90zx+d4XTqiT1YasrKYJvI8eEL/e4eVWlUo1GqxnkjDRK9oigqyqZhmFwCxpHSaGpb8Xz3mf90t6ct1ozHnm5/5Nff/8DWNHz65/dUzQpVVpSrNY+HA/00sNu3fPfNa4qi4Pj0xNN9x/2XHcfTyGqzJaIY3cjj8yPPD4/0j8/0pz2XVxcoXfC4u2d7XbK+2lCVLav2gqfHI0VR89OPn7m4vmV0E8fdA2VR4EbHhz/9yHC8oipLNqs1RVlyOo1Mo+X9pz0XF2tevdrQDzXrtkHryDD0tJtLyrKirGqm4Hna3YHqKKsTVdWhyglwHI9fKKw0Nep7B9qidckwBsqyoGkrYvREryhtTdft6ENHfxrZ7fb4ceLbN9/w3e0l2ndz1/luGGmLLY8PzxyPHcfjCastVxeXuGlChdTLIDieng4UtqSpW4iBel3z/a+/Yxo7hrETO1btceNA3x/ZPT8xTQNVVVDX4s/erFdcv3rNarXCVi3GeNrKcH93h3PPKF2wubrk6vIG5zzlyVCOCu1kQTUGri63rLdXgtuU5dRP6Ci4YjhO+LGnMIZVu8ZPE+Mw4LxnGiZ2ux3aHKiqHaUtCN4z9BD8IIAWQ1XVIlfabnnX1hyPBz5/+sw0dQzTxOT3eAdFYQjDSF0LY+1Gl3okSYMnN3n6fqCwFbbdoPwzvn9mciemAMZpAg1FVdBu18R+oj9JZ+XSpmWv0oyToM6qbADN2I+cOsc0SNEwCTv4aZIePX6S5pLain3l1M1rtNLSmFIrceBy3s/NI0OI0hU4So3POPlESBl8kHWoULmzdupYqwr6/kS2Tw/BY6cxYK1oyFDJP9goILmmeGHSY8h6bXm4M7DPeoUgDA8+oqMsqMLEnBVdqbwgS8o4b9YxBoK2eBTOC3AI864k/xMmZGGpTNQzw7XodDNLtQC0/EuaJKNR8oDmDSWkzEEUICSAOMygHJI2MbFns5Zaif1kSL93vqnH+dflc3JdgMq7rA8phZKRRJy1+VqJpktkP7Khez8RlUSITozzheEvSCkZZpY/S3JQKtnFieZNij6k87DzkbLUomGPiP9rTA4QIYFPpEHKbBmTup9pvKQ2iwJU1ot7jFmufu4ga1Kw5iLeC/g7nSYmd4DgpBhHSZc3rVIn4pA6w6YAxkeSf3CynmShRbWOlEbAL0YzTYHRR3LsNtfYxQhJW+5DxAUIaQPOfuORuMigUqVoTB2PM8BXUbTyRoU5O5EhZu6GLNBPAMsMAIV8pDQpaDhnWUOkQL0Yb6DmRnAmSDObbPFplEIbUgOOiE02U9MYcKPItLKcTKlcx2GWAvMU8CilKatiljhM00RwQ1qIPFpnS6504QqMDrnnFwphQnPGLMikkM9UUp8XY8okzMA25d7m4ndB71lypVRMBeOSYpxGj49KslYZYiUbVinKzEx1WkfyHZxB73zqc/Ykz9Wgsr/++drBzMKfoXB5hvmLvIbFM+AdZfz4889TORhI/57P7eyzzo6tZwC9gGmV/kthXLrvUWwXo0gOXOQFsD+X+J3XFQHSr+GcNZ/nUvpctdyrfAtiVPP5aHIWKHV7TvfSx8AUI444u+REWHqAJMbcmCSdTADdaJ1cb5bnlW9xlh+cX4/WFlKnR0WWJZmzro/gko1zbu4WcmMYlfecBZxHHxiTVZ1KGdKqUOJSFkZQUigr677CJ6IiAj4obAQMKC02dDEwWwMDOKeIfYBxoipL2pVle7khEpmc4zSM+IcnmtHx/eUN19e39NNIu14xBc+x77m6ecXR92zaFe265cP+jv3UQ2F5enpChUhR1gyHE8PTM3dPR3bv76naLVXdEuNI/3wkGke0GnN7QdXIHj5OCj8qGD04h/YRUyoqZanalskEuu5Ad3jmx8cngtP8zW//juvrDaWJPN594vMf/8Q0On749W/41V//NdubC7rQ8/MffqK713z4l5/YXmy5vNoS8RhdsF1v0VpxOB0IYeLu/gs6BP67v/0Nr29uCcox+BM/ffiJ0Xuc6vny6Y7b6+9YtZcUpuH2uuDzw084P9J3dxjWIsuKPfdfPqB1wWNRc3V1y2F/YH/csT8+8VQfYSzZbFcoXRHiyPriWjJN3mEKS1U0iI0i1OUG9W1LWxU83j8QQk9dg/eKYQycTkd8PLHbH2jKmqurS6q6ACXuaH6YsLXm9uaG6ALHcGQ4dRyeP2HoKMuK1faa3emIbTZMQfHlYceXj59ZlRXuNGCIlCvNwY/YwrDdrFHaLC4pzmFsgR4M7gimLgkqcjwJ63x5uWEYC9pWuq8ej0dChKJuCNrgVQG+YJwKbHFLUZ4Ypx5laoJWOOXRjWalG0gEg+t7acKFQitD1434QRjjqXfgpNeKKTRVXVKv1wzTSEje7kUhtSh3nz9S2IKmqanrhrqusEUj9qgE9qcDWhvqukbpijff/oAbJ7xzdF3PMPQ0TUVRrnh8vOf5+RGtFev1irquWK0NVVlhVIH435e0jcdPPUSx5p7cSP/cEyLc3d9DEHl3cKJ2MFZT1pZ2XWNNiVE1fT/Sd7IKOi9drE/dQFmJ9r7vR7yXdaUoCumjgkryZpfk6Aswluu1wvyPozQt1UZkxGlNixiUKrBWMgZ1XZ/tUAGlTMooyo5jBYjJRm9tSfbxHcdRwE3InuACKjP1r40wFs5JZ8Jc6CgsiDDOOlvwqSUFrhJIDkGaI5AszDwBr84ZKNl3spOO6JAWj1D1FUU2M3IxgbuUVs7MT6EtZt4+0wYT4qx1Wg6UgoO8Acw7juLs7ctnhj/n6l4ycfntambSstxJ5YMsMRNWq+TYItkN2SQCGifyjJjSz1H0d9FEggsoqyiqEkJk9BPaFgm0eaKOZzrsIA0yyoIuFY14vxSVkQCkyXKQxJZ1XZ+6xpagNCr5redNOxeDZuuooiwoCtHDkRrFhBCY3ETEo1WQtu4hdxIWt/6IjEeLZDecm6Q4LwapWlfFi8YOIEXZxhpGNWLx0rVNafrOzZIoF6Rlt1IpGDjTtb94xEnuIIRobpKzsL2Q6zqWdy/scQYifsk65cerICiXdP0hMZvyTFT02CRHUCznppQSEBUgqDy3xEknJntYWxVYnTI9MxyMM0DKMDrLF4A5JRhj9uoP5O6y0hRL412grIpUrOMocyc8l/NS4ojilTDCPl1PllBkVyuVs24sdTBWZ6kUM1DXCkpbYJSQBEFpCksC9prgxTqstAKcfJC6hai03Ivg57kW4mI5KhxDmAPrcA7OE66fn2UOCNRM2i/fTNd3ztpmdntG7+frSB5TvFw2dFwAvpr/LABaIVlGPY+HLPdKGY5UyJztcCE3rzvLVJx94GIUsFxXDoby50delEjNYyPjfgkslixpvrGSlfNkdbGPiyY+39VFErT05ViCB/GrVyoXir10t/kzaVF82dURztySoshGX9QvKSk0myYv2c9EgDTJj1rF5MLGsj5PozSBsUYcMIqqAqVS3ZCWQnPvJBtoNYURlw3JGMlckk6XEyGIA4qxlqosRS97PFHVFVVVs95uKdsWF2DoJz5/ukdZwzgFhmnk5vYVTJHx2PP66oaqabje3fB5/8AQHFf1Bae+Zxgn+kYzDjDsDwzPBwbzgLm8olyvsXXB6CLeG3S5ot5uuby8gF7x+PM9u/tP+EMHlUWvFWVT8+/+L/+e3/3u9+zvPgMBXRaopmTnHygVHN0T4+HEb3/4Na8ub3Eu8PT8gePwhNKK19uSn/7wI9MwcHH515TFiuPpSF0V/PD9bxjdyPZiS1WW/KH4AypG3nz3LZcXa079ge55pNluuF63KC3+6aYOfHr4ke7Y0zQrRt9xebnl9tVv6E4Dd1/uiMl/X2vLqYvcPfwkzbtCYDru6XWkiif2m5abV9e06xXj0IlscnRoa7m6umG7fUXbXNBd7FF48CN12SbiymJMQbtRfPp0x4/vP/D0tEcFaTT09ts3XF1tub294Ve/+gV1XVOWFd4FqlI07Sqe8M6zWq24fnXN5DWj68EELq7WHHaPfPn0M/vnz6ybhs3VivVlS1E11GUrUp9EiPWhIziHCpa6XLFZrTCmJIYErJMWfBp7TifpsAqauy93aG04HjtwQmjWdcXV1Q3jOBCcoj8lWYguubpcM44jp9OBtt0Qo2IYxBveaCjKiFKWEMXsQ1q5RJp1S1VV6FGyYXXTUJZV6nQsRhw+7fVQifJgGqWY1mXcIw54IQTquqberHDrFc5NrDcSMA/DiXGUpnDT5HDOo1SBXlvqusE5GAdpwnZKSgCiRZVGMoFKSMnD7sCUAogYInVdUehIUzc0VUsMBjd66koalsWmpVOB0U0E5Qk+UKV9KjsgZvlN0zQz8ZLd9SRCS0QteV9eSAtikql6qU+qymo2A8j++TF66qpmVHLPfAjYuilomoqqlmKhaZpmTfU0pZb2SgokY1pcjbaAaJS8k5S9GLJEjPFpixJ2CRZNc94rJT0eZlu7GCSV6888avI+GWKcO7Dmm5VZGc4Ye/IGnq07kzWnVgqb7NVyev58Qwg5ikivnKJ98W/OPiYum2g8//lXG3t+ZmVZvah+zj+LZ7KO+eak41mT2OOspULYMJUYY6MN2spAzKypSsXJxMgUpNlUkAqIObsgeuBAU9VEBZMTxxqtNcFJIYZIR/JzQXxkAkCgQqN1gdLLBmy0Bqtmli07D2m1NOXqe48PQTbLQtJQpEBHDiPXJqx/ChSUZG+891irKEtLUdgzR6A4AwLwEKVo1xqoCmldrYJIhrxnTsefZ4LO8ViE2Qffq/M+ApxBL3l4MYYUhizg8AXhG5fvZYZTR6SoKI0kF5P8LYqu3eqlQVBmhG0qqpjHXBp3Ls2BnIHyTjI91li5zjQXdZTnYLVUXXsfk3OSSoGySRkIDVEcj2SyqmQPKSF6RIO2UkwfY1ps1FyHgzbzXIqJlV2azuXwZymy9FmYnpCxzoBMiwNTDC7NW8m3+QDaGIgR5yO2kEyU1OpowM+Lc34+Kj0rdTa/jcphCbPkKjek+xrg59efw/Xs2LJo/rU6yzSmaZvndmbk56GnMqCW68+deqVDgQK1ZA3ze3Ogshw3ZxBTUHneZCSP1a9OPI9Ple67OjuhOahM1xfjEswGlT9DAqkcdIDCE3BBpFeZuMkZDdTZWgmp3bsUu2klQJuQM0vn+v9l48v/nrtBK7V00EWlPcpx3rL9/HhKZZvT5dlG4kwKEJavc+AR5mxzfOGkE2Lqyh0jIWiqUlNaldZJGftGpYBTIlapj5nECctNI1VZMQwD3fHE5c0NhbasVxvW2wvq1Zp932PrmmGcGPog1n3RcLm6YrXaULuGq/UlP7hv+fR4z3Hs2Z86Pn75TGHAXZUcVzWnrsMPEz52jL14uathgnFCTQXBRLqux3cj/Zc9/jCiHAQdOe1P+Odn/of/+/+DWJZc//AdfgocHp9Qp44ff/5v7Lpb/sPf/Z/47uYNjx/v0CvF4/s71OGBV7evuL6+wXeOug4UlaFZa8omstv3PD3dsd2saJsVTJGn52fG/cT2Yov3lrvHE4fTgYfnEx7LZXPNNI30LtLvnrm4uuD1m1fYwrJdb8iNKJ+ennjeP/Dxy3ussdSN6MlNEdAFqMmj+577L5+YTnesNhum7g2bq2uuX73GlDWFMUwepkklL3iwugVEuXBxUVFXlv1hJ9giRpq25PZmS1Fo7j4/4IMYGoTg2O2fcK7leDyKLMN5+m5ku72gqUHrLS542s2K0cF+f2K3f8aNE9c3W/bPn5nGE0Fp+h62agtR8/Sw49Wr1xhr6bo+9SbSFLahKhvaakVRVozTxMPjA1pHNus1u51jf9iLm0zV0g8D3kW6U89w6hi6jrquubi4YLXaYJRiGHtC9FRFy83VNd3pyNCNrFYt2+0GrS22rCmayG53ZJwcwzgydCfAURuT6ut6DscjbdMIhrSWzfaStm0ZhkH6PEwT0zTR9yeOxz3EKMXaZUl3POLGKUmRB6ahSDgs0veKpl3x6tUtTVMTUi8U6QA7sN/t6YuRaYqMg1h7tk2Dc2I3rq2hKEuMFXvd6CODkXMiRDarFVPomLqROCli0IjLpMM5Jw5BpSGEkbKSTtd4xTgIC5/97oH56/zvTHJlSXwuppW1bUp4TNa6xWHHEKLYdBZFkdZsWRNzJ1ytNbaqLCZZIozjlBh7YeKdk+ZChVUpqpBiAKOlOUDwKgEDObm8CGb23CR/tRhlQz13n5ElUM+bUKqrWjYjlRfkCMlTOC/y2VVlAdSLT/QC2uK8eenMvIQ4bxbzhvHV5pdfedF/yQQxdyuN8S+86exYeYPJxboSXS3XphOaPC+IQwmgLAqbdFguRWviQpMzI1brFy4auVp6HjDGiGc0WTqQ9c5QlRbvJtCashAQNowBqzTWWKyV1JBPzHAOZMqyQCVv9iTwF/YwP4EoaSTpsCsDOHviW2MIxgnDbjSokHT0ot1bgoF0H7RCY4hxTMy+SJVC0hTkezt7+CMa7agj2kJpDFEpCqMJTnTccn8kC6XyeJsLtedhJONCpZ+lizNn3uBKa9FYRz8XNp+9/V8dD0FJUDuzqlGQpU6g3caIUR4bI1YZyTKpRW8NSuwmQ0RNPnU01hACLoFhcUNZAEck4FTAlgm4xJDSfRJAOS9avpAKeZNjKkVRIi5HQBAZhPZTmvfLQhKCkkY+2sjvxYWdz/M5cbwACYBLYe7scJPuSfDixmBQ4mwUwU9R6gaUMD6TG2XcOIexUpAsADN1EkjHn7vfxrMCWEUC0XntYe4E6zhfl86e59k/IjnQZgauGeB/HdjDkhWYx0BeLyILcx/PJDkJ4CvUvDbM6wgZfMs1SaZDJUZZCkjn8ReT3Oicvn+xUMUzYE8KNpZRNovZ069EpfD52qNYIOfAKa/ngaWeCJjXtJztzS8XpKtsWUhGMDdyyYA+/w0vSZP5T3omOaPok0THZd38/NwyK5bu41mgkQv9dQqcz4vXYkxp+KUkCzdN6f4qqNJ5gtjnWY0KjlIXqQeJhZT5xkChJNj1MXI6HkUW5cHYguHU8eHnD7ioMLaiqFZURUvA0NQNgYrTyeH3J/GN/3JH2VTU65Zfv/ue72/eMQRH7x2705E//vSe9/s7Phzv6b58JConbl9GEwLEaUQ97PCDZ1ft2KWqaF1YqrrG9RCcFB6+/u579v0JUxZ0Tzu8NpiiwBcDtigp1hZXefpiorMTRTjx6ofXMEgQUKjIL7//nl/8+jv6aWCaPLvdA/vDI/vnI//03/6BwlQQFFeX1zRlxbjv+ePwEVuWIl1kQ9OUjCdpzPTq6hepWLJEEem7I855bm6upSi6rohETCFB//XVFVrBxw8fqBrF1e0FUxX59PM/8/jwTFErqsrQNgW7p0d0UeGC4TQ49rsTTd2yblYMY4fWgaYyrFcNk5toV1vKomT0jrJsaNsVl7s9F9stxhjevn1FjJLtfnh8IAaoKnFLeXx6TGPFcXXdUFtL1awooqJqV1xd37B73jGcjqjY8/njz6zWFRdbuc5pnFBods8HjscT0yhgrmlrrq4uqOsVVbkiqsipF9vNVVuz3WxompbcRVljKYuGw+FInI5zHxrvJ56fH5nGkavLS8Z+Yhg6sYg8dHjvWbdSy1C3G7Sx9P3E8dRLLUmMoCNFZSnLmvW6YQqOoR/48vkzRVGwWa+FEAmBsihYr9fS18d5Hh/ueXg8io+8E/a87zvGYUh7ladd1VxuL5KPfeR0OnA4HiirhqKwxGhmycrz857Tsafve8bRcToNnE4nNquSGKRu1ChFHCfiKOtCWZWURYmbJrG3tJboLNPocKNkPbpTz+HYiaKgEHxsi5L1pqEoSlznMNrOa1fGKsMwzFgWEt5wgRiF+Kiqau5xMI4T2cXsBd5RCqOZewopRVJpjGTb86IosNpEQnA4Jx21xGYnu80IQJ91yAkKhexPh0lRRepCaMBa2etjEOlN3jBdJtBmJlzhX2wyooc8I9rIDbSEdVxY/WxF9DW2FplDSmlrMzNlwXuiC/NmefaGWXPNVz9bNpOXG/d5mjuysLtfvzKYeLlZZe1UAnWcMWpn55CbWIFiCtM8EAgJmMSlQU2Moo0PIXDqe/m+0XOjmJll87IJVqU0gogqYoIiukh0oMrECHqp3BZgH5HbLguhCxC9Sykhn6JSSRWJpEsnBkzsoeKYZTtQliYNQnl/UVhQybLOeXL3IfGAVYSo58yRSpHtNA1n8gOd0pKRskgsb9BErSgLQwjgFNKMSmt8jIyDVNOjpMuxjPMF6PsEADTp5+m5+KSX04lZj+jZ5SMHmct/CJt9Bu1EN52+inKd51Z7Bpkf2oFRAasjVimMF6BhlJa6DwmR0SHMdRmVsUnnHIhemqWoqFLwJxtdP0qB7FLwKX0EsgRBzkPPGko3eVBK0tRKAt3JBSgUQmQmR6dUSOqjFPBKTXsuLk1DNt/neZTHmVHN2baYQLIEzkqKaJUUFku2QGwEY3J68TGikhXNFJLOOh0+L3YxnUSMEvwalR2wlsBcfiUJX9Ialif22Zcv5uf53JcifZXY/z9fByTozEz78s1ldEjQee68paJKzlDnYp38+XFeC1Saa6N3c7ZyWS1TMPIXXnPck8/hDFTP13AWFJ071ciPUuYsLEHcfD9UvqS/xHpEKQxXy7FMysbk+/r1PcwEzJytS+RHBuO5Izcs6+Y5ceN9SNbOuZulnGNO9edeKfkzMmumtZnlP8M0zpLT0PXps4CgcFN2FBHJjdQZ6XmvqooSHwImpehPxyM6GooycFRgyorDbo9H87g7sLl6TVmvqFcV2/Ulj0/3HE47Vm1LaS2bYkt/6Nh9eEKVlnq7xuoCVWp+/d0vueIt9qd/4vD0DJXURhkVacqCctPw6CdOHx+I3qKVIVhwUfTCzGyn4+HuEaU0/R8/UDQriotLSluwfnPJbv/Aze0t33z7LVYVtDdX1GXLplhjJ8Wbb77Deo3CgtZc395y3B84HU4MQy8a+8+f+PbNW7pTxz/8/B6tNG27xraXPO9PiUizYq4wTanAVoigb7/9hqYVO8Wx21MUDVeXorl+8/Z72tWWDx9+xgdPWZf88MP3tHWNCo7q1Q2b6w3GWvbHA6Of+Hz3GW1LbFmjdEl/HHh+uMO5yMXF/6ex/+qWJMmyNLFPiFIjlziNiKRVXd1rNQbTeBi84QH/f2GmezCNQVd3VRfJyAhnlxlTIgwPR0TVrmdiAMvlGe73mqmpioqK7LPPPvvcZoOBEVspfvjhA4nAbrdjt99iQkBRo1LFOMwYc+B8fuHTp0jfb+j7DW3bEkNiGGZ+/fVX5lk6nW62Dfu7DZvNLXWzQZsKayux5OQXPp2O9JueH3/6kf2up2t7jK55fn7BGoubR54eHnK/BSUFq+OESolhOBEBR2S/39P3HaObuZzOVFZAd3BR7CwT9H1H19VUlcLNUuw6zQOHk+bp8YEUI/2m5Xg8stl0/Ju/+zsu48jhdMaHAaUts8skkMnuTQ6UhbqT5pbnccAnuBxOnM4X3tzf4dzM7Co2Xcemqmi3Nag7tFGcjwcOLy9M0yT2nZczVWXp2lbAeMYDzk2Mw0jShrZzos1XivP5TEqKqqq5uW2xRopan56eOJ/OnE5nITmVoula0bwrcc/abKRfw/l4IgZh5zWG6Ocs5wbvPFolXHCczydSCmx3LdAyz5PUi2UirVjxFmJZCNCY8bZndlNWKKxS6CLLSUmMVQrAjzHig6euLW3bXq2PMdvQSn8ekb9msDpNU06JS9fOGFeNu7HFKD+K3WAK+Dkyz+J/H3PDIdl0BMilZJjHQMjSkLKbXGH5dctKrInmdP37NV16vfAvYOpqx1SKzPBmZrwECnENGK4ZmsKIfQ/g/9rGVAonv9+/rwORcs7lT3mVTMjrIrUsEXj1XkEkxuir8zUYUzIFeRstB9A6ZwMy85kknSTBGLgs1ShRXmUlmu3ahqTEIYAkLY+7rshcBHTHFBDnI5NtEdcUtdZmARogc8Vkac/1JH41Rvm9MUqTJSkwNsvYFuY+JdGVzfMqJYrZnUbrwjRHkdmU+y3VsaKjp0Swjhgl0GuqBrTosImBqq5yDUm+phCZfS4ejixBkUiH0hVQEglKARrL9eUbn66v9WpuQ8lmFeTDgoQSWSKS5TkJ8fgPSYoTjZKMitHZsz8f1eQ/CYWPueAbWDTxitypTuW5kRlgVbrUSnFiXdss1UlLsJIgA7cMrDIYE/Aj1f8klSV04jMfU6AUcV8/J6pkpa7mSylop1DY+TkNsdjOSgG6UYqUW5OWwEACuri8X8Y2F3XmuaRY6xyW50jlDFZKKKMX1jcBtpAA5RkrEV3+/PeyPP1K3yUP8JIBLGuWWg/w+tNX68Vyrilr6UsBvWLJJeUoRKbL6o6UQGqOdEnRxr/4ju/XtDVjJGO+SntYMlAL+aFUzsJkqRVrrcISnMibryM3CWLV2qFZqbBkypQCY7XI+JTKJgZyg/7yXNc1Gq6vRTTtRat6Lc1bunqHsNRlOS+uXkIwiBRNUZrERBSJpq4ozamUUtjGYrIBQciOFUV2lWJcAooUAoGAwRCWvc8Ie6zVUlRrjV7npCrrmMMNHjVPmLricDnTbfdsdnekGHGTo6o6Nps99+/eyDmQsKYhDRPT2cEcGcZnvE4cLifefnzPrr3Bdyd+vfzvbFJDZOY8nTieXqjqGrUFtUukNBHrFtMLoCFaEpo4yfo7XUZU1NTdPdvNDdNpYpyPhCZxPr/wL19PnJ9Gfvzpt+x3d2z6jnp3h54TdapIY+DldMFEjYsDRlf89NPvMMoyns88fXsAPD4MWCMuKofDBS4nhiny+PDE7BKbbktd1VQJmrbh+XwkzR5tEptNS91WHA4DP/zo6Dei6Xc+senvmKeRu5s7jIrUlcHNI01j2SnL8fRCW1msrVBJ4eaZum7ouo30T9m0PDw+8fT4iX67oe9alEq8vEj31l+PXzgdRtq2F0IjKtpmQ1U903Y1dW1JKeZaNLUA+mmapakRmhgTk0vEaLkMHu9GKtvQdR111bLf3bLddBgC3otEpGss929umSaHmz2mUkxuAKSB0zhfqDuZn94Fxmlit9uy3++YxpFjCFhjRP/eGNzsMEZqLcfpgDIBHRPdtqVtOkKIhBTwYeZyOXO5nDieGjbblmTE136cZvq2p841Jc7PGaDWoAKTn9Fa0XY90xRQ2qCByziKhDOWTu8JbXo2mw0xBGpr2O+3HI9HTscjSkPXtjRthXeO4/FAiIFpHEVKdHeX9zwhAKbJoZTYRW82HdZWpDRxe3ub3ehEFj7OE+M80fU9otuf8LkvQAhB5FmxGEkYYraJripDTBpbt4TgMAbapiJFz/l0wY2va4BMdiQsxELBtSEEkZG1DYW8GYZBahtRS3fagiGLK6RShqauspTV4dzqmy9jELEltSn6obQwRcYomqZanEeArK+XRGwIeVFWKcsWErZStI2hbircLN37UirMXMqKgcK8JlZxydq8/ntwfL3wv2LJrzbgwgYKaFk3hOuN9TX7lF6BtGsJjRbrDubZvdp4Ctu3nhdlb1/2uKs9/dV3vCoS+yt/rr9DPheubma5WavrijCCaknHSzdIIMq4XsOpiLScN9nFwTmxxYwhirzHyCQMPgEBraucqSEz8gKqiswmolBJQPZyK9Q6CUshNsvYysQuOtvS3CPkjqeJKJ7SSi8NyKzVzC7meSj1HrbS+XNktjmDz0yxV1JugHS9dqQoHsC6M/k+yENeVZbLMAuQ01oKWXVCaYsPHuc9MSqsgpiJxYXlT0F86ZV65bwC12DnKrgpoOmKrVxRosyGEjxonY8V8jxQcp2eiA4Z/GU9fqMlU6GVWiwurTJLkJ2WExLAYXTKrDykovFWmqkUUV/PaaTpSoxBnk+1PgOliFH05Uup5cI8k6+l9IYonytyk9LD9poVVllGFDNqNUoR87FigKQiMZXC1bU4t1xiUhKUpSgsch5WeS5FAZbrVyRoMjlIQGcHIluhAB+kyDvGFdSKbiY7NBVvR61QmTAoD/ACuK9vLa9/towNhcy4/nN9gLh+RuUgCySDpljvI9naMt/wmCWHqHV8yGNW7u1a6CrvW+9TJhDKM8sqtykB3rLeKrmOBFeWmemqtmNl3LVSoLMUrmQnClkDi6VvWTsLUL+W3V2vo1prydiwrtmUc1yOJYC/qqo10M4EgsypRAzSXFDWI9nLCrM/ZaeKpq6X/SD4wOxm8QrPx0spYrVkWYJ3IoUkZYMFuc8xpSWb4JwAq6pumOaJaZpxIdBuNzSVsIKnwzMhgm0C1tY0naTog/Pstlt2ux3b3Q3TPPPrl185DmfefHxHrSv0DGac+EN1T/rb/wvezDwO3/h2eWBII9+OjxzHAXVbU7Ubqq5jPh+othsSiughXiL++SJdLifHPDleXmaMEanmeH6CTcMQRv7s/oyfDV1/4Nf2kc83j/xw94F9veV+e0Nn5DrPp5noHe/fveH+/h0nUxOdeO672eAmR9drbm52fH050BuNd5HxMmN0ZNvdUemRisi7+x7vzrgp8ng+MrqZiOLzLw98+PFHbm7vaLstAUV0gXmATdey63awVTyeHrkkw8mJHKhpLH6eMJUVn/basN81zOPM+7d7vj49MbsD/cbw4eMPeB+5nAe0rvjTn36lbTZY22CtZbdv+PDxI9N0hiTObSFEvHOkpGiahvv72yyBlDq5cQycLzPj6Hh5OeBnL+dRabSKbDc1tVXEqoJOes7EYcRWGuchJMcwDjg3U7eGMM1Uo0g7YpR566YZNzoqW/H+/QdIidPphMbS91uGYUTbRGs7TBWwZg8ojKp4fnqmaiyH0zPuy4giMs6Gr982dLt7jK1hcrwcXui7nspaEuJ+RtKovG8bo6mrnuBhrCqMMszTgDJS33I4HvC+JSUB687NaCXX0XYtSoGtDDf7PbvdhqenZ16en5guA8MwMjuPJ9E2LW3bA2LjXFWWeXakdKbr+iW7tt+LNWdTVdxVlqeXZ2JKjOPI6STFtCYzxZWtltqgTb+hbcTL3kePrWUfnt1EQizH/eQJTtwHU1yb7RXioWAlm7vSVlWVvfNl3ZDCYiFR53mW/UQbrDVXxKUERdIy5EoyrExuVilBhR1Ht4Ak7wUcWive91UtC5ZIJYSldS6hEACEiplploVc7IxqYgrMbhQ9aFKvmsgUDCTrbswbgFqA6LonrQv390xU2awWspCr/159dtG9qrKfrenn601EBlAvf7g636tvXHa4wtsJgV4CiqvAIeUuqzl6/26fzWwQa0Fxxg4JSKEUnq0yJACr1kLbAqSvzzHLp1FGjp3yOYj7i7Sy9s7jvei4jFU5OpQ09sLM5cJUlX3P266C3N1N2LGKGJ2kchFgEUJcMhQSMUPXVwuo1roi5kkQsverstkVx9R5A405lZXWjTIlmkbRtLUEmkp0aMGk7PyTN3p9dU8Anxk7KeoUO1e0aPEjwuL7IE461oqrj7EW5w16kqY0KYlbUUqgsjuOsMSrfGMhYRd2tRTDXgVYag0El9hUKUTWtswMgQNKwKyG3OVzBYcmQZXAKpkZPkqxoy5MeRIHFaOzPdqiJ8zSuSBzNGS/xhgDPpTidCS7EcoJ5u69WTYjgZ7GaCsypphyZiTPYy3FQGUsRDcutqNyT3KgVp6gmO1hVY5Uy0OqyMFjDnRiJJA15qj8XeQmczo/N1L/IKyxQasMS/OliJywNC1TuWdHBKXRWXqRrkiDopEuAcICjq+cDNbHOK3rVg6qyl1dq0HWeaLyP8phC9Otc1CVctCkyqBTgGsiIhtEcXMKMeJ9lA7H3xEHhXnPB8hTrkzEUiuQ8py80uuTlvWohG/lx7mua7mWEACdFqZeZy2+gOUSmJcmZmtn7WunpnJ68piu69r3BbLlFWOEIn+5Av7l+r7/tzVmqSfT2f1LK2lANY7Slt65wCwNu6msgHPvZkDRtaWBnIzdlNvOy7UZ6saiEW0wSaRi4crqNibpPlnXeY0LEbQ46OhacTxfuAzP+OTEGnMY2ezuafs955sDbz6853zW2Er06cM403QdMcF2f8vxMvDll8/cv3vD+emF4XDmb//wB/b//n/kH/7lv9JvGn6sPhLrxHE88vOnP/Pw/Mzj8wvD0zNVV7Hd9ByOZ968ecf+Nzf88o9/5vSnr8TBY7BEAvOUybPKkqYJlTRxnPj8T/9Mvd1jTIv9G8Pf/vbf8PJ45MuvXxd3urdv7okh8PPPn0lhFrtdY0jJsb/dUDWJvm3Y7ja8+XGHC57LccPz04GvX75xGV64ufkN2jQo1XB3t+N8GRkGR6Utk/ecT0eeHp8IPmGrmr7rGC4e/JEXPL/+6RfevL2nvd/z/sOG29u3zNOAm0eqquMyzpjG0nUtb9++4eHLN7a7LfvbDQ9PT7wcjpzPO9puS1Li1DVMI4fDGasq9tsbbm+3VHWbM0Ow3bZsNlum0TMM4lvvvaeqjDim2Aq0YRwnTqeBy2ng+fGZ8+lIbTT393vGfUdltYD8tuZwPDEME3XVEAFTWTb7Ld477t7c0rYVIXpMpamblpv9vchIo3SAD0HIHO8iSke0FYMEU1f0bU3VKtqmhaTxPjLNgds3kbbfcDw8QQpsty0uevQ8s9lucc5zfDlIYFGL4UVd19iqwgUnNQJ1gzUV/W6PriqIka5vUUSOL880bcs0z1xOR6wx+ODEeMMqTGXoqw2b/ZbddkffdWy2N2y2Oz79+gkfpcP0+ctXmrZhu9nSNBuapkVrw3bbczyegCEX2I4YJfahk9Lc3N2y3ew4no5Ya+m6DpuddMZLbvymFOPoUFpjjc7yo0SlFU1tqOuaaRqIfqSyhu2m5XROeJcWcF/WsUIYlEyjMYaYfH5PWNa18p4QgtTG6FWCWAKAEMQSM6VVj79iW7BFMw2SGkl5oy0tbFOKxBQIXhE8hBwAkNlGcdEpm4Zs/JdhZhx99hNXZEPpQh+tTFXejDRq2aCugfU1G8768eV90oXzGjQXuU3JQKz6W5UHrbyuwX1ZjJdBS8XJZQXs5byUUmvDIfImfX2S5UTJG2SMfP9SiOVlwTUp/9/i5pO96lUu5NRK2sBb+zrwKNaa5RpFVmPQRlqfpwzWYlQ4F3FJmkOlJFmWqs6uFSpJ63SlsFZcVFLSpKRp24aYxI4zEknB4d1MDLlLrVqLj9exFflCyCn0GLJWO1010snBxTKBAYm4A857kWlkGlY6zmnmecRaab4k9qsymLZS2CpbMMbyUAkAHiYHKmG1ZhhHmqbBVjU+QHCOlGSjbuqayprFQ9x78e6POeqKgI5qLd7kCpey2gqq/PmrOG4BfoUXjWn5zTJgCp2dXdTVXLsK3uQ2CdCK0onXKIWEbQI0tdKSzdFScwLiLkNSEqC8Aj8rsF+zS/Fqzmdwf5W6Uzr7+bNKUVJKiHa+ZDTk+iOSbUhKSZBZ+OQlwF9Z4kQpKF9zTqv96BokLaO+BO3l74r1ndnyFWGWE6WQWRYKV55Ho9BBreBeXTnTUDIu6vouLZmNv8i0lXt/NS+4+tkCitMaJOjsPJPFU3Lvc0wiTloSgCTIgffa8btkOqJaC5jLfbyu8/leyvjqVRhoyndeZaGu/lu6B5fjX6/LKZFrSOQfEZG5lTWxzDV7RXBcA/dyC1HZtlW/fl/ZFNPVdavvLuPadaI4qaWUsstNQryhC7OlpGNsXWGMxs0Tc3RUdg2Oyj2eJynetlZjtLDvxNW5rakr2qaSTqrlnsS4gAG0IuaCvMpa6qaWPSaJHbC2GlMrnBuJRNq+xbsLz4+O5jJyOZ04Hp5oNzvef/wBgxIJYZA1d3+z42/+2PH8/EhjKmmg9Kbm8fRMs23Y373BxQll4fbNHqUTP2w+8vz0xL/88z/xrz//zOU4sbtt6PqWm80dp8OFMUsgUGLrp+sKbQ1t3zK/eNIEcZ7BBZK3zDrR1J7j01f+/j//R5IHEzW/+/F3fHz/A5WtOB0jp+MLIcxsuhqfDIenJ/qu5v7NG+5vbyXo2XaL3nq8XHjzds8vf/6ZOT5zeJ6p6xZdf+T9x4+czyOXk+PpZWSaR75+njgen3n79j3WKKbxwuUwEqaB4Xzk25cdv/s3f0tV20WepX2itg379z+x2fR0nQDC88ZxOJ7wPnJ39wZlGoZxIqBp+57LeaTtGi7nRxKew9Hz888j7394Q0LIIWuAZOi6hpTdTrTWKJ3dvqwmAG52WKPYblr81DGdjszjwHQxPIwnUpy5f3PL2/fv2Gxv2WxLhlykW0orYgrc7LegAs8vDzjvCGh0rLBVlZ2stGjfz2fRmCvF5y9fGMeJumlpnaVxFZcxir48wBw1SVXc3r9ns92T4sT7d3ekFJi9YJPaVrRNzcvTkxSqA3f397TNDdpYQgoUcsXWDTWy7yoiKXiappVnKK83l3Eg+BljNyQSddvIc1sc9JQiaSOWoP2O3kVubjXny4uQPJlsNdpkq/PINE3M80xdV4JnQmAaJyKB5+dnbGbQ67aWwCSTAM+PT5CkeWMfYRwHhmmkbSuqyhDCTNPUYiwTpK5R5cxvW/dcgruSM8t4FcOSIqmWdUlkwUqtGFVrsVUdhiE74Phl/dVXkuw1qy5rpQ+O0gDQrm4tBagmTLZZlILHonM2hCAFetqypL1tlSgashA83kfGweGC3AhZE4uvdWGPVoZLpcIRvQaKfxUUX4EeYXpy906Vm/4soHhZpReGfykEZgUWIcZVH5tfZbNPV//+y/MohZGvP1f+e3WZfP/xQlauLhgsjUwFCC0njARcpVdp+u44KrckdrlQbG0eVSI9YyRwIhWLwdIdVTI1wUvaTGuRv6jcXdYklbXp+XuVwse1U2MIXiQ9+XuNtpnRz7KGKN3aqqrCuQy2PcvxjNVUVS164ShSr6WRlY6EWZhyo4s7RSIl8TLXWmwxHRHvBS3Z7OYUk0KbSPJr86lp9qKn1zBevLS0NxUuxJw6nQk5pV9Xlq5pUEnaTSudFrtEra8yUEVjnGOtovsuQaBiLZhe5odai3SNWq0h5ZfFgUSvgW+e45SiQsiuJcJ6p4Q4ImkjeDdGlDFLoa02RqxEvSe6LKFJIicoc6uq1rmUldXy/xlYyyZ/nTnL15cdSOQ5EzYVBUmvzi6vwHGuhSnAfmGvKbGMHKxk7lJhYfNAlGLY6+epqMQLME2prGOrLEgBaCkuLyA0IK3DxWlWPIl1yjUWauXbr584kerkoCixNLVL5b6/iuTkd6VGIl3dT63XJ7mA2uKYU9aokvmTkCUuHaPVkqko69z3K0IZn6t176+8Zx01lqxSVOv1pqtrUKz2oSWQK7/Xec0isZAsKV9qWVMLoCla0+vzK6/Cwn8vx3HOvQpayn+teR0EqOW74itwX+ar97IpFi2+d4o2O1IsXcvz9zsXsjwxUfy3U9IkE6WzcxK7WYjZVUfjWJ8f5xxlvVSmFMdJoByCx9aVsNZzlCLGXSPzSht225ZpShyOF5HDBYcKgVpVjC9HaluhTMXD81cJEBW8vb/j/Zu3bJoaN4/U244hzuxubuj6nk+fPvH09Ykm9by5v+N3Ny038ZbuY8tN3HP/8S3t/Y5vlyMTkf/3r/8NFeHtD+85nw6EOEOrGJhxzUwMMynKumisIfqANQ7LSKtmKjXzhz/8nuShayzWJoyF27sdx+ODNHpq7xknh7YN/faGd+/f8eb+jm6zYYwqE1ifqaojEcVpOHM+Hrnd3KCVJarEcTgRY2San9jtLPUMk5/ZbBRdr5inA12n+fL8DPPMrm84fPvCP50HaZJUG/rdRmRPUXGaPESNqXpSgm73lmFO3HY7qrri5jZyOl84DxeMMdzd3/Djjx/4BxUYT2eMicQ48/XrV4y1BA/TGLhcJrq253Q+4/0sZGglzRGTku7rXbvBmorkYdd3bBvDPI6yH+MgVfRtgzE1IDapzjmxvq773KPI4PwsBaYhUtUtjWnFavTpmXEaQCtCdCSlqNtGnnkFx8sZ6xxz2lDNkik3KuGmQPAR7zWXIXC7v6VpNdpK36K6rXFO4ZWjqxsOQJwdpqrw88w8TnTbDZVpeHx8xCdy8W/GAdFnrXGW0MWIIndInxV1W2MqQ900sk5og3eB83ngeDgzTTMpGZpmS11b7u72oLz0rUgGaegk+vVisTnPht1uxzzPGC21B5fhgvMeU0m9zDRNdG1L37X0fS9rpQabFMZqRqtIweGCJ4aZGAykQGUTVWb8Z+fpuo4Q9SKtuV6rSiHtItOxiqqyNE29FAQXkr1pGqbkcm8CccFpmmaxvFzNA0KWPJfmkwZbVU3W8qzFmSXl7Z0nxVXnnMRjLUtRUgY/BSxoZufwTuQ7SlnQFmmEFRc3CMgglJTdIfKOkhf10vTmmvkp57UwYkrYIGPEFlLIw7w9pe8Adf63aOnT0to8JXJumQVpKC2sX9m4r3Xy14eUDUg27pUNfb2pKpVT2VcfzARcBoTZzzqzj+WGXvtlF5YwIYW2Rhfte1xS2ALyNVr7BUBGL42rKlNJxOtyAVlKWC1e86YCddUJLKaETpF59nmTFAlAiI7i0iLaeJMt8cpGnLIUROVxTnm+hMV6K0Wf9Wcz5POF0kxJye98zE5NisoKQ67yOA7juLjtSCBhUSqQIyKUKu3lNdpatFfYPG5SMC5ZBmMluh7HIVs6Sh2J80466eZqfA1LsU/Mxbq2kpqF2Qe09xm0ClNeumICovFmDV7zXk+BvCHf0xX4F+5aAsbrkLbIWkr8mTIz7rK+nABWi+4uKfH010Y0SqHUVkTxnV8xvVqeqdkJ4CqdRBfG9ZpdV0gtRCrnqVegmhJq6Qp1BRphkarFRG7KlBagW2QOMeXsVA4KYkorUM4FpEtVwlXnJzlODgAyShbP/czikru6qtJcLRdvvkLUOvuzq/IISpEn67NegqECuDNGX+5tKeTVvF4frm7963UjP/yqHDu+1uCXSbTKsfK6qPRS9BpRS+1SzIt4ejVGywCydmIowVAOGdK6pkVKMLFeUyFPpNBX7lVIr99n9SrtMUZTFb39POc1rKxLRY6zMvrqaqaUvSGlJM+WVjk7d8XYl/FU5MK49IrZv26AdU0KFRmT/L7sI2rZXBeCSaksz6sBjZvnXExb5Gt5/UBq0bxPuQhTU9c1Jqfqp1kCEmPNsseID/8kFrpZIqa1pt90bOyGdtOJTGiSRnH9ps577kCcDcbPnB4f5DyeHplS4u3HD0zDyLcvX7FA9+Yef3EQAvv9Bjt5pocjja84fD7w+MsLv/vD73n/4R3EnpubHwmuwh3PTJcz797ccfebD9zv3vIPN/+Nh4cvTP5I1TTovSGkRNPXRFUzh4mm7tj2Ox4+P4Cb2W1q/u4P7/n47gd+/dd/4fRy4be//SPBzTw+Hen7lrqq6PuOz1+/8PbNPT/88BO3N3vapubh6YQ5BCbfUrUt09DmbrFv+Ok3FXUlc2mYHFXd8+nzNza7jtt9Tds2mKrh6+OJ02UmhBPT5Ni0PftdxfAykBg5Pn/l9PkLb+/fYmvLfDyQjOZXpbBdS933bG/vUbaialq6pmE6nxmnB9rNhvcfPvC+qvBh5vn5iRA9ttLsbnq0hrbdoLSYNcx4zuczf/pX8dxHSUb97v6GrttJ99RNS9VU1FVH9BE3eSqt2HY158ML59OBtu3pWotzE1++fOU4PRAjODdzPh+xleHHHz7y029+zBrwln0tLPTObnBnx8vTM4fDEWUU92/u2O53aGtI2vLmwweqbss8e3GUC4lpSgQ/M1wmdIK6akhEjG2zpNZhrcbNZ0iG6B0xRfqmITmxtrVZVutmR8xB8+w9s/M0lc3dp8WlZrh4+s2eMM8MF0vfifYeK4Seqay46WlNiJ7j4bjsw49PTwQf2fQtTd1we7vH2gbvI96JXPh8GumaQIoXTseDWNLGSGObXDQrOCzOAWPl3OZ5FvLHyAI/XAawlpBiXk+M3NegGMeROtcVLA0KE0zjQIji01/X1YInC3lxTVDIXinrUl1Lo1DvPXO25myaenGOkvXWUOogr1UjOmdxyrpptVaZwRSAYrTCu7wxx8zI+yiuJESMXhsNKa0J2Vw/JumsKmYaom0OQSQ9moROQSQPmeVZQEbMTGgCFSOlNf2yGV2xfaWgVCuoi/MCAiQprNJy7LVYsaTaK5OLZo3cqNnJhuUL65PBhTQkUVhVHE3UUjCZXunTWc6xgLCyUZdzLu8pPuQFrPuoloBFZ3gQc+/66+3ZGrCmkiCGXJKXSkvimAMxsWZUKIgCzqrGUFcVfnZIwjxvViGCjiirs6OQ3H+BbWrxVq2tFUmGlezL5SzOSE0tkX1VyyQdx0lSzEbhgiOkgLYJk4tljJHNOoZcn1Cs6ZJ0XitWhEkZQgalSoG2KleDJ/wUUFFhtDgNpCDsbGWKU0YCJeyY0ZbNpmIaHSl6YcsziNpthAWIbhaXmUzWxiTdax1uARohIj7vIFZ2yqC0pOPE71+e5BkJgBcYledgvJoHKa2Fo4LzM7hRcs8EuGUtcoG0V8FlUeqkLMMglbkt0ZzVAjyU0phYBCrpio4t86m4+mQpSVIiAcmVqEsAndLiEEJcA1RfejwgOvdEIuXu06gVKAv6l+DPJCBk/X0i+71nJrZccW4qoMqzlv+nM2tvUMs5JEqmJEmmKyWiillWsjyQV4G0pHRLS42Ursa8EBUUy8mUizxLJkYOJ+x8ZohJOLWey1+QCfl+RVWyN/laVXmi8zHlBkuQdk0A5HVGqfV+qaTw2SXhel0kz4lyT2K6utnLO1l+D1KncT0tSubB5OvVQKXUmhFNiaWmJK9zOrGkv8u8L9KnoGQ9F3a3WvysywirtN4DpZXIF0g4vzZokS5sMc8NQF+tn8Tsg76Cf7ECFp9uadceQSW0sfl9irqqcF4K0qiUPENKsoXirjFTWdHRm8bIl6ZETGbRzQYfCKI7ISL6ea01CSP3Oxe9RXJ2BwlqiolBG1psLTKJ42GkbhuqSlPVLXUtXvIuBIZp4ng8oTnz+fPfMwf4If0ej0XXPWm/k94k/Z5+c8PLs8KYHW3TMvqBvrH88ONvqeuGtu/5T//rf+Lb5184Hx5p25qulUJN07QczwP+6Yw1z7RK8bv9B25Nxe8+vmHkwt0PN/gm8vbjO/70X37lv/wv/zvfPv3CeD5ilHQHv7/TaHXk5fkXdrue+9u3tO2GYXS8/+E9wyCdQ7VW7Hd7klf8+efPHJ8Galvz+PhMZVrqasvsHHVrePt+z29++IG2txzPz3z9+pm2Vxhb8eNPG5qmZtcbnl8eUdqyu68ZwjeUTRjvSFx4/3HPpYenr1/Y7gyqg+5G9qr9TQ9K8+nzV8bhTHh84vnbI9ube+7fvKFuGkJTcR4QYwbd0LYbqSecpQi0291Kw6rgOLy80NqGuqq4u+k4KAe34iNvjKFrKu5vd9LAqutwEZTu8dFwPJ1w4whRyApVGaq2waeZ4zAzXi7oumdTVaQUOR1nrJnY9Rs2LcT5RN9IYBpSom5aCIqqNWxu9kwx0HQN3X7PcRxAa2yjUNpimo7KBIKf0Hg5hzATw4QxdsEYp/OB4Cd2uw1KacYpEr1YqLp5JuLRNtvJVpB0YPQXmq5nu98wTY7ogxSlW50xSWSz2YgaRFvadotGY6tKSAcV0Vh0coQ5MA6Oy/FC01TMlyOn528opWirPeMY8X5D33ZoErWxpKQZT1+pTEvf6CxTDvR9h/eOqBPKCH5UShF9oO96sfh2QYgypdG2wdQVOga0MTSVpbYGP408ZdvUutJYrfAuMnnPw8s3UhJrXKm5MdLPxtrcuygRk15WYrH2FMxsdIUnoXQUrKBEapu01FrNLtf4aPA+N6yqjGQtokjAUvJYWFPssvzr1R4vKWKUhU7rQF1HlNHo3MzGewhJS/FiFG2tFJcVFililXTatCZb9mnyha3Ml4CDJIVlMWQHjJWty+t7bsq02sbpzF4VljUl0EvatjCQEgQo78QzXCtQ4plddibx6U7izqgUUUEtOo8la2C0FOCV1GsBEgWIF2bv+meZ2MoaML1s6rKpalb+qmzYeXPP/7VWZc1nacC0aqKL37sAghwiKEUMAlSbpqYyFpemvPElTJUBphYWWymxApycSFSskgYrYk0FiSB60yB3KUmVME1T0fXCoDk3Ag4pBvHUdUa3KuL9JKBAa7RO1I3BmKIvExlICOB8xLnc9TRpSAFT4FYQUBlDkMBQS5Mvq620el405BqVO9WKPCnSNOB8wjvQJCotE7BSxZtc5lL+MZCktbwyJG0IzgujHALRKWwq0oESjiUqZVAGlg7EioURvgZ3BQEvcWFG/pHXGu7y5mUuXE2ogt0k+aZzoCcMv1WKKgefumRWcgBCunYWIQMeVsCrVvCJUtldRi9zszC5Yn9fFiNZkIJan+Hi+17WEpPZXBQkn6UxK8xbguHlGU9xGaFy/RapKYjEVXOZMxdRpdzZOi3XkVIG1st4Zr19Qlj4HPz4kJFs/sYSzMSUFvmUxE4pZwuQ1HZaDrzyCCWAZ1mqlwzM0o+jnEu+JSzvXf9dzkaVebOc9+qa9ep1NX6Q196/8rbyKrr6mM/5WmOvjLgAmSRF2zZf9JTlguU8lvgprvUYJTiVey/jWoipawMD6Sos6L48QyrJc52yQ5cxipiiyG8yI+6zHK+yNsvUhLFSmsW21efxMdmXX8ZPCmY1isrW5U5Tci8hChBPOWjVKhGc+E1Lt24xndW6kb4d+VqmecQawzhPS6a3SBKXoEeJRLJtERmFkky4Upq23xAcTDGitGeza0UWoBM3dzf8sO14Obzgp5HpMgqQtxPBO9zF8cs//3eU6ej6O7bbO4xt2Wx3hErh9MCd7WiqyOhO/OY3P7LZtBhFbvw0Mw4XfNcSW03Vbzidz3z615/RBm7v9/zw07+h2zc8vDxw++6Wj7/9iKkr/tidqcctX+/+hb6CziRuN1ve373h8y+P1K3m3duPvDw7xtkTleb29pbbuxueHx6IPlCZiv/1P/6vPD8eefvmPff7t4yjI/oLYfiVGBzbmw0mvacyif39nvPg+eXXR1CKn376DW/f3KGtJUUPVuwW93d7tG0ZhhPv3t5BcPRNRVdrtPLs9x3TeJGiUxegcjkL7AkuW5qOnlBpfGc5PHmanXQeNVpxOZ0ZhhmUzhaWhr6/wYeJfieg/fz0xDyOqGTZ9jW3Nxumcc9ms6VuGtwUiC4wpZH/+s8/Q91zc3OHNYroPUZLd/XbN2+ZpwuHlydS9FSdomoaojYoIm295cPbDfd3t9R1wzCMnI8DTbejaTZEr/n06y+kMLPdbrl9e0/diBTny7dHvA/cvX1H2/eEGLmMF0xy7DYNfddwPl4IfsDNZ7SqsbYnhDlnvCJt26N1ZPITGsXkZiY30bQVtjZs9i2mqhlnJ6SiguA80XkJiq1Ie0MUYs9NM+4y4eeAjpJ3PQ0DVVNzs98BkfFy4unxG08PX1AqEoOjrqBtBPxXZo+bIsd4YRoDJCN1eV5R25ba1FRa48NE09aoesNlGBgOA5fTWVyKbIUbZ6rcFVdryVphq1xLpKmqlqaqhQQ0mrbd8e3bFyqr2HTSgdrHRFVX4uITAmlOWR4tZKfWGl3ZZV1MKfH0fMhZTPGvRym0sRJoBM/sXZYla4xKtLU064KCC3ODU5t7/PiAdW7tRCqLohQOXWvUS1pTKbKTSdYYei8OFGTwmYHrwsQlAcV1ZYShyT7nsrDGzD7LDvk6iSxgreg4r3ewsqHGGAlIDUCIpbAsSwiKJjWlRZOsjJLNQoF3ITvSrAxaYZWkiYxedJTlVaqXvffyvnXHlvNKhZV8vaFeW2w650RTfw3WSKsU5+pljMmdaqXINPkV3F/rTEuap0hdvPf4IG3ZiyaryIiauiYmT5WPLRqtvAETGUcvHQBVzl7khizOOayVRjCJSN2I/dc8z1hrxQ83T36lpElDaQKTAoCnaqRQd5V/yOYK4LUwW1Vt0Y0452jFypiFtRC0qqQ63VgNoTg5pUUCVQpBdZYfgcvMQN6olaVuQDzbPWQ23FidN+UsB1Er+PQhZbuqq9b1Si2aueKEIb/Pc0FJt8tCAy+1IGqdNVdY6btJk8n0a1vX5fksb8kfLqBPqSzJyX0lYAlAsnheFlYlv1EUi8FyMivsLtmlJeVXpC+lhW15T8kAqKtrUcIoqKQWZ5FX7jhXIe06xgXmluCh/F6eH1WyUqzXn5LUjRSwuoxjPpkFZKco50LWq2fgXdY7AdwCSGPO/i1nkwMh8hpFXF2Q8qXmMIXF1LeMZckkRoo7zdUrsWTprudAOZ/lWH9lXfhrr9KL4Pu15//bqwQYy38pa7tCyCKVzy0tkiXglfvYdeHuellxmbPXbmcg66cGkoYY1LIG+BCptM4ZMZFXxdLMzBS5jTzXRgd0EmLDGEVdV0s795TW52VZe2IUnaKW9LnUCEn9kc3NYrxzBBeoKpEWTpNjnhJ1balqITDK2tq2HVqrxWZvGM5C/BhxF/FeGi1VlV7W6dKUxli7TBSVJZ0+OOZ5Ql0kaLW1pupq+v2W/c0dUWWnHBQkjTY1P//pE7/+8memIVBVHdbU3OzvuLt/w2m8JVaG0+EsbKGCN29u6fstWis2mz3ezwzDhe1u5nw6YqxmGHs+f40oo3hz/4aqbTkeJtR0y/HPDbf2jqSladd/+Lf/E5cPf0etFL//8Uf6qmI4Xvhwc+DTpy+8vAy4kAhJo0LN45dHmrZmvIwoEnMa2e07IGBqh1cnvJr4+vAFNQe2m57JOb58Hfjl2z/x5t07bu5vqUyNrRqevh749PMD4zSyu9lyc3dLTJZ5gtvb93x4/yPReVQKNJXB7BJNvefx8TPN5sQ0nsUecTphtaXqDWGM1E3F5DyPp8+c/IHNZcfuvKdte1Td8/T1C5dR6rO0Mdzc3VI1FcEkurqhq2u2dceXz59AV+y2e1JK9P0OrQ113XA6PfJyfGK72aExXC4XrDYYo5iGkbqSLrjPTxdKP4+7N++orOF0PvOSGy9VxtI2FmtqxmHCzZ7npxO9A3VTgbIi7XIzmiiNKzOh+u72ltnNqOhhGunqhrptSRhqY9EY2qZjt/U8Pz8Toziy3N7eSkPEceTwcmAYPNPsUHhcCFR1S79psNZQVTVN12Ot5zLOaDRt0xK1NLC0teFwFD/5eZrwsyNMHjc6opN6lufnJ3z0PD80kKIEQMExDBeaRuSzlVW0rdhlam1FZppm5jng5sgwTqQQsu2kkmJmJVlncftLNE2LioJTKyNuP955ZrGOxFQWm930ohfS0Tsv2YoYsaYmhsh5mhjOZyka323p+57Kh7w+rXuFeOebV3VFxljR1k/T0j3bx0DI0sM51wys2G9dd621jOMoUqOmQWovc/GuAPhckBhXVm7tdJWX7QyAo8/p+LIJxFLkJe9ThXVMInuoDDS1wVq9FOSGKHaCIWXN6nKctDCI2oj0Z9FRBvlM0TTLJi1ALsRyPuv5QgGRcUkNhww4XLZBNMbkItPM5+RNWRjwuPgyLwW41+4Nhf0sG9+ywbFssgphPFUuJhZh0/XGnce6bLpq3Z21vrI3yjf5+4JgKBvPeiwoxW6ReZxIMWIrk+3/SgYis75k9irlAkznM+DTWeNv8W4UXZou4FImmHOiCSvAXsZJjOG1tovDREQcJ2y1NqnSxkg1+4w0gjGKqk5UlTB+boIUWK65BFLlXvjgJFsUysOT70nMMotWKOkYEimK/Eiq5xVJC6NcVQJCU5JUpDFS5EsCF0QrVuaiSWVeF02vgH/nSzZBLaDWmCwbUuU+SVotpbXQkDJ3Mlhax3a9/wK4ZDzF6z1Lv5bfrxr2Mp2MyYAqw/SoUvbCZQXiOTAV5xuZOyoBIS0SjxjkO1cAV+xe/xI9Zg7+CpSvnVZFYnXtSLNMflZrxuWpWZyvsvhsyQCsGYx8gBJs5DEpA1OC6wQLSx2unouYx6D8vjD98qc81395fSkP8HWAcQ3qYQX3hSRYr2oFuNfHXjIW18OQX3Kf/n8D+0TO/OTj8Fe+5//otWZr5Z5fB5Ms7mKrQUEiyyKzrlZMDPKIlrls1sLY8iUaRdS5Pgakr8TVdJKvK0A+LH8v41YZqSuIRRaWf16KcUsb9vW6Ss1W6TirmKZ50fPHEKmszrrZSNKSGVBaZ6eQgI+AjwJopjkz+RZjNXXdgIL9fgdI122tPVpLUZtzfiEmZB8VX2tjTQb1nrppBVhowzAMRKXYNXvGyXM+jbx59xbT71C1OLh457Da8jEpmq5mOJ2ZhpmHr195/PaNafxEO3yk2t8TfODN/T23d7eAZZ4T0zigjWS9htExjRNuclgT6PuGv/u7vwUDTddjbM2nz//A5eD48ukL//0/f2V/c8v2reHDj3tu7DsuhwuPPwfSbgup5u3NOw5P8P7Ht9jG8u3hEXdWPD0ecPPEpt/wpz/9M+fLgb5t2Oyl2ZP3Z3waaDeem7c7NIlhfub47BmmGZcmpnkEDON54sunR1KE/c0tzh1QqmK323KzfSNkTkok5bnZb1Axcj4csPUNbz+0jNMXLkNLNztI0kH4Y9NwOl04nI5ob4hDJMYJY3vm8QTeMakBlOV0Gpmcp2kb6fzbN5hK4VTExITNRcLGaGzdcDoeqWqDHx3H04ipWpgSSlf8+JufeD4eGYeBl5cTl8uZ7W5D3zckpWmbhk3fc3d/Q9M0dKcLMX1lngbapqJtLFVVczieiRGZS0oxjRNNa2jqhuP5wPn5QN02GSTOTNMke3aM+LrG7LbYypSFFzdLtnq33aKVws9O/NitBeQ58j7mZ126PKMMlRVTDYBxmDC6om16UhQG3afIJdtxWqRuriwAVVWhIwynM+fzGatF038ZToxnUT3c3uzZbDb88Q+/Y5oGILHpe/Gydy4XKFuMrQjJcR5ODJeLrAFZ/te0lq6vadsaF0WSZ3qNr2qRzJSeFMETYsyd7SPDZRAmfpqE+E2CPazWBD9T1TWzm7hcLhiraLOMo++lQPtyGRYVgPcelVPm5/OZEAJNXgukfkey3UZlTBbjq11X1BKelLvIC9kQMm5LOViQ9cYK+6gzMFiZYVUwYwSI0qXW5BvlpINpilca3gzCRNQvF1fAvaKw9Gvau7iQlK9YPLDLpqMUac3tLo4yZbcvwUFMrO4leSeW82BxLFFJvKt9kIEtzZ9UYcLXkUPHtcDh2sEhhrhIKAoI+GvgvsgBSqp9KSgje3ZnbKIzK1iYuwLmY05BX9silTFeN6/yRy9NUsomXOzerDEiPUJApfeJhKfratmAS/o6s6fGaKxtqOsqg830CsjKZioMt4Bqly2dpCi2soaqaog24rxnmFx2NLLUjcZWiXnKjjfGLH0TBJRaqtIsMQWsVcL+hML6rWMpNlASVHgfV5AUC6MHxq1e2yUrFWPCzV6iw5ypqKwhodAxYqsKa8zyufLgpFSKM9UCoFaYnUGNYCEUUlH/6l6xEr/Lz65wrvrufcsNf8Vya4rQQzq4rlmlcPURLRQnWiUo5etKZdZ/qdgQLTs56MwpvTL/JWuxBrTX7k+vQFsOdsp566vPrJN2DURVyQuogsKv2d3yLKSrsSh/l2tZAnZWUF1+KuXe8h3XwXWRqaxSOBmvEmTnePcVGP7+fmiKi496dc/0MsIi5+D6nmbQ/Nfw+SuA/x2w/4vA4gr8/rVXevXn/19If3389V4SkWaESCC2dKe9mjeikdcYazBKM8d5GX+lWOxLX7H2MnHWv5doTK2WkWsgzDJnlqYvgBVhPiE77ijFK4mirFEsAcEaHMScpl71+ynP9+DF8UvWKL3sd0Zb2XzJJhK5lkwp6frtfMgFtIG2aZZzrSqxuvTeS4OqvDZKJvPKnpRIjB5rDbv9lqpqKV1NtLVUVYNSFc6DD5oUDJW23L29x6RE0zb89NNHxvORb18+o9SFl0eRWkxji2p66srStjUPD9/49gA3N7cyfiFSNzXKtCiT2O8bDI7NTc/+fo+qNE3X4Xxgv/+Vx88/8/D5T8yXxHF7w4f5nvu+obYdz78c+dPLJ7p2ww8/fOTufs+PP/yBl+Mj7vDC4XDA0vPxwwf+03/8n7GV4e27W2Y3sL/di4TDah4fH6haePd+j3IeozS3aie1B6MYMMzzwMO3Z2rT8eHtO4yqOLycQMHwfCIMjsPDC867xZGlaxv6rmXbbWibHdp0mDbR39xSV7V0GPaeurL0txOXf/knrGq4eXfHPDtqW9HrjvE8MvsJazWVkSxuioGXpwe67gNt3RG8g1bjfKJutoTgSMnS9Xv6vmeaZs7nCzc399zdi3nE09MzNgkGKVaYTV0xzcLeVlYMSp5eTqRwZJ4d5+NAXVv6fied5lNAa8m020oUAtM08vDwyHw54cYzB/ckmXbpbpTldEn6kIwzzkSqvkfZmr7t6NqWYRiY55nddktKUNkqe8TPuDlbCKRA0zZoVXM+H3k5XgihxhphpIfBcbMX0mC4jKhMpM5OAmWR9kBtLaTIyBltDTGFLGNzzOMzMSbapsHaHdtty3a743Q6Ms0TVVXJrhKgqVuUsiSKG43Li3lgcjOXYaaLFXV7Q1IVbvbMs4eUMivvmZ2j6zp0NOJpX1UM48g8HxguZykQzh0tjTFEa0WKmut2tLHYSjNOE00X6KxdlA0OCVK89+jcmKdgt9LJuMnridhcgsrvt9ZSp7SQy94HUCI3L53atZHPFYMbrTU2RYXKXa0WBlGRWUpZ4IwRNjCRQXlM2UO0iGnKpiaLrFZk/ZimqSwxD3gpVhXmft2MipxBtLWrTeCS1s8LujEI42Ito1vlOHr57gIGFZVRC2NJdurwCVIMy0acfFyOXdg2lSRNb3Ir3wJyhYXOGwcr7KJsbmkhJYVFRGUtsyLEgI+ZY1vkI+t2fF1BvTJXa6agXNN1tfW1NOd6Qy0v74Mw1kZlACo+6CVwSSkDIqMhsDRUkCiwTLz06rysNcJMxyAZlKhIXvz3a9tgjSUQGC/TVeW3NBZKSVwnQpC5MY0O54pkKFFVNSHMpAi2spLJiaVDW56XuVZA6xrvHSlF5llMj7RagwAJOHR+iBLeeWLwpCQbc1VLKlTS95owFz1hyHpuhTEyRt6tc0SnK6ClxDEkXgW2SkMKURyKyj0ugFWpvwBh5Zggha2SHVgDyjWIVCyuKCktqLYw94WNnop2GAg6LrI2KQxPSyBrcuCgljhGmPbyDBd7ymvGW8FSbJwf2uV314CquJZ8Pyev/17G63WtwXUmLK0/K/HA8tSt6801/7BI5Urclcf6WqpeYqYCwJcfXp2jQnTn18C5gHilSh1FWpo2KSXBX7k3pbZG5UXme5cZuAL1aSUBrgH86iajyg9eBYzX15NUtkhd3vcXb3v1KiSKzimOhWDXYl2bQpAGaCmbIywDJ5mhqrLUVS0WbzndvLL1aVnzgMVxZgHdV+Ot8k0ooNxaSYmnnH4u9zmlBJkBt1c9MbxPwCTra/ajB/JmuXrbFxtKpUSPb4ymaSqqLIfwLj/zPjDHtOjlJbO0Wgp772kaITamaaSqLM/Ph1UmmL+zzp1ti/1eYdWCD0SirGFVjfMz4zDQbTbc7e9wMXIaRrS2xAAvz2dsqFCN4nQ+i3+8SoR55P52T9333L5/h20rnh++MlwmVL0nacWvv/wrnz79jLGGrt/Sdh239/e8vBy4zJNkCy4Dum3RCcbHkSlV7N7c4A303Yb/83/4P/Hu/ob7G8s//9d/ZNt5Wj1x/PZADIlvnz7z6ZcvzM7xy8/v+OPf/Q0ffvzAr19+oe4q9jd7Pv3rZ8Zm4H/49/+e2Y08PH7jxx9+5N/+u7/j27evfPn6iX6z4+3bdwynI+PhCZNB1TR7NlvF8XTBO0dbW3SKPD99IQXFPM5UQ83jp19JwLu375jczOFwkA6tKXJ//4bf/+73mDtDs6nY7H8gJidgUcE0DHg30ZieP/yx4TJeuIxnkhrxznO8nBiHCTA0Xc9m39HEVkisGPn67TORNyijOH97YH/zHrCchzMhabbbDVEZQtJUTUfVtDjnmbKsQ6nEftNzf7enaWpmN/Py8kKlFdpaTsNIkxSHlyPTRSQmqe+YxkjTSNfS3c0d0zQxzgfm2TFcRp6fXlDR0TaWlElZW9VYY7FGsMX5fOD56ZnL+YW7+ztM3TP7yNFIJqyQh1VVsdtIEe3pdBYAGSI+BKKbsUbTdi1d26BTYLicmIYRN3jwCpLmfDpj65q6a/K6KYXVVWNx08TlfMLZif1+K0HNODCeJ+pK9r6ur9AmMbuRw0GUBraq83quubm9IyXN7ALaVnTbDZHENI4inSORgphr+OiY5oEYDdM4o5Si6xpMXQuZYMSqNATpQhtjoK4sIShqUzGOU2bfWeovnReCPGYaZLvdUzcNKUnTTRCCQivBrtL8UUjAuq5p2pZSX1oyfoIXs4Nltgst/vbeeeIiWfSYqkLnuj9UYg5if23jsqBlhiTv+KWjpYDbDCL9lbb9aov5XoNuNXTW0FYFpEoaKCEbe8i77AqQBdSUIlvRJapl5ylgV+fqpWvWRtjAdfPSGqzJbEzK5503+aRe631Fk69YUs4I8NFGi19t1puHKBRfSfWWvy8AJZE7k2YwYET1HFK2d8zBxbLvXp2vWi9zBVMxLt2Cl7er/B35XmmtliY9Wilp/JR345QLH60Vb1mlFFVlqLKxuaR2nPhTG0NV11ffLajD2grnpgz69fKdKXmqusNFAdeiMbXUdZU3vglxUpEq9Ov5I42nFM4hxdgeqloq8p0rnSvlfpYgp67tskkXaz2ZqzYHXRKMxCSZopjrRYxR+XfC3Huf9fBFRpOZ5zK//JXsiQxUq8pilm64IXv/R3EUyvclZQCksutHvLI3XIF9BmJpLV4vk0HkIWsGJ+bnKWXkt4CcZb4II6nzpLgGqaURXGGl9RWbWU5El4xUHlMF6KQWoFzcbFIOTpPWCwgtLMGiaE8SCEnDslwDQg481dp0aZF3ZPSZCuC9mtPpCpmubD/LmrEWZcr3EV6nK0UWoxZpUbnGklKTU8jPoMqBgbrKGOYAYl3GSn6mjHEB+GuRrKIcM19jfh5LpmP5813gvdzHvHRdd+a+vteva3HSX/4tz5nv1xNejZ78Xe7DGvukcj+QeWKtEavdlIha5TWu1BrphXlPKTK7STrTZlBvdMlyaeltEqSZlayLaxAojarWZ8/5iMm/L77PS+ZYKWpj8RnMF5nfmkUswaSsBSmFdd5cAfsUpCMtsBTl1pWAnJLCjiGIY5gSuU7JoqrMdpKL170Xy0DImeMgBeApzq87T9qKpm4FlEdxHYkxEeeAS46NMYQYmGdprnO+nEnK5DmrMwGiaU1DxDC8HPmvz89sNx23N3uMubDfbbm537C/f8/bH37Ly8uB83nm11++8fnrF5LS/PSb39J2lmE40s4dkcDlMmLrGmUNx2GQRn7acgk1T+cDm92GvovsNi3//t//j/zup498/ne/yY35thxeZr5++Yx3j4T0DR9nXFT4dM/sez58fMd5mHBzYn+zYx4Gur6hiZZxGvjhp5+42b9Fq5px8Nze3fKHP/yBx4ev/NPf/2f+6b//I12/oet7bF3LLNWJeR6YLpOscy5gteHt3W+43/eyR08XlPek6cJlOJGAn58eeXn4yo8//sjv//ZvqNlzGQYUZ2prqLTCOUfXNtze/kg3DzSXE8fTkYcvn+malje7G+qmxVYtKWmcD8SUmJ3j69dfiUZx/+aeYRhBn0kJnl+e0VpxN9+y2WyYplFwAMXyOdJvekwS0kvloNlajXOTyLiaDqUdznnO54HL8QxRuiEbo9lsOhSaeXYLgEwJtDbsdluMhe22oet6mlrqNtw4EYLncj5RtQ13b+8J3pE0zH7m4ddfORwOpBTZ7Tbsdju6vmccLlRVI24zMYkMShtmJ8We1uykVi9FHr/IZqGiYhxmUoycT2e0HdjrPdqKPa0sTTo78oA2VkBujFgNldqi0huMqdhudyituQwXYdtBvPybnq6radqOhEFbWT/arlue/xBntJHsWdtZqqYCBbvtjnkMDONAjCEH/Q3jOLLUauW9lhRFVqeNZGLGiWLFO44jpQcJ2XJ6mmZs7Rdy1HtPcB6b5TIg866u6yVQCFc2vlpn552rbt6FAFFKpHXOfS9fzP0CUsiqhoANIaF0wKCzP6+AKZeKjmcF0KkwizoXuV3tH0WLaayhsprGaDQx248FXAbFBazofINjph6VSisjntNH157gOm+2MQaEfM8qV3XF2vEaSKXsMFMK6MquW7ITqLVwMuaiv+Lv/Ip1zP9fbrbIlvQ68CmhyRtgAeqZfZQmJflnIjtdJDzrhiwfWnz9y8aUitXaygQWDXRKoIxdmMKU7UzLARYp/gJKitezbOTiKR+XDS4U72et8/gYJCUdV71o1pwrLTpT8cMvui/POI5S+IHYYKZFAKEJXjZ/o6vseS9zSStxpdDZssYHR6nb1Mstlvusjc6baPm9AkaMJl+7TMhSnOecaOd8BrralKLkbH0VJeJWSIYqhChuS4oF+FtrICpmJw4ePt9Xnc9PZdpc5fNJOUJNpQ4g3+NQ7ksOPM3VQ7vUs5B14WGVkpQ/15OxBNILW16Aa9b6JcBTAG9CpxXgG5WzZ6g8bzOATmugUMKJdDU3S0BbRBopii6/nJAwvQmlJHMhhclxcbaRe6glcEvluVa58VV+LyvzfM3UF+9gKPU9kn0TeVEJOOS8r91orl+vguv8KnISVUDyMtpq+f1VeJ3XoSssvTxueaxSWoB8UixZoGv0vQb46nXzq+8C/Oswaj2D13MhxyDrx78D+bIcqfWXJbikBC3F8jJBiATlFzKE5XNXMpsouveY5B4XC7lSIOZjxKiKOTpZz7XUumiliLM4dpXid62l+Lt4Xi+Zs5QzxUlkO3VVyVyTB3QNNMr4JPL6U4JACRRK5rHo9ItjmciOIlh57itb5WFz4sqV5JyVLg1oUtbBlhqbTFR52USWrG7W93sf0M7T9z1t09K1HVVVcRkuRAI6GWJSXIaRYXaoqqL1nm675+7+LdvdLT4kLuOEjonWaLZ1y8vhGdNvqG2DczAFTQjSVXOzfQPtid08sdvd8Ps//pbj+UxE0W1aghJP9jfbe7azZ7PdcjgcIQTm0fF8GPjy9cjL4YHbm3vatmK/rbn8cEPXGH7z23+LxmFVB0lzOn3gt3+45eXwyH/7h7/nMs3YZsLWAedGPv36Fa0sfaeoNByOT1zOI0/PzyhtmUbPdrvl7u49KSn+/OdvTJcLxvR8/OH32ErYTHGnMrhp5v2Hd5mYiByeX9AR/s3f/ISbHA8PD/z6668YY7jdVjw/HwCY3Mx4jDx8DmiruA9/w6+fPnM5nTEa9pue2lqMTjRdzbt391jb0ejEx/ctfWdo24YQUmZiFV8fH/HzTNSKtx/ec3t7y3a/w9iZaXSMo9iYVpnYfDlkaUnbUjcNWhmatmbf9yjvORxehO0eB6q2giTAUiRDNVWl6PuZeZg5Pj8xzyObTcc8z4QoT3JVNZSGkHUV6NpI01ds9i1t1xN8oK17Ygh8+/qFjTV0YYN3A1qD9zNPDwf8PBPmmXG+oLUHPM4NpOjp+y0ge33MGbmqMrRNxenimKaRpq64ub9nt91zOpw4vLwwD5P0hNAVJA9RithP5xN6NNSVleZxQeQtxlqs7thuLP2mQilN32/xIaLPF7SZGKf8rI4jPgRsVbPd3tF1jZiIpEkIYgOb3RalelLwKF0K5yWbQBIDlsPhgDGa21upb0hEiEIa1NYSW2keFkIUfFuthfy73Y6uaYjB5/450isonU6ZGBVZTvRBZDxK0TadEGKZPP6+u7ZzTqyPlZCzcRKAUVVCoEafGC8XvPNoIyYjxuqsRBCMrXXAysIHptguGvG2dypkkKfQymZ2sTAnK+QoLIsmLq29m7pCpUj00tDEp8zWQy4wXRmwAoAMKoN0nf2rWdoHlwpgnR10QLTxtoBdVc5zVd+G0uQmXm3ZSbEmfK83O2GhdAb9McVVr35tYXnFKpXAYNHgp/V7JPJLV5vQ1SuuG/TKeq1dFVWOTtZYJC2FmFcE7CKXgbXwtNzLXN8p4CQEYVezxj6lSFLSxfYatJQNVvR1iYsfSJSOsD193+K8WF56J5sFSjRlla0yI51lQGSZlVHiwKE03iXcnKhrhQ+SlpTrtqCko5z0VMgZlJzmDiF3mKUUriGz5YqRNlbYHa0k49J18vCcTmdCHKUa3sj5hBBJmKyxlUyMpMIkW2IRUFLYZtB57uW6Cx+WQFbuVViDB0pmRedOqHEp4lwGOr+0Kg5UClLMBX2GECNOhYUhgvXzxfoyx6XL65qxvIawBVSXxkfkYLNYLWY3b5TKnUivgt0CeBfQqMiB5PW81jkwyAGCEjguGYFVrx3zc6WTLJpFRqSAlFR2e1Fr5mT5yoRFrHRX8FuCIvLznhllVqZbXT0s1wHDd7dgkYkUBv36JXnFYmG2jnMJfOB1EJFj7oWFL+vSdQZnee8VUi/x9wrqXyP066zLq2NcAVy9BESvrzNl9K+VUCMxj9kqI5RMzmIckEc9pLRkgVSElAvmUwbkKgOQGMDoK/euEFFGZqvJka8EziVQBG3VYgdXVJdF+liAutY62yInmiY3dHEuz02x1ZXsphygrvWyQZZhKsECmYSyRmNyQO9y1/VrZx9r9DJXi1PZ5SJp8aYRy7lVthilqZ0yFM1VSmmRDJW13Oa1qK6lCY0yCtPYhfkd5pHj6YRPEJXB2gZbt3Tdlrtuw9v7d5xPZ+I0su96VEx8/vQVFxM//tbw/sdbJp8YQ0Dpnt3dlpv9FoXi+XDky9dvkBI3Nze0bc3heGAYHU3bcLmceXr8xul0ZrhErNoxHhNfXh4x2nLc9py/zLx92/Pb373FGE/fGbbbine7jnc/vgHj+MO/+wOHw4njccLNhnlOvHv7luEyktJIIDH5iW7bYeuGaXL84z/+9+V+nU8X3r55kxtb/Q7vHd8eH6gbcUF59+EH2qbm+PLMNF7Yblq+fPqVT7/+wt//43+mrVrapuH2ridmwunmpiEBzhuqpkYZx+Hwjce/n3k5nCXrlyInY6TbamXZbHsshs1WmkqJ1aYhxZrD8YVqDNRNg3eRtul5/+EGdGIYR5ybhcgLgaaqqKxIvoJ3nM4HrLXc7Dds+pbL+cLD0yNHZWiyRt4HR9NaWtPS9x0uBE7HE6aqiVERvGe76aiUz/VuM+M00uoGY0VidjqeOJ/OqJQojUnPw4XdzS0xOo7nC7vtjrrZ4OYJpSN100qwdHyGJGTPftezVy3zPODnAWqDnwdGrdFaLCGPpyPezVir2W42xBRzrxsDMVJ30rSssnJeKUbq1rLZdYLHdHapGicGpLA0hUjfNjTtRopJ1YypbMZmhuQDbW9RZiJyycC5zoXCgYiQS8fLhaenR9w8QfJsNh1N2+aeNnmfTYo0z5As8+xo25aqtvgYqHMnKiE+ZN2ICqbkmKcpu+Qkkevpiv1+Jxm7yjDOI7ObUKaQiy5Ld0RFIn+H6CNN065r39X+UMgCwdo6BxFSp7hgHgWb3Y7z6SRZVAs+Sja7rsUCXSmDtRVZsmEX3SKUboKGFLPPuEqLfKDwatcOGmlh/mRzjyGDE5WdNlJapBOi/RYwuADZvPon0U1I46HsWCLvlwICWY8jxfJw2fOu3DqEMU8Lk1MA88pakYu51g27wKiFMfMuH+t64FdHidcbbHGtSAubFtMKagrQVvnL5Xyy1CWD35JyXnzbCyDSafGZLlZuBdiXquhpmpbFMgd8VFZlyRGL/7joTxNhHEEl6raSjo9LulvGLoTAMDiqytD19kpPLelwNwvAbWqJrCFhjZYAwDnmKRfa5eBFab2AtxBE5qStuOMoLZMXTLaTi1TGZB9+ldng1RHoWs8tmQ2VsxGaui6yI0dIClSgaRTWyAOhlRQEWytzL8SY+zWItKdkcAirBEgyFerVgyc++rngL9d3LEFfLFzt6viiNSujnLvppihuTKKBTFgtoCdqLU4p2VFKguMC1NMVaBPwUwClWubjNfyUt0gQJZDaZ229Zv2cTuKsozI4N2l9JhYcuoDUYnmbQXWepyVTlZ/ABeAs55Lk52vUmp93ZFMRAHgli1Gr9CUuAa7Ih4w2y/np/IBddyYtCbTvQ+uSDV4sIBfrqgLIvnv/cvXreV1d0fpScrwFnqe//O5XgcB3/y/EwOux+ouXWk40H08tTaXKOJU1VJWIrGSOUrry27+SG5XLT2kNlPKrxFnVlQwwT0sUwta7JCly0bRLbZFKpYlKAiUzLMW0SH+sNcs+UdZnybCmHGTmruMxEUMQlj2vX8YY5kVqt0rcrgP98vcYiyxItPZy7+OyTRSzgOtaEWvWPFCRBApIN7nGRwwBQgzEqJdar7IurGQPpCSSm8LwWWshZ7Q2fcdtXTO6mdl7qq7DVpZxGjkejvgAXb/heD5yuVzYbjfYqsKlRF/VzDkbcXh+5jJOBCQgmbcNlYls+g33bz5gqo7D8UwIiXkOzFPglz//yi9//pWu65jmgePhmdPLQKNP+AFUqAhOMTw0HNoWf/7IcHQoE+n2in6n6LqKtrN0fcVu9zu8f6KuIjFqTseBFC1fv37l+TBzOL3gXOA3P93z8eMtKSn+l//H/8zDt0esMdlHfoY08unzRRhyFLv9LQnpSKy05fbNO07HF+Zp4HAeeD5dmI4H7m5vqLc1VV9RWSkIfXk5kBQ471FaiUe4GolBs+kU0zAzHM9gDH6e8fPM23dv+Koi8e0btDE8Pj+jjMle8IG6qdnvd3RVzzRPvDw+o4xmu91ys7vBzRF9bxiGkePhgZQCddWw6Vu0UnLezw9Mk2M4nzi5SGPr/CyIvrpqa6w13Oz21FXN508PKGXYdC1Ey76X+Tl5h7GKbtMzz+Jad76ceXx8JLpA0zTY1qBqmEZP12zwLnJ8vmC0YR7FAvrmZkPC45z0t+namrapaFrL88sj2mj6bYc1Bk3Au8g8By6XM9HNEBzzRSQ+/WaDy1LokIpxhmCCylqqxtB24v0eEoyTXwLwaXLS10JJ51dtBB/1XQ/APE3E4Gj6Fp8Ulc9a9dzJtapqZucZxpmvX7/x7etnSIm2a5Y1p+5aur7FaI2bZqpdz3AemeeZza6naiqeX56YnIMUST6QgiVGDzEyDiPDZZCsd4h0bU/bdrmLrMzT+zdvmaZhkR6WdUZ6emQMHCODG6kqqc3p+x5jDJdhyk5GQXCdEfmQ1Pq0VHW1rC913eBmpIifXNMTPKAyPrGQDLZtba5ch5Q14vMc8B5I4gnhnBef+ErnBQqKafG1B3mMMRcR+VwMm1AIEy8GxbLpKK2wVokeM7vQKEQG4os+O1ssxphACwMfMm1ZShP194x59sIT7FD8kdUCDhVqYf9tthxSOSNRZBTL5pZdhGTvey2x+EueT/TO1xtMeRXwU9j3pegwrQ4o158p6fT1VAqwZNkUy+ZVHg7pUqaoKgGjBnFtqax0aCyVBt4HYgq5i52w3Noa5kmqxm3Whpbv1FpjbU2MiWEcSMmTEOZAU8CvNLaoK0vbVFcBWAlUBOyK124kETA20fXSKCaEiJuzsWlcZUI6g+A1q1H43pXdK+cYk9hp2kqkAjGDjoSXDpAVWfOInKMpXSclsAhxZeLLXBZmQKLv4MOSHYkxZwrIhaE627bqIhfQi42TSFdYUHIJ7igZJSUBrFUlsJRARoIFS0IyDbp4/ed5UtyoVAbbUqhe5hGS/VrmLbnWpLD6cm9DnpzyKCeC4kqmU7pEv57ppRP091kplXj9Ws5FXc3gfAzWoHgBm2kFd2XOLyWlKUuIMnuvWO99yPOlSKhKSFIOU1yF1syJWh4sdf2MfffMrZTFAuuX63m9Drx+RXX93BYyIeVg/68O0V987tW4Xn/31UFf1VCkImfMWSPUGrBczZXlx9+NgVKSNXWzZFmTZqmHsNZgMrOvNDKvc2CtuO4tIUF2U1VMrtyT10XTdS1a2+IGZozJPvW5e3ZcN8Pg14xp8XcupEoIAZ8LaKWPxUp4OFd6XIg5RFUZ1GLTW+aG/E8IhbWWIARpcW+rtZanOO3EbKtUuiSUYKeMBVHlTVn0tGUfrXMt0zzPyzMZXaJuFU3f09udOJk0DQGYnOxv58uFw+mM8wFrK+l8S2K72zFMI6fDC01TSdCSA4cUPf/yT5+oastPP/5E097Q9zc4p9G2IvjEm/v3vH3zA09Pz5zPR6zWtG8NbnshjDOfDn/i+HRiOs8kGiI18/i3NL/e0G53VDvN5rbl9uaGt++2vByloO98gMtwpu9qYgh8+vSvPDx8wcfEhx9+4I9/+AN9t8HPju225//6P/0H/p//23/icHxCpYl/+O//SYB+teP9+x85nQa+PDzQtj0osV/cbjdcLmdub3bsbj/wd7t77u47np8fST6w7Xu2/QY/zdDYhWhruoZhHBinmegMJMXFQhwGWQTDhJsGXr5NEC648QWtDdOcGCbFODt2+x27/YbxOLLZ9ZL9zA5LXdWyvd1gNxXDODGNA7ttT91alIIQRnHwiR7vR6zV9H3F+TgzDHO2crygxkjTtdT1Bu8dVhu2m56nxxemYeb2brMqD2zNOA1w1NR1uzQ3qqqa0+Uodpiu4uZux+nphS/nr6Qoz0dTt3R9T201RNjuOvAS8NzsNtSVwbmRd2/vUQZ8COIAFxPRSZ8iawzj6HDjhZQCzs04J/7uRtssTU0kpN4wJI+J0rBSauesAG1b4VyguFMlbZhnhzGGpuuoupYQPGGSZ1BjaNsNRle4eWYYBmH1kT3PGGkAtb+5EdMPpdDakijW34Jv5jlKw7IYUFosvI21bHY7nJvxbs4+84kagzaGthEXphAT4zgtOC74yGm4MLsRkgBulNRyigY+YUyFURrvHNM00TRCQl4ul+zBXy99gyBb/FojfaSiKGJKj6USLMg82mCdwoWB0kRT1qZIigbbNFVeJEUfP02eeQbvBPgWK7qi0SzslWjN181V1AUpF5FyZU8ZxH5uAThi1aeVFlCjhYEKMeKDWE2FBD4DIJU3oyDtb3PLcGGQixtISKs+OVwVNMa8mRVVry7/VmLRqFTKYDCzqVfE4roFq4VF1JnRQRWQzvIZd7Xp6+sN+or6TJk2TDlNnpKM1zU6KmCWtFqLaq1QRjrWFgAQgtg9+SDAv21yEXGOEo0xmNyoqiilpf4hYWsWrX4JEmzOjgzDKFBBSRFu33WgghSmaMU0ugVglewJJHHYYAXndV3j8mQOKeWCGcs0ByoD/aZM2CidgZMlJSlCkQZbnuBl0Sp1G5I5iDS1XYBjCAGdNbrOTZlpq/JYqgUUpHzO0qRL4ZyStL7KYMNKsawuUqI8ubTW0hTDgdJRClU1YmyaUmbZc7CplLgPAURhMEq9R2FoS5fkpCCFHLQu7KWXZlrG0lgB986HjEQDOmVgctV9KKSVKb7CqmswUYrh8/cvoF0B6UrGU+TzrEWQf/HK8zJ9933lO69B8aufXwFS+ey6qkTUKl1aMGsOXvIHDPl6l2coj19+btdu0aXAKFyBXJEfrdf/OhvH1e9KMFPOefnl9b/VtZnA9YCvxyg/+z44Wr7v6oelFuP/6HVNFpR/XxMJJuX16CrwAXIn2rDUZABZNlZYe5UzHyxB2+JFr2SNMIpsH6lz5k3sZqc5ShZWXxWxl2ctSbal9CRRSBdqZVOWIYoOvxAiMaVci5TDswyaSxBO3rS8WwsHZX2qrtLYubFVJQxXyL0qKHuFzmRKLMGk2GyuQXkSG74gPS+iElmNTpEQpbdLjPIs6kqhjCL5TJ0kCEHWDaNXwktrIazm2WOsMGxGGeY5cD5dSBrevmuom5aIomoU2jZMLnA8n/ny8I3LOPLu/Xu2mw0+znRdy/39De/fveXm9m6x13t8euRZa+q6Zxg9T89HKYLE4H1imiamQQiz0/lC2zTcvd9xeP7MyV/Y3je0ccOfwxd+OfxM293ycvA8fptB7zHNDrvf8zH+nuPhhcOzZb+7I0WF9zWnEzyGB/qNBFbvP7yl2+xRtuHh+YVPn7/RVjXwhg8/fuT//vb/xrevv1JXifPlwHC50G8/MI6Rn//8C9MUeDk8M4wzqdQoXC7c3b7h5nZPiBPbNx3BGvCRD+/ecX97y+H5mSklHh6/MU4Dd20FlSW5iboJuHHk7X2DCR0P3x6wxrHfaeoqoRk4PF9EYWC3eNczX0aOPnB4ekKpxO2bW3786Qe2XQ9G8fTlgeki9+jleOZ8PmFM7qAePZU17LY9XdehtGYaJ4LzNE1FXYnn+tPzxMvhBW0Vsxuza5V4zrt5xruA6y27XS2dpI2l7XpM1eB9YBhkL2rqmqmqME1N11dE59j2O6az4/PXr5AsiiPbzYb9zQ5iIMWAnyMppCyHlX5Etze3qErj3IwxlsvoCGlGe8WspTlWCo4UNXVXU1mNmybO7oTSirZqsmtcNrQIAe0SMSkqW9FUDdbC8TSI3C9E5klqdaq6xdYdLiimwTNOAe8S58sFRaCtq0yYJHZ9R9N2oCsiKncDtsQQmMYBMlkxXCYp8E0JP3vOzyfmcWRyE33foeyermmpKkuKLbH3mEwGeOdo2g6V+/e01STyWTeLN36S8Z+mmZA8VS3va5omqytEKuOd53g8YpRZahu11tKEKq2OhUsTKmvlZ1lBkGJZ81nsey2WREWIUh9krRAm0zBgq0YRgzCd0xhxM1LQl3cdRUnXR/CSEk+kK6Y6ZbCTN7dYFvd190qQJQjIRh0iTScRng8K52WD9z7brynRH2vWrrcFlKDUIpMo7g4pJnFpSMKGag3EiFV6kQIFBRCznAWMkesKPuRmLHmTV4WRWXfdIo8pRZSSNopUGRDOPiwBxfd79UqyySYqEgMWBnCJxlX5niyYiKtunZQ3RWWk2Cau/QJKsCXmFFJAlrTCKw1ROjGSRCsudoeJyurF+SWmwpqLFj54yZbYSqJgaT4l3+l9wmiJMqP3y3dDYpxm8WnVmW8UETp1U+O8FIkGF3J33DUS1kiQOI0CDppa4/wsY6JF1x9iZJozY24MKWd5UpLr08aIb+0Y8mbuUFpT152cexLQXlUm26Mkko8klbBVJYC8sHFk2Y1KsuBFkRnobI1ZOtqKL7giZj9+YwUUFLhstKKyUngeMruaspyErNF3GXjFBDrKZ4JP4D22ijk9p0hJQVztNY0y4kZCLgZPpZJE/iRKAXrKv5dxKRaMWQwjOsSUi6QAl2tqAmm1hqUA1FxjsmDeKxmOWgHy68+shabXD0ZxvSlCtrQAxDUAKRA1ADPgY3wlLSnPUvk+CTHjFTBXy1wMuai+fK5kU2RdWbjc5VhpndgkwjKmJAgqLXKm634FLH9Xi79+Afjr4rW+CmAv2cfysib34cj36TrgWAZoOUYGxGpdP+TvpWN4KdAvYLncyRLA5PqimKSQPEigq43Bp5QbPGlqW+NzXUpWs4iBQFnHUso6/dxQEHkWdD7fIqlZx0v+7udAyA1xKisbdooBpQ1JaVwscsK8yca03BuFWjqgB+eEFLCaOhf3zmlmniJto6lqLfJSL5+XDTBduaCBqUy2Yhbv7RgiITqpQ8sZEJ0UtpJunykX3yo8WNlkS3drAfxCHghYkqBEVwYfPXVjuVwSaMXxMOCCoe56drd7+u1enm2tmJwjMDPPJ0Jv6DZ7mmZL0paXw0hIAx8+fsBoR7+L/GQtbdegtc1zIXBzt+d8GRgOJ46nA2521FXNdrenbwxW33C7q9n2NTf/w7/jz//6W/5f/9t/4vnhiWROePeZy+kT2m7QzzvcyyN1fcOvZsvb9z/S9DXD+IKuBpIaiNTc3GywdcUwOZ4ePhN8InhZ2/7l5wf++Mff8fbNDR9/+ndUNvD27Z5pGtFVz/PLkd/9ze95+PrAz3/+M//4j/8AEcbLCasN//xP/4Wu7Zic4+7dW8mwA+dDZPzJ0Lc9H374G5rujsenb8zzxM3tG/a7W+I8cnx+RqHZ7nd4P3E+vmAtNBUo5ZgnAbopGZrGUDeaS/7upmk4Pn/lubU8fvtK1JrJOfrNhqenM3W/y12zNf7i2Gwabu/fsdmINAWt8CGBnlE6Mg5ntJ652Xf0/VvpilyJFNqaim8vjzgX2O/3VJXUcTW2Wsw8rKmIQZO8IgYhLLfbDoWn6TSzmximE5tty7t4z+U8SuYecWdKSgDz7GdUpbnMDhcCTV2hVUNdd9hGsqq9jcR4ZvQTlTJ4Y9CbBq0Vfh7o21oIPjeRkLk7jY6uadBNRV21kg/WhuQ1yQhgnaZZvOOz/K6yhhSDdKM9D4Q5EGeYL55puACOUBv6TUtdNTStgPthykSakvW+yARJSXrzRAH1IUSC8zy/vDAOF1IIGMB3DZXWYBS2aUC1qBAJk4xJSgofpPcASXpuKJWytl96FWitScHi57j0xpEF2GOUhaRpailwTjGx3e7RWnE8HsVFyJi1mNaD1iJhnC5zJqtUXpcCKYoNpyZl048KqSOy1BZ0a7C//f0fGIYZ0ExjIopCQxoERSgyHK3EAUUiFVnIY1o1ySFrLWNegEuKgCg6LK0UlUloK1vjft/ivce5xDhJasaHkG0ypSo0RNl8yIDYKmFGbAbvKrM/ISaS1HKIB6rVUgSmDKUKeWn0ZBQ2yzqs1gyTIwTRNZcdL10BgQI0rosoTa4Y7xopXBlnzxwXYvMVo19Y1FeMfC4mW6U4a9Gs0llAkQGlNorkI1aJvGgOGdzzWiJQWb10plU2F4glifAE+RfJRaTuKvpNK24nOuHnGRWF4XEuEHyiaS27XU9VAwScd0Qv2jyrDfM0LQ2bihxr0/e5QZWnqsRKVCnFNIas+5QinLqRJisivQp4B+M4ZftVg8sNKLSuAUnLXkYvTGKlqI3G6gRJusQZWzHNQWoBssZfG0Of03qiDY5SVW4EEDsnwUDEEqLOrJy0ONIoKq0zs664TB5yt9gQxWZTCmLXjJI1GlsLPCgKohgTbtEfy/0rGSWlhZVfmUqyK4eAhsoq6tqitXQO9kszLpmjLojMKGCyzazO80dQpyFLI8iZgSvGWSUJTKocHCojQbBL0jBAp7Q0gCtFp5DnMCVLdl0knzFnYg0K1ArQl9fVcVBKgGUGwD5n3GIqzxpLX4FyDkaV7rfrwZISMF2yd0thc87QgQQGq5Qln8p10J3WQGN9reFJvrQc/C9JjgWs6qtPKCQ4SushXn3fMjZXmbPX4F5sEq/XkZIllONcg3uFVddfo5Y1KhQ7ynJeZX6lUgsinyrg3uTvNdpkUwUJ8rWSFu/zPEuRd647Kpm/ck4CJhUuW11ZIxnEUoxbfJ7J36eUrKEulqJYybY553M3WHGT0BlYS8F/cfgSmY8xFmsU8zTn9LV44etciDbNgU0vZILzYbHilazinLtlqzXDlwdcHC58Jjn0YsMJQlbE4HNXzLJVGbEJRJxwlmCjstRW1jNjpOgu6cRmd4M2FcpW7Pa3NP2Gum1ptxs22y1VXfPm3TvI67Pzc5amdPT9LUZPfHs48fjwgq066sawv7nn7m5H2xmsqRlGxzjN3Nzt2fY9t7utFB9OExrNm/tbKpuoqj3SMTPy7u0t9+/ecvfuHf/8j/+Nh0+fuRxGDk8XVKwYxohKZ3rdM01Hppcv6NTxm5/u2N3eUzWR7X5L0zbSyCsE9tsbQtSczzNPTydImodvZ16ezrjfvEcph8JKfUNwWGP48P4t7+9v+ds//sjf/fFHovecTiI9eHp8Yb+/pao3HE8zwzjhXcBPmtPTRNpqNtuevo2Y+5rnl0f6Zst229E1hunDuLhsufHC8fCN4+GRwkLOMyJpsA0pSYOll5cXmrpns9nz+HLgdt+TsGAtw+RAa4bLREg1bdfSNy0oz/3dnu2uyy6E8vw1VUtla8LGE/YBoxP9tsZaaeZodM00ekgGP3nOw4m7my1v3t7Tbdtsl+kYJ49Gse022LuKRjekNGNUIKaRutFEQibNGu5ubzgejyQC0c9sd1uapsGHiJsC3veCi1KibVr2N2/o+g1jcAzTRK0UyRtMPNMqw82upu+FYT4eT/T9BmNqLudBauqUZhiG/HPDdrtBaQNKE6JkykVlYRYDEyGZhexraoNKFbrpCXXgoitcXaPSjDKBm7sdKEXb9timo+kFwF+Gnmm8oBUMfUfdWJq6IaXIPMxLnc/H9x+lz8E80xhDv+2omhraGl3lAMongvPM44xSFTEFYpixKhHCTGUUw3DORLdiGGdiBO8dTaezUYGR7EbVCJGcHbwUir4Xi9LT5YzSQq5O07ysqSZb8c6zXyygY1FLpLDYPosjoKyNVtvcjBD+P/8tGHpuK0FHAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "save_dir = '/home/mshukor/ofa_adastra'\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002153.jpg'\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002587.jpg'\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002532.jpg'\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002434.jpg'\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002346.jpg'\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002164.jpg'\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002142.jpg'\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000001960.jpg'\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000001561.jpg'\n",
+ "\n",
+ "\n",
+ "# Limitations good results\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000010211.jpg'\n",
+ "# img_path = 'results/images/mirror.png'\n",
+ "# img_path = 'results/images/garbage.png'\n",
+ "# img_path = 'results/images/stade.png'\n",
+ "# img_path = 'results/images/gello.png'\n",
+ "# img_path = 'results/images/door.png'\n",
+ "# img_path = 'results/images/bag.png'\n",
+ "# img_path = 'results/images/woman.png'\n",
+ "# img_path = 'results/images/pizza.jpeg'\n",
+ "# img_path = 'results/images/street.jpg'\n",
+ "# img_path = 'results/images/street2.jpg'\n",
+ "\n",
+ "\n",
+ "# Limitations bad results\n",
+ "# img_path = 'results/images/guitar.png'\n",
+ "img_path = save_dir + '/results/images/muffin.png'\n",
+ "# img_path = save_dir +'/results/images/hydrant.png'\n",
+ "\n",
+ "\n",
+ "\n",
+ "image = Image.open(img_path)\n",
+ "sample = construct_sample(image)\n",
+ "sample = utils.move_to_cuda(sample) if use_cuda else sample\n",
+ "sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample\n",
+ "image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "4651039c-b8c0-4687-871e-b42cb13b2984",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from utils.eval_utils import eval_caption\n",
+ "\n",
+ "with torch.no_grad():\n",
+ " result, scores = eval_caption(task, generator, models, sample)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "712150d4-f28c-4538-870f-b33f775725d5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a close up of a doughnut with ketchup on it\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAMqCAYAAADD74sHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz97ZLkyJIliB1VM8A9MrOy7p0ejqzsvgDfgo/EZ+Y/ysruTE9XZUW4A6bKH6pHzRBZt6cud1ooQnFUeUaEOxwwmOnn0Q8Td3e8jtfxOl7H63gdr+N1vI7X8Tpex+t4Ha/jdbyO1/E/+dD/Xw/gdbyO1/E6XsfreB2v43W8jtfxOl7H63gdr+N1/P/n8QKeXsfreB2v43W8jtfxOl7H63gdr+N1vI7X8Tpex3/I8QKeXsfreB2v43W8jtfxOl7H63gdr+N1vI7X8Tpex3/I8QKeXsfreB2v43W8jtfxOl7H63gdr+N1vI7X8Tpex3/I8QKeXsfreB2v43W8jtfxOl7H63gdr+N1vI7X8Tpex3/I8QKeXsfreB2v43W8jtfxOl7H63gdr+N1vI7X8Tpex3/I8QKeXsfreB2v43W8jtfxOl7H63gdr+N1vI7X8Tpex3/I8QKeXsfreB2v43W8jtfxOl7H63gdr+N1vI7X8Tpex3/I8QKeXsfreB2v43W8jtfxOl7H63gdr+N1vI7X8Tpex3/I0f/qif/P/8f/HZ6/i0j+5vwf8Y5AIPwjznCHS7znPt8XqS/BHVAViAjMADeHmUOWz+uWAsANgOf1JD8TiOZ94uM4pwZS/8A5LgcMDnOL3/O+7qgX7+8u9exe78XDCxxj2GW+zIExHKoxdoHA8GkOcoRmgLnjaSdUFVCJec0xKuFBB+AKkTjFzPI8xPcgcF/vGWNwd/SucHO4eX3H4fBhtRBNJdcQGGaACFzjmnPdpMZi7svzxA2bTizTRi1EzJs7zAyWz6SqcWePMXLMvEfMj0C4bu5ArYPGdAAQDboTQaxlrXxRbJwj8YLE/GhTKPJ3lbo/PwfqdnAAAw7P0fDKpH33oNuREyKYY1GVmKuce5EYr7nHGjgg6jAABqmLGwkJC78knfJQ1aITDsYl1oZ0V0zqC8/kPIvzYxL85OmTN1bOrcfa1XhkPo9MIiU/T1EQs0Z6zyGA1DHMa31UuerxXa2x5j8iMJl0WuM1h4pARdCg+ew5t0W7WqTqovDkZciImZeFziGAa4xAWj6awzAAMUAc2gzukjSqU16Y1X1UteYTy9Un9Xz6jWuWy7aKvZjvSad8tpg3JH9x9JSLcWVb6FKFq4HLMwcNW/K1Q1WhbYlNuF+eY8plwfUJF/7NBxg1WA9ZWvLNUhaFTLtMz08TJ3BLeZfyhHK7zkg9E3J80U/LELlOAi9dc57jOv4SbDq/s+iEeI74+5wKp861YXVfkcnrkyPyt4s+IF1rCSBNmpflm+I+aVAAbbH+TRWqBhWgqaNDoaJoIugiaCrYVINPVLDX93K9VNCaQFSDdkWg0oovqaNbKRiBtgYXBUSB1qCtQVqDSQM0eUdIjwLVFnJfG6AdUMnvNwplQOOeri2umzJXSELkL/d40wGHhT7M+Qm6SjuiaMlL/tQlQHkmFGdTH/mk44Uy5hdRy3T9UNbfBVZ0o/MD4bPxBbg4bNEsk0fzgqT55Wae9+A5IgL1XtcUEj7pj3rbBswN5gNuBvfgexsjfxrgkrQctoabw4anHWEY54DbCTsPjHHCxokxDridcB8Y48QYJ9wNYoZzDAwzDBugnhhpE/D+XGu+KIuoQ1pOuPu0t1RTv6tAmkBagzbFdt+ApvF+D9rU3qBth0iH6ga0BtE4R1vQpvYO7R0iDaId0rZYK+G8avJo6jUZoUchsa4emstrvad+lIVg4p5xb9PgI4fCXWGnwobArMNHKEu3ol6IPOO+OgA9AAy4H7EmbvCRa2kGGwODv1taMR4WTe8NfVP8+v0r7m833O474ILhHWPscHsDXOEuOM4T53ni8fEBmAUNjBPINbfzAR/PWP/xmKuYa+ghmGOuhPZf2ikS51kKeIGnPgj6NbPSH0KbNF8qMYfzdg5YamUVqCgZe9pDI3R+8THtiIVPatypSxzLNSjXYTH+pmXjjkGGl7JNgVUnechYLLo+rZ11rqa2nXKA9h6Vv4qWXKXpaD51uPtiS+m0f6nIRIIOeX03Swqj8eEYHDfPJwFPdVa6Fpj2oajCGmAqGC30RsgnRVNFE0WvtQHSGs91a9POFoTeoK6ZU5L+25jPS1pxn3aYT5lFncC1sDHCLk8ZlEZQ8geg7hBfrsdzeA84kPenISPLBIV9n/IrdUzJZCw+XNJrifrV7FoooeSi5eSnHi66p/8lUr4sbT/SG+lntUdofYQuoeRyjPOscXnSnNDuhyzyLHU0eYNjdcdhJ7QJRIFxko6kzKwLlX8aNx/HnHcIG1VyopX8JQK35d6O4uPl8WOcqd88GcZXGk+jzQEMGxOXcMqO4Gk3h7mjNS2/dq6XYLjX/Bxn0tjiC7hz7iXp/qrPVGh3Bi9r4Q6TF2mAcwXKHxedMmw9pvFa8medl4tNgbShkm4nnaw+/+cbxPH/+n//73/6/nr8ZeDpf/svshCIpME336OEKBOZVrULoPOTnw9JxzuM5FhQg416/Atlyuf3itATeErnJCZIcpKmkzANHpQQGhRGp2GMICijDHKUMxfg0zSMCOqYOw6ck4skrj/cchrC8LBUXvTBgAQI3MOYfj7grUFEpzhwL8UAdyjaZOoRzpIK0NBjht2n4AcgNuDuaGdPw8NSdqYwHjbBiASCQrBZGEZdp9PkSGMKpSBrDTyF0OKo2jlK6MJT8ZoFMCKC1tZrjQJkGhA0I5zvmCMDElScihap4ApU8jS8LJgGCUZISwdKAE9h0tFScAEdkg7ZlOWiJdNDOGECTwu2CaOBjjCqPYXO8AEH0FwxaAyYQSRoXWFBd0l/IYRQNKZJW6R10o4NOskC0RYii2shmMquhHuCXkZVkyAcUQHDYqgkfcBhYa2UY8NzpoKK76tqAp9cTg86zlELZ00IMsS1i4/coK2hqcBUQE8twCtBcYMIXBWubSppPusY0N7QRLG1DTQq3abC1wSQ3AVoIcNcBCIDkBOQMS0dFwj26dDlsxgM0AMiBtEBd0UAVLw2wlPjkLVhHhMk578XKMexoC+1nKVYwxjXeh5fwHnVoMExDL235Q4p50YKHRG00iPzXiFPrGjRfaA1oHWtz7lgpTilLlkneOqGeF/rFsewMGZpdCdtj0WGFc3mRMZ9qJDDMLf0FyAEXB1jciMASUPLYTbmw63aJ3nF3TFOwxgDz+cz35s6xPkMtClLJ0yD0sxxGOUcit9srONGyQUaNsCkqvjd5zuiRd/C9a5zAIFBNIyy1gR9a+hNgN4ganB1SAdaa9ikYVNFV0FXxdttQ2+KrSn2TdGboPcQ29oEfRO0rlAVtC7o2qGqaE3R0jHvPd4TUbRtT7Coo203aN/Q+gbpO6R1iG7hwItCVNH7DtWGtm1o/Vbf1b4Fr7Qd2vJ3CRCKAlkc0OTpcr7SQDIbBaJgUA7H+zTK3c+i3YlVThC+ODL1R1kz5JVFb3MtVUnjPp2GlCslNy2k4ASZEqirn1OXGSZ9rcYggQvKzGlj0ZmU+r3JDYJFJ2LyA3nmOJ4wGxgWAJGZ4TxPnOeBMQbOY4RuGigeGcNwPE/YGWDG+XziOJ54Pt5xPB44zyeO4wPH8cA4TxzHA+fxjOunA6MYgA0Mn+DVsARFaDgjbbI8p/SbW8gu8oJggqItdJB0xbZv0NbR246+N7StYX/bsG07+r6j71/QetBf61vonq2jb/F7nBOfbftb0mOH6A5Im/Rc8tymnMZnQDHWeDqc0/mU3rC1BmkKaxuGdhgUYyjOp+M8gPNQYIRTNUY4vo4B1RPaBrQNiDzhfmDYA+P5hJ0nxnHgfJ65lgeO44lznHg+H2XYqhr224b7247/7X/9X/C3v33Hr3/7DjfgOAXPZ4P5G9wbzIGPPx54PB747bffMY4jAK3jifN4wM4nxvMHxvHAOJ+w8w+4TVvMzCLImfJ8yreQ/ZNOLQGDsjSTX0fyQUwvHX3yLh21UgMj+FFVoRmICn4NG9nHmbJhceLy92knJ9jKv5N3NAEgbYrTRtyna9lDY0xHlPKbY+N1SMUo2UOQMu3sC3hE+SLYtq2GrBKAjND+KnMu/ZoEGgnYB49MmSC0wadQK6cTCarRvyGoz4M2pC9zNj/L+6nCevoEe0PrDU0bujZsraNrQ0cv3tEMMhSQhroQWmvofQO0VTCLzzosAG1zS7A7ZBejC+4OHwN2hpw5h5c8ez4euc5j/hypR9KXwjiTZvIzN7idCVYxeDVSL1kNO0bH95IeJYELACDwj1RsJU8wxTuAig5DytIxsYVmFE77Cb0SPeLKDhUCrDHT5hw3r7EEuHzqC8CA8UyTRSrAJ7rYpHSSAIjLTCZYaFHskb6ZALSLVgAeBMfy+4tvOuo8r//MToqRADO11fh5kJ3pfzLYCQjGcByp37x4DRe+NHcc5xlymsHwlPkZ5QVBGV/sWN6HHpqq4uPjGXMnMu3HxeyvoFzJKM0AfK5EoG4FcF3AJ2DKHRo1Qjt2Huv58Z1/DDwBTDKYMvd6LfxfPv4y8LTr79eb5wisiBRYBz/tcEezBBQuhhsujgwNWafAHHadLMFiCM77cVJEBGJXwgN8OgvwihgFmKSwjOQQAQ8FkxlIBJvyWglMw0FE1kOASTjRgjMxS4dA0ROoGIOEIhxIzZ97PKtbgDJiIyIxMp8XvjA6APGjZnrL526iEDsBBAMEgBRCQccA3KAawIN8HgOmstFlPTAGYAJxm4g/MsKCRXgiIhXmMXc46dSFLBUNQOfzeorQVUetCYlCgXimEr78xWEa57W2DtYm2DhOrlplzYkquvTKqiEY0ayFM6OCrgKNJIJL9pOo1vy0nCtLxg6wCVOAwSEZ/RAglFTSQ3OHJm1JRugEAbokAYSBmmvHe1oh4VNoGQYq88sNK7RRginRembcXPgMFPZUSA5fM180nmXQUMp1v0bhckzMjKNtldezBZgiACECDMwMlyTvuJc6TCPaQuCpMTujlKoCCTypBnYUXGawcQCuMFXA21Q6JhBpUGlQ6TVGPx4QDSJVzSwmqnWP9RU5ADRIcFp8JidET0CSp7wBkMrCkOQo0m2AU17KA8IITc12OZCxgFOGahIhM9MEgI2ZyTajmZEFRgPRBulr3ie+P60aOyLj4TIWzhmVNVrMb64pgAsILUAahR0TtKS8q1vVc9NQk6JJA0YCzqoF1vDZ4pQ1k5QZT1KfBXjlJZ+oqH04zjEKHPo0GD4ujsPS6R5orZVTOIYVAFdmJPncpgFwmROgDBFfPmckGUnDsdxTxgRpOYh2iY4wUJHZe57OVU6jwtHEoBJO0CZAV8W9NzQtOx97B3pzdBloAnQVvKkE6NQbbrugNaC3+I40Q2uO1gyigIqjZaZTl1bZSl23zNRoaH2EI64NoidUN6hsgD8BaxDZoO2WjvuW2SnBa5EJ0wBsmYHQQ2mYBd+1DYIRfI9WoCtQUzWdMmTwJumAGRRlQFPSGHOKyKFedkVcaeTFDWsAaKVBrHJz+S7XFJiGvIPZiDSMc0zlTDi8LId8m9y26Ev3gRVcItsSdAqQPjJxmiYwIpoZEjnXQqd6FCgVzmer31UFYwyoDviIpbDuyQ+GvYfDZmNgbBuOY0PvDUfvOM8dz2dDfzaM80TrHUfrOI8DH+cfGb1mUMUiqxoDOk4MGZF9INMWkFw5ehEOzwztyTehjx3jRFnIzyaQrtg/3tG2Dt063t7u2O83bLcdff+I7KatYdt2tN6w7Rv6dgvAat/R9gBRt9sb+nZHazv69gbtO1Q7+nZL413h3nNEBBFpwM1ghHHZZb66IMDiBMEgG+ANTwOecDzdMbzBA0VOvW9wH+j9RGsD0k+IboA9gTMChZATQIP5AegI8LY16BiRVWWhM1UcLsDzGPjX33+DdEXbGu73NxgknHqcsQrSElMLevHhQYuZk2yqUB8FDB32TDsyeLGJZvb8tOsYYxEkKCKZrajUwwRewjadEp66n9chMK8VBHMh8JMS1yMwqMlS0lpYDtRJBRJ/cuxkzSrPYAOmPm2igIa9GoFUQRODjcysoNpHmmyfHFVAQvgy04uZcYgs1ZAhXnyvQNhqFA0J7o2Rs5P2Lm2DNtkiaCdNx9Z0mbeQOLRbKdCaKFwcDcAQViyMtP/1Mi+XTD7KQQlAGE3gCQ6W/OaY3TI7DeitFwjXN5SdU/YDRj2353jNLYK6TFgwAk+ZWee05yw/T1BTACRYnfBMAAwWwU0bo7KawiAm9cX1TBoNssxW8rTWGZoG3M+gZ9iEiNKWQ75fIFAZ6fFTbJlHLh8wwVgABTxJozqC6wCtQtMFGCutF/Qad5/BudJijqTN8AkEo4BdxwlSc9cGiMP8LOEWZswED+ERPN8ln1sEB4OSoNYOeT/OM/SnJ12mDvaiay+6JDmU3vZRwBFtFGDxVYz8UpyErpl8ktqX2ZUBbMXzNPFL5ll5vL74sguN5aIDnuPPp2wFXgGEAZhYU88Dnx/mNep6SBmW+pl+2+pPBwWXdYGc/jmuT8dnIOrTp3VPX7CWGq/kHf+9S/wPjr8MPDU850IC5VxolhNxsn4eS6CooZIXE++C+inEKfjT8ByG9cnW8iv+UgY8P6eg4khzccpArbIOwTCFusBMIeaRXVIpfjR4MrslFQjpq0CqYVWG1Jie6Q5Sawz5LFpiZi/HFmCTARb2dkvAoJ6Nxkpm/6wRWBqJgaIbqJ4CNbX43KXeb05BTQGRy7CsqtRaJgum474ymtJhslRyec9R6BwvHGKSwvZcjPW4l6DZOgavtaXCnDEgT6NNUlw6OoWWLErdPQdGYWXL9UbQmDO3AAWEqgvUJCNvM1U4KXPSN1CMSOcX6+NmxINQFSRQdSL4AKJUQKZQKvErKQIXJR7CZDI+FZ8tIBF8LRFClpk4IB4FAWUwpWD2dJUckFkDUm4Yn5tzZMkvUmAE6gQnjVBo5kSEAqB6EbgkPC2o8sO6KYWYBXilpH3EeE0WoCMX2m0E2KsOyMh5OzEGsxLbfC5XiFgYnSUfBHQwxQxoBhQP5fqaJBu36xyJQXzENalwXdNhXOeS48VM4y6UfFEMNZ2fZaekbJG6kFNm8Dnc58WESsswzkUeLhkznoLFkYC4WV1/5T0aEeLh6JH+HZT75NcA+087p1F+ieiuF5Vax5Hz4pwbAQaYAh5GKgEwzjGJhTZEGVSOytqcYJUHlpuRzwAb+IxMIo/oIQEmM5bNAO4D50kjtSD/iQ35jGhzLEnFqGUpQR9zJzZnVwQTCMzfl2lacyXCGYMkyJTZreKRoaSAqmMTQxdgl4FN47NdgU3j/S2B9daAmxo2dXRxdHjCqlGGF0GMeEVJnWfat6Cr5xgUXQISEzjdzuAlFzSnK7rQUWbpEnTNgiIIMxEYSXQgozhBmwrAMoNEaFopFiIAQaIZYaLTGuAWgyZT1nKefa4HZraSp16jXgk2WhYo5V7QySwhlly8cMpW2k89KNQdtBFWImFkfgqF0v/8kfeepXNpE6RBfrUNrq9F0JYIWsEmM4OIQWRm7gUrSuCA6hC1dOYEIhmJrkBe6i0NuepuASQXbwj2W4C7ZgMyjihjMIPgrLEPlwDJUsdLziid7RW8o5E9jSuv/8wksoTcouyuN9g5cDxP7PcD/dbRuqJvAtt3tK3Dxo5xPqC9Y4wb2nhC+4YxTmz7gdZ3uBuanZElJQ5NMBWIUryCMIU6Jtev5H4a8hKOO1SzLLBB+g0uO8wCYDJEQNPaDkcHvGHk3MJPOJ6wdAQ7aMgMSI/MXnHgHMkn5pE8CIG2HvLXALqjBuD5PPDxeOD98UDfd7i0CF5YjIU2hTRF27YoazkVw06wPBDSoNrhbUSGuVvYYGvJ6oWvFl1Jmp5nThYCAGkX2qCtIvVf2JlNFV1b5qCtfBS65XrPZKuS38isl6R1TBm9AskL1Bx06qlzyNNpV4WOQsqDvLdPui31TZ1OH+f6+Nd5QNqT8LVSEARiHID2fnk+6vfVfysKvTjRi990uQDqecAkmZ90/DLfhSjK56WcvJr3spLdlFcaAT2CtkDQkUcglA9N0MnyGiEGgj7MM+MpnTnPnzZYVpxLlPM+Tdfr/LjEOdQ1IpW7H+tZRBy62YUh4/S7FkBJcto05VXQjU0gkZyYvxd2DVmy4EMqBt3QcAg5B0jgY0KZTItrAl+8hmYVg4vWPNEedQ+fdH4zx84ycAm9rURwLzyJ1Lu8WLxUFS0fg9cjY5pPu4l6m56gKjO8vOSUl7671CIu85y+PMm0vk1qmusr1DPuNWSeJx521CosKijkhMzqQWI05beRPRwEgDXpgqNky57la+VLceap9ENeLudf5qxu9ulwFJC1PMacBf/Td+f80LdezpkD/ZP7/XPHPwE8PRbGTJDGKDiSma7ZmDHWzMeQNEh1Vco0smh4IpFes4yA8iLl/lfmQBl6JbClmBX8sSqUibSEATMCdIJHpstMv8/6zjoXWSY1I96SgBH7IEAFDQkSuMMtKFYhmOn9896sLRXzSkHn2AYFfBlU8TCiUllAmpkgvbVUHkWSmYbMNZsGWjDjStAxqLB1p3AN2e6T4Q0TzMBErrWErkCZsXMpbQFEDI2lgZW5kNcxWQAavp/r6Z5jpwCP06ISNp5hzZaaix4oNUUCARr2YBBIZpSEMdBTmYgH9sBsZRmObOEQ9LiMewq0pKP5ADXx02i2EJTZ1wpAphBTTDrbeeXXCQbM9OdlZbM8LdeQJUAVwY+TKZx7GQJeKdNRkma5Hl7jLVBTZBGg4YCyrH0VV3zGKQ6oZWa2xzTxJJLgPHhqUVHTQVvXTGcvAM9x80Zhq6cJJY4hBknQqAquDBjjqPT9kD8G+AillNkAbidE4hURu3iVqWAE21rSdXKpOFTjXMCiPtsj4w/Lc8kyY1XyQ9CWU/zpGDWhOa0ZVaxTE2ypbAV3WmtVvuZmOROISGyVmGapThpsBEJjXlMt8rrIpXNLLNnruyuIWZSwOquX0rjlWdIxpaMbk5wK2CPzk6n2tAJmiv+8Hiltpkln3xn+bqRDVMr8SDldpbve4CKVrWh5DSTdniNKgCx1Dcc1Zfh8pmlw5ZxkLZDYZGw6HPH7AhDUOwnCaICfDQkwKSBp1DaRAp0iQ0my1MLQZaDDcBPHroqewFMTRxfD3hq23tAbsLfIfmoCNIuo+pb9NtgjrUtL/SKZ+SRlOIpE76gaswmgkblC4ImAPnkKkhkIabApGtR7RsBD/5eOTjBDtAHDwwGWBmDAJcMRXIMF+IhSCZYzTjBKCoiawCJQIq7WTrhICpgJ/FOvuSLwNMiC5q0+j+clkDZlFJKvIAwCkYI9iSJozj6lxq9/rbJCpume951QOgMnvD5/JyY9rxdZK601mLXMEBgY+VxVdugB5FsDdES5nbhEXyEJXu8yZbK2GWSQ88jpCpnbtOM8IxvhOB9Z6jKgOKCQhFBmuUtE0y0j7QZ3XRw0Mlw+aQL7zLok653PJzx7Zh7PE9v+xH7bsN0bth3YdsF529B7x3m7RaZT2yLb6Rmldn1/YNzu6NsNbgN9i/fhB7Tdoc2iHxRXZKJ9IDzv4kHDpL0EndAapDfIFvd03GFDYTgwBJG92+5w32DeMeSMoIsfYbO4Bt0I7bLMmNEzuPMM+T1bXQjaZrBj2oh0VB/HgT8eD2zv77h//RLZxo0Z2VHO5KKQptj2W9q4A+fpMI/qAWiHIAJv0lJvGmXcla51odsyXGTSMxZ6pd40y6CwJ9+JgKXQktdsquiN5Y6pl4w9oihrY4nKEmbAIvWbZVAm9GrOm7Y0pOdzzJYOWGwghP1MXTk8QTmWApJo+Qo5IKKX/qihF1GOq6/zlPLMpiJCBX3yM/aKLX1ecx/faSkUnDb7ImMqIysBinLgOfZP4FMt1arY0qasWUnbxFVr/QBJnCXsgWMYWmtAZlrXsxkQAcYB9q8xy9YXOSQIq1PYL86ivG7Q7k2lYZZlvDG/HO58Pi8WLntmKZ/zuucMSFH+ez33IpsoizGBJ/epp6LSJ3RlBMoT2qrot89WK/DUE7LIaFTZqYvCMEJmC2ZpNVBZcgJFz75ygITdk89sGcjTbD/DFgYcHyuNIgBFHTZgsAmGkqxT7QqArjt62hdr7zAgVKCZJS6AaUdn9Qd00vZZrTE4NzJtUvPs6uNlQ7kkH8rCP0Blf5kv414V5CVJgLo7p5vzmRRAezf6ZIbhT5ngORHiM6ki9AFmuSh1hbM1TDKY0wHF8k0s55DwcZ33ObXXZ1qOz7L488Fn5NXr+Vd+93/8/b9y/PVSu1ScZEZiosSaiI5eB57GsVHFSJhZJVTjuy2dgGAiZhyxlCQemql05iinMuq1MwohdAxW46SmDtMVpGBEGMwGuKYTbQymJmEKdUMYka6eEVEH1CPzAaHBFFlykX10groUMrJOfKSDBEAQNfPDHOfjrB5FywSvNnEYlQqIGloTYAz4cBxHlt2lU9eaom896VICsWXpl0uWz3kBR5VZs+T3U0hNHXPFiwVMYc0mh3AYwhDqQCjoHPxguqoA2ydPe8YO4v01y8jcoTaizA9cU0SNOBKJ9VmHf2HOFKLa9EIFbmHaiiAjeYCMzAqTBEWR4AYNdgAKnfSAqXcr5ZrzlhNWpoMomltFoSTpQgTTKElLhqU4zCpqNUNeAEHYJ4uAZLrlWoq0ChxFKNdl/gIknCc2OkaLibAi3C0NAyplAlSW45op6XOMk34pUAUyGGGavAXNmIFECjz5TtPDVfLzcm8Xh7coNaCT2KLSLWgif+e6hLI8s7QAgD+z5E4ySzAaiguBJF2mkCuQfOw2o6rQmRFELTL7UGWDfaFyY3q4T9Gz0Csyki+SjZprTgG0BhebjbQrOsWICaNRS2NTH5MIDVVWo2mwzTKwSTYVyMBypAwpkZrvTRLz+m7196L8IH0zmprPT8B8WMW0Cog6B3vqBNdRlobMnAqPvDMyNaXAIITMYtsO94j4M/tpHbthJB8TjIvNFJgebubVv09EZoahU3FcjzKWSl+FnOH96CSVfFgBPtBpmjKRINPMfEog3j1K5uDYNTKSmkY5XWvAXYBdHb0Jdo1yvAZB5EwYNpnZTV0l+zsJenf05lkGFyVA0YOuQSx7M6FDXSHIvhzSA2jJvKmQlD1BpRZZgMaeCAkMK7IcrsE9MilEO1QN0jdI8yiHlZThRZOUU6lvXEpW8hXz6uV0BCFM60SWn9Q6JbsMGa1G8Wjdc5GXvF3J7sXgbdk7JoSRlnPiAKCW9MAnWp1VusKKJn02z4WXcb2WsbBXBAmHtKU1fqm2BZB5aoBDDWYT/L1mJsa9qkwP0YYgdFdk1vXWMbRFH7lz4GwdZlEipz1K6tq2Yd+jr9NxPHE+ntmQOvs9nSfac6teLIc80duGMQ4cxxHZJmNAj0dc2wbcWEY8mwgjHbeaKgt3lTmKjkyaP6MM43F+4Ownnr1B+kDrhr459ltD3zZstxu2+x1927Hd7tB9h7aOln/3bcf+9hV9C3Bqu9/Rti9o/Qv2t79Hz6i2oW87BDGH5Ua6oHpYyqSNgG5mzs4YjnMAxwmc1jDQoO0LRHcoNlgfsHHAzyfO48g+WQMbGkSBVlm7AlePskBnNUHQxCaCfrsBPnAc7ziOB57jCXsYJGtu7293bNsNvd8wYDAXDBPYiMwm0Rb92yxBSO1hS/uGrDwDpMPlhEtkO4h68dVKs3MdJyBE3V2gDDI4orHCw0ddg4FDIMqNZbWhJQG5pnDVAE6RfoudyRPBkwyGmPtVxC9/E4QK/reIjTuzFR3nWBVpDopZSbLk3Do+9X5EtRS48LUCVOaOsPXO85hAg6deyfNbIs+dthV9kXTWtQUdRBZr6mfM3oNVJk59vUiGJpqOOEXFnCTh3EgEwCTHwVKxyiB1gQ+CmEugM+Vw7xnAG5FxPCfTIYNlcaHz6ZeENJ2CjvpCYAUa+fDoX5nZz8Nm5QsT86N0nI8nYXslGG8p20NnZAYgswlBvy8A2gDVjEYFGOxoOgGqaVSFPo/ViuBopkZfD8YRtcXmH2XPYdo8vCQ36YDAutbaUusto4i1VtTfJmQ5TXBO8WQrBGR5axAixnnxhsAM41Wl0H8Puy3QSh9PzL5JUj7N2qIgljPA+ernCC9wirxAfyOwAKDplnyRWIQzI3mGfErGKICe81dAcfzNThBW91j4VVB23qROzj3nOn2D/ILwGapdCS7ZisHDBJauR8kMls/SxlioPXxKoEyQ/GR1uf3zhf/SwYv5/4yLXY6/DDzJ4pVxYtmcrKK5ZRSssltBlTOgBXjQ0aTzHQKPLEilTWZhhDuIs7JuwDKSlGyrqV8cnmO+LBiyM8wKrPil4fE0WSNzpoA2jXFNQrXUTdkUzS2z/mM83EnOh6MwAvEoLVqzSVhBkMqCzcXiMWhoyXT4mfmFUNLqkunZUo4sU+2IuF7BhSk4K5sM0zgoZZsZBKASp3U+v77Uhs8GaRNFDgdR21S0vn75YjynsPJEfME5TgHiclnaAmKSL+gkJh9Hw2WubSrTwBem41dofhqCpVd9jnamVc5jzul8zW/M75Xgk7mO5ZBDprBKZmbWAcB4OkFRzqdP42pOYf2riKiA57pWAKHmbREm82HyvTme+UC+StYSvGXcLTNDZ/uzaLS8BUtuV8FLMKTWNcc8lpkkKVuVUVqdb0mTJjM7iOUolkZt+aiZQWUSGYqRJeAzgleIFQdvIXNS9ogT9F75MqhGUtILENVBBJ7YlDPHKRfhyBkIRauY2UBcchWNFOXk+6DduH6BP0iAJDOrpAtZtMbERu1ImUUaWOn6QuPx5Xy+KynEV0t4QMzmI+Vnl8yq5FFVn5lXyPVAKv7BRZjrFDbodJAdqCb9ZimtcjoLeGKyiwfOzvfW8ZuzE8MApR97Z/ky/qnvkqI/KdyCjoo/ks6FgPUaKY1fVmOea5fLVPI1SuymM8L9sdafXSIjsSf4FFlMYcg2OLoEgNQU6Fla1wB0jVdTiffqezPSy95RDdHgWwgqSUOUzXVEJmELACobKotsUGxQdAA9wKcEpVb9c5GNzEqinqI8p05ZiI9/sysH6JzWNeecTvlzvWfpOC/pg7qUTNN8tQLnOKatMCO8M/Jdq1u1G/NnAMWrhvl8yEpR87xy4JJ3ZRHoWGTRHGL9KHnq8wPq7xXMqjsmaqBpxVaWbg7HNeW0Wn3fTDFU0YtHs8x/dLDnlOoAXKHacLYTgOIcJ9qIbO+hijGih5eNAdMADceIDl/uEe6QLFucPbGWRco50zy/RH6WL8oIuTcMwPnEUMPZHeNQtH5ie5zYngNte2K7nWi3Hdqj4fh5HujbjuEWDcr7huEH2nmibQcM2ZB8uwFqmWXal/VeSkoF4A6RmmV22qIvl0u8ejMM1wDGs3fX5MOU32fC0uzlJZ79hiJ4ETtMbmietvYIeRL9G1MnntlT0iNYGM3jDzyPI+5ZzhbHMOebIFpsOMCxfxoTd6h0ZDnZ5JdpS5LCjDOV74flwIpY2pfUtbT75/lI3TJlAissiquU+o86V8L2E5mURLtuGZ8vsohY2eV92nTIQNXKx9QNQvtMMjFi0YM+xzDfpBO/8Olid1Gn0oQsfq77TM6gDco5pR81g0Nx01J5/rOUmn/PYNQMCc3JqSw05d+Y9m8+g5ktQH+MS8Sn/yMDco6StQCyd1er+xFsmtKdEh6JYy7zxDMyG8rz/mEj5rPJsmpVVcMeqV50Ydn8OspXWyao9Bw7A22UzQxAetlh8cwEWpIOKjM484ir3wRnoKyu4h22sohrTE8DzM4GIKZFX0Xv+Z35fvIEwlByw+wLa2kfl13ArNM5NtLGxf2uz3P8NqK/G4LeYhyZkQfSb+pmGlDrevE+JQtynYsXPV2YaW+tvuFVUwTDCGxWm0SvmEqcqSQWoawIgIw0y9JGIDdE8yWZ4GILJtbxSavXfH/W1TKDyXHu9Lc/a+uyUUD9eF2TKTRzPJcvfFqqP7v2Z97+n3z8ZeDJvZXQDgDEyqAvBb/0jImDxlYsvSm73gtMvRDFkYxa/oE4TGa2CGxud+jGkjOB2GzoF7dbjNVSkvFay0FC4ORrYZAVeHKRAoGizwxyG/cEoiJZasliQhmH42SqHbda9FL+bGJHeejJQbFryUyB7pUFhVnDbI5hqJ4kQKCzveUOBu5wO7NfR+5QtzCfCiKDb2rZWiUa8hHlD1KPbRznWRFVS4FHgeXI3dc48dOpXVYUUhlzqzJIuoFEFgm3rUdMVil4ZjVl47m6Ex0VIJodNs0ikBAAzMQwt9n8WdmAMgyAyCaeGWAqE1DiA35WsFVjmwezGFyifLCmfOH9FqZzgYaxVagsNBDjaNrQUqEiU16R35n3lDJ4yszJcA0FMgD4yOgLZpZgZWvZlEWTflOIpTHDdZxRsBS4abDUfMg0fLi89belwSsShmkZaDMqwcpBEQADM0sM+X4qYgdwJiTFEiATGiAaPTdy961hZ8gonLjkZXowLmGOksdTZ88X12rU19OYJQFKzUkpdpHoXZIade5uw9dC+5jyCDIgY/aZcyBBBUsajjnbcqt55DpybagQhzla7IhdG4hESRYyjb200bKuVLCfjE1pl7/Xo76HSMtfMyh5vWGcQ8u5A0QMfeulS85zlAxcLW+3mXnEcw3AybLnfI90yzFxY4iQl/O9uvKnrFZS/+wllc++KP3i0Xpw6pucX2ZeIYxNOi2EWWWZL71+tX4GXWlkXPrcOSnK7hwt87MaCCAJegO2llmaCmyK6N0kATptLdLqA2gKcGnvETXtLdaiJT23rDMuI1wETTeIxK50KpHNFM/U4cxqktjVLvQNz+9AZn0okrGZvrVQ1NTcUsY8e63RQK9eEus6U86lror1ZBQnTXCWBdSareu9yAJnEGdGgyuYtdDHNGvWrKmpN2KnM/KA1JnxdLFyWoUAejGE677L/Yo46le56JOaE55SxiXlQUJuzveuZuTaGNgy208TNPCc95F2S/hGobtaa3MDE9H47nkmW2g4dBKNrIMuOlof6NuO5/OJ4ziz7C52z2utY5xnvPoGG2du4Q2M88ApioEzZJsEnRjLaQxAZkW7TCesbCggsobSdogN9QzmZwB46jh6ZIK0/kS7RY+nvu/Y7tH7abvdsL/d0fcdt/OJ/XZD3zr2cYdu75B+x/M8sd/esN/uEP0G9z3K8WQHARzyVPT51thJrzdsW2RJbfuGTW7YreH5VOAB+Ck4Sx9JZdI6DHoqGqKfUWuOplEC6x75kYIN3QDRzKI7omm8QyJrigFT7bGxiga9PI8nHs8noJqgWKyramZ+ppMcTnnLTK8zy9kOREmsRiZjy36XaTvUFvUI8G3aWBnARs5R8QE/p55OrvNFTl04aGHZ/Jv96uLWCpjBILXrlKx6a+ER1clps4LD67PqIRSeQWbn0fGNrJPq2VRPl88tctHFM/vQilerh2DdY16LAf40MQq0Ykkv0rmvncoEVWpVu0pnwFuE9pxnVsoEj6TWbtWH0+4YLEFTnc5vLYRc5oDzS50eQHIsCRs7c5fBAcN5rnI/QVrqKBqLCYyyemS6n9f1jDI2gMAH1tWsc5QGMGo3LyD6r6W+iMAgW2UE0CsIe/2QyOaEo3o9xUZBs09rgDcCaPrPTmDZ87kctfGQcISrrb3oziiBAVzQWvrZ2WeO82A6149fJ1BC/cX1jHUZGBgRcCJ9jNnrrKpF4fDqLRubV1TjlCrJEzDmGv7XgGevVQKTtOHJXRNATb7wyG4EMiMt7cSgmwk6cgMkOw9olj1M+2qu9cVHQQTdXJD9imeCxpyrzJpNrY20l6vKRBxde+IDDLJezQ2ChASkSTvrbuVwQNoMYK3yTIofJ//X86RtSktjYNpIn5MlVrvhs53/+fC84p/ZGvGLTHvC8f/V8ZeBJ9bWBlCEJPQl30FYGoRcWVpJWrWvjAgIJCxlBJpcOKVkZB8e26Zn2vzIXW5SgoNZfqq5CZzg2gsFmERQ05yCsMYbgt7dFueQUjAi8KdZOYI1vhxE9DBuiFTOmboprUcjb0OCRKHooALdG9yj1ORMJxNtB6ds0AAW4KwNHDwjzXF9OpGBMyRIpARZQmieRzQLbW6l8AosEVxqySsy4ogdY1IJaAtD1HzuSGdMIc2xVLTEU2CmcOLWyNveSsgZsml6pZwGSBRMmWn0qTe1JwNVlKAlzUgK9cx861ukq+f6DfMQUIj7qM6SHWlsuJjrh5gPldiOFm1uM6pgI1+ta0waEUCR5UIhZbRl/gxpl1SXEbhhBA4SrMwopA2OMwy4mNhoosjdHVnyQ+IPYIdpp1LrFdQwmywPp0MmYRjQAFPL1gsUfOz/s/Ay00AZbVgsOtJQCErefyL9LhNUkvxy9S9wraiki+O0rA9nzxBklg8w7+vAOPOemoZbj3kLw2OH6I5te8N2e4NqgyG2kHUMHOMPnOc7xnjA8QSnTbM/BqMnF8FegE5mLyb4QR4ayZvsdAOg5remJCmMqfu6AL7MEJTkB+ZwDEZ4k4/OQQViVabYaLxQli1GNun6zPm6RIsEwGG1lr4ALeVoT50f1xoBZM9ePFk2AoLc7CmBpaEywbPl+ogSTyrQZ4JNbn6Vr0nnAWqnXBjTsAj+n/2A5i5zM+bhhjnWzIqiQzoJ3CeoRNr9d44qGaADsjwLl2Bm4SIHsqwxqIdmRF9kMQBEou9CgZKzvyFBoa6KLQGBnuV00fAb2FqUze29YWtAb4LbhuzrFJ+13Llu2xLcasgdYCSbQufzNI3dvXQDdAMQW8ijbaHvRIHWQ0hrg7cen2f5jUuDgTtI5loyrAzyWRjMnr2UYjdVhTjRqbQIPWRGWKktzuGEJmX54C50c94nP8yFnXwwje2ZybMsdvI+13g10eblpRzIaoyOdayp4YS5BpFV8imkAXDOr4y3Ut483+ns8/rAdOyutMiG48ACnuY1eKyldhWgWfqp0bivUsMkTXMvpFMlMjS1R+ZOHwPt2HAeJ2wMtOPA2U/YOHE+D6BtaNtA73s1+j2OD5zHEa/nA2Oc0fdSOs7jCT2eOOQZmZwW/TIxBsY4IblJR7VkSGe7stFFazc06kMYIL5lP0eHHA6cwHk4zocBekD6gG6PyES6NWz3HX3fcPt6x77v2PaO+9c39NsNut+wvf2G7XbHfrvj+fyKvt2wbXfc779EuVvbgXYLvsFtWdaOiEYONJxoPXd2+r7h9gA+TsHTGg4XnBbN2U87IPjAtjm6Cu694dYOKCx3rbPM0M+yyUXuiR4wbposgv12D6DPTrg/E6QXvL8/C9S7379ApYMbAcQrGME8yiKbCqQ3DA8QUUSx7zfYENipCLPSsry9SHdGCILiJrABpC9+BYCbxE5a4swQYnZ40Gc8r1dZXwHDZHQVuGvap4YuDQyciAMjd/AauRtq6TizaGuRMr01BmRoF155qffoaQaJIDQzsEmrkxd9kUcDZmcGpbMczaP8vErZc/57I7/O7wdoE2ttY8BbiyDmNh1xp9XrseOrqmLbtsn3nPj8I/wBCZs6193SwS4wRATuIzPfouTJcus8cRo+cW32mxznCQagTbR2dhZhkMoAYR+v9O1OZgIlLOmIPmIpg8OHmrLU3WFnVFuQFppEy5KzfJKpFwqQuhgD05qnnt72LcCnLAt2c8jW0NoOsQE5n9Vbci31hsxkh7Dpc91AYGvSeYAVC5/kmFrvJecsMwpVO1rrgLNVtpafQSMj+DpsrrCLUl/mXAoAMUfrBjXH4/Gsudii0WTSWfjKw0ZldIf/nDaUzJ0SgSj/n3QVL/qehpE0Pu0/T7+ANhuAbJ8RVzzOyFC/tZ7VLB7vpc/Qekf1cyv/ZrHbbF6raQZVPO7c07esbPqUPz23zzxt0tLW2jwve1E3CZ/ZPFoijMyw9cEG8lO/z/vGnESbOq/32Oy8auckBi8AurYEjzMonn6WA9nXKl9LsPUaEF7fjwFcA9nJUpy7yQr4s4vIn3z8V46/nvGUqXAuHg0kBdkbabl1EleKt/hDvARvTG6kN+j00D7fqR5jTkBemyVk4p/OB+i0gA4CM6SuM1YCJL4iGVkHylDMbKQohZvOixQzyGrfxjWc6YuhGQgKwSnqmW7XAnhIUMGSWQnOME0dIpUNEoakzEfkvCxIcXyf0bBcH3gRsAhFW875gjatJMQmdhRuhf9KnT7vCaK2WT4jyCaaCWCIx/XKiafBwzvgYm/7QjuF/i5GM8B03ZgfnxeDSBrEVO5CRUsRKDVGAOnAUvlckd1K15UUFgS/dB2HRHQCjP6FsyQyDfdwXEh/kzbBuVnWjWmyNE84X+aSAmveO0cwn72eEYBXEUr8y2a3SbORcZXpv8K0zpmVuN5jrvIceimJpV9BxnYKcIq1lEkzy/crgxhhZOo68Vxb90vjPbK1atbgd0fbss+EbhB9Q+s37Pfv2G9foK3HeNTgOPE4f8Pj0SCH4hxhJMadtszgaDUwKtcAerJZcajIyphWn/ZESSoRVoYWFRVH00imkegzO1Akou38xihbzqN/xsLfZH6Cs3yVXcM7F19wjfnBJ4OqZAv5HVenniWGtvDtUhbKIAQNG4ImDlSm6KSm3KUyAZxQyhM0ovz7rL3cA5wdjL4lP1C3sPH5JcvJJwi0AgUoGl94p/S615Sl5rkCkZdnmbRS4oj/8YIhHZdryHKNmVEK5+8Zh1kmYWZhJp2IovXZXLz3LJPTEVlNLbJ/W2VAZTmPKtoCPEUPjhmwEA1gmimHwnKdBDgqSNRCNyb6m31TGlyjHA+qkVnByPHyKhWe+i6VBTydkwhGMRAlizIIecWycepGWajLJa4hIP8SHPz3TaGLaqkSuc90SMH3+buSNEKgiYAZ2wpcAaj6jCVgZQjm5/W3z1/rfdLq+lOWB1jAK9JkGQoGgtrxtl9el1O59uBwFvk+jR0yzPzbFD4MrWyZeNahY/k9tgrZIBAdEGg59JGB/IxsVQjaGBjtjJ5rGvl97ooxTmAoNJshz+dghtOSWTo5NZJSvaDBVDHR3CNwq5BlAW5b/H0a5DRIE+g5cJ5RgneeB47bhu22wf1EP59oxwOnD4xxh4073A9s/Yax3yFANCPf7lA3qG/B17H9FAQBOolHk/UuPZz8WwMU6Ifi/XToeSIswgGXA9ADTWJ3ytsGbILcLctmg+mpnap83zIbM7IuFK310DXDMaxFtrdEoJHN3yuLsORQ+AAQZlNbBM9cs+w95l61Ad4AtbwvKXyWvYQ9qp+in580x2o2JZ16Vk3UsyRNsqxOxJesqMVCSvkgeW7ZZUX/C8yVoJPZEpx2ljrpAghQXi/XkMWWXuZkPVYAihlOwyJQfOFRmXNWZuTCp3927VXjVDngIspSasyzag6nTotqgtw8ZVm51acqWx/AzD+ZsozvTzvByx8gOBAb34wF+ElFLjOLWpmRSV3FZ6RhsoAVM2gVQDqfUUG7d4pbzgOWtYjxZRal87kSFCHVisx+U/V5+LUxfyONnKSdnBsGEYd0IDN/RumzPCf9CSt6mkukCbTxidBaZhb2GOuiX6esi0vLWOjRZoAT4ONnNYN47LT5SekFiQQR2WLDxExZPcOkq4l8hDrPeUhCLnCMn9cMpJopFbfYYlV+s4BLnBtW+Ky0V0s7/f71qSTHojqz4jlvVtdZbYD4W/MLE5SUGq9CrpsEefpKXEenjsL6z4U34+8VYJ/+c80U9fb6vUUWMMNxPuvKl/zsz2THp3X/kzP+7P1/dN4/Ov4y8GTtCJAG2e9IHG4l0ssmcUWlkdHxVyRTlHCLCOAy73Edj4ydCvxqZmawyReVdsnCOYERUVHk6YHqUrgtkRXnGKSncEI9R/ZAB/lQhkCN23pO7vClHMay/G0am+Egx/Nb/pdZWghn6TTHaWTkNMQFQGOZBrPHApmehpVhODIbZ5JIRMUDXIkU+DMGIMjdeZYIZgprrzXiNQSivRRqPFvcL0AamYzridxnSm/fWjmyA5ZOeGTZDLc6r2pCwKwPn8IoA8Yz++KTQkgRr5/HwrWRWAM2Z10FQgjoVnMmCTwZRioaQNxnP4Ckg6KFbMw6bQ2Ci9lwjwSs7MEQ9x+ZsQK9XLJKLR2S9BMvlsMR7IQ2aLYaLwehuGXeuIAJQaSSpxZimYsZy1ozM00i5Z/gwRphABb5JUjl6VlPnUaDz4hiS2UYQFkKfJaJepSictQqy0NIgBEFyNTkSG6bK3UtSEPft/BvN0ffO7TvaP0LWvuGvn/F29d/wX7/itajzEGawXHg/fHf8Pvv/wfeP/4Vf/wwmEXpXW9f0fSGrrcAsXIMw6Ix7nk+YecDLifG+CBDR3YGZYZNui1RRJpcAFeAfenIVzkNCuiYNO7Lz1LiuRaXXhZK5Z5n2uQPEZno1GoE+pTVZZHwevJzJgmAiFhmIX2sL0G7RXP6EiEuhT+NQz5skxnFMyO4P+nYiDCW4RKAxDizLwukIkO+jLMihzXXWbpd4GA41MK5kViseNw5B02uPLBy2swEybmf6V0QLBHp1F+cizLClCArZ3/mvhByaWmUhuKRKdMRgFFrQO+KrQn2LtgboOpo2rD1iMxtXaM8s0StlhMk2Th8NdYhAtGG1nuASSmfRwJC7L0r6nD12NhCBN4F2qMkwFIZhUMoEM1dH1sY1sw2KEvAc2e6zGCCpcy27GAleVMN2pqQwaSNWNPMTtXcsMSZ4YpEKhf++ARCxdovYLsAzOSb35o0PhPwffmKgLvsFWgG7nQQdgB7/FgCDRBy9RLOFv7qS9YgDUXy8fXuHJ/kNWZwQlMWZ/ZD9ieh3lqd3LXMNuwDmRHqPFRmf05+tyHtAh2x7sOy71QAmrHzVIssVmyAdugY0LZDdQtgqR8FPEWGVDTL7tuOcZ44zxPQhuN5QNoD0qLPEp4fYU2NzLxjk3o9A5hihudFEKcpKZEtKR7Z6jai6TCAzBAqyxauFmkRYoAOfPzxiKS/XbG/bdhvHeP5Ff2+o9862uN33G5vuN/fcD5+oPcb+nbDOB7otzv221f07Q1tu2P3gehUY4BFvzRF2LWbAL0N3PeG22h4nsB//+OAusFPg8tAkwFrJzY5sTXH22YRzrQoIXxKgkUJmATwkOBRUqilPNS+RXC1NYwhAIG3bMbMqoGyddJ3d2GxmkHbDEKUKSsSNCA9Qe6WqmDNcErO0ShX4o6Usynv4oaxxC7FQ2+9aHayzNzVkaqJoq7oIEGF6DODbDLtE6xLGW1jBA0CNYeMbDgAEytQgGVis1n45Je4pyHKcAkWSV135UM20udm3qmBwyawRbdPVV7XEwhc27TJlsblxowr2tbZd6hnJlLZKQJcdr61AJ0MHs2R07CljJQMTDAAzfKjdZMGbooS8keif5tZNMY3dtl1nFn6KWlvCjybRZM+UGBP7y3B6hmAqFYkfNGepW9I553jUmbWLzI+QUYzqyyWAGy1XJGx0m9rNCUiK9sHzMOodWnRD2+knHOWjwf9oSecJx49LMH7RT9PiEYWYbUDIVi8gqOSwddWWeDwHJew3C6FXzKnIGyClutSfkFW2rgZTB267REQdcBP1LzERjVhx0vuzg0ztOSrHFXNu6cf4sKVvupjBrUquMG1IwHxRz7zpgixmcB4+DMNvfcsIVyygus+sasqsNAH6T3pleOpPqqZ6Ttm/5ipUySB68yepIJZ4O2FfzkVtFsuj3RRU9eb5FkXuyUC1qstWmcuUxWmryxylJYTvYr1kn51BT5hArQv4qPleqtNwrVc5vGvHH+91E5HCud8hSRcmN1h3PUN6+AV3GmsLca4+hTkspzP3j4OZDNihzaL5rMVGaXjYoujhoy+IpR0CfW8OhkQSCNQwOiqcFeANPqLibPN/3QE01FIRD3ExQZRwWmZzj2AM3dQOIdnWVXcb+TuLKeFc/TZSCKR1i5WKS41Hg6AhOOsUogHy5oI1bbGrauj34tk7UkTrShQqnFUq2farSu7eEayyiFL7J/jZY0jENrXFuJcmCqm3RP8CeHJkrRh42IkWO6g0JvW+24zrlAlglxOKp4avmS9+czo8PnAYaC7F8DIrUz5UIyqcBvzuoPMht8BvHD+ABOplNH54AnoLI2QGQ0PIyedmRxvZaQmqHNhfP10TUwhx7PY8M8cVbZJpyXWmFHi6TirCE5upbuwB/kxiauEdwi1SbNUDlxfx4xgiM9hOxzCyHuCLzmlkEx9DoWZte2ObJSfxqt2SOu4v72hbQ391rB9uaNtN2z7N2z7d2z7V7x9+xfc7t9iF6J9h3YH5MTj8a/47ceveH//V/z2b1/h9oS7oelXNLmhyT22w06L9TgfGOcTx/mBH7//Nzw+/sDwgePjiGfhxiPmwIj1NEnQejk8J3Utq2NPr6xiALFYWzKErqonV5sGdRr1MmLuJOeevOdpODdfduDgLz75hbSAIEtUFs7FSkdSms/sUZa8Yfa2IcC69kiKvjyUT3GzkestMvtjuNOYnqAbh10lBB5AFd8vW+AirzjWdQ4p+/MdPltNdM7GJwVdv0udVoYnHRtdL+UJGJXSyHWClCHZVBYncMIYAs9yXonS0CxhUZ09nLpK7GSXJXTRn0nRO8uBpd6PrKY4vzU2MM6fHFcFH1L+tQa0HsZZZjN51LKGEaOhf6UH+AR1aAfQHN4SLEnjUpoFQUt+JhEFDhk1s4L4Su0OgWI1p6iOltj2YgBdV7yAxYbwmy1sDs8yrPgCUyqm/qe8FoSOrhXxlW4WAJVKyj0zv1bIMMYwQaW2PCfNPpl2x0QiafHF/K1EuALHwvsBvjAAy86vs7b8+ZMZnPJj5fPP3+Mnee2ZLY3JMzmeeO6wB02iLBwSpdMyDJABtAYb0QeKvZ+09Znx1DqkbZB+QvoTep7Q4wC0o+0HttsBff/AeUT/JTwAPQ+chwJ2wgqwsGrzEEAJ+7Yt4+bYPe2aFMwxAxbOIzxsUHOwHQM8Aih2Doyn4dmfeP5xou0NbVfcv9/w9uULzq9f8fUcsO0Jvz3xDqA/bjj2D2y3L9i2O+w4gC8HfNyhMmDdIotpH4CdEN+x9RZZvHuH24jMps7+noANyV3GDF0dfg6M88ATT3CLK/Eo+WCuBitWTFvYr7RVNLy50aQyfAWAD2A8B8Z+QlzRezRN54YHFrgjTuRGPT4gGBDhliiUgdlGQIPmB3d88BlwqlI0vg/yPyP+lJVkCyk6ZpgRlK3FVkumT9k34ehbpvF6jnuMI53OKCOyzMCpjKpAu8qnYLVrOLTxDK1NxyuAJLra0YuMug/Q+bzLEbZn9k8ThI2WxtFstZBPRrJm6VDJivhdF6+WQYcQhbkbuTFLn/3SvNaBvSTNLfobLd+lnyc6QYyRz1k9CbPkDp5B+ewb1coux1JZIjNJoR5xlUWL/PRofg9k0NQleN6RGxBwenSK+Wyob1ciADcmMQYDHCWPbAzYOAEJB75rK1snssCnz8nqiIGwb0Jt6NSBQPpicbbZgCM2WnAJnR3PYgAOqOTaN4mXAm2LNhWVoZfAx9x9VIDlX2k6Kz4cNecVAMzG4Uzy0Najal4U54gdSocmKG9IH03KlmW/4tpciZsTuBbPAFj6aCbNLT5G6VIGPKnffVl9pw+F8lvhXn2gWu0AHf7kmF3b4v7l/3sF4OISLIsNg66CqGuPz+SF6mfsgMio8RCgCrZZokXLd0UBWPTOYz7YJ5YvObn+PY/VIwjiogws/v8H35WSmzPwzU9CfMpy86v+p+hgGPnTkP/h8c+ATsA/1ePJMDv0r4P0cmoYjWZKXg4JQPbNwQSe5NNKSP5bfS58RvwFXvcOApw9UYh0GRDpxpIK1AiCTSFcIJXPcSPL7dZMA6yE4n+2wItgl+xsj7jnGKHcRv7u4E4MzAohUy6m8KpJPgNSpIuF2HwhluAZ51fBOmdPieoIIWHspTFnGmR4ggGXeVkE+GpI8M1pEOCn8yhlfB1pGgxFFZ7RJ16X3t3FsI9rreTky78rKFgMX+dJybf6TIqCAEGWOS2pkJ91eF2J/Tr4Va5oXHOkCqppXKRs7eolq/HAyZ5z6Z/eu05ofMbLzo+vomohKAi0xr9SzHRVVrGSN1oFmqfo+QlM5Lyu88nvyqdH84V4vF5zTUqsZsu3AHXDOFOIhFPSth23+xds9x3b2w23b1/Q9zu22zdst1+w7V9x//o33O5fczvsG9oWyuL57Ohvgvv7DX03mB1wGxD5ApU7VG6RIZX0eR7vOMcT5/kONINuijE+woh6nsC4wDcJ9q3N9dc5XNTHokcKeMqfjE4t/u9FHcR8edHwT4plaTwfdO8XXvuzw8pJS3kg02h3/3RvY6bElI7hQ6dpMQgcLTq89ALpITNhRErH+zJMGknI91QdVQ9bkyqLjJKpQJO8eMzclfW96+fxHb9cPuZZlt/jfXWpMuIpE4IHqq3EwmclY+lsTJEzN0PgGms8ayxD6Nie4Dd7OcXuddyhDgUwRb8/yehwgk7KEjyZL5FKNg2jyAuA5gvsdZe/J0qVVWSyVJPJzFxVrSxViNTGFWx1NEXCkqkE6qdwKuq7C70yE23Gh5x4waqBkiSoL6nLppNQQkZ8EWNT1oYvMrPmgEUVF0gELIsMAi4ptVJPTRCIIFQBbtBJGWloVz848iqfepGNF1DpopRsGUu53fM96vTlE16DkeUJPP07MoJG96JTqaO5DX0AzD7nHxEma66AGDwdLNEEICWyHkRnqR0yoxV6wqEQOQBp6BBI26B64LSgOYNjePbBgcHOjHlZy+a1/ukRJtXRSSyhI+GQCyQDV5IrGhnqLPkJpzyfx9LpOB0+DsjzhHYJoOIAZABdNtgtensAirFFs3QfBttPABLlauMJEYvNAeTEOAfOdkD1hs139AY0Mdy2eKamiNJ7CyCe5aXqjtOZpRFZSELbmTpefMk2Jv8RJM1Ds0TdR9jpLvBhGOeAygjAmbztIYNggDcPZaLRV1QxxTaza1pr06ZwgE39azi5VqTIehX4SZmQ9sPSc5C0Of0QLO9RXkwwhS/K7AqoGIOELKmbMh4gWKKXXp+VzSkI2UnQZsmOquxXt3SAvQwfKUMIkYnnGcDJ6/Galr2eFlMQJGVOIkEIAkC8P3ezFc0MDgt/QVOQsmBpnTPnwuRCcP7I7bEWyyYa00QM3S3prMPB/n6CVb9Llc0nocRY/Ko/Y/5yFfImzNShAWH5Pec6rPaE+ZSjS+lR0ELaIYJrYM1n30pIwCaamx5dAyAz2OrzwUsOBtGkvHfOGZ85F78FD8aGRArFgIiDMSBpsZbaNP0PK5simp5PgIljC+Apg/E+7aqiHZXMZHdArbLdWbkwkiYTMoW24AR10vkC1gBJzwFeyxpQGanDoahM1NLeU/9MEIUrT44l3ZHmBHNDV8qF8LHJH6XXBBNwW+gJIst7yT8XnSFl08byLY3YVSLzzz9fe7le/XO9bX1IwTZFwDIjny5YY6OsSF9+JfBPt6J9lJbJ9CeKqX3aFJ+Guv712cb6q8efl/3++fHXgSekkvcZPwwFHYqEDXhZT48kBMnvVc11zYJfmTS/oy2V+5iNcSET5abXFqBSlHERiRyYC2UsZUPZEHX3um+BTkhQaMZdhUSXTMqqECrESWTxVOOMTKfzHDiHRzPIYSkMgyEtm5WDX1soNQTfgLijLc1vSEiUMBEfjohXMJhl6U9GF8qZTMt/7TIGmYuXyopIurthHCenG33bQviw8QyBorUBKRXEORblF2mnNCoF0VTQPBeFStc5tDQmtKWSSupZp2lRGAKbHJXIdTxtNh8E5xyzTjkds8q2yEmtjOSyybxuvNKpSjiCjhzinAK4AG1YlQp5ovJBgwNKZ50OWmtBH8NwjmfMIxF5iTRW5Jpw98Kf+gE4s7XyhQkSCWJXq3isUKZtNUJgVTKLUvSsj46kX2f37IVuFlJPAyejLVNHR/NPZLRh0ECbysh9zGtkpsSMnMQ6KRpa2yLTqd/Rttim+uv3v+H+9Ru+fP+OL3//W5YwfEHf3yLL6e0L9vsb2rbhdr+h93Cwz+Mbfnn/hsfHD/z22/eIOpnBbIdjg8ie9wvjzOwDZg+M8x3f/vULfvz+3/Bf78Bv//W/4vn+wOO3Z8Rwzpyalb2WOZP1ZxkAeVqVgQX9DAI3RSf84pxfltOJsGxvve/1xqfZ/1AJVMquEOD/LIuBhR0uSpVBhvWR6QwAPucm3weQpRvTYKE8LkeIKd800Bb1R3kouTdklXT+pBj9MhaWh87a7U/KXa52h3yeV+TwWi0I2AeCjmuV2SGymlIoV2Q01GICP2n8Vq8zSdCpCXrjpgaOLfsxRS+nuP2mgq1FudutL7vZAdh6OIJbE2wtMp72Juhd89oTK4r+4OyXQaBmkSXao1GqEnRi+XaDtg7JpuKzwTgRrXwRkMq/WYYWoELLfi9B5KxA4+4yZBZXEl+WcRV4x/K1dTWzyWn+HsogynfgqDKCohDnSkaE1hf6vtgIUeePRViBwYz6nTRY4Fk6GmXpMNsLk34EVeo9h7UagysBTv6oc7jzq8jle3WZf8j3Pi+xGOkk54tBnpfyn5ghdZino9FYGpLjao52OqAeJdRq0JFlGtuoUptxnlniYehZWjfOE/L+ESVO5wn0e2RHnQdG2yHHA+gbpAvO5wdcBKeG3SXZoDsGn71VANaVzSR9JyhuEeQoSkAJY0+iNJfSt5HEENm33MVgDId9RBXAx+8HPt4OvH95x/PHwP3tDW9f33D7eqJvG/ptx/PtHX274fnxOx5/vKHvO+5fvmIc33F7u8PGN9zvN9xuN2gfuN2+oW9v+HpvuG8NwxvCXBeYaWQkDcdxDHx4NHOP3I7MmkD0aaGkZsOImfu3yrTYc9FzfSOIFgDb+YiMp00N2mMLclHBtiWY5QbYCMCqMdAGyMgNeFTgbQRALIC0zByysRDfn5WPSP0sXysdUZGZizgWLmCj3bZop5n5EHR4ZsaVNGRwOsZ76WsFRD+dJWNOVVOWoN4rfqGuAbIFxSh6AsIeBoCObYIjyb9rLypAYHIkhpEy0iwDSygneNptiH5XqpldG/Z8k7l5TszhMtacMW56Qtk0fbkcV9Pc5XtmsM3n9dRb8RwBJBmNmakja+wSnTKzqTvXVaEpKwKgZAVEJIsIpLbgzjFh2k6njdrpPAoKBGu5sHtkKHKdZtlc+HXnYGKALxO7rsX8ySbuoeaicsRHgL1p9qeN0mZfMMRGR/NZc8WyZA0IG763niDgADx6uUEGmsaYWxO0Th6wasfR2mL9ePJJGgSOxH0WkExOlrqGqBYIeu7EqtnvDQrICbRmOPUEDkClQU2iFLfFNXTMDG76O04GKHuIdBq8R/+CWjOYBQXM5kRVtmrWQ5e/HH1Pcz/YrI4AAIwD3Hxm61vpvwkEMwiEugdAWUKbM8bELKWYJo+MpyS/2EDKgLGSS3lei482KxiWJ0sAMglMg7+ZXfjZLJ3zlxfMDMIJ0ue9P9n95FNNw9aXS/jloovI5bgvtyX946fP/mcdfxl4ktGDcDwJ2VlyxgiLg6ATDThxRpRGRBOyEWGZbDqjhHU4ouZebIIeiRqHE6aACVwdw6ORF6PxwXUyjVrL7vLGOmQ+TAp2hAajI86ab0givEnco8rIiBiGcXqaYbjATGpbcIVEh3yLzyMvy+ESW4cHQj/BBhJnxvAwm1WXHT7LvODotO0lFYvTcEqDyGYqMOfZhZEUn7ZsGvfa+5z3RKlViIqjlG8IEJ8Wv/gcFwUfkI5GptemMeMLg1VUF5HGalnb3SQa1ooADcuuIUBkCTjAVM64V2z7XFlTolSfNV7JRtrisZW4ZPTfMnsvyp0smTYBTDrH9CewZOmlUWaMOqcVsTUJJe2e22/mJRQY4twGEoBDNQV8Cl9LwBHJF/F8BJtmRt98LhoDFDMlQSCpmKaS/gR0IhQH55Q74wWaHtEYdYeJZPR41o7TiaPxZ2K1/nRIKqIO5NxK7j6RtKqjCDN6sywSkTTbFNp7Ngz/gm1/w37/iu9//8/Yv3zD/fuv+PL3/4z97Q33L2+x7fXesX+54/YWW13f7rdQIm44jxseHzueH7/g9nbHOEemgMcOXNPRjrIk9wfcn7DxB778ovjx+xtuN8P91vD+2+/4vf2Ox+9PjIdHqV3KQ6vdPXz2gKPdSnpY5FxE9xg9ijR0zgfPnRl0yzKLzwxAkQtvIemVeh2f7hlrfSEHVKRsOavILT216rv2iQov12UkzFHp+6sRN1JxKkgPUv9yHFagL6o8u4xnRJPsMWaz5Ovh9ZP3dbcqP1wRpjAAOO+rkr0q3Dg38yFElvp6rqiDTi7VNx1xNqAEZpJQiN2laTgsSntbAEldBV0cW2MWk2PvMsvnxNHU0AXoEkCWykAXDXCqhX7oTbA1ReN3C3jyAp5EIuNTmixVXynBtYWjLRI8AoVih/iGcGF3wDvgHQHwJGosGr+bQKTV9WYkYPldJEEtqbZPkDCKoZ5tknwBnlZ6UVAXc3089Y4jNx4o3ShLL7+5UhKKtbKeaNjVpyzHS13DIMoETINQwulktH1G3kt5gzbOSqmk/oWXi/I//+Qcfvo7/7xSfZI6o7bOuzHLSUpu/DnwNOW3reOiTslnMqf9FA7i52WW1K3RCySBfg/H3rJpOPuGQDukDbQ+4NLRs7/O8/HAeZ6Q40B3AVqHNEVrjrNHc96nCkZrOEJgYJxHZF9mWrkvY4dTH1HO0vLKJsFOJyjOV7SpAzO4NwU589iyP4sPHObw5wF//ob3twfev7zj298ObLcd29uO/XigbzuO5x943G7o24bH447z/A2399gN7/72htv9DhPDly/fcdu/QvUN5g1uCqCXg3ceB85x4nk8c8fWE6072in57CxxyQyRaGY6M7Bpd8CShxiwS/mEsJtgAh+eOw3ScQ9wT+BozWAtrj0aoB4b6JwOMJ33tCP4WMPYFjaNSpDHL/wRfoR7gmSZ7cgcDIhH+MHTLly0STSTzn4yGWBiTyeCIVUCZ+FfzJYcKcF96jvRBH7Kmc0m7cZ+RMhgL7KELYIiw5hJkrRUoMgiVzl2CWojo7XWahwgPaYTXQxL1paQ1dwtrppx5/zF7n2jHGlLISe5mx9SL0Fi/ofF/AoE2hQ2zsyOugipkh21YrzXMAw5azwh8uPaZjODrGwJBpA0QShuHACgfLnaCXnq5SCtuB93ioPFfM8d+nwG6/J6DHYCWvovlkHKz1rnca5D3NTMS1eqKpoDKjYzbhBykxlfmvPsPqsmAnhtNY+auriJIvI8HdFYPei+tQwWiUNkCaovdpy7ZaabwGCzAiMTAVwA1aT7BFEl5XnIA8M4nwiANewZzYxGCKAe9AAV2AhQcgzPpI2Au9WYlzRtodKnmRZWdhnZvPy6zFpK2mQTcbG4d/BIBNJCbIwLz0qWIs42K6tUwPx7BWpqnOSl/CflO1ySH7LPoWSgMf2fVY8675E3asIsPKcJjYXdS1EKk0b4HPgHh0/j5B/1WmLiggMVmKWN6jLN3wJT66vL8/CZgFke+Cf3+mfL6v7s+OvAU+45vCKcgWPkYtSosK4kqDLCyLoSHxF6LIpfSTxwmJ/rnBcxMUVzSIJUObmeZTpgrEeAc+mzw4A0PBBqSQ4man5iIuANU3GMKbbL+AJC6QyTqL2vhqY6TcNigmxdOUaW2WnVjjtnKME7TcMtnLhpmMa9vWrsJxBUVmOuj5VSYhlDCU5hdkkIKFCJrmv3eR1TEbvTbCVQJp+IleAMjZcsQfQEj+Dzeo0ZNmwcSKGPArBKKS1My+hjnJ8Kp7h5MRzymgEmXSgnBOlSd1y705UxWotcLkMYYWEwUWFPExXVzNeSBCpXL1MEA5TK1Do2+WP6u6Pmh/NXC0CDMC5W78v6uVB5ZjYY6O6l8x8eQLyb4ybUq/WcfDcMPSh5KXlTEBGeFPZO+q6DV/hER5x60vAM78V7iz0l6ZRqaxEl3nbc7m+43b/i/uUbvn3/FfvXX3D75W/4+v0/YX97w9u3N2z3hnZr2L/suL1t6FvDft/j9mY4D8W2Nxz3G1Ra9HgYhhOxBTy0obc9AK8mAAJ48nHHtj+x3wWwP2DnE1tv8MMg1nC2AT8m8GM2og+IRXmCpaFCmvIkB/IRoWURyQ11HVFqNeerZreM4jnbwdfTKJpy99OxlHjW94pKpkLh386vkF8LY/UaNdLBhrM0iLpgjuMy1qJJqXOmdqBsA8pBd0wFHyhR8MuVpIrG/NMk8D4z4jR538OmmNR6/THnfn2j5gq1DlJXnoYWH6Ts9KxnCJL3BN4W/AXMhIqMyk0DdNqW4MKms4xOEQB6kwCYW6gvNPUErbIPlM5yvJZleyxzrKCEToeo9AQIrlNexK6P8eoAevZzaIDH7+Id1LnsQyjL7z/pon/4QiZN5eQtpbmX1DtSaxLBjM6tWUiZVcX1zADF6i+tJvInbisicNZi0OGelFBjJuGzzEvE8/fgNV/uV2LxU0mYy+S/lTMmJa8D18toZzWqfOK5f3DIp2uu9L6UHJbTgMmfJTsEEVQ0Brhpz+WFWtgajgAJXD2ykkQgmYEmZpA07FUbrFmEU8aAtB52kjYYBI3Z0+pQP6DiGOejAIDYFWsgOH5MWWrkT7/we8gCQ2RJzWAl54BgPLIMhtlPfEhx6tFR8+4eWRTv9sB5DJzHCVHF/nZgtxPDB/r2wLAD7XygbQ3HeYP7E8fzhmEfeB5vuD3foK1jnAeO+wfut++Inf3iRZD3eBJ4OjDsiCwK8ZIzZdMsP8MLmiAMt3xn69985FzfXPvMCjKz2FGwZH+C6mrhrGbmZsxfS/BPADGMkf3cxCAWQdmwjVLvOS76hFLbgNhF1hcaxdQtXjZQfBQ7scWzWm5pb+MEGx9POznkQTiw3HTlE9ggzBwg0ETbTEr1gqAHEGU4nNsa65Sp0W+Pme0SAZ1VB+dzTv8HdT36SyvfFy+LVA+begabzxqOLzecwbyfLGOU0sKTR8p3mDYDj7ID19egfxRPpZUpW99ahi2XbBehjC0NTz0tpa8vgS/3Knst4Im2E3MVkq7q/hI+HO+xlmnWM2MpVfzp8E92TQZVswqndD4VmQfwUwBJ+USSIDKKpggk9aKxLHcVh7ZsUaDhG7OKQ2QOZr0Oki4jIQRTZuf1qIkk7SkTLzu1SEFmWa1kEoVkogdPcmfFk+TmqTLH46njaMxR+zHIx4+W3p0B8MZ9YqfbvPY639Ig4jiZMUsQbeFd0mddN9fuH2IlxczJ+4ueu2S3L3Psy/mX+6YMZf/WWZmT/1RglfMgP9kC/+j4DPZ8zsqbs5Q2yCeL4tO3c3w/h3Dj3CLmuupnwOv/Kvj010vtfCuipl3lzmzmNNTyv0EkM07LzyO9FUwD9YgKzE40MQlNM1KqgPmnRtEJYtSuSGAgKgAa82l8mkk2+NaMrqUScMlMlJAPKoC1SNk9B2oHti0f0AGcOGvlWCYAAayRqQhRYD43Oz1jEvEYlthDKBqCHZYGQJOIeqsuJFNaNmao06DORni0ei4RzLSnIhWe5W9WxgJcYGfAYbAz68BRAjeiOjRM8nG5Gx2msx1EHmCBl5DJtFONRueWgMVSEIYmktlkGVFayd9mRJJTsBDhYsgHcDOT2FiCN60UxwRLbBwl8B1hKE1lM+FKyZ/R0C8vx4hGpoxO/RaL3SXAmRGectyesimBzfO0yM4bRjMPGWya6538Xjs25FzRKUz2S/4L5cL+ZLyAEOxcEqVmokFEliId3ItnY8pm0norQT6dx9MBgs6y8gGmwcX2fnO1EIylDtYnVi+hT8aMdEXrO7bbHdvtDdvtK75+/xu+fv2Or99+xX/+X/5X3L7+Dbdf/o6v//Iv2N/uePt6g+4G3QT9LthuirYJtls0tLWhsKPBvr1hnI5fvv6a4BAwRAN4ag3btqM1hXaF+wNuT5j9gf/+rw3vv3/B/a6433b8+LffcL9/w+//9Qee7wfsmXw+DOM8cJ4njvPIaH2k7XtuNGCUBQ7I8NwSWjF33DAook8JIyUoo6USQmjKLpPs+GxXV+kIQrnVXH+2tEB2med8YreiZcpNLPevdGd4lSzU/UE5mBE0ZRtm6gXyiZeRO1Pbk1acOyjSBffY4SkNqhX8mdoGYP30535KfEDef8YhFqW6pKCQZ67yDjVX4RSkcZb8EWn5KPnBqefvimhESyORjb+7AntX3Po0QFWAvc2+TgStus5Su5bf602wbVL6ozeCT8x2mmBW7XInWiV3a40nM0xjzjsCdNoCZPIGWI+sogSgqpl2lUZoZo5OminhRuSLxFagE8EpVPIUyVKSCFkWSC6IjScy00kI56YzU/2PHIxwk5fC/l5kZv78bEvFJWjYhl2y9mGLL9JxX9/Dcm9D1jYgbb0LxXEqFjd0mR+Z81bvX+XmvDF/eKJB5MflO0szV2NtzXqJmsOgtZE6huO7PqTXImmLMbJZLzTFvToky68cHS31RDgOCdL3kaC9wVXRRmwr7yLRkDyb37udsHPHswHaO4Y7pHWMY48G+SKAtojut8hkGeeAnyOb+q7OwnQCCqAybm7B5ws7dQwHfO6sJdW+gc2Ws9+KxDMffzzxfH/gx28feDxO7G8b7l927F939L3j7esd/dahTdG3jvff7uj7jtvXO7a3O/rthn/9b/8n3t5+wdvbV/zt1/8cu+S1HWYtaanh+TxxjoHjHOAOY8E/LflfAnBIW0qTTgfCOGBfo9rGniSGyNpW9UxQGrAhGONMW4WZjVn0qgJroa+2TWCiMHXAE3xyxS4bxojKgDGiLJAbL148HwIwJC9k+dwnWveyQS/UDziKrs7jhI0TYxwAS7iWJsNm0ZDd3TMTKT4bmXFnZpC+zYwoENDLjF54tBdJ3gxMjzaOoLWe9vTUq7LYvRSMYT9rtheJsZgZ7IxsIwJLc4qm7nH3bAA+M6YCAD0XfRfvjdoYJHRO27ItwmJRx3WREhORSQIt+3RmUTmcZbP5s0k0wW65axpFUaGGi/OOgfxu0mMK+d53JKIE96x4EYGNmdFDfTwsM7ly+Oc4wcwZ7gLXWkOTaNIeLsnVbppAJ9K6sAC8s4Qu1lHResh+y7JhbngUw9ZZfYLw32b2P0W5ZjNsVAWCpt+knCuz3AAgAshMQAhgN7KdWgvqD5vvTP/GYrU8bRqffE36IcgQa4rgwQWYnOyfPBBedsqApJ8ByJhB63KDPfb7NktZCc7FTIwIWpjg/apn6TvPrTk04X6v8k8SpC2+4gq4Eh+iTLgAUYuciO9prfOka1na8aD4yYdfVPE0G+akzRYraXlcjIhpH9e453RPW+QvHqp6kQWfszRp13J+8vHXO/50fLZ5aCNd7Qy/jvt/wvGXgacS9O6zGW49eD60LhO/zK5keUguUYAQZDgkoeTvRHRLqdGgH1dAYhJbCAIfnimZfKXRlPXWMZfTYD2XXj8AM5No2Eb0quxJ0QmUABkFstmLyphOF+DKacBhgmEK1wZ3iZ4AloRqcQ06LZrRYc0QXZSZZLmZ+ARkXSrt1M2qHE4xm9i55W4UVDgjid75/AuDcU4krutZs2/uOM+jlOU0gAWSTYu4Yg5geO58ILkexWRnlM9ko2BmQkG4ewZLcpYoEpZYNJUrlZbGDnLnObC1ZDKCKKAwknVZc4wTkIx757y5zJLCYjb+MZsnaiqSEtApbKlQy7jTMPYUXnX/cQ+PXSqsxHYYSWlkVYq/T1osg4VCMJDVhe6RFtqMKk3h61OhAbOufllPYSopryPToKvsAa5R8alGZpev8dRwErheXD/JrcYdglZZW1O6CwzS0xBsirbvATy9fcHt7Sv2+zd8/dt3/PLL3/H91/+EX//zf8L961fcf3nD1783bDfgdjegW0RJukdPG1U0jAIWXQWeUdZb19yBDTBEPxtpPbfoJeAbfTTcFb393/DH/Q6VDvcbtrffgf433L694/k4cH6MqMMdBj8PHOcT5/nA+/vvOJ4PPI8Hnu9/BAh1nHDXpDeFYkMUo7akA8fZDww/Ix/PfEadx4i1t9idiAadZQkn/SgCjhuS+Ogk5YzTDnQaewBTFsJxJIDFVaQfqZJGTdxA8muU556DIJgyM08wM1hgYCls8Scoz2SOh8SWPNFSO4sAWLIzq9nocq3JwfkEknpAADZlluKp2Gxh2Mwg5DNzICUnCTpp8FsMb95/GkpWgFGU1KEyVJvQqJwaSpuUYdw0OMrN4RrgbxdFV41sJo0+LKrR92nred0mufMdI5kEpKLR+Ao6SS5cAE9apR+MToNGeksHqWk5tRAP2S/ISHaWyYEGsCAAqChRkpYOapZQF6iFJSsqzxckoCX5t/OVYJYJJHeQmrOOZa2kIrOxNgLPXh4kreqxwPfyJ9+T1K+lJlI+l83AVBCgfopK9usIRE+yZwaEzZSn4SfJAbwxAUyCbZydCxOsz1eEX9RZp07bhiekgyb8XJbn4Gl18TXR6WoeL0DUT9wlqGwgM7DtU6HelUSUPZbcAWHmjCNAKffI7hkjMp5EYueqMdDd4ccBV42mziOQVz2/oqFhGwKXDrQnOjqGKUy2lO0n3M/oNQnaWCm3BKmv0g6AFug5snQEdCLApWXgcxQIQcEb9g8ggzaMglt0P/4wjOeB493QfzzR947H2xPbPXTOtm843p5oe8PH1w39bUO7bfj47d9wu79h32/4t3/933Hb37Dvb9C2gcCTmcJSfg2Pkqutb+h4g3iAxa0RWPbqJ3KeZ2XAEEwvosoASZX6a86DnxW4TQabjh08+81oZVAB0Q8qdggzGE5EI2OgOj44IJsApuH0qadilgpWOG14xGVb07Lxp3MrF/0XDm7ob3NNWy9hBTNKbzBIED/PsvXYUyn07UiAIwpPmA3jSVdwB2uoxQWtmoYiyx1nP0ahPZXtQ2ZmVGrQ1HcEBLRJ9NRD6quUV+V4+sz4H8berGmnSlEvRAW992h6T7CIvkvOsY2w2TkfIgJXqZK51qLclD1HjYBlea1cC/Zx5DOHDIm9AcJO5/fLbk0wQhB9i3wMWG4zTteD6kMYUcvySZVZ4khqbGyynv/ZiH6jlr5BlMHNEr2SnRxL6pIJcnH9NUutpuwUbsIBqfmOxB/6wT5lfJa3NZ/T5tkLUUCgJC0RsQRcQ+daVkd4S0bwDGZ4nGMjanVod4s6xEYmG6RRyJVaHAjLwDWVJGWBePYJy2lhQlNP+3m2MJDqpcQ0HyEdSp+lrDbgLa5bu4V62EbsI9gmFUWPNF6nNmgWFEheapo2WlqiziskmRR9Tn2bwh2Ll5mnxHeDg3L2mUSAkXLGwYSHCoKxqofVDYvOjrUkaSWd5PRbggZ09ah3p4a9AuUFCDGmlH4vK7csK3IEUgkjSMqMS0zfEfCy9Vc7YH6DU3MF/Tlj9CHdvXTdP3v8c8ATOCkpsDEXNmQ+mQ2LgURjbRpXNMDjVAIPadwWAwHQqB21moS8/mIYmFnWr6OIHjlOw3SU4v7pIHj2c4LP/gy1qnntamoWSoAGM8EdI6ZlBJQSSEBmThkwXAFPpLv4nYBYNq2GlNzj5pg53IuxVyOshZYqdaSgnc5PXGnd4nwa1l6gFwolnYLHEKnFpw2oCHrfapWvRqtPunAHt1i1ygVylsoGMw4sfa0w147DWkhcEoWKczzoQMNJNY+mgqJzVGNtQKe9jIKaP6FOkbpPACua9iMlGXMk+UonLFe/0u1rNZIBMQV7bN+aH6Xy1GxIKOLpTOW8MN2YTPwJtK1MhLxfzW0tawg/Ki2vtHmgSjIEteWtIFO58yLzea5RmmrKv4CDWJQsgakyDoWKt1QX0vXOv3zhrJx9OqTZQbnvN7T9hu3LG/YvX3B7+4Ivv/6Cr99/wbe/fcfX719x/3rH2y8dX746+j6w7QLXLLFQQ897qs9oIrqWMdo1e3BZ0HkoNgED5qI+51MaVH9FbxvGKXgeAt2+YcgXtPs7jseB58cJGcns54nzfOA4PrC/3/F4/IHn4w/8+A04nk8cj0ixFjSoNzS5QdGhkVsJU8exHTj9WVErZpfZecLOMKCUCssceLKJaUYkIoEx5UgAbikuVxU77cUStCS7KdErVcUFnhkUbmw6nwrWl/W8pDlNo1p5j6nN6uYEBIJZtL43jYLQFXOMVt8jX1/Vplz+1iyNFVkiu2xuzWEtfEe9xEcQTh5vd5EfeY4je2rESYxxN5kcoCDwJBC3+V5FiDV60OGqx+J9yVdsGqAsqVOZAFPOs9TLs5Q3QTClMchXNqLV+WKj9CgJSSeMAxUAmrJRkVHY2CjAkm5q7gWhY1KfY7l3WU5OuZZbZTBg5Aqpl6SspG6a2QOVKbEsdgU+4GkUBfiUInpxBFa9ihrzClJRPqsTqJkSbDodU0M7y1DZYP1izPnyb46U1yi7Z9X31wjtfEYO/LM2lp9O46JVBtl6dfLsMv6866crx2drKwSeV9ayImQRL6OOSjwWTpeUjiUArIseDYCjQcYIUF0HoBobYhB0AnCeEazS7YRC0W/MsHrALDZ2MVeMfgJ4pg57grskEyij3WOpE2q9LOm15ihnQQnQhPyrzHFZVqIy7YO+qVfPh8OOgeNpaA+g9QPH+4n93tG7Yr9tON4f6HtDfyjaW0e7dTzvP7DtO/q24/3Hf8ft/gW3W+zkKhLl4SobIo9Js69nx76/4d5ONNnRcEfTjrkDnAVwjJGON1KAaZHVtCu8AmLm0cPVTQsQgmhlhrlnYE6RwEHY3NpoOwywNxPJTpR/SsoKVPmNJ+/R3l9BGQazGDiMwbTK0KysW3d4CS8FKvPLJthQIEiMkwHLsnkswHSW6wE+MwlrbBxnNo8m35eB6wGwUmfRMSb9J2+aETZAvb+WfK1lNXzP3aMf51rel2OgKnVEg2vK+KGSfWa9Mm8uvW3Jj0LZpAXAxP1TtgLZmzQDLTpnox7e5/nUS7OfFsDAhYw59iaKIQR6eW2f2TUy6aHmI++ooIUr9R9pgj2YoFJB0unPYspJtwouRSa613hDhjQIbwhUACb6IE76DjspaL50rmqNzUuvAKK9bJIVzOUreCd9VY0xXnrGLKAH7QZGAMyP9DUpx73+Dj82n809AztcCdJRfIf9NllayIzpmDxuFhLUVEkk6cNZyn3Bki3sVOuLpdcUBMNW+7FK5lcwj0bSxaZcPuP6EsStlgJTz7MPGo/KXhfeC2XjIleCbU+mPXXVwjR5VlYOP79gwXkt4/rGs1B0zb7XXgERZmLWdZ10mQBk3uyKIU0tHksl1V7mckbZB8tPp4zjWVIfr7cQETYgui7FXzj+OvCEKTQmAXCpbQqjFFw/PSCNznU74JwtWQiWSiEezKIpIViGAtCZMUQqeMuGa9WWLmv94YxS5PI6UBkXnmPl4JLiRFDpmxEdiXGep9cYtUUElukqZrE7wjkIPgmOM8CnY8Tjcrvq1jrULWvGU3l51KOLOPoeqZf04YwQZc1lpHtSATVlyupY6tB1Mg6/9ckOprCtKB+y7G4V6tpKyZxM3axUYlR6MrhuaSz4mO4rBaEAMB8Q89g94TqcEHwiWFMJTTL6gTSAMv0eGo10yyzxUCaqEuUtvWdU55wKH47TkfcXAFNReEZsyZyUZ+6xg1LLqBPco44fSNrSGn/0L0jaExrpC31BINrK4CYPxVKlYU6B7VOviGhF0cbgNtZp4BXWtToVpGVfnA5A0IpnueOGLXSgGd2KSCGbNgbf+bzRdK4g+SMcMvOpwGIgITozlAn3kSnQEbWUptB9R7vdoH2D3u/otzvafsPbL7/i6y+/4Mu37/iX//Jf8O2XX/DLL7/g268b9jtwe3ugtY+ck2T8dIgPC/rZ9o6KRtEJpYJN7dewA4hSIR80PATSWhoBDV/evmLrN4jukHbHl1/esd3/Db//+IHH84nnxwk1D5/cDTaesPHE4+M3PB6/4+PjB37/t/+Gj/cPPN7fMQ6P7A1r6HpH0xv27Q2tb0ADjn5i4ACbcyMbpJ6PI8GnE48/fsTv48Tx8QjeZ0nfMODpEUVz5A4cvnBjEt/acH5RZkLrX1KVeNBnS6NIlCW1VvoAmElTvKZ8yrZin6Z5QtBSGElRhkRjkPd3TC0uOguRVrAUmLJtgkk0sNLog6SzUXtcllzSnCfKl8lEy08e1B+Q6jFYo2A2BVh0NgGn4gMDmLnVEJHXLoKuWn2YIrsJ2Lpia4pNFVuPkILSAPSYi4YAnDp3r9PY/UaVW6f7sr7TgCldV1lLCu5uSpHBPZHSLQn2kuixE+kqLKoNHSvlTS7gUJ0TOkag0ORJRgpVomRPpYOZHMgsQDqNisx8qoeZRhAJQBLAh0pk2BTQRfOJ3sIC3INTVARUS10OABuKIw3niyq+nlP2TTk/c+45jotd+Jm2/sRoxD/4xpUyV8dw7ia4fs6XA9VT4rN9thad/PxdnkcjcwaPnMAZlVeSAtyB5iULxHJuHLFjWF5vmENzNzHZGkaW4KA1tPOMzU9UoecGaIebQPQApEN0Qz+f0L4D2tD6H2HJnA/o+QBg8HEEYGTPKuFhHfoMJuYD2sxeB5vaA3A/S39qptesjiv3jJuzlrKGm2q5x062OPD+2wcgkYnYN8V2U/S9Yf/WsX/d0O8db1/e0PfoV/hvtx09Qaj725fYeKN1QDeodmjbw0aRhqYb3vsXNN2xtTf07QbV+CxK3fKRUj5EgDUAXmY/hVoPA96GR3PqpmG22wJU145YbJScmZZ9ATwl6O08PbO1PXu4TLIihpRWSY5qZsZqmxkhwwVnVjfw8yZ6yWJyppGnNFbZcqMh7qh4gDuoTgBjZvvaiB0W3Szts1neQxqQDIJKVWQk7S8ZkxxfONPUk7p+Mss6JbO5lPKR/Pwz/6/A0xhjAhsEpQQJCF2vMbJEDirQ3jCOyN6jrc519bRF1ybn3LI+fDvaSALIbEGsJQezVYRI6P10lc4xV7W1hpYAYswxJZBDpWXrH4dI+iTm4QcKpq2Z94zfI92ywAb6NObVxytyc1E+3CzTYul+0hACVCEOE03R2R9w9ngFWvJSzkDqzzCRY0OO1vSyhkEzaV+m0Gy6Ye5OTRvGEkyNbDxY9CmzmhNLPJXlszku9wRUsp3G6cXXTAcwO+svpX76BEoFoJc6I9fcET4fJLLhPDeIOM8BNPJgWzIwYiz0fecOqVZgKX1w2mploi5cMv2PuTHAVNmSz7Hoe8fMqkKaOxfwNLRzU415Mq+s5QIZc0pq0/M0HaI3MjGQ3LQApEFmwwFTp+ScWvxetEx5kPSjkNp/qvV+Ac14hH9Gep48MP3+hc5+KsfL+y16uxLVyj65HvEYi6FUnP5nZ9fS/eXjLwNPw7hdbRrqQD3EVGN5ivt1EOUdXAdOJyEchGUK+BSfEU5IljM5JPElCHcomKARhQn9E8IJc1xJADnuq0KYRhxyCOdJEEPQXBLoIeoomfKMTN+MbKh4ZWYOx1MERXSVGQE6l7UAMf6Ny9iKMSA1rcW4wFQ++Yx87opc1He15t8d2RxwEmnMbbbqzIlk6QqASpklCMUsLC4ZBQoV2Rz/VOKfCXV1ALlFJt+Pn8zmkQI552cZian06UhDJHYXNctaBlJ5WUmHwrdKUMUkjJH11qhbA+VEIRSAj8o+KyNlPhVti6lYEjkXn6n/XPJKqczvVlaY55zUpHBOpxVXNO/IKPwURkUrFwMtFG3IxpFrLCXIHQRtaBrOg4oTMGhGZArQcKv5iDkNUEO6QLYObR263aHbHW27Yb9/w/Z2x3a74+v3X/HL91/w7fsv+NvfvuLL1zu+fG3Y7wdaP+DILZENWd6QoEgLpR6py1s5txztnJukQ2G6cscEbAWQaEze0ilvreG23/H164Bqh5mg9Y7n88Dzy4CapFEeO4OM8cT+uOH+/Iq35zv2+1c8Pj7w+PjAOCxwcVN0uUF1w9bv0NzKdjTPEsGkoWyQOo5npMmfJ95//I5xHBjngY/3P2J3o+OZP08czwM60nsa0fDcJxPEsxlBbVTprJL2nPRixSMNo2Szy5T8ziQQTLpDAUpJP1ly0LQtdD3lQa1RkpNflB3yfpg8VGUH5FHS2NQxvOd6HfjMsg3wRCYdA7OEOR9GlrGWoVDZN1IyFpiPFbJFEqhJnZbjZtkdG34XUE4jRyIDqjegt8yEauxNkTCMZKNx/lRJhyX0H/tFUcatGU6rc8LM07W5+CoD6/BaRVRvNmAxSOLhddHe18NDETIiujpJDGMnKFzLR7KoP/g+hfOUlyKStTsANEt9lnsg6YWlxszkJMHOy2u9TSNbSiNLUcpKc+s3Hbjecxm71PVQY7jovVXd/tkUXk6qLU44KwtLLeP7yXEVrGPmFTwnevatWM//s2EsgJNTl0xdt9rKtV7srRmKLuilZQZl8VHynUnSi6HnZi3uyIxmhQ3Atwz65JilZc+OcQBw2HjgfKZhPU6YSHzm2T9vkXPU8eRx8imnoLIrfD4T199S50fZ4JRllZ2zzEkkSK3WVQBuboYxBPo88ThO9PcDfW84vhm2W0ffOrb7gb490bcNx5cTraf+zFffbuh9y4xzxbO/o7cde7+jb/cAnjSyo+AKRwNbg5oJCJHnKqXsSDDJHXCFmMAGYjffJkBmCMXzrhnuBKI5r5zTyHaIXbda0aONUfMR2RUtbBcPHegAXGmPtCoPs4ya1bWT5J18QFswz529eWxp3ZHlPOSBhVeYoVKhcGlgmTh7+JmiGp+HvclrrE6wL3Qjl98rGzxll2QGKpZzi+18BlJW/vrc+4n2vYkvAKFU/6iymUnfnnZAPm84vdQfinWnXvKEqEIXMIMBqvWZ6XSflrylq96MtXQXiu3Fb5vzf7ENstTJPfnGEaBdefrFbQl2cd7nmqxCd+3FFX2QVt6Xoud65lJInIsZrI3Aic611ikTZ+NrrpFi7hgbnwXwFPQwpXlk6YVMikzO1dqgbuKrqmmMMsuqlyltv+yOnKBkfnPxgejvgRUzqaMD6wl/YfiaIDDpm5Mdui75lj3wzHN3uFh7+/yd+ddPYMtl0bCs5WIfCOfBPp2LZd4hZdhR3thS8jp569q2hDwC2nEye0WWn5knrvaiiF6SNEC68vn7uqLxztRNfK2g0urf0+8O4DTOZW84nrNeh7w1p/c6N4WL/buH/8kPuZLPP7Rffj7+MvA0t5JeDY/ltkkBU/h/epJSRusI1xwT2hLze0RxQ5fkQzLdSWi6LAaXE0ktu6SYIZRRMmGiIxQQnwk+FnQ+6DhpeIcjPqjIKqqvmb6KpeyODJjP5qOIuZwDkcwWSODJPVOcp0yYfRrmWLnF5Co4OBfR6JYkbZVSO4Xf1dlYCfTPqK/K8i5GqaeQC8aI4MgsAcwHLiVN8IlMi09zTqZaFcKfob4E0Hgvv9yDv88GgPQzprCLHSJWhlkl3+qA8TCzXLMZ2ZZUwKGtEKjjP+LchcFLBjmdvDmuKZgmP8QzE7REoeWe16jnEEynaqHteqa6A8sC17WeQo4PFKnwa1R7GliB+KAMCVFGKZnBh7q+SNTZRxRIIFtkOmnb0LY7+h7lA7e377h9ecN2v+PbL7/i+6+/4Jfv3/D9+xfcv2y4vQn6fgBywvzI1Pd8Po0mnmq9fh/Ivis54zS01lVwPQHpgGQ5gkYZnFu0wHaxMir2fceXN0PLjJ/WGo7jxHFalAUZYKfjPB84x4H9ecN5PHA+HwE8PR54fDyiz1NmYSt2qPTYUU8bokkrgYGMBI6ojx/nMzOaBn78+A0jgaY//oheUsfjgcfjA+fxhD4e8MdHOF1DgOMMGUTeSrtM09iLTJqfSALccTGWj8BT9t4ow45yXmZpMgSCzDbzkBFxypoVMLMFaWhKvR00VvKobEYvOT9TuwXTsFsMRiEf/JkxgzTo+D55aPLPZ3ChzqQzvRo8k8LK2Jk7j8ZlZr8nltcReCIg5QVI9QSkWpbSSZXMsdwY9f0otSPItL5k+TmbcKpO4OmnnZBwfebPfxW09Mm4EBFU+5erFZlrNksAJgh2zcopIGBZj8/6imvt5cCgfq66Pr+0/L6Ma7WS+OvnZxca9lMOU2YIlfdy/pq/zfHWp7I+0f/AtnP8Sa+ln6Y7P/uT/KlyPD/PAe+9fCPvVeOSz1Mj87ziozSKQb3w2X7i+0LWX+ZgrhmcSz9LwVsu/qSPyHpyRFCvWQT4egFPIXdof8AG7HYAMNi4g+CHnUc0L4aFXHeb9kE97HxiTVuxHCi/rq/WfHppEoDPQ3rg2HL+aNdRWpBeLbKgMAAcAJ4D7UPQumI8gW1v6HvHfj8y+6ljPAa0twSfGlrfsO0PbPte89zbO1rbcO73zHjaoG3Pkp4GkR3sgcRyVyDLW+kAk46o/C2BnOwBiqZZfmMZfFgyFzgT04BOuThlvECy38sSrdcW1/tsj1bvubbMZdU35BCpaya4EbTjlUHHXrB5ici0q2WbvCTIfqeYtmiYZOkqethk0ad2VhdEICfuH8Bq0oHPnbdQ9C0RuExeYQ88WXj4Yptf2HyOdWbtTFCq4AmRCjBIZm0FxzCvjDzsVTqlvZXgEc4p10IkNxhJ+qcc9MULpECw2XwiAkehqOLZMstQpj08VW9aqSJBk2Br+eDHaE6/yKqamM8ye4KfrACZdnWM0SorZs7XYhFf/RQSCm2iPJ87FUIy6z/lUQFPjWWukjaVQptW43lh1i9t6cWGt6QzN62edPFISduUt0kfE3yysufpN0RD+MyUciv/M/YRXQJ/ywxw8xGBZ/Ln9C9jN9OQIeXXCedwyk6/gDP4yc4k7c615/vz5xWnkj/9WSCXz7W8grdS9OIpi53l0nUDfieBzTnMi31EUAfIzNyUNxcJIp/GqJKkc+HknGlcHtLZAsimHLzacHp57zzZ340X+Jkfr6DTVS9Pu8uX513HtxpLlx+glv8se/7K8dd3tVtuuNBOjjR+sAY0Gl1dI3v8zkzG53vXp2GjOFlvuFzbjb2MqJhkXjwNhgRp4+uCGJOE4GImYN963laWLBmkkvLSmwTYPHvznAMYZ2ANvSmYFTLOmQbqvHE+nYhg69PxqjKmfMBqEDZGRU6ujMPGvpORGcEBQnGxESBAwRnKRjLyvU5qpOzFTn+fGXT9UzV2/DpH7PJhdpaDqU0SuV9SuCFQ7WBZHlMjRQTbtk8huICYqwN0HMdFif7sGM2U6JWZ3FFg4Bjz3AVvykbMzl610ZMAIRyNoCJkJhLJQj8yQZhgbDaVpS6aa/mPDqoOGrg5rEXwzSbqqq3m6jwZmVO0BrhJRoCnwASmP+TKbDui4ss9RNJgQjmh7lFKaTaq0SCfu4kjsr81lV2W47H2XwUm56JoYj7MAtBQie3ddb9BekO77dhuX9HaDX37iv3tF+z3L/jlb/+Ct69vuL3d8P3vX/HL9zu+fb/h2/cNrQ+0/o7TfmCMJ057B3CWERcZS5FSv203qDYM2WoRaxth4Q6BGQWUDWgbRLcop8MGlR3NWypIgY8o/9m2AMvubwNvX77gcRzZFwFw63BTjNMz6+jA4/kHzucTx/HE+/sPPB4PfLy/4/k8YGNEFh169tnpVSoRfaVaGo2AZXnAeTyjQaMZfvUTI8sBPj4CbDqOB47HE8dx4Hi+4/2P/xPn8x3Pxx94//EHjucTz/cPeJYQ+LDI1AKiS0gCoW0xFjAYNW2R3stUfUbAUCQV12mahjf7I0iUcaTBS+DJ+Q+Vdel0j7VhZt3aEKDOE2if/euqV6AIQIArz68dOvMGcwc+Xlbm5ys/UujnPQvcoFGTxDRHR2MnXgSLBOzrFENnptLWEziSBJ00+L632Klua4JNorRO0+ZtAmwaJXUt+bInUNV4HeRrBaUaM6J0OhfLDk7X7KcrECXLRbnTDiyyPNBzx89EvFQUplplVy7XuSagAGH3MQqrNRuoFNQiKQEWAM0eT1MfrP/6cqVYH8YUI4K7WFjryNZBzjGQNpdmRVro3kJCHuvquOqa5YzLeOE++1P9O0NZSznne9fr18eVJbH8BPdnzQvL8h3/aRJ+HsByq/lY01ldWulMh+enx+J9pRwv+LwO0jhXCeRUMpBnZgE0oUHbCU0ZfbYTTQ+INJz9gOXmK5KlVrsArW8QBY6+4XxuEDgOlfJ4RKNJueMZ9lH29+GAWG5PZy7FFPoW9zJ42XgiWgX7vsxpFP3wWVOesvRfgN6DnukI+7ACn86HYAgwfnxU5WrbBdvWsO0dt7cb2tYyE6pHydIWmVGqsftWaw3aWoJVt3By+w2tbbGRRnuDZPmdtg2tdTTt6C17zWiDjdRH6BDf4aJw89gtTcLZNh15T11sGII7ETDBMIg5eran8Cy5dc1MDptZbSodcIdpfI9ZTzNTX6E96MhalJb7iDzthDaiF6E7xKIsz1wyz4O0Kckb8ZflQkkFUlJ+tgZBg9kou3Y6yTG28zTgHJCu+eRxLa2gSF7QAGk9d59ruZMZS65SmyjHZKjNHIAr6LSAUp97PwFzJ2SHQVv0jRzMWGLlQyTShP2PAYPjTBBNUj4yr30Aoc8zs58bFnEDneqBlW0UznNU7lzXVlMQGdcGyU0nZmf5kFVbjjXm9JH0kBsWuAEZsC9fqXVQTjOhIOawobljZCntmlzAqhiKeONcMRk39Xu8DFHpyxJSAbLnYdhmyecZHIy+U7lrovB6Ubq+73udfw6DZruV1jpUQg87JuBEOTncmXwER9hWQXps5RG2lSH9WSgsfZCzSgvTbnfHcCRAEe0uGGgIuogdEHvvNXbHiAoezAqS6UJEeb+2lsCL4/lE8rOnH6oYzjJGg8jc4TF4PrMPR5S5ES/g9UsVYyaTIp8Hq21QAPX8/WffeV3bBdCmPakTkYjSTMudTFFZgyh7c/rYYSZ6+rsZuJ/GbSZIcDfDHK/NeQzfLn3WpLfeEkjy8Nv70ncrni0b7ZdNgsgmTF+LZcs5W2kDDVxnY2EEQYFs67eSOpbqA3y+wuU+l7n+02/8fPwTPZ7mz59tLLn+/WcLn5o4+ekyXF9+uUSoF4JfrbsygWjQfEIcp5E0ay3nOPCnv4OXJ3yLyXRzI/B8LzMkPHvn0NEvg6wS8FH35w4Udb9CXGlck7tm+JoClyj2CltWepwEQzILIICpBEIkM3VSYfA5CZpMBpkM774gmC6xJXGlNitq+5As1xGJ+nQuu0goe/bWirvQIPafhALn4zPI9BOqTYMvb8TGh2wOWZPxJwb0fD5JQCdn3FhGws+17GVPlJ+saLIoCCwOmk95szog9FHco+PDyJFpfYBo/gyrsid+7yf0f1G8saYUHigAzjFLYWgsheKlUTUR/WXmFwcA8Ba0OCPhVul5IhuatGikqBG50SZwOdP4OAuYtBFXadoD1Nk36NbR7nfc7r+gb/Hz/uUX3O9f8f3vf8f96x23+45vv97w9euG+1tD3wZED7g/YPYHzB6w8QFEtX4CT9xJa4P6AZcOUxonxXHBG6lYIQLXHeI3SLuFYeGAZpRNYNVPJ76b5VE5wdpbpai7dbg3+IgS3HEOPJ9fAux5PtD2O7aPB/r+jufzGeeMgSbhJGzbhq3vYYhIlggCgHj1bjuPJ4bF9x7P9+rrpPsd53niHCfO54HzPHA8P/D2/YZxBPD0x48feH488P7jB87HA3YO2HHG1riWAAfStXfP9TPYuUSVJTIO4J5Nn9eeSMuLtOqVhE+SnbTmFK/zC/wN6WzM7wQxMwW+oublAMQFBVrysaKzc/GLv1eyL6dYp3xZASf+QpYheL9mkfAGBTrJ/F0QTpPm55qyjxlOsUMOd0rCzF4Su2RM0RlqGk3Fte7j9bmAhjFmryaZJbMVUcWfyNdFNsin81HnzhKGymuRmqKSmaE6c87KgZrrNqPS03jKk+siXBqjHFqWpAI6lG+rrXAxh6aMnR4HSgddBs51ZN+NHFORCJZ1n8OZ36O+rPtdRzTpRIr+/+FRw1me8dOVLn/L9fM5RnKc1LA8B089skDHl2m8aIeyt+ar8mV9OZf0ggzc1EzmM3PiKE6ddEYHPHhj2JQDoWM61AWteTmjbYssCB0GHediO0b0a7MouQuQ6ZzOhnvZSQE6GVxGlVyk8YfICSbTr3ozKSbBw2mgX4/PhryKwLMn0mWWk5ZZ4huZRXPeLSYKdgLeHfY0nE+D9siK2m49dbCi9w7t8bNvAUD1fcO237Ic747WtwCa+jPmVTta39Daht47vG3hJKkGSIUOkVvuKtoA9tORCDy5NLgJfOi0P5ZJCEA/sqcVwpaooUvMI5NWWXaHFB4pu7k7tiAA86Rt7mDn0NhsQzP46rMsBYh+m9Iig1l9C2q3sEt9ABBHa1vYN+mbzKBfUTKiSkHAptZcs9otdVEwJUcJ8nNX6kawv6Fdyqy07gnNAI1cy+dWHrwECz7JcB7Dctc+TVvEDOd5lob1JDMql4mrE/bKsqg8KLPX27DFBnfH40YnlmV1AZg2cFdld89SOy25WiAAAxq0q2rn0uBCN9odk9eEoG0mONRIE0iqDXvKRgiJ1Vra9snT5S0sDccIilQ/spxvU4/NP+pczj9KdtWcUR+yvUTqn45Y89Yaem9QCTpgoUHpR48MIz7WtDck/V3JeVwyn0SZmJh+4VRGPA/Czo1T8q+tPq281mmPTe0oy7cw35Xw/XprMNEYiwFSjnDee6D8SslxiADROH1mDZb/op/mk4P0K+g0j9W/XN9baG0FqfKf6S+R/qL8mCxIv3X6TfOeRBgC6871uSjFOY71YSRVoUKhLXlm0Aed8wpEgHLll7jxWl3jaDqflW1bVpvVJUDtGfCiDTZXl5oPy0/aHzHeecZqPX3yJNdv/w+Pf2JXu3mDemyfBhUfZAro6/kFPolGbTQWZuNfn9BL3riUeUbE1luUGVVG6dVY4tgnTcQiRErbwqB0LgoODoAmHrHV92NHNTqhUgJ4sE6Z0m0x+dyRjQDniNngMvw5pp1rMWc9gzOTyhfjiMUq+ZdSqM9dLhzMWJD6uSoNfpsCQYuApX66Acd55uMEglo7S2T6pohc+rcwAmlCVUcGXoXJNcUysqZsSWO8Gnyzz1FIC02B4BkWKKUnuFxjyqYVTEOUD9KwEWYGKVQN7lq168wsL+duuU5jVMcAbl/LfgdlhPB3p2ER7ysNOHhMFA3NWpM5N/MgHwikBZ0S1Pz8vH+G+AMogWpGYRL3U80SAaCiMMzkY0N31R3SNkim+Lce2SdR/nbC7MA4n7ARze4FDa1t2LY79HaD9A3t/gX3b79i37/gy9fv+PL1O+5vX/Dr3/+O+5cbbveOL98abnfBfnO0fsASdBrjB4Y9YOOB2dxYAQ8DE9hwjiMMO+2LWAUY8TalIaDwdof6gSYDbpn+Fm3+IN5i9zjPWGo6QhCB7B2dbQdV4bYhvtyzn4Rn5tGB5/MJ7Xfstwf2+wcej2gGfo4zttPuDffbjtseEekuWxjzANxHAU/HcQS4dJ74t99/q/f19owIjRnGcWKcB47jAypfMMYDz8cf+PL7Dzw+PvDjt9/x/OOPyJD6eEa01myCTkDsknMGqHUczM46s6+HV7AywmxjGnvDFoHrkZ11UcCLwQDKBSFxTtmRtFqJ5OQ7IT9JOQpTtgrYs6CiXkBq4VVN5jUcC69NXmHGadEMaFjO768g/QTCrZR+GSwSAFJnA15BNgWfkdLadS5L7iJzKbfqxdLbSTCbiFdMwiujsGSMoEAsBhGuQP7FBLocU16s4BPVWKwVQdcVOWGmgNc88Tv5Bh39xdBZdTKrlQkGhw0wA1OrMRrrOnXzuq6oK396wiCEGrOsNHG1aKeBzs9o2qwPxtsvhmzQFC2Jq4Hua3qT/Exzc9wcx88rxLkrs7BO+ZNzJystcg+oNgP12WJfcV18/fzn0YWmBVbuy4cpe2XVsz8/D42dBPgZEGsaFx4S2QpR5w2Rln1UBKNFe4G25XbkomjDoDbgmRHjSILy2IGMwNO69bvpgSEa8knOMrAYPORqqc9SoTUiTvsDSYtriWLNvyzPS7lXWWjMXB9Fa7PX2RyLWDT1dgB+WAFP9nEidvkS9Bs3fBD0raE1xbZv2G6RhRS/39D6hr59oG07tG/o2zMyLlpD7xvatsXOxdseTmRvcNuhskPEYq20x/gZbEEDMihlYzblLTAx5YVolNo7BCNtHPcozxNvGAk0yNI+QfQK6CAdMfYEchds6rAWoOF5nKF/SHGpg6CtQH/JagcggBVBQ+stgMksbSngaVk/8m+Y3jNAGcHcDPAKZW+WMItU1gd3D+UGDnOXQVl+StoWtEevQE9MA695taP5WY045wkNOO3EsIHn+SwelbLTKZ+Dljhxw3328kX2uZSZPcygdlQXhA0SwFO6MxLyKvoYhR/gaUB72ZXAKJ8ms2hZaqjcmsMy28zhVW5HKcgghRZQGwTCEjNf/KWZ+URdwzmTDFqV/HdkCS5z5JbnttzYCL38I9ofQvYmz4uU7TLBq5hv1ZbAUy/aOM+8Dv0eSFQtIM3PpbyPyQSJHsKyWA6aoJI7nDmX+WiRhZz8CgGUvoqn6zJ9jaoOwMwULzNtecT8AgSOpgr0BCRFI4tpJE1Qzo3yqC70J2AmWqxzLKsUefKGZYPRBQZ//uwrXvRYnXsNwIM24CdTYAK7nveaQK9XvzM2ml+ut/y8TJNz/ELXHaRiaZI+htQcaGXwp0xRKf9f8oHWzZ7gYwLR7lX2UmoKAV5Z9kcD5cOyqKvVVFZGGrTRPH05PtkekwvyncvJ//7xTzQXRymEdfELlNA5iJ9ey4CitGmiZ0Khz0cpW2028ApKSWPfUCAPzyUoRNZdp5PvGxmrnidTOF0ifVNSqCXRWb2iHnuYgTvYNUTk4jjOTM2z2MGuGEDrzgH+TiYVYdEAI31EzGO8lgoWjnp2x0Tr4RNFX2l9JFOYGVqfzOKlKCZ5RWnPyqiMWCAdqaV5nFndp1J8eR2OAxIKCAu6nMqIOwpYNS/H5d5MU/yzrKf1uDiVNHadKYazV8C2bYi0XfYB4j11USQRbamdG+ouUoxPutGk31ydUnaRehkgUCie5I3FxA8DDKk6ueuBRMPMvF440xS2cZfYcSQUVs9dDkaWaJEepxNEh3dGFCBLOnQ1nBPQEG4SGVzaAlA9x8gsuWia3rdoVurSIT1S9Lf+ht43aO/o+47WM/U9gadhTzyf7xjnifM4ASh623Dbv0D3L9Dthu3LV3z/9e94e/uC79+/48sv33C/3/HL97fY3WcTbLuh9xOtnXD8gNk7xvkHxvkDZgfgT5idKYQFTTaI9Og1dT4xHKvWSmWdNYDVMFsg23c0+wL3E10A8RGZPLLljiYCQUc0tkSW+KaxJryHI7aoztKjpsAm2PcOe7tjDMfb2xccxxnZSOdRPNozcr3vHdvWIwIyVplXRIRhkUJ9jIHffvuB8xw4x8D7x4HjOPF8nng8orTv+fiA2e+ABRj4/e9Rlvd8/8DHH3/gfB54vr9ntl9WU9GgNhSA9Xw+MCx6av348TvO48DxOHA8nrDzBM4jAghmGI8j6Nk8jHlu8UmehoANQleerEdM6507OFKe81AiEYuBUEafTNqGRrZWNVVdcmtbgfkxruJWylNMRT/vkbdN/mrM/kMa2qkjVD2dD46L8t6yAXjwbMtyubCtwjBuzdBEI6c2gwu9a5TSSRgOPRuIx+517BM1d0aNa6XOWQwcGqMr0I/MNljLiWodSs4vll/q+IhkK7A6yuZAQ/U78cq8vb5UuWtdlPPQAbHEdTWvRdWpZc1M2Uh9f8kYyvdXe2TiKTLflKmPa+wM3XyehOUwjzWJrbCZP/SzkbkMB4LpD10Mn4WeFtMYJcj/9JLrB7K8u4Bknw4HgdV//DlkARKXe1Qvjhq+F51w5Osc092nTp7fvGZt1LgV4Wxk5inLAqmB1acD7lCM4dlDUKHNIH1giALasXno0XFusB4BkXFuMSrtaNstQZMsKdMN5/EBkQfGGRmzcA39bWn0J73R2CeNDrf8O2WmMLPgSoxlI2Datpf1S2M4ggueZ0cgDcwacUTrhORZsxN2OOzMwJU6pDmej1EsuG0hY9rW0BqgLXpEbdsNrXdstxt026CtB9C07+i9Y993tK1Bm+J+27D10EW3/R7l8O0Nsj/RM+BkQAZdO3x0mMUaRtJROta6xZwDkc2mCnOFajqkPkAAroA4SVtzkUnTbh+ZhTuq52JPu8XNcD6fobOOAbEo92ruOA+FjQPjQIAbcEA7tAPiHqEjEbgFgEU71WEY55mB0F429DlGlTFHWSIgbjj8CAcvdSgDVNw5rbXcfTDBJ1n4jTzQWmYlwCq44e5V7kWwgu9XcNmvtgIB2OOMDGlDPNf0wxZQaetQR2UNrcFukmvbemRpiVSfIDt92riRzpZOc4JuGjxNRE4ldwKzkMO0uCX9myiW9JqzmVEbAIBkpliMTTJDcWYP5VCj2T8GgAGVBkfYytTXzDBTFQw/EWBk8mNtnEEw5BpMX0vNSlaaRVBOcuOUkpIEzgEI6crBCg2C6SwhLV/JJ9VzIw+pwPqYAHoaPb7qWEgCBQLuOuvjTJ8ugOPWFFECe0RCBfWZNkASaLcAsloCWWmiTOm2mAUsfHFDgNUOmAIHzuRxABrrzd0akT5pgPaC2AWcUyrZDkCzZzATDpZ8mz83Hy/0z/X6+f20A/Pig33Pio/mhcsPG5a2Ha9LP1XL5qxdEUEVODOfCFbFebLYmkwGibXrPWWgWQQfkzaKF2BRYkf/OANoZl4tfM7zrFirjav+Z6KPLc94sUSW6VKd8zwuGwuQ5+ML65zy7att8+8f/2SpHafiMyNSYYczaMtzE4XmVSKCPU2ZsNVzkh0otPZTp82Kmmb6bswwEuWP3Q6qoXcRqYAl1wqdJU2CQK8oGN0zrdMAaXAgs5h4zfzdvAA4MYstQi0zSJzIpJWNwYeM56ThmQhnPvuCWVSvpGL6UixSzqFNs7bm0DxWhkZlELrX/K9nl1BLKeJstJnC/nIu5zIv+/la/DeUSrw7xhxfbL+52KTlIFwZ/B8Z8p+fgUwnkgZJzg/r6pk5tUaneOO1h8llZ4U8DGl4s+kkn5LCZDG/UY/iZUwif9SzrAYByDmh6N3JCdOQXZkYQBnCLAVk5hHvztYUtZZIwE68jLI5bxxPOqEq6+oBGtE4iKJtO/oeBqv0O3S7QduOfX9D2/YwZPcbdFO0LoAMDD8wxhOPx48AKI4DMEFrG+77V/S3b+jbHduXb/j2/Re8vd3x7fs3fPnlDff7htsXiV5OzaH9AOSA+QG3d9h4wMYz+hP5mdk0RzyOIRqe4gTkcy1zzlMq7ygbdJQXjV7A86lbLpRC2z0VYwNwAGIzsiRZSlIKgCkuq/GWu5UhgFm577htDcM6xtgq0he7kAGtK3oaXDrYO+FKe+ZRMz+sYevRL+A8HR+PE89j4HgOfDyOzLR64DzeYBYAEvtBPW8P7LcAno4vj0m3CeaKAOrsMzdwHE+YHxj2xPYRu+cdzyceP94xzgP2fMKOE3aesMcj1mcMjGc0SY8d+XJNmBljV8dVEP3yRLN2nfPIoSWLTfBKQLNXK9CxZBqW3rkooKSFAKGC39K5TMuqIAX34tOS0eThDEhcEpU1s8XSOBEaB3mP3iQj4NE0XDV6nk2+p7GemU2afZlELtlQMzgx7x1kPDOT5PLcV8Nj/dvn0/7EL5Rf7rzep3PSSSxxlfTOK8pqCFPw/8nfdfdc16vcXGZ4eRwC9GU75fv1t8+n4nYHcbkwuFMIYj7cvP60TrjY+Zq45U/Hn+ksEZ9D81XlOVajaH51ZnsT4JH1hpfz1nvK5fXT9376XS5/rdpvtUU/q0X2M5rm/+Vp09HlGEhfJBz5fPrCwz8PsYJdvKJGVp8LoNbhkj1kejjMbd/RERtADNpwAKTfa0fVtp/Yll6MkNhCu58H3E64HTFm9SzZmrNCx7jK9OZKxjP4ol/zbwCXTRY42+vMaTq2pFDxqdOpv69zlqAEbQzamkJgGTjhsAGM0wKYEuDZDH0DWjvR9xHAU8+eUHuU193uG9qm6FuDHRv2vePcOux8BPDUH4ANnG3Dtu3lGMI73LZcs8iG4o50cIVkcEwgWVapEGXG03x2ZRkI2JtmZmIwA0MSiQ4QMeRpNMFOAG/Mhth+hDw3IErtvEGUGTUNLTvhgH1ks29r2dyg3knZNJUMhN6wpNOcXxTQwWhLfyaCl4gAD20y+CzXrw0eolySVLICT5EBFiAISw7dMa9fm82w7+vA8IHzPDGYrRCGOxzMrpDlgfPhFqlQpY1lI06Q0Jdx8RmQwIlybZQ7O4aiqACHE0ReZJFgto1QykBmmiPBJcyxlt28yDQCxM5M/kWOiZSdPEY0uzD22ymuiy8wS0orwPI58ywEuragZ9JxXNcXXexlmFdgSFhS72nj0BaJzyCZaVVrks3w159syQHaUNzoRfP3oEPtLcpJHWErU+eFhZkBommAVYadIO3jpK8LsDDXvOyC/Lw1W3qlZfAuW3HQbrEefA+g/PXKArIcCMYEVmjriIA9xgApnIr2xswajc/DtxtzbQsAmnKYm1HNYJws+AR+Aq0sewGum3RxDlSz5Dhtevf5fWYYRaUR52c+ny1VAdWwH8gm/Cg70oGZx0LbizpJgudDpGXANdeLtpDk96tk2KXmYYKdtN8mzV+01mILcswzdDuP1bb/Hx3/RKkdcxU/R0opaKUmPrIyYrRR2jUHusbqIsM0jS/HFDhAipepvOODFNQg2FMtxgONrwefxk9kGMVZgVdx0WbK6/M4MUY0Ftv3ECrDDGfujjay8bJ54FWhJEc+XxoCRiGb3JSNOzgPk8EXAiZhpFIyC4OLsmLN8pHcPYH3EM9sH0xGljTgfEFzkydzXkhkIeijN0oKQVn6DWAxci8C+OcIC4CMRmWWQaYicrvROScoevj8/YgMtahH958jOSvwxKjB83kUkW9bp37FeR55zbVefkYYGNW8UnAIlhNRBqe5fEIjw+cT0AmeBiiApUaX6aPMdLtyYxi4VnfP1G4aFVkKyX4wBIw817plZIGNJENYaI0JmCnMg41A+aic020pQ3NUqm7P6Gjbbtjvd7Rtx/b2C9r2FdpvuN2/ZKZT9I5om0aj52YY9sQYT/zxx29RyvV8YpweGU+3r3j7+jds+x372zd8+RZg0/df7/jybcN+E7TtCZEDsb3PA+YHYE+4BehkZwJPdmLYAXjQiRhgOFOYPi6CExKgE1OnXSwUblNAWzQEH442gNiqOQyz1m5zXkMbY3jL4q/sX9ayz5VnaZ4ooNEYVLLsjk74fu9wtFhb+MWQQPY4YPNm0eNKL5V5EoYz0PDt64YxYpOD5xM4TsNxON4/Doxz4DhOPB5/4Dyj1O88A3h6PD6wv7/jPA6M5LPYZnmUbNAF2DQ7AlC0J76eH7C8zvu//RZR5ucDjx8/YM8H7OMDz/d3jOcT40MxjgfsFNg5ZX4YsCkns6xFHDhGlpgRkMkMF7Ppgylr+1UxspRG27IphA8QwJhCI8sAaAgw6ii5S4zkOfCMdXCsLAGbtf1TbE+0N0pJJDImEI4VeyxV36Y0rFuL5uAEkpC82xt3OHI0RBPerWfDcF2uoTFHqzlAWaZtBZ+m4fj5+EeZpCFifPIN70B/RCakQb0TeiwHJ/O8Kq2r8qTFgE1dmyHydID0asmtDsVPo8yIbjkc07ziOeFPkecJ6ngZu1dZLtfLzyefxnW7mG/XD+trqzU0LRZD0hwSc6L+rfmUSeDpqJUZmLQ1LQRZGoeGPKDhT+DHHFkupMtYftbhLFmqnd1AO2OZg/wjJSeHOG2rXLOpc/hFrvd1riStX9p581noeSRNtKBzh+duUZEdH5mVkRmkw9Eg2PLZpZ0pFwAThYzsDiaKnoBjaxvEG6Api93g4wEbsZuoj8h68cFMAARE4R7gOflApo1Lp6aOBaSKZw5voUrEysaSWgcA6dB4zikvuJQ4ZGY3yony2EVyoZfzWAbiVuUzrUcGjW7PyHDpDW1X9K2jbw37vWO7Ney7YrztOPaO7dZx7Bt629H7DXZ+oPcdt9sNW9+y503HaFtkR/cbRHeIRF9FEU2wqU9uTjlluvCeAMCWTpDhcTzDVwCy0Xwqiwwuaw8EQgS5kUXo99Z7ybZjjNg1NgGbAJ8U6j36DGn6DKTLdDxjXmd2AlteMGMDDjTpoMThtvIAAnhTpKMdfOEQDAekgtlpswvgkg6iam30oDo9y9YFq/3LzyfIGXxBXpwbI0VZ/GkDz/OgMRoZT+kYlWxJO9181Y/hmGpnVYbkfXJeFr7m+FprGXRmuXn6AHS0LR1cpMmNmPsZzM4ytLRzTre0bS2Cd40+ildigC/970pueVSiRJkd9RRIfXB3HOfAMMlNkXShwUwecEuNIRNApNxUyqxo3M7Nf8YZQTpm/UjTqvJgMkXtSlv2gAF+ZuZxh4AA0yg5EqBENuCujLDUbMOmTE7eIpggqpD+/6HsTxcbSXItYfDAzNxJSRGZWf0t/+b9X27mdndmhkS6mwHz4wAwc0bU7SxWKUMinb7YguXgAHBWsVRYPz1Qu8orZx9B3WaRmSootIcUnk6aGUDhT9JWnL7UnAe/Fa7VKtg2dn8XVdZXy4BqaE3zekrFWY0h7uZ5RRiIi7U3ghEqVy5prKW4B4mgwMWPhp9jQKq4LyV49WnnGue9sPh5XmXahOJ7qVZnv02/dZ6PQccISkSzHjPDefZ8glnWzbOIliczAzGSVC02gxvCNZisZAtYdgaTIziU+j3OlR6Ng58obmPGmOh8zkUFLZmfqa/i3Itr/398/Uc1nubk+Xv+31TM8ShmGCwBwur4S2rcHJQZWY2yi+L1VFLPulCxSCDGSOFjq+Hp16+NAuXshih6R9MmutkFquzCxRUlOyUQIOtD08AtpbJom7p4sGlmhsFHsk2FYSCiNCEQ5tjx/RJvS4i4SMPiOYcKotqceYHw2Og21AVkLJY4mTsbbrwWmcZMbODYMCvrCiGgZX625nJPI2pdaVG9nxO3FjqMg6K4LYDMn+cfU9n8u9eaErLSJq/MqFlIUpaNEv9GdGki1DxujGAlSBoD9UVorq9Y210DvLs6birhAsQYR2Qn1EK8t/6FWXQx/mfwrHakTZ8pP4mi+xrSuX5rnfMan48xUsnX6tCtSM6ZmdLADuUvAEpFbTv2jw9s+47b2zvuH9/Q9jcCT7cP1P2Oj/fv2G53tH3HfmN3ndoKajMMPdDHE3/9/SeO5xOPxxfsVLS24/3tO94//sC+33F7e8P9rWHbBfc3w3YbqK3D8AnTL5gdUH0AejJVrB90CnqHHifUOqADZky1u1ArAQQdlFEPAk0sbGn5u1gBpEHlRNEDag2lfLlxRuApBFax4RGNCrNItStQ8whkmVFQlLqkGm0swg6mhZSYJ7gTHErcpZPZAPTE6D/AcFXssXDS2fFOSkWrN9TSsLeKt71CdYdaQfcCjjqA4xjofbDOlDPQPh+f+PH5ifM48TwOHP3MDihwxzap32bo44TagWGHs88UGAPvf3xBVCE60D+/MJ4PHH//ieePv3E+H3j++BvPz7/QjweeX1/JoBqDqXnFgH6OlCnion0g5KM5i0hyGKYyd+aa7/sQf4DbrkXSgIlojsQyTyBxmj5VFoAYcMAXrrxnECTl9iJTW0b0AMhIJV/TwAzgSFHh4JpIPqMIgSceX1Bt8PdFw0S6QnJaAoyqNDIT34kbDGNokZ1h7IWujfcjAKBGYI/6zteQmjNO4vwE7BjVr5Bak0Vg/p5JjRujs1Ca37t3u4vaHAmm0hrn2s6H8h//HbM723r//+71s/m46gYesXaMs5dPX88jv/jsv7/qPNvKkJHLUevxcvltaopFT69G6PU/F32Uenz9Xuj/PGyxAUpYk3EJuz6J/WI8F3si7mINK+X95xpcdWZYPLacQ/J498p9OXs5BjXUsPqVoNZmgHQWsq2+KAYURZUMQlWgVpS+cw2WDVJ3ABVlu6Hud9RWcR6fOJ8/UEUwSgfQQbaON5bwIF/aRIKsiWIAikVDA7id+QJGuSlnrp+jJmjuA5ki3sKukujRFmveo9Nwe9MQUvK6GdTmslBJB2F0wyiAHADqAEoHmm+1yg57bWP679tHw/3ecL/v+Pi4o7WGre04739j23ectzv22x2tbdj2HW27AaWh24kiO0rZUDcjI183v8WKgkoAVxYg9LJe+N+tVlit7FLnwFPxWoYGOAjEFVeTVaPe1anQIWoOMOkAhtvKxem0keq1NaYUdYWV6oBLQXFDKwBHIEqA+CrP3CKCkcEGTMBpXf9esiA7DbZIWYvC44VlC5xBFjZzpIgxmDBleMjqlfHoT++d66KINvc+nfkozj1lhSlLUKjvlZDD2bETYb/PIDSzPfpFl5Q6A9TF7aDUrkb7C0anfDKyFPt2h5QKFeB0QATizYlKcYe6JCsl18kFiAu5AkTk3ZLFsiwuEbS6gS4uO3LPLIl49JJBOIA1S6PD+DwNA+gB/p3nCZGeAALchldTb9ZX8vzTVxWUMkuWDD2hGBBlOhzlB+dLPa0z9sAKECo0Y+bhP8SzShg6i0ytRbiu1TuSR0DaGFKQojN4lCvKmabwLsuNgkrCTrVZMy99m5VBVSjhIv1eVAAQnJlF6P27ItO3D/DVU81CWyShQQ3bVsDWjNNOXdNOeS9ep24BgeIYuIy+uKwWu2ZdPJbrblWCP60xGBDAICzF8sVWkQDKQ3zMjIZ1fQeQV5f1naAtBDNIFXMMSBFPhwP9lZdgFRD2ML+ry7XDDCvhRiEN55TLjp9OM0KQQeP0F/wzM+qUX4F4v3r9RzWe4hEiSLMCP0GrowM8J44UUDdrLBYkEekSggO4zOhqauXAx7inI3I1rvOBfczTGDJgLTgXwjMMnVAWkTrDe573FGtvNbLMn2Gtsp+TgKuh+WqWhtCQfLrry/ygV8PPDM6YmO8qfBP5SpcYKxEXghN8eAV84jo55q+fY9LLZxoE8hp0sspCyeUru7bBZl0noUBYz5VsrpfrXkEmTODEfzffJOHo8f35LAFO5ZymXWuX73Cz2HJ83sEyAshzzXPzhLH2PV7rczvnLYRGnNHvCOH3cB9ZXi5lt8hSa8aW8YKDRkCY5zH1cb9zPIhnT0cES6MLX7MiQG2Q1lD3O/a3d+y3G94+vuHt229otzu29+9ot3fU7YaPb79hv92x7Tds95sbVAW1KdRO9PGEVeD5eKBsDdYVW7vh4+M3fPv4jm2/4Xa7Yb8zp7luJ0pVQE4ym+wJ0ycBqNGBccJ6z2LX2k83HAY8rJmUeQP3QrBCNEAdAQEjob4Ktz6yf8yNFhb+7+j9wOjPKQsEgANP5KEVB5QUMBp3zoyHgs65SgFpw+GEbwiHOqSFLUpedUBANhe0w9Axi2L6fLlTL1b9et6iVggwGgRbZRqJWcG+baw7d+44z46zd2x7w7ZtOM4Tz+OJo3eMMOoXo0VdUXc9MfTEsANDD2AM2Bg49xtksDB533aM5x371rDfd5zPJ/b7ju2+4Xw+0O6fTMsbHef5TEaffj6zG1HZLfcNa+r4FgOQ3U102YvJ6vmVgvMvhjKGpfybH9vc0YKlW9scBvqaEVrgvirL6UWQdZ2kTINDitf6KCwIXgqdl2QwyWQuiUSYhu9Hep1IREcn0JT1KVyehcz4WWpJvn8xo4wywS5H/XevxfBarnApAh56RmQBXP3mpXgNivhOSbA77bFfnGdadpRv3KRTr15V1gxwYLqHqc9jvVyCU6FbL9+5PvM6Pj/rxOW41SD9xVHrZ/Z6UExQjq/4/+Xlm+v35OXL8SSvut11h9jL+a4X5/qX9a2pw1wnBmsgGLpXW2aOX4zn9X6X8yN2Ey+0MtUyPut6iS3Xxe0K/7RO0LbU6qxkQ6nsLlqsQary/bbP+1Gv+2OGsg0EB8fG6TpA0Q8B+okoEWHq3/Mivax3YvmcBZRTRSJenMbw5fnnWplRaIgse+rV7vEzpYMhgJiTDSIQFfvDKRhxjXWDWHXFNmWn5rwCpgqplF3aDP30qLx26NlgfaCooW0NfaPs3o4d2k+MfqJtG8a4Yx/DO+IpSlU61mCDllIG08jrnjVu5piIy3BfD8ZRXOvrwW3ptbzAv+t0Vdw70iKzVlIWMF9sX6+BE+nxUU4MnoIiMY6mXvfICyfH7HutKQa0ogCxuWM87yeyKCRYTd7JLthNAeoEYBXPFUyPVPuRxuaO4JqBYGG7rM61gxRmZLnpmABeyNf0FVLnefA4wJbQbznG/oyCmcoqS304y8eeTrqB4x80idCpEilEnNIKT3tLVvqUJnl6s+Vd5PWTtRWgtLOJLZigq7ecd+g/cZ95HtYfAzwNvkQAxvX+khIJrEHvZd5tyu4ANmiejnxmi5TarC3FDyJ1FgEyqWKMM4HNJDP4v69KP6W5P7JJyXKPEmtc3JZV9TVPlj3tk7g/BSIN0IBZf48nEYv1Kc7A8RRmmPsWs/wBvyW+V1wXD/EMBAbHwz9N/ZU37WCxBSOLqXYF8BqAPHZNdU7WaOrDOUSW18mVyj29yOHwk+Z3xI+5Zue8BvXmGl1BQOT8h78ZmUkXG2Mx5Fj3KuKHJXVzBD9zLa/+op8nxGJYBSLmb/KiVjBLyyz2XMjNZIGbOfCrUw68bqPFTsi7/3mw8U9e/xh46l3z2vx3NSpsGXAv7LxYW7GJ4Is0jG6kekdu0FUhByhwRZbDeJkv1l4KRDmQek+ycWcnajTZPDkNh+TRUZAMHQ5ULWhemhfmGylYUZrX+2nAX/+82qO5+ezyhckYy/dioQNeKNojbqGcXy5FIV/noi+CdeXMDfPveXGruGftET6jatDYkR1QIhIQheBK5GobC55hvY9frMkrWr0K73lwFjWXUKaa57x+x7AKs9jbMRYz2vurG1nnIP4b4mIx4gWwn78IGCYrzg2/sBWn94FLrr6Bxr25t60IQRJFlmeBSY7nmNEgY2RlDM8Dt0mBNRgNTD9vKcJ6CKFAwzDadtT9hv3jG96//Ybb2zs+fvsd77/9ju1+x/b+jrbf0fYbPr79gdv9jYVJbzeCTlVQmsHAQtZlK/j6+sL2eYN1w77f8Nv33/Hx/g37tmG/NZRKkGfYE4YDZg+ofkHHJ9SBJ+0nrJ/AOaBdCT6dBJ2o8E4ISEWe5r8iCqapDjfQBLAKLSWBaol6FFGbwusaDZwQKTj7V0gOVBuANCgqDM7qQEUpBJPU6ftFfN6zxk1EPBuAzX/nd2M/SxgxIxhcATjxGddaZXTE2CkH2lHKhlI2iNxQpDHVobS5yPY7zARdNZsfPM8bvh5vOPuJ53miK1OTEfUMCnvJkZ2kOPV08IlFy3V06HHg8eMT1jvQO57bDu0H8PGO8/kd43zi+eMbHp/fcR5PHF+fGOeB0U88vj6Z9nd2qPxv9LNDx0Atg8zIodBzGryZIhoOyqJjYl+nnEw5GjpKUslSoS8xoNz6IdVd6QvcwJzHiBsE9Fsc7vU9FnW2y4JIRSpd1G2qpWTtpqDaz1AHo4gl5CMY7aoljF0vGOznqV5gnIxOr3/iIjwiU5ayK8bmxWJwQbIa8FGXYzEl5nEuy6LLV/XRdM6tf8PTF4OK5cy/AgecothsGFlYgG8shqdMkGrWhYqXIMoIXtXsohuxhkrmU+dhc6m4Ty65TkLKL5bHconlnDZ1wi+OXC9z+exyz6kf0jLFVYvHuPxiTuJzeTn89XmxBq7mTMV1MhUJEvjG5dnCoIzGFOu5f/rXrmMV1P51buIu1sFZYF1+52LlGlOkBGk4iRAkZ41lOq3RPr4AqCowqSg6kwhEnb2EgqqAOPupFKCfO+rW8Hz8jX48ARR0Y9kAj0jQCajetn3ZB7FfI5icYME6NrY6LjEewWai7kYOrzver6B6Blfjd6EnEUG8uH7IOzOEtONe8vFzMMWgLDxbyGhkfT3qmHEO9GdHf57QY2DbKtpW8bx/Yds2PG833G53bNuO+/3O1Pttx77f0baOUk9oHyhlh5QN+77Uy4nnluJ1uyajIeW6r8XYFwqQaZm24TLAcGdcFvtKkAXQR6ZkObBTBFAfkxpAFgCUZLlynI1sKWfjtH13MGBAT0Xy90sUql73uOR9sqA9y0eU6own70oXQMasObosEb/PqYCW33MQ5r0agGiaxJq0bBJDjMTTspQlAGqLDquSjmkptOEl7Xsg4N4Eqdymj8LErE3J7w/vZsvDvOuXgimGl4YbZAhzsAhQ1lodxNX0uZbdEyN92VwCMLV9GTcue1eyAphWJ0kEEybYOXFq1zn+LzvM0Z8JAjv9i/ECPImnes1QM0srUK5FkD/XEczr3RLQ0Vh/IujnynqZdXmGFxE/+oEUyZhbe6aC+rli9cl8qqSQu94Nv1OHB0RNcs3XKhAJ0E+XHyQoGyxUru/ix0dznwic8h5K2CAStSmZdikCDKHsMbd7DS4bLD1ohCan6PLnrHXufZVsRBPFukOurkDQ9cVjghQj4b8HpuOy5+fvXF+xFmLdRfZRjEMEKA1CUtZyCscsoX3KmgsZJGwbBPg055VA+twDq68sMsM5Yf8KJP31WDfByJUFhBCIs20pc1QV6ralZ97NeUms4fr9uHkLeYHAdf7Pr38MPJ2dymNS+nxdLviF2mBtpOgaIt4dIIwTmwNfBN7hbkJFgEe2pJBNAx9cIc0wWnkGvUycnpn1lcy48VBT6apgGjUynf7IHY7c4GlyuRurwxcXU+1y7iXuVJ3ZJX6uOQ1YjShbVtViCUtez43BWHa5FjWnNs+b357jfzltvO8LrhTkxuf7V3bYVOYe5bErWgyEcJkXjXzgiQCHoF7OiTC6wuAQhCPDP6cgiPtiLTBdQKyfjwsgUsRQ61TckYIe4GYM/XVkFBP9fhU08bRI8EdjjkJA+M9qVE8luY59WPw21xtwXfd+7KWOqLDzlvl1WH8nxkJSyPMZnXa+PKMIEtwTkbRhC3yfunNZt40OYm3Y3z+wvb3j7fd/4fu//i/cPz7w8ce/8PHb79jvN9zeb9hvO9q+4e39A9XrQJW2pX9YKruHsMbGHdsbsL8BohX7fsP3jw/cbw2tGEp5QI01nMbxNwEnfcL0AVMv+No7rB9kOJ0nmTbd31d1GnfnTNmAwyWA6LTNIQ4SNZg2UupLg5Q3wG4AdhR8ACAVW80XUT9xHJ9QPWHWUfQJsPoOj5UKwQ71zj2MaJpjTZoTy8gvwabWdtTSYHVjnQjx9CIrC1OugHWh7si0XbBbIIuNs1sLBNjqQClsiV3LAZUKdsj0dDypQNkBr2dUN4FtwL4D728FQzecneytVOwOSJpJUveHGoYNynRnnfXe8eOvHxjHiXGe+PzxA9o7bJAt1vuB5+ffeHx9Enh6PtghyDsdRv2vP//nf+H5+MTxeOB8fuE8HjgfD0hXgj1eTM+YHw3okjaQe8bY+anYrBmFSBFw5yYNY0WVmgaUZm66ZrSTwJMiOt9wa1HBBQMp2EzsZLOk2vleTODJ/Zvq9l8JJpRwzwdzicd48oxHC9WcrQivPeFyqPt1aMy7bHGjaQZ+ZXFtp7wP+QFVFq/EakgtZl9GvjCtDhN3FYDhsqUkQNSASlkixcFcIbBrjszRgCxzfQZi53UoorNTGOWW6duSsvDfiOv/9hWy28JBnZLSn4uRfu4/Baxi/Riyhht+ZUxdzvbL69vy+9VAjFO8GBVuo4ShN0/uq1sAlAmjBtAW5fElwaP1rpzpEXrH0hTPu4qaQVGXJLVarA2LKP76REDYgxxHHymZ11ghPbHVJA3gxDfUqpM9Yiu+10vcm7DTWzMBRL10QnRfZWAAhZ0zmSZCuc5abQ3FKqSekHYylalvkK2gA7CywVBR6w7rJ8bxwDgPZ2WGHcaaERYPB3cZi6C2tjgI88lLYFhYQ5fyq4WQ4yG58YJtL4trGnvBlm8GK8aDL+4wri1Scv0bJQN9TXea3Bk8B6CHoX8N9B8PtK2wM959Q2sn9v3Efnt6UfId9/sPtG3D7X7HdntDazvuNzYRaW2HgExesQ60AZGN8kJqzn5gLGGTBiArZtkHZHpq0/4LVo8ZUBrZHCqAFYEOwaiG0Q2mBbYV7Noy3VuHp/0c+hIM5rXH6F63h9V1IAJpjcCJ66DhaUuqxtQseEORrH1THXQLRk38zGDpUqs85zTS7ABeg58L2uZ1yZb1xZtXGJjK3vuBPjrZ2zXKK+j0aLLpj3saRVLXAT7+AQgIIKgIxdpagxRn8bu/wLN4aQcz9PP01csgSasEu9hBjftaR3fmDeV8ZI7MPTLnOp49ay06iJTsDcEFGA+woraK6r6dju7FxTV1UUgh9fsOe9x0pJwLICpAy+5pdFP6KboOVHOYV5Adp2dmBde12kAfgjHO9GciI4jnSkWLrgPDFL37uPod+9L0FHgGdbZ2m3pAg9ldILXlPkrgwcAAcQBFOteQiNe28jS67Mg3uGbGcPva+Nw8fr7EbRwzjmn1fSkGaCHwNAQIn4VzEf6Mbzv1dEufk9jnpZrX72X6ZTXOYcgLdpnvHpDX9I/is6sGjn8pUQ1zP/x3L1m/GkxNf0AxTy32z2WCA8ACpMb9WEjztAtDr1eXeyCDPh2Jud8T2Aby91g9QVYJ9tyqaQ1ee9QoH5MQgQC+BDIMw+0sr7yx6PF53XW0bK5O2qr/7Sj+/PrnqXYDCEaJCCgwdI6vgPWRVJXsqKQi2mIQWTrEoXSmQcTP2c4RgMmkkRkQubI0OMwXbHQIc8GJAE+KM518wpe1NYGXdWMaZtG66yBPoYiMlOZnzniaNajinzD+FgpeflPmyf0Ly6+w/Hsyb6a/tYIq8zTy8rdlrmCMsZ/JLc9JB515oas1tLKNLtcTN458k2W3jgvKfD2PePG6pM3aZPGsaXSvubp5tpe/J2I8lbbkM81NmvIhjlvmJND0GFNALtOyztgqZH8WUWGo27wHxKadiHaAY69nEOCX9/DzQa9XnqtqPt9ynlCgWNacD1ZtdBalbthud9ze3vH+7Tvev/+G+8c3fPz2Bz5++479fsP+1rDfCratkq3U3FCpS5pRcYVlhrYBuwpMKwoa9q1ivxW0NlDKgOBgUVc9ofqA6uHdhQLhBQ3hYSz0OjpssN5THMe91v2aBGRMqBCj7pZJncxEASwKftsdZAnxh+AUAbkAPIeekBFRvgE4gMX0OS9kauLGcWVbVjNGScG5ErA+HNvsKqw2NCE4VrxLB5dkiO6yKIICsYGE480NYY+Kk9RFUFdyhbKoOSn+FbCTDuri1LdaUKqhGWa9ASmztE46AAK16unG3iZXGa0aQ3GT5iDSiX3bWdxQFX2c6OeBr9sd9faJ43iiHg8ynPpgRP3kMWh3PL9+4Pn1A+fjE+fzE4+vvwEHGqEDerCulPUB7ZT1OqYuJjhCCniyYYCM6Joaaed4AbwRYLAzJGN7wOWkTHYTNy5mvaaC3FdRx0kcNeJ+CMbSC+PJZbAgAivTYIu/Z0eSX8jz+H0REaGLVvk8OTtrhHfKUFmE4gzUWOreONbC0l3kzjQzwLooAVzG4lnYfo6QpNyZx1x/n7M2f/LRf5KF8vL7i45CQCbrINnlmfNJQkzmYL9cLGsHTq3x0yuFt73cWXzPlnfmEas9EPc473k5k/z8J48LMGgGNeZ55WVU1pPM51kvG+vkRTumXZF3G2OYpoXPlwhTj5Zzx3UudtflPhYlDrmOoKzP5SeIYJdxn1Rjx9yiigpBteJpO8VZHr7nNRwmprSopz9BTtSiMBlo58H7cXmhjIgCpnRGVVgkOe1EI3DNxeNLeaZ+TIDJMGuRzvEoy1zNZenBS0z7x1KmlZx7y/myHBCZV6NNnim1EYGP88ewh6sSz8lTkUEp6ENwKIEb7XTmRgP0BMZpqBsdvdEV27Zh9IG9D7TthgjmAorRN4xScIo/gzta09la9oVP+GW1ylwzKa/9M82v0b7USP+JhzRnWrqgpg4TsAEIUBxsw2InJ2tCANGw6W3emBWyeEw901/5NySD5RN4Ks4ki8BprJ2YOoUZAxcruB32eNjpuesF+V76OYjUuqgDpBm85R71EOkiC+deRtrI+VmAEv5mZHRMe5/zp9DleWw5b+gYu6TuxQVnWiB1l5pHxF0ZzrUwZViAKWsWhWVmC3KsfsocMeH8KNcHsnOkrgdeQL9grxRn6oR/MII16ft8XZfTp/HnNgAJPPmiVt6gjpnSqBpz47Yn78CDfpYlELgcV7aw72Q/f0JpC+AZ4McF2Ek7gOsWWfNoYTlF2pHLDYi6Tvd6XQIkKuH3kTpHsKxjn8PVJitzCorFGJAJGQXGZwAsgnnic+w2d3wXcz8F+ztAXGDNiInnntok1k2M4wzMTWBn9TfXMjKXesLia06AdUFNu22xRfKcIbNjXc/jYy/KetxyvoucXMZ51fkigrGCgmlWpDYgyOo4hQYjNN9zL9Y3k4k3SPAb+ZlJtlwkR+ZXx/z69Y+BpwCXg5Vvxk0JIB+tD6dNDg6gCJKKF0b+ambIax0C35BaDFqRBe5wEdqhugOhD76UedqRf+pUuKFI0CqcqKCTzTpR8Z0wr3+efLNA9Ww6AAVLql5MwlzdORFu5a1HhsCc12ccYVLOfWO6onJ1fbEj03BJsMqThIYrzRHRdcFF0SwbsXgi8GXD+YYSkYwexEXXjgbZQnhJfZsGmKK1iG5HSph5XaoJygBzTvLufgKbpgKWdHIsx+KXz1XmZilV1o8zPUZzdy5ugq+1GIPl0f395d4l5jbGT9IxDc9yItWW0Rq7PK9PvpAerpBUAqWKfxZCOFh6mkorWgxH/ZxYghkp9u9T2FXUbUNpG8rGek7v33/DH//6v/D9f/zfuH18x7d//Q+8f/+O7daw3xVt66jVUKsSZBKD4QRK7MEBFtbvqPXEtnG/VxG0CtR2AnLA7ITi0+sodeg4PMrEQtOmTAfEAKwr9FSMfsDGAYzDwSfzKHSAXR2G4YABc85NyB4aEpFwwEoF6o6CbyjyhlbvQN3cRg2qMXegjgMdA8mcRIHIBpEdIpvXVQJQGkZRWGHBa0N3o8wBIilopaGNG1rbYMa0siJb0pADMIIbERy5ARRFsQOqFYbD6y6doIHQYXWgWgEZX3AN6JTw4hzZUrwGSnGjuGW+vFQDjMq+SCMYFoCBlHlv0hDdilh0Gvi23zGGog/F5+OZMvfoJ87zwJ9//4n61194PJ+ozwfO80Q/B/SpaL1DR8f7H/8vzucnjscPnF9/4Xj8jcfnnzg+/4L2A3oe6A+mXI7nifN4QrtinAMyxAFKZ0GpA86LARGG0DSOr8p7sWtYzDEMCJs6KllPDjpFCl0a4XBHqgqklQSPauVxLBwufiz3SRjyzZ0w8evP+k1uYIkk2BWAlixyVzKaLlyigumUxqPI1DNr6jKHySP3Y2StxTCsKWiGi9dp0a0mJ/VAcRC1+nEEnaxUsBZarG9nPgUomgyXetGHrwbTfDnIhZC98/frgRMyueiPOG4V5PHntPzmtfMG3KxbHKv5/HEqS/H9718/PdDiqL0AbT6P03GZuiaAiHnwy728XlF+HqNUCb4mwmm05VwBNoUVJLYAGJdxvX7vOi4/Paz/Op0ojvBq2MtynF3udZpWHpRE8ZLBgFQlwb1UMgUcgJLKKtqjNui5EVQaDaM3ru8qKJW6uLcdZ6nQ5xf0rOjmXDKlntFBhksfHcXTYTKJzmm2lI+KtE2N7MIAoDh8gjDNJvA3GU4zTT8xM6a3ulHB/WyYOXqGaLYQNpfWdZpK6n5Ly1vyPK6q4h2qVCk4BzAKoE0wTkNpA9tmqG2gtoLtduJ462itYr89cH97Yr/dfC6ZptS3CkNHH0/IBtoQTdAaXB+5/RLrvLizavCC4cu6MXM7m5ugxAoR0MYyT0MKZ98KqutEjlojCNEVViufu4GpPzkZEfhsPo9u2ypT+ocO75YlaM0DpxCgq9s70ewh7n1md0SXsrBLGdSaLKhXJ/T67xyDAJZYB2jkv/F72NFjDERX56xp5WsrbWJx5qoDHQwu0X6c90TbWG04CxFO/IvUuCnbSmWB8erzEbZxAAGKgchNVDMMlz1VGmrbIaVwxCXWJ5DAk0QWCpIRBgAq7ptojA/TR8cgWFJq8XpEBqCwXAB5bNS3NfTFCkjJpXxIdocuBds2UyYDODVzWyRrJCHT8JmJQ/A2319s+dBlCrKddFn2iXtCWKohai75WqlRLyx1Y/V7K+nnatS99ucKcoSO6IQW5SuU6cnGLxjg5SGMuc02yFw0IJvfAMliJQt6SiXEqoh7deZplAmZ61j8x3WMhf829V6tZDwRB13yTRa7Jrqim7HMz6+6o0/whwHpsQz2LwkPmDXe8plWsSSXf/K3mZVzJXrE/BdnLMeaEHF2ndufyHvh+oq1eMlSint2UHOuxwUEFnhdLt+M7vNm8Xub9mH12maiAeqxpreV+fQxPBd7BaHH//PXPwae4jJxs6S56UzDEvGWgm5wukIZTvEMY/7n2JjOIoCgQBgu3IrMhbZGb1R5fTXmHEdERczZEnkFB1tcSEQOc1TXFwhK9ai+T6QBdNoMHk1ZgBxX7oEU1lqSpaTj3xiBPkC0HeJ/eDF2l18FF2Q8QDd/nDlqrmfXBZE/njsrr+f2/6wbKPJWLZW0GyGW07ps4kkPnClxQoHsbVh1sGuGqTrUHeku5qlSmhuq1pLCaoyRi550Zk1nLCJRtbKuUJWrQEDe59z0tRbvZLeAUBLPPI15y5WyDG+shZBwItmxIovyleo1WyQNuCUpdhoTnBCIsR7FcKF/MeLdUxR3OIcXzZZF6HDsJ30+2ujmorlMNBBsPLjByboDDdt+R91vKPs9mU4fv33Hx28fuH284f3bDbf3hrYVtO1ErQdEBtPPlMpPRZLcwOu4Uy0nah0opqhFUQpzwYf+gOkBs0+cx5F1hKK2CAtQO7Pp7OgHO9qN8wnTAxhPQM8UyFzbk/EEZxOlsYMCFXa1UykQNAhuKOUDrX1D295R922CRnbCIq1sMMVNdRCoQQG7mBiKKNjBa0M41WoKlYFhZxpZ0Q54FFeAGi2CFbV0AlDFWJ8JgHtOQNlJiTWCXhUC0eDkF5iR+cXUQMAtLl8HMtd6VaAAZUQ6qqBVB57gKWi+4uvYnLHACS3e8qhGi2zZ8v5aaZBbhYGphm9vb5TVEJyj4zg76v0N7f6Bx/HE83iinx2jK44fHefxJCXfOs7jC+fzB8b5G8bxhfPxA/349DTLJ8bjC+M8cTy/8Pz6Qj9OnF9P9K+ToOR5OoA50I8T0TI6Ux7FV74jMDM8MSPGpYTSD+cAlFdl6hTYZDqVOl1lRnbdERI35KF0QFzPJ7MpjHnXfq3OCGKIiBp1Q8RZU2lgIus+ZVmHKCDpAtoQ0WBv3ewfTbBoFQ0BOnmE3eBGeqikMrEaGJwqQtBcnbVlQLRspz0jmIyn5WIOPjEwIlPkGeWGivgYsKdh1nbI+14c0xA4WIMoMp8rxLsAYiXrsWRwYR2BkJHmgR6NTy1ESM5LmKr5SLi+uCJ+Nr1s/Tf0xAJiLYOUtsDLu78+ZxigmFxb5Ii9GtMRoADXyaJzVtUx76m8XHcZtxd7Zd7rvNv53nIWCYdnWRuIcYPbUj7blTkbxe3LtN9iPswAY9tn+kQC0Yh8c41ErZhS2PmuiEBFMMwAISiq+oRAUTBweze0bUdrDWetsPNAaxtw3qGjuw7qUFPUftJB1JHlHmgLAxhk3Ybzls6TBTDu81Xi2Th3JadEQDCW+zLAoLnevSW5eH03/zxBIw+eRZFydnJW33erdbgEEtPci/kTptMaGUKn29mlAuNU1vdpA+0QHOdA2wrunQ0s2v5E7x2Pxxdu9zt6P9C2G2ojc7ptQDPhGJWolciU7zXddy1FANBJhQMsWXbDBm0xcG2JB7DMCEqVxvMHa0kkWCH+2ArqkOLBayWzeY45JzaKdcNLfAQLbi3WK1IdMHux53y4I+iZsgWW61KKOUs2utBdgY4Jfqw1H4W1EsfAcRz5GQDUUtPxNSOwJjFWpWBvbTqpYQtEmQF1R9eBHjKkqUhCjhAcjP26pCqJoG1eut8E43R2ulAKU49Vl8kGKUAr7AxMoc9P2rYhpG0/w6gmO2ymGgbjyRN8lmEX950qKlCmjuNU0aYKICp0DXV7RZHN9466veZyxBlXRZjiRtIPgRr6dA4emTdTsp7buZSwzzTFfAKCwm55qophBJ7My4eUUmddZFOCfmA9rloram1uT4QtQuBla7TLMrUr/fHlRxVam4/ncLtnoANQLR4g49pn/YxooBPp8lO3IH2MKUxWIklqplKz5AcJpbQn+uhQLR5IF2Qw7CeEZ1ECi3JM3eDkRh0+/61maYbpp05/L0yTIDxSnv78Km2yq/j9ZbGt687fKO53T7sjPuVN0+cNeXzV8sXtxlkf2zODfCx0BFC1AHRggDvT3TWezteOBHZg+d3wSy0awElcn+susJGog5UAv8uKSMe1nABxECssoZ9toV+9/jnwlEW9OAE6/CecQdqQCGZRGK6J+sVpfoGiBJUxOqJNE8rckAzkzic1MnPMUTpxFeybNUTWOrk/UcVkuStfB2HIGSwoIxmFmXBuRI9l2tk67bKfLjJNaISoSJqxgD67fzdAmbjfYAitw2UgW2s1EUOpic2c7Tj/tM9zy10M5Vckdd6vC3JZmAM5cMF24eCEAABWZFYyUjH1MBUXwvCKiLEDPeE78jyS9b9i76gpipWZthaA5WKsXJlbObFztNbNty6JsP/jeURy3HL+JOYOuR7nK8A6rtWkyFrMQziI+ZBTwFoYJct9LjbQ9XkopCJyczmPYPEopnFrhYaG1A2y7SjbDdvtju3tDbf3O2s5vTXs94K2K6rXwQAc+JEOpl15Xn6pczXn5hhMGBODFUMtngangI4HTA/Wd9KTCjoolGpMuRsnbJxkvIwnxjgIRg3WfmK+FRCFnDiOiugSls44DF7EguuqADAyi4rsKPWO2t7R9t19YuX19ISOJ/egshBrGlxRbU+AIox+SwiawjGnHvaosRm0GKwohvScQ6uAlQHzDkzsTKcoss+NKhHlY0SKCq37fnNDLaeaQjccGQGcNe0Gj04nyPTMKJktKSgiDdGVTMDi0KU0glyyQYQF1slWUdTaAGE0EYV7caCgjoraKroNoAC3Y8dx3jE8LePYOo6DhcoxOo7jhuO54zxuGOc7+v6GfrKjofYnxvGA9hPn84H96wv9OHB8PXD+eGAcB87Hk0BWP1gUcQxfU5rLIWTJqj9ib4S+iYwMgaRDIRJyTSamkn9Pecn0Ea/T5AYqu9kFiylAp4BM+G/Ue1pEzwSclu/yGtOJSZEyt0EaDgDWDLGLOQiXBLClrkk6KIIJUS0G3nLeFEW2njFO86r4JGUZ4jsTycoH1vxsXtIuZ5jnDnk9gXw/SVz6cksub0MMXqTqPG8WxX79bm5Wd2wuz/pyaOrCn18vonvOWTxABkLK8oDzVufQLPYV5j7n+eR1OvJqeZTNwc07Nbw+mf8zg1wJaUiwnWLNzUFfwoJ5jnjGvC1nIM2FKpd/4tnTaomPY+7NzxZgo0dmSwGqP5uZolVny7fKNGiQkT9s8PtqgFB/Fd1ZQ845poKCTPMuDaU2oG2wcaLXBtUO0wGpB8SBp+JsywiCWgl2B/VDgrZwJy0CpW4zRW2bTB3GXPe5tMP0iwCsUK6XF9sjvxvyIL582WQBQAa4ul5xrrFcUgbadwNpl4kaymA0fJihdQZHe1e00xnH7jy2WrHdBrZdUdoDrGG4YRQw1d8aAAdK1pSjRaCZCx0CDJTt1PtMr+f9M7i5wrB06gWWVX7DBnR6aDEMc8BDi+tVXrOkMGL9GHgpDSnqIJU4AGp57gigJasi/s2F7nM+dwmfdzlNBKx0qNeODNaKYjiDg9+k/k6Gk69D6HpZZksAHDap/KCEbVEKFGQ+hM8GT1e8/i8ex+bj5Ladft4sKxHg+ixGvu5nSQBGsn4SwDo5BL3muNSovxeychnN+Dd9qGVMS4kgh0HUs2PM/Ll9/DJSzPVSpXjNWAagRpRsAbhG4UXZXzNkCvL8yUTT9dzBgJxNSqQQcIogMmtDmX9P0u9cFXsAh9kdsUbanvePy/dZ45Mq1+YpPPDDD4qv5ZJZTKZCdhPiOPXayBx39XsvDlpTulafgWBT+mKSGDWXJYE4pQ3DoBAzS4p/m59nMN0neJEECABznW8LAZrnDolQMDBeldzymvo29uyrGg0v+QobTOVsrhDDZwRCT/Hz6dpNtjnyfKH7f3FVWY+7aNIEjeN763kl/17lTlxjvX58l3//ROHwoSkCZ+DZ5b7+DdAxddc/fP0HjCdJRdb7cHpmCMOYuOoKS9EdUSvNnVXqsHzwTHEIlgpmpLaKF1pGzI9NpE2AIQLzNIBzIBHe+ImhDGRx1g9anqU45XMEUyHExQKS+d8QsJuC4jK8tdJZYUWW6wTH913aIaYmF8/LPJkFRVTZenJRXtnBzp3dIgJU3/QLKORsuiV6IU6/dMUWBfRqgRkdteN5eE0SSRrw2i0OuC7wEgYKwAglaKD0fiBS78hMYnQlI3gGqIQTbB7d8bF1YbGupugMUqRk/np0JhQXQqUu6SghWMFWssPBBwGR/wCNskiweMrUZbNOpTg737mjvxZ4idn1RZP41vCii1KcxuvH+V4QE2BY3kcwmtSErDo/WVnSQmPlTJBqylleqiR9E8NIox0zEsSUlwaUHbbdgds3lPd37N++4f6v33H//QNvf9xw/w5stxNl+wuQv7iX+gNM/jNANhorEEi7o9TGhIfInDGadQxuG0y/oOrMpVwbLFRYnOUwxkEgqn9B+wHrB87jb+j5hPUDGLO4uDi4o+4ghFaphUVnpYoDSTQsafS44q8Ck4qyvaHt37Hdf8f2/g1SK1AL+vGJ4/iB/vgLqn8CdjLVTboL4ZP7J1Llaodgg6CgmqGgsSubFhZutAbtdD5GJ9Ck9UDbHxilorQNkE9AKkq9odZ3FLyhyu4pcWRpFdkwfO8SIFKmiFxUcjDOWAeqY8zIlZ0AWIC9VnWQyw0i36tB42btnQ2l0HgpsqMU/kjdUfx+IDeQCdWx3XYABcOAOgxbE2zbDb9929xoJvBow3A+Bs6z4zw7Pr++8Hg88Xg88NffP/B8PvF8PnAeTL9U7cBg1HT0YDZ1jOcX+tef6M9PPP7+E3//+T/x+Pwb+Pu/MA5fM9q530YYPb7vq7n0EogVOg9jypK6FZBcpjMaLawfkFtf6PQlaCVALYa9GFoBtjZbZgPR2cW/Bz+f6GX/Vh//WmWRZyH7/cfrqmlQ9QUYAYSFCe7Oe7Bq4h5RhLENT2ndZDVgwqCQ+RNKbgoYQJZrTAvE/wnqoyBADnF9DzO3bMo0VmVxaySYfuwYGd/jpWXahxK3wA/DDljd5vUn5HjBGl2c1qCFo2TzMadxEHH5GTSLJKXVGg54bUY2+e60Ha7Rv0x7ewWLgikWBtAytGugyBZFs1g4CDAlLRcDJoNE8g5fjcvs+iVLAA2zJqZzAhHpcQma+Z6aQbtfMN0ur9gEZZZO8MNi7UU60Hx4r7GnBjGyCBUcH/OxKs50ZaFcAvVaBa1sOAswKnBiQOsNOhp0u3mNuRPPYrC+QUfFOJlGbdgh7U62Qz9h44CNjnoeTAsfHbU/sSX7RF0fBbPC7VAvTj0GwSqCBB2jn0zTGwOobo9mJN7QFQmWSxF2c1PXc26/BigiPh4Gcedxri0TBf83pt8VtS9zZfo6Lch6uUDIDOQ9qQKj85plSE517YLns7uMfGK/N+y3hn4qzufA/f4ETPH29o7bvQN2x7aHPrihFrI26ralDAsQM1i5wAQQYBQVXuwPEkWE/dFp64K2LeiQ760sz+FO7rL+RFjvkODL8L1ztfzbKNRjFvOtMK0zeGgG7T1OkjY6s2i4Q4aS3XxhRZpnhyiDq93HPlhTMfZRr2kxOn29DdqLAZaqQbvXBuIC8q8E+MTr6xgOrojXQkOmOcGbb8AL4msx2OgEPQuBrAC6g5XD5+X8xVI1BUppgHmg2JfmsIGsaRhMKhB0YmylsMOv3/O+3QC3g1lse5lwo8zwKU6WDJ386qxChVmdneUgDswAsIFxPjFGxxhA3Xdsha6wQmhzujsnUXvRfGxyOuj7GRR9jGXfE5jGAm5d/IsCbBvZMa16Tbq4briQlTXsailoW3O2ekHbNmc8VZZIKBW1NK+DVBBd9kpSo3npzOQxY706FffZwi8T7K0k8GPaMeTEkI4TX1NPBvA0CgpurqIjFZk2aKSPtvRPgXP0JINUYWc8NbLeTAyonCE1pU8diJgUrw9MiVbDoDJnl8Gy1EAEJmj/0/QNkyS4DtQ5C1GBqmPq0jAs/CPtlnZyq9H9UWjT+wkuqstliJkhqqToQgZRM/R+8tHS8Ih97fZ4mb4fge98ZIgDpL2HfxPniUZni50BLKCXg5yqiKat+740dEFcL8ad2IbBsmtmxDrivs2fJwIYxW3Fn9T/v3n9Y+ApUtgQgjxBnrhBeJTencPYRLYwkXQ+2Iu/DwESVFAhVlwzEoYIZGPA6Ixh6okZMfBj1BHrEBxlWaxmuRFjMaaheTGq+R0DKFRc18w2qILRObGtcHInJQ+5MKc+C8U0jfcEOYSpfU1aiqlMPXNDQfz42GQxvNxwNQechRZjw5kXXoYbL049HvN8r0AT58mBQb5zAZ5igwtmRJgF/8QdVszjU5GH48JUkGGzEHM8IwC02lJZA648XEHBlV36HxJA5WJ0z1vEGvV5tYZn5DgMlVUEzDuOb8Y48ZYDaXeDpzpQtHxTJOjTNs8BAZwZkccGwp/bIvH/F2coboZ/l1KwXdLuIgIWCo/gLaLOUW2oW0Pbd9zf3/D27QMff3zHb398w/v3N7x9bNh2Ra0ngCcBNBkwPVygCCADBrZKr1ZznRSJqKJfXzvMTth4kMHkRrt7olBjTagxDozxhI4T4/x04OlEPx5kOY0TxWn2JKC4wRGMSjdA4G22xbwLixk7sslII7y4QVoL6wls2w37/gFpDVKLO/90fI9DoeOBLMwY/yuAFYJrWim0q7AT3FrbKU1m4XsUPQOjd0A65dE4mK5XKkrpqM1Qq2Hb72jC/RspxFUqzDaoNaZSoSFXvRnMBooNKDpg3g1Pu/sr/FzAroBFBtiVpHv00bJWj0gByua/M9VOywbIhqI7ymiQuqG2N0jZYNpRbACFNaKqp56VqtiKyz14R1MT6I3Gdh+Gx/MDz+eBx/OJt/dPPI4Dj8cTX1/sgjdGRz+f0DE8pe6kDL69Qd/usP7E2/ff8P7H7zgeP/Djr9/w+PEXjq8f+Pr7T+h5Qk8yr4oUtFqx73c3hAR2dqZneJoFt4p48UoahAjAFZayJmpzibCbEbvWCVrxeRagNBaVr635LCmAkzIeilZ43oJgrhYPEPicl6j35JpJotOeizRYCkAaHh75d3kUdocVJrDB1vsO8J/ipZQCKwQVFOE0MUVCrADV9YVfUo0pTqs5rRr3Y65nQ7lPg2dKW0J/ljIlBO3qEk9pLfOARSovQMW/A48kuswuFHp6XFOUwvVUfmelsIvbKAtjYvkeYFMGYbmX9TZX0b2Ad3H+FWCTqNdRStbmSnDg5fn5CBcr8OeXlF+9+XKqAP9exlji/Fxw4sBWvh0Oni2PGMAkwka52lEGV0uvlwESaA0Ghdn8etREydKFUjBUHMIM5qe6zUiQoKCimGKIoWjDKAKtgl40n03HDVojIFWgtUFqxRjsfmbjhPUNpgNlP7MeYensdBfpVxEIGV5LxeBd0cZgVzKvDWU6MPoBHYMszXHC3EGlzgbZRLEm1EEBeAUoX4dryk4uS98DwWiIoBbrqmFxpkIwSM5ZWO9zj1zXOgOHvk78IxtAV4Xn27qcYv3FUh7O0Blo2wZVoHfF0B3bbWAfJ4be0WpDrRu2sXEdmqC05ullLffHWvubAQNNmW3LPc51HGvR+3CGmPH1aVbnOmuYz2RTf8OCYcV6QcUHOupymqe+mQb7jPYv1FMb48bC68V8z8DgmYAAwJDYHUhQJmQLA5JX8WNqOPvwEifq/7ovtuy32It8BbjJmjrIHbn5Oac9jNBxxueOjIssiOGARpGCoOQ65gYb3gV38Btcx+E7GIIeHtOkAfaJsbMuv+DzFmt4Ps/MZJiCZGXIrMSCcLgj9UijWDw/dPvdU588xZ2yg+PW6oaowRO6NaY05rF3zaLuY3QML6cwxkhfyzyVnna/+1oo6ecOAcEjt03Nx1dMUIV2xL7dGMhfgafSUOvudZiKA0/14lskAEGn00FMo03kdZUAkiYk6iyB4KoCDuCQ2R6lHEJphU8WrB8s7ENxmyPqPAOY5AcxB2LnvTHAo9l1MUu/mM31IbSTxJkpOmxJLS5pL5HBKrDhurtYgkzi5AWWqDFvOSwQnQSA1Ns+iKWUiR/GWC4vc9NnmikRKsqlg1Is8ZC1bEqkq7qZksyjGl0JEXhJrD9+t/c+cRRI4h5z7MI/CoZ+7J/8xkwVDg1w+Tv0i/i4u6e/6O4oYX5NL14e+h+8/jnwZPbT4E36J4WilXh/PofZHHQaqXxfIrl9vXnjwGReoZQpStVRUZACZsDsWIhF6CyDbAbMy0zDJmKAvicvQitei6r2B+G7U7HH1VK75Titz7MKxjX/Oq+TIBScAutf1GWswxBbDM2riYAU0rGQ8zoBChlpuTB2ZQmAqEgUrAsKauy+6wKaEYWp1tZ807i/iVfZ9f5ez5f3b5c3UzXm2iJ9MwyMS+RoPaetf8vyHnJurr+aG2oBPq1W8Xy+MOZ85jCtFdBJjKstm3wFFmMO8/7zOgE6TdT4cv3FArdYqHmdAAYl2XzqbDZgMgfDqbEya2rttx33txveP254e7/h/rahbQJ2OlMArHEEHTA7/XkoxA0NTLnrYPpapFCEEmLeuCm70bFr3YGovwAD1DrMWFycxviB7gwnHd3T6zo8HLcIkDn0MSa0k5d9p6EfKYs0qfn8IqNBnq9fNxR3ONC8wKINmD7ZYttbJicDwkjJpxHDHyyAL9AQVFvW9BipMLgXhhd7lKxBQ+BJOK7WUGpHrQPhmBeP8FdrjOwXANYw0zg9Tz8KP/q+kTHXnQ0CfbATJh3kv5worj7IBmMou5ROZphUoA6IEiwzG9DSUIypB6W6QlRnDtUAUYLVc92jAoGVjZFWA7Ztx+2243bcIHXD/Xng635g27/Qz4HeTxzPBwGo4/R10jHOBusNpgf2+47t7YZ+fKDtFdvthsePG9sRP5/o9YQ0Qy0NW91wu78D8Dk8n1xjg6AWwqFz9VRqSYNNnAE1gSfu5SriBcd5fESPSm0obUPbdl+ogwBtGRAMB7g0uSRRXasG+cd/xMWY+X5nbCNk4ox2hX2Zks/fCwBDjUZvnMdWarpfJJxWC9Hne2tmsRodEVz1+bQB/GCb5wSWm4u7kytAf/ns4iytxyx/Scg/Wd74ydy7nCn1jNlMTUv1bVNV2DS4Vv0ncjmLX2+5u/iPzPeCHZRn8joMF6AonEAJ+UpZraFf83IzyPSzPl3HeHlf5KfjZblHvlbAbPlsmcMoDM/1EUa8Oxc/jcf6PNf7MguG3s8jONex5RxcX5IpMrFWFVxupaSrmteGCUy5q2wwTXqMsAsVqhV1awTPC+U+HHy1ItR7RaBFmHKtFaKVAPVoCTggAp0qPwNPSgYEQoeoZlMNqQ04n/x8nIAXai7BmgJlNkzT7gjZpLaMcUzVZeoFs/D2dUFGrZfLXK0r5zUV+af1EnvH73Nwz4sAowfT/XD7z3B/UP6pGlA+vWmtARgYtaG2DWa7P0tBBdm2pYy8loYNKe54Bsqh0XTHlr3lzDwLGyzWlyx7eLKebLEdEKAeHGDCAi4G8FTqxUFWYcqbYAGLPRBPh1XTL1qE0FXO5j7wMa2Stk4E81cfSjXYNQE8WdqGycnMfTzlg7mtGcXvKUZ//V1/Wr+eAVB2CHQQLZlR6xeA2WHP/Y3Xl632edgml9WIXF/XQLuDrnmmOX9k2bzOM8eJKe4OKJQA3fy5fALE7S+eb94NgTWfF1xlZ4xlH4ONtMw7PzqIHMXo+Yxj6ohaZ5r7okPhqY9SvSkHhPpWCmqpaLWi1uIMKWcKlqjz5EHD0pK1fk1Vi5t2YIbRpZSZVgq0enmX0ONYxlpAsGdSJ31Zhb3vdq5TJ/msPEeWfxBk/SItYAAZBGSC0RaJsog5D72xvDcL908vbDV6JM7t8zwZxr4vo1SP6/xEFkQmeHQ1I37W2f/m9ZO18fKd3Gsx+eux8a7FzpzXfs06esUpRC6xtGn7GZbvzvMUZy4i7bZ5DwnWmuW5JvuK87UsLT7mi31mlyf471//UXFxM++AsCoFrClucxNnGp5IbjLDZD1ZX9HqeCA+SoWQLgnvlrYYYlokr23Ld6chBu8o4EImOt3pEo0IUyVOcLXo8m8CC4JmDV4nLul288C4tzmBV3Dueup1Y8HHQ12ASmOBvmnYT4VR1k3g7w8fs8gXDmEgzh9k1GRG7DUMpg4WD8w84biXVViIo+kFK4CyDM/LaxqZwDyW7znl3+8pkPlwJAAaJYHmshyDeOcZplSaKrpNoR5F+thZyoWTAORe0pC45sfOzXiVJ3Ld5Iswi/n6lSJdX+vYpBFhliwCLP/OopERMzDfsJL1NFKw5u/L+Q1elJDrNro4qAV7peR40TpXSCGjpm2Cj287vn2/4bff3vDx0bDfBa11iJyADUBPKFhsG3byzqRArMNkB2SHamPHB4u9wHWlATaNB7R/wfQk8BQF1RVkOGlH7w+c/YExTozjExapCSfraEhI1KFAD0UugNU0yPicliyOrJ3h75uQuaU6UMaA2sn0P+2Ag2ewgto2iMA7kRnOY8fDCkb/ghnp36obUDYodhhukHKHlDdGA81QW0tDDlCInQA6IGfKmaTOqwNPokAtPFYP9PL0VAOgtep1trwOhrpRHWPuESgDi41HQX9Vdz7CQB8d0BOmT8AOPjcOAk+CLH5K5b55FK2iVLKdIA2lempl3am36g2yhfLf4GHTNEQQxGoxCCpESAevXvR1vwmG3jDU8PbxgbMzDe/r6wtnH+jnia/PT5wnAajz+cQYJ2tEee2n3h+49Se0H3j/9h2Pz7/w9fkD+/vveHz+wOPrCxiCrW3Y2w1vb99AZmghw248Mc6/8fz6gd5P6HlgnCfE1FPTKgoMW9uY+g3Wckq2EhzgdexVSoO0HfXtG7b9hn1/47qxDjsfAA4AHYbDx4vgU/WI5+qAF2cPTaAljP7ZLleCxZRRZF8TDjLBDT0TajsR8S4lk0cU7abJWqyuC7z2SsBizjLMVIqwrdzbsmGZ2lo8Wm4SIQIfoFVW4sXRwBQh8yVApl5PfZm1QfgHUt+7E3j5/iLOJQxb06wrmKd4ec2I4U8fXI6Jc/M5ricMp8ny97J834+pi4HorGwp0cFpYUSleTdtjmlDvI7vNSwT72W4JtcJUt/I67MVPk8BEJ0J43fzuie2GKi53mK+l/FZh85kfYLr3cbh6d/m3IVt5TZkLRmdD70oEVyI+kfF0BrY8UoLZuoob8JMoFYh2qBjRykKGwV6CsoogHaMIShKBi1Tlm8wU5TRgSimY4vjpNNGYDqZM5mcgWxGMH04oF4PgurjPKGD6Xf9PKHd04vPk2picGMUv1616EaVhBMfO9cJwv1tQtsw90jcrplH/AMcjNlIK4PrC65XdcqKtTyExvrx+WOdGgZp4lmKALf7gf12oI+C/fbE9vzC82tHrRWtNbzd3+hAt4bynOyNWBCL9Ybs9OlOcgadxdOnA/j39CMV5cp1JnOklJZKuUYCzGTgBMiknu4VbJVp2xnHxJlz4rpVygYbA0NPhNwSeLDYBqssKG3RNDEFydoP2a1m0D4uGySXmSGLiPdkPFk6na9APKLWocwTsKbYwCz807m/pJAdD89g8DpTR5wDLHnPQugEyC3Sz/w+xlCv+esMWZcr0bwjCxXH7fzkH2CWCs3siwiuCMu1vLhp6qVeksn0+hKk/yaecx82N2Aua4unaCq6DrQAcBqDQ+b+Enx3APRThimO8/Ti2F6MO2tuBWCp+Qw1ruX+1AT1Zr22Kh7I9NdW2UFvq6ydWUrBXhuBp+o2Wvw4Y33104IkkGMBAvY6nKVYLOq6026GN9fR4f5o3D+Dzkj/eepjVyQQqbRbUFLezcmSiYGCcxLpswH+VBSOZQIrUy+s2TjD6+QlSLPUaTQDilSu2AtAQx8yfILVw4oAbtTgcoTiZR2Fne0L9WUfXxYc1r2Yj4HoEmlDWToGP79M2emxNbueZ3nNMg5XuZTnSN/7evvr72tJBtpDJa83yTF8gOaN1yh7AovAHI/X+3zZo//d6x8DTwSb1vU0jQL3phA52VGLxwCUTDHDXDDihAYXQkhlyMWo4H53FeFV5yXZfpFqF9TWOdD8JSiWec3IXfXF5pl3PnkhwPj9MPpoAHFjFH9MLl7NSZdlAig0zI0nT+lYNsDrQrqAUxwAKqxlQa02dhga6ysVanxmq2F/vf6qxONvdgZ0IoVNsJBIahgj88tT+GteSGKBZs2vYFMtkSUxFPHceEHmjNryvOYGtZRCsAE07EoUWDECU9n9qUzlxNQw11th4ytZPEjgyNlqJZM98vs/zU+mpoRpPBXlBYgyCgvR6+f8aEZ+Zi5szKH9JJgM5QLohqD7lSKJdAuuU8+dN8x8YyNAy27nAmxA2wr2XXC7AbcbsO/KWkVCls/oB1D6BExA5pJk4WnLTiCwHZm2GUoiVpYb60xPcMBjdDK7VFk8XNktaPSn1/B5MsqrA3qebDYQHsiw/G6kT6oLgkwXiwhM4MkrNuzr1cxTKMYTOp7oxxdEB0rbSdVFQS079u0DBRXQiqdsGOo0ahSYbFDcYXKDyQ6pN0A8rXGJkApOwCrMTk/d8L0WnfkMMDRIafxya4A1jHpg1C0jDZGWK1JY080EQEOkr8U+LGboiIKekR5lXlOkgwXdD8AOCDpgB1j7yRBBQxGByRPqxkytBNpENrIAdIepMrffBIqGgg2ZYxb7RE+YdZjXnRJhUdkiGwTK6FxhV5YKMs+GNgzd8f7WmIfeB47jHb13nM8njuNJFtRx4nmcOM+O5/MTx/ML43jgeH9De/+O/fGJevvA8Yh6UUxVrHXDtt0hUlFQYfaAjS+M83/j6/NPnMeB8/GF/nxA+0A149owxV4cihE3wEGFXRbtLrWithu22zvev/2Btt3QtpvXFhho4wHVT0CfQP9Bdp8OHydxvIgAQQmD2eVY1JqSMFcW44fOjLNUHVDRADlKhXhwwWAYQllfPXIoTq8y8S6VnpYr8B9WwkeJVEmVpKa7HepGpwurpFiFXPW0gdDngMswpqeG0Jjb1GJ0HccKhs1qWE0FF1HKlM8CZAcf1xeRKpSWaU5YuuohLtONttgL/oHFA16Ur1x/8/+I60P4cARwklf2vTLHIuY+2BplsqVcqQuu/5bca8s9Lua0LJ/F737GvG2z5fNfGMo5p6UimEaSD7L0JZa45s/Xi/GItyaEEbZP3LBdxjfHMId4XSHw9LjQh14LRwj+WLDEqxfOlYJSK8YA+tnp+FWmDI8BDBVIM6YRt5pspTI2AvbOZggQHxYNDLiewpkWmxRF0QExNqhInQAFzo4yOuT+QDkOsjn76V0/B8rxhJ0HtHec5QmU6mzMwVRxM+g4c53GOBazZEIVyYqMHtyTnCS1OD4m+LL5/K2YWW6wqJHHuSSqzP0Zwd/gV7FUhCm7kdFu+MJ5KvaDDN7zeGI/vnDuN+/O1TDORzrRTDdlbdCVQbqugsg28KflvihMSSpRFJ7J8KjSoKUwXb94EWY0JLu18OFkPZ+F6OBeLIsjH8ACW2exsL1ppUM+vHNc72kXjdGhxVnANg2zsHW5pkK+mcvyuRdSjljYDpZgGV8hVZc0Gr9fHafb0+s5172kLpVZG20a+Zw7BkzGDG6oF/4OO9Y7bBmEgJM7hiFPStqJl9nDUAJx9GckJhU+FGT9+q1EyhdZ5GXK9pytwkCQgKCaqtvZS9H1SM1cETwHkkK+agbNkKCXlOLZIYCgONmCz96VBcSD4TTrB8c1r35ALd5xztPkWquxqSACbG1zsLRCfB80B5tqLWjFbRh/P8CrrB+J8BND04WtEFGi2OfO6DPev6liGANjanwellV34BVR28ztb4PLMnA+NM5PYBEmzA3IOjtI3y38vtADos7Cw1wzbWs5f2vt39gznAPXRVJzfCPgJK5H68rsdNmlqvTLGzeUwQvaC7ACl2sDM4Q/HIqKtYRiyYaJsazv9d9fvRzUkbw73mdu3mk7vIJAr3/rgkHMe4evfddJy36fhBHXHmEScQDzuGQIvjxN7FVX/9wXsZ3ynvKJ/psxmK//AHiaYA5vfJlgAFFXQT06OhKlmAbd+t0wvjxpw/87qXcpgIBLZxMTFllVf9iLEQO/3gK4zGNis0+Ldcqj+flEVHmfdAYE0aGNXVXDwZQcigAGDOsCmouTxTLntV5ZMvDxgG++kMthwE1waS6cfA+TGi1hEWL9N64RCx/L81sK+ByjGJ+MEMx7mRt1phmyDoQL31DmYdw4kFLCMIMQsIvFvwJPhdHVcTGIVgCIf9dSMtA7AbO54EsoNANmNyrkmE4K+3WTXBlRfl0RRgAsDAJkTjAN4RXdx/L969uXCM/LNVMAm9PRLfbLoux974WAmWj3TJuErw+Do+yFRc7LVrDtBdtese8F2w60jd3SCDIOGJ4Qc+BJaHSbdTcAGVUp0gCZbYrXIVxEqQvA4cDTCdEzDTTtR3YuU085YDFXL8Q6hgNPNJ7hNQzMHVqIpVFAhWbO6vAFvVB4uYxj/DwFUFk4dvQnnIeHVjZSm6WglRvQBLoJiVYjGGACk4ZgAUEaUGgkp4Hs0R5BcYYSYKcbOLBpqARAWwzFKutpSff7Y4tZtepcAyy1cyK9saRS5YOy9sk0MBanJ4BA5dyadbLXwE55ySwDlYiUSmq97pDSIdVrkFDLQMsJdggcsDKvA1fnZh2qT5h5TavojFfuCeBndx0vlhhg/20rDoYbRt8xxsB53L173cDjOPE4Bo4+8PX5iefjB47jgfa1o+5v2O7vQI0iwh3mNZsKGkrZ/JoNpTxh+oXRd9QfN5zPJ56fP3B+fUF7h6ii6EBRxQbDJs54MoMRRXTF4gPXdmy3N9zfvuP27V+o2w11253BOKD2RD//gvUH9BDg/PI6Zt4m2oWG5A8ccAJKdackNxmN51hy5UWOsa6f0C+rDty7vDBE+93I55s/mfi3/I4lIdDg6aUgCCWFep7t7JG2WfxSamjH2BtzuaZRZIuBGDLf5p+rsZWaaAqa/Jd7PZXh8p0459RJln9fteRFVoOaagZUFwP+VdanQl1ZJKFf4LIojMsLBxdx27RrgskYz+KA/6JLZ+oJYG7oh3H1qlPm4MzrzdOvdsECZYjkI9Kh8+tdBvPlWX9pZ049GoOcrGy/95/TBubESqblzfs0v9PqOp1mEIszq0ga3BYAlKdEi6iz5FwfisGEDHZRUIb1QZk3KooOjNEgzsCFA09mRjlqwb616fvbMh4OOMlynECB1iFjAGMDtgNVB+Q8geNE6R2lNFjdoCdZxggHeHTXh5PBMu2B5T4kbKyY0wCewlKzzD7I6VyOlzKNSnFDctY3QRpPrgYApc2n5rVxhFfVwXF6fnGOVMlOH/2E9g2jH6itobUKGwe7cUnJ562NxZSjacrqoIpfpwg7eQVQpXVDaxuo91i8KTsLF0XR5mVAIniDlLeZ2uVjwwCp71lnZ2iALek4hvHKIKlmTbnwDbzwsYLBT1/4BjgQMtn/wTyQZf5Yr0bShkw/BUB02Q09YctExvnG8MXtNkZs90hKDTBKphOAsBt474N6DgLUMv0rQzr6Bqp9dT8hzh1ZCJdT+15WB+1EBFJX9gZo5zljNgEBr+WTwtSBjgTl/aeIMHjic5UAUPoz84f6JwfkRQb5JOQXJGWrGh3+4T9RdHlez/XVPBsCxCoOPhFwvQJPTJmrDiaxM92+N+6LKJHhn9Uym5dwJGbIIewDCZtvARToz7k88hppQ6PmEUHG/AFZwbTDllTTFzm/jiwDGZY+JLNaQma8gCtR30k5+FESsraKYkyL1mXuYl2PwRqzQR6IZ1OAe9j9BSssLi9LMcowDYqnT6pFd1/Lz2wu1NSIGvU/w/eiqZ2y4vpadepVIfP4qSzTXbBcYtMnxfV767/r75OMMI+5EGhM8rlW++PXr8miXtPtptEWW9CBfzd9tUzYfI7hLw2Cn17/QY2ndS2EgbWASsutxi/xfjBrcoB9stXp9FFnyOKMMU4+2bnMjOkDUc6GQnlKj7hHVn33c0hsDqQAHVAvICu+WOcERZq1vqws8XOZWHZzK4XRtLGkDeaNx4Rd5npGT+J4sgvY7Sdoglk3ZFEoIQuHC/7odAf/TF0BzXik+Pklr80jhN0BXGD27vnQAiT5MTcKTxyCnuNZl428KA+k+JuGerxvwOktYX+5LP2Wa6TVIRButpINo1X8ZGlspaBbUO9FsSx2r0fK1h0/x+Oysf3545rx3SyotjwzBack8LOyoXI5CG2AKQTW6HQIbJmGYK7rdQ1f/wWCvllQYgeb4Tx7GiK1saB43Xds72+4f7zhzQuJ394K2gbU1iFFYTig+gBwQvSAwVMKEJK2oYGgSwG7qyVl0SOHAdJmCpiDSKzZ9CDr6XxinAejRSeLiZuyP7M5lZyMJ7hTYfM2ghZrSNonTJ2dTSPZIq2iGKwqiyPLgBhT60wP6HhCxxdG3yBGUMw8xUzFFT4aWrtjV0UpG0y6M1wqpGwZmTIRdnxzI4E3MSDWACtumDWoRzyHdzXSwU5zZKQZWto7vF+gw6x5fR4HBHJ1upHuOyVDD9LB+lyHF24/+a8zzGwMBxZ53LCo9xS1wTx11ynh2k5IuaHUQQBjRJrCCa0NCXAVheFEcOXVnujjAbMTIh2lnBDZUNqOWjsqNkD2jHBHpzNA0JqkAhbZfVm/ecFxxbMbnkNYoPxx4PH1iefzC3//9b/w9eNvfH2S8dT7wOgDY8GIYN75RSpaOyHyhOCO7fE7Rj/Rvx44HHhqZqjgTzNDNXZitPNkekzv6MfhO7fg9v4b9vsHbh+/4fb2B0rbIdvG8SoG4EQ//8Q4P9E//3/QB0EoOb5QxpmppVN2jJk+Wj1Nw+nvBKGWznh+FyEDEmBx4Jksm4KkkAcgLWTciVTQDGiAz4eGQY8CQ7AI2IJbsiqV5F/uTfgeBO8zFDemvPv5NfWULSv859fqOizfdIdEwngIZBOLDlBPEXE9WX2cYJpXXm0W/zJcM+Tb8+cKgFWZ42ALSPTTrYfEd8xYbPJukYa0TCs5nesQ/lMfRUo2o8zLPcUFl/T5cNrsZWQl33e1k/omLAiCEfGsl/kLc8BtOQ3w0e+1LHow3ssAliAZq7EkL0O2OAovlyQwUMn+ERHYFmn1FdHshh0wB4vbSkEvBWUwDX0MQDegjh1dK/qoqK0Q4D5PZzEotHu9loutFr/PWjYWdq0ut+/HqLMt0jHUwZ/eId2ZsGcHNtav27YHpJ+w3rE/PnE8H+jngXE+sxGCjuapf34NZTFjKcHqIMNiHbyobZp/u62bLGyZAxzzEKt/tqlF2hVmgmHqwTdPyq3F1VIEOhT9MMBOjK4Y5xPb3nC7b7jdb7RNasWXl5ZQo+NZS3GmR0s764p7cp21xuLktTVs2w2t7Whtx77dmNJdmzOHvRZO/j6on0sjWzmec1llXHslRAQiDUeSKc/9RRt0BqYbaI+pus0KBw4h7HCYwRnuLYscbZjvbQZuaN/isp+mnBSfp7BBR86NwTIgPktm+DoMdowo7fe0OPmQvZ95f9FUMLour5kLyTjNHRkit3j9Wf4U8dRBG8BwWSy+FpVgmDnghzp9s6gjSCduOPBNEE0kgiGAmYNbnio5e02EDgnnuaRfx3EZyA6FXruTMqx6DcUYFQuDfZH5hgFDj+Bh7q3owjYN/lJKysBIFQvWWvVgUHzW2pa1mlg8vOG+b15Im+ux1eIFxiVT8KdWdZaaxaxO5lf4iiIy5aMOTxFkhkofPK7rmYBanGcGeEOWzMecLDKSTKIeau4jeKMrRNAh7FQgGmohADxVbI2NpUqtsONIGQsgAb7p78Xvy/0AScOutbms8r00ZrMq7vHKhgbizylurwT4JMFw9K7WCNcsbK24vlNkLvLWcj3/2t99fYeBllqLA/jTfln9yVlQfAZxVNULt4vrN67tMQZm7bLFF015LyFy3O+URaa4as5U1usdUxbOe4wsHcqXnwHKf/f6DxhP6jc62UrxryJqCU0jMjvESclNrmrzprEsqOKRCMFCcYR3+aC4D9bvGIphIcKXCZ+BhaQexxtcoPGNEIx+QhfUF0aKfyZlMT5zES0mshuzWaU/vx/K/krVDYVS6zQiL8csF19R3ahPFeyNXJDhgE6eG41F70C42n6WyB8uqGbOI2b0INJ7QplJmfazwRZwx+nuQ38avzFmxf4U5HGOZSzjmQLVFpEE4gDQr9ZpNue/ElRpBSOb5t+NqNiMnBIQ4ffUFR9i3la7wyco5lxS+VyFwFwkyLS/1diOoQiW4By8EFrXPzkG02gfvpHDMJTlnkLoxYWmUohF6xfzgoWlNmy3Ddttw37f0XYa26W64jUlCwhMsTPx+kehmNEAUWhRiK8r8xQHEl5kPoy5cWBT0ekwoHdgPMn4GFHXguyeQAZYwJh7J22iGJ9gO8V6CmNCzWuXcaFk4UNqIRqNRSHaIYMpfeN8oLcNaM0BqRMFG4o0qDS07QY4mFhrg4lgk9hi4u1sWVeMNr75cM/IIOs+VZg0SKlpQKyAXPEE+2KMTVcx1KqoRRmljDB2KDkBmYJRc8AAAkcEksxOqB1QPTD0XMCn7sBTZ10nMHouGdX0Toi+J4t48XQwTUXRICDwUkwJ6gHEuQpYAyjqAJinvmTNj5HEmgoyzIpwrqHFWR4la8RI1PUJo9ffQ/X9UASiFUMF29aw7wXnsWFrwG3fcL/fUbcNx3HiODpGVzd2SzKemF5wgDWXGrbbB7SfOO9PbLdPaO8gFOPzYsrUOweetHeM3tHP09dZxe3+HW1/Q7t/R3n7DaXukLajbNVrY3TgvKP0T5TWYLd3WP+CPD9h/QnpB4p2775orHcG8zXtLabNnSbMuhAXrWO5KODhvzQDS+E4io8tV5fNKkoiU84UzjuE1P/I+bOoIcHV4IYl7yJA/dBfIaEcQoQt/6YEvKjvn6N96ysOzfNK/ND5yMFwESEyd09hVWaXpZLGsqUBsI7bi5Z5BZHirzTkgHQBpCzHlvzVLl+U+bvKop8zrxI+Eanf4++8jk0LZHbh5afzWuXltudzXNQd4PNoL88uvk54VNgHEVD7iXFQXp8T16tcBg2xUjKVJx4xOyT6ecKazHsVINz/SCGFj4kOy7Qh8dotBrYYL8PoXDaXBUNQtaAOOnN9DNRa3SEzaIu26JpOZToSYatFWoMzcuOlg86t6Ox8BhjMgSegwoQpWq10SGlkTZcGGSfQTy4D19+1VK9/2IETDjy5LFCyuaLODNZpjHS43BeSgzqdIyJmIWtknav8NdaBxNvOxJXUxfzTAAdeTJw9owLtih6TZAT1isuYbdvcCXVnvMS/U1Zxiy9OfBFse0NrdNJH72jtQG0bRj9Ra0NrO2rbUUpFqxtqG6ydaBusKEpVAnQgu0lEPB3u6vhxzdG2RKy/IpmqZDBEB8FgkqpXmpdBP6S53IyUzQCnVAErUzaJKBLQ8uGqNvUh34t6umFbTkZWAqRL6lD4DFDaKcl+lejyxtkMI1Iu5vAMaIRt7vQSRPmFssin/N3m98OenpJpMiMySyHmWKbdF2s0V+0L0w8SKUWWe3OdpwsJIMfCUkfwUtPejrUVuEOMuRkD4Ll9fFA55v48q2yVpRaZEJAtvmaKB73EWd6ZMleZTVBLZUpd6iivshi+xbKHspZj2IKxMalYEnSKew8gzswYlAuA3etzdVX00RN4KnQYYYhUVME1uBEQkz//UjV9zSZRWIiFCwtNnMVFlumUtaFTWMN2MuuqhO7jfo2i+oIAYWZgl+aP25MhM5Y1kMCVI6yqMfchAzmuyT5cZGZiU0D6NqWWPHdOUeoK+BhGAy/HP2LtyNwPEsBhrvMJMK3nX8ke1+uGz4jL57Ehs7EbVlUvvh8kZdu8jszv+VmCJRbuWABxrD9/MYr+j69/Djxd/pp460qZvhL/XgwZv9FEzcvCXHAtJ4ZZcwR0xgMbsBQEZCzFNSciaHlNW66HXASGQOZtRcKHzsG168AJJlo9lfXcXNz4E73OsUqGC2JgMDyizWNrCsFEFvPby/XDeI3VHE8nkrZlKiZ7jWnOBb++ByAjwHNz+JRksfGYPyq16AwIEU+/w1TGoOGW6V5YQL11EfrnqwOwLlHKVCrm1qpHQpZRyecTn5d54ogqFBFGBfJ687FjbiXGM881N9TLYK23DlmEQDxZGEcR4bh8vihF5LFIgWk/HQtEdDGonBJGoMSd8qUOxE3D2xblSEMIxbtd1Iq2b9huO7bbTkprFdobnhp1qcnjrB2yVwBGmzQNexO21gyQKIGimBevCUOH3xWOd/CxwSLROgi+2IhULUt244yGe6rLsk7X8UqB6x5mCkNBAlA8oTOMinfSGw+ynXoF6x1tUNsgmY4lBOxKQakFTQATZdkxyAV0KktL6Rn5CGVMxGUt0J+eI3OUgMLofZX5M+v5kOpuObau+jOFAyjOcjKck82lznjS09v8egqf+dwuuf6AJjUbQf8vimKs96MyCBR5FK2YQXrIEEAG4YxaI/WUBuFQl+3OaWW9rieKGFQUVp2F4nXNUkek8y4gE4rGGottg+BHESh7IGHbBL03tArs24bH/YayNTy+nng8D5yngt0XK1q7uYNfyO6zA6qbA6Ed5/OB1t7pyIhFchlT7syfoXcaSb2jdqZfihVs2zfU7Y6yf0Bu34EWwNMGqYZSO9B3aH8nqHO7seD47W/Y8QDOAzIOiDuTY5yItE2VAAY7AngSsQmshCzytWXwlByJuncBxDurzh2WlGG5bMXZUFFXj7T1AERCp4sT/FkbUFznT30/9cmSRueiLQz7RXimYRevlXJ+ZQ/N1DQLGYlrMGAaVGXKeXFIzMSLNIc+XSVoXAGw5XpBt0gnND8JxSxBNaZu9HEoEbR5eS7keSTxMvjYZ/oj1mtKgrJuBKWu5kBMfREDnZ8lcPT6Wt+Xl08WkEFifEK+23w//gnwKaKr/t+LrJ6U1WUsplIUSLJaZrrd+kyh9W0Zx+VZXLcHObZWZyh7yig7VwFMHaNNUQa7k1attBnGINtmVGcFkLUSqTUApjOBCCT6315/MIZoBJtgMHXFXN5b8Y5XDjyJKlA2ptiNwa5XOG8qWgABAABJREFU/aSehDmbtmKUyqLj4+TYem041lpTDCuQEZtrptxAgZn6AgRLEYtzYesekJinJaSb+wTuYsRaDCcpvjF5dywe7HvBwZABgPWxBvpxZhmAbd9ZszPSrtyuTXMMmKBTFQ+YFfS+sWZOaxh9oLb4vZP51DraNlBqg3nH2lrZddYqB6fU6gBZpLQG0BIsn5AdHA3qOLI4LIeYtjHZnWQSDfHSDADESgY5ZbCekHlNvvR7CtcP/B4mbL/IIpGU6WrRtGbeQzLYlhIguf9srgMCi9QRpoPPmvsrRdFcEz4Pc93zreKiqtSa347grs1F4dcP2yiCc7Q9uC0s2e0ZHLZ5zXXlWdRiCtYTZroiwQzeR9jiGsbgy4uux6IzoklRgIaroMfqK+RwLCcDAiwJPRQgE9d1+CVIoE4gmVoXtc6qFK/z5H6EzVuY8+K2n06dkHtwAT0IPJHdNXT6yQCSIZmpgkoG1xg6WVBmLB7v9Y1Ksl55zQCjwgOZvwttrbKsIR0IcNZgmUJXHVwyH1+m0S3P6yVXEnwUArhDPaU6iQ7i+8ZXyhj5rJc5qawvXEpJgCt9WgjHdKmZJhBvOrvM7VLvKrALvYw78p4ymLOsOYB6Mkpy5p7Ju5j755fAKea+DqA+AiAwJwa9PHd+d7nP1KrTpFjucY5dAFlRIii+bGlnrlaEpB35i1v/5es/6Go3KbzTuFFKIAVm3rLfSqkpHFkAEKTgBtCjYZwKU+Pcea7+KPyvhSpA4Ob8TvXN4DnlMS6yGk9+njCU/B2DYBhwdhZqJKW0pkAMECqNb1CRRBRNz55RGuZSu6TMWVyiYkntE2x7vQjumFwycFzJuCCLDZmKZKl5sLJfim98gjSLAqkh4IJ+Z5m6JyAd222TNFgoAAxW2Glp1uECxuA91uoGrUWUj+NHaqOvjMvKm5tA12J1cbQrUSkF21bXr7GI6rLezI3S6oKGxUJpkGzFKfcZ8ZzAIA0fS2S7tprUSXbhCMNmQZeVTIk1GitgbSkFDdPWmo9ZT8W/ItT04wjwXdDm+CWEQa722MoLQh9/LRt9BQvFFZb4uKsycoraUPZ3lPsN9X7H/vYdt48PvH3/jtv7G9qtAkUwZEZKw9jzyfJXAaR6TYyGMbgfWqkQ2yDYYDo5m6MLRhfo8OiinuiHQc8O9APoX+ieNpUYCJPnvTaEZecAM3axWFX9aweT6dzGvJc0rlLEmtKht86Uv74BXWC9Q7Uy+qfs4CbYMMYHamsobXODGNgq638DBaV0tPZErYpW4almG+/GYlcFQCCM6toOsTvG8eXGg9IZGSfG8QW53VEwADtgQzBwQuRk0dtSIeXmc1yh2vPJDSdYT+kLx/N/4exfOI9PHM9PKvOoaWUn4IUjBQMFmp+rnoucCRC3QLRwLRVF22nwV2mcV4vC4juk7kDdwVTGgtMOdGs0DDHQ+wBwQvADYg/o4HgHtTdr6qlBKtPhaqlQpxDbCoSXHaXcUNAgqLjvBbhVfH/7jt7f2Bnv8T+S8fR8sh5VrQ377T2jY8fxQO8nzuOB53HgPA98/vgbx+OBfp6ZDmora8HlZDVFhWEz49rXAugOkQYrN+Dtd9TtjnZ/R9mqM8QObHgA4wE7/oAdfwH9AXl+QcYJGR0yHnQux4mzszA/WYGzw6RE7RgwJZwwUG4O2FDU6EiJA9FVy6nDqQclNzwB6gBJZaW2huyV4qldvBqNQBp8lA8EDyVAnlIRXUvVfG87EENjNBi7mNYPMOn3tHYcMGjJuLr8oEA9KJWKP2RBOAIuS80MJnVaDwVeCyRYGx5pXQV3nKvU1JPFjUqDzONF6OAvEdbUwhICdfFkZP6aulHCcHNqYHY2CltilcUxiau1GA6bH+hOcKwJ3sUiQ+PaC6N6DZqEYQqzZLaozA5ffBw3Qj3OWRawDJCZ+gLAvMvsyNbn0Y1L8+/5jJbjEjbS8hhuO4w5Xn4RM0CbwNzRD1aItIqqAtOK0r1+nCpqZypeHQNVJN8P1sgYlnYT2QGRpjKPmc6rXRyGaHWvOrzO3PzbVDEqUzgIarHbHdlQHUVPQDu22w333smufD4oj84D43hg9APdG3PAGau9nwS5dKB5KhWM7KucM1/T6k5eROL5W6xRshxq1MQCnEDjznCZ9Y/GErCNfcF6TyyQP4w2lyqrxI2u6A91e5t65lnO1DmxlhNrTg8JvqcB2bi0yXjiz77f0dqGbdtxu7/x39sd23ZL9tPtRias2Y6mHToqzt6p572RBtko1YNP+fRzX8ReVYKbVgTVBHpSfgTQUFhRHLPLrKJuDaqK8zzIHCoDUaLADOyO57ZK9doJFzDBDKUxNcn6E1I98tU7a5C6vRP1lmqkx0HAGoOr7GWAy7yBzwR0XZwNTzsSnssWXcBbZNc7K8U7sS0el4UdGj4UA+61VNxub9T3qjhPgqgxxJEdsYnAvKi5jkGboxYCAwoM7ajVmUNAOs1q5uUswk4gK3roQHM7Ygz+EPzjqlcYRifbRrz8SjC3LMBD8eBfgvzBXlFns7NAeAKJZrhtBEbpiDOwF76T+n6spWLbdrzd7s5Eg7PHwXVUZnDdTNnhskx/spQZ8yAmQJk4xlIsXMOvc1aRXetSnWOgOxDVx1jkcGV9LTWcx+y0OJmJhQCKSwkdEywR8v3poTPSxbXkqffR0bLWit47SmtorovMZWKhsY1qwPP5TD+6SGPZB3F5C1+Pnt4LYJZCCZ3oPqAUQd0q9yeoK8Yiq4ORaMZablUq7re3WPToGul/NgtfCNlXIf9DNRcRLyKPad/a3GexVjTHTJAAWmRuAcQdjPKytZqAovgaaFuFWaQFR+ooU5HXAuTOM3khDyGPjxS5qEHLvevan4ABMQaEXKf/1odrD7cV2CHZ8E9e/7zGU+6CiHRMwGfREPCRTE9W9Xqsm385uAb4op+G7pR14iyIheFgsaA5YUk3VUfSEUoj0ErkfaWxyKFFpAAGIr8aldFpZrEUJ6gWyhMFkVY3L+NCwQXhRCBXTbq8liHjBpV0DOwyWrx11meaGy8EgrgRnpGCiNrEOWIzgsaURPpaAGeYhl4qXL9OgHCAXBRqa8IIjqOjaSBgnieV3stjW8zl+t66EZe/E5LJhH+bKW7LABas1Mr5DMjnFNaHmFfITbxG2tOXSaNYPM0p7g+pZOM+Q6Bc1pw7iStVe/naPBf8OQKkS5t8zk0eLxEtcwW5rCeRCiuNDvp2Q93f0G5vaPcPbPd3bLc3lG2HtEKEN/0Wr/NygawZDQTIBso6MKCBFush1rabGstPBbxSDiICas6EUYV6x1YyosiUCSAqWFQvyyPHeo5c3O9cA+bv0fgWn8Moek1W0DgL0Gg8qRTAdgANUnaULvmsTOEUZ4dxAg2VhdCxkSpvAyi7P0ysV09hQ89ouEjJmgmMEgVDiK2YyzhQ9WAWhXV0DJTCOjw0QozjaSVcCCieUH1Axxf6+QP9/MR5/EA/nwQhPY2SbJkDsKg14XVQ3BkK4AkShaPd0a5uWChDnMV5QAE6ROAgpFS0X88C1VYdNBno5xeN9VIAbckCW+UYRvH0rgpTrzmUDkmBlBNSolNeQ/F1KEUgVd1Nrtgb0PeK5861WkvD7XZLUOTsG3TQAH4+DxzHgdt+x/PxhX6eOA8HnmwWgo8FGd1z2DYdsC6w4Z37yg239z/Q9ju2t3c6C2JQHCwqrDfYJrBtA/oD2L6AfgKjQ/oTiGL8g13vdHTYOGBGAIopkmTEVaEBViAIiqmpAjnfT4JWOgi8BpMuCyRy35hwvLN7ZSkpqwNw4hjPzlMZkFllmMXvltsxdsNV5cn13wVcYJOAeXsTio/zuQ7zZfHvTZxIAwx2l03ZEK+kvC9MVvn1vYWeSM2RrFpfm36eC9Ng0d7raSPANDEkhw/DTkhbYeohyg+XsyGT/ISS4yV5n8FAChnqUtCPX3TGOi9y/SXOlt9x3eYVEZYhutpZV/3P9WA+3Ov5VcMesuvz+BDMc76opct5f14BM23A50QEWhQN1QEkPv8QzXs1B5Vib1cxaA0HrRKIcgdudkheBm9Jf9Yx6y/1NtIxUnfYWXuO3fN67xAUymoViAqBbANQOkrt7uxFJ9CC0htKq+hnSSYrGQqdAIaww1x4pSvwNOfVd0ZuXMt1FwyFsHHm12NdCdPrDS5TppUpTjs2MLKvIkyPhrpOD50tgJUsCWFiGbHHMu9xn7kGDqqEtg+01lFrxb4rtm3Dtp3oXbHtJ3ofuO0DrW3Yd8q+pp330YZ3NqT+ZQqese6TqO8PBkAClI65hdeui70oYBDbV27uMBZKdnbPmPNvcNZFLQzOIYIu3h1vTeuEOrl52vQGIWPW96PWGZhXY9r+5BfGeJec57TBLnb23L8StZScLT5r64AsFJEEWwTiDUecwrHIyjUFj3NX0keD+xOZcaJzfnVoskJC/8IKrJB9P5S2kRSdpQ3oKGVGQmaViHgdrRjDVa+EfJ7+VQa3Qm9koeYcUABkM6EATdo1fcw/zy6Ny7OnrxIsek8TLVFQazVpF+U59+i8jQBAIwg7Uw75DCNAb1UCK26rDB3JcgogJAAXTRvQr+NpX6FL0kaD+/7B9nHBnhnF/izlRRcYLNNng5AS98asAI69+poqzh4EgFoHxJmJQwVOXs7hspBVZc5djKchwBfNeXrVGaFruJ5Cx1Jul2L57LGGOT5z9wS7ea6QkBfLe67UinFf5Z52+1fgwDUKVKJ7ZgqWeY5lfb+m0wUABCAJHhPscrA0jjSkDxLrbD7XvNb0XeZcFleuBjb6GBm0zgWKf/L6j4qLz4d83cRXI3B9bzhayd+BsFwiZq/GAmccjJLyioLNLY6gAPpPtFst1QcIwrbnY0bu1yLY0yiakIMP4xQ/F9p6CM7kgC+rXdJIDIBpYdtzMUbE6MXYWqNktnznZaRz/uZkzmNrCO2oLSARuXIHUIPLF3nQE8GMOk8sbhwCwidyNUwsxLLfZ4BO5tHB4UUtXWgwlWl2YFjXTHb48KjWhfG0/HstuD6N6yyqJmAkzi1pWesqueAPARKKY33lrC4DHnUFAnS6Gsx+Y2bZEWWi7EYwwszTpuJZViN60XTLdQXI2gvxDh2uZd35OtcU+L43EMrIUW6swJMLh7IBdUdpb6j7O9rbO/Y3B57u7yjbHdLAcAIHhKCGUan7yCwLb4JO4u3WA50PJ3Quc4/YC9ObiFw0P98EiS1qPznwpJ0UYqauLIaeAdnOPMZqapU5Uy/rNz6WOJFHg3UcGP3BCMA5PFooAE5I2VCsM7KEClhz1g8m/R8CqxUFHWIbBgakeSdAjJxyMTilfpBV52nA6dxLgYFMOcqtE2VUFnYfBjKbFuCpCqQoRBrvC+o/B3QE8PQ3+vGJ8/k3+nm4ovW0SRuAngQgoBhGJ0UXVk/UeREpDvbTyC7Fi0Qa5zOd47CPFuOUoqJAjOWWzSrHRBW9P1jYVgRoAXSsws93YCmwSoZdrDUEC0s2N0TYUZDF7itQGqRYRmi2VmFacdv5/SIVN+8UU0uF6p0pgQMOPJ243+/4csbTcRyIji+5xOByzx3I4zzYSvo0WK8Q2dHqHfdvf2Db79jvb5DG1t5qT2hvMD2AXqDHDutP2PEFO1lQWPoT8JpjpmfOjfZnMteQwJOhOTmpIEBxOHPiBOwE9As2Tn63c32KDTIPfV2Y1+eyMsFkW4oTG9ywk+KO72z5HDIvHNuoQaYStaP8Z9G9qU9zuqfsSpsxQWevG3lBX9YdfrXXX8o6TptErgdn1G9BNV41xcWeSeM5Li9uo8znYX2G2RgjxiWd9vX+Qq9ffqZsCFTNAE+LjEeI/SLXk0SOcezH5Zkj2OTSJ29AXp8xr3K1cfhs6yBehikdvGz+EeOyfCOuUWNVmDkoJBcwaTq/kue6XO7igS2ByMWWgjtqAbwxmKMEcxogaihaYBizDgsIJlUtaYNo8aLhbkeMQWCqu+0F171hVwY7grUNZ8FcgvuWQJQORe/DWb/ReIEsBTKAxRnEApQGKx0CgQprNZZaUEfDOKkTyJzqWfsO3aPUZpChvjHmJIQTMa0K8zHzPeZ6nyqXts20vwSZVuN2d0kHxverABHMJSODTHw6qnH+4pZ3Ibjg89fHlLUpf8zPF/dfaDeVgwWXWys4d8W2ndi2DWdX7Bs7mo77wL7tnlJmGJvXrbSBog3FyF41B55KUepaZ9iyCHvmxXCsPEh7renpdoxvNBECT25Iw4alcw8xssbVa9ikoLJsOhJr26Beo3DKk2Izu2BNf1Ovumcg2yJa3dOP9kwHd3ihZC3URYbMvVeyfIAhAFQOfhXq5hb1t9LuQvpcIRPCzpbUJeKgLUeSqU+0l3QYotbqGBqkHh5f+Cy10gYZCnbVjQBIyo0FKEnHvPB7wVIMIMmEz+WyY/ULJKZDV8ddEFqjwIFUc5DAgY3Re66TWutPbNKQSaUUtOqF8aN+G6YOjTGkPrVlfJGyZtEoeY+vpWCCwdST0TOzTYaTPAzIWk8WDHx/XhUFu1hHcHDeI5BJCgiD99oJHrn2uMY8G0Si5ETJ4DOfaO1S52Pm/p9AUOvwdNUCOwfGktUSpIhgRNFPA2YgQKcf6zVfQ5YEyTJrvEl0GyyMzWVK8kzHTWGaDzrX30qM4V73aXL9SDnua8iPufiiUpOpCHBPI08hl594/ZK4YQBzfJBjGfdhCLYxcuzVojpTPNfU38P9V04P8ZQgSIRfpub+Yy5c/KPXPweell+SepyLfh4Qx7FNYxRnCyrudJS58JlO0wcuwoOFiUcCJUTa6AES3ed7o08hEQXHwiJmhyhJdA+IbgKYFH1EjvFExAOCMOH6jWmYedUuAM2LJ1qglwtIJcCs8D7N41JwWaAJPr2OcSzqeBybtmCYjHzUaZYGPdoyEjCfEcI0OfGcbLa37Um3jWtm6htkQcBjznidpJv7HMMm9RVG5cFhWBSQyCy0jdC183d5VWAvr3XTBXAhRfxfNxB4IuiYRivpf/ybpK3FuPapKouRPW9o+dOVtccXUjFJFGV0ICy+tHYf+Le7MDRc/On/EcBrJ2kWa0vD3w+KCAKXVhjvbtDVCtnfUPY3bN/+hfv3b3j//g0f//od94837B93yK0RdCoDKBsgA7ANsJOrXKNYdTDZggmxQ2TzyGC855k6/hwaRam1QWpDGRuK7NCyAdooA1RIgx6MBmL4JX0Y1wJ+l/kQzOdexi33PABTN7DCmIaimTq4crIGUi/sGFbP6WTLCdMNVg4MOWFK4MKG+Jwv+fJW0MqOUjfs2xvq9obSbpDtjYCIFBRsk9GjBNXESOOvRaHSfQ8MdFM8j08MDOwVQG3OQNnIwCoNdQNKGShlQ5EO7lKF6if6+RfO43/h88f/F8fzbxzPvzD6CWhEQ13OZVFaA4ydbHQEzYxrSWoDSjAh6dRapEB6mlcpiiIDEBYzN1WmMZZQ0gOIAuJQmHptrfMvDFMUMRxldoIM44aGavW07AqrmxuuYcgVUq1Lg3lKBMYGVHbMoytTUMGCwfSPOH8iA03o/FZpkO0OoEK14bYVjLHj42Nngc1BBzElY4kRNJyd6TPnceLH4wvjHOinwnpFLRu27Y73jz/Q9hv2/e6BEQU7DX4QPBrfMY4vjPPA+fWFfhwY54lxPCZbyR0k+Lo1Zz/F/LEYPdIQMDcAMRRiZ6aVan+yhtX5cBDqhJ2fBKC0Y2pj6rUAQCwBUq97Vpo7vs568nkxT6sxZwqklLQg3DvEkc5kKLFFwC4G2gV0SHk3P1+PTzE9D/6FtI3z0QCmQxafBXg2BX46ea/3lueIe0hl7JHcgkzFAB0bV0xAGnZxXptyPk6F2ZL+CvosDxsGpK7nysumfjXAUxdSJSKshnVEZU2HXJ53bW0fsjgLvVoY2/4c3nwlnatfzkK8O+2BaCLyaji/GtW/sgWwzBAdqp8N8HT83DEJAN3C1y+V9s1QjKaIRhgRIdcRUWPfVu7Ada8BY+u9LiAYbLLz0+Fzx24MvkfgaWTK0XmyFl/vD4zBDne9NHZiGgNaG7SxqUHbNwYMxoF+bFBld9JyPFjPL9J2daB4ofS4J0fScI3+Ux4LzMfMJV0MlNhSND8CtXTWymJbx9pjylRJm4gObsHoZK0wUDqBgjiHIrq3Iq8Ffz/ZuOYpXm7jaVF0UZwb6zXV9kRrT2zbhtttx8f3J/Z9x+12w+1xQ9s23G433O93r3n5xiLktcHqQKTaae2oKe/YHSsBAXBM1DcBmS1gTxWDY8ZTpwEEUGQIiipKZQdF9bQnrOtmDDKpl7RPkXFZS4Cg2paAg1vzTKXCcGAkUmEGAVeB28BGVpUFWOWMjZAB7quJDGR9TK9PaWoE15lD5XtgBncF8HpPlF3NUwGlFGAIfbzTS34UZ23ZutdBO9BG1ucc44S6KNQGGNhVtUhFsboAMUBKNf+zeaqWSMFxnExvRPGSJsZUdpupZVzZ/lzKVFg4CMNi0JI+SjJaLo7CBM1Xtk7IolIE+9Y8zaxmJzsDS4ZMJomzYGDJZqDPyH1SsNhKqJhLaMIr3QzDFF0HjvO8pBCbGXrvyZK6yH4Lt8SBct+GZJXnw/AZXd8lOCczqGDG1PsajrZwnZTa0KqDTkIGZGsl62GxJIO6bJllV2qN9c7aqhZ10BafMXxXdpmLhRB2R/gVkiBTkYpad5ynpzyPyAjyciU+IFGawdQBapB4Qd+ewOx59px75Bgsck6A3tltPMvhYh7/Gmj5tc77tT5M1mDq5VTCq1mFkKdztrl2p95aQhHqgYfivrMzJOR6gjk/JeYryBD/xud9ef3z4uJLPveaJxqLf26AiIAgKXmhrPJ9UKmwQFeYYhH1nIyIKKIsQNiJZCj4ia5o9mpAOSq/gDsQGhMsPAmuS8E8v99jLFzq6hDPsWKoXVJpzFU0mTOOnGsBI8AxkYsRfKXhxdhFdCVYWXPxsvjgFfUUscjkSuMnQR6dQtUQ6WTT/DSLdtfzGVZxyocPt4SKJ2osUR67u+PDMAurL0s7ARkfT7wY9evvIj9trBijaA88fZEpWubXw6h1wwq4RKVIc+WXwmie14lxWSKBOfzX+5n79GVzpdCZTkbuU19jK9C2XMIPpMDOa/jA5loElZ/b0khWgDD1Al4csW43lP0N5faB7f4N+9tvuH98x+39d+xvN2z3G+pWIFUBUUj1fDdEeo6yuOla0NiFajIi4MpJhnfcin1LgOZSpG+pW8I6K9UVU6TWhfLy50s6/jLGMVCucGwBW6f+WdWNIBzoiMg7aSYdbhsF41RGNUQAePFxOaHqEbVawPo8BrXutQCoPVq9o5YNtj9Q9y+UbUfp714fYkMp/DyKGsa8SgCECwV8mKKPAziB0ipEN4J21XxfAGYdThdCSk/r0PHA6J84z79xHn/iPP7GefwFPclqKTbtu+LgUSrqZGLFyAkiOgq4bFAF2/P0TAMzPWBaoMr25GJkwrEmmyFYO7CoT9Qd9HvQ2IO6HIcDv9F6uKA2gm5aGwSsGYVSIUqGlEqFqKdBVNbkUmscH2FBdKq0VY76XhkdagWCxiLuaCiyo1XQ+RLDVouzOkv4aayn4eDGWBzH221j2kxXqBYCT+2Ot7c3tG1H224uF9XXfIHpDhsN47xh9BPH/Q3ncWKcLG4++gEdMXZenHicDpx2B7zZybEuwH7qOQcBuc4PsqX6gdG/mLI3Ttjx9wS4or6Xp98Zpsxket1MicQM4s7lMoWyb8fYkLZaAvNzWfdpyEU/VxotznTS4EQ7g6rYVJbBSoizXZyQeY+CKTMFdAKgxvtYBLXlQT+DISvYJJe/Xz5fry/FmVouq0NYAS7HnNjpBY0lZDnq8lSy+GZLpLPE32GSUGZKsjPWlDjLZ18nj991xzPHPeRmgMAhoxaxM0ecWslTDotcr7A+b8ibCJhwyH4xzvGt5f1fHrM4Gmuk30+c840YmzmE046ovhYXFrY4K9UM0GpgByWeu3g9ozrK8gyONpjr/bBJ0zYuXkKCEXnp6mnMHFtVphWVKhijonRgdLKApJzsZDcGtBRoqdDSgcEafzoqyCQYKNaBKihjoIwTZZwOPJ3Jio8UwbCtA1iio+bgU9pFSyBZzKO0kmMTP7KMeZTDiLqg/K4fD4FU2inpNOaKrD4tBkQHt2X1yGpnm9uB4R/4umVtzYF+Gno19BZ1BQ3n7UA/2YF029lIwmygjQ1DFfve0eoGbAamb1di+1UhqhzTSI+PejVw1Sji9t4ScC68vwszQYFSxdMhxdWsQHSuGTHPZKjtUiOMaUmKKAotqrleGXR1xrmDPEECmGw777An0RiGc4ABFFQIFn1vIa/nnskU4GQoGhnZvp/Wci6RbRBASzSqGENyvwYBQMcEdcneV2RmhO9xWxaa6pS5ZEoRKkpmTFzbWTUzmFVhjc9R0n9xeaTO5HYIrsQ6hix7g0NTwPdL6BMR2kYOCpVtX9SE18OMovhez6zW5t3svHFNcbhr8UcydLCk9xvCzheOfcqxGUSJ2l5qhq6GPgbOs5O5vQATXBt2WScXAoTbYSuImIpGqGfMxJmNvreLEKSIW47aVP5doXvCLKVSqKfi1KXlmmAGowcYPaABM1id91srIMUAcZZW+r2hhmNM4u785aJ6Bog8OBTbtkQ6qqQcNGfG0c8qTtKIH98n5sykFzW1Yg7pe4vTFhIPMaxZVtypwTC0aeoIEMxL/n1lV8WxsfbifCsgtdpgF4CLi8vTKXm+ZPkjOnb6sanrVvk91+6rX/1/ev1z4GlEypwbTjbTzIIpEzdsrojCeM+HwnzAsShpSLRiBoYp6amDNBMajLJ0P+BJ1WZhOPVIZqROrc8f15t1djhctDkWYCs2CtxgdUWdE4AAcISOgC/wFHZLehgEbDUvcQ+GzJ/2Awj+xOc6DfAwMpfFE/nLQWtPdPVSHI15z7UW9B4RkzVlKvLHubgKwqaIRbSAHogF5jUS1EXiks9diiAd2QRe4KOny7iDxrbYr5pM/PRaN9YEDmY6F43itIQBxJhwriLtLwTYzK1e1+csmIdljnJ9hFxJpOnl7zx+FXqYgF8cVlZvbTGQ86TxPu8p6k7HKEahzrXQe3SSC/lqhe1YpVZst3fU2wfq23ds77/j9u0PvH3/DW/ff8d+37C/bSxHVAJ4ipSt7s6nAuXEbNl8YLaZbJgAsUIxoHJihuAN7JA3KIy9qCBrxhB4UjQowpiiALFMsUPYP6mLKRd9QGMdBZsAcOB1pmwwA4gRtVg3tYqnZcKVtUd8Tpk1bCKlSyoL6Qnt3OJ1IMbo6Gd0KxLs7Q2t7tDbO9ptR2kb6u0dtdxQyg2lfoe1O2rdAZnpvPAUNLiJp87G6p1jiicIHmoDYFm8E0pgBUFrtQGzM1PszuNPHM//7cDTn7DnF6Cxx7l3TJc1eFHCbrx6eqREDakR7CWvM1QKbFTY+GSntdMLXhfWW4rcLyrrAE+esBE/DwJQztrhlS2NsCoFxXYCT9ogtnE+ZNYWEhCYYtH+DbCNKSbjyGNRdkTqsUhNXdHhILYWCDpK2SFl8LpV0DySbW73acgyQXY5BGjcDzWcbzeMoRhqGCKoZUNrN9y3uxe13RZlXMCaYQrVG1NBuuJ4njjPgX4OPL4eOJ8P9JPgU6TRqANPEYUVMNMl6NspUo36QGKC7STwNA5o/+Ic9Cf0+BPQA9AT4/h0NtpBuRlGtbgBXbasowVIgoUCBxuKXHQecqVH1G81fOJzpE+7ykKzqGOiwHBnx8Yl6Xd16PheOKsviiXBmbSyLroIDrL9JM9XXbYYEZG6FQGO+UThHMjLLcy/kxl7ef7l7JE+6YZu7leY2yMTDEIYgJi2iqmn2KDO58lsyWkL5VjJfA5zmypNdJmRexFBsaV7oa1VjSxxyMBv5pPT1phDu7Dq0nD99etqLMffc7T99gHgmj6zjr+neaTqtrgDP0YAQUUpZOIHY6e4vZNYh857zc7DOsc4OjUFCBDvD7W8Nxlu92qBlAHTgjIUpTqQtRXUXqBDUXtFHxtUB856QLvX4atkO6l3vBvaoaN5Q5kBswHZmr9/oo5jAk9DPc25QzNw4oZ7FNJ1wIG605m0XjBXvCFNOGs9UhGVaV+xZsg8E7fvp10W5QnQJC+bnbNM2HAomBPFljlbZEg64eE/8hkYtFagu21fWFOxNEE7Tugg2HS7PXG737DvDb3fMbRjOzbKWS9Gzn23oUhjmmUdkLohGCwscu0sm3QIabMEA3wFaGJfhAwMhhdIDIBogUSpDGM6MXM5ijNSaNOXMRlP4u/XFulShqLKgJmDZJbTa2Q0a0+GRpEYN7iTX51RWXyxLw0EEIHuqOkHZwJxL1aJWqpTjoUPVEJXRh3exVSPlKreo8M30r+I7pHRBRAWtp6SeU6lQ9/L56XVeY/Z2boUMtYifdwERaJWo89dAYoWqJFqX3xtwejnEkh1Gr6DEAUgI3uV3s7ga61NZ18HaiGziffDZ2ytuX9W04cjmwwIjaB+gwEYQrg2qhAmnFycWGWLjPN5Pz2d93l0nMeRhJEs1WFGfMYs2d2xZ1trLN5fm/sb7nc48BWvWdMp/DFnsNnSFKIEyA60sMd9LRDUYvo+h9H4uxhqDenBZVlNIN7NsRUGrSG04cMeYhMDtx7Wm0OohXDyXA9q4BmW6zJtNWd6B4Mqa/pVt4c9CqPpg/XUIzEX88r8qTWur0uw5Jr2Fnp23o+kDHkFB2MeL6l6WeLGfTSXG5PwYPn91O9g4xjxFPKQK3Ga1d6hP+b+v6Vztqhmvez1/9PrnwNPIQgwMZkV/4tjYKFsF6TVjRsDEmzqrswToLJQ5HHC6dGbAUf3GhXy833F/YyhkEHnbE5KOMsxgG5MhBEtM5hLYwJ5DwlGVEcb0xkkBh5F5MJUnZR0HwOjAoGwSv510Vz2B6ZBGf/6/bkRFNfo/UxAJtEHYEHWZ7G22ghfiAhqg3cO8wi3szomL2Cx1HzczGZa4/rRdAAYFT3PcwrT0M6INcDcWqleT6lcDf61E9z6irPkhQMgW/6N+YsOAiLZhB6vZ+Upwk2R/P2X1w7AS8hyCKdqrg/DKmiuxvEcv2XAlmd2ISeSec7xNQnj/hcI3TS94hXRrg11Y1eX94/vaB9/oL3/jvsf/w++/+sPfP/X7/j+x3dstw3brcKagd0oh0c6Z1oPLcPhwFOH2ANmT6h1dE83HDbciVWoDNTWcq4UB0w6UJSdFY01KfSsUFQomGbXB4tyitcACvfHfPOFkxMRgtgE5gCUJFNPLnso87WBrDdWJQxGZYqCGdMY3DgiCyOAJyHeJuYFLTsM3v3NO/GJsT6D1hMKxWkFZaswfEHlDSJ3lKLo9UBtd0jZEJ026MxcVjYAw9ATGIrisgu6+ZgWV+adURc46KfsZvd8/InH1//G1+d/4fH4nxjnD4zzb+D5N0TdaPXrqcVOp5lVvTi3oYGdtCqssBCv9AKr7KRTtoYhP0Aw6YDIQKk7amNHOykVte2ovabAUiWQ2UfHOD+h/Qt6/mAK2OLsKIBWhM/Gwls07lqjc+WFxoMlVkrDVr21kXQYOkQrVA4YAngiYBVAWm5S0IDSUqDjoMNQd6bvSXSHLF6vJ4wAruEyGkRZNDQE82jAaAVDDBop3GWglScKTlQ8Wb9fgNCUBkMviroB2gradocOgQ7BxwfTH8fwblajO+B5MKVmzC6stTKlMB2acJZd7zJ9vbOO1Dig/RPWv2D9gfH4cEDwQDv+wjif6OeDTCu6jm5ZwtdFeFu+RXzNmkeKw8ikjIvDJwAlaSFc5a3FsPiSlEXvwQHhK8N31efzHD9LykAXJndovXLQ0S2K7IXCD4DbXu5VLv+8PgEySp2HR5AmnIkYh1gBlt+CqzVDdN5kbbdwSnI8gMD+onzF+kDzqeP3toxPqHWRJZ3p53GMc0mOH48RgCBD2kOTQR1FqMXlMk9mYPo97aEovkqZHutEp+NlqzGty33F7L4GbPw+wkaMZ3mx9346x/KZeM2Q6N5VwsmAXFO9/bECcIo5M9hMS0EAT/wCMR3WgqujZGbAiPIUYzDtbjB1r/WGMQbKqGh94+9SMRx4GqVBa4e2DRgnqnbo2FBahRllYBnNg48nSn+wU6YDWqYKOQpG9XqDFtY4gEzfjULr3K9Wpp6awBMgQ/gsEkFovlgTyx06i/GO+lZOnAVt1FTnPjfie5HFoP186TsoMKsXIZiOQweZEwHs0LPgNbvh2amvazuw7Q/c3xr2fcN53nGeD2xbQ9s23N/esW03vN0fqPWGWnfs2zvadketTOMMQIXAgbCrVnX7szgLxQGFfJ5gNMeqyzqikjVpNIGnEIEEnliDUL24dqydgVoDkJqBZjb4YQerKFRvBhyDncGGs7tD/wgsMCbYkFnGwQEoiU6foumLpUj3Q6unRtVS0jERYXpd1nQKERoyJBg+MsuArM50dEgUrwcU9agsblZkadQZgKZf2xuW1ErGWq3U42Ert7ahFoIswwv/F7hdCAZ8I40uHMmQkvEYtPsL/UDhvRfpGJjFl+H/BtkCkAQrg30V4NgKlMV4GWzWYdKe9i4/rlD370IOrWC3Oig41HB2do4/u+I4DkTJlCIRxPCaSK5HaqFdU737n4h450uXEiXSTedzidvM5uyqADjI+Qi5AcCfsxFhRpAUCC75+nKQPrspC9KmAbzUB8T3+7iaEakbyUYr1YkhGYy2i95Kveu2EzvFhdwmcLsyxBDpmWpYa0ZbTrJh227z3E4gCbdugjkCXMYPvjYXHdy5N8saxfE19RqQeX1d7aNgtU3QKXzltNH83qbdMo+7vqaFdbFxJM7hz6iLP/xv7/L6+g+Ki7vJ5AKDP1PBx01cJxp543GO2M2roawW2PnC5AiD0E8j+e+cOJ7zamRYGuLm9tNiYL48TywkBHg0KUpcbLHJkg5K2n9W9M8T0Hi8jFOYmK+Xj8W7WIXTeA3jLHJO55cCkY3xz/zcy3NZPle05Ezj1ueEuiHydq8GdhiGOW3GqCefej4VjQh/OF94SQeMsy7IaeQDXxHSnxf6ZKPF867GMcck6ksRReb51AVXPCuNAs4JkXBNmixBJc5dRDnW60tef6LOceKY6djo5mvgst4XAzjGwS7zOB0FBOU+ALEiTH3QuYYt1kNePW/WFboXHm0b2v6G/f6B7e0Db9++4f7xgfv7B/b7G9qtou0VVliDB6WiZmJ7gE0KDNblgQ3HewRqJ0b3tBwj8DEGfP0OVxaYxYw9xYpsqQV111AKjFAU3yCJq/s6FayC8SpL0mGDTPFgc2wt1oMb+mHQSNTNMWFaRa1Lvpch8vEirZQ16kjNJzCHLH3AolSC0b3GQzha7kCXsjOipm6oloLaZk7+FGvmRp6vJXOQC4CMApQGQ0XRAREW86eRxjSq8/jCcXzieH6iHw7w9AfKeDqQaOlAmNPTwyizoCz7PUCWaEZhrS4rB6CNtcmhGKLoZ0FxNo5UAkWqJ9QNF9bG45iN3jG61xrqB9PAMKOrRRglD8OODopCRigJd5yiZoaqR/0U0DBuFCMioxg5l6Tit8U1jRRrPqMUrs/ijEEWbS85VhZGOApMvAaIbWkIVREMMfRi6MIwcokaaSKwISxEmvLenb5QCiaMOjuDq5TK9riqMG9xrDpwnk/WfVmBp8JW1mFIrnp3KItCnn1A+wEbB8axwfoO7TdIMbLPxhNaBGgPWNtQvO4FoGRXpHEl+b9kxgUTz39i3qdgi41y/UntYesxmBsiVXnowrA3LE9tEjJ2RuMWkyjvB36GVfYCYUAtBr/EexlzzpOarCyflD55/65REcV4490IOpHlncnIOQJpxAnS+QunYi3U6Y+JjCDHF/L5p07LCeA0TWvKgOj8cwHvUp8twNxFHxckUyjssVX/S9xB6CaL5ZIZD0HRt/Xe8v0ynzHuI/U35pzLYkSn3JS8Fr8fiKjkPFOUue609X4kxxVA1uehc+PHpf05hyXqbVkMhi3zGb3F4UwWE4h3B43IdpRdKENQRrBYnJWtBejOzO4lZZ4WttNWZ5vqKCijYBRhnRRUwCqsCooOMqvEU/jEoCXqcQogA6VM0F/Mso6pmc+2AOJpwSGnIt3K4ClmrLSTq0QBiJJPpxJ1m8zH2abNn2t1rotLymWCnj4BISZEvM5IyTU5g1QZkeVE2khp009nYfmeUo3MBeDcGvYbQ5Sj0yZoleCOeZp124zXs+K6QOkcK23i4kWm+fwzxUUgMIk0latDGDY2QWXN1OMCPqOY6ww4G8HAtRV2UdqdYcfPUwfgwnkKexLQommHQTXIay6HfeeGTlz8sJXJHs8GiBfFZnp8FAYvDl7EeVNGGhBBXDKZ5rxHSlHWCIbbbZEdkUCvZapUdKrLmnLLepppbQ46pYgtsBJggKUcSJ2mPCoZr7nvp37Jubv4RssHthy2rOO1o92UPWGPucaJgvIZllAHK9xeSCwvmPKuXxamUnSrYx25sDEt/esxRj7vZEpLjtv6pOJ7bpWjgC3n5Pl1xH34vXKyl68uOngZMInrC6DOfEtWYMxrrJNCu7BYyAO3+yQAayB/8fvkeig5n/zfrM0XYx3yKf04YN6jy7srNyF0rFzseElQbRZtl1hWNuto8b3Q/DNQMdeK+FyXRUbOff/vgCdZ5yr08GXPvqxbAOupbLFPRBz48muWvId1dJbvR1aLzGn4p6//gPHESzPtau7RmIisbL8YihdD5GI4zHOqAl1j0c7BZuRofqHAhVgaGZg1pHxBrAMV1wuneFUAiab7++EgpNA1CsFWwshmepApnYxY1DU2V+4rj3DmxLwsDHn5WeRcjJgg0MNp9Ead0uUBLgtxGnjA0O7RAQo8TbBAk8Wzt+adVYJB5qkpZQrxuGE18Vxzg1ZgjE5qcJVkY41E3wXDncrcUJ4mN2K8r+L8MucAF35dUuuicGUY2V0HxlDs0qZAH1GULoS7YWXJMNLhkavoiAhkHY71XmKNRZFVc4E2j3MgI2s8LN2vPCUUyzOlgIlzvxpYDlSypMaiXLyOQSwS8ftgrUMD2R2C0irqdkPd79ju33B7/47b9z/w7Y8/8O333/Dx23fcP+6om0CawHACxSBFUZsbkKZA0CxVl0goO7CMceBUAyJVqg+wnhNrNs2hGaylM5gWQKr3gUitM/WoqAb4ZCi5jH1DiFyKHnKr+YZJQDaMG/89IvJuA1jn/BdTQAaKebqqAFaUIII2pwN75K6QXcTOOWTpqXcSoyCmwiwmziYCuhvwMgQKdt9gSu2GUlknHFXQ2nYR+qsTF3XBuAqGg46GYQJDpRNQTwTlHabQk7Wdno+/8Pwi6+l8/AXrX8D4ROlPBxBd5npEs6QzWclKk0ql7LR0KQBqdYfGWAOrFN6XnVCc6FCmIZQdqN7m29sDpyUcTvfo6P0LOp7A+ELxrnq+VYDCOC8bIizAU3BpvS5YFLVUL3yq1lAhme+v1pnCKQVA9+NrskzXAuYGgRZnvOmTbY2lwsoGMqTEUzjDQCvOsKqoXuw9wKpajDT+iO6DEf/EUbw+VEYqXa8pvOaTbYDsjAq2zdlXLjscNO1RfHicKUdqIfV+NcBCJw0rGAacwzBOFhfvzzvG+YVxfqG04kDgA9p2lP5E6V9My3Pgsz8fsNEB734qAAGyzOFafgpgntqMlJWxl8O5InNB/V+ElEun03cADQkEi0G9pglin01RfbGNFwF5eaWNsuhjC0sJEb3297M+nzs8yergvV18jTD+BYi0sjQp3bbQBJ/c3LQ1vjgNNizOiBRvWhGWSMi7EpHQYC0JIt146pPFFgkbOYG0eY0Yp0wPWhyEHKM0NCsDNmHXLWMRbCd+5oZ8GNSRH1kYsJPU4HFtv+LPU5aTK2lvah4fQQceMu/XQ0jpyIcNJ+LpzBJH+PdEIKKuR2WCwcilSJ2eBmzYLWFrWu432LRxzBjwoxqV/N2MdhEDIZX2iBraUPTOYELtFefZMSr33Ki0c0apXlB8wHrF6A3Sq/vWXmexO/tJK3X7qOzo5YynUhtGZc0ocR1vZtAzWPCebifmzIKZcph5m0Z7iXbRYg+pdyczggvqizAArZRNMV1RF+zC6l4M9bl451yKL5q1BmHY6io+j+r1ebhShnnjos41tJ1MITz7wLZV3M8dow9s245+Klp7otYdvRtuY2DXjtZuiLpcQ8nYLwWo6ulStcLAbrN8RMnn3NpSH2/1etIOdKNeBNWBEl1r+JQAhQjoFJtFnmnXC2ZNlylLDMJ0TnfazZCp2ia+pguY8RD2kwbQEcX6FYKBCRy6IwpB25qzs6JJQMW2bQyihqPt1yBA53LK4EW+CVRFGiDf41yaKnQJWCQOpKCtC475BL98uNz2r+47AL7v1O07BNDVMbupEfAbLvBmF2zXPy4HJQc4V6Of23KdEv/k92uWAuAc18ofl96UkmELmKKfZwI33GbqxajjPcq9agVoNWVPX9OiEGmsU8qGfFRTsif9+ao03PYdpdIfClLA6AO1FqCSDWYA65ilfaHZFIHssVgbwahiKQMpxckKNXfpSGFiaKX5GAm6dl8rlmM7wRIDoLyXtBMaMAaK69VVRIScKQ6Kcl68DE+k5VrgBVxYJGo789UB0NQPmMxLqgfuLaa2+9pUuE1pSHWxyC6DJcAKBMZ59W0cqkIL++rlRdBJkx08318eHmHjzyvHd/PfGKOAv5bD5zqyJHRM+Rx2zVVZx1eKgOCbj9c/ff1j4Kk7eGRR7wfzobIuhG8q7SMNMYDUWDYEYdRfYew+hsI8b6GSGEMzZ7q2ku1EYb6pYq97fuekOFOhWabLBGOBizfQ3VLDASkeCRH/npN1FVlkDhCcQyG6oJYRcXEb7nl0L54m2VUOmOZeKJAw1x7nuQAsFEKayh2pkKLgruk0XoEw9UPazsUXepl/TFQ/jknUF5IGYy1ULG1nLrugoDR3vABs+w4UgZa0xKBDMA7z1q8nO14JRcx1WYbCFa+XYhhWIUplWEOHBmIKQEpEew1qPQWA8ze5iaFsi1wLtDr9FezCpFBHxjuqKFoxBwLcqIJN4YjI655GDlt+cp1UFBa3N01wIqI0ZBVQ8LL4ZkllGXm1FGqzu0V04QuKL9w5ER0ofvwoYJeWmEzaUoycAhDz4t0x0FtD2Qr292/Y3v7A/vYb3v+f/w8+/vU/8PbH7/j2//6Bt2933N8r6v6EYWDYCcMJqD/7WNrae1YNAW+BaQHGHRgbyhhoynSy0p/o4wf0eWI8BpqzsVhHmbWhzEj7Nx3AOIHzgHTv7mINVQA1Fk+ekcjwdnwsATKSECmqBIis6zTOwqAIw8EqDbbKIqFqQLcBqQTaWgNUWBehFAW8TS8UXvgUjICLAKkIPNUrU7AYPmMK3gEoWSvaO6Scnnp2oNQGHZUppmY0PgqBtiqCjgFB53wYa12Ns4M1ihpQC0w6BDyvGZhyp09nNn2if/0Xxud/QX/8F/D1vyDjAegBGRuBNZWUn8As3sp9RJBM5SDYVQSQE2INBZU59/oFe/6JUu+wukH7jjE+IOUGqXf/2dAG0GUkEEJnnN1hdDw9tesBtYFgYbC7TYGhocBQAVShkWAIhpez+TzlTkqBep11Nc6jSIAZ7FzjXCpKyrZDovZTvCekzEtRoDgbQaLIblD0mXZAeVwhpjxegIGehjdbpw+oHa4bdXFYKQOKF+sMZ7gP7+5qAsiGWneUsgFbFAARFDSgsHX1VgUsdDw7vQgchIu6feC4suGEy0sVmDWYVYy+4Tzf0c8Tj68PjM66Tv38wjifOA8y5oKtKMcXME5IP4B+AMrWzDScQ7VRPlfmnUyHMIybTHcfrqHoZJXM1wsBJ5Sh3Py0LCTfZvqnpCRFWHgzaj3lbEaTgfTGJNMFp4Fl5kY14KwPZ3+AADKPWRzcDPT4T/ohDnS6/oimI5lmb5YpNWGsxuIoUjIFh12emO6s8PQezISRKgUjOgem7LOsPTVf1HU/Z2qvhqY7eW4XGSTrSsUMJFAkPncXhGgxSF1uJqgWjuJcJWkrRd1HAF6zU9Kon6ZiySH2JBZAqu8fpMN2MW/d4Z5W+XRisutWnCrspYgsoyz3P+dJPR3nxaiZIIrrerPr5/msBmcvRyqHoHnzkCgUzTQM4DxZgJkpXQ2jclZGY6rcaIIxvOh031C0o4wNOBuBYuso2w7TgTE6ynbzY57Zubj0gdFP2m39CSiLZ2ur0HE4w/EEa5jYpWaLacyJenSfnU2D0VeawUl/BEP8mQUNAvWaSa4PoLBBp3KWf6MP0McSvIO4Xe2BCXPH2rpTrGjbmc9xrIgiG+9rjHSurDCOdhbB+QAeO+skbbeOtzfWgfr4YMparQ2fXz+w327Y9h23tztr8lR2Iqu1oraGbWM3vIrN9QSvmaLNbaFIMwr7vVWCUUREfc2YAI0lHQYGbFsWlQFihmaCMhjkY11XpjnpGFkTKpjiAHC/O3PWjMBmFBv3VEszQLs7UwqYlw8Y3mFNxBhr8TTMaMok8DpeIXn3N0gp6CYU84ufFZuNKaZ8lq1ucxOaYGB4E6lBQCgCigBEGjtmFcHeNgIlQvu5QCADaLW4jUb7QcyA3ieLuDkYpgqgoxYDmrOfBlMYCZbzBtUD8aVVHEfUWQqn3cjgHuGPsXxKgKG+zVFLQasVtfLfBHjcD+vJ4KYgGu4jsdZnMOwj9SzAk07gYZ9FsKHiaZgEgi4yVOlbYHTIYObCEkbjGjIwCOtztm0N21bpd3vXRTOjbxU+jw7Pwp9gCkRgNjAMBEicFV5qgTQCUVpnKtapA0MNBRVt2xFdHN0Q81IsA9mIoNDG6v30+qvU+YwXq9exo6yqjh0UIZsKJtyfxo7GEKBuDWqKo4eP6Y8BQVFM4NTgbEPqqtJ8rutMbbXRMcw8xfj/T9vfdUmS48iCoACkqpl7RGRWVfe9sx///6ftPuzs3OnuqsxwNyWBfRAApLl7VmXPOWt5IsPD3Ew/qCQICAQCj47unks3sA5UqbGEoHzF5An0BgOn5Z4Xj3gnaSz2duIe6YusZKQoffwkfzgQTMT0e/L6HIDi2X2gvbS8+LyPDa/If88sEY5SynAFGL9/2BP/6PXnS+22gVyXFa/yOZfT5bXZy9Nny0HxdHFQCPKcXpRfagPUmQv9ZteIPXu4nJykj+7Oz55tKUdB1ufr+3n87Vjp6Mx0huNzSfWkKGWMy/N+EdebDzmArXBOCSRg0fwD7Kqs5D5gsv7t2H1AKQdY8PSLWuQZmKw/eXiLDIKg9QjWRdGOM6gIgvN2o4ClepTVOXxMvP/8nVjC+6BzWOKJsd9WoBtGO8FB2a7xKQvk9VzrWW+PaQUTXg/woyzUfqQcLpdwiBL13QernFdH5kJVIuMnkl4Uosj/ubxzv790ciVx67zqp4lGZy6fYSLg7lVbzmReOukSBjNmocvK9sf/mG3rkH6gnTcc91ecr99x//4r7j9+wf37d9xeT/SbQPqEy0VWiD3guMLvoYiehobOKpUhDRwa2V3vvJ7oxmEKyGRJkc8HJpaRQ5brgV3XyKBge3dxi2AqC5ryOWR3lxytD2O3nt56zrvHX0FhGNbI1lpkoXxw/FSTvcdSBIqz8u/UpPEM3FVjPW4aN/uzLRZD0OARz0jZHQ9yAbjAVvQBEIS2UY4PM0XRrSzK7WyCG6XyOtndiwKQkGBWVIezCzYu2HjArgd8PAgW2IDYEU6l7NP0aZ3QyXKYOBkrUROsYnDpBKXy3t0gfvAe0AkSm0K8RwlKA4KtU6KjFXQD29JGJS08ppkG+81TYwIorS7J5RB2PUvgLEQRsX0mN+W6U2bdK5YNz1BiT0qLxaA0A/Z1ock8dQ3IyhxT6SywLTjCcRgwe+eeF9ouyy4Q2FXrdT6LEkyHYjW3MLg1sstMwiGk7laKez9rg/mas5ig7KjV8dIpSFsym0LbAe0Cl2+Y48QcF9p1YjzeIZ0C+WYDPi9AD/h8QK53uJL9JDLrHoiCykoOIM3is3eQNpF78DbGtbR3R8v5nNM4xHN/LuF7/tlR2xWwXUt+aGf5JGeJzjQq2eS5D0eZSX2u/uaZzBPk89oPkr3nQAV/K5u9rYF6fxsbiWBAFEjwVI3ZYgcDfrHIBBiUnl08gwgYak7s970BM7Ff7LZz/xVp/IpV4ofNSXp+PMDatnc7kkwo376+MtSocdz3Rcn9/MO1PV3n9mb5MwHspb9Td+rPZ1hzbp1LtuOUv7L/3h0mmTTSfRTj1Ntdf0CcnqZdXnN6A3Xp27lTZyXsAefXSgz0aO9tmnpfhtkMpkK7O1M3i4LlFNddLeOpRydwjCitZ5m26WT3JBsERiTXJSLwjzmBXBRZZua10GrOmZfPtrt17ssusxyNMIXFYsu9IGUaxUNHNOY9whdSQzApcw/LxDOThoULJ/EcQALjT/qd8d0ZTGIzg3Zgxno9B4GAnu3uR8ewC8foMFwEmHpDP24Ep6wz2WoT3RxNOlK8W532SmQxvywSjQDvx1IPJct2Yh8BrMrqavbw8YDsGQTmruGice+GNMpJBCAnQIDeEiWbHc0MUxUmqRuVa5fHtBn7ZbXBdfQmEdCHzIBIrZ/YSkMXKPQrPdmZil23VcMP58+5VyR0tf6DFCwS+xdCxFyh0gM4UbTshIhgn+c8yPmRflkuxHxv07laZeA5J2nfZwBs/O0K7gUrFkxArxL7OSB0I9cdZUIX654TbNAql0aV1NskcGzhP1C+AeU8kXFky47F3mKTbKXcX/j8Q6w96u5yOQiWDYwtee1w5YsLLMCvBOFnAFx7lVDdWl1f+gDLmS+mTW3NnO9pCzY+7mIreiQd4nrIZDTMkEvxsA/bQTl3REKncyWpBEvHLwegBaiuavXwHKgkUIIc7s7EaN5OlE6nZEsmFdxHJRKXn+nLt3ja3KTGgdM2qcF1WlQkGX5pvvawcyNRxYMMP8nSh/20dX96Pe9Z64BS/8tD59oOG7G7bJs9kG0f+DOv/4bGE0Av3rYzr4CVoB2pbdfFh0qxa2QdESe+rU04xcWHAXOGAGMsfpMZJQ+5CdLy5sTmTSbVlA/K5npQe7nY89+5yGKib2AxAAbW4LGzA5PbLLDJAaC1QpABvjdtm+AgPW7Y3M6uq4RIsouf5z/LqSxGDRbKKKpl8J7vDU8zpdZhXFMhyUAJe0OERVLRXUHPA9ni93x5hXZutOftZFDeHMfRufHNiX/8R8Pbz99hMkCyBnlHEpxM3+qMQdNRCwYSWdpEs8PASRiZpM6G91GGQdJ6IWrFRZDLNI2ySEwHaahAQ8AANdcx02hEyd0BRFcryfpwpwYKkk1gnBBRN87HYSiTuc2xWrb1DPJ58tlzA7RAo9OaLcdPwygeqaKYdajYnFiANe56AP0Veryg337g9u1XvPz4K77/9d/x7a8/8PLLK26vgPYJ4MKYP8EuaA+wU1noSvgBU7JbahMIBh+dgWAbSTg7QgOkmDAP4Cm6bQXXN+7Ntj8XFNSV8gT3YAFwLP2OvEPZ5nMIXi2ADsF6i7WTxti3cYczkywCajkJoFNgKnCN9sgqoactBTwhtAXIcGMpQ3Q/jlnGfzD+m5DU9fAZ9NtoZW8Cx3vpBh39hiZkyRBsuij4bNTfcXtwg5foWtJ6lDTwHCJhWzKr5Y6oI4DNgXkNjMdFtlTQkONqY+4lf2E5/YBj2LVKE0NoXdzg3tm22bTmpesA7ADmJEtODdIbYB3SgDFY2lFdW7IcyADYgKCxNM8IRuaqZilhB7xB0GHW0hjCPcW+4/eWQugHRDswg5GmEah7JhJoA3L83aKrIjQ2/uCRmARFOEEuhcnimdBpCY2PEEcdFiammJlX6J29owRfPTuepvOpgCivBwIEoMRMaVrHCUiDRwMGljp0lt5VdLUYTzQmA8CEI5gKYMY8wXMRgXhm6UL8vClaf4HNG+aYwXq6cD1ecD1eQticovh2PeD9J7z9hM8BHSNO/bzXAFvGGqsMPVexFZKUTJq022tlAVZZYVRHJIJ+FltB7vl74kVEg22d2b4NbIIuenzaB1kOYpgKJF/iyZfDAjVo2jbw6Mn/qKeBagke/kpljLdgu/ZBoN5XpQ+kzdEa935xZvBdCIyqLcdYkCKw8dg/0vNj0e52tDKTm6eTpfFAAhD5+QUiJQPvy9eK24pi79u9PX10c1SfJQL2i87f83gfRVYBILv7Lsd4gUBrH1lB8DrfOv6zjME2HgjASffntoKyr167H/bVMH18b7cLxWhw2/ZWKZbPnIo5G6x7iS97BKdzjii3GtEBk6VLKkqQIO2lsMmDtglrHW4D2hqTFXMEK5HzDOZxPNQchrUqF0z/PYMMn8HkcYdvTnTu400VCeYKyLrIiMkzeMoxsY9d8pySTZE1qGe8PbIV6GZCIgZZG566R29zY1yGcQ2IOq7LcF0D/VA8HheOs6MdDefZcbwf6GfHYzwINvWO83ZH7x39ODHGQGsHer9wa0DTA60fwMZm4DUK4KHDqRrPLcWvY3+ARGLJQ3Mzb1LS4SNjXlbyWgLgauGnoJq0cHzfH++BE7IsLcWGp45iYMrBxMwYhimzmPURx1ICM/rNeAXAy56ICKSnPuG+jz7HW0fjOJBsZRUjejzr1hJgYRBeO4OgpDRSF1RMgkVcaaOKwqisQYaKz2Bz29L8Sr/dUu8qbJ4Fo2vOSUaPE9CaW7y1XE6vOG3NwdjPGGCQjZL4WcztWaAOryEqDukdX+/BRhur5DHmbALk5d/4VWOiWCybx+OKpgUjGIBr/Cvujvfyee2AIUv3BmRwL2d5Mo8yBsshx0imcS/R9CSL8FHuMU2ugcV08thfJMjp7o5rXKAXp7UXs/Ry8lnJYNwQoCCwxj5fohSQyEnrM8XKtQyFpuYTUGCSeiO7OcYnWekNURJqQGs9GHkJ4nEgtTX0WL/v7+xqx8hHed1hqAqgrDn4NMMhYX8RY7nK9fb9Zu3b/uH9ZeeisZpELLPHQ9tcoD9rT/vWYvCu/arKDT339890o3WMtU/+/wV4sm3TWI6bhaOcKGugsLlJVUZuc+I8mT91B5tDuQ/wh81e1nUwiJIAAuTpOSVNcYtE6+cdgQwfIBIF6wC54BVZDhff3r5cxmVdMWmbspyKlald5166BPv1AakgV4i6rTzhx65vmm1dkdtqOgooNlXrWsY4nbUWpSqiEhmcA+3ouL2+QnuD9oZvv/yCHh0/+u1AOxr62XG/nYwF3PG//vf/D377+9/xH//H/4HHO42mBIzt5pjvD/gwzBFtc8WX3kQCbrKj0v78qGKwBGCNeGzSjuywF2yRGkL74GiwcMehQDsost4IgNbCmO8MgsdFRzNECfkYMhdrBBfEQsOBpVIZyqxs62IjOBDAw5pn6c8noynLOuq9eNKk9tMIZycczwM5PyHSIXpA+gv0+IF2fsP95Ve8fPsV3378gtdfXvD6/cT9VdDPCccDhnfYfEO2uE/AhplPlrZCEZsjIE3Re5R7VoZoojWDd5Yk2TXhGAy8x2Otjb1FaY6dT461Dbg/4P6A+MVjR3lstnrOMsV0oiSQkZ3HkhRcT4e0dB8I7LD6MZkzfOZc40Inzo1OlrfIHgvQ6Ii4OCQ2JnFhEMyv1Rrj06VINu3fwaBBHxAjcKnyRsDDFSon55HP+DMAewAJOs2LxDppZGGhxXM++aylQ7I1cGgHGMgQmt5C06fB/IhlpAQ3d0OdVizGjIwdKX/Jo/OmG6iP1WbgrZHp0BPSJkkZxw3SOppM0vFzT9IGwQG2pY6lITP0mxqAi4EQJswmxPm+6BmOcweEAt8UtKVm00RDljMqTkBfAD04JglWbHsM/wobICeyHNdSLNxZ7kmbEeAWF2O4HXn+CLrzb1BwfQaTzsJJnUahz+xENOeIy3AkYy4BKJYOrn1FNYMJA0xgIJNMdUZ2LzV98AS6kGlFAX/HgHuCTxFMwpHdDOFrLEUabsdBEuPRMI8bbHaMceB6v0UpzsB7f8G8HpiPn5jH77BxYVxX2A6vAD8HnMyLAN3Kbi3QnDZfC+BkgCZRGq8QDdCNKcWwjx5Vj77K9oTPFrkWIJC8N2iUnsk2WBkQlCUun8z3KLbWSGYg80vy6f0MNiqDu723s5oqZrHt3MiE1zq2JQ6nqXfH92dcn4TmHHztFaUJxTPUHaSznyXzBUCmVgs2YM45xgKJUnGpva+Cpiw1+Mqj3Hwpzsn82z9/dh/lyqB+9osyAZGsg6fjlT/1fCyWwNvX1/jl69nH3EGmz0ymHbxCXfdnQGp7Bv/i/vO4eazqlNkcKg3WHEOUYNJMXagAn8bEnIoxBMDEnAJrLNWzmWC/xJ5Lm4kos9LWCSBLC7HyAVOwIchsZNsafaDsG+KicMuERM65HOcAlmLLj10ZxeYpB7kU+7gXJ3M3tqdkICbo6KAFJgtqabgKyAZMtgQSVI6YovwBnzEfNNa6bPMpExO85usRfup0HJehd8W8Ga7HRDtaaD91tKPjfJ9kRfUL53lBtaH3jpfzgd4PnMeJ48gOqUzsqVAYvvUDzXNNNkiUstNMxdpTSZNWvnFlhmLWiqBinvJltHHdByvJ4Ti2IJ2mOMvKuFZsGnrrjKVCcoMa15UxXiWPkTSRdWEFWpSGlaDApw/LLOw019rqypddLQkkuWvEL8mxzgoTWeMh8nT4/UTJTipQOZLb5ot5wrTMwCgZiGTzWIC5k0lULD8dPMzSBYr5muV7KobsiJu/k3SDzYChqPhWwz57gL1xYRrzNhlPyw7RNveuAdgpssGMCks4M07IeeIOloABgG/MMyFbbO0HQTr4oAF8XRE7S26vUgm1bMxDvc8oG87NAkkI4efZNDoqZdDQAgyEgDICsQXNiwBk17SDXOvmVs8tASmsmRFjs2xIlsCIOaQJfYZZzlIBR2lLuZakAFzJOb1NML5PlKw+n36Jr/kuYYckdKssnr2Fj11zF3U5a67KdkZ3pEZXvj5vaennfkjQb8cGsCWe1vs55/L8vH5/+t7+OeYiMg71p8/kM1Fd8jNpg599qj9+/bdL7fZD706K1yJ/9hBqApWDtl/8B9cvN3XZPpCDXR8uMtqT45POntQ15KB+9Fji/a0ecWdc1LGAhazLuj+COwuAq0s1j+TjOu660NxU11nWYnp2vIqSCUSb3+cyq0UXXw8gN5x1yEUtlzx+OPhQhR4n2u3EcZ64f/+BdnS088CPv/4F/Txw3Jjx0R7A03kUbfqyATk63scF+fkTcwxSjGNDmyrwx6CAL1FGGgQkW0BQVOhAUvnc4uJ9uTe5zvNDEvfrmiNJZp1IZjoZTDoI0Gh/IXh2KDTBBUzW/ya9WDgXXEm1r7HURSXnRSVIFp036jlTMDSfo+V8i/nC69MyNNAZWXon6yZnp1NbyqVBMNZ1JXAXAaRIh7Yb+vGCfr7ifHnF7fWO8+XEcRe0Y0K7QOQB93fA3uH2BiAFw2OKugBC2inBgJzPwedq8UzcAMwoI2MgxAiJnfDMsoQsNtW4n4kYP3dIbFzsdDfgUcSVAX0KCSLsCJ/1Zy6Cx7qx7WcuA00Xi8+03EypNYpwTlKUU+N80eqMHxKrjYglTK1ixLJ14HggslfUeFCoT5RgnV+AP0DGzRvcBua8IMjgPDQ1sjTRhAG3J7Ol8zkr2T2qvXQLDA1ZAmGmMG8wb3A/OBdBh0o85284cGjl+NBwapqK5QjBohLQYY1zT9XjvhTSBtCCrVa2NwAVIUNH9SwOBnWI8oO3YB7x+SOAEOAGlul1iBwF0CRzEfWzAnKD6Au0nQHG0WH3sg+hs1NMoxPJcNrkhQPQ43kKFFICTwv4ks25ThudljudT4q8zsgMz8gAeq39KE8TJ5NQBD3MAIGXxQ8Epx9W5nCxBj+4FwQ5bIDlrBf/gP9OvSouh8gUl3h8h3RS0NEyMAonVJgttGEQ75jtgakHLm2Y44K0ravlTFAp1ka8LzbLUWHpT86vsPMBNrGEMbxb0fhZcoNIT7AcVCkwKgHBnBt5vCy91PV+RUmx79YgCjaj8OTopY1JSryHAc+sO8IRBRJ8SJ/HC2DaGTZrjWQQGG9kcB6/89i7vMoHeI3mdKazLml5VGkzl5+DuA5evteeKDF/3RdjLPfa/dv8TMzvNBFpCzegqO7ryff6Jy9BBZD/9EN57O1fH4EePskco+3b5RMtP+rTmDw5izR68uH9r8Crj+9R5NVrPHnsdd6vjvEVGJVBoKYwPzxKzPiszQhaZMZdNISQw2ibsbSZ+xlgmXwz7iPiXFduFgmUAHpjj/ZgXLqEhprMYAiH/crkBIDVFqy8shgHQzafzzJljwSPxBzONYRI5KTfvmIG6og2ZPngWp5ZecZkE5MtSLYM1uxnkBRMOUFhXukHp7dQn+cFVyCKkAaYMzrazYk2GqYBvQ/03jGHox0Heif7g6LRHT4N59HhdoPZQVvaGrpHmbVqjGkPX4Fj3DzEscNWZbOIDGLyGjdrgvJTamHGvM8PRTDdUlMwveQYSOuAGBOqrfXwyxwpYO5oxW7guAWbBI7UOa35W7YlwIwNeKoYLuY5XOK8AbAFUCK+GG3uDnUNayhrDOrWyiosu/oUECddhIAcEE2P4nqoUTQwnYxBxBzfmcpW8ci69gS2yxal5+lk33PlasVplrduzu688Yw1Z597JTLNt/MHWFGi2eH/siu31B4qWZK+2bUKlWut5Z7kZWMSWCl9qVqHCRxYjFOWyErQ3fe1E/ce5IiK69N3B+9H4DB1zGDZSgBzgtzLYl6GHzEsATbefwGG+56dzOmytfmsP24HMXFUYl0wbnXJJNH+bDNuyB0695HG2MyFsWuURq6tOY8Rx0n7LTn3teb/fnE7MFMgD93Dtec+7YDP+9ruk+z3XetBsN3F+t2yudvejti3tmt6OhZ8PeM9RshrRa6THdf5s07Bf4fxhDJ96y7jQol2xQLJ4BScrtPYtS7L4KZxg5i2oZofnT/jZK7Ny7ySShkAcBBlH6ly2jyojLuD5E+nSIPgG400Mm0BcIigHFYPumsaBTdH29gqFc8bA7XVIlSx2ZF1dl+OK+lv+X17+iAXshXNnjo1n2niKYq95riVg9FaRy1aPaDHgdv3X3Dc7zhfbvj1f/47gYtvL/jb//wbztuJ4042FLMGRuEyCffo5cT597/D7gd+/8dvGI+L709m1to/fsPbz3fo4xHdW8hQOvKazQhYDMO4Vuet1HtRCH/2MBwez54qbKw7UNa8aCa+YQChBLjfoPqKdv6K27dfcdxOnK8npD/geOAxf4O/Az4UOCZ8XgwYsbItQBx7NxJlbtJQ5VArdDrIsGgcCy9cCyx16SzrEYI8mc1fesER7rpCTGITBKbMoP4L3Bv1AlqHtDO61/2CX/72F3z72ze8/HLg+PYOPR9wcczxBvcHpj0AsCNWTjRxhYLimMBkCdUIYFVobNnRDFAZUSo3oI2lUiIMcqddFWCqay4aztvMhs4QGJ8sLbOgA8fMjWXbwgm2Krv0zJMm4BeDnnIGmVVNrZ/1VKQyqM+vmEcCQNixLgV+OX1yUzS4KqQBJhedde3g5s/jLMF/A9lP1DtoQGiFPTh358R4XJChdLpVY2wMFCanoDCyDKudELlD9Y7WXtD6C7Tf+HcwHYcbTC6Yv2PMjmEnht/h/gK4Qk0AewM1tVaHyVwmi7llgCtLetJxYaQbiS2Hq2E2B0whrXGFTUO1InTqLxz9Bcf5itZOtHbb1ozB/IT7I1bPAGzw+7Eu9HhBayd6P6FyhDNLzahcZWRrNkg70c5vaI2MpwSFuPkZVkMJZvXYaS8d4tzlFdnAgh3q0hlreBKq1pXVXZoQNFQe4lH0Lw1jdq7XaRhTy4nL7zCbHRnAKOVMDSeTRTUvk5KNC8TANugsHXBHOH0paH7B7AGzd1BrgHpqpK7NtQ/lWLcD5/kaAGFH03tk7k/cjgY3gU3B7RywMXC9/8Tj8RvGuPD+/k4H3NglZ+/EU47unBQmDXHTdCQbBgwU5Of6jMBCe3pvZFck2JRlZVECzsC5bX9Ofq/AK/5MVsVuxWvll51dZkKKnRp1GmUbEdct0mgPnMd1szA+6/mWH4Jn5vV2tvopToudoYuwX5oC+LbGp2L/DcwC8AQ6JVNkv1HzZBQAmJmV34AnWazwBaimP5fH82cf+F+8KmZOH2q3v+kgl8O+ALrPtP94Nh/fq/30MwPrIyv84+srVlPqobUWHXs/BJ2frunpXnOsMiDVp2P/2ZeIhORBBrIce1UJwInXNcaETMLnTdmIBMhgdcLtiM9dmJMCxdRri1K7OWHtgo8BSIP3SHrMjjneWXo3AJkdMimAbZNMziqHl+05RKJHXViqbhxDn9t6yCVlyaDSkCxLZn/GDgYxoDWuxZSscHdMId5lLvAGmCTYb09j7QB9FmcTj96jiVGWdcUeAScfnma5rZbwg/IgbHgxoB3QJjjOA62zXO28n+j9wHGcuN1u0K7ovePtcBxHw8vLDedBAfLjOHEctyg775jjRqAnkzPS4A0su0tb4FQw4sRALPwU90eBS4xrt4Xpz8EiIGjnsbQVEevDDEeCpgkuTR5Yu8CsoY9ZwtJkyjW63NAor9qCfkcBa1m6ta+ZndXBuJAMc3eDDinpkDnBDqpgTOXp8yNt1YptRFiWmCZLsjNfftjJcrOZcEiAO+6YbriuKEkbK1ma+9US/Kdge5W9qkb5F7Z7ZYmgOeOGOR91740rIyoXIm4Thc5IZmAxjBboZaH1tO9U+Xxlc9058PQ6ZwAKXusJYHfcZEguc6ro7YhnFCxBY1JwXcPa07VFeb6yZDa1CC3mDnUt49wA1ftj3tpgYt2NpaW9dwC3mq/StPY64gD0Ca8rYmmPZKU6pCNi38ay0uykByb4dyFwgM99j41rW5TYU3VLT4tGB8T4TMahAHpnQn6O4mqitYYZzK5sXuAwtHZAPTUgAZH5BO48J0N2bGC7cIAgpe8+QoJL+z4NLJ/Dn+eLbHNmu/kCBz/sfzZ35vTzHsy9KOx3GZeVwEoAa27JiU8g2L94/WngaW4ZvTJ7kmVFHuUikbVIDQwAsMAM4uJz+Viib0CUjvA82aUKHgZzM0QZQiXyvKOuQLpicW2p5eDrmwVGcYjiu4bsMOc1co4pUgZens6AqtnmwicDIksi+EAWk6fOs2VRk6q/qNwpsLwmY7E1gKV/ISvm48mfs+F5viwFS1SdNlnReoccJ/rLC77/5S/4/uuv+Pf/x//E+XrH8XLi9S/foJ3dILhI+XSmM68lKjh+fMe9K374xPnjO2xO3I8TNth54P4f/4V//OMf+Pn773h/e6dBN8NNksUUxmtMjOuBeUV3vGFss+nCZH/KLM2YRBUMIMrvZo3tHoBIO9HPb7i9/g3f//K/4f7tBa+/vgLnOybe8Hb9J95/OzAf/4D/3mHXo2qsM4BCZAIFgMQOnnRNh6PQJTA4YoYvTUkwGRwsP9IGPe9srR6AhpOEQVoopyqagywVM4yHs+vGQLREDsqrGEsH7weO1xvu3+/49uuJ1x+C27cJPf5OsGpOyHggWRDUg4l5FXo6tDkTEKWxz8xKADFc5wMmE4YBn++Y0QFnjKhj9q1cKQL5WltGNsb0CZjSOUWn1lKufaMuC1Qh3SkoOsmMYr37hWJ9CHWQ2OJ1dapKPxJOpxZZw46dsWa5IoIJRFDThGMrzVHCfE6AiDT0CAwbCPwgtK6cbZTJ9hI+TEd52ooJOOfV4/0dCZ2146jAyaPDDD27FgFfh8sByAnVG1qLP/0kFVkE3hxTL5D9c4fqK3r/jmkTPk9qJqlAEKV9YSOTVeN5Ts91lXZogeA5royzA5gJUW9GAAqfWWYhaO1A06Oc6uzuhSgPhTimnTA0GDoMjiYHIAe0vaL1G/pxx3HcFsMrnjE331hH7UTvd3a6660AcQAFBk5POrpCG1kBKM2d2Ae0I7tIVdlAlsUlGCAL7C99Bp8oVoqTGaR+RrlgACRTUOBU2Gl3RUMHgokJPQDtBYBlcJFf4P4YNkbSzmV2LoT7JxsGzNQL8wGzBTwRnAonQQRqDTIvwCdUD6h2HIdB5YYmXIOqBOtUD9g0tH5Aj44xLujxKCd1zAC34JGto22e14gOSixfKEcVZPuJR1BTAMICjbCxlZLZJNFJBprAYIfgAD3SDDhSZzJdzmVTa5vE88tzM81H6ezYB3Fka3kk0FTANhNACllO+/aMn5yN3ZF7ek8qGFNZoBMkGQMbSAqpf1dSLz9fx4oZu0wh764c6jWPa3w+XafUOuNkzQv3J4fqE+upDG9+fP3uiRkRvho+OMbrM+u6KnmWvtv+zCoY3e/p8++/Yh09O90reJH6OR39xbD6min18bWCgT9zHft9f2S5U7uHfjEax0FNMCbQQR9u+kRq0PXeI3hVyh0UI4KJK/EG08b9NPd5jSSkKWDjueRfHNIuyEw/yqDT4EpWs81gEXp0QwxNNwb7AQSJlwtrMwIeAICSva8rWPRkyTuF1h05/smm4DVNBHtXhEknVYzpT/PNPTvjLlbWNAPDB6lChKb7vGKCyjIAjOB9OIX8pTnG9WCg3BTHY6AfHcdx4XqMkKtoGDfHeSjcLlwHO+MRnBoUJm+dWjbamWBptL3dPBJfLNGBEZjJrp8JWCDBeIk1l40IZGOhRCzwZAPze54mNpJszr3kui76P+o1B5o0mDo7LVv4KUZbUmV18Zzge6md1Pp2ANkBOFdGuAK0VU5d2WzSoVMxws+FJxvv80rz8K9sMxsis8bFnH65waNaYHl+CTxNn6BM9dIcS3Byn0u7HUigist6RqI74+CAgnIIRAA0lnpFvMzx8WL7CSgGXmX5vu8QGfOFBlxdk9QzrJLuJ/A1AY2lVQskcCI1oB8B+NIl/GC/LMgCEMD70r3MPSKmKGN7yw72e5kYr0eNDXPGtdh/w0O+wwU2Z4HTEtiBrenN7H0xjhCd6gh4p7C6b1pYc87SCfa4ngXcUKNXI/k7tmdecaRvcw0ofyRBSALqVud0oYSLmYWuGJ91i853HhPfy+aF3UMA7xWT8Vqr+C22Von1W+za8nUd1Q0w1wIkia0FEKFuYyelLI9oAVtrHOozCc5g//1yNPLaLQDO3W34M68/z3gKC2JYm3ZeKn8lT02U1sV4vceHtd3gbmXqZ19H/uAk7U4UHRr74obDU6qD4sPPHhuor3PVV3jMPKDvh6qNEeuB5PPxRcGu4A6crPY0wXdzvO6jwLa6j+UM5cSnof3wVOtiBM9PPDegcKAEKOZNP9COE7dv3/Dt11/x/a9/xfFyot8OHK8nY2hNo8qxogPO4Lu93HCq4D4G+v0Gccfr/QUzdECkN+BokKMBR2cAMiduwm4UGkHbHAPX+zvG+xu1C65ZrVIxmD3DTGemZlUFg7bWAP8vHlpNHdJvaOc3nC+/4v79O7795QfkRuBJrwY5HhhvDVMc8/EOGwNjXpleK4BLANKRg2XgY6yJXX9zM11OfGgfiDDI7B163CGtU7Hx0OgWyM0+LWVzh/iEzAFvAz4c8riA1D8aDCC9C+Ts6PcDx/3AcW847kC/TaC9wUEqsXgKObMkruYUjhAgVjqkCAFlT7YHNyoJ/ic3phA1HSN0JixK82KjBUt5VM8FBOARwMUAvEcgfgCh47IAmyjVUm5ALixFc7nAlvC8B+IHQiqaphbQ2kzhDLg0gjhxC9BwrjWPXJ+2ANzgumZZoyQmE8cna1YBdKTYukgCC+PJOVhe1qwNnFoC/NP8DNC6ld1bZBqBR5kdBbSPAAjiT2Qcrc0qwRM5oe2OdnwDbMKllzYGhc5H6MOEC5bGarcxy+jE+lrzGiC4JCGwT0ZQiGPns4NW5jbLemS36eDYeT57abFMDoieBTy14wX9fCELqR1xng14EoX2E9pOsnU6hW+zU04CT4JsBKGr5MBTLJT3Ko3AVmsbaJrAddjVdFpEQUHSchQ81keAI9IgcqwSgiwbrXEPOy0JNMXfCa4liFqlKmnDfQVFEUTx3AmChU3a/phPtlEO58gCKCcx2CCNAK7qZJc77QScGjszcb7TyWSjhWAPtguurbKzFBq3mjse5xttQCe1rmSsEgJBg+/XlmP8BDyV944En1LHi2uurflXLDbA0w5ITbj1+qMApp5x7p4rIE0HGBXQ5V4cO03R6DPozinhWICJ1BpbzzPuF9v9SWbyYxwQrK/0DTYg6jnzKeswte8sh3Mvp/jIaPo0Dk+DJfVLd9nKnVGB2NMxykf7fLwCVmIcM/H3+bXKBggSx408XesCcXbg6Y9AoY+gz8cyQXl6rvL0nScmzR/8/Hyf6QM+f9Y/HP/z957fpz4IS3dSJM8F0cMrEhutUhgsacmx2O8jvuiWtox2ippxg/7NzAtnWS7Lzg+E1m6U3BHMcpAZiJhblWSL/3msZzFb5S0ZKwQYtc/R4DjzI8k2jjVfgZmkrc14IZdHnNulNEXyWtyBVp0Bg9WBANS2uZexClximDMOCH/HLGIdWmCZDtFgxQyDDc753hvmJCPSJvVpxuDefp4EKnon8NR0BtDv8G7Uy3SnL2BMoMAbxDv9xgCdsg094yavcak4oG7L13hVbPIE8yJ13tw5h2TG78uHjWNv9mpnOezmgSA9oFtzjnWesKdlFxg7iIXZDhYQXCrOUPvAxCrLnM+sHkjFZDtLcSJYbQYya2PfSmDRPUrtfNbeWYcsbb7P63VnltRnbF2hSQJPGZeQncf1EjIMBSx5xRQWums2Z83NZE2uh5prYsWPUmuEjKaP/kICHSuRmGshuyni6V4ygYL6bPrSqMUVod/2fHPPynWXC35t3dtKg4PgXYsmBZmMgiHiqnwO8vRMF7BqtdfNyfisiy62oocHEPcGTVYlam9em2HIzSALhOMKfb/utZeuvYYlstmh0ZSsaPqHRqC19qcltr8NQ9kdr7UR4HngDE0Qe39NPj47bPVglfTcPpb/i2fhAGSuNfNH+//T9a1tH2Vwt+vw538+XctTkgZ//vWngSdmGaxuDogs3T5Y4WsHUFm+2wx2hKbTpiADJJwrZhGZ3Rhj1h1oDlqgzJLOm6+JtbJWi3pWvmtZyrXxVEYLMQngFYTSyK6HbR504nIu4v4K8HJ4GLNbP+LfDHBI+T2CwrkeGI2GY9FU6ZTTQROyf4z3pUrjTrFQGopnB8hXJ7gNoNK8jum1r/fjQLud6Pcb2ssdL7/8wPd//yt+/Ptf0W4d0hWjU4Jv2sSgWiGfmQa62xta/wa93yG3EwpHU8Xry53gzePC/ddfcf+P/8A//vF3/Pbbb5jXgM+JAz26x9EYj+uBx9vv+P0ff8d4PPD+9oaOMNTXAC5j+d77BLrBJ6CD18M5YEV95B4ZTK3jBjlegOMFx7e/4P7rX/HL//h3tG8XTN9wjlccfz9w/fwvPP7PV4z3d8wxMMeDgpvTYNfIXDN8BGV9DvjjEeBUWUs6cgWkCCyEzd0bvN+hxwl5/QX9vEP7AbmfkK5AU3gTZtFF0dUAu4D5jvZ24PH4HfNNMN4VGAZ7KCAHgcPXE+e3E+f3jvPV0e4PyGGY/l8wuwAbpG1XcDqQ+4PKDSo3uArm1cBMqQTjAWhVouRwGKZf7Jzxzg5YczwwLsOcAvgZZTEUw+7HDaVndb0B8o5rKKYYWUrS4F1RJU8gQ0ZxIl1SGxdkPDDmO+x6g4eIMnVyOqQdaP2FGz0iaxIAU2/UTVBxlnT5hE+WIbGD4oWkEzsmq+sq2OA8qn1eAAa6B1j+9kLASDvEJigF/YCIhQ7CpM0zJ9AnnJtjDow5cY2Bc97R+sFxQoJnBHFcOoATkDtEXkLL6AWt39H7rYAnGDD7gLaJfnwHs1wH/PYNNn5iPn6DXP8JzAcwHpy/4Byg8pYjxdFp6TIDRVuGdKYMMAkGlp4Qv0HlHuVZd2i7FXhBJtgSGoVksAlu9CLo+hKdN+hwt85yhNvLLzjOO87zjvN4jWMeSECGDhMdhtbOYgn13tD66tbFjjWkgatq2Rp3OiQyMlPoVabHMpfVEvozkyJAaJtLlyHO5RIldN7Q+wtBFQy4H8FOXLsElBT41g60fo+SxM7Ao9h7oYGGWfuEBFjoMUfJDyQQbKGvltp6VYKX+gsWTmoG/krg5/IJ1QGdF+CC3r3svCvQ0YJmr5B+QnpDswm5zrX/z4GMWnL/9Sj1GQFMj2sBT2RlTYx5QeYs/wEp3g8U+OIAKnUXPsYKXA/QZUmNp3hK+yPLgEs3YCd+ZWmzeZJyTBmDRzAiWrY9wzneZYt/J3syIp3no28zJ0+1lZUBoRupYTMzE5nlhBr7G4+pqWO2+S5pnJ5Aq+fbj26NT+/i4ysZIxLX+dHnTYdWYoy8nNj0gzIQLE8U/tFpXVf71SU8XbM7ar3WM/ElHJ7AUPp0HxlJmWH+nOn9zI76V6+Px8ljfc2m+vy9j9f2z85fv/Ng2DoZ3Sy/QzAYBKb0KW22KjdKoWjTxm6IMgBVBthzrBI4mYASnFZpsEHdtmUbBE0FmPwdK4mZuJHO78lQMpTdSGeKhNa8rhUPyJovqTFYyQ5gLQqs8anyHqE/3gQEDhwsn9umjrZ1AtqWGsUYy7bGP4DTilrBIN6C+uvQYOgi/PucP9hKNIINI2DpcTM82sS4QuPpaHg7J3pX3O8HsnTyOA68vLzjiNK73k/01nG/v+A8zwKk0v/v2tH1gOmBJskej/I2DTuJFTcRE8gNlveTu6CIQPqeDI37TaAhHsd5OzCnUvozx2XG8wn0qUUSwsbc4j4gO6v146jA9iMjMddGdocLLGbztQQp4L0sbT6uvDFHlqWlUepZBQNgRMmTuWE49ySjk8tn3oARyZJrDjJUnYz3Di2ywM5ySnZL/s4iYVXTOGwT/Z2IOxExnglE6Cs0oR+Y+qJjMEnWVKq8L7uvScSi2eW9wA6w62CCIKrBwJqsaqgAe7M1WY3Tu6y92R3XNep+8vOUceFwta5l122y7FSUzHyLOJcd7aTWOkqAh2PCLvZac1JbgHHR1ADCBOG4mMDO6F8lGHjGpBUiKa9NMH3U8ec1uaZbi1JC3kvA45junPeSz2a9MqEjIaredbGS5pyBR+SHA4wCVgmeC33mD7aczQns6b3UCU1Qfi+JKyoeYuic3wh+Vq3VfEb7PpQ2oXyUD9uqx/Vm52h+h7n6BaA9XWrc38J08g7CytZnyPqPkHf7rIpsFW3PY/7PXn8eeCpq6FogPkg/L8OvQcfVFptODnoUCZT9YOCZDk2K/OWi410HuOSsfdX4Ds+PzSh8ZfC8nG5Jr+ZLzyfBAoTMw+aYSqLDWc6Wjg/KQSYQxsClBl80bk0xZ6q98/5a6LwopAzOnL7GA8byqzUEbCM5Z02Y7ISUjjHlr7hxi2Nl7uNatXdm+I8GPTr67cDt2x0vv7zg9ZcXyCGwBkANQ4wgSu9kS4AgoiozsSPrfbXhbMzFNRXI0aGd3fC+qUDvJ17efuDb77+z/GIYDkSNfGd2/f3tJ/7x9/+E/sf/wvV4w/3xzuyeGfxx4fr5E+P9wvtvv8MvhQ9ApsCtIUsPVEgj965kiPQb2nFDf7nj/PaK49t3nN++4/z+A7e/AOgXTpy4/Tjx+Pkbft5/xePtDeO6osUwsxDz/UHDbhN+DQZ4c+B6fwM23SoYNaLseqf2iQHQFEs+0e/f0c8XvP7yN7STIFR/eWWnLxWgN7LImqJ3h/oF2Dt+/+0b9O3vmL99w/z5D8gw4FKIv0DlDtxeMFvHFOpamQ0KJ14/4faA20DL0hz3aLMqDDRbg2uDy4zOcwFwigBBqRVpsXk7MBgMm3eeZza8PwSYHXDg7He2E24njuO+Asj2ClwPTNxx6QmbBK3goWWFE11vZPPIWWsRNjHnA2M88Pb2d8x5YdoDrSsD9n5noA9mHcb1DpssOeqx0TWZyC5+Nn9ijjfM8cA1EN6PQW1iOkUly9xGphgItkV0UdP+Ha2/UtS638IAG+R6B/CI8qY3JHPqmiDbShxjzqjfpxPBjh1WrByVBgkwUNorWn9FO16g/Q6REyky3gIg8e44z9C/s4nxeMX1/orr/R+w8Q67/QTeX+HjAR8PjMc7x/7xBscV7LcHJGpZ828IQZuMOF0aRG9o+oJ+/ELA5Hgl8Nzv0H4nU6kf0N75HUzM3J3icUaeABqBNp2Wo3SdjuMVR7+hd2paSTCeVI+aEzmnSmRdyVbSJkF9n2GnDY2q+PQ7w06rAxLlILkfSQR0bOe8HPT8k05qai2JGhAAJsdrxtpRWJQYHv1A7ycBsNSNiJE5DgYct/Ml7q+Fvoxs16XMbE/OUbfY2EXQNBgFCAUJbeFcEbAi6Bb2MeYwxCkEL4YS8A98xeDRge8BQBlIUdCDVP2NnSauOLQj20EzVkwvPPfMhj5Dt2E6nUszglDjrPGYNmuvT5J/7puxkWMFi7FHBzhDsDYYd/t2Xl+RtfelW5J7dli3ZAYUK8+BFA53t9Lz4KVwjMkIzTLrSHyBAqp5/NWRbu333BNWRnYHjkJOLdYEf9auwL5/FyNscwk3P+cJWNnus8akAnLEOor1tP9cgSPq2vm35YDFI/iaYbTf0x+9PJ1p//idP/5egVvbK7Vnciz/iIW0jrEc+H3MvgKVVidUf/r743tf/UlX/J9pTe3XsB97ZfiTvemb7xnH9gQraW9cBaInQafJZG2blIzIfU3soD9j9JHmuAAI0BnIZpmyN4VPLbZ409DFC8Adk/4PhAlSRMmxjQcgk/MWCqgtTU6n3lvkl9AlNJciyMvtgaBadJGV1G4K0wL6Kr2zamAMq5itN62yPa6zYD4Iiv1U5gkrKEr5BAKayT6QCDRzfrTnZ+QCz6YjjgD4H0G6FJyHo3fF423g6D2AJ8N8kBXVjwPncaEfDTYuPI6O3hvO8yAA1TtMO6B3tH6HRYmbtgbrHdmJOiUdFMGkSfZXRScGR4o4NyQozkcZu1CCfEoGsKijdV0saUWUiRn1dCY3i9bXGq3uX2GXcvmu7rBZEsY5oBETalOMwfVbAubKZLbjgJrCxqhkhYXmEpw+UwZYE5ut07C1cPhl4YFY6KkCLsEa5mSrmNGuiQlFy5oxBcvuIqaqJJ87hSSU63GMUeGhpz1AMPsiPvSmZe+WDXP01gnETceI0j2RBNHC1vNCogImxtgl2E0EO5cW1ALhx0hwRgqMFd0BAo4/Y0YmqxJ0HnOEL0ttp+xq5+CYpOaaQDkPHJhjMtkFcAxz63avMrTWNcrsgeO409YFY4mPQwPQ8OUr+Va+7kFgsc1LmGFbxor7EwRNqYhoGxz+oK+kVPq1oRvJ6ogsEQ4n9SkZ45iYUT3hm64Tlm/inCst3itgUxh3+5yYYyDxgj05wvg+nJQAqNypZ0r/MUkmK/HEyn8v+1gdUeNazGf9bvkiCL2++eQjSJR+5updhnLtj2sPSl9hPWeL+VFYEPD0mX/1+vOlduZAoyBXZgem+2qnDT58lMOEKFvaMofbqpWqV0VcPJ4eqrLGAZlNJaAFZCvHj47JAqyWQdiu7Ole6L6jFlQaEk3GFBJ/4kU5shpAypmtSSrckWrB8OppZDYap5lHgndzKsG61MwU5f2nD+5gm3vYrAXGyeO5joj2+sZYhsNjc9Au0H5Ae4P2jnZ29FvH7dsN5+sN58sBdMDVQj8ngpsm1Cqh3Q/qaoq/0hlu0qH5uFpjlyRruDWFnh236wXn6wvrmYeh4wXHceI8Toga3n7+BrmfmA24Hu+w651Pwgz+eMfb3zsebz/x8AfwcGAAMht8UGOGQcFg6UNToJ1kYZwn2v1Ef7mjvxCEai93nN8a9Jg4mqLdBO+v3yByQ//5M5g8Fze+OTHe3mDJdArGls0BHD9pgMwCgBqw8QbvApsDNhzSgiEid7TX7zju33H75W/o9xeCYq/f11jmc+kNx+FQXFB7wO8N+P0VV+8Yxw1yTchDALsTDOkv8NZhCTxxR8P0wTI1H0DQfOFeNersdmPwEGh3dSxKrq4/VTbVw+Fke3rzhmkNY1DUsYlC2yt6O9FDpycjPtcJyIUDHY6GOR/wdkUJQENvNxyNwtJNl/igAgU84XjBNd4x5kUnrp84jm84+ivXtBuux08yLR5v6J1Bc1NqLMEuzNGBB8E2ZOmdzzKcGTtLBFcWLCS2fT0BuUEawSdtJ9rxAkgILcob4D/h/ogGAzPAF8ueuphh28zZ/cxrzUQr4QDeRG4sm+v8o0p2D8sYUwxb0bTD+y0cI8MIsEO0U7x9vMLlgI8HbLwD8kYBWfsdjndALlBoLNk1FI4H2JrNs2OdKFhCdkfTV7T+QlCsvUDajSVv7WCZVoCUnpRXzoBwYGizGJQRNEigsvUbeuffyWai4PfBcjtJofGw4anLVNlgoMqeaPGQllOA5Zw7T20Z7cdso+A353/Fxc6MEfeclXTgJIlMfzLHYi9I/QA6+h2ZTBkzO+U4jn6Q7dZZKpiaaAt0GnnVizkXAVGyZDKRm+Pp3uDeGLiEOEIyeQU9TLVDZMQYcf57HJ9U+5gPEoEpQotOFquICY1VxuFWO1CMJce9GR3fbhHQTAJPbdCBtRntqwOQmpb8sdyMpQKpcqi2PRXS4lwNhWKkc7mDTirPh6h/hmMUgW45ZyaxVoFy13dwIzdYkHVGhmswpSVGYANwHA6ZRg0VeB0LqOWx7jNvo4D/dPIyc7v8XABI/aYddPoIRq3OVPLps/s6Wde0wnP+e/28f+6fvye1jj68/TRXno//fN5875/hSRYaQx9ffwRCJeDzzFYKe2XPgFRdQYzVzoT4GnzKAMi/fBZfgVhP95Lsg200as1VVzAPTRXCCYyPIjhUsokBwNI4ZHmPzeiKpxGvhWCs9ygg4OdsyTsGozfWvZEhaUIwKxz6sI0rKGqNidNqjBPaPemr+g4uRWApFvDvtgZzBBYOJyE23WAmIXQe+6cSMBJz7uXq/DlmRnYLFZNga/DYDrLKrMrIIyD0vIrYkxO1CgfYnSA+JV5WiZK5Y14EwuYwzMPRmmEcjnk5Wm84z4F5GziuBreBfjHhYHbiODoO6zBht9EOhU+Q3RuJqxJl77R9JmGDojwu7Y+nE/O0prgTeMomINgzum6agETMUSHj3YOeZM771b6SAjvrsGzV/izT/sZ2Aylrw3VU0Wv8pcLjT9S8YsOOUcBT6kGlKZY6VsaVUUYXwJMG8DQx63racVSp+BiMGwxK0eq4HpYFrvsToc/BIbZQ9Y+gvELZL+xm+N2eaMJ2w2u/R1S78AiKXL87MB7+QMl/UPrAnWBv4R+29itkbOu7Ld60w2wJ1CToY0bA70CPhCtqzZBxqismjYQY2etC3WDJ+wqAMPwVZ3DP+T7D3nmuM6EXFWWPCbQ4nImt2EusYugEthOMyhElOzTnXv7xnSoJoBZL+gmaYBOYgF/krbL31dgrSo0Rsb5osPUAaGuFHxCXN4JaAUCOGftBPGfLPaGuC5UMXOhD3Lvl3p9r2ouxmXMjpSY41ZIQQz+Cv3oWIUfdhtV80UTst1d2WczxeBrMmCCrbHNdkeP5OH/0+vPi4qARcnEikchStW2C23r2JWz6dLUxQLmpx/e1EZ5lWQWfggBbNnAZAzNjOCASJWiom6/TyL540x4/D0hs47vbC2zTmYGU1O9yMSPvNz6WrThFl5jZTnXbH5iFY+u+nI5EqwHSHffL9ASVclMt5zp/uy5ubTUhjdQaztsN5/2GdhyQW8PLL694/eU7/u1/+wtefz2hN4cfg89DN+AQWh0mmiarS8oQ13mwHDa2oGRwfOsdpzvu376F8RU0+U52hyocA8f1A8cvP3D/yy9krYx3wAazbOPCb//1n/j5j9/gt463337DeH/AL0WzE+IHCPYG4wlgoN5ecLz8gpdvP/Dy6yvuv9xx/rihvx6Qs0HOhn4Cr/eO2xx4ef03vL+9Y1wXxvWOebGb0+PtHTYu+JgEo8bAvC68/f6PKu2yMQF7wMZvmI8XjPGAvz9gfsDRIf0V/ftfcL7+gm//4/+O+/cfuN1fcbz+EvxHZfc0VUgT9B7ZLAwcv/0NP3/+Hcd//S8c//UfeLw/8P424KNDvBOoOU9MaXhcDToERxOofgekw3EBGATGpkWLdxrZCRpld0A9qbHUDOJ3FdOVIu9K3SZtDvc3eAi6i76wJE8PHLdfcPQ7jn5HPwggOYDmhu4T/f5Af/yOMS5c1wMUq1Qc/Y7b+Q1Hv+E87kvLBcCcF8a40H/7Tzwe77jGG5oAvd1xnt/x/fUvZHzA8fP3f2CMB+b4CQ0WV2sTbj9h84HH4++43n/Ddf0Efv8PfnZewPUOzAs+L+og1cYS2kP6inb8QD+/47z9G273X9GOO/R4BYRgdb/eYfPv8PkTYxwwv6Kk7QKZKBMuBzMRMAw70OSA+g2KV4Kl/Y7j9gPt/M6xvP3Acb7gOO/QKAWrDK07IFFyJg1yV/R+x3H7huP2LcDTC3b7C3yQiXe9v2Fcb5DjvzAfv0cHo59AdEIj+4ki9K5vQRs3UED9hM8TTV7R2iv68Q3H/Qe0n0C/QfoJbQRaPABMgiRbEAIAruxExw8U26e3VlpNpXcW2d0qqygfl16ndIuqpLBX6bxUN4K1hddm6th+txgGZBhltmlnMHgw03IHCOcXFzyfKybgCngLTSr+py3tIwUs04Hp/YjnmYLmmpvh5qhmlyp72r/i14EthTaJUDhdQQDE0SAmoeWigB9BdXdABthoYBIkzQzboN4IZECUnXmy3IcNCJwsKkd0shlPYy0bqCJQoIU9caAdjXPIgGuwu21me5PBkB2UpjvSs60gsfzECG5CHynHYgE4/uwzPW+g65iyOXF5vfmKwF4h8IYa/wgxADeWjEaU2trmb9SMy02Yf0tjJx5tm1OOtV8uxzB/1vp7ZyMtlnWMc/29gqNVjheu+Ma82T+rmzbW/ncFML6uLwVtFxHtaZDLVfrIePoKY6GXtUo86v2PicM6wAdfrc4R/skHsMjdqzTmX71yfX/FhtpLG/7o5+fXH13nsz356vtPv6v34h4zuPpgk6AL7Ex2A+dLj8SmQd0iIdyoybiVHdtsMFX4bDC7aHMEEFMC5jYgneV6Hixv1UaWbOt4Kt2HAm1CD6OvNAfmYIdjRFBj0ek4uTkAdY+YTP4wDxyxBlbJi4AxBxToXcqyT0+Gk0OawF1h6iHvkWsAARKl7lMmqwEzAYvlw86YV0ySCQ4Hqzxq7PPkArKB4qjXGzDEcD0cP3UWi/Y4WAp+ng33lxuOo+F2J4OrdcX9/cRxNoJP7cC9v2MeF87jTiaUHphj1r7YhWzPJgcbiUjF8JWIScyQrNyl9aPgVtW2+bpr7ix9IQcQbPwEYCqm04pvPgMcy8AKECzgKHuKz5jN2OepKcj5bUxMhw7sYzyqlGzMq8DMabOAJ59biB7VH9PJpE1gsd6PcRIRHOcsG50smiYeZavyae3uXeHW2vzwiveasmpBNcoTdxBbo9FJAlxwND8KZOHtMN2ZzFvAMW2NK2NKhVmU0kmuRR7vfn9ZNjHuv2xaMFKoyxp7roWPV3uJooUPlvYmOxWuhkES3Wxzn1gdGd3XHpf6uCmDQLszYz+hPyc5dld291v+jtcfr/lZv0umdYEvse9aVASlHelrvT9vW7L+YBPH355n2iW3tFEJoqHY0GR70QKc5wGzhjEGritsy7SnLpA59ntCY59rwGLiP1KjqEAyxIBFJYmzm1xqla3mOIlbbGDSdttrfa99OscnyFBPfsD6O7+zfdfWvlXm8cOz+lev/0ZXO6cYXFKrPPLBcR525QgukefGGu8nbBS1ie5elEHeQCjG10CF45UAUwHNkiYHmdnMiULmTz6o0KyoY6E2iqcBFWwOqG9+BAc5MyGCiHvCiJt5MaDqAfqa0Fl7ygXctg0v9QqA54e5hOf+6FXZt9gU88K4UW4Opiq7YLVOhs15Q78fePnlFd//+gOvv37Ht1/vOO4KtAHHg+FVCOam5pYAIXSYDvHaWCBbuV8u9rhOLec5OleFMVU9Y2x4vU2BswGvzWHzgs0L6lnedsFUYKo4/v4Pdhg8L6h1as34Ee13g2FiFiyJG477K47XE3IDcBrQJ9BmlbeJNGi/QdoB1Tv0fHDzu65gNk2WJw3+bNfAuB4Yjwf09lKBIX//jnndMR8NOh6wtzfM2eHoaMcrbj9+xe31V9x//RWv337BeX/B8fKtsoqWm4RK1E4bYIabGNBvcD0h7RWPx4X3nxd8EKUX7zjPjvNUHPeO4zT0PgAVmHXAf8LsJ1IDYkwgNag0hSzRWJ7YqM2knWAGZJV7cCU0OBogB1hyRB+0a0dvJ47bd5wBPEk7a80DxqxdP+F6os2BdgxuQGg4jjvuN5ZZnecN2LRNSsi8Hzge73hc7xB39H7H7fiGbz/+LYShHXq8EDQc7xAZUDGoDri9wewd/XHH9fiGMd6A44br/Seu6x32/hM+H2QJ2aiNjt3GTrjeIf0F2l/Rz+/o9x8sBztfgWC1aH9gToXNA3IhtGwG3B5I4Ak+IGZkQaEHQ+gGba9k6PUXtPMH+vkN/XjFcbygHy84jhs3xnDUEnD2uWyZCNs9S4iN25wMAtoL9cquB9rxE9f1BrQbrrffWHZ4/Q4Y9bPEH3C7IH7B/WCJrbOLEeQFqi8sYY0yVu0npB1RrpnsHKNGSNjkLK9PBpTDiiYsMECiM540TLsgU2BsHRibZGS0E6BJe6cE9c0COEjgyQYFwJGgSH48d9LUmtgCTRG49AIEyvnxzEwFbVpjd3GLgGvCEXoRJgyyPCxflK9A4tySCUAJZhXXxRNGsaEoAqnSuuf9IYOuSPaUoxxOLRQuA80CDlINcD47nUywzHKAnaSDtSnRpGEyaJXQ9xMNnSlDAE9se+yW4NWIZxnjU0HJB7H2AKNEFdMIPmmjSHnr6QR7Muhrn0uwi3N8gTBPY+E5w2o1ICnsUK3n+Mx+rk0zTrbGmNt5aOtIZJmL6bH7CPHMBXUtlQgKHwjAk0gvtTw2/yPPWL6iALLakuderinWX04lnhxKrdLVfZzw4bUDWHnOLWp9+hyexl3Cv/gEPpUPKk/vJ1iVzzFGBQnKfgR5duBtXUbxDerY9Qy9cIUPQNj+9ef3/wjo+vj66nd7kFDg3QddGD53e/re1+yoP+GQb89mMfgJNMeWyunrCRHEPHKEfRHA2UFO3DAFMFVMEQyhPzUBlqkFE0oaf6Z+U4NbausN2niKtJBpGwGrhz6c24CGQDBj5AwgOZ8piK21/p7m1hbkLl+cAWuuXRIN2e22NS2dPZ8e1Q8cH4+4w4fVVFIApqtaFCFabobVRBO0z4i/q/RF0saQVSsuT5Zmf855T3Nm4twxBgN9VY2SY8dxdowh6IeidwJ7Y3TMs2P2CXQBLoHdDEc/YDYok6FMAAKgHzFmlJJJMFPpFGRMTjgtQQECFmUw6wE8T7mdtbcA3A142ubmmsZe8VWKKZeVjZJwCTucAt95wrRFyRCxAJumZSl2AElGWYtMUHhIFuT1tmCbmFNX0AVowbRxeJW6c4mkrUcwuxXYyAJ1H+5bLOrPw7aND99fVJUExlan02Qqg6XusLKpT9FSMMwLb8g410IXK/Yfka3ELuZkHqtt+kR5L60p178ES3GzUXWaeM4aAfbHhMY+WdxksXXC3vB67JNt5HoIP02MyeaswtFW+4GEC5fASA1BYgcolSGeM65nJXly3NI7AgHoLA/M8ePmvo0PfbVW4Nra14zlCez2CIHogKp93ruemGm5HHdfocEsfx71PU6/LQkTgF2TBoeUfl/ug8U63FyX8hYrTls6S+L87GJL7XYq97K8FgLTCTw/YXCOD3P18x4t5fx4+bJ/Enf675Ta8cIdq6a1DHoMULYqz1ukE7n0D7alT6c2agQ9J+9HcUqJrLasY+4OW50HeW35NanzAeucOYHr8Puptk8X02lbDJk3MWcQseT8fB2pnONtIW3ny/fSCctr3XzUzy/JDTEWVgB5dbr8Xjivogo9TrR+op0n+v2O28uJ73/9gV/+9gu+/fINL99vOG6A6Crv4FUdKYu2HH15nnCfxz32tLr+hb6qOCRKJEhhDuczsjPHISz1i4CmObPL9njgfVy4zNFf/wuHNOhtoMsZbJEjNh0GQdc1Qp/gIPB0OyEnCKy1C6ZXOEC8O6iWoJ70GxH5GaVGZpjzYh3xJCB1PR643t+B86y2rzYm5njDeBwYD4Fe77DjDWMIHB29f8P5/Rfcv/2C+49fcH/9gfN+R7uR3UPgCWR4FLjKzfXUH9QTChbX9bhwu1+wC4H6C44u6F1xu7cAniZcBNOZzYOP0BiZmJZrS9E9u5J1lksloNBOJJOnmgYIQOCpA3pw3jdBPxp6O9DbgeN4RT/uaP0FkMxmZn11eMt6QzNDmwMeXexu5x23W5Zf3p7WjlkIKPaOx+Md7XoHzNHbDef5Da8//hoZBcCkY1wP2CTwJJgQGYC9wexCP+84xk+M8QbTA3r8Brz/hOmNmkjjAcwHqv08GqDUdkJ7hfZXtPMb+vkD/XxBL+AJkP6ADsBmlDVNsqkoaB7d+HxC3aFu4ci20Ip6hbQTeryiH9/Rj2/oG+jUj3MFoZsIM6MPllSRPe1k3PST9zAn0KlRZuOC9J/Q650i4XJCxxvLQe0O+ANu73B7wH0QQLMLmNR3U4myun5C+gFpB7szBnBau4AbNPOp5SwlFTcFsslmFU9RdW6ccz5ofVQBa8jST0Vu4msu0kl+dn7hWdueoMgsF1i3muV9U6wOfGrURILQ0Q1DRru9mLdZN2A+y1ZRqJU7PLcohXhbgbZoaKgh3CcFAazB9bcBImvTD2fCM07Y9hYkw1hoxwSgHgk7gToa6H9KlLP2ysJSy6DBdFDbwwmgWdDiIXxWogxYLXQNJWw7WxdfwXiiSH89p3A+VnaUoLZGMgQBHmqwKFUt9n3DnI3AU/oBvnwG/px7/ReZ9hi3UoBwKX0JUV2Ma9865eRYeh7Da6zTmdLo3ifq6dTQloUnJk/eQIzRNuefg7rIluqWtY3/7QDJ0j5Lgf5sorHft28mMhNAufXL9jM+vT7EEEhPCl9+PgGoBWgV7vUl2LOzBb74vS/P7I++//R3ObPb+CQAlDbwyUH2Pzjuh8v44BF/9CO/Apn+6EW20QIfn0sSUPPuq/Pvn/lw1Lyq9OhjbmWga9vcWYCKA0DXKE/x0N9wiGmAL6v7JD/iMItgU5zdzVTgpmHfYm5PMrJNlSx0ze6ZBkfYqNlirw3kKfTkYKk3xPVTrK5aJ/y5WE8xHTNzXwkAyznvTDRK2CMXBod5HAdQgXiFZQU+seGk19hBkrjvSIHXp9gh7YxrEG0zsNvjHlQ8Q1BwLz822ARErcrrx5gYl6AfBJ+AJRRtpwODbEtxhx0H3E80O8icbFFuHgCPOisHKAcgqwTR6G/T5nv9DrX3hWTJhxioVmAG56Bh9/g7P1+BM9Z7yWLOaVvrM4HTfEDycc7neia7OAEni+6sC3jyKrszM4zYHNwdR9wKgapg8IT2l3s0qqp1Puu84hGUemjjpo9leb376Gx+Q5TdiaTuUqzZQI6Yh9rK9SJxoEIAKG15MvMyeVRzuM66fBwNEfOyAZ4Ejx0wa3WtCepqy3J0qXLcuqUcieUQ1X097bMxsZKYsPtQuVcnO4r7fRBLsLQSReiPZDfngCRjeiypj9Quyl0yV1qutfwrZ+jT/rv9Y49LaeNX4iTnBxlhihRiL+DOIwE5k6Ue4I8sAXHOw5lYF9LGLeAJSP8gy6UzqVn6bbq63fv2h3NjJ+qgfCXPpCZQ+3KORtmgGq8c0/Wc1/6zz7UYUU+/Zd/3BM8kmX3f+uw7rJ8/7mtfv/4848kDRfNYYF8cP2szeYGoh0M2FIMJC4fSnDIo5fvuxwnnnQAiDbpPrIcGPpAxx9Os8xBPtVpQWLWtBYZ8fFgfX7L+/3FW1wWuC67MVGT8HUDw64EQVyO6q2vR1rHyIXotsk9Ozz7btgXJS/MyGCrgAlPFcX/F7eUbfvnrX/HrX7/j2487/vJ/+4GXHweOlwY5HdIfgF6gUGKDolGzB4Im0WkLH2wwUDpPYTsBCMWFc3JvulZ5dwIKMkIUpSEVQKPKCchBR2DSuUG/4fYwmNzxl0eLsjbHebL1eorzmlG8bTzeY74I+nkDeRWGh/wHZDygv1242i/o88ThN9bLN0VrHuUhHeywluVeHlRLg092YbiuB17ffsajiEzOfGBc/8D77/8L729v+Mc/fsPvv18wA3p/xY9f/w2v337Bj3/7K87bDb0fQZ3mJmmSZUOclz4NNgzHTWDnHd9e7vj1l7+UVooZnbU5J1qIgp+HojVAxDDsDdfjPzCu/8I7BNN+h+MnxnzERtdZJte/4Xb7gdvLX9CPF5z3H8DGYNGOcBgN6o4mgps4/PZCp3IaRDpUOs7jG9lseoLlWQDUKUSoAlHSmS0cSY3M/tEP9OOMzmLJdtLYMDm3z9cXdsmKrioqZAzdvv3gdwDcALRJqr9kZgkMjgm+vcPswpwX2ut/4Ofv/8Dx83fY+0/Y9YBdD4zxRhHzcWHMCUiHtBP99jf0l19wfPs3nN/+ShDr9i3KEgXTLszrBXO+YVy/YI4HbA74fGCJUKczoGBTmXBoG1mJ/bjjfGV53Xn/Fef9O/pxoh9RCpwbSm4crbN1tUcvjwBRzm3cKCg+IDaA2zv0esCPb9D7L5jjHfP9N6hk1783zPnAtAd0vGGMd2BcsPc3qDaKYnbFFMfDKeJeTiPrrwt8yE49IWuEOZn5chtwHZz7otSy0hOqNxzzQe2sxw23l29o7cBx3AA9WbobdiL3WYt7J7OWJ2IZWDit8+LJPZphbIGtROCjShBt2hlgSejibIkPi2Nzo85SuyizddodSz0TT5BA0aYWUy29cAdg0b1QNToBSjpiwQ5SIDkM1jxuwam3EbfqIgGgb1oscGh0rTLckIaZwBeik46TSWoTQKcm2ryixAGAK6w1BqtOdhhHImjwNjGvB2Z0mCR4FhBYintCIBpdKqXh6Gc4dh0iNzSlkH5PcMypGZcA0xwJSFHHwPKePXfHFRBmssaxnCqbTp0bgHMM9ANsTtq2cgn4mYmw75+2WuHYbtomOzPDFioW720si01/id/bz7htonU+2f6OP5vzv7Ob0k+oH/c/9d7mSNYrd+HMasY59eO1bGeJYFsqMfLhmiWW3j957UylnSmyZ8f5WmWB9B/2m3p+FdD45Eh/DRh9/P0z4PN8T199/yNA9JE5xcYA3CN3B//jMfP1sayjGOwSpe9pywFkfZPDyg4BKCYJARQJBmisEwN6grZgRcFQ2rUBYAi7aY3UaLWJ1hVzdMx5YI4L4pPMRhdk99beKChOYeDQu9QLogdgLK9r0qFtoDUy133yGNpOAEaNwbDRe7MpsahYCBc6XWnxrCSI5FWwk5qEhp0PmGTSOqa7GTQ0faAaZNg9WI6GBlWCB+7N6pQ5zGWdFwJBK7aQxC+iuYIzuIY7nrtuSpyHwatPx+NyXO8UI+8d6Ifg6Ir314nzduA8D7zcJ27nhdv5hrfHb+it4zg67rdXipOfN/R5oy1tDc2yI56hZDBaJHYgQJtMrqqyRJ+jjRrI+jftTSWK8/7TpmKxgJeAcMzf+F9pYBdowFJId4PBquxLRKrhRMUHobnE5Ci7/84xMOcgKz0+m8xYfnatfbtov2dU4YgIhuV+7bXuFEoNqbhvj+eomNTHFMa102YBEq2nxIEBI+0ux4xjw+GLFFoI+UfArxv7JfAs30r3PNavRAUGcs1vNt5zztX4aey1PHEPIfu0Q8vQ5HVucznXRLKUo0zPNppVVNjDBehH5+/nM1FDJYBOR/jkvKfe2QWPgCoPMkMHDRB28C5/Zlbw7XO35bm/L4ZkztIkJqu2sA3RhAtp32kjSxw9GyNpiPC3Ne+ls5tw1wO9dTRVxn+xT5gZpk6IGez9vcZPe0OXtW+1Ngo4BhzaBdJ6zFeDpKaVKg7paKZoM7rxGeeaRQneAMBmSQTpfD3C5Q+pQaMkctevWpp4NVrR4fTrPSzX4nEc2F8fmW6sUii+aPmj9UqCUbrh2zX/mdefBp7SyUvHxPE8KdMJXtcZv3ennqsDibh7fF4ks4yKBHM8xCOfzVxM4Vq4+4T9erOXWnSc1CvjmA9hGaKP47UchAUMxW+eryfvZXOGnoAjkTpEZi2z1nVlYVH3kSKfnx5gOjbbJrHvHwnIqTYGs/2G2/0Vf/nr3/DX//ELvv244eX7gX6jRorLCDYKAJ8Q62BXkoPaPkURlLWziDw7oekEiDyNoOc9b6PGiZBV9Vk+E89uM440lAQfbi8/IDjh8yDw5KAw73EGBVnZXWFMjPd3pPHsndnuYQPtdEibmHhnQK2ILn8tHA17Bj2Drr64eeEQgqLOh9zjUhuBIjsxR8dxKs73N6DfgfaGOR2t3XF//Yb7yyvO24neW+hSWQBP0VFMiPorPLSGqB3TYpykCaxJMJUkDEB2LXE0zew4oN7R1DC6APid9+GCxyOSOa6AULg5ATwKWJOVVuUVSTRxBqol4hwBOGOtZDYcoAg5S6cEgqZAP9f3PIyt2TJ8Gto+msfO+RhzQSBo4HFVWznmqo3tgkM4ut8PlmrNxk5yYAcv9wOwCbMDCBZPvzsOP+B6h/cH/LrY+S2ApzEf1KGCAHqg37+HftIrjtsL+nlHP28hIC9Q62gdmPNgd5p5BfB0QYIlU4G57l0uWeYl2tH6ifP2Hcf5gvvLd5z3V/TOUtLlpM2nYMvKGCaDijpDnMg8BwGqgayNPABAFW3cMNsRwNOAjTt0PtDsgow3yPUOGRdcfoeA2nVogGvqtCS4F3T1dOM8svC+7EZlzNwJVhjXtyEp7YCOVo7DGEo7IQZpE+pa8t6cG44Sto1nTbtJ8X8y5a5yPLM19VN2UBSqFM5VB7RF8FfmOEK/TTiYbLgFPLH72RVaQFlnwqk7TQsMXIACFxTtxqDelTa4Hwt88sVq2xkkonvZWdhOSdZiGq9Yv6of0wUVM0lS3OWk9oLJkk53gZlSjDdtv5DJZTOZDrNKGtm8IMY+7DePzXbtqh3qDtcD3hzS4rqV9h9xjzk+ZoD0vI4IxH0RKYoFBWwAVPokDF4lkk6oz6F8C2biN0cVYNCTNUyMBMqFkQwgvgQK1l7PAHT5Ks9JI/nwb2zHev5sBhYZ2KzM89O3ytfYz1F76P7vr8/66Z3Pl7fmXcWl2zU+39vn7y7n94OTun3/K3Dn6TvylUf29fH+iKH0GWj6eL703tZn/yzb6TPDai9Pwqfj7Mf++nh4HrcIZBdYsI8XYp2FyfHlx7rUkgwAheLc4sJOW778ysyglzhz7Bsw+mDajihFUoi1YDDP8oUkbX3YCoOXaLQIz22TgBVcgjXFcqEMIBKUzHm9gNBtDguqJK+0gYGQJdB6kmbsEtvakqHYrSDHK7gWMccS98xSYt/GMr/PH2V7Csv2pG2Wp0fL40gFz87Riecy0jiZQ5Xl7PMCfaMxYFG231rDNagDdMwbg1kHWpvoxxlSHwE8KYH+5i26sSF0tZaIdF63VtlgXL/k+ESpnOQa9JIFyTFOJhpjwFxbmz3NJ7n5/hUv7hMYiP0zqgtsL2EkoJddYZ/+BPi1490jEwcVFy52yXok8fSCJZQPUyU1Cjc7vX1tX78ZriQDZI1qgjkIbIdXp7J01TLAWPFfWnGJuZJu2z5Si9GUE3Ild8JHL32lZW8qKSCI+Hs9r6f7KSArbyyYR5qdftvGapOnP2to80l4AFR8dqm7CaB8oBWnx/pIMFjWapcYgj3yl5BlkViQCjY1Ip6Tyb7wAeDovdXzYiVAgHUtfQ5ek6qWfmppy27jkyWXn+ZB/GlNkVp0BKCl7m0JbufzQek95diZ5J7NY9NHiXv8ci9Zg+Qx4XeGOI/xnKj6uOV8/rd/+N1i3Wcc8fQZW8917ddA+vH17p9En/408JQns7xxz1rFNeHrIncXKa5XIlOYZSP1IPFhETm//5UD4AjaWX52d7D3FFxMsKdvbg8zg6M0i6UFksY4H3IuC49Fke+HEcgBdyAolvy3bpPZ5prA6WSUnducHo9NMX1hwbMTlIszx6ze286ZCHg/T9xeXvGXv/0Nf/v3v+Dlxwm9PeD6DtMJk4HyUEzhalA/oD4JOqUoIBgE7EFUdpniRhWG1bXEQxM0XBsCn5PA67MCauRI/Y6GMLX1VA7c7geO/g234ztsOCeeNujZIUfUdo+JeU2Mx4Mq/WBXEfOBMR98Tm3CcGHYAxgKHRP9iHChugXuEyeFFBDZNl5fU4XLEYankRXmB9wOzLPh8XiHyw2G3zCGoemB++s33F5ecN6O2jAcEwiGgoAsHSDb2vM9LssGAdsbawiIaksNGVm17qGZxKD0jn44jqkQ/AYBAznRCcx4Qhri2e1k1lIazCU0yhYjTarGGVDTkE1JzzafY4N4j/kSpYzKjg7HeQaAZfARXUkmkJ1VWurPqGN5b7kbhWAeqDmlLZ9NBGgkj0BU0LxDTIMVR3ova5xDCNk6MAegA/0ETrB8EX0AY8DHhTnfMO3CmO94vL9FxzrFef+O4/6K8/aC40bQqR83ILQX3DvmEHQ7YcdB0CkCdPEFDOZmN2YyOhzmZK1oP3DcvuG83XF/+Ybz9kLmUKPWlduE2dZJdHJz53phlkUbAaw0XmSETj4bbZDe41k2gmP95DzzARvvZDzNQeCpXZDxgMkB+BvE3xfwJLtj8cxkcEFZANpF2pHM5sNDbwETPpezT1CRcyCBJ2BC2iCTyHdrZ8V4Yikjv+fBdvI5McYD2SGFOmAp7hmgkzRoM4gaxfXdOe93xxQL9EvGj/mEObvDkWFzBThFHS/uMRa2UutvgjKxPgOodZxoOMARizLk0MNzgJoektcjZAYEIypbBnt2nQOWXkVTSCkjbMAZ1rFUj6r/l63ExJ06LzYFyahlqm1WCSdBv8FsZrRWN1l7tYLdI02ivFQdzZwOowaoqKkDxSC2ArhwIFuIBef25GHnpqOCD3atWs5PCtvnPh8Vctxby+GT5WcAtDFb9j19EjrGBpEVeNV5cjw3EHiGPlztIE++RDrrz07eR1BLJJ9N275b31j//8J5/BI8ElRw+Pnldfx930unk9fHz3Bd/sFhvnh9db9x9E8+4idPOL9fN5rP9/Pnnt/fgrXtfj4lIbHGvsKdnCPun695CzQ+/u75318DjPtxvwLG8jPJ2hFw/m9R+pf3nsOY4JMYt1/3KML2FUi4AYhAcoGdUsF8QROxdmACmMQexTUuc0ZCTAPXlSBbCmCT1+JhMTz8P1G2EffJsl+lxAFFei1DgvB7ee49HqgMenSUWnaZ38ngTESjXJji4i2CP+4UcU85p8Shmy4L2bcRlyBAbmzAgntdT6Yf8zoDXljaWznevuZN5pXdVxxi0zHq+VgIEud+ErbOLrTW0doVwBP3zcOA3o/wjeijJqOUzKdISqvCfcIimWHwsHupu1ezkHcRlPuco1mirLKDifJpHvsWbOd8o80OKYCyletstZO7Bzs5RcGRZN+yswt8Wva2NH+EFR4spcuqlgBBN9F6gYQWkiBZwLI/e1nzjm/407ovmxjX+ARQIzWcOADrGhyZ4HqSSkAADu70heMoOa6rxBRxT2F78myRXJYtkcn7XSV8qroYa0AdL/fajJELXMmC3Ux+6/a7dMulIW2cheD2s9wL9eBgoWvWOG6qEom/BTyFRee+krFvxYEx3hIgc/zba6OK5Fz4jCRaEGxJf+/oR+1ZvB/GIqsRDYqgQTBoMdXruenCIp7nQtixsD8xDVEdjsN206cypEZpzcWK/ynVwwRfzN9pRXhroYGZbLKvXss33XENJjb383zYcGPNrmeZ91nrF7tfkus9P/d0pM1vXHMZGzbxr17/DeBpO7Gj6KrppGYngXxnoWCRkdz+DQjMB7tThA4IgMhMfkDU95vNescYnBabwFcb9OcuMjl4aWB5VCCeucjK2EtcSwnOxmYmkWlwC6HqpEZHzW84lE1TaZ6BwDZyyFHgg3W0yAYnYjwj26pfPUTPUpOcDLMMoAcDCc3w7dsNv/76GmV2N5wvDZe8YcZ/5he1SSQXTANsQtFgGBQaRoIJIfqrDdIiiHBEcBS3ogyukBOyvIc9szWRTGgMCxokmUQSLCcV8HpM0V8E4or22pCiH8MmLjVMUKyZWlETvWkFC03YceUA2UIZmDsmRC74eIONCAJbRGDl1RidL418kVgEBLyu5RM6XJM2rmjnHbdGQOe4vcZcULzc7ziPE8eZBsLgMiNTxRKh1KlyPAAfgD/go8GcXWggN4h0SGcpW0wO6rn4qhcHeK8drxA0HP1C63dA7/jH7w4zlpGZ32G4wXFiGOf89En9lRZAgHOjYntlBdwwRKrmnsOlBAZwgBtYi2MI2qE4ToUoQi9GqckQLe0dqNLQ2vMj0FbNX9LdyzbudGgZgLsagafecO9sk3s9gDkknAABZtRRO5lYrh3tprj3V5z3CR0WtWAjgukLcz7w9v57GHZA2onjuKPdX9BuB9rRKf/UvSpEup0EeOYZgTmBp/RIW1tU/DEnY3kDzJlR1n7g/vINx3HDebvjPG/MXGo+ixCCjrX0/v4Au5A4IA09Sha197AJjm6tQBF2upsYxw12hej4uEJA/8LsD+icUBvQOSAXgSfvf4fbPyD+W2VWpXVovwPRAbFYPO2Ethsd5n6G7XS4dYIi1mD+QIE27qElNCA6qA4lAjx+YhrL/iZ6laXSUXMguyol4JOgrVuUjVFQPdepRjZYtbEcRKPTWJ/QNlhSGo65isIlgS7OdTMr6j9L+a7YLQyWZWc2YP6gs29Jlw8AVkPkVRqdAjRIO3DaHb0daFl2px2tHUgmExlRHFtAONctF4wue1W7STqBmylzA3yGk6i161DbqoFixOngpP4AAzHJaMoDeCpqPoFsWO5DsZcgM6vh1GkHJjvmeaM4MFrMd20fHN+8l9CCQgdzGytjaE5HaTo17FKBSmK/YKAsmPrMXOAWvweTKDf3UCXd3VnKkVcxA8zf4pcc5HCUBZWwhAfl/1nPjHMvs8oLgEj/Yw9Q6/Ain8rf8kX7F4HcF7/LZ5++i2KbCJ9eX4Ek6/06zn/ztbrx7de2BSj53seL9/2enh3lFbUu/kh9bPPf1pHzqfxBHeDyo+v1iSHxf+m1g15xNVvg8s/As/Tt6+q/uEZszzP9bX8anj0AWffD4CuCz6OBnbG8gCcdgM6GMRu0d5hNtElwOLva2ZjwacAcXPvRzZNlL47eDwzt7KaqD/QEql2i9PyCYNJXMGUSKOpotdPHNpCdIAD2hZfBXmqD7uPY2gI3JLStWpS6EKhe0UiOUXb+Y+InYgN1ltVYlBBF8w4DXR/GwmSIJrCQMYf7EprfKxgAoLctQRtzlZ3a2C1vXGwGowo8HhfOE/h5A759Izu+9wNvj4l+PPD2PnC/X+j9wPH2jn4c0NZxHFEu1BpEJizKvFt0DrRgFFWAnSCUpP3k3qQR2PtCfhjgSys23GKF7ZUa+Zzi3xKxySpxQTJvOPa06XOyTGkMlt5BBKIdohPSPLoGdmQCpShHvlhKqtmMQWocgGDo5i1EV8BcmgIPJhJAhv4ChkWEnVifLNbmj8Z8qVLfzR+2OYNBk9o9wRjby2sjHoRs/dQDhBJfa7oAgBb7g3lJmojmvTJBMcaFcQ3czhO9d5znyfKv8JMS7Kd/Q1sT0ktP6ylNzhgWfueAgqDm0e9IMsHj/SLBwMkwzNVoWPNfIh7MtaQagFPdWyT1JnW50s+63e5IgDTBdQcWIwmySFaaievFegKA4ziKqS6SjCeKiOeqbqE1lZIAT3tW2U2C9S8vL1VO93hEx0VJWYYNtA/jnZ2QAbArMwS9t+gqHiWjkz6XTcdoTJheTTEvlufq2eq5zpSNQLK/rco58zr3DWOGMDlxjB33eP6Zdnyt3912bdOVnQ4LyMKX+1g+K+DrBMwfvf408CT7xRfvPZx0INgMC6HNvzNT4LG7SkzAmTR6YN2YoMqggCjM2+81JllmQLgpPH0gFsnacD45kGks48fdAfR6n9/ODI9gOfV8XxbdOJ0OWdlK88hSpxMXC2EtzjpKHCGOzQtaTgSWK5ZTrMciIv0UUFnGlIi1QfVCaw+0/kCq6095hwmDJdtbjwtogMWh8x2CgSyj8sjEcy+J8gPLEg+vK6xrTAAsnquFEw/PjZ5fXdK1IfYtZMtsKESMCoGGDDC0CVo83RTRtLRHhebqup6Weiu8XpEB1QfgSiZMlq1o3IvlqgVWKY/UHWoxBIy1uDl5C2QQnLfQuIGjtQmRd7arzPmb7FsRkBFi1dWJ2X0KzFk4Q3yets3zYG0kc9A43xwSAVuDygnBd5xDcA3Fcbxj2gPiF0TvEL0B7YbshqaNzCq2fu3oERxmpz0PZoZNgnG+jXeWw1W4o0DrjiapA2M1eR0ruFpsR6kxLpYI1rOsZRvBnuf3AIhHKZs6cETGL+xSwFjw7AgDgTeHiUJNITIhvUFwQECBapsDet6L2i3a0fuB835DPxtaB1ozOkcSTljUzTO6Jgji5Xh5MMdivHwGIL2CDNXFcrMoZRJnb0kGrW2LQ5ybawVLXBMqjpYCkjnWLnA0dBF4M5g2zMbOd/MaUBwYOiDzYuDtBpkT6BMyL6C/wO0VsN84VoEUSjvLQfDI6qkeaO2G1lnCKWX4JjAPiD3gw1EsJQgIxnRATkAaHCyRxTRMXABG4BIh6h3OVK41MqiSeZNMswmf1wIatMOhcO1wYVmbtwMNAa7K4HxQZSe5Yt5KOBwEngg6DVh0K2THwkcATw/YfMT1hfBugCjWqOUk2gkea2O7cwDeBqyNWHcNbjcgyi8Bh3qHKHXNsjw5M4Ia9782iHTKo3uNG9yvSlJ4dauMfTPwK21SDAckcDbnUzm3x3pyT00bREfaWSAgYj8REbjxcyoHit2qtaILHKFmSAq+0s6lELcYr5eBUZDa0y7jef+HA00FbmzWUEFH+RYJPJEBkruWR3Z3ZW89t8OYE/LUCRH5vQ/+CKJslEniDJA8fBWJNfx8XXuWve6lpt9yfvF0Pg0QLjPHy8fh45fyT9JsfnRQl1+YFnT9XMGjr3PnOeTpQpajW4ZJBEtzbvk0GZwUbGTbVX9yYjcPvo7/4W/ZPpn2d3/5Nin2w+X5t0ihwMAaRd9OFRzBlBnYPrEdIuZghGUuBdo9EZfw/DOHYffs0lMOv1DSD+BxMs/jH9dknncbFwDQTU8FIqsM1X2VEwv3Vo9yEQigEzCJjpruMKP/Zz5hMoHSIJm03R57hjdufZn4NJYx47A0MpAmUBuAXTC5aLuMOig591kGhvBHUZINtX7DJ3K3YF/HvFX6YpxpGWCGM1Uj7zy4hC9TQuM8eXqMGaCV9o1qxQ9W63olvHMtOnI8Y+bHHCogB7z+FQuFjx8A2Nu7YQYgZX6RtX4A5yk4pmCaYkyg9wvnOXCMjtYbxjxx9I7eGsyPCqrbvIcvp1hslmRtBCAeBqdsiKSQuq9hy4fzYa562aDnNawqtQTNffOX+bsc89JRUoCJ1xzbHuMOiIaOo0YiJPY19WQ5CfSgpmDvR5VHTW+xZJ3z2SY8JA+yuuHp9jYNKsGKL5tu970FoWnTzHP1sUSNbqvXZxP0ybmY+3d1xYsVjCZRepaF7/nMeDwvcfd1vPQy8vpLJyu7/zlAeZAWkiqztLESzOXj0LJ/tSdJyCZkkijKdeGIJCptXTYG4BLSKl3NPZt2i7FJ+mqrqzuf9yqfB8acZBO1dYz9ETjWHNa+2GQabPUE9rifenyf87zJ1rRGOS4kh+w7oezGNW8GCXIuTb9gXGYkKgmQemDy/uE4JJ+khqiETRMHpAlmxIES+4LDSeRQgfZkYHuNQ2lU12VyJqWNFH4o9qKdRbf2eAs/YrvRWsv7VivxDPmdZwZWVoZWDLxt23/m9d8AnrbNkiNe2WGWdiRpbl+wsZQi0hpLLRSrZHCBVBqGkSvbArgI8En3gYjP5EDn9YQxzTHYO9vwUrYdWtZDzFctQs+NJT6qUveSm0tN1rymjcY/yx+yTToz9EByhArWTWPlT2NhELScMJyLUBGcyhbgE17lBE0FvToYTYj8hMjvUP0NZgNzKKY8YDpgMjHBkpGcMCaGphbniWBSOiDHGgdvBLksSr88s/txHRlNS6NB2SYm2Q90JirIo2sKlmuFE5TvK8phcjAQYtxr0fluosEpMKmOKR5gaDKv4thbxzgJIW/VN4ID84Djvm2soWdTNFiLe8x5k7TORJ9zDaACMFHDeSYgRdAJIhjXg8wGUfQK3AUMthVzKqYr3ChKPwN0MkfQxx1qNPiUSjxKEG+qByMGBNCULKQmP3DeKKB83gamv2HYO0S/QfQF2u7BVGno/eTxslxTsttD6kCQHWGaWk1WRqap1nwWcIxbMwoeI9mMZCtJMrYqEEo2UOrf6Hp2wbpKx98ysEk5R3fA6FBASaiwJvRpJzA9N0muGwu7MEVWSWdkQzSaAbg7+nVVRlhU0bridjvQeoCGegXGbKQYx/PZ17FIIo1cX7kppKYGNJgdojHPOgGAeWLODhFEiSXHapdAPg5BZbXDwRUMqG8ZNl/OhPaDAd9xx3hcmMNw6YDKHW0MXGNCw9Y2dzQzdJ9ojzf4/A02CTzVxpSmHdg25objuKG1A+24s0QSQpHTSWH3iR7AERdP6XVFI4PcPAn6ZZcaAyRBn4k5Bx3IWJ+Ibnw+HxFc0TbkZmh6AGiYaFA9WebWJ+Ad6AKTAwpQ64eTGAAzdWMQeBrX6pZn9g7gAfjFv+0Btwt2vfH5GjY71gKka0AjMCfagWa4pkG1YfZOlpg2zDahSv01uMPVyIJqfKatfGAHtjJDVBLDIDboBAXTLQGT1gjuMRAM45XAUznHM0QvHWiZCYwW654/swwuG3tkGRzn+4j9qMHFMMYBbw3AJNkpAPMKymew+GJepVOJLEHVtuxD3X84mLlL1v5I0H3XFds0wBew75YuIp33cLKbrM86FGj0Y96vi0wr23yJWolhRAJwy0QAX2u95HrMx4Wn74eNA8K2BHgt6/fLLc7SCizQJO1K+VL8+PTlZPNYe2ZY1nVtrw/+dryZv9gOjs0PxPpcMtWX45r+GO3VLN/v2TuVjz88jbE/nUlQ6bJwrJ+Bp0oSIuZ0OcP7zcW41X/A8xmXPZcCJTavWoCMrvkbOqcsuUFk+x22XVsevdhw3JnCR81b9wreTKyAjkpuYnso5YaH/xVz7MNToY6OMzDGNFhqLEVStAuDdJ1g63UzzClcR8agd2KQ0YGL69cm0ILVa7Q7CgEGkweZACBlqENtkPlqFxMa+l4JAsCjXJ4gFjIAT2BJaG+4L+SczmePGGfq7CQQlSBojrvXU137idejIvCWWjcefvbA8i3MUrx6+YJVjbAjjLLKel2CcRV+WZaJYfs4RKOczHE9HA/mfPD2uHAcjvMEXl8b+gUcD8P740LvHff7ieNo6F1xnh1nMGBOO9DaAY1GPZoM3y5QtShhDgCmRemzsJOhCoGRlYsmK9YggOta8aULa2veIf1D1PrPhBzUV1m3ZkJWotSJCRWfynmayToVJmi6lhYQWUGGhgm3q2wIAScyhH3yOrRZrCOHdcXj8bNKwHLukA3HpHfFO1k+BVasFPCUazqAGwJPUv4ixCF9jYOLVWk/wnd2B0vPQbCtygeFzDh3p1REj8TFR8A+fWCwOsHN0RM4UaWvNCaAq3wygdSx3Q1jrrJydgSnb58d2siEzjnK5996RyVG3HG0xlRRsBQBVgA1lfB7NNAihB5XQK2WrGIvxvNanwJowzVZnn+o1nOqPdXpl7TOmOToB1LjqGuLRSXoexOR2O9UBF1aAI8ajC5e8w40cv3nuPPPyD1AFb0vqMR6B2Z+l/Od4GaMcdtYNRAeJ003nQ94o5dQwBiAC3xOUId0oEcpMUHq8BZUMVPsPq6vbGEAFg2p95SSERELbJ8Nk7X9/XlPRyUMoxGcLV8NdQnrWp722X/x+vNd7WwZ3jlCJNyXI8CfdwcFyL04by6DofpIoNS6gTZ8OB9u4OOO6tuBt/t9co9ikVXbQl/O7aqdxTIgdZ3rZM9CX9ulxEeyk8LmM21/0xgbFtC0Zx6zK5fqYuw0bTlXq/Y83QsBJy1r54l+SHguHtRdMUBM8I9//CfaDfiv//wV17yjnQ2jTegBSAfkJqhW9+GGm89gQhHaMDTABrw5IBOsH2WNuVdXJxqos70i9ToYJBBU4cahcBXMK2mnylUnCoCshywrqbGNIB3m0drdC2grdDkWcxNFO87YoNjGkxohuePVg0ZyNdmVCbDZMQVs9d0C0c2vbA8z8xMLcALvI2aER8DDx05nLGbItkAjiDI6IaJChlVpXi1nyaJumI83AkkbkMlgrMV9a2toAqhl1xHHWkkHIMwg3F9/hbQXHOeF12/fcZ43nPd7iFi3YKr0QvZ7gFCiBPe4WVlglamhskPMsZEaAQB3w7yosUQWiERZXoAtwnmTWi/V8SfmR66TpCYLQGcZsRnbLEDMDMEMYSbSFQxEu8CN2Q04x3FcgpSCcpfKfhAU5Dlbj80DUSYXZY0uoe8DghAEPgbGGJjRdTHnZQYHTwY9Ns/FzCP40tRh9oAag1j3QWd3pt3xsiV8af2cnXUQzhl8ZvLnad4nINWPDlWPjfTANMc1RjnWDnb7MncCF+M7bDxgdgXrJzPG4RhsGgbHcaK3A+d5J8MHZIxkCdzjfGHZmrFLIYT2uKUApOa6NDhGBKppxxGA74SNyJhjQqJzIYzlHMU4i0dgYV+ADnQG9TaBIRcczAa6jbATq/GFO/hcoxwgtY3cfwL+DvcH3H6jE2wXJJofcA8MsX5t0OioJsHUUu2V3bTWoN7h1jG1QaaBQv0nbncJsL0TtJEIcH0igzNLtpEkMzNEWYP1RH2wcDDM4Y1lhp6D6RRItxmlhD64nlWgMALY0fGPUI9GBjIAZgxMGNwfLBuFMksdU7xJ7FdO/mxs+FhBvkfWjX9sJBtYoNEdsWkP2xDM1FWvXy/1lVTScKaZtIgjC7D5SbWbjrDJ7hSET7s2bTmgw5TzQmK5W7Tq3tb1Dgnsbkr6EdndKIHJMAUrUK7rytmXmUXZjq6xP8iH4zsShvMN1fqkW5jnSAcL2ECb9ImAnWGan9nBnS8d1O31sdyoRib31PS9Pvp3NQYfrzjeTwcfKH/L3Ivl8Pk4u0O4jUsMSvp/Bd7F4t19vT8sv/Mvft4AtY8lYf+qjG/5mAFueGaXP/ukyXL9sw5+su0SkK05I0tsPH3RLBOifsqsTrrYghZm/bnv2ezrZ0aunMFZxucAZofNAZhiDo1gdHA+tLAGJqEBuQcx2xDXM0ofetv/HE82hBIBqC5WHp4jsktzJGfcLIK3DM4W6OeessESQaqgOf2sFLdeAKuWnx67dPlsZDBI/CzQutbw8WKN85747XGtTrBjUjOnRQLwPBTH0TG+39BavHc2nEdH7w3328nETzugOqIEr+M4e3x+7bWqgtk6ssOw+Fn+u3v4Z2HHXZ7tzu6LfFheMVlRpciCxCHSVnLsKM58wJpDxsSI+SboUJ1oOrHKGGOcETqoUdotjrhXxg5zevn/dBs9Ygx25xKlFAfE6T4QtYmgPC99A/dt1E3aIrBvoWf4n57J1W2+xtwjyJJ3vvbtMcaa16mTBvqvkJgzccqJzVbH72gjpIAIxFpOX5t+sdc1fjRBFoLuy2zFFSRDKLSCtTHWqHs2R1MAfSWggATP1n6bazVHyfIeJfcUnrO1VteU8fHqdspXk/TBpfxOUQngTdHbQRvlEqVz8SRThB2sElJNtt+atFEnsk3i/W+vct5FXInzi2NOZSUR5pK1kIx3No0md7TeCJh5D61Mj78bzB1jEBBXNbTJ8libbJyVSfA517hpSpZsNpNAY9g9X89/14GaWTCALFX+53v6HCup9ryP5ef9k8/wZ19/vqvdh01vLcB1ER9cr6d9GaBB1k1sz/GcpUmq2H6kyhj+s9eHvbh+/CffE3x2EvZfyseHkUYwHJ8Cl4CiQec9PE3UCELzX7ug3e52Pl0Y0hlC0SrToOzAYrGmIJtja3h7e0f/7Tf8r//zf+Hlccd5P3B8P3C0A70Ak2AIyDJMzLLRADGLHVBiswjgeDXZsQvB0jHrEG/BemIFM2KB5k21aEFfJR+RQU+DLtuYBY0onP6JVNR/whvL1guqS55KiGt6OVrrGhbin8CCwKjXlc8z51HgRbvTsxZxnLvmyMbUKueONdW7HyUxd5JmyaRRZOsjuGDJkcem6eWQpANF0EMYBKNjlfVsqzAuOMUyRRqO88a/jxMv91cc54HzPEPEuoWYZXTFimzYqg/ns1QTQJdzx2cWP7jH3IhAxVkCRQNIMDPXukiPvzXWwqIV12SA1JAK1qbEOZAdV8I5F6eTG4BT0pmSLdU06aoKj24UZMhxc1JJocFyi5BZbwJPHAOKSweQHPNxTlvA06wBqbWZDnvOUy8NoOWIZdBRegYhyGpl9gL2jLHIbN76DdIDXwnY5ms+S/KJwpGOOasKNKOTPrcMVsEYs8FHx7xOaieFEKilIKKkzgIzmGTNHTjOGzPJIuziZwNmg2Lp42Kr5HHV/dcYh+Ai2UV0MznPl3NHfSEDRW0veAikS1C5pZhgAR54OgrCshCLspEZwG7R4mNtZrBiZAvMmQKn1HJye8D9Afg7pr2D3RIf0OmbU2q0cdaJr3uPsY+Masz7tEeAk60WwaGqBjOM7LDFLM2lFtod1b0vtK7cA3SaRb2n85FUeScjEuF4mhXoNCeBRWqlCJowO8uMZew+Ajqm8bzde9ijY5uJce9YpXKSNeCRYc91voB63wKY+J1lyYBwbIQguGuwCrAttajPkTy/x9+5B9V6RJTphl3wbM1OR9Ytg0GUQ94CNFp2iecy386Zcwz7K8Z7C5DTpuWesPQZlv/00RfJZN1azDl/wleKDyyv6fm76zwfX3/g92S5pK/vf36tX8hu2+J6ds2kzJbjnx7vw5Hl+Z3dJyzfK8/90eVct4eym9uxpI4ha0wFWXm1+ZFxwRuYtF/jM7CEAJM/f/aP3lsZ5zVuq5zz43N8vkH3/a6+eobPrwocQPuqvjLXC8ixTwFfeadOtoArAy3q7ClMR9gQoHXuCW4eupiG1rjvi2i0TTe4Daj2ze9hOZVpW3tjoYyxH28oU/nNssaUwO5uU/gwVaXAnd3/bkrYnCVMsvZWkae1qWErJbHNpsswgNeX/OzddfRaj0ByhXImpr1YKzZHWTiusfcMOLLrsapFKXECg+zc3JpgTgayvXWyYDrHvTXH6J3vy0HgzBXdtUBG92jPrg0T4fM9lQonr3QlWPeg3aUikt2o5eJEJqTKbALIEjI+M5Y/ZTwzt5GUoLwsdifApNImowGUPmxyCE0yeeHpOKK1KN+TADy3vQz5vIzrTrJ+zVHziP6E1HVmHGhVyvm8xrme85q9bKk7qtTsc0fz5QcKUOy4mrWy7ZUOghtRHfAkFRPXvcc564mt/Wa3MQlCI21BVgAIGXLJWsqYxJ/8dF6nagKucc5aTzG48Fq3u9HebU7OyyXcvYCoLKtjUlWjaYzUz3kpTNZlMnv52JxOwXjbxj3HbZlYxov5eBZoE88m7rWuMSpzkHNIpXyK9YgpwQLnajdR+DRYGBZzap12iycvRs05id7RAToB2dmatkIgkLZVn2x6YjOFvLb58zzX8v7X0v1nrzrvhx11mcNYt5838D98/TeAJ55gldMtA1sLoN6T7YZWwLgzkDKif7pv98UQ2jWlPlxLOhD121zcX1z3V47XH2WkPn42J3/R1b44ju8n3u6PtExgu431YGSbDNsgPGXggl4qCNRbhDTUtKnb5IeGM2wER37/7Q0DBvy//t94+XbHy7cb/v3/+e9otxCsNXZVc6G3LRLsAoxwBQLM0Qb3CyIngA6RGwNcPUBGDcVwrweI7iuz+Fn+RIc8DF4/wXmxWAU1/lUqlt+hA+PRSWq1LGcgUEFlXGcS4qkRtlBqGgtu4rkJlKBftGy3KOsyz7hsaXKsqRp6Ur7NF3dqLcWFSy08W86tZdkPSu/L7cO6SZBKlEZMGyWo6B7FpwzAwBIHVZhl69Aa4TB6AUBG6StUcb+/wG881u12R2sdPTqzUdj9CGrwctL46cWmkHWS2G/yxhwUwA6wKTqMseDZaoMWkGWn5QjSQeVxDVm2skDbBDAlNjdFdtqhoHEaYwSLJ6nzLA8CetiJlQURoaiyGkGgBIYW/Te793EEKgsKgkHZ0SMH4RoT10UhwCACVUCZnTdKqwYC+L4h7MB8TLgcvzhnOj7cV5bTvZ5P/H5zZNL5ChcELeYW15ZCGhmJ1A4S9BR5jBuwNGd+Yl4T9piwsTQEZmosbKDTcRxo7SQAddyQzirnKsXbzU9c1wNjPNgBcgscEnia41Frfsx3TGuA6ebUaMxtg2LNMYcXkyidM9pir7kjNsNOEJiBpdJdOjwI/bLInBqqxGraZBe7+Q63d7i/w+yNJX7zQY2TnBYSgurSGVj5hLqR6BnAmDoFfE3JTuJckRKkhI0ou42/c3346jg1x4MliTM77QUbL9bQmAMJeKAZvE14o6OemeE5Awi8HjAb4aSR8dQaUxQaQAe1qmhbSTs/Ik6cMNsBqgCYtAOtQ/sRYvkt9iyPtSvpAtQr7aIZd6E5LejxDI6lszQbGWAw3Fi+gHCM0+aUra71n+wpgeCAI8sIg80UQB019oDekgkUDqlQU3DuwpH7KXLvzqmAZAHtnoOsf/vuB0hdS9qrtEN7VvZjydxHr+QrQClB++fP7TewHMtM2Hw8zB7gpL+3ji3l2+0+XoFDWPbrKzBmHef59SXgIxvDTJ5LB56OtTnEz+eQ7bvPkJ1sQVltdX9wvfFm2JtnIO+PEppfvb/GUYuJ8Edj8TGA+Oo4X/mzUmyBBcyWbQCwSjHXH0uZggxM3aOMzsJ+PCIrL8/XZpHMc6eNmz0cK/pzzZhcURtwZbJE3dksxuL5pC2FBEk9Om5t8y7RwgagkldAlMZGpy93pF+RY5zBJQG0WAfFdkoWSPqZMd/SBljoviH9ewmbk7ttMPF8Ba8qYCLJ+bPFGuPPzzFOdk+j+XJqTkqAaFMwBrsF9ig5Om8d4zxx9IkxDP0YwWB/Q+/08SZO9NnQe4clq10avFMfaUpnmk6p1bn0BOk7Joc+19SzJfloU9IYSpRyBKsufW4ALkzotQAGM26USWCgNcqD3W/rWY6Z/uWITmkxFzZZjaGzxJV5oR7lfSE6XvFDFNoASA0cy+RFTD8BqrQubqjuN21cRATPo/HBViTQlO+lzdmB53zP5sScsQOGLy4Z88UYmXvorAqa2KbjJVWW+Pmp8PozRlJRluvFenDPa5QCIns7ILDo2JrlYBHThZ9Bv47ro2kPCdPFOJcAN82zC/Nu/3mFK+G7gKfUUuJVK/2QPRGuiuMIlhO2zzujsGQI5jRM4odsSWG4b9e0jZHEutatsyf258X53ELWxgwrfox9fXXcXdplipWEnheriHI/YwOAdwATUAPLUw2mChMNEGnGfOIz1ogVTbzE4tO3cfcn4Oljlz7OSTzNwd1+7/M357372mvz37we+ls567T8u3/9+vNd7UIBnsY2ym32ILo2so9Oy47+rpv99PpqY//4+zzH0/fTcXt2MvI8n3Sc3J8MwufTLOP5dVbw2cAwC5HU3lS1D8OTjiS82CEigIbgWjpRBcphK7gyKxHihQw/YdWlq8Sh4cbgAlwDmD8H5v/377j9/oZvby/48e+/4puxvbuFgw4bZBQF3OTAqmaQGANViFEAd8qB2V6gckD0jqzdEznhIU7tfsIkgCtBbFwtaJUJDPg2Tvk8l4EVAdwYDI3xFm3qnd/3A4Je8zEzHdlBqPdjc8yD2eBRfhelUjsX2MWL6WVz3bs5A73lOzvSAKzFxQ2O9ep5TrKTkG223UKSJTIyHgYmjZ6CmjgKQBpMDars9mHJjXSys0QGEHoGc0TWSm8R6IZelkYmCaGbpB39uBUoon2VldVga/p3XhsxY5UJKoBGFjtr07NePGsPK+BPEegYZwRMrchdACzb9JgbzjUSnUhoOzRK30IHILIwnC0BgnmAGXYFgJSBTZbvdV57lPel1gkbaykORBfKepQrq7aczwj2Zbt0cApMY+nj9Xiw5HTGucJx6+1Ek46mB+djfHuWGHNSp9Me5rlZZscOQLKuBYBFEJBBe9k63/z0CvqSycgMFQUYCcxJ/Aeh/VGZ9dzZcXEFI2fvkNutKL2V0cqpnoENWJbF9rUHJBhPEkGhw2B+wzkujHHhuB7IbJhExppr7kLqKV3zHdMGxvWOx+MNczwwkJo/J1LfieBTlsPNoK7T0UqbMa1D5AVoBwQngDtE7nDcIXqH9oZ+hMYBnOXM+oDMARvvdKDmCAd4wO2ioPh8APYOzbJnF5bWCcdD5gSsUxPlMmpOtQH3sJutE5zWBu8ZgArm+IksLfA2q5yA2ivMgD2u92IrpcZACrVmcwKEs23tYGlFlNulbXk83jDGhWswiOReA9jMrkl39MOhelSnVhFFlwMiiuYndDSYX5EgGGtvajdoOyGts2GINqBHObXTllI6LEGi5aCnIwl4on8QcZZEG+doQE5IAJyC67ES3LYxKUSYLAuJsm59hSJrzyMQ1OXbmBEQnaaYU0J3L0ph8lRAyQJUljn2G2BnIafHtvkcksHAVmacG0ItsPzo7qssp7C+gnU9e2j40cXZ3ZmVlV/H9bqvFYh9BjTSz0pf7wumk/zRted1/Dnn9Pnq1k040u/5zDR6BsSez5dBz+5A79eyJw3/3HX+8e93kG3/+avPxQ/UDvIVnH4MUvfg9c+eN1+a/pg+HyvbqO+JYcoVsLw+S3uo05mg04QMMFiOcqUZScjc/1nexAYK83I0RJJLGnxesHkBg5ID0mMVzwmyWJNyDoJWjtoyn+5cUHt7usjTDD499n4Bk18roUs/0QHNznfVEoAeo2dbeWCM9PkiMNfYp1KYSwSWJfGI9zfb5e4kQiMCXUjo3CXD0gvEgii7/E3u3RKndiHQ/XDguibefp/oh6B3xe0x8TgNvTccbxfL6brgvAGts6Tt9n6gH2yScjtv6O1Ab+ymqtKCLWX8d7wnImjHJPs9jEzMqHgsdIor5PTNEGEREz7NzRhrgQOqaC40vwBac5bL1TG1Am3qCU64dTRdicxkImXio6nDWpSAgkmv1pjwZsXgAr/Cna1yUjewpEsaWk+w1TZbQJ+wyq7nFih9sV6BZxbPvhYz/iwgIA6TbJ0VHfEiLebI5+8JvEWJHnh/9POCzZv/uT1fm2fJe3SczsUUFRS7fZfQheM2ZrDYT1snUE6dshHzf27seYVFB7GWScoA1zP+KEBXWHZH4Kk/6W4dx1Hxb45lP44ABrP8lw+oq277V/oV9IfX+3v4t2K8TGfkmEEcrVf4FWQFxjIClC/Roly/qcY1GZsY5X7oOVcZN6HzoL33Kkse09Ep7YlrJMveMB9L7uG6rmDhD6Sr493Ro6NKrRsTOPpTMjrnL8d+AVG1Lr/coxF7hMec3ckczwmffI7/DFf5+Prz4uIiqDKpzJzEAytbi4rS6+LzwvAHxqg+8HEzLYdqGXbUT/LpaL6+suCZADJ2EGn/+58N0j8DnT7Rn+HrApfft667/hdXlnFnDFc6rAs/D9Pt+BD1kv745FG6oMrlYkG7ZYbE0YZjDIcNMgBsetCMl2MuvtB7R9gvKsXyxMLMu8nFWmzp0DYgejLgFAZPog2OEYFXbkAKoAPOgDS7AeR4rI1t8x7gcL/gc0RL3gCessMTgg4a4+2+5tieteOzSMfD8CRAKXGj2/N7IkB7Mr9yriUXzJbrLXTg63CyygenW5W0sKIxgKYAtCBbHXIEdI4UgAuBxCodygAnmQKpOcPSpJwPWvcehiNKVBQ7TT1BnG2+ZnCBXIY0MhKsImBy3lBop1qCkmYajkB9j7/LOnUIr50x174JzKDm58Yd5xYKfYvGNevyPVchWJYizSgR4sVLMEOIZTgQ6jIsLXtmDInmGo/sZAoT53r0HIPoTKXhYIHZO5/p4AbIGmAHRdJ7BOsnWjsLeCJrjZnfBOYW2BVi5QIUtTiyR5zfEs8zLh7rvGUK6sk+B2QOr3Ng0/fwtCdlefZOacJ1TioZHGx2sNiucc7coDQDfCsm3SpGyLkdelp6oFiM6QXAYd5rfGQ2TBt01BGstLh+2MXmAJZBCjt1mlHkOs9JADZ05OQOCdam6AsBJ72htTvbVx/ZmcWhcsX3Lxa4zgsiF1iGyXuxFOCdxpK73HI8mJ8IJzU0gtxi7oQTn90OM+stNsh6nIo52eJ6qkBcYZHZ9NAYmmPiut7p6FXJXWQiwwmxAMMEghkLuxmZTwk8JePJjOBpghECNjNIkMaboADcGFtVRPmq855tYNqjZgY7oqa/kCyjtMth06LchcY37EA5jWmLBFlDakH357uxf4TulSHLEnOfjbVWwFPY2RC0b2gR4Blp6lDuLOHTBFa7tt50lLHcn7r2GO8FFH9gM+4LJl6yjlo/PQNP22c/gSh53t0P8adTPLkoOd7imz+yf+ajr5NjuPlzZVNjHm8aVXsm/6ND+3Um9fPrXyX51pVt/s4a5fh/3mdc8D5Mvu59B554Lx/Pt59z//1X1/j5vU/+4Ycx+aME7L/0k+NYX4FPH5kVz8dMl0M+/C4bpqxjVdctD7uc61I9WL8R0HqL8wEa+iPmwTwVg/Std7FGIqhZMXrFHR4dPNkYoccebMX4oW+XkzXX3Mf75i9F4vyxjDTYHAiG537PdMOCEWV1+HC31/Fbk2pSkO9/Chk2O+EIX8VWwCZhT6W+zBXPBsrBdslDSSv2Td5nsWdyjmcSKPQizYDWyHiijhN9zwShph04xoHe6UP3NtAbAZmmDdYMTTtaMzR1qGSnYN5c+dG17y9gKZ+wSPi0kA1bl1qCZTsl/ev1kSYCNMWUVfrj8JJC4NiTmepGzZ9a77bKggVZDRB+d+yJGl2r84rj6DH+u7Lq+iuvl0ny+fTc6YclweDpS88+14c1/n/F9iHH4uNnPgBd9FM5s7YtaV3ek83bP6A1T+nHrWqP9ex8eyYRz7it5+kfr383rlmetoA3Jo0U1fhJJJhbUppjbKyjaJ1s+tISDd+4qSYRMkA2ToKcX56xUvxt1U059gfEuhQy5j4BT3E/e0dadrnm3p9xOz+j2/Rh/OFCxtICngBYgNCxllojAC0i7FTtBEIhqek041zLZkt0Ct+lZ+ibxzwwLsMODR3btXdxbX3eF+Jf63hfvNLH35NPKy75+jv/6vXnS+0CCU+nyj9u2PXTH1/JLgyYN1sbAXeOmPALWMpFV4PoQOK1/F1SH/PBpwPny8T9wca/sj6fHaSZdZR7UI/nB5BG+SPylzeZ7mdOXLiX8+euNQnXtrINXzjqed5aGAayGEKXok6cP6ry2OhQPUOA78CcwOMx0R8XWpQ5UTiQjKcEonL58aZpgdKZNm9wfwfQIHqitRtUD/TjlRl+VagdVaPNFzNhU0MnSvsKArZgRCDw2cLhd9h4MBv/+D0YJYAI0W/NUhZBdf5KGZGcU8SlYjMMYCH1q5bOVOUEYnUtYWsRQlykg3KeqWegvroWkSCSImysYmTXp4sCzTONnUGirSfLRwTeNSisUacuHGuVxpmsCgn6PZ8PHTZebousYoeWfK+WUD96dGqrKAPr548Wpp7VWlepQwNnVy+zSWr9ZOkVO9dYfX1nFlbmOOYt5xfXCpe4RlcrWQ6LLaCS2TceQ2HwMlPBGHOyXJAMmdoImMFh76ojxjyfsKb1jSsLgGwuyv1umBPsYZYlBKOdEtaIUi061Qo4ARaVYGrpDb3d0PuJo93KJog8OI52hUOb2hiGKQO43tB8rZ8CixwxP8h4yrIlDSAWsgHxe/CyPe7pW6c9AIsiuzFDwPLbEiqWIza7DcjNI9SxmTkWbxA0uA2IkhGD6KzD66YtMjMcZUMzKxW17kYQxXyi20nG40HmzBwXZrvDr3dmzMcI7aUERucGxBBE1HAeEc+ktQO936DHd2i/od2+h8h+w3EqEss2G2iPN4zrwkNaAKwOmy9BhzdM/0kgaCTwlEBr6Bo1ltpBOyzZf9rhzs47cFvL0B3s7smfp+raZWUi6qm5jxgZWde4IsO4MRKxZfc9nSsptoKpQgZtGMv1LopczqXJ5nBcNqFB/2RWccK7oDeEneWacGdXmTkHRKJMO/Zjc+W/RcLBIvM17QUgYa85D0kPZ3mxbdory0Zw3XmUX5QtSPDRyH4TSQ9lwLE0yVi2gAA+O3+WG9m73gDh/O0BmJkTwJ4qQVAVmAlmXTevrXwTdcyZbO+GbD8srgUG5n6U393X1Prdc+TwlWP3DC54PbfFFEsb/mwH8mdP7/v5oDy3PH/YtwM+Azb7AT7//Nmvynm5jv/fDcas7Nd2vgqcYo3iY2ni9pVyxBM42+7zyan+eO7cMz5unVvR/BcPagfk9s989DUTMPvq9RWg9K8YT+tgH4IJeQ6mRNqmN7PKJXP+hqPK89liDiqivCXLO4w/k8nD4FRD6BgiUB/rOVkmzwCNpJkDFMyVAUEkHUO37skv/sMxwtPnkrXrwcCCrO5e9YUYx+QPlwtYp2FThDm9mPD8mCBLfZH2NcdZJFwiHshAlnU4X0hbxiQMSlMuq0ho7nrZ8gVkr9K9cAUxhmNcF/pjBtN/oHdAu+McjtaoLXPeyLo+jgOPd4qOH/3A7fYSP0+ISDChZjFPHBNqWySWXd4yHhChzYzmLCvuimSTgPEeECZ+Rke4NZIAS+tEG5ovBpKZL5PvFE12D/pXAAo5h92ZZPeQSDCzYIdwfrfGBEprDdmQg0lRPummq/zLQoKjuoFuS3q3D3ytmO2PgOZ97e/r9xMY7wEm6IoZM2TZj7fb1PSZxMgs14yl8s4qZk55CKznB/rloksvkFgG/aY5HS3Zfc6rsRLEtjVxsYSn6xpVQ7LEI8kTna9zrms29AlmXbCckvXUW4umIgSdzvMs4Io+gkOToyhPjwi0d1ZSHyuu/VBpYBJSPskg+/xMRFg987QfZAMh5Fxj50Cuaweyi2Alodau7zVmcd9ZRieC+/0e0g4eIDJZ7uoZf6RuFf+2YKQuziH9+RmxZu8N14PSGLm3JEi07nPNo7yfT/tFXf3n99Zw+R985p+//jTwtLFLA52LCZ2Bf7I9Krjbf1weS076WnBO9BmxAX/mMuVX16DM3C62xZUbIYCizu4b177os4MHtt992tTTQfMACv7sQOUx4/9Zwla+Rc5hW1TnNAYJRgf08cnwreW+G/B8M4ThWoccJ9rRcZ533G4n7vc7brdvDLrQYfMtopL4E0b4yeeMRbwYVgIUrZLi4zYviHaM8R7BcEM/2eJUAlxJ4Mk8OuNZBKKS4x6AyxB45+9UBGOw4xLme3UOadoCTDBIlAW1rtH2M9xkG5ie9eOR3UgAJe8xHQfxME50RDncGnXkvOdyCkRQndUccUwgW8daZMzNH5j2wLjeMK8LNh2pLZMaQ2aknjZpMFGItWd03YJ9Y0Cm3JIl41EXJzYi+0Pjms+xxObK8ZbFnt2Dgpo3Qd31lbVEGDWtMrsQII6yMhszsoWR/YgAszeWrbTys8IuIBlSwY5KB6WcMSB1FdjhL33eBjeBSJauRAnjeMB8wOYVgXmaP4ODWlB07zp1cxxw1QC3FuMoNymbsRGXt8HvsGSUgIAiWUoT7PoF6NHg0W4YAbwQeGJHmaYEfVeZQzI5CFYUywnRdMEBYMbaSeou7V5e34Qh9dRYJdQYCFS4lcytZ7vjnnYz3qs5ESVdMBgupGYSNRIegGTnkTX313GTFUhdLeq3dWB2qNO5MJDpKLgjgV+tBIQvR9C95orZgKnAjOVhqgfn3fnKkrU5Ma+rsm+AFfD0uC7MOYPmHSLXUPR+Q+/sunfcXqC9Q4+DXX9CM2N1PTkh0tFaMJ9coOgQN8xxYowT85Esqzd4dNqjbQrgyRr1nfRgpt8RYNRyDDVAQ4fAdcBNQ+ttwqZi4mLnuNDum4bt51Hdr1aWfgX39GNpv/jUKc5egalTgxBNIGjBaMjgzOE2Ma4HHMGIcJZJN2egkCB3lreaaLA8Y50EqGJ1Ten8pOWJbGsA0tTu1dCEIMiW2X3f7g3TwXKcAMvmg8w3G3BcYWfJCEWudQEkNLTIzO0QNbicMDmiPJRJEZETAjKiKlEQJaomjiaCGUi3A7DJ8oPpUUIML33KLHdoGZTX3po7vNQ/HdTvwP6pDbQJc/oBzNkOV25LZMBzaCuRsh/pk/dQ0fdXfs5T3FJf3d/cP+tPf697wZfvP3/mj4GVAmdkjVn6Svl2+nxPbZ+xGMD8XgYEvtnGBO3888jsThs+/PzHt/J0T//0vnbAC5sv+8Vx/tnY/avXPz83kIAx4Ni76lViDlgBgAp124TgsnZ67urObH/oZ0rZIMBGY1legFSiDa4Cmw+YxL4wuQd6ABU2I1mSpWfxwD+VkeTuvzH3U/uSgpkLkM9XdnfLwDvLthZbkYEnS12iwU3YasyIPbJ0KyU1qhghjmEEjFbSOuEKTrzUu3SEm5flOYLwJUJz0K2mfdlUY9nvuMgw7t2ZGGjA+zvLhHoX3B4EpI7ueBwewf0D9xfD0TqO3jGuid4JSLGjmYZuY3QDk033KVjW1JylP0+5jsVuLR29SBILosmL5b2GnUSWPvKY01iWhfxtxUosc7aoHFj7HJCNWNKfzPKrLFEq9iwMY1zx/lUzGx0131lpIEjZjvRVfUP9Vuy4a77K09xa7J4FGnwFHpWEijtcFtvWY747wJ+3vaO+mz7qpHSIB5ghJfsR5V71HYIiZmwcAgFaz/CfyZydmTSmAz7RK9FE9vX0iekjutBm6SnXV0q0AVGyKijQL0GbI0TvKfoO+skx7zQ+S2Y8mU0a/mJemwBovbECI8Z0ZNIxNEXTB1nJuOhCDWpbqSvU946D8sEW+qe/F6N5JQxlD9GzkgCgXbN1LIq1e8wf+hKw9N0E59kxjV2vr2ugd8McE0NbMNOtuiz33sl2n2wek3pWDsEctDdugtlsW0Nhn0pwXbb7SLH7tbkXBFLze+2pnNd7EiTvMWNL/KnXfwN4CjpfikOHU+VANpb5sA/vDsLzbyo7B5Byi7Xp63ZDO7D0/Prnd1ef3h0y/0hB/u9CSZ9fldHCoonWA3k+fQVteV3lUvpyCndfLpHYvPanznnxvx3FpLFs0NbR+g39PHG7f8PrtzteX284zpfKTEh09MEWbJNW/9GZlEAcZT1H7qjh/KM2dbhCTAG5oE0jOA6AAUF3lRbgy6odT40LZstJsXQheOCpqeIei2WCbVEZbKk6VPgnr68AoajKKdAjy4nSGc8uDQmsudLBydI5WaO9Zvr2J2gyKRpJgXcprRMPplBpBdXzjtKwogwbN7C5QI8VqJU3XY5xglwFCpqx66AHuyfnO6yC3Crm+BSwbO8HvX055XHPGdTajDr7GSVOTuNZmVCNkpUcvO1ceUwEjR5Cvas9zqqW7AJkG3ObcCHTQEVDuDBBrLgWSec0g0FmKCW6woiwMwfbGQuy81eWvVmwKHxbC4gxc6MTQMCKm5fA6nkv8AxwdK4BtHK28jhIRwGZk1pjbWbQ1BnjQIdW0lavHtfn+ci8h6bNEtfMsz2t3f3lNZWQjpuE8fZ6NqOAHGrd8No3LB7ZbSxtBu3OASjZZuncIAFil6gGznWQYC5HIxMaQAIOHmuD7EdxBwIw8BCxtOmwli2JuRbJJDNIe2CMGdoNS6+gtxO9H+jHHcftRht1KFqPsjHJ6+LVND2AJji6QQxkFfrACMf60X7C9B0zM9ShMaVKW0I9iHBoEmgVwOXanPdR+mxuBDBEmF0sjSc32KRjGMTPWHqzAsIVrMReEcutSh4lbcpiKG5WfzlgCoLrGYRHWa1gUgjdJoGxACe55JeNV42unCkk677sr60QlljTB28hnfXgM7PCJzm4657KgTSC0DYvuOUfinQKBkorBha6NoC7EniSxuBZLqgcgJ8QPbiuxEA2bYfIQcBRFFAC0WzuGWChOxlQzlUdUn6xUMJPiqAKjuIT82FleW78et3gF/6O1xikmOryMz7sS/nZdXSkN/LHoNAf7A9P54+fPMfy8+93hzXfTxu2f2c5/H/8WoHadp0ffvd0Uf7/4+zvuiTJcSVBUACSauYekR9VdW9P7/T0nNPnzP//Ofu6D/uws9vT51ZXZYa7qZLAPghA0jw8qrLGMj3c3dxMTZVKgoBAINhft0D3PMjHT9uPsPtp+89PzhsW+yQHIYPDf3Ql/wwsegKUNl/1s9f96P3PP68x/yyb/Qyt7X7Ndsz4Z5ouhCl1CZssbOISvkGpAW27hxTDICMychY6xcUNUjt0gPu6M0EEH5idAXWATW0cIcyzNq68j1sZS8706XbEuSa+nvuMfDcHdlAecT9lrkVHssOUWlcxKI5w/ea4raMqFcPZ3Sr/RDoKSZnpkW3jCpdg6fl2tOWLCJbdyPuSQtLu4Z4bU5JuHD5cQGH+BzDHqMav3oMJRVZbLwO9clOptWIcPVq/kx1Ua5Q+RWMJEaFWnwgc7Ayo4kxaQEAGVMgkQKcPLumjxDXLnN8JwuB5oWOrrAnfXyJW4JhxpMz22Szzc9Le8HsN15CgUe9XrLmguec+YxTTXqAQJxBjcn+yubOzmW/77ZxGz+vxo239+Pc9sZJyHNPPy3mJZdn3SpFng7t8Ktk/e1/ECIZ+7g7znCJZllMybUUwoCwYv9yUWVGzf+YeMxA4S5dcFxMryuo/6l4RCFXUSpaT6gY8lTIZeBL2FiCDKhnjq0Nv+oAdNuOulP0gACkhH0NzIpMRnrpHzw9H78nIX9f4j7AIAbZrX3/LnyeAF/NboxFWqYVxnDkAVnsUZTXMGCUYUGwuEM5FJGbxFGpJzNcxWCYM6DY/d1slZH3N6SFPf0/h9PnetKvx89oHl2nO4zwziX/8+MPA00gKqWT+NNv98YakacwPzmzTvrlpIfV172znQFAf430xGpxQnsPE77IctrzoXFzptgJ4EmEjRf4D9W0zCPnYJxTnyTL26crtAfzu+Fk6PtOh55fthiGdgGUa9ivbHJ7YzDURWWf5imQba17LiA5bqhqZCnYQascN7fUnHK+v+PXf/oy//PvP+Pr1htcvClGKwLZyC/q/oUgDIhifYzB3cOEmkStJ2N3A59kmZZWAwoh5ImmY5woUoNwJOqXOy5bpyA2jXDQ+pVRuPAYaGENsRAotB1SNtGJ1nrthGhTP0orYiA3RnSFKjbRQEI6XmKAZNzVSPAGVsRwVj/uXtM00brYCXy8d4gg66oPdSLTDtE9m0LzjYii1oNYCKWTg9N6DEVZRAhz0LA2MIBZhZAGHK6Lbg6D3ByoUUpQdzJCOk8255lhAyJzjInOzSTruRLWnkWUNvoAOmkd3L4QmDMXFLTYQMkMEKSJPgCJLt9JhN+9rw0yiVq4BKazEjOnlgyViooNCxTELJNJ9NqK7nQBSUowyDLiQ7WI+4OowIZhjnmyIpP8bZYPMp9CkACHITZC2oweZ0lBYQTbBlykOjGNuyp4Z0THgOgi3qJK5F2MGZ9tUpOZF4HBTQLFGFzDBsofOe1BqdJUsFKVfgJmSRaMF6bylc2QB/CxsJed0rDEfsH4iWV2iYDe7LVglFT6dTJawqVYcB1iupDozW8kETHYM0CGzJBRzPvJ+emQVI4sGBGuOQF6p4cgXAWoJbYfn0pMU1L6uPoEnG6FrZw5Vdvlpxw3HvaIUamNkKRadlAXgiVYUVJTbDV5f4dbxaDdc1zdc5+/wS/BwAP0dvf+PWPsX7Z8IUAoZZlq5Lj0mtBPQhDpsEPgqFp1mCpsgFGUW0zrv+QgBSt9GL9fMjEZyl/U1umTecR9hGSKBRREwA72t9bwfi8EWRzSDCzsNml1hO0qsAYfiQAr7F+e6l1DGdWenniEHJ53RjoiEfyD5Ws6xVc2R/Tw538wtmFOxbvxBZuvowHiHjROjv2P0N7hT/B3SIeJgt2UP25/tlgsu+YZS7iwVr7fo7Nlg+gKRBtEGLa/UaCuCVioMCvMKsFg9GhTQueuD1HYzi8yjBxVfplh5mfdMnq6RNgvYkoqckbaQ+QQNPfb86d8o5mumJZ0B0vcO9Uc/6ON7Pv6cv+f7JEqH9q7DKxvqSBHSHeT6WBaQ2f694w5ybL57PAdsc87OrerZb1tWxbe9e3uNY5vrmN/T58tEIj78zR2RZU7wdhrS6eft4/3ExP8Hj92XNB/T5/3IyN/F2/fnf/T4/rPXz5PRJPg4dQCwaxP9opjfWMBvAgEUM3J4BIdjDEip6ME4rS6QXmBagEH/I5nuNhq74qXt3RhWGAOutj5vdGTSUCNIVEkWzLoXZGQUsjp31reznEpdI7e27kt6RQ4AKgGuVIwQ+IUZigBaCqzkmjb6E09iu3g+j8EkmUUQbg6YBhthaklmMsCBsQSmtw0amawQE2SnTpoyjfFY68AGQtclzkUBUcfjfaBWQWuG4xCU4qhFcZ0P1CJoVfH+9qBY+Z2lTbUWHEdDVbL/a60o0REPEvt8JEwk2N0QJTsZFCif+8BMmuWC3eO5LN2W+fu+iie4BtrPEDeYrxljhCZWVo+E9qsYgQ5ZXdEA4LoYWxyN7JFsTANwPp3nY7FjowRvySJkDBdEg1KglsnDZ1uXa3omFgNE2Z9398lioacDLFYZB+MjKGdbHDGTZE5G7bKn0W2xLNs6fK2TWil1Yu64OrsgiipuxzHPZ/SLnq00IErCrAfRwAUAWUuI0UDZ/BvhPl6rzEohtxS+1xkXOgzHcWO8p4rbcYtu2w2ltA97RK6VPg1WatONEZ2le5+alR6aToYAo/ykz1PCr/as1KAFyHLBHKMcNzLm1uM7ezt9rQ1PCF98I7MtH0u4jzvI2tKq8zU5s+u98Q47O+D1PnCdfV6jCHC0CrOBPs5N45PX5w6cDyOoHvPzunhfS8GcrxNrs3Vd6/o43lcfwXYHb2qM0cQ71sjMKsQf70jPjz/OeNoGMZ3ShaY9b+QTFMrTkkSh+WzZ1OeTjgukE7GduuyB6fqEFatuWTzEue2v9qdXB0iFp5P7fPOW5dN/cqzvHYDv92//eOxUK43D53yUeT/5gRMVzeDQ4zqFPCPbGSYCZiBUgehKUeoNX376Ga8//4Rf//wXfPnpBbeXAiid8emUAeBUX107cqNb7hswp4hvX+E4J4CWc2F5gzKZMNNWRfqDCz1L6nQufoCMBpHCzhTRKrUPRxC2ueEmaIDM+OsEjxzgZhJORLJZsvtCXoaqL0ANdLDcWC7hqtCSmk0yO7gBASRkkL4HBdEpzzDYcj1E0Sk8DLDkh4ZHS2YXFrV7mR3FMOb8eewS96dgChEloGPZbpwBIedatMSVzA3lfTakEJLHhCWohLnB5SZBJ1uQ9fRz809hwWHh4QQTIgQQhgu6x72NrikJblmyHuYckjzo9C7IhgOZI6GnFMPG+VEJdcM9HEsDhtF5FcRmEqBXrKvcFjT0kYoWqKdWSwIdi+EBZx07QGdRNSjl1qehdhsBXvmmWaCAZ+keYEPJnFBjiR8qoNQbUBVUZ3efPgbsinkVttCLwkQwrMyg0rGCGzbs46Y6RODaCG6FvhR1DXTe433ZTq8UCSWSPUJx6RPjfA9gcIR5yZKdbTaNtBsRfKjDxCnOjRJOQ6xvFJYfbOwdB1k+C3yPo6nNEkmW28X5Gc8xuXsuBimR/do3TOdccVVoS0cl5rz7zKaxpAC8P7NkKzYEZ7l4stcUwjIsrXAfUDhqZOjO92/w8TvsusNPNkwYowfzUABTiDtE2S3O1SFqUGdnO7LjIlsnhmISa5FzP0sWLE4t905Mra+8lcueOwiupCO0MosJDpBJCkknNufDmv8ephoIuniwRXV0lgULuMbCKab4O0+5lkj0DMDAUhsfgOMdQ9ixasJngim1t3+lPUrnS8jvpDPpF9xOgvt2AXZh9DeW6/QHrH8j+DfeIRI2OVq2zy1zdh08MMo7ijb4uE/gScsFaIPKDfWg7WTycDVpcJm70RQfRtwdi3WR6RQHxyBtKe1N7u+ItW2xL8X9gU97mT7C/tid5GcWk4cTG8ff1gggSP2rzwRoV+Yd2x+3PT19glxzwWRwx+ZkZxY1A7IFnnzEX/byhXzsTv/TZ23gzH5G+zGfxkiApXK8vWiO1brm56v17S3+9J75u3w4zodremIwbc9/9vPTa+Y990/H5OPjs+d3ltj3vi+/7/dkvjbmw5yTuX9KWukIli0YDUUCDWD5KQmB7LSWTQiAALCGwq4gMUsAKBLlROOYHiRPgOotVZSAU79gWXrcO56SZ7nB53nnGk9typmx//i1/Jk8T0s2ZrD703bmfUl2yWLDkwlloTe35nHo21kCY7TZIhrgQO5H25cxyTUcW/VHzgnE54YP5JjNWNK6TNu/LYyZwxGyv3sZOE/H+egoKihF8PJqqEXRqmB0spt67ziPK0rtKm714H7X6mKehP4OVKG1QDS0ZByQ0OtpLXQqVTFmMqyGTVr7PnWi0v+LJLTwvOdthoembczDaYdyXwO8RDl0ln6LY4zFohGhhqBII/CAG8vuepRluc99MlO2ea9KUVwXk7/ZlTjvtW3J+pwveyv7XJM519I+7IBp+p4sVQvQKvzOKWm1xaoTpA4QCg5Inf1RI0mTSUyOtSJBopzR9JeHrQW/29zZuMnJ+mHoUdBKCXbRRd1GpI/Nay5S5u0NqJlrxhMwVmo4xdftuNEnLwX3250gYWg8JcPN84w91qlH5zxjcvE6L1y9T9Cs9xNXX/EhGdc9CzJQO6tqFIVMPggo3YI1/2KOzc7X+JzVxjhr+dozhtL00+J4WzImD1M2sMvc0bTGPErNKIEVsp2oiRVliEVhg0k37Y7egVn9AomctmFoipQbii2WG0k5Pj/DI/m3bGP42b7GYe1506mYs2m+Zr7njz3+pVK7GSg/GcjNIZibXRrJ+HsK52G/aUB6hNnd4eNjvj03PvBDcjoQ8F+Ol/vzoOR4PR1bsJhUnzgJ83M9/bbPN/7FDvrwmjhPEZm3aDESfBsnPN3HfXyybbrHi6dYogePxSUwImWmJmuwS0GtDffXV7x+/YIvX7/i9lJRDwG0Tw0TT+dznnOeR97LuEeT2jr/Wa8NynXc6vmOp9HM9zng2pHgUIp4ewanIFMmu1jBGxJ4oi6JIrtTzbbpWTA+BzLdlznq63Rjg4+puxz6DLYsvhzUFHILquIGPHlocHjW3aezhMjqUMTOBrvxUSgZdMYjUMMEeKLUMdeIRJvhKDebg5zlSW7A9jfxZBpSZHvIBYC0TMmM1CzvkzXu85YIVk2yrPknUZKGAFzmaSzmiBuZOpJAWNqCAQzwmouQFjSTAJA4n2XI141xTM6oyAKe9vuqMsd9OqnTkcxMYGjMJasnXWZZmx4zcSHsHi1gw/Rj2qzpYDtYV8NFuoKrNfds+r4+GQsewFN2UnHrsVYQJaEEDq0wAFVhF5p5PeFJWzCG0jCki6miCZfBpGSVE2gKPEoDQz8nSwFjASwds/TYDdTJ6bDRYf2cbD7N4DnA4WnLh/J9CLq1I8hPMjd0Qdax5702INb/mo/b/ZlnFBuoGyhqH2An9lTu2ujC+E4nFE6yl5YoA8zXhFOs4fzXQtfMR4d4OCgGMLufc48gZmo+AAJpN645dLR2w2gHej1whQ4YhXVHzL8Clx4l6mQkiitEg1HmRjZgiIryPskao6mZweeyY+Msd9ht3PQfPe4X/8tOjpxH2Y0PWCC2betzt+8yp00KrrL1byczz1PbTGK8mLDI+Qf1yYYksMbS0HSJLe++5neZcSSTBmXdu2QWWIf7SeDJQmDeLthkPD1g/R1mJ6y/IxmNHuCtCJ73Sr2g9YJpA3xAjVpPaoDoAVODhGadWrD2Ai2jFll29kvxVhpzduvCfJgn4JMj/GSJ588S6/5judRyiL/3Q558l82kLgAnV8qTgzGlEfbjzDOc0yCt4yf+0cdTmfYWMxjkz585qPv5PTOjPmOh768V2UqjtusXkc085HnkcZ/HaSZLPz6P/fd1Tt9dZ44zfL8i/KPHznL4eO7zZ3kejz24+Yyh9r3fupg3CRw9/fUD2rjPEZH8fHB+bFcl+wHTMZ52x+d7M1GHkqW9hhHmCwGmwh1qNcbOQo8mGMzews+n3h9L8RDrn5+V++FTevnpOlcazwPQ+DhW+7jItt5GJsG25z+y6fJvqvOlsb7X/V1g5vIP59BJ3Iewqxb3XcPXEqz5OoGkWFtbNDFP6PvQJZNNOUkldG/AzoMjy8QAEUWtAqvcfMZgopbMCMXoA2iOUSr6sNB7UmgZTOKUArXKJK2mXk2BlWjwkDqVULhQPJx7ffh0Mc/MMLVnpvyEL5/UZc3r/ebpDO4RQX+CCNSblChvXKxKNvcpZfkBXYSBe8zNBM1tW0sajNYRYvnmA2oWdmiBTAlWzsY6H27ObueeWJOfvObJPZ7/fV9mPT9Xlv7RjJNjTUJkJkjT3UZ6RxuQtZ/vLCNEMuUTjGWSyYaseySgX5NyEfv6in8lziF11RJEqVPvqaA1EicyQbj740jfKsaOoGEAT8l2shHsp47zOuGznMLhoE8WFXpQKZF0X2s9Y/QFLGey7nldc8x1vo57At9HV25jI+fxdbMPMS67jVHBnJOT0OHCJGr637l+BOgTLCogTrCxKG3ZJAtg0QaB8jREBC3jHjurbkJoO+bCPiv3OerbPvJkSL+fw//k8YeBp6t/RvVddbtrI09wYzPW3x1tOSlbeDAXTE42/vrsdBlWadv8aM8MG3/PulKfDlyeL62U5/nie2eHx/tnrsT3jzz/6bq4r05fe7DkuRjwtLHM32M0LJBLwJDC0yN1PSRghQimRSpKPdCOF7x8/Ypf/vQn/PTnX/Dzn39GPRxaBswekFogagDOebakHOaGq0/jFXeTYxa3JFn1C1RgLeqsDOMNWOOSwTSLJQLADJE3EXiURAElSuMUOsh4ojtOp1+kxAk1mBcAmYVJNlECLjIDLPescVWMSYfllakaWFrLYHcYO6QBpGZnZkggyE5y8wKneCwAGEYIlyMZT0YmEFuoaxg9doISbXDozJSLapQX3gAo3ArgY5YThTfIDSQjVHGMbkGhvaDlhGjBdbJzl5YKrcesy08jvsAoBl+0Vc4Ai7eIj8HPNV/B47gG7OqReRwooINYJEE7x7ATXpIWn52ilrqRo2LXaEKWnlluDE4D6A4zUqYRlOghiiK8u0HUgQ/DiDps6NrMS22g+HGFoqJIg0pBiy4VcIeMKG0I1hZ/lmB1sS29BbnbSgI5HmuBn0XKf59xfJLgKGZ9QGRwU/IO8crNDgk4GCBGDkhkTcWdHcbEMeK1EH5QLsthDtQBWCVuVJbWlUXGb4xrBtjUotmBxwS2s+vHCbveMfoD5/vvGCHWTC2rQq0jWU4dnKw67pbsBFebonoJSWbF1LeBw0B6sJQ+g+jvvtKY2NLdGv2ksKL1mWkEemi8hQEKur9qDcRJw+GtYRex5j9yX1AoJw+Gn8ysO8sIF5W/AqgQVEjxWW9fqkYJ1h2vX+4QfwHGHddvBR0C7wFmCSi064ArRb0xlGwkuSClgSWqHmQ5gQVIZCJwL2H/SjgjdMAzqzs7LUoAeDPixLxWWIiHh11i6ZuydM1WyTCQ3VLybnwoz4rATDt1kwwKMmdPmDWYHbRrUV6rICN1+CPKkTuKG0QaRI7QEWPWcmRAujEJak2dB85li6SAeQ/Q6cSw32HjItNpvMHGg6V2V7Kf3uOaLQBjT7OHZJJJaZOZOeqdHVrLAS0nVA9oucHdUBsF90slAAfNrDTnnsOg7hOjthhLjaaf1ACk4x1mFTtk4THmmZ1lZlwwxvcBwXZT1n327bncnyYQE/YK3wcr2xuxvJftNRDMJhxYzmj6WjstPxl4+Vwpz9lPvuf5evbryj34+8tMW7Uc9WSH7dfyDDrJ9nMO0P6O+Pz0wfDJGO/D4es51Sj3Wcb06Tw+gkUfQbPPPmsGNbnffri2Hz1+lDT9Z6/Zwan83fdbn+6Gc8dWSGj0+dQu8ugLvnx22jGtTOqocz/WDowOwILNLEARZ/KiRynSYDdkVyXDCRkMBVvWWSbP+Z3zZGx3L7zpWU4EVKX+lEmUlYSwMjx9XO63Gp26EcBJHpHlQHF+wXBJNsl+z9zpK6a24T4hioZBiK6oezzAlR6dTsG1poWUjGTnZ4mLB5idwSdyfKY7soNdkcKNe8ovgw+n3e9k+qoC/XpHKcDRFLdHQW2K262iHSWAgIFTO/e+KLOTkABI5kU9GmprKLVxjqtEuQ81FEtlubpLQS9rvCX2bTJHQ4h6llXpFlxwrQX5CJO4kft5MHoIPK311zQSI9s69VkGLihaUKtgVLKZcsyLpQD3qo7wIACIDVBMP/akYO+OwfKv77q7fVi7OyD1xC6KdZTAUX7wFDwHkDCXO8Xh4Y6qFUUVVQtaiIQzSYcN8NjWdZSrPs/zzV59AF5VUxS+YnaqLNltuzy9Nku44BZbUERGxmRUaQT8ivJ6KRpecLSDnevawZL2nB8x11Mzbuz6TdbRrxPneaF3CshTWmHg6gPn+cB5PWgnFM+sagVGcagYKgwjJFVKKfNa9u85FxZ70ad9mBpVYguAsgDVvMQxc67L0/3d94p8pM4oZ7eGn1rhB+UGaq14PE68v0f84Q7T0FeNmZp7oRbGRayIoTyCBnsrWVBznhknjAnHeu3PwL4BLtDy42OLhf/xdvT0+MPAUzIkGBgkXd7CMeAJJmDzcVDXgMaGFQFIugmKZ/ohFhQScYlszoDMzXJmBvbNM40zwm59EE7w70bo883dgblRPGXlf7DZO56NCsCFs793f+365EUxzesx802Ab3cUBQkC8R5Q60nMcUT7ydcvX/D1ly94/fkF9UWhpYNCy8bAXqh5tMrVsm42PQ5OXol7nKhxClcLEGyYCNJCUNmBSalcaq45XiyxETcobDFK4IGF8Lw8RIk7Rjgf4YBEEKKugNwh0mO+LPqqBAPLhcwCeLbrdEhrEM124cDqMhLG0jvLNzx0SXxM0fLMpNAMV6TuUpaL8b90hAIESCcIKTYdmjyo8KHUCgGzt6UWQBuOdkcRBsz9Yke/HpVAs7AjuszBCJRlCRuMQMOwB1QZUNVym9mDLO0T6Cw1USksB1KJWnVB3inxQM6jc4Sb8+fYm3Ius/X5xmzwZCayREmnYdaIL2OdmwOdgoApVi5iZMA5GPCIRXlS0JCDug0BO1tZnI/FOQS1XBXU8HJ2e1NlcFlKRS0HcvOtQNw3BsCGDvFOECDuY6oKSDhwyNJNLnZCqaErNTUfwrlVGEwGRhmA15iP4XQ66+jHoDADHfzcBXI9gPdafAGCkis1/ts6lRDC4rwsNZgdoVlBD0TnJggRWJSZuV9kkNgDGPyycQYTiI6WbGsQ0aUOWiHlgFWWpw53+Ciw3pY9TExESVlfTif/yLkkEcTIRmXn+JiN6ERzBTh4QYSC8RCBFIKbBAwqpARQ5gSi4jYBMwBfGW64MdAZPUAQ4/hJAaRB8jqtz/JHUQL4wx8YOGEgQ2z0jtEHfLC7nkgkSOYN65BS6cT2YHQVgorTlJiw65MUgg4buCGIjje5dqOJhIgC0V0q91Oyg8J59iDdu7LMTwGRE0hmUjCVJhAS2TWVGQ5hljR4gMDucHtH7zUc+NtaYwHEOAa8v8OtwzyAw9Svc5YojEGNAguQXlUicMl2yrRR5plUGhvw9A1uF3ycwXh68Ht/Y6ndFSLju2h/CItOsLKS4WSlArEGdNwIMOkNagOQpL+H0HiUe0AVYkyYeJT/KpzjpwjWB6IaOPfusKMGzr3p44RtkcybcOxL1Rlc5hjsQdfmEMUxMhBYybYfMWzSSV2P9Ml23y3KqqZvkMf4CKBI+BflCfjhuGVZYRwn9l83n8/x53j+CXiRaWNl+iTJ9F1XziFJPw1YOimLNYbtW5w8vz7BuuaL182Bb78TiAlAJ05gF+adZ/+DwHMfu2eWjMf/z/7lHwWfPvq1E1DaEKUFxO/z4uNnxHmIz4qn+Y44zRVq8JhFsikEAxg3I0u50E8cRWOPowYQTX4ArYMsiEiDULtR6SO4VIg6iiu0Klnk1sN/XZfmyPWxNHAmExp5zhFLRMRRQ2dUQLYBdIGFa8t4ngdpKWd4qLTbIj6hYxduIU5HBqplBnQM2Ne98pyjkVjaWVpJKIY7gTyLfSKAFoZE/nSPp7+e85JbwfxrMiYAR+8jFBOohViqol+O2w0o1TEOoKsHQyXtM5MnpVAvs2UJXi2TEcXjPMhoORpu9YYiFa7GUiop9HmjrMw8wPZgRmWzn3kfcjBy7nokg7P83zGvifN+2TYC2hyMUrc7J44KRdGGWjQadwz02aY+O6UZv0fMJUIdU00/sxAQXDILq3xzxiUfwOj8OR8ZH5YEJsIe8F7yfqks4VNJn2JN/3kMLyW0MXNupU3BZOXa1qhm7QO5sDc7FPehtoLRHd0cVz8h7kygjbkw5ntXyex27koQtlZFqwWtsbswOwy3qcG1dAvDIYoztCir6z3kIEbHdT1wniyvuy5+9TECjGIZ2rAxmfilLG1TdwKzIkKWPgTZYX7dH2yfHcSEreNsAlLZBIibUdi/6KLJJlLJNot1l0BjAnuSpIRYU1lEEEBXWCeogkBvZYzvIXXiTgmImDhcTwbUGp+tArMxO98BaePyNocWVdj7dW2RNM0Y3H2ugaf1mCPi289/8PGHgScPJySZGuG2rg+bNv7zj5c0+rIWCsDnUl1+vRhzVS3G09o4XCQEaeMTnR8wSxfj89a5cVJ8zEr8kccyHHzrd/TIzeh9fHDf8NjclgOweUxPnzHP9fkEPj92bIwqKW4nEC04jhtuLzfcXg5oo5GFBKtJGdCbdVADI7oDTaOd4OKqriVYaOsSt3uXkWUCIzSLlcY4y8minAdB6SOtOktnbI6Bx2cQ2FxzzDP40QJHC/YWAQAP5z6sNOeFEnQCWMsLQVxLbCDgmNFZ6Gyw6RbMlSsEPs8AHYz1tVFCpNJioylkdaRzIknr3FmBMoN1CdYWXGGmoXgT4+Vk5ageBEfCOekAdIwwCBbeTLQIx8XxdF915kKdJdVBPZbibFWqZbIjRATqjZTZFIub85OMj9RUmhvcdMDy94XekybP8SMowyvPGuRko0y3yJ3TIQAjH2yZ7INggkfHh9QOysyeAtReMmYXbNgGPi324FpiSxOM9y1ZFISbXDz4GRbX3zFKBeyCFYdIh8uAxt8R2k3zvG2zfyPKwWZZGJkpJg5TtmKGF5ApFPPbUhchNLO2skWZF+NIUVU6sXk7wnEQAaRHtyHe+0XjRwhkRut4ye9Z4ipTywmgbk6WMfl4wHu0qI+7XBDsNSkQOfizVqhHK/lSQeC4huD7nCoR5wvcgqkTHkDGflOgUbhJIuY0hboJQPXrimzXCeBioKtC8EsLSu3wZPo1D0cwnXx+kKcwp+RcNLjReaFQ4wj2ZQldpkHgKQS/KV474H5i2APD3/ndTvTRp/AwdULSNgU9HwYVQlG2d+W0baCmzVRSpV2iW5pOhwVSZwmDxLVraUhAUSVKg9WAniynYM2aQYtTFDX2TJ+MllWayGMHUzHF1iXsp3HODBvQzte2fqKUg5nR0qYdpA5T5xjLhSKFYvggUDv6hatnW+BVBp7Ak4ToaNpYAlSco2N8g3t0shuP0NV7j1K7C9ZPQAjoPuVsACTjyYUMLnGCYWoDWgbIMstA8QbRGp97RdgZrNQoJ8Es9Q3JX1Egta5iws3S3HBQLQPl3MdjH8wSmAwQPWy8bKXgi7WKtdeQkjLPYwbi+LzEi+7Qem4vHZhBreTetsCRH7kmZj7BylzL8WkzsJGc5mk4N5udGlzPx38+Zwapz+eQib35pIS/MW3MD3zRD5+1e1hP73kChp5fP5lWn7tn67VP4JB/9/Puk6bvPAEQ96fjfHz8M8YT3/d0OU/3ZgXtH3zaCD5nhUD4BNNPnK/KxGr617QkBpmgoxeyeTx8BY2dF3AUH6tcfVwM2LRC5IJrJBXE2NVUBOR+2AYYyjwPbEDTDkTwVVu0EddL7R+ZA6Nhs7kPPftx08HYfaMV9Uf8wo14bi/h35dSottlTJb4W1HJ3CUgEjbBCPiBBcwbVDl9qBzz57mBzQYAk6kYrtQagTUSNsKlc9qWMhOLiloBt4FRmKxINlEG6yXu6XUpmSxFyXwqilILRr9Qa4FZQzkcro1E9urQkiD7MjT0dPh8gkv0b57vGdddJuq3eGobJ8jGLJt2IeQfcs4D1IkEmXZqDNSxvW8eNetFhax3jf2IW1nofBpmWRM7Ai4SxUfw6bPHYhjxmGMMzCkWf/vOnj0ZMB5XRRCKqphAv0etia/x8A/rZCYB0uGfrxFoqbw2of6pIjqm+bMdmEmu9CQ0r0tCX0mDSUfQqTXGO09d67axmuCsL9bR1S/6DVFeR+DpCvBp4IzGBgQMe7Avc0+K6w3fi9qP9K2/Z6HysyfwlE0F5jktu1404ssIkZgUZQkchGt80hBU4VFuCC+U3pig6toreTYGki4ciDI8LanzVFDcYFbCfmQQLFD16PrHZxLU4jXq0xyc60rCrqU9SPAp2qGsCqL1vrD6MV4/Qn1+/PjDwFPv/buBT4c1HXxeqH63wNKpQQzEMoO7/ZbnxbS/GbnFcGIWIZV2+Piw/vZddj23go+Px//HXsOOULt//uq1HSOMxQejx1+ePQDkjV6vTeOTpy5IjQ5EVvDjudFh9WFwGROhhwjqoag3ANoBvQDwa4DMhoF3KMjoML+wNrYsb6NcXHJzAF+aULOFe2RTXKBogcozMM1glzogRH+7fwNLyKirgqRMU1WRCzZ1QXyQQZFjHxlmxQGWBgrY3pzOSXYTI1rOcynaUGudQVn1EGsFUCKwhL/hPAcuu0BNGQrWuq0ykRGfRfDiJZg0FbCK6WgvCSdkyYkDUCfoRLp1BTPoZGOkdk627fboyEI2jaJI5ctnNzfA/YKNC+dwiAR0pQ4HS63SUI/Ro2SswUtdmjDCjlnsHuFAYYmMgGJ3Ct4Wq4oxBG4tKOkO1wOiA+oMpTXRl8j0sCzK2dZw0GhV8wAMI4AewLgsSuQ6xkVtIR9XBIkCP4wd7KpTk6WAYtvXNVlio8f7LMFnAVR4j6TQcYnalyy5kyidIthkUDlm4MDrGii1M4AOIE2iJJCCxRev0QnaJpOPBphMNLLFuAHbuDbcvCAAAQAASURBVHA5hZaZ+VBu3u7REZBOVAo5Jr6YTjlinF1ijed2lK1sfaA7Yv5UDNPlUFhmKgWiCUyEvpWwM6U5gQkVi8D9hPVv6NcbxhWsJwSwLZwndNZvEKGAvNsBtwb3d5R+8O+lrA0pgGARRW3JmqItzRKqpNaLKOnecf0WAv42LvTzDAbgO+An758qoA1SKu9bvaHUAxihRRCgxSwr6x1rx0qnrONKZpVZlOuRQSXaIFrQ/BYgHgA5McYDvb/h77////D++/+Ft7//B96+fUN/PGA9HS8aRx8DZuxQajaocyfBpHN2U2SpcoHqASk3aCGDiOyyCp9sx8VWJMvrhiXkH5xyCESdAC2i4yNoW0upKKMB6ujXhd4v9GsBE5L3SgtqPVgWkUGikxlLUc8rgB/a06oNtRwo2tBqiAWLY/gDHjbVR3TSEwk9D7Ju+3VGSUGeJ/++hGJXGRWBpxAXt9+R3eskACjYO6w/AKdtV4+STF/7JaM+lnh4DyBTK4GvwRK7MsgSVh2AkP5f6w1Fb0g2mbpwDWjBiE47MgH+LBMMPQvPzCaBxw4C9IJ02Bhw0hfYU3npLId/FYH8dPc30GkPsaf9mMcgI2MvFaBTHa8QgCXmHx1Sn3ZtBfQyj5ndhvIxWfBY/kx+1nNwuB4fg43vu9yt13187ADOj/722ft+FAR+H3wsYOhjILmO9bnL+qPjfAZAPZ0bZNrwHXz6yJD40XXHJ+Kz8U4w81lb/Hsw8eNnTDaF0wddtj1fyzOfY57KCfMz2QlShsJKgXYyoEZoBZoSoHU76DtHybnKxXNlPXuUMBtksAyf12HzZObeF+enJXVR4hjJsM2Te/Lm89rWvPlY0sl5z/VZytpru8+N+wPbJd8jKwZJ8Mq5P3uKmsPmnRcluGHE26YaAT86o9t52sGSyJsR9/SD9tDTDctk3qRXOPrFksh+DVwnGS2tFbQWNmz6twEiFMZxtSCYGoLbrbFbcysUJK8FR6votwtFD9RyBdul4jjGBP40mFKiBdUxHelnHR2b9jYrRIB1TjkYdOfW/QB8ljDxHmSnLzAVLEJhcmNw3qxOdqmqRqlSQakjtLIiFnJ2MfXW4WOg90fsT7wWCwbVZ4zTtJ1pV3K1ailocU8uIchum73Y37sYXdybbQwCEiLQYBlaVADkPNnN3RNhBAl2bGCUyGQauRf6LOpQ9fkZtRQIWG0wUmpjpAyCx7hFdYl4dJSruN1uaO1AaweOgx3cBM/7wD5mFAyndtPbt3f0/qCA+NXRh+H9ET/3PuWAzAznddGX6Ao7MBNbjYEZWVseQE1Z62n79Ok/TgAqbXMwpEyBqraY/b7mq4Xu09gOS40uhVmyCNPHoQQC2WENSxqDC18luhGCIOegojh6v6KBFl9r26ZeCtdQKYzl0jbl3v603wdAl1K73w3FH3z8kURIPv4w8CQTMabjSIRvwzwT/d1AqXVCARsltXRDzNyZCUnUbHdX5hHicBQdDFPtSf8KJNI8hLhk0uAk0ERs4BMEz1vODwYrRSR5nUl7y7H44NBIMkCez31HAhM+S0dyP4l0RGotERARjJm+5Va/PjfTOUEsyj1O9H6ijwd6f0fvBXWAeibCgNmcYEqeI7CouAwBIygMJ9Lc2Uo+P8vTRCWiGuPtC4xULRCv8ACi+EEWhiVZVtlNikG8RHDEcqG9ZAvTkYcWdvBCCaQ3SqmEgI4Eu0NDt4PBW12bznSUBKUYBB1uA1d/ANBJwnr6MoaRMxx2Q/ac06BzpGM/EetwWMRBBoUTIJsdx2oDtPFvGi1oS5ljOTemmKe+bXazO54GGOUh4OidoIz3eWO573BtyWBg4bDYdUK7obJdqkRrVAkAhxco1DZShZvCR8GwAkMBrCCzHCxP8gh4g1VGLwakibKVqrhGlWAPVsID3h/AIENBBQHE8BTUOOHdnNo57khB48ku8X1datSOC9SM4KYNiGcHMQEiSKTNSAeG5xZyDMzEJTgRdeVjgt9kgZikwHiUGE7mVCxtt/AYfZYrwsP+WZQNIQLsSlHVZyvBFUpGCp2L6RwIx5HZyZN3OktdkBPvop0Urh+PzQ3gvR1xmzUAXxknfJzA+2/A+Qa/HvDrgSzJSrCDWegDkErQUg+4Voz6DVIPeABPySyce4EqrB1zX0ihenbY0AjaF50+7Zu7wXsHOrWYcJ7wftLZUpaoQiu82fwSKMsyo7wzGWbWqdUDy/Iz6jz1fmGYoZvRsdUCrcfWze6azjXkxNXfcV3f8Pb4G97f/46399+iNJYGRKUs1zjmHfc4TNuqMZdYCttQ6oF63KHlDil3lOgKlGOzQKfsyKbLzpVoKJBzNDYIzgWb4KEWhQ6F+whbWTjGlqXzoU9QCbSQqVkJDoYGGpw2cwxgNnnABdMTRQv8akgtNPfOACjKlwWgDpLyngzrGD20GNIZEp6HpV2FTCfMA/QyP+H2zn3MO8QvzncnW49dBUPgPfb7BToBWWrn3SIBQDajKrOgggeNZxGM/kApDaPf0AN4h1BcFplcyUx9lBApBFJ8+g9iAKrM8dZCMtoYy4fJjsWY/oKvc95sw74P5172xHwIyyVIB3jxVHRjLqVG5g5y5Pd1vJXBzgAmkyu5hvMe5XdgAYXrOOFgbDolnz1W4LH7PfH+uKpkkX3GCMrHfi0fAZsnvy2DVt/Hex1jQgJb0JEJhOlTxPXZPOFPL2193scnPjqCn9yPnYW23rOOMF+Hde8+nsb3We7tfR/GfH8P90wLIWiZfihLOLaA39aeOQGWmCsEKLgvmyh6AMICh4/wd9Wg2tjPoRoZfsJEmF0CBwMt8QpR2mkStnl+e0nVvN6MM1TIThdZcbjnXM45m6yNNS5wLFFmbDLS+dq4dhEw2M9YIw4zE2LY5t62vicgZixjlhhXxhvrPlH2UlmKGEKqHrHXXla7Rx/P2KIv2zK+j1t8O+lhAIaxpNUdvSdbJVQO6PIiBcpLIfulFEUfA7VSK6rViloKrlpxXY5aL9wOBChAQflSagS8oXGqUZ6ZwGAwotJ/AAxuBCvTQZB9Quc6hs97MG841r2UAPzm6nUL/xXR9ZgASkoDaFFIHxNMMvfJsk8fy33pSdZa0XuHqqD38MeFPmteTwJP8FWCa8MwdlsuUSUT8etcTzFERdLzJdBo7pTIgANioAyTxLpJ2542P9Yz1vP42NExfKLer2lfyFSlRIYVgpJVCxClYS45njkdOS7RZBlMvHZYVH4ALexpYgtcx5R9NfS+yucejwfOZDqN1HUy9GvEz77WsvMew0PyYPistKe0Qax7ekcEiWId5Jhwj7PJNB6ZuHHapmS/9TFvT4Bb9Jmf43t+N3O+JudkMAnJBCNYm52BPVjva1wYJ6fGGkvoqINLcDovEMHEDv58sBNLjEt+5pxpeaqbPaQfNhfV3AvXzvJhJ5MVry/b+I8ff1zjaTNsCR7tm/b0EWQZ9nSePNENTbco3x83cvt6GpQADLZtbTpMpIguET5g27Dj0OnI5snEUzHx+NnPLKl90NayzgmQRu47pyYuOI34s0Fcr5XtyOvGe9qm+JUOn2+OZuoafA94heEw6mX0/sB5vuHx/g3tXYBaKeyqIaAclfTpxHCc1rnluKXvAHcMT4HWvAfBHJJBRo9TZ4qOFRkmhgpJTaM8VS1AsKxcyDCCXRCwfAwy4KIRzERGSQCREDcWsi0Agk8+y38qAadgP8yAbLaXjw0kN3IV1KjNHriCDUOAaHZGcwmQg2wdBOCBEAtnV6PovCTUT4EshyTHkJ2tCJDN8qTSgk1R4QHspJDfZALGWFowldiG3mNcGPDznnFcsjQHnsCwLCMCzLUFT5YanRkfPca8xjnmtAreW2TfHMxy+CDgB2fJmgnBEdecx7YCmz4g6OilA87sCIGnKJHZyrpwvmOJVQvpqxoUbOPY2RgcT4RmQqyzFVAIaoIWGBDrse4rxCSAoFWG4p6i9Robdjg4URLHElaBhA5C0crZ7SEAHaLoI6Av2WwYnaTF3jMbsBHMMefGPVOHYwCyeXW5i3Hl0wJlUwGP8c6Y0ISOGCzE3MHNHW+xngIkhgRQtQx1S4QPBrELGBfk7e+QxzvkegDng8dWbrSIslEPsXFog5cEUBtQ22Q8Dct5QAqwqMKPG9IjSYFr6jvwPVoKZHbO0SjVcPgYnCNjANdF8CnYSa4B4g56zSyn0wAUaPc96u3HdXIcjQAKQaiOPi6YOS73ySjS2qG1BXvrgtUSpREXrv6G8/qG98fveH98w+N8Y1lplDvrtoHPdMTUs8rdIb1IajVpOdDaHVoJPGlpmFH+Xl4XdAJmiFsAdgFMhRGXCQggQKoEcgnMmts8VgbWkizSAJ603QiKWg0S6iB4bWRsZStxivAPmDy4JrRM27GaVqTeQUxXIcOJzCkCp1yzy7HZy7Zy7ODhtNoF9wfI0ukBLJPR67YBsREHIvez/AiJzoVmc37n+oACJo8A3xVjPDB6xRg3aD+ABJ50IJMdHoFBEYKOHno2Er4H8V6yBiAF0jH/NoEnCwc513ieazpU8+sjQLA5uPE8XZsMVOaOAgimYK1kABKftZcWJXCwsuzPn+cQJjNyTxVMAfD5mo++p8emM4+//2k9n2K3+fvyIefiedrXfvT46E9+/5DtwjYY4ZNzYyIsE60O0efj+dME+/5zMth7elf6n/v5YL/v+UM6058ceQaRud7WW56Pu39/Ps8ddFrA1nop45jvz8Hne2PMBBNozVcsNhuCjRHlVMbSM5hjSInEhoUPB0gxSLXwS8B1DzIeoQoBO1/Rx8rYQp4m6lo1sa+HffSnsY25IeD+H3EBOz7xWPTzAoCMcviVXlrzSwThBXyY+3NNkl0zu19iA7WEvVwgWZ6ICZjHSM7pIpZBadyS/ZiyfeB213d/nl13/cM68pxB9PcH9xBzQY/jliiXz2FW5dosFbMJz9ULdXyaYhxGjacy0LujNQv/2uHWYizIeiqulBIoDu3R/ChARyaMAxJQYeww5Tmy027GeHn5G3ieU2OzjTwW1qDMpH5q4mAF6KqocdFjGM/bHBZ7mEsJtl6WjyJEpXnsMSIp4T7B25wLvPcJ7iISmCvmi20FiTbxeYtkYQCBc5KFxlRmq8OV1Gjygthj8MR65fqw+Pu+06is52309XrJYxm8lNjXUgYgdnsLuxSi2zL9uVyi9MEsJF54LYuJZuYY3WeHOpbSXTjPc5XYhTTC6IYeItoj/K+0Cax44DUbwzPuV1WQHcI9YnbP0s5YBzQ7S+so104uJpEVQ4/u09eIrX6TMIhpGEM+GUXCdUjfLMBNOSYrCTN+4/ln8tSd6y3LX1UJmgEyryXva8YC0/bs++A0DPtMwNwWcyTmDrPr5f3g4du/f+Txh4Gn98c5JyhbI5ZQs5f4vDAGJrhOOl4QKtgbDCJGh62wrEe2yTpsXVgGLeHBA4hcWTIx0pLuQkB58bJ+TRKjpqBACvt9GCqu7Vj82wskPm8uxo8lhLuj9mTh10OQtcWYtNpEmnfOc4n63nE96JQKWOQ2eJRkw8yDbtdAtNvw/rgw/BvO//ff8I6/4pe//IL/7b/9F9xfGrQCw0/Uo6DWO2Pw6HREwWwaaxv2tFlyEaeGUNyf/eIUUeq1BRpSAvhpcK9smRtlb1pCkHGESOx4AywYDOOiYLZYSJ4QUCrtZbKXXBq0vUDrDXq8QMoBrRWtvUALBaSBFFFmPWx2dhuW4uKOngi4N7TyFXIcsKE4rzd4P2H+QDIF5sbsglrvoJBugwSaz0q/uAbruE4i7GZAq0rxvHJAjwOlHrjdD7hHzWwYHbIWnCDF6DHm/GTbjIrpERvRK1pqqdhJUWg7Yf4NqQuk5Qj2QmWA2Hls6p+QkVTcgHZArcMkyvGCYmw+MOwdhgvuPUqRAJEDKAcDeOtwfbDDlJ8YeEOi5YWRDuxx4qo+HSv1NyhOAH+DjL/Drzf4t78zXpSC+vozjvtXtPGKCwXdBRcEUu4QbYDeAJBWXArtCwLQ0esdFCiuED9J738vOKMMxu8vyJIzHwUI0FJqiRJgoHto/hg1pTzYMgrWc8sh6GeUgvkFMZapjes9NlSLEiCf4FSxgTJS3yydnWVrXKg1gNagrUKilnt0dvRDv5btE6DUhlYbaqnhuARll7MbsP8JxwWgx8YF2stg5WCMmcL0YbDO9kPl2+/A1VF6zMGwkj53JX53CFyUYtgAujnFrpVzdfRkpCXIQeBkWq2w7aKK0ipte1HU24HSKtpxg1TBcMPZ+wz8igukO6gBUWHlgJeKoTf0dgDthvP1a3QsKyHQTOBuXI8JPKkReNIeNGpnFnMEc8i0TTCM51SgRTD8DGHLN3z77e84377hus6A13kfWLUkcFWWRW5AoipQ429eClwrvByQdkNpr6i3LyjtBex8SfBbSpsMpX27WyUjHiwfoIpyekMChBdmlUtBip9KKbj6QD06yvGKbiM68ywnsbQDIhXwG6qR9TT6O3D+HaV/g/qB6/2vGP4b+vlXDH+H+YnuD2RTihJ2WEXZzS2CN0eyXQdEAijyzmCGKxMpyi6TpReedNadeAjMw6DoEHRA2G2TfoavUmAAsrNGo3RRrIAdCh06JM0C4N8A7bByse3GeGCMB273d2S3uwT9IBUjSx/HHa2dqHbDIcI9IvXt4l4VdYzAmi8BxhDYEAxlSNV9lV4Y8vxz7w2QiBk1JKg5gZC8VmfAsZ5Y3gJL0QOUQWaHV0emHiLv6cZo1tg8PdLvyYDZw659eIXvv/GKJpYqkUxxn9/N/EnAdbo78/NlzidgiYyva1vnmUDaZ2Vy2Z0L4Qv86LU7+4vD5jFGq6xq+o4/BHgCpnjyDQMOmWyVlbCSuNdT8NW35zP7PTPv6+9Pjq3H+T87itM9fWLISbLGsjQsPk+2K0l3OwKg5NMIM1IxD7duYO7LERdAxFA1rxOQwQYiosDQgyL9INPUSocZG4NQJoKMCFfufz44ou32BbPDVX+s4GpckexwotyxeUmiyhELeIyzBzMSUkLcWeBGi6I9teACYMLAgEGsw1yQhXgDnR56jTkZe0k20fCsvtAaIuMRdMbacXUmASRmgvVYnwPZlVRjahGQJ9iRqgZsypKJyfAPZIaSAVBFoG0CGxQWz5hnI3JwbiY1BGRzuAN9n+JxzLy/pThKcdTmqFVRm+I4yMy4HQ23m6OVC+f7O15f7jiOA6O/olbq+7R60P/Vguv9nR30SkWtvPeqCtRC4L6mdAcT4DYC9JNpDSfY4e7o14mBXPv0SWf1g+SMzGuLdVkQdiJ3dZaVZSmZRTOb66q4LopdK71kdHecj/fwAS20dvgpNZoUEWnkxxaw07IIuz1OtnAk5TLgL9HdlveGTTM4p3irSgJTIhiTLlegLWQczIHeGVuNBU8ABTU0CW3GwACMWk4tWeMzMcG53O6NOk/iGN7R7cLqIpfcIUOpBa0pvtwP3FpFLTWwg9i3fVCFVQqgQO9kML29PXBdA4/Hibdv77iujvfHO1zYWODt8UAfFnGWo0cHWThCMF+gckSZH4ArmYmKhgNVKcnBpjwOaACGgUdQtobMbg02ljmbx7gPHCVlXYDeS8QcErIxNoFZvi9AMETsO/f0wMUEqAo8LpYKno/BUsTa0FQDiBvo54VsYPR+vuG6Os7zxHn1xdiXtBMsv7RhuKL73+hkhlmQRNwx5U5UdO0PGSOA1SmpIT9B0LQBa/Wsh25+xz95/AuMp9xG1wkstozsdmn+jfTcRSlbnQg2VBrcxLM71HzkZ2z/5k+Tzhsv8zk4C6tbr49N4On5QMk/nMdCCvd3h0lKJyA+cJ3Hjx+SR3h62cbCehovEMxYLuV2nJVZ4XyPsfIcDwmapkHeTvztr3+Dw/D60x2//PoVt5cD7cYsr43Y9TdBsuczzhMKIzl1PkCgJINkKSz5St0iVCCZSGDXK5UbtDSU0lBud6RmFbsQNego0ZUoWDGlctG6hHPfUOoLSpS9iB6o0RWhHffoflQm6ESNDVpjtszO9py5+YbTGO3h1UPDSB2l3NCc4AczanSi6Ezxfmi5Rxkfr5X3g5nz4AjF53s42ATMyGqoYdy2ebCEfaZz4xhRihXZ8DgmGV5xbWxaz2Mo+HkGmJ3hZAG1tig94/mQosyst4W+1nUJPNgf2UELWmZ9d/cT7txUfMjzehc6U7PcLJhlHKsgsbpBzEJvRcP1M4h3ltqdb7DH77D336kL5YJugF4GuQ0MqRguRPXrBSkHpHY4opV8AbzGuoBNWrhs5UcGlimZFpg9wslTwEuwZgpgcTwFWWCh7YQATzDoBKZ1kesErgt+PWDnN/j1Dr/ewxm23P0Ac0gIZpPWkDVyNnfKaUJUII0gGDTW2Bikvo8xp02RaFMc2l3TiXCAZQcdo3/j+SN1sOIejcFzGtRQU3focAqcjwF7vMOiO1uWjDLbvOxdBq00EbzTwx0a7WPNPcS22SkuAafJZBUwcx2dcbQSaENRlFuD1op6EIBzYaCX7IciEpRpYSKh3oDSYOUGbwdQb9DrAWlkYKFu21s/57gny2f0dCSDW5aba4hr+CBHFFbgVeC44NcFXB3SDWoUCA+/de5vU7/NEQE+7URSprPMGN4huOZ3QYeK8bQD0JBS58+27VfE7jKg9/jdVikQ6BClZpJDIeqo9U7nVQ2OCh0DXcgXT7ZZrRSQBxokWkyrCAoMpgWKEAUxQ8dvDGjMgOiGCDeYRLpEsk2FR9AQDFcfAE4w+TGmzZz7pSNYnDnzyUbd9Q9EsivrgIRYOOBAcWSXFkDCkU8/IcENgfiAm4RtQ7CflOLsbrQN+VotKHpBy1jAkzYC9prllbznpndIZQ+v/BuETM50+K1YbgOx1y6mBTzb2D87d08QRwIFOfnyWBNEkPWm+OGjW7gDLObZcGGxhb4HnWI8P5zVwj+Wt/YMijivL9yeBMmxf1Z6er69RzYfU3JfyVHYssLAdz9/znRa55lzcj31/PNHH3Ufr+cE5Pzn44es69lBrI35tewp4myytJG/y8fjOZ5ArM+AJ55OZvDnmf/wmr6/ri0Yn9fGr5xXy09/Po/vyh/nhHUkeCoKqEswYir355RsEHZHFTBYczhQGxwOtQYgkpIjbUn6JFE+u433sh9r/NbaEUjRdS/MyG4GmeMCwerWvS7m2S/n+c1VlfIQG6Mo97zpFyn3lVAnQO7b6Zlyn9BgT8s8PyiTLrkX8/xkE0Z2IDrQTaZZ7tGONUagnWFgHPvStr/mXMwrW7Pr+wjP4+CZqzZ3XN2gp+O6yHJiDGsYRTAqx6n3jmGOFj7McYzwZ9iRtroxIQrGhWqRWIxxtLDRyBjKMfca/s/4TLCYmAKQCawaUhnBvvNlgyXiIY4tPyKnf+poOYIVNcs6Y8zTXuVeI4PnZHhec3Gr3BZLiw1XAAmNVoGTnIGkCBkTSAKkMDaUSQxMH8C3c5dNmD2uXZwlquYhJbH2GUR522IWM96QGH+AbK3h6b8EWGlACpOuz1z+LKe3h79LxWAB/RN2BczPHjATnCfL5a7LMEZoNp0nHucD/WJ53YgOuX2wzC7d7PxMyrxkgsu360+2Htfo7ECd/l7M3yw7tKik6mOwpFGmSVmvHfRxJMA4Hs8gynhnVgk5Qm5jB55o7TVKPM2yq13IL4we23oSQjxkdAyjD1zXGeWFg2WHwzDcAvQLXmBUAIypUbXkLTLJY9Mvivs6X+M5Nda9nD/J9n175Hz7R/vu9viXSu3WMWNH8e3XH70r6F7Mpi7jv29W/DsX96yXx4fLi+tNdXkCWvoh87U5HL6e8/0Y+2t5IutcsrPA0/sx6Z553k+0dJlHehr0jwbn+by28jvZMoyoT5vG2vCDMhcgQ54zwYmg3lpsfO8Dv/3tN5h33L8eqJXvu93uyHp4SQdYtk1RsOh4KxoGUKcTmu27qblEJhNLNhqA0H4RPq96TMHfUg4c9y/ceMVhvcJGwxgV/SoYcsFcwUp2QJACvzWApwOqFbXdUCrZU60dDPBEZ8aEwe8CnihgGHebuzoEHu00FQUyGQ+l3MB624o+GrLNt/cxHY5Sb8HmIsAmQRMfURqJLEnSrMUmYLa6y6WKXeyZYnO4ib1nJyqy2IY72TBI4JHXR+BsxRyiYVg6hbFFgFoqimSnJSGwoTI33NEdFww2KlkgwQ6bwJMbhlEXx+GAZdmkzHNRUQZvWqDQoBAn6ORQGEW7vbLeWMAg08i88vMN9v4N9v4NflFr5eoCnAZ7dJg0DCg6FKgnmW6tA1LhSnE/LUKnC76ETcui0domBOz9AQ/gSaK0z7WQfRKbNbsaxiYbGdxklAjAmPnxDr8u2OMd4/ydoNP1xvliI5xPiqSK5eYbINQEs3LHzE2SWRPUYCKJBCDkgKVGGmvqF5NvYxHlptI7xuMKwNQiy0rQySI1JGYEUMxQjE4ZzICzB8vLt3mJuUkN90n5DcvE7xlRgrXwvV9Bfya3mK9dBpVsIoXUaK0cwJMe1CzS1lBuFVC2NpjlDJUOlyjIUqt3ipzXG6TdIO2Ane+QdhB8Om5gOa5AkvEYJ28Wou0W4Bo0kuIE6MnG5qoUH9HdZgCdoFMJ7HB4unyxxiJ5oMEuEccsoZIo70vQCX4CdgH+4M+4IHKhliOYSgToPADnMfbwifdXwNp/zH2WZbMSc5yALw2Su6PVOzOOCTxpMJEn8FTIHJXVuAHmMFGYAl4rVDqZoaMDaHBXZh8HmzPA+rJZyIUTYJATXM+OimzywO6MtGmbJzlZCwiHOJIakUQgLB+iwyDQqiHgv5bG6shinEyxvxoMAehOzzJYfhraVBJMDvCzR+nQYky4aIWUsbpvIRteCKqyhNuFjjBvnwThIsCpxLQKIpCWcM2nlf2g1ZL+UO7FmGsuIob89uSTxMHmvMnrlQQ8hGOrscfvQNDHdbv/+PGxHPNwWvNk0lcJNhWWqYj35bn707HW9aSPFZciYwG7nwBMTwnC7fHRN8OHa9tBuOeyw+fHKofIIVn3K/265/f59oUnfzUZVlnSl+uEDtm65ulGTvu1+Q15vfFEJsCW3ZSn6/nRtX0+jh+v48ePH4JaH8YhfX116uFYlKiKA0MYxA9EogsGtwqHo1iHwGFdYg9iwLpQnMjaz/P07QRkliZKuGlaIqh2shlYhi+0lb66NFqM8e5vzUNHIgQBdkx2MTADXSnL70+NWsboc0bTR0tASX2uZ/qCsdbj9dRFpB8Zuus8igKlBqMP2fgm51sC9jID4Od5sZo0PUVfOXaiH+bSxthzlucRZOI+dHVjyZ3RwPUiGI3J8uu6cA0jY7sWXGPgaA2lVhzxmhTdLsl4Cv9Ogeg6nH6wzHPOJkK+2b6y+UfY92nEvmz2tMZWd1hdtpDaLICv42VDPmABTz6BJ4qMszGKTX8Dvn62uWYlqn+W3RCEIPrUvEyAlPFehBhRbZT+Y2iECROtyezL+apwJlM+WCveuwUyeJSgSf4bBxiR2KKI+NiAG4eoB+NKI38yYl/J8x5wo04sSs4ljfHjGnYA13mij5hLvWP0jvM6cZ5n6DoNdO/o1nEFc4edsWXe21p06lWOMabPrpJznniBJNBcVryfc26y2owlfC60BbKX3aWmXYDD2Ykd0gk8qdGXB2Pz0RNITrJHzD3lOiqF+0opSkagYQKYBFKBPrLkkNc/hoXwepQeGstbRYR2aMpdUArHPFnFS7cwE8pZgkswb4GLy8/fH/tvzySf3Tb+s8e/KC7OR2rS8HnZXrM7FVluxwBd5Z+dUYBTAJK2u2+FpEiuzSSNTi7YMRxPe2euuh98rHz+9CcvlE9f/P3G/clrgICH1ziFX/jJRi+ANMBynEc4IwZosmOAzBytY4WIeuoBdcH7+wDqiW/fSMkziy4NFhO+GjJVz/ibmwoFG0NDxp2bsR9xPgqgoOiN7J16g5QDjhJtVQ9oOXDcv+K4fUE77jiOV2g9CBYdqVvi8HFxswuqdL8uPB7f0K8OuEQG5IjPIcuplIp6HBPhpgMYwJPGsQP8yS4ZGu0KPAORuGdZ8le1Aaooo0FLgdkFsyvQ5THBJ4njtnaPwFKDPknjq6MhaegFS0eDgFNFrRwzEQ1giEGh1tBuUYEYwpAaup00KjYYSJYaZXNZJoAplqdaIGhwEzRlO1E3lpgK6OwUBMDSnGVhw2HGumlVQR8FpS4tmeELaddw8kuJrjNgVrDEfFGtEO2QpKoKx1t9BPjkkMuBHhP/+sbyut+/wX7/Bvv2Df7bG4EYAx6/D7zjd7hXXCYM7LTieP2CetxQ73eCEwq4AiMSQy7RVU7y9zDwnuy8Arm9IEV+ewhwQ6K1MXjuFgCF+dgcB58sUu8D1+OB0Tv64wGxE/AOXI9JsfawXSnurmkfetS3j4HR2e2LYJVBnB03siecuwci4jGn6RBZa1yrNAbTIe5Bre3XwPkWpCtH0INtAi1wgoIwAmM1gk51MCuIVSoVpK0pqjlSbHF+qsRYJ/+OcxhjQOL4mT27Rl8hwfIIAliJEr0IMlEU0kLzqZRAcR1eBtAsAEZBO44AShqkNmhtuH35CfV+R7vfIbc7pDagHfBao8SN2mrJ1KJbJgQJSujFsUcuwZAhQHdIpdNUvUIH8OKvqLigcsL8DRTTdhRUqCg7r7oheWMlOwO6QEYHcML1G0ap6DCcpcFD966qozaWdRFoI5hvFciIdATt2/oFi/KM7oAaWZZFnZ+ZgFQmf/RGB8Qcrd7olAyOQ5blcU1LEgkAd1hv8HGwy+CDx5eiuM7fcGLA7cL1QDChHjCc3PfhwXyaLlc44Yv9JMFkyL9nBjnL0xO8WJp9yRHIrqtkcEq0Z5+sx3ChDRl05UIUSBlRItahTsYtxeA74A3whu4OGSdkdGrM6cGS33qPeXJAKwXuNVBIr4YqL0wieYG2nNMhTB1YHkRhhSLjvRu6k6qfiaRk2hL4mk5CrPr0IuYfInKINb9l+vHhp3ysnPCzc7m0e7A9u3/S5w7VjoF9l78CNh8twaIVTH040jrfCV6ta8jOUmS8CT6CT58995HN9KPr2HWLdt2r/W//6LF/9sfP/Oy5/XpcwrHJYP/pyDkGH8OAGMMN9BkxVtRI+sB+i89dCVHerP269+NO0PATQOlHj/31xEsE2EH/2J8JlBQGX0UgeqB0RVfQHqjAJMD1DO6VnfEGbIJM1g3wWOnR+t2jHX2OG1cQk47pkw9Z8QJBYZ1DK7LGQsI/dhN2V05wIIG0uC/s/ivzY3OO8hGoeiQkn8CpBIWCDVHDz4b3FeDH/BHLI6772QqPrU1QW0PRAmAlZS30btzJvBgh2rx36xLtk+W+z7HCTPcEnhhIL/9krpG9UsWZWzmNjOLr0VErcDuAo3XUUnDcLhxHiy5nF47jmD/XqF44riPaxysOu6GUFtqLN7JPS50l2e6AJ7tfGeSv8wd20M6D/ZNgDU+ZB7FgaEtZjDcLHyHvqERZko6Q8Ag2uhsIJppH3GDoyGY2GUtxvLJ8S4AAHZ6rlDSAUXYUJGifwAFBKUGtiOfYqEMCMKuzFFGWzEzOaU3QywEXGCimPrePmLeSMjeS5xNQlFCrqVSylhw8t1uL5ivKjm1cswg/2OB20jeNRlIesiS8XnoIvaeYuOHxoHi4byX1vT/wfj0YF7lNZqEbK1hUCooWSAXUnMBPXE9W2hCTMcZarizBj2tV92ByhXh6JJ1HJlwHfRV1h0ezBBUJoE1AfJkVBS6GMZZN7T1Bq1XSxq7SZKuLDhL4q6JWRy0VVStqOWb81b3jGhfeH+9kOJnhGgNnMAjzvjI29ek7JNsxdhvajiD4JCHBk/lvmKV10/ZFGLIWy2KCfrcr/PFt4l8Bnj5s7ljb42LvpNPh63UU08Eib34EXNYm9Xys5803N29R2bIF+/l9fq5874cXx6b1EQB6cjQCCJvH+3CM7zNbyB3r6XjfUbPxmZO3OwI5RrlxGSBj+mPpqrnSeEACx5cIoAIwGFEDm60or6vTKEfmO4u7KRCagYnDXUO/ZppGRPNRKCpU7mQzFWotpfhtsptuL1/Rbq8BPN2nVorWkgMLL4oMPko5UMoF0YbRuDBKKaEZowG6sKSutAbrZMZAg/kj2ZJeiNhP1lHZwFKOazIDNo+DG1pkF3pnm1+DoEhn5r4LUoRay7EBfTKvR6QQcFCDaVhwZ5eMokq206RsWsSOay1kpsuBQMZp9D1K4oCCEi1uJSIXD0haEmzRAONC/JCo937teZ+XY5VIvQcoIcb1Net6UcKo0xBKUJzdVzgH0KXTNFIeDKHcxBClZ4is7vUGP9/g7+/A+wN4nPy6WH/ex4XRFcMUfQhQGrQ1VHP4cQH9gjYN0CuCTAQwawPZYc5jOZEKzjkxGgWuXYDLHlMbYY43klFpc6PPMUaMk/WBfnbqZV3UflJ3eOgxZRkXh93jK8Zz7MBTDzosNyu2UC4EgGLTSB9QU4BeBKMEDZdR9PQPJiupDwRRLTafpWEieUyOCNR574oHNT1+F1CD0UKLTEe0CM55l9FDfJ8y0g7oMKgpzBHtkaMLpE23f5W1AbRHkqUGcd9kRGZTCDZxr+TaOiRILwIrF1QHRC5opZ0Zrx3l1lCOA/JyBw4yn/x2QFoFWgOOxiBGBdm4AKWheMYfFeKrVA7CNriZqRZTlHGD2QsKHnD5Agg7L6k0FEnWEG+C+ViAiVO0W0QIVPQO0xP98QDwBnfqwvkIQBICreFGSmRBA3wySw2BNWdVDCIdXgwCMlJp4lNzKZIMSp1GN+oOZYAxNXAEQPG4hmDDlgI3QZEXjOsVbg+8315gdoONFsbdo8zzwgpgw1lJQCRKZCTBnmmfMuhJG+pgV7yASSQSMfk6Z0dJmeBTMEFK7sM6BfbTGc991GQkcYp2KZg0OsufGaxmWdGAANohg86naNtsq8GtwC3sQpSauliU/cVeP+1vtjuO4FeEgYlE6Yo7CXYWe52H/ySIe7PWnocbYBEfpa3x8CMkLG/sBE/fE8+Yv28+TUoKPD1kf/HzIz8ty+hyZ/P0WDa2L7AO7XkSeW/y2XwO63s2zli/L//qHzGc1mfmOPwIPvvkujbQ6EfgUa7Hj/7cZ6DNx2PkMC+GUdjXZarn35KJGgePV/s8kATQlFe5XHFfx8LzOa0Rlnl/E+xIuYEFAPo8brIzPDZa/ryv2+XX5xzwYMnMkubtdkokIcRY7mtgd2SxQcZGgFcCQNpt7hXDBnKzl9KCNYhI2OS5xN6T+990/1bckoyVedI5eDlm0+ZgTlX6QfwuiGS4rFHN+yOxFlW3g0/WB+i3TvMVn+nMfCwOJAGBUhi8stIp2sJrQbsJG0OUBsUtkgdlAgpUDNjb01/ITm3cS4xd7bDduwh6n24UsAAxyKxAQcR3Djx9JpkU/H2MgVqd6QIX1B4i5sPYDc4ctRR2xBsXy++KYthAqQ1lHCjmKFph1TD5Kg5AQ0KhlFkuOZniMd4W3VUl4qz0ubGv0zzxuDl5Tz3W5DS9Hj63SYAelEeoheL5AgFKlH2ZMZGVTs8W46lSMDxVOGZOrvD8VEFWoJMJSNHzAFM89j7P54OpFGtjkRWSdc5ErY0RIAvZQWRo514RDCnkMRDniTmHa5b+xeeUYGCxomJ+ZM6GCJVYcjfGBeqeDXQhecA9gScLwfAe8SsBKrPOMZwxqywZOQmBe9UJMHmUnO22E7l/xvVYJOgh1JzCbFgQXZCHzVggqwky3hnikSzl3k+SYoyepDYXf2f+KMsYo5QtPgfp69hABTDE8Hi8w1sDmnPuh20Y1jGczVyyvI4A1JjHzHggK7Z5izOVvGwO57DO+zQn8+wYud/7sHHIG5vmQeY+gO1vf/TxLwNPaz//sNHrbm6BVVe5brzHwt0dhX1zTopjGox4wToeJEoGMN+bj71+Ml//vOfnL8/OwX4uSbeTD8/P657reDkiGRQ5MIVV9+v6zsUJ67IyvNh8rkmSBsAOOuxO1eHikww1J4VnRiIdRYmF4zOrfZ4dj8eJx+NAuQV6bTRmcGOGRGQFG9H2M6FC84KSWkV6QPUVRQ/U8gWlvkBKQ0VBPe6o9Ybbyxe0+x21HWgHS0Y2VnEY+rpih2IodaDUV+ITEiUmW3mCbBphEg47QA0ndhtL4InMiez2NIGndEBkL/0BHIpSFSLUmRFVSC+B8JJOMyYbIDrnSZmbMQEjxZA+nS4LR4iOSNI8M2MUBkwMOpFjjvO8XihZFkbjRNCLwo2thki2CcXCs9g6HCrJuRBzOQ21l/X8mtO0UFNsDmNOO86vglaZRahKsUeCXulsUCQ43ZGApAjC2OqU5bHB0fO5YOfvBJ/evsHfE4A64Y8OvwzjdFwn0DswXFiq2W6ACeR+Qq93lCPa+UYmNGAPWGxqYyQIxGxDUkohFQnOPvyNeldIbZV0ZBOoyTUdI5XAzpmAEcG6JhTBxAiHLJg+Mq87nPjQe0pwyoL9BDPABMUUwxqK6U5qBCTo2JpZuPHkKCVAv7OtWNGSB/B5DbnpCJgNJCl/gVAC5SYugiJlOpHDdIEc0wbGHQ/giZRtsjfGpJWHvQYLoTz2gBHWxcKpN8kwXyfgZ1F64gneCEsx/KgMYgXRJY1lURrtfa+Xk+WKTYHXO3Bv8PsN+PICPQ7o/Qb5cgNqgdcCqdHEoDqaR+tZpNMnyE6KiC5wcIV4RRkDwweKd5hccOFVFdxQtKKVFkLfDg923bSDroApOyZeA4YLl77DjPZGoBhHx9E7BIpqTrC1Jvira47Oev0B733uBa1dFNiMNuUEzLMEj1n1BmYoia1w7xVEtyBxlpwp90QSoHjepnd4f4XgwtvvX2D9N4yrxXr3oNt1OmVwCgh7wWSLwqGm274vsfeB9mxuDmPaGfigUycDriy7kZxn4dROXVULUE2M9w6IeaqTPTcwIgfhMOsTdAMM4mRPEUmlbScb74RrR3WDlIOfq2Rz+yhwOeCobBAxBrt+juXE8z4Ec65wDzYFmX022PMhbIga0HvYtjDlIixP2s1DrskU1F0ghmyv8+kMh/8bz67Hk5eSvl78N1+TPs/+vg1gQIy/b87NDg49l3rZOs8PJ7QdEdPBjZ1m99U+Pn6URNwfu5TDjxzlz/xTEXn6zFV+RV+Jsg/23fh8di7fM4zW6xLolDWAzwDWJ9eVvnH6vPv82N/32TFEMnz3DJX47gyYE4hI3zbOMYOOfG+CVbOsPH3+bWZ5OkZAJEAxWceRAWXSopTwJWqA2DFfeMIoc2oIrnFl1gJFGgHyIYD0eU5Lq8TnwMxYA4BrMij2ccH03327lhyf/boE4VoGe6KIzj3QsPbduUCE9ik3Y3ehq9+jvNAdbgRnJrM+jtO04BrpY9AvLFVw3CtKjY7OemdCV9lsJyUlxxjRLWxA3t8xBhufiLJ8UYcscXYAJeQUkH4cko3JPVqQidFkfsT8AJKAid7jawBHc9RqML8wDChlEGy6OkopOHqf7eJbr6EDVnD1C7UdqO1CG8EIGZ2i1Dm3tPB3i27FMQNVS/jfGyvEHKXKBOkxfcj4zTYbEPdI4s4vs7SAjBIaoigsDRVQil6wNCR93n7ZaG8OYEDVkYoDuQdK6HBpAX1qzyQzGYBFuSY0PofJjHWPED5xImXumTAGzhEbig0IGpPLBVG2mRYNc44zjKKtLipoJey7M7YLWVKUsjh+c7wAFIlYwMK/lqjAQMasSm2nHv7jGAFCkdFNwesRvj7PwWIt87oZp5SyJcajORjjgb4WatgzG9fcEyVIDcQeCEqN8cwKhG9JokEg2gQoQraZuUCDoblrVfM2c57uGkprnUWkrWRiPR4DIjfeDxA4Hp2NP0Yk1s/e5zqeMgI+L3ASc6ZJBqLKICmXAkRnPs8gRy2SrRn7LJuT+28ea17XHNRt4/7Bnvrx8S9oPKXDkB+8MYbE50LPDXNNuye8bC7oP+IkfGRDzcWL/cJ5zNUK83lD+PzIz3/9ZCtf15iOjn8Y00SIczIjN6rlrOyvy3/2a7GncXGInuHq0eknQ8fgJTdnrE5Fc0NgpgvoMADdDFbowP72+wPHX/+ObgP1VvFF7zhKhRRB1QqooVa2sNcCjH6RwncRsEI45qWyI1trLyjtlSUg9ZX6S/VAu31FPVh2wC5QrNnWpshMkwWgJhDWfgcFUKVBC9CUteG0Go7pFwQFJMG9MceWAbWKBL2YBOgMrCgSzoO4O4o4qCEWWXGZuEyMuLJkogDFPQLNAne2u3epgLSwwhrC5sxAFeXrqKWj0/Ha/COaFyNCTT0D4BrnLLU7Kjcs8ShtylK/k+DEKQoxMrSK1OjowLbkbiy36f1BJH8MePdpLH0KoQvMFe4FzJ9UpMNJZhANYikVVSpavaOVG4o2PGe+wDIYGxDvcCM7DOOCj5MsDov74740hMYD/v4b/HoHHu/QkyLd9jiBR4efBnkH6hCoMegvArQCvF4XqjiqD7TOFUT20IXsPGedpYb9vOj0RU3zmNoLhWJ77jiTvsyFO9ftEtKWzbFWWKfhH2dHdvIUEzzQoCigAE7OpwCe0umNHUDT13BhNhe852QdaRwjgz4GkwQ3l8PKsV9lIDuYkdmfqiGy7GNu0AyO4mqEFHYVnS6aIITLnc/X0LehJoXDNUS4p8laLBYRxeUh+LgBY+4ARoJT66Ge21oUQUzPzBYra5apRXDNE4catZ9mC9zYUK1UoFZo+0I2ih8AXvld7nC/w7zB7YDbDbAoAvMK9RDSRoOiwtGCSs1rI4TiAELzzAYuv9itTRpQfuUeqIJSX9HqgdtxZ2dHGIadMD/hGHBZIFSWY8GAcT5gxpJJONAfD1ztHTYG2nGH3S5oaciOnS7UnyJ4ya90sDJATKauBKCmUsCunCVERknGt5xInk6qhTs0wgERiBQYNAR7HVULbuXAS32BlTsGXlDHAes3+DlQHSh0nZhDgUKDgcU5vErfMghLANnjy7xD7IJ5h1l04xQAIcQaC3VzBnyaKNNwujWcKBGQhx+2X8bcWzJB4AJI7RR01wvQwe/W2XRAD3h5oKND7YAINZ8I2pPx5BLz3xigu3m078Z0NGYSQGPvjsSPKKDDYa4os303W0WnNpCozgBvhI5cWO6VdPjO+0v759s5aPjZyTZbAdf0uzTKk/L3D4d1f359PvbX8e/y9LoEaNzL3Mtpe8c69jQYy/H6/rjLP/vMr+Q5+tP3f/TYy+Q+Yzc9A2ebb+r8PZmp+fhYrvfZeT09t/mR2cnTd4Bt++z8nHm9+7ctQPg4Th8ZXJ+d07rOfW3933uICBkIGXRHvDWTIapkW8+/C0orkCLR/RSQnuAxKc4uAg3/otQzbImyy1k6drJYWCJrvwEA6l2yU1iOtQWgVkITkOthJY/TJs1BziDLJHyhKCnWIPe5xp4xnj43tTRrrZscACCD0gssvaeUg1SPBBeDYIiiaINOzcWBeihKU9xfG1q7UaJCvqDWO0t1NLp3Dfr0vfOr1hrB9cAVJUxjXJF89wmoaBYVhmtObRmKF1txBsODLJU8p/Qpc5jcmEy0QY3G6xpowehozVAq/ZHbfRBIK4rWqP9YSsH93lHridYaWn2gFnaDOw5eX9EKlAoTwRg6G2wUKSimMMnn4vYpgI5Z3uhpAAVMVogEmMPKCSbP4jXT4YqkigTIUULYelDxWiDocxGG7mDsb9y/OM4ptF0EqCV0UKPcNH32fN8oEfeIBTN7+WWUs7GpLcmtkRphEPr9NCWGkkmV6IbMsrgC0wS4AHpy276KSFBGDKcJjilQxXj+onCGFLRbgS54qIBzq45EpCg0mFdmwHV5gJrKxjR94DwvnNHNDSCjrwDh/+UdUdSyGilNj12Ex5HdZ43z8TBAyUxy0PcmLQ3ROxEjWIHmmYSUiEEBw+DeWziHigOuHJMiUX2Svrt7Fn1w3UxwKgMGC7Fyg2uZ2k2XXgybusXaHbhGCqynX5DXhLluVwUQ155olEYK9yQrYdMiLhqDBAdlQE0bcPUkRc14B3H9658Z4W6//7H94g8DT4niJfKdKJiCK5cXPk0NknC9amlz88F3G948+Q8b3w837XgNHZhdZNJnwPgpQvXh4+Cbk4Xn85pLLh0zn2O/Dff2+oXIfQd+QQKU28GnCHplPg9kWQPjuVRh8GXvVKC1EuxIbubGOXRna+gRmfwxHI9zoJ0DY3BzztI41QIpPhlEZCucOM+B97cT7+8nih44jhuOYPyU2qCVWXTqjlRoaajtiL+FTpAAmbXODXvSDyXrXLk1qXIjVpco8QvOsWTQG0GQf/yiiJuZRUvaMIgl6MHhzCPuq4PlP4w1Ngcv6MW+Bp6sIieCXyrr5bObHTOEwhJCJWgH73ORbxN085l9Bkgr0xuOfnSSMg3BVMfa3JzrbvSOS06IPFDUUNXmPJ8AlQ126UrQ6gpxvSyfKRJttkt4fRVrmWxrxY2AiLbJ8ALkyYmewuuD0t+kwbOjmg+CQRoohTtI6bUB6Wd0hDuB0VHCebQoC2SVorBN8KCZq2oofUDOC7AB78oN2G2Wu7lT3dJGUHKvAE3dIcMgI41sbEYjxPZcQlMlDHGcC+eGzLIykRDdGwa7DCtA503MzE3yA1IHQNxjg881vxzuuYEH+KNg55qE91QFmo5BHN+dY7KX36TNAYT3GIoajpNBQkQ4sippwBiZcy3KnKFwhJA1dAorTybctOK5TngVHB+d4FXULs1rnt2VIvPGf5Oev+wls8PytMnl3yQWkkKmiSTIXAGtkHKHtjv0uKN9+TPKywv05RV4/QK/3+Avd9gtutwdDX5v8KrwJkCUlkljyo46UNE9RwEvwhJa4X13UKtqaIFphekRAtMcBz2+otQb6vESug0GsQeGnaCc/wMT0Em7ZBLALBlOvTzmtdfawo4IRC9ETS07AcpeQhL2NuZCll3mnFTTcNIdpRS4M8BiNjw3t/DBkinpNu8YJJ0Z53rrD4hdqDICqnNUE9hQ+Cio1oIrRs+Sjg1Ld5Glb5l88Bo2yLELkPeFEj0H4JFZBCiUn4ynff8MEmxMUY51Ir/TX3CJv/lcFumQSiHbymMue7CJ3QHXygDFFG6NTrsFrWATB5b1I0/Lc6/f/QOfgJGqsNzTQYp9cXbOCeA3w7mV4AKy3fvM76VPsJYX7UaUOS3fMG3b9wDLevhcup/5Ymtp7+zytJ+IOYT5OflZ7AK0/Lw1b9PfcrLFfB0rz+HpdRvo9Ecfmyl7cpE/AjM7Q+szZlIeYHe/9/f/eEzXcxOcTz/v6fn0F/zjG5+OOc837S0w58l+bfN123XLPOT3n50+1w/95x89vz3SJ5e0/boGXoMtocG29GAea1GYFwLB7qAKP6aP4XAm1kQBoSSDiRPQso5sxDDraHOOzJPit4wdeJ4p8KzboOQ1PPv7oiC4lXPfOd67zNH8AzzsWsz/Qi1NLQWlNm5xoNnworChGKOT0W4M9D2AqDHoPxel9qEbR0yboFTFcdTQTbqhlle0dkerNyYMzDG6odYrZDdOiCQDqkOVJYtjBPDlATwFCOceuQ0Lxg2yLUPYQ+E9xIwIPQcGiJhMwFI/t/S7jQwZGyjdoFFCmCBU7wWlsnTNHaiVciG1ntSJqg1j3NloqDa4UVsxE0ZKETFAqfXnsT/PNZB+p+dNXgwnF4my1WQDyjIcUz/P5p4hH79yfSTTHxvolHsVQnlQ8gsBQpHNJPPY8XekLEruYcs2EkjhWJeMF53J/vTrUv5CnLqIkT8Cu+lJ+FcInzJfbzMu4PlhG1+f+sBV87wz2RV1O1Gel2x3eKIBEnvjRf8jWN4MP7YSN7dF0EF0egVxhLRxGkynogUz3pob07b5xvvGYMWJBIsJ4aPZCEZ1JIwQ1+9ZpeDhK276XGtPSp/JplbXTIRAyWKeMexYn5HrBMYyUFuNA9yjOY+tfcnm2OT1COYem8+l+frOPkuAUiyp01LoO1h05Yv1mvPKNkkjXh+Poh6n5DlXlnXkPf5je/EfB54wphPG3xP3TCqgrkBIFnKaujsLcPr+xDSE/fbNNultPN7+HplziQaSF5+tH2kcBWtT3963/ajYb1ost72rHbYNeT/CPCVZ17u9/gl02oIu9xRq5sM+LAgOzfjOEc6FmiJopd3QWsVxMHsbWxeDY3eMIRh6h0nBMMF5Oc6TWVSXBtEbtXGqo0QdMQPBgff33/Ht24XffvuGb7+/43Z7wS+/fIGLQkpFOUjhFT1o0DXLVGq0RWc5SursyMSOLQAlAiu2zSNIjQx8g0sngGKDmWMJw+l8v42O7HRklg7DEtGk5k8yMSITEWProwTIAWT6xpEaAfu9SMomWVO3G4NKFUUtBzcoRNtLnVU/LHnBoFFPh80S8Nic63Se0ml1A1DgpSI3aUa8XBPWKYh42gM2BEUbadQSG2pSMG3AZn10x7gurC5V7LrEIKzOHdIT/ggdGBMHW5O30KoJTSRDaAJgXYtdcOtQsJOVh7YJGU/nFLL2AJfEOnC+A+cDcp3Q3hcwlVm1WB3DqQsAONQ7ASmwPt0RXQQtdJL6hSngDW6udTPW0o0870Eqr/cB6w5m20Ppd94vzBhAkKLLMadMAFPIlfRuATx7rQS5W5foYLLX0r6wlC0UwiR/Ii2/xBwtslqOF43jhU2yOE4aIAvLkPNLwgZWKWQ1gja0e4qlb/xKF4IdyoBap2MV5VjQyOeN0H2Q3Ne43hJInwWWQvp0lMB6OGUCTFaSSqiCOY/BuUHQLrNrNjGrBWPNXGNk5pDDIEKh5/YCvf8J+vIL6v1n3P/tv+D46U9oP/0CfPkKHDfY/Y5RCe5aVVgtFK+teV0OlNVlxLRDtcPUYM3JekEH/C3m/UmRVlf0CIzEWbiot59R2g3l9oVOoA8Me0DsAfcL5t/IgELYtwQ1ugHONaFaCHKOwRKeWFvQitSwq/cD2URhhpvTEXKMDgiy9JR6GaqKVjvMsvyA3ucUOPZg1qS2mUsIlMd9niyeE369Adcbmj9w+IXhA81A4KlXHKao7mCSlnT0ogItlfbOqOMCKAryumj6KJY+oHigQ6bwNtOLSdFPLbXOsjjXsF0xy8PMhbfM+RiojivZZglKMbvsy82IVs9kPTGx4eos8yseZUGd4uB2g1sFxuBrwuanHZkuTK49BGC8FmNedpxjlAoIdfPMHdVmNdHmgPINFjj4KpgCcbn8Pc7BDZP9uDsykj89uTK+veajA7uDJZuDLeuzni9eYm6W7edcxz6/cw8fcw6qLm26vO4MRvIxu/jsZ+eLDbQ/95EZtH/+/vOzvAKvLcsuPmN3ffb4DKj6IXg1fYFP3pMGcXtk4JyPLP+bMWmALj4ZHvJ8XfOG87PTD3o+z/3rH17oOs6H18r2FzKLlDF3SdeIIKsLIEooXqHR1bVwv1WWZUPo5xicJe16waSADSEasp177xfySEiGveqMmnxNPGobAVPzrkQgRqeL90OUNk/idTmlNWkO7lESw+TEHDVfpeJkQIUf1tpM0NZ6hA+G6AiqGEOgnZo37tyLEZozvUfjnVLDD4sy4sJudrfbgZcXNvS5HT/jaC9o7QbVEro5A4/HifPqeJwP6sdk6V2vATxdDMDDEdJZ1o3Z8eq6DOwsSRDFvU9QLFmUyZKcSZE4mhuhkN4B7c5Su+7RSt5wXSOAJ0FrTK7XWuI1El37qAN1axUv91e01nC73dAqtVoVEtqqBWg3WDSsgrPZj4YvnA1XuDYyOZv+DIDwvSLCDb8fSK26vUmQaxbAZ9jGMshk+sAtxoslY+YXkHsO80ih28QOcWwitOEnsqondvu6xjnsiU2rjyzZBLgfWOgZiFnsNcF0mrym9CECfvLoFMsgZbKdiiiqJkgG1ACcVB0t+sAAgrHFXxeiezgiXvfQTjRD6oCpNK6FqAqhXiWBSBmOPp5lcHL32vWd3FbS4Cl5thlMNotiZpunR/9rWJ+fzz2UzCc3xqQwwDb5Fn6uhA/rcMkuzgA8dH3j3Kxn5cGI41mca14QY1uBQfW+4slgIkn4zcxN0mjK9KlXR8rUH/aUFtnj2jTKgtVR1IwsxKLLVsd5cZziSQjLCyeRYLGq/8B2+OnjXyi1iwA+TkYkwg5d9GYB5mbHBSVR0rEvou8p0bnJTvQ2XvcRxNn/DgRQFBNhIYHrmJnJXRmszdnBkw8yz+fj8589cqGn487fn52E764vrwsr87Phk3AQCGLCX8IIUvhW6w3tuON2f0G7NdzvB16/3FCbo1RHbYYx3tGvE7/9/g1DXiHlBa8//YKff/4Jr19f8OtffsXr1ztu9wqpjnYoShOYnVGy1PH721/xH3994H/8X38D3PHTzzf8UhtQFV6VisPR7YgCv1zAyQJge0yDdS5ckzoD6VoiQDJmq5IFlRuoiOC43Wl0zndg0poNwy7YYF1rCTHgEsZPhBmERJ0XuBmlE0GrbjWgCRuYbKEsq5qBVzpFDil0Eg7NjiyInFxuLRQrhF1wvMFwYeAKinx4VBHA0bAmO2TPDicLgXRhFVKbL+e4DqQeCxP46NT6ggnF5WP+qAsEhai8gQwDAbQwG+YRwFB+ino1pTZklrFoCQ2n0LFwQNzRT4c4a6HPs099jJodAMcJsTeIPQB7wM432PWAnSfk6tQmdjqNPjrkfAfevwH9gl8P+PsJPy+M9wv+cOBy2DsgpmhOCq27w4MirrE2yD4asD5CS4pFQ1kaNbt5OFCGoUUw2IfhvC6c14COAvcKRyWG5OlYLoM6egQ/EFSXmCvL2Lr71CAiI9uXvpJjzYMAtUpk4lRknnceUAQoNY8TQqGh8caNJ7ImFky/0ODw8KroQBvEBjBYr64uqChRRbVpKgUonOCvebrpzIyqOGqN7KYAHkAyASwJJ0ygyrbNngMjHs01F+tUw5Ebye+UGBdu87yXYQv2xES6FhkAJLAslcfvosD9BXj5Bbd//284fv5f0H76N9z+8/8B3L/Cj1eM2wt6UfSiGOrsLFYK9DiCmanzvHnu/O64MOSCYOBdLwguENR4QMoAtGP4G7w8IPWd89/Bddm+wOoNo9xjHAxmD8AfADpUqI3kILiStt8nK4e2xUFw8Lo6LFmAZQFP1xjRtIFaGOzG00JngLpF5/UOP3l9RSWAJzpEqoJaZN4HllmMKBXg3lSNJaASm76NEzZO9PN3+PgGs3eMt7+i/+0/MP7+N/j//O+Q01AuRx2FDEsTwE/uGU3hWgPoboB3BpkVUxy+3qjTMqBQJ/xJtrqh6B1VK67rBHyEZlqC3g8oBsXVi8OvzntZHKWlgIbAKQyGIjd4lGIzAHBOzwD6++VAK9SiYH8Nspz8guEbxDqqKAZOlHZA7qHJMr/2oHugD6duWgJT4SxpMpVy14qIgxp2ZTqcnjbAl0ZEHwHQZmYaiAAcYctSUyJKRW1tSzJBB0XRXHGydE8kfZq1NwIeCZ+V1Mt1uhCuD8k3hL2Y7JLv2UDpn6mmgx06fQGy7QDUCigWmJT6SgCCzfd9Gdn6wM124/n4H33T/fgfWVC73tME/T4BmPZr9gA8Pr6OZ9LnT1OzScsK3GfAuQ+3zfNXkdU+3hnk2HyjLL982l+WfUy/J/csOsxzHjzpldgGJviH+84XTACV8QqvY5hPv3eE26Ixr6UgyneDaWJkO8FY8pSBnVqFIHww7agHIKXAxGDjhHcApdI9LQofLIsWNzKhggGKOD8AUx8tO2RDEJ1mba7RqfPiHqV/G7Ms9k1oBHIIG6IsRRYRAkON8hP319epw4RMkCLA42g5P6wjte3GeKff2y/ccAsAaI23FEe9FdRW8OXrDfeXL7jdXvHl5VeUcovSbOrEmAPX2en/PB74/fdv6NeF8zpxnWdUG7B7p4dvUbUG80zQ+0C/Bt7eHjhP6stolPRn+/lcEmMsncykns6Easz4fH3vBJxFgVpD00jZSKdWAlHnCZQSifLS0UrBeVQ8Hu+UhagVt3awBK/V2dTnaAdaNibaGrSspkQ8J8YoAoyU6oikLggaFNTQql0gZlh3ztuBmYgVdO7BSj9tjBH7nLEUrgQgFK7QcaPeXyuOoty/NGLnBPTTBtOo7wwqrscRZY6Z2CZQ6stfjuXJrc+hlfsKBapPWCTNRCpmIxV1JtHVQ/7AY09Szm3YZPSX6PImwGT1lpoMYUMVYxdJeHQStrA/0/VCitvH0PDclVUA3EMqNKoWHLKmEkJuxAXJFkKsk7TR2WUwS9g4RhxnulyL6ThZzXGelIoP4ChsUoJTQwAvg2LrELSbRmc6QEJDEg60Sj/YAmSDG65xMp4SR2kZUiu7dCrPqc79nzdQVdFag40rBkpwtIOvGVvMIQt0LMmMENkAKcDEQvKpzPVIwNzhhWsxE2jigqy/CrPOpJgtovVmVv/Q418QF3/6bQOZPnuxf/d6HkPmIv8se/QdW+iDAxD70XLU5od8j7657088Z8By9H29dSKEuak8nUe84DuXIpwX4Hnws0Z8BYzb9cXzC6zbGU9xkarQegDSWPJUX3DcX3B7+YL76x1fvr7gl1+/oN2AWg21DfTrNzweb0AtGPiCerzi51//HT/98hUvr3d8+fqK20tDPQpKBeqh0CqwUUnvxQlHA9CgSlbV7f4Fx+2G0thinFUPzBArDIYOcUUfJ2oJ6rLEdTrrwDkXBIoGZk+SYQIk08pNWR+LhfTPzT0NriS7Lem+QuMagdOK9UcOJIEoZ/YrwT7WuiYImeO+wtz9JivRm3BQHFPMPXeN+LxhHeZXiCZGt4Rg1ebCZdIknI28pH2ykTo4N6S5TefvewYCUQISZX+ho4ciZHW4KTe+zNK4zzr2WSooQgYAgikTrTtdwjm2gW4PsEXawOhjOqikoDLgc7sgdgHjYqnQGBDrbBlvDjeBjxAIDE0n7xdwdtjZ4WeHnQN+OUklXTgMEqBFAoQWtHlRNswyATq/50rCDBriHjmgrrFhgdfhjuJREhSMi7n4thI6N0CjLDIZeo41bxAATqrhcCNeTKfljMua7xHk6pbBos1ZxRHqge2aBwmEkyTBrJyLGodOq6NpW+GzM17CPnMd+dp4gEWlnfYw7i8ZRx4nk5lNbEEG7wOzeBw3QYCjsubjfAuoPZdOO3OIcVbiM1Of9tjB898qGsINjDVZBF4K5H5Def2CL3/+M9qv/4b603+C/vpn2O0Vo71AX15QS4FUQavsAFRaQbs3ArqiS3BU4nrFYd7h3kFw6Ay6dZ/OpVmH+A2Qd4jcIPYeUYjA9AUDDd1vwTpwgi1oADpEqQ3E7GfqGYUNUxBkK9FNUisUB8Qr4BWwAJ6U5Wzm2XE0uvCVzPTbmp8W99ac5dtmMxHUS7BdYRj9JNs0WhCpO8oASmjFwQdsvGOME/39bxj9N/h4g73/Dedvf8f5+28Yv/9PyAn4Jei9QZ0aG45OZmgXUNSSYO8A55A06td5VU4io9cpXiDGLoBqBkWFSENFi2CyA6PQEbscKgOq0fJYJEDhaJGN2JsCuIOyRM5FoyrHGUckQxAGeIV72lPK8JO5IZDBAIvLQ0DdvAIiowloSawrZr+5XHwyKwQCsygx2FyZgHWXzQ6NkQS02JwiWEbxfGyoc32v/S2AtVivU6sy8mQS6x2x5jbDNM9n7cY/8PkmkLy9Ly9Hnn/OPXcCV08HDFv3AfyReQ4K1QRtlpD3DuRYlA7sYE++Zr+yp3Ky+Tny9NqP/qhOAfcP1+iYwNWPgKfP/paB0bTQKU+wD71vN8XXN9/u8fR91l8/6JrkMeKO+7pX8+f9mn19UN6dyYT6CDrNj4j95eNzCdQI95v0eRzPvrYKYJp7fvpvEtpnkYDbftagNJbRkKVIZRwElo3twilInOt+bNeaq4+jvI/b9Df3+SzLz58xCZj88xFPhYB1av2xQY5w7zluKEfD7eUFtTZoqaukHRKsD34fo4BIBpk+YxSMsvyZbOIBIQuo3graUXC/3/DycsftdsfLlzuKhiSGZFkzcNaKehXUynDxuirKSYaR2YCjrjInM7QSzSAcuK6BXnsEwRfHzSxkPyTax+d9w5xnZKcs34pLOUc8BL/do0raqe2p4euYowyH2zWBp1I6Ro3KiGEUlq4F/bom8FSVLP/eLxytUYy81ifgSZPltEu15NxyQ7axV2hgPYpNy5znb7kkEjjuy0/PUjqQ6cSytdyPfPqBJTrXlUIdWsaC6zt9qW1OJnCTfgscCaTQl8yTypOc3vEKL30git9RMkZAsrIYAygSbI3743G+Emxct+0c+XzqDebqck+9K75m7oVzva21v3R/MRmMGQdK+JSI521/90y+xj30ZAeT7ZTAcbL7eo974zZjzRKC7XuycwYBGGt8g6GOp+oBZnME2ZTHUTXua7DCJNRNWkF03AWGJuPOJ5OszIoJnSwuS7064Tgxgcj7ms0M0t6lLmAaVs/5MbfYLVmSS9KxmpalAy4CR4FfjPnEZb4+92/JcZp78/79nz/+MPCUyZeMNZ4fa3PcHZ/Z0W4HkbA2eF7symYx/ktldd+mZrzWvgeG9geBqc8doP2z1jH216Qb9vkwppOXx1lr25/e8JHNtX/Ek18XrxMIdYIkmAiRxT7uP0PLHVIOaP2C+8sr7q9f8Kc//Ql/+svP+E//+S94eQVKMZRy4vH4K37/9nfU//7/BcoXHLcv+Mu//z/w088/4bgf1FWtkek+lJNXHcAd1/lg97ryipdXB+SGn3/+itfXO376+Qvq0djiWxzD2VHIzUm/w4A9Og4cKLVSGDKMMbGHqBlvL4FIZ7abN9ztxIisWhVmpEoZ0ylkNo8Dx6qSNGQUyKUjGkqBYpSuiU26JwalmKUmqY/lExBYDWuZ7F8gABxTa2feYN82WPcQeqN4sI0zdJaMJXKWBqmgVqyAPBwfOMfRBsv0ppB6CBRmtp8bSjIRHFMxL4IoLbF51gqgg+ynyIywiDrENEFNrQRcCsJoFhThxlxV8RgPdDM8Hg+YvYPpxMycOPqFKG/pgD2A8QD6O7QTfCpjABatTE6y6dA7yrn0nfxxYbydGI8L19sFXAIZAukrM54bCUaWwwRjyFjSowPAhsoDQQF1gnAS0MuyxBXDBGakrSf7i1mamChYbqcFbGPCTG363Cl2LXCCaxK0YSzTntWyOW8m2BcbN2Kj3p1hplDiIGJTcJgvp7NI7au0HUsccn0KQpid95WHI30ZMfdKuCdPgUPO9zTV7oAGozCdcl8QfpboToAv3KwmQpFEAJlBGe4UdY8llMVhBqAWgj/DHT2Dn3Aw3D1L3OcJqiqkKvQ40H7+ituf/ox//6//BeXX/wx8/Td8e/0KP14g7Yb2y0+o94b6cqDegHYAt5vi5bWgFAYHPCpvVjYuIDuQWbLrOnGdBF7f3i5cjxP9PPFN/g473+F4A+RBX1oVAw3uBWbs9lkE0GIouMDM7kVwRJLmHwMvxjGdiXCCT9mhU2Wxndw1NGuphyJeo6REIcoMHVGULXvuqc2R2hIGBOvKxrUxnjpTkWNAzhNyntRP6w+4PWDjgf7+V5xv/4F+/g6cf4c/3uGPE/7bBT8FcinO84aKhiYHAr9HLwqgA9IBHbDILtdDUG+CUgH0LNcGHC38a4WMAu+UKz/0gNmFcT2AXoBRKc6LzrFVg5QCKGn12cYdDmSJOHAHlF3oSKPnve/msMjQwrlP2CykiNJaB2AV1gtKq6jeYGiA3gA9WIIuLNEmsEna+rARW4g/27hcvZP+RHuVwTUrUzMg518czq6EWbbgLGWwCBJop4SVxJYsKZ32q/dF0bdY2wk6pFUQfbYP7sngSt8O631xZpur98G0+AdzkzckH89vYsCcJTw5TsHLjKDio5A3z8efvq9z96fXpfecx8jvyWb62DVvZz8BwaxK8entsz9jWuXzCVztx2bAvwKeCUK5T9ZRsh+AGbOv4ctgwdO3WDbss/P+0fh8r2kVyZFPgLSPYzKz5ZsO5P53CZ8+WbVP7KrwpUWZcELsIw6FFLL13FP7iWC01krw1xWH32BWYLVCi2BcJ/rjLdV+oW6BatGO5thpdL79rNoih5QDxzHXZDzn+lR+fpaLk5XLDVKroLYS5XUFx/0F7bjh5ctXtOMIfadG5n8wZixK2dhti0zO0RVmHaMf894LytzLtQjqTVGPgtfXhtfXL7jdX/H16ytFyDWTvRJyCQPX1XCeFa0VXNeF9/eG9/ca5c0bswYUixYQYE9xY1VFqQ+oXnOPtNCHyr2MQNaqPvDQ0lzEA86ujPuSVTfSjRfAh0Evg6rgKoPJ8uoolUyVR7nQjgu1UKi9lhJBueCoDaUU3FrD7ThYjnew4VEJMG2y4xNsSlBK2T22IJoTlWD3aIEi9pVYFx4lWJzHV8QhqXk6QF88QCeMCUpJ7PWlgAwnwSy509D8WYB7POcJlEc35N0AeI8Ywde57fGzg/sIqB91XZEc94KiDVX2F8Ye5atclHEEj0Yh9DEr2EsBqtryGYO9PhD3Ndd3vF4Us8GPKEISUSDdoR5gWJj1ZGhJLMhp7y0bBuX1+yQWBIczYrMFOGUXuKtnB/IxfXFVoJaVvNW4ZovklmeDgPi49BpFMJOhrGQYKAq0oqhVZqzZL8CSWBH3gCBzslVZRXK0iqPVYPtxPof00gR+OCVDCNzDJwmfwqazLOiS0kiDVSfzL/yn1lh/5hhCMNTB0kb3AJOxWE+WBQsZNrtvANT2+IPY0x8HnmKwTH1FV3OeS87t+EpaVzg+uRl9mi7DmkBzYGik9ta3SW/jn+W792VQ+PkjwsR5Hvn8Hhrm1/bcBMvmiX5y7OQkbJvWfnSJV0hqu3z3dqLPotB2Q2kHarvh9adf0W6vqMcrjpevuL1+wevXL/iv//t/xa9/+gl//stPKKVD5ALkgd5/ws/nG77++c/QekepB477K9rRWLbTmIGBZqCaXA3+7ZCG//V/+2/RTt5wHAXUWDrn+AGAlkDrdQByTnbAdT0wrEBHZHqCLprjMRwLeBLqlUhMeAENde9lGToJiuM4Ab9o9Cdqnt3kQgvCEAFWsjjoHI/RqQ1lFC9MqmKtNQwVs8BFwykuUTe7OYZ57xIEmToB3L5gXtEHszx9OK6TJYF2ebxCKFBsDIqiVggxmFH6Z7jMMISouY8H3Enb9dhU2N0EoD5PsBwkSuTyHseY1wKcfUQHEgrWaamQUqOxE8EnBrRRMuvMNqkoLICkfr1BnGVG8MxGcjNQH7xvvQP9AjrZTNIvaB/AmcDTBX1c0NGhwXby3jEeHfIYLM3pCnShiNMVeSLxcLBWp7MJsoxgMVmBm6U+31qeIVyam22yleAM5qoQjMmNtkh0d4sAle/12ajOILDUprDY0MzRo2sckyMx19Phz812WpacTbtN2cx27PnpyLjaLBUlsMh3F1ck+2eWZHhslnn9xteqBp/FAevG7oKBLs0Oe/sjSWXCFssESLbTn5bAWQMfDL0MHASkCHuhrR3RwWOA+0dK32wSOPxdBKYh9C4MwA2ILE4CfQavBq0CNMAPx+1uuL8a/vyXhuPfbqi/3PH7S8W4Vfj9wP3PL2gvFe2lgo1vHLUBR0OUCV/z0jxABXfBcLLhGEwd3DeMrX7Ph+HxPvAf/+M3PN7e8P7tG873N9hw+JDoXhLH0kKpEnGCIOKQ0qeDmPePtsDiyydDh1lZlgWwNFIngDI891fBdS2aqIfdJFAxJiiRYRM1kfic2wmzDrMKGy20RC6c336Hd6Og//sb/DrR379hXL/D+zvG+T9xffsr7PwN/v43yHVC+kC5AOkFOirkElQAVQS1ZOfUgPXFgdBGgRboARx3QTmA49FggX56UZgpzFs4iixJvt3uOPsbrrcBv9j1E72y9FnI5JUKoBRoHfA+6KM1NufQckD0Fe53QA52RFKBFYUVCUcOOMWJ8XM1IT0EggLKznb4CS4/QctPKOUru722F0ipcCHY5LG/yfDpaIiu7kvUwYxbGCU6KilYj2Dtpvu0vA2PoUy7lD19gj1Pk8IkNtwkgFXAnMXIDPy25xMcCsB42/Y3Y+HT+fz4+/PzH9+3MpY/8tP2Tm07S2uWeCGy6MhE5fdJzN03/Ez/aX98VlaXPydI9PH1z7/Hc9mI4Qm4+fxRSmrEbK/1hFppDzyy6AnQWM6bPK4niPeBHYXFmvr42EsKPxuveOb5TT+4js9kMD57TDaZY4FNDmbQ44ojYuX9fPoQR1R1h2SHkAEJwRiV5R9mEGtkHQqgtgJw6woyh1jmz26TeY1MXDJOi4RRlq6HxtGSgeB7uGdFhBDrVkuBx/2c5eCFZfLtTj/zuB1otzuBp68/kf1UD5RyR67Y0Q3WWVI3rvSpL/ioIYMxph8Dp+aYg4F7bYLSFC8vB+73F9zuNxz3ZE9wZmSZW22C1oHaWAo1esP9peG67qFjliVbEQNUltr1s0d5XUcJJhcAnOcbhgM1SsHHwNyHmItbc6T4Fvts58UpojkxsKpFYuQtwv5I0EqPgF8dx9XJ+qqGVjQAWqCWK0rtKm5HQ6sVt9uBGsBT0Sy1U9QWz5US11agNtA8qjy8wCxK9dAg4ST5MHjq3gwPRjT1mzwqORAsqKDyx7gmaOMT4Mh1n6wbzrv0EJfdhVNTy2F4KvnzqQQ8o+iMnRd7JwdeCHwJwsZmpUoKawvYJTtskqxkpIAALIzxV+rNpX3OgixBghIZm69r5N6ZFQK5wRTABhP17oxtPOyGpe6koEcXPN9AkJxUHn65x4ruQQAYYwRoSp2z67oWy27aF7KRShG0Qua4iEMxUAoZ1DtbaO7VIjiEIE6rwK0JWhMcTXG7cU61VuBHwTDH+eg4CnBdQJEeJfQEV9vB1x43MhJLjUXkBlWWtXpxFHe05sGSTLkOQU4Jj9+lR7khbLN79M/JoE7Op6K2NispmHR12Kye8bn/jGEYXSKJBWRZovjHBPE/f/zxUrvMqhumAjqDuXyFz0kP5OaE+ZWIaDJZPtKaP//Q7z2ZhaLnpI7P3j7rw0G2z0nnJY/z4cW5gf6DU/rsFD+jfO+ldLk4fuTk8Kug1he0G7++/PQn3L98xe3lFbcvP+H2+oKXr6/483/6FV9/fsXLLy8QnEA4xKU76q2h3Bq0tklNJqIvkEYLIiKrC0UahAIoFK9f67weUYfZiat/g3mfY6Kh2cVoPyJlj8wUyCJRVwJAtgQuDSeSaSOFq4R1xAg6nQHhWGiUjBA5p3hsisTRQRFk1v4J9nOJc8r7wY2UdeuAq05dKHGN+la+PJ0hD8bUmkcy7yE/O1xgyYVcIFIh6DBTMmqGzPN0yKaLwXIX3m/d1gMwfIlTwqgH494Bo0Cw2yDxyBDj1MJ5is3PalwHx0tDE8v7YGBTBrQSQGIJUIGiTopnNoRSEeh4h44HdJxzwwRk6lTx3yy5y3MbQO+Q3qEXv+MawDXm73oN2MXW5Dg7/DLgcsjgXGH3KplBkCXFFamdhOhE689MJ/cJPuX69djUfXN6DXyvxH3MfavEJpl8g8wWZWZup5nadBYsunHkfNkCFc8MODA7o8xdUqYxze0a8XkzW53zToAJ6mfNf3ye4vk6NFYC/YzIGadtNAJFa2cCPo1PJvCUAzHNSx4dyQlNRyRNmRgvq+RaAe3ISOdk3skATQTzOulPU9cHATxlTm+kfoSAZb5KZ8jlguKBgnc0fcNLe8dxe6C8nPB7AV4K7l8u1BegvYAd/4pDK1BLnnCOR9gLkbizsXchW9fnbXVcN+C8Uxb78dbw/nLg7e0FoztJfhdiXiZtGigSZWBiXP+eY5dAOailoNmiOIHQBJ4W8OGO0Eyxda4xhgayJdnMoWLVpefGaFx7bhHQ1NDOuxh0jIHRG843g10KeRj07MDluN4qxqPCeoW9V/RvBeNR4G9kKcqwAIRZEqi9wIRfXhTRbzkmGNlZ7gA0gFyhQzqIr/E1tWzzNcoqpFBzwwr8AjzLbgfBaxePeFOp2WXOtKqmjS9Qpygx5AbgDtEDVitGqagtyxm3dS+A1Jzw20LRAtGfIOULtL5Ayx1aboBSAJ04b6d2inUgM8MiqFFuk8yeyQZAAC6T+h8B2fQjlt8yc9rh26Sjn2DxfJXFmPral2TTohJnoMKKw8UO8/0zEHtY/iGOTRsZLPKMIz4+fDF5tvrgeYz9mnhMAk8acyWFmwGZDJgf6TF9BoL8qASOp/ZcIvejMrtPjyUyT1+29/yjkjsAU5NqMqC2co31Lo7VZIpNgCrGcx5ftnf4vF8ec2afIwQdn5lczxUA6ziZad8d6k/LFrefd62tp7K2uYZl6sXlHgLHnEM744vzIOeAUI8t3DWtUf6kgmI19mGHRVONLL2D086wwAl0HnKtzNIN2c4zg36L8drYcflNIuiOxg4eG6FGaYwo2U7H7UBtDbf7QZ/+uOF+f0W93VDrDaXekWwkin+fGFdBL8KEWpT0IhKnMpmWmDphUGfjthoJ1cYEZCmCUsLUbstrNaOIQ1VFHdSlGUaB4xFd7eADR6Wu1qUK0U720dXQ2oXamEwoCgyNqo01c7eY54NJ8KdvmElB+GYHBZkYB0himF0u00dRRKkfNe16sY29YiiqGJ2J11YHhjlaHRQsL4WJNVE0b6ilUKPLC1SNYIMCVN1BsEhjH4s54NP3TcAmmMZRXoYoscMsYaMvm+VzC3zyBbJzkUz/bZrL+D0ZaUt7b41p+hNr/MMG+b4WE27wsFl5XiPiwvDRQmxpJsji2DOi9fTogpGTOpnYWEibH5n2a5kxY6WAGzLZh80f37/mJbqHDhT3s1kJkAm3eE3uWQk69cGGSwSdkvG0drW8HzxPVqeoJriZNQ/bOhLQN4gxaUKtzFYVLb9Xfq9VqS1cFTaCKeUDogPmwZgFq49qK6hFcVSuJVXAYXDh/JnNNnRpQSP9BQCwaM7j4QlEE66ZyI7rIKte1j2VEM7J2MMcpoYBhYdg+5CNpRv2WoxJOcxxfN4L/tnjXyu1iw8yYNa3IjdG5NTJk0h7HYvBaUpSE/kjSDMBJGyb+IeNbg/gRGTL4mC+bv95f6y//YAOvX3P+bVqlD/3p4AVEK6Ni18aoE9eH/D9Ysq/lVJR6oH76694/elnvHz9Cf/Lf/lf8fOff8HXX3/C68+vaPeG46Xh1z//hNoEUk6YXRCPbEhpqFJx+/mV4qo+cPZzZVwLndzMfTOrnvRLhRYKkWUWtneW32lTovhh7FIBP7vM0UgqpsgeqEcizi4hzN4KLAR4OX3ZDU/rgVKvKC9saPWYYoFuAyYj9KciWEqfJCeU11xpYes0ssNBEbTI7oObg0FCqyg76dUZ2OWc4ljGfPR1x9Jpm+WaorN0rZYv8FFj3xG4jdCf2sTuLGC5kmUg4Hm5g+06KQwtNgA8uBmAwJMNdm/zDgCKIgcUFS4V8BOKAz7oafi4SNc+3+C9w64FuqFUaHsn5VwVEq19W61AZAthA+XxDu8drT/IWjHn5xaWXNYy5bvJAOoD/bxgb++Q60S5rgCbDHh06HlN9tN4fzC7d56wB7Wd5AIDx9BtImuERrcU0nk1AkFyVGn4JLrO7eUHZPey9x0cU/gyLchcnxGoUZQ1SbB5r6PUJ+yXED0AAHTjRieDG6eFvgvb9eS8zMwPliCpCICC9cm5CZOx4TAoe7vRTgywI4sQEivOjSDj383oTsOSAMVkivqY9xQ2KJwKXlhqfSEt09O6iq1qRt0fvUc8BV0IR1AMrGePSIwbXAKvJRhMPsu2PcE4lWC5FLjyOqfrNgzD2GGvy4BHpza/Tth7hf0+4L/9v3D8cuHreMMv9Q2oL0B5wVEeUL1DysuMxj2B29D5SbCSSeHIZsIWoBNfwqWHlxcAL4p/+/kLbHxB78D7Q3BdlDAbF8dQ5lw0apxZiN1GUDcRja2EI5jT4ZSSdSHTLsWtDJF8y9/B7NNw4BoDV2f3xtF91vDnwnDSMpEi4v18YPQL13lSrD/LJt5/gfcHyvU7an+D2AnFG8y+wa532Pk3nG8/Y7z9Hf23L/D+DukPKIAqFVUbFBXqFQUVTch8Cm4Ax14Ulw+wUwugV6yRAgZHWqAInayYcrdScWuK4h3SHfYgcA2L9XIluO/0bAqgRwStCuBQyGiQdgByQPUV0l5Rbz/DjzvsuENvrxilodeG47hhiKBPxy3LStiVCALU+09otxfU4xeU4wukHjBUdAdkULC3jwfGOIFw8EspQL1xDWa3N6GwbiZEpAikxN6OYAAtMzf9I2bZk+W2/CkGCGRFUJaC48/SQQmHLjB8C3ahkhljTi2obgzY9kAybcN3D8k/fvxbWsKlvfjhTUgfcoz+/Hyc5ixuWBMa7oshldf8I9Bp//4RNPlYUvfPWE5/5PHZcffHLlY+/dgI2qYZnmVgHmwUX6V9T2DPOj/L8Q9ke2W199Dj+fp+VB4XFzJf/llQ8fG59HlnAiUTHdvHZkm2waPSn3805yobCFAoyjxLyTKWAitKfwRHjE8EhqawUVhRNypsFJgWZFMTkwLDFZ0xaQd5e76/Rw6P0skEnRBblNBnLBW1NbKQS2UiKq671DIbutzud9Sj4Xa/4f7yiuO44/76E9rxglpvqPUFCL+ZQfED1/mOflW4d4hdUHlBrikVCg2PK+00AzApDilAOxTH0QKAcmgAMbynKU6kKJ3nV5pQP2oYWi/Bjo8SMec4VXZ1QK0BMhXB1Ssep+IMbahSNRhP3MNp2gkQ29ZYKuMpzos112QWLnHPkulryHptTOsB+tcAIMpaDO6eLHFSpZBzi3MtRXG0C7UWHEdnCVMpqPE3LYKjkxHVWmN1iBa02mJeRYI3NFOHgnt4BLjUOF3JV0wdVmoIKSLRFAtAlfas0f2mCHWcN2OBLQ72WMMO2nGfXsLTbIX7ZlF38FoQ3sECZWI9x+6AKIgDO8gG09oBQ8+UW9wnEhMArASvsYUdj83jpDXO5Z6mxMbGuAQmyBErn2C4CNm+FsxBTTu5wJ8sRx3hL885pDKBL4Bj1sdA74arD5zniDXWcV59+XYBYhRxjAq0qpBs6AWgVMzyTcYBAdpEzJ8cuFIUrSluN34/bgXHjXOwlmx4QYBKpKPWgsouPBNETRZlq0yQig50570pOlBLduw1lupx2kc6UrbYhyy9Iuwe2XPs0wIUAlsp0wHB9CU9NnpzwaiYDP5Lg/ihPLdxOcZwlGHBfAppTvdPLOrnjz8MPLXGkxjiSNaqAxQAnM6RTBQyM+cs50kEcW3+n2VPsIVC+2NuhoKMBmOgFtD06ePDwT5Si3ORf/rwBMS+zwh9emyeKEdid4Ly2wcHJrss3G43tHZDaTfU2x1ff/kVv/7lz/hv/8f/jp//8hNef3mBlQdcB1De0OuFITRGDmdplZSpk+QQiId4bSEV1SEY6NSpAdlVKoCWiqJ1GnZxglNFFaUVmF/oQ2FWYpEaUozWR5Q4OJ3xZPFUraxNFWZRPepxbZzLsdKKUhsKjIsgAKTRjcZeGnwMtni9HiF2bVNLgQBLhxV2sMAmEj16/D2D+qgz5hpbLDyL7iVse6kAStT4LmYB3FFKlMbRYsYijfkcjIRWBeI3jKNBnJ1IWM9N598867yjc4cq22bDGcjAYZ0i3gxQ3yEYUGG3Jusd/XyQtQuF6YEqB1QqzE6MzgycAwSuAsDyMRj8DIOFhetXjWwP4ErQpReBpthxP3E93tGvgetymCngBaW9QA9KJxRXKAbEO0bvwNVh5wV/eweuE35dwDmAYVFOF8DT4+JXWMRyBTuhaySKBN4FElmNuZNNUAVT8DtRyGkxcg5HECPzzRMhn3bJg42nATgVKcEwEZZMIRzUWPTs3gG4yJatklXbDQ29BiQaEAbEJwWfsWA6vpHJNs6NpEo7ggoLOug2yxvJpCsAvGST4/WVAHIWa5jmlDUMMGMxNDdbuiIZyKazsceMgkl+h0W56Mqcfsh8iIfuS9pWn6/18CBEPZhmwSp0xwTfVGfWOHu8AQz2zdlOe8BCB0oJNrlhqKNfv6N/G/g/7/9P/P2//39w//UntL/8An19QXm54/anX1G/fkH76SfUL1+graEcB/RgKXK93SGl0eEpNb2d0OhJOzBvXrhWOTpx/RWQUnGY4j4k6OKZCQwgJCZzMk3E8+eyGH7CvdUVsyR7MdzmFF72C2sPHs5N/3LSohNrzBdlJzUzh1+DVGozXI8L13nhfHvgOk9qIVwd/XYHxok67rj7A2oEj/3tHfb+QP/7/8Tv3vDwG97fBxy/A3Kg+UVnS6nTIDCoDByqqCqoiZoqx60Y7y1bL590dk0AaRBnl0/DEoJVYVD4OL/huh6hsTEgZhADaoK/oWFh6gxUihDIcQK/ZizlLU1RvKG0r5D7T8DLV5TXXzDqHaPd8Ci3GTAlFMnxvDgb1HF7YcDy8vqK1g7upyLBYhnoRv2sMU4Mu1g2ZCUaKMS+5WQ4lRrlO+IgA0ZD1yGSRUKnMZNAFL1nsGjWJ3hR9vrYCO5UF8ezxLx2CPXylPZ2ZKlxlM6ICdRsAhpJxZ9+l69s8B4Q7e2cE7xfXlT6QRksyDQ8vW/BxEwGYX7nmizBrBnzdR99yX8EFi2/TOa+8o/YULvP+Fn5HXJOxPPPXfi+P+5nbHdVXbBQBp4IACcAOxGDic37kH7pjO4iqLRkH2Q9CrYhz/GBrKA2/2QrEMQWvn4KJH4yXPuQi9A1ZNIk7rEsdqfBoZLJmWT66dSQ9JGfHln1ucXnGeaJ53qJciA/WDIrEdwaUfyBxVRmIoCNU1hGBfz/afu3JkmSJEsT+1hEVM3c45L3yurrzO4As7OztAQQ3vD/f8A+AEQYImBnp3umu6urqypvEeFmqiLMeGBmUbWIzOocIsCqPN3D3UwvoiIszIcPH56l5QhugPH1Jye/v2SCeGFdV0+W1sooBQktJy/l8lK7y/VCWxeuT08TeLpcX7EsT9S60tozrsEoLozdCrXCVodfgxVnysbtn4GnoYcPZCUYEY0JppQazXTOzwTD144LWSPe+MGlGKLxxhCQGufD2bPqvvcY3mSh1ujctQjLEpp34h2CVR1wGlomOFZKeifHXMoOwnmBGct57rRMP2J2yxuKmjNIHc6JpN9I4CRWicBejFbdBi6L0vdCa0ofxrJ5Od3c6itcuoN167JwGRdnPg3X/8Gag0Liz6Pvio061/Asx7TkZx8sJ8LHghCYJnwlyRnsTN+WlUSSvsYBoGQ8nEw8OTtpYXfAbc7BEivTttv0WcAh3Zj/6e8p7qO6QKV/QoQ2GzgYs1u7HQxFBYZ1qA62ppbTSXKbkWVgImTKyS82YrGSBAaZshQOCHdnqmlBtfnvhtH3MedD37OJk3qirsjUQ00covfUdlK6dvpwndMeoPMwiVI1948Lkdgmyuxq4Xrxbuie+La5phy48afTzOPlpRaXC0i2U5HQw9KoQhEWl6P0hkcWnYjDhyb35kokQKHYoCYrTbx0rkZFDgY2jkqHglfaqDkIn0lOsxFzCOw0K9al5SkZJwEn9+UFXWC/exLzPMdcc8ttRh+hPGshgh7x7q95/WrgqTVh4A4R4ZxY+g3xngN0ko9+PgVfHBs65GCcN8iPdkQeN+tMwpgd6O/EfD/KallO6NN9/Gy27qNXnn5+53w59rDJ2skQzIUmB4CWyPVxDzIDvtoa6+XCuj7R1gvt+YlXb1/x9ou3fP71W9588cT1zcpNbww6KhsqL2SUqAaVCrLMoMgDmg7Riv3IFobTOBeYZ/YRPDiO7HuCL6UWRG12TvKg1YMJLMNGN7S+CRY3YpbmLmtz3UBr30kmSaleEyrV66cRheFZL6cDh1OdYouxidk48FQrAUbVRlJVc+zT0c0ORdNYJ2g56YeZjagxT8rxvviYZQ10OkgZnM/5XWnBHtKlIFrRMmk74Sju08jVyqRSJu3dGSpe149umN6RqA1P4Gnsd6x78G61+xiVho10TYgg1yimNNyQey36mEGq9DJLSNRcwHwUoxUFVUa/s98ceOq9gC6ILNSnMHCqUJyBgnWnedyd7mH3DbYN3XZkH5SuLi6+daQPbNuxe4cxKKGJg3pnJ1UJJlNMK42nGAJ7ApH5gXM20vWfcm6GUxydINwQnkKdDGLis97Vo1Ap00ZBxL48LHLmAOKHLiT4lH5qONlyvC+B6NzUzs58OhPYAbcMSohwHpnhEvOxEN1iRIjGGCQ9+iiflRwo0r3RDP5EnDp7CpJy48nPmaY99f/MQ+XYWa4hI3kMuQkyn0+UylhYxJInCi2uh81J0LgHn49M52gYU5TcxSjBrHhG25QRotmMG+/++fdsH35k+dOF5bsn6vOF+nxlffua9uqZ5e0bljdvqeuFdr1Sr8/U9cL6/Irl8uS6P+vqQqKlIs0DCyRpvhLgmKcoZ5bWgppeloDnnKkjcxBziA/g22GAGg0LGq7bJLNaTEUiUSNMrtUnm7kcU1IiHWDQo3zKncrYn2MteY7AXKA7tCn2rbHfG/tT5X6rjN7Zt539BjKE1pWLCVU7dWuuudQa++jw7oly+4AWZ16a7FQRmoT4aHTVLDKosvi/qTFvotTZ21L6XDaPVl1/Oxx4bZBl0aUFM9DY7i+M7e4sTfWbE3UJcIkazvkMEqULev6sWGnmguRWkXKhLs+U9Q3l+gW6PjGWK9RLgK6xVnOPt46gVDHWq+szXC4Xas324y5MqgFee3fB6BYaNbtdRtgDZz1kVhUzKL7yNQLiubeKB8V2sh+uJ5It36ORx8HDD60oDr8k9/4stfNDHzYi7IPkIeSUoQ4Q1SJosWkJYpxzv8ugaPp456n76E3lK8H+nNtpc8KKTx/MwZ8EVaaX9cnx5nE/AqV++fX4958Dsz5OXP7a17967o/2m/Rb/W/eyS+vATuYT37V9vC5+YP5DpDHP04lx/PxA5x+Pn45S2Ye7+TxbR/fxtwk8t95c3l3/t8CwetlbjAi2QgkQKLp35+ZWsdmLhFQeFmqua3WygzOh7ebc7afr90StkIRSu0HeJN+o4SeIjC7RuUIlxKaLQttXZ0pX4trZzbXSVmi+3NbigNPy8rl6YnL9Yl1ubBeLrS2UuvK0lbSr/ZzK55ZXLxMBqGVTC65n4kZo+gEniYwGSXctcrUOfLEUq6TY7/Nv9WTbqQ1oagwpMx1788oxyrEhieTSCbbqZrr8LVWgjkJRT1ZpqpTsPm852cCeJoJDSZ0MD9K2CEHrwp9tqZ34WOJhN3B4tEJekQunFESRHfGvonrdNaq1GFedl8MRGclQ67xgncXLAJNvcuboWgP2xx+X7bAyKR87Cy4btIBPOW+keLhcnpvAuCx6mYp6kzizRmYz9t4jGlyrZz/aUy2+lx3Mu1ovs+PH1+mc43W+KjhJWvE/nBO8mISOX2Jffl8VE+o5zqtIRB9xP2x1ub1OPDjYZnOZ3iuMNGovMgOdX3sDoaUZFpKsJFCNzFjxtPe6PPJiRBD069ym6InsfIiznRal8q61BAKNzjpuKXpqprAk+s7lerMphrMdR/b0MiV4kBjw5OPNbGEw56X6tdjohRVT0KVmD8SxwwQ36od8QUBPKnQxbtMWjARfV3kvYWaaTnb0HgkxYF8DHSIJ/WiKqf3SKzj/pTh9ialQHKe/Rmi78PrVwNP11YYYnRRejpTFnJi5hOwzLpLphEspQQDJi76FPjoaaKelwixwZ4BLJCosok2j7kcPw705DBkeUQBNx5z0+LwW35mcZ4BBuIKf/57XP10lIIFEcwuDUT8OJlM8dy2XlnXC89vPuPp+ZnL8zOf/fZbvvrt13zx9We8/qpSr3dG+cA+/uA11nXQuUdplgtZC41Wr6z1meqKqoh4mZKOfgj5TudDMOuhAdLo1imlRQnVcojO4ZPf2PFWtEHn151zxwb/nQvDIYVRqu+hRZmJADOqpFORjqmXoPQtvKzimYxSC5d+nX6GDXX7bJ7tHlFTDTBKc9ZWXRBxsWxTd9BNPCuagBuAaIgzTxTUA2Iz12kyalBKJUrMoMuOSJ2ioBLP3AE2Z6i0doEKl6psy53RO33f8BUagoMhdFmKekYqarn3bl4uoS/ouKH7e6x/8Pcy0M2Pt9/vjF3BhFoXxvIUz7sc5WSqyPBW6CtO5cySiaQDV4GCUk3R7Qa6U3Tn0nxz6Pudl5cXz+70RivPtOWJ62cbXK5YW9iza4d16Hf0fqPf3tN/+gm2Hdl3xt6R3cXDZXdhXdkHujuVu4XGlFhhKN462A1LPF8f32pGMyga9fAw9eZC+IcEnmyICz0O8wUsaZg5WRh/ilWEimvGlHB2BLzDg3nAr1kKae68ps0RU2o4rKO4cyP0abcmXei08pM1JMfE9t3V61N9+5fpZkasXIL5dBxjDO8202KT8BLEALPNwgkNRpWFqLLhcEc6KQngSmwaOTRVZtCi0wZmp6xwkOzYJBHPBBVcoNhNfDwjSVvqB3fmJTOw9Yx0xAjmXe32AKZVoNsZeEojVpFxRUyo1l3gvisv//gn3rNhsiNPSrlU6rXQm8BSsXWhPj0hy0JZLnB1AOry9g2fffEFl6cnrq9eI0ul1sbl6Zn16Ym6rBC2hBJBRpbnlkLHr3lrjVIXlmWl1GUmHrycV2YHPYmSESsNk4qUlWwSIHWhSoUQOI2NkGQn5PM6B3CWPyc7K97mzkBS4zPfHN5kdE5MUMpGwfrKfoN9K9xvyoefFNs65d5Z9jtl3xnvN4wNLTt73+GyUdqd23iP9ncwbgjOzB2ijK4RoFQGFwenqCEADnUp9PQAqjB68ZK4tiAtxtE2KA3vPLmiu9J15/0P3wWbU5E+KOrMziUyiAauqj3caWMQJaAG6g0RhnTk6oFNKU8syxva0xfw5jfY+sy4PPPm+TVDCvsEiYPxG51dqyhtGdRqLGvqNQm97/To8DmCreSsNBekxYQdb84gsQ6kOJO0aqOURgvWZ5HhzmjUYFZr0TXSH+DQEVniLUqyhrPSS/pfa5QIGRL7Ra7PGZomqAIR3HliqBYX2s9WzV76JbNhhweH3kTAw9RgHsTCtjlJjznKaebOoDgc9FqT5fP4LtfcCTcB90/yM/k+13zhk9cvMY8gS8zy69PP/Wu/m3YuzKbnZI7OdTmun17DmTX08XnsOFcgUEUkmN35Fp1dnSbbQKNzqcQ6lwgQJoCWg3N2mE/BB8c8iCv8BfDp41eExvZzTKjYm7ybx8wXpd06dtQjAPaw9Lg31TEDR79eZ/akf15qDT0Tl4sYySBsuF+Fs8uhuE2wEezChXz2aoViZYKvJVinzubwBK+UQltWlvXijKdSfW9YGqU12mVhvVy87CaA6GVZuF6fWC9XZ0otF2q9uGRBWyHYKRRvfHFZcQapddQGS82EFdSHUrsT8KwuNm2M0Hs6PuPPpfu9WwBbg/BvnOGv1de5WmWcGEQWPneJBxbkUmo1WoN1ES6XGj6W+2Y+7+sJHInmJABq3lFOPABPP2B0PQCBoVNH9ADr/XfD8JI3LWDO+pJotBIdZzBTshCjZIIBow/oNtirxX6cOk7uX6yLMlYLQMwD86UVT55H6bep4J1Y3adpQWOyo/YsxuFgPUkAVoiXSWUXbkK3x/eQenpeOldUfvmct7CnUdKXou1n22IWrPvB4fXmKhSqlJztaXKZwK0jL7EOj/gVhK7Hus4SYf9o+HZ6gExnF/tcnaKMCRipugxNDUjVxdmVUi5UfJ90qYqwKwToZ8q2b1E6t8U5zddtsrg0QSjXgEthfrchg67BmkoXPPc8Dz+pUf64LMJlFV49NS6XxrKUWRY5m2bFuJchoZMrtIWUh4ztLoBJBWdSVZYluj7WSnb4ydgCoku7xHNCKeL6ZlT363RATe1LtUQsJvA0hss+CH4/IrDvvo6GZaUOFNEAlP26pDgrvBZfm6O7VEyvzrb1Tncep5Xi7MgsWXbtd6P3X9prP339auDpzeXC3gc7nU2Hr//qi3qMdD5g6uJYxczbq6S+Z4JCM+OSjqKpiyubejmG+GKZbcfhcGRicieY4jGJT7x0y9V0uhNFTjmhWItnSqDP76MMIoEHSWphgCTTQZntxeNljlK3GgZ3si3ilIHClsVp/qU0rtdnnp9f8/z8mt98+1tef/aG66srr759xevPrzy/gZ0f2Pcd+o7xHpGOjIHp7ajxHoZR6XJD6s3FFZfr7IzTSrauVLbe/b5EvKxEO1Yq1MWDHxbf6EN3QsQY447aC2PcyTaeXtc8QqTWAZgaj1MgaK5eZranZoOB9t2NQor2hLem2WI6nosCbE5NFJVw1I9UdUmbGuiD65WAlOEOewbxJkEhZGa0pLgp81pbnwljdFQHxRQVb7Wq3TPOIkElLr7AJB3j3JDRyOw7Hb4A2xiYdghHuhRnsfT9HgZwj3seDrz1O6Pf0f0nrL/H+jvG/QO679i++zMf6t2bugNPWgqj3bDipZLFHKAZ3bVPvGapTSCjSLCrVFkKyOjY/Y69/8m1cu53ZzGpcr/fuW07OoxKoy4vyHJB9h27XNDavDxmuFG3/c7Y7oz7DXu5Id3ZTV5Sp0g3mkIxoWmhqTuNog78QPFrDsHkUpitzUsxWiUyCFEeFmCxIUF2EK9F7gXrCRLJFNhNkV4hN5wAQs4lZGmTkABOPCMwKeGn7FLJXTuYR5jnLYeZ605pgi7pHB8sOks7JuZd+TiAmBlkneICZxd6WVCyEmqRcHaE86ZTOTJsidOkRbRwpr1cz+hJeTu5OJMJkf+LcSCDm3AYJ15rucmG1Q3atms4HVkUjxces3WpIeMsphOwEgXj6XSe8C2mkQigruB2pwyh3mCpDgi1zU20bOKyW6VAK1A7iKKysZd37LWwX/7A/fIP1NZo6xq6OoWyNMqyUFqlLasDcgHmSYk22a3RUTYGW8FLLxYHwiV299pKZMBr6H94F52lOdDvHTZXSm2Uy1OALgt1WR1UrIXaFkqtDpq1KAEs7gFJeDlSswOas2fmF5C8tLlhmu/BBJBvQ7Gu9Pudfr+zffjA7fvvsfuddntB9s27VN4Hdu/YvTN+eMd4/y+MD9+j99+h2w3rO8KIMs5oBCFhq6SH9l6KD1vYYkhPaLLeRKjrhbos6PMNqdVLWS5Xd0C1o+9/8P1HlaYcZdi1cvDRDqqXmUXyQmA0bBmwPHlHzuHMo3VdeX79muXzL7DLFdYLcjlKd3JtCcqYpXYgMkgKpFkNfYSrd9EZiuwbyA3kRhkvUUq9M7RHSXyPzKJgvaCm1KIBqkenUg3P2ASrzkNgOuSeBEgAynUXu5dyl+KkOpqv59g3M5kn00Kc9kevPfKg0FyTM3UcDN+Kc39NJ34MO9gOw8s9XTvKmCW1ccVHBiz9qQxkmCC528hc+8f7446nTZo2cwI7Nq/zDNAmMPRw3lwZcvwmP2HxbN1NPSdF80ByenNclx4Z+RnZuVMa42rHtXJc68dnnucq8+OnMSAvipDfiecQuoCtxNj4YFrRfBPwCIIdZYSxk+QtyeluZ+nlce0fv1Kj6vz3c5UDxLoL1DBHr1CcfWRE0ixEfzNJNo8VxyviUalZaA/5cTyAy8GKZgzUaAU+3NcVZ6IOEwYbjE4pHZXshObdLsH1B0UIu+qdJ2tJRlMAT5dLJB8qLBe3T61xuVxorXK5uE5pbZV1XVnXxfeYtjj4UrwcToM2KBpdz0b3Nue4JkwNzaQs6weQJu53Zel0NmUxAAe2dZ+R9TFvT8kpb0Zb5rPIMF+KTtaxfyTKO3VHx8YYGzo2xDqlGOvqDLMmxmgBJp3n8Fy6bhPq7NgpM1HqAuABTHSd09Xd/vxMoQ9DhnmcKEYrhAZOxmc+B8/kB3ftYi8cwSBPO6YemO+WbNnBWAZahFGEfbsjkfxdliW62rUJ1HbNtWscbCdzV6EaVs1jpYibKDrBjcmIKtCKRTlirNX0v8InFSEMcJQWhoErpbo/GyVOpRRqbc4WOh49RwBdSS257HQ2PUjJxkH+u2mjJjCT/q/Oc5Wg3Y9gHedenkytZP76PuIgkdTkXOlkUulwNlOtzi4v0XE1waGhxj4G29jZtbPrYNdO6rA1DgZda8VB1diwju55wYCQMAXqc76Yz5eleqfjZTGWpqxNuayF56fC5eId62qVE/AUzDozmmWa+Jh3Dn6ltQ5hfKLLoZhrRQWBxh0TPYB0ryuLR+fJHDsvKBHaknjFaY+QBJ4MMy/vNx302sFcc7gh0b2xsV5a2ATBcm42l0MQPNldy2BPaZhSGB32buyb0rswRjn2/mSQ/f8aeHpamnMohkLT42QcAcrEa91yk5mLGUvNIMs3tBLvTYOlMVkgA0eZjkC2VA+zeDxl+WhDt5lYAYl4KDUTEqk8/Z28rnnFp6DM8k3pPuVnjOO//qsqhMirugeVi1DKDFSsNFpbubx65vnNW968ectX3/6GN1+85fr6wuVL4fIK2kXpvEf7HbONVjZEBkWGs2ICybWg6SsCdcPqQpWBlJVSGkWaZx/HQPs+NyAPnodnD050ULUsWXPnVHWLr/t0CHTsUb7VM6fOlCmXZKUkyyvpsKDaEWnxFYGGhaMmZ6cSTLuXoiiIFsQcoCjefm86I7n4MwtgRZBg+oxwfMmMZHUgS/CfZ8lQamNNJ8/QXb1sIr1P1YcpYaF7UZBw1DOr5NeuIbBSSnMDra7h4Wwez5ibdd/M+4b2Des3rL9A/4De3zO2jXHbqEYIaeM6SWaeddk3Z2G0ZZaDlL17l6cOZisWYs1SHeJBjCdxVljf7vSf3jFuN8b7GwMPJO7bzr3HxlQbLB1ZNxd8vq3QKgOj90HvnbHdsb2j++Z6TqqUoditw1APRLISWZp3PFS8zOWkp1Ug2ID5sxv5FgJ92f0jn1WuzSwZ0eEAVJZ9Rofyw2XPdXty5vPvzhQSjqywz6+CxTzlsBtHrBS6Wg5C9pl98M5uctK+y3xuhouW2Ss7aXscpigtXDjsOn/nTlMCCk5O9jI+v9aDUeXnKkSpgWUwEOoCp+DCYF6nlADyCF2yGJsRDocnA8q80nSI3Z2wad8Rm7pN0znTvGebzpN9PKAjQQLLjMKRWYsP5DPKhFIBpAsuYy2s3deZZFQZ6qYmXsrrNGtnhfQK/fy+qJu06s9WamG5OiBFEbr2cLoKdQngyQZb0RmoSKaZqlCXSmmF1ip1dcBqWSvr6oGJZ9MuLlZ7eUaWBdpCW6/enWjxv5d1oa4Xyrq6NkKpSHGhCi/3CL2A2sKc+8Z3zL/jMbifHo6t7sEQVPp2Y7vfeHn/gffffRfA0w3tgzoUdsM2Zyzef/jA9tN37O/fMW7fRafKMZNLXloYTB9xx2yWdk2NCQvNBAfMLBJEA6NdNtqywN6RVh0A7Ls7YjbQl/dh8yPhZG6TMy1Za50ObgqCAwcDxAzb7zA2Z3yirEvler1wefUMlwssK0QnWJ0Bgx9zJG29ZJBowWgq/lWj8cQwTC7AinCh9wUdN8a4YfohfA2/a7+H9D9ArCHEHl3HsU4Mpl5HlNnNsoL5tR+WSKsfuzhEnQFlKVnOGWsobGQGDGk4xU1Q7H0ZVvr3BJvcV2DS7D2xEFuiZQBoZ2t8ev2cP3b4Wg9ubDrqsW9/zCLytxy+WbIuHw9+Wgz5Fzmdmgi+8spi8cjDRR4ldxbXoqev89/yqA5+2fzdpyDOiZM7x/5xAE4j5cH7dN3cbnnAluCTeeKOY8xEPMhLbpH729NCTL9q+j0PQ//z131mc/1stnsOvx0DTAZLsfeGjsvRtWtuDhB+5Ux4CFG6E/tDrRNIz8oIx/4MDfkFU+ejSDVkhLaURWc6c/9I4hmVFloxmTAOLaf1cmVZV9b1wrpekOrMxLJGojf1WgN4cr2lwrI0lqWFtpCLj7vd0xPbMbTqZOCVLl6q5vmFCPxiHB2MCr+5E2xcdeZqAorBQHTgII1yzNv8XTAflbNHQSS1cv55EsFPFF2Ws8y4wNrcN6+SILM/r1led/KddBhVDlH9bGYxqjcQGkPpxefBUCVCAWeAQPhB4VsWc/8unvMEymJOZQh6lt3Q2BMt1o6IUMyZnVl6Pr9CP294o+YAk2rYs2A65boRt985XiUAVggChA1MvBzSgSeZiRkp0VFZvEqBCfQGezGenUXtmWX5GoJITa8r/DIXTu/EMSYwln6Aj8kIaoVhD2DTGXxOACGBL7H073JfOJUA/gLYcPiETi7IZlal+GZh6eP5xonIQKx6yZ/5s5Go0phNT3RMGzsbC6QdkFOtgJ1KFqetj/VdY6KYTSBwWWBp/tWq0ZqxNLishcsitCVA4EgwFRG0OOCyBtPP0l9FTnMvH0HatWNdRcbbK3TcWYvnpLNgItsQ5ZoU3GYtAZYfWWr/t4YLu9VOrYo1pQ09bK1IaLRVliW6W5phxcci2V65blVTN8sJGL0SYvnus41R6f1gGbof8nN7/KevXw08rUvNpAWtFvpQ9hCDrMVJLGohFMvh5IAepSJSct/G8FaXzM3xHGT4S0nAyY1pzlVNy0KZyY50RB7axZ4CrD/7ihpKnw9JOc//5MatnLyPedQi0fDqED0A8/KJUhbacqEsnlF/evOadllZrytfff0ln3/5OX/9f/5LXr99ZrkUen3vAJJsjPGC6obpBsWdY6VHt7kAgWLNq8KGZ3vuL++5XF5T60pdLpMdNcY+619hxGZZPaAowzuBsGGTCeEorYq6YHewwdIhHtqD7mpIrbTmnT5G30ObolDbIfKW2Q5ikaooSomuOQbFGBwdNVDPilWaT3txEclsjlNqOP1ky/NYLCOfmNe7OsPLN8jpZpuDUw7+aGRY1LVJcuPy+C6QdYlN4XAubcBQz1xXQgvGYN93hmkIoHYHRXQH1QA2C/vuAnn7/SU0rJwdpLui207/sGN7hy10S9Rcp2m7R/mgdzwQQItn+MUIVlTzL3njwWlt1OvC9enC69fP/MVXn7G/f8f3/7zz93/3I+/+9BPv//jBdY6oYA2VhpTKcgFdB2M3bvaesjgDYZiybRvbtjP6TjEXrF0VBw+GO0UyBIaX52pxZH0peOBeAiC22MCq3yvNN/laG205gCftWwCfyr4f2ilEgAVhA6LT3Uyynm2KHQKI7o7IJ5ZB5n/dUcpjzVpzG8HUlBAkdcB0YA6SqrNw3KOBFHqcVYHTqgRjQJOBeYQ+E+aWOa1i87AonUrfxubVBoQ3g0eIoPAUgqcQ4TmAMZhVMEImjx3Ssgjss9NlISjmMZZn6vVDADKMoH4dwcg5souvaU7D7jIyXQdEFh8rlBghD0zKETCbTg0vB9+yi84JVMzW9HIEk4tVL07QlPmMUP7UWSlr67VGqUaBMXZ6boLizrQzfbMcyZzOjR+3LElhxim/xbNyrRVvgb1W1ta868lSGBI4Q12i02elrSutua4IteFurgTYVJHFS42dNt1IK1cNZnCR7JTQN7Cgx5+bNox9o/eN7Xbjw/v3WO9UHaxx6d6vwlx66aZsH+7st5395R56TT43co+f5ZRmqO5zzp+f/xGFZqTgLJut3ZwddnlPaQ7e9VevPOsosH94fzBvxVMNDcFSp2tdppypxn/MnCek+4a2HWVHrkK7Kk/yW56WO0/PSn0t0JwtN+o5lz3jXpYZmBsu2BCC3RJrvYSQqMFlXeiXhb1f2PaF0Vf6vrDdhTHujOH6dmYD60oVZYiiRaEqVl2vjwhQxuheupCzLIBD10O0sH/mXf8U+tiQ4kBTbe741+ZBkeS+erZ9mYiyg80oQRNIW5RBrBUvk/brIsSvlVHLtFWKa7/YsIdgMJ++WoJIMaIB8LvdCOAgAhhJ5nlkHnwvjOf8wJLJssdMRp4ddD56Pdz9kVQQTmCpTbD07Og/HCWSaB8DMb8EypxLVshDHweLK/v0OA/XGNdci4OfJll6EnapxnmnT+wBnjOv4/w/A94dHfl+DuD7+dfHvvvDdRuksPj5XOeY1T/qPtx5T2EGlxE4TrauzediIhH4ObO31ShUSe1IxBndBFNsFEw6TaK7XY25XiRsttv80upkKq3XqzOelpXL5YnavBN1vTz5sc1Yq4tXuyCxr7VlqaHpKUSzTjeoJ19X2iAamEcpK5EETibiaWzFS2DSl0aCFU3ujwRYdOouQc5uPY2bznGR2Px9uA/W0WT3y6CUQSvK0gxd3VcUW9CLs2xcpLyE9ESb1zvGIVeQc9Y1anwfGvvOvnd672xbtL3vg6336R95KVABBluPZHb1Pc5K6soEMCAOTB6lxh6N59zJ/FKLhhfr4l2dW3Rrzi+3fW5jPN/rUhln1paHuEeMmDO8RDDpZXfEvKzOdBG3a8mgrWcnyOzQE4wvAycZxPNKO+legJfwl5AZQWpU+BhzA7Tzeo7xn22FT3MjDpxr3ddD8eS1WXSSO+xR733Oz1lenMBn2hE71qj7lhFYxfhI8W63fik+AdUklCADMLEeDZO2iL983ErE7LXkl/hY5pwN8KrgDMmM1T05BKMoVZwMvy7wfClcVuF5rTxfFp4uC5e1si7hryUoIJNeEwDR0cAKA1MHZaY6xHn80/3JMQb3M+3k3yc6mv7x6RmVhD0stCIhwFwfW43vV/U5sYeWsANDho5kq0FLZqeIExNCt601w8SLay7X6NK3Fpalsu+D+72zNy+5WxZj36J74B6kEznm2p97/WrgqRSh1QIhoOcCbYpIZ2h0qNFYhmfBKcmV4kg9iDskyVYxI6stzjTfYzlm5CXpD80nKPF3fyiFYUFZnwHpPMjjy4hwIyfAkeExezz//NcJdJqZyoxnp7PiG05bnyh1obQ1Wi2vrM9XvvjmC9anleVa+fo3X/DZF294+82VUgcmG3BzoIndM7Hm9dtoR7WD7dEd7uQMhF+hihsJBaxRmrKcaO1q6hREgppdvUzM0ffujpr3sn5w3IbhQmOB9BfcGZMQlzZTeh9kV4XRA+AqXj+qUZKFtdAhUGczlealALnpAViJ+4020uLIfokSOCw65aUvKTmvogVmqZS6QBRcSKRq3TDnNXn3EQH6qIhENzcy4LcIuN0gjuTPqUwAQt07AqmeSYtZaAKU7mg9znwzw9lhMSdNajjjAruFmLZQbEG0Yr1im9OlbQ9IwhTpu3+NjkSZSRpZDQOl28D2iozmwo/rlbZC65Vy63R74T2F+7t3/PSHn3j//Y0PP268/DRYincCqdUNkVjFujDEnI4su+s11c6IjWcMFwyuUmhS/LmZL4glRN9hMKxHwBylmWdnEsGKuEdWhXqt3m0qDF6NMjvdF3TvlN2ZD0M8W+h1xSNYDRlY6GkFZ1YHPFPnjmsJO8TJ7szOgPmspsM9DU+E8g5ZOf1aXU8MOzmJeLCrYecIGUqfwtNGaok2xLOLj7MNkyGV+SwXO08ghkCUcsOScPjShoZNDGAyzVQGldP5PixZHMfCBvj7RMzFyMPxQE7j5IM2nQqveY9lohlgwsFQOxgwGQdZBh5nOxu3VcxcHB8mE8YsEhFRZpgsjSiGBZMJQs2EUjoK0akorWHNexhzxcf3IxdsoiQIH6fE1HVArPjOU4ZR9oLsZZYHFg19CjFKC+CpgIkLYaYoq7fdhroYtSqyKK2an1e26WlYbYzaPB1VXIxWEUbWFBQvRRNxMKolQBhzDKAHQDaGskU77pkZTwc0Ga3RwU6jA8wef7fd1xsDpIPuXqInezrz4VwLYRG905xmBvm8p56ej8VeLEE7UfPyXC2C7uod6UpBN6WFJsF+v0WGQWepjEkwcFqdQRvBCsly854Jj2L0/kJdV3oV7t/9jvvbN6xvnrh8/hZ5egX1CZGVQ/I49z1fyNO7CCDl4AGGRkz4/rUwA5x1Wejd2HvqJaxs+0rfm3e+63ckyo+dDekaMEPNkwpR1acysACeMvtkczF5qTwnq3cEkoRNyS+Zz2aCSfmA0kMKRpVliZs8/t2d3jJtkVUJQJBgpOlc5BKAQdqCDLby7+frTMM0S+oiyz2VSn5BxTQDZtelOPxA9wfCHpZjzM5YyafC4RKfyfFiHu+sD3L+/M8BT79Uovbpxec5wxoZJ/A2r3Vac/IZ+vFyvQcjNIJBf6zldB9pr83LtGLQzj7lz133nwOfzvfyc/c1fTk7HcenAgfbIu+jBJCgzBKgEjMzxzyCVMO88rq47UYNqQZW3UqKIZIdmb07M+qdMnW43fRK7OgGVwptbQ52F2e1tmWhLQ48teal0ZfVgae2rNTLZe6FtTgzYnE32gGOxtxPszJkgnA5r8yrGYgy2myikiDtGayVkiVthP8Mpm4HnemlGIemKJYdc2OPOwEO/uEyAfMDbDrNdmEKl7dWWFe3Le4rtmPNKgFEuI3O23OGHSTbFTxYLhHPjX1n2zb2vdPqxrZ32u6x4hieKOnBUlNz/zRD/iz39YS6BQgiE3hyqYtgoOS9CDQxWsg4rGtjWeoDWFjL8TmvLlGvWjBPBJTUfMQiLBoPdiQsK9mnl9TkS5/klM7QoUxHLfdaCzYcnN57PA/LuZHJ9nnYWN+RbJuyNqe16SVtp3PF39OrTV9Ocphz7sTxPl3c5xs/2YvjDX7cjMlOtsUmOuPj7FptSupS+g7oa6NEM45UP/WkiZNglohb1tb8ksW7sg41ujoA2ONnjTEzdZ+5BvB0vTi76bJ4MnCJsn0J/2/6zBpYgWUckY/1dMf57Iy5f348VhkzZuyb4yFyjlckgGFf9zlWeTxB3D/K84ejXEuWzBUgWEkdOg7Y1RJNroI9SRCHWnNw3NwwIzjb222yBvh77owZAGlcv0bM82te/13Ak1HcsdWKFMWp71DUjYTYjIdjDVgY5Y/GPQxBduew02Z6wqkO/+j0IcknxeNmmLTqh6UxdS7Or/ydzn3bsjTMxpwwkVufQVZe3GGUkz1wBK8iFUpjvTxR2kppFy5Pr7g8XXl684qvvv2G6/NKu8KXv3nLm8+eeX7b2PoH+rjDuIFtrhFkO0JHcIqrjSh7G/1wHlMowzzTqURHAO5UBcoSFMF0QMPYmU98d2aS0eOWxrMLlVoWf44K2gN0KoCUMAxjGtOh22RKmGkAT348HRqIvZ9bxGiy+piFQKMDTOGYhiPsm0SUkeCU6Bkjcd7oJJzKGqVtC0il4qw8fzYlQKlgBdQGCFULIiPEWsecPS5q2dESgNSxpg/HttZp62e1vBC0aXcuLOlXY2QI4IvZCkMF6QIqiBVnTWlFuniQtyvWQ/9Kh4NO+45op/TufwudLw3qqm6K7QW0sqyNGtchUhmbcnvZ+P5D5/7+PT/+4T0vP27c33W2mzkroxp1DSADcVYXvpgFr1O30LrJzHRtC61UllJhbA6SibKUhhTD6KG95INouGh00uFBojNMpSyV+rzQLo12aSzXNtmUY7t7V7zbnWI7nYH2Qb9ncGQIHuhjJ0cP3whEIhMVz6lM//dY42mFsgxUOAUYJ0MSM46KM7cmSyDnMHNfCuJTlCH7BTjzyZz+LeJAglkG7I/Ak4HfSwigTAsX15UsgszCSToxp/dkeJLfvZzmQekufn8EnuHXYCEunDYuLigO7/edAEeujTlcdhx8OrThpD6Y9mlRbQaWGdXl+/K0+YweviwfwcEIkzyspeN3Ykqdrk9ifZd87kjU5Jfj+qOMIFktPo8F6yEdda8B/hsyvHzSu3YGI6zYvMhaiJbX7sjX5szQthpUhTJC7zCevriGidUQs427m+6olJOGXYmueHIqEYU+BntXeldu9y20QXJdMx2rnE/VHCAeqmyhXeOsGpyJasVLSQ2KymTSuoZD2EFzxpx4b/OHZ5qDb7l32Qn0RKP1uaA1SpyLYLuytEqrBe2bO6iYAx2RxlYjWm8bKdaSWn9DjW0EN1GUvt2p68JWhJc//jPL61fU5wvly7cUPqOUt1Bf+b4SDhy4bc2fD77k8dOkxUt0x8F9VbNCq43eoA0HArZ9hbLgUPzNWa8mDvpLrgZPUijDKVQC4OUbDk6EXU3NOIRCnYvjE17nXBP57lx9Z2vgUHm2Cz+apNjRrEDCQYUI+HwcqhEafeoFKFlaSdqv44wPAfDpdZiwAzxPECyD93NS4NPDuG9z3LAwPTo5jv3Y+OXjg8gvHDsv3X725/Pvfo7t9HOsIOb9yhzbsy9rk+HzyNianaVP9/2zwM8EdQL0CxZXCkX5tR6g2QHqHcmXs/B4XvcjM+nTe5u/k1OSh9O84Rj1/Ohxj6nx6hbbAiz0svgYE8N9DJVgqDrDrqYYf8zxUn0dVS0Otpk3Mii0uV5KsJXW6+JlzrVS19V1+AJ4clHwhcviYuHLulCWBcQBwuxk1Yr71YL/zkIXVnIe5rSbIJAi4qV2lKN8+Pycc5CyM6hhLiYdE8bCt/b1uoP18D8zWLe5R05gQcTHIvdaOz/juYtGoAnWvINnAhjtFD2aHmV0ElG6+9HH3NbhpWItBKDFYOw1QC3BNT6NvRjKoJfoRGiCVqEoM3F4NLOKZFEARbVkstL31gk8zTkKregBEi4uHr0sruVVJ1PK1xM2PPEuyuwNXQpFXDfPZTjGoXU5NwKwAJ4m19oycRa2QSIWC184wdX020gPcDpAfoKMjfJRZeLZn5ivmVo8GepNDg5TW44SIQitzdyapaSWWPqehx34xLb8wlq3vNDw7f1tCTqF/5iO8QzoIqkV2nTpX7vygZ7Ap0w0OrumitCKsDRnqV2W6qBjJKF64hIyvEJrpJ2LLTD8sXWRAJ0cvFpbo1Xnjk/WUYBhWPq7wtSBngDeAQIlyG7JConxnY+Rk708gXER2JIaeceaClbZSAfafdVkchJle+f7kuY+RN5wukUpoi6xfqKnDS6/7HhMmt7cCrJ6yJuXOYDl/pbgaj7mn22fzoufe/164KnilEUNP7qW/GFS+PfuDt4YnoU+Bizm15gm042kJA1TmH7CSFfpWAQl/5ubmB5ZoPOm5wBDBrW5IZ53Zsn/x8Z+/luCFPFPS8fez22SblCELuJC4YcBu9DWleVy5dWrt0hrSG28/vwNn33+lt/+9W/5y//ht6zPDZUN2k6pyiY/MKp3DKK/R7cPaA8RP3FVe7MNF6Xuc0dyA2NRBWjoPjDzZyLlKQynU4VLKSzhOChK7zuZ4Tjo4X7zKVJXpCAsNFldpBIiMOwgzsSqUYpwv+/s+wugSIrlyTSbYELlFc5jWJH6HNmIC0KNDVQctBEHNFvU0jY5nCPtlgzUoODGBi8F7za10trVabNt5b7vwbLy5Z7zzMwdi/X6FCWLI7SsdnR09u0F6yHGvNSwjZ55IecZhcxGCN2BCCm04jDDGBEoKF6rHJTjakbZd5ZhrsdAdigA3Qd9u7HffA7QNzeyNii9I/seeisDdnO29ibYqFg39GagO9iNfXmhlwsv5UrXKy8vg3fvNspYvRzu3hm3BVHhKoNra57xAWxsmLqQ3IjNaCxMxk5ZvGvL9bLy6vmZy7JwaQt1KGPb6bc7tm3QnQ3UQim17HhpiBqjD+fwlIK8vlKvK/VpZf3iNeubK8vrK5c3V9qlUi+Vaka9b9R3H/jwd//M++9+4v7yPal34p0ywvGr7aQJpeR+nr6WkMDSg3f36c+5gcBk0zi8FZRywlE5U0wNLyu0uM8zEB8iOBaOs5oznkZ05hFtJPB0JIOCwhwU6oJ6R77i4CAmx/sIts6JyHLOUqXd0xgvv8XDISsn+6clmDt2bJAfh1f52Y9LTD5+WfjamW1V+ziPF7RptcnUylLCyY4QHtwgOf1cDJpZ4jazBNBOtfUSoslwlGZJsA8NGDZcKBFnec6yopKkEu9oJkVI5UgxB4tLWeczq1WjG58x9qSna3S1A6qzosqILmbWaFZYpSMDpGi0wI29qjjwJCMdJm/EMU5AHuFsShGWWmilcGl1Oll7V1of7PuAWwJPhLPnDyOfvRSJbcXLx6pVhpNQp51iRFY1HEQZca394P14kOQ7t4Y2XaaY5mTK/ds0ZMn9VkpyysfpQXcvQXM2X6cVz3auS5lOk/UthGGDUUtBEfrwJihbz+erdAYvH95R/rDzpx86l3/8F67/+f/DV3/4P3j1zVe8/s3XvP6Lv6BdX9Mur6nrG+CK8gQ8MwGdsyc5723MwJNY0SZEq+WVlQvr8szeB7ets9xu7NsHavme7XZ3oGyLuLC5+KmP0/DOoNbd7tkxQBYCwwau35C+0kzuZBmqZ4ydBfy4/tznOebsGPvslDdB5vjMmZ3u4EI0NGneOa9WZ6xkd9iR9mw66f7ZkkEUTIDXbfVh1871juMEgh0vmdeULCd3GzIY+NhinLLuD8AKnB/mx/8+fm/H9xi4n7N/f9Ymno5xuKk+uNlVKkEYmR0Bf3aynezA4+t4RjM9Ou/Lko02b/R4b7Kl/Lh+3rOA+M8Bah/fZ3Yw82dx2IWDhWET0HRTkDfhE2UmoD/x1M/nyU3d5uXXIlAapYKOwijuJ4v4PYtpZPE7IosHUaF7Ulvlcr140q5Vrk9PtGWltcayXiKx6b5lTd1WOYq1py+QLIegiJaMLZKhKERy8gAlvBNkJj8jYDzthM7oDWRrqvAT7/dzme6o7RgvuFh7sp78fTLnmjPBiBhg5POPZjTe6SxKcCXYJGuJnkAX9GKExN78Wtoyn7fqIZA8QW+Fvu+YZTt39wn75tUS3vCn0haj70JpsO+dfQfTjpoyitFSd0+ynNzP0aKMeGkOINbqgESW251gXGoxWgBUl7V5+Xst0b1MovOzj6sn83P+Dbxbg4/FSJ9AOkKU50mwsdyr8GcryQK3AMcyXo0prxbktAOkOAyyHb+DiHW86YhGrO0+WjCf4SQXEinMXCbhRGXjFu/rdH5S9nBd6ael6fkl4CnZysyY/dGuCak96cymBHGSSWMaMhC+jVCK0A3oylqdteeYpdCbsFeCrSQ8rQvXtXFZKk/rSiYXXV7GY7an3dnbfaiDJGr07r5cLcK6FC5rYW3Cq0vlaV24LCV0psIQ1fIwl5PwoHsmZoJkIJlMDr89906R8DxjzIq4dxLvdXt36CXP91nEt5FcN03NSmeDjpA7Ssa9BkOwVBflX5qTU3xteDzbItYjH1sJQKq6wDhhE/Y+6MPQMUL/ypnbe1N69/VxsMGSgcavev1q4KktbT5Mt1OHk6DqD8jAWxyfPifTcXf0b1LCI243zpuzj0Rug4/fc+mcJ/aRkTrXmJ+zcYckfLxOxuoIJZP+avPzHP8Mh/nYCKR4WdeyXFyLpjWuT09criuXpyuv376hLZWyFr765gvefv6Gb/7iNetTp7SOcsdkdxBoGKa7l9jpCzo+MPqdMe5uqABs98mdIqmEAcqsthIUQN8wWr3QliutXajRch2ijEEFI4+ToxkgVoyPa+kMSqlUEdfNAEpxazXZbLghbc1bsVr8/siUDhLtVnqM34hRLNTS0Mg6aRrtCOJLPdgPj05iOEQzCnIrmYF+OjJOtQ3nR455Yhr0VhN3wgUkriV5Jl4yEgs6qMIZrHmEHlmz0ErpFvX55WSxnevpm0ofjG33MR2K7p2xd9h2Zi336Og+vMROo6zDCmp9Hk+GIT2+drz0YhdXSB44sBOGUntnHzf62LnvN15eBu8/dJby7NheV+iDKukkVo6uZUFJwfy9XhxNCvRXKmv1zN91uXKJLEEtXm4rZbCNDRtumFpsZoV00hSf/QKRcWiXRntaeP3la56++ZzLl29Zv3hFWYu3CO478tMHpDX2f/qOWpqPEYUiFs/EZ1gtxWuYY+WaHtkAHpf2eZEfvzN70L6QWdfpq6WGlkGVQoOo04+AJvy3NHPHJm4RDIbFETBzunaFEOPOEptgbxCgfNbtRwBRim9Qbn99PneZh2dkmWgiPtNmMNdsyYDxxHyqH/sVAWpN8Mds2tlzWcknZS8np+RM3T+CmQhcpvMcxybc7NODys6mh4s0Xaj5PNJNL5wZT3L6q3+f5XfMw1Ps2MfyWacTkFvCsGzdLL6faIJ2ke0R9VKvwgzbPaMXYH88w5L2HKMi3jUsbI5JOnaHkKxIBgOSA+hjd2IquQFLxluAr6l1FuzUMscnx1dm/ANymg9Qww7Pas4RZfQJPMV+IzF/UjCWHJuTRpCF5oIXUBtlerEcC8R8HRyri2D3OeMyAcBsT4/4+qu401jN77kek8znfZSjDRO27uWGWw+ZKjMGzff0XRnjJ+pt0H78iQ/jxvNXn/Hqm8/46o9/xfXN5zx99iXXz76lXd5QL18iiyGyYrLGiKann/PLA5Jjrvn3kkGdFZcZpMZMcLBQbGAD+u4i+PlcKeIgvnWsR3BpB/Bks0lDFHiMo7OimEQyyp3+bJiA5Koh5lheaeyxKFkilPdkhK/xkUs1V1nM4VbLbDs+UptT7dCkNObP+W8jn3Uw2PIqDFyc3qLE4PAJfu51mJ7DHzxsxvkZPb6OsrzTzjDtxemG7bAV5+f750rRHq/v8F9/6eVMdPmZ9+Rnf/64hy+c1//oV+cbbNq8w57n58yOhETa6lmyh8+HM5vsPEbn6z1Kru3QCHvw4Q5drwdf+wxqGdOXdNt3AKAfLa1p5Y/rMs5vOty2YCs3Z2QX8fbkbW3eke7pyrI22tK4Xp+oSwu9ydVZ88X/nQwpN81ell0K4Tc44GS4EPcElOw0f0/X6EMbkg/THhozPHvwTXKcjvlwHiezAKYn42nM/XUOSUzpTD7PY0lOnoMJ6L8q4ds6MKOKJyFNAoAylqWRVSeqZV5vSa21MZytZQl8Hz57a35tS+wPgneNy+urxfDu0SHQHaOWEilZclWr254DSKquzzOBp/AxJDoln/S4aikszZnItcaebAkIum1TtQiyK6oRD2VyE08LYnqymWE/p//2GNf6s0tGaAKDPk9M0r9L9jMRHzH3BSlCEAGjoqOSrItz6Wwpp9LwmEyzCULq3DxcU1yrHIBdmVmK8zpLf/Z0XzNJKaf55gzp3EemzxI+xyH97HPOcPK3RklYM1ibs7hLJL2qJPBUuK6FtTl45Ec1TAujut9SxOOSHnHVGEavI2yCuI7R4sDMUv2rlegUbeknzoUWJXFu2xJAnqbPbDbvkdjc0n6KnPYJk5A0YW6A6VPNLWrawpgPoXGbusN2VN+dsBAXCi+nvbsFAdqKz9kiPqcFedR3Ffef46xedmqGtexSyBFzFWWMEj9XTAetlEia/uuvXw081SwbCAT4cLQcQZThg1qkUCRFwGLjsYydc1HFQXNRxqYvmXZPQ3vaOw7beOxSdvKC5Jj5HPX9P7e5Jz3uqBOehsNmjDO/n8/vjouLhte6sKzPtPXCsl549eYVT6+uPL268vZzFwtvF/j2Lz/nzWfPfP7VhW4vDDpqN3ca1bwTl3ZnqowXtH9A+y2Ap/QXsjtcgB94TXMpkbVQ3xRcC2mhtQvLco1W3ZUj+zfCu6jzxkRyyR/lRQRSC4o0m+LCtcLo+LPWMZ9fa156oOqLWW1gDHR0ZvmeJPBUw+442IMtbnDiuVFCOK4MdzhHPzksmQ2QMNhCOhlz0x1eh+1l2B7IIQc7Ts1CVNdAQmytuGGtxYG7Ghk/8r3p1CvhzDtAgLlwu447gmfSvPLKXD8lmU7bzn67MbYdooTOxvBudeamVvvG2AajC2qhcCMpWOplLtWjJhfu7uaA0w5lCNaFOkLIVWHvO7fbxstNebkVbnfldleeLl46IpH9o4LVSnYbdLBzQjYerJpMAEoQFimspXFtK5e2sNbGUqob6jIYUqbgragDK55FcjaYO2reujaBp2UtLE8Lb794xatvv+Dpt19Rv3rraa2i8PKC1YJ+2PBsXQkjmBn3QHskaNaZHFQJDCCFxSWM68euaq612MlPDto0V5IZiRL/qzSxzA2mO+k/iaW0EKoyS/syKkgXtJTqpUUWpTXm96XiAXKEgPNaU3OmxI5vmi2GZ1jijhGZRYbp3KYjibk9x8dtOignk3dyEc7R3APw9LNBVDKpODZDX3fM9+bvji2OmGvn3+RmmOCTpNvIY1Dpe8osFQtfMMsqp5N39o447neKVeLPQCznf1xBDIaYO52JLCYbzCDEoCH3XEO8BGxkkO0H0Si/yvcUoESHGw0Pp2TaL8YakblfTnYGR05MTs+kFde1O5xmv0vfRyzGKICmucHlOJdg0vn8NvPSBswZo2VYrI+k9vu8qJFZO57G4Wjn3lqC7v1Q/ZSontnURPDrPIA2Oz0rI/wGkWhOIDQrDh+ZA4ic90kk2E6wd9iHcd+NYcWZhjTQgm5we/mAvX+BP33HTx++4/r5M09fPHP70+949eWXvPnmWz77i3dc3nzJ9bOd9Y1Ae3YmcOhAUbKT3rFiUysuXwlcFkokdIgkVgtB28F+3zHbGLpPXcJSYDA8OTFuj8CTFGY5ZqzuPnx/FRXPemvxjl44y9Yz2/g+Jkdp5tkgTlbRIZjmfkHex/HOI3CagURopVhBq8//cWqG4i2Y/XP9NK/IYCu+q6l3nnpwBk9O/vkqToDFg+ZQjMl8DvZwmx8fZR778fthfTn98/CrPj3iL5Wd/VKpHXz6+18DZn2sr5SAznFtHx/5dHwO+5HXcNblS1Z5+ucZzJaS7wEfs3Pi4fw3/7dqso4/AlvmOWe46PfwEbvKk37ujx5sN/n4lMcPCW75Vc89rxQP1lQKVQ7R77a0CTZdrleWdXHg6fnqXe1KpbZlAk+l1qmj48vG501xers3gqEj1pkgVABLCcw/NkGy8GeHxyUWazq8FJFkxx/750ej7WMT53GG4iPwdC4Zwo4t3fewWB8BUueRJ1NGQsS4GFY9sLaU0ij+fFprU2/vXKqZc3Lssa/q6crVvHlC83NqJGsEYRtCs/CdaugpFg3WFQGGJfDkYIFr2zjgVGvhsjaW6CSYSez0KWrsIaW6/UtdnBKupCd3DjHr9AlVYk24xkb4LZ5gP0DV8ClOAPosDY9xSbNydHllIvKq4/CjAnQA5jqR05qRAtVcX5GTaPhca2Zk52EASgIn6TcfPsABeuSD50hwTh+Eh1eWj51jZ+I4lh90imHs8TrvHSzu8/BrAqPGClOLyBBWFzqdmom1OEvuaa1cFgcQ1ybzXp0UoGh1kGqoJ6Ew10zc97i/4g1fktHj4JOLjtdYN75+DrvoVLGIWZOIM8dMjiXty/Jx+zgPYB5cs1bhI1udxByOc9uJ4KHna3L00eP0KTMS4FMA7EMJgfuUfsn/cZSKzj3OWdEUsGpHCabFc5KCDkNC88lGoTcH9X7N61cDT+c2huHPUiNwqWqMoh5EBS1uDJ0P350cXB4hUShfMYi46NVhQCOLELSyOet1kLXFdhQOx/M/ByFpYPKIZ8cgo7NTxjror4YbpAy2avrFhDMsLTaDlbo8saxXLs+vubx6xdObV/zNv/trvvr6LV9/8xmvP2sYN/b+I8+vhNo2tPyOl5cfUAbL0mY70fv77pPDBmzfo/0F0y0mhmdIdQzvwDSMMaLMA6cHl9IoZWFtC6UutPUJeGL06otXgyFRHFyo1bheVrbtTu+7a4yECF/W6EzUfdzpqpHNyLD0jrGh3OOZGMvix1c1er87nVlH0H0FB7zCMQ+AoIqwlsZg8XKX2NgQr5kmwCQd3mo2dywPmsyFzsSdfJEeDm0wrcad0e8YKSjewuh71mz0jkpFqs8BVfESOe2o7uyblzVagFspcI40ii0UWWi6YtoZfePlw4/ouGG2s4hM8Im+O8i0bfT7hm474+XupSdqrMUdmFoqfQBjpdnXXNe3YDtid/r2E7q9sOkPrCoUG1Td0d6RXaFLtJWvSBX6qPTd2N4t3D4YLx8Gt11RLTQazer0MZa1ukZR9eBZ8PKaXHMVWKLePVYmRYRLaSwIZShsg7tt3Hrn/u49und039H7jqgGo8SoptSRLYQ1tFgCzB6DtQhPrXI1obx7Yf/nP/Dhn3/Hy+0971/e8f67Hxg/fGD84R37P/xIf+lsLx0ZFYbAgFaaB3SaAvAxXwLsLJYuKEz1TyJTG47x3CcsHQbmBvypkcbPfYpHBtBTKyn+FES+5BeQ9dkmzo1w9lPYo3AM1fzQHuinDpQ7Jb7B+7h6BzYOsf2TI+w2zn8oeecyLWFKfPh++HHwZOFsVnfwzswmOd3wY1b9MbBKoDf3xTkoPxtQeZaJBNeTlp7gRopp55Z57iymR1lTOmQZJOeYf1wumOBLEbcMqubjHWs3q9AMqCqx2R5lS8MGA6WLInX3sdAQr8xQR4KqrQm4clyzQbdC0YFooY8obgjaWZYLHnoZ7kT4s7bZFtyAEntsOlJFoOW+KCCDvFmWEqCZ+C7pTmyhlRoaCskMEVYqS/GGEDs7OcqD1IawADYskayT4xRXFwBYMtFySR2z0OZ7p/Mafp0HSCUAX+/Y10RoQvCEfB8MJaRj3C3XjdE7bJvrO9w3o5t3U6U0iAYKIgqbYe+Vl3ffc1+/46cL/Pj/+jva6wvt7Ste/fZbnr/6mi/+5t/w1//z/8qrr77l1Td/BetbTK4IT2Eq8u6ifJyk6B/zIu+8xvxua0XbhafVdbG8Y+jGdfFSoLG/sN1/Ynt5z/byHWgEtCJIq1Ab0lakNEQaPXsbSpSZFBeeXy4eNGOV3l98HYWOoq/dQrKffL4TYr4yAccJ9J+ftJ487KlR4T5Fa8FFtDbDi0Ps3ti3PsnB5XQeDQB4RKCX2Fc5BWRpYz62dQ/lc/k8LN9rsSBmjPCLrzzuUWaWPtmJJXTyNPOc+aq1PgBIj+yis53Mc5WPbOqvex1shDxW7BMTTHw8nkTCba63j16PDNZMMnjJh310fX5/5eHf52N8AqDlkufQBfPrqOGLuVzDvIawM76nh8jcZLAfAfU5Ie336AxTLV4+Inr4ggTPuIbG3rI0lnVhWRtPz1eWZWFZGnVps6NcrW2ySmqpc+BK8UzfGD06bboeq40NB30GqjsOiicf1h6u1ZPtuS/U/EUAGn5fZbKqmSBA7ttTj00dVBi7l9nll/sewln02K1Rrnfxc0p5LG9O96elvyABmHuCrEgL5ubjq9Sak8GT0DrANqBHYiRYQSlObA4weLDrX3uPZhd10Fp0k8ZcY9Ty6hffx0to1ASAdLk4e+16WaMUO7Q4Y8yzkjvBTm+MEWWaoZM1EghkxP5t828a1Q6mFpp+x344OwsCy9KmD+hMtIhLQ+xfJCoq1JwR1D1ZqzqQmgzfAFNKodYlA94TgOfxCRDyHiOSZ+cY2ZOx+R4HCL00MH07zM6Pfd5Dfv78fcJncV2ODbhNnx5aibS1CSPZPeGNje6dv3uAyILrUKa/dehrCmvzhFqrsPQDnGzx++d1cZZbkRDOlumfm7rG8F6iiY9lsrCgTw7S+fyxcI+MhtK0U9SZPCn0n/MZM0jtXWDs4yhbLuHzCUymWmTpZkFV2sKS+yYuPxKsybNO5gPInAkAPdnfE/tUJGRpxJ/xMCd6tGVxvaqYMwlkeQIhyBYt/MbisbonrF0uwKWEgtBgXnZXWoB/Umi1sjSjWnXx9pO0x597/WrgaYRAdBrOdGxq8TKpDHgk9ClEshQpMieWUmWeVUlH0x3nnOzxkIxZskL6NGE43Bj4xtLOtSGEiJr4+y0erIb1PLBmmC0tLbOyMgGss3s4PxEOmUmlFqfdLpcrT69e8/rLt7z56jN++7ff8PbzV7z57EppN0CdKdI2lI0+bph9ABuMXRz8GIO+9wDmFMYHTO+Y9bD47rSpOpI4OpGxdMDJbHGHzhYoF0RWan1Cywqy4DXs9YRuZ3BWKGVQi7HGxKytoKnpMLIUzxDZw2gCKqhuXhqY2ZwzIFSc6rpHkKGq0zFQ9TpoKQ0bO6ZOP67VuSMOPkVtuCpHKUFKM/tCFg52kkGAof1U4eGdLvbujLCCA3A+Rc0dgdjsVOos5fFNIYx2ODqmwfYKdssYgrRCs4Xr8gpsZ5TB9lOn32/0/SVYLi6KaPuG9Q77Dr1DH0jfkC3EwVsL4LBh+wXTFew5gLxBKTu7XNj0R+7j5uKKA0SHswjEnbTMBI4B+xhs+2C7G2MXdFSKphhuRYjMVFtYlsgqFGeaTZaOhWtm2arUBzDFB0WVvu3czRh3FxRHB3rfHJHvPodEnRGGFAZeouf6bCFYrQXRwn5TPvxwZ99h64I8/QlbK1vfuG8vvLx84P7+A3bbkPc78q7DjmdStJLCpSWDvAha4DGQTqclLQ1ptwI0yI1B4m/p1vp+e9iaWUZACOiKz8mB0jEHnuLtNeeeR/ozCD1bmlnslgBYrqd0FMMumYjfazgzLpou02Zyusx0qvI1bWqUS5LXkQBFjkrcf5bDZFcl/1t6UczrzIuZe2Gc18xCWy1u5rwfyREonHlnUx8gnovX8YdOQ5w6g1rvnBOZPZF4Rhbn8jtXPQLMGZ7kPpX2XvL3GdzMyXGECCVm04zjgp0lIR6dNiOeST7XlOBzW+jXV4rvd6UYMkZcmIaGgI9La82d4QDpp98TAz0dKDvuzVc3R0ldBBfxSGdco1KiJBAXC485tXCa7/k/cXbRANB6aH4RLMIcW0faD+ecuKdTgCVxnrkySzpQuRKOkEzIsqGYlyazPMyBEpnn5HSWyevL8o64Xk0ANMbDz+eJBcI3QXEm6ajI3eDmjrS+v7P/1Bk35eW7n3j54Qes33jzm2/58m//yNM3/4bl+XPWV18hUuMaalxJ6qiUOar5HOecjH2pFEGpPF2vvidWgdEZY+N2e8f95Se2l3ds7390drQNZzMvK7IsDr5Gcw3ROp+fVXE9TiuMMjAtzvTKsS/F71miG140+8iEiBxRWgD3uV4k7s3c4Z6r2CIA88lpCZBJArewlsKonjEtUkIXNKvTo7wlM6cis5HQweIPZswJaPo5sObhd8bhv9rjvMx7itOdPvfILvnF38np7k9/zGOfgaFPrmu+l5PtTyMrv3hfPwdmPR4vN4KTnZUAdqYWqjyUlP/SK1lkaW9+zevQiToy9ue9be65GLNzYjDI0cPXS3vkn0s27aNg8jx4nkeYZZluNiySPxZAkidU2uK6Tuu6sF4cbLpcVtpSabXS1nI0ThDfI0QOkN+/dYyO6R0Nv9bCR8YGQ08d5jAe+cvzaflueP61eQI22dwSZVzJIhVL5niw7mPMZqIncAfV2LJtFtaSrKJ5unlD4SdZ7OK53w8jN78SsVAmxY/95ViL+d1CRkLERcPz387+8VJooVOKg1OlKLUoWr08SBuYCq1F8s0C6Ii4Mv2CcmLBLK2egKcaDSmiDDLn5mkOH2VTx+9DccgVmlQjiD+tazNCuS/m9gHUyulBqnYvdReYzRmm3cl9Lv0GjmdAgAQlU0Ofvqa7d16QD/YuCQQeI00iys/ZHo7VM63h9DtinwgAbIIhjhYTugSIOfBXorFUPiczObqXG5FA9OyYTcWXTHq4jzl9SfESSiuhhykWZf6h61icneSlcVkJEF3x4v6LGFJBxeePKlMOwe2ZzWdfxJNBooqLTB0DoqqTNSiaexxYT1sWBwj/UmdiMHx0cR3Rue/U8FMFZhAx12TMn1mGyfSXpmarzCdD+hYWPuYY45BNmUYgkmBpVMMHKUnNCpuRfkmTiEumv5xM2ixd9cR4q/HMLpWmzmz+Na9fz3g66QvNwcOZJwJRy6thoEvUAPtA9eF0/XQcxGQ6zgaUekw2zAKZI7K9MtG6tKgC4RTLROJ8k3HTWgTGcEclwpMHfY/M/IuIlztFtXAN1o8f/3BkJ51dKqU12nrhcn3izWdv+fLbL/nyL7/kL//dt1yeKstivH//HSJ3Wh2u2TRu9P094FmQ/bbTtw0dA+2BbKNgL0AHRoipVXy7WIJFhl+DLMAFWAN8WoArUi6U+gzlArVR6kqp3kHCjd+RMaqyUGrhul6is0Nl317Y95094XQJoIYRICJHVsd2UgfJS+XC5a4FHY4u28j5IGjffKJTGX3Dhm/MSxVMKj18TXdCumdKpjiiZ4uGDhdFFaLW3Lyrm20nB00cWApgx1lK7gi5vsWIuTc88z33W4syE6NE0GzDW6K7jHRDuzvKy7ry5voGoTO68W4odr+xv7xDi7N8qu7eia13St9pcVzpO7Zt2N4pulDKSikLem+oNUzecrm8YrnAchm8lCs6Vvbxg7MchiHaXWeo4rogdFSNzXbuUVKy3YW+C2ijyorEXBJZqK2xXCvrStTOb6Cbr5OiZN+mprBkp4/aSGqojcE+BvvNn3ENg70QjmyoEat6WaEWB0ALNdgPvvALgnTh/m5wf/mA1RfGP/6JzmDYYNs3Rt/pu+tjVWChcG0rTRqNBcw7FGZHtwQYY4lH6W9k3Zku+AySE6xOFsjceAthFTg5V1E2FZ8jbKIitKWy42yndFMkDIkzxdxAY+IgVIgzZ7koUYacUIVvojioEucwLLKJZzcht6qwVpP65Gvh7AgRl1BmlpPpUBymPTaYAhbMBDgijtR7sjwYPJZQIXOc1Gwyd86+dmZ00sImBJe/s/iHU+Bzo8tOJ+5ELjUUw8JBmlo4EFqEh8DpjEfkI7teDrBLcuiUeV+5W5zZT3Awc1IXyYh7DX/FHb4yGUKmxdmYROVo+FjSvRSVIVAqYj7j1qUG8BRlC3aMNYYzX2PQHRi3cBYKqRk1ow8kTb5fb6lZCBal7/48GmUyv/MZlQKjChpis30MB11L7LvEBpt2ITXczJitpIFkSkxtsHj+6cipRYIinOR0dDk55mZkWm4CTw+C/nE9E+A46ckpAaDGgxaMKvvUHhItYKFz11evXKtG6aCt05cb/d0dvf6RP/7D3/Hhh3/m7bff8PLDP/H1f7jx6uu/pl0WSr0g0hBbSebQAaBl5CPH8xGL0gK/tlIKz89PLN3FkT/8dON+f+H9u+95efc9+8s79vffwfCufnVZqJcrZVxQVQedqu8rEnOztkIJsEnYvWlA9T3SYj6kAHl2tHVwr6F1odI4Au90j9PG+II6l5g8BJ5HmOXlkVGuVEujRVa7Nfdr+jC2fVDG8IYMGn5YzDUiIWJ2mqS5vD8CYh7/eDIA8UAOiJMJqnycXDi/HkAXO873CNrD4YMcv092Uf79zAT66CyQQcq8Drfx52u0uJ8RHXsT4DmOafM4Z3Augf4STFFVl2vIMfn0fj8F836uTPDjcuvzfZ+ZU5bbFbmXHgLc/rP7eDqC3R4b7twH8WA2gWvVRy3ZmRCXNNQZXrrsgugBGpVaXNMpgKfr9cLlsrCslfWyhC5Qoa2VFKfOe5zla3PObJhu6Li5X6sDbHdWoo3ZgTOB+Ey654QSEdCwiSdg11AoPf4dwFPu2RYAlnkiPqU4MklkJ3fC9UIt8IEINu1gYyYz0wNTSaeF6dkLoQcUKbwiEdS6nTB1G4oc/lGCTpNxhU5Gk8+JAdrdd7Xd2apFKTKo1cdqWYLZZOI/4z5T1RKVFcPlFCYA4ZpNl8syS+xSOLzWQovh8wTIsVYS/IS5wcf+HsH8UEaM7yRCAAFLzXH3/TrnIrHGYo7mGom9OfWVstzdR9z3cRNQiV1LMwZm2p0zoxvJVc1cK8f+Aqkv5L5t7I08AlkJ0Mzy1vkHSPBqSkvl3wLk5HTPQhACanWbJOKJZ8xBpmSCp5+mCbKE3Ysuhyog0b1VkPB3fQxGVMJUSUYgNDHWKLubk17tNB6evDRxttQI//Zw8yziwwjzMW++lBhEDr/NdOK0PzrUGzzFnCw12POmjO72R0RcsFtgdD3tGWUCRZwTU3acb+hpX0sSYWYyYzM+Eg9eXuisJI0y4jJ9rGRiZfl+TkvfUzz4NgGC4VmSaY+z59Smm+fNwMRJC1Yj7i+N3sf/PzSeHmnDuXnkGOQknBUshGNqhTKEoYUylFEcMBhqDPHvUzzSMrDzAU4Gg4RRTsOft1amMxIgBFH/aJFRFq/tTDsPZCjgCyUeXiEchPkXv5ZyNsLm2eq2rlyeLrx688z/+O//LV//zWd8/hevkKcf2aWzbTtaPoBtaL+ju4uF9/0G/ebZyrHD2CiBJk0Kbjmy2fkADc+YGl7qVesrpKwgK2V9RasXluWJdblS28pyeYJ1CYn6cgi3TepyAQbLsnp3hxaglCYl1oEviQkHAx0bGkCChuaSb+B1th8dwxg66Ns9gAL1qlUFrCM00J0xhP32jr2u9P0NpS1e9kDx91kH9ti89xBad+BhjE5rC6220ERxByHL/m1kDXiIintrOuelJB08DdJ0mPyzGlZGzJChVBWKVZrWCWZca+PNq9d89dVv+Orr36DjxrsfO++uF+xFuL288wyXKK1C2+5Y37GXD+z7ju4742VzJ0hhL43dXIzx3f2GrEZ9esvlzZXP37zl27/+gh++/0e+/9Mb9nfv+Omf/57tZjxp4Wl5Zq2CsfPjhx95ebnxct/QTRg73Ltg1nAW3DPeUXDhennN5fnC89sr6xWMO3v/Ad3fIbaz0FnFwadlFC6lufB6KfTe6aPTty02JSLv48DI0GSLaehXuXujmnPKdT+mJoumw1PQnty2CMhEWccIzc3CpFiYIBr17MWFeiUsRTI+atDsM8NnGeCqTG2RUplglQdGgorOjXxiNXMPjwxHOFUAYhJFLeKZsQaj+ldST4p1GsEoifsuqQqYr6i1y8098iTMi+FwvmPyzsAubVV+d5Nlc34fdXixeYA7JOl65oYr3s1l2j+O4OOg9sqx0cWml05PvmeYutMuXtajqacW1je/nR2ZdJ8eHCKZCSQvqwr73KonKpYqIaKeXf/SVh8BUDJfwA5QZW7W5poVdlxbqy763GP+qoHJ0Ytk5qrDViQlXDQ5ma634EvAry/3OhleaixC1Nln4BqqYcMBFe8kZ86WFQ858uw+L/0qUq/pnGVclhrgOXinTs8M+3P2+3Cnztl/yQZGbY41muMUa2gJ21gcJPYyqRRZNaTW6ZH42nK4bVj2C/RzTJWNePAaDnKOZ8IUOvcdcbZq+NhF8JbqFeracDaBS3O79oG61mDMyVKbt0oWY7AjJTRQYiwX20l9jd0aw5onPnrFhjCKj4UFCl9UkQ+KvFPev/wDt7/7Iz/859/x/J9/z+u/+hv+zf/6f+Pr3/wVr958yfr6m2kAjrVzzHkflQiuRefaVlxkPLVLXl7e8f7dd/zw3e/58MMf6C/vaPu7CNoUWxa0b5T+5E5wXaCsNNrULfHOiyAq7FlGI56ZNAjgqUGp1LpSanTuWq7E0o5S9bOPZNO8HIYsV0eU2ZvN74YhQ2jDj8+qFFko0liXilZhUQeZx6iMoZ7ACgDZ22G7fevZHk+Okspc7z/7msFdRo3JIvw55onN4/3iS47ALe3gp8f51w6RvscZ9MqLzdAm/dBgnpBBgkXIdZpXAbbkPpCvWRotzGPl+ROAYgadx72fu5T+mrK/M8h1vrcExRKY+LODe9rrLGxSAhUZUNnQI/o5j8FH4y+SliT810i4lpoi1A4qHYynynqpLEtlXdw+e0LucU/KlWvYpLLqeHH/tN/RsXkyKmUmdGBjZzYJms/MSPaws3Vr7KEHy9Y/kHqoYFHqCOVgb4EzLabWKVGK1OJ3bsTOVRwZ4k52ONneJP6q5/P7vQ4dE2hq1Y9phtucuDOfM3GP4kfNBK/RwXZ0bAEw9jk+o+8ThJQQDwejVUOrA6xri8TTLC0S5Gml1riDSBq3KqyXyhqi4pe1sNTq3ZpP6yyXrGmWAvqcG5q+iiLm3QirEEz5uK+YG95x3M+d38/WPc/zEcxDrm9POh7TymJznBU46b0GyDcZqJIU+gOIPBjzkEl6Uu7k2GBj/5VZVm/x2dQFSx3ctPXhNfraFpmAU4JOEj5IlngR+0NMxPBpD6BmqDG6U4SqFCgV7YPRA9iTYBiaHKXVxHnME2s5hyd7b9fZzbZVl7DJDuLkZ/H4TRRKzJ9WDt/eEqkFr/oImqCkZtSB+Of2iQ6Xvtl2j2tEimvW+mKlWJAvzEW4kdy2ItGrCZTI9J/9WSTp49FcavcTZywCqRnq53Y5Cv9g9TSiazymv5u7SthW1w7zuSEB4Aoyq0eORHiMeO67+XwJ/0JcG2vvvnZ/JeHp1wNPH2cy8lnkjZng4n2WDsFhtEvatKCjzYkdzj9EUGg+OU6+2kOAQgQCfh3hjMYTGoPpiByaKcwHmADDPBAx4Uzm5C5FphGafxeZAsAWQl3rpfHqzZVvfvM5rz9bWS+DXX/AS+S6s0d0x8bdGS59x3rHds+EiO5IZE6K7e4EGqgV1GroHS24LlJDbcHFnxfa8hopK0UWlstrlnZhXZ9o9eJOY1uQtmTR8+HUzHHwG0xRW2zMgGGMjTE230DtECvcx3bQefXItJWagqZxbLVZ84oZhULWnkfTSMQGo9/Z7h94ef8jSqEuF0pbKaKoDC9BmZ05jk3KN3LvBiXmwYWUKLUyzxSYLlFKdNTHC24IPOBJoDMWfAyOy5QUMK9drZkhgQfqN33D9hdu776n7+95/8Mfse0F6Ru232HcAUVaQfbNdZ7GjnT/6vcbdGf17SaM7jokH+6FcllZ9tfUr7/g6bryxTe/oS0dHXcKFd2Fcfcywtt9eM6lD+4vxv0G2yZoF6d/hnk+srVuoNbLhafnZ968fc31WVC7c7sP9peOdShjOHhjfLSJ4HT4odFhyeb4ZQipsz7LWV9z+5SD2VKAYkI1gvkUazH/F+vMsKOOPgKnh8g1PLKSoFOw+up0BGKzCYfXYiYcWfiAXiKImfYmfAcjAun4rpb2IjaQtCKxMQ0xvMm5a9Z5hr9MgfVi5uKG6ht4so7CBZkGzXJFpfE6zNVHbs20zHx0RfMz0+mZmhicAoGQjTRcOD79V3yMT5WHR/BhBjNbErDBRwGKqbmjF0xYB4aipbN8euX5w2Hn5XBqTs5NgielRLtj8Seop+PYvGA+es13RKligj6Pb5HYT2pkH50hmeUdEerMucThzJGsXz+QplOZabUAYXPmYTaDEdc+yrnwMCrIHBt3NM2iFbjZ3P9agE6lSGR2fcxUjU6y14QS9N9S85rENe5OmT2vQE/H0wOwOrOqEvpVDp76MEuAaOEspzNnIGPGZqR4tZn4eAqoFO8WGAlK5mM7bLLFvE2bsKyNp6cL16dG3+5s9w2NJg8TeIq5KyX1SGCNku/MbguwqHmQJc7W3IFuXiZLlMpKJCJ0GGUHVChDfM98uXO7/8it/Vfe/fSCWeH+Vz/w+Ve/5Zu/LSxPn1EWgk10Zoufn7I9/NYF7J2huQSzUcdgu9/Ybi+M+wsy7pTRmRazNLQ0tOwO0ldnKVPkpM/mz4JxwHvjxHii+D6qVanLSkUppXlwM6UIPFBNJa15H7mOMnkWjGWbgU8yfFyvCVFUvYQvGRZF/N9LK8FoLOEvDkYhAmNj6CHqn+f27+eStPRHbP7tk1fu66eXnezt4fCfgtVcjKf94jjdnwesPgZw/uy1PRxespKF3CIyRqq1HPYEX7wFmxUAxzlzz/r4dzb38E/P/+l1/TkG1Meg08efd9aG38D53jNZUKRESX4G5Gkn+cSW+5/yoRBBFOFv2vxQgk5e6qkT6K9VZvezpTnwtLRCq0LzXG28/zhhAl+YRfnLtFDoeEFHD1Bl/xR40j4NucCpp0I80LCzFmVA/qDzuSjI8HEqkCW7OQ+PTnbxbHMsyEYHzOuc+6vlfno0F5FkPZ3KnNzpirG0tJsVb37i12YzqWUn4Cnnab7HYyK3CQ46qe5ROZH6V+FfC5Nd1iKB54LPZQbsasnIKBH4+rXVWWqHC0W3eJ41WVGc/IwYK3/UUyC9YKgoj5qR/vk0Dwc0qPOAn4LwOe6ZNsod9BT7xmfzmc2koO+YJJx09pHy+1kawXJRzHU/wl/PucH0f/25uDTOuR0IeU0Jnp18e1+3fkl2QhUy8SWnq5R8/7QtPoVqEdSGV2z0PteSDL9xl/ryN5eHOXgApYk3uxSKzrH0cNYlL0pzhlp2sc6nXeQYB00foBxJSTM/0TxtfFTDP5BTOZrg1zxSp3bkOaLSJp6JJPvexGnw4a/mlir2gDt9xKrPSz/sqMUGkKz8yecseX3KxCTFE/UWscnca8lpe/ihMTXJyrK0Tfm/ee5piw//MLF/Uyb70Oy45j/3+u8CnjKIrefSOHIhGNRopWkncUDxIFbUvKMEoOKmsKh5drd6293RHcUzI6PemPMSkxmvAeLI1vv4OZXbwRGb73Uw5KhLfXiwZpge2iGOqPuRPdb2ySXFSx98ISomncurxmdfvOYv/vorePrAKD+wbb8Hi3bFpt72eL/TMP952ybwVKzjyhkDCbQZhd4vWPGs5XJ5plRnAw1dkbJQ6sqyvqKUhVIWrtfXLMuFy+V5Bi8KyFIpCTxx2KwssYZgpqBRg+6bwthf6H1j3+94RnnQ+37S98rn7Qhrra5loYAFAtz3QXaAkggudATFWfzdY3vhZcC+K8+jc3l65un1W8pSEDQ2I2c8mXXfzG1QTBn75vW6pbMsF2pbY8NUjAKlY9WcCieeHSoWgX54bpodBYm1Fwi7lSWc/kCQEXT3rOsYLpDYX5T33w/e//B7tts73v/wO/rte+z2Hrm/x/a7OzutUEZHRkf6DsM77u23Dd0V68p+H+z3zrYNfrrtyGWwvhbK337L07Xx5V/9Ba/eVhec3w3doL/Ay8ug73fPwg/lviv7KGy6EOQivMWll9fZ8Br70uDp6cLbN6/46qvPeX7bUL3z/oPx/rud/Qbjw0ZVc8bSMCzF5oQQQsxWXUqWth++iv9ehkWfDzcAqQvdcNHjAhRlltx5GZIj8FYkqMbuRHt5p0yRP5nnkyghDZG7UmiRAWjFadCzQ89cARkKp6Oh0Sb40VhaBBJJdR25dnJTOXsbUf6zi7LJoKNsolyWRn1a0LvSe4dtePAfHSglxvTYFM6Otx/+7IeSdol06s5jkf9yW5gxUpYeY4q6lzM/661VS5Z/P4IwcdxkEh6OciyYfNZzrI4OG2gwnloDEWecjoOW/rN6JMflk9kjiGuKi0v6b5UoQM7uKBy2ndwwpyObY3IO0Q7QqeRGDkc5DH6eeT+lHCBcHCszg8nqruHIuU4dM6Htm3J+OIC+magM+5TOwSmWmjCpZGDg9lRz/pDaFp6BnmPTJIQk/b1KxzuD+Z5b7GBkOaNYZjc9Ts6FD7tRqoI4sFtSx0fEK2lztApz8lQCnApth1lOLy7/DdUBqPjaFUZoy/UxkAcSSpQbRHCKwPXpyudfvOXpSXj3o3G7vZ8NJWwMVlsRc4HusjgY3aJ8upURcZ5STLmM4qKeBncpbCbswM3G5MLU6DBSzGh7QbrAvWA3PBv/450f3/8d/e//id/913/gT//m/8Rv/upveWLl1bd/zfoWylObiyiD5nRK50KLb8nvttK4rBdnF5ix32/0+wvjfqP1OyXbsysgrjGj0j2AKgMpOxaRlmeWiUDL9Q2H9oPvIxXqgpRGa4OFjtmKSPO5Uh20TJH3uWnGhU8JKE+l4sGms0zGyK5ePkdEB0JDuzfCcMknmWtgLRWtBONJUK304RtaEUKrxOYhz4ye9E3Jy0vrELb0sACnQc9//SJqFAFVzkFONjWOc7YtP/d6rBL4FLw5jv/zdhjJkCFtvsRWkeyIPA+zZBwgG/scE+zEVsCOZ3i6ngTXzvpMed1nFtT53ryz8jkYPmKFBJNKXp8FAK+KSZZzOHBconwDSWbn4ziVUg7NQM573/Q+5ncHPFNXyRvgFInW7AFKrKsznFrzrljrUqhNXO9SDEckvDuzsxN1joMewQU2bi4N0fdZLuj07QiAR58P1mKuR/hKrvhZTX2ETIE9qIPvohx6cQcbxlRR7Q58RexjAyRYTMe88evNOCeTkAlA5bXN+Mjw+ygZMPj5DXV1gYw6TY69MEv0JzASz2G4D+/6VwE2jQ3VI6mcDA4J0L2IMJokfgLWXKpl8fmd+91Jfg7wipRl8dK8VgngycL/zO5u/l5nfKgXQqg/b5NMEPk9575rNX3EZCqH7zFZR/l1WqO+kgJksvmekuMuudMfoOHxAB4T+gdf5diqpy8bn7FJDPBYLaknZ3A516iGXzWPmWA/J79uzvGcO4EyhN9U03dR81gLmbpQs3Qv5pkPsSdRdNsOlAVnIJmCxDIpU3/Un8ss87NYLWYRT8Y4qoQwuUUizXxfT+eZ0/in70buVbEvg+sgfmR8e3GG2xyXIG2YGqP7eEu5+BpG2LYxwadlXdwGxjq1mFdZAkd3P5nYm+y0tXpZnAPkvjbTHlq8P+NYw5OoxhCNKg5YWj2mZP6QpXORWDtAgeN+c+17F9rhOlTxl7QdcyrjiUYUVJSl+bzlcQh/8fXfATzNwpWHjf38qqW6ABgx2HkS8UFaih7CqDh7S83oUY6gS2QU1IGfpH1JltnFxEm9JnfgDgcjDdWsKsu5QpbpHb8/e3xZB+nUeDfuOpTq/Y5dS8djANpFWS5Ku3YoL2DvYbxjtRdUvSRM96j11p2uIwSXNzRqwFVdw4YwFmMIapVeXlMvb2nLKy5Pr2nBBFour2jrhWW90k9xf22LU9cXFzXNgEGaRWTPySZGh4YonXOB750x7hBZib5/YN/v7PsdHdGdsEORJboqRON4M0b33nalgDYfL+3q1F9yfmadd4+SKL+WYTdQpQ9FRbndL9y2n7i+uroBwDdwl1t1HokzpTJz7DRFxY9rJgEwFnbbXLC7ulNkDah1Ivx+/TFRAslWNWw3kI5SvX9SNZpUut4pYixVvWTy5Ue++/BPLEul0HluN/747l/oH37kYjumm5dP3jqjO7Ot7opuHd0H5WVgm2G7sv24s907+zZA37O/79x++JH/sr6g99/zxdvB85tnXv7we/7pf/8vvP/9Hxkfbiy3Tr0PpHsEWJYFaVfK0hh9MPaBHJ18EQa1di6XyvV653J9YVkutGVhjJ1aHSzU3bj9ZOx3b1+7FqPK5ht8PVICArjQvE6NMqF4eZDVaUE1NtEqCRDVYFCI+3VhkLvCjjOG9uJislo8iGU+caOK0mxMxlQh2p6W+C5OeT6CoHQEwlqWGk6wb0Z+HzrfMX2HcJJPCT0Hze2wHXnknoDZpSKXhWUtPH9+4dWbJ55fXfjwpz+x/fSO7bsfKWJx1uo8LYFZLkqJkoC4DE0H5kS/Fv9dlQR7golmR7YFzDtVMD2y6cRM3ybsr6anmAFI/pgbjR1OlC/7dDKJDfEYh/w7Zuzdg3cR8fkY+lz5ngfwSY7Pn34M0CWd9Pm0nNVWXPwwn++Id/k96dSZ+KWXxHEKXrY3Aar8e7CI0sHODNBQH/Msn1NRtBwsXYVwZMORUpshxnwW/vghWnlLE6QKZbHZONXifQpRJlAC3AoxWXM2jxSJ0oc4eAGtRybNdX0IsDM9m6A45XwOFu/MzRrhHBOOdzBjKCypt5j2FmGKD4Cv/dB3jBQshkUyyhtIaDhSIXNGj8tBcHaLzSV4BAlk5yEHw5y2v9HHhpQW87S4zcMfRBHzPaA5E0wLXJo70EXgiUs4WXAzuKuxmdF00M2CEXQ4ms0WXJS7wlh9jLpw5Ub/cKO//x2/++d3fP/Zf+H+xx/56//wH/nqb/4tX/+7/4n66g3l+swsmVfvCDW7yMU6MxfGpFK5Lk+8ff0ZY7vx3bLQJR7Y3TveVik0EYoWhEaRhSHVAebQ6xsGuzqrvIihtnvwqINhvspNGlI9scVqM3taygLBwHadtmCNDT1sTwRmXq7rTGIRDV8jgiAONgMsWBmUcgTFrUg42ubi6LHuxEr4OM70nvoZeLnnubRnan1N3/RxrT++ftkuPMw64yMbYrEijoYpx0z911+/rO0U1ymc7ufxquee89FnH8xoBgO4JMYIFtFkngQj4qEk6l95ncE8339KXOfPsZum9Twf4ZPzDD3sQm5GJW4gAatsHDPPEzGBsxICkE4jSfiZbvCYAuU2IMqhaku2rAUTRri0wrKU2Uq9Fi+rEhwcSSOerP+hnWSRzHswhR7ldSOlKiwYT8kKV08YAC7en5a1Hph6EacuBMBLMg9cddjX6djjTg9bbuogbcoHpOC3RZLDgMlWz307glwJZiuSQVIeM32LndRxzbnlTWHuZBOCIvWohEhwYz7p3Ct7AHBRxaAjgLLNwUHtOcG95BePNb0jZujNlZy75lIfMQtKABWefMkEjLFEly4HnaaC9WQVyYkpRiZZYx56wsV91KwumjFtjFuuewvfK9gQJCDorskB5kyna3oDGcDLQQaI8T9WU2gkph+tIMPBPGfkpegPnvQP1u+IOXhmJ801GsfvY//kb2JE7O0A0cQt5lo/+YhiUWmSazt0irPWKoaoSviQvdOimRTi2pxqhkblh6gw9mSBHXMRSxa5TefVzPW9vMTRgUrrLvPRbZAM3cTcp1VKv36Cu2mD4lFktakc/rKIx9Duj4/D3BsxFw3KmNjIvicPCawbszQuHqDh4FgphvVYg4L7GcGyNkvADrT52FvY3PST5vdcl/nvUJRxrMxlQ1y+0f0naiGZn5PNGGvIShB5LO7fyrRXWXbpOlkJKjprrBClel7/O+//X3v9auDpeIjnDeeYDBDOa+6gZ3S5yOEcmmcQlUAvTaJ+WbBiM2OqCbTHGKXh1OTzx6WcNz4dEg7t4b1mu0hDJr3y2PhiIk1AKroV5ZPMTSCRyiq0Bepi1Kb08ULpNyg7Yq7bZL1jPcGcMSmlR8lYsEaGZ4VtVFQrRsPkidbecrm85fn5M9rqjJ7l+oq2rtRlYe8O2HSNCR+TZm5iIlADScdmOZMkBV6j08bY0LGjegcCeBq3KLe7o8MwrWBLMKwarS2OrCeNXh3R1QAK/bHHBmZKdo8rEm+a5W8pGt4Z/eabOwNKpzTfaKZOWLRj1eEbFrMMpga6rcjJiZcsoRvqIqVAL33S+S3LweK6NJyV3sOxwDvvVTMH78aOL2KlcGeE7hTD292qbewvPzHuH7ycbvRQS91gd40p2we2DWxXSpTC6SboBnr3L6/NvtHZ+eH3/8i/PDf+23/6jLdffckf/ts/8O5P37O9e4HbTtkM2TTExgFTRDUcmDScGdFpbIcO6I1+434rvHsn3LWguvPy4R0v71/YX+70W4fNP+7N8DwrVMMq538zu6bjCORnBnZqFsUmQGzksWg9c0G0OCU2DejiSlCpSqChy3WUG4ywMx+V7pGZd5vPCjkWtlmmTZzBcdwHeWDO/83gN5GQZEDle9IptmlonVF0eX7i8vkr3v7NN1yfGpelYLphfeP+E55hy8Bd1B0VseOoc85bvO8AdiIvE658OtyP1/bJa150OG2ZnQR3uAQHHuw4ZoxAdDY89I0gB+TjQCPX/PFvF5XnyHp/coTHwEVOf5T5w3znHPPjvMfzy3fNv08n76OXQKZHo5LHs+DnW4rzegv6MEJTd0MQ8SBCRY5DRlDtPuxxHVaczZPXPEvtJDp5Rka2tSz9OEo9MjMrHHM7BdZdV6pOzYqaTKTT9eRrtksmgN74nc6/6wTK5jktafTMKSnhQGVLZq3VAaSpI3Kcf/5cYh81Y4gznNRCklWyp5HPNU8o+6dVUuHp8RkKMMbOtt0Zo7PvWzjhDQmbMp1Vi6UuHlR4m2W3YSJ+r5e6HP7sZHC6flU1ZZjrFloMQgzT9IMM0G60u1HGQMbGuA1ut53f/+//mdoa23ajvX7i1TffcilfIu3Jy2rC7fp4Jufa9musXNYrT9cnnq5PbK35mPdggRUXsy8qkaALdiuAjtAu8SycO5uutWJk8Ow+GGXxeWaG6oLp4kzZFNRVt3P5RDKbrcGEOMpzs026uu+D+jUEQCWx7QPO0pCOSA1dvXD2co3kGBS/t1YdAGut0dQn6YjOu9m++czOyUA5Z06u1jz246w6Azrh0340o48yPPvkHQ+H+4XXn2M8PQiAP5rR/PTJjH/62fOFmDGz0A+C2DPBEPZWYk+0s23+5Wv89Fw82O9zmWJeS94PaRftKFOzoIpOBhQnmx12WiKI9UP4PlnESy3PHbcO9rGcTH+yWiUAiLD59WRrA4CqVdzmouErp8zDYLIJLfz3RAlibZmqZ2Y119qY6+Oc/XY7KLGfnFgOOVIRJMuUEWCuhYxXjrQSYPVkN+buNIE7s2mtYlxij895iHmCWPB7ocyxc90jw6yjsoMM32Pi2kyFKSxeDuDJT5B75fGcs+zJdEzAR8Ond1baAVo5nSrnQ314hma+/5a8Y5tkc1pLwXNm2XmynOY8nLPcSAAxwcPcpw4XLL0ucJkImXtgTjd3JWzOO8Gfr++h/obJEBUJO+j+xMNZLP240xpL5tVcL5Cgcdq2XN85V1wORElZkIeS1vDFM6H48d+FM7EjmDwEOdvihwBRkSz3OmyK74nm3eCO7GxMQYXh1RPVjEUKQzx51kNKQwfISN9FJxDnzPHYF4fGodVjU4/ckAKjRyLwyDVP/Cv/PX39xBSCdDB9/aonnzP3/Xwy+Pydqy7YeMPZPoQ/O8axN0iWmEs8x9hnSiUaUEW8Jn5PoUHCBNuLUGLKJOA+byfxzAki+R2m1t8IUoU/JnWfLzCYcgaeJO8df3az9WPgJTmvc27GOpmlknIkw0uQgH7G8/7Z139HV7uYqOWg9otA3/eg+Q1nliQlOy8jNkOhBCDqGemCB54SIJSzykOPICbk+Ubzb+SRTwtnXmNx9F8TvZ8b9qebfw5easjYtOr+pN2AeWnANjqtVdoq3m1sNWobvLx8zzo2SnVtH+t3Rr9j3PEQ2svFSOFuv3TGEGwUN/624h3qLoh9xvXyG968/Zovvv7Gu9a0hXK5zmigDhd43vqORptPS2Q2Ntd0Lr32PI2sgh511Zqd5bjhddg7vb/Qx50+Nl/4PLHUJ9blNa0tLOvqpXfquk9ZG+EglW9OpdR5XqfIOwPDtM9n4voR6m0udWPfN+77B3a9heBjYVlcIBXzbgBjV/o+4roqZYlSKZS2uCBqrQtQGWb07huc7B1NZlBNurI746UwHYa+3Rljo1hBZaEsndIaur+ADYSOlJ3CRrEXtpf3jP3OuH3g5cc/YvtGUaVoR8bw8ro+oCt6H9imsEMbBdsN2QS7Vy/buLnH6WBg57v9zv3dT7z70x/57Kuv+PGHH/jhd3+g7UZzf4g2CsUqqsPZVEODfODMIGpkddSAFo+/8O7HH/lwe88ff/wjVrzefux35LYj+6DcBkUbFc84u2J3aL1MzQ+wbiFncJhjwjQf4tm+SfXiIc9Wxiy1c6OYQYzrIuksz/H1MS3jpNhHiVFzJoaHWnroOcVznVSvNNbiIO/c9zlUdSYQc96E0ikMdgZmMwmj6UgDKVasCJsqn33xht/8j3/NX/3f/6/IuKMffkLshu0vfPgOrB66CCl+6tkOP6NOx8uvIcfC7V2MrzxCQT/3SjAsn5WqB2qz4wy5/x4O0KR2x0Zf8M1h+jcSoogQY/FREBS/F8RLc0faOz1mx3TY8uePgqGHo+V1pZRuOvBHmXC6CfLJ8ztdVxwbPBhLLYgiLh47Se3loMBL8SQDcx/zTbiW4mVm6gw8LYfeTDptdTiAusV+MtRwWbTIeBWjNddoaUvoUVS4LtXbAldI0NhL44xqQoPIrCkEY8R1L5gOKpZZ27x3Z0ppcWdkRABqMbdmA5LQQzr5I5++BIgOqUJzcc25b0ZiKZ6/P4gaZTXGCLLOwItATvwEEE/2W6x1NXkAz9K/FTO22ws/ckdKp2++D1Gj06g0ZwzgAu1FkyenrrldQDLjV4TLpeEZfDxz2R3IJ8BS3+NihTolgyGuUzSi6+YYynoflE1ZXjr3ddBfdn6//yd+/PFPvP6v/5led3777/8DX7f/gafPvgW5IlKnb+TUsxjzkqGk//fp+oS+esPnbz9n+9O/oOUntm24+Hh1Qyrq7KBizbdjMS9rMS9X7/TYp3tkcMNyWYQhdaViUA0dq4NC1jxgzDIDSxsf64wADxI6VAOyzCAArmA6nzx9WqxoHQsqLQLYEWWc4t0d4/6TXSMiUzTeiXuVPpS9D2/YoYpqmXIAkrpgZ0Mw0bGPQZLTmx6iFDl9k7ztuc4fl8WvdbXz/Q8w+c+CPMfvzj7r6RgZ1J4u3s6XXiI9l4wgqWHDsoNyDlA5mDkcfvE52P34nAYP6zP/9uf+nT78WSc0O9qJPew+D58vtR5lKhFUTYLOBDR9rpiB9h6/O+x+a0JrCTp5N9RWXXzaO565aLUQBx7esdl707qPrak3asngj469Q5nisuNgOY3QyZxhmyYolvtcRI7p4oiE3EPEOLkXisPz/r/0EaCUBYfaI9lahFpcDoR81oez4+OaFShmqEwMOMZcjrgrqkuUzpA7SI9y/EjxRbJBRGAUsqRzlnFlUjqAE4mbsWxIYSNYUFkKmQBLAHqW7Njmie9gqGZ4Ji1XpP+31myqkclFXL5A5OANnOZ3hsdn1pOXgWWSMocl5hdRWZN7b+xZKTotgGkwWcL/9a5hMvfoCfxmfGmxUDWTDRkjH76KjrMNsJhiwQwNhHr6T4QdOse2c+kdHq0Y7gN8vDbnFDnYa0fn6cP+T89UBJPh9xnXMsPneU6b+pjs5jITwdQesZcy/J6sK6UTRAJP6PhaL0g03Br9oDA5byOF0zupK33oPJ9A6PSb56Jy363IabxIH2Q+4WMMJQbHvFlWdlqOJUXXHo8zKxj8Y2OPuZ2lbTn/ajCMxmHnDMOKzcrNnLvz/EnPz+lzOs9k7IfWpg5j0IO8IdCZ66BUt3d+bJvn0kHgHdHAQECqs/GciZVl0T6eFh2jJao1ysxUfup//9Lr1zOe4jUpw0EeyAdUSJnf4yKIzevQsfAHl5O04n+verw/M5AaQUaMzwS+jjuMGvYplKVolSMbl7/Oemim/SFravPfh7h3UMasOHglDZPCIgvLpdHWwvX1wlffPPPtX7ymrTdU3zH6O2S8p1hnYdDHzhgb+7gjxdHY3gfaK956ccV0BRZqeaK1V9R2ZV2/5Pnttzy9+YJ6eQOlMIogpUawYMFuKrRSZ0bR9RTu3sY+2ttjRt/vjN6PTT64JI5CbGAdHTffaK3T+wd0uMMqLFSBpVxY2hOtraztQilONZbRY6EYYh3TKN0rLrSqKphtUxC460ZyKEx82o1xp8jq3Qpag3HzTlW7oPfqVD5xgC5L+LJtaY2/FSpNGq0s1Lp4UDMUo9O3G2rGfhNsf6LVldYuTj0MdoGODn2H7YaN0CgpO4MLwxq6b55pKYrtN0Z/Qfd3vPz0B7aX99x++gFuG9IH9I7sHVGldEPvHdsG40URbTAK/QNsL8p+M24fBmM3xh7ZdXOSlRS4/fE9f//9/0FZ/4GhyjIqdSh1GHSfC0I4Z+JGa6mFsoLUitpGvyv91pE9Ntwh7B/EdUo+gOJOwNhvLEAzWIhyuFgbXppSWOplriGn4paDaYSQwuzTp7W0U06ET2PZJ/8JZ1PlMS2clpie3q4ys/kZSTvcMOL3w3yjcJq0a3dJbirxGeUIRLJDTggckTW/npE4XfPJ8XZGVsBYaZ+mDSqM4dnIcimMsXHfPiCvKu36GrhQv/t76k8XyqsFvY8IXIlOaI+Z/iMLx8NXUvWJrB9py8LIuRMUHXB4HH+v11YvZzZLwu90Io482Nyep/kec9iP39fMpE+X2ENNm+qPQgYIAK0tbvO1n8ASOZysCISSZpw+2dz4zVBLYWMXgI4bc1DHoA+Nsm2mE/yxbpLH6i5CukjY+QgIKGCler1mBPWT1RROWBEHgZqYs5lIB8dLhXKeFA6KeRFhqNBNadE+uBRYVs+0r6uwROb9unrL5yLuWHlWepAtcbNDyXzqwnRoSN01BpjX2tUSDRLKMX8HuG2Mud3nPinUhyA89sbzAAq0qOFrRTwZkHoKuU8nOjuzY/5shQCQzFk6Cg4QRJLRwgHqEQR46eLBlHR7IOy7J01a9SRGkxoHOxz36RjS5wIqFt0CC3Oeqoz53ES9NfAKFKqXBmplM6HrYB/DgXHRYMNF8N2V0gcN46kutCCL2ruN+z/9ge2nd/xv+42//d0/8lf//t/zt//L/4Wnz75mffsliNsHk8oQCQUsZiBiJiztytPTG7786jd8+MPvGe/esUWyLkF223as3Oil0AvsYjA2L5XRnWGu1widUsMXq17qYxJdQbOznXgTkyKeyHFgqFKqMxwkHmlRRUsAGXgW1RNP3fWjdHjArgkECG1ZnUkl7huMocCOWUFkIKUj0nK1+jmjdKhGgHMtDh4MVba9szeJbrchPK4apUcHyyYB+9SjKSU6IEfSzOwY8/NL4j9ZbjbX3oyuToZyLsqff52BmDP74OPX+Tx5wIfy5p895sd/P8rjDoDKD+xBvZ6Omwvw2GySAYHZQ7nOp9dqn9zbcc7jZ8uhJveRDJMzggpbl5tW3nsEfFZyE2TqzMkOSYM+zuXH8fntPryX5nrpVC3e0W5ZqgNPi1CrUcsIH2YgDEx3xDbMOsqd7MI2gvnuAFqK52t0e/LrS30dBzGOUnqCwTEzL8R3N4TuRxvYUXrhcYwczEGNcw8FajL4V2qkTnwX12BaBCiFM0vcPBto95E/gQ3O/jmY07k3eGuKO0qu4egeHH4GhNRCMKkPXTD1Uq7Yy2upiBV3JopgWQUSvs4Ubn6cXbOEp4KDFBGvFWnBdCoku7EU71To2ILOIS5ysFcm0cAOEXrBQXq3GSkUfczvXKsHp7fMR1cz1s3/xv5X5eDje9Mq/8Ax3jA1LOdaTXZJrHmnYsw55ZPeGYPTzYomIRPYOrlfMYU+uZfpwKb/fXqjheOex5gJpERHIy6Zn9HU9JK5bA/Qy8I/9GtaVLw5kBLNj9xvYMOZTl2QgSezu9K3vB9PXJt6p+5ZsSSF3r0L4b4nWBJyFeEXTjIJR2c6IRJkGDVZeWGJM1d+Ik2RXe8TnPQzeOl+AlwSLMwzs1/DlxeB0spMYGjMVykwmvtA4NhGaSDNwSH34/Ne/UtSmqFIcL3cl586Z/XQPMMckCppW2LStBDZdT0rDXOUz8uvvzjl3j8XAG6t1T9H+PZh20o5mleZaoBf/KrXrwaeMkPn393ZlojG5OSk5mLNMTu/PNhMZ1SCSvfwVzeCJWlzx+qZrOCT7ovqIJFpD17ExYn1dMwcmNzwIpi0o4SWqmPWnaYTUqYqfEHaQrtUlrXw6vWF128uvHpdQV4w+4CN9zC8ZAxTbOzo6PSuSHVHqw9Bx4JZAy5QrhS5UJbXLJfXtOWJ9vQZy9MTZVkiG+3LQmz4T2IYAxPnJnpmJr7r3Y06UUtrytju9N7JFtcJFIQFAOvYiE1WdybFODMP4pkpd+grpSy0qLmWogcX04aXFOkOEhtSBB4Si6W0Go+zgGYXDXegs6+GJj8yjJmpZ2dCNOQoB5GkDAbDJjdFwGwgtlNsA71NA6kbaHUNKimCVUfNdb+j+w5j9/KMOBdavZRQ1UtSLLJbKXzVN3R7YX//E2XrLlayB/A0jNKNcRvobvQXC0GzRn+B7Wbsd2XfvM7ZtSjDSbaCDOhjcB93Rrm7416qUy8tAv5T8G6xwS1tYb1W2sXXwf0D3FCGDQ8KtWDD+6PrbgxSAJNj1/JFetJPS4c1+Z2+aCeQzwEkkHtQkble1ThKVCz3UJvARH5GzZ/13ApOAUG6pyNW8cADJjXvcIhFeQ1MKvaDPQmLk3svpw1y2ph5fY+g0wMIxPntblvEoAx/fveXF979+B33998hl9csrxbWz69cPn/i8vbK7cebZ2uKIMlymJFP2Nc5WDxcbw7WJz5azIHcJDOoOa43smUGyT84b64yR4oog07/eP72sBsyiZfTRfLnks5eXEMs42IpFlq8W+Wcs6EhlPPtQDnjqDkHTk4RgDn4NAwkgTQ7fP+5Dcm8lJnNzk54VdSdxsgwz7ymFKy16AZaSKoyY8Rcd9AkxUijCu9UFhqxRMy3WoOTJebBdWSZSmWCTWuVYDkJ6yyzi+cU95fY0OxEI/nUbDpEB1pr4bT6KnAdj3Bnkw0T+4iKay9a2NqSACDTN51OGWGfM24qwnTgUpMx19jhKYmDvHLMFYlAQzi0gapxSFCps9EwBxRTZC39Ce8J4QFNCQDzZCCOOSTH3C5ysLPP/ohZkvVzXltGD0cTlOoWRc3tbaWgxVndHvTonL7FnBpfO9QN9P1G74Mf//4f+ePTlUWMzz77DBudulTK1WlYSkND2KuexttMQvB75XJ5xbpeaW3xoHGEvhgdtg0Eeh30KgynkjOz+arhl0RnySIUarDmGtgSXw2RA2wSqa7FJNWDXMnmKw4SO24TAVSsA1/GPZJOh98lFMza/FJ1AN0YFN0oZSDWkNDL8PcvZKIqbVCTAi2qIswTnaPAKBrgk1/LGNktMa/D52MJ57+Q7Hl7sGSnyeG2ndNyS59WHkGg1N+Ao+Q2DDtwBIbHRzKkePSO/ZSPbAX4FHA6v39eu/HwfZ7pDHjNM8YOmcDH/Gv4mkTQEQD+49X4Sew8ZuexysBnXuP5rgMIiMjL7afFXhw7ysNel9cUuilyBDWpU2LpRMRxHPTy7x4UGaXotAG1eNBYq4Ru6zlx3WONhAh2ALeaPnGAJZ4Q8M5cNkuL/HJTdHwCPclwCjuWxsnH9bBrfs8epuf9JmPQqxeSbWVBhlVP3hoYLWykf1ok469o6DDZH0aWtmXomkLvaaQPsNavZ4QmHHKwR4/6n0zYm7NaNWaQqjMuc0ewYGfNZPRR5pZOzgR55IgN/eXnKtOxi+A6GV4nnyF9CYs98jEAPvbLPG8yrLLz5vS/83HYtMRMLbHMksRfxHJfkUiCHwBHstjir4fPlDFlrsbQM/NnqXM8IrIPn8c8UZnscYn4NM5HPF/mcz4v7Xgm05mNe4pxnexFOXbvJIcQJIycP+Qah2C5Omh5grHCecj5HMlxAngcggxxLUYvssGGs3909zJ33Q3dYu3k0lIY+0E+8PI6rxwaPZdV+KLhE7lcajz3s30yS49ompro1zJ3g7RvKcLuf/R9RGHSBd2vSwA25k7O/JgbCS6TMzuTAXlSgsU4Io6oOZ9nTs2fTdis2jzxHqPv0kIxVTRtpDGFxsU1MyJZ5jeZXazdptrhf2Phd+DAZoCNM5kv/nzn9vawB0XC8EBp/+zrVwNP3qHktF0mRgBz8qf4s9OvYnEVmQ9zbhTzMRAOVw5epGgJhlMuJI6ZMaJrgwCUEVm1wUmAnT76RJrTifMgwIWohwo2HAhxp9kBnEEP45sTSSi1slyfqYuwXht/+Zdf8eVXz7x6A9v2R8TeIfIetXfemW8o+/Aqq31U2BeUxrAV5RLd6V7Rlle0duFyecOrN59xuV5ZXz1DK4wy+LC/myK3u5QpkGh4vbnaNhlKOra5cZru9Oggsd/vU/G/RengAfz5RrLvL0F93RF0dhkYvWPcUd6zrq8wVtebqk9Ao1tsbDG5zZzlxe07VC5QPwA3MrRrraJdGb0zdI/J7Jl20eE1wDGXSq1HluGwl37dJ6S24rodxYprUfSB6QfQO4wXqn5A1AMj2TrIFYqFjpAy5MVLI7VHxtmd8gaIumgdKeZuwZ0b0LRwpaDdeP/hhe3dB2wf1KFwH67DscO4C7oL/V7ou5cM6l6d4dRBd2Y3QDckgpYF230cVrnMoI4BZk6n7uJBSXYqw1yQ9tXTZ7z98sLz2wV5euGn73/kpz/9xI//8g7bOjKg2cW10HpyAQtNVloYFytgrXo5B7GFqLBt0R0Ee0Qu8gEVwgENI6scukLZCcWcffHgIce6VTk6iR25ksORgGCcAKIVlaMjTItgtMU1jLyKkyORX7kvqh4bbQYDxvGsZ8Cfn9XjshN0woQlbNH2svPdP/6OP/70O97+2yu/+Q//hi//3V/x5d9+SbMNub3w9//yI30f0wH3gJXpOOYJDxur07dyW3s4PefhEw6HzQGEikmUV+HB+g5sROe1cjgmgnc7E7O5BouAirMOtHjotwhTK6cEfFVQr9dHkZIrfYBUijobUZL1UlyXYgrR5wYMDqiLC7oqqQ3j4+Ag0dxpGFFgu6de1dnJEjgLY4OXY6YAfZbWlV5xGOECzQWvRy3IZUXWCkv1ezRFekd6p4xBzaqlLJEwYUij55NRHyuL82mAVDrU+cAlQKdmtGIsE4SCVtW1SARKg233DqFdB0JlCNTa3MHNzLHFgsrEQglbXJRRQpNJklYeSZGiUTrhTsy8GcL+qKVE2wEaYxRT1gjoXCJ7oMWf/8hGFAZR7+2zo4QAZ9iCyaAokZGbYBlzLahU33/ngw2fIIAzzKitRrIiS0RgSCZm4t4yQFkKtXkQ6pxytydjaGQ5szwxSi+LRlmgZwitmHc4lQUtjSoN7c6qVQyproe0mTK6e3iLVbe1d2W7/8Cf7v+JD//w36i3D/zlf/yPNL3z6m8u2AK9VAYXqkDDS8l9X3XdR8qF5fKK9fLEsl6wvbNvm/tHi0K/Y1vl3gd6qdhSYXwWK8D36BlQiSBWkXKh8BpkRVkRnoAVeIJyhbIitVHKQi2NVhpZVUGVKK/JwMyfxLBOl53e026nkLL/PMYTkur5PfxJ6ZRyjw655QC6SsXsgoizo0W8Q1BNwKKIa4W0xsiyyN2lG7Zu7FHl7mWxWXJWnC2uBMjpzKzDptr8r53+jWmUzhyvBJiSPTQ3krTV9vD2I3DLuPcIQ4/PcwR3n74ya57vkWn7jms6djM+OYfMX9vp3655mRceQIQFWC0K4knMc/lOHjEBt+mXcUgsJyiW913i+gyh1BLAtzpTVnFAhLQEmXTwPcb3E5uBMUCpB/g1M8iYr3OLtVybl1OX6IQq3vHTv6BWpaQnaIOS5aEa2qejo3rjsQxMJ5B79inyGR/37n7JsW+7DZNZpubznJK2V2fw7L59xjUOOI0sTYu5oKN4oqQsFFmR9FxD5kQpAdyDR/eR2As/32xndt8e49ALisqM+axzjQszYNY51+ZMwFlOIWptIR+Qwbtq2IgUw9Z4ZvOU9ADKvfNcizUZoF4UaDvDK/QKydiszWuQ4mSITDSbefJnJkTtuGJN2ZER3fYMZhI31yrHzxYLu1Q5EtMxDsU8KdxKPfkzZ1CR4/1hK2vxjr8eoyaDzJ+PZnI713OtjL4HyWJMEHVXPRK/sYerucC2cZqXse+OfgRS6TN6Ux73SyCad8Rli7mtHh3/vA3X/QzXV/cDCK3RDVzA4xQMkTErxNy3dIeo4HEgd0VvRhSKsN1HaMYK1t0uaS/Oj1ABDV8ygMNhua9Vn9thi1wr8myvj8RzrD4fqxljGEcW3A5gLey7J14KSJtxQGrVno+d1u/RwhrW9Zh7oY2WGk4+xzwBNood2fOTKYe4HVFqK7TVf3GygD43y/Gz+AN0m1mhRkmxLgFIFT0xoaLbb3G/s4T2a4musxQfizOmIlHeZ31MbU7E/d7Z5+Nfef13dLU7GBYe8AVbIscm6v1yMMfwDHeNFLnbhHEMvB+UM5VZmL6K39w05IeRn3iS+STyjbNMNowjdsu8Zg3HSwCKMzeKClqCymigeJ1mJah95mQ8kQUpq7ehf3Xh+c0TX3/9GddrYYw7vb/A2BAd6O7tf4fVU8ZPMFkRWVjalWV9Q12uLOtrluWJ2i5crq+5Pj3TloYnL7Jrg82JTvd7KCqo7gf4tHknvTFv4dUwAAEAAElEQVQ21/Wx6J6nOzY6Y7+HwQJq82c203J+8OwsYFoYozOG6yP1LpQyaHVn214QqWzLhfXSKLWwtJjF4gjpvitmhcvlyrK6UGnvDVfS9g5sKoF+Z4b+tBvIiExAcRDJH3bJsAQJGNY7PFWKNKBiVtl3g6AE93Fj6A0d79n3FzD1zUGLB10iAT4O7v0daEdMqTXpyc7OGFWhKrW0oCxWB6JUsO7otAyw3ZlF4w7sBnfBeoENxlbQLmw3p4ZG85PIQDBLIA+oWNxwFzdmHjrnAkxHIMZDw6GLELqUhcvlic8++5wvvn3F8xfGd//yR/5Q/8DLd7dZp79vGy4s2h4cVw/cfJ32EFIwyS3N2WGSWZHQIso6cBOQEQ769GFsslNy/ZJU2bN/nYaefF841HIEAHZa7/keVaWPcxbVvyzOnYjR1Do0D0ymv1pKhrRRbmMQ2g2HPqLMLcXZLXmhubkoLUjX2pVLg3Ef/Jf/7f+N6eCpCtenK/p+Y/vuHXJzcfmmhRp6NIJ4owFiLRwRBrPFtNrDkM05gEwbei5xyAE1vKa/42VV3YiCAuZ45fMtNhs2A5kX9/xrDWaM33oU600TXlhaYY8x1nhORYSamVhTBr5xFQrOZQhFhBJjK4JD3/nF4Y9PkCoypj8TtE1dkBNTT4Lpgng2KAo7nYllhSqgRRhF6BVev33N+vqZy5sn3n//HfvLB98jStjh8GmEsAMcz7AYUIUmcmjYZ9t7dNbCL83BplphbYegeK1Ka65vJ7VQ947cd2630LGJ8XNHqcy1l5N7ZukmYOMOTYlxPJyfoFJLTOq4qSkAzFFCefgQubZObZ5DCwDxANZLBAPGkQiM0l4FE8Hm9YsjQwqp1TKjYrMIQJjVKTnPMgA5oDKZQVHuQ+nEz8PFmEh4k7lErB9AlZ/fv+bnJJhYjuZRliuU5uXau8JQtDbYo8W4jmN8VCjDLfhSlPH9O95tH/gv/4//J7fbjduHF/6n19/Q3kK9Lr6vccDHXhaW26t3ZtJxp2/v2e4/UreODqh9gK2g3urcRsXWNTQXStjQyoTVzfn8Uq4sl7eUesHKFVkuSGuUumJWGVrYd4XmgOYUxpUo65iHz65TzQMLCroM78xoHaOhlqUiCuJBtW9GYUdUKcPXamveJMTZ1Rey7K/WNQLPBSkhJh9JhlKKi6yLuARACXvR1VnIRGJn2vOjzC1ti0UCbIIJ0754gJDBK4RvGIHOXBonQ2Rzrp1M1AlkTwHZuQ9hD+99fMmnv5FPf/fx+9xOn8Ci088P77OPP+t6R5oBY4UzM9jyu8njcePYB0ARiR2PgEKSI8ZtWE6l8PeOa55Bv8Z+k0m3uSpza0uNTjtYJSKREPF/15pMp8JSPZCqTWYCQkhG0XAQIspRU2fTgcl9Ak/nr9lVLzeEGSkeZZRzX+D/y9m/PcmSJGee2E/NzD0iM8+lqrq6Gw1gMZSR5XLJ5Qv5QKEIX/jKP3yFQhHehEuucDg7O8AM0Le6nVtmRLibmfJBVc08zqkGChvV2ZknLh7u5mZqqp9++mlmsv/Mttnv7gZWxvUgGMig7aAr1byhjZUXZy+BNfQeSKFRlcf3W3fpTnTQNhCtUveN3iw+WFwPlG4l03iyLeQIbB5bsqgfxn/YXABn6EX7dUdwrOQw7luyEYm9HELLMv7W0ZkvZ0VdQHy2NZEhqyHJqyZEJuPVw5m5LiZIO+Yoh857Y75+5lEdgOGf0zkL0A3VMc+Ts1lS8s6fI/p3lL77nHffW4L9rcEsdH2c4cTgMaqNV3d/J8obRzWRiiW0fIhnCZzNN+fMmb5vj+cdJAmGm2Dlb4zb5p6KDiBSnMXVwcuY21hhodmEVx3MTpNm23O20tachKVn2u5VFq2xb53tprRNLFZuyn6xkmnD13zsWqdXZ+11iSuwacshWS/jFSYYPgbFmGkw2d24/8KRXecRl4ZvzdQuCz9EZyXHeDKClfvZdPgr3T/tWklx71Sdwe9g1PBJZN4YM3GWiNw3ZdRbwvDlJB2+U6dwec6W6GwFShNjwSexiiVnfKZkAFWqVn4syYCssrjtbm7Lo8rIEcWoZiKeO8Yv/8LjfwLwFLS1w0L0iTzrfOdPSnn6lWqOVBjqCCYOoJldHJMaF3HeMAIyzbyV6rmBHwHbgcos7sThdbpef6ujbgQr2cAdPvHJiQcVXsMoJXF+WHl6PPP09EDOxixqbYfekZ7ofXG2hHtlyYIbkrUqzssDD4+vWdYz6+kVZTmTy8p6OlPWQkqJqjviahx2qTOjLz7pg+EFHZoLhPfNWUfd/22MJ1HTGwJsIfvYa2w02o0CqcmQyp5Ns6MdKBG5m15VvZC3FckLRfAWpiApk5LQkpq8SMrA6ve6mvZDw9KPotZxL+Obm9eku7FIOSPdKbQY8GGbtGeMkiBSCOouDiq2CL60szfLELVq9ye6C3RZTDYoZaN39ka/XYxthUKe1ORKQ5OiuZPWBxPNTybcps0shXRBmkBP7DehXjHZrJtAFdepEloV9lsyWmgTnyPhq9l5R/mJ2ZNp3MKUqBuh4yYY8yKBzWdH+tfzA6/evOWbv3kCMrfnm4vk2723VsBRNsEwFiGh1oAa/0hWuGPnpr7WTdD7uAbt0DpY2CKHMjVmZva+5CAu7t5WDdBJjwaYYUOI7UedQaH5eCjbcMN5VScNjc+7vYnj3BnJNmzM0AaJzJWoa/Ycg3GcJWe/izsurcHlzz/x/E/f8+mrV8jXX7H9+In9w4VUITUha3JQJso/3FU4gEfDzVOO1cXz3MNKyrTJYfZirLpv0B2jIBvwpAbApbgGIWlYzBmYmztsgxf5y65CcwaNMMEoDe+PcMWH9OlwFhLG+sl0K9cNJo4wSr9s1Rs4Nn35MdOm+3tw/mC+1YKcGBMG8BT1+zYXIxT3LGEWWrbf+byyPj3w8PY12/WZul3mJh+Tfdz8yLvGPZzlQCmBNOi5jfsZbKaSsPK6IqwleQZKXY9ELKu1LCgmSC43Z+EetAslNtMRwOrYK0JEHx+nCIKinJAkU4tJ/Y4PjQ9z/AP4G3OQUWgxygs01tPIBOH0vfTZLIp9FXOqiXsufi4JRjsaGXcmnK3w4SPhdUx+zQDocA4c77Uchij+8LUyKX/jQzGXw+7EmiRl0rogeSWXE0t2poAIBuZ0L6W2CzXH3D6fa6er6Yh8+NOfKacTaVn5m//Vn3hkYclPpGLAyn0QaydlTUI29v3Ctr2w7y/WIdUZPbZ3LGjqfjmddBKMMQWEpLeIs60XUnmkrE+kfIZ8hryA6zgpia6JWq1JRRcTVO5q2f07AMPXoOnqFGMgl9Vtrwm3M8prTJRZwYOfYEa0sZZVi/kTkrxEqlgjEhqaFrIbw9B+ihbOMxA82AjfI2Od9K7DlsoY4gNYH2Pu9R16uL4vJsrYlOL3fNyNz8FwG+Nnsvz1eLh/1eMvOfY///y9dtI/f9wBFImtYwCRPoJ90e6suZ8Hso7baZQY3j0Hgyk1l6z7y+Mc+/DbVcJwzHEO+zG3CAed5GAPgJJl2NUcFdRDB0UxVCukJSbIQ4vu096NegBObYAYx2Bzls3ZtSgxR6etmkPl9lijyQjTzjjjpwfjSetkP7VKq8arDd0ikUz3cvHIWRp4EsbZZUi8sZG2Sq+hwbYbAzcspWtTmf3SydJNgFip8ZxLB3sswaQ6dLaTWN+fzb/DMQZoq1Y+Ft12e1cHPh3CD9viga3ps4lPmTQm3OheN/6L2zMT+PF9EWsct/J7htPxrXr/npiaenyvOFPT9WhjVvpe293WDT8tRUJm2s45l6xbbQ8QUXHnxa8qbnScnyd2OnPej7+80mDoP3nm1LoSih3bJTFkOI8xS93uuY9AdxDYNQ2MeJztGO64WQmbHctAQdPmKyqknmi10Xdoe6dt6j8SssTUzUrtjAShDjwl/07GfYvzi5/udn64NIef434v2DX3GGv90np/HofIcUZFmdrBtwmf9Gh5PxvF+wP605acmk9rZ4BisS8cq4/DRti8b8NNMLDK12I6HE+n39Q91k7Nfouz4k1M2JN8WV0OR+mjA6idrK07RlLvvnxP5t/K8LV/yeNfJS5umU3fkNBZ6xibgoYB6aPdrRx3A8BqH48b8uffoj4gB0TycAgD9lwke1IQ/JeBETmVOEN/TfyGTsck6ltFlQl1gLiuQ+s2wCkpy7nw1dtH3n79itevHmj6ibpttNoQXUBPllseBnIhu+BZLidyWVjWM0+v37CsJ9b1TCqLOVm5UOuN2ir7dvHvtK5Hihn2Wq1jjAFvzWVIBOrVRL777tSNSt+uJDVxPwOInGre1TYhd8Zbs8yGZS0LRmVfIBkFvhQh5YW8ZGp7oV5uXG/PnLcXltVAtOLXdjqfKXknixfcSgYWRE7sm1JbpbUraCNLI69273pX2r7RW6O2SuJks747awxBMe2JJNnrTgvaxBlZgb5mn/QdTStdd6qa0Rd3KrIqyEJKOzSQ2skBPPlGEIh7b8Z2S3lFX33Fup6QdUF3A/p6baSWkb5APXF7uXB7buwXoW8CLUHNtBv0KrQ90XuaAbx0jq0wRSBrJ/VEPk7nw29fLYTYW3RQEQw0aq3z6fkFLSsP3/6Wv/7f/2+Q//f/h8uHG5L+nto2+mZFxDPA0IN5FAa/zPVlWhjfcDgOWmHWVOneiFsZpG+uHDdxHUDSzDYfHLcwWsdNn88GgvgOc4Ct5Ml5oD6na2sR6o7x0e5g8HAE7adZJ4Fhn7pYaVr1jg3IIXOm5sQOdzxAeIUFY7uYG1cciKxs//6f+E9/+J7H84l6qWwfbjzcMqlnlm4dqBKJkpO1gpXZdj7uivh4He2lAbtRPmKP3qdIewTLDRPi3lXZemfrytas9K4ZWgnJSfrqjJ2wjbg7416BimWVuhjkaBoa4o6VA5XuiVpmL48Ay1g/nbUoOXWyJBY6OYAnQEUN0MIseyVRfROzPXQ6Z6EbJLERu3MffqgUZ03mDDmjOaEp0b0UsKtlWFPv5F5pGTQrfRE4ZfLjwvrVa06f3tFvL+zXC7EntaQkPcAqYkFwIWw1FN9jeoclJWpT9gbiAXYuiXXNLEtiXcukPAPFy8KWtQyG3eW6WYlyCxaqs3YHRGKB0NztZG6FEV7IdIRZxZMMvt5GQkNpYlKyzYOAQ/SNAfLWWawL0D0ziwwIwda3DJ0rj2HsvjlDRWUCvqazpUiwKcXE220eKT0r4rTwADtNM2wszFgUtg502pBMR5OQu3VtSc6EwZ3IKFNgHMns8XBowcpIJaNlpTw9UU6PlMdXyFZJ28b+6SOabrADdSe1cO6xYM73H0ojaaf98J7vbpUfv/uJx6//hr/+X/yv+S/+mzPL12cT/PSSFMfk6K2y3V746ac/89NPv+f9uz9w+fQDy9ZZWiKXnVKfSPVM1gTdCn+X84qmhS5xz6yEcDk/UE5n1ofXPDx9QyonyCe6a1cE87sHq1cqcEPZrRQuh3aOzfsoYYtAQyRxkmRNOXplr4m+v9B7NRayl09F59GxI3hwWkpxZmAmpSspZXJa6MtKySeQRyurl8U69DjDNmkiO5Mo5Uwpmb12Smrse6NW04AK3TSbzmbP8OV3ZOhA7M3D6xzzJGxxFhksQYjuWL7njMjHxBO/EOB2nCX2vcMrPwvo/NJH7KH3YMf96/H4577GbIzrdB6dd6MuEXo8Ih5Yy/QRYk3G6yNZHOCfr3NjcvhHclQIJHqb4tUS92qEjj6wTuOUSN4kZzJ5wJ+SUooO4GkpTE05iWSAayf13cqtRqe1zTWcKtqC8dTmXA2bIzb30Qk7xX0fIyY/M+44eNUNhgw83BhOuwNc3ZlKm4G+bksQB17UANsunZ6UJNUrAHxvEOsdOrRX20avG63NazW2uP0Ym0pJxL6t9GrHH3f1swkzhZFtbwosToJCHnY/+/58mDsaIzGApz6C7BF4B3PR7Yp45Bvr8phrUHPl7G/BBJKB6Kr382tKxmu9OxMPv6cEyOXJ+bvrnut5+DoyWWgyno8T7AO4k2TyBQzyxWd7EhHxFoiKooYl773t2rAvDtCoQk/TdoUf0hRcD5/pHPrmHefmSaqZq5qbtSKjTE9dINQ144eopvkR9mVJLJG2rCulwEo337hjek43rLRu78Z02oTtCrUptXXqTVxZ4uCI6uGcuE+GddIAm4J8Zc8fkk3Mteg71Ti04P4HypEMM+0Xdj/vgMGpzRU+THZje7R+Pb7h8Hw8tB/v1WTWEUzxsUbGKsGK+pPvL93Ijg7EDsRHzGefFSNeMpfEGiwkIZd+BxbZe7oDTUoqieLAU86Qi5Jy89+2BosLoCfPujcH4yUbdiLDqP/zj38V48n++OIFcyhh0BmnUBwDcQ1aZkrqFLb7zS9uhulXQNC7J7oeN/8gTncIDCO4BEFS6AvIPAZRn+yTMA8FBJpvshGMKpY9kyQsS+Hrb97w5u0Tj09nY9NoM+aILPajq/24/kYpixuZRF4WSimspxOpFBTlths4lFKmUKhtN+Bpf5kLIU2jWPvUnooOHTkJdb8ZjbZVxDMj2+3FO3UoOTnvQL1r2lihVhNuTrw7e5JIFDKNTDXGVk7kpbDX5lmYxn57R92f2baPIJmcC69evSaVYveue00+RvPsVWlVnWXl+i19/kT9cqs7uwaHJwytgGRSKmjytFUqaF7IRZE1U/KJcnr0QM1p07LT+4neXqwka7sCG42EykrpxvBaakWriTilbsFi6kBfjJLYoV0uIyMj6ka4AVVIvVDkRKYg2qy9bjfwgV7ccIO1hZ1AAj6/NYx+2Dv9cnnBZ/Y3nlNG1qKrsrfG+48f+OHHn3j15x/4zZ9/4vvff88//uOfeH7ZaLt1ysi50DXRejP0PzIx4RBptK/HdQpsK7T67kHYdUCAO0JIEmNTSD8aCkFcSTsC1bicAJVHxCe4I3e88LlmbWsPkfyhnICV9iqq5kDFeKpideN+LAs+7fXq9yC6lzWnLkfmYdiksBcR0AfA4uefxWnMdex8LLogF9Dbja0YOyHtQmLxdZaGc41vDnhZnW2m9yDdvOdzdozNy23tAPYUvICAXWHvdq21W8mdE/am4xCD5WDVHPbguHSa5PFCc4dNuqdBxJg0UgxwzMN+g7Z+sP/BK9X4GNnFmc3x0RHwhyfkia8xRYLTIR4YGpahAzyUOCUTL6CVjJYFLSt9Weg+JlJvpLYbG4VmAFdSXi6fkA/K+ZTRfRvBiiNiw0m7mxyHmT5BKVscWWz9N3XgRyyTZACTsZ5i2zKnW2lqIHxX2yNLMWekeUbZghJbeEEND9Dp3r9O88SQQ1Yqjeto4WybF8ZcyXKcCIMpot3LFcf6mo6TKsNxtIDCz8dB1WA4hR1ErOxSfO7hc61jJTJ2vurUcCvjjXbVR+BJIwMrNt/G2hclo1Qv4dYIUOXzDGY4igyaex8/ycBWEaQU8mnh9PTAvlR6SVzqDa0L0SGmiSUuUu8WLNuWx9KF3hO3TakvV6q+5+//u/+OWoXT+Q2//a8fKQ9vLbkRczwp15cLHz685w9/+Ce++/7PvH//I9t+g82YyktdrFtqTyRZyUlJRVjF9suWXQcvWUODZX1FOT1wenjL8vCWVE5IXqnNNLUauzPw8NK3jCRoWunN7EWUw4lky6Qm6JrIZbG7k4sxixGQSmtCbQb26hhZHT6ZhgFATU8k2Q/Z/YcUdk6AhZKsw6yEwx0T3yd/dmAsuzbXunSXDzCfrTVlr43WLBkUHa1i3trUlGmfx+oaIcl4LXy10LtKpM/KkjQWyv2/GdvIwXrEfP7SA7gPnO/3hCNYNs7dTsbmt3/9CNgPx7OudhzW4BxO289DRP8wNjD1H3V2MzPwqRN70ji/eWVEWHbnNESAFsM0xlamdIfvwCOK7jqSTil52ZXj6tlBqLJYYiNn61iZPMiSAAoJAfFtAk/arIpAQ+8purNN8CD2SoctgKjoCBDqsws/3GvVGAmdAbJ63NQrXU37NMCmum8GQPVDEh83dhhr2Jygjm3mGVX3PZtpGLW6UetGq5s/Z4BGD8qFgDbvLhMChg4otJHs/uyiIjBWBhvX7p048OTjFH4GfYDa4QOozz8Lpn06pPD5D4DTgTttviQD/ImSMNU5V8y22PO+TRq7X+PUrdxL247W5r69vWZELdfkiYwJMst3ZQLvyTVzZ0fQiDmVIYIhFkNmIrlqn409vUdnOJKBV6izkf0nsjwOOt0RLXozHSSdxAnwjm4xTQdTqQ9QNDO7rNHTZ4ziGMI0mEfRv0s9ma5NTbeoxrmBVuNopVUJxbGlCIuavpr5QM7cSsso0dq02b5Su0l1BKIWvogve4nppA5Q+32JldzdfvTB1Jys5cMqHJVP6iZkqDJ5x+AxP+V+HuHxzjG5NxlzA2Ya/now0uP5Cd8e9hYZntCwzXcNnMDX6DyKqKf9h92Q6ZNqzDs9nKX7z82GJbWwgxjBxr83HYCsWowVmrIa4JQwxmiBlJSaxWLvJFhzettkUgBP+W7Q/+Ljl3e1OwQ4Y2wO3zEojcfN+/jqYeEfnz8+7Pjhus9Mghn6NKaaFYzEAHu2k3AkxZyiiG5kLrRA6RGDXjKdnLr1NvQFGuV4SDYto7Xw9OqRh6cH1vNqgr096naN1QNnhAdCVL2sxVHBRF4sA1fWFUkuntutDXNKgkqm1mr6SvWGFzDagnLAo0YXDdREwsRKXlrdrWSsGi231Z263eipGUMju6ifCrU68IS4bsJi2gw+tskRZHFxDclpOKE920o1UdEr2m/s9WJATcqgG+v5TM7LyMxYnGGAV23WLcsSPUpvB/pvb2gzRletGxGJBfBkIowm+Z90pacT0quZkcXata7LyRgjVFotJF2sHXQycbrWKnsztpfIDdFMViFXM6K4U526LX5js2T7jrZDy9CsQEcc4dcGdKupzpLJZERtheuASKbQoZsYgpEjzBrtLrizflwRh7Wh989Hhni+3zK5L9cr79+95/s/f8/3//QHvvvjn/n+u5+4bQ2as1tSojdr8R7OZgQBVs8dpadzsxbCUITD5YCBMgprwqCHUzavmAHmyM/ZpAO6M8y8+gaMjqMYw2r+mGMcjhguZO7sj+HQRjDsP90cVSGQerWMBQxNqnEuAWbE33FukfGKfdGPhwaAJ5SeYbMsZZPqI2vCxOLrLBxsHZvrcfObG9nIsMTs+Wwc5+vO9IIhjmysNQeb/PlIUh3vR+yFk7IdczTmqdn+irhjlMzRco0Xch4CwSwznd/3OrRfOxXEncDItuDaQEQSwMbR5X8mKBtXOObITEiM0ol5wnb8lOg5w7KgpzOczkSGuW9iopVys/Xpn9/2K+UC2/NqDJbhhMSx1f1+vfPUBF+/YuvB5oaJmocA5tjkM6RijlfKzKydTyjFQKbuRsP2FEvYjHHwuRv3fI5QTKuZbJkgqX+/J4nCKMVSEd8fj5cb8y/mQdihwWIKOxRBY5xEGA89PhHnMniSxhrxXT37STYvwyTGcQCLc74cGQbTZggRwIpYFhiF3LuXpPgpeQnPoNofzawy/IoOjjpOB01yJi+FglC0sywLbTEdQ+ndOw8Z0DYRRXeWu9Jrp98qVS98/5//kfPTV3z7V3/LN3/zPyPlE3l5xaAeAtu283K58O79ez49f+JyudBbI7WOVDHdNCqwk0pGlk5afR05OEQSa0eeM6k8kMsjeX0kL4+k5UTKC7Tm7GBvYjLKP23ca3NdJncyLcvvdlcF1WbaS+LBGJFFzliL6wgYxk4x97Sj3e/mWKvYZ8y8d5IYazKJNQtA/N47+3FkjjH/Jfs8l+QC911pOVFbs2sRu77WEuoBsfTDRPD7Pc7sML+HfXb7ozrnI0R6Mz562LXvFsn8Hvuqw3yWw/t/8SN88/vvjP3k53WhDgvgzs6OI/p9lC9O++dPQeeAHL9j/NZhp+fwxo41v9xKfNxWSJoB3zh0Z+gEaARMWNcnLFO/eHBkzQKsIcYw185iCbbT+N2PYJOXhY4Oz/0eTPPktG2asWvOpIPdBls7ig6gPHy1sI8jQTNYTZa0tb+tvK73NpIQIuL5Gx+3BOLMdduAFGM9YUBW2+nVf9o+/e5IAmOnrt7QRN3uBuhgAJXO+xJXcEw49Pm3vWXeGwUry4xEtN/qNNYsDO1EYrLGPAimk3AQ7/Py+fhJPq+mbnDyhhqg91I4BGPGr6t1H+fjvfCkiT9nfoaM9X0En+6Ap9EJVBh6eP4jYjFS6AXF560Ez79fhMPw+un73tEPfw9bo4RmGv0wr8BApjhfL4MzxlSUwskwvFEFNMCQ4fBPWZEBPHVBazLdpT3RdzEtpoYBUaIUBSnWyb1g1QBZxBntyas8ijHQJfDSbnGUFpuT06iOwThYh7BKw3wdrz7m15fWLtLnhyk2ACxi+Y5pGN9EzJdhumcF1tzAzEeZ5uG4Weg8/t3ZhEc155j5phNUMyBpXmGASnENOr9+zF/GOzh8zt/YLYwesMh09ke1QErWlTf5/piXAJ66A09M5nMWUgGSl+sVY7ele4LgX3z8cuAJa58pPjGivEO+eNfPbHRy2JrToYTluNrGMB0267nNu/E19Lz16jc1dBGiw1qx37p6aGxBUcpefiEz276WTBbTMdAtQd1oFcvcSQYKOZ04Pzzy5puvOT8+UJbMVi/mLMtCzgslP5HyEyKvSB58LYuXfmF3QhywboHo0g1M6o16NeFA7d2o484a21t146jeJtENVp2igeqdJKR3evN2sD0ZkENnY6d617S2h0GyUsSH8yPp9OBMj+a084MAn3gW1AU7lwzrEiVUyrbdaK1y2zqfPv3I+fzIspywcjbTZliWk4Nqyimd6X2j78q278Yc6oFyQ1Jhr/swkHbrTWgUZzwJ2bWdFK2FpazI+ZGymCFDQZqxeuT0QK8rul+hNurtZTDyxDNDSTNURZoaGGUhBZKKLaSSyaVQkthcIVM1UXfldqls14ZWYc0rfVH2XG1uJIdGt0obqLVl7JM6SEIAHd6pwx0xPQQe96vK/1Zs3Hz5dDd0BlAq/+kf/oE/ffeP/MP/+N/z/PETn959tNJCN9atNi+tmM5SbK3BN7OzkgEExCrNHvhBcnaHDhbCCG8HWjCdhYRtPt05NX+J+hy/5GDkQ0Qyi8lNFqfoB6Ozte7rw8YhtvzQadIxaHZPTEfAQZ4ezta0PJLTOL80nJw4xfhD4yTZZTeq7wKLWNFVfXlhKZk1nxi0ZYReFhS1OZEjhzs7iYxRUNuUrKDKAYbYz9TO9XhOQjhWtnvW3o3tpM52clAtdJTuYSVjdsy5NhlvB3eP5mVATQoq2dbjskLJyFJYzwvrurC+ejDtIjq3l09cL5+o25XUYBX7se6c9m3Zd9DPGO0zULBoYQB+EfDh/ugov/AX1MtYe1L6UshPjyxvviK//ooqmaTK7eP36O0j/eXqbRadsdI2bpfG80+wkljUwbrhaN/vTjaSJlIepT9FwFZXs+6cMp3lWB5hEaKAozs7dfrszpsQY0ilLqQ2IWv0CBISAwE5DbqzSHTyIybNYCTgQE7xwKgnA1IS3WnYOoKQOTN8dui88vs40+Zx1/hcBF1MltQonw+NPrt7FUzw3e0EEk0JDiwDi2IYXqLf9sOqma/N2+OZwekAhih7OiS4IIBnX20yr0/8M9oqfd/o+41C4lwS/WHldiv0nqG1CVy57JN0I/fXZtqDe93RVhAVPv75z3y//g/8x/XEr3/3N7ztysPTWyvt8yDpulUu18rl1tmrdcYlPVC1QutcaqfUnXLDAoUuIJl+vRpAfDqRjRuPloykFRXrsks5kdczy+lEcS0btLEsEVQZS6HpjmyVfa/UfWfbr4g398jpTPIOikqmZGNDmYA5pimVTtZdSiMgDJZE3KAZSII4CzuNPQDt9JbpFBd6d8Mg0cnImRl+H5NnckWEIgGEgy6J1jOtN9bNkmF7VbYtWyfiVCfD4zCF2kGvBh3/d/yTY5iSJArWbce0wOVnvPGwb5OocTd9j0nef+3jl37s5wGpf/YT8Q3/mrNhRHU6iErzlQiKnCnbvdLA2rg78OXvnqfrgtoilCzkLJPplPFykTb8hDyAD2M6oRu9XdF2I7q89e6dw5qV2qHNFrGGMPW8h8aQcLHr7jYtlbFX2qOPvbp7RKzHa/YBsH2lu+/evSy10ZrHBT63R8ffZl6aJXyw9ZNcz62bdpTWRq07tZqgeGsbte4zRojSQU9MzTJ7B72GkT+yzyfANCtb5C58U4aJH8F6D5a56wkhQJmMsVAomnq/rt82Sm6thDAcXkmzI66xnGz8oqmIhUQhs9DdyYuYwthegoFBCWGru5fierdXxEXCw0ey54IREuXApVhDH0twr1NYXI8slTkfwpe0oexjwLq6Xm+HoS2AMrS5unuPY0xjYJWhY9o6AT4YOc722LH01JLOllCPqelWKkEX8/VHeb0aINab0HcD4npTS9Y1oe9Qbz4XG/R9p6ROOWc4CaXDQ048nBIlmdRB6WpF23uxsj0FrUATayylhdlWxq5RubebWSwpIbGWfJ6GJztAmTFnP/9D7v55fFYP93q+qi7VMc9BhiN+/7D9YL52j2QcvvsuRppn3PssJZyJxbvlxVSRn/NA49DuLN+BVepzzS+gh9883cjxDTIwBgehsnJa3bZmRVJzGaFu7KYk5EU9USWURSxmzvce4196/KuApzA+0wj93Aakd4DlSLscPUEOMZwNyRxkHTbmLisyJ9o0eoPdREbFu9BRkLKaAyBCOa0s60JeytDVkQyvnx5NdV+UD5/ecdsu6OWTA1SmI7CUM+vDE8v5gbyeTT+kd2udmRrLkinLE6U8kcsTuVi71pQtC1ibbWjOXyIEYrvWsdG1Vkd2bjC1wNF0K99gTBjxWnkDnTRZS83so5fEsj319oFar+y3i9NrGUbcOhVkA7f2bWzu9hP3R42mKdBo45pSzliLV0wbSZt9dxKkV3o1Ydwk2fSi1Np/kwrWFvcE5UzWE+QddCex+2ZYqf0TqtadLoyttbn2H22IN4Zv9YVWT/T9jOjm3T4E0kpv3Tbt24pk07tQsmWlm4uzq0DPSFU3+mUa/ZxsaWhGk2lTiHbKulr4LYWkhcyJdXnF+SGD3tjrydglHdjciKZG4+aBiOvpiHHMej+ApmHomEyGe0fmfi0mZ/IFFVp98261c7k0/vTHn6zdpUUFJG9NXat1H0Tk7nvMlzeDPvFgdwY0TD0O3NkjzYlpwe4w25NqDPE9ni0YqbGjYfHDjOPZWGR3HJNYZ5OsStZgRGDrKda0zG4cXxhsn1EzBlenyhzABMHW4CgDjnXhtiglwhJ1dxw60MQYiBTXjepKTouJfrboEyf0cKwVqpjPaOwyxRTpfPScBieR0eKQqZE5H8YGGba4eycyVdwfML1j5iY2PnMQ5hzwkg/OBBaMhSMkc6rTAnmhpTM9L+iyIuuZtK4sT2dOrx95eHzgm19/xePDQhLl47sfaD98x/bhPdvlU1hBCq5h0St5351tYIFzlGWZI60WYPplpzQdUNu/vTOWO6+KDP00FUXWwvL0yOPXX7N+82tqKtwUXk7QLxnKhb4laNZyMnVjP94+PSMpGxW7NWQItLYxV3SAIFbfXsRaE4+MklrWSMREbb0ucFADu6png710LM+yu+4ouol94wSz6QxH9i32xeHUlozk0Ai09TMAPHdMRa2ESZPR8m04TWC+05Hc/T2+pwzbFIWXMiQ8FPezZT6Rknq2fO73Saa2wKCoq9ngwb7D7I/BX8aBO/RG8vVmQUYOurlriwUbQCPBJTOoHuepzlImmJ4R6Lj5kZmHFBwymF467Ff6Tdg/ZSgLRYSnbDd69qG1sbDgyO+LWkfJoqA5cfVLX5vSX1749P2f+PDdH1hev+bc/hbyYrBlF0gLeXnk4dW3PL75Lf3W2N5f0f1q7Y13aDVRu6LbTt9u9GtBLs/Gu01YCawIogawaK1wu5G3i62RIsN+WjfBYIjMudGSsNOpfed2vSKYL3E6JStlIpFbs8bnyTozppStA2A52ajKdDV76yZv0N3CONiUShrMScGc5u4txIWCsLjzbWxo6zAWSdDDXBk+U/K1kRyIdfbcmsgNK3fNmdrMl6u1uv2cbHMRByW9bH44+weHVbTPb9cZToxw5s7ZneepxO7oe6LHWbOqQIdNjsdxD4h5++VD594xtwlbQ4co6v61ONYhez4uNP4dAe7x/I5f+/lrEQiol80y2IciligZ6gokBltEJxtAD75HGLP4vIj6PfQft3slj93AteEqXhOE4kBTu6H9ZpqdzVhPFuzvrvXkgIDRPQjBbMWCrtC7QguxD4TjJHCnNzfv9Lx3d/f0EBPtLbrQNfdnzFdvfYILyW16+BPSvYpAMb+29cFumsLbzPCrO1s8bKiPs6p3QvMzTmkmmpt3uxu6ZvFZP6atlTTWyPgubxEvDhTb3mggtPp8tCU9x2VoO6U0KzCOQeEAqod19zK5AM7c62lTmysE0I3tZCBfaCTNfdWS7Vr7ALaKS4iklMjZ/h2/TdupWKw2NhLufxP+6VyLg5mfHDTqULUjYp3We9tNZN5lVJLPHLunPrAOhpofgfuAOqpahi3Sg2+pvkZbzOWEpmw+l2IMp9i7DZGibtCq0mo3xm5TdDcxcOs610m9IkVIZzgvmafzwptXhfMps+RE6ifWVHnJjedPwpZiTbUh/2IxRhTfm6coIzUbl+Ne6QFTGPFx2B/ugSIDHY97+8/Zyxiz+HvaTpHuzXd0AJ5Bvplv933ieOzDPhA2O1biuB6dayCubc7o+V9cedjiSLjM58cpj3M6YMfjO0d1usdrdhIRB0XZu8eVrgs7Gt9EmJBw4Ml6kiyr6ZL2Zo1xUvlllKd/lbi4/sXnbLIeF99RuT/QdfWJouqxjwc8X2xgB2cQ0cMAOqrpSPto3ezlTSIFxLrP4Ibr9PDI6XxmPa008TasWXj79VtrX52EvmTS5ZldvFpWhCQL6+mB08MT5fxAWlfTV+pKykY9W9fCsj6xOHW9FCurE1Fq3ZEdajUkXd3h79ppvZmT48HXWlanqBcrE+l2c0P8+OhbCBZkamv0aoUKGXNyS048nBYu0tmuQr3thEidGUw3kr4kzMC14bxbAiEEzGyyNlVYigtfu8FSM+rSLUAuYjRJuvEiimRSWoDioBoE0yulhsjJnYGN7I6Athvbtvnm2Zm8gOkQCxXRHbBMU69nWn1B+42kSikLuSwmxMtKTQukhZ7LFBL17IAduqHW6os7B08zsINktOYZ1pZiTCDJoIkkC0vJnM5nlJ2tPdCk03on7Tu7NFpu1N6spK+qZcElkwiHxZzqpt0CaW1WmjbuuRz+f66LAHqiU5Bt7iZA17fG8/XCkjJrjiK5DCnTdPRwdIzDNq4ju0XV0fFhsu0Tw9GP94Yj6Burj/Bxzx2BYJRJhQH0r+YO+orgzw1kgE5H4ClpH8GhGd4+rfvRwOsEUe5Hz+G28d646bEGzAEeoqhuoHOxTEvr1Utqum8VxrYTF6OkKyUVpxc520nMsRvyYO49CrjnaOOf9QCO3dlEmfj9GN9w1PTup6sao01jBR02pxFcH4/7mY3xMfO86thhtJxgOaHrE5QV1gd4eEROZ8rbV5y+ecPj6yfe/u5bXr02JoR+/4oPa0bXwvauYE6DWvfOuiH7jabNWs+PjTMmlE3KcCJBHIQx5mrsG1GmZ/uEBzMOPuUlU84nzq+fOH/1lpoXd2xeaMtOb2e6VLSC7krqDWmNetupDmSLa2IEE1WJeaXzfogMFpeENm4fXp/RkUeNqBAdIgODHSXOvghtrdlc0lgXGTtAOPrHeZ2zdbYsCXFNk5KiW1gAvjaWMrKdOksG/fuSM4qlx2teOuhrqh3mTggPSwpjERPHExjHzKCDGpLEOr2qrVvVPgro45FJZIyWX9WzgNM/mioG4b0dxmE6eNNxHE6YMOz4YTkM28Q43LRIaawEkLrBTWiSyKeTAStJ2Pxedv8t2F6cNZFUkK5kipWP5kSXTm2doorerjz/9COffvwzj7/+NdquqD5aqRkZyStlfeTx6VseX/+Wfm3owyfq7RNtv6K6eVMKhVrRfYf9Srq9UHKCpVB0dXtpQVmvO21z4ClBrgb0hEaOJXzmPTQ/VVFtxgi8XTEGwEIpJ4ydUOjaEE2uOWKBY86FnFdQoeNJKMX2IG86gDpYlRJllOxauV73EiQDjTyx6CUtIuJBi46AOHTPBujhzJmUEuJdeLM73iknchcLIlum7pU9WdfXvTUv3XaWjbMk2nQQxnQfczDAA8YO469OP9jedghYOMYLOtZh+CLjOvzwFu/IeO5fZkXdv/ZlsjiOM5+59zfl/jOHfeafe9y9PgAo+518Lxw4jfu7g/EWzBjCLh3PjTufI0lk5MWYTtG9LkXiUpldohvgpXW60/sG3dhNvVfoLuwduk7Rjcz94SPwZCfgtr03P/cejtC4dzpMYFieY5LH7ylulyOobFNMXA7svd71cKOmzxSMqZC9Vbc5oxnRwYc7XACTXjs9Atvm3A9OzmWXiF0CvPF3e/nwfaldrJf5XVEyzkGo3MbK5kMw0BlA6eHnOKkkxJTj1O8LkWaZnKe3VP2exfpx0MnL7NA+zv04b7vr0U3NKCyRkNKwTTlnSimAiYpbw5fDrYkpMmIKB5/cOnSfS4ad+bm3jojdxN6j/NM0aztOOGj9AJhNEDhApz66PNs9jXIqkeSD5verORvvYD9UoVcdVTZRpldvUHcTBe+14adE3/y9tVLEOhULsOTEaS28ejxxOglLTixyHkzC26W5n+Hl255Zi1k6gMAhFhaO7/Qn5LD/W7wQlRjq7vThMzh5A7dtY97cza5x08ZnZT5zfHXoSw7gk2EOhu/ms3MeRu58jDFzNWavvXCYifPYh3mlh3feAU/xRYcgS2Gsf7071tHpkTGmdmCZmqpYafpISAWAnHDdTSVXs9VlweLxZt3zfsnjFwNPOeexsNso9ZmbqRIOhyOCwTwM9NuPE4sOnwQod+J5RxX5dlygPmgiZdzY7uJrKsnKP1iM/lhW8rKwrCd++zd/zduv3vDq9Suu+80Dmc7Tm9csS6GUwuM33/L88szj+x/ZHfxIKfP09IrT6cz66hU5ZVISlvzI6VRY1sy6LmQvxzJNJ3Fdo0aiO/tBkC7UHUjWCaa2PoRd1+XsbKSFZX1F72k4yoGu5xzutjnqOdlC+/j+A/vtxu1yRVun5KAmn008XfYYScB0nXLORrmN8iTxyZUgp05rO3Xf2Lfqn3mgxqbrde92772rjSRSebQNOGfWVChlJZUTrRVIxTK35cEYYSWj/Qq6IXoDvdLrhdv1A3tVer0ifUfbZobXzxVpbPszWSvCFWWl3iq3dOPTO1gfnjg9PvH06jVdMlvN7D0Zq4kzXW7GMGk3qI3WG7dW0V2hCYWzldMlJWuGVJFWya5O3Wtjv/mS1ETboPcTeX3i9be/4qFnTnVnfSqQO7f6zI/f/yMf33/Hd//0H9g/XemXjXqpnMW6IbSX7mFWph1Zf7iRA5DQRJnPm4EOCxFlnT5DNNEd+FNgr5AxoEwbSMp3oMTBDxpG2QCpAJL47Nung/35TwpnYVhDHZ+JEC6Ll3fpPGY/XO/0LZ3anLyEKVnQkLFOVbHpRrbJGBUe1Lo2wcFHd6NpAFYKJ2ZG8GMMjPJv4FOIIEpKfP3N16SU+PTpI5fLC62FbfKixQbaxDfsWQIcIxZOjZ8Zret4h32fd4f7zKkfDtghPX0If8Ym1Jjlm/dlhjG2MsQUO8Eeii4srokSDqHiVPdCypnz268pT69YXn9F+upb9PSAnl8hT68oT488ffMVb7/9iodXZ9589Yrz0wLSOH3/NZwXtqcHtldfc1oypyXxpBvy/AE+vWP/7s/obUN0oyRn8qVitf/NgoZgmIlk72Ai40pMuHSCj02NLdJ7YqVb6WoRelZ67pZHOyWkZvqSqAkQvxeqpK4mdNmr2bYAZh2Zj/bRkVixBHNnC1tVMsmzuVor1qnNVrlgx2h+DzUFvdr3AxVIcQ22z/YQKElqaxhbPJ6oJuWMFksosFgbenNgY6/DgfKY6y7AnbxltV+fOlMpJzVB54i7fLY1MWZK92QPDgrJ0Wh5+TTaoZo4hGh3IDnSQ54X7HHnLFO2VxPF791ZhFhZZOiUKe5cBjg2fA2b5D32pWlWxh9W5iuH7rW2VkKvAEwH0BouTD2XpM7ckYxsN2PL7hvtYqBkEyFdnilexhJdtrLk0XSgdtORE8n0lKna2GksDfaXC7fv/8wf//N/oHz1im+v/5UxqzOQzjw+PZIks/22kdrC8+Nf8U7f8mH9E5cff+L5+j2pXUm6WSfXtlN3pV3eccqdh1VY2opkoVDY2o3WN/b9gsrGtp1o7ZHzaaXk7Dq25l+UxcBMBep2Y79euD2/sF1fACHlwun0QJKMlJMbwIT5GmaTU06UpZgNPZR7azmAtmGbRcjJA7sSwJPrYSYcyHJQSpx97f6fdCttnZonPimbryGxPSNasifv4psksWTTX6lFuKVOrb4Hiomy957MnqiSpB0C/GmDg5I5wf+7rcXf2L+w7V88Im447J/3gXFsA/LFa0e/ORJB9pkZePd+XKx89tn5udngR1yfy23eYQ/6mVO/O9aXANdx15K79yLGCu09HQCWSFBHEGrBjziDLfSborSuZFiKdW/M4t0kacZi0huq1iWu15uxndqVXq3Urrfq0bQznUaJVvNr92RvXIF3BkvSPWhuQB3VCnb9s7Su+/tzXu7uU4ylHhm1Bz0pbXM+zRuUsOyGeQ92quoNQ2w9BUcVEUoudmx1AeuUQIsLiitIctapna3k4i6ANwXCQJPWrBmFrZvsWqF23tYRzvYxq6hwLzWcyXFSdj17C+DJStRRW4s5GaCTspWzde30vTnIbxIYit2LypRMsBxH8zi0j6Ym6tp1NpeM6RSsod4MOLFkdwAOR4fxuD4iNjUbtCyFZbHE+hCbcKBK0qw1DPH+4/oA2w80fAifa0pH62bnWZsxz3wOWhm1js9MVpKPe4CCo6uzNY06Ap/G4mPk82XcMWsXo83YVwZMYZIuVYzAsHfq3qy7ui+N0PIxRrzNnbpvtLojLLx988jZgSf6wuWyw0vjVl+o7p9LMu1ZqwJyf/VuvATz+HWMKX7fIx3ZYST09j4tzbiVbm6mfTrejGmkU7oHaANMtc94Pzz5bG4MO+3H8PeEbzaY+96cp2m/e3dKjPncxfVOe5z7Z9GgmRD0MCIhnqM644Dw9keUcAC8fv7a7l87mGdUp8dUIxElkZRU0q60Ki4+ruTShz/1Lz3+VeLiQVfsfZLK7r7mX/jOI7ug66Gc6Giw7ct+5pjRyrD4vhtd6kKTZzWjmQtSMo+vnnh6/Zpvf/MtD48PnM4n0u43RJS8LEgpsBROT6+g2L9bq/a1IqynE6UsnE5noh1zSsJ6KiyLU8qzuB/e/BaJrcrcQayUrrt4tuE0lgmMgDyX7IZ8IZczGatp7m7wSWLCiSmCZUPuW6ukspBqB9m5bTduQGuNrJvRIMmQFsRFgGPjKTkRnTt6tVp2obuGXyNlz6KCO2rMDIL26QCNhVdJuXivPEg4dX5ZrP45n1gfvrYMaElov9L7jV6frW5YlbxsrKcHWhK0MgJ0Q+EnNbarkLTRqew3pXXTsVofnjhdXiHtBmqd7GRv5B5zxZhxSYpltZwxprVbEKSNlBras2mctI4mKycMZ3bfbqDidc6N3grIA29+9W/p+YFSd9IDaG5k+QRfveL86Vv6g/Ly4w9sHz+yff+Rurnw8lLGGPYG0VXJZjujdGSumqONmMZjmCjVMQeHbo+6LL8YzV0lVqIOQx/Zo2nsuVvfQdYwUob4SModI8mnKpElGzZdJzqfYGQkvtjij7vOfGJeuxvmLKZ8ZP+bBjm041QYoEDssCEQmT2oSsl0eeIYRhMPB93tlFgwmlLh4eGB8/nkr/vMVDe+4bT00MBKiGaC4QSm0TZKArWjrZJKtrFTy2apMsogjmFZtHo9ZqVxG3YcqUhgRiJWRCfhBuv2NBxa4uP+PdEQgHlYA/MKqSw8vHnL4ze/4vVvfkf69W/R0wN1fUDevCWdT+SnB05fv2Z5OMHrM3WFrjv7qyfkm69Zekeevubtw4mvzwtf9Qvtp+/Yv8+06yeLH2t1fYI050YSS2E707KJaz35xpsO81ZiIkRWFGN41Laz71e4vVBz5qqwXz7RL89wvdC3G7LvpKrW9UONQZoPx0cskJgr8OBYi8MgKlQ10Go4ehhFuXUrX0rhP3H4cbp8NcExZ8XKSPA0Pehzic/XNNs1d6M4oSmhuZgNw4Md18PLB68lHHXByh2iacSRn57wcVRbtV3MmbEObwlN5nBHAe1wcEdGtkE2ZiDanFHax9hFZi6qD0WEpmahRQLxOlqH+6BghnQ+u8caEXcyJaqxDM5Xu5c93hN7aRarKOiNRhts0GFvUhwvrsMDhbYzWJN1I/VmOkbZzlN3c9CnbpSxHXqzKCxJQprC3tBt5/mnn/j07keuz+94fPVrJJ9IKCUlTqeFr3/1NblXHtYHbu+eqVdB9cTtpVOv72kbiDQD6Voj1xvF9WsSxiwSOtYjREGtpXWSjZp3dl3pOZHFQP6cEtpXm1MI+76xbRv7vhnA5gLioWd5WpfBpg72FGKJSCubc0jcJ0roBA6GhJidK9ntVjJuXcaYYzHXx3tTGuWMiBgTu4OJk/s6wuZclMvha1RVhgbaLKV2u7gkY8xka4rSuyUIWjfQpiVx//ee6RHMATsNdRbfzHqrRrmwcLdpxx40YoQ594LNdPzBjzX2xkMmP0rD514h4zWwRMKxO92XoBVfPP+zj8O53D0Xl3MEyuL4xDWq3Ztj4OP/Fz5lSjJMkZWazUhUnNE2u9VZ96wyOte1IctgPdwbyhQP721D++b/3o3l5FqrE3RqpoWnpps6GSXdfYOYi0JDEbWieStTSIcrTgOoU9+gNTkbRY/PM4WuWx1lWIMN4e+VUc5lkhyhMWWN6HQIUtsc91MYTpmJ/webxMCsPnyu0L2bNy1Y033sdjav7PoM8zBmkIEih/s85rCfxAzyGJPdNu85MY4/4747sJSNEYkwOgvOYP1w+GBGD9S3j7UyytAOa+/+a4MtxRgjOL7m1+fb6Bgs938/L3eNy50lYXYwY1wFwDjZWVEtoi5kHx78YOf6ifq0tER4i+tw26fqzGOz2VHNYEOgswSyTf/b5hqBsQ4AS6uVcPe9s9+s82er3cq/p/nxUcruZ8G2d9MU7opVItmWWfdqz9upmwZpa+xtd2ZvMR84pu0cwGkYVLE4VX18fK74GlG8g577fsO9HeboiDd4Mqr3qedoIzLn6biXcjBBB/t9vNdj1sf3zKSvvckjLPdhZLwzXp/fMZsEHKKh2J/GsfxfOp87nrOG9EE8HwM7Z9ThPI5zd7Ljj8/PbnkGpk67ZveiNcgNUrXGJL/k8YuBpyPoFCUdMBfeGMxxvj4wGkGuHq//EARNkbj43Jwr90Q3Q0Y8JAgPOhnYVNYTZAOhylp4evOKr7/5mm++/Zq8GFvJZPeBZC2u3ctwDaeV5Xwa52EOkCH7JU9B9Jwsi2fickDyEinMGU0IktSAKHGdpzYdoJS89XDKrgMSInoLKZ9JaUUkWwvjKHtzsb1SMqqVfdvYdguKJTckZW67AVx131jFur6hGdI6NDZIATxZ9qI1d7Z7he5opTTE6zrDEYgOY6iO7i+hFYKCYF30EvFv+zsvhZRPpPLAw9NX5pxmofcTrV7YN9h1N62ofjLgSWDvOyTveHcoa4paZuukk02gfb9xvd5YLk+cHl6RtVqg1RupVi8HdNDFIDH2rgY6Ne8q0WxT025gE7WhqaHJWtLatWf2vZtz26Btld5P9Hzi6e3fkc5fkVpjXzda2cnrCyf9mqftN7Tzzsc/nXn+8Ts+9I39/Y2tVUopYy21roP9aCbQ1s+xnt82f4dxDvZvmJ0hRMksLVQr9ep6v0aH+bqzszLACvtXlFqELpVjATj7SLyDEPM8U2zOsYnLUSLQjbJOUESPF60MAMU2lHAW1JkwYaNlXPjcSJhgqLjxtSsaIFnJ0ZEkmYZLV8vqH7zgoK4j0HqjUDidT5RlsQA1xDfdlonPdzqm3+WMkGAeMYy1r8HWYN/tPHzsaIx5oAcL+Hkg4pfqY3XYvo57xwC4ZACF6vcrbnOOz7ljIil5WcK85wljFeTlxPn1G17/6lu+/du/pfzur2mnB7b1jLx9i64LrSSW14/k04I+FHap1CZsjw/I119zyoWHr+Gr10/86vHM2/qB22PhIjvXn/7MXnf6xUs8Y16In4kHH5HNtHGJEkZnKjmYoAOFtOvrap1Ct9sFvX5iT4lb79xePqAvn5DrBa5Xcm2ULuDdN7MyuijanLhzqUcAbPPOfncxIXdtk+ofW1TGjpl03g+7BbH2O1XbCDIsERrP67BdGhMgJSQX3w+Flgwc0pSRpG47fF9W6JZaM0dZAzQWF3xVaOZsmhDdwfFDUMnjd5dswFNeUCnGNCYNB53WR+aevSLdEgapdpKavmHyiEO6hzNJvKOonZvI6Klp6x4b4zacv5gD0184rgvLPs85gOtX9PBjxXRDUkkOTnlCTU13KMB0OfzGgzQNVmrEAyKIVtvvljxKyfbaLLvp7A1Vs7+tdQO9coKuSG3oBi8//cTzTz/w/OFHHn51JZUHRExwXtaF5es3LKlwWp746Y8/UW+JzonnTzeqdKpWVDaqNlprnOrGWjd62xBtro3YSd3uA32nb51GoeaN1AstW3fWkrN1g+xnNFmJ+rbf2LeNultnrOw2teTEshROJ2OaW9mJg+U+/jnbPalRuoSXXLre0rDpIpSiBMsEcTlciVSHzbGhB5ME0ezaj65yKTK0XkbQFYEnwS4VYx8mQcTKPiaDMlGKUFoawNPeurPQlVYbtVvZU699iKRHeZJ6YHIss4ogMIKWz3VAdEQPerDx8/ddCdFnoM8RRLoPfmUc7+eOdfzs8fH5sb8Ap/TL947v/ZnzGvfh8++YsRUjUXX09A8A2giPJIBr726YEjkLS3Y9uwCemMCTBfJWRkfbD6DT5oCTMZ2ipEkCAIgSu8+BJxwUk0iCO+MpyoJcO3OC4Wbrwj6mbr788HX8J9gqre7mK7ivF6UyIEOfFcRBKGM+JTMlntSwezR1mmKvaiCLx++2P3XqcB1UR2yLzUgDTrufg7Gjs9uyCWY0Z8jEDf5yLpv9i+5z95Pt/h/aZzljPGcMdbtWY4y30fylu7MwfNTwnMJ/0/n3TJrHfNTD6z7X75iMUeI52c3HOT3u5yhDmvPaB8fOZ/hq9vwAF2ub5yS2r0iPLop2IsEQDoKGH9bBJ3E2HBN0igSoZ1y6HmyRs+JCkFyCid+6Jfa7OjlQ3bYpbU/0PVH3ZPmkKKGSyQwS95FqN7b8XqE2pXZLfDX/3sutstVGbcZe3ltjqzt7qzZHjW7uceb4mgNYcLQLMTPjjT6ZNABLe4S1mJPNKyrE5/aQA4h7KnPtclgPd3ZVZ+wxvMHhWo35fxdSjbeOA955Ll+a4ViM98eP13T8nnvssLDje+59o7tR+OLk5kMOv+NezLMIHyia4Ni/OyCtG/CUsOTbL3j8YuBp3/e7TfDuYvAbesicj9cPg273NX3xmni5kD0XqGM8plPQNdF6IqeTdQxK2Zy/nFmfzpweHzg/PvCr3/yat2/f8vTqCVkbjY29d+tq7UGDSDHWwWqaO9ozaUnOiDD6GB7saA8KI176FpehKLa57e1CGCVUqXvldtvYt90o3WUx5F6h5E6tBqrYNLEyQViozbJqtfkmJNaBxaJTcyDrfuN2vfL0YFoq53PizZszvdmC7NVK7JbyinPyrVsV1Lpk7O1GrZ29Vq7XG93byt42DEASpeSMaqfum2dROlqrB8vOHNG4M5C0o23n5fk9advJp43XZaGczpweFs4PKxIZHzotN0grsFKWjpw6N7mx0dhe1Fp01g57p7YKak5z9oAg5RXJLkped3p74XZ7z8fthfN64mE9G87YKiDsam2ht21DazUa7t6gJWhmyK3crdKuF0g3SInl4UReF8q6UmuiVWW/dT69u3LbN17awuvfNF79+om33/6W7/uP9LKxfK0sTxukF57+i695+e4/8/zDH/hP/8//B9///e95/4cf6VeFfTc5qWKbsxxtiM+n6DB3gG7v1l9kgizDHgZNpjOcHK79zFB1mWZFfY44dEJAvPGzMEGlBShJ/Cfe7woGrikTLE3DcBwQI0r5hLGPxXV06/KVEwOo6upOIJbZjKLDoyvb3ABKxwMIM8jJBWozwXBKLIv9Th7sqloJUvPNu2uIGtp4JLG2tx8+fuTl8kLvjY+fPpIXY1XSG4tC8oQpCTQJNSVaiDeLuFN549Sz2ZJeSXUhsgutOQAhauLYfpVhV4dNFQv2xrjJvG+dCe4nMcMuaoF9UwYQFXOkuZPWFXKbAXfyIHAp1rUun8/UUthy5iUpD08r8vqJ8uoN8uY1fSm0lNhKomZh9wqYJon96YGHv/4dp9/+hlflgVcZnqRxvhUyL6T9He//88L+DD01qoI0mdllUTsWUR7VHOxUiniJNcxAVATN7iDTqfuV68sHeJ8o/UoVuPTG9cMPcPlEfv5Aud7QppRu7Iru66ZnJYRvehJ6Sl5G6Q6czD2wh3MsmerZ2u5tC2f7Z7ufZawAXwtqum57q1MM3kt7urOfHFExHScHnvKyIjmjuRjohLAL3EjG0kzJgnu31QOTGyWeBoZJVyR161qi7sjboJrWUF5QybS00spCzwusj6TlhOSCqgvKRtmA1WTQrhfrArfdKPWJrDulWzfTUdJY1YaxGWOBqmRRltS9rZ0YX0dMQDvWRPg2FnD3AYxnH+soTTfmmTtJYNYgQyqJcl7Hmm97jD1WuutCsgkr3Q2WkHjQEkGMiFDWhBZBU6ezWxnOSaEkT1Bo+Pvc9k4v1lW21OoBTOP9P/6R9PjA6b/7v7O8+hWvv4Hzqyd2cUAxJ57ePlHWlb/b/xt+f34F5ydumlk+vOb26Qc+/PT3iF7Y+8Z63Uj5wlJWbudnSm2kGoBog3YjUaAmakt079QkaaVk69a7rE9oWlEpbG1nu9yo1xvGiLbS51NJrAVKUnJRB/mseUpERcasrtT6Qq2bsZelk4u4LxXrQ9hbsqCqC4h1xs1pIUl0tjKdwhwNWLIXK6dE9qRoa43UG12tM1iwCKJkyvxMY7qYvYj1JYMZuKRELwGEZ3e4rXmEdb/qtL0NEfI9nmvd5AJcSqEFiPAXHH17+M6u3cC5CPTD9se7vAX7L9F1Gtoen4ND/xMex9K5+3I+Ob5p+Jj3pXaHUMYBqGPF4Z2Xf/hHzua/RNAdbxY1z6GkTkkY8Fm805I0EpUkDaGh/easJutg16olKdu+ecndlR4AVDX/UrUj2gYI0msdY9h73EuhD7W7AM3cVnj5OikT+rPBQDFmaJR++Rz3uHcAOPhUEUuXZW8CIpIpZXWwKSFpsb9TtvXi9gUHWm63jUh2Yafnwu6JTrP16azEcVP8/o3JqiBiewLiLEM1sf9gxrRjTamPDVgCNQUQ4DZT4tgjoj/cW8829d6pdUdRyrJYEwnMfofA/4AeAqhy2zyvYWpyhdA4ARwegRid83CAT3o/K3tXaq3kIiDG8Nx3mxOSOoXwL2fCUN3pVdS7DPkRezdmeWwG/uVJY6diXIdqd6HveEoG5XmWUfo5Y/cxWP3dWZ0KBnB1a7TUmh1TG14xoLRd2TdjrQ3GaIe2qzOhGf7QXLHmizS/lQlj/SuJXeGyFz5dCz++V5Zifs7LS+OHH6+8f3fhT3/6wMulcb0q193kWgQdjL7kx7ewJY3bYdPQPVfdjEnrHfNad5H1nMdUjHk5bI14bOPxhXVC1DF9xqAykwgpqkb+mccd6cbHSGHEKpFu+dnHIdaLBhn9UPUS9oExt2IyHb8xbPK40OPZzec/ixu/uI7x+2C378ZklkL20am7WXd6/1pJ/EtfMx7/uq52/sXHTWduDPLZRX++3+qcEHevymFy2IYzDbr/Wz2oVG8Dr26Y88J6WlhOC6++es3Dq0fOD2fevH3g9JhIS6NztW+WYGrZV1cKJSmLWBtwNJGrvU/oY5KbEdlH0G+bR0Wj9WVSYz31cLoUbZ3mwFJK2euXo9WwhR1JvAOTBvBmdy3oparZjqWdEEDsfUewtsa9b9TdVk1vOzlbBw+6WlCMIEsZpXJJoatleYzRsdvtl+KGvbPvxpRKougi7vZXO7dA8tVjH9VRthWipGj3san0vtF1Q9ntu2RnqN2xI6mSc7emIF0QTWzYtba6o7VBM30QPLDR3qw0Igkiu82ZFIL19rlbB1lOpNMjrUOiU3qlbTfadqXuV+/016h7RXpButCbOsVaLCvmBqC1nWVd6aedWhP71tmujdunjcut8vGa+If/8O948/HKrxOUb088fPWGr/7uCU4bKlfaV8LlaeXl9QO3H35g+3Tj8uHCvu1016ZY0ulOj5cIhAJ6kaMxuFtRbij1oN10ZFWYYe2jzse3R9ehGQZHg1DtwSoymU1YuU4AE1kOwJNM1rSgg3Bi69UzNn4ys9TO7cbhWmMTNdKFHhxN6xoXdeAd5nYgOq5dOLCukozvyERQ6gRH0cGQcXQDEM+gTVsbWXFEqLUSLJZUim+STJq5Z5u6WAeoWhItR+ZntzsikMVo/JosKBF3QMNZCI2muzI6tfGwEjNldFMb9Fv7r4/fdi8H41UgqL/iS6n5V3QJBkyMlW2Yg+GWE6lkeoKdxqVtLBmWNVNen+gPruaK0NwdN7aCUZjzsnBy3a1TXihUE/CuCqmh7PR+Q3VHaD4PBO3mkJhc1nTc+5hjpkOUxNgwKhN4Eu98N5gqbafdXpDFWDOqHbYXU81sxvQ02yLuaBkbVvEssph4vI457X+HwyiYtkc2dVtN4tIz6kCRHSjKippOJzypM4R6t+CVcEJ0BBNjiYj4VPVr9pJRWZz5JGJaSJpQzWhaRkYyeVmSCKRuAEpSNbF+idKV7npPOq87ZTSvaF7o5YyuJygrcn5FOj1CWVFNSLdzNlvdDNi/vKC3K3q90LdnpG20dqXvNgdSa+RkDSpSdX2mBLkrBR0eeY4xO6wJEyieEzzKcKMc3QL3gLndpoobjsjYqpdDacQCtgaPGioWLPYZAA//JgZW0KxIEcrDgmCaK9fLTt+9rMAZn3b8BJoRzZTua7kp+8uNlx9/4k9//w/81b/9Izk9cTr/xktMkqkmZWE5FZ6+fs2bX39j661VlhOUU2JrH2n7R7R+ovZKrc2Y0ZcrvUMJQgaNpBtsG9oNlNZSDDxNK+QTPa+gxVo1enmZqAtDh4+Cmi/Uqu2pYOAraTjRoDTvztTazr7fRqffnPE2zGmWaycbH0gkOZFSR32dSzJQMMDCuLux5qMRwrjn3ZJorcf+0nwuqM8NsyqWK3VmVSo2N7zLnoqVQo9gwjUCtYuX3dnxU7WGMZb461SfJ93Byhl4+LjFrivOJh8Z7n44x/n7c9bSX3rM12bA4dvw+PfPffzncKmfYyFNJtLPRxeDzeznOcpUvBSGw3mMY9/FRm7wfH7dhXQSfqZ4PsB3BDW/zbQWoxtdBfVSuuY/faffsZ4qQ1tpRvjcoRIBlsTtCT9lXIex5oh9+fD+IxSBTNbOOOwx2FW7LlJy1o/btJwtNkjZ5mZ0pk4mak1oHqqM81VVL3fpdG+mJB1S9nkn1e9FIiJuGWV3doxRxhTz7W7+RGLM19sYr8O9dUkHv5UEG+nzcNmOYvc2qBjRdU6WhbDhAa6Bs4biPILN1DxOO6IIA2wK9tMEgWLYQ+fNfOH+M+ssbMkkXNiP0Jr4fEtYo6R4zLmjQRMKh6EfADg/14jxOs3BTU+WqLi2ZPJ9wP0in6LdXVcVddaZ37UAjJpGs15aS7Td3qfd5kMATHWHXvGDJVATiVb/9wAc8Js5PH2G/e1qSfvr3nj/qYJceXz4wFpARHm+NN69u/Lx040Pz51tg70mOsXnkK93c3aDcxRW1/41iB7Gek3F9/kkaPM1lH2mDdBpOlDTbhysWowldm9sin1uIO9n65zjftRDAhLcR3PLNW3e4Wg/d/jjn7Fo/pKZP/iEX7Cxxsd83n5xkJ+x23p/dXHu82XleKRg5dvjCAwae/6X5jh+eVc7d3oHIvn54zCid5crh5eHxT1uaIxFHqDTEXg3alzYNkNWazcHcymFh1ePPL564Otff83T6wdODyfOj2ckKypXqk7KfO/VnUylakGyInLitJ4QhJqNXWPAyY5tYJ3eNzeQQu8F7UFnxDSachrGwBa8dUVBhZyKCRqnEBz27FUyUTfp3YyLZFShZNukkndHay10ojZasyCttwpqmgv05p0FEiSjMqaymvNclpFxz0lIvtn23o0JVBuSTwQIsO/VN55m7RG9jj6n7Le/G3PCJ6eEOPHAdZtvxLbxdzaUG8oV5crouCAbpI2cKrKof1QcPNqo241Ud6Q116Www4fYIn4Pc7aJkbQba6XB7XKFckbWK6nryMzW6wt1u7DfLn5PO/vWyGrOZa+KeFar105TK0PMW6GdFpZtpbbEdu1cXyrXj5WX64WPH6+8u/xfef3b7+gPib/97X/NN796zd/9l3/NTTaabuj2wPXNA5e3r6g//sTLDx/5+N073r3/kYZlkZa0MLdoBxt8DaSxao5e2p0/NIJUG6pwfB1sGMvOHVsCorB/SRhRFQtEsWBgMJ5kMqaSCEVkAk9jXsTxZJAaA/AFzzSpOT9JZxZgZJ38epuaUxkOkKga01E7SY0pNROvMsUj3VYQc93fkkUm+CTqHW/CBok7IMlKHd0BtCDYQBdVNcZdB0nCsq7D8elHR1ISPSVqSmxrpopSSey3jVygaCLtuwE9GSouWt9BvSXz1N+apnPecR1b8f1+ZsT50J0yYE7GeAxXQawULJrUimcR1d9vYCMj62Ssz0RaCirKrpVLvfGYOuWUWF6f2BankKoxOO0GTtZUWVZkcQaleqlB21HZ6XqjtQu1vqDtRlITZ6Yn01DDwJXejfFic9Y7CIrSvVRHxdhIKVIuEaQKNunrRrsJkruJZmtH9osDT2062gq9N2sEEStRA+RKQ29tjLoHF80DhgCeukwAsid3wCUYTl4G0ht066LnXiJ1aIiEn3ooKhM9gE4YC0ZM+yKXxbraiQXCuwvN9gjm8YDZwRnpzX86uXcDYxUWuifB1XTxJNFyQZczWlY4PaGnB1jPpMc3pIfXyHI2NlSzdZpJ0Lyc4PkT/XKBl0/0y3vYr7A/o9uN1CqpbrBvpNY8eWOAZOnmTEtXUhcXF4fUI+cXPsLRy5BZuuolOFEC2J21dCBrTH9CrTTLfsQzedk/m0fw1FTHnCZwAgEK9NyRRXh482Bj1uDabUVWVXaZJStWOGiQ/qLqe79SLxsvP7zj+h/+I3/7X/0T6/KGt1//G9LphKRk15+hiPD01RNfbd+QT6Z1uZ4zy2llby9cnxe2C7T9Hfve2G4b15cLS+3WNakkRDpZNgtAq2kLdkOBkHxGSyPlhupKXp3ZGXY/mfZk2A/tO3W/QYfSrR246R31sT6sc2+jVgOetn1j21/IWUlZWdY07p2V6hWyrKOBSk9CSeZj4UEOHgRmZ1BHM5sUfuTRBmqA9W181hjsDlKIzvLr4t2Q1cYjSZRRzfAjJ/NTl+IlKF3JWWkt01zcN1Urz6/NJsvB2z249UI47orrXgWzXI9VBRYEfg4ETTt0H1yMEqeDnRo7yGeA1nz/XwCSxtOTlRZr7efPwT0UtTG9Z5Hc+/wzfaQctUhmfs18keM+FyXCNjfU/QRz/Ax8skQpznQimtQ0Y7n3thm7fwBPdTBjAsBSDSAm9gV1EO0wniOoFaM7O3CB6z1ZiW12kCY7gDQ/ryND6OGpA3MSDF4fyezSISl5t+6UTaD8ADxJNxsmOn2ssghNmms3Krkn0/yTBC2jZGM9OfPWdK3GhRHQqEowhOweqd+34K5Lyr7Op483xsmxsCEA/rPzSse/YxqaCD7jeCaMHvPFmm7oONfoUtc8oR5+ox/bhZACkDom98HsQkqF6OJ9PMvjGjEy75Saac1dDUKwW4cemQTS68DX3fyJ8wuwqXXTmlUrfYzkpmoA0slF1ReEMn2jAJ66elIs9OhMPsRiUAeVHGBqNUA98ZJ4pW4GOhlw46lmTW6Hpu3QcdM8yTfWrlgpvghNG9cdfnq/c71W2r5zWs0Xe75Unp8rl2vjelFjkZIQWcaYR+lilLOLl76NUlyxZiSCdXvMS3QrFWMWd0WKN39RJSr2I18lMgjs7vYn8A5+dhuNdCAC3tKbYfWHDVOOc2Syw4926vA+Obx/jKcf7t5sHz47qxsCere39sMx3FDq/NR9TMDUebpfefMkxjPC5++6968G1+rgn0askv38fG7EWvsFj18MPN3Vi4/BnMbOTvEvbWFwRJMhqP9pPH+4Tv+AXVj8I8SxVVY6Rgd/eHrkN3/1G9589Zqvvn1DWtQ0LuTqGknN7r+3e+5Nh7h33Xda7Ww34ZKsNK3VaiwdtRIu1ErQum5jSqgE6iyoFOq+Qiqod2RZ8sJpfbQuaFtlr2YI9ja7s8yWwB2og2aobUdyZsmJUgqtm2ZD60Ku0dZyI4kFb9vlaga3VTRHB61EWs1YkYuvOCEtmcwJQSnrQr6slHLidDrTPQt5u3yk7jf27WZgV1c076SFqUejza+9Y5lhdQNs4VopHZUdVfj0/AO3/cJ6eyaVxbr/JTE6tFRS2pB0pbcr2+0Tl0/vub58RHcLCqV3sioLjmyrkIogGbu3aoElmkgdQ/L3G3W7cb2+IN2YOb0IbXuh7Rv79gxBY20pEg/03TaB1K2WvNadvW50qaynldPDmZzO6KVRP964fajUG/DyiX2rfKh/5h/O73n6XeXxq/8Sqd9wOhfIJ9LpK96ehP72FV/Vxvb9Bz78/ns+/ONPFAHJRuqca+CwpsJ++MI+PobI21gvENo/8U7Te5rPjE17hrWHA3h5WmIwngrOcJJR0WQ0d/HX0jTug3nE/LcSjDQdQFh8W3SBmuetfmZ2jsMXEPVOkSbmr2naomA/WCYknNJEFHWm0AGyEBKNxgjdaetydKLdrIq4VolvfmoOS9yLpsF+WtBqZRUV5ULlloT1V6/4+je/4u1vvmE5FS4//cD7P/6eD//wj3DbKQn2zTN3ZGPrxKUethrbUGbmWMQZm+PFuSl0dOh1icx7Isy1a9kpc1ITycGdPsEmdxKDNZJLIT+sPLx+YH3zwPntA+Uxk05Kzzs9myMiHXI2Jysh1ldBjA1nDlpH9Ir0K7QXPv3wT3z603/iw+//I5eP35NuNwoVejamgvc+G63DPaAFhaTuG4mJHxsVwn5jArr2GUAbvV5pLzutvRA1Znnb0GYsmyxpgFRzVTCcwNBb6u5QSsfK07ysHAmWlQUCLWcDqnKGZXVtPTW7qZW9mm3VXkl7te553i1UxajjJsccs9FsgJXT5mHPaxIkGciVSjHgIGXEWzyrrLSxTnSw90zvpIKzPiOwsDlh7EabbxnKSj89wHJCHl4j50dYz/D0NfL0hnR64LQ82KoPSn5rUCt8+ohcXuD5I/L8I2zPyPUD/eUjfb/B9kK7vaD1hl4rKZvu0qkkSpWRsW2uFVGbNUywqgAZDGPVYDy5Ixrg0CGoGdl09SAT0G13oNu+xzK72Uokfa2LGABaiQDKV6enTSXBw1dPPH71it/9z/+OWjuXlxvv/v1/ZOs3tlrZQutFEyl7iUwX1lTIvVNo1L1ze954+e4nPvzhT7x+/BX7r9+xfvOArNnImZiWyOkh8ZvffcPXv3rD26/e8OHPv+LTjz/y+PqBd9/9I++/X+k/XkFh3zvXTxfqUqnbTlnFOhDlnf16pUvzuukFyQtpaehiHWpEz0g6UfKJJWUkrySU2jdErPHC9fJCLpWcNvK2eSm9dzlyAFh9/bSqNA+aTGy2IWJBXEpm15MslAxaLFkHGbSguqK6ANkZ68Ywkp5cGmBqPI2bnpIlUlJCNdFdwkDVyrDCvxPUwcoC2o2hnovZIjzjr0wgWIxtn1IesgySkutAWcOZUitlr0hK1Npd96Q7qzZASLP2w57jzC0Ra2rhrAuNIDz2J/cLIulxF9FI7KOHIPhfePw8cHV8/fAeGf938Nt/SaDhvoV89l49hlZyOLyM9w7fR73bYjIx8WA9pQPTSdkxptNGaxu97vTmXey6JWuJDnajpG7q6twzno5MHu4DR38J7c7GDMChG0KcxIOzKIzSeY1uv33C+vroY8MWmV3SUl4MiM2LNRxIhZxXkLDxPq/9GONeSUFSdYkKpZdEUtsjba1kUl58/JvrCznfOhJ5qpbo7cbOJjnacQQexMGcAAjDbxU1oCsJSaNsNIJ+92NluKoEqyIFIzXhdtqTSyScpz3sNzAbN9U6SukCGYyy8bhpU5je90HX7c3JSh1ba1OrLY5x5zfb86019zUdnOuZ7lUhAZIMHDXA4wCb+mR0RfMQrd7MqlgXc7MBVl6cJJM4kXQBzfQq7Fun7p1tN2GQJFjnXi+DpDcvqTP9ptaUfRNaNWZQ6wo12X3dMYKgCkkLOrx+wctMrHycsDVx3zHfGbOtRc42vtI93m3cLjdEDEzbW0JZUD3bvHW7GtIwiJXYR0J8ClhncvJOiQm6r610MjYgDm4XElnN/jftluvuEzRNsZ68cca4J96psYmzzYM/Mbzx+8fPWdMvMY9ptwYMq+PpL96pn79XIiaKpES8WQ6syrso6mdOpI95z4jv4nX5/M1/8XHk6s7P2x8jCX53Lndv+mcf/yrgKb4yTmv8xPX3L8fXrnWezFzUPgBf3BT36LCuDeHYG8JfIC0kyaynhVevH3h6/cDjqxNl6XSpNK20fhv6MMccU2+K9OTUW5+4faNX8dcrGmBTUHLVnpvdC7LX3kZtrwWv3el+Nl/sb2NZTKqigS5WwiJi2Xyc4hkbl2qjq228EUQXLSR26Erb7XzQG60+e8c30yoSjC5OCYFwG0tJngGOMZdMyitlxRaw9YKn5MK2XUjpwu32gupOrRvFHXpDg/sUWHQbbm3PDXjKY9Nu9P1G9Yn+8f2fKaWYroN3H8mpovVC3a5cP31ge/lIu16QFqLgavRUn3+afJMb+0v3NdYnI6oaKFXV2EwtCbUKWk30VrzruTZc28mYAnqrpKaeVTD9q1o7lUpvQtutXGu7Ni6fbuxXM9ym1/MBvXY+fb/wx//wa7q88Pirha/++jc8vHni9EpIZYHzE6+++TXnpzeUcoo93rKzvRsYcnzo/BWmQj97g/svBEHaHIA55wKacP91bPIwq83uFutwgNyhiuUt8XvSKcecuDtfP9OBfMwvCDMR1QX2dQenk/uPRKe6MQYD6A5nJhw8A9c0AvGcRpmiYk56OCMRVKJ2HYlwgOw9w65HCk7UgQUfX3EBRqc4qs/PXWATpRbl8c2Jp7/6iq//ze9Y3zzx8Y8nanvh3R9+j1aQNu9DtCYVP9+7cYixkMlKCwdvvAEZZcjxnOphG5Bw+43ZgqiDC37tzGx2sDqG4G8CSZZBXdfE+ZTIVOg32v4MqXuZSxo+SbDLzD8VknQrd5WN3F7o1w+8//Pv+fjnP/Dp++/p1xtSm2tuHe61jY45BDGl/NyizGnWjzm/zb/TnFw/QlfTixPAO5AmL68QnaWhoyzEg+Uo4euERo9nLj27nJnndNzGNPavUsinNeo7bV9p2Sj1u4F+UxR2XmOwetR3r8gBdnQsGgOzHIx30EVyQdYVSWdLOqSz30ffmONC2+7gkLfCDm0m7YNZ2ZNnswfwdCY9vAYHntLja/ThFf30QFrOBKyL4qBcs8YJ5wf0/EB6OMH2DNcn+PSIbhf08pH2Uuj71fbJauynXDPFGTp5N8e5N+t4VtVAqF3d5nkJRjj8M2mtd37GXcAoxhAEnfoVXrpveFKy++HrP3xRdVtlWpa2jlIXUi6UdWVZz3QqpGodgJqf+8FFImUHh4Uoz7Wy2EyRhXV5IEkxcGJvozQjJ9NkM5BEkdW+981Xr1hFeXpYQDcSFW03Pjz/yRkAQo3jtG6Ux9QhV2q6GejcBCkdKQqcvKmGTjYnVuKW8ZL8CAyasm8brXZS3kl1J4D8VNJw9DmAN7ZkjPUVtrxVXLTLAm1YSLKS8oksJ1I6k+XkybnsyboAgyKh0YdtjHTKKJ8bib485oVNdx2MiGSGkZSNhd5dZD/YK0ZciMx/HHPqTolYNzxFWPDuwQKtd1LqyN6NXGWOE6N7qc7MsnmSMW8PIIxjF8dtegBOh1/x9+fJqc8fXyZ4572JF4RIch18rfF94bv/3MGP33N/HjI2/i9PergIh2zJ/AYfI5mlMil584cUAs9Od3c9MUI4XENAPDrWuYaT+5Xj4twfUF+P9khjfsU5zLeP0fHyZNuHRNwR8T0dPfzWiGNsPdCjHE1Bo3EEkIr77M50SQspr+RyJqVia0SKBf3hg3cQl+2IBNxoeqF9VA3YdwSP3S2bmrD1AC7Ex8dBevVOsmOflWTvOcwls7EHNn0AimoyAsMfOMSmM2lq4xrSR8knfutKonOXXD3cLwVvDtSn3hPhT85VcOdPedkuYnqN5lsYqKXuG82yuvv9Y5TaNfOJe/JvSccqAg6OwP3c+hx4sjkYYB6EhpNoIqWFnFazI/2EUkANMLRz7R4D+lQTBemU1KySJtuxWyQqe0erVbHYUlBoYj++FykZce2ekYwVnX7lIQq55/e4D+7AvHXhtSqF8GitX63NO5HMiE+cyX6PEcRmadcUja5SAikCOVFOafh8TY1preKVHREMNJ/zyRn9oww/WJlCjtLm7qBOzNEIk/Vuyt79nqNxnGDHVx2c8WPFb8Y7PrPUY33OUT4e3eaWzPhkGIy5lqYT5hfxeVLgZz57fwHz3P7y4z6hcRexjKTHv/z4xcBTinKH4cVNjyo2yaNhjs0zShRCXDW6cwgRVJojJz7hVaKuuXiXOmu3mPLizkxBsvDweOLrb9/w5qszD0+FzoW9XqndyptiSKYksQ1Md0FIKQ+QhdQXenVB4V5R3ei9su8Xp+VWoJK9w13HWqWjlplOuSAoe61RbAbrMr63pDlUOVlQvCwZY1ka0BRq/GZEd2rt5CyUgrOElCwb2mGXjc6V3i/U/QO92gpr3ajqOZ/RZSfn1Uv8HBg77BS9C5JXSiqgp6F9o+0V1+sLz8sn2vvEfvvEvr2wCBMEcMZIR6xsKbIbzjjKa0hHi1M6O7Vt/HD5RM6ZtZi2Vk5KSYruV7bbhef3P1FfXtC6k1q3kiRVX/z+X/J64m5yw8SG48ZUm8KO416bOYcibAiJ7udY0L1aXfOe6FWhddqlIa2ZQ9CgVWOb1a7ssnORhsjOdqtcnndohegUt2ilXi98/OMn/of/25U//tO/59PLD/w3/7v/Lb/7N3/D67/7NbkkK0351a8pj29I+WTZ3m4idr2Gy/wZ+OSPKHH4fGFPZkQ4Q3JnNlTG3Zhi4hIbxtGJdADHN1QN5sAIzGeQHsc4OorTMZ+FbHE+YUQtRo+NbvjU7ixwcEDt/JJbkRTGezh/HmhIogUglEzUO6cEJVvXOnVWRNTOax/lGJC8y1ic8xRmj8BmbCAp+7WpMyBMWLbtldxtpdcibBnqopx+debN3/2Kb/+X/wXpN9+Q/uPCfnmH/rtCvW73ZVteBmLXE5k6ewzmWJwnIZB75065sxCB1XHjsPNPbqfVnXyRHiR7v8fTMZQUE8SdqtRYVuF0Ep7OCfSCbkJ97kiqpFLQVKwsgGAdJZ804hySxoNc6dt7tvff8ef/+O/59A//ics//Z6nl428CzSnSWP6TSErPxQlVDzzpQ6IuSPvDsi8Bh2gGWJMIWnewcdb3mfwwNMTE45ahL+jvm6ObWMHhbvHpU1G3AhcwsFw7aX8cCIthbQkWttpbaNpRbdCq7vdG/OvxpwTTDA/WrQbudz3FbFrpyQDtFIaGjgpZ06PT0h5QsoZKY8OPCm4vo2gENp5NeynCSbX3pxBAKUkLx1c4fSArCcrrTs9IcuZ/vAKPb8iLWd6We/KKqJsc3l8RPbdmDC3r2G7orePyLsfaNdn6vM76oczXJ+hFJb9Sm6VXDdydVt82+l7tQ6kHfYu7B5DzqDNbtoEwdULT6dNEqZv0rEyPtO8M4fZyt9s8NNYadOe9rjHbqvUlVVtihWSLIgW2l7Zb53tUqm3bhllL6lRXB/o4B8B0IVE5rQ+cn77LefzG5ZyhmbnKZggvRKJNB1O9NtvHnj76kT79VcsS2FZjFXy/OPfw3ah10rbK+xK4kYrDVJD8w5Lg6xWsrAoLBgTOXfIXrqLOegpFb9SYw0113a6Xa5EB0FxUX8kUdaVnDM5ryQxppKVchgIlNJC754Ma9BJNo7lkZzO5PxAKa8o+UzOZwT3p5KA1LHDHZvcxEPD73ZWkqol/EJY3ALIZCWGzprL3WZNar7SJA3L05ydEH5rGjbH2CgihUTorKVR6mnlnsq+G/ikm3V8Gm7YiEn7SIx0+vCTRdKQvgm7DTrKn4bMsBwufMx59WBnVhQIsffeBwvHTlL3+0fA/rF2dKynsTUeB/34/Ye/xzmq26LDd43T9iTBSGh95mtEQOMmz0r/IyAN0Anz3fGudYySOk8e92A6Gfg065UIg2823IFn9JD00LAH0YAkElrmCftge2JErOxP8+F6PIgNwFLNfjfM9wyGR/cksaTs8c7ZWE/lzHJ6cH2nhSg7U8RKkh0oGWwRMpITNWfzlcMnk0TPnZ4DqFM7f9d9TV5hYWywZkn5uD/Ji1eb6VDNWPBQXkeAwHFvk88vY6nPwbBdbtxtB3VaM3aLkEwjNweDNRhYzdee7d+9VVuXtcU33vun/kesqZSElM1X0i6kbva/Nd971cWdhzZFxLpWktWrXZ9V1diKdd4TU2/Km1F0Y2HImF/2nHp5fxw6gWeALQlu924FzsCC6onWMtoy9NWFtDu93cB9RWvO3lAaUqxJTdZG3+weUD3ZVe0aNOI1nKwwPfzhtxu714HGWATjjs1/CQzJBvy3zZSFUBo1SD3NtcWM9+1b2/SlfB4ZbtWR3EhZySXZHrUk8in7+rP9NRLDTdU4EB0kdZeJtGOGzutg3SkuXm9gYuBVfjfnvRmXPX1on9wMA318CCBzTM00+PwNV/Fw2PE77K4nJ8zwH2tHDvZU/RqYHz5aVnT6svd36/jc8YTHiuWff0waz30ZoL/6xcbwlx+/GHjKXgvbXVx7ZMbdoPRh/IJhYCc6VeptM+6D3mpbZyEyGpYJ27uXs1EgncnrmfLwyNObr1hPhfMqaH9mXRNvvlmQfGGvF/b+Asm6vtENDe4d61zmdiRJGoj28milCVo3635Cs5IzrNSu9/Aa7XyrBynJHQ0TmsQLViprntmrvt/cpuvI1uSUEFasCMg76vRGbTdnuiSExdhQubCsC+BjjWlxnNfMdmmm5/Dyjro9ox2yFpKsttC1GAAkiVePZ5JkeldeXp6HoSrOFLBhNx2XdV04nRYethvnywtlPXH5+COffrhRtw2VhmZxarMZ5yaNJFZiWLJ369GEqDlNHdC6o7VSsiBV0RvW9lm7BfC3C/V2Y3/+FOoavuCNAmE6Lrb0WqtENsmYJnY/eje9HJqSPQMpIuiukz5brXtD3zEj3jDD3CwbuV+dcaSJ1JMJ8rXCbfNuNg6gGdHFwFFlGsuswql2Lv/4T3z645/4w7////Ef/i//Lb/9N3/D/+H/9H/kd//273j766+dTdW57orKSkpCsYIL0C8NwvHPfvjnpCmHs3nYAMCAiPE5d+TcMbLXITrQpekbUoGbrYbDpuRQjUZW1k9ALdPAoDkHpOOsAAWrbTo4X55nEHf2tXfPBLs9JTalGFpzDsypsSBZUG/bWeg5GxOuFFgymjP5tA4nrO0bvYI0Je0WWCfCT7Y1XaTMbmhbHeUNwaDwZBQGqSq7dqp2Uin0NsVmyY20KG++Lpy/EtKbBo8d1oqyU3unucOTY46qup4cVjo27Ob95h5jnu5KA8PmJGco2F2sPvgJDyx8wgQAJSganVgUwJxTolQpCT0rqXSWU2NdKgtX5Pqe/lOjX1b6y5n26RFdF/rpTH54Ii2rdztbGeKn/UJqL6SX33P90+95/v3vef77/0z77j3LR+XUzsiu7Luydxvj7qLCnkgeWUyBmT1F6bqbPkF0gUJG6SWx7iWca9sPaDoS0ql5sOMbeXdB6zTDNEQZ5HMF74IFk3olVsrdzNnRYN520J7IsrKuZ+v8UhPt0mhiJRrahNyygVlJhjMfOgc2Q038tIuiklHxxhcZKILmTFoKZV3Q8xnOT7A8QHlEolFGu5kV6N3WfxdYEzmdHbDMVK10UXrutOIBVCnWqGFZkbMBT+SVlhe0FMsgp+j8ZGUmkm0tNV3QXqCdkfYaaZ207/DVb6nXF9qHH9l//CPt5SP68Sfq9sxSN9L+guw3ct0olxe43WDb6Ntu5dRZnLFqY2L3M+6XAeYintQJN9FB2e76F9BRqcPaDKxVQKlu2hSyAdIoWMcrt2FenqBb590fPvDp3YX33z1b6f5WaT819GYMo6xpBO63fnGmWrKx9p92fqC8fsvDr/+at7/9W17/+m84ffUrUjmZ89mgUGzvlc3OESWT6cXc+29/9xu6Viqd3//537G//5Ht4wfkdiM1CyRre0FThbXB0kk5kdeFdMqkJZNSQ1a/3myadVbOukAq5p+QsHKmG9vLR/O5svqPl6mlR7qudDXwx2ys+NpKLOVh7BW4/mVKmWV5Yl3PnE4PnM9vyd5hjx7cVfse5p01ECbKsr7wecWBrkTOVjiuurgP6EFBr9a0omfb1zW7SL/5fa3trvvpSTYF6YI6MyGlgnAiuoyltJieWhEg/CILUFONkqo+yQ4qfjy3wbHn+RUYGJ2mBdJIGYSSo689Z9Y0m6z+XtsbLHiMA8ohNjiWzigHKzdGMNpW3L2mOr7CfApvYdtm1z3VNjD5gTepH28EsjpPQaI0qg/9piTe5MPtoXU07iTZzM/XBlFep9a9bgJON6zRjYmK92Yi99GxDjW2qTE18n245ImTXuucZ3TbS5I3hPBMa4DulpQwfyIna9wQ9zK5KHgR02pCMk0d4hZFZTFblmwNScokKUg5GeupnJH8YEn4lEdZWacPyqx4uRXqbNFsTG2pirVrEGrqnk9SS1gPpkDzJETzPbWi3Kz3ULJ9QSSTmlAWm5Tam5W7hr8+NlWGpIk485EksyMrYWyDyjf9kOpaO1kbOedRihWsxqG/FWu9HxJ1rgEYQKb6nIrW27arWpK3FNPGisYukUSKTorGVj0ARGrXSXN/yn3oWqvHQNNXt9I11/lS6/gmCNJN0ynmoeD6oyWbpMGykpZHJJ8o5RW5vELkTG8PZD1DX6EvnM4OGj3Zfep9R9vFhPPrzpZ29q1yqxvXdrUeUhtww/Q3hy2N3Y8xPirNE2zTB5/vnP/vEb+DRhrDMdb0hKzjBRd5H59P4+/5iPsUuAJQFDl121tKt7LwLEHdN9hMohonsdeKiLpcSh84RMja2JSz9tOSFqyzlVpSkOqnEJSRow9+v7HEFWpX9y+5B4JwX87nXBu719y57HeshylZYqGHl45JH6M9UyHMyiXm2rmLFg6J7c8gqcMZHkf9y1cnNYAvsKvYuyO0mC//pW/78vHLxcXhbkNTD1oHc2Kc4Odf7cGRqqPePvFi05JYCDaNbdZlSIW8nFgfHnl88zVvf/UrTqfC4xnavpBzZz0tSPLWuX03oyQ6go6x94aYX9RzqEJvQx+pJ1BttLahbL5IvPbb6aiRtTRtI/t35KKN9ihuRHVSQJsj5OIBQlZEFnJ35pU2et+ILjqBFAcNtncTalXZTRi9Veq+jR8rs0seoBUEz775uUQ1igE1zj0EJJWRxZtxrN8b1zt4eHiEeqOdH9ivkWZWN+rGOoruYEOJS30jGCBd2O7OaK3aO+qp4K4N3Xao1YRWYbpYbvRHTXZM6nA0wzj6f/ailf2Iz7HeLdCQprS9mx7P3semw26bpDalBUCpxgizbhBWG23stOTBDBhFNB3tKqCIt62ut43r5cJ3Wam3Z/7h3/wVSxFyr5Qlcft04XbbiBIPwTNDGkblcEti6R3+0s+em8bn85X3M593HzIYvjJOPxhVgWWbtknGDHt28EUljKrRakdaMKjJasiOOosjNvWxyYk725Hl9Hse2Qa3m1OUMj7omXVjZXlgnBMa7I+lkNaFvGTSaTXh5m66OqoOoPWYkB7ax3z1uab4+IeJ8EHqCcZCER1smBZg2x3FVJ0laRomiLWz3a5XenUxQ41ZPsdFfQwYcxmfHzq2aY73WSE6Lw7/SOOlw3qJzeGQbU7xNREkMDfEmcU5BAe9Qt3o24V2gd5Wet+ofaOvC307ITRSP7umVkfU2KpLu1HqDV6eqe/ecf3+B+qHT/CyUaogzUCbwI5HRzirH/DzDxbAz0zswwY8th+ZMz46pYwx0/CRJ7BkQ+33UvD9TMYGCzYfB79CpmMhuDPcxRxOeiQ3Ddlu0HtGsY6frVfrgOW6GqatZLMgypv6PF2i445tY9ZFRzXs8RRIJmGlTcUcfl1cKUo7Vn/cfUzV2MQIeV1JabEMqzbrsird/LEskDNSVutedz7BsqC5DDBMiHbVwWJ2ex0lGWrnQ3ODs5zIOaHriSJCqhtaFgOvr4vpPd0yfSuk3faoCC5CkFe6kNQYe+lgd+YqCh9i3qGYNLZG7N+te4k7QR23tdh7H/YroKtjPkBj+1f7e7vs7LWxe9egVpV2a1CNzWqgsNmSHgABJkqvGLuPbCyhx1eveXj1mvXpiXQ6OctgfnkaznC4tOZ49yycziuPr1/x6quvOL1+Q98u7JcXEGNt9926vvZk5UjSlVSSqXpII4kx4byubDL6nGU+93G7Jz3KU5ra1UQHrdj0u47GWSJhm2wvWXKUqwmk4uLemWV5YCknSjlRyuLiynk4uJHEuzMBOtdrJCrwuxmNCMb6lcD9LIlqCUY/jCb/8USHOsuxz7bsR/040xzqVq6YQCSbzXOfVobIvR27dkCS+Txqhkea2w8HfSTNjPK9o2/zcyR8xnOHYOOLDx0HyNeBHt97/5Yvn5r/2VeEfbREYOBUU1PN93210jdV78frtnYcMf52Q3zc8+PsRvdcZzcJdk8iaTQ62A375hp5bg9VZ6e6wXr235HQvBNE95PQMZ8iPrHAVKPkSCP0C8Y1vgP0wxhH8kAP29D8DvsVAu120TnsVVKr7pA09JxSXqyqIhKqBBM37quOcbAx8GtkJhtzSmix64rwRxBn9mAOTlJrDOEi5NrsfveEzf+OY5jJfwzQHYEWKcyu2Q9nJEcQEuV6MuZMzOO5pmKqDVF6v74eIt0e7IezFoD+cYqO+Tzmk8y5dfAncPtmoJFp0wWDbADZLqUAB4AryiSrjsqikSbS+AzTBmLgkzrbqXmJezCdsmt8JgqJhSwrSzqT8yMpPaD5CeER9ITo6k6SomkzQLXejAuryTQdtYPHPb12K/uunZAyw+/9WLN3BuAIHMy982gezGfy8UOZLVCY75aI1QLAmEdxS0ZYOhEbeR+8O39VkphkWhFyEdRymQYPxDeOAMGkacZVqTiQoyMGHkC4j33Kgmp3nT5nD/pJxpGGT3kcgPFvHQSlu4fO6omjb/1zf8+DMnX97r7KKxzufNMvPJ67Ozc+LcoXT8e3yZeMpfG6gh7uD3/hfcd1dgg+ftHjFwNP2hrBUBiaOpFd9i8WuC8j8Uegx3Yz03BEBCup661Phzt7aV1ZOT+95tVXX/PtX/2Or3/9a87nhYeTUm8/of0Geadzo/fm3Q7auHIDt8S7yfWxyVnnChzI2el9M8BH2+gaRzhY2CKL0h7b/KsBaIoFtmzm2DEdFess0KnVqKDiyLakBpxIyRHZat8ZLVNNJsqzE11p+0bdNtAXtFt53fPzM7frldttR6sHLXkBWUlyIqeTGcZmbA8pJiKYvEOeAlLyENBOHhe0BNe+m5h5rTw+PrJII+8XPvTD2PjiaN2crjnhbG70WknZgzuzKhO46N3aK+87oo2k3QTEgSUloptIbzb2CUY3G2VS5UNXJ8SpE9ESVQfwNDaBprSt0W52T9puoqTGUhDv7OPAlBt1MOCpNzUaZo9yUKeORveR4czY+gBYy0JJlhu+/vAT319e+H/9t/9nZL9R37/j7Vdv+Pin73h59xE5lNq1ET+5+f7CmLmxGuOt9yCVz/pJ8ezTaoyN2h0i0TuDYj6FjiC4Y+UlmdBQSJRsuhWRQer0sZZMO8GdHeQzxqOXV4hpNPTw7gh7YF3ewhgCRCdGYsNIGMNJMNZHwUo71gUpCUomnVeWhxNlLaynlb5v6L7TepRiJctmNyuTCwdR3GE7UkjBuutRu4PlyfXSsEAs2yjtt4o2z1xGJrl3rs/P7NerzYla2V4ufPjhHW2rxjDXPIIIc9jNiWkHiKn7UKdxf+zraziL4Ry53fHhtqDAqdvjDofTK9wFOYjpDDXXbTMH3Z1J9SC0dvrtRr0W9pdMZ6efFlpdadszrWS2ksntRnl8YpVG6SdSLiQprLqR9wvt3Qduf/qO53/8A+2nZ5ZLY20J2dWSUB2ie1uT7uCFmvzLcSc+AGhfgJoe0Ax2n9+WSMnNwPRzl8qzob5R+wgdvivmUGTzA/DrZpN69Yyzs2y7WEa4KiQrv1KsNLNuN+p+s1K7w35FrLuOBzPhjKtr7oA2b9tcBfbFrjsJoitJF0qy7CBFKaVTu+1vvb/YXOxm40w7R1jOmbKcyMvZ1CO0U6XRiw9T9pKPvMC60IslSDqKqgnXpmaz1QDS1YL9lDyAcj2R6vOxQ14X5OEBToWeOu3lif5wguf3yO0FvRb6ZaHdrrQOqCWiVJPpR/SOSEX2PsvHh5MP1vkwG+iBayP5d3fxfUJxcevZUQ3VUfpit1zYqjcnSWkwDUfw7No/+2Z7il7qYFNrE0SzBZQky9b3TgvgKamBG6HBKMJ6OvPN17/i1ddf8/DmNem0WqAYU9ad7EwowXnKz9e7nAuv3r5ib9/y+ptfobcL7eMnSDudnW0z5k4XK/mUBjkLNCVRzBc7V1JzMFQmUyPnFdRKgTW7VJR2Ui1YUd7s7jS8asSO6S26XeLVSh5KJudixy+LsaJSoixnlmVhWVeWxQJblQCwAmDoY+2H76G9G1MEC+gNqHBfEwf7UyJHcievbiuaxy3uQTvNcujwgDMtupf1WZITrNlAz52cG0h3sfFiQZEnAZcSoJoZ87L3GRA3L5lxDTwcsIpoIOLpA8bgv4Pl6nZsBP4erM8bEAbTTdzh74OHPgKWu8/q8KeO/rRV3ZgvR56+yLDBxcuw/LtMQ627nzzf/7NJMgclEsmZTTokIMzlCFZr+A62RynNVrn6b5rbphAP74cBPf7MYTLgOY1xiPPPJY1yzJGIOhzC9ooJkhyctMOVTeCrS5+yhNnAeclRoG6lgzj7L6eFpZigeErLdOXi2m23GGBT79V/JiNIkYPOazb/y6VGmienDSgq9oHcSal4giRRW6L17GCKNWMwlmsnZ9AyGWQmNO0AmLiejndb1ZQG6QCxhOEAoCCyNH59Lg1y6AiHBmNmEgfmepjz+UvtMQmC6ShPtgYrOvJrggHE4ufXu/lDCibQ3Z0hgxFtrNRe6aOznV9C89gvQCc/P+lK68G2dZ1ZDJhIomZ5UyG3E7mfyHrmJI+s+RW5PJHyW3J+RZIzsNJ3ixt3Xmj1RiOz10bFgMReb+xb53bduF43btvOtleiw57PiuHvwowLYihDZ+suxT2mtHtHTqiYFZQOosPdseedmL+PDONYD8EitLI78+FyTtasYRGWNaNZIdvasfJv71zr/msuCekuOSxmu+Vw3sdEtoXw5peUkozl7f42zXwvYU45X8kcV/aXVxf2+ZCPd/88PncEpMYnPdFj9l7uDhnub5LBb/BriT0OTwLGMX1viO3xy1sxDnxnpT6zWb6i5gyQv3Dth2s7gmb/0uOXM55GTbDeX8sxCyUMeloYbxEr0xOE7BkEkk2WKoVOpmaDDMxKFMvA5sLjm9d8/atv+Ku//h3LeSVnTFdkXam1c7tdvR290vrKBJjEHcpE8TrShHdrcSd5bx2k0dqV6HbS225ikMkkLoQAnbyTm69MbY3WE3vqQxSvHQIi22zN7Q02RdsTe2poW1G9eaeeTqu7j1W2zhWiQEXkRG0btW3s24V9e+Z2e+and8/W/U4XUjIqfq2LoeF5pSxnc5zqzrsfvqO4g7d4FxYQqDttu7Hdruz1xie/p7UaE0kE3r55stbniAX5PVPrbkYbyLlQsnVfOOK7gwEwClrNOd57iPNV2rYdgKcGngkQbTNjokYiaLt3IcJApAj8MuICz9Bu1hpam5XjaVV0U6hqGXIHmsT1m7T2Ia6nLYCn6VHIcCyELHnSdXtQH40+aSbWN3BfFftWSSnzcF445UxOK+nTlT/89/+ej7//AyTh7//7/y8v3/1EqR3ZrXwsSXK2xzQIny/iL57/DIoPrGbm0o6fDTdybtrxXQrjvka5SlfvWuf3NPtm3/3W+ldO5sjhO8fvYeR1aAcFBbnTrdzrMyAkpTQAhrgeRGHxRZkTuhbr1LJk6/q0ZMrDyvKwUJbCsha0WmmT5Ea/qpFPBKslrB0JgUPX2EijS0eIz/bhjEgSchSISzP3Vs3ljU16LSskqL3x/o8/8frNH3hVTuTlD7z/d/8jP/z9H2mXRq6Wvd2rOz/JcreqVmIc7pdoD7jD83ETXAlHYNKXzQZ/uelH5gnfzA9NAvzezzbBdj3SjbavIrTLje298Lwm9suFer2yfvsa2VdKP6HVXf1aeXn/A/vphLx5w9PDEzkvtK3x/tMH9k8f+PA//jue//Qd1x9+ZHneKZuSNtDdxi+NhEXslr6rHhgOA4uMv0cG9X5sDAxl6kr4HqXjLcNjtTJUC1XD3/Dvm7t2PBcMDgWaB1MoZAoiOhpQiIJWpb5s7Ddhuz0bG6Y1rs8v1NsVbZXU+yiYAaF1A3x7XItnAM28Womd2UgTeNfWYKsG4OhGe85k6aR+Y02N0m+0vnHd3lH3zcCulsj5RM5n8kloPJJ54qZQRWiClUtJ9q+WMQeFDlKts5xWy9xKOJ2gtdKoFJq1gc6ZUgo9OQrkInJSBJFHlv4V5eEETyfS9pa030if3tE+vmd/eWHPP9GXT/Trhb5cXBh9R9MLPWPlcMk24NgbELtPPTmQp2bjh35dmHkxwMmnyphXit9j7dMWdzW/QOcaU4IRZcmI7q2ZZ/LC3jFE6dXhxDjXoQlktpe6064v0DZEqzHP3KfoUetpYdL4dkEH+CZJWM4nnr56zV/9zd9SaqV+fIFLNWHZnEEsCdXaRuuWIEKFnCuaDSRn28jbjbRviCpF8tRvM4PhtqSx1bP5Ra55Jd6FaUkPlHJmWR9IcrYS/LQOoDhlA5UkJ0pZDdjLJqiccvzdx747bJZGQxazF6G7ZPdUnd1x7IQczK3w+5JJJchKy2bTczY90CSmI5KTZ/JDRNwFfUEdVDbASrFkVG+KZCWlbGwyUXJ2QeiMaYM6aJkkwBglVZuIiRAvD+/JQEmCPRKWSPGE3ME+qnu2Ojt9RRnLDGK+/Lkjm4zH5yHRv+IRMcAIBeQOFJ7mdoZHcba2ZDXumM2PZLa0hA8goP0oJO4gJBU4aDk1FxfXamz30HWKBjzqSRr97DpHXHMslzl6W7PUy7YlwaRBoFfTjRpjqIBmInFjovh26RL2yq8rRbVZssRWyWa8gjFXSgDjsddb04IAm1Sta5ixbOt4Tw8ahooBWZJc28iGQoC0lHm7w+9t3u22Z1JU3/fs+ZFCF+8cuGREqhtaB/h0FhTVupvflzPHpL1TAw3w9xtrObLk88R2G3XAUrtXRfQo64qYTO9u4UhAhf/o96312amuJJMCydlAPRHr4Gal5g6OKyZqXhvShKbNWES+7sTe4HuCeQ4dQTQ5q8i+K0LBtkc8435zF7S7/XaQbpFEkUw6Zda1cEorbx6fOJ0fyeWMSPHrrfSm3NrGfrvx6cM7S2JtN/bbM61u7PuN6+3Gdbtx2Tdu+86276MTH0SFwf16MzCuH0rL/rIVOIT7hC06+v4/9wgvyi338FET03cYbDRxN78I1rjOmmTlLJTTAtlir2AMRn7U/HW7gqmTdzgHCRDS77fEtXjJZbXyd+r083B9NLvusLsT6wA7XsRD4UtysGljnLn3M/rBv/xshAkf9nMgNWI7PRxdDp+6f+YvPz7/Zr37W8frSX7+PX/xuX/5q8fjlzOeNECYwyWODefLQTyOWQqxrSgx8RHsYmr3PVpVSHJdiZW0rpTTynJeOT2sHvQ5MivW0aFpKOab4Lip+9uNtg5yZtAztmHl7FKtaiCHUa2PVN3qc/IYBClERs/3rBZ1wVUJsuEQbgaC4stA7e1zVbzMjEYnmQ5IM42B4Oq0VqjV2SHNsxhqGlN7bdRqDkf2rJppqRgIldKKyEKKcri6OzMpkcvq9bDJAzND39seatzKvm8E9Xu7LRbE5MyyngFofR/BbpothEZGZ5TauZEOCjJi7YQ1hPH6bOGa/DyiO1/QMFOURDCdKoAolxKRQ9vQZqJ5VR1w6LTNsvHi0UM4/DTLSEf5ZXfgqbe5YYyo3LOfya9lOCbhfDgAwABfhOT02uIaSFkTct15/uEnbp8+UdvOpx/ewW2jdNNXCgclfIX4Dh1zkPmXrze9e/Kw1vwt+fCcHn76/dvHdjTdLhnzv2HgfwWqw/hRixyVZwc3/+6YIwj/YldysCnq72MjC0ZRZoBUYwQES8rlZOU+p8UBqISsGVls47a/BVksK6Kl0GuB7qUVbQYqqTMYCmD2LTkbYgaL9uUJy4IhRq8vpbjXWMl7InXfVFWQBvVl4/rumZc//UTfGx//6Xuu75+RirHtnAURGh8tpjUQelaiVko0NxYHWUaa495FmECJb34B2KgyARoJOSSfY26YFPR4PFWnkzf6bWN/vpjJTkJ+XMh0EyFuarZzu7E9Cy1n8sf3yPmBkjLtsnP98IHbhw98/M+/Z//wif7pQtmVXO0ezJpPuY+Pkk5nJObY0ZGIn3HZ98GEmY9pk9UX1Lhu/z3r5WW85zhlBWF2PJEg7niYFqvHM3XOslWF3pp1NUvAbo50b5263ejNS98809jd2XaFQvT+2w/XPler1fDZdfaa6BvU2zO6LGRRcsnAjuiO1qtR8vcNY9sZZFLrxTpBpsyOUBGaJLObQLQxFsTAgaCkow7MGMNgzNNutlUlIUsjx9zLh7b0LmzfS0FOJ2vwsQilnkl1Q0pB00Jfnukq1LLSyoWaPyH7DalXm3MBJKK2PYuDPu5bjKnddWq0ycH+iYxj9O6tvIngyJVt1MElNVAykchE0HSYXTq/Lwy4Ej7TvU3VeRsZ06qr6XNcnmm3K71uoA1cxDZsg11agCHmvoZTD2bzltPK67df8/LmHafHV+zLR1q50VNGKKbj0mX4K61ZRj41F/etFTYThdfa3EbG/IvOQMGgMF0kyH4tmcRCSQtLWljyak1OZGEpKxKB5ziGUJZCytkFYkNcGfCSVTNlKTYJkgNgyYXaobvp8P8OG06KrhRxg6ILmORZ5uZzSKQb6CSxS9qkmXdOiG5X952Z2yFAUHrLcdL2PX46Vjpm3RlLNtvTsp2XlcoEXukGL35j4xFzO8TApy8w739MhZgTc0+O/eDzzXja/DvdJbc1n3Ee5nvvPhqT4zNHRHWsgXEOx5P0YwwGLgH4+Wg7aJiGhkowtc32DYaT3v8EK67fPfc5eybY8wz/fKxmifU7NotxrpPtOvfNA6o292f1m5nuC27uFv4wAHbDUrYEb+/Tb7KX4ppj7rnGlHaU6r+7yYa4fz3skMddQ8MoLmfMMUb5Fers72TzV9WYeArGeOyJjsUqqBf9dh2MJ9VoB6JjVUky5m+sXVsPvkZTrFe71wPUi6mhUUGiXuGgd4Hw548j+PTl9JxrOFiu0enSGkuY02l5nm5svuSxQ9wjB4pmPGHhnfi49dCT7T6/VambDhZoH/PFd3U10KSuQslY9UpTcreal0Iju2B+6wp9N43I/ca+XdluH6ibSa7stxdq3di3G9d957bt3PbdOnP3dqd1NP3Gz8ZubGiH1/XuX/iVjd+f346fWeE25nefm8C3+aY+WyJ29yS1gUQy/s7ZGIgkcRZafC7i/gM+4V94nAkieCVFnLz79zmOPffn7u83QXAd8ygOGnZRxr+/HKej4Zwe5nzpTp5j+BJhXz63m/PoYx27vfzybh6+/udv92FsbLXq/afGX3dby8/MhbEHgdnRf2Z9fv745cBTdDL4LHSNTNPxHMdJ+W0U72rSGsNhSSUZ+IJAWYx+mTP5dGJZV9aHE/nhhCzZwAc1o9D6Tm3dwJq8GnptRCk3KPb9IZhsBSzV3eobqt0BlH3U7/dq5XUi6gimeBLJzl9bdSqlZyt9CFpbrYSu5JFnGjXWLian/rnaOtvVHLbldDbhULGuLs0zoIqw7+KU2d0c0t6HBkJ2Bk04N4rR4NfTI6fyZGKXksl5h9RZ8jyn7XpBsOOc1pXwdDLiWRlhKdkcU23s2w0pmYf1gXVZ2LYLHz/C7fLRSj6SOMVRKZIgNUi2WSXPDHcH9rp2trrZHFEIGjS90Vxsr26bie4pLKlY8AKzDh2hlAxdRuZZq9L3Tr1Uuy/VuhoE46ntgIoJPQaKEmBUNw2nY7fd4D6YSTACtEky97HZjAUZ89uvA0nkDF4gaMBTg7R1+HjlernRU+d6u9A+PXP2LoTm35pTbAHtXDkTe/aBG8ZPmM7iXG3x9oQtbPdbGeCoql/PvZHon69edxQqQlUzkrfWqcnoxkt8owel1kCgz2MIg9YcGahhWGMED6CTdVj1f2RFsmck4t2CtVJdMnJa4bSSSoY1IacEiyCnhK4mjtwXWJMJSIqc2KSj2bJZps/kmbDu/a/UGFhTn9OBJ2ZXoG27WTOaNfP66zfkUri8XKkfd/qtGfgZ2b/nzu27T7xrf+K7P/6ZDz+85/rjC6d+MpFgzVQfd5+SthyPkgl6X2qXZWY7EqMnndk6mXMyAkR39WYmUIy6HE5ta80Yg4e7Yw7/YQ20jtx29o8vaK1o2ylnQfeV3BaaNLpWpG5cn59p+87H1ljUANh6ubJ/ulIvGzzfWLqwaOLUxMxFc2YVVualrgchtl3cbZDzAg//DgA6dBh+ZuOT42dgAOcTv4tg57AFh+8SAZikAbT2FKZTDsDRThpUqLD3la1tNO2+9hxocsaf6Q/EdRmw0aJhgZcIIW7rhj5BBMsR+HgL7P1K1cblUyK3Rrq+UOpGWQRSp+8vtO3qnfQSPVc6jdt2ItNICTYyleTlnhXKQl4TSxGKd4pMqyd4UFoCaqPVm+koKLRWjZHVO1oeWFIxHaZsCafelaoG6lSA9URaFxIPFJTcG7z+CnnziXS5oG+/pX/4QH1+ZvvpR+T2Cdk+kUtCtxv9doXbFfYd3Tezw75GBhO5McQ9Ldllf6eUXGfRxrVIomRjBjS3910be+/sXkadJXEqK2vUBnezKUalN9BxzLPQmYRI9LtQsuk7HWEA7Y395YV3f/ojLz9+x8Pr1zx9+1f0fKYnA/5jGpf4Hg2dG5uoilrHxnXhm1//FdvzC88//Mi7dx/o+0YvC9JcD5OEavYyW5mahtvO/5+yP+2SZUmuQ7Ft5h6RmVV1hjt0o0EAJEHqF+j/f5I+6i2tpWEtidR7jwT4AALo6Z5zasiMcDfTh23mHlm3m7zI7rqnhhxicLdh27Ztfr0yJju/Qk9vkOWKutzIWh86d5nAVWi0wQiAgoKqJ6z1jHU5Y61nlHpGKQuW5XS/EaO4UAvFdbVECycAB2OG9A9ay0haM5lG2DYzxdSvm8klDkmtqodtdbbB+orSC3pXuC8Rs0W/LzhZmDVDyQMdNiNjHn4ifZ6iR7GCAGtJoeYKiFZ+iaIosBaH12jpMMceBY/G6uWwCUcQzcFEGGlvsrUpbdYAoDIduU/8jtfk+BjJlU/bmWeW9vAu7fGZEI21PY4wr9EhLslkO9f5uPEHf5NX2DGAJglyseosbLkCqanKCXZ7gC1bxPI7k/OYYOd3guI97G8WmhFsR4+4LvIU4SpOHM1H0Ofji0BLAEDJanp3D4hIEByXAXzRVmtOsA0FzQShVNjy1TNZdKeEh2SZIx822Kbmjd8fzi2HjWTkQD9G/1WycDCkQsJkxjVwwwDgHWsAAwXLUlEkgK2yo+8bemvoGmwcC+DLY9/qNldNZzurFoEm8JSgwgEcoE/TCR54rqXhIg9A9FzaJBlkXHN09MluCWBaCDbxurCFWIXtWhr6WRD6B0VBWQyGDu3scHHn9SZvweBN0Fv48wbqd3YeVILT+5XA/UhhfDR0hrSBYFFA3HBed9hyhReB3b6ieUMvKzoqWiuhMSt4e9twvd5wvX7l1NLWcN3esG8bttsNz7eO297xct1xa8ypXHwU8idwcYj3hJ0d2bKW1zufw9dhFkrGl9x9nytHju+PlNvAMBoTcpnEhASWNRsbClAq/9XC9mwNuQ2E3E/03kA0JjsmeAlHKRjaip4BHQRZWKImoQygGZ4TH4GuzCVb2Fs3HIJsHXHp0IOVQ94Wx+FpP5D7cRjYcQ388Lthy8frMja9M6P0vWM5Ha29z7c/ftSdAZ8PO7x6PuLJh9cfw+3jw48vieP6sx/2Jx6/GHjiBAMAByfvhmnEgi0wCwB52NGiZkDvBYoKT6R5WbDUBeePHzgRpRY8fPyA88MFjx8e8Pj4gMvDBVqBNCBaFqA53AuW8wokFa9ycokKRaURzr/trxGjE2RqbcO+v8L2jQ7BnBVoN0DYn54JR8lkw/owzIloCySMEI28I1F7Z0UieqkTsGL/b4I84IBgpQ6E1pjnpghNKfYEM0FxlFKwLisED3h4+gTvPO4SVcXz+oTT8hjn7oC8AcJwtbdoJVIJ2jf1ZUqpOJ3OKEmH9WixcSbQ+85pf/u2YV0YYCNBudwM2TalUfXoIYYeVTDP9kw3AiEa1QYU9gibwXZFFwG6oXV6wZkMRqAzVPyE996cwFcz2G6jzQ4GttVBYvpRBAnNYxIRIDlpRxRiYWzcQ5iPOkAUH+W6bT0EDQPwuttsSIc+Jc0RrLJFCnp3tsK8XGHqFPftO8puWEyD5UXTfDPj2G4J1kMGIEhDJMPgSe6pyH5yDoOKIqcCpqkjY2MCGCRnT6w8YpwwbhHkejB7QKApP9/M2a6WfZDxxkUAiMZsmPjK6DGD2zSz2UkXWg4iAq8yxCfLwlHAosKqZURIWikaXi4PqI+PFMZdwClN0rHJDrUOdo8UmCrUHPt+w7bfhhg/2XEdNdqX0k6lOc+CFSDUgYFzTLkq6lLw8PERHz9/RlkqzH+CvXW0W8N229AK931piv7ScMUb3n7/gv5tR20Fi1RoiM941BObAXvemwjiMsoqEaiYCLUuBKhlMqEUGL3fGc5bsNLGeol9lEDgkf1EyruPCXJ5JcY6M4N0Q+2KsguwCfrLCzgOcuHUEe/QdoO+vMBuG9rbG/ptB1qHbA1qgnMXSFcUi4EkLU9xskU7EILWAqhE7z+PNYsImWrluk0HP6rkEf8nA+J+r+arEgSayY6MZCo8vOer0w4ZMoTy3JsBEnK9cFBEb0yOujv23qip43bo84/jxWRIZqDXISHuTaeT51BigksH2B4awGiJCE1LQU+b0Rpw2wATLLqirhxo0ZrAXOEUoOGxa8cuDS4NFTsQRRuBULw/qjm6nlFOZyznB9Q19+WOZo7WO/Z+G7ZGwQlkgoISrFZlJQAEgwytU1y9wWP96dD86G5QXeD1AnnYUR8+oz49w15eoZfPkOtXfn17YPvd2yvs5RvsdoVf3+D7FXAbrd4kHoQPGLlWhIjjBkYwrNxXGkUYhVDjLa9tnGOP/cgctQSpgT5eZa6xkZimHQ77OFjZ0U6TWg2+79i+fcP16x+xPX+Bba/w5RGGQqBKhBpFWdTN4w9Qy2LRaCl4fPqET9//iNe/+Eu8/vNv0a5X9FLp75QTfajZw6C4d0BaB243xgnuKG9vaNdX6PqKtl7gdYnJcICKsfWhVkwWSlw7csKiOOSANV73csgYRxIpjDlgUK84TghKKqMLgGCAcy+mIKDH/sy3TSAqE81Z9BgsiNjvHqPuRRAtWT3aZFg46JbshWifdBnrySOZGfmKZ0wYRcd4r6aG0gWqHVo6VBcABDe9Uhcw9VKlT9YjELpkcS00GOqZ2IgySfSwVyPeHhV/zBrV0fL5wZ7J/DmvIb18BrhHKzttqee1dGAMeMm9MN9uvE5FqO+TLPk4ECZsAskBEnnQkXiNGCZZTk77KuiAU7cuW+o8isgwDuBB6jsdRMZ9XCQgq4cjvsT7xziJCaD97FpGrG/zQs9k24FuBDDEyFq0DkiDRHFZ3Q9AWkxIdmUbqeUeIbAhIAv1eHzshODERQJPPRheebwU5ZcAWRJYFSmMVVVhMcSrjEviQFEYYmoqFFYA0Q73BSjRsVAbet1hrcH6CYiWuN525kneoaWOY5G2RW6Bw72+b2mczKfMtdjKyomUQs2eAKM1rs3w8e/dvM+1x9Yr+ha2KMcgnwChRCuyq4FF4JgELAWCFvL1hQXL7sAusD30X3fAd/7eduZ5xCF9fLWNP/fQMB5gcoAhLkBRMvceH5x8UY04upMY0aGHAUeCtl+x3a74+vV3uF0JNr08X7HvHfvesXWgGbB1oDfmwbm/UpA7o12K+M99MJQJjl95nX3+nf5sFjTnFj6wm2RG1SUtSCC6iSMkcziBycQuSlWUhSwkDTZSWdhu5wJUKQHwAGyDj+iwG3IYy7BtymKB5zqXYA1r5Bme/kFgJde8wWrYXAWHPiYRJainWSC2YOaaIJMopP2cLNK5TqfWntyBgPm8I//oTu8p/eX9asc9+MRHnn2+6zEG9sMeeW/9jmzhA5/8TzzzcCrx/vN8f9njXzXVbiSPcv+J/u5Z47u88Ido3dPQSsWyXrA+XPD5hx8hwRx6/PSE8+WMx6cHrAvR9rS7KmS9hDQbtCZ6CdSlUrBSJITcWPkw28KQpQOnwHXvG/VMorKQ/dFz6sakXo/qZZ7HMCACaCHIFdEUW7qiAtbztR60VF4v6y1GliKqoQSdLN436nXjWqYuQrGKdT2TeupAkYpaVtTlhGUhlZ1VvZjMJyUKNtkfT0o7AydFqQsgUxSQwJMF8EShwg0cbepIbYaCnPLCqUxR+bdOJkkAZioKio6GAYj7V6JnfQgrlw6Yomu2ASa7KDZiJFrUswijnV/N4c0G6MSJRxn0ykDAPQOEuP7pgIoWOkExUvjzyh+CzDGlwmYANuwAeO+mdCpbJiXYWgiHg42fYWJw2yHNCOj4eBfSisMQvf8a20p4JXVcUR8rBQkqzHcclUS2lMSx+0x8R4XZOaEuP6vHN6miIOCEO3cGKg0EAxp86FBkrpAh0s8NVhgyjbY+iWRPAS8hPqmKsjKZlhLsC6cjkcqpdXpaUS8XlFVRF6D1a2i89Qg6qbMEE4g52n7D3m5ojeK/OVGMQKKP6wUguy+HgTdPHRVnklgL6rpw9HgtKAsTeYugyHOE+61jf97wtjv2bxvsaiim08EFOcacYFMLi9YcIQ6awXY4bZ1BYiYViS0BhxpyAijRvjYCh2Ml8PAYAZ8HADVWd+wTJ5OlmEOtQ1pDv165KqRBVgHEIG2H7g2675DbBnu9AnuH7IYiFQUFYpVMyPCK2WHHWDvBECHjKauhgsN6PrQdOoM2HK/F4XpwD/vMgaK6nS2Uwy7kfsiAa2y4e4+W73+cDMi8f/CPYgFFEunUc8rWzvQnWfmMQwpDQt/S4QyaEpiI4xKXLAjGviFggVo5OKIUnku2noet8g5Y4/1rXtClBsAoiCyAzJ4Q5+XENR0JO0d3V4o/1xWlLtCa/jCvJxmrLhHoSwzyCMvCfTl5nA5D904gDoj2KoGVysF3AKvQ5QSsHbJcoPUCPb2R2fz2ALk+QGqBv77Alme4FHh5JYtHBegN6I1gonkwnI5VzwyoZuCSqXYyWRxxjbIdJEd6BnXJZWyscQ9HC0+24UegnxY6/Xou6KFpl8CWdfjtiv76in59g7ctrO/CmCmir3EKzkUosX5GqwIEy+mMy8MHPH38DvV8gawrgXhVwEIwnlUupKZd7wbsDaVukCLw/QbbbrDtir5fIehQJOuJySmluxRV2MqcBZ10Kmz9oQh972GHEmgDcoHDncypXA9yJy5B+0o2RofqBGgi5MonBiiUzHU9/C3372FPC/1N6soAmMXCATxNmzD82dEp+zwXN54fJag8Er4+8E1oTP1S5ZSxAtSisM7rVdJYJwjwLueAY4A+s7/4sKDi+2lvcPg73+AIwPE58Vz4+NnvTxDHA5Gx7o/XdL7/3cXy++fMSGeeg2QieljUQ64hgaiwUZTI4LTYEOpEiogjwBdmhwGejfa6w008HpjLuA7I44qrnTFRioofr0nGWDM1e+9bBSk7ka/NmFqEAw2Qk+PSvguLtNYP3i5YjTyWcfEhQh3Te+BpCvx73pMsoI+/zbwlXcBgPMTacmVknN0XjDcKnxAgqRUWZq00uNUoslMqwjp1tQiiJrM4C8lpn/Kz85R8LOGc6mXh1WX4pFhbPi7xWJqzZJjvNQtsY+qe5B0OMCvb7CT4dHIcSBDXw5kHcAgRqP2zAz2Godju6JvH8KIJPPVhP+h/2coMxpuS4DgP3lVwuzlqMdzeGvZbw1Z3bNcNkA4TTsPc4n225nh9veLl5YqvX7/gdrthu+14eb6hdU5U3aFsUXdSs5OldLclD9djPtLzeW5ajBs2Lsx81YjNZL7LMV47/vyea5kmIwf2iISmsjD+0wCcNCbYQRO4dALvygnjEvFFevTw4hhdWYeW1un1w38rix5p0opN4IuLkU08CJsusblGk0A8ZsyQC2dYkHlZZXju2PMYoE0SA0bQB4znHu3mvEsZAwzPMG6Px9scIpw/CQbl7+/vyYEJF8cz8J4/8fr5r7/zjz//vD/1+MXAk4yLc/eLO3twf3Bx4maRtBdATxBdACXb6dMPP+L7v/g1/t3/6T9AFoWpRJUWoXG0caFrgBZFUdca4wWAZV0YMCPEritHkdreYLpzal2/0jh6g9UCg6A1R7OdNFAP5+Yx7nrbSWMNFb5ZnU46ZwbnBaYO1TUomxyTK5EEixEQEQd1fwwDcUbv6NsGV0OpnMxFpF1QtaLUFUtdeBzRPsA1qVjrBaUU1LoEQCJwV3QhvXCpFfuuMFMUiRHBYqSFCs9/b53tjqXgtEbaKsaAyAnMtW7onRohUlhlqwVA37DfgO3tDd44NaCUhu7KSTkg88wP+goCgmTqObg010hcE6EIvEkZKLZlu0PzGEE6mTwFbEuxZpxG15zJsxeIF1YhNgOaBBglh3gkp64oFJzKw0qaBdve0UJMPgNQmoKCGoYREsnKoOh75CWF41FBNlNvO1wcSwFEGDDttzfeZxHswRgbPA73Yfrvvu52elYMD0Yh12SAYBSm9jtGh4WD0Hif0TjroeOUHyJkJpjoBK7y95BoTeMFCLmtYHPxaJJ9o9EPn+tgBJ0Ctg0UYUudCqQqZCHwvFxWlFoh0XqRxwktkHqCnk5YPz5iOVWsK3C9cnpkv3ZoYZXResNtb7C9Y/t2w35tsM0gu6LvZMmZCYpTs4X5D688K5HK6KjzOt1aw+l8BmpBF8e3129Mkgpg2tHRoCWmxTTD8++/4fn333g9ts5KliwR3DiaG6+5GTYzUPWNook9RFAFlC2miC5FbwsA7xwbW+4SuLh1cW9bVAYT5PMIwqwfGQKISqAMn5dhvnOBoKhjAbBm8NEabl++Aq8KfauoD2uIAQNLA4opqixBUWKSoJaTrcpoVTXlde0JIFUFViZjfjw+/Dxw8XTaHscZxzamjoUNdshB+8fGOnLkngbBxINrt7nJJgAEMp14LFNwHsgwrRA0jgTD90zgQJuUYVAHYDZrcRGVzf2e4Ei2T9EHEh9gEAypqMuCcn7A8vgJsiywUhjkOpvK+/IIlBOaPHL/GwCpgJ4RZZcAuMi2Kr2jto3sHQjqekI5naH1DFkvWNYL6nqG1iVE5zu6Nezthtvtitv2SuHWUunLwjdKgN1sIdqH5pbDIoDUATR0LfDCASSIPEcckAuAx47aGh6++w1wfeHXt9+hv3yDfvsK+8M/w16+wb/+Ef31J4Il1xdIuwEtyr8SJYGg2KfnoYA671B3Z0t9AzWpqkAqQdPV2bicBQ2GBgwBDQTte+PiVlDItpajp4uQV4QtX0FV5PQ/sm+8d/jbG/rXL+jfvgDbK6RT82oUROabjSIKxnWd4feyXvDw8TO++4u/xOnzZ7w+f4XVAvEKVbbUW9vI9PGGfafdqbhBhFZXbi+w1y9oWrAvAqwLsCzQLFYJIGooIlBdAvAh2613g2CfAbYCxWq0zPGajEL8XkNUvGBZTpyGWGZbnyPBEINIR602/paAHpO5Y5JLe1dKGeDGKLMcktdkmxEoNvTWQx4gC2uRICZTYrAl8j4o3JKRxqLcMX1L9pWqo1ay9Ze1RvGNa7IImdm6Ozbx0J4K0MxlWGQguj3GZ8/EY7DmfF6DtIX5mOD6MZjIlpX5/X29fKYdcvxZcAAY4y5lnuWHz8i/R+wxZTn83fvSRrsYQnyRBUY1uMf0T78BvgG+QbABnuymjfSTvs/n2uErM8XD8cFTw43rgWGdxL0G/FBYHcPADsdMUNODlX6YtHjwVKnxyoE6O2Bs5Vd3WGHMyIl1vPrU8bFhO+ESTBmPdi0f96n31HPKktW8Z1wLk0nZbafNMwPEQupkgUj2e4Z/U0GK4Lk7pBjUlgm+IfxbXFfPdlIjCKbbDb03xrz7Oq6fawXcyP6K42Q+kNcphMMjtDZ3EgKi7ZwTNodXHmtLxn/u13Xu/ZxuSdCa/k6louqCdTmT9SnlEGQL73vId/ju8WWwG/OMdjW0jYOQ2t7RN2N+shMYYvwXU+yM/t/TdkeM7gCn2wGAAi9XYG8N+/YN19cbLpcVj0+vvBUO3PYdbxt1m769vOLlbcf12rDtcb4uITgPODSKmGRm12O+7oftigPodAc2R5x+F5cgWkbndR/2712cBkxWFI/tGCnJAJNH63nF1HBayihE15XC4lLDBqjDA8SX8K0uTs3Mvo08reeAD8RBCphBJAClAIpx8mhVaI2Jhc64QzsgO9BLhK+i6Dn1fAPBxcFsi9U8K4gzAA+GdV73BNbdgzQwboTcXUNHMFzf2Ucf9wR3v8/3z3+OIBHz0+Mr5mNq1eFQOLh//f/scfQi4/tfCDoB/yrgSedCvHNuSd8V0tJc7o1VsE0EglpWlGVBWRecP33Ax++/w+fvv0M9L7G4DFo5Xj1FBVVIpas59hgeo0hZcc3KiQpI/3RE6xydTq2R9HjBtjEpF+8osGiP2MPRcHFba0P7KbefALM/Oat2wkkx3TlWt/WGooUsmrSx6Q8MQDcknVM6qxAWgax6AQpb4zxHOVZOREHRADBYWcSSoukVbZ8OaA39Da1K3aPesfXGVjsD3AuFocGAXwsnPCynNVCtAN/cIF1QlhOtSPeBRjNAJI03l507KZ0iDSjAUpbYXMoqVGwjVyY6BEHoZL1TX8uinW10PkWV3w1kNO3TeSCNdwBF0pUtcjl1MKbsWCg2iw2MnptXKBErrlns57izdLoDnAoGTPdwGh5W1ccml/hPTpLpmBU282l89n2HR0BfEEGi2ax2R4Ab0SoO4dgwEDmxCchENL7/c/s1jm8eIwatlrmAhuZT7s/pejIpTT6Exr8TkU8vRhBkFBiiHQxC9o7AoRbCvRKvz3KXCrCwzQYL9WO0VpSHExOUEnpoRaElFMd1AZYTzo8n1Koo1bFYhUiF9wJxUoutbQSfdzILJYKbvIaiUyfEEUsfE7BgquGzMlLD0cHQvOPDhw9YTytu1xu+/VFg2kHhTYvALVy7C4oXglue9xTD2d+b6dCb8TyW6eA7fGQRpjqOPDAXzBXzp9bDIRAO7zWOZARrUV88+E4iiwTP2+0GcbbRkD1H0WOJtpFSNNCkCvTQmjAARuCbgCNZnXlI+R4eaLJHITgBCvEUSc3DzP07lhtySSZYNoKbWHvZ4umw0cGACKry3ztnPVhMGebmHjow4zzBuwnq9QxCTAboBI/gJKqgLdiPhvQfwBDIHhU5G/eDeZ0gdWM87aHldJ4FUleyhYJz6bpA1g9AvQCnD9DKhMKxg4BWh/cbsipoZYGUBaZLCDwTLCnCqjaUlPbeO1rbuT+kE+jNwRdGBpNK6ogV1GVhYYSOI2yQD3tmQAADNa4F+ZlkgyxIZqCEVhi6wWUB6gqsD6jnC/TDG8rHZ8jlI9rzF7TH32H76Xdo12fsz19gr1/hcoU3Q+mc4FasB8NSyC6ITH4I2Tqr2dmGjRJJTKmjqqgu6Ff6LBgHwRFEOa6lWCPHwFKEwKpyDacaFcxQUDkk47bh9sc/4vrHP2D/9gXLx++h68L74SVYuflJBwOBtGRxDCpY1jMuHz7g9PSIcjmhVUXpnFRYEKAmDM0UzRq6G6Q4vAmwK2S7QtsbpL/AbwXmK8wWmC18sZQYl84WTgmdFBEyzlsmqWKAAs0F1WuAM8laEogvEOsQC+1P0ChI0bH3Pf2Wpv0yQDImQ8TvTNIZi8R0yN6GDxSdoXJ+doI3w1eqQgIRY+udRZtG2KIAn0YaHMbLEXGfVCTbeQBHLgEK8/1U2mDmL8E86xKgyx4TA72HexVYt/Cp0VriCZ6H1XMP8MNxjMtzzY29NMv5yLjtyHCa0OUwk3eP2a42QaTwcmF3I3EKm5iM9WSJeiR+nogj5ucScBlwHb/ECHBgBxlNN4hvEBBcklCk6zOI4/MjBjgCFMlAEJ8sRB5OeNEoGgBACngjWPYar7fhnOf7Sqx9dlMkIJp5UMS4WehUgBxx3kNRwMtsxyUI7tyH6aGjWyKnzpqlPu0IlJHT5NyDTSXKz3GHqJE9IhLaTnnNYxCG6GQX+mF9uFACRO+LouMzc1BQdIq4dWhd0NqOvu0Q3Vm8tEY/wkCdnR4BJKXG01EfiuulRBEvLORYdgHeIOPrA3h1WLl5vdyZP2W7Xi2MEwGlHAG433V0idgAnfpu6NeGvnf0m6HdOvrWsV8N262j7x3btsHD9ltLXSfAUjPPAfZtSawXGn6XzCo9/Iewdt0Nfb+hlg11uY44Z7eObScR4Lo3tO5oJug2OzQsBc/B+CLCpZGpDLmFw/cyLxiOsSDGtTwC/MB7i6Dx2hHHZq6Rq9cx3pODvixsdWgrKVCXHFYhQOkQ9dFWF+aU31eFV4MulaCvcBRXUWDFgt44GMMbJgNYY1+DzK8R0SlCCzF1O4OlXCSkcDxifiFAtZO0IeJjCFVvTrmbTos3rlhey0OcS28QikqmkyEVVFjKmkTXxAzO+XKZtirvQN6LUZOIK+4YpZXDZ9z7g3zPP/c4Fgx4Cd/nKMc3wnhu5o7/mscvb7U7HPCxt9xxSHIzH42NxYuazUEKaIHWFfV0wtPHD3j68AEPTw/Qyikr6k7WggIAqdw0UpHgCpAtYRAQaQ/U3r3P1jajZlMyP0Zgn/3DPSoh1mB9Z7Ux/9ej2sEZjch8LanxtIEcvejd0NEgxuAcRQiKBYAxskJzfkXOzUwxAhsxQDpybK8qgxAxJ5AU4EQ6yaJ1aCXxvjOxcqGzdgkNjd6wb1sEUNE+4Xw/LQVaFwZAdeGyFYdZg4Q+ltQKDXqzKKvFOepVY8IR2149GDKxdYy6GC4YwdFYoeij6SI1uCjAbgfHzj9n8c0HKBXVsghwUugdUVngB2ZrXhjzcKbuB9aCgElF6KUkODhaBj0dfrw+D3/mEPc2eFRuEMmLjUQRgew3SyFYBjI9Piep80m5BpdFuqXx70Cnc7MdDurejMTFkzxgGdZqUInzV4e85a4ImQl1vls4QDsk37xsPvTaBZz6Fl0D4xin1kR+ENcrWYx0KJxIt9CpLBWyVrbd5hpdFtRaCTpqhZQFZakxTKCjFCHAUQt1C/wAaO7c79kCaAEYSOYOghlvOVgZiftgIEAqwvHevA4EZpd1welyYjWxAq5kkhhy3cRe8+ghH4F/fM4hVDpSlUd2O+1/5C6eJmMsyePX3SNfH4v9WOnOZZGfdRdQHNZFvmsKh/adrTWiDi+Fxy+OvhUmGFU4TbIL3ArMSsQcFnuP7A5P8CGOzQNwYhd2AssY0aZHHpKnkzTpo9+hg8wANPfPCJHTOh6uk+DOl40XThLJ3XWVLKxMGjr3jsZ6zp2dgV++sVAbwjEqoOYYba8eLSs8nzw7yxuADFlmEClD68e0wAqZIl0rmaJagHKGnB6B9QFy+oiy0FewmZPtKNLfwI3SKeBeKqvSSTMeAX6wQXoHtKFFUAex0PfIARFBdZcQmFbhEAyqggJFRxGJtkwGE5MFJOVwRBUmQlnYEOE+MifDuTlMCqALZD1BTzeU8xMgFeX0QHAIAF5PMCfoAAC+7UBhsiKRgB3XVQZwmVh3T2aCkMG6VJR1Qe9s45UONGxcU2acTGsS/nucZWw/mWZYBChy2M/p6wJANodvO/ZvX3H98hNuX7+g/voKtXMIe88CCg8k921aWJmfCUGpFafzBafLBeW0kv0YVQHqHC7ghEHQXmZ7We9Aa5B9g+xXSLvCtwrHDsMK9wopFSgVqudxjhpJL9dNCO1G+/2YkqAcrMD1XmKNx94KgJOaNz66JI5ZjYwQO83bbB8DEijqc6dLLGnl9Nhj5ZlXTAc4/d6SDl3OwQgKIxFFKEkHDwXFw4O5NZiXE4COcAcA9TBTg6+IUF86gFcWUo17K5eHJNCd/jRBkizu2uEc7h9T00/vfv8uF/nZa+clnT7r+OLR6oiMyeQQm4RREzl8EI3yPdvKx/uNgHmwYpKp1DCFxDl306PVjoUJtuCNgT7H9jr4/Px3Rl3GbpknN4C7AK3ujxXj/abniFaUDCYcyAIkJDoRAL5fFOdMcqp2G3uZoEo5sHoCgEG6wQR54qvtSN4sL/GhYKx578jjVwSLR6M4GvabeVkCXD5j24jbJe7nPPPDc4AB7JlVakuZwYX5HUAwznpHtxin4AQQ6Z+jmB+SG+aduYvn58j8stmyx8PT+zV1WJPHA5xgKgJAm7quec3TBqhwwjA6CDw1g+0dfSPw1LZO4GnvaJuh3Qxt79hvPQpN1Hwa+9UAG50oaa/j+kss60OQR9kFBzrQtx5A7Tb8RHMWrboZpRjiJhtID/dkVXkycI537dgVESSHjDfHfpj7JG3rZCbmsY5VcPebXPcj3MT0Q7SzueE84ihEuzHJJBlyaAwX0gICpYtA1RnjV2WLfwBGkoxoMKetUumUVQLcj8+VhIyZp49MNKAIqTM2ZtwrY2kV4WRf03m8DmMHjQKOHnG4R1E41+A83yw6JSAvYasx7j/BqMyqBussgcosGviMnfL38xcS1zn94Tub+97QH+7t/4jp5LEW+L5zb91ZzAMA//61v+TxrwCeDg0PqhjCiDnhBYegOxbYrM+dAKzoJricz3j69BH/9t//Ozx+fsT56QRgQ1FS71TZpy0BPJUQxU4qgSPApfhfN946a8KWLEaCrAGLAX6F9St6f8Xb6xfcrs/Yrs/w7cpxwb1N4yaC7Isl9hWpv7/fjEyebO+QHtUEciTQQoTdOwb9fiKJ/v7uTR0EALu9YG2Ar4alGBNqYWCIELSspY5xoL7IqCy4N2ytYWsdL9dn7Lcbrm9XECxiS52sK0qpuJwfUZcVqgW37S0CNIGUSn2nRjFYLQVFVhQhkGedVOBaF9iywrYGc8dSV1Qpo3rQo7Ux9RNIf3Uiz9HCOITtAsRLdhGRZABBa0Tjz+ICKAElD0CPeloAjBVqMSa/zATJhCJ4la488OdusBgn1lt8Hxn9ZBJFM0Wq5+msDh3wc6SLcxB42j1YDUjjEdUVRGKJgysSRCLKiSb5+RxM62P+iWLaq+lIEMFvHun9I6UEj+0e0zEIBBZ6Crn00+3MRx6DiqMjWULBjoldmnpQdJ6sZhXnl5I0QGZVOjxRVhyWgno+Y7msOH16AqrCi2Kzjl4rpBScHh448Si+uP8Uro293dZQ1FEWRcWKrV+xm8G3BrvtXJ+7QZwV6bJUrrWg06WxtzgueAjuxt5s1lGiMmNRqUEFdm+QdsPNbvBqkJNgf20DeKpYeS+DZiPhgUZ/ea4NSHYW8Xr3DolqWTIfx707BmSH14THGY4/fzfcT6CNnt/zze5bCySdLp3VIGp2w9Z3oAHSO6R3eK/wKkBVtO7QWlGXBPwdvgusL3CPiT06PiVYrRkgYeQoMzAZbvj+fFyCKUSgM9lLGeSY8/ow1MiiB/dAtswhzpNvrON6HMIFpLrE8drOSvG4oPy3W7xfIXCSQMbhpvU4c5MCL4XXNsCKcQ0gd7G2jnvK++RFhr5YWRbosrLFri7wUrFD0VThpUJPZ9Snj9DzR5SnX2FZTii1ho+g+G5rr+h9g/Ub4DuGcntZ4EIAqltHbxsDaOuQfcHq1HiCGHp/Q9tuHNARAyGgmSRwilhdBLoo29Uk1oCX0H0iGA8hg04ZCbI6Hfz7EUzHGrHlhJbaFfqA5Wyojw2n0yOW12+ojx+hl0fUly+QyyOwLOgvX2EmcDzDnK3trP57TIsKG3lkbSIY1rVgeTjj4ekRT58+4tu3b9huG7a3G1hE7RyGMSrPcf/yawjkIzSzMFh9Bl52JrpCoEcc5RV4/sd/hrugXh7x77/7Hg/LgvpQMcS6UWc0OwzA9BNj59QKnE/4+MN3+PqHj5C1wvYAQFyw1JUv14oWAbHbDts2tto/K3Qt0GIwXNH3Fb6vwLpClhN0OTH2K4JkEnhcB0sQD2SCQglc956C6hQ4V61sXxfGU63tECkcJx7MKItsgdfRqcsxcqIAPV2ClUdmXu9kADHBwRg+k9MhSbOkL+ndRlt8aue0tmPbbwTCvE9hc1WopB9ylLJCy4pSLyOxzYJg7nUzi+MJG9EBV7Z7iBQstWBBRV0B3Rp027Ft14GjHNuMEOC33IFhwHHAT4k2MHjYrneRwbDzcCRr865t7/Dfw6twdCoyfjOfPcCKUbiSKbg73sOR7TYzqYkvD+0mdJjtEOlQ5Th58R2wDY4N4hvcN8a8xulucOYLRRlD9iguW06gi6/MxcQldEsTQEmA0ZCTmKcGSsSBsaeTsJXXeIp4yfTREduNJHJkoAGMujM2VUBiMA+ChS9jHckd46mPeMU4sc/mGsiPmm2gCS54aK7GrTOuOVWHl/fsSfoBzX5OAcZwGOBPTI6jvo516vyhKLRVaFlQyk7WY29oWkLyxFFr5fFbHywusnAKWZFtn/fsbkVmsJAkhoijRzZ+iKnHfzWmbDJfUplDD9ADkHWNZeewvaNtDX1raNeG7XVD2xr2t4bby4a+sc1uuzW0Zmj7jKcY+8/9kaQM/sAc5z27eu4JPtcANJvPGX4PQLcCC5slw9LnPsvvMbZtDnxQHDB/0RHBp/UbZvR4RJljzP/gcJl/9oVcJjKPLh/Z3ADYtMVVwiYDUpwHWBx1AXWdFqCeyEDSApSVEjta9TCqm2CVcGFSi9mMk6ujiIKD7RMDYyC3iHUIzWYrtiYwC4GvwGIKN2C/GTS0Sr0gROTBWMyolXzdDDm5UO5A0nuAxx0ht3AAGw/B5r3G0v1gjJzs/j7L87GqYqd4xB7xXJdkYc3Hn9d7ffcYfiLeeCwMzMV9eJEg4us/AXb9qccvn2qXi9DDWYlCikOUFfBuFsaJJ9et0chHkC+iWM4P+PjdZ3z343f49N1HrJeKugAm20g6smqRzqmbwqOSBmfAB0wnkZQV3qDsPWarjLrB7YreXtHaK64vX9H2V7TtjdN2ooFb0mgIxveCFLoeWU4kNNPJNOFYanNWGNPBLJVMgN77oDeSIshFQmqpI6tnpdA4VTUUbVDZpn6RG7a9MYB2Qa0XlLpyMwa9vajAwNGxe7vidn3Bfruh7TuWekYtFetaORGLF5lmS2JNOSe5ODp6azFBxJHiy3CM8yGTjC0VPCc605zI1lqLoDtH4/L68X0TvGJ7Ti1lvn/vaNvGSQwdnBaURS9mx7AW4GMyoILKrgEwmYFT7wJ4YqBH+myR5N0p216aw1oPlgY/K2nYmRB6AB3vLW2szriXUzsiW28GwDAMcoI8GXhlsKZjIgPPI4v7FCIWM47XxYhhfvbQDDx8Hl8GC5O0zZOaJiFYRxlQgQZKMUEzxDkOoACR8HsynkLzKdY0orVSg53jghjhymuRdG8UBjdeFHqqKJcTTk+PnCghQLMGE05f2pQ6ZSoKdXCaS9tRlZoBFQ5vr0Df4PsbbCPLqe+dOk49AvC4EVIYHGskAYjqiGVSp2lgaXvKUqElWJsKsny84dvLF5S9cOojNnjtqJdCkUkFfJvrR/K6O2Aa7WUM5aAQ9uGn21NFi6AsK1eZzM5/pz06stZmyiAIpDXAF54bNSlmJTU1EBg0zXfIL4+Ez6WMiiA2VqO9Cbx0SHNIabDFMJJhIyWZoH1WlRyQPoKjLsl68lEcB+bo7BHAxUpNd+4eUxk990/Gxxny5LliBBm52wZj9VD8PwpDDlFTmSYfcvcPMkCf9QMOUOh+H/iNOFlIrbaebEigiw7dkLQz436KMkrSpF97oGpMNrOVuq6V44KzdcI7zATijfT0tWC9XLCcLtC6jtZxs45iD+j9it5u6P0Vo01FmPRANY6rw+wG7waRDbYvUcE19H6D7zd42yjmnTbSqcDqviNZVgqCCQnGWIj6e0NM/WMskbocpcZ9ggTw5bMaulYC9BCKlptA1guyrWURh14egGUB4NjXU0wOZYhmbUe20JBXwP8O7ZwAyFUFdVF8+PCITz98j+9//SvoPytevj2jbftI0ugeopIMtn6oCGqATjMgP6zniG3EYs+YsdVbAGyC/acveFHF7x7/d3z+27+Fu+PhrwqkGqBrLJSggkPu1miWGrh1FbKs+PTdJ3z5/AHnhzP69ZW6V0ZNTBECOxraj9Y6Wt+hzbBrBxahjky/op9O0NMCnC/Q5YxyeoDoieldEWqmaE7oYssT54xwqIOk0H60XpeI4TzHzouMAhrXow0fxZb9vFwprwDAKiRYlTkNq/c2ACSHRQziqF1DQ2T6W3fq6PTUYwwAogdoAc9WqAS+aKFchNu0MNHWukIlW0XLsGcccmNQ7WSkhD20EMF2N7JiY+3XIrCFsVqL9pE+dPkCnAEySsngLa5NMmASmLuv6KcPcs+/HeyYJCt8BhF3JnCU7fMNg+F0jC/yz57vl59LmzGzLB+/ncfn4yvb6IBOlpNv8ACegB2catcG8GQWrXgH3aEsUN9/ZBRX4t/eDNmiOICncb9nhJf/GSz2vD7pcxSzRT8YR0dWMvIaH3wSxKFSgtEToFj0NRSQDeSm42+eEyPie0tQLVPRvJjKJZF6g9mHbvF7CQkTB6Al1g888CXmILOEJaNmee/b8rr4ZFCiUA+K30Xw1zl9MQrm3M88Lrbn9plfWV6fHWnfRAqHOogQnPcAizoHRR2LuHBwb0eeNYvdqckWbbxRHBdIMJMout4b9UBtb7Ctod127Lcd7daxve3Y3ho1nnbDvoU/H0Lwh30CIFmcPOkR0YwLKXNljV+OQlvs57F2ETnCCMrycs0cgnHV3OvpAwaUErdxTAY+GgP4YIjfxTrJDJNY15G3zKOe1kEzPRquaMIjo5imnf67cGLdYD0t4cpKspvA3wUIVSKWKUVQKsFJk+PZCzuhCuPNIoDEvrGMecc+oU5xfr6Lc+8WcJ1h5grCD2K+UwCpPDmrDmuUlunsHkVFSshg6hbKBGqprRq2I0kRPY+NhsIsMZJDpHkguty1SY+l4cOuH23w0e5zPbx7ZA7w7k7+7GnHZzkwwKf49rgU0nNQnuTPveP94xcDT2wPyO8Z+Awar7P6q4XilaKh/h96NQ4Kjp4eH/Dh8yd8/v4zHj9coNWB0uG+QzLlDcCKlLmJ8OYEAoI2nQH/CFQsWjqZUSZdlkH/G9r+in17wf72gt6uFC0/OqWR2WCUolOcT+ZJw3EQpgXQvKM5WVfLMrNAxcrP7wY5LMAMPDn+1Blwm8DDQJbiUOkQ7LC2s2LQGm5bg5kCKFhPBdUEWCtqXdjGoBIjVg37vqHtN/R2g/fO1kYFlhomKRhSZpxwh9ygTqHR7NueNzs4BB6TmqJ9TkPPgW9pgxHSvSP7VqUkhRDo1qI6QhFz8UrYO8oDbiESvXdIti+4kDUSKtY9+lXSIbNWPtvmPNrvJMVjjE6iNdK4s8XHelQjm9Mrh8GBYyDPE5rBZEogEuVMUt0Hyu0jMAvwSWWAxN2jjRQJ5uU6AZ1sJG5qkWdCYsocz5tdhDLux73j4npFUvFHxZGrdNLiMa3NMXg6OCTLvxyqlKPVLp0jJtvJju4/k/gZCwfTS4ZX0sjELGmzS0E5rVguF3QlxiidAq0WSREn6EkATx379oZVG5lU4rDbK7xvwH6DtB3eegCK1CcaQVQacRW2GIV4FYuIeU1HZMDjX6gP4PBoT2XK+nZ7BRqdo0mDVMdy4Wjx7hQiTCbbtN2z5ct13B2OSAcBPFHhVDShUDQZg5iVoxn3vwsW5O7fu3styf7Jo0i7LXPNx98OLG3uKVEAlcljj/1FhJZtQ/seGl1ACkVnksIgn4yjdGJJH3eZ3xN8SkD8bnXmUeXyGkL4JuOujutw/Nncp1RaRF8zGMzQzw9m3+/a5e6Bp9hN+buZrSH4sDDYdLiReUiYLTMCSBYU/LEGxj3J13nYjeyX8LiGpFKJkz0oweBgocbG81gdp5CsVqCcKur5hFJPQ2eKCdYO7SdIe4PvAHyHW4tLQ/CJxxYVQmtAV1hbw7442VBtg/cdsEbfbBK+O792eGgrRmYwkgMfOGXn6UmBFIsiDMY66ocbXRbSJ9U0OnI6hcCXFbRGzsLK6cyx4PsVUEW/vqHfboAZ+vXKqr/1sd8TrsxbwYloQCmKy8MZTx+e8N0P3+HlOUCnjOTiXkiAyypsnSoiqHoAi5E+P+4nHDj4V4EDnYCj7B392wsv5T+u+Pp//DfUdcXl+x8hlwJZBNBoKZTwccO0yWBqZxCrteDp4xMePzzi/HDC25dcW7MFpXskwYiBGL6joaFJYwutd0AaSluhfQW8QzuTHV02SDkxVA/9x6JLxBGMcaTvSI0kTtsMdkewdxg3dPqF0OjxodtzHzbTtzDek2BjMP6UAXal4DHBo53XVQxmymSmMJa00IRsO0HZ3vaRkM22h9ykXIRsJ5wgg4YouqT8gWj8PKJWmBiTFI+UXiKWMkTsEKLlWoNpp1iWiqy4WVyz6dUPviqsFzBZYPfth+N2j4TlEEaM2Gwau5ncHF8rxxcenjf2zUTike0ew42GDUWCJ5hgicQ1PgJPctBs8gCy+dUgCFB7TKwO6YxgS2XROScj89hk+DUZB5Qj7vk1JSH8/v5jLAkMHc4874gl86IO15fnFU6QlyZ/Bve+xMEIDaGPe8oCqcOjUyjb/rJSYQNcoxQIopASrNEjG0vSl/VDjEeDpM6BCoMjHKdzZH6IRPEUsy3YxY9XKS6vMjnPtjpEIVeo76ilxYUPQNBtAnOuyOE8GJUYGWARIBPcSva4pNfWcSS5EnPATq7DjFcTTJCMtcGChgXT0/Y+wKe+sc2ubQ3txklzbWvou6Pthr6HppIJZtDih5VBx5Cfnn85rCauB89ozOPeDK42kHpXh/sgEeMbOKnW4BFbzQc/sYw1z/BnCN3QJ/lh+WF+Hf4z3szzWGMzTwswc4GUOThmHRh/C3uUTNVopROV+D6YS0Wg1SEDgJLZdlcpdSG13Fu+jIHB91PzmMIYDCGnTtggcwrBoLISRzDvY9KVFxyOXZDi/sXBAk6JAm0J4XmVSEw4dTq2LvLDBIJSZBQjNDguLChGDmkA2X8RByOnsMooIMy7Ou/TAJvnaR2uOsbaR9zjAxHv7t7MtThjn/HwsGV+/7t3y4O2TeRnL/8lj1/ealcKD9Kjin8ItLVUnFXx+PSIWgu0Kp6fv2LbbrjddkAL6uWM3/z13+Bv/vav8eOPn1HWBsgGlx3wGxwt2t76WFm90TiZKZblFK1ZDrEb3Hb0/YrWbjBvIU4YVyiZTOaw/Q1tf8O+vWG7vQJRITGTScNNx4RZqdFSeOMsnREvtPV09I69NSaaIEiWgnlNeRysbJGCnhXOwRaLZIUVNgbrp7pAvMOakNa/b9j3nRMMfAGwoveCZQXMKvS8sBVJgCIdro6qCy6nFaaGXQ21dih29NsLWgujKRWn0xnrekJdliFeKVFpdDVsSIH2DMD41VtMrmj7RGXz2pjD0BlwC9D7XL0EhujkSykhAE8nkhUcC9HC6SSIUueqZqsIKboJCuUO8ejRzgl3BVwGZgzyzBoAgTonV4TiJ/QABIlGEBs7aa6L+PnOfczgRENIk+ArGXp0pzaqT8VnhWpSXSNBzbXHlTbpsQCaUP9sJMaSDJWjVejA4Z398Bt599TjS3PqVrYYjTN0Ooz8mXZ1tvwl4GQgEEDjRiCKpCYflGcTBvwoAlQhSyOAFCsVXiuw1AHuybKg7TuureF2u6EuwHKuWKKl19VhYLLceoNdX+FtB/YN2jhK3XYDPCeb8EoSuIjebAVQfILPihHICSRAFMXpcoIo0HzHp+8/YDktwGJ43Z6x2wbvhnISLMsZta94+7rhih3b2z6Nt84r72JInSOuON6vsBCohSyoLsB+WIRZuZK09uF1j67pXe15rtI4DsRe+VNU27vfZJKMAEpcYagzoO+TJk0hRgc2h5doRS2xukW4QjLK0eGdc/Ehg/Hh9A9RRbrFHueQa9owCyCBzHAiECLYPOzTlN8Y5zeuxQwz7lKODLaFoGb+bwavcR8y6snT1LhueZ+doOnee+zdecczUJ/nOmFki300EySLAJHCnNZvaJvj7QWoaPBaAqiiNhK6w9tXeFtg9gzVFct6guoZPVo4W7thbwVelOK2xqlQJYNYEYpnuoHspQY3oO0FaAyNWdy4wvoO8c7IzQ1mV/ReIE2BbQHsCmlvbEmSGixZAls9p9A4AuziglasUZVM9ijHQ5/OsYeNFUePL6uA7QqrBWVdUB4fsDw9oi6K7cNHFFXcBGjLAttuaP5G3SjtYby4FuUQkYsgmLq0jT2SW/M2pkSVIljPK/rOGyeIfZEUe9Dzc5n2AEPn3hqRmyqkc/8XBfZrQ5c33Mrv8Pf/z/8Hvn39CefPH/H4V/8OdWGJ1lHhCOH23PkBdspYWgRWP3x4wufvP+P7X/+A3//0BdYcurVg5lB/S3O6nznavsFtQ92j7ajdAL+hn1fobYVtN+jpCWU3uD7B/ARRx6IKKSvqcmEro3eUtmBvim47Wr9htCdJgfdg/oVOpxbBogZHQ+837I12bujmZSIT2bWKAGWNFreKEqhbLRI5Oice9U6GTKkEE0sV6lt57odoF7JOuYBkH1WK+lvv43dMClityCRXUlOC2eP8HojW4ogRIikZYuABdpjT34gvgFYUUTw9rNg2xbY3iOzYd+Mk1GDmWBThjuLguWazhTrFqsPYTsBJpo1PEzrDg3fZR/4mAZbRrDMTjuOQIf6bx4V375UxZAIHCZ5nEjuT79RBArgW4dlix9j9bnJdioknCJV+PIfFvEvPNJhLfojp547xw/HOY/c4v5yGnCL6LBhmfCpIoMjuvIq9uxZxLROA8hSjJ5jbmrNIrWUed3QKsJgdhbVw7MXL1BWzKdMw6sZhzzTznYhDemcslBq53FvlcG8JhnvctyCIg23QPuOPoIvqUunjlUNIegtheBjcNESZgzTgAq2V17Z39MbC2+IrElwzhE7fAO2DnSPZl2AZEGGWTEegM+6iRcVKAzDmCWeHREffCTC1247b64b9tmN/3bG9bGhbx36lnlNvjt4lOssFQGFIE6DahLny0/9Hqfg9iDzgqSjE2V3wHhGiIAhsUxDgWMzMZw6QDToKESPfmKHj3HOHJXk8vny3/On92cz9Kn/2TNMklgLUBSgLoqWOsVlZAa20ySYNuZ1QHKjCQVqLRFyZmpAZNoV3NcRe8twqkxGmArEQkI81a5rrRjhkJFmKyGvjPBZnQVWD8SSlcophdEA07fAOxuzh283C5go1qY+FNjNBMUAb46sbOvH00CrJYQw47l2f92FAm0GIef8c/o1+cUCycWIZyRzv6dEm/ql7+6d+73/i98dOm1mK/Z8/fjHwpCVGCo+IewpN12XB6XTC5+8+43RasZ5X/OEPv8W3b9/w9tvf0UiXgsvjAy4PF5wuJzS7sXrhN5hdo5LVSO0OGrSZglXTOpx9FZJUeEE73DbqV/ToyXLS2JnXOBDVWbQd0idFd2gRHkvdcflU2SGcuMvoOQ6AIysbHmwUVuto/EqREMmctN0Ug+To5OS9MgkkpbvHcY3MCN0oEt7NoLJCysJrrWW0H0nqYoiglE4tA3Xc+guaC4i47DBz7J1JJOkehq4cvdnbhmUpWNZKAhLHNGApmYH5CCYwNgKNHjcXk+V08m6ccMRq/xRGLLn53ekgu2PfYkFHNf7o9+loDkFOJNwZLCPZcFnJ79OXw3M8bd7PMibntd6gyaY67BFViaoCb+6cOkZLnfd56NFEwKfhlCP3jPf0GIc6KxhstZvVmgkk5IadQWAGNRlDWgQPI4E1vzMC7wjSeQlHUDUNhYw/Hp//3hHlfRrAQd5114PLTBAKk/EvyLBxtOyl9k6eXDK6vCg0hHs1wE+LPYYAA5d6xul8xunyyPbVvsB3h+47bCcb0JDjeINdZwnM3YcBLhg6CbxPNuPFjAVjc3M/Kbp1FFWcL2c8PDxAF8HX6xd0p5M8n094PJ+xaMHLH95wfd3Qx7h61hSHdxQcgKf43fFGiYdY/tSsuK845ElF0jBagI91puNDfvZTMp2Sjn5cLVkFSTA072mPVijaACGA7lHpgUdwE7y3TK5iHeSekdyUcvjKnwdFA4kjxdqRsBXCpB24YyXlk4kX+Ngr4zxD90SiUDIukmGAqkeXzIBcJrtxbBW/+3m2OsYGFgw7InlX/VAZtggUFUxczMaCmzYobUxQlgXAqOzOgoqgA9Zg7Ya+CbwX9ELwya3Ai8G2b+jbirZ9Q29nWKsoK5ko6gorBeoV6hXFF7oDFyhCC8TJXmUBiEUhmKFZCXdA4MljGmwGWt4dbb8N0L1pAeoGKTu0nKDKYRZLJb8++C7jOpo3cDT0xqo8DJAS7UuTXQsHTBVeAe+KXgR9E0rXqgNdoEVQnz4A1tA+fkJ//gLfd/T1BN82QFtMYkwmAXDcjxTHbrjdrnj+9hX19wu+PX/F2/UNvXeI0s8XFDIrMYh1dwDxtKNp+z23cNieuS7FHdIN2gW+N9j1iuff/ha+Lvjt3/9X4PKIx1JQP65wKCxKBsXnChHDHdVd4FiWioeHCz59+oSX8wntuqNW8JqixMTaiEsc1C7rDd0a5BpM3KpQ61E8q4Cu0LXH+lUG6VSqh0iN9osQ4RCD9qwyJ3tPD1ZHosWyRA2po3UWE8e+zGuUgJ4IRAoWF5SSg2dkMIZY+za0piEhEFOPQDBdle06jvj78HUZm/mo+E6GkMdy4fEUmZ8pZYIRnvGeOxn50TodFjFiJ3ryjBmT2aUgk6qUglpL3A4bMY4YfRplJHLFxvqSsE1pa2Nvpe1I5vNMN/JcfNq5EX9Me/bzx4EhOH4VIM5dzHtMahLUOewBAVJeYxbiAgAGg3MbjKcGdGo9ifcx2ODYDpktc/QZE6yATYDpCLJlOBeHP2NTP/ybR3sXTwCjEJGFZKSPTLuv41wMk0V0vKJkZUTCfIi+yPrLAm2C7Skuzq6Dbj1a2LKwlv4vru1gzSLWQOozHe67GUyF8b7yOor0IPEoyDizWM/TnyHW2bi7Bg7rGfjrwac5QCZa+K7YQ4DEwAmP5Dg8vvfBUnFLtk9eMwZqWfRJUXeGT5mM30dCg2mKZLjxWBSxxDrQbwE2XTds1w3t2rBfd2y3aK9r7NLIaXVB1UYGLkdO01wdPn6WuL/zzk9QcqbpWTBjUUbH+U7YyBHx7fAjqVmUJYbY/3GNBsPybn9hDFlIttKU/piFs8OSzyN599/DX2cV8P4apA90FjAYR4Wt1GQ6abTgBaikTimOyp9Lof+XAPTztY5gEB1dt4BdJrmXg72nyTKaK3jgERJdW0diraf9gdOlhV2nqgGvq1mcQ3cSHSzywAxg4YOEonFP1AVuOthfbEOPYVupHeFz3c4Dmndk5Dh52e+X+1hjOZAsLjn92M/yAT+8Qu5eD8kPiN/HVj6yo46vPlr5Pw9D3j9+OfAUMKWA1DfVilIqSq1YTyuenp7w469+wOV8xuXhHDR0xT/9y2+JpisrhMtpQV0K2rXDfIf7ht6uABoEnVPmHDBXuC9x9TQCDox+ZIhHsNzgfaMeRTgP6WnIHOiNjAhrEVQlyBPTCHpu6PwotjsUiQplfgEjsZWj14rrbsZxpu5Ksb0MQGADSFN3SIkx0pjOMOPfzbax/S2SYBECe6VS8FSFQsnsV2Z1ARCUskKgWBeF3SpgAldH2/dBe6eAK1VlvG2hJdQhfkItJ9RF0MMi1xIbvHmIcTMxSQMmzsqMFPycFZbu0G2M3l5LHcF2Bgi7hQqRY1SqhnOJIC8/Mz9ZJcayZwXHMUZbk46rAyyU2HClKDV/zLDvHYvU0fPMQ0oavRyCYhxoisFMyhjDMSicCYplmpgJR0AHI5DRYzKKBNUmKDQ3PVkedA4M/HOiHJAjN4+1zPySg/g5DsdzNDIHEOoYgR4CwLHOI1j0w+8S68j3Tx3uNHLB4wMkNeFkaNvkBw6DpQqtFPwmIBvv3TsnJknBsl5wfnjE5eEJtSrQFwr8vb6iSUPbMDjEHBsvY6+l+09WQF49QwiHuo9AiefgAzQQ0Ml161BRnAMsN+m4frnCakepgvPjGd//8ANOy4rt7R/hSo0q5/JMfJnnJSNMyh2OMFcB8jinb3hoH9iA7nB8uMx7OW7GONf7e+13gUCATpEsDfBDeHAejk1GFSvWtbOtdmwG85CYkZE8cNkFoIK5T7ioosU3EEoGBWls5yLlGsufdRy9u3OaiwfrL/aRjCzCR9UOEUNo4T6+o5X70Tnm/ppbYNYeD0Yur/8BZBpb5iDgk8HnkbmYJ+MmZCLlveq8htnDyvUhA3QCEK2YAULlepEsptCVYTN4VZhVmCpgBa6Ovj8D2wmyf0XbLqilotbzEHUeWkqlwLGMU8wJQtY92F5kPMGuoN5KMEDc0fcNMbYMEDJlTAxtv6LDIbFvUHdI3aMoskALW9BVObVyrG5xpE5VAk+OClGjn9OCqmUADwTxCgsYqtjD/3YxSA8drIcnoDesHz6iPX2Ab1dspzP89kYx7wJIZ9A4nH/cIw9NrLe3N0A5wOPb16+4vl1h1rn2C9kToxUXqakxg+6ZJGRgOa22jI+LbwwEnkzgrQO3DW9/+CN6Ufz27/4rHn74Ecv5hPLhEyzE1x0edkai4HvY07Gi61Jxvpzx8dMn/OF0xrZs0OIxsIXVWuqf6GhT8Gbo0iDKylBbaNnVHagrZGEspZm8zGYOxmqqUDFICDVKJOXW+6zQj4CaE6fqSCooSuzNxvVJgVQWMXisqtTUdHdORo1WzlILcjyCFoV07nKLtS1GOYMQ96C/iHskxz2f2yJ9od8H/jQLMvZUSirAEyRgLGupOwQEu4wJB6UgOji5MYoMoqGFWFFq+P5eYd3QukwzJASoNGLHo5k6GPVhQ+bjTycF96yltDcYuo/z1fmefnxxBghMhJFxb+7t8UTg7mgcs80Od/8STMr2Obbtiu0QaxHvt6HLlMntYFpFm40fv/Iw4xAOt3AeSz43WWXmA+wecgWRexzdwxF84p48gABwTH984IY4bW2CKixGk09ukfCJdFC0HwGq9cGYzLxENaU/POwQfV3RVP4EJ9odgft4mFvICQocBdRaK3APXnuuUySrJl+vh5hKwlaHv4VjIAMZ13tlQc0buxliUaTWrAuAYIoIKqRHQVPaiFkk2FfJxJrAjsc1O6zN4WgzxuH66JDI0YxgfYiK79cN+23D/savbK/btg5rjt48pDmAQYc+RI5Hxs9cv7z3evi7HKp5c1/Evov3NJ+6m2yjFgT6EXFtRNspShvfu1DTk2ATCwHHdXpkFeYVJChyjCGPx4ODH3n3GIHmEcq5f35+Zubj3Tu5dBLC4sUJNmmCTgJdCqAOV5+/Sxb9AJ4izk87lXl53GrEACsIQrcp9qeUYSN4AdiGflcxnAc+9pRorunw1/FB1anbJB3o6JBYYxljxqny7dShKKDmsIaL5LrqZpye22aMkLbpPYgKACkyfvRPh0+8+y6//P5P/HvGCsM2vX+HeRLHS4NhD+9j5/mN/DkX87PHLwee1ktUYio+ff89np4+4OPHTzhfzjidVlwezlgWHXTzl+0rXm7fsNkbFl/R7QXXt9/h+VvBUp/h/oreX9HsFbfrHxkMlZxsQLLOUh+ghZN5Cjp0rBODju2a5t6BvoegY0OO7Szu1ByAYTejaGPrKFhiowo8xL7MGZi4GBqIdvsICg43U7KfeQJTe9/htUIXQYt2M5EZuOzd4LJx85Uyk3EhoJe0uKgxwMHJGxrVL3GFuka10lHEAN9gnZTxUhxSwGk8dQXaGaY7TELIHHu0QBkKGry9AV1xOq3Y357x9tywnCrW84qnhzO27Yb9tqG9vqK1Gydp9C1AvAB6YiP2fR9Jp6CgCJjgoLBKagzIJABEidXruwdIwMciC5OuAJWmoWcrQBEd4zQdxjbHbrCWm16hlJwewtIKRS0VXTq6G3prKBEwJlcoq1eDZRRVmWOFDGH/MjkVFLJa3GEaABg4Ca2BOnIWjpWOlMKR7nk2emB0YfwriHYBkN1XHcH2MIoYO9DFxntnPz/Xkg5nYBmFxLVOU3Os2lmwZ/j+syaZIuICRA+yRK/9DB89XiNAsIe410I/HBrCkWznA7U81NHVIdJhXvCyX2HXBdvLN1gt6Kp4NUE5XXA6X/DDb/4ap4cHrOcLuhvgN4i/or18xPbyDPnjT3j76Sf06xV2fYPbDdBGTq9hBB0EagXVDdttw7412N6m2VXam547LxCLUgvOlzM+ffcZ315f8Pz2jH/4l9/ix7/+EQ+fP+G7f/uX+PQ3f42yLHj+3/4eX9sNX7crFpxRPdorPAJScXB2ZUBcjsGC8077tTU/UOUPyVY4gGNxNO8owY5Y67FlRKiXMwDyjBGFTPM7erVjII5iCFAqHHbQjIoWam4FI0uN71Ncxp7OxdEzuBQPgJiDByi55mPdDB2Kg23tw0sG49XJXGzGv3UHWkysKiN4in76rDCNXR0xhkeY6BkITTteFEiYeE4zAIASwxKCEx5fZLHF8zSBOoaYIfpCNk4EzMXJvtXDhCXrxgEIo2IXehai4yKa9pkAyQ4tHiy6SruBHdIX0H2v/Mr70Hb4/ort7XeAG7brM87XV9TlCXW5QNczqnJss+i0Ct0Ab2x1ajE5SuwG9BsTQJ9AoLcdmWaJEgizBuz7DSgLpCyQ7QqtZ+hyxnr5BK1nlHpBE6DWBUWjiDAWz0gj4H2HRJt6qdQOqrUG2Bm+xHM/dHRtEDFOq1Rhm8rDI0QMtf2I0/YCFMP2/Ht02eFVoHIbi95b2MUoLNluaOjY9m/49scXQH+Hbd+Q7R7Fgz7fO1QqgRst9CsA/aMKUpswp4ulDuFwKqOq6Gi9Y+sNSzlBxHG6CeT5FWaGf/y//S+o+47b7/4F//bjI/T8BCxndJwBLDAhmy13D30OfYiWE86XT/j847/B5dPfwzegb88QXaBwrK3jrBFPdcCawluBdY14aUeXG2Tv0L1jWVaczg84qePjg6JeBPVskLVB6g7BdgBzDEU9WkQiYDVH644kFxddWEwrCwSG1ne0tqG12/A0mcCw3Tuv9wI7Pw1QtZQT95EuKMsJWhyGCtEzZLti72/IyY7dowVEg/kVle9sp0P4TwvQ262NWDMBqCIGkYpSHEvolkCAxhfAese2TeCplhIFksCd46tHkZQCuQ6XBjXGSrUK5KwACtwqZQ5i3Wh4kmF4szAg8xw8E9F3KcqdEz8kONOO24gZLGKLZJhk6gpMRvoxAR0aqJKxxhh/wvcZniviBjFIDiHADgFbO91v8P4GszfA2HJnjRIb3jeMZDrbFn0WR+EgEzHzdI9c/QBGWXY/BEtr6sJO0XHPSWJ5DeJsHT0uT5yTMImdgFuupTi+cX1nkYu2ln/RUrNiMlhwbNHJ+C1vk6DWyqJ5BC6lcDok90SFaEEpl1noiljGZZST4tolr7jF7+Pn0Fub9jhWRgZKmMcy4mfJAIPHyrp6TBezSl+vK3TRWVST6W+VYjqTxaUNWghEqZCBi2yl7PuI0TxBGJn2BcaYX0JEyHusaneYkdSw7w3eBLY7trc37NvGYUy3fQx1osxAxm7JhNakI2NegbzEaX/vOR8U5p68pSOQm3uH3wQAiDCMsY/vwChYxNOU3x87KopsUNrH2eoNZMaSbawFmLI0fn8cP4fQ+Jt7DCT33TyqEUf7DDfnyXHzqRZoLVhWkijCVIeOk6CeYw+psbVNhdIckssv9ldMNbdkMiLKDBFzloUTsxFFAnNOECWJo4S9D92mQ+qUel1+iIdZXQ+7WjAQl1IUxQXFBPtzH/u0guvb/FjEoOYmCzsFpdFHNA/eq2C0vXrIv/xce+/dWhl35t19GTm4H9Qc/tx7Td8hP/v73Q3n/T183Ptn+eH396/8849fDDx9/v57aCkoteKHX/0aj09P+PDpA2qlUnytilIBEYdZw3IuOD1UnC8K1Y5SNqi8Qfw1wJI3dLvC+u3gAIDWUlycrlXACVZuO/oYdXqD9Q2tbXMCiWWfJfuXYQZx4801glF7t8BMpig1wZNk28RiVupIWA/dIY+EDACGSDjCSSEAKwV6MB0iCIFyMZl7aBOxQlyXoG0i3ncokebUFMSLKxQLVE4QLAAUve0QKLyUUYkZky8aBfD2vaN1xxaTGNyMXQhBX0cEyloK0Du87Wj7htYFva8w3+IEOyeIKWAmaO5oRmYGLKrFzhG+ueJIQPG4b5y4NwQC8zTTCUZ7W8Y5kh7WADf+vnmCizaTRgdmyyKYlEW1drbdEXxyMGnLEbkphhfh0biXnj+5HP76Llgb38hdtDVbtcAgBgeDmJ8j6QIYY4oj9KUcIjYYJINIkVUl4fPUBQVkFKnocLRdJjPpUF8foBLiWKZLkQFIZCtgAi58HZN+iLN143gOLsMJZ0zUIsVRJAzCz8i/mxuaR2ODONdCjDPdbYe2DRQlDji5VsjphPLwAD1fgNMZtp7jxjPJpm5HBbaCsiu03iDLFVZfYduG/e0lhAadAshZ8WstAmihrkzsTTg1Blw4DMBVeZ0D+BVRfHt+xfP1FagLvC6w0xn1+x/g6wm31vAvX77i+bqhg73cs8IqQ5eL11ZDHDuCznSePqatjnUylp3PPQPVsV5HAWTc5/ShMVo97vMYGTuCAh97aSxi4euML0ENjRsC+H2AWa5ZrZQRJGmAMlM0HMHMmtoQqQvmQAjnH/ddHmeEZ65oRu2m1oDWeZ962h/3AC7ob6pI6ESSsVUi74eTaVhMxvhdT/sBKiH46HuaCZOJj/OTskBSBTMYGY7OtSLpbBkoulaOqU6Ez41t323jv+ZQM1ih/fRoT8rd4yN6oz1LJpqrw6vDq8EqaLdLfEbw1iXGwZgLWYP7Fbs+x9IoqK2htg0rOmavwQ4BGQUw6qZZ31hg6DvQO1Jka1Rb4YPtlDYjlhOOFtP36yjKdDkBi0CwwEuHqaKYDxaWCQNu+tJh1nlljZ/b0ceAhfQ/MIO3hra3KIw05EQbqMLrAqwnyOWCcrmgnE/w0wLbK7zuwKIRtFtU7BEFFWXC4gTnDTEhE3OppB8qsf6L6gCILeKIdBP5mFbYp6ZDtpsK4EXRwTWirWG5xX746Su+/d3fQbzju3//Nzj/+jeoHz5DzvSrdmjJkCgkQBDxQYXWM86XT1gfP+H2fMO+BjvcDIodS8gPtG7oXWG9Ama8zSqQ3SFqMN0h2xXt9oa+vaDfvkFrgae+C05wbWTHZeJrnJIL20acRR8UzKjQsmEMt6P3Db3fYO06LOEQgXaDS4FpQa0n9FbpC61B9BS+vSJ1l0px1EomQXeALLmNCWwky3kMnPLHVK27I6VGLSbJ0QjTp8wFwARaQ7/OPTSWVCG1wlpFRw8NOsabqWUGBKMmAZ7OkoOZBgbBKYFFyXQ/rY7eF45yD0H2bsp/c4hGonmjFShsmGh+DFIk+1hwOzKc4YZUlPSwzgksHNtdYxUPA05zO5+jg3WFsMxlsL1i1bL9NKfYyY6cWgffcBQVn2LzqXDjYzeNCCf3UxiRBHiHD/YZA9L2Tm+b55oDFTIdmIl1eqm8z7nBWJThOs97iQGO08cl2IXBSmKw67OQ5B7AlwwHxfCb8dQgtUms11J5m13BaZJ1gE6ilczScdyWOELiSXyvEXRb5DwBtmkk7VpAHTkOnMhC7TRWCuqI0ffl2soppKJkHKJHX1UwFAkUhTYXhACUxgXXMrvxNfa+OJA+NzU6o1Q6GFY6p8dRDiKO3XR0RaiEc+kO2zgApm+hqbc3WAsmvHJq7FJXtnLvilsyVJrTtx59IYBZdJ+w05FrKAFWi2eB28c1zHwB0eKVMX9G7SI22moTQGLxmvsgMZIIojB3Plty87004rcSMZPkOvQjbyt2pqUdOcRnh4fk+R3adxNonu+Svi1thwZ7Wed6DBaTFgLyQRkmWyny4uS9ZmFI0q/kNcuADsCQJ0jbE38fTGkB5lCKgz0D7uV0xq2L6E7AYToWQBbCngigixAIDokZj3xWB5DlUaR0tvcH860shtI49VibjfO07vN8EqYcxzTXGebqO9wfH5cFcY/uQcODxfTDq/M6vnuf4yfc5wpyuPz3R/F+rfy5xy8Gnn78i98ElbniV3/xF3h4fMDl6QGOmGBiG6euoHPk+UVwfqp4/Lii7x21bljKDYI3wAS9v6LbjS1ytg8Us/U+TnRoI6EzGAYdhtkNve/YtluMzk3hPYrw9TbHq1IHiqDP1rIiUpHyxwMu9Xnx3cCx5j36aEGnqqooESBn1T7tkDiRceuOGsLYYqTIUs/I0HpUmm0ZgrilziBM1pUbD0RnVZb4OkNlAbyg9Q0QQE1QglZIAdQWn8Ukou+Gt2unoTRDdQf6DrihquB0OqHoAm832L7D9g23W8O2L9j2V5xPZ1QXrAqgKJoLfAdaTAuTqN6KUWANh3gMQTtUTeBJ75YnKfqky2dFiiBfiNTmBC0WOgJBnq1RaeDYwqlDT6lnS2CfFelu0f7EyDMm6sV9jnvpMit1Gtb2noX5bn1k0OPxHhKTq4aBoCNNthOyDQxE8Jv7AJ7UOfI5E2kToAqNM2ud6QwwwIwOCdeLCJeiiufOIX1yYM6lY4v/6sHgcncxoQeAIa7MH5iYx32dF3xW7YCsQvMoss4tcWxwBOMvxDAVIGUPMHVstsP7DWINghAYXxfo+Yzy8AA/nWDLil4XoLL1BnJmdcoWSFtQbYFsN9T9hn56Rnt7xdajHQyGfss2iLinsjMAKIXjqj15W4CXQpFmCYdQGMx1c3z59oyX7RX1wwW+nuCnM+oPP2J3x9vLM/7xtz9BroYCJtWFXiy3BUwE3TUAwVxb2d5HungPUG8EIvFEOwT+496NTCJiORn+/OBe5mt0ADV0OnrwSBFjMG9BhJc669VuwSDVQ51EZEzj9FLhQiFty0mZmbDHPtgl9xsFdQlGZYLOo9Zaxj65xSjxbbMBPJn5AK1Y5ODXIixIFTDALAKUSARyfs+ShYO4bCqIhB2jr585W4A9+eZlhVRq7FkR+jtvMG3TNlhhwJ7AU+F0K1YiOrAXqHGYgrpH2y+BJwN9EVtZ0/AwIUNU3F0cXhy+GCt1FZAarUIlS4cLXFbaiACeHCXsKlD2DXW5QtSolVAE4lsE9DsT8t7Q+wbrV4I4vY8xgu4sAAkMbg2TuTdDEs31Zgrst6ARGjpOgClETvDamdQUg9acXlTIuAKrzGq5kCXssoUtmb7CeyOQ3Dkt1fb41+drUQpwOkPOF+jlgnI5wU4rsFX4IvAmGAbTedwjN+v8WcOuU8uIiyf3WgkWbhnAU6x9M+R00aH94j43aUb0iCplMAJRC9uqvUN3xyLKU68veP6v/wXb61d89+/+Et+h4VE7lnVl250rTBbGG7n3s2VdCko94/zwGaen7/D2fIV//QbrN2hrUNxQfYNbw94M6AqxyvvRjRXZ5hDl4BFc37CdFmxvK26vf2SFujgUO9TOcFzhskRxIoxTaGYlnbbIOpLkohVw4Yhq29Dtit5v8H7FmNpoGcO1sbe6NPRO3cveHwdrAlIjIaZuVHWKsXcD4IUFLd/iHpAhXaRiqSeCoIj9k60k3sKOMkmCpdd0Xg/JRFohrrQ9ldMcrZHNwxAygcFMO9niODR9+k5QRvi3RaivK7pgXZjgmwF76SiNwGTrbC2dfpb33WcWhwS7Ml5JzwPMluu06gReosUt7FF6AUl7mOb6UJSS+GUWxADHEOcPUHe0GQnvaUB8kNRxwg5gA3Djv37jffJor/PG65yotKfVybhosjj8ADwBCJB6AjlkNLWMkJDMoMGGOhTsho9N15G/ioQWwm4E+uD0z8oWa0RxOmJLC193cHlIpzSmrEHitjl6i2mPcc80mHmlciojrEJ1jSLywmMJ4InnGQBbsFsT1fHYk+MMY+ojtIMj6gpEFq4jYZFOtSLB09EGhiMghZD06NGiFFy3ppRScBBpcOPrTeaxiQVhuMKM+VBRmf7QO3rIqtAHtFjLkRcksODg/o4ylHeJARKMPcUM6I5+A/rV0W6O/bYjp2kCjlIXDouRR3iv6K0AumPf2P7sYSsnHOgTxM5/x1704y2OeOXgYyBz38JBAJZ/dfSIwRN0ipglFnUyWnIXeOz1ZFcl94H3nHmwSkyNjU/I65WDnGgr4l4eujEOWw15dLkJj0DDAJ/SVETA+fOW5AzCuCS0So7A5jotGLpOCQiN1tXchHF+rtGlFFkJ1+uwDCPfxABP5r7LQsNkUIWW3ticPmIJUeaI5pyoat3JnF01hnB6DGkXeAzg4Z5wAk/qqEtcZ+H3vTNzaq0AUVh1iZbhw/GNmwxgDBJ4f1MOTxzc+eP6A422RJY2c8KDnZzf0AYhcwIf75B/lPiFHa/r/YH8Dx+/GHj693/7V6zkqGI9LxA1bP15LCKpDmOTEbR2LEvH01PBf/iPf41/+Pt/RtuugG1Q2SGyY789o/Urum0wZ3UrRSzY8w+objDruN2ug7lj1tDbjb3fyEC4Y9uu/J1RI6BtG1q0hWWyLZY852h7iNihD2bTFB/OhQ0cHQqGc8qHxi7rUYU1Nzi5dRAI2k7wwz2ZCoq9JZjCSn2pC7Qs0OWEsizQUmEd0MI2g8vpiQvBHW47rN+w3Xa0/Tk2uVOIvDfctjfqCXWDj5HXTABzAggBuA7vC7RwjLK37J137B3A1rEIK1UeOk1932Atqs2CSbXOUnVcqwwEPPwMLI1RAkZ8X7iEhpSjb462cby2mACe8sVRkQlG29BWCUaTdUfbeww6cQbODpBwS/M8K3dAKQIJcXF4hLYZIHMlI91m3v+826kxQ9BnmLpj7YPG3fncGr+n4zhsSgfcjSPOM45yCtDFjBP+G7obwz4cgYwRDAUbBNGmFblgTx0dZHgRpieM0RRJjveOYAdhmIaxSdFUSdZWvKtMh+hhhfL4iOXGfVJApERgISh1oSbHurLlpi7sty4KqYpyPg0tOKmALAJZBc12eI9hAn0HnNOGTpcHlNMZJ+9o6wnbekZrDTUqql4XqBukG9q2E9AtTMihBVoUt22HiKKWgmU98Zp3w7pe0Jrhv/yXv8Pz6zO6Ok4oOJ2f8PThe/z441/h7/7f/wn/+P/7b2hfBUtfUK2SjOIOYIf7dbrngTgJ4Avcs/k1V2kLtg0drMvB4MeUrz4XEDVhPFaqkH2R0zRGMUfk4EiPjwMLLhhhojLAUy06Jgb3HmynbhzsEMdjg3oOmAQAHICEWdapGU73APMSbLL8AhMcB+C3YH51tiZ3A1rsa7dc4xRol0YXKuJYFsVSC0rhKPtiglooYKousAxq5AC+STLbCE3ZIbvg+i4EnZYHlPMDynqBnM9seYVh91skIgq3hXZSC9d2rajLguhdQt+u8Hbj1Na2Ay31NRYUZcJgvsORSdaVbaO+AXaCaIdqgxRGr64FLUAM7tjgk3kD2sYK8hWQ7kDhlEcprxA9Yb+9QGPybF0k9iVbT3rb0fcN+/U6hjGkKPZIXN1jqhKBtDFOV0KzgduKBRUwmfG+wfqC3ne47eANwRxOIcFARiY0tEJVFbVSRxJh25pj+GrrDb7fRmEJEdijFGQrh68r9HRCOT/g9PQJZbuiA9hvW7SOgownC/2rNinrEI0WX0QfaFhcSb9PQ2wwSOfJk/Ci4a+pK3J8jL8PnyTUk1NnspGIPSJJ9w5/u6H7jue+4//1f/m/4t/88Sf8+B/+I/7m//wEWUvECYyGYEGEyyQABad6xocPn/HdDz/Cb1dc//hblH1j9Xt3VDWYdGjGU6BGke8N3o1aG5klXB27dDzbDc02LI8fcf74PdbHz6inC+r5AxkXCeKkH9MVIpVgU2HyrKHtZ32H9R237RkWLHgCT3ENjAVA8xZdr4qyX8lc6TuWsmAphVXlmuCTAtWgqliWBbVesO+CbRNsb062nHFSlZaKoifU04k5zb6jxRQrgC3iGHZDmAiboe0dIju0NhStkBhKQ5+p0AclQ2kP3b5Y1wRIJyAxqtkh4M8pYIIOoV1ThSyComd0o1D6dduwt4Zt23DbONAmBdRHeeBY1Y61R78iIcSbfumYciSTiD4mI4J8u7Hfo4CXlX6+so+x9/euRjJIAOOyY/Md35tTh3eI73DfATTAevx+MixnRMU4XFLfiVn0IUk6FEki3soWunldZjUvW+2A3J+z+wKYUSTfbyay3bMMGDElUjj7wHlJHznuhoRNow2xHjbHZtLBM03qVYIBPEcLsFpqaOEode0EZbD3woJw/wS4Q/1Itgn2aFnn+bLFrSIAghIJe9HJqs2DijMgGBngZv5WKJ5cVKCunJwKTrNrssO6RPeJ5WaKFxKMEFGwIzW6JMLfFO3ovaOFToC5cI+4h20IDaEMr4apdrY0GsE2ayxObM872q2jbYbed+giqKeKy8NHnM4f8PDwGUU/wvuCvlc8f91xe73h+adveH3+gn27BiMzIn+ZfhCR40isq7HqDznkQZyAU7tjfeU6SU5UMuUTTOo2WX4984ZxR+JewoftH6A4yMokwyhBqYjXg5JO88S9RRAr2XbzmJg3+HFJxwGkdhcODHK+r0gUmAL4dFgQWIStxOowdBQISlWUpbCLI/KH9bxCoohhhzU7iroe+n1OP1y0DGahJ8hyyNcRIBiLDD5e3wfTMfMj2rhxbwACSDVsYHT1lHKCm6N0ZTFMCpahKeVw06HJnHWRAsG6FmTbdm/G2LrZkFWgdh/BRxEdmphjjR9v/uGReXY+9TgkYcT792f1Zx+jTvazR2Z+yKbrvOH/k3ecj18MPC2nSGg0poKIxc3PqpTBnKOGWRnl9JSPHy743anC2obb7RW32xvWVUJ4sQV6HMg3fPzrng6blZ4c8exGWn1Oz0BMQmjbFche7U4QBb1nmYGLyGQCGCFsLSOQzYrH4RpGQs2Fyu+TGcMbM6mVwPRnZgjKO7UzzDQOg4baPFkNDDpLiCyX5YRSV0gpcEUIwZJunQHFEPKNiXcShq9bQ28N++0VVRjGL8XG52gEpa6CthmZS96wrAvBnqw0u8N8x76zicpC/NKMU8RSBFwTjAhABGOBp8OQLHby/cORuAip4QGC9d3gzdlX3Y0glclAVtw8pgtyjaGT4hjxKPW5LA3oJHtK3DeoB3sl72kE/R5TiWIZhZ5cXE8ZxsfjxtLYH9hFmIDTcAdBnyag6OP1mauPtZIBbAILBwDPzMdmNkGMYWawc/xctmZFMj6+txGWpUBeLsy0UwkMzkU+z3MEnHfrGxkhDnDKYt9InNsMqPJ84qdhwbMSoyhBC6/LCaf1jLqsqKoMNJR6PUuNrwUolW0eMDL50K6QdoN2VkNVjHobOeZCMEa25/0mkOyAzLaKjp1nG46IE7eolZNr9u16o8jw6432pwB973h8/IinD2xb+eM//gG///vfQa4K9ai0BfPAoro44isEEJKjYEeFiW1+6SjHnYn/JAvKRSIRTl5QrFWPICUCCgPG77LVD4i9mvdpODAJpkpUN6PimxOScn1PTTGMoEBV0KMiSyaSxx6x4cyzcaMFqytZeBafY8ODRNhjbKcbbdExTcY90g9JS8ijSkzNAVRXoOa6YzeazxMNcV8CJAPsOwQ5h4iDAXepkLpClwvq+Qnl8QO6sL1V0HgEATz5O+BpWVeI0l/12ytsv8LaDt83oPWgY68QXcH2SbaYsLDwGqyjK7xXiDRAd66RzNhG+59Qf1RtjgHuDuwFArJJxJXsIN1xs30wnuqq0BLDF6yjdeMwij11AWnjBTkJkcdNoIwJjLiPdcP1QV+QgwcyWfRoq/GsLhsTy4mQpgE62DuJ5NimHVEIalG413n/ekcvFq3BEu0iLA9YrfC6wuoCWVbIciKzOK4dAshQUej7pDn32iGWTpuXdi6LLiYGQAcrgW2cOs49XSSfJRjBm+TzCdrh8P4e6Kx3A5rArztef/cH/OG//QNcF/zw1/8R5+8XLE8XsGWJSaKG/c32jqIF63rCh48fcPv2iPW88Fw7ohrL5c4cc9oWiYm7sveoQCtkM2pv3JTafMYCSu8d9fSAte3QGmtaBC4V0Aqtj0wqwZbEVBhwb2Q69Rva9gqL75PxJAEOJHDAGTcKmKHJCnFBWy5odRn2gO1HKULOAphAqceFDrXTALO1LChlhZYVqkuAK9ybpWTMkoAGrVmCFNIMLg1l34FIKJCgokciraBNGnbX0UXYcisETSAOk0rAQgSCCnGytnLDj6RcC0rhXisl1psSJNn3hm4yGKXTk0cMPPZY2sT5bf4itZwk2SmDvpBv5fG6aNBJ/x42Vg6M3jyCtAFy90nz7yOSGjG4zVg+gKUxzCATyWTsJKBkIfJr8z3mcWT0EzFZtl1lkBBPpPmXcXTJshixBH5+TXn/dMZQ+f7jjPP6RQA1/Eu9y+qm0PcR4jperJkFJg40NBtVJtg8bpccvg5XfIaE41PuAcVkSEc8IDqPP+2zzLObbUGC0bI5Llhegcm8nkW4+5Uw4+2MSY9xaH4lSy9UfXvaV0ToR8CLhWsQXG7RJt07+s4cqd029L3DO9madT3h9HDGh+++x+XxOzx++BUUn2C2ot8q6tJwvdyg8hNULtjeXvD28keIBSNPtnmg4yZFq9vhLAW4Y2cNsOZw/RExnOe9iid7xHPigB0u4ft9ntqeEmzMvHYlxLxrnWx25k33eRpdns/tMe6h3y2DaRIy7j4ANpLnE1qjiV1q2laCmqVKVKp4TMclO5ba+Dl/8Pw/kqE0gCebAODYsrn1ZV7jcfzud+/h+cZyJB344Q0AaOivFcbuRchWMhXs4FTIWsqYPOnqMRhFw6dmeCkYnaislZHJDsIWEAy9t/sVFMfihx/vt9JcVHj38zu06l2087NHmpF35hyH5ORolv5Vj18MPLncqPFUYmpIOgShM7aYOCFIQckNSzF8/HDGw6Wi3Xa8PH/F8/OJ1VuhtgSpzNQQUU2D3dCDyWIhCD6zHot2KD7X+k40/HYbgWKqk6s52S0QxqHusObw5pE2pB+ei0veXcUxWSH+YLFYE1WehnLe697i2OCk07kTwAljnloeFDlT1BMTlWW5UKsDOuiGmrRVCYdUHO6d7R59G5XA3ht639FurwSvtOBEJfKwC0zAe1zPLYTTH5WVF0GBxrhRawSeYAyuRpeKG6qm8TxshAzAkb6cTtYSHGLMhgSlzLIlcgJP1qj+L573KtoMWiagDreO7p0takAAiUIlb2fVXIRMKhj77xFJwyAtdk42gwuq1JhYEWwOHLa2zO89gqmGaOk8mKNsMMvAUodxCzZVros0nvxjMC5m7JOm0h2cvJiUyjS4PllWHY6sA/J7JvwpTD3YG/AZF0DGWpf5K+R0tzTk4sdgYQYNyXaygzMadfsDAB2kjJEgp9BypK+osqCWFafTAy7nB9TTGdAKC92aUgVLBU6L43ICUDtcdzTcmIhvLyjtBWg70BuK8Z62vYVOGXmuvbEHlmKMIUYsoeVRgQ1tnLOWimU54Xx+QLuyddea48tPXwmg9DbOf39r+PzpB3z/+Vf4wz/9Hv/0v/4f+Of//A+orzFlUjiiO1lHR9aSgtXKFGbM0MwlReEjaH7nHKIGBXfH7myTE8+1RpDoCP6Z6/Ax5oAa/66xFpOBl45lTDuLYz86LXMCvSZAAybzTcCqueAOZGoenKDxO163zY5A7XT4kznIA+7m2FtoOQETmHNBh5N+DUQLtI1glTl60qwjTRQMfQQLdo4Kqd2i1NJByYBJx3pndMSEWeoJ5fyEevmE9eOPFMEvigrAwFENbpUtT1Ig65z0KhLA0/aKdnuF7Rv67QoJ4KnUE5muWkAB3Ru837DfvqHtr2j7K2x/AbATeELDgJ5rimRy37g4mu5k8LQOuYFVZzN4cQAFLgW+6WCZ6aKotaAuBKjMwepbso8465g+qhbAo53bje2CYbwSbDen8DaM7LvUg2PwyLvMJHEPLamV+0CMhSy5h7GbN4h0CNjyCikErxeF1AViBWgx9as17D2vjkSRxdHXE7yukHoC1jN8PcOX69AyYfEHbLMTQTYwJ4OXRzJ94JheB0QhjNV6gyHmtqJEC2GWixg/pnivBHiq4Wck7DBQeu5nROBJg+vNmaduhu33P+H38nd4e77iL/7N3+IHfcTp4Ts4GuTAtIZPBkYpFXI+4/N3n9Fev+D3Dyf4HgBlBSQGk+hBS7+AbBL1xs0LZjy6nnIgHPqrou0b5HpF2zcs5we07Q3ltDDW0QKUM6Sc99hbNQABAABJREFUgKVgPRVUqTNhFqDZjr6/Ydtese8vIaOwwfvbzITCrpHByr1qujNpajuWUlDUAbvBfUepJ5SyoOjKlldRsue0YimORSsZmR1cU2XhXtSK1IUv5QSgopYVZmyvdewRezl1YayhdUcpN8ABlcIhGp7BOAueFWBrYZxHaxqyCB1Z9c7AUyQE1wN8clOkyACnKTKG1Ji6urSKugj2fcdtE9w2xku9xzCIY2bimUhNHz5hgzwGsvXoqzCOKfCmKGbMbJe+IwPEjJ9nLPinpjNhPmVY/0FT8QQag+VqFkB16Awi7YgdAKoO9Bb73mJydZxpBiLvkljLcziiSjL1CxE2LZPv+wwM434NMCzuL0SGpumMPMPOgDZHUpcogHWOdA/B+MxhRiEXI7MTSLQw8v0SLCabJVgtMrLseY3zemKmR9maxffmMUpMPKW2ZeQrOj58XoaxhA6aRAxcg6GWqVqyyFKX9FimP1z2EUFnRHQXKZCRGt6WXZuEpDmRXGaLtLNQS8yFOYVtFoLhDW3b0fcdbbuNAno5F5weVjx9/ojvfvNv8Pjx1/jw+d8A/h2srWi3FQ9PHbeXKy6nP+Jc/gWv374ArWDfvqC3NwAtjjO3QUTQmedFPC6OFHg5xF/v9ofPfzz+LMjaCwuAgU/P4tn7NxCwgJDaQsEwKgVY1hgAFku3tyzgg9rLWQ+xvIl5DnPZs2ggcZ/zXg13Op4DxDFo+pjwM1WD3YRYwOHfitB+CuMZTqoei2SuPZXZGueGHoxnB3MnjVGfDgx/mAM+hqlVMO90MuYmMznHhoGZ1ACluc41Qdm4KzVyTC+GZjfa+6VCWtg+B2pZIBC2rAvtfa1MYVSpE1gKgIW2QztzdN9jw+UFGDdax6/fT6ucGxXThrz7N3PBCVAfX3tYhMh77z/77ftP/NM//PnHLwaerttPqJZBKmARRCJAKLMdJZxHA4NLt4a2veC7T484r2dYd9xuz3h+2XC5VHDD7oCEUJw7INlSx4kqHCXbZ8uRzR5iM8PtdkVvDdaNSXPcbI1E1zpIbW5TFJAJyPHm8bKmk3lfBQIkeo+BFKtzhE+L80+H4C7o+RynueTvgVLXoK8CEIp2szcErDwKhjE/n88h3F7Q2jauTd9vcd070G9Dl6Mbe5XVdrTrDodCl5WfTXEdmJNtdN1YHVWJPlMnELRvDUEvYktIxAGTAoqx+shCS2Rpju/UaNal0SyjYutxDdwQlYeOtjVODuxOTQ0P4Mk1AmdAjNfU03B7uinh5zo/VeJLUQb6TTCUr02DDzAI1KiAZrumdTukPOH8IvBIvaSGpLLPr7v/RqJ7TJ8OPppJY9I3JRKk9wbcg4HhPlqQcHivZIik0yHjyQOAYjLo4w4gdsGIGd49ElANnSafJEqRrMzLsHnm90cjiKV72Cm5SHY39o8bUOK+9gb2ykvHyQRLXXA+n1CfHtCrsmrQr5CmlHvYVtgu2OHYbze21dzeUG9vkGZAM2gT9u3vDSlcqqVi21jVKt1isphB9s6hAY0Ts1pr2LeG8/kBl8sjPnz4hJ9uP6G1G27XnefvHFaweYcsgtNZYd+ueP7vv8d/+s//Gb//r/+A7csLLnaOVjiBo8BQYFIAiUq8GXV+4IEGhU6AdEym058nrbobAzdjOSRbfDOM4XpisJ4BMIQO2jRtEd+5zNuKDJAkKrEibFEcjCQh4NOFQM5uHZz4wgAnmVYtgKY9gafcF7GHtubHyD92WBnrNeOcbsL3QlZHdZzfaI1FjxZVrvKeVc5OkI37JxJ7d7QOaGcwxsKaD+JjAbH5WmZAmG1fqhVaV+hyhpweIA8focsJqAsstMA40Yjfu1LvSviGyFY7bBfU9gjvDbXdUHcmRqpssRYpUG+soNqG29sjttsrcHtF254JSmED7AYJTSZdIpgqgiG9EQCwmUN3RZcbaeBVks6CDEzcORXUWkHbh0IWmGyfCWjVFbqcOI1mWeDGZNuEgBskBL3Hxuc9BQo6KlJro0iC2IZuG6f6Zd5TKiDUuYIo9UkiFDA37LcS03TJRoTEYAyJ1tIwbFoVS0n2XfgJBfZtRT+dIaczbLmg6xlNVjStsX8cKTLPzyRLOsE0wWxh5bYS6KEl3yJJpGZYJhhZmIqs4Q5PCweRrd2eKy73frSnuKPdNtgu8K7wXuFrxUlW9D98wXU3/Nf/5f8OLRdcHj5Av69IoAu+HC0y37UWPHx4wtPnj/j4/Sd8u/4RbSdQa0WAwnadUmiHXRzFDcXI6kFjNlHMod2h3WAbMxbzDXa9chCIAG2v0KJs6VwNsgC6UN+S7s8IPnpDbxva9oq2vaC3V4KvtqH3KxJ4Sl0LAUDJJYErWyOs7VA4+n5FqSfI8oB1vaAuZ1wuHwNQWkYMsNSCpZxhpuhGDzZbGdgSUpcCqQuSTUPds52T9lwA3yga3qltei0SxwlUP0VbRTDs867mepKYVqxkGtbKSWa9JQQPiFQWHCWGDjj3Kwdi9FHUKCrAUuBeQbmFBndFN1D7Kq6RRzGB4e2B3R/6UrQb/Z3XmWuHxfKMuuJ87pLr+dLETCYANSOl4xM9g8ts/8rCdYBMzgkxjOcjnjYzwCm1kZIZcAstup6eIjCXI1vAh23k4YyobKRp82xl/CTBmGPx9B37IF6UbYvMRcPGioCjtPjzYCLWFTnB1EN7yzELUXAL22IjsR7GEJnxa/h+HYDV0EIKtssI+N5deYStSbbH/GsUGsa5z2vA6xAsmRDgGayY3pGGPNcY39qHzlGcYYARAlOhr469MK9qHk8UJ3obi8lyol22VUZFW0K7i0af69x6Y3tdd/jm6FvnlNK9oW8hJG59tINfHp7w4fP3+Pir3+Dzb/49Hj79Bo+f/gZt/4R9W+DPBdg2SL+inB5xelhh/Qnr150kfAAGtt1lyWasjbmS5hU93BAZf8n9kDklJoj1zoUc75Jm1Cj5OjJsEMuPcjVRzF3i31UR8mvMmZXFvt4iPjpU6+SAgRIgTzYVghEXYJtMIEMD4NHUNBCHl8a1K067fSi+ZPtfWQo8pnUnmC0BrkOYs/nwnYh8m8xXxNpU0XnAh+sdH32/ugWhTcj9XcqgJiDZdmaz1baEgL0InzumRqdjV6duprB1kIMuhXtCLPY6zx3BUi2FgNO6UgNVCoFAb0ARrnsz4dpHjxx37sv3Gd0dCHWwy0dSzM9wqp+9IK/QbLKcj/us5E/nlL/s8csZT74PZJD3lkihYOotJE07W+isNbS2YV0LBAW3G+DI/nkHa+iNrXtIJgkNS++dgFHvMRo1LrlNMqpF25wNMUEb9lSTduH5fha/J8vo5497Q8tzPq5j/9nPZjmrySJJLyNBH44lnJFqwXq6UIMgePWkIdrQWFFNQ+PRFuIQ72h7aFpZx7ZfAafQJwMiMp/c0lEb2+PhaN4m3V847cFc4LJEC1+BlIVGHj6dx2COkYqZSSbbByetOEUcByiIMICJoYgzOLQIGi2dA+9/b6xG+HAeFs4Rg6mWAy/u45cwvwE6DTpKxCIIx+gx7UVwGNvtHhpTk87qPoW6c6Me46lkEWVoODFg/NwMxC/K4a/JYvH4QD88+X1ggHTUhzf1w7+e75c/O5A7YjKxDoY3vpPjdzKvIkTG9TWA2kQSVf3cB/Gfn1HA4XfnP+IdiWO6O+a4zt0gvaPtO3pj4irWo1UO8N1hN6Cpob1WdHHs5ti3K3zbgO0N2DdIN2B3FK/EYKNV02FTxFADEA3UkibCo80iroYWXC4PuFwecDqdYaCA/rbtqFKQQwtyYpvthj/+9g94e7vi9//4L7g9v0FSFyYmLnWQ/WLRv880PTdFLlA72PppcAbrJgHIeQcOAfNYGsjbeRfa+2G7yH3bRfDe5jo4fsQURxjU40E0BQEm6ijGXuiARRBBANQCNAoLfXhtP2yY3HsWR2IIbScLsCsBpnfBc3Zdjf0XlGhztjRDyGLI4Ci2E3KKiwTuG/EQHI4l2pilR3KoiGpf+Jf4XC8CLAuwrMByAuoaDNaY1KIK10JxdREm83QGcC9s2fMC6QXSYthBiMFSy61QJ6hXrhctqKUSzIohHLAF1IDagWojX3CN/W9sTQcS5A82kfV5b8NAsyXGWeTJtRlsFLK/KqALgbdCbZ5RJdeV1UsPrb7DgmQoV+JLx72ibeV02bHcVKEWqGAkZwjfCXBYBEqBGzUTMmnTUsmoQgwB91gTkvBNJmCR5JdKgK+ubLsrKzzZx0hGnEebaY9EECOg5lLjdypMFN3oFzL6mnY42HW5rSWo+TH5NVsRPTbWhF3jFo33ktDsM7r7EDzTrcF1g+sbvv73f8K3f/4nvPzFX+Lp4ydIBftLsYxdfkxb6umE08MDLh8+4GVdY9BDpfhvTvDUEvFY6g3GXskMh0JuZBsYyDh2TpCCCTuiosUYEKAY2RhAAC9gbBj2z9qNX53/um0wD23KwXw49GmkIzcG+N52bNsbsfxyg5cbtvWGdT0DEKxrR1nOIAOtQKQS6A39GonJXVynwS4vYMzgDvfGZEKFCXFdAHc0YQGQ7O0dvRf0XuJeVxbgDsATlwIZJUxAfNhuoSkbhk6SHRhGb8YVfMKQNohEn0NcFEth9V2NQOkuEgW19HdHFzI9xj3LNgugjlze+d90R1NiQu7e6thilTHy3acdYrDYDMMGxUSZ8TXYTEfwJdvvxqSVsG3ewz7kB/nYW5K20B327iKkH8r/IvdMbmtRZHfDuAD8w1jL1L2ViDdSbDsogWFHMweQciK7VUpIO/AaqrNlTw5AIGTmF5Z7KQCnATrdZZdjkSEjtXn1R/PswSYc0spBAxH4MZZH5AKY1PxMyhnP5n2WO9s2Y1de/2wh9RCztwiwB1gS6wDpjwJ8nAlXtlke1gfHk4dbEyCGHlkj0OTdYLcAnpqhbw1tY9udO6I9seB0fsD54SMuT9/h8vEHnJ9+wPr0A7B9gtcF3Svq6xW9vaGcHPW0Ybk51uUD9voVvb/BLDZv7hdBAG8yV9m70FnGPpqPO9bUuK2HfXl45jE/OJpFFx/LrxSFFqAugrJIaOvF2o043yOOSzaMZayUFsHyaLgmIYiC15zqm/uDsUOCjLmunLHQIU4Z7OY7rNNnIDtey9fnihtT0CFkNsLu4tNDZHi4qHNvHwzV4R5gvG/um7vnjCD73brWuLMZ2MbWdDCG0JTn8dxn8X7Jd1FAC3Wu+kKfMFcBzyTb4WkaM4l+RyM47rfD8U67FXtIDnt9nKW8uz537xQu572FzG/8+KzD9cYvevxi4El1h0ADBQw0rodBMOoFdRXADft+A4wtKm27YlnOWGqFKqFp6x37liO6e6gwO41HOPPeg50QieLxsvSeDljiRiRrB5MiH+sajmin4o1N0CEvkh9uwrxp8ypyct391RzTLyzG6aagSgTDCTqZKyCVFePTCY9PH7GsC0oVmLDit/dbBHxRNfEMp5mYN3e8vXzBvt/Q9g3mjaCUAh6tDxQ14/IoRqFzc+C220TDxVna1wJdT6ilYqkU+pS2zfUXDj2n+bhlABROxQtcBEU1BGgNMDkYTB82ysFKXt8No0HBeD+8e7DRJHyKhHB53j6dAW8cPoAA0uJ+uQ6baIHQZ58/Yxl+7rJo3jh0owCpQ6kj0y10ZSatEsZAIpeGgZTvrAkO5xIGfKDpMsMxXvJpzCZbyGABBvByRIAU9kA8q7uS/jwvWyRIjP398H1KYh1IrxGuHyCsg5NTYAruRzAVqR/seG5jF8z7ejTMImz5SwYNWQtxMdKpJC4oE6zwHXh7e8HysnAq0snZM61A9wZvL2i3FWpvg01zvV2pj3N7w2KctuUNWMsZ4gW9CVuJwOp+WRaICFOwG1kELW1BtHmqKE6nBd//8APO5wuWekLvjtu24+26YRGyCNyY5IsDt9cd//v/938DiuCnn75AXhoUMY2tVKAu2IVJd1LZFzhWT8ikQced6pBoLxYXlFFF5n0jDXjegbiNcf+O4ePYHHFrCOSM8c3hxNPxzDgz7ehYpbSjRvZSaC/DVNCdwuYNbPjajW279I2e+Si6TAA0g9HD0d+tRwuzmeL4W2dRw/JvwEwWIsLKpDwXmGise4vpjKqjgJHXRmLMrqZGYWwCj88vBsBYfSLAYCwMaEfrOzo6qjhLiKcVWM/AconKlU7dmVrRPNgqiIJJoFirUiS4yhIipxY4ezBErcCbAn1BqQVYz5D9AVhPsHZD39/AVqIG8R0uWwRwxgQcHdlillGQe7AEjNoDKExAk/6e9ifHvRNHCy0cXYF6gdYLpFS4CrUKQQFkKRUqLZh7aahjPQmLG4iJdQ6yK8x2Asu9QQo11gYolABAVBmj7gE3Fm1635Ajw7XXsFdhCD0Tu4oEk7RyfLeWgrKsKOsZuj4CywW+nIFSYaoM1N0POU0nd1bK0DuZyy/WTogAi5Yx1dYRvsfp11J7h/oNNdqRkonLoJkt3mH/bb7vAd9BD/tcetgPt2hnFHz5+/+G3/3qf8Xp4REPv/k15DFGmOsJKRztUQyDK+r5gvOHj/j4q1/hyz//A9rtCmkbynoC9o5SV5RqwSraIdjDsOv417pSW6UrvJMZVPQCyBnACrMF3jC02Yo6ih6CfAC9bUgWT+9kPPX9FX1/g4fOmWOLvQuQAQSoLMOhiOhov7/5G277BoDTd+vygLpe0LrjfNlxOjfU+hi6Gj7YKaUk048RlyBaQ4PDy3sEgrTGlm0V+r19rxzI4o5uG1oH9j1iJy1QXZDlJ3dwCmYUIIepFtDmisFlP4CS0ebkybwswdAPtrMlGMH9VjXW/moohRpPZoKyBbNcwLajiI3tnT3NB+MfG/5gdpvKqJpnXJLAB/fpMT728e8RVB1JJWaZLDXfOPGwQWKCHWKyHg4Df4YvyVY8ewdSjcQNSDHpgVsgmL82nzOiSBGIlCkJEYeZ55oRXAoNS1y3oTcUAGYp0ZYsjPkz+9cSzE8pkGS4aoGC92kgBjHgh9ef045ziIJEeycfZV57TGCTBxe6ajziCD8y19FxDwhsHRkeKRSuw+6iU6uX9rQxNlUWwxOcGsysVMCOK5a5+oxBEnTnmi6qFO6PYyG4Hp0uQTZAMp7GGoq8KEGn3jk8I0Hw5vC9w27BqO2OfuvoG9vC++7oOwvpEIEuBbWseHz6Hk+ff40PP/wVHr//K6yPf4Hl6S9h+2dgW+HLgra9AvKK/lZhV4f3gsvjF7T2FW5v6JtyLcaKp/TEfUKea+ruN+lP8u84wiZ+iM/yr5kP+LCnIwLMpVQAFKdgeiWrqy4EOEoR1GW+TnoYoSiqujqkk707StgZGw7QCWT2FO6dUuaUvlHUFMFxcl1ZlJPrFHDpMz+g6B+JS2mVdH7x82ScdwlWqgMkpMTKsEPuNhhnwJQAkJRZiNhA4oIFgJSaiNxTmfMmu3OCzKPtbrCdgL333EScOGyGZh1rXUbsEGae2nyuA5ugNIRCdIHcGkQjHwgWGKSgNxI0vGWPwMxLgVlQ4GY67ME43hnn57HM2DyP+26Rju/D4Ofrcq3Jz58sP3vx//zxi4Gn1q/wlo7RxsFUQXhWWm6zjr5t6G2HG5lAbYuKLTgmUwOgGofcI/k4sGH2RvofQApdrTTYpcSsMI8lKGdo2/HaXsARqRaJWYUoxR2lVGjjVAN3R8uWl/j8nGKR4wvzps0xizzWXIjp0LoF6CRRWR53IiuvTEhVF5xPj3h6/ERhzyowbGi24+06kUn3W+B4ji9vG/Z9w77tuG3RTtg6auU1LCXrNcnADRotFBJjSbsXuCtcFLJcUJYTtC5Y1/N4j4fzAm839O2Kb7Khb9eoEFhoPVRM8fVOlhIQVHeLzoFy8No6WU4isKYTFR62KFpTSoH0HmwSn4K1NsOWI0NF4ajK4FBRoHFffEcgLxZtCRZtgIipMEsEiAQzb9aY2HeE46SxSDdHQCmOP7YqIdM7mHIY20KU7WCAJ3k5czIddytGpB6Ag6TTH3b1nUHwd19AAlFHgeb7KpfcvWYm/Mlk4mrRESQgk6dxlDhyGeZxHKIzgl0k6ZchIihAkZi4QuF8KaAAcnF4NXR13PaOr18aXt8qvn6rkEXjedSe0Vrw9nCBVmrMbNstJi/ubK8xhzVgrRcIKrqx5UmkoC6cTFfLgnOtFF/vhltMULQOlMoR2utyxlJXvL5c8e3r7/FP//QvaLcGdYUFk1FQ5kQN6fjyu68E0hwofmJwWT5g+fiE+vAAFMGt7bi1Hf32gt4bzIBzJzCsPQM0Gaws4r0+qMqZFLCHfd7TTIvIqDbkOHYNZ8NkPNeCMfEcC1NG0XQky8IqF5mmBPkaDLt1NGHr4A5HF0MTR1MEuMIB2N2BrRty6h6/SiQumWQgkhWGCmwhGVDXWMseqFqO9z1Oy0yn51nxcSAFjLPiDY9peO7YO+3jmLoqGNWt0imuXZaYzKQOFEdVD7vaAblB4Li+fYXcLpB2xkmukLqinM7wkwTLKbrqFAyuQl+wd4omu1CfyYIUgiIEfsypX+cM5Lvz9VIL6uURahcs1lCuF2qXbTe2VscocLMrizS+Q3LceN9HqznAlim2ANahO+Gh/YDAE8yB7gLVCi8LUNiuhHqGlEegXOCiIfiuMGMbKUqHqKGUYO7KDNgAjqXW0DBk+3mHtyskGGJi1OURLOBwkWBImR7WZoBgXuBd0HbGCarL0CRLX0JGC214MwN6oRZgtCZprZxOeHlCud3QTw/A8govV2zbBnOgGv1LTvLU1Gk7BHrDNMffJC+3cA1ziVswqARrqThfTrhczhAVtH3Htm94faEgNAKgTNvMXErQBWgBovbeIb1BBDidKmAOv22w1vHf/9P/B1+uz1h//Qmf/+bf4cNv/hpSLjApLIAp4FCYF8jpgvrhMz78xV/h9A//wClorpANUF+AqwBtgdoNty18fhc07CFYrRA/QXGB6gPK+hl6ekA5f0Q5f4AuK3RZ0aMpnaLQK8jUA7zvgzFJpnZD7zf09gbrb7D2DEvdT2/0w1rgVeFOxhJw4r0uNGJZuOmto3vDdeuA7ijlDS4rnkzQUXA+nVG0oKlDS4NqQnINQNiRbIEa/pietlaCE1hPWBrQmkKEI9bb3iBCzZht29DbNVhjIe4fkcDYD1LIJnXax97ZIo5OyYn0wiKFvqycUOsaup2VxbUMKsAYJbVX13WNYTaOPbQ5W+HzG4yDWRwoAUq7SzA8JysIyfQCgbYZDaS62TS/GPFAHk/GMO+TkGNkMtJFxutO3SwJxcromWIsF629BKM5ETP14RJ4cu9suXJqHpolgDFj9hzO8bOHHJK48A8ecWseaRYqJLsXwHbUHEjgVHwPxmDYIhR4xCJkioZOl1RIWdjCXZZRRPXuHIhUG4EVT0CmEZy1Ps8r4oGRBzoZVyGSAxFFa8xJpnaYjHPjnci/Rayr+R6zDbAbYHsDJGLyAKdKtCgj4uc81iyY8k3L8N2zXWnGyxkru5OhRPmDmKq9N1jf4X2LWDVyzsgvNQcuGAiQGyBd0K/Uc+rXHuwnw35tBJsaAjAPzddaoPWE5fyAx48/4unTr/Hhu1/j/OkH1IfP0PMTsF0CVD9hvfKY95cTbs8FeAM69ij4pM5VJOiHPOCw0O72BO/dYY0dfp/3NUEo8wSCMv4OUCS1t+JiJgHOq4Ven6Gs1HUqVVAWj8JStOhmHCigRm4HZJABAKmA9hwExU/SiO9LkRArj6mKhzMb7LU8KwXqpUAXQCvjLH4hulEdro7WWzCpCOKNPT0mNDr2xgIbYp9bDNg6Wp5sfUfkbwy50p9Ht45wqmOfJdJxL+aQMV5jjbY/lRKfGecXMYCjBzDFQS0dMTFSlwQS6AcFbIPs3A/NHeYNMU8ZZXGEfgC0c6rpsig7g3bDtjHW19HqitFBNFijmecly0ryrBKEmkDYjGkyWz3+e7ca4+LIWMapI8eaWK6PP2lh/+zjFwNPve/zbA+H5kHVcDOYRFtKJ3KdbJi8UmTqlDmKEUCi7AS5OcKWXwW9a9zQChGKP5a6jJNlk8YG8wJgi9aeTiMZoqhMUwSKFv2SeZMyF3uH6CGN/mzhy0rRkRGVjvu9QUj+Z/5PlCyrdT1xfHxZUCo4vhEWlS064t5vYVQd2/aG23XDvm3UuoqqQNFKJpUjpsMIso9cwumprIBWVtNDyFCXB+i6otQF6+WCojRAp8sCb4pGEYI49tDvOiZ5iTdQXIUjYIcrkRF39KziGv9CmmAEclm9CpoO0+UAjxIiCaPF3neMa83D4OsykDD611mt7g7bUyDd4/MDbIh72i3ZEKHFZXG/cThNzyNINlHW6LKSwWOkyPnc6NOLTObT3Lw+HI5hViw0VnFuq/s+3axqhUE8HOM4Zs+qxP0jKy7H58+q1DBR4+gUeRoHB5qGK9f5jHfHdXKMZTM/a2T5wRhQB9Rhmm1wgIuj9Q2+N5gIZJcgSLBXWovA243spVLQDyqIHRGbdoF0hUiDeQV10xjwYUA0COPP1p0setZS2Woqgre3K15frvjy5Su2bYd3ZyKe6xAY7TXemDCaOLQuACpcT5DTI86fvsf5u084Xxa83F7xfH3By5cG2zkNL3MLV4HaNPbqbAUVtTH1JEFPGz2ikejGsSSwmQwoER/tLBSQdwwGGmagkbdm1OT0fj0lkJkDrE2YyOQERRIzBEl+7zBE8RLAXKOADGbeHe03nVWst6yoOQg+O8IG5e+T6nio2vDnqNJKrnX+jSxN/stzzb0WlTjQdpU4d3UCMeaA1zhecwLi2gjKtyva/ore31D8DJUdpVjQx4Ua3OqQQiFPF0TL6vQJ3clq6eH1s93GvaNDQh+HdrxUTrQSK1A4iy1a4baGXW5wO8GsodsO2AZYh+kNcA/mTW5MsAWwRNCl2ebj89op24OgC1BWgk/lREHuYC45IjBCAgCE5JN9K7ywSNF3TmTl/k/Wl1mD5PQ3MVivcX987Nlsz4MI2xDfFSFGy4wxivbY82nAHACMAZ24wzJuEYHWBWU9o5wu0OUEi1Yzk30AoFrLmCR6XIdp9AzCiX2ebztZEUAGrfxsde7ZUguW04qlFmyFoKuWa2idHPbisJ3B+ot9yLVjLHDssWnMUJYd1y8/Yf+ngj/+43/D+uEJD9//gHKOiYuS3EpqtWmpwHLC+vgR6+NHbC+v6G83+HqD7A6cGuwGeBPs5YZe2BLXQdaja4HoGSgXaH1COX1GvTxhffiE5fIRsiyQWuF9C4C0R/tjpf1tLQy3R5v1zumNoeuEmFTKCY9GYBfB2otroSn6LxUS2qD8CwAPyQaj4iEF5zuW1tEr30PjvlJ3o8V9JqjmkTzTr+affMTcok4RWAhq1WgzlNDiaIwZpUX8WSEIX0TBD5gVlDLFcFvv6J3anPANIi3iIQ0/FvvDwDXpQCYEg7Ug+cU2vuK014gWW0FIGpjdgSrDp/jxveaaDu7GsOWIOGfyoP/0Y8bI9rO/jfxkxILvWuoCcBpSDwFepK7PmHKXxWCbrx3xRyRhwwcOcCkTpeMByXApGauRoRPnabSPCUamII0Wgk5CoSAk21JK6IXJEXhaMHRehS3LohWlnrjuRFiQ642MpxC9NneIRUeDEJAzGCQ6TmbeyBiCvl5GW9+MvybTKQsvdMWZ00gwO6emGOLvGTPyWlrkF+B7vktMBwAz7vQhafhZdBrRWXymjGDycM8ty70Y93ok1+G+qA0LYpW7c+BFc3gjmM+fAe8SwBh9DDwLcsHYXFcspxPqaYEuFbLkVFKBmqOsjnJylNUgdQfKho4rDBscLcCxPCueSzYnSV77sWcx4rvj1Xp3cZDBda7ZDM2zqyMM2Xz1YAghYmiHFicwVKJNTaOwmRVld4JUuY5G/hfT0+9vMWNNppMoNdm8cjdcYJIUxolG12mwrEOTzIUgatrjQ1QY9ydEvt0jTszcjReF9sz/9CpL2330rAn0HWLS1HX8k3fh/8/av/ZIliRpmtgjonqOmbl7REZkVnZ19/RlZme5AxIgAYIAQfATQfAXL0CAP4AgwMUCnL1ye2dqZrunu6uqqyor4+LuZueoqvCDiOgxz+kd1hD0hGdEuNvlmB5VubzyyivzZh330c9KXOld7jMfnkndfK/IZ48Qfkp2IBZyBZ4biQTuNI79oSpIS7vlFy4m3nl6mEv/M3Iwf5u0Zvm8ETbtWI8eeXcETLgNyZ+9ueDj893nt3d7+R68e+Ne/gNffzDwNNoOxMYjPFT3oGRCcNwZ/u7tToQDKOqgvCYkTCKQ6qDTPtg2p/ObVXKakUillBPreqHU6sFTiVWwxri9YnaFsgPFqeiLUkuwnbC5edoWlXHxeo6/vs5vnfRtd9ZeEUwENxd1HBtbAjaw+Kwz/Ozk9LtlOaNauFwuoQ8RifzsVY/njc719hpAirFvN9p+Y998VKci6OI0VeIywC2BaHXjGppNIo+orNRyjopMoVwuaK1orVwez1NQ9+mh0m6FG529bez7jbHfYDSsi9MbwqhqChHEgS+lUAI2d2aSC5R7Cx6QgmiRYfbmNNrjZ/ltMALNncbg2Nk52rWIB/0JSMnsM8N1rZrRtyzruOlvNnh9vWZa4L4tKsw5yMAffszSyPOY1Ryzu/ah2fM35iE2DiciEQy+/YoTmz9PX6EHqJSPkTtLdm8TvR3pcOcp/tztYJbkeqXHMOPN70TV71c+wjK0tBl0vgnE/v14wdfNDrp+wjupWZGf0YNwF8T2jz5ARoBLQlmK956XeP/hQHW/7REggWxXtBTGT6as+FEL2HLsTInKqOTu44pqwUS5tZ1xvdFvG23bkT5QlPN6ojfj+vLKb37zA9frxuvL7pXqRSmjHLI4BkhMrenm4rEC9MLgjNVHyjff8/Ev/inf/8Wf8PhPvuWHrz/w2x//gb/+xc7+9TP9eWN/AWlQW4FevdK861zDqoNyt0368ITR7507I+xwUj+tU3h4fC/tHSGQxAs4FTR+4ftay8FOamZePCCKYBJMJ7wVtZllcWwCT9k2Ovdm7KGZsMzgJfxD2FC7v7Z4qLeQ+Lk8iOv3X/5pkyn2Ngfy95o82rATqZ03U6bwSQlMBakWrbBkwN4NVyM36K/022e218J2/YH1rJSuFIKBUErEGg7yn2ulRQvPaC70Owz6tjPi3mSbq99jaN1cfD10QlSqP0YV8Ml3spxcODUEdp3wYfS+se9XWm/YfmNYJPe5cUWwaAn0mQ3OCvZkBtfdkAJ6hnKG5QE5PXiLXb1gus41X/TEHF9uDjzVqtTio4Hdj4UA+QR8vG38YDgExZxK38G6ulA7oVsSLAERxcrCsIYMT6ZEQlHKGjaUTkFkwYq3Qsqs6jmDZPQBe5u6UmVdOT0+ob3Rzhc4X+B2Y3/ZMHWLVpcF6R325sKmMP2/7ymNmCe3XUEIkNXSy4wjCCziwNOy8Pj4gL6+uAbEi4YW45jBqIHHNrEP++g0c/ZUjUh3bA3pgozB+cn4+vKF5980/vZ/+G9ZHi+8/9l3nOtHl12Shd2mO0Sp2HJhffctj9/+EWMffH3d0NcOvbI8LdAWsIXtunuqq7CPgi0V1oV6fo8+vKM8fuDx2z9nffqG8/uP1Ms70IKpcru90vpOa1ekdKTE8BJ7pYdJ6PvNW+7aNQCXhg4X8bacjBV7tvc9WloHda0UPaGyOFDv/DA81his0oIh6kUFGxZTfBuVlUXEw0cG3iieue7RZjTCb4Kbg6Iet/qZczZWLUB1m3K7xYCX3vx9iSRXVtfSLAtjNGpdgNXva+/cNme1++e9orLh0g2FUlYH2WZzc6Po2cEorc48ifg1Y+mpfWagxdfjiGmjhWu47tMsrs7uhWT736VxcmecOQqubx9//Gz2PU/A4M5+T+dwV6FPIInh8aa1AFai7S69hOEFz2C9yPFS084HtDPfStWv9z5fmjpa904nvyRFuyOjRqKN9pgqSDDZjqKHQk0G3gE8qRYH8R0F8FxDFGTxx0UrpmgWiwV69xwrWBUjpErGGD7+io6IN7snE8pDnuK23WCYa4xpTQDs4KKAx+sawHjmNg4mhD/K2M2AnwCHhnCIS6fGlM54N9lyLjof9x+b7U0j7nvePy3OAGOsbO4IGDjbKgLciNdHyIl4W2alIqaULozdGLthu9Gv3YvOu+s5WQ8QqjuoXGSBsoAVdq7s3bjujT1kFOpJWVaQtTPqxlobvbo0Qj89U05fqadndP2M1B/p8gOdzwx5ifbDzJPud1UAZQEyqaR1eFv0nRv17skZl9/l+khxdjrDmdm51wFniheD1UCHg0814211cKOoDyXJACm0CFUihm/BkFWiXdxBJo/p/J1UfViJA1pKjcm4IsxupaOjVSbIFPOiMHVtvtYH2o0aEgRCwVube5wVnEHUWxANgjUdAeZsr4ucw8CHDMAESXLtHF++K14JjJKLaneLmOvsYGjPNrqIH1HvEZnF/iyoRrEo17JWL8xZdCNkzVSLF5HAt6JPJRYGu+s4iqGLx2QS4aeGTmWtbv5G8+TLDsFT79jZ8XWUZMve7cJsT03bC9gt7XB8aEvwiQCrincy3W/Re2N6/IZ5IT9Ne/8DX3+4uHhQvbNKYKGPk9RQzCuzAu4UqxwVyjSUZCUjKnGRBGzNW3p7LxgVqKh6D24pK+t6YlnPfnBK8UMlINLReqKuNxANcUqfrlfUvP2HQ2227DtdWvQRH5O8DpRScY0pi4klEZQM3xRuAPxzebLu1MBS1IVQs2pgGfDsLOsJbND2jd4rqFdDt3Zlbzeu2xVrO71vbM9fyJov+EFWdTqqHzyZwrdmoOIj3EeR0OUQKoX1/EhdH1jP7+YAbmqlrgtlXXh8OEcyNnh9/crt+TMvX39k3/fQrRIoJQDG4ps9o47cX2Z0iwp3h7a7ntPttocWoLdvaDjiRWRu5DdMKdy8Orrdk/w1K2eSzxDxyQLBWtEBI0An9bFd/vqaFGC/VpfDOJDxMRz9n3FLHMRuGY9EgEUg4mN2xR6osoBytIQ4lpgJQwAECP2u7/un7siwyR4TjjXJh96Ff28ScIvfe8WIQ3w9Qqw7M8AEF/BKvQxzgT8LlxjvXe7g67d6Dbk+RlaD5+eNz5794AMmE83X2ZkwrRvFwuku5iKHVR14Wgu1Kuup+LXb4La9eqAxvC+f4YHnktoIS3UApPt+U3Njv5RsEfD2Vz/7g3Zr7C8v9OsNMahaqAjb6yvb5lpz19cbrUU1XHUyEaIWhPW7XmmNqWcChjKKomuhvD/z8P0HPvzZn/Dz/+3/iscff8PlN3/HM1dun39k//oJ+93vkNcr/fWGXoeLkuPBlCIswSRJ666q7sQzQA3LnyGHpt/FojJsUdWOYCKrU8X7y6XIHYDl6zWUO90wmYlXHy4U3lLbLFktsQHGGOzdwapQpphOS9Kmzg1rdAu9mKiw5pUPNNpsOUBUC2cZe1BmdU8OH8ThDHX+PvZ8noj4TD2uOSu+JQJB1zs6rrPH+HFN8UwDxs5oL7Stsr/+iJwUqYZW8zHxZUV19YSiQTlXCoW1nGk+U9fbzpsHMyU0QVLIQEWoRei0qGkbW9/dboqzlKR6YlM5kW02GTxWG9Te6L2z7xsD97UTgIp7kQWYbrtPvxq7C4mqomVhWS5oObEsj9T1Ea0npF6g+CQmZwf6e3oS60FgrcIS09CUzugbbd+4XZ+jTcbfd2q6zHgh26lib2uydiOJk4LWJXSdYsKg5P13vp/FkA1jhChq9/1AMNZap+8bvd3IMd9SireEnU7spdKLMMpR6R9kjH1k1HYYYvcz+XvcACaLIKftohpMMLcjrTdu241aldadReTr7kD67LvW+zAu9vE841G0CgCjqGBt5zQEHY0vf/vv+PTdd3z++JHTuz+Jll0YKF3UAWJcT2I5veOb7/4E6crtx6/06wBZWeXk+k26sPdOfxX2rSBjd2H9daU8fcvpm488fPs93/7pf8Lp6RvWxw+wnD0GM1j2F1pzQNR4AW5gnxkt2D2909vNz0V/9ThOOka0ko5GiFx4EiwgJj60oScTIYsRyaIP3SMp7D0iikhafVR2rmw/iok2pq+GFkmT0dKWmoOZuwtwIVHhshH7qr8yxpXR/bO01jwhwNvkVGFoDTsV7R6lvvXn8xqviG2IdIpWzIaDE9E+5T29ihbz5FXq3dkpk4GTbCUBrBb3/f1IPPp+WOosZb1pw5CMI+LfaasnWPP2Kxl+vlZj+uAxtZeCnRQdAZO1ZGEPYmJZzHN30PdO6ykBh9GPx2VbdQbCzoaIppU4ozP+44jLMrFye3j4IP932GOt7jQzU8wWu2A7uTB9mY+nnieLSdXF+Ut1Vl4+xxlTXiBO0fG0a3ktUgypJ2/TifyD5olRsYLRsGLUBWeKR6Cc29c/dsGsxNSteO1gfGWs66QWt9dGFtUPkGlEjna0ULrxS2DKi1iepHq5yUEBDe2/GaCa/6YEKAaezwy8QB2U9VmktnH3XITeoucrBmMkg5QkNewwrqFHt8O4ubzG2PvsuHBTXICKt3QvIJWlKHV1JqqxAztFNsS+IkMoZtQ6MFk4Uzm9e+E2vsDDJ56X3yH6G5r9GuNH4AVyBq/YZG9ljuSxdg6OcmF1IVlo07hlljZtQ56dgcecnmtm/DcOhlPENAQbR6v7JKoDRME7cGZSkC+zde/433BmvY7I3/2xYxgyioPR4v5WguW0rIVaCnXxFjPwriW6hj6ZAzcDn5z3lqIvSPXc2bKQnLlXXhYWOk4ZeDIBcxMJu5A6y5E/vSn42yQTOJfnriUwEx8JysDh6uO+xfEPAHoMZ8ge7XoSXVAHAJVnKb9b986rEkxzyJjWMCXyYkWK0YfGeuP+bBBsWsWy83j3KfI9ck+REEoxHHhq3X0FztCcww+EyGE1DbYXXXUEzmFTcN/PW2QUngyRxJAZj/iyxe2KPa++BzVziz/g6w8HnmKsYYrXjQSe7gT7MkFScWNtWQWNINU1IHyxkrXgG8y1HbxacAoNh5W6nql1ZV1ivLNHlX5AIuDwAK4wRqPtyugFGQ2VCBQsaYYR5GlQ1cjkOYzs8A2RSXWCTpM2mPvx7mcSwaU/7qck5EzD/PO3tjHG6pOLzGj77kFoG+y3jb7f2G43N7BiLqRmEu+XdXwNxx2GWtT7RmOP+KbzAKSUhfV0Rkd3bSL1quuyVJZa8AlDnevLM6/xnU6vBNAjs8LTYw1sHsyR1AQDurC3Tt87bWt+aIZEkhUBc0wOeCOeffdngil5WOa4XpM3Mc+cBhQAFdNpRSghBRULKqG/sDv+4+hMR3jnkIfNu+U/S2OUvjePnXgQFrZpvsf0AvOug81/5//iM8ixz+Yr3D/27v0muJW/C6chEYzfOxHxW+EJx/37zWvIgOK47KxYyXyN++s4gKyfXNzb181/362n2XDDPwYljLvooftUlkJZKrUW1tMyz+EgBOl7j3WNwEF9upYuCxWQ7vo2Y4+DquatBeJtchpB6dg3TxL2fYaaGGy3jX3r7HuIWUZywPz8EWzF4lqszZEE+hpLEWRVykNFTgXWQnl45NQ3LvsrH//kz9jev6c9f2E/nelfv9B//ASfn5HbjlhHrVMsqinjWNVsoTAtEaDGPrE7BxABnuvLBNCoLhStOrVPE+c4Etys/JAzzSzae5htdS4w3hkSUyElHR2ucUWfmjQePBwtGkdnXCYGNh293oOYEm2w067mWbyLBOSgOuePj/a9I1nys5470qaGRjpOEaZtOzZ8BNREoCX+p8YhldEYbYP9hXb7SrmutHWhrgtSG5Tu5IZhPrVueMBSRShS6dIR85HnEYLOhNHIhFGounsgTs/QEiBo7HoEKm/WNh5jRh1GabuL89Md6AuQR2ZGYEi/IX3z1nm668PUSl0e0LJSljNlPaFlReriDFqt1BDIFpj6CmY96PbBepJC9x4I9hJBm0Eq5HnS7853WMDhEYgn8KTqvkk0RMm1e5JWfb9mpR3z9fMXi/yEHtvFoDnwNPaN0bdoWXGgTVSRukAp3o4mruc2xBPYbLPOdUu/kFsmd5gAWuP10gUQwWOEG35cXV/QsBgYcARxquprFqC23b2J2NFEmgo7aRELeGFrFHR09k+fuP7mH/jy93/Hd//pV2opniTICpi3IiMgBSkrl6cP9OvGp8f3bC83bPgUnXppDh5tN0oOMrEKy4qezpwe33N++sDD+295/OY7lsf3LJd3mJ7cHRtQldo3dC8RJ3ps4K11Dds3evP7Yv2KSkw2lARLB6hrRTo9yUVlM2nP6YWTzRjrJoYLxmciZSOAjR3PUBuTq5lVYC0RT4VO1GzHPwLBYdFkPFyPCHN2yrArNm7eLhfgr6XwvODni2h57IOhKYIb1y7BFiHscby2C/eGkK55EcY0wZrwD/EeyVY5vn3vqEItTvFZlkLrrlGi2p1x+JMC0/GVyS0/SeRiXxJ+XpJ5lCDPjJyOa+SINzIuyN9njMAEobKIPZj9I7PFLmU74nm8fRvJ97+TxHiTSObfIoCaoFMyXBPwjpa53GfFYpKn5N4LYGmyngrUSwB+znhSDa2neAxyx5iS0PwSL8oGapAuLvyz6zn55LuM+XPC5MEgmqzTYKJYgAOQQLiE30wjdLcuYhQt8TpjArO5N+POHUHqrPAIU4JjMuOO2Dcj+sn+sXy1tw/NDXHnqj2mNpm5zegeYNmwyOXiLUM43HawPf5scoiHhyaRX7JPrhOpYJUEnqiKqMeXbd/Yby9s16+sr59Qayjd1dlswcZCsReKfYHxe3r7Ha39jjE+YfYCtk077XvP31zyoMy1lCPuj2En+aTJlJXj8Sn+MSRI6gHc5IRmKW4DTCIGDTaaxgQ57oGmjP/yIjX9FHFuB4RNSBDHBsiIIqsfsoihnG1VVw3h8iyI4mY6GGZ0L2rmADu5A55mPl78ohJ/O/KntCtwcNiDyJL2I1v6RsjVyLHP3sqVgEX8aP+ePcu4KP72E5Ood6CpzZZkf7QcT532bG5680KsMHxiZQJnZkfbdhSBbfikQTOJgrdN7EFGwYqfh46F1pQzYp14EBqlJsck1rx3ejDbctCIf8gYtGBOlpEGTcZs18vHMJh72O3qRIZnd4vbLMdXanUJldl2+f/l6z+i1e4290a3YAS1fgRFWmbbQTrWaciiDatHRcjM9dkhN8lCqStrOXG6vGdZz6ynB06XR9dEKguvtxu9+xQ47631lVlPK0KlFthuhbZfabcXrG8uPBbT8Vrv871dJJMJPDla6MFiTp3xFT42l9kdQ8cOul1rRm8Wib6hQdkXvBIMjdauPH/9kcul+GQWg77v9NbQLtxebuy3VxYpEO0IvWc1zhHJ7PkcZhBikAML6iyxzaO9rHe0tzAScX8W4XRSlkXQsfP68pmX5y/88JtfsV2f2W8vtNvuCbsKQqFQXdQ9ene9Tc6DpLYPttvG6EaV6tWGliwVXwE3WZHU3aM4mVimZoD4v2t1kRUbRFsfWPe1sBFJQbCc+gCZPT/eOinmwusuihpS4BlszITB9+RMsIeRAm8je/m5B24iUIy/BoZGbF4PY/Qgz475lnI80CQq3eZCd/Hr+/2l9/+cy5SIun+Gu4fP51Sysn18PrO3jzvcmXjFKAIStTv6b1yUV4oywEu9A8Jp6l3sYHd/d8dnFnRbGyjdz8tSZ5WkVKGulXVdOJ1PrOeVZXFR1Kz2y3qhte6MphHBlCqcH9DTwnJeWc4ro3VuL698+u3v2Led/bqzlEqtlVN14XnrA9teYd+g7ajB2Btt73z99CUWRqlSGOrnJ+1EOUKJef8zZE0qujFYLsLyTeH0ofJ1/8rf/cPf0//H92wqbLLwn/6v/4+oDnTc2H74Jc+/+RU//M0v+OFf/RX982fky45cX6LAu8z7T1ZLVFAq6OH4ZqtCJCJiTuhPulJRT2qq+jSTGhUsxAIwgiHuuFu2t+GOuZm3b15j5PkIdNcy4Qu741MeY1R3NLz4dd8BIzYvMUQffd8Ps5kHDGKS3TD6uGuWiGTeBSxLJPfi+g2p4RHAnJZjJ6ak4Lx13NsemYGP6x4YUysV4jMYMqCaM1us7YzbM6I718+/CaPjHC9ZHpD6SF8MrWd0Kd6KV3wIxl4v0Au9AOKT5daaYH4wsaK1Y6mDYTvdfNppJnMzeSARxIxCS4BRSzCNJdpxd4Z1Otvcu0VKWmFvg2o39hYT8sRp86Wu4WvPrOuDt/eVk7f8lEpdUhxZ6L3T9j0SbW/JsuHte0bHQgsn7kg8rjHGFno28bt4PcWTMxHBysEsGLpRyoKVivUQ+dTwLOLMaMNFekcvLhNtvhudLdAZW8N2i57K0NNTpZxOWF3purBne0cfSBupfTqBntxM486qJhB6ebhQVxdAHaEt5XEAYSt6jE0unC9nWnftodttQ0Q4nU5cx9Xt6QxYfbt6biEIlQVnca6LewJrG/ZinNZCOa88f/rM87/5BX93e+VP/hf/Av3+jykfvmVd39FZ404E+ETl3cc/YiknXj4986nBVn704pRW9OHCWJS2Cv3FRdvL5YHl4ZF3f/xnXD58y+PH73n33c/Q9QHKmY66fWVQ1hNjKGszbwPdlNd9Z7RXb7G7XQMQbNBfvc2x+FkMA4cXGwrCgtYLWi7o+uDTCcviWlwFNKr0OQEsk8YhBu3K2AtdDTutoB0p3ds7BXIa1xjQ2uC2tQAF5UiCRjAJe6PtV8Yd+ITtuDj2a7SZHP7Cxe8Pn96jOmyVsGeFWoXWU7OohsyEtzSnXZfqzK7CHQOSYPXN1qeDBn8PapYiDo6c/TlFlN4M2dI8W8S7uafTx2RhwI7bYaF5amlTk2r9k2AjE7lMKN/+kiMAdOeQzCd+wnzip4yokVPe8gKOl4rgjX/8y2NZkGg31eNnwRCTyUDy1t2DmfT221lsNRiZboN0uZCAkpZMwstEnS1zowBLZ2zIfQEECA1JkYoGpb+Kg8paKqUtrrfWW7AjBkK0I4q/shadshT5ueRN1k+Gs3495nlZguPHbOM3C0vGlAxn8c9pyAg5LGJYQ0zJkuyRa/W5Zw5/rhwxZjBdg90xQjLDMrYPm5hBSgk9p/Zq9FdnPlkT9ufmGnL0KLq5n19PZ9fT4pExVoYVb22yG/tt4/e/+QHXeLzy4eUHTo9PnJ/ec758dK3csfD6u6+8/P4zv//7v+H3v/oFn3/4Df36S6QPihlYjYL6T4IemyGRnzHxXGFwxJJHTgKHJmTYrwxrJnnOWetqyjTlE4TyvSTVQQ2tGiwnmRiog0cx/RaYYoV+x9xnzSq/TpJAUL9jj1vE8RFb1gCRAB2DajXyV0M3z0Vzj2ZxRaLwLMm6m1nXcZRTk3e2gokyGSMwu6mACXTeMze5/1Nkgk+Q2qP3YFHctjtvD9wBzP5zfQNcuT0p6uaqm00waETMo+rDB7KLxCBAm2yH9XhzaMWGs4tGi882BDEXwx8dbI2fd2YHkvsB1yZs7cgVh2VBwv2x/CPrq1VpzTuV2KLompMmJ+Mq2OndbcNRLMvuAWJaorKuzHzlD/n6w4GnvgUrXDygCyBJw7iOUaZBG+YOdUTC3PcWla/cKBJGv6KyUtYLdTmzLBfWyxN18da69XKmFBcUHwVaE9h2tj0C3tbioAxau7LvV/btlXa7MprrBbQIGkZrjL2/3cxATq0TGVNEfAJmAeq4kdcwIjIdsCDRs5mZjgtbymxhUFq7YXRUB1++KOttZT2fQk298/L8wva6MdrgtC5gh+D2RFJjU8fZn8h5EgDGbGMA6crYnjGMfT+BxvQBq+yvV7aXzuvrV66vz9yuL7x+/XyMsx0RvPQEL3yk+BiZNAabzSSqEG4MPLHwNS1aozKfOgUeMPX9Oo3cyKAK9eKj+T0pSatUfy/MDXCOeLcOOlyMOZlOk/kUX9Hs4AYgFwmJCl0YmmiJsBFpteU8JAvjLEeQQEI+Mv+bf7d47XAwFpXXiNMOx6GKSQUbk/Ip4GzBfHLaSQ5ndA8gWVQ6po+akI9/5kzoNVhQR4Og3MV+cvfMu+v0MgyZ/MwVkETrxSfJBWsNsVmdOir74dRCP6Cov2ZBqKoTDCnqk1GW9cSynihLxWqWZQTVM9IH9KheqWKlok9P1NOJ5WFlXQt932hD0OWL79e+uWPqhu3C1ryCfXt+oW/e+y9dfGrK1qhawnkdtsAIxD5B5gDhJM69xGdw4WhndI6xse8vvN4+Ic8roxYuv/8RLg9wvmDlgq5KXR5ZT8L53YWnb0481sbLr3/Fp7/+t/Tx6vc7pmB6dcUYYeCHZOwowYQ0kv2YNiKrvpiD0UWEKjGxNsTdfWhA1qX9v2bRSuehR6iJuLZLbsvj8YP7OGCOur3bmlNMMX6WZ75IvWMuumi6g1j5BgnrQ1J4Y+EnC0SIdcDPfFZ18pt4O9XDPhL31MImiGYl0JAysEAIxh3M4Ds5Tn1WMMdw5tx2o1+vLKcbYhU4YSUmL+FV6KkPUwplWVh5cEBEcCZKJCGj+dxERN2Bs1NtZ29b3CufLJpU7h6VSQj/oniLaYl2NPHpX84scgBHUZayhGi9IXqitRu1XRnDR9ab2EyqSqnUxbUUtQajWL09VmOtzKtPYT89URzW6HYnDi0NE//TAads8evTLGKFCZuL4BNRkz3ku8+1kzqmGtXfaKmWgrGABB0//KUCVQa2++CCdtuhKd5TukYxRjldHmiPj9j1lf3LK9iN3gd777PdtAad/b7S6ZoVoaWgxRnE64KJse8+jWdkcob7mBw7nQUtDfZxtpl4cuht9ZkLVC9lxz4WCi4uXlUQ9XhFxSitoa9X3j2ckS/PtF//A7/+7/9ffPMX/5QPf/mfUL9VtA4WEYY6i6KZsdSV9fLANz/7nv3rZ7BGaze/jkWo48bZblhxe7A8PrI+veP9xw+sT0+sl9WZQH3DEG9PI+XQb5htManuM9a+wrj5Y9vmDMKxoxYT3ZINBrPlV4oGe2RlXR+o6yPr5T2ynML4GCIxFTAmnQ3rDgwFKNHZUTEanXZaUHYaG6rL9IUeu8LehoNA5olUicTAxFtzDRij+3Rhz46xYFF5nChxNuO6tVJL6MBJdUCDirfhrYgItVZqiB8PvXlRyHYURTlR5MRSH1iXi2uFVm+9m+rAXulhCtJbJCdhw7LdqtbCWN0gthgKI7JjZsERPACd++Qr2TJhcSbAZRmPyl2cg8chNmMRmYwBi/hCLGQoDgPAXXASr31HY7+PjzgilwnKR+jtdvooivn795n0T5AEuQNiHPwjpCBEl/mns81SODz+rg48idQYdhT2tfjwBWdDpcbKQS8xOVgAbxLdgLEn+ypYnyG1gqBIcY0uI3znyFblGCpkKQh83K+cUhfJWLBB7viSkWCrBoNEgWCfHgWinzLPkl0sk915rGvstjjDLklS5+dtIROSzK4iArUcMbZ2VJ15akNm0ivMyoX7yWBOalfYDNuGz9TYPVkf+yClK7QqtSrL+cT58kipF7S8o/WF1jRaFb1wcfu08UP/Ha/PX/ndP/yasrrYeC2PqCwUVtrXxu35lS+/+R2ffvsbri9fGNcNaalVmzkC4cvmhp1/JPsVieWO/Y5BTvWejHSJEEoixikSk+rcVokRmbsfAClOLTLwqbnRXqfxHG9JPl6TiCfG8MKi+399k7hMHUqLcynRMFTECwRluLyu9mDbCEdbLpSqPi24Z5fOuLvWo4slAaBcspmOBOttzPMd+5BMFY6C++wWybjrJ6BTiufnmRRJdlmevTsjdndr9pYgphcT7y0V4pP9ssU486Y+chK2r2eylYh8bF7LHUijNsAc6BuR993bSwaMEsHygO0WEgbDJYXyeizOtolMaYSj08DvX2oDI5rETtfi7TBGMMmHYEPoLVsbDwaeD3DyNdZKyCwYywqlGqr8QV//Ea12O3Ncdvfe6zEak945uVne579n32DQjI++20zfQ0RVK7WuLMuJ5XRiXU+UZQ0hcXWhr+LC2io+ZUCaB7qjb3EwHHhq+81HT7edse/0trPfbm4UM5md2Y7EAYzA/m7T3uVwzGI5sW9jU2Rmk47eAbg4ROp8rqwOg4t/vTxD21cSKemtcXu5entaH1jVY9MCBwX5cJxxN/J8k/3Bw2IzEhsW43Y7ufZGUUQqPYC4Tz/+wHZ7pW2+Xu72QJKmCtHKN2ip9Mtx74iD6OhuLpD/LkEnlaAdi9eY9u4bV+Z6Q56Z6Y/D4M5gR457kxW2BDyEAxhMCqbFuvjULz2oq6Kx5pHcylF5MjleZ64pd+yiuJAjQODuPhy3I/+Y8FYABUSFR3L2bO+k1T2mYRzPT8Ao9+Xdy7/VwYvr0mMrzyuT/P3dQ4+7d/eLCRJkaJlvFuvIATzdtw/mVLUj5LkLVy2diT/fJy/G2RXmvkhAuZTqrWTRjC5FkGEOgnbce5YFvbyjXE7Uy0ophk8kuXr1W1sAGE7HH22jb9H6ud98VGzcFItpGEstMfFwuJEeRMJ4rOV0TRnQxepqODRP+ouLPvadfbuh11dev75QdaGuD0hxXbXlQamXwemiPF5g/PgrtL3y5VdKK+atJgHWhUHxv4qlpI3vpUXv1jqS/xhUIOGxdXgCruqsHn/Coe0x7Nhjx6S6cJzxnclBnrN0nHmPszp+TPU63PjEjOZ+jSQkHjfiM97bVgsDK7nROfZ+vs4BiDIZYDI3bZ6pu8QJm+w+7HD6UrIv3SvLFgm+oVMTLi8q++h9X3XGvjO2G2w7Jg0pLoY8rCPmI91llGCIgZTiACB+vXWOrMZ9ZrAspQRr0jS0MEIfQdzZW+jp2dyDbsdGFDhsao8QlWeQkDIt9TSZlja8Al9U6aNEst7D1ukM1DS+pdjcR3qX7zoAGIw4a7gIwQ1oCB1ngjTG/NMnNOVEhzA5ZMuUr8NARgm77MGwt3X6umQjdI4mPwKiaL2KgFoFxnZl7I39tiG9gJXJ/BIV6rqynM7085m6rl6UonkhKQotqdE0p9xNS+eJlE/ozPUK035sXT+zoUQ+zN5oKNZSaeZMbBUltR81WH817I3Fni7i93y2zkqwfYYhe2PpRr9t2KfP/Pg3/wYpcHo483h+h5yhrAs+LUz8fGqhLCce37/n67sn2vZKe/ns1Pli1H1l3c+YucD5ermwPlw4P5ypp8UTi9E8sQAf+W4DaCBXzDZ6f2bsX+ntBes7Fi1pMWoKcTFIb7EKUM5jTI3EJwCcemJdTpxOJwcgIXQAY2/1aN2zPuMgb9suMUDX6NtKp6HsmJ4x/BwOS8aTeWEXdQ04Y9q34GS4HRrmsVoPUexoKZeIooQsqFaKBvCkNeQjFv+dpj5TpejAijHkRIKoglL0RNETtZyp5cRST0iJSaspN2ChbSZZ8LJZJDQiSQzwoVZn5azriMKi6yRasr3HvTe/83kBamW7xv3j0g/cRSixZ5Mn7c8fs9ArR4w3n5Ge5QgG71vy5kvP6p68/dl81/TVb351/8rTr3LHBJIc6FDKvDcx593XO4AnmeBSTKbLVjtNAKvcrZmDM76OcQXZYjE/b/q1I96HIyEPEzM/nUQMKqEx6Xs87Wa83v09I5Lu/JwBPEWGcLxHtn3PfIYZU0tWdu2OSXIfsGLz870ZwKDJvvA9avkZ4gZpDrowgg0WmllTgdrXZEKoA6wZNN+7PrnOAnTyP1MLR6q/fl0ql4cLp8sDy/qI1nfsrdJ2ZbvdGL0wemF//Uxvr9xen3n+/HvXUVJBWFFZqKzYTei3xuvnZ65fv9C3m+tzDsDkzXq82djHHxF7xP6Xu5ucz5Ej5potabEHfOsFACURHundu5Xj7MyCoB7vmeyXvJj0omNqst2V2TN5SHw2al3ubw5QywuhFjFKBmKZpxK5iVelR+PIpcOn2ryOOA/5+7v821vCmEXEe4mBXEGd7808A/GXWEM5HObd42asGa/25lzAtI9kvBm/y22u85wneJsEFeZxh8wt55PiemTG8wKeH6aquxne0RTr5yG9Wwjz+9F79zBKIiYzjy8P4CnYbiIe2MdyFJXZNTTippoI1ZRRYHQFC026eH0bMDQ+g8Qk49gb3moZGrJraIr9/xt4clpxfLDuAt10V9LxWE2Q5o6xD2jJgCmrG41AanPEaNWTV3DKyrKeqcuJWldMoA8XetxvPcYbLx5gsINsFL2B3hjtxnbzaSLb9SWERH0saQtdl3bdptPSaKDx2j6xyQ/dKUgGlIWQWTrce4ugHJM/MiGNClxAkpKJnoGIt87tW+P19QulFB6+PqB1offBj7//MTaOcrPOUnx8vAerxA2vB+9/vrUxx1STh8SDtbZ/QbWw758oVamlcD4t3s+83fjx9z+EY4GleJW7iLK3u8B6hMbL6BP9Lt4zhYqyLgtyhlYHbWueKA/xSXiBnI4+wsAxBZpF3jA845ojaLIAZWazKVMcNEG1dEwzorCgsUawUuR43bdfAfl7RuF/1TB4c13lzfMOOrHcFTHugpz4L3tuQSbgJLVQTytlqaznld5cA+L2/ByMnuFBy/wAmaeEWwhwYH60u0/lfidAs/iZ3331qWQSQGgkUbnmsyFQJJp1DoaYn/G7QC5eWCLo9iOiaRdnP3helTuvaI9iTE2aopUihSLxflodLJIV0RXqgiwLlBrMjRUVby0wUygVqQvL+29YTgvLuTJeP9P3QbeK1hNl6ci+Ic5T9QrZtmG7T7sq0a7ALpQOg8JJi09ZbIPT4zuuW+PLyyu3281X2NzoT/BsQvlGKYtX1B4vvPuTP2L98J7XuqDlROmwfflKOZ9Z1Dg/VC4fzlw+nNivG7oP6mPn/KsPfPnxt7wO861g3hJHtm1KQkV+T7QoWoVyqdRpIxy83red7XabVRCI0caR0JJ7JaaCjHTwvD1OO86AGmJekYl7SbQWC36dgt9/LT6FUnsCyscevT8vfpZK7GWbldUxfnLe8hi+eZExRb+RQc2gx+7ehAA65RDxnNdyF+we393p6XXyiAiaZSSRAUIOo7QI+hrs1x3RK9jCUq/o8ISjLwUp3qI19hX6laErA2d/LutCTRBePZI0A73t3l5ocd+z6tU3sv0XOTK1bPVKoVGJQ+Us7QTVKirFz06MezdxsVsVZVkdeOpa6b3Q+sY2bpHAd5rstLb72TchW0rjB2ELB1I6WmJ6nG0BAlxh7M5Aaa/+ObozXHzASMdiwpx/thDqvAvEveXl0HgiJtp5E4gP3nAh+sKwQqeG3QkbEy3z/fZC3xr7yw2sevV6XfyxRSinlcvTE6U39q+vbMPY9+Zte3hrjxoxWU3f7OUkuSPK1hpDBnUtR2uqEINQQIbwenvltu88r+sEpuq6eMtDHz6ApHfMoghkAXZFSdKTNgchVWCpBS1Gai/a3jnddmebjsZv/9//NV9/90t+/OW/4z/9PzQu3/8F9ednhOJgSPXWu7KsvPv4HfvLV5al0Ldn+vWZvsHCBZXOeS1s+069XKinlaqG0LB+pe0F6xVKZQ8GkLExxjNj3Gj7Z9rtK2O/0fcrbbsy9h1GQ82nrjmzz7W/ercoNIgDN2Wh1jO1XtC6IqLcthf2vrFtrzFMxicoWojpa0zbcNumWH9l9GeUK205UZcTWt8hegI50S38DC7+rAEAu98LBktxzcBeF+iNNjrNckcohYUEPz2S84nCp/UpiiurM2m0UurKsjjjaSCYVVo5QTM6C6Y7QmGtJ5ZlZa1P1LIGS0vD1g0XMg+beC8k6wwB35+C+ATZ4sM8lgJiXhQsxffW3prrc/b0DXcM3wQu7m27iMtApOW9pzzdJd4HABQ2echP5AvueuXutZ7yNYcDkty111lkpzLfKv2HHffcElTr8d5CimEPjJKg/JwArZTiMYkDSIfGk9QV4WizewM+JaBTsg9K39yH+/Vw2xpDEKaG42HL/f0qyELKZXD/8SKTFfVpwE7+cGaCD3Bw76Ax6Igo9sk90+mn8fAdYDJZUj1ymyzEzsu04z4PfBJqJNX65tZbJKt3wNPdWx5x5PHhRNWLMWWh14qMFTXYmxcBRu/OvNi7F3t2wzavcfRbwZowmsZUMNdVPJ/PPDxd+P5Pf87p4Rvq+kCp37C3hbYXXr9s7M8vbC/PfPrSadsz7fmZ26dXt2GjYT39cUX7CRmK7YJ0WMbqbOfo1hhzrwd8kQygCQIeLJ03ZyP/Zzmcx32HqmY4QlB4CU0MZ8lY/Dzuna46kR2dwFC8v+b3cY3Oyh707CQxo+uxHzXpUQJUosU+GFRRmHDSpbf2e87rU9CMZLgJWv29PaCKOEe8GDjMha2TfdQT0NZggztkEBNKc6BHMKMOrZMAxGLP6z1h4C7mq4WfbtO5gPFTkcz1f3JMzJlhrQ3m9MeZ/cU9VS9qbVtO72UGqS4Z0hERqlYvMKYmVayF1pggF90qFmwnNZ1ncBTPoa11TidvzRtjTEDKtZb8M7VhU3OJHh0wmqxrn9ZZqrfnlTaQUt1v5BTP4cWCpXu308iupLC1WnytaxWWRX1YVDVqdRDqD/n6w1vtEs0Lx+ftUXcJsolX300CdPIToISIRoqkhmZTXc9Iddqqj2f0QEqkhQM43td2r8tn4uRCw67Y35tXuHr3m7vUEkCHV9G0rgeKH3RCN6oJZkSFG6K3MlgEKW5szmo6iggyDau3QUTwJDn+9UAfR3daPwTwYsLoxvX1BrJ7r+XsHXGHPsUDx3AjaINlcfK1SrJ4Jr/HjZ25IKFhSEyGG9a4vmZ/p3Bbqr9mb65lMaLWEsK4iAWYENUgBRudZm0ayuF31Y1jBDOqynk9R2u+0bbh33toU1ncyhFBk3AUrwjjmvcEICqKuQEs9ZvE/0znJyN3I9NRDog08qi85Vei6gl+GY7ge4X5SKpy3/keGRF4RTAWLVAZbjp9VjEWjIroQjk9Uk5nLt+85+njN5weTyyPysv1C6+3r/R/+Hvs+RV7vSFXrxKPuQficM/FSAqqX/DMt8OwJxvJ95EdWj0cf8ZHI0kzXjmPtjc5fiZ3AeQEUuW+YU8idPPHvo2vEhjIH6q3jYT4fwbBRdXb7nxDHK9dV0ZdsbIi6xPLemapK0OKT2MSRZ8u3rdeDTavUNbFWQsyOvvt6ns9WE+KG971tFKo6BC2ttNL7HMVnh6eOJ8feHr/kU+fv9D/4Xc8f7lhFpq24vXnoulkgKgel7Vyenjg4fLI+eGJp3fvWR+eqJdH2qlCf+H2+de8/hb2r4Wv/2B8+f0v2V8+0T//wI//+l/x/Ktf8frllTq86tosBE6JWDanDimwFFgUfTih60oJzZ2y7+i2Mb4EG2cfrm1H7uVwzrEJYluTbXM9QAuvlhOJoAdKmei7rw9QZoRwuQnFxl0Lq6/XPLfzXB9VraT5zkrWm10kzF50kaOSypgAu7OddOrnZDqSJTFJ+5w/hnmmtRwC3ejg0ODw/esT3qK1UUFwG8kA6R3teHvn9dXt6XqmhJ7EWGq0oBaML5hWhixQT5S6sJQMgnxdiTixDPclw4ylhhLJELYmuJ6GolUDNLJotfD7pcs5zleK1Gb1MQJEKR6wd8OiHWgEtK0RzLqgJST4PcLH7qKMttHaLVjHftZqtJgMGz4co+20/cVBp9FgbIyxYX1j315cgLlvpND/bIuOdkSTaEtPOyLRql2qJ8jWg62a6xTsmD48gBqFQUzA04Xs+20K47aHJqEnR0WghH7i6A1rV1+LAnVR+qKMRZBF/YCMAPqC6++tLb6ptDgDqai47o8JJstsffVJhb7XRvFks/VOieJJJiiqyrIsztSywfCoM/yypqUnA+MMHlNjwRPfYBm3TgnfVj8/s7XBb7+88HD+wIe//Mq3eqZ++yfO8jMw8fWS9cTpmw90BpfPP3D9PDAasvsEUWv1sPd7Z7xeHRQYPt7dqrcDJLPNxpXRXlw4fHuG26uPg+8bst9gb4j1aattMmi85cm0glRGL55gjo3Wv6Avr5TlM1v7Sm8bt+0F6zEFz3Y/r2LU6mxaj2EKZr4Hdzq2u5+R2kFOmFwmowVdqPV0dz3OxqjVtX8U3Cf17uBM70zAUyPes2hXkIgFqhdTS11w1kzohUQ/lQOJ0YJbF48bx3DGRvUCgxkBohC+NICVtoUHHbMCnb43QVGLEeXpy4sIy+pMR6h+niIh3iUmRM3AjOn/7+M1y3gube+baGMQqAizNeOw/u7zow8y2YkpmJ6g0hz0YxbnKSbZjREtlBIdAHeJo0FO0dNIRDXEsycbI+KgZCd6Yp/nSGaWLxqi7qFdNIPf/CPBhEzqI07wzoMEbPKzGtDJqd4jP0f4RElgU4vvQ6mRo0Ria2V+wKnjpcw42FuxmGtaQtxcEnS8ZzpNptiRs6UHReSwOTLmNYiVIGqFHzaLIvDhsXOtpyreHBziuVPJmFrw+5pgs2SLlzssKQtaziFXoTiL1rA2sCbze2wD24g2O/Mplz1iEDHKWbh8OPHu4xMf/+znrJefUZZ3iH5LayutFZbLje3LV25fvvK6b8i+uCTgtiEjJiVH0YYOJHFiSCAAdgQ4OCP4WEvmnkimUQJAuWYe4rtNHSP4RmYTeBrzPEuIhXsM6MyayAlya8ihmYXhnUEaU+xq6DcuOvMYM+/8GSMICxPYjaIS/nyTzpDhLccarBwZYVqi3U48YtOQD/BBWzLzUtGMNe0Qixdnc2dOM3PLjNfG3KY/+cpC95EsGnl245qI4o8l8ytjusxl4o3E49cs8OfrZRk/78261ON97KB+xRiguNmHHcqWydlpE8CpCypoNsAwNcjuPpcXuBUrx1n1PYi/b9yvEbmLZBGi9znsRU0d1AuwyAkjI86fr4FrvWpWt6LVLj5eaFV5rCYkA8uGt+xl4SD9TS2wrBLTE4W6eFv3H/L1/xvwlMYzkohMPUbEaa1HoG9hTKOaizh7QWpF15hSlZVB9YDH4qaKELThYNKkwRyKqle/GEbbN5AGkdgmW2O0wuh1Uid90xw58uipyZHJVjjIu8+Vm9F1GCyMcrxW+NlJWZR2gBopNGegAQH6+nmAsvc2D03R4sJe4Tz7kFjjmORhA1niYEuJg2sBq4QzmCKN7oSy73i/udMTgzbbMHCxsAQ3xnFg0hAkfXFEgDxTA5kxyUzmRGEtJ4/Vm3Gzxmg7OZ443zMPkWs2hbGIM5Uvfi8SRwIh5ofSdS4cVDzimTT+RwLZze7uQ37gDH7CCcTaqxwk5zmqO8GWAwkj7V3WQsHbHjwZKAwWRE4gF5bL96xP3/Duj/6Yj3/8LZf3F8q7wXL9HfXl91zLjf23P9Dp6DboQ9kJY8h40x4+Qbs7I/y26h7OTLKaaAF6GvdDmzNMS/y3SIxM5QCkPPg4niHzvvj5UPMW2vsJHm+9g82rgqySBOgUldMSLT6q+NmL0Fm0QllhOSPn99TLE+X8gJUak9UMPVdUOyreVue6KYVlXaHtNC0BOuGMDJyJtpaViovW7+wHOCFwfrjw7cdveXz/gWHG73/4RImdUrJSJcGiC3DDkX6ncp/WldOycFpPnN+/5/LuPcvlwlcbXMeV2/MzL79poJ0xbvzu1/+O65ff8/rDb3n95S9pX77QrpuDmFroIY6PgEoKaA+vdC3AKnBe4XSCdUVrRdqObpWtPWOywxgupjvyfNl0ePPgip+TBDFM7LCD8z7mfoi2iRmYq4MVgid7ce5yL6R+ET9JPca0VXYcrbuvA3RKWxvPlIlWAERyHfszA2iZL0IW62YYEWfahXaDuZbVwDhDFp8l2+NmEpHBnEVrT2t0vSEC++sXhkKtBVsvHgjEJCKTytAFXYeDJ0uFWo4zFdekJSb2mFFqsHXM0FsIFQ98YEe0nBNC8GZQ6nrXppCntDuIHAGrY7BewBjJWiL0gXTGbGQw50UUo23Rwjd0au1Y3xnF20kG0LuLubb2SurdiO30fvNEf7+GtuLOoiVzsygCuX9L6raE/fN76qqynvSkp/PkgtCIstYZXejD9U9UFygLoyyICl0U25u3n+KFIAfZu0+XGzu93cAaIoNSXSRzVEWqRjKT1HWmX8pdVURRGRSJaa4WVe7wn0VLPCbaWOgxxOJ+v4eNrEDrAbBHUjwTz8PGpkRFKTLXynDh+KI+oQbxwlV5ubFfb7x++szvHv4KG8Ll2z/i6fHJEyD1SX5IQWulPj5xss7p3Tva9sLYb87yqcX197r7bOudcXUtIoa3mSZAN3DW2+hXbHtltB27vWLbBr0jozkrtTe307EIvufAUGfBSg0QL/XuBnt7jTMz6P0LvV253Z5DoyyKlZHo2bJg64lSFrRUzHyaXmNA3bC6IgVMzpg2TLz9TcqJWaySaHUoOSHUkyt/zX0KPkPYVo2R2yMKd9FW549fvH0r97E5aOoAoCF0RI1SQv/J4j2L74VkJAzpM5YEo/d2AAJZPFTI6WxOSUj9M5/8JLh22LK4FpwDUGmtG70LMo5Sk8fD8Y53uXUGV5n+ecHzLdiU7KXpASwBj7tkz+4eewc+3T8+H3ffymVTxNq4B6Bykq77KZktSTOoimR0/mwGWHfOI0C7e4DJ7h6CWiRx/CQ4C6YDRjL4XGuvTUH6ow10xGcIlmq06lmKGZOAkXeQ3LczOogRXllKMJw9CZ0AgCVo7Wth8a/0Z3nXMuBPf+n1Cw8WXB5iEEKWcRucJZN5EkCx4oCfxnVIid9l7FdmzD1zuOT15/qXAh1UT16fFgG74arNfdrj0TWAKMtuXWc6uRCgn6MVzu9XHr975P3Pv6Oef44uHxj2MweedgWuqH5F5DPr59/5vWk3+v4JGUIxoeIZuTXoeyyVwX17Y4K9M7nPPRJbSROkSbQhXyMfaM5SEYvp4HNPmrNsFff7czAMs3CfMYQInuMCQtqN8EfZLp/XQLS9Bojicdnh3zT22bwvMkIzSufghzhe/p4iE+i9Z3eF0zzivGhx8Xs+Zo41JojM1IPOp+SeTTkSieLaceLu7AEJLrnm1pz8J+LgymTG+zp6fdTbVX0R7jOliHkFSil3Aw2i0JDnZAKqd1cz93PY0QHdongccW3mYveFLBKUQh14HXeXEzmwSvjZMSI/93sxLAg5MbU3gSczsOG233LpxO2mY+t5j93KjIH7kTTBw8gRSzaU1qM9j7j/ItFiBzWGeNbFQag/5OsPBp5aDxAkKxKhwdK7OzstQUuNA1XUxzMjJyg+EYlS6YFoqxavChb1STxjhyEMy574igV9eSDUuuJ0VG/LUwU531hPD+z7C7UqPajcQ8DKCkt1EWH8/Xv0LZnhwpa90fcb+/WVgSOHGom1qvpnnQEnHCaau0PmgFldbTLAfGP52NWsWkhsIAE37NW1LEbSiaNaNKI1RsXpclUXllrJMdDltLhugRnX7caItsTokvZ9XxfAkwOxEhVXDoPQiVZCo68arTuRnBItb46EUNaFe0DB27BDGSCAuEHzQ18dZTdxyn/rjvQWK1jT0KJxxFazVSTXVwhG292mM47DDq7V03C6bQpDp+qdE10c0EEporGWR3jk90FdkE2YQxIsfj5p5bNd8oi6DIspB8ShdyaC6ZkuH6C8o67f891f/G94+v5PeP8Xf8n545n6pMg3z5xPX/hWPvPh77/jN//Nf8+Pf/Vv6F83WodrWJGCsdzFQpk0eSB8JPHHVUcAghuzhvmUjbjmt3vXjd1yB7jJ3evcv/KbG2BjPj/fp3BcSwKVaQS7eRXXzJNwL/JXtBTWU/UKjgz6eI2AAWegLCtyeuL84eec333k9PAeK4Vbu3LbX6iyIe2Vvl25vXxh3F7BGpfzSrVOfznBBgRwndWGltMNB2zbNdrRfOpGWReePn7D589f+fHH3/Pph9+x4MFAFWZFrpajvWBZi7e8qcFo7NuVsl35+LiitWO88v5hQZ9f6F8/8du//yv21xfa1698+c2v2J6/sj1/YcFYBB7q6gKACENKVMm8nUVoIB1bCrYO+gpfF0OrorVyPp04PZw401ntKzw3Oq/0LrQhNAPVSEaDdpznzCXHnJE5mZ5tP9gNWe2IAMHA244mByoSqYEDAhHE5sZyunTsXa8ieBBgOUX3oC17UBu94wnoiiMvRmhfBXipUVzwyk8hNQwyqJ0VoUSfw0lncOT/jpEwZtxPKvEWL0GCpuxHPAINjEKHfqNvO7evnWpbBD1ndBvIzbC1Q13Q5YR0b/m8th273Ch1cRZJXNO4E9o2lyFyQc56xfCzVHShLifW8yNITIyJZCyBZKJdqe03n7A6YJWFIh3RwWgbW8+R5J1aXANgyBYFEwdfJIoHY3/1ALdL6Ecp46ahMTXJ9CBG7zs5jcrYGdH6NFukDcaegptwDOAyt1gyPBkMFnU3sO4JVE/tLcskY8dacy1CXCNHdUV1pdgJ7Q2kMChR9BAWXTzOEICd0V9p25Xb64/w+oLdXsE26jLQi7puiLlcQLHikXlUSTONW6p/1+Lg+cCr5YSNraiP/Vajb322SLbefeJhLTEx0Rk/8+z4CNoZX2TibcOZPFlg8OA/QC1xav1AsDagD+oQHqpyqvD5r/4Vt0+fefnyI/+cnYc//jPKz/+cJkKXxYsm50cKwvnDHzH2RjHYry9YXaDuLFR6N1o3tk9fsQq2wLgNOA3s1Nl5ZYzNNfVuO7IPn57Wk0ndqdYpNmjWJzt34IM3TCoLjwgLIitSLg5+lepTlNvGfvtK336kt1f69Qvdrph0tIwYG67IOME4Y8uJZXnwuE6Kt+QVb9+jboiekfIA6i3faie6dMxWB0JaB1W2feN0OnlrWqmU5YyFyLQE0GKjTUdb1yWmMl+QxVuneh9R6IwYWmzaOa8zxDjqmE7pg242Wuz3bPUuZT1sWBQo7wtE7vZ9TypCH87C7wJSB6lDtFQHLVRXlipsmwCNHWNP4EmIVsAADNy1ZvfzES0k2BJNYtkB4AFZMlUDKBo+CTun1knIKkzd1TdY1V3sNf/uVhiEHPE9mT0BBGfcVrR4GWU4SOdAv2vaySAozQ4gG3aweKLVB3P7jPQ4cB6fS57VSArH2EiW+gGcjQCbGsOuGBuzhctCBHsoQgjPa/GEUyVyH9eNElacZ+5t2tOnhg/0ISRlrk+yjI7o7p41GTZFjumcCTkKPk2RIHUcJcuf3IcxMHay48WXybsxZBztiCrewigUckmE4trAURGTRREL4eURAFpdGLfCGAXpjTL8tW3c6N1cQiEmemPG2C2wEWG3gWmHS+HpTy9882cfePzLP0bWf4rpz7hev2d/FW5X4/n5E/b4DtH3nF4+0X40+vbM6JU6OovgWjGdkImJaFcg2WWejLjvMsbMZxy7lAzeySl+XjgiCoLh9U1QMwckbUTLefiaiJF00RnbxNELcDW0lYpMbVLXXHp77yzatUYOHbAx5RQyD7PZquaArQUbhmLIOkJfX4+A39Mt/xSqfg8tsvWgozszNHxbFYb4QLJwktHl4WD9vfyAjQR+JDGcCbKUKV5+/ykd6B3D/e1MsoWwtxEvScacvhcVpVtMa59IT7wXAU5Z9yJJFAMkCjsJSmlRrnsI35uvVymCsrDve0zTdQ3HovG6oyMCJ1FaDAtwwCwjageKhxl9D0DSxFvvo+o4Ui84CCuTKDISxMf3UoDs1j0GMRtTbN737kDqoEi27OXZEswUayF9I34OZLgARMbpCFA7LCBLIWZn/EFffzDw1FM5M+m401EkldMrPUULaynU9QHVBSkLpi62KuVIFOpSvAqtQm8b2UOo3fv0ndYXoJEJXtk0tCTDB9RcJb9YTInZNwcfRjgPEdbzmbqcKcuJHAduQKUx2sZ+e+HTD7+j7RtWO9Z2rHX62GPTEXoq2T4XYqABUogSLRwOuHh73RI/KzNDT6Q0T5MITgPMJeRgoDhbQ6a2UjKszIiJGoLYQGX39onhQIjbIT3osT0MTgbP3L9WbtRM/EIHNYKF7I8tNVsIxmx18EsOqrG5gPpoDoDdrs0nWVjQG0f070ZbiYVN6z2SxDAIqkLPSWZpnO2uYGVu7bIg7PGOTY7mHc4SBiQflK1GBxOgJAXWi4KHX8lEOYKpg3Xhv9Ps50cjSzwh9kit31HXb7l8+xc8/PwvWb//OXz/PfLtifpeefr5N5weXynlK9eHV9rf/DWfbGe0a7DPBLM6A7xkmNx14DFF748POP0AdrDgJjh0VyW7xwTmt6R9lhlczP/PNznYXh6gZMAVz80YLNY3k8v7L4trd6pxOInuVRXbha5G3a9IvVEWr5oLHS1GPXlLnWrF2hWhYe2Gho4MbWO/vbLfrvR9o4zu7BENyilC33cHTrob3vwMrQ0+ffoEojx/fubLp69YH6ylOOiSzFo/rklC8ETTgCHU0XyAwXbj+fOPsCgU5dIurjn3+pXt8w+M1yt2vbJsG9oHC0rN9qsSDijuuY/J7r4GkWCOWuil0NWT6pyuQ1kCCFbG5cH1EG432tZnwFSiKjXUKBKjx7M9OHbbPF6RyDqAM8MjuggdoRvcrNOGDwvYg/5LVpclqv/zCMY+RlwAMyom/vOokiEz0HWmq82gSyRaO3OjaQbUQUfOQCJ7+9NeiMwACPI+ZvCRiVG2+93t4QjENAVGMwgPf+eBk++h3guyb7BdKW1Hiu9bzDU3rBGtWi18mVHHQsUnjRq4OHM6CBvsUe3ct0bvOKunbJS6uo+vC2QCEmOKnSHTGUPpbY9CBh44IEdybN7ylQFhHdBbTJqbznw4Oy9a1NwhBGA3xNlC5jpguWY9q23WgRaaIy1alrLaeNeaH1pPIyaCiWRimd8ElKNItMbNgLQ3yHZ7SgCZhRy7PqLNxF/JgRktNdZbsGh76X2n9x0xn4qGDm9PXISxKm0oowvZETDws+p+Rxi10osg1dclGdp5saM1evjH0ZsXjQL8ShDTC6WeyA6CgVrLDM4drIkTqrEB4yz7/rfpD5KC7xXliCTMwXHdNvZPP/L7f/fX/OZf/Q+8v9349vKAvlMoF3yumfua9fLIdn6i3TbG+gQnD3xL64ytge206wtj79gtqubXTl8bWwJP/Qb7jnRDu7eypx/IpMWQI3yUgpSVUk4s6wNST0hZ0fVEiIpg3feMlsqgglWG1YjzBt1iIi7Ff24FGRptb1m0CuZf7EMpDRmNulwcoBXBJ5qJ21Z1kGN0uN08xpNgLajUuPfRXqgxuRDX4KmLT6n0fe8adb3vUZ12kFiiuLXU0H6Tk+98M/r+Sh8xddI2Sug0GSs+ca1i3Cf34dVdfNHXe7iD9imzPWIsiyp4tvclaCHzMSLMidS5ry0dvqVdT+8edtL0Lt7KeOYII44YQua3zXPK8fjY5ukNPF6+e06+r3nilEwfkXEk8/PS3Cf5eUhfcc9o0oMxmuOdOIogbjNj74aXErPofnAwwC9PI/5MhtaIGGdjWKOPK2Y3zPZoufPXllERvF31AJ5wQfNRsNR1zXZJ82LJHYzk+CNHUXjiYRHPSa6RQeqBThzp7v/+WHGwK0HAYjMXCC9J+t1hByieEIQEEOLtQnMbMnOOWSjw+CZD92QGUYBSGSUAe6J9b6iPec8i5ci48+hMSF+jIqynyuP7J959/Ianj98yyrc0+8htvIcG1gaydGRRrBnL6QktJyyBQLyIIrEnc7c6ONlJNrbeMUaYhfTQ1QkASmrssZhgNvf3XYLv2kYBLMyc0gFFCa1YL+wwz2reOQsGTe4BMQvJjNjz4XAGkMhqspptbpjZNHbEahFTieafd7lrXF/e2vuvbFF785WHP/U+fvo8uWMUkp/xp3/e+ZAjoZ7PnzFsAnBzd+fey/I8M+bMPCn90RGr3F1aHpYIPY86ZjI33e6k/APiBVHrY+ZsqiGTEw16voddQ9qBo4gtIh8Hbym2kXvbH98H9NZpyeSOw+xgv9/enJI7h+TEex2tlD5TPVsBRbwgnWt7kD78QPa8XmCY78fCmBpiqq6fW2oMGwt2/h/y9R/Vajd76YygtB1OBISc3FH1TFnOSFlAQnEqtCKIJHVdQsgOY7sdImdeiYmD7TCcB5ElwsliMTnIGMPH5Xo1yKd2OMvCadpSCuv5PZeHJ87nRwfBYqNXcbr9dv3C7eai24xBv15puvkNjksoEXD4fRwzQTQATTaBuAHU4ToVUZEcbcybPPvwlaAA4oY4Ds40qiZMccd0HBFIeEuHHMkVbpQt2gl9JKvNKlJuYrGDr5UH7TiQnlz0PqZhKjh6XYqLAidFc4yg7sWBAgclt63R9s7t2rwfG5nOYYxZSoH0Z+J/mXTQWKsRpVANEcjD1hgyZH4Oy8Qxvend5zuQbWK/6Wy1EYUaOakWYyiHwC/C7FGftNd0rB4UQIwstwp2Qscjp+VnnNaf8+7bf8b5+z9j+aPvsJ99QL9fWD4UPvy58O7xxkmfubbf8LfnBWtXb0swB/FaAK9j+rNkhMSX3cV2REA1ncYBOoUfvDPo6YggU9H7l337iDvDa8dP5y34iU2YrzMN8h2TSu5eW/Lag003zKufuxv7sb1Q6gXqidFesbEh1ljrSlEHCrfhWh6jX1FzhqT1je36wn59pe23IMbEjg5krfXGCK0bLCvEHmh//vyZ5+dXrl+vjK0jw1hqxZmXkfTFPlLNPRHtuebVitEbbbvy+dPvZ/zf+xNtv9KuL7Svn7FtQ24b6+juB+tCWTwANkeFjrW1gYuzB3OnKKO68PrQyq4VAtDXcsKnsil6eXJm4+1G314Z0rF9YCUEC2VEYGP00I46ggK3HSZlsinTHYsE8GTQzLj1wT4yOYnAVNUB6QR3ccFoyWBK7gChcNQTlJIjqPHR877WWowjSYjVUY0zfwe64g+7D6jvbW2kEMfuFSHZNXOD52VqgE8aLK2Y5mFhBoaPEvFgrzvoaPuGtA1bTsx02qK1qhkW4IbJYIzVW2wkJ4G5GCWEWHC2ujW3SX0oqgujnrBhLMU1nUyUHpqCEq3LvpxZYRZs1HQmJIBuDFo3dHjFczRvXRs2/Nol2kNCE0rwRDX35hiub9NHvwseLX4eoFuAQKSWi/d2M3UIE3gaDa/a2l2ScpfwWY8gPZitw52gxFS8rEA4iJXT0ZKJFUlmTMu8v/4+ug8vMQd3JRh1WsU11FbFujOfiPRyIFhRh+FFXAS3arStNW+PwqaNsd4Cs5MoVIWOnliGyH69Af5mAEyNqGJS/2FOPg2A7r6dYVjqPoz4uz9Uw/6VrhQdbM/PvP7yl/zmX/8VvTeevv+eZTlTzsZgAVxD7HR54PXyhNx27PQOmjPyaDvwivXN2UZ9x2goyiidvezsXGm20cbNwVaDmh7BlNELpbq4qgu4+87XsGNluXixcjlR6gmWldSe67i9lb6Arr5P9eStnOG31apHLbIybKGPio4YcY8XHoZ11DpDGjJ21HbHtiqo1mj18wQ51HMZw9hufu5d7DyY7KoMXAvU6C7zIMXbNqOF1obrePbe3Q+FdqiLocfZWBdqdXFrZ+ka2/aV1l8Z44rIjTKEasKwEyLBCNMHZ5bcl5NyvBIWZ8MiZuv0nsnuYSu9bdyLwX2sdz57jzhf6JJxxbEnbVrB8B2id5nLUT5LA3xEJr4fLEpUdxFLJOORKGaraWZ6yAFcTrsdfj7Og1hCQUcZIx44AawUBHefEuwcLW/XEPwM44ls/NNfLrRQLZ5vYXOz0EswGMbo9HZj2E4fNwefEqTMwq0tkQiOt8CTtWAAjgAO6mEDMj7NAMvk7r7oEXsdfJS5BvdfMu/i27vpeUC2PkSsQ9osxYFUubtXI+yjP0ZTskM5AL9YVyFaCtV8MmUUmC0o0DoEKUbXTteOSmXMcfL5zQxbND6l50ZekVZVTqeFx3dPPH3zgcdvvmXnA3v7wPP1HRTDtCF1h8V8GujpwYEn8ynrQsOGzK4pyy1orkyUXXOlxk4TZpwm5a6TowhliU6VkmfEc7Fkinuzi81c2mNWzxsl8kdJyk8Cghz/zK8eXQl6d07Vq8FxL+NUvikw+5mwnyYDAR6K2lHn48g18jFzI92dybf5QRZjMp78n/9KcOnNBLj5u3wtOWzm3XUcurx2bxqOi5l/T98p8/ez4Dh/wN2TjtfKnGm+FWlXQZKNmDF06DzGs9xXECSSOLNuKhJhj3h5wOhEfsRRbBsRCjWj7c1xiX5HMoj1z8cMMxBl5CTvaY+zoBv3RSX2iC+EhYaTRDCs1Ih5fW1Kqag567MUmdMNS7D5coDT0Q7+H/76g4EnR/GSgpY3o+A8K0en63LxKSTrA5QTogt1vVBOq7OdqsxEcq3FA8B95/V6Y99v7HtjXStVI6mS4mLkdeV0PuP6EoNt/+rTeG7PXsW3gbXGkAVdCqeyYrYguvL+/c+4PLzjfHnEtEzqo4rT7rfbVy6P33i1uDVuz195+fqZX/3t3zprofe7RN2guoB1DwaQjhBtlCX0pGBdvNXNxpjUM5WokIoxxG8g4ktX4uz2W9xo8/5+tzWelGQS9fV2DSNXZvWOIYzdQbHderAm/NQUHKn0SSYOiEEwocxbbZI+2MeNbFcp4nTfUoqLXI5B78q+XWmtsbURI7qFYpW2d/a9uUA6rjuBRiuhDgcGZ1xkkcB4v7aqMEpl3x0g0B7GypRiMtszpAtVirefZetgfGkajKxwWlQpxY3mERjJHPuoCtK8VWEL9T6TglFBnUqbBze5RGILjAXsQuEbVvknPJ3/BZcPf8a7f/q/xP78Z9ifPPL0L5748//kzIePhcd1Q76+8PoPv+X//n/9z/nX/8V/ya/+7d/yTYNCYQ2nhDmoNUQnIyk/Vn7WmaTEpkxnOJ0kzClRsx88n5K72N685E/Ckrdf9zWvn37nkXBhxAMoe1vDcGPaxmDvnmSVAhRja1f6uLldub4ipx+59p3RnpH2mcflZ6yL8LQOtuZTkTZu3PoN2154+fqJ59//nna7Ma43SkwOM63OCCSqlN1pvhIOfwzjdt1dp0U7dFjK4m0wVqJVtM/1RLozjUVAhrM118LlYeF1e+H5hxfG9RN73xnWOT8s1OIAZ2mNsd0Yr1ekba7hU8SZhKpYUQfhrNP6htLQjHpUGFqw5cxYHxnLAzx9h17eUx6eKI/vMOk0aTzIH9G/fkLOT/Tya9h3ig1OS4XeuH79TOueJEu9Kx5EUOjt0F7hH8O8TUO81aDjbXtbN16s0yzV+DyeWojeeiHYZh5sDtFZLVPtUy/FE43YewE6axGShu9AdJ69O4bSDBJy690dEjv2pT/3CAx9z4eWTCTvFsGAzkEWnam2HwbEBTiPwoH2BG59MgjdgZSTDpYVLg8Vq4VmPvRia43ehLEV1rFT+wJymSDC3q6euNqAcfPWtN5pw4sng8LpskHrLKXSig/n8DYf8ZbnSGx9ego4K6Ii8hg+xliWRinO8tn2zt42Bw/6Fml9Q8OgCh1KPxb0TTp3WIN7ejfYbOPL1txMMgUD26KVPqbODtclyIDMwk6DB1tZ5LKk5hskuO6VU/XEWMwBTgm7XRdEFko5k4y4XQtBH4Pe2Xun2aBX33NSBVs8CVADPZdYE2W/4foiQxjLyTWDtDDOJ3oIupb9Fe0NHc2XJlkC1qB7hZAxGC0ASA0dB5hFYI2JHQ7EeAJqwVb0YNbuCnMBilswv9/cFf+vd3wqU4PLsrB2ZXvd+e2//Jf8/n/6t/zmf/oF/9n/+f/CN3/2lzz+/M9pnDFdOH3zDXtXbHnPJg/sn/+B/fkHti8/MKwz2hWpO9q95dlurh02MLo0etiiocEC0u4sInzfF3MwyAWEAVV0dcCprg/o+ojUFSsLg8oYgzYabeAAWXn0WHJplPPG2l49ubdtssgphRFix97y43tnmA9VYXSfQKlGFaA0UJ+WbNzCYUaLj1RMXEzYTKAEMSPugU9wvDL6F5/ANYDb4sz/slLW84yNEY2hCp297RPwtdGppdBr2JveuF5/Sx9fGfYK8oIP3BkU9b291EceHv8ULU8s9YzKGbNKH5XB7nvPmif3HTqNUUDV4T5vL/HPmcNkTutKiQKuiLL3zt4bSk5iI2Kow94eCafHVgIBSCSIcx9lRAKm3pbtRYt6950C1ZHZm8L4KZPqeE8R7hjWDsbITFwHXjqNrwlg+XuYlfi9f3u7m7e9FV1I7VS7l8CIoq+IMttjpHjR1/zYj2B/9t5c627s9H6l9VcvMoSoPoDKGvszWu0CrKAHUCOVopuDIZpMNwdHME3vO5c3h7hksWZWc/yX4dKyGMwbcNtvq0yb7avtgvuCA/H5W78P0YJDdLoMJx8MiWEyI4F/Z06ILiDRrirBaA3tG6kHCHnVG1UXTDtDqrOe7GA9SYcSe1oHaLBfDaiLcbosvPvmHe8/fse7j9/z9M0f8bJ/x7h9oMvF9WW1U9eOtgHrTj89stQzWEVkxWi0JiGBEzGthn5Xj8mBVVgWJmijkXSLCrokyUKopyV+fth8C/aKt4AORvM4rIi45hyD3mLya8SBUgPJu9NNk3AgEghKFszQEUU3mV0reVz/sa/74nbKuUjJ17MA2Y+7f/+8Y0qfHL4phjPkQIT53ncX8FMwyX+W4vXj7nWP/K0UJYtZ8Ut+WpiPYP3f/4x3wE/R49wcMg0wgfq7l8t20jRBFowyw/EQI8kfcVVRTfFTVBLVig4TZ9Q5A8rz9fwMQ2QyrG0P+zwMujDaoLfBvrk9twZtb2BuAWoJgobhumdu1kMCyY49FIBiwsgSGqCiCVnjeUdmiua5qU9HB++atWA5OcBaF50aYkeL6X8omzy+/mDgad7SiHSS6IqGsRLXZZKyIGV1unRdWU4P1NPqmkZlHHTzUtDuSJ+W1RlNDZAlkv/iVGlVikQ1y5zt5D2xfkhTI2l0C+p1YVkeED1T6pnT2cdpSjm5cU3ae3HKmfady7sPjLbTthvrulDXldfrlS8//p796m08ueldud+mcxJkIvO5kRMFdkAzfl40RC3NgTIRR5XLwXaaQIDFQSBo9MMnQJh4ixAWDAO34pOG6lMX8n19U1n8WwsUrdTFq3a95yHPu2vUZThbzAbrsrAUn6xCVFNHj57YHlP/koFlfa6FTnHEg3WUAsa5f7KdJ0EuP6xjVgEsPpMmt/pe3T8Pfoq/T5RWpgNz3+gCun6IbOqpJOXRc0zvbx1CBJru3CUT2juA515nACsUTlR9oOp7lvN36OUj/fyIvj+xfLvy8U9PnN4pug7Mrvz+H/6O3/3ir/jbf/0LXj598kk4AcQ5scqmE03AKEe7z2Ar7lQm3xZ5chC+Ylpc/I6jQJJB4X0geO+I3gJQwuybskxmfhJvHi9LqiWOMAizop+sGZk3KfakTHq15utbg3GDVhjbV9rryrbC7ctgVKUUY3v9xP71C7fPP3L9/CO3lxduX78ytivsOxr6Yd2Em+2OyPVBa8m0OJgTo/u+VSlhW0Zc8tH6SVKj4xolxhSbGoi3bbR2Y7fBhjHY6WGTrDa0FmpVinkgOvoOvZG1iuxSH3ffJikQ6Gd9qGJa6GXFljNyfuTy4Xvq0wfq43vWx6fQcGo81EF9fgen1QcubDfOCk/nlb7f2OzGuF2h9wjaMqm9u58a1UzMbVoIQeZgl46DP0kORI/gXyyFdo8zo3I4JQefknE2pg3wYN7326wqhe26z1ssXzb3ZiSU97DIW+aMO97D6CQt+WgjtKhUyZ1jm/X9+WIyD970eWSyMRzUDPab+4cAMJSD+m54EtLMxU3F/da+uQC3jY6P6XFQpjUYeLtF05W+nBjbK307Q43e/BITV8wCeOr+uaQgEoWbgCRUKmo5QfaZ5PEgLrpvw4HW3InZVpL3Nc/8MI6O7QSWFIQyz3IcsjtDHjbeHKTzz+uBVU50fTPZLgAns4H1Q1/uvu0ZxDWxDPc/MRWJsoKuDF08Icx7NVzXRU2wHKO+rN66Zx2rhdHkID0UgeqJjtMFC3o++WS/5UQ9nbyQPBpmmzNpovw+3UZcq2YcEIyI3EUWibSfv3hWaGzMzW7M6mxWrDM4t9j1lpXUY5s6j6oP+t789XqhDkV3lzR4Wf4dv/7v/muun3/k+9FZPv4pen4PcuJ0vtB64cvXG+w3TySaTy20dsOKMGRgsV/FPJ2vee2l0IKxYdodvMETT1iwZJWoV0d1eUDXB8p6wcrqcd4QGj6ds4+EfhWpJ9ROyBjIaFg9M6yFlplEgS3ZMR5j+hzujo0bDpfnbQ4AwnzEdGvDWVAKw7x9AOkRD0H2LvThgt3Wjd5f6O2Vtr9MMMdYHMTQldqbA8XqxdPpYYNpYAOXJRgGY3M21HDB/j5eMZ4xvjDY8cl9hVovrMvG6fyRWs8xYXHx9+0LGeXcV67MOCruE+GN/6XWVLDbq0GtCQ4pfUTZTRLWzP3ofxnx+yxKWwafWWWUjJ2yFaswpHO0uFXQGn8Pge0Rxl+O1rfJfLyzBeE17vxExj53DGKJvSMK8z29XdHvU+gsSbbd6TxFYzgL1EXLPebXLBJKcTveLXyBhaadAwd9ONje2o0ebXcuhO/X7L4+75FBsiaiPc7zBMEkJlDHNZIi3sRoj7ARM34Vz4Ey/U3f5utU5jodGnLHJrlnoLn9KncOORLYuI9Eu/5kNWURK8UKpSCUuebitMJ4ryMazcEzpt4u20UdAI0CliE+2AZBhzpTNhzRFOXGAftaC6fzmdP5wul8YTmdqXJGh5MgfIqXS2Z4wSkYY7FvLeQ8ctprXuSMBYLl4YzsI0eQIq67qepAWtVj6nf1FiRKtJaaUaL4WcZA9oIzgD2+8ltS4h5E7pSA7xyylUt4lMTnWt4dhal5eQfwhAHyP4rOiZweJwR4pnoXO/30S+7u29vc6A1wYz95lkQZKo3z4dnfXlvEVm9ApZ+8P6G9+u8/5j7PmT+a93cWLbOFVo4cfdq2+1c7DM7xGe8+X7IB00ZleFIibnedvYgD88pSzmWEixecgNEdOOq7S5GMPkJQ34GnduszLx5tzLxeeq6Ds56yjVMGM1b3++Vxga+HD4uKAG8Clcf9zNj88Bca9twnsUroxpbZKXAs+U9X8R//+oOBJ52VB2fWYC4y6jiLOugUrXaiSwBPZ5bTI+t5RatisjP1HBSwghSjLif2RjCGFkwWBsXFwIdSA4QygrKMT6TzNgNfqL3Z7NMtyyPL+sSyPHC6fHCxba3hQDzrlejBH+3E6XTGeuN2faHywHp+8MlzZjyXzzx/iRYCBlV1ingJKeOY+zMR0EzeiOA8xMTVDbdFj7ooaM3Xc4eS238aF4tKSiSj3TzwUXBjb+IjzrOVLXQP0gK5ZoRXGItW1uXE+XI+quQ9hIGxmJ7oycf5dKKoUkXJEcMiQVnvDj4RsXom9SKuXZMTgd4aw3EXGxyn4QCfxqzQWdcQN06qflBRpxHJA8R05K57dQizOVp9OJYRzDV/fAkWqrc0ZSvEIMZzxx1MGqJrtRyHSihUOVP1kaW+Z3n4Dn34yHa+cPlm5fTdwnd/urKsnSE77fUzv/ybX/A3/91/xd/94t8gX5+diWIDYnR63jJ3GBnnRphucT1kOHEc70KAAUYkSf6oAWiKRuf25KdG/ti3xyP866dBZvJP8komKGOAmAMykyJk8/secc+ecQ3gqcYGN4mR2OMG+xfaVdhK46Vefcy8GvvrZ7avz7z++JnrDz+wvV65vrwwts0rUcOgexVp37u3ZQ5C6yj26LDYv+5kq1aWstD2ndkLXQJMUZ0GuFvSSyX4N95Kdbu9sNlgxxjR2iRqlO7tFis+Ep7RaFHlBuhZRcdBEFf8MDoOKvgk0wi8SqUvZ2x9QC/vePzujzl98x3r+w/Ux0dEXRPvshjt5Qvl6YHn50/I7ZWHVXl6ONOuL3y9fqFLw/YBzR2TjKw++r6xTIjErykZRc2SFxNJbQZbZNDrr6W4BuX0dEIkhLkHDqp0AhhkW0BWaKe2QJoJO4qzGQBmXoMw4dXYrJJ7k3Co93sxnEUmMQO7O0sjXatDL+Z7Vw4xNLIyLPH7PgbSAliMFjLNoEhTONQvaIwG3dh3fy8bg7a/OtO2N3TsEUh3+jYceNKFXhb6baXfHunrGYYLQlav+jCG2/DWvSor6hVmr5L751b19k2zRl2+Tnvv1+VtD/sIncVo9bwP6cKK3rVzRUVbdFbRVHwa3DQMozvQdCdqmq1uNoZjMJKE8bid5gmFA8UOPqnZEQRr3mYN/+LJlOiC1BVZznjhamVInHtzDSAZzsyjLMhizkYJn263Ck0ZDVDDp82HTTZPpuqjC0avlyfK4hSpvl0Zt2ekhcAr5jYAmSBpUbzSDoi10I8LXzhyH+Z6SgzcSL/ua3I/nvkeeMpzlhPLfGc54DdizDLD0KVQx8LKTuuNre/83b/8L/n8m1+yrJVv/8WZuqxQHjifzhgnyuUGe/NkJ0dI9Ru2KHYbdNupvSE4q3qR6pKtqkjxISmjDLq4TzUeyHHxXnArSK2U5YmyXijrhWbV7eEQttAi62NEBb5MEAcTdMT10L19vmZl3ujNn+vJYUwvbpBDEvxRFVgxq4yu7DaAze33EOoQRCsjWThIgEIalf1Ob6+M9krbvgbjcGB4rImsLK1TlpW6XlyaQMtkIaSNaj2A4/0azNfdJ0LygtkL3b7Qx6u3bHVhqY+cTo13717BntyPlorZSpclTKTeibxmbBaJRVTYD7sYNlwFZwNBrXXusyZ9dr/1u+dMyxp6q/Pcz0ilkC1idpTAyFZGkY5raXWwBYq3OcHB6HFQNv67j1vy7xIxyV2CeP+nzb97Iq/RQunMjshTtEbLYoJPmkEN3pLtntljao+rJHSKBD3Yh92HQdg4gKce0zP72DCaR2XRZp7Ak6hMGQ23h/gZIdmc0UasLdhOltaSngCOOPPIQrPKh+OEfY47YjM7dEPqIZ9Ou5IrNVPkAJ18+IOQGhCihgzFp5CHxk2CEV7Snd8a604CT28Sf/cqKg6SmniOWSL+yD/T32oU9y0KikEbmjmAFp80vJ5PE3iq65nKmdrPvr9K5FxaItd0zUOLqX2j2xEXWX6mw/doLkt5CzxpDTJDVXQpDjxVpa4VXbzFWGudOaF3YzloW1oL/x3M/GHe5RH3a2TcOmwWpIccRYgjCFdSN87jdY9bk7k1T+5d/lUmK/CtjZBgTiF5oufpjRzqrpPk7jgex9Ov7Y3GJ36f7s9x6tben1tNdhnCT498hpV5hg7g6c3OnXlLBLVY/M7XT96+IB6juoxWroP/fFgOn7mLQclrs+N1PDjKFUJEqFr8dAT5w18w4mGcwJGFtz5aklRpWwJP9gZ42q+x1xH6NiJ2ExeAj9g6hfd9qGVEtXIQkRqWAwZ9CFXYT5cujtg7ly3eK/dOQUnZBpHsFnBfPhNz/mfyy3/k6w8Gnhw9j8BoNAaKmSISQa6uICsmK1JOrKcn6nqhrk+YuiBpHzZ7IFN4enQwPVHXAnoC1CnFdeV8OZOjRr88vzLGjugNrR6gt9bnjbldB0qllhVd3rGev+F0fqKe30UW439Mhf7qo0pH2WkqmBVG8XaLZTnxR8uJ5XTm+csnfvzdb3h9/sJ2u9JuN0fOKVTRyQqqWkj6e0g9MPAeSK2F5bRG4Gxg+xSxLWulNddHaltzkCnABDg2jP9dWJaVUOTw/uDBrG/4JvFEToxICoJGpwvr6czl8sjjw4MnEWNwvV0Z1j25HjXo+51SF9ZaOS8L2/WKAA1xgVti6MPe6cMn14lpdA+mM/Pr19gzOeEoP4cnZq4pQ7f4LGV+DrUS7KTiKLHhYvKWmiDJoApjeWceC55E56BxwZxhp8KyVtalUsrwCSt3VRtNxykWe8adq+akmJhyoMA5kjsrJ67rSrmslPcLP//jB7794zPvzlDlhm1feP7lL/ib/+q/5H/8L/4LyktDujv1r72jXdHugfsQcX3Qu8/iBuAIDO7Dh3soyAJAk7j3NnwNxk+qHQkEypvXiffi7T/cUUY7R+jSjLy3dgSekWPN6tpRAfSqYeuDMiArYzbA+qBo6KcVB4KlGlU3dPvE1p/57ee/d1ZB39lfvzJuO+N1Y/v0Qt8abWsOOA1ziureoZtPvUqwcs57hN6MHnpPOhavRjRjdEfvl+pj0Blu/P2zDHrfyZ2JWIhPe6KylkJV9QAd359nq1xQzqL00dj7HhPHhgdhxdsBKQtWF9edMaXb7pMYBZCC1TMsF+TxA/LwkfL0HR//7J9x+fZ71m8+MmqNAKFRZUe3J3h35t31M+P6lTI2ZK3Yc2X/7cre69Q3OUk4kgACiEmWFg7fRqBThCD18IqKOxw/c9mZVsVCf80oYmSr2xDxdhvJYucxwStbFxP0ATwZzYpbOE+D6SyTaJ3TBon9PotoBMMqgsV0yL5ZR4BOIbI986QjgBh3jKe8pjfT8XJ9COHiDqN1rtsNuV2p1yuLuB4XoizLiSpexX1DQw775W1mYcvGNllP0gc2hG7KdXcdqRTwXs4PLOcnnFJfIwiz0CAj1k5dAyyYZlPEFmU9P1KWyugrIhd639j3V8YL9LYxOjQvnflUPQm7GO0CzuqtrkvjPWKUEazCWGMhxJTbzuDGaFtg651memePSjDmPOEVG6S+lN/oETYoJ2XGGUyNPTlR6gNlfcfy+JF6/gaTBRvFmSTRWoVVTBrooCwn6I2uCuuKrV50ypZF9OYFmAK9gmihlhPvfvYNl8f3PH3zLSaFfdv4/OPvaS9fsLbRIIoZgpaSs7eCSRZgrcoE0dxe3nEMCuiaw1QGfR+uuRite6mdIsPZ07OwknpDZpNh50FoVE1vKRp9Y3laWU1hMX7467/m629/zecffsN/9ukzP/tn/4Jv/vn/jlP9QL2c+KNvf8aPdeXr6ZG2roxlpdfC9fOv6b2x3V5dJyvPUdgzrWfW0+qaWEXoJYCY8khdvPWE4gEsKpwuF07nR5bThT6UvQ32Fuy4KAWVpVDrwun0AOJtlPu+09oOwLIunNcTpVQM2Ddv6Rxjp9uNMW5ctx9p/coY17gzfgasP3rSPqJtVMTjVNsRdahlRFucs1YirbPhJerRsPbqmm7D7R1SMR2An8+6QtUabbKFqu4f930E8OxMJ582urHv3p7V+jN7/0IfL7R+YwxhWQatFW63V5Z6dRFrdTYUUVBD/PyncH8KhxPMlWSCmx22XILl4K2cI8AR149xPM8rCyn1mtbQ7v68TyDffNkx9Q+pHofbQMs6mUQ2Tg7yjKvHrMlK+PeilDTXHmckP8nzwwRVZAYzDoqHELss4WMKsqyUekK1UPCWtyO6Cj8R/sL9VptX4T9TJpMqvUI8RyzsTkz7zBZkJDoMRJy1indroDK1fzLuRBKfcWYVozJiqp7bCE+is6WYYFmIFjoBoEmhFEOkoKG45kykjDEPdskEBULbzAtjfs2DTqmKjAqtIMECm23VExTw+Fll8TYdQkBNsp0943GNVu3gfwc46R1lnn/QNqxt9La71lx3QLj7TAqkgRwVKV8zHQdrVZ2FVEypXVlWoSyGLoOybEjZMLlxffmR2/Uro90Ymw+oqRLaUhPUCb9XvWsli1Fuyzy/qYtSlko9Lw40LZVyWilroawOPA0zWu8xWCnsewyBsVax5r7LIFrkhNGMvTc/wzF13SfTEUCDd544MUEixHaf2YYXBjSm/06gaBbwZMqRTAZuLGdEv8GSCZ1Q7KBZxD1NECL3zLCj/fHeEqjmfkuAwgHA+/Y6t1WB5cy2wmN/Tj3I6T9nap+nNmI6if0bjLChWABaGUP844yqPPvEn/n3tyBYyuCY5cCeu/wzipuzjT6Hkgzztjl1AKl3b/cWxIcB7biO0833R28jWub9efuWFCZ/rcCAogPD49s+AmjTu/i4gGnsW/N2cOvQ9wCsYkS5kwEifhbvNspCzQzCc1cEC3mMZMXH//5xU/2Pfv1HAU8+fUM8ADXXoXBBcW+zI3SBnFp8cnpxKd6CYrGJJYNXF5j0DKCEYJtP6KjLyun0wNPTNyCFbrB3F101dhceR6iLeO+1DPZ9p7Ci5YxGm5//GXpLgrd6KN6vGOKjUk++PVWROhzhN6WehcdvPlLXFS3Kl08r15dnXr5+JqeSVFVOtbKUwmhtUuRSY8f9iOsxaVnQWvzQjyX6JJV6WnF9gR3TlzC8w/VR4qZHCjTXDZgtMlm8SiFJH/semwpxo4bQW2e77ahc/VDUEpW3g8KcU+osxJVTVyIZTaUUTqcTtRQ2E259C8FdpsWSQEZV/d7OVpZobXSKoRAFJH8//DCpOIClsd9cdE+j8myTFXTsbTn+nyfEjt/MKQviLZJFxVsCIokc43DeE46RWQfyxMdSKHc48IWhZhRcGNdUsEVhVZaHyrt3lfePykqn2M5++8pv//oXfPrl3/P6ux8ozUJHRzBdfZRpz/bETBThp2WEDBbuQae7hZ+VDk/M01HgAcn4iRHn7TrOd7LjNY27ZN8SMrij+v5jwSAZELrjc0xoxLdzSo7nHdpiuaFldMrYYwR3w3qDSGC5viJbg61j+b2PuDXDqwBOyYkqvRxxQ4TH+x7U+OGGzwMXB17EEvTLCpiPRiWM8F3jzmzryGklQ0JUEmdzraVQxRl6LfSluhkdF9jUusDpjC4nbFkpNsB2+gjhbzFMKnp6QtcH9OkjnL+Bhyfk/IicH9DzhVEU5lQcdeCuDC7ff097OWO3Z/bRuN0WtlrpS8VGRXvzeLcbxLQ/uhG9znFDmt+T7vcl5IIoEZhKgEeK4cW/FHcOR5g2SHRS0ycROjd5Ai9hAzS0BaQc+2JgZFfxwaiD2b+Xmz8DW80g5fgVMpC4p5gzxLCpkhFvJDPvyNYKjCPQ8k90/CsqsmlHejf2Fsw7AUqhlDV0BQNgz1AujqNqDQApgTLDZFAiSOqj0/ZX5FbQ15X1cvFTWJzCL2U4gBkBmKLHWog5y0KEyetGqHVFBIYKIrsDSkCpuwNqEK1/fpHejhj7NhKbsqysy0oJZkRPdo0dZ6S3jb5viF5hbGR7kuk+01RvqZcIZ6OCO7bYDzKriBabz+2260qKrIic0HKhLA/U9Ynl/A5koQ9FmrdBWnfWDn13JpcNpPTQrQn2xfkVtobddoa+eIuYKqPgunFrZTmfOD2cOT89eLFdcDHwolhxEXPCtlIKeZOPVnAHhFLzLH8uEbxpKdQlhp+MZFFErdby3k5uMof+RPosD9zFPM7Je6HoZHyyBWiiO1p9ytrzr37F3/33/w0vX174y9NHzh//jHL+yOPpQns8Iyq8cqMN/17ff+8g3TD6109+jkyQekHqSj1d4PQApWLVgXVKRZYLdXXgyTTaUxnU04l6eqCeLj5QpBvSurfS4eewLr426+kR0TPDhLLv7Lvraq3rymk9U9SLiaW20NnZ6f2VNq50DOkrra8UlKoLVU8s1bVDjcEYu7dr7wDdgSfJiXTORkr4WzQLYSNA+SieTTTEEHHNpKUs1LpScthOsHlUB013Z0y2Gy5fXFDPFjCTkDco2KjYUKwXF78fnry0viNy8zMdQK2IocMm8DRGP5JOPZKoI/nKOEkoRZxBNYw2XOPTzAf4+LjysGMRE3qckcAFd8HE8ZXFTzdBLuUwq8CyTLCOlNRIpoylhdbj+nPv3yXK870jRnbNN+5iOtdj8tykxqTLbIk8NKaOomnwhOYxGsd7+rtkhDRxmjfxWMbMIxK9vA7LQoNw9Kt7/GnZGqx3PukuOX6TDJMi3w7Gp/8k9Kcs2Qkk8+R4PU+69YjD5fg8wp1/NfyaRAIoTCav4VIffSYhIkQ7oMsXKId2WAKYdte7JtmT6RVKkgYk5pMzve3UCxbWdxes6dGSGliejCxAJ+Bgwf51LcMxdqBTtFNrZ12FWndquaJ6ReSVwQv77RNte/biyGh+pu8K2X6efA95C1rclwD7Mg7UpThAvi6UxYGnel7QxVlPUjwOVwUrw21y8ZxKBlAGaCcHeOikfKfOkkY7vbflSff74m7ad+P9QByb65KfQWfMxd3jjrQnR11EB0rcI4vnT5k3yWia+f8jxo6f3eX482J+ki+80ZbKs53vZz9hOMbv5n4Nv3doyub/4znjKJjn6VPT/HQZLL0BqN9cW75Snv/IY/J8ZG7hv78HnuJzxNmPZGy2II8+YlKwg0wS19D34Yzc5oBQC12nFvnK6NC2SPjH8W6KzFgyGXQGs2ibefZQ8wJ7ifecLacS2qrqrPgUCxcJMDx1UQn9J3P5gwQPu8w9Md/v308L/9GvP7zVjopG/y3VqYhqHoSKrkGDduehZaEuPtkOKbS2062D+vjYUpSiBWjeThcV1aq+CAk6ff/zPwYpbHtjb4PbrbI38+koYiyLMVpQq8eGslLUW/yknKAG8BSGzzLIV6MLmFZ0uXhwKsMThHZ14EkL7779Ge/6Nzy9f+TywwPPXz4jvxNG35HRqVU518JaC8+fPufxj2AxK88hkL6cAmQSyjCnZdbCej6BvmJcMb0xpAWtGRB3hUPyMDt91oFNy309nfHo3QG4MPqozM3o6/zM7bbx/PWZh8cHTudzjHIPLoHKPPitNRQXyW0hCFtK4bRURh/ej90GbRAjkx08cbG2aBnUA/lWLZPpciDP4fQs375ED30k+zHNQnxZg8WTwNCd1Uyj+MZYhZMWR3KLhIZBTBnAnKrs7SNhxO56z4nKgo9X9eqUMtAxKNapMUlpFINF0HPh8rTy8UPl4ztl7TcqV9rLj/z1f/sv+fTv/pr2+99z2o1tN1ozZDk7K6e5MxB5M2SYg2ics2AyFomWokjbDpObKVwwSkyQMRjZWx9f9+BTfNR49p0dDuDoAJ+ONhs43s9fy+aa+ZcDLc3cAXiLjdBN8lMgKDnsw3VdvCqqbUNHR1QhdZH6zjK8NbS1wbYbEpqwlgj+zSjmYCVDsO5TJ/o4Pum2uRHHcIr7rArh+q/m7QQSDItSKoq3+E7mjOTocz+/PQAIXTTsmnCulSqKmo9A7WO4QHcp6LIg5zP68A49ndH1jAo022ltYR+btzSUlfXhG8r5ieWbn9OXJ+Tyjr5eGAFYDS+pRDInyKos58rDn/wTtufP3D7/ntcvP/JSKtdlgdPJW0ttYHvzIQcdr9AauOJh3v9QKpxBYYTmsZxOVAtdJ0f7PKmHSB6GM0O1OpBU8tRm8i3kWN4MZrRItKSkBs6IZ0RAInhyIKFvIfk6JTd2VO7vtPbijGAurG420NHiOjxwcMAjTlEUSLJq5wVpjcAskxnu7LHrxPQBexuUHhVGXWI0/AJ1oVuKZ+4MmrdHF68qeQEmQSOHZ80M7cZte42AUlhOZw+AiiK1+LqbeWKv7lMPDaYRLSV3wUkAT/6+Cubt8Uhh3zuIJ8at7TPw9N5TReqC1oVSF87nB06nM7UuHuy3PgsQWfDouw8MKdcXv396cg3GvvlUlpzWM62b21rpxYtCo9zpj3mt1WOQBfQSBaYHyvpEPb1jPb/n9PARtNKGxiTLQW8bQsX2nWKeWLg9L1BXWK7ottG3jt12mn7x6mgkB1oLslTq+cTycOb8eGFrPsTDijCW4t9tYRnB6Ev6WU5zzdRT/VcSlHbXAvM1KEuwokWdqWRGb0Frh0MDULLVzuZ6g8wzlPtdIVp2arC5BuNm0Du97ZyeQG3n629/y7/+f/4/OP/iF5zP7/j+n994+v7Pefr4F+i7M+fLmR9l5yadTWB8/xVZH7B64Vl/Dd3PktYTWk/U8yP19A4pJ2S5+BrXgp5XltPi0gK2s7UbfTS0Vpb1zHI6g1TqMErvLCOmNirURRzsPDvjaZiwt86+7ZjBUh1AKuoAQu8j9uXG3l5p7QWTQumvlH5FTVl05VQvrMsK5gBOb880a4y2x3CFAXTauDFGY7AHeAh1KWTLCSbBMHNn6YPBnB2+LCdOpwdOpweXoQiABby9w9lZO30vNPWko+0r0lawlTFWT15YIhK4gK30rrRu7PuO2QuwYyxhnCXadfzc996nzXKzmUydTPrct+V0plqdObaMQSvuB5wVm5przoYMTOco3gkp6xYhRMYxnvRaZkXZrxTi7yZpexoiCzaFxlMnqB8FtBms5G4n1ie/AiRAyCEXpNaQ1pACqUg9Wu2EnFYca3FHpTiS4GDMil+OAypG8ocmLjUT9QAkk+ktR+xEpI2WhbiYSj0idtF5fw5W1QythAn6ZSEQHOBy8fgjPstiWd7nAwwKxZaIg/xzJjAxHQhDsygQRWC6P8/bVI64wdyYKdESKw7izS4ZsQBVM7YOm27m2nExmELYkHHD+pW+vzL2V2y/Yt1Zgb11b4eOCV5+HqIRMlocb7cb2/5Ka6/ARtGdpeycT8JtvdKvz6h+xeQLNj5xe/0d7faJ0V4j/snr9DWw2AsSwvupiSbRsqlFkBXK6qBTPS2UdaEsC8vD6nFP9aheAoRw0Ewjx/EitPQBW3egOeVRwj/U4pPKtSutidvc0KOaVj/jlgD6RI+7n7iPxMAn6/bGHqShmACTha6Y4gUlFW+vFD/rw4j9Y4EdHofeMQuXiEg2ZW/jLcHhDTiRQPjxWiNBm3jwT4HlUmTu6fzyeDGA19Tbm/anR+guzuCcRTrm2iUQOhlVea6Hx1IeDwYjVMYk+FjvZFtkdnFZP4AnSQreMNdvws/M6HG8TWjbwJpAE/oGbR+0vbPdEnjyWMADUscmUicwP/3od0uWbaB5OCcjzkk6Km5+S1VKVWo3H7gWvlaLocVbNacFifxnWIuJ0/4ZBGbBNplpf8jXf4S4uDr1qic44a12paxoOUXgsYQApzM5huGLFkmsiqeow/x2bK1xu228Xm8si1etLg9PnE8XLpdHsh9TS+X9hw+09kBvT5QSY5jFHfe+N5b1Riknqq6cTu9QXb2KuFacLmq83l7cQBZxpyOFul68JSD6LNfLO0/O2KFv2KicML4tlfcfPvLhu49cX7441Xy/UcWFLm+/ew3hSe9PLqVQdKHWszO/6onL0we0eIvPEKfhnR8ekPqK1BfK89Up2xgW1TsjKeAEkFUnkLJdrwHkGPvYPcG3hurqB77fHfYi7LvT+LYAsvoYnM4nEA/8VYn3w+n0vSP7Ttt2EPFR83dOfq0rVSrFXB/DRjCeAiRqoweKPpK2BUJoSzmdcIxI+kyzG8aNcb9j9w24i6wPxGR+HfTJCT4Jhwg3b9kNvTurrA3Yh9KHV55VBjPFNK+y5zVhATgQ50w6Ii5sehLjosK3tfJhEd4VY2VgY6dtr3z61S+x52dOrVO2G6VB6Upjp+BVRbof8h5XPA15Ji133+RjIvibwKNlK5MLCmfrTU/m2nxqhCUHYnX3jjNV9zsneiT+pEGTeZYzEIWgmUfIM7JKaBaVRq9i2vAqbthcBwPEPJjpgwZxdoRihrUG+067brRrZ3/tjBthqAu2ezDSt1iO2Y6zkOIUFgCjzQDY2Jvvr4Lvk9YBG5PFI1FB0yKsp9WnQAhHm1cAva7d5moGkpO6Ron3Ua5d2WTF1oKtJ2/tuTww3n+Dni7o6dGp2HSu26NX3jB0OXH68EdcHr/h8vGP2aTSdeWKIb1h+41yWRD1tty6VGdn6MKp/4z6+MTl40e+/vbX2OnE++sL7dPvsNdn5Otn5PUV2zZEd2eR7YN+26K51PeQC7TjAVJUjak14+YA4zrDmlcrCRsVCKlI6B6E/kFgRX5O8z3I12G2E1HwYBzF83gNarHRTadN9GEW1dunAnQip5bM9yJaRfoMSuhXD4Rtn0FOApFmXtUhgjeNcbESE/nm+VNhilrjTLIxKlouXvioJyiuLUFZqBP8HbT9hvWG9Q2xilDo8gx2c8ZFz/HtsKwaccvO7faMFUHXldIuvi5RtHFhZwmdnWgrKG7Th0YAZIKsK70LDEVYUB3UckJY6d3bl7xNKcCvSFRK+PZSF84XB55KXTDzxNan81mst0DvtLbRtiunyyPX18+8fPkBWa5e+UUc4AUWFYTmLa77M21/prcrbY/g0dzGFFaME0UfkfKArk/U9T1leXLGTTmBLtRSKKdgY207VU+MfYO2eeXcht+jdoP9ijSL9VDGbcduV9g3bHcR5FEWPt+ubF8+czVj3xu3640vz5+9OFEry+Uyk3NnOUbrc0mAMhh9GaARpRpjFom21nxynm9I33fgANak8Nkd1X+a42jzU8w8OfLWRsEHJCmUxeO34fu7dt9fRWDpg/7Db/mv/2//OX/yz/81P/uzf8Y/+9//n1i//WPWp4+cvnvg9QTX84kfqayPf8rpwxf6w98w9is6dmfK1IX1fGZdnyjF2yBlWSHa7qQGY4LGMhzcGfjndw6xr0OVxbXxZCAyKEtoZAroEkMhTs4s8LzI2YVFFoSVUvwsj6VT+wN9PHG6PNL7zbWS9h2lUGUBBjY6Ki6srdYY44YPsHGWUxFBS6eP6gZxGNaDMS/ik9BKJOHF2f7L6cLDwwfOlycul/esp0dUFkxczBrcDxbZ6XVnFxDxuLat7z1ciseP7teCKctyZl0fqeXJz+wwT9Dl6us3IunXMhnFnrNJkDTSDmm0yi7xZ3wWKe7nVBmL27Qi7hudGeyMTYm9iIgnwbFN00DeY0SeIGokoc337hBcWNwgJlDb6BCyHRaaW+RkM2tMbSBJcPdIUGfsYubi8+prnFIdzD8dbK/1FDmAIpa6UjjAmIzLZNUadDvaSjTiIcTisydbqbjPseJYGQ2kYBIasaNNpyT1ROpKDfN9PxNh8TJn1ZXJGsrr0Xp8WI+iPJHFQWaZ7W3pABPkczH/FFEf8Vmy0CwccW7CVr6HoAdb6dAAckanhrh3diMkMeHgZEQJOloEnV1OsDuiFXpvyN6xvdGuL84+2l+w9or1mwd2fcdaZ+wdMQdh+nC4MONUMx83//XzF16+fOb6/AX2F8w+QzMueubKj+z2Gev/wPXl17x8+iXPn37J9voDOl59ymU3WtsowUaRIpRafapaifurSlkWdAVZQE9Qziu6Vh9lXBWqOBs2AKARseObQu4YXvwLJmFdKlZ1ghYOxDAHQVkDleFFtwA/nZE45u02ju/ZXutWzu+HCGWpc88mg0vCH3t3gnf0MBmTbpv0Xt84bEnmXMkInOylYd76lfsKDuOAzL0ETIAqGfdHm504YBOglWoCTofGU07RczDnALimtq35/WJIkBZk7vHUHbajwpVX53FnTH8yD+bnz3NN3Sx2bznHByeQgGU7tO/63rzrYe8zlxVRtr4zBuy3Ac2nR24vO/vuMkKtESAWE3gSjCGuD6V6d9EB4Fncx8P4WsQTkNjyBE/LoBSjdidp1yo+lV4NKQEmirOgWnd/bBwTLXsf0dV05Nx/6Nd/BPDkVWX/PDqrvRrUVRd/9O+k5/bR8elIhGF1MIph7MMXtzdHDGtdWE8nzucL63qiLEv0lzqDaFlXSlVGL8g9A4GKaGMM13cq6gGykaigV+O9AmyIxmS6yOJVimsOwJ2+igXKGt5Tj+TmFABP7j81N4qUo0WtqEBRtHhiJCGKqdl+GGrQ3nbzQLXCSSpP7z/wWpTtWufG7Qami4tS1spy8haHunhlr7PTx34kcgFEjFltlXkYsnUOgW3f0aIs6xL0u7jNUd0a0Wy7i9B27xX2KC8FDiUYIRaDOIKimeC3ueFTAcJgpfmL0x7vdwTROpwuqCbBTnDDkw7xIMDmPr/7fBGBy9sHEHBJGNe5FAwjxpZ7rT01OSZ7Ixy6szf8N5qTUPCR0AiIdWTfKNtG3TbWMVhR5M4YYxYNIoTgsBuDbo2Cs2uQ7Pa5r1OROf4bdJ97EOn+y5hgUj7c5jrlv3764MNR/fTvzGqo3D3rcGYS6y33bxwXnQCDRAJ/TMtI2vzxTnJ/sT1HuXuVwPbG2Br9utNvg7ZZCPFJ9D/HtPRIsA7gKYGLA3gadgcuZLHOYhpggiDxsSeTkAPAzGv155m36pkh1r1iGAD7vncPSFVoUhlFsSLIwwOynuHyiD59g54vLJcnZKmIdepWqX1DgLKcOX/8nsu7Dzx+/J6VQpNCV6HRaaORY1Al2qr84yqynDzBqJXl8ZVT6zx+93P2ovTnMw08sdUYz6w7aMNaBB55P82rcSCYFJ8SVWq8TwqvBgOxaCTFKXLqLVpEwEboN839wJ09SBpvODoJxpMf34Ot55JTwYgsQqkrWitaVw/6VRwIikpeJvmea/Vp16xBTpFyQOaOsTe8jWEmArmPVY4eeA1dAxVnA91V07NlBPGR8JizMIquISwMUBm6M3USDZAaijY6K5cE8GXqEUM3n163t53WO7U7PToPnUY7gIag+/R3d3GIs8lqnGqL1glnYowcBR7A04j2CdEDeEpwoS7rbG3SHi0CY8yJJ9ig9EatZ5CB1vDJ5TWAJ1znRYxF8dba0dg3ZbwaXYzRbn6tElgkK8Iakf4JKSdvpw/tHENjMk9lWU4IwigLaq41NLbqLfGjBdjh99yWM7Je0PMT9eGdt4dtGxZ+TzyF5NY73G601tjb7qyPUpwJuIB013MZtxtJ/RAL7ZwM/u4CbjOiou5AbO+dqqHYOG2lG/NZvQ2mc1b7ubddcs+piARX4rEaU7PS5g5xmboBZ3xc8+tvfs3n5Yzerjx9/Janf3blrDun8zfIuVDGA/s3P4NyZhsn1m8Go12xfqWqUauyrivLcqaUhVq8nRhVmlMm4xAXbDhI4u3szPa99DvJZ5iB/DD+P5T97ZMkSZLmh/1Uzcw9IjLrrbunZ3Zvd29vcQAIAhAIKIQQECGF5Gf+zxQh8YEiJIQUgsABh8Ut9u5293ame7qrqyozI9zNTPlB1cwje+bu5qIlu6oyMyI8zM305dFHH/WJVnvs6+RyBeY6fkk12lNSgCsuI6A90Xum9eSAUt+o+eo+sgutboz2Eo9XnK2oMcym98QQl5ZWAozyOMcIdkFo9/h1Odt/XS+cTg8sy9nt1GTXDD2h+HwRL/Xk7CazSimXSL5c76UnZ4WI+L5elws5X2JypXrByaBTwULrqVnYJmZsFKmS2zfrbuJtCEAP33ckhUk1php3miotGPGedMKYoDSSs+E374K8+fuHzx/XMYLOYDjeT7mL1jcm62dEQX3GcnfZ7O88Rmw+bNdgrPiXM1VGkGIjlyFA3qGphB5nU4TJhuIAgQ4e+li/aEPX5KyAALyMHbNOlz3OpKJpZU6qMw0ANuK64Vuk+PsMJkHoVLnNBmZiTFxvYoBZsSEn0EQU/g56wlgsC0vye9ZTRowbRZ2IhF3yImzLjOXtABPG/bcoOs/gcpxlvA26dp+Yue/YXn1YQ73R2y2Ysbt/9RZfNgFNG0zhiBt698Ey223j5fmZ6/MTtt8we0FaIvVO7l/I/TPb9iPb8/c8f/6O/foJqy8oLRhco2AalzxSQnWQZxSjUiloseHqnRmbk4NOKRhsd3HkAH56FNf8LUaOETFRtD1Z0G5GEd6G0MUIhcYSz1h/xOPcrQhx/iWKhPIqljnyoZEd+P/V9O5+Hfni/RuMWz7Et0ckf+Rjr3fTcVRf77GjtS7ikvgsYz9OkXKTyfQ9gHOmT5yA6V0uCRLaYbitVibz29d/3ODx511uOS4zbPzx0eX1z+di4Oc77lnv3j7nPxP2IRi+u3Yn+PFuwWaqW3fiRjW2zVvsao29Hl9tAFZxz163PPq1zcvqvDKPNi7bjYxfsIDMVmCj5z7lNzx+ZH55HNiZehsQzPo2448jjv/DHn+4xlNaAlHsDqhIIolT7zXFqOaUp4J/s1hsOlqGYKz3De6t0Wtlv+3U1inridP5gYfHRy6XCyn5a/o0N3c6y1KAgtmJVveg0zVyKaTcyblFq5ZTeFsknK1tETg0StHoa1R2z748idHiTqSbK8wLSM6M8eYtEoImSteMxTjmTKfvrumUTytdbtRbheyVcC0ryAJ5tF14C2BKDhq5Y3pgPV9YzpX1Uvj04/c8ff7El4+fA5jrWArq5rpyfvPA6bRyPq/ctsr16Qvb7cZggKWigay681RJsdeO9hEwttsGwLIuHsCFwGFvzcXOtx2xTu0hwm1uWNbsSa2KklMkRNUbr11ArfrhikOewvjtdZ+B/tCsGAbZzOh7o3UHZjBzamcIpqndGceBDBBB/N3RG1HWwcU5Pq/HLm50O95mV5sGmh7G2WuGgIv4+ZNKwJYgekZ0BV1pKTni3Dfs+Qt8/oT8+Illf0PuydlmCEjyKRul+HPEUGkeUpqhQ9Mh2AuMhCjOcZA4uTO3rw+mDUcT12v+RAkre+835lPuHMGg5v48jhv6NUyAl2nY53JzXJ9o8POiIu+tjTEyW726mnIm5URKQhIH+cS8h931PAblOoxi6/Sbs522p5vTUDel7RK6rkbdjVah7ur6XcGqmjoxQWc387GlPjHLPdIYyNBwUexsElVi1wPrIyoIxuF0YiOytebVgbAjI17ZdkOKQRF2XV1bKWfS+/fo6YyeH0jvv2Y5P/Dw9h0NUGuc6wvSdzpCXi48fvNLHt994N3X31IR9m785sePNBp730jdz1eKBHVM4COvoBnTzPLmKzSvlJy4PTywffmJp5RpacGWF9K2Ydcr/bb5mqaK1Y5k3xde1HAwyaJVMHp/4tw7IO4VMdA8gBf10ySuP9Vz8f7xAEZm/+ywAhbT1CKrkR4MGpvxldvl7gMHci6k9YTkfFfNVtJ6nr5mtNxpwoOosG2yJ2p9oW8NqwNW9uqZqeKiwsfBGVNsNPazAzEOqJkkRBdSOpHLGZ/KmukUmhVP7Hoh5TNafGBDylfavlO1gLwAQpeVhusTmUbbh8Wkrhg5bibU1rltO3nbMV1Y19BgkoTI8MNumzQRotwE8I8DJXJoBY7pJOvAMIBaXcy0th4aH4llObmgeHL/PhiMnjQPsVmb5lmINe+d5XTidHmhnN75JMrWHOA3/3NJgO30tnG7rnT1YZ/19hJXlCNNXzHOSH5A84VULmg5ebtg+G9TKClzOp28nd+EW1qo28b+cmXfbtTmbOZOVJLTCTs9It1Y3u+wbbDfsL1O6nzFi0B1C02e3uglB+tMPA7ZNmTfY7oZWPPJhmItQCEJ73Ks9dhjvRt7r0he/J7kjKYKIeR5b/CPRD4SxgCAR6VTwl8pAZTeW2oBQcdMAtQaqShVO/32hae//kte/v5veP7pe/70v/wv+db+U979+X9KWU+c8wNa3tHkJz4+Fx6+eU/rN2p9oshOVmMtQlYHLTQ5swRRpHvg6oD17voQXemtehtN9zZqv0YPcMfETqcB+/PFQFP285+cEZIkh4d0I51TcUBdlN6XaJNbMXPtl1qfvL1t29hro1plbzdPy1X8dYd/NJt/1tbZo3W6t4a1RqNF+2QUMFJhWR+5PLzj4c0Hcl5JeXXQKdhOqtHaJcMECi0tJDsx2HApLZRyI+XznFCY08KyrKzrmfX0doobj4ma3Q5ZgKB53vnq+33g0ULv+Kh3Sci9vROJs2NYLgjE5C1vPenCFLh3iZ6RPbpZH/XOUZi4z1xHwdpZHjkOw8jeR6vdAJ+G4PcATe4z4Pvk9gBcZ4ooGrY/QBdNnp8kL6AEVDILJOrCrwE/WXQZuN6Ulw3bHX4yQOGEg/jxmcRlHJJAJ4cYtLPmXBe2zjXQsjpjVzLJXNC+3rW26ADJBoA0PlMqE9cRvKvBw+HjGqbWboDwr7WshEP/8ueJ4v2Kjv0gMarWf6bjPkYbvGCh+WIzdgd/bYFgeYEfYu+GoILV5l9bpd+u2L5Tb0/07SXYTg5C1d21Aoc+ew39nPu4oMU+pHauTzc+//gTX378SH1+wviM9E7eXyj1R5b2I89f/o6nH/8lH7/7G/bn32L7RsZBbXqb8Nwo4LtsQKaESHiKTpq0+NZlBV2zA08lvnKiiZfW2hTkjYBzIrRMn6mhO2S9xz3VGfUP4HLGSncR/9z1Ei87ToASbNsDMBsMriFHMJ94ZByRa7iGnIN8B9ttgLDDbIl5vgjiuZUMf8TMKca5nMykeK2x9/qdfvBRXIkibhSzCPBO1YvMqo0hvj627QCbBpA6csTB6pOoZx+b5n7Hj9eR43tmPm9nrtE0an7dZp4vysibcRvcvS2uxzRtULZbo9fu37NozhUL4Kmz3zpt8yL6dnMZllAecXC/E4CV3xsG28uC2DH3wgH9wVjjo3vFCyU2t56H2kar1SfHZpcKGZPHY0YORO14dkk3L1hu+7BTTODpX0OJ+J3HHww8LeujBwjNE0Oz0TYXgsvRTiFi1LbRxae4pZxcgG84Z/Vx9T1lSlmgG5fThVIWSlkYQo/WayTjAQqMvmfxALxZaA+F01nWxbU1oooirVNrY9s90OzdexPHHqrVX0t1ZSkligyZ2qpPHKixqUyplth3o+6N6/Pmol81WhUKpJz55peZ56dnvnx+RilOq9YF0wVdLpzffKCc3yKpOE20mTvEco7Wv+7hdSqc37znzdsb15ed63Xn8+cXxiSOP/nzf5/1VEgKt9348be/4enpBembu8jkIq6TsXCXfo9DZdZclHI3avWqGaZ0q+x1Y7/dqJszL7IeCHRrjVu/xQSwAtUPzu1lC4E0R00ttA6sWxyVcOhDL4ZgkYi6yGgPhtYgmE1ofzy8mpJG5ed3NvfPoRXmYRuB+uhnTWMikBmtpcOwxgB5IPQ0IkjTBUkLqgsvlkFdu2J5eI/qAwrU699z++6Z+k9+5Nv/9sa+fc1X/9FbRBJLOvGrX/4Drud/yY3EkpVcjdpdJ8owTDvVhq4BHIPdjz72YVSGQR2fe9BH3UkeKzGFZpFXicvvMwu/Azq9MlbDuTOBFYv/OWPCQQTfKwmN9gjwMbypJJa1sK6ZnF3jLWf19hoJSq921xprQT1u3loizQ24NUF6imBLZ7WldZ+uOPQp22iXaQejybfSAJ7GFN4BSwauRAih945UaOLOYzGnWOc8LLV/eWA9HGzQZxXMYipVLqispPxAfnxHOp9ZLhf627fo+Ux6eOTy4WtO5zOXxzdoTnQ6p7axR+UklRNvPnzg/PDI6fGRvTakVh7ZHczLTrUdE+Rac4py6z7CfOhHyPJISW5by3Jhf/qM5Avbw4/06wt6u2LXK+12o50/Ilc/++1aaVeoxVAtmCS6KrYEkC0d+orSSdJdh8E6TXEgQNRbGVI52h2Ceu6bdDCmQhHexp5xQHuC5EMoMjRUcokR2MvKcrqQyuoMFU0u5B0MixFczYALB0FSa+Q9U7eCPFfarqFZYT5NznyayGj/E/GgSLOLh/q4+ACeSkLWwunNW05v3/P4/mtseaBJZpdMH601aUXKA2lZ/Przii6VtJyQly/eVn199KquCbXt7luRyZLNy5m0PASwtdLNx9SLRnFDCqInfNhHmgFnSh7oDMB1DlxAZlFARHzqVjCmWrSj1dYDrHdxZ1WPPkY79mA7iJQJ8rmR8PYlf89OWTJlOZOXM6fzS4ywrvR2g14Rdmc3tYT2HVleYG9YuXn7s/h0vSwrSU6k8g4tK7Keor2o07drnJsFrNGXTCou6FzWEqBhRvYF3Xf67QkLllUvK2oPwSpOUHfYd6fIR6KTQnuspIRFO+Lt9ozVRhbhcjrD9QW7XrnV6pJhW0e2PnkRTqQL5ly/D7xdE28zw2QnqYPzhgS1JABZGwyq2NM2WOWG2dAmsZnfIMRUK4+87a6oobuhzZMTNW8LWZKw9U59eeLjX/0PvLz8wL/8H/4//MV/8X/i/R//Y95++xe8efenlOUXvH3/Fb/58TPX25Xb9QnhBZXmzEltPvJbmOOelRLAiE9w6xIFoIjTvP0+Uh9xsHgWUK1Hh5sH8KJKz5mUfa267Aih5cUK1sh59RbSEHS3MXBCQVKw5hH6tVGp1F5dF9FhHwftonUohQ0TSaFzbGzbNkWMzbYgmCjr5YHz5YHz4xvK8oBoxkRDBLij4mfcPazOc5rL6kKvfWE9nel9o7XKZb8GU7NTykLOi4PA6zoLALXfYppUaL+Yx17W6x1jwVPKlAqjeV/V9VZHC/GIHYaIsgNlITgbIdmuCtxizzEqE7PSr7PbpB85bVzDvLcqAeaMdphotbOj1Q5rWCt4y3zHrIKNkVf1DjT5feBJfGYd9ztAnNk2LZN56NcTwKURRSZnD03GkvlEuZHU+lCIAHjyGWewOfBviE+aVp9C1q2iMR22UecaOGgabCRLr3sT4/o16fz9kWx6F0WwuF2/5GB4hN8bk/u84JdfaaceSfZB+b4XTp9/CiHdIAfMcYf7DRzlWHb30y4Mejfp2MzjQzHoA3gSt+97o16v9OuVvt2oL0/Ul2fqywv1dnWQf9upW6PuRt1hqzJbtOfFkMK/G/VW+eHvf0suJ776+p9xPr+Q9C0vn40ff/O3fPztr/n+n/8VP/36Oz5/9wOyPZNbd1kHA5GEZnFbE4ZUtKOpk5bQm1PQbGhRZBHknJHijKdUcrCwE32Av0b4UZytNpCZBlXGmhGxSrAUkQAdjkWW8B/OzDz8w32rnZOwvY3a5Rdc25YZB8UvHpjNEdPHanpneGQVFTh2wIHb9ME+tFl8IXzU/euNF71nKvlnCUaqDrbaIVL0mtB45Du/T3Qcxjm2CSz1AT7Flbe6M2StUnWbV0o53ux+IeabSXRPxL0IIMc6Xiwxjwtcfyu0lKvr9tVq7FsPwCgYTZHLeCeRr39vUdQKYfFe8b/3FBIQfl7vyRVDZU9MDgAvMJNx5gaYeazbmEgegwcIVl2AXy7UbFE89n3qwJMDlUkVzRIFFmN2Vuno1hEO1tPv5uK/7/EHA08pL0AN+le0I3C3YQMUcICiuvipJnJJdwzPPtkySvPJbQlO6xrtetFD2nyaiRBILe7IfAtEU5QcPaoiIfY7f5fggrmw8RDqmYDGXQZt5kKioxI/BVrDAQneTuhChBVNCyk2tnVP7FWUkjO1KflqWA/KsER7XTmRZjU8zbHUY8KVBPCkemKJtU5aId3ospFvzgAr68rb97+ilES3jfPjB16er2henPJOi70aFqjfG5gRboz/xWePnn0fwdmiuuZfHixH1cX84HcbE8C6tzq1Pr9GcthbnwJrSlSUXEDqDgw5HP/9FIlpqDlw3BnBvAamGdwmj2oG5jueftC8uXufScvtfiAZydNssYsXmEDQiukJ8hmTBV3O5Msjpw9fo3rG7ML16YVeK/rjjR/+9iuWd423f35y4gmZJZ1Ilhh98GhntHq02GrefTl0BAIwu2cQxGaXaWiOx/HJ79fvcBPC/Y/sZ8+xu9e5M8Kxzn6KXoNOhyaAzarGbKu7u58zqM4arLowaIqz5eKNXG9n0LJDFawL0pggEj1akqJdzoEn1wgbIugTSOrHv8XGXpCYsjeu/2Ao3TGYZ/VWonXUWyPl97NII8AngKtBwTfJaF6R9YHy9mvk4QHevGF/fETPJ9LDA/n9e2fsXM7kEgMQrFK667NIKpTLI+l0RpbiLBsV1vM6kxyd7V9e/ZnTg8Z9lQSpzPthFwMpnPZOSifa9QW5PtNeHICqZOzlhX670fKGZYNsDoyIlz3SWqYDavsz9Ir1DdsVrNHBEzVJaFoCeBoTTyP4CtvD7Bc/KvUSyf+onDli6EGgTyRLE1jSnJ3yvp78GjUEo2d7hdu/kaSLdS+ZyQljJ+3FE5zuTFwIWvHUEiGo9SnEFw8mldtvRZKLQi/rifV0pmVvoWimqC6YZm99LCtaFiTnYINUenL9tdQ7ks+hKdjoPURnRcjlQlnPLKcHUrlgkqhkX1spiBQHnYIh4MmiX2vSTE6u9TJEO71lJ85m9OmNvyfVAD08KMxeBfC9l0K4WPwcNbHJoroPescpbESyoc7qhGXa6t4c8Kmbn/PeWvhz55yaFsgrqZxJ8bo5JZKsJD2Ry4WcC1oWT7xwPb3WNAJh8alIelTkNCuJQo6gKbXkLbCq9JTQpZDUyAnXgaoV2+oU9U6ayOp+3uqG7hstJ9q++6daT25nurNErO6QqtuD+G8kDaOFx+2S3dlYZ7S5XYpG2smu8H2pQ2dEhCFDAESRJ2yxRaKKHOC0uI8funfSbWhnu6nIkBel0+hU2v7C0983Xp6/8Pj2G9q106vwUB7J5Q1vH89ca6MUb3mrm4BtflwJprsy9TtEdK7lKwmAu8fwGWN5JMCKEXuMYSHWOzXstDMOm7fK4JpBvn81AAG3K4P13gdjQAi27/FmFnZcQlNLTCM2S6RUHADuDrqKLj65se/05omdpsT5/Ib1dKaUk9u9YZvtsHs+1U08aI/CSErZGdTmn8es0HujlMXj7W7e7ppcQ1VLDgDA7ZcM4Kl7S3HrDop1694hoT6BsaDBtDnacu/khaYvd1CMsBFGztlFx63Tmk7f67FjPDecpDoWPFO/n91kRrI4qtESQM8AYuyOuTOThzvQ5GixsZlkzXhGfs973jvsSLjmxdwnSmMfzD0R4JL0+DN+bzCINAdQ5ixf11iKICeAJzHfd87Ya2OXz/ZgJCGWJmBzXMvRujZb2EQcNI1E0podAAR350zHvVUvRIiDjr5mcZbmWt6t3mx5H6s1Co+RaN4hDzK+b3bISnQvONBHsVu4b8eZgW6TWQW06mL+fd+dBbxt1G2j75Ve2zEpPADfjsaAkzirk9meJoP+9rTx5cfPfPe3f8/jQ6LkF66fGz/95m/59Ntf8/n7v+flp0/sz1+QVr29KFjyo1V8j0L0LLKJS7Vo6u5Pksz2OikpwCb1f+cUbGiPYYaGnzNG/D4PgJggDIWr9XXV0drp4B/Dl8bZHMULF9M+8hxVv4dDmmzGKKrDOR/7fW5mt8cDuLDYoa/N8wA3+Z0cQn7PWfsdbOju+wNU+/mj9/umtshbwheMGO54nSPuGK81gJi5mPcfb/qdcfqErv14/vjgd6mTHUkm3H92b8qYBSnPI43exIccVQeeagwysu4yZT1+5jVOf6HZRtfG9NJRGCdyjrCRyGxhniDzyAnnwxt/Hee9s28M0GzkdzLv3vxv2FEZel4g6teigYtr9+/NDhg/cgzSgQ87e51P/psef/hUu1T84Ful7uE4NSpoEmP5MMwqvRnrUihFOJ0Werj7PhxsaD3FbKIZAHsrRJsGL+Xs/bSS/bCGeFePNXUKIWgyR+fGgraDeiyCB6m6cDotcwNvW3NtmDaSEiNrIucTZj5ad+j99OStN60unJaVtl+pdeP6/BmlodLIAtuWSMWRede/Wjmd37GczuhyprY4BCo++SAVtJRgPPn4dk0LtjRShmZX9nZjvTywLCcuD294/9U/AnZeXn7i7btfst0qp4ff8FJvtP1GM2eficoMKoNkxwRg0BkQzkpFUAXdcUTrHIL1e7Fgf81Op/ajGjzGhQ/dl968Dcc6Xq3WmLdi96ZlGACnmHaNCprF6zDQeZsWy1xR796mzMdItl87zXBJEWQ6G7ex7S7cRujyjJRHZh+Vs+GggD5ieqGnB9LjV5zef+DNt7/gwz/4FZISW+38zV/9S16un2hP3/Ev/mllsz/mq7945M03K7In+rPRrkbfjE6KqoQHhNWEilBt1BhgTLW6757+Xc8vh5EM5LsTeOt82NzvwmsAaQRoZndR5926DoM02gwHBjBs2gCfeh+95+JJOhrthELKriFWlkwp4p9Z26zIzCCo3wVnkbw1IyjZnV6d3+/4sVB7o7bGXtvRB41MSrNf/xGkjj77Fpaoz4BJJpEfuWOHyd1nHmv8al312IPmyXzDIhBNpOVCubxnffcLHv7oH5Lev0fef+D5tPhkucuZcj4hWakpUVZvv31IULuzlipAKa7pJED2xOYhhf6HjSBfkRQVV8MDpGDSdSQCDhe4TpeCLm9Ip7fY11dsu7F/+cz29IX95Yl++QF5eUZertiXF7h27NajazeRcuLh3RsHEtW4Pf1EvT5z+/wj7Nk1bsCHTQRYr8kD8zEUwR/BNOk+PtnbEPz+qyqp5Dtb7numteZJcegTdOvOKsmJcj5DKlgKltHUs2HubSMC49QQVpLtlGX1sxatZRNEtaOdKZcQR3fV+Qmejb9rVsq6sp5OLOczVh6okjBLJF2xtCDrmeX8QMoFVEiMCYAuXo0m0vVzsL8zvT3HsVfWy3vOl0ce374nlTPNhK0ByafGip5wxlOi9ULBmb8lJZ/2VRx8cuDJCwsepN7R7UfbRASuGue5RPX8PoUc1dURiPfg5PcAgy3YTiOJ8vzS9a1yWSK4qbT9hllyDbfa2Wql7pWtdUwKOV84Xxw0S+oj3nNevXUprRMEhBBpbTWS8A2VynZLmJ1wFoUzVtKSHNRSKFWxXSALsmaSnchWWLhMhondPJYxw98/JZZSsHajbjf2z59oT0/03thyctH/pdHXxceA9walYJ6LTZavuLFx/Y5RKcRZGRNM78YSSYak7GO+8QrrcTc8bmitI30Udjz5PNa+Y+IxCiMdbAmaYM3Y90ZXsCxwVp/SqpAxbh8/sf30mb/88n/j7//qn/P2T/4n/r3/w87bX/1DHr/9U375zYnbnvnyXPjpY+d6NZ5frm55UqcEfV80Ta0r7UYfE3/N95dLbHafVmRMzUNvT3Rb5wNKDq9urdP3/fBv4jqapTyQk7i0mqTwKR2zG91i1LrV0HZUyIszKHqH7mz37sGBFxSBlIuLsJeCBptzqV5gbb1R92vYgsSbd++9JTXnO0BA55mSAYxEQq4RzItmzFKczY5Ii+sOfaf4jD4xM1pvGWzQxT9T2zF7oduNut+43a5eeJXB+E6UIpSk5DzYkAPY8bhDxNvkRwHGGaque9SX4q27vbK3GnKM7iV7hCY9gpCUDqzB6dL4PZxCtDKMKITcgEl2hqhm6AnfhRlnxXor3MBm5iQq7nRDx/6WAKO9id5tlrmeX+8xFj0N7z70vcY1RqKGRntaj73A9LdTr0vLZDxJcrFwSKil6XO6Ne8Asep7eQIC0aERk/s0pAUOnzX+fqctOLPwEPZLzJhoRtSRrGsADmlOcR7Ja0R098HcjHRet0MRiewEjkZ/2wiIAnByPVlnMlrdYy/FPbY2tRYdmBKkKbJ32Dt9a7Sbt72224395cb2fGW/7bQ9colgO9V+fHRgTtUSgpmorhdYnyufvvvMX9Z/yuPlI0t6ZH/ufPrh73j66Xu+/PY76vNOvzavDTSBauTBdERotk8bNESvkc2ZITnhtZEFXRNycq1JSd6fpMEwOiJRCwA71tGYjFePs3vkmvE2ghfuIzez2DdJow1flZLTPAMWWl9DO8ILPh7XR51h5lBzex13ehweP/PzLHEAnvdb5NWTbcbwwNQQ9iEjwRCKeP5gbg1GV7zCyAFiox24mNvNMcFuRvS/B9cY+JGztQ+BcQnQaYJ8Y+t2nzA3z+LMFeLrHv+V49yNorUDT85uan2woIA+2LBQb/F7AThZE1oV2s7R6hpn14jXG/YnAI4J34rc5TV9frZ7bUeI7iab1uv4XCNXJAq6dxn06PjxPOluD3aD6tvIRstd5FEjHXW3MdCaV3fj3/r4wzWeJIczdGehSSm5sCwudu0bzHtRXQ/W22iSWoyhjClnzWht5/pyBTwYa2t7FQSPD9Nap5vSrAbVOSNqAUBZwHCeZEmS0Drxyk7r3af3WIgkanItgADMyiladnoo44d4XFmcglfbjdY2N5xrouZE3W881zorMuvpIeDPSt13jJVUHkjZRXtzWlgvb1zoVIsn06poXsjL6rTMkiZC7a2JK4pSlozZBnJjry/kslJOD3Q5OzPqnLi82fiqG7Zf+bt/sXP98hP70yfW0XIYmzW06hj6ARNJxvtoHQCSmIzj69WDoWR20CBHO5wDV+HUHGYnSTgJreyyIwh1b1G15LUzEqWLO1NLCTVF10TbHGBIMWpULXpN7xgnEwy4+9dovzos07CcY7vKZD+01ti26uhzXwKA6F6dHtUFSgRbK00fafpIT295/PYvuHzzNW/++Fve/tmvWB4L+VHov2r88Hd/w9/9//4Jl9+8cLo88/Q3f0b7mHj66Xv+v//3/4aXf/kd9QpbVVKPaUZdnQmFkjV6wQcwMm4ewwQdBsMTQP/36KUev+HGJJzbXe491uwwOcfjHlSxn331V2blMCoDtFQ9nAXGrPwuOQf4nHGSigMIbsAHvdZBh2a7G0uBFu1ivXbatWObYZvRN68KtK7stbo2R61g0QuvA5gajIFYuaG9ZKHfNhlSkajBrNgq4mzEOAsOcOAtR4N2G2wfVXU2n7kWUVeC5p7RfCKfHlnffODDH/8Z8vY9/c0b0sOZvmRsXWYRt2G0pSDR6mLNwd9eK1uv1GpYU3T0WNtoXg0dgAiAm6m313TD6oZZiy4dP2OmBmlBlo6sD14d7J31+uIU9+sL5d0P3J6f2J6fKU/PHvhVZzx5O0jh3bt3lKxkMV4+/cD18098/PXf0l+eoFakNbIUEilYol7ZlZSCoQVCtNu0nVqv0RISiZOK2wbMO/CI0F8cRBvTBR2Gcn2WTA9BThelttj8s/VAQwOrd6RWsEJiQfrZB/elitQNUejtAOVFHXiaTleOCpGaawxarTw9faGnFVvOnN+f0LJwKWdauWBpRdYzaVnRaH+QmBqTJcoxSdi2r8hlYV8vpNXFj1WUt+8/cHl45PHtO3K50EzYq9FkgVQop0ckLQ7y5YWlJHLSkJlI3qKm3irStdHYGGY4pRCvJmEh6u9CxV7t7Y04X8PujGBomFZn0wyNLhd/7gHcBcNH/Tlt2I5Bs5GK4V/NGq1HEt86qpmlKCWdZ8tTuZuYm3KIvAKt3qh1Z9t2enN7sNlOSv6zdmqU5eIs4pIdAOpGykYp4pphXVHLwcwKO9bwNrF4/1xWSs4sywJtI9cb8vAIP/5Av71Qt1u0siktF9d17I1kS7y+33MzqBjUI3kb2n65lMkUGewoJ411knil3xV3AqC36gLvWRmTecwEqdltrDREbhiNJtWXvgtKpu6CVSX3zMutUaWxVcNO6iCUZBZTCsbLdz/x2+f/id/8/d/x25cf+NU//l/xZ//Rf8Y3/95/zKk8srw7seiFl5fEp6J8vn6m9sq1VfreKdpYREK8N3x2AJylJHL2NmobhbnYSw42+d7wib0OSqLRvh/abbX72oo2b6GQG6AeO4Zg/r5fndFNwyUWvDX1fC70ZactV+p+pdeNur1gVgNgbbR+g9ZJTShpJaXCWjJmhW4Lra2zxSkvq8eg+NRgr7AGIC8a+msuYu4akTYMHDImBegdp0CMo0g47BBMTSvBz681OhmzndY39npj215orXpc2ZTUnH08EtoFnx6rIUZ9MJXDvyhTm8WIse4WZ2AH1cHkcQZdr8FWNtfdmbnelDM4+BERiTJYwl5a9/syNJ6mcLfpkRDa62TpVZY4LFXEqibiRegOog6OK6G7JhkhzoQONtMopAdLEi8UiCXEqucO+KAFZ0AVNF9ciiGt/vuiQGGw61tvSL36fp6AqjhIJR6nJ82zFWdY2siA/FNFbjJMkwz0pdvUfrlHZNwuD/bOYEMzwQeJIu5rBsSIFweDIVg196CV2my9AiZLeAT5HmN5XGHxGlMbS8XB7q7Yjmve7I22NdpWqded/bZ5e93eHHhp+CCZFkC6QgstUcxi72aWsvL2w4X1MXP+JmMnsKTsXyqfvvyEtBf2p43bl+/ZXj7SvjxjuyfW7BKDFpQkoWvWe7SgGk0NtEXxcqeLT9PNayKfhLRmWBdSKa4dpkPYXSLNdwhUpmBrgDDSnbktUYHoHv9PwecASJzx79qkrYeWYgALjjDijOG4v6Ng5tvDn2vDn4xiTQApqoMJE9fU74AFJHyvTGDonl0Vx42xrTyXPHKvV4AVMsEROMCsg7kkPjUwwJJDD+pu3wcAN/V24ywPoygcLCRrEQPOPCjAriAVWPdWQY0zen+th3i925BDC2tMXfd8eLTR7TdvswuuRkxrN/Yt9q8J9ebn1Mb+7x53zPcxo8mRzY5Ln2tl90zg0Sky7lOwnsXb8JEpshG2PNGDAT3AvyM3sokoDah+vLmFTzLxa/bCiXnngxxMyKMVd6Cc/EGPf4epdsyN4RWcFELBbrTd0LdAF9J0EGbdD7RqVHnHpjg2l1mF2fBy9I6Cb7jeQHrydjRz+rhFpNKpaKCOkvN00kmjF9dG+0AKDYsUY8dDYLBLjAoETYmSx5K0oCqPjWiv/8R7vZ0x4s5cdKUsRtKMRnCTyxLtdDn4x6Pf3HvOxyhCP/wE/VtRWXywR4K0KKWs5OWBvbk+juYz5fTApb2jf/MtH3/4V7S6cXv+clT7dYBO476FTYw9637GGB2xoopaTCfsTv+Vu8R9fPbRPOBtk25oVRRT1+IIThXWtxA8nbv9zlQwkdtjQhSjiMWge74CSoahsrtXkjtYZdKGjQMNlkk7FhmsnxAjDEDLdTGGixh+IyOy0vURye9g+cD64Y84ff0V69dfc/72Gy4fVh6/Tbykv6PxPf/iv/3Il4/Gx3/V+M3//Jcsq/Llp9/ym7/+W/KnJ/LuY2AZkw0Y2gCJNCp0No40rz6/zP8NzPr3kVzHx3/908GImrpE4/V/9hr2+1/x7gYcTmfsKw9uxnXaXO+ck9Pzk87WLJFg0ZkLtXqvdPNEd7Rg9VHlauxbwzYiSFB61wCt+mwdGvtY5OfrYWPTHM51gFLjR7GSg3rex36SA6gc9pQRSJsrCgynIBOsJQDOoDWnhOTMcr4glwvt4QHevqEvmbYk9iiRKIbkzL1WlgjQmztZa6ReQ0TcgRdP+l2jQ2JUcg+jL8Q14E5v6LrMHvWwvSq4GOhyJp8utO2GpYKen9DzC3b6glV3mGlZyNk1+d48PpCTkqRTziv5fOK2XdmXBdtu2LaTLDl4LAN8CmbDYAlJo1dxEcYuNAvNICQcMZPo+HPW3TgM9wybmCcyq3uzijgFZkMAsbv30Z7BvA2a0hnj7v2+uxjqIbA4HG2wLo5syiu41ti3F/T6RH55Ynm7k2Ull4SUjKUMw09GO5ufH8VHxfvo8PX86GB+XtB8A3xfnR/ecb48cDq/IeUT3YTUjEoGLa4NU05oKqSyUpK636PHuZRImHzh+sjMIMAh32+jmmfR8jH2iZnMQ28DgRv+QkabrAfE1h28v4enxGTuTWctBshoByu5j2KTGWYx7ENxgDWem7ODTmUpaE7x2cxtRzDtrMdrWWffvC2I2HuaBJHVY4jkE9gsJ2dWtDxZzx4TxJ8GQ6g3nc4+HGFZsF6gFrIIZd9poaPVtg3LG5YzUnyioXRnM6hFa1sPBuEMukc7f0wIjsRB456NUeUDDE8SbRgxSdNZXzrtHCZ0UsRaTLs2EhbBgU+6RoerJzcNXJdC4pwkJUVVQ/adfd94fvrMbYHerqjuLA8nLu+/5fzmlzycMkkXTIwqjVvduLYbLdg0qQejmOa6VAEWO4DoEQMRR051hNB+HKCkFwiTs2pTmq2dcsdPdXCvOQModJJqq9R6A/zzuTh+RljQNWO90nJmT0rdE5iz4V17y/XrmnU0S+hch6YpoZ/TF0brGqIewZqPE5/sEjlYhmmwnKYuBtPGwGivOb40QBEmEzw+rwhj6ucoKtqYaMYA8IYuku+Zfb/GcXYwk1AUEC9FRIPnHRNcRihlzDBNR4eDuBZZtL8P4OLwvbHNg1H5Otb42f9Ff8/XjFKZhbWZlA2WxPFe93GgmRcxu3RMKrNwp67aK636WRBBZEyvZMbKBOPJdV4SaQw4EJ3DlSRa6jWtaDpFLJw4gCeQXp1t36vf4wjkBtgs4kXqo7hIxBqGM73i3kaBF/N9ZOatNZ6neoI51mcw1zyGltcBN2OvxR4RiT11x4WYSa7bIW/FGjmO+wk3OZEEi9/f6SfiQjrmOlfgOnLNHY1LvTUHBWv1trq9UrdKq67jNgAEL34MmJLDt4ghwdw7XU68+eo9lzcnLl+d2KT5FNKt0G+FtsH21KgvnX61CTpJj2R8JPY6QJbu+1t9GrGFro1F/IoIkg3NgsSQEQ2WYx9An4xJrEdq7smGDzCB5K2Y8XcsNHIjrpnNFzP3GsynAdrL0eIa62MWcetkp8jx/Psq9H1eoczPbzM/OH5+f2IddDr2zuszPuxWvEUa7313Mo//xfPuwKy7Ozwu9B5E89jl7sLvr/B3LzbYscyYmPCN06+Hrx858bisaS7tHkgTv5NGtNd5m1zvUDem7l+Pr1aNtgfYZELdB7DnILrbYmVIonUzTC1is/sPc0z6848iB5Fu2lo57mf8z+h3LaiHZZlf4xbMtT3ArAEp+Xb16/eQMAgGkqIjyWbNZNj2Y8rpv/3xBwNPPcZaigillKDtut6H0Wl1i0Pm00Zaq0iIcDqt2qA1SrSGFFnndJhWnxgjqtOc5CAxrcAPY+2GaCIvdV52by7wiBhqhXxa0byQUmLN4oLEyWm8Gu0oJRcXNb+7yakfiK4H4V7N3rYr23al7s/U7eo9/dstEg6oteNUWU8ulocT5fKGdVnBvOLVLdq2ckKac9acpRCjctst2tZ8pKJTjBNJjOenyu1a0eVMuTxyenzDT88b50vm4WElrQ9cMjy8Kfz05XssC5+fP/tY4u5jtEdikeendWugqs5ESZHMJkVKRink7kkktcHeqbsDBCNgHhvPVfATNFxjayQa1Z/z+adP1Fulby7WbsHWQGPT1k6rFkJHCalAaPsMS+CsxAOGHlLl/vP7tgM4qMLH7leEnAs5uYC8tZimJh4PaY9WVYWuEkoRiSJnkrwnpT+lnn9Jf/dHPP75f8L52xPLLzPv/vEv+eaPLvyDf3Th6z/6kben3/KX/9ef+PGf/w0//dU/4ft/9t+jJVPrxk9//Xe8TUoRmZRM675zojmNEomGi0u7w+oyKPYjjfPHvURBx81GsDMPkGmsjBx/dnNmzoEFvoaaBrNBCaeABwwHRHz30LsESSCJMUQfswrnU+F8KqwnIafmApviSYc1v+Wt1gAIPIAVwQXrb14F258rtoPtOorGbtga3qkQ8Y8naQLik4JcL8uNYYsAtccZH4zfAcTqdIwOOvYIsiTE6CX2lSfH8dHVAw4tyhJgNxl6tJxudqO1Z7b6ROtXklbyIly+fouthVoSX65XDK/arSnEMbebt/50b0us0TK3tUrCNZ5Oa/apZCIBYnhiqTVAUwUp3sYS2Q5EcDkmELm4s5/h5fwYExY75fE91+dnbi8vpM9ffJVEefv2nbdMluQJNB3tlYevv+Ly+RO2rDz99nu25yf2z19ItaG9U4xgvCVSyJ2o+B7ZbzvbtfPydGXfNvZt8+BN1e1LDy0UHJj0FC5YHd3P/oCkBJ9+Jcm5NXt30UTNbv9K6P+ZCU0FYfWzYobKSm87sr+QyuZMrHrFp4R2JDHb1CQqXr6xLCKOjXb9iZt0TI317SMkJZ0fcBFcBYvpRSmE0ye4o2haKKtyeSf0+pbeqo94Nw8bHh7OrOvKsp5BczAlHbQWzeSlsJ5PzshZzx4C9E7bb2CuM+Kaid4OIbZNEILu7QEpWoF6Nxptrr1ZncGZxliTARMwKvq1Tj9+2GD3j711djPM0gywar05kNB29uqDP1pr9C4YCU2rs5PVr8unpHZSTi6WWqKtgQipWux5drpt3k6473QaeS/OpkwdkZ2yCEkNyR09r6h0avJilLWKtUbfm7PDpIdOlVddtXhbPEtx5qV6287l619g24366UdQoSZBtyckVeTW0bShtXm+W+1YomCaJC1kXYIB45M/xxTQFhPfbN8INNFbKaKdSc2iwDaqyB74XdVZvNLF9Ydi/xKMJ2+fz3QxnrabT+pVFzR9ed5pYiynBZFMRllEfTrwvvH5r/6Kv/wXf83/8P/4r/nP/tlf8mf/4X/Cv/+f/1dcfvkXXN4+8uHD1zw+PfL5tvH958/cbs5Iu7UajPgdsyvddqA7eJccxNOU6Hundth7p9advV2p/YVmDtilVCii5HSiLM6kl33zKrj6QAMPNV2PtNbdB6bs11lZT/niQGZ+CLkIl1a4Xr+wb1euKbFtz+z7jevtmdacnf+8XzldrqzricfUSOmEioMOYzratu0zUfQiibcJI1ByRs5KyXcJlUTsKRZC5eYTF81bR6He2XqPJVU7JR/DSJI4OIKCsiC2UPNCSs60GS22dOP2tNNuX9hzpq0PLMuFZTmBXBAJYW8GkDZS58ZgJ/ooxBai9TNacDgsWk6MSJwHwDqAoulBjz/vmQmjtYRouUMzPey29SHMwd1rjEjpHnxyxmW/14SkOds6dyS0TAVn4I12Om9vjFheAwxmDDSJWyXOEkk6dNcy+fQmWsv9vPhvp3l/a6uklA9w/T7miqK1oFhgbePdnPUxRnHhrd54EjiEmmXmMPEVWeWxSjPYiRzVmEmiJE9I7a4Fl+PXXcj8mAg8/xzfk9ApbYESBzDe6DhNachuBICp8XE6SK3YtmNbhe0Zuz7TX16oT8+020a/Vfqt02596uMQmVbqCVMvVK5n5fK48uHb9/zJX/wFD2/fsbx5x9O1s+9Ku525ftq4PV2xz9/5HqoZ2b1LxYd51FmccAfv151P2bWWpGPZp/x2Mbo2ehKIqcUUwafmLEgpJKLYFyhtCiBptszRHHyI7iFvG670AKxbcwYwarNTZbaihTC5isBgieJxzijaEMx4EgfTJ+7n/d9fPe73kUSMHUxm1OaeCq7R7+A8g1V1nENfq9FiN9oxXwmlj9PaHXhacp7fHK2Dfs0OpFtvsxgoMkgkd3IBWAwMvNvF4/yHTEef8Vv8gyjKOa4UBZ0g0fRxLQOoGS12dugwddhvSmtjEt3QI7O5ZwW4bXf5nkjEUMowjy3ipTtDwwCMZZ7zgTUdwBBywHXjkBuGKx6ONTjuwbCYEEW9u7sxCtNjLX39j64nB8A0Bhskj+WsTTDL7yV3//o3P/5wxpNVr9AGkplk0NscbvKecE+gJKY4SKymiguKk3QcNSSZVz/Z6W336lpSF+mKy2+xKbsNVD47MKHOENBk5HFQ2s723KlyxUzp3VuYSrkEqhxUxuaTV3JJsTfjJncHJa6bB8b7/hIOq9P6xra/UPcN272NzFFUmYkqWBhf1ygxY4qNiQqSnBIqOqqbTATBWqXWnevTjnUXii1L4lYbW4dvv/2Kh8e3XB4fQYx1Fcop0W1xYb6aefj6G3bpPO/P9E+fseuN9vzy2vgQVOM8dEtG/46PPh/C5z0vtC4IDe3VE33TqBY5MFKts9WNJI2Ei3l2EZa0kGP6U0qJJl6F1pq98g1oibYgER83282dUEvePdm97nbYkMP7z4MWxmDsjLlNY+NLHBhHZSTolxEYhZCgSCJLduBJGlWEKgIUijyQ5R0mv8SWP4HHP6U+fo1+vfD2zzLf/MO3PL6Bun/ib/7yv+PX/+yfkG6fKO2G7NC/+w27OijwLhdOGMWi9zbiKy/rNgdQwiimsZcE31fhfUbbxX1wAEfoNWILt/vBeAnb2wakLyNZH80auGEa10WYyh4Mk0CzBGYr06BZzjcIQ6qiwWryJ5YsLEVYUuRMwXbptUbLZlSwrXvjWPUrsAq2dWwD2SSEKNWrZaFHVSRNZuMoDhuGhiCfonNdutms/sOg3HJ8XnFbFieAWelFOF88kb/druz77rZOfa+bBeClRslGyrBZDTWAK3X/zPOX7/n1v/orznblYYVT/4CqkHPilho1HHYNHYS8OMNDDadzRwUh5XRU5ESpsW+0DfaXVwkRB5CznkJTKYcYsQe4vY2pd32eAdVxH5XlckFLYb08kE8Pof8ppNPpsBkxXci6A1raYfnwC55v1ZMig1R3UqvktpOSkWSn9hekOkhUBHrd6PVK377QNxcSHQdeLMTMYy8hwhDa92qsV4qTjFy8I70hvaJ0H8ItkPqGtobtu7cOE1ouZiAZSQ9Yzphuvgd7Qvvmh5E9DloPJk3jvhpk3dvtknWQirIj7UrbXmj1ik9rc9qz9RbX5yDGffIhuQAFzcX9YWuh1eIAUC6KJA3Qrcb5lmkfkzZUq/sUqQeAUm9I6HI4m8yD3t5vE1hyfxoaYaPC2rqPubYebUnd8UvMdYQiyY0cx5mL/fcHHTNG6j3aBaq3v431NKKi5iwdRCjLwlqKC7DTqfuV1jZUGyaV1pMDZsP/NsXIaD7HazVfB+vUttGenbm8rSes30IjqpDSSl9OIK7/2OuO1crWXqKtpqH4WtbeuAJtKRgnZGiI5eLVz9TgdEYvZ5JV+ssJ4YrIjb77vUcaacx0Fmbw6SvrAXRR8SmyKQpl8XdL6rpqYtB3GDpdJpSSKcn9bY9qrLZ9gkz0IxbpTSblfzehKbC63mbjbqAIgu1O/3dZhcKCOBuaG3sXmsHHf/JP4ccnrt/9yF/8b//3PP7yH/Dwx3/Ow7n4FMZ15fl2Y9926pcv3K5f2PfKdd+o9ZnWNooI5+XMuZzQnpxlWRtt30NDqbq9EpCUyHmhlJV1uVDWFUlCXnoUXoSUS/gGjfjd97mQHcARPYDNFLHZnC7WUUluJw2aKf22szW3sZWK5IYkbwntNNQa9N3jOhl6aMGM8R4vj3tFySmTtOBtXjrBAFEjRVbeW6X1AFAtdJ7EWRf+Uq5VJF6lQ3FhfsF9bMNcQzQvzhwUZ5aINbo0ar9iO7QkiL0g9gB2QdMGsoKspPSAaEzNFI/4Oi1A4p3WbjNJyXn4/wE8SfiWHjHYfWQS+isjjuieJtl9TCExUW5MQtWE9UjSjgh2niMioR9Jr4TgspLdVg0hoJH4B7PYWrQZBwhvvYW+1IqwuK/twWzCJSXc33OMHE+JnE7RTu7FZGfPHsBTSkprDlJP6GmCcWHExRlMXQ9GhgRgP35xgEyJ6BDgYD8c8ZivkU/j9hfqwxALUUwQMMU0RfLcvTuBA7ASQucrYtLBPp4BZXSwMPa3GvSGiJJVMHWSwgQ8LZg64Shka6HptNO3J2y/wn6DvSJ7R6IYLcHqchYmEbOPmLazvslcvj7x/k/f8fgnX7M+fI2WrzndHshbYf9csP0Z2jP1fMJuiZYzxgvdnjG7odkwhapttsKJ4INV1OMwK85uIjuLWZdCOjlbUteCLaHVm70NeOIroY+YIkaxaGO3tgc0kNEuNEt+/xMOWpmDYn4DqrP21KvkLrnm+WcPMH7aEnw6MlMqgCNZiv3YzRwslEG08L30c/89tEt978nxvQGCDbjDjql2HltL5Flt7nOTIZvjZ35ALzJAtW4OtolLI0wARGaa5/42NN6coRvMNNWwKy7PMT9TXAsM4Nr3UGsR+wbeOjSRxv6aYJUROlsczKT40ydIB/C04az9JtTdv9eGXO3I44KVOs9igOPjSI1Oi4n/xWHWSTiwA3QaXxJdDzLRCGfncgdXD2Ny97jH5fxXBrt7Rrdx2TKfe1jwKODDnT0+rLvJ77zdv/bxBwNPQ/dhVDlebcY7x/I7l2NHMheDmN0pOb7rwbR1erxmHzedUHhHMPPgeD6HMEoizlzrYK3RrFG7095EMqoLOTfEUhw0Zy601tA82ivcOQ6mRA1NgNoaIoYmAenB+Kn+WWKT2F3g6PiVBweak29M8Mp4OKNlPZHU+8a9gtSiiuPJjQtyezWlxC7RJDy+fcPDmzdcHh7Y6kaOgRqSEpjSW2J9eOTSbrx5+pprVJr352dGm7ZvIL/upDoBMOYUkZgmlEK3qQhIQ/qOdnWaqURluHdaN2pz+iniiL6irouh6u1I8d4OEPi7mzjVUJAQob4DBTvO9jCdYo6MJC3wwaFxOH52GLzX+3V+azjgmKfZq82EiMHYCWAz5H7p+MhykQsmb5HyAT1/TT8/kN8uPP5i4fHrE0u+st2+8P3f/jU//v3fkOqNYtVBpOcnDzREOJdC6Z1ko03LZluQTz5x5+G7KSb+4QbHYh0HSDJu5yv7EedlJOZhNqJt02ZQ/jurYyPgu3Mk8T/tx5IOozOrk/frbXFTjsPkJ8PJhh7cywHmDPr/0DKaqqQeMnn//2703XzsblfoSkwLj3fRybJqjkzPj3AHn01jLTaAiyNgdXbeCLL83ylO9Fj7nL0aardo+QgdFQ/E9WgVSYomF871IKvT2o19e+LjT99TLyv64Q2P2zN5VWRRVJwF5tP55GjPG7atR4BIVDjj9rVo76KHFlT3qTDWYmKoOTvDbXTYoxGIxDawsKvDSwyKdSo+PdOWDqmwNyc9+sQlQmPWr4suXik0Y3l8i14+o63T64buijaFvUJUy/fqE/DEHGBq+07bfCBCHz3z1hmtI9Pdyt1en2i0tx5MAdTuwBM9BIzj11zzqmFVXbvLAPqgUYJkSMEqTA42uMCit9uMRGlULMeet9hXvpWC+u6Vi8lS8cCByaxWnKGi9lrDTYNxkzV78tMavRfXBOkVjT3mCctgFcG0fVTEatyTjLU9XmOfBSBvs/XEq7X9DnhqoKPN7AjqrAfDT5ztAATV2g+ZhM/0oG5U00bFzGaF8DAUI+Cux9TU0Ebz3w02R2gx5lxcfyoYY7MtBPfDOgJfcx/sbLIIlK1Gscr3VQ+9s1o3ksDp9AjlTFpPridTXNupa6ZLRVP1lTVnR41z78xtQetOLovvx5TpWrFUXKR6OaFtR04rVgvU5Npvs61qOK+RCIwN5UW6NLyQeVV8MAXGdOAkhm37dGzO5nWhWZE02aSaJQZGCk7XT1FZ9viqdaP2iE+SMKamDZadArQoUYSPzjEUQ6TRxKgNbr/+jo+3Sr1uvPnwC2rdSW/ekB+/QZcVKws5F/ay89Kd0dNCvsA1+jZ6+MVskHsKgKxHnOGx4RwzroWUszOYS3HtzJTQbDPyVB3gaJwRiUJo6HsOJo9OYIookim2rIBQa2NvzYtvegPxaZ219QDjbbYDDx0VNbfhKeV4XTdAfjYcKHV9pwBNw4RIMCPGOHhnPvVgAUYKEQK7GvHTaFlkphk6bXuPiFJngTPN93Pm24aJFy12bWEjmseT2rx4pAWxEv4xzjidbgEEtjrXUkQiwXZB8RSuYbRuTWs18oQpseGvGaaeAcDM5LOnEeR6bCqvW0fuXjjsSGNILXiIEoCTxjmIBJjurdQmrrUyUJXxn1gOWF1w5lLBWWY52E5RSEvh94fQOCnWQ+N+Dhai35uuDmaOdv9AlxiBrXdGHLmPfyad8dR4TB2uWDKbJsTmVbt2zWA3hM2ePx1BuTJa5Gbp1o7k1wuQPdY3bPTMKmNh5Xgd38e4DIoafbR/RYGrM3x0h7rT9o22b/R9cxtda0y6s0MGsI+rHbGlh0njqpeHwvndmYdvHjl99Zbl/I4uX7MuH8i3FapSXz7Tty8sywu38hlNTyALsGFs3hImcc3Jr1+CwU5IJ/jQQm+xTMUn6aaloEvx6ZKluF5vyg4Cj3BUM/eMHIsOGDWisCZoa9HK5OCSAaSDBTn/G/T+iFlVPTaegtCxK7yrddjBEbnfheu9M4T0e+93rCGZr3J362PPRR5+1xkEByApUeA/ADCPI0Z+4RPTvShCc9Z7Z7RxevzezQH48QIWVzNdvY19EPGrWMyGCpZa7wF2ydztB9tJRo2fXkPWofkeGvnhYDxJl/k+LWR/jynodwDUYDztNv8+gKch4zJyLosE1o5/HOZrhKJ39vLnmdrdb8/nS/iOkceM352SgXf3/D53PF7TRhhxt+b3pIJhT44rMGymWsMeD7DJ7dY9fP1vfvzBwFOrewSbjjD2QGrSiPJFIrgN7ZIYQdn7TquGdcVsD/DGAadaXRDUzMfj+v2JvudU6D0MmyaWcvK+fvXMySvAcmwcDppbrf7eqh1NC7kISYQUtNrWXfRyjpocjWgibjyATPMpAl2p20pfq7O8StDUTNhuDW+LG6pHHuRIcgnQLCn6/BMd4fHte9b1RE6JL0+f2PYX9rqhminZuFwKOZ1JaeXy8J5th9oSX339ntP5kfV04fn6hIi3vtXWqQ26Kfn0wEMkO1808VR+y5ePH905igNhzQi9jUzCHaqls4sj5oKuF29jyIW0VqgV3TesRgWj7mwvT9R9p143h87M21qsNlSE03IJNLhPw7YsC30TlDTH86p69XFNLiq+9W2K2b6mAXbfc2FE091Bg8OVHk84KIMpmAF0o+4VM2Pf9wloujv0AMDG2khCOGP2yC5v2eQBXR9J796S3p94/OUDf/znj5zeKPvTR3789b/kf/kf/wk//PP/hVOCtThri0i8q3VKgsU05DK9B3cEBuP6naYcPbVhOl4VIXSwdCT0eWSuDnKsSb8LRsZzD1lKX78+zsuoSMQr2Wgz82PIGGZsMFtl+nyChDEb7D9otQ+NUKYvC6CjtyCSmFOEe/PWUovbOxxYuxl167TNoKr/flefYmQwhFEHRdct3nBIw+SG4N8RxcXOCOcalW/Bt1USr/Bl8akoKTzq7XbDrHPbNvbqbJOcXANNcrCqcqEXwaSxo1RLtFTYce2458+feFlXXtaF7fHM6f07zh/eQ0kR7HkrVFOhLguDrSZ0r5KNmywOgjw9XyPBjlao7gk91hzwTZm+gqaCJk/QUlIX3Q1TndNgOIxg2PfJopm8eLCU1pXahL1JrGsDmrNXOQoIui6YKi+3G5ozVxpyVWyDbTdu+5W+X3n+8tEnfQUTykLXYbs2fAJoxsnmHtA4W81tiIM7rmmVJksz/EBzdmqSTsIBs1ndq558dDkAkohagNCnswCbkp//LkIbBZAu3kpWG9aNNMqtCHVsvQ5qCbGMWmFvyRNoKeTlhJYV0jI1Bn3zuwg3AlmVUhSJyXOuZZPoLdFbwNAy/JvbMNceSFjqqAq7cLSBW7AKuoNPFoKkQwC8tTptwa4a09oKM8i7CzbREQyCtzxGxXzY5JnwhtD3CEDuDJAnH2OYgLdct9ZjMmXoHeGC6ITJGImXMO55xvoeNmoHCcYPiiwZHxCi5CzUevN2p+bJ+757q4Vq4vZ843K+sZ4euLxdKOVMSSuiRk+VrjtYotWdvlfK6hX72poDvgj77tvH20cLYgnTnbob5WzeHrTd2OrmDOm8REtmx6hIBMrSnVElVJDi97NntufqPtVAI6E5n89cTgtJ4dZdsBhp3rpZlFKy2/HdjcVpXYL+39ivrhXHFDf122fDfkbw7zy2IxGgNZoZ1SqpKrnAUoTzstDUaNJ4uu3UH37kt88v/L8+P/PuT/6UP/vbv+U/+K/+j1y++paHcuHxcqadT7ycLjxdzjw/f6Z/V32zVOjbZ162z+x84pwLLpjshS1RdTZXOcfQhoWc1jmtsRTXzkyM2CasfzoKo8pgOWm0dCsprzEJdLB1krORTplcVlJyPbHb7YbqQnn+wlav1HpzIMJ8aIKPqi90cXZ3zoV1XSfbOwUgM1tNokxuvfmgGYycclStx5Q6o+2wV9+/0ElZydkoJar7dB98M1IIO85Ybc7YBy8k5LA3rpvjaGNvze1ar9z2nVSurCcjl05ZFEmnaF93JoZ1o1WfOO1To+LMq5JzwZKz7axXWshreIzP3cPCDh3fVNXYeyOZAesFlQXRRpOCjC8tmFQGVcH1U8J/2mCHDF/m00+9JSeE00N/q1WJM+iJknTXQ5sTwXSBsLkpFXz63HIAT0lI2VvuVAXUizyzZHWf3cXfU85uLad2XOyHWJcjipJph6fA8kz0xz9txi3TTt+t8fwz9CIHZ6qP340EWiWKwAMkC9tv2NwjxzWOJ464PK51iOGLt7ibQdPuMbQQBcd8MNvGlOJbdcZTtNjXzfeM1T6nGPcW7Io+fJFfhkl1hukCb37xgfd//C0f/uQf8PjtLynrN3T5I6jf0G4rKtUZsdIpWyZvQqodKTH4qnncPYuk2fekJkGLs7osKWlN6JIoD4XT40I5F5aHC/nyiC5nHx6SfXJqDzaowqHLFTt87jcVL7708Hk1GMQNvyd1sPiiCBZajD6e2zd5KsULRsPoMcAim6ywAaiCgyMih5TM/RlU1ZjeGnc7iBJTXCKEjq0fIMM9smEiA21mtGRO1tC4gkMQ6Hje3b4e0+Pk+LGHSv3Y7IdWZeRrU4A5bOu8JqNtnUkaa35frMEewvU+bc7jut6iCmOu5jYikdY8t3W7GkUGIg8yx0n3/SAyzPRjnBmbGQf3ENIrszi/d1z/gG/6WBciP7p/ldcH//W6/uwy7u3Fq8UVOe7Pq+fZ61/lALP63dfPtkF0NP2+T/e7jz8ceGph8M1V/SdXYnwq8aqD04C9kqLSse5GpWP0dvPe9R6gVPPAzgbqC+7Mk5JFwuFkJBVUxwhlo/VRzQwdEIsQeDBp0qg+CL17UNhadYBFHZkWK4xxlG4fXCw8Z8UomGWwndY2anVqcdIQCI9NrLWGQ8qguKClVa8Y4VTHFQeGzBKteUV8bBkNIW4Xh1OWMui8US2PaXm//e33PDzuPL7xqSzOxLJwdgnTTLcMupCXC+V8Ib88Q1mcUiveHuTCogqS0cV1QfLyiJaVlBfKw1sXEl7WSHgrVm/07Rr3aafert4utW1OJW+V6+cvLqzaO1szr2zXNh0bChZT23r31iftUb1rHYsJPxr3zH1MrNIQMAyUZk5aYKC4Mnve3ak7X2hQLj2oM8a0HLqLDjvjuNPvBPUUBStk3mDyhspb9tMD6bIij8rj1wtvPhQuDy5WvNedL18+crs+0erGmpSsfn9aa9HCJ2jv3p9ueLU+3q/F0RnDbYZg5CsjMYzuCPYCJBknP0KViWh7NcV/ZvcI3X1MwmGMhjHxN/Gw9pWmlMXrH6HV/P0BOFmQSCabC4tkTX1ftjBPV086e+9Q8XYt8+mTs4JchV49kHVBKnH6PN7nXaMSbDaqKvLq87nAXQ/k/xDAGx//VX/7cFYMx6fBqvHA8MuXpzvGwTII/ROwrgYvzdgrlPVESzEOer2Q1gucHshv3rA+XCinwra9wLNiBcppdX013H5JVz/b6qidWgBnfnEetPc+qcGDKj3ElOlufzuw71e0V28bY8UsBbU7zkkPUMdibHy8TZVOJ4XuiSLZpxI60OW2Q61G66LfGzUjLQvr4yNg3k70nOnXzPP+zL6/sNdGCyDHSa6hOxSU7zHhKiWdLX2Dgj1HRcsICv36SCnqDt2LIhFQSffWE6+cR1VNj4DN2+YAlK5pgjpeqo+WYVO6+bji1nPs/ihUzGtJSFrouqL6AMm/OivNCntVbA89ue4BjoqQIjnzyqOfmyaGUmKf/uy/sFnO2tkjKffJb9prnHuDVJA8QCrwdsh9+hyzPvcLEZySbB7NsQd6H9PomK2nHrwM5pH3+A/waVb2ZQRJbtf7mKASQNlIIkZC0ZrN6mSJqYve1hGBswXLIp7nxSTDBa5eXBOJod/o7atNXPem7gfjIElyZiKK7Z2NDWsJSc9wzsiayTExV5OynLKD4gE6jSRxrJuJBXNFySk5ZtQaTVf6S6FroV5f6NcrVo36fPUAeO8k2VHp7t/NIgEO1okpvboek4ZZktYQSfRbZePm3S3N29slQVKj1Y1rq2ECfW/u2x6V17GHYh9FDODX7uAOkSR1My8M3PkFb3Ppft7DfGgL1rQ423yrjevLlfbxRz6b8b/UDq3z4Y/+hG/+0T/m8tUfUU4PyHKiyAPnpWBt53MuPH858WwC9Yr0YD/26gAr6gU8WaPFL4pl3UGXbXMdEW9JTAQfHzSRIiZQTc5AiEEPKZhNy3r2T2cSMYcyxMF1DoZJLGUj58L5dGavLreQs7c9rsuFnBZSciBKNZNT6J6mMcRmtE51au3zftyH7IPRr+o6cAL09kKrQq02k0UL1pefP389CDZmCyZ/bdOuG4AEaFsKQvPfo+AAbrBnu2Gtk82cWBXX7C05EUuFHfaWxGGvNTTKXBOpd2FZNNpQhH3rM2kbucLBnpoOeCZZMivozj6k52hhW0B3kMVbaGWAz6PwHDFI+Iv44Ei0RtuYHtYHemFoS5B9f3tLIc5oGe3b6r6mFAeeRBdUXDDcSVkWf0okb3csC7xoZKOAdM8mGTR+O+LbI/d2X9UDWNLZyibhA/2JUa9wextJ9msShYUlGPsrfheJzNi/BLenBzFmOAKPclxc/+6FZTCRvXTqMaZMXGXo8qoqPeUoEHvbXY891qtrdratR3Gxs2+NFn9vNbRy9j5bogZbBMCk07QhBfKlcH77yPnNG5bLA+XhDcvpLZLfsT25VIjlSlob+VSx9EzlJ/b+EeQF0d3Bp8ilNEGO2COVRCplDoiRUyEtiXJeWM4L5ZzJy8n1BktGS2ZMjDNxqYQOocs18hL/i6aIZ8wnWrvfcVtKFbQmRzSINvJRmMUBU4t7KOrMvLH+ZoY0o0Zhadr8OGOzbWtsnpGE3H2NopH0MbwHBhCKMVmzZnfAJ/6ZnZWtR/LR7+JyMQ4Qxub9vNuutOYT/UQHicNBER1nKI56F48RDkByoGzEL0SKPsClBm1v7oPjy5rRK7QqIQZ+dx3xzmKz/kLrUJu9yilG6tDuSeh+EGJ1x72XubavPveR4d4txOuH/Pzb0y+PHO7Onka+MNlxcbNHLi0DvXr1lj978Z9973579LAznYPcMP48Ukv7PZ/i9z/+cHHxEOOyexM7elV8vQ8dmKgYOCXYqy3QaPVl0vzdDvpBcofpHyLlFImfkHJGxKtK0/DL0JSCfejFmCfjSVMAN3rnpBsthGDViFYwGOPUh/EcVSoXMzMg05r/LJcTS+uoZA+KqivQp6yk5EGHKLSevG2GMenNkfPehdYd5a57nZZobJ4BkKTk1+RUSB8vvm2Vzz99xBA0Z8qSSXk4s9H/UkALPlXvwnLyr3I+kyI5sAZYcFhkQcuZVE6k5YFczqTlxHp6R15PlPWEaPJr6Ffq7cU/d6vYfvOEse4k6/R9x7qy6Qt939l7VCxqI+WFSB8gNa9C94r0g/mjrUOTSesWGSDiHUobEP5REyKYjGPt7uxbHBLMoh1nnKdhtB3U6wI9xhb3OE1iSiaTuIA90Higrhc4FdJZePhQuLxJrCcJALTycn1m3zesNxd6jfdrvZODIq79mBeT7Kh6Ge6kvJ9/tOPcG5y7jHAsBXAXv4xw+5X+UyzW/Pc9k+FAzg83MP604cTiuzodlKFik2A4z83BEz2sIR60ttaoTY+R0uYJ8xC2lvkariUgfuMOKmw/2jMZrZABXI6q64yqfv5ZLFovbARlrw3iBCbv9xhE8uGBYzeo1xspK6fLySeyYa6v5KN9XBSwG7Ur6IKlBUsFWc7o6YKeL5weHlkuF5Z1pXcf6y1XRbVBdiDd19m1f0jdQZP5qQa450nw/cSaLiPwPYJEa5UmLk6rFi1yZNoIDjkqqg6stLnFnPgT7l6ya49kPQL8jrdIBr/W2yw0pve5Hlam0TO0LFyffqK9fGY36BbtaxZ6ApPLbbM6qtEWqOraUX0G7e7EXYDZg0PJGiw8n0DVYQLhEn2BKSdMNU6eTbaBA3oeubvNGWCLels2+Thd1vF2rh46LjJ/F10wWZB0RtMFzReQBTP3HTT3gdor1n3anFeT74CnrD5UQnD9sDhzoy2cHuLqAVgNJimp4+wctzli/WirlrC6o+2u1Qga+zyuFue7B0vX4mx1c7F/jWMrYZBUhmrpQWOHUd12H+MC7ur2LBh6UZA8wCcbtz5suozCwTDeMTJ6AD7d/6zBXkN8Ml/SRJLMklcHhpMzI3uTO7+gUZX3Ty3dg8FUSkoAAQAASURBVFD6Rl5ulLyTg/3io+wTOS0zAG+tT/s37kfv1dkL0VaVxae/dlmoQBPFXp5IpxcfF75+dsFc2TBcMB3t5JEEBtjmQIgyJhR5nNigqftVtvAvNmo5iAit79SodKfQddv3Gp/Bz+kAn4ZPUFG82N6xNuxggGFjXwy7QuwtA20gbez/sAnNqG1nf3ritlW+fHmmpMzLD9+zlmAs2dcsD4WyFtac6fsHkkGRDPtOvYmLulcfFtPrDuOs2eKTjLt6S7xVOp19C6nb5AxtQtwbnIFo4AxQEU8gW5ospFzWsEMWrlLBnC0KRDucUnIh58y6LNS6s+3naafWsnpLqPfhzEnJOafZvqJzSlZMkxRcr2X6nHB6SPieoc+TsC70HqDuBN91grIDTG69R3tvp7bKbHXQw55pyljPCA2xHPuOaOeN8zkSiJHkGW6jpmMPwe24nAHYjUluKkLPQnFskJQrA+ToNrzuXZL4sxRF4vN18ffx1kif3Cl9QSLG9QtO+CTsu0AoYuqJn9AGouLA6aTNGD158RERJBldlRTrokLkEEIuzhoeOcjwGaMHbMRLx0VEw8wIOl/9fGRNnj+5lk2s99wQ7ouOlRl+llc/Bw51gyMgY/Y+/d5mG/dFozWJwS6WETuM54XtHdc03me+mc1XHIH4sLcWflHjs3ktx0W7e3edTk/0HWSaX3t8VZsskzYrhhrxn82hD5oVXRPL5cxyuVBOXmwv5wspP/hkyq2DVjTvaNnp8kyzL9T+GZMbotXjbR1xhwWbTWOQRXHQaSnIaUGXTDktlNNCXjMa08o1ecFi6gpFLuyMp6O9ykZMbu47HJBwaQTkSMQVdaZ23M42qgE4mOovF/EHTLC4dwtSwgDrbN5Xm/d47L9xXGx+3Z+joa1sd8CT++0BQo+IbCb+DkiNBZjJBOE+R+Z2d1Q41sZ/38FaGf5qxuyxv9QLDb7MgS+I5w9HnBxt420UufzLgUxo1byIHdrLbccHhVRmjOsEq4ilTanNAngap8oZbePY9QGAMWxY2Bl7/XEHAEXkuIc9OKyC3D8J3D6N2Pzn37/P9kZRdaya3dmgV8+dBuPuXB/fHbpTd1sBeM1w6jizKVz/q9+///Pf9vjDxcWJjRrVktnniR8wImGQ0HRJGpMiaJhtXqXoL3ftMA49zA8vMXI7ubi2i4b697IUzJYIyjo5hSBehl7bBJ+sWzRPdYaAt8oIuH3zOStpd0ZALuRyikqYU+fBJ5G41pP3XqdyYkXJpdL26rTEZpRi82Ah0Heht8ZtcwPgU4x8zGaWzO12Y9s2VIWS3InknOg9O9Okg5kLmn7+6bd8ea5ct07Sle36zMtT4XT6hrWUqMzeaFUDIDOwSuID5yQ8PDxyOp3Zbhv7bePTb3+i3ly34OHxPSkmmOTTO8p6oawPrJd3LpCXigMmyVjyG8hPLmLeKomGYmRzkWCrlbI88PL5M7fnZz7/+COkTErCV7/8irbv7NeNj/079tsGW3PAohlWO3WrSFfyBBb9gOqxNbxaJcz9Mr/PjJPCkB7jgyP/coZXB5qzRTxg9z7uRmV0c0oXci8kOZF5zyYf2OUD9v4b+rsH7K3wiz+78O4XPupbcEZfzpBTR6TSeoxBjza1XFxscN92tEc13w5LMthNYpHw3yUdx2c8HEYcszunf2dE5nPuTYY/Zt3FIFuftOvg27ixGtU7DZE6C/Fk+qs4CpNxcud1DXFx94WVVjtPzy90djQ3UgHU6FR69fJCyTnaLl1w3EavRJNoyxVqfE+iPWqwX1TTdIb0qJSGoxzCh/c96r+7Ir523jYf4o+xvsJh1EtZA6QmRLudWeFiz6F+kxYoC1s+eZtXMAeXh0fS4xsuH96xxte2KJZdu6bvz5HE+euIJlI54yPfHQBPIwkAP3UWlebQbOptp9adKkJj96q3daxuYStbYD3OVpUQv/V1iSB0Jj4SiYwzhwa927qQU0wRE2GPSSW9Bx3YfOjz8vDAsi6khxP95UJ9eQNSGeODr/vOvGnNE0vRFg7TCw/NHKCxGAyhoiHG674l5YRG4UCF0BvpHjjIDUSp/WBGrcuJshTyaXnVcmC9Uw1qbWj2qXvLciJJobdGsjWYFw3tV4beU05HcoiApRPohXV9Rz6/JZ/fk5ZHcjqBCfVWQV0YuWRv0yhJ5utJUupmtL6RbEWytw5Z+KjetwCP6gT+oUf7sOs6GZVm1W2ubVO+qo2hDbHmHp8KOoVv3T9pVGr33RPYvW4hahygWVT2XXepIHcTYifx3cz9dwSiPkEzglUzqnmlvnWb+geCM0dExZlD85QmevX2/Nu2sd2u7Lv/2azSaGhJlLywlhM55wBzxBm1gg/3wKfPdTNnoKAkKYBXp3UCLeYM6TS0GnP4ktBPCFtpMQWp1R3pPSTZkrdZIuTlgS1lajkhtTlYkhauT8/sNx8VnveNHN6q6456+TVOdyaLT4509kenhlaYy/kIpooshaEf4cmHgxv7vjs4x87z8wahZdQCIM6lRLHNE54EWCWELEL83iItEZkJDQpJc/gecz8asUrKQhYhK2xbZaudl9uVj//jf8fz3/41P/3VP+Uf/uf/BV/92T/iV//x/wa9vCPnEx8e3/Cwntnf/4IfH97x6eN3fPn0HU/2nTtjE0pOzn5XhZhQZ72BVEyNWgWpVweDy+qJYApQhU634iK8mhx41hLxpWu0aBQe74syjhnolFSwnFnKgp0vuFj9jg3GSNikAZxOv6FA6KK1aF9xzabdz5TgAwN+lhioKpoTirEuJ48PUkywWxLLkliWzJg2WdtGrdXPxuZi5LVVcnHtslIWwAE5Qk90FDZUFemJzgaSMMsYyQEvNOQY3J8OkD1pRkry99H9iPvJDj6pUIrb7aSZ3ox9r+x7pTWhxVRQZLBtORx0+BaX2XCmk7/5CdEtGEbVi8YimG1g3SeoMdiXfd5DjwFa5BrKaANSczBPUyaHv9Puk2g1ZQSf0p2iAOL2KQUL+T5V6ndFdos9oWMDxQey8N33haGI0CZ7iJHxhR8cAtQjcLkDBe4eR5w3/hxfEc1ZfQU0jADZeqzJHbgvWNBA7tPLEUyNdxP/9wxMjyrjiJkIn+v6uoPN65MCVdzHO4iu1A3qzY6vzWibeWdKHe1Nx6UIwTQRoxKs767u89Yzl7fveXz7nnJ6Q7fE85cddEfLC5K+0PmRp5e/4/n2a6779+QSU2urBQP1aLVLi1CWTD4VtCyk9YSsJ6Rk8nkhnxZ0SVhy8X2PQV2QykQCzot1M45i7dBbsojH7O6+qcQ000zLHqvVLdE0e5FgSNJE3OTR56FRRwziMDPyUphTeNEZ4w0GMt33tt9Sc1JIsClVXFO0T720cZ8jh46Cr/XZ8OqszlEg1Nfb8RUbxgY8dABSR2BucUY9/xhFqt4NiQmgbmttfnm6Ikh2u+tC+0Lbhbp32i4M91q3Rt07+94paYXuUhB99wnD0sP3j8/WHVzxdjr/s8b3IuWY4N4QOXLywyER8/Ni/89P8M9hoftcdjz07uze/zyNgUFxCWIWuqI/f5djqeV3ruF3f9fu/gTmXnZr+jPw6e7f4z3+LW/x6vGHi4sDA92cAEFc8Ri92cdBGCOwreLjc3eIUbpTg4JRPfWEKKXs01OWCyIr6IqFDhHR+jYCWW/hyuQCjYo0Z1KMOzMTc7HZlgNe/FQZzquGNoSL9JomZtW3G3sN8dPuVVxnAHjyk5SQnumRhLnm1Bj53qKa7SwbISfIS4oqoRv8GgYaKsNc9bp7Xtbg+aVxfamu83S5sV1fEE08vnnjhjEVSjl5QtbFBUWtolRS/5rT6cRpPbNdb9yuN3L6LR9/+Inby+YiqLqS0ko6ncmrVw3yenJ6e8rOFFAjpU7B9UV8gt7muhfmOhsuxHdGlk7qifUNFE2sqfDNN99yfX7i6fNnvv/1d3S1GBcf7WThoGYrV5yuMfrTffed4LOMihITBdf4fR8FTgA7gYbHv9UiUAjGiAW9xu2vBuiQKSxkO5F5wy5vsfQGzhfkYSE9Kpe3QsSEiBk5KefLSl4yKasLFQ6GQBYXwBstGnZnrOKP+TnvgB2ZP/PEyCn2oVelzPWaMYHdH/27Fxjfs/vXPpJQCbB0JDBasrNXSqISugn7jsZIdj8nHmaNcafz7SD6+MfklsZeDd06L1ejmF876m0BYt5eJDaSOrn30Aw2xHgHx0lGEOZOcny8aQxHlW6wB5Bov7qv5k43GsZc5j4hEgQLHR7/rM7S29vOcl5ImllKwVK8kAp5PaGrBygeuRTyupDWQl6Kj4DPyatpKUby9p26R6vIoOmJotVIrYc+Uz5G2Oux3n4+Yqpf3P6jiBmC41TX5Wj+PqO9dLQgj91wb8NnHDA0kASsedLSbbDsbNLIx30XfOqVGh4AqaG2IzTOj2/YX56hd/rzM1298t/2KyKKqToLyQzrlV4376TqgqQlbphyTy4ers+ZstVbyTqMsbu9wYgkTX3EOHsk6eaaCN7mF8LpDTQrOZ98M2pHdJ0J5mmtzgywht4FPM6AybReSA2SwaJCTkpOyimmkbnAv+uGDYFxG8LAZtTWoQtb3ZAQd+/NA83Wdoj3JsCn8TxnbSpdlV5dw6htxe+hBOtzrNto6UZDqzcEzQN40qzhr5ln31uW/d7IYM50C4r/xKnjtUd6Naqec4d5AUbVBVN7IlBC1HTast58Yq6KHyF6p0uLNnfXSuq9ObCET68kdCicCRk2YzCdQs/HL8R8j8V6jHbA3jafsLcX7LT6WUvJRX7n+UhHMNiF3jwFoo+C2zg00WJRFpI1yuNbrDkQnN98YN98Gm7dbpGodMTESWvdHIwcvjTOoJlPTBNiGIh47JJt2GAiZ4l7KofOTsreXi+hbcQiLCbBMPD2lrp7cW1vNXTFDgb2NArx4VUdYlQYmKn7bvO9njSTOt6uBdjLM8k6loQf/qf/nttP37O3Gx/+9B9z+fAt+eFblpRI64m3777xPbWcsJzZrl/Yrp9xVCysXq/M8eNS3ReI+Pc1Ib2Seg071A9/30PXLs6+dS82tRCxTjGW2wgwfYbXHhce4LyvS9bMkDGfbBpgTH+y8IPDObmNMLdV0Q4pCmr58GHz4SCKqrhOVBJaLwidlF1XyK1fTJFsMUUuii2GkCImzMkLqtZbMPTbBAN8zyZMCy3UH0GpFTT5xLGcmwPU4AVcSc7qCBviYUxIGWgahsDBmpShKKfTOplfu8uy0cSvn4jrDp0xvM1TBTRjmsFcn7WnxRlLUxu242lLZgirDzs3C+LjT2yC4qLj1mr4mjpbzHpKDmqaa/+M9m/Crsm838px17kjdUR3h1ckMT1Y6R5zjF8c6x0xz9wnvi5m42t8jhk08jqNjCW3Ic8e6eAAr6L4aiMRsrE3HXgaxdkwRgwWlPR+vMv4yPH54g3vfjDYwuPKRi7nm8xrhF5AM7oze5pAtB33ali9YzoNwCnYKvPyIukerX0GWDX2W2PfGr023zt1p28v3Kqw33bqttP3zzw//ZovH/8Vnz/+Pbfnj1h9IYk5mJmYGk+ahFS8sJiXRI5JdakUZF2QkknLEkwn9+19hiNH7tnG3kBwJkGs4WS2DaDy+PsBTAR8Lc6eNDVMK6YxBa37VHmNczRzcmHGGZqTC2Q335Wj0DAGY/Xps494e+6RyT6Kde/DH8XZGSzlcbWxB816SEUQ3RuHpp2ZBUDszz+20QjM7fjc43cm8G0MwSw3D3acO4nWVKIIGcegV6KNzgJ4kqPNrkaO0I1e1TuX+jiLkSENdrbFAA4bX9F1MezM8MFxDnrYMX6W491lXjCBqbs4SeYdOPK/Vyd+HrBIOUahg8h7Y/+MfHfeMF/je6txMLLuH/fMsnHloytnWMAjz5oAlAUAN+0X0878IY9/B+DJ5oWPfl7uEmcdPUaDYXRfvQ7QyWIUN908wBPFJ0fkSYFe1zOiJ9CV1vLU2+ik+Wm9t9rb3HzTtAPhn9fk6bm1Opd2OG+BEC0Td8wDfOqjL70HzX4YQI1ATtCMH44uPqmiNaQ1rG8Q7zmEAU0F63v45YUUPWGeMFWMTvLRSwguxD50MG7XK9uts1fY9xtIohts+41zP5HURwuLQu9eLQMf671oxS4XLg9v2F6ubC9XsIXrBnv7gi5ncj6R80o+X8jrmbz6+GNJrquFRnuJNLIyg5jtGbrt7D3G1yMeHCyGSuakhfOyclnPfPj2l3z+6SMV9VGxyYNo3c1po5UDxTabe2kE9ILjODO0uLOVMpgfOijcjQF9jNZFj50jQLJpNydFOo33M9cCKbZSOJF4g8qbAJ7O6MNCeVTOj7CsvikkGBCXy8nbH0uaExAJB1AHGDIO8t0xBxn5vVcchkEfa0EELLEe87NKGOZBq76DsmW8vtjUChiGcQaLNoxQGBURUCWvizva80KluQD/7YrUDVqjby2CmnsjxmzTACJ5cRC11obundvWIXRYNDlVV/DWT9eTYjoauTPIs0IYxrzfVwIZxNTDwHZjtgOPxTB7VcObVnGa3rFPYm2sOWNiOM9mPn2rm7MsNLuwuMWG1JxIy0JaV9KyYAN4KmP6iQZLRxh62AM0qebrdOjoKFKN1EFzI5clWuVcfPYw6gEUJtcvSQTNuQOMFps2K1SV3ddc1FuXx0QnHSLc95USmaxRf3RnZ3F3XiDO1mBOOWgrWbwKSYeyIr2xPjzycLsi1tk/f2YXb1VsGlPmujgruYeYaN2dOWtKCmbKPP2zqBA9/taDGROAqDjn2aphKXzFvvv34v1ik7q+WBP6LmgzMCX1xRl4As4U8MA0ZWISXI02K/chjUozQZqizcjdKEARoaiwqgPRJkIjAEYMDTHzUTFvrYeIsyG7J3hT56a5mO7QAuqtMpBGByK8naxHu1tNae71ruKMkTHmm6MlTmLUuAYoNPRomsap6o0Bjg3gaVLsdSRycQ/n/r3bRjaSrWBCJXXL3CR0smwWFQiQxZlx/pm6VESc8dXaRqsbY4zvAF5Fkuuz2JjUxoxJxhl3vzuSqyETEPYktBu1Zro9kNQ8oZhaMMF2kPiMbdxDxaqEzetYtOYb4smJrNAfaXUjdQee9HqF24328uT7rzWn/Ae930ab2F1rRm8NpZEEymgBDibtnEhnMKY7CuKAXe+ksnryN86mJpIW9r2y3Xa2Vn0CsFWqtdAEMuSuij5lZWToJMbGCvDN4hzmxdlU0itFfTrdfrsh1tBkfPrrjacf/p5rfUGsIb3ydn0kpQdSXuHxPaQFXS/sCPLlI10Ktn3BesWnFNZYb8HYZyLcu7d5SasOuucykzBHZutMdIhkwrpSTZDkxQCNNW/WQxIifr2Pxoq5oY/YFzmSxz6SRz9509+bcUxujGQfENPQZD5akvyWx2Aa8WEsKWs8Z0yaswkO936XMJkXRj2BdpZnLisln6h1p0mlakOlebyhiuCsymTHEA4fCc7UlUJs2ga3D4l4AQcXo31tAGhmvj6ahCJKa8v0tAO8Q5xNITbGuhwAarhGVDOmxZmKuqC6YsnQXiOPaLiwWnV/R8KGMovZPD+jgGJmr+LJkVz35i2zrj2bmNnpTLXs2OczHZuWJc7HXZoVMaXXSY6kcvxwtOCMz+v7866tzsY6Hfvn58CTv96M8ub7W/z+BK96sNvsuAiL1/e9eMd2ingEO0Cn8S7zMeNNjrhzrtERb83PGwDcAOOE5FlqaOP23SZA0KvFvw8x6NGKfRQgR5znn8easW+dequ0W8VqdR3arrxcX9hedvbrzn79xPOnv+fTx3/F00/fUa+fobp8Qlyix+oDeEpKKkouPkXU9ZsKUrzlTktBc0FyFLmI7gob+sfMyMkEz33n8hx0oGE75qTTVyvuZ8rBpx6+PbQbpUW7sLLX7f4pExdyXTu3DeNsDuH3cT6s2/HhiTWegO2If392m+/w9ghXD5/QzeOvCUofe+yQu4idGwCcGUfoacNXxznpcTaOGuhQFuMgHsBQy+lj4/UBXgqt9him4f924AlnAHs4NYl+rpsm4yWCnc3dJLsoYke+ZOM8+V0/7MKdOfjdkzT8xvG9kZfNPG2s0/BZ4xmziHbgL/Nr3su797oDl4aFkLufyfzZ3ffDXowr83U9Puf9NugGPqnw9c/gX7MEv+fx79Rq50HIobOh2YO/GTBF8A+Nul+dJdMawu4BRL+GaJzRulcskUwqK1EPBl1I+UQqD7SWaV2o3em/PRD50XqFORVuTNvTPKbeHci+9TqBCMGR0O3W0XwmJRf63rcUjJ4G6sFLSS4q27tQqYQaIUmTJ8oIUg1JuwNGdUeaQFKsHufa07hK68+kvLixscr19oXWqgt9Bnsh2nYRg/PqwQEY15fPLu5u5ka21qmVYxGApHTyqrF6+0ivN2r7CUsZWVbe/mLl1grrmyfePLzhvF5YlhNIiK2nFEmyr2PJq7de3F4oeYkkx/jSO/vNxSQp2a/p1sj5RDFYUmEpK0tZ2MvCVW88U3j85ityr5xE2D99oV03ul5JOSEV+gbSQqdjxx2hQeGQtVVAsjPHUkoMkedWq9O4sZksjCrxOIR9oOUwigDOilefSLW0lbW/ZeErRH/JbfkaOb9H3194+Gblw68WHh6UdXGdJqWTs7A+PJDPF3Q9QXmmsiMGWcXZcghaFHYXq23j/YdmksisO47KwqC8Kv3QskqRJIofM+uDxYUzv+J1R9DlFZER8NwBXwPZixYbzYl8Xnn77decHh94eP82xmXvXD//wO3LJ/aXZ54+f6bf9pgU5toPEkZ8mNQxitZH0IoH2CKvDNMQkJ8PNxyMsc9eMPZqTooPZeIT82ZFhsNhePvsMVErzNQrwOnnxnAY+1e5ssX0iin2645UVUgl01rn5eXKy36jnFfymjnls4+vr4JYcduQge7MQKnZW47FdWWsuS7U1ndqH2wGQuNG6FRSbd4KkB3M0uR6AhbBSMoLmgqpLAhG6o2UG1ocrGh1o25P3obWq1cWpbqNyIZP+kys6+oT8NI9m0jp4mWekTipGgxdK/HWmqGnUrtPtRQOMKr1m4McuXB5fMPDutA/fGA1+PzDdzx/FNr1s9u27kGp4d5+CHROanUAJqONU7EpYN/2im27j2HuGoCIT5RU62hvCBu9Np+aI8wKnPtqYRUlt42l7Sw9kywjJmjfnQWpymldabvrAOxzDKMH91WgmVD2J9Ytcd5X1nqmVOXUTqidMRF2272V1HtqaeYBVI3z6hW4fYKcrxlPe4CIDaxOYCAH2zNHcjgEkk1c18rSQk4Fk4yE6LaIQqqYJnrK0HZy9kmG5qrveHjlCZi+Stp9GoyIt9KmtKOaWdaY/jRL354MCw6KHZOsOt6UGTLQQmjgEC2jV7xNt9G7t7Rv22cfTGLmLI60IKmQyslFbFvi+bmiNNdo1JFYjZTRT75r2XRae4lWw4zVSu2VvV1ZLwt50fBz4fcFtm0DGyy3BtIQbXS70ZoP/liXB1LKVGTqsyFnkr0j58wjQFqQcuYmCs9f4PqZal6Q077TU6aLUEU8XrGGSCVpoqhwWlIwS7yVlGBKbWJ+rwzabgwxaV1XQrgEM7etmjJSkw9bff5CTd5WS/apW+KRNaP2XHuf2iB7tVn6ldamL07d73HOwvvThSqN57Z5PLg37NMX6u2Z9ulHfv3b3/Dxf/6fefz2H/C//j//X3jzD/8DTt/8MVrecCpn0psLcrnw+dNH8scf+PT937C9fKbefqJII2kjE9mDOxLX5REFC3D2rp1NFXJf4qwqbW+RFIm3yeSMlYV1WWKLd9fGGqBOnFERpjyEDDkJgWP0dw8m4lEYeTV5NRLNAWQB1JZnO7CGTlJXc/kDsk9hJoFpxLcOzk79m2pg3oazlEIpZ1LKrOvK6fzgE7aksG87+76HSHFCdCOps8fMKl2WKUS+LBeW9cK6PrCsD6gUkqwkXaa/VgW6OOtQA2iS5GBQfM7k+hacToQOGg6gCVANI7uOnBEDBcKkRixkHUQXTzSto6Uzp6cFkFdZ6fggHyNPwKXZzsiGnHlmET0OOCCSw+4C5T2yDnqi990lL9qOJrdTzvqMGn8kWwM6eDW5M2K0lEZRfCBQHOsmo7XTbV5tUUic2nsDILp77YMKcxe1HHvsSOxjlwWAdNjcA0DwXOau5coO+/j72vkA9xcj5Lr/lQHmx7kRE6QxwYZ7JkvC90fteMFnN/oO9Vap1+pTjPdG352F7GDBUdQaJVh/f9fistoxNa4/fOHz5Qd+fP+33J5ukApPt86Xj1eePz3z3b/4Oz7/5jdsn34ib18o1kEz/XZjDBMQMS/8JkL/17za7S4TLR7/SS5ITNGcMW3EqrW2EcbC0OgSXGg/liylwVLx9ZZAKVOwefogR4WOkbdTgTVvge4B2OSSSUkZE38n1BVLdOyfn7FdZFjtcRaOHxqELtIBFPkEyxb75QBCB/lkFiPgALLsbghHH/sTRqV/XlGYTgu0zAxq9z0lBBCOAz7agz6YvMDk+9J88rAIXR0owyQIkeq6TptNgfG++8Ai6xbyHc33Yb1jXXIHHnbm/Z3dEoF22QSB/DPohFBs2snBshy/OLtWf89j5iB/AGIjju7/7gvMI334GOR4bfk9X/PafvbGdy/HUX0anm7cuijiyB3Qys+u69/y+HcCnqZgosDQZNKcJsAyPpY762AM9I2sQdsf+iCjehXUyRgajaEubNYcrLGo1i15gYH8agq6m7OGxI6F0uRTS1R8JDLVg4mIhckRsGGdXoN+HToiDP0J9c/hi9xovbFtexTc/QB40j0od34j2qBVYz51SHyMb0qRgNPZ92e/db27fkdvnixYDuflRlAR7+eXTM5AWsilUJaMT7rbuF1fJs3O4sAQgIVJxrRDWr1H1hJa4fLmPbmcOK0r63JiKSu1udMzcQ2e4azcTA6xRU+QxzQfUUWSelIssJwvnrCJUFKhZE960Mzp7Xu+UmFtn0j7jdIrT8Cuz2xbI4liCrX3iXarCLa74brjPIS2hr//aLETCAFr/0oh9Dd/LneGV7wC5tWKQJvNk9+iKwsXij3S8wP59EB5vKAPmcvbhXfvT5R0sD6EQTVXylo8eROcCRZ6Ti7QKgdoiAexU2qD0NIYSH/EFoP9JMhkZ0mKHyDHggAMoz8Sv5+hLSPYnvZII1gPiryUjJ5WHt6/4/HDe7761S/Ye2OvG9c3K7cvZ7bnJ6QoL1+euF1v9K0hw4DbHYwTldLZzRUglFe9YJRKpi6GuPaKKJP15I4w/iJHFdMmJQywoLQzqiAjzok783PjPA3Y8Zc7YurdD8eiyat/WzeOglUEcM3bJ2zHBWOvkHpF+h5rYLRkXF++sK6K1oUeE7YOCmwEhi1aBoQpIG0W1ZnUXIA/pnGW9fRKP8eCMeFaJrGF6i30xAZtP8Rtq3mCQzDSIsAbDJakmRbVtdaqg80QrQ4ygyWGo69uAMfZN+u02unbDtV1zR4fHimPj7Snz7Bfqc9fuGe2qRwU5qGBFvGbd62q21EPm2LEiDV/j70hMRJ3kKJUNFiShtZYg77fgU7eUuPAbKOnTK2Fq91cC8ZcjNKBDIXbOjWW9v12eCr16iKaSLeTA60vBUpxdqgK0m5Ycu+myY2oio/vrsHgmy2ibUcCdKBuUZ6rfu29RXuE22eJLarizKaknsjmXOiasT4m8nVvTYokVlAnC6hrVFjfaSXTmuvhjLbzcRrk7ny8+reNJKdRa429q4zpovMZRwTj/w1dlHDavs8rtW70fsP6zm5XrLeYxnfz+EDFtZzKipbVGdGjjTDERc2IKW1Dm6HPdTPPaKINtSE0v4ub+73b9TO5OAPG0hL8Y/FJO5FUjnK8UDHb6N0n3u67t0TlfEy9MhVkySQ7UR7fct53tzjbDSsnrCwOnNabg253PmUwjJSOa6T5Wmqw2hp+n1ojWJN+blr1op8EDV9TtE/HelSrXmwownJZ6CLoVrm92ASd+t4ZTLVhm7px+KZIFjRsL6ZTvBXZvXUYm2K7ZiBbR/burTH9e77sxr/47//ffNiuvHn5zLs/+w+RciallfW80u0tIol6e0YQ2n6j1iewmKTnTtS3EVE96rFWGNQM7QZVsLpi4o0eDjyFXe8ZpdEVeh/gZ4h09z6TkRmUB2MnSQqmvAUQ3GOdKiORn61744yM3T8kH8Sg+rlV6yR10GnGwtKwWYoi9u8h/m/BBlHJSDqE+VNKLGVxcFbGcJtEUqOUE70ZqSaSdpCGUREN0F+EZT1TljNLsOFVMoKLrM8THXFKSnnmP4O15bbssBgOOgndvKDZp/31tqEeLN1+rLJbmNlantBUMCsY3f2qxoQ7XUB20AotWu6iJdtmy9lw3/Zq7zqWMhLzYYts2orRVu3gVJugjt8DtwtTrwcmADcn3kkY5hmrxHuMVrz5OTmkBu5YScfjX5+JTnDBXrc0TZZUGMQx/n3cn1evGGd6xMMen8lcmyOmk2kLXl3XPXMlgAYHL0L2pHWsdqhe0O97nV9tr9StxbQxF4P28P3Q9pkdq7GQMooZMTig752Xj098Xn/g+4cTp8+fME1c98bzpyvXL1e+fP8926fPtJcX0r6hzZAm3j0TFHQXF5dJppAUBVmNXDL+LgEq9gHIAzFtwX00dscSJRghd/FpT5GTEKGtF5JfATPjftjd/mTcBpn+9R70vGdYTjAxfn5MVAy/EMXU8RpjiNOxJaKDhQNEme83X5+5V8Y+hmGS+9GZMJLj8BNmox02nEoUiMbv9dG3aJMP5vE/MruARgl75Mp+1MZ7BQrS1YHLpvR6APXeIh4s4xYx/VijYeZ/vsfvU477fGD8TUYe8bNYaa67P2/W5H72GN+fPzOO/fHq+8f79t7nPjje57iJx/3xv4y4bQCGMp93POHnwPO/Jnt69R5+WXFdx6b+tzzzePw7A09zJKgKEor+yIG6Ex/Q+tA/akj2A26ztXg0mTj41IMubAi1O3Wx9p2UV3JJLOvJq6pqqBZqF1rb2bYrQ3DYRNCsIegdx6fX6K33FpqSfdksNB969/7grMWrWq0zhHgdce10a1MQ3Cu4jnKO9pfhUFvoPJk4bXtos+Ti1XqTxra9YNZIIvS+xQGdWbonrOHEltXbt3rPmJ7QtJJKwVpj3268PD+5iKrcORUjUGEXSJV8QopTq2U3Ht6+4/zwSBKhlOKMh9vNR9xPGrcH5pI6Cden8kk6QhoGOsTYNTsFe33w6pui5FRI4i1CgvKwLLx5+4b3+RmuT8jLE3nbuRo8v+yoBhup4hu3C+TkfcE90P9IQmFUn+eK+V5rIXzXuzOoZAhxHyfeVOdhNAnza/6eSmKRE4s+knnDli+k8wPLmwfSY+bx3cKHr06U5OykcbAFTz7LWshrYVevFFMDaE1+KPfmlSiNxHoY8EGPNVWyhH2JROPesIuApPHDaFMJcfpXVkolmF8znhofPmyz65CYujaMakKWQrqcuXz1gffffsOv/uxPedlv7PXG7fnC/vTI7fkzJh0pin0W9qcbtndsbzFPdEz1iCBLRhwYrJWxxbkzhCKhsRE/CFC4W59/zp7+kQTIMKE6g0obrzru8+Gu7xwEx5v/zAjfbYOoUsT1BxPHIqjSzqySYd4Ks++7Mwxtp7Oh7YS2FaJSKtJIX36CNZEfzzRN9NjAUwPCemCH/r6tuyBG74a0qPYmH4SQysJ6B1YM8VrfJ2mC1qLZ9RrER9QO5qbHwG5j6tacHao5qnGZnBd0VEW7O3XvHrUIR45YvneCKh3rmXzP9trZrjd6vVJorF8/8ubhRLo9sX/5iZePv42g2zfoIIPbXflExbWkHEASF/sV0G4QLb/ttmNbDcpbnzFyyhrPDw/TvcWkt3YHPN0w2+l2jTa8xNPLT4xDad1bgpMmai7xzUbbd8YEvGXJMdVmIV2LB0Ch+9D2G3uv2P6A5IypoIuPXc66RpLjkz/NPPkS894DNZ/qJb2ivfl+6N6i1M0nWdFdRH7kODlnH2LBimnBpETrWaeLB2K+MxTthiUfF2+7kvZMLW6/ug2RSq9s6tA7Y3SPRKBlkWAI1H1nKABpORLmidTOhMcZETPRg/DPG/t+xexGbxvb9gksNLzaDuQQS86UdSUvDzRbZiBLD3B6tJdasJRbFLDaaO9v0bolwFh36HRens/ehq+GlpNXUmOPS9gwWp1i5NYdMGr15oFgKkh6IMUZtAQsLoxdApRdlhW2jbae6eXEy3XD9itWN7aYUOZtlQNojYQiig0ajMcRW7XaD51F8AmK0R4quBZIKd4yv9fK7bb784tyfnN2hvNtp/XmgXizAJCGoYz2ZbfuUWjzAL8bsw3Wuou3tlZBDcl42/logd+9Da4Y7O0T1+vGX/H/5OvbE1+9fOTyi69I8rVPqVozSd+wrhfa9QUx2F5euG0vSLRy0Eey7F+CYRKtRb3TNdF3t7NWbzTzKURtr1MugV5oUujZpw1jPs67td2r5AMwiqBcJACG6Q86+74zypMxMti/cp7PxY64uLeAWMT3nHRBe8dyaFBimIQWH3k6rT5Y7RNccH/uRdZEKSWu727Csggt2qtVM0s5ObCYiks7BHsv1WW28Zf1TCmrD9SQdZ7pV3o7uA9MaSQ+Hn950thd5H+2YXr7UkbJJU/fMZhgRKH2AF/CjatP+vIWGxeJVzrWFyytMbV0RdTtInKL+18RiTaj+E+G9Rp23S/T46Y0YUj/LevBMq2k1rAUHQXSgy3fA5DmyIGi2C7CIYMwPkec27uUMUKL+7Vjfv7xNdb556wnGUVT7vZVtNbes1wI0ODI/Q8A2fOkYd3lWBQdNwCwoYk72PIScVg45xmGzjcIEnCcv+a6S9Y6fW/IXun7TtvuvuLfdTIM77/GZwKLnIjwXtJBSXHcjJcfP0eb287ysIDC3hrXpxvbdeflx2fs6gQE2XtoywpJytQJGjVYTdFWmjQm28nRfpdktjS33mjmBTxNLWK1LbzbuJkE8DTyMrcLY+qf8ws8BidaCodcgpMzHNSezKW41pQ8jncZGAe1Wm/RKRM2pPcZ443JoxaTSC188iguMeJoO2LysS2iFOg7OPJcjGimC2ai+PMm8NyHRtk4f3q8T4A+g/hhXUZn6wFgjJb+cS0T1MZbdLEJOE3QRmIPm+GTycNH1dFeZ7Qd5pTs2K8WokxCFIs6w1r4+R2+fgSWg1hzGML4bDMjmf8ex2RgwAfQE7bo7u/TBtnPvhfPkTtbYBzr7ID/AYcd5/94jNc5/mMSMohP9K9lO8I8e/7m8504LOzP3/EPf/zhGk/D6Yl4xRQfjdlDdR5NQWlvcXh8c9bWsZZJ6rfH6+14H3+MYhVLNEZbRSblQkoL68kd4bqu5BTTxFLBSLS+U7aV2+1KrbtXo6PSMESYEZ8YZCFMmHWfWjkzpG5QN6ffu4z2gnlt3Vk9OfH2zaMHWgbbbadkd/C1Nog2QC2FRYWUvSUgqU/5ELwVr9WNFlOKtupGV0VZ8sVHoI8Npy7UnnOmW6aTQVx3SZOy7c/0mGqynE6O0A8Dqt6fLNEmaJwccEkZWSBpQZsLKHZ83HbtNVo8Ot12ryyYoq1FwL8y7CnYvD7tUdkTuLx5dLZAJAK9GXt32vWi3h6UHlb29sLtufLweGY1OHeoTzv1Vkns3K5DJD7EYbsgYzSB2aRt9xpTDaM1h+5GKanrq4gctNYJNqRhZHvQJ8XbKa2AFYq+IfMe5QMvFPL7Bz782TtOf3Lij/945c9+tbAmb387orFofyorqSzsmqndg0zBK6jNxB0xDgcOgMEET1DE6NJ8rMZg0YVelRCJROzlbl611ZxZpLgTur5gzWVRmwiWhmFM4TYUkeLrhdLzQloWTg8PfP3Hf4zlxFPfWb7+QP7wjvWbD2zPT9DPvP3VB6TeaNsL56/e8uP33/H5x498+e1vefnpC9cvL9TnLdgAwZRLDrau60IujkC9ooAOQxbUbJOxZ0KTaGveblM79NdteWbuMHq7D8YJ54BrpdgsqPyOURwgh9xdxjD08/8iM+kbI+RNnLEi6QC9fGxrheZ7S3tHqmHsbPuNdvuCXVfaqvTU0JNg9kAPfQBRT86Sqq8Dfn+T+H0SL/O4iQ5WS8nCktRtabCSpvsMR60qrOcHelup206tlR6976Oto6TV7Yl6a06eY8PPR4KwxBSVtlOvVwfmIxGf2jSRpNVupHWZwevT8zPXp5+gPnNelIV3vPv6a56/f8f1uzPf1eYJ6d6w2lCDxXSyCdDm7W7Jz7yIFw9c7+cZqzt93100t5vbKyHaX9yhNszbyeKs1WAzjKq2M2D2aJsGs6dYH/ER8OLr3Ivbcg3wSlWc0bKmaHHcyPaJdNuw65Xnjz9ieYHlTLo8uD5EyaTTQiqZ8nBGFp9gt5SF0Uhf2w2VitDQPhhZfbZM7nWntzGcI1hfvbG3xqY+Gc4uZySfEV2xbJhkkETk5ACua5Ry+FHYY+pqqWentcpo3XNA/p412mbye7Aae2tc2xXYKMtKihHTRxJ1PN//KTNxud1u7NsLt+snrL/Q+43WPk9QtoXeTFKlxP5cTo80WxmC4io5grHGtj2x1yu3dmWvzkqk42L1caqnHpKAqk8jvV0/ATvb7Qvr5QGJNm4L0EhVsdZCI6jx8uUL+76z3W6kciGVFVHjdLqQ8+JrkDN0o5wfkTdvsduNnBa2zz+xffoI5YRdn+F2xfYbdb/Rb19o+zOl7yxJWXCdD80ahZxEluQgb/WWRw95nGU7wBi17n6TzptvvsIMHm4bH3/8SFHl628/8PHHz7w8XxGF/brTtjaZjXTHc9Os6B4J4LiZNpKR7ve3dwfJrBng+k5aFJqQWiJvjf3pSitXvmzPfP/Tr+Gf/jf87Xd/xT/+z/53/Pl/+J+zrN8gecVS4fSrX/H5dOKcFn74rnB7+cSnzz+wRLErJXHbGD7BW1kb2E5FoXWy+Azebjg7Xl20TdMYKTIAXQcue9tjSubRNicCOY8Jm8nbl3tj354Ygr05h+8wodX9kKJQF1nu3WPSUeCfU3gEZt+/eNGhmdFuhKSFawoOppOfYf/+uq7knCllOZI967Ta8EJww7rbs3VdWcvi8Zt0/v+U/emPLEmS3Qv+RBczd4+4S1ZmLd3VbDYxJAcDEIPBYDCfBvOPvz9hSDw+PuDxcWmyq7urupbc7o3F3UwXmQ8iquaRlc0ueiHqRkZ4uJubqYmKHDnniHWnOl0rDI/Ned8be3IwiLo3lXszgHsAEoOtoGrsTwN8m+9GR3EITFl3Tp1bgFphL20CcaaisHNg8E7CjOCVoKv9vHeIBU2dtLwzz74YbVKydqBCWBBMVj48P2ex58ciI/93aTIYGKa10iWS6k5Lu+0/raBSiCFb7jRMH4bVhxfXo4WlrhkUffueozk+J4H6e4eZn9o1UX/Noxhsb+rUkbhY80HvrvsPS0CxuO/Dj/TNz71wVI5yWQ+50KRcqDJZpQ5VzRbCKJKn8zKIW6gwmKa1UveC3jb6dWN//sz1+Zn9trHfXmnFvEMF97bxBt84dZajKwxwt1tdkgZjpyvb98/U6wvXz18TVyfxR4x51RS9dUJPRI3EHpEWEE305PligC6N6l2I7Dd8iNGmuKY0ASgJA0xxUKgOUoPlEU0bfTRWBGzC3cHn0+qDPILJmrs3MbVZPVJaR/UAZ1o1eTiK5R8xoc3iWG+dVovHourTTO34hv39WI8/DizIsZ7Gr+/+tQnTFs/cxupoDPt+jiufqo51yPT+H800+0GwvOxOAjuVTx5ntUO7GwJmzepxzu1zDIAtjFrXY4eMz6IGTFpt0Mxc3JlSrTmgozDBNvrbjy0H9jNrgwmyOPPqzS99fyBMb6Zxasc/B+/hHqS5vxsPCHgy/eXu7X/wUHX/1cr09xw/H6843m8Orrp7tT8yFh973JtP9EcfxT/10dL3jGDWHj/2t//U408GngxlO6q5kXhYrHXt+4BzPG5ZY2qguq4Pcj+KEBKEhIREzGdiWuc0p5Qyy7KSl2wMlmDdIMYJ8L9PSU3GhFJdooJ2Cp3qFOXok4WMqlmdHe3BAdfJSkTEGVUxuhFtmDfykrMZaIp9xpEEWrZgqHdgRXVFu5KidcajqN8APvZ70Hm9w9kVB6/wAliJSYkKRPPwGcijTRgyj4PWBN0NGIs9EtKhH7dEwsZdE8ZnEmJqpqEP9hrafeTqqMJ1BCrbYnq3Tk8Hly9ahy2lxBzFOpBTT+qsUAfo0wzUKKJYseYmyzHZ9DTNCVJFW5gdZzCKNjmZeWkPVjj0Rr/5ZBiGQW23DQmf+haDjeb2AvIHW+4ExlG74aMEmkvthAWVE13O6PlEeMyk95GHD4HH98LDQxhbnl0XFe/+LeRkE89slKzpxlvpNOkcU5I8aAVhTL4jDimduN/BSAh8coXIoHrR8fHfIqY/91pgGOyhOoNn93tEPcnRYAbESoR1QdYT4XIhvXtElkTVSric6cvCJkLLBu7KOZrGeglcvvxAD418SiwZnrIg0rh26ygxNqswdPIcmafesZAsh6D2frB+7oEnp1/3NmRXnvRMw0E5EhSdEWEGdkWm5HUkSDOAjo7kXTA+ZMxjxxiJlk6wlR8+R0cyLkQ1kEjUpBOokoIl8ypKpCG90MsNadkTT/F7MSIpERwVEPEEfIJbfvwazWhczXDYviJB+gQUBtAYgpBOZ7Q3aiw+zrp5ciIzdoZgxXUYJv3zc9tnDKPNr9FM0933J4bosVGozafn1Y6cAyksPFweeV1PlO2Fl5eNT99/R6g3ZE3snz9TX19hL4TaCU3RYiyPQHBtvbFOTVrRIfaZxNhEzc3YK7X6mtPZjEKO6245htPiRandTZR7n0lQIHv9YPtIcB+1TLTbtAdyEKLa+Wm1z+QAVSR1Qoe8NAONwmbSv7DTt4Lum03XS8GMSXOiPpxI5wfCspIuD+SYSRIo6pIwGoFKV2M19VYQNTAqNmfVTk+VsT7sPLRtM5+8KIguVmDPxW83jNZuBXMrJhsJkdAWm3ioNlnW1kP04vxY8yPBmqtELS+orU6GUFqUlA9ZgBXBONhq3WOCJbcDxDUvhkrrO7VsfsxK2X16X4i0s8VPK46z5xOREBLq+5W6VL1pMVZSEPNfkzERS+ZnCg62hhBodWe7dVrdgOpeh/Y7RWgSjDHXDLjcri/UUiilISETQqTsmw0EiJFlXW3ypQoJu8c1ZU4ff2JNtcUmdbXblX59JWxXZL8htxPy8j29XGl7o2ml0Wm9U7QRwLwx7QY1CYgXbpMJLIOh7D6EOUGMhCWzvD7bn0a4PJ5JKaKlcVUoqlCO/C3K2Ie8GBLbw9EBRQ0fNo9bg53alVo60oyxqT59TWo03zXt6MuVyk6tr/zhr/8jD+uJpMrP/tm/YTl/JJ8+2FTYy4n+xZf0svGaEqKd3l48Rrgh++hG+03fvfjoYXiv2KgEY4CaMXZyGa3dxqMQclPm1jyPxEER95dzwzPV5n5AdTITzMLIUASzoUi+Vl0aGGzfMtEtMz8x0H+xOAw+odMGDkh0n8cQD0bQYJ3AlKrjQMUA1e1kDzqqsc4NlB/SIs9bJdiEzcG20k7vtqcHZ9aJ08KN+TeAimOv0Ok/dcfGuXsM9r5NuxOETu62l7RuPqEDGBn5mXXy7Q0DgR4jQjJvnZiRthjAFBYkFCSYpYOGhGo5cp43DB2PlLOy82vlMbF3m+jGlNt5g8K9w0a8naXnCIl3ucUwZAY1D84hJ7bfjk9oyIjHbJ2/OZgcquMQh9xssObsA5hHbJ8/H1nPcdLvM54wP7u99hHLR55+5P9emQ9mg6gxBOfzRxGux3v71zwHIwMzSokDUIVaLK63utObAU5OO7G93AGSwRwLhLme9O6j0O/ysiAGtpdOuxqbCR8GIg4kJcxDybm+dl9qgBToEbMjCVYzdVFPJ8a9VJEWoEWTwYuiYTR/rUlv5vYH8DQZvSLzdSfcoELvgeGPamffmndN1YAnDjla96nqEYtzpkQbjKIhA3UJbhsgric+Y6+fsjfPe3CQQse6u4MWRmmvHPLH5nvzCK8z/ChBRtI1aiq/nEO63I+fj3zJipMRb5nm3ijGUPZVZJ5oRnIY+VxT64v1wXhi5Kud4RU1OQGdCYIN0H7eHIgrKu4+u47617MqPQ73WN0cJ2iUc3e5kcVUJtts3HRjjxmvdB8l572P3e/jEvpL/eMPnXfhcZ+MV/yn/nYez3EMfxy5j4gFDjKJ29748XX/fkSxf+o9f/j4nwCe2qR1zgvjXRiTYFlnhrkQvLYOQycerDgKzt5xozaJmbicCf7zmBfyunI6n8l5AWwcZ/cJJUp3e5pASotr4BWRjVYLVSt7ca+V3liWeJc0F9SLsBiVrpHabAxxiCspCWk5GzsmJvbSML+lzPlyMXmZRJ9855t/6O5F4uNjCdS1OPOrcH2tKBulNjNKbSNhsYu23Tbv0FiyGHsnxk7mKAxxGj69mMdVc4plFDQnkhiVuQfrOo1JJBKyMwYssekt2pS/JrTiG64DJSAMIzlR87cI0qlBrTiKyeQOp82C/kjGtbNtV9a8mPRSImahPIAD49qoG3PGGEgpIinQo6DRpAkpBcPKAqQ1mEmqCFkbtIKWwm3bDiTXr6mq3vkkWWc8hEAUMZ+PGRWtSGojKoolUmF0HFlpnCE+wId3yMeF+BHefym8/xB4vAhx0Fmlu69OIucTy2JS0LJVgmQkBGrpdAeYBiBrAGJw/y0su/eEsHnkVxUkBScfBOqQ14xgI2p3bbAkX6N3mj1aHNOfgGCdFZPWRVQS4XKC8wXeXdCHM+G0ckqB8PhAWxaeWoNkXeF+MlqzJuH85UfSKfL48cLjYyYvADutXtGi8ytIdyq6Jyl6FCVdB3XXNttJ9e64LKbTisePQfe9T5ZUJkNkSnQ9dB+wNNMDaVz7Kcn0WDaC7XxpRpAdxbKMEmFev7FBjA2dbuaF9GTT3LQx+nExB/oS0RxZoxLVRv3mlh2IVPOjCZGwrAyKc7PMy8EnTy6aTXcLPRF6QvpO1EiShPGdhlTPjX5D5OFyAaDsO6UUajWfutaMPm1ebcnjl0sEwCnYzrrrI67ZlKVeDewxLxsDn267afotniZOayY/LNyu39PqlW+/Lnz9+99z/boTc+DzP/yG12+/RW83Yq3kDnWzCV/Rk82OWid+GNOH4IB9pe0bU17qbBYZjQQdVrFtMhqPfKRTObp/gUAkkiUbwKud0HYykSyRswNSQWAlEb2rVe4MOKkdFsPG1rMi0lA2Go0mBaTQXl+NiUiHFJAUSecTy8M78vlC+vgTVgehqhjQZJ1TG3WvvUI1SU90YVgYEpXg6zUmuo2IpN5285SKSuorZEGSFzTdkk+7xBZzqgqEREjVGj6KsyOdfexeM3Z6KyMdGdIrsGJ533dqbdSqrB3Q0UiwBLyPsx6SSb/VDmGPr1Qx1kpzY/ztdiM4y6LsBk6nECjnRj+bzDEkyxVEMoTMAJ4kBWLN5rcVOq0stPJqptO9oVIcpBHSspCSj3uvO3W/ckOh38gpEVNiycmSfgK12P1Ta+P1+dWHpAjLcoHY2G43UloJIXF5zF5gBpJEWyupcvpJJ18uLNd3nC4X6vWV+vqCXl+R7Uq4fmL/JqCvnylPO6XeTF7SmrlSaTtw1hAxFaixm4J/rhAgOfgUPVcKp0xMmdPTd+az0gvv3j/SLmekNajNwO/dczwxGWUYvjkyemMyk+nBDhzg05hA1bugu4GAHaBHYySSLB9Ekdcd6R0tL3z7n/4P9OWFz7/9Def/b+TDz/85p68iiTP5vHJeT4gqz+cHUl74/N3vaG03RoGIA262p1ue6Obb0omlOgjhuWg0U/7FQUVb230CNwb8WJ42PFWCRJLLb0QcIK1lFn+izZln4s0eW9vJ/069qOpeWERnVJgn20pelkO+3TfbNz1+BTHDe8vNsBgzutQOOpkXmgEmxsDYMSldJ8Zhlq+Wc7vU8JBaGEBjslZjb5gvVDxARz+/xjKAw6R4+MvAGxngBDpknkP8ewlK14wBT9HYG+NPOjYFWmzHttdy0AmbBtrriRCVHlaQAlINgIoFtKBt99zM1ukoJIdf4AClBvvRimXbS0Iwml/rZjsx/e5GBevN39F+HHnEzCeGKZGYh6ABQKMwdIBUTP4+PPdGwfsWfBKOnHWc19ldYjRO783F3z7Gq3ku76mn2gHZnin+4Qm2gQ3zd3Ba3ZEpqX8mneydA6wcoNNg8R/v7I2A1mhlN5+2cjNpcrNBU9ydX3XANDi46Vm2H+5d/hd81YrJOG3CsyKlW7yLNlVzFMMpDnDeQEt6QjUhKVniEBQJxaSa4tNlW6e2RiiFae0ZBHqCHr0Zb8CTaj2AaAbjyY6NYY7rx979HlAxf+Cx9qyW65TerUnlIKBJ5iBIfjO1bYCiEyjvxooea8Zi7nEd7ToN5OgHsIeMtaF36wrf51zO7fNU+mC53wFah4DLj6/JVBu0FmZcsKtoMU7b3bp2kAiFWu/AmtGYP+AVugZ68Ol+jN/BlNr7awU/Tly6OJeyehXmGOts2DJD1j025vFn3OvHpxzA1Hgog4Rg7yXCXYRggsk6n/32cX8G7+PJHSz2BtQJd/+l9/f/qIHHBxH7sAaO+5E7QDZxMfij+CF/9P2dnE+sZPXLwggp92fjn4a97PEnA09DoqYOKMzNcco1EoJpYOuYPKK2ScV0IqaFvFzcF8OmHhnwlBA3D0dsPLkk81cpdZ8AV8o2NSpKmptup1khZzqzudlYEDcGjIRkRUmDcttsxGwt9FjpKtQq1NCIscAaWNYLMfrkAN+EPn3/nSWWOXtgMLM0xSUzKqRlgC6BXm/Ubsl42Tu1iJ/qiBGIbSSmdmHfR3HtAjittKioJ++WoPjGJ4r65CFEMeNZR4+xjLSJTy+JaVJGbXRNpNdksr46QkawQn6URxrnShIyqomqEVnPBggumaXuJukRqLtS98Lnb7/htC4sObGmZbJX6EoLShHlXVSTHi4L9ekVeifHQFit4y8SaBIgJC7v3/Hx4wdySvTbjdvTJ/bXF7QU2MQ6s9VumsFuGUnwm5g/EmbPMsbPJEbmlLCQEV2I4QHJH+H8Fe//8s+RP3tH/mngJ3+WePwQfICfS6JczhdYWJcLl8t7lnzm9lp46EIk0bROeZtnjXbGoydYQVEf52yFoYIn8ct5selXKDT1zmAf8C1N3Xy3dwoFjcG6J4P/qIIL141hmFdSXgnrmctXPyM/PLC+e094/450PvP44R3nd4/EJcNqm6sKvNInk1GXTJATywo5F2p7obUXbq/fU2+NvqlPRDOPs1IByaQUfZMV822awAazg4XaiPLeTJs9wrGMRAscnPVNYgJOx/VVdQamB/n7eDqSzLnBiE5g4v7hYhwPnZ5gq6MbOio+mB32YBMVCYGcfcrQspDOZ2oK1CjU/Up/VVpoyAJhsYIEL1aorwZ0eyLQk/myiN+3SqTVG9o2Wnm1gvr8YD4o/dgkTZiTyFGOD+9FTgSyKiG02QEbU3voYswaEXoJxz7dlZiCeQfFiLbudPBKCHh8PJKmuGTWxwsPD5m9PpGzsm2fqJ++5vb0PX/9X3/F7ZuvuX33HeHlSupKVgg3Awaj4F5ztt577LNYoVeTDrViQLnveOrJu/g+I2rA3fCm6LhvBAHRNn1EEkZ3j306bhCJLBLIAlkwb7sA5zxYQ8pCnPdXDNHstwDZmk80hTWbp1MPUGqh9c7eioPQgj49s+XPlLyiH55Y371nOT8g55WQbdS6N0btXiq+/oTJwOlydITN18SaM9WntWhtVHaSGiNBRI3hOsy2HYRtRBtl35W4LLZewmJhAzHJtrNB2oE7Wd2knvh0AzOHPM8Wz6B6W1w3jxfzbetFzY9PO6f1nfnC9I2X51dauVJLnfdXKUKUDmkwRsxA/XRZkWiTu8zv0TrGOZ5IS+Z0XllPixU7+ytad3qttG33YklRKuZj4ezcVumtcP10YxMDcXIaUsNoQJOD6G1viETycuaUVySuXHdl3yshVNBofjvR2YHS0RAJqrAuhMuZ8/tHtOz0fSPWHa4vtE9/4HvZ2T9BKZ+pt0ioFR89gKhS9p2GTS40L7aKtEpOypoieYnkdaEJtG3j6de/Jp9PrO/ekbSx1Z1Pnz/x5U8TgUgWCFSkVxJeDxPIS6T14XVlsV19kpudE2uUHYzRGVxp3RpztR9d8RitoGt0lprorzvh1ghs1O3XfPO7z/y7PzzzxZ//FV/95b/kX/0//z/kd1+wXN7z059/ycP7B5bLhXx+YLtdud2u1LJReyOK2kRB7fRerPDZFaUgMbpM2gDP3t3PSStauksqcflcm+xQy7tswcfo+5jvD0PaOTokohWTtKvHodFyh8FeHoMe8PzRdPbBQTkDolgSKXZy7OaVmTLrunqsU1rq7pHkQHyz6XS1VvfobMANpE0ZKRJp3SZbikSfljXKIJucORj5xuC24nwUh5ZfjUrlKMR+KO8aOdbcS2WwxARtDkKJGANPFsveB2hWD0mSBToYwVqiMdLRREg+hW9fsOnTmZBWlIpqoYYbAySyL2/YeS06jnDkDpOQcldt6vCpmfQJe3aQu3rrrrYS1Qk66eiYqQEZA5wZDKtxDawOGD5e94x4jmP31zv8b+7O91HJzsJ2nLr5QxlV4V1p67ejHp05A65D9DwMCDY8wz6TX29vSE1KieeyiBDEgD2Z5s/+kVWR3g7Qqdyg74iOyaZ17NAOuOlULwSX8/dxfsWXnjQ0dFeqmmJhDHFKqsZaK+57Nxi2Obs/8AmRExIWSKt5ZGqntVd63+i6W/OjGYPbwGVjbzXpVl9GoQWD4Ko21CceioONBkkpbeyTgXmex0CtoZrB46o2paFU7fRo12vIqKJYM767GXZvh6R2gHX3LKjB1HS13wQY5W5NyDDVnjeDNX+1qoNGSt2tidSqUn1Q5D3rqXcs70WMHTnW8GQY3bGkFJck2/vZfSdTXmkLRsB93eZhqTUgR8iUIDN/lztkZtYDE2Q68sM3X+Of0aT/I6jnuA2DN01ED0lZP+4Gq7X9EQbe4NfN0/i7EzzqioPheP+QH/0aFciAjPy5wzfRHzpjy10cvvvGBVD3r8DYw+4P5O0rHL8an3f87r5eGqDv+GT6R5/sf/z4nwCefFKJI2dhnMgwpowFmgckk3PYjU+30eAprwbqZOtWEqNr7iMasiXlWOHTemOvuxW8o04SRWM6Or3C7LhYchDRHjFRaiBIN3TQb4bemxUCdac381c6Nn9D3puPsdbYCGJMLrpSy84exFlGmSDpYFDIMNtevFMcMLqyjS7P+WxJGpUihVaFqkoUM5vLycoeQx93b47IvPnut8pBs5VgHbiUHLQYwccOZwaFmJKxGzBWTFNnFDTz0iLgE1UMuEshTrA0iG3sGsZXpHv3V4dUCD+eMYq7KzQluNG3OtW90impoGU34K9VokA+rZQGRYVYml3baOakH776goeHB6QWPv8h8fpdYPv86gCEJT6tDch8gE3TEnPetEGOfXpQeQUXg7ungZAJYUHWC3J+hPcX0oeV5WPm8UPidA4z2bAg5FK43mm3nXLbqXv1XMcCZHR/CQu2MjcC831wlpKzwIIY6GgNOTHpZMQkfRK8CB2MG4wGq7bJSbyTsQ0qgTOMJASTlFzOhPVMPF84vX9HulxYHh+I5zPp4czy+Ei6nAzwdRmfim2I6pIusrEgRCKxL6wPC6fHlfWcrOvbu0lA20hajs6IOmNENXhNaZ0edcmToMco3dEJtFV1lxwKoyNDH+wveQM43edT94EUPfaB0Unjbl3MqTLja8RzxhN/8Es9gvP9+07vhuBsANQShFboZaNvV0ugc3SvNf/M3lluImhLEJMzXBoiydYZBjrvr9nYAq1Su2dkEszXJWWaKLebnZfqvjTjc/unYbaY5/o0GZLRyI/PRTWAI4qD8LhEUg3w7zBP1Ohux5Q4Xc7U8si7D+95vX1me3Yvsm1DSiEppKaEpiajVWNCBPfL6550IkOS4N1PM/ljdpDvgafpo+HFDiMhuEuI/d/J2OlY4ov5wxlTREhBydE6pkM2iWIgmMpRTALSlV6sW65RoFdjjIQ+wZ5B1UdsrfW40eIVSqNfN8r5BXm4IGuCJREWMz8VrCFtV8viAx4zNIwsTOd5sCTJIqAMaWrr9DE+vTdjvIpMPxEkQK/0Wqehrh3q0ZmdHVo9kqcp8R2gU4DobNM5VXTkBtGuV/T107WjoXFaL8QArTxzuxqTzu49S9BjSMSQzZvQpzpG95Ab0qG6D5act/JD9AL3ZDlJCGgtDsZtDA+S2q4oxQovL5SC2kTGseKGZFlcbmb3WkKrQPRCOi3EtFJaJxANmGrNchwZ4VjQGCBHIIGoGbG3jJRMbhVZE5I6r98+0vYnyJG2C02syLG1Ztw3HTSGUVyLswCCkgJTNtRapfSCtmK+cLWirVJuV14+fyIQ2bcr2iqCktP4nLYuarNJgXZ+Rz7CrGwk2J7UPS7ex45ZrKAQbNT9eJ1QxbyqgsBTJ9SNsAvX8GvkWmkvVy6PH3j82S+5/OIvyKcPrKfM44f3dITb7UZ8eeb68mzTixlSymbfOruxNCVKR8X89LrvFW1ISbBcahyz+j4zctiRelsO6nuamx/3Pqym7Q/NCoHJWOkuyxxmaEcRIRO07d2YBaom8YVoCoGkBjzFhMn2HCyNYpfb5as6QCgtqANPnR3BmFi9KSoJVdtHbB0POwRF1UCnoWYwGZ7S6o5q8zgvM6aoew7NptBgMnnTT/tdAYccAID7GWlw2ZMPpzGz5D4tAmZRNDdtj+eDTRaC+7+kqZwQtcnXZtsR0O6N6AG+yFFkjeLovhycEkn/hQHkg9UzgCTPwcdex93jbn+1O2U0cf1vp3ZGnO3kYLdYjGUyoO433mOvsh/pm39nuSwjtzzOnn2ce17EALa8MelecAb0qF3DmdyM8+FxZaz/kYSpfw6O62JrHxgsGK9FGLLVZtYiY1qgjumiLhUbuVT4QT03LpuMInlMG0n92B98OE1EiMHZ9lLBWfcpZfKyEJeVmC5INOAppLMBW6qUkqj1Sq2vGGhryo/eOohN/m21gK9vDcZe7BN4Umd8tpmTIwPsdODzHnjCG7kdptcRaoxnN/qNEknB1nVzUEWVCTyB1bPDumVI6br7cI5lMHKUNzjDHQVHxzX14zNZncXH3qA1pdaDlTVz6640s4cz3gI6khSbSu85vjVqrP5+A5YiExw7cumRkxxpdlemPYYQ3EPu/vO4FuEuPx8cvOOFjvcY2cv9an9zcnScnjc8rvnM46/tnhlgu0dD5sCi+YfjOfevddzX41XHOg93n8su1ZtI86M/ewNnvUGh78/t/XsP8pC8ORJ7rsdHsWcN0G289PjvcJyMec8en+TNq/6jjz8ZeEopMRhFQ2piE5Rc1iU+xlDdCDdm8/zpibScScuZ0+WD0eSjGYxriE5ln+vWaH5tY2P3BSr+vibzMN+mcSxmaCciJsvT5hMo1KjjKtOIre4b2+3KMJZN3qHNMfr+1ul1p+43+zxciMHKlrYVNu2EWEj5RM6jm2Pmj+ZdcfLbIBCkQQxESSxR6O1ErQu3W6Bsr7y2TgoGYJ1zRvwyNL0abXIUhYJ/P86OgjTr+p4W0mIG06VWmlpXIqhS2UEghLNNrxPoBaYZIMmAwRhpTl8VOjH7qgPbyGNC8okWMoVgE6u6Uj0Ja76ZnE6JLEqSRlRPyLTT+06vBuY960a/3egvL4R95zEmPn544KXDVeEmm0/0UjQoP/nzX/CzX/yc8ynz9V//V7799cLTN98x6P6NRqFQ9cgvTM/tHRixYlKVQ4pmJ8XkGZJBFoQTwokQLsTLB+TdF7T3F9avLrz7xYUvfn7icg7e3R1MARf17DvX777n89ffcf30zCLZ9OtNWNLCbgODPJH1mzeAxo5GnaNbRTiKyhiRZBJEEad2e9wWgO7G8J6whRzp97FGDbxRtUIwnU48fPxIvthY+/ThI+HkHk+Pj+TLhfXDOyuEAqahdn36UbYLIhmVBM46PD2uPH48c3m/EkNnp1n/pyi9jnRHjw0IQZy51ZvSarOpbB1QB4lHNTv4sJ6giw4K6SgA7D8G/H0P/nSv2HXGwKNroKP7iSUd4e1bMbeXY5fmSFe9y6vHRmHSCi9ocIncMFuxi0HQBq1C3ajXJ2JNyBL9/HjX199ljwJ5MVaoXpC4WuGAmP/Mlui1U26vpOVEUzOdjHmB9UxLmVoyu75Qu9HGY0o2eTJnjrPBXUxhgnvdP984F6VDL5bgjW6TJTqemAfvSIc7S8sgnB8eCKGyb18hr9+hT9bNCkBQZwwqxGJgk3TxaYxmvK4El2Iqxp/2IQLJhi04R+purQRvbtv93rr54kSxxKjjBSh3cUBBq/t3eMGeJJCNeMC6OLDPmFg14kuciXbvZrjduiW7XToanT0G1gXVIRP3hFE7RaGLsH3/mdflhOQVfXhALmfC+cT5/SNpXewregxzYEtiIGbfP8UAW0fQSBrnfSrj/HRj9wxfGv+DyVpFA6KVXgstFHpqYxezwkgHI9ek1R2XwjoDWiSw5OjMEiuWR2EpIbhR9/AUiw5y2NlZ1pVWF1RvvLx8QwwviKQ5PXVJK0EuxPhAzia9zzn60ALcB6tRW2evzaXp4l6EZ5NX5BWa+cbV6PtR3ek3m740lCXDzart+yyQyr4x2FwMi4C4okQiJtNe84m8PhiGG4ydsd8KXQMxqzMXfcmlQMcYpTkZyKwlotrJDwvnDydevvk72v7E67eJerXdhr7bcACEICcrCke+KdZxN6avRet+u1FaZas7DfP+Cr1DTvR9Z3t94fr0AhqMnbuZVG9dTlYsuV9fCRZDJvNpVrYWqkd2YviX3SPWe1KsJxRowe6DqhtDwkkR1mAS4/26sWydvFV6+Zqnbz7x3d/8Dd98/TU/+5f/V/7q//H/4mf/6t+wnN/z4fyR9eEj263y/PTEd99+zX57pdYbve2+tsTWujYroMTYlEkFqyWVbT88ycaU3hCSMy5sMu9g8GkTamm+79jgi1bNV8X2Z59gO4opiWjv1FohbAaYyvAHHROcDRBuvdKqEkI0mwf3ilymx1i828gMXNSozlKx2KjU+dV0Q7kZq0QrnQpEVJMxGb0ZZoVwB+w8Df+XEAIxJDbUAJ6YXNJqjUrzQB/M8eSsSAOrVMWLUJNq4rn7GA6gYnLBQCTGRu/RPMZUpyG6bZntrjBkJncSAjaMyO7B0AtBK6rLYd8RMhoN0DPwyXOZuWwPBvX9tKfxsHB5FPWjoYszW+DOM88+tTOkcKDK/qZR7Dx4nJMwEjyrGQyI01k3TXBqFsx6dwLGwY/z44XuOC/z+XdQlXutHp/PAWW1O/Z4pjVdJkMGDJhXRUKfOZN5lB150Xxu8Pu+D+9EA5vUG/htxNq6011mp63S226MotqJmqafpI3IsXeY2LqnUxKVEDthbabkCIHMQiSSSG572oGKxIZESKsN0UmnM/H8jpBtOniKjxaHemDbn9n3Z7bbZ7btk+2FLrfVkQu68XtDZ0O4u//eWKLm2WvnrMvI0SujiTGBbY8xA0ga666FThNjZceY0LTSJdIoVkdjgNiw3Whq3opDXTS9qaqz9ER8CI2t2XC/0gdA4/m1SfgG4NSd6aQ2BGBzhmhtvv4sudYW7wAfB9eaM568ETxy9j5BSXv7e6m+AYveHBwX29/HPCgtz0API3YwkoFwWGyMJX0Y+R9rddwi87XxGokDyHnzPMZ72B0CY/oyR92g99WRM57uXu+YQKqjlJ8WXMfjALMDxzUyUP/4AG/BprdQ0t3TZn065KkHc2qG15k2HMdxX/m8qYL44Zk88mfuXkF/8Jn+tMefPtXOARGlQxBiXDitK0s+EePoQoNEIafMw8MjMWajCRIgRNs042B2GCsJ0dmJMtpq9RtDjZXj1ETrDlnyHKJ1R22sqy3YGKNNMXIaYtdonc1q+tFahd4jY4xi6y4RjCsxrnRN1CbUZiNAa6nTgCwln9YjEdVIa35Bg7NASAT1TUQNaRciMa5EWWjtzO1mPkxoNjprNAroeX2cYE/rZ5vc1Iuju16+a/FNG5blgfN64vHhPev5wl4Knz8/2Ubpm0otxrA4pYByNs8exEduuw9V2akUJJqXU/Bu/hjrKcFkb0JwAzxD9CUkUj5BtCS/LRmRTuqNoN2Au1qRap1+yk7bbmyvn9FtQ683Tq2b/wjKvt24XV95fX5if96oDa6fr/yHbeeLn3zkL//yL1gDPFwu5gO12EYaI7AVdDP5kPkXYGb0Hmx7d+AQ4SAKii17ySBnIheivCOvX5A/fEX48qe8fsi8//mJr/7ZA+d3gSRY7hEj4r4O2m88ffcP/Oo//Fv+4f/8z7z8+ndcYjamg3SIgTmVIuUJ6tQIkoIdQgpuaOwTMMQ2tSoGV3WEFuL8HAiMyTzilcCkOXczIjST9GQjx3M0o/AckEWIqxByNU8EdpYElzXx/nKmBxOBFq1OGzZT+pTNJyKkgt660zcLpAwpsjysCJ0UOnvY6WXIaUYX2MZYW9mEGwl3yt6oPnlKu1F2zTdksKNG8LYEO8yAzpvobf+pszCyLk64S5J0KuRGb89g3bcBfLyObUreRzADIb9v1TdIGB3VEOLYd2kdaq3sZafvgqaA5sApm4RKktD2G1qFuuOf5xD8NaCIIMtqLDURJKsVLhroWswgXoTqZuVNhZASMWdor17cJ7bdjqepmkwkL4SHB3I2I9s52UuFyZ0eieOkb+NSOgh5IaWFdVmhB1or7Hsj5xPrKfLw8J7zORGTdX3Tw4VwXvjZKRNKYamN/W//O/vtlb2c2YuxE4RGTslIqkVBfYpgiNQgJlmLgmQD9CQmAmYsXTFJp6oS1Wj2sSuyF1LrE6AdNPbJ3nB5oW0bLs3uXstXm6nUIlSXHIW7HTL6tKeA2AAtTFJ826td/w57U6p6h9AqUVKUGZcY3jcSoDTa7YaGwv50o6VIy4m4LOR1YTmvnB7OhMVYcrIkYk6k02JTBKOxjI3J6glHeoR8Jlzem1xQFK0v9PIC7Yp2kyJEc3wGCUjfkboZkJoWaA+GkDsTz3o/7p/VrTs6pEsheoc2ZmJOnjwqMTSG8fS8x2MiSzBmmIh54BCtGJcV0gPr+StyNElQDCcCKyGspHyidni53dgFRDJIolbbI3N25gPq2gQQgsssIj00etmN9RXMC6f3G73eoFfoO/SCOpBwFK0Wd2MYndcBMpi3RwiBvKyE00p1qehedpp2Qo0sp9VHcgdC6jQqTXf2/cZ2e+X6/ER5+sRab3xoV77//V9z++53bLfvkb4h0qYXoOCMF6sYbG26+U4PSkFs8pFFZCRGztmksv0m1NedfdtoT4VaHRxIK6FDILBEfLIhFiGbSUiljZ6VTGDAgqvtOCbR6B7zcdavJ7EeZnet6F4RApflRPQR3+d0scmUN2O5pyURTpn667/hd0/f8+2v/pp/9m/+I1/8xV/xs3/9f+fy8c84v1u4nN5zOUW228b1+sqt3NjrztPrJ+gF6eYZZo3RYFMcJVFJoNELrUbySVnWLE0MD0mb4IZNlNwrOx3VQm03et9Bdys47gt8xbxt6DYlDYhRSVGoXux1tT0fcdaeN19bb8YIl0rOmUBDuj1nvI8BGyaz67oDFZFKoNC0QLOf4bmE+TZ1JwIKGg4wRbXTsSmZI4fWHqge30UcTE4LMdik5gAMNtwsbUQgJI+rBzihGhmDUURcFjpkWSI2+MCHDcR0NJHngnFQBwUZA2AkW0xNJ4KaxLL3q93v0gmh0vsx4OYonRqHDGww2g5GJj69diQYwz+n952uG60Hjy0JZHjWHgXylCTqwepBB5hmsQ9p81gU8/ns3UHPaFYj4lmJZ3t3xz/RMvtc90wu9YKzjxyGu6M7spuhBrBBM5YvarD6aYDGKDOGDkbQ6OqFcORBQ6AeMIDapkqaB6TWSq07tW60ttP7jqozfl0SqW1zcKrbefIY65aC87NHB+CGN2xIgRQhRYv3STLSI7QxmMTbQmrG9Ot64fL4hbH7330knB+Jy4WUvkT6CdFMuRnwtN8+c3v+A+X2xO36ib1ckaak3tFqDfEeTOqHuK3EOLsOtivq7HWrxIr2eSFsEJeDom2cMzuXKkoPSpNmeU5y30ER6O6TPId12JqoLgkutblVg33+1sbeZ6oKwQCU6J5YARz08ZVi6Z71yyv0KrS9U3albMrtaoCUqUvuYAgNh0WM6vRY0gFqcYAdQ5uv3PPz7oAjxXzlnMlmZAEM0GzmkWcsz5nUM1UkyrgJwFM7GafJH2HeV/N2mADTAHLvvY7sW3nD8rkHYt4wgbhX17yFaqwWsf3wqEfw8zDOwdt7dRy7xXs4/l9/8KzjWO5/qmLunPP5+uZPjh/JcXyj9vnh8+4fQe3chnFu/EqG0fyf1/VPe/zJwNPoqqovlyA2wjn4DEuj5GbblNJKXB5IKdObUtx1v5v4CCPdKyKdQU025F0RLQwDc9MbBysk59QvowuPBWpn+85TIkRML+obhX+pZNP3inVxleRf1kURSR62bGm01kDMxdmYV2NWp4FLXYUkgSDpzkDd/jpG+5sY1TbMOS1oRUIjpgshZCsw83kWu7QDP4VynHr1c+UbiCX6idNyIhC5ppsh7N03PZ+aV7crRUCbgWZDdztG58bYCSkyzc2JOEt2MHJHj9JPsxoaH6yYEM1EFF1XQquEZsn93BG7ekQzMI9apxGqtsa+m+dW97HooSlSGnWrPP3ua7jeeAiRLz48GMchBJOCJeuitS5Is2lvo3sTXBrzgy377r/G+Q1AJrAS5USKZ9J6IZzPpEvi9Ji4vIs+JePIzwBLlCnsr5/45je/Yv/0Cb1uJIXijC30MMKzQWBCDwJRJxM8xEBIkZQjZm7YqG6sbBPtfCcm0LQffydM9po2TyzVALUgC50FDSfCEolLJC7JwI+oiFjyT4/QdrTt0KoZ/8oozs2jwIKpja6WZsCuJfJOc4+JvC5Iq0S1pKNH0KjUMeW4W0ls+FGwjop/2fe+CQ+/kLsd475rcODr4/f3zxsb3ttgPf/C0KLp7TTC9tu1Md5nsKL8oovOjtbRiTxeQ+6O2TpbPqZagydA3hXvPly3A10mY2BM65ymwZ7Uay0mBQWCJjPlVQharSBpGEjn8tZWzEdGJKI78542L7tmZucBDlaRn6Zm8iubFOcmzDoMZ5VaO5IXwrLS69mKtqb00gi9EvJCDKuBFz2ALIjLKE4P7zld3rGfH6iCeVvlhOYMPYAaG2t0jukmOyRaHFd/PutizsAxE7Ak3cAQA9ojnVibAd6vr/RS0TI8GnTmJXYh7zIAgWEMKX5VDx+Yse0chRB43eXJ+ljLtXZKMyborTRq79TuAMUcqODdLcEZXB63xACqVjo1CDUEatroS6a/ZmTbiWsirZmwLsiSLV5WhRTpwTkXImjMhPWM5Hfkx5+SI0Rp9M22+dIadX8luI+IddyrJ+87XQJtv1L3q8X6hIGdCsfobmbCN5hyI9bGu+TYPIBsfx/7c/BEVd08oasx02pzOVRcWU4fWJylF8OCkAnYtFtVKKXSU5lxHjWT8RwdtHRJ6CHHwBNNBakoha5eEPUd7QVxf45RgM9PFIZv2FgsIwL5e2OFhYRAygsqxbuyBg7QOr2NKU0C0qFtaL2xXZ+4vj7x8vSJ129+z1peoTxz+/wHyu2TFWc0Y+y5D5E6m3OKBcR4FaA0BJFIC8knmLo6ZYzvLmoeRluDHWgjZ4LofiJRZmZp1znMj+zXW4a2wi7zYBT7GgieqMexSaktlFFczK6B53tBhBzCXI+CDV3ordFcRlevL3y3Rri9cjqfeCeBfPnAujzC5cSaEzklcj1xazstB1rfzDZhu7lFviBuF4DbO9iUu+rHZCCrePxNIZBTtuS82H1jDJg6c6zpDQaIMxLGOuv4fdIb5l1p3Ajr4isBl2HeAQiK3QsAhE5QB8w0zOs0gCft1b2sKqrOYhxmzffrePbaBgtJLT+cEjIzSR87Wvdx7oa3OgAbrMAYMufgwPK4D44iaJRf414RP/ZxjvDrPn9tjMngXqzNJ4YyWJy+Tny/DT5kSMRZWNG8OSWsiOyIFERWDOApts/h9+iPVFPDa0dcqs5keOLnyZpmBsIlJOwmLVXLiYa029jc/nxv/k4apd7lDjNPsGPS1s13VYcnjTJ8n2TGr1Hi+jnXoyidKYt/M5jb9nBQeV4fn6co94WuzAL0/vQcJe0d2zfYvimDuT5yIJ23OMPvr7c25Ztj8tqxSfi6calfELW16x69E+gfa8mvRQo26TrFQAxW+wxFjUpEj9HOxwoUm7KblxPr+YH07j3x8T3h9EgMX0G7QFusUbM9I+kCGhA5GQFhFxSzBVGsM2VeYv596Eeu1mxtdxhYzuS72anS2cjrnrPbANvjfmjSzdvRhwWZTFcsN45YbgX4yDebfulfQ+ZlC8P8ugYgY2HXcloJY3+zhMjYTpbmeghxAMr9nfzf1qA3mWvePqax/UeZpz+okRgr9we33rxCwszFvEqa1/7I4V2Ky6j13+b882iOxH+qXWzJHeDWbBDcr9n5ae7rhfsjlbl2xc+jcITV8fe23kZMPO5J8dgw7hWYbziv+7zfufv9uJTzg419k7tz98M/Oh4HQ+r4XH/8Ce9rqrua5+4P5pH574Y319zaGbuNvDnSP+Xxp3s8CbOroSEhoma+id34tQej+McE6Ywsj0jO0JV2e7ZJJP0GGm1OkEskwCedeOc9tHos5p4YnSHpK0Fc+56PC2MdJr0DVDJ2yoxl0WMlJCFphJPYpt2Gp0mi60JX85DIy0pMCyEkm9SUbDqNdqjqRUTK1s1RkxaktJDiMq+WSCfnBN4RLcWpmy3SWZEorOfoiXVC8upXrBNDonoQGMFZZCRqNnnDEGugwXl9IMdGKY24B0rduN12n+i3s71U+n4jhExMJ0tCbXQEIUVCCjPIaTf53wCeri83gghrCKzBuqoVNXYYjdvuSy6YPCXUHfERCIoY46Dv1i3p2JyoEEwqokrZNr75/Ey9bWjvnPNCDY2EUmujf77yei387dMz159/yfl8IoVAi7aZndcTXW4Ul/5Yk1oI0TsoIwjOu+G4vRUreoOcCPpA1EdifEdcL4THE5ePKw8fE4/vxSjiYmNaLQH3aUFh4/b0e379n/430vMroTTYmyU+SeeNGhHIQLJOf8GkPRKUlKJN7rmsEDp72eh7R7J5FqhkpLofRe9uSyXWAR+67t2AiEAkhxNNTlRZSacPpDWQV2F9gLgEQmqoviBtNynUM4gWruvC+d07QorEXijVgExjH+VJiw0YCy6m1b6iTZ9sQWnZXquXjlbYXo2y27bhdRPoVdhLc/NGMyzu7tnVsPOsnpCO6Dr+N1Fmy1jvuilw+I35D+RHwp+MpWDJ00jN3gZtg8cNq9CZMAY52DUhCFEN5hSXDgyDeDxhV4qvQTFGRWhWhI8JPyG4K3VHpTkt26Ufg4YdTZoSkpCjTcfSYHIae62OGbo0k3i13brpkqyL75LLVr0jfgWVjiaT7o2JKFrMe03bDtvNQOteoTXKXih7oaZMSZk9r0hYLa4SqPlkbKjThUv6GcR3JgXy6xTyifX0wOl04ftyQ0RZ14yeV/v8CbgpSnO5GpZsxWBMv7zA5QEuj0ha0LAQ44kQMumUYBUkQaIRtxvhdqP94Q/szy8U7WgxOnyVbhM0gyA9uC2cF0RBRgrlnTHrHpfmgFQ4pBCWK3ZiB9mbg07K1qG0TqmdrVZa18lwGExFAzD9PkqRGCDnTozW/R++H4FGCAWNGzUGXp+eiDk6E2QlLgvL5QzriqZMzwstBEgL6fKe9fGRfPkpjz//V5yykEJjf/odL9//lt6Up2//QKCSfdhD6MYG6K2jZaOWDdVGzBfi6R0hnScAru4zdzAFxPIBlwBEcVp8APER5EEgyuIA1HGPNS3sZeO6vXLdC10ycX3H+vCRJWaTd4IVAxgjsgN7qYQ0pCrmS5STsC75MD6dxZZLz7oxPBs3SnumlFdqfaI3YzuJ34vmvZTQJialSnHKECz+Wei1KV/d5deKBvMlFLVzKQ3LMxT6Xn3odidJo5UbZXvl6bvf8/r8xPPn7/nuH35Fev3Ey+t3pOv3hLIT9GYxKwSTkzdLDo3kbQlA72bY3ZuiYUXiQlzPSFym/E2bmqRwL+wvlbI3ZA9kjG2RemTJ2VhZMwq6Ub2dftTN5PEcawAIfvmt+aF2xqMYQ1EVWoBNjZGciIwJmtoaROuWphjISyIvEXIwP0iplOsNLTuUK5//t2+4/d1/4+X3f8fP/t/f8f6Xf8XP/+r/xuPlAVh5//jIVWDXzqW8UsqNWjfqywuUDlVN9kegSrTJAdrordD3bYLTXa3IzXFhXc5eC0XKrZpsRocZcic6aGWhIc29xAbSOMu2dcBYhSNB79aqOwqPMIrD4dXUKduYfBendHVOiu02GbnXDbSivUCvaCto3efrSvBJob7xWXPB17kbSMMAnpzh0o31ZPN6bMJdbwYOzAItKMRl7qB2043caKRaln8HL8aaDj6mNeMCdo+GOLrzJjdtraPVaoEx/Qq1oluwHFSi5fCixqGOdTd5XQOV6gViQ3U0bh1km2nAXfEcbMDM8A20JrG4p2Z3ryvxGgNCXIjJmtbiLG5whvRkOt1nGbY+TIJ1oEZDsmI+esFjSXYwxrxUA+6lymhSwWBQMV9Bj6I/yCz8Vfuh3kO8aR3uPvsoJj33CQ5CyJ0cCzsHNok4+OsKNAcvJ/g0VBKjEVPn9O7e62woqlsQmBdghNyNvV1t7YnawI7erbFvEdzAqSVAjoEl2fTrmDIxn2gs9G5swiM+23qPEkghczo9cnn8yPLlT8lffEl8+EDnZ7TtTNtWen6B7RW5PSHySMifkPSe29NvqOWJUr63ExxMWmtsWSNhGDnUrucw9sZWOVWhMSb02bXrfQzQMdaT9HG+Daw2rNQkYDbgZzQlLZ8c9xa+9poPHhpx2QzJ/a4Xy6vUqUgDhBn+PNbsM1sM7YIN0FVq6ZRNKbs1j1uxOn16Yo715t51BgmM/HwENT2+fYOQDNTF//ZusfXJwvc83TEAsP3muH+Ol1LPJwaDcbzbca9PzdBh1/Hm5z/+OEAhb8784JeDkXWwpFzPMdAwPcDZ4JYHB2Z2cL7u7kD/DP79eO95r3u8Ft9//bc6waH7c2t2Owfo+fakqL/i/G8P2rPOujueGSuU2UCM3H1+BjRnf9l/8Br/o8efDDzZBAqldSGGeiQfo8kZPJA6sEHAJXmBWMepdmCiV2o/TvpYzV0xxFzNFX8sUCTQa/GpFkpWNdlF8Kk7OiQy3qmv7kNCIOSVJIcBqqpNAxgm1babJYaHg/pmLRLJabHOissEhrFh7X0aw4kEYormAzDbfxace29+McRkazEb6yT0IwkR85gKIXHK5t+g2ti2m9G0RzGmZrr+en1mr53b3iitk3ImRJuqNSb1eLMOtFLKhoRGQkjJDFDNl8oMIRcC+17Y62bAXsqc1oVei9/M3QzXu01TMz8X9ctm51vUvGqoRnE36YKZ3uUUSWEl6UrfrHCTYURuvFlCN2DntGYSgUKdptsB2K43hM77D49cn67UrXB5ONF7obadct0M0JreJt7rEQ6E9v7+dJRAW0DDioYH+vpAO2fkIfDxzy+8+zKzPgoNH+cUDEgYnXz2F/r1hf76QmzdGBC1IJgsQwWWbJ20adgdBEnZaLpBCevJ/JbWldI3A3a1I8vJ2B1hITVjbQRVYjawMOdIrTutNvT1ZkAlAYkrKV2I6UJ+9wXnh4Xzw0I+N5BKo1KpZqrYrrArkqDujw4wRZvIuL3a1J8W6Lt3sltxcLHQ9xfadkN6NQq2WABL0UBoFQjnQC3Krh3dPSkCC3KD2ttH8D6Sog6+4wwfCtvtJhO+H5TdN5uChCOgT2bS/KX/49d9+GxgwdJeWyabZTR2hv+CFcoWyq3z6q+DJfghRvIaLaESnzjmm+JtuxobsFbC4mygFJ0t0LECso6PbGBR65SuaOn0vJCWC/h0ua6dHse0wuxyiEhcMhFjp9knM2CgebHC9kLVSvdR3m23SV9jslYvO2yvBLXSaA2K3F4Jr8+U204JgRYT2i1OxpzpaYUQeZXE7W8vrI8P/OSXv+ThF78gXS7QGrdf/zde/vavef36G+K2EUuj7w1pNgE0RJMlBmc/4Say59OFeLqwfPyS9eOXpNOZtD6Qw4JI4BqV176x9Z3r9ZmtFbq4NHU50QmUurCrncs6Eoau7oNgX6FVkl/RFG2qHJmjIGzd70vvWqoBj6GYV1ntPsHF9wPf2X0zd2mn6kxSFAjV2BatNFvD4SgwVMQ9k4IVWUWoEVoUyK8m4U2RGrNJy5eFrZsc8t1XP+fPvvpLPlwe+cUv/4yUhUBjO0NoV8r1s5lg90qvRumKvZG002M1sLsXdumE/ErsO2l9NLlNXGzKjgghMFkdqmL+UAJt6S73DezFDFlDGKxoi0G21u2cmvk9hLxyvtg9uSyR5MyK4Qdne4wBPAQMLBM1lgcYqJeO/qZSMZls873IWCExHHT4Uv21WzeHEA3QfSJisF07xYi2ZpP2gg8AUOi1EVSI2Vgwqi7b6zu9NetoY8Xf3jGgpTefTLnTy8b2WqmbojVyyu8IS0fLjV4Kqja6O4gFySANqPRu0ozQLUZ2hWZ1ASksqK+JnJOFzdYn+1mbFR8pBE558fAgJt2MNgxB1BNRL3ADYlN7/PzPzjrMXCeFwHJa2HYDXEPwNaHWqGrN4ubZBy6Is5xyNGbRKQWTooodT5dAk8Tn2wuSIlHgvCTYbmy/+w2f/tt/Rmrlyy++JL//OSFfCGklduMvf7F8oPcHY6s83FDT2NrgC7Wcq3uMbNq4vTyxvb7y/P33aKvk5Hlea1Y0BPdHCp26b3MohmgwxnsIhLD6/dDd48TLhTZY+tVKh8FuCs3ud4nTnNXYVIU56MHlXUomaCBotN1q7InoZJm0Vn1SJCBWGJto2PfjblOYRYSYXHgS8AEyzT1t7JgsblVUxSbzqhnl19pJUUkRRBYDzEUNtHE1Qmvt2OCHflmYNgiADZAIgdjdS8vZ9yFEam0ghdJBxJ0Pxe7vmT+I5ebmyZURWZFQTGYXfJBPaHaO+37HAhq7vYFNEhaCWJNZfJKsyYuzsZCauGLXlBpSK6HbuYzugYkMCPEAhI6CsR8Fsx+8jmvmn0OdrUIraDDgZYIuQUCSgT0EZ7xZo2q8Th8AE3bPjTpqNMx0gEMeF4dEzn45xDLjnHIcm9p7HTtYm7npZH7PvOpQEOj4kmCswpRs6mCyBpFGgZyJupJSQ5taPtCtAdmm16NnhG5wL9KMqJiEJScHnhIaV7oG+ipQm8ntq7FOoyhJKmuC8xJ4fFjJDyvx3UqLC60stH3htkC9ZeptZYuJtD6S1wfSsrDfvuP1JbOXP6B6Q/rVzqc3qyxZFbeNidZQx2LoND/3My9ehGhXaijOeur0OtbONEa16zpXrc7z3NVZVmJrAwdyDxY/d9Iz+2fCMSMv6fxwuZqVSsNtMIbXk4O5PTAtL8b3/aj7x3vew0v3cIhn1JO1aWv1h8/HBxv47wfzc77EYFMOfq/OdX/3CX0N2zoODHB1vJe96ZjJ4uThN0c6XzH88c/GcegEl+y/uxcaHtGd1Ne5Z4dNHymZVQMHK9E//x0bUe5PjjAljfP8jP+ayNLx5Jl+/gD/eXO69B4uuquNpwTzxz//PYdyLKljQqqdW/1H/vaHj/854Mk7inG0v/CPKncnQuZHn7+zk+wU4eoJdmvzPMh9wBti5Y6jqkaF7SLmNVBN8hNGYJ9n1PXK83VGwI5IyDYiWo8JAHbjWTISokuHgrMBJiBlQFoUQ9mDmy32UmyU7Wg38APU12/U7sbnhODU6USIHYk+XlKCFZBiMoVlzWx7JuzDK2OcT+ZG01ul60bXSHzOrKczD49mhB6D3NHj1cftqo0iD6Z9j2rOJxJ9DKa4UV7bJ1gURQjRl5g4q2ycWD8s8yXCu7DGZKLbdRrdmBgt0U3dJwR6B+don6o3gWSeA6JCMtmXuC7ZJrd0Hh8fjVHTmgFTbkILMhOY0YG5iw1H8uLLZK63HtCwoGGF0xlOGblELh8TyyUQ80g88IkDIyHvbC9PlJcn2m0jeMFZm5uBY5tP8O7EG5aqG/JqNBBKY6JJokmxwh5FUzZPipiR6Mm/CGlJNs1wicieoBSkqjfrAzGdkHyCfCJdTqyPJ87vTqyXTted2m9sRdlrc7NhobZE2V+o9WygStuhb9CLXd9incrQGrFXQqvodjUT3t6MqciRjIzrSYrQocY6LSM5wsYfB0gPiEcnQel30fNIsMZW7OnOHe/8YFX8WOh8u8VMVtPYrMbxzM3qYDGNo7DjPWRq6uBXiIGUsyX1EetU+d+21uhiIGqMtjokiE8rG91De8egAr35Ri500yMZEyfaWum1mfQmBEJNhJQgZwNDY7KktxkAO87HmH7Uuv1tDIG2b/Raoez07UYvO3p7AZxVFSFdn+DlE+Xp2eJiTNRmSRZ5hZjNn4RIzZlyPrNsT7A9szw+0krh9dd/w/X3v6Ffr8heoHZaUS+e7xIl0Skl1YD5OeTEaV24nE/k84X1/DiZL6XtaFGKNm69mceCCJoXUJPl9bba/TtARsUYCXud0pTYdugGtlXBJHDiEr1uXcfuHlgDaFEgNgOcxuj4Yar5ZrHI3UpUneuseyLWtDLkd7MAcEBSo8UIDeqtXNAS0CC0IOySUAeebk0JeWFZHujbhrTKEgPLshCiErYLy7qSokk5zE/RWIeCdRvtEO2i9CLWwReBICSqTQ0KCZyJdHQng/mhNKGVivZICEopxvQIQQmxMJgWFst1gk9dxWTni71uzrY+A5YjVKm2LbXDp0V68+LOFowG6NWCrE3nKW4CrAZ0teqm+EyA8PAsCnQdXUlnI6olVCEmVBqROl9Pe6OpgUulWWMn7TdSSGam2/rRDBvv10yG04pN19OmiEsEgyzk/GDgdHlFSgMSvZuxrIj5Qmkz813puJGuxyoJjplF25n83OIJsN7JXmweikmmbC/0mBR9LIqvbRXbhu1+8eaXX/Mjpth/hxgJKYOaEbm4L5x0pYfuPi3qxZk3u0IkRWM7rdEkfqP1YGo+IbuUPNZGSIKWQn19pX77NeXxPe35e/LDB1gWAxH8+FPKfrNkeooO+g0QyGUqIp6R+qgC7Wyvif1ma7N6PLFKJZhpfu80q57RLpbPpWRDamKG3oyt3vsMAYf8jCM2iK0hmyxZ73YqMwRHm9+fRjUzE/HIkH0ziy4vwdTZim4KrWNUfa/+d4Heop0TDNB1rpIBbB6Reh/FkrNoZJiBe0EhAZGGOHhsUxtH0Xf3vzt20wBnAsFYPJ4bjP+evi7BpW5SjUUaujf5fP8VGP6l94X4zO+xycRCRiQjLCiLH5l5CRqTeTBQAzblz/zfYszmd+Qm8zLuMJWZqnbvDA3G1lElvmUgzbpn/OxOfzQKeLv3wgR7xoTEOT2Okf4Pud0AnrzQdWBJNMznH8Xk+NF95XmsvVlua7g7l0exeUzQO8zRbe22ucaOz2jrZJ6MIZlzKWtImZBXtAVChpAVlUwIFWl2f0uqPjVND+8j9fa/WhwxhjdIEmuypWTNu5xRgjH1BDNZbH1kTohWIpUUOms01X6MSl+VluxLe7SmSgzWjHGyQ9cdYqD0ncqrDcLRMtmR4g1TXKrp2wbSrGlOCMS0YMOz3AKmixEesAZFLyb9Vh/4IaHd5ZtHImGXpN/9LDBAJwP6hzrGmU06r+bd+uBItu/YP2+T27s16jH+/vv7hu6csDhAlQlLMNfv/WOyXdGjXLh7kniudO+1dEehfLOUj2Jg/OO8Mz3+XjmO1V/sOJfCXY14NFPkzfH8cQVh51nG5vfmkPwJ89Ybkf/+tSej6e5+mz/T+wpl3K/Ha42P8Ab3mrmlv6ocp8YP5+1jbLC8bYQeB3Ic1w8rqCEblLu/EX+PAVXoD9lh/4PHnww87VvxcBPIXq0NuQbBKNZNjdGERujFPnhTtG/0dkPb1fye3LxvJCLTcd9RgjHCOOCmfyEhwwixAVWgZ0iNMXFHok3fIAbQ7owKT+KxZCYkk5gg3ZItsY0r5RW8O1TqJLbZaMimECPreiLnhRAX9PWFW9+opVJiBSkHHV/At2uQaHI9lNCqGc4ixN3uvDF+PCXrOuZTIu8ruW7szYtJOq03mnanPUcrmurG0/MnOo3Lu5UQlKRCypFaNmorbPtmnTMSS1dC3Cbza23ZOqM09v2V6+2Z7eVGTpnTeuG0Ptr0QGzClIgZpOYUfX/pZmYpyvmUWMOZ0CrPv9/dVLBwXs5W1N52arHpFjbNYofaoFZPjK0Iwn2M8pJ8NLdnwEGIKfGLv/ilFUplY99vlFomxVXcbwvEL4JMDNS6AndBGKNeopmuF1p8T/zJV8Sv3pF/uvL4i0R6tIk8RnlWOt0McymI3vj6v/813/3qV5RPT+TakW4meBELMo1OCnNBUOmzACYlJCdaWrhpoLRuKXCMsKz0kB0ozGiKzqrJrJeFlCMxCWxXdN9tLLUas+CyvoN0RtOJvmTiw8ry/sK7jwnVndpuPD1/j16v3IoJQEppPD+DpJ1lXYhLJLETqPS9eJe3IrWQMOCS2yv1+oxuV7TuaC30ahRr0yMZ5XdIw4o2hv2EO3HNCDm7rH6dXNrujzATxrf7iKXOwTeBkaTpTAjePoK83WhH8je+fN7ASGXRQ27uMcmp/g5ett4JAWPYJSu81vOFuFhnr8rm6xaqa1eH7M2St2YesKIE9/xKjI3Zk7uCTT4Km4EJKRsjJQSfsSMQjemUloX1fKKlRE+ZGM4GcueV5EBDK5Xdp6hE8eK9d6TshP0G+0Z/fUHGFYpKeP1EePqW2zffIARSWuibdcNrSNSGxbi8QsqUGPn9f/8/+O50RmJk23eunz9RX55ZbjuUBrVRrzapix5JKgy/slrtPpaYjG0SAvH1iX09Qe8kCVxL4VYKv33+zB/2V57bThFjO2SJnN7/hODdXFGTRqbRqeqdXhrdR8hr2ejbzWLSfkV7JWljaZVAJdARn2BlACDMrm43n782QKc7xtOgdfu8Bk+LnJI/ltVYeDIAKysAEajFu6oOxEkUH0jgXk5eIPUQoSixKeRO/fSZz//wD4TlwuMv/zk/+flPuDyeWXNkifa1pmwsztYoZUfdiy5IZ5j4qhZ6zTYtrO/oeibH94gs/vvse7M56PQOvSjX+jKZA+r7uYQIyYCHYUI8vdvEGWRxnayblIxJIRiDtOsAqyy3kMMMDRB6300aXF6o1dlU3SbfjuR7yJ9q7ex7Zy9KJ5tdUUxoyJaBuFR/JI3BAeP1BEEarRW27UovNhihvrzw3be/57ZvXB4/uqDHosjohsMwdIWgyaZQpjNLOJHjldBPVFZkfSSsF/ryHW270p+fqNsNrQXVDeWK9MLSGuvwIVqwpke38nrXTis7e9ns3m4Nivsnqnl2RYlkojWlUGMKJ5MLp9E2Uet+FzevbVEmcDIKE0FIy0JMiZwzL0nYa2PbK1u1SYO1NxYZrDRjFKYQWFMmuQ9cClaUWObqQw2Aj+uJqp29VvRaSRK4XCp89zVyWmm//RX940fknFESYJ4vlrE4IBlXiD65y7MyUZfCAAXlcU3sDyfeP5z55uuv2bed2qrlPL4mlvVMSgnRxq2YtDEQyGFlWRZImX3fKfuNWgsiEGJkSQshmqdeqdVlUWZW3J0pPtkK0jzH9clgvu/UbgCzNS1HzmrMa5se6BK1WVTaeoEXm5qoEfqKmR1Eeu9zkl9eXdakYoynN+C47c1xsXVjjHrziuo0tO3m1ylpFqgd39v8r4PHvgE4iURnexv4PuJyp5OS2v07/Ap7N79I7e7N6N5pA7Du6sBxQjWjukA/HXGU6jH3niVmA3uMPZZMmurDNyQ66ylmn+ZnZuaQEAcbFSuuuud4ZsFkANsQ0A1rjLfUknFTHdCZo8YW/1t3WaI/vAgPMprgcvx4rOTxHnedM+0DtZB5n46sKejx4qPkPmBRGMbNvR9A0/wM3Zq93ZUelj8fk77wPTvYbCfQgIQFkYWgZ1puiGxItH039ma88d5ppU7Pz1KrNepas/qx7Ra7cDJaFNtzUmI5reTzCQj0qux9t7/VjUAxSVB5hfpMqBdWbuT+SuwR4pmeKm0thJhpp0jdTpZT5YUaFhtWcX5HOF3Q76Fs37HfAvQX0EqYtB/b1wYOa9ZdEUmR5fJoObwsiKzG6mqw3W7UUqj7DcrVmI5aYExDnAMcxkVzYEo4vA2xGnZiQepgW7B72lIJWzuG1TjgEyzHHUtJ3nyJx4boQBaTQDFi/liFXY/7ezKEdLzs/Ga+R/Dpx2BT8ka9LL7HTvYNd6COjhx9ol130rA7aGQkE/cgG29BpcGS6mANXvnBa9w9fgx0+qPf6zhWB3L6OE71HX8wmuJBfvBzM19d7sqM+yOZZep4wh/XNDIa4HfX5B/9QPev+2OA2R+/+tvX/UdedDxDYX7if/w13z7+ZOApxZE0Lazni224gjNl3JOmD2AkAmUGOFPXN1rfaWV3KVwjJZ+yJkPHiSWqvumOaROHMV4y6Z5al7redqp3ssKykpeT+S55ZxcaxWbmEkMGFlRHYOszMR4jy3sXQ+xDJi0nZzgdU6CGLCLFxJLMsyW4wWbOhprHZF2k1m26g7iHUm/dvEmSJbIChGBd6THtaC8mg5IYyMsJr+LRfR+Zq20oTmOubWfbr7y8PiEB95JqfkP4TSBW0DOOo/tGKWaeWMuNUjZUK9CoTbndTGue88qy2BIREVIK088mxUgVoWmnlGLF6t0Y1VZ2Xmuh367025W071CLdcddiidzEt+YP9WtI7qu5JyJKXG6LCznzPlyIufMumbWdeHzd58p+26TMcTkkXf7rF8rSwLsVOgMXIYuB2K40MIDLT6gl0fihxP5J5n1YyCd7HN6/wOohFDo2wvb07f85j//J7751d/C9YZU69BFCcZOml0RSy5jTGaUHAM1JeJ6Ip5OxMuDJaYxuPyyuxGpjQ5WMUNUiQ6OrivkCNmBX4ReGjGY39jy8B7SiR4XripsdF7KjVgyIbg8JeKgSEV9ss9+69xeG70tXOSMNDOB130z/59S6Ps+AZyw36B4UVSryxlsDPsIhjaFUtm3ynYttKJQgo9cdbaBR6/uwNJoyA0Q+p7BNHwWxkYGzjIc4BPjOo9rdp+s+Xc/jIry5gnW35PReff5VeI04OAbS/AUU01+uywn1suZ9XIxI/roAEV0A0q6dQCTSeLE/TqmCru1WUin6GYqAjYmPcyk1na2SqvMRd6bmHfcHtH9aiO4Y2JZH4lpIecy5XltL9RSPPk1ADFoJ2tHakHaTqvOfKo7e9+Q6zNyfeLBpwJJ3Tl5YpLTwtPzK6Vs1NdXbDqT+SD1lCEEWu/EfSOUQrjtxnJSjKUhJj0x9qEXB5N509i3K1orz7eN9PmZsJxYLu8oXSkon+jUh5Xl8YHH9x9Y84klLpxYGK2MEgI9Ci0GitrY7roXyu2VVnfafqM9faJfX6nffUO9PaNlQ1ono3MIwjTg0kGt7ibTVTdDHkBKx56rd4nETCIAHexF7mLLsRaDswJGjLUuXvdOcEMrvj8ZEyIEk4yvMSNdSVvh069/w7U0wscv0OsvqV+8Z3v+ltvnT4TWuKxndroBompyKpyhMj0FWqNLodbd9hrdqFmhrcZ0YDHPwLj4OHX76KXu5tumkNfVZKCoxeFg94Y4y8jyYPMjMKwqOoPV46164uYFnko3I3wHfUcHVSRAL9RN2ctmgEdtlvy7hEfETJNrUxST2aTlYk0oVXJeCSTf8xaG11fEgLAlRVq9su9XWldSrbReUVX27YrESM7ZbQYcvHM68Bi+ErwzPo28c4AucBaqRKT5ZLy0Um+vEM7E6wuy70h4pddgAJQUg4Znnn1f3FrB2dpue083yUkIQpZxvjzuFhNjSZTRtJ95TsC9pMTAN/Wx96pKrYVRvC6nMWwC8iL2RzGie0cqPvlJZkxOzso+5eAMbV//Dka2wawW2+ZiFLLvnaIg1yvt26/RJbF/81tO5V+Cvkd95LgQGQRB+5xhmqYKw2LBpzJKIIdgctAUYEm8LpmgnX0fDDc7uzEkggRaOhHDjY41WuquQEO62BTk6fOiDKPlUXRFZ1r37hrzblMiD7mTT/zSRm2FweYL0QDmEBLJKBsuwRsw9sFMs8DjPpNap/ca6ux2xHIzjz86Gzs2YGIOEMBAIomJlDIpZ8vJ0koM2Qre3kdI9PNkXk69HwbM0p2RLA6yuF+bSJiDCNT9Z1QVjeoNR/OrGXuBAcdtgsqqgzU5wKeAeeMkA6JIdCJd7UvV/d667b3dwYKhckhpISSTrZuBbPDG3xitEyZQNAahWBfNc0y/Bw9W/CjUfW9jMJ0OYO9olFmtYxLX4Qh0Dxp5QT6YRuIlnrMECUzp09wvtDqQdDAbBpBqudV98T5ySRxjOoCn2S7xcz5AiAE8TRYMmHIjQcSbIqkTYiMGpS1KjJW0DOCpTl/fXswrsXWrI2wiXqHtV2hWSyYqOQhLCCxEUsoEV0VY7tdNlof5MMVorOW+v/Ly/Tfm/XVOPNYr5/YlD+eFniohNuT8QPEGz3KOqJzoIVCuQM60KJz6K3E7k5ZM276HfkP05rFK0JDMPzM0rBEXCYs1I0M8EeIJkQdaE2uuhVdK2QnpBiXSm0m1tYuvd3grafRTPPEAPQCMAYROX6wxbc6vzQBIxt7ecfBGGG9x1E1H7nKAUQOA8rUinqyM1XPH5BmvMXNvRya7+H4dZAJOoAzfuj4WI/fvYX+j7W6oyYGe/hgWwziy49+3gMmBu4z74q46cBD8nwKd7LRO+HhG4QGI3Wlt7PcyXlOPU8cdaDt/dJyDMY3weD+ZhCT7922te/86P3ZaZlNCju/ndZh0pXkkb15sMnb/kdcf51n9///ps2ePPxl4MiAgk9LKsljHShju+zoLYfvWmCw6zNO0Imp+C70VenVkNyg+8uu4A0b1qUKXNgOtvVKHZuO2oVKKUkqnE0g+QSQh5qXEAV6JL3zzjTDNcK/Fitsx0tYRSwnRCzgHwI6lOpOvEIJ1wAZAhnW4Ukqk7J5NPfqNVj1+OIsrRGLOzvYKxLxYUUO3ZBZB3Ohc1SZSSWlWaOAgWwiEGFyPW9i2myUD/r9ZnL9BNwcNWuZ1sw7wbcoYYgxuEljoraAxeUfcb5xJqzQTv/HfrVRKr0grNonG/77tN3rZoBYzjR+UYjdiFJc+zrtIPCHMlmTlJfP4+MhySiynhd7N5DJGsWl4LneUwTDjqNuBt0ynubbAqKbmPaXxDOkBPZ0Jj5n8PpJdZndsbD4ppV8pL9/z+ff/wNd/97c8/f4PyF7B5W7T2M9vz6H3DUEYhrwSI2FZSKcT8XQ2oDUI3TuJjWrTZcQAUYnZtPKnlXg6E7KPeHepqhbzZpGYCeczpBUJGWqjSWerhVtRUuzEaF5FY2odPiWntU7dhCgLuii4ubTuG+wFaqFv+wHKlJtLtXZaqebx0saEIL9f3Gyy1kYtzYCn6olit06epzAMBOhNUFPfDCSMVGyc1TcLu+tMn9yHhHkFwlyvx/PnXh5mmPGfj41Ejis4dgqf7GP5szjwK941XjmdzizrikSF0OiazGPCi2OCs9bGGnA5lQEWAwh2lsvcdR20GrRql+QNKcf0tevVzJB7RYNPHtSApmqFZ0qWMG67gUrdjYAdKRGU1KuBjXWjlRt9v9G2V8J+JW4b2a+O9kaSQBJhiZGtDXNyl46onafmAUiB0K0ADvUwOB2G/aPpi4xuMZ5UGajeWjWm7VYIaSW9bhQRaoxsD2fyeiJ9eM/jL37BeX0w8CmcGIzTFgPdvypKq5WyF/brK23fKNsr5ftvKc+fedVG/9RoQalbNUmydhuS5Otx+It1L6bnlBq929yPPf64F8b/OQg+GHoj+RgrehAk4wSeHKAdhbnVJm6w6xIzrcQl2uCJvXD7/nt2CXz+7W94twhye+Ll6Vt6NSBvTYs1AGoB2kxkRm46pDeKM71iQGjUHCFXQjRfmOCAUMQnDDKYjZ3WIWUzF7aCKM69MgxjUQS6yXkM9AhHd3LeiyNpvvtSK/hA7b5UZfgp1nKjtkYpleqgU0omxcIlGSKJmITDYw2WfCKKsUqWdDJWiZecOQWWJVK2hIoQb1dC2tEmtF7NTLdstLpNkAsGC0TeeFOJxzRxQCFnY8lFBHpCarRcIGRaE2dUbiZN2urMUY77H0yzazOGjrTwYHiEYDlR9vOr2Lq9G5h67It35hIhiEvoj/hoxZCvWjG/IHGKVExiHi4p0kNHqtKjyd9EhdDVwCYRMwmWEZ8tpxpWBTL+jWaObR4Jtqv2fae/PNM/fc/tm9/z8PpELD+BOIpkpsxkFGUDobOt3Ninzao/i8soVIuNkU6OAVmyWQPgpsHhMLiPIdIkehHZrahVtzXoY9KdYqb01aa1SbS9SdXZryNBuwPbpbiBeTOj8LEnakNDREMlyIKQnPEgf7RnHRuo+iF43nPH+DHZpXIEIr/fe5n57bCYCCGQohX6KSWi+wOK+LCNbgDTuFdbP4AnpU02QxCb+jzecjBHuyhHr3zEgOCgssVLYzjVCTxZLBzSuT7vA8Wm8tlkvjC/79N6wUD/Ud/pfK9hgeGy9ZDM4sMnps1EesTIWbR6Lj2ldHfMpgmc+7m9Z3mOu3SwGdQDg457+yhoj0pU5zU71jVMmbbgtYzlV70HZqk4mU93a2PUUnMN9Rlax7FazuHHM4+/38UCHSpDy698AqgkBYmEaFJbFSEmXC6XJvCUsKasGZLbfRbKTvSvkhStAVogUUgipBCJasAWDr4yQbJuChExabBgLK3byxNdOuGymsULjfX9A3JuBGkGbCelpUQ+J8uh5Gz5eBSiNJb2FSFlYoQWAr2+ovXJIEVRn5ZZrZEWunnTpTGs6kxMF0Qe6T1QitA0IXEzkD42Wgs0HyKk3YYAdG+KjPpLGOIJ9XN+7CVjLdieFY7tEkP2lWFb8TZHmadvgohjrcEbmEGP9TrY2/eP+V9yZNpBbH9m1FBynw0dNeqROw0u+EyQjqV6JFB3MuNj23r7ZLl7rx9/6Jvvjjj6w/zjR/9WB4jMQTY8tpl5/OP9nU4zP/txzPoDwO4HByhvvx899sOQ6Y8/4x+djje/0x+7/D/IV3lz7PfPPl5S3zz/ONR//Jz92ONPBp4eHh4tOAeTtAXshjfgyaiWptk207T9JvRqDKW+v/jY9h3pO6jL5mpDib4J+FbrEr3WldZ0yoxCiObvEa6U8IJqYC+d295pKsR8YbndyMuZ9fTOO/DBJsdF2zRjjAxN9bZdTTThHkG2CLp1P0MyFLPbpKEkkVIKvUNqSpDAmhcMbfbyMEZnQzgjKNmY3+v11bk84rwvD8y+kceczeS3N9BITCtIZJETY5yr9ui+VEo82wS+GKPLH+F6fWXJmZQTl9OZbW8UN14dt3NXnL0VWFIGGq1VajHvhxwXTg8nk/fUbqPP6fRerFOI0ntEiyelLo0IIpR95/r8RNuucHuy6VilQLnZRIrTQnt9sSRPsASi2fj20B3IsiyfIOZjpC47eXz/boJqv/37X7O9vFB2N+czMwJLxkwIxnF/HXp06CPbAYUomagnFnlHvPwMff9z+rv3rD974PHPTuRHiIsXYa0Q2Aly5fb13/Lb//Jf+C//9t/xq3/7b9HvP3MuaibB3cBZ1aMrb+Wbf2aBJoKsxnSKj+9YPnyc49D38krTRqdCXIy5l0/k5UTKC+vDhfPDSkwBqNRloV6vlpyFRIuZ/nAhppUQE2s1huG1bfTn6wSeri+f6HVDtJCCgWKRTmgK242iVzOTb422FweWGn2vbM0S977faPuNul+5vXymFZNShh5NTqKBVrpR5htWJHdnOt3hjEeg9Jb7XTADsUL7vnM9Em3FgB8s4TyC4CADD8Dqh7yn+8TuSBXtGaMwEJvAgslCBoBiHVJb951unfKQeP/+Cz589RE9d2rfabqTSDZlJrhMwLOGlMJMFlq3orQ5Ky4IJkv2LrjEaGyQSeU349HaqnmieEGpaiaoQasxqzRTX5UWE2XLLhExcLgX8ygIMSDVGYfeEJDenGExjMavhNYR9W5/69S9EZIV8LVW2JRYTIbYfbRMCIGt7GYq7EVGBE5hueuudZoqFYuvRAdcxn2LF+NqEiGzn2sUiZTlDOvCh1/8OV/+6/8L7/78z/j4l/+c9fzIslxsClvHQHmfJKkx0BxIqaWwv75Sto3r6wu3777h+t03fPPX/ydPf/837J++ZfuuoqWRm8n0rHg+wCTVQFNxheA9dIrFxfE7oidxSp+TgIzqbawM7v5WGU4s2f3rrAs3OubdCfeGYpRu3enWK1EFaqOXbiydHInf/o7fPf2Bf5DO95++44sv3vPh4zvenc/kDLFBaRZnrdgPR4LrxVKg02/P7OUVypWcz4S0kNYL2m70eiIvm3ncSJrrtfdOuV7RnEkspOUByCCLTW8Klkf0Hs3bYxeGD09v1rG3wFFdZjfFpcZeAjfaNgNi1UrrJjHq3fbMVuz+VLVJtEbzT8ZMjMM7xy7qulwIYvLBnE4zk4x0YoSchLKckGgm2qVVqJGglewG2DQDo8znIFkvCTF54ZhUJZbDgDHHY8zkHGmnhbpvbK8CJyXGE6ewsl7eEcqGvH7mKkJ9TvBkXpkNM8cOXnRNppIoaY2IBkKPrDGRQ2ANydZ/bWxbQcIA6bvtUx2zPzCIwKaNjSmGMqaqeUHuaxKpk7kYF2fFL5lzb5RWed1u7kGopGKFgk2+M3B1SN8UZ8BJMuZDb7bWndEWY6Kj7KUgWqm/r/zqf/13rH/5V3yIifyX71CKMVnIs6DyKt3ZZhb5m1aePn1H3wu9mGTm9frCN99+zfly4fzwwM9/+lNeS2Mrjc8vN2OkIS7dTaS0UvuV7bajt0ZcxAgyosTQvHjvlG2nBWuU2b18MEpEBEkOUKIolcH+1u5G3whocuAp0KSCJtBsxuAjnkwJi0KPDOnh4QaGA0KWZw45XHeTfhHc/sI2xrycSTmST2fy+UyM2Yyv6WirlKaUfcjdlMHOshzRP//wmxGBIEQS0VFMcdBxsAzsvKjLuEac7bReKHWzppZLsHo3KWKvBnL3bk2v2rqPl4fahFZl5hs2QMQZH8eycIAtutx0mIzbgKE5ZWsAYfAGpBt5gaozyUdhjDNHdWR/5hk2AL0h/OxNER22FZYTt27+buBs5zs6yvQIG7iv5y0RM/MOk4ndKC5/BnEPJj0sCGQU2fjrModnjPNzVKjeGPb9SQ7s7f7QgDCnL474gWKNmmK5QT110n6G3oi9MM7EIH6rKvu+U3fLJffbhb5f6WUj9h3TqwihGEjWPaehd6g2VMk4BELs9nlb79y+/8Tr0ye+/e5rTn//t5w/fuCXz9/x7qc/4/KTr1jfXQl6IqUz7z9+QakLa8nIJyHtJ9L2wLKe6OWVvv+MfvuWVp7Zr197vlcpWqn6irCRUp5TaJfzI8vySEqPiLyja6a1RFheKfXGVp6Je6KWK2XL4FNWTW5YXClT3cjfwTRXzxijLsy4jxpjOqXElHAOJjlD3jb5lcfD8GgsDRx7MOarOJvE48k/AnWoTWQ2kNktBEXsmD1/Lq0xfAPM99hIFDEEy2EmIWLEvFEcyGxwjTg5DuYt4+lAqEaz+R97/BDTGVXDD8Gmf8zj6d5DyuD1u4Z4YAJDx08d/JUjrsnxgj9AgWS+t8wgdfeeiu3DCvzgeO0Pdf7tlL7N/eXt53j7weTtSTkO8Idn4I/f8u5f/dFn/PjjTwaeEO6kWlZUxGRFiR23j1xVMVPQHXqzrkmrV7uRyg1tPvlMO0ql6aH9tOaCG4T20eEN2PDVbBKkVozSiCVxOdmUIRUz0my10Hs96LohunzPu2Zqk2lisq5WTkZD7l2p1TXrwLZvNJ8WtqxWYMTYpn9ECDbdamxcgiUVpqG3AjXFZMaFivs7BUJoFHxinDOubGyzGHgRjL1liUElhkJboLVq1G2cKRUjy2rU30HxtikJ3QJQzCxLp7VA92kcNnUwImIgnIiZYg7GlcWo4BM1BkPLztth1mqeO1EsiRSFWto0gpbRoRQ718UTheC3qnSf9uc/126vE1y2KGp0/hATtVS+/eZb9rLRtbFEKLcr5baxb4VaOq2aJGbe9GM3nL4AuDwmzI5a6CuBFfREXt8jjx/RxxPL+4XlQzZGkVg0jnSkXmnb9/zNf/hf+c3/+Z/5u//wv1O++Z503QgFtKpjW5Ehz9JoJsgSAizL7Ki1tFC9qxZjQpIxmtISEWc8pXw2qdRirI68LKyXC2mNIEqtN+L5kSUlzkG8I7nw8O4LA1xUKLerTUTqSlruJiPp0f0IogQ6QRttr2iBclVfE8yxwjSF1um10mulbBtt32j77jRpncS17h3W5oMNAyZNFTXPNbTPgHjfoRhBZnZgxoYwgo+MsH0kp4MHOZiW42Vm71FmnmbPm13G43VsL7ODd46OHVtXCAMMObZFO5Y4Cwkdx2btNCvWokwJZfOJMNrbnBQpIgbuOetvyKvsPhy090YLjR4i0quZ9zsTw+Kl7RBmEzSSEC/OQzKWgQZCH12WShR7rzUIMTqLartSthuUHa6v0Aq0ipTmzJ7AdbfY0FuA3tm6TeYqt3KwfppdgBQTvVoRYTHYr0E3430Vm2plQN9gfXlx4hew97GtB+9e2rVuKqTLI/njT/jyn/0LvvorA55OP/s5cTkRs7P9PAT0KD4O3pPyrmht1PLeivDWqE8/Zfv0HQ/nxB9Oieff/QOf20Z76ug2oB4rxIN7OgTx2E//QRffwNKudu+kaIVlqZUmFgHvi66R/I+fRTcLfZtsHAnMEeLUU06Z59YYD4WTNnIrhM/f8brduJWN63bl0ioFuISPLD2h4YRWS/oUY3V0l5E0L0ZKK5S+o6LcwivLeiHnlfPjzPzRVjCDC/Meq62z10ZpjZQzeV9Z9QvCciYsF3K++OdN7pMWICdadQ+R1r14Hf5/bSbPeK7RqntJ0gixOfDkEo1mwFP3UaK92/4gBEJcWPLZjmuRuWeleDKDcxIprvP+t+RYCQmSNnKrLOuZ622xphW+xwdBeveYckQtVaG1wohMMSQ0mScNFAfjO2WvxhpuDji4N2QKSooCfaMsGc2RvduksaAmWRd1I+fuZa7Vt75Whl+l+PfqBW71gvRISifbUI7iUcXi2Uho8UZTdxNXDeo2J/YqYU2c3p04n1da7+TnJ9gKlIa+VDP+9YEsge7SUnGWmNgkT3E2dbCieTA0YxBOMVGDsvfO7emJ7/7mV7R05quf/DlyNkY+tsUwxn/P7rffux3h0/ff8fLd97x++x2nFFDtxvCmG4vwdjGQrHWkbdjUY5OHyZKIkmlbppZKG+vTi68ojU53oNnjpu9nNhFqsNLFGoo6WJTtqKamdiognjd2DSAd7ZHWCjEuvlcNwMFZKT35pjaKHs9LW3PwqQDV8hs34fcw5HtYIMjJikhLauk082l1pnLrQq2eo/d+N/E5TFDyvnZp3RUOhLuJynbtVew6TTWBX3sDOn0oRjOQ0FQUVpTbVDA1yXTbDWxu/n0v1G51gDXGbQhKU/OE7RoOtgoHt2jUehPkierAnLq3Tn8D2CjqzHPby4bWPzjjcFxZ7ZaH4jWD1SJDvmdV9QDfJqtJ707gLHiteJn50gCVZrw52CoymFrz/8dDjptCMcZkf1ssv3nqeI3gjDH39B1+OTL3IQMWk+coKDZUNEKvHQ3V/PSaT4W1MzDBE1WFfTFZfikQBc2LNUnrjdSV2DtRLNYZ+LgZYForoVdC91wKZ9TXTlpGPZIoz6/s28auyuOXf+Ddl1/x83/+L8jn98Tze0iVGC4sywPnx0zaIyGd0f6RXs5oXmG9QHtlfXykthu17dzKM1t9prYrhCshCTFFYjwRw4mczkg40zURY6KhhBaQrGgqxOLTiMtCb5XgXri9NzRVB3OYbE3ROmWsB+PJ8pNIdALbiEFgk+mOiyqerxpJQn09d1uPXeb6H9vuXCx3OMlcnaozhhwDn4QUvVkhmHpjZNde46vvJQbgyrHUfb37kfoyH3vBgdLcr+njv47n27Hx5r8tkTw+wY9BVPd5158iu7s7dDtLx6kCRtSbENJ4k3nPHgiaX0cHue9rojfH80fIzn30OuAf22PuTsIf/+EfvYrcf5gfnOPjWH7wc/nRb//Jx58MPNlkJP8cooQQDQhJP3hDLxxr6QQfT6xtQ7vLt7rp2MUlI0YNdRDGz2sfm7UAEo2CKHBfFAZJhLiQQnTWkWKTFyyBDfhFdCBEpmeUFXcxpunJFEL0oF9BhdbUui2lAzbRzq7hQBS9CFa7+cPsSjA7R0KyTn6IxGhSJ/N8aEcxIQ7wOEocQkDUHPq6GtrdJZKSS720WDXvjxhNGz5osNotyEt0YCqvmKACmyYollgIkRgCKYl3kvzauM9KiAfwNAok8UVswCP0cNetmqN8TUqob8AnpbZKnht2d4DOEjaTZhp924pvA9lEAr01nj8/8Xp7pbXCw3mhbpv71TRLfoYZdfcO2t0N9rZ/Ixj4lDCT3BVYicuFcH6gnTPpIbNcol+PjmglaKVtr9w+fcPf/6f/yG//83/lm1/9ivX5BalKaNEuicqku6qYFFIQNEYkL4RkwFPNCz1lm2iXFsK6EpaFTGZ4oeXl7JJWlxMtC8v5RIiY9FJsGg850UIg54WcMsvDowGorSNls+66Ql4AqvlFjoQ2DKDCkqZWmxmVlt2lWGMcrN/TzVgnrTVqreaXU+/HRxsQM7w1u3vdjGlu2K1k0hq9I6DKfUcFT/xGzLn72egwvg01M9wycimVCTyJ6ozg4zmjG9TvX0UPzfzQmze1Tr0GMQNstWJGuxKiXefWoFYzaCcae0lVLcyIuP9bv+t0Ox17AE/eGZUYmFPU7j6b31yW1Kt3XoMx++Zn66MbahWXCEjP9q+K+VoA0ddNALKDHCKdUjba9krbbsj1aoaxvUEzcACJFJ8YFgjUZp3G7XX3wKLHyHsESWNNHHed4EHdk404kZqAzILJmmLjoo5rHYP4NROqBPLpkdP7n/Dh53/G+5//kodf/IL44cM0X5cQxzsiQ04Z/WW7GkAwzrME+od3lA/vSdJo+wshKC/f/o62X6l1MxDfC3Lz/LAC1hgQ2F4od7Hc134FUrLpYeobp3pxGu7i6VjR09dJ4JA0jHUtb4qA+/M6gFrfNMmtsdSCPH9if3rier1StVFypqQMl0fz0WNh04L2TsO8olQsvhzMgW6MA5eA172yLCdizH5NDUzVYF33Lgayldq47jdiyizlZPdQq2SEFI19ZICr+YKlIJaRqo0lVt8frFBuR9Ll7Ik+vFbUQPOu1ZlO3i12xsibQozgDKOVZVlZznHGLvGx6kESMawMo/jA8JPqhLQQ0kpMxkaN2n1vd0DCKvw3Ow5Yp3lOuYsZNGGTBcwjqrkcubd+yIadiWHeQh1Smv5ww8B5SJC8nebnyddjN4AuKBhsMCTW9tUc2NDBOAEGeiq+lm3yWPO8S2fc8mBsX3HUzpafhSwsDwvp43tjUcRGf93oW6EXdSKbNceM/dxdnuj5nzM/h5dJF88DuzFAot87qorcNp5/+zu4vOfjv/pMyu+QdLKY6iDvIDpbIRwcEhCeX5759M3XfPr1P/ButSEry5roSWhRqNez5TAdpBcIxk4JIROSCVpiCjSjxYPuDBNoEVuTw05AUbqoS6SPASOCMWsP+a6DGn6fD2m+xY5g6752erCBONoVEfMhGtWOAqoW/0TjEV90n8wg1RtIQaSiutt1kxEkbRCNuSB5Vt3avE+m3Z3NiKD7+h0m88NoHEbRpg5U2X1ssTS5H9ch2rm3cAju/zRYXAYKNmf+FwOj2z7v0eaS7N53uoNOvdf5b+/N5E9qjcQwgCftd+DTKNVGUTWukSU0wyN1yAqZ8dniFIM1KraudaAu/r1dc3GkxrwBLc9x0MmDvY5a0XOZyZ6Y9YVL+KYUMfj7WTPYNwNnEd4V7dw9RlXr97VM8AH/xOr34pE7BS/MXHU63oYBOtm9mYnBhsoIlu9pGOetGYtWjEUZepz3cvDnq0KPDcmZUKyx0FNCS4aSiK3aZGW8Ya1CZ+cAXUfzcMR7Y9knTEqpEthvN24vO0/XGy+fnnn+/jPrknn44ksuFOTSkLSTk7CeHgkxoxJpRahxtXxdV6TfoK3UeqW2G2wLuiWkZpRIiNiE47ASw0oMNpSq+7TSTLe1kBotnInRmm49JAOWJIGYeT9apxfeARxbAzrc3TsmAw4EPYYhiQ+e6BOEHDF8IFkDKIY5rZlgdfTEfwaY4WtDJy/pLegw9g338YsjkAtEnEwy8h9fQ6OWHu1jRV11+rYgGO/XRx6kb9/7bmG//ckdcHQPPt0PIBq51T/1uPeAOhhDM2DDOEs/iu8cn2iCxLMqVd4cwj1INl/0be73448j89AZSDx++S/mMcioL46/O9YGbwovuf9s98n5/THeff8nnErgfwJ4ut1ezTdVxcz4glBrJEo2lLQxVp+ZNfYxYQy072ir9HKbgEMQS0IUpd4BMd2ToiCBmM1PAlV6tUQ1hGwb6egoSQbJlsTQEekMY7wYbPxmiObblJfVEu3aKHWz4Naba9eZQTmKcAonYJvBdq4HGTeiUxhrMRPdnKw4Uaj9KMhN4pdYV+F8PqOqlLKz7buBOOMCE1hyIiUzIt32K2Xb6T2QM6hezZOpbDNBi5N2J9BMytVLI53Mf+F8OhFFKUW5lebJSKLVwOV85nReiZLYtxt7vxFSnz4Gw8vq/jO31tg26zLsAq3s5pWlwSUUQGjE5PTc3sxc3A3AuxqoVP1zO7HKTruaVI0mlN3GVXc1L5ElZVoQnp9eTZ7ZGvvWXMJl0kGbaBeI1qbDJCRySO1JQELkREzvCPqO3i605QTnhfQhs74PrO+EEDuRSqTA/szv//t/4Vf/+/+Pf/+//C+Ubz6xPG+cOyxdCN2aRtbZNHDWNO4rKSV6SvTzI5Jtkl28PLB+8QXrhw88fPkT8ulEWlefWNVoWglxtaTSZa0iAU2RFi3ZPF1WTu7XsFyvDEp4IVKaeWztvbKkyLqc+PDujPZCLVfQnVau9PpK6Bv0Qt9vlNtOK4VWCsH/F8W60rZZRCQupJCOxKN3YyB68hyiTYCRdkxyiMFASoKNr5453FxX4n7M97vJHxGCrZC82+363TN8K30DRPUpE7Hu2tzgPMhHmSmbhSkHCwdo0ltjLw0jrKUpfQIl5USIgdobv/67X/P7b//A41ePrKdAXoWsSpZRTFtxXosZxorYpjyTSIy9qd2KRL/hjNU0gGAvpgT/WRcHfnG5QwdxZmcrNq49JkLOJlMW8RH1zUDy3aa+BG3UtqO7Tc7T69WN4rsnQAshnni8fGRdTpzXE6+fn7n1G6r14PJiksquHep+ACitumQGkloCryEQojFkLFyGeb86v9vMKLHiN2ikYqOvS1pZP37F5ed/wRd/+S85/9lfkL78CTVFT8YPCRt44Xq/LsRlLz51raoSL2fWNfPzSyYlePj4nqdPX/OslZ1uNHEq1vlOeC3i1bFaVxclhWC+dGLyMSmV03lF1cC2fbepO9wdn8k07PcpzR96Mj2e52tWHJDAGVUMwNaLDcxLRl+fqW1n7zeyKg9ded02bq3zzdMLp5BZLmfiaSXu0b3kQFzO1FuhtkBT0LbTNwNP9lrYXgsp3Wilc7qcSYsB6t2BjVvd2GthbzulFWIyoOfx+sz58Sc8fvgzUhCkF0KvaDyjGmy9qrELFaW5xKB3G3jB8FRLJqnuLdLajjaTTpnXoRnU9tatGRFGWQQpmPn3w+N7TqcLeVlZTtmmlzWbcgcRMx5PDOYCoqh0A9RapzST9aflZHLGqERVA3EZ97U6m9EKouK+aqqdFiOtZ3pP1Jac2d3RJiZpjYsPMLI1UFqhlg3db+x1p2ol5IA0QZr6+G9bIpZLGfi4leGtI4jahNWqxjhSVQj2s+4sKXCWAGmyTUQE6pB6gmJeld3RnBAicUmoKFWbmatmQdZEeHcClFie2G8vNC0s2RiL4zX63J/HQheT2HWb1laKye26CKE3Y1xEIZ0SURLvJPL0m3+gNuGLX/4L3v/rE/nLTAmBIAuBNFlPqG3/KpFG4uX1xn7diHsx9liN0KKx+64vtO0VWU9o8olnYcFQtk7z/bWx09npuqH7kxVT0fI9Hd6J1fSFw2tysp5GStJkNhtGYwXwYSFeRLpkSgTwuIlEejLPnBDNTHv4GMV49nxQsDEM1WNHQaRT2yutvaJ6Q3UzsCBEAiaDjbKibaOXSJVI3YqBR6qHdK1bw9j8e5LdXykSgs4Je0FscqI1qGyvEGVaByzriTtHQxsI5D6pBuYo15ynF9u+30A3VN142rdPm5ZsE3Vru1LrjVqvlPJK7zvKjlAQGkEqdGMaVS00bXYfOBvKvNL6lKfpUHEIiFSG36LZKdj9bYOSfJGJMY5jGGCQ35NDiihmLYLYwJij0TAAIGvcWtE0gDc7P7Z32PS7AyfqR8YzwXhltNVkSPDU/bg4mLbTqFrNOuTeOHw0Mkw6Z1JO6f0OgLM/1u4KAoTkBvzBQSe6x6RerIkedjTujAkjMSViSDb0SW1KrC5C9CmyEgLUYpYd+9UGoJSdGKuxrfUVadFY3RFiDx7Bo1sWQE4rKZjnZd07oSqxQrntfPr0B777++94+fZbvvzlT/npX/4ZP/0Xf0V6+AnpvNNTI8V3nM5fEMOZ7da5Xm+E8IjIjuoDsb4Q2kbuX7Bsn9j3F/bte8RNzpOcieFCDCebCKyBKrCGRFIlqRJyp7WVtp6pN2M6bduV1IrbrzT3EXPWfLZ9UUufCGBr7lknxigEY4e1Hq0Zsysh2Q0THJAbS1a7GLGjjVgpPoleHdw2MKnPOuoe2nOLBLddiUFIznI3bNPBkNFc1j4VCArQ+5xaOFlW8x24f6btUQOA8QTqng3+YzXDjz0kiO8L/e3P/weQyQTG74CsMWipzGN8++5vsBm5/7k9d4DaR4CBIeU9qpi7P/Y4MeLBfN0359mPYzawfng0B9Z04Fr35/CHn/vu+/tn3YFRIcjd8/9U2Ol/AngyVkm3MbuOqIUYWESnYe4wYaS7UZpiyWFz4KlW5kmfLJ2jo2lInCd8QdE+tONmHG5yOmVMsehakaRIEvLJgKqQkvsXGABlEVC4E66a8dmQfA3TXrXgHlxGE0IgZ2eMZPczCkJObhIsQvcRtHiyKU4zbXUYaSvo4vRD645agE+k2Ggi3jU5Fm4UM3Ckmw681bFhhClHs4XTZyFtrIexGQi9elEkbQaMGBI5r6S0sCzmL4Ga/CBnvKjV2XFCmTRncbaCiYFhMM9SWkAitfhG0SK91TnCOC6jiG1oNBYUIU45FigpRO/Q+KbZbfoUDCmY64BbY78VQ/Gb0qoFTVRoMm4DReQwnhykb9WIakRIICuECxLekS5fkB7PxHcLj18tXN5HTmcMcNEK9cr3v/07fvNf/hP/7d//e8KnF9ZrIe/NJ0lBLdXo7XokZJaZJ1jOhGUlPn5E1kxcMsv79ywfP7C+f8e7r74irSsxL5R+o/ZiiZEk72Y68BR8Klo0tk3KlgC1bl0g9cTDpFHmy7OcVtYlc1ptCmVvOxIDp/aOVhK1BPou1s1hp0uCaAyZXu1zNIaXVyQ7gGGfzsxibbiigZVIQczIyn1vJlHWL416McTbqIk4+Hgwn5z4Nh9vIaa70H0XQG1Qsj1bjtvJZGgyuquDxmoa9PvO3Uj8u7PwRudSFWprBGfljcIhNEFioL52Yi/ICtoXzL8FqgzWpsWdoC6ncLNTO0CLUVrVseO7DUKOAlC1m4mzGonf2Dfj+LsD2JZ49JrQZEBCqJWUO5ISS87OquroXqi9I7XStorWbhR+jfMe1GoG0UtI6F4otaO3nevTq3mXbLtJmHwNSGsMc/cBJkOfbAZVaGLMLnUGanRmgi2PI6E9AKngqWREQyLkhXR+JD98IL/7grCeTdLqLcHhUfRm3XhsULDE2UE6tTACItYcOJ95+NlPaX3n/Z/9OdfP39OuL/Tr1diUNMb0RbpOgCvEcew630sEco7O2rEJpxLct2rsff68lCzepmxxbhjoHkt+0lCA0TnUsYs60D0Sj0q5dnoxL0XxsfVLbejrjVo63//mt6yPj6wPD4TzmSUvhHWhx2iT7roxVkOPxNghFUvm1cA6qvLy+dkK9xxJa6Zpo2rlVq7UXs2rTjopZ3RZuT6d6U2hmw/Usp7h9EheDcyzXpEVPr11bILoYE04g01t3++KmQCLnZpWC+qSOvWEWdSA5SSBJUbWnFiXzGXNLNk8BBf3pOzJZDTDATyEw7sLzJur90L1abEhJ5Z+QjU6kOsyHmcw2v5uzOsxDWrkPMbWUCoN0WLv0zuoMRhDdyajqhUZuxVblGL8iRgIS/aJdMYgaO6VpMHzHAxYGoVkGwFXzVx/JPZN57ytN6yIAxyxmEQc597OSczJjKZTpAcDCbU10pJJ60I8rbTblU4n5chyXukIsVa/xt0m6TkIb1Ld5tMhZy01Aajq8TzEQJKADY4S1pDY9h15fuL6m7/n8vM/J10uxId87Dx3Pkhzr5HIw8N79PxMj9mm8GpBtJGi3dT19cV81kYGIQAJrZXqfoalvFLrK62+Qr86FQjPTZ2x3i3f9e3Zzq7HHIDBUhnyynGfq0/77d2GjsyY1h208GZUIKOivk84WEUGjZhvlg3hsRfYUCJ9b85+2oHdroOax2p3dKiV6ywCGwaQ1m6eq3Z9jNVtw1JOiCbzBm3BgSdAM606A7HsnjcE3/uwfEyyyXIGNRXoQck501olZ4tfxamwxsy/UbYXL56Vuttk3V4rtd5obTPwqRlIpewEaYgD2CNuDtKe7cI6S9f7/eMopGzfGEWa9iGfH/WLM5cxBtVsxmBNIXFQYHhVIkIMOgtAGYAQrsxwby51Fr15rXlO2w3klbHfjPPZh+xyFO8WIEX0uF4ix3u5oTmMmOkAqcc9xH4W1Jnbzo4PvsHbcXkzxI+duxxOJ7xs91frG1Aw2aJZEYSghOi1iwZiDMb+roF0WpEazXcrisXBEECvqAZCEnrxfTe4FFJBNFh+oeKgZfCmMEgLxB5JTRC1CcvXbz7xTa9stxcIlccvf8G7n0FcF2skhDOXywMpZ2IOdCpdM6V2SBHphcQF0kparqR0pjfzMQ4I9Gzefz5VOjlbLRIImlBZaCFQCUTMhy/mxfY1H8Ylvv56r9aQaY0ex/5iedyQ2tmtYuiwVrx+VlO89GNCr6Uxdu27D/kYJbLjXVZLjuV89zjW2AEwWYPX82wRpu5AjwbQ9F+SUe8xQdA/gm6mV9Lx//9/1v7lyZIlOfPEfmpm7n5OPDLzPgv1QPcA02iwhWy0yAwXQ3LBDVcU4X/LzZAbyoxwQYoMiQUE/WIDjapCPW7de/MVEee4m5kqF6rmfvIWGlOgMEqiMm/GiXPc3cz08emnnw67KdzGi/Hym1xgv7ib3/n9rxvA5B8AXfaf/UOsqf0SbUR0+/X+4CZwj5o+/cQd5xjvO6Lg8arhjyPuM/af76+LNPMWCNp/c9icuH218E3YJ8/19lNvMy4RDnx5YAz/0LP5/Rv+R57kp19/MPCUEsEG8BYbxMVyc0kkMjmqsTsGoMqYyKNt2wWLU7oh1mkP3SILnxuXvdM5HejQADtEFEtxUEz8kEqm5MI0Zcrsot0dbyMh6LWjz157is8xbKfn92j38NdIDp0DcVFRSJR8tEHknI4FsQjSzHzsdtB2tbUd2fcJOTlE2VMYXm+FA68m+/oNgx8HUYOGX9Wn8AwWWHaPORxFiLwcnlTciFiPRLS7Qxoj0Of5xHI6Bd3Rom3CRdhHj30ONbdaV2pdY3v5AcjBdkONKU8+yat1smboha36dBQxQybXBZJaPUOLUcCjhupG60joXYvAwRx3IEZPeQ9g6tp2xnOPQpMQgnXYTnc2AlBMEgGYYJpBJrAF5A4pj568Pt4xPc48fjlzfszMCyQ6ohVtV97++hf8+m/+I7/4t/+W0/NKWTtlM6bFx9SvTV0LwSTkkPwzM4VcTsjpjunxNem0YMuMfPaG6fUD8+MDd2/eOGtgKujV0AbSPcEaibfkDClHqx6kkiizV1XpiRSi914w8H2RMZIsLMvMsiyU5YR2b2uZ9ZFeCqkIqzqzrJGw5AGrlOIBpo6A2RlwJS8eFIiLtTrTy8WEbbQ41R7Jxa04qu/t4XgOAeMj2RmOZ4djhBs67DC8cUxkBFeH0fyBX4x/s7FrGeNlhwtMwJJyeNjDsO7TlcY1hcGXrkef9minS+ItLTRSr+STB5MlG7qEaLMqqfjezIygTm4u2APWowp+VMMVD9C8T972FhOvoh4UTBtBhs+s9Wl6HWduZLd9osaUswPUPcYWbz7ZrK8VaxrEUk9CfJCBkMkseXKgqRtrV9aXlV49KfZWTm9fS7EJU3JQknCmQ/7SbFSLxYHsofHBYEFYBIoRSzI0WXyktZSMTBP5dM90/0i5f4VMs0+hicUZ/ifdBiG7C7cf/D3WV3Ax+Xni9PnnqHVe/fjHfPebv0ffvYP5haTQDG8Jj4ETXizBr7kfn2UokhJzKT71KgZwiDgW7R0BYR+TT00rJZNLpvXmDKq4VIMDeIJgBnJoxoxA38bewvVQNoN2ZT6dydPMLInaVtp144N8w+nxQnu1cf9lYZKJcppQshdkkietGjR8yRsZb/Vs4S8vTxfWdEFyYj7PNHNNlWt9xlBMjDQJ9ILYxvXpjDawnslAP997S6eIs3wsYdG2O2z5bfui21YL2yqhKSMBWK1osBGs+1nP+BS3khNzTpxKYZkKpynvbQ0ucO1CwkkGsBLRnI7R4c5c0R5aPriuJTZ7UUyrX0No3QyGw4hrLNpwRiI3wCDbAWgHWJIMdk7fmZtqOFOkurCyo5Q+EXVMxCRnerD8LCti/tuSoiimnfnGSG7BuMvJW42GvUlDiyMAJm+51Js2pCNQLfPENE1M88TWq+u5dVzTZJ6QZaZen8CUNCXm0+J76XJFakO6eBt6gA1qnaZKbT0AMP9WG+BTD7/gBbmukBUmhLk19OWZ9Td/T337DfOrR/LdI0NVw3dCOsyteEHo/vE1eveBOp/Ql4+07nHi0n14SkeZ5nm3GRIsalXQtjr41C70dqH3K9KvPkhC4WjxdBH4naW772d87fezO34u0Sb8KStKaYdX0LxrdKaYKm0ie7tiSjmKB4W95Y4EYqhO9NCUcvHihogLsqc0xLQ9y2zpctgTS3Q1mmrscdyqi3cRSAFrgjHRFbqORHUJAfBGb6sndylFETBhVpDkuYMEmEHEL6UU32PTvE/TQ6IQ2jZavbq8gxpt27z1qjdaW0Pz6UrXLYCnCqlFUeQm0RL5FHgyO2oH8fM9tbKDRcS+tgECabCJoq1SxAFTGe9s6m2b4kWUUXmz/TUjLglpiyEIf1NckpFUBfgQ4ps3EZSAjd8TvBVrAExpX8u9tUlGcBN+UHQ3OhZ7YIg4jbjNW0EdiBrA02AZS7SYj7b/YwqrOiPVKqor0HEVj+Ttj0khxz1EK780/7m1GclDE4xoO4HeNqwnB69Hu0G09EmAeXsvV5x9U7wgrq57WdTZhB1hff/Mtl54enrLfGf0urEsJ06fPyBTBrn3GH7O5Kmw9kLVTN069AzayNKQfCLXlSSLTwZuqw/SUryQK82Fz4sztFQgWUZloiVns5v4fil92YGn1jYHcczJDa712+gBPGnvSG7sDPEUhaveUJSk7u9EcMCqtsjlQppFB/gff++3zMajwPVJC5mN/7sFb/iE6SQRwNj+31EYlrH3BRXXXzQ5IN8dcNk/6ib4v/3ZMKXwCei0pw0DY7nZ+/9owvD/y1e8z+8xfeyTH/qTCrBJbl4y2uz2OvT+TA8/AbLfh7sKO34eTGv7wcePtpJxzCX+bUxcPT7v5pINx0ziCvci7j/U1yif/t4//B//+NcfDDx5K4A/pWxCShYIrKPY5OnQrsAI4Rvo7ix8PKQe171XdgfoFL83NppJ0ENvDb/EYfCA0Vmr3iKTizOUUslORRdD6KDb3l+qPe+i41maazdgYE6YS0TCqwnyaDUzuq47ul9KgEgkzPpwGfsIXMMZT4o406cbOWemqaCza6/sRj+MtIZo4to32nYlIVwuV67ryrZVcveWnJyM+exi5QMNH2KsO/BERrr30aPJKdc94dNQhpH3VRgTgnLJUIprVURVpG3eYzyodC5IPvPZZ59T8sS2Vb/P1pgkM2dv5XkpE9en92wX3DCmiuVGKrODc1Nz9pOajyoX1+fqrbO+XFwHIibgdEDr6gmPdmjJQZEO1sJJS/EqPaABNmpMOZLi7Z6mCeszyBnSA+Q3yOkLpq9+jHz5yPKjha/+2czplYNdra9IfaI+f8+//3/93/nm//NvsbfvuXtpTBvkKlSraEpQZgjxPgW27gx6scRpOjPfvWL54o9Irx5I93dMX7yhTxkriS0lupi3PKH05I67Vqcnm/XQ40mUJFjyOkJV1x4hZ8rpxKg2pVT83PVGXZ892UCwrTkAkE+cXn2J9pVW76kGSmJ9uXpWPKz1kkkkpmAHpJSCSeggYW4rOS+UskCeXORx28AutFZpoeE2DKcEOyrh1U1Ng9Z9wAGDyWu3Rvvmay/QyW4lgAOnF6JLhd183LyN/7Izrtz4X7aNSYQpuRCk9s7WIkDdkwXf+x3QrjuwYaZuY9S8LbXB9nRhTUaWxnxayAN0iqROgDzovQFAw9A3ioYXO9oOzZwRmZKLcYqaC4yPJJQIAC2cdx9BQotx8R2kolujl4lt9Yl2ps6IuXx4ol632LCKdCN1gnLtunpJM9mEjx+eqOvGtm5ky6RI6cQaCShe7kIQSlCBJOx2FHtdLyH0twaAOVbQAyVvV/bAJFRGInnyqU4FyzNMJ5jOpPM5RmF+ulv2jmmO9ku9+e/hw5LBdCwxFcjnO5Yvv+Snf/EXvPvwjmvvXFpHn57olytaG9I61oL+HgASZjvNWTHOpxNffvUVtTYu1yvffffdsY+xoNA7uDJNhRJtF2MqJwFODVF6s/Gbn+79cR5u/9HFXQ22ztZekHQlzcvup9btW+rHJ57fvuPD27dMd/fMj6949fVXzPf3fPb4yGVb2Vriuq3kfI/lE3eLJ6xNG/P6wnW7UHtlfbqg1jC6t5xlkOTt6hkhd0Wfn7leOpcPF57ffse83HH/+Jo3n3/NfLqjnM6uH4NDtLtYcXYtmL0sileqcy6erFlCU0d7RqdMLT6uW3vj7nzHPM2czmfmScg0uHyk2jMbiS6F+e6B+XTmdLpzxq4kuilb7axbo/WrF79o5Mnby1I6UaXRG/StUdVb3rwVKALsBIO1lgZQbrAPZ4mzO8CGnBeSLAgnCp7M9JKofXU9pnYinZVUCqVM2PUFW6/UqJCv6uynoa0xYahudFZyD5BG/J61N65120HtUQgc9le95zeGpxAJvzMX5zJxWk7OVpBEEkXcibNeV+R85v58Jllz7a+2MS0njImrXSEAi6Fp6Xta96p63/WOJCYdRQv0rq0mtObTzlr7yHR/xug8/82/Z1oS9fvf8OV/979Hzp9Bufd4UyZIU7RPOTjzo69/yrkn0tr57d/9J6xeva1/3cgVWN0G52WhnE5eMJlci6/2DdEVrWsMy7lAfwFRVCxa3NhBSCLRHloOIsPP2iAmYPjI+cOC9Yh9FbPtAJ5MUHVA3jVwTsyoy0mIA221vcR49sw0pV0fxltqMrQCfQKd3bMNEFN86I/aBqakOpG3j1hM5uzqk0jdTTnDqkum1ZnryxRMdtfQTKlwvnsVNtfY2rMD9CRmE28vVSCP8tNgyvgzKmUG4OHhgW1bUVVenj/SiXayVgPQ6rRtjTh4Y7teXfOpbfR2BQlh8eRAs5ApaaGM8ybeuqjmtsQH/MTZJMS0B/ATTCbB2/B3lpM5q83zk+jeUAehBsvNdVETo0B8tLuFyHrOMTlwIZUl1ld2TSTtzT/XOl3XvQVZA5T1FssS9+NyEs6CO7ozBBit2iKyt0T69dgNjmCHP4lL9mJj35PffUCKjvEuEbPg8UXX6rpcrbu8St/ANu9giHt3hCnAIcFbmtWG1rqrpwz87da/VwdEqB3JHbRhUpHU4h5STCV2j9e7d0u0HjmgCmKFTI7pyyutN9b1yn/+y7/h+79/x/tv3vOn/1q4e3NheVSmMyzLPfP9Pc8bXJuwXiasCtY616YIC0bDZAauoBesvqezorKi20YqSpkMOQ2pgUTBbe00F3Ryu9FiEIAXFIfOoUb7ufuQVqs/3+ZFjhEKiDgzsLcVxLDebh5gg2ahnedM/tahNdBq9M1om9I2ZzcOPbrfRzbGFvFNM7qBhpm7xQFkwC0DBJFjv6Qo+vp7pf3voxjseb/swf9gDg1wyuxoFf8HIY8fsKLG68bZG7vkH/5V++TPT7Wdjk90pdx4Ejc/HjGo/8d4UgFyB4s1umkDE9BP8pXxzMZ5PJ53vJ+H3DdsTXYGVBJuXn0wmCG6KOLRHI1WP7iv3Tcbgyb0e+DTzX3+4XDT8fVPEhf3ixqXYAwB0KQOeAxgyUWqo8LXD0ogsOvBaG9EhM0QyzvAJ6cZ70HbuPV4UUpOOVayH8LW2LYNSZViiaYpEjUNUWv/cprioJse6L4nwRyVgNGnLJ74tN5D0zuT8+oToSQHW8kNe281gBzxiqk4e2D0q5spJShwktificaYWAexOqYVDLr685HkSaikTkpGzp6MdG2ga1R7FO0BPFmhXq8giTKfUZuAiZx90sBUMqXkPSHWXQRJooo2Vpf9Wfc+7sFF5UtxPaVVwcTIefbnqeYMhTyRp8X3SlTK0jZhWrFWnMXTvVpheqyBt0t48uu6PBA4vidh3aJyDuhRNd1xPDWIqsHYpxatTWauD2I602wGJuo0M50Lcp+YH4UxEEsweq9s2wvvv/8t2/NHJlXyqqTqfeJanJXU9/MwJiYKXQQsoXmG6Uy+eyTfPzrw9PAKktGTKzCoBYw6FYp69aZbCzFvd5qI0K14P3sE6BLWvZShA5WZpiW4sg0RjRGqSsc9Qk5CmidEC0yJaXtxEeR19fVQkJbIMpNT4bTMR6ePjYDDsL7EGk+0LOh2pZerGzIV2rXvVUHGOFaL9+Bot7u1eQONvzW+h8M7zNtOlR+CqvH6T3zj7sw+dRZe4ZS9lU8xf5bqILeaa/UMBzE+Wfa/Hb5gVCOtG5bcWbet0jZBm0/sGgyj8UsDSN8DWYKtdMOE+qRNMKoU0nV3oLLbKvwqb/b+cNTWKyYNSNStoimjL6u7bQNUWZ9d18vHnYMEk8AfjGBNWC8V6rNPPGweKLi+qt1coxznVKBkj1bdlPZdJJfsAX7Ck+3Rnm0xWEJF9uLKAPC9/VDouH6d3XzvDkOONRIboQk3hZqb9okQxsQ8YMhy45RFsJRgmrn/4gs+/+nP2F4ufPP2vduV0DyIh+2gecLFagNLOKjXSm3VwXIxpnlitGT7muPJXRqj1i1aR8IeBvC0/3mTC8CnFS75wZ+3UYD7WoVaPS0yw/Lke9uUi3auLy+k5ycM5f7NG0oWSgi0N0t0MibBpMkhsJwKJRe2unJZn33opbmmRhIHG12LxFsb3N91um30q2v5XAVeJh8lXbY7OinadyZS9imgpcQ00OQDQJz25+1wmRx2ZPGgubebvZGYRZiA1CqqL5hsWK6YFP9OZ+TUycBcXMybJDTzHaPmIMfO4BJvZfauc0/qnB1mLt4dsYwMQxOLMUBDX8Cb6UKjVYkS/nMGWbyopV7Q0tMVwBNMAckFySnORkGrobVC6/TmxYkioO3q28yErSodZw711qO1YvBp3ZBIsFs1KaOr3kaCGHur5OyjwkPHUiPu8O4sL7LpVtGXq7e5GPR186La1ulND10RY5cXGK1ZQ6NIOc5ZhMo7MG+1u61KnoSlbJhuNN348Iu/Zesb9z/9Y+av/5jy+AXMzvK1dMzQyiTyvHB+9ZpXX/8R37/9lvqS6PXC2io5eZtsq80/PWUoK9KVnoVenVWzByJR6DG6M0dCP25AaIjsLchHwWFYKWIPjNWQm/Mb72K+w2y0T5inGr1Fq2LPaK9hi43eHZwyMvgJYDBNXZogBquYgo2k1ltj3ca5zUmS6TGt0v0tu3SBR0iBCrSJlidEHHhKeSaniT7FmRVQ9T1hlmg6I11oPZPTvN/ymELpnQEOpIxBAHVaKNNMSx6f7ppFwTRiTLsLQfGRrMsA/sxBiBzTInNxqYmUptB084EdQ+ctjPm+J/36/K4JVuCNQd59goUWz+h2OHhrg3V3sJTcfQ0tttEm5ZO6x15QEd9TO3g9cq4a61Z3W5Rs5GayE59cr825w7cagUT+s3vOT/JKi3BL9lhkbwM0PWxCZK+2b44oolt3jT49/jRtEe/HB3lLhz9jRtAhuJ5fXH/y4o5YAEy9u0ZWgIkOKMbfU0xp3IlOsUctOYNnxBODQWK2F3b2Nmcz2kflRV74Tr7h8dXf8fpl5bOfCHenM6QOBVpaoCe2tLBdM72GpEdXv2ZxvduUCsYahaMrrV/J2oFOyRPkgjCRcZKApUzHHLw1I0uJgCzFe3R6F5Lm3Rak1Omp7fmrr2xHuoAoTVssq7PvJZl3ngzrFKwmdQzVn1XwQ4ZN/mGEMVg6I5b3XPp2P7PXiWycDZz5bmELPzk+sbf3PwMs+oQjse/MwaWKfRfXceQGv/87++/aAFFi1/8jwNMfOtHO3+cm/vzh+8T92M352lmXka6PGnLQjPdzKXEd477Hoxk4iv+KfDKUxsF9JxEOUEn1xhalY4rs0MD9fQAqnlGkXMdzGwH/eOb/88/nH/v6g4En1TGNzeKqNMaZZu8B1hytTQPMCEHN3vebJ35m5gwXCfomdjxA8Fa3Twwu7FTLlFzQ0Kd5OPijrbKuKynNgeQmJCtJO6Wk/WHpSPIs2EweDTgTB3FGwZh+Yua0RaLK1oCotuaszi4xfw4iCWk1AosUttt2hkFXpaqiffI+/OytOKauDdF10PLrTt1Vc+MxmGVJnEGRkk+zgQ3t16Oy0IJWbROX7YoizK2Ty523F8xCCdCpTCUO75G4gwdBwxE54ur6J8ca9lh+Z35Vaa5BkCdnvwXVWtJEmc9IKcEwUfI2e49+tNuROmOqzkjqPHl2w8duwGJw9ejVDmBKLO3BOxrGaNdwsX1Clp/rQfGeHHjSGWNmm2bKXSY9JOZHdlJYSqC9sq7PfHz3DfXlI7MaaVVyg2xClYwmcYFiG0GB6yI1SyCZnmdsOlHuH8n3r8gPd+S7h0hTGs02xijmaXYthTRabdAQzHWKcOvd2SREYkCOdTgmIM3L2YOtYCDUWqm1o+otezln0pKAGdHC1K70lJhbR7qfQ2mZuZyZyszdadmD3l4juMVAK2VZ0LrQSqJfX2jRokeDXCqbtQgO2cG/oY1jOPK+i9vGedn34ghmEG6DdG5/PF6Cm9Xd2wxPECa+//D3wuAjiR4eV2KErJrFGXCtmcF8UjNvpxwWfrfBXoHVpvRNaVuirYLVeUjGoHUIANuufeWRYNCn9ymVHiiJ3QBQAeDQBrIByQYI5c9GYu9ZCGqqCdo2BgMvLBsrMSZdfFrh+nSlrd4qlOJz7eg9gC5c18rWr8HcFcqYWhQgl8hhQ9NguQxqPObnNnsJTEN41IgAeOhXRbQ4guLbgMN1xqAnB3M1GH8WTvImBYr2PI4kL36uNlgnN0F2vM7ni4VjDmCBUrj7/Au+/NkfQ2t8+NWvnIFYKxbTdkRld75iEeBL6HmkhFrncn3xxBBjWqaj+KIS9Rlnh4176Kq77d+BRKdDjFRlfy5iI1hjD9Tk5t5s2O9AWLvWmGpmSIkkSTvX64WeE70UDKVvK/OUOT88ksXIKuhopxykjQSn5cyUJ9Zy9UEdEaCWJMRAUwhhXrEUU20A69h2pWtjE+VlEup2Ii8XNLlP98lxCznP6KyUaaGUeO/kzBcXMXUh05yh09lqokVCkQN0KqqwXan9Gr7shOQQi54ySX0AyVyyAzrJWQ5Ea+i6dVT6wYK0QVxxOzAYw65n4gfHJUd2+DP0DGOxLJgMAGSSFRITOZ2QvGCykMqMmJJy9naNJK79lhLSNsiuV6gy+aS4VNFU2VqmiDEJ0f6FM55bJ6mxdT1YesIOPjG0UXBWyzjSZoMd4eenpBxDPIbm4rDvAdy3jq4b+vEJOc+g0C4runasqlfmI8lxrSD/7uHzvaiYnSlL/4FtH0UtJXvXEi670LAmtPWJq268vHzgzU9+xoNEO998dtaIJAxnqWcTZFo4P74Cg9M3v3Lx+I+Ntm6U5Az1Xp1BIdknYllp9Aw1pqhh3QFC61iP2cFiLi9B2OTwR5I88SLJrvGzRyah1+SMIb/fT3OewYjte9HBJ8V5vNxzRvsS9lhdK0udOQgnXHh8JJMZYUG8uR6z6t8KJjXAG58a50lk3u378KsjgXermYACaQLJWICoVhZazfsES+0Xfw6WaW3y92wJkhcnvSPBh2zkHCyglJmnmWVeqMuJaZqp2QWsHauwsKdDT61j1vZ7GvznAbq4TMXElF3ndEynTGl2AGqwhci7vbVgXsgOkHzqn47kxHYAz9fL9wJ7UWOAUPkosO3JOgd4lDKj3c7bGUciSiSBwXqxhkuFbIfebGgIDu204V/Hd4o958V12f3jsdlG3BSXF3HOkZ53h88CjToAURsZsZ9R66FvFntJnVHNkBTBQAWvMEtEaKENPBJwIYCnKDt1B5csNYzqDCdpIA1J/k0akY5gliN3FK/D6oD8oiPFNP5dQBKJ4kONauVar9Tr71hOf8N2eWE5Ze4+e6CcGprhNL8i2Yk+e5GgrnjnQHefmtMEacbShMozaiu9GWpXTDeMhuSFZD4ZNqfs0y2DvY153spYy9A6Vo1CncW+l4TkjuR8Azw5C10DeEq9BpSgDoxlkOxVRs8/A7tV8zN9C0R9UvS9/RotWMMs3AJPw19EnsBgAh2gj0Xcb8ZNXTmYTGb7fvykDh17wtv/wwZxvMdtDhsHJd7302u3fc870Lvfxv6ZI649CtafTMPjB6yn/Uc3Dd27YTiu/9aXeT4cwWqQP0jsxZ8RZ9zeyv5P4bdvXcg453n0U46YUEM7ut+UCxLBTHOplBGatJvJu8dthV/efZIc9/fJRf7+DvlDvv5g4KnHBJjeNYJ5r2gULU7j1ewConCjd2ABooybF4bwpvYWlVEczeW48eGwU/bedRPXdUiZqCpHxVHG1A9/j9YrpOSVl7HiWj0ISeIUUAsgqA3EXWjVKwdlmvb7U4NlOTtyHdPTvCriug2COsBSJp/IwUBp5WjxQg7WSfde/ayZWSZ2xsPuPCtNr8i+oNEWlA2KA1xmldovtPrMdv3A+vKRXht97T5JjEzJc7Q6ZLCVVo3WqleUItluqrvh8GqqBzs5u/ZUypn5NKMNOs1Hxm+Vl6ePtA2W05k3rz/DxQ8L61Z3DS/JC/M8U0RBN/p1pk+F0i9squh29R5ucaHk2tWFqncniYMkMjHG7loztHbapt42Z+4sRLxC5LoHo3JyGECLZB4KJZ8R7inpkT49wOkRef2K+598xquf3ZPuxScKiycj68sH3v/u73n6+C2yPnNnxh0TRYScMtc001FWay6s3CPYS8Xp0suZ6f6R0+vPeP2jnyCvHuB8os5CTgrSqddO1cq2btxnD7qmMkFK1M1f02rcl4+NdNQ6yQ5gqjntffCS3T4U8nmCeSJ5QdZ1msrEfD8Bna5XFpR8vmd59Rl3yx2ZjFYXHMeEOSdv2WiV6+WyO5NJDNEV+hW9P9Ovz7TLR2ouXCRja+Xy9oleG7Za0PsToo64+74bjiAqIBrAiR5Oxxfz1qv8vokbId1uN4adAY4dcdgVG2ZYApgy5eF8j4vaN7bVNc12oMlCd0bkJukM+0vQ5RGSGX1rbC+dj+8aZRHKAlKUXBJlCpYPg6buQVlrNc56Ykozt0GYjCREG1oVYt1HFUUDhXE9uKjiKdRNd7u4PxGD4BshJOq1ok3JUsgCiUwbN6ZgXZiYSDJTty0AbmWSTJHMFEyUW8BFsgMVY58oAaAb3oYSlU2JDSDgoP8oRtQeiaLQxegYDSKZ8+/1euXy/ER9fiG9miiWyeYBugDHjR+B9lirmweyfwt4pTSuziRh08Tn//yfc/f4gD098f39PU+//CX8+tfIJXaddBjawXm46k5Oid4bH54+8PrNG87zzMPjPevq56htPgnUTCnF9bR8+o8n8SmSxBSDE8YTu1FJiGDuNuCKXS0uvo2AStqDDmfO+p7udaXXK/1iaMke8JbCd7+48Pa3v+RXf/cfePziK6bzmenhATkt3uI1Tz4yPTuAOMmJVCbkPrPWK7WtKBtjmloao7QBNdeQyQA5udYFhm0vVN3Y6pWqBDNzIU8LOS+cTq+4u3vF6SyclntvJ8nug6fk9kmacr0q7eWZ/nLxEdQS02bNaK05cJwK93cPpGlBygkpZ6YES3ah7CGtknE/OJXC83Olq6+VA1LKmBBpkhzUTYLkzLREK7lajBT3s9m3ulePU/JkJaeJXHziZMkzp7tHuhRWy7jCtUGfKAK5+uTVfn3G1ivr0wdUC5pOpHLPJIlkwvX5GWmN3Cun9Y729IH1w3uaOvBUgKQ+DbeIj9weOPP+J/Efuy92+7PMPqE1J8Fq8wJe7zHG3lk/c55gbbz/xa9JJ58M2OrmArfNkBW0+dTB3nQ/kAmPN0jOLnIh6460Suuj7WSw06E1LyqVkwv0Cga9sX1c6esTf/M//l95+PtfcP/Hf8qP/3f/B/LDl8jpNRrWbxQ+8unMPM/86M/+nHe/+w3f/J2yva1uj9fGGfEkMDdq6w56J+jirA5nOnWk9WGIIZhxxvBvRzJjFrIFyifkpjRapFLYTYukm4QPNPCCD8NGjOAGoTdjNaO2HvHxvANbkhLN7sg6k9PJY/V0YsqvEZvodqL1DHbBuGIEY6hvdGvsReFhO/dCwWgH91YwZEKSj5FXy1Tz+2nbc0y/zmy6OfMmuTbl1L3gJmnGaPReaN2LdaV0SgCcpRTu7x8oOaN1pfQrz21jS7NLETTvdhiA2c54FdmnxqUAqEsulHxiymfmcmae75nmM6XMzhRPHkemnPeELH2SYEWsHp9rt4dm5C2D8UQ/MkaJQrwByUGZNIZ47Iwh9oM4NJ5GkjuuZUgvONgTk82seS62p6YJpJCyx4QiQ0tWfvD9aU4+2lhvMmlGUWsAUinYnX4sgiVnbQedPFZxJn4S8XY3ubk5w9mKAL079pRCrDxZAH+j5dxQWUEaRkO4oqwYVzpXjBXSRiobxLTOFPIHdNe6M3H2TkAse8FR1XyaqQpqiTk/QEyntro6gN4qP/+r/8xvfv5rfv53/4l/+fHXvPnJz/jsn/85+eEnnObX5PNXnJdHap1YnwpradSXhrUrXRd6K2yX37CtK9v6EeV7yrSxnBtJ7mA+UQApLhvTcc0jw5yUtD8589gpgUgmR/yZcqa1TmpDp9TXT/tG7+7IZjH3g2uiImhtriObgpE+9qkdyy6Rdx4x9ZGX77oWyXfpAdhwvMb239oZ/ty0eI4ig4oFi/CIiREOwP54l/ho28HTfsPwGoWUcR0/QKGOl33y91uA5R947Q/fQ37w95sfR2PD/iE3Idn+pZFvp+T55QCY9m6S5M9Ebn9pd8yyA0Be+BvAcrQ15gCZ0wFGgfiQKHWboGFHdtApecv7YL3RKr2bq3jc5ErOrj0At7FOA8v54X3uxKQ/4OsPBp7Gpzjq7rRJB+w0EE3F2UK2V3f3TRsX5ELjzdFhUzKOPI2q/aCrjm1xOLeoWrmwjdP9y4QP0FRcrNB7iy0mckmv9FQQUR8Xm0JzKZgNGowKZyh5Um8au8qcctxb9el6IVK501XFk4B9osNtNSEqF540xCJFsOBsKQcAvDrmSQpEf7OGwCveUuaFHX8avjFcL6tuG9tlY734KFmrnaRDC8HC6Xj7nYuidoyFMp1cq6cV12nILmoLwxFFSVti5LkpWjJlyphqPMONtiUfFYz3oHeLQfCSmOaFKSsFRasHRGWaSfOMLt6elcvk0+DssHv+CDUAx6OC7+N4PemVoJE4nfU4cFFmjgM9+ua9XQISKpksC0lOlHxPWx5J53vKw4nTm5nT6xKVgLgGYH2+8Pz2Pbau5N59p6mi5mDoEF/NoUK9H7moXkqOPTotTMuJNJ+weaamTgqWUmmT91J3SGUmF2EqQspO21XdUOoORKTskz9yCaaXBHVVO12Muq2kEFvcR7UnN/IOtHQPFKP66GrlLhCfpsVBiDKqLBaMCf9TugddTrdWkrkWS28Za7FmYQgH0Hsbywz7sQc+7BDEDqR88j1M4AjqREJHJ74EbtEVf/4jcJLdgekndtAY7Va1K9kgS2I53/kZq5V120CDyszhBCMe2oO8w/+M/3b2U2vGem0BXgvTyR1Kj7ZZIdhewSK0Ho5zADjYJ20uhHPwse7O9Nip4mPKkB5jrE2hr31sxv1bOZ45ZmjF7V0Kz0cw0CI5tN6D+CRojfHRTtihp6OqNcA3MUHUGUoyrs9sF23dq1lysIUGejYq1tgIEI1juq/rPZm48H3TzrqtrNcrU3uIfG9UgUaoduw1Q3a/NFz7J3FE7JWux7QtQ5hOd6TXyhc/+2fYy5VUO89PL5ALWi70tcS45w3pN9NiwhdY2P8uftZl8glO0tXbIlQpKSaoiblWoRHXGfMN+6fXehsujTbSW2A1RWuJjTMQe3OvXI1NPCgQo+2cDubg4lYbHzuU04np5YV8d0eZZ+bzmXmZKVNBpuIgjcA5TeSk1ARVoz5+U4a0EQhF5CUpWoMpXslt3krl5C6DVL1iXRJpUrIaxYTJxNsFrLOtT5gpDUXaxvr8kfX9W3S7kjC3P+q+MLXu7iEbWSvZMmIVbRf6+pF6ycwnkMknKlm07tAqtj5jvUWSPPn7iFAH46J7S1LJc5xbTzBzsPvcfG372ZnKQs6FkidnXeRCzhPzsqDi7KdUXLLAeqL3YKpl1ynS1OlpxoeoTsynzOl8x2laSB8+QtuQVjld7rnkibZuaK0U8XbuOFEBArAzI/ZKqW+iqGGM14+/B2PpZvqga46ExuTw16b+WRKV7Wq+j7sPUtEoxKUYwS0lfZK4OLuq0MxI2hig9LDrRDx1MNUMuk82Q69cfvtbmsxcLpX7n/4p9z+F05dz6MoNa+1FgCLCqzefo63y/P4d7XrBtoszBMUtQbnR39tjQBJOjy7AhKnHmRL+Jfpmd78gSSPp7og4EOr+LESWAxYj4kln9jmI4YB6RimfJndJsC4BZKxIr+RcHVCMeMFKp6QFJgelcxHmxfV/Ui3OUOlD7FvDnjTANYVSiOMbvhW8lWN8j/ZFor31iPuRTiWhZSWlTKN6HJK8PVZiymtiBpnoWmiaAddow/xspDQ7OD9P3N3fU1/u0Xrh5eMdQwxZcvfriA4B0uDocFT4S95jbwfo/NzlPEdb7w3wlAYoROibBiM2Bh15XHEwNGTsyygAHjHITTZ68/8yzuEAkmIA0tHfdFM4GW2QFlMOsb0oPtZg//zj4O6gkwSDao8D9phg/M5NTHDzt/0rWE8jrj5yyvD3I4O2AzjwFMiB+pSK6zMGm8z13ELzqnf3Vz3iBWmQDkY1ffUW1t6wfvUhEv0KtgEVIaRaxDscjluww5bJMUBhMHq6cjzDiJ2IKenC5IzkptSXSoti+S/+w3/m6elKl4XHHwnTw8b0MCFJKdMJmRdkVlLt1FQxvdLbM/Xylnp9S71+j6QP3gKaweYoFCeXRNhj3QAPUhpA+ygohSWJdRBxhlTebzrta9cl4syQHElyCL93ElaVlnoU6hOjGPhD/aJPHucNniBRaN1dxvjZYEvdbLH9d+IebgGiMBlh3yKPsxGPHVGcIKFnFPl0/O7uEvZ4KKKd2x/+AxjIfrniRaaRK/xDX3uktQeNsVLjxuMeRluhEwntB9jXsTd3GC2WzMSwARoxsIjxa+NNbTcNYAEqczzPHO8/gF4Z7xVT4Ufsx7G3XLJnhN8+DMGxmiigjDuP6omN+C1ic4+j7Tj/48HKP/wc/6GvPxh42oN6u5lElz1oFbLTuEPnwNH4sXki3DfzKUq17ZPcUvzP29JiLLiOakEkRP60MJ3AZndKZQmqbIFUnV5Md1ForbTuq+sieidKCIqPmBtxzpKk7G17+3X6og7EV9uGSUdkcRAhjT7sUe2PhG0s6ujTTiXez+myZv6gU0nkkllOC2C7Q8lFUM2YRl86RsWNs3U3mr0b29a5PF+pq+uz1Ovmv6OdtAe8ypQnsESvldoKykRX112S4gnclE+u1TEEz8dmJyNSAnVXpGemxWmhvVX61qFvaF1Birc2RvtPmgpTmSh0ijVavXiAOU3YaabXhXJayNOErpt3EEWSKigmwZwQN4nWlbp16lrpwc4Ylf+UhZz8IPmMZd8uOfnkv5w9QPDxxl7tyumBnN/Q798gj69ZPjtx/nzm7rMc/eK2BwDXj8+8/813pGslt0ah09Sr18rsk3AE5hJBVxxukre1SS5ImX0E/DST5xmLkfapJKTA1E9I9eS0THfMc2FZilcySsW4oviEGQnAqZRCntJgp2I4vd4UWq2MEbWSXOPHg+TuSZ40zPzIu410RphaopsDdrkUb3dQBxNVXPA5LS5a6JN6vL3CgT+3bA5udhB18CkN0Ivd8O6OimFIh7hogNI6ALwDLDlM2fA04WAMfPzzHmXsf7ow9dAOsf3ME6i9CWzadmHx88MjIi6o//7Dh6ioCIM7JftVOpiUbhyo+xUPvrQbrRrrpTEmb+bJhVK1h05LVI6HQ0FTOBOha/sEzB5k4NF66XlNAE+hh+YjcfXQSlHoq8Z17QjREf6OG9kTqUIKkn7bGnVrtOpDA7IpxW5YXSSfIKc4yBLJa84RO4NThm2sZz+SWMFbmSVh9JtgZujcNcIpQPIWnC5g2UEnUiFPC7V3rtvK9eWZc33jzCnx3zFsB1dG0ODrOIKrsZOGrT+KBr13ihTGCOay3DGnma//9F8i1cgU1vdPtI8f6S/P2OUC2xVZX5j7hjSNVrzQ+ZNENUFVaAhpmiEXF0VVnwbpQvuuvZSLgznaDbZIWvdnNPyTf6mlkZaG4G/4UzOn09/c26jM72+zv0uK1h1vHZxIrtuzdZ5frj5B7e6O+eGBcjpx//iI3Z/RecaWiVIKqRTuTwuzKDUJa7C0MKF1RVMEgjiLTVL2tcSnWlkvboMU6L5mOfuwhWzKrLCQOJFYTDx+6Fe2t79xUeG6IXWjrhfW5yfXysuJPE/h15yJaLGtCo2Cr9G2fqQ+JURX5mmjnGb3S+oTeLVt6Ms711A0kOXO9WeIdrAAUUqZ3Q+mguaRsOZgPQmkLUAamOclpnVNTGUKX5UpZcbSzKmcSSmKaFtha5XaO00KSqEz0fOJXjIUyPcPPH75NY+v3pDfvadvK1av3D19y5YL29MTur6AGqdoeU+mpNQp2afsusAzjHKpxPlzrUSPTyQVlA4deo3CnQ6xeWdQm+JJv47iVyR71XwkZBd687PupbwoouSCRuzXm+56XkU1BG67AwwSBQ1CLLokzvNMSoZ0B3+lrnx4+R0fPl7hm++4+/zHJArnu0fyuQSrTUByJE/Cm88+Jwms1wuXyxPbS6JvF7p0kngs6/p1ArfTyRAMByXRBdeYMeiGM1JCSiI5M2sc5gF8KUJPru3i2L9PFk7JAZLhu0QmkIqzP0YGEix5IhZvzeUBMruUhSr0aWWaTogppdz5lLh0JuWJlk90LRgz2ufwp/g6s0U8jzMIzddB0mhhihY7cLBJxuS9HJIMjdo7PQ9g09uUUk5UrVi9YHWNPvAZtQllAin0tICdsGmm5HtKTqR54uHhgb69xmg8fXxHx9tNUxesbmCrD3azwYoUknhrZpkKuRTK5HarlEKZvKU3lWBA7lOnS8QJkX4Q+qsDqIj7tJF1jvwlRpV5YjrYQfGtBwjJTR516FOFXpipg94MXS0/gxqdGvuQpF0rbiSyyQuI4i2DEhpDQzx9AEsmg2E1iuEjJjuABnZPM+ImCd9yJNaDhZsGqJXSkYqaM8PNPK7pqfm5K+rxo3nrXR7vj+tAkpJPiRs5WtscUO4N216wzQX90SvoClbZ2Rm39K0AM/xe+55fqAq9+7fLbviKNNXIQYUkAc83xVSo187T0wtr+4+8+tW3bKvx0z/vvPrqiddFKNOKpQfSdEeahDwZ8JHe32Lr92xPv2K9/Jp6/S3T9AFTQdIE0+R7SDZI275XxMY0wgApxEG6ndAEO4khlRJyNGN6pft5l4Hz1isxnwqeRUgqNCo2GS0rPWmc577Hhvt1jCDRRgy6b4zIvg6OHCNlgl1Py38wftPIO3qlAZhEzjfuKQ1gKmLu2AODdDFAmdoHQLIHsXg0eXuJx8PaX7b/8NjhNvbzeKZ2MLtkFDjGhhqbckfi2H1msuOVIc/JJ+DN+NgBNoV/teSgk+3/Fj6GyFkiN/aAwt9YgpQRd+BrNYrUsWc8iBKP7ZKR01F8F9H99Xnys6ZqPje1eQ63E3IIwEsl4qdBzwrsBA6/GNfsH3L7wP/LX/8EcfFhCA20o6ZU6079MxdKlUh+fDztActlEQeWuic0vZmDRu6NHNQy77/fBX6Im5ZEt+SOKc1k7kjpPvq0M7W/0Hplq9ejapZ9oyZJKBWNKTkwhPwyloszPbKRpkH3cx+hMvxFgGB5cnHNaeY0h06ETD6Jxwxr3Sdj7Sgy8fleafGgInuVOGfO5wVH/10Qr/VC7z41akwANCFazhLbqmCFxMJcXpGZKXKiMGNaSVTq+oJpY60vobPkugbdFpAFilcMai3BxsnePjFNxzQ79WQ0p+zGIBUsFbRfkORB+2mZmHJiwqduSUrcPd7tVOCulXa5oJdn1m9/y2SVhUZq12j5c+ZUzglL2TsLYlJDzu5wW6vuq9VbR0QKORk5TcE6UvIEJGXoyYxEq5RCku7k1YCi1dT/PS9M+ZH51Wfkzz7j7ssz958VTo8C8uLvgyENXr595u3Pv2fejEmVJA05Z0wnOjM5bXj/eXMGSxbGtvcYXHxaxnbl48cPzAWynFzAvLt22FxmSp4wgfuHe6a5UKZC0UbeNigXZxeYI90le1mgB72Y+JwpxJ9qbTHRIqZ8KJga61r3/u3r05mcY4RyCN8XClo7tSuampvaRLAQ/J7ylP09ezArzCtR2/qRun6krc/U9ZnWrph5G60JNOvk0AtxWqqFUwnrvVfk3Og1G5pIshs6wyncFg7MghnpWnKeDDhgGUn/SLAHwBLBFoI/E/HPrwraOr/57nuvHaqy6adOI5HIMapjB5+OUM73Z+QCKSa+ibkTrpsxbwLFHcZwkQNYdSgn72KQlnyaoUDoa5Q9bh1jyzd19pG3qgWYrhLDBeK+Wyza0KAxB4fHGfHqr9vHSYozQnFArmlDW6etWyTOOcJQZzOoeLuRpoQOkDgTYG8w+dIQER+VsZhSpb7crffd3qbbUpgEMCEOhhoZZCbJDOXE8vCa009+wt2Pf8r58XEHF44whMPxmXoBYQBg0YZq+8olUojvCuKtQhCl0OLXXTLnL/+IrzRz/+YrrJx4+f57ru/fs73/wPb+O9a3vyVtTzxMM29O9zx//8S2Vq618dJgsBZOkweAJj7oIUVia6Ep8/h4Ym2dtTbq+5i4GiDf0EgTvLW2m4dcvjDezihmUTH9lC0nIqQyxT1D731PYJ01h+/LZrvPXAS0Kn19z/XpCSmZ7bTwtMyUaWI+LSyLgygPD4+UeWaaZx4eHrGSsZx4se57pGT6PLnAfc40G6K5ODifHMhtuiIopzIz5Zl5Wng937GkiUlBPz6h7QVtT9j3v/HEpDXmlJhVOYcWa0LJbeO8eIKZS3FgBKBVP6+5UYpR37+wfUy0DwtpKkjJtG0FgnXYOw6jZKQrkmdKOQULRpCy7C09mg3JMSUL2ROCfI4g21y0uiShZPGhJ9G6s9UL0yw8nF9zvn/l71c3ngReENYPH7zoko0+gRSfYievPuP+Z3/KFz/5KdPTC31b6euV62/+FkWoTx9Z6xN9eyK3C1NamVBKSliJ9rYcbBrf/CDe2iHSkGxIglWqJxsJD5hDm09j//rZDdHzfnRkWDNnKSuHdhncVFa9+koEydN5ij0xOTCjDlr0oQWI67mUnFjI9O7J/CQzUBFTPiNz2jrbuw/88n/4H6hvn1i/+Z4f/bf/HenhNdw9MBi/or5W9+cHfvzH/5zr9sKHt9/y/ne/YjZI2tmuF2/fEUiz6zWW5Qx5otUzrV6RtGC6OmhpK2bbXkwT9cqzdU/wOpUuGU0Jm2a6Fd8vXQIwSEzTvSeoFPpk1Oqs79YbvVe0bcAFsxXTKyltAW50aLEAKnR9ge7PJd0bZRKW+9csrdCakKaV9frEtj5TtxlYME10a86iAm8r0xYtvB6be6F1MBUmkngi7S2DRLHeoLsEg8jF30dA0ws9L9R8Zn35iKQQ1Z/vPC7NJ0QeMDuRU0PEp7zNc+H8cI/SOT99AdM9+bJCfk2rK31byesHVC+oXhB7Ikkn5+4xa0xkPJ3PTPOZPM3O8i4LqZyd0SjOxhy+vyR1cFFDN8caNz1be9xi4dRlr0iNEMK8JTvYORI+V4bd3kFNn8xmsqHZz9JoafGYYRRWR2uj0xWMTs6ZnFPkQwspzz5tOO4ljUkucAgNJ41DGgfyhtIyEkkh7WeWgJX2YMKcyVxS+eTfVPx+JWVytBz2CdejI9O4eNFavaCfMR9uMlhKEUdhINXjEHqjXy/YtmLbFdYL1qrb8tZ8X3V8SF73oR9Jw+Z0dVZ4g96MXoXWB4DhazbN/sFq3po9BjVJW8hinBS231a+e/eOD7/7n/j2F7/ms598wX/1v/ozzp//lOnuc5h+RKonpp542d6xPf2Wp+9/w/P3f03fvoX6lnzXmWRhnu7J6wkhQ1phuiCpk8X9sOoeWXKUYY8GKA3ERCIuzRCdOv7KlHWP3bV0Z6YVYHZ5Ettgyx1JCrJ6cUCNFpMaDYsWSo9x8wCQJFhucoAODJ8xYlC8xpB2jCJiu9axpHsbZrgLj4ElCtQDaOFmP47/ZLzfQLmi8Irt17lzt4IxNfqmjq9x1Z/AScjNz/enGNd+C3CFGKqfw3zkm2aDWS60mNbd+g3ryWDMK7ghJfostmRo8twuKIJxttjPlcVZw0JzNrpQjGBKpcwRQkdONcZxmoVa3ADwQKQjyVgWZbAAKeLk/ck7q/wcRhG3+7M+FuEg8Phx9YTKho06Hug/+vVP0Hjyqt3OpYvkqkXFJdcWyZXsB2ME+Gb4w5MAYQoxXcL/29ss2BOnYfq8MhoUO00+jYsJmOPbnbUjpkdlwBBS8nYZF3zumEYCJQmLFjxHvjvEtBZ3CGFY4z78Xm0/FBYCnP6QR0uPOVsBF4j0iTsS/dXEc7itsnvSIAalTFHVO9pdnL3gBx088ZDkldGSHrA+o/PMlr2n1/oFtDni3KJCq+ZOR8SDaJxVlkzJYi5WTvcgZvR9WoB16pvVtKJtpW0XrzCPEZ3mbLA0CWQHsLq5AJ7VHtoa3hLjQo+V0l3jRJuLdiZcsDTvVH8NmrML/mok144XRMUzHc9ttHYh9oNnGzsoAAHzBxgAgQCFXBbKsjCfM2VJDmJxBMNYom6N6/MVbd5e0Hv3/v+o4O+97BytlCM4SDl7S2MOQKhXcm+INrIUOuATAsMMhr7FYPg588hbHKc+AQHWpfi8EADcjUsefbsOPo0Jqkf1s8f5NbbYlzm7Zod/VooWT+ghSAj4njzyirBnYz6Qt0jVutHi20Xyd17ovhaSXBw+pUOTbZwL9rVLDgLHZ5jZJ2BPypmShTz5mPfeh95EvGacT25o1MOayPFp+4simFLg5XIlhe1XG04nXhpghcFRkYk9deMfQjAxGCZE+1AwoAiQZbBrhpXz/93UlOz4w+/DnZC2+O4WiUAwK9C9rcn19eLagnniAFs8TxeDiG9ByFGxPCqiYx3yYBgRgUJ8xvDDOvzbAAajQmNpOFzZHaFEAJ7ivR1sG5Ur3yS+R0abwuHIIdoGciGVmfl05vUXn3P/9ZcsD3euDWOw0+ljXRwa9LbuoUeB3HTQ2xBwdcedwkYOWz6kIlUMppnp9WvuUuLz5/+a82efc3n3jufvvuP525meO/rB0JxhOWHT6kLvzYF7kk8AdT9oINEeJNDoLt6d4XR/9qRxrVyfvZXMWz6DTRksMrEUU2Tl6N2PM5UjPiIFi0jG3h9+LDZ0MHF3aewgKw8x2xHk7QKyPdG0Y3V1MePV/U+bZtgq8/nMtJxxYYkJLYWWBSveEkAwhmVyUV+S9+kN0Eas07YLpo1Jkvti9YltVlw4NkUFV5TYlwnLxXUyEpAn9/lxtxkv2mSJaXQWLR4SCXpqvu4m9Eujr3FeegtWjF9fIvsja9Vh4mKcykSRzCbq7Apx5lmeZt/He6Er0fohLbC3/uQQA1VnNPuzVuq2Mc0uGIyOacBxrlMmFVhyduBREpQJzc62Or16Q68bfVvZnt7C/Wvk/jV2uqdLp6dKptNN6SlBPiFpdsaHFLd56qwaFQ3gc+j8eGU3hVHXPR2O1ooxlAQclFIXWadHC1kE53uSMYoOEMlO3OewJb0dA01u7axAnnwiq+ZEwwLMdu0gwbWsJu1orazv3/P+Fz+nk5HH19z90U+5+9EfUe6EkJ93e1cyp7s7Xr35gt4a73/3W3pbj7i2RzHGhHz3QCmZdD6zbs7CMvGpgtqSs9vicbgPUk9odbgdcVHrnNE0h30YmUnwGIVg1wezPhkpK6k3Z53nGSzRNXumJ5FQxBn3qW+u76JmkDJTrxTrPtE4wIt5yXtVW/sLXa8YM9jE3uKoDdPMaJUe/m7UlXMwoDymHYMloPeN0Uom0vz6xCLe9yEqvTuQglzJ1khlZpq7t/9l6G3E9s7gmecJvT/z8OoVpZyYl0rO0QGwXclF6K34Wmgj0ci5M00z01SYloUpJuSNljsJltkAnryQFV4oReE5hW6QJRfSj/h9eDYYvn2I8wiHoHiw06PwMzLPY9qy22pnM43pYyNCiPeNwQpmkMt8AEjoDjzlctM6mIZe0pAF4eYaLc7jsC2752TERPvrPg2Ydp/gbcW3SWbED9GxMCaYGUIuk/t380E5hnqeMFiO5ix5GUDD8EUBOlnrLusxNGRv7KKOcP1GB0fU9ombrRm9ORDQG7QesbwejK+9PYojjvD3jRY1MahCt05998R3v/mGbisPX554UJjvV2wy2O7QtfD88QMfP3zLxw/f8vz0HdLfk/UZmwwrhraC9RXrCe1BvtAecZx3FzAkX0acdCyBx0ax12Tkp7LfyLHWIx8KPZ+cFbJ9MiVWbvbIyGFEPG+0eK6367v/TW62xog5h13QyLXSeO1hv2Xci8gnxJg93o9zc/OTWBsJvEmPXNw+3bejkLljV8MffXKVB3A2fvbpU7u9ryAhHKFo5He4iRh/39scE4i6dhh2c5luN2XE3cmfr5vL0DgT25u7zGwvsAs+yGpfi9uljnMqmd2vjlDPiTPj7kZMbcfaSbidyImLDUwiBWPOv4NoFQlYPK9xXmSsj1+/jus5HuA/+vUHA0/rNpBGEMl7slGr00GFtmvXpORGfa+CWUfJkAtTtFtM07RrRK2XdU8aBgV6jGftJJ8Shus2wIJxQm2OHlFnykwWE2R6ZYzqlWS05toow2Pm0Q7XF7zCnpiXE1Ym5jKH9orhYzY9GRrT6bR3tm1jwgVJJZyU4SKmRvN7K95+MrSWMAeTSilo8raOaDD1MbG9xo6B3pRae6Q/Y9KTUNJEmU4s0wNCR2xjvZxp9cJ2/UiiUTehCQyNmpIXVBbAW+WKGEWM0yRMychWqZeVIfyY8+QAAH4Prb2wXd6zPn1Pu660lwoyY3khm7A8FKZZKKcTVTu9d2pQhdWM2jvWN3q/ctIr/XqlXq/e323JtS4ULHtikSSjGM3qMW2BwZwI7aZhCcph1PxJhmaEQWDfu0/tA4pH0JK9cj3NzHeJ6STkaRjV3Wqx1cbz5er7u3klMSc/oGaeQIxgVCOAUEIba3ZWQJkmpCS6Nrp561KOcfMND8KGVlXX7lNis+1GrUzB+jDX5BiVBMj0Wv15bxvTlJmmCbPC5aWzxSyzIQA5NM2UEGsNR5uzMxjOp4UewODlut6c+htts8RemRoDWVU723qhXq+0WNfRFywWfB5xll8KIXjC8afdsYkzAYNZk4GtuaCrmwQPyJZSON+duLs/8fb9O2prpO7nu3Wl9rYDrYOpBeEc7DCIY6rMAQQZz8/Pri2SR9PZcAB+H3uT962zHH/qTcCieMUqJjDSve3ONO8tFBJ7NNwg7rhGVDG0PQ4nboaL6wfwpJsFKHtARjeoizuyEZCN/u0I0tJwpOZMrsQNtT0yu5wyViYmyQ5eBwA82mGEAJxSOCoZrYcWn4mL/wTYPca/ppwjwHfWjgZjzf1jjoSUAGgCwAtbLWWmzAt3jw98/cc/4dV/9ceUz1/BHAGs6c16tLhPo15eoo1BYWix9R5V+gKpByM1k0qOmop75R7VP8mZ/PoVp8cH/vjNa9YPLtr87S9/wbvfvCK9Klx+Xllb59kS15JoOaOps0wn0lRcUNt8s/hET0/W1q7YlElLZnrzQNk602Xj8uG9J9520L1VFa0+9rlQ9uAmj6ALISt08bPekzB04MYaD4FIPxISVcIb1opbyABfo6nZQLXRt0bbjCbQLpk2uQ7L5cMH5vMd0+nM9PICy8kBuLs75HQiy4ScJko+M909cn71mjLP5HlyK6KK9pV2eULrhq4XtDZaazz3j4hmkiWWhwlSxvLMab73IoqAbRsukhcV9NjMOUW7eYMhweVaEQEj98Y8ewLamret9z5iGN/faVoi6EywVRKZ5SQs5zu6wrU2LI0hGeb3VWam8x2pTBjCy+Ua00VduNlwQGGaXc+mI6QitG5cP7xnay5Qn2Lq4FY3DyRjIu1yOuGAO6wK11p5ulx48+XXmJ5ptfLy/g351efk11/Au8+wKdNrpm/edrVKIqUFSTN5OnucAtArxRqZjmUl6Uay5u0o5ntvmBdFg3kXtiCMllr35VAceEolgnJ/js4Jl71Qsg+iMWdkdHV2z/Xa2GrfbY4kn2qZ7xfynOg5cYmWzCVlOkIP5l/STlE41ZW3/+k/8suf/4Lv3r/nJ//6X/PTv/g3vP5pgukM6YRMC4nEnE98/aOfkAx++7f/me35PX27MpsnvYIDYvOb15ynRHrzwPMlc1kTNSlWM7alGAZSEJnRXlBt4RcriLNN5yX2Ry7RbhcpmRhGQ2mUNFMKiMyUydnUPfS0vDV5obUL25Zp/QI4uINcMCpN19DSaVQzptMD09yi2Ovfy2lG8EKD9md6v4KdwE47IGLavE3fQjaCoY8aSUw+iql5tOKZC56rHsBTEvWhKqkeSVtTjIxKIfcrZTqBdMpcvGjTEpK6a7qmM8t5YloeUVXqtbOtnef7F9bLhevlwvV5ZltPrGuhbR2RSkqd+TQxTxPn85l5PjszaFpIeQqWVWGfbDf2aiTAPgnS2XE+fTB6V3a37RmcY68jekgOqJgB3dl16J4H+vnNiBXUMl0zol509igSyM66TSJkXB+JlJhS5pgSbjHZM0ULoU/q8wJ//gR0smEvLZhUNr5HGyAh9H2DKKWbwqOOxNN2LbubLN2T4shZELDk+mVmCxp7HLq33urmbHXtwZjojOnOLtnkQbs0Pzs9/vQpkn7rugNO4owfE489mxcstEFbjW1z0KlXBzpjhofHswMYIMrOI05WMAvx5QGeqw+K+P6b77nUF8preLwq08Mzm7yQ2gNSZ7Z3V95/8xs+fvsbXt5+yyxPnMqV8wytdNpGaOz6JGnpHUkLNMNkBsnsQZxZ5M7xgHfkI8DeMTp5Z757rDBkK4Roh3QVasjmUiil0EpxHbUoQvek0aoKpcSz1N2s789pLPZOpRh7Jdr2VXyPhFyv7+E8QKgfbBgO0GkMJpPhS4Y/GSCjjjUiWOC3kNIgH9wCT5/8n//bYFvdACT7Nh7gV5wFB4Nsl0CV7Pt5FG49/HXfJ9HOKtVrhwjO0nWnxhjM4Pq38btlvMfIR3zz2075Y+9EGkV0YuWPW4+WSoluA6/iRTYSe2iIZ90CdSL7miRznKIX/7fceszNGHmUx1QD8Iw0Ifaa7h+z27Z0u8b/5a8/GHhSTeGIPFiUkfSQwbIfatgfqu0aSImUF99QyccWp5SYlxIsnY3ny3sPQHqnBHKWBNf4kARSKNOZeXnkfH7DPL8mF9cdyCUj1ijzmdJP0bL27Oi7eI8j6gtat5W1dzcmeY5qx8Q2u+jnNM3RG+20YbMJSTHhylzYW7u3tZQJUpmcTWLNgYMQ9EviGk8pZZ+AYxLOwjd0a9kr10nI00QpC6bGtlN9nXHjSRPRpudJRGudkmGeFu5On9O2Cy/Pwsf331Kb0rp5tZeCMFNk9H5nUm+wXVifQNeJWjJr33aHmpO/TlLmNBesX9H1LdvTW9p1ZXveeL4qiYnz3ROffQ1nhTyffepVBFmnZeEuv2bRC7I9k7Zn5kvzMdrbypp9Ilyrhq4GTcgsnlzH6OXeXHgZjWDSDLMWVGWXmhvnb698QLQJeGA7JleoZm83STOSF/LkiU85QfZ8Zuc7Aa4xsZxY7h/4UGZsWmA2WhV3FtZjopwnNmoMQjTEZMA8h2aLKeu2Ulql+A3SQ4+mt4NFYjKhllHJpCKYDtDIdSSsW4C6HmSoVqwrW1tJm6DWvComxA0Na5DJZfYgQC2qHXGNZVCxnb3UtdH65u044bhy8laseSkRhDa0e7993zbWy5X68kJ9eUEuK/26UdcIes1BpyIeuGHB2sEOJ4+3DrUeYtQ5WIg4CzKJT5n66ovP+enPfsqf/os/4X/6f/8lv/3d7/jVb39DSt4ulSQHA8RuKjW3DiqYWsldVTdlSpmpTNQApEt2toULJfWo7A7QaaD88knM1cPhi3kV1x+9sxVNE7o58NfVp5il2JtTdm2PJIM55IDVKCcJ2Z2/S6qFPoqhWzCe1H9v/M/MPMin8pShAAEAAElEQVQYIHucC+/vdqdUItiYJmeLdnUWZK9+r23dIioTpuXkYG1TavepF626AyvBNhyaSEFvcL23bkhSH1vOEThkg2yh+TRA4uRDCzTaBz3WMVQ0QF0H7JdUOJ/v+frHP+bus1eUxxNynqI/3kKg2AXKcxKsVbb1yn/6q7/i5eMH1qePJPPCQds25uKtXHfnR+5eveL86jVvfvbPKHcDMACV5ECyCDUmpc339yzzxPT6kfNXn/P1u5/w/M1P+ev/2zNPv/4N3//qdyy1M4mw3J+5f/1ALpM3HbQNaw3rriuhqlRRLLsfeNpWpu6+5jRlriu03jhFq7ZlwWrffWzU47xKjreri8WIZNm3LKLHWXNQ+OjzRwgNpKE/4vvapwA5qyVLBBrOi3ePL5DpZMNbRetKM6NKIakgMsFJmNLCdHrk1Vc/4fTqFefPP+fV518yLwtlngFfs16vbE/v2Z4/8t2vfoHlCl0pqZBQrK7US6JMiTItTMsDYl4l35pP0JtTCgZgCBxHYUC7awUZQICfKUBuiYmK0rvzX5IXQxQHx3WtHnyWjCUlKxSEaZ5dpLYpa/dIcykLp7sHptOZ5e4RAkgVMs/6TN0qqLc95jxTcqGb0Hyeb9jtxFq3CAiVMk+c8j2ScPaeGSbOIiAn5pja9PHpI/P9gzNKAZvvKA+fcfriJ6xPH+HlHe16j/TN/ZxMpHJC0kTNs8cG4HCmVW+10JViK1k3rk9P6FYxreRgQ3vlYCTXrnpEnDFRtyd5MDMk0dUD4CGenaPFUoTQrDHqttG7eltZ9QBYMEpO9CQwCafXD8x3J873Z56+/471emWrjd46NN3bxnuv6OZxktXK93/1l7z85pf8+q/+kr/4P/6fePjxz7j7+qeQ7gOIXrg/P9BffclPvv7n/M3f/Yrt3TuSVO6L2zxbhJfvXd4hsVLxYQppzkzTmXSesW1yv62Nti5oq6hVLDVKzizLidPdIyklth7tc02xXDFbHYRtlWl6dlbP6RU5YpY5LRH8C6Z39FbZ6mt6X903941regf1ha4fMFqQ9gvdoGrnsl5HVYOUFuZpIgOt3iMh2qxdQVdEr1RNdDZ3QpGEZUcoEHH2uCQHceblfgeeNsWnZ7YV0RWT5slwUiQ1t0sSU0zJaABuuWVanRgjQ1NqWJ4R1LUyU+bx8QEeMmhifV25Xq5cX154+nDm5ekdTx8L14tiuiE05qkwTYWcT+QcgFMKyYlgPKW9vS3dJG8whkUMppKEz5PIKWxnK0iAV1FM0iEH4KDbGFpjuB1NMpOSS3YgMy6L4YW3gDoYbe5ZMkRBQdJtgmw7a70EgCBSDs0jA9CIi0JfbYCXGnGleWI5WEwOMEYc5HzSm2gnUhhxm/sJ6cT2cu+u0SPJtWtd69MZlYqz4Ritt6O4NtoXR97dR1DtoMN4hCkyX/d9aQfPVAOAGqymBltTag22U/MczNQJCoEf7Po3Zh6rd/Ni3YglFcPKSO6F893C46sHvvryR5xefU06f8Fz+xqzO7QXhGdKXpnnRs2f+cCVZqzXGjdWsamSrZDzBjk5yNa9JZFbWQdxgN9iH6Z9bQNsEmduEwVEIEAzC5atJ0VyEye6rmDZv0uesGyk3D3XSoIUczkQiZjh9muPFwbU4+WrUY4YQNLe4SnixZwB+hABhbuLPReIg7FfL3a8s4NqyuhAGq3rdoQkO/7BfiXcYBQ3YOp/4WucKTsOjhOzi7NaXdrF2z4G6DQIEQN4TxNk18iPafYO4Oz19QypBDspG0dPnaN0Lg3TA/gSUjDjE0cnhg+26vs95yBgBJ+HgKZ21O9o0pTIq+L+RGP/hBRSSnsHUU8eZyQVjwOtHwCthhbvfj1RqLN9S/5BX/+EqXbjHW23Q46oOj3VQtxGA1UPPC2AjDD0ZdrHwJc5Y7pBdYyvj6AlEjFLnpQ60pYpxWmy03T26Wy5uNvvQqI5dT4JPWfMQqzP62DBQlQUT657a9GKps5urLiInXamaQnwadxz0IyjH8ExoOwCkOAVuu4jl0eVQaOlbWjRjGc32kt09P0Hb04GmCLFg9Ji1HpUFnzCR1AJdRhJ29u6Sol2jjDgAzgTKS6EHoyCjCHa6OsLdNfFaVq95SGqyYOim3TygKFe6duVtq20baVeFbEKVjg9fcRVspeg3RuoM3tSgnkuiBWSFabVM6GkSopJbnSwBtLAmtCq0qs6mDPaOm1vbmKg0TvraTc18dPdGPne88RbMAt+JBmzEmLFQmgvOr3wBlU2gfm0cPf4CsrkOle50MWPdcJCtyycmRQHSAcqHIdeTWndwbZ5W0lbIW/Brs2+58eBLupCuKMlMFQ0/CGYorghEwnhUO300FprvQEhqK4jiczByupewYiNM7RujuTTDZ+DTo3WnEnFYB+aA23W/QyNFrteK3VbqdtGq9XPVPMEoLdgPoVhGm2cGp/3yf/sZi3F9pV2A2P7urpTc0DS7z2qOjJO1g+/7NbkxvsfxtjFDb2VzHXfJK5XIrD5wb6ScZVH1V/iZ+OERxGPPkAhPcw+1n0KVgpR/Cl5deDoUtmDtd1HdvG2rQimvO1zgP8Gkm6tsgcKwfCy/bn5Pe+DEdLQ9/L3cJARZzXd9Cg2dA/8Wj/uyx9jiH9HlYohDhn/Nqowt/oSLvHk4AhRGfcgwgPQroYRotlGsADG6Fwh5cz5/p5yml33LDvgZRHcDHBlIjhjZrRt4+X9B97/7huoDvy0WplzYZ4WrucHPt7dc379BssTj1//iPn+nnTKe2hlkrwqS8K1P12jaZozJXdKbtx/+QXb0zNP+TsXmE7J7e7sGkMOLKprYPSY5BYggk/tM9ZtwzpMTePseVKRI2gke6utmGApQG5sRCRxXsaax4a128DOwpbaeGkEOLGEI7+SEPUXj4kpN/s0fP8ATCUEyFwweoAQcY7yzHy+5+H157z56kecXr/m/Nln3L/+jGmayVNxu2IdbSu1ZC458e6b30Q20H0oCOZV71rJaYYSbTEW03TzTEnCMk8OUsXk16jrMxhe6odrv77DthEaCv5tXY9gb4gCmxfbLIpjqLe4ijtiB3VzZppm5slZpOM5LqcT67qSU/apYvMSwJu3VeTeqd2vYweOMbAAi5Ogp9N+jZ3Qx0zecim5YBi9N0zi3+eF6f6R85sv2D58jS4L8jKTtZFFyGlGphPIBAHEZRGKQNIN6RvUJ6xf6O3Cuiq9X+lNmGJiVcbAGtHIyChFd9Vo/RzFomMaGHsCNPar27rBwPNiITd22YbsheuWZGG+v+f82SsevvyCrVauaqzrE0P3znr34QjdEK1kE0pX1tbYekWvF775D39N65VyXpheD0HfiZwz87zwcH6F9US9NlZdmSf1AbCS0cszWzbkNKFlRstEnhcH9dNEL67t2HqjWUbEpQagedG1nJF0cpulWxTszAtNuQWjpO32LE9zsMMKqbAXc8EZ6qnMdHUtpbatpLqRVJF8HT0XYcOiEKFjilpMfUwCxTWCel+YphMqZwidnJYWf64xJdcZDDFldLRBp8lbvMqCSIrYdMXbDDuiGROfhutnTt23J7f5Jh00kTQH83qNpMbXBMO7HgSP+0M7NUkhi+s3LdNMlk4SpbULvd9hWsC2KLj4NGwJ0e1j8lv4/PG9Rw5HjHLEEhE/SAoGrcR9EC1N3jGAJJKEvbBgSsiwRwAJCdBpiIEPTTiL/c9OC5NRi3LQZaA6fqgCwB0MwgGesQMEI360mB6rMUHWNIBsz+oZb+3tRb42A1iQAARgxwx2H7IHQbg/kBHDDb+SRyeATxQ0jW4Yhj5UDPVhxM1hh3eZk2A/BxIzyF7enug/HwU2U4lW3ygGqxcGu8KYaDfOlV+iHCttUfTai5eMqDHyLf9znmfu7u55/eoz5oc3yPIZtC+pNlN7YgNyeqTkC0nuMLvQ++QtfzXRquvpUAyqQR3CsCuWmmv35cTN7e/5hCU7EhZicNIoOCGxLcaz0n1dGPvBbkGe8IQ7cCK3C7r7Idn/O94GGFOE/dU/jLxt/8NiT/g2HLHBp/9/8/L9Om832c5KG7HFzT1FBLmvIxxg4k5I3HPFT69xv5p9nQOA3W8s8hHxImt0zgfbKcDmHJ8f8W8ZsSgex/uw1+NMyz7xm2gb8avWG9BrlzqI4+9MKAeB2O3AsSbOyhJnTkUycGPK9iflGeXN84tcbMSWjh1JDIzD45txj320+9mxJ48MiJFmDJP4h3z94VPthgZN3IQHMImSpnjYCYvpI45GS+i6ZB9XmmcoC6kkShHKkpw95ApMtKBZC7gOgjiY5SyPidPpjtP5gdP5kXl5JMU0utov6NARKgW1mZyTC9jZRq8Xp3+bMUbUeqXVDV2WgvXqgFSv3rqQveLr4w0TvVUSE0mM0+nM3cM903zH88sF1UatK7F+5KhZ7KK2OJjmmjpjup4byB7pgzpVhmlayCl5lc6ed+bJaVncWfSGpELXyvVaA5hxMb/Rr450UlrIIfpY8kROhSmHiLtWF5MknH9hn7rmVGqv9G99JdmGtCvt+kK7rLTLhlZAG5cGMPH0dOH0cmU6LeQpU5IhqWFWQStJOiUZJdrC6tMz7eWKrh1pglSffNOvneulOvjUbKd5DvWDIdyYIiEaq8mtkWE4I5AQHzVLKNnZROrMPO/DDeApPuAQifOD9PD6DV//5Kf83XymTxu9uoJhHgdWPLVpXRkTbyyaf01C/6JX2nbFnj9ip8wmjcxCmjIUoQ/WlgizFRSfTOhmSEHGOGOnItfWaV1YNwLs8f3TWlQpGe2IXtVwpokyT+wAFxABSMMnFzlYUOvKtl65Xl92cC+ljLXurCQ6U/JkQM1b7J4/vuf68oytq7cj1uZTK2vbHU1OmWQZLIxjPD8YE1ridSG8ifiQgR6Lq6b03nn77nvWbeV3337HL3/7ay7rRkrTDsKqWQDGEuvpjteG8nc8Zxm6WuNS8KRxN8g2eqHHrrp5bjd/7v3q8Q9qid6BZOTqDB+fQOEMl9aUmryNZipAj2lwJX3CbpcxadePGdqEXv3vPaqAoQnvXAkhxurexBz7tUZQsbfSjna/BDh4t123/fFMuTio1zrPl6uzMi1HQmfs+lxePkd1o+TEPAmC7kmiB/kSQX6Mh2/ewmzSj0A9RYuqRkCJB1k+lNSZol45cpB9ub8jnU4wzXFCAuw2B/N9TLsnRJSJN69e8/Ltd7y88/Y4642kxgoUSVzKzMfrRj7f8/Vvv+XP/pv/ls9+/BPuv5i9Ei8pJrN50qMQugp+PfnuzCl/wR/9yZ8wdaO/e4L8Qm5KUkEnwSahTBNkb5VTK3SrCN5Cocn378vTE1vtlKbY9UrCOM+TO+gItOcl0yzRApju6o05IX3ntiCmUXILOEVQNXTc0tAZ4CbJTxxnJ5AXKZk0+eh5ybLvrOFPzaD1SjOhkzjNJ2xasOnEdPeaz776MT/+r/8FX/3ZnzM/PlDu75ESVXSBtCdGFTtNzCXxzTQzWFke6ymiFV3NJxyWAnnZE6kyw2mZefVwB9bp28b1+TlspnMpctiHFixG7cqcpsDS/DTXPtrlK7kUZxX1CAQVB73ZWPMFoiXHYvqnJGFKmaX4xLqUBLKzKB7KTN0qrTZv97k7c767IyehrVcSidqfPKad5j24FOuk0DOZkjAXHwgA3tbXzZgk9CpzcaZvrOd0/8gDzsiecqI+f6A/vaPg7Ok8LZBDaoDMPPnwlFMRbLug24X29C12eU+/fOSyCZu90PqFBaOYMWGQVmdmxZANU6Ops7VygKc9jJVGld73/afJwGgTcE1OoxTDqNSm7lM6WHJtwvuvv+bxj3/C53/+L9HWeG/G+3cfnCDTjMvLFW3OnChLobcrGXg8nZ2dvl35q//+/8xP/uLfkIvyxb86U1IC8emEJc/c3b2mpAWricvLlSmtMBn3acGKonqhssH5Hk53lPwF07JQzicKD2ytcd02LK/00ImyrTkrrEz00LipVaib+kAHVsgbPl03B2jRmZeZMuVoj5uOZ1ZO5CkzRcLZWueaLuRto3dB8srgz3hSmqPFOYyJ+Tj7wSiephmzM9CchacF64Lki7NIcOAp5UQqOYT0M8hEyou3bsakZAykdHSF2jrSHRROKRxXapF8tb0TIpnnD9qubGsJyYvENAmaO9RK7VtoGC0scyJPmfP5xPl8An3k/n5mmjO1Xj32byumG1PB2cwDJAvtPdfPGntvt24M3TFiop3tzD6PF0h5txsSYHEawNYABkWx5LGbj67XT32yLCQZ7X1l99Hj/UheDA7P6jGvyVCRCgfv0+GOFqIBrHssaAEGj/bMHsV1nyCr+8/3OEa8ECQI2h08kwA5hdsgJeKf4RL23x8tQ+N0myfbgFrxNkDtyLQ4iKLO0FeNSrMYe7F14BLiYMuQnIitGwU4HGjq5jaim2Oq3ZP+bsk17dhraAfoFHlDt0EGcND8psNsj6N698KvNeN8uufNq8/48Y9+Snn1z2D+mgf9Z3z4zni2xlZmpkmYZ8Beo3Wl1Sst+wCXTRJ5cYkXK+Lkglyx0vcimusfpqPCk3OwnmOy5IGCeF6I3BRwpx1A3PVS1faCsJ+r0GIddzietRGSCo60CbGVh8kYy3/8CuNpDYBpB6qGhQ9/i4nLNkgOttCYpnoUePYJ1LvNMsaCDOmn8bl2+19y81nHZtz1WT+90mPPDsBkLzoxck1jtBX7AKvRfm87wCM5ckcchNp1myLHSdGqJk0gpT22Sll28GaAnIRcxMD73BbIIWIOURn09dx5XKPlL9r0vPtgPJbbw+nrPDIaf79gPAX4ZCnwEAuGljI0VY4/A4xKgrMLCX+yP9mbKvr/zNc/AXhyoc40TV55jY/ooXqu2sh5dkHP7IFbSt53TD5BXpD5jtNSmOZEnht1bViVw9irem8wQiZHVaWQZGLOC1OZYRjmaNLV5omLG/+FkpxV1eqV1hJb3zB1RzFNd+TUaKkF+8Ap5mmnzPmkryHIOxIoUkXZHFQy3YXDRxsJsc4DbHLqvBvQHqNStVVymvbqi5knkbVWRtUhyUj8ghFko8dzaJn4Ia3bynr5yHr5ALaBVS7XzWmyaXLdCQnqaGuQjIJXywXI/eqwjSgpT2RLZM2U5Nuzk2m1UuuGbVeu15W2OrMFzYjiLZLv35KeX+it8fD4QDmfmJZEZkN0pb28Q2Pa2fWb33J5+56n794iF5BNkDVRL42+KetLp20aFY00HmkcpKC6jgMJA789nPle/RgBgR8E1/XPQbV1naPSjVmEtAzmhHgwEpTRpJnPv/4x/C/+l/ztX/4JT3//S67bbxFpFJSJTjEHRWDYRtsNhGQXLGWg29LjWxHpqHWsESyG4uLe4PTz3oNOa7tl3BH94UiCZpMkMZWZHICLqe+P1pU2UAKxHYxyxlzf95v17sKL1di2K62tOEsQEomSBNEAUUhR4Vcuzx+5Pj2xPr+4ZlqZPMlYO62ATIZMY6Ja8ikj4H3cw3B8knscnk+tImLMMXVJA4Sq1ysfW3PNlLVD93BICXaRhGS1eQAhI8km4jiBnBxWFZHQaMNZliNMGvYnAknrjRu+FKOX/PiyfX0geqKrIddODp23XA7uqYZTsqZYU08+c3cGVDJyIaaL4S1wATb1Gk5JM4cyj6dyQ2BygGUSKjb+WEew6EFKa85wElEPRLq3tDjjy0E/Z9AZa63QvWUgZvVFyhgU9OotTD27F/ZnC9qMVLsXDXLxsfIxKWgXV80hJG4RECn7RMgRfGn3ljuScb1ckHfv+Puf/4If/9m/4N50X7umndWqs4OyUGsPnZ/Elz/5GYXMfZ74+P33tPVKu16oH711SNfG43RGLfH219/w3S9/S0oLj59/zSTJtQHVWNeNVldqW5mLT5FsutGe31HffUu+rNylwpevP2PdQK8btlZWXWnamQUaK4pPIM3ZyAitWYyxNQdra6Vt3jIzCUxLIkVg3azTi7MJmhlXVSpGRVlOM9OUmecZqQ3rSl+H0P8YTOAi6iU5E20MKxhLMhi1g7FLsLFk6JIFe9J9igXD1e1mKgUtM6XMbJKpKrz57Es++/Ef8/Wf/BnLmy+QZcJKCQ2AsGeiuyDs04cPvP/uO959/y2LBLBhOKsjFWp9AVxDIp9PDhBrp6SF0zIz39/TtwuIsGD05u2+2l3jy1kWHjV5oub/nZIndSOAbNE6p6rur6eZ+Xx2sE8yXTvbdY1CwxDL7rx//z1Pl2fKNLPcPzCfz5RpwSRRt2swRgqjkpqmQpGFRYxNO7V3WrRFGoZpC/AG8jSxPD4yzTOShOvlwrZV1trCwBlbq0wpUSSz3N1T5onl7o7T+URfL9h2YQq2SMoznYKKz7wpJVMEpqS09QXdXtg+fE9/ekt7/sC0vMGenpGXF1Kt0CutbujlI5lOSgbrBV0v1Np8kEbEQkcKmnYb39TXbrSvFAol+0j2JMmFT0+Jqbku5ra5bmGrG+9/+ff065VF4fmb73n5eGW7KrlnpCV6VZJHO/Sr7/05CVu7YMmnz5p1fvfXf8Xz9Yn/ptzz6sd/wvmrO4ipRBVB5jMyn6kf4OP2wsqKtky+zM52uj5h53vsdIdeK8vjK5bHV6TzHRmY0kQ6TR6sI9TrGmJjwerHOAXjprbMdbscrbBJPGHVzkWg183Fs+drdA/MLIvsoEXrrrW6VljbRNMTpEem3NCdzVzYqgNBPp0tKvwm0Y4bfjEVNhNaw9nnKigZ0hTttxGdpzkKnTMmJ1Rmqs4kXDdqXma2OpPbHCDylcSVbhtOde9RqXeGhzMBojNAvVVIaag0BxyCuWVqdHEGYmuVVprrChlctgu1N0iZPJ+cmaWFkjRaUQIgKnlP5g/NvZGku80EjYJ2O8AnRiyKJ9IkNA0GVEa8H8cTupgslexT4CmF2HMpJ4QCVtjJmNnimgZ7yQGGJK6L6PZ5UAAjKtmZLUMnx+jUESzuLCdV183TATwF0OP2/8h/fGd6iurFoOg7CWTOBuhww5yxiFPddukhASASRWKPH6wXsBl02StrmgQZE9XUnPXTuk/3C5qeScZb+cW3Ttyyx7ue//nR8rY2rf4sarPQRiNkN6IdT5QxHn4woLqNlsS4J9mxRpy17yDYPJ24Oz/y1Rd/RHn1NX36Cnt+xWWu5Fwp0yOlVHJeSeUVmi9IX+n6QmuGbDCtae+4UO2uV1vAorVKkmA5gtaSvViTQz4jdVLy8+gFIIl19z3jk3wjFo0BDYMF3FqltQrmxJFpKtjs7F2rugdgpr5nByP4IBv5HpBBj46C3x7FR/wwQErfN4d+q8MSmWSCWAp5hSEBMvKTyG84ulv2aZFRqkI11sc4hpgRXQmHhqUEIuXaoXEvwRC3ccG2b2B/l72Ag1MMA3ByVr/nzA48BQifIGUjZ0PVmUnSJITsA6AaMUeKXG6IcasEuWb4SPWiVx7nf3ef3gXmL2Jo04occRuBOYhEoXPkKnu1+AdgHYRNCpZXgJXSzQGv7LmQppC+kDgQkZvv7jwKw15ss9Al+p//+oOBJw/QPIDNKYxMH/3CSu/qDAS4qSIMoxz91Nm1HaZFSHmlVQePBp3V7yQSqTCCXpEduj5HEjcCNNdPCZSxRNUAjQSr40KPUaFOhooLoav0/b38E3085eiHxny6C2I+aUI60j1ZG9+7WGtKuxGHo9JsDvdG8mx74unTdfyOu+pebc55oqeG7MnaAFEkguQcgo1uWK7rivYNsepGNaaK7FWTYHu4kR6jWyFLtE+Zkiwj6hVLut9vEvHx7erAgdOB49DtIIiizSv3qW/kXpk0M1sm6Qb9ynp9Qi9P2MtH9ONHrk/P1OcLecukmklbpq2Ntil1VSwmlaVgmwgO5u15tK/82AEHCBP74TCc5i2fA5q27MwnSwFSRnBQAr4VN4i2352w3D/w5qsf8cWPf4q+vHB9+w7N1xDGDmHVG6rkbshEDsMlAw0f39464Mfd3AjH83Z9DLCq5Ejw99YzOYTmARTdA5AUPdsSLUF9aJrEmfBLOtg5A2F3R+9JmVfBKpgSgLxDOoobeTPoaW+lrNcrbdvQ1n0yYSmuE1Gq94dnpSfzqWBj1eyIVfbe+Run5rcZwOje9xNbEq+ct2psTUPA+4B8xmtN48lGn/TQ+spRGUhiQbaKZx6OL4+zdhN4SIqdFms7qifHZJhwfDKYcu6ExXx0L7Efx/qBB/iIBzCiPv1IXaqCFOUIiSQY9fcJfdgAjeVAZ3Ts1H2Rffea7MFxuND9Ofd+gLXeDjnYRH6NbYCW0Z++t68wjslw8/5cBLdpvq4B+iq05nYnNw1nC+gBgBLDKbwHPtr21GA4uBQBSOhZtLZxubzw3e9+x+O795SnZ+Yp09rG2iof12fKVCglMScv0CRTkML57oHPv/ya8+mOvq3U6wvX799RXy6sH55Zu7GZsLXOtrrItHeNHQCv1kpfN2gXck/knri+vOfl29/y9NtfYe8/IrXzcL6D8kTNnZ6bA8xqSBeabqGR0yjRJpaHzoVvkj1AGnpKkgPYIDSwUMYUR59OFmdsEmTJlLuZtAlWu2uQdN+4Obt+WUnZgSfxypUD+bBPWtkDtZGIRTKY3G9o2NyWPMDq4ZcsOQNCsk9DJBXOD684v3rD+fVnpNOC5YyltLPyIoLaD3+rjbqtbOsamig+nSgVn4hnzbBeMeuUaXb7aMqcoMz+2b53nJFh5BA4zRE8i2NNwV4TIiAcTNrsYvtp2Krxb9nbJQkmsGvSKY6A5b2Nr7WNbkrrNQSXI+mTvNtWjbiktUoq4eNydpZeJG26g0/j8UTLaslIiWS5FGSgtQEQauiGKa6JlNPsibd1tN5D2yhlDub6RCPv91OG3pJV0jJj9eTsqmmG5Y7SM5yeSS8v5HWF7YpeX2hmiDUshy5KV3qeXPcofIl3VYV9uvGXY/0IH6jJ9qDaWxcJb+ysx6SCdOX69j3Slfdl4vLuI9vLhjaitiOoOugkJvQWa5EExrjnDDy/8PK73/Gkje/+9m9ATsyvfkxaXPuOnMnLibyc0VSoTbG+MSejWCXXAjSsNnStmBWyCHOZohXMRzdAZgzbYQKVhrVtB55KFoyGSKO2m6EK3bW2uio1Ym1VJat6i1ZekNAIcuZj9o4BE4wCaSGVe1LyFlitK6qJ1qA1Z/JgbpMDB/VEcxRc8GtpahFX+jOx0ClSxAsKqYBMoVW0gCyIuFTFsgi1Cr1nXNMpJlW6XsBNbJJuCmMR45vsDIuBrwju37t1jC3s02AJJMSEta7U3rzDMGWgBJvYR4jLYNoOf7nLI4ywUvfYyLsiGmN+o+/VEd/F9ZscINHNJLmDgz8YC7rnB0kG+3hGmCI2Hb5vsCvGNY73+oFGjgTfOh7SPp1ugNbjv7Gd4aKhpzvYTzYAUME/I6UjDxtBUHh8Q4/07AgkRxg0snhG4W+QA0b85UzhtAN9KfvaEAWAMfF1yKtgybsmxAc46Q24oPF/DjpZfB/tdPvfe/zd2CU3NOKUMS3cY6Mjj3CpgXGPI24dUY8/J7FElsJpPlFOZ/q0MG2ZXJRcHCgfg1RGCyp5BrbYX5FX9dBhagdw40LUOPtEB1ARoJ/cXBPEOfEtoM3PLymYVOP82IjxnD05QIgU7NGpFLR4nNBKocRLtEcuqwc47Vt05EqyP7tdpogjfpc9nh83FjHgvq1kj59Nx/k+kjzPq4/fBT83e+Pf8CXHi25eyU08zOFHb/I1Rs5xbOabd7H9F2Q3jnFdASC72UiIaAiGm+sxeZBEkdFe5/y9kd8fAJPslzmkVTQ6blJmj/uOyzJGXrkD3+M2000YZRZHeeQGdpNfydEZZAfz77j/sYi226rbeycy1n3B4yztbxjsPPn/N/A0zYc+iPVOrZX1cnURyEgiTArkgpF20TY1QmNoYpkfOJ0m5iWkoa8pKGYayGgKbDx9+m0G0ZcMnaZeNVGMtcY0mqQuGh1JpLe4GdP0AOq04hzJaS8N3RHg1VkZ4QxckkCAAXT5k1d1NsbHj0+YLJyab+SUE1Pykfc7eVE7ljJjukBXozWf7gGG2t2NnsMA9RJzmcMxlUBMPTHxEcw+BXBbX0gpMc8FNW/latsLKoJqpW8rqRSfdiHu7B1kAmKE+rwUaowZtdb8z61T20Qq5sFHczrwfJ6Y0ol6vfKcPlCfVsx8jOtcCqd55uvXD5znwpyNszTMVnp74fnDt1zff8/6/j189572dKU9rdAKvSbsklg/Nno1ehMfBxuU4wHPDOBjQDU6gCU0qhRj7werYiTaOM3XgwGf4JPyTM5LCNTOlDnafQCh7MGMGszne6avfsS/+l//b5hS5un9e9bnDbtUunXWXl1LQVJUZWynQ/oat6CXu9bVMmeW2acZdZQeoIwHoUrbVnokd2XyqYnz7AyXFIFIyb63W21Bz1dEMiWmEdagUvfQmBjMBmm2T5uAqHZZo9UV7Q3VShaYEszLHK17jbau0Jo7n+ZVbGuV548f0Lq5GO+ykLWQe8OasNkKq1Al9FvGPu4EqBEjvdXbFIdhdIZkZp5KALlQWyX17i1mCn3o1tiRpJTkouK1VadDmwEu9J9TYp79Pb1NxRmAWtWrvEoA5ofTMtWbabaHQfbrTJSp7CKdI0j5pHBihm2GFkLw8vCDHoK6YW8BOOYcti8Dp53T6tfR2DUNdpDNXGR8BOM+NdCNvgVQmCZvZzLG748AVHdnb9HblvNIIISXl9XbglrztsVItodWgjetRrFDQn8oKrNuyhS1zloHg0MpSRzMVGWahGnytgpVpTZlXbvvZesHXblkVDxRJxl1W7m8f8fb//DvyT/9Gdet8vW/+pc8XV94Wl/45be/heIsw1cPZ5aUmUToLy+ccubxi6/5yb/4l348tbO9/8D1/Ue+/9Vv+eUvf8XLuvko79M9lia2tbKZT55EjF6vWF+RttK3xrWv/Od/99f84j/+O37+7/6aP339yJfne/7o/hUtf08qmW6ZDR9//tKe6VtFWqesnaSQ1WANfb2cSNNMF6FngezJTzNlKoVUwazRtoqKT+WUYMNMKTOfJpbzwv2rM7pm+lZpos6qNGMqhbkUppIZHXPCGNsuO2XbLZeFFkYUxdNgPMXPTZhScmFsE64IlAWdF2+ln06U8z2vv/4j7j//kvzwCJMzP/X3AsUoMGUvAqTswdy2Xqj1Sn164uF0x/1y5nz/iikZUxbOd2dvzcWntGKda/MiDOYM3zTnAGtDwN6U1lrkjoKkfCQcpihpZ0T07qzJPE2uJ1aKM68kzsNoy07+MFMSFjKplGCIdVpbHSzH7Z4I1Hql943r+sT5fGZMaVUxZ8mmFAwt2TUWwItTl9WT6pyLAzelRAuhAwPd1AtIrUbC5lGpLGfStGBdvcVlTAuW4lGSKt0thbdUTTMk8WLC/SvytnJ//zm6rrBekedn6vNHru/fcZGMqO+11j0BauXqLdrake6DX1yvLJKLCFg1WvCst9hXwXaKRHh0P3cJxp5CUeP5d9/z/Lu3fP/zX4MUB2o2Z+j4IJLZGXlq9OZny9tWkrNQSbx8vFAvV67v3/GX/5f/np/+m7f8xZsf8/hHDridH+64//IL6vWZy/Nb+uZA9eXlhaVeKc9CuUzY6QVbTmxPK6fWySm7CHyeIM80BMmuASWqjNQ+J6NEXDBNM1tVTGdabS6u3iu9enxbtwtlvlDnZ+R65+12eWbbmre45RMp3+GaT4lpPpPzhOnCPCcHnp7fs9WN2ox52sjZSNLRZntucZozeRKf8FYyVr1q79h18nbOAO/ApyxLXsj5nml6jeQTcPaugryQ8sK8vOHu7hlbz2yX79guQquGpE4qPonSC8uFlGayzAgzwoLYDDaRbCLh2kxdzQf54PFPTZnaqoMjBu8/vme9XmjqouXekhT+9Ab8GWH9TX7KYLv7hDVnOaluOHo/2olcAkSC1WQ3TGEHdG9aoEb8iuF6mwTYHxNu00zy5tewux1NPl1in543MsooOt2QjDx5VPOqVGTvu2B4nGcLVGK02Wlbo+DYd7a+JX/+Moq0g7ElhO5lfNgNHnVb8B2FufHvHvseQKK3Fvn6SI5JbJpJ4lNHUxI0OzjiwXxGqa59lMxbgsxlV9TEY8amPkBg686Oqj4tz2rEdNG670wnZ6L4KnpMlALQHlqYas4E744rkCztubjn8ynYMkJflX7tiDqjPU1Gni7MizGfO9Opk6YKefNp2ZoxKRQSuUApscc0OaM+6xBs3AuAgb0GK8yv2DUVNKZ9EEw2B4lGbCo7GCCBoQYSZ95SS3IB7GKCpk7B5XByqj68SFyyJUlFa434YYBlEqBQsNnGftSDwPEpgHM4e1NjCN6PKcefokaDaDJ+fgM7BdAypKLME2K6HRvy2IGjMCw7lnx7RXDE6r//NeyEZ/LpRmsp7TbjBohK6tOKp4id5Oim8M+IGN8sBMDHd4BO6myiIEY6ECREp4Tfhz/6Ufh2ADLtj86LWzdyqQ5iCXsnsEZhfMTVxPPz3GKsQ/gICMmSWM/kZzeZuXb9EDkj2KfgYGYaurXJO3fS7br+l7/+Ca12vil68zG/bWts6xbIsx/y+RSLKh6cafeEfCaBOAJMoNtwLMaxQZw2KQZNo/VEopUvRsM3XaGmoLrDQCAVY119bLFgmCaw2ZMy6YxpN15V6F7JlBrGlgjevKJYdkH0BRGn+htezU3RekAAAWLmSVkIP0ryXmSA3ptPigsRcNNAI2305fqzHZTWbXO6p6TkwYP1oEsSi21BxRPEMg8Pb7yloJ2o68XplNOVkrqbWPVg25orafWcKCmxTJm6NWqr3lgVoEk2n9yTlkyRwnyaeHh1YhKlXi+8m3/Hc3qHtcY5Fx5OZ6ZU4PrE+uLzecrdBO2Jtj1R336LvTyT1iv1stKvlb412CB1HyGbZQT8BxVWd/bYiBFG8u+ABWY7XdFpshGoB2vNXwzWb4z4eO8OtTYfU23OHtt5gzgCkVLyqQNl4as/+Rc8f3zP0/u3/Kfffou27hO7aotN2wP4ciDBonk8JaGURJkyp2Vy9FtdlH05ubhuB8aUgNockKmqbJsLYmqbWGavXE+DgonriEkk7y7u7/GRhjDxbfVgR67DpMoeSEW9O3mF3Ik23pqiLQTD1yvWuoM0W43XDGff0K0i1llK5u58Apt46YnrhyujX3uMFNUAeXz55DCoNgoMfo0lhyUVi4mQGmf50FlIkpxKa0FVtjGxbuhjCcs8M88T9/cnvvj8Mx4eHPT+9ptv+f67tzy9fQbsoLByVFmOXvOAn5NQileIzuc7tuuVVitbq/77Jnu1B5EA3PyeRgLp7YC+NoN66zYnbKAaqzUOcU2c1bRTRKK6Oxih5tWw2LKkSGvUlJQstBNCSHOvTNlRQY6KpJl4FdygRhEBcaaH9QSxz9hDthEYWJzM6GUPp6qIBzzdwv7htG4Ms+YMtk6wqxrrVt22a/f9nSHRYJr83a17sK+d9vLC21//CpaFh8/eUIO5+ep0x9qb62htChm6+KTDJpmVRKlttw1yvmPKM1+cH8hffMXWOjVPnD/7nOXhkZolRsU7QDMvhYQnvi/vvuPjd7/jlz//W95+9zt623h6fiFdN/TdEy/v3kKtTGKcTgUpBZXEtfpUJ9vqTXVWQ5svI+eZxIJYp70ktG5oXbHubRNpKkwaw7ZzYas+4h4RSu+krcJ1ZRJY5oJMd7Rtw3p37kV2pqvHSLEnIqhKkYiNivWwi2OFPaqJCY44mK/4/jUyUhbSfAfzCZkXKDNpXpB58qRf/PeiIHgTFI7rEM7nM/XuzveQz/Ml58S2Xunbhopwmmeod2zblWny9iyS0Hplvb4gvSKo6wrKEX6qjnvqce5CvHXsB0vQnY1UrUWyLVjJNPGJhIm0V/TCu3owiO/7aS47yJFLRsULVS0KT+5n8h741eY2nuKt1u6unX10y0rV0OzS1siqpNz3doTa2h5zTKUgmD+7tjGCd8VtgaWElckZVlKghS2Ww3bZ0BFSIVHQbcLKQtJMbpVUG+XhSn1+It+9wnKG7UKuF2prvjd7d42oXpG6kXGxa3ynuE8KG0P4hzbo+hK6MtIjplRqgDFixiwJo/h1V/e8XSE1nzRs5ujmkEroJqH5Aj373zVsY2qdqSkff/5Lvlle8Tdf/T/48//tA6dXn/P680e++tkfkan8+t039MsDphXWMZe90a4vaHlBp4l2f6Gcz7z56ku21qgGmxpb7c70az4RzgP+lattJDHqBpIU1YZog1ahNdf2whnmgk8DzdawfsG0on1jRUj5RJ7uON8nSjkxTQvnZQpNFyUlpffKVhW1iw8j6e43TMynNEdimtNCCm2TFBozUnxq1i5CHb4r5YIxoTYh+LTglE6kdEfOZy8g5oVpcl/f+hObfaBuzoZNBReYNnDdnoxYAE5yInEiyUKSkxcNZaKU2e9dW/gxZ3YTwJVEUaj3ianHxMwehb0o8qTcvfVFOOIh5zBGEm3OCrKGDyiqDOBJkoNOKfuf4x1ILrTu2d4ANDxUGRPXUgj2pp25Yl5ID/aUA02HHWa8bMQj+//tYR2BPniiHmwW7RWfHBcxXrDatfv3AKkS+umbq+ESG/0oJKWIa8LvKzdxyQCefg98CoBKhNFt4BNXIyFPnihDdokZS5gmb6tUjeQ2GEa5YSXkV3JBU0wCYkwJ9zZ9bR2tGmSe8Txh6EXtEiXBeDqeocTeiXtDGPpW/qPBlAVnono+8fThme+/fcs3v/6G19Mj5VWia4UUU8jSM5KvpFKZz0KXhOXMRGbKwlQ8r81JSbQ9r3NSnYONhqGD9WwdSc3H3jPAGdsBM28I8S4fJ02Evx50wQAfE8Fsz4JOHj+jRt+6F19LpkQVX7NTxjRYioPpogMIiSIB5rmS6RHLjymJ7CDMMexl7GlV3QGYEWX1rse9xTodr7k5s3FmUvjA3vuOH0hMfxzvavv63b7HzacOEOg4ZcAoRvmz88nbhx7VAK8HQDU6pBJOGBmyBVlSsG1TFNLlZv2cZOMtztEpMWKScf5TsBpV9iRp3GeO9gg1b5McOn0BvsTe8CKzn4XBmDwAYzkQLP8zpo0PZlaZCk3BRCnmxBmNPGV/aHqcfY38xH5YXfwvfP3BwJOPdPfgbFtXZ120CFAHVWwEdYxD7uyUrIQSezo2xH59EovnRlv0MB5usNP+0F34zMe5mw4hvohhNPQZ2tEWIuRYyMxon/NFVCT0dVKedtTWgCTOvEhp4lCf9uBOQqBXxkYSF991BhBOr8zF+4q70WolzcXHMaaMdj+o8UT3gzk2Y9cAMRji0OMJjTDdyFGdEBLL6Q5tBeuFkrIDTzmDbZg2etu8otkbTmfNjrKKBPsk9BZuRNNyTohlFyQvC8vpkbtToS4XtmulXzZs27grhYfTQjb4+O07bLtSrTPXGdoLfXuifvzg4MV1Q9fqo+WrIk2Rntz5IOGQgyJ6ezhkPKM47HaM63R3MFq2POlO+4k4fCJeMAnqu6NQrXdaax6I7XKNN4cwDJjkifvPv+SzH/+Ur/74n/Efy//TNUomcYOgo43JGG2NvostEjpHr6fijkHVe+yTwFS8TaM3H3N868zdV3SqCFOKqVjD6gBDEHjscu3dnXe0f6YAAeR4Gn4/cW22U8o9QPEWNL9+G1NPeoiEN7+22pUiQf0dwZV6EkUplFJc/FDS7hB/SGMeQo6ffHMkouCC5iM4G5UV4NCjwIJKGqiaRkVGZLcphgN1p2Xm888/58c/+ylvPvuMyTr1uvH04SMjSEoINweNQfO1eFYDHf90+sdRKYNBdBtOzA5gTX2bJCMotyOi9Ix/tMUZ/to6eMfDGJnsoorDwIsNlpz/noRQ/uDR2v+XtT/9kSVLsjyxn9xF1czc/a0RLyIyK2uvIaunZwiCTXJAEAQB/sME/4Eh5wvBmcYMZhrVXdXVVZWVlVusb3F3M1W9i/CDyFWzyG5UJwF6wOP58+dui+q9ckWOnHNEMQYj6kxUp1ffrB9UdmmVASBm/F1b87PdAaVxiI3Xsz+N/gg4/PEUGBm3xCTYYbdRQ6U5uOzAU21sbRi4+utEINhU0CHHkQGY1kJ9emL7+JH68RGZMykH7vKMICytWhx1k/ccEj1GWohszSSyIQgxT0iamI93vLx/oCq0kJD5YMyjeJW9iTqILJHUI6VuPD5+4of337NsK3meqKqclxXdzvTLhdTMv2uend2FOEPIO7A+yKc5iBTyRLq7N4ZmUJp02sW8g9q2mTdTDMQcrBsrkSzuC0cgayB3CMVAspgMKN1ix3Art3YWNYNPRiFp92uATKrGIm3aLYFQQVwW3mFnmBJMZtcJznLOkOxTo32Kgxx6wwJFfa8PkPYmqKWcydO07zWCnZm1bJRWmEslO2uvliFbMIlNKRvrejFgTZQU1J9XzceuF5fHF5OW65DHRKv2dKxXpcvwkwENkSaew+iInzBGPqh2Z/15jNhNSC0rs4Kn+1a262nXWZxl5VOpshXhti7cjF8NmLVcqrvMyBwLe7MirbRq1gfcXmNjPlzvLfv9HShjiMYil+7uKw6IE8ys3OJOB6xbz0GR2gi5ElM2NncIHMpCX57hkpDLs7HwmiVgWlbzrOpKpJrXzZ56X68HnuTbNRcU8+erzWJX2wtSiAQmZ9MbqGTFkDQ/j725NEam97HfsOZgD7jdgRC7re2n9x95+vVv+O3f/g1/+Jf/G6bDgfnhNS/evGC7vCKcTnA4oeuFtj17Ed/R5YKmlZ4SrXb6x4/0T5/oh4qmDNOEVDVwTputR230slDKBaVRkpImWyvaVrQWtBTLI6TZudzVPFG65z9S3JtLCLH6PT8SQ2TKHUkzqoFa7flqLUzTRutCaIVRuKuq54YF7Y2tCin6wAsRYyFGH7/rRZjtGZOVKZGmwTr3ajLVfZJySLvPa2wTFTMOt7wYEG8wDzsNIiIm1wtyQMLBm74zkAF7TFFbGzbgRPezx0x/hZgzqXdSbbTq3ql+LcUbgireJfETzip+2WXlvRd6L54bFUaTTnAWkP+5f4wm0k3+YGnBrn+4qX6tULHvuqmhDOmM7g8pnkewA343OcH4AT8bcQaTTc21IUmd4vu3o83AujG1e3Segjfp9mLMuoTWOBWwwTaB64def2ac/55biJ+V46VZ3BlJT9szo3EPrFi2Yt4IFp7/oyZcUIGYLZ+NDRWTkP3o1BiAvseA/XI7cGQNQGOEWoPa/1lhUERGhnz9z/8mt3/z1rKziJbzwuPHR7797bfIizccQqJIo/cxNGMjxEbKMB0SjUyXTNJEDI2YPObfePPswJ3/b+SDGgyYlmpEhSDV9or+2KpiTGJGRm0kYzH6/e6MiYOGB3rNHgMhBWIM5lnskrEQBW02zXYMU9GRpzLW97XBrXJTB436zXNFfG24y8SPPgbx5Mf75vr7Ixf1cmMs/HF7b1fm/tWOhXJ9+/q7v3S9cNeq73cfTz3eIvufI4EZGRTY+RL8zRqL3DVbDuzE5FY8o2ZS2Z9LJDhgqqjbTIwG7t4YHsXDeG3+uscL7Tf3YbC9fhQ15Me/O/67fYxxUfft4yCZBAe2oiunhqLEm/6E67WytdetFvk9Pn5v4KksF7ZtY102YzoBNnnOAJmUMnk6EuKB0iM+b8GKDCq5b8RDNaZLsi1du1Gkt6K0IlAsue8kesgEMXlUmg5ICmhQattsOo3YwZim2emrma1UK566F+cONKhXQqLWfTcq24FpjpxOM703tm3j6enJjNDcY6l1R+41kMJEzAem+WBUcgcbJAQS2ZK9YTSonbIVnp8vyH1gmg8c5gMkcUmfENNV89yq67BHcMfGds7zvC+KXZvdNnqraFXm+R5yRXvh7vRA74WyXSjbI2W98PT4kbUptXYygWr5hAMAFsxL7xgBPZHE6M45HCBkQjjQ9Uia7wnxxOlFoV3O9OVM7pVeLpTzM7/6D/+W1ApJO+sckbahdeH50/eoM67Kp0pfO7qq+TWMzx2cGFMtoLfutGRx421jWphXhux7ZS+frJrZA9g4e/ZNMsbv+pSt1hqlbCzb4gdGvNGBeNEiEYkQTy/54k/+grt54v/5//i/U8/KHAOmzy9+wPq0FinWGe2VSCOJSUFEDBDS2rg8NzqN1itpmkCdnC2BQ54seUpGIV+WC+vlQt0CWvMezGOMlHXzYkoppXrnEjtIQmBOEd2TJmM7mH+T0GpnLRfWyyNoI/vkEa++SN3Nm+Gm06XW1ZHAYT6xtcZWK7oWau0sy8bl4yPPHx95fjrTWnOwySbu9Grr8DqMAPczAaUTcyCmxDRNu1+J9s185Fpz3y8Y44rxTkLHgv9Wq1HsLQoSgdPxyL/6b/4bfvZf/9fcv3nDP/y//ltUO+fnJ+u6XNFvxnE91pWgDkzao9mY7mJyp2bXez/w9k7meITgSdwAbhzYGwlHHIm35zMDSK325zhe7biS/atxWMj+dTAWSnM5m/vxLMvqzCVPn25O+DFgwBoUamyRbXMpsGn/Q4ysa8GMOwM0B1OxhCcKJI8jMhLA8fbFmBuDOizdJ1MGzJcmFBrbPsW0qfFHhgcHaolpa2VcXD9rhBONz1LgVQxMT4/k9AI5HNnmmdM0sWjnom3f9+lwMJP/FFk8Mw3qYHYKxjZ59YKQEjnP7PlrEHotxlDFAaBeUd348PSRX3/3Nd99+sjrh3v+6E/+iOfffs36/Xs+fv+Rh9KYVckN+tnOyVo3ApBbQMJkBTFCmTP68oH84p77n/2U+e5ASoFf/93fUt7/wPrxA/J8JrWOdJhzgi600rnL1pgICPfpSI6R2OCQJuIhoIdKjJVta/SCgQKeb1hnv7nUdZRBgz1qe1bUWC+WG5tUoXaLKDZZLqEx09IRDQc0zEg80vMBnQ9ozlZ0/ygPGWDyj3Ipu8spQ840Ee5fviKr8vzdd9TVJJukiTTNTIeZsi0si3slyQDKN7Ibv58OE1s10GnbLsbQrpVeqpsLJ6ajGYCPBk/19x7i0fubAY2TMRlSpCXruHeFrdW9e55icElzNC9IIEp1j8ExdcZyoTIc9LsgMRKnTD5M7t0Isaq9HvCcZKXUAptQSnH2U6f4RNN1XckpkZMNLRnS6tbrDvS3oYSQQNKJ5HvpOHmSqv16TogAia6RshW6y5Va7VRd0dZIKkiakNMDp8+hr8/U88mmPy4PcL5HP/5AOz+z9vdkAhoK0ffA7s05irm9JSRISAb+1b53bC2cis/mUOaW6B1Kt6EYt34vrTtY5s3QokLpJlktTY2IngKHODNpJ/VGOxeWX/2af7/8d3z1Z39KrWe++Mv/ildvH6j1LeHlC/qn19StoU/P9G0jrx35eLFBKjmwPp/5zfMzX//D3xPfvGF6+ZLDmzdMb98iU4aaaXRq3TivTzxfPtHahlKYDpmUDAjrxYxpzFvE0ekMvUW0RHqIDowGyBc0HRA90xalcYFcCfGVATdyACZSnpGYON2ttFYpZaGWlVo3ukKpNpV53S5MU+YwZZoEiBnJB8CHTDSfZucMn1KtIVsxZmvOG4eDs22Bw2FCtVC3xuPjI8uyUN0E2SZB25keQyKGIym9IOd78vSaGO9AbB12z7+bZkKM5KRkMW/Z5g2nkDIxJk5uoxBCNtBys6lmipjVAAbmmrxoAJWmgqC5BK0utF5QLYhPFbaCPYFmO+J0sHms2EfMe28HsSyJ9SjXXNo2SmcDvZVCFJs83aN5yFlwNgBGdpb6qJ51r6ZH45Be0Gbega2ttLbRWqG1MzvjyYHFIbka+cDwkVIEEevOahgSfWeR3IJiN91Cm7jYr3+OBhxcParUQbaGN3cTEty0mgFK2Pu1a2L5QjTuCD1XBmOMlGz9S7RrMPJGN3BWxw/ds373d+rqfzbPNX+nKN4xNmc+hQGK/agesBxGgl3Sxx+eWLfC//D//tf86Vp49Qc/RV59wXY5UZeZIInTcWLSB6b6OeUi1Au0S0UoiBh4H9wLR53lvudkDuBoUJeoQesbhIJMhZDcc3D4k/npjTfv8asrPqRrx6Ck7RKpGCKaoCdTZegUORyzAQdNbKmr175YjB2A6WjIDbaNAdl72Qo6IDs7VWT8EvtL4XaKpCCucLpaqoC9neCT7/7jNhV7o1ViML/UftPkQfY/rwnINX/2C2+4wL7Gxz8PIoRlKF19oMJg9euVtd0VtrXYgIxk3njiBAR7c+6vmQxmqbXv7ye5Hq6rNZC6LzTznXSPZzcoa+Pae10UUr/B0HQHv8b3ds/hYM14YwZb/qt73eJ1tAOLOzAbLN4OUKujhGSi4N4DVYZtj72ToO7PNprc+0L45z9+b+CplkotjWb8K3AGjYRMjBN5PhLCEWSmayakmTFivkumEoyiLhGioCS69cJomt1cyyaShDBBOhCne9J8IB1O1lEN8UoN92IqjsMrZWKy0fCmV7WN13uzEe/Vpv2YEWokxO4d2ck2bkyk7MWb7VS/kQFkIqSJ6J9mxGfJZoiWXG5F3Si3mlGqe09t22qAQTRwLhCu8UGcIocSOjRtV4aCF9bibv+tNXqoVPwmSzQpUgiYR7R3sVqwT41ImN3IfYyPtutmOl7bfGxlnEk8PZ1ZlsZ0LoR44PjwQJqPLGc73Aa8WevK84fv6Y8fqednyvkjSaw83jan+reCbEblLGuhrWINpDq23gj2tliH3FCwzrzpRV03qp29mzkKl93U+LoJ9sDkHQFxjb/ddwtqRpW2Nd162w9ND9d7sDJ81+Q66XDi+PoNb37yFU8o9dPjLgc0CvborVmxo63+R5906yT3bt24bRsT+MYUEUxWKe5etvuSBYKDbqqWbFUR6raZF0m1ZKp3JYZo/lXZJ02pTdDDfTaCs55UOjEoaEVrpdRh3+hgnycmLQTzqxAlEMgxkoLJsFJvJGdHoI11LTw9PXuCuZO9r2wY3XMfdvPiEfwwWW6TxnJZqM0nsLTGILo2THoXgxmp9ma+ItYps3seb5iRrVTOj0/8zb/5N/z266/J88yv/+bf8d2337JcFmM97Efaj44nBNtLg1kW49V8vNRy7fT5wW4pTbh5hH5zSo4EY1CO7Zrs7CdhX9MafGqcRQAGx8ISXUDt9XQdDb7BVIPowKuImYTbuedAlxdi/vROIbeDfvhsjXja1CjspXaMSWhFsHkKqU0EGt0YT0BqH8/vUlPFYSqfdIdPPxWjgDU/6Do+FSRACGr+T94JNGNuT36CgdRsZ3745T/y/PzE4/MnHn7yJYe3r5k+/ww5zEw5mU+aM1ny5FNEszNePXZqDGg04MnG0HeiVrujgq+NMYR5XGlLEubjiVefvePP//Jf8vb1K7589xnnr7/h8u33PL/+FY9/+/f05zPLuqBbs2KnVlLKJt8+zGbyi9CPR6Y3n5HfvCK9+wqZJzQJp6WwxYlPW0MqiARSnHhxumdbNt5/9wE5BoKvh3A4EGK0oRFTQLJCbMa0jcGzbwecqu2d5iby16k+Ovr/IxdxXxpjNdtIDovQrXqSGyIqE5JmyEcaQpyPHF++5PjigXSYGb3CsSK4WeE4nCkESmlstRPygek4k4HHD49MD5mjBE6v3jKd7okx2zozvpiParZ71L3D3boSZYChbhCuLpUJ5vvThT0x3n8uBVKeLU6r2Mj4EJ3hk0yYo5YYBrl2MjuWhIoas9u65iZX6cge/0ZxGUI0NtBqUrwhee0qpOQJbzdg38z/IxLt+6U19y3xn2udSjF2tXinda+4biQoASKNKJWE7BIrxWR/NrSkg7NJSm3WnNJAyoJ2azLqdu2nhhTRltCU6DlDn8nco60gIVDW1WIxamwzrh/qbPVhEK1A6Nf74HUF2jvSuhVNqi5hNClZqZXSldKg9O6Adzcp1DgXRkwW9e/JXrB2VaQX4EyPwvd//zcc7mbe/fmfMuXA3d2JV+++YPv4RFsqdfqELBuqG4eQfRRnJUSlXyx/0yl6pdqYThnpE9ISa1kodaNsz/Tt2Vg1Uqka6MEh3jbiuYEZGtR8t4LRRtswDw6RMBU0r9A3thSQvpJCI2aQcKRrJSYDNWeX+jfPJWOINoFyG3tRaL1QG5y36tcsk6c78+Dpnj+Lt2QUYzZJYp4fdl+nlAJQvQiM9P5M68/ARkrAIVNbMokK1Xy5BJIm0nTHND0wzS8J4QTe1O7YmmxddpuJEC13C2oyVDNzjgQiOkW0B5bLak3vWtyKAbR1YnAZYyv2PvBr2h1I6ZsBOlroujHY9uJ2HVWNzYrY0CJ2Ce2IsbgH42hjXKVvfS8QA8IEoaCSCUyIDHNyM8c3uosFDrMJsSZtd6TF5PwbrS30VqjuH2cg1IVhiD4GMtD7rggY8ebK4VRjsXVlNPV6DyDJsxxvE4wGpDOnequMyWQBbAqsil1TdUmcQNdq073xKabiOQdc/WJuPmHkLA7EOHNy+GqOrOpHYMcoxPsAn+ycGyPrR7G8Yw/7Y+oVGJErEDJytyDXwjp087KhdT5894GP338g3b/g/uEdc5qZjvfEkihtI9RIzSe03KHxgsYTQYuzlgLDZ8eWj7i0UffzeFygMbzLSGmF2BKt+cCC0UyM5ju2N2VlyFcH896nrbuU8ZqPNwM7RAkug7TUSSw/0uh2DX1now720h5c/SYM39Vx3UY9ZbdHbhAj2X9N5Pqn38YbgNb+8Zq1Xn99BxBl3DTBJpKy//T1Jeq+xhlSSr3e75s34q9lRETYBwfsANaQ0vo16Fg+EW5Avxu23PV3jDFpCi7/dzEbkeAkmRiSH4Dsj2XPbTXx3sjvNnRoMMWGfPcW/LOpxNf8/3qrPP8aP+trQfY6LLgtQd+VEOPnJODs7uhr54bl5kqlGG5zu3/+4/cGnlrtNulsjG4kYBPPbKpFTkckTIhMIBMxHwnR5GpNbQSsBh9jGgNKNop+yCCz/Zuo/T1OhHQgzScHno7WEY02+nR0/INEO0RjImWTfamaj88OPLVKkQ3YqFpt+k7K5uETAk2Hf5MZrw3p25hQZVK/bKBTzoTkyaiv3BCij0OPNEckax1T77zDUm0CUwim99Vdm20LfkiHdNBfezfgKUajue13QQk9oj3RQzPUvIsBK9rp3Q6M1gOqiRAPTPOETkKO0x5QUzLgKaBIWqnFxqovl9Umhy2dmO1a1a2xXjbErDINENXG+fkjyw/f0M7PTHU1mSHivkDFp+Qpfeu0tdNrRJoZ4I3NaYU9DH30GM0Zgo2hjyEYO83p87cypz0JYoQ5YbChriCC7NfT0O0rmBACzlrRm58d7BJcuiW2xvNMvn/g1bvPac+PPD9+pIv6fb/Z+OguU9N++9m8mHVtbm809+fAjZlNK22jysHup6i6P4EFzd6qJzgm4xyMp1YrXZWQzHMhRJim6EUYDO2TebuYxj+omdE2p2Eb60qI2aScwYOaiji4ZvLPFAIpJmQyP4qSNygrvVe2rRj7aj/s9SasDwbVCJB2NDGKUUfMt22jFBv7auCruFmt7+kQHEwzxs3gTgT0ujYUemusl4V/+oef8/UvfwWi/PDtN3uxnZgteDvoMo6J8WpHcja6g0Om23rfwZ6rbHZ/G/vK2795kxyNaYvi+34cnDuDSa/HpL8jxkExOkkarwnKbtToB+HoJHW/FqODo/tjXF9obyMhcRBNrCgeiUZt1xZP97VoFF07aO29eyJyNXm6vYiY3aJ9Zd1pe3995CEiLsvAjTdvuzbeqqQas00D0laevv+Gp/Mz57JSqDz0jYfjRJQHUjyYtt6yBvfWc78qT0VUFbOukp2RJtrR7hM6xSa3mheaG+v7dVYV5sOJV68/4zAdePXqJZ9//pbl4SWXl294yifWr79nLcZGMQNHS34z1iBJcaIGqBKQuxeEV2/Ibz8jvP7cZNlBOJRGWjf4+EQr6oXmgenFK9rzhfpxsUluOHh6PBJSJEonzB3JDaJP9IqCVI9NOuQ1A3gackyl+v3piMvUvMvnjIFGxEZ7GGhm9BEzpo9xJqSZKpHpcOT04iWHh3vSPO3y1z3HG8XaLeAqxtzrBPLhjjhPBFV6mpkOiTlP5LsHQj6wt579MdWz4KuHgQMKo0jCvBdIAVQ9UbRi/7YzKiEQEVKebN93PCcxRnfzZFC5JqQxxt1PyBSJnmj67+xdZ2cGIMGbVcGL88bmTMOxT1sz5lHvfWdw2sh5l2bf7LUd/O0D3DTPFCsQnQnWYZfM9OpGtgrjLKHRN2PDtFZ3SUXpikhGxGK+JkF7oAQ/e8XkTRrFmDghWl4lSqwni5fzTC8L0use+xEHATzmDUBeuvEszAg1+OQrLw6xM8UGDlgHuHZTgdeu1I4bwjuDK6h1jN2L5zYm4V4vQfGcoiGywbPy4Vc/5/7tS+r5I2l+zeF44OWbz/j08APb00qdH2jxGThzjNkLeztPe9nodHQ90lOgZoH1GZECPVGXJzOcLxdoC2aC32z9BLtHQcfZ0D0XxnIo327dJY4MY/xeQSslRYI0Sg50ZkS6gQBBQTI5TaR09SWK+3TkK0OYYk2xUk0uEoOQow0U6r0SglsTaKdWs3yIcWKaTqR8IMaMSDfmTV9Z18q2PVPrE7ARQmfK9tpr97H33aW7JFI6kPKRnO8I8QjYkKKmBtwoDQnJ8+1gEi5vfA3lgEgkqYFPKZ1ptYEktAfPOTy3AsSnQwvd/W5GTl7ss1djXAezLtBmUld7mGgMXcGlsYqqMYPVu0I6gB8bL2Bf9777OgVp0LO9j6CWo4XJmkwY2DGgIVWu8WzcN7VhSwY+bdS60B146n3hKsMz4Em6ybXGtLzeufFi8gFOAZe02XAPkebZyMjTuAJ0fj53B4T6iMHqWW7odv4LnodWByJGQjSKXWUwFEeOor/76U2ToVy5QRWu4NMOaNh51pv6a7uCTvvP+X28zVHFC3BLyUYtcP0veGMgYPf58nhmeV4oSyESmaYDgTtkiUiOaFJiPBDDTAuzSUc1uB/ZAA47Gi3Hio7C7HYbnsjaIKXG8BPq2gg9WoNikC/2CYHBmHnuAbTbXez3DNBwvc7Dcl104I3G+orGZKFjk90DaLsBCHfA4Tau3ub1uqsJrIa41rDXXxkA9gB8/PdF9mvQRzp5XTK/k2ezXwN76pE932by1zX242e/+fWbn94n9Qmwt+Ov8JdnLHZuKbsR+HU9X/8+1uNQR4UwwCT79+5vMITgshcH3vRmrfreaze5WvOpg9b3Gs+zvwOae0aNlPz69gbL6XfvxXV/W/5vecb1HrunlzfbLAXx12ERard+uXqD/PMfv7/H0wbSAhGb7tIGFU8ncFNAwoGQT8ynl7x8/YZpPhKnI7UbPTcfD0wzhElJU0YjxGni48cz5bxRl0rWiZwPHOYTdy9fkg8z6XiA7ElW071zmacj03wkpYmY5z2ZCSG7tCrQWmNdFv9cCcGob12VTZVl6c68sWk8RkAyH4UY3UcqmBQjxkzM2Q4ZWzG2UBqcjvcoxiBo9ZGcbeGkZF18VaXWwt5592R3ng/GhAomNaK1qwxBxkYfQRRiyIRszI8UZJ+Cs7WRaGdQoxvf3b8kpZkYMjkfdjAsxegYntLLSquNWirvv/6eslXq5gVTLZTLwiaNnJQ5RsLxwFRn6iFweJjRrBzmTFgLbJVaOm3rbvzX6c3IsynmfYMnjU6pFcJknZbY1bXMmAQheVdZAadFx+Aj3/t1gqBXAq4ZD0Q13hLemVK1iT/q/gBTiszzxGTOlzY5rDrSTzTGBta90RDpYXYzzMqf/Iu/RJdnvv3533HyMdAhQDRCIoDRJutG3TZC3QjVgJ2EdR9TtpHLIRpVO8boTLpEaYWl2DoVgZQCgWysJxngXHcq+MbwaBLxiTnaaA1q6YRk12tOgpCMUVSVsq4mx1zP1G2hV0uKxgQE6y5ax6isG0IkSGSeDkwpEUP0bqF1tGJI5DmSDyfWj2d6Uc6fLjs9dATua+/CARdkl1bZPxi42NTWuRA4HU5MUyblxLJc2Eph3VZOd/fW/UyZy7JQmiXMlhhbgROAXhsff/hgvmUCdMiD0m5ZlgM/1+PFYvkVfO63kXpsS2cjzjkbIN/xdTMYVF643wJP/h5RK9qaJ2oh+Pren+Zqgnnt6F1fg+ydWbvve1ej4f4VXCW/7qGBOsi6U55974VoNF33rBuJTWs2xEBF/FpaYpoQpnkih0AS0Gryn1Ldx0Guzysi1snDC/u9i2dxM0RjM+ZsrKcYlRDcPad3UC+MBRLWDVJpXNZP1HrhwsbjQentghwjc3tDag/UPHuBltBeaYcDhyMcjkdCtAN+rcW8jNaNNGVjm27ODhSQaSJ5Z1lUycEmhFYyL19+zsuXn5NytnuilYcvjjy8+pLPfvKnPH79PT+kX/DDtnFuhRAi0/GObTDYWiTcn4iHE3df/ITTT37K8fPPmL74nMPpSM6Jmk88pBNyesOHX/4jrCtPtUG0uNvefYHEjDqQIQ/3xClzPGRSe0TaM33p1GLDNmrv9NpopVPXMWnSBgepAz7GRjbQSX04RrhZfhVhI9AksBGBCTiQ0olpvkOOD6S7F7x89wXv/viPefnFZ+TTkRG+9/xHr3+xMlAscb9/xYuQ+Nl/8V/yw29/w+PHD8jda/J8IE8zCzYRa2mLgYRiLDnUmj4pJcRPhW2tlkzjYHqcSJ4gBs+uNZvxu7gp8GgCxJBpbUhJbCurmD+NhwuTbNuiJYpR7EOXK0PZG2QdS+Bqsw6hxESaJnKeaL2zbYV1Xa9FUO/ElKzwEYjJ/CFznpinvINYtWy0UlguF1px6W8rJslq1kyorRkjqDZnJShaF6IYQzcHj8raWbbFpN2l7tWHSiREy6PydCCJELMSslC7D8PohdoqpVcKJsElReLxCHTC8Ui7nFHZiB7Doif2qjdsAy8oKzaOfMo2BEXViy41YLQqXJpQqrA0WBWqYky84PFvMJm0QTCpaFRjEbdmLErzxMukdGDmDL3T68Jv/s3/SFmf+OwPfsIf/Kv/K/cv3vInf/a/Qi/C9/kFPyzNGiutga5oFWhKnhzUbZU5KjlBjgrrI60Fuijb+YnSNoSNKWIdesYwjyvzUHR4sTgIH/08EWxdRWPgtV5oW6auB2vy1YU5QYgzGhubNtZytjzw9NJ2mTODxvkWUmRuJ2orbNvKsq5clsUaZSEQp8hE3Rtly7qgtYJuDhIdOBweTGainU+PH/n48Tsul0dCbqSgBoY3Y3qEUInSaMWApO7NuGk6ME/3TNMDMd2T8h0hWJO3iwFP3RsDAxyIdCS4P2XwM4dkwyxCZzqsJslcC7VdUC00xcAYVWAF7DGjc93toFzB7RJUF6S53EkjIsWmFiZ8b+AMfgelh9JE9Xp+UVEtDC3YAPoUa7pLyCAVYQaMsRnCyCYHyG6+iXijbZist7rQyoVWV5ts3Q000/7sZ1d3cHKwG11TIO7DiPv0dWM8SewmoVYlkuimr/BJ4R6x1Zqrlk+0vanbe+PKmm7OzBOThmJg1w58/aigtzxQGPYL3Zj/tdpnqSYtLtUmPbZr/jO+toa6s927MbZbHUCVPYf1Uq7rZ0jABr6r4obPhvBanuv3M4zzgURpHWkQeuDueM/rF29499kX5PQloi/4ftnol2c2aX5PJ1MAiVnC5NhR2TzXGkCHNRF1H6AzrrOC2JRFs+fodC1IC2i3/AzBJq6GMWExs5vde03YWx+oP1FMqqzegDDQyeqYlI2w0LvaMCqFXqKdfXTafsIOFYMjNGPN+4en9wxhWfD49R8BHiM9Fvb7M3Rso2X9owmKcs3NLZWQa747yoqR3+vt79+UGf8RNHX7oT/6/3iPxmb2rNlMP3eCU+vVZWydGJUYo0vrrI5pvXtuG8gpu5WPNXgFM68YDX7FG78+UEwwCX6tyraZOkcEtt7MASDZUK5BKGn+Wq3Z1Pe9NmqE/V7dVGYGlA2XSCewtOt+Dk6Yv/aVR30NTSuj921DJwJB/tNX9nc//n9gPKnrmBOqJkGKMZPne9J0ZJrvOd69ZjqcON2/5v7hDXk+kvJMJdAlkuaJkG2Uas7V6Fsp8dmXC/VSaGsltEyOM3k6cLq/I02ZOGd6tMKybhW6dW1ymshxsm6Lj1s1pNsK0OBSq5Ai02F2OqNfKD9uRO3iWqdbbGGpjZsdDAuT8U3WOWX0ISC4ceXegSSQUmCaZlJMTHkipmGCLsZM2QN0cFmfsTNCtNfTnZERvFs6pDWmm/apX6MN0JvRsFWpWyUmyJ2dYplSNiZYNOCpOvCUcyIlA562yyMhVmJqvHr9ykb6lkbdIE+zTQeqPl62bUTpzDnwcHek9RVyYAobbbBrYkKSofA9dIZJLSJQXU/vUyj6zvqyzWATCB113/H10YUIkK6U6ObeMjdh4kpTRweBZP/3GMTXTLLx4lPmdJxNruhBGRkI7r4N9/UfQuCzn37Fh1+/4/7FPfGpIK3ZrQ/2ZCJih31tBjxthVA2eq3Ustngk2BMI2kGnKAY8DklkgQOYiaEdrhXtrXY1IIUkGCHadlWyrbSWvMD2+UHRWltY9sWlnU1Q+IoxIBRsOvG8vSJbVtYL0+UxZJu88I189e2GdCEQq8eFHc2VkOlU5YzZVkdXGs70FeKST5qrQxD2D3ZsauIdXM9gI0JFKOR1a2LjqcH5sUFqp1aKtoNNJ1yYj4cOByPHI9H1lJ4ej6bV1GzUbXJp0+2PgAgZw7s4M41Abp9deP8E4zCHIZ5qIMmMfoaypn7+zueHs9sy8YwJb8Fsiyowzj5xoE8DBP3zohjMvVmvel1aV8PXnWGnf990HzHw+weL+KHRhyMi2u3Co9gITjwmfwN+5Nagd7tnvt0jnxIRLGJW4cYbcqxdmPLIcbqBwe2TKdu8rjR8fKd7HEyxDHmPPpF7ze/70wutR1IN0BIuk0ZyjERg9D7Qrs8sj5PlOePhENCshtlBowZ0CvSCrRE1HmXGkw31yJUm5LU62ZpuAiT4t4Y1v03w/tAaAAuNWwJxH0OApADMsNnP/sjppRJc7aELgXyceKH9x/ZtkJi5uVnX3F68Yrj63ccXr8hPTzQ8oGVRNXI/PoL8nzH/cu3SEy0ywXKxmE+GCNmXVE1oGPKmcP9HXPOpCxs3/wj9dOCrhuXbWPbCluxoQ69mudPryYHsUk/JvXVEOzv3czQUfPDUi9Yqgg1RJokejoQphPhcEe6e0k43hOPd7z48ivefvklb9+9I88zkvz+3qzfsQlspWBANwIhEecjr7/4CSlNrK/fWiOidVppfPjhB1LpJDrUDR2sEG0m0TxmA4Uc2BzA096I2/eVGEt4p+CoFxUj5lwZYV2BKM4MdilDMI+drtA2m+QqITLlI2marFkVgtHV1YCdlLIn2EKKEylNNiVc4971xGPo8F4hhl1ubywpb8TAXuyFEOznJFnR9KPA4ecgijqYW9fFBie3wubSF7Q5YO8xwiWUhGQDJkRYy0pCTE7bNrSuaF1Yl2d6Wa3gHebNYHs/BlLOaE7oFvczpIMVlq2ZJULvblxqH611Vi2eq1xZsJZ8C0uJ1AZLg6LeIBL2BFhpOyOVdvXUGPiNxVrLFbegVAcEcuu08yPL17/hF//z/8Sbn/0lL7664/7hJe+++imJifW771iGP1N9pLMRKCiVmCLHHJmnbDG6Vy6fPkAKSI605RnVCqHae+3qjE4r58R1WmYgri6vvso2jLXqZt/BPGg0WL67KGivBlL2SJgWZOqoTqjO1DK5HM7lkmosVjC2dUyBQ8zEfCDPJ8pmk6GNaV0tLsZKjAGbTJpI+UTOlnsPxt3z80eenz9wvnwipo1pginb4IPerMPX2Ux6JtZAztPE6e6e+XAiTzYVL6QZCckMzoMQJZIwgNgY/lYGB+xa7bm0Rj8HlZyOtFzJ00pvE13LPnQidGX3b7oBJoR+ZalrMXbRyAK9uBSxJmN0VNrCWXBGhThgAOrAk2pB8el4akAOCp2CBhvEEEds7EJIgR4TQU3aYuwnV4N588amEZq8rpSFVhbKZuCaAU8L+2iQYYLU++5vaGtprLqAEpGou/2AyQF9qMeQ+wxmhZ+hODNSMYCr+4CmJuzAqUntbB1riHuctUfxmBsMfAyIY0Thmi/uwPRVFqfdWIYmG7eJdlSQ2tHqk3ndcHwwcMbwotFKGU2wnUnl72nstfGVYVN9rwnEJZsW/JWokIIw50CU4UFr6hp0Yy1PLOsTy/pI7AsSG106yoqGgrChsmGEBdjBMxQViwU2cMokcZZo6f79/X5opYvV5J0KGDgtI/Fy4ERwgKMPlpHVPMYUal6PWyOwj67TLV7B9baM3P6W+TRy4NtP2LEkB0h2hOhHbJzbFGHkuzujf3wvjADONTbusrQfg0m7vG486H7Gsl/jgNWm19ch+wv/MVtIdgbR9Y3g180NWsQAnFulgsUil+u5R61TTixvV+d872eXvR/Fhmr0XV43JuPavY/RlShdCDsT7abAuL2OrROjKQbGNVUdda79TOAKzt3+ub97uaonrvW124V403yfjHu7UP6Zj98feGrYRRWj2Mc4kaYT8/GBNB2ZD/ec7l4yH++5e/Ga490r8jQT02Ta9BCQnJFYIDZSLmaEnCfefg51LbStEUoiBhufmg8HQg6EHGjBfF9ggaou/RnMJjPns2LdKOxBQYISRwI3TZYQtkZtDbFUCkLepy4FT2RRo2oPmU1Mk429lsgtJHJrhqbqqJ8IU85mwIpPj1AzVi617MCKTemIbHsSaYnluHFTmOyGjrDnBZt1du37vW6uq4YQTdOeJzPnQ82oNOWZ4MCThErXTp4zOUMMSi2LJWYhkF88GEupVtZLJUgmC1b09UqThayNKQj3x5lWjyAQG2ylUWtHUyJodGTcg4P6vRE3US+rBU+XFYzAEAd1cDdoE98YLikJVlxHDYTS9w16C17hPhXj7wZI4YWzsd1SiuQcORwm0gAjFA/Mt2m7BVnBwKHXX3zO63dvuX/1QFg/IVvf7yfqfjrNEOu2bbR1MzPqUqBE68qGqwNi6v0GIMikiHm1hEQtnbVVttXYT7GZESBq96xsCzYhT/ZEshX311ojkhZjU8VATuK07MLl8RPbemFdntG6IRijo1Xz8GrB/GQCnkx556c3N/lVZTmfTVK5FYJPS2m9sq0bZau02pwyDsOMULmCLYP4Mu79kAFdUwBbO60272xZxxXB713icJh58eIBJLKsq+9BP1ikk6PJlloFkxTYyFN78NtjUfb/DyhqnD8xJMaEzLEvY4xu/D9xd3/HumyUbfMOEj86oeXmq73TIqPr5z9+rYh3qemIJ+OL4c/0o/NRDBizGGVPHGJwPyP/uRCuOV7z6+8Jh3XITGK8SyLV16NGKg7UpcTpcCDFaB5fXZHezMOtBXpV81bput9HMxa9JiEjARzg05DSSDQ/FB1rmFuJ1M0O9g689GJrOQhFN/r2RDlnyuUTaTnQjxPp7ugyJ6VqJfZAaJHQC6Hb9Qq9WiLuQLxNcFyvU+/KSiubyx+SmZoG81FQjA3SQ99ZN8a0UOjw+t0XTDEiSQhTJORIOs6cf/FL+vnCFE+8/aM/4+Wbd8z3r5DDiZ4nHltjwxLEh5dvyQ8viW8/Y9kK2+UZXVcOxwMITLXZUIggzNPEfDr5lMzGev6W9Vno68rq8aeUhlb9sfFqx73WrPBQDS55C1YP081ny5d0RahEekj0eCDMd4TjPfn+JfHunnR3z5svv+TNF1/w6rO3BjqEcMNMvYILVnyNBMlZdRKRPHP/9h3TfKCtKxnh/HTm/PjEd+8/2ajz1pCt0r2wE+mIZnSy4QsaRkC+2dR6PQeG7FQ7SLNuebyRIdm002uyZ8ltREgGqIRoAgVnLFU1ZtCUAylN7uXlE3YHXd33fAdCnIhxMraEA1jBpRH4gA1ECM58woEVcRbhmFgKFkNjMCDUGlUusXPvpnGKGXvL5PT0St8WtCxeYBtgISHY2HL3Rwrpava6disgE0LsoG2l14V1fUZrIfRq0qNxER14ijnRUkST7XUroI0t0ZsVkNLVu8l4b6pD61D0Bngq1KqsJbBWoXZYu5ngX+PhvtD8PWMI6+j4Ds8nsXOiOaPApCQGPJWlsH3/Hb/5t/+Wv/hXv+Hu4R3HL77gzbt3RMl894ufw9N7trKgz98ifUH7BjRiSqR5IqdsRXfvXJ4eIQXSnOn1gkpjTPkyuaIXlc7egXHvFHbgyYf0IKg68zMoEF2G06nNmlQEyBpIh8IcJ0SM7dbqzJRngky2x5t5Bqk6sEO0ceqTMmtnOS8m628m5zKIovo+qXTNpHwkZmPstLpSa+VyfuJyeWJZnojpAs6WDhpN2lkrGq2JKYINB8ozh+Md0+FESkdCmCFMINGkNgHLwWOEFpxFoOyOc+ILZwALYs3jlGdyLUzTgVZmim5QgzecFBkS3VE3i59Qvfm+sObfWE/91r2aeN3X2L2AIaG5BZ4aXY0hpjRnUV0LP0JGe2ZU9tptSnbwuGFNuFvzZvuiNzMTr3WhlmX/Ey1AQfs6+LXG/HPgySQ4ns/4umoaUJIzRsy6xMBnz8EZAJvumyzs12S04Ado6iBGdy88wQcUjKLd1zW3Gzd4c3MU/eKeQJ7LjXxg/L1fpXStuU9SBSnQq9pZ1zGAUsPe3BOCPS6wM88ZNRz7PbhVCu3Amsfeq4+RgZ+0TuiNLA3VDWpE24K2M72dWddPLOtHlvUTh3gxcEoVlQUohFjQYE0UY7QZe9YkV9bk1V59v49r3YArA85eU0MIdAn0btYxGoyNe4XRBtNfvHkvGPDcLQfjyp4fIMKPgYwfNy93kOIGdBrfv82lO85AZVzbGynbDiDdPs641bcIxlV6iN8Ctwj089Bep+xWrLo/5vUteB7txJLur+NKUBg/Kzcx5Uf/wl4YcPvA9gKG/J5R34zfuPGJGnvYmmZhB3REGDCxr39jLpXadlKBEYO9RhjpAmNqq30rDsN6Ya8lRjM/+AXufu7tW8zrAx177Uf31W6UDEogYz/aewujScb1529z93/u4/cGnggzNtYyEdKR+fTA/YvXnB5eE/OBmA/cv3jFNB85HO8IOblZWNsTXIAUs1PIs4M/mRevJyNCdNBiFDRLfuKeTEqvBlphxsqoUjEddvAuXusOFEg0wzt1b5rROZTApsWKBAIhDkaQ7YLWiiVDweiLgxYn+6a1xWZsgUiQZFS3IOaJUp1eq80CvyitGgNkXVaWdbMgUE8cDkckZiBSihkdtpuikENjamYSDcMdyBhRJhewEd1dLVDvU3mAfDD/gbYVtHRoG6IFKcW03psgx4mQIvX5iVqMQnw3n5jSRMpHVlanwF8IfUP7Ri9n1uUTlAssSrs0+tKol0JQIacJnbpNLVS7170a9XV53vzgbV40qL8vR3/3cAU0933YDwIPijlAcvCJgFQrkrtGM2nrnVZXQ2OTGaXZT3abGJQUmYSeOzrB/d3MPAUsn2o29z24BtoT/MBukcerz1/zxc++4I/+4g/45vzvqWWhx2Z+K91YQrEp2hpcFvrTMz0I9dM92jbkmMnpjpTsqbTZlMB1CUi7I06ZkBOtFlot9HIBNV+FXhvVATkbLb/Y80RnTAFItZHFKmhNVA+AK0Pq1KiXM9SNVH2NakdLoa+byfgU9IYll0WIQenrmW1baGVjfXoktEroDa0m+VjPZz5++wN1rUQi4D5og3AruhcXMA4NRcMoIIbnxEhpOltrSBdiCxyPBxs3HwVNwuHhxB/+2Z/wB3/wM0qp/Pzn/8i/+6u/5v0P7wmtkVQJTTFBVPAgfZ2UZuTS6yDyPczdfGOn7zYd0KetptJZ+8an/om6bASvF8dkiVtYS69R3ApIL8puFPPerRW7n1xPwh95kA0mh4+/tWJxHJzmexLGhpmDyQNwQ8AukJXYI1ECx2ke5y+h1l2P39xovKsSWzPJ65R5uD8y5cw8JZKqSdjKypo7ZdtY1+YJn0IPNJ+gEpG9WE5hMCq82BMD2ku3GJAQkrhvSje2VRNhRcwXT6C1jaNaKaaA9gX6mdgWZlk5xcLdUQmzQu60dSX2hbg+keoPjJtTn8/UdWO7nB3ULDYk4fJMq5tNDq0WE1spDOPOmI50te6RSibPM9NxprZinaXWOcUErXOfjjZSPWdCPvDZZ5HS4XT/is//6E+5e/WWFCcKQlWjLW9to2lFDhOqmdYmXvzsz6z40850nF320Vi3FbqSRMgEpDbK4xOPa+D53AgbLAVKBdUbr5tWXWYZSN4Vbl7oduwsKQMkVAOQlUCJM0WO9HiA41vCq89JL18xf/kFx9cvOb15xU//5f+ah7dvObx+CTHcgKoDBOmgybqvI+H05d5EQMzXJbx4Q9JO7I2XL15yv21svfL8w3csH94jDib2BlPMzGlmjkdqL2hXm2gnVjSpGjAegGNOO+2/VvdDCmE3lkfEfK/8dRlbMtFCtZ/RCBpZt0apjWXdqKXZsAUKKb4kcCBNB/N+iBGNJr+vrZlHZE7EwYyqZQcpLJmNeydbxJjOrTW2UpzV06keg7WblMk89wR0o2ydbWksZbkm097hpjeTP/dG7yvL8uTgaiVla8ZM+eDhR+irNaOiCNXlgE2EKQSTG7WVqM+om9MeTpmokVxtomtviTRF4mkGqQS90C8LffPiyRHQweoOmCl8rY1aG9wMf6glUJpSik0UrA4+3Lrcmv8NBnL0UaCPIC6EfAX/WjRZcaEz59lAjmXhQTPtY+X5b3/BL/77/57tUvjz/9vn3L3NcDzx+rsvUP1ElwKfPpIkm4dL+Q4tna0VpmMn9UyQRDk/oslyQKOim+dPLZ1Oo9TNY7gSJ3YQClVjciGIm9qrDiaaQlBkGobAnWV7YlufqctH0vLMdP+KMAnH42fGYGU18EMtBhnbJZCmoyXd2GAH36ykEF2O2/drqwpzLfTWKO6/aGtUWWvhsgmVA8ide3Qe6b2zrp2tnMcYIfPWIgGZGB5smt38mun4mpjv6YwYa55T1EYI3Z8Pl7i67nXkjjI8Z69F6fEw2/6InRA21jVyptPqma4btIudl/4xfL/oNjyhd3EgwJpWJqdp2IQcJarn1PGAGYMPuR/OAKq+1wpdC2jdB8QMinePkRAT6AWJd0jc6H0z79uWqOFgmYo40ODAU9vO1LpS12dqeaLVFS0X0ArajJU4uqkee3eWDw5hBJM6dm+miDddpDkAF8d66KgG9r6a+3yps5zGVFQZk/DU2G3GFA6M6WA4cGNj4zNDcrgnWgj4EidCD2JNdexcEMlImFE9oD2YpUTL5k1XGro5o7eq5Tvd7qcw1odJ5uwYlJ3VS9UfNQJH1b173IAP+bLiP4YMQL0oH3/zHd/fnfjii8/o7VvKFrl8/cT5wxPnj594/Ppv2JZHWnkiz52aMZZLqkh0vpkWq3XE3riBEHbfhtXA9fJcmya+Ve0PN1E39qrlViKJEBuj6bEDT8EmopvHp9CKL5taLSQ3xQBM865To0cj3WYTjqf9XXhh+A3evCwaLoMU3VmtBrhaTT2aKPa7N+DFMHSn//iJug+7oV8nDcrtM477h69JblbZtX4fr7P7PQ2+PkcTV4OTQyJoVHqwyGzNa4vXt49o10OpvRnSpupx3a1UsgGsSrOf8e8TMabhGCrhzVvEmGet9x3rjlmQJjaheABjcAVTwc6I/a/eBBa5MQwfzST2+GkHvpM8utWOHRuto4PVqQYh7j5s43oF8aaWnQ/9Zs/85z5+f4+nMCHRptXNp5cc719yevmWw+kFEicbvzodIU82/tIXog4KtrgRYPdCyJM4NAGjA3JFuhGbiDBQWhyMMj23FUetF1oBEacX+s+kQUt3CZSNbTcKprhJsoFGzgjJvuHVfCRAyclMy8Hpm90nru1o4whYshdrhiRXel094a1s68WCY7UAKRKp0unRUMgQJwOPdvTREsVeNhs13k3yZxEouBmlmSmWWq8HnFr3TMW7X9oQCnShV2U5N9blQi0buNwupMjT05MvGNDDxpQm5jRh+ucGffPPgtSV9fmZvl6QZUE3hRYchBOIzX2xzBslhtHJ68RgTCTzodFrdb5vFBnaC8vBJfi56VMesABQtVphWyFoIkmiSbDnFAMNzUOnWHGrSpLg45iBaCOAa2/0Mgwmx7obEJO/Dq7ORNBoWtzXYiUkRbLQo60vERtXPvqTCSW0RigF1s3YD1PcgZwQugGdvdskuw16T0jN1GZTQFrZbtA3RdX9mHrxTuRI0N3PxMOjgO01jBocrYWySxC6GHcD1+mLNqK4iSaWXFhyUlE2ugTqtlEX84WqlydCa0irSK3UZaVdFrQ0nwLtfgfOrhheHp5KW9DihjkY3MMMT77F8zg8cMfE4XiEKAZaxMDWKu8fP/J6eWudAMxjo9dKUPMSifvz2L+HEZMAV/xd7/1Yhb+LRN0cYnv3SBWtnbUvaO1WCwwQ9QZs2T2cxkHXm+enslO81Q8c9gPBg/gunsa008GM1qPHKhUDm2IIpOxTTaJNhNK5e54h5OB8wQ6xm3Rujtk6hW5cI25cbnmtTdiMw2MNNeZAt8dIyTpyUQKtWNI6Elgba2uPpyIm9cQARnH/KZVAj4JGoXlHN3rLZaTBhGj0x2BAY757QHKyyYbiCXI0MCvTkbrA+oxeMu0psT47EH+5mBy2N+q6eAe/U56e6A62jrHQvRbKeqbXAr0QaDsoa1cw0vMRVZvUquGA5AmdZ6qaZCMSiPMJJNC60EqH1GAVtJjUoNbA0+NC5ZF8ONIl0AJs7mWCdEI6WhNGBaYDQSCnSDwYjCraaOvFwS41CWBvpNCYji+pd2/Yjt+gPdDDQtHVGClNyYeIVJsUFsdRq0p1aVrvnR5swtLYh0iCeESme2S6I96/YXr1Occ3b3jxk5/y8O4ND5+95u6zN+T7E0zRQ6nTydV5Tdp8g4VrV5XhG+FpotjQEJu61I0V3YU8WYxvbSW5F4FoJ1SBUmnrZkbqLhHd1H00PJ4FOrJV88sLQpfk564xaEY/eUyENOAJuw4tEfvEGPuzFitEa22277XRyhPL2dglud8T0mRsOQIdi/FBrDyr2hjGryHswc72R2NnU1iS6GyXPhI8Z+r0RmkVDdBE3XevG8DUq+NonvAOCZfrC1WMKaMOOqg6U7yXnWHQW7dcBOh124Ph0jutmu9KKRvSnZEczZC/1o22XmjrhbKtJOl+2YLJNzwf3FnCN7HnmhAEhnxpDIuxKVUu0fMUIojAGOfcRlf8mlRcz3FhyFhG4TIYuOqJdewZNotdXRpPv/o1n968pTx/hz68IB7h/ssHPvz2SJsnJNxR+jO9JkJ3g+mmSAHJEKs1xroqLTYISo9eIDJYTfgEZjuP9PY/tRhP7xZvYI/V+++pyfRidwlXLfTyTFsi6/k9gYROjThP9H4kqE2gtpwn7OePMcvaftVyiFZsp1EweWPCvX3yYCKrrQVJR9IMDy/fgWTS5ZkYnenTbahP2AtgMQuINDOf3nB/94ZpuiemGQmZYdrb/RrtDD9nd6H+LyO+yJCyyI+K0BQD5AR6oNYTSqeUzY7aFswzytf/YI5Ys9NZoGoV6M7GdkAYUc/tnRArwfeRvY6xY7VVa7q3YtJMB57GtDl8amvokSDdQRJn/+hG78nYcQ5IdGf2q3ZaudDrStuejUnXVmgrOMiOTyDcTUF0RLc9y7FY4nHAXXiQ5pJYwbxZPa8eLDEDPRx4Qj1P5MpG8TXq37C8b0iKujoz2wv/va4bSed4fT+uDeyVB1QMrKQnm8paK72bR6X56o7YidWYI6//nYfk+l2LBZ5ey+03HSzZr9XIGfEzuUEX5eO3H8g5cH8/W6OoCp8+XDg/nbk8n9kef0tvK6KFHjCj9WB+lsPbTmQYM8MYdjJiwwBOPGgxaCo7cYtR32L70Tsmthf8vPDLO0ppDdFZ6oqrX+lNDLyqfffGsrJjf3C7C+NWyU24vhZwe/46lgH7u1GXDyvgipyAscjF9vCo8dTbira+uIIfnjfsObPXi33Pncf6YhDzACcHWcJs+c1gTel4D2Mwz8jv7R0NnHfHttA9797Ze+Oty9hdN3XEzaXpDljtUkFhnEB+PbvHPGu8qJ9VwQcJMUC7Aczu++PmrBvvR28BILtO3Rs0dcQw/96QB+pgwHpDpzmb0AghXK+5L9vxhMbCHV5l7J5lv8/H7894SjMxH0jzHaeXn3F6eMXp1Wfk+WTSAw3IdECyTZ9Tu9dGf/NxHa03QnNKWrrqzc18z99g8De1a6j9oPWEREI00zr1yUvdgz42YjKEhDgrJvhGHcCKTV+yqW6E5JIMIU/JN/NODnQfpIR2WLeyF84h4ld/dIP8PmCvubfKtrnhX1m4nB+hN9u03TZZoNJzQmVI8a4JhSVINi5Y1IycY/COCkM6Y52EATyhhU5FxRhFtZ2RXi0hcYO+5dNHLk9PbMtCLcUSxRDY6vAxSehxYc4HynTkdJgRKtLO0MxskVrZnp4plzMsCzMQNRIlI6EZZT4aEBLUfLLsOjWiWKI7Algfm3es48HqVb/r7vUzxoBaYqVsslK0kDUTJZNCtuSRZnTCFKg0GhWlk8Rlk4M1HYSijdAq21o5tBtp0s3HzVFjL8yT6q0sLMsFiRCS0JL5nwXv/DophymI3fdSYd2Ix0zsJl20VK7T+mbJAmbIrjXb2G71pK43q/9kTBPsbiq5WSeCQWH13aF1j0cDlLLCKO45mfnjmCdm9W4G2kiiNjnHKjXz4ZDiVE6hLBfq5Zm6XmjLM70Y6ESttLXSl+IFrR38veN0aD+8uq2JAToN6vI+Pla8u6HO+hFxUCUxTTPHuzs0GMuxibLWjW++/44Xr14RJLCsC9u6UstmoJNCEmP8uArK48bYs1cpmO3jUab8GHnS6wlrDSMGSKyUrTBmixm7Z9yrsINFu2+cYCwVz3IsPxtBu+3PNR679e5sSgOTYvTPbAdz104pzcCmyUyIJdr+06P9bkyBKSaiBBKR0NSYiQhlKbQNWinE8b6758QBS+aDr4Va7HAMHUnZOu0iNmbdpVpm3guhOc2eQIrB+6nYHvLpHT0FNAXUr5EBFGJTtXCTYmeSShKOL19a8aSNvj5Dr0gUcoBMg+1Me/5IiR2RjWVbuawL7fxM31Z0Wzm//4G+bfR1oz49QWvEPtBHa1KUsjq7qHLIwf3tHMCWgMYTBilnJB5paaKnTBOb7tZDRk4vkDhDOrCFRgsNnaDnA6TEtimfPjxyXirziwcrjlKgxYpEiOlqBGn9mYmYE+l4QKYhU6ikIGitJvftHZFIysrp/i366kJ5/NZex+XC1h4JtRFiZ45KWDdkK0S1czEotrfUvTHEjcujTX8jZEK+JxxeEg735Jefc3z7BXfvPuf1H/4Rr796y4vPX3H67BWkSA9jL+hOr7+e6aOL6+CTA66DZRRkiDf8HBE3EQ4d7Waie0DNZL9Z7Oraqark04wEG5HYymbvx89leqX3TgqDAe2FQDcG2diLTbsVXuBTrGyNh2LAk0qitKs84xgzUTpte2TpG+s2MWuz6Xz5YJ5YmJREg3WBS3PGrxcRI26MYSVjpLTuAIUfmApRXMberXHR1BoQ2sxHRlx+tDMkRXxTO/gEOD3YgI3osHxXC73dfLXqVuieZItP1+t02mayqlKscy4ISRISDmivNrDi8ky7XCjrhagOtkdPX4J3g90UNRAGAWQHygyHTnuFs3t3NvHJrlbwRwcdetWdAaV6zR32OCueV+kQzzTXaLgAWwNRE1IhdPO0ef71b/j0+gXLh69Jd4LMR+6/fEF8eaAdZpA7pM3ULXIcHj+qUBQpxrAKzYZltNKRrHQv9H38sq1wZ2VpCzeFpxU4qia7sMKNnaWKAnvTAAK+nppCOdOCsD69J2hCWyeHE306oWkixZPHZzsBWwdtxkoXfJhCsmnU5mCbGdSC7nKq3pWybeblyEaaFAmZeT4Rw5HL9IzQqOVM2c4UHm3dRct/cz5yd3rB3Yt3HO9eMU8nm4AdzEy321Uyj7zRxHFwbMQJO4/l+ons+aSgSDLvsxAOtHaHAttWKUVt+iEL6v5a+4RYdfGYT5YD8YJs1CDuPuSMfSveIsYZHeoIyx27x5tWN1qzqb+9mY+gsbuL1SjdJtwFdYYw0MVtPWIBEkii78Bzp5WFNoCndkZ78c6lx8NabySE1xzxmvCIsUrcT8nyMUVacPswpTWrD1TSDgDoYE2g12s2Mqnd48qvl1gz1jEQgnTo1szowzdzgE7XRIsBll1xoKsPFZJQzfTeqDXQevQGANiMHIVuXnTin+bje83nZH//9gy7cfINjmBxWfbCuw155J4/KlqEj9+8pyzP9PJkxt4qrMvGuq5s68a2Xszs3j15mjc9JLnZebdaiKH4kFF3DIYwe6NhJ3GMS72DagYaNR8eFCX6te8G9BtaCAxrgLhP/Ctbd/mqgfutNGrpaBuHIwyPMPO/tBjVHYRhxGx/tdLtvNwb5R5tTUUwjPUt/42C+XzKrQ/pTT2og8W1wz5OwDBrhwEU0ZwZhTqTeyxy3e/3CJnozdf7bw14xj/7AJ8MTIk6mHN2OcLtYpHrb/Z9/XroCOP88b0i/QpMC3RtO3PKzgUD0Wob8nBvkAXsrPaniincvAN7Roc5cMjESDLXxcyQrO8TcVFf9+GmrvS60KeN1qrkyaWDfdQlDm7u92jUcNfa5fbf/7mP3xt4evPup5zuXnD34hX3rz4nTUdiPlHdjFQJnO4eyHlimjKD4mkX3Lq9sbumukEpnTF6VEiM5HQADb1bMWq5iMnaopgWXVugipn1jRsfg03sCA4J1upTJLTRvFMmou7xM5neOXQkKL0G7zyqTRnpjVpXo2GDmSiH5EbNJqvrHTQ0ojOH4pTRFulR6O3iGtruAEOl1rJTULUXchTrWkyrHXQSCPlgGm8J1glsFXpAg02JGNIgSTaRJ0hFKPR+YWKls9pBtL1nvTzy/utfc/74kXK50M4XonaiCId5JqSMuG9VShNJJtbHD1ychnmcj0wxMuWI9IrWZknn0zO6bfRlJeVsdHwPHDQrF9L+PffnKQWtzQqFbslNGGCiI/XaTKd8RXBdfnSD3oqqdazjzCEcCUwEJpgz2otNk+uVQmdFoUc6idwTKonehct54fnjhfhd5virJ8KrSDxF0pzQoGjoDj12R6oX4Axc6LWSw8zrhy/4uj4TWuQ4TdRyQejECIdo1/Ph5R01Z3qO9LrStwSr8PzxE+3ZzuBGJedsnmB0kGKMNfwyREGww7rSKdXyzbKpxzY7HG3SjrV8UjYQYoy8tekJ0aZabZW6nk037iw2fPda1MARwURHjSbfsW5j3aCuoI0QXIfcG21dqWuhLG4q3gTpjqI3RavRT/dY7YmiyVu9I6xtR+yvumHzNJumzOEwE1PgxcsH3nz+hm9++Ibny4UP33/Hb48neuv89te/4fz0CG5AnsTWYMCCbSDSPEh3Ud9zvtYGo9ej+x6zRfYAvie4bpI7WFSbw572QAaAJhJJIIUAOdBqpfrUIDDw7/oUuj+eitjUwxCZ3c9LVW2YblCqdEIvTFNmmo4c0h15yjZpLmdSjkxz4sVnJ46nA/f3d0wheizprE9nlucL3/3mG0rb6GWz6UCKMXbUjcEFj4Ne+G2dtQWT+LSZGCxx0mod28xsh2apbMvGFDIpmIn32M8tzNQQKCmyzEe4OyL3J169e8vhMHOaM3cB+uXC5cN7Lp8+khFeHA68ffealBLL8xOl2eREbY329Ehfznz69JH3MdBioAYD5bR3ksAUYI5CqoUkwhSE5EavvW1W8AaxqZJqHnR124ibyxQHcCagUim9U7VRUGMzZQjzREgTcToyxReE+UiY79BkEyxLnkiHAzJPxPt75ocH8ulAvjuZrAAoy5laVuqy8cP5Oz9vbC2gUMtGztnAqWB1YReTIZYI0iPzyzuO858z//QL3vzpH7E8PvL8+Im//6u/oj0/0deF1Bt6fkafnpBaidYToivMwSZsPmliU7g0hfmOMJ+YX37Bi9fvmF+84dXP/pQ3P/spD198xps//pL5xYF8ypBhJJgi5rsIBoAYGzk6AOBdOb+uk4ixgDCAKfRK0EbSiq4L5fLM5bc/58Pf/zu++4f/wBbw/R2JJOI0U453nN6+IcwzfZ649GIDp3ICNQ+rpVaSvRyyrl4YXb2MFHVZxZUfoF6k9CqWL0SYQkSCxXnxN9EUa4RR6ctGCxNJMmmayVNmjgk//thaoYVKEO/IjmzN/amGqXijXhkyvQIwz7PlDdVe3Ugstdc9VtVSdmbCSELFwTZ7tc6a1TGnyONgs0mIrVa2y7KjHAbWWS+6bouxt6ud18ElszYe3vyjLs+fKM9PrB/eU3oltUYuK32zPIDaiN2ymRRMUtB7pzP8ZQQGaOMyxeat1hiT2w6MSbnBPVAKrXZqdVa9UegZDcFWryBz9txdujUyuj3dNRkunff/+Gs2hH/4//xrfvZ/+T9z9wd33L96xct3X7L+sPI+fw9pIsRMdUBAtbFuF0iKpA5lAym0Xkl5cvYn9GbARpCM2+FRSzPXIhEMAXOKdrgwWILKMyZVzWiPV4ZHit7wi+hWUQq6LGz9A+2yUs8b0/Mj0+GB+xfvDJCONjBHa7OpxuvmthQJaZ0Qm/tydQcwA+L3Ok/elNWO3hn7RLtNxnrz5jNasUbl+x++5cOHb1nPX9t5qcphPnB/94LXr9/w8NJsOpSN9fwBDTM9Hp0fEBBJ5MnOEuhotZphZ+jADSOe3RRhGFRriCaxPdkU3FErbGumbYr0FWvarm4i3QkUCAWo0DcDdUNDbcNhDLxRzSq9LlacXZ/d4+kAnuoOPNEGy8okl81zr1oLMVZSqsS8IsGsSIJMvoajyeDdnK+UlVY3ajnT24r2YuDTAM9qG8GLAd1cEZ4BbBrtUEKEblYRvW+gEzFlQq9UiuWOOoAnNWWF5yUjW5KhTxpfh+T+kdFek0Suu8vvXJc9/7pJE3bAJ0QbqBCT1Xw9modRbUqt5plbi8lyzY+vmyWCs0V+t4FoH52B4A5MI9w8/cgBBVezeB5qnl/2veSAQtPG+eOZ8+MjH95/b002CbvnnmDXLEQhxkDJSm4RxSxorDEIfRyTAbo09kltNx82lGGw/GAwbLobrrfWdnCg6ZDrWmN6+Pv1PnjFV8+wne3UTelTizPHNNKLnXlbqbSqvv6uz9m9SNnZRTfA4WjiRhGv3V21oyZ/Fr/GU872Olrn1t/0VhI2gCy7nldp548Xzi1XSfy7owHB9bFkoDP6n7jGeI53laUOows31hk/sLMfVfApwLinmdc2hCtA2Tq1N5tqN5jeYws0O/dKqYwp4Tr8Um1MtX+NNfD93fUd3Qm0ZlOoe++kbMOQbK3aczX/fZNtD6KPYSrizM7q97dVdWzDhtBIEMZANh2qKN1vtTe4IiEFWh2Ob78f8vR7A08PL19zON1zd/+CeT6Aa11vpz0ZhdYOtKEDtikdcn2hI1lqugdSfyD7/jCPcwMsghetnjWJBFICkeYsEy9SQ7zqzvugkI+EYFysjo1xrYiYSfd1/N/YpE7p1sowtR43HF9MIl703+Cn+wQ9jc6USmjP9Jyo0qla/NDse9HTAkgxDbVKME1tSPb1MCsL0QARMZaTBCsig3TzImk2YSayEnSh9wtP5x84P/7Apx9+STmf0VLJXc0UWBUNRuW1qVIZ1QllRnpCLIOm9hVJmdgnIkKvlbKc3RNGSTH4WHVx7bTfB7UEtvVmo1CXjbL4GNqm0JobO47ryTVwyW0g6/t9MdTafljUtNrBA2hDSVO2Qkczz1vZadC9RUL3CQ8Yy23oVLvCWhrVGT3qEr0rCm5rZcgGUeXDb7/m07ffszwt5j0kiRgU4ma/05qb3mO+US6D6L3Y9J8VZE0oxmCTYD/UffMPqaAx8QISE9G90hCTNGgo7kVgVO7q06nUg6+NXFUzsu+4f0+jOvhRtzOoMdCCWDejqyXsdnjZgT/2xtiDY9wnoxMUAhqjyxwjMSrTFFwvLjSMfWW+R2KN7JsOZXQPgaBKjY7899FFMyA4xcg8TRyPB16/esnbz9/y5U++5P2nH3Ya8OX5mVIKT58e/fqzU6evR5IwOur7kSVX6v9oiSkjF9qzoD3+jaSk+/Xdi9XRQdhjm9DVDoNKt4merZncdmc4hL3YDB7TrE4K5mEVDBwbhVIMiZCMgRJjYJ4npnlmmjPzYeZwPHL/cM90nDmcZl68PjFPiSkndN3opVDONgq7bRtlWaibTVs07b13zrXvcaeoTTUyNqZR5ccUJdSYBLVbIm7rIhLiIPCYlxRDtgTUENi6sKmghwMvfvITXv3RH/Dy3WumHJgCnLRSnh6ZTgGVjb7ZdJi2PiElENaFVFd6LR4vG70Hi2viiaQYB0sEkig5iINg9nUOQvaucxfzRFCfDjIm6IES1aeZ+ZpHA01sOmsl0iRDnCEf0cM9Mp8Ix3umN+/IxxPp7oGWZ1pK1JSRw0yYMvnujun+jnSYCYfJ6UZKnSfqakb127LZ/g82/Q+8IVJNBinRZIl4Y1KTFT5tmtBy7xPRhBAPNkXt1Vum0x25bNyVlfWHwLquLh83ZqF0QMw8nDAhIZHzDHcvSacH7t9+xcPbrzi+fM3rP/gpr376BXdvXnF4OBHngCSLM3tX01JjS9IZcgXZ9yUymHC255Nao0haRbcLfVt5fvzA+cMHzh/f89u//Xd8/Kd/YPnuN8wOPAUiOR/J0wEpG0uEcDzA6eRyTjOxJ1hCFtLkjQ/zOYrOUt0TUTEJqYqdMc69pMuVzSg4mzpGS5x9D7TB7VPZ6eriHlyjaMdB5l0eIF4W9tGNdoZksAIm1I6IGU43Z01P00zdrNEikqxT3G2W0ThMjR0xPFj6fq6aZYjugFPwxthg0nTcuLiapHxIh9W9XLr/oKvkcGcdtDfKttG3lXU1YMom8pg/VWsVLRXXE+yfxsK4ygy7jpVj13B0adVjcYiJiHkCDsBBRn7nAOEwvrvlTKhe4ziwM0sCxmZoWN08Jq0GQNfC+uGJ3/ztz3nzX/5L5refk+9ecLq74+7hBT+kiLhpem2DKtqorRBrJNboHmkNWjNperwW6Fb0J3svdJrafL1ui8+vjV+QAZC6jw5dd1maxefg7XjDqqR3k92xGAtKzQCgt2KNwnwk5BnNB2dKdFqxNpuGhiTLc6PjA3S7RxKym+X6mSEQUjKWoufrcoCeM0E75/MzKc+ol24i2YfdWAFUtotN7QoFjR1iIUwCwfI5O5/TDgCE6PLfXeszosrtxyg2rwVScEB9mo5M8woopW9oE7SZnMwo8S5toRn4J9WuudonvmpGZ98A9ut0sd30X/EGendQqPlnvS5+6l4Em5R2NTARQWIi9EyMZmQO0cz4XWLb6mpsx7pa/m9JFwN42pPqm2s08umR/3Rs0QeS/U0josYuVW2YSF4RTbZtb3ydbiU1ItE9KkdRHV1WNHbyAAltb4orN0a77nr3RkE+fs7Hszv4pLss63eBGX90Z5fchPLrarimeDdXwP5BGaDTVfq030+vSYLnFkb8Gz/lBXmDtnaXNnZiMjamTSPvxhpOnaQgYj6zIcqebMr+2iy/uv43YI8bwGGUTQNIcRDIA+T1NanujWduvbhGE0NhlzBX+7NuxnIx4EnRGuzf+tXcejRCd+CBwba5vkYd30f9Ophd2Mi8q1uAXF/nNacea/YKbN6AbYw1N87r6z6/5uweD0fe7rHz+hcH3+THa+RWnr1vG8com1GfzTvMfyR4LWFv2GHdAX6H8fwOGPVO74Hg+yGE6+t1Icj1miOMQT29j2uBnRm79YZc76HHoMFoijFca7RxDvbqIJjVYBa7bA0OpmJr3RhvzYBBV4FSm7rlw5XVdFNAse9Z1MFJ3QGy/9zH7w08vXz7uRmHH05IzLRunbWmZtId45gYZkwaxqIak4MYFr+2oQfwZOihB2Pv0PXhZaCj2+xiluCpUMqkOAKfMCa+jTtV6sbuZ4A3j6rRXxE7vEM4mGdK9E7FQDm7o3+tgmLTdlw8KsCYQCdu9rS/ziHAHNdAG0Il6IGywapl71oKNvK012aAlOvKpZadtSUxocG9qFJHJaLBJIGhB0IvNNd3a30m9TPoSu9nlk9f8/jD13z87hdkhUkCd/ORtq4WhMrmB67JKHqe0HYgp6Nrnjt9vdBqpvWjdXZrpS8XUheSwDxNHEIgKYRhLOibspZGLxvbYh38uhZkE5+sZNdZfPN2v+52T8Zx5MipXje7jENlANaO5jat3M+TGZkmuDyuNr2kQVsTTSLaIxKMfaBiho4SA0W7WUfKrmTY8drRKZWdXi389u9+zrc//yc+fPee1A3sjFHNEBxlK6v7h5lEJPoI1NI22mb+RPE4EXMkhUzPPk1Ig5nUuv47BJ/YOM3EPKHBE/yYjQUXJmpZ0FYodWVIUIOaGW3vlXVdjMUigY5Sysa6XGjrmRiUKQUkAXRqLWzVvTOYyGHyIiia3Mv9vloPVuj7Wpekdi2zTcaZQ6CVTl0aZWl0UWPH+GhX6WO/Wqywbaekvdth3e0QLNDllDjMM/d3J7744h1f/eRL/uAPf8Zf/81fmdmhCOfnJ9Zl5fz4SML8gmQAlDKkcQM+HjRV2fXgvrj8nsPoJo39Duwd1XHiqr/uHaQMuBmfYf6ld0L3uDN+r3sf1+nKnuYi4hPegiBTxN1X6BjIHEIgH4zRFLNN9JvnmWmeON2dON2duH944PMv33G4v+P44o4Xp4SoGRE/f/c9l2VjfXrm/OmR58dnLo+PtK2irZPGjvOELWLMiIbpvhGnrnMFe00OAbXbQaka0JCRFMmSzVNNlbpue0FYVFg6LE053d3zxV/8OX/xf/rfc/f6DvqGbmem7Zn1w3sOB6WtH1k+VraPnzh/2EgEcmvIthK7+VL0HtEYyb1TxVgLKrrLHEUbESUFOEQhdjHDWfFAEjtLK0Y7xse760iY7R0jLjeQRJNElUQl06cTzPdweIAXb+H0QHzxksNXP+Fw98DhxUv68YSmRI8Rmc1Yej6eiMeJkH1c+Ig62wDpNz68/2BJpwijUdLrRlytKI3R3kMHmgRKDmiItEO2SaMx0rFPJTK9fcedKHeiHM+PfOyd86dPlFIM3EqT+Vbgk+umA+F4x+n1W8Krz5juX/Lqyz/g1edfcffiNa9/8hPuP3vF/HBCDgGS7n5BV0Cp+woPY/6UlyEGaKYAcZz5bcM8tRrSFsrTB8rjJ777x7/n+1/+kg9ff82v//avaZ9+QJ8/sgRbpyKRw/GBfjih20JtG+F0IpWX6N0RmSbCZNNdY8pM88EB141e1v2kkREDRIzlwZUH1BUD3T2RC+4hGVPiME20HmyYw/CzI1A7hG7DDbgttEbS2IdZqdPseyNEe2xbu856Hh4LajYFBGGeJ3qdEKnEYoa6vZqwXL2Q7e5lto+jFnsFJiXqaKvOBDXJogW17ka9xszWXp25IKjLGYewVj3fMsDDQNGlFOqysjw/E8aQFTC/wlLQrRKrIj3Y72l3dbUxnCQKvTQvcrGGkDOhAGeBpb2oqs3i19BFdgefhi/VCNSK3b+dASGQdMwhg4VOF7U2iQhJxOQVpbN9fOIXf/U3/PT/+H/g/qufcLx/w8PdA+urV5ACkqLJZFcHJtQMw0MRYpHdgym0Rmgdaba+SAmRREizFfHNZPcDDjRwbxRS5r20d8ldGha6TR+UfSqvQrf8K3RjW/UuztYx/8O6nemtMB3uSNORfLijd8+VagCNJhtuSlTz5hqTLTtKTM3M2zGmvN0THyQSLN9PaYKkRGA6HMjTTHOZFAHydCAEG6jTnz54/JmRvBKnEzkGYrjbgV7UPE9uhwSZw0bfWVajGB3F9bUzr7Y+QiImmA9HM0aXgLRqORnRnsNdfHfvM20QKtoMfLLHdx+nzu6/ZR6mfmbcFLw6wN/qNhVa6UOFgT8+psJQLHa0ZsV2iMZ2HRP0INq/aXd/owE8LfRugwZQGwlhTdKRrowvrmCUw1AG2vZg6zY6uNcCUNGYXVvREKJJXB14aq06k9LyqBCTA4ljgFN0SVhCSATJ3qgPO/AkwWPmXrhepWZy22APkZAsdmsqdJ++uddjA6AKwZoDIVwNxdn5tjfg0w1idfOl3oBRIxNUB4aC+rRtgtOj9AaUsqmtNGMGqgIVi0FijE0JnZAEA+aguoIVHVkGbqfou2zscbkBnnaG/NVPB3RvsO9cP6+nupMnBkNI22Cp3cREFXqzQTm9KtvWqcWYLibbDWgLO0vXuBzXvTXqtMComQb4dIUTk5j0LadwfQu9MjypRhOmtbYzhG7X7g4ZCb5nbK8ZeOPN2v0OG1tI3LrmuhGvwNM1Y3dWndcGYPJBe/rrPsFBJ1WQzeJQV5vsaumAWKNYvQmC7EMbbU93ajEwMkZQ7fbaEUR0B3BbdUkv6tfaARy91ks7zUVHM1h28Nv25ZWsI8HPBvE42Ae47b8zihYHvwajzR5jxCK/5oxLKPu9GZ7TO3ioxpbqvdHa/58ZT/lwJESbutLKmeYvjpAR7Ubx6JWuEbqwl+zBJwrQ3eJjdN/cELtXuk+bGkmgeYxbsrcHcxmHjxU4wqCh2QaNIViwEkgp032caa2L3TLptOZuJhKI0TZFHH4UnhjaWGqbeNKqHURTmncUs7dKzpEYo6OCla1V80PA/OCHljKlTNAJ8Skv6oeE0OltofYVykhYhRgO4AKhQrSxyymTD3dIngmpUy/FjGIDJAq0C337yLp8oG3PbOf3PH37T6xPH7gLndiVqI1+3lz21NHiaGgIhDRT1wuFRyIzMWRyzCZiUNP1tm01rwBtHGIii5AVTlMmqwGQvZsx2vZ84fL8xHK50LYy7CTIzSjyMdqkHNzMzLr148OPiq5e0A5w0VfHbogWLB7HgITsci1Dx0+vXhDaBnWjnRNTvefQThzDHSmf6KeJ6fUd8e0DLz87MZ/ME6xH9jVr69Vfr24EtWkCP/zqa97/6rc8fvMtD4twkMTdaWYLyrYsLMtK6QVtwnl9RnQCzYSuxBYs8Swrh3DHYT6S7k9szaa3MbrT3Qr+3gXp1iUM0aaLWbGptF7pZaHXjbY9m4+GVtbzI5fzE+tSaLURQyS6lKd597ipJ+wo1TvgvQ0NcSSmbBIfSYbYO7RutHGjjlObFVYE8nwgZjeJXaEshUu7WPesNwTXc3vyv48XvQF7YhArwsXGmasDG2VbeHrslG3heDgQA0wp0EtBa2U726j1VptP97KDMCk2+ttLYPP0GwwDJ4Q6qAJCc7lNHweVXOHP/RjaqaY3x6yDHeM449q89y7I+ElPVhwsQ4TpcCClzGGeLaGkUbTs9GA7QIwZdrg/cTqdOB4PPLy458XLF7x48YJXX7xjmiemnOhlY1kXvv7lL/nV03vK5czy+MjTh49sy8r2vNCLS2aXbZws3PZ+RE0yE4HYRyLR7f64WUp3KnsT2AgeQwIyGfugl+LJWGNTdXlYRr1rHnPkcHfHizevePvuc0p55vz8xOP7r3n89c9ZP35g/f5bwtMHQivcTxDbxfZQV+ueBUtWaMXkgC0as0nMYD1JNINcbaRgksf742T3s1VqXd2kHmJ0g+horJi9azOyVk+SK8IaI306EqcT929/wvT6HYe3XzF99Yfk0z3T3T2Hh5fEw4F0PMKcbbqbe1tdRzuPAmUc0gIpk06ZeDjy9u5EbZVSNz788A3L00eeP/7A1AtzCjwcJ+bDbH6K84FpOtBzph8zlzWxboVlXVmWC2VbuH/7hi8e7nlzmHj/t/+WmgKX3ribJgqBJpF+OjHNdxwf3lDvXjK9fsvrP/8L8rsvyPcP3L9+w/HhBXk+kO8OxDkjOaC3Jgi3Sdsez3WP6+Mrg2EqdCvKQt9ozx9ZPr3nV//+3/HdL3/B4/ff8vjNbymPj9TnM/r8SC4LqRQmwVk6YgnPZWF9ekbOZw4vX/HmeCSURMyZ4zxzuH8gpETpylYDBWEpjeYDL6xjb4Ei3Mzu2RMuAtF9V4JEppRJeeIwH2gkmgoUiGpyEMkH8nwkTzMpZpsUU42dbR3J4Kw8cbZIB8WBFueHhUhOgRRn5inTXe6hrSJijGOtJq2orVizzSfF4VKb4Q04PHJUK6LmBxXGBDVsYhFqCV0YUo1ge39MQ40OyoRk7Auj+BuooU1ZLxt1XSml8XA4EqaJHCPbB6HqmfPjhdwtNk+S6Gqy1cta9vqgOehkn76KQiBOiQFi9lL2f7s1PB0NSxyksFffcSelPcyJxyZranWbNodAdIBRgaakrdEfL3z8+S/5x//xf6GFyH/1xU95c39HfPOKn99NbI9CCw5WqLFaZFutcJZGnK3Y6b3RLitBJ1I+cDq8Is5H4uEBvVQfdHCmtQtdN8DyV3qh9bCzvGNKA0lDxYoLQqD2ZpOReiNKsaUcLkju4N5x1EbXhYtWeltI5UipqxWfPSJkzz0T871JpWLoboztDVZpqCZUZpBG03hTfDhU7/mZaiemiflwx8PLz6jrR1p9Yllt0M62Xkx6FgMxT6TDA3m+R0WZREn56E1fu3chpitDfOu2b0T9vLS4Y/YaN142/XpeiyRSFu7uhDkdiB1WEq1cPK834KzV814YBy8O+5ByIVcmmq+/EAuCJ7nDr0bZB1ngIK7eeHMO4MnWpU0mlNggNiQosSfQCWEoM5zZ2Axk7nWjt2rT7Ppm4FEfULaxNsfHkMihul+LHaRzz9Xhpwti+WFMSG2IZgeJb/y9mtsM+B4Ulx2rDtWJGbqTJ1I6EsNsfrIOKplv1I+lUeM8HExQGXVjdOApJ3pKNj00T7RUiTEZ0CSRLu4/NBgt45FlRG+5Mu8ZLZEfA07jugz6p3rzkiAun8Nfo8VK7d0f09qdzdlHUc0zToIYOzx6FhVsSm8dCkT/p+CAWMBZZe4DZyoX9TPJQTVx30H1CcT+Hm+wFbuX/g27njc5xvixHXy4qj9qU2eZQqueG3bZWaiMbeZfjzp+5Mn2veszqVrelVNknpMDTwpdKKVRa9+nud8CxXvc/49eNagDtTG5uglreqLDY88APmv2tNtXM1I5Ly/N3W2sO3WkaGeSea0QxAZzNbHaKRSTSKYs+zR7vQGsbKCZmo2IjPs0QL6rybe9lpFgRnoXqp9ftQ5mY7eV68DqLYvKVDKmqBgEDcSOfglWl7Vu762NpsxomisOEse9zmytUhs78Ni7Ursi9Xr192FHOnaQPdaQRdq2uLLh/nMfvzfwZFQx8waopZqUpBnlF620KNR6AekGKLlkzLSEhsRFweRxakwV1XLVJ48PByUMVRsJWbOC1+HnFE1HOwoF+xm8qMOK2z5GMg6kPRJcHjiMjY3ibsZaA5GVmwA1ZDq7LtMXpUkU2k5J65inVBgGVqNo89donUtbdAzKqtwsckckJagdMpg30QierVVbKCJO61aQZodVM7Pn7fEHyuUT50/fsj490pZl77qKZ3Ohq7Nxm12TML4eUGYnxE4MMMdowaUWejV5XOzdZXIOHOE0w1Lpm322rVBX+9Rq2t7I8IGwiQY9iIMLyt5pHnb9jtBaZ+W6JAAHTHzxi4ONKZGcuRZTMNlHi9RNaDWRQybXZL4/OdAyTKfI9JB58XJimgNx1EeeWISAdbN6J2inns9c3n/Lp6+/Zf34SK6N1Awwkd6Z5hmVQFo20+1ixt0Jm9iorUCLSBNCa8whcj8fmE73PC+rTSnRQVAd0gzrioKxLUKczWRaMCAxZSu8c0R6QevGermgPt0xBBvZbbK5TkpKyw1tCdVK1bqDC6iDkJKJaSaEjKhPUvE9aCbX0fwlPGmX1u2QbVY1WAFUqfU6+WSEdsGYXAMc3oOo3nYKxxSbIWWFXiurdj59eG+JYCuslzOtFrQ1W2cO6EhXn2NwTWvGnv7dj45vR3Ad9PCV0+t2uKHzDiK2jqUCN//mSdj43vhabl5FAMQSqZQz0+HA5MVrbYVaN9Zt28HZ7N5W8zzz6vVr7u/vOB2PnF7cczwcmA8T2irPnxY+bCvr+ZnLcuHx6ZH+9Im2LpTzhfV8ppVKW4ox1/bPUYxe9eDXpNo61qh7ifVOF0ukelRLokKwJCol8t2JmIzWe3l6QrUhmkh3icPhxJQnTi0y18aKMgfY3n/g+7/7e87nD6zPH7k8/UD58A0sz+R1IWNSahtQUG39RGdY6Gg42N01P8ngMlVhCsao6e5pF4OSsxWg3TuR2ts1xkjEG63Gkvud5SLe2Z+OB+LpnnB6wd2XXzC9/ZL53U/J774iHk+k44l0OCEpodOE5ujdz2sQMz8tTz64SRrFMzcNxCQmb6nCcTvQt8S5Fc7vv6WixDnTD0fyPJMeXhBODVz+LqUQe+N4yOgaCSUSjhPzbCD0spypXvBJMNPWLpnDi7dMD685vP2K7fiC+e1nvP3jPyN//pZ0OjHfnciHAzFlJEckifkb3HZm9/0+9t01Md0/u4HkvW7U54/U5czl4/cs779l+fieb//+3/P47TdcPn2kfnyPni/IspLWldgasd08mwJU87qpSgi2r0KrUAuhbIRtRZdIDZHLtlG2Qq2FVooZXMfr/rS44SObVa8sGhkW+Q6bqRXANtFR6Gp5TormzRIPJ2J2H8UQd5buiEUhBJKzGYMzp0UMVA17KLz+UhgG072yur9L79VZDxu1bi7tGR6Kg6WrV0Cdjvq4ddXqc9KceeF0LfUJua5TZ5zzuGSSIDuLvbVGrR5DXWrYJaFpgimb/LU2ejrTg0ljqxuXRw2GMrV+LfBGLnEDblte4AXC7ndxZSNcV9a1lz0eR/YV6IXMTdDewZLekTRyvHDDvsD8MFsjXVY+/uKfOLx6wfavviO2yGEKCBvaV3ovPyqitVvDsmyFOUdiEFKIJktu0JsQ0oE035PuXpNiJZZKTjPSDpjPzoZSUCq9nv2tCilO+/MMGaW2TsfADxG16Yaizj6xVWpnviermqnBvIOQja6Jvuer9hi1bwQbjmbepGp2BPvZrcZgssKvMvxewCwjLB9XYjKG58tXb3n61Dg/XqwpFpUWO/TVmr9tY0zB5jIR8owEMyEf/i7jvl1jjOf6nj+iujOlwfISBB8gMDIRcV82YZpPdHOkprYVZEKpBqypmVi3PopAy9FHAN+bT6p2n9y3SW6BJ1/rZipuslMzxrf7Fm6kVH28OhE3IFekOUAiDZFmEpiuPt3RmFi4nI+bWLFfJ7nuTW6YKtef8vXq+fbIWszzp4JPYxMN+8+MPbP71wBXaavFwBiTs/aV3iN2didsetv+Cq0euk2axqvyOIOY1A61nGl8Rv9ToilDeujWONjBLL05VMfGtyfaOQxcn/p3zyhPSve4YQV72P1UjQFqGo8+fK3UkCRjkY2THVt8/mi9Ki0ooXTqZkCtitUe4vFOo/qL8dcQrmAuLlszz08Hem/i1VCOXNfA9T3cXpLBeLk2Vcb7/50seb/HV2LAzSPu6012LvM4u65gjjlHCDkmW+XeYMHfpnmbyn7Jb73DfDHcrA/PzWUMYHGhd/dPlw7icvf9fWNgzHhSEc/Bup2p12agM5bGhVIYwJwCVT1n7ta0FieuDNaSYQTqqpW+38MByPfw43sUwrAJsj1aXepWm4PCOnIAe9wYwrhoexzuOuKO5b1dsaGZuzQbk+7dXNuRwxixww3Fu9Ca2CTmpqZmazd1t3r+8TvbauRgYyLemMb3+3z83sCTYhp9VWXbFnfAb8Y4yTNCoVwivc1ImgnTAYnZDtng9HpxN8TeaLqCH9zah0siiJgeHEa3yC5ca9WMLEPjcBALcM5ZHJ5OkIx0KH5RFb/AhrhHl+OpYmaT2LhTO7RuHfHF9/0VcQyDpePSpDaAJ4kgRoXtLheAbiBbELoHZqOnVgPZtNlCxjffoK1Kc2pqgjBDF7QHO2iwomvzSXbaN+IMWp7Ynt7z6dtfcnn8gcfvfmMZQ1eSshsyQiCZeJ913WwzBlyaIsQUyTEzkZnJ3E8ntDfWZaGuK6j5avTWTUpAZAurdSnXSls284+5mLyur+bxE2MgBwOHkiRiyLYhmtkrDl14ypMvckNRzRKij/wCMCTeOlO2OsxMeSLlSJ4S+ZCR+0SqK/UMvUVSmTlIIudAyKBT4+4hcvdq4rPPj8xH09/qjR9jRA2qbhvSC+dvvuG7//DXfPt3/4A8PvJKIgcqsdl0kvnVW8JB2bpweX42zyRRoigh2BQSm+bTCeXEfYy8vbvj+PCKb9sHzvXZnnvQhcNEiBMpzfQwQcgQDsQ8WaEkCr0gWpF+om8XGwX/4SNIRsJMztHANpdrxLQRc+ZMo5YLpQz5BAiROJ5zPhF1hh5obbFAJyApMYkgeYI2m1HsVkDsGtSt8PT0RFkK5WIA3PVEMc2ZhLgba1916J6QuAliirLL/FIUWq9sa+O7b37L+x++5Z9+kUg52vSHVqFu0CHJKPCsRBwGhqN4knFzvVBp9D0YDz8R63Q4SCxeiN4wLoFdCmF/0SupYyzeG2+mqyeB+EEcydPE4XjH3fHENE1M08y2Legq9OVxn1734uGBt5+95eXLl3z1k5/w4uGe4/EIx5m6LGyXM1//8ld8881v+c1vfmOAQinUdWNSm+qXcbyr4yChvSfjVOJeYeqAzTXSo53k3k4BvEC0g7MGoedEC4k2ZeLdiRc/+YJ8SJS68fjbXyFaSQHu7k+8uX/B3XxkLonHpzPPlwuXXnn/7/+Gjz//Ox4f3yO9EKXw9hS5y4EXszNKW2XVjaoFRIh5plRnWiTYBXEuCbUYDjkJOZkhv703Jc12L1p1H8DSWS4XkEiMGeGAmU0LUfY2gXUxp0CcM9OrFxxeveXw6jOOf/anxM++Inz+E+LDW2Q6wHxAoznnVIUanPnmi8+MJ52C7mtRbhKdYdUy5htlDbyZ35D0wvZd55e//ifCcqGFwGE6MB/vePj8HeHVG7i7Q7ZGXFeCdl69ueNRFi6x0GUhUSjLmfff/ZZtPTPNmaiCakZl5uVXf8T9Zz/hxVd/wmM6MX3+li//xb8gvDyaQ3vgR4mgSZM9eRsghn/cDolADQo39kxF6obWjXY58/zLf+D529/yq7/+Kz58/SuWx4+Uxw/k3om9c1cKfVno64YuZWcdVr3eH2kdDRUNSgoX+nIklhXZbB/3GDg/P7J15dP5bMWkqA0DOUyoOIvE++JoHAx7M40WATUT86ABiCYXa4HahKU5sBMjp+Md0+HI8f4l6mCVTdQcDRvdO//zYTbJXowswSNL7L4PPR61q7ylbhu1bFwuz8bU0c62XVjWC9t6YfjISB/DIoaUwYalGEDiHWPpPrhCTQbU3IOmWZOp94bWvsc1ATRYF1Vbp9ZGqd0LS8t/SDNCIvSI5GzAboWSnmmxIOlAWZ7Y1goSkWLA1BhIMvKAUbR5qWg5mHd42yh6UQdNzZvM5FAWD/DibGD+t930cf3H+dO7M4kwn8XBdA0BUjcZ4n1rvP/rv6GsFz7+7/63vPziJxwSaPlAq4/UeuYYAtqj+cO1TqOw9cp8vHNZZuSslVbdpD7dEY+vyK++YCpKr524XqwB1Ta0rSZ7bBWW5/38salx1sRbtidKubBtzygXkIqIrZPYTNyagvtCCXSZ0FAJPSNhcvD0uLO8uptAS2is5YlOpulikjgE80nDAdLg0qmbjr8KEsZesi56zBP3L16S8x/ytTSenj7y+PxECpVDssEtIUAqgU4jto2tKSHOCIFwfMFIybs3C9T9ncRBp+t9FpJEAy27MQpMciRsve2vMeWJFM3LtFf7fikbrRVrCPeDd++jNUebF7R9HOtqtRCKarPJxAN44uoJq75/jRXowFMdHk/qa9DBJyMYEgOW7w9GVO97PTQkMDa0ZQzqqS6VdZbQXviPPaSe7zibZs9dRmPfe+R6TWHG4zWGJ5vu++cKPl33lEcbFGwgRso+9KgyZUH7EULyPNLyI2X4yokxqsROkSEtBvfmw+9j9ab2VIjzTNwqIU+EtFoTrfnEMD9nb6VPMrBzf9xb1tO4WqPlyw4+dfbTzQEIAabkjeCuVBH35gkmlxj5pmLgU8do4cGASisvDMBXsYmXScUYUlHcu9HzsIgBTQhD0jokxF38LPF9NvYh7gM4QLXrHfW46O+lu6LCOUtu/WCAiQZn9QduwH8HQRgw6Tjz8XU0QBuMCODfVzWiSYxCTolaC6X1m7rAciv1NTseu+8NRUy2ua9kJQabKp+naEMQiMbYbAak/AhgHWt26FhCd2Cd3SNO/JrIuNb+bG3UC52Rudjekw4VSpXfAX+GFHzgsPXGywm656YIVwA7qK93j799AE8DbBIDmZ1pmFMaHA1SMhCq9e5gl5BSpFeT+rURV8b933EQnD0VbQqkP681GIRaZWc8lYLvS7zevpY943Qee2rgJexX8D//8XsDT2X5aAh+ayyXxfydSkViJucZ0QspNcI2Q5yR6UDIE7PeoVHM0yH2Hflf12daLe5H0PZ3Zd5JRvntaqR8lUjojS4RkWJ6SbJL0yyZaq37+zdvBGVMxYh78jW6iKrqEkcrcPcg/KOOWjTZXQh2UPkFNhOu6pprCHkm+ISPaykU6b1Zcdw7rYOEZAi9due/OU3Og52BYQsEdYQ2WKLSlS4ZYoeQUYRWC1tZ6JcLWp5o5w+sl2fatiA0pjwbir5WP7g6rdhkA1GIMtnUCUzDKxIILTClSOyCLpVleyKgJBpxiImb2tSULhASWzX2RChK8/VAaUQNZEnEEMgx2Wd3S09VWqn2vnr3yU3OWIrJQIFm/hJjdKuHTdvobqRLmAgpWLDcNrp0mphZ+Fo36nKhPQvUTu0zJXwipJnGR2I+M80PHGbThFOwbvLlkXW7UOsT9/eZ41F4/M3P+fW//V/4h//pX/PSk+N4XombxeQaYA4H5uOBdw9v+PU//SPrskCe2LRD7WgKZi5eCx8en1guZ7755msePnvH2mFpnXSYIUY0BuajsfNimiBmJE7GeMqzI9vVA6j78dRKJ6EyQThYp8g78iqBaU7Mwbrq0zyzrs8sl0e25WzXuEOIB9u34YT2BEGYDsk6blg3PKiz51qhyMU8fupK6bCVyqfzhb5Wh8u7gwHBR1QPwOmK9I8PEVy+aoyDYY6rzlhJOdk+2hp1W4nZANTQzGzZKMWNKNE8itQ6E7vLuCP2w2GhYVTlkV60YZ6rCjejWvfuiOy9tP9EADXmSG9m1G4HmTqD4tqtHQdGCAamrXWj9MZl86S3Vw7zzPGQOR0P/PTLr/j83Tvu7u/Y1o1f/fBPLJdnPnz8wLosbNvC+fmZdb2wLgvBp+311swIEaEHS5JELTkblN0okbRjCCZGMT8w83ESta6neWV1Y8dgYGxpimQhTYmXn3/Gq3dv+eO//C84vn1FF+VnP/yW+vyJXhYrakuFrfL8629ZzxfasjEHm/AowOc0knQmUQ5PZ3JUYgahEOhM0YDRhlKotKhoEHZrGsAaCA2bki6MrnWtm1kzNHhe8k6BxmP6IR0w09tIbIJuzXw41uIeO9GBABtYsPVv2Z6e+fTt98TvPyAPb5AXn3P88o+ZX73h7rN3zO8+J84zIWciGFOMYGNx/WOInHYsR7GzoI9CqoMzgWNsHJPyehK+X59pnz7R1pVLVep8JHx84vDujNw/0D6dKTRUlI9TgLqS68rjp/eslzP9/ExohTmY5LFdCjFO5PlAyjOXtfDhl79B337Jy1evifMBDeEm6RjsR98NA1gWYZ+4ypUtPDIb6YXYN0Jd+PSrf+Lx22/4+u//A8+/+QXl8SPb++/Q5UyqG3E5ux9OI9aGVCU0/CSybm/FC1E77dkT11o5f/zEL//+H8gvXhAOM3I8wjS511YiTBMh2qCJTqa6X82YKNNawAZ6GGg0hiq07ua23RiAsVeKbEg6IjFDMCmflgrLcq0iRvI8wG2/561GjxfDhHthWZ5I6VocjTgURM3XpdrkVnH2UtlMSlnLCmr7VVFjoKoxn3pdd+Apik3xjUHom03BCuqFbLfps7sxuI9kH0Mcit9uEfPYaV04nGwqWconWhObahkXn4UF8+GB0+Ge/vSR59J5PG80LRAiHSv6I2EvxiwnH+xT9pjbfapdqfXGgNxZ0W6ObbmbeLFiBXMMYW8u9GbTWMPwRZIAYoVa6JC8ST325JRN6nOaEh+ePiG//AW/+u/+W9Jf/gvm0x08/hp9/hZdPhJ7s95KMwBFW6cGpS6FTLapwSH6GsloPNHTHVs8wXwwb8JaCHVBmg0iqdWAp3lZGEDB4TAz5UTOiefzey6XTzw/fU/ThLLSdaH1C70WKoVMJ+ZGFpuCLARinKFnt36YkJjNIL1WBwQal1LZWiBtwZkVySbgteQ+t8M3E5DEYDDbAI1rSMg5MU2JKIXj6YHD6YHL9owotL7SW3WPpsjshsw2hXqj1tUaMgVgQzCpXQhWdI6zLIxqzAEo6UOOpHtRZjIsZzCOui9FUk7Uls3Dj9nX9ytCWO169hn0gvaFVp4JVDR0YhhM8LKDUB7B7b0Pdl73QttpJnYEeCYk7ninPqykKU0aQrOOUIAmYvUNtudwgFz/v5T96a8kWZLdCf7kLqpq9t7zLZbMitqaTTZneqZJsNEYYP73waAbAxCYwUwvYHexiC5WVVblEpGx+PIWM1O9i8wHkatmHlXVTFrC0z3cn5npclWuyJEj57i+mfVlxzTHuACWH++jNR4dw3B7FQvmwTU20WvTzcOUvav7+J4O5pazv1xLZs+X/MJXVYIbTOXJmrlTDkzTHUgiypBU6SimCYU7Ntt9DDtzBFE0JzQI0pq5hs8TaWn0QyE3Zdoa67YZ8NU6mpo9e54L6gCoxZg40QkjY23uGaiOZoAdx15TX2k4mH4bBBI5ZQRhk2oasc2Bnf2t4frhMaFOUNBm7plEoOCu3qCSjC2ONaEkOCgyclHUiBPRRhR7HwYvIy8dXB1xAMWD2FgDDr4MJzr1NSQ3++bIT0NwDU83OQoKYYpjee9xdtSRNsl01W4G3XWY7V9NmuNyuVDrZjGtth3sHNIWA9y5ZdTc1giWfyghBXIOLPNkDFFJbCteJ9s31tr2sWvFawC9GkRdb/CQ3dkhNGsydb2BIe0ZtdkrH01zNtJoMO9PgPh2j20kAxQXEVrUfcxvd5Xz949vH9pdrV3XYu/B7pvHCDO9tRFyv9qOdYhxERquxzvWBK6/xg4YN2eC2qi8vedy6bvGU3PGlafTDjrCdVFfr9kIFePXrYTaf+r1BwNP2+XZi5rGdrnQqqHukdnuoWZ6PbOziNgIfUKk0ZPQo0DCbbobZXvZQafrDLJ6QmDAk5L8v9XgU391LUZxp7LTEj2VH3QyQSBYoUcN9F5huIJg4I6M4gJhiGQN2rF10aN1mHZwylKh5iNI44EY2jyI7hff8jV11kQk5ZmynWzm2xfCWLDj7rZmG48FhWpt5SDEWL1AUmIy0cHeool19+Fe4MvDg5Go0DrEoc3SLSEVhZR2zoMFj24PTfCHV3Qg090SWm+3aFMoBjx1UaQOIAKfPTeaflAMBJBAlEgYYGDHu7AjMNy89GfLW+Qm+Iy5b2EX/A026mFOPBWtYk4Moe9aVn1rtBbputLaid5fqP2R9fKBy3Pm8uHI1GbCFOl15eXDjzw9ved8+YnL64m7Y+Tjr/4DP/79X/Hp218ztWbJaYNQbc006ZSqzIfE/atX5OVHSldIEXGXiuHa0NRcfl4+faL0ztYU8gQpEydLACVYgmU6CSOZsA5Qitl2UWf22NJPmHBnIuSZ1BSR5K57rmMWk40hJlAaEpOxMtxlkC6EMCNxArFEzABXASm+3sTWgAfyLokuFWKGaAKV46m4rmun3/p6p3e3Hx0dN+8SeQI5RppahUbbj19CsHhjrVl6GdbG6voXYyuxzxn/PQDL/X9ql6570uRSu3sRC2OzGSCZX35+tlYHEDWe4THit2e/o+Nua/hn70aC678FE6eUbrEqO2NTVOm1sp3O0DuPT088Pz5yenni8dMHylYotVDLdcRGknVorYXhT9JgY1nL2573EfM8IbM46JuUDB+r24RE/D6N5MQ+OkY4HCbmeQI6eUpICjw83PNSTmwNyrbR1gv9slLXR3rZCK0SdbICXmEOQgqdSTqpFaJVtYgrAMcYdoDQHJZuEpRR5Oz/gcdwzKGlN2cUCaVsdDVmlKWHJvBPt66rTfQp1I5UJUVLqIKLyPbWKJez2TevBaqijyf46Zn1aWN5/Y764ROH0wvx7ki8uyPdHYnThCwz0j2xEW7GNm7gTL2qDphTVwU1VmNoG3G7MNWVVlemstIvBUqlpZk2H3wc0qzlW1DOp06kQd3YTi9sj5+oz49o2ZDeSZ4EBf91OZ0oGzyzcbx7Y8ADPtLTxGqE8VBxm8Q5ndyZE/v+s4d0gbJSXj5x+vA9P/7NX/P84w88/frvuPz4Hf30jJ6fiXUz44RSkMGEcRe/4LSx22faLyA7qxFjRPRSWE8nwrKgYuwzc9cx1lpI2Rg5KVkjR0wSwEYig424h4yk7PF7PEvuGIOznNXGp/JuBGL/buxso8P7Q+XXwfMEfzXXJ6sFSt3Yysq2rfQe/Np1H083rYzmui69boAZSLSy0R20xt0Ybf/2++NuXNqrOeBiY/U1YGwJtbxp6NH0utk+3qw5GDzJlp3tgAF2zYCnkBJ5mpmWA9sGSDONz2og9zJNxBBoXTmbFbEXaZ7YK9e/G4c8gKI+onCH5hqFrTsQaPfktsD4rCPvcXn8PuLYWJej0rRM0T/NE7dg/4GX7ySUQy3I6YXLr37F+bCgD/fE7ZHULqCV0G1jERWGsG1XpZVm2nGT+r5to60xL8T5CPMByUdrDpZC3CJSN9BIkIKGSuxXEe88TeZkOmeamqvtWk5o3Sxv7dVyI9eVCj52aXolpr8TwuS/ZlJabP+W4KMnDRUb3cNHMQLJJAWwPHM4vO3GK4PF4vnuYO+nG2dcRAgpk6eFNWZoNp4XfGftavcX30d771QvWK3ISgSZfIwrWs6EXRd7tMT32sAV1vd7L5/nkur7RYiyO8WaCFYGH3ftJBRz8BsiaZ1tjzEqY2S1YGyn8XxbSLzqnVh+PvanEe5HsTlyjSEIrjfv62oMjRFjx1CHyPVnLPQNN7lBWxbPHb0G8QdN9HqMCqaZtcfouoNJ40Hs3rAy57TmOqBWnO7jh763WtyzeqEJDpAnj3GF0As2kmmyKz795/fsOma4F+KB3c1VVU3/M0Zr5kwTcWqkeSNNkwEhpRKST+R4A05kHN/Ys7jGR+x79RoKHJD2m+DjoqOR6Aj8COdY/nCFVwao+HnhbZo/QzN2/B3jHvtoEr2j3anO/bq3+XDrzggSz+eGi92IZiLy2aSliItmj9xT7Gd3QNE/jQGyffaMXJmiA0gJgwqvBpZ0ZwHucjLcfIw6ex5sParStVHKZiYTDgqNu/DZWN3+jMhn/32tse16phgdgD9gTuaVIkoramOXNzmVjGsnn2cNO156PX3/h2vTedTk9qfPxhqc5XQzlse1ST0+b8+rXTPMrqvvUuNejPV+c56tjzU51oitEwUD/WFHhMbaQFwTeNw7Px71izA+4ypM7/lxc4DpBnQazMrhlL6PQnqeda0Gbq6l53l7vvcHvP5g4Onp0/dGHa2Num72EIbAPNkMe44V0TPaNmoL9Gqdw+0yW9EbhSlbl4/e2LYh+u0n0NXH38Q7G9k3yGwWlOIdRy+G7Sb5lQ6O34p67I27i0LMCdUN6uozub7xBEMPYwpGhW222Y3FH2MmJXPrM+DEEeKbSRvpVmi3Vu09u9jYFViJIdm4WU5czs90LYZqevCLim3yXamtgVbUq/Xu0WiOB1LIRALH4x3aZ0rJlFOlU6h1oeSJXjIxZdrW6aXTSkURS4xa363Th1Aw2OaPmtMNY5yRAFuj1ULZTnvnM3pioCrUXkga7WFrwFaNs9ecQTGcefzzFIwFVhulNV/EHpy6uZmNwD26K3tNxs0mEm1dNQz8CnSkNMMlU0CigW1ZAuvlxTbKeKK2T1CFyyrU33We+ne0+5/46s//hMOrO0p55nd/8+/59rtf8eHT3/FwL9zNyo9//Recf/yR9cef+LIupNoJLRA2KE3ZtNJfNuJRePXuK+5++okeDDhMybDyy8sjQwBdWmd7eWbdVp6eTywPrzi+fs3h9StiSsTlYBbEIVGaiQxmFaY8MU0TEgKlmRONqnXgJU7E1DncvWLKR6OQ12unLeZESoGYA2layMsZyQe2ZmOcUQOCiVg2mQnewc+HDLrS20bbDAyyjiRUDfSQmJZEDokQEmn5SFXQXowpM5AemrMJurGfXNx/PPsWqB0QELExEAnMOe+6UGvvoN659A5c62OtyQ3byYJuxAL4nhb6oTTtVFWadxEGVXYkIYbT3KL6uhdGdrA3XRK1Trrg3jMSbRZ7kB1s5o82vqc3RBI5R96+fUWIia0Utm0z95sCvVw4l8J35bd8/9tv6b3z6eNHA05q8Wf2CgIETxrY2q7dFN3fTzTsY4cBE700E/qwg3Qxyh7Q4i1Q5iBCiHbNJARSjsw5QA42SjclpK787m//mtpX5sNEWU+8/91vefr4E+fnR6SshFpZLiupC5MKqW8kIkkDU7fR1iSNwAbSzNL7mN0BytzZxi3oxUCJsf1Z0uiJmVri2KpZwiMQoiVB27oSWzSRfvNEs06Wd4LQjm7G6owdJjH3ztDVC2ql9QKyoeFMPV0ovGfTme2v/pa43DE9vObwx98wvX7D8euv+fpf/Avmd+/IX3+FxmhxXdgZduZgNoJevRbGNIxlVZB6QV8eae9/YFnPSN+4C8rWC7pW+kfoU4ayWSxONqrxvJ1MKLpXXj685+WnH1k/feSurMRSiepDEr3Stwu///u/ZQ0L53jHn7z9ErYzlI0mHbKNsYi3jXV/qq5aCrvUiGsX4fsxqvDyzKe/+xv++n/6f/P7//gf0cuZOzrT+dnEmNcVKZvtQWWlV7sPQYXYnZXa2cdn1Z+BLronpRCMOe3jJ1NISEisXchpIS93pIfXxnxy99kego/Eya4h0mXEyMW6iHrt7O8FnseB7s5kMWd3vQt7ER0lWKLe6h7nguxBhFIu1FpNc6oVG5/XbW/OlM0K3SDCnNO+R5f1he4/X9xg4nPgyRPXMa6jxp5r28W0bNSaW8mnJ23KrzvjqfqoXffC2j4vhfgZsIN3RHPOTMuB5fhAkwoJwgR925hS4uHVK3oMrNu2s8cQi9cqYkCyd/HHkmpdvSGCAcLYn7sDT93ZUYozSlTZJ4i80PEdxa65a2iNEe/g72+GPjDUu0bz0aMM2jvQCEV5k0DWM/U//Hs+PL5nuj+ynN8jrLQEcXPgxRtFzQGosprQNzHSU3TJl8Tx4TXLm3fUhzfUuNAJ6GUzs54qVMYeBZogpMSUzWBkWiaWwwyhQlS2vqLnSqlCr4UQJisaVHc3xhCs8RnzQowH0nRPmu45HN8auw/rVTTMdEFD2+Oi2YObPhy+/w8mDBoQHyIyd6bhEBrI0UCg1pR1M5Hsw+GBc5ppzc415oyBKsrlUolaWJIVQttWWLeP1GaNtZwPTFMip4Quszlox2jf7s9liKOc6XsxBLh1eDAnQC86QxJiTsSabUQwTEhMpHiHhkJvG8iBJgstzEhv9Pa8s7FUbbTR5D5GgehATbuux3FtrNQxUHBvWPlqCwTUGxOtqo8+DY623JyPx9825DNsbxPPs2Wf9Um+Bm7LwMBo9YGQYt7XvJTi+ZQzzbsPhjlgNJjUNrroAuP9WsRabuUAjAitFGqKtLLS20qPGemFoOLsstsD6/tYkmIJmyrElGz9B4UQkJwIs5IOB1TN0XrdVmsW1I6W5uQWl14ZVbuDRvjx4fvVYMsFb24aOx+vSWxtD6YkfYzoepOfa8Pf7m3FKymGqLV6eht8Gepo4GlHurvlwV5b7bC4YiLy9D0vMadKkDRo00PX0vOFPlg0vka4ro0g3rBjsPGvnOT9YqBODLiyBBFBoomDj3VSqzfRq5lljBPdj1sHaGIC962ajmap2z5ZcQtmjD2lj4fSk9rPoCe97vEGvmdevXrgeHxAJPFRTpxPK6tWau07eBbj2Kevn63jxuxwj1yvu7iPqAgjbeniiQduUeHg6g6aXVGXz2uZUXj4KdUbcPpaSPz8ddM82adCZP99J0Iqrq2NmWtJANeIGtdevLFvrvHX69i6M+a8OducLVyKGyj4+J1iEkH7vRKu9fc/CS7d5Ad/wOsPB54+/GRgSuts27Y7MoVwT0om4BqkoDSSwQGGnK0nysVu3iX5nDhqlr7OZtgZRx1cBcMXoatDdEGrL54KUpLTOi+mzyHJNGpklBNcNyNJNmeakwle+nVL0ca7UhKaCyLLmlCxDkWI0UeWxDsQvgiCJakRQWt3dBmOh9kuu3bKVsl5YcpHvy5mbv3Tjz+ybrBeGksWYkjsdrnYZmhgW0IkEyUjkklxJsWJFDLraSNESHFhefUl0o7048wcGuvhjpeYOX/8SOkXkI0hxA3d/ziQIh/H6Q1zSTHRXTtfK2T7VmmXi2vCDGDAu8eId8tBi5oVcu1oVS94DQwYwnkI5mAimGX1QGG7AV9125A61kK/Pp8DDFBo2ByzRsgP90z5QI4T8lxIOZHmzEs7c66dl7UYSNE3ztsHKhndHtnaE6e/+TvKb+Df/0XhzS9+wesvv+T/9N/8K95Owpuv/oTHRfn1r/6Cv/nN/872/ndMrXJswPmCFIjN1juYu9/p6ZEG5HlmWRZi+oLn0yOIWUxKXshByGJWnBojPURKcOBtiLAnc7XKhyM9BDZVhsZH2c5eKYiJ96uNdsUQyflADNnGDJx5NliJvXUr3r2zHKJ1W4/pjiqLMxugF3X2hwFQMUTibOOeuOZS9A5eJxFDIUyVQ4okhVAb2+nC9vxCfTnDuqKbiVr3qtd7Lc6a8XscsE1iD+TafTbcRd9pVoTKSHTE2DvqzlBYMRFDIOFAqCdAYIlI652qnQqYObJ33XyBXTsXY/P2zarrFWj6+cYCLg5pz0Lc//FK3Q52mCRs6yIGIp1WVp6fP9nobVcu5zNaG6lX2nZBW+P8+Mw4lFqLd07VEgFPVq5duKvzRYiBRLZn1GfXB/iUREhBTKtAOwGYPPkfsWskySFFlEqRRsgJlUbrlcM8Mx0yx/uFpZ6Rl5XSKx+fPwBK3c708wtL2Ti0Cq1AK8S+Yu4tcgXGfAyp++YsUXdMvIt1/Gzq2Jwwo0TmpGhQKoUxO3F18fEkxf8X/fnS2qkvZzRGwtyYDkcEoYRIaZUhvtzc2VI7FDENtNCLFQWAhER0tksMcAhKjBHRQq9PtE9nLi8/8RwCP8bM7/6/78gPr7j7oz/iiz/9U5a3b5m++tISQXVQohS0FOrzE80ByBgUcVer7ek95f2PrN/9lvzyiVgKqTdS6jQV1vrM84+/g+ePpHphevcFh+VIOL7h/PxIWStLOnL84heEV6+p338H57MlipMXGlyorRG0kKOyff+3fJobv/uLB1798z9jen1PmAJaVltzyax5LOEMO1AbfKuRDqqV89Mnnn78nt/+z/+W59/9HY+/+iv0w0dC2WitEXsldftdy2YNoOoaFn1sW2rJbTdw0ka/C128MI8u8k2gkmzx1I3DPJPv7pnSDPM9Yb5nfvU1PWY0mlNamjIhBl4uqxXpIdBDJM0zaTmwTNM+AiYS9w5qq3WPGXGa3VI87WYOKSfbQ1HojcG2BHVtCDGWYm8EGimoCZ2HRKuF2gt1Oxv4pJ0tisfLhtbiwJ+dcRTLSEd8EAcAghc5wSEFDaY3g7rO5JgL8uKq907bypW1ovb8xGggQsXY7m1rqEaSJI7LzPF4YLm7I+XuLKXIy+OTsaZ754cff+Dlu295eXqk94oEuKxnpLm7b4dejWEtEvfiVpuxbALRGKHqcT5ZzGjd2BUGZMVdeFdd60MQi3/iGaEXortz0SjAxTNODXTpdLppe0VviF02Hg4zc0ws64Xtt7/mnATamclmt00rDegibBKNOKmKlkaXQM/VxOfVxsTevnrLw5dfI19/w2+eL5ZnNaGlRq9CDQWdOgFFtUCs9FjZwoUYJlKspDshSyLVGW0zBGOyw4zqRtcz0zSTppk8mcNizDPz4cC03JPn19y9eoNKpKk10LbmzUFve0vrxrCPVuikZAYuBuZ3lEpvnW0tlNI4XzaL2SEgujlLrfJyNkODPE9My4EqzZjp/bLnha/f/pLjw2se3n5Nmh5AEpcNzudKKY319ExdzTGq15mcs5+v7Ll+nmZnrpiMxD6GhoM5vi8bo87codMUuXv1wCsyKSTu5nuM4V14fP8tL88/8PLUWdvQP+moFoSKhGY5jefMOti4e31pMWDouO7aY871Mgayl2piO6M5ghu4tBfCMvJidwL34jDEIeadSG5kYCYbkwOhDoaKXQeJ7szp7nNj3KqUYmYBpfo4VKFrttE8I8TTEGvWtQoaxwleAanRkJBqpIKANaq2CyoRwoyGTgjZKerO0KBiGrx2Pt5RsNEibziFNmO2kxG5EyQZc7X1TppMVuRSLb9rtflnOC9jz1l1b6yZXq81RlNOhN0gcuRuwcEHRaPlh8GRpOrM+1KcBbZjnJ4zjpdi0wHizCdnq/Smu74jDhD3DlRnpQV7Xx/6R6oWN6MSxeviAdLtDAj7HnX2Z9/H6m4a9nveegV3RILJbwXYHOQ0QMMGzIJY/HfIjFiDM55wIW8jD1hOxM0YJtYclmZA9g04s7NnRvPWczwNYT+umwO+Aj1AzhPLfOTh4RXzdEA1IPK817eIu0LG29w+7LEejQwp//F3AywRZzGNpxbBISl7Vi2G2J/6TjEzNuAVaxnA0XUN2Gnc3Kd/4jVCRr9589CYHq8+8n5fasFIooRufAxcI23oRI68Y2jpDsbTcOoc7CYDFAeJ7cp0alynCwbYdlseXc9RPzuHP+T1BwNP6/ni36HUahupYpu+hOAna8ieCYnasfVaDSwAeg9G2w3YGdvytpNVGJTZUQSNDvbQQtjpYq3ZPL0qqZuAsyQrZGxRMypE+w6xh2kvUATSZOLFKQZ/n+kFqCPWo2sLfnPHAzs2gjA6KRbYc7Ku4NBMkhBIaSJEE5mOoiATnUTvge5d930T8g3YNodECAaoCcnHAR3ZrI2ECVamvJg1J5V6fGMJba3U82qi4nEzlNQ7hftlCeybcNduhQJgc+1+G7eGlgZldF38jV4YDkhXVVzwsNt3NqdLyhVNvqLHMDqejFuLugj8EGC93kK73vYXOzoerBCZDkeW5Y4pHyjbC8RAlcCGcOnKuTayJ529r5TyRNfKFhqXrXGhcGofOX/4Pc9vv+T1fOD1l284PCy8CgcOPZEune1UjDGiQiiKNLxDYWBRALRslNOJxw/vuXt9zzRNzHrw9VDR9WJdm2DrX71A6b6WRuJBTIScTTMM0Fr9/piDkRRrDd26GURJXhAHmJQeGxpNhB1pELqNggywJJjQXkqZ5ejFL0pbm49qBegmYCpJAOvYh+iWqN75ENnQVE2UHiGpcnh4IIrQQqSKdVHrttm5/HxjZox4uVMIA2B0AUCuNFWlmy6JjnpJ9vgyGD/Bk4X9feNb9AqoDCfJPtah/679uhWNYxwb9pU+66DZbVCUYdTrG4RZxSGRXYiVQenGuu4hWN+zbiviDImyrj7yaJ273qqN3Y5A74BxEJyddt0AgndooicKBgob2zAGZ4Bh7x+GB3IbC0YCOJgHY2PDE2DpxGzAngg83B9YDgcOx4lIc/BkpZ+rjQJtK7FVUu8m0u8zAruttaUqDBK6MR8syZLALrANfq099g4r+7GpVt9vbOTjZlWFq75FSsaw7SqUakURpSGLJT4KTl8W9jsbfDPGuo5hH2O2mz9YN1ELmcQUKrFC7VAKbCdL9mpTLh9/IhyO1I8/MZ2fqe/eMT/90hNH08Xr24aWjfb8TNtWetlc66whvbI+/kR7eaQ/fSStZ6KzDaIDP7Up6/ZC6xV9mkmHxYrcJZNjRpLZb8/JRnVO0wf73uGSInZv0uja6kY72VjcD7/+Ffr6wB2dmF8jXoCOp0T9+RlooV1FB1ta4fz0ifff/ZYf/u5v2L7/lvr+PeF0Qmp1x1MfaVLfO/rYiDzJUXYgmQGkiFX7HSsSutiIIb6fqprj03B2ixJcGzIR0wIpoTGSpsThuBBzokp0EXBoIeyaTXk57iN2polocaGWsseUkf+kZEXgYNiYdtMwPrnGvJHfDqcrVXPDFf/VeqW3QisrdVttzCWorztfj2MEx13qZDQifFNVtX0jqNqYnVZEzU3QHKuKA+/e/fRrbyN3XiCPOzwKMB+Rb+4sKyES1MCRGGBOJuyMCmes0305V16ePvHy/IlaV4MHA3RtRDEQbhcFYnyH3rAprkWfIJZYh7A3DUJofiweszsmyeBuUkFuWF37HbjmIl76G6D1Wawfp25MD2mN2ISwFdPVkoakTnQr9RSSf67FyGDIGA0f9W2d4IUgXYmq5BBYDguHYp50WwvGGm9K6JPnO91NWAwYMO2EGanKnBIaxUDgmBHMYMNG5DK9iwk9hwRYrix95NGWP8QYINh4d0qZphu1D2vy8YD7PujNnbGH4YyMpo1aN0qp1LKaVk8IFDFNrlIK63pBtVpTZJqgz7ReaFsjhECeZ+5ffcnx4Q3H+7d0nez4QycFG6EpPlLaaifFzc/RwRPX7BJpJnDtbEd2sFj3uL0/h3Rw1sA0T0xxIceFV3evEdSfkzOtvnA5Z3Yn1QEA445y3oAcoNMtCWLksTYqM9bcKPo/X5NjTG68X63E9XVuK1UV17Id53t1xgwxukSDyTV0PEdSmxAQiea0GdLerN/lNmIxwEY2OhVlRWpF+oSNfHfTxHUQfRy6OJNoBzjEwdpSidGcemvZCNGEwAdjy/b/GzbXYJUMOY6g165dtEZH6Ng05IIBZxKZLyuqyna+EHIi1EgfhY0MoOXmKnuuYyHabpZPUtrvPk5+dVkG7cEkRtQLc9dz281osDhxUxiNCGLXapRO+9854OEi+PtbvRaiW42jqOfMV6gotL4XburnM/bKsXBuGUK3v25fn9VWLpIdu+/hPjVkOIaQ4jVXslxZaFFsPHBkcw48tWri2CbTglG6rgt8P9fxfFyBsLH+f/aSAfuMbPHK1rK0YOiTNXRno9kz6aXKfr6635uwH8+oSBTdj+n2Ku058jhoo+UxZELUZRg+S0D3e7yf+HU//XkJdL0Uvo7EmYPj/jgJ5ObjhoHS/nEyAGYvP7wMGWtzX6e3TZefAU9D770PUXWxY7lGzLHO/+EpfH7Z/lC+03+OxtNq42QSIyHOxHwgzneQZjSaVoIlHqbE3sZCaE73Bmz+/Co0bBTBIbgZbAZ9gBsYmmgF3yiIPLD1thdKLSoxZnoPzLOh1zvbye0OCZY4ijqCHoKJHkbTsQmxEWK1ENh2nuwVJUQdfPJDwRKgKTkoFGyUrg8RQTsIGiMht+QmTffkuVGLJ0thL+/24wrRPjPJhI0/2Wf1Dlpdo1/cRaXbky2xMd19SZoONvtalEv8yEXFxH2rOcyEbn5JS54YdvVsnrQ200Tq1cAm3SqRyBzm3Q3L4rXrFWEBV3zcq5VKLY1Wh/sg1ulgPBzjOg4Ulh0931F/1LUW5LNCdXwGIgTJhLjw9otfcHx4wzzf8fvTb7mUwtoqT2SedOVTaXyZMwmQ1qn9iVZOlP5EmuAudhbObB9XHj/+xL/97Y+8/vJr3n71Bf/6v/2X/Bdv/5w//ddv+Mv/8f/F+cNHytMTKWRCb9CKz/wLSSZmrdT1xIdvV4L8gsOrB7786ksIgcu28uOnJ2oXc0WKiZhn4jTZbjdPaJ7pIUOaifOBLmY9XVpB3fWjbZHWNn9s7AEPMRCXIykl022KgBbr0uSMzR1CSPO10HadDwnKEmcGdb5tdaeJ12L0YpJp+YQ+EYIY20YEiTN1XWmjMPIbenzzhsOyIA8rn37fzMnnuRkw7QF0dKAFA0FMS+rKeKq7tknwuGEJzZQnuii1G4hqYnsuuOfgiwcV/32k7uY2OfouOmjEN3HIbJj1Cnza2z97yTVq+b974evgiUzDdcLFsd3pRl0vpbfG4TCTs3Uo63bZQd5+Xs2lRodpu1/nm/Mb8S8NIH2AR55nRWEXxA4+ahxCcPDGdiZ7n12jQUlW6u7QEV2029xqvDAMkXiIHI4H7h8e+PqbX5JzIgDbutJqZasNgtt7p0Ar3Rx8WrcRjRBYPXnYt3I/cGOaCOptG+sS2loxzyzBPMWi/U8wLYYp7oVAbXXfYE37w9isy2H22NJ4ebF7HNwrtgelS4ds18n2EDUrdGle9FcSDgrgjVSDJ4CEyGrDE7X6aBDcxcwikbsQWNsz9eVEvzzy0/e/JuRMng/WHVZ1q3I7busy2qmHaBT5QKevL4ReyVRzI6NTeyUuMzFlDvNEvTS2dmL78HsDHO5eiK+/4tWbN0yvX/Pjby/MATKRbZrQs42o9N5s9DIGsu+znY2yPvLph8bv/6cz756fePenf8y//O/+Ncc3D6TsrqQ3ickAC6IA2qBV6uWZD9/9mr/+i/+R82//nvj4keV8pp/OSG3E3j8rvvDkzFfsnnQjAwhRKyyl2fMaDEDY/GgMoNf9+T99+kCuHY6dMB2c/eMqj2JW74fjHcthQUOm9E7pnUu3zmZpyv20mBZbHJp7JpZqCaEdX+0G8sQUyS7Ye7qc3CmrmcFGzqSUXAy70Xqjlm1PBHO2tdxKYb28sK0rZX3ZgSfT6NF9VG/o7XQ1h1sb0xsVa4deXZfFQEdzq7vQ68Vt2At43A5qnWpVtTXMAHrt8rfeOa9tFx1XvRZIp6ePCMKUJnJaaK1zOa+sjz+YZtj5xMcffkP59BOZSogGnNMiOVinVnslxkiUSClXEHkA+mEUNu5YGVK06xGag2C2R4yEOYwmqI6tw0e+b2Jlw51/FGvy+XcOSYBAGC19VKGspjvWt82YOlHJE0xTJGdhirZRagisKGsrnIuw9Q1EiM3YQ1oa7bLy8sMPTMc7Xn/zDV8cZw7zzHNuvBDZ0kRaoLZnaoWXxw9cLk+s6zO9VQ6HAw/397x99ZbaGk2Sr+/ZhOnbivaNtr3sMXnbCro9QbhwXpV52ZgPF6bpjvn4ijwdmPNM74VSN1KYDXCQusfqlBIpJWKyHLp3Y8CWpmzbSimVVjecOsLaC5fLxVyRtZvDbgosy5ECbApb6czzkS+++gVff/NfkZcjpcHz44lSzCwkRQPG6uWFWi80XTkDtfjxxGx6RSHS28XYP3Ei5oUgNjngdBx7+fgSWOPYishAjhNTnjjcL6RobLspf0Xrj5zOJhI9WOYjge00Xztu5PJZfmCL51qKBZDuIDM3B2NxUL2GtTXn9QejaPYmjQNPISQ8tfZmtU1nmGlCZDT01Sc+JCRCzMTpSIwTKc6mYyfW0E6bTXxwudDDhm4XZyRe7ONqJPTNQPJYLOdXK91VC6254YHLpWhYISjxEpjXs2sPJvKkROZdw9SahI0Q+s42GownKyA8HuWMMhpPs+krHmzPDzFS1o3t5USr9dpRFzGdHb0Cz0GGy7YDCCgpKDHJroE6ak/U2UxiLmc2YtjoRXfAaPBe+o6oXKOX+hqwGGNRRQTSaLo3pZVu98blIVqzLLWL5yYOIti+aDI34tq2O2Dhi6m77ha+Xq5Ag+5A5jg2CddsdsBhObtRUbPPEpQQmt8Xz8fSqNv8XHXcMAdMi9KLXegeDCA0Zz9nQ40JXR359F4JXB+ZcZTjvFyvjB4pW+V0OvPp0xPzVFCF8+VMKW6I0bcdbLo+hN0///bTx/XoOyB1bbZ8DquMBs3+eZ+xlrwRotdru9/4/ereQDWfJTyfv8b4uLueGb4xGto3yFMfyuw6JDzYwULwMUMJuwabuQT+DB7Sq9HCPpXqx6t+X4eW4udX7fbayc2f96vzB7/+YOAphJk8TeRpJs0HpnlhPhyJ0xFipLowLihd3elBjX4/aFpDzn4otOt4AHZUz2dbsR+NMaGuCB/FNTKCYhW2ED14omI08FgN0U/XIKZjgtSZDVaAu80pimrYu2shZrv4vpC0mVChFXj2cAxEUhFiSnvnoWzbjsAOvZpaOz0EuhiRZFleAYmcZkzTo5PEALaB2Pb9wK1YFwTThmlIaIS8gES6Rko3+mWMB/LxLbQDU56pj0+ECnIutL65yF8z9pMEoswk18VqmOaUVkWaEpoJTQYxJ5Y5TSa667CqNutMltaQLrvGU3fL9RRsDNLGBV2TpysqLuwu6iLaQuheynVML6c71XBHaW0ZGUvDCkTpEemJ07my9hOEyk/PKyVAy4nw7kuO+pr45RvWv/8tvWykaN1fqKS2kcb5hI3YTa9o0860KvkC4QwPX75jOr7jw1e/4oez8tMPj+gSXAusE6MFoUBhlkrGRum2lyeURlgi6XBEYuL46jU5z+Q8M9/dMx0OhDzxu/c/mT19zMhyhGm2jrsX4yEGxMFRU7XyR0U7pXVaF2q0bqs5JgYD+yKEOdNDszFIBzRjvIIjIt3YVaLkJJR1843VNji0k4OwXSKtWoe/eUdX07Tvun3baDSKdjsvdyB5/vAjkgJNTH9r6DoFfxbDYP/ILaCj+9jcGJUzF5vAlGe2tdHLZs+L4gHSitSOFb8j0QjOJBtcORXdW+Ai43n2JEDVY8MI6hZEr9pBct1D9Pr+ECNEcwya74+24fdG6+sVKIpmwz4Eo7VDjNFGY2qjlsbksbDVfu1GtL7P8cccvTMnlhD4CEm8dRfbE2sT5hZ3xxRsvQwm59hgBmWs9YbKEHEHier3wQAQUuDu/sD9wx2vXz8wJUXbhdP5ZF3h3kl0ajHwTLqSoyLEnX6vCoFkRQkBhmkEket8ltKl+J47WFqCNKPImyZC95hsjkkSzco9NnEAx2DGMc6UsjH3kIT2Qi3V7a03VINfn4BqcLMK6NLQoPQ4sl7ZRwQHC1Z9J8A91mRuhG4ui7VunpgKWTKZiPZEkpmkE8fc2UoxEMJZOYpSVtPjY3SxwVghzlLRvlLHoKg2qq7EPJGXO0+khba+0J8neq3Uprx7deRuPvAkynY6cV5PnF5O5joZIiTXg3FWUCdQRQjzxHRYCMc7Pn38xCqBw9vXfPMv/pyH+Ia4mLtq35PGG8agdoyJc6Ftj2xPP1GfPyHnF8JWjUVbG20rkJMxisS7brDvz6PHZkWXfdtuXRyD5WeDZb1/px+VRNbHDxTXj5qjINLpp1eEw4KS2S6N9z9thJQhJvJy4Hg8oqVSeqcp1GJGIKHbSLPlC8MG2QC72JyBo51SLQcwt14HapqBK7WYxbwVAzaysj+yIfq5VhcRN90m8aaAavNcRqnNR+20GzvKcwfhOuJLNb2sXk3byUTDL2hdDVBphSw4Q8yLgPH7YFMEYzBVVcpW3Emr+RRLQ7Xy/vtv+fT+A99/+x05LQambhv1cqGXjXI+EbZHJtmYctjZmqFFYjMGWxM1Hc0YaG0PvPZ83jAILESIn6dAjMRQbQ/aG5QGTo29KXgSHkT3TvEu+OwxN0aPq57gD29GE1HoxJyRZHpUa2/OahPmEDjmhcMyM8Vo4/MxkLWTiiBRCZs1PHqrhFIsmb8kPv7m19RWmV49sN490NKM9sV0nNKEhJmXU+Dl3CktUDXTZKH2jX5W1u3Mulls6x0kH2w8PQi9GWNZOrR+olNoXGja7AldV/L5zHR6IsSJ1+0X3L36giVPaF9orbGWxnCUbk3ZSoGXE6W6C3HK2MgJlNaN7eQjWhoCodl+WdYz27pStSPzTEozOU8EhBwzx7vXLIcjD2+/gHBHqZnL1jidO7U0chSCdHozI43WV5QL27bRWiTG6FMFI7dJrs06MfXhmNxQTT6COVhJnYb6/u36gb2xlRPf/3iilgtlO/P04fd8+vAtnz58y+nySNAzgeJNgeB5vu1BQroyZQRnb9paCy60rh6jrpCFxc+hCdsG8uTFbdCf86SwvW04X4uxPboGag97foDrYoo4MOUGCDGZU3JMMzEtBjxJgtiRWuky0/QCkqltQ+Syj1SFHlEaovlq3tKbH79Q24bi4tFVqbGbEUczYKrV1QF8AZ0YQpjBi2Zx12X0CqoMepJY98r2+mg5ASUxXQ601pjvjpzn2UaFc0ZcoTmU+pnRDOr3JYQdKoxYwyRFawAM4Kk2UBlD+HYvW7OpGzvA6ISjK7gz0O+ftSj/gR4XWM1XSydEe6MMpqxYjWkscIvpoXqt6iOKDC1hzw+HsccVePLv1Z+DTvsR7b92iCS4nIqIsZHHQg6m77nnPjo+31joUZLFgg41dYgmVE1ViJ1Qrx5scF3jTtr5B68d1zHEzpsGlteXzeqQn358zzTNiAiXy8WOSUDCAIVvzxNuNY3H3/sV3H/scyDO/nLHAfzAxkdfZToAr4n26+1r+Poxuh/CP/XymQBfa7IfhO3LA+ABBsIywCQngYjAGC0VrmDdXkPv3+2fLTfufJ9dlXEF5LqeR4lx+4MiP3vPH850Gq8/GHjK+cA0H1gOR5bjA2maSPNiY0FhbNSAWzHCqONsdsE8MK40bhGcBXEl0OF0w+biV3gyhV4TIqsDDWE2hpQFMBPPMhvm1J1l0cUp+QM59JJBXXSr3xSgI+GK6TpHCa7vIVfNmLEZ3IwOja76uNnG2vL5UhWj8SukfGAhEEOiVxP6TK4DpL3R1DuXaoCYzYF4chgMc4sxe/KTMWuogEQXm6vRGFsyAxP0bMm4gmAOMwYmLQ48KRsXE+RrDan2kbFHsgRSMOFoDbbQjQrvyXTrrmeqprvlSWtKaWdt7ZsqHR3JNZbe7RTCHvaO5M5acCBgAE9gHV8bbUoImVLg3ApFG+cOMs2EhyPHb76CDCob708r8uER+fSMdCuKu3akmq20CS4pRaGXRqpKqiBbg9KhGUtJGvTSYQpoDzTX+7LR4kYK1bpLRMp2YQ0QTweyBDQmpsOReT4yzwfu37wjLQsaIu3DoxuQxV30tuFjTWBaPcGBtwGAunaIARny2Yii4nxhtc6wJevdhG9DIqTJwCwU6/tGotveEqIJy6ZGrMZ+iiihGRNQW987LRozJJ9Vd5ZU126OI8HGV+OUCCkSUkCKGEgZxuy4Xz8ZnfXrjR6sj8EqCEFIKZJSpBZF9+TxGk/Hk2h6Nf7n2+7CePRHg+UmoO5bjh+H3kba644CXKm5xmB0Ta7DgbjMLK/u3M2lUKuta7qQxO6VdAMnYhCmFGErVO1Qq4Fkyi7oeu3a+LeJXIGm3hmjhTHc0Kw/a/X49ZTBSRlJ3cjCrsCT+jnb6QYHfrAEL0XCFDjeHViWmTwFA0BKYdteCA4KBED7uo9KBQlGwfKv7L6ahbA/wzBGo/EEayTkLviJj2t3A8SFQRd2nb4crxqBMVlhNeL62LgDLhpqopR2ZaxoF+0mdqpX1q3R340NNiatQ5Bd4y7489c95ouzUSR651qVAYDYvW8gEVpk7sqkyp1kQj25y94AF0FHYSqD5WHfF6MVLK0XmpozWcO0dmKvJvjdE6EFYlH65cUbGBHWF2SbkLpR1zOXl2e2bUNaN1ZHzN7tCvQ4oZKQMBGXAywHZD5wbrCuhafHZ7a10JoNiQ/thB3s2B83B+R0o9cz7fKEbhfYCtRmRYM7I+lguwYTi1XG+rymYbdpmWl/jfF2ubq8AOKaNKgQtNLXk4FWEminhZoC5eUDQe6hz5S60bBO/PLwYLpOKZFFoJqFeGvVno5uLJedXejAePSitfv+3/twfqr7GN3QLELwsWZunks8TxBwMKq34joq3Rmf3cEne457Mx1Ndb2VwZhzoondgWZxqJfNAOG6oW2Dag6l0quLoWO5lQfGfWT5BnjSrtTrbfB8TKE3tvMJZUV5NsfVrqZR5iLvul7IrBCbFXXD4GSM2HmcH/F0WMKLXLvqMkZJEHNeswf1mkMK1z+PPM1jmzUgnAmKJ+xddlalRHHHNjwnvzYaRrQXsUR+Z945mzQSmEJmSZkpCxoDzV1KVSINY6TX1qi9EVqFFpBWWD99QHLk47e/pb/9gr7cU6fXSDqa+9ucWNuFWFZCOpI0QphAV2/6dc4Xi9EhBqY0MQzYuo9lWT5ta6XT6b34FIL6eEXj6fFHUjJ3u+nw4PneRGVC7Ck2wL42VFdahxCLiYJL8tzWpDes8VjpfTjN2XrXbjGjxUB3tm8MEckGQk3LkeXuNSozqtFz5rQH8FarabCWgkpBKXYdVGgtoL0SYqJFH6eNE9o7MWQLDslHmgiIjoKsXws5sRjbpdNr43I5cX555Hx64uNPv+P8/BPn8yOtb5ig+ACHbK3oUHiUweLxZ1puGiEy8hP1Z3ewG0Z6oVfgQK7P2VW8eOTNDsQEHcWVxQFtdm7ubBVGfBmxOXjuFaOZKORMSBPibKgkCqHTeiI3g2RSPdPkYEw/NVMYGzFMu7brcOjuXam9+rF47d3HOI+P8e5uiAaU7/mJ3JKUHEzhGgfAG2Ie/3fgTQJpnvzXTJwyMWdiTg7U4G7D9uszpQd1Ro+zSAdoG938o+P8Bh2x4nZ/w/e9HR34rGAfkWMXsVZj0FodNn5G95rRh3fQ6IDGWBPiH9GdgdS7m1Z6XvWZdIk3WXXkx7YuGODDfny353A7Mok39pV9vEsHy9gmAmK0az7YMvhekWJEcUdlMU07abaeEKGJ7CxD26ds3/cQ8flR/Qy9kHHsihMTLNY8P5+YpkIIgdbaVd802PVrTffz8tu9f5Pc/GlMG+3XgesfbLLpBrj57GCvB/pzEpOq3PydX+UBAP0fvOx+3zDlsDU47t21HHGmufo63IMIDJF65HrOqrof5K1L/M708u/m5hrdlN3sm+PN5+x/f/3q/+zXHww8vfvyTzjc3XN3/5rDw2s0BKpizgIeFDSZG0MKnRQ7aKOWM1Kr0aJd62lQ6mMYHWlbDtqFUk2k0mppT8wZHYV4c/HEaKMpA4HiCvpmDdgc2TfqacrJXRLaTisPcncV4xMBCUSF5P8t4h3K3qi17NdceqOLdTNLs2BrvLUOPuoy5cnpv4najJ6/XTYkLsx54f7hrQFPvVuB5be6slK2lVYqba1mltAAJmKcienA3f0DMU9mCx39ekelrI+sKzx+qvzw3QuX90/Uj6sP603MYeb+cOA4L7x7/YC0Risb9VPn0p7Zzh0tlUAkh8j9cjAAIRri35t1WJsIXdo+sqA+mpNyJqfMPB/NDTBci0oVJd8lhqvdejYxym2tDjIabbDUYqwVnxm+/aViSegyH8j5FejC48vGx/XM21df8+Wf/Qm/+K/+GX/0f/9vmN/dMb1a+P7/+d/z0//6v/F3//3/YFbitZKaj9EoxDgzzzNNFs5PK9ObxqIdPX3i7//dv+f9h1/z6//4v9Euq43nHF4RwuzjJiu9b/SykvVMjJUchVY6a6v87nymThPxcOSXf/bPmZc7pvnIwxe/5GUrPJ3O/OaHj8TjwuHNK16qMrfO1Duvl5mcI1MKlO1MrYVaVuiD+RWZ4qBSj5ExgZCsECcgNDRGSErZLLsKeWKaF1/LRk1FK42KpOxOMYFysTVY1wIhG7AZx8amhAlCmo3psSxIWWFbEW2EakDT8nBnWiXrmaIF3SDWTNodJ2+Jrc76a3smBmKd4sGKLLVQSmXb6pANurKXPs/W7Dn1QB4YGiG3RS02xju66l7MANziM/vUuSerViQFkl+r+XjH2z/7Y47v3sJx5nJ+plzORClIK9A22uVEvZyp5xP308xhmrmfD7yvP7G6/t1Yj6TJ7l0QYh4AjB3ArumQAikEd82ygrvz+U6uOHvG323h9YbmP5ijnryasLElWcGLmcNxYT7OLHcHXr25p7fKy8snLpdnRLrr4wFqYHSP1pHzqV2j8EZ32yEgLYMOCCcTXIfq2hAwIDRIJ0iHvoJafFRWY6CoWnc2CpRG9hifZ3Oq66qsbXXb3sapn5nTxJwnpruJMAlclOD6WVSltEbtsPmeEkSYfY+SEE14OERTpSo4K1MM6JJKiZ24WKJXmwPz3YYdIgXxwuRuCkyLME0X1tMHenkxkWUvtkvrVgiImWsMKnSaZ1IUpiSsqmytmbPSdgYJbKcTiZmgkVkna/LUC5XK89+sXOaFtVQupzOny5m6VXppaFUi2cZ6NZLv3xIOdxzvXsPda/p8JCwP/PLNO/L9Hcf71yDJyFJqrmBjwCA6zmiC6Bv0M/QTlCfk8oGpF1JrsFaTncP25F7NYtnuvhckEU+A3bHUddMQc5FTMf04xzCJUyBKJ/TqoumdSGFmJaoiTVjfr5xPP9LaJ5Z3XyCHOz4ws0lG08SX4RvSPJEPC6/uH9ha57JV1rKxbcbQnqaJKWeWeSE76Gn5QKDUwsvpZEyM3khBRnpIKxdqNY2e3puPdUbmebaEOQopqBXX25myXWilIHSiKCqdpsXyCxRhuIp1+7PPLuxOWgLreqLXYkLkpVhcBqI7FEkXnLDr+kYu0sxo7gUQY4IJYvofrRJ6c10nx/B9LEC7mPlFM4ME1gtBG1kacQFSpmFN8KZQL9sOFOaYCGrfP80Tbqhno6DNNZ9adw6cx+jRndBuIFAex++/hjiYGgQTHFwYGqLZ884QA31oB+5NC5cU6CYiu9bGqpgxSsx0IlkDqQWCmsnMlJXifMSckhX6KaNaqMVG17UVpAWywPnlkUvb+Pu2IV98BfdvCF/9OeHhK9Lhgfv8ihgfOBwz33zzZt931/OFbSuUstKq6SYpGyF3QoKchVAXmhbadjaTAhIpNnoQVIoLqF/o2vn9d3/Dy8uJx09P/Mmf/ktinLjLD2gRql4oGijNxyz7BqcLEqOJ8gdz2A3xqn1m4F7dr2NOgpA5Pz1zvnRKbbx+eMVxXjgejhwODxBMpkPDhITEcVmI+c5YYlp4//3vuJzOPD8+Mi0bKRcIZlgC0MrFcvgQCXEip5mWDYxKu1wDVj8QrkxtTzWCqR8wRa/8qbycn1nre87bDzReSJONlxmmblFPFWNRpQiuyZpS3oFb3UFolxrRTm3Qq9L6YDIOcMrcHIfEHYwxfmOehBuEwP7o+z3V7NfHeaYxTt9NrDmYyMAu55ECISfiPBPiTJBMDJONmU1KyI2QV/K2ErKwnit1sxopSkVTMzyhmx5l3wqIMZlLK87YdhZ7MK0p9SQtBDekHnlHcODHAVMjK3gt6Jj46CykEKzO6OqNJoXQSIcDc+scX92zvnqweL9tqAR021DUjG+sq2eFud8L218G4DT6ZPusI14SWloZA0GVlHx6xdTWd8mL28J78E6uDBqvbbUZO7HJrkmHdupmsaeDyQ3YQRHF8jH1kT8Ddrvve8I1CGO1lgNObRf4dlc8rsD+LTtqHHWKzuQeNbhCyna8gxmaopk6BJfEGDpj5tZuBliqQiydqdm43rpW1vNG3RpNoLk1X/W6fk9Z9eeQ2Oev4LGvATmZEc7pdOF8viBiI5LTlMkpkadIaB0Z7myuu7aLZvcbUGUwk/abdztAxmfAyu3dvWUu/RzK2wHm69Hbc9wa/9TrBsL67DgsJxoscgee1JsLO2Jg6OQOF/XbzxQ+P0L1Ovr615/3q3/+89wEns9rq9tDvgXQ/3NefzDwdPfqC5bjHYe7B+a7O3OUae7q5qtHoiWMGjqNQldhq4HWoglqqwsUI8bMGMLkYkiheiFl+i7BqbLuVNPH+1zmO7h4rqPhLZh2Qu+ddT0R20SsiZhmRGcCE1GjI8h21U2w1x9Gb30M8XBzjIhG4x70SJTQA9UDpA5HOMDAMXHE2TrCgeu51dotwIXEcjiibbGHu41RpE4TY6RsYaUVtbEPlAiEGMlTMnFHsa6GJUtKD0DIxLwwHV/x5utvqIc72itzxgoqZIQlR+YUiUuC9QSXTl6CuQ72za+HixM7BK/dAs0QKUUKEsyJp6M+pmOFREgZycmYEi5G3b0jk2KkqDk0lFLZ1sp2KdR1CIrCdVZ2sMpsnXSvMjRMhHhA44FSI1u35ZtkIYWFGBbryr//yOXDhfLyibqdKGX1ZycgCVLIFrBTtlnqvpKA5/e/Zj1/z9OniVKf2Mojl6ez2XrLzGXtJF9zMfk6UbF5bRq9rPRwRENAwkxMR0I8ctqgJigZUik8Xy48nU9ITiyHA/f398zTZKLk88y8mBZQTsHGGsCSP48UvVdinojJRl8J2enUGRPqsI57ECEnmLKNPoZo4GBwvYxt051Kr92EYvEOZquV2itEc1/Eu4W9KxKyjUP2bmKnaUOmzT53OyPrieXhtQmsni+cL890OuEGKAsS3AXDOo30Efh99KkLrQebG/eu6bZ2ajOA4vNWw23kk72FNmbT7RmAqBZ59466+lPdR/C8hmz7Q9h7CjtZKCSQjMSZ6fiKr//kz3j3p3+ELonL6YntdKJfnnn68CNPHy48PT7Rtw0pG7NEaFDPhcenZ9PVahg4MTZ+P14rDIcexOhs2kgKMSApkqONQfatXTNp72bYJtsdsFW7XwN4GuxNMCDOZpkdYPTCeMlMUyDGxuX0yUVkKyHacTa9jmRa1Xu9EzoYTzGgatp6iQUloZIoIaMxQUiWSGkDLURdSdKYvOgOYr+PdGF0fBGl0pBm1y/26AmZjdTsOn9RLGnM5gYTxVwopTVjsbSGio0Wo1fml2Lg975uHCCrnoiOJLjTbkSinXEboseI5B3fRm2Fl1Pnsibi+ZGyrfRaSL6Zq3ZiVwSjnFqc9WLKXfwUfFxamSRaYqqYqrlutksI5v6KEnLi8qnRQ6LGiVo72hJbw1gYrTNNRxubP9wxv33H/OoN919/zfTuSxv9Xe5Ix3viMnN4e8/86kCc8g4AWGe9o63QumtQ9RXaxuWnn9g+PtJOG1PtpN5JA/xVRb2gtS6o7Pd4JEgDVB7jrpYcJ2POGnIMXQnqDMogSBxxTKA1G90sVmRrUPT8THmKaNno8wPT/RvS3cI0J1rfOJ2ekGUy4BQHvLoJnzfdrDgUoauxvEFZy2YiytvFRo16o8ooBi120U0A3JiPNvZat+65j1BQSlk5n5/Z1rM3pJSIgUsS1Jk5yrYZKMVgUtJ99O2qk2jNNWzfjMnjy+RAlTq72oOagzNWuNj4hITINB+JcSGETJyKMaa6A+rO7qvVdVBUaHFG1LIg5o0AzFMiqVlvP314ZssnymWlyBNhLQR3XU0+pqq128hqNNZW6ICYCPYY62qVnRWhfaQIo8izwnusHW2NYZmePI6OkcLoAODmguldm4PE4ufhLGtniwyQvnelEYjzwXVhAur7rbmnWhyJIgaqAQGlmJ4AvVcCmaiNermw9MaUIsfXr1nnA32akJhY7l+xyGtSGnFEOZ/OZlVfCr1vbNuZ8/mJ1s/EJCyHTJONthVqPrHWCfoJZUHkgkq13IUJJbH1QO2R89YoHeacmfLMrJ3YArGCrhvSvQm7j5d5jIRdrwfYR4EE20fopluztsy2FerW2C6NFBrTZA7FMUZyYkxeEWMnzMagEAJ39w9+3SsqZ1RWlDNDmkIH4tqU0G0EVLWQ8wYaCTRrkEhwYN8aSFmEMaarzfbJKIHDckd/9Y4cI9vlhcspsmJgrrn9ZgeDfLzVhbtDSJgjdSSGbPuDKhIKra60XnyU28sZHez+a9ahIjtruDuQF8TeY9PUA6IXd1nzWikY28uyfBOTHzmARM9bhJtytVlDTthlLMRpN+Y8LLR2h/ZXdm97orGirRJbg16gVR/1HQyT0SBQxMXd7XoshHAgxDuQBZhQZtAJxbSbdrBG7HnfE7ChA0U0ECa4WUOwcWvJkTBNpPlAXg60bSMtma6bxWfFgHJVjJRsz39SIYk7bO+KC+6Ci9+f7nV3EFubA2z0urHLlY/bdnaTbV+jhB+lrtWI4rm7TVKMbNeAdtOJ1NgdXEj+XjMkGvOCu1zCTovCP2M8k4Gh4Wr1zm1z1+5rkMAwvBDBcqQRM4PseWhv17Uou3h/svs75HCApld3+hwCsYuBodF+NiSxXM33w9Ds9yaKyclYnjsINbcSSjLQFmE3Z/DMw3/Yrmvrlgf5dKvXKVyZhDreKztYOK7fuKf7d45xT9kx6uulVm/lylX/6B+gLnJzvcc/D3dl/vGXep3SR97wD0AvB7u5Hu8VnhpA4vX1Ocw16pzrSesNo9f+Zhy07ODULfvu+uZbIMr/ZrAC/zNffzDwNB9fMR+OTIc78rwgXWmlEvqYMxR/iBWkWfKmSulxV023AOJ1T8iOXvuMpNpND73vwI0BT+7o1mVfdEMcLTgIAx2RiupmCUBraJ/oMYE7qGgQR4YZkd/b191niNkpe6ZHY2KR0q/Cx2PxRm+wWZ4nXiyMmxJ2uqmFKy9eVekagEjOCz35eF0x0U1D/4XaCqFVc2dyZtFo8I3kU7TthWUHW2kSkJTJy5GHd1/Rlzv63WkPTlEhB9OUCrGioSL9TJogxI5QGR6DUaJ1Mzs2b3xDlw1SRxV/BUFjIObk1rvRrmf09eCjFV0t0ai1Uar9XmuzLkmHvUfg62NskYTgVyDSQyaGGQ0Lp6oUDUiYyGEhyUyUxPnpBf30THv+gfLj96xPn6h1I6mvHcEK0SDEKUFTpFaiVNaXE+eXztNjJUQTTG5rReKMRBvv06ikZLozA2wd96K05vV/tJGVdETykUomiOmRXbpyaZVLq6RlYj4sHA8HA5qyWXynnI2lF82ZpnclBNPpsuvYiWLgXkzJswujUVsCITSaawAJmjNjot067vartWzAj29+ajec5gK4Ks6GUQOCe7eFKD7ipV3RkJA8E7UY8yAZ4Ljc3SOlUJZH6nShtWqfM0IEDoy4IKWNS3jH3cd41LuEtTXKVqm1U51NIjdBcGwK1/GLEWSum1lADHjyn91/89g0NoYw2hbjzYNzpCNgB8TFS+fDHa+++IIvfvlLalZOT5l1yqyfGs8fA+tl5eXZXLySdrZYqdq4tM75vKJNSbihwki+/E/Bafe2+XpMpPtzHohz4ng4sJ4v1Lpdd0Z01JNjJ7NudFfcx9fW6yjOxq8QCElMoytF8hSJCYI0Nme1dkyUGbxL1yxxH4Al+zM7HmTXZNNEYEEl00KmThM9TfRkbDp6gbqRNwGtJAqZTMCFpKk7zX5o9nUfX6QKzUHWceuuGmLB95i4j+2FaEwrtcVMoFtW0ztWInJlt/l7bIQifKa7MKjjquqiyxbj8hyN7RQjpVdUm40hrH6Ml+uIUBDXHexqwJPZkVAV168SRyAdCOk2tJg9ae7e4UTNg09TQFswsLFslK1RJdInQUmITFQ1AeSCEqY35PtXzG/fcvjyK47v3vL2j7/h8PVXRB+1C3km5kS+X+ix00W99JGx29HbhV5X666XDd3O1Mcn+ssZKY3QOlGH/K7uTIAxeiYSDRwVrDgQrz98DMomIAYTx/n0OgoL2bULVfzc8efZwUVCRVpEykY7n6zREWZyFOY57+LeW1nJZTWOgIOLNGsO9d5pqrQgBvi4zsa2XSjNtJlMi2sUw/ZsWGvc792g3Kv58o3NrrVKKSvr+YVWiwEoAcydZ7C/lB3kHWPX+98ZeHLF4sW0/oJXVgOYczpnd0twVeuk7z3TDhJsHCrP98R8T4yLi5Ov9Lai9WJrv3c0Vk+jhJ4sv4shwVStEDkcSJIMoOYTPT/Tzxeazui6oVuh1Q2pDWpFVmc8t45I8WfN3deaRfrWRwJuQPR+inj+eMNW0N53HcE4WBRgY6xuatGLAZhtH2W3nG5n1gf7XB0byRgZiRbn1IvW7mu6NnZ34rRr+5i7bQ8YwDXuZy1kVQ4x8Obujqe8sEVjy6dpIk0Ty/EOW4advJytAVWsCXg5vxDSxGV9JiZhPkxUB56QmbYJtANdZ2A1wCFCCBOQWFuBuNAIJpURI2mamXojNJDYKD37tR+ppAcvGct3sJ6Cg3Tu8hgjSiA1Zd6E3l8o25lta6TUKLMB8hIEjf4Mu2BHTt332shyOGAuoY3SMrWv1J6gm6Mj3TUfe/VMoCGY5lQI1V1+xesTu2GCkmKkdxMopqtLAUBOM3fHe2IIfLr/QO+dUgsdd5iWZMEJG9UJDg4Mc6ToOeq1iIxmfuF72JgA2Bl8ey4ywAvxMTW7zDvoNJoe6ixQxA7DXblFjHmCeJNQbsCQm5eMUXMfbx/5khAg2cgzKDUvtHpnC7wJohmVjSCbCUYjxkYPvm+Jy1fA3uQMcSLEZQefJMwgEzpAJ812x3UM+3rhJDe5D8ZOVJFrMwC8qWQ5b8zzPnYX5wQ+LkiH2K2mjI4USRfHcXwszse6rbITBgh1mwKOeBIi9DDCwAAyxOtAixv45xgIPrI5z4285JR+HSnUMWIeGrstmfoovDdPxQOTyNA+HJ/pIJHXeDeJ635vQfYxQ4F9nNlkLEaKK8ZAS97YRAltgE9D+2mnpfmCNICkazNWexBiFGuOep3QXbYAr/G62sjeYEfiDd+hsmD5u+zo0XC9VWyU3HY+9mPZBci7PRet6/4ZgzF+y3IagI0iPsLNz0CZG0BJ7U5e38c1J/SLKdyO0O2b7z942fr9p39CJexrzuof9hp43OZ9fep+Njc/cP19H9fb/8rWyvXv5LO1fg3kcHuQ9tH6+ZmNkxVuzntULZ99y3/y9YdrPC2vSctMWmYkZdPICIave+5sKPSYPW6JTqLH7ujZcCSzWdo0eWHtCZEVRx1CQ7sVnznN3nl2pMeTTQuTw7HJNuHeXiiraWco0KPRSA0Ys+QoHQ8gNtxWvZDttZGmyVDmFB18umoeGK3xWjB3bPQiMfl5+hhabc7c6TujCvX5U1whxANP8/n03pRSvbawuI8ZtZokZPf/BSq1b2w10F8aIURCjDbPH6yznybrdKTljsOXvyTUAq3RdJD+O1IvSF9p2yeIJ+uqzIU8F6a5sMTFeyamS0UzkWNwK/eE0dTxZK0Fuga6GvMmpBmVbJuqVraysa0r23Zhfb95506QZhF8kgm/jE6jtYei9kbtPgkupqmkYg5udbmj5AO/+/CB4/GOV8cH3h6/4H56ReqZv////c98/O6v+fFv/hfS40+EdSPVxhTvEBVKXwlzJk6BdMhkErkoz+cnJu+OhqiutxKBBbp1abRnc5zQimkNbHRWO2/rIdEk0ckgB0J+IB9e8+Wf/DPiYSbMmTAbm6QfZ77MsCwLx+PMNDnw5OyMrlC7GktpCtZF2jZLYGshpExIaU8CJcA8T9al1c52cQFuEdI00xo2xto2BBPhnPJsrEFVthVaM+tjc2KaABsz7bWZAweRQCTGg3X+ESR0sz2OnbkcSduJdLmnBuVZ4PLTj6QcTVdGMOqtF3VlNeCxbWrHkgxo9kcHQQyobJV1q6Zh4DzsfVW367x+xO/f8MjFNvkYnNXSu41MYTBrw019R7ID+2Y2Qu7Apwe3WYjMx1fcP7zizduvWZY7V9yOJQABAABJREFUQPj08QM//OY3vP/9d3z69nc8v/+J06f36LZadzUmPp4f9002EX2TjwxxfcGoxZ7K+Can9tXdSqOa4OHhFV9+9QX/l//6/8xv/u7v+A9/8RfoervD7lWBJfT+98GTa2DX1Ik50nzMLk/GtlumyZz5KGhZjckSk8X9kJxdYYKlQvcRKwNNegeVjEpEJUOYEJ2g3tPzgTYtlFf36P0d3N+TDjOUDS4nyne/pV+e0csTQRtJhEAxL4kIkgVpwdhxvdsIUzf3pSFQLEFIASv8UjYwXKIV962z+XiPOOOWWk0Hgk70xKI368QLpjFiz7bQpJtjHx7jRyJb4zUhrM4MZDApnK3k+2jE708f4GAwlscuLIuJGQfoodOC6RXiu4gJBnaXpzONlYYVKNXZMdCp55V4eCDNd9TpgXl5oKcDP7YnShcaiembP+fuqy9590d/xBd//sccXj9w/PINcpzNpSsOO3L2/MS3Q2ADbYiu1PMj9eWZ54/v0fOZfrmQXs7crY13YaHUTtgKlNXG/LpvpLug2TDw8O8Yf1YYwMk1KewOIBuYKlvbE/NIcuZEMLA9RnqeyPOMpMn0uUpHpZFFyEHIMbDMGU2JFgIvpydat+ejVnNtDf489RXK6dm7xHagfTDyxBhKSDeGg7OfQsTYHqX48z5u8jVB3MqGekd4ztHO1MdxereR+Jf1TG/FtNdGTekFeRtjYs68SMeD6WE0A4hiDD7+bmtTWueybrTeTdsxeHOsY2BJnsivv+J4945peuDycmJbnynrC+vlkaHTkufF8xpz2YWIBttTU8yEw9E0KRXefrNyfn6knF7YPr6Hl2c4n5DnT+RtJW8bPD3SXk6U5xcD72gGPAVvitSOMDHKEdkXpj1XFsKdzQEsx7w3J/tuuW2+ykYcDSwi1CA3hZA6q9fuURoN1SBIGreus7UTpy3SQ+QYIlttbLVRtZvofwzkNAGF0qvdb2FvCCWPVbFWUmm8PR6Yl1dc0sJz70gMaAzUaCzhOAWWlHwvrgSU+XjHfHyg1M2K8qCs+QR1Iy5nDvWtNQuDgaGCknJw1nPk1ensukKB6fhAPBwI88SchFgjsUDtZ6QYuDGcAK1ssWaXgfW2L8Q0k/LkcXdCu4mTP/QD9E+U9QPnywVYDUzE2HO9FXN+zJlluSOnxZ3bTAohpZk0H41Z2Avn7cUE89tGKc/UcqaWC9o3M8rRSi4FxMTFYzYmH85AM4ZDI6fseYSDxG0YHx1Z5ok3b/8YJbFVID2j1ZrKW1kJdHJUchi6phM5HTG3uNka89qBSJOzuUDLcCwbleW1aaa+L/QuVv/0jqvpocEaDOp5SkDRhLm8hokYFnI8InFCQvRC1j5vaMUKAVFn+daKxOoNlQKMvCCaaYcIrR0Q3lLTkRTuKOHZxrvLs20AQelNCN2aZDHjddvEdDgwL3fMx9csh3dM8x0xPxCi1XMw0TTTd00vsc+I7Zp5efy3lSbGplPozgpCIyFlYoa0NPLdkd4K5TIT4opuDZkiUjpSFanq2I4g7calrnZiDuSgxH0iR1FtHh876qPAFvOtWbpvWDu7nD1nu4JCN+EecbBpOJFZo9WYb1eAUAYo2a+A19CGss3NnnNxxF335qhHvTDQll112Uf/nTsWBiw2kChblxIgZCFlEzeg+4h1NfZh72oMWsD0zBqOFpPnSExWu/i2Zf8u1rx0tA2CmXaIEebQ6k37ZlIeY3qQ0QQfTU3U62I/i2B6nd2Zjs31Aq1OtYmUXSPYX+PP3Yoihr7o7WtwRwaTTW9+V7+O9t6B2YwqRD+73Z99Jnvq9DOI6PoZwH6vdvBzZ0jdQo3qP2u5e+fmBG9eO1Pr9ph+BrDd7p3Xv/35Hz7/t88BrX/s9U+Dbz9//eHA07Ts7Ap1hDxG1yJRpauJbZoYsKA601ohxEirdtYxZGNbuJvIKPj2GWWwor+DdiGFjIgJiKc07ZsHPp53pUmGz371PtBeY4fU1jD73YqI6T6J0x5bMQpsjLoXiCD7jVc/tz1ldBHM4N1YjRaIipiOQ2vXGVpbGhbU7aG0JVHr6PSKF9veNQhjxC8Tw7oHeEFpbWO9NHos5tyhfh284zEMDzrBx9wEkrLbvKoiSZAeiOFCXyfIiaImGp2mCRquxbWRwriXJoYeJJBDJHliZyBaoGlgq4nkulMqyVwsvItb+0rTwrpdEImWkBJMZDIZAKXdLNFD8EeqeuKF0EMidEElsRwn3n3zJYe3v2B5fs3jx2dOLy9Mf3LP/de/5PWf/Tnh/GuamPaYaEVCh6jE5FbzBGTqHujUZpzVRvXHkH0UI5O2LsxTJsSFmI67dkwpBYkbUdperALuRhXoPlKWcmY+HHjz7gtYMuRAz9DniE6RuW/kaTKB6iGQGKMDmNUZZv6gJhMrFd/wpmwi82CMDxuJLJbUaKeU4sEnWDeFsI8sgIvJBzvmeZ6JwRy5NsFHn1xHxF2Q6NYpNYH6xhjMN0vhRuyNpI3QK1o3yno27aJW7RqFcHWj6p3azQFuuCGO519gp5O2ofHhkXT8+3ip7n1CZ7l4F2SoVWJFaOgdDU7XxUAeK3ZtJMIfxhvQST05taRAVYkxO5NKOcyZu8NEFvjur/+G7379tzyePvL003tOnz5Snp+Q9cKhBqJMBiBVbo5eLGmXATHZecT9fEYHcFwP3Z9hELR1E1t18c7utu2Dtsz+LbJ/nWlP3FxEwVgQKTLNmTwl7u6PHA8Lh8PCw6s7qGfYnk3bDXYQG4xBal0q05waGg2qgR4ynYTGCeUALChfoIc74vGO19/8gvzlF+Sv3pFf3UPb0PMLH/4//5by43ds5cQhRFS6dRiT7ICKFX4ueunF2xg5Fm1MU2awJ3tvJqgMlG2l1kqtZQcnYxoNgW5svJGLeRff1pLpVKhacdvGCIR3LfeERI2Jp2qmC8NIAxVjJzKaF9c1MEY8RzqxJwNDdF2hVmN9BW+BXT8j7F0xm44QWojGDFZjVR7uM3E5UFMm3h+R4ysejq/ZNNLixJ/+q3/D/du33L97y+H1A2mZ4DjTk5gniLQbcoPpbUGDsrI+fmR7eeTT73/H6acfuXz8wPb+PaEUYmu8nRcu33+PPL3sY1U0H2sZWA1+/LegG7bf2qOmPmowmkG+j6E7oy0lL+BUUZLlAyES5zvIBigxHQxYihM9TGiYUCLbpdJfztxvlZQm0jT7cVljZQxfin+vqheTg6wUsGIcPmNf12I6Tb3ZaFN1168QryAaY8TFR760WzHU1AurHnaCU6vGWFMRSm2MEWJj2hgQPwr+lCYkTNTSoVhRmWJkmkwPLQRj/E2X1V2aXCzWi7w8ZXKeON6/JU0PSFyY4j2xvGYqF8LLo409qTIf7nz02PR1/KCQZvviYcoEL4KmFMg0ahIqBZkjYZ2Z7memupHWlQ/lzOUiFBohDh0d6GrMlBBM3qB3e+bxdS897gYrAddticKUx36pJmg9nitneYkqOSfikFWo3cEA3ccgh7u1+vzdEEZWaZTekc3YXU2V1kBSdKAv2dpx4WobEdSxdDzOQN02Nt8r8x3InCil0MRHWMuF7uNs6kVPjAFtnZgyx7uAcqRpp7QCIoQtW0zJEyLKPGfM7dGcu6ZpIsXE3WWlNmuYTsuBECz3sDw0E/psuU8PdLXxe3tiAzEtu0uaMVsyOS8kbyBJSPRm49J9qmzThWma6G01FlHZWNdi0gvbhTwlcsq0VkjJRjxDXPY/H48Hi0CqzNuRUi60srJeElvMbBJpJdq+LgDWwOpqjcIoxmKXocA/xiqddd2bTSB0+q47dDgeWLc7tu2ey+kek8RUej0jVII3zLv6SLhYydpbobjeX3VGFtr3yQFDf69lqGny+L7qKMbIbSw++vpTY/wMxk50p7o8TUzTYrqbwQD05qN+VsNEf2aEOESFfUyxOyhqwADEZMc29UiQmZwCRbAcT8wFu9PsmXQmktpmvGs2TvORebnjcHxguXuwke7piMhk9eMALUWcRe/6fjL2QKuzCL4HeE5jOkyyIwPGQrKm+7TM9DKTl5nQJzR0JFQIYlICenURlW51lTqNrAO1N9ayXuvGNsyicDa1GQoUMcH42ppnvsMb7x8W3QM4+Ax0ULmKqQeTLEAHODTY9cFvvCUHI22Lyeu9CCFb/q0SdvCuq5j8n5oETBiRJviUgARvwnqjwhmbiMWpkKKJs4vlddKjga1tjFVfQZDrWKXun2EAjPg6iqRuzKI+t33d12rPKChtvyj9Og0Bgzi25wTjO6PfB0PL9Oaa3uZR7P2sqyvdNQ8eP2R752BAXTNzhZ01NHT/VAfIcx132z/L86P9c+UfwWVk/z9u/3SLUY7ZqAFOXgGtWxbWZ9w8hgHTOHeH1IxhdfP1gyC+X6ubz9s7i3p7pa6TF/tn/Oy4r1msP///6BPwT7/+YOAp5YkQIxrsITPwSYlRfCu66iLNU0SCua6IBBMQVUhhMieOIIjbQnftoHWfxQ8R3wiU4KCTiHWvQ0xIzOZsI4q5LNi3WyAzGqzS6D5D0tW0N1rv1F5NI2nMXGqnNt0XU0zWzRfnJo7Aw3477EbFaBbv4lWyeqdssARHUjRuk4gBB9Vveq3FEpNgznHis9sWGBIpJR/16yY4pwYq1Loh2bJRkYngzlDhhj6KON3ZOaLXJWTztaFDZIZsoy5VMWviOaMX23i1VdtYQyLHaMcjyhSsqxt89SmR1o1BEtOwN7cuV9NGqaslqTRqqy5kZ6ypSCRJBg0mvlaGloObQ0sw1kQwQVtCZDlkvvjiFW//+Gvy+YG/+atf8emnj6RpZnn9lrs/+mPi3x/RaIDa7LROohJyMGv7FCAUTxKaCR5G63x3DMDZA4kqOc1M80yejjy/vPgIRjfwMDZSunaxR3AXguteZeZl4eH1a3SOtCSU2OlTQKfA1DdyMrHHOE/myhET6uu1tUJ2MDfE4foTfA0mY72pgYXd2UmCaR9sZXSyAhLqbjk8IlJrzQriEIhxIgZboyJqWlUdtJmorXZT6wtEE1qW6vRaNdtdrUgvSF3R7UK/nCnnM3W9oNWEbYcQaXNg2Zyv9BoVff2KbxhjlGs4HY487WoucPOSm9EqGfPz15+XIG6yIfsmLt4RUt/MhnOcbUg2yrUvA9RA8CD0ruQUyDEgrfL9r77l6eUTl8sT9XymrSvJifmzCDlOpnPWmsctBw2GnsAIL7cgmhcYzrs0HbKbDbK1yrZtXM5ntnUznZRobjPWLZK9OB1r81YoUL3qkWhi5XmZWA4zh4cjx+OBu8OBN19/gV5eaM+BUjZKbWy17lJSEtR1EJQpeqJCMOA5ZLokeljQcKSHIyV9hdy9Ij284v6/+C85fPMLDt/8gvzuFfRCPz9z/tV/pK0vrB9/b5awvvnaJIegWtkZb8EFL0Ogu628XaDMoKdbIWFZXavbDhx3NYYNIfqo300WoYpPRHs8Fk/sjI0W1bp2YbjQ4JoGvoYtV+yu4+AFgoy4cH0Z+CJeZDDuOk7S3xOeVk2fyNp49h4ZqAe33bdrAtw6bLWzxITMMzUm5DCTXt3z6pdvKCHT0swf/Zv/msPDA9PxwK1gqfuQ2viR091jb850rbTTI+fvv+Xlh+/53f/+lzz9/jtOP72nfPhA7p1JBHn7BevLCzw+E0pFamMI7to2Ggijhui6J0Qiuo8GBE/6x3UcryADXIikFDDntQZYkaEhkOcjuF4Ok+0JNQgaZ4gzgUwpnXbaqGslL5BDMiCpm4aHwRQu5amuKdM95xBn3TWLE8EbaqIWP2vZ6NXA/VarF7YOPImY8H4wO+oYEyrB9xbT8jPmXXBTD/GirdPa6sD6iB2m25GnO6ZpJucZZCGERtfV9qGUmGYzxUgpkaeZeL7YeB7irmU4a3ZhyhPz4YEeZrok8hzIrVo+lx5cyqBzODxYkytmpnkG3BCinBHtTBG0nE2YXDqpJZpM9DYTUifMgeMxMddCXFeefxfZXHzYgCcxELfYvY3RnPFG7map38hwTJDX2ETi4E/wIGqfN5yPenEjiy7klCw3jZEW274Od9ZssOfZ2Cp9L1YI1hQpDdhG59u0pIaAvPVmhC5QfF9uHptG2G91o24XalmZQidmYerKqtW02DZ8fG3o+Nh+ps1EhWPOhBRpvXHZVntW3OUTNXbV3fG46/mkFFjcwfF4VynVQNGhf9JcwHmAiRJm08nrxcEvJYRAzsed2WTgU7bmdJ5t3JI4/DeZpplpmshTZr0Y6FHrxrqaBtq6nqgtUXOiayeljRAzMRQOR2GaA/NyQOICROK2UFyIX0YZpsqmMBpmrtJlhZpWFGPGBm/WQSC4nESj0rWZY6R0B4SF5TBxWA+U9Y7z8Z4SOu1S2cLkhbIX432MXVvB35rrZLZG68WBJ91ZwaNWGM9w7x5fPCEYvaO9kAb/99sRMK+3ciY5qzOkBQnW2JXm0hbNroUOh+yR0/gz1LV6dDUWTTCXCCYVomS6C2vTLbeUlqk9od1GKXWMPQVvrcTINBnj6XC4Zznck/KBmI4gLvmgPgrlxT87Y3OMEPv/ZLB2+p7/xSD7NZMAIQkpR/KcaWUizxOhXYEn06ENDsg4CyaMQnmQA2zdW86s4MxI218NSBYXIZNgpIHWG2PouXv+dkUIPP+4KexvQYYBHNg/DDDDa0xnqHnfk6t2p7EkQxZCFneWtOvfenBg0aYgzT2w7iynvTbBXUvdpVyi7KOfdi3NiVqiWaMEIr0EA52kUetgKNtmYfXwyE09JnuuE2IgJvvulBOtWryMOV7Xc9erL5eF6etrZznr/p/XaSS/Xo5Q9fHsjEs67sXtMzSK87FvDhBnAFg392m8p+8gje7HcQWBuAGfbjK7G5Dn569bLanPz9Pu77VSF25X6J65y/X7rz+j+8/0/SN/Bjzh4efmHK5/PxL6EQXYZQ+uUODtu/6p4/8nf+Ifff3BwFPM2ZJS12TRkUDtVL9Izm5JPGVb3L0hYp0kVbzQtYey9UprG+oCsc03vVqqdf5a310QYgyEYJTrFG3xqWsGWSwPwEJKAZHZnCTERa/TbJtNgK1uxNAJoSI3zkGtmadlKQWcOpuSOUd1GaJzOmKSbTafQaTegfdO2yhkh9bIXiB4wti1e9JsHcjuVuCqiZwXAnBJZxPiLJuj7sHpyU7L7x2znc0Qg0kKhkG51P36VH9KYhAkZ4wQP6N5Nkr94Wg6GF0pLycCgRQyS5qYc+J4mKDaWAWDWeHbfe+GsPcOdd3oYjP7XStdCzFDliG6rkQMaEshW9ehYQKgQZlyIE1G85017eBTSAdKUxt/KE+8PH1L/CDMd6+4WwJ3h8wP3/2e6Zs/4vh8QuPMFiKf2kaUziwNpaCTkufE/f0dtZouznY5Uy8F1cCrh1dspVJb4XR+8TE/e5wP93d8+eUvOZ1X1u3EZf3EZdvobJRekeqPf8Z0yeYD88MD6XjHfDww3x3oS6JncdrNTOx3tCWbnk7K1nFMkRDFEkGH7S+XsycII+h7oYaJoxOCddR7p5aNwdSxWTV7VkrtxDSR0mTdyBEsmpo+VxxaCuamd3qBuimtAmoCt6pKULNi1+1M8wSqVus8tu3M88sjrGf09Ez/+BP19EL0DcO03YQp2bhilAhNKGqaXwbgdsxAyRKmWjufFQK+awzRxCAjNHpAHWMvXJ/JaxqDA7HOLkL3XMFGhnxT2sEws0EfOmO9nhlg9Psff8fz40+kmCjbC7WsbJcXkgiTBLIE+zx32Ai+uQWnwHcBejOAw8c8QhDXOhidexn1JQFxir5R5Z8fnzmdznz68JG2bbRmoHpQ6+OGJHv30UDU0aVXRsMozJE4RQ4PB5a7hfkwM9/NzIeJfMjoFGlboPTApWBaW11Y5tliVxTqeoHeXZ/O2bAhozIDiR5marynpnvW+2+Q1+9Ib9/y8C//FdPXb0hfvKLHDuWC0Ahv39A/3PEShftg1yJ2Sy5FvOuGr6MpMy8zKQbW9WzJh8B8d7TtWpXtstpogc0+O8MPzPVv6JJ4LG9KaYXeOmXdmLxIn6aJoSkYnfEStJN0MHeEFE2HrXZnyvj9jvv2YGvBstGbRHTfQm5GsFR21lIXpa/FmB5BSHs7Lew5D2qj421oTUQbeXm4f2C+f0DmA7VZQpqz8M//b/+GMB8gTxzfPCAp0URR2Qna9J2s3VC9eDHXaJcL5fGJ3/4v/47f/eVf8ul3v0M/fiSVjaVUXtVG21bquvLdb7/1a9+YxdhoXf3I/bmMMRK6UtTA1DFuhqUWzpwO1+c/GICqdFKyfXpaZhRzPNxaowJdAun+DWE+IDGh84EWIkUC0+FInBbS8YFNldqUl4+PbKWRTyssk8d9CAN4046ExnDAahhD97KeaZsl1EGCuzgK9Iq0zcdaLG4HsPg2WAgt7KM/MU+mr5MPe4wLKJfzyZh655M/t2ouFc4uRIScJ1LOHO7uDQiIEzHfEXJF48pgghITbTTxwsJy9+CxMbCWjd67jZ4tB2syzgtNbRw5pgnpnVgbD/NrazJi9u0DNNVeEBpZlMOre3M2pvDph/dsL4+Ux48+/l/g9EI9PdPPZ7aXZ8K6IpcLL0/v0bZymM2QoG2m6Wc6Zia4kFI3u246SdxNETNtiSlyPHhzUyzupZxs1DuMQgOmnPG5N9M2VNyhydLhIKa1qai5LLpQbunFNaaCMf09nqTozA9P0ltrlLKRFxtdPuYj+TJxrhtP62qgpQNROQZyFHR7YX16T6+rj8JCBdqWvQkXCGEixcyUJpsMEzsWwfZNSYn7+YHWDkxT5nx+MVAe9lFLpJtIu1aL41MkpIm1bNRSTLw+BGcjK7VmeouIzORsjKE8Tbx6/YZptty676NAgbHBDD3EKCB5YponlmXm5Rlq22jnyoFICJ2cIzFaRGttpfWGSCGmRpySGcL0yfWVAlFmSEIg2tixuLaSTKbb1Js5OEYbga5tg6rEpARsHC0w24hqbzYa21a6FnovVKelhSgcDpkgr1jPD5xonMtGDHdI32jd6peuBe0v1NgQSahmZ5J1WtuADWFoUo08zoEGwQCsgTjpyFU+17Hso+GSBHUCADGR54VpOTIvR5DJGi+aIJiRAaEZoBSCM/6uo+Cq1X5GrE4LUh3kFCQZGzykaICRTggVLZlWrSlUVehEcyTMzYHQmePDG453rzg+vOFwfEVMCyqLASUqVNdxUzdaaK27ll5nmD2l0AgYuGXgiwNOPqMuWOOMDOEQmA8Z2kS5W2hSoCZiNWZvzxuFlZ46FDVXvMHA1frZ1jtug2nmBVK0Z8cEvxOtqkk+rJWhO6yqntRdd/Q+AAm9YYJ4rKrN84TBEnIRr9Y8z/AEQaOBMUEMSJ+mQJwiMUfSPBkbWyK1BlqD1oTOhMNhVwAPPvv/1n3sWK7HYKN20RibyQgfgWDrJikhG7vTpnrqzwAPG0mXPr5DvRYODsQoBLvuMYF2gSzegPaTrQ5CDgBu3+KuWk7BZXJGDWD5umDqCztEBQ6y/GNAiFUI1/W0/7oBoPpNbdD3M2X/xFtuzx8AzTh0oP/oz4y22h4T5PpDn6+o8XeDWe3H7aynW4bkiBvjmPXmXMc7/49Aov3fbthQwj9xfl43/ee+/mDgaThq+YDqjpDh4xe2OFyMYwyKiCBhIiSjp9tCBhuvU+vgjKRX/UHYw/D10TFUx36NEQZbJMYCGe5NUQWRRAjXrkVKk7OmhOE+FFyfaiReo8DbRTP71S1ilARDVLKr0bbDcONrzRa9I8Ei4puo7J13ESGl0Wkxp6PWm2mujE64A3jBWT4heL+1NWrvTCka0KAVuvocrbOsWjQ3QB9/0hD3karb0YaIuryIeKI7s9zdmW5QqfR0IUpk0sjkdumixhKQ7i4ew72vQy2d0qBW6453XwIh2ChbTDajLipMyQSqowhpdC2asXrURyODRGISUojmFCGBNGdSNWbaeausz+95Cp328oBuheM8sW6F9VLYtsabb/6YD59+QToeaJcXarMRkdN2RsG6I0nIKVPDxrbaxpfnOw6LzVyfW2U4/zTtPK8XwtOjMR2CsNzfQ73QyolyeSKKdQglZSRP5rRxOCCTdSMJwcboJuuqWuhqzFhSEEOEZKBEa+YeZg+0UkqltWo23Sn6xtGRdSW0RkxGaUd1pzwaBVZ25pD2YkyyrubqFaxAsmaToK3CZE4a1uFJaEw2MhgCXQS00qtS2WjrRq+FXquJzpaVXi5weobtgqwXs7W9cRXqo6PgDEHRAa7InmyMfx/dQfURqj22eZFjxzm20iEoyIi67JFyxI7xxxCGQQjiGmLdgWNL/MaXeP/aw84QOR4bYSsrayuUENBuosIxdOY8k1Omb9WYVRJdtN3fPFgdI/A7FiHOTNzHsbg9N3uHjbd6oac2GrBdLl7c2z3fY+5twtqHZlQ38DkKIQemw0RaMvNxtl/LzOG4mFZcgPPLE31bvVsP3cd60/FgnTfx5LU3P5+ISqS7gHiTTA0LNR1o+Z7p3S+QN++I796R3r5B7o/0OfmoZoI+MX/5junTW9LDHbpVeisGcA7WmgjDnCJGi7PBtZ3wnzOBfdtaY60+63/LJlO3t1UX3/f9RCy2N22UXi02d0CyPU9i8TYEs4XWqPgKNkv21o1F4Ynpjv/ebvJ6XV37ch7JBteO9L5W/F6PgmQkVfsYuAwFBK6fQYAQmaYZJDhjEHNWXFcOd0e22nn59ImPn564f/OGd199bRbfTgeMwZ/3tiKyoq1Qn5/4+Ovf8vL7H/j+L/+S829+Q//pPTw+7i6BQUHLRigb3WOY7c5YgdOvQLI9X1dA2mjjn6c3xibQPY4FH/82jUOLTWEwnCRQazXGkQV6wjQzLQf6tCAhGoiZFyRN1sjxIqatKx3YaiW1IziQUMuGiLpBo40VhKaoNGuc1dWfW9DaqXU8eeZ26GKPe3xro3GwP9sjy1G/BmN8GrQ3lmNgXo7c3b+ilkIpGy/12Z4HMcBSolvby4wS6RqZ8kwikdVHP1WoiruvdjR2G58PkRQjUQJRMSBwmpCUzTTChfib4myiZHpL1ZuPzWOnKoFKCJ0UKlILra+czx95//tfcXn8CC8vxNaQ3gjrmXY6oZez/X0phG2jVxfA9tgirgUa1JimrWPjG+M55Fq4mxZUYJqi64Ya89wAynAFWlJkPtzT1sr6fHaX1FHg2FoMIvsYSMrRGqkRUg+UWsztVcCElUdjxYrxrZmjc1NzG84yEbPlnwN0HWwT1I5vSpEkndY3aM5Ysbtr7BAGC8JYSbWrAQU+grfvhX78MSamebG8rhkgN02zXYdWGU2VQTG4hpkrA9iKYTEwNNnasALVGAzzfCTnTEjZ8t/uuoFjj8LzGgm0bjIKuyPeOH+C7/c+Uo8ibcR4hRCpbSOUSAhnUvbGNfb8Emy8b+yrNilRaL3s4KMq1FZBlK1A1E6QTAxxH69rrThr1twCB/AeMcDR2PwJkQQkE9xHTKNGK713qm6ez5vO3jgvBuDkjcObsnp/idzEvV3/iRt2h71naI2ZfmKAkNxgJhOiCYsrw8yj+648ZElsXxjZx84YVNwcqvs+tw/yYAJDXBn30UfQo+sj+pTJrb5Xnhfm5Y5pPpLyQkgTEk3MHjze6y6tbtMh2kAr6qPJ5lLaLKfAZETU98ZGBxXkxjVcgrmnhdG8bhNEk3yJGsxkqgVaaHQx7TgG42toe8IuuzC2XFQdTxp12rgm/oyIuL6T37sbqss4vx2YGPWysNeLSh9T9Ug3FuPO7Pfn2VLZa548xoiTr0kkEUOidaE2oevQyer7d382JaCKOOtb5QqrWFNysLoGsyiYkU1glz6RFqA6S2/sXTsDV2/O3JhI3e/1uHQhCjEZPqDtmmv3cR13vaaR6V+fEUVuDF/Y90HTSGWU1zcZxOfTD1fw5WegE9faacRCk6HU/WduR+1+DsH8Y0Smz/7qFij67Og8F7xhaP3so/cz2K/Ezb28ZpFyc82u62yP646roIaPqg5zEz57716p7N9xy6vaL+/++34cenNen4e2f/L1BwNPrQ9KnQEcQW2s6ob86SmYzZwOBE/ixNX+15IGsEBnbgwKcrWJ7L7lmjrSGLcAdcqy7mNsYl12LxzsCbYOqkftfRMeD3DtRj/s2km4NpKEvWvGGInxUbW4y/7bv2lvNKdRRxderd0frqFTtQeqazE9kmUDv2xMq7fmtGsD40zN37sS7ixjAI+5/2jEwKjBrvEHNQhQDXiS7vRJH+MRMeCpD92R6OAZ5u6UppnD/T2lbGyXC3FK5BaYCGTE3ABbNUaUdr+fBjz1ppTS2GqnqnWcu3hHcTK6e87J9II65BSgW+CIYczeG+VauzoTLpnNcY6W+IXINCdSVErtlHJme35PuTyxTnf08Irj8pqyNtbVwKd3f/qnfPj0DfP9PX37iSpKks65nM0NLgbePNzb+GDKlJczpSrT/cJysJGT96cntJpm11aUp8uZVT+Sp4XDcebh4QHpjcs5ctpOaDCx7jDNyDQR5pl8OKBTRlJEo9js9DIRpTIMh6YRpL2Y7N0ch2opVgDGSCnFtGlaQWSyAsbnz0NrpD7orZ5o+cNvrnXGemteGJr2mY14EIIFfjH+B7jQeLDnKsZMj5EWghcflqC11thenimXM3W7QN3QaiLU4XJCSiHWQtxWqI1B7x2jKdp0Lyj38VpPygVLHvF/vw5rj6g60rbPwacRBvf/lz1EXANhMGBnbDwheEzbi+HP+yBDz0nEKM7jfSlGat2MdiyYk59YJ2c+TizTwunxZd/VWveOmt4cq99vCT5O5DT1K/A0IIR90ts6yCK7Hguq5ha1d1D93t5o4XRPfq2wVQjBRuumxHJYyMeJ6TgxH2aWw8Lh7mBJgHYuT5/GpWQDixc5ke8MeBJ89KSZsHhXoWukSqS6lk6NMzUf0eWBw1e/JLz9gvj2LeHNK/SYTEsIS14jE/PXX3F4+pHl9QN8eqFvFmcIQwvH94WRDAfZx1mCa92EGM3pByUmE8bvrY0AD7ilMUobItH+HHYcfOqV2k1UWlHT4IOd4RDjNVkVEXq0jqNWu94qAzQZOcV1876u05tMwfeL6yC+L1lPGq7aXTeJ8UhiEd/77KlQsT0kT7MxoZrF37au6PlMzomXp098+PZbfvz0xC//9E/44s0roBlhQS0x1F7o2xPCRl/PnL//nu/+4n/lw9//hse//hXh6Zl4OqNPz/veQxCkN7Pc1utY0r4lqw483ZLucO3J7u49N9nj0FfrPnos2H6dkndivdESYkJSshjSzEyEmJE8kw739Gkx8L92JM8uim8tFFDatloXd1uZfIPSIOYaFiCniPk4dEQaxE7XRqt1t1evtdCajwVbpbTfbxsJjQwnRbtPEHyMER/9lGDNIIBaNuZs7MJ5nnl5fuZ8OnG6tB2oti1yQkIGmYyBrMFcN6WTRWi1OQPHxHKDgoZGzpEUbI+JadqbYzHaWFeLAZkSMQa2dTPdMwLi512LsUhwrZgUOjE0QmrU8kS5PPHpp9/x/a//isvjJ/JaSNoJvZNqoV/O6LrC6URqjVgb2jYT+g9C0+bAk0kr9KawNTIQu9B7uMbH3o0RHzvT5ICkQGvGmotRaFVtzOwwc//2NZenE9vpslcNYThyiRVH4iP3OUeWw0RMgdIjlw2kjtFOvKBywBcxEKM1tJRdHypP6RqjYQedECXHSE5m2KK9GNhLHL1dG33SSMf0l1qzgjHnyZtWwvjhERNEzBykTQu9V1KKTMtMitEYdGUz1kPzuCM+IiwWS0LMvie6u2kIzNPE6NCGIEzTTEzmqts9t9BajZ029i/PebVtDhKPmgH2sSe/f6qmFdvExn9EFOmmyWcF8YmumZQiMU4WC4KQ02x7q5gIcmsbta6EqAw5hVZNLxPpxG5mKJqS5frN8hptG6rF9EndIS9Jdr2/4EyghJBJ6UjXQKWh/Yy5S1c75pB8f/CyUv27x3j3NXvx96mPE486x3IFR1T2mC/uOGUj0VYjiEuP2O8GikE0zTMJDsZe3zfAEns56OANOHEDliBqoBaWj+PjdyEGH8WyX5KSHUNICBMpRPI8sxyOLId7puWOPB2QMJg5ic8FcJoV9N3Gt1Ur2lcT/RcQZ/MoycBzTMOoeZYW1E2nBAOAM2YYNGWCzlADqRlw1WOBHimyUaVas9CdwbvnBeMejH2663WE056rK5liX8P+y5p717J8nKKMz/C4MtCA7rlZo1+1Obug1bZylVH5MoyIGdMzMYwxYntOJWZaz7QeiD3ua3cAT/bdV6hgOMqKmy30a+aDjxg5qOjAUwhWt7vBk1TLs2rzZ9Y6yNiIvnpyMvTDusvOWK67j3IO1rcDT6jLCTAapdfXnq+LSw0wSCujGexPkxq+sJOo9nt5BVbG2lePddZwHCNqzgwaTT29Lte9B8jN8hVuVsvPXv5Xe9mi+6331Ga/qfv+M3Ltf+wlN79/9t6bv70drxtxZgBqe6NLrP5u6HWscaScN1+ucnssuh/bNQP9/OBGY/fm1P+Trz8ceNLiRaN1y1TM42rYGIOMPISgQvSgABjKrKZc0faVkTygm9h374Z4K2bX3NRYJ13NRlG3SErmyjESuRiTuwupjYH5TOkVFLTNxz6nUdtq8/dkkIz3Kj/rxmzrhVJMHDtPE9FdtsYNQM39aErWdRVtpsXgC3ksz9FBGkVFSjaK2FrncsE3++6uTMEFb23DF1GW5Y72YAKG56ePKJVSOlMw55oQRjcFtCXqutKr61xkLBjEQBCla6Nsq+luSWNuxYJdDBAjTYSKMh0ycTPxWOuMCfRgKLQXOL1aWdybmmYFPmOdXfgud3IWUoYohbp1ylqZoouek9DqAF+rvjF32ugYi21oLuFL24LrdcH9Iki0AilJoWCjFfPxnvKy8f1f/5Y//2f/kofXX/Lumz/l48vvCSj3yx2pz4QuXErlh/efTKdgmdjyQgnC+wLv3tyz3B1p5xe2y4l12whpJh9fc7x7QydTgvJBGsx3bCiXbeUuTMTpyN2rLziHhZYPrDk5JVoomNCktMom1Tdum883LadO3ceCKlPOBBco3bbV1klRSvONyi1Pzc9qsACs2zv2x6bG7hN36DLCoPm5WYiyjt/YHIb7UXTnJQ2RkBfSbN3dsm1s2wttvVDXF+rlmXp+oZ9fjHnVG7Ep0iqUynZa0a3Qt+YjZIGmnV6r0Zi7bSQBC4bGbnJ2xhDh7Ncwdtv9YAgyhn1rsaAaYdixKiOYdt9YxNmWlnxVQzb5PJRemTFdLXZ0VS5lMyA4QO/FKN5YJ7UEs6Wc72bu/uRLvvrya87PF779zbd8+9tvOYRsI6YISaIPJdtxITbO441M0wdRcTaY7jP6OyYRQJNQe6UW1xdTuzZTnu1s9k6rJxoYfT1PibuHA9MycXx1IBwTYYqkY+L+4Y7lOCMZtnWzWCE+/kynHxLT8cjDm9cc3r2xZLYXct2o68rL4yfOl0ppcGmgS4Z8IC5v0OULwt1XvPvn/yXpy3fEtw9wlygRtmZJURYrDl//0Vek9QP9u1/S9Ql5KaAnJEbLiYYYOOa2uW4roAauYIlNOZ0sOXbwKTidPBjlFslhT1ZGDj+sIzpCC8ELzmz6azm7gYNgChWdSPSi0sGPkKzoqZ31BLU06mrfZ0VRuHZsu+9nlupxs4J93xC0jNZnJ+KubUEYTlvXFMQ/xUHNiLmdhuzaR2Is1/vaefn4SH088f7/8T/w3fc/8He//g3f/vien/7oF5z+3b/jz//N/5X51T3xbuF0eqScnll/+j0//u1f8fTD9/zwt78inFZk3QiPz6R1JZbKompFuio5RyQnZMl8eH5ibYWtVmIzkCc5vOrbqBuMjAINB4b7eODt6qgl9rvmW1ITAcdYMOetEBVyjNTeaV4oXC4XWkosxwPmbiXkLDQ203LR1bqvMSD5QE+BngMxKk3MeTPQodm4zPnl7PpOhf8/ZX/yJkmSZHliP+JFRNXMfInIpaqyKqe3ma+7B7jg/8cJF2w3AINlpveqrtxi88VUVYSZiXAgYlH1iMjqbI3Pw83NTBcRYSEmevTeo/VcY/S0uFR7KGPfD68XPyTP1lLOmPn0Mwel/Br5oBZQc3PlVKCmE9fbjd4Hl8urg2M58XQ++7Gb8Pzmvfu5pURrI74fXkMASbnePnmMyuKeUTowaZS1UIqwnlLMaAn5Q5V7M216VyZF845lYa37ARrdXr/l9vmV26dPZFOXv4nx/Q/fsF0/cf30DdcPf6Bvr+j+Gbt8RtrgPIob/feBtB1aR3on90E1qOAG9BG+Bu5/WJcKmjE1alf67rnkBHB0DNq+sxRYlsT5XO+9wqNg6CCDumTOL2c4rbRPr7xePrukNpeQTW8oc/CA35spm+cySwLLDHGZ09hj2quF8b84A8Tvcff+Ghhb29n2jU5Hk3BaKqMWWCrl6UwWaLcbf/zHf8DefETXM3td6DmjOZOfXlApDMv04dJTofD+/S+RUl06nKCkRK2Zvfm0wm7qZsGWyNn3qjE6o+3e+FSXYqXseeyyLD5cRxzEmezL0T0/XqoDAGpKH42uPuk2a/eix4CYnDf3awdqJQYkVJ6e3vD27Vdcr5+4XD6yNaWWxFLPIPE+SyWl6usw1zDET/E5g02fxnGBU3LTfNMTtZ68ibrfkNQZ2uhjY/Sr56vNKNbpAntLnm/ZYPQLo13QsaN2w3CD8m6VnBx8WuqZ9CZxLs/011dur5/4tBl9fAAaIs2PV5szyI+0InzhLLxRUzBbh0ZRLF7wI2Aa9VE078VZQkRTERFSzdT1RFkWynpmiLANRfeddKQz+WCaGN78I4AoB6DMwTAVr48cNQhGVIAHCLPxJlWo6msNcx8sS0Ldr0jLMAo1C6fTE08vb3h68zV1OZPrEzqlfzJBR0MZkfd2et9RvWG6of12AE9DYoKyRM1ATNDG87YkGVUHbZIJljppgeVldUuLMShDsXVH9w5lRfOFcb05y1EKJkqihgRaaTzkTZFI+y48/X6MNtwXbevdpYaWUErkjjNL/aJs59EDWNIEXv11R58AtoRxeNgL5JAEZqhDMA3XpZSpKftk3hLAX6qIZUQTycqRFzhzTI5BUeCM7jkN+JDcmV+TyXi2iGO+PJ1Q4o0aX46alKKLr2ttWHLSQYo1YwYMjgmOKYaQkRJmmRGjlnUE62woJv2Qtc01PwFakQA+48R1G8dkWQcjDzVmnPPJ6gu45IEZ/oh9avBj7vvEHXScUcwIltBcGV+8z58Hix4fj4DVF25UAaCln3vSP/Vi8dwDOxKOc/X4K3ewyJmsPrETIB3+VXAHmo5rPp9vfOG7dYcvf/R1xP8/C8T9zOMvBp4OVNTU6z6xGBHKEah0eJDTUSZL0xdBnHl9uAKecE4qZ0wbQUhFoxM5fUrC04lpSHc/O74Ow6CMuEFCfufJh0+0sGNJH0vLj0N88zUbfoJNHKkdPnUD8EIkkn1/SfMNfHiq/7OGYfOcPaxUnVK449i//D3TeQE9ucjZp8v0ZeEqXox3HZEQzT6xdydUHMTxt/JuqpvjZjAfSZlk/vHfGebFW4+Oh4kEW8oY1hHtYJlkIRE0XCJ44KcpCi+j1kpeM6km8gKSBpIG2YQRC7nk7PRYg6bjSNJncDTmtAc/GYZiI9Hs5r4K9hDUtaMjQ26eiFQB9eS/lMrT27f84m9+w/W/PJHHIJM5rU/eJRnGdrs5Q8sSWitWMnta2MpKWs4sX/+Sfrsw9huqwljP7MuCyRJGhon1+R15+8xYEnrrjLKi5zODhZ7diHo5LeTzycci60CbsadBLdN8NB97/CxMjOwTinJ2/6dlCWndTu/Dg/7s+HPwYQD3/4F5W9m8ShHsNO7N5uc+TfIohxRkjnj10+wdvlR8uo1k/9q0U2rBdkGn1ECcFJ3CsDsFa2+Id0U0fNEk7lfi6yxyN/0z/5lNIPnoAEgk9pPJc49I97G2ERJCLnFsIsG4uEt47n8fKYZIyCSCjRHJkc0TiXmi9dDpSvE1Jsegg4ZRns68+cXXfP1XK59vG//1D3/wtM/k8MGIqHf/WiZ4NOVcAYdF0PfzO7/pm+w9FfCfpTn2PujjHq4i2cGi6PbpdeupUpZCWSv5VFjOC7k4RXvbnMnQR6fmfLTbRMQny+XkPlNYeLooVhLl+UzOnd6UfjWkJB8TWTIaBpbX7cLanljGSrZpdCno2Nj3C337SHr9SNuu3oeLJOig9SdBkh7dOz2YphZSAV9GrTWKBSh+TG9JD1az9zG689wKIX+SKeMKBmPOsbBmrAuvH1+88SKeRFls/lqzpytjSpHiOEN+Z7GTfzlRRWL9i29NQZefMRv8/tHpaSYSNPa5B8faUkVsRDOkISP7Gtg7sg9swPf//n/j9fsPjD99w+lyZfzB+JZB1Y368kR6Xtm3V/r1lf3bP3H9/T+yffiAfPsDZbjPj7RG6p00OtMo0Qx68qaJj1Efx7Q6VQefB7Ovf9/v5PG+jnv7ni/OQvjebTYTco6pXWJMM+4eE9qQUAmZg/imzY2R0112ggglm09mDBaTpMwxXTYYpEvOft+GTYBFkSY4OMwwbDjw5JNAI7cYDwcjFl1ooZt586XMcdDCUIPcyQqSz5j4NStlNgYG23ZzsCm7pLCW6myS1OgtPFIidrjHYiObNwWTDGdpMUKqaOQ8GecC4obIqhrXzj+2Jp/G6ENUOuN24Xb9zKdv/5F2vTBuF//9MWi98fr9n2jXV7bLD+jrD0i/ktrFpdd9QEsOOg0lqUvusEGyca91Z4wW96mT5PlIXDKKpMPfIot4wTgSSZQavpwyY9a8wZlgoFsttG2j2Qe266s312r1u3D6A8osNe24dq3vHvcSB+iVcshYhw+vmeyenMJ02WK/VaO3hubJhgl2SnGwSwy0Nz59+MGP57SjpzOyrsi6OhRrblXhJKv0RWwQAkSAaEjOIiB2QVMf9tId/BitRSPWWe9++wUAOymd+ERFNdDkYNJk9btx8TgapEHii/xQ/d9+5H6viNsXePO1UuvKtt0iHjrIVeuC2QhfmIWc3btSxONwicltJaVgpu1Hweg5vzPxa12PemHoFgVnlEPmVtBDZ9Y02cJ6TDvVYD3J1ONrJsU9X5eVZEIfif3zxtDkXlAa2XBIcT3z6EGjCBD6AdCYMhimzJjIeSPhcegnJr9RIhZ5Y1uyS8nKcophT9EKCSachhed0I/9wScjp3j/iF2zeXHUU/G5w3foyB3S/T5yg/lELpVSK6O7vC+ZT7urS6GuZ+ry5WRDeCxGIyeLPOUY1jBaxOrOnEiuMnAmrzPVXEacovpInr8GpdAMSMNtPhaXGjISKcy6RDJlGLkN0lAoN2xIDBFxNv70Vbzv93Y0PfpwLyq/F2PCmfhGZXKUv0eGGYHfz6pOEkKcz7BF8DMuzu6PfUImeBPsoYSRujF6iunPhjeZohbSO2dpMmcO2TqhXhD36TqGOVrkDvF+vtmqG8jHcYnMxvb9//52D5lxCjAD4QCsiHoOZwhqIBli99cY2Rvtfhan11Q06XTm6x47mYb1d0zF3zv2unsDMaphu/+iHX/kDiwJ92v88LCHr+zhuV+uXZmn7/7PP1/6++8+vNUjTHB/xTtz7vETffnpvnyePHz941+eObB8+Rs//Xnkvb6O5SdvPsuHx9eQh/9/+aX96N9/7tN/+fjLgacI3CZOTzXLSJ7iyhwX18EPjSSJWVMakZw+JJ4mEdhSyOE8uS/FN/EcsqDD20JSoHY8XEyNbqgf8PzvkNdFAaBzwc0A71gzU49uwwOab9r+/RZGzXNCySwUBWjNV10Nuu6xqTwk0ncqMYDSu09nmq/5pe7WF7haGHabkGI0snt1SEzm8zHF806akxaUO/BkKYWhqdMgxdxorib3VsoyC2Fl9M7eB90Mi1H3xsB0j+S5uMGgOCjSYlRnEvHkKTyw6rpQzm5UWU/JDSJHGM7hp73m4sF9EPI975Ln2e2RRMnuAeX0eWe7aXPZi9nUOAPi7DpZXshL8yTMFPqgLJU3X33Nb/7Fv+K7/+f/Fd0baeD037xQSHzz7bcuYZME6xmThV0XbsuJfHri6flvYbvAfuH105U9LYxUyfVEej6zvn/Du1+utP0V+faJT3/4Ew1hP6/s5r9rWTg9n1nfPEPN7Nppm9KzIiV7NzJotkMFSkGTYCOFH4P7Uez97J397Ew8xDCpVHkMW97h6H33JZ74kvHxAKyOvkMwFUtdPFFLOdhO+Rjt7ZtyRcvqcrC6IuYG/zYatCu2Z1J1nzbR4VO/kOjGLLRu7Gw+KUfNp3vFR04BOuX0EErtvkkT9OU0WSXERo1EQsUX992UNXhxeicQH6/HPUZwJBDRzZL75jQp12oaMScYKSG7deXXRNWzg77ikthyWnnz9Vf85je/5U/ffY/8u38f5vsS7ZUDp/DPkibFm2NXuZuKT4mVG4ZPRMriHEvydk1OiZodqseckSrZ14bIiHhIgE5u8ppLYj1Vl9m9nOjWaX1ju12PgL3U8FYAbHqmMNj3m4PzbfMJoTmxvn2hr4OxdaxfsOImlSO5KfrQzg8/fMPzKfO0Jp7eTkmPcLleaJ9/YP/hj5Rv/8D+8Tv2toF2d4XI0f1OuMw3ZEykhnZzbyKO3IfW2mGUPGV4EvLRGcAfz9U0fLcwE0WMnN1rx31NPJEycXYoQ2LjDqN41AGp2Kfq4t1YUWPskSgGYKRGJHgzb7Ev17IG8KTd32Mus0h2HVhw8GSoOkNL5s6EU6mCOTza5kBbytituRnq3vnT/+//zfW2k247X+XC+O4bvv/uT3z+h/+ALBU5L3TpjG1j/PA9T/tONeNdEpJaeDXZ4b00+mRQOrNBR0OxGJDg69nUKfSo3kEk83vVfQon8Bvy0AdFyCwk5fAngVwWTwvGQJoXWNpCYiDTQ2KANhg7jIzIoGT3RpGUWIpTzlXAZA/PmIyFV1CWhCyLeyx2n3hnOEPbw5FPcNPuUvRkM5F3o//jGo8YvT2UpuYmz3Xx76nR+kDKQl0NySefEJYy51Nl391Lads3ylOh5Owd8Fr9/gnGmHQXS6dDytCjQHFQJkkHOkmKD1eRyRgBSMFAFXS4eayag8cnWShSKNb5+PodH7/5Pd//7j8gfadYp2aj7Ru3z594/eE79xHrO2fbEWtgG0M3rA/YBmEj4/e1eLFOCrPw2cGN613CF0lFj/vNGWqZJD6dzYaiI+Pq2hTX96FseCgOfGjHzuvnjo3P3C5uYq2mJAsQSaZkQKPwdG/J283IPVNOS3ijGCW8Fd17yiJ2R64YHX3Dp3GN7oM+kvgUvVSKDwFI3nlue+PDd9/59L6njfRmsArUWsgpplWZRvPGDomdp9gO9kzv/ZyS7wFR1KuGj1HfUe2M1mKbFDLFh+HgQKfLydIRb2woWGcYaGtxTtxceOYdIwBfCxTD4t4WMjkkX2YaUmn3ZMrpiqlLeLJU1uXMGD6YpsaEvEndLmWh1JV1PSHRRhtjc2mfQs4rbpmRSUsYI+fCtgHiU59z9smnfWyHTYGZT9s1U1pzewMdOyLuE+eTcF0CZCKspzOdDD3Rx0f2brQevPzodnlqanhtcRf98AXYY7H3x/KcUwRjpyFAA8Pls0QRn5IDCPW0UhYfEpOL/1wN2lCSDfewlMhvdCJjPkUaYhQr6V6hxt5jWIDP6fh3jsYiaTa/EqVURlkYtZFLxVAQYT2dWE8n6nqOKYcLkmKA0wTfLGRmwQBzCWLzPUubA1B4vaa+4cPRKBpECz1yPJ96DSGXC/ZmWhJQoatL8KKRZCqU7ozY/Rbstu5xbvpwHvfXBAbN7++9NbL6cCwHX+QAaKcEMp55XO+4HQ62lGF+KQ4wj+N3/L39SPW4Ll67sSu1CaVJMKcAk9h/hwO4YUwjku+s6BRMoRQT5nJcVTUnAIwc0ripBzg2BF+rD+tisqqnZxPMpkXkRpPHI3HfSCZLBTIpa/i7+pG6K4CrcNQdB12TkGJZJotczJ8zm7yP4GWa69I/LIcvHzN9fQCQ5M5gmnWA5wnHQXv9MAuAeM7xOnJ8+56U8PC9n0GW7OFHPwGcHl9D7uDTbD4+vuSPHz/Guu5YT1w9s4fDmq87Ye9HXn3cz0ypqf/g+GjTEknvuarHsC8ldQIHEDdfV/7MZ//x4y8GntAbE6UcwzxBSIWUOi5bWyCMpwnvFB48HOYln5/sOC0CEdk8oajxc3EzS4tgNe4avQiQLp3xcfb3iQ0P6/FARQM7xnoUnbg56JSlaGziicxafbQxcqee5xzMFCM6fJuPwS35i4vu75uYXk6HejRWy4+PwZPdSeN0w9z5WccwTDKSV05Pb9hvF9rt6oXE1Mqby2HQQR/DJ1ol/H0VaH4dxCySkkwRIWlhH8KtKbtCM580sW83Utsp1qIIcGCvpMU9VMJjQ3Kh1MpSCpYgnwpldWNw1e7md7nSrs1lKblC8yR8NKdWzo06za52cv+clH1Tngyn2cW1SIztIPUUzG6YXcjrjdRf4fYJ+/CJ81L4m3/2z/gvz++4fHilXV7R54LUE+fTmZdhpH3n41DS6S1pfeH921/zy9/+HW9/9QtO7898unzk4+sH/vD7P6AjISz88td/y5t3b3n3y69YXxI6bvzV5Qf+8T/+ez7+8IE/ffsDe4K8VN7/6he8+Zu/5vnde3bMJygx6G2Q9/A8kISoJ9V1Welj0FJz76GRkALr6UwqFSkLl8tnet8Zo7G1TtbEejo5mJAT2+1K21wmWqIATuH74940Pmp9DHXvDyDnQqkL68Oo7TGiY6ZOde9lYYxG1jMydq6ijHZD96uzS26GtkbCJTVZkstuLa6jOHCQDTdin+FT1TeZiBxJPGlOM6qRjoza9+NgHD3EDeO+Cbl2+c5v/CJ8qTGnZvmUoEyIVcO/zqMSKaND2ZvHLw+4xadDzmSij+M9E5k0BNvgP/+7/8IP33zk7Vf/G7/7r/9I650cPgkiwK4RndMXaYoe3fHw2YkU272voOSoKsSlOVPyMIGrnKAwATMv6ghvoNNaWJfK+bzg+LlidN7+5q95/vott+/+hJiStGA1GDJm1CT0NtDdjXKv+8Z+u1BWdyYb1rFknJ5f+PVvv+a0GFo2+HDj6KII1CzkRXhZFbYPXL/d2O0z9c2Z/LLw4U//lf3Td/SPf+Lt9Xv08gn65gCGDcjZwfSIayPkESpgWUBySKA80PbeXV4qLi9MNs3H9dgTJLaio2Nobozr9mKCkVHJDHNz+GxGSoOx7/R9Z+y7+7ZwX1OeZQQrN/m445TEmQMhUfci1Seo2v0UHfvHHBbhhuuR8eP3kANUiSmraxH/AVL4eKGKtc0PslXMGiaZrMpLzbzUikjiBlzG4PL5FcQZc+3bzwyUnUEqmWLG0htrV++/C/f9MgyKDU/MHDdQ5oAgw02gUzSFxrAAq+KAo0GjI0CFFN23I/Obd6+Ep1PhfD65L0NKbL0HW6OwLEI3pYXhc04OPLkvV4d+hW4IvhYkhj2Ae9M0Uz798ImRK1YWnt7/iuX0RF2f7sVWrs5giw6tRMdeuzO+JJJxjRHqvbcoLgQZwu22se07ex/UMOCt57PHL3OfJW03Xj9+i5RKLpV1OTn4uUDqULJ7GPkCDjPk0UjJqNVziJzMGzMMBwnN/elKhlwF1Z1xa7xeLyynszfoyuLNuwANrtcbrXeSwPNpYa2J28dveP3+D1w+/BEuf0TGjTaufGpXtO2M7YZcruTujILUB4yObRvSBkkh45PSPL7gnf9YT9NX6VFy4OC5HF8/BHI/B8Xzs6yJUiaTVFwywv0e12BWG+FL0r0BNJqGXLH7FNUw7U0hRao14nbyokdy5u3bd3y6fEa3GzqtHaQwmjNpBso0GZ/MFl8nSusb0nZnWq8rVnesDZZ3oMvJ5XSte6Ns29F8Yze4qUCukCrr+Q21rtRl5elco7lrtO7T9m4hnxnqTai+b4zeHSDVHgwxv7Y+rQrEQr5sfk9jKViMzgYa/RbsxX40c0fIN1UnqDoegA7fv2pdWJYTtayktAQrB0o98fzyzuV91TitlTdvzoyxB4vVosnqEydVGq17cy4HIK3zc5KPBpth5LyS8mRQ4feIDUTO9L5zuX5maxdvhKXYJ1W9Cbn7PVWrA3mHtEhC5pcK2sFkBPelIPmE6AJ0zHy6rMXr3m03PH+4s9OjRjm8oxKju/m5AD65ryCyQIBq5DD6L5m6Lj7yPmX3d4oCHxwY8EE9jS98Zy1jVjgkSOo59ZRTzqIUc0sIb24G+CrDJxCLIdknGoIiCdbrM6kVVBvL+eTWJGUNDXWKz2QhaSQaEOogaN+w4bJnHRumGzZuYfZtaBioO/tLmYOr5sApE4LpHUBUMh/4kQZ2kJrj3KeMO1EZFGG0Gz0pPRnWGrTuwGpMX8em17Dvy9vuEzuFxN681poqEZOY7jlTitgBjTnSxR74bl/u+f6bAQDgzKo0ffrUkOGgT9mUlAftppQ8GDmTqwbbfuCTC2NIVr5PTk6T1YSD496cdp9Wb9h9+cmOAQtxBBMsskBwfPq6Hjn3ZNvPids2QcbkjdFcxQE8VWRkH0ISDHgNppP5KObI+R1QHAd72Py6Bq9r1rITUXAgJBiPKUgNd/yISXOxOIYvBw9+WR8cHkn2kJfPY39AU74Af36EBD2+4iPs/OcfDyDUw/v+6KPND/gXveJROuEYiz58PQc3zbp69ur14bnzcI8hTHy5Xn96BPdc7cfA2D/1+Ms9nvqGt6zmYo2Rq4noXPmUmCyepB4HZRNkig8qHAjlPFw7lkgwH8OIMOcAntQQ8YJLiM6eTNIxHLe8xTwKdclPDoaPJWfMaHS072ZrM0xMFFfJJZz9cw5fl3T4PJkZHT00wZ4D3eWAMMeWChLGhnb41Ej4SN3RVScvPS4+78xPunzKlVKV89MbBynwjqaEzM26fybtnZx2sinF3LslBeh3HGaSMHfPrgnOvrFZWaGsUE9oqcgY6Mi+AcXYYonEzTuQsaDFSCVB6HdTESTz0AHXoyvlzeeBddf1ekPxYaLZNAqe/xaCDeSBJVkK5Dp7AWNQRDwBald0/0i/VuxT4fv//B9YvxKW58TL+RmWE7tdDhCElMjrShZBt44sK/n8wpu/+hve/NVvePnV19hJWNbC+bzwYkLbne66fPU1p6+/4ulXX5PPADtrf+ErHeS337MtJ7ZRSMuJl1/9itPbN5SnE128Y9nVu+GtN1ILpl9M50glu8Zbp0Qi6LIlseRCrgtlcc+n6/Uz2+3mANLcRMSOUaeqndHBUp4QBmTvF2ESRnyekKCD0RuthQfJoYf2TTvlSjbzTpYWGJm0rJR1xU5nKvh0wr25h1REr3vQSiELEZdaRIfCk2Af2ezeR+LBzuZw+YkS+Kt80T+c3UMJgOlBiPwY+A6v5ugieTIYQIOvbP99eQCHNVgocj8CIwJZFNp+HzkWlDS6PirsH2582H/gdtm5frpSU/GQSVCobQrl5j5ijzZWTEZoEgfv5nzQHIwfw0gBrB3mkxEPnRXlDkSSxhFnz6eFdV1Yl3J0Y5MkBytMWU4L+x6suAcJpHuxdKTtJAXLAZwYceB+L2sLMDn+WPjtIYOUBxmjipHZGR3GrbH/sNH6ibwv3L7/E+yvLNapETOTjUgs/Ry4BMTf14aPB/emRvJjimvrHcpg2Yg41T8Kx3EwU81lv7hcKvJMB09wSYMKjJgiZSaMYchQB+J6mPSP2RmVY00KGU3h3VEDLAxZugj+HP/l+544JYPjftPMCS6Y38NxVhxkmx5lU4rIveOXmJ10hdF82MM0/kiGiE8xqyfhpIl29f1JRgMdZFXEukuygKpKsdnV5wGxi3sr9tajMxY3qRgkvUuRxBwgVrG5+h/+vjdtpiyGA5TzvSFnl5f5gBGhtUZSDXbJQ1J4nL8AaAfse3ZpmRVUEzoEmiCtMJLQga0NujS0dOpzI5VOKn4dJys6ibPfTHwSqw/G0GOin1iPKWLOMCG6xl5wuazMRmckQbqQuucZhqA99rUE1ndGzjAa6+kMIoze2Tal9+KMqfB4SnLvSF+vFzdRHoPz4mzZWgrr+UxNiVorfbj30N66F3C5oMU7+hN43Tf3AEIH6ep+HPunb7n98A23H/5E3r8j2UbWG9YuPlhi3+G6+U00Yp2r+gh79fVx74tr7AEzARbuE0rvYNMsAmYJNL933HMpig43L7yDVrNwjH1Ig5k3UyGLgJ+ye8gQsXx2zg0fN+7+neCMEpdPeo/PGMPoXWOugzPUTdXzmwdZqIP8YUQfVZFtm/uQdW/g6nr24nhdPO8kk1I9mD5lWTEpWHLGm+d1MHpz5giw77u/ZrpPfVYbDpKPzugt9h4LmUp0tK2hw6cTu+Q08kqdTcdB328BLrl5trOh7jmw5x9TeTClTQ54EioJiVheamW1NeSegO3kLMHYqkhSrAeDSv08297p3ZmBJTvbwUNaIYk3zUz8e2LDgZpgSAqG6GT+QSmnAG9HnOvuLBqbbaA7a8Tz/hryxUKmUgrURanLSltcTkavYG7srVOfGCy9e1yaufi9JPT4EIV+MDj8PC0kqaS0Qj4hKQzEw1N2eg56cR8ZQjQ8ZnGZknq8sXvj28JGxG1S5O5hNAt1AdMZeM3XwQBNk30SdVsuWKnYGNTlhCRh9OzS9FTutZBM4CbEYGrBUBzONoo/NraQ2vkfz7F8jTmZwLhXevdKUQjxW0rO8pu/key+WT24O4smpGbSyOS1YKOCdkaww2QMf64Se+wE+YOtG2t+2B2MmPHERKL5MgErj1gjzq1KGLgf+9pjMPOvZ6vU8BxYpuVSh96M3oy2K6UOUu5IcbBSkwYTPHyQxKLetdib1de4eBzqvXvd9ABMziU5k+AJvh3/mddxFp5M/ucItvfnE5cqmE/+mezhwOUAiabRuNf36nm1QMq+Dj29iTh1fMaJEcjd8N9ioNiU6XEHnDzm38Gnn3vc9xu7r3PjwUIo/o5ca8JDE0Gwh+P/MWD0Z0GYnwGRfgza/OS59uV5tsfXefiZHDHG7uEG+8kLys99bfeXnNvsvA5ffJTjLBynJt5PvvCE+qcefzHw1PbPYXg/GQZuFGaiPp63JIo8UZPn3FnmsfoinUmhd1skzM78Iztrx80zc84xQcm13U7n903RQpNdYvrWDLSPf1xnHqPnS2FZvNuQyGGGHUUgd4qhEBuRuNlhKtmprLmG1K745xjKZs5a0WAaudFziuIw3Sd5qNGlH10gkJDscbzW/P6ReJtPcXHmk/qnToVlqdzWM6Ws2NgPCY5PUPEOwlAj50zNlef64huoiBchZl7YxDQzyYm0PJPOO3Z+i0RXn/0KOUXh3Rhtgn5ejKaUccesgVlnqSu5ZtIqpOIfaugenhd2FKPazGU4nn8jrm9wRs4hhZnFU6yKlGKqU4q15sFLuxeXWTKbNsb4RHv9I+gN+mf+0//tO77+51/zm//5r/nqzRvy81s+/OkjOoQ+fBBPDtN41Z20PlPevOOX//xf8vVvf8v5q3d8c/kG1sz68sQvnt9wed25Xhrl668pX3/N8qtfY3WQi1LLoLx94e3HTyy//hOvtwGp8v4Xv6auK5IS+3aljUHXzt53ZAdMWeqJknxyUK2VmnwjNXA/rTEoxdllp6cz+35j26589+037Puf2Pcbt33DxCWLre+YdnwUujFiYiDmDDQtCxKGlf6fG/jvvdFHJ5dCWxq5LmGA6yBlromTKIwN65l8OrM8v1BQavYJhL117DZ8vU2WHSHvrBUYjFsLX6dEH53eOqMbtayITSmag2I5kmCY2u3ZRYzAH0w5+wn4NIGIh4RKJpg0NxLv1DqDwgE/gglmMa1jTiryPXgcdF3Ai6aI0GUkSujurXWun1/5/P0ruWaelxP9cj0MeI+YEzEw0pkjOAqTmQhVEkVcepqyF7xmPkp7dpxE8PObhBJArXf7vCNZSuLt2ydOy8KyZLaxgyolr4zPH+lZefr6HXxW70C2TsmZkhK27bBtpG0niQMqI6mDkUtx4FoHNNg/Xtmasm+NsQ/EGjIaSRrlPFhkIOMTtIqOxKfLjnzMpDVz+fQ9L6fE1y8riwpbMW50UkkUMkVCRihAzg4oqPrkupQO6doYI65d/CxnynrCWVKdre3MaXbndSUnl2dYAI3dgPBnGSlGmIf7pPZgmOwtZCxOz885/LVwYMKnQQ1P+Kghs4SRIKeCqNFvJZhDLg/uMTXURuO+OHKAowK4BLdLYuSQm4sw0giQMPzzRFhE3F8rGb1tTmXPCU0JFY/95VRYaiIvle0G47ajt51TyKB8qmT4BZoPHLijrPd7ivB4mAUKAaoli5zdsUdMfSqiijGOCynHvX1PW+58RoeE/TGl7nVZmHLXT5dXpCRK9dg47/+UQ3KLMdqOamO3RuWEtMzIQjMNaXkmrStWCtemNPHpR0vboa5I784mUF/mKRUkGN9723ywQN9JGgMyjpHsGjmGH9lQL+pz9maUaUOboTFByERoOlyakgd7H0CilwLjDZIzt23nGmDJ0/mZdV3DL2eBkMx//O4PfPzwgdfPn/mbr7/m5emJl+dnTuuJUgupZra9s1vj8xj0/epS89q4Xq7sbbKcfQ3stytdB1U70j5x++4PXL7/HaV/yyKNlDrWrw4y9w43Hz7D8GlTmUTWEmFZfQyI2HGFD7NYcaB4Dpk4wDqbSa/f3wke0U9ULBgwyXn2s1gaGjmCe5FqNKruub5PRRRLLrOJ6zUbAYay90E2Z0RlEZdDqrFtjX3rbNtg3zsHu31Aa4PWg28l02s0WCPOsY/pwC6tGynT641RzxQK+fwOTQuWV5b1iafnd5zevLC8eUtT6GoOQgDWO9fXzyDe0LruGz1Y75LTUdhpsBt62449p67LAV5Z73TdGT2xb49ARLAXUFq70bsbKn+xz8b5vEvXJv7szAnMp1lLeALWWlmXQq+JMRb6aeFy+Yhq53LdeHo+Q7Bb1IQxPIe+7fvhb1qrUouxrj7ZLuUlzMdXcjbc18YBEjfxzrF/e8G7Lm7034d7lY6xOVtR3LBdQmabsji7p7psLOdKlpX1VMlULi8XdAy2yyvdVh6nshkDmz6cAThNg+bJMDpW9SykS/X7ICVyObnPVTmRyjMpVVJZIMAFpoVJrOYQDzAZJ76WnRUcHiTTxgc0M1mq0UpmgjpzknjOE4AMjx5JUOKODpZWsQoGp/MzvRdGd18sB+nycV+AHV6ugzvw1NuGtlvI3a5Yv7q9h+4OVMU+4abiJYRkBYly1Wu9DprIJVisFjMuk9uUiMaxSQAmJSFVEE2UU0ZYyMm9OVXNY5hG00gnWGJIstjHpzdRiqZWJtSDLnk3c9/cAxwzZsanD9frwPWOgBTgSjQqBJ8QPvNgEHoT2gbbpXvlquoAd0qe6xQhZW/0JauxN8fhx949cFlxa7uDyjOuThKI3YE0ImaLqOcQw2vwiV+Yr/LIg3USs+80GScj4r6IFmCUfw7J3kzPdd4Pg6R6TIlOeU6wkzuuFevafbKEXD0fSKnQh9BCYeXAmEX2IHcGFvIF0vIInDgzNe4F8/OhQuRo/OQxd6B59wx5+Ilw1PKPT/gpiHT/6wsw8s88vgSkAiv4CVQFKeok/bkn/uhVjnJJLCTHsVbiXCebwN/9sx0Vlt3/JQ/nVn7uhP2Zx18MPOl4jRvDO5BuGpxwIz2nHmZ7plC92RvIJ8MzUafouZGlaUxvkFlUcnQ5ZkB2sCmIleLJp4KPP+3dJ2TplF7Y/aLPjAXfZMymJMI8CzanpXsXEjBnzqRRDs1/LpVcByntpJSdai9EFyaM8Ib6dBPrkZCn48KXkp1kkuEwDsS9pybQJDKOpOhgYaixpExZKi+l0PeN1m5o20EqpZ7ZrhensY+B6o1BY/QNMz+nilDaQMNctO/jmPo0VMjDu0NDVmx5S33bSadn5M1bqIXx8Qf2/C37h4+uNBcvfowClmnDSaRqg8Q4kOs2GmodGFwvN/ptJ2umXxv91ig9ooC6/MTmdUi4b0t2vxJNfs7msr6jtZ5IuATTb9gqA7EbfXyDbhcGH/jj/7rzw+8zv/93C/Jff8f4dGE1L2BTyo6sF58M8ZJOyNMz69MLz+++5vTmHeX5DX37gGUjSeb56czyojxtg26FXYSbAakiMtjNyM9veDo989uvf83rpdOHYWSGDh+7XDwZT0lZy+rTsnL26y4BiESy5Aak/tzBDtkTj3V9oi6rS+9yJqXE5fKZffPpeyLm47FLIklBbKPtjb532u4shpoq5/NLeNgsZILZIx405Jg04ma4Ux/ugHNyrweFXBfkdPJO1fUSiaoy2o50Z4X0dnMpCj0KAjfw7H24tGFv7suxZJa00vbuUgj9UfCaQe4I6JE4TV+N7CCURNFpD8nO7NaIuBwjpXRPklUZpnHPhzmrwBwygsgXATc97jbxeUwhsZLFJUwjKu+RwmPKlLJkB2FVKdk3NKcsxyKeRX28tMikELs/V04OLlmwYJRE0hwFjoaP2zg8jgQjFwdFlrWwFKFkp12XSRPVzna9IUvmLO/Zt53r51d0b9zGDYayiiCtk9uI6ZiJUhbycoa6IDUSnJT4/tPGMGjDcG1QOSo9Q1FtXK4f0VrR4hPXtO2MrpRxI+8wXm98/vb3bN9/w3b7zCKD8Cb1LmNc6xRjmVXDx2bmOtkTyDS6n8k4t9OPQUoJSRpQ3K9nKD55Epel5vXZDfSTm1ebwrZvtNuVtt/QFN5PYj6pMkC/lDMDoZHYEJBMKSusFVWhb52tO+uhkfw5ImTzOAHdd+IoHkzDy4KM5oXdPOYMH0UGxT1LkpgPIsqOtPbWCF4O4GsgL4V6Wri0na1t9GtjyT6xbzkn+oB2C3arOrPL5hTTuV7kMZGLdDqCuMOzEUNC3pliC56cvCLu9eV79D3ls5msHZE+mISpkLJPS03ijZDr9eoASkmgDW3QtHG7XTz5rpmUFibzc4/3tyGMYFqSC0MSKsY+Bqk7M2E5PVHKCavOMOjDuG47Yp3JwjktzjIyLGRGDvxZMEMsmB+YhrdY8lttWIDDGVjimAWOwnAy9xopCeeaAwBq9NsrJi7FaeGZ1a4XzqcTy+JMRi/kGh+/+z0fvv+eTx9/4PKP/5GndeXl6Zk/vJ9T8DKnp2dKSKBSAPu6Z86SOC93Hy2A/Jyx24V+3fn97/6B6w9/oH36hlPZEXaG7tC8cBdAurNLvKHhDNbJSDT8UI8BCynfE+3HL2ayb37enJVjTGOUo0Aj1lesTe98A2Gy3ENKbsFSmkm1/5khPGK4TdBpsu8C8GjN435MSwTY2jd0jW6/FFobsV+6X9cY6gB2FN45W+ydIQWJ4xoMNIPUhbbtWN05lRP5/A57fuNMl3wi5TPPT2+5tc5t37lcb24yrIbIZ5eLzWTI1AEQPMeSLGjf0d7RtvkWk334SwqmjUvuXd7m49Hn6Z/FmB3m/Z6zh8wbDma/N2QmzOqNUveKTEeh2/tgXZ+ppxJFvBf0KQt9DG6XC4gFc8Vzfm+4Jerwz3a9XYKdrfTkTVc39L6Q83ApaoFclFJx/zOC5Y8zmaoslFL8PftO390rtOQTqSpYphaJxnOmlrPHIsnOfqqFTOHpzQuj79wuZ3QsqO1gBaV5nifcmVNG3PsuEyOGTNyRVYFkvq8U98BKeaWUM6m8hDrBpXaOidy9yFTv/rLzMUFcnSBX3Hw2BtpbmHIPSnbpWGQacf0yhkvTyDH1OxrsB8OHGBZjIRHWEmzoHnJK95u1aJD1HgbSKNpHNFl2tN/Q7pPsbNyc7aQbx4ZOfsAc0lGcT6c/o3v47HHUUvynufgeNSyaKL5fDTqNTpeOZZCSSNU9StMY3pjo49iDD8WHgmqw+BaXuU7Jnd4avbsPXA8wRg/Wk9eEYf39JfAUmZE8fC8d+aYDB+kABEGHMLrQdkght86l+76fBRnqw39yw1o+bJFzSQdYOZmxPs1uNkBnI8uj9qzBPfY6W7H3PSYQxmedoC4DY6AyogGXwl/Npak5F4Z43inZPT+TKqVa1L2CzPm+KvTdfCBWEmdOzxQjBsSYTRl1ItdCXd3cfmx6eD+HReaPrkG0eycIJfdz/gj2fHEt/EDJyB3/ij3iuNtmI/oL9pLx5avegaIfP+zHf8uPn/nzz3mogn7yXgGb3nsD8uVzIiP64t/Y/Vx4Y0Eeaomf+0xfvoYEaPeXQ07++MvNxcfGHAmtIS3xZMIRfrHEWG+MkrFxiqk/yYuiQ8oWB8s9ITjKJb3XlvcbQA/0XGRSy8U9PSZtcPQDCZU4ixKFsOpwJJX764aZQbCn8CImEhCC1aPR+ZMwItUyjgXmevnQump0fc3n9QjmdM1Irv2z3y/JvRPgx+3U5aAamo/fnfT+nCu5+mfqDl0jkjzoj471fnhtAS7FE09wU/HJKQk3401TvBRjai0ZaXkm14XTUmB/RW5ntN1oCGjnet3wcAo6vUVCeiJ4wEslecGPyw/G8FGys9vY98HYB2PXoxgR8+jgBdYdYDLxzoIvgrtXwMMK5OgamYC4rBMxlFfQgbWGtSubKr0Zz5+uyDYodpfwHZMNxI0+XY7mCdAwZ5rkujA3gJx8jG9ZhNsupFoYB0PFvYJSWUkFljWhudO60br65xmdxKBmI1tGGN5VC1acs3EcBHHUze6d55DXSJqaee8qracnzs/P8bs+DQQsClqnxE+ZpLOfGqgykrkviAgW3jh+v0QxHLTlNjQYiAbmvgUmc8OwAEHccNk9GSyS2A6tkfpA2+5eMNqjxhqHDGUCQyWFD9Xccg+PiOOS30PcDA4iD18T9wUcPkrxO+5hMBkThTTB6zA67n3DhlO6U7yOA+EWBbB88bbzrf06TAq7oZZQKc5YWFx2uiyK0txTBUjDGKKUoHI/mN0cRX0cQhRG93sA80RyfqekoIGHPOD++3EniU+xK0WoZcYfj3UHA12Vvm/sl8Trhw/cXl9p1829DvqAMbA8ZYIpqOYOqEhZoSxOt08OFg8cgDIx0iIhDXH2noNTnvo55ds9q7opOho1+Zj2sQ326yt9u2Lavda0YLQpd+8AiWSYFKcorlXILSyui5mzBHyvsejiwqRL67yg4fdFqqR1dRP9vKBhpgkc3j0Wgxr8nIevQk5hnhnyguKA0cgLliqaxEehu8Mbo9+LZ8zQFPeVRHfQIt5KxVKhy0Iz2FVI6xN5qeTTwr5dwDomI56nIXGMdRwsyFQyUgupuZ/GaEaqRi3BL/BQfmd8zH0RTw7VcDaieoHkPwtGY2zi87aLO+d4rRlvHwv7GckfwvpxS/tHlzCGvw8dMTX23aVFeSSPd+LxsY+BWBhtz6CQnHJtyZ05dO49JJch+FXFwk8ll5W8nGA5uzxz+vSIM5hrztSacH/L7mCCTgmFHSA3WBzvA8ihctyb3rCbx68cUhtCGtMbZUnBUNAw2xWnNQwHnsZ+o4mBNs/J1Kdy2djJ0lmSMa4fuO0Z2T8ztk8BEiSe37xlWc+cn57DANgn7NW6kkshJzc2FwTRzq2/0q8/sL1+z7h9RvqGSAdtjLGT9bGRR0iQPYO+g5SPYEbkISHF8asVscXmjhvL4lhrFs0Z4u87U1Qj3lngLsS+Ocx9gtw0WI7Yd8g54t6bo7wn/u9T/ezYI7x7PlNGYWwt0m5BEvTu+15rMQhlSpGn5vShyjmKoOGMHkVgGL31kKAXpKxIPSPLM7msSKoYGTcRJsz7ndmpAXCWEvIrMY9J8z81bOyej4392Oe1B8NXoomr6p5QD8DTo8G0iCdrYhqsPpcbRVeVCQoe0mCZDDPfS7057A3bHgbnxrg3ZMOvsLcdzZ7Duol/sOJy8v1Tnd3P43qZJzWaOWgDTYi6xcBkec2pvdn1eCBCMUWTNyNTqi5nMycUOWtnCt0n494jmE/Pq9SlsiwLWy7o8Cl0nq9Z+CPNJeDnSKK41+OzOxtOAqlPATzlspLK+mDQXb2Rk6bc7O7NM4XLUQEzR7PLXKWxxuf7qarDGfOeYeY8ATwFRdWsRM4xJ1rfWdaPg1pSnD/VdMT/6fXl19EZ9dOQGp1MrCmtC6boaLjJ+PAmdMTeuT5sJgCzzhKfwDkJD3RC0mXuE2rjISPyaKGEn1ACKeI05JFDppa+ZNDb/f5nLrkAVUupnl8OP4eK3/OT7TTs7ulkEaPsaKR/CTZJgN7ze3OCrYenYNGrOfDktnkM53m4ZckjcBA17JhgiRhZvUHt0sy4o8O7zSJ2cgzuiXpsSiLN79PeHoEnVwK4j1QAT3SE/BBDvY4g8m8e98PY191GR9Ecg7aShMSOO+44V5QdXwWwYqjo3QssaqcR8j99uDsiNMTtYcfaleOI5bgm81/zO8Jd1TA/0Lw6h3n5Q175cFt88Zivbfz0YQ8v+ud+5/F3ZyMd4JgG/sWb3b93zzruz5eZnzy+6cNd8khm/eI6POzV8ylfHKb85LD/m4+/3Fx83AIkMY/varRmGBVJJ0pRclo8OUyZhScvmM278pP6d5fFPSwKJqARAVA9VFgfvrlm11k76ummszq6S8xGwzCKxAKOl3BgCmCPTSgdJ9uO4s8OMG2EMSMIaTRSdLwgUWLCUZpFYrAyxkNSNDcoEb4wt0uHB8VdhjeN0efl6j0o+ua6/33vrOtCrifKciJJZeSFlFaEegTsXKoDb6Pdtfsk1vpMlkqyTC7hjSVCCX34YLCuhXUtvKzQXr9n//gtG8o4P9FPJ7bLDbtc0WtjaEjdLICYVKjrQj1VcoHOxt5vtG1j7I1FFta68vrpwtgU3X3s97GY7f5HIxHUZGiPdNIm0CfAwJlO3v2e5xVrpOx6X2ygdmOMynNWWuvsHze4QurJ6aczsiRn9QyDwkI3Y7TOd999T/36F+Q3zzy/eeHa3Psjl0xeKzktLK2Q6gop0f2KknLF7XfNR/WuARgOoG2k0UkjIXIipcDhzcGX6/UWk3GamxsmC7ZB980tpZjwUti7xjQZpSwrz2/fUpdKyngnK8wCbVwdmNSOaEcYnu7E/Tb67l9Mc9fksqmluF9CXU7c9kYPWUDvnmzKgBQJdetOmbaD3dRp+87YrkhrSGuMbUf7cG+vBtbMu25DD/lpLYWSF/+5aiQsMGnT9yTzIYTa3M3mRnFUtsfD2Qa+AZZSWJeVUhx8GkNpvdM+bw6CSffEM4Bd78J4UjWUI1bNd0sh9zEz9+7qmUFhOb1hebtSnxfSC1yvH3m9/EB7vbkRtzrwNMvvFBnHIDqgMuWm+HWcwHYkBoLv5TUlL7TVpkPFPdEU77FN0GldMmLu4zNwijMC1hv7RWn7hY/ff8MMxm4yrhGFs6/vlNj6AIUkmbo8Y+tCz5kNQ1Miry7NBKhbY+94Ir4UbEloFVgyFEGKsJwq0nzq0jlnpO3s189srx8Z28XXbCGm/wWYLwI1RUFl2JiG1ARAMBMd8YZEH9y2PQoy7xI661AOXy3fk7In9qUi65m8npF6IiHBbvCmiEqClpwhF1LGlB1c0zlsIxdKXlESTYVuXmhIzWgZzj5Im4MKqs4OnMlpuntyjJQgLZBP7Fa4KVwE3r//a57evvD81Rt++PYP9Ji8aeb3f5YHkFIkAJOCFPc70dZot52yDPriHl5ZLZJJDwmNcUgxzAwdw31SZPoLzjvhET6Kziz3hG/u9Xdz1djsp2z2ITVykML/mcNMPJdMqcUTTlX2diUFwy9XLwDFshctUkjDpztJcgldyiFJFPfrQhPJfO+SnCmS3LQ5F/LyQlqfkPWElROSfWJUzQvndeH56YSNndZuXK5XlsWLlX67m63OzFsClHCTai92x5hAe7TgHnyHfACEoaPTW2MNX0k3a99BhGx36Qaj0bfB2IXr7OuasRZY3p55fxY+3P6E7q/0z50PnwIQUeP89Ia6LKynJ56eX1jXM+eXN8jzM2ldyemJNZ9ISbhdP/Ppu7/nhz/9jtcf/oHcN6pEU6FvjH2jrqsXO80ZnAkH/QxjiDFMDzbcAToR1yhNk+WZE5hL8SOWET4lYl7c+X7o6y7EcaSpdRkenxiT8eSyMxsE4yUdIJiIy5Z9G/apjDMZmanafSqSuIw0zelszn5QM4YNevc/rU2WZYrPpvf3QsgSnkiBIXYJw/3UkLJja8cB0DN5fcPT+1+Q1oVUCpdrY9sbt73R2vDiXd2/KSWg+lQ/J0Jq+Iha7M9XRmto271QUWGnOyCdxAu2oQE+RfgMy4iZKM9zbjG4YIShuGZviLlE1JN7tcHkQE5Wjw/CgG2/0HV7iB2K2Y7RScnY20YaoQpIiUQhZWNdffJuqYnbFXrzvEtSQVKh5Hp43PTeAiQ0ZyiJM6pLTD/DjGwuny9aGLlg6sCrJ0jF/eCiwTGmWbF5IR92YtSlsp5XTs9nLp9PPsW5uxE2GHNwiYdBXxdJisvlgp3hVXZU2tlZ5HU5U+rZGU/1hKQTSPHGSLDLjprx+GCzEZKOhiYHg4mwBPF/2uhR7/gk7OMGnHemCJoKKcpCic8Odj8R3O8jt0JxkGJMWgkBWpj6vTLmvtbjPlUIWR0aHk99w3QaeEfTUHxUgAXrylRn/yzOmTeuTJUhRjafLmsphR9R1A2zUk7qzYniLOBZh44lk7ozcmQyWid4ZBPguQOSOZc4yru81YGn6A8ce6AE3PWlP+ncL8V+RCiObEZizUjkhcOclSzN135dEjamRDjWAQPRDKOza9hCCOTDFyw7M+oB5fI8O9+/xg/ChqF9xBAj3/Pm8AkIkK4IU0Js0mMwhMfIFECeJUJgZEdM8XqmkMtdCm1DyT2Tand/wPAZO+y54r7FHLQ3jF3DykGNrQ223th7d4mu+Sqa1+CAVe4400Pu8iVwM7Pz+aw847nc18PxlIeaZDK3QZBj73h83S//fvyX2Y+zoR895u35o9ed+QNHRfH4mR5fSb74nnzxq/fzIsf5iebhcR6i/rrjiH8WZfrZz/9nHn858GTNjVWtx2QCpTVlaAUuGK9cX28s6zNv3l54fnlPqb55SnHqb6quUZ+oaPT54aF88q/jxNyjN+CbQS2FIoUh5qOt48IlfJfQYHrMYnHSSUNjhRynNSjiYkEBV8IZkzm29fBImpFbknuphIGVThYQgj0YjB8lsfgCmXJBmQR0STH1yDeLvXf66KS+T2zeJ+CUQk7OMrAA49JyRnSAdR81jpJEKTEW12/mBSyTtJCyb0y1ru7NkhLXtmEFWhK2BFqesVMnvXwFUWitX30gna6c9p3ccOPMXX28ci48nVdKARj0bUd1BzrrWqlanLq6KYwYTT36/cwH3dj9oyYleI7U9s3yWPR4BwMzn3IYwTNLQ+dGNmV4ZOqa47oqeahvKgP2/UreAcmkAtWSm3jWykjCh+++Y/z9f+H7yydOvzyTFqPWFF0aiakqBVC0N+/4JWFadQX5ihyJmNrOejoBhlqF6CB4kZjQMShaaXsPyn4jmZCkRP3sa3fvnWFGD7D1sC9U75K9ffveNfO9sW8XTApKcQayOdjjk4483diur9GdFXL2ztp6fuG0nsjLwlIz+76794GCROe9jYaPJmyM3rDuY9tbuzHa5gyntiN7gLbbFe2D0TrSsk827wrq5tl1Xamlksls2plsPV8Lfv88qu4kgiJqX2yoI4xb296jyHX53OzMLLagFuOwc9z/Yjw/n2hNaE1YlxPLeuJ8euLjxwvbtnO9bSFHwUHxWUiWcvjeDC1s8oaRn9E3X/HVv/xbfv3bv+Kv/9Wv+Oabf+APv/tP/P7f/X8YHz8wPn6ivzZqKZzziadypg/l8+UG4SWSAaKQ9YI2TIfHnCBmyOIxNCU5wLWc3LfEPUcTNQ8Hn3LI7BLch0IEiCAT6HevKwCGUsJbagxlBPippxWtC5oyLVAFW07cRMjrwvr+HcvJp46lbcMumzNNc2VfMj15MZZTIeXMPtwvpOQcI5ujl2KDlIxyrpzMKKYUNCZgKR1FZuE1xsxCEXFp32EOmT15czmeSwsOd414zsHAkGDGtka73UgKNIu7RRi5cvr6FzyXjLUr108fuH3+5PZPKUPKKINcFpbzM/XlHftQrp8u3LqRysLzu/dggvbB9eMnxvVK33f0esUsY6kjmkOCaSAreXkmL8/QElkK53riF//63/LmF1/z7le/4OV3/5nbx+94/dPvsI/f0W9XdL9ymHcuqye/3dh/+IS+XsnXzmkfLKNRd7Brg71jzQt3NXW5c0wUE/M+voj51El7MBp/eExgaRdzdpsYY6o0AOt3dvFD+uJphV8V95rIifP5RF2rS3VQn9g1OsMGRgDvUZSAsRRnoPYxWHKmrivrm7e05UTPiS0JLWVGct+kphprr3J+emE9n1nevIXqQzasng6goaZMSrC3nX17pbcb+36l9wtDPR56iIg4kYR7Q8vPjKHO2gjW8bDpe3OXMqvpIaxot6s3qFL2wk4SbQwnkAuR2EeOqHdGR9IMI0POpDegu2K9uRG2Kq0PsB29wedX4/UHH1jx9PLmYHikWjmfn0hJ+PDdt/TrZ8Z+Abug2vz1UiFh1CK0thNaeU/ORRjJgWJB72bP8TsS3UcpYUKMhAeh//FpYi7DciA8CutI7L3E8mR5gk5djaQaVZ/nKGMafyuHb+SsZFTNx6tGgZvLw3TKyXI64oq4J0mugNCGBrBlzgoGl8YXubOFZj1wFOsO+EwvQt9Wja6Drb/ycn7D0/ML//Lf/Fv07a8Z6zM3cyZta8r19sp1u3HbNkrx/HdZFrbIB9p+xfAmXMpCPbkthGpj32605qynlASGcN2vR0/P/55fzIZKYgRLz1n43hDqvbO35kCGJJ8Ml40kfvwpZXqoILoq29Y8RcrOOh66s988duvojLZz2z4zWvN1hFFq4eXlTcRxL37rsnhzEUNMfLqyZWc2ifumlsUnQfY+Szilj90Bq/Bucq/YkIyZA2y5VL9OeoaaQTtCGFybs9Ekj2hwThGHUNfK03iC8Y798p5LMsbYvHFGIokzuxChVvcSRDIi9e77hOIDH3xITy4LqfhUuJxXcj758J+H+sgbKBMhdNbPZHbnlMO3UEDd5H4QFGA0LE/m+g6AJ1iZEyg1EbJVxCpJqjc/Hgtfc5nnnNjnDPJMsYJZiRJJAmjXkFV2sIHMqYmqMHZMd3RsjHYLq5AYTjOnk6caO4McHsAyIibg7F6V3Rm/ye8nkeZsKK2gGVH3enK/UWdTlZoQLce+1W/bYcrfg3336CVKgMSm3sjam9u8vF5v7g2o0KzMuQoBVPhp71GbflGpRxE/09mZjXjxf2/6mfgOl8095AbQN6Xl4c2XkiErJPdYJlhGI9hMruzwictD3beMYBBOQHFKmS3Y4zq8+e9KIme16hjHHj0tINz3wNeAhVpH57AB7fHa41AxTcDJVMCGS2FFKNli3Tq5Q4dPANXm9Q3ZDlmnA2358H27bd7s6F3Ym7MwVfMD+PFz6EjENRzEPfrVdge6/inwRH70LznunD//+PnXs4fv2z/xe/NX7r//Y0BLDtjq/sp3YE0e6uiHT273vw+sJV7wTvKKH8Y3H1Tu/Ehs9/BZ/nLw6S+X2kUCPzcODaO40QeqyWUlDUbr3mnNGRsrqVRSzUhJZGpQ67zo9w5hHKZMrXF0lo7kLU7g3CxxdpRlp+elACrmRjk/JwfMMX1dPHBP9lOaRmj3HZjD/druFNt58Q5YLD2s0HH/TEzUOEABfrSoH3vFTPApZUopvniFYEYEMTS6lDLlhSKQ8tFBQWOanBgl+9hywYNHb26knszHo3uhf3KT55ToOXmXgkFTA8lYXsjrE9IdWj+9eU9eTpz2Dbk1dB+0tJNjMlJZXTbmAad7t6UWFlmwTZwWHXTRJPPcz/PAw8mJi2zy5bd/5lc0JoYgoCmAwiBg+nXT6Dm5p4iznD2RdW35iPsoeXGRM6k4Oj/6xuvnD+xpYOt71jeVJRd/XnLjeSn+/oof28GGmN4xGrpqQqYRHl9ZqrNXzAuk+IReRGTfRIdNGrIb3RPApuOpnjRMiaf7iLgHVVmc5jpE6H3HqIgNeqogzsuSNIfQ4p2MbiFBbeRc6X2w1AUdbl7o03CCJRWJg2nzDqW2+32iPoZWWwBRfWC9I90lW9Y62roX8k0cyMLBEQcd0hEEk7iXlJkc9anfUg8bdSyIWVyn5BPH3Kzf2SMWwFOO2OJSQBeou2zS7/+MT+db6uIGvKV43AqWxCy4PTYFRiExKTMnRNx/h/LEKC/Yy1e8/fXf8qt//s/4u//5t5y+eUt+t3K9fcflj8bWL7A1BKHkQi1+nXLc+1mC2mtz/UdSMJPFANMlJoAQwFEKED9nB55Khlo0fGXCi1Rm/ycYgyJ38GAmpsz7xY/TVCEJmgVqwXL2ZHY69Kugy0JazqTnt5TnJ0iJsW/k/IruzgLQXMJs2+7J6/DusQOBOjcYXMpmAap5qZ4RCF8THeFWPZMrP5Rj8/eSI+J5SriMOgqNxzVkUw1//1ox+uhIa+5dKC65SiVTT2eWdUH3RNtvpOslkv7wxRGcNZUr1BUVoxdFSyadnlh+8TcuSRiKnT6wffpEu14Z6aOzEXpzg+pYwaU66FTWZ8pmWFpIy4n1q69Z3r0nP7+Qz8+UfaecnxnbFRvKEC+yRBJLcTBOVdmvm49pH26SnIdPNKS7zAedkva4/mE+nMzufqHiXyfhMIGeD3mI11NeMP0W7Eiq/bn6EOcP408mgOpgSynu8aR9JrUx6Yq4D2JSmkwGocgXzKNUCsv57M2d4hPCesrsuTL23WWTQF5fqKcn1vNbKBXLhZHKsTbMnM2pw4GnMTZ6u9HH7ejqy8zWJAVQkpgTpWZXfbKc8WjsAG2AujllRF06YBCSOgvT1yNNjn3f93s/Y74XTc+TIgP35RgsRcMbwyW+Wb059Sh7GiNho7BJwwLoNxH285kkwscfvidpI9OjjdHAOo9S5MBn7nFLBA1NvYiXywfWaCnyKvGmDc7ikFg8phby2gDIbWDi+dqP6zZi15/g1FAcnJ4yuce0AkKWIAcLZw5MIRidHueTS0zUDhNww6aqGfMw9CDDCylY5LMTsJLJ6DOXqc3CQGfMsvuB6GykCJzWhV0M7Tu3yxWWgpVMD4k6EPeGe+SNVum4kXpvOzJwH0O3wGNvPjBEj3vbT6JLhj1vcgW/+/fZIS/zazVzadVpUH6foicpJFjq+4RPH/Y93MTznJmraRSsQ3v4YTV629h3BxxcgudgT8qQ77pfl2jNnF5no1jiGroxhVlHKORkUCbrKNOGX19nQfj66iMmYcZmMON3iobibH64tNFcVkusZyw8ImPK5rJwOj2znp/pfeN688E/zmSa0jV/Dw4mpE8t9Hw+4lfCm/L57uUkOXyW0qyH0pEf28FAAjnGiAYAnbyukAAHTR6lfcQ5jOCtU34Fd3GYA48WDak7X0RnxIn76OBfRh7mao7DFyykoUPVmffhPzYHz2AdU7ci0OFDIEwbEhPNjkbYYxE19xZ1IoBPVI+BBWYObAFCDF/C7T3CqdybT6Iha5RAEuMciwTQM7l4sf6Yst3Ymbs3P4YaexuBdadgNd0ZKQfwwyzSuR/PURr6d6eC3X82Y+qdsTZBElWfbtfaIGWj7CBZkawHSENylhWCS8qH50My7Ii1HuqTS2fjmCfIMMaUxvqkbFU9PnuknLGsZ3CdrGhDc+w5qphoeIlFdS8RG5K5d+6sSwngSmN6fVdUhjPNZydfYu0GYKxDaftgdAtGXfJBBPZoOHF/CDysp/vjYGDPNNDu1+knIJR9WbX6Cz8APg/A0BfvIdx/5+E37Gd+eS6Bn31EzPti/5j76pdlc3zbvviFB97X/SV/+vR5WDx+6vlEOXK1+UsPJ+mhhP9zh/Djx38H42lGr5kqKkLHxsboLrsreSPpBV2hZ4V99U2qON0/nRbqspLrwrKASDm6LhKJCLirvMXFTkmcJjjzj6D4CYrkWDzqSeJQ918avQWrKhhPoV31UxdGn3MqUgomkoRIQXfm+GvvAnlql3L2YjZugBl87+xFPRKo1uxgrHjh7+yLmfAIwfZJICnHRA5IOn0+BCzGNo8IqCKUWiIncyM/p34KteToCnmHieSdNedEEAyrhbquPjHQVj5fPnK7bVz6TrFBzZnl5a0XmKW619F2Zd0ubB8/0m437PNninmiJMWTJNUNeuPl6Zm1LNDgw+snLp+uPsnpkMD0WDdexCix8c7i/rgtvNw8lhz3hNUVzCEBs+7rRDKF57iTlCz5GLstT4oopC5k3EyWntCSGSkzaoYlQYV1UbbrD2z7J5Arb9pb8vsXP/c1IUsF8YlVbqbew9A0xbbsR1d0BLDJEThzzliKRHNMGDNRavYJEzbY98HQDUPJuWJOqUCHd/VyOsV9SJjFp0hYClnx7sYysFEgraRdfcJNhoR3SUSM3q6Aj/3u+4XWlNvW+eb3/8jp9MS7r77m9PTkWvac3SMmCzUNp932GysdteYU8+tnxu2Cbhu6BYNi64xNGU3d/G83GG6K7SbvDjxh3klyL0u/Tw42ttpxXzlrMLZ3MS+wzAcQjOESWRsDkid4WRKnxX1L5tapGOW0UIuD3x+/33j35j1fvX9PTZnPnz7x3bff8vn7HwDjnMsRRIeZT9lLvgGIesJVy8JpeYusvyC9++f89m//9/yL//Hf8Nv/wz/jl9d/xV//8D+RXnb+8P/9f/GH/gN1a5QtkQckhTKEhYTJ4PCgCFNO32zN2SNxDhTQvTstfE5Ty95VrVWoRVirUJJSkpvvz5g1CEAhB/s0bsYRccZ0sC4l8h8lLQ40WUqkZQGpIInrZcOGgFTy+Q1lfSG/fEV+/xZqpvZGXT+h1xvaevi+eBzse0P3xrIsnE8Lp7XC7lR19y8xRMOS88h0iHtfGHsAs6bHz3yUsQbAdE/WjORGo8xY7R3iw0fBDFGfqOJeVLh0VHc6CnlBcuG0VJZSWGpljMSShJE5QMNMOsYX3/bG5dLYpHCpzyxf/RXnr37J23/xP1JPTxhw+/iRT99/y+XTB65/+B375ZW+b25LFEMH1jdvWZYTta7otdMRhhTSy5nbaLz+/vd8+PZ79HblVJ9YXr6GvLL3weg7kqA+P0H4IN6un2EMikVxJ160tPBvsERM+pLw2Ii9/oHNOVNhwxNNO1p9kbBbxG7TQ4ru4JV/lcTZwSkdqqhItiz210ReMmWtLgmF8Ja4S3Ndap8Y5jI7MS/4h3kC3/qOjI06GufzifT0Bn1+Cy9fY8sT+/qWbz984nK9YrcP8HwinU+sb97NNIJ2u3lDbXQf7rHf2G+vqG6Y+bCE3m9IMupajkzQpXXZi+3hI6sn+ykx7wE/JzkkCdMjBckoSs87pl7w5VQcLIrolR7kT4RnSgFSTDFN+wVrG7pfXeJtblPg107I4gbjZkar7gEJ4qB83GZ9dPrnKwAnCV9CEgwHJizb4Yfp+1dlsrxdBhGFksz90F2eRQSWmWe5NBkpZLIvgjGLk9UZxmNgeoMYVsIMBULkeg7yaLBybRgyosBmSpmmZMc9qxD/PY0mhRtGczBYS/EqvPdOv97YY5qav69f435ITnBp+lKOtTqPncg3xxg+Zdam740dY9XBc6AFI7XOeP3Mh9//PZfxD1y68l+//56XX/6K8/uvSO/f83Q68+bdC6fzU7CPGucktK1yvSi36ycv6qtw6zeGwK7G6JBYeFpP7g1oynb9GEbQjQkxaBawSmINdlcFdZ/Gtu3HwBFSAFVMUE2cvdIdrE3JPcOQQkrV2XYBWDmxyrjdrtxuF663z6zV/auGtgDyK6fTcsTyaYmhrTGChZ0FVHda31EbLEsHnsn5mWV9Q0oLSc5sezoGLu6HxMwleCLAHE4R12xobC3hPaja6XojS0ZGRqSAZsCbRlmCifryC4YJ17ax3UbIRRtuLo7nYDiYllKBlDEJ8CnLXW+V3WfKfQF9svfcpC1UFV5o81ArGcgIwppNazuvO0JePKZHEiOawQ7NHWGeBxAJOWqloYOcBuLc+QAi/R7TB92R98Mzheo+nuperxPAYKoVJgVRB4wNbRfGfqO3i6slTH2QhHis1MNWV7ij11NxM3yQkcT9mQgw1RtabjuQ/dwc25mbnMvsQiVCoukSSIs4bEHpnVLh1pU+/P3TGD7oxGBYRqM55fuS+w0pDu5Ymo1PDplaIHfHNE+CTTgb1e4By4MaKNrq5rHHdpfB6xAkhq+kbOQ1vHZzijUVcGLkqu5L78OvDhspAcKGQe2+3zrhIaxfBGfrzQAsUYeHPlDN10sPqbEuhjafaqz4/sysQbMAJY7bMDKSBjnyByShBUaLK92dfZXmUAadk64VdlziOCYjyofFTDn3jx9yxOaZH96BmMev58MeUSB5fA3ileK+/Jn3+jnw6y95/PQ58vj2B/j0+Ju+NclPnnY/otn2+BngDJg+fD8Bn+DL5xz7+R3Kmo8JuP4UXvunH38x8OTdDI6b1oERmP4SOtyAtdnO5ZMxbq8+8lQq9fmJfFqp8kKygeiIxRYGfimMLnOF8FvxTr0XqalIrHtPXt2D2pyqmvzGHOpo7TTqlmCNpOTFqiUN0IPoDApY8gI/PoeNwdgNTY2UXXcvZCy7XtxvoHTQuNWgJiGXyaqaaP8MJr5hTaAuZfAujB03sur0JJim5aEStvsyT7MbnTOiXgjPhM4TvxpdfQczSBE41M0zhyn0hiVIVkCMUhKn0xIMlfAEkESqlXx6Ip03zGC73bi06FThAV8xkjZkbKCDtRbOdaGmhcvHV/qtMbZOsumd48edJqtjpmgGMicvhJzSIggP02Dmyn1Fm3duEWU3ZVhBtVLtOVa8ulQtF+RU2foHZHRydgaOqNI3w/ICZSU9vyGfz1BXevaNScXIbWf/9BltjeX5ieWcSXlQz4Jl80mGNiIhyJRyugOSGhTqB+DJ7xdBVDAVn8wyHCDVEWPR81w/3Sc6RvKR80LJQsnJ6bXA6OX+2iS/Z7JAWhFzuUVd32LkkGNuYfLfGe2G2SA1B/GyGEuGbB36jXb9SKFj1Tfk2LUwddAJbag19PNHl5B9+sT4/Bl9vWC3DtuAXRkbaBPGlpAuJE1kik/dwzul7vfEF/fTGP73NJ4PuAUCOMhi0UHzBEDMCzCfqFEgOUMpJd/ohyqnpzPLunpXeW9cr43Xz1esC+Pmpuxtu7FfdkqsU+9Cr4DQh1OZjXAhiE5pTi7jtE25frfxh7//AG++5eXf/nPW9+/55T/P/MtP/wbdvuWb//S/kL9JSIdxU/bDEB4aDUTc4Hg4CywpBP2IOdHOwCeQTFr18I1bsntgLDWxroliPfxw1M9D8s0i1wCsSoLixdhSCo7fRxHgYpZJGHK2nw2ETBEo3efDjHSjvDOwRJdMy84usWVBmpIkY9cbST1m51wmZQAxZ7N0aS7hyoVlPdFq9QJIFlLqB9iIhndFSj4q2YwRQxx8jcxJYJMWz0P89M5vio5fEsiTA+6jVZ1tlysjZVSyf74YmTPaTnv9DPsV219JY2etwZiTHIlTppPZFPYBvVZ4eUP++m+w919zWd9BPSG5kJ+/5ulXf8Opb6w/fMt2eaVtN/doi895PnuhmFJCrzf3kemKPD2hY7C/drQu5JR4Km+49MF+27h0qHlhqYm8nLh8/sB2+eyMgmA7LaX4RJ9c0BKgkbo8KplRkpGDYWkpACIjPAhhTr05WDI6g7Mnpcl8Wuc0ngbCymRKKuUAsGaSYjLZI+GVF5Nqx5QziWDDwca5p075SQ+DWROhtSt2M+S1INe3lFop8hX1/Ib0/BXru9/Qn67U64Xbx98jadCzce0WOczg8vrJr4UqOnb3UkTJaRZkIfccyj7asb85kOTnQtVNdS1AUjfajyzAArRrLZgovo7i7nZwOIEx2JtPi9y7NzMk+T6gMcRj269Yv7kX1Ngjt+rBLHVfzKQjmETmBR1GFs99AEoqB1ssp9mAw2Vo6qw3RdCUsFKC3RKTs5j5S6fW0+H/GIgih9H4/DuoQ0PzdJCjSvXnWSJpOOimHrVmxw0Ae4Dxdqwpj+8uz2+jIZYOkNvVbeqLdxZJvTN9cSzsGITBbXe2ds734mvbOr15HpfiWjgAwOGzk3JM9h3eLJQofFIqzNHrPjEu5Gpyf74Fq7CmRPv8ysfxj/y7/9P/kb1UdFk4/+qvebE3POVOGxs2MjYKbQz6UHobLFEoQ2bfnJV3k05fQhe2LuRyokgh5VMw9xq9y8EIU9094zIix16QlFErIccPtg1+XAcbUg5O4F0erhpyv+wqh7LAULQp+x4DTzBnKgxDB2y2e748Gqd1iWl42X0h1feWsfv0Mm2D1jZG3+jtM23cUG3kckX1GbM3PJmxrkJZntC0IBqFkXhzt1RhPRXf514/e6PHchyz7/N72zDdwRqSg1FvI7xbotBNFRH3oVuf3tFUWfcrXW+MZui4OeibzPesVMjivnFuhZAZ4n6DRNPD/w6/wZQDgIl6i8Q0Q01WPR8KIE2iKecR1Y28ZRD1WMil1AHcPGNuvKZEDE+TvYiDKEOBrhjukehJjg+U8oaor58Zx+NuP+oWVQfe1ToyPFfr3VlJpp3RLuy3yyFdljCb11GYzfqcQkpI+CxG8wjrDvDEvYk5tkXkgkoDGVE3ZeYEQNfxRhGuLvtSnT69yacGppAMJ/BMCAYpZGsw9D4t0DOThB6fl5h22511hOfwGjYBR+smqnRvkGbC75z8wC52PziJ3yNMzEFU6M1T/y35FMdUjAUndlDTve5IIS+YiP3sWZgeQLrjYFPGGRY3Yj44KiacPnoWTZBS1WOGx0IJexdzsEhcYm3J1Ra+zxSmr7EPxJrglTfuHKgW99yrBuI1UN8GYV2LCK6iMLz2TX5SDpCaHz/0QItsMv2ZuiU7ZPEzr/45zpJIugNTNs/YlFXP5Ib4+cM5fUBsfpLrPP7ecS/6G9zZTHfQyR5+ZV7HOYxpAkT3D/wl6+7+eASHAkCM97wPO+MAoeZ3jtc/PnzgX/d/hqn9/cP+HMD1c4+/GHiSKfPCg0AayQF5G1hQJ4ca6OAG9LT5aNW0stIpenIii7rJqiPPBST7iMiy3A80aOiHHnoa6NmcuqDzLvrixPoZj0Bok3VkEJTnJPPERBLtFSqC+QYrbognRzvXDjrrGN7dy9Nwdl6iB0r8iO6WP93PT0q+aVhML0ppLth7IqqT1jgRzQPZfJD5xWKR5GCZptnJi4kaRhTE1en3aaD9oQjT4Z5Yk4oZfioHpRE7TP1mwTtimtC+Nx9PDOFVEEi9Di/8JQXVXRnNx5B6OI7zLYGzzU0uJtZ4wh4/TNwZCzPaxuU8bnqL6CnqLAlLDApia2xYBrJCqaR1odcO/crYru4DYYO2D+wpI3kln07k04IU1xfnmSz3Rruad/lycbPZZaFG9J4AEZHkerc26LbmScGcknFvMfiJuANUdh+NjDwg+xb0dZiTWSTWWMkxcchgxG6rM7DKTPo9uc9VqRYeApY8gVdxs/TuDLmRiFHsKe4NRfvOaAnBO3zWPcGxcUO0kWKakr6+Mj6/Ytcbdt2x2w77wFz0HobigvQEw99DJHkXJBLCESNvdaQDgJqabp2ZzYxmdpe7HvpjC26ciANBJYx5RYLmaliGp3XldD5BErYx3AS/DXbbeR2eNGh3+XCJuFNL4rQugNDaODT3YubMqvBWySlBSmwmbNfGpw83brtxKiunN8IvfvNX/OHrd6Q1I0XCT8B9MCQ2eZumsNk3O7kTejAEPSjxszs076NIXHMi1WCM1ESxaTHttYkF68kBh+SShChwXfPvxefePIGdbMTpSyIHWwi/58fA9uYMoaH0rqThiZOlArWShmJtkAbhfZadmRKXbpjSB4cHiJR8AJ1CiXgxjvjh0xSz+2EaIbnymGESHWuIIm/Kb5k358MxeKKZzBDVADKm6XRFiII2PutQ79qLdqy5MX/O+egsGwmzilIYVFoqWD1Rnt+R37xHzm/Z0oqlFSmF0/mEE8sUeXmhXj/TbjdG60cyvyw5UiWlLAu0ju0NWRa0dXTvlKcnqhnrUrl++sS43WhlcV+6kmjqDKzbtmGjI6o+hY7JahOmW+4j9Xv2lQQO5vHQ6OLq7PZGOGYya6MxFOtujmZmMqTj9VO8ZpQ9xz3uUlYHVvQAlZX7lMtwKpAUzKJZDESzCSCJy/27sG+v5NsrY1mxtpPNyLlyennHnp+Q9Qn0StIr6O7rMqZy9j267wQjjmmwLIdka8T61TaYXWDMk1kJ6cchO5hVkaV7vFYH1SbTOqcy+1Cej5h6kyTYXCOYNwlnSUz5Yds3l1n2G0l7zNXSI9G+N6biOyJRqN5zkJTkuK6z0y4i7jc4r50nHmjSI6+KKIx76hk1+/Qtm9N047hmKmzBwsaAnhnmoEaWxYEnMjL6kXsI/SiWfD2MY03NrAju92jAI17sift26pQWJehDj+N2JsasSh7YpuJrsvURPjV4LvhQTWh8BjcgNm8mBfCUJCHZDtB0yr8VRbL7j6jdO9AGjL2xj873f/8f6bUiT0/8+t1bSr9RxobamT46o/vAjqFGHz70xE2NgwmjsYDMc8KcC0teKWlhKScHaqLR4wwNiDHCABQzvytTBo0YQfP4FkXp3I696Tv3KJnlGFNlkFMilRhrj7Lv7WDdzFibcw2A2ddWLtWbE7Owi7Xnlh5+z/R9p7Urff9MG1fUGtumpNRJSan5REkLUt9480LcO1GyF721CqWkY114XjVlYj6coHf3T4VBThrSL8UsPMmmfAjxCXfLE3VtLOsLt+sZ1R0bJQAbokh2BlgqC0ZIuHETdQngSWY8PmRWj5Iz7u8Z97PNwHk8POYoIMOZ4DrCj9M6Zv3IwS0lUA0w3M//vKdcIWkub8cH3oj41HLfF3OUJxPQ8Gs883MLBr8d1hEurbce1gyjMdpGjz9jtGiSeVPNpeIhHwvz9btseTDHVcxS+qgPZmwxZRx5g1M+ZdYOcfyTIqtx73qj+ChSsMd3EZgRc94tzuqUe45h8/neDpkgma+/R+GTHcX6rBlmJPUW9ryToqI139f8OXHfDkMF+u61QlZIdS4diUmz3EGAODdeFky10MyPYYJik8UkYXMAHIzieZLv5z3ysRkX48Wc0BavPzpTuus10QQs74zdWf/Nd9QMKUBpZMTQlmAijgdoKPaIL4CWOMnz3M3zdz+XUU/ix/n4t9r9vN8j/byrJNb1A3h039WO357x/HgTub/WHbS6/zhOzE+/96PvHzL2x38z183j9x5f5cu4cV9/EbPtx8/z6+nEnvsrPJyxL17sx8c6j/FH4eqffPzFwFOpyyHX0eEToWSPlFCHGw1vO6hw/XzBhhsln9ZnTvuFej5RLx8oMSp0PT25oV5dWE8+5ndZTkhZoqCX6LKEU74IXq42et88sLYWHXTvvByTqSSRI4FGI7+OQnEmq32ErlwEn2rlG4SvwSjgxTtnisEeUrk5fjW5aTZ4IqORTDrzCnyCkpHDiypbZmjHLFFrcdPBLIfuvQWUPTdvv/jpHjzsvpyc2hobUdxtk6IqKbkpqSZ2jVLMfENqu3f9+nAjcOisaVBFWWqmqtDVpRmX779j++47rr//HbLdqAmeTwtLKiQb0Dd0CDSgKT98+gG6UTRzLpnl+Ynt1anmjsD7hunHE+E7BZs4eSF00PgVdLhO3Ma9QzfmYhRPXJsWOgmRlZyfKeUZXZ9Jzyvpq4XT+o52+47P3/4DJQGj83r5xJv3X3GqK6fnF9KyoEnYr9sRYPbblbYJQxIN6KZYBjn5tJJuCtWTax1KKUv4ViRUO0kytSxe9GO0HhPUTMm1kgNoBO/g5yTUXNBIKsdwpkrJMSUlMvYZCHrvdA0vkHwPOnVZEVXQzkj+keqSMM3Y2NGeWNZnwM0gJWnsATOY+Zof1qErxTI0H3NbrLOKGz63D5/o333P/v338P2VdNmQ1w5XNwbU3Ui7OEXdws8DQS25cSAhPQhPDVU7EmLTe1Hh0e8h0VNIJpQwFj0iXUhXSvEdeKhCMMRe3jzz5t1b6lL43e9/j15u2OXGU60Yxr7fKMkT07IUkhWWtfL8fGZZ3Jg8bRsQJpf7nHapIJ2ndwvrm7e8vP8Fy6+eOb1k1hMgRh/w/v3XPL15gZJpNSNLop8KNAe6LYOVgmXo2cHFZOKMC/UEbGBMU6ZN9TATl7SS1kQ6ZfJTCUmoUPIZrDvzIlhggE+Wm74GGJqMXEv4oinpoOXj0xoNNyKNuJ+SAyY6Gm1P6OWVVAv7D0/ULOTziXI+wTBKypR1QQJ4klrJrTN6Z7cRnUNnm3mhqIwspJpJZYnY56OXASwJfXP/JTWhTaYLAlKx7HGio8e+beYJbRYYYw8WSmct2WVyRZnTkSgn6ukFckWHsIXUJi9nLBtd1CXjyZAiDN1Ry6hV2vktQ1Z6PlHe/ory8o7lF39NevdLdDlzixie1AFOy5VaKuubd8iyUM4b7XLDhiIjJKXTZ4SE5gJrQutKWk48nZ5ZfvUrqgjnJNzEGE9PjKVyomP7lf/0n/89ev2MtRvVBkvsjwxzVltvHACbmhvJx55j6b7pTPDnfkP6z2a384ssC0+mvQAOI1p9eObch4k1EcXVAL8HsRhUoceGJxH8c0qsNVOrS1M7XthPmapLCQy6sl8Gtz8m5PUzdR88U3hjwq//xb9mPa9sbeU7PjL2gnUH/cbwTnUK4LmkoPabjwuXyQgcGaTTGmy7N9EAKBag2FHvANENVveuwAgmjA9DiOyXUsoXjAdJmVQFyyU8XZwFgXh3OmVBLLHba8TWwvTBSmaInI7YqTk2z6kRS+qyjB8llAGr3824oxA0AU0uBZyxQWR6G5WYpAhqyUEQg5fn96zLifP5ida6s3SiyeL3QYKuzogxgZJ9RPd28+bYAHL3fUmd7WYqMdCCOKeD0TQm06lLq3OlUOn7hb03rHtRqUm53nb3EMuZrWmwJMb9+GcXeJaCUXS5RcN9fc/9CgZuJOTGxvOZPt1TDqKKjwpP5MVN5HsbMUUN9tEoxSVV2n0KLaL0T99z+fbEwHh+esN2u/H5unOzT6SyUOpKl8TojX0bpPrMcn7h6WmlvlSkgoqxlmdqWjnVM5fPn7leXrl9/p57X9s/k6mw1IWUFje1lgWsIFVg+LSoNja/ZnixmGMNmkAhYRJTrcJPquTkE+lS5Xx6Yt939n1nXc/0sfPUNj5++M5zogzPL8+sy8LQEnJ7B7CDMAOS2a5Xrq/fM/r3IG783a4bMl4Z+8eQ5N0cgE1fU2VlWU8x/l1Ra7Tr7kDe8D09ZTidTwHODF5fg88nidHdr2YMc6sGcRm/ajRhRHh6eoNIoredfXPJ461fQJrv7xRSfiKXlVKfMSkYoaQI5jJiwd8MT7OA/qeFk2Fe50Sc9MmK+H0RRbxGMxhVaD4hc7TGFlNPYaAqlCKYZd/Ps3teEmbWFreEhVG/pH5vyjg32WMRkyHjZs/eOO8+/Gb0kMo++AG3wbg1+r4xxk7vF3q73v2dJHAJI449M1KP9M4wc+aQs3X6JGtGQ40ANCbY4PEV0y9rDabNiZC1eUN1iINk0iEPyB2VRtNO1znow+PowfBlFt0PgivzY/RJge4LlgWWImhyjzHA739TfFcPuEU6IsOB0xLrblS3XjSvIw/0KJptowubBksxQ09GtkFJRmoudRdVnzaXBJ/+OgKYCSNwHCmYgyVyhZxreKDVufCiXraYbut1i7PZ5n4fEIK6R970U/N62z+3dvN7epgPO4hayAfiJPc0WySOzcASOQ+SFOdLDGO/dSx1B/8SR/MXmc33O7j4CAv5lT/gqTgsOf7+OabTkfFMsOlgKf0UfHp8PMI/j5LGyXL6ER70lz1+9CYHAeWnH/t4A/kzx/XfekyG8sQcjs/9Zz7W40+Fn3zUf/Lx38F4Shz0tUg8cnaWQerjYGVYfGr/t9+UNja0Q98N6zsjF7RvEYydkjv2K62uR+IluVDKEh0BiZPpN+0Y7Qi4s1hOkw1DdDMmIhvAh4o5uBH+DWM4zdiSQPHOd8KBIu8sOLMGmbKgQbdGSjulRhhO7lOjFnrTAC6mmaPf+M4mUUYkLG5a2NqGjOQgwsPxeFIecp55SQ/fl/ulTWEKeayAidbfcwokim8ROeQLE8TQ4TR2K4ZZo2vj9sO3bJ8+cP3+O7Zv/wSfP0Nr5GH4kNVEDp2wqYMKFscz2nCGA+oU+uyyNBOB4bTUuIuP/xALCcxjBzuumUUP5iERHlPrLglLCyKVzEqtbynLV9T1F+Svf8n6q2fOf/eG9etXLp9+x+//o9C++UR7HVw/byxtI7WdJ/ACaUhQbfyt27gxQlpQcqKWTC2F2+VyJAu+cfuULj+XzpK+s5zsMOm7XC9hwDiZ//P+CY+QA1gM/7HY0qaZuKmySXRwRdwPJ+7FCbR63RLtAc00OiKVIYPRiq8/y5hUJPmoVR1BaY9x6XOjl+D8pmDFiRnSG7pvbNvG5Ztv6B8/Mj69IltHmvo1HkA3rBk6p1Sr07ftMHe9b2YHcVEnhPrIFBPvHsc6cX80Q8akmvrvP5bFhpEksa4rqbjuXcfg+vkzN4HLh49o6x70gjlBeF+YenGUBGgGV7jcbkyPjlJ8BG/vURiLT39r7RN2W+mfn+FTZflYSK8fKW/OVIXXHz7B5xtLs3iOrx2NKS8mHbHhkrQASRJuYm7KsVlJVLTlwNsmxd5fb10WzqfC0zkGFoydfb+FD5p3Z9PisgITHz09J0pNL7xU65GokbMnu2oxBccnfuZaqZLpOfk6scFoG9wuPqzAeqSoQpUU8mKhizFy8GEkk2umLoWcOt0KDdDs3famnazOIJ1qGRWhlwVj8XVcJeSZ4i0/8VSukL4A71PIVLfbhbZv7NuNXRxkE/UOvORCqmfk9EKqwZ68OVjM05ODg6JYcwDXx0AnlIqy0sp7NJ+weubpl3/N8vKO9atf0ZYnNBXfkYKlYh1KjB+35P1Hiy53wjvwJTkDsMcCsCjoR+w5qRSfsGVKVyW9/4rn04nnr96Sr59oH38g/+4fXIIVI3EmY6bvYRprI2QhMYIeCQJUYgixh94XoHsMER4TnsTP5PMxn5qdRybbJt19NebWZCIu9+KhUT2Ge0zYjGuQk/N3fI3ClF64dMT3y5wJSYvGni0kUYY1xn7h8uEbtrSwm/HXH/41dnohS2IpQtdEJzN6D3DVh0O4Sb9QxBP93h2wnPtvThmLaWgjBlaUUo77UrUxO7zut6JHN1iDARCD22Ivjvs4Tdedh1Hu4rlXtuxmwbPgVC8g3QRfA9UcsfvO8+psjQP1NANRH6hhzgrwnM0/I2phceCJhMa1Qjj8NN1M2L2pcqm43NEw9e/XsrI8v6MuK6meqGpkFao6s0oMakpYc2P7sd8QG87gOlitLtdBO4yOs9WFVBZ683Uy2jhmXHSFfR90ARmd/dboXckkuk7pZkJV6GbokGP/ubNeUphHB7gUwKmDoIlpEO/7mB4dYk8/J8PMjnx0ApCevg3G5v4sOT3kyXZfPzkHz2CMY6/VfWNNEhLggmh2ILp1Wgz3sSGczi+sp8rLmzP1DCQHWZL5frGWhNaCFpd0zknLUI4cyywzhtCbxjWv1CW5/5IlBhpsFN9LLNg5at4ImLItN0x382fBKEmoLy8hFw6AVzu976zLCcwL5FpcjjMlUG5OnlEdjDHYrje/T00pYu5dmQXRhnVl0NkDCK05U6qS0okkJ4+dprS+09Un87nHTI41u1CXBTNlqaeDed1bc9l9NrTInZ0vzgYW8wZNLgt1PVPrE6PdSPkceZl7DbmEcSHnFZ8U50COioRp8vQujcnPhp/DYxLtZN15tLXuHlSjbxw3wRxMo4qEGfzoO73dsMMrLQBVsgOeWOyfns/4+wWbRA1J6vWXzknfOT5jinsiBxnGsOH2E6Be98WmMKLB6KbyLQZT9WhoBIQTgFCSNEm4ns1Nb6pQbUyw5JjcKjHB2sJU23ztTisH1NlXmPleHvuPGqTJYEtuuOkNJQu56J3xTTJn7M/d62CZRTMOyKiDR+ZDOybgk0wjfxFcvOfHY4EaqHVKMWqFp6fCWmuALU9cr4O2m4OA9KOWNSZRcfKjHKj3JTAow/fbZIZYQhOg/ai5hulxKBJDcpy0nzw25UTOd+BpDJgDS+h+HM50dqsREY4aZbTuPlOa6Anc/TYx2nCZolow8PxauWonWPeR86fw0E2WKeFxK8F63KcUkvvlmECTYkd/9TEh8VxHjst2NCUl8o4DtJyH/FPIxr74+sufy8/8njx+/7j+99xowl53dyX74vn/vY+fAEQP4NGff9KPgCP54lPf2Us/8xpffCvqRvvxC/43Hn+5ufjxaQI5Fjk02Tm7XnkEFCcB9njgVdDmN0Y3nxozstPQR8dG885G22i5YpKPSTSsZyTN4DzBl+HBhOi8BLADuBfJNIyJat70qOoxwRlGzaWBIobMRZkKc3Kc+xwE8ESg3KoobtaaUvgniE//mCM4HxeW38wSJtN+ubzrAkMHLQzQ+2ihA7YDsxBxZscXFzoOQ02PJGhS5exh4R7IL/7+Ft4FanrXSMRmdgSA0aFvXD5/4vbxA5eP36Ovn8m3G8tQihE9mkQy9S7kw59ZvNjw0JrxbnHN80Z10cw0J0yqD8DTpPlOKCE2o/i/yxjvFGcTN2dEVpIskFZyfaYu76mnX7G8/TuefvmON3/3nuffNNYPL3y6/YHP+6DphfZpZ2s7JUb4zoksFrRvM3MT0exToZyNlKklc92uDubVCsN15JJrFA7D9cr+akCMae+Nbdup1UEsieSWKCLDCTUkVJMxkI6k10EaoffOZPTNTozILAIc4Cw1RedBGD17YWKF0b0j6QISZ8C4F8OYysWgvEYI14aFiXuyQaKjbaNfXmmXV24fPmCvF7hulOZTzkRjQ7wPHvON6QCdJLyc/D4JnDUKtACS5rrOE7jF6cGiqKbDkdglPbFKDr26HeelVAc2RITWGrfuBqf77QaIS0NFjq7J0NhOzX3Oug502yP4RiHhumJPnOIeRHf6/hlLhSZPpE8L7UPl9qc/UpcXklQuf/qO/sMrZXf5ZIbDAHPGhEjpSOoF9rQ88/t+3g9yrEf/oUZxLpScOZ1Wzk+V85Mb+rduYBtBrHMgrnqiPczpzMMmeJVDOlgjJnBnSc3zwgDxLpUlvx90DjKwgfbmkwuTFybTv+aYpoTFpQ7vsqWQV/d0kFHcP6Ys7gFhQjOC6SgB3Cc0VzSdMKnAHM8r0axwVkhKxfeEmDiVixvZ2+UTdruxXz6774UNZHS/h1MhlxN1fUKWk8tNkt/jnM9hAWjYBtoz2t10XWVhpDO9vsXKGZYzy/tfsL68ZXnzjh5r247GgYJC6w48kYU5hSvC4WEGbeYd7ymV1hlDU4ZSXL6jPpU0v7ywPD2x2lvkw3dsWVifn9H9Rt82gvvr+0fXoxttKk5hH96YIe69I7WaAPC815LEPhUxLsDyY5+aHWKLRCbdgRce1/LjPhnftuGG8qrD7/8Ue8Gx/on4FB5KkVtMvzNmrjELQ5zV0K6fuMo3WF25fvyGVSAvK7WIS9Zt0pMC9Mhz3/Y/E9hWCzAC8/hp3nibnki11KOx44VVAO0RB5lge8iLH/c6B7IzEuwlwwEmDUVYljnj0dkWBEvVjt8fCJG/xF5yJI6zcI2iRyyRsiI6c7loJJGi0JzM8Pt1n/ewF3xx/5ZCrScvLLtLuCRX6umZ+vKeUn00fCFjJvSWvJgFlizQO9Ya++Uj1jaX39iU8k3ms+cos8TKKfv+ZHeAInAO9jFIZsGAcplGmmwDNWyyZ/ApeA4EWnjHSfiLpXm17yzcYNeaxXpQCe+jkEcz9657TBfhAEqnvKX3QcqJZXG201EsqMuCRTXYgOa+od7+J+mgZKMK9JSxYfTu06T9vTJ1WVmWlWU9k1MDcR9OseEFdhjQP05bJAoyCWqWhYfP6BYDKJzZn8vuRKfdwV5JiVzL8fm9T+hrfU7pc6lU5A8J1pOvkyUAiAkm1brCQ8GoQ+mt3deruFRz6GDbW4B0ziaZAIVod9ahdVoq5JS55cKyZlI+k9LZTcaHe6Z19RiR6zmM1D1klFywuvgEzBZ+nyOAcyEilTf5DIt7xkKRUSllpdSVXE6ktPq941NIQCoilZQXJC+4R11htsmH9sj77wCTS83Ci/YoXQkQxT3edDQHFcxzb8JbLukdeBp9D+BJQ9qVGeIsJY970RAWdQA6/vgxK5gDUoabdaOT+ZT8OKLe9Ovt1huTsy5zmVlMSgvQSfXY2DgYHHC3Vjn2Cj1yxaO2CdAphUReEG+cZvehuq8d9eMWjTwi9hIjzithj6EHwDR9uWQ2OabW+AHgmIK4uV8gMZHYPE9NGCWlyPUl5LARlc1rSJeUG80GuSaWc+H8duG0eE0z+htGeFXtt80DXOg95iFoxCVR9yazqL9kxDQ/COKHxzHnxAWQnj2fdU+/WUfEeU0SfneeW1msYxEJmbADWjDvCzuaszqiDk4ee1X8d1sLMNnwmj/q8yBh3ZnCkWen5HuUPViW5KIRVH0PDkeRY78/cI8DP7nvr48P+9H/7fjXzMZ/+rAfff0FYHNPeZhvz4++TkedPtlUIReXh9f6GXaRfPFqX36YPwv0yJ953sPzf/6nX35ymxX5P/FSR4Ug82z/3Af6+cdfDDxNerHECPuUvEtxWldQo28b27i6Ez2ZJDW6rIroDn0gRal5JRcLPwFDRmd73Rkazv2SWc9PPD2/YcnvILm+vLXoVMwEGTxJztO403waxUE/jcU1E9coaudEDwJ4Qjz5nl0DBd9siEk8AR7ZA5gwTbhKyZ7EDD0S6aOAnrn+ART55CA/l43t1v29g94vMsmsMdEgkvMjiQdMhLbNiX3pvghnEmCC7YOprhGc2ZKS69qn0Z13cbzDmtmxfqPdPnP7/AP79SO0C09VqKOy3NQHv+XEQkW1RYIA+6Ux2u5G1RrdclWyGtmg5ABODCSv/vmUCGwRtFOeZ9Y7/fgmdr9Jf/RIBSkrIk+k9AT5mVp+SV7/mvT0P3D61b/h5bdf8/W//iXr/zBYPv0aXTf+U9+5yR/oP1x53T7CpfCL3jidFrII18tnRkquM0/ZDXTFOJ9Wnp9OPJ9PfLq+kpKw5MRt37Gi3ul2S+q4GCGPGgSzbnB4kchMrnqAVSmSTV+XEuu0lnJIN50F5MlNTg+G8uGJUms5No6UPSEfCaRJGK5mrBUHb2RB04BspCos8ZGnpxEorV14fd3chFwbdezQNj7+/vfsHz/RLxfqbWdpSlX39pn1oUk6cCQfpx5FdRTPBG3Wi2whkT35nWvYvPArCfcqWpJ3nEQZXcK80JhsAl8feqwfkxiTLiUkD8rl9tl9ccZwOVj25NRljd0lL+Ky2bIsM53AzHj3/itSEnprDq7oYKleQHmX70J//SP9+hG9XHm9fMvtj/+F//P3/4G3v37i5ZcL/fU/8c3f/3vSnz6y3oyqhTUn8rk4O1CAKPaHGlkHSWJq52RZSHJ5K1AlxxQ3Y6kLb17O/PLrt/zmb3/Ncq7URXj9/Dv6bWckPzspJdJSqOviJpoafgvdGEkgmgdzVLWZ0rQf52Fop1hGklLPSyTZJ/rzij0V9JRiOqRgD7HHy3+/PjuCLIVaCrmu5JjAkutKPRWeXk58kkb7/IH9Y2fQSOo+O64mzYx6Qk5fIeWJspyQESxIKeRS3Ug/1cOoej0tLLWw1EK5vrLcrqTPn+jbK9o2xn4J74CE1BV9eYcuJ1JdqU/dAfenlVIgYWyXj/T9xmg33wfLGalvYP0VqZxJ65nT3/yW5fREWs9w23zfGyPAEJdm3cbOLj463DQoG9eNPAZZlSFGH43WHSTXJGguRzwUhLyupCQUkSgs3D/w9HTi+c0zy77xv/zf/y98+4c/8r4WGF7snSVDGPx64yDyNsUn4pAYISspqZLF6fW9DTQK+t4HU3owH49dN2eRyMEIsWH3xpFGMTX3r8i+xuixYUmAswfcxUxue7C8hm4+6bYmj3lpygc7gssGGD4kYKGy377n9Tv4+//1/8Hf/ev/HW9+8WueT8WN0FW4WqerS/hNGyNYvfu2OWugb17kRQd+dm1FXKKUc6HWSuuN1hqthQxQBxYs1STJm1dRpH+ZHEYRlxZSOTmzSY02vGlj4gb8QkYsmjxdIZ8ZTb0ZpoU0TVpTnVfFLfx0YH1H+46gVAFkssY853IgO7nfUoARHQ4JP7HneFOwUpaV5fTEUEhNGdcNKQv55R2n979gPT1xPj2zlDM6hB++fXW5hypGJ+UdKTuinaaD1q5sdIooNQlUZ3JZG8c0OS+6CilDWU+HZHFvF6y7NK+mGOhSoA9vLEo0KFpIkLIktBu9OWsopUHOI6b0EeuRLysZ8Xq1jykR9/MlaTZgiZwvGq4JL57irl1ypiyVl3cvfHq9YDocvGemesrzaeX09oXf/uavaOdn+lr4+N0f2ZdnWjmj9dnv0268e/suGr4uuWu3je/3C3v7DmGn1sF5eSGnyusQPnz8yPVyYXv96AciA8udsiyUpQbLwZmWpWRKXijr4lNN6+4xNxq9tWT2/Rb7504zCVlac1uJbKTcKcWBkFIKRRyA3LbdpVmmnM8vB8CYUmKMwe12w+TCiKErijecblsLcMUBd8L6WfWKJA3LgYGNRm8bT+dGLk/k8kwfYSQ9NDw7HfgZI5rB6sODlrJwWp+5qZPtSnEmS85GrSeXwQfzU4OFpOYS2bKcWU9vMVXafgGLPUIMySeknMjVJXeS3AdtmAMT0nfk8JbV2IO9znLMa9YEfq7omwO3+80Z2MOZZOa6JDTileqgjy0YK5DCjF5SprdM0ukxle+g06xFUvbGjuDx4fA+TMwp05JqxDGXWVmU5RO+dTzLkOEkg9F94h2xXwVki/M8fW3lFPlg2JIcDEPSRHNdHl8qWaYnmJCHnxtNeveblR0ZmaTeUDx89yLH02SoDFQGltz2gCLRBYw/X25zD8V1yPTimmW5g23PtfB8PvHy8pbWBtu28+lyZYtE2bLRzYfrvHz1zLuvnvn1b35BKSewE+P2nuX7jcunjQ/ffIvuP9ynNpuFBLOACtqFsW106yTdMfVcPtVoqIQp/bw2sXgPBtCd7elsp9mwIxwDszgoPsYgOwXWc3gm2WIOAZl1drCjLUBDE2du6cRW7j5RebiqBFOWdUVSpuTEGM6uMtOo/x0sSyU5W3efA0UgzME4SuafACUTmLI43p+CRwiH9yg//tnPvNyf+cdf9BTnGX6Z2+g9y3l4zp+Hjwz+jNSOwAseX/0vA4P04dcmA/GfPLqf+eEjAPffevzFwNMYwwMY02oQL4gDJZ0eTGqRbEUBmmTq6APhxjdZR8UH7qHQjlGORvYx7DuMnu+a+SjS3OTUi5muhg25m3+qUzhVZ+eTYDwRASuFDrrfP8NE04MumEloNiyMCV1+t0QAcpQyXvpAi70jFjcawXwymPSFZDDHDh+GXilQ51zvqL8GW0wDbzySbznAtlpLHE6UdjbBrXnpvcOuePCdr5EDlCB7h1XMgcTRtnCq65yWTFkKfSmU1snCoexGoe9Tric+sTDvnoShlOzjn/Mc7zop1zENSMc4mC+TZDiptR6PJuqdQhZp8bMYV2oxhCqHebQtCE8k3oK8QeUtmt+Snr8mv3lHefdEWgfF3vPy179l/eXXLJdX6ssHxnZj2z79/yn7syfZkuTME/upmtk57hFxl8yszCoUMEADM5geIYUjQuETZV74t/OJIlxkKBThMkNOA2gAtWRl5l0iwv0cW5QPqnbcb1Z1dyFKbmXEvR6+nGOmpvrp933KdnmlrAuk7HRiCQbJkt1fqSzYqNT9wvUSyTlBDzW/X701NDeGSkjTXPY2wc/ZAVFvp7hPgI4jQGj8HTG9z9eE3+NJ+3f2j+uvBWFKMJhMwAD3dPhh6Jr7CDnqE66cthHsJ/WOAaGxLjlRih/2shl7e0WkYftGrVfG/sK2f2Y0N+NN1n1yxXDpKxiWBFlSeFNlrJpT4PcWLESiCPB1qszx2pFQBYU3qZGTkgssix4thcpwsvj0gTKYBanhfkXz5G9WOS8rJRcexwN12x086p3Jr0sav3scOHeyChVy8glO3kF3Wa7aYA222HHQasfY2OpPYDvUZ67jI/V38PHUof+B/eUnTpfKqSWKGYt6118lkVPBc2vjUm8eaD4ZJJKoecAGmJdLJi+Fd1898nAuaIK6X4GN0Yy67ccAhxzxKYRSnhDgICEJpCxIKS6fMEIuHN4rwzenDJBS0FNBz4kRk/F0FWxRdHVvKSvio7njdfqMTyJIzkjOkAuyrCBh0JnE2RPryvXhA7V2dn1GJUZS42bLiGLpjOgJSSs9nRnJWR+aV8gLZGfMDlFIiXFa6TnRsvsWaDlTyhm9fmbsF8a1uJksiqQV1gdYTuh6ZnnwJDevCxIeVHUoPbshasmClEdkecLWb5C8kpYTYz1TY/pXMzc6NWtHYjMBC1NxU+no7DZrjObrlGD1jtGOwlaL0uJ9WG8OPOVCLhlrmxcZDDidGXXjw+XCa61svbOLxLjI4YMUho8ox3yC33FWiXcrW2s3QDTkuLW2g61z7JOZ3NyBTjOe6fT0G4PhlLUjpgEH64coA2axMhlEM1fIySsAw5mGvbtkwZtb4swz3FvR1NHoVjefwoagy5lEx9qVn77/V958/bUzUdazj2Tvfs7l5PGwe4JB74N9vx6sgUPeZyN8z3DGasqYOpvUC0mhibrJvrfd/FMKweRyaqj1fnhPrvns7/P0lnR6xCTRh3HZKt0g5eLyYQ1Z93JyoGItfPrxDzx//Im+vd7AofV05BRLFi/G9yv18uKAs8TEqDiLR1AKLNbiBP3cZyRAwiATeL4UHE1xdqWkgRaXwqXlRF7PaFlppmyXjVaNrQUIZELrMX2vN/dTMfcszDm7l46BWD4S7LZttOZeTnnE1EnzTn8fQg/moyD0Eeww84m879684+nhiZfPz+z7C9e9USRHXL+dsT28Sw6QMIqm6WsVqzZGeIePZ+SCrupx36Nc3KcnJWVZARkMMrXXo+F2Op9ofXDdd2f8CTEEwtk9L6/PpKWQ9BwstEHKRlOXMecCJ20sJXE6FV5eNp5fP/PDj7/nev0Dws66DJ4e3lHKStKFy/Mr27bR9gtzIN4IVk/vCW3V16clCoOUhGVZyUuh9c667/gcC/coba3SWuVyeaVWz9/biKmzQdW0+NO7N3kNDQVATFSbwUAUYspbKWvcE88rlnXhdFpp+4XLx406dlpVb9pYNFbyBP0GZpXRNlq7BG6oGAXR5MxBHz92sNGmdDeJA2/LcnKvPaBWA4kJsTonNMuxFmw+hwqlFNbTGRs7+/bIaIJZRelIKg4cB3DiCbIwTZVt2it0u9Uw94ygqLEwIh7vzgxurzEoxZsUU+I4wlPUAb4aTBJQggVPCllVQrNLzX0oS3JZmQhD2uFjZRpVQABBByozYtom6o2MuU0El3tFHPcm3Y2FZWNH1Rvgvh4CHBlTMjUYNObEMpkviU9jnT5nKWIsSHi/eZ0xR7FKWg7PqTkJ1P/9NqjAoi6U5LWm6IhcS47PcmtGyky8geT1sM576e9kzZlvvvqKr9+/4+nxDc+fX/jw8ROXyxUnhBvNPP/ORfjFX3zLt7/6lr/8279mcKa3le35Lfl8Zf34yl4L15dO3ypqFR2gE3eNHM1uOCzWwi8Tv9+a/HHTukXmGL0AF1Nya4ac86Feyllv9cIIiw8NzzvwSakxbu7G8fD4Own53sxyMLDtzZslA26m+4C5rN1i8IZGrtOz16auHJU7W5+EplutMIjPpdzZAtzDR/EnbFs8luvPgMT5Z1YBP4Nq5Oe8Kflj0MX+BBAUeNdcRxa/NkkrX/xufHvwGmVez7sff/Z4k7v4+UcvfYtR99LQ+f9/mtV1B3odIJ0e2+BP/MLdNYvc4T9Hj/rZ158PPI2ORqCe7LYZiI99GrxI39OTjmkHYOVfN9qoWQdx7b0vUj+cRjN6U0ZfOEYxzs1PTPQa3v2cwzxSZADupTEprnfgDB5oJx3eD8fowva4aDJcCgJwN7I5l3H43vz8pk1a6bwNsyB2qnMcvngC40ZufpMmQ2UCSQw76MkEmDTBJwktrIiDBLdCeW6miTZHET8chR+9B51SbsATsWAjOehtR/uO9MqaXa7VcpgPzpA7vCAdEswuEXJaSGVxdk/t4Usl3kyT4FUGW8VkyhGnZG56gN1RaycAJQQ4E4FeZ0Es9Djkhyp9ZFTPJN4g8ojpI10f0Ye3pMcn0tMCuZNOT5x/8UuW9+8pH39keSy8XDf2XdkuL5wfH0PaMsKnQCklwbKgy4KZ+3FxDYbeAZrFte7N5SF2o9/fpCjxWI2JbkQnKfmanEa2M7lgruWUmT5hvYc2XcM8G+/cTYDT7FY4dPE95XJUh/d82ttCCCDJzfeXBeiVU2JdF0o2xtjpVMq+AhUG9G2njQu9XWBsyGgOGI+QVkYR5gwEN8yXIvTkoJP1Cu121kz6NXfAk/P+PNmLWo6SfQrNXByHJcAgRlPH2gz5i2HBtnLgSRLkJXF+XA//q77fhhFIAGFqMRbcfA92T49Jd7Git0YWz0eyCjnJIZcTMQYVu37C+o7tL/TLB7ZxpfVXUn6haOOkndWUgpOD1uRrPGcfU91Gp1q/FYAHYB6nmlp4AnWWZeH0sPD05oGSwWRwvb7QmlHSoPWN0ZpbN6Q5TRC/ZzKniYWcohR0cXP8MUZIioIFFMwPMdCloKcMJzfDJTwopYBk8ZMkJGkjCoKDBSdR2efsHefwhgHcMy0v3iU/vYHXK01WVGOU+tEJTqAn0AV0oaeVWUGV5QHKyYEnk/BhU8a60lOKyYEFKSdyOaE5MfbFpzrW6nEmrchyhmVFTk/kUjwRTRkf39yo1Rj5hFlHTiu6PqDrG0Z5h+RCLgu9LJh6POl3AJKJRUE1wn/KE3mfhRnyrLZju48Jn+lQPq3RhVXcqaG7fEgVKZm0rlTcp65bx8rCSJmfnp95rY1mUHtH+wjfB18Ho7YAGCLw+kQMXOHT3dB+iJ9LMcKdKZO9S5buKd+T2Tsn1Ek80AGieO752Pjt+f08AyTOVE+wQkqvShtu8tvHoAdw7rIXZVLkJ7A32sBSAk0kayQ6bVQ+f/iezz/+zs/d91/71Ljh7MKkfo1pxP125kRv1dkDR3fbzzQNZizJpd8doZv6+O1UmCZO1j1hFzNyTKRjdMx2iET7/PBIWh/JD+8oD29Bsxfxry4NUs0BPCn7vqMyyApfv3tLq53tutOb5zySMnl98u8VlqLuS5ZyMG2VYT4BD5nSqziughHt2ZoxbMrCI9aqN52mjDo0G0iy6EYvXqCngmlmH8brZaPtxmjJDeSNw4SYUenDQadunVPJJBMvrsz3shfjMVV3n9JAdYCxBzg2gacJooonatet8fVXC49v3nK97Ay7sNfwzhm4t+Ncx93lRzeD7AlKxSqPBP42CGPmKl/m/+4D5MyYUpJfM+k+cMOnM3A+n2jd2JtLfR148sO/W+f19ZmHpyfcHS6ApzRQqeTkAMGaOmsePK6wvVzplw/8+Lv/yLb9Adg5L0Z7emZdzizlzLbt1Opsf5HscmjznHOEbEtMQ2rrxs45KeSVbEYpy8FmWIqD1727j+Tl+sK+V2prfn+PnGTmmC2qUZ9ypeIsvtH73O0RFJSUM4twgFY+gGel7ldsf2bsF6qVACl8aE5WOeKS5/87vV8DbcmHh0xKGUneALSwAnFWSD9YPUtZ/X3ZZGcqouEFGPHtqA/F94yIy/vLujLGiXI906RjXRGraPjWRof8i6g31Qs25oRrzye9URty+kTIm3D2Yq9Yr4x2oW0X6l6pdTukqaPvXgPE+RPHIY2MxWS6KqA5k8yHi7hR/G2dE+HQj6p8QCtfAE8S14UUipj4TN55nQE5ALFBnz5PozrQr373/WwI2XfUdEf+YHooQkRAkrObc1k91kzgKUXDvQ1IFvelYsmZYKM2hlZUK912mPYBeMNFNIXEPvyMgmTwR8BTXAfPXYnf9dxRgdOy8v7NW779+hc8nB+gw+vzK3Nog+C+VyRIi/LNL7/lV3/9V/zlf/3fstUH9n3l5adHJL2iy2c+fnyl9Y+M8YyMC9q7Ez+OUlEO0Emmx6pxMILMBMkOcqKT8eP5n0p49SVvFk8GpQ+OiMaCqTOaRG9MTw0VTZ9SSTnOfw08IF78uO+9RV1ObIOQS46uYJNM4QSJnDXqI4t7y8FiV535/qwXJ7N6MqhnJf6zSj2wiSPbOPbh3It/BDndQKc7PGX+fDAQ7x8e/y78/Jvbf2S+l7vni6vn8eTuueZ3cv93N/DkAHq+ZJvDF2/qZ094/5l//onnT8f7OXK7eJ0ZGuz26Ht/rAmU/zlff77HU3gZ+a0IxlCAPN0GFkbEHlCCRZESy6KkGCUuxUGJQcXCGX+i2n5ICCIpGADC3hJpRBGebqMZPXg5ou+ADAy9AQNmHqBmYurdrAHtruPQHUjLEiPKEYxGJrmBtlR6N6QNjIVcpl+TUMeFXsMsPBaLb9iYPGMzxMyFYDH5LrrdGEmyo94klwf2Qb/uB+evj5jWo0ophWm+VkphHtbzfiSd8jU8Qe6Ng9sYyULJmSTFTdps90UzBrXujO0K2yvy+kJ7eaE+f0ZfXkibsQzh5fkSwJny9ObJC9/Twvl0ored7fMn2vWVUWOKXVLEjG2/egGSkzNgYkHPrrgHGo0E3ScXTWT4Nno9HYEfEbyHBLSVwhNZvoL8NT29oaWV8y9OrN8UeIKeE6YPpLe/5PT1d5yfP/L4ze95/fjCvnc+fviB5XxmOT+gArU3hnVWfWQ9LyxPj0gSeq/0iyHr6oXiaJ7siJeNvVU/qHN0hWITtpC39O7sE0uJUhaKKrkURutHHDkOV+Umezr2s4eI3qvfe3Ogoo8RY5+dPeATKbw4kpRdZmfDu25iqC7YWLyT0D19yLlwPp9QafSxs0pnSKVXRa8VWSt9GbTvhYp30/bnK7kZqUG2OIRVKaccUhyXWg4D3UHS9DfyAuFIbqJARYySVjTDcjJKUTfwnx6HBtpmmmmu74+YlO618yMd+/jlo7Fln06ZUJakpPPpxqmNQ3RM/48oMvpwA8ZWd7r6IXpOyWV6Almmx4S5/7Y4FyuJGyGaGafTgsiKSGLvA6GhNNR8bHiymLIWh6bR6OJ04nLyArPVKzf/L2dEGVCWE+XhRHlYuVrl9box2oUfP1bWDA+L8nRaUIUl/FUwL6zaXhna2YZPMbOU0NOKLMUL097d/wlcviCZLCXGYy9YWdkVuhhVBpYaIg213UmTPdE1454WNzaXs2kyfcTe6N4ESJrYhtG2wXV0Lq1Q9RFOX9HI7nFSmk8X0wRpgeXJQabTAw5GJWRxbyZNJfwUlC7CnpWKF/2qPu6dvDD6Tu8V901yeF0QhmZSWlkf31BOD0jKfL5cqa1TR2LLIKuzGeTxgbQ+kE8PdIonKarsmHdUez0AQMbung/Jmw0SnRuxyn7dwvT8E9Iaai750ojpIj5ptfdBJzFCi9qbg1O9eUc3Yaw5camN1+cX/n//+hv6gOXNW+rLM0uYF2/blbEHW1GmaalfygmrW/M4XluADCPM/Yni/gYPfZEg3Yq/+JcDVI9mkwxmTTK+eOxcI36+T1qxJ8Lghb8Dos1wYCclWkpOylPFtPigjNmMR/wz9orkgVpjuz7zu3/9Jz4+f+Lx278grSdSKeTomGZ1CXLbB3uvBNkK6+GFFplfSg5K5rJCXhkivNZOPp1Z9ZFz+splXa2xbVcmUnE6FR8Jv10ZvDoAWTKnd+85P73n8f0vyYuDRm0Ynz6/sNdK60bOxfMZcWmCKDQWTM+QH6EYeVlY1hP59BSAoPH4dML6Trl8ou47tl1c2plSkNAHPvLdGQxjslMDVEGIQQgputgNG4nRPObllCmaQCptwMvzZ2rrwUpY3JtvKDLiHBcDKr290vcL1Cs2dpIMHtbVZalNSSRq22i10q5Cr0CF11ZhGKP18Gly2X+v1aXYrbPklSSJbR98+nQB+8Dnzxeue2dYpoXElOHeXOBMiRYm/DmHdMyOjAWQOC/uygBzwNHlbxGjxTAdkISV5MV7crlPyomynPjqm28cZMC9qQZQHpSaB7Ykqg0u+4V2+ex+KX1D2pWuhfPDI09Pbzk/wL595NNv/ol/+cf/wMfPH6gff2RdGqod9srLT8+8SmYJPyNNmdPi/kd5USwLdQza2KhX0FTR3NhelN429npFlvMBmI+QxJWlUHJGNXF6eKSsK71Xnj8/M30pa60k3TxSpCU8+DQY/n493WjcIo75uvM8KJgwKLm4LI6vvyL1ypoXPgrs+ydae2HQj0Z0tuQcIlH2tnshvg/KauR8Zl0WpvfcCM+cyVRorR1AU8mLg2Oj+tkQkzOJnFXDuNUxTjeLdi+rArayLCdG3wJ8C9sIiyEdNs98CYCbsAjZsb7T28YYIZ3rFZFBj0ashKF52zZqrWyvL+wXB572vR5gndlEJcLnLDz8rDnrLmUfHJJKoYzFS1tV0P7FwIiDnRJsfW9sT7ajn+lTl3ZjA7kH5PT98sFM7u1Va6XVPYBwl9oTWICpS7qm12AfxjR/V83HvUpaSMnl/ikt8doJnwCCq1XCUGikkEcPw7Iz9EarJNkYbWe06oqP4VPtJI0wF/f/MgyaoXJfouvdH28kNB/ZRhJDs08ibd34/vc/8uHDRz59emHfmw86wOeJo0Iqyn/1d/+Ov/n7f89f/Df/Gz68PvLynNlMWMaFU/rEw8cLW/9A5RnbX1xiLQNqxOlhaHPmbM5CGpNHHCKKCQgGMMfofvtMobjVSdZMnsAoHACO12cpGEd6gKFjNGzkOA96NMr9sSn8mu4hDhU36JmMWkYAYfHlUv7q+z8KahUoJTGGM8tqckOom6Az1s0dDDUBJ5v1AJPckLjBKuNurd6+Dq7A/V/8KQzlDsCR2Nd3f/1Hj7sBYX/66zhNot4bP3us/Oy//5avLwlRf/rDfAHi/dGj770o5fj7+8fb8Tf/tnf5bwCeHDG0kNNJBNWbYVyY1akXejknUkyWckNIglnkhSOiEYzjzZsG0mw406gy+ob7VwjW/AP6NId2SIrmEh4pBQvBP7yay0eQYC6MW5d0XqAxpkc/M9IyuoEMlwdFadJaDfTckWCzFlTrFN1dRRc9kmzQwH0mIwkmonL4/dhAuvp1m12B6tPRbNgNeJKbARxykzVOpsgdhcQ/gt31f82nAYgNZ4mMmyb56CjNoBqdWLUR4+UVkR46cTc/TDlRSqFEx6vV3cfI1t3RTk3kVSkiJDPqdnXqp79isEomld8O1Bi/9LfuK3fFy1z0s+MRHzlTyPJASW+R9R39/MR4fOD8daY8edbsTdmElDPr03vOb97z+vRAXhO9dS6XV7bt6hIgLBIe71TmrKQU0zLu/pi5x4ck53dLJPgjDB0Rju7WpB+mlKKjcpveIGYh+LVIuLjprMNHwJlx/jxTiup7gGMC1ASdDt+viUqL36MbyB/3ZwlfJfPObtJEWRdsXLFh5LJwfnjEGqR0ZfRX9pRcmtOaT90Z5pR/Vdd9z10nOItIhssuCWAIO2QlkjxRMB9LE1RnL+hzEZYHQdPAJXO+11t0TOww1r3Fo0R4lsmNPaaiaIuJfThtePqUHMzK4T43EwyenyEnn9yYRJh2syqgNhmAhBeBT26sVrHREWvHUaq2OZVdOQ49f78+jjlr8n2pYNkZG3PKS16KS4KtRtfyJr8DIS0ZklDNWSt0l8kalSRCH9m7b9G5b1EwtO5T7CwpJoos2dlOwUKynFyeFAeuh8nKYHcGjyZGFoY4s64r0c1vWLvSrPvY9VQigcuzvebd1D7cR8GUFj6AhrMwuxnahS4r5AfKw3uGFiRGBOeQAgzJsDxAWkjLeowcHnnx152MJ/wzDJWQXk94KVKTAD56nD9ElGlBw99qw3JHSHSSe7+RscUBsJGUXU8OdmiO5RiTuJCQobqZr0iPJs30Zrh1+IcIvW20ttN6RUZFrbtXWXRcLQxmVfyKafI9pDgTqbY9zEQHr1vj+sMfeP7+B64DUB/UoevJz+vR2S5uVjrhI5vvvbmsz0xczgHhi3HUMLevu1xjCuZmvBrmbBLVu06dxPeqt2luZkyMCcNfW8LwXm7m3nMa4D0o6iw6v6OTQWWi0SWP9d46op1iLt1NxSfRSUxhrNcL09/FLSJG5DT1MO1Vd3r3c3/4BNfZZXbptwMWI+Sdy/mBZV3JpbDtXmjlPYofs2CVuFRMRkg6cuZlb7x+/MQPz431/JZcFsqy0oZFgWe04Sm397q8u7t3Q/LK8vCGgU/zPJ3OLI/vgpFSWR9cprTtF0QLKTef0rWNWFsEI3L4IXRnOj5XaxK3VJj3SDyZY/Tq69BchpxmIjWad+Qj/kkAMN606dT6Sq8XRruSrLo8S/09WO+MvWFt0LbG/lqpV/9ZBvQaTbrq7NDRLfzHhudug8jhDBHlcr3Sm7Ffd2oN5qQ4uOENzoj8MqcS3hnhRt09PR5mrurHeuxji9miw8+5zqCZG0ZrGuQlURY/gwylts7L6yWQPfVJVjlRngpXbfTkRfi2b2zPn7BeSW0n9x3TjLQXxvaRD71zvV74/OkDzx9+oNUrZVzJPQyetTNMPYZZhbwgVkjLQxiOOxtvUiNsHpUoNi60GrKn4etCcEaOy9x9Uq6bALtEbvwRwcBiDXZa3UG7s1Cnxxu4fDcCyy3v08M6w3Mfl9ylnDk/vXV5MsbL64nL9SN7BZONbjWGNkQ+0Q2kI1pJ0aS2WKuEdBssGn0BHnJjqINLkHwTxHoh2MABzk5AyR9jpORAWVkKbc80azCSx4reaX13kCqeZwwJBXSLCYU+Bdk9m6oDNOaej2Ma8Y3hvlq1sm+v1LrT2qzBLGqdKSUj2LWeWwyFkTwHyslZTEMTPXU03Qf5KLpthAWfXy+7VVvhCTUVMCnWkHIMJ4kYOeL8HT08AltnhJQRCxuSyXgKqet8x96v8jNcQjkxGyWe8zr4JSRUFn8PSbA+4jVKxPQBujjbSWs0cDKdnZYM6YpqQzSmm2pzyV1MNp8Vls1EIeqRA5053stg3xsfPz0zIua8vl647JU6omkiSnivgAiPb97x9O5rHt5+wwuPSFVaqvScYIHT21+wvH5N7T8x7IOfAcOO9SiIAzkdJ4grPhzAIpQTShQVr/UOoMRBv9EGXTtNm/uMqUbMHi4UVzu4Gin5Pc7Dgb7OoHc5lsvcxzeIwq+LT4SO5l4oJCToPQ5KxrUnZOpDmdLpY8hEnH+3ZpYvkt7Hbd0fXTQHsCYDK4m/72Rh10LE/XjfI9bivL2z529xnX6GUcUrBG5w7P8/AbrIF+X5H//zLJruvjQ+8/2r3Q/3uH1OfvY4jsfd3tct17zf2nb3+Ywbu3DeSPkTv3P/ZV/8pX3xAPv5xfpPfP3ZwJME48mmvjPMuL0obPQYV6nhlp+yg0+SPHDZMNrw7kCKInheRDv4q4FMiuDjXa9MQ7vJGBrD2VITOJkdhKzpkJWBkKyj5p38I3mOgl7FXSUsvCFmIi3qU4bovhlR9QSxVkQaiYTavGSexGhog6dkxg9LX3ETKJggkH+WYD8176DWFtrbAdL68fAWRYxT+m9a73QPTthBir8BOMC9vt6G+yD4cuhHMTs7I0nBR1S6NNALa5fhmIxg1fTDtyNnTzjqvrlnQN2orbrSJgUwpQ48XS+vDGv+HHC3aW4rP5v7FolZSLO9IGE+HpcHTezVQToHnoqeWfIb5PSO/vgWe/fA+evE8hQm1wqQkHzi9PZr9ndfc3rzRDkV9mvjen1lu15IZXFwJOQWZSkOmoq/vne7Y4uOTm/B3gE4GFuDRvXCSxXR7Pr5YKzZPKwmOCou85pTF0WcTppzOgKM+6rNoMPNu+kAL+e6nV5renTTmPfb8Y5QnkokdIms5QAnck4+yaUPSlkpeSBDUXmlvn5wxs11x2pDuhcYSRKLejE2l58GMuhWkAO1HmbZMCW5mt1joJMxzc5WSKDnRFoT5VEZtjNGpW6NvW1s1yuZjPRgXHQfneeTgHzfakrHgebsI3NDRhscBESF6VHTB/HfkNnEQZmDWVmCtYcE+GTO2lL1CY9ZnQXVm/sxifkIKjGgb6hmkqTwTrrJIlV9KpBXkBLG4mAjPA+K76/WMugcZODj1xEhLQsmQu2NWp1JlcKIdBwUd0GGx+EeB3cdUz6QsLJ43CoO1oycGSm5uWZyuYUmj8Fu52P+3FF4DvEk1lkynb1daL0FG6ejxVsHTBafKQQzDzV6u+9TeREkQxlyQhZYLDHyShJjKR5TRJWGQF5B3bODvdG6OfgTprG3qTMOPA2rDpzfxFjHveh9HuCeBNXu3ke67Yy0ogE8WXx2SYsXT6rskjEpmKgzfj0Lilg2sFHxOXSDRD8SEK8HJoOHMIetMba8MfBCY8YKowWgmshRrGp2U9UR/glF3XB+u7zy4/c/8PkPPzgQV9bDS0haY7TqEi5uk6EiwkIAT2JyUOL9HIabRDpygUhoJlvA7v7PwaQ41+Px02zeY14kpzbx4+iQarB4xeVKKTmQXPugdc8v+uQp6JwuFeB+dNoH3rFvI8ZY90HGzZJlKehSvFjqjbFfXbI3mo+KD3AwpeF+IMO9XdA4D8P3Z1g0qwYe8234cJNcKOdHTg+PLOtKCmlTj0zXRuf500cvkkheGAeo9fm6c90uPL98z8PjO87nB968e8/p4SkAXAcsRpydM3/ZO0g5cXoEtLCuJ84PD5zffEVvjX2/sj4UX0fPLgtUKxQR9uoTLzXOVWdTEQWN53Eu/R+UlMKfSgOocYPnEQ0n1EFVjSJHY71LF2dOMihZnGHQd9r+wqgXj5MyjqbEaI2+7/TrhlZjf925vmzUi8u+lUTbB6N1Z/rF+VlrJ0bWodH0G2KoJq6XnUvfZjIQhXOaqida9WI35Ry502zqRDYlUWzLBBpmljVZK7cCRMwB0tqMvcGQxrImTrZQThlD2PfG+PxygHin9UQ5LSxvV4TKLoORha1eqe1Kb1eWsVPGhqZMfYEXG3z68IHL9YXXl88gzoBbM0gboO57NJ1UrSvDFoTF197ATahjkp2ZQPZKVeLvRvXP4mB3cfZqfH6fsLsjoqg60CJHrIgYISE3bo1WN2fBiJJSO3K72sJkejZYfWWRgkEtJFcq4Hn1+fEt6/rkrKmPBUuJ/tIY45VhF2pQ1qQLqtNOI0CdNG04Qj6XAUm3htidScs01845xxIQHEnt0ewLMGJW2RHfXCaUKMvCnoszQ/DfaX2gfa6jYDp5LyCAGY9xE3zqw6XXWKObnyUEg3PfXbK2bxutNpcx9e7EynGbLsYBPgQgrzCyg409e26pqblnpYXMLHyovCRy0MZJM+GOKXdsH7E4q7wW8us7ORLhojsBtXYDn9w43pykYOKAp0DnPt8VyOG3lqJLp37RbuCTRvO/kHQJAEzp1U3Gh7jyQ8yQ1FGtqDY/14OtpTog1cjZW9RamWnI/iVy8GWhf/xLnMuGcN12fvrwkefPL4w2aG1Qu0+f7YL7T6qfGSbC+fGJxzfvOT19je5n7CJUeaVnZSywvvsFp9dvqO1Hrvv3fo271yMqdthGHP5OATqJ4YNjiCZO1rlUmRHMOg7gT8ChS8hSJ3MwHdmUxD5JSbEyGWbOgBxRsB25zR16IaKUsoBVBPlSah8N+95xjzmvThDc5uaQs40RslyOOpi4N14TweHlfOxf/7x6fC9H/T0rUI37p+LNz+N93dWnf4yj2PH/99K0e/jl+P7ute6/Zi40v5+///Pn+Dd9yc8hoLv1Ob+XLx9wT6mwGf+iRpxkx/gYf8QIsy+u1/2b/vPe+b+B8dSPEZ426qEN369Xp3CP4b4YIiypHADFVGL7RDocre2DnHyE90TlPJC7WLV198Vo/eqSjJTvJEUD1Smpu3kiDc9Yo1uRmV4Kaqfo9BU0n25666JY67Tq0+VEnE7Y53ONMFGXQbMKbIxu5KKIlqDiNnqwUdBMGviUL6/I4oY5wOSTVf2mjDGorTG4jUTXYAnNizFBBjCG1UN7yzSwFj304D208iI4mBCrZYIBKgJ90g09GVDEzWnPZ/po9LbRA9o2cS+JsbuMw43lBpfLhd/+5l+9+BbjvC48nU9891//Hc9/+APteuXdd99hrdO3Kz/++JFUCuuSotMc1ztYGD7ZbT+8Rvweczu0JiB5t7q9Y1zI+si6vGU5v2e8ec/y7XvyX74nf5fQt+KNTfHnMsm8+e6vkdH5/C//wPmbH2ntAz/9/pnL6zNlXVjPZ0ZOSMnkIrS+c33dsaWQWN1LZ3gyPkzINkgsMVqYAMuM2qoHgFwp60rOmWU9Hd45tdbj/pV8A1/Bjns8ZaQ9Rs9Ow+c4/8NfKh0oteqdNC/ApJQWfFpPTNabQdKUpJmSFm50V4OeEMs+0SslpCXqp+/5/OMzn377gf46yDWTSGTpZBI+xbC7v0dKJEnslyttuyK1o62S245VoDsg2zGGCE0Tp7dvWR4eWN6eXYsvjU2v9OaT/1oTWlJqyogtJN+OIY2ZIEZ1Bpz4Qeqd7s4U3g4TN0wW9w5oPVgu2blYQ4TC7CQ4m2uOw7XWXY6Y1KdxBovDxqDVQd09DirCObm5NbIc4+D97sxY4G/w8AsIqW0zYYRUa1l9UolP2Sw+dQtzYHtZSaWQlpXrvrFtVy/OLaEjkyMJqb27508Sqnph3DBa7B3EDb5JhZ4yu4iz95ZCWpcwAM/urTEu9JboITlwWl4mRhf5FDsBGGjIEeaYe3C6s9KRgHBEMoiQSyHF9DjBpUMMZ0xZf4B1g/GOpMK6FFKO3zPQpWAitO6TVEcdXkCUxdk9cQYkVfKSHWypO/v24nT/fYvxwzBws1KXci8MlN4G9eWFMoS0dPT0wOnxgXJ6RNeTs70MLnX3+CKGdDd7td5ozQAHRXPII5zVM4sBu/PRiseqodkp4Qll0QIxEW3KNTTYqUmFkgNUMqVoZ11WGJ2XMXj79Xc8PDzxt3/9t1z/8Fu2H//Ah3/8X6g//cj26SPr0xvatlO3nUXyEYv9NYw05ADVZ1w7+if3VdZkScwHEp8VT0pGxBwBSJPyPp/CsySd8fkuoUni/mqabkVat04bzcFO9YR4BOunT18fopATcZ/GEpPXloWH85nl4ZH89DVVC10yzSraQaT52otR5D2m+Pn7v9E4VG8MPTV/HykvpOXM0MRu8PF15/M2ELyZkVLhdD57odgry9uVNe7np5++p+0b17rThng3HGHfQwYvSl5PnNaFdX3ALldnCqbshYEopsr5ncvET9crp9OZ8/mB5fTohWzbKdLY285lcync9MrMJSMJkhX67sMIDv8OvBHk0zWFpUybg1gQvYPt7Jdnl/edzpxzYUqn+6jY2GntBTQjqbCcn2h9B9vp+2cyLlVehsfTsTe+//3v2Z5fqS8XtMHYG+1a0SEk8WZJr57v7Hu9md03jzHeHHN5tQ2PvRPUnOt1/vEmXroxdQIIHWNQa6dEA8AZ5xoVioNu9/v3fmsIwfjoBm2w90bKQnndeXg6uf+TGqRXNCvreXWz/wR9Ax4yZcn0khwMFp+s1q+feL18CIa5x7O6vWLm8TUnQRJoF2xO5Rqez1qAlPQNIdNeGz0tkAojZZ+AKAnrmdEv9L5QTo+gBZOVwY7kFZaze7IYLivkNvRl7WeX+eM+SqrC+XQ6cpLrtjnjO/m061seejkKGJfrBABKQi0h4hMjVdz4cYSvTnpQ0t5JFdg21BYSJ5Sr1wUdt5zAzcZtiEu8RkfTSioLp/wUXjZya+5ENd6HD4RAerBTZk7uzcBaazTM3RZAEg4CqE+LXtcT+1IYfeeyNaY1ybCdlLN/VlZcIqaHZHQEe2NMU+buqo/RN6xvjN6o1+uxV3vtwdomzLUjDx0Ks0F5N3GMcGLoY7Br9eaccQCvmt33S8TXkE+Xjsm7MvOWWb0qUDHJiBZcEq5gwXEfzoJrtbm3XJv5f6ftDUviQydydnWBcjSawRlubqDujJhUVtJi5LKFTHgBWxymFEFzRgOAGtmv4b654bobnRvaGql3mhZSOpFSRcfqYHfesZZ8UvE20NyDOTnXwAQZZ7If06qxo2gXYB+d/ergambB69swbg9EyM3WvQG3bY3aRpwlmXQSypsT1+r53Fl+xXv9e9Y3Kz9IpT//QH/9BD0k83VAc8A9WXFWZzNMBrl1UjHygEWElH26sbf6ccb01tzTsXfPJzX5RMfFyAvcD56wYHWWpDGNwzDWmKjoeUSI0r3ZlJzd20eP3NEbjEdZJ9OzTyL4enCeTCBBwpfSz3i5R4FmF2jelsgvvIlilDkAyKZqQcmaURtUgy3eq2evvr5nU+mGtPwJIOhnuMrB2L77pz/6/ssSFmPKEW8P/CPQ6mdff+rvfv41zyL92d8H0f4LsCxGQjmp4C7PweK+cBPYKbF0J6Pqjmn1n3q//6WvPxt4mgaEvU3GUb9ROgl6aoAcszuGEJrFSXvzxTMNKieFT0TioA00cQRa3QZYigPBN2Jcxli0gdRNpM084MlE/8xRTjd7zKTQmosEC0p97LoX9M7yKRqIb54TEzT2Q2ys4RIMNJhDuF5gDPPOvdrxXvwmESDZ+OIWaaCwYW0VSXnQGoOiIuNuEkB87t7qHIDm9OFZOMSXiERgCdQyecfewsh2Lr/Ji9EAeEwmNTYOK3P9ry4Z7Xi3onen0Q+vGnR0ErAshaTisp7aousiIJ6MquaYgHfbZX55YkoTc74HDgIGi4353ub/LCEUkp7IaSXlBS3FaalrIj26l5gniBFA8OC2nN+wPL2nPH3F+c3X1BeD739i2zcul1fePj24wWfyQNkYtAB4ppeZd3/ME67eQX1Uus2ujU4Dyri6d0yXeW/GiMeLM5yOoO6ZctzXWGtzzR0pLndrSg7AVKMjn+4mrzi41egjEoYJYOFJcw92m3cE5qS2hJmb/dOhNqhd6JaQdMLEwdIRXiOmbp7azag2oDVa61Qzp7f3HjKnSZ9PNFOGKCMVzu+/4unrr3n89h3X9krtF5BXervS64UPv/vepxmpUbvL8nIKucfdGhZcBnq/v4bENExxXxxDcFv0YNYpjEicRYVZgcQVYg4gmPEJpjm+J24WRstqMeUwudu2aTq6uyN8n7wAUnIAI6KRcIrGNZyB0P3oGMMTP5sU+YTlFSkLlNWnBfqw81g77onSgzW4jzDiN6NhDrjdS3RFpo2OH1QhgZRgQJFTJKkFkQVr3JLOMGf1zojHbI21PVmGEnubkC85My1ih3MSyBNA0RJdPDdCtZGwnGBUhOjQzolAKm4aLeJJPgrFO5QpPEzgTgq5FCxnB67wA6e26jwkUaffhww2lcUZAKTbPYnPoknJJZFXl2X5NZ5nYMPGzjROG9FhteGz1+QAliPuHUeDHDFB1M8bsbhe6Xag34rfmEKjPoFGiw8M0GR+HWdtoYrVyjnBfjqxPT5RX1+5mLifVhuzee8AismxBmZsCO758X6PUBpvW+5+ttg3c+dJxLNhwXqLNTYsCjum4HECWMZkeILvxSnr8t+9/98toTP83D/8/ywo436nkeEFy3a9Uq5XN7DvzS++WhRnIN3juvSG+06GuW9I4aZxqczTcjZy5tCGsroMdRAFWBTM+RRg8ZlMhZhCZtaxVjk/Nq76QhvPbgybIJc5Ft6i6eD5lbPHMy77cE+VEZYBkhdn1CafqrWeHzidHhwErTvby49stXHZtnnV6OYAZhIHOkfz5tvMt22ChAFT9daj4BwMC4nNMGcYaIr97QjlGOG3FGdlyoufm7WEHKg6OylynVYrY6v0607dmrNct0pqYC0Y2qSZGgQINFx6HXmKzmvB9KGZhRJO+YhNN9fyXOOdySLzM91jgbrsKAptmUCp+No05FbUc0v2bzkot1NpKNYcgpfUHFzOBjpIXSEpa2/o8IJIZ2nQfYKjT03L9F6pvdL23Y16644O9/8RJSZWmsu3cUPgyUrx/GBSfvvh38bowDqdLY5zb9CxrJ7bJIPmZvTdfJEOU2fQB8NkstUFAnwy7s8ZRLDq55QSxeKcejduaxwZMWWrcGOXj6gl/LwU8divZSEvJ8p65nx+A5ZRSkyS20PS2g92Q4umT01Cyh1kMMYZxD2X6tgDuAnpd29u6TFcSqoaeb35erKImU5AnOVr3HVVUro7j478bzJ1It7MWmf+nznDmGAUTTanBdhlrYUXVFyzaYI65u/a8Tzhzu3f3xWJOCmQLu6ppery1GkLAvO/FpPhooF0BPf5KWccd+agzn0yPSXvcqVpB2Hj7v0ZXgsYB+PxME+PHFXVbmcp5jFYU5y1hdtk8lAkxHU9pmvNOCYav+8xVhA0LREXhFH6AXxoypHHRW6t4ckY91/1xm6cryPzDJt11dSAHYW6537JOBhiSRNdBtaN7eXC9vrK6BfPaYqyno3ryehdaLZyevM1KVXa649seWXTlcvL924w36sPSxG/waPfAWHq30syRotcZvrbQZxvcZ62sPPQKe2K88BiKv1dg9x/9NzY5fB6W8fzmujx0PC4M9QMC/AYAosKq5p57735MZMODpkd3ffBBMnsDk+9gU6zLoiYFO9PJYbrzJoHr3ssYrzeMZP+cwDQzyVwx3fy5c9f/A5yfyk4Pnw8/3HW3jGIvnztu3dhf/o1vnzCeK0JEs37NXMj8++H3IYAjbtHHfU3hh7yw9hPdufo9F94K/+lrz8feKoe0Fur2B28bvgNTiFRUSQmR/ibHuPG5Ihd6vuyjwNx0RQ3Jy7sYBbdIJbdeO64CLFrhBv4xERFY8FGIJsHsJBRXUjp5N36MGwV9Q6iM4888VjWU+jWNXx1CEMTmFRdkR7ofqBnEVgtEq+IexyU1LhTc3qeJnFpnnin6tAC+rYMXWqMsr4vXBhfossz0M7VZvNR3v1LKGrmheTQCEjjiyIhLpenmD08K6ozonLOrA+LG3pXZwtQY0w7rv/3KQtA64y9sn1+QXBPF5HiDLOUkTyg9Th35HgDY8olo9iYoJvFPfb4MoEnQeREkgdKPpPKii6FXpR0UvQpxeESl2T0oA9DOT+xPn7F8vZbHr/6SL8IKT9zuV4hJd7/6jvXhyu0Xn1CkQpiPtVqGlhOFo0MZwBardPj2I1KY+07Eh5JagB1twLLvGBPerzXiR0emvjjHt+VXEceEQexyB3o5JIk1XSYt7eRkB7m+pgbapth5qbCKjHRQqM4l8EYiVZ3xj7YqtGsMPSErk+MtjFqRXQwomMqItS6c9026rZhwfjKcWCM4ZMVfYJGwXr45pSFp+9+yS/+8te8/6tf8vHlB16un4EXrG/0/coPHz67cWwSenOwQIqGlwgk84NeAS3FTahx75WjKNKMC/+cVeDgjPtHjeEeExJFhZp4QI6udpIZZwJwsjDq7HOrKdlCUmcJI4NkxpQQClRTksCSlGVdD9DH20IJyYtPe4u10WsFGS4bG1Oepmg5OdhQVvreacnXttuZRFcSB4E2C1xc/L47IJSOgl7FmV7+CRwESslZQ+SMZB/wIGN4rIvDaY6v5e53/TVtnuYH0HBb1MOLmBFG1sMQa2SFpbgH0Rjm5q5imJXodO6YDSp2gHV5yUfskAQlr2TuDWuVER5yqup+WRiMBYnj9bpdA3hKaDkFuytT1lMMNAjGTM5OT08xJj2mLJo6XTzv0Fqn9x26d9OZckbzzz6Y50ZMXUUYd0lVcBEcULMSvx9FuXoAnOaqvp69W56zF17OsnVASkV5eHigPr519nGC8fSG+v492/OzswYQXl4vUbQwR4IhAkVCGhNxDbyxPBki91/zxwNUt7lPbknTBNi86WJHLI+K4JZOHQnS7Uc5niuK7/vkaOYQM2maMkAL2VN4gfTqhVkzgXLiZEI6vWGkzkg5Dj3zQp0BwVjrfWd6MGrOwaL2M2lK+kQSmjK5LOiyutfXADdQzqR0Yjk/kJcTqaxI7pQxeDivtLZT9w2JsZDbPtAuJFPWk18JEQIAc3BTVdxkWY3Wb8NQGoKUhXw6I8vKenrgdH7g4Xxm9Ebbr3z68Dsulwuvr6+cPUWj9e5yeNw3rE3g21/d71/EQ0zZao0bHIBG+JkUSVjKSEjxB9B7Y79eDi8fOT2gZtTN9+aINUc0lOp1p102+vVKq1FYVK+QZQSgMZsj4lKP0cLjaXje5tN1o9mGHN35ezDhWJA2v53eIDdfyaX4FckRi2fB6olSgKGxwH0Xh3/lgcLacf1E0tGkaHUwXiuaxYdyZiMNZ6WeWiP1RqF4YTSMvjsI3xnYSLS2UetOr7vvzV4p+TZNurXdJzwzSLI4sxXP+Zxt6D44IIy2eYzR7o2ykLQ4UODA4EiC5mDpdMN0o9YrnvUlBoW8eu6aJTtGH/nzlMYZEzQXB5DEC28HnjwPHb364JbI01Rm88BvksdyJc3BFE4tIpWVvJ5Z2yMq7xE7IXZhu3TqPqj1iozKtPgY2rCxuFdSMJl6fwygh2ByTJ8ivDnRG2Y7XtYIOXmDz8JomyjCvDkVwMNhXVA8RmvxU3Lm/5PRQRS++HkT5a8fakzgzaWkwxz4HTFEYj4HM+6iQcJxQGFMsPVY8/FeQ9tsONOmJwdSUhtxJs/1a/F+J6hza3nOWHwr8R0YGhY2FdgRIycbblp+RMobr6NHc6KbM8ZJ3pg4PlqyQ7Its+RT9Ry0Z7Adt+lOzE6KDWVIB9KtZiAAIMEZmYDmMqtzcunu+9PtAJ7RWz2iyQESU8O0+zlkAuM26dAvl0eE5A92WwbScSb4xHZvGKaUgU7tlZdPn3n59IG2f0KkUkrm/Fi4XkacbQtZv+F0KmSrPC8PPKczrx9e6eMSAIxf9x41ITjrp0fDUNTI2cEznx7IDehQQU0h/E69dva4JaOjY3rfwc/JExDXxoLVZdwAZ/V9hUDSzIE7xv/LfG11hrPXa14jj/k6Jj6htjkbsAd7rrfOCAB42ofcgCc81xvhuZZSWG/AaMPra981RyU80/GjDj4+5WxqHRntsX+Pnw9iRKzRuS2P34sT4XYRb+DNbN4evxvf34FTP0u9vnzt/8TX8W8Sn8FuTTsfamHHf/txR8JyIRrDajh+wATZ7bbW+XIV/Km/+y99/dnAU91eaa3R+tRlh9mu2e2AubtB7psQLJrmAcqTQze41hTa0yQspzKb6AG6EMk4WO/Uy4U2QZgAqkQ9ZZyypSQhmZhTF4Z3DRgJGxkbhWELSkFloZyKJ7gGe9sBD54PT4/u8yIcHg11t1joMVGvg8bUJ5DwFrkFTZWb19T0B4gUHBHx0ZUlx/k1fLyw9YOtJfEZLSWn3O71SKZmx2OExGdOHDhuvEE59LFA7weLQtLd8wcS3Htn1E6PDe1YWuJ8foStUz9XfzZ175dRB/TK2HYuL5/ZP/xI+/jj0Tmpn6+YuRRijMzQwpDC07uVa3nx+9860y9Ghh06XA/IQo9Ds0dn0ruLgz4U1TOib9F8Jq0n8sOKPK2Ur1YevjuhJ0ViGppIzBnFiw1bHklvfsX67oW3deW/+1898Y//+A98+PCRb/eNks9oUlrbkdOJZS300HeNaRhMMFVmF6ePgxbvCUpxJpMqmkP2U8pxDEoUTmN09rofB/7s/HmHy/fYvTm97w+NAz6KgMmECM8vDUaExkSxZJWcEsagNaEyqL1G4de97LBMSTM58r3j45YX5PyG9atfYlK4vkI/bdi1sjSj7juXvTpInBJ2WpHHE/3yyv7pkwf900o5n7DNsO6v1ShUClsu6LuvWL/7Ffnb7+Ck2KUAJ+gbdn2lPb5l2AqpQ3Lgoyal9g1rnVErp/OZogqa6LX5OkRoQ+gDdjU31EwZW883YHDs9P1C312yUERYNXE+FYpCYTD2mxHznKpVwSniOMNMJbvJ+rrQstKScIkE1VRJDx4U6jDW8ymKWCFlHzvelxN6OrsMIYlPeQoPhG27UuvuI9RLQXPh4emJ5f1XfFUy5yWzvXzi5eOPfP74PfSdZJXHYWQJholKMPmUdVkop5XT+3f0nBg5MZaCpUwXDeNij1k5uwF/68m9uOJ46RAJbEd79SlU1kkDJJkDcNY8UQNPGqVT20btQhuKbpXzduWhuZky4pKQshaEjLHAnlzW0Cq5FHIplIfHAOOiOxmyaZXklPzeqbuP0VZV9nbrhnbAxP2R0np2MHw9k5fCUhYeHx89BvbO5bpBEVAjZaO2V/pLxS6ffGBFUp8QaD4Snn7xw/oA1f3+qzpQdkwKhFtCSzAhhsVABzfwtyh61Oaxnzye9piCJIbUgRW/Vx2hrGdKzuSU6fvuUvWUEF1YTm/42//hK15/8898/Od/4v/0298zUidlKNbCFNpCOu7T3zwhmu94piwwV4cnM0de9eWXzWbTn0qO7v/mZwnsBGQlrovd0jlJGixY9yEcvUVSToB7cvweas4YC7Zl7R0pC92MfH4krY/osnqM3ge9SawpH1hCANHpSArjgw7j1jCJHAOXd2heyXmlFJ+saLKwnB7Jy4n14Q2Xy4Vt28jlxNNTYV0yH3/8nvX0hmV95PnTj/T9lbZ9YvK2hrnc+3J9hZxp7hrLsj6GbCORcmF9eKAsJ6xWuiQudbDVZxiVUa/8629/w4fvv+f19YX1ISF0rO7sUukMksVk296DleZdaSW6o8PY9uYTi+bk3JjU2puFfHVnXRe/B6O7p4+No1B38MULNhtGkuRsu+HnUtuNeh1sl0bbje6ET98rB1vWb7MGO8Garw1VIWtmr9X9tBxx91ykdSdoRzEuMYH1YNTYoJQc4INxvV7Dx7KE3MrCHy4YnnpjX9+Wb4Cis+CIGDoLJ8wlJrVPEM09BccAq5Vtr6QlsbZMe9no0nntO7t1qg1scYmOYBQxzxNtMLbmubAKiPu4pRQgRMi2PBX25qP4zWFIx2p3tn8XNA/3+ZsFlBhq1aVNawXZQFySNyiYZTo+Cc3lT49MA+d7KcaIwi+lwmkp9O6eepfXzcEt29nqCxaiD6zBslJKNGTnNfcxJm4ej7N3JcF6WlB9xFajXj+yXzYuL6+0/YW2P1OWzpR8O0sp03VDZKdLo+1vomru1DooZXHjchGMillljC1ii1Dk5DlwVjRxNH4PjdsEloaQpXAqD8gJ6vlKre41WIo3J3PyyWzWlY5Sh4NASmCyKogO3DIk2NHBUgVfx77g3FPp6HlMPkCboVbCcwlmseP5UT+kz5rcE0lkuJxYvPHh05B9QTteG+Wp3IDagQSjuXs/P8pJDf89QqY6vURTygwdNHxTmhldDEbzJu8sYCL3jRTXZf9SQYx9U1IatJrISwnabnJ/JnEWVg/SggXa5fWoMH1OU84OPEhGmgVw1z1fL4lcErbGLh4w8oiT1uK+Qw9JPQFlSJqgtzeM+3A7mZL89QgZpfRZnzmo+6//4R9Yz5lf/M1XlO9+yZuHR9pXb0mycHksfPpp4fIZqhUev86U8p6Hp19CT7x++J7XT3/g9eMPAcLnCS+j9CBNCK1CTeHV5QRyVMNReYLsAYyFTIaBM+x0hN+aSFi6+FpS9S6Gy09jTUQd5x6hKZQz5jV3gjQVBng8S+kGPPnkWM9BXXfubNd6bex7o27V69MDfJ1ADg6Yxn+FeX7Dmgvn04mkmX2rXNoW9jWTv3zLbvT4yfOe23e3lzkAo/j6+c/8iZ99n9iXUrX5u47U+c93gNbPAZz/HMj0868/9X6mV+c0DxgYUbnFzzcDfWLfJ+Y4npnz/Ftgpf/y179BahcT0SZD4D/1QHN6pYTRrQ2QoDV6XhcHZwQUTdFNiO+dgu3I9JiF+PQDEtAcfgMjgAn8d7w7G0S7zk17GRthjtwUCpp8agwRcKT75Z9TfQYTuZxbZBwyNLPmhnjBsHIwIB1d+UltntPzRG4SMvBD5UjiZB40QQXM95RNjt/zLsSd90ScMP56BNshChuRQ5IMHN2G0SyYRQ7IDPNg6iynEaCTbxAvQtwIsNWdU0gSs2VadDYxL5h0GPvzi3fVYnKLNxAMG16cr+sD51PGGOzXV9pkBYgcrLXbVDYvQHpQcUeYG87OtksNFkxyTKxTZEmkcyI/KWScIRfmeyaTQi6YFtL6hkaBtPLdr/+CP/zwB/ZWeX154WFJLEty3brMe3YLFv6eI8jFexb98v6nnMNwPgL2lGvEl+otOWutBSAbB9phHD6N9KK4Cxj9Hou/7xz4vZfDq8UEkhSEAKNSYlhHx8zgPbHwNS1BXZ3G87FmNUNekfMTqQ9O31R4qLB10t64vLxQX19j/GwAyHT2589ITpStUmqjbA1LjdGEVjMqPl2HZYF1xZYTtp6w/YTZ2a9DhV46T998Rz/t2GujLj65pfXmkhYbSO+UZUEN9r2y9YtLCDVToygdy0p5ekt5eOTxm28dwElKvz5z+fwTl48/Ul8+OcuGhhW9nSjJr8UcI+xA76QWJ0gLlgpDM3VdaIvSSyI9nNCSkZBPWXVmXMvOTNOUyA+PwRpbkIdH0lo4PZ0obWfYcPPnyytp39B9d+ZFTpzevOPhfObhfGLNyvX5I/rhLf33hX59pe+v1LExIvnIJZNKYnlYWR7PlHUhP5z9MFKQnI6hC72HOSsGyZkRrcXeCVBlsiyn354n3GEJa4JI8+sTwNMIzy2rPgGlD2HsK/t1cYaVBCMyZZblFEnrcIkwLtkNy25MNbr0wRWKEd1eGPXIFNKddDiqQfMhEobL2srpgdHd+DvnTCqF/PAA++4MxuqsvW4d7XsARJU+nAUj4c3mhtQu0ZrJvZv1+lkUjfHDkNgBf48N7tPmJqiMoDXLcPnPmDvawdPJ+emz+71XbHHPJ0nTcysjJQYGDHOpZ/f3dToVqJWxVx6+/SWvP/zA/vkTOa8uZ98bda/u8WQh1Z7nFlMKd0uc/PrPSjvi4BdNvTl5Rw5J63Guxea6xbJ4nnvm04jyPvxVDjbsAe4NJktjxs/5rvxcipN73vu6U7crr8+f3PeinSjCTTZ6FCgj1n+8lxFJqA0kTwmRd7En8EkwDdSEJS/kcoJ8IuWT++xJIqeFnoV998ZOrx1Xt/nZ2E87TaHJzjBnYfYwS3XPocphqK8BnoTJvJvbG20YwzqtD9KIddmdXWWju6emRNLv9HLMfHDIPIs1QNzZ4JjA371E2PsgU6vhuUOTik4PFBvBevVmXdMN6RZ72J97yesxNTjpQtcGstOH0Gf3fJ6zNiJXAYbQq7hnzIhphXG+YXvI0nXW5Icc+l6WcXeEHgCS7/VBKe5Nejqf+Pz5mdb7cdq6xDLddY9vjIrJxrtbhb53LeLWiFiBs08nHtIHbPuOXI386sycIcP9CBkBprZj/YNLcW2Mgz1iFlIoJfzmjCOB9Szac0ZpIb2J+DhcVgc+sdjEJ/gOBi1YmQ4cDtCQAU8AwnDAfWTPsYazTbzPMZn1My6475OZS+9rrfSx08fmnl8BFltIevZcKMV9XXP47/m901hT/r57yPRGr+zblcvrC6/Pn+ntBeuv3ghIIWkTMJKbL6syNPvkSmsMM/a9+l3OzlgZw4c9EAXZbDrzBZhCyNUn4BDbwhwZS8lZT8ty8jKv4+DS3F84g3uKeEWyDzkJeo9J8wagj0cgjLsOBp+rKyTW+a0RMJlPfps8DmucTZNF68DJcMXH3qm1wTSg1nm97phOc68EE9zzxxnFexQe02fWF/gEDn3oje/R+4b8MA6WUISNOEN83ffWnWAQ5+b03Ku7N9qXZSGVE8Mg4wbjLlFPkZ9542j6Bk3A4xgoF5LuEY1AmU06dSafZoHwTNMicd8neO730plb8R4t4uFcJqKUko/p7t1ATUmRl4j52/vx999zflv4j//hPb88bSxP3/CwJuwpkXPB+smtDkYMKgqA5s03PyDqe/ZyeXGZabdoZMnt/sd1bs3Zw1ojLiSQmOAMc4JknM3GzeLDuw9uhj7COEfi/t2tjQPw0KiJkq/zYxJ1JAhuMTNrPo462ddUxBLzRpNFbTInPhJ51BG0489kXd9jEsckXZvnwDwU9Lbm5mPiWSd9Y/79/Gxyy3huXwc76XYdfv7dl39zVzfOhxwF3hdPFd/HyRO+BvO6//Gz/vyVvuBQfflYm5nk/Gw3tpZ98SzztW8/+0sfCd4X3lY/f+9/ztefDTxZ6G2TzC4LRwFyyMFiEdikMAPBYne0vvkiIJBVnRKlJC7vsORxW8dBFR19jql3A7mlLDEhbdBHCzmIuPGoowO3yyhB9+0pvJzcCC/nlXV9dNbJtuE8Bv/V2pwhJOKbr3ej9RFjT3EDQBUsh3ZX08Fe0JRD3x3sqwN8Ei+Q4jD3iWm3pTw1+Kmoy7fiEJ5TtSwMD3trIYPwBDzpjYI+hbvTXFxm0JhJfLj/SxwSpt790hZsp91BEMW7vXXb3HfhuvP0+IYlJVThclFGAC4ZQW3QrnVOKUbzCqaM4fTGspx58/Yrzk8ZEaO+vnBpjW7D6RMyA79ER9VH6B4JXYCXznoSGIWhC0N8BLwsCT0X9CmT3yZsESxGgHoX3WjEBBfNlIf3vDYBEn/5t3/D7377G7b9yk8//YicMum0ILqA6CENsbuq6hYzNKYZFiw7G2VSrFNxAMqIwBG/bkDOOSY03kwqoz1zJMpznRzFn90lfDILkkgOYy0hTrmf48Z0LWgyJOimPqFM0aRHJ2KMRsep5dPM2IahZDQNRjnD03u0nHiTnyhdSA36ywX78CP7pw+sp8KyFtZT4SkL148/8fE3T6RPz+h1Iz1fYKn0zeACuS10FvL6gC0nelloy8o4PzCkUWunjc7IK7/6u/+W8VJpnzdeP7zy/PrCT88fOL1ZPPkQ4fH8QN93Pvz+Bz4Ga68s57CHS5S373n/67/iq+9+yV//+/+O8nAm5cz24+/58V//iT/8x3/gd//xHxjXF+p+oSZPMDBcpqDTMLVg+LrGfDIfeWXklZoKtRTsoSAPC49/8R3L45nlfGLfNvaXV7bPn9n23QubdeX0zbe0lNm7wNMT6emRd3/1LZ0OYiw58fLyzL5t1NYi91bevn3P2zdvePP0gFhne/7E06cfsH/8msvnD1w//kj78Xf0fUPbTno4kc8n3n3znuXkZvjk5GObzZCsYfRJMB8aVpVmLiPrrUbnUW8s1CkBNfcr620Eey7AvlngtO4MIRGsOj16mML+ynbJDFH6UFJZyMvK09PZmwTDXPZqEmbeXnwWM5bixXyNaSwSXbQRibzLMWBI+AaGZ10bHj9SXjg9xawWdQFKzpn0cGLkK2xX7Hqlj+Zs0a0FiCzsNcxhSyaXTFwSf2zEih7zLtwLx2WebURhL+F3V4qfS9EttlkwtxEFmhwxY9Q5ngOftDoqjAtjqRTNrGumB/CdUiGVEyA+vrk1GHBeTixfdd4Y/PLv/zt+m/8Dz3vjzelMah297Fx/+BEZnWXAKjM5u7EYPMTckdptFpfhMaceqG7AJOGLIjcKOUQB7p3yI4nEY/Xs/k2JMXjy491yT1hnb04CLPEnvQHqsyJPTDo/WNupF/g0IJ1eyaczjza8cREeEykKBFIkwoab0A+Xaue0eNMoe+NKUyGlEga9PolwSYXT+uCSPoL12wzVhaVk/vCH7w+PzJIgqZHzAw+PRl+UWpr72w2fujmZta33eP2bBB3xwqHZoLfK3lyCzxgs5pMU1Rq0Slbj6bySdYtuZkKaQA9Jhajjt8uUE0ZHOxghuSyR20Hb/fEpmReS+DS6rbc7xsK0LnVmwGCnjkYuJ5aycnr7FtrAWoMFbDd6Hu7/h5/TzBmG5ghNN0X7YH8dtN0bZqmkOHMLxsVzs6M4jzx0RBIvs4idSXVMcEouAew2ePNw5nw+8/T0xOeXF2pv0dl3H5h8x3hyFuOUK0SuG4W3xCTmOQnSZNx8M8QN/KPVzOvlQm0Xur2CuvFaOi8uKVeh7x3J0TwdoTZgskocWBhR8JqBjB4SoVvu0Pfmnj2aYirowMQNtM0EyW4h0OluKWANenMJda6IFkgdyb5/fTFUhIJK5BENltXBwAnGxBWh5BVGpZsP5Gh9o/Yrwxx4Eh2g7q3UB7x5Wsi6spYVCdmW5+MOOO3t4sMitgv19TPPH3/k80+/46cfv0fGhaSbT54NTF4CZB5SUYWhidF2hu70kbher36pbDCSUutG75Vc9Cje3WIj+MAxwQyEFGsVXPbOcLZAzguYcTo9Ao3efdqj75moC2I9TkXBkILMM1IHqiuqHWFHWBww6h1rhvXJdHJWE8Hqm1XkiLUf2HmAWrNwHNQaskMglZhMpnN4UuSrcpPZcKz8W3yf5ZZjg+0AZyU63064S4zIk10y7j57Yw4G8At/NM81+bnRxiCZe7+KJM9PW0ekgnVSEkwTeankbqySfPJwcnYb+Lk0PaaGdSdHxf1zYo/ccAzx3FrU69JcPBY520wZWYLu7UDotLsNKnU0juMzhIT1fF5RLYhmB0rxfGd0ZxpnEX77T/+Ry/4j7fQT/9u3z3z7V3/Dm/dnSjnxuJ9Z8iM2XAmwv54QCik/8NWvd9J6gpx4fv7Ifn2mb9GYCS+Iaa3SR4dqRwMMS5DdFJ/szOqcJqt93IBri88U5eU8xR3cj3+Q+zNJDyJGzsuBBdStHeCG3jdAYhf4eiDOr/i7ITDcf9CldeEpFey5HuvGcQe9AR934Mwwi9pmPkeAT0R+NQGd+IMECyq2kbPShelt9J/9sv/E99wzpyIfmtCOTVBr/nv8/12dN8s+f7jduBAGc5jL/M0JHHL3XPNJft4kkZuIjhv3a/7e3e/K/U8TV7lDnewOSPs3fP35U+1SHNRE1zv8W2yOeB92Az1MnX43YLRxBMQJIMyc0YJL2XZhmug5BuMHTY/giSXW9UwuC+vpTI0R2X5QmXe7JyJqofmV7kEwEG/FyAxk7Iw6eKkvDmq10JiH584YemhPR0xmqE0cSDEPaqorkh/I6xvK+kBaz9GRvDFgJvAkB6LuafNc4BNNJINPZnBl8sBfyz1CJEAYl/5pIsYZB6B2Z4Q3F49htL5x8G9DXHsgqJ424UalA72+YnVHbJDVEBq0K2P/7NIPq1y3RlelAEkHKQk0wUKKKF28wFPn+XZzoGdZTqznwulxwfqVXq/UuvkhbhaeAI3ZlrTh7wsfYs5EZ+dXs87Qja5XZ3DtBd0eOOkTaz6TS3bWCursnnndHM9iKYU3b0+0+ont82/5/EPmnAbvzwv/8rsf2M9vaOUN6/mMyQnSSjqfjk4zoofGP53P6LKgpxNjOGNDcz5AJ035CGDD+uGtUzLMaYTbdnWJQ9zPY3FgwYzTu8ATnTAL41nDE6FcSApGUaYAAQAASURBVBqDPnCWho1OrS9IM5eeqNMnl1So7KHr9eTZeqNNKr45u1DDcTQvTwxTRM9IfkuRRDJhv1x494tf8NQr54eFVq/U7QXtO49r4fG88vv/z//E9frCfv3MAyW6M8ZafDpRXjLb8wc+/vA78lcP2OgkyVg6sz6slAf45VffYnVQt86+D172K5+3Z7767j2lZJfDjMHL52fGP/4Tn/7pP7K/XqgpkZcTy/nMN3/xl/zl3/wNv/jVr/jr/+bvKacTuWTa5SPffP/v+Oa3/zVP/9//mevHn7h++Il8ecGuVy4vz4zXK8lgXTwBHgh7N0gLkhfWp/eMxydYz/TTiYev3vL41Vv+q3//33B6enDg6Xplv1zYX19ol6vv3aS8+eYXWCpcDVhPznh68xC0VwMZnJuzQ1OwfzAoZaFkn7pXry+Ut2fSN2/59dfv2F8/c/n0Ex//w/9Mvzxj+4X1wSWj6elMs061zoj4aWZYcimI0Xz9RLI6Lm7IbXhcx7z4EhvMnopqgNt0+tijwJoja31vO8vBJxrlkslasKVg2Rhjp7YLqPkEv5AHSlJs61iv0HdPTKyyvxiyPqCS2WsDiS5gWZkRbnpNDBtHnBFNSJ7G+xwSRE0JG85uuvbmRWQS5JQhRlTXtnthEACD9GmQnj0eCLS9RgwLq9MJhI2O4UmSm+ZmLxiHk+GJwsPEBzNU8xZI1/Ati+LYEAfU8gJaIBiVKbl/WKu7J+OqWDKGKLX6HpZUqL2RlkfKN5m/+d//H3j7d/+eX37/O755eGD/+JHn3/wrv/1//T/pnz9RP39iaX4eiAXjIxi+ciSuDkx4B+8+Qt+SpYF5s2kYKZi58Q9xHsuRRAl+z1GOYt6Ix8R6y7gfAWK4B6/GUARnVcXNPxiuS1kxhYqzTJwtsLO/7tTrR+jPLKcTZVlYzm/IekJtoVY3CRgIPaWj6CcJlgQI3zQz3Ey+M9rGZXuh9sqyfuT05ivSciaVE+vjG2Q4A/fx7aPH7t5YS3IGZ9sRc6lUFiieUvvrWxR/YX6fUmE9nbwjLMISzQ1ssMRErSLKg+1srx95+fgD+0//xLg+k+orEsykLCM62Qq63Arq6X3JHEHtIMP0zPBm347OnGLmuUawbf0cn1NqzXyK67CGR4TkBc7ozsjLhb4Y4wRY5u2vCv16oV2vlH3H6o5dr+wvn6EPtMO+hwcUwro+sK6LG6+TMDqaCrWPm/zjSKSncbPEKHNnZb5WB7UHAusJW1Y2hF2UKsEAI0Bgjo9IH3ZIF7xtGQAqoQogWB9+aEczwy/W2Iw8hCULGZ8CtlfPUTQJGqbkpsYhtY/YNnOBY+SIBAAYuUa3aexsLi0ccmtuSfe1qM6WtzTAKozJpHODc6uNTmdjYMmbqinvpKUjaSGnE2rZlQItI7IiVmhXRVNBU6KcToi59D2n4p5Up8Lz8/QrqrS2gQw3XRcgQNDr9gKYqxKkgmREivstqXkjpl9o+yf21x+olx/o1z9g2w+YXRDZ6Tn5BK2cfCAF7tU2xo7aBlzR8KxSNqw78JZYGK3S2+4emDma1ubFMmI+fTb2iSYBc+kp3dnmYjHsRApLP9HH7oukV6ZH0BwcYojL9ySRJDtJJzaW20oYpAopPIyCETn/JxhJbiCoGbQuB1Dch+eXvbuXnC9Tl/UPg91As0/bTWVal8zHHS3seL9hPm/+zkcgT2bD/WA02E4ySBoDDNaCmNKKkXJDExh7sNVAza0QvObixlCiByARShncELmNTus7Nl5oPZGXjfXk528uZ/JSQUrUgcklmndEiCGCeokRGMvOYKdbZYg3vChuzYL6BGjTxRsQwWizAdLHrcTqAuE5p2PEcJNESSUe7+zzZIMS5+nAc+n20vjwm1f+3/+Xf+T0+MjL31/47/933/KwAOXK+T0ssvL5KfP99ydePgtXW9hyRR5Wzl898vUvG5ePv+H1p3/Btj1iTZxiQV6YDODJzhJzVbJ0bj5PsTYGAzUHsCZY5/GvH+HUuO2HNJnDmkmLT5DPy4kecZg6nHmf1YkQIVPttR3nRt32gzGo0oNZJuy1egPIOqP5xD0LIos3+SacMnlJDjc0nDV3bX4OTKDU3/utgTVj683XjxtpJgCuuVzmY+f3M9eR27d/BDoBXzKVbF67+eP9T3fP4yeF/6vIHbojxz0F3z/zffknEn9/x2s6NuA84nF8L4izQpkECzuuxtQVFSZE/rPP+LOvw17734BA/fnA0921mcbHU+9KvOb0n5mgEX2EdpMDafnCLPveiK7HDU+3hDS8WoGEykLSlazLbBY5IHCE33lZbjdiXsRDsWkV64NuPgZ92JTweReW4cbRqPgkqehamfm0hnC18oJHEqoLmjwhtJQPwCwg3UiC48bJ7fYd71UiENwvkoMaPEEil5c4EitBnQ3Ufk5RmzfAM8DZHwca0wl5MuE5ntePqt5a+LQ4jdtNVnes756U0GL8uLMdcrcoBm6X23Mjc/AJN+trCCVnrFd637D9QqsbI4AmT3TlC2BpJlkErTtJUGHxIORnYWeoT7ySntC2kG3xQ3tSwyUolXaQJxHcW2FZALtSt898+vG39P0VHQ3ZG2Pr9M0na4ksSDpT1kdmJx4R9xvJmXw6oaVAKehwbyVJOlea35dpKH73Ib3mVS+yuQlOJJ7f18CcVCdHYRZnPBOxnxJFGME8uQVhgN5vcHTK3sVKmsKA22h2M0LuBln1eI8egH00ddIVcnKD5Ri1rVpYHjwkr6si1xe6GlqVrEIW0HXBcqKJ0Q6/ISfMI51Cp74+8/LhR9YP72gl9ktIorzblr3zmwQ9wToeGPbEN3/9K8riQELddnh+5q0m3uRMfr24JO3hkfXhkW9/9Rd89etf8/abb1i+eU9aXGqXn4TTMnj7kNiycf34ke3DT/SffqI+P3P96QP104sflDk763G4/LycHynnM4/ffIe+fQ/nB/bTiaf3b3n66h1v/vqvWR9c1rbUnbZt7NcL9boFu8VY37+H5KNtSS7fKqeFaWw+hoOvIuLT2cJzxNeP798xMqYrkoRVB3IqjJJYXz7QLmfYX0klo0XpS4qxzBbARxj7T7+TucoiNI/eYynKDBoBPoxbqJqn7iFn9QTry3gswS4oPl43ebdtKOEXMafZdeq+M/KMacEOkAn4dEZ1Q2WV7FKBlB0ACaB/xvspCXdz2kis4qyA2SDwP615ElSDhThsYIeptpvN2zyIDj8PZ3Vxx/g4itzD3EiwXjnGT+s8kQp2eAnpcX6OiO+S83HY+98HC1QcRBLN7gemYS6MYaMxmrn3UfyOMz3w5GkIkhZUE6df/JI3ZSG9fcu704ntw4/oUvj04QeuGfb9FZNKEO+YXuh+74XpW3N8GxXObQjCLRGZiZjOA82Dy5Egzl7f/altUTzNBFEmmGHh7zLjsMY1jfs4/W4mVHIz8R9HwZ+TJxVmg3b9hJqP026iN8meuHzN/wympuAwSmeyujzztdivrQ+2/cXZeSmTeyf1hizF74e5D4jiTLi8LmCF3AubGL1KnAkjcgdBgs1iMplWc2qUX9zR21H4Wfe12+g8v/yey6cf+fzT92yffo+1jUWCySI4mzAuyySgI3KwVUBiFPaINU+cqcHSPg7/I9WZlzjyJX+P5p2QyA1HlPnhZ0gMaxBFltVNqtNKX860ciFfr4zrlT6UftkZrbr3nWjgR34OTpa63eWSE2c5TMO4SSrg6MUxjJAo+pq71kaXna0P9mGEu9Phh3P4OjMJSzEl9RBpzPR9dvNv+3jufjcBNveOmX8MWjMfUoKRYggNM6JFsTZj7RcfxsI38gALZo59K0oMO1gM0vsRJ4+epXgs8x6p7+XRhVFDJhh7SNSNZ5MqMrao8K4hcTLaLmiqwfz3JmwXRYtPke7dmw2hHQoWkTPU3Ljdtck+xGintivoQKQh4mbLbXSuL89sry/s1xe262fq9pleX5BxQWxDtXq+qokhGaSAODPVp911bFRUG0kgpyjXphH3ZPjM8/bI232veQNDDxboFBDfzi2vFSDFvi1ojyI7GEN9TigxYYKiogE6xkAJTT71VXVhpOr3QXP4MMX9jL0oMhtC5vtgrvuQ87j8OfJJEZdmBdDfqqGp06vQc0jkRI4z7WgB2zg8nmyus4j/Q6an1m1dqQApYUlcdpyKM5bi2vg7HxyHyZhb1pjQ7ZSwzT1nQJXOphVJF0ZIz0pZvJktioTB+CA7C3KCWeo2JGPcyiWf++txXJKratLiDE/SwNJANCZ5BxHCHNFzFluH3gTJPQYndJK4pG4m7dMLTMyB3YQ4KIzXc/06ePlx43f/8D1LWvmbX/8rb7+C5aFxXhfq+S1w4vmaqGNhH0r/9AaWRjkNHp9+idSKvX6mti3uyYzbdoSMSMFv4WOWxUd8mdYgE5yIlT3jhE0gJO5T/Jt72iZviOWM5uIDH8Sjo+dEw0Hw+UZ8ObnVyxi0Gv7CJiGn939vrbo/3DDG0CCiSATjWRnFGhEHFmd+gd1ioQfT2+Nn3XX/18e/2t3nm5lxrPm5x4+nPBgkt2e1L34m9mGsBW576v43v/yajEI7CCqea9/e/4xI/h6+fMXjtIu6deJB04bn9lg51sT9uxGEFBFMjS//Vf74mt9+unux/8LXny+1Y0rnBnvdD1o3EnTIBEl81K8bFIbBW3g9AE7JHKETtvBCColG734YTzYU4oim+9QUVE4kXVFdSeIdq1wcQLp9xS+K43lO/QSlI1ax7oFqxPQgH1Gtx4obfRYA7qGAFr9Ek8p/7BrFu+1Bu8/rUVjM2zBsuvP7Dc8SJpbxkJknOPA0Pa3mS0yKKwyTGEnsCbgNCelBUBbjkGAGBmmxaId382N8sQzCRySWrMT7axUZjsZb3xntSt9fYFzBGiKNvQ7oxt5gHYlsQhnheYB7Lnh0cynI3gc1ALDLcyJrg/2V/eUFq5UkeBIz/D4SVNvR43lwkMPEOw61+X1sQE8VS1efyNMLaTtBP5HN5StDd5dPDMG7Hg5AiWyIGKUM4JXt8gP/9NNv4NLp18EyYFwq2+eddVPy05m8vuXh6b0XF1H456VQziucF4YqXYSiqx94qjQztHdIiaJLGPMprc3E477MikLkSOLFg38w5A4QE4t94t0y12MHTj06rRrT928mM916yECMBe8Kl5wp4bzeegtpj9OLTW+v6f5aBmTX2ctwqnRIU9Kye4MjgVDdTNAGaU8si5vnlqdH0uUFPS/U1+5GpkVh36EZRTOXH3/H6/WZax6c37+lPJzpGHvrXAdI+0A5n0mnMxcVOK+khyfe/93fsZxWxjBeXl+RbePXf/Eryr/7a2ptrA8nnt684fTwwNt37zk/PLAsC1WVHWf82algD9/w8Mu3/OWvv8MuF8bLK6+/+R2vP/7ET7/5La8/fKTvFWuN15dXWu+QM2+//ZY3X33Fr/7d35K//gU8PrEtC+fHB07nM49ff+1GlcFIGb2ztEbrldYate7o+ex7YBbocANHhgPCk9VSluIsuTDPbsMlVC0kv+gC6QnJCVHh8a//irFfYLu4UfuovLYLNN8Xaom+2zG9LDKwWwSN4g2N6UgTCRi3Y/UAywW0mCcZCkiN7MaC6RTAefGkhFScRSIS/k8NrNL7zqdPH0g5syyFnIUSPgut1pCBVrZtxzniibKsSClMx9nDQchioILZwV4lZ+/qZe+8GZ78S/dJTPu+0/vuchbB/b0QGELbO6O5J0hWxUYiicvjxIRevZCeLJzZvR9xXWcXWcUceBpeRBHDKSzOCy2FVEqcHzfMxGJPeyGSQuYVPiO9AU71r/uVIYkhPrl13rcqyaeU6QLvvuHhzTtO9lesYqwvn3j87hds9YWf/iHz/ecfMNmgC6m7X5TMAqkHmC+3Ar+PyRjps64+zmCbXhORPc3yXPCprRIH4jEpyAI4ml4Tkxo/An5LMFSQLC6pSCnCuwRpwzPaMcJIc7hcDjo5++CAYS57uLx+hHZhbAv79Uo5PVHWJ8rjO9Ds80lmkTkSGrJSw5lKDE+GHWf04qJVpVtnt4Fsr2hZ2ayR8glN65GkmUBZV5ZSKCXz6UNxSe7lBDPPEiBYeGaDXJx501o0bszo+zWAYB9A0vcLfXvh9//z/5XL5x+4fPqBcX3mlBOnh9WbbSK0VJheKN2U1n2dnFZnJOXo9I/R/N62m7/n7FDrTNYlJquaF7I22RZDsN5J4YGyJOWUhKyG1Z2KTzdtquSHR9a0oN0Y153xekWeX2gvz2yW4dKp/cJ+fWUpmS6dS+3s1Rnv3lk3kERtx7DGY60d03jMGUptGE5SmCC/g0/ff/jkkmLx62yxZnUWboHUTU+sYdCDCeuvNht+fsZPKFxnU0c8Tg0btAHafG4GDedpD//DPkimbmGXFBtzip/FUGa9NbS5xe2ZOB9TWUfsibhPzoToITPSaF45aEGKCV0qVBvHsAZSyKVHQyW8w2Q2kxsdQUsHrbRxdaBcE71fDhlrKxuju69Q258x6yQZMKrLgYZLkJNAVs8Da914vXwm5dX3o2z0BvtW+e2//jOjPmPtlfr8PfX1R9r2AeFCkkpRZ1p1ibMx4kEThdLQUen9lZzdMPy0pFgv3lpWwRt04/7+hb9UNF19uJDcgJeQIhxepY7lkceCbosDfmMwJ1WOXgPEMh9SMlkJEsBTKmg+kYahIc0apmiJONRbAANetEhM8xSxaBb5fU/hsxNuDvjQJXGlgphP1Myel+bSISnZhMyUis8Sd1oR3/LX2FKR12ZUOqS4PkKchRkK+MDnhaQNkYI7N/rKnb5JvmV9b4kkrxPF2VoAJu55OPqI6XbGsrqUqiSBXsOLbIWAufsIZlawhxGioTKLMfc/Qwd5zVFTKbacHBzp5vFvuMrHAsjKvdOGyxx7VcbeXDrcutdbfTC27o9vwd4OwNlZjtDMyCi9dernnX/4f/wrz9+/8PXpzN/9+498/d0vefNd52n9BZrfceWbsHc48+FDQ0ah2Il37y+cyJxa43Ov1O0zew9akOFgkkUsQ9HwUKIbQ2/xKsVUTy0pgOubKDQ2PHdP5E01FW9upuLNrXwi5YW0njDtmFQ0b6GCiSbJnfdea4NWG/vmZ6rvAy9mevc43PugVuhVGFWdyRjNKFT9eYn18wUKAkcTdKJH8e1s2k0CxAGyWcAskfIqBznuWPlyByQda/gOdJrC6+Nfj1w5ILGZTx//P7/zn+74rBG77wgs817Yz3/LX/ceRPo5uJWYRgce5/4Ywrp/7CBPLObukk6Q6/B/ktsbmWDZn/P15wNPY8rrBq25uaFKchp9FCXIvHFOAUbxEbJyj7z7VfO6OcYWx+Ua5pD3xOGGEbTtmLQlGcwNVJNmSrHwRPL35h256FJN7Eg7xk7vg7FdohtrAWgpxPSgyJWPG2djAgD+OUewc/oAbIORwa4ohcyCU7395nhy5u+pB/A22nDarngn6GhgqW9wUaUkRbLf0RYTlkb3Ze9Br7HgRcyUL/jCs7hOxhiJVASzSr++uNGweVA8aJai4dVlpOWEjUY12LaGbR48Z5crEZ5AHQ+iBsOUYWHyO72QJnumV9e6A9Yal8/PjH2Hvrmh7/zQZnGgTODMPQwm8HiM5RSNiiUOpwhYJkprxnattJdKel04bZCOyTVzp/jvuidTRtcTT2/f8vr4wMsf/kDZBZrysC6Mfef14yeWl2ce3jyhw+I9O0DUbXY+OEwiTYScfRqKT3hwPb/Fjp2aZsI3aHa9IlsICZ4e73Gy2OYUtTnGF6LoYAYyf0xrjX330fMORoZ5pXAEr9bb8VqIJ525FJ+2ge+H47/iAWwyGgVBc2E5PZKmr9myetfQnC5d1rNPkdgyul/oZqSnN9jzCy+SEHayGg9r8YSrD2jK9dNGffnMp35lffeO9c0T7777BiUhJvz4/e+QUpCyMh5OsBZ4XHi5bui6cnp4wHJhHZ3H91/x5ptf+PVVYVlXcimczmffdzFdyWm0So8ujejKWs6kPsit8/7bX1FfX/nuwweun16o28b18srnl1f3HSiFd998zcObN7z/xXfo+REpK7u4xDKl5KK12DO5FL+eCqrZWQXFZZlASMIisQpvM8OO1tS8fz2mnbVWoxjvPlwhurMjmGsG5HXFkkEy6qXRa3X2D94V7b365pB5ZN6eB25bxw3ow+xRpio8jl4DZ77E3g3WlFn34tOR7jDSdhnd4DYdxiV1kQWGn5TtA2nKvgtvnx78c9Urr88f6b27l566b0IpJ3yiYHaWVTQgVNKxv/po1NbZR6fW3fEkVR4eH73ANB/164V0cl+d7smRM/sSWhZqeMBY60cBai0ScTN6G5HQCqKTgXBLLYxodnT3MTEcVPchDzEye0BZCqUsnE8PTEPvvbajOM5p8YKXYBOEv888y7TnmKZo7lmkQcvuMD0FpRQ0hmyIDE4lsTw+8Ok3/8z++sKPb/4DyMD2nX69oGNKLAPEZ7JlxpGJzVRjzGRBnM2lUfjP4j2ZN6dmPJ0xbvSB0aJ5M/z1Yw+4MTPObJKEJnNNWkzynDK7aSKsopQkNKLLH+u0k5B85u3bN4jAP//TztY6W92x60AvG6k881g30rKiZUHXkzMJ9pA66mCod/eRFOy04gwQ9T2tIbk29flCfQttAIlcVkY0fF6fL9S8k4tPZFRNrOeH+Px+v2qrtFa5bleul6vHePGJPWCMVqOxBlKvbM+f+PzxB373+9/Sr8/QdhZRWh88v7xCa5RSePO0kMriIMgQWvO9k8XQ7pKHbh5vpp3CkQuFROgg3kzAsLUIKdGVDuQ0R1Ot1wv1CmaNRTNZg0kyoCSf2Fa3jdwHmhNvv3rH8+hc//AH9s1zh1wyS17Co9D9bmqttNojDgjX14vnEObMSLnbhxFk5xIlqZ+TXfz9t+Y+NT5k5pZATwBZzG4N3chlvai5cfjuv+Q4q+/+KUAuid/vY0AXRDodlwazQ5FCkYxkZx1181wkFSGJxJAdu38lhJCfip83M4cyLPx0PC6mAAXSlAIyWT1xpUZYU0SuzFBsVJfxx8ACMzf+rd2Q2kB8muMs0LarOXskJcryxOWycblsLEt2iXBW1HZsOEO+5IfwP3KmOwOur5ubPEunjY3tWj3XiclWvQ+26jHU8kKX7IyofXDSRBpK7hGPcPnI3hqDjW6fsaczZVEHQmbtckdPv14ukc91zo8Pfo0Faq1RvErYUxxUneN+3GoBI4XH0ehbAJedHsBToEO4Fi8z4fmUlNNpJSUHubZE1A+Dltyjqm+e55t1H8SQosweDpodhaCXU0HY9bOk1uYseBO0DlDYNlyaSArZ3Cxd7xit91Pt5h4wF5QPBkMGqDOOiEl9KnKw7qezfpD+kXHwqY4GutcVc5+NABYiX1GjVW/MmXkzDzGPrcPZvhryTLNyAE/u6uK5dhYXGYmJP89wEG5dHSGzZcWqf04Z4ufTxFvCAMuZlu5ht1067br5RNnXK33zQR716jYuo7WQWHt4Rz0ueSshMSddbx8r39eP/J//j/8j//KPv+WbX/2Cv/1f/8BXf/nvOb//NW8fIeVHHh5X0ihcf1zYfjrTrr9E94Q8negvws73pJGo9cUVJnO05wBGIm7jsRb8h7g1EZc10HYfhjIL45sNBOJ+sZoz5XRGU8HtZtZj8IbXC4led1catU7rdjCnhym9C7UabQ+1w5iTwTzG1OYNnlaNWge9uZTUcODLa9ob2zoWzbEH70Pvweo/QvJUG02MAscQ5i+qHID03N1RiiJIsKscwrHJBo7HHDVVfH8vt5sIh8jt+xTvoUfN5b9rUQPEnjD54nmOF7jLNGeM4mfXwzMrOyL+DZ+zu0fdrtUXzLg/48uOWuTP+/rzp9qNfluo9xTmSCQRidranAqqkXSqHt5P4MW5o4IzY5rlsb/xYTcwBaKAP6bEeZeOePWsq5tGj06Xm8HrMWVHZ6BsjKPoBDBUMj7lbhyfwSnDnrRMCqgFlHUAPAhiDWx36co4gVVuEn5PuNxYzaO/H+M9pAHpC3qe5+9x/cQD/iw6bsvSGHh3z22dJluMY4lO4GmiZzbE2UHaGeIGmDdbwwDVFFQWRnKj3zY56Nw6fXaHk8zDzIEJu9FP5/I1wvSaW0BojYrB2GOz+f3zdXoXGuyoYyIB8H9zP4143Xj+UHvQW5hV7o2+d0Yd5KCwfrFr7sAnyQvr+YH1dOJSN1LPLpUT8eJ+u7Jfriz7Tm9etOvsBh6GpePYZPN+eWCYh7IniT3MSI8O2Iw2+P3VYO4dyWvc13EHBOlkbNxWzLH3LDrQblY+4vFehEmYix4g1hi0MY7X0uhG+hq8yR9Qn3rTtTNq4zALLMUnk6iiFt3w3mg2kDxQG1jbaHgHvacFW1Y4nf3gVZdskghQJnkXtFbqZw3a9+DNV2/8EJPEtu/QKrb7hBnGgmRjr5XaB6tEt8UyRYVyPh1JivtsOcB2XD+zAEemr71P0xQtPtFrQFpWyuMj5fGR09dX2r5zvVzIr6++/5bC49u3LOcz+ektmhfQTLG5p8RBitgXHAmcrwM3trRIXqLjHrHvi+NjgpW4T0MfrpefoPaMMZFdHl17g8NXzpSbz1isp2P0NTea/jQP9aUxC7NoHsy00GDcFSrzKCNAXjvW/5i7linNm3Kk+do2/QeOMsW/d9DKjYNbzWDO8NquF3rv5NyQNFD1SUxjyVjSL6RdkqJB0getujn6HPmuIuTsrDzR5GsgfvHodkWgkVkYizBi2uaYHoaA9XGcWT4MQrjJ0OTY5x567Lg2fbq9CsyJZJOdoZrdx/B8PsBoDR+E0Qcph8GszY6h0W2gMkiSGff3EU92vCufjnCY8lwnDgJqUnJWHt695+mrr3nzi1+QrCO8MLaduAThASFxJs5XsSOB8jPsltTd/3cKT5zfLAcgdX/9D/2TWEjUbaqDbomXV3vORgtnd1E4BjjM1/PK+IjR/jxCG5CXB8qSyesj+3ah9Z1BR22jj066ZHLfyeNEVgl2boJUJnnWh1doNN/iE7m8IozKNbwA514fN9bWBANGq9TRGF1jP4Rk4Ug7HRyw5M83ws/ikEjBIb910+aN7frK9voaxYSPL1fAemOvNSjk7r8pyf10fECKr/2EA9qYHfG9Byg+pd/z7kvEU4l177K/uF6RB4n5mHgA653eYj3p4lQfLQjF9zPK2DafXtTNp4+12L+9ucwu9oGfc8nP/tbDLsHZg6PPxP12He9zgSNzFc+FfFpTnMWzgLG7OHefTM/4arfv/6i6uXul27THyM0i1k5T2yN8xzcjmMbaBpr8j4x0y3/EoAvu2ziLmig0gjgtRy5pR64V0MGRY0XVxvH2D/A3/t58jSVzwJ3wW5kylpEXRHbfC0MdONOOJDvOs24VbZ472Ghsl43r64WS3mCSsK6IecPMh+AsYDnOJn+/rXVfk+pNxro32t4OoNe9pxasL9AXSKdbbEphfaAJxP84AyZid6wdTZ2cl4iTcqwNQRyIVHG/Jvxs9zxv+hw5ZnQ/AfS4vFHYz6LT2TazCXHceM+dbZon32jrosSAmsEYC71X33sj2JYiWOuxXWPTqZ/TmibrIoCjMdcAkQvOcy5CUzdac8lY74Z2O+qP+YHm553PARN4ivDdDZXhQ4vurFiUg2rFHOjuNZdFs+B2zZjF/93XF/WszDXsOXjvoE09T2+VnjKt7u4VRT8aGxZbWtXrSVEH+AQNBpq/lxSM8Zv/meB+xZMZ495NEj6vdR+0ZqjuVFGaKhKMJ2vhh2QB2sVasJmsyMz2fM+qKVShPne+/+cfGb3z/OkFXc50OfEVQn63cl7Mgch3ymtTXmvm9acHRnlLKTtl+RrajqVPjDBjHyaITb9fjbRtvp8JPUTjcOZ1wmEV4sD6XOfDm2ZzOnNZKHmN6bruYymSbvFPzU3l7+wQZsycVjYuN/YhD84ou8Wn1ifzyeu9Ho/9IuzOxX2sJLn7L8cjZ7479/hx/eXnJ0bExjgsPL24k08HYHScEnP/zdc1gnhwzziy2zPH73/x2hNE+xlANX9zxvnJxpLbU/7Rl2C3t/TFa1s8x+3f7pWCt8ry/rm+/Lf77+dZ4jHs7mz5M77+bOCpVaf0C0pKMap9LkC5A0iiMNKSY2Sum8zNOkrVEx8fJxwXc0xrPDds80UN7nXjmlHJC6IFGz4tBtFj7LOpJz2ms3jy4OtJjxsxWzOfGHUUXIVEwrRAyaQs7p0BR+HfqxvJijRETygF1RhX2Qb1+oGchZwAXT3Q9Tk9wN/IwaYagpp3mZJmZgE8bBz015G806Eq5OzXuIsnphOZ1khE9S6p0CO5AbEe052UoY0uLXwIfNHaZNkk95xIkpFesXplJB8zqOpm2cZgbBVpLnuYqOswqL37ZJo+j6PYJCFPUBGK6mEAbRbm8+odXht+rabP0egWvj4eCHskmA2jNR/D3kyo8XI7DRsb1S7Y64X1tdBeVtaRkJk4frGLnDpMPvP05j0vT2/5oVePsYYHa9zY/eXDR+TpCc5nmhop2EGalCZgG5RTIauy5HIcLl48EsHUx/SKNDfbLN79S9kLahvuhmMimOlx4IlomLr7YeWsQr3lAPOwMOJwtzBP9ERNJIDSNZM0hUm+e4D0eE7AfRiCdUMc0CLB3sIlNM+vr+GTo+S1uEeUJgrKnDCjO4zmJnzPHz9web7y/OMndkmMxzc8/vov6Z/+wLi8sP30EU0+/Uj7IDeXBOXRsX2DLUPbfV2GxK/1QW0u+Ug8UB5XXq8b+XJFy+LTxZIXfEv4PiHyJ7THzj4bwWhp1VB8vXfxNdgZlLIiZSGdH3DOjfHQO4+7G4NKTs4qQdh8S7okaESiMT1hIqlsNkgxWZCkh19IbQ7atYPVOCe7fHn4jMi85jCFY/rgTNjNu0St+zTAbs6EGG1n7Jt/gqBFtNqdDt7dP2q6LHgieNsuNot4Op0Wh8usbjyuWbBL53ja2yncA06yoJYnfDpJdeq2CSY1Dl73C0uSSKFoHiEzfP38gd4r2/XVjd5Hj+lVr4gktnzyLvzDA8t69l8WgSbU1tj36h3rAJ16b6gqS8l+AGum4z50IsAYPiF1mDPyxvCkaUY3VUh6ACVe9MfkreNLo3jxc8klgXMNulzXi5nIO2UwYhQ2kkl5oSxn1vXBJ6OqUroDy713RLN3q1tj2/wztd5RVTJQZlIf/ikaAOQEjH1Z5Ygb7vkzWmVvxvtvf8lqgyeB3/zf/29cf/976vOFVWPwhYjLl+e+GvNMIhLTyXqzeMyIECwHxT+LszVuacuYWV1E/Vtn3XAWGFPWI+LeW2kaiuvky89NOE84f64pcweGCb0ZH5433v/qxMP5HV99u/HTj9/TXj6h0hDpGBuvz9+T8kJeTjyMDu3RWbSSvRjRjqSG5kzGTfE12DUpXq9oyEpz8bMYQ3pDh98rLYlru1K3xtY7y1Jiap+D1HOdzJjw9LDSqjhLolVn3jBogk+93K48f/rE5eUz23Xjm2//AtoVa1f254+07ZV9271uq4PPL1fStZNTZl1PboYrkG3Q+xVrjW4+WWqYx82gXgTjCQdPZiPDoO2bF2opZENRU2qAGKow2s5WK58/vZLyiVRW1vWJnndEF7aPz7TLlXa58sP1Sr9e2S8v9FGpdae+bryaj2XPObNvldEHOZWjmZdT5saavz8AIkeRAD/V/SMNELG4T3+ciM9Yfg80zaTdQRYciMCZRrFUXVo74wAT1Lol6RNzPyaEdeYgZ/bqvihjhle55Qk9CAFzr92YIIoWXOJ4NCCYgYY54Rchht9E3hWxoNX9SCbzUg4GgLU2d/XxelYW2lCG9tgThqTmw3sEhEGvr9TN18qor9TdzyRnuQm1eU4yWYmjZT+n8spsjDDcoF3xaddqDbXEuj4hywr2wJqFl+fM82cjrYMsDdXO+exTR5FgYkac6iMzhrNcW+ukPMhZgi2e3WAfz2NHvwEoKaVjRPy+W+QRMfFWHIzqEwgOb9sRkqLZcHLQx76wXBAx+mj4WAkfjDRB3hRn02SXz6ETgrNIGEq1Cz7pLSHdjb2z4qbafaB9uK1GnwCPx9iUwrpheC4kMo28/f6MJgcQTtyLAwC9YynF4RXS9o7QSFKhu6TfUHozWq0eW8YGuB+UTz29AQE6j8tYv3Mi3fwSmEKB4+cYveEgeavovtNlxLV00GU+w5Rj+9RqrxMme1JVyclPKxkCIx1rbwx/JRUl5SXIFInWjF4HSXeuKDtC33ZGa3H9Ytq6TAAs6oTRo9aZEmAQE05SGL3z+ocL+8sf+P6ff+Jf//lH/vZf/sCv//4f+e//B2E9f8Nyeot+9cRVhdec+ZfvM708sKevOJ++JVtD2mesQbONboqM3fONbozk9WiK2DcZ2hZM4z6G192amBYysVqZViA5Z1JZKOuJ5fQQ9WIKNYzcgAi85lPNpLR4zL27FmYJLPvKjHw4jj6cVSn0rrTaqdUBcpdV6/G+5xu8K7v/M18zo/sSYDl+ivz8OAdkAk33oJM/y+RGity+P3wQv3hm3yN3TxmhVo4GiA/zCGDajiv35TPZl8/qtQIBREVDk8Nw4ue/wHTEttuv3z3iZ/vsmBR4+/97sO8An8bPP+2f9/VnA091r/jIZg0Kc3TntHiXLyXGmEbVTruccqPZ8fRuzC0xNRPExOmZcaKnFOapOZNkIaWFXNaQWfji9hsZ5n5qgQZGQWAwkUN/9eiA22AQ42gl2DwS+PswpCuTBjri8GjD2Uoqu09k0JWkJ9wYsXF5wT9r25G0HjIwlwRkd/fPiy9eL3NJIpQUXlgmRxDHojA0C3DJn0NTZnQfwzpSOjyzkogzb4hLJ67ZN5xa38agk5G0osWZXSkSopSUdcmsJXHOHU6JsSrp01uq7dTt2f0rhvcFJORlXvBKlKpEhoV3no8kapZennSq+aHSA7ACp1yOZp5pzaLf+pFKzSkzw8Q9FGwqwr2EsSEOfI2Kyca4bLSXSn2uSHN6+p0WIA4xA3NfqnJ6oKwnat3p5hIQGZkUa6i+vvLy8QOtZPKoaMnknHl8+4ZsBVOhv1zQ2kitsyzuFeBAoneU+tRSqrrJuhkpD07rGp2A6AbiTJFDl/+zr95vhn7Ebpo3XQ6gwoPp9FRzqUrcl5RCMheBLthbIjPZ8u/nAa+qDoaAf+7JWCz5roQMFo9kluXMyJmeM+vTJdaG8PXXX1HEODNoz7+jP39k+91v+M3/+L9w+f1ntPmdkTHYto2H9285Pz3ycFqxnOlewcFw+WQ+r5zevuHNL37B6fGRtDqtP5VyAE9per6YjyCf0jrFk0afypm8cBsDtUQamZxdnmWEP4u4lOEYvb0YVorHlqQ3GSVCNjfss/1mTj2zCQc4HDTs5lJZB1+F2lswmSY7yA/ew9RT5Tj9xpjP3Q9/uoP2fFeoA4hKyPsqe5tjvT12NPwpU1ZGyBUYLn0TjBxABbFPQ1/LlGDafSE1U76Qzc6Yq4dZeRQ/TIbVjTZp1rDhsV+TT62TSO5kGGoxbbRV6v7qyer0OfEoivXGy/Og7q8s69lZKbGHWh/hHbAjGEUtDroBY6duryCZTqKrnx02KtY3bDRkVFBfO8M61jefSNT2OOQ9UUR8AuQEnywKTEwZXd3vQlIkM5nZ8Ta728VxZplA68ZeB9etUYqSlhS+ThlNcwrocFYiQs8dqe3Y6230Y33leHIvTCXeoxsbt+Ed9izO5rJcKI9vaW8upLdfU0+P7MuJtq5YGw4gdpBuzEMuRfyZRrtdJovDG0gSZ5obvib3txJC7jNZh+YsjsnMk2BzQUxTPkp/NKsznbJEXAufsPBaEdQ7/hCIRzSmSBgLlcKlwj4KlCd++Vd/z7XB58tO758o2cjJfLBG85HvuySkDbJkSj75Ga7qRrrEBCMcjNHhcZzmUnNrFVJh6+Is51RIVrHkZvgFKBkkK3t95XqpbPXqXXkzWque3OfMaV2x8C9J3hnDhgVTyacBO3sjc358IktB6ehovKTMy6f/P2t/1iTJkmRngh+ziKqZuXtE3LX2AtDU/dLUTTTdNA/zt2f+Qj/P9NMsvQOoAqqyKjPvFuFuZqoizPPALKLmNxNAgqg9yTPiepibqYqK8HL48OHCly831rJCrch6Zj2dgplF6mgMpuI+zsCEUCMBbNGeaz0YJ7Voah/Fg9OMD3rfQr/Ms0I9QBgldGtc6Nct9D/KztlrSPiosf30E7fXN26vb7TXN8SM4s5239i3jX3b+frDM0tOqLzfQpOt5NQxXFjX0yEc7BN/5JGlP8bE47AnkD/d64hj0tUeOzD/7yERPurZR5A/4tyRTIdNHMnYYBAd7zO0gSALBEk623dLJkuPqW8afnW0mFmCsk7YhdFtYOq4ZvFzDD1OwWAl9hvpY6wbHaO7c9tD/dBFeOJC1RgUItv98DGqoWvZdqyUJLwX0CjgRawccbxYxGfWG19ur7Mw17dDSmCCTgbbLVhzERMLoidcTigxFKaWlVM5TZ8VfmnnMwZSKMsTt+tXPD+f+OqrF/b9yhDEbtbZtztfXr9E27AUSjklMyO/0o49Fn1GDOAO27ZTa/jOdV3DZ6EsqbflZuEjLB+gxl4otYZuIAnYTAmDg+0b/rRjtADZkhM6rquUhbqcESnZ9lzpugXYRE3Q8I72oUXkeAkb37cW4ErG3Y8pZNgZy4E8Qtujdawl265YsCInOErW1WZVz+d5MTWwhrc73qBotJqp3OgN7tcWDNN2BxoxaTmZ0ONkynG8zDKGeDhvgwIbtkRZtOTAG/De6Ps9EmaNKZciSx6A8PGhbaSh95vSLDNuAVRHnDzkQ3Ky+OgMKAVqSdH6kgCzs56hbWu0vVdNbbN8b5XsWhik3jRKuYYH80ZY6in2bO/o5rjB59+88b/b/8HvfvMj67Lw/d/+S776/q/4dP4XPD2feLLK/l3hl17gTeFLQfYVXy70ekeJASqxy1pI0/TwuyWB0WHkBkNMsnNDk7E+cgyVGvIIRVhOORH2FAUE0YpLoeeArtCcjXsVKdS6ho+2Qt87vaXIvxecOskowWy02d3SezCietMs0slsyxx5lJslEpQ2NffrrwGod//tx88mWYmMX3JNbNiph98fsJVP6380Weepmvv53WePz3v3b8d7QGAZ2GwI5JGxam7Hb/8K6TmykbgS5SAYPEBNf/Crfvwyf/CmRBz7+AkTznq4OU0hevd3n/Sf/PrPaLUbRohJNRRS2yBpd/Pye9DMRwIzLmpcfZy5WKS570cQq5qiupValjC6Nal67xIjf7ckmsm3T7gyl2GwqUbP2ODuPyZCRoBfXcLYZLVjTNgySXZECVAJd1yMfSMrGYCuDPw9rnllTHWQGaB18DJbOSSt7Vifbh5jvB3KWg5HmLGJiuYUh3GIcjoSacAyCUyJRA4BdE3gKcXWSySndS0s1RB23C/cTidsqewPqLSOgM0T4OMBadVYe1efrSezHQDPnmGfoBTuMcmmW1b8jmqEZ04TVUSjeyS3gwsXazTfOSjBEuPNbdtpt5127Ye46QjmZOyEDDop1PXEsp4SuLNMpJjtSL7vtNsdrm/080LpK7Yal9awkkn7FpXn5vFcNCkbg6nUW092mQXzwATJyY3IAGHDMQVnnahIToMYhnVWxybINExXArcTOEoDIPMwMTbZo4EZbYNxDg/jPWyJiGRLhgSoo4MtMVpEZQZdkeevjDLAcnmZ5/nDWrgsysfTQvvyxP75B66L87v/5d/zVr6AW7BfHMSMRQvrUtGqNA1avy+hv6ZSqU9PXF6eef7wgdPlTF3XYKBkJRIJUCi2aganDAJx2pt8DqhSzCkmFBeK65EIkxWDoS2Wnmm6Ax1tS1FFLggl9y5j6FmCwyHCKvM6vIcWg4smmJQsjbFX3bLVOPdwWvjeg11mPoAte8ioOKpL43kWJUSlJISXx3qqRmuElGDsSM+T4Xky5jZjtMyJtwALZnknJvBEi2g2H/uwbZLXFQcwli7p9jLqe9FSJybZ5lLxHpVBsfQvHgBA6IGNKUhhPx4JM327crcWGjRZjZ4dwKnPVpLdOajlmGFtw8UwckIQIZorvsd92B4UfHowSNuoYm6xBHnmJSgd+GA9eTLBbNjfDFaKMrLhAPGG7zrOsw+A3WBvFiBKd2SJoC/uowR7NFdSe9iYEIodXJ/h/o/IaxQ2IvEdNtazjT39WV1CUPXyjF+esPOFvqwY7aGtMIWJhygxkQQwWjuH/UTiIUgyZaev8/kakwNk8tE2lOsT1xbBsadNOzQb4/OG/xEd9k147HiJ8CNEzDWoUjRTmhdMVz5++kQ9/wbqid4Cnoo92lLDqtHvbzSp9HLGlqfUI4m1GO0BiKEslNJwqaAV74auO2iNwRwlRkzbosEcKjm1KmOedv3Mfbvxdn0LPQ0ikfVlxZdKo6Wv8kh8snXviPKCeV7XE8LKUk4UCe/Z9529Obq+5uCHhcvThfMaA0v2W7Qb0neKdOgNyfaTEeO5JXBuFqBUjooXJBmAgrpnO3AcQOuebW9xXGtVSnHclXbbEAzTzuYLLJ0ilfvnL9xf37i/XWm3G+ox5nrfG23vWYmPgg3D72rJoTaxBxVNJujYi0zQ4/23H0GHPyYOD1/+EG7+sS95eN27H3qek6PKHRN8jzeboFVexmMCYgn0NgxpwZzSKqHpJ555q81zNQErd1xtnifDZpu5RJaMoJN9EYzWaNVse9h5B1pOfnUF+p4xJdFO2RraW4AVHsnRmNxpya4Zs4oHE3i/XWdc37e3mWxHvBX7t+/hV3tZQdZwM7XgOTu9lpjsKGjq63XMGvf7FdHKenrmdP7Ah4/PfPvtJ95eP2M5hbT3nev1yrb/nt6y0DLsbq4/D8nnARjmfbmn/lfEebUsGZuXQQhBCLasaiauGg9XtQzjN33XYCkMOx1RdTwxRjvTO8qFhvyAC16csgR4NguNo4itqVfUO64l9XIAssgk81KYeqmeZzVDivCbBDjhDwxShgueF//wM6IwJD1Yeh2Kdpp2VHZ6c7Z7p7U71neQYGYh6RvG0j/6yD9y6h7PSejcBoMcD0A81nFPpl9G/BpxnIjjEiymeK/oNJEsT8RnlwOc0BGDRWsZAhTFs8jpCVoqnpPcyhwoI9kKPlrVJP3VYXnGogFTPxNKFtW6L0i3sM+78eWffma73/j3/8v/gnineuPpL55YeEbqmQ/PTntqXE+NrRpWnFoClHMtMXHdWuyv3DNTLN0kwVzJWIbM8x6ewTgPJRywVKXWdea5QT7Jlta0cWaWqXZoZXpZ4rxVQgamwzE1Ppico6WupSRVTLIj20E1995Dzjjs60AsJ6D9sF+mjX74D4//m7puc4cz8948vYzIRCbzOp+jj5D42Kfjyh5Mybu/Hz7i4V/mC8Zfct1zs0+/NNoQHls5Ht5ryvc85JDvXiePfwgTOPP3//7u18bnvbu79y8fwJ3LA+vrT/j6k4GnuKBku3hBpeZ0nZh2pXUEXTH2M/xSOAg1S60DEqRwBvYumeAO8bdlXah1YV1OifLHOFEpw8sSYtnegY2YdXZUEIYhtAk06QxUS6mJUgsqcRCwEGi1NvQIfAbAs2XCQXokGkoJpNZaaIhsd67lM+gpWgS1cDo9YesJlWeqRIXaJHRxVCu2bEnZLIEUjwMqUYXCnK419JxUAmySaNcZ2j3uFkK1eTIHCyOC8Kgwl7JSVg09hz4UWsZBiv9qvaEWY8eHTlS3SPQmY4lceyVFPBOo8DBgzUPE11pWDPK5eo/E1kRCp8HC6ATbiQD6HjZxT5Bw/NPAObrHdyN+H9FgIljD+87+5ZXbTyfefnfBby+wCKw2E7xxaKL9ZeXpw9c8f/o6plhsgfBfTivXLa75lMwy23YqkqDIGm9ljrcQmLVu9G1P4dOF5RxVqRiX2yJgmI4udZb2FnTfaWgEx1LgNe6tDuFpM1prMWoZolVPlwOQ8v6ApTy066myns/zaRseGiTJ3Bqi5H2/gwRtttaagpKhmyTulGSRCORY7DENA5ILdySSbjx99S2XDx95+eZbzouyaAjH6lOH1Xn96Te8eufLdue0QbUzqspSFlxgN+O1N3oRbKnI5ZnT6Yn1/Mzp5RPnTx95/uYbXj59YjmdguWUwu6hn3NkAFoqUhzpCbhItN+JCtWz7ccF3R21HsktQ/oaZkFyJLhGMHSIAEGzkh3JoyNLAtMdhlj4APiifaxnu5dQvNBsj+us0UrpZuxbgCjj83vqNvUcxTyrqRHpMYYmz2qtFrQutD3aUk0rzYNu3kXw5QSlhMjpYDF5RywEYxuTx5QB/x7fvR0OXZPtqiUSKSmhjWeAdLyOVmNN/1ApXlOLpydAJ8lO6fR7o+8Kt7CFk7nmnkDQDrYh5pSycDotIZwtla2FDb71e7aPlGwZDe0ayaCnSo1EZTDGuiDSkFLpe4BNhWgTwBttv7Jvb1jfKDmmWjz0B0ZQrKLBuimKiYWtsvBNA5ijVUQrZYGpAt07SkVKgsA6gs14bTfhthnNGnuHk4XfWpagthdAF6Ou0X6n9xv7voe/G50RGVGoymwDadlq22YAIZhEYEop/NKMO0p7/sDpL/+G3eHtxx/Ybm9I2/GtRS1eQhsKicBSNNZAleQiJ/PHWlRLzSPJUOgyCgkBOnVGMnSAZmaR/pp4TDHNtdVFKVUoSrIqJNuQ5JHMwmDUmYGJgtSoWouCnrg15W0vfP/yZ9Tn79HLT9j+meYN+sYqLdhZBu36Bd+M9ta5vm7IusCp0pce9p+d4tGCvy5PUGJ0+np5QZczlMqX256agk903vBasVKTHdRpvfHLL5+jlazFRNZaC6fzBW8r7ab88ouHTy+Vy9Mz3TzPW9zfcn7hQz2hGlMwkZ6lJ2M9f+T04SfK+RNfvTzx/HThu6++4n595frlC//87/+e19sv9PsbvsBKow5gW0rYNndoWS03A6szaA+AKXRhrHXabeP6dk9Wc9pBEmAdDPcuhNaI8uP2u2Ckomz3YGd4Ny6nE/t94/PbK7frDSwGnXz58kaRez7swrosMYmvhMbTft8ZmnQj2Z/h/IycBwjtc7z0AIICWgytqojxZ+j/B1+a+/0AH8bJyvd0m3HWu68BACAPoGwkvS7BYDN3tCd4VCX0k3JyZEgklKnPJkS80qzRaMG2MaWrvSvmqmoUSTLKMjniA+s9mebOdr0GeFVAkq2DKm3fo/DaGuVUqeuZ5fIV6BlHud4a+5bTxmpBfKE40F6jpU2V2+cfI45ZKnuP+FzrQsD3nVYKe+tIObGcw9e15Q7nznL6wFrPlHqm9c7eG5enb/nqcuJ8OSMaLWSlFNbLa9pARc24Xa9cTj/w00+/Zbu/0vqP9C6UHjEWpeKuUcySYIOHf4zW7+v1mvFF4eX5maFjk9QYKLE/3UJN1W1P4CZbtkQ5nU6odFoxtvs9naYF4zrjCH2gXwwtPyjZ0mdYV7Ss+NJjoraulGVDyhu97XjvqIVPc+uowiZg1gOQSR/R+tA2Yurwxv1oSlVo1JJGEp6g0wDdZ3Ej863uLfWSyA8paAI9QQYzti1aYweO43kOhoZu4gEgUWR535J1JNQqylIj14LImdp9x0oUx4t6xOE0xkAdE5/sI9E1notHHDG0yzqRq6kuCajqBIbQAtk+HT2BlegsMKgS/mmt1HXF9oa3TqtKyfZFLQnw9JH2Z2gpydZF52CkIh8CoDPjwwqt3ek/Xfn//g//L374u3/PP/+LP+e//e9/4nL+hnX5ipflCbvcaC9f2NYf4P6FLo1aPG2gov3oVHGL3KW1ngUgST3DWB9qxE9DB7bUEvlBrZD6haUE8KQSuk7jmReNNmvXiGUV0LJSiByYqngvwbT2bYqL3+7R8tk32FvkvK0Pce+DgOEZHHtuSuMBPP4PWmom2P349W6AxMObTCDK828PoOE7VOfBdxw/fQSifg02/cEFPPyZLFQ79OPEBpiWL/H3AOb8jAekaJgP8cddFj74HQr27kr/EKP6U0GkcW5H3v8fWv9ff/3JwFMcxhRlk0IpC8tyoi7rbGPpwatmUaf4EsYPy8k4jnTHZcfoFGuRlJRKXWowY1LgrZSD3SQy8KaEJNyISQ6N3u+4bUd1XobQsx63ptGug0Y1bCDQ4VVy2TzfPSmpA3galTURA29YF/pemQIGFMz2rNIG1b3WGNkc02IOtohTQDdEKq01liXU/0sKr6EaAm0EY6btQVMWkajSSATuy5xENpIgScAr263csm1FkomQIZoqQ5C4tZ2+N67eKf2VajdKe2PfbjFiXEn0O4KgIZwMPFSDdFbCW+9T+HhNZ+ApAm5ZjR9aRNY9wKMu2W5zHOie/aLRZpEAoniO7I6qq2mIMPa2031D2GBr+LXTPhu+J0r1YIiSLDoDgLqeqeczrhIaPL0jNfQ0Ksp5PbOXJYjPWlhqZVmWfC6N3QxlDWFjSuodKdoaZRn7VqaW1pIC15KtDVFMDkDHM0AOY+MPAX8IgHuLINTcwhkTyR4eeYfTRhQb2mslK8Ij2BeJM5qCB6N1D2Ja3ahkHFoUGWxnwJrIBiqpN4XOSjJOtL+4IpatLhq2wNTp4mx0rFReDf79Dz9xc8GWlaYWgLKucDrTSji15Xzm9PED9eWZy4evOF2eWc/P6HqhXk6sz8/BxKo1k6xhG4IxFOc1k3zI6T8yk/HJdByiGmT7lgznlGBpd0RLmogIzOPID5anJjAXyUIQXGQGURMA02ETBWkZqI3Eh+H80p7k74xAq1tPuvGhI2SWbk7GWUyW4wiUNFrqOiGGbaqYFqhrAoglGZwOpgHgi4D3o+V5nByPdRIfNpIEuT0ZLbFu5i2Sr1HtHXvILAJ6Ubzcca0TqApGWqHTkqUoUGJdLTVIzDrqjSqxz0rq9qkYtWRgLo57jwBOJalncb0q8d+9D+2j5FBa6Lm1FkGY0HGNyXrWd/bbZ3q74X3H1ROUJ1uNMxkYQakrVtKfTBAkGMFTQ8OgLBF8aj2etWpU0EVjOprWUwRpdQEI/aY9xmdLCpeOiVtpNkJrKM+AQDDaIIYbjDa20ZaZiZgnXahNlqohy4nLp695eXqieOen85n77/8Z++Gfk7EAskfgrCrQc7hF6gK6CPe+M6TD8ZZV6WCBdaBZo57WvM54Zp6+DBgdcozjM5PjzImcADVjjwiI0jXtpjjRRRRaIZr7U8rCygkpF8r5a54+fs355RNNVs4fv+XT969c77/D+46xY5ZnIxaRbhvWruxdgm20Kn0JxoexU31Fqey6Jru4sl+ekRw6cGvG/rpyW0/sr7+l1LBd41zvbed6vb1jtu6lYufLnDznotT1Ql1ObKopripQ1oCXRJC1oqkhqAW8h36XnJ0zlW/qyofLhctp5fR04acvN36+dX6+7rzdO7Z1ZN94WTRAUbfJIu+9JXMxn407fWsowXLpLdjivXX61oORssfPe+sTnBosZyUSPnHFdsskUGNASGqHNSp9d6yHfhaav5+tSG5R1dfUZmqp1dJ6T9Klz6LPAxQ0zVsejVg7H0Gzp6/jXTtBvMN77Y6xdwWP1sKZiNv0x5BxEPGzod0xD28gG+BMnUYjNVaKTBatMdjjzCKqDElBiTai4bM8q/7dWhZaIv4YH+x9RNJO8zaZGQFQS2p3ef67USUKh04wb6V3pBtrWVjXC+fLC2V5xlkQuXPljc032r7PNVjqOdjpbng7Bk2YRSt63FrazH6HEj7N2hKamuw0ha5Cp2G+sO0hmP/2duW+r1y3Gx8+fMBcsx35lH44Jqqdzye++mpl3wyVwu1+ow7wwkexyFgWnYlbyS4OyZbW0ebYuz2ITI/94ZQYFR2F1j386ojXdE62q5gdoMpIc+eOkWO3Tob5EDUXZ1lkFr7xZJkRAFoUPHbULDWdBt/7YHCNIiW5NqMNLP4sMTmvDGbQsY9jf+ZwjJl7DGA1coEBDIzhO9GolmzylrEEaePlQVJg5GLmuGbegkei7WEnhybZMXxJjo61cTac9P/RVWBD7kKIPFTjvEQXRgC2LafKCYKfDC+VUjxYPEJMVUw2T4jVy9QEHebEJPxgGaynGq/VWvBeYmJyjem7iqW2LYcW8Fy4KHuWxAhUhHMpWIkBUff7jdd//IF/eL1TtsLXX3/PV199x6pfc//c8O2O+I8Ib4huIBvCjtAQCbLGEC0ZgEUqIyQLSsAC1J7fpaRW7OiUiBhTiPjHk+oiQobRg+WZjEHVtJGOqE+A0z0Kq33khUaCTU5vg+kkqa9FfG6u02C0B4nE3oGSo5Pk8WvkrMPqjgfnhzGeX8eZfH8eJbdq7OjULE7g6/17ZGz+DnJK38BxDTquNX83bOL7z/wjl/fwLjCBsXyvwdCMc6/v/NX8+/xDHzzaw2fHfw2Oz68+mfeFHCIWiOsfRaY/7es/A3iqmWgEUBIgy8qyntIAZ9DtCkWi8svgbzZwQ5vTTFDb0RoJ8bIsATzlCdByJMxjuWb7gMc0BGi471jfYgy3N9zTGYgmSMZESeOQRMDzuAmPqn8mVn4ATwOFjJW0TDyFxp6oeSxzUH6DFl3SuLl3LIGx1koCT4ozqtrxWVoqS11Dy4kS/bP5RHsyhBCJzybaZcoAmDIJij7i7CvG0+Y+HP90OGUEPpZJSduwdof9C4vfWfoVWrTzzJOWQdAihcFuGf8WrUQJVEyBazIRHj+P15pEkNGHIK1pxmjjeuNxx38edE8j9Z4spj91DwadEBN3zHeMDWkdu3f6m+EtqsGPyT95JIaT1GWlLKcIErynM42XFwnBcFc9WHkqs6Wyp95O7NlwYm4d74r1Fi13+fqRCCx1SbBzXsrD3hpgT/qebOuaNP2ZnI149X17nOiYkkZqgo1pdZKBhVLrMj9rBr/5bzoBpkchOz8cdl5H0IHj2/VwvFJTzN2Vzh5BkoFHiJhJsnJtxu9+/sLNgk5fSsdkQcsK64lea+ifnE6sHz/y9M3XfPjmW5bzM8vpguuCLpWyBrgW7K7UH8n/GeM5ZvAybIAc5zgYEYZ4z5aa1JjTcV9xNs0sCjkk4NCTtm6a3WaKaAg1mjJmnE+W03zOEzxX1FLoPdvRRtLt+YBlJDwZCI/vAVIdwekBbOZNpNkYVa3UA5GS7T8OZY0zrEnLIu4F24evwomx3TLQo7iQ6aDi8y0qw+TrEvgZ1PRHKrAD3rZoLdQ7lAQm8QjmvKT4Z7Zceg12mmZC6Y7QUfV0rKDj7iSmuWnqmcUdD3F/ZjTqHtU9HdR7fFajD62NKGb0/Ya10LiL0dcNUZ+6XuNZuYUY8dSbIinoKN5bBmd16veFuHtMajz4Dz6B6Qjqoh0rNJ3K3IPdDLGOdg2B6uy7twTjRSVbjeKrt0iQIjnJiqCMyt1oe0sQunmO73XIlvanl2ek3ZG+88O//TOs3/ACuweoVNQJHY0MVhJ4IplVEAUkTFFCA6l7JpLuAVQLSB8JVbR2jD1TYNLYM88+/FGejwGyukSS59nCJw9VW7Ee7OQS7OxSV5bnFy7PH1ifXvBy4vzyiZf9O/SfziBXvN8mEBH7JNpC8R2zG94Eb0JfW2gUSQO/oxTMA/hRrVi/gi64FvYOUmNASrueKXXJaVWh37fve0ycI6efEizO0u9YPQWop0skKkDfTtiIxZTca1G00po2spZoDZUNQVhKiMBeTmswUZaFxsJmyt2E3UM38d47Z432ttBmS5A7tWPI4Ni7ZQwj0ZLTDEyw3ULUeDcshXf3exSl2hbSBeJC1UqVAIashRg+CUINYLcXmwLOQxY1ipElT3FmOxK6ZeTUpt5t7iWZ7JHBHMlY8iGiHr5NfLRFP/7jiBPh4U0PO58/HvqijxXsOTF2Zqgjy3t8z/FryfSTcX2ReAmj0DA+J/emydRpUTsYKEPs34mhLLFmJAMkACSxI6buvcdQh4zvRPISB/gk4d8g4oAYhGOoBas0mJgn1vMLyELvC70J3gtbOw5t1ROwIbaFxtEAuDx8iSoRP4lgfQswyMDsmuzqxi6wq6Q+T2VvnW1v3O5XpFVKWzmfz8l4DYZQXjhSw7ZdLpXT6Wd6v9NtpZQR10VhlJFQSupaaiZvGYMNn2EWzCR9SHKj7TjahgRoLcHhhwLkYGP1NjTJHvwsPrfbSFwPWQVNfwiyJKvKSvi1ulDcqUvkWIYjbQ9m4UH8m2dFRoFLJK9Zo5iTMesjyJChRe7jUThOgPwxSc5jM7vsbfig0PcZ+3u8mTxm1uMexxGZbygTmRmaYCN3ExJ4ioB5fm48JBLw8tAEeogOZ1eHksBTgE8jniol1mS2WWrszei2CTuLjq6fh2MsEkDTEKCf3Qe5h5KJOjXP/b0NiuUMMDbePcLJWoTLUqFYKCfYRvvlxpe3jX/f4f7dZ/bvP/Px+TP7Hdqtgb0RnUAbIg1kB3aCmBFEEJhw5LtriFBIEAbwpKHxmt8w1iHkFkbuEtWgw7xJGj5FHlhtD3l32mDrB+jkHm9zAFFBTJiF8GGbMzYIe525O0eOMk7jf+xL4B3QwghZRzH4YVFyR+TZ9Pm7I1s6yvjMGHna/D+4jNFW+7j2h884vMNxPsaZ+KN39OCupkj8CJLkuEfniKnite/f4PGT4f1l+8NC/bFrOFbMeVy5/9TXnww8Sb0kQ2llWc6s64nT6UJd1qhOA+o1AmY5NJXMhqBZT5BAkbqwqHM6nVjXhWVZEDleb9ZTMHNHJEU0E/AJqv04THdau8a0FzNqWVGtLLUg6sl6SMPtlarrXHX3loewzwc2NsxA8SLwBKMzKNdSlFJBs+fc5KAuq1gkeWKY7dz3mMoVGlgL3ZLCWG50O1HKgvuJ6ifUa9Js83AnYwhIJx3bY7vHA7bU+ghgoYZzyy1akvmlqhSJUfGLSGjFtIbZTm9G63skMzRKTs4w90nH9WlrosVqCCMCwWrpllIzg2UTozNHf3gY6DAknUS3e1bdTFK7OFZWNTQM8u0Yo+Hj9yylGALMw6/s+xdEviD2Srlv2JeN7YeNfndqH75rnN5xcNNIrCc4n7Gl0jTG1O69I75OZljbG9vtDm9XvCiUwno+p7ZLBM+IBLtktBR6JO6lLGhduFyeOJ1PvLx8YG8pJt3aFMZLwnsyvdIlONy3bRr7SKgGiyb2RgRWgx2gE20uWifwYXiCsIVSM90d++ghaBhfY6od43PmHsvnTbDxBCYbMWjyJapo4mwdeo9r3nt8njpc3zq//fnGv/7ND9jdKLKil4qWZ3Q54199oj8/I5cn+PorPvzNX/HdX/8Vpw8f6SjNIRVoEVV2aykpFJMXx9noSR8vJfZrgBXj3oOZE6LaHU/tCgG8jSQuxZZzp5S01G6p30C+rG94czZzevb9+zpM6QEKH8lkrEW3aJmbei2AW2dPSnKRAJctwTGfYK680+rQTK5rCUHWZGVPJy6yhv0rIGtJodeWOkYN7Anf3kIIVIC+gcXUGUu6vvSoztWMXEfiO5IJn2s7WhMTPXCP6XAO9D32/Hbndt9jxLVWajI5Qn8hn2spiJwgk+A+2KuiROddWgMPynrrj8HswWoT9MGx2sOeH17aA3RP269iuO1s2xf22xu9bXi7It4T3Co5zU3eBYyeVH23QveoiAYjUTI4c7rHpDfrjpQVpFJSC8OT1RgC0kvoOpScJJOgGwTA1LM1sd9j8pSqpij9qFTHvR86HiOFfqiIFZh6LGFMKOMZuNFSb09cePr+z1nOK6cKX/7N/8wv//B3/Ov/8f/JE7AWWD2ms4pLsG80GzTPlwSKHDSnsFlDdQm9HvMAqgRQ4XRaEIh2xz3HPbc2dWeQKASYKj1b+mQpWD3FoI1SsLqEQLI1GhtFnHO1bB0SNoM3M6QI337zHU9ffcflq++5fPqeT0tFLmf+/h/+Z9rVsC0GarBHUWv4DVGnaOwYM0PbHsahdlaC+RMtyAqmtC+/zGEa9hCov8mY8FNYTqeZsfUtmFY4XJ5eYlLQYigNSsgQLN4o3ijiOURhRdYzJpUuBdeKLCuyrtGGjIMZ2/U1mHttx6WzubPtnZfv/gY9f+B631i00N9+xn7pbH0Ha5xzUpmq0rd72i3PIxXXqq5JTxasx3CU7drYbo3WOm3rCTw53vO1Hi31d7s/VNvjWyVYIcuy0HtUvIXK7b5Ri/J8ueTUumiD35NFEW3MsX+KPA7MgAmEO7wD8LOw9VgVfgysR6FtsKXjV+RXr4m3PthSYRkkiw1D7vVIMkeceWjq9NRyeQQHxru5C73l2XWY06MlW1BasJLEjosfhRjIuEFC2sAw1J0qOvU42hZaQoMsIiOeLJUBPI5ihpMAX+uwx6TQuuxgztP5ifX0wlqN03Llfr9zu925317Z7q9gEf/31JIxtwDIJVlB1mjakLph3lnoaF1R6eztikvhpj9xff1dMOWIeBotbNs9bNdVOZ+NZT1T64lSVkZE7G0NkCjNz7IUuq2sawALrRHtyrbT9p7Fu4esDn/QxPFMhlPjabTkWQr/e2QLwczJeF9yWnQZWrVRnJ1JojHbzw5wJZ6DJ7NER3GhgFsUXj1F1lVkghZt89kiZ2603nLabUxgNYJxVkrso6w5Jjgm0VY15DzkiBfH9N0JAGVelZTvACyGfxwMGid9tgcj6uHkZK1/ri/IQydK/Eg0QKUypC/cGOLzOkjrRBwcaYnRUp9x6lf5YJZZ4kbCokvsoQdbETG9gzdEIi4vKa2ieooCc8aI5Nn0EkmS1kI5VfCFulb2eug7jaKnzuWSkCZIGzAOblziln9pnNeF82nh++/OLOsFUed2v/B6u3Hd7nz+tz9w+8ef+efz3/Hx46cYwFVW2l5CJN4M584EnmSLBaPnJaUNR3LaMDmhValUihQWjeFCozCNRvwmZcEpYZ96xnweRSanxZq3fcZL3j2Zr9G22radPQdGtH2PnLQNhqyxt0f7euyJR2gj7OMB5DD35P8ZX4+IDo84ULDm877ikWaey8NrHq7x8S0FhqLYcaW/wmqGGxjZRpaAks0UL9CHX4xiwYB/siuDPIu/up5HOz8GiwxiQNi09xfz6//+Y6sk8vBM/D/1G8fXnww8LetTiH0vC+t6ZqkLdQ22Tn5qjM6WmGwRF2EolZ6irSbkSOoeXf11SZZGiaq2WIiOdYdsMwlV/Yb0SC6im2LHbKP3PQxForg+BTBjGpFYiMAFBVaisiOBwloK7w2209hJkgJzAkmhJsaMZkIRUydqMAlkifdUpYhQ6ppV6zIi/fQvkq1VDp7gWgqZNxmaKkvSpsM51ZJVKAbfIA1oTpmaoJhHuxgerYZKtKgMgU3IJDXb8UpRYmxmtNTpaixWqF24l4JpkjEzuS0PU1BcCBr9EO+cVQ1JyvKBXkO0+hxiseFZTVIc1yOIn8CTyWydIQqgUWXDZ3UjvqP6bHbF5Ia1G3K7sX+5wY837NXwTyNAzrUX5jN2gKUipxU9n/HXHdtjguGs9N02mii9aDILHERY1jUE9oqwnIMVVcTRNaYPLes5W7FKjoo+sa6n2N8WovWTrSRwlANib41O4QFczEBZQvejZCvSMX0lhfvc0/yNwDWhgTTGSq6BjKR8ODufQvqadO7RshnuL0Uu3dOQRfKFjepFJvR/xNKOAKQbMc61nnn5+ntuPyjYhiwLTx+/4/LykfXP/xz7+Ix8fOLrf/G3fPiz7zl9/Iiua7A6DKQuE/SLdoSe2vpHoG05zhjsMMCZiCP5Wouqj5WHcp6QCbkcujFkdZD4vWhrlAmKMoI6BzMN7ZsMnIYmU7AwR+Xb0+bEWZ7Ox+O6jQBzPffbO6aTHlW58YyKhuaNEMGZ1nUCjdjznIipfZ8BqqRQq9idjtClhKKjFqyXsNHqmCSF3pVOQQfTZwSbqSc1dS78ACll3GM+f/NgBJoL9Aqlhs3W1KQqAbggdU62M5G852hrHMGvWbAx1eNzbFyTCNNoyAhPshLKCCPsKCyIUzAKDTxYs+32hb5d8R6V+aH2JaUwEXhnCmZGLBSnS0c1eVxLflcNNpRJDZBOIiAMttDYe+mbPPbbTPVy36pKipUe56z3TkugLyZADRsHQ4BzbjCRY7oVPFCI8rYs7FBPGyvdWdaCPn/gw7/8V1RtWBHu/5//N4uHXmPRLZ2B0LpwenphOV8wEbb7jdvtylJLTEjbrqyyBPFZPACSElPRYpiCUwpzsAcEK6Z46Kd1NPyRK+iC1IWbLFBPyOnC8vIBdcP6nba9YuxAo9SwTeIF2gKnJ84fv2H98In69EIrC62sWD1z+fRnvPnOvW00Olo2dKmREHq2GKilnltnTmh8rOJ7gKSj9cC6ZfGkTGCuWYanovTbOioHAT7kXvKqGEYToMRkPD0lQNA6jQVZOtRGlQqLRAyWlXYnqsahQRethsz1CzDKaeiq6LLRvGIS+htSV6w3Wjdu252mEU+0vYXuUO/T9iuaDGqJNrs9phHd3nZu130mEX0nKtddGZUV7w8x11g7JCawurO3zsevvgYRWu9sLQpe296xvYMZ1vrU7HRghjserKz4+UCcIlYZfkmnVTiC5WC2MP3n8GfztMwz/isfJxwsYrJdTR4blQZTPA+oHLFMzwT68SPzY+dfItbL3eFhH8cEY8mL8AFcqFDI9vCH1m2bWlZHg4egc6rtceuaiU3uRXLqbsYnpChx227cXj9jXTBfWZdnxIWlXHi6nFhqpTfjTkzUKikgjOkgpo2SW/pVxTVZyICUQiVa3bs3zGNSVksW0rKsLLKisqDakBZ5w9tbYdlOlHpiWc7ENM2ClSVlJ5xt/5Fu12T5jDjK6X2ntWDn1WQNzi6CjJ0GaBzvGz7hSN48N2Ge+xl/jCpurPzUHxzgIWGzZyItHGAVx7dIauckmBIF+RSOdsNaoStIDi9hSpU8+oL41lGUIgvoCqVErK8lAChRoEU7ewBOdoBOkkWncQAYx1keciqiYJfX/cjz8HEW5u+NXZ+H2cc/PJwGiT3rPtq0wpyFblJyNmYuFb4/inFJgpCIcYsIqKMSmlmazHlVobWIH4I5G/IRZnuwrHOgxsEAyTi+OlVqSpwYZV2y3bnEayVbwjTtr2Z+y2ivzMKugJSIOZSOqFEW56uvV77++iOndeW3v/0d5afP0IVbd/rVud0a/fqFUu+UZclibE6Cs8aY5u7ps45tMKBDnZ0MkoUE7wQpPhmq8Z33nK/usdUZ8/LiPZNn6ZYTgJO92TyGQ7TQNtu2jX2/T8mX3qJjabx+5kaM2I255nO//RpW8RHDP+yZwwQe7/v+t95/5e8fTdRj3423Sza3H+34Id4wigz+7pqn33hcc3kAnvxg2Q4W4OPOmPvej88/cr1xhfYQ88brhw/wcRYfrmeunh/rdizg8do42rnn/3Ch5vsMB6y8P9f/qa8/HXhaLjEJbVlD+LsWypJK9U7swtSeAWbShloAQNpw9aCF1wCktJZMPnQCTyFGnuOpM4l0jwkWIhr0X9vjUEVUMwN1PLlHFjpAg/8XouEzBZ/3NFgqI1gBmWwUTUfb8+eT75CAE7JE+4QeYECMdl9Tq0mPgCNplzLagrxFFTCr6pEbhJHWkpt6TER46G3lEQjIRCoceYzpFR10ZZvUeDJwmAKCnpsSm1oYtRe0OVutkYQ+XDM1WTfZazvHxQ/NBgvjRQY70VseTs/1mPKGHpvZfdAqj4BwwB1OMr1cQoh+/Dybuc321PW643bD/I7c79iXO/bzDXt1/H4sWZwvYeiNgUeQvi7oacVqxbTlNJ64vr432tJnlQUiqFvWEDaWnAo49BVKnovz0yX2iwYbbl0Gmy8N2gheBxjGCAyUKFvGMg5W2aCRqkiwDSejSWfQNMfd4u+MzCMqriMElkO3gPycaIs7HNLoE3Z8TmuLZCquKQtLsS81PmnECNPQjXjfyKBAKcuZT9/+Ofqj0PXOcl95+fO/5uM33/LyN3+Nf3hCXi48/eV3PH/1keX5Es1T5sE2WmMdDyM82j1yh3iAoBAB/UzsOYKlTFHCGeogyXIE6VGmZjwIFw7m4TBteiQOzRu7BfhbusS4XgngqfdgXfiYUpXgzAAU6mBCkSAyTH0On6BTuqtkek2wMYViaykBGBjUukYbndcA9ntl14q0Bw087+AN+pLTMSVEg8mqtm0RqKnhVghdpAHY5P1n0B26dCWXNOx2tNIcrSGPz8WpeBkAWI/7KSXtX4hVk8DTnCYihTFJNRK13K/+wCwigr9Bqn/UWBksvqExN6LcoqMhsdPbHdqNdn/D2jWYYUMlSxysIgNsm+nk+I59E6DSSExl/j3KyRXVYKQ6ATwV88O2DTB8uqUjQBpMpmEvRAarLfdWvn4Ez4ePG+85qO4Hm/ExNjs0luK7A+JOk8pyvnB++gu033i7vdGenmi9UXqnStDgxYW9KU+fvuby6Su6CP2XX7jpz6jv2L3QvCMsAUI3iyk4S6Gulb5vuEURShSwAHUGRV9F2HMtOgE8eTnRtKLrM8vzJ85ff8fuRtuubK8/0Psd6zfWMsKjGq2b6xOnl0/Upw/o+Zmmla4VqycuH7/jfn/Frl/o3nISbUVKT1MQ0Z/geE5jwtNsPPQJimeRxjw0lnIoyGhjbnuK9CN4WQ6JgjzjqhXbVloC5JQdKSvVsoWnh7agrJbgU7TuaYIOY9+Edk7GHFoPDRQBLxkma0HqGSkrWk+wrKHH1qOKbdtGRlDgRFLeeu6bSpXwx6R47n6Ptrr7tXG/NnqznI51sKJGS0zECMdXyWcts53duDw9o6XQrPP5yxvb/U7bQ4w9RT5Y0AT2ByuHvOZsCZzJ7OEbyf0+CjMjvnj8Eo5kONzCAfq/SwSEoxqdgjMjlRg+12Vul/iX+PCIPc0f8aGHCzh+YrnPMGYMKlncPS7E87noJHiNNvRRxNAB7uXZEkgB7dy7w35Nvaf4PB+2DUFIAfJ94/72SmuwtcLz81dUrZyflphMO6UJRitvLsTQ5RkFr1mhH3FtTN2sa0gTaF2wQYTsxkjiRc+Inqi6RpeBN6x1bm9OqyulrPT1KdvGKk1jAiNmbPsXet8RmY0neWZS7L/1YPqIv5sAPGIu1Ydp02Rh5TH+GMXvsdfm90PsNxjjjHWej5AROwfoVQnQ6ZgWNoY1jBylqELRaBMbcWXq3w0g8UgSh2vKLhIJxlMpOr8nEFOY+3OAAuGbHtg8E2g6tu7wJe+Y9QzlS3nQTpPMBY7gIvx3/n3EEfN0Hn7XiMB0aMLSE3zNg+Ip5WHJKIzieI9WSBEo2SopFuz4EoBxb1GY1ZyWLCaYLRkfD4NPnoXIkVRIkCqQrgFaahnx3Xik8k4XbtiWw8YQxUuxBJ4cLcqHjwvff/+J56dn7tcrt7fGVRvFtgBymnF/29Da0LoHwz3agsJfuU8G/bA946JGWTpYTzrbeGngy3G7B1ydf5tsPbKzItZ96KyGNMXOYO23PYCn1ixBpy0Yhi3YTr11RodUgIdyXOfcQyMe5uFP3v3M/f0/zX3/B7/j737+TnhcHj5NHn/jAPpnfObh2uTddb2DjeZ1T8DJH69YGGSDX9U75uX9+urd+/Gzqck64tmxz8qMLc1srtzxaSPulPfL+84Pjh6v0W7ojxfx7poFjnP96yrKf+DrTwaezk+fKDWEwJc6SqhDd8czqB6XcQQDIJTqqBvohtRO6RZaDGkobcwhd6dbJrcZtw/AJQAH6HvH/I57i8VJobMQwFWGAHQALQUphlm07bVWGNowfaD4cXqOBzMqFBw92qBJt1zR+owuF3Q5U04vUbGvFX8QHPYcuS4QkwAk9IKGWorjtH2LYEHvnC/G4iuLZNuUdroYmGby8XAa/HCYU88EMGuDFx5rbzElazeniLA8lRC5rspaC7pU1n7GW0XbguzK8vQB227o9Qu2xJQbr5aYw4yeIPVH1MtEwzWDrubGmK5mpc5AZik51cLuOdkwr3vETxp0fYch6XDcau74SIS3DPrfEL9Cf8OuV/rnG/b7O/d/NpZPRvkzzf3oxxp67DetARIuzy/c1zt2u8dkrXSakTCU0DBbonXhdD6znFYQUnfKQrslA4BaC09PF3qymEpdWWpFgNvtlpNqbFasykPL3DBMlqyopRz1Uh8WUPQIhNwZbXfANJzufa5WGUCFMME/N6d7n4H0YK4FIJnJvfcjGEhsaTitaG2K3xONMeWuzNaYve0ZMDg1AYTucF6eqN/+BU//3f+Nt+9/pL/u1H3lL//6X/Lx62+p33/NVoVWBDvHng+uQFC/V1H6UsiOfCoBLD3qJY39EffaEzDM6kDamdEO6jBJLAMgGPR2LRVNjQjrQ+i2zYPm+bxcgxEkWY2OpY5Na8kOsN5pCRSHNkSfAYgsywPIPc72+0pp0cEuqjPYFYWajJGlVooatTSKLuDhuNvpxL5v6O2Nfd8YwpqDot/3twCOKSFeP+yct2l4pYD3Sm8FpOUSCyXtWY7czOrWnuNxQzMpGOU+bToONdVwXUIVKahjHZrj1nDbM6QMFSfxU2j1ZTJqHudu7wkIyZjUFAFgOL7hEEd1OtfUYgDCeIZVLUbGtzduX36m7VfYXxHbA5yjkcTGbE0scRAkCxcyN0/8LwN9+9W/Fc1Jr1KzTSsDM+k4nfu20R1K6yyrsp4X1jXGZrcOe9vZtp3SW/iHdYn7JdgPo43AsjKpZbToeSa2Pd3BqKQTDAsKSp3AsrlzPsVUKCk5SY5ON7jqynb5xMvf/pf4D7/n9vZKt5xDJgVZX3j+V/8V3//V31Cfnnh7/cKXX37mH//N/8rty09snxe6FWiGbY3v/+ovWM8rZRF+/vH3bNcr9nZlrUIRY/Eyq7A+2tbF4bTQlxO9nvHnD7z82V/x7d/8K77+2/+Ct+3Ob3/6Pdd/93+wXX+h335msS0KOFKR8zPLy7fo81fo8yfk8sLWjFZXOD/z7V//V7jEcJTX3/4bFl851c7ClmBtz8Au9o8Ou5obehRLusXa95bT2cyDPZCQgY1vd2zfZjJ7Ol+mrXx7u+J+Y+9GWZ9YThdePinVFe0WDKzWkLVR1hN1KegSxZAhoL+WNRhPgInQzbhebyiwLpWX52f6/Y2n5xf+6//6v0Fuf83tp9/yv/6P/wPSdCZK3jvdLSbZSuLC/pCImNJ2437buX6+s90712ujbwTLyeLPHJ00fdPRqu1EgSrsaS/RerosC02MRQtLXfj46SPXtytffv6FoitYTJMNRnR6StWskoy07qghIISv9uP5TRA/k6dZEZdf5Tru840ODZGRYsSXPbz8gJ7ydQNQmACzT5t4FIri9QdzKvzSYxtQMFNialTEmfFelhMmx3SsyXpzo+0RT7jCsihFau65sJlLqaFZOZK+cT85gCRscZn3MwoR9Bt2+wnbrmxvr/xOnLeff8f5+TvqegGtfPkcbcu19GQkBrAzJhfPFnlzDlQ9PmW/3SP2k+CletCMUzfWaUXw1mh6iwLQttO2nWt7jQJdXblrTYmLaGUO/wa3+xbtW7LQ9x7SEBytzeP+u/QMscpslQMmOIVUqhJJM04UXiKP8R6tn0Mw3mdekTGfLBSteA7k6c3wSp7hfI5SiGFOwbiVbOqJoQFHfIH3HAQQoEWADXOLMSsNM+sdaMJg1oZ0SF2EWqN9v2bDxkjkW4eigtpgeh12D0b8UxhEgXEWctvP3TNi+j6K5sdux8mi9kj+Hm5Cxu9mTjaYNnZvCdDE9Q02TsRR+brM8/CIgboKXR2VjiJhP5PlFRIpkamNw1DqghAEgWkX85RrUdRj3VxifuG+rpS1hk2eLOUo/E19JRl2iMxTM9bIUzdaIdd14fnjCybC6+3GDz994ZcvN97eGvdNaLYwtIO3lgLurYO2IDDknvdk6KgEs01cM5aOSCAz6AA18ZjKVwVfNElamdObZ/slKQMiOXk5zmUXD41gM8y2+dlt7+ybRSv2dqdtG7aHpMPILSTzBiX25rSNOkDdsZbJnpxWPvfLY478R7EP/4N/ll+/9AE8eY+fjH0Ij9PjTQagepy3UBr1canzUydm8/Bef+z65t4n866HexuyJ3GkRzQRhS9VodbshNBZm6Htwz4xAew4pg+f9wd/Gz/wNMv+x9eJ3LP6js/4B3f2x77+ZOCp1HMg4mVMxbEUi7ZpYC0r1uFHsjKgeQABqStaotdTUsxPvIcbyqb3qSUwbiqBjoyn02kNMKgyrJmnoY9raQgVLzYTIPdO7/uBvD8AOEEHzUOfYMVo8TIUZEHKCSkntF6QekHKibo8UU8X6noKLYZMQIN5RRyoBKEGojsf2GOAk4fILRI/8/h8NKb3PNJ1bWyYGZSksX04KSFOqyANy7ajbpLCtMl4Krm5bcFrTI8q5yeWyzP+9IF+vcbklKVN0c9D6FXSWOR/2mAkxXqGx45pPKVWylI5rYLoLZDvrTMJZKM7RkbSNjySziOc9YUwTOK4dGJawx6JYW/43rG78/pDo36pnLNVY6xLCEFmQJrXtTw9cas/09mizp5VolIrXkNDZNYlJjvAaa1l5SRAgVKCfQJEuxcSwrO7Ir2z9+PwjwDX/DBuM8DUeEYjuXTSmTzskuO1YwRu2ikfofaxq8Z7hlBosmhGwDvtePT7DiHkaBFJZ6Cxl2PjRVA/tZNUom1TJR1NBl65RaoAGsFuX07hZD8aaz/D5pzkiZdvvmd5+YB9eEoaskfyixNTlOJzXT0YkqNlFEkGVob6DiKpN+bRhuejJZWjbSkqXyPIifsZbU7D2UTFK+pA8WXTuSCpdZq2oifgIf6+aqIy2hNk0uNHIBUVKGIq1xDzRCbDsZSchKllBjgyq6yxN0ZrlyfY62PKVbJdRJbQwtNOScZiqQo58jiq4T2YkLYl5iQ4oXc2XfRMCMpxtnOk7mgTGs9+TB8Ti8BqQEjoAKMGJftgnw3QP0ThU0dPhiR1JBxinTFqnMkQYT6PEQiM9keRkmDpfBxx5ks5ggdCLLlvd9r9Sm/36N0fwYzbu2AM9RQGzec6mADDoPyhD5/nLDCywy0zbLYcjAB6pyTLZbSAm3Wst9QeCdtS5uCA/EA/btQh/eYIXm2yLeiDaTes0DjTUeXUd4Fb+B3XSJbqy9e8fN/5L/6b/45f/s3/wfX3v+Ptn35DR1CpLE8f4dO3lG//nMvXXyP3K/L6mX++fqE8X6jPT/itQzO0G+tf/iXLacHoMcH27ZXthx/htlFaxymULJ81jE2NXQUuT8jlgp6fKJdPlOdvqS/foS/fU61xWp745ML1y4+8/vQb/PaZ3mPy0/LhG04fv0XPL+yEcLHXBSsVKwv1/MLTx+9o28b25WfY3tj7jVKGzXuo+GeAfIDEEcwNTUJPX5sF8FzWIxkkCzVmZHuzsqSIePcQYg9yh1HrQq0rtVZqgqzmhnhDbUfsDv0GTUMvxxbQhkmh1JV1PfFy+cD9vlIF3l5f6b2xbxvndaUsBalOLzt+/YXeGsVtJkLh0h8CeofWjO4twISm9N0DcLrt7PfOvnm01EavfP75/ow8nl8RUvrJULWISyo031mXlZfnF768fpn6M6eyhI8arYzjKAzm9BG3Hz7uwX7HH6PQIJNZcbCS8hp9VHwfrp2Rtx9pxPDUvw63w8Qdnz5PacY6g21vYSLnh/vDWXxkgAwNP/W0mWmXRptFFPBsFvTiWuMhtta43e7svVGsUpZCXXIKlyb4M5+zJzgUtli65D3Hvi9YlpRCw8UM2vVHrrZzv10ppye0nEAqIo2inb5tdNvoObhmeqoHtpCmxAUSRdO2N1z3BATAO7Qery1KTLMvUUxS32PaXsalbqFlRsZJJYe7uARQiismF8wKpTilrqgWatW0twbdqZRkm4e9H7phwTjNvSqDRyDZ3pLFhfyz95EsxqtUyxRlP9jAwzMm4KTxHTTrka94iPqnnpn1HvatR9HGrU2dJ7NjOuTIJYKxEN+isa+UYDaVqvFdJDtPGPU4nABWzDMGSJpfJK/5QhdEB2tekGzHnYzDcUpGnugP52XE6Anq+jwsxxkbxcM4Dnl2shsh/BfJwo+0P/K9MCyz8z/9sSd4MoB5vEch2jVnZHiEGUtIAIzC5oghJ/PdR0Nq/L+LDFLfe3vzqzxvpkjAGFpURFhKxho45hHr9u78829/4sefbrgJv/vplS+vd66b0VxpRIt8QmV0ybV33vmpOG8xLDLKE7HGKe+YMXD8TBIE8t6xXei7ZggkUaxFQGPsUjQ0HPsq/Fx7n+uOQnDqNnvfc1BPFElLhpdDcmaw+WS8n2Xu5TNqmYt6mPnHwGu+6LCfv8qJ+I/9nhy/d3RJMPOGlK/MOHC0Px+Z/QSdjg+Z6zA+Y1zSHzC75Cg8v49f/eGthIPplHszwddaQyB/qToHednsWEhwNX+zt4PtPibqPa5n9lTF+zMCyfc3Jhz56MAE/tSvPxl4qvXMYN2OakUfyP440J7jR6VQayD2taw5FQCKOFbTKO4d9xCybHtPRsagBD7QAgeKbuNcDhp5Daqwd7BOS9DKelQfgrKYvzvewnaOKiVpAEa/fCxaIOREq5qken9Z0HKm1HMAT+WC1hP19Mzp6YXT5Tm0FPL3Wtun3kxRmdTDWJs8pAPhTbqmEAc0bjsqjZZMjDnKEnlosZDQgUoWzJya5uHcDJJmH6/viWwLoe3iOF7AeiD6Xlfq6RkuN9iutNtrUNheb1i/B5V05JvzuXAEle+iyXihiSJ1YT2fuFwq7nC9biRNJFDzBJ5EdOrDhG0IY67JgBgVY5VoBYrxvA1hj0lSu+Gb8/n3O6fPK7hOGCZjvWlYVANcWp+eoVaahKizTuApkxJNEHDEfxIAaes90e7Y5yWnWLjns3eO5FeUZjarvKPdCkbVIFctA2Ekk+Q0M6Mt4TG0HdMyRvVpTjh8D9Mz6NiuD67voY1vTsYTCd2v2cYTFUnNkbyxN31WPqIKOAKyqOWQdF4lWwOHQSqVpjFBphThUj9QvXI5faKcL7CutFMJ2UsxsBatdWbRyZdzpIWFosH0ER9Bns2qHITT7Fm1ivOX1ySSIFp5CAYct3huQ/nRZLBx8kcZSQz1LXcPnZZs6e3juU3EP5/rAJ4GJdGHNl1sCges9aB8c7T3lhJTz9yheOoreCYAcmi05QOcbZA+NDTISWcSUz1LMZxCtH5WYhroAJ4iK7a+Z34odN+OVjkyqC4lhkOkA5IEnjyjlmgpinPs7qHVkcmJZ494PMM+CWbTlvnRouADRJWCU3BZUGl0q0lbz6KHjzMghz6rO0PDSceam2WikMnK0MwTgXbHeme/32n3O2Y7axk+wCGZKsoA+gP8jK1xGMEA/QQNvnXE4WmHPQM48BR/lZkIybQXyUIUm60epYc4Z+iNNNq+JfDkwXjK58JMMsZhf0guGEHgMFxjzuGwI/Fa9WUyVZGcImoONQcblIXl5WtqPfGkhX/nyg+68PmnXxAKppXy8gn/+DV8/T3rX/wl2jbk9sry4++xLy/o2yfsl7doE3NY//KvqEvh3m4s5xX78gVrnVau9PuOs1NyzZsbmzqtKMvzM3J5oVxe0MtX6PM36Mt38PwNKsL58omv1gvLL7+nqdI//56+3+l74/TxW86fvkPPL2xUWod1rVhd8ASenr/6M4pWPv/+d2yvP9LeDKs9mZU6wYGsuR1JmEad1rCHxErye7x2AE8zNWO0ZinKupyQstAobC1jgwKn04X1dGZdV8oS2lg9QVq1Hel3aBXfIQRko/2/WWE5C/W08unlmX1dUOvBVmuN++3Gh8snTmUBadxvoZXU9h21PuOSwRrIDQaeDI/eY1BxU3qDtjn3286+OX0bJaPUppnbMeO54cfG2dXwq6hTikcyX2DrG0/6xNPLJSrg6pSlstQT1jvbts1iJcPXkgbmuOLjz0xwZ212sBd9gIkHU0MkfInzq0TF0wZmvjDYVo9ed9ikR1f8GLPLwz+G35YM/McvPrxXJukjwXXXh4TbJ11cMvPuURWZSZFkrBuDZO6wCbVXTpcVZGU9LRH7ZsI+Pq/3Duk3xEYxI4u4MmzJBkTs328/0vc3Gj+j6xNlvfDy6ZtI0Iqx2S1j72ghIu/IRgbmx9pqCe0w74bddpZTDRZXh7bFLdc6tFZTc8kUadE6JRaA+942RsNbWUaxZGgmVcQLZhVzQcsavleIoqKPtST9ck7RzImiI1cxP+I6EZmasANMswTxIr7PWEIUH8BTFuvMY2q1pl6sTJArnmPkIz7Fma2H9EhvO/QtpCesMViZjxNxB8t+2H0G6DTY/xrrOb4jx8uEM4tcJZkvo1XSukMfvi6ub7BAI+4fLPNxyAMQGUCrjxY5IYq3Y6/Oo/EA5Y6E9uF8R60m9757JP86iInGBLvHZ+VRGZ/r4jERkiiYF48yU9e8bwFta7DevecZYRayRzEcDvmDcW59/u/wtXmYM/04AlbJom9VYa0F78kEyyLo3uAffvNjnPsu/PzLW7Q079BcaAk6bW45lGa0zFkOLj7IAZGHxnPvaVtUnVpzWuLIrTNe8E7o9t1Dh049nlUwx4IRbQTLVyYAbnhOs9fZyppFxR6FtAk6JYBsJXAsSUB0rPV89Dx8Z3v/AKKYK/lgM3kAfoZ9eYBURjx+gE5h9+abvXupP7zR8T1yJjIvjeef4D+/Lv//+ivt3cNPptWY9vCRO+TvLmvUeyU3uGic01KEugT4tK5K707vsLcD/q2LzN8UDVDPnGhVnXG/TB84zov80bsZkzDlwV49OuL/+NefDDxB9Lr2yR6KfvveW2rhkIa1sNRCLWeWeuJ8fkkeoUDNZNGM/X4jJt7tbHdou2ff58MqWwQVMT520M4KtZyCcaGO2Rbm1lrQuj23g6emisWI+0gQbSadNsZpqoQGB8SmHmOo3VFZUV2p50+s54/U9QldX0BPSDnz/OFbTk8fOJ2fQ9jNiXvb74nwxhQad6O3nbbf8UHdX44NFwmgReV9VMP7cELJcMlNARnAuuAlmTtrtqWk6+nZRrOentA1jaYWejpHF6Gb0i1qWKJLCO2dnij7Hd/v1PsNa9BPr9h2TyHaTJI1zU63Ua6c11dUcQ1djd3hvK6szy+8fDxHlfzLFZMtjKuW2LjDOJaYUjYcGAQgNJxbST0sd4tJXGxgd7ANtU5twg//7idOf+n8xesZUld1GJERjtX1xPn5A5/+/C/46e/+ia5faOJZu4790Jtxv22ceuoReM91lNSVcKw3brfOl9srUpRlPcWEt1K5PH/g8vSBZVnTWY4KWIBrpQ6QVhLsSjK1HxUyiNaDPwYqlTImCQqhRKtJE3Zwi3HaWQVcak6nKCWEYrP6YPsxeWK8f4wjH7pNPc+gQw/9BdIxegILukTSUhM0IauFoUcS/e/LeqGzcGuKKTRXrovSpWO+I1WnJdYtmInsLYVXdQJtYobXZAyZ0VqbAK9KiCkGFX6bwBPuszA3Wi4FglYswRQy22ZwsmnQ4JdlmQwbGAlmVA87B5sqcKsEj7OCVZeFrlF1aPuWJZKC1LAPgybvWbGTmm26ZYylh32P3vfWgztUw6uwLEsGnhGIznOX056CRRTvtawVeksNuE5MyKlQLpS1Ey2GhrcFb2d6Fdp9CRYQAr7g7FgfRjlsDqO611u0KKlgteASAc8QGvdsuxMcazfcK2KVElFrZngl3XcN+50lJfM9pvOgFJcE2DWKGHAE497p1hhtDHIqDDZBb20mvZcPHwLAR/jyw4+06412vecejRrPLNS54D2nkg2AwQaIGy2WRolCyxByPczziC2S1RJ7eKkBCkhZo5p99FdGEmuN6/2N6/2a5z2BZXHce0xe2u5oKdHObYf2VnzmkWy+E5TNAMUTGBELWd8IDjPzT0g5gNVGv4e+RF3PnOsT9enE+r1y+f6fWa8b9pvf8e23f8bzyweuLOwfv+Xneub84SuaNfanZ/7iv/u/0u9v9PsrvN1o9zv3txtva6Ts5p367Tdc9p3lz/6CX/7hH7n//Jn95y8sIqFBogmaF8U+vOD1jNULy8e/5Pzd3/L05/+C5eu/AlUu1qkfvuH8zS9cvv6WT6vRtxs//PafoV4opxfqx2+wcqGXBS+F9emJZV14qoXzX/wVxRqrCL/7x3/D73/zb/D9R6y/IdYjsbMRNI62LmeUt1qU3MN11SUZSBFEzv3oNpOsSHtyUAkLpV44n55jiqQopcQQF83WIc3pjw5gHbEd3680sRiwUSuiK6IL1/7GvZ55W8/sr58BuO8b+/UL27bxZd/5/T/8HbfXX/inv//f6J9/h19/oWw3qu+RPPhhW8I/KEtdsQL7YFw0o23OdjPa7jHYkpoFyIivipSo39GnzzDpue0EqYSmShXOT2fcnXu78eX3X/j9D7/n7//u7/ny+Qu1LHx4/siXz6+0rbG3xmld55ne933GpGPr92STBrvhiKBG3FUew/+HI+wkgJ1nYtRtjibaAa7JQ4p8ACqaBR+kzGTi0NTIeA9JWYgeU6XGtEfIwkAykC2KrqIgVabeYAgeJ5aSnqkTjM/QXywTNFlYuO139r3xer9x2hbWbckWo3RxqRFWVNOuVaSsmGbJz0JxOLRyWuiwiiCy0W43XCpy+hBnvq/c1g2tC1IKqjvU0CAdulKCw54ASvqzWoTLeqF7xSg0ryx6ievohvWGeeH7b/8reguB4i8//khv4L2y73sUuBahWIIwOH0LQ6zLwulyoegJ4RL+SEaHRq6rhqSBFuW0rsHYryUYPwlaaRYORmI7EjOR8X8PfmAUVjzygQABlPPpHAm+G9t2ZyTANjpBZMiLCNYsvntnv4WGnfWNbfuMtyv4Bh5t9Hhj6rv64bNKUVgU7SSDPAciFeV0WljXmH4sjILFYL1F0U6T6tMSQI7ach3hJl5J3dfU1I2PT+Z4rElMbCWAxLFMeqyXjQLtXLvBkhqgsNFNZyF4iqxJzEgJJk/aWA82ipvO+xk7Ip1d7I1uLOYIYadGfqj1hohST/cgDZQdSgPb83bSGlgAUb3vtL7Ft2102yOXHB0DApr7cThuychnsK9UF2ChmYd+2ub88MuVoWlpKK2FBp4lGa4LbJ4gkED1ktPpSkwXJuIbDEycPQvLWiKnqCWAUYsqG6IW+qcGvQvNGrqs1NVYn4NJX5woNFjn1vdoVxy47mxLdMaQK+8W3TyjKyLZTrUoGOgiyFljEEHpKduQ8UwL5k5MhE/2TQKdE6h59zX2z38aADkgwPe/EkXZ9yCKZCx1FE4zpxh7dfy3H+yn4RHmZY2zwwxz53vMdm8C/M2wdcJdEysAoIEYtcLlcmJZlHUJnexalPNloTWhtXEtQRY4X87hG1y4b6FD27uzb1uk8vYAfmWx9A+5vMc6i0Ad4HQ55Nb/lK//DOApwQ5LU5tVdvMhoq1ZaV9A16giLCfW01MgpSqJmEZPuZSK9Q3rG82uxMQLSZZAto44qd2U/aoZVB/ifp332GVcmyRDQLIqEhX0CjoU00ZGMcKQZLqkBkxMuHWknNF6Yj195HT+RF2fYHkCXZFyoiwXtKw5JnwJsyYWVcNM4IuG4QyaWx6qB9YL+bBC50rCiicDRSzW7SGliH8jN2ULTaguEhUjifYUz/m6R2sODDFFS5CwJytEEnTQHMnsdQlxRq3xWRP8I51AJmGDc2qegr/xBEqpNBkzoxTTBdYTclqhltQP1szlo0wxSWDZNzyoEdOl50mWQ8EsBMG5IfKGckXtjuw7/aed/afO9rOzfBAooXfAOOgJLJXlzNPHb6jrOTS/fEfZMZZE5hV6Qb0jbce2K/1+zipQPiqCpdatxSht7+gSe8zahrV7DGuS0QudoBlDPJrJXDqApYEcx9YclecAz2wCWK1p9rbnGuYeGcLUrQcINSZjOYaKYj5or/uD7s1g1Q2x1rgOSZAJfBpGy2uTLpC9/z6M6kMANv7L5GDsLZLsKJds5eEIQvOcW+/RGmQW7YiD7djbdNLhiPpkFs7kPe/NbH8HPM3A0vUIDgcyQIznHUGfS8e14NbQWjOI16SzhPMeFa1IKMZ9GkP/KsCsIbJo0zZJnhEVjXbAHgLl+U7ZVhDXZjlQIar6D1Ruq3OtBqMtnmtOt2GA8UQ0kfvqEBq0fF3aSo32HCmG1wvaHTUN4U67xf0kDSvu8wjUo6VUMiGOHThXJ4Nq1+TD2R28I6WFrcxIJeG7XIM8A6YRpJDjebMVutSsJUkUFnzo64wWM3XEe4KASfHOqCAKChygXg+WldYFTOh2n92b6sqelPUAxhaQiqfYa4wS1hk5GDYTGMIkJovBZ6fqDEEyCQki7hbAkjhiNX1VtkZmIsg4R55MB8ukNZ/HAImRURTIZCHtTtiN43gmz/bwI1kYkaKh/aCaAK7h20ZdyWJK5yaFtl44f/8XfPyrv+bjp685u3L+6lvKywucTkgy1OrLR2Rd0dOJ5dno9436duW636LlZlSSe2fRM/UObXlh05+wBNXrunCqipeCXM6wnGG5oB++5/T1V5SnJ/S0RKuCKcqFUpyqja9fVug7p6ePbF3xsrJenmiyxHNXZV0WpBbWWllroYrz8s133O6vXG+v9FfDN6VvofcSOootqrkSqYCkvRSDKe472jDFJmM1XN0Y7CBRlc6zM9piCsqSI9dLXah1mW22nsj4fGtGO0QOD+gxyU8rYIW238GMzz9lsc061Xe0xOfuveFs1H6jb6/49oZ4m/5Men8AYjMRsKMOMfeTO4/DECSBnpn8SYI0JRjBISEQ4Eq0rvoE3WupwQA06C0GyOwWoBZmXN/ubHvYRBPBSuH0dOHP/vwv+eWXn3l7feXH3/4ufWqAQoVIBkIDRrI1J+32A/N8BNKPyYj7aDMAdZ8pdJwgyeeQNiip21EmSFjq4Yy9S3CGNXAJYKGDt6OdaK6rJ0icxblom7IjLkq364PU76DFZ1wSxRIotbCwBKCfbYrt3rjf78HYrkqVh+JPDo7QbO0Nvx/xX9irZMLJsB/RJi3ecduhQbtfWTUKZEupdPqc6igZ5ksb7J68G49UfFlOIAuVlWV9QcoJLxI6SLrw/OlbbrdX+tsX7v2n9OsaBS+NKXqSPsisU9YTWlfq6YllfUZ1xW1NgDTAELOhydQRCd2fUiL2aS1YqFFj0Cji9JjCrHm2Y3/FWSvZqmzJRHOPdjgbtoNIvFVTmNrDxpq1iPkDRiCmQXpOhwxtp77dc4DCRru/4nYD2xEZOrl98C+zV2A07Mc59AQSlZRLyDY7LRmHZh9dtKRFXDLewwcIlaCSCO9pf4ONkWdN0Wz3JMjm4+zZOAWMoCj+OvKWZGP5SOJHujY3ewZdg1sy8oIZgkoWEgejGkYPn4/4esYaYKM1OrBUJIXV5xAP28G2KHaLwxg+kg35ONDvwT7rW4BT3iC1HFMFNT5sVNkjtw/trOnrB0Ad9zbysr0n+50A/oZZtryjd9hG/szGOYvd9vD3fLkzmWPS/FBPyKKb5Bv2PT7J8lwVl5D83APo9LZF7FkkWd1ZYNAHDTeL3E0SCLWZ6vTsXnKkhK1eRWm5la1HvA0RD48CwGGxB/uIaVfe74Pxx7HmI0aN7hk5ANDBLhzxJePsPkSoMvIbzxgr72mykJL9l2znrGHO9Y5YLFuWVWKohsbvmcczHkCl50ac237cVNqPUmFdlfNFWZfCsgSxpqiwnvI8l8LJKmNK5ulcZmyiNdrmW4txHDokkzJ/GQyuwxu+W01GtF40mLA66ibvcI3/8NefDDyN3NLzI901kVgYrSAiKyIVLWe0ninLmfX8FMG9Kl50osBlXejtTms3bvsveK94S9jUDbGgOeJDGO3oAZ9Q0wNFTiWTXBkmthJTIXLEpMa4YIRMvkJPKcbfxvQL1TXYFTboaGfqcuZ8+YbT0yfKesHLGc/KtS4XKCsezebzkZBMnom1eadYsLKQaKMYkxJEeKhQDMBB5ntGv/RgVQgQIn4BZEhUjDwSdZGKjx7xTL605gaXEI4O9kP2fppFQKUhMkeJ+/K60ETDMO2NErYzkOte0naWSA6753jkDNDWSM6iYqX0ssB6hrVitdAEXJPSawlKuKPm0WaTDmwUM3obVPpBfQ+FgVYaLlfcPnPiC2pvyHZj/3Gn/b5z+51R/rzA4vSR0nq4CtEl6eDfs54vaFU6t2hG9EprG14V7YXqHdqNfoX9XCnLSqlrsn6M6K+PNkqTnVqfKSje7theY82JRL6nwzOr9JJBSgmj/SjhObWJfFCW89wN8CAnFRQzWEK/IKrKPlkgre9zP2qJ6o+K0L0HK6Hv7PsehjJFzkuJvw8QcRjXUbXvPsRBPTpcd2d90N1xsxlHmMh7J5pCsUWzguGMDjeKp16H9SmciYcofgT1hrR9Bv+7WWiV7BshajE8TWRGvQ8mVIAso0rhMqrRcU0D3PaZUFmK8Srd7hQ/zSA8UcuMTPSdkzM/ArO82wQJI8gf9vP4M9fGPa7VOyUjM81kIarAfTI9g/3jwU7yoEQPvYiSrZlDK29r4bwsWYpz73jPdt58jg5oBV0DcKkdNUVZkO5Yi4B89Ms8ghmk3YcACYLqHWspNtrMbFZww96UaN3QE0pFpcYzIwAoMhk0BbUa95StYKo5yYcaCf0MXpMNK4p46H2oWA55CNaJi0SRg4J1po5HiPWfcFP2+zZboxSNVgIEWVYKMbo7RhWnwGkytqRE9K0ES2fseXMJjTzxaWejPabHKGIJTSclvunBfHHJKjyDHn9stMG4m0MEZAiKj8cRffxHUWMQsgdQR4RQqb04QTkZZ1+oLLRbnJ+9tfAd1tmuN74Y3E8XXv72X/H1v/yXfP3Nt2ymUVhYT+j5BGZ4K5T2Aa8Lvpy4LCu+N5brlfbzT9D28O2Se2X9yGIn+tMX7ssLXkqw+56DSSxLaO6V9YKeLujTBy6fvqY8X9A1WsgXc6qurKvgp8qnr15YivDp27/k7b6xN2e3GlMoGePDV1SFVZVlqRSBl2++477fubedtx+c7a1ytxYxgjW83ZHUU0FDoHa0VmvamVEgoj/o3smRTLkTQJ8GUNh7T+FwoZbQFikPoJNIUOddLfZbHkHrLZ5w6gpyIvfOgpuztY3t+nnGIee1sizKaansCOcdrhfhl8+dXSJZChZ6TrBrHudAojId23ckjtMpRXLhnkH40D2Jfy+jmp9FC/UQu5Ya998wllJZ6sqqa4CrItB3+t5DAFqiPfLz7TrcEmjBamH5+IH/8r//v/CPf//3/O6f/ol/+Od/YpFoyfZucyD9sL3KsNdprMa/yYze3n2NpENkAE5kUh0CAMO/kUn6GNinZEGAh/hjJg75Vylpnx3f87mWWNPBsh4pcrRyWdpDHxeUfjefzXix5tAcj2xyWRakKNUq/RZSF21r3N7urKeVlYX6oP+hmhIOVRgtZJbk5+HhjkTtoUDoAZiYwX6/siwLZT1TloW7N4zGaCMJn1xiTTWZPgkQnNYLWi+YXJD1I6Jnipy4lIi/Xr75Dv+lspmxJVhVpUSc4DGNVzLGt95YyjPr6Ynz89fo+gxU2gbig487ZEOyVUg07KEKrXf2Zjgh2FxridgqJSyKh82tVUN/UgWpBWuS92hZyNwxC5mJ2DtjCEfGIG7xvuoBOKmELe0BOrVtx/bGft/obcP6TtuuuN2BHtITaV+CjxsxgKbdN8/Pgsgr0gbWmhPthnYkEe/NaX3jVEjs+yCpSO5fn+z30OaM11Cy6D2cyzxYfvye9Yf3Zf4cz4Q+UayRd+KeBcKjaCsEaCfTR+ZHOElYeWQFy7wWH7F2frCZ0Lug8eiDKeUkO71hfcN7KK67b8SkwQWVJa7BBGl3aHe83fB+xy1aUaMdtaXPHtIDTLteSgl2L1GQsmSahf5f4aRK98a+9zDHCWh0Y0okjIx4lO8CaApwPEz1ANDHE4r16gatxe8UAWrkIdFBEevTs00fdYoXtMcm83vD245n4cOrBrtMLWIbsbm3cRAXihSKVmzs1QQ44iCktmBVtIWf6TjWPPdx2qaoGExWkYx9MHwiHHs21+MP/iuXYrQ0etqzI+859oynrIYxNI6jaDtyihGva+YXg5DTp77aw8Yk9qTgLCpTt1HEaeaoccTlDPsumV8NuKwhaixVOJ+VpycNxtMavyMlgCfZC9o9sAqJGH1ZNfeusnSl7Y1tD6AtWvMkm8x83j/j/D0esXGoHFSDZFPKY3vtf/rrP4PxlNVzKaBL0rp8Tl4K2mWM/iy6Uk7PlNMZXS+U5ZRUYqUTiRYmSFdoQtmfWNWQKtBWbLtj92tQR7snMGMpudJjeoyAljC4ke1kcpltG6E+eKIuHyjrkt8VkxDntP4W/abBMYtqylIRPQV45oqWC2V5Yrl8y+npK+rpgumC57QirSdKXaM6uQQgJNaj+jUOv+ZmbCGmikTidJTCIxBzc4TohY3e74wbJHhbZBVYpYaTbhY6CyhdF2zZAzwraxq5TI5PilRlOdVI0j36xGW0yFljaLCI6fz5ft9o1zvtdUNuLaZPJRsi+v5lJvZuIyCCvjXuKmyitFLYfWFnYRehF8Wrsvcddqi7cZI6iwAD1GAEO3hqdw3nqbOXedc7Il+iLcp+RNsnyvWV9kNn+8edn//1jfO/eoqcupBGITNLKrVe+Orbv+Ty4YV6XijLDe0N8R1rG5Uzy7LyVEtU8u5v3L8Iy/mCXhRd16wSVepAit1Z1BAathl3OloqLgtz/LwMwUNn15xkZ5XWRpp4tNXNaXUk/TONgYgkpXen2cZkAKazxYM9M3puW9/wZplM7vm8HBUNocu6Mlt7IDWmBhMpDU8ZVxf3GlU/QtOFEYTGb0UyNoKDDIYsq3sawUu0/DjQ0T2qHY9TblyVXWRq3wgdtfhuWclsPUQ1456jtzz2Y5tVeLegXkfyVYJVpw+9+eMrE/YyKr/iODeaC9YeGGFlCVuXla4xMnaf1bFkCEroXBUtAfb2APzGolgygpq11KgQtnbPPZWBlweeHWBZ6M1sty9pi5Va19wPwb4ZVZZoXcxksYbTrx7gVIfZ6td7yHjDQpZt0eVE0Z3SNc5g2zF7qJpKTQwup1eSwvR+x0xxE4qMKksAS0PMflaQrEXVawQdQqZymaK5RAKQ4FIwp2oErD4YIMkWcGFvfQaY3t+o60JdalZJA6i+3wSRirBwurzg64LbArbh/R5C3iZ4MqaKxnOuWVyIEtMSLTgKm+1pq8KOjymSMSFphIEZwHbHS7RPIHn/jNytgnToayQEurCcTikoXZDaj/1U6zzn0dZZWNcltWJGQJCpcAb/IJiNVCTVKTQHJ8yKsCW7Qaii1J5T6NpO3/MxrCtf/c3f8uEv/pLTunJ5ekKWhdIsJkGWCskIqLrw9OEjbh8CFNx2rDaWcualnGmtsW3bBFd7azz99bdczHj6myvrsrAsC88vL1PfqLvHNatys0atC74qpRpVhMXB+mjxWrk357o1+g7NC6YeQyAGmPPQ4tHajt03cGP5+DV/drnw3V//NV9+/w/89h//jn/3r/8n2u1naFewV7y0YMKWPsVYRRuD5SJCtDCY4bLPxGvbtiz8GDUB41oLLe0ahE0ek44G23IMRjAzCh3bIwAtZtTzmVrq1Kcr3mm+JWuqcqoFxSnW6NtP2L7xZbvx+Xe/4frlZ/bf/QZef0LvV3y/TnDFTBhaGJrA8JiMiheKBLNaldCWKJGEzilIue/xlmc+2qCkSLT6FEFKYZHK6XRmPZ0BZesN2zr95tlCJaDLtJsx5TCWdLlc+PTtd/wX/+1/y+f7jd/98jN38YinSlz5wc7KAmZELqHdFdaTY0ABs+A1WMeHl3jkZUYkHgMTDoZwejtGmCE50TDsZti+gZeHz8yJbR4MC/rw++k0IYqHJQpL5p0I/YSlrDPQb41kbIT+ZQBYMjU4YihHxLSnfgqQxY3tGq1c7iOJysS7hv31lgxago0Td1Kn/xmMz8gBShafY6qzuiDdYG+UcqaKYKLJeCYKvkTRTE2Q4qhW3GBZzqyXD9Tzt5TzN8jyTL18NVnSb+1Oryvl6SOnj19z/fx73l4/c6ohfxDDhbZ4SqK8vHxkvXyiXL7hvhd6c/Ztp6SQdtRtopXQfMd6Mj38HNmEhohzPKeOs80acfOwK2YFllNMHszYXyTZTt4CuJJGdHx0aB3r+xwg4c2ghiaLEPEOfQMLSQRrHds7+y1YiZa6sW47uMXkXcKpxHkNyFMsitLqhwYNKQkQcUb4ZfNkv2ReEv5p7MFMmCV8SnS7DxAr2myQTFotXKWZp9C9ThAnjqFRWst2qhExxpkY7FASOLJJaArGX5Hjdw6i1QDLpjl/jOrenUwZ8e0sQCqDQeLdaI0ATbQhZY+9XW/cvvxCW66U8gVPiZZaVpZyQqhYF66vr9zfbrz+8hPb25V+v4HdEOmUGtUO1wSKJGKywaYcRV33hohTa51sRWuxP4sRcc600Md9j/wpH3/YIGGQ9DnYXsmbyXhcWuq3dlAPEFzqmEYda7LT8F4obvS3nS6NZsbb22t0khQipmmKLRoafSMFnxpgIwYXii5YEXonii/kGcw7UiJNsh7msFDpxdnV2feQjMjsNqOZocAaT7qkPR97dzBRxwKNz3u3UYRsEx+A5NwxD/Q+H1g7pOSLKFzWwd6PImyw54S9x5l6BHJUHKGi4qxLAEYl45DWYhDBfe8BupnPXR5kC5sgWF1hWeFyhnXpLKuxrEytp+UklKXgJpwuWchUjSnLcoDt+17YdqUuTu8lp46OXPbwbUdceRTPwowfU5NjiiLv4qr/2NefznhaTnOxmdURYXgr0RBAExTVBR1TAWQgdsKYwBaU1HRWWljWE4JRBPoWzJDW9mAb2IEE4x6MhExkCp2iD4YymRVQEK1IKdRlpZ7OLKcVFgFadrONKnsKJPaovETvaCYQJOVYF7QuUSFNhpNrChsOoWctHBMQktSYgf2ADMcI+hBFPyifwUC2DC7bHDPZiSluilNLfqaUuaEtDfsY3SxaKdrodmeekl5hLaxyioDEQ+djajOZZTqaoFd+99SY8R7tAmIpDJgMhKnzwziQ8XndAzyKwx3AQdsbrRfGRL69daR55FsPZqP3ltRKPRhP3Y7P9RAFNEKQV72D73TLNjnf6ffG/cvGlx/vfHs/s7SCnEadMjJzz+Tr/PzCenliOZ9Av+Qji1NVkv4frW6RrLfWkGZUSzRfQyPB2jFFzdyiqpu/44Tj1LBdsTcTVXQLkfLQTchKpgdYOcXa8si/F7obTidZVKOSIY9OdoBBQ2yyT5bQoB8vy5JneoQfsTcO6u9AsFMQOfusXfpMWnvvDKHWMQUimHgG6dzHETA7jL6IxDREmO1o46yMWzWCfjqqAOpZwYNZOZj9+9k7PsGnURnzmMCRhZIHcGskDJ6BTdq0EQUhM6E3l2CtaKXIoVHxmLibtWyfi8/VDMxFiPVPLaKjgpjXLoeDGYC6i6SJFcZ0GLewBwNUnj0381kPbSM7tkeY3iPgsghIe6hgx8+DfhE+tiz53oWybFi/Y+2ULXr57LRmvGMM9qFLx6TGnyS4LzmB0ofek+a9pwhr2rAZhOlD5Tw2QzrbzggIbPT5J9NqJG3YsR9bVi1FYh+GvSr0dkfVYhx5XWN8e7eo0iFQt8DlJfSn6nqh1hPr+RkJIRq8xoRWV0HaDZK9K3RclKloNapf5L4f+3aWYuMfeoKsiKI1W45Sx6uWgpZBtT7sABzPVFOINt8wNDKGHci28SPIGvZBjsBKjvcbfz+EaHNfjQS4KOenJxw4n06UWqM1w3dGRa61NrVxSgJRrk7rWQ1fJWT39oZpQXokUMUC+MJBzxeWBJ7WpyeWGgCNWM/EU6h9P3RW5rXm1D+J6973DbNIDEVKjAmvS+qMSFYt48anIL0bCx1ZV7Az1jcub6+cXr7Bl4ptb3Qt0XbhHTwy/hhE0h5ynwi+xZ1CmSzVUCjvkfjUmqPfI7aQGi08zUPbrupg1WScledAvSNZ8W33nb7fgxlVCuenFxaCedebsXWjnJbQedtu/PS7fwr9tvuV2+cfabcr29tn2O9otvUOYqeOmC2De89rOdoJH3zNQ+LDvOLHH3q0m+nB8io56p5aqHWhaJk6E23PtqdBBE97LXKwekSEtu98+eUX/u3/9r/y23/8DZ9//vko1jjH3/Fkno4EbPiW+aNoXcn3t/EGx7EI+zdOmhx3OUCoX3/J47ccv/Rg4WbyNK5pcBECDEs7ITbfPQoYJEvO5qCJOeWWAupRG07gKXRCB7NGopVTZGq9uXtoCbYe7WXkQrjgGq3KIy6Zzz5tyDtbMu77YV94txiikf6t1CWuLzeNlhVMUjvScQ+dlwgTlbqslGVF1xPr6UwXaG7RRio17PN6Yasn0AX3PZiBvlG0U2rlfDpzOT9T1gvdC605bY+YtiTYVnTY7HjS1htdCI3AHOoRQEkUkJSMKYjYbzBxQq4icoskAeZ3sFtJ9qvnyPlp181C92wfQHUH2/F+A2tYa1EI6Ma+7Yw391FkIzToxq4K4He8vw0LMu1/JKjBtCmDT8BI1MduP/xNqn8cz3fEhFMUSWfM6CrRyWDZJiUxDe9drJSx8+NwANyz5XCct1+dp2mrfdqcX1sdxlMZ+8kOv5n1mjyx+ZqEVYeej+ceHEN2eu/s+8btfqW2HZUN92h/q2Wllx2RQm8E8HS9sd/f6HsMLBl6R6IOYyig5Rr5cc5HPMs7P5/PN5/Hu9h+nK+8Dx/9Yg92acYZ+boRi4xlmzF5D5Zma2lnPNewG14sps2JsUvn9rbhEjIe99s92qSXEt2qWeCbN6CDBclDYezRXx9+BAn23fjshAyG6k6cqflzP+zmEZ78wdewzBxLw7DYYx9HHOvjphlWXo43+SNvfDg/UbIwEK2KiEwA1+Vx+E/eow5pDAJ4qpr5paFaaD1KGV0N6RbrlbkVyZ41F5YlvmOKXRans21WS7bOKrgrlbBHonKcV8liQ/TBzzyut0Lrmcd2mysxBuw8hIzz2caaHDnr/+mMp3L+MIMGWXRWDUWn5WLf+jyYZVnRUmfyOFoN5gHwYbwqp9Mza63YunJ/hd0c3za8rsSEn40xASQGKmRw650yWozGQ5KC6IqUCOjWy5nT5Zn1cmFnRywqGloqWGgy9UT4RHrUhSVE7ChkX3NSImtFlgUb0+5SiLBoCXGt7E3uWmaP8DRwHhtAc6OMCX422E35sNse0yp63xHrjGlEVZWllMmGEIL6CYLbTmMnUUH2PVFsBHs6YaeVEy9zAl7JZMiNBEFywuC+Yfndtg3bG/QEuLJE7xLT6mLtiICywNDVai0cbCkS/citsd/v7NsSLYYu7NuO7KBd2XyjeE5n6Hs4qxLJnQHN0hkMYIAMEEfftEdrlfqOyM52u+Ofb8hvX/mrt4+UfXZix1plrqel8vzxE5cPHzg9PXEvP74bRawlRKKF0NFq3fDdYDFqsndUFSmOt4ZhNCNFtVP7w43Jy7S4BikjEAwQwW1UJh7atziSzccvi/6iI1HKx2IPr42AIoQjx/2aBWjW2s6+7TPMXWqor4tIBmwRCIQxSzQ+A/5SMoHysa+FkBbJCZJ5RsbnxfS+YwqbJ7h7/Pf49oPWnVX9EFdmfla3aA2TJmg1Sg1Z2FHrGPoncyImD1EfI5qRGeOE2HhGOOmgPQPzAMVj7VofzhlKiaDZtTJGB4/KgLmFLs4UTySBWWWwfLr1YJ6NQDB1zmJTDJbV0TZlhxuP1sSsRFhmSyKaWkKWGiI1z8cRbEK07kGI13q2N/XeJqgv05mkndOetrEDO+5b2sdIpinjcyKJhkZXw3QPkXGNqScjG43AOKonA9BwL6mJloxODXbUALXDMdpMCOlhp7qCkkMXWOIeRXKNg8XXdkAGayFAw24da41STqxr4fnlBYgKp/WKUZFzXJf3DrWyvnzF5fzM09OHeA8n2kcD86LdrqnBFYKjkvs41iaippEyNk/lJskakqTYdI8KpqLUM9RaWdeVy+XyzoGPM3FMXxnaKIezH4Ey5hOsLGmX568dGy4tgEaLRCaT87wleFqKZsIS7JTzEtOflmWdZ7q1rL63+J1aK7WOibNx1ig7SEVLiamUa8drzelZ5NTCeL+6twDeag37q6FvZo3Z5ll1IdoMS9qZ1FOsZf593/cZa9QlwLzz+RzvR1Qkh/bc0OPCnX2rIZrfd85t5+nTGy/f/IT2r2i3L7z9fIb7K1iyElpM5vU+RH0HAy6eS1l2fNvo+wY1WwUY61QCZFtPuFR27/R2D1aTwkq0W4zpnIKgFtfsBl9eX3m7XrlvO+fLE9988x1PIujS2d7e+OWXn2lPF/p24+3zz/zv/9P/j2sCTQtOVTgX4VxLcG/8YDaiY1LltA5hZ0RR8dTpkCOxSIuVtYe0PgdYIRK6N6IjOA5Woq5LxFUqeItx8dsWLMsR73YbFVWdb1608Pbllev1yg//j/87r69vbNtGTftkZsFuIwoZzaLtDgnWtDP0Bn0mDKPba4QB47QM2NyAKtG2/hiEP6bJ8295LmdBJtdFGYngqK7P1c2cYIA7Ix4YjR4OvdMzWa5V8CxiDtCVqlAzHqskGDAuNJ7FsqyoBeOpeYMEnvatUWrEWYUABsIEhy0PQmz6KU/B9Xzrnns6Jh+PPeB477R9R3xD64nltFL1KIZVoPVCswBKugl9M/bdWM0z5i6UJZKpAUZaC+Ztqcr5/EK7Xem3K3a/s++G7RunNZhTL8+feHn+iOmZX27GdmshYpztR+F/JKarudII4Gn3zrbdWdYTtRSaRRG0286SjF5EYgoe8W9YoRZHarDPLFHM0NXqyeoedvoAniBaurrtmIdweO8btr+F/2yNAlhz7reN8tBaxGzRavl+yqp12gwfSbVwMNpVWNeabLjUZ5l1OJ9nN+IYBmKTByLPsJRkNId/KUXzxSULdWCFmaNMP2ZGLwX2PYc25Fok3XD4ffAEgUe8E4lyTDXLxN6O9QMSjBo6pEfcBzIZUj5fNwCB3LspICSZm8bwmh3ZIv5SCQQkvHUwnmpZEZS2d+5vN7bbnX7bYrCPhxC/lFjHkfv2niffZdqCnn5jTHbEAqC0fP2wG0V1hnazTf7B6gx+pRyG5R1C8AhARUFUwp44qc9mWI+ODAp4cbp6kCFM6f6Ku4dMR9+RIlSvFKloF8ro9KmJHCXa15vhPRjqc28NTY7x0iw8RRFnMIoGW2nEtPHaMlg7LpGDjlCfUR4Yby3T0j4WQsI8jfcVjsRP5vseNjs+exyB+P+ScVHsPZFoEQyNUQeNLqaSF+xZcK+1JtANay05+Tv8jppQkmTUWqc1wTPYjImRQ9vLOZ2UZRHWVdAa36UqdSk5DGEUJBOvkeO/I7aO56CtoFWREtp/rfcs+gTILblZArCM56UiD3tukG2Y8er/6cDT+cN3Qd+titbxYITQ24jEqrOlAQlQxgQaEUwN5M7Tcfa+5wZTip5jkYsgsiZwdIqgzQ1aofU2RVtbjw2lFiBAiLBB0RD5LiVbR1SQopSlsKxL9KkT2jhlfcLLjpVtPmRzgrGA0cyh+NTmsXmoA3DzB4ceCfOoPGclyMNojFkKmojj2MsuPQ3tEBUfk8+meYj/mYMnANTivYsWlhLio5BSgm1LAUhFukxRv/Z653or2PULUoIFVuppasOUIigdscZ+e6Xd37D7HR2lB60pjB5H2DjG4MYEt8LlsiIerTnlHi2FXgrb7vR9Y7veEFawIewbI1BdYLvviMOihZZJNKKzP7b1CH5m+4rmDpq2K/aeekPY6XtD7p3tzWg3x/f5mI6o0AWRSr184PLVN1y++pof279m6Uq1hepGSWO2WzCuuhRKWXFdMVnYPHu7u9NMog0QTzaHRCvCBH5yjKgopzOMMbQk40GxSOY8wZaevd7uqUMjswI9vkLX51dJqWRqKVHRchuMmz4rVeP3BnhxGIp890zcNNkElgBpvJdOw3m8x4FyzwkeRC+76gAaDrPdk90U136ATTb+nJoowzmGfbGe2h+0aGvS4dcOM3iwCzPomIDUePhhfwJjmnw9DgFKf9giaaCzZ9u6YaWjWcETTa01ko0poadGSe2zZDnd98H8gqHC7+QoZoIWX5dKLZW6rLOdJQLXbCncQ3NlBFqaDNO4h6Tx14foMfeQ2xBvDDq81YLTUY0JjF4jybbUrFDvoHUmn6FpobgsqbcXTFXLQNnooB3WwqInStto2xvetwB76Fi2Qo+4NYqlY6qNBHuUiqIHA+HYXsefQrLK9tzHPbIrSiRFEiFhKXW2EewWYOfeOvse7U2ihusagY4UpJ7RpbGsT3S90Fvsr/XlW87PH3j5+A17M/Zm3PYAbQ2nnFdi1oxD37HWaPvOmNoSDDUwlEq0mcwKEunHWkxKU4O1xd4oRVlHS10+yw7sLYDN2EuxUEYmzX344AiSRDz2jcS0v3lWkdCq0hylvCy578qsepltwVLM/9WcuKiqc/8NAHwkTlOI9eG71jHl1aGUYPiooIPhdDolo1SpZdC8jX1PNhOpaSODWQEhfJ0sM5F5zapKzTXTFEMef6+DQZaAmEcumEWxYZ89W98UcWO3K/e2Uc6f+PS9oMsZu7/yy4+/422DxgmxjlZlv77G+Vlsgk9mqY2F0/oVakHKyrKOAQlMdrWqpARAiaKahp4MBrYHlb23zn6PFulSajCezHj78srtdmPbdt60sv/4ez7/5t/xu19+Ztt39rZxXtfw5dbg+jOnHmyt4kYxKGjIFeDYvs1zGnaokOXmaVYl2QrqcQ+lwLIItmuI8yZtyN3iz+G/looT4O1yimlhUlPHzWK/Xm93brcb+z3at0saDE9gcHTmuju27QmOONfPr/TWUIdal2CAj0IKD/lFxo97eoLDJ8Tf4ly+T3aV8dnOIpHAqgxvaTMnGutiOGMAyShgBLPUHhKZYQl87u0/1qEgeU2j8V1rjRg847EhTTCqzTrArgfBZh/+gLieUjQX8QCWHM+4TNCuLF4DjCh5PyMHkwFSp85JxlHDWmSElkljRIuBGDdKvbBeTuiy0C1ssreKbxs0mNOke3z3bpg32vYWWmlbo3Wlu0QHggAoL8+feFoq/dML//T3G9d+pzXh9Hzh5fkTX3/9Haf1zL0V2ralpEU89VJgqfE9itCeU/bcnXtdJjOl3Y2tdfbdUVlYljXsyUjcSWqGJegyQpBpH6OFrrWWUhexlstSOZ9OXK879+1K298w2/G+0fZrAE99D71LI/QveQQ0B+jbJ8jQ+h7raKnlOgtRR1z1/vt90TMzzQk6Obnpw8MG6KQlQd6IcyOmjVZLUvvXTJCH9p5uMWm57RtaQ2y9tz21Y4M1KtKnjpwQrOnRIjhsfnRYZOE7Y9/DXaaO3Myj8pzJKD0nliEJimu8uZQAD2om8SUZgxGPt2AzGxEHu7BLA38LEGjfsRY2R9UQ7agatjhjW4xzqNUnY03wlIIY/iqmBEY7bWilRf6j2S1z5ISxL0dGIBNUO0CYB+bOtCf5ai3JFz/8eA96MNadNtrgimA1WVH7zv2WsLf3LKIo0pyyxv4vWiZTs7eWbBpo3cCUQ4ImWGAycCWBbQvJjNC1TUmOAlbjypdTxSQ6b+ABxOrjCQ8jn0Xm+bNjS6epTSaexRnMH46cbGo0jl+SPv2IkVq5qc2kKrjcEDW0dkodeo9GyeuU1FMTFZY6GE+hdxVxotP3zgCF6hISCrXqbO8lzHUwGaWwnpW6CHXhYDxVKEtBa4BJEUPFvhkB9JECx+GWEv6/UnBTigW2Yz1ExyUlbkIn9eEMzlXN9ttxsPxxxf/jX38y8FRPT9GznjSugQhGkBSIpmoPEMRIxF0ykbQ8eAPAiEBVMwrTnBSEx7hSydY22tCOiLYF82CVtCxNRRUwryfEUBgZ6WQZtJ3eWwBXg02BRCuCB7gkg82T39E6mAKLWrJK+odfsdYHhXQ4A1Gd/frxeTBE88I45wYQSJ5iXvcwMGGtZiuOMRMehWTJyOxLdYtWoPAv8fsD/IpecuG2b5EAaGU5JdBRF1gL0X6407Z7TM1oW7AhgFl5CzyFNqgEngHWUnn++JG2NdpuLCiuBRNF24OTH8mEDS5tPENLI2qDcprXPdDdSVfM95l7aOALDCHOSPSPMc+GpSHVWbUlnWAyxurC6emF0/MLLXvhxSxaQLINRCNiCzZIanppXfAUeQ8WWBl2gyk+zABCMvjwY997AhWxDvHfChnRSoprk+0ZsZ8fAZ5f0xrnZyWwNCYEDRG/3sPoP7KSIFtMkJmojfeeRjWxGx8GaCSvOtrnBuB12IN4UMMhOk7P16ZzfPCGA/AZ7W/BuDjYTsIApx5On+eaWYTlPtpYwiAw6ee5rkwnHVevMPWFBgg+x4iO+2EY12ETgkKPOV22sDklz+ywDDL2l8w1HSBT7AGZyfzQ+pjJR9oM1QBcRzYz2Ce95ejTsTYSQUPvkrbDos1CEkyclcMjyTnsVCYxqZcTCcR4vswATkpF/UShs5z61OOJsxfpULTBxVADLStaGy6Fvt8wa1lFG9N2DsAx9MKOPTUYjTbszQyqNVujBlga1V33cM5jBcNGvWcADVsy7KyWhbIsLMuJ5XQhxIkXPIU/rd2i8r6nZlk5QzmjyyV688XA7sN7zXNSVSLwLDvIFklDtrVaAkWe/mM6/nn0R3AcTI+erEQzm6BMUc0WumAWiCfbJKfHCOOcztBrnikY7acDvNGoxuVeKDlRIKYiHlR7zWtGhj3QtBU+bQQwWY3vAWYYzKl5todtTLtVVKMNvtZgu6kivYcmjB7sJ9stmJsaPh4DMcm1telLhs0bCeOjvThAcT98z0M11gltQSSA3O5CRzEJFk45PXH58A1tOXHajfXlJ+pyQTFOS+F+/pJiv43tfktdrHuAWArLeoI8C/3+Rs4kTDH3VC0oGRz6YZe6R3KKE0LC+z0Ev0cg2I372w1rLVsW79y80W9feP3ySzCpcW43zSTDqT4Yl8HKVYKl4i1r731E8ZngjYKYRGwxzuvxJVk4DHHR5FNE8SUN3GAqePoILalVNnt8Dl+573tMEDML/zyeE5lkuc+K6+Fbnb63TORii44rHK+Jq2I+c+NomxvL7jJAJw7bPM6UPTDBGCD3QxkokyfJ64kw5THxfbdix2fDIFzM9xnfY0KliECJUe9aJRUqUgj6V5mlj+DfwidEv2f6o7GOKjN+4+Gc9B5MkUIAik4mOpMJMz8g2/rSo86ikk87H6yFYMMaSllDp6qslbIs0J2OUjyUIErpdE+tRixjPk/mdBRUow1zwanU0zrDp9NywqXTJAalBGjlqGYngtaYCtd432452OZdcXXw7C5IJnpoKOWQEhsC4Sk7kXutaGHVU9rdKHqUISeSGj7CsYffxUyZuwiElh+R3O/3DbOYjhaDaxpuDRGdMdKMh0USAhzgEogrKjbZ0IMiM/z6lKPBj/P5bh/5vNbjv2R+D52naJvNnGVqGoYsSbTXDUBqSdsqaEtQL3279UpognVMH4rLCYbaMDqP7BiiqBn25Dgw4xYkzzHGnMY7JCDG/YxEOdi+HnltCVC2ZIGiLku2c6f2qY9PGsyl0PdzCy3E2VspEBRtm0R2EKwcOQsP83DcPbB9OxJ6S38+WZi/SuhFmBPe4IGP83Ce533O5zaXMK/zIakTmFIm5JYZN0ywvE1BxnORQ++utzgTWnwWTd2NLm3KVxyAxMiPJTSUZ0zx8J2AYOTwx2VG67DP+5lFfXnv7//AKD5++TTSPEpdCINR93AenKMVdAL5I57MfS8JQpUxrCR2r3o8QzJuHEDVUgdjLuyC9bGiPvMHLWN9iAE/IzaXQ0MpWuwku6d85mujvTr0PcdaP2yLDD7lYSnEmYCZ9Ohmiu1uc596VhOEh3gq/yGez/GcebdT/8NffzLwtDx9isUpwwgcp1uSvSMlpqyYpUiVd8YEnpmKHjYEUDQDPe+K9ZwWUE7UJYJw7R3RBZM7zY29tWh7cqhlbEzNSktsBrOYEGHekbfXAEzcUkXQ0xgFTKiaJAUHs0MfaqlnlvXMcjqhZZng09CumRGDW4IdMoWBh+aTTCM67rmkoStg6ZTz7ImDlcoYBx7jWIPiaEmJPpxCjFbd2hYrOYkm2bahwSBACZZXd7bd8Ly388XwU4N1wWXFfMP7lfvrZ/rtC3Z7Q3rPYHMIRsYh2HpUXsWdy7pwerrw5//ir/nlx595+/KGbCFU1qxQ985SlKUWTssa7YgJBOBjcldOX/DYIwPknUGgMyvtc5aB6mNrON0bajtikQCw7ezXRrt1+mbUHoFbiCEHuBkU8pXnT1/z4etvaW6I9dDD2Ddk32DfqeaIVGpduVw+UC9PlPMzrYCJYeyUuiJuwaYgdKvi4sb1lmzDCdoqXie0QYp0u/Vga5SCm82xqcA0IiPhGwDS47/FxxSWdJxLqXEOEzCYjmdyqkmavj4Y3mwpLXGOeho9s/EMMnEsmu8byZ+SwqQ5/nP6wbzf4AtGUPHegcq7ZNVHopWtGxMIcp/3DgTQjefY9y2rRkk5txYAah9T7SKAVpFkDKQ49QxtkqGSjp5x/TMwSMqrVEwr3p2TQalLaFZMolF4jgjE41BPEUS3ZGok6OSHNlcxmWGjDaAvA44AnTptTtzJtdIUmWyd7kr3gjadAFYtp1zvWHfH6T3fr8fTKFqD6psO3JFgS87NEdWMqpXVl9mmObS0REMoFSyYD0owvZYn7PYawqc4MoTeW7BXJR5IrP3Uu5CYKFPKILLHZC8tLHUl6PsW0yaTVecplj7ynhEMB5sqgSwnAt5SOJ0/cDo98/LyNc8fvsZLpfpIQDq9XzE9ofd7AH16YedEkwtWwt57r/lUnVpgXWq0iN93etupa4y67n1n3260do9nUEvY8yliMWuPwWzB2bYN1zeaC6fTmdPpTClrCtcKu0O0E0bA3S201Zr092fjIe7yZAsy29otWcU5xSdBH/fl4ZeISrbGAVA5go3x+nU9PZz/KEC4Db03ySPa047LEbykjVJV1gSe4losNdEMSdvSew92SepeQUg0KnC7RVvVtm08frXWDuDxIRgdYMZoBZQcdDKSiJaimuySsUVByimmZpYL9anicmJthY9/ZqwKSxHOp4Xr9TP7duP29spPP/7A9Rpj3svTmctp5bQQ4vX7nc8//BPWNro1LueFIJ/kFM4ZU6efcIv2YnfwTtuvbPc72/WGtzEUxVlSQHy/bWyfP/PWeujg17Dj27YF+A6cSkWKTwBZ3KPKTdgtb0O7JoP6wRgi91AWD4aTlrSrUgQrA9AvwUToYf+16GQC1VooS6WcYuqeeRSkAgAwbrd72hijak0AWd6xVCboGTSj1D2yd/tupMmeLeEzWc4NnpFrTA5LU5+WKb3COJ3J+HkAuajxpyCzFYFcPz1O9XzfANhtrvcx1GL4/2R3dKYwOCbE/IqgF+uqlEWR6IzHxUbH7EGVGv52DrjoMx4eshCS7fOjLbfn83WCYRGxM5EsmVAWKMtxveLBtq31odDmyZlyJ/obIMYzdbTklDl1dAnWgtYVmoeWmRcWKm6Fu98giwBjKlTvexRHJAaJiDxHmybH+X46n9luO+0Gt+ud+31n3wNaNA890dvrG1tXrKcOFo61jR3wJlgr+cyMqjHJy3pLttFoo802Zk8QV4SlFC7n52QVZDxmHqLssuEywKgsniSIQBbLBut3qTHZud037q9vATz5RknOLNYD/HXw7kd8CfSY/cWASwVHy2NrdpZf8nlN4EkGCPcIgx6hD3nORcZJyBgx2SiHfljA2uEbFko5IbLMQhAJRHViipb2BmVB655xQWhYWW+I1Cyy9bBFrdG9R7Ekz9gB6MSpfSw0jHOORCylKZx/3Fn6opFxRw16dvLUdWE5RUv2cgo9QBXN4qZjmu3xfchNBFiptGFRchcFiKq1BACZaSep8RMhp0wx9aiPjrxotP3KjKUPNnPaXFKbawIJo6CZQIaP55qmQY7bl/GeCZIVGUB46H+K+8wZI37THDyiw5rF+jo5PKOjS4s1LWNfewBPJWOHAcLO/txo1+5LpffYV6VGrC0SE9Y9CSZh65LNXiXwbKKbys2jWJU3F8WKOGN/CD8Jk74wAcvYV6rB9FFlzH8Cd1pL8DOMP3PDZNAvqixrZVlhWYW6xkMxl/SdEeMvS/jiWjQ7JgTvQtug4TPWEoSafa/uJAFiMFsNLcKyBNup1GQ81QCOtChaU9+pDlwkH/YDcCnp30fK4grVs8PIDFrBeuQOPq9rMNUOAHMUBv5gjeUPV/6Pff3JwJMup0wGB63TZ2AQHxnJn3hMY2gZAPgDMh7GOT1mtqqYC22PViTrjuopB+cZbbtCXdH1TOl76Av5CDbDYC+1zNYKS6Ouapkwd95ef6a1jfv9xnq+zMA3gF4BrZQaUzi6F1QvlHpmOX1kOT+xrBfW0ymnkwlufYoQqjoMIyRQqdn7nFVcTUSLYHJEvJub0BfcjF03el+wviNuWNEY/d0VU8X6jrfYrDIqSm7B0BnBH4/0QAlHKcEkW3IjF1n4/1P2d02SJDmSIMiAiKiae0RkVu187e4RHdG93P//N/tyS0c7RzPdu11VnZkR7m6qIgLcAwOi6lndO1ne4xOVHh5maqoiEIDBzDCnYbqK85Cfqb99wsc7+vEOP5/wfmD0EzImAawspH3gGCygH1vDy8/f8PXnn/Dyv/wXPOdEt4n9peH5NDwPQ/kY7La64/37dxzvH5zul0wRiwkORh+HpdfFDXTy2CEBXCCBkOxmgP46CTzNflJn/ePEOAzeHeVqpAO5Zp3r8eXbz/j25/8J7fGATBbz/XwCzw/4+we2/hWlFYgBrW5o7QVt+4KxA1YMXia2Qir97APneZA9IMrDXSgtGJ3dM5sdwIYiQKk1EnCjn0Bz7FvBvm1ck2cwYMyDwuoLeb5YCFiF2nkcGL2jlILXxwsyjUh2CNkJCYDQAPiS9OSxEl4dAJM8I/2Xyf31LMw6eu/4+HhHKYq2NXz79i0kpbr8Wzw6oNk9R4AdGt4UEswqTUoq2LG0aauQJeh2Ie5p1jnGiTk6IM6gHrcIi5XHwynT64nsohj8TlEPxMfhn4g5WWx5HGjmfA2rG2qp2LaGGZRvShKyQBnrQggYpZzwFv7jhHMTnKdhjo6hlPJlcULWJVAsPAicQB5p4g6AwP4cnfshEq/ZOyRAvlpb4BshpzAyp1YtGTEwu5bpw9CHQEAvi/rYgDHg5YRNgphFJQBxg0rKuwZEdtT6Be6Tfj4pPTsPTvEJINKY3RCccccUoAW7FaLQSnnUtj/gIMtl2Fg+FVJy9CsAxMTPwmmjngUrCBpr2fH1p5/x+voTvn37n1Af3+BSLtmOD4zRYKao24nZO0rbYdrwfk6IVBYR2wMSqwaYkNIgZUN9EVQz7DHxaIwDH+/f8Xz+FveE93oVtCKfpAoI1ojNgfP5jl//9W/Y9x37Y6fM1whAMqnK9CmeN+gzuCjjkgV6rvXc9/TgS7YkongbY+A4CJAlkJxkCnrJXb5r3PekYQOr5ubv3QCqqxggMJHwha29FaV+FD/phUhQu8ZpphhlopY0nh4reX48XpZ0rvce4NWVBK1u3+379pdIUFbB7t7WciKXogzFNMXUgsf+glxJ/eUDr1/+hG8//UcoaOy8bwVjnBjjxMfbd3z567/gx4/veP/+K37+9orXlw0vTaF+wvuB//Zf/z/4+P4Lnm+/4USP5s5cRp6igtrijJsjzEgZhz9Aw2FFX51665OswiEQG6hiZB6pI30FvpZChuE0zPO5zhMEy5P+v9kkC9axk26P9TzzKImTIRrBNp3+6jOaBoGbFJEAGsmIhnKaWdkatNBEvBQ2R/b9gR/f3/D24yM8IAluJAYnEc6TXeApWYPwjJSyGjRkLc21fhaE5FifhXmorZRicZlWgZr5bIJdURB5Ss5ubGPJM8Iir8CSUPsERgCgFqBOvt4FT2WzI5KaGYm+BmMm2AhNOf1QGmXOaUKfjK6Upqbn6mUD8fdfyURkPpADdgAyVLhsjmcnQ2kIXnRDEhOmGKRqACnR/BmcckUgbyI6CBws1IiLvb3/BitkmH/5aYOWgm3bQVPaCUGDm2JKRwfPmH6e+Ph4Q3GDVDKdStlQ0KC4ml7mwPdff8Ff/+Wf8OPHd8yTANZ5PPHxVvHb9jdI+wJpr/jy5U84OmNFd4HNE30a5hA8Hg9staCWHZwaNyOXOoM9VaFbRdsU+1bXRKr0NlWpsc44tRJxj4vmeU75YK5FrsuU6bHBs5cNH5MT9eYY8EJgw20uc3jPXH95uCjkBnosYDNyBEpAuX80mKOaPlxRl8yZLPNbfPZrAybTQvUyMxZxAoxRjIqzIVmbRl6ZDesdFlIeQYdo1Eh1D0DXovabKO2J0dnEGecJOTtcBqafca9muOt4MPd0NRclVQAoUFNupyRwJuaUfWAYWczJFqncX9vjgf3xwMuXl+UHCADz7MyxO/MzUxrzJ/eCPQACLioCqayGZXqUABJdEzIPZw9wci6eGgSKaeAkuZ75Mtj09IwbF2AAkBWpIBM6FRVBwcDNgnvlesnIjCi/4ihjAWPhjFjkUdHrUD47vT5jLCmufS+w4ZhClhc95hy65bRLWUx94GJLM34TqHFRbPse9VGAz8hmuIfvlgdxIFv2V7WyuKXxYSVym38PAmGzpCwmthagbuD6rnnmBdMLBKrm4DtK1K1igE5fTLFphuJkGJWCkEWyrqiF0s1a2ciDC0xjcIw46ihhTWH0XEr94QTMBMqODrSEFC/SZBQs66MSRuWS5bpczzpr6mSb0VuKzVwxKmwonAgIU5w+0FHPqMi1v6KBbw6quvKoketU+yNff3yqnZYL+PMZGe76AR+IJ+ugw+eIQzsRwpCUBfgkLoDF9LLQ9LoDqhUmAzlq1pOZVBvUHWUEu0pkjSTmJLosMg1IvXPkX6OHQbIWeK2kLmsJJjL1yhyDXVDqxmkZOxlPdduhta4baxEsEUVuMOqoU1YDvOCzqWSi7r66AKo1pFUXi0EAeG1Ium/mDgKHpdmv4YqeYHLPg+am0V5ZIjeuRkItUjCNNHgWyCGBMoNZB+bN7G+J1BGUYY0O7MUKkVLQHg9sLy/Qxw6v1A5sdUMfHXLGLxoTxiO8G3zaJ5p4FkzmmfQuzACfQ0cEBGRhc33eBBAo6zIa3T4nbNjq9uaB746gnXOHtn3H/kJAMrvNbiMkEzQKlNGg0wEnYl1rAxrgxeHVsTdOqhul04clinOPjmMtGtKwSKONgIGiXfT4yUlPc0601hZ4yUMAK8nMTbj+HlgSk947AJoQ1jVx8ZLUEbRJGcW9+4pVtC4/JGF3xpX7QuTOmoq1b4bzPFGiA5prPL/ytTweLH2i8o0uppXFAYowXqckJrXVv/ev4GslQk9pngPqt3sU6wr3WyaBAfsqsdaRlQmQRwGFSBayyx9gFxCS1uhmJIDNf5Ar1sPPx9YBmFK+K+FXZBcBCMmsRRe7XM9MYjSzW3LFHHNEtgPD8oxyYPHjROP+MTldfjj5bJM15RHLcMmLIdwbBEn4fEpMxFBMFFRIISOzVg32XsjQQMZgMYG2AYD+UGIO8QkrT5hxfPT0QY+/QYAs7ydKvbT24den2q7CcyXccafj46yuPpICneudLE9k57k21LpFE6GEBNdDmjhQtx3sxpUl8RuTAAkl12WldVwmFCy10khzFoejQXsJoOzk5/RxW3Hx1CV82DyLFzB2zYHj+bHOUgm/O04tzYxCFr2e9z72nUTBfE8ooWzkpGQu+eS5P5zFo6/usUXxn/fXkaAsYs0kw0QQ6zSuX1RD9pp7IvasX/txxeIALkSuNbnOTAXgcb5H1znaWLy2QuC61kpW0NrnvoJTyi2XjPUGQF0dcoO4BKsrnkkmxk7QVj8VVlw/AM3D961i2sCYHWV/RUdFeXxF3V/x5XXHy1axVYfaCR9P7F9+Rh8D0k/Mnp877p3QI6NGQw5zIqNEdtMzN1B1TpnFXMzf4NmSep+JuHuwQ7i2xpyLPZRbbu3/+NMjZtFfIu7T7VAmni7s+mfeZrlOJIPtqmlWHZwNSKUEp1b65KhWjpFe/ju/A008GRvrKWNtosyrbm99jZ1Yq+32b/JMSI7A/XdWAnVbr3E9yD7x9V9yXQBuK37leulZeOUqcd769Vafy6h1hFyJpSK8Ov36+d95E8anUE3LW4hkrMxnkBqS6xZy/ccVCKDhywOE11uemTMkYQFkJCs5P2w2KhxMGcXjutPXyg39fKKcH6jnB17mWDLbMQ0eYEarjdlR3LM5af0grWLZlHgHvIcEzQGj7focHaOfbApH/mrRmDqPJxQVVRu2QgNfd06hYlNocN0bmVYaMRQIr82Q26Xlh2pDreUCb+JZ5dR2D3Y4cwnccp97nON9zlSLDPaKVreoixw20geS99CWD1M28ks812hKLggD63VxLXmuNc14mI/PI99K4OliNPAfBQtngaZXjiPJGsomWLBFtIThsShEKrxUwAtkKkGYULlI8dipzknaxgWvhcAT4xHrlWkOZOPBbfkCLYmfWQztYQwVKxyUMK8cIbcP7yCBJxULiV2hDH/f+b2x9iO4lfFNYOFLpBCWsUYQW0P65/DFr1BIxMG4dyU2I+U3kVoG6y3yl5XZrfWSG1Zu/8efaLwfkKzvZGdmsyfBzStm+pKM3YLALf6t3D+3uPAZpNoslapShOnnBM+B9XkYzxRACa+zXGsJjOewG5dsXgrEORgEM/Kq6XFmBJie+6TwQImlwvur+XFiLfqd0fT3n5Lx0BO3XdJlKZI9z/X76lzT7oKZYdj9klga4+riE0WI1cy3ccWakrK4W26mSssOLRqMxtA+CMKnF6tPAuT+wpLY8brj+n/XZLvgRb8vo1xqYV2Q56CEd1bcjzBVW7Eg7ovcfqZxPqyGyqfA8T/++sPAE2+XXAdZ3I1Yg7xh84T1A/P8AHwGja+CEWfCUCBSCfRYImqxsCCR8GtMeFCMKZhWAGko7YXJvwusMMliN5ReSKMPpBG3TQ9wIco767AODC0os0HaDmlkBHGkYIGgokpD3V7QthfsL1/Q9ld6+pS2NnZudhYfM/TeFlpxXRKVRKMzANBYXAJ4Kqhp8hygFyCodQsKYYEVSnts1uiKEgy5TrPQc4qgLho5gNDf5iKptcTEqA2j0zgOQeE1G5wQYgfET7TCWDpXEkkvJEGBm9MATkjnK1vD48srHl9ecbrhHCf66Pjpy4b3DxrhktI90I8nvlvH8+0Ns59oSume34Lc31HQAa4NBdwUWeF7oPEuQWF3D/bKhKNDwcJofAzMY8K64R6beB7ETrKCbX/F4/VrMFDIJikCYA7M48B4nlwfpWKeNH2tpUGacA1tgte9QdxxnkeAP+cKbGTLC7ywA0F20onzoLZfRVFVMMwx+skpFnE/NHxHEly4Z600qFNMJzPoPE+8vb0tQMmmYds2jiXf2sX4Chqw3QrEO4Uy1w1NfyvhB5FgH90CT+67MSK4yu21rgIvwSNefcgKRFGKLSBWxNco9LwGd0Pv57qWBJhF2BFMnxPJgtiuRL+EoS3vxT1ZJtK/5Al+3U+aSKb4PpOaSGxcIAFme9LfxcJvs9wSAkZCjmdmYWhLQ6OX4Wx8bl/3KXtTGuaDaZJN2aVqWYG/H4KcpuZh+O0wwEaAcQ6fuvavg92dtu0BvDAJtOySmfMgd8bDdfqqrQUsRaFqqIUtxKKcYmNz8D4oIp5M6Pa6nmEtyqLVJubzjYxNOMY4cB4fOI4P+MGzQoSA9EpwVWBSMVEv8G4dV84JSNmsAPeyK2OVag2pM/0GpxmOs6O2jj4GWvPwf8jkjWuy1sqkraQsQoJRwyS1PXbkNMI+BmwYug20xytKq2itAH5Ca8WEwcQwxoHRP8hc9aszJ2BsFr+AGxM2TkZ/h1vHHA3bY1+x0S17nvqp4EwAgx3x8GGYIAtMGf9LGMwvH6zck85JqitVycIZkWDG+6gGo8MoC7xknTU64FzLFq90yXwu0FhT1pv7Zc4VUO6+dTTt1CtuAwHAstM8gyVqQIB3vt7r9wmQhFRvsaKTtq7X78p05ihqweZgTsDrDuC7bkAY5wq4/su+wayjmOFl/wLZv+LL8cTHj98A47S7s7/FWjKU1z+h9Ak9J04ziBQUbdhqQRNFEwrBzQbOwTgC50hv+IQKp8WKsdky/SQ+4b7W1PVkGdPmwYnAM/wOEQljVDzgkARKU6fXiKOIuMDmlEDYDXWh0bM5VbahMPF5QSg0CkYUXcAcAqkFGpMQ4UCpBS+vX/DYH3j/8Y7jOPHx/oEq3N8azOasGFkMcE1p+L056O2ULFIzY+OrbSv3yAh+XxGrSFjnqa/keWE+Fu+HYHtk3hbrsCzJIdY+vJsZJ/458szM34VHMff5HM2rMqekB9NXQ8PF0cXJojEABbCSBWf4wFiMbBeJjjqieInmVH7Ldb353suYvFZONQqfOYhjGlCflNbVEmCB0AzXU+J1a2awIc1clAbNGmfWOyuvUvHy8hP2R8H2eMF59mh0KPb9wZw42cyn4XgKdFdIoYrBpkZ3nnEE7hg2UcrE6+uGx6PhdEF/DgADZifO852yzbLBZ8cCL7LJGNff+xlNGtAXdnDCchkVZXRoaagqlGO1FixyROykzQJBimAv9xE5O++p3RiZDoHPYOaJoJaCve142b9AUeFTMUeaH/Pe1srmsUhh80TDHwm+Cu1sHszjDHagXzEumtm5BvKzZgPn+p3IBcWWjxCfNQtU82iCpXxQBVBOBlygU82iugDaIF4xR8gci0N0rKmfcZoBbmj7K/p5Yp4nm071gLYTUg5K92eH91hnPhnpnLWepCdiayggwz/UkZStxXkukqJIGplDgNY2bNuG/csXbPuO9nigbNu6dzocZgIMC3muc3JbkCAQDLDMsTW9hoEA6XmbUh5m6nA1nveSexXco04m1vL2gUFAFnAOGQgiJILbQ1VRNltc1udlvovlSZZxULLZcYuPgWlnZEDm7Ok3xQmJca1g/DJwkv2AQ7pDNqCZQBtzM62TMr1SIC08tEqBuYYPkgdLlQwvsywAEhyJAUoTmB0kocw8b3gdtZF9SbaoXZ/yM+6E/MBMvx2QCVEjAyg9kyKPLeW6UyTO0KIi1QtzMmZnzKXJUxxUyp/fG8ulang3sW5b9YBTrVR3gwXLccRwF2jhdDp2iLlfVTittDJHuhvhr34iHO6T9wqyPvolyY4Hnf5m8AvEtGCtSXipxnkl+ffXwcIYr5ygvnKufwB8+sPAUwFixV30xshKGHRUcbpxwk8/mPQLYJgQZ5BybYHgxYEfXkRalOaqc+LoHXOc6H3CvQKyQauH982OqhvmSXlGkRoeFjcGzH0nARAJCaA4fXjCqdCKUbpnLODZkasodUNpOwu1tl/AU3iHLP73Wtm5qWPhu0WH9Zo8tgASZGJjsEy0o9sBOMS3kB5VqFV4aXAbBONGh80T43jC5+BOnFwcU8DQFEl+JlO1cGqRSoVNduFhnJDFgtZxuqHYiWIn1GesSaav5uEv0ifGdKhUvL60GN3I6x/ngb/8H/8H3n/7LbwqcixjR2kV+77j5fEA4OjK5NqD2YEW6HTWOzZivKev+HEPIGmYmtT4C4yZoPh3EjSCwq1AhoTHpeMWB+KJEQTd9hc8Xl5RaoGBfhjqAzI7ZJyYb+80wN12NBfodNjZ4S0KlBrJULxqVeUkH+V64F60dVjCJvpJWR4CVFBR9InQBiuO5zM6wo1TCmKtzNUNnKv4m0YPIAB4eXlBsn6uhOM6ctjZis5QCaZU+D1kBy+lNlyPIR0QrCTy8pp6oaFe0aBYV7S2rdf4bPKb4EuAtgE0lZi+YNNXN46AVgb4EcAT99CMJHGMHl4WWK/ntxw4pUWXDtkDQ6GstlQCOTmGeI4TNgIYmGMtOoLFTNhmHr5zEBDTQlCi8uCZZqvjmqbmKorW9vXfqycZDEREzMnnW2sA1iprVLxBFiVcBGitMd9JA/00IPVgrRhZlwk8UYsfU710D6kxvWxsGlPKSFRK/J2K0Cfq1kVJX5BMWIsKpISkUNgSK+6APkDDRqxnCTds9WV1k/v5Aa/vmOUNpjvSK0rg4acwItVVxkG3kDnmhBxes8VQCtUHvGyANpAdu6FuDXZ2nOdAPyd+vH9gOhPhL2AhYhLTm8TomVBpNDs12Bxh7qhCD6sqcag72V1M9IE+eqwvifOhoG0PQAxjNPSz4Dw+CNQFo+iq/2JdWQdkQrXQH1FmTPxxMq2EU07ytFmAiGDFGB7Ll+wiC2s3eky5EUzi887r8MVY+PRvEOe0cM2mJaZ7gESxZm+/nZ9m3bNkEepqmSVdHheoFL+TXfcFQAH0YoqCXUqBKYG1YQMFNBTXfUcah9ucccauQHBdVxQoi3dmgh5G7snAyTNcPNNGDXm7LLq5btsq6KYLoI0dSNlRTFClohlWoXSMziYJDEMe61v3n1BgaMppaQ3A5g6ZA9M7VJJt4RjDVlyrtTK3moLjIHA84UiTVIeg6baS1TkHE3fjuZjswASHzARz8v7MEQBvfq9DVhcD2juCxQzIABQFRcry8LonYgKF1BKgA4e0tNbwP//n/xlzGM7nib/+5W843g+ur9Umvn3fv5yAY8A7EZM9CooolKbdGg0Xq0luoEvK9WhWfh1PPDqFQJ4zVy8IAAeAiqMKmUUCrJ2W1yMZ3j9BXXEOR5KT52m+Z/4bu73eSi/j26dhCs9Ejxk8WnSxLACGnTltFRgrAsT+luLBOChQvfwj855cctq4IGfReRyDBsKtYtsJUs7J10I0jQQIb0Nch7AFk8WBpoD1A2+//StUd3z7aaLWDa1UVFFM4UTEjolSwpMNjnEazg/BtBMoG8Z8wr3isXW8vLzSa250uJ2Y80AtADY2kEsB3AfO8wNSd+h4YvQ3HKej94mP93fYGAFgOM6T8WTfGpvYHiBvrJucvOvwheNBCC4aeL6Pk3kJX5fn8jgP2EggNNmpuWYJxlOOR0NuWDxgr2Bey31Ev7+KUhqKVoI+0MSP2eiaE+4jGkn5KC4AFsDK4VZDTO5rAJcaIRncGuwGjzwB0Ux3oGggKqpwtQBTLIZH0HPGtUCdjDOXaA6WxnwGsjyG4A6tA6WdGK3DpEDqAaknUD5g4+TkbnXmO6sW4FdtDbU12qLQII2xzVINk+tVUAWgHcL4BDy9vLyitsy7a8SbCSsDZgIvDvik7xAmSQNB69HaLlabxRkXRAmYYJ6RO+jk4VcI0CTANFOB4unp7FErcpCMEN3K05+1tThZOb4IkrhYmbcocAOZVnCJmCk3ANBuOQEiJzS/riUXkI2owtwwnJiLhrF2iaERvmIyp8rXHCZSa9SVlEI6guHlhlIM5rQ14elL77PEo9L3avK4Y3hMxp/yDmT9Y0jLAPofZaZCz0GSFSQAp9YYE7kXJhwhj43ag0bevs6HZB07DH2SWVeMNjaI5gHxhFBFOGKwAQHq5ZNWlfWiOCY6OcvmF6upxjpywD1MzGs0ELOReOFLSD9Cj/20JHur9mI8WL6c7rdTJ6xHnE0Fw7zOssWszHogTrTw2s11UULq/Ue+/rjU7o6YAyspycVMDWnwrpPuKnTAF+fCoEcSPlFDoRUqiuFE/Ho/YNYpKZESQSSTH3qOcDNz8glvViwyvdB6M7sS57XxVpRGes5w2pas5JiFYIOWBi01JB+6ZFOpC817sQ5cpOwlsoUoREjjpd8APBLFHLsZG1PD9Fx9Y6C0GSyfQhBKBFY62U/usMFQZKF9zrHTClksCsmKPS7W18Iy+gw5/bjMB8Q6ME/o6MAYQA8EeQJwmr+60Sto33ZopTTFwlfox6+/wE+OM+7RMZszkottw+PxwOgHqir9HxiVWeglaOiOcfM1yI2SSoxPko97XhdJNy82ACCPSXYm1KHaLVABvEdO9ktpO+q2o9QSciTeD7EBnR12HMBjh5qhCUeji0X30RQkm/B9CTZIMF4WzzqowR4gKJOY4emVQ3YG2X1YB2VrBJP2wo2soktzawE+QcKgPdZgq+13gA/Wf+c9vLMKbBLYuEtsyFzBuu48gLIzm+AQjYEfV8e00M9gGdLG+6Qy1KPAXGXnp30URU1cM70ESgC3DNgElsIUdYRhtWexv6IUlomsIIIvMnKzgC+NBWsRBljj5E0eCHMFbY+Yt7wSnAeN2cCcI0wwR8QnMsIsTUjdLiCyFL6Hz4ueConCPa8nDqLcrlm0CUGRO5uDHaOJZHSx4B5w557mSNqbmTtzCISeD4Iak9IuVugK6sHGLKWA6uKIIeDBKWG0yucLFNF1WEWGjpI0Z+HrSQB/te4LeDIoqvPboUjgiczOSVNZo85/onJNAnDZECNIwc4fGxpSH6tBIFqW8XuZiO7hRB8dpZ94ngfaeaJUsPsqTBDIuCITyiPj4vSWAJ4kupYhgUvzXjjv/1QadkvIp/M6IPS+KoP3jUa1YRq98gEHqadlFW5uEwalv1+pMQEj+9+CHF7Bo9Rij8U+i+dDIMrhXmFGxo9bWb/7qWlzi6k5PnjFWpEbAzDX7md20R3o/nvadeQAC8i4fs6igJ5rAgHK5/HwycJaDFC/3uOSK/oyEF+vn9fxO/BphYYAqlJGo4LFPE06vMa/TXka2SNZtOWWYQNCVKBlQ6nOqYm+wUZHOT5gEEwHdHuFtg9I+wA7jcYEEywgihvcjog7HA6RkicRTtklCyHuiwTzNz7f6ukhQXeeJ1kPSTIgUVbRJhbFjxGcSpU9Pj+mzE2REiKCT1E0rrwrdmYUlfTSUDaZlMXZtu/46ds3/PrLb3g+n3j78YZxjgCervfyT+uEz3MxBuPv74VnBv3fNz1kvaRf/xUvsmDcKy+/5QfxTERiil0AT/d14b7yv6uwv4rDzzIEX4wCv+/9eK/rnJYIn3L7rFyvqymXl7uKDln3hKCDLy8Wpjq2zhSGc56TBr/eOyVz6/VZBI2R7BhDbQUe+UmCa7Jkjdn5wXq9nM6rVTHGid4H3sqvqGXDl9dvEH0FIEiCAVdnFD9mZAudyuZ1NYypMOMA8H1TwBWjP3Ee7zieb0AwAqtUfm5wIEUdJ3TSi41OCDG8ID3WYhpyKWGcDvxOmmvB/rukMIi8hfGV94SekxM+BlR5nuV0U0rJbOWxSxWRzFDHYugQ4El5I3d7sldLNJJJAEggGdde8PtZ4PGsLgCW8TP3ta/8bhXsq87zkA/67bWSAZJnfLA7oginO2is7STNSLAFpaK4Q83hN8naNR8R8DrJVi6d8jpW2vTQHAXeBdM63JRN9MjvRCUkchubyOGdaK5RT0ncKwIKRR0ewCDAZl7bdrT9EfYtNQpzNhqhGwt8NQ7nyPPWCutQreteeMrEPBQ8yUS2iTkJeKzcV5NNcjGFl5pjxayMhTFJLoE6IM5kX7fbcHu2n+Jc/HfUVR6nAK/jxvz1GLiR+ziXyD3CBbDm82oAJLkLGqQZFUDBZpdcZ0Ea0mt0KYoWTI3me1h6lFKit8gzT8P3roAEM3HmdCtef5J8RuwjDRh52WQg5bU6gSfFkoZGf2vtz7TVuB5U1ABL1eGhshEyoUwj7YgTJdnEQun+tTdvB5xg7YFs3heTxR4sld8ZXyCsD3i9smSLyXS6W2mkvxWPl+twc8/nL9Bo5prfLRbujllXoJD7rbilVCLXGhVcNcof+frjjCe9so815hI5TSqYPriooe5MsM8ZUiUt0GZwrTAQ3ZdqkEKjquPjDW8/fuA4P5aHSGs7RDYm5RgAyLkTNBbNJsjxxO0BbHsl4gqaC/ZO+RflIgW17VClISzRSXYNzHmI0cOkQWoDSov/XYFSb75Edm00xIN0TtgKtj7EKlI/rRp9DkOY+jJZMfco8ApKrWi1ANuGGaCNzRx97OG9FL5ZhYyvrh/UP88BWIdHV7bECkugY/QOuohr3LMJm0/qnGGw+QE/n8D5BH79Ff48gPcnxq8f0MNRUOhTIoKXxwMvjwccE28/3vDbr79A4fjX//Of8fNPP+N1f8Gvv/yCH28HjmH403/4T/j288/49vUr3v76hrMUbKXQ8gs0BqVEm4a1A4LUnRrywBQWVpFQ5TQOJogZDgk6OTpg/LwyAe0C6cKls2MFeXaKBC4Vur+ivH7Fy+OBD/2OMU94f0dRFrLz7TfIY8Pujj8/XlC2hgngNGPw7cB5RhKrAGc0TvRx0AMHQNkrqpAWOdzQ+6Rh8OmQatDWoNJIxQVoUG4c2d5irCsEyFHSiitZsNu0M9V0AvKVLI1xTxQF27bhGofeKUscY4EeQKxlEUy9zPIzUybjyiNJ27EFA4CsFIJlZFQ1iEwMG4tZ5Rb+XqBMyxRwkygaCVBsG0f31CJolYGdQGZIKEeybkIvruUCbDxlR3kk8m5ZdMDp39bQthrm1AM+w3BdsmOCOBcct/8Agt0y5gTOJwyO+txR3aGl8ZkOmmerUGaW38Mnpo0o8MPEWGJ0byNIwrUZva6splLuWuqVUJQKsbk6KTnq+c4aInWd0ZiDkhxzPDHOCq8OrXswOMhUoImig527uqQEGlMW4b7MVvt5RBLtUTMZxuhXArwknFxvJpzgqFuLgt4hXlH1gUf9gv31Z1DGODmNcHSc58HX5OOLfT8hRtk2pYWCqjuKNry8/ozaNpTS4HKxw6oXek51JknDCED1cUR3KPqECpSSfh8zKgCyektRbI2jcFWMie/oKD4AqUBRuJ0YfcK8x1qMjpgLkllZ6gZEopL/t1iyiAPCB7ulYdRsEJyYKLWhbdutKAE8pn6Z6GIvaMrERKKE454bMxoPPlFCQmmG5QVGE3HgXmhdBf0l405/hkzg8/dLeC2WYOnlxDtEMpax26PAE4kz8VZwp/Q3X6fkEJD4PdhV8N2nezKOGXrvl8dd/Ps7QLVkEwtI7WT3acXL6xe0RkbB+/OIhI1MBDYJMt6w8MtBASOlgnkfVIG6Yd92tEa25L7v6McHxvmBWjaU+gB0w/uvf4Vbx/CBlqNtzTBOX5PBxuBz0EZv2jIq5niy4w/nxK+oDO7U/jEVNgyzA2MuGIQrzrMZwAJ7BnvJA330NM2QPDMygWcxIRFi1/MN4IRkb19nBIsNvbqgteLbt5/w5etXfPv6Df/nf/+/8Jd//gvefv2BqgVVa6w9JHqWQXD96dBgQq4y4vr7mz/NPb/PS7TMoyP5Vo/z2tPDSBaGAwEZGwGKVNFQFFH+KLEmBeGsJZ+v5fegE68r2PL52QJE8wCJpjlCCRkSDI1CE2SKQMLEOArDGcz6lHE4goVmq2GiUZE6gg0V+93l+gxzRi6S+9Adgb7D4RgW7E8fZAsAwRAgMOJwJN7riPjvjg4AM01KCkYfOPpAPwYwBgoEr1//AyVj0DCVPoF5AHbAfWI4YDIgvaLuL3A0QCr6CZxPh/iJv/zLX/Ev/9c/4a//8s/48qLYK7DvD6hwAuuYA67vmFJQHweADa1VlK9fcT4P9PPE+fEjJgo2bBsHCRGc8vDs7PRYKgXFNp4TSyUBSl/dMa0vVQHZu5M/sx7N3g7heJI14UpAxvx5dnw8D4zpwU4M8AlAmhql/QHLNvofZWMo8z2mUcEaj+syRNPEyNaioXh44xkWkJ7vKlkUa6Qg0aS6ExJZZzLmkH0c4JxNaNQtinhjURS0YNvyBVJ2Ddyl2BywMeeAbg+040A7n9D3HXbSwmUWwRwd0jub5iLQWvDl2zc8Xl7w9evPJAxIgUmBeUqJ6TlFoJQyTD4Tv5hk6emXua5NQDp0U7huqMIhUG4TPk8C1CEHW5Mvb+b9LYa2iAvMDugEvBgfX8icoDOtRJkPR1ywlXdmpHO+Vhb9DNchfQzQCRcQdf3vfLaZJUQsTRA/gU+wWe5GmT6QjckMivj07+GFIBsm5sjr8Jia6kgDChGJqd237yjeRAtUDaXUmF54ASmIWpAMIqBM2oq4MrNBnAQmnPiYQBKMQFHRCOUKLB9MgFY4yj5erfFvlBvBA4ixkXkR63ieB1mPXtCMGfA8HI4CLUDbggtbdJ199ELNuiiZVA4WpbGXiqM0QdOCJqE6CENyRHP3whzsmrwn159AHC00ybpynnWux5OL5XDepmyzqcOHQ3XJ5cWl0az4vUUDP4+s17gDXH/k6w8DT2s8IG6GgpEQsvgh3k25WoNPFkS9nzAf/BB9otagirpAnNTQOQzn8YbzeMfoJ1ojqr+FkadJwZgKD13vjMPYVYFABltreHnZUKvCrUPev8Oebzje3zkGXRukbpCyQbXBIrK6FCbprmFMFl30Nb5BV3Dng5bINSP5sQshdZ+YwT69kOkrC0rWxx1hFEG8V/o+0WuISVOAezrhVmAy0LYJFR7ADoX1kzTUOWHwRfdkIjJptD0BMdL6VIBWgCIT6h06Dtj5Aft4x/ztB/A84e8deB9AJ42QH52JZBhAQMwxT45M31sj+8Ec7+9vACoer6/483/+z/j65Qv2bcO//vcnxnky4ZMAUiK4JRpePOjjHuvNrz5lHAWhlY5om8kOJiADggERQ4mgoSktKEB2p8ydz1x4sC9QsmhQcA2YJ3A+4ajo4vioDbXteH7/DTXlVg7M4hj1Gt+cQY6dtgNA6L5vXSW/R+HQhRdV+pVBUU0D2ClrjQkkTHZlmWoj4heN7K6DIYP2Kg4wkYWHiEZxxoDR+wiw6Opqkf0TQcWMdNcIONeazQI06ZqxzqMoLEpPCI4XoHTKjEwlFYG6BhuQicN5dviKL2GG7fRayO85L501qeeKom1JPjlVbQbqb2v/yU2Ou6aeoZA1Fl1+JvTBvpErkePI+gjMq7Ajg4YSxw47BZCOPnIih6EIqKoM2doYPbyC6BUGENBlQjRhU0K6cAVu86v7mROHkhmWAwq2bcMQg2CGf0sA8QkAOk2C3UCjVqko09BMgx2kaDW63xbyx/CW0py6dwMtk4niWcllXNDLBtlva4MMDf6exWRABWnZVRtK3aGSPlUT/fmBOTpKS7NYQ1KX1Q2lvSLPPfo1NBRteLx8W8BBJv/TOrRU1LZhfxgcBVvb0fYWEk/GDYL8FrKrHqBWdLxc2F0GzykGkmRWxr4SjvsGLEZCJ+Ch4VHgUN2gYkGpPldEWwatuaftKkZzM/dzwqzCnesnSgNwelTElXg/KWTnQmKIBCFqmAUDRiblAivpv872ZBMhwESP99eghaemT1Zi/vmLBX7KcK8EGmBHMR0uc4pnUr6zw7rYkAakqSs8C+2QA/8OUMrz2AHUWtd7poT98rD5fJ0AILWieFl7rffBPZw0+ZusPgF5B8F1MpGYyJ7Hc3UNZ4JndQ9TfuDl9Ru2bYeNV3x5vODl9RUvr1/xt23HPJ/weeLr1lDmAI4PvD9PTAHQJAo5HohSd8qSPdad0XfEJvdiK7rkkGM4Zqd0bkRcoKQsQb6QyhIxgYCFoBZdz4LmqRM5bCEz3GQCIHzsAnMiWMqDO87C6NDG2oQIXl4eeOwP/O2vf8P3X3/D8/0DJVgBEkB5+pHMW94UgSXOcLl+6lFOJKi01qVfz/n3i3T9/cUqyIbpWtsalh0ia1qq3k6AZMS5ajCR1g64vdeFdKWHG1Gl23Uk+IQ41yP3SZAwbfMtfVuEcc8iTqjw5i/j4gQQ4zJq1YgBwSJaYGn8ul/TVq/9igVAmcsCf8cEzpOfdNtZsH0uNW5FalQ5ZHU6fAwUN2wqgBjsfOL9+y9RfLIWyPU2xkFgNfK1OXgnOOAHsScr5jwxuuI8P9CjUTFHwRRgKgvgBDks2E02DaUpRBu0bZjd0IXStNYaWtvxeHlF7x1nP3H2JwwDBqBqDaldykvIYEpvS3PD1irlwEMxxxPmbERZTMkjIEWvNqTUxQ198LlM58+1FhRUaB3BErbF7J42UeLmMx4QpBhjhl1JTtJlrhDWZ3FcO9L77AI45vW8Fn0CzDnCgwdAXO/l+cphG8wVoBUiFZAGaOF6NdZUmtPtJKFUXblo/pk+oioKqxNqk2tfK1AahgtmKSGZmpB+wuSAjZNgRatojy/YXl7x+PpTNOoKUDYANDc3UEHC9TlicniPvLDc5It5JBvUJlw61RNKtc0chetzEhRA4c/ZWPVV6ANAARURPp0+ZRWozdGDreVCb7Y0sBa7wL3co5TBSdifXGzKK1aSdZ3vuWqRW/wURJ5x7fC4D1lLeIBjvmKLw9d5cW3xVDitQAUYCQ0wfi5zhzZFmQXbIzzBKgDtMAeKF3iAgX1M9DGokgn2sfsF7gORC0TtqY2cXR9+SexK3I9g0iEeC7iVohaPz+5OW7IiqFuAxktlwJpA3Nf+oZk5b1UamycpPV8vmwJj0vJEhQxflriMhZbTSkUuqbUQHCqazOCKMgXTo54U+uRJdB8M89Oz8PU8rrNisRPtAp6SnZ57OP+tpb2C+7IE0vsZX4GsG1WvgWl3mwbkWoh4wmnHl5fd/93XPwg88bLXQRVdLoIvQJowl9ro0g7AzjMYDQ6dkyyRMuOGAPBgu/QDYxykv9aCIvQoAoABjc+jMIlJeMpTXKJI2l4e2F93bK1gzidOMxSb8OcJD+8PqRu0bBDdeP4n+JQkX49Vq+WWfN7Ns7CAp/uBw11i8AUwxIG/Mt4LbMpJXJng5aQhEfAalSxBUx5sV7bCQF3aAwjgxMwww7Tc0AMMnAE8cYPaafDpUBNoq/TlEfYO6WV0Av2AP5+Y7x/wjw75GJDDYEMIPHluTiBHGisAH8FSaY3pzTQ8nwfavmF/PPD69Ru2/QFV4DwOzE5p4LKNzWIDWbQwwKoLNIJwYqxrIkMUAryehT0DEtOnbomqZ/W+HoOvhGYVcPFiVQVFQTp7dLm8swjobz/wse14//VXNDeIDXQoZnWMmmg6g1KtRKhtdnaHAbjJp2d++bBEaSaAlqAjo2IMu4or3FJakVt3I971XlXdvvLn9GyyYC15MIayAKFPDX83i8EZ3RQWFuEyxOTBc9Jc3F///H4aphg5QpjrWj+t/+nRuU6DPiFFPcE04h0sXsfsGLMTFJiOHP1bwyRZg2nBXCnG24Ysa1HlVSBmcTbzlLFYG2R9CCVNcWKJlmgOkU0msa7yCGedQwBxhjk/P0+yPHiQL0lxdJX7GAR14CF5mtzDk8WeGLvXucgJQFzf6z6D96eUSl8a55j1YdfsYEnQNhITd/pODDnhBqiSHZRTD0U9uqEx/jnin0d8u+/R7ORn4Z1rX9bOk9Ud0YhT/LGu58HoWAG3kOZxyiNMUMpAKQNazvDLyAPX1z5BdGUEDfRpozdD0QKZBwwHAdICSp+C2VRbpaF3JPHsChP0Mo+CJ1hjlAcw7tILLIv9y9Sd3euCGELMJD+SdlxlKkSu8dISo8hXEpheSDawqN63h00AfkbxUdcaTqN1Axbw5FGUEcgTcBolgSfA40zWSCSSyXSTMEVCeQFPn6i9ufi4P1cD5VbGJ1B+GU/F2SEZwEBWGc/BmQmM3yNyTucJ8UYkx9MmO+a4fCku2XAUD37dvyvxupJYu22kTKZiy2Dcun+5rpdcS+KDBFi2WCcO2OgYIaeRZEHcYI/agmFaG3TfkCD+eRwYxxPWn3jdG7yfGFCM8humGdQFXjfGrclmgJpAxsklI2T9Rf3Lz+kCccXkYFWMSeU8bqDJwuXjZ+7kVaggzMyDhydZnKbPzL3bqSsmAsGkcLKSJRpLCoSUSCLhRkwpVPztL3/Dx9sHxtnpn4iL/ZD3W27PKgshFmX3kurz0vz91/1nKWe6/+wGteCKYxFn4tqLRoEXxQbPwjizjc0FrL///JWd4NURvuWDsUg/XUl+x/GzMKp1FiDO5ARU0pogUx7k87vOoASM+Xg81pKs2JLyjM93zdZdQRpYm6MP/ts5DdPkwtASBM5riLxt7Xs31Lj5Dgdmx/nxhlo3iJRQLgSwGzE4H5RNAvQ+RyhYnI1j65hDV7MHjmBbEnjS9UBi5S8JI8GQnKhIsKFwYmXbwpORAI/FmqZPra3me1pW3At+gFNcKS8CfbFSnuf337/yTzjv6xhsZDk4nU2Nu1OLXOtN+R5mE2s6lsjV+I/vOa8hK1jxOX/1tsJuOXEOuMgqmz2CKDCzB+MajHJFTslWyVyB/r0Q3k93jZyqhAwtByvlJL6y9vydPSsiUC8QM5TNUaPea3NCVTBFaAsiyiEMsb60NpTtgbq/oD1eqFTRAi0PQBqAel2TA5hkPPnsERtS6iVRljgPc5tkfJhfaIaAjZxY45AYeDXvAw2iRnQJVpBxelkFtIQkTyzqSG50V2HaYL5qHcnte6u/rrZP/MnOU+7E9VhlAU0ZUfwWaa745EablgSePoMb/L/1mp//v8u+ZJIMkFLCEn6maxBLd4LjInAEW9c1mj0JPI21r7hHgQXYx7kkIXNkXRLXpldc97SlAKDuK4ZncE4wKWVs6zgLaj3TI7KFc994xjYlgylf537rSWiYAeIDQHh7AUGejxrRhJYeHud1+uRp4BhFggjF55aG5CK8x9c5sQJ+yMLXf+ITOUAQg0dif/nlCUeiUPB0b75MiW9QORbNyxsrDv75WnItZIPQPp0l//7XPwA85Rut1JxvGnIpAGj7F5S6obUNsz8xzgO9Wxi8dszxgX3vaI1mt7Mf6MrpA6OfgPeQ8Gj8zgYmyo7pjawJOFxGnI2F71c3fPv5WzCeBMfxHc1j+shh7O63HeXlJ9Syo+jGIho8jPsUOIiKi9aQmGwRwGoUTflwPTY1v1S4gFfpFQ/gSopxFd0zJ72xSFQlDW/UwUlpKEFFrJz6tg4rJWysDUUqpHZoJXNrjhPjfGI8PzDHgJ0HBCEWD3q1WCSec0QSdKBqR8WA9yfmxzvm23eM7z+gHxP6dMgpcBOcdn3ufp6wKVBxbKIoMBRRvLx8xXl2nOcTcxoetWF/+QKH4MfbG87nO3799V9hH0/omBGQARtg8RgpbQnJh3lQNdemkowCmGoYQSM3ZBY9AZ2QMlGUyPv5/o6Pvx54/a3im1Vm4nBg6XlX+CTyXAQtIPJpAz5OuBcUBY7vv+L5fOL/+7+9Yv/Tn/D4859R/9Mr9LWhfN3ImlJ+JkxSVuc8oRVwdbz/eI+NKWQD5mcD/WyO01FRURtZLKVcIFVOjRNgUd0BLIkdJ9oQ2V5dfzf0HsHT/fIRQBiKJyihoJROgTkJ/oww9BbB6lIRREjALN7fEqy4v3a+pyzvo1IqvFJuxcleed2cIEjGAot/uKN3X5/rOA6yV9Y1s2uVSeK27QH0OcbkJJ7sRqRpt4Zcxoymomd3iJCW6CE3KWWDC7XWtErq9LYYnZ8Tnm0bPuvqQHEyOS0/cwwxiKNhzoE+55qWY+ZolYDPksUJEzNzgmiPl1eU1pAsDiak8azimWyN0y5UKloRnCKATczzCGPdAfHj5j1So3AgA83d0bYXqAhaZYylzxfgmOt5igrO3nGc5/JmYi5DIIQG4MACue9lYGZK2fWBomz7ivtpDmo2CNo42WLtUVfncLMBn5y4lvGylILHC6UQ5iDF2xBgDjlIrjSzlNLgfoaxMROXEhPYzGnyzc5ssG6N5w/ga4IivW96THTU8MZK8HVCvRI4a7wtlibASt+hO0AhWuklUFlAMbSP6Ih3IK4pBJJRlDLj8Nkx0WHRdRUtkEo5ZF3y2uh02zUpKtfXinYusGL03mvtSqYj5iIeW7hE4UpnbwFTsNZn+uzMZACJfFo/ZHAJPOVJIMvQJOwr499lA6aUAlR6/5GNvHAVuAPH4NTcEkaluZ60KNQolc/zNQtH9Ss+AQk+CddhsvTW+/O+995xPj/I5C0FtVWerTYxRoL4cSrayUEf6RWFCp8d55zIxsYYZIQXEUzZUfZv+PN//F8xe4eNExWGfnxgaoV9/4GhFWIntBW4nbCnQjEg3rG5A4UglQo9HzGju57Ag9WQGRnO05b8tYqGvFAxzg6BkwUd0gDNJ+6JbDBfIeuP4LzHUALrzqJ8GnxOGswi+BAqqFrQwkbARXAeJ3788h0fP574b/+//4bn2xMlIOhWCBrPYQE28l6551rE57Ugt3WZRcd9iaqG9MUjFMkFKEY+kcUdvTrShyMFK/H7kgWfX/dFLFGASOY9eIX+ea/k5cWeuuQIeZW8mOzoJ/ia2MACm+KbGGOyoBJISbCgrNf0KK7nnDi78bmUkFSC54j5Vbxl/pMgkuU1GSIO1di5A2cMsygFMCPbuGzBWsmbG4CIlHJNk9RkCE+YAoIBsSdkHnAIfZFuioocD+6isD7gMz9fhWiDeMHUBqmCViu+vL7Cxs84Pn5F7zOmwQWTvG54vHzF9viCre0YgdeKVJSyYWsG+wJ8eX3g5YWTX2WMAFB8Me814knmSBY7gik2m1iPbYdAMU/F+9vA7AebmAEEXkAAH6oZm1tnj8JbHLVF43vmfuSiMCTAxnMnAYg5B0Ywdsn6GhjnQIJcugrciMABRi07QYsV75H/hO5LlPm5i61hQ4ACViDeIGhQ3dhU0QqpOyANlENuEKG6pNYHRDcY6JvLNUV9EwGaumQ9a/KfMv83rWi1cbp3f8AfT8xWMM4D7Txwnk+u4KLYXr+ivbyivLxCCw3GS3uF6Ab65VWk7S9sADmQJeMDLtYSGfLRgO4nqlQOdtIC1AaZHVbCTqIaoBtmH1CbASaFn+IwfuuEeINKB6zAh2I4vXC1ZGMWmGph+ZA7EbxPcm0tvccPj1TLA7YPRlI2p5dB7u31rjbMdXYnSOIRGxM4A64GriDvU/5F5By4SToTAAmwcpRQZlTG1mkTpRG4m1PwfnbWjf1EejSJAr6xQVgVwcINZi8FnbSuCOhJiqKoL+A14wg9F0kmuDeDaiu5/G4x2lf8BbIxDcxodgMEimoty2OJz8zQb9LmMQc4HEYgg2WpxIQ40ZjMiwFXhRZHydergjEK5iyMyzZWfUbgyeEjROZy2akAOYEeYPOWn4fnzY15JFnj5sReLCbz8oaKBXA/w0opSAn/muI5iJvMZMpa4hvXM/gjX38YeOIKig/xqZPCA1Cj+C5WgdZgrWG0jdOTIrE7nzF23XN0fEodPLoohq29RFCmx0FRhWpDqxo32TBlhma/rgl02+ufUHcm9wpD2Q/UMbF3R6sNW3vg5dufUXVDUY5Bdp+YPmGHXSacALKrxiCC8NiJx+2+OrL8zUxO8tkZrslgWWFw461ERlIbaQEsRNdwdcYzOGcCRORYAUBpRm5RHM3RaIYnHPtqpUGj5Tm9Q+tkILfs0A++zpwwO3C+/8Dx9h3n99/gH0/gcOgp8COSG9H4vBI04IpaFXutaGIQM4zjifPjwNknFBW9d7y9vaH/0z9hjh4eFycD88qmQFp+jAamBIs/ZtLJzV3Ljf67ypcMsgHOgeCTyCR1VRxiwPNt4PgYpLrG81LVVchgAai6QEItZNOlf0ETgcRz+vG3v+GcE6c7XveJTV7QXisCXbyyxUgsMiCPOQLVVuQUJYIy/FNAWvMcA5COBKaujjyp2BoSsvxZBsqc4qahB7ZgNeQ9u2R7Gt4zcY23ZGimF4hcppb5O8lmYlLr8Zr82KRp8lrJpmJHNM34tm2DysRQwPzEHDwwzGd0kmVJ8dwmRsdCzucYK/FbQK7U1Znctj3YOrcpY2AnuKwjWENWZ+hjYB2slZMHBQLVFsVKiQKe3T4r9KljshJd4DiE6ZEUMUAQE7UCQJsWgEJ01iKw8CV4MJpN7nFRmNF4V4tiEyGwAgb3RfsNSi4fnaz4wqTEw5R7wCb9hxb/aHnaAGnoZDG5T4XMTXGyTBirLWI8QRk443KmHAkcZqlHVgC7Ih57mjKNiXlY+JYI9gQW8vNlQbdeygGpLATFUGql9r3Qv2d1UnQjqzaHCxuQY5Lp96AQNEAGen+DnQQlUxI95sD0AxxFXVYTgfeJr5ldrNXtc5qBm41lSC2SU/x47ebAiC4Sp4g6VjG4fHQQBvxk2VpQG5i4RBzzjGly+3bKpQG46AKiXSk/Q3ptwMgIBgcRlEL+0A13ib197e8EkJE7Q7ESFf5+sD/iGZfwOXLjZFbSq6/kg/8mTPAlXvsWvrUqxCJ3EGCZfCdjxoQDgxBAny8+1Upurs9yxUIAS+aXDZ78eca/JQMEcM6UzMiSiU+b6OdJee+kDHhTRQ0WQ06n48QjSoGLguONQbl8TqxBPIcxDdlmpElogeqG/eUbrHXMzqlcLbwPvx4feL6/4Xj/joINsAMdE+N4A+YgkIZgHETx5i6XmiCTv2g48DlIyFax9oFEc6wox7mrUsawbBQsy57wlXHAJ5lhZJ/m58L1cNc3ruc1WSQcz4Fff/kFgoJ+nFARbG2D9TwHPPxVFCZh4C43ppHj6i7HfrtYSGQX5DmUbBuPNcJ4nQxbCU5sNjyE0v2AEnTtfSxAPvcBQ28wQhDMBMli7s50u++3+F2/Jfjr5wlyARejgo1dydub6ZLfXj0TyXj2GS5EggUfZ52G0YmWyClv+9TgNI+WW3qVxS07UoBJdMbzsQrGdLy9HzzbpeLR2vXEbylQzPOASMS8OXjuyDXd18YBLQ37VjBmxiKySCHMA2fs+Rmfhw2slO3TumPfXzBeBs6PNwIHQosADe8wlRYAR8GmOyQnxNUNZTrq5HQqfx6Q7z/YCDEP9nMwiXpHryc9oc4DpTL3JUjB559s8Tl7FH6+QMfcUxob1RbIYYt5DnVIJVPcRXkcGOW97JUZxAvGPOk95YVndvg8ztlj+Eq8njuL5VgrjH/JwEMAaVeuy2cdTQITmOaodeRBgDQ+XzCz0MNQpEGUoJOWB0rZUWqAQKWtZ8AbcpkxI5skkGi2R4avnDhboGi7wEuBjwIzR2072t7R+rGYL2V7gbYdKMwPoA2uBdf0P10NkMz1yITK5weMQYAwCIEBGBChkzCJ5uULRIzNALC+4iBhjZoxmDaIjWCAYQCmmNVQakioG5vccIua44oXq9ZWypDFZAFE8cqr5lxftx8KHFe48U+/tHAGkF10EaauGJ75VETRK4dYe9zXXodcuXbmNaMbXNm8QzHEFA3GNw+1wfSwz0jQn2ww7hkAMUHTJoccfJyGszO25dTVNYAkQas4B7XI+r7MxYPpJA5Xp2Q1YujomYiS9e+CqKsy/2a9U0uafkf8jjpchVOpRUCCjLBZL0oLi2z4aGGdiZxuqIh7I4DxuhlL+L7p5XX1CJNVxOu+mmD3r0sSRyUJz5mcZveZhRusO66MVU8g3kduzZiouDGjPrP0M7un8X+/Kv/Nrz8OPGXHKBAztqAYjBALmCMyK8QN3ii562NGxxjwOS6t8hg4ngfO86TxYRS9reyU1ETRJaC+upQcb0nGAjtZFXV/Rd13bC/f6PeiBrUTZf+COif2AbS6Yd9e8PjyM4EnabB5YDqDdbeTsrSZUrnPSXQ+IL+ygMW2uczookDwLM5SC3l1mta0F8/OOYsZgO95Sl8FvQbgIn51kAnaKWAVrgUmilIHRmkACmx0mDbooIFjHwcAFs86M8ELnxabGOPE8fGO4/0N5/s7ynlCuwCDzA9AwxBwkmZbLTZfwb4VNCEr5PnbgfP5RB+GulXM80Sfb/jtwzA6u9QvY5L+eAeecpnGMtLJpK4AMAVgVyGUv+9OcIUUVBZsvkCnGMmpnK7VnxP9eck5+ImwNhnWT+Jehy8FAQUDYsy6CzDd8Hz7gSnsxOjXCm0K+dO3aDgKbhEdEfoXaFSExu8WLID0gaHkRYMKbzDQmyb9SSCx1QIASXYTkIkd/1uDLmwuULeFUAuuolHk+vSrtE55XRbuSk8ISCb2EbKT0nrrevC1awQyBvj741URlFoANEAMcxai+ebIyTV8NJyWlpNmzC/fibxc0qGpxW9tQ9s4PpcFw8TVyYmEPJOaKB7MPIpAPquSki+9+YGhICedmE1IYWKRxRgPxnsnHJCUFIdBtgcbaI38tXOBdW4IIM2CWp8HtaLMRp+iGia7whgx1/SQ+DwzwdJYxX49Q07b66A4+ZpsBzBh46bSa4x0dMjcyYycQT0HuBfI3MyE9JLWrWcCJlm1BEvLAcek35wZO7GTsVBi3HG1GLeMBKsSWEh6PruSHBsvQHUYlED6NBid0Lju0mckD1TNaYicGuoyMGxCTg0tvrOLaSdI/28okSzkZNFkmXocvpRNRzfPcsT9jLjlNAx17k2bIW1UJlaazYMo+HnPAiCOAnb5PCUgHIVOnBRYBrMuiDcLryjKM9kZK1Fo3wASBw1zPZOJtYQWgy33WBpFk/mQEg+shOUCfXntNc4eSemZXezLayKdgiOOb2tGBFoKvRiUYKdPylrokTSBlHbEv7nWxwU+JQPu9zLjT8yme/ct4+aV2UfHLgCD6vDJovf9/S2ux9Ba47TTABkuen/GOJ6HIuEPKNc5khL+MaOD7Yiijqb9RV/YJCodoyu0FtS94ks/IduGAUdFh88GszMGTpwoBk6/cQJmOWJaYo15FKuIvcmuZRQA9+aIpBRBo7knSMZdrkOJxFZVL3p9WCvYNIjpYhTd/29FCicLdhjZ0v2kn8zsA00btBb0blAe4+zUi6zXdP9dVI+8yyJGLBbmWmHOeJcFpl/rVwFANNiZcX2RVkjG55Cx8TMEKGVYtgo5YOYqvK6cwuXfgp2w7sOSrwUYswrEBHgvngKWjD2aV/9mLn9DjG54Fmacc70PdvdV0OhmjAQdch2HXogvdXuNBCpMNHLzSyrobvh4DrQ9gK0Hz7XcE+a83pVzOZlHHWTHqc5ggJDtrYX+rGAJH/J2IYirQtaAAz4tCkgPkGWilBkDTh4Y+ySwEfIw+v9VFK1gG4prtdYWTZ4ak08NJYb5HMcAhGBN5kIzYtucA7MPjHpiRCNEA4SFKIrWGPIBspdCcp+FnGfnIfaXiQdIzCbNKp5L+iUyJ8zSb5rBYx2P0QHh5Otl3zAHfPYl+UpLBDMLoCSBp+saFiiKPA+Idq5S0xymkd4WJ2a41mbETkmvJ7LRoBygUMuOWjhtVjRBKb3+vd2wDkich1eeL1qChSeoiHhaSoB1bP7UeUQcN9TtASlkN7mE7xKuPWm4Nl4qAASfp2ovspEE+Or8XD7Td3RGPgiQtRebL5n1iNxQs26M894F0wsVHmVAy0ApAq+AdYt5STdD6AU64QKd4t4Irnv0uygDX8Hl99LfAGdWKMloeREsshl+1bLrqFzZfoKCa58jm3QJSpSFQIxBANgckEZ/KwnQZcXPOEvmzHiaeybYZl7I+p+G85x4dkMfARDG1cb/uzCJeP+waub75j0BMR4I10MJDzwzYdM/PmspXDvkyPAeqXK4sHLW2Lp/OUGTcvX8N5FTKXFHCVbx50l0ceiJYLFohWeN53NeezNqvrSGuHdDMjZHbOePr/P3kk8Kil95cj540QCkos5MggbXi606SmISocWzs/jm+XM7pf8tzfm/8fUPMZ5yEoFLHmBZ0MbTRkMyUcQ3oHRsrjApKNuDU4ey4Hw+YWLos+P97UAWsWYdYxaYV8AfsM3D8y3RGunkAAEAAElEQVSKcJqUMAFuG/bXF06x2Dk1QQWo+1c8XCH1BWX/GVt9YN9e8NPXP9MHBIoxPjDmidGf6PIE+oR30vjOcaKeH9BaVieNdyC6A0sCFwCTXJOF2GPmQ0OwqADhASjRPZEJTEeadBHFpNyJETkMzvO+o6CEFKDWjeHCOG6W9P+Ovp+wMWC9A/0J7x11e3L0/JyQ2QF7suhy4Pj+A+d54OP5gdkPUqgxEGcCzaytQCcBE4lpAqLGaYSt4DxPnM93/O2vf0Vxerqonzifhu4feGZHwQxf4agmrEUChUXRcPEMw+iVGHNjriFlmLHAHdUFwyumGKR0DDhU3qH+juo/sNcf2LcveN0NW6QcEMCCtUbluV39SakwaXh2wdQC3yp6PSAymSTJRKkVr62hvuwwd4xffsOHFJSzAF8F2394hYui+wlIdGpkAGpkHtSxis05DbVQHvr68hUqFSqKZzdMZwDcS6XWv9H0PDvon7djJBMhUyCa3tY4e5EAPNyxJhLIPShlwMoRyxtUR7x4sAGSjhn3/vL4ECQz75p0BcoqjAlMWCeQ1qnsWKE0QJmUjXFihrwIMckkJ9tlZTEni+qiFbVunO7VXvDyoKdPLZUSu6xWVzYPIPyp4ECfpLIPm6s4wuiBdiq8VJhwpPoUgwnHXZRWAO00ATayhARkulQ4qrPTaM7u7ZycpOPzNno5BivAJYpQJjxIvx4opinmbAsQrnUnqDY5fniaYcLJEjJSi4cYFB2zv8PGB0Z/xxgH5jhiamUwCHTAEYaOStrv8a542RumOIY8l7nj+/NjJajbY8fWGh6t4QipEMErAC5QsFhQrdj3l0heHGV29H5izAGEhK3bxMfHCbN39HPHY3tlJ5r0QtggZXk4qcMTwXpSesVMjYLKJ/A8MdQ5TjsmgFyAk2J71ACrJ06b9LYbBkxKHt0mztlxnyykJVikud6jCw2E781K1tnJ5twxwxwFYhWChjSmNxNImdBKM/QiBDT7MTEHO+fuAQ6KA0XgGjLVSQbumAMJUKm2KMQcPm2tbxYlPAOkkE1ZakOJjTehkAnAJ6A9gOmComzcABqyKYIIKmFMDoV6yErDSJYithLAE/dYLfTygDnOOenjuEx8L1p4yl3BO7g6dB4suiHMRCllY8E8RxhvFl0psmZitYAy7sXZx0pktWh4pjCOJeMnk9zzOLHtOyfJgmyBaROznzjOA8dx4O3Hb9CQLR/FATsCqGQRN2J65QozIYDqiOZSTMsJvgxqIVvDjUxWF/q4WCczNXOjrX3B15cN++MLPj7e8fVPv8DHO8b5gfd/fcVxDnx8PHH+8h0PH6jeuTbVMWVieCcAWQo9KpT52i6KKQSBkUsZ9FtaDDEweVTUSM/5mSoK13VXjrbvE+M56VuSo62zVJEENwCpFa6KKYKjd/RheJ4D6hPqis0VbYIxFAVuPIunYOVV2d80vyz9hzvSzJXLYq7qVZBJPujJEhIBwdVYvq43ikT/JFxZkpX18g54Mn6juJAboLK+V3nw919XGh6SGmShG0TpPLecFgSZu7Ojz+aXhJpACgfhzGgM5avPGeeaKM4+0OfAxznhZWBzQGq7AIqSDCgGERtRZKzPKZjBPsR0+MkhBto4iTqnXtmpGCo4nlQziyK8mwnS9ucTtjUADW1/gekGU0M3RzFHE6cdgQlENmyPit6BZzcABWlKv1XmTSZptDvRxwfatgPygv3xAik7tL7g11/fMPoH5jzQXr6iNbLz53QOMHl/x8/bV9RSULcdrRnMC1zrmkjbx8naoipaZRN90AsELk8MVfTaUNqG6o4xo4FYgkVphn7Qy7QIJ2nP850sVyeQmXy6lLICg4u3VcjYos7huecYcN94ni4mYwy3cM9WDXIABplWF8BDYJrfi52hCczHYJnlCYVoRmTezfVYjCzB4hOlK0qrsObB8qio24bSXoDygOgLUF7IeGqvKNs3iHKnZwDyadGou0CvhZ5GI4ZgDHPTIiFxc4eVL0AAa32czL18olaN86IhJ9kVN7gdcR9YSZGR2hYoDVgwU3ivzWiMXjRkgabAAGuO7ihKf1srT9p2TAc9IjuZaYQpuGelBsBVUFwhw4Ha4aXHQHULCTEDglagQuCDKhMYmL/cctvAEDKSwJEATzTWbsj2VTEIFpsbCYoFkIw8Y8H/XrK9699bAE5ptxO8/vXFv6dXasxZgcPgw6GnX2tqCskPyarmDYRNwcfhSDbd8x3QYqj1hChr5udxYsxQJXn5FKcTUL38Z2OqXTBZNT0hIyKT6VtR0ivWAXOFxACjEjFdNCtwQW3JVgpljPB9t61xHVs0+8OPcg4ClFUVfU6YEEIt4eWkjQecg1O7+6AbjKBE7yQaonHtVVs0q2kn4/57EJUKGo/nkSzv9HwjUJSS8iAFFNp2DLsmQa8jDcBwWkwolFMH4w5qKBfOj8FqZp2Xfwx0Av4B4Cm3KQv2wn6QZCHluDhhiaQz4WzGQ7SEsaTHaPVSD7hskLLDvS4UvdQt6Jk7px4VGoMjtp+KhxePYts27PuGfW+ordAIUoAme3ReCqQ80OqGrT1Qt9fQewqKRmQXQZsCFPoElUbPCO7LeAx+kxPg3lEIYqpE8ERsaEus3tYCyY0sIc1AJCBpPLbeJ1HbmZ257EA4FAWedH7hOHZxQ07qmjohwgQUdaDUnea8NhmAR4PPJ2RMlPGKagfq4xU4Brx2mE4aMxaQkjgB76Ruc08P6AZADCoT5/sbxvNA0YJH2dC0ocgOdMonknOj4OGViV8uT1EwEQdBIVGghMZc/caGSGTVAlmGopeLMVBgqJhomNhqB3SQbh0njueTEgDgz/O4XkFZKlQbvDXU3bC069uGtr9ge7zCS8M5BaMP9F8/8GwfePvbB/TbN3aFUTnRqBXU8AFyYTGewVcmsLcdW9ux7a/Q6MaheIALgrZtKLWQJh2F9ScU2x1kYgQSHmJgGj5yfakmeyi7W8lcuHLl37P6FssqKxRBAFfhjyPZjZN4v8/XVQQ0MM7D0QksjzkwxyBFMyR1NjuNIn1AjFFXLAEvUGowWGi4OrRslLVEocpOSUyYsutJ8ssvaQku7fFibaiiFlnJLcADdzqYtMBJeyfXBhqSO4eFVNQoVe0nDJTUjfM9hiiMuGdZMqcH1C2Zg0J88h6icM/DYKNhdO5pFQORV3CPRzQYvQco45jo6OcT5/mBs3/QQ2uG5wwAqEJ8rMOGQ64do3/gfP5gfBJ2lfqcOJ8fqztTCgHyIn6ZKRnjemQ+0Qkm9blWRUqsaCrKNUowaWLME/3swDzg54ladrSyMSmNLvViuoF0Xk5VBMxj+mLc+2RrikbFExPExCNxiraj1gdKnahtYKoiJwzVAF6WP1lkc5SqOmYW0B4AtUeRMM+1fjOCTOE1ki5d4BITmSZgOlgIx3uIgcM1ApQUnTCQ4TfdcZeVrWJ4JT+4FbnxHXsvTU3TUJOSG4I7cxoGkhXJqWhWashIc5JNMGyD97cqY3O4xLhnL4uhmEVDgt/360g2Eq89zrlgbUigCXw8lO25AlPmMrj0lN2B1786aIvlSfYB4Mu2D3mHkkGX4PcNZF/xzj3MPbFGLrtzuIQV5hcSLOHjIHAsYii1xWvQAmAxaaJN7nNQvub0DMoWIruJtoq9QG4RWSXYz6ek8P2jA7KhbsD+BfC5o5wPgtG//Cvk7R1HTPkyJ7us7huTx8lppeYKrzES2ibBGJC5i1sTDcHQGUBIgOiH5ZOsqZTlwhUWU/Js2AKdiH0EL48HeTxfjX0pGA6cg8NjGI/JOFIHZeNOFUbelWQCEXJJbpPT+xFA9WuKmDsgYXAtHuDSysMya0pvztVuIIsrYvDNkxe47bpVbqw+RrIXrj14TbDK3/icdMfKv/bI+qfX7/ktXpVgPIXqIe5B5jiMIfRGwyq6spG0SqolQ41OtjuGOc6RRT6vWV2gynM9T6nMMVSy6HUOjzECX5oARuRno5NVWtsENgLSittNCik9ABgKoA3SAleIpguZugN9nlBUyrPdYi85it9ymwKemc54NSc9jWo2cwoBrlIKxHe0/QW18N3NO13246yEFmh7hVZFQzDvRsHoHcfsGNRNo0qY/lY2XsQNs58Y/eS9qxW1bEgTZLMZknc2oOATKgROvFSY07eQZx0HRggMtSrqrCxB2k7WaQJHk15EZifIqO7M5zy5UMmotJWv2C3Pu9gQZD+wiU/WhUJQqiLttdx5hgQBeuWstCpwYMb0PRswK/QKW8ZJshoNWANKeD5f04LjbAkPyGS5iNvaV2v3SVhuRL2W/2fJlHGDlwY3Xo8IQZwxGVvUs/4KwNUZDyBKNk2Ac5Q8ebCEI2YgWPpIZvYGDplhneWRE1iyzMaJPg6MMaBKv1ZopcdZ7IshHkbVGrmCBaAa0l3ls1GnPAxxtonKkqbjFq/807dnPxC5BbP2uv6R3xhlF6tmMTUlXiBilUZ8YpwiEzSZkmvVye1aPDPUBU+Aw4SA83CyhYTWCVIZn+a8pjDOQUtid8EIcHTMmOjuOZArY2bE1WRJ3WK4RCxLaZwoFliUtXoegclqhyiiNxb1Jl/zwgGA2rBkchmPOX0vpoCrpDoZQYJc98Yi7k94uPFJMNnIGDO/agRonlm6JHwi9J3SjL/r6/6//dpC8XfJ6svPyvsbtUAoz4jz+loPmaeJKAoI+udrZSxIObdHiZjst3/k6w8DT+pYH4QHXwaJ6005AQUx3pUIXwsKWdloBIroCrT9gJQdpX0A3ojMTQJUdXugtlfU7YFSG7RskUYEiaIUSFWCTo8N29bQWllJiSgPSS0bSqWZai0byvaARHFR1CCTq7O5QsoAdKCUtky/EnxKmiw3YGyESI4VipyUxofDBCJuCMgMITqaGycP5/R8IXXTcAeemESk2R8lctM9JCYxdU9L3A+i/KITUxrHidqEbOm0b7D5AesVPirsGCh2ApgYr9/gx4B9nLByQEpeD4tei4lc6dchm7B4mYLnjzf42bHXhpftBXvZgakY48SwiepzeQ/p8qG4bX7N5CzupST1M72E8j7l4RHPVRQtgScFqjgqDE0mNh1AmTCZkBjzSQbxFbXvHRZekrAAKBWoDW03QBpQKtpjx+PlhQbqQ2DPCRk0Utf2xMcvT7z+rwC2AldBrQ/UvUJ3ena4OIp1dvJtonrBvj2wtwe2SjNK8fCWELJaytYiWMpCojPbdAc9hO6eFhJghkRnFB4Mq4tuvXS9i2bJAzyTV67PHK15P92Y2KXMTWPk7O8ZWNkEhsjSX7M7SkZe0uMt5UqzQ+bBws56SDsCJAvfCr9pv61OoCTzITp2I6RtWWTmubnopWmARykPUX5FLQWtMqGBpx46PwcTCx4kfG8tndfr5DPCWIzbsOi4DYzjSXNPG8s7SZMtE0UvAWs+Ny2NzyuBR3dYf8JKwYSF/1cAfRY+Pe6UwwUYB3AdnucHeicri4MFQooEwGVelYrz2cwOHM8fBMmUzI8xJs7z4H6tBa0KihinW6UEygGJziUlgkzsTgEgLVhHghprcU4C/CoTNp4YdsLwxMCBVh+Y9QXb9rI8U3gAs+BcfntmsJvxNtfjxBxOtpoU3ktj3KcPYGjqy47ajMVJF0isNdEZBfO11ll883xj+p4MNwRwTxNw3otYk046OEQIslTEiHWeyNOC7RbPTrKgc/YMzQ10wLlPOl0RahWtWVpe0lMjygtfz9Td4DXo5PFvCLRFURIgW7FOc/461vliLkCtq9GSHl4+CcEZAEuZnzm9OEpOPrzec8yZy4TxPBJ+Ju8h62rJkg4vBQ1gwUMSdvNnuuXByzOD++iSBnsgFppnRoBDNhO8SmYnFigl4LkO8fA3EKDyGmqRVUCesyMlqXucSzwT47xScunTO0xdITYXyzmLMRFOOx19rM8kJc7EoNDP0XE8n2h7g9YXbC8VZpmzAPuXv+D9+3d0F5KEXbDXykYZDHa8ByFCgEnmw5wT1YXNmRJAUqwrgN3j9NBRKIrHUBIDxBXuCp+CeU4ytIZdBdEqMmTdFxa0ZGs7gGETfRKoI/MZoSr1eB+7pHpRjOYpncmsSBQAYEJfMteO5ypwlEygb2c8t10WxLiuFQBCPnvJ9Hyt2etT8f9f0lGkjCLZIde/uRfMuc7yp8DV9MlrWX9/y9UXq0GyWOFnsyw+VJa/oNwALV3gKV9X8uxKdpQ5+sjGRXTmPWQh4TUrkk1BnokKxlEPhg0CK6CXGBt/cziGUgKTMpJ118Ru7LKQXmpDaZWgUiF7coJ7ufcTFTlJbmJ2B9RQPaT8WlDjGrNJMceJUTgx24VDgNrjBZgNVQzb3gAMWEzMdTjscBzHO1AK6hwEqbTSx/NkXHo+3wmem2FrwiYMCr3N3GCjY47OfGhO7BHPHECf/ZK7Wxp8M06U+BwclMIGiAotI2optMGZglIdycnnfh1w78AQ0GDcmTNlAywmOatTqO6rcLzW8lrjTul4rlaCjWQc5oLNCeXTgD4mz7IVdyV8JAfcapAIrsYw62X9DDp5rtgLgM1F7khPr8jHBUtVI0TGuFdFmCdJpWekgztkNpgP6ByY4dk7xsAKdQ7kBFpP9oYoawOLhl+ZAfp4ML8K3BuA/dqZ6WElFTkZj7YQzGNtnDjPJ/ro0OJw3ShNLIzd4rLYQmuSuuilDBNEXu5kuwSKTrXmrbmTNUA8LEPKZlfZGGdbNlSxQCHe8/jdOIQ+5RqfYtnKfFbuSoVTNgn8uvaVN+f7yyeLDsDQT8rTRBxaDMWIEcw5KKUbc01inQFiqgLFDJQg2gJSb0E2GmL3KGy00Eg5WzCUSslYKcwxEa0NZ7RT8QUoZaOaDGpfeXzbZIFYgC/gCTYgwka2COjFuTopWNfoDoxge4ohgHzetBnAHrfGJZ27vDWFiFbUPveGv92GRXGf8mhNAsE1vTh8tex21rG0WEQMB5A2LgoquRLNXLmPd8pbUx2ALPz437+3P/j3vv4BqR1fOztISa9ap3psgJxUxYKZOkpOMprA608BBFBy8PLtifM48PWnt1h8dknotqDRRhCb4XFj4tBKaURrDfu+B6W24v6ZW9tQi2NroIdLjiuMz1Fqg8cEPShH2G/bQHrJbNsWSGNocDP4ruIobrzkQ0+NZSS8K4joehjLuDluGw3UwX+zdnDG4OgILP8WhcjkOPmY6NO29NLglJ8BmkFWeYTUBtcmmw/MvnM6RBWgNvj2gB4d6hswK8ZHAcqAFcdxENHvcqBH50AMkOdAPyfNnIehmEJlw+gF3h0+BsbpwOBUQQasEYVyLpnoyBluX5kkMkCKhnnwDRRhsCwoUPTKdaFSUaWioqC6soNTFK7s1NqIhJfLNr7isIZDfUB9YCuxtyFo2wOQHVIe2L98QW0PqCo+Pt7wcQx8HAOzAC/N8dOfvuLr1y/Q1w0nJrTWuPa4bg1+YAPUKqpWgk5tx71K27eNXlJBvE2g85pcg1uAQawXHtzQRMNtAZu5F/L3ly+KXptEb9hRyi7uiTGL7mQT6QJ37ieAO+D3H+QdHvQcOvsBGyelJuPE7E/YPOGdEhbxsRg6Ag/qP71LMIQyMxuoZYeVnEZmtwIScbhUaPGgWTcm2c6JMSqOKg5tHKO8tQ3bvgFhrExQkJKj7DiIFNgkCGFUGcAmY1c/n2SRsBwiiNAPAj9mlG45DyALWoY4oGZIXb1mIhQeFFCDoMBnZWdbHe5hfsgHxydiBIHhhjEPnMeB5/PAGNFd1RI0W+AuhYSEhwJ4lvTxgekE2lcX0Q5S811xPidgDzKobhruZR45KGkyB/CBmMbIOAQwRo7RcfYjpu2cMJDJOOeAacfUE3gdKI1FSfEcgGDhB3clUljNjJC5uWGO6ATpBrOGYg0ugjJKdKtIUX60F3RIJJYTXjkeW2Br6iDsojWzKL8BGQFyYoTJuqRsholAN06C5BF/jUwZRhmYFIFWgYTRbR8dYyr6vHUSXejZkQ286PamX00eDGTzOMTomSFacHbKYUQrasOKB+YKYGLYCAYtIJ3TWTiQoizw00p27yYCMYeDk1a4p2IwSCS1WkKiqGz4tNagaQYesZpMQ8BtLuDJ3QKgLCvu1FpDEkdGy0r8NBCFXH1y/alpcp5J8SRl/fe/m++RwDvlfB1VGu7niyiZQ8fxDDD3CAbXbaqiFmitAaB7nMtRLAdNn/T2HobdZe0J1RL0e8Yc1bIA9OfHB7oWFnugrGWgwGRjg+2r4D/+P/5f2LYdf/vv/xW7TjzUsGOw/+6G47dfUIRA1ssETZA/npgfJzAdMiwKRQZty8R3GlJukecO3CFTKN0fQD8GQf45L98kJMsozx56+ey1AcJudn8e8HNApmODhs+hhEmurA69iWMIMMQxFbDI9wSKIoC2RrbYaYspBeB+1XEWUd6ZGM4CtKNt6YKLSQJfctUss/Kky1xhNWVWon8VBTwRV32xruJ+Rl9WzdF4BNbaRsa1XKsSLAVByOEUqALfBGiy2OEebDeJHFy13EBXR62UTJYt9gbIXJLocI9JmwcRQdtSos97MkdYSQBwKQSKhNc7ooHk8Oj88zwafaJXMtY1GB45hGBZc5hQ2rkVtDkzqCM0OfT/6iNTmngfVpqlOErlwAZ3p/wcwtz0+EAp72S26oZvry8oYmjFAX9i9I7zeMeYJwAqBub4wBwNbicej2/QmGhL0OJc4Jz5RCfMsNJGsmsM/TwQASGm0fH+kf2Tk215To05MCb92YCwqgBWDUF2GZsge9sAK+jaUKSFpUTHwIk+AMMA5Y4dQHo8Gag8KWyUqWMGkJvqkCLBU06wyqMOEUALGw7uYKMvzzxQrmNm0cAMj600Ig9Jkc4OGRUoJy0RyoSWZBt1jP4BIFnQsj47vRItGOJ5O5m3i0ZeFGtMNZuE+SAAuLBJ4AqbivMkA36MEz1yCBEHfCAhk5KsX9kioRO4djYPlHmnKpn1sInQqt+jAs+ZTp+z+f7EfH5gvr2hjyfMBqQwfpsbz1jvEC843gf6c2LMzmeTwoGCxdT26VhC/lsOnn9mtHMPdcT6vn4xwWP8/t+tpla89gLOV1GPKxhh1aMJaDv4ng42x++geYIeiNph8Ww8IusE+skG8XSDNoLeAyEBd+fEXycrRzWlj7Fe4VTgRJMs+qohU+QbhcgsgL0A3yO2aS23+3gBPuYEfiFU+LgzjmWjRAtQCofnZKxMr6+UwolQmbJtG8EYYS4gtV510SL75ZTyCQOlwwmoUW5+l85dcrnff+m9cPv0vBjj2WjX2N+0CyqwNSiC15FP0+HKZpZG7p+ybpVCgNRIeCEu4eGh6qilYfQeU0n/OOgE/APA02IV4NoQabaI+Ok1EetC3EklLiEJivG/5qDZXIWWDSptaRGZiDa09kDbdqQUps/sglogmRqA08V0ulA//imC0HFmpynThAQiBNCCEpTcTKc05GwrEcP9M+XPbSHL2enJX/fbXl4dJbk6b5wKkQypkCY6YvTz/fVy8wfrKhOfAKZUFBbG0TYv47FrBlU+Hw1Uf+PV+5cAKQy6f0F5HCiPDrxOiA5oMTg6ph04SsfZHbAJMaCVKM6HQcPktLvDfEB8BlWfRZRG8QEzMldvqP3aJFfGdq21/G+JgB8yGoHCLWj3qpjpORIHZdIA4Wl265xot6wggoAfCam4IUerwi6GFJ1l+F1LQ60NpTXUfUN1QZ0OqRX7y46vP3/Fy5dXyKMB1lFaAJwBOro61Asp9CFNXQeBcS/AjR0YkQjsKVe9Cq/74eGW1EyBIA5udUyTFXDMrj2Q65B74/O+vjOmFuqfB5NncR3Gk8h9xP3y6bWEB0XSVONC4XMQaJqDPjvzpF/C7NGZp7F4rljWeJnY31hyDrJ1zOgVgjxMrv0OD4An9lVk+pBgUxURtFKw1YK9UTpj0WEpk9KymRIKSUAgezxkqTCox3p0xPO5aO5cuzPsRxwp09U48FZsMnb3FGDMdAA+AO/cP1PJ9EEYTGfnXW9xIZg39KRoBNjUIZNdRImCMExDmKIIwKQ1vHGy+EFQ9+Oe2RTMofRdWXeaz8WMh/OIAwci6J3g+BiXl4C7rbH28PzXHkmwxefls6wCWBFM13jGVxRDShh6X/vCJZIQF4RqkQmEDSacIPuKU7k2FpZhSmrj4BVaSKMspdRxZyOGwC3Aaxbd8AAq4pZw+4asyzmpRjw6qSYwHeERGHRs2JJap0zRVs+SezfNLPPZuTOZWvv3kySAMYBTkSS66VwbWpQd8InFpkIkkOZkfyHZSJiYswBikEgyFkU7Knj3iRkZrogyafNCm75ScPcUmJYPJJZqxrCMz/GVCVQ2Ftw/g0SlrB2O68Wuxhb3Qk75mxezBlgMDA3/u/z3nPICFMvE8ApiKRUtpYJ+dxK5QHad7+c5/+RUqZT7JsOJcTNBrVICWDOQJZdPWK57Z+6o24Y+yXqWIpwMZmwo1P0V2+s3PL79GbsadnXsILPCx4SeBPRqK6gOjLNj25/44b/BO4soKQGtOMhWc3prZZwt00LWGrnEBBsBIbnKszE9j5KmT4YtO8Cl0JDaU3bpMQPLgzW/1iHvF4cYstgawCU9ySahgB6B0VCpSA/NSHQzc8+w+Lvk9wKffBmLry70ahqut7qtNfndqotcRIJVJGmBEL+RZ/PKQePnt5z5/ue65GgWrTWWqqQCsh5uXoka96G4sLiSODtif3EQCtnTEuCfxXXc80/evrzeIHDmpxQgjZkJAFySKNUCSIwB/wTmXt9aQ8JcyIBNYIzyq3oxaCTUAgggPa5xqyUk12D8tQEMx1ACBVCFSqMkFyN8URUoZCgX5eSpcc5gWZ+w2eOeT8x5YM6DP7uZRc9gMnHaLs/KOQnk5P1U5X0v8UznnBhm68lmi1BixSHzhbDmyEm/BGuvBg0N3Evcr5g2K7zfZIQavGyYHlMGg/VFyXekkKD3lkfuJXlaS16TX3v/9zVNFLrJYuG+EdQKuGsAtzRe19UIyXz0ao5LTnz1CTG25gigBAUp3yeAGebAeR6QYSHR5Eh25jrv/WLRxeqFx3REt8gjFyt5gANnHAk88d5HghvG7FyElMYTfKqAC9dXSgDjGZmnJMwwumGchn4OzLNjniemce0UCEbn/f4QhaJCvGL0OO/TVyv2WnpauST7lLLGxSRJSZMDuNmPmP892+kes279musrH/Ityt2j0v2/Pse+37Grfvfv14u738IvVx1jHBtqcwI6mPHQuD7iuCLyDvrFIRhOfFxZM97eST5ftcRCl6xPrrePmirO7hV3r7M8c7E8SsiUZ15F0Cn+jMl0tDHg+yiwYuHVTECcDXHW6u294nwwB2sSXJ9v5Z55HmUNE19p5u24QEnkz/w6Tz4/R0VRgWn8mwTsFqgYNdOVaeM6TAWlsLlpMxo67rdmH2BzEJxSYPlr/cGvPw48mcXNuGh8V3EcDzMPQwpE4x9GOFYAUdLDSbmTsqFsA7U9FmUzE79aN2gJWYcDGn41wFz6TQbqmLoSwEwCKvfD/ALBJq6OVV6/ohYetmsKEfRTMiwF69+pCBs18dqaP0PS4G43LYEpkSv5TfN1YfdroZruUEsZwoVaL7AhDovRx7pXTIz1SjKM3kqiJbS7cr2OOqTuUcBenTPdv6G8DLQvBn0XSB3QY2DigPkb+scHjoP3VYbhEROstAMKdm2P7kCMLIcBVWn8XOQybENNiP+2yHMz4hbuHJdnjwAouFDgiA7iPPyLkB8BB5kAmJhCEGkar9cGN1wi3Zw8wa7UOiATBJkGmRxZ6+AhWEpDbRvqtmF/cUwpOCEYbcPj2wt++vNP+PLlFb5VwAqxVfVIIAWupDJKgCLut6Q8/DTcARnMOD0Po6SuK69b/EoqWOgAcIEhjKydI75Wd9ZvrIG1Hn1RJIHPf8f7G4bBwXDzLIyNU1WY5Orv1iSufRaeLpn4RHSCL6DpAMYBHwPeT6zpb3MsqYGFNIQJWqFvFBBdofjsni48Gp+HlHOPbqOoIuV2HrR5sQCeVNFKwWNrkXRzH805MbqQGeAxsjSm1NktsZmzx9s5O5UaHZoIcS4SvgyZbGJptXnXHfnQRRQSnTG4s5OZRsYjeHnOKkQLPYRKY3KUSZtAUGuDyAMihhJTHj2y0GSHxe0i0JAFLfgZsqGgEkASHxtMEOMGuFc94hEnJ5F9CWfXvY+OZPrwjXgQUAqZhSLrSS3cEwpbEoFWAJGCYUCHAlGgqzvG5NCE8/mx9pVW0t7NlWcTETwCJNNDOsfpNq0W1FLIUBkd56QXl80ZgPpcgATX7yXhtNk5HtvGKrAXUyFloLBEoaCWRyoB53BfiqQoOsYByI0Z3VjhZ1/pnEjIt9mVu85XxN7kyHGPeJqFWjJxAIREJILojNG4sWcdSZUOEBWKMrjveY2GlEulp5t5DnjgLaKc2+DlOodLKUzqc0bBKn8uRu+MBtKdLn41hnR12QF2G9dRIbIYRojCP81B3R1TrtfG2nMEffJ5zJxAOLHkN/fE0+ELCCL4ZAE8ZV7w+XopJ01fq8+SPv6ixn0hq4usDnY9axboIhzKINwY/eMJuAXDQ+HGdVu2V2yvP+HLn/8LXnRiE8PmJ+ZJz5kyBNtWse8bNgFsdIzngeNwjOcBl77ikELQWFXiPE6IsRDQYRjOIQl9nrAeDNSQ1MCjKEbCnohYb2Q7KCcezjE5jKAb0rA7GaDiGQOjrgIwhc9vjW/QW54gkUI69069Alm8Rl7HlUcsBsCKuQggIH91JYTXn8iUWz4VVgFZXQVdroLM5yL5v5djWRyuC1sXmCVcXFEUlOaUe9xBTShiQIeGtBWUm0ULI0GvNOsVgFL/kORpMkSNez+nSYvdpTUx/Gb6dc2CmPQZnpElwdwADgRsrgUdNf0TbbLJKAmgFKWcVAtUK9IDb+SJ4k6GJJyxtbCBUmoLljOLfpvhpWPpv1qhrXIitZ2Y41znoWAGAKo4J1m2c5xsfIG51hgP1LHB5gGfJwxAN0c/n+jnkxK4qCVm5Bk5jYr2BQVa+ezn6FHLcfGVUghKqTAOGnMHTq2zOBLZDNGyBVAycZ4nMRBN4CnlyZUyUgFQHeKCfg7ACqdwTo2KNdQDdq29XP6rsSW5QRS4FYlsBMV+SBWCZOwKkBYBBMIuwP9WtGdOKsYmo8yTaKYYpgVj+pM3TW6i/N+M524aGXqhxDQMsRG5LmVzGrkSz2aeCR02OSCJz7UjJfkIttPKCyVGQaS9gnJKgisgpUGqwH3j+Z/goc919owxMbqhn4bzGJhHxzgPuHPSYGwysuOGQVGhaMCpCPtPfqaQtWeYM9DXkt950LJRofHrGaqIISTrKVgsGStjd9940gtogSN8nq6c7v5192xCsuDi2pZU8BbR+OjugMV6nCuf58ct8bzYsFSErUZxxqrYMk78eJ3HJfxG8fv3l/yMiLDE2kNW3nmvea7vvPUQuQ2NwfUcwDBVopYvRRfoVMpVa+ckawGHdABZs175Qb4yJ5NfsX3VHJGyquba9pXT52ew2/29A08zwe4VJ+O95CI1rOdQFOnXtpCn/B3Pz56yPiyQU6KZLVIwBWtgDJuBvN4zJo1yWvtVt/+Rrz8MPHEEt9NnJVy7UnKQd/lKRvDpT0+jSg3/FAFcJ1QbSjW09oKUqRUJCVVJjTBvWrVk/FhM7rqvrwt5zw4Mf5YyrdSJpjH3IkBza1RKYzy4znxu0fURDfkI/0V2OCxkAUWVAEtcK8CFlYl1AmOfuq7BltI0EvMYQ2ncfXfQKal9gIfMIr02CDKp5nvfWD4K5BQ1iYKMZtkCLRVtr/BSYFowXp6wU+G9opw7ynC0KXgtFbAOmz/wz//7/44ff/sFv/3zX9CkYUcBhmAcHWMS3iK1WghuODD6wKb0+NpKgy62RdyFlTjmMqFc4t4VZzFAcEuUln+qbAC2IpwC54I5HWYD3U6IH/DzCTs+MH78wPmjwd//xJE50TXlXJwJxQDGB/z5hvPjiTKNh90k5XdC8f6c+LIptv0FOumVsbWKx9efsf30gic6pD8h2uBFlj+YK5lLjvTQYAeRhcpgkRr+X4BQJqJBc7wZCrpJoOay1jmWHxI10WYz/G1CALYCCanFa5uue8vXyU6e3NZnIvP3LD7ysCuRjyL3PtacsTKSqwjk6sagFOaYPp7wScAJnibjNKxlF1sgWlHKhlp3lPoglRqKur1AQuaCfmAaJz3SyJOdUc8CMC/euUfg0Z2wStbVEPRDkDSZ5Ha4cpKDzY4xD/QeU+L6Sa+I0WGj02DXCaNLMpIEsHi2x/lB0AmOfWuQEq0cS3NyJ7IEpkTQDtdCQ37rTErrDpcKoHBtSWWXNJ53euEQpH8BsAWId8ILCJiMTrYOHNN6dPAEgg6MJwQK27ZFacd938227sW9gAPSANwWMArhKOULuMyCUFaMbaUFw9Bh0aUWmYDvqNqwbYrX7QUTBJrOfmCOjnGe6MeJ4/mB7z9+Cdma4vF4BeI9Z8o3ANjcSAuORKSVhtYIlo/ecZjj/fmBfr5h9O/BvArJ6vLkwKLCwwfCjSRy7fS7ulAYQjYWEg1hYeAFVQ1Ao+cckSH088BxvOHsB/rxwYl0RVBb47AIicaAT7h1jHlCfRLgifgqSmNfCOVwJf2CREIeZjTLVMqb2L3NM2KuMJwNDE5GVTAxmYB3ygKLAzmtzK+Exl1i9HSJM5bATGvbYvgkoMtr8luxmSygi4mUU+juX/RNuqRwKcdr7YpdAJNDAKhFUYNtM8Z1LqpqnCuAxGskm3mMnKZp4XfCWFwrJzYmU+nO6LoD7mRdt9UNzSXht/N5jIHv33/gOI4F2gGCfX9Zn6lPsqtqa/hSWoTdK4kqGDi+v2DbHvh//r8/8P7LX9A/fsDtRHkYihnk9T+gKK0D/vxlwzgOPN9+4PvbhL10FAeakiFcRPD223ec54kBox/kNGgH+mEYx8T46LAOYAjUGDUEgioZ9TIicG1spaKWigbBOYyyVKexsoLOcFh5F8Elgk7AFDKfpHh41DglAuIXOwOOdq8VIARlYgdmHu034GjBQZ6COl9/R4zlYm/g9vv5v/PYoyxKMiHJd7+wLfe/e5X4uLGmPFiJ99/hF60cshBlx71UNrAQg089KGOu1+eBz7DJcpor56eJ6ZRFBF4EFsw2+p7GWR2F6PSIAesjBGgVcQhSKFPz+CxaVn4wJ/M180FCCzgyvbaK6iBApLKYum7AdLJE0sfEiq34Y3NCFyOPz30OesaZO46PJ7YHVRAv2xdOwXSDjydZteNgYeuGJyZ+/PYXjP7E2T+wNTL+OXGuQMTwVl5wPA9AG4YLns8TI0dLgdOIdeXczLtp+0GgbPpEN0fdtyg0r+sl64wrsTaufp8g0BXMMCkCdrRjzYavpUXThM0t1gOcKloBOLoRwJjDQTKY39iFlJjVYtcCDTqMGaV3ZPxRjuQcIwkpIZEsspiGJjlBLE/6AN/lim9zDKh2zFngODANGNOh3Zi3S41zAkjcC4IV/3NaI4Q5lEnh9EIoJIpeDoMKS2YHGRbxec/jA3N0TrebYb4euSUTV55nEgCzxR6zJOVDUFo0eSYrPpcCLwOuHckHzvzSpqNP43d39G6YMeXU7IT7gKihVJ4X+8Z+uyoHQRWQAcbhGBa10iCI6nbJ7AIEzPqI0cduLCa5weifgmLkpBHXMt7mGkOsB7mpGO4gzS16Zeyb1xL6XNZH8NN4g7y2PBv4Y4U49yRmSL9ECayKYSKmuIMsxRIoqzlBQo2GjZnjODoHDyzQlM9UtJAZpRoAFmveZMAT87y3AYJxn439BIVoYk27ivC5zalvlNrpip1jcnNJxNMZ53xO0NVgikIEtXF4zvU+ssjgLFGiJs24IPfhLNmcC+VQ5E70F7OIgdez/yx1yzNICcotHzdfzS+eawV116AEJXGIdSPS1N4dcwYBSAKbcaAf/XZ+Xj7Cf+TrH2A8xXSbQMXimf3ud+QW8O5dHwlJRyqmGQBZjAeDyml8p0vjqyuJALKDc08WVlqxbua9qxVXxKQyN0d0R4lYhlQhbzZ4UOcl52jHizUlV36xuqnscFzTsfIA9/V+n4ze4jptbaAIf7GgaTQau+X2pWE0Z3IBbPzMOTXHr/vt4MEIvRgO0YXhfYhAHsWiVhqY1n1gbhOlOKoXfP36Fa0atPwZ5/ffoNPw8ZdfmISaA4MSNkwgx3DzGV8SLLKKcPmB4fpoV6KYTwqfaIPrFRyLmgjH2nwr8XMwyTfD9IlpnYCZdYyPJ86PE+PpqJNMKYesZ+QwINgU/ewQAwoUw1jQQSulP1CYVJT9gVonWpto376ifXmBtMJ7G53tUiuRYw2NeXb7b9/mMwpIIH14PH8vpISWazCKIk4L443LwyTvcVDwlnyKayl+v/z+pl9yFHY0QoKwpCJYks30QAJwGd1plNmJuudrCpBGvIKg/c8wdrSr+3c3LEXKJ7OAkdDY1x21vaBtr4CGF03d4KKYKxhzHyTLb84JD6YRKaB8xuLJuRD04wmfE+PsOM9jGWAKSuxLD++BoMfnBDP//Z8M5JRs5HrKfau3QoiypvQVydh1FQ+Z9PNez0z+l3HfjOSUxaWXi/ad8h52SFn8Gxxz6iqSUlay1oyvQeRIgxWbgITEN02xHUKgwuT2WljXdHXtA1iS9LVI2UfEPpTwjIqYnffQk71qGOPAGAVzbNDaYq1X6BxrQuLlm3J14ldBk8VdxEWbY+0LemQFkzXi4ugHfT/Od9h4RneZ999XehbRRTyoXzMKveRXXMUpPE+h6PhPAWTAoBiYEOswiWbBnBjnkxMQzxOzc5pTEfp8qXKQRi0OsxNzCKUirNpiZ1/nXv7vlJwlkJPspkzsNeNqnBmJgBiuWAD4WleDnvMAJhRzBfB/L6fIaXa1sgmh4c+3sLlc9e5shIvfnmmsf1z/ndJfSBamdjvHuY4pAczOfjKK4/XSZ01yHeb7MfFlcmvrGuackAD4aQQs0HYBVwmsZZF83TM2XLIzm3YBvQ+OvMeECJPSTEyRvjdxrzUKjFxyHIms0ZFlIlx1Q/XJZsvHf+ZkrTnJsHUaCz/qCxCAnGvBFMOwgrK9ojXgdds48oldA+g2UExRinMapnX0fqIfE/Ngtx6TAOMqJgK0il2fqTfLUg3xcxzq4vHv8s/18ORTIZOE+NVxjoLmsW8sGG3ShypfM42horGWhXRKVK+cMY+ZHDMe59WqgPkyvvph1+LO17l/SaznZGx9/tu///pU+P3+leX3/zqapnHNrKTinqTsXnIKI//PQGYgLVJsnT2ZczjffrFwM2ItVh5uBbjfoomzuC4uUOXE0gR6c8rTmMxh6GUzoTXkKeYL+C4WsSfWyAJsfX1iTkmMuIOMFVm8xN5MVcGEk4EdMk6bRuB4PyBKqRqbWAM2Ot5+/MamkZ2ouvM+qGH0JyCKUn+gD6flh24QhM+MSTTaDMmRNzMCcFIgxVCUAAkV2ca1GNcsELjafRFE87vAvTKvEA/ATyKHl1ilKQ8kEJcTwN0mp+FN3ieL+zBn5FXOQpSRw4EwOs5+5Tq9V97lK+bkdXO9ZX5yq7HEsz2fLxYvlc+DXp7unWx1A+uCrDE8o8QtttcKIqtZN2j8RrB4oZTa53S824y2GTmxG5/lGB2jc0gNszwL6d2MZxhnr1yQNL14gh3jF6B2TQmkATy9qa5m5qoTg2Fm5qvwX+fZqs+uGgWIGi4AkRygglCerJwOAZAH4x+Rnwfn/3ou6/+L2vSWna1aMp9X7LV/6+vOzLniAFZ2l3cjUvUrrt4+V/7vzE7yb65MV5ivxQbn/hLkUZGPQZPaJxLWAkKfIWVMq61gDtBzzpyxVSJULkaiIL3LAI9SOth6uW7jMyhyf+S5jyvWxn2tATppMJ6W6mnVU1cecbGd4z3WmZZNdV96gDSnol84n+2aIGn3JxL3MfIVNZ55FvYV5vbpyd5rNTOClSjXyXavrTOvmkY204xzt5QLPJoxMXTGwIGV62Z4E4J+lLHns/93ksTfff1xxlN4Z3jcMDUP07lbMApU7ZNUSiRGJV+LMkeypl4+vaLcPz+w6+ZfCyLeCYgb57gSyHWwruAIwAc+y+48gk2kD3I93LtkzleCk4BNvr2vBUhflfA7yCvNagQAQZ+QKlhKAeYaB43YOOXuI2Hyd8+uqKwOqM1MEVKOso6FlYjPQakhinHik2pKicNEL5OUCq072jahL8Cxd1QTVFT8/J/+C16/VOxfAf/1X9H6wG//9Z8gp8G7AeeEBhye45P5Tdo+A2BQXG09RVxT/S5K/OeAl2sgabEA0nfHDVtNlpivyGjTMH1AvcPkBIwdkI+3N3x8/4LzDagjs13lho/1ooPA0/PsZDR5QR+AtALVDSYbJhqGF7TXryskb3/6Ex4/f0N92WmMXCuk0WhOCmCYSHqzZGLpMe7WDMMnDfMK14/dDq2cCmeZeGXHpJS1HvO4UcnDKcCjyCk0I4XUK6t3vzw2bkHojprn/vVkLEQQLrWghoHw0At4QsrSYMtLIZMfJkw9KOVjgSX52nnqiJbYb4pSX9G2L9j2Vzxev6HUhlI3mAuGOwYMJpGwRmKWhq05aaQfB1QIyNRkFQLox/OKQ6VAS0UpFa1ukeQI3C9ZXQIOkvJds5Du3Q5cLyteuJQATjZeoxtmSNkIlkbM9JCgGZ+3wODCKR9ugNYZHfIKlwLIBi2DXeSQZC3Pt8oMMw/97BBH0zRiHLuduTg89OUQCfZWgFUOmnvmXtZIzDJJFed1Z5Ww4nTItILqrAkOSVtrQ0TJGHPHBOUHZobzDJPFymS+tMZJplohYjAnGE/m6YayVZRa0OoWKy0lzCzmx+ichlIKvPHfMtkxjPMDx8cPfLx/h/U3FPuAFF/xiMdVxglEkj+QHh0zAElBJj6RKGVUEIHIjMTUcFYyS5vtxH/nxPnxjvPjA713mlHjwUQLFaU8ULcX7JtgjANd33H0N7IaYqJRJpaqAb7AokNXUZT+UmaAuhLQChbManhMWYnu9bWqELIHzKAGuA8UGQE6xDRLRCMlkz5hIp0MSHYgyYzIIjRCT/we3y/9lC6fmLliypLPQ5a59/IVAjD7INMpku6yvGjYXEDJSTYBTmpS3DP3yOd7A55EoE4/sDSmz2mgSqfTS1a0pICFOUA0Bs6zY3h42gVon+OfyY7absn5BZxfj4F7SBWojawrVUErirI3zC8vqN7x9vYDH8cJsbZYpRUFPhj/jjHwcQA/PgzSvuD18cB//NOf8Pz+A/08MY4DbXdANsAr+njDcMfzY2K8D9gxIB08x51gXTK7g0BN4EnYOFChxI42BBZTe9jEuXygygq9nkUBgNWZimfLaWsF315fATPMs+MYH0ykDSgesS48HlOiaJ6FmVz5oIRUJSIhASiPa7jyrP8RkMSiifsjIZoVWyP2rIM3Y4jIFSOAG1iJvweeJNeChxbZljdIdpKhWDK6qmV5wow5l4STcYlN1U+TXlfxEHsxrjsZU/lTi+u0c6Ao48rz4FpW5VACCDiNyijDBwy1CUplsWPDMMpEGYBqC+1M3OXVAOE9H2PwNTJnD+mI1swHmBtn/uwGGtlOwzxP9D5Rtw9AOhz0OR39xDie+PVf/wazjqKGxw56mtnEeXgwtR9AOaFlx/74iro90GrFifDuMbJoPXwBnx8ErKQUbCEbhCjBoN/VJoE7rKWRwPXKdeNcscgbpkWstAOjnxeLJrwFbdBLyMaIfIcy7XGeWMDFnHSziCK6rD9zvd3WH0KCt2Igm/7I5k6e71l3yW3N5rJ0+m1i0koBIvSCkwFIByfBEZQXIYTDXE/JjtZGP0Qj+JRDTZaz4xwhdw7aH7DyrwQwe/9YwFMBm14qjjn6ahQq7tNwPe4XFqMG2CPH1dgZ6ftIf00L2F2F9zRtUDzWI7IEvm3prCdLMEzXVo7zkj56ZGURGDcMG/TwEsDUCW5kvWa+XvOCslmvroExyNiUcTlX4+3LMw5dtfX1X1d8dAQTFWkmcL1O/hmVMsxxMZxuf3P/zwJdpAmbcZ3ugDqHh6uibLw5LAMK0mA+zca1bLDj5IWZrStJ7zU2xfM52LofmddcJTIrafrklWUgfsnhcs/KksOnXD7JJzmMAQ6Mg2xTjWEpDhIg8jZY7E2H08Q7cqf0HvTbHb3Y4UGK8M/rykOrvuqo+HwZz2f4z1YVLHJNWJBcU5MvrCR9n3qoIlLFRsY9cPa0DIkcCBHjY1hMrZV2G3DuXXMkyeZ/9PUPMZ5MEB0w4+QEBEuHKwDZ1fC8YSLhm5SHS24OINx3188QBQoXB4tSv991Q/zerdDNm+9rifH1b0Eyrj6uKzrt4hBUXr/LIoQIcgFK0DPXSkYa+gEIoOwOZt0DApBmj5ms5vuPMaKj3NdCL0XhIV9susV9wLoX+d6ZLpQ8CCIBCrvs9fd80x46zWB3kauNKeHZIxN2fMDPJ2CkNZZaUdoODKKgv739wBjAl2Pgt1/+Fe9v3yEwjGeHnQY9DLVslPrsDVMYQsegkS71q2UdbshELw9p4fWZfw5+azMt1sf1KBXUt1JfeqKbYXilNtwHDCe6vUPsHWpPaD+B58D4zYHToVPghfcC4eDZDTiG4eMc0G7AAPqkR0H1gm3/gvL4gvLyBbZXtEqpT/3pz2jfvkEeD3722eHe8exOKUxTaJW1PtmZXlslPm+Kvuk/lKg3ck1Pw4gEsowWY4s57r4Eo8lsxD3zOBQjQMKXsXOO9GZul/sNa79m4cW15uid8jU40OqGWiv2x76kIaIzCkJdI4TNBsb5ZCEoCPagkQI9Oe0NWRggqcL0IrMsBKRAt1fUx1fsr1/x8uVnlLqh1IYxHcUmind0O0Ma5UChLGBOwMcFRNDzyzGStWR2+aPB2QUO6W0pG4G12rDv9FkQNQbwHD+8KtdMjcikYWJUAa1olYnWQ5zTVSIBSlNSoqRGYAtxkPgVG/nkJ8yEcs/I+miiaoCMAGQyNAl695hGxNdinJnRiYlCYiZgZmutIYpG8UHKvZNUQ2qukgVVOEK4NBoxu3M8OuM5AmTQMBwMJoTQF43X2ZBMVL/FLOsHk+nR8W4TfQ6cs2M7B+r2wP7yCmjBdIWBbLcqii91Q9s2gryqmGE278gJgQQOuTYdihM+G2AbjucHPt7f8f23XzDOXwF7ouDATBbICktk184ARObI9U1QKxORGvI9CIICjvBL6QEkCeAdPoFzvEPmgI2B59s7xuRZUqVBxmADAAW1PrDtX9B2hfQCh6GUnRyzOTEmKeoMoRqSwLIkuyLXMepeoGVfMkPLgiXGi3Oc91zgSyYiPsN7xRAebx0QQ44E53TYC8wFsIDf3k+U0mJCzK3Y9kxOgPTLGGMsz4SMQYizm/I1ToNLUOu3337D6D1GWE+0rWHft0gCDaVogLV25RTJ6ArWHRDjwEOOvkD9AMBKKdj3x6LKn+cZgGcJGj3+HiwC1h4g66xEPBrr9759+wmP/QFA0HvHcRz0dQnAjd4MNK51A0qtqK0utqQoJ32dzwO//PIbE0IIz1ohOyo78ZRmN4hvAHZoFUB3DGvQ9hVVOoCGL6BBc/nJcfz2HW+//Ipf/ttf4Scgs5DxEkBBAVASE4kGHfd6ALvA8o66l7dFFTaCjYzBBhU4zQjx7Gecb7UomigeLy94fX3Fzz//hH6c+DF/Q7cncxipKLUxuVWOuHcRSNuiCcVnTfsOTk4O/1o0sJNuCjzPI3IADqZhHgg2KxgVA2iLvr37agxlwXVn2K11hiuHXZIWXLnh3zP7MrPxvJwwEg+GhoAJd+SYWgCpBdoEpTZyM8xwnCeHPfQBaFosCGJL8Sp/J08wXJ5wZh71nEdhFdW0s9hfhaxy8uSYhuMk46lUxKAJfmufcAX2x5YrB3Bf71Oz8FLH2c9VK0gNEBpk+IkopjIHN2eefJ4DPgYej4nzGDh7R30cEOF+mGNiHCfO5zvevn+Hzw5Vw5fXimYFXiYwO2V9ssPlRN1e8e3rF6SbxvMjTMfdF1s4YxA0pmDFRNpSFI1jREMiRwDQ4ASAIlevyiaXxCTRoRX9oNcl2UIFUhRbLXh+vMPmidEP2EmQzfrA8XxijoHZT5zPJ2Xoo2OE1QDgkKZRhJflS8M6kM9eb+v5skeQlSNwW95RFI/iV1Y9h5COrUZd5FVcLgrIgOiERG6kRa56SIT7WIP5LAR2PJQwFnm5i0KdHlumHFefTbpxHkj/TjI1aRC/uoFwCHWNVH4EC14yZ8kttzwMWf9AS5zZMQHaR9hUlMgtDLUCtHK9uJ5Zq+T2r5EDFglmlrLwnz5gwzkFsp8E6UBJ54Shz4HOy4ZCF+tJqlxhZnrwNeQTviP5qO7AkuATKLUYNbdSzDO2AZ/YM/dIYbf/vv6MOOh5CTd5XZzzjFlkfZkUJGPcTg6v0uKoL/RwrXLtFXpiML/VWGu8bkGbVF3BritMzzGCRblWy6qLOJVR11rPr/SRyqvO19EAbUQEtWnI6OkROqMB6Su3RuT1sW4jmMntvs8ZIDYA1XojGOTv5mcMYN5v3pNq197jyubwrsiTuLeDLWjMrdwMfbLhVULtMoavBiAltWU1IbLpkc3zKMyv9wDpI2xuSuS6vNb00NQAtpl/f86N/r2vf2CqHdE05lK2HtiiWEka/YLrfkkhlCtU6SWQDySx1DsCu3rHJmyZXeQ03liehFEE3dG7z5vl84XzDxb7lzyBgeoayHv9fSQCkiAUP29iJ7mA0xNCbgstjYvS5Iv3jReRyfl1zRfIZgFMrI4Q8On307Pquk9hyKYRf+5Su7y3HvS3oJWSbWQMyBiwfsJ7XxO/RAV1q5jWcZ4n/vKXv2DTjtf6xPdff8V5HJd5LMK/SCxMy4X68fWxfBXWF8n7eh5r/wuL8QyA+QkziGYQy4SE3YLAg1MyZlF0hzeJ+wH4AZ8Hi8Czo7+d8P6ATF2B0qP9YOYY0zAsKOZGg+taG+rjBS9fv6E9XiClAZUgW3vZ0L59Q3v9Am0trocHy/QBUaCghO8K2AUGYl347V6w0LBMZK8zI5LcnKwha/+Bj/Ciw84Z9/m+XcJsP0DVnDSZkkdZ9/7zHsoFmzRMODvGOSlvfSuL81IEHcni62RFwmIvEXjy8LPi57mfLrkQZEkmSLuu69uExr4xDDSYXYnK0wdERKAJ7hayiEopwRyMbqA5O4dzXHsKEkl9TCGLvTerRx3AgIxkaAVCyqtMoUmwLIRdvFLpJ6RF0McJ7Sd6P5EdFPGJ7EhzQnF4+awH7/l0FhayDiEHDwlJgFFWXKHHR5hxx5aPDbjWlE0uHAHgyZDy+EBRPK4ixQATi6JMaXQMml5e8rv8TMFI8nsqdiUlEiiZiQSzgevakRNoojukAtcNBoFUjrY3C9p1oT9CKRXb/mCRL8LpfTZh3lds8WBSwQ1dJgQdihPPjzc8n284nt9h80kvOBxwv0zYJT5XsavpMZcP0CRIVdNsOrrYjmDExd5EPGPVGB5AcSLmSbCtf4A0fLKc0s+kSkOtO+r2EuwBg+gJ1QazAaAjffxUIl4a18O9x5SMyTm5/wkEFpiG7BxKQHrOML29zqMEa3KV87y3FbBVfhcrcm3CAafUTIRTJDMJXkV2xu88Hzxl8HztPO9yihYEMSGNecQYg1Kw81z7GvBIDPWW9ESRpemXlWB83G9IJFtxXXIxry7zUFlxJr2i2EnGkgH8/vqXuXr87951TRlUYfK6pEM3T7312ZEtdPz/WfuzH9uWJM0P+5m7r7V3RJzhDllZE9lDdXV3kSAgkASFfqD+WD3ov9CLBIEQCEkEJJFiU2Q3q7uqq7Iyb97hnIi911ruZnowM1/73KpmJQHtzLgRJ2IPa3C34bPPPnPQF51Vbz0G+3bn/nbjbbLlBnp0Sq20PFYRpDS8pdUZBIJP09t3H2YhVJb1iaUuFDOqGvtPby4iHmPdHUTqD0LiDjJly1yJa5EMcU88Yi0ML5jwoHOZdj4Tnq5KKxWpFcc4/HmX9cK75xc+fvjoVdqujG7uqwvI4gC/O1hPFE0Eq8vMkGQQWnJKzQHgWawsNsEzDzsfWlPkXKNf6JSkLX4AaE/bGS+KH7/YGnN/fGnLz3j3fIvcIJYMwnA0D5eXZIalBmStEcsUoQ5fW2NItFkVt6fhNxSbE4iLDe/atSzznYWo04bEsRtk0crjx4zSz3MDZ/J7Qt0naDa6Uqth1Rnw6WASwEg/mh0L8pCs1rY6eILQh/ve2hocyaLMe+L/rtUZeb57oiDdQ4NSfJ9ozTjRQA70uDsru1dMD1Rb+GYljbmpzbau1MKsNdhkIXfBw/3Mtl4PrXQm+3Xx1VRrFLulMA512VEzXM5Yog0rBMm1T9bTODrHFmDTcXDs2yz2edtN6HUWobaToVGr67tk/pLr6WxbjyQzc5SHc8nGr0eM49zLZ4xqeGzlT/Cph/6iaAGMN8hCmeEt/NnuprhgeyKvFq0ZJj0Apox/zckPffP7G90jk4me9kfEA+RJSTpzo/TvGRMlEFOmniqxHjvU7gcdU2qdQegcIGfTezjjXWMRTz0AG6T/02Doa2d0Hw41gkVN6ocRYGXcw8e9WGqcTuzZzDFPSYP8PIki/98GkM58+cFGnaHh6au/+H32QOfJyHwvIlMnzBI8ZNb5kvmQL76bhs1OENLyr2GDg7WXRb1CMMmzFf5hGE6EjQ+gEw8g52nTcr2fZ/xAGMk8fsYNMm3v43s+ZKfzPVVtnvDju/+dj7ytltfcTv/zuGwyJv/i2s2/+pUO8F6iSwSTwL5C4iMBcPU94xrIWRyJd5bzHn4Rp8319HDokleNn/0xChIzZhL+9jH/3Y/fvdXODg9oKEGXh8dFZTx+cAZzNZIczhaf+arsaNW5lGVCqOHFkxpsxikNk885N1IaVYsF9eg488L5+0SCYDIXUgYR7veiRS2CU2+ReryYCTZxgk3xUadBTgdyUuB+HpB4G8HPfhnnmwlFj4ppjhsVZCYYXpGrtAw+SCaLV7JrjD4VHW44IyxMQWJ0x/qG9A32japKE+F6vfK2d17fXvmrf/2v0NtPLPv3POugdeXy9ES/RXuT4b31dcCSsEFgH7HI50jJDFwiYU/mzzR8+ESHvMZqRBXhZ9e9EA4lVWZ8LbgIaQfbUV4R/YyNz8j+Hnu7sX33ir2t8K5QV2FUd3ZK5QjBwI6wqyIdiqysT898+OobfvkHf0AvhR3DamV9fuHdL75h+epr5HqBy8o+bozRXeRQByZG7SWCAF8PbWmh1RUBjXmVf5ihArW0GXi5MLwDe3nTZ6sUPh1Cx/D0ffTTUD7sI9MzybFJ1y8B1vh9UM2AJJH1CAgjYdJE+COY87HxKcDnVNQpkNh3XI3WQDTINQ48iT1oC802HUfSp0MLyvWwxqGV0gUOo6pS6pjGOt1qqS5ylxpfNdh1pUQ4G9Uwl+g5hV29HSHaAec+j+tm5u0qNQKGaNkcxwGqrlcidQJPmAsNqgnr5cJyeeZyvbCuC0d3Hanb7Q1PnQyI8b/9wKiuL0ba1XS6ycZLO5Q76/w5RY/VDo59Z9vuYN3bctrchTMlFHNK/BmIyUOQkfTY1J7x6zxM8c7OZC7lUINgjxTBRurwydzn/qOzKhFvz5DiAFIvAVbbgemGji0CNAfNlIVhAvXCktoLVEpdkeotVZfLs7MegGMcLpLI3QPx4Vo6mu2dA0YX+i68fvqRbbtxe/tEY0c4GHqH4eywrEr5Ek0tMz+vbCPzFjRz6kf4KjEX/ZYEzgOokRA2VRuuD6K7T3PsOyILtaw4sGwUK6ztymV94Xp9j1QPSEvfkXJxOyudZO8ohrffuz2QEloWRIumdgady2rYIpRlCY0TaPXi59N7TJh6tMI2qeFun2OwA76fvU07g6a01yEqGTZi6DnV7jHIzYRL5GyLfXycgc+5dh9FyJPJdxw+sSgF6F9fP/mxJzO0uuD3sqzRqlGd0Vgal7VMIfb7sYcdShAoYodgSkqMM5dwOT0B0ljnj0zRR8ZUsg0cKOts20Yfg9vtdq4vES6XC6mNtR8bYLTqwE4VDZaoxyZHP/j06XteP//Ep59+5Pb2xrbdGfc3yrLQ2kJdatiFwtvrm9+D4fu/H4PP+ytF4LKufPX+PWtrVDM4Dv7yf/xzfvzhE1Wa/74Y9Lu36ohHDync+jgZT2BqdAoOAhzHCMas38tag/6MB2lqxtE7ta4s15UGwURV3r+84/e++QW//L1f8t//9/+S19c3btuOSXM2R4tJpFJgWXzqsRQOdRCjGJTDzwnrrpXWN3QIYxxRIBMutcVQjrR6MqOTKLjPxHoCTuF7Cpn7yTTRRUqAkG5LH9vYY3U/fP8y+J8hcxEfSBJDSepE/QQpFq13FsUXYYalaoSQVsjqSLSp+ES6bKUbAf4UiSLEA2uA0GKS6RfOuPLUJ9X5kiKV1iJ+F+jdAQBksIzGOiqXyzKB3+bq9A86X359llphwD6HrUCrK+v1hWVZQSpvty2GBVSOXrC9sx+G68E2hirLWrhcLi7J12vEypmEWbTmGjU7ABT0ePO7XoT9/okyumueIoyYFNzDp5h6a29bFtqaQzd83WvvsWIKLQTVi8C+36ceVY1WoGW5wEKwhAIoBLw1zQsyOo4YDLKzb2+MwzUpt7dX+tG9VbYfZ6u0xLVtheVSWdeFZYGlNY/PCC0YS/rbGWenQUsABj119NwbjACCQGok/hQf8JFx7CzKW6zTGuvfY/YDb/ejif+thN4PFS/8F2irIyyR7DsI1OM+xGGbehK9b9PP55GK2SyXpIbyGZVkrpatvnnOgnUYw/MNMSJfGUjZWVpjyKAW1/9DLWLZA6HTijEKLk1QKkKy7QPsNWeZO1Ql3kmyK/u9uw+LhLaHVhoFaitBuhDqKLMOaZEjgN8oMZnn+Jjoi51+VOPGnp498+e497GXc1raCd3F9YEHEElCI0sirX60bvLv+Zm/Q/cnslgPWwLnNRgOvZYiztCNtCBBPUx80l/k1vXhMyYBY7YxWqz1vNV5vxPEPFvkvWgFhHSHkOs439NzGff19sV7ubasgZXZNpgPs5NekHvm8bLPwv681iNaUjOOthPkLUKJ99Yg3ZSaFQrxPRT3vVgjiSGGTfygj4gXH+/vBGO/WBhxj3iwA/531THv5Un2GfPenpjI49359z9+Z+Bp9Lu3153ZRTip/LcgwZHz9rqcouCBi1ihhLZSnK0HePj40Hy/rOTbGCQHahIO7MHpc24y/1lmAJnvdF66DB5OB1qkzL/l8XgSHueTwFHe4PkosWPi54ejJqoi5OaaiRyzcqoxHtlCiLnUpK77cWv0lB/HTurhZNCX0KPEqOz5KjXXT1GfvsBwXRrHrHxXiriwIaZo35HRwZTWqk8UxdiPjf3Y6Nq5PF2oy3tebOFdK7Dv3H/4xP22MVDqxUeedoQ39SlexKZvgYIYri0gRlQ4gu6XVK2Z7ATwZH4fo+5EVtLzPIlAAglDHEAJKEIHuSPcqOVGLXcHS+93br/+gfHpPbxv8GxOq53IeF6fgppPYLi2yrIurJeFHz/9xKbKbXTqh2eeW6Ft7yiKC62bMfrOMXYXrM6WKRW0u+FZ1saw4Vojsz1UgwbsC2RIauucI8A9FvAAx8hR7pEUi7s6kTaNiMZEFjNCMDqC0IfK87qu1EpQJOukX0sItmfV/1HQt4jQu0+g0Oa08BRILxWWVhBrnlhrx/rB0d25iqYYdYBYGpaiLZS6QGmYxehwqdTlidIWBvB2u0E5gu7sAXgt5poSEi0yAOqtvwVh1IVDik+hGz2EJzXalfrcy0JQ0kt7mCYWDJc+gM5x3LAAn4jWvhIaIxLtO5lKlBCIFipSPOiT0ryil9W3oH9rabHOo5pGar4ZCd+60Kart0hZPJEolXW9sq4LrVXu25sHoROgFsZIZlsECT0YCGak0LrngUFNd+QkkoKGTpvlrRpjKDJsrsUMst1KxvGPdAMOrvXhWlo+0apRqUgdMDZs3LDxCuOO6N2DNVMYgo0r2pu3bIr7En1gsbg/cLZRqY1FKrU4lX5H6UYAE551e0uXYsNiit0d0w3kADtciyfL57PSlA7dTlcSfkGqr/0TlIp9GGsHSWJc+BtNfbMdGRs2BmKdQvX1VNy+QUxyXK605cmBpwAl2vrmgc9xcI7E9fHlJka1ARyUYtRcLxHuaj84dvcUJQTZa/WR5LWsSBnTbhNVRCO00ubvM14vc025v407MgN9CduXBaRkv3mwmWwfUNe2EvnCf+fDdb92B8c0W3p9St26Lp44904yhDI5HOOYtmsrhct6pTbXb6tt0OpCodCWNXSv2oxfkm1qRrSvOejk02z9PI/UOyCP3cWNW10Cz93nWlha9TYXCqMP9v3g3u/T9yWglnbbmVEuEFwoDDno94NWFkyNfb/z9umzg9g6WJZKebpQVlcoWQ1s30MrxrC9U8agAfu2+V6slfXiIstvtzcOEfQ4+Pz9D/zN3/yKzz/+yPO6snajDIXWEvc4CxqkwDXTb8zYhwxeY6+azYJTxl+epsJyWWnrQm0+kbItjSKFb77+ljGUf/tv/4Lvf/rMoYrWBq15W051NowsjXq5wOrsx1ZXLnWhKOw/fGZ8fkVvNxhKkUEpiqm3F+R+L+ZszUpWnAN8iq0gFv7WTmjd94F8WQuI1z+2jZ7J398qL87HmWT4BdbJZvU1GTkFEgwiw9yeZvGoMIt7ivoo8qW6lIDgSbuYm5cMh2ebSDIGNYCSQra05Za09B8PyWr6SJqhUVxK3TZPdOKzVDj2wxM7gdIq1DJ1QvKalFY9gh6d3pUqjaWumDWG+nCXulQHDEvF7Mp6UZ6en9mOja1vvB5vLAoilcv1ibEPUGFpq5tXFbbbjg7hosLy1KhSWIqLiZei7PfPlD6Q6sWjWt0n+aS7ndE7bZEoBLq3bovQFm8jDP48l7XNmKQfm0/xizjE25ALS7SJL5cLQ2EoyLGxHzeO/Y2311eOfePYdvb7xjhc3+nY/Thmy7wHUhm+epGzFgeg1jaZT6rJHDoBAMcq/Xcl73ned/XSnkZ+gjgg43OvasSMjVIWqtQZq8+Y3gzXyDQHOxmMAqplFgK8gyNYTsXZzFKJFiC/9kPP9kxNhhmKdi/yjiNipoekWSR0lUrqMokzX3nYa5JxRImW+AumwlBhP3ow/DvL4mBnKwuLBAg0lNHfGMedsb8xYvKuv3cUTo/NsaPQkHJx844dldGVfuicKCbmrbJj3oBkF4vv22D5SPVW52QLo14APrNGojUPhsoXVucR9pkPc2bYCTadX4+xwJnX+399Gvj5twQofJl8CTr52QQPKnxBFTzON48l+zEgJBp0LUEskIc4LCGUsBcoxZKw4p9dq5zAUwmhfqvB6nYphjGyUC5c1pDECBuaLchp12fLXc32srTnDj5kgckPUtFDHjCQONIk20i07hWZy9TmWq3TFibwGZjree8euqoQiyL7IxxhU9cpp5ujzgK3sM1Ht2A8ma/3koWE89pmzJrXNEkIXvAL3akgKUCwwvAYQEdKD3jRJf/29z1+d+BpHCcKN69M/jsqhoCIRYLt1QR3dunEhLkt5HRB8nDTEiByA/ElqynCWvIJFm90om2RYH/B9wsII+76pPqX2BQTgCA+n5kASiy2STtJ9GPeMpub45xgF6iuyASyzE72Ti5w17HS80bPdw3qaPRrTopkecDwjfj7Sfn3BNT1bESjR10Ngsaa4sbzYubVLE7RlBEMJXFEdb1caE1YqSytYG2h7IPy/hlbqlf+E1E9UojZKGgAORKV40Sh875aUJdJHG0mak7nfrznp+HzeyNOu3wwmH5bnBEAFZEdKQe1+Bh06QfH653xdqDbQrFgyYQGQ6kl2DMJhqkbs+hN37Yb21B2HbS9cew7+7axHoO6KDXQYNceOWa/sfkwHqf1VzfaKDOhMxTtOUHNwlg5UGS6nA4o9c5gtq+mUSDWjgsCn/vHYn14q6WGuH88N3rZVc42kVx/+d4+wvSkkntQOXwoEoYLXHsQVqtHyN4OVxhHVHHU2zjRca7s4S0gIgVpLhzq2gcXEmiRtpD99yN1nDQC5LAjXsk7K+2IIOLUfsHBPQW0lBlsE+dwAqTOoPFR6WdSnUkgdA/0YqJMBphfeHFLQFSmlpmOaHOKoKfWhRxjP4uUxfeIJdOohGB4Vsw9CosvB7BqCqEvrrnVWqUcwciI8zHl4b6ar7cczxz7LwXv05xJmsCwWxJIg4U6qouUn3bQRcO9JaoGAGpnxhFBp7//EKH0AORMsX7Hjjva79i4gW7+NxHQ5kL040D7wajd90IaPAy1EoCozf5/iVayMlJ3KOyanDZUJabUPIxZtlibE3iJK3KCJbH//KIFkMsExBxZL+fPeJCB5R5/qGjFvzPZy/VoRlTDkmfh7+cj1Vdau7AsV5/SWDYPLCx9qgO/SrS3SQhE4Fokznp0ZlORilXHuWrJPZ9BQqyLbM3BMBmI+sSqmXQn6B3+7KT6n3RxCdvs1/8sUpW0Y3jA6QnR36Z+58KcbeYJVpudOkpR3Z57CgUrf6uFb4zue1B8L2NCr90B3AgIxwNIkA8XyIx9Emsi/ZGaBaPNP19Vo8B36i2FpM0Z7wQDJhle3hp0iqqbnvvRzyBbg83Hm6szgkZ3basMjqnFgYgQID62nTIMUfy1Omji2j2Fk7kkDLQPDozjfufHH75n3++YDqr4RNbqmaSDLyRTJYuEnOvhMX77WWh4Jg/n6Xm4Jn5efreQWmm1sbYFinC/bXz+/MqmiopgrcF6iWEBlfX9R9anJy7vXrC2Qm2UduVludIMtpefeP3V33A3oW+h5RTiqFnElBA6OVvqTvDs5JrK2S5MhLrkOZ7ne+ZJvgc0a5J51vbwM19eo8ekYn5QIVrPMxU4K9Nzf8bPOpnI/juJSrgT5WzaLgjW1IyVH0J3ibMvvtZ03jD/1PneM7mKtaHOXkzXckpI+fN83Pegt0EbI1rBIBnPblPzQMIGSgFxQWEbzqyiBBMXB1SWpfDy7h1yf2Vsgm63qRO6tIW2rCztwtIuiHpi1ncXAF6WGkGZF4CE4UXv8AspUZGtma7Jmum5RP6gsygqEcvm1YLl3MezZW5geEyRbfeV9mXciUSXQ07A9LZuL4I5uydHqM+Jw3FInny7Dl1+1ZY6fH6N0xZn2UmiOJkJrz1sUA9jjDktO0BPDYRqDoZ6bK0/A3S32ZGMWvgQDVZkPIWz0OZMoVJsdsRkZp2TC0cWQNEopu8x8S/Zurn2BCJRzmWY/irX7fRfEuwkiQFCBtme7gm86wDWUtDaQ3MKUKUfNweeuoNOOvqkH3ioGux+NTQn6oU91848H7OkVYSzeNheEt02UvCYNwT6Mw6dhgK/PzPsmdIwMm/ql97t8fEAT52uN7a+733hUR4jf87Pfzjkef9/9j4z0EwGTx6bF2NthJh6hGYW/m6+X7TEn+szrouctix9eWITEsWCbIN8PIwckOBMJ3k4/ke76EBR+rz8SoKAH8YZG+RxTfYfZzHO3/q8flML7MFZCg+kmnzteYkfHFD62fOO5l4d6uCSaewjCV+R9sos2Kr+QV90a/1dj3NDz7hs3geDWYTk/Jx82d/73vH4XwE87f7mj4hWaiiIJwD+8afrNhNvZcglK6fCvy+cFBXLk9PTT08jyGQ8gaO/f+uuRIBXHhC9h9DGCwSM00mY+sSVL63mw9k+3P25EkpEGclYCapsEeq0dc72SjTzPM4IBCymC0XC48HBmAGc5QQlYhoc52JWZVKizQwbyjFc9yPHNae2SQk03Q8qmC1lyVvGFNREJnnLxFw0+7Jwfb5C/4AcG3XcnVK6OOvi5WlFjwOOjfH6hm4b+vkNdoWu0Jmp1KR7qhv2WEl+HJKaGg/XJzbmxCu+uEdyro+8OmFsvafAvIAid2q9s5Q7SKccB8f3r9y/e6N9qFx/+cwUUBRhWReuTxfaIpTqjJrrWqilM8ad+74zosqoY2O7vfLph4X67msuRSiXyhx5a4NM3nP6iIkwqjmjQyz63j2hOkIsd8QIeMQ/p7WVWcpCgEqtMbFgFZZ1ZVlWSil0G2z75o7MTgM/hp1TuB4csKrRWmVd16giEon8A3Aa4FMaX9PBbfcKXh+dFgmKFGNZnGLOAp2NfUDXjg3XYvGAwsGbfvjI3VIarTRKM5ZaWK9XZz6JMza6+VIaPffJ8CDFolKVI2MebIQhSPUqHAhWa1DkXQx+DK8Czn3XBykim+25w1xk07UDYoSxjlOcO2yCkVMeCKaYzORPR1yjqOjXtgQwGTbIvOstg2W/Lw3xv2LSnHZOQ0pDpFHbxQGnqXFUvPUyHZYBpr5nVMMGWuhaJcjycMGw01n75v/ChnpQ5m0sJmfiIaU6Y0SgBWBnphz7Nq9rUvYncNChF2FZhL690vdX9PZ9aLDtQMNbNBWpV+gF3Ve0+Pm7VkknRRD3vU6hRGeVedA9RglQI+2Igh0zK6oFRtC0tQ9EQ/B+BhFl7oGSU4tI8NxcE7VI3JOKaUw1SgH0AAhd90oZ+LCBqAeHroFNm+gbjyjOVLoWjgF1GO2yshAtPP3wtpHuoJMGi8rsvOZwrk1vQ1QKqSvhtnVOCCL8dUkNo0x+POlUU6r4vhPNqUDMayRntWCGrjlVJp5C0tXdvyc4mtf41EFKu5/+wP+dgbnSQ2ZjtrGJi1Bbc7ZQoL2McXAcyxSSdX0sJnjkYDLc7Y4CTZW6NB8jrBpC52E3IrB3xl+CUHG8avRMJuK4l3WlSOV+d7ar29Jzguejr8uEY/rqOH9//+o6NpmkDJvEBs+LnbJfa6MHMNFHZ9xu2O2O/vRGQ2jEBDpVrjK4Pq+nzIFtzk4sLrJ+v3/mu+/+mlqU5+eG3F3XqRZz6bthASLLCbzk/Z73K+K4EJyvSpyrJ0QpRpoJshUvwhzjYBzGu3fv+fD+Iy/PL/z2ux/4/Hrj09sNLhe0NcayIM/P1OuV5d0L/+E//Wd8/PZbvv7l77MNhwuQxtdP77mUSv/pxp//3/8bfvX//Z/47vXNtSw1dTG8nSm7IkqygclIrcyfZ7sdPsw9gdZkD0uYzS/jRiOJ9DnE4uep39+Kyx8q7lac6aAzro9EwXxS4BxFnkm5GcfozhaP2MFiJ2syYvD7Xcx1VWrzqb42siniTIIoHlda3FdVXGNJvD0l43hfDwkUebEyE/0SXyNAFDmENhpVhgOli7fgeU3MWbe1LVAXSnVB8u0wRM2nx9UFs0LvyvP1mafrM7/4vV/wm+9/zf4D2OefUBOGwfNy4eXZ25TG28bdCre9s99u2IB1XdHD1+ToSl0W2lJZ10JdF6Qu7OOgH51tP9i3O8vSuF69COsJXQbMI9hHB1GDpdxHTNuE/XiljwMjWBcqvN6gDx/4sC5X2uJxSQJbFdemtAGju07WOJS+d/QIXb7h6kt525al0tbK0/OFp+uFy7qwrO3Mf7J4EEWtDLBn3HQSiieAonaylfKPWe4dQx3gLj75NPfCBOUy7k2AJfeEVI+bLMCUAEmKtIhfHoIZdT06DcBtzOnCA+tbAE+pKyVkQayEnfYhGJGTPkillJAooDjTXsSZxl0V614YHMHWF+nU4hPCOkQRtbO/3TjuG/v9E8d+Q8dBndfa28GFYIRqZ25oJRjkCQJ86ftmTmLh70I3syZiW5iA3vmop92S8LHBrpm3dQJVFnfxZ3Zr/inf4Ge/fvi0oC48WIHwj3bm2/O/XxR0lMwKky2MCXp4cWMA44hDiPrbGWufFjSnpFdOkKNmAfIBl9CIb1scaxGPFde1sSzNpRHkfA8p1WUlypexiOdluX402D0PMbcbBJcnyFbWaDmNOxxDCTLWTuDplLfIIz7jAfxYfgYy5U05CRL+cc7o8nY6B+bAZ8boQ87NfEEWqecUxwQFf45VoKh19wN2TswLlAMRlxjBkvPIw7X6+x+/M/CUQd4XVyEco07aruFiljGeO4LGdMGJxp63UuY7+VtJqL77b7/sN/0SUJqWcz7vBMFKKfN5Q50yKnb+7OOpQ4vHdPbLz8otDxWCYJwkCuwdKok2R0Wh+OdT1APEUs5FLbm4IOmuPnrQg3tH2z26HNrJ6ojEAi5BmcvTLsUT6mPYg4EfU8gU86lVTtsrU1/FIvpPYMdXk09tqqNThgfj6/Xi1Zdtp64LT+09EqPhRXdqv/m0kL5T7nf07Y1P//avsNcb3HfvlfftTrESiaMHMI/tjtlyUILtUQ367kKJI1T5E5DLnJmJdNusOpkZlKQFG5QNkQ2xjYXuxn/buP/mlfaucfmDJ+Sj55WKeeBxXfjw/hnpO7UK1xUqO9ZfKVwYITjeX12Lp6wXT8rMhXSX5k5Oh+sLWbQ8aoAVXbLq43pIM3MbQZ0eUbkvglphoCRTLRocfHSteGJUap0aGn109mi3amuL3uXKcZyVMg84OBFwlZmMAdG/fCaDmYDXIpiNYAZEkisgw/AkEtpSSX2I+1Hpzp33trZIBG24GG7fN4aKByFj0I+DtlwZ3bg8vWO5PLFcXGB6mHHbe+jvPCSAYbz9mHXaAdfrcAvhSaS5vlxxBt8YjRoTsEyVfr+Hw0zmo0+BudBifxdGVcYo9N0rby5oCVIdYK5lRcUn8xFaWz5FEAeRzP9mIeb8WMUcPUDBCDSICXFS1/jZJ8qJNNb1iXW9zHvrtsJ7rlttXC8r/QhGgvl4WjLxsRKAd4nWzAwkU6UlqoQq3kYWY5CRRmnNzzUFaxHEHFxp1TXmnN6rHPvd17wdSGhkDD18ahWK3mG/f+bYPnPcf3BgUg/Xb6lX+r6z6Erphqkz4Wrz6XgmwZrTgUoLp9dQi0qkqN9nNzfRXuLn5lNTgHZ1ia1y0COBk2z9JphHlsy36l/iiaZJ7o8ae6mGaKqDT215oraF2i4+VtcU1YOxV3S8MfbO2B1sGFjc2xUpT0h7RuoTKo1h4mPKTSh1YSmF55eP1FKpUrnVRu8b/bgzDrAU8iHWnXW03xExr6qLUYoDzOl1+7G7LxXXHKmtcrk+u00xBzO20NGQ4axRAjg4cwO3cfIwjSVtmrfeeGJTRDHxFhpIAMfvi0+sOwEc94eRgNWwfdHals9xgKuh5SFoFAeooHugpB6c1WxhlzNqSD9ZSmWpYavFp0KOMTy5yvOzQe9jsglcryhzgzxXi+BvsG371KN6tKEO8LvuVGpCTQZC2OM+vBW7W/djLsKyVpo5EMVqXPoGonS90PviQOumHNtG//yZt+9+SzNYDG/nFNe7uqwLrTXWdY0keLBvG2+vr9zf3qjloF4EkUrTwTqgHMb98x3TsBElATmdDJQUgS/VtXakVBhGVQmNNI2YLDxYDfaMGm1tvPv4nud3Lzw/v6d35dPbjZ/e3thUscvK9RffUp6fKe9e+Of/+X/O5f079LLyj//sP+Ll41dc3390RlTYrqUs6Hbwq3/5r3mrje/vG91ApPpgkBjsUKSwiBsJwadPnSvkzGWzQIqkF7b57xlam6+EEwiQ+beMt+bj8XX5mQneYS4KXmu4fW+1C2XD2YJRYr0cowdDMcLT6vu5thqxpMfcHsPi9juS/aElSXrhOgOkJ5KI2MsSrbkakxadXZh70CZbp5ozVvzrZPfVFlMgQwbCvfPwY41pdZ5IVS6l8v7rX1CXK9QrpV6oy5WX91/z4+c37ttBtw71ipULXSt7h72D0bxNqitv941LWfn669/jp9/8yHbbHHhXXyOVPB/F5OD+tjjLyCoXa67/2X0K91ILPD/zdL1wvawcfWM/do7jQJaYtqk7o+8BEht9eLtQEfEWt5DS2Pe7t1mNO0d/4rJeaEu04z+tvHv3zJso49jp3di3wXY/OLbhgFM3NLQVTZlFo2UpXNYL63Xh+emJy2VlWaonvnFflTM/8kWnwW6zef814r9kP6kqo+egGPMYIGx+PzwZ9zjIdTZLyZabAMcmU93wQr237YuMsK/Fme4lRPKDEVWD4ax26tP4kIGQcBiHF6yCsdyat0+fU/ZCu6dE8V+y5SjBGwcXa7sisriEQV0pakgZXI4KbAy9YeoTb43BfX9zFva2MTYfEqLd45xJGg7dVnmAZzSpLJpFQJkmIb97vgqyyESLikKx4nqqXTwcMZe1KNHl4m7fAoxx354NwUkkHFGol8xdJ1D3MzBK5IEpw5nm24PNmq9IQxbvMfN1ezivtJXxGaFF6Rcqh/mUAPoiZjjcp6iGflj4WWWQ7V4/7/QoUZCSB+BJ8DgQCZkIQIuyLIV1ieE/UoIeE503xRnyENpLwwuNjmnUOI0H5rMGRoAXXPw1Y7YWnswwj8sKORE3Wt4g6Fg6f19LgmBnnCWR81pc2ClJkzp/JnTtMd3ZQVJ3O48FL7+/Ws5iN2Su5x9So72QtAc6sCNsBd4aOTRlUqJFVVJiQmYB+oti9t/z+J2Bpzk57QtUtASo5N8lxeIysX4EqiS2iTyyYfwZxSwCTGabxiPwFKvjfK/ZqiDzz/maBD1kvjRaT2aFzn/v03piQ8Tf/eI/bkzO74FO+WfGDYn+elFvd1D1RNeFTh+vg79HOubUwnBw/0Q6s7UgXyfZ9x9XI47cHcpQet+DequzN5uZyJ6zt5CTP+W6AH4Kpuagx1BKjHWmVq8EXS5U8dHWVIsWnk61J7BOOTbadkc/X9h+/HGOFC+7hdH0rnBDwrH0GRDlFD8gEjXDKvScOhIXxGcwTZPmK83OZsv8vWfvKYzoE6CwnWIOPOnR2T/duP+48vK5U58rEqxoH43eeH66wv1CxViqOAVbD0ptD9OFcIFBVZZSaOLMkxoBsPcwx70ItgmYTwxK4El7LDeL9sREjM+A0Sd9xb4ymcJ+I8oCZd+jk8cnVPXQimo8jiF/2BPiVO6sQM3WrIe9/POWkzzGx/WYbUnORnNQtpZzreZUmGw9ZJwBg44Q1VZAKl28Kj76QGQJrY5GuUabDsLSvPdeJJ267/ATQLWMnqctmVYgWkWgesuQVf42/zZelHtMCqW1ub8Lw3XqxuL6VULQeF3noNUlCPoSwVCs0yFOTRdvJXHGUegwhVeRDPAh9NscdJK2OqsmgKcizjLyFoLF10FMq0iWxLKs5Ahob9qqmATFVup0IClgmj35gjxozObVLROYgMemVm/LLcGoaM2FjMuAngyrbLHEudM6NlDXm0M7x/0zx/2VsX0C6/5VGjYUqYVRbzjT6+IlsNDJcd5RtnX0ANLiu4cWYedPYM33to/rrSJYbYzSKOKsn2wPzVXzKLAuj22O0aKDnQMAUg/FPVmDuiLtQrs80WoL+7wTs+kZY8GkRgulIXWh1AulPlGXK3W5OhtJyqyoIQEGtAt2SXuyO9POzPeU08umr0umHnIg4/A2JSt+/aOlxAO52M/NfVMplbYsXvQphSNA6ZKMxbym+bqwFWlTSnEtriJnq7SUUAaJokX67wy0E8l6BK5me0f82fUa3KaY+XQ4gclSzJAg25vdDnH6+4fwIXbmrMT77z14UjkDwEzQHlsBc2oe6ctiv5xAvn/PoOs4jtkOO69vYwJORSSKB3EsERD1Ptzu1MIiC+IoPssirJcrFGXwTO9v6NjoEfD1HuPWVRkGMjZac62pxoXCAs3Pfxw7t7fP3N4+s983ioQ4fTVaxQXHJbQiLac3Wl69R1NB+hafdusFpDKIRAAe2178FF036XK98PLywvPLC60tbPud2/3OrgMthbKsrB8/cP3ma15+/5f8w//kP+b68QNjXfiDP/lTru/eUS5PzAyjGwzh/tMrn4//gc/7ztt+gPrer9mqHoiShL6TWJls9S+sYByvPKyfTCYSKsrtMIuq8WKJde3JHDxcgsdA9eHnmYFGx1kmiOfTLAFUmZ9MDhmwfK2c7IAJ1k7gFWYbjoeGGJno2fn8GSXGZ4j72BkaRKu8r+lsV2mUogH6n345QSdTb7H3uNhtFAY+QdEBA+rK9frMcnmG+uS2dLny9PKe102RwK0UB/y74ra0LCDNf3cMtnFQVy+W+ACWiBFUZoilwxlkVmyC8FZu1HX3ok+0z2dbjn819uM+W3g90fJWuqmfojFwR4LtMllr4sNXtEM3Wgv9KrzDoNTG9flKPw7u5RYsM58S2I9kXWecE9c+cpVaGktrLG0JLbsW7FXFpzzny868Zia1jqBH+BT3eEqiMGN0kZRT4ASlhkJR6sjBEqcty4lz8wXoBMyGqscWli2tDjhNiyoEOM1MBCU2WhbYvwBHw/4UF8F90DKNysQDEOOb05nMta5R+HE/7FPLBq05c6TITo8YS3Vn326MfaPfb2hMAq8WDKD0Y+R1deAph41EX3jsCc9ZczvZtA9n4u/xYAJPhJYoWIlCcAGrcgITxrRJNq/kYyz88O+HPDnBi/zUx6x35pFfpATyxbdcPPbwzy8fD8+XPD4yuPE40zhlMboxms+qcunQJBcwpVoyVk5ChYRtl2SL4b7nbH104gYBWOUE3CrlgduqX5hiNZvgj99a4+Gk/9Y5lgBLxc4icha7Zpz08D33Wg7emumuRoHTztee9+G00Y+FAgfkojV/SmEQRYY8Pn+ehD3O43AAz/e3K2acMgokW0oA1Ivn9uDnCFadxVCn2GunvMLf//jdgacI/ifAQSSEuVSDVXE6zIfWtxKtBvHHs+fQk6UEIR4BpPk924SSsh8V3jSgeec0aJ+5GOThOIjkpYTegph5Ww1OYc5FfI6Nd42fqckiGZCmNwnjboJPLsqFqmhRajk1Kc7KbAbeQgqtZmDmLSoh6odijFNP4kTiEMyF9XqnH4cLPps9CH36ou7iLJSlFohKgG9gZqLZVdE+4Bg+QacPDvNiVF0Wnr/5hkTS2/PiiPwi1GUgdKTfsU+f0E+fkT7Y/+Y7+g+fGfaJciil+yXKCbXJbJr6HeIVvrb4hCrpg+PQuS4CjvProVlZHDPIkYd2DuLfJgNlY9iNrp9Z9A3pFzie+elX37HXg/btlQ/P71mWEICthbqufPuLb/12vr4hPZOjThNvl1ODIYW1Ce+eLnz9/h3t5YnewnGa359+7HMCVtKyR/e602ytLC6IBzEKXaKFLCnrJe+lBQPQDYtPCwqdinKQIuPJhqrHoDVorcb5NVrzRDNbSkBCWymmD8yc8qRKl0ga+hjex66uk2LRJji2uP7idqGKUVH2+yvHdqPvd8axY+OAsTvrTH28taRBPu7s2w5yCw0Td/CqnbZcKG0NqmxcC09r/N/j0QCk0/H6CObgymz9iirdcWzc7q+M48B6R3RQLXQ+WpnMhrqscVE0pqK5PlFRQ0uHYU6Trwvr+hS0dPXJPKZY6WhMGTPttKcrKZffxEJ4UqKtRkCGJ2q1weWJsjxN4Mk1yyptvdDWi7/GDOtuL9bL1engFe7FYs9XGIKOQRe3DzrKdFaSXEGbXK/T1D4GbOa2xjAnc5ZKtUZpy2Qq1uprtlXhEGUE48bYMXMBb9EB2tleHXQ6tjesf6bIcNBSVzc6Juj+GUGoZaXoC9WERkMJsWs1KA5gj3FOIyP0m4RHTaLi7YDigLAeSinDg03xVtbCWT0TeZj4WGrcA7f5Nexmqacg5DEUCzZFWV5olycu12fa4hMAj+PuFXFTkDesXKAKdV25XD/SlhfW9ReU+pHS3rE+vbjYPq4XZOKgrsjC0qA8CegIzTDzFo8YS+3sEv+KxgDMDsbwqnIZzRWkalTUwrb07q3I9dgJzrozWopXzW2c9btHezQnskj825SqlVptrp8yA7r6RSUwW1NLOPEMplTPEkM+xqygPyQyAQ5la7bqwXF0jt7PBJlIeud1qV/k/N6yuc3pkN4aZDGtNyubGgmyV/817HJ2FKppTDt0ltXj9L37/c71ekGEB5aTM66yuLMuXhwYOqCDaHFhaBOaNK7lytg8Pmq10q6VMZ75yAs/fNd4/XThzRT7dOcob3Et3AauVamiFFWO24buFT0W9n7wdn/jN9/9BtR9zyKVoXdkOLtr7Bvaff9GOBnmdUbIZDbhMb0jGbUtiAlalLa7rtpxOFtWAnispbBcVv7oj/+YdlmxIvz619/x+e3G7X5Qrs9cnp6p797x/o//iP/gz/6MP/sX/1u+/cf/kOXdO5aXF2RdIfyxRULMAP3c+enHT/xX/8f/M9/9qz/n7fWNde9cLbxGhG1ZD6wmVJX0KOfai6c+AjZnOpbFu1gD08Pn6x6SH9XgPtgJeol8scJFOMEjiFgtEuWcZFcKpXqbYlnE9bGqzOOciYwpXQ9ylIfFOk8W33mG3qJUCtQmMYdhIhCIQKUwTBjdpxQisEhjdEUjNjh1VQidRGcfQtoIfLADB7TBWhbKUjiOTvRbsTy/Q8qC1dUr9lJ5ef+BYQ2obPvw8DRa7PfDCxuXY7Be3/FVafz0+pk+No6+c9eNN33je/2OX//6Nxz32wk4dWW7HyxAXaAuEnZ649Y/US/vKO1KXZ4QNfpwKQQwej94ff2Rox/00bkEu76USu8niG3a/RrXEzjoofFUKlwuC5fL6izIGsWb0ljXCzaEt5/u9CEcu3G/H9jhPq8oYJ4slyrUJvH6LEotDjqVU/TYb7LH2CgTHE8x4CXiP/99LL+Zo0W+Yhb+uM38xYXkFZNO6+6vvL19zPcn7XWsBcMiVRrhBVzHU4o3B+f+GuNkbxjBOqyVoUuEZD7hmAAhWovJibjdNBLI0GlzM1fNDed+fvXCT7kgspCd9XtX+nC5jHH00HF647h/diHx7QZjBKvc9TvFiueSAQrWskzZDQcMFdMa+lzi7cvhXyx8WkIgqc9epfhAlrS9EN05XtC07tfTxtl6e4rHP8Z1D8WCiRLJeTn87sWvfd2oJbt5Ikb/nseEqP79oNPDz170CaTNcjSWt8zrgPu9sxiYlNAYNAfZHgD1UtPunPIhNaZ45kfm/Oi0f45jxTAiqX4MJVqH1XMKbKTFnHZ8FrAezmVKMcgJrksps3XPcQDPHR6Ru0fAKeUoEsaZ0ZUZI3wZYsGaTOzB4OFOzlhMifZb1z+leotpK9nhwgSeNACAZFy1ViP2VV//JWMUPXEcSeZrfcj3zisydQQjBys1Y/K///E7A0/W97iZuclSfydb3EKTpLiWhE/eCLojyZbQB3T93HhZt56VJSnniUZC5N8tLqjNi+83o5xJOsmmCj0pqR7A8/iZGS5EfSc2mSoPQsNzJYdDzgXloNNcMrmI4lqoZQNh0POTEm0PxtASBAoh1Fk1BbWHcbzi55ZBvGFhvDnPw84KdC4GiAklYdiLNGpZUBmoKMOUEqLHqleQjsmgW4wGj9YOTy4b9dq8OrMUSlOgo8cNK1dYnll2g8sT9cMnjvU38PkNbndvveuGDCijeEuDgoW4W44xT4DSq0Q2J7xo7Lk0PlJIlVS/H5Jj6F10PAQqsDKwcmOU39IqtOWC7aA/Kr/9NwvtAzzrE+sfFOiVaitf/fIf8DYWNr7neN1oxdlDtTkgCcKOV7zLUjn0QEfFeuEYd46+MWKCmrdlR6RLGjA/mVk9F1A9R6SnsZEqtLb4/eu5ZwTj8Op8AJJSFyTEuXOdjKOzsdEHrJcrpSzUZXWtBRtBSU6BxdOgSrV5jEM71gNylGRkDYoNxth9As2x45VLBxXElGLeStf3Dd1vWI9JcKqIGpKMn0nx7qE7UdD7YLOdsX2ib6+UdqUsFw8C60JpKyI+Acfptef+TNaDZSUbw5JtNQ769sb29pl9u3G7/TSPacn9URZ3+DUqdywORIfNcBHVHSmdYjGlp14obaGtFx+6oCGobub6LMcBWn0aUwZKQ6nYnMpxhJ6bb3o3JMViElzqXYQOQVuvnthVnwJlxZBW0C7QfJVdxMcUV3FtmjKcis7SfETzsTD6Fm1/x2xplrAzYt5+gAy3v8V1jEyra47URqkGpaLSmcN1xsFxbIyxo5o09TtmOzY2RDs2Orq/MbpT2DEHtFRxYlFaYt3Rfqfvn7H+HlpFbJktju7LHdQT2xmHY3djHIzRUT2FPk8DGsF0bUgEnCp3iIqxa9OcekcSbJSHSOYUWU41B3NVLkoLZ+8sqmH4FMccGEChyEptL4xuqPOXWdavWC/vuF4+IPXZW0tadYaXmLObxLdeSf9UF5bLC0iJqT43Z70RjKYMeIJp5wwBB0Z8ImW2ZzADU5/6t3O7CVtPILvMS1cXD6wxZybqTCQChYlEZZgDPfoQEE54qWRS4El6ajoW5GQewRTcnrpyZpQR8/nEg6HT9jUwb+nY9xEtxR7sebyU1Hl58N0JKHg2cuwH1oQaQw4kGRtZmce18JKdVIKxSlw3MWdslMVXhk9r8la+4zCOwydiHcfxhQDq1MNSPd9XXXeoRWGrhnZCSZtWCq0uZGFjkQuX8oytH5D3g2VU9p9u9Nsbfbux4m2dYp1ldQbe/fbK2/2Nve+06mvE5REPSjAkjn1Htx3bY3w8UESpcsx8pdXQjzHXgdGoTF8vbq8qhW8+fs3ttvHv/t1fg1aqFdYqvHx8z/XliWWtfH77xOv9zuvnN9S8tXD98I7y8o7y8SN//J/8x/zhP/vnfPOP/4Tlw3vKukJbPBkJxo4GQ6MY/Ls//0v+4r/71/zqf/5L+OnGdVQWFZoqRbuzuorN80gm3xn4hy+09NduOVI93PA2bU1DhMy4xFn8kQRyMjKKObCEWextT1Qyyfmifb200H/0++97Q11bqPi0stIqOeFuSl6X4vZCzzj0MTmYXPeHOLZE0XP0SDLiOrqosxclxpDoHm/+e4tiq/rk31rdTyST7wTVfM0eR8bnQlW3jd2iraMWpDWkuW8v7Ynl8syyPnO5vOPz287RB8ftlWO7e6ueDrSqTzZ8ulB5ovZ3LJfv0Ntnjv2VY/vMuN843t7Yt8/OTBFhmKDD2O67symiH1vMCzvX65Xr+sxlfYZ6DSbpoOsnxt7ZD59O5+3tGnEB6DEolrpa0A8FMVYp7PuOYZTS+Pj+Gy6XZ66XF9b1iRaDI5jrrLKsSl13KM+Y7BgLcJC6NsbAJNjRGceVmgkSMycRmXnOBPUz56LEAvc43O1hiZwngqkAS0SC3WtegJjrRIJ9DPR6YDqmdqbGV56Vr75BZmVewAzAyRpiFa8nuXSAmvtlkUJtF4wGNPfxZTDKAbbNNT0lVczIiV69H5TqbeBF6mw1FBE8kClI1SQ0+07S/N4x8xZDH3KyzyKq9mPG9jmxzn2vn3u16hIUsbe8WG1efJ/YwRnHpI87A5vo1ZFgpyTAX8SPVZhaSkbkRtkyOQh2od8jIQbxIPMukDnnI+AhCQr5e5Z8/7SFfPnIrDlCx/CvkGANcyeA6x0n+Hd2A8xWJ8lictjyIfQDuBvVzFuOq7jUZtRDW4JBReI+RC6QBk98ulsSO5KZbzBBWVMndwyi8yRtY55w3p+wp6coOmSrn0UHxhjDJ3bGvrSRscv5Xnnt56VJRlQApXNvxntoXCNDp16cROxTirDWNuOtbhqML7wYgD+3LpXUS/a1LTN+QgIAJP3RuQIyD8UcgFLxOKoVz3tdB5YZB9kgfNbwNlnxqc+/y+N313iy0ISxoG7NVVkgWk+yNcQr5/k9wRCYgI+ZI8IJID1+TNSJ5GdO9NQOi+U6kcUICCLozL08wQpx/R3fADVc9vlOfjjnyk2xTGavLhNgmps4fpnTIXyxOVWuiDl9F8HkbDFAHtoQ4po8rPEwCmG0KNGnK3Et4lgswvewGY/gUy6YSQKxMLJSQ48mEfTH1rxY9LV5e5dBlNcokeiWtlBXT9DqEnM9rftEGZwmXY5BKxW5XNxgV8NKB70jxahHGBDFkftyrouh6sK98oha+/30kZ8jWn+g1OK9t4HOehCms1JvpWGXhhah1wNd39D1gixvqFV0g9fvVm7fvVAvRvvqAtvARuH64Rdsn+6wKWP/kVoWpLYYresJQdEYkVpLCGh30BIT7XyyX8kgzDKwdKPsa5GHnvakL4bplXCW1cE+iaDe13RaQjfgrg1k7sAzEMGFsQ8ZDDso7UKTRg29I79+MvfkdB1TXM43j1edIskIw0O0Slnf0WNn7Hd0hMjxSIDJJ42M3tFjw7ozgMQshBmNEgw+BxQdJFAT7PBjtmOlHzvSrpR2Zb1+oK1PtBVqvQRAGTWNnHsdhlPiXPwCeVuS9d2TsbfPHPc3+u3VQbLYwFIdwJGg45sVVEJUvYA322vsoYYVF8ecJbJSEeseBDGYQwMOPMhRB2k85ghBb/X75KiJzj0B1VvOzBPCbEOQrKzVBqknVcOuWYgtCj7xK5OMPrCqiPkoch0HoxZsd7HqYW7PE1DJ4M1iEtiki2ei3bs/R7LFwLtbUAd7et8YuuMTZzZs3HEh49sJAvZbCM6n4LZMh5hthzZ2lIaUuz93rCcwZw/BTazHkEj1iZ45qY5pRuIzst23UapS2hotGgWaTK0Jb5/MFi6Z7Q2naKQHU7lvanrtCP4Nog3BfP2phv1tlHKlFIWYkFPbO9ryjrY+UUq2VmYcaDNA/aLlphTqsrqTX9b4XAfM5jU0jbXk9sLvlTD0cABVC2swHjx7Hy54aoaMjmuLeau1B3Y1EmplpK5AOJ9kx1n4T411PHW27KyeZzHWzFstJALth9t06gU43ZLUT/JAOvysKhqUedWOmOuTjB7tHXH9JnBgmZclDfwMirQ7K6eUMgPbSlSULf0Us1BQ66kbeaT9JUCBKNDkjAhvYXIB3O12dzNVZI5SL9EG31qjLc3BeTvFnt3m62SHEYBFMRcfLjRauXBZXijPSlPhp5fvuQ0Hptz2hMC0ORuhH3eO+xtDO3Wy0Yxs9zaNybhHhz64ZJsqRgkWnURrOZH4qGW7S6FcrtTFdejW9Qk+v3L89a9YlkYDrlV49/LE9eWZrp3b/cbr51eO/aAsFx/y8f6F+vEj9dtv+eU/+RO+/Qf/Ic+/+AVWazDyqk+oFHNbGKzqsXd+85e/5q/+9V9w++0nnu4Hi7reVVWj6IhCQu7jWA/24AfP1Xi6x8c1ShYLI9wq6XXiHR7Y6+fKzzLlDB7dp8xXGaI2NVkyodGIab1II7mI5/FoxLszEMx01IzH4TrCw1Mi1sjibibjj802CbQ5kzKAJ5vCZnHUvqZUNU6lPhyXF09UBO3Rmh3j04dBCeDJanEmTikz1vRii3+Z7ow+OPbBOHzKqbcQg5UBrVDLBZqwru/Z7x0dd45tZ3995fbpe+oIRrO0xFLofbDG8WQx3I+pUstCKytSV7oYZl6c0XGQbO/kt7mmJd4twTTcHEkEVQl9IFiujXfvvuLdu6+4rM+05gVBM5kF5yKN0g7KegO5gCxMdvfMgpOWVOdvmUlx5lE61+DJJNUzCbVzZahxCuVLdohka3Mk2OFXTMPm5xrXEBnpoa0aOYlaTqA7224skZeftcCLI4A+dTe4g1036tKiZfAa4NeK0QI4HuhYAZ12KKpf0ZIY4NEYUYzO0RgOVrRWqCPb9IdnGZYEAJeH8Ji+zynVGdtbTGf2gQQB/AXwVAo+OTr0i3TG05FTRUyXQMRpdmwCz/N2PsTmvsXtZDjGe83Utxii4YPlfE3+mJl05qcP7zyBivx3/pzNthIHJLM1MHNlP0Yl11OsKCFiEY183TXVEB+f5QHAl2vV5r88D2AYtnveU1xm1N/bIneB5Gd5MUeykHXaV5VsEfVBFrWGLIL4mpewz4rboszF/RDjTWKveEua29kvbGmeT8L/eb+/+OY37GyTjXUg53WbV8IixxcmM2kCgblnI/4tAQApLm1Qo7UQzutRSpJ9LPal26vUeco9e8ZFedB5py1A5PBz5hXic22eNz4L2JNV/DOf+e97/O7AU17uaE/BUojWBWBbjDKVgCgfdRbO+NnOoJJwYnPp57PSVAiSQb8apiUu2Dh//3hgD0t5JKuiRA+oZNXQnc3UugFmr+UMPWISgpUvjvtvBSbz8xPIck0Ek6iIBnhlIWL5+Ab2GNRIiYp5IOSlIiilemWqEC0X4XyOW5xD6o9ItD4kRY5CqQsiF5CVZKKV1igZnFSnxo9xheezQpEBcqmVpdVA9lO8rXjwJ7gTHBtyeUd5udPXBs9XylfvWC7CeCqM7xTllbIbdTf0cMqwDO9V9oksO3r4xKW1rbNtwzDXqAHXRqnqO6pJJPziAo9E1XFZkWWlrFcuH7/GlidGXbDnwbhs7M8/IdeCVsXuwnd/qbzdVr7qF4QNPd6Ql28pXx0UQtQZT0QKhRKaEBcWluuFsjS2sdNUaKzUVpDS8LYhZ6wd/aAfzmbDCBaNuLhh9WpAaUskqyEs2yrL6gJ4GuO3i+QIeY3WG2esaR8gnVKK9/dX15AxAFVGt3DI7qhqTNxSyxHyOkerg7NGVDvHvp17vRL6PIP9/sa23Tj2O+O4exuddrTvYMOZHj3o1r2jIexXxateOd1OtAfrx6LSjoMNfYPR0P0O5cKQlbFutOWFZX3HennBQstA19UBI6luTQseBRJiy3ZHt1eO+43tx99yvL2i253Wt+kUF4Jt0AtaPYAqrTj1PwQFlY5RkbLQascok1J+9A77BuOO6YYdr1jv55TCMB5bJJo1KnA5ttdFOqMSIwsmB+N+cHnp3rb1bNSLUGIKR4m2O6kFw4WZa6lgV8Bba1zwtCPHBuGYfATx4NhubLdX+r7B/c3babQ7gBLrQUefvqMJSPOk21SRrogMZPg49q6DffdBA9idfryi487Yf0L7K6ob6M3beLVD71QzqhjSvIqO4fpnMrCxuW5H9bXet4/emrNcEVxEVAvYGAzGBBHcwTro50FzBAolpgOWEEPMKTZWaZGJtKVxWZprBgXgQexHjfH1Q9NPZXIWPk0set/xwDQ80DI8uHS2QsWKA6ZDGzLU/eX1vWvUrJeIrgQrAykj7O0JzKWcmiB+3XSBtuBz64JZlJGDeeDtjOQdKxbtZsBQrI8IXtzGKRUbFaSjWSyqjdUMqc3XXgldKvXgpZRzttWsfGbANh6cpNpMOE7tAENdCRwtZQKFJXQaJk07EuJas43D2XEWib9UUK0MEWpdY5odPgqzAE2mPkkR4bJeqNX1YHIidX6WjsE+zkmrrTZaceZhttsVES5Li/Pw15gZNkLvpCqXco40Lxj75ppFgjGOzmGKXC5RMRXufdBqdbHT5j4tBT9ltlz7dR3Dq48D4+gGstCWJ5Z3Ba7P9Pcf+OHzK0cR7uOgbN4Owhjcfvzkek26cynQDLZtZwntuf2+w6awD9iUMqBY8am/eNu/B7XOqLQxfCoYQqewXCrL8wvf/tEf8fTynuXpmZ8+feZtdHaUr756z8frld+/XjC8xfEv/+rX3koqDjwsL08sHz7y1T/6Yz78o3/E1//kT/nn/7t/wfruAyMEhCUA911d37CUhToa463z2//51/yr/9t/z5//P/8Hvm1PMN6QbeOirvNYRClVArzK5Ep8TWfVP2LSvztszucIQ5mtEllAgrP7W+wxIQr9P0BWL5oNvNAmRViX1VtwiG29VqwxWU2GT67zuMng8GRZTb0IUl0jqARjryIRB/iQAE2dnBLTOQPgL0H3KGVh3weyD445qj2wfoUEzs2Mfgxv8Yp+09yLZ1Udju6JmhQfPuGg++IMA984PrpDDCvGoQelV6x0mhqlD263e7SkwroI231H+43eN5b1HdTKD6+fWBtUufLx4x8xdrj99Mrb6911ePrGilBJBpdFHO2tbstVkBW2bhz7Qe+vXC531nXw9cf33PadG3h8IdEe1nyqLuqxVCsLS1lo9cnzn6Wx1MbQA+Wg0Ci18e23f8Af/sE/4P37r13rz3mE9MMnEvbuhRxpg3Y9KMt7TN4YowSTPAppFkMkNDQmC95K2wdShaX3aZ8yx1I9J2imRk6CUKeerQMp6UszwxbJASdyxhKCZ6KREacvHoOISzKJz+Er1Zm8oiBKq0+08sRlfQ8saBeOfjBsczCodla5UJqwXFZqe6aUZ5bxzBje3r7tdweXNLou7PD1sXks2oMJjPlnznmvpXB99lbefShteaG0J7AlYrLB2+tnjv3mOpS7ryNGj0Kna/V5Ab+A+UCFirfFFQLoUkVs+BAdTeDBZm5VS+GY05o1il4y2+ySITNBqGA1Od0tfh9EYqdFC3JAGbhI/IjPHEmckLMA4zc5Jpnb2fUQ3UUTso54wpLtaVkqJNZJPDcL6OpxxRpFsCLCdfVOCxc49/dTCdjtUTzKwh4P1y5lGNI9/20LcPWukwLooVj1FmEJIM7UYgCxH10rgpVkurkovrfROytawg1YK86oB4zhANM8Lr+uKSuUem0W3UkJSrldHTMe+pko1pwY31MGIFhX4hjbBJ7dVR+OMdYSPApDitFaoS3FiR1FAuQhgDUoLfZrlq0CbIt/zjhZFeQoSD+8I6LEZ1Uv5rvAeqwLS68f8a7hGnUBfpGYShQf/Tr4ZL8Qj/l7H797q53Kl6i5JHU8E6s6tZVSCBZNke3YMaHEH2/ogYxNzmecaomTTy2nROcSv/Xk4qQV50ZxD2j2yDaJ8qsQEEKLBWOzalRmshLvFRwAszLJSufff/44K0a55JLFkgBXySDy8VVyIpg1p0JobmI/Hg9eJJL39O4Ka4BacZ5jdJR+ev8EnmqLqlKdjKA8B0+0ulebCrPylRN1StKhg1LqARQn7UwAabhAn9Ge33nltAiy39jvb+zHne3zD6gMBsqoMJoHbyY+BWP0gWg4vqwUSh5PVGEC8JKgZyOgUrDWUIQhQrksyOVKeXpm+eY9cnlClxfKyztsuWJLoVyBZthy8CY/sd0L998IrQzQjbf9xsHw9ou1RV+wUK24Lq8Jl3ahLRWz4ZNKqjGqIcUrIpmSGXhSGr5d0SwKUa16UlCrB54JhG6h6YB5lcU01r1Np1SCS+nDEzPBdgCpNRfG1qxQ9B1TYYhPeKqlsdTq7RHDJygSmiDeIuKASd+3WbX19jXFdLDdnfbe+471DdMjhNZj7ami3UXEfQpJgMsiAe4aQif7/y32vy+n9IYj4h7/9+iCtIHsHpiOZUWWgyE7YpUS2gNeCXKHjw6kb/Td20767TVa/w5ndcT9yZTKxLDyRqPQ6so6niLhAtSvQy3BSkSjrWsHYOwVsQ3RHT1u5zUcfdooDzhKTKOTs5VHfZ27DpwDXIOdwwzd71g/WK47y/pMk4KsRm0+uj1rDhZBkAvVd4b1cN5Rdaoyg1RqQ9vq10oVLT4dr4rMKuFs1wCUGm1WJWynxC1yO2T9QPe7i2jrDT3e0HGPa30D3UF3b/E015shk4Bs57K0754Uadg5UcWi+uhjk2uwZrIFxQJ4Typ3FBos2DtpN0tBizOZTM2p2wu06zOC0Zq4PkZx4MO1EtRZH5n6qU4B0RE6Wv5PiSqjRqvbcK2Z6U/899mCQBV86s5KWRvWCtaEIQlUhTqLjRkAejtROl1vnera6TboDIYNxOEj36+xMiSYtzUS4BJ7w/RAjx2KOoBUlumY0vv6/fJWMtEyq9zFCNWJLwOLL+5jARkjhm3E9RzDi1ERJCbYlEGrt7KVqD4G7yLi7GRqUKCkpoLGaN8IsJMh2tpCCsyW6jpZI0QT2uLTpWqpsx2/1LjqqSEV8czZYm9Tn6mHpmLGKKm1Zzjdnd7BjHXxiUqtVVSXmYh51XwwhoOaBqyLX/uivja9LTEgThfwoND8eoggNURYl4LYSlu86CH9Qt8Xrl994Lq/sW9v2P0nZ4rc75E4DSrCOHaKdtZu2HG4nbgPymHQ8VZS87VecFCIxGPj2ueEqCKFpflQCDFjf7vNtdEw3l0u/OEvvuUp7u3bsbPdbxz74ZPv6uJsw5cr67dfc/nFt/z+f/TP+PpP/jHf/uk/ob5/xtYaMZovsmS1SVTT5TC2n+78xb/8C3746x/YfnzFto0yNgo70jol7U8CTiag5ZRuikeGkP6zzO+Wf7STLRTZEidr3YFOtWDjRsJoNViJpbC8XKFCL8oeCdkmRLsU0QIWNseS1WWTNXKyyzwutLlfmGvaOJevt+CFKP9kYzlwQSQZrs1kjOq6OMmyJ9OOZNHjjJAWVW8J0Hh0pUeyIgL7cfjeKsLTcyEFlVWHD1Ozgk9tLg4c9H1q+pR6dc00dRczWxztAOte9BClVfj44T1LfYdw4f62T42jjCl7H4zZtpp2KgDCbpQutFG8RqVwO175/NOPFFl59+EbxuEFpMvlgqq331u2UKOU4sX2GX8IkW8E6xlnxrQY/FGrgxQ2nBWrFnr46q1BR3dGwfX6zPXpiddlQXEdsnnP8v6GP9JOyD54YnwcnuP4VMnMgU7maOqkEoAUuU7tUWUs5EqibUucxhrPCV3SGiDWY/tygK3pg1NHzYH8JYjBQmvP1HL1YkF3fcIxfGqxcrJBsjCf3SolNGorQm0V7cpQ18/S0RnHQT+yNW53Nr4NICYyx5qleNRX2xNjQF0Mseas2aHs9zeO/U4/Ntc2HaFNGsxT1wkOL6gee1nef4k+nbhfqallQZPMjo6TNeJxdWkt0rO4zhm/xFcVn/5GpnfqF1pTdNAC4EoAfCT9IotXX3jqOIsgXSR9yTIFj0RVYtKxeRs98/mZq9u0mf66mKJaLL4Kz1dh20ZoL04O1c8eiR7FueQnqQ8hG2qeF6sg6jITBWgtB8Tkesk4xaYhn9ceX+O+1vpkpxWcveuXTact/eLo5LyfOcV1isTHBbBgrPrWmt7A/x3xhITmkoQmqcZG8WNP2+z3P1LG+Z8EeHKiLsLMASDWxmNcJj5BNm9QkWgxNM9hEmR8xG4m6CSOu4SnceCdwhxMFT7IoYSMfyX2eaxffaw+/vsfvzvwZOcXEJoFZR68UxD9bxoBtxurGg4sb2sa0UisH7ZGIrTp7OZUFHev4c9Po5cX9/FdCdbMuYxOOtmMLczp58U0aGiP75cGQh7e3xfUfFYGKPmfn/3hFBJjvjbPLYPRfG8XPGcamqwM13ICT67zEcBTjFGfSZg4GR6NpB0XKpYccRy6HTwkakJO+HLQwvuhz6kQIuIiliJRybCZGvllKUBDPJqgjidED0SMun/APv/EuH3GLhdUXWC41zGdn4UjVAamFSsxkSrvVUkgDLTWGDNckVbnhtfqvd8qglxW5PlCeXmiffVCuT5j1xfKyzNaLxylIBeBaljrbNVBl9unztLM9Yn67pLmtVAegKcyfONVhTUmppgNjn1jFEMrSO0gsTHn2rUzELQITNTZcFqdHtmWNpPbve++xiySkwBPz31hAWL6hhfS2fhUIq8QJE0etO/o8HW1yEJFHMDwGhWqRxzTODVyxkCPLQTmLPoE/Dn7/UY/XHiWAJ1Mu08OjDVrvU/AgBQgxqdGOfI2vtSjmVsm/51zDGMPqTLqQNrApLlmU0xCE3N6vBAAcTFEnXlVjo2x3xjbG/1+Yxybt4vlRB2i4mBGR0HuaFmQ9Yh9JsiDZkyWV8xGVNW8rasLVLyqbv0WQn+uoXSqcDjwpLU489rcoabtFF0ceLKCWnXR/33D+nAGx6WzLiukM2hngOcJoNvEocOdYlcXJY02zRKadVaq67OowaJYqdPR6eiodP88y8DFJ1pJfBWLtp+wQTYO6BvWN3Tc0OOOjTvs/jtGiIsneBqggzwmcJbE87jO0zjYnAqpw9sGM0BKkXEbSoo9ZsCcmnmuY1awh+8GTotvwrJmBdZ1jGr4smyRc7aIa3BZFS+6qD10TctcRyT3KKqI7ntSSzCF/b1NREqhXRakVWgFbTPMgACdLFqk3RYQmkpRHU3gSQfdHNCXALpyD3qdJaYbSgBP6T/U1y/FkAAlRcb8PIn9Vyymh5qCnciDWLSayun7zuQ72LTZht89wLNSvOU87q8F8ILENLRa43gf2CePvnsmMZ4MKXgraRjXWipWG1oXL07gsUk/ck0M1qHUas5MlXNPuq6IuaBsJjoJfmMTJALY43jAQZj8Z08gzcyn5SzO9qi1Tj+vo6Gj8/r5NWy70mo9Qclkh5H6Uh6ISjCn0z9bMUYVZHX2RSsgWpFdWD+843J7x/X2Cr+B0Qdj26k2AmSAsTswX9XoR8e6IvugjEJR8WmYcY5Z2aTI9AfepnDqoXnS5AXB7e1tFixaW7m2yi+/+QrdN/Q4eLvdub290ffOUlfXUGwry/uPXL75BU9/+Pv83p/+Y77+k3/E1//4H8DT4hXyRCETxKzBhqMw9sH2052/+p/+itdf/8TxeaPu7p9EDqjeJiWZMCHOkP1isunDY9olI7UQhTN0/XkcmYc2tVrMQWBft86SoUJpxvruCZZKLUq/3xm9s48ejHxc00QGyXTyZAiyR8csinE44DALqrHfTxiAsJVnofgL4CL+J9jJwp6MYQkqQ6xpKfP8jBEf9gAOq4WAuP9p393elSJcrqsn3+at9iXx+ADpTZ09hhhjCKW90segD8Mnuob2kB2IOCPBk1rh3fMTrT6BrTHVzSfPOYBgaA+ZgrB9ccS+v4ZPySvV14ENY7/defv8iVpXjv3myftQruuFYc0ZuP1A6agNJGRFHtuNU99Nx8Biknat7nN5SGAdaFNGiFKPtD+lcLlcuVyutGWJ9z3vY/pHv4Rh8weUw9fksYdMtDk4k/bYY8/prB7yuFPkeO6GfD6RperJArZ5BQ1E55pJsWWb7y9f2DNvQ67UpbEsT1S5ICzOhNGRNcsJMIcaA1m1TV08bxHymMmyQKvqvrB3Z3b17vdpOJtbNdrpwP1dDfsU0hvNCiWBp64+GOfYHbRPDU4spqgSsakgVh7uvZC+eliwc+P7jOHzmpJ5pcYeHx5fhV0hfKkX3H2L11K8IJfXuIqDLJEG+uILRmNlXnd/pzJzkFwCmctp2rz5gSSKdEq+EWAaZ4cQJCM3eUyeGRaBVmCtlbU58OTFIaWn+Q3SASe8wqmhVx7iCY21EDYiwKc83Bh752CfOmssWwK9VTkB3nPRqw7XqfSLyijVczdxgH3KB8W1clNXJtg047EAYTJPTd2kBKnylqQXJe27xM9zvejci3mMj95o5sITIGLa+2Qo5gdGpM/8ySlRsTcjBo71mVcw7bSUBHgt1mUeeeAGBLg2Uo/wQUKBjBMCXOPMWf++x+8MPPWR1Fo/4EJ1ymlb5kQXXxgeQPd+Iv+p+2Rx4U/U1y9cjkn2azIejJhOAwS5Ic8FMqPS+GSvBuSCCRHHIvMmSApjApJTGELfII1DSTpjXH5/TAWpByefjzCQCKcJZ6KfGkF8HuMXr4xgyJFFmzotHsSeCy9BJ1NlKZW6dNpyIK0xeqf1g1PfpFLqE1IWar1Ev3SlLC00fgJJ13OCWS7yx4Qi/x0hxzQ0Vh7OoyyORq8X0Cd/Tn+HfH6P3F4ZL8+o3Bkc7Eufgalrc7jxNRkRdUGplSaCLAtDBC0F1tWZTtWn/uRUt94qWgvaKus3X7N8eMfl4weWP/wWuT5h1yd4eoYa7SILITq+s6yrX5PanAkwDjgWil69xbEMVmA1o98OT+aHUpeCSmfbPtNNkW2lHlfamrpNnty48XrQW8k1HtdTNXSUJvrsbQ1jdKfhDkcovPpRTuwzkqPpxMzo/c62GWMc3iJDVEFi2oq7hUaxxtDmzlg79KgSaWeMI3qyDeghnD44dETfvANSjAPBq48mIcQYwJOYUeyIxO0U4SwIQ3swDAcplimcekaiJ7PG70cFreheQBZGvbhA9eWCXC/0vUArM4EPXJWq6lPUjp3j02eO+43+6VNMavIExABMGLJyaOGwiu1wsYIsV57HmNTn6iU+rBY21MG64w3dd2+FVEXErwF9C00AT+4mfTn1zA4YI8I8w1mJpTiIF2BDKw3rG0MK/faZ8fbKcXmG3unP71guT7TrSzhpobQyA4Xt/sa+bdzvbxx9pxTQpbEsy1x3hYo0Z1mFH6OPzuiHU/5lwcJhO7OhIcSo5urMOdPNWU7jRrU72B3dX5Hjzdtvtzdqv2N6OHtGgqU61cgNSuj/lUKTJfSNhC4ZJGnskY5aBxaSiSoRUFvXaLljBtlqHnBkK2vFEwQXNJWMq7wKZAOvoucUFPN7jWeB3p4MS6kxWS20cB6Sz6yDNg1wbYJHGuy3Ax+goEhbqG1xZ1/d4WfA5wHTCLAuknyCGRqsRMMFT/us7irasxDhoKqYg6PFhFp6BB4RQlqyheOo89pLDbaF3w8pLhhcil+RnushKl7kO9QSwdaYwZlX1TxQUE1dIJ/SE7DpjMpkOtqgtIc2yAyCH51kZP9ShGbiLb1xVYpcaVVCANOv3Rh+TcZwVli97wwtIBcfltFcrJkhMSI+7WxoKBABYepNaYgCBNKgUZk2jHX1KY8aiZQOD2ynWHopuIh7YdhPrg2o6m1SrbpuYYCCYjEVVZXefbT39OrF2wL6cRC6qxFbuOjw08ePVBHeXa/8mz//VxzmCa4cB5fik/KkGxyum9O3DYZRpXkjqxSPc4TQGioOqZoLM4uCmHCtS7DMwn+KX8O3H77n9uknPrfGhw8fWJaFP/76Iz/+8AOv/eCnt1cKhbVdaLLw9PyBy7t3XP7oD/n4Z/+Er/7Zn/AP/8W/oHx4h7480cPpVcQT+eKxXJPmTLy78PkvP/Prf/k3/Mv/6r+j/+Z7ltcdOXYqG7Vt1LZTzNkPNgo2aoDIHs8UOZMpIBjAwQifzSUZY4bPLSnca0E+MKJ5FEwZKMWEQ5Xny4XlurK8rHz1B9/Sni7IdeGn18+8vt347vvf0tX3ZbV+2sf8aFFsBKtuGGtdqc2niUqWwAO18sTyZLvkaZ3slpNfnFV7lyks1NZoS597WHrErtrdLuT5h40wxHU3CRB2xHXoJViCFjM8PM6TMZxlNhL1CPApAC0dA30lhixsHqdLyDxUY11hKYXL08rl6RL+1dtYL2vj+fmJ9+/esR+d/RjuRCInqaVRotXL2NnunW0z3j5vrvcnBYaxvX2mFOHzp9/QlitLW7k+f6B3Zd87d73T1YFMWDArDpKNAx3Kvt95vf2EoiyXxrKumBnbvvP2+oZaQ8rVfVkkghrRkCK0pdHqyvsP7/n84wul+OQ3k2Q1+5orePFFh7KbuiSFVu+K0IoulXWysMCiHetMOCOPsdPOJgMjDV/+qCOKxeqFgWI+jCFbfsJYOAiQQAih22oe69QW9qI9sa7vKLKgfaFUo5pSTUKjb3C7bx4hmnB53rGINb1oKUwQNmEbCyAPcz81NGynx7imOynnUkzou++1ZfnJWy9NGDRnXR3K2N6C5XRMOQgC/PE0LP1ECXaoM056H+yHs2L18Ph9xvC+kxg6QopIZmHZ45GkMsX5RQKWuRoSFihuYSGZJkwmlLhT9qFMRYO57nZzgpdxy/LnmYqeye65BPB7pwEyWHSknPcAfCqxsDZhuztz/v1L4z/4w1/yfL1w3G98X3c+vR5sb87oN+r83MeMeIJihjNFrbhczjD23Vtw933QVmFZKmaLM77MZqxaqtu9rp2hgz6OCayfIu6ecxmuxanKLF7WuN7p21V9uEgOLrG8R0awnPzzj9Gnn5/AT4BMaTdLaYnf0mON+ufbBOe9Y8N9SU7qKxEnmznr2qdhF4LdMO/Uw5UMuKTN3PKEGKMrpiwuuD5Bq8Qq3DZMskuJYacR+43uTKbaaizTk1zhcebihc3/fwNPNlduJMqh/9OiDcpjtGA6aT8DUhNcoNeTq6n9FJvabVWeePwYTtSvYonEPA1lon2ZLGj8LnagedCUk8jigJmIEmc4gYhXPYJPbljiVL54yM+QeXCPgUoifqnnlJDk+btENmUigRN6imD6RNxyFXC+dyBsIikkqxGTuGhjM5DSkdICeIrK/dR2CpX50JUwOVE1eWiNzAp+nm1gaQFanNW01C1IczpBwTTGIbg8lhW7PlHfvcc1TO7YupFTXIoSlcBkWrlx9kvo7X3WXJdKrldkXaBWLLShhuEU71aRZaF985H28T3t4wfKNx8o1ys8PaHrEloIMZkrApB6WQNUkKC+FMqlAQuU4T2B0RrRzZMXp7p7u4pP0xJ3ihUfz0qJlpHsm4394JZqOkBfE4PRfdKQLy1zNlGi9KpzIdjp0T0hFQclS/MkWU09WRnOlnChzBLUADcOh26Mo3BEpcjUE/veD6eGq08x8gqvevtciIWnHlQpNt+PAJqsWPLiAW/f8WSB2AeAaugTKDkxJK+DqANPJQNTE+gdPVzYdNzBpEFZXMvgsiKXC/1SvFG7lVN4sUDN8tl+cLy9MbaN/vkNPbwV8uxLDhCTGoHzgD6Q3ikxVrwhtAiyBzigpa5R1SwAERtUc9YXulFCe8CGV4CSuZdRoKVYLM4cccDtTHCEgY+ajerBURgMts+Fcdwoy5W6XklJ8LrUqb2w3W/sx8623VHMx8WuC31ZJs37rJJ726rvPQ9uWx3ejhdgvHfONmpduVxW7zkX49juYN3BJzsQOyi2o7bFFLsjrpOGqPyIQsQegZbQlgDAiT2iA6UzpKMUTFxDqkTFMkmbbifC/hjTnsyWgrhypfhI8GIeIJbSEFyY3Yq3n5oNRI7YjxbFBwu31JBo1rAU/ZcaYIrl/6dmiuCTOYu6HVNT13MauVeIa6He3vTAWE/2AebMAG9bUCZDNdZGBpJSGloW1nbxVgM9Thah+b43M7QMNNZJTtEEoU5sx85CQKzVbAuaX1K8Xmzp/8MnijgDNda3Cw271oO3k54VPTdjwQCQOv1/BkU+QctF7UtRUjR92rz0RwQDVQSW6iOE1bVsTH1NaB8B8niRw1vHKym4PMYg9Wls2GQoTHuULMQIRhd8e2qAWRaBok+y8nNMPy/Trg7M2gxovY3e3/fd+/f0fjB6DyZiUthjCmJ3UMjboaMNJYLrEi2j6QeGKXvo7PmkUZ9Uuz69oJcre1vYMrkaht131wrC21eqVGcrl2Azarb05ZqrbqnVQdBaCk2EtS2zJd8igcLUywylQKu8js7SGpf1QrPBy7pgHz5w/3xjHMrT0zNP795z/fprvvnTP+Wrf/7P+fBnf0r78BG7rKgsTID0IUn3yaaZ7MIP/+47vv83f4N8vrHuB4zOGBvFdoQD5MBD+dTh9GTRl7/HAjPaivgnK9JndpZAfLIXzuTCwoZJWB4rxP2MmK8K5dJYX554/uYrLu+eqS9X1v41L/eN+tUHPn/6zH6/sf30PUIwDaucQ0iKTkavg0TFg/9az2QtzsPXtXM8kl2TU5NPADdiLMm1aohkKyJuB2OAR4vzUwU7AiQyQ8hBDAE+aRaLA7zEmUdHH8gB66KTxeLDRszjMJHZ/mF6BJOwINYQqZgVlhgRToHRD7bbjZ9++J7WdopcsTF4uqzw1Vc8P71Q+k4fPrFqnvME6MqMXyxz/AghWlFqGQhb5A8SdpU432VaJA/RfE1VycQ2/KqddkHC7m7Hgd3vrOtCTvrWXHISshbuuVgvl9meN6hkUcomwnDmEJkgj+FgSwm7XlqsceyBPW/zNc7e9XWsdq7/ZOfMtaTMNhtG5CIarDtOAoGanQWgEMiX4uBBaQ2k0FbfUxIMKGu+19QqR5f5edqVXjrHtlNk8+tel3kdSi1Umq+zfnFOzzhc01UH1sNXWo6j58wLg6nd9zuFFtIvzRlXw2JQjrOISyTxRQrZueSkhgACS/ggU/o4v2aBxs7lh8iMVZJ96Omoa2iWCAaS+eSTys4cMrYIUtPT4H4+XbKd8QQxS8jmV2TJcWsdtCrTp/rj9LVfdGrESeQ5nNYuOpUiTnx5Wvjq4wf+k//on/KHv/wFpgf/r//mv2HbN/bjoKs5w+9x8WYsJ4+fm+QNz8dVFTvOk7Nor9tuGnvLc/Y63EYaYwJPEALlccQ5Aa+Us5PIcu0jYUf9d9li7747imp6Tuydcj4EsP5QLPN7nrl/xE08gE5DY7hPFkIlSDCxn019iAgOipVaqSUmuCa2QHS9lC/fJ88hKxfZtul2pgS24VjNBLxmnmlzzZw3yNsVNYUNwTXEooA/NIezxARDvniD/8XH/zrgiTQ43ndbQpyqxCLQB4aEaXdjaRJJd065S7qdPTiHk3bmVZeszoS+SCkEjxAPVuN1pjgW/4CySYI842GBpNGYUbcHMOrIok83OAlk7qMyKbTzKw0Y5w0jAyHOJHNSsiWTo2yLe7yiLgyeBgqIxHSSN+c9TDQ1E1jBgYeKQABPGsCTT6PwHtiS4rpFot0kHbBMlsHjIeWkO84r7ZtETnOTW9mvazkTaamoVIYUxrLC9Yn2/gNWXMRWrp89MB8uxibV0duKG1nX2sGTn2WhXi+wLtSXd0i0p4xw7N4iaT6ufl1Yvv2K5cN72lfvqV+9pzxfkecrR+Js9XSSYkq95tj54sygAJ5EHHjSvaL7gKF0cz0GNaNax0Y44jhmbYL1AuJteK1W2lJDCyo0XrTPn/s4GOqg1v3tiCTaXKw6A+3Y5HNsZSa4Fq0wEoGnCPtwGrjZgaknBlRfG6kzNjJhJmFbf7+j75FwD1gaOfLbxuFMgHydnKCSRs+6W/P4OWnDYQy9hUznXumqCB1iAtwMsNWTdxnmVFqX22Jsg74PxpuiNEwa+/2grAtcVvpafT03ORmQJd9T0f1A7zt6HPT7hnU3nLU1b+2pDV2CAo9QoiorAT7VYCw0yStloB0ZrhNVrVNxxle1YwJPLno5Jsjl42nPKy7J6iBsJgmAeJJVrDozg6C+DsGss9lg3y7OMGzrdNAtwCME9u1O7wd7P1zAvjXGcXF2XyTfpfn3uixQFtdOkxhuYMqy2Eyc+qE+6adeWC/RVsvBsStGR22H+CrsmG6IBivOoqVyjCm4vh8bNYQPZWlzHSTjdDDooXVlxcHeaAp11k7aq/ATgrcsoslYjcCtFKpJfHkvf6VRyup7C2FIxXmczVtMLUTZI+EUfNKQB0eeiIHRp95FrG0lglQ/xpKgvHlrrgbIboAM38/WFVGjqJx5L8EYDBaGDJv2eRYKBBcnLoa0K325cgT4kOdfLICf4rZ8SPTbmwSt+lEk9gwyJxgU+n6zvavU6RuzjRgCpJp+v/h9LpH0xgQk7UYy0XwX5HjlLD4RgaPGZCNnjEo7g/JkGJk4GxYiaKwFlcIYxUGVSPb64S3Dx3FEclVo1Zm+iAdKXmiqAXgFk43H3LSE9o1rR2WycByHi3xrJmnexvcQ4aM6kNBxcV03X2/FPIB89/4dx3G4vY4K4kgm3eg+cTL1o4yo4JuDsNVF8JcEh0OTRPvhe+xQmjTa+oQ8v9BfP3FvC8swet85tp1nIbTsGhYDFWptlGxjKCAtY5gK3QPPKoVWCkupXFqEjOmzZLh2TawZHYW3tzdvEblceXp54WlprB/e89v7wdYPbyl6ecfT11/ze//0n/LVP/8z3v3Tf4I+XV10HgkA1tfNmDILhRZVftT44S9/ww//5m9Y7ju1O/C0jQ2xHZHDWbnBvs0pYeVncXHGWxOUIdiG2PylJTM+q7kPCQBhk3wze1uM4ck9DcpaWV6uvHzzkevH91w+vPCuFLajs379Fb/61a/46fsf+PTpe6p5RLVUQVqhFqCMAKAsxGDrnKxrlq2ZEZFaMgA8p0625dG771keEg8LrbSMLSTiDXFQohZv01Axeo+BPTHZWnAmywk8WbSgncycocpx+HVpqyf2ZKgQchlO2vKfux4eT3VBzAEao7CQiXnh2Hf2A7p+T6sbtV5p7YnLZeHSPvLu5T0cG/djo9DP2PbvAJ6KugeS6q6wFaOVgbDjTBZxyQCLETOyBHs0JBOCfVNjWmIOR5jX8wHA3o/dY+BydR8sNQYgOXOitIqog13LeqGtqw//CTDKQeBcp5mgn7GhBiMh9bZq6zOncLZGMjYIv3Xa8nMjxJqdCXPcq0jEZ9NimanvzIc8SVA/NrEJhpailHqANJZD0YuEtEel1PAL6rFPsnfGGEgX9n2nlA0pC43VC5ASbL/iukiMqxejxqDvm9vyACztoUUxoIwASjp9v3lr1lDPleL5OlJAOeGPmBqW+RneOihUGJURkw/7GHRVb7vOwiwJQDzkdzyAknLq+6Y/Fgmgq3rcIhFPOJYgPkAy3rCYswoNQ1qAD2q5XCJwdf+pwez0dTs3BT9fAnmO87VnunwCT2kjs+Cgg5cPH/iD3/+W//Q/+9/wzVfv+fTj9/zX/9f/C/d9YzsOhjnQOpl1ySp+OA6b38/iig2iNd/jhIwJpIZNlFhn3cOQbIVVG65zJDEPq2TBrZz5/bnsI+atwdROB0MAT+nzdd4rM6asgwULPt8wbeZ8XsQ2LrkQxYAJSMUKie2jD7iNA19OIvABPzLjpwQDT1aTROyZAFKSUByXcftuJJHFEBeZm/7iZEU94jx+XObaig85aca/o3cnh5QSBSHjIaj9X3z8zsBTqVHlKNUn2LVKK+LtBcFqOA7XjUGyBSCuojnqDY+jJu28WbVMcTTvGIttL26kyaB0Rgj5MEgxrIcNBX3mw9Xqg8M70UE/NK/QfDHZ5HFVBr19bosMwGdAbZyQLbN9ok7tEUigTCMJPT8rmA6JVOaKC7r3wCtJc9JPfMjQvDaESH6AHrnYSrK9ygwEHJWUoE37x2occyauAh70mT20VeT947HjMRIyCeAppqnV5gk9FVmvlJf3PH07sMsr2j7BD68MefM5YYd5q0Zp1FnRAbs0rDXk+Zn67oXydGX96gPl6Yosi09eisrcfSi9CqM1ll9+689/9wJfvUOeLpTnSwRKbohKkWlUh+xelysXrMbGvMSEmLbQtwZ2MPpg63dPFk1YLRy64WJq1R2D9cPFfIuwmrHgzUHef36wb69RFYwWojEYqmxRmUdA2hqTIS+UtpK986N7Ytx7hxLjfxecPVAKxZTDPEFJ4GW2SQ4XDe/HPo1kSy+Kj6GfQGcKbyfYGoGoVP/Zxfo6at6ehwVJPAMvy5YaBwbt0BDa3uY45BLtdT5AwigjWE8dZ4d0ZXze6W87x/1Ad/PKFAvj7Y1RGlYqtgSA1CpU8b7tADGI97W9uxbM3qNy0HhqC7VdKMvKXaJNRHyPl94Ztzf2n35A14W2NnQRTHf2+2e2z585tjd0u1HliJbADRk7aIexU3TQTAMA4Exmco91CydVYhSxU3mkLRMkdnGctIUG7Ni+I8PbxkzqpJS7s3FH2Y+dhK3b9Suwq1fgxdBSXYhcHRwtCFo61Xy6GfUEykuYonZ1xlMpkbgTgvHVK/smeoJP7KjuDN0x3Se7x4b7hNEPunbUiuvE9e56C2aMYHOaeKWfKlgtWHVGnVXQhrfaBIuqmAPHKj7prmu2UCaDLoDQ4pyfKoWlZrW50nF9K2R1lpUqQzJY9wRrl82ZM9ppzatOx3C2in/t/hnBmElrmcFcQVhkJd2P61wX2KGuLsYYaa3ftVJnMpvphmSQHhqKtV6xdWDXZ1YRtu2VNykce3XxfGlMiajqGl1KCZZOfI2HQDxjhRmkJLXMr5OUSqOEaPJZRffJPYBCqyXsYEGLBOtHGQlsRWBWimsPEsmqGbFvzyBOCiwhqC1IiMh6W10pyhDjMMXsoO+7t7d8/pExdsbYsbC3275RasoAOHsN8Dacw49lXZZpY1tbZpLY++EipqXQ2pjMJQ9eXfsvtRhHP9jvtyimGPdtx8z49OkTl+uFdV25XC9z/xs+4eZ+u6F90FpjXVdq3hEVOILBMIxmHoYv0ri0J5Zl5XK50PedY9/51O/sW2cchnWc1Uvjl3/6Z3z1R3/M8fkn+g/f89u//Av+7X/7/+b33z3z3CptWbz1WDTA4EpZhLKsnowN0MNYi1G70MwFw6t1bI+E3oxqzgowDV2ZeG2VmLHTB/p2w3BB9jo6Dfjx7TO1/QHvv/ma3//P/lPaL38PWa6oVgoOcml3AyoCh/r1awV0B7kr+ts7P/2bv+Dtr/6Cb5tyjDf68QkdbyAHJuPMvZRgE3oCXaLin4nP3LUPhbj6wJB3IEnOzR0vKxHIO8MILyKoTZHwve8069gifPV73/Ly7dcsH99xSGEYvP/DP2T5+JFf/+pX/Pa3v2K8OVv2clmpi9CaIHSkuASEDz9Oho1GMmczOVLLRnZmvG1AHy7Gn8kuwixMOfgBdRHXwFOo64W2LlyuF47eebvtdP3MvjkQSRTAam3RRuLtMa3VSLi6C/vvHVW4XBs6Ctor1gPwkSg8Fo8fl7YwEI6hoR+poIX9DmOprJeLTxzTA5EntCqtda7r6hP0SuP3f/n7LKZ8d78h/c5ETspp6/pw21VkcU6dWcQ0O6aVIrvb66HIuCLlmctlZV0Xtu2G3MDYHTzDW20TmF+WxQup1QWQa63OwNzu7Iei2pByIGWBmDTtAPfC6A4wL+virKf1wlFX0IjPAuhW8zZ+RILF4Sx7Mwf7hw16q2dMryfolPs2dYgeC89n4T+eY6eDcJBsRIupkFM3S83dAS667uwtcuuYs1BH90Lr0Q/PG4LZ69ftcAmD6JIZ3QHTbXsjhxuV2qCsiCxIuVDwXKOJ0GPq5Tg6qHBsB5Rg2OGC9KUYRVKHUdFjpys+ubYHw9wcDPRL68VXTzeKT9+MhL2VFfA2yzGM4xgcEc8/XmfDtR3T15biHScmOKibbJaWQIuGLI0XBjJZUdfkIDqhHdgTQt82bY0wiheatCZEKcFYm2+fuuTYhDEfc8ufP8ylEhL4EiYLLM8z450PHz/y7e/9km//+D/gx9/8mr/81W/56+8+s+3KMeAw6GahMSTnNX5IKFNuJgH/bDJPtim4jtkYsB+7D86pYSOLIUUh2KGluOabD9fBi6biQgojJjfPqbYBFByHBBNISVS29z00DMN29HPWW7bKUaebiPfTYJoHI7vn1Dt/Ui3eqtaHhYRDSN5Ubyde1uaT7CZr0cGmZVkeCoNMwDnz9FOLL/LZAKxmITEBp8jbifhbLLoj1NlYKQ4u+PEYSldxbd1wgJbM8r07G7DC6NuUkfhdHr8z8JTB10RoCcEul72PyvVBTuPSBJ4S0gvnlA/jZDxpWCoDUq1fcHBiLm9LymAid4/WlECS4xeG7zKRWdE8EdxTNDJbJfJL5meBSdLHHt7zETPLzxKvzklQ4b4AruYmsmkB5qaVwtlqd4JXP3/klIkv/h2vsECfSlZy5rHGcT1WmLPdQs4zxowvJrHl1wnRz8Pzl0Z1gokJg9f7z/tb2mRmlOsTdEWPQVtXWA6s7dRwpjUsaPa5W6uwLMjLlfLhhfL8RPnqPfXZgadSayCuOXHItTrKyxV5vsDTiq0NbQ5kurjseWKpNEJu0OypFrwU6lkqZSnYFmsUb4XQrlj3iVC1LFTtFPNAS82QoZSjY9vmbWyHcBybC3cfNzIIEh0+4cs0RHJ9jRRptAILheVhWsqBOuOqK4iLcpayeE8yQfuMUeeiwRYIY6oh9o3ZyTaIvaTZlhbXIgl5RrwHzH3uwsYn+8+mR3MkPbaMs48AsRKVL52tfKgmTBnH6swO1JABHL5O+n1j3HfGfY9+yqhYD8WF9CtaW7TaucYTwpzAl4xMOZQyvLdfzNuualmoZfHrJ95OZ1KcybBvHCJs64JeVrQv2CKYHuz3O8e2M/YdPXYKrnXF2LDhQRN2Mk8YfeLRjnEHpTg1AkqmBCeQjfjkLQ1QPLhi8/6I+v0XBGJymCcgA6xTQlOHUin2guA6TklK0XLu46x0yAw+M6B8+MrrKNWDm6ggWolgRwyLSYRGZ+jhmkajU1WzpO6viSDHss0Rpw6Lu4Vp+hI0mRpIyYTMaxXgrlia3mg5JoSa9VxzasYmlWYAlVJXP6fspQ7AyxlOMa0m/ZoNqgrEtMoldFWKBug0Osex+N7qzuRzWxqJGcVB4ofgyqa+l0Ql7xH0TyMk4Qez8nQGChJizr5uGpfnd0gVdGzAQKViQx5sWgSW0a6uiFeUNZhmRNBkWSI9g2tnHPuxFpMIOE82F8TeFYNoF8h1okZU/CqGouKT+yy+lzhfn5YafiNYG5ONMl27M14wZRy+xmwcqO30Y+fYN7btFqDTAeatd/3YkQD6l3WBgHaIdaFaaLWwZOI3QYZktwwfkiyA1aC7n9cHzjikiEApQYdPbaaObASYlq00wv1+53Z74/725lxuAbElNC4No0YbiU810wemQiuNtS1c2uo+VQZFqrciKajJHDTw8tW3PL97ga++4rddof2aW1cOFboJfdgsds1gNeyEi7QadE88RDspGF/Ak09NdgRzrWkkM4pXas0ELcOnzopgvVOLsLTCARz94LZtDHJUdPPPCSZgfQB6ajimqjB+2tm/f+XHf/XXfPrVr9h+/A1sPyL9M2W8sciICr/Pe5wrKdsUZcwg7DFh4GHbnO2T+bdz3XtcdS5TAb8WGoK4ZlEUPBkLfXQ+3z7DbeXp5UK5PpFaMZd373i533n/zbeMtWD7nfVSqCWGiZh4m3Nx5qXhAEVyXjR9RYaoWdUW+eJ3Z4urnMXPB42rEqLFDhwIy9q4XCqlwbDB5dIC2LUJCIO4zlewTJ0pWpydQsSqw1wDplXW1feehM6WC6afe0iCiagWPiKFfEdMyPPeT9DhA13wlm+lUUx4uj6xrhfOViJm65ehPjdUmUnYNDfm48L72FHrmFVMfPJvK65p23uK61pMjfI4cujwQtDwPCN1WFKLK4FrE9dT9DGmSg3ZQi+IBgBoGmD0hevTE8ey0s1Zw+7AI+quEgm2F7n9K4Y44QnyIzvj0aaaOotjph1f5Diep/i3SPgtV7nMGCAvrqmFv4rnJMsoaurRMeXs29GDmQ8WNgUjdBCDmRg+HHx4T2uNozXaeon4NQE1P55aF2gwlkFrV0ZTat0o1RmvwyuaEFlOFkiJ4rrSg/Xk19aGhRGUmS6ljYzF5PfZlONwUKH3BJ3ORCMn0Z4xNDP2tiK06mzi2mpU+vy+SLbYJXNO7bQxeI6bwuUj7k/gwO7XROdQKES8hgm+/sWm1IBpAotf5tD+o5+4g7JJCUhj5zGjzvXi++jttvOb737g//Pf/Q/88Nvv+PXf/A2vuzk4ZzBMQt31PJfH2G/uVTL2TesrERRmHl1IbScHSf27T+g1Zy9Oxpcw29DiIos4+WLanFhJSJkAbe6ZU2jfgT//WxA6EESSufagwftwMjbPw99f8j5YMgozfyKG2/jPrVWWJUD8kgXhnH7tTkonU/V8ZHugX8JkbhGgq9v8ruGb8twtmYA4qSPYnMl8lFi3pXj+5N1sAZjF8Vt0LJiOsOHC7/L43RlPGegXPPkPnRrn7oX8qe5nsmkOPHmgH1RNfbgp0ZrgN9UDBD/dWDklhLYF75vmXAg5vSbP0S+ji3N6MGsR0IIOD1xNfdP7VLwStFniAqfBiMTRfYMHjVmhjYVzMpkiabCoUX+xiR4AjTgWZxjbfC8imIdc0Pnyh5OKx3hABSwvYD67lIlbZ+vEtCcBFp6tDXmNbUZNJ/Qk00o+bqSSKLW4wGl+vAD6c9AJB56kLtBW6uXJBUz74FhXWHdoDRnDaawUp2ADg4KuC1wvyIdn6lfvqO+eKV9/cABqjWlQ0dY1+gggtCLvL8jTijwt2FoZMdpx6Nkalul1pfiSzda+1C7Kdp5oARzVkzifpuQjW8d2cz2nZtR+uJGQU4CXcGZ9E7oox373hFx37y8WCRAn2Ekj9ZsE6T5la7EQcJVkPxwcGgKMemAVSlVKVcR8fK49tO3UEYml9qjoHJMxUYq4dpWNkz4ZAJSFlyxxn30p9AkkM3Vkck3bud5iD0kEBRLryswZVxZAScgLuvN3jwTDkG7oMdC90293jvvGuB+UEWw+XMwcCqoVleZAUy2wVKyKA1EQk6UukV9kvaYi0vze1dVHeQMtg/QRgoTHQS2FfllZny70Jph2jv2N4xYT/Y4dsx3lAN0gKnUESISZg1Gxz0poyuToWin1BLQjaXDArDqIOm+L21hfLxE8iduyoiPEuh10Qn1suIPQC8ZOYaWKObMmAC17MJpZMYFIbDIpKQ5yOAPHwQGfPhnsKUmf7usihTNHiNT76PgQjldPRkVqVKMKrjd3FhrOJOkMmBJ4crPoo74ntb/6rpCwYWIB2MUaOw5nMKkJfcCi5jaquqBpqbiDjGTHRdRDDWl6YfU2veo+rEUSsZjSg0Uox+4gSN+xfj9bzIez3UrY9ZMVkZPYimtKdAsaeIIegjO/StQZ4ixzgk7x9euSfStGp7aCquu0damMgxmcgLM0Yme6DwrQQQJILi3+JoU5HTXbFNTXSE2ukwhqPk7cF3e2HTloV4s4Gy8q5BKB7lwlxbxtkqz2Orju2On0iNPE+GnEyGODY9859jvHcUP1xhgHvXe27c0ZmOqMtWSjeRdcZ/TFmX4S9jkqyKwLpTaWJVv4bSZF2VJXioQWcGFZmq9Vc9YEsV5SamBdWrRQu9zAvu8cvVOqs4GKCLfXV14/f+b29sb1sro+pjl7zwHZRilO+6+ibqfDj1WptOpC/106hU4tjdoEk+Zt6LGFyuUblgIXUT7/zXfQVvaB62yo+GCMqCPoULQQOnAy38NkINZds22GM+6zLa8jzGSm51qTMicvDRmzyq56sFQfRLOpsG0bnz995n7bqN0ht9Q+w5hT0MyCvGfuJ7Zff+bHv/w1f/7/+G/56d/9W7Yf/ob17UfYfnDgqfQoVRSw5tFNBPU+OfdMRDPYeQyVM1k8iy7hI22mW/Mg5+vC3oFFy2yJyYYeJR195/sfvmevwsfnC8+XC9TKQFifX3j31eDb3/8DtqeFcX+llfD16iwOT3KiAGbdRePDdlOKl7TymMtZHMywzkFeOYHSjLvjOdkBkNXxUittrSxrQQzUGs/P3uIpAlv3YSZmsLDG9Dm31UVqxPQa7SPK7abUVrlcDBue/J11rASfary2MjSKhuNMhDTAUtdd8gEmIp3e74iuIJXr1VmBZplXMH2H76PhzHAEbTKTagP6ODi6OGhMw4ozr2r1RTlGdzvDoAVLZYzBceyMEVOJI8mr1YHtFtP2TBpGDU0+Zw+tpbhftkIJPaJhzni6Xq+8vLzjvl5Ae4iaV98DDK/tlnMASpGYMuk7zWPFGtp+kUznKs/EV9WmDuUXeyAAocdx9FlwTn2b2Db+c8Y18QY5uTrdmsT9c+b9FvGBTP6ssyxcL9PztI4O6MedY3e/e7mubmdlPfepCNQFTFgWoy1PjMN8qEA9/O3KQDggBt6kN3TwPLSIRw6iGl64cTTQYyKCAYMhlAnIqcK+q7dND9+PzELgA2AXxmQSHSLnbMvia6S1IGxEFhbxV6IfmR/mPnXg1NljI4DYuGwOSIlR2oKpT5NVFIYFKOV/1xL38CFR/MICxlrJomVNGZsoVhoOsGdLnBn8+NMbe/9rXm//NZ9fP/F2e+O1ByiG0PPaMdPOmU9/aXnzOVHkJO4HyfqLTF29yCPi66dWPLZzkiRFDe1pD8O2RT6V1a3Z9STOQhrjwASWpU49R/DavITRdxA5Wv6T/ZeEtTyXzCni2jB1oU721vQpCTxVl36Q+PxlaSxLm3sI/DmkHRtfAk9mTsSorZI0kjlAolRaDJGwcUygrNbcy18yvzzOd0mcEuagFJ96qxLxQrC0RHJdeLGuhD3/XR6/M/AEIQxsxamwfsYeHCXyhbfgeE/xSQmVkuJ59UQTgSFpnaLdIiq7TmMFMdceManBAY2EZbgzsFl9CAMaFWdTsGgLFB0+OrxUqqxoKMXXmjXenwnUii8Wak4KSWH0aQ9mv7zNX+Z6lrhRZ1XJn+c39SQunVUCF1F8ALTOeAj5O+5hGsJ8DhbGKl+rNq/fXKhxr8hqZgYZcV/cdzx8fkT+GUxlE4hfr/pgrrJ63qK6WJF6QZYDiZG0VjtaFroE6p0GIACKUV3sd9SGfXyGl2f4va/g975B3r8g33ykPD1TloXSCjp8elgZPlWBUpDrBRYHnbRExSZG3qeAdY2Ao1DoBQ8sag+jVRAWWlekd7SKC4qPAzs22De4H9zfdmfLLBfK7Q6XK/J6Q9uCirfWaXMKsk/WUqp4tXL2/ucKyPUS11J3KJtS7opc+7nmtjuld5bdRWdN7uw/3RnLxXUQYt94xhGgWxVUdIJctZ7oeY6K1e7jZtNMtpgCU6pQ1Kd0WVGoWU2t1ADyDitRefHAIhu4Pbn278dto28b/baxjEE1YxHX3nFwJsCmrq7ntHf6drB/unHcD8bWvemmDKQ0lmKY1Xh/XJ8IoSy+h5wNd7ayaiD8Wzc6HRSW5cK79x+4PL9Q7jfGcBFreuc4OlvvfL7fKWtjuVxolyWAxw0LoMEBhxtFN9A7IgNEvaIUekPj6CRLJ0WBZyudqGvijANKRepCC2BM6uqJp5pXdSOREXS2dNEPn342DhibRx7aKaLeFrdcob/3z9pdL0mqr9lsAdEh0Ls7xqJoAJOmrp0lRaFZ9nbgGYQDK6P79Ja+H4ztgN5dtFgLhRY+INYEnnxJExo6AaXyALYoBVNPXEpMa6rSaFKpnhFA7d4i2Nqpa0W2ZIxgbnkwUDSc41C6Hmx9Q+5vtNtn2nLhcnnh6eWDT9uB0BIJnxMAfcVFUdXchp3jy83tiBntSTHzVrx+OPgxugPUWa10jRpPwmlZGdfQhejIcYRIdw3avPfB1dZ8WmP8zWq0IK/eKlmLcGnmWl2RXO73N26vOKMygG1KCQZLSXIjHO43kcEIptywTlman2eN9t7iYBF18Yp69SKMxxY1+ywcvEMmWIZUpMWYah0hdtzpA7qpB7PVNRdKrVGBVqxr1v2J3BU7xqSjr0H676a8fv4UlHDlsjQPRENDS4vh2l0D0cFx/8xNO7UttGXl0nwa23WttALo4L69Mrq3r6plaFzoRwS9llXJSOCxADGEl+dnokbB6Cf4fAzXNru9vYafhb7vEECTHZ0hGweFenlyP1wq67uPpCDo6/3GcfgE0tftztu2UdsnrHulvj34/b7p+fPtwEEA45fvf4H8/j/E/uS3LPdXVhu8by6db32HfnhbdGiXpT0fh1PrayssUpBsMTW3u7WeSW3Ij3iKLw4qDEcUI5wyzI6QHlEWK3z+zXf8+PnO/+l//3/gT//L/5J/9F/8F7z7w9/H9VPg2HZv09kG3/31d/z469/yq//5L/juf/w3bN9/T//ub+CHX9Pun2H/Lbb/iO53b/WN7apWOblkw9t1U0xDPB6VDLkk88Qvg65khGWJJf9qclaL12QIAjEegSrC9dK4PF14frmy7XfGpx/Z/qbwzbKyXJ/ouN7g5d17/uif/FPY/wg77uy3V/btlWO/8fb5B/r+xjjuDijgxZhs0TGY+h5SEkD2hOyR/VhbDpM5A8uMYwHfZ8PPslVDe+ewjWVtrBfhm2/ecbls3G+dT2Vj9AgUZZwXbz4kGCUOcgw1jovRDy8E5+dq98KmF607UoVlvXK5XHyyXW1s3TUx973Tu2EUbNyCneKMyp0d0crtdmfbO2qCdaPIgDqCxeS6U12dFdhE2EPPxQG0Rqfxug3aYkg1brdPwAbyPT4gwOtbtQW0Z8rRB7OpQqOYCazrwvV64fn5AnLBqOyHA01QaZcWscDG2/2VfhjHIVyfrnz4yluX3n74LYQ8g8Rxdj0CePK7n3EGBNvOieEe65tEa6Qfa4l4P1lSCSZ5oupae/0YAaD3YAE7gGUmc+sgfttd6iNAp8IsIEjoPJn4uuLY2W7OlCil+AQ8JNEHjn5Ecd01mNQG+83AOqYbrcGqnRXCJ3rbXeZPpa5cru+oZaWUlVYv7Nsrt89C5aAW5WkJ/cRgac/2VM1E2gfaIBJt7URx7pxq5liBs4NFljnZOGVlJpZR3I7UGIYgCJjO9qd2Xam1srQ2GUw2LPQr45jy88K3uj5sMJ4IXXRI3GAW0igF0WAGIWHziJgbrHt+IFUIzQS/F3qCsJkTFHzyIA+YioO5ThQIGI+3u3Hb73z/+Vcco9N1cLc1WNKP7O1pVP16PABrE7jMPz/YEsGZ78moczkYiWtujAitvbBolAb9cH9tkiqrOMNbfTBI6jB5ztBOyRCS3BA2Ktk/At626e+b37PFjQB0ESYYlafcNbXx8Im6CUSpYycOAHsXy+XioJMznvKWOsECkqmcAKjHpo+DA/LKtRZDGTi7WzzkVqBzyvH4AQvBpBwlOma8RdvtT2A66QNL+Ff1danDc4oh6hf5d3j8rxAX746kTqQzLrZ2ksoqeIWOrIzmDZ7V80fg6ctqa34vAexYCoklEsfZtwwPCzPuaFY1IGjgUsBcllLUqdwa7Thl6k15BSFppQ48RStesF1UQlwuohMJR54PsQeqqsAjlTkNUaLglsH5PP7cPPn8s3Jwfs9Fla85F1cUGx7eLQL3+Rw5F2oAThaBtEXQNbv9fh48xGJ2FllsvtxYaUwJ8d6YoGfFNZKkLkht3sYEAQB4EjHUQkQTr4hLYZSCrg27rt4y9+Jf9nKBlyt2WbFlcTHpYTDEE6yMMBfvq6eY02eToKM22yBFchqHg4QaSb2LaDrFvOrJDis4M6CGU+Y46PfhQGHdkL1Tlhv97Q7LiopXrGwtkWx7oBKCRqS4+BetTfOIBCsHo26MtmHL6vfGjH3bo7UndMuk0Ku3i8U8ZFKbpbQlJr2BlpONpDVYNkVO/YQxgklDnL8F8FTmmpI6vBc43ytaqKpjLWfVMumZwwFns4FuAw6ldNdcKmrRYhjr8QF4GntnHAM9vGRRpQVYEeLzklO9wmYE4EiLkeStOjAZGzUpuFac2X5Ea0gXoUthSTA8JqcVHUgAAdPRtMUBlSJIaV5dQ7GxIP3mNOg+XEskS/VZ6dITtCX3j+H6H+KUaBvO2KuLIou3jIm50ZfIGdyEhsUNxpmMjvQDGXtMYYlqofz/WPvTJkmSJD0TfFhEVNXMPSIys6q60Q00ZgAaGtpPgyXaf7/7P4YIg9klTOPoriOPyAh3M1OVg/cDM4taVPcCBaL1bq/08MNMVVSEj5dffnkg2QUY2wGyo2JTHbUMd1xO5VZ7/ijOblIcPZrBC0Mh26fZyG6T2obOT7q1XKVh7W6DYowr69mZrQBTdDts2tSKELoaGDzwKXSayWQWZ/OlrpSuXn0zvYWo5CoRqPUpdikM1ybw1pdhlfOmCs603LbNbGReTnMnUXVkntFgR8ajjccJ+HoCSVCfkBPXY2OXh2ueOaW5+/fR2f5t1tO/12UCq5QCw5lO5lToI1lwjtm0CHqNiVoo2T7t2XTSiMIKKOLsT/e9Xv000NTYhDqaP29QyQaW50FbEpojqWVeTxS2hvuKMaNHb7NlmAaXqCETvl+Gg6hDO1o88G2KNmPHdWnkkSyRGcPAh27P19ocO/Hm4kfLWBoF55WxpEyOMCmEZ3sjoSTXdtJRGd3YJCbo7a2a7guthdiq4F2E49AJbA+NYC98qjg7IzRw/NpHp2o/wXC/jyKJ5Pay18bI3bsOy6x6p7Bx2exCq8Zso8IiITQ6KEVIFFLfJvBZqg1C6K1S2uA1F377+gkdnTIalwRVdroE2Bf7Ks9YxcqiloDbIxZrodZ4b1vb0JDM4i3/kuk+AWuoGtg4MTFj6S7ApiC18+Xv/zN/+N1/oGxX/g5hu76ylAtf/vgjx/uD4+3OT//lT3z58Wd++U//wO0ff09/+4q+fSbvX5H6jravoHdELMkcRCtvlMuiBZvpyyJ+nLHXU+gTvpc4z8q3v/NUKFSYlWH7HS9wiVJyYlsLLy8XdDFw+zh2Ho+7lXHTgshCyguvn75j1JVRH8ZWcK27VB/mp2Ngj8eQkw0RMYXrwRHgMGraP3kYq2a2fZ2yDBYrnnduLseTqxwFNPO5RYS1FYbCdnTqYfZkAk9uF2Z8HqxJgmnlmq2c7Rjq9ln6QKJdxvdTSpm8buyt0drgsR9zOl95FGJ6tp17nHEyHDjIE8iQ1D0fUe8OMPClqRqIXzIvHz6wfdjYXjaW9QMqC0OzhZo+DEbILMUGD5gKf0zNTM7uTQxtXoMLdrjFfUlME6u4dp5KJnkrrRVJKmN4gp7KZN5LttimLAUdmaHDplBmJfnAixRuNZAePGZ/SlBjWl2whpO3Fp3AE9/4tjO+Pz8itAn2oG3DE3QKYgzobB8L9pQOs90iu/m0cb4LmK1ExxMT3PTz2mEA33HZbO/klaSb3XtW0Ox7zAfHKGwXpR0Pn5QacLj5LxG3xZMtMrz1mqmrJ1hOYq87nOk2Zk6Bky+SGLj+LDthi3y22CU527pE7YzmnMje4p1KsX3rjlq7wrACSJ8x9cleiUlkEwaXJ/vlrWW2DeLnOnElnZ/qufI3yd43X6p8G+zEbyaiXS72jMV1EVf00WjDpraZmt9TJ9CfvY09Zv1nfhSdFDpTUvWcc27r6X9jy4eN9usV6wJhGIPb7kEjjfXn7uSVyJGfcjEDZOJ6nokpw/ygBGHAYroJHmKpmAF6502FFpN4IRIRZ67b6yTx9lxnSaZZoD2Bp/N6zD5O1tHzc/SuLhyDiN+Law/mnaLn60nYqZOppzx97XGOJB+SIlbQGUMQMRH3c8jcWVT473385cDTOLwNwC4dR9x09Hn4UrRfaMcicQ9qnGUUaNjcPDg124GLlIoFDBj1VkdHkzDGORcx2D0yo04HWoYHihoCWd4mMtSMVirWwZd8IpZfyXgCngxBtCqzGRhHDUWJMct4hSCO35y849/5dqLd+d/ouZzor+TpCE5tFZ422Ak6MVcNPBt9+r69QRiDJOObzTOBPg0B3rh6NcOs43zTP6fJzT+IUMbreqKTAKmSKGVhjMWc7FhhWa0NRTLHgL02bke1sfatU4ZGjmNj7ZeCXjf4cIWPV/Tpc7xsyLbZBLsUjzxbaxFMxNaMaoM+vAhhDDmJhB4Xk8aDBTE0P0sxI5ATqccBtwQmY4bbhNQO6pd3UJuK1ZZ3SMZESNvmydhALwtlSciSzWgIID7ZzvdXmjpj5nFUhcZiUwGTg3jeS1uPw4UZm5+jTC6mW2LRYbF2w5TJ64W0ZFiEkQ1cQ9UGA6TkQpS+X2bVwR2kTzyLdi5rPbTqQUQ3yQMqDWDFg4tJh6/N6csVjob0wdKgNCW3gRztPGsdenNmSrUEc3Qly0pZQBarR8tQr7R5DSaE7EsmrQt5W8lLIW+eUKoyjjbjnpEG1emhh3/mYfR7GTbFTtphgteuh5VLZpXElou1v+XVAL1eGFR6u6HdxgVPpkCKBMamqc0+aQevJmMZDzilWWCvhbSKgZ5DaF0sEG/B+oxAMqprzcGnBu1wmnrzRNmBp+NhLKLuVdB1M8angyCQGcMEeCUZi+ZkPLq3yw3KAsWYq0nteZZulbPWsGkiXSgjkVi87QZGMtufMTHb7PTkoTF+3dZEiFYsB55GJmtmYaGoVe5yVVxDnoy3PsvJshl9oDUmqA7SaGTvO1/U9AVar4zW6KXRFca2kXpn5HYyd4yYTrQUW5Jmaz+mDe0TfEluR0hKT07XF3E2kCWf2YXrxan0FrcOq8Db+DMKhaQFRekjMVI27bLwLckTKgY1GZOvo9Afds5apwAqiVUyaIMO6ejGxHEgKHWlD/dDHoSKGkChLaOLWE9T6XbGUoJimit5cVF6D2qGRInD/a7Esswv7KyidCwAlKZIdX0AGbTF2YoING/9Vaht94GLxrZrtdHcrhztoNZmU9mGmL/vneQBm7WcArkb61MH7WjUevekcyC6IWXQD5/sRma044npBLOMrKZh2UeHQ578R/F9kkw3wUGxWtvUPxjODjwnxjBbrFNyIK4Nsye5IhlGyTaiWLDpdcliZ7LQjm5DIlolXy4suUDvrMvKpRRYF+5vb9z2O7lW2v1GfX9nud+4Nvirlw+0dkCtlFFBFgSlP1VMkeTMcs4hwoIn3p2U+jcSYqqHVZSXQior0Sp6HN5S1E0mYNiRtftHWUVYy0rLhT/813/gvwz45R//yLZs/PA3/5KPv/kr/vh//F98/dMvfP3jT3z5/U8cX954/PyZUh+U+mDsb+jxBT2+MtoX4CBlm+zXmg2rLfr0PE1Y8Hy8T4nBUwrs/69PIdbTL85/R+atQep3P2+AV0oGDCyLcLkufPr0Snu5UHPivVfeb+/kNtC8cXn5yLKsXF5+oO0X6nHn0U2jJ+WEHA9vL4u+Gis0nNpF+NmMuMAsmSRo3Vh0KhiIMRnuIUw7zpAv9qQaWzsvibIk0uLtpaIsm22KMeBxrzbtrjWiZSNFi77rNAVaUYpNwcvZJ6yKkMRZ4MNyhIT5+TQTPxcc78q+H7y93cxTiBiAWu8s24Vlu1ocPspsCyll4fC2RPGBKNYuu5JYGCrsrbHmlfV64Tf/4m/4+P13bC9X0rLwOCpHtYJSHY1ad2Pg5mX6ySTW4raUTBefbNYwxnO3mHG43lx221ly6JRm14Yy5rll7gKazEZ3Z6MnIZeCXC7Uo1ohNBUHULwRSZNro0EAPRb3YqPP+5k4izLF5WttnmfFhF0/C2IFUyuCWL5iJkGfficAD51/G/nUmcNEEg+qw4qKThKgOxlBxIS71fthRCZo3A+TaOj1oCzZlyiR14WcG5obyIJ667oVTBdyyhyPB602XE7a4uA5Eu7ZAFjBoDfX5mtxj+KMp3MitCpWQFEDnlrkUx7f25dK6OQF4BSC4eYvjHlorXYn8MSw8zfU2qu7Nk4ylbqYs07zY8VXf9648VGLH8ewwuakfgjW3fEEVp0i1LHvTvBqprf24Katn1ZSgt18WsM+oIt1tFRNzojKTyQMf69v/opzXb+xt2FxzXacwtj+a27znv9uYL5Fh1LwFtMeTHpvP7Mk/ASwJjvRBMsDJBtPw7tETlaPLYcBOCNof0CrY16TPZb0dBe+Ph4TxJRbHGiKM1KSUJZieUz2rpMU9XV5IgPYbZgNHa6vfbbrDbVYU3KA9+m8ZrcLgRSchRPPR7xAO8YpeD5JL37O7XlmxrB2+9aZWnYxTCHlyS/7b378xcBTaw93sOJtF/6pnsShjpQa8DOGJQP2c1vsoG4iYml9iHXlFdWCjmGLrAKa6TLQrOTsBs2OM6kkp7N1bCpCt6BKG+ATdyJBSQpSrGKkoMl6oeLgDW029cM3o/i0sJEyoxRyyuS8Qi4GeKSQsQ9jZMbZqPKx3+yBWSJ8ouEnKmtO+YSLTqYNATaFkVQIsMk2jBLAksTPgwkCZhg9CVPvH9bzpOJIl53ZPqxi7yhuigMO3qIxGZiTofRMQwyrlFJGdEGTkjFdDW2ZXZVba9yPg7tgFM/Fp7GJU2ZX+0wfrowfvkM+viDffTAA6uXCuJi2k+bkh9GRdD2FsmMfqh+ecBLeqQySGSxYpcLGrTKyjauXYW0ubYe6k2qF3sleva6PB+3rG/uvn+lvu4mfSka5eYJeqGarSFnoLxupJNMH4gRC1QXhUkxp5Oy1HkOoLsDXHDC1xR9TvLC34fcidmyTjZdNaSGVlbwsfPz0PXJZkSVzqGmM1FYNDMlWrXOyiAd9BjzlFGPHbVINfnxSTqQirgPArKRooPBJzOl6RXb0NseC636grVqLWmv01hlHda0qdbDBzk6ShSVvpKWQr+VE5l20s/vo8YGdSy3FBH+XhbIts0KrzhAyINoE2dtuGiVZMtdl5WW98LJdqHXnqJX+uNEfd2QoiyopLyy5cCmZl+1KXmxddKxoe9DGzvFYaewQ/fWcFFpx8EGx1ipGJC7DW25kHvHk2iUkFxDth09fMh2n7BpBKUqMwzrstIsZf128+mMsJmkBWNytVW7xtWgHWge6NaSs5NWYZYolBHgr0Ono8YmBptVm19mRfrA+BmlXqEI/kk0pOpRcDWCgF2jGmEoIi9gYeEtGxqmZIFHxOYcLyDCAZKGTtSLFWW33hCwNbp1eCqH8OfY7o+60/Y7QZoImY1CGAUaJRCYzNHnx4UZ/VFg3S1qsX2A6aBCz9SXsFK5pYHsq7KMF8E46bzcHBM1uhGhj9oAzIRSf7nM004SY4sxLhlzI25WUbWojtfr5LkBGc2aUhVYWa2FqjXa8o/1A6wPtu+mRHA/YD0MF92NuvdGF2oyqX7vZQ0mZtL24Zt1KU9feypm0rMhSSJeN5cMry7aRXl5MQ0DEhh2ot6WJg4iefQ+8AthNCF8EUrXBC+lxGLtRBCmNfBkzEStm7mhtp7KjaqDFsR/UVm1fizEwf/ObHyzO6J2vv/7iwRLGouw+bcV1hqQb24zUER/QMMbBvX0lFdN5Apmtxm0Gt84yodOGCclG1b8US3ByWdhDzww88eUbrSIdJ6t2dAfYuj3D3gf3Mbh/fbd2ynVDU+Z6vfJXf/U7tpKhH3z++pm3r1+gd3776RPrqCyt87IUtqSUUfnlT3/i/uuv3L/8yvHTT9T3N/avX+lfvjDuN/rXr6R2QG8cx05rnaGJIStpW6ZP7W5HuwOcQ0B6Z91gRTnuDzLWQr69fCQmT0mxwNcEZXe7v3HGVYzBUgolFS5psYLKo/JdXjn+9CO3+4P/8P/6f/I//W//juV/+3ccf/hPvP/XP/DLf/4H8pfK+thZ3m8c91/Rdif1d4QbkhvjmtCajDHQxxxAoP1ZO1Tc5+QImjyueQKWntpK4GT1ied5PWKob/4bmhnmK5OsyKLkzSYuGeiSOOiWXz5NSrZ3SUhaKJdXejKbm1pn3Tby8cIA7jlPRvVohwOl1RmlK9u2ekHWpC8CiJAsVrRBXWzfEuOoYo+InTgTvVgNmzpnxbPWjfkhAmUVPpYL22WhHp23t4clX1MCwtv6h+nkjGHtaPtRue8PrrWwSKJkY1FJPltroxVSvWNCpjalM428/+jx+ErphdbvXF8/UPIrSYRtXdi2jfWy8fZFUW3eUt7ZLoVP332krB852uAf//QnfvjNb/ndX/81/+7//v9ge/1AKgtvtztv7zfebzf29jNFD5CDUQ1Eemgjs0LxuECd2edsTEkKKsbYaZlWd3odIAewO2htZyUSPFKmVeVRlY8v37FeVz58+si6bcaGopNkNQAxKUo1f+xDU0SF1FwCQxXo3h52dlmIVxtsGpdpNiIuaz7nLwUgGSwW+56lJueZCZ2YKBxZvnWyKLxmOVtR41P7mIwjGcOZkmLDBcSKnuE/aq02LLh2HsvNW6uEZSRyXml5I+UrIgsiq6+rAavLZaP1Oqd3Du3U1sjJptyJeOPEgNoCeDIbj9peNClAu/A5HSxla+tWGHU2u1kxV+ZpnjHbkss34FPK2fQig3X7zDLApAQQpXSM6KF27QbLxgORidPIBPcCxIBGo6sxi6PYpaLO+fD3G24XvBNAPU5Kfg/qtu4pY5x5akBIlmJpqGxM4GWC+AL6za5J3xIp1CUzJDpwTqDmGaSKnPnPW6DPKzvNtiTFh3NzVCNUiPj58Hwl9JYihx6AtvGkp+RgqgOwJuwdZJe4pnGyvFoAkGYvY7UMRLRBIyQD1CVbm24pwrpmYqBNccYQU0z8KV+IGphynmXJiPTphmxtHHzws1aPTk/DtaFwOz+QUGBPBkb3odQ6GE1p3QBYHbEyg2BE2TY793msfy62p9OMy/+55/RPP/5i4Km33RBAAbeaxBSnQN+j/2aKCjsDKTak5hAQtOgsphwx8lOubeGBii+AGDKZ3DCJ03BDHipo8gY8dQ8vcKaS6RdNTr4L9CnhcDtjVEP6VNGBXV9UnnWgOXROMEFoDQAmUFiB4Qmb0z5Tig1yOvnIHc//OY/1RJSfhGF5+g0/KcRRVqwNLI6rjieKs1l49M+Bp2mqbJPa2jrwJ94P/mch0bxHTtQ6nVc1D5xBvcYsImckJzQ7syxltGRjLfVue6cnSIsJPW8X2FbG6wvyeoWXK3JZTbOp2GuMJA7qGw3WriZQfD8kznIYI0Y5OBhoYbKvjAm4IsUTyeQaJGp6K9UDldYYtdKPg3q7U+832v2OHN2LGyaUH5OmFM80MohWn7YGhOC9Kd16gmJJuBOOcJbxFOKz5fZ96+0Y4nT0qCwau8ICmJ4WNC9QFtMhuKywFlq701pzsUyxZ+EGVD3gjIpGSkJNefYSBxXTRqAbfdKX1IIfn9qSShhn65+3kbWN1DrpaGitjP1g1Iq0hh7VhXthJGMvIZmyCCkvlLSwLNtkaPVm4p1DqgHYYsAhiyfO+ZxEpt3a9kYbjKMyqunGpDpcoyzDozJuD6oK9XajPu60/QGtesBgrVxFII2g5vpNu0quOH1XVExTyKm81iLmgKJXqqziGAF9sKKsVcowO7Od/dHRVqGLjy62vzE9A2epua3RLuhIiGaUBSUE/jsyBHrCG1xJUpEjWUtPE9vrpfq0EwMgiGAQIcQqVDD2S17QXM0hakdGRW877JV074zHgDrQo6PVAJ9gqM3ku2sgN6635ntPZgw1bQ2lQkmMmpG9QG5o7vRcIdukTLMrFti1405vO/24k1xANAU701l1xso0/Tljyy3UW6UvK33dSMknMI2gFRuolEswCedFzp9D6FQZkNH7w9qgIrmLe3IgcgToMAZaD2ZRAEVKMbCntgkmD9cd0ACePCElJeidUSvH443RdrQ+kHHgiqxIMxYUrc0IsXcceFJqFweeCmk7rC06rRwOBpMyZdusdfVyYdwO+raRXw4Dnly0dAxvmxNxG5G8amsswNDzKMk0e7Q29LGfbMRckeuwin4uZwuBB+gB0lrSWSYInpfE64fvzA/2Rj8qre60+qBXa8sbVb29yw1r7MWmxiDD2mLAArKYODTrKu4pR2+2fzzeiShah4EINE+m1AWl13ImT8PZEeqTCD2Z4ml/jGHAeOu7tSUuh/nR3mkfPyDd7OZ4PJB9R0Yn1x3tnTYGD6COjtbGj//wjzze3zje3zl++YnxeDD2B9zvcBwkrSRRK/6sC/myYeIIgmQTZx4j+4wE8wOl2BCHersx2sHRG2Vk3+fd2wPE2gG95QiNoR/JcFOPWZKcmifDBYSlwaLAI9FQ3v/T/8WvL1d+uazcfv+fOX7+if7rj+RbJ++VtD/g+MLoO8oDFUvOcNZp0LFSJMFRYMNarjViH9Rj0qePGcUzk8+I2aIgd6pcMF8XnOXg95yWgiyQHMuLLNyE+cUEp9dCXhc0ryimpbG3zqFCS4W0XawIVBZ622ntYD/uZgPVW4k9YVnXhXVdAAM/TCIALxwJaYjpuvkeRM+2iqjUjwDdZ97gUdUY7otPTa/Ic1fM965HIgYNRWKEpulTVM2ntdFciLlbl5Qh1hOwiLYSiW+LX7PIBDfxszjaQU8daUprD5Ks5LxRPLFPPg3bEitrYy1L4cPHV7br9xxt8LVWXr/7npdP33P5+BuuL59IZUPKTtNfOdoCvNmYcxHqsLymtYaO1eKBHAo+zqJ33RmdrAErOFpr7uA4HsSk2JwtBrVieDZ2hiRPDi2hyy5OPtT3imBFqvAzY5CcKR17VyP3VGaXxWSNPCXc0akx27E8Rwiw6eyWiO0evJP4ZWNC2TGz/Cp5xWUCIpG2jLCbPCWy/sMJVshkSWpTm5kiiiT1QsJBWx5IuaHaSDooJCQFGyPN5DhafyRne50xqN7ebZqrpjvWuiXec85OLEQsYPgEv3vxtYqCii2uPhsDplWRk/GUXavRxOYXUsnnr49YMwME0rBBMxbnC2PIzBHkeU3xPPRJPylsVHye7XX4OcJyNByAGaGd9HTLTC4UqA2WjncI9ziebOFzJuu3TZje5/3E8+/N9/n2r0/r+vyK/h31+5979Z8CHMZ+U6RDrX2mpia1YyxUyYJFLvHcvCthSU/5OpMIkvxBJwfsFY/p/QxFoXaCXBLMKYspx/D80m1ryj58oHhRTnwu0iSc+GtGyK8gMrwVV785m/M6Z0Th9kfFAWSbhmdYgK2vQS8mGzCG7/9m7Knedd5jnE2w/RnYpvg+Qkwi47no+Kwf+N/7+IuBp1rf5uYjkmI3bAkzOsO3rFFFqzNR+rzgXAqaF68yWyIQLXjWVgBoIwQUpXc/kFYpSrnYZ/GNBPSqjN6oxw6jIgxKEvB2CaMd2wQMqwLZuGITRW/0cdBCPE5hSABNiVFWciqesJlOynAdlYAiVc+e9Wgf6T02zxOQ83xm/rylLQyZzN/AXzwWm2Co2G+bijze+vTEQfIAY0zgaZwWhWhLQ8VBHEuoowd/TJrgt1o6wyGcpDblYE7xk6er9QDB1LotmZB1JV028usr2w/fM9aVUW6khgENy4V8vRrw9PGV9v0H9OUCH17QzYCnuJpp5NzQRkKg2kGrB7PW5mWH1SBIo5YXOsWdfiHJhlCQ7qK0OqDuSN3R40AfO/vtxv71K28//8z++Sv16xvXZlPHcMa75ERZF/JsHu5ILc7UEMpTUDWR9mE54hhKbwZO9G7QWBKhPBmcEMo/aZDmjLqarkxMgFQKIxf63uCyIktiP+5G51Yli0+5kHRSKVv7sz0We1OdkRH7KfmOw/qHkyBrZlkXyrKwbDaFYd0KrxebpCba0N3Wst7e0WO3aXrHQXOGkEo2Nk1ZKR9NjDjLxrJ9YN02yrJw1AO93zn03TUCxEbKFxf3S4C6dtix0x7Wztn3Zu17HdMKkgJNqD995u39wX0ptHZzpshhmGEulMUqsQBaK22vBjSmBN2YW2Pv0Jli2gVzCEmzj5SGUdUAmYaPjlaPHJKD9GojwhPQB23fLYnKj2/P0rJMnQcJoTkt5oTIwIqKTzrSSoCtdmIbid1ZOgcHuwn/54W2PMhlJeXFNNnclg3rFbCjnTIjFR/GYIwqRmXc3xj1wXjcYT/QWukPEylmdJKaFZlJTXKm3jBvbNWidq7JDJASpAPSA8kPZHlAWhiy0p2x1NTsulH0QX3QAD1YGIMiOgsz1XWDntu5hyz0ZQPXlhMHnqJXHwxwTQE8uXbNU6TpFV4xHyQ+0dDt7hkGnHbx2XEq6pqeXpUsxUCuywvq48RrU4zNWEAWkiSag4SjNY7Hg/39C/3Y6fs74oF41o7ztyygirM7oDaldrUkSIoBT+sFUmFI4VFND1FTYr28mPh62di2K2XZ6C8vlGU5QWg4A/2SEZvSYJW+YS0DORfWsrGKGDX7sEl0YygqQt1WpGTyurCPBilx/e4jH7/7xHq5oCnYVcp62Vi3jXVbeXm9mk8Yg0u58OXzz/z4x3/k/n64ltPwzgpbb4vrBGo334QVbvqoqBibqoyV0U2wFi9atWH7B7xdwluazA/5CHXX/CdZe1xeCqlnlmVBVVlK4dgfxpxVb8HEJocdR2XfD+7vN5pCd7Y1twe3ZWEtiVR38u2dSzXgic8/s9+sELJ/+czjy1f2r2/8/Ps/wDBB9XH7wpqEl7XwuqykMtCLCc5KWljWjfL6Ac0Lx0iMtDHItF5ozdok83Jh/fiRtC78/F//C7fPv3D78plPy0fTljseKAdFhC1nB9sMECMJeTHdPWupF2sHVZu+8/54Jzl4nh8Hq9oEvS//n6/8+OVn9r//P3mrlfo4SO935GaFjLI/yP3dmG9pcNdKHZWj7T5NUl3/yoEXHVakIYpVyR/XcwvJdH92pmEG01ObS50d5AH9yXv0VxIM0CuJ9boiK8gqBjhJp1OpHVgS28vGy+sL5fIK+YX3e7MJf10Z3tK6XD5SpFvbcBHaaDz2B/K4GYiXhG2By7bw+nIFDHRqt3eLRcSq4q1VlEGuwVw/E6bhTKdgLo7Rp7bSUDHGTFXKmp0NKOx7FI4ay2qtFWMs3kI9qMfwIlQGlpkU92GV/9Z3+rg4U9KKgRYfDXJxoCyLdTRk6KPZcyyZvBRUunUSt4fHmMpxvFHyRlpeWZbFWVriIIy1kSxr4vKy8bu/+is+fPxrGpn8/XdsH77j5eP39PyKrL9hvXzg8rpw9D9w3xeG/ugTTVdEG+1QWj3Mlau1lwtWuFuWlaFWBK+1uo8r9F5BjVHzy09fvE0n8d2n74ghGw1geWHdPjhAac8iLwvLuhp7GQfMGfRmjCUZIM19N+rpgKEIs12GJ8Z6JK0jiAKRiugMBdUZT4R75gQkYg/FhOQxsI0lnuRna5d7cnjO7LV/jyAoYAW3YN2Q7N+tqbcU+9Q2sZbR+qh+H6AF8lgpxYYIZJq3+FssjCTXpjM73tXYer3vLGmYOHyyHK015Wi2HsMLyv8USjFfqi7nLdGGlQMIYMYzMixONh0whWLFhwCkc/HnKeaZzFYqooksCwyhpwGY5ld/Gl4cDnfqYM2rc0BW/SwTsQW+QQwMsPWw1kbR4h0h0Ny2TexM407PjpoIVQNBDD7SCVLI/P24vtix6BMrKlr6ONu4eHoFA35OttNc/9g1oZUq8bsy33vu4WEMZaXRamc5EjVa1xLkRYx/kk17MF4r++RPVQWfQA4n2y15S3qw9g28HSxlxQGOiZzbsbApmq3b71qjVKKUxLLaZ/D9YRCZvYFrmbNbCtdM9JzRKV1jnEPP4lnE8BPU2OKxxmPgdgXvcpHJ4O5DaTV0xGTmzvZAPB4Ws1mn/rEY7uEsMp2gmfD/d42nUY8TdIpd6oG21fMVccaTTbM5R2SSxERuB5NeGCCVaR1VO4CApMbQPIOoEIO0kc0epGerlKDdqzE2znmY6IfproxoU+kTcLBSS0G1QK4uBmiMpwgwzQgaq2R0sQDeQYOUYwJdtAw6y4fkom2+PhKTrGRuyqkPAacQayCI3+DJcytNuEVHZ6IWXp3S3h10sd8VwkH46HGiqqFnpcPX/tSUciZIMIlczFawRFDdkJqYWlBDPbmKCgPMREwdeJJ1JY8rL9/9wFoKL9crB4Pj1y88Ll/gXkEyY1nJLy/IZaN8eCV99wG9bozrRl+s2qra53OwUd+G549RDf3Rig5rs9TR0FHnvRvTIaGaQUwXSVitD1gHpjtp1l33O+1xRx937n/4A2//+Htuv/8jj9//kbw3Su3QijnSpgY8DKvgztnPLvZaRFlLxovB1vbhD2iMGIs6aF5t6SFQ58yYSYF1Y4DiGkeKDvFKTbNqiGR6s9/7+n4jbwVKZnehS8U0aOwsWFAmfvCtciMn4OkVQmMmddefTtM8moYNsGRGybRS6JfCWAtsC2nNiA50VPrxoLfK8bibdpLrwUVbVU8+ca00crqw5itptdHCvXZ6HXx9f+f2uHG737wykMipmqa6eC+3dkbr1MedenvQjka77VhrvlDKheGCnp+/3GGxNqp8sap0LhYsJUkcubAcA1lWdHmwPxqasg3gbtbSlI43Uv0VaQ+kPVDXLUo5Eej1OBrhbROnBlYAtQMBWZA0PMDezWyU/E3SU1OiJaH5RDwRQYpYvUbVAgxve7IR72qVdw5mP7ZkBolORmWxM5FX19tYWBYDnkSh18OcnZouWPUW0OTAUxrd9KPawagPpO/QG9p2xrGjDjzNcGB4uxUCPcT99QTNoxdMzJ70qPRJJq2vxsYpF2qzFp5azdFb8KT0487oB0l3SjIwb0lhn2Kyk9lp42oaA1LyYlMP1QC2SDgjFEqSXIPCKtNhF0dwuj0WEvd5yQPv5PcxbegE1ey5kIS0JAtaE3SMUZBzRtfLrG7WOkh5IS82oWdgDMhRrZ21Hwe636FXcj0QtYJLFp9cJALFrh8SaEaatZq1qnRNdBKkG5qsve9w3yw508uDJIWFBU0bJRVaWc9E3BdYkgEoBjpZojQJgthEx70slHVBTE3TQPlkjMm8QFZjRW2XC2Xb+PDXv+Hl0weWy8WYs7E/igU6oZeBJ1TXD99h2pPwx9rYb+/c73cDIrOwLM6CEDHg7qgwBvlqAvPGxlCLQdxnJE2zBXAGW87CSukckNL7YN0WBDGNumHMv8e+T5+/5OwBeWJbNgrCgtDuD7P/+05/PLheXvjtb383ff/+xz/ycL289LixHDvSG70f3D9/Zn/7yu2Xn8mtU1rnt8kSniKZ9dNvWUpiLYlefbLguEApNjRhvcD1Aywb6/YCyyvkFdWV7fKR9frKd3/zr9g+fCQtK7/8/X/i7//3/53/8h/+PWvb0ceNfn8jcTiLygmSOkjdBM5H64zaqI9Kbd38ZzI/cu+dIkpOypKFrDuldr4vmfH5R95uvzK21aZHtg6H+ejCgeq7xQDJ5utqgqWsjGxs6tQbOdtEvxLFQbFBATLENq9P65kTAYgA2/ZUKWXudR1mNQwn9yJqtJk6tDlUqcMKHVkWq9eJsreD0qzlfWRQL5D++usvyPudtL7SuwH8eNunlELKxswooly2goi6KLHQ64NRH2zFtJNSSdxv79SjUntn3UJbUq3VaCg5N29nSdaa74XTZb0wtNN64/39DRi2PBhTXqrSWvGkK4SWo0jVIJmGVXOR+dYOgiNvwMSZhFhirN46FDIOMv2kTbC21tK2w5CDdrtxP5pNiBzeSo0lfkWcqb3vHOlBkjuP24P77Z398XB2kNnpdc1cXzY+ffeR148fSeuVT3/3r9g+/oZle2Xbvmdvif1rJefE/TE4qpDySi6ZpQx02823t8pxVBiWfKkYO/b15SO/fjnYj8ZRm4Hu28blcuV+24253WN4iVD391OQN6825TNlkyQIX060B4V+VkEpVMmm/dMNvNEe7ApnYSRLyjUAH+/EmK3kpKfWSL7VeHJ+38DIBOETp8SQBjt4zH2h2i3nVpNu12yj13vzbphZpQiYwVpCB8pIpt8IiVoH+1GprdK0Wy7mIup9DOqoXKSybBvrZuLhfZj2ZM4NkYWUHADUSusHbVRar2StkExWY0imD0yjrA9zWH72I3YQiV0qREePOFSAx3N27+qdFiMSMGMl5kyIUffRYYS8i/lYszfD4hFNFFmNLdwre7U91Fr31kh7rtmlCSSl84GIzDg/YnQLRsZ87pOd5IXJeO5DoyVPObWJZP5X3fedIc9zwgd4oVWC0eT7a6a3kzXnQcGffaTnr/19RIJmEMt5duL8tyGNiODs/kbv1i7YBy2dBIBlMw1OTcqymp5SycbGzZIYVOYcvGCjqN/7N8LxWBzjWpT2azLvIbTUYq/Hxcd5MQaXYvrREQ4rJZX5+uOppS/YU621+X7PKzLspew7Asucaofncs2Ydp5rWhzjr+MEiWdNaMtp7PyqQorpiHxLqjnbEc8JmH/Jx18MPNGNIi8T4PTtODlfcRAHGpOWnpBInm6IZzoX9iAMwLH2NxkNvL0m+gUseHMK99O9iYv85WyaPcMf7mA4PjZcT8hReUz4XGmoMwUmKi8FUe/6d2BN1QJKEZt0YFPuFJVkQNvkodnPSU5McpTQdhVnIIO34M2ULHakr9Fcl3AU/l//VNSp7pbI29/qec14NYEAnZ7WW5/eK9hPcZ3oiXaersf/1r62ZDec12wMs4RFzLgYc6Egy0px9kNOCbm/gZhuRC07itDzQn7ZSJcNedlI1xW9LOiSnJgVe8rbVOIaCN0kE1ZmVDRAKK1nMCn+N9OB2PO3NgujWGrr0BvjcUff3+jv77z//DPvP//M7Zdf6Lcba4fioJfD2ZNh6xEVob3leRKC0dNzsiFVIcbdk7UjdQmNBQclhu/b0a3BPKpJHihMfNxuywQa1c9Fj9GwHbqJEz/TWA0w8iZUT0xTAJ4umm9H2rQg5Kik3r2CliZgGa8japOppDUYmVEz/SgcWWyPjmp0+N5ox2GV+tka6tfixp+utNuDIy/mqHo3ZpbC2/s7j+PBvj8cXE4sOZGTX0sSb7Fr1Med4/YwDZnHMYEnFuM8mD7UA80ZcmJ5zeQtM9bEmHbFbIiUFV0qbW+omIDw6Ds6DlK9kfuN1HdSP8yeiGmhzLPWLAixYN/AaqPnOgOHAJ1tks/o3fRhlhC7CCKFBRFN0qSypiWfwYQ7p67qIpgOfoyzOmdAX7AZy2T/9LyQUmGU4sEmtHYQ45dFEnXgSbk/cx1QXdC8V9IwlpO2g1691VnnHbp9Ej+KoXdkNnnyx83oYAzF4Osk0mrgS8q7V/2UfnSyixjTO70aY02peNcwKUXA6LZULHAfHoirCuRi66Kcmn0yPZWvUYx1KvPvYlrRdHne3pMkRPpltoiFmQX1lgEHnBZjQyLO5snCyAnKaky2bgFxKgXKipSLXZ/aXlcTQiK1w/xkbyYSjukUpNn2tkxQORgeERQG+DtCL8L9gTjTx1o0XANIG10UTeFPfV2TzL+RZOBT2TZru/MzJsWrhWJtsWldKNtqbLI1ky8baS2Uy+afKy8fX9lerpR1tT2fpgk8Y44ZmkJeC9u48PrdJ16+fETH4HF75ziqQeaXhazFshsZp4/si4MIZmfHGNZ2mmJEMk9xhsxLEImdZZFeyTYpq414HZ0gMwlqrcZQ0EFJmayQ1AGn/UBrQ2ojl8bm99dq5fb2hd52TDC9I9VYhXW/UX/9hePtDX1/I4mwiu2tqOZfLsV0jlx0Votp+PWyoGVBtyv5w/eky5Xy+oly/UhaLki6cH35yHb9wHd/8y9Zrq/GTC4Lv37+zM8//ont/g7rCtvCNRmAVJJSPJIc6pqEfdBqo7/f0b0i7w9jmTswZUmexyd0BGscPo5KrzcSL7N9bwyXbUjen8fwJMqXWczWaRqmweit+WkWVXCetg8FGGdOYbbOfy2IjcJMQr17yoXhcVDVr90PxNAx/btKcTa5J3UarDuPK/tgv93Q3Mh1kPIFKRslRUgmdp783zknlusHLh92Ho8b/VjpdaWk5omrF7BUT+kKgUE3UNsLtb15pV6grBtlvfDy8XtqM8bYY6ixxUclwDTUnuOIAzH3v0wAKmcT2LaOgAiBPGb3EFO7TKB2hH+ZiaKx0uzaXCNyCF0bRzfdkR4godvzZVmt/VYMWB2r2abaDmq11sQArM3cF//MLG5vto+fWF4/kZcrQuE4jE2wUuijG1jgJ19mfGB7qbZm5woXTS9CCQURL/ikVEhSXPfMWvSG9glQ9JaxlioTmxasdc4QykixbB1TjkmS7su6FfiGF4anNRT8usbMQBV7dsPzrwmgRJwajzYeRxjW+bA9khyn34vfiddUT3qD2TI8RRDBdBsxxsl4yhnVT6WO7mlJovUYWKXT14ANocEn79bDXrfkhV4OswMpgSYk+dr2w9isnHIvwcS1fXm2rz3fb7RNme2I3Eic8eFeYNqOYIh4/qS2t331XTpmeJk+kVx7wNrSo5Mj+VlItlfEcuw+DDQxrSbchjiwIB7dTOcUsbn/wtMtTSBhxpt4nm426bmtymIEmW2Xp3XleYd9k3vPPfP0OxobS8/tFICMPeXTnUfDYbxTmJn5WCJnCUBnAnvnQ3uejBc5nuWip60Jf2xgkcXcmtQmsonYM9HQX3WN6eErGQdkMrFcSifYWyk5sKZPd3MuTxBLxFvo8HW3QWbPv+Or9Lyefu0h/t17iH6n82GoR3f+p7P7ynGR0c2G926sq9i7U6x+PkR5esmwy2HzPTiWEyOIdT5Fx0/f+Zd8/OXAUz3Om4W5yeNbQojWGRU3Td2nE3k3Bs1ThB99gQwzEuCbpFmNPq+oZkuf1BLtNB+OtQPZ6HVF1wuHmrExPQ3r6bW3ySTNQGOMxBiGGKt4y53TLHMafvAUa/9LFqSkfhoZd/DiVWgJemdUGLqLQCZrH0Jd9G5G0PYZmlV44Dt7bSUApzEfvkbgNbrftyduD5J76wABAABJREFUkTX4ej6fwcl6OvHup8AdE6B0Jzm1czDkLD0FMBaN+bpI4pmV9S3pMyFY37oNsSqQV8pypVw/AB19faF/eKF/fWcM5RBBLxtlW1k+vJA/XE0fKYnR6QM8VAMHTMsqWtaqtT/1yhg3AoCKKqbdqSWQktSSIX9+ox8oyYGECsdB//Ir+0+/sP/ymZ//499z/9NPHL/8ylrVkrhUJqrMbN3xKQGhKi+CqmlKaS7IkoydU6yVwBLtOp1/ry5yWJ0O2dXYO9X3pAkq2T7JBU1l0jhN6NtO1pI9g9JuE6KGGACKG5GnRz/5cB5t5Jxt2kuca68aiypZrJ3IVQdtqqAA8jQV7lFhVyrWRz/3rloEYsws2zMpRzQimOpvgtS4Hz/x+PXzpKp2NWfbRjhHyGWhJGuPWhZPrETmCPFj3+nHYezFrlbpH1C5+T6wSlPoJh0PqxanJfkUM2vl7evddHfKAqn48VRr6dKOjAPpu7FMtFGyOTIknPk8Yg605Gn87an7+VLxfzlIKAKL6YVZ5cuqfN/4hwASRCaGbFD96SBEhL53GJD0dPix5yKgGD5dsU9hcbvPPs6x8iHWb4vgkVoEb25jVAejVWcgns55BgnTUoTIpl+4DhNafrIePLFZKA/XNipm94eydLB2LhitnazarN6+Bm3SuNU7pgy0C9wi1jNETbMDT9P3YEFn8opRzs5wGWfVaYZh3wRuTkQPZlp60hOECc4PGzU3z288nwNBogIFSMr0XGjLakyWYvYmi/i0umAXW1KWBDJWFTcgaLFJjGKtuGnJpGFi8CKFlBZEigOxhZLPwR+jq/mHnlFdXaNkPlrzKl45O9s5EpdSWNaVvG1cPnxgvVzYXq6sHy7k68L6euHy+kpeFtJWSM6ESmsmL9lYTcspHh/uZ74x8bwhkiopsK4XlteVXIRf/vQjt/d3fvnpF0Y96JcFedlYFh9DvhUYha6grq+VcWBTB3l1kNI13CwYddenCh5XnPsosaRCIXNU17DBdMgU5ZfPn22viXCR5OLeB7/84Y/0x44cB+WwltjHn/6AoNR95+3XX+iHMbeuW4FqotLH1195fPmV9nhwTcLr5cK2LuhhK5JEKCRaHTx6Q8tGefnA+v0PfFWh5cK4vPDd3/4dl0+fuH73HR9/81vWlxfW66tNp0kFWa6gpnf53ad/w2+//szb18/Izz9yGZ2rKL95XW2LJTVgLzmIuq4MEeqA/n6j3+4cf/gjn3/8E29ffuUL/dTBce2VLoOEt/r2waKhbybc5IEmpUdCM5wx4Q+hzITJ7GhOVqghW3wDQhqQtJuGip6tEhFyZ28ZGKKgFXDNQwnGgutbiuXArYcP9Yp26NvlDc3mKynWngmJrWwMKbSjsR8Pmgp5e+fl4ye214983H6g5sHAipwx/W1QSJdPrJq4DNe1O27Qbmjb2euNQ4w1lTfQIjQGrR6sq03PqoeBVo+jo6Xww/ff8/G3f81v/9X/zPv9xtvtjbr9gf3+K8ftM519+u+j9SedkzyPo/lDm2q0rQaWrGulVvchDCsEiKBNaBWOR7fhGMMHnaQ+bW9rFgxJL3Q6fQhH786udNxZBpITn374rdseqLuSXgqXdeNzfaPWG/txs7jX7XBeNlJZTO+pKLJAl0R1nZ+SOl2rRbYZlAdj3Bl6TCZx2P7eO702djkox53rdSPlC70lGI2cEtfrR3J+YejK29vB/XZwHAdKp/k00pYrJW0sy8Z1eaVq53gcpPRCxvxkbQ/GqFwvhd4s5lqy0Qu7DroM6ujueIyVSRIO3S1s91zL0oWQT/AcKvzcE0MhxsLPHCH797299IwlPGaYLXvJC6LWHtaSeuwh3noHaRgz6DlJUfWZc1o5JTSMsZVJ3sKJFRFFzc/drTVtyRWRBykPcglW1UHnwX5/cDwegBdkxPQ+TZMQusTk69O9BDgwdZmeCQ7KvO4Ak0ePyenZWCFEMu96c0PpWPeFAR7FxKXXgmTzqTYwSD0+XRjSaTpoPgUtYopOADrxbCRqZX7xQWY4P4fi4wzAJmGbHRoNWq0W60Xq6Aix5bNPwMnMd2JH+KsHBOD/IwEs6VnY8uzNXz9NW1kEh1uV1cGg9JSlDoRDYWD6tQPLB7rqLKMafqZPV/r8Ed8tBDvS4lWLEcfDWXQJ1mJFspwW0x1GjMHUul1N8nv29xdvCS050UWRrhMHmO3XsVe6kXBQ8xsi1v1i4JLlA6FZLSmRHLUdzQqZPcJkDe1iy4WiOAFA95ZKdVArEjQFGXbKj9rmVL0IzyfgGfmCPbwnjMLj3ObDp5Y8Y+PYGEZe8KEaKRC0WID//sf/QKtd9XvyKiTq2nRGz5VAUp2JE33Fp/iVgLdSmAh1BMjZwQZPOme1tZlBGpXeDnqznt5UQ7QyFlGYtazk4qdtMHwqgI0gta0+kiJktGcDc2R4f6JVH4waHONeQ1ISGIMhzkEQC8rPJKlz4pW+IZKJt46kThfNbigMpDrnxz0xZXBAIVLJaEfBBbMDfKLPoECfWz+e9n0YhPhBiG8//7LptoiL62bGvHpLKMRF+JIOrHXQFUNm5cV+dyazUnBFVz9hBdWFkSuyrKy/+R1cr/D6gn66mQMfHVn8+V9Wxpo9wmgTJPJiglc4ZTpT7YcBSP1gtLv/jY8a9vVUMY0UKYkswyoizk6avbV991ahO3o84DiQo02jkotpVg1JNCk+vSyz5I0sLvws7kBE4LogayG/LKQtkYqS0w5tt2k0hzlxA+NNd0PVWA7DW+9agFDdjBQJF2rvqPi0IX+OWZWMtRllP2YqQdU8d0BUZ52L4jF6MjHmFtBFGAUxJlT2KNtHH8drMNQnoZybTrDAQp72GGqtNLN64KKjsXfsbFh7ivqmnddhP37CVQ86sAu0YP+IuPaVtQGEdoFNgfMq62gn3KImdCyITTTM2Dhxn6pCytTs0wpTclAirsdBNd9jNkGt08SBjqdqU+hnWIAg5/1IOq2VO/mYKImIj1MP4KmbzoEn9xEFxTO15yyn03uqiGoXougZTjrmOUWgYBMOQ1BxejkXAJ9HjwSzcsQz6BKvpXgy585an57/84ec7ZpxI2GSwq/kFEGVItnaN0jGFUh+bfgUOhdKA1VjkaRgxOqp8QKIdsdB/STICcBlnGmrfFMFSimRu7VcZTlbq76pFM5/RyXX1y80sTyQU1//2Zr8FDE+r2We7bA4ytFIVErqZCkUXIvLQcdZs3CF15QSZSmwrsY2/fAdaXtFlo1WrvS00mThhjEsZNlI68W0+MpimjwBjvWggmfQbM841m2u1Tir3bmQSmF9eSUtK2ldWK/GWirbRroUA3i3whJtdz7FhSRuZ8xuWexkwa0+7yUTVrFqZQTZwqyISs68fPyeTGHpif/jT7/y5fM7P//DHziuhcuaeXkp6MtGWRe4XEmXi+kQbhtS1KKh1MzWtoHk4X7e05MwsMQeS7R6MEal107tnY7aRMiBtfy3hsREUQbteLC/v1Mf71AreXTqcefx9oXbH/9AFmN9Ho879MMC9UthFUzDq+685IRuK0WsVa2IMrLQamM/KsuysmwXPnz4Dr18YE+Fn2ti3164/ua3/N3/+n/jN//6X7O9fiBfVvK6mpacPxILtDLqk1/lGCaafV35hz/9nrVVPgj82B6EvqdmoYvYhNftQlpX1pdXrqVwSYmP//JfcPnhI4+3Lzzanf3rF9rjThExto7b1FQK17Lx6ftPDGDvlh32WtkfDxIuFp0LMkzLorY2g+qUzjhBoz1drWpsE5YHSTsB/BsLJGKbOJ6WBKiavUpxnr3o16fQvH9/dAOsxPxByZm8ZpaXK8u2mR/x4oZI5lI8akxKe7yhoxoQe/0Ey0bdB70Yq6eUhUfr7B1j6Gwb/dhod6EdFn+uL69oP0jasIE5zkRWb2sWWLaVvGU+/u5f87u/+7d8+t2/5Prbv6Xc3knvb4xlYfycudU7eTQDXVMyzVMH9QxkdrZCPoNwSUJZEtu2oDRGNSmEYOzmHC0YycRs+6DVYXqh+SyGmKFRbz+zCZl12NRqBZZ1IxcrApq8wBNLoHdeXwrHpyv7/SNfvh4cVai1s9fO7fbg86+/8PLpI1oyR7oYCzcfLGV3jR+htcqyND68Fr7+6s92dB73B61acXxdfTLiaDz2A9WdlJVl2dguK8v6ytDM7T44jsOZQInWOvvjQas7eRhTNdNZ8hVZLqylcLvvHI+dVpvpdh0777qTUiVLQ+gWKzbTZmnNikM9BgyJ6X3NGOGbOqD5m66dJIkQnY7hJSnp6Z8ZdPp5dojcIk3/FUARw/bAUExdhUFKSh5KGS5M35kx61OC8hTfeQyTTHxZRJxxG+fW/6ILWtWnFe+kPNACo1h82bvyeH+w7zt1t8mvEsURdUqemXCCuGL5iyXRORmzPlrskwitBeOkW8dHMrbK6M5IGaa/CjY12gpetuezD8TIiyDZVhV1NjEeGo/BPg5j9x87tTfqsEEZtZ8DKdSfnTEsPRfjW/0hdd8pOZPUwJaYtBcxcdaYvJdcDUfQljn75MUZnGccb+TZSCh05hknS0qenmskIhHfJHKys5poZO0sKL95vXiMNtj3gzqGifiTrZg61Nj+/noaWpq+E4Ol9ZQ12FeR/6nMZ3LG8RG7dPaHDUVo+6BfOqUkypKAbgDTMozymoGibhPF9SPtNUP/r/cn+pwwQdYExHTOLWdKcnmWYTawt2FTL9Xy8Zz4Bk8JKY1nsf+pLaYQ7XJDoUszBnTJBrIO0O7+LWUCVJy4gTM0sxMowAXte2d0na3nFgNHDjimZJJqdCDp05rzF338xcDTSYn8xu4QdFDxoH62hIXw13zgzAOvgjUPyVmhNZaLJcIzWfbWo94bvVXmiFfJJwXfnb9ViXyagYCxhZoZLbWJSzY5wpDQTp2H1Fohxf/GUVX55k6fkpMYi25lhrP2H9tfnKjj16XDmDoSo0T9EM/swxMJjfd3WMGBp7OtrKNqNPO5xkFJDWMQlxqop8SmeKIqz0A+2qae7pEQ4Zwv9A2yHDnTBA78t89Rl15h9zYMH0cImsi8YNPRhSUvNrFntJOVsHrvLQGoOWY+9GwPFq9yq1XcAnjSfsy2O43ZsHb5xKSIYKudNE0Dn4bG2g73iTYJIJeVsl4oUsjBChuFJJmSC0u5OPvA2FmK3+62ImtBrgtpFauyJ9DUSdJnJTw0neIgKSfvr4NTlh10GKDZjNMAH7AWz3K4U+CbPWvBtM73Mp9xGogTlLDSz7O9EB/5bJjxyeqI1igrvjxd/1zSZ+6yzuA+ql8Md4AS669O0R7h3+afPmE57hAtbOkTPDCj+QwCxB4xvaWwIYA3RzCBMX+vFglvn20KI7VzrzkYLgKzdVhDb83WI5rnokdd5QSeNM6MBFCW5857XqYJYufO1Pbq5/SaqDaoQO9PgZtEpQm3n6fziPVMz8/uySSnYLgEmBCvE2s/zk0iw/fAc9Xj3Gr+nPxsRTsw3/7uPwEWPRgOfTgBQxrjAoZHhhKBhYGsxlIQA0y9OivDfzX5pEG/x1htVL+5poD+09MVzXYZIA0hi00qywEixn4iwKZwxOf9q9pa4bY/3j45E0OYme3Tw7d7zMPGwKckBsi67V20khWKGlTGfA2JGNFeIkHJYpMrSyFvF8rLC2l7sUSoXOhlo6RXZLmQ1gtpu5LKYu0iS57gkro9MAvpZzjOnN/r6OZ/FCbwtFxfkWUhLSvlspGXxUCNRYzOXlz7IECm2F8Ook3WYNzTLMq4z/PKrLWZynl9YtZuWS/kFyF/P3gpG7emvH1+43gHWRPLayE/bIoqL5VUG+lyoXD6Oc3FqpVepQ1AOiYIaQTaYoBZb5XWoR/NxcjxFigHnoZNKxSn449m+ndGd60Wl7SDtj/Y324syezUqBUZ1TVJFgPkGEjrFrTl5BqCMm3heS4NiMvLwpELjcwxEvn6kct3v+P7v/2f+PTXf8tyNYZxPAeeAvvQ9gsdj+g+uN1vtHqYvXv7YsmzKCNZlftQhW0jrxuXDx9plwttXVheL8bU86ljoXkmRHLvwHHJro2zWavJcTBkpSYY7YDhTecOSKs+q5b4aHPfQBYWxZm1NE/o1hrr9XP1OMksp5sfvj2ikhzcjHfyWHCywpPMPd0ZJLEhFdbm5g0lI+IRNYatg+pHb9Rj8Lh9Zc2FJJ7EjMHIy9T16GOwLquzvjp1Tx78exsvGRl96kWaZTN/nIuxhDUtXF9feP34iQ/ff8/y6RNtWWllYT/euT2+IL+uZDoFNRF8TyCnnqioF7YsVhxq+oZZhWVb5qSwOjohfDztuETig8f20eYY7SNqzDJPiEo2VlJMAE3JpgIqBc1qnAZvrxqtUrKwrYXry4W9riAdpQJC6537485RH0i7MNKOajZwuXcCYO5NSWmwrollSdQDevNWuT6MUZgzqt0ZQlZAHWOwrSvLcmG9vLLX7jqsHkslO1Mm5ts4Eiw5UVOmLY2clFSE0Su9VepxUFudkzCX3K2V1CcIjmbDacZwIe5he0vVNENnIUwjRuKfxGuTLBAMpmlHdMYoEUOd3vzMdyyMO18f/8vw7ZYbAO5bQzPoNFUOXLl9CTsWrA5rezLliRjKYm1Q1hkwkrU8ijRi4nNrSvMir7q2KPoMUMhZGyPcsfnn0A3N2WL8yCkV2yO9q9ssJ1+M7oBU3I8PjwkXnXzCXknGDMmxth5FyNl9oL1TfQp1j9ZA/2+KoE3Os4Nytl/qjPRP+5/wFrIAnszJjm7gvEcp1hbcZbb5x8Kox7VhSea+eW7n0/M3zx3yFNv6156GecHVGEBFlNfNtM3mRF615sTidrYzZgtckgiwedovTz5vfjzHnfLt14p3FNl+tQFE4rIcsCwJHdntkYaagJ9fJsBmxLM4X+dwhnhvy/NPeYMszqKTTJpsQd8Jomi3gQxBR7FQQxzU4jx/avccdQ8Pt88WVzXdtZKSyTuI5w7paaWe9z7hvtz7SbLXlri/iEP/STTPLFZ/s+7/3PP45z/+YuCpBQvFF03EMYXnRAwICpa1zJ1BgF1TNzaQI5EiBZFCTluUrC2xVEPTRh80reh4wCiU1hgCi6xkkrcHJOvXLAVlMSPUjOusw0+q97b3Wgldpq7NjGBoUviDshNtFxzgWDC1TOfDKfgT+QKdjzBu9PkBWOCsk4kjqGRUxmRVpRnM6p8xm0LLqZ2aRsTruEOOpX8CFJ7fmYmrR+AVht6ucwyrdEiAby6WYg5TJu3EhB39aLghN80nD0LcYRm9vftzH8aq0gRjIy02hlfTYoCit8aJ0Sbo/fB+1sboh1UHfP3C9ka5e/TqrKeKtruBcsFKiZUQcVHbgYz+xGKLQ2L3a4LLG+nyQvkgvPy2sWwfabcHqzWw2Gc3nY4tL7wsF2zC06DRiUkSy7La2NStkIuSZZApUAojP0g3m+7WNUavW+sM2Wj+TczYdzFx5K4D6yNyvSrx8ex+H0NsIkL274vTPQLUnr2831oOv/8QrzvBOvGAUpJ4Z9WYDu1ZQJEnQMReTeb7nICao+bq2hoB4vjlpBNRtPtxJ+V4I0mZhjeCmNl6/+Rop7ZOOGLE9SZOyUSejadYcHQeFm+9EAerfW8M/8OABePrOAMo5OEQhpyVlYRX6vwdc0osJXl7oBv7pwRnVmQG5G7tl63Z1za2fi65JckhAPK0m+3Z2QtX6gxukof/9hzO4O7UD5Nzjd2xRbLZ9c8p9h5Y6nlBdv15XomCgy/nwquqA3QnIGO22U+ieBAWoNoEzN3JPN+l+57sBmGC7lExkhREmm/2ybxvrD3KJpX4tbiDl28uW09gKwLmae/tXgaeeAGhOXOejxOYsn/LfGYzuuDcA7FOGmC/RogSe28YAB7aPR48hv6DZRw2RWV0Rcmk5UK+vJJfviOtL7BeuV4+IXmDsqFlRbJN2yk5gDIPWETpMpyB7vt4nnFrZ422Q8k2xTRfV5tktqzky4W8+JS3QK3ihqcPivBA5n6N9Z1eNbj+OYTS/VxqnCXf1w2kZTIXXq7Cb8oLg5X6aJQ3a8WuuZFfL4zLSv/0Efnwgfx65frdd+SrM6D6gJQYYqxlcfZjz8kKKlnoGWNElsJ4DNQZCE6aQEbyiaLRhtroKdHUBfGPB0u25KnXB+24Qe9clsJ1WWAMDiwZSViCXY8D75MwAF0grzZRZ7i9LOvGdr2yvVyoKrwfd/7w02fk+pHr7/6Wv/tf/he++9t/zW//+l+RygWGVbyjnYlUzuf0TdigHPed969fWVJmTYkyOv14IK3CqAbjDG8LsBfjIYm3qNhKNyK0dvr9TgG2snDJhV4PRoVt29guF67Xq01/ao2UEh8ur/RtY88J9oXRKnU/fFqVr4VT/pOkk4XgrahjRKJmdkaW7NVaYbQx91rYFtRstpeEjfmFtxYkkxNotRl7R5RlXWgCXZSujYygvpa9d+73O6N1ExDfIF+uSLEhF/Vxp9XOl8+feSGx9mbM23pQPS4Mdu9aNmrv1H5QHzfq453j8QbN2re07ezHA9Xh+pJqU5Q+vCJ55+hw32/UvqN0rpeFtGTWywr9znH/yvvnX/jdx99yWTJrznz++ReOfacdD6LAUhxvUx3QG8uysCwJcaFdktD6znBAMcLKVKIQZ8Z2aEyFlKmPhDaWYkMSSiqkbqLwGsGBFym2bSWlwloM1Ljd3kASuSReXy70/srlUqh1ASq5JO73G29vX1FJLOliYEjbeXTIZSPlxRyvJJZSuG4v9KNSd2M0ZmApi0kbDKVpJpeV7XLl5eU7tu0TqWzkciVls1OvAq3eqfVBPyp72qnauD9sXNloFUmNhUpJ1lVy1INfPv/C169vjFbhUmg0knRK8unNo7n96M6MF+geO46IXMyejwCmApdAIOJ58cIIp3+fdtgNtHqsf/pGs70z7dCnVmxMJmBE8RsYYiPbxQHnNH26fPNMbbL5iCtkxl4SSXCwmL0w1zoD0++1UWxmz5Ja3JlTYkwgWmy4wJMcAE9fCYppc1n7qE1H9OEi2SYJjmFgrIHVzYbCdG/XFdP+tftTJ82bfte2bazbxf2J35fExDSL81urtHbYFMRYi9CF8hzrKQKz54rF/VGAhef42LtZfPmyM7BHj8EI/mwULyz6UK7uf8upVfnn2a2HVWh84ylCPKkYHr/7v4vnOaIGOpUMHz+8sGbLybQ35GFsPdsWg07z2d2JrvmbmHrG9fOq/umXsSlN4sljSLfxKsJRw/YPWussS2L0QkrDJFJymcG5h4rzdk1v+Dk3Hx5nyuxwCskaY3xacSA5g1zB8pzIMuY58LOlOBPY19W1Q9WD3qn/5B0zoS05ZFAxLC8IOKFRZzmb53DpfKJn/pTPNlS1NvhZ0Jqgsd1fSmZrw+cizHj6L/n4y1vtNKphfg3q7lqDTTIsID53owFITxcuYgKN9hsx2n4hyXqynjT6qa26P3qjsaMt05zK3ug2jWlbZ1AbzlnlFAIUPHH26nAPDQGSnYokVrVVy3I12eJF+8WsjUsI0Eby/BSUEHYxTKV/eDVkBs+iBiAAxmmxTdlSc4DL3mLgYBOhCWRizQYyOaPHvYiOkykSwoFhFOYXAaZJd0cQ37Pg8OxjjRa0aAfEq7wdhw14ykGe7vRMOWX+/KniH7+ZVhebzSypMEYjDxMDNxHA6uKCjTEqYxy253QQrWzTxqntC+3VAagHJ0NM59pK0nl1ARRYFVsI8TWKIkuir510EURXXv5qhe8aUgdbcuBJod1uyBgkF0y0apBNPhsOGI2y0FOmL9nSfzGEPy+m58OyMzIMOYye7+K0ZUlo8sljddD25kmlVc4YvsKxUfyYhX6Std94lUisYn86KXfl0yjbTpkTahwQ9RODaqM7aKvia6pPe8uDAPQEtqKdaCbb8Z7JgEcD2OIM6dyvHnGcj0i/2ZIOXJ65uv3NGVgFhTiqDN/EM4TDtn/o/KvYu+qVB+Ya6vwNnY5rtsU+rZ74CyYSSTPFGhT90Sjn6NdhzDg/P3EGJz9SHPh1wH5kE25tCbrbT9sH9u69P73/tLNnkBnBmmlcjKd14ATmhFlBPFtY5+3GEmK7b8zAUGx7cHrOqCSOeREyzq8n7KI8rQ1MjYhYzzBRSZA/f4bqCYlf0Wl/zldQNb8yWXLj+Zwznbl4+0iwROwA+e8GWU+ZUnaT0SRxDed7y0yv43b1m+tR1ZNFE3+vclaKnh16bHr/WfLrTvhrRPEkpnENr3Cqfqu/IZnBgizCsl6s+l42clkR/ySfX2tZJ+Npam+FfxBzV3Mw1dPzmExcMc0TC34EuXfkELSA1sRYOrIMY4A+te4GwyZyAk1RcxevSPru+wbYtovR4QGsv4Y9Nz+4zd2cZrY2uNTKen9Q2oOkB1l3xn5Dl0y73+H9jfRyRe4PyusL5eWF5eMnA89KgbyAJDRbAtPFCgItKZqsYLXIQk6F9bJNPzwwVouqcLSK9MZoatPNjp2knTULVZShjWUxTZFNzddo7+SxeN4xyDq410avB2k01sWAwlYb3eOel5frtIE//fwTe+vsXZHlA6/ryu+++4FPlw9cy8WYl8MXUc/n4ANubRd0oHb6Xvnl//qv3P/4M/le+ZgWtN1p72+svVv7n/YZgK+9M5l5CntvdBm0RWh7pY/OIgLdmBrHUNRHO9c+WBADZRzYW22nkRKsS6Y1cQ1DnUL66SnxUgflYtz7ZB8gxjhIVn4bKvQRdp6TCR1+a57uNBnIPWV6tkR6r502Op3OsgpkD7wTSHamQxKGdh773TSM8kIag0VsJHyShZjUiHbut6/s9WFDFUqxxHdZ7L8pcf9643jcedzfOB7vHPuN/X6zwpsDT0c9QGBdCsigJFiLgWVDB+/3LxztDlSWNVF3k3XYto2Pn76n//Xf8v0l2ZRQlNrg0iraK8f+8ELf4X43wFYT5M0lUZbMOgpHrUhTWjNfbdJEYmPFn/IT9XNuE9QGox+UsUHOrKXQ1oWUoGlnWQrLUih5s3OpwqHNGUeNXBZnDB0sOVHyyst1YYwdxHSvvn7+hd463+cNykHXxNv7QdleWLYrHz78hlQWj5cSKVm741JWigyWpGxFbMR9b+SykvMC4ilyWrheP6CSGQP2YyetQskFbaabkskcj3dUM61l+khQBz3ttJHY9wdfv37l7e1hIOtR2BbIqZP0nBauo9trjti3Z9E1LOdMSIdOYy4wczVLVpUYH28dB86as19kRk5xRPTp3zP4OHOYcM1Dna1kT9ayCHNl8+lLinNjLXbh156QLGeMWBvSbHRRZ0iKzJwyCkJLKVYkWVfqZITZAIOn0Nnim6cY2MTfkwOmtlETnMwhn6CgXhgiJ5vWm8wnjlmcdFbMzB/TU3He3jfNnDCGXflwEK+YWS5va5IjV4n8RY10IE83Iyk4AkrkqUQuFuGFy6oyGcZh+CE7UWQkNSf35zHNXLNvP575ThFHxjin82eRL1gRJWPX2usBaWVdCsWny61Z5u5dhsFWQww4a8MKhOcuP2MymYHhGSsiTCLCWQtXX6/0dH+m9YYM0tFtMjmJ3hPSnOqUnnL9CWIkH8jwlI/71afoGnG9Qdv7Fm9aTJtRrCvFzo2Lm2OYRHS84K+Rk/2+BlPKYz8bGmG7LogVvTY0M4HNYPfPR644YGQ2I8CsiK9nHB17Vp8IA6o2JVctV8E1qMSBree8/7/18Ze32tHnVyhnm5YGC+Jsr/tmu0ZS+PTdqHwLJnKa0moXHG1ReBvUiN78iozDqNdJ0GKbppTsQnzPx+HJ8vkB9YG4FogwDOhJJohoFOjYSH5P03raMZoMgzjQDmxM2F90HuB5nxGg62nsdVYi4ngKqr4B3bhqKPhoZ7abqQUHzwLj+KQ3UE/Yn9Zg2u0wtHao0KB4xlNQbw3CEwHvmw2gTa1VcE6qeq6MPD3SM2YLcnXsAdeQQZG0gAhJTdA3jcYYme7JRG/NDtRkhzUH3BoSGkro5BWOYRNyTFy8MtlhiCfVT0b56ckY69v3X7JAaBQhlQ22hLJQ5EJRIatwycX5bvD48it6HFAPnyTnovMuSm++ZjFWX7aWTg1qTTBjlg3NjS7NNcdsL6YsNv2uCONokBO12uQ4newLM4KGqn+73+JXkpxJ/9zFT+yKsCCxP8xh6ARqY3xt7BWdYF7cYLy+nOfHXy/ee16WAC4IP40vcm6e5wBmmJOIXDOpzK9FZb7cc6ukirEPESYgMZ3cfO6nc/r2w87svLdYQ+Gfud/zHAmRyHgygxnn7EGQ/XxeuJ9rB374toIXj8N0iayaPFQtJ1QTYLROy/P60jOg4ss9ZsDhQRs2NvgZ3BMCfLJvpKf7lqev4yOSLfH7OPdSLJ26bz+DivOT89nCybTy/z1BjhkHOCjkv6N6/o0y9+aE6/S8jvka8enAmJ5verK9xEBQixtktjXOrRiHeJxv8vw64YTNQZ9VWVuH+S8E81vPWy3uwMBcv8d4MM/ucW4d33cOOuGTD2PAQrT6jWFTDe2PEro00moVYK2DUTqyN0QrMjI6HiawWxTKgNygtLNANC9YXNMoLuy5TbJbpXcMrzo7HzAdPtGuULZGXgq6LujFpt0lFxCflLTsAU3CmZpRPPIIIEaK4UB/A7pPlfF1pwXrVxnHMIG8/SDtO2U/KPWgtJ08DtK4Q8WApN4YdUfud6R1xuOBPh4m8rlt3iK4QfIpoR54dpSWLA4hZ9IKabGEO/ZiH42gc3URpHcrlBy7TYNkmJZDgibKumSWkrhQ0GqMy7RkSyRGZxz7bLcHDxpT9opksully8rondoO3r5+pQ5L9S7bRy4585ILuXbYD8b7Ay3dWolnP4FAkemvtQ36fae+3/nl7/8rjx9/Jt0frC6u3B8PinbK6ORhftj2RTeoxs+RjEYT0+2xVrlBWRb6GBbAeiUexcVuxfaxm6ScxMRwu0+ijcv1NhZVZ/s64D2E8DInwC6nDTHBbptCOMQAZ3Xw8rkV6XmUeNeYhezAo8Ah0Pycl5RNqyg+k7gUhKLaab1aG6YqqWakrpZMOXMuicDo1OOG1kRZVsqyWqueDDQlugj3+zvHfud4vFOPO+0wvaBRd4uD2kHtlSQm8t60oUmtBReTFTjqg1oftL5bgQqLY3IpXK4vfPz0PddFTAdrVC5XY9iIDlLOtHpQd08uxzBR3giDk1BKYozMuhZE+txPZRHK3F/RQqTzGEfxetDooxkzQIx5Nkr2dhTxdjsDnQxQaM7a9vPZLWbMWch5oSyJ3u37td+5394BuF5fDXgawtuvN5brR9bLwfX60TsgLOpLrrPVcyEzyElZs9DGoKlNV8t5td/3z5SWs/CnQk4LWYTL5YW678aQrN1AmJ5oTRipgxwgheM4eH9/537fGa3Ru6LDdUq14zNJkSm3YayQGQvOeEG/dcvhz6f5DEaFx03y7L71qdhyMqufwabwnXCakGdmiPmnJ1/t+pETywr3J95C575f+VbXUsKHC2egq1Hotm6MKF0kjHigRRjLgtYK3QF6vPAWgOm8K18DL6gMB5EEK+ogNiQgFwPUh6rpRnm3jNX0v13r07G7g3vKQgTzWaERrN6J4uTaUyNqRphpxkXzI+xTxDpPz8F8BEymFxjby5lY5PPOfcAeWp5iMvDYyO3i0+t+G6w8Xc680+D9nKCTxYCWw53kZ6XWgzUnKMYwHKvnGh3oMdXv2099zu2eluK/9fFPrzbuyzeiGMjTm1JlYBJARn6MM6wJn5jKmf47UeabONj3qMXbASUFVsLstIiCiXX7nOcsYtGITc+peHme2Xh42nGtO+YeFZQxTJbIoIx4n/O5fQsQhw34tpNDnv3h00KeRVYrgFpLnzWuD4/h/5KPv3yq3QSeng7Zn13UBDZSmqi2BQnMBbQxoyspXSn5Sk4bOb/YCRBhJGP12AjdpzHxeiAM2qEm4FgXdAybcJWFJP0cHTiMOldbM0pmWLtI3pO1ZGAEcYsAHdVMzsICm/ozW+3EhMvdCs5AXdJT8KxPLJL4n9GdNeLsK3Un6xsyu9iYiPevT06slzF0YBPboqpYZ3Kp42xznEKv83nE8fbNliIShIjqFGFosQBEOkOG9Zr6OF80TePOUMgOQIkBJoECP2/Qp0a3aX5EMrJemXozw1rk6A+0OrOtEZA9SEPVxtczHijdAQc14bNx6l7Z109toCRsgkSe1xD/lxxEtIkq2a9rQdJg1AKpI6uyfFrZ8spaFi5rMV0qUcrPP9Ifd/r9Tqo7vR3ocaePw1qaJHMtF9a8cCkbC5BVSe2g73f6/kAvB+0xOJZB65VFMkta2D5syHVBriv9fvD4eqOnQdeKHB3dLQG1ym024FTOZNBo8IF6W9ITFaHTsDENy4h94WuUYm8LkwXYtTObM2dA8nTWn1giQbf+xin46wXzI6YEIR70++uG+3UeYHQ4kZ5ZJ3ERSZEcFSGeQAyZ7x1U8/kjPWsbz33bcU7ivqJ9MWxbigVinPcgMcDpXDNjK5n+gwGbM/RzdkYkP1buiMqY51gmppmSCQurfbbUJ0Ven26mVRzYGsQUtDEwEMD/tjBdzGmH4AzuhMkwsZcOW3Y+z3gWYYK+dVZ+TEV9H5wOK55d4DXPAZg8B1DeavccMKUAfADpTB2/pEyMX+fvRITn6+jX0FzHS8K5u9pnDIxI4dxxWDj03+YuYp4BJEYku//yqDp8eOgRxh6OyP2ftO1Nm+vJdY+b9tZf4ZtJbdoxgWtsAk1qjdEC2LCEr4fQu+r5YFKiHcL4enB7F2S9Ql7RtJpejCwcZBCbkElezB/nQslnVTb0FHQ+o6dEHttrNsE2xrj78y2rte2tK5fXjyzbxnLZWF6ulGWhbCvr65W0ruTrhmwbUrIFTIv/dy3z6zSnJWAbq9nUzlEbbW/0R6P++m6gjlb0fkPu78jnn3j7j/8n9ec/8IGDpDuMB9INWBoN6v2N/rkwcqG/XDleruTrlf2H37C+vLC8XLl+9wN5u5AvF8paaHHWi9CTi2KnCjlTlqCzi3XrKNb6iMUvozXG/iCNbgM71HRdLltm3V7JA5YK74870gfXdSGR6fXg69vOkhLrZhPseqv0Mfj4/fd8+u47LtcXfvrpJ/7wxz/yh9//AxcaP/zwG/7FX/8Ny/UHOsKX//j3vP3jr1w+/sAPf/NfOMaK5oV0/WBi86Ug68IQs5/H+1fe/vCPvP/0Rz7/579HHjdkf+f4h/9M6QcverDqA5q1Ci5ZLAFsdSbVi2RKSrQE749O8eLiaI1RKzrg5cN31GpaNqnYFKOjdfR+c9Cm8fb1V3oz8KO4HSpLoVEZbVBbN9HWnLhsi7XF9O76FzKlJo0Jn6gkWu/Uo9OSt+pptDGYzWxY8tnUZmM1hXsb7GPQUGoWSlZKzpSXRFlMRHi5CnkFSZ027iRdSMC6FhdghzZ2OBr0g+3lSi6ZwqDXw3VdNsY4oGXa/QutNWqtvH391bUtK0vpBvbFYJRh+p85Ej5VHvvdWhv7Tu3Dfbnw5e1nyo//wMtf/Qseh7Lvg147KW9cXn9jIuXtoLcHZbMMRxgslxebyHY8+PLrz+yP25x6FxzWZVsoa2G9riaO3Uyc24SWQbHvPR6VdU2kkkk526hwHTYhUO4u5Owt2l74PPYHvTfyx+Ti2p39uJn4cz/jkZxg2xYTCy6J2jq1DvoN7u9f2e/vPN6/MDTTOvzydrC8fM/Lx9/w+uk3XPJKKit1KHm58FJWE7PuB6M3trJBH7Sj8d3lA+v1lby9UsoVyHx9e+f9/UHrBiK/vmysa2Zdr3z4oCxlQ7twPHaOvfL16wOWgZaD68tHvr595Q9//JFfP99QhcuWeNwqpk12UHIni2mGJmz/lnzGc+GfVaONPjGZHx4l9aFoktm5khwszSozlhhPrzOTYT1ZVM/AU/eCQM7WWjSeCpwBSLXmuYMEO+pks1t+pHNYjDgLXJK9njFjoR3WfssQeqo+QdJ8tYHwi+V2KZG2ldQN+G5E8Q9UB921g9VBoLiK0IQzYXWARM4LKSe2ckEl2f2XhEoi50bVnVp98pgDZskn/PWm9DroxQTBUxbvHkoOGDUHZaw9VtfMshX7vZHpraMuYj6jWJHJslI1gXmZix1Rn54gwADcziXP+FWs7c7W2HzXKCbvcNSBzbOSGQNMptnTHovg5syzJq4y4yg3qc64G5Mp2XrnTz9/5n7Z+Ph65bc//EBeFiQl/vGPP/J+35H7A7rSRqeG1tXTuyv/9GN2gDwHl88Hw4NcyxHSrK91NRsyhl1rzsN8UrZntqzZcOVk/j+XTCmev4sVgnQiT1CSTyOHKavh4wkdf4Cc8sQPBk6yGRHQu5i5OPQ4kg0eaoM+rD1zHN32B6ZLJtkKFdZynMk52TRfL4JE+zng+9Q7sLq9hqbhD8v2k8l8KNBdO9vzDfXOtfkSau2+YIH7X/DxP8x4ssqyvYk9OmYgH2yMMb/hII1TliGhGl9njMy7AKuBACmRsUoJVERcvG0oJa+kXJDVdCkkpalvoYpT+QuZ4oaikLylKwJqJZA/M8YihiaHsCDe9z+NTSrWl5tPAfQYzw1zj50sAAd2Yrofag8mwKYpSDui2p0sCfWEqHfTNDKBc0PG7d+NGM1oLBun2gbbLDyuL/sk1nnGbskCWHkPN052iNWrk+rsDANmBZtkNnxsqHOYuhBteJGEfUO94HzssR7+JTG9S/y7Q4SRxDC/YU5Fkx06xQG2sTPa4zTOfs8aTDjXlJi6Tt6aJJ6cxWVF/ywOFtj0w2w9vF5hz5di2gNdyKxQFkYuVHd6g0HdNqswJKAKHIJS0b0S+jIlFZZUWPPCIskdq41O1azocqWvO3W11kIT5l3IrytyKaRrQRmkapNxypoJAqcMo7RL9mmQ0bcdFSCBhFNzJ8U3UBanZzpzwsDOExIwAyheEQ62IbF5T0QxwNUJMLhLCiwgXk+evjcTezWBTICoios5CWP6hei6BztxdcEu8fuwExrsqdh4w3uMn2ihvm4mrq4TwLE8Of5OCZD2+duTlq0BB9gWysDigEbJIaSvSNJJZ01+Hu33/eeCV5gN7g7moXhrhnhgwLD9bf82j3+eVRO9jmcW4J+MJ7HneT9ynsewkfN7Jzw4gwmJe3ePok9/S6zPXByrpszzpd/+bhz6eHURT+zsN0ZEtMMBHddcOp/CybAKbzGv3SLHGSDiPweYgvfPkdFT/DFFUN3Rdz1BpxkyeGBkLV+czCvRc2/I+Rbp6Xv2OjGu+gx6zOrZ1c7hGfN//KyITr2jYK7NICqJ22G/92Ejl+PfU98sZeg7HND7Z0Z6Q6XQtTBSZpB5dMzvin2KA/ClxFS75GwrcXAwKm5y4td+DTHtCPetOIiVSuF+fTG7tqyUy9V0n9aN7eWFvC4GRl0vBjyVbAyfUlhfryyvL+TNpuONMRh9UB8P9HEw9p3j7Z3jYWOz97c3etvp7YE+bqT6IB83bj//I/3xlSXbZFxo5k/cnpUGtMbwQSEyGloPmg70fmXcruTWWa4vyIdX5PpCLpm1ZHJeGOL6IcmrvL3P4FvUGA29NWMHHdXa5PqYATxqGh95Wej7Qd8b+80SW1TRahpKvR4c9TCwOxlLd7tcKUvh+x++Z6jy5e2N3//pT9weD9Z143evH/nu9QMvKXP79VeOKuyHoPmNffmZx+8/o/mKlI3y8gEceGI5gaf6/sbx+Sfal8+sv/yM7u+Mx43rsbNIZ0uKDC9WZYyZQ0elW9KoQkwNzggflkwblkTsdbBIIl9W/u7v/o4+OsdR+f0f/sBeD8ZtsK4Z7Z3WDkZzTRsHME4QOSHZigAlG5M652wBhdfYksdj8Wye9fRsyJX5qRHJdVipZKw7FdjrwT46772fWk4lW3tdMdF8cbayFfi6AcPe3pTos8WF7MwSUdd5bJ6wWotHppAyrEswe+BW7zz2N7TeDZzqldQ9LuzVgVdjwk9BfPV4DpsUHUT+nIT39y/0P/0jH//qb5HyAmlDxJIXLYsnOcpIjSQraGOMxmVbSXJFx5Xb7SuPu43rLu4PZ7FbIBePx5dE61bZT+7Pws/3Ic5kCr04j1cwnc99f3h8FjmFWdF27DTXN+ptN321odaGm5KLQ7u9Uos3soi3alrB8ri9MyTTNbEtmwNgacZjZVl5+fCRdlRarZT1ivRs8hCSkbSwrBdLy5yR2voDkWLPsZjmVWumZVqrifCrA0UiNuXu/th5v++MXKAs3G47P/7pZ3788TNv7w9QoR6miWOaXYO1OMgj9r3kMdTp9WX6b+8C4pup0N/E//E8sDM74tm4REnkwcEq0zMk1PNx+3AO51E/t5W5fqiGTqmzPGxynf+eHYjZEji6t7Enj++Gs2B9Yp6lIt1BKIuVUlbLD8k0z4vOuNjYkQSgNqIt6p9+qAMAFvwagcFaKK19Khx/zqbfJJroR0d6tetECC3g1jrH0WbAkLIVVMZQVCwPabU72KZeM09cLiu1tpkPRpwy9d7sQr3FPTpZIg8Nvn5k5xEP2fNOSd22gQ1u8rwoBwde0aN59hk5s7Hu/5zMMnMHeWpDixBmrqed31D5VEkOJg/qUB6tk/fKXy0r6/XCsm7IT59R2ScgKGJxVvIuodjDz3Gd/XfMVAS+tedzgTwuVZ/UZofkZAx2UaQFuIoVuhPWMhyF0JzIxTShtk1NuzClb6QBtKvjGGpDY8T2sxYnP6RTMkAEl805GYwWcwZbyotXTsKJiedDHciLVk5/HikX258uaq+eK/fuk6c9F8xJLWaMNQowDhus0+Ls+t6MuNvW2PeTREv5Wfj+Sz7+cuBJTxBhJnEa5o7IQNA/254y04doNBFC8tYHwWPSY8XZKAURQ4RFTKAzqbJkB5zW1VqZ0lN4L8aqSZLRZL3xyf+Lj7dOYsbADkqEf6cwsFFr/Vq9t3sCT6mYSLWYTkXQsGOD2I1G6hKshQCDZIJO9nDOB4zr56j3b5otPFviYrWmrlP0dWt/+p7afwMZ0DMtn8/uSZMl0s7ppiIiUewwpicaSyQ/YlpV2hOSujNBnG/oTxk5DcBMs5424SCMFE5idU5XgF3O4lDi/ixhGP2AcRAj7M8pZsNvPzZ77LNIvgNwYIKJRGIV4FN2MUwgr2JlmZFMcywXNGUX+1YGnbouwCCJGhuJztjFBfoskk3eW5s1GXtMoMuCpsbInbFs9GW1zz7oJTOWQr4syKUgW4HWkMUC2rRYO1lSIQ2LXlM6gScbgDMm0y5hRqjEJL5gMQVQ92SzozUMPx9R/Yg9Ib6tg1gyo40nQt50Mk+PWzj/PspmGglAAAYyJj4SK3x+nq2aJzTihjWMdTztJ2MoDr7FDpx2iW/3pi+I/1ift+m8lwCdwvHF+8UkqZKtmhp9mCrBysPH99o1BSNrMlv85A3/t7VlPAFT0r0qaJ9nRBGA77kiFnwo0p/BV5Aus2X4BITOj2kK5LQU34ahZsWL20vln3kRfxgKXt104ETDluC2NV457OAZPOJ3FU45WvY0vudrPvfmfI4S0J3t4z+7r9l26EBkiHbztO4zwAzT6JVY9fUOhuXsoD43xHwA8QyS/1z89/X5YpDzeWPAU7DC5mQsIGhSikxWl8Y9DyE0+ibo08fcw2kWRQAOQBlHYpAsANZsXyPUwyjRSmZEwUWys0AdBAs9kDGhlNkyGjFsVMXjcChir5dMlPtY11m0ScsLqayk5cp2vbCsK8vLlfXlQlps8EJaTM/m+ukDl48fKdcr5brRfKLU/vWdcb8x7ncev37m8bjzuL9zv73RnXWjx42kjYWG1K+kcbBmAywUm4wbVeLSBVGr9EVLFL1akL8/4HG3eVj1IOuwY74uoAt5NXHqIdB9hbQP8GojQ+nO4umtmRbT0ViGTvtr29AqprV12nHQ7jcWDPhrrbHf3umtmuZTyZMlsG4r28WExL98/crXtzd+/fqVBLx++MhvP125LisLUL984dgHxy4MfQdZuckvpPUDqWysLx9gWSEXWApdLYmst3d4/wqPd9b7O31/p+831l5Z82ATYwUMGfRsZ9r8i07mZJxQEeGaF3YvIB29UcrKti788MP3KLDXyj/84fc+Rr6iY2GMRqsHWZ5iHy+o2HQ4AQqS1Pdv8pY+0wVJEuddv7Wp0xbH3nVbNuyKZ5uPG6HaGrsePEanF6ztMg96SYw8HDw10j7J1qC7jxRNExQyQWG7HttzngAnrEBasrdvDLIoS7b9cdwUbTu0A20Ho+3eDRysb9PXQs72qNBcBBcTDkZLTjz2dx6flc+//Mj142/YrpmUVheMXZCeTGRfDiQVAwR6M0Amu1alGOOvtYaUTLStzEJCPhNF2vD7d9shOgdajKEmiu02WwKYGp1e1YpsEux6hQG17vTajU3V2xP7RrChRQFqRLxra5+T63WNTu0NGyqzcL1+Qi4b62aMzewDF64vH3jInd6VsmyIx3VWYC6UcjEdoz6snWsMUlJy2bzlEL8+06aNOCz8SO+D46jcHrvlAKWQ3nd+/vkzn39543Y/EBVaVW8dFC6rJYI5Q0nKyJDTcJ/1FBv4uzyz0iMuO7MWmb9s+bftSWNG6Az3zvBPZywY4NOZZcR5h2CSnM7VYoHuL5gn+uvxOO7KRhQ0lDzkLG55HD9THNSYH6nN6V15tbg10b8pwoWY8qyDBqgWcaOel3neYwChMLShJKz7MhPxYMoZU9MQO7fV7nmE3IwaWGG5bPyNtUPZ1EHzlQFQjwFZrHtH1gURsRbMp+EIFpdGwfX83kz2n+JLCz/GN3kgUchMT/FopEYRdavF4sP9+XNe6ziMv5XbGY9fwpx6Bkb2/XRGzs6u8WY866bpHH2Qa6OLdarkZTVSwpPURryfgW6hrvm0456KkNOWz+d57u/ztWyPjpnYeIyD7f+Gs+8H3i2ldO+ed80GypJpa/K2Zh9mNAUxzQ7Yeg4oYuzCkoyZn6J74ukkToTXLjryMvH7C7DUCnFu79BZbE/xGuCagHlqXccQstHPqFmGetEmzXiE8JWcueE870Fli7MSuY4kZyBibNXnhf5vfPwPAE/qlSM92w9wDEXtQZqQmp9w8VYmKcbvSwXw6mtPaMNBh0TWBRFjGEU/etHxjaB5zouhc6VYlVISJZkAoQmwGaLXtQMFkQVJKyn1qYlQcjS3Cil5XzZpvncqG2W5UMpGzptNukgFKYsDTwIpOQMGvmUcPVWgnS2kalUZ31nxXP33TP8pjrmJojskNF8zDpRPehuN0ayHPQAoMzTf0tsyxa1Lnh5C6U6zCwuWp3O2T0PznxN73Anps/6KJFJWE4oOJ5/TN4BQGL/nRrAwFnJegS0DgxFaA2qi4r3f6f3O6A+036DbRB/V7n39kwPEaTmzHzJzQEI2oFGNqkgqpjOVv92PkmN6xYo4AJrS5Qx4GIxR6b3SjhujJDig1hu1Vvb3G+2XL0htLB30ulOXC7od5FQskMT0ILoWjnJlvHZrbThuaEqMkpAPFzNQBY4vlb0dHKN6FUQoCkltJOey2oQMEI7qk6ycBp0Ukoq3g828n6g8SC4TmMs5M5kSnE4tWUphAdVzEj7/d5zbfkYWpzieILOVStFJm0+e2NvWTEix59/6jnqvOUErHmqMxa4+xrhMWutMwAn8w/dWiBI9BSx29J6s4VMvmJsCAnyaVbwATebuNfp+JN+lZJaS2dbi+sODWo95Bk6x2xAZPg24SDIQdiIUEYD5GesWWBqT2p9pDpDXH+ppHqY9yZJmQG+LmUnkE9cICsA838NfLryJMnycerRtqiaKCr07MJbsdeI+s483Um8VVOWJwmyDBOJNjcZsDrSp2U57XBakZGJyiF1Pcv2fqOzOZ+HOv4euQjyhSCgxQKkPRZsJ/xcy52Q6vAVH5/rOoEW6X7f4v21domUvB+oH8wzNJ3gyl21fzthonK1359Yj2tee93J8ox/9m1bOeBP1IHVOJpl7OhJlyFrJhD6FFWfGcDFlhVTD7/i5l4SJQT9dO1E6UPendq5mq2w6rzm5XzRgOZLEhPSYBJvR8cKQFUlX+raipdDWleOymmDrYiypVBLv60pey2wn7t1aIo7HnTQaeTTGcaf3ymiV3HaSVsqoBEs6SSfpA6GTqORyoLlZyHvYVLgimdEMkNSkFmlK5+iVcc/0vNCOg/ThA/lxYzzeYV3heqX0T+TrRk6v1NQhDzbM7upQ9vuDx+3O/jg4Hg/XGelsawHt9D4o2dhcdT94//qVcVSyuo5F6zxuJiSdUD5cbQJXzomXy4XiTLB//+//PbU2hsK/+bf/lu8+feLj6wvLL3/g9uuvfP35Jx5f3+hVoQqpJpIsLMsr6bghaSHd3CdKoiexgHQM8nGQjgepHnDc2LSRtLMYVQxGI4knfih1nOy35nqS0oUlufhvPcjd2jMvxScEtsp//H//B1JZUBHe375O5ljiSk5Ya10kj27ncs6siwElJ/PT2OD1cXdAwqflYrFYTi7kqnZ/0q1dIA07Z0su1HrQxqCPZgMIMkgW8tKtlTo30moGqRWPaCTBUuxCC2ixaUy9Ny6STQJCK1++/EJer7z88FskKSqmudS1QbeJa3mxcPz2/s71cuHl5cq/+Tf/M7Q77bHyeP9s+1mGFxu6xSa1AsMq8Q4gT5uBAYk5L6RiemVH7dR64+cf/5EfEIprIaWcKGlFW3c7O9hvO8dj5/3tC1+/fEHUBMB/+ukzj/u7AUhuW9vo5GTskAD2YzqXm4UZBZr5DNlb13bDALhRrW0qL4tPK8SGsGQDvPbbzZhEffZczHj1eBzc2le+//6TgdlFOGql1oN9v1PrYWuVhGVZuLx85G//zb9lef0t5fodLx8/kbcrkjeuH1eODv22ky8vFN0o2jjePzM0kbcrR2tWpMmJdXlhXRdeP1x4PHb06MBBztnaz1ql1gf12Omjmpi1dh77wwoDkviHP/4jf/zDF3788WZWeMAYlaUYi+u+KJeLsCzCZYOSTXeqZHWcVIihQ+YaTob0ybywPVFyoqTFY92ntnMRcik0B3DC35nPPOOS8BcQQERM/jYfY/Fnni4spwArnveAtemBgUkahYH8lBAPpn8TiificOzGZAUh1U7OB6VUf22lH/UskKjrwo6nrolh4vcR96XRkGRT+Uh9Mr7KUinLyjXZHoxYIhezP+u2mT9S27vepW9dDsNatvZ9d02ok11kSy0kyZSyknMhiZ3Rsix01/ATFSrNhnP4mtg0RC8MBpDmwJy1FEbOxnx+kyUuGIhaILQI7eedQadL9zOtnL15dr1x4gIYiQ95+q9BvV70d6RCfMpn1YFonqBGb3CMxn/+/U+U5Qs5Jz5/vXEcnYa1G0aUFeBTJjDIiLOfP55AJ7+qM29hvpbvyKefyiRHDG9rHD7hD1HqZKQDSUlHIz2EUQvZJ1aD59JAzlZ8Vq28XBfSksgk0yBtg5GsAJjyCQyhtraDkzmkag909DZTFx89OO/OrtxaQ2W4pIwKdJy96Oy/kUC7lff7QIvlISmd+pSxl0Sg5DLzStvUxijF91ev3QrXavvJoMQ/fx7//MdfrvEUJ+UpQ3tu6xC1VbOLT96KlYCCqY4UYDHDIQtKQY2fDMlExnNekCXogcZ+Advf2XV7yMUq2SIUyZRSXNg3Fn8gaTGQQRZUGgbtZZIUps4IZQbg1nZQzr9Li1Vqo2WvLO41LfEzUrCzvYZpCURy/g1YNEXBv2UkKMx1M/q4AWnqjkHgGdEjgqcx4r/61GI2+HPgyYyVo5YpEmvlGRk+r9VIlIFHf5OA48c4sMQAINRpfn7Iz//Reb/xuxFojKiCCKCNmNCnru6j0uczHxrUemM8aTNR1nAYOrO0gO+T5+XJ2XD2HFNekWSfE2xKi4OSBckLoqHhZfsTFjQvPiLcE/exoP1Ari9mKJLAcUdqI28vlK3DOBj7g/3tYTplS2NZTSCUZTknIuWFdH1l3VZKv+K8BKp0aA09miUT0Q+dTRB5lcQiNuGmlAXEAI3hWe7o6obnbAkKox9nVZ/Or9GQbeampKcHjvjI1TFHq1olTZ5YG+lsp51/p5wG/f/Hhygh5G+6Xbb061pMA6YUlmWl1U6tja+/vs9rSvMcqGsV+U8syp2At1UZLHEOx3dOLPIzoKCM8Lm+v2UmTiJCiA8kOKdDiGsYJKOwLjmTxc5BTtnbeOJtgnHnFb3z7a11MECLkSbjJyW8vzpAPPXKvbdVhqvxpP+ccCLzbAswcoD+JxconLaZsITIOAEmBipOlZ9OUJw+fJ7biTl4tT5NfbtAOJmsvG+BJ/ub3gdDjL1nFTWvriQT2j3ZYc6u+SZZ0Zl8ujHyqqxrUYywZkxKegAiw5+9qNL1fC2d4J/9XCegEtXWp0BvKNL1aYvrn+1225ch+p8kKnvOcuKMoZkBWawNMxCbgb5wBolxtjSKEh6QqO9xMeCpeytXcEqzV7dDqD+pwji1XqQnCzCn9Y+1deBJvKjhAFxysCzpySg8RWHjdZJ93WOyWYb+QFhJsiG6QM5IW6AvVuVfFrRY69ooheFApkgypvAYjHpg1aoG7QGjI71R1FhMoh1JHaQzW/UxoWvxz5zsPJFgSWr6IApSxIXbFNFGbwZ2jTeh90ZXYzSwXZDjsNtsF/vjtaNrpWGtNUPhuD9oj4NRmyXx2FnQGEjROvrYOe439q9f2G+mPZVJHIe1lvVWSQglJbZl4bKuJBH2+4NfP3+2ZLp3Pn76jo+fPvH9b3/H5eXCtq7cf/49bXTaaORitnNNic5AtLHIA3o1Zkuz2GgebgeepDWkNqQ3tD3mGiINsHVOXjASOae8Rvu3DjUxVgm2rrMoRRgpTWHz43GDlD0KCYcybHCIBlhkIM+SiwFOuVBKOSvAznwZo1NrnQnWc3J0apkIaUAekJvONu4kXgX2wkFwKlVhWTMvq5/bIrZvsrdWDLjXg1USmk1k1SY3CppMu1BHh7yR14X1eoVltRM6urXRoqZvIjZR67HvPB53vn75leu20uqB6GArmayZhjHAhp9ncFvo46/j/k8mhFjC6y2tqycmdb9xPN6ojxe2sqEjMbrp6ET7XmsG2tR62PsOA7sQyLnYGHTc9vr12D5w2+UsJrPlEobNgAFPjMQZfYgJ8w8cHUkYWGbpgLXBqhWyZnuS5yAC1N6ox8G+77yXxFISeUmuDVWprbntFfroVtDIiWXb2K4XymWb5zPRWZbVWlXEEzi3v9VjUEEmKw7UpmGV5O1vY4LgozW73lapx93O+KiIDDufKUAYmcWFkDMYCqMbmFM71K50FZZqE+PWMijZsc9s52V07ztxBxVNODq8HqgR7Si5d489oviViKEkES9EvBEfNtr99Iuz5cd/S/3xE+3zHt+cLIn4VUvyz9pK+JAosODgsXWDpGGpnDue+CO7N21epGT6ylbr9KfmXz1eeGJEnRidTAmAMaKtyhhZUewxMBsrrIivQ7ZCZM6mVSatge+X2tosnvVuIEMqiaxPRf5U7HzIEyPSn5W5dQOq8sgWEQ6d137atcTJ3vIYReL52ecYwxk8eAxuU0FnHtr9oSV1LbanPHT6+IjdI5F7egS+zyJkSooPerBoZF4egrGdbGJyUmhD+fntNlvJ9900DEf3fYswabTwzbvLvJ4zHYlBAxbDfPuzudP0mc31Zz8j8uRIngRrEw2Gldf6BjzE213TAHHwV2ApyToZSPRmef1wHUTUhMwTxhQaOtBgDom91+AEd4MJGCdEYDKk1NtbjUHrbZ7DisVjOINUnz8jVoM/S4Am+IUjAuEX9Tl/eMoj0Jgca2xSky76yz7+YuBpMpTjWQT8OZMBb0ELI+etRtFKBwYEiSz2bzEAKpgokhcfI5vnQTRKmidLOUYyZ2+hMC2bkl2bQsfUAZC8GsCQFqZKrRSkrFMbYAzLSExEtpyfKa7J9SocgMIFxXUmAk7/luD1WNozGSFEO1yz/srhlWN9PrhmaJPGuMw0jfVzVVs80eveXhFJLT7hToODGgfTW7wU4Zy+9GeH7wko8yPK6Y6cOeTG0XMR/7P4/eHb8fy+gWLNgyJbn0glB9EqAKquueEIuz594us2otXOqeXqlOXJ9AhGl3jLnFqdVCTaIxckb6SykbLvOylPP3cGFNnAJxeUh4I11EcLSIFRGS2RX14YTpuk3kltUF521juMfmd/s8pGHTujVNbLhbKu5BehZQu4eynIWlgzINXHIB/Ux1dLOI4HWk33IeUEOVFQVgprsdHdOS0oaeqfYat2ZrVdOZ2ETqd0stJ0CseZ3462RX+W0Quv+NmJpPe0ARLJp0agYT84TbltmknJjX0syhAlUPskie268fJy5XK58Pr6keOoPO47t9sd6JbMDxB3uDJDqdgLPIFL4Yp0Juf2/nr2YDtwGnZXkjvMMKjiJn4CIzIdij0SSwhLThSPO4uUeZq6tzd099W2JnIetzHjcmKMahJIWd1W6uy9trNXZgtXiEza654g9xxhK0DKp62K+EyZIrA5xZwUdRaTP8OUfOuYcDlDJiAejCe7DQ+8vX0j9ME81vR1tEDs9N1KFmV0oalrvEWQkpxR5qxKj+0m8DT3mbmEbz4CDJ0A1AwYxdmpQpfzDIQHtsccI12e/JlwBsP+OrG1eh9nkDyDZc4gj4hXzXaOJ4cufp50xH59DnaY9xfra3HeiAU9N1Ls+ae95Hy2+UN7us2LP/5cNM5OMJ7AKtRxWuI+PWX3syrpHGAh6r44rkN0Bi6z4o3tG3XtNyEZ8KQLwoKo+XF6gbGYre0rZG/ZTNbCZmuYfa9ZwqvaGFqRURHt5BiRTSR67nt1eMFpkHT4VTks6djYkkC94psWsbpDBq2dOjy57JY0dh3I6LA9kHowMkg9LBnZGroctK6oFAZQ90rvA+0DGa7xkJIx8PpAaue4P3h8fePtl1+RVllSRsrKvu+m8zQ6JSWWklnLwofrCwL8+tPP/PTTzzwed77/zQ98//Ejf/M3f8vLp09QMoPB0StHqzTtlEVMqH3YJC5Gp8iO1tCTEPelvtWGD1Jow6LroejYLdZhzAIRMkybzm2PpQUexHsADMwpkjIsEhQxjTxyQnNir7tBWgpF1DUfFfXeBrNhg5wTawBPyWLL6lP0mrc0jm5i5JFs4Wcy/h2teEnVgL52silN58vuI3v1z+verGum5EQWoScHqEviqEptg9tRGcUKWBkfi+6TEAfWulcuhXLZDHgqKx0DnvZW6arkskzArrbG+9evtHqwLoXLurAWY/dboarTmgu/PssPjGGtZNmr616lV09OU0pIyaxij7DXB/Vh4JNeP2LThWHfbUpwwtoea6ve/uhaUl4sLUtBe+jenHGF+SyLXwJ0itgv7JG6+HKU8cUrDMPb0mSYgH8eppEjai1S0QJ2Clx73IexAozZ9CChBgItySfdWSE4e7tU7+45UiJ7wassC49WEakkMtv16q0seLuTBUnVAa8kaqL2rhNn7XC4Ue6YLH2nt8O0WdrOcezUelicLJ2czfeN8ZQE+p7sQ73lSLydT6nNwJJSbOn6CkvGE057LW2RADso4fHMCL+nuN0ctCbkbHTd6X/F7tfOTBQ34/NMQFGMtdWtbecsxTx5tjiLxH/Pn2n4r6fbjtR69LDZzp4ZIE3Ji3Bmtx78IegwbbnRxoxXe+9zkEeMe1dVZyJFkf106NrxGNZzz2Dv+dkyoNvBcC92K4lcXCS/ZZeqMMtRexT3HEcdiew5kYQ+YPGaB8aWsZhTIsg2f56SNWqQrCiikWcygadY1qkF6UD7BJ+iujVf168h4tIxiOE3uczGuxO8jpjkzx5vVM3iyXv2iuoJkthLRHwRouqn10Ch3R5PLxp/m5xlbrFFqE7ptCJ//nGynea/I2+d1wHfXK3Msh7MV3Zm7IywzU8OVS+6+voN2NXAmeRrmxIU70qwvCHRq8OpxfMUtRyoM9DkZ62E3lk685mhUyYn2sBlro1dow1eE2B4C3iid+8sEQf7IzcYJ8swnp3pWMmZK+nT6ovLyEg8Y/GIzqvBfl0DawUOiPsv+fgfmGrnQaSqJ4ARuMQDzDBMsNRg6WA6beBJP2yQLki+kJYLedkoy2aU2qWQ1kLZij2w/HRovFVOUnKaonmx0LMRtQMnqSFZyUtjUfVrKW6bkoloegtgUltsGbYMKS3Ware+UJaVZblav3v25v25og6w+H+n3hL9/Peo5lgcCBtPo5BjLScB1tvhlBDddQM9+OZjSkbpuUlM12f451k5sOsTJJvzmuPdp4UwJ6cO1pgxMA0QcWaFsQYMgSaCBsGyjm+zHrt21xswUXBfiwmePR2opAw9UG3AzugPxngwxk7v/jmciuysp96rB+2dYCkkKW5c48BmwNsr84WUX1iXV1K5kNdXJF8NgEqrg1HFmFA44NcLwRIRZ9clB55UxdvdPth48HWzgK5cUV1ZxoVR3tFDedRfOOpBO95Y2mGiujpI1ytp28iXFzt1Sant7kKDg+3ySiorkldu740mza6xWGWZATlbRW1ZMt0IUh7UuXseWMU6EsjRib78wBnVabWREAcbJPrIJzKOOnW3z70zQcfhgZ+e5x8C5IyAf9bZ7BklvwAZhCFELbh5/XDlw8cPrOvG29tX+7Us/PCbT9ze7ry/3Werp0zwwY2/hspKmgcldALm2QljP8G4aD3ziGBe7VN89WefATzZ12oJgFoVLmuiyMWhUwPAw5kNOdf/rChYI1xCJotEgKJR8fWE3v/zvK4TSYqxEh7wy2TrKC0fs/0hY4mfXaOtkiWAzqlSNTYGmSriFe3+BKFjlbpkQXUpRsu3zxBK1bOKqRBtvMkdMAp0oSWbvl3EqrWjm/1Irl8RAuNJQCbYde5VHTZ1BxX6MOmQpmCsC/vbUUIDxp7ncOcYH7FTvLg3Xzs2RlTrrfjkgrvK3Pt2v2c7Hk/3LVjSKn79GsyhMWayJIxTQsnfV/QUz52IlHi17ikY0OcNFKb1aZ/j+1plGHjjQNF0XaKeGNmFDz2p2LN6P9/H/irPinEkLeIthVETtHMkDjaeQOsZSFmhwV67q4Amo4R3m9yWU7EaymSlOItVTkFz84+VPhqizVrPmBJrBn6EfRLzgZEKZX/WKQLGZAmpRf6JvFkrvUqit4OkjeTC1tKraT8dD0ZZ6OvG48sv1nZ3uZA+/Qa5vJBePpDWDXFh4pKXKQtAgAK90R47/XHj/suv7O9vtLcb/1/W/uVJkiRJ88R+zCKqZu4ej8zKqu6e3u7d6Z3FgnAAQLQH/P9X7AULAm44YGanHzOVVZkZD3c3UxURxoGZRdUja2ayieBFXhHpYW6mKirCj48//vhxWZDeeb2/QHe7UrXwtK6spXKVwtc//8zt9ZU//dO/AMZDqTyVhfb1hU9//JHt5YVtu3O/v/Llxx/ZX1/ZtzuLeJsPVdCOHzwb9L5NEMH6qcJr/jfXekoS/44yKME4zZRBKJ5Y4a2yglevZXgipAglsD5m0uqvrbWgS6WMztY6exs8rSXsgqHWvYuGZCD5e7x+eXGbIUprLRhx6efirEiy2m0CB35UHPwtIqzBVnAww8/i5bK6bleBVobr51TFFmHoADaa+Wd2C7tXoFVlr65R1ktnWSv1oWKXCxRnVj99/wfWh3ewPqDrQ7T4K19++jOv9xuGUdVjkfXyji+fn3l5ufEf/v3/zsf3T3x898hlLQGMKc3cuHlbhNvZbv58C5a94Tg02GkdTI06YC3eKi5LQceN7eUXXkpFy8ULdMMZT61vtH4DdkrB7dFQjM7ycGE05RYC6WadocGeNfcPKhLtcUfB1OuRnvD0mb1AK+a2XsDbQYAGbRd0jGi79ZhXtUxdy9GMEnqua630WrgDry/PiMoU2PXYOEAF8aKA1pVSFu7bhtxuFKts1tFu6OKtfLfXL7Tt1eNaxvxfsq8/PFwRVfbW2O832rbz8vXFGZO9sd1fMXMASsXcttB9qnNMCxx9R/WBdX2kyAsaaVkb6SP8lHmK3NmCgMnmZ8KMqTEzNMopGsBD7v/wbVnwuqyLs50lJpOaM55zaE9rbRb7PV5QrBvNOtnx0HsU5kqAL8FYmUxomDo6agf7Gg5/evZpEwQOdrTM1kA9Ckty5DkZODmjJ3XUvN00wYrcj2X2wQcglRTkADYy+nPmdOS2YlgxVHcEY7uBFhehX5Y17tkLF3VRei/0VidINScJWux5f2cazWOeqjB1cWRqte1t0LZOb7HG6i2RWExSnW3NDi6W6dTNB15kiBj7XuKMRY2KxHtmXufbCl2ERX0imtwjJ40zGwGFr1N2FCRcc4QLb4GNCVV8++XlCrdU3pw1pMxeJOIzHE5JsCOYU7mHzoW4v/D+p50Wni3iwfPWOV2YnX5uc2HinczI4UcH8cLz8BFF4Q5grv+bxZPskhAbtN2wbt4aW+C6ind3hSbK2AWax7t5vSPiTo99jiAzOB1wChfz5gxjvzsI6zG7zpj1nIeM4YM+ksydi5DAM9HieUwNPwgv2XWi1cHaMbqLdExc4L/99dsZT6HZIhnsTrwjgstse5phSLTU6YLIClKheGKtZaGUFa1LfFfXvEn4XzUmPaUwuLoRDCBkVptzopaAyYhrKNFmdaFUr4rMildZD3Ahqt0u3OpteKWulOqjVEtcm1f8J5+AYfmdvcJhYGY7XbTYjWy184l0Yz7duN4Il70yH8JmnATcwrLImyORVWQJgdh8nTEn1hFGQZhByWx4y+gtWVqWYWO8dz4/Ob4lafgizJdGNXympiNBjoN1ZrEGWH66hpNM4GnHbMPGfYJLmViMfK+poXUOjPO6417Mq+uSSjHi+l5aHGAq8Y2u0TrpbXbOcCsk8MYUpNSDekw6SEAUret8GvX6BKawGeXuhnPdvUVClle43RnigdjonYonPFLrzHyVGi1GhQdZQO6MNrifpiuKel+wJ6weZPsoWAu9q8ah/XLgEkegNyZYZzCR80zkDZm/mwl2bql561mxggArTy1PyGxJSgAFZt7PnJSVbmNWXhz4tOEVKNXK5RraWvj92w77vSHcJnNvGsZkNsmvXZvF51qsQ25+iTLA4Vw86NCo+J9cTZwIQcROyW1UpsbwQKK7vkC2c3Ub7GNwHz5GvUuyn5jsMsETn2SjYDKDQR/d3dwSSKEHgKDB4jGBrYXunYhn1OIGQwKsQKCuMmnB0pu3vDRvZpFkIBxRG4cN1eBPGl2EUV2jxxmAATgsimoAM+bsRo3SZRbTJvsnvXvspQR7pLjV6WkZ1EHVCdqA2/+4vAme4sCTBEvD1PDKmU/HVBGsFiYgrTJZgXai1/c9WtT6Cd2P/TS3kh2FVTv9/zmo8d+w+aLZIukmPRjAFlUtf0ONKtNxb/Fm821O+1VOz+l03vLT5c2vHtGfxWHPcxrb502wJUK0CrnvOLNwZ21tarAQFUCZ2GeEXuFz/WY0dL6ywjnbHUNw2XKjE0WP0XzPjXroJ5hPvk2bc5gLC5p6j7A1Iw07zmUCy8LxfnFHvjdtroHmSBkVZxqqg4JFOjVZxGO4UP/m1yO1Id39OsuCbZtf6+2Obbu3Yq8X6tO7ebZ6BmxjuI/c7uwvL/TXV2TfuYhwietsERAWES61UlFoneeXV56/fOb++ordN2/3RRivd17sF/aXVy6Pj+zbnW270W4vjLYzWp/aE64ttbsOHmA0RrAyUvsxW3A8vFN6JDrdmoMZ5uNgJpt0TNNBVmA1t+EpXJh5ghysuvydIjgTMhhUJT1FMmGiIsswrHlbnYcAJ02a0/HMllsCOM6CFxJznoKljuBT6OyIwawqQ4yNzs06ffgpK8VtoEsYNJRBrYszpwxaa1weLzw8XRh2RyuMRWlaoqC5Ojh5fUSuT1hdGVJoGKyPiBVndAPQvdgphWHK6+3OUgtLUYSLP8fRaK3RejvahqIY5BMFlcww3fUfZ7vEYBKf0gz0Rru/8iKfIla6sm0hWt43rPtgl8xtjaPlzIGdBOY9Zsq4eNAjSS8Rd4w5jcnDZZ2+2/WFgneZPo0QGI9R38pRcO2tTbsp8dDHkBj6UViXyn04U3N01/fKfWfdkVATJlDS9o1te6WgjJhmOMagbRv9/gx9o+iYNkYLiHnL/Xq5ICQDC4/35ii5MVkJRgvA3v+t7Rt9tojajO3ut41ta1N8PRk5EfYee90cQ27dj0frGQs7WMpcr7S3M2JGJAGh09+Nww6EnR4jC9pxhor4GnULRtTJJ8jxZ8YqufMMJttqeqtZxExDknFbXFN3qA2V6JxxPyXpn87SJZGT+NeYMbzHkamxmAXA1ME81svXQTJUIbV3JdhP1n0/d3y6bCnFtea0BLiXBRNnk2dU0aOlTCAK+IcvINZt9D5jc6dQCfsUzofMEcUCJO+uZTyCOeU2zab9Pu4l4u5kzJyihckGPdljlCByCA1DizM30VyT3Ex+XvMZZqww84sZJ+We9T2SMcjJbXC05w8SB5wF4Ix9Mj49ts75L/O1+dPMTnw9bf79+O+37+FgrEx/9c07z989NZOTq4m8ZYp7Xh432CyYUCF50HG2cTFKMWQUbLhOqs6BZTa7Co7PTvBUZhzst3IU9+f+QWBE+1s+Vs1IMf4947m4Xj9KB4h4xJtpm/03hx3Fg/l2QyYeY8nO+mYF/0tfv53xNPxmD9BJwl7ELZxAp2xZE0l9nRXKgpbrFO0uyyVAHgeeNEfEq4YIW4y8D/BDdSHiiGOl46C63RzMCXkSwNN5oRN4IoPkytSnEHXgqazOUKkrulxcoySr1hmQ2aBbn+AIJ+Ap28RsuGigM52ivzuApzlmlJJZGpk4Ya4FkQ1qk1F6mO95sA7HYhzHK5/HNDHMbRf/l0EYEQj6orqGjGthJdhUZmtjXDiUM/A3SIeW95xil3ZieQmQ7VEmnuj0sWHsDLtjdsf6nd4219MYLsyZv39uD5tfSeXXdB6erPje8xbLUlZKvVIW/0ZcKF5nG2aAT5ksqidZOQnuPA0u11XrEsmKxu0vyCjQFV0WLnhVvjxXenXxtWHQrHkSruraUWEViiwsWlmr8aidMZSNjTJCWydA3cNhJbIs9OYiiKP3GczleUw6ZwJS7pTkSAAyoImNYj3R8GDdxRrPrGLuwanqRag8HTt0OvC0COFwAthJ55mTBqFE9cZbU0BY1gtP7z/gzAlh/7rz+vV2YgXJBDUOM5lOViZoNqvcATRN0e/4+QG2RMCQ5wBOpyggSYlJdnEenWjktPchhJ6S0jA26+zWuVljF6OJOXgUwYaqQ/KLeDCV65zJYBdoeJJOGQyJz1j8QgZwG68zaNDQWsj2OT/KwvpUHAjrHe5OC9K7uJ7UUGc+WDD9Yh087fan2oGuipXKKM5ENRVMQRZBC1QF2uZtF6N7ycfM2SW4nZvkGnvDqEfiXjX2mldm/DvPxrk94+g6NsrInRjsW4Lh4jQpbK3zjJbq4oit9xhb7InM2D3YSxLqeYtPJx0bYZKlMlnNwBowOZ+A+KX5bMh4DN89/pnFEjBLZs4RTLyxcQn0J9vtfJ0zhD8AecsPCxftf41wM57FNPfpC4gEMuxLntoRt1JMUMqbds0Dp/TPHRHIinoSb+cMKRN6zQEa2RoODHHfKBp6UPG+ibQet+P/pMeSRMlmzsRVjDKDYH+jcQpY83xhx7mWqDSKiie7AQ0rgyqukeXkzP3YgNU1m6zvjFph2xjNkOUFe71R3r9HHh5ZliUDFZ9ilCj/GNh2Z/v6lfbyTBmDa1GuCYqosJkLaD/UldIH7X7n85/+xJdffmG/37loiC5bp3194f75KwNYLhdab+xt42ENIA5j1EMXx/bmz02cBTP1FMkC2rlZxlk1beAAVYANc39ZJI2RsL1pvwzmXJIyPX3TaZ8TnBDzsLqKJ5V+XaEmFa0wmDPsCRvaW4BNcjzvrIdDLHPESSlGTSnztd1CEKGER8mNVZRehZ3Ba2t8bZ1mrmv2UK7UtXqtavgaPj4+sYsP/Wht5/H9I+8+PHLfvjLMhYa7CloWar0ilyfk4T3y8J4ulQ7svaMP76n1Sr/fQk+rcWiUFm63G0u5e2t3xF3DdrbNGeF9jNiekVgHg3qWOiRi4AieXYumnlrbdvrWedk7ZblSlwf2FoXE0ZC2gbmOELHKFq38glGXGue9YGRS7AyrUgqlFneXwyvjHquEZo+mALXrSvq5PM68F9gas0gUrJneG64Tk4CU74m6rNSqrMvCvm0BjkZBLuQqRiTbQ222Xu77BrcXSjd0Fb9Y2ehd6Lc7Ou4OMkQAVYsgkgNGLpjBnj4lwK6QqKKo++ExmqeJkSvs2522534etNbZ+sbXr6/cbhu9W6a3E8jAklnh360n8CTsTUKzTrgsEufMfWzmLhn6qziIYeJDaIapx+VyFAyliAtvD6NG0V8DBOp51k7veXSnEN0ShAca0ZEdEEUWBzKmTz2rjCtjT2RxxovyJQoXGY8meGTHwqS/mPZJpj1x/bMxk+w+cMDZvDCVHRyZmxH5lgVbfXS/h5aaOcVbb60uoMPBXnVbn+Ljk60cT1EzZzIHX8HQAb11948WHtskpqH6PZRkzOIAd37bRBdkAoRmAxUHw4pOMazw0sH+5vSsxAH+YTJFz11CY1A61DZo3ddvVkch8mZf+wQUs9hExGP+Qn8oOgMIph32uxWyJX9kbEHGiBnZ6unnJ+Do29CLoxB3vOSUC0vkQDOXt/lbHgfJwYbKvXPOCSRZvHH9sfGnCPh8L/+PETIAXhgThhpjN1QDxO8wulIr1EVmsUyLzRZJjzODUIPnos6AC/8qB2g8Yz8E6+57h3roIkUma3hYxG5S/ANTiIskCUSEJKkdFdFlXOAYnp+4KPmJVRtTVX/r128HnlpeAOTEKoYh4uwmnwZ2ccHmevXvslCWB3S5InWlrI8s9cHHjV6fqMvFncXVtZ3yW7KvRRWL90cjoQjyt++yMje37w3XJjFxXZgSAFSiv0tdAyCTb9ZIESkUXZHq9OhBsk4CZwuAxUeNTl6Ap2lJWY8eeMsJdCM0fCYqELsrg1LSaGdl2Z3iGwT3RAXNHmDVcKIjmGbenHzczkToggCfRm/m3U7xc/AmtI80xNRTmLuuAQRmppFrkVV0mTj16NsMVHrbGH2foFtCwIdZGPR+Z7Az2DB7ZYyN3l7o7eaaTmfWEw4+BeoXe8+vyboEY00QLZgtICuiV6Q+oOXiYOfygJQrh27XSgJtgrr46aTnx8FMBCbYMAgzYFOtPjmwPsBypa9Xxu2F+nTh+lAYz8/Yl09sL6/s952XW+Nlu3E3491y4fHhgcu6Iqa0lxduz898/fJnbLsh91f0PqhdGKa0vUebYWM3Axq23YOuLhAAVV6975PDGUmaxDSUzZjA3TidHdP02Gf0hYi1joQcCQ8W/ziYjtEdkEWVytJtzDYMpXiik45y+NTHzz99om07P/3nH1nXC5hiA778/IX93qgUarkce+DkXuZEu5MTSH2C/LesjJ9/fv4+QKfDQQpCjYk6RfFJQhhqg2KuEcJo7NLZROiLUB8uXB4eefrdO+xSsUvBVvHARKCYgzTadsrr3cV79+baIqos1weoC7osrO8eXMC2CLKU2Q9eHh8cmM++v1gT4RQF9o2+bWxfn3n+8RPblzu3P73SvjTsZvT9Hho7PlTBdGFooVmBslAvhYeP79F3j5R3Tx6Mx7j5VbzlRq3Rnr9A29B9x+4+KaoMbxksGNk5gQgtC+yCs6kGc6xwUQ2R1YTaw16K35fW2IQ9bKDFHsdBWVFJdVX0ckFrpSwL14cHemimvLy8cr/deX1+ZX+9w4DlNM3NH/uRdrsVOAKiPFcHemMz0HBXdf5df7dkfHm1NpiL4mWFLkBMCzTxyT56gnPT0bsI5ukKJ6ASNUJLzaas6Ka9P872JHWKTxnL+2m4BhLh12we5wnPcLBLz4nG5J8eq5XxO3m5GSOANWY50WQ6IU+M2vBAKa7PSc8ZzI4Z7yYLlbh+xVs2FyI8FfOkUkLx8PSsBubTMiMoHgEMSjFEQw8q4pmiPgq5Vqg92ArNq+bWGmVptL5ipcC+0V5eGVIY68r+/gP29IT2HX33Hn14oFwfQuQdbtsLdntmvHxF7zdW4KkULlHoabWwX4ozKu+dT3/6M/eXZ26fP6Gtcx3CwkDbjsrO9uU1YhHQ65WiSlVh6WO2Btvt7pMBm094EsHbMcKwj25HRhL7J81s4mUxhjKeX8Kdvu8k0fmMM5TZYisWyasZaMmQnz462/1GC+0bNNpsxJnfih2MwdzvweghWEg+Wptp8/x6j9Hj3hJ6lO5y2o4ItCL0ajSBsRSaKpsI96I+zXB5QotQVbBS+fC3/4and0+oCM9fv9L2jY8fPjBUaSI8jsb3v/+O3/3wHc/PP/Pp8y/8/MufuW136nJBH9/z+Fd/z/LwRBcvfKUffXgPa+/cPv2C3V8Y9ztrN95/19Cy8PXnPzH6xpcvzxSJ6XyaPt2T3LJosHAbPn0vsNso5qp6x0CR4ozX8Mu97cH29QRiv915/voL+3ANw7Uoa9oLyQTOJS72rSEIl+uFHJ1QitJ6o3cHUWr1tqS23WP4SWhTBWPYW1NAC5TaUTPWJS1KgGfm8go9Yj0zoe3NGWdaqKWy77uLyndPKGt1LbAWIv37/R61iICr1UG/bdtZtjvWNvr9BXpHTWgxBVTLirSdMpw1PGJyImNjWVeeHh54/vyV3l3rS9WLUFU1wNKwiX0wWmO7e7vO6IO277TdxbCLVH78+TP/+C9f+Jc/fuV2b86G0MVD3nFmaoSE54AmDjwJDvJpANj3+z51Z86FuRpAO7heIQG+OTDm7W1phzXaFCXAkOkAcLZodqP07gw8yKnSoaMWNjYLbHkteWQTuDZxYfIEoqZPjfdggkPiE0jMIgEPfxQtnQfrKf0js4W2m2s/pWj72DOPVQc2EyDSTL6Z7YJaxO1/TKIUAcrwolzdIfyNFKEu1fOi0PfbIUDa80xvQWIgjSDevjgccHZtSbdZpXpJRayw3Xfa1ti3FhIXGcem/7W5ZqVkF8exprMt9cSI0mSxZY4Q4taCQhs+se+iKN6R0EkpGH71NQtnGUFnDpuPDY+f81RLQikScVxIDWSYo6dsRvIDJOPz8eazT1nvG0bgKbV5E6tkUvM2ghGypW/mqWYu1WPn35sXHW7J6PTjXOT6AVgli+82vJDSxh5sfaO9DmrdKaVTFmFZC3VRTFzPUIuihTw4iBZcNLxRl9C7RlAZwYRLJjDoIqFFJhAAa1iCc4nmWJxcb0ko/1jVmRKOA7zOr9Yae9vBzNnKpVCr8lu+fjPwZPmcJsKWF1kmI6nUi7fSLQfwpGsIPNc12CcXag3AKbWdwkFlMpVkjFybgaPDaVPONy+ntisJdpRojd5Kl2JM4KksFzI6khNVM4En1dRzijHUoWNlhIZRjD89KIantwjBNwtQKlvvjpaxtzV/+YaWJlGZmhW4+bNwFmaO/DOwUZAY/Z2NBhO19136JvD2N9OZBGYwJ7OdLtZt/j2+43V23OU8ZCOSAuKeR/b5D2+ZG9Hj7lFsdue64ejjznCOCGYbw7zVrrfdQaveppijkUsW1xIJgmWiPYPlrO+nrlfoioWguOohKp5tdYjO4zinopmB9fk5bikj+NJEgz3xtIJPqLk2R4H7ztLeY0sJ/fwKr3d0fPUxzW3j9vqCtE4vFdnutJdn9pdn2pcvSN8ofaf00LPq8Tz1nIDagQ2F4fZ/P52NeC6Zf54gKRd0joAoz7Qcizyf00G++Eue5vSd+xdOn3dss6R6en7ie9xiH2VVpo/Bdtu9zbBuUwNiv+0whBL93/6G3374N4wnOyqZ54ub001ETsg+p8pCJNCns+fTMr0VJM2xDzI4LmOIMYox1kL9sPLw8R0Pf/dXyOOCXQtTydU6MjZk3+F+g88D20DuHuyqFuo1RssvlfK0uAJyUfRSXStKoTxcgpXoe5AxoprX51rYXtDNdevYryxF0Lux9TudTms+qGAMY4hTef2EFmegXi48ffgO/fiEfnwHq3grSLuzjM3Bs7Fh/Y5trsdizYFLtdDesWRdhE2HmBoX+zV2GyIzyZNIiA/7aoedTLOlYfNFZrJqKpMlq0ulriv1srJcVm+NEqIaqWh1vUCiXSJtWJqTfPZH9Sqt33HGOO2Tb/e726M4o2k3ZjCN7/9kD0xbakelOQLGNy2k8Z5nIcwMCI4tPiFmvmVJ5X5V81aJw5yqAy9RyZJY+zynbvszVMxk98yQykVLD5wtBMLBd8uKdtrmuciZObilUgcxchSwIkEBD49t5+AomIgmk/GUAeOw47nY7Nvw20n9i3ilf9YMvn2hVM771Fk+wwYMFz3Xrqj4+HoTWGQwpLOPxlBhHw25uK5f6TuL4K1TCPvLM/32Ctsdbd72NjDK41Mww2pydShO3fEss5mDlOETRYMO0HsICAvaurfAFqWMnFsIqeNET/F1DoZBspYm+1WyKD/xfTUOcIoDvPu2ndGyx+5kdjOxnK0VJ9vqLCwv0FUpPhU0GbpmTF07VWfHwWRIzIcYDsddoP9A0x9qxi4Rv81CEvTiwz5aEcq7C+v1yvXpiX69MmplXxbuEgC5Kh//5t/w+Pjk6/X5M/v9zvX9e5/CiCDWuX58x/L+PQ9L4S7K2gfbyzOmlVZW9PoOvTyyNbBymfu/VAcal22PmlpBgqEmIrTbK9vroN93+jjshIMMQo5Ud8bhYT/HcEYggGbngOQkPou9LjO2GUT7qhhFQeRgtRBrbz1bGzNZNUopzk6L5+sxpMeqqmUC8qkPMgaMyAqt59YL1oilOLmzfU9bxvUAzVkHaRvTj6cOn0rx7gIcfEr73Xu0p3PsI1Xobaftu+cCo0PoskoA/jJ2Z7iNkMkYwycH4louqrB1b8kEOVqo1YvBNjyls+4tor1tzojhuKdta7y+OtPp8+cXbvcWYK1f+2StTVEXpj8dFsCTm4LQ2AoWS7zu8CsZNSXzI31I2PHJRIJ0dIfvOooPnPaD++csCjDjsGTAarLJOXovDpOR9tVtxwE8RbyoaZujdShscjKWerLu0lXpEU8kA3AQSXmwnkeyq4aHZMT75P2rgYUPwOJMiQUrCN+jsfe906C5XwkQpxQXw7YeZyVa9MZIrcLTugoBukRR1AalHoVRn2o4Aqxt7K3Roi0vz8DBHrJ4BjGkKj7qDDq9YVPnEzgBKMc7+T5TEaQEi657nOtVIG/fO3KG/D15++Z2xNgpIyORV3gx6YipJdb7/I5I5igj/FjaHeZ9A2/35ul380/71b/Gf0sweL+57vNP3nbZfPshhz/MjhQl97pkMkF2gqXsiV+UT/TExF1ztK62ZpgOSrTjaQ2cQByWGNjBFMU7w7w46e9p5qzA0dxxmwnak1ThH50zEvIkxmV6uDPcfxt4oYe3skIZr3m4fJzZHEYkMFli/62v3w48pTZAXrThwaU6S6YuV8rlKQCmB6RcAni6IgFIlfWRZblQlpW6rJQYN1+D5SSFSNJy2o5bcpUYvS0WaHHSIk8AkICL2saEELy/V81vUUQcGJOILO2kDxA1IG/nc2Bh2GG0hnW8wpdPbZDl3aMNzN6ATK53lGyoTAxLXigzQsuWpgwe5Eia07lO5B9mcnAwdiyC/H7KfrKKpcym6VijebASfCEmvWVrnTpdVKUcB2g6bSN7qy2ZniTo1ILptc+2OYsqKydtDiRb7RrGDmwM2+hti773O6NtHgTEZ8lcMmU0m+85NUNMXLzQ4n6oaE5PDN2n1Hby1kFfH59wEwYy7tMfZZ/0bDrBwPP3955epz8OqYwK/RJVWx1Uacjjhfq4opcV+frCy7azv+5O/+6fuQ/QbnC7Yfcb3G7I/ZkinUWD0RcsJ3fAft0pouqr7vu4qM7qdGyo49DKsdtmBSJe4wCb76tMCmZIGQEAdjikCT/m21sa7lPAcfqsEktW5uc6kBMRgl+bup7JbsbYO7etMbhhzbABi65U9XbEeVtZXU8PTH62hIZIBtsJnDplf0wh7MMQ69xc6feOxMiNu+96kbAQkZypHG52FOgL2JNw+eGR93/9Pd/9H/8OeVrhocJF6H2jtxu2vTLuN8az0tZXxq3BzXesqqKrV+J7HfDYfRBoFXjQaA1y0dvZC249AEofAZ0J2IhRzsWUh/7AWiuXVngdhV13bm3nZfORtZ2GhaaYlYouFy6P7/jww+/R373Hvn8HizDaRt9eKdsL0nd0vzHaDVNDRmPsuwtGmzswJcCnU6A8W/pF3Y6HrXXR/CMpGJMhOpuK49mfqjcBDM5NVwSpSl0ry3VhvV7QZcH23UUbIyGoxScYgbk0ck+HepTzNLZFYnv5NUaMwI1yXbbU+esjADklODP4UPEWMojpHwHeAL2NuThiSQPPfUj4En8zC/A5k2kXecxTn8FtBiM6z7qaX3d4udneUorRJfzHaLQwJDmCGMwBz29sCtEalfeatxqrcgQ6HHEDXUk9HXnzXnh5MoeJmM5qs4+3j8ebzI0MVs1p7DVXO9oiRFKz4Si+WMkH6YGbRGSV4JMH2nE5KjF4xKt4PcAZsYYOvGVm+O+LmOv+mWH3O1tvjPsrG8a6byzbe09GlguIcvvlZ9qXr8j9RrnfsX3nvu98rA4yd8yH8CJUraxlwcrCjrovjRH3hG2T0ViWhVKqF3fM0D4C2h8zynRIeTh1E+aE3WQSJ1iZoFNqBs3aZ2MOlBl+fKP1Vt4AoBbnYpLuFE/Cxtyhvge10q0Fy64j5hPjfOT38IJL6DZqsHGcMZP3ZO77kwEXbAsRdcAh/TWuu+dThSNuEaFVoxVlX2H9/h1Pv/uB7//uv6N+/wNjWbhp4WUYuxnd4Pvf/cDlcqW3gfz8C/fbnYfHR19lgcU6l4cFriuX64WHsvAohbv+QuvGJoqEsPjeN6SsmPqUX10WZx2OwSiFsdxYl5VaFy7rhf31mdF39tvrjBV9nxYHBceYcZrbTwfv9gZSRzAIj0Li6GMCsrWe49HhTB2tVJEouo3oEHWpiASCvY3YE0ItEgycEJ5NG6oZT3qrTg9GTR9ZPJTYFyFYXwzpMXEs42s94oreG4LHqXUCaf7vS11Y6ooZ3qbUB8t6cfaHCNvmfkWU2TZUi9D7zr7dYHRkdi7sMTlYgIbaDmOPc+HnKeMCSLFdiQEJHlMpxc/YcFtkfdC2nX2/c7lcIr5WWtt4fbnx089f+fmXFz59urHvR73TgdswlHK2sv6VA9xoxlKMpSZL12OUI0KK82kZ3zIDwvmz8Alv8/DDD0WYPdfBotDugFONfXHoozrLTt+s1bF7432m/MMBOqW/mIXDiAc0xI5d23SE33S2s3EAbA4meabUhk+A62bsu4vFuw6qxGDO0ByLGM8ihRpE4m8OsoxgisoQJJjvre3IXhxUKSX2e3ER8ACeRje6+LRNjxEits81ldCftBSs938wwaVaOozWg9HXQ8xdotskY2D/vSLJdgrGah+T6X+WKpli8/OcSuy1Q+fRgeAoUalg2md7JcFNyr1iPcEI4+TZT+BaxNAJUMDh0/FYY4beAWb565nXebTF2TfyBgeUOdOSeWduEA8cZP40YvpMhtwvSQI4sf7n90zbOikulmfLbUmMGnNQiGRP4Q5xtggbQp3Pa8R0mS4G+2BvAymGSacUpVYN4MnXpi5ze8fZUGewDr9uS8DezCVuFIZGPERQYLHZUj9VR9Jfn+4bop/LRuAgHi84yKwzl5w6i2P42SEf5H/761+h8XQIa/uo7EopF2R9cnbT8kR9/DiBp7Jeo+XhgtQVSg1dpyUoWXXSyYSgus+OsZlNgHi7XQ96YUkQCmES9KLSo4SBKA462AmZFXFAZYZTFhpNsx6XC+paIMPMBd4mQBXGU2xuhuzCSmTQk4TmEyv6DuPuFZQIqEIpMxY0G5BiCqBUSgqoS4w2PXMHzQMsi0oLBlYMGwWLSSNz5WTBR6qXQ+tiVrc09LOyTFD94EkIc3OsUf7PHVSIRmZPtGSAawyLlsK+0/Ybo+1YcxaTtyC6LsFBn94dqGJn9Bs2dnq/0bevWN99ek6wxtwPJaNroJLgFfNgW/MKj5WC2AW1K8oDVR9RvZANGROBDhQ6KyRpWPxPm+iu4c+Brh6Ul9yXvifRgUihxJko6mKasm/o4wt1fWA8PnPtg/bTz+yfv/L8859Z9s7SB0/dWMdgGQPVHtVhv0ereFvKZAt0nxY0QMaI3m8fk03QIHvJwMJmJ9y5kqB4L262iibjy6YYafTXa7buGA4YegUzNldUqXTaBcJ5lCRlZbJrPrdCMpMXoaYIUPXnZZFMtu56FTYGthBMJ4n+cBfxzgxnVjwPb8VkrXmBfEZLIg6GmAni9jOSonTATMdm8eOUq8u3ydvMJ3GC2Ojq28NKgcsVfXznLZhlAfW0WHShVG8DHVyxXhlrh/GK9AtV1QcZPDwFWlfQ6wNyvSLLgl4vyLLAUpHLNckoswJL60QJxZ9zjF6WBvp4o3y5U+0z0j5x0xduz58Y5ZWujTb0CHRLQS8ry9Mj1++/x374SP/hA+VhxfY77eUL7ec/Mm7G2OfWikq5TpvgItCxUhr2zAa1VIra1JcYmoUFr4q17sLq5zU+QA83uOMsniQu1D7b3MbA9o1RXNj3ul65rA8s9YGVC1vZuNmNL18/MbSjVRnioPloLSr9bsczzlIpBxBTskKX1cXwBXNTcQBWbwIvr4ZyStLd18S9ih06DxN8OiUKYaDstO+SCGYcAHBqGMygh6T4+1MS9WAmgR0vHjhntpqiY7juxKwYQ4ZMb1zRvC5OINw8ijMIgvBhAm5A4zly+jN/JuL1oKwGYljfHdhTpVZvKapVXAw8Ym6zAGIlAsFwT0tUF22yPPw9sw2s93DHZsd5yucSBaA+WoCl6UMNtId90PTe/gzajowNazefavr8Qnl4otx2SvHWqv1f/hPt+Znx8sLaG9qat+Vdr2x155PceN6Mh4dH/u6v/w3vn77j9fMX/sPzndazqNVAG548d9873avq6dOGnBhPM0QeYecJ5kk/FRFO3xx/TgGA4pFWa4Mt9ogWYSnLfJquA3MwRAW83Uhj6U97IqfiuCZYpbXQERmVnEaIpb5HxCDirZWlyinodcpMFfGCkgg66qzabt31mFRB+qFJuO2dUVYoF8Z65eH3f83f/Z//F7aH99xEvZWrmbPE+qBdrlCUQWf9wzsuIlwfH9l7p40GbaesFblUkM7H7/8NH/5+8PGXn/np55/5l3/+T/zzL888PglP7z56YiJyEt82sEe6Knp5YHlnWF3ZTNnlyq0Vnu/Gu06MbhfM7q4jZfv0nW10b1PNvaw6tWUcCPD2KcQB1X1rZDWgLFdveTFhWS4MOm3cad01nsj0ygZ986mSWnSOBW/W6beNHsWxsiyeVBrc98HWBnsP8DztRTDInVUCow3X1Vo06qbKuMdBleothH65qHqbrBRjXVeW5QJWeHm5sbVnRjO3fgplTWPXaf2OmQ97qbKjcufl9TMXUapUMKNqoRQfJCPNdVm2bYtEU6iXC/WyUpaKLC0xMsqozvSisu93Z1qNDWs7Pohj437bA6gq7Hvj89dXvny58fzauDfoZEtqtIdasn4z8edIhD30o5uwI5Se4IIzFVWMpUgUXCKnCH+Rbst6xIGxV0qJqCqeY+oAZV6meME2x8CTMRtj6gWVjLsI0DPO/9E7EY7Qwi6d/Kcn2+L5etaCgr0k5qCSIVRdPV4YvhC7JwR+PuJT2jA/o91BpxF+yzq+BpMZLCcb6NdYzEOxalFwUqiVAFA6923DqlLVWYvLUql15bo+YgGgtq60pdF3Z9L5vTZgn393MX2hWnHf1zr7PtjuMYlyFGeoh1+e8UJM8YNBFS8QjWEsUslpthqJoqrQsl36tIncn2REkV0pwuI3DR26NESHD+oyJwa20cKdHnlUAsTlTQE6H2BUNPBiX7aedwIkA3QWuSMWmDFHBFERqwS0SjrtMX+HY5iTxeRAQgzfPwkYoY3lZyqgc1Rgj89Xlrk+Otcl4jo4iu0We0GDJT0zH+b9G8EWmuBaFEniMRzxnoSkCt7KLCE3ELbci6Y2W0HH3tHqYJREBGe2zK4jkzwHQunqzErp8z5EldbGfG+KhgSBtwEfsiSHvXEtT/fnpWRxsHp3U4vJyFaSK/Lf/PrtwNMMTDyYQxeoF6Q+IMsDur6jXN5T6gVdr9QAnuq6RBJW0GXx5FwPNG9uzgho/WZ1hk0SVtQZKHoSmBPfSOeokYOdkKs2NZ0mw+cIIsUy6czfP4Qa5xSabOvKsEXsvLMOkCKZTmM42GLNg8TRohp5fiL5XpBiXn59WbnLa8QDg9RwioqwI/QFlQULxFoCVfUFcDDLEmSRIwn03VsP4Gl+ts7POBtgPzwxQtVndJHVXpNsz9hjAkrDYhLKmIynFmDHFoFnx8xHyZptjH7Hxo6NDdqOWI/k76inRzodn5tLkwE1qdc4dY9ssp9KrOkJTJNv8p9Er83mHk+DgPhUIySAHNHTs4mg2MTXM56bA5/VE5MQzFzeP1JfXyi3V8AraNI7pRtlGNXceA3MI4bYm5JOO57F6BL7S10kJh1R0Eskqjkg0Y8dgYvlPhNKzf0Va3ZKFjO+MEsDe0p1A+z1oyNzAbMCIZCawPP1U2cgt2GxmFYJ1Eg0NemoXgHOqlq2D6ZI7qTsn65JI2CYxYuwrHl5ZzHKzB/nlcdnjdP6Yvkim9dyHNfM9L3CObtVQixVh+JadyvdKrSKbcWrVtaxLrAZ4z4YXwevXxr22uF1Z1FvT+C10IChBb109NqQZaE+dOr1AV1hL69xJg1rOQ69h3i0xAQf84i0Qf90x77cGL/cuX/d2F6a0/m70UPLostRCXayiKBLxZYFWy5IrR7oaMy0Mt8vlu0/4whmc8nOli7DOyWfiY99TmFDB2pOZO35MPNPi9jwcO75z9lHnzZ4tjWoayKkUH1vfn5GF4YFIF984IENQ6Wgac+6607k+3IKgvw+jiA6m3m8inZUAqfgtqR4ve/Nke0yAtNk48UUPY4sKfT/Rnz8vK5JlMokhGkN4xXn9ubj9wcOCsq8cpuvTeDgrceT0//7X0a02XsCIfMRnS7k9B/xa3K6ifO5mn40vxMgCHDcVwciENPirDELcD398/n6dN6s+yibtvCojM8AMWzdtFv5BmkLYIJqlj5vRmRtPgRnRFmwV2BQ/M8vX10vURR9vSGvN+z1Fr/TkdG5327cS+dVV1geWS5XHt9/oGwdurGsV8b2is22tI4SeiwzePW18zrFEWR6ghFPNFhhBtHKESt3Dm9Oe+xIVEJGQP3Zm3qQP21vfKvlWY6kswhSnQnSLM9K7lN/HcG2nPohprMFIv1r2g70dEkTXTl8jReWjs/wPZK7PP/dHZKnLwKlYsuKrQ/YwzvQShlw6Z502jC3z2Y03VnWSlkqy/WK7TujbZQAnnQpIA7yFBXe1wutXPhy78j6gJUVWZZganoC31N/UARdV2/P3xqmrmta1wdEK32EIw0WUe8O+HRzNkKP01Li37VEu5IWimai4A8pffb55Kh5Ut+ag0Nm3afH9SwYhh2MCnhsLdoUOHcQrkfiIrU6Y1Eg665nW/XWvsf5Crx/iusOmXtXUjDwPLEi30IFrQWzY0DRoNPNwQfXzvH2uEze1sXZqtY7z8/PDL2yykp9qF6wnXGxF72GHQzPjIn3sU97IBLtTubfmAXrZXf9leGM/33v7K2z3atr9+yD1hwI75bp/9mgRmz6rWNNk2a+Zn14R66asZxs8cg2tmnfpis6noBlPJ25CFhSGAJ8ytwgn10W9M8eRiJ/k/iXWaS39JznGOpkl/L3NfO0sA1qR/6VMcf8XGFq8MbeQULrLRCaIO3NfffWSyZ7KBfzYMtjeJGXQxsO5I1aStrPvG4tSq2F9bLiodKgrjtRdXU9Wlq01/tF5aTb9Dvp/3oftD48ZjGJveHfwryZGSZFOX9+R8YbJjJ9WDzhb8An4nVOosj8JV24ReHnVJCNQk22Lh87grCvfBMj2RGv2XHNvodc+mMWzvLbTfWMYI4PsNNnyukTzn9K/O141VE8NyxmKau4zYC0pVGmE5l7bAR7Wk6xGcLMN2aJdD6Pg/N1rD/HbpvJ58mPpT8mp9cpOf1VTkCjZFwedlyb7w8JBpIzHeOJSsTzw/XNbNpvLxZIFG3Szo7KjFvzgoxk5/PNWbVYj3g2A3I6+eh2fmL/1a9/ncZTnjpdoFyQ5RFdP6DrI+X6kfr4O2qATnX1aXX1Uj1Imc42RVcDuTz3D3rqTTJwoAczoXrQFMGCJgAFSEyem6irHNs+Q5ZDr2hSMki9CQtR1ZyMkRTFHuNtk47+JmQ6OQETFxjPVrNzr7gF80nsVHkWEKuT7uzsJm9tO4/0cGMZ7JJZd8Z/J3q5nckRFsGSwhk1bMmRuSHAjjBVJ+PPCcqhUwMgT/6IkU/GmELfXgF29XqRESKXA9ixEAW3HgLhrTH2beo4dLv5c6ZDMp7GhtOYe4AxOxKMn4O2nVYx0pCohoieHEoENplcvgGfrJBU/DcQbrYNnKxdJuyZ7GXi6W2IhhFBXVhhFVBTdPExx1Zd4Nj6hbGucVSUdXthvb/S+53+uVBtY7FGGQOlOygZz1WLRKCFs6dymsooc5qF9IHtFqzdMSmiVUHwaQUe7Dl7L1kNRUBrYXRBqsSW8XPRGyGCacEEkAn/hvmZZ8ydVTA4jpFjwRiBnPzgFTQn/kgOu0x9ooKzPNQwCqJQRgRsofVhcX8KXNfFA76gdcLE6MjExETIEfb9lHR5kudnMIZZHcyoPNmWosQBvpxN6JuA2febpMPY/EfLXtF9xdqF232lj0LbxKc0tk6/b/Dywnh5oX3+xMuPn+ivr9jL16ixCDuFLQBASkVXb0u+vHvH0/sPrNcrz8+3Odlk3+5g3mJzWVeWWlnWBYoHBmPv3H75Snu+sf30jL3sjPvO9uXu0xjDHs7AxZpDyzKw3H91cce8d/Z7o28d2TuyD9g6tsW0rGz1OYUifa7dmAsphEkfkEKnhM9zQOEIZDPYzcDZjFMP+UHHltEjKgJpnYFPBdqaZyrDlNfnjXbvbK+N1+HNR2XxFiVFuBSl9DsE62pRdbZTyiqcInW3GWnTI9zLYEpKkNZidLnIpDWbpSmLoFyZQYahMbjCZiI+Qn8nTlOsiE/wHCGkm7oVR3JyREeTPRK73FteeNOH74Kr+QwCeJJsFZy8JRJ0NpzWn4FInp1vz8r5Ec6/ysm2pk+C8P8+UKD3NNMZD4izK4PhoEUoNcEKi0T5SA5yvac0wLcluEClS9oxxBPkGZecrq3Ow3HsOVJ30KuuFq2QYs01dUwp3ce7Wxv09cGLcKWy7jvtfme73Rh6tDx++vyZ17LwZX3gr//+r/j+hx/4+Ie/on95ZrTOw9M7bH9laOdSBWUL4X4Jmr3fe+9+7rulps1x3b7HzvuJw+/NdeGUOEZMlO0aAla85dfEE4aOnwUfCmhULCrezrBY1Sc49jZ4HfsRwEq+v2vbebJ42FhNppPIUefzo5wRGDmAJgXOPfj2PXMI6Y65izrmcVatFDG6KK0bVi5sVH5+bci7il2euFzfsai3da1SPJ7Zd15fX7k+PbJcVlgKdnvxaXQ2qLVQFue/5bV/ePpIffqe8viR1nYHs5eFZSmzFfzr16/s20brjceHC1WUr7dfYpqg8vT+I5/+/CNmQikLGi3XvRltDDbzSW1Ohi4wOwlcHLvUSl3KZPWNWbzz6rtF61sfg33bud124EZyEoZtZMGv1mBl9D7fy7aIM4YDUq07k06dthgs65myhD0PP39OoLvvKxueXKUNSmBOSicLs4QGa+r4HPB5FAjV2Yp7C2aKbagal1VYit/H0/VCF59G99Pnn3nXL7yzC+9/eGBYoQ9hrQ5CmUi0anomuLXNtRKteYwXGqI+/VbQjtuJ0WnbRmt3et8R4H575eXllS9fhefn7jHrcB+VoJMvzwxM51lNEIfjD+Lo0YZRuvuki8g81x77uSh9tugWje0gx7tk29uRPEs4LCLZjaDpBBrJaeXzjKaoeNqRFAyfXshO7TknECRZxDltUQgbrmD90AdLJ+TdN74go49ps1tP9DL9tdujoiEOf3wiwNQ8zZ9ZatVEVXJaS3PdIy0yJ3jmOVd1MfC6LKyXCxYtgZfXjsgGovR2vDcRx0aTCplUjoh5RzM/38EQbN0HsfRg7U5wJ3MRZRZRR7DN9RSJ5bVOROf05WGTUCJHUvD4cffLcrFoX+tJYFKiEyXywBnx+47zHOBw/QkIHb7F95JPVPRnmaOqjkiRGZseIU3uTDmao5CkQhw5M0Kl+r9Yx6ebOBMXzzaoInx8f2EYfP4aEyzDPnkTSZyfI+zzaw/nZXH/al68nK8xyAlyeZYyNEtG+rwlO97ZEHrGeDP/jFgx7IA3uWi0N3ZMGlr9TGvJoNooRRi726qWY6CTIBCjpMdw2yXBhM3WWInzXktxe4/R+n3GmJ7vRbdCnhNzVnlvrn32W75+O/AEJJihdfXJdPWR9fJEvTxxub7n4fEDdb1Q1yvlUn1RqiSZ0gMNMaYGQWgnZbCfQaJv/+59s67E4YtOMn5GWrkIwA4g4Ljak7FLdbpsvRO8ZcsSeU6aqKvDJ/A0x1RmsDOTizjIYnEPITQXoJON5vfUOzLaUekJcTo7JQhK6ClpMnNOAaMdr5rQvHnLlUpxUTtbEOvEPPN4f29RFClZgiTRGlGZ7S+HiO5hEM0GrafAnt9fHy16PZt/ToBOVoJ+Z850cn2nm2s8tZ22u15T77szniyYYPE+Zs5wwjoiXsUF7ysds7rhYoy+Y1pctweORmHYiYVhg9o7Jcem23DhYzrHAnI4zAx+RlIMnb2RCZ8gLgSsLjxYXISMnJo4PaQ62ONghGtMSDGqPXprS9sQM9bLir2+0H/5xM5XXm2jKXSUpUgYWnOQRgVd1KdLAIyONNdo6HtzcKCP6M/Ffycm3GHqrI3hzMJSSxhQb2mji+sJtRFMsUFZKwXlYkpvwz9nG2Qf1jSXMtwORJBhOQ0PCwmRBKiYeKfVWCoBdHjLUq6rhIMTgVKoJSq0ovTWQ5TTq4UCbk8C9ZFhU3RYZmJl87HEjuYtmnFkVg4/HAGrch5XfDjpt66auWdsGBXPwPp/fuaX5//I83/4M+3/+f/hzuA2BvfeohK8Y/vdW3K2Hd3ulN5YRqfGQe9NfLy8KHVdaOqtiF/1Rz6vF7Qu7HsInUaQoDjg04/Ij62O2RY9XjfYB+U+qEORDqt/oi+LHnUpa412v3F7fub1p5+8tWUM9r7Tbi/sXz/D11+Q/Ua5v8LzK7LdYe8uOBHrfGgECR3veM/+/lxTVQcvxvSwoeWXwCP546CfxB6T86Oczzg/26C7PuBoxn4bNCrNKrdmzmb48I6nv7qiy0K9rki/MbZX7p9+ZLyA7LBWpr5QOYlUZdzr13HiX52C1zwXRZx9llNykn0xLDUKHZSVLICQuoJvwaTETaZ0pUWiGAl2iu1lIjYP3WHR/f+H7/MWQyk8uM4F9NefE8H8J4mDm8C9zPeMAPA3cKvnWTwHXhG4zermsDc2IwOlucrx3M/P/ig0nf+bY70tKeOZIBw+wEJzyxOKjBaONkQRYaFOEEMDEO7YXDeDaR8L/v5FCl2UnnqVY0fLheVSWB+v3PsOvfGyb2gEwYhwff+e/8Pf/w/88Ie/5XJ5oD9/5ad/+Re+/vQz2+uzv0+G8HkW4hmIeGJFVjn7kbTGMh/7w5Lnkvcfm4dzUhJPeRys8KJum+t6cSBnDO7bfa6ng6bOughIm57Jz1ksTWBWfOLjMtC2bhNY0GAZJbBH2OgxWWg+9RWYFQ/BAZkedqWTxGChhQYKtdJkIJcLl/dP/P5v/5bHH36A4uwgKQVZV6pWzKDtLaQXPIp9fX3l9X5Dloq3xTsoWqq//xiuybJtd7/VMXh4eJri/SJwvbrW6N4a3cTjLYzKQEbn809/pPTO46Xw4Q/f8/VPD/xULHhNLpPw+OEDbXRq23m9b8FgNW5tY+uD6xqMYCSEuT1pTi0tw6iZrIz0mQ2VdhR+zLjfXyOZHayXhWOaqkM+fd8ids+DFez4FjXxkI1Q8dHwYxzFhTHOxdRMzryI6JmlkPNpHARvrmFW1dtMYhJqLZV1qb6CA1q3eG4SjGtvMXy4VtblQinKsq7UsrBKZX26cP3wA5enjyCXKKrJPPtm0SodMb9qMrDCp1mj9VtISxS0F273L+zbjf3+TO8bNhqtb+zbzr4PRC48XB8pWvjjn/4EtucC8q/5GpGZ9z5oadcjjcj1TH0tKzILp2+kX5VgP+DDN0T83rJYV1MWROjNnEV6Os+pt+tgcP4s7yUL+3AU9w+tUiDAk/g+3tTfz1zfLduDtVRnsgX4mQWQZakeP4fGGeDiy/n+YTNkGJRB6pvakMNGxj5L6znyv4cbtbMujkSOpeI6q0spLLVQinoayIhOEc8hk4mJpZRKBVbG2P12zVlRwyzO8jgKCQE8tRb5sUCtaQd1An3Maz587pvY9RTPSqzL8RObumkYzjZTqEtEmcMnlJbir7cIPc6RwumD5nseXyfvfeo8Ujx3Gf2IqeLRzHh8erJvgr/5jvmcwi554f7wj4suoTdrSN+5rpXv3l/5m7/5Pdve+N+3P2FjsLXO1m9HRqwOmcr58yTjmNwHGTv4BpIMxuS0l+Oy5XTN59VKwO24tXP2InM1R+SYKYg/rEMLTbUACEVw3eHQRNQiEwgbAZz7+x4FtDkMoIhrUhZvt8wBMW1LLNcLRTbSrwfFRzzO9xjzvx0Pwr+W8ZSgRUyx84rKhVqvLOuVdb1S1quLhq/Fk8uCb4Yw4JoIXurMBPCQRskTF9fOcbEuP0U2crMa07qZHmCVgFnSRI/g+HiQGcimQe7uPEd3Sqwl06lPMcV00Pm7E3DS3NLAvIcQEw80fzK5xrHVZoEhE+f5Lo7KH1Xg8wE7Av900vmZnvh7tZiD/BbsqWiJPCUNWfGYbWLCPGS+H30zZhsHoSmRwJOzoJoH1HHivUWmebtc37GxM4aDUKPfXVi5b9gI4Gl4C6I/t4YDCgOmMwv+RSRdiY47480PlxsAxRWE1HU80hjOQzVmkD29SnBljyApAvEMcDPgCl0liz3mU7SOvXBUe9JIBkiFenXeDNGK2EJhII+PrPc7NjqXjx/Zuwsemgijd9rw1sUUKHbymyBL8T9j46oatFA2G3EOzD/ZhiA9nqQ5oOmnW1guddqyvuOsqTGQFhzeluO3PXFqmzkDyiz6jtMA5DPX6DkOWnnu1DPyn+U5zeNq0W4n83eZlWrI8a7rslBDfLPvjaZCE4JynQL7kO1dYTDi0mL/zozmrQNO1kYKYEmcxdxV4W+PPCzuI9Pt6VBPW0riOPS90/YX2teNvSq30bn1zi1bEEZ39uMYFOtcYj0rXrVlOG7t1lyxVYLS5fe8lY6ogyquxxBJMq6nNe9doJU+68C2DbQb0l0TS0YEXPi+7bHTsz1g7DvtduP182dWVerwMbDt/kp/+Yq8PlPaBu2GbA1ad20gs4M9mKsVdifP5LSZMwA6gIwJmuR5jGd1fj35GXPDhZU/VW6dNuMJ1TCfjtQFrKyUywOXd99x+d33lOuF+nBB2iv7yxc6N5ptmA50CLI3pA8HBizPVAZAzP2Tgcms5qWtFjlpPdlMAkibkbtJPXh04MkTsN69LcT1AWL3RpJt5i4lBys4y+8cysxFO/3s2NMpWOuBzHE23C6mj8x/ONW/4xmcP8n4VSx4er9vv/IZvn399NfDgsEyr3Y+92Ocd9z/OOzwcW1/4VNPH3R+LmkyLG5A5l0l+OW+sWpo2CSYnT7E0jf42QcfP48WhhZaAI6mzrQsKixLZX24sOwbut3ZR8M09RYLy8MDH969Y1XBto0vr898/vOfePn0ibHfcSbwaZ+RbSIeV4wIS0x9Uo59e//5fKfJjHvOmCtXwIR5kCOgBxD16WHLsjDM/ce2b29e57FD0O4xeowNf8PGm59t3+yVZAEGg0BP/jxaZ1Jvyz/Ogg8nM3CeRzPeOH1BsrWsKKMUOlCvF64fv+P9d99zef+esq5QXJ5ghD/2aViHTqWJ0dpGN0OsekKuwfwNu9W7x5CteYuWCGipoUsWVxR6WN6K5iyP4qI5WNu5PX9hDRtvw2OkosE8CTbQerk4w641NqteaW6ekKt19hHtjSZoMPryMYyId0SPmMcf/qCIt+/5+cLZur0xQgKhxARqC8HZ2Z+PBGATvmh0D4tjcu0bCQlOZx7I2lVan5HsG3OWSDIyLaa9mXgrU7JpNEFl0Vmpn+3bYtSqLIuwLIVl0WCSL6yXd+jyQLl+oFy9c8M9sh8010yJ+ES94C05ztac8eisPAPzApl1Qbo6y6nd6RkLj522b1HMFpayolwwK8F64vBjdpyPN+bs1z86jrBFwQI5QPzTi/Id89Rla1WCfjmZ7tBvKTFV+RAiJooncyPJkb+cw6OMpmzaBqKQMo5iU17ZrDakFfDPOfbKkfdZvnMWFEKLdJwKVflv/t6QgPS8UgkgKvbWATbZ/Dt4FpL+foS+cOawZ3/EsRR+toaLgPcWOS0HQyztxAElZN7mMYDEJ5sFh2H4vWSr6vm+fFKeBmn9yP2+3TYWe+RNgeZY/PkM7OzY57/ZQVTQ0F0zcO1bm6yg6U9znxlv4rd8bucvOTbQZMqPGUOlS8nYnAzZT3v4zR2++atvwbC1EsLrYhQV1uXCd+8f+Lu/+R3ff/eOr883/kVgERgy2McgO4C8myjfP2LZuLe8r3xqbz47/9+Owpj9hedjpz9HXvLpAcnbB3L8Tq5DMkkzbpvPWeg99veQyXAfGbBxvN73R7TPqfgwiiKMRajF/WBrNu3EGOGDAgTLlVDVkKjhN339qxhPgnhCrRe0XCn1gXV9x3p5z+XhI5frR8q6omtBVkB9nCTDE2U5gTSuddMdjLAQoJ40LZlTApx47U7fNZ4cbBAEH3GcrUheiUhjMqu59IzuyclvYhbXNbDZl+5UYa9uHawnOx32DHBK8YNogr/Wziwn1zVyECoR7zBi2dIg+dQPk+hm6OhVPX0ok500k3nPUsPsYie2k39WTis5bcYEzA5a2NtQ3fy9RrB/yIl8MbFumCdyDhZZ6JPEGFxatNrtjP7KaHdnPLVXWtt8Sl2/QwBP2VF7UHSdLTMDUgvR5LmPhWy3HNEK5RN1vMoFBVOnRI/5zpnsngKFI/Y7bjsDr9yDI0G1dAzl9I4DCfaUT9qQAL0IlofQw0u7iN5AilKss9iAWvi4bWxPT7Qvn2k//8x4vbHdbvR+p6iLQaYAsNYjejATpArSRrD/cF2nmF0fj4bUtiqLn59SK8vjErGB0bcbMrr3+MZEtHHfqUF9rYDeDrbTkNgKI5ymCEKfWiuHEw0r8WZT4SByMLhQQarFGSKAbN/nNapFl3UlR8K2YvRi/mf3BLAZPvUO4pDHM47K1Hy0JcXjmaDtKewNg/Y2QEvne0zRiHOZ51X8dM32GnABbwMdSn/tNDpdBWygw0VMZXRvPTCjCCxaeSiFRYRFCDvh1z7p5MPbQqQUVnDgXYRlWSeJWoc77RyzDh4Y1mZzHDWjePIB3uU6PCjSEq29GTVgaO/0+52bDX7+p39i+fkX1senMJ07tt8o+6u3FVlDtjtqnSLmk77srZ8+IlYOzvR8CBl0cIAJETT2rFjq2fVGqn0KWp2ok+/pe0HGCOakUimYLvTlyuXd9zx8/wPf/+3f8fHf/luWdw/o04JsL7z+9COj7nwpg/GlUNsNXl6QbTh7Y3roE+gT+8hvU8JpByAYe0awo7IcN6rM5T6WKNajm1IMeiS/Y0gkZRKBst++V20PQFrIdpazRkg+hDchCyPIwgfb6QjpQUhtKYiAVI7g6Vh43iQQp9P/qy/51T/I22cIE3wiug80hDSPdziSBBuD/QQ8TaF31aM9PM19BoPxmpxyBThbdLJqQU62YCazMWmxWLQomtFicmPqhzA87K9a0GV1MAloKEOFIo3rKjw9ruhloYnx0jfuAmW9cH18RFAu796zlsKXP/3I69dn/vzHP/P80y+MfWcVY9FOLe6NynlalOtr+xkswSpp8Ry/2QEqOhOhCdZzrNMZeJzvH79fIqlfl8WBl97cTgeDjyARUIJxFQU4zb2jGSi7kTgn0WmfszpbS6GWio1B2409bZuXrT3iaT2uU+fZww7Ayp+BP1BTkLpgy8Kohd3g6bvv+Jt/+Ad+/3f/HfW7H7CPv+N+feAuysvrK+jmz3vbYnIiWIHb7c6+70hfuT5cWdY1ZBk8dtj3ndaaF02jjUW+iblGtNyIOoMMoJpg2yvby1e+/vITqwp3gfuXn3l5/oVS4fKwUBYYaqyPPohiMdjLDbbGdtsZbdDHjvWN0pSu8ezMJ/jaYMpJjLHFORgx6sbb9ZEW51KwYFjv+x0ZnbpULtfVY/ZImQ4tOzyuthGsu8qcxCuc9EiCyTHG9LHu9oKNlyLZ4n7PzLwVbzgzouAjx0cOGSDZjEJVcU2ukIMoxbhcKutauD5UZ2VLAVbef/xrnj78ju//6u+4deHe4OstRqBCFJ/d9mg52ouHtZiiLKhWBGP0Rts7ow3YjX1/cZCy32YXwOvrDUy5rFeKfuB+V/o+eH1xPUL/SsbAr1Psv/SV56h3B3nVfDiDFiZYkCPdUzx+ENOGp110/1UXB8hLEcYQRvO94WFCFoecaaThF0wDGEwgEpu19kzKbXh75nm6Wp7781fvnUOTNx+DRMHN1z76S7x1du5Ai3atZAjF4ITeZ0vrtDMiwWLWCTQ5Q7IfPsOCzX+KK0BCZy0TcCbg53FLp7ed1+evtGah3dWmTMkIHbQR4s9A7K1kZR1dCb3vAV55gbp3deCpZ3nUY84BnveMyD/stGtOYblZ7IXD0OcDeBOun3fbBJWyRbMUH+wgAl3i7FloYMkMI81CDife//Aox8ceWoBH7FAkgIzTnjjAv0ksntd5vta8VZ17SujWZuzu/Bfn7/z1H37HP/z3f8P/7f/6P/Pl0yf+8Z//CGNQcQVjRxccfO4+Z/b0mf7eI3a2YnOPZ/w0XxX/KW/+5e1aC8e9zPWWhFrTZ8s5ZZ/vMgXWw+8OMqazGMBT4zlCEit6LmCCunKOZfPHw/1pdd9bQpNXgwnlhR63fTlVWsSoxc9vTx2U/8bXvxJ4cgFdZUFkReWClgdKfaTUR7R6O4hUDe0j6ISGTwhpEmLTNkLnx3qMCT76fkXU6Vwxmc20YtrcYUT7XUDXqBV/fSmMyYo66RiIZIZy5I7gLXDDW+R6y9G+oWMUIJT11DfIqrYbxNH1qLIFIGHmbB9GjDwe8ylnXuzBlz9bP3S56wIpHMkAjd+TSVWv07nPRKGE00+oJZOACQ68ie99HHse6tTaCHBGAqkbAbSNPvxerCO2+71NLS5vtRP1Vi8YKI0erXZte6Xvd1rb2Lebiyu2HW0BPNkZKGMWNMb5WjEXbY5VILWndJlLirqQs8oF5AGtV29pWBfXWohWLu+D2jE1f58egYw4bm0RIDvTLdhObnERKWDNUWMEsR5OVb3KjPe2WiTIDkK5IxkKoi4qKxdnhaxlQQ2Whwf2d09sl5X2eqO/3tDtmWKdQovR4X6gk/0l5mUP7QMrG0Oatzd1fILZMKwJZsWPtRyT0OzqwqelKpf9Rms7+37D9g16p2yVsg90DKQ1FiySHGW/C2M/klE4jKHqOJKZaZozyDzZDcUrhcWQmho4zBYMme8Fpfio46KVsShtL+x35XbfZsJrGpOqdCANvO2tv6mKpBVPsco8h3m6XGjUQLO9w1+jA3/eloyot1WN3JX5Z9sH0qFI9TYpDF0WFgqFhcWjGBfkbX6OpHeK6Unjx9uffErQMX0FYkpOLQEAcBiR44L8ukWnjVqi5xostIDSRARLQC00NCyAi4GaeLtna2CDfXTG8wt9+cRlrSjetlrG5n+no1GN17SPaXNOYPk803K65jzDnFmKRgrc+5Xnnmc6Ov+MYBikPpjGWYunItnSgmClMopPWV1++Cve/fXf8vF//J94/If/AX1csQXk9pXrw8r3n/7I9vUTr/ud/fMLl6LUtVBOE3DOT/58H7N1Ic+GHtVVwaLlLqjQ5yph7jEGLSpI6aESAMkqscW+nL5BUjuqRLXKwTsJNs6xrskMyKDz8AtjVmLTEcUqZoEEQc5IYjzgWR2e/+L32/9CsjSHd8S+IO8/3zKrzrk/Rob5DuhlgWZ0jlaD6XONWn0SrLduJrM6PIcw/+3MeDoqvAfLetZmwu4m+8ZPnP/OsKgAxz4dIrgUgAbwtGCqjOYUhtYHtr3SXr+y1QLLxYsL68Lf//Xf8u677/nw+9/z83/+ke3rV/75P/x7+ssr7b6xv9xYbAMdVBtI97iiy06K25WI9gXxKcExRON+e3W28Bs26mGn7dgKcx+e//RfsPnIMKPrgBjtPRkH5nuuje6TrFQYUrwdLt4vO5QiK4hnPKa9ONojNfyea16uy8Log7IL9tp87Lh48SbZXoavQSkW0gm+N3KvDxt0oJnQi3r4uLhwNI9Xyvv3bFoZopRSKZcLixbq3kPGwCjlEnIOg96Vdx/ee9vPRCkHpRZ6zxa7DZEQGl4vzk6N/Tds0NoeBTyDAJ5EBb13Xl5vPH/6zLZtINBl8PX5C6bw9PGJ5WGJqY7QbCA42Pn47kJtsDwY+rs/eFtXe5lxFkXYzKUfGIO+u+h1sU4VTyC6DZZaWGuhLOo+sCtVCj005UZz/T9GxsPpu4UUvs1Ex+OWBpZnU7Ai9GBy9m5sm4vzN1Eul3oA4mJo2Lo+8qx64pstYa7p2bnf76cWWtf42VtjjB2jI2qUKtQaMYe4wO5yfc/T++95ev87Lg/v2G4dMePh8ZHWmidR0kAqSHUfJwORhW7NEzGtECwsGeIFoN5o+07bX2n7Rttf2LdXettoraF6QYDb6wu//LLx8883nl9e2NsB3Ex07rd8nY6sFwM8LCzqnQCu8+ogdB/+zDSYTCUKgmcxes12PA9oo6AaZVzzmMtjDfdpI8Lq0Q42k0SRt/cAcOae+MtfyWBl7imdpsKLCIev7WNEDMPEzkXFBe/jl3QCVad8jwMsk1JCW4iZd6a+oldaJcA2H7yikWX17vu9d4+HXYy/s28bvQ1e5IXR09gVql4csFFlCxbh6OmnHHQaPQNlb2Pcm7fUeRzkr0kXPV11nGwXzBdGPLO07fZm+5yLKzL3Sa7JsXfitcJcuwEeV8MEHwwciFVm7JXmLJ+jAl0kxLEtJAYCVM5NywjpEv/KZ1NO1682G8LIunp2yEtctM7/OmJQcLoK+LAP667v97Cu/Lt/+Hf8z//zv+X/9L/8X/h//6//K8KPrt9mh/ZT59RZEZvoQBXOKJDHM9OPHVc2F3VY5hdy5Pqcn0+shp1DJGcpZeEvohmwwSFnqse7WMSGM7Y8S+loaPB1LzpGt5b1hgWJY8bpGeKJ6zX17pOeS1VqdeCpV6HtNoFqrakRVaZG5m/5+tdNtZsuPwWbCyoVie+gNszFStaJK8kf7BkXlg5mkDUHPKItbSZ2qqjVELEKtokUsDI/R0w9+Uz9pknLzIWUk3U6essd2HDgqSfwZD55ok/mSz80njIvRWYw7AgyJHqUYNMhlH4cbl++kzUwm5X+t0FfVAtOG8F3g7dxJTXWb8cRz6xzz8+0cXxqHIoj/jyuxq851jsYE2MEAJfC6ObjYMEret4+GPr/o2Pifx8013Ia7nB7u7vOU78xYjKKtXs4pHyWxLpK5CVRqTwnpHZ6DZ7M2qQMVERWB0B1ReuC1oWy1BBJE7wPIpMUZ96lQt7MhyzbLGOCYXyoRFV2WLCcsq1z/nmYULFD7D5reIa3aagWKAuyXhGE5f0O5vc/2g7LiqwLclNK39GxRWXQk4vIOP1ZDhcWd6E/xXS4NS7uRaWAWcWsQrnCZUXWFR4WdC2UtVLbBdvv9HvB7gXaDiqo7mg/RmEbwC5Yh26KnpBBd+IHYJRJLtgE01WP55rtdloJXXvxlrvIzgWbyZ6qCxrWWhih/DhGR7tX1sQ8ObTuBnom8uIG3mLfnw7bKZk6fqy5vpKsk8NuRE76l2O/+UNP8GdPvUY6PJwhc0xF8/dWVZp4Rdh9T2gRkTCJV70szoe3kQQVO4cOCKT7nk5uOsWDnaXmLFAb0dIZz2dWjETn3wWc6iy+7y0p8cNFw8d2h7b6sxZDLbRmdJySvGSopG36dsGSOn9U7I5aWzribwAdMpA2ZjsbnBhV6ZgtjmKc23lfYSvj/NXH96wfv+Pyu99Tv/sergujDHQRSt+4fPiIXi5Qip9hdclMse6UaXu7/zn915FAy6ziJejkTADxapHI1LMBZqHFE5cDkDnArQgCRwKIcxV8z8V7J1MgKAck8+moGYZPOIM+2GQxvk0K0nfkYp/D09OrssfuzcvtZAu+/QXeBF7nVTzvhZNLZbKCTSb4NjonG+7nrZS3n2f2TTD1TWUd7A2olbchZKsd8znmdUeI4dXadKgqERE5aFKqJ3ulg5q3n4620e839mUJ2zRYauX73/+e97/7Pe9//wdevrxw//KVr7/8gm5eDNDe8Gk8Y+piCsxSu0kwmuI6NVuxTuv6thXx1+F5xiAz/hjHXsjWvXyUYzhg3ls7+UVf7KlfhBcMBzaj9qxiq8rU4Ts/jQT7XNBUJ1BTFwewjIFs6Uvcx2nGArjrk9kuabFep8RBOALsorBEe9y6MpaFXqon56GthyjqI0JjX2i0EetM0kHYuwXb3bVIx0ks2Vkki7fY6XFPGi07e9si7jCmfEUp9G605pnFwAufe+9IVS569dcW130cZLKmlFq5lEKpheuD2+rWb9zuL+xtc+ZN2xjWEDpb22j7gLZxXSqXWuj7jpi5rl8khHOnGIcNKsl8sbBBx+sk9syIH6RfJ4q0brud+eJAnQNPXfx5qzrThh7POuq32baj6GTQWegWSWvs+46Wuz/9YNeMiFM57Q2bDHuhRLwoJfMW30e1rpMZpLoguru0iHhHharBiCFJFIbt/jFZEBnGaHuwpfbII1oUtDOn6GzbndfXV56fXxmjeXFgmkH7L5nd/+LXGZgYwTpBgpFvfu8p0D00zrOERm74rvmwwaMF8SNB+Aj71jYShYnskUq/ZsacsJmnPYoOp5skC1/zU838LGAhJZH3dLxuhKSA6PFUvUBjJAPWr4toIRVSEDpjMSH99CkPitwrJ2oexRCZMVe2fWYbbu+GdhflN5wlOBqoLlRdqNflV/Y4WZ/zWZ1oPK0NB50GcPL1B3AXMZQFUDGiQH8ydgk+WPiy/N1zbJzu9RzTfLvV0v2mwEjuBZnM9SN+zqeZf4547+k/8/1+9VkWz+rwRxkyG0fePYGzGTt6zJBd4SJEt9Dx7xaxVtx0nHvl4XLlcnlA68rrbeP1dnc9pIj3FY25d8S+CTsX73yORfMWfC/JeWvnHcxY5G2M9TZCOjyXS17YTI6D6Z2XMSvrCTIeMc5cOAjbFUlXaAr454cWMTLPEb96H0jJm2GDrlD78EJEZe697C5zAEmjsPpmZf6rX78deMorm+Url8Y0CmZKDwTYurMwhjVMGoOYVhZsDsaO9cbod2fDjOaMlG8OgWQbneZYrErArlgwnoo6G0pEMVv85uVEEn9j+E63YAaJArYWQuLuINpkXx1tcnnbzjiK0kmCOuRDnf1I84N8PxzGYlae3wR8UanGwSvLqQ6ZyCBHr2iI2fnBSqw3wC7Jz87dY/NzY6/Gvxzoc4IaDro0er/7OvR8Tjv0V6KHK76D0WWh98RAaPTmzzOrO73vtHbzKltvsN2jlzfeR5jtV4gDjSMOaSl1Bhx5cL2Hv0SLoyIsXo3UC6pXSr1SlyvL9eJBRcHBOfHrHEHrLlLSJHjwPrLi0aPdJ56dFUS8yikarQdWY5KgkLPQRQ4BW0QC9T+MiU/Cq84GFE9mh4GVQjVDHm6U+x15fUDbHdlusbYRxGYw0HuMrh+U2uh6x7aG7VHpDb7lsEqnwvIOfXxAnx6pjyvLdWF9uKDtFd1e4eUL4+WZ8fpKs09oEZYxuPZBf3ml26CrC3kiuHaB2dRVmueBjCn856qCljJ/D8StTJFoz0ux0TwlYdiDFVVXZbksrMvK3hrNOqOBLTojK0Xc+hXByb4RBEhoTvWo1hAgyjmOi4ppYNcHJX0GtMye+t5PjJDp/A/KL8AoiqlQ1oW+e6U0tgbDjL05fVw1Gz8dgRvqDmWI+TQLCYigRIppFvHcoIw2284EpyWXaR+Y15TyEz5s0vdDVo4dTLHJiCRsgBMDA+DpzNYqGVDKoDBY2gjBbCj0AGQA61GRGlA8cTgsn8SauV3SOaI3XbJHS+EXT3ZWDomZSGoRT7JK1LHyfk2c6u/taAFQaZwFcgyx0LRS3n2gfPwe/d0PtIdHVxCvAykG91eoKyM2Ra3VGV0S9Bu+TZfjYk+BjZ8DOd2HJ9Mlvpeqc33SQIzuuiCuUdExCzp/Ai1Td3C44P+I1ZWjovU2cAuWTgCfhk5ga4xj1x5B7xEAZxDojJ/pLM5R3zzrea9HaxZxLjNQjZ+/8YW/DkjOGgjndZnccYm/ByA6Qvk/B7VKJFWphXG66MM+5bmOZDfvbyllEubzPuX8HIW4mwxbj/hkal0MkBLPopQYzwxVBp1o07fO9gz7dmfUB0ZZeFwe+MNf/RuWd++RsrK93Nm+vtC+fuW7izN2TeF1vzF6o6jy9HChqHB7aV4060aPdm/Xn2nHGmQclsUC1RlAz5wh7sWTBOZ5m8/U3gbTo5vfi90D8I33MPPCHeb6D+BFQ/EWL1mcEybFgRcP1GOPyOHbNduCFGehVmeAqlTYFItzUtXZHFUXKDv0YOoG260Eg9UFT4tP3xPQtbI8XFieHmmXK1wf+TLgu4dH7HLlDrT7HasLuqwuRC7ORnWGJ9RymTp79811+5JVU6vrXzEZdsq+O1OLMVgvlWVZeFieeH194b7deP76lbZ7IepaFnS9Uq5PPH34He3+Qt9eqNcrSqGwc9ufoVTWdfG9JhIyEUYphYeH9/z+r/+G6+Mj16cHfv7lJz59/oV//+//vx4vSOfhWni9G8+3O9vLxocnRR4q2+vGuu20rXKtC5gyhkbh0LUgTcdkTY0cySXgsg8ytYKWiNMy+TF8qIWbS9fA2Vvjdt+x4f78clnitX5P2TbSg/mO2tGy3w/7YuxebS9l2rQ+Ysp0DN1pfSBNKK2wrivOdGx8fflCk4pcn2g98goELZUqQl1DK6o736JWYVmULfIVGwNNxqnBZhs2LBhTzhwu6oyUMRShs0c3wMurcr9vtH3jsho3A7Zfmch/1Vd4YrIPoePFOxM7OtJxsHbrg4rMdctk30E7GKNFcS58+CysOMNzOu4AtSQR5NAlHJHPDHNgXsvbJPjsd94IjZsXwVoI1R3xtO+DbiPA1uIC4x4c0HeHC7K9Nd8yYz8sbF0UnwcEEGcTkMt1OAqR5zj+eL9hPhCg7E6c2NqY1ylSWOsVWWDb7nEPw591gKR5P5kApnbgtrXp552tli1rI1I7L3NIsH09Tj3lk+dcU5iSBXPARtzDjAXCTh+uLfy0ZjDqPiYie7TkdL1Ot8O95M7y/TcOX3/yIXP94jItcoMD7zx8bEaRdqySX+58HhFf5Yvt+M1k+h8tcFBFYRjb/cY//9N/om03Xn75kf/H//b/4o8//sS2d7bhVn4QbDiOGOh8d2K+/v4kMi+MNHZm2Efe7XsmAdFjDc7r4bfvi5K4nornIBq5VQ490rm3c1HjmUmw0CzjPk7nzPNVQaZv1IiZZ4sfeZYPQoC1oJWIsfTu7ezXEsAT3rJtULsDdjN9/g1fvxl4ckHx6D6c2IZF1dZLkb3vLgAoQNkxbQw2ZOzocJbTaA429XZ3AGqya+KIRxXHvZhngKktZKIuVijeXud4W7b7DLooyXqaD9c42tSEaKUajL2FAGKLKQshDm6h9BfCNh4HWzxewccRVh+jqElf95RyqvKfHroHdXlNjmC6PY+2C8uK4XBQ7bRj52jZ3BSeGxxRI7EBJ0LqG2ZaUSApAn5NbnCyD98IdlN89+4C2POZjA3GDVKTyUK3ipjeh1dl/Xc3rO+MfsNGQ3KMZehf6egeHMYBNnCh4+Tim9OxSYHKvC/imVpMgqgLtVTQYDrp6npjuqKlenKt0QpIx6eu9dgV6qy0WTF34C3FIecanyokkuI1+L7JhFDi4Z77pg05SAJR9vN+5+IUdTVEKtQLLB25PiHZPiogzYNea/tsg0nac0F8/frA6g68Qm0+Riged5GC6QplxdYneLhi1yvjcaWvlX2tYBdKe+Ty8EC/fGFcnqEPxpev7PeNse2wBzgsgtTQz8jKSiSYqWFzVKNsJhClqLc7CiBKLxY6GwE8yQlQM/FVCoN4bzvNjNdtY1hQq2vhclnRWtFl4X6/s982tq+vUFyrRZLYQbCt4lSehSy98qox1SbsiwxOPiG2XgZTbtbzhBPOSIrMvWJRAW86sAVitN8ErEI22n9vAtlyFCMkwNU48wcwezB9QkLfnZ1EKD+Ov2fXecAQniaJBTDDzOXTOStutz0XFQ+gw2a9rSoZJdqR5r+E/TmS1ASy/D40gaN5ZmJdOa4j/3suqRIVE50+JQVDcy0s11SPiRom3Y9ZETCv5vTmbygoerlSHh6pj++Q6xVbV3qtzkSoFa3A7SvttvP8+Rm6UbRSSkXMQXW9LPPaew+2Sdh5MYkKINOqJbvCZikuvotCCLcGx99tEMM1eQJ4siHeVmQ2GUnEKy3Oiwcy4ZO0HBVrTi12EVCnvToC/fNXMCtJ4MZBrtRCmn4TDqTYCMD+7Ztl2OjrEn+Pl2ieiThfGQDN35Uj2IFxAsJ0vsZjZd8XQUiJ7wSeYj3PYJdIuJO5+/DJuvG7KdIvwmmHThfbc89ZXvcM8yLfOUBA1xf0zaAaZTnroVUoWDOaNHR9pFK5/fFHXn/6xL3DL//0L+yfP/GA+QRUcF24sVPEeLiufP+H37OsC1//qNxeX9jvd9q+naJx1xTpbdBbc7sZU+LUXKshB2eM0D4h/dWReb4J2MGD1lyeMcwLIJqMQImBFBqTa4VGRxYJRoIEi8ATSlGlSMZB0QKqEZ+p21XXkih06/Qx2EfzKV0o9BFtQc6IFTHvH9oc+DDFx4IXBz6KwRKFgfvoUL2drj69ozw9wcMDe1kY6izH+968payPABSd0VFj2s9aFtfGcycQjKeBSWdZZZ7H3keweWT6HNGY5ZwaNMNYSvECaBvc945eHnj4KPzO4NNPP/L8xbh++J7KRmHj86cbHaWbJ1OGBUsdMKWXncenD7z7+D2Xd+/oesXqEx8+b+z7HbPGZRX6WDAufP38yucvne31xhpscmudUfE9G21uWpRlWbxFG/fJWlI/6LADh8CsH5YeHQPEM08w2HAR9Bk7yMEkMSzYUaFHlDEZASo1117NdtP1UinVE/paK3lYHYTw+LEWnRNGU0S7253b/QtDhev2AVnesdSFZgOLSbp721y3KYBvFRen1wC8O93j3OFnzqlEPhUY3L6s64VuG7TG3hs5lRBpPD4V6vLIw3cf+POXxo+fG3/+9JXWx5GC/JZM7ghBGQNa89bTN/GCGC3sFs2o0SaVLWcyDBmwtRbnvU/fMC1CxAGuSXliEk2Ra58yPCtgRGya/5V2OAtfZuxR1Er7nzmR4WB3TyahRKx16qg53ofYYzMU5UiUkisazCjEW+WI1sHwA6WK16gt/HoU9idrfEBTY0kUxXANJ4tOhACcS2j82Rjcbi9hjzvbttNi6IDnt7GkMbiAEeBXMKn6BMJ0OlblYFwyOjmBVUWp6jbR87HTuuHxQMbG2SEgcV5j6eY5RCUABQedkhkziPZAkqEKFLftQ3C2bD98drbCm8V2iBvOf/V780LJIcB97BE5XxfJnGX63tyTM/xL0CeLkNn/F6+x2Ev/9E//iT//9BP/4R//kf/8pz/x8nrnNgrdioNOMfHZf9HZxhElT2RBg2KWsUCmMnlVHt/Yqahq08Ue98lxExz3n7HTMNcHPQNDp4hp7m1EZreNna7hiKEyBoy/D5s5x2Fa7JvfiZ+O/Ayjt8hT7oY2iyLDYBlGX4ycNv9bv34z8OSMk+OJH6BTD+fXGH3HtMdrgloqDe0x0axvwXLaGe0emkKu9zQdhqRaf7SLiCeHFos8otUu25EE8xHkBNVb0tgcRltJikVcc4JkfYTOUwrfpaB29KdnxGnHQz1o5HF98b/ZenD6PjZCZFezPet48PM6zxApRzJ6UEjTIB875jwdxr754PzveY12HGpPcjzRGNnyGM8lQagxNhg7Eq12xOstWgBcFN51oEbfGX2LfbDNNZRoX5yC8smwmml8gGqSJ9SDycFwptt0AP7tleWK1nUCT05pX1CtLtAXwZD7jbhmi5aTTPwJhli0Crk7PQFMiQqIBMg0+TPHM+EAGn3NZSbtkZnPNsFh6uATAw3NMuqKLJf5HmLDq+Za6bpNx0w42zleegzgjvUC2pCaAKeEAOADslzo6yNcVsb1wrgu9KXAUlBWpDfqZUW10LUwXm+02+aMneEtIn5wIvkkHNLoEFXtRPsnS0ygKmjx0cVlCaYUODgUjioZT+5Uco8evd5tdJoZ0KFUf+FSWR4eqOvKelmRFwfB+9bo+/Be8mi3sZGU9bdG0AKskBJ9yakYm6XAOKteEYvfPzwf0/Clnld8VkRMDHHAXSaw4PdXIM7j0V6KiGuOxdumvZYJ/Pi3MhCTGE+ejXcRc09n6E42dWgCxgv7wAScjnZb//xDeyEuYlbsMpiMcySDBGIt7FjaFssAIa76151ZJydmh62cR+R0PbNVb5yS+7y+CZ7bG5/r+q5CNpdPKjyKSEXWFb1eqQ8P2LLQi7KLjyPADB1Gu21sL6+8fHmmt2iri8jKk4Q84YZJn4UWseGC6pH4ZwXvHCFZMEMSqRUXMUMCzFOc7ZbgtXEUIvLZvGGhTPt+YoLm9WYA9+a9zu9z2sPYBBTyfTIyfRv4aT6eX31NxlMkC8hxLiTW9/zaDIDOQq/npCp/e7zxg8ceSGYTuNitikYbSG6IfN/TPv7mZ3YcV7/HU7Jwdtxpx2f7xV8A2SAAq9x7QrTHxuenfxiu/+izTHq0bK3cfvqJfQgv98bLn39G7i882kCbDw3Bhgv449prj49X1suVdrnQto0m+7z3vCUb0Qo3Ujg9YwFnPVgAntnycV5jzI421tM+STuYRy/tq0wgSemqPpnLXPhXw7bN2qF4IlVVYs0lamPDbXIYtgSVtBZa8+lqjRFgfvjlAHK1lrQ6LscgkQgbDjzFcAmJ9j3pArXCsrC+e8fy7j3l8R22rFipmKgL+Q5n2DIiqVO/EQmmdO4t3zJ+PgYOShQtlLqw783ZhIModJRgcNhJT9RZSr0JHWNrHa0LVQuPGK/3G/d9Z7GK2g3prwyEbo61We7P7uPWnUE9uFwfuD6+Y3n4yLULuy28/+6Zfb8zRmMpxugFo/LnH39i7HduW3MG1fDClsSQHwsxZRVlWSojtAiH2fQ3vkvy1AezLgCkOT3vWLlpT0eerdhpI/afEe0mJifb5f7Uuq91twZizjRbNMTSO+Ct6iM0xDQLTSGgXQJ4Qsw1Sbdnhir3/ZlLvaC6xEj7Th+NfdtCu0hwxkBBxXVGR7BhU/Z0xGAX9z0l4lFlvSpbu7O3NtnEfl2d68PKw+PKh/qe5XOH68bztnG/7+x7f9OG9a0+z7dfuVZDXONJu4NPpQsqPtRExUJf1v/bLIEnw6cfhk7fLHpFgSMMe350FiCzyJ+AohDnIhmNYcfeGM5TgXwWMJJlm50D8cx7sH3BjuQ6MJsJSOb+iN87h2/pF4zT340gMyQri1lkmXhZ9orGe9iAod7aWYvHqg7CO0DjYvdhe5LVNTr73mm7t5S2vdG6D07JGEuQGGBlYVdl+vb0PXY6XZzW2SVmItTIQkDGZuJg2SzeCVm5mVObRbw7Q/XwtorN9Rw2jkLavI5guiYvxMDKqY3MDmuAhT6TGd0mbWP6khlDJoiYbzBzVGZbLaew78zc8mvOmOP4/29PiDPg3eZ++vSFX77A0MG99RgaUhgsEXGX8waCbM+NPzP+/vWXHOc0HxaxLW0cZydir7lecRYm1en0yROcOn3ePE1y9vz5mm/WkiN+tG9+lr7dfrVa8xEc7xdxNbjoTrhbpIz5+qIdHwrzl+3Tt1//ylY7NyTDdtQ2rN/ZtucIrgXTjvaC+hgm0IbJbQpPj36n75vrKu13bLRg0LQIfNKxq7NXyhJGPHWdMvGJxMAWhlREiiepCU5oPT2shAsErDuVtLt+iUVfTQJP4dZIJgxxEIFpjLzKZLhYTV4TviOz6ixl6o5Y/hghRpCdXnMC82YwfLCzEtH2NXKDMiwNDxA97P7wW3gfN4Zqx8bKpC8F9Pwe4zsYShaTUFJ3q/cbjB0dN5y5FKBR32PdmrOebMBIQLFhth9r2P350ke0/0RwOrVN7KBcaqHUFS1+kGZgI6klprjIegWtlLJQ6kKtC2VZUFkQqc62KRKYRTDlCApmiC1qMp5iTU3Nv7MvPQE9yeTN7/0AAd8e2bMpPOAng6ETQBxRDRtUhi6MOpDLQ9z34gBab0hrzjgK1poEbR8tXhVpncaNoRvWu9PwxYPrZVmx9QFbLtyXB1gKVgttrfSoJi9lUEanjEa5vqNc34EFTX1ZD5pvbbBEsO+8XaQr1vtB2zajxBYUCcApGEU1Wu0GhhR1EcLq0+uim/Rk320GQd3Mz4Yqul4oy0q9XHj34X1U0QdP18rl4cq6rHyVX2i3ncHO/rqHw0z54XgiwTRZamVdKkstaHEtDa9Sh90gxMJbZzB8Qg34HjwFLp6/iU+OSxAt6ewGDKfeyzi2UrLXMouPgdVzvwm+lnqK8DQCP411VgUdMoPBM31+Bg24/scIxsHZS0+nFQ4tqziz3RB39plTdTVaCeq8AKJxmuJtAjStAdAOhGrFQdSw1WTwMszBudM1TEBjOmqbOIJPETquPf/qia36VLeluK5Zdf9gooF+XqA8UD58RJ4+oB8+cJNB326Mz5/4+PSA3oH7C1/+47/n+V/+kR//8R/h81fKtvvzrhdEKr3ggvhFqd2FRNt2x263mALpgpRT/yX7SDNCUa8WJgW9FIFoyaKrs+dUYQcXj/ZpT0cLQNjt2WpGAEKRqJkL9c796S+IpPlo/fXndaznIcSaAVKZoJcm0ylBrGkTE9z0dqfkI6WPyeBpzKdJnJk8ienfIyCbLKUQI50GIZi5nWikDaBMY8x9F3eluBB10eKtURCJZ5+fkRsswYIUgvd18udTap2fPSyLUGMCyEftNN6thk0W14NwEvUxpMPGHsWYBntGHwMa9PtO/3Lj/umFfcBtH+zPL1TbQXak+NRSUWGhxUJu9NcvrtOzN8beGc3AFBmeyC4S7Ldi3L9huFnoEfn62MFyyrVJgOrNTUJqblpqRszWUZ+WWpZKa84M7Lszx/fmE5mKFtZlxVCKHWywUpWl1BCqHeSUJ8OoqzMRJTSThlMhqUuF3mmbsIMDT9eVvsEQj+m0eCh7Z3ctPRXG5cpr77yMwfr9D3BZ2ZaVv/qHf8flr/6Gy1//HdfvfmBoZTNhlUIHdhuuw+RpCLbjLfcCRSuCODAQcZXUI5Gs5QIIKoXLZQnBZmW8vrLtG/f7KyOKmmsV7q87rd259zYZdPXxAx//Wnn8+B3j9TPPn37k66cbr03YbTB0R2tlDGPbdu73wcPje777/g9cHx6plyc2Vsr1dzyVD/z9+sFFzUej7ze+//0L++2Z77//G3758T/x+c8/8vWn/0QbO8UaLYCJolAWF49dl+rXHfFmNA74OYyY9ZitnD5unLTA/N+WurIsRq2uf0SE0key7TGY2qCqTMayYOx7h33QxobEVN3rQ/o/nWyyfdsn+OQi7wvLIqwLFC10G9xun7C2U8ed9dOVvQ/q5T2ij7Sts2+N++tttow+PLzner3y8PDA8+srt9uNbduRzdsPR++sdWV5KKxrwWxH1bhcC7UurJdnRJdgbRnb/pXHh0ceHz/w/R/+e75uK3/+qvT/+//Gj3/6mT/96edoh4lUSrN95r8wNcqY3Up7B8xBjmFGLUoNTNDj3LCNXdAOe4s4xGTGM1pcFiLB6yyGeBt3iSKv652OEN3WmctESdm8i8MZOXUCrskoLKrUk5bT3tyXaWS2NtOvAJXGKV4K1tmBNAiz+HFmCr+xa5EoR/yeTsoS6EyzGDG7AyUutSFBbR5mtADDihmlwrJ47mlDaKMH403YW6cFe653m0TnmfvYxIMClilHYeSNyGgSDiKfVF/rosckXfejnnf10b2A29obUCj9NhDA0z7BnLRfZ/a0FKGsxbXd+uT8I0vM+hYH6rXgA5ZUnbxg7rvFR0gGIzMYZ1FINZFoVzdmyx8SRSKZvtsZkgJ2+nyO+GLmWqc/LX5HTEngyCPkwR5A/aZC58KQkAuicmhojriORnp/fySJUSSMFgN9mKXS/8LXGT06/T1Bp/jjjNm8YVN983u+T/O5+oNNQP9cuD6+TjHgm5//17+O9Qj2ZQKkHZLcMdqg7W4DanbH/Iav395qlwHKGNGGs9H1Rt9eZ/KmFYqVeOjDmQ5yh2DPWLvT9ruPi9zuoaMUwuP5cCGMik/BE3FWhkpxsCnKUOK8YFAHp7D4E4VyoOzJ9vFJNB6U9u4tYx4khsZRAgzZWnJG6lNnwvy6DraAGzu31xqHN9g5EKyG3CyCTxxzICXp1/KGSXa0GbhQZ3AKRCbTJLN2p4Na3uHUpLIAqfoZ1TScMhmO3UfhJvC0MYXexz3ApIb1DWxjjHvuOn//7qCIM58CkBqbiylatE5a96Ay9ABsxIj0kX3JHEY4fZUF+i7HJAO/1UTKPcnItStBt6+1Bu0+eqKjEuaOwgMbG75vJJLzbAWyYEMdzztRAt/xNltR5vk+nYfQWNHQFQq7cCRdJwCKTFR8SiP5XWq0Hw7X5RCncZjJEfSLa1oNV1WNSltFyh4TvKJVTwuyrsjlAZYL9XJ1LbLiyfjU09LYK333gKkNeHhCHt/7xW+738C++1jjWC9r3Seeef9JnBsjCY4CZxm2mLoYK3aqamdGmMBJxBST8t0NHxGrBdPFmWH1Qr88eFcmLrYqw7Digbg7P6GEcOyIzeVuJy5DDZPBEGNEpdSfsYOxLtAvEyQ4ZLwOZ+wOMBJyy7PuibIeIZLvw8GsCuUu1jniyZldww4NI0wmIDf9kmZAZ6eA5Ph2mxy/bpkQGF1hiFNw9RxUHEYxxH7DcVoG78mmclDN1DW7htr87aNC5dUqMYspOkwGXAZC2WJIVL9mnCi+8pboU9q8qNhJnPtcq/jn6TSH2PGBKlgJHUAtyHpB6gNSr+j7J3h8ZDxeaDIY+w37/Au2CMpgfP3Cl3/+R+5/+iPt9ZVlxMSeUo/3X/UAP2YrSYLqATbGs852oTxrU6pILBVRyMoc5iBrG8ODRGzu1WTPJM16WnkhH/wReM2oOujOEVhqVDTDrcwvy/04gZ5c5qgG59mM71mdzMsO4D2DVPI18W8aF5dswGQ5CfneqTUQdsUy2D/Oj7MKfZ19kp+BqIPxIWqZQZFqmeAT4jpDnFZtbnjyvv06+uj5cFw3xD/25CMtquJpn/xZjGBNuCD04rpGFtXzaC2yc2El9ouZUayEv+zYdnMdtTZYx061htIcHAubK+atHNvthU8//ZlSFu7PPpZ9uwdju3iCMBBnq8Qz1/CHMwFLLZCwRqdDlSszX5vPJouwEmcYG4whISzqfl3w815rpSOR/MAYw/Xt1OMk5QRoLjJ9ebdgi4Y9GbEXukTKEMkL4ol3H4aUyl4Wdh30AnstzkQQZYt2KCsVe3hEhrGo8rf/7n+iqbKp8vjDH1i/+4H1w0fKwxO1Llzqyn3vbK3R7zefCkbEILFRb6+vTOrocPAbzT3uPl51zPPNcM0cduPr189s2519u1FqMEOKgHVUYF0CdBOF3hkieP5aWa5PPNnv+Pr1Z6zf2fvO1sM2amG5rNR1xRRuraGtw7J4a7ssntxvG2N0lvWB6/WJvn/w8yMVrPD102e63cG8ALlUcTA3lt+iGmHhG9OYWPe1ERPXgCKLrerAx/BawBheyLHhrSwOXrixKzWZpekPPe5VK9Nijp4t8XMHx571eNJ1oYLtJA7USDy/Y6plthTjE1wraEmg+M7oK7VcEYnBGZLRnB46ZCL0ABRaa6x6nKdlddb9inoXhxjLqlwffDqelpXRXQNqb7AuF+qqIJ3Hd1fqu4/81V//nvu+8/PPv7iuGsQZCubVjDnOdu04zoivx24EM83ZjxShpr3HsKoME/qA1o8kVmPoS8av+ajHSKBHODcPWBSTS4h9D+QA9s8vVNd6GhE7Tq2ZUpwdiE3fNeJa8twfd2rz5+nHzsCSxM/8lQdzKF87gan0qxZ51vw934PT32FHrCXil5J+kXwPJgPMf+XQPvNbn/Lc3xRcOK4bnT41X0fs1zM7xYkGfhHeuZ978ogB3V+fHXg8wAkKHnqmI9ir+mbdnL2pGlML43MNt82aK2VQ1AdCWNcJNrXmrXrdXNLE47gsCs0SjNuLiCVH6HZJrvexYv6+8799GWbXv51+Pq8+88VYwyyPmWGmdEYw0RXnvqvnZOOIzTM6hYMFnPI4x07xGGXmgfPBHWspcsRn30oLfPs1OxPsKOzK/P+MAI+7tNOfpHxPMhXnnjm/0duVOv7pRKCY63p8+vEGpz2bZhGdrLYmYRvGX/6cb79+O/CUVbExQNqJwXSbBqSvCpRAMN0jDN1OwJNP1/DRog5oWPQSZ51kUgmH6/QkS8W0kqNWxDzIGNajuu5y6yl8p7kyko9rOKARwNPo3RPXk7D0ATzFQ7MAfYDo6YhFd2aXH3DPNkzlm4eVIFThgFFmapcUg/jmuM5s6TLBp4WdtmA+T43pKvMAOoAyTsDTSA2is3F8A7L0Ezi0Bdi0Q7ZEjt0dp+WfbYJ0fAM8JfvJ+tsJhXlNoVR4QkzPVPHwlRnolsPwSFZmwtmK6AymRRUtJdhN0Ved7LB0mebCg/45Aejgxk8iW0ptLhJ4iguarXnkf39zFkS++YZE0CSd3fmwEglXsDIs2XLzu2LV92xeBnH/48ho/d/VgIrU1ROUBJ20wLqilwdYHXgyjb2ZehXJkhvdW/Xajl06XJ/g8cnFy7e7X3fboPWjir8LtlvIfQ2vdg5zjak0zoH7BqlvmsfZfnQ+IukcSFJ3JHoqmFYskgcpC2NZseXiAy2low1k2+niYpMdBy19mqH52T4FJAncm4uN+PGsZYKNo/seFfP3y/B5Hr8pShXnPFs68MQhy7/TKSe7wvBWKGKyWZWMKtDmYvbtRFsSi+AugJupRRPxl5xfK7m/wnVEkhtwq9smdQebe1SyJGrBKOQAruQUVPi/m49FF5uOfq5lvOYNjyW2gUpazax6ErY3XhvOOC/Fz1MGkyO2hcwWz2ztsAxEzaL4QAQQgqmLO1NXWB6Q/H73iDxckeuKqdH6xnj9iv0ykL7TPn/i+U9/ov3yM9a8+leKghVsqVgV5FJdTHN0H81r3tpobXfR2aNkedigeW1M8CklOs86gH0M2hjOYsj9lqb+iIPzgR/2ZAapuR/D351rGBx7500McQ5u3/yZe06Ym4LjYzPAyPcQydfKjDdynLrGOT7AJJtnApJNdYrTYp9glnkGUwB/RAPbwGnc9jaYy3a5FBJXHRN8mkWc2QMan2bOuk00UNX1MlIfIluE/Llx2IO0WVEwKqXQJRKJmUyc7Mf8PLeXBY04ZdD7ThlG7QOsodZQ6z4Rc8aNzrRt++Dl62eEQtuV+22j7QF8DkGHMDSnrabwqcCbaWv265gw1wf5VcDrIv+ZfJ7XLsCnoRNgA2eSUKKoNFIcetBaVLmFYDNYPHs96Vc6+ATBcBm+9q7pkpOS/QT1bkit7KWw10oHtjHo1YW99+o6kCyLDxRAWMvC7/7+f2Az46V31g/fU5/eo9dHZFmp65XLwyO83rH7HdnuMY5eonXAW2z3bfcpUgZVV58eWgttNGcul4g3stUxAV8b3F5vbNsr+/01dIkiFrSOilGrokuNuNYT+GaeBNbLA7UKD08fuL9+pW2DFgUREyjrii4rqLK1TmmdlRJMX6MMo5sivbNUb/p3xrrRtsa+NeQ//kcHRTDEmmv1lIromJIOE/gm2cQcfjbygzE84i3FgQ13l3Iw3WPPzPYmZGrKeQzgAZAGqzOT5wSM5pS8aSPizAZD3N2nJ80HgK4TRGd0TJwJJTHwROxg/IsE4CQj8hL/zKPVbdD6MZCIGgmoGKUKtWTxyylGWpV17SCVZb2G/tfOy+tG0UpdCqKD63Xh8eED333/kZ9++uQAZHpYgUO8WqddOzmI+Z9mszYIBnvkVorQi4Nx/u9e4MxCcMtYN9c1HvXhZxJEx8H2LMgGu8jzUJkaNTMuiT1K/ntWV84OKG7DWc4HUCQRN+c+O4yQzH2R38e/Hql0MtMPgEemf80tGxfGN07yiNwtAyR5Aw7lWifwmbnYZBhLno/cP9Pcvvk6WsJPNjafbPiWY1L64UtFUq9MQkUmQaf8/OyU8J/rKV/Jw2AEa1oIMsVpISVjMGPCN5ZrJwe7v6jnxMO1xbJQIxmTZG9e3lsCh75a5O58Q/R481nHOsdjONoFj8c//1/erOCxl2cuEp//RsIlppKLvX08E5M4HPmMbX/19SvwiWMfy3H9b3/nfL8WNpBY4dOBjuuXuW6Japx//RSnf7OWZ5zrzUfK/L9fvX5qO37zm3OyHhKTmJ0s05vnDN3+wtr8ha/f3mpnxAlrWLu5IxHQVkA3T6S2hljSDonMq2Fji7a6YDy1nb7fmVpAEowBIR812VefwNMIxpMW8UR7/vuOSMXK6sCTKKMdLXDJCvK2qWPSzAGEdBcrzI05bWKcSMSXyZL36pc9BBxk80yj44m9M9IrpDZKnhoIwCmy86iI5wFMk5aVyd5ODj3+VUQYYWhUHaTNC+rD9bKIJCmdwYFdHRVND2iT8XQnRcCZbXXdwULbwA7Gk1vZPaLLaKMbI/SdejBp+iG6aTaD8r5ZGFEY5+w1wSRR+pB5BCSTghJBqmRLhWs6lVopxSudxfubZjLnFEkNDag69Rj8uR7jZaEdWhjDAYhMkImGrenBp8GPdj096MbTHBx0p/jOzeTgqPgoACTWamhl6GCUYDFFwpAjcDGhizLi/lUdWC2PMsduOogV7LllgWV1AfbVR8NbgHLzkvrOsIb0xT9NKzI6RTo8XrFLgdsD7Btsm1uU3uF+g706GNU70hrSOrbFxMBhNHyKi+iYgQzwloI/XCeiBJAmAiZCM6EBXVfI+7hcGQ8P2OMj4+k9y6pcFmH/9CP9FW59o4u5SGbHz3h4CdeYclFRF0h09k69Fq9MLuoijt3BptyrCTx1MpqQiRcf2/ZIxWzPwGCcnMvh/kzw4L8Iy+LPV4EdopXI73+I0AQHSWPV0vyIuL3xgPoI5qZ5iGAzMN5oazGUZAH6JDxFJvikGbxHoB6xC8n+sxF2qffQ+mAyKDzY8rYGxCeEpZvWvOdM9t/Gh0d4YHzj2E4BmzhlVyKw8mSXEAUNOXXxaVVdxKefLhd0vSLvPzLWqwNQH9/B5Qm9Xnm6PMJygTJ4/uk/024v7J8/Yc8/o/3Ou8cLSxloK1gv7IvQqlIeFlLrQGwgr6/Yq2L32xThnDpTEWcllb+BA00Ge0x2rVi0jnvlr4nQVRnFq/ojbXYAQMmgcnt4aAW84fTGOpb0W9j832k7zsCN3DenrwxKx2R+ul87IugjqH1TsZMEVvPCotASSeeY8VgGfOM4G8cV+r3GBWYVd4weWyXPWARwHYbaxPzOLnauzwRFxjxDJRIbgL03YnI9e2/BaPD2hfPXMDu17calRuFDa6EGAH9uRUkH7Uk79NHofbBkoaQYq3pbSZPGvW8xtbQh46igXlZnyA7UbUXv3O+Nfe/03dt5U1h9zKLCCNzQE49SlRRl9mLTr78knungbYKSOiDzacXfDxChzGSqeL8Fo7i/CxwgJoP6knT8DLXFvFpffB0HnW6dvfs5M3G/l6xgU/VJ0MuVNoSmStOF9bv3vlb7xuZ3z20Y9eGR9fGJP/zbf+BmykZB/ubvWYv70P3pHTep9Jc7D3LhscBDvVAq1G4sZYnBMZ02dkZqgQZLTizayquzlEB8WEG0+23bxsvzC1Ur18uF9+/fc3t9pt1f+PmnP/PwsHC5Lnx4/4CMzZM0gX3bIqlzkHZZVrZ94/rwnsf1O8D4/Muf+OXnP7IF42xY57peuVweqe8+sAtod83OtT64PpMozYTRGkOUunjMdGmdH0S5Przjn//pn/n85z/y9dOdEkNfrlLp7GF/G1piAuHiLDvC3hxsaqXjTF6tS8QzyuP1wnbbuI87t3ujdX/NEi2rtSqEPEP6aS3ie9dgdGNv/hwALleX19AE6eIMaA5vALp4obU3ozUHY2sRsBhuoqH1qIA1xn6jSaHsN3rrWB8sNaygGIbrNLX+ysvrJ/bWQDp97A5csfmwPasOMGe1iMr18TsuA8wG276x7xtj1GCHK8vlyfU4FdbVwSi3M2RKcsSV88Ry/sGvviYW3o6fle5FbQeao3VvQNtt5hMS4HDpErGcTCbzoQ2X8XC8AR7flGKYy/sffmaE72Sn1sX3TcT2E+cQYgCFegw+kjiQ/ucQWq4J1Bhhlw/fkE1VY8YxR10oY5Fvk+nZVjYDKglLYtMLeu7la51gTylCxvx9M2/9z2LL6TNyMqCTv97CGh7bJDAWoI2d4zDD6GRVUIhzkcVufP0zPvN7D58qbpMSLFFV3nwFkSC7brQUt3Pzc4P5G8XaGQ2EjIBUD4jFoO/e/WBqrCW6WnpxH+BcBddOy0oOx57O3eS+AXK4Rf78KDr6DzK+5PT7uZeOyOIchftauC9zjd2kg8gsB2YskvnniaU2f3rshqM3S0979Fefegqyjp+dt99kZpHAdgCXc5vklcFBYMl/iWtJsEo85kke13/967jSM6B1fvf/2u/N/EfAp78b1kbolcp/4Xfffv1m4Mlp7hytpyoeeIxX1xDo6hOFqORYUgeeQoR69GBJHVPUUsxb5oPO4DQSaXEWE+CfnYfMy58Y3el80qPFozDb7TKITWhWnOkzLMZXR79iOu/M4ETPQWyaHfCpSRoJWQRmCb0e2Yb/jh4PyayTwnik0Ywgz5O9EcZBDpaSmdPowwD57WeSnkmoT6og2UWhvWTDg7hjr8jxTSxxAE8+ASFAQdvjO57L2Py5hYB4oDoBNvk0QEJod/QUER9h0KJibLnGjl34lJRz5TWMWD4iPS559rfnMzgFw6oaSbTvyzE1q4KeHkhBKfjaBnDj21aZ0XIa2bnOdiQ3oTsxWwxnJea8rkQlw//hhE26uZqBQ4j+mUQQXZBRkVrwYdN1gntD0u0xmQ2CAxMqKbC+QIJeNQJzEUZdnK5ffPqbJz/ZohpGXEGGI6TeCjXQ/uRaXqs4UPyqsG/IfkNbg97oN4XNNahK7+juf7fXDWsNa821VwQHg6bHdwN9dhDg1zLb19Srsz5++wrrBZYFuz4glyu2PnBH2bedry+vvP74I/fPX3j++hXMA1XxgR6+cBrJcfiFrFOY2Pxu1ifLRGuZz53eoQUAkMy8TIqVABojwBkWezqDOYJGHL+T76kezFnSfAmQ+mQLfrU342BIBPbnYzyLZMixX9Nxz1ZT/52KhU7FASPk9R+Ty3w/O/46sKzWDqFGAOiC295GPQIUHQEmjNijJjgAH883S0hG7um37Txze0z/HHZQfM0cePJA8nzdBqGvVdCyuEj/5YpeH+DxEdYH7HLFHi7YWrFFKYuEAH2n7Hes72g15FJQK9S2IDSvCwzFFsEWxR6v0X5g2O0V2zdMxfXlEBYtPrFTgjEj2TJ3gHDJ4s2QNgHNnt/mazgE9xVHlHcs3smGp13ytT/MkZnNUOoQFs8CRm6aXyctGcRaXNqchoe5zzMOrRU5HeJ8fMIMON7QztMVRmBVq7dL53WNYadrPN7/CPLzcvMemPvdEnAZrtlAJELOZgo2QiyeF4RyctZB788Dm0LPmfycBUIHpNSTRyf5DOLM5PXObSzx3LJFmu7TDCWLZoZJTIkVQ7RT1P2nWPfgP/aKAzNK0cpIG0BD3jzH03Mw/79ZwQ37IOfnlYlJ/NY5EdO5TyMhyxuXI1A9COGRhKYdyp158pMugeCL5cU6o2O0PeQKIkkd4rbB2zPEWboh8C8xgbKWyrUsDJwNW5aVp+8+uM7UaGy9s4/Bft98euX1Afnd71EUtcJzXSmXB8rliq0XZwevV/9vVV5e7w44GNRa2fadNhp7d1FuzFk8pRYKBcUZX3vb6WoUEZZlYU6eMmi9sW3C8/NXnr984fX5mb5t9Gp0Hew3obW7C5qrkINxoLogdBHW9RItb4W6PvL4/nukVqDR+s79fnPbsVxYn95zfXrP+vjouorpEBXKskwGXIvzPLRSr088YXz/w18xemNvG9IWajUogrE7cBlMN0GccWwOPpVAZ7x45HtfVblcn8IGiguTN2PXmISMIKos64qKstaKWXP7ow5EuYyCTwg8t78KPr1Xg8lrYzhg3719y8LntN2BQuvNNT1HZa01Wsw9bpTQZZsNfVGIdtZgtPAT99Y6LcLqrb3EZMJB0c3bSMsAaRhG6+IF0vBPWAljBrCisvPxuwSeBPRC0wv3ySYIMA8/z5EVhY9OJtSv7fhfShcHDr508SKbAkMkbOY0Gs4pUM9/VARXBfFEsoetzWmzaR88/3F0wZlTyVgqJ7voV5VtkBnLf+P4/Qmkzznbm7AvieeInX7X8pmd427iDB3FF09LxinoiLhK8CJQWtw4FzaOf3dmZhTq9CjneFt5+IOM8ybIFfecmlbT5qa/y9zweE4Gwe7l8IukT/TXa8ZrmmY33nUWZVxixWLP5hom8HK02AWTLmVe4n4s7PeIP2eLfO4J0j9nAVUpUujVgafWRgCHroPV26APz3+6EIDjmDGhhW8fNki1pBE5z7FzjvufrmrGjnE/ZhGDnPfAaWElffPMxKjR8eNsK59od0BMSUwY891kXkfmM8mYyjyNb55pxr7pzd9+nfe2X5qlqf7GtScTVObem1963KtHDecrPl/T6Q2/WcRkmsp8XSyYnGNAf/3MG2Kd5lTLjMm6/P+f8ZT9/FO3aIiDFv2OKYymjOZO02IOk2u9DHcqlsBTiFCnFpB1hBY7JkysKmo6JyT4AsVnRiKUBsZpscVpX1KR3BRxQCzfQ4wRrWEO0NjxTQapMCnz7k15E6ybG3FP2OUIvCbwNHc4BDU8KeLzYR9v5Q81jTHh/MKK9uZgT6LhCUIkOdH70EOiOCYLMqLPPYG8ACuO6ot/pmJkm6ONDQebGhLAE9Fuh+0BPgV0PQwJsXA7a2SF3kk6ggSfxohRtAYj+4CHMCuvIlPnx6sqsUoy/WGuGrnxVXSyNTCLFsNMZKKNz4JmGuwRp8H32FsRDIdxzX336wlQ8YRGJDQaSYpON+XrebI4Q9JwHRh5HuScBBM9YVBKVEtTO+twAllhTz2VXAN3PCUqrasDWMvigbqIt6YF2OQjpf1P9AB+RidQvUCRZcB4QO0drIKVzrgotDtlW9C2I21HVoG9IXujto7sO7o3Z53cfZ9PeRU5nBtvBBPn0rvJj0DbWwVDMP7yOBODcX1A1gssK3eEdt/Yv37i85/+RHt+pr/ceCS0ItKSZ+ye/63Mp2Xi+k4jECETw9TbhCc0EJXMnNCExTNW3OlXPTTeenewq8Qzz/1qNrsLE4BRHd5OkslFsPxEiEEA0R7zJpHz1+sZeEozEsman5cITDJg0DFvv4jNKshcJo7f1ahWJ+PB8QwH9hWf/KaazNPqDLxgjfbUIYtzEB393m6V9x5bYoRT83Nv8+wczsvm/R0A2xH8yP+Psj/7kWRJ0j2xn4iqmbvHknlOVXXf292zcUBghiDBJw74wv+fIAEC5BsxHGC223d6qzpbZoS7maoKH0REzSLPqdvVXsiKOBEe5ma6iIp88sknyShKB8XwNV6r6zpdrsj1CrcnxtWBp3FboVaseIZS1FDrlLEjNHQR9FoQqcheMavucFOwRV2c/+k2M+N7b4zige+yrCyiVB3ODozM5uEInOZJUmtLp34Z4s/QRWhpN0QmUJVOnmczU6w9Nxik5sdRIOXOdaz0CeacgSe3i/n3R/nIAT6klxZzOvCz4IMzcXxvuc3CjKYT40ePnN5FZIkPEfAR+i95jz1LZT6kRP3iwuFcyywPCSc57Ixru2TCIxMRvqZKnpuSwU2Ca5kj9Z8V0sYez5J2POfTJJ36LCVhnkXHgXWACEO6+zMaGm/g9iVPChmoegINQqg3aO5VVt+fRSNAIvwdnft4/vO6DOKW5hx/uLX4N820nG45hztB+7BnGeznvswptTG8FC6Aum+d/QyU8/OjIh9ssG89nFcfdSvO2OrDUtUgytz8nKzrhbJc0OsTvVwZpaLrwtO/+yvW64XO4L3tPPbG/e2NpoqtF+y73yEUxJSvunJdb1yeXrHFEzOyXlguF8yUt/e79yk2F0YfvdPaxt4eLukgcF0vXOpK1UrfXKi29UFf0pZ6oJ7PZt3YxsZoO19++Zm3t6+uhdmMLj0IxH79UaJkWDQYqoYVpa6rM/UQynLjViu3lxe67Ty2O/L1F97uD2S9sb584vL8zHK50iWAPAykOEBUYWwOqNFdvH1dryxF+f6v/prWdrbtgT2+UNhBd9+jWJRA2lw/IkJRB3OyPXezDlLQUrncnufeKCKU2kJ4VsIuKsvijVFqKbTekSEn7U7/l00LUuSa9AHxM8sCABpjeHmgEQy/Tm87re2edDEYl3qUFPXQPkq/LAyeS0jge3Hsc3MkGD9ssLV3938xWn9QNdiU0hi4rITWJUodK7D4OqQADdXG5faEu2bO9r6PC20POxEapt7v0B9bgllhYVvtbG9O+26+Ms6IaevD95cKdBVaZn8t7XOCTw4QJ9CjQwLcD4AvQAIJ1k8mmfVkkx3QkemXpdnoIz2E0/kQ57t98yj5V/Pn83FP50/668MmRn4kaGT69MMsnjefa0zWG3Eu5PU/Aud+nwk6+dsigWhgkvwcN1ofHyGagmRSJT5CEkCYccb5/M41lnPz8T5KnCPZge+otDgaRzjIJQfQmbHSCXgSwvc6saAmQzgBB7NgXsopIRHA5HDWVe7d0QvWhwNPuc5ao+2CdiMyC8xwNzyHCceZkeeI5h1mEDgPnYOXc/wo4+aYZ+E43z9ORXzxpyhEx/WYuwTbPH47wKesHMiEaJ62B+gUmqQJDkvc41yzvlrmWj8vrPlM8Z3NH81vcnYSUjI7uFgJN5we78N5fxztBzvpvNZOJz4JBh4oRPrt47g4JwAcvwHhdBMkwHv+jD//+suBJzs2rWU0NpTRHwSujso46MejYEUpCxN4svFwYfLegqGTrJsoxvEIw7VmpAS1ZwCdHhR0jQM6PHocRlVE2gE8hZPvvl9sdPGD5CgliQUSmw2YukJG/Hy4sXfKa2zI4WAB4uLfMiHKEFCTxA8T6DmCfoKK5hV4w0Ecyc4dBq2ntz9rpzEHd3p8X+SExJqr7nvdfHxvEViHp/irGmIj6pbjOmPzv7WG2IazmxqMHWPHbPP5yA0WB30Wh9sYBM2IzIKOPmYrVH8OwaJzmr88y5CB9bzHk+Uex7T4eM6oe+BAGe4QjoMyPIbFOnHnp8faFA8zKXVQMvAXArA7HIqe2ROcPuO3FeWR3TVeJHXBbLioeBxFCRaP82OkhT8ZUJGKRLYbc0fFbGBNvPObeMnaMKMb0S4dFNdBKEUpy4JcLmhdoC5zK4yIJkyTY5QDw5GhD9FNt49LBDw3RBt6rXAp6HaBtlG2O7ptSNvRtytsDkItrTnwtG3sKlgVhnRcmN+do346VEvSbYDBiKxV8ZkRRXVxxsqyIi+vsF6w5YJeb9iyYLXyaA+aGW10ylKRy4ruHbsP73SGOZ4X2eaQ2EcorqMQbbpLLWgpjrvlgWFpcv0wRQdDC2PbpzGXxQG/erl4Kd4Y2PvAluI069yvmJenhW2RAajfi4dZ/hmlBug6ZDK1xNKKxPIRCews2Q5HjXkemkkLOYJacB5NCKTO/xFFajknIehaIkiWKEkUty7dXDC0EkCnVrQuNBV3IFuP93lZrQu0+31m57vzITzsoM1n9OLjHoH2iXmVK+c4g4WDPZWjoMjl4iyGT5+w2zPcbozXF7hcPPBcFwdni9DandKd+fhyVRhLsGIqQyr7OyALYtUZcFXpRdkvC01j5ZaF5fbMUiq3ssL9Hd7f3VbEBFoIDqPCyHLBaOOuy0K5XKmXFVHF9p32iJLWsmGP6GyGg5HmyBSCi2Fn4GZAa/08lDFW2TssxjwZfoMZZKWj/S3olJpaZrlGEiT86N0YqePibIEqx+cd+TgH6w92jQc8tSjrZZ2BU+vdNU9a+1jOEetG5VjrnoVm6llkqWdrikhkL2cw5tC9B0DhrOdqmn6S+wjznAydMK2FQzQ97+fwr4Sws7G3x3BmRGq9TRHvAK77GAG4Veqy+CiZ0fbN2Rky0Bqf07ycTgYhRG5zjou4naml09WpCzqgFi8hqlXoXR18TIAtGqmYcWiP5GQGoDC14uKZZcReUwmqRA+B71xUhwj+MO9oVKqzXExcwFiKTdeqNx8Xncw54OEdzUpT9qZQBaoHxOn4jyjVKqWgT0+Up2cun36HrC/+u3WlfPcZuazUolwYaDCeulakLrTX30FdWLRSdKFL4U0Lt+eX8FMXtFRGC+BChGSg73tjb40xbHZF9Z9vNNux3fWQdgYNL/natsZ23xjNs/2XWhl95+39nfevv9C2d6p2GI3RlP3RZjK0750eweByU9ZFWcuCWnUNSwkbUIVlLbw9fmG8v1FN+Zu/fubl9ZVPf/hrHr1zf/uCyYbUFdHqrJvszCpG643RGgWh4Wyt//1/+3/gb//2b/jlx/+av/+f/nvefvkjbz//E+MR2qixbl2rcOHl8yeeX174w7//G/bW2fbGz798cS6OKrdPn32stgfbvtGHgi6U0ukqbucCmMhUKeq+QlkUrZqxnduS2Y3N/fk+fL+k/yvhJ4uol7oNcZbVo/EePmmWg4kalM5qlcUK9TIYeHli62/OQB04kx/3p/f9Pm0ZWf40Bl++/kBVeHm5od0rNEYXrvrkHfWWS8QMhVIuaPWSwuu1BgMSHm2w2IVlXPhv/5v/Bij86U8/8L/8z/9M31rs5yNu/UtfedoOCyJ3mDsVeGyNpm4/hjkI4yLwwW6J53eRdU9azCSyGdItutk5O2tESHHYcPcpSjk6hm4P96dKKbMhEMBZgyu/Jutnxl15/gRVy5AQlDcvxPCgjdSyJZ87wJhxuo5GwjGW3IfBOgBxm89aMvwIP8SIxKr4vVNS4iPO1whPZ0daSwZbnKx9ELKi0WThJFD9zQSK5RmmVC1T06lMf9AcpDYHuskw6ZuXqk474nqAAWf0EWdpixL30BCTLNFz4OmsCUrEF9nAqVRx1ZlFac2gGc3c10WF0cSrooZFvBFrCObB6rrEXrL9weWIOCJBHZEkg8faMZeUcA87CCEwmV+Oc9mBjwz3i8skmwjB8cKl+HV6EAlNHdsuY8dJxfZr5/KZ/s6Hm4+E4OHXfljopP/mn5qwlkB0K/e/a3g3zq23GJKEQI/ZTkDyuKezc3ZeGB8xAfmAURwPkCw3/7+s9JAAY/36h2dQPjzzv/b6i4GndLZw4ogPVB/e/j0CyNFct8lojvSbxEMdLBoboRkzXBj8EDQ7HOOJ1qq4NUsGi0TgMYMYAZK+2f0wC20Aiayj+4ExSRbtJcdhyPyzEwg4FoL/n2KmWN/5EOzlFWeZXNy3eZx/qrFg1l/Fh/l3LWj/jZD1i79vcwym9pA5qydZR+5QT/cMov5+hF5WyrvNEg/5dpGdnjlAnASbbJbVhebTnDcXmfaxOwCnLFXsk7d7Qs4Hc5wTRMva6wTaougo7uvYJDN+4BiDCchFpx+xgQxfd2SdtIG30HStKS9rMC8JtRIsLDnWUqy/PCCOzImdRsu1MUawykQKmuCbSICjx57Oqffbl7lX5vN5Oxt/llIddO3DxbR7YRT17yNgHFpcM6xWZFldVPxyRdeLsz20HDYw0DpfGeGM9Qyw0mgwx9vbty5YuTKq62IxcEZW2zC9eHOAtmNW0SVAqL4jj7s75I87ZVRG8xpx0vnQZCcKkZ4BMQfQwoC7KLSi64peLozLlfLyBOsV1pW+LFOnCpxtVGrBSnFdHMWF/qO+3Mcg145/ttZCXVcP+tcV4pDvs3tlAiaeabTakea2JEvDzAxWB8BYlwjQojOm5jYZp7Xqi1gsWTwWDnb3tYqBZoAbvMXhjsMpYTe/5kl0CJwmKDDi/coEz8n1Rgi0Mr3POD9I0ckPFKhwNFK00gKMcyZdgKLqYuhdB10HVk/7HA8QzBzwkLl/c7Wdyi394+LRTpsn6oiF2FfTsp4zUa55ZnXF1ht2e2I8vWBPz9j1Rr/eGOuKLevBAIwtoOFaUPxZrBmj4CLi1xXp1W+leNLEisJ1DUaYN2os+0bdt+M9OPPUouw4J9DZhnUyHNfLDbtcKK8v9HVFagALmwNP/edfsLc37D2C3xaOmCgm7vx6eSjB3sl97ECuP5swRBkITS1YlO6eMLO6h3OUpa4q6W5nvjHeIf50CapPEJaDBePdUwURL8chgKPsaOjAYrAewlGRmGotTIr8TAAZ0xlNlq/lZxt4hzTCF/B2zhLr98xgIp3ktMXIXAtZDZ8fJSoBOrl9yb9J7R23xRbzKqTqv/sUB9M29UlGP4LkWsrssHU+6RLkm/tDFakxB9NJFhgRKFnHulDF6GKOOhmzA9Gx+WU+tINNkgbx5Icwf5b36YMrYR983or6vj2ynBx2wdInjCeqfp2yVMrqybStbX7GdqOPsMeTseai6Gb4+YfB4i3Ju+Bg11LpdaFdnMlYXl6RenHdp7rC9eYgc7DoZJgDG8NCN21F6oKUSl1W2siE2O6BXK5JVWSpMEKbSgjdk0pZlB4NVfa2Q3GHfIwxS7Ctd0yULi7HoOKlvS9PF9r+gPFAdQfe6e0XnzNThq4TaO3WPRiuboOciVrCn3HbKbXSrNPuG4+90weoVi6XG5fLjaWubNuIYDuO3RLJh+IBhkrMawkGxTgSRW+PjR9++pkffv7C9vWd/eHarRnwAXPtv376HZ+//z3f//4/Yx/K3o3l5U6LrsrLWhjvX9h5w8YbI8DFIbt3MVR1VtKIQKu4Dz7EptC8khozUBeZjOo+urdqF0989C7su3ithXqSZIR+42jQ1XWMHo/hwFMBXYVq7heO4WWxIFNVwgjG3ehRXuYCyM6sCh+nD9qjITVCsDjTighLUZYiqAw6LZLHsQVFOHe2LmoMqywon56f+Pz6wqfXV0r9AWkRC6Rdy1pXyQ34r78iUvBSyJOfcZQQC0XdZyvqsg7FZAJLx1XSoEYyf4QelzvTcbzkqX4wtOY9pL9l0e2R6LwqeRbl2Lj9sQCW0o8Y6dfh/kkLdk3vM4Kav0+D6H6QML36ZFHHQTR1ADHfZ3I6W/N985UACOQFjFgL87zLG8nP0fADw68p3u1Rwng6qzvufN6PHVZ3Mo7cClRxEKmWvKO4X3NAVUfaf5nP4O+PzowisyFGstNEnLGXDR8OPa/h5AvN65w+c54rI90Kt+t4zCUlm49A92buSDfX+IqDt0/W3cEnMkutSuB0Fsa2mTPL9K2Pnx1quwfjPmkakutPfO2kr3N4NMT+tYnRaByJUxLkcFRPK+J04x9+82HZ+Fzbtz+0aTNS9iSGigKsUYmAKvfe2Mz1sDM5POCIX/CzVfn1y/iY1IVjv022+vEI8UzTO4+llF6LzGtOixCTk7rEf8nr3wA8GZN5JVkeYnRtc7D7Ll5CR0EpWNUJBHhnkI0UpNYRIEoGJxNcSCfT5mqz2DyksZytD2NwRDB2SA2cKGUAmW2s/YBPUCSMDDFymcEIQ8AEbLwkaaTTiWc0JuBjwzuEOBc4PghsxEQbnkG0yEWf35N3JsdUMnUp4NAVMmzqNw2g+dmvsUkCeOojOsyFEU1jfgBPZ5dXSO0ij5pH/Nt9LKzHnDUkRMTTEDmLwWagPb4Bnqb2Q87frFd2A5VCzpClVjEMxwU4QDFF7ADdCAx6WEe6zMBdSH4+CAUbwrBw5MU1a2x4ZxwvZSjBhBuRDSG0BAhqeWTLRZCpH3UATwme5kFJjDXiKH8GNMk+kFSJNHARmTikS3X2VDGsLBHIu46Zi7IDunhHxwCcyrJSrjdKXZAAZZTc/A6SQQ+QNachOgKisY/SVFUyheBjtWAUrKxQd7puEMATsiLdO1Rqv7u4oBp6X9C+U/aKPRw4HXo4NEOEUZj7y/UZBKTQUUwr9XpBn25eKvXpBbl4qV3DPuzz0tTZTtXb3Tc1B55K7JluRyCLl4bpWqnXq5drXJ+zEhTGsaecpeJlido7ozVC1Z7UKpNlcbDgspJ1oWKDaJjI2DyzLxFIqBuqCLYjsB9Z1Gsws1wS7CwQG7OOX4/Td3YJ9HjSSIYeSGg6MV2Buf/hpBPh9icPJS0BJuRJKHn4ODPFfUffL91gCkSVwR4sjl4iWByGtUG6dnkgpROVe6AkaEY6AjZdF1+/4qK24RiEiYoyUjyJAHQpdC3Ycp2gE6+f/PvrjXZ7wmqAhEgInQq1BtYWyOQYHuA4gAZyu+BNNYXufcgdeHq6+rpQQS8Xatuo+wMryqiuMyhjx/bmR1t2mCgVqRcPsFQZ1xfW5yfq999hl9XX8LJ498jtQV8r9rNCMWzbPdPZBzXu34dk0HJ9pdD7MEqUPywUmnrp3iAdgRHgPPNMmk5SOC0TlI6zWI3D4T/ZsYNNJUFGiNKPPBPIMzzeGWWeRdSdKTPXVQlNtpmfSU0NgynyGmti6qylo3hmxxEMocLBVp7BSZx3BsNkluZoiCJ/4AMWJuhU1ooDAQOxYF/3w/Gl6MFoI7La3aJRQZSjtBG2Tr3JQTqXxgSPJRJS3oEv9CwXv/wZZHPGG66N2aEyGDpA/RzV0EEz0m8pZDLVzOZYqMo8p49SneN+pqHIgGkGI/PHMdfhuEcw3EO3sUQZcl2Ucql0a+xvj6lb0nfz8TR1ElWJfW4SrICOFG8e0AV0qdi6YJcL2/UGtxfW11efNy1QVux6g8vVz8e4li4w7nf2Meh68eYia6GuC2PfaftG2x9UVYpdfU2qUJfKtm9zorVWFoVlLby/fWHfHjweD2Q1lqL0sTsgrbFGh5/lVRZPdmjl9eWJ/VEY+xdq2XnYG/v2A4ozmbpc3V+xAFOW6jo7sb8z4Ek2N6Ww3Tfe37/S4/wSqazLhbWuLFp49IcDLubetQ7XPs1yoaIGVTApFANrQu/G/bHxpx9+4n/9+/+Nf/qnf8H2r9T+4KKNqoNajyhvmPHp8x/4/R/+ju9//1/Q5EqjctsGe99pfWfbv7LrnxB+oneNLrpKl3cHnqTRuvuewmBdfN0OjGYO7rhI90CLsa6FJuYt20N7qUhhjM7ebJ5lUoUiwWLb/f29eeOOx71TKmh19qVJdf/KMxFgGs2QA3DVADZGp+iCtZ3emjNAutD2QX8MirlOYCYhiyqLOvAEzTWSOoyxIeqder0U18u8VaEMYQFeb1c+P7/w+dMnlnXlsY/Qt4rkeDBGknlyRLq+/m1u1uNcT3+0jQCgGF76jEyQsogw1AKgyL2ZBtUmOfTss+d6cAb7+AjYSchL2JG86zP+MZfnCF8smdjDbGp3+eOYJ9TjGbrT6eYH72F3W0/eR/rizARa0gQOOxe+DAm+jdlpL4EVk7ieug+VcilZPp1ldwm2dTt8rgzE3f9S1DKJ7aemiFJSG1cyTstJPBgvJWzzLHMTUIaXtym+H9NqawJ6oE3OoTQqrq1Y9ej+KnhysHdP2ritSWaaj43HQ540gILUc1L04J17JVMyhBJ4yqRSxGfVkDYctIc4PzIxAvnBSjKUjtjueEg7Uz7CT0hALgEROfxjZOrl5n2pELUAyrCoUJpPklFZxskEkyq30jGL+Rl8+PmM3Ocy+4DBWC7PvNMxKy3cQXAiziLi/xCeQhNTtERTqIiBJZ9NJnShSDbsPl4f9moCpsfPDo88EmXnPw0A2fj1a67W+EYDvfL18Ft/8evXXww8tdFnsKRRfpTd5QBsdEbfiAiF3dw4Wy/MqTfvHicBAmWQ5sLK6QjhpWDZJU2i01cEYiYyKdkzox/WZoizWcoJeNKPkDVBjIgyC8KhCrFP8gCLACicrD58UzqZqpIcYDEXMNTePFCxNDoH9poihH0kwBMTHR9+1IVGltj854cW1Qgdox6UPWc8aT5I1KX30LSILef2NUEZObvi/iA2egBJaTQHEuV6c7vODnfBxLLxAQ0fp39HfWn8Lr4mqHiwwyDZFXMCYrR6awxVlvB2/TlB1cs4BdcGG43pmB1YubgzP7xNrJnEoeKCj10tnMOGljgYxWdiGCfNEQGpM8MiEvRFxEE4KdjYGa0gVkNrxoNNbw8dQTcHAv/x5Vltk+IOs+KlBr25OL4WpLajXlYX78RQL9Tl6mU7oe/0IR0TA+pZpU4n1oMBllKASokDxgjwwXcSgyV8d/PAng7LjrCDNkwK9Ds2HrTdYH+ACl0tgDNgIVIN+DwgIRTLdCS8E+WC6MKQFStrdK67IU9PyMtTsIsKW29HwNY9GCnXC/J0A2u0/eHj3Dr0zgiWiGukLCAVlgu23hiXG+XpExJOuIbO3BidZl7f3dSBptY6re5sWnw8VdDrBVkX9OkaTsdA3y+ML18Z9zud5gw8M6qJf99lYtJi7hQfLCeHYAYC4ciUopRkHJScVDucg7CzJ0TRmV5ioesk56WQfx5HNTN7wwQG0xhasEMP3QsnLntJVR89bH1Fl4DSRqc9Gn13u1/UmR1LPYRU9zEgKNZj3+ehN9I51OjGa5lI97IPRGnDacZiXnI6MHZVrC7ockFePlG/+x3l0yfkr/5Avz7RLxdaXdyaGbPUy8KejmCO9LHT+07rD7dzCro4WI2od0hdVkqt8HRDl+pU9bFT+05pO6NWZFkcnt8edNloe/e/W1aW6xNyu82uXOO7z9jLE/zhd3C7wBLsubbD/qBeKvJyQ3668r53+LrRrYVLnh5FsKRE4zxIJyzPjXSkdDpTDkYcjnKeOQhe7qkyvZXf9BlsLqO8k2lvc13nuQDYwRYAAQAASURBVKmc/ZqAIMWm4L2/uc89cKl+n+sK2+6lE22cy7OdHeNM1AB8ittbUUDd7szsdSJZcT7nfQyT0DgZYZ/DT4iklhTzspdINSYQsg8f4yHO5HEduhVDfU22nb7bLK3yveAl5qnVstQaYJDfV5Z9dPTDfiPsgXTvEDr2QU/QIWzb6MbYG2KdRQ0pyrK4Jo5hXiFPx0W5LUjcR9CV+lpesl3mzzMwzCSSByTnxE5ObJ6rvq9a6lN2Q2SlVmW5XlhuhU5hLxuyKGMb2FdfN8OH2LPdLUokdTC0O0hbq7d9V6VcrpTP3zFev6e/vLJdn9n23X2Ey4otF6xeoV5dyHnA/vWNr4/Bo+28SuWyXllvK1ozgFSqAb2zvb/z8/1HepTO994ptXB7uvHp5TnMWOf+5Sf2+zuPt69IvzAWbwZSLgulVBYzGDtjE2pduCwL1/VGu9/58vOf+Kd//F/58vO/sO9fQFzOYPTCbgOVC0gJXR9fY4/HA9GOSKEsV2de1YW1KL+8feWPP/5EbxuXdeH15ZnHfafIO1/KL7QRoat40KsYWAsmcDCH6Ridve1Y2xl74+3tztv7nbf7xn0LsFUKt3oFdva2odGxqrfB0/P3vH731+j6GewGLKzryppVCtz5dP+Z+9vP/PBPf8/XH3/ga/sTenkwtp+5b1+4VJ1aNaUwnXOt7t7ogjdLAS7Xlb4brRmP94cnSMLnJX3MPtwP7jtOPi3UcvF93oXtAdKGN0sEfvc3L7x+9z3X22f2XulD2Xt03BWl24hSKEFt0K0x9sFlXegMWjdebq9ogf0++Pr4KUBYZWyNyzWAT10DjFkQvaAKz9eVUi+IFr6+3dnbg+2+Y8343Xef+D//H/9P/A//0z+x9x95ew8NQQaM7TeMdL7S9qX2KwGuBHCDT42GzS7iXeL24ozaNdhXRb0EL7unjVMZWdr4FBfPnLADIW5PvPQt/BY5gvNlWab+VoLiIiVsfqePgWqWlnrCP1mVfRgtuvIRYEHrFppBB3iAMW1X3qefgQHYxRDl+0c7YpVjFDMpzSyV9o6n3iXZzWZyj+M0TIQ+b8NsAitnvcOMk5IpplMnD0Q8HFc7SplKxMMJRteilCJo9YcRraDuo/XRPfE11CVIxvHZHkN6sjBjdg0mk1l+DYAwYuOiDlj54xqm/rxJfAD8TJITWy1D7xGTgfuyUv0aw7rHBqKM0M0lAPT0YF1bNWK6vIyZz2H4iemqfIwA50fG7GQTr4P55C/vQp9J0gNKOV7heSdG+QFEsozR8zO/uc5/Cno57vvbfzJtWpHK07ryf/vv/q+MMfjl61f+P/+//y/7oyOdKNEPcCzwkWIOJOezf8Sc4hM+IEvnmxI46brN+0zm+bzr48lyHaRt0Yijz5f9T73+TRpPU9p6gicHddIdvIDUxaBnuYZHjRKY6NFh5WAgHcKB7iTZGJk8IFaao52pAZCZ8dPUz9I2GXGX8R7Jw/bjkNhk4hgpsvKxYhIm48ncKIh175AR9EiDo1ww9JqOQM8PCus9HMxTuVzC0SStL9HjMYNKCwDBrLvjaclmSZF3CGEZrPcJPE0HVszF73LRWYxCRnxhiCQyKQ48nQA4GsKhwZXZdYs5zi4VNk5zCN+AThEch+GI2TyBYMR3Gewez54HnV8gQTgvq4IDFJI5t6GfZQk8hXET6L1AK1jxcR8cpZgW13JALTI9E3v3MRfpEwQ06fO5hzj1UcPSGnHSnoO13O2xVA9aYtyzRqensmQ4h4Nb/l7RBRdHX2bL5iMomAM4190cKzsDTx+IkV67K3l/sa8tnn+OS9zNqaNZkkBTYy3ZEAlqeFv5fNCYaXEWx/xvLcEmcpCNKJ2T6uWEpiXYLRLqbQTYrb7/S3E2S+hbWWk+U+I34cCTZzNFK2NZ6MuC1IWxrAEEFG90MJzFZhZZGol260tHVm/9K+YBXrld0HWh3G4OYIzhGaSo9afvrj8QTCdvVTuwECBwcOU0JnNLnIy5Wa4iUrZyAt7pRFlOeQaFvg4k1sH5IEbmwojFFO9NJ+P08cmimixLS/DbJvtOh3gWOm4+6dozK3fesvJhB8cez8XKvK8gbnlArjDZH9O6+8nhGR7ztVMruq6Uy8WByMsFuyxYlGZOrR3cTmE2mZNind69u2rvu5fsMg4NNBEHNmqI/9fqIualuKPYvfUw65WxXuFywy5PmC5QB+V6o64Xltsz5faEVS/3Wz+9Up+95blcV1gqthRk3/yznp7Q7QHbw4X1N0M2169Iy5lCv0aye+QA8Szem9ss14XEuos0rDuekOWDuS5G2l7fQNOGzTN42pFcTmEhTOYy0+noR/CTa0vM2XMSWljmSYK4Db+/onO/d0K3I1xDE7AUd401bJGNzucSFS9fyI1w3gPhkQ47nsvkPD6xxyKqyq5kvobj8+JrCu8aqRtylNh+0PSI4J9SZ6OHfKZuhtV67P95NpozwduAstO3xujBDp++wfBShOJARamVUgotDow/VxKQryMokw/A0zgFXkb6e2lp0m6ldkZoIlqPMk+d7ACtvn9cc6+gOkBxlkv6NoSgq+EM38j4D4DoWKeXG/XphfX1Mzy9INcnL6+LgHVImSUr2akotfeiX+n0wjyJZOHcuz/Yeqfvd376+Re27cFje2A2uKwrZt/x+vqMivo5sT3o25223dlkeDLVBot2ingprvu6zRl+Ebi3h4t1v7+/se0PetvhfGe5biW692llaqwYRwmo+r8ClLpQ6gKMOfc2nKHQWuichi3LEh2z4Qxt8R01RgpyRwMbfK3XZeXp6Znnl1fUVi76xGpfGO2dx313PSCE1iPbLl6OKFSUhaKr33N0JCXCu/vzZ/b3jbf6lbJcKXWj1JVCm2zgUpxJMkgWnxxnH5FAjYFpGXwXQawEGJBrOYGSY9325n7O6B1dvAzuer3xdHvidruhtRAqkc4giIMs/fT0P1L0u0SZtDMoYPTBdn8EY86cmfZwAfJSCsvaKWWh207JfWYNsRIFad7RUmyniHJdC58/vVADHE6bO8/P38wQMG3Ieedbhkj28b+b5FkR7xeZRID0C2eck34/HsBrJjPMjWQyL7OEdvRgSIkxxpGET7bU1G/C2RKevHbdLo+RPAhPNQMzB/k+Ak95HZt2NK8poTXqRulIvOS+SH8p/XOJXXm2jzbHK57ltCYP83oMrBwO2BELnezvLG2CqDowaoJOJPjjq7acyuuq5llr0aDD174UmSBaSiaY5fP5GZaf7kzmI17X9NFP1THHy6btP9xNP9vEvEPs+DBuc1vOgZnDYzF+ctrLOX5qwdQ93udkFOa+/VXMToIbp1NO5kye3nf6u3N9W6JHYvMzplvKaU3Ezz5U5NiH6f4A0nw4Z+ciPH3eeVDi7R+fLG5FINcsIizr6lqemvSQw7+ZIyBzI3OM3LcfedhH+fiLD8+e+yLH6oCbz6/DoNhp2P+8Rfrt118MPOUHZZA6RirDH3Q0G94+eHCUTxjJVjE823m6HodB8wV6oMSJT3rg4dlZTA5hccnygwPtlljZXjccQmqEON4c1TB+/QyYJBPpuBc3BN6drw9DtXkALsM3rlrumAMtj4+YHZyyc1wCTzPAnwWAMJeQEZQbv6aNCTaN3pxRZkkcPLLJkODPmMYljYn/i2rh2NAiWZMdqYpZdDCO6wbjyQ/Eo9QunVMzF2s8g05nADHZUP5e5qo8GxXfM3JasYOD/XWMwxl06j3WRMnDMU1TPqMAxQ8dC1TbcIdCDodLRk24P0c+nNMjde4OoI/DYKDSgyXX/XsNsTMS3NO51ubxPzeyeKCXgxE71tdoCfr7cjjvOk73HU5nCIW6NkBOLnOtHkddzouDdD4NXjZiFAeLEsgVIsj3oDyBh/PenKyF4qwpoWDtAK4y+z3yEAyH9AysZSWkiEBxJpIDag4eUcoM0ExjNdrRoaPEPWc3wFEX+rJi64XRXHyzh+Mkw8dNglVl64osS7TPviDLCrUwxkIfzTvxDJtApK9JB2T1enXrUpT6dGFZHHgSpyFQVme8aFHv1tnaAbj2jrXu1PzhpXcWB0XuxzlxsR0bnTJ8aofIrMl3R0Kn05K6CGl0zkynBKS+PQoSuPpQWhNzPeatWGT/DxCYKDWkuWekPSjKrTNah24sUudn2wRH0rrZvLd8aa7XDAglnPg83AVIwdEIRgbOnpOqzjxbV2oAT1xWbFkYSyFZOYejddLAGwNGw9rmwFPbnf1gaTMtmDTOPhs1SlkDeCriXdlKL9558XLDrk/Y0yek+9xdnl9YrlfWpxeWp2eolabK8vJEvV1ZP33C1opVL9XT7eEB5+0ZeTxgu2PXi7NENi+P1EJ0DXJ9u27mWk6h++NHiyGNub6WFDKK9Zlnz5hADQEIEwGpg0Mjky/hfXk5nR12MuZ0CvKPMU2pJmio7gGYjZkXNhkgO1Ao5noEYl5aUbRQitFF2GFqGew2Dhs3U+16gE7JLVcOnaNvXLopCCu5zuP5DAe/JMH/YBWWMGaW/+KEjjWbQa2DfnG+xHmV+oUWf2OqsLg2n2phHxZcExxsF5nnjIR11TGwfae/vdP6F9djsU4xmwwWUWed19VBCNHi5cHxnGdv8Ux9z/1/lFz4GTICRJ/M5bTp06+aoQTOUXLQqdHJTquiziTRJYE7mWMrEomwYJzN1iLpRxbf70MUXVbq0zP19TOX737H0+//isf1FVuvsFy9oYd5ieLeBkMbtXhZeTe8Y5sv3EiOdWebB2lbxUtw973xeN/50w9/4suXL/z8808Ig+enG0Ljuhi6Luz7g/3+1f9t7zA2WvE5W+3KMhpyWaf9UzpFBlUG931j2965v7+xPbyJixamgLOog9uqKzY14bytt+v/VGpdJiCFKOvlwvPzC/u+sFSl1CWYGd65q9Qcdy8dEvX5Pdvk2T0rRLkRodTK08szv/vDH1wHynZupfP48k+8f/2RL+9fESkYsFtnH4NmY9pF11V1uoOIIWVlXa8oxuvr79jeHpTlC8v1Qd8a7Xqn7G8xXlCjXHYIkzXhjHeZwI8bk0FdCrW6qL4DA8kckflc0+8cQtvbfPpVFi7Xhc+fP/Hp0ytPz088tixxdXZ9pj086RjiyiKUWliW6izGAFu2aJb0GK4DpiIUMR73d/q+UVRheGOKxz5Y1h16Y+zvYXcXZGyo7RQaVSvXVXl9vjr72R3Tkz8cSdHD6TsZu9/4Wdi6PG+R8O77YeIwmE0obDBU3e/WAJ5Ovj0Gqjbld4d6mW0pB7Dbu5dKinopnNvb7km/KNPtoT83wkZl6DPS58AZsL07KNXa8JJKElxP+3bYubwOEe+57rccsVC6/ByEHI1mMnBoIImI65Wm7yJHmdrhv/MxUIfJAvog63L+fVy7lDKrJB1Yyzg01nrqr0moHEQiToUAXHWCYRJSBIggwwE7jzU8HslncA3g8PbGwQY+QImIJWepfO6ncfwdNsu6JMCbI6TJZHrMY+jl5XykAoGGbIQNP2sHzkZ2YobgnF2ZsapkfCW5NuwoWZcjoZBPcDr6pouds5Q2EOQo6+PYNrE9IrZMX/rbv//1BrPT//u7HSCVWdlzAEKxMnP5zPXjxD3hok6Y6MCjdR7bgy/3O3vvkfSR0/Md45SO87yLEzKW/s78jwmI+YOf7/F4a/p73z7d8cmJ8+T9q3z7vj//+jcAT8RtDFwQ2ze5ZMQpikkPLMRcg0eFXgLB1cO4Q2wEEoF1Z8JGaCvMTXCACxYBt5i5CKOchyoWRrKbJGl0uXgljFFaYM94JdJ64m14Bi4m2DMfJQLh7q24S45BMBrmhgnkWgijk6yTI7tkoac0N7cZSRPwBINN8GkQAE6U882fz3K4NIDJzLFpIBLMk3M5WgYKcTikMSPCOnecoxQSB6WSBZVtSWcWdBp7mbcwD4B4NIlMiKTj3mNby/HlWPQxiwmKYZGhA+vBdBFzoewsT5jETJAQwfH/ztS1a3ENa6f5KgxbkeEZaNXp4cT8pUSvl4fmf4OzzvZ9o2S1ixQvLxOldZChXr4A00k8HlbzAX2A4iOLrigdk+prelQYnuWWGN8EpxJ0ItbYmAeozX2UWmrE/OWp4N+qz2cIdxouGO3E/NNateFU6N68q4lFLjCAme4THwF9D0Fhd2w1BD99acYYqHpnMRVvI68rJpUudbampxakupjzrO8HRGoEmKFRld7O/uysFHCR532nb5vTj3P91StaV+rtE3Z9Zlxu7M8vsKxYrdzHHivfZptaQuzTV4NhLbraqVBSl2ddGMS+v79Rbxf06zOslf54MNqOtY7tDWvNy7K6Z5zbGJPqXhI0HczuOWIelHoQ74F1dp4jnQuLNsZG6MPMaSaFMfMwIGxIbs7UHpgnsoVFj2C52wE6HaFKTKkZfd+99h/cNmVp46yyF9CCRBfBGimt0Qftyz1vKU3w8VWcSZI70Dmrfdor/0ahqneqWxdsrfSqcRYMmvTIrxdfIzro+xYA4O5lssF4YjQHoEaj9REBfXpGGbT2qS8xwmZaKfSgsG9UNll46IXt8oqKUpcFef3kgseXKzw9IXXxkr2rs7La9dk7IVZxjaiyIssF2lt4aUb5w51Rv9LKV/YvG+J1YlF7kkHpQBkexGwbbW/sb3fXSxqdMrxkS2KtmcZ8TmzdGNIP1uI5aRGotM0Un8y5O5zucNs0AMEAbSTKJLILidjwc68YVsX10JKJG1nPWiNQHr4WxRzsb6MzVA7NuEhMDMfjoYhrtqjvCQllaLd3mWn1bpcOKp0OHBmu61SU5RLdLrOTVqx6b5ASpdj9GCOL5SiqsI95hmhVKM4AKuuK1pVye4JS6aoH4FQK9XpDigPpfQasBd13+uPB/tNP3lXN3imtz7KIglJE4wyXKEMctBYssWn23T/Is0Ti/lRyfpg2IbvXaAi5WDj/WbL5oQzDdhd0lu4i0KW4KHgZWHFYbdv77Go7Qmy61MOJlSyPdEK5292isPh4La+feP3rv2H9/V9x+au/QdZnRr0g6wUNdtKXL2/YvlOAKgLFBb4v1wVZXMuvFImxSZkIj3wE5fJ05fZceHp54ecff+Af/qPx9ZcfaY+v/PEf/wPt7Y+sS6EUeHz9CvvGIp3RNto+2Paduq0s7wvX1xfW5YlS4ctPf+SXH/7IGMaXX37g69ef+Prl5zif/aG1rtTlwvX2ilnxE1i8iYhocbFk8/v0EiMvHSt14Xp94vd/VbzMPPVS1bzpBkJrHRGjWJRz9yjfD5H7gfuZH0qLRFguVz5//zuebs/8/vd/YHv/wv3Lj/zzv/wz7w+lceO6Xv1k6F/5pz/+Cbm+cv3+b5FF4uwvR7BtQtEr5VKR7ypmC6U88Y/9f0RGgWbIXdCxU6RRlw7qjPLM/0mCwZkwKQRYvM6SI+/k6MytIhLAhqBWGEOwbjzuPc5Y37jL2tgfO3/64x/58vaVvQnr5QUtF5ezLAuilcta2ffGtgVDtnmygvCNxuj+mRijxc/EOzjuDKRWLrcnHm+/0Ifv0U+fvqNelDreaF/f2Fvn/fGgRZKw7wt//Kef+e//x3/k5z/+ke3t3e3wgMM42Tdf+Vd+/s27LNLXdsSgPdyMIe77dDOqDoocTCW3vu5Ppp9SzT9v2+Ok0MFKCR/B9brcznjntLzSyC5n1qOTmYO57ioZWA/gKXyTYFKNGTOlb+yff3JzvgHb4xzQTMYHcJXH2ASVTsl6iIYQ+bdHlHLAt5wK2vOM9PPSNbJcI/PwzdMVFrQ4+G14J8zegxk/r1/CV8fP2RmimIP7xUHQ/OQYDQc5F/cRGRJjl3pNx333kaqizLJGjy2Oe8z/TdaPSPYV4KwbnLGE51pd73B0b9B+4KUD0QTFK6mnNhr05omq/ZExpoNmzM+PmJUAnk4jjWVyRD5USHmCjfCJIyIyCZ827zr1vzj99DSTp3Px+J0PgHd/lojTv4lh0z+Ys5JXPSLUBJ8mB276YPDAyzt7e/B//3//v2jWeOwbP93f2S3KGlODjXnMnz7ldL+Bn0RuYf4spnNe47deOfYW43YepaNa5gDvciz//BU/vv7yUjvOkx6LOKiYs/7YYqICbbM4PURAhoQ4WzhwEawSB7JxAC1H6ZmFxlPG0Sd0T85TSjhIIRcaGyMBqGP6LT5fTlmRBJJsBtQEWKLRTSuBC8uAUzpY6CRFZtmzPQTLK8GaFu+JMrEAjTLAP8yGBVvDOBg+WfqS4FZGl9k6eszOCOSWik2eoJ5qMr3kKLVLKxYHu0zG2cAyW4jFz8csJbQc5RNaOplOsfrmJvi2zmbavGPb5zXSWBtM6i5J7Q3wKum3/jlRsvjhWiO2sUyvVuS4LzdMgpjnWqVUxLyj2wSrTleTmF+kA9XnhGQ8efe30ZsflsPzCn6wRWbuxCrwDXoYad/xmliX37d0TBYIo6IhlEsE9Xkxm9c57bETY3CWY8x9lZYfJtsOIryXAAUj0P9QZpUARMxUZhemU5Ki7MFvlNMBLTn/se687iC8yIppdb0oFKsagVgCtsG4EbzlK/n8GvI2FcYK1yuYIa0j3TDdGHhHEt+qQlmvWL1gT0/Y9YlxucHt5t3OamVw8SmOe/SgZJ5eAGiPTKnI1J2ypYad6LBUd4xrpfYGj/vsUsa++79WvEteb3EaDz+R84OyxHPaphzzXN/j0BgzPuyc/GbOa8Q2h038eFAfDMFYEwk2JGX99L9crxYsttzWPeyj36jGPUuANupdpJbqwtwlOqRoZ1Sda9FOJ+FR3mSTjecmJtg+02aZb9Pi3RCHRGAVNnKW/Qqkfp0FuGSjIWMnWZ7ZMIHhACvggV/uNfpkS9joyChY945+YzirbkfZy0Jbr/QbHtBeLsjrZ2Txsr9xvSF1cT2n6wVbKn1ZHUArwignOvNy9S5d+4a+fkatolS63r30qg/PdBZvNa4az94b/X6nbxsNkK27kOeIMmAD07NIpoN1IgHoxL4bI+Z16kHlGjrbnLBJ4fxbrI/YzocIfTIfTaIUT45StvxMwddILciy+H1O5rA5oPXhGDllQRdFizigVEMHsEiU9zPfDR64ajllW8PRYzIYCstaQzdKjnvLCMTic1U4HjYf2COv1JWbiYdSKesFjZKxEVlMUYW6eIfNp2ekOiDAsA/AE/e769ZdfnHR+r15Mm84uyBXKdFNqZvR29FNb9qHucdzN0dGXXUGQzLffNiJjznZ0OojAemw9wSgV0FqmgI/O3of006kzSqKdzYzQ7KjZkQyjp/7Ga3iZefL8yvL0ytyfUYvr+hyoVyuSHljSIH3zYMOw8GX4vZhXVy420vHnKGoATgRDLNkxGupXG9XtseVZa3OoOmDtr1z/7rTq2toyejUAElbS3/Mte1aG4y2Rqn8yuiNtg/2vbNt75g1ai2oebApRVkvN9blQl0vtBb2U3yRmkThYCRtMiB0FuZC+hBFJRKSDjRNX2/O/ggc29x2YFGCLpG4s9mwB4G6LBRV1uXC9Xrl7cvK6J319pkhQl0rt+eF1nfe9p0vb3duv3xhb41Sswl5BChxXikKsqDFuD19hqH8/M9/pN/v3LWiuqDiia/03S015wS3dXk2mxxUOcqZsH64O6Ev6bppSoLnoxu9BcOuGb0ZbW887o9Y05VSvTnRGMEIJIEHiyAt/dDBtnsDkn33ZkneyTL0Xt1TdMAc/PeZfBqGjB0dO+3x1dfI3ti3nZSV7nvj7ctP/PM//CPb/cHo4YPmWj/FMycvgJO39he9zI6gsVuABOJ7XMOPwAwTc/ftFG/ZNyttXm+4np5Z+pZph+xkl+NR4v2R1wMSND983x4gBuFnH/EFJwCEeW2P+Q4AKcH6M9sp48ocqzObc15MCNJBJu5Pvlm8XfJBOBg4Zza5h6kejnsSJBhV6jbJzVYy1+00pjJjave5RprhOEPdfnpOL+Mj4vr+Nf1AcDaRjIxx43nDLiMOGCfTy2VKphvg92KSbz5y9MRWCOORFZJj2JwzB53myPl8lDkwgbTkxYReZt7N7y981AT6kl3jX2Wu3TNrKc+ydE8nmy9HOEOh05T/uR0jnIAnyTHxu9F5HsrB8rGAZafzJHOtH9cML0bSo/b3JmPNVGnDY+wG/OnLL3G+D9psTHQat/Cx8srBQTt5/cy9Yqe7EHLPHF8/PnzGQYcXcCAAzO+mnxCPEo/xF73+TaV255vKja1zM5CrNUAlJuvFjZw7hvNqk/mTj2ehuZKlZMzfDRFvyTCDlY+bfDpRkujtx98fRtuORZlfgz1j4TT5BcNprnogg6N5J6PRokOYuDK+OnVRrTIfMdlOI4AmBqPvMFklDvDMutYc3yjVmayr1HbIkzVFVOxjed3cfkZkGAOMiMVzjOWJDVY0DP5xoB5ijWdGVc6pf/0g1n4Cns4LeF6CdAKEBI98/dj81sIAho32enJJEFJI+qcZnmQf0XmPmXuGWRfrgYFoIUshh/XIuhui3pFObPXyGUnxyDRlAZBMYFPwrnYK0hi2+UeZ0HSfn52tcc2EYn4AIO54iSbiHF6SlGD4eRSWXfdQwvCXecDOaSCwipguzNDQUJki9LF+kxItsb5yYpx9lqWH3lnK4zxjapxZdGUKsdWYcGZQMCyE/wZtNFoP3RzCDiQLKUsfxbWbrKyghaGVLB80XKvHu3s5e6xjLnZqhaHFD27xNWcoRJdC7MXBw9jv47ExdIXaD6fz8oSsN3j9jnF9gvVKvz0H8LQgaw0dn0LVcuzBU6BGb35AFGdtWVHGUj0DMAbaHsj1hjy/oUuh3O+0x4Px9uZaPdvDNXxap2y7A1Iju98BYzBasiIFs+IceLykxfVWBYsuPhLusGb0nodp99NFxYXwu4XDTLTlVWdKHN0/bDrsnIDGzAjNoFtkZp/BHfdsgStyaF3sbVBDg4zL6npLRWhi9N4YCuNSJ+g2sy4ws9rZuc+dXwc0FT+gatp0xVniRbzjYYBD9MYo3p7XcAZZD6aTdWeemWVzhwABe3dgcHgmXLVE+RcwlC6RMdyWOAsITRm3z51CXy6MJ4X67GDC9Yny6RUpxUs/19XX2Lq4DtVSvXtdCeaP4p8jYJcbMjwjXLpit3d4ekef3/1ex6AsFS1KXSrewXJgfWf7+pX9/c62LNiXN7hv9P4eHXVslqUdIJDEvj6SByeP73hNLzv2xrnkI2yv6655+ZtFq3JmEOxOcMHP0aLH9UbR6Fq2Um7Pvm/HgGXDtuJ6aXs7APFcLxEElyLUYtRigWH4c/r5cTxCKTLBJ8kASgxUWW8L62Vluax+StugWaeLt2Af4Pa6VFSqgwJSnWkYgNQwwUpBFwt7X1x77HJF6oLVld3CKVxWdF29O+LL69S1y6RQlepr8u3N9+svvzgg2HuA7CPKdt0JHr2xd3eNvOrV7wc7EkRjjOkPuUZNiYTa8eo99SFPUx/2ZgSSHR4FmWwsKujqLKq6CFoMES9rbbuLsmueBQplkVlqFwTxCI6cCdbN6DFOVQuX1+/Ql0+M6xPy8h31cuNye6Z8/RkrX1nuW7DhPAO9FKiLsj7dJoCNuCi3loXIMmAIe3PAATWWWilLpVZlXVwTUvuD/f7utm8pXG8XSnHm+90tTIiqdu+k2jaoK2J7bJXGaDulwOVaWdYX9iaYdbQYT0/PLMvKUi/YY2DdO885o1Hdp9SCaJRSBmJ7uVxpvaHbxmTzCWQic4T9yGDZtUG9q1oZ3gU3wS0RYVkWUrvyEmdDiS656+XK3ga//5v/kra9YeNOqY339y98eez8+OUN+fEn3reN67JTyoJZI7PoHqv6uWqi3F6feHn9Az/985/Y3u708c/UsrqNsub7X22eCQ6wF0p1TcvR3e9SYTaJmInZsGGC67H2ZtgIH2soI8qRo9Kavg8e9431/Y5h1FWwsTOiBEnQ0Pfy07KWAqM72xV4f7yzbxtte1AC/G/7Tu6S3r0mRG0w1gX6jgzvUFrGhrQ795//yGPbeWzbtDOiC31f+OXHP/L3/+t/YH9sMHxJjEThj0JVPoaE/4aXHV9co8qv1IASZXRd8S534WrU1DfKP8wyonC781jIIyIqkmddgvs3B/gxVUWGJzRFA2gKAAMEJ7K5sfCfjxlUZ5wH4dsGwJRdPrN0uhQNwCNIEgRQNBJUktkAJccyQYxk/3ii/yiSmmBW2sk4U7PcM4XM+YYxU4qXaiYzcEQyO6sNUioG3A8ifCEHneS0LyybY8OYEKlr6k3AIcgS3WUrpNu8hxhCPw+iKUz6g2aGjk4WTRzIzvHFbY3NM8P3ltH2wWg5t3L8ESOSPt5MYHQf55LNdlA/0yJpnKGnl0726ZqkD9vnGuToCM3H+zwv9fO/Y/0nueX4MzlfKQgvzEQo084kduBL/Eia5xV+dRPzM38DnMn/qBVR2B53RCsqhfv2HmClhkaip2MzZvZrpi+i54+Z3+V/nz8yf2P5IDmcpzfZjFczTHCAcWSMNMt6fS9MDdu/0Bj920rtEviR458l0ymDWJIOSZThFV9Ik82RWfJEvI/SqQ/oRawKg4l2C4C6PoTFA0+023BnXGSWyzAz/ByBWt4mucBDFD0C73hCzzRNa9q9bTvNS5BQr1FNsEN1Cq8hCQYE8BQt7r3Txh4HZoh2E8CT+ZKVKU4coNOxA/Mh8Jprz4CbHd0ALYOIkdcPYzVD6kRbfeJs5MaJLTkBrCM7ESMxAYyY3WOOMmjplms0btfHdowEpcbpdIoTKXdg+sDD59YNehjyebActP3scDeDH5OY9wCPNCxmPs/MlnipHWWJ0rLqAn3DwtPJdZTptjwANOYURBffgF0Z/UHD12UpK0JBerAxjClUbemAWz52rK3IIrinG2OcJYLJPuDQKzgCxIwZc6+d9cJ6Wm8O58Q8GCMyUQQIPB0ZYwKOsSJzc1u+N1ZRP/28iwecQwtaFKshvgzz/1EXDk9Bb6T6fYjrTelSYCmUtUQwbsE0CSppOdkKET+wS40W2h7kiVR03bHygFn6Vai3Z8rlRnn9DtYbrBcPYtYVrYt3qavFgYFY4xZrLEyHs/4ERB1kSWd4hLPO9nDvZF0QjLI9kO1Bv14Y93fG4x15bMi+O5NlX5Dekd7pm5fkdXpkCX26xsxIjcn2RA87J91LrCQyusRSUU5O3syfxp5CHGCF0ObxzJRbn6Os7ph7GMUzMFYkGBtx+CRTdECPoNTEvMtbLehakbVitdDrYTvK7eYliL0ztn3aDhUY4bRp9acYo2F9czsagEKyfTrGiFI5aRu2Vez+RmuFXpSHHVpuNhx0xjqSDt7oWNucRdQ6hTFtdh+EDSkxmhZdklz2etjBHNXrleV64/LqTrGqUuuC3W7OxuqdPQ7vAlyKUGqAddWdlR7OdscYl5vvmrJgXNDbzvra0N+3yYZNTQcpvosJ4Enf3ij3O+P1lfHjz9jbV+yHH7HHDm04iywy7glETuF8T1UebLweqyj2uWk462kEZ1QR61EVKYMUpLAEFObBq1RbKDhLo+PraVTFXl6RpyfK5++8fb0I2nfKo7G1Rr3f2faNtu+0bUPHQG1Qlui+VEClo/ie6M2m6T7YPSF4rYLWyCuLQCnodaHcLtTLxcsPeo+SuhTExQPCUpESnam0uo0WQUzp6+qdkZqfL6KV5XqD6ro9GwrqwtGsF1hWZL0gT8+hb3cA6CYVbQ1dLtS9UV8/Y21gjwdmG1n2K0S+y3Agt7uvlUXCbTaW+KjLeD5D/txLJEsQfL1rHLGuy+b2QUtBF1iuxZlnNcSeBeiDse0MM+/oNSxutE9G7LBcy+prBs/mbq27La4rT7//K/j0Hff1CYnEgV2u2OOBroPb6yfet4cDhRbsSJUpz3WKCn0tGwEoFIp6MW/rjcf9zpevv3B/vNP77siEdbwAzrxxyw42lK1tPJqX5xLn+xjG2y+dx/s7X8vPlHLFk1GC0JzRUwsmC0Zx/00KbQh9G6CVWiv1cnNGsLi2TV1Wal2p6+r+daxb1UJdVwfybGC905ph3dkmGuc9cZb2PrhvO6V7N9+6Xkgtw2WpR6BQS+x7Z2W8fPc9y/WZ/+K/+t/x/vVn/uWf/x6zO/f7F8rlCkV5fv1MWVcnGfdGN7xrrnqIOBkMLJS6stSFv/m7/wpa5+uPP7D/dKe3PQAe9w1FugPJGFLSh4LH3hg73rmxuWaYaATSIsyW9zEnrTX6bux7pzc/s2op3G5PXC8V6/D25Svv9zdMlevTC+v1iZfvfse6us243zdUF2qttP3h0gK9eXezdYGi3L9+nVpEhA7rYDD2jV2Ffr9TilKL8vLyDG1ne//C4+sXWu+05mWpaMGkch83xuONWzVWdRHwFIuY6MBc3L+1gTnm9M9u8vN7ZAbSgDO+4tLpmuvJxyACTA2wxTBaH1QnbjK6se9e/ikyHLQ7RbTOiunzKAGfT4sYLitbvKmTTYCjNaM1SEauhUC2iB9HHoo50OTsuXzlg541lyL5QnEgRJkEc3+2sP/mYJfLHjD9qMTtU/S7lGQDBbiW2MUphilF59/20Wl9sO+N1lxaw7r5QEe8kYmaUgvrotRIoEhoTWUIW4oihHZWxH9nbVrCvymLhhzAOpMPmhIW4vPorPHsxO5/OnrED2ZHPIrOuN33xHQdYk79HJIELk6abb2Fz2k2f+Fs48GZbpIs4p5VDHaaSpuuLxnVH+Y+AVLhOOpsvpMPP/v19xJnnHhY5uFlvitCpiQBFA+y560dt5ifF39n5+v/9s7trdMEL7VG2M04uqsHqyz8e50s5ExFJy4jx+eJP++vSTj+GokzfPip5A2DZNd3f94e0UKfWEmAUPOeDlD2L3n9G0rt4rbiID8m+HzrEZQEGAXMLNcIdNny7ywWgWXw7AMxr3kCW/LpTUC6Z/XSdloOVD60CDLGHIBc/OdLZZDvk3oCecjrqFvAALJ8I8REjYBmxbvYiYbFzThecNHX4cCTSBxG3cUlSdDpVDKXwZkOOz7n/JU8HnLcElzJzkF2BAUZSJhxruG0OXdMCqj/PAKLmLfzT5M+OLfLND7xHjvu6SO1ljOO5fefb/12Qc2zQGawkJ1ejlKeGF9zxoGzXsZcIr4WnYQJduyfNAxKIOkHo8NJWC0C29SIytvJ/kpJ7uy4melg/nWMFg/gFG1HxxXp6cAlvT0NTxqHWJWZMomPsHnME0FfwgLCFK2NdeBAjJ3m6TzYNsfM5mfne/y6E7CN+fwQjASYmktkCuRlq/koc8quc5YaTOWINoV0lJMp5Pt+yEEJRQUryb7gtO8jBab4wRQMOOIaJgWrUXJgitxAS3TzaYdzUC7P6CUCvMsVlgtyfUIWFxvX6zVKXXTq0tkYuHeT5mvEHlfXLVL1NiPD15+Il2FIBMzUCssSLIN4pvgbK+JAWu/ObDSf3d6VEeJ3FqzR1EbzKZCoPnXb4Os2AAM7xtvLVLwGfK6B8yknBG06f33M+YdDM9dkMFlGLc4qkEP0PZ1DiYSDqXngUgplWXzclwUuOteeNi9PoDW4P/wZRo5vOI2ri3Rp373mvweInodZrPPZbKDtjP3BuBd6deDJGwo4MCgBQM+OnSPKn1swnlJHTgiWZUyaJWs0mKWu7M1QQnw0svFaUHUwNan0rM6e6eK1+uBCzGp5vrkzYFnWFXoQ1CWAhQKjomtHroPSRrACwu2YeyUTGo16ucLjziIOBI/V1+C4P2BvPrGte7vxEYK9JdbOGGh3kWb6QLQHWybZB7Ey7HQ2xRngyzuup0wdjVxD6RDpCPYnxYGTWrC1os8v6MsL+v33yHpxkHN0bGvI3rD3d7jfkced8faOtA3pDcqINWrHenajmEaLFO6W0A+SgjMmLaymCqOU6JJZPCMvkd0+7wxx4Fxr9c5jZSF1giCSTn24Zo2Gns7lgsX7vAx1Aa1IAk/Lxe1RrVCC0SKeFKE40Ki3Z2eC3R/0y1cmC1r63LO5XdPxyxFv0xf46Fz7Wo4ExDxbx3yv5AXTjhuHbYzE4CwpV2FZq3cWE2ayz7qXHbl/ejgF2V6dsz8mTGCc3HHmeax6uWCrs8Z6ON50YwSLtq5XB5NDx8TBh8hOa55hJZ7zCEIkgLOUJNj3nT20/FTdpskpETr6oEcWv/V9NqXR4v5jMs9sGF07l0swoMV1Il1vjkgUELY8k0BCjTWl1VnB/sndWXYlynLsuH9NPcIAt5s5+IsZdGd/Yc66SfH2gxXtEgQ+DgeLNLVRFS+5KSXX+oXr6uDXfbsz+hvL5cJgcN8e1PXK/f5gkXUGQ6iiI874PFC0MEydmTeEbsrAgRaTEskQBRlB6vcFMnL94aw8Zy7lWjVcYqxO39v9pFzrR6e/bFhUSthsUS+p3F2uYogg5R0TeLZP7rvpDHXCXzKy4YnbRZ0ADRbBYDR06d2D/g5Ya1zXxVmvwxMF/WFs++6gU2hPmTjLm7JQxFgXoRZm9b+Q5JNTMv20jezDN7/x+lVAePLrP/w0+o/HPhRzRqVGkmiWcdmxvVOVd/4smMeI+6kiwUQ1puD0B7c04y7OIJhME+YJ7JhbyzkJP2RKEqQd+cbp+XacJEbwVAaWw3PYiCMamAyX0wi5/czLfxsLpx09FsdkSKVPaE4e6D3KNC19+Th3xQKsFOoiLGt0svvmmbxSQwk9hG+AFjvAOBIwU5alBvBUQtvKr5k+6zgQuLDhHht7x/qISSzmI/4l8HSATgl2HM9zTI1Nfy9tUupqSvrAyKyWcpvpPkeyeFMMPSprz5c+nYI253fM/wqyyoxhOebr29d5gX7zht98/5ydpHic/+v8rm/+Onz6EbGaBHHBI9D0e0/jmlewY8X/6tZ/6we//tjfft+HB8y1bzNeCU8ACD3amJcz+PeXvP5i4ClznApU1QAH4GCw5F2fvtqRiZHc9URpRT6YebbkbABEPOORrzQKs91nPw2JfRy+CTjJsfgP1f4Amsw8YLAIDoIC6nXyzGcxa+FolSnGbX0P4+sAiOAOggNNFg5NdKEbDVLviSgRS5AgQKisDceitIbDAmZL8Bipk9MfQUD+7IOjGeDMNGan8YnBHfntNPjMcUyw4hhWd46mIQnH69x++cM95hKwY6MfulDHVplUvmmoSoyzBl3W25DHaJHFG/OzrcfXA9VVVacRqHqGeYpPmBtQKcfGseEMnrKg2kN41ki2TnbCE3PRTiQEibPrQDh5CeGJenA5gGKVgjDL6oYQQj1+zXS2S4AYZDlgAjMeJHQskO7zGIewYzhfOWnn/XAclfmZx5cUSkyHNCzYXB6gFI221dWD9xSbdzJ2o0thl6C8aqHW6qNWE8CMWY5AOFXbBlGKqiDFs4pUMLXIkBlTyH4MGBqOZHhfRTBdvOuKepCs5QqtI9eNRZyiKlojsFvg+oQE8FRuz7O8r1xu7rBLeK3DW5nT23Qy59gUcVBJlRElSmLDOw1WRa4XuFT6/Y49nL5vtXhHq7bCtmGPO7LvzmrcNjpGU9hHczbYCLbWEiA3zExTN2c6yTAnW2DOYInDx8tFLfC6nvGcl1OG0zPSGbHkOMZOiC04XaYAEgk9q74u7HjiYIRWSrIhwhdxijyEaPKV23efWZ6uyG051uK+IXvz8qkvb54e64PsvlRVXBgYw8ZO/8EYjwdjP8D/0Z2VYr0xtjvtHWxsjP5g1Opd6EqcHJZcvVx5bgMYzbW7xsB6OFUKHS/P9fK0BSxEMPvOIWQjaK2ehbxcnNFRs3w0bKt54N2ss+HME+kD6xutw6W7QynnTaeCrDdkufi+vnoSonTX29A4+zLgckPo+i69bSz7hm4b4/kz7eWZ8fUXeLnS3t4Z2wZblK3tjb49GCLeSU4jSdM7ZQsgbt9dMHsMX0vR8Y4ohZvnxPBwI0V+p75bAtUE20jUczQUwBk+rCv66Ynlr/+W5fvP6F/9FeXp5nsGQ/fGsjfq2zvLly88vr4xfviB8f4Ve7zR7R4OrItyDxP3M9C4T3EmkQZYXNRZg8Xo1jxrp4VHCD9JrR5UVu82+MHYivh71pVSF5b1GuKwbpvsskQ0hQfRUhh1BV0wKbhOl5dXSHUmlCyrszADeAJ1VlW9OCgqhfLauHz/ewribC8E5J2+dwembO5YDyxOoP42fZpx6jTjZa/I0a4+5zHPgVKU7Gw6Iti0YICaNYbtyOrXsiFcLxc0OouBlzjtjw3be+S/SqRTjqYUvkbiXjOQUPVSnlJow3h77D7GdYG68vXudqDug5vigv3XG9Jb+BeKRWn2UJ1BVV1WsEwwhv6nGWVZEBvsA7be6GNQauHy/ITtSvv6iGd2cPd+330PBMlURKmLUgGzwrbtPj5twLK7b0hnsJOnoXeEcxbH1tzELkt17aqygiTHCgeqQ0tulTL9XjBqrVGuYzz2h5fe1WRKdfrW6MNZWhFfU1SptVCWMsWNRQu1lsN3Ep3/oDjQVrzFiixPPH/+A6O/8WQ7n3/3O/7hn/437o87/+E//m/87q+N28sry6JYN3oIgDtzpCB14bF3Hl/f+Z/+w3/kh3/8F3768s5NV9BGp1DLikg0klE/b1oAUmbOXLIWvlSsJTGjRtDWh0M9Fr7CGA46PR4PWh8OOtWSRAB6M0oJ/7dC2x4Yg+3xlbo4y2ldF2dfjxG5Xvc9c6c57uxAnZrQzWjd2Lc9tAONDdCXJ6oo7bFDN0Q23t7eAhTr1GWNRF7h0+9/x9Ol8nyrLFWpZdD63MTfvI64xt0YOb7/Ni463vkhkP2tl5nQzKZvO4Z5/CNe6FfU2ThilioERF8H5MwMFgnlgJBvmPHMUQ0QmHEwg769nzz3xwSdJpgwBBgBJGuI0JPO+Onvj2sdDCSlh/B8xoMQPrEADJaQEZgxmAVLBE80unbcmekUTX2OUYyxDMhjZGwa1RU26H2fDPJMJoFLdVyvK+taHXSqTMAqhcIFP2sEdSbgCJ8wYUDxph1uYwu1LpTipdalJCCfrM1MWsvUoZIwdo+xe3dD89JdVynwRjnJcdibM9hUCkn+mDFgMtQIGQxVFq2wKPe3NsdYSzBs+mkIh59PQ461kjqcyXhyEY5McI6QE8h1fNo2csIGAhM4Yt4z1iBzznrv82++XZX5nZ1AHfnV72ckBB+uc4q1M8YTj4lHEuYskrLxEBpafyZ+3p+iv/l5GfsNTvF7zoElLJv+/6+f67jeRxyEZHGaRfuqI8I879qzBu2/9vqLgaek+OVGQ44H9UPguPHzRGpkws5K+CMykxZaMikqquGUMFLw+LQgsqLyBGR8DLCPn0k6NxIO2YzPjwVsnAJcyyKVOYWQNEUULUeHN41uZxDU0zEYpvM+HB0MuqOFGLUNL7sLYWyvhXfW0xhR327BWbFkK/mYzYU7DaQd95gUyHEyoPYRdJoIbKLyEhmyE9JOPLmPjeTHzYU65OggZ6EHYeMAEM/z9OHA++awPMARN0yWIEwYQZnC4OreABr/fdznBMay3amd9nSAetbxFsqpktgNpHvQPEawD8YhumvlBE6W0LiJi2owmExAo3VHsnDGiKNG3Tk0Z8dA7Jfuhj1piCpZspTB43EwpTuTw5b4cRqYowdD3meysXLNhVM0AZMMBH1cUlTQ8ncl2HqcMjKxEBJpFwxSSLU1hlaGFHwXFHroaTUdUIzS++RtWazl0XfPWIRVshgD1UGPLjZiezCCfc9I6l95QXjQ2FdYHMwZpaScF1q9rEovPX5Q0LLOMhYuV2cY1AWuF/9ZqVEKE/vLINSNfe1Z6DOE8fcyouoAQfFjzszc4xILMMai4Edpl7sbfwX2gtaFsizYvmH7jtXC3hodvCV1P+lkmc+hBnd5jOFgQEylHlsBcs6w0BUjK1YPcDn+jdwrxy48qi1zH/sJF2wQpddCq5W9FG8NXyt6eUJLdU0PcT2y1s33cinU24X66YVyu6C3lezsQt9wQZqGfn2nP3Zsa1QRlqpclhpZvQ5jZ2XQ3t7oX6blR0rBxIH93h/0bWC2YTQH+XpoioXTo2RfrmBIxvcjdLYOGyLuGElktNUBawO0LF6ypycnt1bK4nOqyxrlUj4ZvXs5thZDdwdSE5AJ2VnXnQv2CZjriZTjbqXEGTVkMt+SPTn9uh7JjbZjfWe0HcpKWQr68gy3C/L+zth2ZHPQabRGvz9C01lY1DUXdAzssTO2nX5/sH95Y7Qd6TuS2li9H11FA7CUtG2Gl3rNhJLgoF1msCvogtYL5dMn9PmJ+vvvWf7931G/+wR/9Xva9YLVShPoe8NaR9/eKS9fWd7eWC83+tdf6O+/oO1rQBm+Dug7tjv44F39FF281M1KdcdVjKGdPooD+lIZurCh7NGiyRCGLkH9Lz6Xsd2GOHQ2RpR6i4Otmwa7rQT7SdTZZHk90fjnHewIsWQ1RUydKaELlBXWJ7Q48CR98PSHv2ZcLjQV9rrQf/mZ7bEzLMoLI9orIt79NXyIpVYHFEf6Pm4wNFCo0fsHZ3X6dASIE38zgy51n8ulkwdFC+u6UOsaWoGD9/e7s1Gim6yZ0fc+OxCP6TOGnYmzylBGNTqKSmW0xvb+xi8//UStF+xlDefe0KVyvV7cF7sXrjIobcXEWC4rpVbKZXG2kBbW9eJ722B7OPNlBAsmdaZeXl+5roWna0G2d/b7V77IgHb3RFPfGd3HPO2jCOz7FowBD+Z6d1bA1u6oejKyj2DFo16CWZRLWVivT5Ti2lMWu7sjUx9HdXEwQ5XtsdP2jd4at9uNpRZqVbZ9D7/ZDs2udQ1A3f20ZAMNG87QUWVZg2Gn+uHsn76CEh1kHbAd3ZCxsFyffI2NnTEW6vqEdqLUMTL2BLiQST3qDKhFhbIsXG/PrLdnyuWZtu0sl2deXm60/Re6PRxUru4RbW33ZIAIWhdagBdVK5nQ3VoEr6nvRqimBkjYBuxhhw0vlWstdNJQB+VWpUdI1doDG7uvMTw+2HeLcr1IiHq9H63t7Ptg7J3RBtu90baNx9t9JuiXdYGu9B2+/HKfyfrH/R7sNFgusQ+0oBSWsnCpF8w8qdN6riMyrPwQPsbuPmKFmNdvX6ffHj/MpPCHt/sVe4RBWWor8XZLuzEDVCfqJvA9Ip6xcCe802BxZuA5hgmH0xNnyWY7bsZd7Wg4k4yp+NMxbGo5pYlLPdWSdsbis40AVE8xRCTNMoECx9ma5/X5NTA/Ay1Zhxoszo8sc/JsDD/7IEA4E673HqVTIwCgZPZ4EmdZKp8+PfP8cmNZF29ukHpPY9D27mVZ0Uyi907bRwYNrvMmhhSL2DueP2Ru6rJEAyS3S31k8lxmOWDRQm/OCESyXWEMjOR7cF8mCBeu6ZUljumxxTSrd39EQqstVuByqbQ26LshVSJBZccSlEjM5/kU8RKajxt+UnyuyRmOOdZX4g8WDtQpnIx5l7lfkq/0K1BK4krx35LrKAGi0xY6mvjMP/T7nRvw6BSXD5vAEIFX5PP5tW0+h07//ePrqEzycUs/nw//n9GiHM9zetlp6BODmEAWByKSUYT9xtUPksl/+vWXA09SZgx2YCEfmRYZrB/daeRDjawZU+wy/yaz+pJRr50fPEfiAFHOyOE0YnI8/NkEiJEsxON+819qlaS3Jmmpjj82CwcpS+sQ/FSPlSRgqbVyGgcLZpOj4NGFLTqiZbe7s6hc0loMmB3sjOnI+phalPnFs9oxRvm7jxoOZwMf5D+ZNx3vPZWrBQDilz4FECcH1PL7XJSBLv8W2GRxj3O2zuvx2KFMQfjZKcjBJgeijuefPA2L+4eP1yc3jm8Ry50e3SFIzS6IjSkOohHieylWKLgzaMmGOZfdtWCMnJhQo0X5g2A0bHj20UZniCPmEg6GhUE7T5HN+06Dc7gHeZCfx+zjtvas8bxczGtmm6Y1/A1bkL9P9H+WqcqRfXLgKfTMrEDTGUhZfD30SdQDPPzzUzuoj+7OeqxnI+cks8LCGDuQTL2CWQHLEskYrxReLDhTIEsFigcwo4bGipQAnZZo9R2gU/WudAQLwjTv+/BSxKL8LwI6yR6tGmtygqJhek1IPS7rO1Y7tgwXME+dIXCAU3UCmsMGY1kCLB7BXvOP0PzvKMljMiLDAxxGonvnlTLU7+ncAjYBv4Qnk5aM5SF4sJ/m1WLp+z0XRqnYUkOQfUWfXrxb13JxVgfinQUn8LRSXp7Qy4JeV59rGdAfriPUOrWu8P6g3zcEL7GrlwXv1Nahb5T7uzPk9p3RXDTXyzkNo4VQrNtaS8DKSiQH0jakDUwGyPTOfM6zlgBiz8Z8993BALwBgURywqGhYAeUgtaKLhWp63RWrfmYi1WUEI1nRCDks+BaLOJrbKKDzjRwwNXnxktNjjnKNISbpd3XmBZsBDvEQKRFWejALldk271sbd+R1pDHlvAWSykUg2KG3Tf6Y2P7+s7eDbaC7aAj7JcWL3Ezc1ZOqPVmKdOxIk8R7LRpxbsGloV6fUKfX6mfvkNfPmMvr/TnT4zripVCV51aYNQLWhbKcqF0g6Uga6HsFbEdGTtjK1h7BNBaHKgzhfUaYsqVkf+TRrPupCgt7GVhBNNkPkFxzbpSXUz6fKbm/2swpAewi02B+Gx6kqxSdxOixHgKxx5nZrocEmVhrh+lyAJyuVFfPmEi1O3BuN/prbGXH7HijKciIZpO6F7GYaLROERxFpPZwQrOz04/LH93PhfmeZ7lD3J2PI0sV/OMub/f9T0ktA3DxowTQeWUSbYYPMn9IJHtHiGIvW/c39+4PDbk2TyQlNTr8my8Lgt19XJFKUJdFxeijg6qQu4pOc67eIox+kw6rOtKFaPYTg/7U5bLLPEVie6ZQ8IH9GC4bQ9KXbxUThd//4hW5ZL7dkYQHqyWhfVy43J7CuBep55hzp3v+fBHENq+s287re3crpc5T2OcGN8RVFqwGSarv4RPY9Gp7bQ2/fwac/1ZzLMD77mbnVkgpTh7rDiLrTVjXW+0YVjbZrJt7pVBMNAGM0lblEWV2/Mzzy+vPL9+Zrx31jp4viq//DIY3RmLujiDpN87PTQwVSsiXroo4gFzPmfVQlH1RASxXiXmqVtoT4FWt8Xu1us8ElScrZQd6Cx0vo69EuLTw2bwmYyq1hq9dax19q3Tts62dRaN8l7zOe7N6Pvunz9GiJHHvtQRjAdl37wrYu9GSrjOROXcPed/RLB3OvdP1ni+TgHhEZSeoiXjY2xFHJGnT5qhVDgSyYJKf3EmS4cn3fzrqWQu1vkZHJhbNPdnAhx2ihHnv8OFz5hxBJMo2S/uksn8XcYp+VD5XNOiZ2yZx7CchyHKxObfHkyrLD1SzvHr4U9AAlS+91I/aUTJYIJB4ogdEiyr9bJwe7pxe7qxLAulHrGls+0aQqf3Le4jSA7D59jXSjTc0PQ3LcKqZCafGdc+9n6fhVIqtVSwTm/tGKvT2AMzLvvI8sLvBTn85Pin0djDxpFe1+JluX3WyNmRmM/PzMeXo5zrjG0cUjTx9+d7jFjD7ZiF3w6z81xc90OMGvPsceDB3vb3fozOjpvIG4h4avpqGU/6Z4z5LGeizmkvxOfIt5fNe8w4Ya6I87MSZafyYeMfMXF+2jEm59uPjXnaF2crk//zv894wWKM5gI525N/5fUXA0+1LLGI7FQbmqsxRsu++dD534HWn1BE//NBTssMsc2dg98EUNKhmQ97ep193xwDMazbR2cqvo4+Plz6+BpDPAELz6CIgaj/TIuzn/pIQOK8VGKqoq6eNAx0zEJcfGQ3g1NAlIDEocg4aerEWB2099PGDOApKZhGUOkneJChwAmVNaYRNPv1WE5KaIzHuazOWQL58fbBkJ+n4Dxl+cG+fg5wySizpC6FWd0xUmSWyemcS8Dp6+N4trlZfmu9m2epsjZVVGPD+wHYw+irGkKs6RQT1/xM9a9iUcbnRtwPt+HskLGT9NYeSoVjFJAWy1Eo1ElFMXSKDmJMRDkDtRB/4TBZOa6n7GSmoszN47DjCDhGJwYl6y3kw0ScgpEEAP37o+uRgak70bJgfYHuQuG9FHpoQWQpgOO3DoL2MVVyYESxXd43QRsdhrBjtqNWg+lUGQE+dXEAyeo6wVkp3o5co4tadspSsj20n3JWsof6gkVpwdmzsDlKORbh8Ft2GhxTT8VLEMo8TGZ2RDQ67XlmxokQ4mK4gdJbLdFZbfegWov7CC+G7DvleqWEOS+4eLKE1pRtOxadvUZCee3kuIk/tw+ssxIHdupqL4zwEhsSWkHHWjo27JENmmnEotiyYNcber0hlyv16Ynl82fKekWvT+jiQrVt+N9JUXSp6CUCwKUE4DKw9o7tzQW9Lw/s7c74+u7Bw2WlPF+93HU0xv6gMrDLwm6d9vWdMTprKQyJDnytM2gOUmoHW5BevD4k7PX52DycRT6AvyYDUwcrHIbuk45PN7BoHCDF9ZDMOQreqKAgi4up+2AOsrW5i5YHY816sGiCWQWYfQTXJdiEI/lNMwPn6zRBQwknNVLJ3snRgvVXF7hU2J7gtlIeD2wPvaTW0N5hawGgwVqq47iAvT/Y3x6Mn38BLfT3N8ZXpY5GFVhL8caDEXT3x4PevLzIfVf5AEQToK6h7KKMumDLyvPTC/L6Gfn+D7TX7+lPL8j1Bbs54+lQqR1w25DbM+XxYF2vjPdP2P0rS/sKfcPag+3Lj/THO/3tK9JGiJgXyuXJGR+l0EdjWKeNPSAoH9emSldllzD7It7lrCpWlM42S5Il9lRqHRH29o6XI5HyA5rvO1bfmIdwfBOAtfRBUWOZwL0zO7JZyaKgT1dGVbbW2IC3P/7RnxFhGTvrEJYoV02R8VqBriHwXfj2ZWazjCBt/bcipKpGVfcttt7Cv+jso1NkRerK3vBWz72DLuCPFd3pnHk1S/dI9tvhqJoAw4GBMboDeKrY487bTz9RPn3HSxFuovTFu1O1ERp8Kiy3G4sI62VlvV4ppdDG4P54sG07j/0xy6Qyaj38MkGkUEulW2fXSjNlt8KQFSoo3i2vtAd97LT2oPWN1nZ++OlHrpcnrtcbn797QZp3ve02/KyoQrVyiMLWSr1cuT6/sl6eQJS9derq3eZKrSGE3QOU8NLix/ubJ2/MOwna6GyPB9v97nNo38zdujJKYbQoqVGhiM226R+6wEl3AF1zjTibAfFyqd498BQVrs/P0Fd62+BufPf9X/HUHrw93rlcr2gp4dOGxYpOvyKGFqMslbKs/N1//nd89/rE7777xPvP/4zSuK5w/x877f0XxFauzys2drbW3e4N9+G9w537o1sbtN54elq4Pj3x9HTjpz/9zE6UIMdafbSBFGdXvLxewyPp7I+Oa3UqWheGNCiwbe+0/UHvG6U+e5g1/LzpU7/M52h73Hl/e9C2xtg7++NB33faHq6rCa2Jy0YOY3s85hgVcc0pLUrvzvA3rfzDP/yR//hPX/jHf/iJfQ9GYxF6JlPjLPtth/fbIOjPvyRs04co9ZtX5mWOsqawbQLjlNB3F+xgXI3cb5pnbXY6i1ZsQTlJUMci5kOjY2/EVA7+HvqmGWvk/YdE5ASKEpiae3762d7YwhPn43SdY5zc9dGpNCDnoeQAvvyWdZYfDhte2R1ad34t34/X6yHk7SBlZ9ucQeTrWYP15Gf67bpyvV747rtPXG83SnUmfe7XCTxpx6zStKHSokvcCGa2C47XxSUwwEtwVfUI6UgttGSQBbyiOuUn5tmVbLPULhtjCo6Dj1mpivZjvc0wKv1q9Wd1AC4laQ6mrSiM5jFDa3boRZmEFA4zPkumaj5Hjk/GghO/BCboRK6zvD9fF7kcj1g145hZx8Kf2x+5cjIVmmv/AJ2O8dDwtc/xqsV7817/XPqOD18Txv/oX8RuIkPH+Rk2Q8TTK0kox3XmV/v4szGOxHUKjcctT+7NjPHmX/55e3J+/cXAk5YawfXBWAKmY5H/PZ36nGQR/xBzweIsPSjlBKuID2pSDnMoz9c9GDnHyB7jeSDWMw6bKLRMQ2e/MXJJGSUzcpZGMdD5WLyOPaRmggeojlaflwxkGjODgWGpX+Xldtn2dgJPEVqYmWf2A7VUVXcsOErvMEiRvtOjc4iF+mdnBmTeD2mQD7Q5RYLn73KORObXYYb1EQfLr1fquWOOJLbxYcv5Gy20e1R9DRQ9spK5QcTy0CkRtAQDKgymswiMqK9KyzQ38MwMWdyFgBE1zPl8s15bYSgiIaSryXiCjBxcFNaNVCLxmZ0gOho6Gl9wtoXCBBrV5900SqPckfuQHMgFe9orxPhhaVvD2KZpyTUuvn69POiY62y562s1rE6+gqooqnO9g5ejzu6M8XX+bALEBlqRsvi/uiLFdUwoORfxKCNnRHytWwiGikUZ2bF3zTrSxTV7eqy7sQAVo2LaoYTDVSpox5qX0kBFy4qGAufZ4HYkxJtzDm2Wrwkdp8x3r12nZGf5uV/S2TrAO+/eISr+2XYYbrcv0Qq7dGQxyuXJ94+m7tjunbx6Mh5Xd4j6oPSOtYbMslwPMqS5nhgqjFaPUg9rOU3RaerQbBux/rOsuefeNiOL5+chFhkrP1BiPaiRpXbZza6j6Hql3J5ZXl5Zv/sder2h1ydnk2kELlHfL0UjvSwhKh8Cu6O41tXWEKsROlcHmtaF/XqlVLyMbhP6eGYUoO10gRHtqns47nH6kOlX6wMzL291e50wXNiH3EXC/HvLGgLzUiAdFl3gCtjdfzcWL4kyhcuG1Yr16vY7NKeku9MsYlE+Jy5cT6VEkHvoUASwFDbbHSovZRRkYsT5b5DnyQEaJvNKJPaF4SDPUhG5hqaRIJdgOSWDqHtm3qc4bYEvErtv2PsdrhekKOV+R+5fWWywCFyifIvesbc39rc3+sODLpkHSIJozm7KkjXTyqgr43Kl/+4z/fNn+usrdrkhyxXRFWPFxLW0pHKy9c5aFITydIPtldLu0B6M/e6C3e9vjOULsjc/U4pru7nNKHinsixxjzUTY3p221SgFdeZGQpNhneztSjfiLIxDWZnHxZd+or/PHbYCLs6S09OpuJIvnvgYskawO2TVg9GWRaGXNy96Dvyu+8R68gP38Pbu4uOv73T94G2FNIf4R/oEcyl/5RA5vy5r3/3ccoZkz9+l2D36EgBoVBEXTuvLDQpdBvsFqDGMPpo7CPOAQlxZwjQ4/AhMjBAg6E7CE2pgfXO288/svz8Hdf3r9hyZVhns47dHOSICAsJX2EMPwP6UFoXWofH/eFi4GPMErValSKh2lw0Alhjb4Otw9DK+vKZYl5YWAs87l9ge2frPg6LKq+vn7lcrqzrhW7Gfd95u7+ztZ3r9cpzVS7XJ6R4Qq0sN0q9UOrKwDu+7cPb1ReEWldUBqMMdlFnt7WNH3/8gfe3d7ZtY/Sd5+dnnp+fwFLUv3jXPIKNYZGAKdU1nNTZQ+mn932nx9rX4okO1X7YI+kRfPoYt2hVNYawanW26vXJucp72K2obXrsD9+nos5KznDKdsKJo1Tlcrvy+v13PN0WvM9l4/PXL1wfX4CNpQ72xxs//fQzhjOPnq6ra2EhvN/fvbz1PlguVy63G7enZ758eYs1pixduXTj9twQjOsN6iWYXWPQW48yLqVehHL1e1vSTiPhz4VLP4jyo0bvPhe9jdA4hMe9OQDVBnSlmYIZd7wstio87kdyuGqWUHXk/QHaQCqbwM8/3bk/mifvLEqa5qZJ65G+GfP10fc+vpf52+M3NkPVk306aoHmVQx3mw9PyH2KYlFUq+mKn9GaAHcCGfLYI2l0eZU+4xiPIxIEj1PPjq6RI0u5PrwkfGAcCIm4bwxDZCD9iEsQmfGmzWKl88uvX+vJAMZHRB7aP6sfsVSOp7OaggWqfpKkltLteqOGmHePDobbtrNte8Qk3vnTQa/B5VK5XAp1OUS/7RzLMabfrjIoAkRzjx7xUK2FuhSWtaDi4f2Zldz6mPevB93sqBbAu2rO8kYg2V3ZZbCHZleuLUnfkTxfLAgEcfZozPjIleyJ8u0R9yLJxCKkFBysJMO501wAbkqISgM5St2+mdKcuBjDOO8HeAVTPcXR5/V+Wh2SO+e0JOb5yFxbE3SKfSLn65od4y98s/IE5Oh6/uFZ47Ny9ud/TwZ87hQm88jC423neMx+9YkYHJURJ1D342j4PDsT9rT3JXxNjmYgWVFxtjH/2uvfVGr3LdL+kQaZzgwBaOTM2zQoYof1KJOem4g5Mfj5SHaU7Fk+WP5HGpHT/aUh5pgoO26BD0vKIni10wLKAQ5EXDQI+FEqogTNerT4rOJsAzsvDTiApwSYHHgSbIJNjvqeJbr8PnpvUwDvXFJmSfElaJO5Aj48f+6IWOD5XMg0Bgeol3OXo5W3cTZ0MllR89GOmefDdNj5UPzmlcJw6oarwLGjZjlGMH1mtsMBqMyY5/xaliQ45xubAUTM3zjPv03QaXaEE2M0iZBcGa37uJUAIkSC1ZZWTsgSSw9SvcxSRN0hMo3fB+5rya2K74NxRX4v4gfqyNKo03hy3Hu+UjA2251mmatoOPZkeeBpznJNxyUPgf08II6L5KqyCUYpCUD55/pesygDkgwES3Xw78R48jWVQEDstuFlQzLy7sZ8wox/TAQZ3XXLu7g2yakbkDnih4QgtJ/YXpqpunhnKBWkBLPN4oBMIx+HkmvkmNPl9cQe1I8Hx+FpBqk0bY9ZlByGwZqHUuQhtDgby4yyhg5J7u/mRmjslSzfVXUGDWM4qDIcqBTrUdqkyIi19FCsO2XfE4NpGw4eo53GdDb3svO6Ot4NyZQi1nrsSZXoUuiBs3eyU7SslPVKvT1Rn1+dAXV7wtbLfG5H+BLExDMl6g5mNlVwh0MpXaGDDnHtsLXS6oKt/vsmHYYHmzxujLbBQ6BtjObaRofJ9UDb02Q6n1KQKcD8wczNwz9+kEdSkk8xL7XzFnYwNlQWTOoEmhid0RsyiuvlDGebqcrcj64FVg6dpklz14+zEe/PrFji0x+ykuH0uWNj81xzX81XN2reQZJlgmDUJbooDt9j3ddb2gLTgOYGjPrAlmWuO308kO1GZVDE2zpLCLvLlwuyri6kf9/dFk17FMDTcvGgu1bvIlkrtl6wz6+M12fG7Qqrl8GKVKBi5l816UUiLrxfqtuOfUX2GxpsJ9nefRbrBSiuZ4UDT+P6HKV2BbNcf23aZbqXC2aHRJ1rVnL0aZFomJqJEuMfK8id6MLMeMZ5Owk2sa9mt7X4l9+PmLpDL3nE/EswCCvKQG435PWV0neW77+DZUHWu6/V9w1jd+B1DD9vObK8YQI/xFNnh9t/d3aUZP6NHwnm4BCC4s0ypFSy1HqIuJwXLoq998FsFTMGLc7eMo595wyWdNLDcxXfrxbi/Pcvv3D9+oX2eHPwEj8idFGKVLQuAZg5SDIQZMgs+bMhroPSfI5LUDWSaUBk9zPo9UBQEV1Yrs4EVDGKDPbY4yZvZJfX69VBp1pX9uE6PHtr7L2xhN/q5X/Jzr2iGrpOs5YtfRzXxfkA2tig7XC/3/nyyy+8vX3l9fnqTMXFy3w9AaGHsHxUI2TCpS6LB6VjZ+yhUzX69Ic+2M/I3ata+KEGWuljD3dPWEKLR3WhFtfeWhgM6fThZWcJaFuWAYEzwoczp519tEB/YqwLNhqjbzx9/j3LfkNlR2zjvVTQCzYeGLCuNy7XG1oqpsr9cWfbHrP7XzJKpSgFYY0OeLcnT+YsqyAa4OwENBrdhN4WKl6uV0pUC+QZStpYmZUFvSfA6xt4mAss77t3DtUQA7cBYoMinabmgXZY91EOXqRZj/EW3tqdt7cH25bMtDiiMuhO4OYU/Pg0ymlOPzrjZ/dc5i48HPgZIn2IqI7r5O8+xFt2KmWbh3GMUySJ0506fu//fXS4dDtj+cb577ij8135c5yeJN4+Ilno13Qb6MTtQe8aazptWpajMeOk41Mcuju61PkrC7FH2Mlz2bKDRsmSCvtSXLjfNZpcqN5LM3uwC2WWijrw5ODRsii1aABYwTYKEoDHSGnX/aw9OUHkqZWgV60VF+Y/xmrMypgYRz2eQ1MkFE6aWun/MmPl9DOzu6Nmwv7oYuFjpszBzfjlPNJmDvaLHKy0nMSZJoxzU3Dfacb4kSy02KBzLR2r84PvC0eSyWLsZsopHk5OCy1Xwlygx1WZey/iiqPkMPehnRfVh3v45iZP1zzYVcc+PNhN0x0yP6snYEt+/fh5s4Imx+jDJx13c+yrX+/wOV5y9mVgekDCAUiSsBPfwhJ/9vUXA092dsBIZ4UJPH3z7mNCxRHUMZzimj9L51ck6trlNOxmfkCmbtFIYEsmLfiDLgFEkHqskzmBJ7Alf+MZjGRfhPMdyGMiuSUJ8yE6PBlSHXzKe5QERRBhSpYTWXZxsO76NbFJJ/AUDgDfbA4XLnXHIdtX5grJUqgpVfKrCTou5zF1LvSktBpJs845OIzNR684S9EsMpezbWJutm/XhJ2W96+MgGd1z3byYJNEICaew3c1sASdgvn0wZyYAx9S/brDQZ9hmb0J9sM8FMcEtRIUQsGGa2NgGiUqIdgoI7Q2fN7dUdHD+R7V0zziorC+Br0e2mFKD3KGKRoBjSHO1In7GBGgaJbSndB6PR6UgeteFNUj0MzOUbiTkvXdojad+ClOn3MwjXoY75PWSMwqgkb3s4QmvjGDFsi2BRBYvBvPcrkhfaeUDW2b31f3EqgRYCOnT9I8HkOgOEUopRnsBl0o1hBZcTF45hqRdP6HUHSl6AUtF2TxbnPOrvGMSu9tdkHJsR1mlOiihuFlWiXX7LkJwbFPek+TatFKkAO8E5mHpv+sevOzoGuPZfG29nfF2gL7QgPGvmGlBHDhHcVGKQ4MUNzARKld7h17VAexE+xMEGLOGdNOWHcny8GyIzuSLmTusDysLNZZStVZgE9DXZfHtDrj6frM8vKZ5dP36O0Jnp4Y68WDzwAHc51ZHPSYd3Zy9h+uq9ELvWzYKmAVq41doYlQF+8Q16shZUB1gHfIwO4V+2rwcN0rRsd0eBBn/mREy3JMyG5I0+XJeVMiiXIcxRNY7AFIxoFtDCgFLzIraNuxtjP2wr7veWi5LlCtVC1UcQZAyoI50JiBpu/yEWUJw4AhTIU79XO1h9QteAeRdGaS7eoxdLAVVYLNEM8YXfa8Y+cIkekw5qEPlqBsm2VjBpeVsd8Ytxv6/IL2Br1FGXKUizX/Gfc7y/uDsu3sj907nUZrFg0G3LJeQ4S9sq+FXpVeK/X2jC5X+u3Zhf/rBWGBUaY4/LRRRR08u6yUy+JsghaBcd9gv6PXJ8rbV/r1Z/rbO2PAZoKsN9fgKpUuxBmU49ChPbD9EWWwjYy9RXwN7CO633WB7qCVxlpRO+f4snlEMHanQ5znr0xNuSxhpRZYs8lBpVd3sBXYAxgcwAO3J+vtRvl3f8XT5xfW64r9+CPjyxe2f/hH7E8/wM+/0NvD50EGk30oMjWePGA6bMavu9LaPM/zeHC2V6csJ6DGnAn53ge35RrdnZQ//fGPPO4PtseDSylIkei45vey9/kxPmYS/2ZwYpQ8uHvjpz/9M/L8xPUPv+d6vaFaaNIZtgfgsUw2ESWAYT/cERa8F8KVIRs2WgRzzkAvKEUX6qLsTehLpa43jIqYl0BlUw3rOywO7A39ErbXoFSamWv8mIAWluuVS3F9lufXF27PNwflpYJcHHiqC6U6YH8TFwlvbefHH39ETCiqfH598W6RqlzWCz9b5/72hR/++EewwVKV50+v3uV15Hrzrz20S4uqN0BQZexGH48IfMOXkDjYZzLY16wZtLa576UbrffIshfuPQDWPkLrxpNRZp0+BnvbXES4KL0XTBpCYTw6dVxZxpXLckEuFZEn7m93elPagNt3f82NxroY+/1nKAt1faa/Rb+3cuH5+TPr5UpZLmz7xmN/sPfBz1++8n5/57HvLnxfV65r4fbUeXm98vb1C2M03h+/ePmtue19PJzB9rQ3ruIAgbO93JcUJDoCuhaYhTi9iGv3qQilGkhn3wf3e8PaCA/Wf9/UeNy9HLnvbcpg1OVg/CB4l8Sl8uNPd376eePre6f18OIFp1yKHaz9PPM/vOT01X7zN7/1hwfP6M9dDxKeGvHdZDuMADTM6MNB95oe34xJBJHiZWnm3dwOc3i2S/mpWVopLGiUe8HoDijndWc8Ov2247kkInW35xEbxmf67UUgNUWEvGzuA6gEIEKNmHOEkrmKhhD3mDlIVUGLP+eyFJbFu096EwY/03rv1LogWgLcGTE2A2FHi4F29n3zzrJSQFZEaoDsdcZk29ZpbadFZ0thUKuLk9fqzRUSeMp41MJeZTzp8bR8iKV9/w96G1O+hRgHjecfMk5yHNk9L/1JPz+WJboCBsjnYO8J4DIJEMXXzgdwcgbx2bDE71HLUc45G5wUpn4dYxwrdtJ0/PNTLeWIh2INcV4zEvshmeC/2hDHtshhOaLhP/NmSMmX8/bMp03f/MP+tOOXuQ7PlIy8d0ch/Pf9dA+5l+0/YQNG6kXb+a8+/n8m0L4xHqfk6Df/TrHsv/b6i4Gn3o/SMDUHMxKtnvvdcq7lWIgWzpzh3XzgWOhzXI7HtQgcbC4cPhiUs7FxwxA/Txbityb2GzRvzn3e94lHmmKFHh8cVDQZpzBNwLpniURGiENC1qDOR0vgYRaszoeL+5AP9zfvN6iMeuwMDuPEDKiPFXEwfjCb4wccc/SrlX26nbnsE0+W0/UI4xXzx/CMXM6h+HOMfvTAtFlXe4wFJOgR8JAl82VwKFmmQfEjX0n2VTkFzwPNrjnR1NFO75CJuue9y6+JteFsjdFpvWEik4Ul4XMkKCYIWjrJWvLjN7Z1Zp4kAlSyrGwEQNIxKf67PPnmJs6/nSftyfgkAdqFolMfRDgfhnkFp8uOWHip1WST6xlGlxN1N+c3f2/Mcg/iwEd6GDubXMrevbRkRPpNS4Xlgl6uUz8CM0z2+Qwphu/lGvicBQCXXYAYBs2QLkgXigkpxNttj4CtBPAUMFmU/WlZgnklUBU3v3GYW2ZsbJb3+fRHIJ36akOwEisonHGLU+ooUYhDTvzAliwBBT/5Yv3o1JEarkUkRhstgGRDomTIBSZtTqSuHjD5EnNQBZHoWFboRelFsO4fm+2KD/ZaPErsf5m1pcfKH/MBjn1gAOrZiyHhWIW9SLaGX/9gwU3c27yN/cDbXud6Ug7WjwNQeqw5UaSUKbZsqpgpQ5Op5iw3aoXuej+9Fvri5W22lBB8F9cEQGJ+M1g4jvHMyMV2ifJR0kuc8zgCmB9J/Tefdy9j7Yi4rtOxo1wDQJO1OkKTazgjjpLDplFekAeTheWIbLClDc2DKDKI0/nyf7OfxLR2victbIOYBEs3fqeBIGb7QzEoNs8hKXKiSp+AJxEvIyzOJvHET6PH+hAJZmLvcH/AfYN9p+z9pBvmWmiqhbpcnI1QC7aAFncc0RW00kp1Vph44EL3zrE6zMVFNLWRgvVUXUMoxf+tu85QMcN0pYQ2z2id0Qyp/vml1lmy6mJWsb/2SGy0nSENLRLMV2A0ZDQHfdvGaFlmETZDT/Y41r6KzBLdPPw8qxyNDLRgATpJrbMbIsWbUQzMGXXD57n3Dta8g15R1suNpS48A+Nyod9uvN8f7PvumkAPV5tyoeT0Vot3BJ1+TZwwqlM0WOP8nQnEOCemcHDxolgTpYt6OeRyoVxufP6b/4zLywv15YXl7/+en/70R/7pP/69g2eh5bHErUwdfwvme5QZmsZZKuYg3xDEKv3+Rnt/o71/RaOLHyOCMhv0IaxE+dxSKGXx+aQjpaOj+3qLMvdkoHsTNEFbY297CD+7Bsq6XjxwrJXedkZv7DbIbqWU6s6/uMpWenJF19B8CymBujrTbjKIlaIu0H29vYBU0vUsfdAlE6x+Pr7f36eOkMjgell4fX1mXQtFDRt7gB+w9+4yGHrYtWQT6GOLYM1cH0nDLz1nLyNZ5fqXYaG62xHXogxfow/X1zL/ftADSLAYg8JSF69glPRkkg0iYJ22PygSSVp10fYODC2U5YpIR+tg3N+8+6RVepR31ssTutyQZcX0TjelDaGasDUPwp1Q6nu47xsmRl3g9rTSmrA9mn9iyGOMXJOnsK4P5j8pAcaEHUpGFcOTxL01Hu8PtvcH+9aYuWRLHy6YIRa+e4vOqCqUEeehCHVZsFFou/DzW+fLe+e+jeMcPrFHzq9pa379m2++fvy5/MY7f/M1E5RwAJTn38evDEZ3hvMYro+Xia8RdrNkEtKCj5x1SXkfM55xaKtoweXpCmMxRg/zkN07Z2I5AafwmmesBTYk/s5g75QS8gfic+u5qCPuUXGwt1SPG/x6wwGljGoiPiixr/JszuRl+sIO7nsXxfQHWmvszWVWgGiW4pOYjFkzXDvRzNeqgPu1LuvSwt7f39/pbaN3F8P3Z4rSfS3UsqIqwVxqhz5TNM5J2KL3YB1pNgqBbdvou3fQuz/2WP6epM/KJuY5R7CRgtFtzt5aLwuTlHAiALQdiCShDWcJtn0cOohhMnPxZwOrlELxPTUmAFtCW1FVCPk/H8tzHPhNTJddRlsLvdBsEDQrMmagNvfA4eGerp2Lnw9L2f/mtLFGen4mp1L7X7/kw3cZu53+CYjF3jreEv+S0ON+yBzCxATOcXD6s8dW+eZlH94/fy+/emPc1ymmlN9402+8/mLgafQsJYoAXCDZSn4Dx4iexVsFCxE4zxaoyEeA4PxgaTjSeE8A5Xzt44ET+bLTJPzK1J7Xx2lM0glKmyUczle2bvTFaIf3bxydriJAzaSRTeBJ4racapxIkR0XZIIQ8ZxzkiMTk0tVMgokgYE0GvmgMX4jN/hhGOd4qXxY0EJ6xx/pj2n0/DoS5X0272HSLoMO6UYgKIvnlTnH+RRAkWyXzFb4w0tMqDOZTkMCTGppUDEcQBuYOTU1RXrzOZLVldfMzflr8CknTOije8mlgIzizi0tkNu439Gj/GQwA48AXv0tdlyTPAiPvZJdyw7Q8fxPpnE5v6bblmNNmkzic8MgI4exOQFPrk3z0Xjl/1tOf95PMvnimS3q4vJAzRYcSQ12nNYNt1bvbqb5t6f247O0cOAHliTTiVkr7p0+BtLN27EPF5wnSyFTR0e9/EyJ7IZGiV8N1kAEjSBRzitgwfSIQ+W8NKdBTRB77s78bf68T/AJszm+KtUTZnqmbWtkTATRhQQqtV+C2TKQJVKYfXjJGF666Vmd4fo50cUHjFErve/0qoySTCSQNANyPFdKjHmF2BG059pyVmeCQTL3iGtRzWUwnd0MTc45gmGenZLw/MYwhrg4MHl9GUcZNXP5TCAoGWMH2CWTrjuC7aFZ7qfqIva1QC1YVbT7tceYBdlRnhgeRpbvikxQ4PhMz0hKKeF5FpAsj5VjfU4zm4W+MRCx311wcZBl0zq8tb2vp0mQ5rSLjtU1jWXwzob6tbzWazLZ0nFIbNEZTnayLzGvkuyVBN7jD1KcohwAI2bOuJnHW5/OIeLrEl1cw2c48DHCNx4aGlhjYJcNu27QGiVYEM68c/bLBJ60uOhw6RF/C324TTerXtYm4gyiMUCCyZbnhx770rT6HIxgsgVoo+bJCPUIFvbG2BpNV7QUrFZnxhRBquDAU/OxN59hw9cWJfVqHHhSGwwt7uyO5KHZQcQkzlo5ssYyZzrCkgA6Pb0fgvS1oIvr43n3xOiwNTotdJpcRNsZKrUoa/WyrqdS6AZdlP7Dj4wvv9DXBYsMM2Zo83WY4+hdb4/7FdXD1yGSBHbYwVy1EqCBl2Kr75eyIpcb5eWV13//tzz9/vfcfv8H7OosyD/+/Avt7QtswVqYvhUBElsApw44DQbRlQEZillHRnf9sPsb+/2ra1yNEC9v6T7tlNqDkRfnnrhxTOBb1fW6nCgyHDDpI8puFNl3ROpRNlIrRSvLsrrGZlNa2zyBJApaAzhwFuQI32e5XJFWkN2bH2hdILolph+rAT4uy4Xs7uVnysyvz4Dq/njHeqe3HWywLoXnpyu1gJAsej9rR2+e8NLigHFs594GGztalHXREDl2wfAUC06GE0RyJsvkpz33cSLmbowWoIsnCdIHc3mIwrIsrqWYOyFMkSdLurMoSkHD9g4LGy6K1tWTq9owKkMqUq9o3VCF5fKCrlck2G2uqbj4OdIHbXRuaw17ORjmAXNdKqILshtbO1jN006bJ7JcL/KC6orrv+j0BA7wKUxQJi5bY7s/2B4eqLsZ9nLxNNAj/d0YNxW8lDmwcNXi3Xa7Mhp8uXe+boNHP31uxg1/7jUdyG89nONn53397aXyv+Wb//71h3z8TY7NIM7jcBe7+dlr5iVlEv7xTFZPn/ab205/NDIZGgyUUo/YqkWMJJjbe+wAQ06xSOZz8ljJa6vT0SZIiR78fk1QsKjHDOYaXunfSvHnVIIpZG49w73wv9WDBT/GmE0cEP++jcYgmFXqa4xpD9yf7L2HDlusQfPyPOsygafH48Hou+9J6/G5kBUMngByH0Okn7SyMhZJkC6fvc+fbdvunRXbYA/dRM1E1jwnjnLJTMQ4QOcaaeV0Ho3hP3cm+oBoj2HhXPS+zcyE5LycwyQOn3j65lFul64OwvEzDr9VTMI3lKjeTx/eoz2SVDLHZa4kZvJIcrx+vVGME9Hi/MHnfRJ+5by6pa8t82eOGcS10tbknrP8s7y2fPiSQFK6qCpn3Ta34xNXyR9Pf2Ve/ON1E1v55nm/mZjj7R+u86+//nLg6fFguvq1TE3tEZs+KXHzYc5wfM+F6huiiNN/iecrM9MeEzxkMuJBnE6d7ntkD9KAHaMypgBdsjeOg5XT+9wR6c3yLXHdY8SStqYjWg67D0xqUjoAgW8UnE1w1hsa9nFi5hhG3ayj9ecFlYtenS5/Wo0z8AvnKLVpPoqF4k5M/I2eV0tmt87jIHgrckvjESeqnJhq4ZxYcmrloEk6ch2laCT4LPNAOcDI+DlEwOG3UWqyD3BwTpze2PFW1zrEBXxFEFuC5SQILmot0lC8QwijYcP1C8Q6ZuGZRkjhGzE3pSEoQx1hD+l2MG9xjg3UimvrWGhmoEhxJ9x6x4hW5Qk+gc+9eMbezFu9y1BkeL8yiRIPn7sA8TTnVyJWjpucVsmXmSZhLi1JGoyiMedC8Zx0OMfiB5XovD+dPFPzUpkPxiM+L4VGPC0aTsTB2rMoc0Mq1NvUOBgoVh/0+qCLYM31V3p1Me2+P6hDqOaClMP84B12MChFkt4awJNUENf08Fbb3oq6rCv1eqU/XSm3C9yuznQKL05JkG+4Q56lGbkVpGBaIhBdfL0jtAFCaN9Yiz3T6bJh6qVdCbx6y3anP1OTaePetX9OCWxSMKmoVKw8QFe6VYZcGOJt3OkN6Z0Wa1eH0XVHrDOq0G+DUY3WrwztWA1ybXO9HjE/jEp8dgJGPejrqkEeiT2pCYJ2w8qI6TZnhIhnoBPsNekM6RiNvb3DVuF+Yby/OWOnG+PeMHERS506YeYsGYWhnW57aN1tUbBmmDa67nQetLG7HTXBHhIlf7FOm7OFRlXGolAFuju0u+a+DvB7RFlQdjAkdFuyS1PMe1lW6uUJtDCopIg+1hk9MvgDUujaA+obertil4KtCqtg1XxObMe292DJdDSE40UIwfMkROd6D2YbDoKhC1oqTS4ucB65VmIvF3Xv2fbhpV8BavfukUlqWzgVvRDCIn4GS9r9gBxEIZxYEbyEMM9dqX7I1djzNia4nmeQA6iGXXxuxMzZH9EoIqJQZ7NVZ/RILSg9bOxAe4BnA7oIQwbwQNhRU9eQYkEsVstwwDDto58bBsUBXtUXZLnA+oRdXmjbTntsYdkcNCm1hHM6nMnUUzOoMnRllO4su1pZVm+iIjYol6+wvzMeXxlvP2HtTm/vNNsd8BJYSkUDFDsExYny1fhZgk51paw36uXGcnv1DpdSvFNsG2jrjr0N87UDaCmUcaEMFwB3JsYzZRlQn9hl4W7JE3ChZhFCW09YqmeXGYq142w5AuuY3GC2ZcUqGkRSEdcl0oVeVsqn33H9w7/j5W//c777v/x33P76r7n++3/H008/8PK//M+8f/qe/+H/+f9g/+knvq8X7PFwXTQcIGB0KsObRojRxe00MrguBS0d2Nh/+Yn7Dzd+/sd/oP7u98jn7+DlE8KCinARpZogffB4f0dLAxEefWMM14Er1U/4Ruf969eQVzCylDM7paVPo+psKSlwXSuswlJuPB4L+75gsjggIrBcCiUC1ddPL4zQefry/uY2pRT2Vp0VOgZaNh4PY9/gst4c7NACD4NmVFF2NfrY+fnLz4h16I3ev7DUneXJuL//wL69sT/e6TugLpB7fze3w/WGUrJSLEqzB9SVpSwgxvveGM3o0Vk5V4B315LpQ0qpFPFSRk84dGeFYg4i0UAMLeLlQ+LCxn3fGa1Fx+doENOCnW7G/hieOJKCFNfekiGo+bnZO2i98vTyO/6z//q/pT3eKAKvf/id++JjoLvwh7974vMf/o6f/+Uf2O4/sT9+YS0FoUG/o/agLpXbrTJsYdu8pG97OFBHFaQW6rrw6Xf/nn/3t3/D6/ffUZ9vXvU//JgdhCZraXTZ2Mc79/tX2uPB/n7n7adf2B+DYkLrDqzvPXwNgZ5/P5Id5q9ajCpRamaD97bztu38y1vnfR88CP/HMg70v50BZbprJQ7+c2LzQ5AZcRCRoP0LA0P/03OkffzhwXrOywvbcGBkNKgBwJmps9mHUdm989uJLD7/fvrn8eMh9NEmGFMCRB4i9GDHGu7Y2DgYS5jN+GgYjD3PLAeJemiOJos/yeoEY8b7okQqQtw+OTt5n+MwAcNiVPXzWodF84JKWbyboxYN4M2ZrIg4uzq6c44xvNtqDIQCWwPtMKr7I2adNjZn5nSf09aad77cWkRWDpAP8SqCZQ1282heZo1FZXmPv21BIglM4pS0tmAwblujd6FHkwafiKNW2rVfPQ7X0JNUDUC++lganVIL2Q2aiOldiD3sAkof3fXM8DEqi68Rt5s2tZps/P95+7clSZJdSxBbgKqau0dkZtW+nEt3yzQpfCIf5v9/gq98GhEKhzJz2Ow+Z1+qMiPczVSBeViAqnlU1j61Z1rG946KSL+Ym6mpQoGFhYURgF34fXE2wweGreR8TqpS6irB87V+kqkG76gl5D6ypjUChdGZ/GGH64jL5ww4xUnxdfa0ptKG5hpxjCRonJbUXLKy/o30bQKjOMNMEvH9yLgfC/SdKz8WpQaZYzbRQeAS84jrivzD7/WNZPYyyfr8qs53cBJZHs9PJ/3vPP4OxlNHYuVJrcvUX9LXEma2GIUEVybbJ5A3i+BwOswfb4JH4BZMl3Se02FN6/msU5AH8HWszHif3uKemkU5RWSd26xjo8BagikQmUwnzwA9DHreePvFiCcFFPN31tmOCGTzXPNvBWY2iovaJxgU62e+5uKn61objeSpJVA3/3M6r9NzeWyB/OJ8gQDRZgwjc0GtDnlCRDvv3fmbHCGoK5hElPO9loUXu4TGFSS042lUuYRYr5xZcxEN/aC+7m4yo3K2RYtRTMApZ+qpLBAjAKfQxfEKt4GIVQN5z2w8f7tkiU2IJlMlGciK2+juQUFb/jtrrCflM+gMGp07kmnDcTkFB3Pl8KqScT2BVUTdtTggBcVs6cpEr1AaQUMW15xZeLlGfcRcx5o3QACPE/XOrHJhwFc2WOU1MvNrsFLgXmBeSLmGMKsR52TR1YIU/XB6PZ0hghbMUjEjPlTgWuB1g1yukO0Cb41ARCmwUkJYlNkjIAFDri/Nsc45MEvGcmyDBTNXTo63gR0o+/rtPueXREmdjsGgco5PAA6uBDzcgdIg1SHDoG1ReQUODx0dMQodc4OmZoZ7mRUAcruRri9CPSwNUKanQxM/7ug509P/jAwVLIGnHOe43mAbMECOXV3BEpji0OoQJQA1xgO4f6NTNAyuO5DAE9NeZDBUYcyxCdk8MoINRzlmZuqOAKV2DomlreD8Vu8TAHGPeZO6DOKh20OHIkvX3E8ugoZF1QI/ieGjNYpah/ZK6j3BBmQMas64wCMrr5cr9HqBXBv0UoBN4TXnFeebWCcgBpmAA4MkstrouAag6Xay1RUeZYaiBUmmRWHZi0bJxtmoLkciPJ6wmSyFAxlOySSZH0o9umUFk6mzZn7adplrfbE6ZTlcCjIIagKxoXAkeUOCeVIaUBReysweF8925DZp+7EzQoTsOdjBNWYFsGClKTv/iSZgv5JPGsL2BcryldohheVYAqAKO5lx/xxAV0A69/eS4LnBCssMrW4E6rl5QbQyUWYDfvAe2aBjTWsR5Q1RI+BSMECgxpTHlNqoZdXWj25XIDoJ2TBAO9wenA8GguNR+uGi2Du16/a3N+Dnr7Cff8bPP33F+7d37Pcd2Du0DxRjtyPejmDaOCCqwaaKvfvs1ab51QXsqaZOmXA+tg3l8oLXf/wn3P7pP+L1P/0n2A8/or9+wnG5AD/+DuX9jtv/8J/h/9P/hKMPfHvsaMVQoARllUX0boaeZRvFUbaKclFstwsBOi14jAPjccfj7Sv6/g7dL+iPiq6NZa71Ai8Ukx8WK0MVgmBBKbvnjlKgWvF4P7GtTz6PALQvw3DsOwSC/fGGrTUAwHE8cOw7mY1a4tgSCwG852B3vz4MAAGlWttca1q4bzooFm7DoFpRSsWx7zj6gf24B5AdQuiDPNCm1Fza92/407/+Cy7Xhsf9FW0TtO3GeZUMwh6aVxkWmMNE4VZnKcsKUoIpGb5n+uJMvnC+wJ2lcSrwkjsj91aLEk4t9M2yb4JHwE5mRUhNIIAC4XGLsHNjq2AL9SzFF9rdFixqFaAfDygM9XaDwGFjoF3uDO5VUbcrbDwAO1DKQJYRlQt1di7XDcOZLLwNRakD/RjY3x7QraBeGq6vn/D5xz/gh9//HqNWaB/Yx8D+/uB9NTKqLH760bE/djzeH7MDWO9M8mSXyxFx0DiVpBuWbzfcsIe/5fuOt0PwdQd+3geO7mAP17xXy/g/r9vYHyQ9xXzfdwLA9O1/Y2CY37dmzOmpeCTDqZvjGM5kFRxd12d1hI5bxA8az6eMn2bp24konLsSY5J5qZFk8WmjRDRsHcFW7qVJhnCOuwNiZN1ojKmE3+AZI/qJoJAuUMnErZziq9P5gNU7RaIsUJNhtNbe9J1B/zTL9yASpa0RUwzuKR1UunU7pq0aY0wxe4HMGLXW8FtccBw9fHjD+/tOttIxmIgC/e77/WCHURtnF2SKg7N6id9DEXJHHyE1GvMn71mCP/z6ZLIT1GEXP11i6+B6j5w7z5uGAvf7seaC5mxm9QP97MAVIJjdT0HgMv2RM8dDxGf1T0gEx/zihJw2zgG3EcdzlnR6+kbRTRGAjYGUduE+v2LkuR48z8PnPJ0xRi53WaSL/LRlDDzL73ytzRhTjfubx5a8Xiw/ML28hT9EnJiX5EGMmevqeQ0//yMfKxZCjEqiCXleS+j+3znUrzz+LuApD55tmJcafQ7L+jVZPM6NfR4Hzv86nVVVBppPABMWre18n2cg5Vn28mxFn/7pWK/LmhzEvMIZmq+lYTwH3RZONR9qdOjdssBjXiUn6el85On7FgA1xdIjCD8/zw9q6EctMCJBhkQzEcbsKXORxjz+K37GKNe9mVc3F+oKRPKdZxBrHiMXzclAJ+U037UAtHXsc7Cz6IbRwSlXpiQQxpE01xO+nAub2TNRXewgtVgQsSw8keY4n9Sdcn+6r0AaLX5mdnlxR1EjI0ZSAyYDxcU0kAyawtAz2ku2U4o/C3AGnowOETEpggWS5Yvneyt+GsM11mmwJmzh074BQgCLgIcHWwsELtIY6oi/BWaKLMVjAJgAsee2eFqLMV4zyuN90FLh1kLHo8N9wKxM4MktxL5dsjSd+J08lyDmfD6zI1lCFSVcKixvaBv0coNsV6BtFOcuupgERaeWhblBezghkNnqOed3jqXH3EMEj+nwWADjbADQAwTqSPFkksdCbAkGVBp6xiIZnJe4YY4Uqtfq0DZmVlmC1eP9YIA9MiircO8ACsGbIpC+02EThR4DIgcgPYJm2uERwNNAZJSBSR8mSEFGaAJYXMursQLHik4AFDB1iOYGboCz+5A9vgGjw44OCl9m2950xwzYlJk9r0GwcbISszwtgCcKBUdXNCAcDsTGHV3HbMCcP+OkTZKlevRBfTogZzYh9XVCH6i0EHNewJNo/ACk144x2UipDi5tg1w36KVBtgo0lmVRx5yACrxzfkMw0rlRwD2ZTj3AJzIQ3NMKLcAMpZ72j6gczXXxwdlBfK9H+ZBDZgmHB+OJIF3uXouVxERKOJu6coQRAoW9kGX8M/GCcwfNaHgw03S5l9BJFArdUMOrkI2pzmy0Sji/I2umYo7GWmTAGo6eNIiyjEiiRJDdkgwJhonWYFEXVBNo6Qy+jTp1VUKPQ5zrOa5hjBHaV7xurzXAp0uUZCZDO/U6OoayFMxhZEbC4Ci0CwGOQeoEnExbaGZtkO0CjR/ZLtR4UrLzxAymyg5iYyXsiraw2YLHYwf2Hfj5G8Zffsb46Se8/fUrjm/vsMcOPQaqLbFuRDCRjSfUmTxz0L759N3WrDoz3DRYZV4EXhVybSi3G25//COu//gPuP3jP2K8vmK/UM+ovr4Cv/sdrv/xP6H88R/g+4H7X3/i9A0tMBU26nBn4G0+ICqoW0V7uaDdLpyHLmxScew43t8wjgf8uKPvFUOZBLDtAS8sYx5iEbgUQEaUvbD721CWdZQiidMi2RU5nVNf6XG/T1/ssjWIAEc/cBxkV7NcLdjP028KnTozsgNAEeCi25xrFGWP8rfHHaN3CvDXir539NGxH3cSfdVRFGwRbwOtAMc4sN+/4s9/+i/Ytor98YpPn294efmMy8sXwFrYBGbWszyODBsNZpNFDD13+ZkAhnNvmN0kAWTCLcuGZvKYkcz0XRA2RYMBYDLYcMIOzBLq0YEIAmvbIthjUsrBUvt8aJTd1VqxXTbYYLkh82sGGQfq5Tb30dI21L5BbIOWR7CNKW58uTRcbhv6UEgBbthQNsP+YEv7IhX10tCuV9w+fcHL59/hYQYrHePo8PeOYcfsZDcGWbF97zgeHY/7HqCUYTfDQJZklgVI+dJFnNU8BnRH+JSObgSeft6Bt8MwRib7Yl1+3ALk/GIEwzOq/JXwT77/9N98/DuRpCMYmALsZrDOOaWakYhDLZoGgPtlcQICBRkjREI5wMq1L7H8WDR9lZMvKg4RdgYG4v0hD2Jm8OwqmOsd4abHqlVNfyGIDHlcD+gh4lJVmfYB4S/5RAwMua8WxWJ8O+hT05lEdvcrmgxTQ1F28DQo0DtZO/G5ET6cWfpKY9qkEkzuIgJtbGyV2HEfhtEHRAqOYjjqYPdOML58PPYQC89YPK4t/RVBxEGGYU6ds0EWVU4ERYxJxpQrvGMcUgS1VtRa6AI7mexFCsdBBK1tQJaWZ6XIiQXnCN8z7tsUP88AyOlez8TZjEl93hWaPfqulN5LjduINRKckiB35HiEP1OMActI8kIA6+dY92ltOGaMmQQNj/m+JC5iAfqypBnIZwh0gil5X2yNycwBnvzfk0WejwxDPM9T1it5Tue48tcMwzpm+oge6yM/w/if8byfzuy3PX4z8LQ/Hkgkr8KhphHwptN1Dus+Pp4Dy8myEcBsOa5zoc+A95mF81Fk/CPQcf798TFBoAR/gMl2yLM+Q0p5kzWDCInAPyYJ4vXUvZldwWQZygSY8nk9aSvk39nJbjn6eto8lmOfr2eQti7sNMbxPTYXVmYwT4d5+vgvx2pxhuJf6Yycxvv8+2+Nd1IdRVjr7WGgbDB7OD/qHka3cxMqFTqo8yPRGUVqBDaTdcNAzdOL9CN4yNFJDrnYiZQbTmhtkgPDanOTLzDNEgCWefC7eB4uUcoHXSV9phA5kKVJRccUk5wMGXUUF4gOiFUI2rxxEmVxhsLsR66RUyA9nbwTe29RTYWBf7B9ILo0dVaPbsw+Zm7BJBEYsmVKgE9xVpqB42mO07KOGWCZD6hXwCts6ATqTh9KUhf/Dkchz8ETzIsOPG5U8WR5bYAoWoDGbmr10xdcP/8IefkMef2Eermibhs7YJUAJCWztaQyM4AhMIQI5HyM0zxePyLfWQlOkX8PnakUZVSXmGNkYMwLRgb2QJY5ujLolkIHpPj2FMz5YJmo9+jU1rYAKdkNTu0KjB1DK7C9Q653mBf4/Q67P3D4Y14bUiAdYLbdOW9ssEveGAfTV0ZgWoXgmJ0B4aqTPeZVydRSdhAbO2Do2B/f2PFOG1Q2qFa0EHJGdO2SS4O0Ah2NwJPGLpod+44HhdM723xnWSuzkRzDgsGyqM7SDesDNqj/kt5iBugTq8DZFyL4oXWD1AtQN9qV1qDtAtQGKxtK3cKxMaAzqF1Ah7Kr33VjJ6aNmjFco7bGzukod9nRe9g8SNgOg6MDkcMm2MQzFFSoGlQHZ48NSK2oqHArKCUYjJa7U7AqQ+fFBktKEezTosqvlAW+0eROCmc47RGZ+8yNQZAF42G/0iKYBxLBMRUuaGQmMkE0QMKmcy3Ov7E0vBzs2EfXOrRq4n6u/ZuBPD2vHVoapFTUCBoABrcaAR7ZUoJaCuRygdWK1toEnkru8QF4epQCpq6cIBoXBCjpdeM9ptdLPbCiEDsYaB0HRjcAneCMEmiQuvFctULqBT4bH1wglxeU7QrdqFNTtitwufJ1ifLIrQI37o3mBMQEBTBHf9/R3w/0+zv2P/8Z+7/+N4y//gXjrz+hPQ40V9SyoamhuaFqiB8Pi3Hn+R5isEK/J71Sib0owyIS+bhvDjUcVWCvBf7SIK9X4NOGcS24V8fDDug4UPuBggq8fsIf/+//D/yPY+Drf/1v+Pa//K/4+f/z/8b+b/+K+//v/4s6OoXCBWQhlgK5FGBrQGsYkeibmjh9R7+/Q/oDOB7wh2Jog42BhxTeh9IwpEIfjXarCForLDPpgjHYNU5g7DB1bVBV9DGw94PlLhHk9b5PVgBA1o1ZR1GWyJhSF5K6jwJBg4TQeO6Vox/UA7MHXj69oraG2ire3t7gfmCMO0anjdtFMXrHGB33/Y56qSxTOQ4c93eM/Q4dO+7ffsbXv/4J3/7yJxyXCrUH/u2/NLx/+oxPn3+HcvkMLRdoewGkwaChuyfUsHyMAD7oE5WiKK3A0OJ8DcPYRbYgfdgDwxTFKbheBLMZgIOAKFnFYUeyVWZE+z4OjlVUNrh5gPIF2Z2TWakI48OA11qQeBgrlCJQADD6gXHs6HbAQQat1NSTqTB7TJBne3lhd8FPn2HYMEzxcgju94H7/QETwx6dSf/lX/8Lrr/7Ab0qbp++oHeWJZVSoSjwAez3gf3dsL8N7G+G/d2x3x3vNnDAcWR3LRRAGrCHBlcfoemV/liuOIKLYziOPnBY2r2TD7KwpRDBxoxd/s95nJMX3/fzzYFjEDQ6BAHCLLuySRCgSb4BnKCTp7q3nFm93JuoV6QzYZmvORzQ0HM0h1KhnftvAKEiDhULAMIxSEaGDpksTjeHt9iDNVhTOAEqznuTdmHGbzEMU7UiHQ9X9KiAME+kC5CqaFuj0HbEPucfhYfWEH3w/bFzvljKcnBfb62hlILWNtRSUUtFa1f0PnAcHff3O3oHeh94e3tnwkR1gTZw9D5mvDaZjacf3stgjI1gdqmglIxl13XldJAA3BJ4y3hRRKKTH8e0eIUV+mqtXQAobDhqbajNUIfh6FmtEXMidK/KJAIIjv0exA+Z7CverxUvSWhZZoEYzeCaZ0wGcj1JAHOSop7hohIQc5RGtjOvQglsurNkPYGYGX+uiEJixz2TCALYeEJIEsyBUIg+Qar0DmkbM9YOPGKurO8FLetxfkmfQCGJIVuA0sfDnKOa/Pf5PWfMJI+9vLPf9vjNwNM8IUkT4KeT8rnBnEY17MUHwCIFxCRFdTGBqO+B9TMj5U9Dt45/OrupNYEP9yTBmtyM409m/uJYc1KcPpkZq8kxxLpyz2PkeS/kNUcmF0NmJKaQay4S59ksJ3+N3xNan4PjkRGOK9T5nU+nG92/YkzOu5cHKuyn8TnPrvPZ/+JeBGvpw/NPOlEfzmd9gTw9z3JLY/liMlKMbCcJtJ+AXfzt0e3IgRSikNi4CD5ZUNNHVJEFIGXC92caLD8Oy5UcIEFkuHM4wtDSyEVHCXlmP03vKECoBOWTqgkHDCXIRdExRh06ZBpws3UNkrosT/MG81hnLPI8TyU3tLnpyhREzA9Jvt8lRFoZuNERNd6DnDMJIk1QNplJOWyOFGrOUrWlwZLnA2RnuGSCuZ90nRKAGM57lVpiDmaBtFLL6/qCentFffmEcr1BLjfodkFtW2j5nLi/6cAIIFoIfFmAT5HtilpWKHwKG6fI3jQKT/M9gPKnbiDjqc/iXDtrl8NiliznRosCVk+UV2f3lxGsnGFsXx7OuuKAewUGGTlSGlA29EeHoWJ4Qe/rHmu0ghYVlHbh5YwRre47fH/Ajh0wW/2Ycs8M2zIyiaAKbQWyFWgrUb7VAQNs7ywnEIVJg2pjd7G68X7UCpEN4hWuG53HiXEEcNR3sr1Gh48DKTI/c3HCUibxDj8OjACdzJZQ/3nzns4FEmxmmacGUC0h6hweEma3qQDKJs0r50Ihk06i/Y1H0EnglCXnLLfi99u860swk2s6wFbpYFlwrvFYi1ny6ADKARk8Fdp9soDSBtBmjghqe+hmUScClkRrllUl13oyTokmzL3XVeZ5+vxvjORMr39wPywE0EEQlWv7vFeuCfVRf3AkY806zA4CuaMHm4G2YC5DyckiEKkwYfmBKaZdcgFco2lJgGC55lQjna4pGYs45xiU2AOlGtQFRQZQDFrI5JR2mTZMS4F3gvBe7xSnrjvLHnxwWyiN4FO9sOFBqdCygCfXC8rlGoDTC7Re2JmrhAC1cK6yXLmRyeke5RCautsonWw5e32FvX8Djh366RVNDK0wyMBgJzbb+2Q05bZpZhga+7foqVQ+bjlCEzH2IijQ1dCjzEq3gnJrQFMMdWB0FIQjbsG6qxvqpx/wx//r/w0//P6PePzhH/Cn6wU//y//M/7l3/4F3Q4oWP4otUCqotwq6q2hXBqgq+23u5FZ2R9kfNqBiobugA9H32PvLBtcN5h3QBVjd4yD2fdSeM/dbYoG11jv1K9yjB7M6BrlNQZ2cOs7g32PzpZC2NTGjjE6wUihMHX2HQEEpdS5R9/vd8j+gKhi3x8sM3UmP8wd3ZyaSBZ2ZTC08BBkjipHtKLYSsF1axQYtwPvX/8CeEdR4GKO0q4oNmDGDnuu1B4TKRhjj1b3glK4d2bL9V0E3ckGzFDNI++kKID3WEQJYitqabR1YSfEI4ERrAsKmOdeNgjiAwSfekeW7GtE8hQ9F0y2etg8G8shVgX6GDiOB/bjzv1jtrGSKLUn+1bKhrpdUOKnlhscFZs3lEtHve5AAe77A+aOdruhXJgU2o/U1FllRzaculi74XgYjvvA/hg4dsfhgBVF2SpUNsAL3OvszttH2vxwOTOOsPCRkCwNsoV82uJcl/n4TnD0a4+/HZN+N876G+/Gc6j5fDZ5nnlcbg3Ll86q1C5ALYjGIRTaT8HoMwsjz1xOfpnMmDHPweI54/4eEgIGlk2JaDBsT37C3EOpuyQWVSynXSKd+BH77wJlNE9kRpfmTnaqIC8aAO1s7qOKBa5JiQSxnlodiWMcfYJNBCIp6I0oniqF8WetDdu2obUNrVbUeoHu1MEqtUAP7gEZW41kMM7tO9dR+KfhiE5pZj/Fss5rJpCa9ngOwYd5AYJ3hQ0Mch7A+bwKQenpE8QbHEDbGvpgifLRBu0omDxjAyKOEaVKIs7UM2iWjDREBYmFzY65Imssck8nMYAgfKYLppcQCbZUDcK85kwkgg2LmMePzyDCo/OiOmEA8zs8qjr9aSWt8fAPx8h1up5bsfzT23j080txPjOk8dNrp8+eVzZfm94pJi5xCnMWnMwn9XScf9fofHj8duBJMpu/jNCT9hAYmOWF5yMzGR6GICcvJw0FDc8lXHkpfhqWCTplhiXeM4MmIBz5XGwy3+85KaYxjIDTlxZVjle672lrViw5T3rGsMBazMlu8fO55rBhOX4Jwj2BaPElZD9J+sb87hMtHMDcCPO4Fm/Ow5HyLLP0Jydk3pO0kRzaHKPzieS58F66STC0Ja736dLwzHj6CILJ+q40aPG1LNOjDsmTNg9iAx4GUwJPMga8GFuuWxiHIoBUqOScC8MNtsPltSqQrB5bJ8JbJXOTEY2SCpSUt5mOr5lBMKAyotxo/QiMwYcNsBPeMjKSASM0nIkQKHeDI9k5RLnz70n/jcXO0z4ZrhPylLEqsMAWALPEaxrKeYMlWFgE8NwLdXd8dbPI0hzNMsNc71jsLeOki+CdukKe6yk3AfFp9IEMSgYM7L6RIBSGB9PWQzgxrlsV0AbZLhN0aq+fobcX6PWGcrmitkagRXQBRzN8TieUk82zu595AAlkFGqWl503xLmycsi5VkcAIwk8pfByrk2ZizaONTOcMu8vSoF6w+xapwC8UOh4VAa1hd/D9ssd8A3wHmyMC9Cu8N1gaDDUAJ543+q2odSCUivKRuDJRod3ljWN+zfYXiONjOl0sKSLc310Bm+qCr1UyFYJPFXAhUwsj6YEdAoqXAu0XoC2EeAZG1QuYPkHu6IReBJkpzQdO8Si5XqnltMYFnXvnLkmBlgH+oHReR1kPIUdlXXT0pwJKHafIIRPcClE5aXAZhKBwY9pAkzCdvdAtLyPz4rAlNlXjTIrd3YfdEmnOTPDofcTXk6K+hN4igb2UzyS9O9SYs5YhZpARzDiECzNsCvDPcAmBnbD+gRzpmF2wewIE3uBBOhNhpBQu8skGjdksXScl+RetuZyzmEKn3PeisX3hG05+SaYKyJsmblhOIGyPo4AGju7OtoCnpCO/hxD7hAafCkbDkkWqirMmHCgS0KdmQxAk0G8fGTa7HSkRBSlOZlPhd0vSwBP2rbJvFY3eKkYUmDtwfKndiAGgfo2jQCT1o02qVSUksBSBXRD2a4MgtsNUht1qcoGF40i7RGlowZ2/EMETQIxQdGKKgqvBXJ/h/SdLevtQLs01NsFVgTYH7D9gWHvBJwlNCWdAtsj9nUVCw3E6EBmQIq4ksHOTpdDqddiBbhsBeW6ATXuSGepJO03pRNaqdDLC/7wn28o/YD85zd8vlT812vF//r/+n+SDegDUqito1tFe91QbxvqtcLHHX4cUeY8IIOAOY4HytgBueBwQx8dx512oLQLpN7gaHAR7L1H0gOoraDWzP5XlCIoNfYsLWSfwjPBjdoKhilsHzj6SE4fagX3ewyM/sBx7EAtsabaFOvNTH8y579++zZFvB2OooJLq0Ak18axox+de6Qq4IXJMosOroXaZVsl6PT6cgG8o6Dj/euf4bajFVod6w94PyB24RzbrhBhSdoYBwWvXVHKBaVs2C6XSKwBPgaO/Yi9mQGgKoCqcOvIkiiWnAjLWzX2xzFAMXdEJ6weLKoerI30/xGk0iPMtqK2PFaBTlCUybARe1LaBUDQe8djf+DxuEcnzOhsnMxErRRlEEW9XAn4Xq6o7QVaLijlBfXecTkOXD5d8f64Y9iAtg3X1xdorbjvD4xBpoz1AesWP84W84+B/X1gfxj23dFFgFaxvdyg2ABT2CFwFIgMMk2ySRL0pLtCU2nCBMOARyez5Yuc/56m7O8I7n7tccpJ/saHf/dfZ7sf7hy3kYhbFJjaTV0ArRI2t8b+mzFMSkHMM1z/DT/FZkQdvvwsI44vC4mOUiUauAZ79JRj5pbEMjKNcjIAk43koQk1okRO1adG0OShSMR5FnvyKe5xBEsq5jyB+XCZS4FGCVqK+lPDiaWcTCKxvKsfbLZAN2Vpxm2XCy6XC1prqLJBsMPMoryto9eCI7orZtz9Sx7K8nnTb+ewZJJrJXA0lNRJOFjxRAKA5+qdomUCT0B0cEyxwTluwRKLR9s2arwNQ6k99L9Yjm1Gv3uEfICN7Gotc49KYC1lS2BkQqUuEv2PsRgcwGLQWfrmWLFwOg0MAsO3iO87zcysgJqxLU7/hs/7H6OEhLhIdPmIdcjze3PNzxgPT3cwxzFxl6cYP48zpXtO3/Fhvf+aGcmVdwbBsnwwD+LxOv3sfG2e4K8c+fnxm4Gnc23osIXMq9Y5uTWc3gRg0kmeQmsZFCvmJD1hREAs3MWKIkhhMfkEwi4QJ/Do+RwD1JhMKvziPTm0dhISBz7cF1nPJUJJ4bUY8DjpMca89mS6pHFbx6KVz2t4+o6wo/a0w4RezwwmMINlLuAynUTk9SWFyUFDAQZxLoggVphhOI9VXuZpE8rxmr/NgY4JIjELuxzUZECthXmKBkEmi6oxK60eMUzUYvNgBI8igNPorIII5qZjFOIMbpH5drbv9QxQxKjpo8a2256Dk+3CAXWCXTQSHovHIKA+jSidaFqm1J9QaGV3ryk+DCWIgp3lc+ogVaGuAEc6HVJ3QDuDZYsAxRzmHeaNRts6xGp0W1hOQd4DS0MZ48z7xA4fzFaUqAUOADct51RrxNqgI0BOan1JYVtJow9k44BJxw12mPmAmpDpYTWy+YU6LlliVZRCpxZd1qLMyIwC2tTA4vHEQVyQWASYZmV5Xb19Rnn9EdsPf0D58jvopx+B22dgu8Jro2BqzFcJQOksSwMgGFmRmkgvKIBx8dTAyXVwWvA5fikSDzpH5hbYrCDbKSNLB80AM4wAYhO4nOC5RmAMzl0zDYBgMKobsYY7sDylAUWH+KC+1bED/QBkg1+/wm7fINvL3Cvb9YZSC0s76hZBAcvrpB/A+1fY4wHYoMaACrP+BcE+6Tje3wGwJEJTh6a1YCvRGWvCNvMFDrcHwQvf4RbaW6MBuAVTa5DVpUB2nYQZ1HaWlYXWT9qaZCtyoKLt/dip8dIfDIKyNOtkaaLQDE9C4jE/RzJKcsKYoww6T1LA9KYrS3lrgFBVqS+WiQbwvMsYJ9937YEDkXn3EJlGkLNLTqpBoDcXcmhDqCYYBYgvMeLM3rkLdQacDIlhBL0Q5WrAAIRdIuGOHuvqDLwJsq28Qo1r1OXEysvv/4VoYJbPUleCLBnabC8SWjkOj854+TnutxbgKy3AGAfMO9x2DDvIrvADbiECnuvJ05lJ7YwKQwXbSTeIV4hXWC1xfgRtWG5MrSdICn1j2gg6GSyblFag7thKQzVmUs2jI4+W2eWMYLLBjh2OSqBFNohuqBgoSoHXsl3JcqoN2XSAgFMEV9rIuqgXSA1dJykwZM9VQFBRZaBKmb7TOIMZRVhKdXnBtW2wL59hb9+Av/4D5O0r5P0bjr/+Gf72DfbtK45/+RfqQe1HlNoOSO/QI0BKC7ZA2rtT6tKiwYA3lszqpWCUyhLQraG1hiGCfuzoP/0MHUDxgvFgc4muBbI11LB9b+74BsO9Al5A0PLSUF9fUG8X3P7wBZ8+33B9aXh8/Qse377iYV+Bxx3ed4zHG95/+jf4BmyvDWPfsQ/gcOXGYS+4FDKYUAIQ4UzEGA8cg+fR2oXvCXFbZv7ryU+lJooewBgHNbV8oCo73BEgJgtT/MAYHccRzMp2Y8fMWrA/dhzHgaMf+Pr+Rl0gG7hcKnTb0OqFtg7seNaaQqSitgu1yRD+oABugv14B/UnFbfLBSnaDR3YysC1DbTyYDkgYr56A0qyeiuOowBgYqC1Ky6XF1wvN5Qis3Tn7ZthjAeoqReNhAYA6chSep8BCMfPLN4S69dGds1iF1MiLobeYy92+u/cUaPkRQWtVQahY2B/7MsOlgrrnMP96AROixIYULLLLi+vOO6O3Q1939FaxXYpsNrQZcPuFZANVS+olxdcN0XtA36/4PY7ipxnEuvbY8f97Y4RXcRsN4x9oEDwul3htePu7+i7k1k3BNcfPqHeLrh+/gwfBXY4jjdDKY5RDWYFeuwUiTYmSIc7jmEUEe+Ox2G4d8f9MMR0jVKiE+v6bJr/ndjuvwM29Xc9/MNvjX8Y8FRcUD0YfVJ492Mv1Vm23dEHbbIXn/5a7ikEm1iqKwUELpHHoOM8CtC7T0mSsz+drJdzzGkGiFHLaAw/XUdoxYnAqxFcCfaRChO1IzW6+hoBJsD5heqCah3dHBCN5IYwJo7PDmN3WjcJ/C1OMsAKN+o39T6m0HhRR5dBAL53+nK1ojXGFhjGzmxxTufojOAgB+NE3DlV7gR5A3Hz4h2TezHvukzbKdgWUAXO1+PoGCPKFJ06iCEoFfE7O8aJSiRMZebPpLDcthim72OdbMqsjrBB0FYnMJbnElfqkfR2zI6A+Sha0EpddC9fzN0sUXdz1FIBXU1EPIIkKZg8jcAQn9elrz2I/0/g7iMWsR4pxJ6aeoj1skY7Dn8K9edc/fDd8/EdoyHTH5KnN/6y4O75Hfmd67tlFuLOOOfvMDy/XVw8tIqSxj+ZO/kbMg3M33rwZmQAvbLnySAgi4YZ7Wis8QQSTQOSaNsJ5HkCr37xkNN74kzCsfv16fDhPs5g4/Rvz9vw/CGfJ3sCcr4zKbiQTmyZfNnWG2WOAz4srA/PS6Dr+cmTsUg+yBwN/bAMcrH4+sE8Z80Ry0/HHIjzyHOfg7Durzkmq0tyl1gDOL/DYZCoA06QySUuMIL7MSjwmXJmdGAiOErdJ20xNlG3Eky8xPbWTwS6YMmFiQOa9dzRSjzB0nn/6GAxIDswO7JJBmF5+cESUkwaMCKQmSU9wgArs87JlFhMsRiXqJVwP49xgJ+JxmcXLdC4ewaTyHOjsygiZF7FpkPGT6xrz3mxNqnFZSArgEK6hmQdkNKfXadiwUaWJOcd10zUyoMlBIvlx99muRmVKN26oGw3Ai6NpSmoFOp1ZaEY6bIOifr++eT8TkxHeY3Ds70A8lbINMjZmvU8j3G6H9le2TRAgMmkoBnObg/ze2Q5T1wuiyUGaLDUfN2sKDVh2XChJopyrkAr5LIHUCXU8/Fw068XSLSE13blOXSWs+E4WH5Y7wSeSohRIyb3OAhqTXDcYaVgxH1MfZ6gqJGFMstNGXyJJsukIhV9CODSvrOLSOikRZmEjA6PDp8cL11mIcTFEUDF1AZLTzY3y8hUJmuJIGM6NqucbH5HZDPFnY0Cxog5mfPktDchOr3EPFCc9rto6exCcNXjHVn25UmZFY6Dx83iuEQ74cpuVPACwYAgf1fIBG9GjGHut+nJOz3m+PHQnJLMWKY6pRDoVBB8slkKGHYhbPK0KznvhcLZeeWShD/g5BzHOXheb3A9fK0D6kZQqN+sL8bTOILxlF6kTfcngSe4Qd2gKKs0RRye0RmUzmfYW2LFmZs77fe5b+f8cIdIg0aJojptmWY2fk7CsL3m0HaDS0HVgqoGFaBVpXZTlNilQ2dTH7BMNhSZTlvYzjKF9NPOKsBMfdgOmecLnpcTqtDrjQLi2wavBXi9Qe6fgNcr7Ns3+LevwPHA+PYN49sb+v1OYB+RWBHMuZVObNqtIZj220tBV4VJhYQQP0JIHcMhfcDe73CpgDaMxzHZkpfbFQOA7Q/cH3ccNlBuF4xjB1RQbje01xdsLzfU2zXAbQ0GLcdAVcByzoHj8Ya631D7A32/s4uWKdrjCoEQ1FNeV+7DZB+we2EC2ipKQWJFsJ7ZzntkgtQZCNVaAYzYe/k6gNB2DFZQ97AIgmY7im6s2hVm+ouz/AQRNGfXKwmHPfeHWgn81O0Ch3Kd6xFl4uH7irI8rlWMXkDZvkEm03GHPtiNt25yqp1hN9a8t6Vkuc4VIhUURMcTaGsB0mfQZkKWsoClhmzmIGFTwsoFa0JF5lymjQ6GLAYyaHAUJJOcQN9AAbVgNBLRGqXe4grG0PT9dAaJTCKUsuHSKm6XhsfbhntreP9mkegEXBugF0i5QsoFKBuZ1NKgaqgOSJEQPG84Doq8DyPoS/08dgAWxBqM+2Y5p1Rxe3lBvV2xbVdYV/a6bCMc88GW7SOTKvTPhxsOExzmOAzYjWynp4hy2i48PSaRGr/2kH83BvxlMv5//+N7R1oBKUL/Nv4OD9DiBXcmhIvGDJmUKYKymehLX1EiFmKFJvWa4IvdA/DzEiyyCUIvVwzAJDJPfzDLuNjcebFg+M/Yy/z5fjhyfWJ6yYDgRN6PxH0kbUtHUQqLjygRJbHCuAVaVHpwYp23Kpbf9Y7j6CjaIVCoOnrvbJIBArhaFFq4m6hjxcFBo0mmCn1Sn1UKiH0n7+f0C8KS5nhIrv+4tgnqweeaziqojGUIK2YcKcFu5I05jugum+/njZ2x71McE/S583lOUxP3eMEEy49xIFhTOO13rHjIxhvhsa+1FaBvacufyznoZ0pfuqwnjghy7vucutP/OM/FfOda8uf4Oe3sGm9gfdjPP6fncPr3Os7zwz88N7/79O50W8/v9XiXrLfNSz9/9rc+/g7giR2ZUpTWT/8TZOBwmhYxYVZHjKcrnWDMCL5jtl8EwnnUTP77DPpFBCUzsDg5wNMYcHieStlOCGK+y+yXWkXz1QSSRD48fz6Cr2tILiXsF9/1VIr3i+Os4HQGFUC0fpQFOJwnvfkEymYMkmyyOKqaYsa1SANLCzmDjRybE03EP87vE7A1EfAwHvMY/jQdkW7003Ey7aEnW5YH85WZONeo5uYuEgCUkUU0OrVnAJ0kL1Jt2U1I1FHKxkANB935GM+sAZ9fHd9Ddhgz57OFtFTMODbmqXgK/sXYq0OEmUc2wAoAoVgYyBpAVg36p0F0wMDsbG4AihqaO2V2UMo5c2YKzj0knL4SzAUeQ09Gy5fzKFEeAwRY5qGrwI6NKbSvJYN5zI1o7bIMUnKsBYWC3hFssVb/4092wMoNIdwOHwEU5XcIkohFdgaFeXW7QrcbywW2KzyAJwTwBIlplYG269rteUcR3j2mI5bjYz7vfRiowClijgSAt9bpMsaY84Xg07AO8caSnAl0rk0hWSRzUwBOx851I0FnJkMl28EClaAgDOIVWg6gdODSpygyQE0fEQEuG0G5UqG3Vx43gB3pB2q7Apd3wAfLTwIIgofmUj+49kKbo4Psh5GtNRAGJ8AnQY+xzGAxA3eBFWUZi2CCJgimjjhLMxLsSsYTx4HbkafmSQAVWaJJUftUxOG9C+yLjlGy70Ic3IO9QWf3tI8YS3hFxpzrqgi2iyOZnAYGr2nlvPgExdF7zDQGaB7eEcEj/i8wHkyACB5rIYByUYKpXshsA7XXNMpeaX9HjIetiQQyVvwEPrkYzDq7lwUAskpmM/hT+NPrsS5OZaPpiEwh8pjHDgtGDwPQrGaNiR73jZ89O0G8/9HFcOwYYycg0HeCij6A0ecs4m3l2Bgo8AtUstOMgWxqCnFTKcFWYsDPz9IjnPvkySPMzKwgSjIAJEiUuoHrWsKzdIGaQxo7atVCYKQWRWmXADPK/C6Z5xbnU9NWtvRq596SU4TZcQn75c8CvBCYhij7BaitQcYr8HKB75+B44F2/xH+TsaT2oH9z3/G8ac/YXeW1hYAxZ1gNQCZJ5tdtyS6iFKg22rFKAqXitZukLIBUrmW+wCOjvHtDdIBPxxdU3NJUF9uUAH6/sC3t6/Yx4HLl094WIfvB7ZPn3D94Qtury8oNwrPPmygu6E7mQTKJQKVgf3xFeV+QTve0Pc7jmHopjjKBrhDtMLFUGyDFYk8PTPgZAoYxpGetLLcNMvFB5kEx75j+IAocL1dKEo8FH1/sPSvs5OhRemcBUihw9D6nYRLuUAL0FRRSsNhF/RCv2VrjVl2UFiXJSeCbduwtQ3t8oI+WHYy9h0DEp2lHKKKum1o2wb3nW3Ox4F9F7y/FdgYaJcbbhoNIqAQZEdWrvlaKy7bFdfLC0QLtYcG5R005j6FjjFtoKWOkod2kp7VDbNtt1CAVzJbz9dS2zFLjD0iFpu6mR1WKaMgGqxMAFoLipXpm/TB/ei2bZC9hEaPoLYrXj99wpeXC97ffsbb17/gzyoY4wH4TpCp3lC3V5T2Aq0bXC+QsqEAaKXh6AcGHFU3lqN2D0JggEvBcJUwEQ4yVLqT1aKl4PPnL6jXK1Abr8oBbwbW6g20JujDJnA/nMzUh1GU+xiGPRhwKCt2SR98WqGzC376/RyYfC/O+D//seZINJaIEMnD1nRj0kcEKOpAJXiZMY5HciH3UQAztCg1/NnQ8MtKEkunHr72s1NyfYEhKyYicGLTt9YBCKjnKOlTS8aYsR/HPy1K9Wy6mIylDGy+g4jJzFgp4GB5NGMpC8aezoqecfjJx19ryTHQxwAOQX08OKbmUC049gO9E1yWYHGWwhL1AqGqejySvOGykt8zWR4+wNz7A/TPGH6OH5ZPv2J1+ms97G2O+BQb5047Y/XtsiFTA4/HIxjHzmqJzGWGn2Q5iT1jtdgLfzHPuW+yyx99t5L3DWB8l0Dn/JCBWren6FWcYHQwxWsr877yltIHdo3fHpMs8wtxLp5AX1zLR7Dp4yPP1L/3Lv8eF4nPP+lFeR7Ef3Gsp+8SrFjf13f5dz4jv/a341Ted4r5Hd+7vO8+fjPw1FpbSGgRaC3M1rRKpPXUsY2GktoY6ixl4GQ9B8hrMWiATCk47nFxvCyJsrzpxa+bPCddvsL/aiCjzHAj/Og0IKfUbX42AkYRnwjyGlBB7+OElocRgk8KnwDTMNlJS2JmL3PR5nElr4zP1Ri7MRYQk+fmzm4FCelOTZun619Xz4CFUylB2XzbJAQUYbTmsgY6D+pz/sZ7NVB5js0yOOtGJsXyI9rK7FUarRM7aE5UmRStIgwEnu+MkxGhAyYsihs9yuCKBki0yrvghaUZGIBs6NazCVQYndjYRaIUTAENbRoUBqjRrZGdMmQaPRvGbINHRiWZT9JRikOkwArL5njRFaI9Sv8MEqUiZP8c0NFg3lFKg5dGVo9GRjaNltsEJc0S5EWARpk5cAbbkqyhcAkTyI3sITcnBudFFpsD7mRvBF11QZi0thnvUnMhxlkbpAxoHfC6xfs6LLKoyeIbWVKQ3xNzwJ2BFteLwLzAskymbSjtArtc0dt2Ctro5o7joMOvilJjYwB1GJaskqaEQPoha83E5EotOD8tp1XiK8iOXJnNyQC7SJnBOiSybUnxTfZYgHwJroclIFU4WCFJR5/ZnXTOcu1gZdPcBOY01aNd4aLQdsF2ucVGI2hbC9HYjeLGDsgw+DggNlAvn0JbKUr4xgF1QxWD9R127KitYRw7Rj+whyiuKJkYGvYkLCsAZjIhAqkKuWzQ7Yr66Qv8coWVDV0rJOfZuFMrYxhGiMPK6MhQBxB2r8v1lkwnIyjGAIiglTiB08kyC+hWnfOr0HABJYAoBGsrtALs8Q7VjlqNWk6FpVzmPYTFBcnaIhWek3b3JW6u5iDoM2Clxz2M9YsQT03rK7a2r7z7UtCN1y8YsFYmaKESJTcI+CSFSz0TJj7NJ33iYIcidPOcLyZ9u1Tue1kqnkfIgCozv7lvcQ4XaGnRkZLgTraS9tSmQzDdQqsRCZT4mWVmML+T5WQ7Rn/w777Dxx62IzsVeqzNAtFC2xgMCTXAUeFuGCzw4SrRCncChhQUd7CECuH45z2IpJkI2U0nm5kgVpYD+cmxou6XokYHPcCpqxO+StE6/YcElfXkJOdqZuv401O+PIDgNiJFCxxRTOm0j/RvyywlHxLM0csNsANiB8Hjxzv0/g0qhvGv/wp9vWGowL6+of/8Fa2TuVLDwYZHb7BW4bVgXC8YtcJUMQpL2V0r/PoFsr3CyoZmYfrccSnA6Hc8/nLHY7A8S0TwaBEIWMf725/hcuCH//AfgN//HtWBf/rDP6BtDVoU7/s39OMN+7FjYLAEWh11KyjXiu3ThfpSFQA6rluFOvDowOgP6oAAGHagtA1oG7Ry7WfyKP0/c3Z3GnCC/CXKZiaTWdBaw+16xeOu2HdB3x9z7R37Hcexw2ygbVlK6ej2DjGHuuNyu8x5t48OFfazFDn5sF5QVfHy+oIfPn8h48YGy1DdyERQhZaCy+2Kvnd0P7BdXwAZgB6wxwPdBn7++jP20XG1gVIb55IZWtmwlZdgQ9PBpq4apl0YYw9mD5NXfQDjiFJmBaC8ZjOW+pgVCCpKuVLPKdhBKg73jt7v2Pd3HMcb4G9gsxNAtTIZoBKAAe3rsD473+XcKaUAkQDoJXRjVHC5XCEAamlQV/z+d7/Dj1++4FoLXl9/xOPz77Bdrnh//4b7+8+om1DnafuMTz/+HrVeoeWKPcy5uuMSLFHrO0spW0FxRccD3Q8c0lFbQdkU3g9ADR0HOgwHDN0ct9sXtNsNhwHVFVWBYs49Vjv28QY1h0rBcR+4m+N+dHzbDxyDAvNZqZX2OE38B898/fsc4D0BT/jFI1/+kEf/bY8PAep33zITpc8fzJgnEwq9O97fB45KFnSrgjLBJtqzIlm+E/Mm4oaUcFk+blj/1PsRmftysvsyyshkSMYoAMg4Sl+vsAOxhMYqVT0EtQZzODZIg2N0m+V4R6coNss+dfreCTgBYL5dgkSqTMpBouu4RZV/ltIPnuOKkWNNKMH+fnR8NcNj72i1Ymvb9C/N2ZGybpWs3zGAHntmgiHTr0rmNdAnUSwisuhGKJGAV5HY9+IYAQYDxu7HEVOkDI2ozr0wWWT0XwdSg3HfjwnuPh7HBJS0FJiPANNslv71PhhHDODYBdan2wcRsAxdFkuNST0HpMxrbpcNo1O0/Ulrqve4x3G8wCKSXWk4kIK6MhmZAjtG+FcI9vX58QF9cV+oMVYssrpcnhb//EiwS12eXuIlhg/375TuPT9+ffH/ghj09Inn70d+Y/pGAJbn89vPBvg7gKdSQstBQLq0KttexuJXVaSA9jNIE12+Eho+nV4akfPNSiKCrzchv3gasyzVw6pfff7sidYW2fR1w7Gc6/w3Fm1wPXf+nQFpTph8Ib84TOzMqvv83DyOrOuX704EmeeaYzNDhNOuMw380070DNfMUkZgHmW+HtdA2+YRuDx/jQfTTKajtI6RgNQzi8vnOAJrbE8nsa5rDsPJMXesMfFFf0QELhTfDGBk8CxLikNrOPyBqmcNuUtBlnwIBHa+SCDex8CFTAsaRipBUYND4rMZ+2V5DplizB6IOAbIUiC45tMhlXnDWLIi8bc5yJ6IDVPAjmJka+TWm9cfzKdA8l0QmUkuexEAngyj7NiVkdNJdwynMRaJEYvvyY19LRpMRHDyKRc/mcyAyPJHl7A5niFCGj2SYHPIY03GKZjPeB7DyUoBFKYFXtleW2oJYejMlMYcUsXHmmlLzi2YyZkz/sl5Oq0FWT8e92axd55NaI7Ik61B6j6lCD3HiNo6ccVzyvEIFs5R/s17aznt+XoOip/mU2qHGWBagNKQLXPn3GyV4si1AXKJXcEIwNhgsD0qqCt1QPLvyWgCcKROmcNLz+ZiyKyNznFhhvIktgBpG+RygV6vwEYRZZcaZW0DdhwEiF1iTuU4jHlbkhJNBynEaS07QY05du7+RN9m0BIJD/j51i4bcpqLbgegLG9QrxBTBrxe6ByWaHGMcNSIkMItGFdho1wGQZ/RA6gg4IxYBzMfJRZOZ54Yg3q4h7C8wv0ArMKNnaRmqdjTDEz76tPxik0RIoAJzy1B60wseIqJh75KzkkRQZCrTk4lArh1rmHNpEvu1UJwKxMQFO5BlihnpE/gx9a9dJbWuZHlZiE0vu6txXcLnecIInyCWGHP546Wi0snmDttVi6K0zY9LyEiGjqSa6bMMmXPpER8QIFskS7hJ5DcE85ugJ4f3JgnU5N+CFttx64cyBZ9INpMghOxwk4bPac57SOKZNoWrgrxCvgGDIpKozbgh99Bjg5/3IG//sx50Gk/vHOuRX6D57s14NJQv5C94a1haMFxhADv9RXj9grZrkwmKrV6WuM9URuw445sJU59EQdZigekKbbPr6gvL9i04Msf/sj5agPv9g7rjh7i8+YprOvUIKoapGUyaKSECH8Bxd7dgrXExgiiwq0JXGcpsJ9AI/MsNm0bohPUWbC21BS8js5boVmwxG7B0rAoOV8lr2TdpRtHRkOBDgLlkuy5SF4QWAVsGI7jiG5wJ1aVj5j7nDtaCkqrqN6gR4F5j6YDFppTj6l9WbbodqlACT0/+m0DZhrjn2s+rj8nq3sAVAh2aoxbF5CZnewg7mOtpF2JBNQ4AFAfK5sQJK8uYzBZS2/N+QSeYu7X1pDl1aU0bBv1WRSCl5fP2C4vKACsOlozbJdPQcYb0OIQ3QBpACj0L9pQRIIlLXOOHuYoesCVrOXFRXbM6gsPWy9Ax4AXQYvuebWSIWclkqfFqXlZBSgVpgVdFAcEh3v8UCl0ABFkhtFIs/YhRPjovvzi8Z3X/KMNynH/jY9zjvvj8T8eZ8VPOXYrXkPs6RO0OQwCaj8WJ8NJgQA+GB8xJ+3TVZAEdcSRki/fvSafbmocJ8D9mRwHfO4RHy9mlbdaAFYWJ5DJ53Mndsu9NskCEl8gi6XiYetX9csqQx+hDboqV7iHatYQIpp+I4TMw1eytFcrUgKQoAnZrSMST366LkoExO/0N/OeKf1m7mseMT3m9SLOIRPUC+hZ456xYY6PzyFOcIqA3WR5DZvnJyJTaPwYYZdc0DttrhkwBqs9PPJO4fpE9Une9wDa54kwXsnznfceFuEvT1pyPqQ/BWCxwPj32nc9Sy4YZ+YAxP3GKebyDHiX6/y8luS7f54W3S8i+HkQWYtuJdA/LEz/8Mk87Nmj9NO7f+XUnp7zX7y+zupv2qjT4zcDT7WFUxQ3Jms15SQqNr81J4ALsiWtIVqUxkBplONMTZk0KMCc3HmcnPxcZvr0vgxEzkZodhWbjnR++kx7+/Bd51s07+cCkfKRTsrSdmL2aL0B09A+BaohdpSfPZdUraGT5xuXcUv+efobp3hxAXH87yqFO01EDycgvGpbVmHOGCru+9M5yWmqkdWW47K+sUdL4gU46tMYwdZr9GamLwfMsZDp9CDotgCdStMBMYryATLLi6YeEmhQDMlcyh92kKE2Ea8rBaAR3dP4UynsOUvdKiycRImNQh3TkdNJ0giyuVFsUG2wHEoKIIMdk4QlSaKdpRYGaAlhZUdk+wcDLdHJXlpTIM57rBvuwvy4O1Ehz05O0IiK6FUrHF4Q4Ns6btatz7Uy51quA7IUZQZiAjWL4A8QdUArTAocFS5kLBHwC2FnFDgKMiEgEKySMp6HObM+u7GsS0Sx1UpR2+uGcr3AW4GpoEfGUTXFhmPOyAkcTef5F4vo/PdaVB4T0ZMWGevCGDKvz8o6KpdPstCiTMid46W6zufpHs47SdOendmMNhEpNNk5/8UdGoCUerIog0kpFajUfNG2AR6MpCgxQ61wuXCcxyBjwQdgjcyIAJ6SCWV+UAfFDCYFphVeHNIahg+WoAqB3twIOSYEBKU0yPUGub1Arjfo7QVyeQ2x5crjWsfu7xAUsk56MP+sw44emhm+NkRjBt1jfClSE6LaCYx5bsrT4AZ46EjQDu4hRu7ZUy4A6MFSXNmjE1mAcj0CTSV4yPtsmJ3XbFBzKB0LMZiGfRK2VhepSA063i+WxbFLXuwtWmkjLMXXBT4esKHwIbDBOWTzODkmmOOf9k8DhM28joHjMMwjcAr7VZ5h0znYSCcxHMU4prgDlllYD6A8vz+cIRFg9LWXn0uFw5wQMN7jflIk3saBfjzgY5/ju7LXyRZMDRpA3Mn4m8BTOukKsbRrAdRiJb4Q9i0fEoHwZF5IMJxiXjgQuJXM74Kc3g9uG+d8zPBg8n4oqz/7H2uvXOB5nqAEeKvaqNmE6KwUYIPBJ2jI66qRA3DAqQU2r7vf4O0K+/0fCSQeB/D1HVo3VOEeJ48HTN6hyUApSsD45Ybrf/xnXH73O5TbDYdUfP16x/v7AdcKqxv2tmFoYxODKni9bdQSqwe+vXfY2AEYBkKcWgyoDr01VPkBn0rDS9vww+/+iP3xjv3xDnsTHDbwOHb04w6MHYpBVll1AmTKktaOQbatFOQOx/Fc9tStozh1IEXZNdKhKJWsWfMsc/O1bQAorbEYNX1SJRBYauPy94FumPtZqY32XplkYqmupEsAMbY5dwd8+KlbbKG+uQgUBY/3B8wN9+MO19h77GC3q77D+o792HHsO7QoKhpErrg/ygTvWX5vuN/fUYylaGV7wC4dRQcuVclKVaD3HaongDaAnTmHHEyGCAAVjH7AjSzDfWdpntlbbmG8plujvhUG3HZY3EMpTE6bj9CEUqAECBeJ66JCzcFkqQTruxQGi9u2zWtsbePqv33C7XpF2y7w4wC75jaU+oraHHVjF2KJ5gT7wXGtAtR2QRF2LxQJ/6s7y6XRaVecyRLAZnnYPsh0QhXs3lHahtcffkC9vEDadYItAGDN4HZgQGGN7OGHAA9I/ACHsBLKJojiz+bhtNU+PT4Gdqfg81c/83/wcf6KX7x2Clbz+nNV5k8+hsWe+Bgwc1QVBDmReky2jilIlnUkEtPVA6DqXGvnrGKCQPH5jKeIJcgCagRI3vYTG0ESnOFW37uBnaZTwNphsddpVshE4jfNfyYRJ3Bz2i+Pw6LM2+Z4skwuzn3QjqmQsZV9KjLiO3eSG5HoLKFLeI5RtdC/bkLmlueIGuDO444Af3LPWj5FaktFN7+Tz5Ds5WQnZumcasHqeLf2vHP3dVFFj5LmfR9RKncGiBTAwHEMPPZOcXjP2DJcL5tu84xXHEAfTrBXOT5sllBmnEkbn4BTmUtMJQDfmAMl5pem/mmGF56Lyub1uZB0QBaA5vYz56LPv85jknF4/j1n6m9/OI/OaSFPC1OAJ62zX0Y9fvo7fajz888YQj7kw7E+Hnyey9/5+DsYT2FOQsQsAadJWSeKEEHcGVg5MZ/kWVvJc+3LL4fflxUBqXjIf6wgxZfTPCe64OS8rsVrqY8Un9MIIDGd45X1micHGi0E+CUClKhFT3qnh4fN2MTmD79Vpo7SBKwyGEhWhPk8DzwBWL7ig1M2GgG8rHkuTxMhjeA0fKfx9fB9z6BXOkoLlDiN/xyGNbEI6vHA5zGf5yaLZpnP0xBrzGJfyLELM+Y5hlQd5HdY6rgoqaMQSGSkEKAW3xMdwiTErp3lPeqO0jprxyXHUQAPYEgr2zCXC3VxWkO2DGb518pmUCAcKI4576ejIVnyF+cSXqdLaOhIYQbMOiAHu9qNDs1ud6UCo8HHwWBASmiVyLpOjxLQ3ExV4Rb6Sk6BbwunVpxMJJKyStBSJWro4z48rbMVEsVdQd7xDARJX6ZpGqKwAZZs2UDXChOCUJZMqAD+BhTZvWk5IitTY0KWl9cG2ciYwWWDtYJRBIIM+g+cnQtTsrpkBAtHMW2Q546RVxKBhXiCCHzS3ObSUaSAoAQYFNnc6QJhscLis4hOSIYd4oXljBbB7GSH6dN6WvpNc6tf4Kk7MHYKgpvBjxBq9HTunNm7WqZ2UVK8FTlfFOa6hFhLBhfxhQWAK6MniURA99BWGThC3ymZC+6G4VEKYcyC17nzAyNZGmUDLlfgdgNeXyGX19CEKRBjWV+xK7AzgPTQV3EFoMpyLnP0ZEpgMZ7cO9dOsJ8mMybu8LSKDqRo+GwCMIRgriytCZrD8DICLOWJRNutKe4W4+7L83HvtAv5vRLd6tQiCCUQC8RpTofZ4Z33zAsCeFK4bjAhDDb2LcraAjgJANmQuipnNz50CJTzxqyEA0w7mWBczndXIRUemJ/xuZ5iLcx5KShosd8xYNP4na7Jcv58OurE8rMradwdC8Hz6Gw5BsGF0Q+M7FKI0DHTglVmEGCwD1gA4BoBsif4iHS4B++f5x7O0sWThZtjBjAJlvvXdOJO4VPqSsainx+d50YkLI5sc03L1I30D78x95Ec7+naBMintYYuUZ0dOzlflwubPIySJWSxqFXSVgOpHXZ/+QH2uqO/vsG//AgtG0q9QNoFuL/Dvn7FyOTL1iAvryifPuHlP/1f8PqP/4jt8xfYdsHLe8f90fG2H5Op8Xg8cEQp6a2yZMkcwLVAe4MIuxhbzpjS4EMw+sBRKnat+PrYcX9/x/3tZ/z09Sc8vv2E4/0naH+goqNUlo2US4E3QdeBgc4OZ3qJYF1pd6VCaw2wOMyoOTEvLahSoFXRLi9QbVBtqD20pIKRJyooqdHoHHctDbU5Lv4a2mQN3Qdq30DmVZt1NJcLQZBSath3gifXa8WohqLHDBQvtWG/v6P3A/e3r1FOPPCwe+xjDu9jNYawTuC/UPMJbhi9YxzUcNKiaKWgxg/M4P1Av99hlwegDaUBFFA58Hj/65wnJFYY4B3H4xv6fmfZtR2c251BbtHolGoMYEf3YCLQ1y3lBVurKIUdt0pIEfgwmBjXcFEILHQ0FVpYKl9KITgVum0Zl2kp2LYLzGrsP1HO7g4vgm6A7x3eDWMAAxW13dCGoY0O4IBWNpxxoU83hiFFzvogAAAf6MdAPw70fcf+eEffHxjHHnGdobtjiMOLQraGl9//iJfXz/jjP/4n6MsnDFQMp2/U1bHbwMMVDxHc94ZvKniD480H7jDsYHmoZ8wd7BpXsInLd6O9aVb/9uMU4/53ffyN7147UwJGfHNw/HI7BcDYhHlqw1DARnTtFMDLc5yRx82yOw0GJICQOYk4Q8kinMR9W6xe+lAybTHiPNOmU4eMV5Gxnxv1t0QMpRhaq9Pe2nDePQm3wEEfd9r2ZAs5LGIDYiIB8EaMacYubRl3phbrQHRnG9mdvURHTWWM4WQ4Hr3Di6NVSt1IADkCoDhFzpmsZpzllo1eBLWwbH4UW9hTeuXC14sGneIUbEqAYu4epeYFtbT52qSfZOyY8xpkmfY+sB8HYvDjXvJ7j2NQ4L8b9n2a4gU2ZRw692DOES0yuzSLBu4gxgqKjKHifmcDA/oVWN69IMA+QWkFNWJ9Oze+MTagIug06IMTPGDMcQrDRWgn55Lx9DUyGMhV8/c9zhBv/ld0yQpN4Nv9aal6zt35L49EW/g8p8V9/gY9/f3f+/GbgacMhGdGVCK7M0GnnCCxAOcJ579Pzzipc6rGTEhYlwXiLef1dAbzs0sXxU+TMp/D0+cW+HR2KPMJWZE3MtiQiY/Em+b1yXl2rZenY3n+ya+h0fPTd6/Pnc/pfN7Lqfc4fgYSuYzzs+fzX8fimpBFJ3c5jQFmLJooP18Lius8g9N4n4xTnvzHyzkHRev8fP528+XH++m78/55lhXldRtgwTwwOjAeAFAKfrslgJeGGXQ04GQhaI2enNSJSqeQmiSVwbFuBH9KCL9mvmawxM/S5Y9zVFuBb9pAA5lQYhnIsOyMZXeBsQvF0oESvoZDR5StIDBoZYcZILP/wiDaPbp/8ZslyksI2hW2Cc8APoPv1F2ZqBsHLm51zHFf82fFOE+3MdcDWY0FSSVVJYV8iotHuV2W2a2riudFkbRjhIPpIDCAUlhatzWg1ehwxNw5fBC8mBNYqPFlnP8JpgZXm+8JLRs5Xw/wDDwhxlNO4NKHtZZrZDHEOHBpzzw0sKbTJaE9pKk99byO8mRyTCHMsJO1a8A44J3gkz06SzRifWZpm/jGEsQU89ZkXOa9Pp9fMqXsvNBik4y/bZDZlHoXbhGc2wz+p/5XZJ2SETJyFajCCjWBMMskGxSFOC8cUhvEGmQcBGhUJoAWqad5jgsMGXGvqevEc/G4hPNGybntYCBMmzUA0wnwW16xOyAEM0wGdBB4MowAbeOcEFt0dNRjqWNfaxXg2tZBADmBJ495FWXMNCm0VcxsK6CDQvDGNW+qsH7HKBTmV6V4P7TMktrs0JcTJ/fJxRI6pctnuk543qeZmOOV2UuWy0z6AhnKOIEyOa1macN5Pz/tUULXJksbMjHActQoIRpHtEdnuR0nRwQPYSlyL6KNCCcJqV0VTp5TQJWXmle3CmXPYyHheCNKs5Nh5afSXI/5/MFbW7Ybae/lyZeY+5QnyHeaY2tbDiaOzwTSGXhyFNqrEA/3WF52they7pycz+X0vwwSXAxeLrB6gbUr/HJjsgnB2r1sZNnFOvCtAS+v8NdPsJdPwOtnyKcv2F4+A5+A1g24P/AYAzI6Hm/fZrlZb4XJGBG02w02OuAHrD8ATy2lWCvbBQZFF8W9d9z3Hfd9x3E85s/mHaJOFkxTCmVXnd01e9plAfe3QoahRpMLmXsMwacyWWtMCJRSUUpjWW2A7BN4KpWBRswL1QLUDQ0s8ZChuPgLS8+CUekAKDuxBahFFrIIGVetRqMAF/iw0BXk7uM+MAb19MwO7P2dHWcVkJHpfYKoKo6qscZirnmU4yUQpaKzVMylww6yWmEdggH3HebOgDW6LjIhTOCp7+8Y/Q4bO8th475Z70DJPZCM99TEyhK/MQq8GpkrYXb4HiHOMzPzPn2mM2DKdR7l0LYY8wwUw9dMeYPwJc19dp1LXwKq1J5tjbpwUzMnGS8RTMIxephJY5dVjD7Z5/ABlnqyiY0N5x4niqEFL19+wMunH3D78gMecsFhiqME8ATHowB3HXiI4l0EdwHucOwCHOJs3HF2D5ZbvUCn70V733v+F374b3v8FpLCyQR991zy/k3PP7ZwDZ88PUK+lvaVxi+FtId7hCjydGmMBQOQockHDBEvnmKyjNnmh33GY+HgcQfVNXirTPp0bqc5ku6yA4A5KjP54W8u8oQ7gmbxy/gu98pUiFhjSV/FnHpR4Q1D1adfmNpo0z33bHoka/5bJPDc52sCCv07QFAeuU+R0SsIfyT9CGfMco7vJKPAuX/N8g6y0sB7kh1C2WX8dN0J+vnaI8kyHSxxzgnlSSDJ+eCzxNF8AU75O876hDvE/CgywafUgX0KTsPeQsCceIzn3P6BKN8EY6gAoARY3QcRYLDwt5T8vFCja/qDa/6cJ9hZckNOY/+8uH7DgkT6rwsknJ89z/955PjvTLSd/L/Tt58BrWc/EaejfP/x2876l4/fDDwBmKDTk7U5PVKPxzIFCgAhSs2KhxiAnJAB0JSiDMdn2d3JvZLTv2OCLgHu53M7Ax3yNyzrYj6FgcySqVhUyEWT1tWNm64IXcMM4tLHPS20VTcflz81XJZxWkZT5msxgjmQSHBuMr/iJTrgGXCnUfnFFTKec5nki3TYRLJTynkzWO+hscr7hO+Mdd6bZYDX5r7elSBJGi4znncaLwFmMHNmjsEcjhELVDAQIt5gu1HS1DUyQwFgRgCuUUbBVsRO8Wtki+LoQuBgeV3ZgHaDtAukVAp8R6mUArBiwFjstSBp0cjYQGL1OT/FKBGbCDgvPzoljQGJbCvnyWCQ7g5YhYwOlEFHq7KkZJWsRBnWsFMGXKOsp2CUiqI12IctnPAoG0wDY2UCFLPkeE4cTl5BouaneYgoPZCkqnL3nx3xbEB1g5cDVja4VI63K4YXmLPczqMDm8kC8QwCE2o6QYPtdL3ALhWjCrM7tkNNUSzLbSN74z3mJrMQaR9yg8n5PO/beY0FVdhybStBsqX7kO7xaa7LmTYd6zBYT/nN8FwHSsc1QLmpp3ZyuhN4Fcjc0AiwPGD3r+iPB/avd+CgY60lgqtaIS9XaGvQ1lAvFwjKiaWZdmuHAxgRnEQIQTDGDUjR7rED44FhB8wPmO8YtsP6gdmO2w/Ok/DJxwAI1CiO0BIbUGgh2GStQbcNqFusYQbD5XoB2SoDaI0sNtMFOqU9MIKCFl3tbByAHQE8LbCAM2ix9+hs0f6KDWDIArjXHZ/vtfhOGzSQWgq0pEh2ADvwJX7rhlDkOK0Ntu8uERSax/XEvpB6wmQ5OSdjVXhld0ZHYxttNxwbu3GqEXzgeJI1Biks000R05ibydDEBDsJtAl8iUNgvv0UITB4HZZljgmmZ7t5p6NfhEwFVSxPGHCM0HO0aSsYbObvTMBYBHPUrRl9hx0PPmcHMqutKlDxCFjOTlP6CgTIspuhz5XNvYI59gwaT58PIJbOIIP/nAljlDV+Gdm4nBQgMB1YNrDItZs0de4NUxg9wdmTD5KPMfrskHVO5LDRQ1nj6tEY4xSATIsTiQROo2WH1nmFI4wCkwtGuaG3V4yXL5B6BW5kNcnxgN5/QD/I3htS4NcXjMsNX9sLRG8Y5QVfvvwDXkKrTe/vePQD99GBbz9j33f040D0OEU14PL6AusHjvs7/P0rjtDvop2vKPUK2wf23vHT44Hjfsd+f8e+hyD1/oatdJQi2EpBuxRgK0BTWDYJyERKgDtaCfjUdkWpGyCKAx7d4Aw6Mq2jKI1AlGhFKxI24ogYgdpCxwzCDFov0OqolwuOvWKMA9vlQpYQHO/3b9Exz6F6g8oGYEPqSWks/locVTtFukfHvr/DfAfkQCmG47ij9wfG8TMkhLoBQJ2+aBUQlKyAH2TeqDusd/S+YxiZUdt2we1mKGWgmGFog48H3DbA3tHHgW6K+5EZ7pBDSJbr/k6b7Ack9ngt1Pxz66HPk3omBsceJXQHNeoGE31sGe/oxnsPt6iQyIDQkE4zg+/OMvrSZolTay0YXHX60601rt1gGo9h1Pv03E+VPMdS0a439MOmRk2tFaVEqeGxYwxHH1jJjH6H+I6CDqhDKhsjbdsFj/1AtwNSN5g+sLvi9//8P2B7+Yzy+Ufc78BjAO8uGC44xPBzd3yTHXcYfsbAVyEYtStwKDBiXxBgYeRpt04g88kY/upDTu/5EO/+H3/8ynd/LKVL90NPfz9tNwgf/encOB96uKEavryEk0QyYeqHJmvIYUd4oopZjjbl+sC9dIwxtybV9B2XHrFMMILOsMjSK17nFvu8LdAGLhgD4QvMnQ/JZEpb8pQkNcp7JDjg7jiOHgMjpzHk/lcUs0T1fL5zNIPIMMagnfFgH4mQ4C4cDA+Zm8msyvOLtZ9bHiyTjTLjG4MFGMPdViPul5O2czbV0NQljLh/jNCc66v65zBj/GKMOzP5PMaIfVTplj6V0tPXPMtnJeCEvP8K1KaoVVmuKwj7kEmhOF5MrKmhaJytHteZiTW6WkJgCR5mKn37xcCrqow9BvA4FiGA/2XDCsAZB56YT88hxFzw+PsfuTBlBu4Zi04f1xecdIIPmIDNOBayTuGDyfnNZ/W/0+D8duApMpgjglSuN4ksJRdJduA6f2YM1vNyUWqcKxdEBoyZmUi9hbz0s7CZ5zGA+blpJsLoJHjx5G9PECv+HRObQAimo5nsp/nZdOiE0tDp8nucS3wojngCrkRnqcrCj1dmOM40FoJPpJrnGq/h2XHF6ZyARIpjcp0Q4XOJgIexmBkDcPFMdNfXNQKI5O7KZmdGIlpX4dem4ofb/WHcgZzVk0liH7ggYnALHRFYCMsqAlEK58CnAYCzrAHTYf8AEsT1z1KaZBdktwM1ijOXDSgXoLIVLkWZdQ6IugHF4CP0YsShftJCSOKiIOaNAzbmbaLmSohViqNUXoNG6Rm1WCQCwBFzROFeyG6IDTiBJ649zOsz6QHANbhWqFZqYriFBlOBu6M4oNAos4qh+Y6xkHnmaxgFeW0xw0+dQbRWFN9Q2wWCKCvcbgRGbUC2Bzvh9R027nT/o7W3IYSkQcaTbA2yVehWgVaBViAt2TwW2UgQMIRAvWGa00wlhQU9szHkfDEAzovFJNkTjqIBIwrHRoUlgBIA+9QEc2p1TMZlhKgJYMt0WEKDxD2yMMkUTZvgSMFKB8hmGx3od/j+Drvfcbx9he0DGM5OPm2DbI2CvkrH2BPkdIF6dPRyh3kP9tIg+BQJgSnkbAdsPFjad7zD+wPe7+jjARs7zNhtDIiShQh2I6c2g+cRwLEBaHGNJUamILRHhCDPEIUXCpFr23gOVjEOdk2yfhLVtVgTyXiKwJ66aAw+I3+NCYZGK3QIdZI013BMgSlAHffTwY5e6Xi6KWzodBySdGtnXQPpc96lMCrcIcFMs8SmAsQUpaM1ik3gSbYC9AYvFa4JoBqkbjiGQcbAgKDWC4oZRDcepygUZdoFLs2wollqFrYG0z5lWTjtF/eNMa+p25isJAbLCOaxTABuavGl3+t0TC1ATHFb+0aW7DnZCAk8ZTmRjWNqxjjG1OlQOWdNLdYxtx6NPS5tq3gosk2nWGEmGIMgkih1xGZzCeSSl2h4s5IQkp00pfA6kOzHM6Qp85wQ452g07AlkD6DkemD+PQnLLK902SlrxAQkqKAJYcD2deJezTtGll8AeLooM2c90e5p6gELisQ2VDqDdv1M+zTjtJ3iO1Q26E+0MYBPTpL0lwwpMHKhke9Qq1g7ILyAC6FgEy5vKA2w8UHPl0uGL3DRofsHdIHtA9Uc2pKecEGRXUDqqI+HmSfmEMeD+h+QN9/howHYA/UrWB/oyaOVkeJ8hRLarM4vAq8FTYsKBSJ1nKNTmUbtu2VySMRzpMASpnokRiTuM/JflKZJRKzhCQAK87d0JPUwgSWCOAFtRYGT6oU2B4OQYVgQ9ELto3gk0Bpw8xiz+gY4L/3sWPf3/H+7Sf04z2YT18BpxbaOKhpqRA0UVg/MI4H3r79Ccf+hsfjKx7vbxh9Rx8Hu372jk0L5ML1av2Bcbyh72QB7VbQXXCMnOMn4Gl0WH/QhnqAX1Lg4N4DMww3jPE4BTMDIgMiHUd/A7Cj98JSteOBx+OBUhS1VGwlQ58Ao4VljtxfFKIH1Ml2yk5XVthkZD8OMrskQaeOb29f51qSEQw55ToDggGigMPQx47H/haatDWqtdm+3qOE28cdGA+oH3A1VGU1+r4/8Hbf8fa+46e3gffDYOWCy6ffQbcb7l7xM4xldHAc5tjHwE/Hjvex42EHvlrHLo5eBKMKrCpgCuky92sJFQVbJiYH+TkoPP09/fb4L5Pt+O/7+PDdIpjpR5FISsbbJoMto5lTwjyfO4NPPsEOSh6YAN1XcF4KGwKpUBzf3EPD35YuWEgKuDmGj6eTFTnHQxyfjDlnSR0onTITl7MyhN1K02eY+qrZ4EQkzo//ZNlmjMT5ez1L8DBZMgZqsHlm+ZF2nvPOirLsSytKjSYfTpIGk/a5t2B2GZfwV+HlWcsxBpZMdcfJHeL+OhCyEljxabi6cQCwYQjjkVqp61xL5b2Ehu9EWYoxbILCqduZTXREEBIiNWcQzCKRCZ9jSTCLcSAbuSwWDokFMfcCVCYx3CYzQIqjagjZO1n1x05fiOAm/dLSatgLAuE+Y+8VP5gPJCLBkD/vsc5fqjLxg7yl0y2L2ESUDPv0a+bk+wD4/D2P6WdkogtY7OK8ycgQORL288pO6VOZodPT5+Z1PIeE3338LZLPrz1+M/CULCbRHLwAEDyDr8xAPp3S0+J/Zhrlc/yNdDCTUJXgEq3YL46T/1uPnDRYWYR4PwAk82Dedzu/ys+bGUPG00BGdc1pMTvga1LBz2cRZyUf7uKk8vvzCHkYQcmgNw/J98hp8szD+ffn6wy4naim5nNZfpOfcCK8LA3DvDguFpvHyfrcGdvjmUX2XIJ3vqdx4mGgGSfFxpjn7R6kMR7/DLhlGR3fs8rv5rmnIQujdN7s+JXMcGZQkYwB/jgQopMQCmBDCUJJbXMwHKCukxhEuNlIMM3EM2N32mjk7CskC83zYiHaKYILhSh1a8SEtcIZ04wDFiV0ruvYc6vJawcwM/wpsppDb2s0phC7UD9BsowjQMmpLRRH/AXrDnn+vGs5xktklyV+WhvcWGLldcOwDmk7cGzw0aF1g5cGalyVafxMYrFrgQSDR1qF1AKZnP1cY8xMskSKzoDMebAApDz7qdk2zzyvZ1lSAk9Ke2MWFV+Jzp1Xl8yfaZfWRA7nRJ5/nN03ZnOSqL0/MytzwWepnUQpEbwDliV3I3ydKEsbgil0PRlA6dwYj+tAlgukQPdiZ/QAnzp87FHyROaTDwraWjyvIeYtMiL+Y6AuwKIOS25iLBJSd3QzlqO6Be3bI6skobekqxNiZDOTjj1BpwCcVkB/su1pf+c9slgPAUgrmWi86XYyR9MLDrO27p1kAG+hSiErKF1lIAYTBkDnXBIB1aCXU+hj2iQPVqabAQk8SY3LMZgSpIQI+vGIeSLQus3zkhIaR0LnarkOv5ypcxN5cmpljV1c8yxjnKVf8eqc3zkmyXb85XExj5qJgWgEkaznEUGdGwNbGyy36z2OY8F20zmHwzmAT9DMI+Aw3lsgkidYgVYEsmYDgh5lxo5VWrfmKm1q2Awo/5YoUc48vkwu6wcz4PNYE8gdg4yTp9K9tX/NACFZZad7oXmvohsaJEG8la6aBwz9G4NgBEj4xM6dWfzc2ytK3dC2G8b1hR0srYDdvQwKQwk2JUHLAkGlMLk2dFc8DgMOQysO1MpGGS6oKig1QEU8CMYGSwYKlGpoMd7aKqQ+qE84Ou2HPoB+h9WKUkuwYYAsueTiWc0dHD5zXxSlJqNXa0NpG2q5MPlRWAbuNgCNxIGW8BEUpTSUWlFqm/talglSuF2hxeEYsGiTDjiqsoyvADBjxCMq0LKRjVSAcQjg7Eipss01pA42YEgmnxt6P3AcZHk99m8U2LcDFOV+h/cD+2OHuFK4XSus7+jHA+9vX3Hsbzj2N4xjp73uB7qw7fnoHVoHVEfoqT0oqn5sGK4YrsEqCF8kgadkwAY/bDLzkQ2EClw8GAo5r1fQNkb0OLdCbb4oxROJfTZB6SwPhEK8w6PLqUhBFY1AtKN32hoRicT1iC56fXbvy1Sw98EOcpHUznmkJa2wsZxRaB8ARYL9o0fJr90hfkCcmnPBx8Z+dOz7jse+4+29Yx+Alw1oF4zScDfBmwPfDPjmjt2o7/R1dNzdsLvhLkzQDBVYkehKGXPOwts8o01n5z432+lcnuzv9M2W6f9usvpswk7vXcf424/M6yawxDIrxM8Cnk5eEhZ94CTtcL6O03f7+fdkIPFgBFpA9rBg+boRM4yBCcykv7d8NH/6rjOwkjYmD3Su1oiwJcZJgrWD0/FlCoCL+QTEfm3ApyXP7Q3pNSBiLI/xCU9GTx/Ob/W0hSsxMkvojN32BGBFgYH7nzv9j4wbLKdP7DvxvdONzHhOADdn8jrGkklTEhlKyfK66UjN25ngHpvhxHPTh8Acv9RBdTgkKE02SxjT/4jTlBMxI4An1RA/D9YTtZ18zTfFTNqkr0gALXbfU4XOioH8NDcw51IuSAlqsUfyOB9adZrCBTjmvc15lOtT5uvztv7dD5lz9LuspmRwffieGUPm+/Iinw+9ns9x+c7b8kvl7zEkHx6/GXjaO3VWtChbkob1ycEbw54GUoIhIBobcHgPdHbzrnBkRh+z4oL1mhrtauNdfirLE5q/7wzHMxjiiLuz/jlPz9ckSdFlGhiCDEktTMN6+gLAP5TTZflHxkcMHdbx/fyd58m2JnqWifGGB8ARjIZYJ9ygTyVYk5EEx+So5rHTICKKrXIcc2HlxNGTwQ8RuTNoMg3BDOpjxp/WD0DH+vyQ09iRzYbIrC8qLp5OJTeok/GYA4anfzNznp0UM1uuYWBs0lpFK6Q0zj3pgHKqKwSlXICyYZgwe1pJ1XcktdNXcK/BpvAUNxZkfS8NIx2zKJ5GsiN4upFFtw61YDpZxywdJOoB1cjYhEEWWUaW45SjlEMSLoAUpLMIEJ234gHOcGMUc35PiQmaujCxw4XZPwX4mFYz72pSR7MGvpQCtwIvDHAUDlNA+p2ZIAWOuJ4+BuS4cxPsFGJ2dXgFIBukXFBfPkFfXqG3F9TLlQGLZj17gAmQEGMnCJXZMsu1N22FzfKovN/A2ohYrx0tEFTIhpvilE4m0mnzjAWK6e08WeJ1XzBBXplrFiBApupAidbeOeuTnSMCHwVibO9SVGAFqAWwWJ+1xAYrqZgVejeWYstRPuG54kMvJtpb8zcZJ8l4GkcIye5vsP0OPx7o+zvsIAhVBVAZEB1IppNC6OR7ln8pLDI+3QzoA7I/gFK5sVTMeTWcLLcUmWRJdjhTKkAB+nEwuBkDI891MmtippqFA+VAsAcBjo1ogQ1K2zsszOIa81iuSCBpnIRFVTiyCUKdV55R8pMUdA1bSYIuxNl0gOWIvoysct07DNZHAE9CQM8MXgoZTxY2o260OZ3doOCU5mepJbOOqm3aBJ/OZwI1vraANKwei8NjTjg7DJ41Wmza3HAm0ynMvW96gGDQ7YiIwGaK3qJcZ/QHwadBIWgPgAvJfvLBkrOY/4LQ15JMWIaNlxhGF563ONAlAuDImEh0CPLpWUXZLbPFfkogzXJxFYzoVibaAWGHNJFKRsSZFROcpxNsPdc9294bzA6WpmIgROfWvn8yp0++UQY5WhYxVw0qFGEn+MmHZSnCqeTbSoXWAvUCcQprszwrQF4YSt2wXV7gL9zDxrjD+zuGdmaSOb1QRLGVC4ZlR9gLSrlCpOHr13d0E2wDaK9XNh/wwcJGKWQEVIcNYHjHfjgZ8PWK23ZjkLI1XMeB3nc83r9xv9ICe3zDCNCpFEWJUgm2oXdYAdl4owO9w8eAWhSIlQ1ab2jthm17Qa0b2nYFNJpYmLGpgig6wPtZKl4+/4DtckNrV9z3A8OWduBk+LniiP+9P3bADC8vglIaUGp0WIpSHieYpaXifR/og35QrSsYAjJoU4y+4/7+DT/99G94+/ZnHPs79v0bmhqKGMR3+H5HP+443gisKBRaG4Gn/YH3rz9N4Ik0GeMsHbQxfd9RSgk5CMH9/WcMH7gK0IXC9QPRUTPZ8B4JBhxIxq6ZkTkgG14/f0JtF0AVP3/9Cftx4Nj3p0qGo3cMEdpooWg4XQaHj4GjHwSPi2EYyM7WBpcDWnZY77RjwrKY4zEwVGHWMEJ7qR/Ug3M3jLGHvEDBftwhUlHRoA0ziL5cN7A5iWHfd4xuLOOrAQyaUddqHPDxQJFOe+sHbHT03vH29Q3vj4H3+8Cf/voN3l5Rbj/gZ2Ob92/u+Nfe8a0bvh6Gx9FxHANvY8eBASvAuDSMER2Ij9jYR4EUgw76bDMwPCV2//YjHfmMoE7G6VeCwHxV/PSP773+4fkz8KQiKAlCJOjk9K3ke5+dsRejr9ktEVgM0NO3zg7Iwr/ZAU4wEuwR+nMmjrE7HlFOWQvL7YqSKTXd2ARc1JkUCiCFnSsx/52ARO4TEnFYxoQiya5R1FICgAnQJ+INO2slJWs4+N9mwNHDT3M2GWBJGp8jq6vM0kEzRx8DDoqUF8Vk4M5EUAAQZkz2QULGZPic9yN1k8YkDAfbK4/G9e5TX8nnHGmbompBq8F6rQW1tlWdBADGToUWMeMw3jfL0FZCC6oU9Ci3c/eYSwqtBJwwBn1Dj5hjxkDO0v+89vSB4z4n4yl97bOcQgSUyMoUxPGihp5lvpFcWAmPiMUL/ehaU1SeADrz2QGtWhbllJkXT31ni9ynx9hofkH4o8stO63V07qUDz9Pa2r+jhhzXq/84n3ftwTrO/z89xngi8NNT+TDgX6zmfobj98MPE2jMFgXWWQWlICOO4CoybZBhfoJGD3RzOhVrkwrqbLzasFJLG5ASaSVWjmZGV+EkKS58a5NEGlmDsNxdACwqUEhGRgAq/+NMvOSgBMnS0S0IlMpfvQ+6yRZOhNMrzPoFTcmwZ988oxQTqq8k6oJluHCxWIOCtkgQsd1vT9mW6rqIxkxiHhHAZMA/LOkC7+YaYnWlxAooVFc4m8Lsf04yyRAlYSIfMbkk/YJdmdAGKM0dWlUCc3FvY154cMWnuidmjYCAMzk0UAPJAVNndTYRPF5rxMAChFi09UMyxWCBpUKlQZII9vJKe4Kq0h03QACTsHlQASqiHIgigxH9kfLHDN2MGQg5KGfwnkikekTYAplJ+RTJhtIIrsIOGQ4oDHXzytfhO9NCGIEEKMF7kZnWhuzuQHFU0O0wq2jlOi0N8s1gKfs0Pw2KjMlcwCQeZ0sI+S1l3rJokOUyxdAGyAVYgKRK1QaDbDeYLZhYMDU4VVQ6hXSLqiffoReb5DtQm0bFIRoDhyDLVMLGPiGoHNKfiQQOpkclsyZYKq5zzUv5sE0YNmXhwg519zZzOffyZhrcJCNFkVXQGrpAJNGK3HsHC1BbLBRDpP4MH805lWAX6Wynfq2ATYgLx3aWGonujwrVQ+GhkHDm+B8rQy8gVVeB2oU2RiwvgPeuUOOHdgfwPGA3d9h+52A03FARohlI9k6yu6DdMujEyFgVQimVQ0aOVlU3g/48YB5OEQJkB2hyWFRZmkeHWEcKbRrcX7uHeI9owikVoIPn+B9jjFvWZajUiDcTZfwegaWp+WzsgTpCEfxbG6+H3bW2WkOg86pG6Ss8mszn8DmXEPGMllECTGEDrr10HfwASk1xHgNeNTQnelsH9939LGjXhkYugJDFeqh/RQlhrN8Eh0AWQuILCwBRwPbhI8Y52OW2g1f+xu3EpY3kLwic28AJCjxQAoiEOwPmv4gw8kOdsSyceDY32ERNCrGBGVm0skAc3YSFGnwYPIwKCawJBrjeior5dplB1KC3w5HgcuACLt7suV73NcPe26CH5AtgLyGUi9h/2tkTwtW99Z0oBFz0VhelyVKdscz40lOe2183ic2hnyblGB0Jf0fBkWUTyPsWe9kS40x56n5QPGGUgzalKCeg75CfmVxSCuotwuqfIL2DTauYLc/7mgwQFTRthdcQi/QrZAR44IxCF8/jgfsgQlQstFHrJ6jw45B/0UACXH81hpKKWhbw/H2DaMfuN93yLFDxg5gkO3XgOunGxRfcN0GsP+M7kY7Vmt0uTLUo6McA607y7LRIF65rwyjYL0HTyXsrRRFqY26g4VdV4cwW18vhXZudOz3BxwWvolNBoF1smu+fe243a5oreLSLtRVCsFsDQ3Hdi3T/+rOMRmDLCbqthh+/vonvH37K376678CvgN+oIoBY0e3zuYCxwEbhiKFZZgO7O/v6Ps7jv1OppoIrJTQZSOzS9sFwxV/+fqOmzna1nBzoD4ugBaUbadNmT6GnMjEKay9064F2O1QjGJo10+43l7Rthtcrng8drzXB/z9DcdxYBw7IgeIUhsETHAUpT6UuaHvd7LUCrv1zW7YkTwbZYPYFzZUcJZUcmwHqNplMAwywCB42TaaIjfUBpjt+Ha/Y3+8AT6g6vgP//wPKCrsANh/xsAO6yzxEzh87DiizNHsgVqcHfkw4IhugqMDnd35XBy9ALYp/ux3vI+CnyH4t+F4OLCLoCvQC/WcRsqOFFnNa2IfJ6u7R2Jm/dB0lPAfI4rPiDTsc+6HPv2U87aT+1wkIuaz4XOsqBXhwtBcaHg78uwBTRJo+k/Thsop/+wrZvb4z4x6n+O6fLj7kwRhbj8E19d7+c+p+BoAUB6fnR7VuW9rAjgDaFVRZH1/RIfLL8stXhDAEuM9Lfp0jhAmWRF+hmVs6UA2jYIzuT4bsAS6lD60JyBlmJ+zEb5Mj/hQAakkXaQ4P+NYRNk/kzH0pzi4WpIxLugjNIhh2Golc7BbPB9rOROxRn+Gp+SRDCPrtMQNKTFXfBi1REuJ7nkyb7SACVvxAFxcps+Zib0j2IrJNvCId5N9o6XSj2qCYsISXB8YPQCkSMzMm5ibp8VrvCK4pwTCikMxxeQV2zX8c0TSxwWep5XYxCC4NKrNktD005MIoKkvHXOgxP0Rpyc4DpZl9s7mBT6A0YV+LwCtha6ah+5XrCOP0DebhWWyVJMc4LR1iQI7lk8z19BcFhKxSVzXCRT2U9zpTx9eBCIROdkJnwlfWQsez6V1dlr2z/rWf+vxm4Enj5vvCESTcfG8QGDR4xwjggueyOzsNrWRJNg8tLiZnRTxaClKEEQi86qpeWPhuJ6ysPNCJc8Tp5sSJWcxiNNYpyLnKUPJyaVPx8YMLfOm+nLAckzi1Ym1RlCe7/94Xpxva8zIgnHM6RQUxxKO5JwmeV4jqXQz+nqaEMzcxZMOJDVaIFOPSOLb4D6pnXlfz8b66eBrIgDAFLrO/6qkk77G2+ZpOpouFlhObDlvoHO+hnMfGk+syzYAkYkzW50YcsM+nTdvay46/m1DAF9lTlmGV4RU/BCiyVTlnCMiWbTIc5jHkwC+gu1ksztTGhKb93+VotoM/pJiTpFmOhKIco/MVrAkxGfZJeDz/kpm9F1jLhjcWWqQ5YkiBdlQxsK6udeYShYlAx90jOY3zW3zZKampV8AcpQ+aLCpvAVrywHpBkFFgcD3A0ClMZaOWeLRrtBtg9xeoJcrpG1IYXQy/E5gaIlgUBIQZFeyzL6YJIPDJgPDA/jQsE1qzpKq7KqGKIfSuTqnReYGmWVG4Vik3crVHwaeWRxucvM1rLUWW97JKMc8AZ2m4A+TlVcrpDXIZaMXNQypSyLRmzeZT7yngmwGwJXGTS1BfZawWdCxI00zol137/CjM4DsPRg7YR+yk4uCjLmo5yfwxHI5qeFEpxbbGCwZ7fXZJXawJGJQMy0zhdQLyuzTmOtjAmRO0Dy3ijGdt5ij87LDIXE6aRLlpGqL3SdpnAAgavdzqec9iTctqnK+IvlyrE2nVltYvLne5+6df2r+ezWE8MHyXQmnj+IWAPS+xqpwhps4hchFGDwPti4uRjZw2hTzZLglWBfHSeHgEGp37zA71j7mAfCEXt6i5fO7dQ6rP10bj532FTPZZIPHH+OBfrzDR5+sr1xbM0wRMpQAg80EbJRDm5M1C4ksZZTHJEMQHjpOFsegRpIphVXZFSfXMGZQl4wmMro6VC/Qwow2PfLcH6Z7MNcqT9mBZBHaYInUk8bTfOP6G6dyvzmEAp9rV7kmfEDD+fG4t6Mf0SAgEmnCPWOWP3jqpHAepZMMFWhVKBqqX2GtwnpDdt6DcV2JFuh2Q6vb1K4bUWbmajCQeSTJSAEAy5JtxFqmgLdk+Z8W6LahlAJtDa7vGA4cAfTI6BAhqwlV0a4XiL+glAOPn/dg5A1oKysiNqOWzwCY6Iv7HEkXwUGbBwn9RgZJpW4wrXCpUTxFFS0tZLcx4bYHiBP3flkDwBzH2HFpDV4KamM5HSKhKMrOkzWSohl0dTuwH9QNEqHY9v3xDY/9DcdxR9UR551M1I5+HEy+mZBZ4Apxx/vbO/bHjuNxD8FlQdFCwEgKiihqu6APx/19h9QDLoK29WjqQz0udwlkgSXZKWngc6+M80n7ER6taEVpV1xun3A9ACk7Bu44DsUYDyBAWm5hBUDnbhFdO80ZACdeoFkGrRkUKYYUtAJo3WClQfUKaOwhTr1BMYMIBY23WiZIWAToRoHyfecY1VbQ2pUJbT+geqdujHeCSG4Yfcfoq7HG7I7pZNza4P44uxsL0JXi4H+2A99k4CcX/OSCDna7MwVMQYAqiZ1FkopDcDh/Sth+msCTD6uYgjfnmGL+LF6CY73lNGvXX3Ly4OXEmsnf8VyVZDR98PhPodD8ffp7ef/P+9758882Mf12fzqmP515rOPliq2LlJQQ4VMmYQlCN1bBPUXjwjRLuNN3Tr/sNAhptw0a1TS+bB1W1UF6w+nXz/0lYgLP9eR2Ston8OTwbDHuiJJ8R/SR4HPiEY3L/Cx9dZ3fbtP3pE85p07Q/mUYTCUYVo4eHddEdBJHOJyRKnZfVRUnyZhJJ3F+j0YMXhIIEYnETyZ4clzKHDuDB8M9ErSxZyURgqpQMQkEp05xa5zPJZPu+WfOoTVTJwQQ7Ab6fGvu1cZ4wo32k3rRqyJIYk5SMJxjqE8SOIshN13tOHolcRkKQS9A7/RZVGgLBCzwne6ex/mH/8pEpz+t66xs0lzjsnwZfvLJu457kmfkWA7sifiSSxDh2Dz5ImvenV3fVXL9/PzzWs3fK+b4LY/fLi4eql46WRkSQl0z1uRGF7WaqRFBbRFuqAIheBRlCZ70cTdoYUCDAWIEykjDIfDyfCrpIBsSJSfqbPDQOFjAT3c7ofRxw2LkTNZgcfLEAk+HE3EdYVRSNBynDLrF90z5/bixq9Ru/T7/vVq9UmOCN87WMU5AzuxaBXATSxAv36rP7C7O65wUp6DIl0N9LndcaKauzUpXYHF+mJ+u6WQkjFjGzFJ8RD5rLjJksAIGFSHoN9HdpxuNda1ic+6MQSNLPRchW0xP8yuAK/NEYAXUsYhd0ZagIAzwbhhicGXGVkpBJOQgfkTgZHze00mLrhNFUbDec17Q53lCRo5QIFlLzJycT2RpEUBCBJAEBVPMf9o7EagVcMstEGXQLlrhDmiU2g1hPQU7g3XS20tFrdcAi0qMwwKg5LQ5cLLQSSNjrs4Ndj5EqJlRFPAGKxWjXzHaBSgN5XhAHy9o2mD7O+z2Gft+hIYGoI26G3K9QdrGYykzgwan8xdZHQkgUINBkgLsksF9zDsIWWoWwSECFGA8m6U4oQ9B7A46LMrucn5mdt+n+CI7ZQTzLYQsRRFVV3Rccg06ksEYm0BhwCQnb9Dm4uaaFoTW1cbSRR0D3jnn2bHkVAqkyrRUOkkBLqX2TSZKFcDwANhi8Yo72SbDInA7zVctMYUF0JwFCpFZP8JudaVC6wapF0ArhgJwg9gBHA/yKvrBDHas97FTIHccdxyPO7zvQD94f9wAYfDtwZgZ+87zhZ4cO8xMPZA092VXYnFPJz71BNK2JIIgzhbl2aFKwqZPZwent891F+/N50l7gCMykfmWfE/MycQjM+nCKcEATyWdPwPFsEHnUVjeaxgYZYGeMIUUlrhAKxyOMaLcyykQjE7tHjV5Akhml8BsZDC9p+hiN0JvSwSDtx/Do2xnhiw5Jh5ri+vLxgj9FWqEjf5AP95CP2VgREaS48N5JKoY8LCFnO8MyipSCBo1O2KRMXgYBWhdjyjnVtTRoKWE6HS0NzIE+Poct1h0/gMEAxVSHlDdYNZRygWlbDOAFqmznF3CwHCVG7XRAiS1viNFjZ/uvqz5NxPVaSGCwTVybfQBFcXQzqApTnrv+yr5Dd+rtg1zVvrpZ50oylbYe6MImoJ7Yax15kHIvKMNbDBpvLEFBErM4TqmL2FBd7N1IXNvK9EJUgvXWVG2s8/ux9nhdbij9w7vO6obtFWo3tDaZ6CxaxvLVzptd6b+S+gzhofG49KW7/ud60cEkALVgnZ7BZygxevtFV42mBa8d8CPju47brfXGUzU1mCmtF9CmQfyOx3H/sD7+xvGGOj7AW8VtTS0YOSEsi2gG5Jxy651HTho+ocN7PsDPZg+P/z4A/a3n3HsHftjB4wdD/fHCOHehh+//EAbfQx8+/kNj8Nwv+94ebmgVDrcx+6o24aX10+olxve33f8/P4nGCosu8+pTh+ce5EBdoQGGtnSLDVj11AD99dSKvfmywXv9x3aOm6fKr78+Afse4fhZ4xRoeWB2naWZIuRlew7HIpaLzArEO/0TwRkbCEaoHQy1YY7zAQqHVovbPhyfQHahqpX+HHAxsA4jiitvKDUij4cHQhfDKhF8eXTF2zbhtvtCjfFfgwc+8C2vUBQ0XfDONi1tT/eMOxOMAoHeh/oMPjxwIhkzP3e8egM4nfr+GYH3uyBfx2Or6L4SQp6vZIlOPF+gW/B3Ow0+NIUPpSNU6wFSELGEw6HF4MfDumO6E4RTnJaXcdpW0K2Ysg8/hP/QYKxErGAxC4lcgaW5AlsqiVK2dbXAb6SQ2fLRjt4CvpP334ytTO+zWUsIrO06fkTeZSITc5HOQXEGbP1U5iFmNLoCywZcIzRoeqoBWhFUFTQqkSyNc/N5lfkej93IM8qk6fYMXx1xro+O7UBmPIr48TKVjkBXSF/gbC/efOyadbhCJ9L0Fqw5J+62vH96fOMbtR0ClDCNO6XsXlHPwaO3pmI08XaEgFmo478WTjFfLCcMFnNTOY2LaHL1wAv6CN038IXGw52sDMmiy2/JEDmWY7orFw59kcwTB37wW50BseUWgVwVvsDdBXF+EpIpkYf40h+rpRMyNL/HSOAsGERtCcTiUceFjjGh6l5pphodvmNcVQA9VR2WqqgdpZh9sKud704Sg8fdvB44paKBsi1LXFOM/6WiB8QczUcX8+FcoaCTrH1XBi/4SEffgOIcun1yoRgz+vudPwFOP19j99eamfRMtKTecE7LKdBsA/BPsULHVPvIAGaUz1pgjRuChcD0vydAoxZowIEYLMCxDyns+5S6kvle/Jx/qzBoK6kfE8mFua1JCJ6/vd8RxiiWfaG84T1X5wf95HnG2SBUp87FcybfJ4J67Bxk/F8PMfp+/K1RX+bptx9gk7rOni983NPBeD+DDTk9+PDtXyYvY7TJD295DGhZY7fOg6FB9cB5mTOhYfoeoDMDGeWbpXbeWaPhKwEllvFGUueVIBkPhjEmcGPTpDAKg1e8TBuEiVUCSZIiDsnwEBNFJVsYZ7AkwBY2hFz75TzMCXiHjtnDFpes2cXlwCd+HIaBA0mRRhEX1kZF4p7KgCzA0l1Z3A7UDyEPdWgViPQE4iXExCa30iCO2ZmYsAn64nnIRnoCxkYWlpsbix3YxBJXStvFaMIsB8YZihG6qmWgna5knarJYCSZDoFK0AEYhR/ho1g++QPDa3MHy4EagiRhTPpomZkqJkCYPkBtDKsNoMXOlVT822kFlGKXVMgNVOUCTpxL/BIwsTYSQZ6YwLXE+DzBFrTsYuVHww6djRpMASIEMEqotwNCFr0DOy4fhxgoBFjw3GMNRQZgpnhkzLLT0wbySZwwAvnZDAOUw9k7pSVwKDUBqkMvFSi0xOcZS8AZHSkl+fu8KMTeOoPWGdJHgZ/kp2Wuk82bO4ZT1p5dnJLDXPsTrD7ad/1OOcssc4XBNOd8QUYZYaM5lqmOUo7lX9PgBuYn/cT8DSp/POMhOeqOQcxAwoZFokLADoAHLQsPcZcFX48Qn+sQUHNOoq8R5losBXgnYBI79RMGI4UGiDrKMoYT8AT5xzT8wa+f5hBdIT+lAFoSLf+2QkOUDqAAhvsODU6BY9HJ9DFcxjz3nD8TgAeuF9ZDATXaDKTHO4EG2jbuP8NLxBjqYHCyUIJe5O3Jcvhn3AZ0XktXSoBluIE4eOeFhQYKlQdySTkPEvRhmCNJZssShe53uJ+i0xbKgE6Wtb5gw0SeHxl4CwaQPpiDhNUDDFnoU+z/IdThjH2UBVfazvvbnwOEJTIDuY6Sud9wIHQHdRwEDzXx7xpuX8v30eEpRXi9MCzfEo1ReEtyt8MrkC9NMA3WHHU5iim0LEBO9CRJaE2WXKWqK0IrF1hdYOVAorEDjjY5t5Ca6iUilIaNrnBQoB6v99RbwW1brg0xex0GGK8RYFWK9w07LvDxdFaA15e0FqDFg3GGUkKmYmGBgtvZBMSQS0VpdymruXj7uiHo2NnMkAqrpcNVRX7vWF/7OjdcfSOb+8Hto3JoS+//yfKWAyDSIP9i+Drt3c8Os2yGdBun/H58xf84R/+AdvtE759e8dhG9x3oAik3aiHVTYkKMfOfzr3yDG112hDLUuaIajOOXN/3KH1Dbf7G1p7gQhw2TaMlxtqrdj3QjALA+4Hy0sMgDbOE1Oo3eHG8sMDBg3NTI8upQ5Ff9yBPjCEOn+1NbJn04YNI9A0Osros3OWuKOVyu6GrfFn25Bt1WkHuZf3Hg0Pwi9AJyg/bCcTO4G5ABQGHEMEVhTeWAo/VNBDK85FodIgrrCxEnYS9ghO4WFXAaoClfqIIgaM9R6YQ0M7JqsATG0SQDU3vXC3NBioIst9PJfUTOnnGSBzvdYAMpZQOJBd4wJ3DtsOwIXdNKf9C4MhcZ4z5sg4SIIZu07W/WwvdJWpyceYJfei2DM/xA9nTeZ8be0d2SE5xyXGYuo18WKzdBWhDUrbbmnewteV5f95MNoDAMrd3EfYw9DycT+PR8YA8d0znDpfa9hYj2NEkUAW26SI96pewSyNf9YWdiRlikSGnE5MXlvM4YxNtKzE52LIJzC4ghP6pit2SS4oRKM5Q0WtDZStdHDrjB6Vg6DTiJKo9EsBTA0pQgOUzLB5H8gwcuc4jPTzUiwq7mPGlZyTNhlXCo9KgOdj5TAli9sDFGOOPzljp/mYjluuY1n7P+CY3WQzQY2IUUOKgf4hZUE0rkGNdpbuKBtYiCYwxmMPHyeNpfQhlN+TbkNmwTjT57zF6dksZfz4kA//9tNv+c575t/znNa4fzwGztPxu9/2/cdvL7U7XdFshYk14Iu+fwIl0tFxx/Swbb0+D5lshbOFkfll0+KkAZMzM+EEMK0AYRnG5wz2ek6Zu5z6LGcDkaewrjdPY03uGVCdwKfzWD2N1/la85KDLTYim+iyHLs13jI/nxtCGvqZQf9wbPs4tjF2Z6PNMThf78fMhpw+LPMenoGn/IK1YcQfnv8+GTOcNsbZked5PODL0V23PB3rHFOCSm5ZuhZ/axoIMLL70LEpQZ7cRC0CaxkMJEh16wRx6OVDwPrx83m6gQwrp8bJ/BGbhoOVoI7U8Plwkc8/cwxzs3KCrxY6BNGJIYMLBENu7e2OVfQj1DlBaFRZAGIZmHiNORVBVWGWRzw3ZIS+iZ7OkVlQyQkjAFye1hTiOgUFUlbQXVuUwYkzkKghMl8pNJr6YqoFdbsgGZWrfCPqoME5r1YAZ9vzvKYVVcZG4evHA3zycE5pe1imKSFEC3WgRI6xMPCRnH+e4pK54dsESHi9DAgJ/GiulFghrLlflJdYV64TuHCcNxKfGwcZTTWySjJLLTnPMmsYG4LkfV82LEZiLqlkO03RbCk8XylLWyqDD+EkF3DspuZYgFb0Tgk2eSnQSjbCLIX2AOvcJyONgwSgd5Y2dGacCTr1KM/r8165nRysvLVYt3nOPItRS7sco3TyTqZN9QgMcxvNe2SecxvTSV7sutwrMG2ISkhO67JPEzwHnn+Ejvxcq36607Gs2W0yVuwInSYRyChAj+5//RFizhtcDwAaAG92BIwOhpbsRnZDJPMp263Ee5xswGUXAQg13wi2ksHE8rPK0h9hJyiW1MTMEyBF42UyqYLxZGQ4DGPJCmxAQA0dmU7nyVELJgbPh2lHcbZU5nwsXEuSJZqYZfgQ9l5UHXAvUGXzB7obvwY88R5btHR1AGW0ub5U2fXsSSPKHebHaYyPyfhKLTmefwQoQi02RgORfHPahKkdFUEcEuwP8D6F7Qkqxp41wai1FjKDnID77GQk4VCffaFkTOd6ivcyGAgbCWMpxVxvHqyj86KL5F2Crw64OdQX6CQnh5qsdAdUULcG943VxBAUK9DRYMUIUidrbBwB7lELzQUYLZp/aAkBeTIk3VmK2I8Osxbf2aO0XvC4v6O0C8om2EpF92iB3kfohwKtFpgJhmHZwVKgekGtFS7A/ngQyDCfJRgKnRp1akYmgCpKucyAhfpBTPYABaqCbbtgqxVVK96/vcGGA31gH4CY4iINr59/h620MGUFf/rLXzH8v+LRHQyzCl5fvuD1h9/jd3/4Z9w+fcHl6xt+fjN8+/oXqBpqe0FpV2omSomExmrGwP0x5y7I3EJovDmvz6HYjx36uOP9/R3uoWnVCq5+RQ0dzjGULNWjRxMJAFrDV1Do2DHsgPcDw1lKKZYJIc79fjzgvaODjI3Rt5joISovrEgmwD3yJQgUVRWtbbhcLqiFY3s/OtnKw+GDc2QcZHbBBn2/zr1njB2EtcJWGuc141OBqQJV4KXAVDBKPKclyh4TzCPoiqLwIkyMxslLgE+SPkwtcC/8vuJMKIT/6W4YKnDN5NZ57YbNlNhTdOZj5t4TbTIW8CQEEWvVKRKO2LN0vufEaz35Xfl7xXwZX8V+acvGpr5M2s1z8ma6j8ASWxa+b5ximfmB82MCSvnvc9wTzOc8eJy/CFm7SqGk6E8j0QgkzeH60ExcTpYJ7bPF9VDegPfEp4+Y8Q4Zk6TQz4Mv/0dkfcuUF/ngviJBJ0m3Lq55xdVjpM+Y92MdRyW+XuM9hgCegASenuLJvD9nAkmOWwDn6Rd5XEYylWcCSoQlcuFTJOhk7qfJJKe9Zl45PTCjPZPcM8Xnvr+uLc9JptC0x/PcA/kVU9UgMIL0DXN+TMmJE/MciPkf61MCkU3fSPIezDsWc09W8mwebPozmEAi9xIwkRfnopVrnPm+HLNQMZvlg1FKkT5ozL81sdaCP8+ldZqn851/f1hTp1fle+/6/tvXEU/u+UzQ/a0PfXj8ZuDpqZWiJHsmmA0xESmiHMYkAhBeQzCkcqElGpivgdOvQEIUFmti5wxOw5QWJ25KKaz3ntlBX5TJZCWdwam8Dj5xutHIST1DmMSTT6/mwOrzvQWeFssvwaPzm9fN+QhOrXes4HeitXNiffy3fPi+k4HG5Kvgw/KZ45kdKebxcjjm+AB+Bgs/gCny4fd3/yUIBgxv7Nmw5Xmv4/PzUzPD02knZVxtwKTDhk4Shg8LfQnBDGLMTuedjnCAC5bG4YghdIhXGoQR49hpkLTGOSCyKA5QlCRKADydOTrEEuLd1OqgI5x2mIkTOqJPmzXAABLM5sLHvBW5ya5x1ehQV3kOcbO4P4bIqYeIZrSepvufGjqAlkqBWt/okCKuz5NZk/NigSw0fAS+0ktZ58UVIqUt0EQKyjgofFobbDyAK6nzOpiTn5mdIhNwMOzsIWbRRSznxjB4B6RUyNjC6Ql2lnCm856vYJtdtOjIwiyy08zsWzVAB6QMaG3QUeb5TIcmS5OiXJHORZ9riQkpZTAUDCYJi+xhPYZkiaVM0FVzo5sOVjjhWlhyqIomykYG4SBbBnoKuDZ4aXTuc5crZW3ICR46YAjgqLBMK2nWqgoZF7hWeN0JArmRpp+OrazyQ2DZRrKnChkISvCQgMCA9WAa+hLihDuKsUTJxs4uh+MBGw+M4x3ed7KgDnaw4vinEQrn1pxl2BKQtvuUdpprY5m6+Xu+ngCent9wsorKuSRz/w/H7KQJkE5+6iEkIPVhdc7fYw0jnsQBUvcBAmgIluOYYwWVSIoMDAV0DBQDigmsUW9HG9lR5h3D2Fr92L/B9x3oHSWAJ4L1xwms7ydQALGmBSP0akQrag2tNd0gSsZEdu4URJQSY6UIvZSxo/c9Su12tli36Aaa4yMIseWQPNFcQx68+RiCEdpn1mGxXlwEw4SBbYA1JhJ/nzTQ0tcIMPjs9E93UQqkXjHb6VmUG5rDTKFIuxmW0X2CajZ4rZOlN3XRBLkXa6kwK5GJjbnqYDlkBvr53mB3uVagSAArYRtOJQQpCk0Hf4QL1cNO5z4XTKRTIiOjy3Pu0s3ZYGMMjN0wjHOiWPpFjuEGhUapY3QaFkVtlUcSJs3yR2LNQDDZQwCgVdDQoPUTtr3BRqeA83jA7YAen1Bvn9Hef4/x9leMvtMe7O/Icphx3TCuV/R2wfWyoTSKy3dXDD+wv7/BdjJu66VBywWiO/a9A6AI+PXTDygurH4aHUUKqkaTiRKC9MNgTr0eB6DGkm5zwXEc2DuZauxSyjVgDowe5WsqaGVDkw2igr3v0xy9HB3ihtIUr7cGheHH3/0jvn39K75+/Qmm/zOOfsCm4d2DAAEAAElEQVTKBe3lD/j86TO2uqHjCmz/BW9jw1YVL68XfP78in/6D/+ILz/8gB/++Ed8+vIjbvcD3n6PP//5v8HtwOtLQ606Y+L0vwEPlhj3RJZvVtTtEj4W9bhMNkr+jYH7+zf8t/9/B6Tien3BH/74z/j8+ROZZl8LHvc7jv3BkkIrMK+Q9glsKsBGEWIH+ugQ6xMgLxGluRjevx0wkH1rw9CPA3YcEHCoLxfOHVfBbrGGpeB6+4xWC1qp2O8HdjsizjCM0dH7jrdvP/H87u+oxaHWWcr+Ti2698dXBuxRqs9gEOjSsEOxq8C2BrtssG2DbgS4trIBo9JemdFOQeBVYMamM24KO5TgVKvsUFYAxQVeBWgF2gb0cJQotzMdlH6Qk3++qnlx2pKXHxn2VUA2dK5RlcVGbLWEXg8I7PoKFRfWs54rwQImuKSxb4AJyvB5s5TWI4hIUPy8vzKRNCbwkHYPQGgAreCJ5OoFlifAbmFDgec4cAIjWGneDA9Z+uUofWCvNjuhVRXuQVNOhEcwMxSVeF7msUYOviM6NkqUdCVDKkrvbMzSOXiWBZ4IEzGyJXxu3gfazdIMtRZ25UMwloDQs12Nc3IAPBnfc6wHRHrCOATJYi/RotQbCvO+JAp4f1KqJZlxM26O6xAzoHfI+x3lIOuJ8YcCWtHdcQzDMaJ8POZhssr1BJDMuSaJC6w9bghnXwUBouzD8ss5GinxYIwVgJq7ELRgisOiJcGgxlw2BzvHnaXSt6i1sLxReS+6G3Q42NOO956dEBW1VrTWYrd3jP7OOC8zjTFPVIT+RaGfZyHVkaCruGKMAR3sIJp6WunbOhBJoSw+kBPIE8xmy+c8ZkCO1kdH+Dke//jv87vOMMCzS+1PN3H+6Yrnu/vbHn8n4yl/0njInLREJk+T1s8IZyIMmAZG4hhcJLxUd8wbkCVMADjOgSD6GNPCzqx0HD+piesrA5mHrIE7GcYF6jjm7Tzfk9Piy2sguO6nvyWc2whaTqN0RqSz7SZPa8LB8/MiCHbJMoZPjCpfx8vPJfsqJ0xOFj+JkT3RZE+PM42Q740Fo7Isx4ePTSM3o6n8FYt6gkcy37dEx9dGktkEzZ1S5hHC0c840Z/GgcHsgLjAotxChiC1diT0ok4TYN5vj0wXfBA4dWBgR1hWHqs6pIQMqUo4bRl8GGvrXWd5Ae2qMjMFP00eR4KT7phlnRkMUPRaQuslx5jdqyQyb+syzhOSWXHkGoBgAllK4XWWyJQwGqv8LEsnRJjhpbFnCUxeDumsuT65aUgAT/wsb0z285oBn3BO81R5beoOqFLgUwEZLTKBO3Wusswp9c3Q+Tvng+TABPA1s5EZ8A0Gp7kWMWb7cU+h6tl5KkCpzpIS07A4hYAaceoUlzuZ2lkC1gEPVk7qO3HFk94t7ChyQqiRTKNkiJHi7rEhnsNAxHyMORH5Spf/jbZ/2ZIkSZJEMWIRVTOPiHxUV0/PxT1Y3SUWOPj/X8E5wA8Ac6e7KzPczVSEGQsiZhHziO7JXsCqPN3D3UxVVB78ICZm7sj8ds/igwamRx4soIvG1IlKo0vZ3NTitcmgC0rZZkyjCzMazD541Ec6hAITjEbLqvXF5ylDBZI/WccFKOMoHdFiLYmVQVo5u55hPtgBbzIty7PQ+cz0JU+ON896Mthn1LZHgk6SzTuug5QhWKyWpnCUhxghaarWcvP8FgHWgOwCkvM6BXaZ6sHEWkI+Y4lH0cYlZ6xl+MRqbAANi6ZNQ3bRFEjfSTRCIJ5k/ISdMLEpCFJw7tn9T18+EK70xXEJeFI6mPayx4U02JcMkVVqQoTGDdZOoF+w9lRKruoAaa+l6HYL+HhWfSc6NBOVeryHPgKymK0AEygQkLUhXYw+mGHGVJqdgalNAoWti0iXMkhgU+rDLORh9vK9qP9iFbKWHlkHe1F7dujRAxa46JKiAvCkE1yAmYFdPkvuJo00vHRkAo4u+W+qJ2R9Y5mmbm0KwpWOXHYGlEo/fdKRjBV/zbOQaiPnp7VWOhWS02Eg8yTHlvJUrJd0ALN+UxW63XLpubdXF8neWPsj56V1yTN0xHmqJmIg4kDEhN2/ALc32JdfYF++sWvc9UB/vFcQ4egN7TwQ/c46XbIdMojIdLipboofOE4jgQcd1+M7Pr6fSsfpCDvIvpqGORKchOaIDJZ2HMjg6ZgHjvNG4HPMuuf9yxedI4KSmcb8fD5LDhoIQh7nDV+//grERIOjqZvl29cT398fcLzjORusf0G7fQXOr5h2xxUd3t5wfPkd91//Gc/nn7Dbr/j6t3/Gr3//v+Dbr7/i9vV3tPMXHHHhy6+OAcOcDxzNAXWTtK6aIqCeWXKZ+6O3E8fxBnZ57Lg8xMA7uH4ReDw+1Do98Pt44na7s3PheSuH+LjulLHzJKs6O51e3wG0srWz/IYdihxKnvR24HZ7w/3LF7R+ADDWZIrA0Q3RJ8yB4YFmTEs0fC0WtF+jgrKR5RYSAIfj6IAJDJvjwpgXxhgMljSy6ByTDrQH7H4j4wnG+rMqDN6PA2c/4f1EV320ANPyYpCVPNuENyOr+OiAn7CTwEYzozPfGtAHjiPQDzFNL4f3gdH4vAStAz6C6qqnnR8SL8vWTzFxIFOHd9YTqN/BQHra3Yt/82q+pprN31ca4abvUp+l6o3Sq/nZVW/yk/uB1YyBb2jrwkhr4yWoY+knUjy9xL+Xi7TZXyT9BghAuQWJDeUPMHCZfpBJ7oXbSn/H7n/xIQyN9YiRzFQO3NO92I2C2L63fLyU7VbpVmYBZJML5PhkGxeatsCwZPVGAOHrfg6xjdIXaoB11vOaU9k9ZVdHJRrBKadzAPtczgjEIIN5jImmJgv9eIPhABB4XgPXnBi+7RJfjCyEfIvECtKGaLIjDassCqKAvePAAthEbdpcT83V+rkKvheTN2qeuNkFshnlXussmN4zDVGTEeGYCDXGi+VXI4rkYjo700M+gPZA2lYgQ7x1w+1+ECQbvvaVs86odUM/2CTCQLZ34gXjctWYzbrTDKi5nhH2WrJonRlbR+uHl/0HP5cp/SIT1qbc3845zGex10/8pddfLy6OfZF3g0TGtJDrHwAGGXtJSwz9jc9kBT7t7aj36+S1doGSiG1rrYCN9Bis2RpoeSnpNqEussAdFDjTBZphewbIQDftvj3KveMwyM9iPeML22Z7X+Vu5kFS6llFLfM+Htvv+N+qq1CfBpbwT8Gh/+3z/Vnya+R0utNRizLu17z69u51j4yo1P6O/U2cwwUILjQ9jbVcg5dYbO6XTY3l+xd4RAfNfcLcKDQ9HTtS/RPMe10LFTHO1tQGINR+HJO1CAIyYgQ8qUDdAsvIy8toQtKMk2Kdc5hK4rVGltf+yWoAax8CJJLriyFKPcJi/AGQT6DEcKXlhYoRI+sJ1XlcwFNDwA1kJEVjZD8LyCqtxJQGU+tdDiSWYDayHFJh9KLwvjp6doBzqgiE+cmIfjuQvUbXmg5k6s5y/qkElgPbgKyzMiefLB0xU00RXaf2ieozhdq6+hhcV18wQLMggS2anIc8pyhnnUWUuS57VztgARVhdKD3bGFuZ6X3pFhRQX2f6RnS6Fryj0aN11dgipViMHR1bbJMeYMMhqprF2DL+Nxy+rvlNzmYx0Fgwgx2kIXWLZ0RFPA3Yxa7zZCyN1bNMRkFrOkyMccTY4opNuMl9ZEAyAXzJ7IjmI+L4OBUIXgPsUi28+F6lli6A6/fJDU2PbHrHywmSYHdeYOlIl6OWsH5SbxEbk/uN7M1Kbv6pjGneczbO8SQACrNCigmFaCASlZ7dRYFjeFkpKEB7YQfT7Bb1AUWUDZkqh3P0wD8AvxJRolS3VhAmGvifq2HbPnwvYxBNlcYZDwdF6yRFWn9qL0M25g4BoFOgymTwTNosc2v5kQTIHZTLuraQy+gDMA6KsmKbJQ6rPmWgKHV/i5QCeBC2hbk2QEoE8PouAuo66igRFO9LDQYJrJJSYFIyFukfpL8KqNw2UBL9pa1gDRq04iGUiGWIkGN0zJ1Tft1mV55RVcQpiFbaWsqCyACMn1DcjiFkoIHDXI4IpD1HXOs5tR/1k31QdrrGUsZAdpxVVy8d8wg6BJOVmuEmEUAEF3BLR5oa4BdX9DGA+2NwNO4HjgSeArJfAs2gLAO9Slldzqx8MfFfTfGA1kDzVrHeL7jHYbH4wlTzaOIty2tArBOMOF+f0MT8JSdBNs4cJyn9rwKgB8d9/sX2UuO54VKyX5eY+1ja2jtILDwtRNUHxdt52bo5x1h/4bhB4Z33G5vON5+gZ1fMXAjC6u/4fzyO779/i94/x8T7fYLvv763/DL7/8dX75+xfnlK9DvaOcN928Gt4YxPjCu72SROgt/m21dTWlESx52jfENx3nHcXvDGWzRfg0W/GeL8IHHc8KsY1xPRDiLuZ+nbCPgcb2BNRQJsMzxICNRaXfuSxcgwLpTjSnfhxvsuOHt6zfcv3wDrOG6Bp4fD4QPzIPAnknXs4ZUoEBuz66aIZaAQHftoQamtGHSThjjYk06BaboarKd+5gTw4HjjaCThyl1nKnnRzsol9tJNp8ZYARZHIZrOkbrBLN6B44bAAbj2iBDGAigH7Bj4vRAPyZ6m0AfmKNj9MZ6fU6m/TSyaVYGTiBr5b4ATxDro7I5dJ4NaOYpYaiOdsW1adJdRZYOCyx7q94bZWtbeR2Z0BJ1r8+vxdLh92TE1AgMeLlHgkMFvG/yUDeJ7QIBjpuAkyTzlBrOyZJJ2buYSHuw3sVshmScwA9DBkZQ/k8+D83Nzc7TGHKWkDX+DAQZKrDAN0amEG/PzWttIFOBWpuRqX9X2pkAn/BAP4COhjhUoznSDgyBibYC/JZ63YqpTh+UnyXqeVHGjxO3e1enyI7nuHCNwaLilmPnbrBIn8GWTyl9vWpnGbLjaiADNcZmE5Apn5FI2Avjzz5tsEzp87ml1mkDW7NKaWUjjGwQZTDVza2smAi6BGkQm9Y5nMxNLT+b+tAmKbNmGYss1dmZiTJMc+TgPcD0zaMf6MYu6yknsyHEnIHJpunIABtr12GNM/aD+rMTtx2UkhTS5XjdrGlWZWZBpjraZoPw94vkUdd5OZT/+eu/ADytCBOF2ELTl00ZJVSyiF0hgPpijmXU5noRj06H+SU/VE/jkgRmTYh9GvJrhC0NLnsdSwnTjNgFinq37oMy+BIIyTa7bXtPOvU1hAQYUiTrnqzyrwhTfj5zCzSGGl1scE7WfFAEeIFAGtMUkNDW73Z2WQqqnPcCnT5tioqCZtHSl4hzrMOj8WGfL8nQrO3iuZ5p+1sa7NmKE+gtqbpEjFkXohf4uO6Gmp88BAt8UipVrNSmBITQtSflJacgzfMwVVxuSQaBLjEQ6CyUZxMdMmhkhF/Da36PdlSh3yo87ky3MwOmBLZLcXHfU6l5BDAnujUqw0xKLj0j1gIuSMsrRQJYdcW0TjBqUu3pjNKY0nZCIEQydOgAME2gH1ksuGP6QMZusnDqclqCzlfIeTKDgYUxidG4DCgZkEYkPlOUPNoyJjq098H6LZ1dsEyADkGnhkyTzNbs8EvnL6NVx5ongY4EoJTDPa+1l7Nw9XzCB4ENH1elr8AnrA+En7AYkmdLmO17jy2WBWiJ8SQVCMcsmeTWdCZ24Z/gI9PuLEQLTiMH0BlhqnEYU/fIfSPwVC2Y5cS5HfW7FMLW2OumCtI790wCkOgN7ZDz6Iec7ol2HOisksnEogSJfAKqpZIYCxBoYxSwlw47I0wEOMb1wBiqhzPX/rFgSpbPZOKQoTNH1ncBkiUI+GpHDZ6hjKqwO9cKJOyyY62ZftgEyo9/l4x7seViAYlLyJU+p1Eqg6pSAvLPAhuinkRry9QyTwsYILBmgHVGxy2BZoHibGo5gdYxkcbsgejvPPudjCemQc5ij8V8Yjz/RDwesI/vAkznAlATYMlwsWWa8MbwaQ1+PIF2AOOG7DLZ+oES8ujFdjMDsoNkiDGEmGhiBdXUareHzw1s8TJu2Pad9Q7yMybgqTWDeacjEVjpo4bSH7Y5W9Q9OT4DBJpknbMwpRGCLC8fT9a0sQ7WvDIgTGkPmv9O1/TS1GVUNSPMfRtLSxmzPJOa/6XrFSkVtMw5FtDTGqOgas4As2IQeu3k3dVLw5OzvMofWAGlxXKowxDKlJC+zHSWskSwRYRVzsAd85o6G0DZbwIwgmoFGHqqGBg+qvTBcbAD4duXLwJ+DDEDj+cH7PkBe3vinGQ+NgylowTm9cA1nng+HwgT20vGdusgmIQn5px4fLxzHx1PNL/weH4ApoLxxx3H+Ybb21eOzx0+Dcfthi9fv+Jvf/9n3N++4Ow3NKURX3OqhkwDbKD3ht4PnMeJTF0/orOINYDrGmR9OvVjax3n7cZUS58YzwfOg3V+xvXE4zJM3PDf//f/A7/87Tf88ssvON5+B8BC6F9/u+H/+n90fPntv+H//f/6f+Lt7YSdv6C//Q12e4PbHdc0oN3x7W+/YbYT/v4ni5o7YDFwawE2FxiISWfSYEy3BBmV0ztuxxfcv/2G+3HH4/HA+OMPACFHzThuA/78808cxx23+xvTco2d5mYE08OdzuPj46BcaW9wnBiqpWXRYHbg629/w/3tC25vXzGioR03vH37HdZPjDHwP/7H/8Rz/APjeeFoDa1fBP9UjzEAjPGdMuQgmOs+Ma4L83oiO+1FPODx4HuV6jfigYHJztYtxEI5cDvveOsdYQ3vfgCTKb4BAkB9AvfZ0dDQYXhzQw923bSzIdqJiQPeb4BPtLm+8HgA1wWMC/PjvVLLbw6060J7XqyFeA2M61LjG5YIuB5PZDkCSxvHHSPZxcV8SFm06btd7W0iYL0yuEx5sfTZeiXzzVP+yR+oQtSydSMY4Ezggj9yjlhrB4sNnbJDPuX03f6I0rtZ4Ns2v66YHrJZE4BLWZNVMbKCRQugu9K8AQwLnA14u/Pa3fh80x0zaDebsQh0Tk/afNkZNWYGPMVkCXWg1dj6SzmFHDu4L9Ou0JXNjDVPu61SMLU68lkiQbicmPVZzscqNu6yM5HA7wYbNNVmQ0gXp/2Y4x1g2YT0H7f9NME5no8H3A3XFfj4mBhDwKt04vTBtFILTGd3wd1nNTOcx4nUr2Pzs8bghGdGVbHVRzpVeQ2RBntXQXGuxXW9Mp1MuplZAAwaHmoqxOVRnSVLVrOe2Q3dVnyOza1CtjLHNCf3e9P4EiDsm0NMFEH61ixJ1tKdwHlrYg2j0i9ZxN4wZyNYFWQ7mTVc12RK7uUwzPpMA7GIwtoM9JPqH8smec0QWPuw9sMGS+0g0+fXyjKLHy/3n7z+MvB0HIcWuL0UQatCY7AlDOoxNGhU/FgHpxVwlcZjisaAnCeXBH2BfdZ10/l4gY8+HfL9e14/hWSK1dB7GEkB4FGV/q13jWk5MbmZy3GR4fmSGre9r0ZnVoKnfVrFGktkfapkT625hQ5Sa4th8vledTWBZ9ltab0ptdAyqGkw8dBnkWrEYjbsHtuasdc5rjtXesK2UZ1o/p4WtYNNef0E2+oZUtIl4KW5tXCgrWc32xVkGvzs8hCtA07nDYg1vzkXydm1kLen2ku+5ie7wkWkSJLClfO/FG4i94ORj9IVaSQYI7au8TvR/cIEI50QpswRvGsCkfb5drwUZy9HhnNplj9sbAqlj0Qwus95ThAuzyiQ1cwSdGzqEMh/MkrBZcnoN5Bpo2Yh1o2mNve/NV2XTIPWCHzxuVW7a0aBzhZZqlvrjSyCLlbXnIhOxhNTsigDPjOefD7JwvCBvQAzApVJahYElBrT9pKpwP+X2C3wjvtg1awhUMJ5cdBAyuLACQht0gkE7kjnrlUzYxFpzRVrJQkOtLaYSwk+WSPjqXXKp3RyJV8gUHapGt7pOOTYAghvZSRhqoudzrsp3GcxwKLQs9YifJIRI9DVx6zPkUWhn5XiGJP1sBBZ72nAQIAiizS7wBG4k+GTEaE6V6jUjJhZhHVXc9s6bf9+KYCv36VBZraYgLnWASDTjaznnOYmz6tsd43lwJlhYzkpMsrdQZYhZ6vEaTIHiYmkHBQ4MUnPLgQrwdl5EVid6gh4siA2jO3JPbxYRz6faAL5svta7o1QbQ/qwtwdqx4SWhOITTAJfQDWCVZuO8paL2C8ZEqyr5C11iSvag14xh0BNgeKtU60tvS5NeOu1F0Wk05m067OdM5cQQdAEci0Lxr2NDyi5iBQ1wYBtulwG0jUpIUBB9NV0xjvXR3z4lQq6TJurc77/j1lMZd+L1a/tmaypbTWRhmS96w20W2db0t7BBAomvJ97f6QAbrr2am0htIlSACV85bp57uF2QSsetAZY9H4sVyYBNqQdaWY3jKc6bbXYPcxhOMwU1pc51wKmBvNYf2GfhrQTsp2d5yd9ea6AdfzHe16Iuw7rvFEtve20DPYATaDZ2dFbqfJlvGHw/qJOYfmiaw8B1O2IhrGvBBwvH39giqELnvWjDVAeDTShnN8fLzrlE/W7sogD4UCmhmO3msN83w367gdtCtbP/G3v/8L7l++4fKB+9c33O5vSqkluHG2G779FoCduCaBlPv9QL9943OBgI9Zx9HuuH/5DdYODM29Dzmu7gR8YqsZ1g/08w399oa3r7/i9uUXHLevZNg2R+8nZbgBR+9KD2pwH7iupwABNpc4esf9dsfoB7LG3/N5YUbDmMA1gecAzn4SPArH11//CV++fcP97SsGmP7a71+BdsCugdvbE45/xXMEnsNxmKN32QFwOYpqyqACx+5sYnFdD5g5+gyM53fM+YDPdxi0Ti1w/3rHMTuef15IBl47TrSTYPvzCVwfD3z/fqF/+yfc7ATaDdFuGO3AtBu+9jccaGjZJas7ot3gnQGWHo42WZsU5x24Bous93ull/fpwPOJ6A/484HZB2Y/EAcDZnFNnK0peCbmdTBAZwimOysdH7DlXiZoUNJ0/2/KnC1oLcc47e7UbZnuRJ2hy9pKd2VtX8lDRV1lCejeVo7/bhHlEJdfsH65v0uWZ4nXAMRG3T2SBOIzqKcxpHqRb+cKBFNXE/DoXXoBWUZhpYfPiSpD0RJo8Ik200aFgCpp+WXQS+7TKH+R+5vBHvl8lQaWemLPlsjf9frb7htWtoD+1nsybTZQ0NZcZ43bnFOy+oLzA2COWQzO8u9VdzKGwwe7sbs3zAkVFCdpYUzqikVGsGLzRxAkgjFTIDNCXhpB7X6dQMVMjewHGVqtLZ+PqiRt7TSqtv342e9tunbDul84WlNjic1UKHrhvm5WVi73h3O/Un/WB1Fd6lQbLYkoaUvXkNLMz8wHWBWK72GqwGIykRnQgAGtB05jenh2giaZNdDN5EewXpUpjY+dY/cxbocMa0wJGBf4VHvRlp/xye7e//tXXv9F4KkVuihWfh0mrvea2Bpbbu8yxiQc0+Cu36EOR26IrCWTH98XnO8TdbQ2qQ6/AJdXYObTlGREUoe2Nqk5QrUKktGRaW9LEix/K79i+8qHse15zBabKDsE5X0zqhnu1blg1YWhMZ3oc2t9u9+a6wUCNliLRV9V3i20qRfIl7REUd6NRe8KXtqEQd/yf1PUh9IECjzcFymn22j0sI4PBUbv6ozQ6ko5Wy/rm/fytdjIAo4JTKwihVb/a9mG2w0Kh6K1jiHhytaWXo5ma4dolgdPu2wZ0quxaKdI+i2d6NYOUvQjsNd9cm/FdqovD97DDa0RLHGTcqw9k8qDwBORZD5rbTMxgwxWiiMdjRQBe0cuQEyrTPEIMR8sFvjk4AO33I/7Z51zHVjOjgSsRaBFFNC3p+hxvy22QbZMBg60HoCE4AgBdKLGhnuRHWsrhTpdOGtgBQYws0ivGHegwZmdu6ZP+HjSaNPvyXC7KrsHAgHNlIJXMkRP4MtAW+k0KDCX41PdCp31jMxEyLC3KtsuuS4GQ6YC6WcD2VLWk9EBQPsYVcBMHeTOU0zFru5LYm2ACtTcgd4rSpPPdZwHFsYxAYGQ1g9kzZqMopKZ0UHG20pZ8FDnK6WRuJwwezF8EkBQvaE6u1m7TIXu1bmKbBmn8z9UWNyNe0ztctlRO4Cs8ZTHpe66Cx0Zt1qLF2N2c965XmvPegjkANBwsG47MpJbqkwCcKUkxUTpp5bXzrdh6ceMoi39zTPbAERHWjA0Yo78kMFsAE3d6uYTPg7EeLLAvuoIWATrplXq4sXC7SNT4BLMCaXDhc5VGmwrhQ6tka3UOoGZeVHRTwHG6QaIrcrPZ1BAaS/FDBSCWCRKEea3VLsq6O9Zn23UxFEemAIHkiUC21BPlJNsSofZbAk5C6yhtL4igBgXm0s01jrzwfTjwIWuLnrhopk3gxmBtwigtQFT0wCOQYa0jNRYQypHKbckIHy+bJOsYSd9WkY0L5IlDco22p4796BLri/2X+4sFiCF9HgT8yv3e2gwTeyn5eDkdwBGFsuYQ+yKLP4PJLsLvQv4D8CnQA8CT6FaRybbsR8H00WDqcQRE9ZuaMcBNKXVReDtbASeGhlN1h/wODD8O8IvTH9yyCVXabuw8PrE8AtowNlZQiFlUFwXu5iF9DQOjMlua2/vX4AG3O4nHL3W8TiaAJdGMGVMfP/+J3emueIta2UMZIgcB+Vz651BEgDnecN5qGzt7Y7/1k6mJmNu++dAaweDW2fDt3bD7f4NX375RWO90M8D0VRgH46GDseJt6+/4zjfcI2Jj48HfGTxeJUTQNbjAtpxw+3+Bbe3b/j269/Q71/QzjfMi6DOcdxZaBdQjaXGtBGfAnYMx3HiPG84+oE7DD1bqs8A2gc8Gq4RAo/AtEU0eEz88rd/xtdffsXt7QsmOgIdsx0wHEAfuH254DjwnMBjBKwpZdAmurmcerJygSHw/YlxfeD5/M5naIHn4x9wfwJBFlREIHrgy9eviAj8eb0zHTkC7WDdqtZPfJ8D1/NP/PnHn/j6y39D7zfcjjf0/gbvJ6ad+K1/xYEGm1mnKGA9EAeBpwZ2PWzO7o0xLsQYmMdDtQ0nMC74+cDsB56NtcT8GPX32S/E2eFjYj6fyHTdMei/kHUR1BcKIpZf+IPfg3KEl6KKEtNpA4Xs68zg+ZmvkSm8JCKICSOrVPgr6jZt+UZhVvKnfD2zKu5cQ6/vm05Nf3GrxbTFzSjz8gpGDyKz21fQSaougHFNRDTEoQuBLEv1DkCArEoDn3dO11x5CfQpfVoSQII6wRdrIV95sy/xWWYsoA9Yc7VSxaC05bSz5OuZYYx1nWSg7T41y7NsYzN51prUBtYLnBqaj1G+asr4FlwzpuBGFVd3l94MpuRdYzDzA8mGA6zqU2UdRK7NrHQ47WE5TjlXe7Mf9yD2sKF3BshO0z7CFoSFl04y+afWbKWqygeKDJIZ98aaP2DjeHA9kpIE1N4dkz4TgaPV6GSFfDlv7ijgqcoO5PUsFEBeoGcAtEOaiAqyz5mlwtp7/WiKG7MQO4M8hnY0AoBOYLXp2tynSQZY+7ten35MO3nfcwy0v77SN/38+//s9V+u8eTuKsbFBXBFU+ecGCPbjyeD4cdrcD8rupbSwjYWVU9QYiG15YT+5LVSwzZjdEkhvRKxW+/b4+PIIiaQw9gEQ9Y7Pt99kw6WES05p56HQP9Mg9AW2GZYQFLSNFtropzu97XtjrzmGJkilghrGorL3QkXjTwVTBm5cmzKAwJrq0iitx6lVHYQrQ6vrUNXWkUL9JraiPW8unZvmxO4vUKc2LlzD2t9djM7fwx8br3eMuKTwguiBAcNcLMDbOkgAVld1fj3JiOmGTvW9J5aGLjGLAHG2hUdhhNN12znRD8bYF3DP2DG1AnrnfVInGkknC0JmARkqvbZAAuFg7m+EkHX2AE21vRJ5xwtYYvl7KSA8pmRcYfZseZT88euewPROovoOWTA7SxCZ6pXeTw8F80m4B2uYtVebBw5TZYCeme2ZQRAxszkeoUAB1UuJbjgwULpM9OCdLZiIPBEjAeZNwXssDYDsj00mNYVU8ybqtX0RJ7A5gFEg0cj0GGay9qjMrQQBUJhOxNcS6UX0o0geCSnMSQXXGfB0BBxSa40ZJewpg5KaGQFJuMJZrDjLIZP72fVM0kZlT/DGlN6o6HB4UOgmrpVUYm2qkXhLsc0HOH8bJ0rE0g5U44qlVAgWKiAu1UuPpC1S2JeBJygND2sdDz37AroGKoJ5GNiiuWU/GDhpPBBHWEqdNwEPJjAjNiUywvTFRn0SJmlv29LG7IkPhF0sZgxYrJ5Mj+BV9AIS9zaLnlRwK2llbzfU2cqpPAtrORf9g2wcMTlTP+wSZk2Qdp3e0OLjjhu8OuJFgfs6GXiIAKhdEf/+BN+DTHKXGPU2U8wMME51EQBaLiyWHLv6lTZ0Y977d2AIabSDbaD0RCsdYYAa69IN888NF7yIbwTJEBGP8XBScYvIHC4YQe4yPjs5YBYriWwQCtA8oHWY9VBM1MKcNZ2MsxBo9fUwe98a2AGQIOfTLvrpZM1i66vYLQXCNa20Vm1AIGGNHg1v1ZzLEZ3DbXV70MMr2Ln2nq+tZeW/bI6+C57gSAZz2vKH9b4kzNZwDfKhpHQejlL0FlKaAw6g6nXVw0qOZJK1xu+dRFSAfXpDlyXACmOjeOTHLQDx3EiBQBTDZmycMYB2BPuJzxuuK4nnvYOH+8E6443nPcLrRvG+EAyj1hIn91f6ShRvvGJGAUu8vA0vP/xbxjXE8/nE/04C9w/jpMph63DYmJeH/jXf/0/MccD7gNv90OB2XMxU/tRdqjBcLvfy+7iklKn3b98xS3YhXbMgeGs30FQjnuv3+5ox0mg6f0PvP/5RMBx3k6yjPyCB9PY+nnDcTvwy+90qj/+/Aee7/9KALMdMG9ifwW+nt/w9vV3fPnlNxz3rwg7MWZD63fcbgd663h8gHMyleoFAw4xY2MSEO/U/asbGPfF16/fuD/GH7iuD3x8/AlWUOsMQJ1f0e7fcLx9RUTDzFxNO3AegX/6lxv+8ccHjtsXfP/H/8R8TPTrgbd7oJ8B6x23+41srNZg1xPTH3iO73g+/wGDwzvg8x1zPjDHd+5ba+i3L7h9u6P1jt/m3/D+/U9cjyeua6L1QFjg+XHhsAO/ff0Nf//9X9B/+Rvs6z9hfv2dnWXbDefTKKOvoRpT7DJKvQoc1nB0MhRgAxEnPAaevWH6gLcBbx1+NMy3RvbgVF3Ki403ZlcTjmNgCJB3n0ytmUy9G5XdkGm1UXqm7OcNUBY3lClZsguoQrgvsyaPmcHt1ZFbvpQr9W7Jx+xWRxt8BRJhTFtrMPRO+5xqaLH+V7mQGur2yuCfvX4vFyHKNmvWNhnZXiQm5RnNjWFsEM11Iqs1WXR73U3a9QQ6jt5qOMkU9rA1zxrbsj1SNi8faUCNiizrHkWBOh2tAKaIUAqa2Di2GmmsjCNev3excmPLgKi1SD0FMVipilsDa19trLf0YfNx1jowcJc/s+4TfZHrOTEnWYmclcZu4KAsy/j2DIXKLX1ZrxTuqLleY/7MgqqttNtg2y9b+q2+d7kHbN9Q2zN4ZX8kswdKddTcYoFWud3KHpQf3fope1O5GToqM5QBENtzQM/XtGaFeTAIPGLregcDWgJRyviAo3nATA2yjJ35yPY96h4wZjKN6eCWWFiKT61dLJ2es/sScKrpzT39+bX90nLT/PXXXwaeLA2j/X62HLECJXS662HqdxQsRcnSpt6N3qRJJshr9dBrgopNhZ9vyvVPjvfF+K+D9Lpr1yZeG7REVQCvt9BDRzpmnPQcV5oau7DPUeyXKadW9/EI9qIwe33GTwL2lU22zW+NOqOZr8pm95j351q1s7a37A/88uwSXnjZmeuaeJ3xovvnOORgIIHH2tqaOHtdq5qBbXDxw1ys+QgJ1PUMaQRlusXmLEWyw5oEubr/pEGuB2xGRg1ZH8mqWmwwD6X/1JzQOLdmwOT7X9Y6Peut8HjEGlNAEW4YWLTcZCST8QIZpAwhZccg3se39fJ9DY3zGFIwZqLRqsgrO/OtovVeG25F4wlMaYItmVUOTJDpEOqKlaGCBE8sqbYUnjEXaBhEWZB8LdR6en1ZsrXovoDO+AWE0tYEjnml6XDcroLKBJ4S/LiWs+oomePb+i1ZsI9HIMHLeeDeSoke4i9ne+Gci1ybsAbkHKGRpWLZZ0bdLLdivUwHzO5hDe3oYtlpPzervYtmaFlfAA1oudtWhAyW1Npda5vmUOdwk8Gb+VI/UdYskKqAhVgg06LpljRCwAVYiZE2EzRexiBSeUcGLZJZl1278v6UBa4kddtHmDZp6pc1+6hcdLNtbPtrA1xDwLVhRYZfBJuVCjFFq3Jv5Fs3MYUElxEQq2HpjyLvuMx3E2hRdNKJwIS1SeemXZjXQNychkmk4IsqNBnuapmuou3bmqTFX7qwFit/Eeqwp1RMANnFjx0DZGAVrTwflCcxDUuLKe2VBp40o4xn7xpzAhdY8jTXowy+KjLmSGmRUd00hiNSp67V5Hnc9pZBZ6SDXTAvnpercy57wK4noLTg4xxrLFu0eZ2GZFEJEkujv75rD2bqe4JOeq5P22/bM6q3RAXN56j37bowal73lILWYoFKsZgFZWLaxhzEMkrrsV6e0WDG9G5u9RVRT8Bs188JLmapglbPofX1ADCwcgwU9LVONiUPCVaNrAbYQX3Tb+gHZRzrMz2RKcmtH0CcAIb2ZtT4ikOhLevJrot8PsrYOS5Ya3g+Go54g/UOmyymnSmF1/OB5/OJ+fxgzTofuOJCnCfinOjnHdk5CZJlbnQY1l5cuqUcSQPBN4+qVZl6PySzm1KsY0uRbY3Octo+ZPQ2nMcdb2/fKBPmAx0XDBM2G2AXEMB5/4rz7Stu96+IdsKjseZcM65HP3EcLB7ehyt4wFQjBg4aZj8wlYaaMoN7kel3b/c75tdf8PH9K4up+8VCyi0j72qiYep8iJWGed46vnz7Bc/nE3/+8e/cB43phr3fcZx39OOsYt1zDozxxHV94BoPNLEH5nzCVbS+NUO0A35deH98kA2fNgLIvL6uC5iBj/cHDB1f377gt2+/4vj6K+zLL5j3bwg7MKOD3fvoNA4nw7C5cQ9HI6CBZK53EFoOuHWYBWYi1c2B7jjPO7xNpv+DxeJbGJRcCHSHG3lF3shAJjs1052X+ZJ6Zr2Wggos25kieGlSgohM9SwbXefbNyOT+/dV9izZAACtAI3IvwElB3kt24yF9C9kA+Woyz6TXM2x7o9n+3Pvgiy2/y51B0PVEMpGDv1IKzDLPVT8meezGdY78hiv+Xnxp1DkGA23LJN6pk9GhT6/kTciM1L2ke8COufeN3mONUe22MhrY2y6MtceEGP+9U4t4cn6U6t7edW3AqqoemmY5ZenavAAi+TP9C5CwFMGWHLwVnOx9C3nKfGjthFfPu8Zzt1SR8C+J9uaH9kpZfLp3tn4QcPYwL1W18lr5kKXWC/S+kq9XOTs18lNZjMSLEsB3tpaS2FwlfiQX+C5Y93e1B3tZYuQQUaAciqub8ZUeBtkSNWo9m2Y5Bjpryyf84q1RBWRr6erGpM/WtY/e/11xlPkhlgban/tqSoUMFFbIjd5UhLT+Oq5mC0NTBlvelsP3SiALCbt8z/OB13jsh+E4eexaqctoWDroQKKROtfdW43ob7sfQqGV9BmWXF561X/SsIgr7s7fnUNbAdvnYy9PaStX2/jTEGzogjlWNoSQBFRqHZSOVuDIqI5bvtBzOmC23v4S8frxky/rNam7e/NaBkjoSXIY2NiadMzMaOt62VIOe+VBm1bDlw+N+sWLdDpFXziIW2dtP8uplkWyQbW4V/MPhpcBtLUN/uxvvgHkwBLRo6GDQCm9LWXym5rL9I1oAG2nBrTdxYCRQl3PksaocTGc512cJKARhoIUfRTGb4yjDe1rusEgIEEF4gG65lEd28yNIt1Y52gU3ayk3Amg5qU1kz9CXUxQygnWffMYo1kAvKrIRWwIxJ48mTqORxenTeSpcNUu6Fi1gE4DWeTkA4dZtpqCRWnY5zP/wo8oQAQq/XKZZwxJKNSli2ebu27lq2XlQ7buFnbIUcik++hM4O1h1s/0Hpff0tWZtYFMPBMSXnRpzrIePlk7EQKkLSOshpoGglLlaJtHk224g6lMJorNabAQYGFtrDH0NrFvGpNV6vbBOslr3UrFyAJB1MUkPBR7u9VT7DklK218HrOXCUjiy7liCUYWHCxPiq5WcDPOqI5JQkKplFC4tiaX44ltjNvCy7R/GbBci5D5DamTHIghujVAoYtJmADo18wHOjtQtzJqoS6klWOZjFBp4r0kyGbcd/MAy6jU+kNaw44v2F0egicdCACrU1AXcWoY3POo7Qad7dq1Sn1nimUXFxrB51On+zqVOAAdcBq+kEw1ZKKnorBuFdaa6obKJn1ySZo7J2+uhoh9anOPi6EUs8o2iZsOmA3nRPDcd55r6CueHUEKEdmE+syZVhEsbakJtHTQbP6LfdArr2tPbgCc8H0SUByQXol3197PMPTaxOlDVLgU44rZ7aUur3+e1P2ZVgHYNHFOJR8tVXfJW2vqgkCoEWHw3C0juxqyU6mWqc5pC/I8LCWaXW2jT+DRAbYAbRAayfZaI2pfdf1Xvqy9VPGeLJkA1kLIu0s6JncZ9lS8o9h1pWmxQBNNEPzAxGG62ItulDTC58Dfj3JsPOJ5wzVE5y0IZTqnIyQBFPNbLEsdR6ypo4Za0JFh/qIi3UZdOzcxVhqB7IpC22XA63NyjIYg6URjuOOr99+w3EcTHn2Jxmw4wM+BwzA27df8fblF9zu33BFY4HgGSpOzRpQx3nnuh2+CgDPiTEu7fHG8gYn55AFlyn8jt5x9De0+A2P93/HH//4gsfHpPN0HKxpCMNwYJYtQ6DNrOG4dXz79TeMMfB//n//P+iH4+wHzpvhuH3DefuK8/bGORqTBeivD3x8fMd1fbBLawTmeGJeDzw/PnCeBK/GYP0TWMP18WDtSFfmxvsDHk/8+Y93HF9/x2+//Ip/+vVvOL7+De3td4zjK6Y3XAMIc0wMPN1gE/DJQtoMqAV60I8xcA1DYGIXCCVRA5MNaydY52w4JhrcBuVgGNmBztRXQ0N0J+hXdp1t5x2lo3YnPCV9gsARUO3HLSPDDMdx0HLT2VmBg0+2fqS8WLZyayxBQFa93u9O+yXBpyBAnmyMQNaBXfIowaf6d0nP9fuU7W1ZqvB613/AwzCocQJLfxxikh8HtjtQyzUN1mDoqp2Zqmi6bbqfoEoCc2kbsC5c3nfXs5sstu23AQyluiX4xNqoC/A3GQzLR1SASPVVXsV7Br63bZHlV/ItiHKcDGwEdaQdDyAZW7Rt5IcrPY5pfvRXWmPDIkTAR6AdG5mkyLteen7MtPNjY8/mnbbaY7bYta0bjmMBoovxu5TYvjcXQ6ytou1pixhti4zjW0OljuZYC8+QvsvSN+kDzBbFWs/g2e6nA+Bc5oNYPtD698zyFkidsBjJJkNxB56AIADfDEdnwfzjyGZhvDZj7YHjOPAcjjHYYPO6AleTv5RjzH1i2kP50rnMzRJ1wjSHL5stXv/+v3j9ZeBpjEE9HsCcnHSWG3K8buslvJTNIS8EaAcQUzRyPbUjnQtIAJvsLEOEmAFhRU33NP4ifgooLeZVvHz/2XtyxDtVFPU08cIg2V8hQ38WCPb6vkRHIQWandySNZapbLulR1rlWL/ToieDAIBSM/ZxR6Xb1WO2Rf0scWGoA8Y5XIZlsi0Ae0kV6D0jubPYLiZjmYZBIDyNuQ1ASkcvHUJa/CUko7yg2LcLP7u8NQq73fnLeZcSb7bSYUyFu+GNrKTdoeQGRLMDvTlw3hgdBdD7Df24obcD5/lF0bOjQE4KhRTKTGVKEKH1E+04Yf1UW9wD/Wzweage0QGfDXBSp7OgcQ86PgYH7FC9hQNuJ5UvvECyV1DseAEzsr0vOtsRO6sJyvGhs2dYwjq7IrDGQ+6xBCF8nRNLQ5mUziiEMidUQliGIuvMCHgq0InsrGIl6Kxbddiaqu2z6jK5vkYotTFYq8MiMMNhTfthpvOV+3d9vhxUpQCkk0A+MVk3lgIfffPJMg6ZEN4GSNfe5LMXICilENrzTNdr27isDGhTrTFG+lV3zAiY0spnsfQc2zqbjAhba6qLoHlf5oLmIkqfRdBhp6JPWRPquChwILI+RtSZLGMoUyh8wnzA4sK8HgKbWOgak/WE5lBq3RyYF9PnpuY8ZrasvlhAFYV5YGw0aOrc4DnOUlwOyhbyswkYpp5TRMg3udhtzcVn1ReSP9yLGSlKJpm9vHc30kI1WdLg45bb5JHwnlf9EoXnGaIAJuWX0OA9mupmyHCSUGa6K51eV5clqL5PuMNi4IoPFgv2A7f7VyRjc4yLX9dQrTQUFkXRxWey0HNFOt3LAFo7IJCAJo6ADQDN4dPR2tQeJyvBsBnVIfApJmWYGE/k2a9AAYt483z5eVMr+xPJx6naH8AKUqROyFU2YNqsc1KrZ9t6ehDFc6tOeSHZyuf9DlPdNzMVRQ9H+Ik5pPdaQztO6ojzVqBjALDe0HBU6kWVB0D2FuKYGwxTe5DOaB3UGncPsNX65iAAous7wfa0KXrv5QS+Xir1ONCRUC3XONk6FbUF6r0rQeeTbWRkvVB/qIBppCPEz2cTg9z3TX/vnkCI6meEw45We2AWC0+1x9wRGJhx5koiQGCltZMyswfsPHH2hjYbzBzPR8ccBlenUZjBjhMlBcwQOOF+wI4bejvR+4GrPdiBczzhfim9G0zv9Seu8cQ1LrBblmzcYP08dlslg7blrooJvyaefqF1RqBxdHhMTGdXJ6bxUKYffTlCrsLwWfKAto3srGBR2ali7YjAeRz49vUrnY6jowF4u90Y4b4471P7/DjvShEE5nio0+tTjpzhfn8D+g3PCQwnaAI3Ad98z9vtK/y44Xbe0ewPOcXOOjABTDPMi5XY+nETixkIc9b06g1vv/6K5/ff8P0fvwHjwnl2fP32VgX753RcGNRNvbOgswW6dfz67VfcjxO31nC0idYm5nzHeZKNZa1jXk88x8RzsBNXPzrO4w0WEy0GxvvEeA5cHxeOdpTOfHx/p2wcEx2Uy/EYeFxPPAdT1r++fcU///1f8Ldffoed3+DtjoETIwBz1ruZ18R4komKcJytA92QaeYzAy0+CU7MwAjDtI7ZWMeQpoW6qynlvaHD20CzE0e7wceF0Q7ea1xAGGvM0Oin3g4W5acyFAj+GX369KJTvXRcS9muk+Qe4rIu2czfp42RznL6bZAtmwGBPNVLWvsWCE+5c7bF/ij3wGzZq4bqLsz7r4BF+K7L109picHWbw8zHM1w9Ibb/cR5GPpp6B2SOYamyoLNoFRr47pMBW0C1A+q7UrbIVnd2L5oVZIxRTPwOHgmmdjg9Wypz1zBt/QRs5bWcSzZH9XVmjWoJIlg1RgpqhEEVd6S96+zAzCQN0trdBxlm3VtnQzsNzCgME0+fP22CfxrsqSDIDQC5q1ARcpLFdv2RdoovSIbK5ntSP3Vupi8yzZfAOjymecIDBVHTzvjU5NA+SNTPoPLLjP0Q91kjzwP0rGR92NJmLSnMkCnmLRC4FH/q4V9sSE168Zi7VkXsekMWtr8snOsUZ/n6fFQ3UPjfj0OoLdAb/TX0ulu3RAH7YXjIkh+ng0fHzSyn0+vwui5R2lYqaKmEYdZTsZ+8rdztlH2P8Ex/+nrLwNPc9I56opu1QbJDeCfBQknPWyd+AAqWhyxgJAfRKKlE7FAHcsc39iMt5+8kr78V16x7Y36HdaGizWQJXbL2ciNn8/zcmVe1hbb66+Ma4FM28SkAEY9/vol8m9LMGMDojb/puY46o05FitneT3b9v510xcno7oGBeQ1LWP7FfhJQ2S76iaUObcU3nlYEwb8/HJXceOXOdO8BYVVCusaGzJqSgCA1HQpg36iNQJRvd/R2yE6e662A6JEs6hlws6dRrne37s6PnYCMY7ONuCmDN1gRIown9fvSZBZqX4hodQai6Sb2phT8fQCm6yeydj1TsBExn+WedBe1tVn1Dm2MCQ7k+yYTbmHQBjVw0CdPb1FIQKCIKyXAWuwaIA3OnxNHTGyoB8CBO9m5VZnAcDY/h1r5gWE5t7i54EJ84mlSNdn14GRAYANyQABFZLtxJipPZjA2wLR275fYWIFAUjwEQtUCw5EMjGj7HKT2wG4w1qyFhiFDWO6T1jWKZNzEw2vsm0/e0tm1lHKM/RZtOwyLVCRJUAt3TfgKZliK8WR80evZ8CvrTuaOtaxcPVVYFQVh9Z1EkgsIAcJLGCBIs4WvCHwqdUSWgmwkh/On2njWclTM0HnG2CxFMoSyilDefYI2Lda7Z/MX86vQHcYFmBkUQylJS032QaIpbeJVhbT0DgNWZIntjUEdII9WBA7xEKVgnewIxfsiet5CdBsGEMFnYcr6poUdkUNkzWmOd/HKVJpPUdInq+AgYAjfcaKySiHJzeYwNus/VI/p+xIqeT7qhiDTltaas5k5DxkJKQ0XQqh3OMrErwvXe4bL/NYoGs6Ca6GAuFiFBBQjhisDeSt0nVc5y5rq1EvgLR8sVpXbUas+aqx5IRLln1yAlvt3e3ZsK/J2l/rHK+vl4g00rjlbGVq8c5gtk04pHmWQNWyrazkGZ8z6oxhu3bNq5zQxbby1U1WZ4XAXv4sEMtT3nt9FjK++U/qwQz3ug3piVwDbOeQ65BPx5qZJ9AOtP6GftxwHLeaV/cnst5hdmQkU9oRPpjqlDW8tH6mlG6LWXNaAGsA8GysMFhPLBmcObZKg7YC0BmYzA6gaSDTmQu1oc+901vDeRwiFfO9vepoAdnBkoVmaRNZP3UW5cRma/N+YAa7yo6p9BDZUFWDrCVg2WovJaDhGPDZ4eMShCjgwK2cMLOGs7M2zk01qW73ji9vb7LllsWb5zZLcsw20VrD/bzht99+V5fdgfcPMmfcDVc4ruF4jllpPMdx4GjG7nHXwNi+5jUQDgyL0ilWqf8geHdN+AxYHDj7ifv9DUcniw9KhWzB4r9X+j7l0e+A7F7oesnQCMCtww3qSJdUBtYjtcb9aP2Q3FbQSeCYKfg358RxsF5X7wQLLBWVfIlKRQZqD2WWdAXC9Yaf+SebZvukJA3YoIcMBCUY4LlHyj5Jx3utd4Y7bLc/q9bjp/Ca7bIJ9fcX/R1Lz+epNNQv/gOXMZaMlitE4Im6hoCRdHGkESAZF9vcfLq+AWKmA5l62Ds7s50CNnr7LPc1K5H6JGXpK3CxbkK7pFXxaf1OQ6yCz5kuheWP5syWbn4pZ4Bi72bsLD49W8qvBgGnsdfMpDwKT92gAdUSxwsgCaygRNUbqHvsvmoNuPbZ7lenL0i7J/XRticL6JJBiZw/MuBaa+xoXIX/VkC3SBA07mqjFVlCZAr7pK+5b3xdB7kfbANp13PWWheGwg+yyYihe0NXwwzW9Upib9pKQBl1ZujngQMpBzrJF7u+yj2xza5pG7XdXvnZ2VkGRdmzfxV8+svA0/PJSEVrndGXvIsByegpp79ZMXFaa2o3uVKydpSmp5GVgrCspkVLprHMTdOzSG7+bduAwI/C8/O/1/vX5l7THZsRYy9zvbK8ooym9emk5q1DAWDb6GtsxWbYfldR81o8e/kcf06hoHvvxgx8gT21maG1WfNdQJ7+toxHSFDth5p0NXY24/srhWU7QLlc0NqlY2ggDTWUvpcFSU0PU8+x7fjEXfM/L+JGgtQinSKBTBJ4lWqXhq2tz3FPktzc7S5GjwF2w9HvqmXwVvUCmErHZzcbomAmvZesqNZPfY7GbD86zrNh2oVmE4YDszfRHhn5ZdoKi3A2RXIMKl7bWTw0U9RoIGZ3m8bCpSYg1xqqmpGpu4fmLGKxOkqwOBkv0SaAJ1pj0Tk2mAhUKgdyOQTAqIgdhZQMiKrtstg9wOKBWoZ1tjSMVkDkAjccCU6wRbcqNZHxYZFw1yYIZUwZ2R9rc4RSZ7bOXdnJLlYXNdFnuM9mqS/RZAW4ZCt3C8wSMHmjpnQ7wBqrNujXawM3rg1A2cWovSL2ar9hGcVXd8pMpYswRJsqLK+xSR659jlZckpBygBAK9x3nZXNHErFW90cg3OVwFqZPlLG7DQn52lcLNj6eCzQKVg3aFxPsck0r2m8Q8BHGj3aA9FaGaJZSzzpwD4ZHVv7S2c2DaiKGK80DkDGwpZ2V+uwmcsZSQPoMEQKeMPSRzLabPNi9+CCSSY7YjkVuTFrvl8N4UwxqMKiuU/cC7xJmZb3f7Huwsl2EjvSplJV/YLHAx/f34uFcvmFa164rsFmCGOyq8lkrSd4KL0XQvwIwFXNrx1XLmcaYmBNPRnHaaqtBvRlvIXOp5hOlnsiVlnqtR/TMdH8TBblbse5yaBGnNed87blle9BlrQXmq2C1/vcU0+umhIBsIFGM7GIKKfZbZSx3ognECxC7tc7mg816mCqSKaLwBRJzTp8tXcoj7L7pa8HR9ZHy1fq32R/p+6sM+Pbc+i6r8XE0+BEydlmAvo3I3BP0bDavCXSOZLtvS8WJdZnf2ZVZtCRjFSezW4hNoJhgvvHc4tnakJRG8Gf3QBcYJo5m2iwoDbTydwaojWM68KYD6bZ2SyDPIu8LzZqw3l+gbUT1k60g2lZx3nnPjaH+zv3lkB/gI1KjoNClU7zLP1lRl0SmECMWr9jS5tItui8LoQdBbAz0BRVzyrJsWYEpuYcmGITzQFkp77eby/1J9Ea2sni8RmMOQTMTTTEFRg+MS7WMGNEpCGi87z3o4CnALsy+UwBoHR5BQo9qF+YVpN1Z2TTqsvpvIALQDYZypqT04GYBKaOG1Xj2+0Evn3F/X7i11+/4Gi9aoYlq2WE2ApuuCJws4ajH/j9t78hnAXYv39MMa8mwsn2vK4nrjEAM9ze3nBvgfF4x5/v3/H4uPD4eOD5caFbh7WJgeziTNk1LrI654hijXZruJ0n7vc77U13ptQbYNEquFA1ZZSmb53ph4YohmLq4BhsquGTQZfhYnZC3QbTq1XKTLOObmzkEn2wkLrY8NlcB+D+JyN/BdsY7Gxlb8MWQNHMmCGV1N1NJgFQV8I9RajVj0hbbFO7gcWIJNia+0UWYlvvWzcznYfkDlIMROl4KlmCTPIfVBrApJebbPmsrRnASm0F8GmQJf/Y/Zhyyift6DiWvFsa0ZQGqbS6Fmk4KLAmOztebQVAvmojQNAOpkOdZ8N5GrrAAvdZc0JgKO2Cl2Up4CQ7CJYzVYwnq9Q82tVLvhMcaTUBUUsYlRbGnUCBxOx86ptct2b4AXyyTK8bZC9NV0qcbKTpYmCHM129vICELNuyrZxpmWnLvgaTOPcuUC3Lcey+bPq6lKULBGsWmJpjT9klv8CQzCFTx9W20tVyoHkDMY/KXVY90uGj5hLY4tMpE8KVbYDy+8LErFKtqjkamy2VDGlVjwrQvFjAutKr5U/3rPdqkC0TSKM5z37vskyNNsrHB5+fXarB4Ij2w15fs3ry2TpDVs55lD3AxCOdk8yK+guv/0JXO27aLOSXKSfMYSUnj+DLMtpdgaRF5RQDxOTkvawvD02LVsJvFYeUgb69//PjvYI0CwX9XIdgp+etVKA08NbhCoTSzfKhuNlqgwAvo9hkBNIb3UGlz+js5+/rGda/8/NsxWsliRSTQzpl+V7LBWiJOSP9KCqK9FJdRu8m1HdjPVzG1xrJ63cphhxvzFj5p22tn4cjizYex022GWPIQGCOSZZQZzSHQNVSUju4AIQy/mLVmnFGYa2RBm+KXi4jOg9Mr31L04iOU+tvYjqdaOfblhIFQGyZdrzhsAm0iZb5zHZ+Yjs1PoeEVsS2UWVwJHBSyqAlc+oA2onW79k7Gud5YrEAJFyOE/1giosbWJspBczmJEPCFzNbqKbiBI2nxtSNmIOKLusKpUKmiKYyNDJxgHQWQKaIscW5FyU0FXYX40npZXJYPB0fWDnakVCTydjQV6qEKNVgWjMAcCnRjfVorr2dhkIAPuDO4uK0KrKo9bWcMu3jZOig9iqvF9g0fw5OZwZq3Q3JNWssAW2eBpocrTBEl+FvHa07LA7NgVFgewfEvsDs3MsNEGcGCIN1pRPCAEWm3eVkNsBljNS5q+LdLLLucyotbpaDJf7RmrNkoE0Z9NcTdn0A1wcwnppHxzU+2F59XMhueO4DTfMVSqcsZoam8LrYHtqH0kaWkFMKry3scDv11G+NRpqlsRfFHvKwSrUDkl2wviRlBbTJXCqvb4HfkmTaP0tPLPauIkvJHspNlF9IY/VH3fT6MrJrBGJmtGmBDnvtOxZWt2RdNWcKoz/w/scfGNdFI8zYZnc8L8znYOrHmPDhitznnbcjUroute/Sr1lUtGQKvSnVRUunXTUmPLb0wrlO7nbOXy3EjPwb67wFMNvUPugCnH2d/1CaQy5SQOnJlDOtrXVcx3U3lAT885alg6xD1uFA+AWfYti0g5Itgm3Rg23apzkiDgAHi06bYTltjJJm/YcIx4x0vlZQ6DN7JuUmO69F7Z6Mt0P7YE+nz7TBBC2yGzBxt9yMKbtkiMrwjZTTYCvr3bGBcV49IzemZxNTuOwpW8o5Ha3W6XjE9lxVoy4OGAbGvBACFULpakyjXM/pnlFoB7O9HG4MTrpPXNcH/vjH/8Tz8R3Pjz/RjQGGfnQAJ2KmUUyH6Hb/CuBA4ECgyaGauC52YWoCbDxYNycDKMlycIDgibqlNsnJrEeQnIpmTRHzA1DXO58D0Q7t40bdjQM9bvAJ6qQ5y0bykV3RCH4ko2mt72Jzsyup9JQ7XMmdpjT6w5rwtwOhoCQ/zyDPCMBm2pcKBA0yXYGB8zi5jRownly7x8c7no8HEIGjJxDHMzTnBYQzHUalAdhIhHVwHqrxdz8a+rc33O8nvrzdyQqbdKB6O6mDpthGWCCMwXD2A1dQ5ozRcT0vsjznAzEf0nOOsze83TpOOObjnZ3qHg+M54AP4HoOtOaI1lZtS3elKTsCHWMGrgn4abB+4DzvaMcNgRtanLRhBURd44lrXpRZRr0UBpZe6A338ywn8nldeD4vXM8nLv+T0tKBCdY/a3OZYjuYbT3BZHaPbMcNLQz9nLgh0A5GEY/ziTEuPJ/fkew1SL8s9yFlSeq2xlRVXb/LbgvNiwdeZMVLIN+om1nrM+vzbWUbUK4TYqoYMlKfroBEOrRzJG8uJX7azFb1GJdDnv7KulFej/bAxkbH5p/pB3apDnw8Bo4O9AmWvHCoVtZgtrmYEQmaNJ0tptDSlrmmCdyg/Moze97UmbMZWg/0g6lRx5Gpd1b6lcFHjuvxuAq0a61v8yk90006mOUoVsmXVbeLi4NlY6i6tL10pHemKKZvaJQhCnHKrl66x1Vz0ANMRRUpPoOseU0yfr2ADAKzLjBoBbyS9dN629Zp2T77y9Pvq3UNqaleXS0vDGDUtufndH8gVVrWIG3oLQoY7NKhEVN1q6ICOdQp6TTsAZwGHK0wj2KZ21aGxynfsmkVSSIK1JhSRmPQprFcW8NmgpXdZhIOzbYgZ7GcQKZ6nRn5hJC/EAZ3yvJrPBUYNpRDpD0eGSl78b2RuHPJJ5o/AqDE9kpi8l95/XXgKTcgABjvsGoZadMmLT5CIEA6N3ySrN8U274KGbetFtQWSB3brV/kXR4qGc1Cg39KFX2xrjbBuUuiWN/3DcZ6NnmoyACiwWXpq0n42jLYIiff6n4B1MGOvAfW2Nf3T+Pfh14SHCVk4OvzRFIX66nW6/Pz6+/J3rJtgyWzgoch/7YMHuS1t8G9XGO7lfy6+nUENjYD8PK0sT+/rXHCijHFf5mUomWmC3IhWA9oMjJRZym2QQnoaQJIrKP1G1q7sfVxOxAqLh6WqVIGNIehV+YyoumzWfhW8/nyte8jPbdQTYJrJi+W90U7gX6jM9U72nED62sId26NdPmjIzskQYATaf+MyM9sJx6oSL8BK60ngPBV1NIBrNBr5C4gGCWnJUHC2nvgecg6AGatDrQ1pYqxok+tFZ0QnQGkQEyByQhAdrhJ5wiWIA+WURHixAXnkEOWgxtL9vi8gKkaUgk8pcOTW8byeiFgKh20WdeL7czl3iRDaWqsQAgYcCSAx6hx7p9kqKl6FwpWa13+C8G6ZgbzkyBU9AJNYUyF4BmSTPJUTmRhNSmWPA/VOTCcRdaVHhc+9FxTJ4hzlmyViFm1nPx6wMYTNp6IS9cIh19Ptnsel5ZGHQTB67iPrR6UnKNJkDmmV1S0xC4yspIycck2LeeLTFkWysYEKcc8AVI9F7Yz+IM5E/XvpQp2g/mzXOb3T+JU58qwm0x125d/6BKu81YpNfzmAu4jH5R2iUAUckdogPPczOc7zBzXhyE69Q/nXSkjLgq81K/I168icX/e9YgrbSRiCRATQNsq4Kv35SrmXeKHr1D6BP+/RVwnjUlrSnvTHO5DpLzdhhtAWDZf6EjYLrIGnOSc1QIkA1irk4qjdCkIgojFEuOhAEoCZAQd6OsTWGsI1rfT2qcNw6WjrZDU9x9sEp011L6yAnWT1Udwr5VsbRV/BCrV8CegeHy6RwCiybfa/yn7Z6a9adENAKT/1lrwZZHyeAEB+ks9Vv3OgAXImArkK+igUYSlHmeyq2u9ZIbX8ngMRiUmnZ4xPgg6Pd7xfH7gdphiNQcQzlR0rUFTSjyN7pCT9gTmZBezCNoDuUctmMqUNq0xnaptTM2pWoHJCE4yXqhGFTQ7bHwxgNbLlkDcgDgQCtS6NQUCULrHdM2+b5kEDWGVls7v3Jd53lM3ZZp8AtmRDLBmCEW3pZmQXdAAym2fdKTNyeA+BEpE1u3LMH6ko8i1a5HSJY37tccj2HgDPtDMcR4N59FwHNSJEVlfTXaEuwwTB7vtHssmQL6nwYdjPJ+Y8wH4A/AnYjwAdHYZDmeQZk4CSixoQt0VDqhxQQDAmKxNqGDeNR2XN9zf3nB7+4Lz7SvQTpidaHFDxCpSbCCg0rt2vRnn7jxwHB3HeWPxdYhd4EyfPI4LY4jB3ToDGq3BMVcqrq1z1o5DETpHcycvMJniZjgStAUwR4dqB2OaAg8FiufKUfeUA13SZUmKxWASUwRpw21+hK2Ad5ncm157lX5K5yxjVNeoq0ddm3WyM+BQxkLpgDWGJb8i74302zYxWedJI9GWpU3COnu9O2YHXMBQl75CREngRgFXqWKU/UAGQzO4QdCKwNXRTSzDQDN9CVgOyWYy2FifrVlKGK1X+nLbOUjQjY2C1twU+y5CgZttZjVOmU2rHqRDNUcbj2HOp7E+YfrkLt+KbHXT99Dvt/HWbpJP+hL5yvVOHZDkjFedEuvt+VZUUxYLAesC5cXgtARuJYpyTmqe8n8m96u+FPyUgRmRVkje27LkJja3jtdvCbpiBbUb2IlZ+ySBSEMIYErQTdhHy2quoXFpTRM8Yt4bx64C8tj2Wm3rWOOtddYhT3adZw3OTvuysn+0j6Oti63r6xpi6bVckxblPgbyOQN/5fWXgSfWNiAN7zhuKvbVdeAdwFBuMg2uaU+w0OiEVyRJ7numtITozE4a+3Fsw/EA20ibHCysjVODWt1U9ur2x3G8oLr5+0phag0+Zgm0tdWB3lY7Vw5RjCBEHXzWA6OhmEyXqU1Swol3rU1rEiy5zE0bdoxRh/XoLHxYgl7OV5PBF2DhNBqoCehpupAKgIIyivK2hHY+q2leQoci7+WKelszzC1Smxux5wHXscyOWcfR1/vciaqD0RMW/QtAQo7ChgOxngYiDXgKGiLICeoUhtY4h9ZYTHuAZew4xkGDfTrMToF9tk5jOICuPdvQjhsY8mbRUTRRmdshJpLBvXOO+gFrgd5BMFWCuB1NujwjHQS1aKiueggNjVT4AbLluMuAdiLsDdHf4Ocb+u0NGaltx421qI7MhxODqMsgbnIBItBVxNl9AE/CG17PnEqJBmGEwcdgVN9vgNHh415hxC7gYt3IQNkg8Ez9ALCd/wU+m+ofNXDda/HmOnsvoKgZ5xvqGNWArHsEY6vQnHMCQpx734RyCUmlykUoTUxR9TKaFWEuxVjHI41kR1E0C9iNpVDzPIteTDAJmAXUAQludtUNa63D5lPkFkPEBQTXN9xhdqegn46GycjNtWretH2uksMLiOlk8N4ZoewddQBdLA45W0NAEc8qn9PnhcUn4/6g8ryqE9p8f0fzC20+MT/emQoyWRQe7miKHMGdwFQ5JjSZTLK1rve8ar5NsiNlc9MzVVqwU174DMRYABFTTmn4ToEsTCk4uD/T8tL69t7WZ5GyL1AdEdsuqXMrRb0zNfmypWS859uwzCiZCEv+t76B+vUGXtfTerGKOM4GoAeiL7p+i2CBd3PAJtAuXrdfmE9H+AMRT+Cgg8uaXCEHpau4PsfTzFa9Dc3D7iPwl5RZnnIqs8okQ8JWTY8CRqC/JwsxKh7JGdlSVbMeUkSIuRO1lxCONlst1D53+bNHpmx1hKUuIPOJTFWTgaTujwYZeGsfsA4dQblsHto7z0yVtLMHgwHnA2g3RLvB5xui3xDzC+y4w9oB6zd47gmfFOtpWNqqjZSgLSOq2n+Sq9YMjBcYWntD2EC4oZ0HWhPztYx0oNux2IRYYixLTRRxLdMdYejWNfex5MLMlKbcxw290VlujWwTatEmYE4ss5A+KitHBU8tQSSXrRTCDBscHTEPpoU3RxwGz1pkseywfS+hAwGyjfz5gTkHrscHnu9/4Pn8gI+La2TsaNdOOvcpHxDAiFCDA9/qilDeMxv8BoCOeW9Gu/Y4uDF0Ro9+E3g18LioZ8m4BA4jLzUeD+7wBvRzHRrriwnS+43Fvm0A/QY2t0jJxI+csnWjG6Z36pc5UM1iYsBjYLoaO6SshCmo13WtZXdyN9BmggEdN7Be6sTH+x+wKqr/gcfHn3j//gfm/Y63tzcc377pzLDJRMNWCF2v6A2380A/smYNbbGGBLYC7g9gfqDFQDsMh4jllJfSSeMhpjYUcGh4PifsfNO4o1KjegBxPTE+/oSPf4fFAxZPzO//hjgPIO5MTHh8oI0JmwpKNumvAPexHPhxPQTmAc8JfL8Cw07893/5F/z2L/8bfvn7v+D79QZrX3C2r3h8oNJ2bqepO1qe4YbzvOF2e1O90AMIypvlm9zwPAPzargscDvERHHDx/sTQOBQ2n7ojB63Ew0HnO0fYeMiSNAa0I9KZYUBFl+478dgMexk9hp0DhwebYHzWdPG9oBuKzCygjngumTgpKdMRZRPEosCs5x0yfM9mLPUdJQybRalfk37GGCwZbq2en7Ql12Qzrg790gBHbuAxBIzE1STQ1mJjVOKMQaOw3A7G+5nR+9atwKFM1WW54vH11hJQaVJCC7w63YM3G8n7reO1gDHJHgNIiStH7B+kFkDBqWbAX728pmmz8oegOCJ6baBTArsGhBgWpdnzbGFRFDPR8AvL/vFXTZWoFLO0DrsAH0Ca3iI0Uw/8aCLF6HZ4P2m5Kqn2wEgu8M1A9CjUiITPF6mXmAOBVqUPVDrBXWVy/pGnUyhMAIezQznqZQ1GJqDrLI05bVtx8iGTaFyQUA/uBNMcXJLcMjSu6VkPuS39J7ydI0uIoCDNpx5VLfQBpDFFYGJSYaoQK1TTMje2BQjIopt1VQypFhmeyCqbwHaMsJQdgGPBLNczkPokfRG64YOw3O8Y+KCdcftS8d1McU4z8Ys+cGz3GmY81Yqy2KGYmX1A1XiwF0A2udA23/w+svAE1PWtvoz7UDvJ0JFFnuTMxBstVpUTjlWrghTInBND8iHppKac74AGwm8ICay09jPajjt9MvP/94R2GrZCGB1DtHxlDPXVPBwb2dZKHt9JSWRK0UDfjkgdXq2yAWL2qaz9+MzrHlYc5L3qxomsVB1SfL1nPqMZUvfqCFt90Ft2pd7Zi72NrcJPPUtiogEHyxtK23A3itXOVQH4DVHF8UOK03UliKwBJ1eTnbU93JkoXzdYGtTmFJRFLnzqQZSrVXreV6Bz8Aj1pHd6diR7lSr+lM0cUZ9XTngLSVkQEYLD9/9xo54x+1kVOtgOoKn3+wAFEHtpqidBVyMqWQNRuuIfnAcjUBC72RhtQKepBCUypcU3QSFusBRb0NpdcF6TqnkUjF4wCcZObOdMDsK7AqLAp5aAU/bhomNiRCk7bsb0vxIQMasI6r7VQpyRj485CTWv+WiLs8X+VNpR2nY8FFsj50NmgZNBFO5IusTTT6/zyyK7ZvRmV5absVcY9fnVB8hbaKIOuuwRqc5Bf6WcsEOf4B1MiiSafa6owPTDM1YOBTWVXuooYqfa96mosdZXDZiKR8zgx8d3jpm68iOk3SkhoA4x0zgScBQhGMOdTaCcvj17Glo+pwYzw80f6LNJ67ro4CnqTlmvQF+1mc60ppDBQKy0HVsVgCXk+1cXR00OLUyhAWsRtP8N1TQAZb7PhYwHimBuY+mol75WCnj0sEsm7TJ2Ku1XYuUAA3THTYZVpZ9bp0yu9dCW46zdrK28aJHv4QMpE8ARpi86ioEfCpF3UjPjop0uhgMqoE0Wfh2OJlorkLjTLXkXqcMNaYmr1O99FFboNrSN8uwsEpvzT85Mq15//2uk17AIywdUJhxJFU7lDK0ovYv58bWD4vFpvMQHVXg07r0QILUGZ23pa9yLHq+2hNOcM9woWr+BBBtIvpQKaBABDuDVpdNOyr6iuxYKuCJN+c6ujPSWGrdVXo7CIyFr3NjJuYJmsjkOt+gMVrdZdN+kXOQEHnT3AaiHKJLtlOAwFPW7KGFngxWFWUFRLtZDLaIoLeWe2l3avJdtfYhW4XvpzN+shC1TwwYMpCQBaEDUSmwrBHqS2e5Y44L1/VRaW+0O06c54HzduQuRu8sujznZIrVVD2g2ADdLqeor/3R0XDebrzm7V5PyBRCyf0IDO+L/QnZrWPW744hVnU3nDd26ctOzNnx87x9Re8ner8DSFnh6CX3qWM8aGdb0F6a80kZLfAp8nyXTaouhC0BV3WWzbqoWptMhzaBLvP5gffv/4aP9z/weP8DuAiwNmMDg+mOGBdiXlqrXjZzyQLJgzpYSVkF9YQLP30+n7BmuM0b0BrnbXCdZqhFfZAVFGi4oO5czjR1M+Dbtze43xF+4t/fH5jPPzGv73h8/3c8DPjeDOaO5+MD73/8gefHO9xHxZMjCDLgPGFGv2VKJz2n4XEFvHf89vd/xtdffkO/veGwL3Dc4TjoCBrly3mwBtkRkjeqy7XAApG4JkGR6xq4nky5Cw8c6uzXZGufZy8Ax7KURAbG5iRjroHfzRYLJAWuGVrv6O6IRoeeskDnqc6ql16inbaC1/lsBgXIU27V8V76AfLnUvaYxvGD/2mrmyyQdYp0+jT+lqB1qZCN5WFAUymDAM1ipualENdUtF27AaWvY9WWhLZp1eOJ9ZW1B31O9AY8TV3DEIz7iqmS9SI57ypskvaILRukifnau4mJt+kvdTMrm2HTATmgAEF6BkHplzY1HnmhOUSAYKFYTLs8LRnDOfIsAOVYWSjKxnA4MMiUYyqV9jpMPjg/OmcUObFAJ4FL6UuX3IlZWQ+AGPyS7XwEsjlN4ynVmYxh6RDmoqIMf5bmcJX/aFW8vTvBp+W3W/1MkgrP43E2FecWSDT1vOB3j8DU/XoFCJb3HgbE4Fgy4BHaWB6+sStzIDx37qv+FzLAY4q5LTcIM/e0zgcZXk37g2uc9gYv38rAJclHtva8MCaZp9aA49ZwnG+wx8DEhaEaf6y6oudsQDsIyCbhpKUd2DbWmPZHPwTObcDhf/b664ynEia2NpeJRoztK1AOcW7YdC7LfUupRGupHM1EwltLlpGMHLdySj7Ls318L9f+Xz1PmU67oZy1FWTUxy4Et09aGuPrmfNvLwO0Ms9exxb7W5JquBlueYjTQOcfS+B/Fq3ropskNdSzrJOit/huNOzPvwbvsTb3nueba6bHq/Evw/N1ZLVi9Why0/JxIn+rGOoGWK3nXBPBz6+c5spl5YlHOBkxVikaOQe5n0wSgyw8U+Fngk8HWVXWgCwkmMo1gOmtHLeumku9ExCq66cSq6dn9zsKSgrJTPXLLnV5iq2+xMwqNosB1is/m46HhEWoBkcofatNmGfKmpRXqAWyaoU163J8DjIZ24HMwwlTUXWP2t+1tiUVGQUXd4UOEshUaxZAdNFF+d7Y9gnyOrZdd3mi2z7fzkQomlbg2LbrDYDYTmR4sMsakv0k4Z9KXfmkciYk1A1i6Hi917Ndts5inbxEk6x2Ze107t3GfVMpX+sIRqK2PkX9n4DNVXfLp7KF1vxATsueFpGyEEHGR6+aM3w/07JeU+2mGGAerPfEdCGIWstnzzQ5gk9PxHzC55Ntx+XMzTGQxQmr5a07SppovOVoeZ7VJU8SjFoU/jwbm9YqRGObX6SR40smbvIz1ypTg7ZdshnNEoNOkGffSwbw3LyAUYaUkkwJysOdi4rtrO37et2/ZBUAm8tIf3nAMo4y0GElJGN79gQUMCdbFCt91IFKKfEyYBeI1nKwxbpNhilQUrqYFZooGZZ17G0fdqyfTePF67SXyAir1NaX58hl0/ku5bSWe+kb1fmI/T2x7I+dHh9QBM4oo5YxZ697YdeXqVd8GbcsHKugDJgCCxtqOdxg5kBzpVKrJhsAZHpT6bIAsJiwDE6k25A/x6f/VbJFjb+Ofe3OBdxnihWg4E/uMbGTpgxUnp+5jP/pkjcyhKNrPpvGlI6LEKlowM7wrJH8+BP3g6yQxrp4ZiqCa8lMsP3NW8oD6jx71o0ToMgUPtYTaseB4zjBIA+UvsKOdGFPOEA2ejgS3M7aNtgcMz7/qtsYll31pOdaYx2/2RmpRpAJ4RP+vCSnA8O9ym602cppyD3vchDjCBj6Ots+AdUJI1BF54UApgJnOQ8qYJ5OKpeGFm1rWQMKchIauyYquBeY8HExEDEvjOcHnh9/4vH+B54ff+J6fMeBgaMFxp3NTTyiOpgGwLTWPItGZyeDVssR1ZzXE3IermugHwdmBIEG594aU8VulUJrSrWbOtvTTIyThuPWcbsfuK4TBsOczppP18CIgSscmAPj+cTjQbYuGYe5l8W4SXXsrMkyp2O45q83fP32C877nQBePwBvqGxDPVEGZ3s7BPQpqIhMI8pAiwIm0qNsXNPQO8G0TOU5D4Gz16V6gmTBzOuBIn9vNi0ELKJq2dIe9KYAYuUdFce15HeeVEuZmMaQRGKyhMv2Sfmy6VJIX76c4fUj1p028F8MpUg9mv9tYqJuI6vPBO36l1TAlm9dNhllnB6gRIn8sL1sh+3PBmV8MH8hsatpbJRwdqZahzINSgZrPBV4kKzOtWwtx7/GkVIVAcrptgJBS4bX4y9Qx4FqAlQ6RbrP4+U5an8WgyfldH4mU3zTbkmdueSUcuuQ3ambzJG8TgbY97OwFjLnePPltDY5hNRx2NazrhOJNURd53VXrFfaQ+mnZurdcVDmwQF32QkByirdbSfSpN8RQTYVbYsMfjiD7K3QDOwBsHzAAgTNNDlZqHw9R9rCgQRy+DSraksZK2gNL75TgcKwmnj7wWS2ukbTfvYg6E3w15QCfKDPgPUhX0Wfz7IoMLKCuxVDi/uA1+F6JggVxQrrL3ni//Hrv1Bc/MdXopY/B2iAV2tVzgdeNw5/QSU/p0uOrUUEaOskvauM4v9kTHMuutrPfk9loet5fHrfLpK3Iebl2toY3TqybXi+dlbVbmgvoO7V+P4Z26meu4Tzeob/7PXJ1ypB/Hke1vu1SRte6y9tmmUfI4AVXcYS8iMjD9DGtR8jHlWDayODtTB2s2qmtI40CBfzDPnfV2kjIEJGz5RRrBTBFoZEy9c1l3OeGbUdB2As+glL1hPp0W1fD83J4QcQPHRH7/XesrEQ7FISAAQ4WT/RjzvTmDKVUcXOTaAVDy2BpqN39IPPb72RVi1l03orxZOKw+pckeUVs8MswRZFN0OpUGJsOci4gTrntH4W/sXaJhpnTwNq38ME67ycPkCxHXQV7YymZxe9de0NJEwu42xTHD6AYLHYandaLa4XC8nT2dqcrwSe5vNiRDxZT+H6ec3HC6ggo62UnByxopjX5ZdSbY3OQgJXa4colaj51qENYiyABdarZXU+mxKt1SnJr6cM+ZUCVopqU4Jpes5uYsj1l/PRFCGNcKbyKkUu2V9zDEXi0oYRsOWjUmDG9c6i4tcD4/lYwGUC8nCyi3i4X2Qei76SaRAJPI25PcOsteAUB52MmAwy+G6Ypg3JOZ2xilamAV616coIyQdbSj/S5sp5LaES671pS6SjHam5+NvhS/kDAfNkzm6yV8Y0O5v9TK6vdM8VgNHekjXMOqDJRnNF+ygr3QRUtEmWyiRTJ9tmpz5KlsUqtm6V/khRaTUma2nYpgG8yT3f9gl+mNZlrLy8Jydjn3Ct8wvoFCXHWINh2xNl5e6GuMACeBn7LjYIUx9spcMLMTMA3rSn5KgkA6ruIDmKSNYV2Rt0LlyfO9HcEHYA/dIcKigQNG6ZbkjGS7ejdGFG4skSbUw5SzVqtfyrzI3l94CZOnMmSEOkCsk4q/Ooda9UF13TJ58/fDHaAMq5ijpDXbiMTOJ0EsrBDT4X/5mgG7Sn8iz9xy8WTUVFa1eAigW+U6b1fpSzhhlwW2kAIXDvOE+4HIXjdsdxMgCU3X1ggZ4O+eMAC3+sqs1mTTpKQaeaKdoEBLCo22GEhg4/4RE4breyqfrZGXyZA/9o/xPX84HremLMDwJDw3lGW+rrlONMfz0O1hQygRSICU8bFydm1gI6T9X9MDxcxcHnE/CLczlWjSd2Umty4A3BcLzYGdon88L1fMDHBYsn/vzHv+L7H/+Gj/d/q2DDhRO9DzyfJvtGMj1ZpnaTU5XprRNAE2gjn2A7+FpOzAD+fP8AWsOXMSvlcsZURoTRFtHemkjd3TFbiPHQ0c+Gty93AN/w579/w3U9MPxPBBp8Bq7rAb/exZJ7yH6AmAi0/xqMQFKwM98Y7PB3ecDaHbf7N/z++99xu31hh7cgsP98Doy5QECA4B5rOt0ApUJRVZrmTkGb6aVfmzW0o+E8DhhuQDwBf+LspvIbEMBN8iEbSWRlRgaNWmfJh0DHcTvAvDEAlywkM7TJ+mMEt5cQT9bkasCTRyHqu6ceBlBNPcr04gdoa+9CrP704icAUT5c2fYvOj5lwavdvRxxewE73LFkePo6JSuW/NsJE+ksZ2Da8KqfK/1vhGSvRP+hDqZmaCHui6WY5cZuqn3TWkfvgbMZZVNfXdgTFKguvTllkrs56t4bM+YhppNnkKCVnspnAS3HCuTNHUQA7fVk37pDTFc9a2yyFdhsBZeqDUicIJpRF5W/WkuEZM+tRQOygc6LgtPfsv5h1AZ49WsTkEw7yyt9kvu7AQVwrGB2gio6Dy0vbVlCEXMmIWbZX1l+BSrbQHnF2n9zXtqXJKREW4ye3Jeealm6Ze17/r1Hy/QXMZyWjdqk73IOXskzK5U1QabU162taVtgqpVdAyj1Pdjt0iVfW2847w3HrQF2oF9TeAtlA8vHsL5sA9MWe2voR1MKvrJDsPZJU5riebJuX5bu+V+9/gupdkoDErIfSR+dcghVQyQA9H7DnE/9PgEHboBkpiAykggcxc+KlWuZDi/q7ZBuevl5N26XAMnibast4QKs5DzLoErI0CGnzqUAXz4bS8KVYYxa/Yh0Gn6c9HTY92t8Fq4AXkCpMtwbWLA339oasgbNq/G/GGj/2etngBrRXs7jXjsi6YeeykmCNoXFoojmMy4nJPT7NRoJCU40KZypQEIsoGgEHoPcpxTLYa3YKNYYtWxmyBpgM6COiqZCtfybTVQNKWuHunUw9S2K5XQD2g1oKi5uJ9AO9POG2J41nVp3thBvAB1BEICRZkah6O1AtBNoN1hnFxK2KlaXqX5oLLvDJko1MirtaD7AaCJTO0hNbWXIAoqGQKlaaTCHo/UDDqU/Xhd8PjHHB7KDWrOOJuAJ8yR4kaEaAU/hHZn/Tz0ix6+peHZkhKpRWHcA3oEWaD3H2hGRLWND7LBWhWC5McS28QkfNH7hF0pjJDCyAVDpaJUwCF/pZNnNLuVS7us0QAE5qNzjTWeZe1IyIKPJsRoXJP08HTJrmfokeaH6Vi2LxyQYldMKKvnwpXxNef0NBH6y6l9AY0mgZgNtyDILeqitIWYr0RMAmuas6L7JgJns0BVzwJGU4mQ3cn5ZSNfh88FireOBmV0wfJ2FVMjreC8GRUaPK2VLs7acrxJc+qiiwyl/pwEjoCZLyJhYibxdzFktqeYMqiMo8FQyNxViRqoiVocwDmWT38UYAbI1cF3/5YkyJRkyApJZlFsya2dFjaPKvCFjGOu+rr1nxsioGw0sZ56XthTZHonnaidKrsUqQFqii0ZOMmxMllKuP6DAQeqPPVVB4/sBeNom3/LsIHWAlSFWH9iBJqTuWwYyWTdNbFDp1h9UWRqwGSlFAbucBxXrSABCEBI8lnMUDZGF+Y8u4k7UHuIQEwwW2GM8Z2YXAupA6WITlIEOVqeVsV5NVgxkIoAPZf1EC6ZG74AeU74Pjv8wWOf3EOVymopsAzA0ATL7V8BjiAnjiGugpFSDWDC5oLzm3pWwGVO6ozd4dKYuiMHKkGvTLsvAWkgN7cZ/zmFsZ9S2gNba+E0szdy97Dro0tF6t/QLWSFkttgdShUhcH2cTI9HO+oOGU0OsLAzWsNxu5cvYNo4JsZUGvNkkzS48auJ+dwUAW4I9DjlOLGAdHaq7XFgDHYUe3//A4/rA4/Hu2ymJTMBitnn4wPPxxOP93fWfeqsU9KjlZMDpZqxwDptJPeLDNb5BHwxTy1TUMHABtWk4xqqfZkrE44p0MnnBcQDf/z7/4k///GvGM8/0TDQ4LjQ0duF6wa0g4yna0zVz+k4YsAaaw61aJh+ITPrpso2oDX01uVYOfd+G2jHCdbUTPbAlIOXSALrknkwnccEBBoG7LzD+okZDe0A7m9f8Ntvf8e4Lnz8+R1XfEeAAbsYE4EBGIH+cGBewXkNBgbGx4NzMvhcrE0Z+Pbr3/Dr3/83/Prtb8DxhssNzzHxvCY+nsC8rBi9vTPSfztoNwIGXKF6iBNzogIAPh2996rpM8fAnI6jGcIPhLFmTpihKaCZery3DhwBnx09WMPWFIYji3DUHM45YU2FintHITVZLwZWnfLKdueSLRGxI+OgHsoW8iWgbcmA9cq9buVepZoDkpWSZ5z3Ya239I9eg9blL9I15vmXvZf6M/3AstUKHIACbKm8IN0kAAyt7JpM+IWmKhX8BJSFA1wj0DvB5CPTdE3+qmxnFhOH2B9HgQ35JRWmW7m2OwPmWaeQtVM5ljm8ZGEEu5EmQYNpYQmYaO7SKACv37CAvmKPyjZbbGFeIuucGRgokBZgWQwkcJJ+5tLhu02XBbMjDGNw3noy0wwAWBv3KDCMtmKmqtV+kd7qmlu5fLTN9HzsSHfU3oJU1XE0pYpTsdMFUJ2wuUgiPh0zLSg9N4H/nE4xCVtT1sq+y8uq5bXEqKxmI9qb/TgQtgBqntF4uUoAkgutrrdsK0h/kJKXJQ8y2YBywLY0VuQfgDC4zWwMTPAoGtw7noO1ibPQfaZkR5ZUKAtXZ8/STsrf0c5pR8PRO263/v8fxlNRk2FICj6wCnu7z2JN9NYxZ7IyQkhgWwanFHG5AgXh7YwhPXjkJIcWtd76E/ApAQIqEv69bX/L9/5oRZNZWPHyAnLqM5nekYZxOWD6/Ke6Uvv0v4BM6QxsIFNSEHdgqA63GWtLpLekcZsEwj7WdJ7iZ/fd7r3dpvKA8emtOYbYRrUzTdKgSoCwoh5Yw6yxmr3UoNgZ9iuKIumXBqdv70GoVf1Cd8s5NDnEArOwXS4d2gSDTFFOAk8d1k4KlCbmk5g6rR8135m2YDIILPgzjKBYYM1dKHrMmhwEsdAmjS5n1JEAWt+0vE6BFCyBiZmPKANABbv1vNL4WEo+55mCsiULJrLV54THhekP2HxK/nfADhg64CdaHEXZRgrO3oCtmGSlBsamDN0AdIErjU5yPpXyxL06xTlMXb1+AJ5C3dT8IgAz1au1ip+KCZVRUM90r9yHCuNEdlRT3aFM6cr9VfsytWFs5yKw0u34s6sWEQujy7G3VFbLY5X4RxZdfv2yLUWw4o7cS86ifLmvavYCfJYIZEHvBN+Kku3IUEudVR1OAUhzgckz50tFudNoBTj34aqrIlBvXgi/FFm/8NKNjoix9iPB3UolqdS6pUCXZFug1TYLS4mrPkFG+UjvwSbjPompknXbf3PqUj5vMqtAIWCl4OjuFvEiw9YtXiT5y5hTp0jK8DfSDVyGNSdpa+x6D2sr1fUIIRNsaiY9q8IRlG/at677xNpRzYRP1JBj0yvSH5tczb95gnQCZwpA2p/xk8rcI5+mvb0DVMlsNVt6aF+Pso0Aga80bJBxkHi9H2rtdA0PsKh/gzUXoBRYp4DP7jIAm/ZK+kwtlYSrOyXSHgwkmpWfRZtoyZxMuRKs/1fmR+M80CBb60qmEzTODmtOZu2RYJ1JN/U6y/mVrK+yMywLnGZKRvI/86xnStpTewkwAd1h2yJGlKNHkCAj0E75AENET22NMjxL2OkZc419P4Gv9kWZLZ/sndYqngsTY2alIixbjeBPwHBoJCuVtPWse7g8WdqIlNWtnzhbx3HGMuqDz5nAU4ICY8jxs7ZSOs20bnICrNfytNaVuhWwr4Y57yz4LbtszAG6rdQjVuZbMPXLA1cAt3A21bEDmKw/2cQyAkDZn3PjmWI3EH6VrLZCankOEKyFOa4nql4MqBPm84OyfV5w/8D1+APPj3/Axzu6Ukf9avAzMMeBsBtTNcZUh6tOpg0kijbwM2pXynbUJuFS5v4/gNYExueeHWCnVRZxp3pR0WGdm9lcwayJ8I5uB46z4+3LL7jf/2DNknZSZwHSkYu56A7My4Fi/kWl4AFgx2AjK/E8v+Dbt99wu33FaCd8Epx/Xo7rCszBTAn3wRoxljVvuadZK4aCNplCL8Ga1pDFuN1VD7PRjqJjTBsuAxEktDe0YEHqBRZpnxjQp5oOAPCu0gsBMRiInIRAPeyyF9j2tPRfRJYdLB1VnVt3htPuHP/w4odTzi/dsN5stiTYiz+Usj4ol7Jzm1n6G7T3VuC2pSrcTWoAqy6NRkNRbalpeb7dHA0rwC/zpn4Omd0zAkfQRE7Ta9XgoV1LeQSlDK8O0rs9xOCX1kdnk12JV1fnUk8lWzNtc9kzZKYsHbTIBwucwTY/QLKgsVIa5SMV+J5qonRmIMtSWW6GiiqttazPbXaOQj9ic8lWMRX6boZewYV8nrUv6itl78vL6otA/dJNtZeVMWUweCPAZd7IDtPbOZc8p13PnFlQS/c1fSk4ms9dy5n2TCC7tOZcw+QTpd+x2Zcvz2SgfOxdtnnO1bJXo87idn5Kf+YX/+26d8pkIMQUI/OZQQz5Ey81mwgwpnx4sds1GyXhFXwi+Gc4Dquf/8rrLwNPrB9B+nO4cimF4KVB2ULGiNBSq0VrMnJUC0RaOB8q2TOV/4tlbOU05yaxvhzWzxsyD+bq2NbwAsrs70WZPcupCRYYXBfX77f0sgTTVrpH1KGva7tv406aXRaBw3JGzLCn5mVdpTxXCUi1FNAG1vkJjanhByApn23NSbz+IV5/H9jAnJ+8XqKaL7/nXBNhTsp6srkWtTA7DiybN5a2g1IOIrIfy1qVDUTLLl6GT6mWARWWY4cj6x1mB1MgWhbwPmB2onV2YjQBLmgdOG7sINcZrerniXYwPa70bhkNjl5OxxIOP8ybOj22cDKqPBCn6P7TGb1WkXCkExFMtUqQixjbRLVebw0ug43zRifllfZqSgOTwMMdZoPC0iYiHvD5HXF9FzGgIXDKMDzgnh2ClkjwLiBKSpQxNh7wLP6JrMlgjIy21mX4Ru1v1sQgaLQL8IJiIhawJKOYdZqewBzqTLcMbUZI5zKq06FNBlSm29W/tzXL/SvSKIIsFM733NiIy1h0Zx2U7PSHegoqdSoNpmr2vvYa64ap2xO8Up0KRNZRaNgMs3QAEYxq+wTmKNAIGeGSYg+DnOl1uH2SPZTNHhJUm3PUPKyudmJUQfOYYNt4qFD1Q+xVDTlTq51ntLcOO8+VUicNmakvkWCalqFSs3V+0o5a+tSWUZBpQCDI15PjXuuY5uSL0KxnmanEpTZD7I0ACoBIeRJII3YzdMxE+Fi0/JI+NRdyXNIo9pXmXaBf6rp4HbXLjJYYkDxo0p27US9dKLYoPIDuiBYsIlshWogxGi8GPHT9vMayHRUc0pwH9nVA+iCb7Of3Vbvi1ZAqI91U5H0zlIqhuaW2VykuA6r4cy8rl8sZexrppnPDUWl30Hk2tcTaIoemOieruYPub16gRUDslRwU0ohxznczwMi6QT9h8xLYMWHIcSThalnNRZ3Xw/QjQZeD3XP1ap26C43trB2BGa4uqJtOrLTC7azrvI4xMMcgm+X5gCEqttEsTeJ9XTU/1hGWEWuCHDx/OivWyiaRNuazteVcWw3RyilO475OzGY/JJs8bbSIBIAEYCgAlbZiVyq+Hwf6QeN8DgY6mxkbe2iOWACbnef6caJ1sqvYMZmyh52iWjGehjuua/KexjQEVxmAiIGuTn8tU5pN50aBJzsamgJMpzumGYY7xngAktnHwUmpGnkI1dN7YGKitUmnoDWVdWRQbF7BOkcWmPPBIMB8YowPJPu69GnZIwKeBgtY996kYxyBB4AnAhf8+Q+0+R2nPTHjAwg154gGf07MpwH2RfJBrETkPjEYOs6z4Xa/oR93BA7YDMaMALLBxSSLxg7C5+0GmOG6mJrIdEDpudJf3I8EcBSY9juu+Q47DhjuuB1fcbY3fPn6Db/++k+Yz4EYD3x8H3h//DuucSHmQIIacwYeHwF4svAINgYcx5kByYYxgN6/4Hb/DdbfEHFguuH7xwcej4mPpyMUVEc4emeXqpAMgnUcJ8g1aQ4YSxy4A1n30l7ODM+7JUjnlD/WDmTVuKmOGdYOHKezsLh3eCd4SgAtaFdeF2JIJtmAjYtBqzFS06AMjzyXhmJupu4r0fPJt6D0zUBLCv8f3lSvV9BJ90ydHOvf6fgudg5kiyy2cn6+umslU2PTPWTOvL4/faTkNyz5t1rD0516CVvUa242ylQ2zQjgSDZPGTBWabEWZMkdnSfmsLSJSIowmNLd0x4CxqTdN+fE9Zy4hm/AE5CkitAvU4+3lgyr9CvI1u2dgc/Uu2SiRxUGL/sioAYYQNpuMgmYJab5juY/9fsZpOX1ugItM3MiY1+N1Dlct+NUI4ahJhOpMwwbU2vZNp25XrScdr++7PS5+f7LZ+wN6MFumKMxs2Y+aR8mXuBbWnxJVOO9ln9lVYup9OG29x1JnEDZOVlknX6vfCIdCN93mpkCHqk7gyU7IBt6Uj42oFhhpcPL/t33vJM1miBy3jMcl2tvxV6sPT+nSxjEoOdzsTOseAmSJJnaeJ59Mb9/FBg/ff114KlqcgQME5GFtLYJhSZjDgEPxqJ7ng61T9UQsLJUbZs2dxfFe0VPsG2wAh42Y3yNzzfjBWssc5LGJnr3DqCE1iNh68M6LFvF2noPchxAOSLihaAFTbo0pPavv/JK4GkxV8oN2saZwlnssdCmiNiijTkteWDwsgdeWQbrd565uJ+GSwPSfniuxTzQZ9wxhhfV78VxSwWSgKLAxBcMMCRp6kmtHJ48L3kyLJ1GGaysiXTgLMp9B0GZjtYOsGMYAShr6yvbcRMGZhSuZ3e7jHrW8zY6IOoOBDm3SFQ8HKjOPM6OZnJ+rLNWlE0BS8YaOksbO41+CCBImqpjpcyArCOLEBDF8dAho9ap2cszgpWuR8CC7JXwJ7+yMIfR0QjvCD/ZctnPivi6UrnQ6Cy54ivhWz2MdiJpmGmpZDSI85iAk9hKckb4XUZMgKBKBIEnVz2qwe8xL8zrEoiSLZE3pz8I1rym5e2gU6A87zxkeWICAk28WEVpqCxDOz9ldVZX9CM1/6GvTJthYQDrnWMTEyuwommZLx1iaqAoy1HsI4RaQWe9K8/udFvKHWjUljEVrHXhg+k3iKhUuywSzN2VTqJAOtWOCVdR8nHBxyXAap35ZTDqnGRB63JmDat9u1LogJLjdZ5byhCUos0Om1PGjCx2RSmbWC62ZF1sStcSskH9O2VZjtg3+ejItZTRqLoPWWsp9yYZCytdjYbqSsNsZqJqh85nlK6qIZaRwH1UEeV9hyncZLSvICISt3Gy3MyAFjgEVPh0tCMkH7H05NKgdRTIIFvBn+ULWE1hqYM0NnNopVe5pk21AOo9lmNIXbVHMnMdktEi8ZdTEBSvBqipgU5b09C28XGpEsjLxgZRMppnDevZIefAmuwNSeop5qo3prlqP1kCT1nINTQ/7YRZExNwILzDBIovB/Igq45t5UqOJMqZzhU5ORmswWKaiqWdoEQWyWedjq2zXay1CqejPgfBGLZQf1K2BGCWMPYC3pPJbaVLEuxM9kp+Lc8kWZahFDx31T0B09FSrjEVbu0Li9c98LNAlmf6I1COZu9l6FVqTgumA4Y7rI31957AUyhy3eCNdXWaaif2I01d6lF2tdV3D7CTYNpg0nP658y25pPdmWhwH4BS3IbklnuegY5+nNwrRuj86AoG4CqAspnS7+PCdZFVy7pJB9MiTPMkI4+sDAdr8T2pLyS70tlJu2WqoysdhEMO1QTmB+J6YI4Hnh9/kOkUT3g84f5E+FDgrcNioCFBD2NdrNbRD9pUvSWIotpg/UY2yAHMZDOABZodAfjEcR4wsHh2xAfMJloLhEpzkG0rRzLEeDLDNS/4YLOV4/wVcDIZ+ryjtY77/QuO847WTu3JBrOD8uFi7TafAzGi9OGUvTBnoEUHekNvd9zvv+Dt7VewfTz3DZt0SNQgTTgW6u3qhpzMCJ5NObTzVS8uB1kpW+ehGkAEwvuG2vrsmOPS/S/ZTEZZ1gIslQBYV1cw2cR+qQt46+gXu1ZZH8hamWZGAA7G4tYCcBhQ0H7q0quRQNCqL1ly69WdqDnZz7kqK9QZNkvfok5//X5PF9rrWoKninOiFOHd11i2OlC13rB8qkoR1PmPKbkoXdTkA0ZmluQapucVK3DkAi4nXF3HAqMB53SmeEFlKHwxeqiEWJjZck42FiO2e04PPC/HkKPP9yx2Fs88a6OZ9HTKoTCDqcRF66yZBzC4P8bEGLkfc4vlNU3ZGhxrlZCYkjea694CbobWaVDQHolKJGhQPSkjU7M8mA043MuLZPmK1gxjzE/r+EoYiQimmzbWLaKsdgH2KTfSzwgyoAslgkAxiBFK2ZHNbIgT8DnzI7kPM3zHPiNWKcLriRbe0Mo/xebJrpc7uxuaZb1e3rv1jhlilapesiFUgmj3EVBrAUAEFNk7MVGRJvtke4Lg13SWhrjGxPPJ7wlEmjWgS8NrfJbdlEM+XdB+brbkRcu6V5bh9b/2+svAUzoEQBQriMa18k3TKHJU2h1A5epVUDUVs71KrVgHPKmEsVmnUm9pc27X2ge4BND+YttvbrDs8EBKalvGEZJt1ZaQSQdp82v46zT+OaKs8bMfkJ+BTvU8+PnfPxtkFCj4YfPWnKRTYmuj4yebfU9zqEts1UArIh8LBMt5W+mGn8e7vIDIzY9UXACQINQ+hjxEr59/WbewFXmud/zwRPytNRY+6x3nySLfNBgzjU6A05byBH0nu4HRXNI+Gw1UvT/qLrlk2n0CZF4cm5CSBBCYUmI5Bx1orG8QQsKtjY2hMuksRUPEQLKIwmM7H0qZo/bS+jMahtZf1rLo7eV47ulZAnHiyfVOQxSNgFY4onVE94rkhhtzpWMDEQD4FPBknSkrFmIDrYgRndemOcv6b7Oc8AKX6zynF8Vi2OGTEUt9MT0hGTyjpCrPcHD8O8spZURsSjLEXNKZ0Wms96dTnL+Su1jyITf1yxaVw6gWEPzK7ohd4FPlJiewWBffpBgN8zJ3XgC0AUvgqlIslIbIVWbtnnrOXkCTJxjnUwwoKdgCKmIZeAW8udhO2f0oo6WGBIlLnJUxuAIBJvAFclhRRk7KYH7YMvmtUb+49of7SgXKFN3AogHX/sqZS0M2kIjnp/m1Sksup12fcyy9BinV3ekMi5czlmOoNLoQOJV7vxV0vq6xbN4am6WBkLdGJIOZzyvrZ9eLs+hKBLNtiprtPH+ZmvcZ+MfnL2CBaD95lbG/BY/XOeWAF5Npfc5qe+TfF9iSi7G/P6TfQnpgX9vtEWR0JWNth5Ss9BciSncUy056UkbDthiZ/piKtNW9+X7t0da0to2syzbIOPGB5p3g+LxyRhQ0MwUTduAm9z5BiYoM5pjEZHWsSD8A1byiXkWnfizrsx4ndGZUuHgKmBDQ3izdJy+DOfLQGWsHIg7QwZxgcIBKLHdISnaPhhaj9DXVlJzuSFmyfa8lXIHJ5Sxy7VYdTbUKF4CeQcLPpiLBOeko1WizzW4p9rwnM0s1OtT500CnBHJ62K1MgNoeGPEl5yrwhgSeOHc9aN+yaHR2nJPNkjUlA8j0Epgvp2av8xHJTm0wd/S+nI+ogEkqJjWKGM+1pkabYU6CKcnQzk5uyLMeE/AnYn7AxwPj+R0xH0A8YcG6ijGf3Hexmn0YWD7DxLDpvZOtWQaejos12NERaMTKNHcNAXQyunrrcB9MS/QnWnO0A+ygKv2ewFNoLuVgYAxjB16cMD9orwQBn+O4EWjSfmzq9NuwWAw+AzGifJQEU7MDpp2B/nbH7fYVb1++KdBGezDj7iYnji6A4ThOBbbTdmSwLZkUxeSA2N9quMFj35QRAJ6/9FUyhbJsTC9GcQU2DPRBHDA3HBFlp4zzQrIV23mizQm7uvwbyG5qda53ECdto2ZANAp0Q9v8ge0olv7ahTeKaQKDWF749Fq6cX8lYPT5vVV2pHTQZ7mQ98/6US8C4/UaMKVZr09m+MK37cwfrERt+ViSaz7JBGkIms+SZ122P4INrMqKNF5f+FsxjtdYW+2ZkUyngEa2G4qyx1Wvi9kRDAOHUZRTxsjnkVwl2ym72enxSqx8fvAMEGVdWc21Q/I551QfkdGxA0V71jjX1l6+5yvBCyDq+XM/btVr8iLIwCXBIsrWaj60Mdy9fNKUt2QakfXG9G1sXWurFp8l+KQxBW2CZObTzTHpu0/2zPbFf8fL7zjVhkUtLG+pUiDnmHLxo1K5q15k3tSWZfGCKUjphvVP48jAELGbMSZBp0HQKe3f3XdLNiGAKhPiiHr+tOsSWM4nTNvlf/X6LwBPGpMxyhqFOnID9qPhqElYdNksZhYOFlszsoXQe53ocYm6ayZEMEEhRb8Vcap7qRAXsAQRwE5d1tiBw4T+jUsOqRs8UXwAbctFpG8WYEXqtbkTqXWbqukdqQORQEKTUzPGKMZViZsNxBljLBFjq3D5TIaV3p+Rhf33TXVimu0UR1TUuZmrYj/pi6OU3TKawJUpJ6rLgBjXSlnawaa9RfteZH0Hoaq4MGhQmFlFcpJOPydTAJpXNjfzmbso9Jqf6zFI2bYDTdcDjKawB+BTKCwjv0c/cDtvuN3vuN3uMiw73A5kF7tLtb5Y8+ioPdEUgjnud7SDLCdSM5fTn8e2nFIEUG3qBYrU6ZZA+EFQqihd31Dx0TBFCbUhqWYDlw14M7jqUFU3ivy6ElBrArLI6MJxboJMRjgaZgl8RzdgwoG44Nc7UEYNa0f1dlKTWgf8iQTsmCamiMt8ojLKgyysQMOMC2YHvB3ox1B09cDQ+nEtyPhCjGI/7vup6jW5CvYmWDSemHPQWMvaTZr7EqtSvBC7a2lWL/my0stAZzKdFmvLMdG1ogGurmyuc7ZqU5BRl+k0djC9zvuB6CfmQbZTO29MyekH7FBB+pjAfFLYTAfAAqtJZaVBlM4Fx8w6HBPjehTwhkjmlzM6jUytWmrmulSjyrON88YEAx303JGZPshbe9GVE3RypfC8GGPYDABj1HT9DgklaEJtGTaZGGJLGSYQlxG3SLnflnKfrqKrI9DPUIvXo1KOx7V0QxXzDGAouttbK3kfCJb/alrrSkJSLYmgcZUFSA3GYsOW2l6R0gSVYcI2Y7dY+a105m5g4uW85jlIJpYZDWHkWzQ32aodBhaGfZJBePSB41AHNVHBwxiJn5dhWrKVoW6ByVT+JM8zfWuXYdK1JuDoNeK9gwk572nIRRVdZyQtjVDq6AKaARSRSphaz5NqaXNETRmp35HKlQbPJk888wfMyvlJxzt8YiqlVJD8WptkbtDcg2VasAfQQwV6n/TbL0NcB2ZclGdzsJFEf0M/Jtk3JxA9a/lFOcOUM7JvsPYjpp4LJvBccxAEs9DF5myd6eCVCmEyCkPBAx3kYA2g4ReyeyUNbq5fM3YDNGvAccNsAMzh88A0p3NvBFqKxaHzMCIbYzD1rFlH70rZDp3+0ou2pcm/Oh1ptO+sajMVCY+dYbf2IuT1RQT6MYt1uB08mDd0nFzjjaWXgJGZ4ZaAri4cui5DuuC8a0wzRjmVUx3Tpk80M9xvd5zniXFNjHlhjAvNaOtd16j96+F4f2f6Y28N43riej4xrge+/fINvXdcc2DOBhatz26ulOPsUjkxxwee1zsezz9xPf6AwZXKQzbVdV1KWVX6oc5gzIbhE6yd+CdaPNHigfn8d1yP7xjPdxgutJgwG1SdoyGeD4xogOpe/vLrVxy3G3q/4f2SHTom3v94x6NP3L8euH/5htt5R3ODTwY7oEBRwDGVJjjHO872hPvAmAPzekfWc7yuUQ6vZ060dfhBVnFrB1MPjQDreA6uwTXhbmh2InDAp+O6nnj//sDz3TGeno0glWYX0r+0w200/O2ffsdvf//v+Kd//t/xHA0PDzwH0I87Tgv0FrifBwvqnh3tPIp9D3TqqdShM+sTMQ3K51TapjFYKpViWBkb8xqyeSaGgv3WOo7bDeEds1vyzqnH54Xpg7LhuKGPAQ/DcQ2M68LIYIUBeEBlC8RsSjaOwM0xZgFREICWujEsxErN8iX8PieBkrEVbbaSbov9eG5dyJghASQQ38oGoR1DQO5cczJFXBDrI7243jNdDdj9ksVaXzLegNKPADDZHlYyaJkoyYLa9bVtvqYLBJJqXuMRW7I1h0d2lQxcB3A4GYC9AYdh+c0IHJ2ylWmeE9cExqCJmOy2LAtBeUL/uZ1sIpTB2uET85o4raGfLA4+xqy9fl2zGJmNjy6mZuqE7DINXJcXWBPRS3Zzj1OX5pyYuZij+6pn+RXaAtc1WQutLb9yZQ5wLo6DgaVKUEgcIYMLZriuAZht/ijw8f6EVDjO4yj/7BpTQJPjPJN4YDhvB/o0nTkFOX0W6x41Iu2TNItcwTpP003rdzaNlT5s+uZpTzQf2F/l33ur/UwbW8tZRB7ArxWAODoVZtq0zegD9+PUXGbdptw3nXbiYbjeLzwfAx8fk3trJoOe2/w4sfxHk09gQNMa+hyYwTqlzATW/e8H7GyyGQMZCP8rr78MPLGSvgHQpoQhWz4bvYP6XQQVfRqb+XtLpLIiMGlD7gXFlxBJxy+QQJFhvWtfzPWZTAfb/53AD3BU2t2iZG4vHba8gedGLMBJzpaTweDyjIoxlaDVixDchF85Zla/219Jv4MJuMOP18nPkbIvQz//vgNFkUJ1zWlFIbBTZzW29jqWGlt+L/Bqm/dPz1WOpJDyZL3BFjnR6j8yPBuVTzcrgG0bxCbMLP3JetYCDQTWtOoM0ORASGgFBUOmbFh+CeTg+0iRTUcl35cRR0axRhkV4QO5OW1zXNbaAhmdQjP4yLRGSOCQ3s+LyMAEI7WZ7ueVOKvnEYurpUPUlDaj93OOtro+6dzFKj4bqvtD6iRzwV201NZISbe2WE+eCrAl88oQVeOJ9ZysOZo73IysmeaAJ3BJ4Img3VUgZ2gDUKEu4AnhC0gal7qy7bWNdgZTGiILvFpnL+RwempsKiLDYk22nSXB90bmfafdEsYIgjF9k50QVYvjIMBm1tklqx/6OrfUO7EgPKBqrNo33GCeezAMK1Uoaq9xnwmME4ON41yMp3TG8pld3YyyQx0E7iQAFwkaGLY8cn5uOlM0fI7UzFqzPPut5twQaM3BqHNeJ5W5QA0DwakCO4Bs3xsIhAIU4crhDxm5pRhXi9ZMYwpL2axpbEtGlG7RWJqJJrzJaAVyBW5ldP1V1u6NG+p3m3yLZSEt+ZRgXMrWTL1pmxQzRVy3ay+NsMbt0+Rc6PxFI/kQXMt5McXrujrOeYO1iTDT2m0GQKYZpJHtVvt6v19a4NltLfepL3WIrEGXjjjrGy0qfabZLZt/6QXDrqe53mnc1tOH8G9L0boDCiAw0NJoWGcYobS5ZhQ30hV5zRDrqf4XAPvZiAkX4t4Z0yF4BTJg4AM2LwCd8rA1dgcVdBUhYChMdeIOVkryU8CTwxQMSVYEzKCm3GV8eyx2BK9L586tAXFSh/VAtK5W3zyFyXRMewoIsiMFPmVnPjpJy3bjKe46CPw+5yVdHYhhAoIW84nzM1Ds4aHUqzakm2STCKwyMD2LZ6DL9si1+9GOa91qX362jXT7SkfPPbEHMbTdtTd3O3Db07YPQmdL783aJskWSDuDYDydEHemRFxikB5PBsoCrvTYbG6h2jSRsfPatjoIjjEujOuSDFpZAnMOmA05ExlsdAXxmHY+ridBxVCANJhKksWKCVgzeML4Fpmr4/nOtLHrATi72B2dOjELzjKuInh2DkDyfI6LexjZKZZOExp13Hh+MAAZgPVb1ZvL1PmohhWDzOa4AFwY8cR8vlcgZY4hIF66EwZrx9KN1xPTCIDCO66PgefjiXldTFeZgY/3gXk9cT0+cH1MXE8VK/eNVYtQthFTXRoavv36N3z5+ivO+xc8p+M5gWuobTqygG7D0dnNyWzVsg1twGQMJojiCkzoyJJhb8vdoLAUA0n1gVA2ecMGx8POG0TZ4vrCkAX1CaB2nDemH1rvuM+B2nLhmLOTsT5oK1qo6Lj2ZNpKzHApztUSpiVaN3+iGdon5v1+ug2ZQZH2wTqKyXBcrwTr9sZVUdfZ3LOf+oEpC8oHsde/53tyhHkukbah9HMISK9Sk4aNkfwqv8KpJycC19C50Y1mmBptBY4GzMZ0YLMKwyGZY9lPZ84EnnTbCM12ltXQRAYUsFsM9hyVF2MziijiHiJQpB265j4Bt5of+WNJsn1Z07Lf0sYC7bKwpdfr6ah/VmrWqrtcNqv+np/d/fk5c5Xyvlb7odYYoRS4FRgzM9p3yDNkdd0ASRsU7/6yZ+qc8Ugig1QzdUr6kPLbIDsttvnj3pAtjjILyxoi5rmDrzrDZatoYzWZNGYsJbOdhYBVXTIdwnIrXMxrd3ZiJPCoxgjaW7l+y2xV8NrYpbN1Uwq9gqtpR0qOeCRYrvTDTMnEX3v9F2o81VCJctqaHbJDmfeabcLbZmXsWMxK7VpQREaXa2m0QRhZRt3nJ7bIcgQ2B3JnDu3f2XUCLyllfJ669QoC5DiRhktGKnVIN8r/C/D0k/G93PMnBlcBUs1qI1VucF0I5TAuxpSi7bDXmhGWFRvWXHwGvVIg7ff/POaX32F3BHTI6mq5e6VYNHdNO3t1FkzhGOWImH7XenadW9dJOWqfrr9OzEqjyyJuSXdeNWyjDLcQNb6EC1zCykBqM428BboBWaSawNNVTr/HEEmgKVe4IXOml40rRogtdgdMQi3Bp318s9F8jVnPlYBSoAnM6bU3rR2cGxlpFLCinWKLVhWgMutnOjvL0GbKKA07KgtGxUuUN1LaaYzIIUngI1zOUIM3gSTWaZBZQ4AdflhrKlMBtj2WYwoHXJFsD8RQm2X3cmqLjbafT53xBLWW4xxiDupeSp3hrWN9CUioNrOOJWhLsLNtt3UVoG8N/TwrgSWUVodkRrXOVIDWZJiYUg+5VJmBxigKAcTeuAbZJnuBTyt33XIOstD9S8qG1lrsywLTQsBTPq+lPMtp4vyPi0DfdNaKaZChNVMO2osUaMZ6AzQ6OAa2rt3ktw7SXt/HS/FtAFUIwDCs84I8UgnuQ9GYZAhZrWsOasrYXGkK6zo8TmLTmj636YgfXrbJHbzqmpeIasqnWMYNwWl+sldaQ86FZnIzFNNQo2EFJOhU8hUp0wkm+mDh3H52RutJa6w23i8MrAjpEwE+SD2kvS3DVhrmZQrKGMKim4eEt8lQL/ZcaYnP+sNqf+zzl63qE2kK6dW1L9d1THLTAiDOuc4uWoKpUKmnxewN6U3k/TUGl5wvoyrPQ0s2Uj6oIWYH7OIwp8HnA6iZ6tthPpHpX6xD1FlzQ3Vy2Pq5VbAlx8TAgGP4pcfiTCZb1wOppeDtqHSyVKLZtKAMZrFLmb6dMoLOnLw92TKpwQcQDe5DKWrS7SqEW7YbsGoPWurfDm8DrZ0KAnUYVHPJ5Ay31E1Yjkxeb9srbTtvPweeuP93h2W3+/jdSp+Sgb1YT7khQgZppB2BBKSbnJVVh9Tcscp+ap964Ho+McfAaA2348YC3o2t7LNraF8It1LTNpESAZ8sAJ4HnSAAdZbhQqhFZaX1KuU8AaiQnR0ab1eubcgpCr+qMxrT6AbGk2l2fj0RToZWawlGB6YtGx6hukia63ldYkYcYNwt4G3IBlrAEwK43VvtzT1tHkrhI0h7sbbU/MD1+A74hFlUShAai22HNVhX+moEvF8wIxjsw3A9CDyNsYCnx2Pg+rhwfTzZo+RJhx5zIm3ptG0sT3Pr+O33f8Lb11/Rb294H4HndIy57Mms8dWKsc8FZRH+DE7Irs1yC9gCYvIRWsaYZXalLN2Mx9qD0WRjdvJdwifYMIY2rQucS/uinzfYDjxJ/0dMApezKRhEYD08DZJJsyLf/xN/a3+lzC226+e/5/n6BGqsv/3Hv2c3u+wqLJ1QMu8/GVGgbIqacqx12e+Vcggl+227ksDGvE6UmpKMje29kM7OAuEEfgJAd8NsnNPRgbMDSRJpabobyOBzgU4i277I3RSjkiORbwiULdcyxVEAEHVLFLMn9liZ1ibnxLBqP2XAOJm5xaYvEVoKmmNrKLnDfZhifJd5yZJrNV5+LyNHPnXa6LuPIPm02wkpEzPDyOTPaay9+l0lQQOl+xG97r3rmQqKgWOrQB9CjB+Tb5Q7JGDz1WLa91n5/nm2dQ/KuCid0dSQSmqh5jbXtjWy9rmkvvac9miG7sKagFKmbc5JFuN1Oa7hGIN7zJfBxq9kJG9AWDLokYGkLIHk69nmVPF8lR0qI+QvvP4y8LRPbd54IZu7E7N934y/FNxlXNTq7IsU9f5IRhEAtIbGsLU+uh36bYPuv0/H63a71e92wGkWhW8TmGabswTs1PQsfprvSyuPNqcvB0p/L3fiE8gFALHRUtclbX22qZMTp/v1cExGUY6DKQsORziLgVUkHptRaos2DuC1vhMWCw2RUQluvN57OVv8IOrw1j9lEHfL9Y20pYv1kPuxgFxD3Ss8QHiik66pWasCgi1YgwEABIJAh7gfnQf3yDbUunG6UyaFk+2h03psSqXpoWJ/k1HjCbgAn2a26jApRcN9YoyPVX8oMgbRWNzXmFrGwts6tJG1PpbBQmBGTBYf8CFQYDaEUtxcuSmZapcwWYDpddYutOMOaweaO7LwLWTkJFU/xSZTpxwxHH55sYDcB2uwGYv0sXPPYOfI1lbEwAzwLJ5JLRORUT4CZrCh+WNaGkGxlA2ZaneVU8zI7HYuykDewLGsSbSnzcF1fnKvvSohxIr+fwalm22OL8B1R6a2DhUwjzqPLJzOyH8/b+jHgXa7sx262E0tZVa/yfk6CDLl9S+NVY5aCXvLsatLn7OYX9ap8jlUoylT7FY0MjstlkWk+aORpjbaW6pzyux8b2vbudYYAEaaCVywULEH0MKq8GIyXoFkhCQA5DWUNPyyu2XK4TFe12IZbssNrU4oBvTzUIQxnbcUA5/YQXmJ3B4vL4LvXAzVcjv4HbYYtT8DncqoscWe3Quoh4SfBXB5pvT12qapoAluvOqAlJsmVhoCJcMsi3VKJrd0VMxkINDB8Yuyhd1m1QFTBkDK76ZW2u6D9U3o6yGZmUdbHeM2nthaFvywxepPWYau92Xser0/gaAEOPW9AbHpydUm24pBRrEgCnqeRRgz8wMVca6B5DnwgDnZF611zDZL96UIM7mbCUSlQ03gCewWVdsy9aKCNyMQcphHAwswjyfsdFg7EfZgunfr6Mcb2nHyPS1TodlyvSVb0pKiL0aqO6aP0p/hRvnSDtj5RLvdYf3EjFl6ovUmPTqLEUkqNuvnwB9wZ1pyM27WxkUjgC6d1TDkKVyyuzIVWx0BZzowi/mYkfrWOpqd6iB3oPcbSx4oVdxbFnqOcqabpcOTINFa0KwN1rbz8hokzAYxC0Tcz2w5474Cbj+AU1MO0xaEataBg4EVQ7LTxDpzysXzYNHv5/PE0RKuCJyHbArLkhCUl0fXWZ0EocyAoxlux4k4B20vp6xnh71Zzo2lLFDtnzkvlnNQ58IYF9y4UsNX4BMm/9nYiMFcKe7XEz6eeH78gfn8IBvo+YHeHK0JdEh5nQdfNoIHwZw/raEf7+jndwROoB04puO4fYX1iXkFHj5xHR+0byREYj7g4x0+3mE+0GKwhtR8wMcHruefuD7+qADLUBmD3k+tUYNHRxwHmVT+RqPTAnFduB6DANMgyNKiYz47rmfD8wPANJVPDHjMkjH91hHN8HFNnF9/we9//2/4v/3f/x84fvkb3A48L8cVHSOkd8yqZlSyslu/MbgEskV9ruBLyS+r/0C9WlgLKPVho3D1oK05xKZ7SW3uZSkjWtYTC7CWeoe1k2zXNjHiXfcy3N6+oPUDx+2Ot7ebbIoLH3/+QRBKXTAXi3qIMZvr93oO6+xtutYaw627s70OJf6Tl718T92RH0s7Yk5m1rTdBwN+cvbX+0P66Sf49ctnmQLGtOEpgGbOzW5Htq9Iz2f9tHFBCRQJMBqTtdXGTMYK0NrE2YHbAZxHY0e83nBYplY1uBtTsLDJMKSKc4xrMVYPpQ0mcEFwIuvsfrKrEciOeuW9mQGqvRw7wx/SmRlM+WHOtjmH9rkKnfcO+jdGoASg6SYxiFXDqam0CSoQCOB1v+PVlgRQ5RJmrlFErbFZIGZwLyZC6AB64Mo5tmVzNFs1tTI4k1lVxcoSNd2DQQLbZEDWWUu/1jSvr9ufOMekSYveF6uJuoug/3kwU6fKOTChM5PcNTd7oCR33yt7aQzHcMfz6QIwHc+PgedziomHArLQjbWrNtOX1/eE1JBaNucA2704Ej21ZbYSFkj5v3j9deApfvKPAFMlQCVeVHu42nG+Rof3AdfvPQD/tGCa4JxnCz54C7F4VNzsr71+LnkWm0EGUb7bFjW6PlvGef5XgFRrMsh2Kbxdax/Fhtb+LJr3w6hNC2trgQGsGhd6htqLmns6U4uvV0ynzQDDttny4/HpvUnlj22tCzDMf+rz0x1VQHb72p3Rnig3ILCMoBkjrM7ugBFgtHf7YGqQVHYSvC7hmSAUhS8ZQdMDPrKLmDE65INz51Bq04RhQOFzMQGc6SqmMRgQc2I629nP67ExUDJazFo9sM7oXPIjTdRP5WAjJh3FIFuqOs1lFC8UPRZTiGkWS/ywmLcD6Oo4AqBRSFgLGR8BFjDNIttLeSZlOw1Zd10uHbJO+qTgMzkySqmoEEasryyEDkYpoGe1doB5345iVFjWrNiBJ40s75/yYGY6GYX9Yqsl4wf4oQB9yZiUK/sGz7UA65p4aAeixKurOOxUD3irvUVrh7WaslvdCTsyonigaVyeUHGyXuY6k5zobT8HZKkAlRbZHNNy7ItmvgA1fjVLybSMEkSI0UaAMZ8nmVNl0OkMehmIGgvyPnsEkoZ0tpxNp6aYqbbuzdoQC8DnI2bEMqOt6WhSAiyTbUnbHfRDGpm+ybEcq6U84xx/slc0zrYVuNSzywlW6LCqOyFl0r6vgrLWkc62nuOT3ikRhfU9dxbqZxQlHoEq8bRkZs4lyBzU81BciYskPRha/yYH3nRNhH6X6YrpjCIZE1sUVcu+ulumgaE3bKmL8kK3tQLB5VJJKesXo62eKefWF7tov87aa74YeTmXSOdB79UEu8450nC13FMyKsPBtDc+l0fuF+jsbCtYW0+KxXlW8xEIUJl0h7EWE4A5O3VIRlvbibAnzNlUIPxC8xtloeofoa0CxNYaZs1BgiXS2ykiHMA8EO3AyHpS/QRioGW9KGdNC49A+AWLAcOUc630Jr9g4fDsRmIGAwuYhjGKS8CjS+ZTPpIBPEiln4FqVe25UxJEOghcIEHUQJiLPdTZLSwa5mwlQ5w355qlPARUQyR1QuqctQeW7bHZJNuZ3VmOOnSlS0onlKfS1rV1FksnSf/mq7eO7DzmfvIec8AnC80/P74jOzxmqrsFyzuET/gY1IlKA20C7M7zRO8EIcs+THbyZCG6TPkzgNfKVNp0uuTAJFjdep6NxgAXJu2aIOAwxxNT486alcUs0T6c7hhzwsYl+1tsML9Ub9WBNhSYYYMXNMCia69c+IhZ6+bziTk+MK8PpdQ9Yf6EjwdiPBDjWd1s5xx4Xhdl4Sl7B4YxDXbc0Q7D2QdwDlhnmiL3/YWjAZcHrqfjuoBxGeY4aFPMlXKEZuj3A3Z2OIB5Dfz27Rt+//vf8cvvv2Meb7iMBdRDNlhTNkKHgCftdzru3G5TTvIKUCxwNvVZdTaztT+zoRIQWgNfAXDJ9J5bF5znCJ7h2Q5EBYsYrGIAS4A0UJkEzYIyYZ4wD9Yae3zgkq3loVRjM6ZYmwKwuwvQFvFgBa/SV1t6/AWYWkccxXZJ+VfObGpOWzIgbQ3pAncBdtvvEnxYtku83Gd/5b9b+hOezjjtwCYw0G2xjZN5nJ9fvOR1vVKdYDquOfV4dqtvIAm+zDgEZjcoeXSltgbl4ZxWIBhFqpcuzEDOdBkIkl0NCZhoSNIj7ssfS7stbTXaSHzedLMi0i5ZNuJay03W2vr3mmur/1WGkqHkkyNBRFrfGYBI3zTvx6oQeZbWOilVBHPmvGABbfIbjep/BRxzfZv2fz6XzZd7LtaYbEQz+mrTBTwJ1BLAl+VVSn3Vmcg9v+9nlM5Jme0xAVv2dn7WtBANpm68vEESW2blfaatFGD9StZ2HcPxeE6x3IDxlK8HPleCShbQGYfWWLIHSUahzAVCzTPS7qQ8yW6xppTU2M/DX3j9deBpB1f0oomSLAO2CgQUZc+DgSWkKCRaOSUhaZItDtPo4gOk58FNEJr8Fa23DUxZT/xKz9sPShrIO3rIjbjyJHWA0lHN3OISMHoOSRrmb2dK0xIMuZsSZHqJ2OmCL07WD7O60g1e4vt61CgFJaOj3OggXfETsJTF2PaI/f7KMe6Mp5Wa9/LOT/OJ5RhDBbqz1lDO3ydFYAZiFHIiTBxVd5eRyocshVdW5Ppn00YPOZO9H/oiK8ezQKNYbY5gNNsCMQ041MI0skh1ptxQMK9UH9a9cRf4NAg8JYukKRo3YQKNDBGN9XstoQFnBypFpWMDnhBsiUxDocFNNZyq1lXWD9iAJ6XahQPWmGPberCTmlhcbDmfQE2eFRYSn954rxFo8EUhD5dREeim7m9gB6bIFD4t3qop0CSs9NzG4qStTVhkGqABGCArcKXaIZVG7VykpixWRIIpUxHANNh+Fg3fWStz28d5llO2MDLlyE5ZlmyDOepzxVI0po6QvZC1m05GXbtqOs3BdtxhBNBt7daKmmk9DCkXnE5saJnAdRxF/k+jdgFCCTztBE1Avw5FrabDBx2TyC5LW2pjKtTIU7HJgjKgPY+suvPsxQa2Oa1kVWeUf3XBsErynC6DX8py5Ylb0fhT3u5C6+UZUx9IlpbTqTelsZbOWa17U1QtgTo9u20sHyS7AAIqNsM1ZIzkvtoN7V0+hgyAElVWp772XaYeloOtvZ/OO42zBUBUbCFybbheIqgAjTn/rdLC+OZmmeTUBDTktaXznM+cy77XwCiDDCHcKR2DXb9anQ/+nPp9k/fIz1qd6zqPsQqD1l1l1C0wGjonuT9o7RNPEvDkAetqUpLnP1B7I3qgab/AFSmXKKrntc+6LdfRpWMBSEaEHLCUqzYa0CZgrJGDdgB2ApOMp9ZvaPNkMKBnracFPMFWnTSCTLOM3qzFxW13wFsng2leC3jamkzkU7sztY7BFIJOPi9+NlTHsIU83q7sVNXJUVFnMpxcZyudVwiU98XCyOURi6s36sPeCWT0FmRlNQe6I6Lj/8fZvzZJkuRYotiBqplHZNazu6fnvSOzvJRdEcqlkMvn//8b/MQPVy73crk7012VGeFuqgA/nAOoelT1TvdGd1RmRribm6lC8Tg4ADCsAM0VUG6+XJ4F2Sq5Y0/+UdkI2YayJVjl8aljU8/6nE9+z9LrBvXKfZZpcH2efUf5NHEigr2cYpy4YiKG4/3rT0j9/vJ6kyxNjMcDUxPcXm5iDBejq+GmJtVNtIgKLlgTBoScey14JhR8JFtfemQOsaYnEGwq29NmZ/JLLOuZQyOSEe2OEFjp4XAExiRzEFfDedK34YSuAZ+O6Res39DagJkaZUsnzfnAdGBcb/RdDJiDbCsfD8T8CosLhgt+sewP484eVOPCuO647g9EAIcHz0AYrsvRTuA4DXFeAMSoFvCEGOhGRXC9X7jugfFI4GnIHlImmjUcLyyNj2AL/c/ffYcff/dbfP7+O7z5gcfQYAaQSd7QlLozFGws2xzGUpw5OFVwTYpaFQ9maWsWfz1808HqqQWTD28hfJ3A3lEBtvRzhJidOdRoorULc3aWvwikTNlmw24DxNhvAK77AQuDD6cvLEZqa072SvoiW/zDwSwCmpdrXnYm/6yYqM7t7rO1UsLZDL+08RZ/8PynjalbWH6GJ6NxARc7QJMASimPTae4BaLlEAyWITcYorFFiM99r/j+Boi5nne7yBEVU0bqFIXA+n13wFWxFC1wyBct4Em+YjgwkjEn9lb6IMlsYocAygpVSpNbIDul+2eMJfApX7OeSICMXAosWdx96j08/TixLF+b/ZzTP6jYRR8VHqyqiPTTtf9WjmXdE+1hMtdW6wtAcZwBCS/w4o1+3MYgRrAn05JPgYrbQLGZE0wrRheodHQBNIBfU0Agy9SUh0YcrHTpKoMHln9V5x6yK2mXLPsQ898t2b6g/5Mp/HAmDzKxSL3An89wAU8pe3QUpgce18Dj7pgjCnji869ESuu9IkKSvAxQzPfUmgMQ+5Xrw2SHdumQTpI/k5uW/uOzT/Wnv/78qXa/AlgAnOZmBozJSTpEbicqbQss9L6Z6JxZx00H4WbKItVnoQQ5n2Qp8I1OB2zg0y/v1cxwXdeT80IF3H/5+mYwNVlOh12PuP6Qwt8/Lu9pd2N/jQL6Ecj5JbuIK/DhSRI2eApcIuQc+PqsZ+cK+LXtWkrC6vVJiTezKt9bYNLSnGZ4eo6PXx+fsw617n+zXh/ehwoe3R1rgt8KyBAuMIhBowfwuC42XJMj2TqdcZ+BazBrxka1fC6WnHQ+tzmaHwSDWkNTY/JExqivmAHMaWLsffOotIVZiHXFkeZhHY6G6Kqfby2POGwOtGyqOZi9RgzAyITyGOXwAofYg3vmVd/mDGYie/k7m9t1h/WJfgZLQhsNqQvca2bo1nH0E49oiGmwCTQ7an9zHwjECBAKB2ayWZbbxORqQ4SygglC4aJybYPNdQU2wAZoNgayHsfMCALaFiwACrzyW0wnKURA7v1G5yxmXirPkutlGPezEMW+CFJzbU2kjODUoQKpYXA0OvF2gE3GD0Q7NdaZxqN6Z1lOouSUGTNmOpnxmXx+kCkBV6CtUjLazwZXhoM9v/S+pAOL0VTMhAIUQq/Ve+WsuLLT+X5Pps+WGeMZVKY72WYRKxaVcx9hAiFzPRlcZS8ETgVtYoH66ksifdnQ0QwlkxEhFo/OCDZAMQisp1A2TbI0s+pBYQmUxSYvQOkbMiEPyYYjwTKPUKnmSlwU2PQn7Mif+v1SZZnQeC7N+0XiQ4FRQKyBp0utZ2gf+vtVi4VkKKZzr0z1HBdaB44XgdJB2U7gdowJTMrZml4j3YC0L/KZtSdUCyYxW7bHMuULOc7Z06gcuA90/1AvwTqLUfr9KWu+LSedIgEwNmHyLbJRtiKvsomR9QxYn8vlpR6Icqh1j0B6+5QLyyALBF6wgkGHnE0HwhikY0jvW6debw1mLC9G64jjxGwEnqJ1tJrEZRVYPT8096G3JpuezWXF4B0vGP2G3k/M+bl0S+sCjpoCuMhyZrJHEmyg0uWYejhg3TEQsMY+bmidQa7fqJMjFBjL4R0C5ufURCbetrWGaIMgHALhB7o72161jh5npcTgVgHEevzcM9n8ZPggNgAsxSj9nKmAZPUyy71KEFYugcojl06rdc8eRliBVrKQeBr6k14pZmJviNkRNnDd7/jy0x/x9esf8eXn/4qjN5zngbN/RxZTA6b6Fc37HQ8nS/Bugfv7O8+NQf06O9qh5rCRfV44ifk4DrVW4BrlmT86S/nOoxWLeqr01gKIaZxG6kx6zevOHn7jUmKYQGPqnSl2xXRNw7KcIEXgyVpf5fEOzJjw9oC1wOMRiLjjxIWppraPQduAINudPZ4ewLwDcQHxjnH/gphkPTWbOBrP8oBKpMWKz8a74zEwrzta/ITr9sBxnEA0XI+J+/vE/W3g/etXvL3d8XgPzMvgo6FFl9pgLzzrDNpePr2gw+BfLvSXV5yfPgP9QKArgZRoBZObB4DDTJAXbdCcgYmJEYYxsjwO1beFpbWZhAgpcXoW2XcQI9CPAze+iPKjqd9mhq4ynGb6XMuJcxo64xM2DzHuBaiqZL8fDfM6uPeXetD5RItAt4N9xaZj2IUrJPvuaH1gxpAPPH9py6QF8scZvEdIX4Y9vScj9Mj3x/L9n3UCNp0AlrC22H/zHNxW6LV+evSj1tzLxiiSMsNxqC1JAHFdC/qgE1J/nw5ATJeQ6VmAWnr3qLLz2mKUWkfeWb7OJ4BL/ZzciMeD7OtmVj4h18WkoygLbWcapx/lKqMG12mGYYLASwICdb0tQbS3htF2LL9i+/lzvNdqLatkrUmvy7+Z+mvLNbPgVNvyaRb5Iz8wgmVo1VPxyc9aoJbHZkOQeEDGSFrloH9lSJYV0CMzdtyUnenE+MPE4NlAT2BNnmwG2KyYIrGIACtVcsOf73svlLPaA/dnWUGAjctDZAjXJFnF5dVOy4COA61b6WoEcE367fcHGU9zBDxyOqDWRxM3AfmMu+spHQ8D5li+nHvgGmLaYfGOjpLoTGA/uap/9tf/MPCUAR9/x0O5ENL1WlJ4U4UnrZgNybNhVSHe9YT29J0TYegA5NSNdR/JQtpBkwRZ8kTtYzfnnIvVACqTpIPmQvPaANHUTVhqQfJVvv3U6jHqJx+BGkvFZr/4/UfYqTKA6VBrjQs0+pXuf3lIlxLZFAk2iiCA1WRaJQNqwlZOva172IP5j/FX3f9ThI96fxoA0gg3GvF2YBPlhoWacuY1CTqRJdEERLAp53VRWRzHgebMJo85MebEdbE5J7M9Os9BmMQnwOIosDTCJiIWE4KZCAXrOQVOzZ6LeVKN6TStAxNumvRmYijlQqhUz3yWuWpar5w4h0CVURq6nGEdLKpPBjhuCMxiZZGOL5nqvT61Gq9GysNio6X/E0zhVOWlIVjZ5GKBWKqXDB/42izVCq1iZE169KqLxsQT8BQKfkQowBImIKdHAkBNY9sAqK0AvUQr/1IsB7hGNz8LZ4LbtSxyLMpUVYCRMpsgH73C7FmVfVoSeMn+Da60VaiELw09LJBjSfmCzGLn2RWYU848wWBHZkHUc8HJkst0imvkcTMZ2aIjr/tf7KUVPHpwWqCZ2ulLZjKbkmdw6YyUiZ0OvUCnSKeT3traBV+g00e/s/SzDMbu4ORe2XZvZQK40RUIhOQEz1v7IVDcFHmdOgZY2WPPzFZPqw/OdT39dm/Pn5P/MIFkfH1OmCpPDumArTOTfVx+AeSnI7a86c11UUZP12MPNACDgWI7OK47tkUp2Rar2LKMOfcYyrhi3TL3/tmu8GfZrDmnyuj8byWEUFIoPEHKbe3SrwQz9p72Ow1mOjKReXaTruev5/TC3xH6DFCOzLSm1RAzLXCUvCJisRy1b5XcMN573l/tlZ45WSFh+cyDetk0BdQ7ok2W/EQn2yzYdytaB/xAKNvIj84+EXp+7Xf6G6nyEJ09bqoJ8Ck1RGasTQ3kaEx2EJBOoElMl/3P5DAER3pzEmDH9AuYHXNedOi1l6nXEuTxGrShJfYuGwCWzAPIzC4AgZyyLlu2/DmuSIslhiWX9QmcKp0TmWDbAPLNt0mE1pSj2ST4SZ6bLZ9ufWfAsQUL+w2bSloa5ea6Hnh7+4IvP/0R728/43YesDhxf284js6JZ8EkQfjEuLT+MfH+/oYIx3l0xJFBkT5bfrVVACVjrT9N8slkkvp3PoGZ2jcL+LwQk3JJ9lsyvGvXKD9oAkUnojnaceA4Dk5H6zzI7HszkMNbLDmdMTDHfSk500SlMcqOMDHBqXbmnGSHYH8hyCfKHaoJ18ngRQZ3AlvMcV0P+vGDk/+uh+Nxn7g/AiMbk0u5PQEbTbLRgSbwiSbTcHu54eX1lW8LlftAPkCTH2lKwW2Jn11Elh8RFXPk++RsoBzfANAC5uo9iEBEx3Ge8ll7HZ2URoMhG0zzd+mbS3azCXk0mIL9tNOdD6bSQaD1E/0InOfEddx4zgcnNUeebZWpFjCB56+QnuBr5FFZ2o/YD/F2BnmfBURFPL8MaWt3/b18ggLxTPYB9mRDl40FPl64KSZsJmATzkmQWV4F9v0ZUH9LU0IwTeqTT5ML9WypMyka63Fr2zOXJvGmzwqatG5GaCBjnfzMLZjkBDfALHBoPVhuL/B4ssVNQcqB7R53vbYEN0F1Q8bq+7KlXcpYdX//c+Isn7mSZLLb8WtgWvofxnjDgoN18mhAZyltP5nhTTpxk4fU17VOhhxsleBXgllrTdPHJWOsYuLNDqRdzvPbEYho9ZqSs5TduudciXXuQvcRSLZXXmPFHK6krW3xlYV8K1XPQLahWWMyOQJjBobYWGM6xgwdq6wWA3LglmEbUhHB6aOplzaRKFsrWciN3EWRmAF9/SmZWAnJZ1v7p77+gubijsVPXwd6Z7gQBU3jT0MxL1LEwthIuh/ZkLLTOxBjcC1UXov/bhK63g4hcxz3vtPx+fmhw0a6a+9NzZmh7vFbpte9KP+WB32tupwMrWQubJ1bMlmyhnQhx3yIhk06n9ZnO+wyZh+/VkYwlWyrw1VZ6QwqVPeaEwGXUGcmP9dlwQq0o6rXB5VTNiGmEusFKK4Mdqv3PxmJWM+2g3q8Vh52ZG0UM/zpAMuBx3atmKRjAqxtzSAg8rrg3ruC+OvxqB4n/ehokwfsGhNzDjLd0NF7R1evlmhy4sV4Cne0dqixX6tnyH4HWW+PcnQXdZ1ZmIaJzrC7QIlDI6RV2oOgw+cXs4/g5BYD6Aj4FKtKmYsG9KqzTxmmLNJBBFi6BtKFXS5rD9hkoQ0DJzJkwrN0h8wuKGvgMxu7o2TfnGBIsh7Y8I6ZNUjpL8fMwAbjZD2RyDTLYdHmS6Y1GUcU9ZTpwhf3kh/PHkX+5Nvlea/AGahf0rlVCWTEykjsRgbl2hfCX4aogC3jihjLIqpvWDsJQIGMBDoACuJUBreXB5L9M8tp5X4rKAy9HrayQGY0MBNwiN47BrIJPBKQQWBcF9dNtiVESUZkUL0ySq61XD1kdKY9lv4pY7yBQrxFASRYZxlpdLLvEwrYzb3JkCYUAEHORr6n6vVjXTb3JfeJVN7GdWwC0WQMUx58Puv//CLrrcnBSyq8SpPVcHiOkU9VQP6cme3hdT6WDT8DXEv4as/zcIRAy7IZVk7yAqx4vvPZUX+mp1WLjb2pbZ5AyoeAyBY4x4U2DHMeBY7sUZ9PJ+MkPyMdHlA95zY9PSPsKRmzM1o54jhtUZQtSAfbGgqc2pmz1gToy650NbtagUiUQx5QU86IevJmKj3OrSfiIQeRzhTSmUJmTnU2JdSVxPEQU2k5qVGZ9XSvgoBwohgcmUcwSH0qwmUzWyMDKceT906bYI3lcqPXlQEI0Nbe2r7+/IeHIZE2nxf6cYP7CUvWq6Zstq6MbzvAacITTT2GEFN6Rz32MNcZgYHAlsGOg/swblyfUKJD+sn9qnKeKmkOLHsMByZlnKLf9Bit5Igo6X52toBRf3hw0EdrsXzJSvmmL6CEULJA8wKRR40rnK3cFvNNa93akqP0iQzVJ+W5zldGQucpm/laAx73O778/Ef88Q//DXH9EXi5occLvvoD53nidrvhvN3EQhuYg426r+uOr1/VE+rTJ8xzTYWGyv2ylArle0TZcwMTc701/mkaAuK5nvJH5yS7SeWW7KF0UX7AfpMmgKP1BqvkhNf9f3q9AT4xBqfhWdAn7e1Eb7k/k72b5oXARO8cgBJzLBs0WPodc6AZe4cReCK3qSeDJ4D0mwJKCgSkt85ak+vxYOm9cRrv4+G4Ho5xJwj/BCBWUhXIZFBrQD8NMyZGAO00vHzzCZ++/UZMlFDT3vS/OuMPg5hOXO/IwOUJqA+d713eUrv7CnCMsrknSQKGsxm8HzjmlhBSjzXKKuUzgQVWvkrnNSvgST9giWSWkXsgBnVz7wdwBHALnDcChyHGg4vd7FNM/ACbF30wuJY+VOpKAzJpUUtiYJZhi7esIvjY2LErrE0d5ZvNod/WRGy1dV3kOV/RczKH117w8pxE2ARMByImjoNsl2zTcQ22dtBywnqrMjqLfUqmfcyHyt+3soul0w30G3PNAPRG+9b1OQ3AYUnEXTrIlcQEKJdNOvZ2djUTly8a7LU5KZpIjze/agKjfp6+W659a2Ra0u/nxu7qtaaB76Jea2xP8gDwlvPWI5avs64ZUEtVtgdR2fPyySHHRLFCa2p6H3iajhd8TdoV+rvZ+iHPgdLn+uz0+Vg6t+4fkOkyrQ+sBizZse9J1ATstC21UAJdZ61N4FRsOCOK8ZSMMISmv8sPCl99rLOfUzTeSxPzFCAT8bomHurr9LgcQ3n3Y6toMPWDBAyYeaZccc3ykcusV8ykP5GkHa9l8iBL6xqOPLcBduPzX8jHr3/9BcBTOnH7YVsKnqUzfJ1H4OjMylUfjQjYbKQRw6kAPAPalYnMh/bI7CLQI0AeKr+ZfUlHVaOIx9iAj+VM5xjCLLdgUqZhFHps1WsGlsGWyRakQ7OV64hhQufICaTJIavgGcFN9onjOEoL27ZeMVdwwR/x30dnsBqbg9c1vebJ8cvPMj5DzzI5X2wcgynTyq8MCC8MoPO573PkI+KlHwvBTdAkpkAjpJ+GdG6yYS5lQkFj7wVupWLmVCx9DmKBczqIHewVYVPr01Ip0nDmbvNAMqPbfALXxMQDD3sgA40xLt0+T7dHw8ABBEGE8I7wE60dOG+fMJPe2dJgZQCugL0AvcDKtGpKAthush83EGRoaiptwJHKEXS69T2UeTRnYBAOND/owBsBOjcq19b4vJl5a91h1hF2Ae3k+WoDrCk8xA1mM1frmoFiHe9VkjNqaorPS81xEwTid89G/237LqdCoEL2+Yik1gpIBpte+qSji3TwWzoUWVdNKcomjnlmASy5cl+U0GfbIN0uSSxmlGQ0gkBeTiWSzjDYKrFN8AMyip410Jyew+z9AcQJhKar9QxVHJj3jKNU4uaYlxeFuTwMyXlvDf2QrotVPpA6IR0pHwOBrfl6ggelHgJHZuB8K1kD/cLqe5KGNuV5rRwNnZFen46+QU7VDDQBa+xlJn2ahisggEYZqM6yzWsM7nM5Xmm4Uo8z8aB0MQOocszpPFgEztuLnhssaxJwMgfLhObIgJk19vlse3+v3ulYsjH4cj+vawhUYyACrdUvWaPci3Cr96bQZaPfEHCYDs2Us9Z6F206Haps1R+IzELZysrN6cLledYDK6gmBNpw4sAqt00QhTrZPEgRx4GGjnFNTNlDd+e/p6MfXY4cda5pegvPL88N+3/RufTIW13MnKdMaPkAz1lHA2Aum1kGSgFHOoJbRBIqb65bA/XJLGBB6wqeoQRr6+walBl0tDmZPRWonMHengSpMk0EmddNTqNxeZ9iNvkKCZgzuWBkMc4HnV0zWE/GSof7g46jf6Xus8ZpVNZhKt8pRzgdZwFPK72T7qpuqjVYOzDUPyoGp2pmWR8n5R3oxw2UDOknv4DxgMcDgMNM5VNQSa3RdoVfsBFouAhcZVN0O5VcgEbUrxK3Fax0WHQg2CbX40DYhDeHtxNKbeHAge6y+0jelZgaXT2MMjSxTS/mV9kBTVnzLG/WmiWwK1YOBzZwWhzSz9MZ6XbiOM4CXTyiRDITl1lqkGA3ZZseSE4Z7RYwfweuP8Le/yvGw/D1a8P58oLjPHE/b2gHE1/HSYCQCYKBoz8IQj3uQHzB4zzx+votzttn9H5DTqIMB9w0cWw6YnwF5h02HzyL0+APYNzVx2qmxmJPrzbv8Osd729/QPgDiAlH4AoyI9r5LW7f/ohvvvkRr59+RGsnmh04242yYBOP+894f/+Ch/83XNddvSA5cIRkbDUgd8M17xiN+ooldyH7OKjzw7dylgMzbizl8onAAY+BazxwxQGX/p9KKF2PN7T+Srm0Bw77hON8ReCGaRNXDLw9HhiPB67rjm++7ZiPhvsXMqqoDzOQM+AAJgYmDMfLid/9/m/xN3/3T/A4AW/oYTiMrQ8Mx2oATQkrRtE1BhtBi1HfzNDUJwayb3NQL/Pf7PNCRgfZ9Kk/mlF3d2QCJwEMMeem45ryEZyxWIJ0AQd6Q+8nWjvlazj8Gjh64Lg5Wn8nIDgGej8wrwvzfoeZYby+43E78HgQRLwG4I+hdgRKe4hlXPzhCJaAtkzayg/J1gzSHUiQ0oEAJ28tVWgyuQFYlN4GaN/M8jOJYmRPqFxfk+ExGSXaU12/AWenH8j4TOWj3dA6A+l2dLE6L4wRZeeOTt8wBwojUNU6GeNm0t/CqkH3lH8RZX8qcl52y4ErgJz3kIyno6sXV2vldgPOWNE5WMbMCkQi8BhaJ66Rd+7BEDiSPlYIMM/dow1KwJB9hY4jQQi2xDAP3ZOuESj9eGqKek4cfAKdVKmRrRtqX9t6xmYNOT3VDZoonT5slF4/24Fi87n8FclOpeJyQE9ViPDU5IRRm/Rye8/YvReY0kCgpvfEAVxNvQH2TRPjT21csvSc4kUwZ2ecymWFQjaWP5p8Ezhux1HMSXYpIOip0VOYKe9z4uxiWUZHoGEM6vvHMFwX8P4O3N/Vf3GsIGnaAt9jPjCG1rMZbqemzLY8N6YKsFBvOAJeBMUU8YyoMz4i8Lh4Tnh2TLLLvlk7s/m/9/VnA095gCgQ208zLpLU5Z9E9hI1ZXBVf8fznx+nVO2fWtRbKGMb6ZTlQq8AYdXzUoAbFhsnXxS2ihZ46GMdmP2jFfNVjGv53FZr0Jo6uguU0M3Ve3b685MjFc9/VjkaFrq/g107lbRYRm13Vdc12Ftoe5bKtshJ1z1WSNpoQM2UwVGAm2/KUqVI5f/0FXTAt3VPH/KJmWLr9Rvgvf7cv4V055SjHYE2JHjmAiYCNhxDGelkikBBYMvJazMQCuxgXmwqn70CoxwZHZvzuaappZLzymbwCg0mBylLHjwDFDEfGNioL0+4MpCaiJSocgJ4FmR4gErKPM8TgTGoCS3pqUaDnoJpIJ29kHTWhWf5lMeaUEZAQPIGVa+I6RRyaHPvaOhjP+raSsmFB0tYpPRZcscVMz0Pp0FpcyPNHgUsxS2ptWQZPAObddQ3MakraI0SeKIhyvP4IZyLJd/FgbLUJ8lwIYsrQfNl3L0YIlXIvhnK8Fkg1Efdy+BqByFCjAad5zABJdd+gIAEoJDgGhC/uLi0mAXCVtlkrUOucsmt1l3XX38H191lOb22eOmEj2o6f+65k1FlsfznAvQ9V3wL6pvl+dfndh3yiE1vJVtBLK2a0pJG3otVYwY8lZOmLUBOHFLgLKAzgdfah/w7gAIW1k9qPXzViS0nDihACZbAGN/ksWrlV3JCSxfBUl8AYclwoOxm8NEi6NjmPaQ8OAqgSSCI5yLBoJRr2z78yTo87elOqd/L0BOQp2rbkjDYbMKTbMiewOoplkzQ8tIeoe4rGcuus+nrRvh7E55b9ikX/8k41zqXbgEKyE72J28xcqsQbelCRKyS5w4ySfR6Uw8mKmHUfcGWLgtIPiojeyDZj4G1/iG2V5a+5Lmvf5k8V2+wfiCiw4L2BhhocQBxwPVn9vmggFzAVB9BJ9Mpmkp9KwSSvtW0M3NOLcuhGJtKWGV2nvIpp7bOPAAnqO/e0PyCO+B+wL0t4uPGMnqWxVIECLiu3dZelf7zApVKD4Y8J6XIXZNTHVNNtOl3NmtAT2Z3Ot+kRElV1XndE1CZFEkdmmxoHqmAYSL8wYDEDWYTiBsME3Ma/Dxg7QXWTkBso9ayfJ/M7OkHVomi5EPA+BxWLGD4BYtZAWjdT36rFE+GCdkeINTzy2PK9gBhHe284Xj5jPP1Oxwv36HZCbMTry+fpb0ueAB9BFr/Coyps4xN1nzJbBjlI2U9WTvzwqIwcPJjaw0HzirZYJLhYDDuAGLAY1Rz5akazNYdM9ijiMHPgXYwsTP9HUPTaZtkvR9gCYpsk3WCwclACGv4/sff4vXzN+jnC/uzB/2AbgR3swyGcpCwKSSnH7/WGV4+eB2ALYbgDzI5S7si5sEH2/sUHuVrN3emfHldu3WTLTeVFwesN8x+IFP8TKjyPg5/obsD52CG0YCLdovAVqiEi/ub98BjvILu9Lhq/wOQE/uLdailMdC2Y/n4ykYCJghrX1BfYH35gdLhhT1si5+M1vxuplJ8lVf1Tq2Yfn0+07Iv270C+lxjo2zpsMQ7AiGfPlYMV7KyLpdubf4gn8UdaBE4qP0KTMrnedLJ5UfrW8/tLr1cMiS7LV+yStENYLIwdvNJrZ4XE2u0yb9flQwpOyjQae2lHq2S9NKbBsWfVsJD+dr2nG+s56Ifl3ZqVokZf7XuIX2i1N0lGVl6v7k71SIo1r8pT7Z+p1PypOdSzvI9+cB7tUZ5HqjP4H7xDHLwE52OlPeKLyREm2uJMen7tU4WcHissrqh0sqZDeh1B08+XD51xu/ypXP6OfsiCMvAE8DI1TU9g0DUBFc9YFO9Q8VqbkcOutkW+7/z9RcwnpYzuv7OG0tK7fpdQ/Z+yOAnKV3MHDCfuyuIJ4Ez9fkxIKeWlWOZr7IcTYgSjH2U6WpKl31+5D54wBUYrBre8kbzZoqRlMIoP3Fbg8zc8KYmrgqWTb9rPQd26xp1yvQgtuiOFMJnTfcUDBkD4+PYFApQwAKgtWpNI+nXtcJ2ceA/OD7VyVDSbuwlN137Ffthfz7B9Tw78LTLAbDROa1hFeFIGVqAJSD8nOxPw34epgCxbeUEgKmUMsB+N+EGn6Ifx8qIHMGpJSyNCBksSAmLmTPuANiTYFeUxXaqIH9XuinLchAxALtKPh2gwhZ912QVWm56qLl0gU4anaz3LWPeVokH6Gl4uT6ujFsge5UYAO8H2TrW6Xio4XSuy3Qv8AkyXgSdsOqtZfQQanonxF83tkmzXB7PcFGsKyiTDfA+oiMBuxBNaF1uk6cEPT7K3CZb+ucmi5KdPAvL5mijVdKm/aoJZTLMWeqSzliW2ZlK7NJ5mpPAgLWGlgMIto/hs7GPV45sToMJADGbSnLU/2tby4WtMeuWAU3avN0rTYAhp9RQvyTg4cvaxHpbgRLbuvjuPxSLNRQoYOkwKu71HDpb8bEJZH1OGrheuos9SJi5Thliz3XJiCdt2XH0nE617bccajLOTGvJe8z+TAwEN6MpR3DOSAMBd/57aGQMqe0stSonKkGOSMr7st75qC5GWIog76tV5p7sHAY4WbY7rksvN+mEzWHKvm8NsCZwznW2LZQJCwEOAARAedoAJ9W6u+PEqV4JDWbZx3A1bK5jk7IF7QdS59B21zSg4BCLLFVr5TCl7V3nIEWsxbJbWRbh6jXiEaz6Mp4hi0BTWUekEwYBGS35MVZn5am0DwywTCDCbkcNUJY6MF0lq+6AswyXHWqy11SUYw4Ft+V4B3VEiwZHqzKwdDrrjNpGyjF67CYGWegzl72QR48FOhFUC5iPzScio5B1JB3oXZlaIMzhGIAfaP2kU166NRMknGwXPsge9JGChUT8IhzNHewlN8ReSbA+1rn2LJVKcMvKVpuCh+KZT8Dla01jacwMshxaMgYa378+i2vjMZjdNdAmw7AAy22IQ7KFlSnhcXQFJw9MF/gUgyBg8Ew2a7Cuvi7loKc1230blA5PFciz72VD6bsxmJh+IVMZc3AyYOsOn8D0Bo8Lr+2TPoflbgSoJq77hYBhzEBEw206js42AO4OTA3ikY/QzHEe9nRPybSdc2rcPJvBj8npvib5inCMcDgOoB24vXzG7eVbnK/fAu0Fwxt8GH74/jscDUBceDzuaP2B1l/Q2oNyFazpSEb8joxE4zQ+/kr+9mQpVzLxWzO088DtfEGW4YTTzlKevyLigcd9VoBVCULpRQ+CIbfjpmDKMf/Lv2ia8cD7dUcLRzsaxjXYbPnoaOcBHB0TDdcc6LcT//Dv/hmvn7/DdMO81LfEOqsVrCu6BkK9f3h2pB8k43tvnxDzCaBeYSyQA42W7s9988hgkmuZfRmf7b/seE//nns6XeWu2b7BksOcOtkqUO6dg2vcGnrQn0E3nBZo4wDOBjw6h1XcGXO1B+3VQMMEBxZkYhD2wR/bYiOHyZ/MddANbVYj46n6UxdMvyJ7sSUoEGHK/KUfDL2O+5VPXPGIZNT0mmT1k6VFOcpEiqsnaX5euUhZRg/GKwk2Bjcd6eYR2IlKaoU22UAV1jZVVnKivxPUc9ikjZ3JNDJDzxgxIB+Dz9YUI2f0lgJJXFBlceC9jxEEFBtZTaua2GqNUXZDYJ96ATdtXA7uyWExXA/DefRqU5DtCSKASxVI+ZQEX4xtdxrzhx4rYZjX2weTRAR8eMWEeSSoe+WHpDzEIp4QUCTD6Tg6ek8ZiyWjxXzgGd5QmvpsAEruaX1k63uWjcI4rhBcc/pk8t4j44wQSxRoh8FBljtwKPYIDmgr2jP3DkG2oJmjzUDvHe5sIO4TBTplGWi6pA0hNq8hhwgRjNz9RyV3IkBfhTrjOFrJe5PPZ+mzb25BMdneHefZcJwN/bxlNe2f9fUXAU/7V9U3CnzInipJg3xqDqzfJQiTZRK1eU+B5e4gp5IRoBEBuuJj+8xdMTTVqnq99xdd7/UZZCktwCyFPr+e5NCe/70C3ZVhymtRKWRmLxuiMbjqncLWBfYAy8HJAKrtvHs8O0j2vFS1phFr/dMg7O+nS8i9ahEbXi2lBgZ1PiayXM+LOdVq3VAKbQlyBrf7vS4GQu4BAw2PFPYEn5iFqoA1mxIigZ4FTmZMTaRfzBJTcFxOCfcErWEOUGv0ziFEAHw2HMchhLmjtaQ5ay3Dq343QbIm5ZAODw1TK8NBZbTKGRPRDm8wPwS6RSlZiGac5UVQOZ+nQx+uXiULvc41ZJ2/w1mcSHBO12yWYJYyhJuzks1oI9kgeaZi7V9AQb/+jjDWwStQ6a2VXGYQWE3il0DW9TyVbUVnywhRCyzgImVuAbe5sCiZTt1C2vcm3xQ8nWnUc6Xm2JZwcwiwDI+cjRSwzJIkUB6SBwdg7gSsN7ZSaMT1uK4CUMpp1MdEawQYWk8PqIKu51XZQKsl0MgeVAXYAtx7NVcisazpXAfQG5o3ZuR8KY1kEXqW131cyRLojNPZn2/pvnQA88xnsLv6IKwJYquvXoJ66YzlSN2ezAMIoEqbUHo9x+Kmjt8YJoY1iTLJD7GyR+SF5JRBwEfAZzC+nsoo9gU2GbCyTVo2y+wo9u2QofcEx6G2TtTrHHsbCIFNm5QCQDlp+bV6AjJDDcv8Euu+UltaRL0u6eLoLC3sB8utUM2cZZtTxtIGITRmfT8M9XT1WiRw2CQjlg5tlojG5rctG51AXdlAHTZOEo3FFrKQs5xWSX0EWkNHMmcysx7FJCu2b5cOiC2gySgknfsQ6J6gSZZchelI+LqdFlUGWpPzEpBqDa05TIMTWmx7kaCsQXLKn7fqwcQb8wyctrXSSa2lJ1yYPfD4uYaDn7v7GO2i32EdaLIdbcLaKCENyyEYLEuDhaadrmRRlv+xNBu1VsClJFA2F3aNWaMHznUUaNSc7x/OZiVBACcESrkZT2CbaH2y/LmxxI/gNJRq9VLUgY0RAOPhqkSNADVFijU5K6IAhzHf4H6BINSlJIvhPC5YXOiYmIdKFPtRH1P+2KaD6i7qiDKQQZz49PkTPn3+jPdPn/D2VZM84RVkHOdB8BmBMR54fxNAF0NJUcrwBZU0zweu+1eCfOdL2RECaBPhk+0rtrOagdaMTCg5Rq7Ddcd4PGh3vCPiQHY7en39jPPlG3z3w+9xe/0erb/gcb/w5csdX7/c8Xi/4+yGbo7x+Anjegd89Q2LeWH4RfZI17Cf1B+THqK7VdILMbBY09RJ7HN6IhN/5Z9aR/OGhz0w747r7hwCHIExHNYGPn3/HV5ev8Ht5RvcXj5hDsNpE+fR4b0hWsP7GGhmeDlvwBGIOXG547GVI0Z/wbcvP+Bv/+Gf8frND4h2iK1DP67n1EhrDJg1mbESNxHwOZS4Sb/Xyo+CYqG03TWUIWgHcs8mxGiVqJeKzs9Zzi+DTrCkdsBrQIx1lrx0Y0KFzDNfJV8Cv1zgS5gzGXsYcDS0eQPGiXjc0K4L7byh2YnzuKPbVzzwjoELPh7shRfBKgFNyyxfT25slop11/2BE8/zbFVAa9lDhjL0cTo3e6/xGqwiOZ5A1zqfOrsrESpgo/YbTBK1hs6s7fIBozzSFb9OxSAVcMn2aG8YnEtXBQRKRTGPGpZJyptMW77/vPzR/F2CNa7BFs2wpy1CJ4ikMP6+ILeNhAAYfOoMOigPVSGBAmfoSMkZyGfJtU+/ZLvJlg8XqJh5DZ3ZrdozASGfL+MTM6gULu9l+SrrnKxkZoQmveryrZEJdOSGQCw+BYytZQ8sA5DgFaoK6ji4ailL1XtUf6dtV4/arcrALFWCEnpVJWQkqzwFGUvemyn5AQ4AaIoFDMD1WKzRHWfIIWmLxKPniUAEyxbjPLRm8rPNcPaVhANCPTcX0Jc4TPajaq2r1LDpTMnOWyZkQkk+Kz9fAqc9B9hiZZEz/q2v/wHgKVcmSsnUb8zqe78BycJ2KKL+kf+1pxcDiVxSAB2kv2rRNgQms9/ZhAxg00VudlJkDYlUG9K5Xs43m9iijEU6vMlsMHmzfCwp3fz+6PWifNECfT7uRa1RrMO4WB2BtcZ4Crwz+PoAzj4xMHaaZ95RyLFKh9nyOnmf+Tn5+fmcmS1PQ7A7Z880qrqnpOPVsxTVVbvwYS0SMMjPD10jbW2OPV7lGl5ZBSAIVkWsdfR6CmazoQyGZGamUTSV6m3PVIwn9RALCMzIfc5Yw6yUPOt510S8yP1wTh9IECO5r1HAU5Rxtn3NAwwm6hzlnmeGnM8SxpbeLMkLlhIGSk4qyNFUNn6zVjggVpKovUXgyPNgUWyXyEL0NEz1nJJZegM8X5HPYKjSN3UY5Fp6nYVS5XXPsc5WLiS23y2zkBK7jlWeo7007ynI2+49PyeVkp45ZfTj4apz4a4mrms/gMA+8WkqK1RsSeRHKUDTubFI65XcJq4RM8gpJ0vPpFysTZLer+dYv1psubzH/RvlIKe2XIyCBUSSIOLVL4jX3uVxyRmfc8lefgbXRue0ac1yG2LdmwlwgEfJd05aoW2zZWMyGbRvrdUdlOzY5rjkYtXkPwdZlmZkS8pA7z0Z9kVdQXCU2dqBQVdAgK1ZO5C9IpYdXOv1rN8t5TCzAVXvagrIgJrmkrT4KscV+83EhmltOa6l/z/Ic63sByOy7VsuAdk+0p15hqSr1tISiCjZ0CKWNRGYn9dN8GOdtY8GAeuMVoZkZe0pR1aviwjqP9mHNEtVLi32QJ4jz33eghtLoWoQmMLXEixyBFr1Damcd5q/YJAzY5XgQBnWPLetpe5uz49Z6x54CipMwUZ1HV/rEn7xT2N/MrL7eHgztJm4QHuzdRYJZcbTS7KT4HCWAEcGclMgAd+PZERF/pu6ira3lT6EzfWnJvrB2VDag2MlUlbY180kzgTyzRI299JFFCTfgKfAKvdzmVT+bM4L7hfm9YDHhYjBn4UX+02F9+yDc5zspdNEt9vFN0XTrAJJ5L70jh6O43biONlA/H4cxXT1lI1mOM6DLIVQM289YZM+bGaYndLgMTHnA4DYEdPFcFjPa5kcApDDb9IftmYwb2qOTSCUfScPsS3Yp6dbx8vLt7h9+gYvL9/iuL2ia8JZa5xEd7/fcVmgYwB+Z3sArQuDnIlmA9VY3pY/lsfXfWPQw1mxhmzmv73eHXMC48ppdGywG9EQzh6CPhTcslYIR7+x2TfYcNin6U8OibjmoFiG4XKg3V5xax2vx4m3MXH5xH0MfPftj/j2h9/jux9+j+P2GY4uBhH9qczyl1qUeWY/J/4u+73kES228sdYqPyc3O+tFCnfb/zcSqTYc1zkYg7PWNNvQwJjCrKrR1KIIbQLtKn/IQBEryC6NyM42anrWz9gYWjT0NERI9g/zK16SUK+AYnME9kQe7efDdJ70RY4adRAFbPYAsMBlf9g8/9bgsuUq1b2A2Vndl27mxPb7Gomv/LP1I1e/g5WQP3hqwJ4JaIMVqXfMtC7s/csM3mfu5/2K5+RX/R5FKdYsFdamqYst4d8HKnHjJ/cN9IDkuyRfgjlgQ29M4krvy72fVNyNwHKiA0w1KqaVaice1X3r1iptQWYVLJS+58LEL+6DjwvWziQnkNtTsVd2rf6/LQZeq7ylSN/HLp/upz5+dQd+HBmIaAFjJX0rFy0qGu4pcORZ23fyX1Vc49oBxwZu2qfnnC6teb5VSx7KLZCABZ6DtvOhdXe1n3E5q+kfJawL9Y/AUD5nZ29l5ML0tQGI8KKAUZWGRvTowDfXwKOv/b1FwBPHx3V/YSlcD07tAVYqJ42ZY6Yi7IDueIKmAwfgBb96T5hzYSMpnBG0Xlp/6RW+ka9h1DGzTRGbnruxu7kbshnlUB8AJCiSguVUcUKzjY3ZR1eUYOL7ZDrA5ZNJU0+J6Z8/Nrr+I/jVj8rMEdvqrHg+y5UABK1RwY2szNZoWroFrkPzOzw2pmpWKvCtZ91cNnrageLNimRcVsHf3P480YjdJg0uaM1tCNLKSgrC/kmWt5TueSeZtAvSxKdjcXR2Kx7guwng4s51ADcUUGTYcmd1pr5nG3jseR8ampLBND7uR46FZeJ2dZWU7sCViQ7HdCUjS4lL9my5WCuD86pSKJramS5HZp0kNT8yph1WD8Z9Pgr+vFAP14QOOigT47YjWCmqrBtS8cJae2ARpbIk3h/tNCh/VVQGBn01P0wA+dzU0yxzrpMnvwke77wZnBMzsYOfDyxUILvb9I5WRa2jFned/bTaJXBgKUzn75f0OFFBi98n4ltlnqJJXajnN9EK0oTJBDneUCAqt2VPsjx2BUwq4ysbLV9MCrBYCUdDFPms4HBkfmBaRfM5rZOa80rYMxVDzqXU9M6xpjV8wxaT9b7L2O+gw/8y9J9eVaTVtLOxUrMM9KUrTILhMrMUkda66xvt0UnhrKnKVYeUQa5DLMMarE1dtUVgHmrUlKvEfCU8aJ555oDwHw+iwVG8428TmCB4To8aVZyf6YCU9RbU1800dmBbGjRMuWdwMnuTCs4cUw0azjBUvSjn2RKRgLJaVfzs6hsN3cDGTCWS7etnYGeVVMjYXSy+xDUFNXMH0A26WYpwwKhCMauvjBV7tAb2rHK5326mrOK+TtdZV2oMvmjyVblPuhBfJBNlWWKfN7UF5INRksVBNvTeoIVaF1gSG5rQzEEa/UCAltke7NHUCTwxAv3CeREWgBVWqibW7IUYsLGaoaLPBets2ksWLpl5gRzroA3MTGao7UTZgcA9jY0BB54AxBSLaZ74YAN04Su3k/k0AAGYqT2ezJtjYFORdrTNx9LE1LdNqd1yPdi+V6zCZujAsmBQEP2qQq0IJurmSFEDuPI7NynCdVjyJ6k5OrAydZnqfq87pj+wBhfEQU8cfpZRGBeb/DrBeN4Ifv89orz9hlWjcYpj+yt1dF6bdPSP12eZDPcXl5xe/2E2+tnHC+v8EdogrMmGpnhfDm5vy10Pd33xhDIvh8WF2Iapg88/FE+iCuyok+WzXEbWrshLUw7s8TeEMEWCjhOles4ukBIGHCen3B7/Qbny2e8fv4N+vGCdrzg5fWG3r+itRPjcccYD9yvNxwYMFtNwenzXgBkW3zAMUusF3N5U70NgB2wflBsO3XtGBPX5fj6/sDj7QLc0Owkc+saeLw7rrfAdfE6x8uJo9/wcvsEs4YxBu5ffmIJ9eV4e3/D29evePvyFZ9ur5gBvN8Hfvyrv8G3P/4Wf/V3/4j/z//3/4d/+dc/4l/+83/B/+7v/gP+8Z/+CX/1t/+MEQ0jDG/3C3YY2Ih+syURGnDB7zy7rgmprbdydpd5+HDWpSsiApcGBZXtNGC2Lcm2J8MVZc9wPMaDMUc6JI3nph1WZcQV5UhmQjYgOgE9qiGeReBEOwku93lDP25sOt5uCHtBHA90nGg40e0dl73T1/EJiwuGhpnMWkbUQJ5UA7L+pgoNK6hfr4OlD9GQwbQZyjfyOVUqGip3VtyzRoNtlSMrTikukHyOBgHtcsUc7FczhmNcXjblmQgggrrsSm4zQOZZspzgq6QvQ6kcmCFrJN+ddldvKcxit/EFJAU/Q2ZhkeVtNRDvfQFv4cCZcW86Kcap3xn/5mQ4NXxa4WgTONhasbry7hf49AxquBiZGfO5LxbTefaqeqqM4RYbA5rm9uGc5GfAUHGSIfePPl/6RDUVr+U9ET+oWD/WeeLRFFBS/onDJ6ezhfzh3nu1Q6jyTojRlxUm29oU4wvpoz95WCKTkXE9r9xTRxwNzQ4mQRW7+IiKb60ZzvOoNcvniACmD7L3PcQgzpLJTCLlRPYF/KejlwDaAgXJjE8wEkf6+mpxBA5za33FTYFZOMtx0D+rqeIf48I/8fWXAU8fHTazp0OaDa/38rX8s1gff+rqtnp06NPkSC0hoR+kQ1PBaGzvb0/3kfdWIM0m4OmLU697lVTs5WJpbJNmloL1jNRaKTZ+RV3fDBVsZEY6rx2bF53TttzZTJECvZyM/LMcaX9+9lQO+7PmszxlVFakWGu8o8oJsJkZphgcAA8nQF+Xl8g9X0po/Zk/MySUHpH3pDXUAeY2slzxifXyJLw7ELnVA2dghljAnJQSmnp46PcxuRl15QjAGFjXZIrWymlKZ9WRxPC6E2Bb51w31rLLkJSDZnLMG0dk1D2nRxbqc6K1SKBkk/dkjLCWOR0g5pciXP0qXNMrotbDADbdBLMZ48Hyh2Q9ARxDTMbTtuSWLDHtWxqKMCQLLZVXPeMmD5VRN8locMJCCwObpm/CFnKPtJZtE6S9UXiJQp6nWHsQC4niV5b3mkYxbyVvsCxxzUdqVZOfxrGGIZjDYtbzJysv95Z9YbiXLONxMMvP/kFzznrOCEiJ00gkDhaJMGudG2j01/PtYHD+YRwDPflZhi5Hoa0zDjnE/vydjIpcuwLjt/3P7I7QoXJm+tGQblttYTwDf1Yrm3+zFB1dnB5b24Vo07/uE8epEfOdI74BoJ8nR3U7HX6f6lU2p8pKFjiXn+2TxnYBT7axPJOYjmIlBYAWplK3FWCVeKWN2ZXBBgSmjq9pdMYpbLn21zXKs0yDXX2SIp3MEBMM6h+hW99L1vMcBM9pTMfj8cD9/kDrDefLAaiMnX3w9Inq22QgEwGw+l05I/KAI0KAMyphAAAt2hopHOu+ZvYbEePHS5olw7uxqT+fHcOQ7KfuMMvjtUovTDK29I7KecVySscqb7BsIPDMktEeUK+mQ98q4SR8i2q6QeUuq7wBoay8QZ5vrsl6Vk8dknoybeLmtOfzOwielO5pmgRsLkCSoBOdx0Zmq08kOMKehrJUun4zspZo01kGzkAky9wOOr1b7TSPvCMy+WN8YK7fXHopdYAbbZJsX/pvLYERa+jyeayx/Cl01mw6PCbMOSkKIOuoNfFFHBVcsDn1Ym81JaF8qN9JlqOJmRPzDg/1IpoPFGPKOnwMjHjgYR1HsGSx+wtaPxDZz8e46SxPf/axXP3YPMukAvAwXNPYywkKWlSylb3u6Pvp1AlIr4mhZuWDZIDiKifkGmRK3+DISXyavirZOo+Td/hyw4gh3RB4OV9wdpZeNOkBTj88gXZDa6/s3dRfcPQT5zlx3h4Y112MrROnGRCDJWWbLzZ9ABiwuMQGVGlG2oUIFGMeXfruVHkd2yePMXG/D5X3sZecxYV5Df7u6xunkc5shGuYI/CHP/yE4WRvzNFwHjccxw0vLy+AA8063r7ecdxe8MNvfo//+f/y/8Tv/ubv8Fd//0/4X/7zf8Eff/qCf//f/oB/94//iO9/+AGzvSInOPYbEO0AWiu2L5CMDVC/ikWXTciTbZRBIJWn9NsH3zyTJTOBpwi03ut8VUuRDVyFe/VYY5/MNVUZlswsq0SRG0uwAg1+riBaES7MG45MuiCq5YPbgeYNMzhFc54NIw7Yi6M70NvBFhyDk5mjNTSfMCVpsw9Q2mGKgRWwkq5a6sm0e+mToPxKqExfzwMrIrAZLVw3KyZt1CuF123xzwq4DdE6XH33XH7SyAbNHlgjTZepYjna8nkzJoyI6n8Eehv1zl6ssnJ1aRfwXGzdtt9tH/v0RQvAv2QFmAGYDbBg/x/L0okAe+khgaeQxxMVY/mY5cvPcMzJhOJxKLHYTP2/UP9G7Sa2lcb27/XVRNTILggRC8D5GDdXg/QyiiKfWE4sNk0q5e+oE636XEEr35U4ZoJF0iC/j/fEZ8tcL/WXQOQZuB6rVA1HR6hFis8klQT6Yeid5X3Z95b2e+3T8resZKUnWPVUtinfRizt1rom7mYrA5QNzGoBgs3YfK5cO/lFTRIW4FTvqFP2ixi9dsAEZjZep6kUswf7PSXJZ04BXCUKyUq09TPHYif+GV9/PvAUWc6Ap0Oyf1Bl+D4I1BOimQsSS2R/ceZ2JzUVeGYfVZubl/z4oAupXMFA/jwDtJ0pg3T8HWU4ATUU1qHxaCW86Rz/2g3vjWrzPlapyqKi7kfXkE53BiG/fJZ9/TwzClswkg61r18CuQYfb7YC/7KkT5+XNxV67dzHFsvLTOdiB5s+ykEGdBXAYUn/QmhDI4D3QGRDamWM0oB7+MZdQxn1qguPLFdisJG6J+aEb3tfqLVACj7IXpoxqn+CKzirQKocQu21GR1zSFEgtRud0vV5toxOhMqOGuvwYzXSLeP8BMikcV7ZlAVQYGm9zYpVSYvnpDMDjJndBJ/KaJdNie2PSD8lt20Fam0LWJGLvASiQEGxfEIClX3V8l53p+xJFPWa/WdLij8AkevHawFSX5ivZ4MCTAWAqxQQ5Si3XE8wGOTrZBCMz0UKcYJUBIAIWHJS0Wp+u/aHcqhsQLM6W7Vtek0TYyV1RDKneKsyMN2rOi7bwUWlqJZ87qDTmgC1LZMsRgV3aRs9z3b+PrSjBguOwF1ngDvzcZ8+mIj6nHVu1xnON/BSCcioh5FBxLQoNlky8vI7AZs6plj6HDQVpVcNWD2i6rVykrfyv6I0VW1gvtjWB28P+GTfSp+se0mZX854rkLDfh7qEk8svTz3UZffDx8BuYkxJptN2jobhbtuDvh+X7zSyjDmg6WTbYbKOidka+UAAtnDJf9skmnDxn+3tTdJ264gYdPRv0L0fbpP6sIVGPxCdzw93+YUIfUyBCrnu60+c9ehu1mMbfsJRMXW906Ptz+r3ujKMKbzmfY0wSf+Mu9/K7epRWjUm8omi6xSpcqBTpaMkX3JaZYC28QuzbvD/pkKlPPb0BTU1GmST5R+lvSLbzY573333UperM4vmy436VyBT6AtCB5cJiO0rumH5T5UM1sPNtYWcOhi78zhpYPcHTEvcHrbhQj+idimqeU0PHf4fMccJgYO9WZNYGWnVW3+mhLKZfKyy661CNME1HaiheE42PCdgF/q0F0bJsvs+Uy3CqTVuDs2+arrSDcHaGt0LY4q5xqT7Tph0dGPE8fRcfZeo+AdHe4sY7N2orUbWrtRlrIHV6OsNGN/MfpSVvtoKqNh0/4JNAJPbQeekL4WYJ1r0voJgMAZJpseX2KbjGtqXPnEvAbmmAU6hfy6tGvv7w9cIzBmYI6GlxfgJQhu9X6gHzdYd7x+/g6//5u/x9/84z/hN7//O3z/+7/H3T7j8w9v+PaHr/jNjz/i9vKCGdngOY9Glpjsinn3bZSBdUclEJIdqv1eOnWTHwh0DC+fdU+4ltaXkQixIZPZlwncrAxJPVIuYvpzjdaFlbCN1Q1gY33ebPbg02fK+LPszpm4bYHRJoHu40QcNzIwnf11OfmYrERL/8d2Mya/QPZ7L5mPbDsBrvvO5qDtac86OGOJZmuorapIypeSC5rEdEv5q9er56VenwAgc4Ub8GBp/3kz1TBZ/l8llispnH9uZj/tHRZolBL0ZKZs/S4+CssvCA56Lj1c+jOz9nDZiASe8r7cV4KVSQ48xRlNxim7CQJFvt1i+PbEoqnbNCxb8GQHoEQC78t3Rap9XeHmvnDLRnBCdn6+Vfzj6bMuKVEJdUJ5YpUCQMZgKvHNRCU0DW6MwLiUm9C9NKf0jrk5kdueNdnkZKbRdpU3UVhDJmE4WTb9aP3X17o1W4DZYh9JDzhoJ3VOsiJh99XSaKbuzfO0Sc32unoMegDNquWsmZi5QblfoGv6MYpP8+E3fwvV6+uDHP+Jr7+sx1Ns4Mb2RYSzFyvHPSfq5E2onraCMgC+2CZZS7qAlKePRLhj+KIIJqramv3iIADAcRz18zHGE3jTKishpycD2A9gFhkTiVwGvNDfLYBFlpc1PSN/lkJnZgKwoI3s2jx7UjN5b90OJMqzA2XLQP1yS2ZmRT5c60/tXznHaoS8HMU0rPsaADFmBcDJzNoVbF2apxzJHoEAl1Ruy3C3BWLAdKh4Y67SnOYOTB5WZrRXNpnPKv6Ge6264ZnpxoCIFN1s5+tmiN51yAzWW2WLYoqiKDaFP6HKSyaWvORksY4YC+Aw1cWmDwkYoq3zUNlNs2JImE2Yy+GTF1EAApjR6Na3Zt629GFGNCbtUaVuS81k2VRrB263F8RjYNgdTyj8JlzpEPsMDH1mK6OSEyN6KS0q4wwK9We4ymBRAV+odGMX4zrzGRvJOO4vShCTcjefzvyzntmvK+OzqatoXiDvVEmcJd83DG4C5IJByO4cAqDDbcZJUAA8BjN/7pjjYqlKllTtOiz3MbrKlpIRkuwd9Y+xTmNgVv1dUpYrE2pRjhhH7xraUeqIWZpxYY4LYwyNPNWU0MiFlhOlYIcjWR0YuxjIAYvkOomtKTpwlZ+AgNkOHe7TQ1rS8Gc6xoFAjnBliYC1jkNBQ+uc5tVUlkG9oHIZTEwBKmirVI83BjqUcwWkWbKW54RBtZ4+RXV3B/fya9jmhumZngRsO3pg4NF75/oHnZYEaExZclcwMedcNtNyZRUcQGVR+gzYoCxTYshZaQ395dRRm3hcF/BuaGeHda7v8Lk5KSidwLOxnqUmzC2fHK11lp51slpyiatZue/Ak5M6Ptl/RGkFBq3FMNS5D+prk34fqQvaOqcfp+bk7gR22YzyM3KZlu+a+nXdd5Sjtju56exnnyTAItjANNFKnRE0VppZpMxsa4I944gCJvL+IyfqYMlL+hHFyqvrtTohT1GLppRykxyBXt9oVoFm1khYF/Amj3KtYkOyNEIMxP1Usk+T2Fch5oSEwj3dgNTXKa0NqB6CLKdq7dBZZlkfWgf6idBau/YpMtBLKRGDKcvn3B0xphhXLAfyeUdNfNuEgtMLL4S/I/yOiAvASGgNPIUDDRciNDVuGKI5AifCJiJUwogT8GRoLT1ToJNPtU7o6OcL+u07WH8AcLx+uqnhf0dEk35PPyLQ5RtEUCciGpIh0JI1knqHoldswp0jMefAUmKhsocb+nGiy0fqx406prOZewTw5csdl8r0v/vtK/r5Ccf5wgl4KV3HyT5l3hCXk3ESwHGeQHd4f8H7eCNLROW3raVufQ6KrDd8+vQ97HiF9RumA9eAmKCBxwWMAVwCz/1yzCvL1pXYke73QUm+xgPXRdDq8QjcH46X28S8JoYH3Dq+/+1f4x/+6Z/xf/q//j/wu3/4Z7SXz/jqHa8//g1u3xu+/92UjZx4v96l/jMilzzOxTbj/+nnk0OSPm2ULTsOTfWVv7PYjqUF2VpjL6NM6Wxi/xngpsEHeTKzHNeA8zwWYK4r0kcQm6rOp5SNUaZNZXgcFsC+oJYAp0A0tMZB0N6AHrhs4G4T13Fi3AYG2LJi9kZ/x3gm+W2YAxiVpeYfbHeBtaaAAAXdt03qFjFOCcIGOJZA656+MyCQcIsXIJ1uxpYm0lcG1PTKIgGUL0DGC0FtsoCT/Zz2ISz3/DkuqlhJFFiTO0e2ql60ZVHMdUSwPI08xetbEWk2ti9Dp7O+LpfedfVMD73AwPYjiYhUch+ATcVwuu6htUwgg33mjWX7WuMD9DWbL0Z9xSVbjNp7qxjXGtRWhK9dbClZmXoQnZt8QgPY0iUnjNMvHkPXNbLEZwSGp7+q+B6B4zQcJwenmGWJeR2CFb+NqWoBAA7MwUnHjzvJywj2mhMqREa1OVnQ3nDGep6Ui4+MpwCB4W69GE+evZwgn7dYw/R1DsVSR/qllmutklqZfk4u9QIdd0bavi+tr/vc747HnEKTTKejL3Zabs1ibKFe27vVJT3ZWPJbeG46fAMK/62vPxt4au1AThpz3wPwxQogLqHpPoLrskYdWvSig4aLgizBjM1JtuUIu08Mz5HZVM5H64U8zzEK5Su2ElZmoFkv0MbDaVA1zru88S0wSSeRDn5HsXlmNm/j9fk8VtqEYEbbauF56X7cAEQ10ysnb/taDJG5wNXIcokM4Aw5qhI6iGQErSx3BkAJFPEyO6AXkhUTeLaBdrpn12uO80Rn4pUNFLWGe0kiA2Q8fVYegmoxklR713233NcEIel4NzOcCjwXm8frgGdWryBvSGkp274fGK4pnzPrr/e+STnC2zBXNllaPAAZ5Fmsl9yuJmUcKa/T4XOU4eM0jLkpLcqPe1SdPXubNGQfm1Qy7irPcoGJCcDomYcPZmgtn2zJyeoHMTl1CVF5bUAjT/3AbApsJeHuVMIRMlq5ahV8yRAbsEoS+ZnMTno9V+U2JCcxPbcWlQqjdX0Kwky09BUYB7bUf10vzw42eU45ylO0/bgYX7CtRFX9YMpbsIRGCcAMH0BjHzBgB39y4p9h4irHB8ZMC+AYj2sFRI76e460D+eIbdMsWcIDPCZdTiHbgPgC62QsMtsZAYxHSHa4btMEzFiufQazUImfSr5krFJ+aupoOmBizkQZa1Js5whcMr7sF6YZK5GTOJTlyLW33DavRETqN0hncPQsHYsWpmkzaUcoE/1g2cqR5V24MNqkE2AMSobKHEum8/3K7jfpuvJDYivdamvqngeA6QJSGw13lECWg7kYoemUphPN9xNAtDzSMi3GWvmWTlvW1zOYF+EaBKzFNMlpL2kpjAywkLIi81Ms3JO9aaaz7A4t1FNwrLUHS3ULe9weDRA93/h5FI8NTMlG2eVN81y4kJgWfTlfg2CvgeWHCbLswFqe0zmTuRcq5c6ETGMQC9PY8MziOTa/bwlb/r4EMOQk2b6C27/1qsz8tiiAsra2QJu1XjmxCg3ox8FnlN9hCPQCdFGAUQWnlteS7fB1ryUorQSKOkBArbvBYqJ60JmCXslJZLLBDpV4sgdD6W4k0LTUsA+dX+nzzKOR2TIFdLiuITDLmkCMFzFjDpi9CHC6oZ03llFpWpz1A/08ATFp0LhmZqaeggKe1IR6mquUSADlWL3z5rgQUz2b/L0YpZnsMADuai4+vyLwAGIAeFCXm7LKOAAcgHc+6xRQHwc8TsBO6v95wnre+0EQqs41g4Fuhs+fvoH572DzQvgAMPFyOxAxMeeF6/GGiIaGG3gFgWdjgNgrn59+B38nNKp0xdzsn4M+Q2uD5R6tw+zAmANoDccBnCd7gD4eQXvlAb8eVVrZ20mw7HzFy+sn9OMFZGcNHMeJT5+/xTwPcIrdxOOtwecBPxqa3QC/47oD9/sbzNOnYqNxD0ee9tYbjttn3F4/44ff/APa+QnWX/HTly8YY7KZ+LzjuL3i+998i24N4/HAH//wr/jpD39guUhOsAanBLajo50v+OHH3+EPP33BTz+94THecL/e8dPPD0wPvL58wjff/oj/4//5/4bf/+3f47d/+4+I8zMeuOEeN7xfDDbj4jlwN5aT1blfJSWtCUgKA9BZiRkNw1YppIZCIpmXrVHfR8Y5AhKjkjzJTl29WMkWpR3swdjDW5Pc0R1K0NeAGp40Y/WbMjQcStZM7LZmFhuhHaf6JbGXW3hUoiQQiAZc1jB7w3vvuL/eMA7DowUe5hgtMGzCe8APgx+BOS/M8cD1fvE+jy1ZDqDdqJ8igHGxkoCMOQgoY0zG4DG2oFu6ESj7Xuo//UVbQHXFccVAMiDkX5isj29J/zBAwDDE1LAtaK72IsBTkpU6VOCwgC2YAnjdgqcazw02lfLxr7QdmfCOhA8N+xMvZinU965M1Gbpnv+sfK3Wrnz2PV4AgTvmW+nDNQOGBR7uaBO4nQY0Q7fGadayDWlNMmHTzAiaaL8p+4qZi6mZt5NPKDscTSCIAETLqKAVwHKNqbJ1lrmNwZ5cc64eRS1dNTe2IgwHMPHaukAwDSDQ50SI5fZIAGWVurkH3r5mPLcltS0w5sSrU5bHmCxFOwzDpzA96XIYQdg20RrLnMlcdvZDks1qUAwiYc6qmNYZl02xrXo3tZ2gl8Xm39xHky9YLRIkO3sivmI2biKyWic5DmuK5CJFJNCXwO3tdtT1zQisewSu64KkGc243tmL+N/6+rOBJx7khpo+IoO4l9d5OZuZ0ZdjVtoi5SuBAwEGGVjWw/H1lYuLpNta3Yu2Dul8bqeWTu/GTiqKoH4Xauiom1iByfa+XdE9gTdtc3I31KWCn+1nEazfziC1ygJ2r397buybWw6HAmMwE7A0r+6z2WrQ/uHr10CnunWtzawynARU+J4C95oJ2Fq3uNBRq9tZwr4fjBTkJqcEIKPE5cxT8Zic8o9lhb/INqzbr/tcVGUocHu+RsogVC9br69ssoxFOVG2Xd+RkIqulr9d1w0U+AKTfAFYkX5bOIoZoolltVEzE2gDcl0W08YUVEWwllmXQQFiuo89WxzOyX8As1rNshzD1lOE6KUeDJ7NmC3Y11hytp8IC6NDGJLKtgw7DboXFbaAgF3cY99FXd+WwYw6jx/2MC8W+2/y7FjtScpd2r3d5EbtiW6jJshQCWXNdX5+i+VEpQOB3B+IlmrUVD6z5C4I3GVPhuoPSOcTMjA5BSuqk6b0WBkClFzscj4vhx2dIKgbJ86EY5/KticFcp1j0xHp7BZzRes+tz1ryuLt57S48uWClKBoA1d5beqw3O0IVDAPQIAnpzc2sQRz75oRFOq94+gHWnvALFmD0ofJjPDstYBtYMTmasXa37rHWlfU/WZSBapzX47vshPC+rTnSxsgUNT93tsSlXy7dKBZ2khf19+OQgJ4M0u1SifKJuTrZE8KIAHXciqzWdOR6rO1JrmX9cxpcugmtrVgeeNL19S+qwwyOOSAiQXHVgNR12Xv16fTuuyIrGh9p+3b3OQyf7FAbmz3s/671pFH7NkG1DZ9sAvrrc+WJm0Il48MOxcXnyULddKenqc022Z3HSiGdj5xKCjYJKgYV6Xm3Ou9q1Y0UBRT45k2ofsrS9ngyT41JhpSrhLwbMahGa1xoAFVUuqYZKat/lXWVK7TWL7FErUDZifIqFDjaOvIZhq1hsm6svVzyofWV0FpgP1HFrNpCHi6MB4P+Lzg847hb3pukFVnH4GndwCXvslCYha8I+IA2UydwJ4ZfID3HgNhF4GzNmFwgWrUy5YsbuM5OXrDy8srvdTxEPDkOA/DuO543N9wv9/JqjUoQSGZcQYnK+Bd654BmierNMtRsSYYBtiovWlvarBKBA6BHnOM8mtiTJXOdLT+in7ccNxecBwE2giKcB1uLy/wbryP6lnY4dPQ2wkfDXO8w9oJa2P5lUqjpH8YdqCfn/Dy+h0+f/tbtPMz0F7xPjpgXOszThgY2H+6nXjc75g+8fb2hjkGp+kJ9D/PA+28od9e8OnzN7iLLdXfJ97eLtzvd/TjxDe3T/jxd3+Nf/zn/wk//Oav8PLtD/g6D1zeMazhocAVaskYbuyXpd1J1pE1KAmKFVCWmc64ROc3bUnqsExYKcjLJtOpdyoOkMJKHyb/x3/lDEaUbxxa56ZmNVYGwcQAJkASGzM/ym5LJzbKBDFPTk+b8u/dgKsFhgP3ZphnxzDHNTsu77iiY0z27HIj83JgYLjhgagSY+paPmdLHevAQ6ysZg2EtgmsUkVozaQAnyahIqr/4dLgRnnLz829sI1UABSra8Vz1HkZStHnefY4V+xV7mJuFRllsf0AKODedEbJUgw013nPa5TvmnGTSgeRvkuZpHodn289zypX3L5s89W2H7vWZKVV9M58nT7IwLPQgoBUO4ATq2wqk5P0f5aNbPqGkoZmZGOXr6LXEvTZbew6EBWWFmXMNZlTzKYtATuojggc51pZlnhBZayS5bSjOm8eUf6tTzKcwrk61ZJfJdxpT6ECCNoXxzxNZcoBSkLDCBdjj2c2qwRCFV0tOhCO1miDalUs19IqEZWJmZTB3KBsYJ5TFVcsvmLflEfqj833aVlhFEC0KtdPDyv9vxIlY1K2t8WKYvPwkJ/ANTdnSiC1FXGfVaX1b3392cBTTuXJ+nY+09bYNhbFvA69sewt12FRhvVvd4wInGJyFLtIukA+Z32W6XOuiwjiGtm4mnDnvWB7b9Zh58+ua8jxYgPM9aWSE3DBE3V8bpa+tB8Djf7EcsJuVOprIZI8qG0TGgmYLHbWhe6sqWwmNifppx8Bkv1PQJMFAnVfpeTyYLpv670M4c4IuHzQEg2UwPFztrIyOZYriw8J+Vrv3ZnnBXTYpCyQFNtOunUP4Dgb+nGwqXFDNTofc2jST97LevbsybTuwUouQoqlae2SyNTs+eBtS7g90/Nuxq75V9MS7tPikipISXnwUpTDDK13MZMAoPOFGucZZhvwBBRvG0BMlYZ1yBC3tabOqURhA2F0fnsLNEwGJ9KOfg34Y5D9I2ZNGmADM89rumAGuyb5BAigesY+ta+53qGAKFcu8trxLK8JNlKr29P+BZa8oRwu3UOykbBATSD1Uwb0rokjBrN1djOjCcsG3fQweyIKZsBkwBceiGz6v5Uk8r4zCG0ECdwxr6usaOj9FAqn8WpdjcjpwGbVN6aXa5H06S2aXbKO5UiaO+8tAOsNOTNmsZ72jCeznlm+mA5SsarSYLvz3vTRJOAJ4M+mm08GD7/ytYE26fHsDgZTJfU83Dg92zQc7eD3cbAxsSjJCIMFg2j21FpnLvVnAr/L6c+MslWZYAYU6RhNnxtAwetkieY6+1HvTTBvyfx6azl+c+/Vwff2dMRqzVJ2wedU8J+TSmI9nD5HJRHGxEjrcvaedLLB5xDBRb+Q/u+BonWja6/n7mwIYOJOcGInDH32WtPeDtn7jt4PuIYa0C5l8/rN4alF04lNICYj05QJbi/GWBlVBAqESTYer6NMs4A0sqmoAzIjnc5P7pHXnsaSurwH28p0E5xD2q+t7A3ASiil7ZLud2xPnmdubr0d08/Q61Nn/sJO6nIkktGhC+qLHkGHMfsPGfc2nH1ZGIC2An7YswfSjX3Zp+lwH9T5LR3ahmwuCsy698BU4kn3JuZy7wesn7B+g/Ub6EKK1ZTluJhAGBsPowE91MdiefKRsqD9IOA0NB10YF53/f3CuN4JPPkDjjuy/CALO82A8KH3f0HgATouAp7ggIBs+AH3Aet3uN8RcWevo+NECEjz/oLmr3xOuEAWlRCaIdqBhlfcjgPz9RNeb6+Y8xKDeOD+/gXuDc3e4GDJH1UiZaBZV+KT6xRiPgoJ4d4F75u9nKhZU4dwDHcqcDahz3NzHof0yaStn2SPscLbcLx2Tod7uaE1w8QK8Kx1nEdHe72RPYeG10/fYF53XI83zPEF43Hgfn+HHd8gpuFxnzgEeBxHp4xFwPqB8/Pv8M0Pv8N3v/l7oH/CjBOv48T5yjLK27GYJLduuB53vLy+IiLw0x/+gD/+638FnCz5b779BrfPP6Cfn3G/Br77/jf47se/xjc/vuF/+V//N/zrf/4v+Me//nv8h//4f8B/+k//d/z4279GtBNvw/Dz3XFhkrHjHKzChvRaRoCDVnTMmzVYGJr1VcI2B0tzhsrqVcbcncASPIAhIG5LypiAoOxnl6yQJmYIxT+e/HSIcUgJSIB2+blDgD91Z1tsSZXStpHlBuzbI6OHicAF4A7g7gMTDu/AwwLDHI8xcLWBeXjCiJgBPA7gfgVGA67m8EY9MeOB4RfmfODhjzKCBTyEegs5MEfgMR4IVbrs/dJ4FPR3pH5cdrdaSuRaIRmMWH5ZunDlM+u8JbAL2RHp16oIKL+u6cylLSxYgDbds4Qry+tkLywN3IK20nSzVVrAJpPGEeyVmGzzHG6kx1zehiXxYLNXKU/P5gIZjlqj7dhfHmXT8fT+5WWjfEKX/B8GXAEcHuhz4v6eviTw8pI+QIkXCjS19Ku4/4di+gDj7WTpFUDkruFVKbfp4xp7t0knzbmeaSRLbpMHUHQAB9pk4q8dDT6BCwTze7ISnWW9IdCpgSXIQKeelUPV696V2Cm/osuGcXARKyiyiksRpu6NTK3gcKVszIXlmtHmTUQ0AmDyYcrdSP/FHXOg/IWsAPAsRcxYtjUmhcwKmNsxgQzY6JdyXZoBx9FxHCmDjtZZPnkeapOghcvqvfLjw3G05ev3BhwbHvRvff3ZwFPSq0hV36ds3QABAABJREFU0+pW5nYtVmbddsmobF+AD9/aCsqlfJ5u2LIkAyvNbDoy2+cttgOXbYEN+bKow7h/FaPI6cx+7KUEAJz+81xSmJ/zsbFWNqjdg418jnz2iOcJalMnKksIYctc7bS5fV1TAeSzrX9vQfv2+e7lruSt1vV+8VXByQa05czRPWOyfUZICTw1SFXQlsEMR1mnvNjaRtEcgdXkdSG+baHs9rTlFdSnUvugg9aVFEhUFVCE7s3r3p6b1Kfzvf4dz+KGFOHF/Mjst66PFXSaqXG4yfhJhsO9mhy2ZtVThMwFRhVVBlVyxyubygXNgWglHfXZbL7M6TMc7+sIm5jXA35dmI8HxuNiNnH45sTm09Tdr8XW/cMN2VQ3FANZB0y1zHQge91zAIBLV4hVgw2wKCfL9nJdOuAmAEsvwmKrcO1tXWDJv+v56/rxfEzBvlyhcrcC1YKlahWgZJYfypogs86xXYdy4yqZy54k+b7+1FkE5SAVwJsilHoR6/HSfUmW3kcDsjIhDm9y1CJWXzEE4hrKgoeC8pQ97YFnQA+tm0on81yCuiqBqZARdfxyH9dmrvvn/w3mS2fkWq415OuiiYkzJ+6tYR7qkzVddN+Gx/sD4xqYFzNS2Z+uym7bL+9jfTFor/uKuhk6fvp51dKDLLIUz9Zsv1TJKHVM2p+tD1c6xGLXGbJwk/u2Rgzzhsu53NLim5SUNx1AMVCLZdjW77h3nt7gOsuSs9181c83u7brQR18BpBKyTrYDzCZc+UYV8Z4neHc33CwNyJSt+i+Nr1achvPsp4MoGcZNCzASM/xcWBILN2f8hiGCj5MoFPaEMZlO5XN1m6pRBp5JmGyIfosRzFLd0vE1dtRV9nBLF+zLJMSUIstKy8EwSdIwDP2WkLeK0JMzQUsN7OalEjtk6UpK8FTWVqVpxxHZ0+RRXWTXOs5Up6U4GCFcoJ8Aus7gaTVWFUsHQBdzJ1+cC9bu4kZLNnabFzqxjnuAo8u+CTYFOOCzQcsBiweQNxRzJqtdDMmezzN+Y7wByL4DTBJGa0j2oHoB1qfsP6AOwGq1k543AB7AewA5kA7HM1vAAy9s0y6lcAanWwB5AjDnINjrscdY1zI5uI82yBwiDXBF7GxmSHG7GRUdPSGUNAUrjJq6QpGLp2BXALLvePoHWdvxSy4BL4mEbGpjJf5cNq66QMzHMMNY06cR0c/DrycSgQHWIZye8X58oLHo6MdHY/rjuN6YKBh3B84zgPn7YYffvgemQhq1vHd9z/i2+9+xO3zbxDtBR0nPg0myNxZrhJB/+Snt6+Y44IdJ779/jfo54nby4HxeAd84jxvSkZ2/PjNb9HPV6DdMNpXfPvlwnfvgf/4P/8n/Lt/+md885vf48IJ944ZHcMnRgDXGJg4yrdMv6mS3cs8le9OYNBroioBJJ0TY7N7S/CqlOwoH4gl5aP6OsGUeNz0VpW7MONVunv5Niv2mhnowwDrbBgOUEbUv7Yd0rUBDJXVeQCPmHj4wD0GvvgDIxwDgfc5cfnE+7gwJoFnn475eIM/HhiPO67rnSV14wGv77tAuIvtTaB2KMcqfTcBqzMCfnTqIyPgjQjU7OCA/GLqn+yIUF+yV9l7r22+OuKD56r93P/+5Hsq2dq2z7Bg4i3/V/2RpNcyMWM0v+onhLp33mLUO/KeI8A3eMqHsY1HrNdH+RKZwFgTCrEl2tfz4umT0n9u6WEtV0LLE2sJgSfWVK29/pyx3KooX27JYQArOwTa2yZWzZ7w3IkYckGk++hrJYBE8+mlKwOZLGXONssH8/X5/fQ8uk75KwZkQymDiYXOpJlVxyzZtYrFZM7OVlPsA+vZjpOT3lon6ykRpufd6RVTJBOZ5BRTPrAVeMnjTscmQSqYqbR6lZyn3GXlVKQdRlNvsVWa7eXTZBueFFBb6w/6jeGouI0gaoBDrqK+yxWIjCe38wkxoXzbY6CA1H/r688HnuT87Q6DWrmVUw+kc/L84c/lU0ACS9nnZwef9tICGDiKPVLM88HzplYQmmpifX4qmlhvsdw0jSdEAlPxdHDWM/8SWFv7uQXLabjyZp6O/dNCPGnTlVFdgUE64b+2fkQzvZ5tB57yeutx4xfXS6WawYnvz1r3o3dqn61U4fZKPWKEXod9zbank2arUkCeCWTwy7XkIbZUBJvRdQVv2yVrj1re774O2OTPNnJ7oPaXsaHeL+Vq+31v+7CyjOmYZHDzvD8VRPl2ADVqmj+IgrpzUh1ZuJYxhLItQDqYOUo55KCwNt7RvG0ad+0ddIZsTsAC83ogx2P79cC8HpjXxQB+MANn2V/iT4lrfoZBznPua9Q5SqA5mQbccyMrZ1OytB7bWmEFIWiLsbZYJXnQpGxT9OqcrWun/iDImWuOp6OPAEuCYCo/tLwCcgRwCFEr8BNDho03HlqULHl1OaU5pSZBo6TnLmFC7X0a/khmjvH6FIftlG0BWWb5nn7nzmlPoMFIXRIRbMyfwY2ehbdTrUfXusmZzmbhRVvWQqee4wPszoUu+VElI4HH/GwB0LuTj61+vnRO4Ho8FttP9qD1huuuxu2XFyi1Gikgldw6P1r6LdGEBC8t9Vf+u+4hSn/uX9VQO3Vr2QjKZwL75ZhZAkmRGMbSz0EdsWvdAjeSARq5Itt9a51NaVqCT9uzrTvUh2x7Vudt26gP79s87G1TUc8FT+BJoLBYSLvcQKVTXB8lfwDpDav1Wud/W5PNg0y5BYC27/Fm36sJcC7wZiNKlz8517bpjLyXXFf5DPp7ipOFGDmR1192qQBhJ5DF3Khva2hPy7nbaDM6qy3Xo+4RlTBLuTUA0RQk25p8A6TzKD3UyOaN2EGgFL61rszgGhMiKYstCHq2tKdL7/AUez2jSTTWAARNqvNkha5yMMTqsdY6io1XwVYkCCvd6g6fLKmLeWGONwIxMyfUDSAeiLjLb6HznYseccF96Bp3EHh6B9FBJ8u8HYh5CFQasLi4H/2GhoGwCdhJVnHag9aXD6TSRbac0AS5BhzR0eZA8wsDzt5A1tce5DnajGB8+J6TvZ/CBwzHZny1H1qznA1YbHb5ombivVpD02SrwhTruMT2ncBTh7t8cXS01nHeXgW6AK2fBAP9ZKKpNdwed7zMgbCOt/sd56dXvL6+4off/jWbyjeu0advvsXrp2/RX74F2g0eB14+sSR4zoHeDXM8MKbj7cGG4ocdePn8DfrRcfSGx/sX+LhYuiKm0KfP36Cdrwg70b9MvH7zPX78qwP/+O//9/jd7/8W5+fv8PY2MN3gaASeZnCYga1444n2K9tXh1HnNhMKLoZTMVJtdeUJKZrsA9fa8q1nOMacAp4yEWQ1qCd1bXjQ5sqLqN2n+n36zviI4NUCzdlOAWIyEhR7BNSUeeLuFx4+8O4Xfp4PXBG44Pg6Llxz4n0MrlEEOF3wzqTluJPRNy+MGCprVSlsTDJR854MHNojnRreEMnkdQJP6raxfKq0j6W8o3wjqzVaVtEMTyVlZeshPfjhZ2t/t7dIz7btJWQrMxmVFTYrcZ/6T4yeauvBey43A88xUw6C0QT6dU9P/ukqE0zBM0SxhD+a67x/ZAyRsoLSMOulv2Lyy5/eXre7UsXojWXHnngs9dmQv57FjVG+W33QfhMA9qnl9RJdb523ZEUt4AmWOjCvpHXdbHa2+mGzdK6pG5+HerKBvL/N7hfwRD/Z2mKz8edM3LIKh9dJ32azinpMe9oELiFbcmRZYsX5NaF2X4fVdD8vFOAapLrI9YalD735YNLtpVOgZy7hWum/ppYvCT7l7S+dFps40pIsGYc+3+oM2/b953z9RcBTfuxT8LH17cgJcu6TlLfWcLvdVO6Uzo8+uHc5G2zMm0JwHIdq97Ed7Fa0vGwam5vWCqxAsTcyUGN3+VaBYcQqVbDWsY8cpyK3er45RzF/en8u40tQDFAwKaFhoCRG1ya4XLXMZlIxTDibAkvRle9dkcJuhH7loMaqZwWwMR7yGvUPOY7583TYFLuYibKuskG9bg5avGYQOybR0gXUsNcPyzCWnKyyu3UvAk4ss3RLQfcELbqpBpZ7MGcq3mQtNQCcEJMlHjvglkwyMo3y6Rc9vcrreBkakPAnBdQ0VYynypCoea6/B572AbrbCpgSxMyfWX6mVr+xHM+dzYGjBcI698cBIGv01/nK1sMZRKRSesoWi67MrLADbqRAx4D5A9f7z5j3d1xvX/B4+4rH+51nTmy2mqtV9GZayG7JVRCdXJk+x8RxsnSiqYF/lt163pPOxvQECQwtfb3d+BqzFHTodEaN7IrFZClYmZKa4AQUuJfBK7GTccEvvkqn74F7BVuGiFFHZ6pcK7MexdJJ5kD46h8nXeGgY1WlhZ7Gdi4+wWoKUNeD1jjLQU3rV06NLScg+79ETNg0WNcEpgoYcwXyGimndTCASN2nSRmiH5cOKfnegzs5ApsDF+VwL2O+fQjSDerJNa8zSwd1B7MuH5jdMR8Tj57jaDuu66FSSmDexdZzAG4bDX/dVE0FTBl4WrtsrNlwdjZ7zMDv18zmRmhcPsV2DqtE4sO6LUc3QZosf86zxt9PqFVprBLCBDFok6RzO+jAJNOwLScm8Rd+Pj9vXtsOzAX+RupObu7mbKyETzu6GIFq/BlAc5aKzhbqkcBm6rPAwMhKIekkwBsB3ll+3NKhZesMDJYlbZDDCek/QwY0LCkJMb4SpF1gbSzH2bGAv2TzyEHde3SUK1bnWmslmZ1pH3pfzi3S7gFJQS9AKDafBSu4SceszpRVZbUavouHIgXRFBGZHMq2OZWtbpx2Isu0TYECvNOOSrdWGa38JfpMhhkXr+0Nk5Qw6rNtcMzRO3oHjgj0CBwxYXPCjI2nuzLX0yf1h3wSBHsGojXE/ITWX/hs7aB9hmGV2kho3DGvd8z5gM8HxvUzYl5gF9gBjyztGdLtHUc7y3bN8YCPC+PxhSV0fiH8DRFsUj33vnHnDe040f0G4I7Wb2j+AtgnoN3IhoqJ5jcYAuNwtHkj4I20e6f6XB3oZ2ffvehADLTj4GROTkKQaAy4D8AvzHnXOk+BZQPv72+4v32Bz4FPn19xHB39WJqc+wYNYaHuAsiMeLy/wwdtAeTvYrjGNg00TBwNaL3jOBy9cw/nuMPbCbejFEvYgX77rHKTrnwZyyDn41vMccd3P/wW83rDdd3x809/wO08cLvd8Lvf/RVuLy84+kluVzR4NDxm8qwaXr4/MOfAdQ3AJ2br8Gti2ikuQoedn3G0E5/aieN4Uc+sB87bK/rxgsf1wPVwvA3g//X//l/xt//w7/Ef/9N/wF/94/+E83jBl8twnx1jOB7jws9f7vBoaMcnrmQ4+0cFe3kh3Xk3Nt4XnnP5wHVduK6BMdIvMOSkT6quViBQNlbOMlgPTtW+xlVs2LTvVWWRCiF1eG9KOgpIagRzZ+P6BRriOFj2enS4ztMMsqHmnPh63THmwDUvvI83XPn3eLC00hz3mHjMifu4+PpwTQQ0xQwOxAOwC9Em4iDARIKrIXoD7ABuDd1PMhOD6bpWk82A+XD2oUQURma2essdnkw8+j7s7TUxx6hlaZZRiYLy/IXUrsumszzSiqxQ7Rc8QKBQr8fzdLDEHz2ZUAAna8tQNNnGRX4ONJ/I3n2WCSgzZCdVg3pJIdkzK7laPknr5TcaDDlHxV3ghin5gs3v8M19LcOyliNvcd397hnxqwsoWlMBy1zQB5wN1X+ra2BWtxXHhCtWC9rrscdJrPKYbW6fnn37ssk6WTa3m2FO4Bp8orLfG05Qz5H+VdpWpK+pmD3X55oYEeg9gIN+g18hdrgBsZLkWwCAl09NsVr2hJ4E8zsEFEOYwEwhhqGRITbJzkImRN3RQN+glW7Iz5X/GyInIAo0c2XgUj6arTY+53mWn9qV4PeiK69rRgTGvJAJ9N7BvsJ5XBiA1F4maNVatoSQzZlzxQv8MDLtdR4gH9t1NpN88Gsx1699/QU9nhala//Kppv58Ll5eSCr71MGbiqtyGCKyJuVdNnyAzcBTJf/2cnfT9qOXlaj6AjYVnc4s9a6NE4gG3tFUSmkJDaFUODW/nnbaXhake0fT4hqKU9l+ZY7KpVq1Qgv35uXS3AsIjSd5MNnpvKxhZhmAFrlfXmgg9mMpp4NSMdWihO6I2Rtq6GCQ2CjUG77vUA51H2G7meBNgrSolWTbAkBSINsFRylUuEWrs9j7aqtQNKW3MAM2cA0EJq6BDkIkgMArp4BfH2vg+ICCNwYfE+VT5n1ipeL7ZcfiXUuLZ0SrQtlcJuQEkvelO8GwlWjG7WO7AO0gKV9bVvdSHAMdKiROBb1k+WvpqlyFzBVZnc9OKZ4DCoV5+uq1M72s6Y1iSe1hgoXFfg09UKxWnt76uUyg9MgmjcZtdXbrAA8BW6LRZkyFR/O9zIT/JUy0mtJ6u8lGhvCZQbATZknTnAr+djA68zC00iK6trFkMobEPJdrMntvJk2K+WAjKGo3jYBWyWYubaW6+taU2XuxEU2LJ2a6+RCgaw3ykUeqogqU85sbUivJDMzg3quW6z1y5OmM5fyXRuF2G44Pr5C7426z/zadUT9TPe6FkHa3YPg7JjqKROYl/S2o8AZGj8Bo9ulLfsgab+yHKXsSWsQzZWGMvep6ONWe5aGPG/1IyMWgQ/Pub93P0dedubjEIPlUeUfKTdA6lszAfMJ0OffG6rc7skDXRdYeql+LuS9njb1uK3Py09P+2h01s0C5i7wnJdJFkD2YirTxp6azOJv7I0q188nlX6O1JULncWHpS62gVujrdwAxfQN0l7SNCybXcDLdtFyI8Q6U2hTem7qzPK6bZ0TW+uzeiwt1HvdVwgAywQaNllVmVitNeCTPZsi2Xhtvb6SVs7PTKA9Wz/xetlnqZUuZO+jKD8tAcAn2r9ezL438o8iFmPXJzAHvBnMHtIfAQQDYY8FblYTUhinqGbpPTqEmEoF6XNTkMLhM4GnO3y+IebFsjl/IGIymZJlrjigrjl63gl2feK1EtQJH4gYXKQ+YeiYLUC0boIN/y+0mGIT0p6mnzXsxIGDSxtNPsM+NEY2jDRW2VGHB8Eyj+2efOp+NLIbDvcL13jgfr/jfmdfq+NkSRl7iuSRyGCZpVutDQXsBwKTweKcYsI5Wa8q34t5wXrD0YHbrcOOBrTANR9cu9Y5xfg80Y8TbFJ9gBP0OgIOzIZ2Tljv6LcO809wn/j07ffsB9Ua+stnoJ/w1ikXbphBeZ4hVqD6ioUa5oZ12HGinTed18mm5gG0IwBj22prgUBj0+HHA3F09OOGv/7bv8Pv//bv8Ju/+mu4HbiC8nB54JqB+2MgmwiTxUjADz5hTTZbMQmwkigyr5xAlwxxUx+5OsPyRRNIMiy7vvk5mRQFrOzRB6O1kSXo47qt79n43AEoAchXjvAqPXrMiccYuM+B//b+BY9x4ZoX7tc7xuTfrxjULZ33OcOZ7Ins20t/0KTDorOROGHyQ8C38/1TjIkQ69NPMsmB6g9jAK5jwkdgXitB2lqWstHem/SPRWBeA3MMzJ4TsyB/Js+VfOWWPZ5UZiad01Pnu+KmoX48OXjDHUMlzzNtlkWVpFYS4MlILP8hv7InUrFM5Pun7m8wBfxiQKVfjMA2mb7sbm9pd5l4zU+1npU18dRSISQ3hu1iGU9m+X2ybp5ctKQdJAFh8zfkPjytCejbr3I6Jf89gSX5Mzsb1wLXNQqImOFlu3Xb8mUOWGPp6vRGW2Yg2hZ5vJQ0S08lXZ3Nv0tvO+oW5GM4NEUSPOuKCazOoa5qQD90tnsmwTU9shEgavr7nKihA+4Bf4BsyhEcpOqAeeBoAeuoOPjZV4mKbxYT2+u1fEmUbtmJL0ni4YRMr/7PZKdxfafK6tPnCPMaZiKvCEfbfJTNWbSUOxMhYV+zUKzUlkytPsm859j8oP/e118EPNWa6Eb3gBGIQhF3wGVONVaWsEXWYEIb0qRYttKH1MvVcDhfj+VePpU8bFuaX5EHHuuzuDYMLHcAJS/juwPvufF4us6T4/rkSK7PLY+6Phub81s/RTr6oYvZr9z3OkRiZolzt6j767NWkMT3NGxWUh+ewQQFy8oZLQRZQWO2vWiWDJzVPyc/4zmA4tdzf6LFdEuD0YKi2eogLuP9FMT9Yk9tBc5Znldbr42Qpx6emVf+PJ+T+DCzSUVH0hpXA2m9baoMtPeGZHFlkJ4iWSrbuWvN1n1G4And5rjNgFs2UITGETN4gBmaiXtWLLoo0LQ+d9vDSDmFLO8GMPi8WKYwL/iQMZ/jCXw1WaVdcdBxjippW89asFPx90njZPRbsqA/U2Ynm1jRoQkUqJZU9IgoGa39lyMGSxmLp35N6STG9mf4en+ey2f53D7Dub9pGFtv6xXB8rM5xgJLAU2zXOIGC4J7m5hGLFlquQ6IemaUgUaVXAVQ6K7HZDPKvO8sgjftkz67yjABAn2i8qYsK+pezm9+fn5g7rkctGWwt6/SVZtO3Nccv9R93Lpf0cW7iv6gQ+p9sdY2Rzy31nhmlLks7yKipqko6lufnSKobGSxUPV56QAZlH0qkVvPadYKR/iYaFnPYMiA/eNzl4kved7tAkrX7TZp7Q3WQtiykQU+abwu+xBQ5cXTm/eNWdevtVG/iT35UeBGnjXdK5tMSxEYEL7ZzWB/oOwPlsy6lKX9bO4PN5PpgqdbBNpyehDrjOeyeQRcmKHLkbIIBSAF5a/nLbu3nKq1QvFEeHRPZz0qC5zOXekmfWfZW96cw+RELoer+lPq7DP5oySPlH+0cvHKufMs1dZhYEWlPZ/PSDAwFnsvJPAFwrSy42k3ErBK32oF0KkbFkidQwBq+q83xBSLKe5Ln2gVHQYfUf4NkyumDCn3KQp42koyIdaxBGbOd/h8IOad0+kmQScymCYBT/Bzzfj3MDG8YorBrLAxFqMIPji1la19VUpH4GlawGKqlL3Beohxf7KUGmQ1IcD+UCY2QgZHuwxrK1KOPAgymXFaHwGxobPH0tXpA2M88HjccX88EHPiVf0CW+/MboOAqDubV48x0OxSX5IG+IRbh/uU/Ze+9EmmgRNgOw7D7exk0RgwrgcMB5qdOG8nTgFP1rq+Oa0wZdsw0dDR24nGXcc3m/wQSGqYYuZUvxhMOFjG1ZommKo/SLQG6wf6+cKFnBfMTwBsQxB2IsQL9TDAHde40Nor+suBv/673+G3v/9rfPv9bzDQMJ0CfjlwTQ6sCeylX1PJulDfq1/aLAbeLl/AyehLX+BDVp+l2BuYlGoHS/9bU3IIWW6Tr5OlsGRjAjntUYRegk/5dzBGSZ863DHDMQN4ezzwdl14Gxf+t/vPeBfw9LjeMefAGBc8BqwZejf0bFIsv6JAm+rRBXhvBBHtoB7IJMdsgBPA5Kyb0CAB6qPzOBYA08lQnpfnzJpigTTpMwoJKUfDLszWCVrrvqgfXecgq1PWREu2rODfOww5SCOmww/1qxpTIJQjGseasXeXL/8k1fquc7Xu5fdtR16VlZKH0LopSM/owARIlV3MhEsCfPKks2xJPs5TPCYizbMNKwH8II9pq0JlZh9fv2xs1JOg/CPKv0v2lh0vIonukXF92qudXJLu6sBxkFQyXekcuaaWjCP1waPrkP5yXiMrH8orWzdTrzFsj4AiR6RYOQGhruTQaorO1y3GmphNnX9m+x028qatbSn7BhxH41Q8uMAtfo5flGVzoB3pehgyvtVdrnvVsy0cRcCSfKSUjwT9IDmZM7ZWB4u5h0ygRWx7GU9lfuVfIIeqSQ43AaF/kGCZ/LH8n0He1vKV9sTusyb9019/NvDkiEqL15hG24RWTpZHYDayKbL8ZilgGUoAPgYSXDjOox7qPE8p4iC8aADQcPTlqK0pUxnQyfBpEc6bHisEIGQJj5K9ebjz3hXXqYRLi9lW0+v8SmXkFsrcUNElGgotPlksLqQSmzFaaoNBb6NRkyPHsg8U3Z1CIENQlN6FgO9fu/Fs2SxCyjcdgwyYGNhrjfcDvR3k6t9lnY1IoxWQUCWIresZFlByjUXVr9uIqHUIJSejRdYZlLDuRn0qkGm2dsFyGkzWnJb/n1FOMpcSzd/2TpU03iS/7lV+R4WXB720GAJrmmNEIsklNVvgovdZhjOBKsfYXkPsKWBdpXFt8ko62PKZKogDCEJVJL1dsMC8Ql2sHHieU2V7XSOqY7F56tsDnBYGUX7TqaFFbQ3IRrXp7AAB64F5gE4eGqwd1NrVLyQVG5+D7NSQsU5651KOmFEHMQ1nqeltDeuZ9e8lXyqPHam8bTVrLxBGxjinebXIoXbIyZhc712edJ+29VYzTs6oUi5UnqqCzbxWyYr+2hI0hhh1m85aMmVVTb2fWwezLtV5IMTsyJdsCzWCdVbMlnSgE/ibg42758xSIVvr9+FeKVYypBuw88zwWWyjvWQ1/71K8FCMn7r2XheZaxAEO2bqkBac+hbpTmjfZAw71HAxGTylXtPeNIE0jS1XImDTsWfn1htXJjb1cIIBdaxUAsHU+brELq8m/fwx8ZPsUmjv6435++0alHE6q1MgAMutOqwb+tk52Y6vrktllo+4+gZg+2ZLpB/rUwusy+znfOojWKCyWZU4M2gDELY13UWxnSKUYFqbq2drG0C8PXwzeAUl1PM6VLwPD2VNUQBwWDLrvAKO5TyrRK5xwo31TTZTjGbU66tPW1pE6aIhBlLrYB8TrW8C4pZOnkXJswEsVcwdZVahZJOqjusMLGc+CUvmcnIbXxEJiIYcxpBDjkD00Dlg+USWPZvluQBcfZe4LOrx1tMIQzZzyrYPBXheJdsxG0u424F2dcDe+fd+4DhftVcdI2UaK0HkZoj5Dus3xPFgibHWIsHNVZrruO5fCDz5AzG/Ak7GE/xB8CJczA8DvMPbiWZs8G0A1yaWPa1AL9gbiaSvzDZPRAJD7ULrA3ZMmL/AxNAxuwPtIoDTX9EPAP0FwA0IAkcwXrvK6g0EtlreiBhdNviNidYJjLlPjPGGx+Mr7o83jDm4hL3juL3g9fUzjtu56Z43PB4P3O8XrscbjmPg5YW+5pwTPicDcu1p9VoBcN5O3F5ecDtveLjhmgM///yO8xU4PzV8991vcXv5hNvtFedB9tHMRJmB7Cd7ARtIT5WquXr6UNpzoh0DPuqR6Q60Wayb19cXtGa43TpmMwwF3C+fvsHsJ/xxJ2/NBsYAxjBcF8iemheAgPcX+Hig9Rt++N2PuN1ecI2JK8vZI2DepBUOnAdZ63M8GLP0kG00sWOPCvyo+5buSrto6st0HH35+mAFwhNDhmK4TbsGuhr8eMq7+jylVxRBZtWY9G9cvuYVIcguMIzwGyWITLoxDY/huMbEz+9v+Pm64+t84L/aA/zfwLQ75dxZdtkbcHrD6dmQ/sDL7WB52oR0CJMb0y+VuA4BQxOmKckWDvMBk+JvKpkNZ8uOOnvnO/yaOK7B0uBIeyk94I4YA5iUA1c59d6uJCJUUuho/WRcuTWGBrz8VCjByRDNRKaUPD7Y37SFgGEPPN7vSspOJfpQtj3ZXzKu+UeatPzo55/nrhrgRv8extlpZgT3hnQxoBIlo19XZ2eCE6ktSRn+9LmpMgtIqCTLAle4ZglmPlnbsg3x9BP9Nxh2Xxpu8bUN3M6O8zS83G70E5phzLs+zzg1E2m7tSweOM9Aa0p4NL42Yxkm/73ijiStRCwiSiZpDLSbsd3pggOb9oYxSm/pvw3qLweO7uhoQJaDKcYhsxPCJZatT8JAbyo994A1x9HIgjqPhvdw+BWMiycTcCPb0wQQXXrjKf5Yvs+eJIehQLB+Nh01J4tUOgeA8BVUP6ouXyvL6VmBIV9NbTTCM4FFs98TeO4nm54bWJYYVS8ItAY7Go7O1jPNOHyCvlYTk4vJphq+s2fg/4yvvwB4Ws2PTRTC8tIMqrVP4EA02nR4tLi2/rqdXDyVOURSqY0Uszoc9BKpzLBYVAwivILWPPjrbVGfYU8NUHU9LLQRiLr/CnzB+mnThjbjs80EeaXkAqg4V59CVkVsWc0teN80Gp6iFDVRISOIFxxjdegvQAh7QLEUT112XzcpYAJ6+fPMHrTamICvA1JrofVOZZ1ZcLBpYQMzhcwMSQEYF8OrZMeKhmuuw421Tlx3QyqTRMdhCQrwPlapmxWjRKZpvWf/rkMvtZQKW3+P/hx4ZUkilQ2qzIT131H3IhFB1HoryIhEywFGEVZbShGgwiD7p6EmWTUw49/owpjYLAQGOIWN/TrYLLxb5/Oao1WdLx3cZUC2bDcS9iFIZM1JZ/WAi3bOG4ySI4DvnfmX2smcONgxvcPBQKf1A1n30WEwo8M+L9GxAXB8aErPsqDumSVCncMMLIFlaGN7LoC3XdeTEs71jqBDDqyAfz8cqS+twAW99yM3WefWqlebAp/cc88Vz/tK9h4NSTqWdcqD4MrIBuCmLkpGp4/JIy/9BN2aiyY+a40IJPBs2VIhBu5RPdfGrHEUQJAALbP6mYVbJyqdmdLhSL2ZWeIlKglU5j3V0lm+P57+zDHC1qwo21TlK/uYQPv0LEuBzixU9oJyBjNQaPrQyioDxdqwPAMmK5yOm0lumhIIMISPWts8/9QbCe7aOiOe2jKvpdXc7FvUf1LVLhl7ErW0L0gmnWv/+k5RgYfX9BYz6mE62r1KOT6WJpa29dyTPACCQVJ5yg58vLd8gHIM8x/TEJOs2PlkxtabC3OLVDFaSZVzI9aeJShhyM9pqVqRyS3a2gSpZYuw5UzznKc8Ca3atgS+v6zOgZ40QVQd2lIfkR3Pkv64zsLiKaetzfc8J0DSXvkGCkgjlS32kB8VobOfPpKVHKKcbu6xT5fTvPS45V99O7dYwDYyEeGyAc6+N5CP5VxCGAhoMAnUwVK0jji+EuhoXTbOgLb7bAbgAesHYt4FUrUn3zBh+0DArzc2F/cLc74BMRBxwYLhNhTs8pk7wgbcOqydujdTIkb2NQ7pFJV5edBGaU+5ilMJSbGv5gPTB9rxgLUX2PHQe8fylcz4s8iB902y5nXALP0m0GaHSgE5Ai3ZWBcMjtaA4zAEyOI4byf6eUM7XtDPF/R2AtZxv/6IHncc/uDHoGGMqUApgG66NvsTuoBEMvo6rJ9o/QVV9jcdfk1En+hgMNAB1EhFZJkkYALYqOM7AlO2bKofSCDmkI84MR6DE9J8ivklZlsPoImlJtmfAI5GygHByWWze+8EQS7HHBeTaX2C/f0a3r/+hH77jOPlW3jLMk5TzzklvqpvWcYW1EkZ9JuZfKRAloICxil4rslrATHsgN4WGA8cyDYZ1Sg/vE7o2dsTKyHSEyjG/WImzsnE7QzHCMcjHCMm7j7wiIkBx3tMPJx9bAaAx3Rc0/E27rjHhbtdeMcbHnFhBqfPYbI3W5uMR3o0nK3hBPDSOl76yXXoTOY0Y9Dp/koJDseM7LN2yY+bkiEmNx/qY5VDBgIhNpZ8WL9kfwkTufRnlJKdaDHqnJRPYUzI8toTXeV+bdU4AzqDKyJQfxud1yBBC342/n0GwhtgjuhW99XCVDYYxInBn0GMHEe67IHNfIqZt/5dZZtlUJZ/4HKK0lZ0awToSwtmiZuSjYWCQcx23RdrssuAlG7PH7lhWtS9JfsmrU6k3dHPaSboGEWs5xseaA6YG1rQrxzRcU32c7XBBHSyXRJbas2AS+0AxLY0Ab3pMVe8HmD1h+xrz4RmY6lu9sAVrlO+JPWSr4dZ7jgB0GYqYRShYwB2cCMyiQOgqm8qPNh9u/RZ0mc1Yh8NKpl0U27BCrCMIFA20xfsTH4RQ9niCz1DkXGcKtyUYG4ChnYMozUBU0Z7lT1KWRa8VRbpY8YIdDP0BhxKELQWaDZxtI7z6AQHy59gUv3oTU3RqSupBzbfP7Qw6Wunm/nkM/7prz+/uTjyQ1DZ27X5qzN63VMFHWvjsnwNBjQp5BRAyOGc6j/ERpBN+8OnWU3CXTrJaiH2YEiuPZiRiCrjA4w+aGQdZ9DpyqBAh3Ah6XLKPba+IZ0GqBxoZEiDpOJSiIjmurOXUlNh5F4ix2XJSABIFgoi0I+OpPE+xqMyJa4ywcwY5PpU09pEV7QOqVi2wvT8DdcpE91YfTcKlTUFpeYSvFklUkDjGjY2IfVB4CkRbRj9l6T4tXC0AA/svm77eujkZ4kTxGSpnkd139zsBQ9C2nVLP6RnGQyCCmz3lGUq2qJbHr04UjSoIaQb5dxHsmVsyX4E6HzDEDOBJzHTdEWfXllsQxfwZMzyGH1RO2jaWqdc0ng1ZqmNBtEx+V7L0bVNwFQa+2ygmCYslO3OPWHvhtYd1umYOnimftGkX6eoGtiHKZtOwZ3RMaJh4kCzAy72GxvZdzR7ADFY27/LY54TW4Gax+TZinXvZUx1ziXoVUIZyKRRGvUEIyEZXZ9Zp9nWPZAxoj1WnbJiNGSAt05Jnq/k6i7x8szaRImlwBOrT06nhaCmq+58IMDMoqmEqfcGbI3zDc+gtaunQ64fJ+Po4OzBruTS1SCQ8tLXeNowMdsFFMdarX1/5CXW/TwzVax6zWRPncV6Wjo7Xz+l5lxAjWVjb7WUZennOl/H2XXtWXsR9EpSFLabtqV/jRmvhpzUJIAd2XAZhRnW2QcTJ00N0K/HYI8TI+3ExXCiY0c2j2/2LMvWIrbMt9icq4RK0m456rZEunRba6bgketC3zydF9kWowzBlvVJDKP1hq6AjmnzUJXM0pMJOtZifNirDNDyzC8bo76AMNSUugDCG2JglduB+z+qLC/Qjo5kFnFp8pwugW2d186pSgCU+d5AxOo/pI/PnwsEaCkDYg9B561tPSRzLSJQjiKQiTLtkYyFlf3Rbdoq207b0moZW5laTJOuz88K6ZDch1XWpg9EJrYibYdiUwR7nvX00rmCKCZagACCgn/eQ+ieovRCbIfcFGAFgultH0BM2LyQAE+EY1b96yCjCmTMZdm0t0OlrOzpQwSl02/Ib7zDZgfsC1o7Kf/olMMVEfGcjgc4LevC9DcFuEMl6A7Le4zQGWQZnPUXoB1IWNCiwaLD4gCBGOnUJnBA6rqFcQCHTUTjVDqzjhjv6Mcd1l/Q45LNGZiaVmfW2btJbMRMFkHBOMK1vgyWmUgQUGX8MyDgyRy9G85br8E058uNDdDPG/rxGbeXzziOF/z8FfC4A3hgXBfCJ8YcOOAMHhQYkTmRwE/I/nSgEczCuKhvPRBjIq6BHoEWgRZkoASjHGJQOnBHa2oK3WCRQxlc+0bgMmLAY+C6s8Rr+sS8Luqm3hGNrBXrNzTrLNMKMvaiNUyk3oSCx4ajddznxHzcMccD0S8FfIYvf/wXtPMzztfv0F9OpIL3YeXDVQVBnQsISF1Nhk3HhmqPevyRTMhgkJn931onOGON/g8D5w14mzl0gCPYp+KFFluvKyz/EKBO9gG83ydGOC5M3G3iERNv/sA7+Pef/YG38cDljgvANZ0g1JyY5vA+8R7vmHjA/YEYD/ThaNNxhuHwhiOA2wncrOG1d3w6TnQlDDuLKXG2E5ySSeDngYERA+/zDSMmRhBw8jYw54X7NAxMDMUIM5ysmUmWcRsPwDgEZfaD/kAl73m2e0w0TCQwm7XBDuMwJp/oEECRGwZfMZFigiZftGH5R9YMOAzRVDWhLIn3jAc4CbIFYFO9qMLQ5YeT/G0Y2j1P/RpbaJUqOmRnJcdA5v3JVoUkjoOQaK9HVTlQvVcqL5L5hAIUCKgkexmIGXpuNW3PmAEohjCPlXquBQqIguQ9Iu1E2kT5bREYzrUYzgTN5cBjdlW/hIAnntdDZuB2ssdbQ4JlAm0qPo0qkjD5UslUJfiiUxlKquleimHmYNVM+S78IBIk6vZVdcRmS9VeIzO9kQzZdf4xNx8hSR5mIkwQyAoEugUOA0y5hJatRPQ9nZdyOGWvNcY5ufu2qgeOzsRFMslbIuMmOY8sL9UAp5ktWzJZb4hoeMeFqVg3BdLAPend8HJ26Wkn8NQ7Xm5NIhfs5xfZZN2KO9Eaddde/UADmotmlcx9CiT+O19/NvBU4z/zUy2dtFblCcxuhBygVmBNxjDP+ekMKBMx+yBEWEEBtElJv7RoFfClM8uJEqKwbgEmbzcqiOHBeg6KyqczZR1BR611rnwGo1z7DTxqJlaBGn/PVlMAeMG2PS3Wxuh3FJzJICPW6lTmVwFAVzOzX9Q2V6DwnEHdfltlW9kwLTcgFXWWRKxSIX1OpyvdrUupBSl4zStozXV6XOyHk4d5NZwlBbYLkAiDmkpS8213iTXJqW5ikzEFDs57y2B5v4eSq8i1zcBIykrUNMvJa4rxGDvKgKkEJ5tJZtlBiktvJcjcSjnz7lICmzLJwJ+AIYNSyzKdDHrycqypURaIAA/SGISsWE5hCNLB0xFH6zSaG9ME6Ry2A/20Yv37dNhxAAI9ZgIKKaqbfFDWJ+uJA2h+AG012Z4DaMnADrag9FLkoMVzGsd6VLO6NrazlAbsKRuf+17KI2RFvV6fZ6Ic7ir5TPGxWo8FKvNHPgesZZ33om1b7uv+fmCVjT313ErQKXVeft5SMWZANlqPORaopOa+BKQJ/j2usZpMSjZTt6Su9BIewJ3TBHvvtaYMsHhvCcxl6WE3Zo+d0SrPaoJrCTYkXOaSoeyPkUF+lcixyeTSodsa2nYWPpyJXWdlOXFeo9hPT9cRKCH679Qk0KT91j7tABliy/LJ7lQzzFCPF320AraWwB8ESKdcNeNkmQDcqS8jwLJOF/tvJrWZgWUNFaiv3L+2/UR/Wv5dB0fACWngDcdpHOV7smwsG4xnWjXtIu8b8IvlOnPOap763Dz/2cwuYCn7MAgUEU0bKlsm6ypVsibZBercsYFrPllIR3GRo0r31v6yafFaDQYaG+Bpct7r3PFalW7wXWbkEMkpjGRpNFP/NiWONHUqAA0XyMWPJ3vCfhALGM+v+lusH7gFsuS0TLvhWb9rXWeCrhlEFO1y6XaATDW4qWqZ8lplU9YQkjOWNjtCpVZzDPRj4Dhv1euBMtzRjwMtXK4onVUDAdQ5OVnN50M3zusXu9kbXGBucwV3aGC5WIP58lANB7xBYAen57XWOflWk9IsWp0jThFUkmQOAU8Dw98JPLnDbKCYwGMBT0CH2QF0B44bmqazZR8f91CfoaiNoZ/T4S69I0c9bCCkZ5oYz2gD1wSOW0dzw9keiHYh7EKbFwIHLDp6X/7rNQYejwvvj0vMNZZzhF3yRRzZ1Lr3wHkwUeOvYji0jk+fviXYdH7GxIExWc54nJ8B3GD9QtgbmZkYuJ0NR284bn1FPYN9rbwBrZGVc03H2+PCNTixuR+cWmgYePvyB4zHO47bC263V05ybA2X9GZvHTgPAgfDwamBE349cF1v8HHBxxuS3TXGm+SKZXapZ14/fYPjfMF5e8U1ea3HNUQGG4DfEeMdMR6A3zGvd1z3r7h/+QnX/SvL7Y4DGIBdgav/AefLd3j59D1u9lruwpitwHDqZfou/aCP3hu/sztcBYyxWP+tm6b7neyn1QyHPSe7c5rccOfgFnc2R68wJIdCsFG7K5wdwYT2cMd9Tjwi8DDgLSbe54W3cccf5he8+QNfxjvecOERE+9x4fKB7LDDVgkEIk61AGhTvZnagTgCZ294ee14PW4sSZPfQaZXYKj5Uu+H/HbKcKAjwnCF4wE2J7/POy6/ODVvPCgDAtsSpBuTvafGdGAO2LzQxHiK1hH9QKgFQAuwbNNB+3LyPLElhvxQM5ix4T6cYOY1xIyy1LPpM0hnWkOzyHplAdFNvqmz8f4YTy0PYJkcz8gt9N/S7IoRFUukNt3YvWUB5b+tmKosHVITIYA2R5oJDQ9adkSxf9kRlqxlyxWyt/Kz0y42sWsQDU39lTPxSfDT676I44T8z0wwLyBtOEvuZPqR/ucjAm/DMfS9oVUYzpIuD5YLdgPODjRvwGzoPf1BEkKmmNLDl8FkHM97OJrKDy1wdK79NbmKOT8qy+XOUxMh3elHm4aiOcGfTkVPnw2OazjmZHx9nDl1zspGN/kP9A+jGPEGMTQP4HYeUh4T3meVt/W21jErPQAKFmOcVknU1ghQeyXBM/HckI4Eq28EeNdwGeIVGYvAOsZ0luxqP28n8HI78XIeOI+GcV0Y46IebKh9W/FOlRNIWgMhLKfLH05fKbLaRontvZXBv/X1ZwNPexDGxVzsmKhDb1sYgXJi85BZY1NQt/1VCUzZOshYTpMuvEVyeXFsIBfWxurliO2w50nerwOsA5wv+PiM9R8pjAzsFNwk9TDBhCopgWUMgfq1fk8QzNRnUw64M5isZy4nOLYANgMHNVatGuh1z/n+FHh3OvK+PXPtUwWSuc7P68KbX+8N5BK1cpxWiVlm28ASiApOtXKhzJPua6HDVGRZ7tQUXNR27fsgOYkPkl37nsZjCyQSBJtzKmOwSjn4llF9pULK5uPXKsvU2jyv1NO/dhnMoLssCSQLS8KfAsAMVNzZ4C73YfVjwbJISy/oGkthp05LJB9hiB6wPjlFond9N46zh8Gyb5HkqUqL0kCEWBAKhmBAczkb0+FToA98lZ6WcYvaG7LHEvyJ9Rzgfa6t3Z5ZtNK6IIBVT/y83jXhQWuxYZcFRtXrfUGtC+zcLhnrY8JdSn7XWWv/dhlcDsr6d579bAifgXE9gr49sz6SVYLrNCoJnO3MxUgPJ2n7qX/cK+sTwMos6mFbMwXME7vG3uWc1iX05va0TkvPya0x+8X68vWWqwUyOQD3VgDE2mfew2KD2i+us8rQEnxbYGJL+naAWW6I6ZclY77ty3bPMJVbtGXIAfaoaNmYwAxZfWkm2v/EAq8AUcQNcz7r46f7bwv8mWkP93UyoB223QuqBCcbiS8llJ+zr1eWbIRAR2e5SVCjZtlpOiTP7DUg7c9iFQOV2qWbh9aS0WSle8x8+9yPZ4LP5bHZt9qFza5AIFeW15qt0hbUG5AZ7aVSo54jj1sekz06tNbqG5Z6bdm/ZKXt+ntWf0mUrEUYqgm9Pqic6G3nTecxf9asVfPyJYPrq873xlqNRCTtoy3JzwslcwLmLJ3yeWGOjhYndzQUnMrPsMjnyLWD7CPZBExSTQFpgWrqPHUWQMc0Ad+UhZTvjABSLa31dcnkgBlLxzN5lQFrQD2mVJrl8y49JrZTAk81nQp0eM3rw6JNIOhPeZYQ5l7XDa2/pw6bptK4EMhHviS/E7jQ+pg7LMvuWyhYzJ1v2sM8n2QZ0286wPYGDUGaBXuLHAbYgTOgKapNPbRuaP2E42B5vB3oxw0eAsLtIVZdg/WOdjQG5mmb0RCNieDGGkxMACOTw8YmuexrFxjXu8LTid6CYGLvmHPAQFYbNP47pwWyPHMgxh0+HpjXV2TfrHG9YToBzTEvZH8Sw4TPF4RfGNMwJidghRt8TszrjjneMceFcb3jur/hur/h/v4F4/EGnwPNbwBOrul4aBLiRbZ1nrPNdyk9qQRMa41ArDEE9PR1dv8gfVqgbEPmwQiGyG8NJ/jkk/2s3AtAaAZNYm5iFGx+u7OCYASZVe/u+BoTP8073q53/Px4w79eP+PdH3jzO+42MOAYpiEkFD806zis4YYTpzEB/9I/wdsJbxMeD5yt46UfeD1fEM57vV8PlUkOuAWOOMjimZzoOx4DLgYvGVgDAxMPf2DMiw3L54XF6wYAF3tlqNZIJbzhpRPCjAOSUp+44kcdywBQFB+BKsmGbQB80EcKU7P50o1WmpWWLvU/yoe2pVCXTBhvJYslkgQbyJdFqd0Eb5iPydhFvjeWAYiyD4vzvnmq2H9TDZolc+nDVU5imbF6grBFEoASVet3WPfTmYBnPCqfw3neU0dZ+phpQ01qvHaU+980IdMDuObAcOf3Zn/Ltjv358CKF0zdPKKelp81nd/FUsqly/8aVHpGXRug/k1TXSXzSD8LMCOoLGeYZzl4TXeWpPdmT/u8twZY7qfWaKGGvMXaEyZ9++E43DE7/WrXGnY1K2/tmbFm2H3c9Du9rrn0lq1KK1j5qpEYQtlkyvjhrdagBkgBeLl1nOeBoxkIgpE5BTNs3v2Tz7KR0bFXG1kA2dicDDKgYU2H/9Ug+le+/oeAp48BdrjnIJVyGnlYiYhaJsQA9dvgQyQbyl3MqA/09D2aqUz2dk+u9K2Bzl7HxgYye7rPeoZfrIs9LVo65R6B5s7NSWkDkDXzAGl0G3t+fen1Bm0SAINv2eYoJ7i1LqZN3Y3WZDXx3llY4Yv9kiw097UnyaTY94fGGLUuzTamwBb8pfI0XSeDef46SpEbUCBCZk4B3hbPekOoqWpmGGjc+ezZ46GMfjr98Wv7sy1q3mD8iVeUkYj6e0200PNmP4QwIKbKR5qh7TRMJAjVtmBqGbZcr9SU9nTTGZw8vzqDlj1AJ8JN5WJhpGya6SzRcS3AIddmj3BqWRJoUfO8VGBJ7++B3h3zGAU+teOADWUCARw9z85qTFdWAUCocWeWQ/lszLLPSabfMCQTxyJNrfYgsxkqbUznPB8j2VrFMahAWtfZOcsZTH7Y9yxh4znYSii376fyL2W38vw/Ya/6uNQ5/AzJRYIWMgQcXvD8VQF2eqm/8GjS0BtBLSzQwDf5qP4c6ZyYoeGoe4buPyJBjdBZ2+87wS4FNUjj7GsH4sO9pbzLywoZxR1UqJJnQBl/PJ2TnUGWCoO6SG6h7a+jUOfI6lzv3YZlkiAnN6X+WoGvHMwsy40FOlWJorakphk2spx6Z9CWOuM8UxoN6Ja+s44gH7RE2ghe/amSxXXvG2CDpf/qtZpY17tAp54BEoqZR1bS0tmBzCzy2sweejkdZH3kvTRAAw8+giwpoAlYeXnhTY5woJrDWwJjXSznDejadS+WjHuWIuruxUetQ5fMPsTa03Rny+IHygl7cudzHdsufykTYjn1DM573WdTX8JkQuea0Pbi6Sv1aYFiT+CvnjedUZgawWv/G6qf2fSt7KvWfV2DunFPoCzne/2p+5RTjeDUrjmuur/26UUylgLZdEaVBNxYvMlOntMxx5B+C9lJBzDgMITKQsLaKgVohwC9znUmLWQT7JCMBvtROAMHfq4YSeMqsNP9UjnlxJwPyVWWEKoMrMqnAlX2dlAG2b+wK5gIgiNZfp59g8IKiEeweXOWFnZnUq1FQ4cArxZoHpre6Ggz4I3/thZkHWCxICLLIJvYWIBaU0yxIMSKAWCt47jd0N0Ba7jmEE52oPUTvb/AwL+3fuI4XzG96XNOOmEWaMeJdnb089Cob0c7BvrFvjthDTgO7ubUZEADzlM23wJjvAG4EHGxsXHvwOyUCWvox6nSFse43oEYQAS6OTDf4eOOeX3RHg6M660AijkflLMAwu8Y1wvG9QaPjumBx2OSATcd43FhXu8Yjwce72+4v/2E+9cvePvyE/zidMMjAmYE5DAe8ASezJETq5LbVobXtFwCkY7jXLHG1PuMPuD0pVes/MaVIM/kkcMx0cV4IhPHfIPL0wcNnqd23ED6CJm7A44rAm/u+Nkv/OwP/Mv4gp/vX/HHt5/xL4+f8IgLlw0ObGpMTsCzFAy4mePWOr5pB156x3EcwPEJrmbzw+44jwO388R5u+EaF94fd/z0eMdjXBg+cPrA0Q98gvp+jYn393eMIJtrwuHGqoQR2lMfwJw4xLTKKaMeDoxL5XWzziAxWQN6QzsO9fICoAEOYaiWp66AW+qOwX3rbMyNUDlmMl8ybigFjOQstXYsX8xprDfNDVjQNjiZb1nWb3I5m/bOlLha0mTyJ1YCPcvJAgsIYkeaKJ29A17laubPYwNfYrljeT/5aAb1mlrmgcl+/daxlgLYYEF9Tl4j7bjPBjcnw3YDvfLS2Qg95sAx2Nv4mpMlnu77XCA+ryocphrl95amjHvVZeNhAhLd1AJiJQ8XL1xJEwBsNs64jYmWeqSyZQB9oQbDKVvvI8rm04elI8eysgTSgz0ztTPJBGKovbhvOcyJ1+H6nWermNddWKsBR+f3KZCrtew3BZitGMKMPqirTxaJMEtC0u9df7dNjNa95Xu6Awe6BoWQ5fmiiaV8Jpbb9d6r31bKzGpdwB8kiB+ROWi+2lW+PIWPJNPgY8L4v/f1ZwNP+eBmOa1oy66qv04CIUl343uUKehrAfmaqSae2VQzvatcxdXPBUA5xFmeUyyePGXVWJAIeo0a9FX/2xoPmbuv6Vb6UNs/X3/xtaPlPFrbEUlNPZuOfrD5GtwRBwoEKI2SWjS/PNfzIDURDT5YJrEe+5fgGdcisNP39kxzCem2Z+zNAQkTVsli9hvRO2ZkU+ulTVLwypZmgDejHJhuHTWJLYBDZT1uVqyYbCbJr9VvJY15Pgek0BGev8wwBQVWKAhefa3wAXzQslfJX4pJrEx6MJ/bmmiYvSXBATm+cp2jlPVUHFYyUQv9y23iOVCASyd6KQ6us2QzuF7ZU8VHUkNB5yqsDn6YV4BSyif4nSUxDAQM2XMi0GBu6DNwvLyyB0RkJoTg6a0f9VxzqE+BmD7jmrjelWlW4ORiZVzvDzl8J4U6jeiYqyfWEjHUxmM3GLb9+ay8SvZSO1Zgyd8nALJPpitZ0l49n5MM8pL5AckaP/8pqETU+clm1wE1ZE+dkSBZPmaqpXQW8t/6H9+/wAEzoB0nejtxO184nSh1V1LXkPJDGUhQwuLgmPOkWyvbUywVW6bpI8Mlg7dlwC0tjl6xwO5yhGIFjvmaBV5n9mXtz86stHZUIElaMK/FUd+/3Ke26ajj6Iv23E/J7yxg/snz0JFceqxcPPmnxl4v0sdts0sZ5FYPj9zbznXyESCpSXtYup0far2JpZFOHn++Tz0FkO2fFmgGg7WJfhiODk3is/quTI56lCy28XpoD7EZavLcwmsX4GccA5zAcklEIGmOkYu4nbsn1RYpzVmQsIDEBEaKvvn8CUg2jG+gZIJL2ScPG8hlLUFp9oHDZBC0Eicpg2t/c/9b7+hnx3E7cLwcaEdHvx0Y18Wx2nMgLq9R40tWW8npcg4hfSG5Trk3lB+SsU+z0Dmkr9B7w3EQEKhA3AeeVjUDApV8N31G7a5BZcetbHitrcAnv+643DHmgHeVnFnjJBtjKQ7X0vU2AjxkSnHUeIyJ0MQ80mrY+4lYyslpa+cNrb+w8fXBkqzWycaxZrBOXZVn21XqUFN3IhBzVHnfuN75c5+o/kfBZBGynULa87BsQcXPMO5RjAuz359YVysQtfUz8L3qy8/+LQIck33VGhlDAQJO3QDvApnKFwSOQ+WLNb2M39988y0nh/WO23HA/QGEGqaPO97ffsL9/SvcBxqAfjtYUnP7Bucc0mkNwAusveA4PuHoL2jtxHE7gTbQz894+eYHmBH0J4AENMgPbQQa7/cH5hx4PB6IYBkMphjzXRIWAQPZS/My+HzDuH5Ga9zTgKG3AxE3hBEMvO5viMnG6N4C83pDjAfm9RN8XvB54br/jDkuTB+4xnv5nffR8GgHrJ14efkW7sB4DHz98q6R9475GBiPC19//hl//Jd/wfuXL/jy009qYg68hKOpj9e8fcXj/Q2P+xse96/skWkOn13BbEh+dXb+/5z9bXckOY6liz4gaeYuRURmVs/0vJ5Pd63z/3/WnXXPTHdVZYTkbkYC9wMA0jyyZjr7eLU6lJLL3IwvILCxsZFsGi5JZs3y4igxtgy40kcYaw+G/zZUOcdgVE9quFSEOjiXuL2lhSvBdDPXR2Lw/Tj48Xzw8XjyPz9+56/HJ/96fPL9/OToh+s0tRMpcGvegUpSUBjXSd1EuLedW218ub+zt51aN0w3Rh8MGXy2zzjKC49j8HEc/P3zB389Pzl1uD3tnTqE7fzAuu/Zsz9dMwqb7C73g9ceLTZQFXroRtlQ6AN5npTh+ye6pWCtIduOtI1y2+npeyBYa+6njsO7uKLsrbCJA077dp+6jcdnoZdOLxscj2Dwdd8zAWwtH3gDsdlY0usb/RytW6FshUGhj0rvld5PqIb18HGHIYMXf9tZW+GTJdBkdcZrK6aJeEPKPBf8fL0yxMKfdhPunbfDiZxnNwGCqZedFXU91J4SAXEaT2AqzocSwNf0rM3TPanLmedvbX54tRIEhnTv4hk8/2yMo3OcY4JeyZqUdP3ipbJ89qFeBd3FWVNtuHaxn5EXECV0kMMc0UeQWTKuzXEQpjREPm+yieYfS4I51UlzKDbcj9qqJ+cwl1MZmjAi1JHdO50JWotAizGM58wSxXphmLWqsEUBd8GZmxi3BtsuvL9VvrxvtOYsWo/HUs+pziSeRlzV2rZwlRHEhBraehmz59hkbI77JrV4Utq7PnsCxseoTlJIbQVkczsmsjy1iD3H8Ji0JdAecXRqtDLno1JasK5KCVbuSij/W69/B/CUTlhmnj1LYMYlOPJFkRoRkGVD7sguR3mBAZajwyU+lev7VzCybkUum2zd0xRfzayi/YO/zTu4AC4Tc8rZ4TVQyHtaJR/J7bBwiMy7H+Q4TebOxfn2SGN9vsaBGIvJz8Jymd3l/M97FV9Eef8/A0/L+WcGzdN5zueJ32dgt7K7YWkiqJGMmtfDXgJru0Z318uySp2CvZNXnjewgpvlG8q6foyVxb38vIwd+AinQRZv5g/lHi9TLvO/M2AzLhs3xzh2oTPZ5FIu8LoW15qRxe7LBSuX9wbQ5T+eA/Y6ji8vXzuGRBfuvO/8uX/YFEufIx9MlgBxpXiG38vagk3TlDK2CBI2Sjup6tToKhIHQoJi3bMow1tm1qIshRwfEMtSuz4YvVD7IB/WorxxMp2uzzbLwggHZv7WnX2Bn8sL5/ilkZ1zfp2bNS/TCWCeRT/ZAluYxPX68b5ridgVeMpPJ4y+ZFkJ6x7WConsyM9TbJd/ze2AFbvYi1enONfzYjUGKyOXh8URKE77dppt7LDIJOa4+UcEiPLTfsnySi5jl9/POTdbzycXr+Zll17AprQ/CcxAgPevA3E1z1e7dh37GdwR2g3Xs+Yyt9dSC8txSXsVYzLvK0kQaXMurJs5FSxbGASDCSqS2j6XM+zF5M/M1lrk0ym1zKIHcFKE2gjWE9GhDKRe/vBa5jXXdc7lZSxsmZc5Z9fyovyatvYfnY+Apn2Vi/32a6lF0ePl/Mh99jIevDqpmUbIzob+OGUCcNf5T3ss4vcybXdZx886Ui9nKzZL62rbaJszQtpeL/eXXn40syD85zQKl6ulb5NlC6iu8pDLZ4KDaiVvTIIZVkP70QreD6csB9qtPUKwuWaS5HUuckzTbr3aldibOpAh9N6jnCWKfDJwWg6FA3nqSbMZcYQhcFFsl/T1LmzRrFwqpe3UdqNsd+r25mVhrXkXtlLChXFWjwNsJ94BrTM7c45obDFOZzaNE9XhoxL3oFF/kUAAqZE40jZGoO+LI/QO5QI8ZXllaFZEqWGWwcj17A9AH7K7oyIlSsdHMLUs17gDiq7luc6FXIO1Nfb9jr0PVL0MzEW3T/p5+JlhEkwi9bVZBBkH9NMbT5yKWmFoYS/bZD9t1mZZRwZutZbJhtTRnTFZhdYqyiecJ8XKFJ/38zeF6YPZHef5uOy9UhqtnR68t+GaO8mCi1I7i452ox/oeMbPT5/PfkwQyvpzsjL8HHP2XMW/13PQn5/08wo8dY7HB8fjwfF8Ms7ua9VgnB2tB6U8sfNwgKs7qGucIN5lMfoo/5Q0vtqJqy2cVixPvBUXTNvuG9Msm+14MjET1Ot91/26PvtQ47DBU5W/Px98//zk++PBv3z8zl/Hg7+NB087GdIZ0QK+VWFvjS1bn9sSIG5SuO07W9vYbzeqbAjVu4yquPagyWSlPul89pPH6JwCo8AQWc8ynLJh6t30hg1nw1zsBjqcAWTp38QJYVxKDOWlVsxEPGGTUbwfWhPoW75JjJUV9trY6sZWG7cAnoRCU+GsnaMcHCOAELU82P3gjO6ZZFwoTBKABApV4xYHFXphdiZEXXunjmnX8yz1M/3iIk2f72Kc87/ivaX4QZ3aPbk+8nnTkbuGYRkr5GfHrnNh8PyNapwZQYpI20TopEqMZ14zKlOclZQogpKuWEmNVF1sbpHoJHfxP6/VjYFnvvo8LJ/TzPtsYH7cerLfWYVFs2GP/1HNGFAttCk19P/Wy6a/tu7Pcw2epF/lsHIB/+J9MSS+LG2xZnN/X8g7Ndh52XDEppDYH30DCRZxLYa0ZVv2BtvmjKjUexLcJ5zLQDJG9+JukwDj1IL1x8Qb5prB1+gVGM97SraUWIjLzzhKA4S/+Mq8vhSPC7yRmiFUzz1dnjrjrvT9Xbz/j6PyZ15/vqudLYd9lUPoZAh4LGlBeshOR2tFmgXaGP997YR0DTwyoF+PzEswWBKls0sntwk8ZVYrywXWhV/aF1+dWxKEKRPUSaHs63t8AcThKZCtZROZ9jKW1Sa2UGZmdj3vimay1XkJ71qKf772cWFv5L2HKGsptM3po2OMl3sDm8GZaUoPrsU4nzsnk2QMXQSZ+WkBSZmJBDPzjlvT8F7fHYwRWXPmxoxw0GU5gBjZ8QZZzAi328maMszSoq2NYtgqG2cBa5kpd8ZTjOcliJeo5ffby7UbFjQcIgtWmomvrfnzmOcEJnh5zOWuXCKQy/LNQ2hdZz5fblfxIGkGFKET4YMu83MWwOKGR8pPzrA4A8HFTKsj0FQoY3pOpkrddlSVNnoYWpttNXOetQjWByKDWgc2LsBLUGlNzZ3Es1OaMLZkAnrJxji7r9HwwK6Onc05ZrEb5vC9UjZzD9bcN8Y0uszvw8GT9TevduSPr/ybK1PnBSSAaVN+Fh/PuvzM4Gvey8WB9am9AKcJpqTxtgyycXo7mc0IvyyzsJb21BZYMA+dJWoPax8NyxLKtWZXmZjMcZ+Mp+h+NmPTeIB1cIXzk3oG4odQDrHfl8xrrwBNeDkDJJkduQf/98mBzFrVYBQQ50spucXqHNcxwafcfOFAXq6VdmYGE5EFNzzgEpN5Rkwzfd3jE3gKh7tEJnWZdJ9zmd++PHfCC+US/NQQg/V787K62jxZk05V6h5laXYCTL5XfYxzrcz7D7s1neafHuVawjYdmJebjt9bQNoirgsXv52MvHj/ZIdJrpN5KAIW63ExSeddxJy4hod/vunruiiXtZKe5Fxjl6fIs2Q63KHj0vad7X6jbs6Ayozt+DzmGZRrSwHRV79BXj6faXMkz7YiyxnH14QGy0hKobQ6WTGl1WCtGpnxcVZXBgwLNE6UMx3Cqlk6tNZdxDTTbmXZ4OindyirLcY7zvkoK0P7BA+0e8mMRBLC15A3PCnF9Z6gIq1Ry07b3qn7G+32jkzgaWPb9gBDWEDSOMEeKN0d+GBq+zl9eolUf6IJPmGXgJRlm4w4CwtZOWVmTpwuWd5ymcsSZX/SfAyiL3Ta8WXJba45VQtqAQ6oFO+wJWV4kGTJJHIh71rb3L/TRzEXaJb7nbYVtr2EbtWJ6kE/D273d6RsnMcT1cG+b35P/QFygJwcx9NZGEPYZafUO227U7awv6Ww7Q70eXdoZ5Cd5+HzJsK+V7o1VJ4u7FtGRo/LSEV5LQFanufJeTr4VUpl227st3ds32lFGMVYnbm8jOocTxcV1xNvb5nryoEn0xPrByFd4qzRyKAXVaAyhtAfH/RzME5lHIPzOHl+fHA+HvTHiZ6KeUEAx/OkyBOhUo8n5/Gk94PeT4oGah9nn3fxrRMsJMqiJ4P8cn4T9tndUJ3XWLZLpi3Nv3OwSy45gXXGaCzbUitaCg8d/DhOPs+T//n5nd8/P/n985P/8f2v/JCDH+2MNW20Ktylca+V921jp9BE2GtqhglSC+22U1tDtoYNL/U5T+U4Bv3sPLqzmgbKpz357Ac/tNOroFKDoTWiciNoN9GJ0fetAwUWzEV6n+6+Q0GFgtLiu1oLZasORKmg4p//5GQQ2m5HdwkMDXA5O3IWB7ibCF/ub87mavsL8HTUG8/j4OPxySME9MfA0YJakOYadCJeHizibJFdKlINGV5eV5OxbwbnyRChm4VEyIANN7AlWGx+sM3zEWT9dxmX8l0u/r2f0UvdMf9aXhyFrKbgGs+QZaP8dI4HMESkMCTxPJdQuTb02mSdtzXWby0xxeoJhzmPIog6m+bs82Bx/yrq6aaHFW5zxizxyNP9Elu+QO6DrkEOjwoL98V0+oNNyhzjEd04tV98QpmhxJoBCdCpFVoRWg02FZBl5QXzEtXwf1P4PJujGM4a9eZGMcbNY6nsFped3ryyI2/I/W+NMWw1yjajTL01Fzu/31r43YNS/GRdMGPQV9ScoZfxeFy7vJwty0dLSZFXfCKXlKCjw2WNRSHVtFt+PW/8hbwmlvsYTqIJfTAJcocF4gHMiqlai9sNDU3ZDIL+xOtPA0/L2U0hqbUV8iaKOOVwBHiiahzH6b+rwlbz43L2wjCUegmowtiXtXJnsJKOXm7EiVi+AmI6Qs+k+oGhoUUzostYtgDO688As4QOSd6lLMYIc9KS/m0T6AJx2lxqDoSAo830ZZTUhNBkBgr+lxI1pe566qW2IQOl88ySLOP5fM5F50GZgwLXEp0VZC1DlgFLtjotlo7q1Zj+/Mq6/NykFwRaPDufQGMehJiFwG+MSxGEOg9qM6WOMLIaqKy5rkJmIWUGsBcfKZZcHuw6ViC72mX7xnfUXJmgpr1cIlqK2qpRRaZOjbA2MDBLNZESoOIlJ/YyTw74JRBrUY6VzsjalJcHSlAmMrv5Nu+u5WtRR1wHBzZ9uGyORSuVVhq1bmz1Fk5WCIgLfniNaA1vuECpKs2UtgXNvxT2zUvtVAfSnvSzc34+vPY+BiYNTh6yKTDXnGvugZK6rtvoY5Y9OjDg+8Asx4OLkZom38fD8voJwhpGlLuVOtexTv0xn7MEc13nZhnHdYYuY50iwX4Yt8nE0anRYHP/wSVLUVaXyUl3JeLIjE3znsOWZCmoqbM8SpS9+Dk7fC3ns0o+T1KP1TuoAZjvMTMmZdjtmcznzzK0CfpEukSum8kcHLiWoqpy6UoWn5WB2TT1ubZjPGNsIuyd+8R1LmKPJ2WXZY+yoUN+/2+9LGzQqR3Evd4atmbZZ7/JWgVoNCG0OyRKaeu8z3z5WvZDPM+AIkJrzdtTWziUCRDmfIshRSnV15COABQIeCkcvgQHDUjR8NpWVq62pbEixYWGWwiM5/oxM1YCIGwFChMEDKORwRFClgn8wQWIsZhJE9VYnPoyMrlHfb9fOsFpaiJdkjhKOFuy1pXZBIyQcOpirdSrXqGk3kqL/aEOEETJuo4xmZYJUJUIKv9QBiPeCpwMyPad7RZf+0Zp1TOShz9L1+iIVBxUs7BlXr7g45Tjfw0b5tkwTXn4HFhWQsbUuK2qNcr8avH0r4sNYv3wES94uZpLdDqjJzbdiGdUgx5OYKluf2vJjGOF1BUKQ+enR/xGvATLz5gIKrVjwztSoSdo905cvYOdDryId40stVHKjVrvtO2d/e0X2v5Ou31BtjcP8mtzICTOG+snqh05n9gQuh5eWjM6OoR+dsZ5ov2kH86WsXHGRvezxFkbBBDpDI6MFCYjxVgJootN8hLCgkmU+kmlNHMQQlo01fBtMzP5yShV9QCiBzCK+6dbrdy2zUVat+pl8KKIjLBPYUstdbIK97evOKt3YOalhbe3ryA7x/PJ2U9u+0YR8c5wwzsOId9p2w5yQ8RLG+v2RqvNk0rRIW3Nt1KBdg/bWIR9q5j8Tt0O6vYM6S1Dz2eMn2LjQKLO5zie7q8/D1Clto3b7cbXb9/YQh/IzZJr/ShePjOGRzVu55t3phO3FSN0hnScqNf5cZ5KVw9m9TEcuCwb+nx6Oc9zcD4659E5fjw5Pzr9OTgfkSLy2MzL+IcHsVur3Padt9uOlQ3VikmLYK5RayMcnWl7zh5lycGwIAI7t1/h31evMKg1E28RnGWZjll07BQoJSqO3B5MPqUIh7oezt/PJ78/n/w4D/7l+OBHf/LDnvxdn3zKk8c4fB7NS5Tu+ztf68Zfbl/4ut1pUqiU0DkynhhdCocJj2PweBycx6A8C+fz4DxOznEyxHXJDhmcYvS9hv2L9QLBls4SGz+/biE/UUtBuqNaxkmNpPq97lPbaJfGJpWtVJrGMT2UTue0wYcdfDxPjqE8T/dpCH/FujsgrRRurfLWNn799o23tnOrG/d6o0qjlsZjO/nx+YkqtPLJKVEGG93cpDZqdv42qKWxlcqX7UbDSwKLDbbQdnwM5eP5pH4+sPpJ751+djiORPEwGXDxzyfSknGwXdhu84xgnnmYY/35t1KXb2Q9bN6sE89YwxMPJQ9kLMBbC/DJqxDEYv7EEBnut6nvx1417L/QirkECt6IgJBLET+CvCNirN569CinwyU6JMGuZMfB2d0GFMlksH8VZIL8K1njZ+kw888k/W+bR+jZLzY9YuA5pHljvGLnIl46trXqnRtvO6G2CVnWTdhm+8fzlP99LSVrHRJs9gZdmQBLIolO39lskB5221zHqdTC1tzX27ZK1lAmwSUTtJMoYkRspPS+JHT2fSfJKr2f02eeJeu2/JHlSztYpuknxgC6bdPwJxzoMrHomhjzo0ZXT1iX8HtFoFUh5XGGjigBJPRIy9RryyqKP/P6d2k8QYIvGbwt/ytpePmgpKNuIFH3PIYH5hKBtJ/zFhReXq6pudly7RJOVB4ewPxlDn7eR97T5b9/sgbz0HYf8R/XJl5/Nr+PBWzmme8CWKThZ3CSQUiW3IkvshQRny6+ZXBxzcgvAM0u15wOrl7H//X+XiZ9rcpXwCjH5PL18szz6uuzNa9i6005iyvbSzhc4hn+oIL6rk2EOXShzEDFMyJWJvtjzkdmJuc42Hx2/zbmMP6X+lIZJCSgtmp/Ywwuf0uKoieryFhrhPzvP87JH1fJWv/Xv5u/sQxIEzxwg/C6j2QGt/MAmvOUl7K53v939+Cghmd5ScAlnKX8ed02ssuQWImMidC2LcCLpdc1Qpi3RPtOCQVIDfZFOubgxp3o5pzDkP/ONZxGLw1+rOuSwfPPT2aXcci3557Q65jLjAVfFu/lermXfh61a1mfmfy0T5h/NLeT5UfYfKZ1/csJzLrXeY+5/octpmiuQbnYKrIkJHcZAfZdADBZ9z71egLoUJyRqRp5CrnYB7tk96cNSLvl95kAyus4/DQ1xuVgM08OVqHYKt8VCaBBQqsorEsmFRz4WNf0YCpGJbnJInNILSdRQGXddwLBealJT57Ajmvc5BhzeV/XMcfVM4XlpQxxZcOv9tL3ooM4FycrgbtwVHyfFdRGlM4JtaU98SBqZitTWDzeZ0b4Xzl//oR5TqxyU5v2uCQdjCwtcDbOAkUvc53zHuvNxyPXa3zWyxr4w+aZdtVtjMzDI3wl/zfP+5z+eQwnkBRM5QSdRC4++NVL5A/fr7P99dfGKrUrtZIlyK7PkWdS7K/qCZBZ8Jb2nrBp9tPnXz5rgq/CGqvJvEngd92HplNsigNFsYZCU6xQguIf+zh0HF3tzctHjIpKjWxllpQE4Jai1kTr91ajY3OAw+asBhsnNrxUiuhOZvll8SUG0Uq+trtrDW3XrztsN0yytKXFOMTeEKHIQGiUKNczKw4gJfEq9B9teLIqowonZSUzM0Gn3Fp5ZlokjMN/SvZhAhOS6QP83DRv3y7BeJlrfZ4nF+DY/EyqAYpuzcVZW2vOdiqCs4VcSXb6FhYaHu7ykJ2DJJi1Uho7hfv9pJSdep5sqfHUNky9XEy1xfpolLZ7h7souSvVGXSzY0/up1yiEmK2rbHdDCn+WS1Ktaw/CcoDoz+CPu4Z8tGV2k6KFLbtxu3+xv3tndY26tZIEK2IIeP0ko5RI2NRfU5KQ0rHKK4PM4zR1T9DRySklN4NanXwvgrWnX3Xn53z6cDT+ejOgDoDGBRWeXyWYCK0tvF2v7Pfbhg7XZvfT2kBbDnjzUraZBdZHz21x2zaKLf5niyQTL4sczeTbdcGDul8qCwj4Qk7QYvwNOXQwffzyff+5Ec/+OgnH3ryaZ0uCkVpouxS2ErhXitf9zvf9jvf9ne+7s768QrTQXZ8fA7jGMrv2nkcnX4OyhCGdgd9GGQq7RTXKBxSmGnv4j7dLN1r3r6kksCb/1yql51SOlUKVSr3/RZnptDw7npbqZRhXo7XB906p3WKNsQO2tnd/pDC1Q6W5PnhrMLqYGfb2OvOvdyokdi3Jpyts9WNWhq1RIluNpFozc8UA6Kcq9bqAuul0hD2IuyRDKhdsVI5rfB5Giqnc7jSidHgyKbvnfGCrlVR6lqX86jI4zB+NsO2uC8krpExzSV+nvGa5Xm11uflkCZjC2VdWwJJEjMYF9BEABMqC1hE05+A0soqu6sSSZSMy+K6gvt3MHXyQELj7AJzWJ6Nsvz/NTxzM8Ut+d4xnc+Y/tFLSlKMTMELl2OPNSwkox4JHa55FOfpPhnz15vJeGJhi69ldtdu3migqpY+o89N4tq1yquYeJ6/c/pyTNYNlBJjOLVqfQCvhJelCSvze7V0N8R37IytwlDq8pvXvxLX9ufWsKEa3yevOstz05e2AGYyRpL4f+s51jX/zOtPA0+z1MZW0JxMnVm3r54ls3BIL/sDNeE4x6qNp3jWQ6M1aEzWWqkLrfMfDiqVre6TaXTNvAKM3mcwkxmJriv7WlubE4lk/e+qU9QoX8sJvk78dEgzDRfefI1uYI6qjlkWZ+BoNuq0/63Rx0mu+BoAmo7YcJFtLyVFpq/ddl4DA+/EVF+AmSubQEPRPsdnBasLYJuLV7OUI+jpZp7ZsNf543IP00AoUAJoMz+AS3WAUW2Eu+v59WGr/EOHu+BSCjJiM5pnskuMVRIhJmvAXBAus7tet+8Z/uP5nAj0vu/+CF1neYiYhJAccz48oeBMOxcclRkEXqPYUtofwcBZHnYBO+da0cvuiyeO/SLiNbTJnAOZz+lMNQ3x9ldk3i+lIDV0SAjDFzTHEBVGhFobbb9Bqx68jAF0z763ndv9ndqqi8xFdtazhu3lGZHi++nW3ciceBaaAAhKaEnUhrfH1rVViRLPsgze2qrBOrwCeTXWVxxQJUCZUgQmW4qZHZsmwq7rf1m8qRmTwE3YI1+/lwgyjOUYStTPznkCb+8slpkED6iyGtTnbGDm1G5TW8LOmbHKqCY+V7J+25x9UAgmTnSCsmKeiZyAXHCEI8hxIKkGiysyJ0p0y0p2jDuMk12YrWMNd0HzwAmW3Sptitggynz9gF4Tej0o/RrL+U7nq7XF3swDqlRvbVu3Ntd0V6faK4rUdZDu+53WGrVmxxGmIDhWwpHycdV++ezIROVe9qjPmUsgc23MPcrc3nM8pALREes4e+yvNJw5jw7YGkZpudIa0IIxFqUrrPWWYzu1CFq5gK4BtkSWrDab7XfVJGjZZd4nOJN32zb60Hl+zkwaYUdiXeU899NLkEeULeW9JmBZJjjkY/UKqOrl/IlztNa53+sEa2JAS0b/Pj5SBGmbBz/pvEZAn4zduT9U0JITJLP0HZLBFV2TwglM5zIBB4s1kE58lq87eLlYYC5YvzHsRCX0GdWdtywthDi/L47ULGeI760EaV6cWTkHofjZRCluVlqjbs1FelHQgtQ22ZOtbbOURGo+p/k5nnTE2sLvqZhsaGlQvUtWZhxLbbTm3c5abbzdbuELLJa2jkF/PkjwAT2RKJFidFSd8UQplH2jtnfub7+x3b+w3b9yu/1C3e/U2xtWNgcYKLP83aejedBuO2I9dDCas5C0gIYOzYiM/xBEi+9pBR3OiFmgUwYNhcyUG7ZET4oFsB0xQaJQGiCCDIaIl0M0wVqY+wxUjGBpB/Nwr+zbzrbfeLu/8f7lC/vbF/b7jbJvSC2o9WDxnIg0ZoLAXADbpIRQciyJ6mz42ipv78K2d/rok61KjCSmfPl68nwenH3Q9p22e6md1BAzrw0SpMwojPRLDJOKsXF/u6G3QT+f1OJlNg318jft9ONz6jDV8gORDaRho3N7e+fbr7/x9Zdf/fPEuzKqdhgbWgp2PunAOAXT0xl7zf0iLRunnhzdsKfrI4h2eu+c5/BY4NZiPirjGPRH5/n9wXkox3Pw+HFwfA7GSfABU7tVptA8FO5v7/z2T//E/uUrwxrnqIDvjVIcxDNw3aLh43Scg8fjnJIVLt4dYWcApzoW0O8YgYv3n+Ffm9nssmghEuOdHRtWC1qEjvD35yc/zif/+vjg+/nkc5z8bTz51IOHndhm3ET4UitfWuOt7XzZ3/jnt7/w1u58u71zqzcw4fM4eZwnp3Yew/jr+eRjdP7WD86QGBH1Na9VOUlmJ1CFgcS2KdP3qwiNwlst/LK5WPl7rbToVteANsTLfRWaVKpUbvd7rMdC1+HHrgkc3UXKj8PBL+3cxpO3OnicJxuffB8PDj156KBLwUoyQ2T5sXVjqxtv282TAwM2KnvZuLcbW904VV0faGvIVilbhLSq2HmSjYNqdbDpVhu/3O9srdFqZT8VaXd6+eTHEOw4sfIMfxogtOPUE0OefPUfZ8fnLUu50pfITZ+ARvgk8/sBZFIrji83RH7WDovoQELWJWO78CFnVGU6Y8SZlJd5HNIjjqhxpmuVmRSqmfiJ7x1YduegNPe3qhWX3LARCePwYeP+0o/SAqrur0zCiFqA/M7WTT3eldwJ8GKidTarL5IJVOfh64N6hH+dTF6PRX3vDYXzPL0BRpaoxXtaKzORIIWlCxa+7xiKhnaga1I7k9jPHz/DtTub1cypaw4wuQabiPvY6bu5z+1nvenVtsTjWsbffqZt28Z5HJy9zwomBM4eALMuv9KXdnSEVY3xipI56zOWz5Eh7NYsDimp0U1odxnOnwwfszYMOMeSQzKWL6bIiveT7Rmr+Coj8W+9/h0aT1FKQZZ22NxpjmxqvpEsnxNsldmozWXknnge1bI0IuK/M17LH7nxL6FnoVE9ko6Iv2mMZbSWcLZnoGYHvDws4uLe5lRnMJPPOSn2F2DHoiyrRNnG6oT0Cn5JOLkLuHC0SEd2cyJa3q7ra+grOIhHBJTL6a2h1TDLKuJvrk57vpZOyeXeJ4jkA5uHrY+Rz5eYgzp/ZEFlho+gvsfhZjFXOaWA4d1G3PL5vGZgV2oiyFF2GOp+EkXKGRDk/GfZz5V9ABlILLFMH+MKIYrqwVUYGXwsmeFb3nJSC6NzUVBYE/y4DPP6Jq2srQvNDCnXtbL+7hrgThZGvMmDUQ+acx+43R/QIxOe4zFBlQhFBaZIcsnS0UJLTZygUph55mJoCM2WscpnIjPuuX7LC/oDlkgn+Kk0qzlSCDFTGhOQCxRfwvGqW/ODO9IAMmLo9PKcM2aMgwqm8+5acHJZt8S6uuYfFxAOcaBf9vC1BG2+LvYk35eslDnnsmxPlu7l/F1WQxxYrIxVegs2b43MGM3iXcufynQmDGEMdRBvazgzgHBaDEVdA0fy5xLZGUNELwBS5snMwXHxKhj/3FUEYOQ+dpBmDHXSg7rzkML9DtbpdCRi2c7nyMRCrkFwcLEPr/cuBVqyh+K+0gbl3IBTgtOOTYcjgY3LWKd+2wKRFvD0s82t4sHqOkPCYQswS3v3qbYFRMzSFbvOuy3w8mLTSIBPUtQ/z6w6bZyZ18tbrI+2lci+5lrKXU/s70wErDW4np/4fS4iWfun5L5NByjctVg/AtPpRQxNvbkLyH619rHY53PPo1NX2aLv+bX3wgT4GMZDpc6gr//cGEqgzPF+oYRIhGbONLn/mmXgPq+lZTl8gI9ynaOYm2B5UjPLKzMYLKU4QFGan/m1Qh+ouEAtpcxneNFGSzBluRD++ZEok+oAwOobHY5mCIpn+b6X8ISlyzK8md3fA8yvE6A3QMaSIG9tC+HqN28OEfY9AUTXHHJQot3u7Led+/0+RZdTgFlNvLuZ19B7oDEB2XQwC3Xb2W5f2d++cXv7hXZ/Z9vfnKKPuJyCJPMuW5EbfQIoho0e0+f+YCsNykCpDKsMLejpASUDZw+p+4re4M4ZUmYlKkJjbcyplRA1lpmudow0Sgq0kMkuKX0CFiMyueauBxb+jFkmxtKvKNxuN+63G9ttp22uCaehbWRksBLJqUjACIJKCpsHKBy2opTiAu1SseLBb9qFbLddH09Ke9LOTqnV575uDlYG40mkzh1liJdJjM55nEBn35R936iyOdspjvMiiomLe5dqSMmOhA2p3qkQU9q2s+3vKA21XMMCUarY7gXaxjE8geIaTwd2Bpum3DFx9lzvP9BD0fOIAKlQxcFKVNF+cj5Ojs+Tx+dJP8xL8k5hRHc6cO0UwejDPDCuO3/5D//M12+/0DaXGVCtyNRl8aRQAnOresKRgAw6R+/U5qVXdTJtDSvi3ZtVqc0B7GxDnmXtRBmrmicvPc2nPM+T05SPMfjr53e+H09+Pz952OCwwaMfHKMzrHPbKt9a49e98HXbuW0799sbb+0LtTR6EQ4bnOfgrx+f/P548Dg7vx8Hn2ac8UReWlhhG27nVdyXJGK18DfRCtZcb0eV23bjTQq/bTd+vb1xL5U3KexSaAgbhd2EakJV78BcSoFWGeaC0Z/Hk/M4eDwfVPWue3vdaFT2tnErN95vxvPoVNspo/HJAxsucD1MnLxgLvB/dOVWzCt8AuxPpnYxl5jYt40uxjkEbQUrAX707rpR5+kAKZW2NW77zvu28eXtzt42Wt286qI+Odj426cyeDhovh9BBPQxEh2UrpSQB6mtRvmacWvLaLvrtWIYHTZJUzrsAqozfYNkOo3gxKb9dx/Fz3qJg7xogk/plxZKtfD1Il66nFszUWr5ub5WWxFENXN0dM1uqsGImjI4WRp38XMwtrL8HNEwy7J8iRnKyXKJM166eNF5c24DRQLAiUqMBIKJGC1K/tKj9i8lmeEW8ivKa7d2iXFxZm/cqCS73sEuqk5/1qyi5uDM2RUZBrgtA6U2/FwSL/N10kzY7wQhZ7wO6UwosGLZiL5Mgqix5jxZSCUGUoK9jjHvUUqcsTNudNaZiLMVRyaVJUZQMhlNAG6+JrwQ48LaDR2rgkQDSC+7G+GLjRzDQFhndZK5tuyfxJ3+/aV26TAmnctLqsACRVvvy6BvBeRmGUSsLDTMpXVxyDPwXBNYZiA+48MLCyu9cGYgjC7nAlsle3kvOc1DjSJXIfS1YP5QfhegWv7uSoG7vj9BuPk8chkArouPGST79VbwvUpgJIKiP4QHL397va7EQruCaLnX/fe8fP7lly/BvgdleU9eKqjzfete12cRWe0VoKzW2DJ3VgYul/grNoeQXV/ynvxeLvMxx+rn8YiNHEHjDJrMWF0JcnVdLOTLb/K7nz/fptG9jD4rQpR8sNc7ymEPI5raLXoxqC+BbY5FGHPqYt946UBkzNPw5p+JzOsncyEmZY4XGSTMMSws0MfB47lXUysl5zG+rMRJkk6/lAv4uz4nNVLmTZYyg3wzucxBBlY5Ftco2F7WZhpYZwPExKwtdQnUF8DhBvkfsMdyfv4PRtLmGn+d8rybbL89xbqXgZv35k522MEsJ50exTo6002QIg6w4Q7DyAzg/J0EIHvZb5ntmsY3DoRo/361uzlOa6zEDyE1J0Dk+xXf6xM0mP7BH75fViDmZtXZvdqfOd4LdDILsXCTn97zanuv13m9Zqzfeb7b3JLrORconHsibZjkc8x9l3Z0dYer1c+5tIFpBhI4XLZiza/hSY2KhDBpdp9KVuVPi8pH7jqk61+bx9nLPKYBdbcqGH+yMqMGHjSJIkOmNspcH/khkqvv5/mM6ycjLu4yzxaRBawvAHxlMx0/cKaNe+M5vxa4tu/35UJfz3CLUpXUK8Tbv09b9Lru8k3z9zXL+GRmELPjWq0VDeZIAuyTVSdMNrXAdPhynUy/YbLUKpYta8pydqVmQkXIo2aW5uRjSpmMrFq926jUNks5vKzIbXYplbbttLZxu73TmrOfzuPkPDsMddZU9fbj2+2N7XZj22+eYOinr215YtIxKlkuANl+WTARBHfIS929zKvdKPud2m7UtkMAr94QoYepkyjd81WSOhum3jXP9EITNSBZA+rBWQJPonFmayTgVMDKDJ58e8daT3+CuN78PsbYYNEfjUlTEPGyPoQh4mVeqdsZk2yRRBAgBcVTnFdxlkE0WIvzfcxSSZ+7AKct/bC114RCKQ0LMK4mANniMzA2LQHyeAa7BOAkJUoy5QKmkGeq4QCgD/IYCpZlng7wpo3IwSrVGWuY0vxp8QoAi+63u4NUFjjlPPsLlA2pBmV3QSL8HBkMhhWgYVZRLYwhjG6Mc5DJRVemwpkQqoxT6fPLGKc5C0EF1QT7dep/VnEG95cv39j2Owm+ubaUj0Fq502PQwRkaT5OFDNGcp3judhkxiqum1ODZV9cPmSo248SSRdTOsZzDD76yVM7P/rB3x8f/Die/H5+cJizkJ7agxFn3LfG163x277xdbuxbTvb5ntXEU4dHDp49M6/Hp98fz55np3Ps9OLOFs/k/cFdAtbpHZhaBqeeIAhhlglcf6tFW514/3+ha/3N+6lcTdhR9iAncpuhRbAUzLKhwhHaJeZQu+D43l4aV4pSNs8CVQaW4NWoMngeCrPzVnPj/Jk4NUya5c683uEbIAUCZaQznPbQftGNS+10xIlQhZkB3XmlzeCUWoVWnMt031rE3hSa3x2oTWl1A0pA2r3Lh8WJaRaKGqeg1Xn3m2ys1cXlXbgyZZd81PS13y3EG5P4MnXuCYIpJamMDz7jCvSXC6/TVWx4hIlCLP6YTKIwr+Zyc5cy2qTnHKOSFhO4MlIMfIqyYBaYEImwN3XgaySqRe/TeL+pmW5uLZuzq/+wzoGrt8lAPbyFXvXt63MZKvFObBchri6uZ+U/40t30/ymJhnsFwMeL5j3bwF4OcDt77cFgSJIPCAHPsJOl18vAUyxdjl+XcZpJXfDkHz+M306O3lKaPsLeN+eYmN0nZNYHxOyGVZ2VoasMC8/FzLpexcm2BLraTMHEMJ1rDwB1/633r9u4AnkczQSd5ynO8aNPKYS1tMFSwQPHHjoeZBkV/PDaJTuuJAugyOvyfKry50tfhrJqvJXgGgOUwTiMkBiYy6BEHBzBlR4bS2ujRBXp+bFajEPQHz+t4FpEynWMLZSXDOY+/JLbls4FWaJ3EYt9JIdkM6ULUldUHn506H/B9Ez9cfXUGn/GWt7VJPigdaFBfTe/ljYUnOzQuuxYvNDadxaOdBMQX+hrqmTdRBa2wEKX4Q5lqpEFnbHNvccHPyZn1utv3MrWI5l+bPktnRFA7NKyQok3vfOw9msMYFZc+M+QW0+6PFnLM519284TSEC4lNkUqAEuwyXxdlshbSuF+vkSw3i4PNjYwj7zPfHIZ51m5jvKDA82qQmYwJoJrhrcWza4EbNivVO4TUgrTi/6ofNrV5MFSqB028SI1Ieuwk2JX03CyNWHvAnzbF6nL8/ggqgnEVKo/xX4gDUXR8edrMBNg/LKGMh2eJX//0O7jYgrJ+aJ45GupCgO4tlAng5HuusVBee4SYKWYQWgTpQEmWiuRtFmC8HgjEYZyZMsIJsEu30OmIXP6XDvX8Un/PZDJa7BWNrpEX2vZPj/4yNi8HakxBVrlMoDGyeAk2AGy0aPSQnxUgX6xdt2uLUToz00NnR48clDxDruy2LCnksvZKnE5q6xol9q68OCxRDqvp4K4kizMFI6tU/B6F1VXOhk57XxFaLSBpu9erXMZUk3mSzz3Bm3UOeSC1OhwalzkuxUtgzKnqWcImEpm0iwA/MiZom46i/DTJy5atdfv6OwshzgUwlpoAz/rXTOg9gcjonlPc+ffShzUOgRf6fMbnmOjsWuYlijWAJYKtlfe+Nq8H6ZVt39j3jX3bXNtj253hFJ56lYL1k6EuIM/IC8oEkNLJv46DL88FZnk3qShRz5LRGdSXud7VXMdopF+U9y3NdXva7qyT7UZL7R4EQtOnbTf2290bSLS7Z2iBx+OBPJ+c50mrLqLc2sb+5St7sHQ4nsh5YvJAjh6ks06VDczLmEYyjVCKmN/7/oZs77C9U27v1O1G2XYgfCYdQdXX0GrKEmF9mZXUjhr94DwPRj/o5+nln6eF9I9Eb/dc42m7PfBfZFY/U7M8yMsyBYlyPP9Qnes7/0bQkEjwElpNP6fIZNMk20kKaBkhjB172gK0YTjAoEpPkCzuzaS63pXXNGHUYAjXsEEa3zubTMxcSycYT+kLgNBoKBXKGfbijxUBuffcjtfAoQq6+bPUWmY50WS84GMg4TTULcMbg+1G3U7qdsSl3bZo2Mw++ioNqv5ZwxqUW2B7hX4Oei+MXjHujPHgOITjaYynok8fQ7++dwfMs7mfyugOQJ0nDj516F2ik3GAPxWkFLZ25/7+C7/+h3+mbm98Pk7QB31Uzu4lmb5fXKw7/ZGSpanS2dpOkcaom9siMbAebPpIHufYD+a6NtwPOcdgUOgGx+h89pPn6PzoJ78fnzz6yffzwUd/8ugH//r9ry72bQrFaHtj2zd+u3/hP2w3/tN2577dkFrRUvldlcfo/Oid773zcZ78y8cPHs/TE2pU9tLYiouOU9wV6VvOG2iL+47lozYY43TGxigII0r7bvzy9Rd+ffvKvTRuBvtQmsLNCtsQmjr7IcvzP0ZHu4utf34++Xw8+Hw8uNWGtI1729na5kmAVrGtcrSB9UI/DbHC53Fwnh2jo6XSRTgRPkZnV+UO0aXSkd5i0ETYqjOeTjFneIhi4kVD3qDJ0exhnWGuo7Zvldu+cQ/9qFZ34MbtLLSqIJuXKHJibYOiSD8RrVSDG5V72dhK4629cdu81GorsaYtY4eKIL4fTu8u2A/XFPM94rZFu3L2Tg//IURXXvWgWN8PDNGlpeRkjOWjTJ/uGsOp2ztVdfd7eHVQruVaHDyz6gLkVYQa4yxmvkcJoCXuk2Fkg5i0sxOc5uInFre+9PAd0r97dcKXnY74qwYRJJ8v8GJuUoKVn0kc/1DBHJBW500TyW2Pi0LnMQYy3e+sYLfLf5t5PKApgD59O28OIaJkNZl/7/qdnizKpEMCdPPpWAnNlBxJGY1yAY2yPC7+NsumM9h+eUm8H0J+furpEX8/xqWUs8hMqOXzLkwyfZJ47/Q7nZST2qJ5X1nml8/m/nCu++Xz/FuvPw08jURKwxnIQz4fLjvqDHUxwaSAZ5tIw1kbeV9qFuVlcHbPwhneAnLGFZmQEDKqvWwqo6uGGKN30SqynHVsOdFzH2Q20wBzBHWM66TmKndEXWeAwsvnyrwetGihuDLB61qlELRoz8CO0eesTz0KVhBhI+lydtkUdnE0PG2dtb7pMGmWQYhTgd3x0svzz1B/PWksLmcPXRb8NBDh1lsCdB4glRwByc8Ix0d11pInOSvBtpzQiXiLzs9IVb4MQJcjeN0kawNpzPc1ezxrnCPDk4CDXcZwMmoQCPqo6+usDH7eRymTuX8Zq/z+ZRiZKPPlJ6//XpawZAbUs4oJsiHxeTH2Zl7+YUPn3KgZJt4FRkqNsR8RBITW0xgwerCNso3nZV4juk+ncj1kDcfd77SWDauG1urtwEelND/4HbxzALq2St22KIk2rw3PmCpaF1MyqLHXuQzG1RytTBrlyruAcAvIhksHg8vowspsp87QOr3nGohA0gwvM5B0vMv8cOOPdkPicMzzIA8vUwJMm5zWvIUVB8UtL0prrNm4rq3UiBv6kmBYoRE16SpTvHIBrFESYjEGeXiYZ9kQPCAjHJTQQZpabbkulHnvqhfGUzxHblO4PHP8zJk1Dry3LZhMaUJFpr11W77Whv+dl8EM6xNMGU61gjEmAKzq1x/R8nn0CAbJA9XtuoGvNQy6MsTPppWFyntxEEvyngJ4GSM6s8VacnFnw3pfZSolcuRFyPa3taTt9E6KL4ykeVbEvIezJBEJZJdDswsbqjiom6zM3Dtqq3RPTSP77gw5jUlJcfYE4iYLLw05kPX87vzUaQtih05Ha067iJceXJI8KTrpWkl578HqCl2QoUZNLZYoD6ibd58qMXY573OPDKWrl5+ouW5PDRHY0i5jVGPWEqXNEZcSwFOjbf61bZt3lqsVK8IWiOq4dz+P0k7NUXFtt+hFOMcgtZ+KCFtrUQIVafxgWekY04mrWfZcl4akM0SXsyi14WryDakbbX+j1D3mtlHaRm0b2+2Ntt2orVHLPjUW9nKH+qSerh25bbuXSH35xbWBbjvsJ7V36u2Jlo12PNnuX8EObJyczxv9eKDjAH26dkUttPd3yv0rcnvD6ubsIE/bR5muRkAzGL2vtXaZj9SZM1V6PzmfD/pxcDw+6M8n/XhynsP3c4A8yXa2Wd41PMViEWBwOZgpwdqIXSbpm8R6tgWCVVHXHcHc9ogbZcn9FUGLSy9UxnlyngfH8eQ4n8jp3eV6lAh2LWEM/fmc8VShbCT4JOXupZ0YJbQA0+dIYzjlBch14WupboLIxtTtkPWMxDMifn6U0LKzbWcPrRbHQoUicbBO/2aBow6qhG6WVSgVaVuwZ/09GuWSBBPOWBqFqoVSIlg3pXfQUTD1TojCjmnl8enyAUQb9xFg5e0meEv1zvN5cjw7x3FynkI/4Tj9mkMdnKzFRfWHCdLu7Pev7LdvSN05h9Af3bXv1LtJuv6iRjKYmcXPQK/dKs1ALIX8vRsizdEVFU0PwpMVqhgn4CwjFeEowtOM79r5/fnpQNE4eejJKYNHg6cqTxmcdjJCQ+2tVd5b4ctt5z/eb/y6v3Pf3gHhMOPzHPw/jw8+Ruf3fvJpyrN3vusDLW5/b1XYm7EXY48kmonx43xi8T/V17jIATOb+jFZ0nwM5cdxUPnkWTe+1sYYxjaPDw+sdzyDrGYc/eTH88HfHz/4n3//V57Hg+f55MvWsNuNfSu8v99CP9RLJpsIe72x1RutemFuV+FU0Frp4Y//GCdbP2i98aUftAHFPNhvNG4Ct9vOWYyNwYl3vJ0AR8GrBMx1ydSGJ2aqEwxacZ2qQkNkIGVDyk6pSt0U5Yn1QVYP1VL5su9829+4tRvv2zu3baPVytZC4zPi0Dznz+OgbQE8Ndc3a2efiXMdyuPx8A6L3aaEwtBr/De3YjBg4erTOrPYmcnpdyUDuWZCO4EXizgpvROdPFD0jKRDURePNwf3b6H11arHeHmWo4sJvBzEVYJ6lWjYVwP5DK+n/cvDMTvsSnHNLikWPlcmlIiEuP/djHnm4KyqklltFYhV+prpY8+YKu81ymnTDx7Fz63zXGvHWXPQKmxht6VUtuhwmmLiiOHJ1vjfiCopcd3hSbwQZvyjGrGJJLt3AU4vMY/k37q/r/G95RhaEoGgj3w+v+/0k5Mgkke1zbnKqVixzzCHQt1l8jN4uJhjzKUEM9jjay36D+Kzf/z6dzGe5mK3dKXjSyI4K7Jq5S2zzmW638n4ySfLoL2PBZxcM1ASkU8OLHK9F5/gzLiZKvaSGfrpdfm55eFt1+e6vkd++sVPgyC5cPyZf84YXwOvpGhLOAkaz3a5ICvCWx93LVHJcqEZiv/0iCuYX2jlH94UF7fLWGTwkFG1htGejlz+3Yy0IQG2FaDbZZMnyyv+rsTCDJbGfMnl66ehvZYEgcxN4veRIJNexmkxoHKh5HXMo/211iK8mqhAAH4r9rf599jFiP+0phaL6h//PPdF/tmVIbeuCalVcv3cqUoRl8qDYv0stMIsM7saQbJOYyzBwJtr6noYXA4yI/brC8IgswREQjiy1GA8hbZ7kQyqvOQjWQgJPJhEYFzHJbj/aYzmHrS1v3P+E3S67lldouIEujGD+PnKtf/yp7llX15rbnxsJd6nc/3ZXB9Jl52fP79iI0w/fR3A+UiXu1j3GADfy/X8IeehXEohep1Sqwd7M9XFsrHYsrnk2lEHXPxAj2cTm/c1hRU1P385ABOsVaJc73UcL5V00SXID7dS62Kw/GHP2GW/2yyHEivMcuiwi2oWIHbeq4aobYojx15HgqPndtWyRIlkL+g8jzTKOXIWJuCTe5AA36fN8T3hpWIxABNQD9AgwJZSZe5NuYAK68Py2zX2mWhQlk1NXYMJCs+jZ10/bd/U8bMU4LyUE17O5VhmXE2yxDqY22jmcyRs3rJhBlPvKEvBk8n8wnCKsrZ6KYczBKuuC2KSjOJCa8nwKMGaWa6OB7XD9Z7EXEy5yRSwDXk/d6QI+3txgpyR/fo1y+z8Id12FaNtG0M7M5COAZ8i05ezzQEnL3FyJsk2gXdaDHAFLTIBjFqylC6ZpEm4Wj5NiXbvJRgCtd0o291Bp9qo206tG/v9nbrtlNKoZZtsnMbAqEg5MVXqvtNuN8rtjbLfkH2nlo7UjtSNTUHak9I2GE/GOAJRrejYsNEm8FRv75T9jrQdigusoor1M8Cn7p3IdKA9eoX/5E8pBCBrjNHp46CPgzFCb6p7lzNHFhaN/7rmDWYQY5J7m4tcg/i5RJrVxVDMcjkRn09xg4hO3Z9k5dpci/6WEbpYnd4P+nlQzoPazhDQLVH+lWFbd3tBMDMogGshWRiGa9MRB+ST5VwutieApxKsYun+nLE/SjD25vkXG9gBZ7/eVsPnYfh8XXySGWRklueyt0nQW/Neo0RyCFkastjXqUXj+0lDBDL1uKBSy0YpGyIOYDDMtUKGA//necbvFVPhPF10vPdB70If0Ic5syy1B6mh4SLU7cbt/u6i62VjUDi7i+j2YIiCeiCdec7CjF8MBxOKCIJN0XELXSgBBt1BMlud7MLyYqVgpXCK8TDlxxj83g8eo/OhnVOUIUav0Gsk7sNGigrvtfC1Vb5ulfda2auDz6faZDn9/fl09tQ4OVBOVQ462S22VqM1Y6vGLZL6JjiYm1Y1Y4cYtxIJ2jFZzb66hiqP86RJRdUCkPM53jCqWZwFy3Hqppyj8zwPfhyfHMeTsz9pZWMbhcGgtABbrYb9dQDRkwHeddBZpgVaRQv0AgfKQzt7P3n0k20UNjV2/Pxo0thaY7NB1eisGFo11/hCLRgrmi3tHZBxex4+CKlpVJFgoYp6MwQHbpype3+78eX+zlu78bZ9Yd92Woigj2jw442O3F+pA8y6szON6DAaOrjm635Yxao54UKhqzngFdvz5/AzBh8u9nHNMaQvULkQIgg7g5EIlbOKjdlMNKoOvKQwKlCIZGKU8rpbkv71in6m5IBF9amSpS3zbue/+d5LAGjmZiaXV5k+ia/bTPwla8Vs1hTRL0DHlACanybTPU+3aJW15dqIeDLepLk3UPq5QKe8Nw0bnDIj6e8kG3vGMqRHwzxXxpUIMeM+33ultiBqXEGh5Ze/zr7PiVcqRfxqDkAmczcT5KnNlAmbGcon+GSZDF0xakYSmsSEKNNNH/RlFVqusTiL/3f4y0+vPw08vXZE84FLJ7XMxXQNMdfrJbOZQr5kkONUTd9IOmsG/Q1rkM7R3dGW+hKAeelNLIwr8BQrV2SVQumk6GXWfR6/8z7TyXHtAfdoViY8N4bMjK3/TIKOF4FEZH+97CFL8GJhBkCQQMDIlWoZBDEDi9wgWZYyWUrF63DznucY5yL64+zN66WT/zOocgW6poNxZXFcHPz8NxkNwKwFRhYF3ckU7hzJBZTMzG+J7H5uWr+0Xz/LCZKZtsCeQi6A9byStthR/DhU09DNZ7d1bsYwrNlffvP623/wuo6TXcZxGYfLYLFAJrve7xxDf88y5v7BJRF67HIl5rXSqXLg9XRUfgz66Eh3IdY694I7/To64+yc3bvx2MhrECVHsYdFXIOiGW1ssG8Ihj6ZNffFigdGtTm1tIgHiE1mIFdbRbVRtoF1b+M7V58luLfWLLE2uKzBl7U5mwfEQsk1lkH4ddvXy7zmHMWezHEu5aI1wzXYWaAmFvc9LsAyeSD4wZ7guU/divDtup6iLFTyoJrBpzNDMjiqcf20Mck8w0Cj9bONEPcPO/lSQhf2bXaQi/hrajaFjVK1yD67TcyizYxJElzywzgcFYJ91FfwlLZ5qFGrolKwdt0LzM8bqrMcbtoNM8Yo8xB2+rPinUPWs2Wg7WVpcrm2gEp0gsxxXuCI1NyLFx2+kiyWVeaRYJLZmueUJkKSnUbEijKF/EMiiBHdSn2N1bn2VC+LICbEu3gG2DVs6ifs0XF1epyx2nJOnO2VAJwHx4gH4AnmJMvJWQ3BOMbWeqqCaY21IDEua/yXbbt6Oq/f5znU2oX1OIGn1Wk1z4dSGmX4mq+1zKxkCUDaRnSKio60lrpORZzltDUvaSue9aw19u3l1kqUD5ea45BgU7nsP51ZZBEvk9u4UVql7tvcO+Po9F7p5zntkxieJa8ulLvv+/wMrSvQ0aoBlJqDAbHOa3xf5iHn85TC0dvtzTuX3d5o96+h6eOC0qVslO3m7Chp0DYiR43IoJWNtnmTjLbt1H3Hbl9g29Ftx4q3sZets8lGHSd7P7DuLKfz+U4/PtBxoP0RWW9hv99hvyFtZ4iEjktHnx+gJ6Id+uEBXWyU5ddlEXjqVxhmA7MDOEF8nk2Hn0XdWU96EVM3dJUrJ2g493ZYa3O7abrW3BJ3jT+edZx9sszVmOweSbabmbNxAPrJcTyhNh6PT+rHDzqFjQ0tO1oaKtWfXTtqTxY4s8cB1CjVqM276JpumGSb9ggKX5wRz6B7EFcd2KgNHSeYd7xNv3OBwK7PVVoAWThTAEtmpHc0TFvk/m2PcyDYYFk6GlIWzo5wtr+GzRkBYEm8pwQKb8Wg+lh4sVfzz2+ebL7fDvS983vd6P3BGYzNEf7vcRwedHb4/Dy9k91z0E8YXTgOUK1gnuSygmvctI1vv/wT//Qf/yu3ty+wf6HXG5+fg67G0R0Y3VqlitGreukQxdkNl7jC46gxqxtaC9su4kyc3l3M/BKT5D/djL8fB7/3k385Pvnr8eDQTq+gNdgZUjGrVGn89tsvNB00lG9V+NI23rbG3k9OnvyrNT4GfJ4Hf38++P99/OAxTj61e8AbwW+rRivK1gZbg60O7q2x183tYHToctfEme2GcZpyqO81KTV8c7dPCnw/npx9sNdGv73xa9t4K95JOWO9PRm+KmgFbaBN6DI4pXPYyYkwysCaUbfo2ql+DmCDUjqt7Wxb53Z/59aUYY1DDkwGncET+N5PdMCNnTdrvGmlxbmyt8b9fuessFmnJDUunfegKBueuOrjwKxTJDqB5cFOQSwAJ9koxfe0H5r+db/d+Hrf+KfffuXX2xfudWfnTpEdZMPYAV9zXY3zPOjdm7aMAb1blMNHVYgEEFCNXarrRvWNrUPvyuN5vHSiXZT5dBEutmMmijKeDrglmj2ISMSKceYGGQK8GUH6b0OX/+Qld9EGxJTWCptVB6PEgakWvlA2yMgWSUOVETG94DGfNxeyS7B9aaCD3/OYrB6Z5WxIEIIlOtPLYiVldVvuxZnMS/+WvJxMu7rAmfRbNRhGl+SyEXgEPB/nBMJqm7cXhBJnzfWzOxurlujwm/e0bHtc7qVaAltSMF79NWbidkV9P5mdqytGJoWXQerZ9a9mhVkN/7VQrHhJfX6urjgW8EQfFxZY3kWSwS199JWMTpmk/zevPw884aUBSSLzCQiU3XyCx4jMgI2pn+W09RieUihimGYt4Fp9OrwIYHRFZoAingkzdxxLCmqVxNgy6PSfeU1odkcYvJSbxUdNRygc8z40gnSnI+aEdAvKn2QsfEn1x2uM9RlZflBK8W4iQbN3h8vmdY0sS8S7yQgLAbYyHYTFgvGAcQI9IXQINp33BUj4pqk1NtkERgDKEqi+gHHX1wTo3J1xw2X6AjpeEe8J6qiGjkECfRoovEymQGExCoQAzy6lGd71LoOeDODX9TRofxShFteIyYWVdEMreHAWG6SWaxCYLIEwRhbPklnTjNTJCrErE4p/EOTnOHo9NMYrjV0SgYfUVFpGKTdVfJ6UoEm6g06gaEZ+To53CecjgF+8Jb1nazuqHRmxr0bJcJp+Hug46aeXN+joaO9xDVBZQaNnRnwwPRu/U5tRqqKVgNHdUHkrcrvMq0xb4SwFpbTKKJ2l6RVMLZU1lhcWCCJzhF6W6Fx/c7WS2a0ZqErajVfjnRo0W2vTkksZpF5PkYrh3VISSLrG3+s+VobEKboa+iIe/MaV5zWud6qaZcZxZ2phsypbsMbMQoMnD4UImjI5j+ElGKXEPK/gLMtU/HMugOjapi+A54gDaDo1JM17OTtSs9hoRoBAn5+TwNu1pDWBq6I26fm+7zLz9gpQtMt+Ok9vHz813CwZT/HfGnspbNNlgJ2ZJKHvMMPXdJKJevXlk6q5iG1rWZq5yq20e0mfqouSOjspAupcG1yYCW0nQcs5w4YzxnLczXCGod+EmZ9e2Q637nsMYvxuhHMa6yBtdq6/YT72XQS7Me1Eytck+Grmzz673YgvgEl0DWDPMvi23Dl+LyOPaNN53s5kSvU1IqnFdNFhVI1SvtBCymVUs0RxCy0jYbYnV1NfcyFO21qlNi+zay3Ovos24LxNeaXlu589DcPMePYMSqRQto2tVZopeyxgVejHEUyX1Hpx+5TA0+22s2/7LF8ZWTYuTFZEVVtlTMtA0aq3ds/zqpTqANjtjbrfqfsbdX9z3afq5SlSvPvZMG/QoF2jNMC/L+JJgNtt925324bt70h8r3KS5W7VhDI67B3rOzpOStvZ7nd0nIzzA2wgmGuyFC/hcnHcEz0P7HwiF+BJbGkNenfjZKf4M0++jobOlzjzTWvBmped2fDxGBegVtPchG1/9T6Wffa9fGFaBxCdHZAyY67hwynqpVpVkKJkN8tSPLHiidCOnCeUpwNPn5+oNLTe3WMOTZTUkTEb88zwcm4H0LyTXo2ytB5nQ4WiZAcyCV0oP3MXQJv+lSfsBEiBX+dnuKB0DlH4s2aYdkARxvRBfP5Dl2v0YJD62vakX3HRaJHwgaOMsnfO87nW9dzHmeRQbAxfA2ZeamKL5bVvO3q78+X9C5/jyeP4oA/XyTJKaOmJJxycoBWiy1GyMxZxQkrh2TuC8Ot/+MZv/+E/8c//5b+x71/odSe7ZZYibJuw1T06Abr+lYknrzxGMS9FKX5qm3aw7lZeS8QvgjLCeS3Usk0P5zgHzzH4PDt/t8H3cfK9P3nYyYmGZmyZObIvt51y23ivQh2DOpR9nGzipWd9wKee/Di+80nhOTof/cmHnpzWGeLlggUootxK4VaFb1vlvVVupfi/rdGk8n7/6vtIjXPq+yjP0XlqYQNG8S5wWqJs0LyU+9MGp4KMJzA4xctHBe/cSPXuY8WMfdt5s0FH+cv4lc/HxuNR+Xa/8eX+xtv9zZlv0qjt7nvCOqV12rax640vX79gVtntzu/nd9S8FLEE6HRo5+N8UkTZZUeqa96WrfHejHFWPsX4+DSGnPQeQIIUSgj5mHrnQgdTk8GSPgJILZ5A2TeKdTDBuqMeZd95+9r4+n7jl19/42t9Y6PRekNtR61y2hbli/D74+T5fHIcT3p/eFI41hc2nHltA4eM1c/DWri3Su3mrL0EiNMSXpn1GCXs3opE4yXLLgLB3iXWcYDGReb3EmXArs6SzJ/41LBnTzwW7upgVCuwVUGal64zE6kX/1uNWi1i3IinLEO6rICK5Bs+X8/jmLY9E/AeBkY8iM7GG6xH9LeJrOMeTyguWQCbBBKDBfakrYF1L5H4vJaeebLL8z2TiXW9x5LnlYWdthcfMeN3Y8VJeTOZnDGc1ak/+Y/LxbEVFqeNNvNSOMuEuQXwBLXYPNc02GpDdQJFE7i0q3/qY5hJhqHqGr/h6yfOca02kj8swD//+vd1tYtAoIDLwqQCe8QuCRBkQOho26pr9MBBfBW+KLvHRGTQQtQrq8XExoPjVPYssrg6oL7oc8F48HENPrHIljmr2524CFhMbJayvGR+58he0MUMgO1y+Nor2FBbnQalR83vlbWTmXOMANOy3IMIOnV9HjHmZTGJ0rgkICEv9xnZ7ByLDDQuwWORpdeR10uKXi7A60sm0PcaUKcDndG+rJ3iRjCnt0x/Zb6uHYeurKD849yjs0zTfC3N7nDJCpNkCPnfJpNMIej1zOt53OGG2+B1fQBXxgrzc/Xy/U/xbsxBGpXJMIBJC801nv/LQPIyiG5QNOcvHcmc5PwcIe96znVmjbOOXc8oOzAkWDpiFq20D0Y/6f1Eu5cRJMCWjEUPltLQewa21OYZstqRat7i2/KZI1h0FcE5fkJmUbNERtBoTWuiYXQvYslR4zzBTLvu3WXlrk+e/+YeKDPwTQghjCrrd7PduvjnS9iM1a501SjL/JyfbEDcbwIhaACPOZcvSyruNJ8zg/q0FxoO8XT4M3CRl/2fwfRkVcVvsiTWo7Y8xOLZMzC5mNi1sYNRsFZrzEmsOkugTFbQZ/kcayxea8OZe+zKaEsau9c5pOueTpCXLjkL1A9zC4pWarRdQSgvK1wPdAUfLnewxiw2z0o2uDhqLNdpk+0CouUZN4Jhla2cIQIkmxWQE/B0PRFlqMyAzoKe7HvC8oCcjgqEzQwR/9LaXCcko3hMFO9lIi1Az5yv2lKryZnDCNTL+TqUlcFKz2ma8pzLVQqUE274+p6gWrDsViOB+RGzVCf/PM8MDK76Wqnv5M0JjGHlxRVIRlmCU3Xzjl+teZlNLPbwF9aJYdMORFIrs6b4GRLDynLAU1CYeZ9mxtkORh+03peeoKoDT62x3zb2trmWIKEekQBxlIEO1cm+lpxwEWrbIvvqAyiRLa63N+8et9393+q6VGugo4wJsK5zzQ7DbWywpmrbkNqwtiMtylhqAA9FqQZWB2Ld9fvGGfZ9c+CpNUydYVPKhVerivYoqesdtFPshNHj5E1H1heHXdbW1ZkomRUI/Sutfc5VnqHTxuZZMvHgdZanoTFZczvXT1lJtfy5xoUtmI8qbmvKhUEZKl5+qkagKrVzHgfn8UTajhxPhOqAuiQl0gPIaTujfBPEdWXMhWldN61guGaSqLmsUvg+Gmsku5dKbtV5YC3nI/fxsuaaBs2TlES9S251M/cTxog13YPh492tijj4l5/nzFp/f+/HBJ6wKJ0PXz+BJxsdCcAy79PMAmR0luBRKqhcGEfRuc8cqEQDgIwuhzZklTnH2X+qISrcv37j629/4Ze//AeoG0Spn0iwL2ul1S1sTBoBI/XxJvNgDIYZMk6KDPd9VGN9sGxIFQeBA0jt/cmhg4+j84OTDz156sFhgxHaEtkavolwazu3Uvl22yljIH2gn58heK88Fb6Pzl/15FEKpw6e4+SgT9HsGsDTZsZbFe618KVVvtTGrVTe68a9bmzS4HabsczzPDl10MegWqGV7hJWxYGDUQsHxmmDU5UzvrdxUmygUmkN9lJcR6o6400QbnWjNy8tPsZX9upJtK+3na/3O2831zhDGiJ7nGMgtTnwhPJF3hEqu+3oQxl6uvj5MAQHSLt2Ri1YNS/da4W6b9xMOGvhpoPtPDkNinraHBUoA/QE84T0CJvuZ5lO8EBCS7BtjaIVhpdSIpXKzv39jbf3O29vX9llZ9NK1cqp3gSga+E54HEq34/O43nwPJ6c5xOL/V/Q+HKdPEEpptz2QpPQCxQ/2zIhL9OPyk2v4UkZW/hlxdJfXv6X7y+ZIIufj+7LtAjGPElTp7/sHnGP8n+b1zkHM6aqxa0dxfXjqqzYJn26TGpVy/tz9eYJPJXpITD7nwp0TU2/S8VT2CMJe3050KedyWqGFQcnJhH+mi6wxPEDmzjDZEaJkR36ui5dwMtxNb8cfMrR9vXsU2ARP8TtTSwhmgrFmSZhz17iBFnRRpa0wWKppo/2cxXIOtfcHp/dn7NVceDvJZD362hUiNXUnrQ4Y/2jJytcr3GN5b0sYfH5t9ePmCP3b7/+NPDU2FD1muftvrkOQCsMPdeNhLNZ9zonHGwJ2Y4RgrgFaN6+sdYoNwgU91pGF8JYtXkWyLU8nI6YFNksOQHoOueQGuVoJjLryvXMSY1DSjwDa6ZYV5796ToS8trxySwyDnHodj1J1NCpx1lv6QHL8+nioq21OflZGuGHqKC9z7WX8TbKpNulkKxT8q9xx2KW2EjnTOaF/NsArpK9wiWohAUEynLIHfAo8/plsoWWg5MXyw2VIrQlywiAs5+uB5HBZa3uFwQN1jKaEc92LkPnh1mWRwzSsBCRnvF8Pr2spLrB0ll3ms44qBT/uSrP7uyhKSoPoR2jE/9RXWVDTLohjMjCl4tRk/K6+UGCTcEMjgO0puYmLjbrkdMT9HFJKrY/m7c8jqEafc7VBGPEjwZ3lJ3hxHBa79CT1m9IaCtRKztfHNAwpT8/PIt/ds7HRwBQnVa8A9bWNme5qZezlFIRKibDhUOr0W7DDwoZPD8PfyIdbMOFcK2WKHkRWtKzgbEXrPth0M/uZRUChXYZrwLqc+pjPHuQxbq1LJAn9armvqk4c6lJlOEkcLoMoA+fZ5HS6Pfo7lOK69BcQdQ8HDRKgP0//Z68+kzjzFkB6wjnfx4Msg79vN/spjRBNnztPh5PRJxJ8mV/o20N0ClEWrdYK3XGOsjwoEXzvnUFKKrBHGnN93EefnMPl3lfI4EZXKS2mmI2eB5P99u6zCDaD7gwsOL08XTQ3aH3zSowmyi1srHVDVOn9qtCP5Xgt5J9aIxBa8spsO5M2UKhxTNoCibGQa5ogNqVbAYmc9+Qp7/fbgBfSOx5iX0/vCNrjTpHM+jn4HiOKJVrHpzlM4pBMXYbdHNRUZkfGIfYRDnCyJTFVvCyoIpZYdsKre4OXG0trTNNqrNsVLGPh4PofbDdd+pQxtmxI7pMFUA8iDvPcDCL27l0xIaFY5Xnj6STwzozNIJJtcWGGkw6e0mnMu1xNajOuNMEpixbM+d7vfx63+/+uekwxt5+Hid9uP/QtkajogwHkItwu1f2faNtG21r6/waq5PaOKMsM86a2hpt83KnARw2EHEQp/u2RaSw7TdnVFXXG0kQt5+hW6QaZ4DvB5dCcgBsazXE7xcDbqhRhpdTFNUZxNcrR782SmlI6DdJdAalNKTsyPbmAEfon5RIseoIS6hRduooLfv9jfv9zm339uuumVIjGPezqUhFpTrBMkoK/R4PL53rB4wnpieiX4k2c6AHo7sO1Hkc9OG/ooetsYJYrFnRCC4dSHUQSUJGwE+CVnasDax0hnlCTsZJ3SqjdwYa5ygz0BJf2rMMwLdXMpQchBaLe8r1HEK2FlGORuB+KR6Y5cBixhinl1dtIcAb+yAiExjDOyAGW7hYRbZggoqXO1omOo0o6SlA91DTs62UtoMVKgM0BZoVo7ttqjXK5K5OsE177oDRmIHWlgzqkrbNzyUb3r2KsH8+38OTT+PkeH5imkLaZ+xHjURs+uxhX0MWIvetnswuWske6efDQawx0PPgeDwY54mdJ58fP3h8/ODH33/n+Hiih6KHl/UMg22/+1oaYCfY88Q+B6Yhp6Hqe7lUnqqMWtje3/jv//f/zbd//s/I/s5fvz+RVij7G+93L2e0AD/9pRc2ggNBUoRR4Pl4oP2k9oNbzYqJsH9F0LqF7a5obZxaOFT4gfFh8N06P/QHn/bk5InJA8FoFH7Z3nhrjV+2nS9151Y23uud3gdH6fzPx8aPfvDRT/52HnzvD34/P9G9Mko0x9i6M7iasAtsBm+98Nu28142/lLu/FbfeG87v9ze2WTzrpixRVWMH/3g0U8e/eD5fNJLp5dB2zaohVELf7OT7+Ok2yffx5Ondvrjgx+t8UtttFb4ur0hdaNIpWmhKvwqd95q48nOty83+tvJ+cvJrVW2Wrm3BuUNY+fgjd+fH5xD0Np4+/aF3e7c+s4xTs7R+Y/vX+n9pPcn/+v8H/TxQMXY7sLtvvHl7Y1buVGLN2X4Wt+R8+SpjX/5flBV2MvGyeFlpgTYYF6+9ng8eOwbx/sTboW2NU59wh6C5f3Ox0dHrSBtpwZo+O0//sbX2522vcFDsFPg6bp8ivDdHvzLx3d+//Gd3x8fnON0ja8W570Jog50FzWk+xlRVHkfg70KX/aGBCLaFQ6Es7aoMvBy5qLGXuFW4ZctNJhMoHsZ1VA4FM5hPA5vSmASHdxxgPdUvMmCGFtz3w6BTfBGQuHlnsG+UmPqQJ3mQNLThEOc4VgL7GI0MRpGE3fV7605wBZEFde+S9NuYTNjr4qw3/1sGrMMOMv4ws6ZTXbkiIoqAy8D3D2OGT2lJEBaI/Wa+hE/N/f3L3UppL7jOTTNvYNkxeUbaULbhfu9UItRiyLSGaPzeML715uz5/uIBmyFkizWuJ5Qw0fQ6Ue7dISPSWtlHnzl0nhCWbE2xqxI0KyuqiWqejwGPaN7oGpBTrd9V/fD9ariYhPfILoOhrWMMl0XLjckzqIV62dMGu/XeUxxrYz6t15/Gng6D42gqXlgcOosLZJCADX5ZXMBXJE6Ncs4eyF+Kqv2HqCuoocaB/EErojMLCsLPXP8cWYnGpoOjE7tyqjnDjaBJO0FFqoI0cEnri3zcgiJPtbpgGfnpWwdLkS2zfL5Y6FZMAhyshMEumbm/CODUuvicFZs6sP4+9wJKLN0yx38LENz1opMulwGGq+vP5bZ+eM68+BacjaBopg0j+HsZTOs8WM+d47lZJ1ExCvYHNsEYK734oy0GLMsjUuUOuDVGXzEFee9IcuciEAtkVFaz2ng15XVpejKFkv02B8loA+9UCwnKBEGQVedbgJfFg5zMjgE0OHlT3bNsMfnazh5bg5XwDZvPIGnsuZlpKCrGGrC6N5p5Xw8PNPdXBdFJWiW5zl1npwZFdnPuJMRWfVSsjwhPrJUrDoYIcVLBKwoluybCPYkvkp02jLxLj6lOj2/to6O0IHKrKZmaYDvOZOgogTBbNWwr9kTu4AKxF4pBJuJqAcnugblOM8FzmK0uVbcyqZI4hNct4brAQlZKgkusDlizevQqaGU6y4DejcDP+2LnNf8cfwOSUwkSo1F3T7hxry2oAwOYzAQC6HHpPMH28RLWmuAh9e9EYOWwUWKV84HlTmoahkQ5TNeq9WJ8t0MqqOLWnFq9dTvCdsoRLeXjCgnYynPhBrnn9egJ7upRMwnUXbh5RvxOEPJrjrJUMrumoT9y9Ld1qqfOSp01bl40o5qMFPAgTkRJssqp2Z0w2oANygldExnV1YDmymj/H8yD3Y/MyfNiVSAdSDTGYVlgiX+kMUk2i13Z8iUKHOJccOgqsHwEorRB1psvsfMW74vnbe1j3Jdas7Huk0fvxDwzsPUxz3eFyyuchERLzXXmHeIVcnEReyZLHu1SVKN/e0ttuuFVo8AxQOd7E63bZsziFsNGw9WmRo0greLFwQJsVoHd6L5QYAxFm3tWy1Ira6HFN3uam3z/CzVAUc1jS60cdLI0soqUX7pW8rFoVHzZgqqiC5NxhZpUglV9Ly3BJ6kVpCGlI3SbtS2zxK8EkxoiY5sqkoNkACc7ZTX8CYPVzFzm6YmU1UWxqmQjqW/3w+m+IqOxX5u23yeoilfkIZynWGzZKwUH/+prSVROuxrx/DzyvKzgvXl57p4xxwnDLoArw8rJUpWVZgM6WQqmTGFcWdWPNmL2Ks8SvpzsxNpqpK7/UyWY3bxNV2MYi8BdrZCGQOtwZgI5kCOuQXIm2OTYzzzR+kAi85Fb5Ox5Ievjmwx4g7/vI9IXhYTRrkEZEQn47hnLIFKB03HcIBx9JNxPpyVpd07GSZrywzvAJZlKYs9njYjGeRaQvMrGFF6OoPqeDx4fH5wHgfjOPj8+MHnjx98fv/O+fnJ+Ti9g5e5pkuJA117dHxSSFaRwGIoqXBaZ//yxpffvvHl128M4O8/vvM8Nio7W2ppWUhgpG9OxBBEYqxUqgibCKMKQyVKhssqHRaZzIwiJdgvhWHGsys/eudTO58oz+ioNuiYdcSMTRtvJrxL5WvduZfdRbuHcvTB4+j8/Xnw/Xzy0R30eZqipcxqiCLu7xQzdivcRbiJ8G1r/La/87Xt/GX/wrd25153bnWnqHjyEJnguU+vAxRNCq1ssDXu+w0rJbpVNqo0DhMOhKInH+pA8EOU773zd3lSa+Hr7c57MnVDPmArwlurDBsM6w5IhKl/noNTH3yMk8/nE9VOqUrbPEG5bW/07uLcZ79xnE+Oo/Hc3vgcrktlUpg1T8Gkr22D0tgR7rfO/Xb3xomj+z7G0FHQInSDs8BZ4awOOqavV8SD920T9m1j3ze2fQd1gGvfBnW/IfF5qftEabjGmusZnaNzjM5pzhobRZxVFrbAsaOBa5y77agIz4h96+iYOuOmC1gtabwjE+eEsbYJt1Z4f9tpFGc2a8W0MLTw0ZXH2TnlORN0gS3PmAzT0F5yh8fKIjxQiPJtpaY/fkmgesWQVy4UcTkaq+LPO30EYQjTXpRrHDrjy4h1SLtYoiJqxSAt2cssbSGP3ZPsweXlfonN+CXjKHW9NfM9kA20quAxR2ADK+aBFs1mtybcboV9L+x7pRWvPKolq4XMk+myzlZT6POcDDanJdiUBJXQoYr7H8EtBgfl8/3T8xY/tVMrNZ+hqDNW4RXfSD9LMDLXnrFAfo2RmELep/+3M1Jt+rciPhYpdO7xcJy9Aex53CuzgubPvP408PQ8Bm2rtNrcIVOnepTK0l7Kg/RC80vj7aO3ynTSKcoAJw/tFP1OV8jEWOruCYRkBiwO+AANcpISCPCJykz5ZSK50OyYkJcfdqySnvnD6cisz556KfNtPnmLGfAKPCXVzp/zj5tm4QwSVMagHl7qMiGci8hyz82cYyp+H+k4565+BVh+fq0bub5nOZgsUI8c25+uYJfxhxnEO9CYUbjGKP3xs/KV43WlE87PZAX2epnrZDGQgf3cYIvFcr1d31D59p+eV+D1rpZzCysAu4JvegGfmPfr/89K1A0PxaqgVpZmznXuIoiWvPN8/uudhHMORCCflP7KKANwgUrPpBijHfNh+nkumn0EbKbeLtjXi0bXL9dgc/mhcNXEtT6kVEIZ2Z2jDJ7rEvWVACIQQy7Ak5fcDepWVvZ+BsBGQT2AizruKS54fVnOKfNfcTb0ZCOm2HMy05bdlp8u6Dph02SlFwJzn0sGDiRjLt+8SgR93AjH9rL+r7f8cnkLa2Uvb8gyIRUCeBqhnRPGvAaLgGAZBc3aqrhDEc/sWfg6u38Ra1UCuMya9j46TluRCSwgwmwJPNY6VvCSr1yuYVOKyBSVdq0snc7LSyMKyxasFeLwNxbQOStSSbFHt3HVQIZNzQ9in7moy2VfmzOfslTm2mnNu+kYmUDQmIPEox2cz2ddYNOycaFvgzssFWUM71CkWuNZMky6rLBYWCYy15ifA/kfqX2TYEGdAtqIP6vhGnYSJWm1JYjuIFsJMdwxIpNmFm3VCSanP3cNe5rnR56zy15dGJ25tyaOtmy9CKSYXYJO+XdpD5ORAUKlIhcKe8bVhq/NKgH4xLVye9UmtK156UNrrvFU6xLMjDWrtaF9MLUIwUGmAJpKsoZqeJHFmdVlc/2k1rYAyr3MUcRtc7E1PkMjFSggBNAAZBbQA39nS3m2OoS2x5hOWK3Vg9r4LAeKnPE0Sy2LA09SdkrbvetTi5I8ZLJvRD1BkcBwCcBpIvDpPf90QGdajFwDtsyeXHyE6/onS6usO5CmA7Exr5GeVwJPaYwn8IefE9kl0BMNgxTERrKLVLS7jjWbiQjFZuY5aGrzWWZSLQzUq9+Q+WyD0CFM3yjtoU7bq/OcKEJ0+tI4ky/0qyhPMF1fouosVPNk7AwSidavwaovU8spG0vEUwQl1Nz4z+Sl+yV1BQIJPAV7SUgyUNpku9guCzaT/0xHAGbj8FL7caL9cwrFj/4gskCUlMnQZBDOmHOe02hqeTEZWA5meen+8/ODx8cHz+eT8+nA0+PHD56fH4zHk/HsoTcHg0IvfnhpiCo7kCxpefz5zZMtXQdf3m58/eUr71+/Mkz5/vFBt3e2OpChtOpraIwx2eSC4a3ffQ206nt9jzIzL5uslBbAU8oNCCQg6wwGYZhy9O4ginY+pXNI57SBiieEKsbNhDepvJfGl7rTxG3EMZTn2fk4O78fB9/Pgx/95BNPHBCyBJIpQYOGcEN4k8KbNH6pN367vfOl3fjt/pX3dmcrjWoVPV3DDBNGN46h9IgZvDFT8QoSCl/aHYrQAbNKkcrThE81sEKXjlrnGOb3awe1Fn7bBnXbnGkRgG/Vwi4tkqgacZpivfM4Tz5P5W/H4OwnIspuwrbtbLWyt5vbcjV6HTyk8bDK7+0drT3Y/9WZMd63PoB7F7XfEPbbxm2/cajxPMGfykHaUUDUgadehd4ceNJY5LUWGpVdKvu2cesb+7aB3ah1sG3DQafasMxsloKVFjZr0Ic6YGShzyQRR9ZG1G5g4kCeJ7e8Ukdxv9UEio1gO5k3c6jp72v42x5nb1tl3ytvbzcXJqcg2lCrqFXsONHnQdEBxzlLvl5Og5CH6ZqnfPiOJRylANdKBESzpGskuAF6DgQHcEorWM1z3OOwLniJnTBBYOb3cXqki+5Dis54XiYINMNHbFbqvGg6ReZ3xnORgEVckMcBkXguBDSz5n5SIFwSF6Hn1ITW4HarzrreHHiqRallUGAmKXof63PxRMvIzsvhmKer5UlNW4SdeJYx4pyZzxjxEcvPyvNpTF2qXD+eKPD17M+Y1wCm/5syCXl26/R70xdMgkyAWMHkT//MLj6Dd5QNCKiHX04EC5cc6//p9aeBp+8/lNu9cqfMoEaESSufGWPfZRSyJprQQwDlnOwVsZEs7FUqZT5ZNUQ05sY0Nx4GfghHZqtU8UWX/wux4Am+5ETNbHiMj9rsYkEay3gp7iBoLdGSck2i+0tr4Vvuwhl6rIB0XATNkhqe30uB11A1EdF07FjAVvytA2UyN40H3sYVuLBYAFdDs4KK3PDrPie4dHnv/J2ujXF9zWe39f4XMbYwYLMcKv6mD9+gP3fje70fNyS11sk6uH7u1lqUjaxrBzoZ92TzX1Wjq2uBTJntjPdfRuIyFpf5uI7Htdwur+A01rV5F5aQ9xYBWfxXZmGa1Agk3AAm6In5eh+y9kuYxnlHNTIow8xppXj3ODsHvQcV/jyR2jjOg2RojX6Sug0jWmCncdTi7Bc1PMAVaOIOtdGDKTWQ4m3EBQnn2w1t3Tb/2jdK25Did10SDDJjUw0ReShy0I/ByYhuF3h5QBjigjMIUoTZ52EFEkKZWUkHZUqwW1bsZbyurRX9/2GKX97ih1QwGOzyd/EHCwjNQGCtqRJz73I+8voZtv7NIPC63sws2CPVQYThDFJn7tTJLCqR/ck0/hBceBQHwKw4WF02z9yWFAe3GbuSdGb/eYjaq+vCPQ/lPAbnqchP954OgrNRnKbuTRSc9aLaMfPSOWeMR3BZgCrBlkjQKbouFtenSebmDPoBds9c9igRtaFQAsiQpAMnG6U486YJba/LPlZxrKQIrZR5JrhnmHa2BjCjIbprL/YM/GxjGGZ9ssvOUzw72ApbtMKFBFqWxHk6GO4wRdvoNfMz8Cco5xPYLYK0Qrs5k6a2jfPxRM6O6kFpLco+x7TTgjNCAtdbIsXhRFydUME/o1zOszyvo1oD2QJUk3W/YEixyeJIdsgI4d50HE0lWHmDx/OESAKUWp1tWAq3t7e4kbXI6oU6X8MBTlr5CDulCC2idFs9imeQX5uXQUht1P3uZU6hEFrb5uVtWRomMsvaJBg4cQpOgXf3KSzWiAdkmVQzXbai1CgrCHDOGxpkt7Li9f/x7KWl8HENHZQNJPWdYs+H5+3ncXTD3VZX3JwbtxkOEJWy9KDSrwgvZ4GPZsCJl9WdiB6gJ/QH1r0RxTg+6ccPRv+kPz/RfkaHtTEL8kuJUsW2ubGRCnV3NgDZ6CD00voZjAhFrTComDSMBuadvyw0M9ah93JK+15UL0NyQesIMlgM6TKWpAHpF4rCBYDybmzugI8EEYEUd817SEhZMGdPa9QbagFtFNkRGlu9kazYVpf92/Y723ajbTfq1gKAAouWomaC2hlsBLfpUFCtc66che52PM+3fK4M8HvqfpmPizOouoNQOmCc2PlEz4Px+DFLKMf5wFL0mMv7Ifadr1kPsDUSXka3LHd2cOs8Tvpx8vnxwfPzk/M8HJyzJ1XOEPU2RocEGQ3ozwTGgjVyDj4/g61UhO2+4f1Cfb1/+8tv/PN/+6/8+pe/8ONz8PH5pKtQutBO+PrLxjA4x6DUMo98G0IphoT2aqsObO+1RCGeawdJlBD242R0B+B0FC8Px0Gj7+eTv53f+dDOByc/9BPjpIjx7e3Ol7rzn+/f+Mv7N+5tp9WNx3ny6J1/fX7y+3nw+3nwL/rJJ52jDGTb3H9pfr66yPmgjc6tVL5uG79uO+9t45+2d762G7e68dbeHFiXwqMrhxrHOXh8f/I8D85+wsYMOot6w529Nm5SKAHotCLcRSnqpXS/y8mtNj70g8Hgw4Dnk08Gte38UzF+qbBvHpehhVbKPL/P4+A4O5+fT/6f3//G78eTfz0eFJStwNetcSvfuHPna/sawLVreH3Wyket/H77jd7hMYTTCqfcGPWGbLvb9ta80YI5u3TfKvuo1BGRYwj/qw26dJ5S+RDjh8DTYLeCaOW+e3lzscYvb0I346Mf1DGQ0im1QyloKfRa2O8NmgPtenb0dP5mK5Vb2+ih69bNu/z5CeKNFDxJaEAlxaStVE7zZ0cNqzBqjTjaEj+jIry3jW9vN3657/z6/oUaTHEJkXO1ynE8eH5+Inai9FnSNfVBHTmYvuuJA1Bdo1oAmeW0tXgHvMRtWs2YeninR4NjgG6DrTibbBMv2xsq3FqlVb/7ZEu/JOkiXhMz9OzT5l04jy+xWR4Hhvv6eUyo07CmpMolMIRIGOV56Fpp2dHYY/UuwYDC3YT7vXLbG19/eacVQolqRDLeYxNheCl/dxmeGtOlw+ing3SEz34eHmO1ViOXsZKVqnAcGvFS3Ps8v0qQco1Ds54cAkAA8M+KkID0AeeJ6YmI3P81O5deztUZE8e/WaXm4+3sZaHgjY9iLcV46sA7kOaRUQZlCkP9n19/Gnh6HJ6FNYP95plJp3XnAWmTuezA0xIAFzyL4IdzukJzFJknvXlgpCqIenywBuKyYHPU7QohWP4fHs4nHDVvCXfiLh/L9VauQeUSvF0twGV2x8p5HxZU1gxIcQfCEU3/+YxfwanFGcHFJr8Gt1PPx1I/Kn3qZBAsXakJiAWQ5Yk6czYaNsdpruPriIssFHvG9DKngXA0YGWjxWQ9yBw/4WfQRiJ791Nc70EBssoTWSWI/ntnXPht6Lw/B+rKHDbTCJyjpEAgAufFosl/szTr5Z5zo5FZ+sVKw/zzc84TXHPHK40YIPl5F0QhvwuvSvFW6S9jFp/njqs72RPILLbuK53mCzMuQU7f8HopW5muk5ciWIimzvWE64mlbkmAUDo0skgVkeGBL4LUgkYGu1weTawgohTJQCkyE1HikSLJUkoY90bRjrTKKX6YooNxZpkTAZRqMDby0LC5WHM7ZBAREWAwLvzfGmU/dTKdCI2x6zqNkU1Qw2zOi6/X9caVnVhrWBOgnvpCMLWOZqj5kzGXFU8nF/cPJtmYAQQRqPUAFKVGNivDPEkx7hAx8cmeNGktSpa0SOhUlBrMmhRxy809zaf/t5p6SfJY2ZiUKjJjjW0J4edgOvlB6eNagoUpGTzmV/5tTe0h5ydlmVoewg4euQNqALVRhyLjhCaMrlA8I29insVOSnIx/5wKdasz+VBblA+rOyES5S2WJdwSIp4iwfK67EHSR0twa1lVZ0Bd9kYe5iKYljn3V76l27Dk8VaSM5JM0gx/jWh33DxoL6o+gBRKC4Zd6XNzZDt4udgMTzqG+2a5fu1yr8aq8V/JGo/3skyO9EQvizr2SQgXX8/+P77W5KfelKRgeK2uJxFZUtcqcDvSmncYSlCMOOtKrVRbehXzTMu1beY2K9dRaV7aFuyiUhtsW7CLCl7edmWl/Aw8CcZYPuBMUEkAO/HMJWGY2KnBiC5x/7m+ElycZXfh0Mn8t4a200a2a5YarEQceCrmTr+YUQIw9jXqiYdZCj5dzylE4P+GHXPD64LQjAMLjSc7P9H+RPuBnp/o+Yn1B9ofwZYNMfFZ6p9jVpEAnKg7SupDxhmOl3NYiTZls5Obd93ROA/Sn3CbECt2rut8jjzU1Uun4pxKFpOqLQadOzYsfTOmjxgeSFxeM8zx30SZy+xYPEvYghlcfC78koUie4CXjVJtJXJa885qCSDmbMZZ4CCq34+Yl95ehWvdlxnTTqR+mt9zaD/p4DwjsaSDgnftEukRYA50nD6H/Uk/vzPOZzQb+YDZ0a1P7Se3Jz6vhJ/lQuMjMvkxJuYJ3PN5cJ6d8/FJP70rZBGhirG3wrM219ryk408S0/1DqkW5R0OGhmUSCYU6DrQUvj2yy/8p//6n/kv/+2/cv/ylSEdpXPoDcqGAUc/mc75lLWIeEC9a9sYAdTHGIO5yHa8+YwgfKhXHQzz0plPG3z0g4/+4Ls++NCTDzsZ0qkYeyl8rXe+tTt/ef/G1/2dJpU+lGdXPnrn9975++h8186HDI4yODFaNV9zYQ/FPMC9lcZbqXytN35pd762nd+2d25lo1EpGslKUx598HEcfD5O/vrjd45+MnTQrDrLqcAWAvB7TftlNBE2K5xqlMOoD6MNY5NKlcYQB0W+nyeHdbbP3+liHAx+KVuU78nF9ggmXtqsUukidDFOOlWCsWeAdooOmhpVSwR7RmdjL8K+vVO3g3J2TpSHFn4M+GW38JthOELCtm3cbzvdlEd/8jziM8TZrIXCtlW2AAJr2Sjza6fK5qW9YSN1aCRmPZF2DGUvylmNUYszx8yTFa1W3nTwHAcq5gyrcSDqDLkZHkphUThbOpmY+I519lj4llLiXHM7XRG2Uni7b7y/7bzddvat+T1bQXTz00ej7LoVFyhq64yebp/NEHO6g3mMJlOmxPc6FC2r86XbhGioQTSAEZiEHWwmzxEwMTYRl4QgvZs8nSzcC4fmXC4mz87UIM0KKT8HSjilq1HXYir53LmtTB8nm368AF4yb3U2mtmKj5WI0Dbhfmvse+N+K8uzV4kTS0DDz7UoxTXQIVkExmS2m/sKiWF435kg0kyqfwQLYZE8Jr/4XXkaDKYvJFLmOaaRLJ0xBxbNEfxEG8NI4MksY9sZmCy3Dpgld5bno8+WmcwOo14G6TeX1T7z+YKR/Wdef77U7qmTRSJ1Q2qhFUiX2QzPPuLZmUkTX3GO10bquNzaT6OLzYBaQth0tggPZ7gkmyYO33WZDGSylCdoaxPYkfleu360Xf8J1yAdGHFa2bbVS7AlsxTBM1VBq4uLz8D1EmhONlJmHrCZyb3eW2ojrIh1+l0z6Pm5PGxdYmVFpw4Ci/GQYzWZVBYbxNa4rRsORyvvx9bmBl6q20jQZt6vpL83x1lwtk4ynhLUyjK06zxgq61xPn9N79+Y5UAvpQGTMbcm9qUU8qe5zs2dY3UtQ8lrglye2a89NDLgZcU6F3TBx2J5thfk+DJ2ZgtcLb65a2TnJpMm7nzekYXoXdyHlx8BKCrBJAmthjQcBiEIjAt/hq7TBJ5UHUAChvSgC8EYhVJ0rStW3pdgANZos33VePLa++ZCn9WF2poN6r5TBXotWD+n0N+sZADPLprT7hOAQzJIzqmXcDgW6OTlVAk8Cdk6I8HNl/1nAbBM3a8IGzJAvywUM3c8SjyvXcvrRoLNvn8uIefLnvdtK/Pz1S7r0a73Fd+rhX6Rf35twpYtjInDBibwZGLe5UXxbG5JB8OciSMOyvkqwRk78cGlkF5GrG0lhRh/PjbUfP9JcSBHapaxrSSC2qDVyuyUgotOW1kBnxSL+fFg0w9lHECK4Lttm9N6RagS2ZVRsSZI70jxwEcFRIcDuOZC6kRpYtuWdlctxePc3CshwG5xiJcUdwYHwjSZEWtuRjB6hZBNl4vdTvA1NrlUD4Elds1c4ODlGiJeujo1dSRsBkt/UMRLlQRElGqGSMcoPgaqSK2Xcc3MHq9OQ9KWXmxzsuYi23oBPEt1ceXZUSeczZW+SYNnuCXSCdyT4nbI5ZlyrAJ4ql4+tu1timJmSWRLLad4j7sOy1FMVpISTRvykxI0zqRB2qRSGSZQKqVutG13htG2z/uiZIe5GmW3qcVT5mBpqlanbY7yKmfz5biWAB/K7FBW8pyXYKCFbbFcF5Lz74FDAjm1bAFgODhHli7DYoqXMRnifbgQuDufMue7SF1HXv59gk4YWUJnCTz1B6Ynenyg5wMdDjzZeKDdf58C0t5Cu865zRK7UncXNa87qsFqmfiXzm4bZgajYZQJOo34NyUVfO8lc46pjZh2PPdmlQhipM5gRPVSopcLCNcemxs5t2X6T+bgAgnYS5YdO7Ay24zriLG7BEkURBq1pD5XWbpIExheOWgNFrOGn5MAdglbP4OmC0gYpoHUxBMJpmHokJ3nETpO3UtBRCmSZ6o6g61/Ms4H/fndGU/9QPsPXFS+4wy4gWkPH8f1ugj/aAylH9HlMR7Az0Nv+tLPk+Nx0HtH1ahtoxWjNNc509JmEaSaYKNzZgOdEX6dGWcS1kLI1ztEVv7yH//Cf/7v/4X/8n/9d27vX1xTqShNN85ROLXSe1/abhddvRHCYdYHZw1mhYrHF4KXNqkn7s5hnMPQ4Z3cjjE4xuCHHvzQpwNPw4GnH3pwr4NNhFutfN1v/Lq/89vbL+yygcHz+cnjHPw4B7+Pwe+j8906H2XQMZc7qIZU86Y5YVrEYJfCPcr1fqm3AKDeqFYQE8bwhMlpxsdx8vvj4Pvjyf/48bsDdih3aS5OXuGO26ZdhWHDmzsBzaB2Qx4D+VSqGlsmAKpxjpPHefKhAxWli3LKgPsX7lTuzr2hijgYUoqD0GXzMrpWouRWw0Z7aWdRo6rRFESdWbZZoZfK1r5Q24m0zsGTTyt878qHGSZ6AZ5qgAU3hiqP58ZnJFFL3ai4KPTbVrlvN27txlZ2Wtmp9Uapu1fnKMHmcaHoo3fIcsPeeZbCsym36rFMk0atsHflHeO0HmvJkFOgu67kMK+68OYzhosYr4BE4wyzAdQxjxWLjraiSiuw18KXt523t5332429bd59T2OfanHPo3hJolVZRCPSB7KXZDK2EsB6Cf9cTNwbzzRJn0Ci/HuxlDwGtMVENi807mmrA0+kloQwXLA774NIkk7fi/DnE+TIJmIS/loM4RgXXzYBw9A/jtj3Cq7IusT6bw0WpIVvW/1r2yu3W3WgcmP5FmJMF1skYi4nUnh5ncseWIBNJPCUskPqbXTM0m/J94Sdj7N0at/GPfuzSSrVePIuR0+TiWohbB4ehow5Dr2vOJrAIa7gU/qAuR7SzbPpp8glKR3n8vRJJL5suYD/MAn5x9efBp4+H8rzNOphrpQu1WmheZ4LvspjgV+BDEnaWwQwKSA5xoi6YF84y3n1EcjAphbBorzGx8+C+dJnkFGK0dOZvqw0uZTOJDK3AvoVGr7sxrjr1GxKsd5VThHvkMydvA72lbmUj2PqjoaIhK9Z5pgZvgFquV7l9Zpz/70gpdfbtckuvIIfWfKXQpevJXyRabRkZuW18/3rv1+e73p3cwyZQZmXRy6AKGtUF8GQ+ftZkphBzOX3IuJtRnGDktdrIQpLOptzw8Fi1SmhuXl5JiagiC3WUIqlzTLIP4xDfF/y6VcpkhsSW+/FWRuq6z0LQInVpjHnxbN6eQ/eYnhdN+85Qa5+LpBusicmEOKRjgzPksSmIMX5JDMsoRnhe6ijYp5t1e7rS4drm0iNQyCFU31vDYe8pyjvtrmQed1a6KeUAKJgaIAl+4bTx+8Y0G4b9fOktu7OrIFEyUrJMjdjBgIO1sbzFaaGUSmLjbP6ta7s+BzA/DcDYY8KyEYDuf4Rb7ubDojFmiUO4gQ9E/jzw+C6qpd9mOsuz5bLdr2srpf13s8ewVcF2+Z7MlPhlPTMvrvNyyZWFs6LrjNsfqgIzgayANKseAZDjLaHaLMpbVNqjTa0wQCqwqWlfQldmaAsZwcpjfKrGg6CVMcxm0eGJiH8SDgIgwC5DO1hC2uZYs/SYNtuiHg31dqrg6ZvyrGd9OfJs1WGBpPPupdKtEK7b077jyzb0MHoA5HBrEmvHnEs1obfVw0DLGQXlAhkw/ZvW2PbhNbEtcuKM/wsWSskcOEBbipz6WVSHJiLA92CURrngXe2apS2x1KOoJOC2Endd0yEoUYd51xLl1UUYHayyML22iD58qrM8vNxXrs2GiKhEVVCa6TKOs7V1gcZE0C/Av5eTu53VGqlbhv77Y7F9cpW2e437/gaLbVrLWz7RnZws7lLbI6j7yFBsrSrLnDRdbb8wdTyXCvuY0iCJPGV8yPFyyvKFiBPc7Ams7r5uTUZLxqUdXUwq1Syi2mpXkbXaqMGUzZt7WStXPwLM/Gy2GQK5u/E9WEy6ISEK8KGlnWdmskSC90kdWaMho5Swk4+dMs/sWDDYAPRE7Sj54N+fDjT6fjExuHsp/GAKMHT4+HdH9XC6DaPVkeDOQcNkQ3KzYN/K27LI01ahzuypXi5vBwnRmdoCcfWdX5Qi/Eh7H+ZNo0MYsKWl3DeU5ci1+KAl+7IhM+VZ4of4T7QA4kMsYVeoFDNdRER4Xg8qdunr+vSMDPq8LILFLQKUu4IlSItABdfy93Cxpk3+EhWp3HlQvpnFnGApohrkY3h58xpfWq2DdQD1em/aIBPDviMfqLFWU+Cl1FadLTrxye9PzjPH1h/ouPExieoz7dw4GV37lNHHbfbiWGcfXAch5994X8Yrkl4PA7O3hlHn4xgL9E3tBt6dMYxGD3LekZ0gQpWvSy7kUkEigd7shVuX+/89//P/8U//ad/5u3bN55dkbZz/9K4lXfUGsMaj2cI/crqJmkRR6gax+jY+KTVwv3egh3rpY19KAMYVqDcoJqLiJ+dj/PJ3+3J7+PJ3/STH+OTh56cevJrqXwthd/Kxi/txnvbKVJ4jsFxDv7X5yd/184PjKNVTmn0qpg1zLwz6YOD2uHZhY0AY8z4cvNSutvtzv32xh5aYtZd6mCoMMSlF86n8vHs/P44+F/nA+8TqdTPwSbO2Pl13znV9YuaGLeycys3lI0RSZIGbBTupXBWAxG+94NTh5dnHidWlVNOtmJ8qztSdnYKTTa2Wqn1xrYZbX/n2Cu3/pVtvFNGZwN+LY1f2o23ulPlhnf9EtdIKt6VerQbut0Y253H8PL/jx8fnPrgbdv4sr9xb3dq/G/fdgRPaNzLxugHpRhbcbDjXoTfvn3h29s7X++/src3ar1z1sazGx+98/148nE8+TyfXtpUHBz7/fH0kv/HybgrX5ry221jaxtNZSZat71R98rH8eB2PJBD6Fl2p9Vt9BSefk3ozCTkTOREGbSd3Frj663x25c3fnl74+t+4002F6vugtmNc8A4Qy5guMZVLcvvSiLgBOvDr0z945GMFrOXJIaGf1dQTEb4K4Wytcm81dMroUb4vcNgdAd8j2F0qvuLAlt1MtYmEe8GSLS1OK/E/JwKvzw1jbwao5JVHCnHk/GTsRjb0+8pcSbUix+czx0VLEW8eut+b95leCu0CqV0zucxk0mSPr25VupIdlMpU3tp9GB0BvhklnGtg1Pn89J0pMUpHUm1GtqUxzguxIAFrkwgzcRLls1JOj00lhZ8YkgVTxYTbLQ4Okv6c+oVuOlpLZBOuEAHYZ/zsxZoNjlrNjxxX6FH8vpP4k7/jq52w+nFitcRt83ovVJrispmgEdyKSEzgTGA1VJoS2dZ3mTLGJeJ8h8sJC2ZHOHcSpY62PrMtYf9RxP5rDMQdMcpfq8RyCp4WOsOyezWIzIDjskgkhBiTt2J0KDIlJxPjANM1xkw0lHPODiy4glEpCEquTmYG0yu4xqvBFimAGUCR+BZk5cysPVaIEeZi0kYMzjPkjN52bwLDXMHIZ1Yebn2VTsk59HL3SLLpTaBpyvAlEDQtWTvZ/2b/DeZbtltLO9kPf1rIL+0u9bvEu2d5XWXwb0CRWv7Xcc8f55/GyZxgmt+AHlnrtA0Kq/3lIbPgZ8AckYEoAmMzCBPFmAxHU3C8fPnGGNMTY9isgT6iqO7xYIuGnORIzFDu1x7M5BMdDb1cPJz/blzH2QHpQQNpJZgMCQDSrAS7mnbPEusN1TxuvmkCUvxOuWoO/BOZvMhYa7FmJ8JDsZ6XsSRWA1/fNn81+beSEBpgUQ2A9wZ9NoCVvwwMM/c6QpyBLIB2Nzy/zv9sjnwL9DTBfSNNZaaNmUCxTn2RDbIT0KR6CbaigdBotnZfF4Pc6ejBiCrJbtEukZKrQWrgMLYgmGgwlNDz8giKJsrJlMvATAUgiGT4xsMpGCzJFNUwjDke3zEBWS4aLLCWbvrjNHYdg/ImlRUNtfcK4ZomUFF7wXXK/OsXG2F0mIdikQ8vxhy4J1CS2hFkfPOGncHnxNsjuxeiYD0ynpNYD7mKEtOg6Ybs+sAof40bMmY+hnYTzaOsebcJoBcIqA311M7mpfV5p6WFBL367tGkt+bJlCR5bpmAVqWxRbN/REBPzkOeW8iKxtr5h1x5gJb1ng6LgFOt9Zgc4Ht0kqATZXWNhcRL8XLIWIsPA/iyMNcw0ycIF6+6YVYZ1hsDKYNlbyvSduPsYqz0xMEztaRaJ6QItBxGtAkWJJq2OiUuC9E0BKA1GT9tADGJfSAQmtHU88n15ql4YXiOj9pd3V0ZpIuG67NsshIVrwAha7vlmCSI89jahVdT0RPRgXwROj+pJbT84eX1x0f2DjBTmw8J/A0jmMxXWqUWas3B/AnCmahBehcd6BQrcyoplQHOYsAfUNCYyszxxZgtyQpS3DGpLEc8CKRdIhufJlJHlewfzn8JIAYJbkhwMdKFDEzyZYlkqSvGFpafTDOTqkH/XhiyAKSB1CNQVvBQsXXUa0k635osPFKyk8kyHoFv1c5yjrr0ubGDAYrIBnnaZNz/69yW2ehmg5suE5jHz18BS/PMz29G66eoEcAT6H7NQ81Z4eOoYxz0J/HJQDxZhF9KP04GOdAeyZncDHl0+hnaECd0XLcHDjP5I372u43BcmPIbOOws8rgWHG53Hw8Xhi++57VsrUfEvjmmGBLWebFTlGxykxmkqUN8YeiaFWjcDZ4HMMfozBDx182ODB4ETxjl7GrQrf2sa3tvPr/sbX+xu3dqMDP86Dj+fB//r4zkcRnsW7qnlHNXFmuCWbrId2KZg642iYcujOYYNDB08dVAq3OOMZ0AcMqfN8cVMhyFbnWXt01/oxVfomKAUtihZlyKDTvTSuWDR2qGwq3DfhKINhxZOZwaw8u/I4ha0on9vGrRmjCVa8iYMIUXrneoa3/R7dA0F6p2HcioO0RuGphg3FhgubH6I8MB6mHAK9COeAU52FVA/hQ5XPYXxpxl427nVze902vtWNvTRsDFqBTTx5tpny9XbnbbtRys6QygAeY/Cjd74fBx/nk0c/OCMhm6/n2d0OcNKswk1439+pxdm7277xxpsno7bG/tz5ODbGD+McnVM7bRTXuBsdjSYNGdcqkTxPtv+lvL8V4b5tvN9ufHm7836/8bbd2NmwLsHW28LmO0OqmJdQltagKmihxDGyFZnNvsycETOGcZ4WIumeniCSidmMSWOeJPWJpq9akBo+sdr0EM2AEWSQMmiRrLSMc4u7rRl318m6iHMm/I+CRdXhAuoc10/5FYHwgZK1vV728q+fl2WexWlrS5T4+1fc00wcuS0cw5ylZET5nFcxjJ42frF2J+gUCZFkC+mwWaFhVpz7qkx8AAmtXr2cZwIS3e3TN81YeQI99vrUk029TrQwcnWOhea5x+LjrvG6RojX8Us84FISP33OFcf/mdf/C+AJjvOkHoXWlH2P/kgXZNDdHD8OkqbnQV2dPnm2Znx9WWS3MvC9ZrJWgDaPC8szJR3UAlF7KSRDoE7QKa87A7noCz8zjBlEiUR3Ce+yJ5M5EgPrmNos95mTFQfe1P+Z82ZzsYNnnMsMQJfjOSn6YRyu3X7IP5/BUXFRtimCtTbwOEdoJK2RvQY7swyv4JokGUHH+67gUwJP6YwbCSitW5qgUBz2HuPk5lCnrned10+WUwzNvPqc58t8rPdEwBM6Hrk58tHznnOu08nKz3QR4XjGl8DyEnBGkHkduFXyJy//XgXx857q1HEB7eo1wfL6DCT4acE8CL2U0ta8Jm30Cj5lmVeCsQ6GqqPsuY9qrqcwntlRScKhzRUnTMApkJX4kplF9YxalMbqmMGklKDNlmRrlNfAuFZka3EgeJlNCTaV/2GlbR5gCa4jMQZoH+6AnGOCO9Og5CFX3DYkAOPfJ6jxOl7pO8+1QzJYfN4KJRfvZbrjIgHW5Y+SAbTabP+E7OdQ2s+Ar804M+1BgrcTdIifkfu+ZgnhBbQh2J/ipR0UF7D1g9kP4WLeCUWHZsO6CYjlvrdCBMwW9ebeXWwGGWFzzYQzsljuGPg6tRhHycmM9dA2FwZWVYaeXlYV2f3SQvh7RpQxJqagLtEo4XSpQd0am4HdNwhNva00zCo0aGVj7J4NOs8no3d6VIom+DSdkrBTohcAvRhabdasZ7ly0rizC0oGcs6qCyp2C3Ar6OBZ9zKZMsF8Sm2BtItj+LiLGEXScboa9gy0mPMwjw4pIYZcKJuX2DVT6r7FmtY464S91bkNSqmeVROZpUIami9mRq02nR9NQCrObYK1SUlh0bBZml6S5DE71/HlePOnKA5+bftOubcJULd9o7U2AahFjY9zxuJwvZxHwDrnjAu5VzLinnMYkzzZqZ6kMu9CNgYtSr7DQyBZaKW0YFLl2eIsXe/KGHp4pohV0BpI2CC1ibQ40Of3oyDD6wzm2T2mbTAMUZnmCikQHcLk4g9gm4MuJtM7tMyEOtwTpcMuem3aseEsQHfGr46je8KhCoMNZ72czx+cjw/0fDrwFJo/jGMBTz2awgDYze8xmLDeMEAYadGlIe3mAvJU6B2RgW2eoLQi2PnEy7xrlAssG+umQCZ+6y5FCQecaJpQqHXz87ArZmckSS775yXnlMB/BEzxrbNHbfrtOR9FiUBBGb07W6kUKJ9kJzdVg9axeiLd6OeTvb8hZdDaTm2bgyzznPezrqjb+Nk5ShLslIurFw0j/lDWcrUSEjsgxMc9C0GyeIfq1OXS3unZzRYLllxn9Cc2QljeHmABOgZAl3jmGMp5dM7HOdtn17JhJPDUoysdHpRZ/s2gH53nQ+mHC+EqIRA/NL1wSmkzoVLbQR8RvIqzcocon+eTv33/AX/7nfsv9yjNdUAiu6Qa4pUQlqWCTJ8u5P2CyWycJhTqTO44Sd4ZWt1c1+j3c/C9D36Mzg/pPMyBJxHYqtBK5S/bnd/2N/7p7Stvb99AKo9u/Ovx4O+fn/x/f/87474x9sZZCyO2c20F7/QKQ33Mh4Vws7m236ee7Nr4MQ7uvWHF2KuXhdkwxunnjCIUFRqFrVS2+x4BsHGepzMYGSibs3ga0NzWdwYiCtUbc+zq9Glp4gDMEGof0N2+9HHyoFP04Edt3G/GFwStvp+l7J4Ms0Jrws3uoA3RHepBwbgVgW6capxnCM8rPIdxFOHA+N0GHyjPYhyRALDROU5j6ye3cvJrVd7qztftxpd659Y2vtze4O0LBQdZGq55Kt2ZQ1utqDSeoWv1MQ5+fx787fHJ9+OTj/7kaX3F7SZ8HgeHDh59UIaXHn17/8ZWN2ppbNL4sjXezXjXd74/Prh/fjp4eJ6c4+TZD/rodAlmop+8qHljnV583fpnqh+B5hpp77edX97e+OX93cGztlNtQ6swijB6YQxnR4lCM+FeKuV2c/tgRhOjivsIVZLpJxynNyf4fDhD7ziVpw6sZDJkAT/duvs+uD+VpAxvQaxx78E6DWC0qDGk06p4flTxMsCGg7/FbVdtdcb8WbWUerGivlZtlrCnkHjGjW4TW6th+zPGX06J+8+L/iNBLU72fqvBZC/mgH3ERBki9G6Rt3HfVwNgOi6ar145EKVpkaieDPNIkOzRhlvNk6Y2P6Nf2Oh+n+4326wQKwW2EmdTxiGXRiLLpQxmvQil6PRxPSPsYzPywfztM06d58sMqvzcSX/Vm5dc3xd4SbGX8+nfev1p4Klurt0hRTlOo5RBLRoUeTcy19rKIuFYmXfRcicws3aBcAb9f0TNpo+DTqd22zb2rbJtjVZD+yGHI7K66ZiOoTNrIDUWgjL1nsyyK5jXVauNQPvcY81AY4ESRNvQgiRvDfN62rhmj8JYgRmUamzWK6CSIEmCAi7y7F3eWmsUFyhB8PbNNoxuYwJe06EW2PZtsmMMIgK3lb2RdKnlD4tJu9doiwxmLvsSMGuUUQmuj1KKB5DXYFrjGc8+ZlBdqoNgcAFqWMCVB70yjVIpjamjEw83hjnVHshOhi62rLOkM+PWFAJ23SKd4tBmFkKbUeZ3efYlPLfKQ1t0o5rsNZmra4JRtdbYUHYxtjI7743hGktOxVylK36oRJBUyxzjkkGP/P9Z+9cmSZIcXRN7oKpm7hF5qerqnjNzdrlcygpFKKRQhP//5/ALL3Ome7oyM8LdzFQBfgCgZpE9c06tCL06OjMjPNzM9AIFXrx4EZo5cX13ut2QjJ50XAI9YRqxbC0/omOfqZAaY4VgGRUcVI0WrWrpbA4m4qCGWY/79aph7y5xMESgVmdbRHZmsl/IZxLq4qBDbTXWy1lq5MvAdUtkvXuw1gpSG331Ll3rvdOPwevng33b6dvB8dw8mBg6dUX66FSpJ44v51xZdEtL0C73WgZKaStAPNiLbEUPmwTlKql2rnWLwDRtEnWCMFJsrk+fpp+AqLhmriHVK2ssY81zvxKBQwvGjgMG51pMRpGIt3g/16NNQE1KAJ2AeSoJwzt9ZRkfiOsgrdEdsRuja4CfeoJLButKBOV58LgDv95irqvMw3yMEb9rEALfdW202xLledCWZK0ax65od2bo9jjyKZ0hszbsvlIwllvj/unGui5IC2AsWmYv68K+PTj6weiL60tkkJFnjxo1rGHXDigjtBioydiDxC98Mp2xdXtZWQ1vl0tk3z6UHCZL0bPxDgQIpS1zTqbTRojyinnnVYhMf95DrBNzTZkMK4t7WW7NrSLmXdMqC7fXO6W5nkyyc1urHIeXb5TindNqa7O81syorTP68NKch5+BzurxORQVlrLMs0diLRX1jk86hpd6cGZlw+A5pl5SJF7mZ3+635HmCre3dQ0tp8ZxHPQx3MYG9DaZJgmAzz1TkCYUM0BdWx/BqsYZWeb+1THQGXWCakeKRrfOyHS6wTvB4nB0S22xDGyu/ypuI9W8vN+v7ACZBDsMyTJpc/AsEBXtR4Cs48x0E8mKWqhaETUvkSqDo+8QiQzvElooLRIIiJ8xFo74ONDRg9VyYKH5RIhEa4APbkcyuaCI9llu1fcHejyd6dSf8RndAQnrQHSUDFgktY/oBsW8a5G00KdaQxx9hbJgpXmXNx1oLfS90nfYNJzzbjweG8/3je2xY51oyFFgxHkX5SLXczqTgF7aCiINo7tmUh/TMZYLgJlMPs9Rnkk+GW5XpUBNZtRCZLf9PNwebxzHRjk2SnMh8fX+gHaHtsLyzrHe2fc7o3+iLiu1rVBWDO/YR2mhNxb3pe4PUwKMrl6WEw3uZ1DQZBqnPFZO4CzsiGuQgnY4ekFF6AjIAq3R6kqplXE0jv1BH+IgUD+Z0IwEqlxovphXKDC8FJI+0K0zuvpXdfZAjxKf1BlJTZPndrA9d/Zn53gXRINZGOekswTCcLQo9QGkVloTtMCohd/+6c98/fNv/PP//L9Qby889sH+Y2Ndvcy/tTXALA+cVQdDR1RjVE8UiNubJVrUWwFbjA1FjgPpHe2FocIxhAfOuPm3/Z3f+zvf9MG7bXTbGbpRyuBzW/jT/c7/6eXPfF5uvLQb37bB9/7k//v+xl+fGz+Onb+xe8cuFegVFS/Z/fyyMmz4uTR2RqzNuq5uW1TZWuX30jmOH7yPnU9l4a0d/LJ8Yl0bFaFopZpwQ/jS7rRSeS4Hj/5k68q+rjRp3Ar889df+OX1hT+9fuK1LogJOoTt6aXYy63wy/3VmUCmyGOjDHiPILeOwaBTzMu53jrc7wf3W+d+M8pitNvivoUVdgU9DDsE2wvbZvR+8O/9GT6V25KhHghv6uO+6eDfHt/YONg50Do8jhNhL8Jh8BzKfjxY7MlNhU/NmUB//vIra5TjFoSGM4EXqbwdiu2dR39jF9hFeB/K27bz/fnk7/s7u+2wEIl090HHcVBUqUP59ngw1Hi5vzDuxkvr3FiokXhY1oW73cCM7f6JsXpsO3rn2He255NDdgSjthLi853f9ycPdsY4gE5VWEz4ervz5y9f+O3zZz7dXlmri6GL1ohd3f+oJqxS+bLcudXC51t0HA6gphUCYHGRdZHC6MZz6+zH4P3ZeTwPntvB97cnfRx0HZh0rs1JlBCsHil7Es1cpCAtCB5xDmaH4H4oS3eG02jO/Lt1YC2sFXqVSHL5nz27C2tHouNhbV4CJ3h8DIpImVIsafHDlfQ4s54AdGo0amT0a3NGdingH+GxJMEIxTzBk0mRftgE9VXhOAZHN/pENCQufL5/qHEcOkMuxzGVMowyAuDCm1CppcTFmInHOrKiQMjO9s/nEWdDgn9lJjgvB5379T+Ni46MN+Rkuls0BorYxuEc72g4dEy5CT9vhKFjJlmXdfGGDTqciIOcrL3/wesPA09yic6yJrTHYVOqB8xZR5plIEllU4EpmRzpSgmNFQIdTRTS0o8T5sDWEK71YOr8mm+cw/uRaqtBz5tsKZKJZPM35ssunydEMBDgGDJXjsWmmg6xRTkEkTmb4lsnJe4EoRI9ISjeJz0xfuPydAkN/XSPcfsS3kfgkFxz5pkB/gi8nM9uXIPi8x6vrJ7r189lcLMUCpk1tfbT+37CvObceLDiyPD1dTKW7BwnkoUR2ljAh5oLyyBT5mcwr/Ef/cxRWdUsvWGCYyUBPLELwptjcgUQf37Jh0BS4COTL+7jypySn9YtnCw0rmtG898Euk2wVfJZmHsIPGiTEJotNkCrgwqXdXWayJB6NGcDJONpdtWZ8838+wRCZglqfGVAcBnzDFVOgVUXb6gGBMtGqJQ6SK2cFHq2MdCujONgHBFk5f6qbmdmRiruawaL+W6bw3Lef5AmnHUf9mc+owM1Caaa2gTGL9WHMTRJNQ27Nu3LuenOZfOz+c+/x28Il70W4oo110NmEcr83WuJZwImgU9MMW8LW6lYMHlSn873nRR3evLz6jCseumMP1NkZONxVE9GycnKOoMh+3AvQglh0gyYS3VGH+ZrWKSTZSRe9uGOgY448MPREIyxVFpNRlEAQPO+FhCjRumsg5L++4UcgwQROM8C8+ul+KPPV4IPnmmSuT4CJChXwOkykdMBqKfuXCyaMVKc+7Qhapd9lzZ87p1cMuml5Hka51GwXKUIdXG9meXWvcSpCMu6QCmomusWNWfx6GS2JoDowVc5kj3qIPrsYCoXBmNL8PFcqzMTGFlbUwe8DYKll2WWMV/Vuwt5uV0lhX9PMPZkAI7hjl+CT+f+iR6PxhwDC8CnxH6UWM9jXEvgfMOLVbJdvGmAyGYgeb0cgzh/LnbfL1MCeC/eJbFkWZZPUgnKXDq4EuwyHQEURylc+g9Oqym5e0Crd/4S19hRKRQ7nCVjlTIczCPZUOhkODmrZZ/PJ9pnSZWOjrPPjSz7Q3sIhh+M44kemwNPYw+2VCQoRNPRmmv9PA9PDu3sbBflijWaTZi4npEgUYbj4+pd+Dr9cI2/fjgY6vIHsfTDDnuHJS9zyBNM5rUhWe4ZEIwoB/E5tHnvOezpQzoZTbOqlGJhN6e9T2ao94w2LEr/PGDoRYI1HGxgXKC7ilLHSm03pN5BGkZD6upOvjSstOnPWPHOUYr7Hmcp5fXMOP2q86xJO+N7IcvsPaFRkbI4y8q8OyamUa7RYH5VTCODHZ28Ro/3BuNJhkytJosaNB0x2ODdnLqdek7BFuu7l9rlzxw8zyRYlp76g9o8N319lEhKayn8+S//xJ//67/w25//Qm+vaL156bUVb7hSy1yHWJa0jDjkFaySXfJ8XHzjWj3XGBo6mepg9RjKpp2HdR4MnjZ4HxuqzgL8vDZeauXrcuPLcg+tokYfB1vvfD8OHgy2YoxbyA4AZr4vRYy1VIa5H7Z56QFD8CR3CFAf1W2sjh1RZ8U0HEhUEW6lsiBefl7gFsDeL3bnVsyvb+rC4q3w50+f+XS78Wm9sVK99XuC5DiDq9TiKTaDl1bRdeHL7Qa4ppOVQuhWI2qMo7PLzl4OltJZtWPa6OaJ+X4Yxz7Y3jvP7eDoO9uxeVMcnO1zmJd4bars5l9v/cEogyGKlWDTSJlxhg5jH2MmrMfR2ftBadV1psIP9YSUsJYa4KryfuwcwCEBdh0H7/vOPg46Ixh/F4Y2LvpOCT2tMXjfNhZZ/G0tmFXm+7CPZBVHuTsCdaGXxiqVERqOtRWe205h5613qg1M3B+qCEutfL6/8un2yuvthVYWijSgnCxRTb/XwYL7srpAu3njHU+eC0vzcahFgm0qdBl4I4jB0oTe3OzfV2U7QLtNHyjN59wz8X8jKlrcBw0yCGHHszHDUAIrcqA/rPYwh9kL4nkM3L/QtILTRU/WfxSiZ05pOtRy+u0zdDlt/4zHI9HkS6lM2w8+hg5u2qxoSDZzxu9q7gt7QtEThf0MlTjjEKF7romRcxTXyiM1ta2xqEKIuEIvxv/szjq9hHkWnM+ecVo+7/WsPPGUHJPEaDLunzI9EmeKzYiZS+r+vFbiIxI/tbwfCZnhD87xf/r6w8ATl5uIBAm9wxFlDqNGdgY5Ua9w5AWb5er+bzmBp5P9RgbpqcmRVL7MCgMhzha9QS6rT0pxrZAMLjQna0JeMdnmxj/rNS02Vyy4vNZsrwwZk5/vnwEhQZWOwBEPkkUkuiQo/wDspKZBfK/3s+yMaHcqQgThkRXPyZRQr4fZscyvewaRlmORO5G8Z+Y109GfZRixsc6yhxnmxnl+MqKyhM5LEE+xt3QKKTgFfl5co6Qxgjn4AGrNRzf78L0T9HJG3PzZDKB9rmq8P3V3ppaLnewiOIOcGZiY0KqQlMT6gWVyZtqBj+WG9vGzct2WUliadzKx4Yy2/OHUHMnPSmBAmQ0unCmUnxlOVFj5SJgHk84ua0bmf/6MwwVBxZ1od6gr6deVuYMjuxjApQ31WnBCWwiJ+4rw8rrmI3CdXR4lsyoysSARP/DzIIgNDTQHJKpRy0ItndYHRzuQVqm7i5Nb95r6/SlQDd388LIqSJPJaslDycecyWKcY/PT+lIzBy5jXxnMEo1Z3mTMcsacHEvmSv6+nQec2plZOEt45lXnAVoyqLmsqzyss1NfAkLJ8NMZwEYXwfzMPLHC/JUCVs8D0mohQbSMvdviYF8+myw1xJDjwJIRguMzpjjXeBxWp02O6ZzBnT+MiEBzAKStzrapzQX0S4s1pIYc/lwJrjkzIwMZ78YkfjpSq7csFhNKc3AnHQ/V5gdgSQDer5FbjC50+izryC+1FOT3MyTnTMQmsyK9HinNs5m1si4lsmh5KBMlZUus6xpBs8FwQXMf3zLX1mSopQMUNpy4br3Wh04tGgnWpNuRYoWFddprgjl6v99YQhwfiM6Dec76/q6tIqN7aUVfkFHQ6mMkIs6sCRC4Li6WKlHuOY6KjeG6w72jZaBHD9QzQKEAINrSXMMpOiHWWl2bKkrT+zjBpd5PnUEdWd57YQkKQEWGOlBdl0hI+ZjkOJQISvroUNo5j6VSrGG9YLVjpbhBjT2p6SRiJ+g2uwKGC1ucLekstZAMuDi+Xv2WvofC8NIU7TteopflUzHnBqKCWffyVMn8fAJqgvTFBVV7JcXX83xyEDdK60Z3sehsHKE7Z7e7BJuUyXrSg7E78NSPB3rsTpfJjmZxjRIOXEnH2MOlODNDjL3UKJVq1NJoAXZSnDE7QlvOeuwyNfpxcGw72+PpTNeje2m6FWfi5mMKqHgmmPBdHOxL8Cnt8NkQQS/+UcSMH+bxo2XODG/MoZoDKcOccStCl+7NbfI/HVitiDhzjLGDHZgu2FjBdupxoy136tJBXK6ZOmhVqTjw5Ed8YQQoQj3t6snozfju6o/E+sqzOPwqL0cc4ZN5AGDDNb0E735qCqXeKPWg1IHJglr3szPYr9rH9B1Fge5lyf3wObQQHR8x9ho/V5cNcxBAjb4behAC5Tgga91LDyOTfvqOCb6nj+QaWVqE/8P/8X/lf/nf/je+/pf/wltvPHvh0VegoVYZepY4T79pKMbASkFHZxCJgdKoq+uPkYCAOiMSdZtcW/VysrHzoPOUwaMM3vYNGTtND17vK1/bym+3V74srzRpHMPYu/Logx82eFY4WqXc7r6PzNjf3xAdFDHuxbWZuhhHaWwWAHGCVAi7GIcqjzE46DzlAPPzpldAbs4mDob7rVTW0hBR9qPQe6PeXrivjdf7wuf7ylKERbzL3GGd3juod/At1RMIKl5G9OV2Y20gdF6WwrM/YbFTVPrNmw5s286jHJRyUJeDpTQUYRvKtiuPR+fHt43H/mTvO+/93UvORDnobKYcqmyjM8S8uyAbhkI1rIatji7MUb/K3rt3et12ngZLrTzH7vYnztQa8VMrzf049S6Mw2yWPfYAk3aCZUvYzMg4Sm3ONA4f8lDlx+MdMeHoA3kpM+msIfFhqn7t4oDeUit2U8atY33k7fE7P8Aqi2xU6aj53CxSeWkLv339ha+fvvDp/upgnzXMCkeIWetFaqPWwpf6gjJQVt9LVVjWxhLdfo0EZxVVL52rVahFWaphi2DmQFtHw7YxGTVX2+xujjr3t3gs1RZnf2HuI4zh2lg2lH6aLYoIPUqMixT2sO2ZMLTykQwBP5MJkuDBjPczVjm7zDP9pw8SGBI2P5wyVWN0iS6sOoEnZ4hn2Rrhq8Cs6i7FE+N2Ibmo7x3v9oYD5DlBcXQH2foErK6gkZSJf9QEnkxDUsG/P0UvLDUimX/3OP68XN4b4p2Mo7H0xCbULHQJQ7D9DF5m/G1YqEpkLOvXOePg8/1/9PXHS+1qlNp5MTQ6YNvc2deA/eqLd7qrJWrP8dVUg4YlGt2MPA09Eb9SPVD2DKCS7Q2nKG0gd9MRb+XEthLOi0JuMQvEOYZeZC6wc5KvYdwl85oHn2b20iYQxnTIzqADDKpPigeu5+LOfznIEcFusfnMyZgYxmQQucp/ZJglgulAHjymNG73ewSqFu14veWs2UWwPBfDhyDXx/QEvSxKxTwgETmD4vPnqQXz8XPme1Rdw6fELrbzd+fmF+9uUKmX1fQRePqAmsZ91dgFk/kBTquM39mPIwBIJgrgnQDc0R3e23Jm1yyyOiXbeJdzk3jQcmoCJLCVPzvxzTAuca+11jCQfv0x+gSC1nV1J9qC1TH/Y4IfEiLHmSWc2c5AyEnAaZbZhZEcGUI71fXjmlMPUCUZFdE9wgQLIcoZ9FusrTHQPqKTFZ7JdaJNrGsNJ/Zk5WR2dpYsSIyxDujBgIupcfDUGQ9Elw2tirROHYPaO62vjN5ZbgvjiNbQt0bbGnVraO/OhCkFsRFlred6ymWgsS4z6HSxdp3lhmk0qTLZYwl65LxnqeZkriUwZYDKx30S/03wSNzZmTNibiPn3CRqxWnA5zor0FphWYpr+Kb/lIGP6ckmMItahZxz5hgMTpabl5GcOjpmDn6OXtDiYOUoJ+Mqa+7hzKZNrZGwO1n+K4Gc1FJPBloR2tpY1oX1fvOyu1pYXsOmqkF5OtNh67Sjgxzu0O0dCTFc1UE/Dr++wXJbWV/uLPfIIhYvlRUzegRihvn6o1yyzDlPkNRsU6fu62COE3Ayds9vxYF8srwyUC1OvWHo4OjHmd4oDjJJLRR1HZwSgWMu17R9JXSPpHrG2tlQeXaFfSphUUQgwHEz7/SaHex09NBJcADAwS3me/yG/Oz2jlmd0TtWLDSynHnia1Wot4W6LrTbSl1bZMFBm4sVdyl02RlycIwxdWo0BlFKYVkbbXHGlB/yQonS5pm0iXOjD7+PLF3WkYydkzpaSoXRHQhsSi3FhYeHL8TruvWz/EAywJSG1ED5A5QdtUJZgonjbKhRvNV6jS4zrokg+b8o5XQfRa2E6Goaa7BoR6998yg8/p4sopI+kVwTDuf+D5n0GXhSFwcSqpfcTRQ5AaTQXUEH2g+cUTWwvmOWwFN4ysG6cpbPYPTNg/Jjw7p3P5NgGybVPjv2eeARzJSyOPBXF2rcXzKoU9S/5HmQ2VUzjrjHvm883t54+/Gdtx8/2B8PBy/NnSETQyMznaCR9DhrYn+V6ueOBZtm9BC2DrKWW8RQnbpkjedL8syvkQNKtlysnQjMEthxP8xBHJ/jAgxk7J5xHSulrdBWRDvabmh7UpcDKQuUlVIPaDuV6LpXGiZLlJIUjBrTFH5FJIVOzcUoAQn/Ax3BPq1kF+Fkglk0u5m+kw6GFsYoYCuVG8jAWMEOhjZsFGwUtBcH1CLzbT2ev+Ogk1ZQZxtpMFp6zMO+jylW3LuiWsBCNyVcChvBKBGLLlW+H3W4r/7y8onvz50+BvL6wm+//RP//C//E/X1C2t5pXNjGytDE4hf5vWSqeYsw472w5u3qHl55Hr3hEgpWG0uaaBGbQvUwhjG78/v/H1/8Pdj4+/6xpscPDkwUV7Wxpd643/+9c/8dn/lL7fPDG3sHb7vnb/vgx/DO7PRipc4iZf4FlXaWJBRvYx8qAu+94M1ujruai78La7IZOJSA3ocdCpHWbxsbjwZeHJardCsUtS41cZSKr8td1gWCp9YRBxsqp4MTG3P7ejYER2yotFSqR6s1SKIwe32gtqNz683tv4LPUS3Rz/ovfNoPxyMp/Cg0Efn8Xyn9eEMpqPz/fed52Pw9q3z2J9sY+dt/KBLd4HzanQxFOVQZ6qZGNQRNgWqOC/Gs9ptMtAnixRlRNn/u7772oM4L32N1bIEoAy2HzMmNCwStURSxML2NtBgYYd/WJeFJQzF9+cbz21nqQtv2+4gE+K+dXh3DQfDRMRBdQv7tdRgBxXK+4bI7oHgoRSFdbnxp5dPfL2v/PbLb9zWBaz6OemoDI99B/Xzv60lGllbxNoOlrhmlDt1e+gO7cfBHppv+9HZgnH6eN/Y94PeB30Yux6+Bn0L++bNMoYAn2ZcFGM5xnD956K0OBuaFJpEomp4I5h9hDzBNlhqYemuZdWKsFQmW61k7BKx5dWMu20L5ld2XOVDyPsPRt/9rmuZvcZHG8fA2VjJgjf3ZXT4VYcBeAMRNEp7x/BugoFrjGFkOd6spkCwUvPYcVCXJKmEX2qZ+JTpa9ZI9ln6tX47LuOXz2mZPvn46iPOCeAUZXf/twZjfybb1EGgCeLFuzPRfsb+Du6Dl4fqUI7jFE53Esf5Of+j1/+OUrvQJMGDhxQZ3MNTL0W5raF/k3oL2XUlfzeZ7zmvWXOfqzcC5A+lOyWDL9I9gMufZznbZRJiMfnmuMBEYXQTlDKLoH7kcPtXrQriGdySlOqYnHQcJ0DBGZQGlpQNND6irBlvZonZpFDl98+fWWZisvRLJiTxAbA5rUDcyxzLfP687/M9iTfk6+xad3Ha5z2fQEt+zj9u/uzyks/wjztfpgd3fud0jM5fuY7j9bd//v/5OxbWyP7xWa/3mYFOboyT1fAfv/6jn/0Dav7h+x52qqbEqrPQfn4+8jMk87XneKYQ+hzHTE5PEbmTspmf6UOarKsPT3xZf4EgzTG5BNrx2979RgmaHtkmxd+Z4IbNe57XsDTeymw5nldKZNwSuE0wwB9QqsxATmpBWqF2N0ejVUYvXiZYcNp9P84Aoft9udZMbDZOoGEMmxWykwFpkRUJECVBvNQYmE8VS8nlzmwCEap+qJz2I947A0imo/Rh/WiCHvZh/ZxjmUy/YOoUmzbvulYtHKwPe1DOPe/dLvx3RrbEArIzmcl5j9Q6bc6HBgby09oUv2/mNT7a49QmSn3ypKN7aVVkv1ZnuS13B0RMjTaAcoAU2nPD9d68Wj4zR+XwCx1LZ986SKUuSg0dOBM7Ncfyjo2Z8cr1r3apf/fT/QKyJaAWn3dOzmlPqNFm3ZewREKkVJ1gtHemVErREKv1e/L6eyglHaMJPeaSnePsB0FQay0twzU9kvcsXo6hLvKP2byegxNMzbtyTd4kUFyEoq4vt/YbPYCvZIliLvBelxaMtTaZpUUiG147Wh2s8QydkC3uc3wnSHcVULucQ1fw1jUPO0PHdFCT9ZSgj5UaoKeX7VAKVrwr2mRA5lrPSRSZ3dfUDKs17AhePlV9/ErsTTVDe51GoGR68Cf6uMQ9lTQ9BH8+AyFNnaTuwE+ykYLRDDa7Jsm8VUkVOTxtxwk8tdWBt8wkZEZ+nGLiU9/JOiOAJ9PQ19QUK/fru0bLgYaWk47D34MGsJaAXaGU5npaJqhJMMnqZIVJrJt53swzYbjtz3UdelPavU31sW0c28Y4uuuFRPJtQvRmHliJ2+cyfI/2EVlbHHiyCXLYrI5JP8PEQC/DdvEKZC4s5hqLX5o+2dW3zLI6n2qNRsYK1Hk2erKwzVtQK1C8Lbs1QJUeTLxSF6QMal3OVHMyw3/yP1yYNpp8xPiKedLK31BmcOHf8wBahADR+tTz8+NcnIWu4mN8+ULzfI2TP5jWXjISbDD1cjQdzDbiY2h0rovW4iMPx/A503fWeXuT+W3zWTw5ouZAZ6U4wNlcO6yVFcoNq3eGFS8THAVMUemUUp3Z0tr8TH8kTS33+SVSyVSQFKEPY7PBj+PJ2/HkrW9sunGUjsqgiXcX++V249fXT3xe7tzqwvNQHofy+37w4zh46vC9rX6+VIwW18ygNeUNJLReqrotySqJTFJpOfXutHgjjk0PHsOBjntxnaaGedewCq0JrXi5XBXvINekTNDJTD1hrcrQQh/CEdcsqs7oJUCoOFdWAqwzP+u6HHTpyEuJtWE8j87WB6JPSh+MoTy3gx9vG/umbN14jif72HmMJz1AfmdY5Z53tnPqaJa4bySS6tOJOb3S2Wki9Wkk9SZjS81tPuZJmhs8y2aJ86PE4ZknlsYHZKMbixjLqyY6hym1d1Rc1L1KcZDRHLhbS3Quwzs5op4UrThAX6ns6myvEc59RXi53fjy6YUvLzfut7trAMV5Zupgy/vuwFyVQlla+MaFVrwhSBVvcT/MdYieR2fvnfdt43nsHH1w9M4RZc7btrvuY5A2ujkjbSqihFmZZtSmu3i1VNHUyW1SLVE9UR1s1WQU4cDT1p08MazQTVmqMMxFyKsw900m86ednjFwsn3O2PEfYq6czfRh5fQ7zrXALOf240ry2/PM0PyrSMQMUfUVf7odPD9X5u/K5eg5/dTTVue73J+1mgFFxK1RKpaJtVIdl0j/3f8eYJdEj9tImhB7JMeo1rw3OZMVxod4Y/qiF18kAgUstAlHd7H1fddLTGqz5PKPvP4w8FQipW2a4tl++I3utFrrcAvhRGeU+GHs50yCAlmi4Q+W+r5R4kzS6qVEh6L8ahWXz3BkMleVG4DxofTJ/YOPpVK5GD07GQsVi5rNoObGtb2LjVA1WF4zw80MLItcNEeuA52xA/E5lhBxPLLmQjyDOzgDBVI7RvjoRM1N4zQ+5tq8ZMMn4MQHJzDH6SO7KOa0pBg0EWyf41ZK0pfn1v0wpimMa+BC4znWcV9FHNYoAUA42+IShCBkOYNI6lbkNRx1/geALR5p0ikDGfef63+66D+W751jOQPxHCO7jO11zcAFUb8iyJcxzZLFAF+KRPcInGWlcVTqOAPFWdoIl+/HGko6bLc48E+DKs4/mM+X3R64gAjDQr9C04T4L7umjp1sgrlnetBHqwsKlgIV16BINzQMr5HMuc4Y7ohXFHYPslsDqcs5Rtk6dMjJjJHQe5kHgWf36lLpx0E/DupSWe4Lx75ghwsba+/0pwcmI4AM33c1DpDEzlL5YUwnw8cqvjRKAqIzkt/ruRewZBnJpN6GdffdO4EJJgOo1o9zGnH8BFOmUY9pKsUzVM5E8e4apRgi6jawtShpdEM/dHjnjnNhxxou0YjM90iPvVTFNRsuSJo7K8WD664J7KUXAVddlJwrt+nR3S0cXM/MgFQv3xqp+1NcXLytjeW+0G436rqwfrmHXVOsVNrubdrHOFyUkg774d161Di6i6Fv7aAuHaMi1cGpGoLlXlYUd5t2XY3ByG0YTsLlPJBcgy4w6Us6T/HTkcr31yxnC0+rtMKyCG0p4UAxGwwghYZeysMbBXVdM7LTqE5gQUnhanPgwIhuZzID/8wyzvKrQuhrCSaFUtZgI8Y6CGemlujAd6Fs53M28+YOinIcLvJdW5/rfH25eWON2zoZFS0OQZUOvYcdqZPlIkW8qWY575MMKC6ly9dMmmYAdBzs29OZWAFOZAc+P3OTqToQaaiaP18tjA6zu2w99+/pYkmwcxojQVX1xh20AbUhZcGsgSldoGhFR6OUZZYOpu2bZ80EAC6aS3Z4+Zse2HDdJO1PFxgP0e4sgcNz1xMgr0WcwYU7eyoC5QSeal3IknrympdSOzS72Q3G8cCp925TLZlPWXYVY4BpgBIOPAFIcyF7Zzu5VlClMKb2Q4sxa0ht4YinTlYPTamCFEVKbMIxYHT0cMBpe39ne3+wPx70facMB0MTv9MILAntNkIjRMyw0pms7gCepv5QRAezBN4iKA27eNWGtCSP5df0JCLCynVkimgwiDWkEEycjZIdDjOxVYSizYGWkd3sKpSd0g+0bng3uSe1uQ5Uub1SZKVQY601LzWTc58kOHscndkBGUhhWQdIiZVzsgUw12/RQzmeB3070CiBswNwHWPoULVgQ7xrV3SfU6L8bkA/dLKcRvdstwuK45nv7k0j8n0fXuFDe+AqLq4rp38XVcCoWviSEmdx4Tg8wFlurlszVJxBJt6swME0AxWW0mirsC4FCEZ8ANjOJlhoNRLb5vZ5mDcaeesbP/aNf3t+4+/Hk2+682DjMNfgel0qf3p55b9+/co/f/mVG4Xa4f+1bfz+PPjr+5Mf/cnBQKtCHXGWDxd/dxSQYT0i1UJRZVHfHk2hmLlQO+rJo+LnhXC2m38eG2/RnEcU9mqsZWVdF+rNG5QwBsVcFa+VhRa+aDYtctAEdjMeo/B2HN50yIRFhLY0ltomUMIwVnHAdKjStdLFWL584Tk678fO97//neex8zy6b/k+eD433r8/ncVXbuy4sPYm75gMb0RSA8TGoO/hP6ufs9JYS7ALzZt3tOKMPi2Kxjk4ffYKdRUvKxUJdmuZ54DE2W/a0CjvPfruDBOp0WmQqCJxn2n4okcRegk2sikdT5Zh8P3YuLWFtS683u4wDFFjpXJbFrZ2VhVo1yBWOKP0x+PNSxCHP+NSC79+eeUvv/3K15cbt9awANapS5QkDv722KhFWFtj+XSnNaGswioOPlWp7MPLF7fnk7+9P3l7bvz+eOf96dfro0dpe7Jn0ythalFaZFfSL5oh1omJxM8c/Ojdz6COsq6N1iq3tSKLgFVqGxx9eCe9Awdeq9GK0opwa8JavSPhrTmI1yR95BJM4erGZKJiZ0w7AyCuhAn3YS0AHO80HEktI1hO/nmmMsH2HiyyKbkhRkQddFWOoc54Gt7Br/eMz/gA5JzlgUQi2s5bxddT+rGl2oxDIEoyK67RFZU6VTKBUIBIIle3/kPNAeCL+b2G3UVKSDC431Tr8FK76iS/CSVIAFppwGnz85+7i6bv2/msRmI7f+z1h4EnX6A+Rn1AlpzUoOGiym3tEd80anMEurZA4Mjg6+zi40AKDhuW6r8XOiLZvlqEM9ND4KURodvwFqR6AVkAdyoj6kvgA3EUOolGR2zmMS4LlHQ24izrbkSTnueHV6E1P+xrTeCECHz8c2Z5nfn7Mb9vDwwiKI6/I4K3PDx/3yyZDp5VdKdboLhwnVhMsqdRPJFiia1DqQ3E6/WvrxyiMcapD8IJRn3ovBWZBUG4KuDnSJ3U+jLHYX5WtO01dfFABNYajIcP4NMVBDrBoWs2/Pq9McZkMKSmh0Q23iw7x7nhdKHf88Gv11VL43+W851lnXy4tjst5+KwqAP/yDzzUpBaytwn07bk+3INlNMYXSDmCIhy8YUvmwBUIhiUyzqT+VwWTnUNIDCziymkblI/PltE6fN3jei4BJpjEk6tzrrfCyOEXK9xIBBsqMiWDGSCqVkv7olYBww840vWroTjXMAaFGdctLEwbgvjOOj7zrHtof100KswjkFdDo7N9WnGznyW+SdEV7MQJbzct4am23VvZDkmOX12GbSYpfwzmW6lOhPDhZQ/gtESJ1t2J7MYE8wDzWtXs6i48BKRiJfMvDNiHzZtoJeQ5g17MObvz2y5dy5RooOH2CUQz4PCuwbN+v5a0Gp4Z7zAqCA00moc+lm6dR5M81AtMPmwTbwb6bpyu99p9xv1tlJfX8JeGVZA9x3dF8Y4XHgcjeybg62leM19tuWGjtSDoQe1CcviWhZzomOePXg9D3cvmcysj++Z7Hg4tVQk9k9NW1QiDpcABpPFY/xDxszOeT/XRthEK4hELT24iP/Q0wnmBLZdp8OfwQmHXjIb9dfzeSyPv+psKh2xBvHs58h96Tcegvwldz1Z/i44c6pSXRSy1Fnz74Cng0p1CcZToHICaHXNK6uns37dIlLwAEslgvWwOmPEuZfnZKf3nX3PbGsPJk524dPIzMUOzg6Wo7tdCVapZ6KdRSnx97MTj+DlZYowEEshswAndUDpaFm8TNEMlQoclJaNDxzAlQTfIvjPEqjMv89aLw220XD2UZbdZRc6Z3SlnlKMl0AtmhJyLhRdb0htNL1P9pOD7D4+2vNzo+TOHEzqxzvprGkwonREmR02WR9gE6yaiYyLmGwCAiYOsOa9lYF3Z1Q9yWDmos792N0Dj7ESc2Bqezyc4bTvoHpqnKUtUwtHmtP+4rc1JL8zKKNMf0ujTXUmH65AkqqlhNdck9NBMnNgSImSqPy9PKh8+CTOCLURjCf3hRCQEQkASwbeQHqHPrBoa64oKhXlQMpBaStVO1hHxwrWscX3ZJWXKGWu4Zf49XV496aSvmOU/yie5IGLDxrDlMk53buDuo8n+/vO2Hf0ucOx+zm6DewY7n+rOQMnyGpZmn4MiWy+t13XYJj1I7WdxHWdouQRS3Zknf6NNUWaBA1jcBwDPSsRPCoAAQAASURBVMZlrpwp1bvx2AYsK7W6ls2333/wb//t33nVxo63ZpfFG5WYFfo2GH2ET+t++ZIJm5j3LEl2HSzvIA0+zocp72Pn2/Hg79s7vx/v/P1453vfeTa/x2Lwelv43Ba+rneaGtoPns/O//Pfv/H3vfN9uJ6fiFJtUPqBiFIarHHG1lbdH67G59dXl1RQ48f7O2PfeBxKtx4gi8Xa8tetNG618em2stYVEN6OJ3tXallY2o2nHHwaC1IWFoPFQGkstbKU4qVWQ9gO+H3rvO0H3x47731zVqN2FgatV9bRfD0PhWPQqN7eQUuwyIRNC9935e/Pnb9unWc/ePYjbPtgaGerw5NRxRjiunJadpzFZCSLAgPR3e20GIs16ugOrmqfOkkvzc8cWRZkdfDO+UDDTc7SIlEqUBreWaNQaN4UQkHvwnF09qPz2H7E2eHmp4/ONg6OPbQSM+GMd8zu6sxzxHwdBkC6j+Gf2Q/3N034fHthqLB34/3tjXF4iXutjezA/Hw+/NyrsC4rL0vjy+fPvNzvrMvqNii6Mao0F0Lvyu+PjVKE29J5HS+8LJV1WWjFux1WKrofHEN5DuXbfvBjP/h972y49l6XEkBKBBvFz0kMZ4um1yEgVmZZshscj1MywSekZptM/1T78Pi8uPxOEdxvq5XaYI8SxgH0ftBKdDgs0APP94QXLBMAO300cNskpUS32/BB3TBPH2s2jjLoKX9ipy8spWCjOok48IzR4f3RQ7PQP7prp6s6ABWP2UeU2elcKvOYSf88bjywjPAVLq6nmZtGkbS7Dja3dmIhLcThHb9O6lmAZZZMPKf6uB+bTWHOhLd3+XTpC/erhksyVE72v2SCumYuyk9ez99z7MPLq4+Zy3bwbiRZhD/0+uPA0yz3Sd0f3LHEW2EeAvuulKqsq81RLVYgmg5aagiEtyLxf6eodfGMRIks5kTePAswHbIETOTMCPlH5c8yGDm/J+AoeAIQEbhlMHgJN8nMueXJSFDS4tqpsVMiM5fxi2emLgCOMcsfimVl5xm45SCYiGfz8o4zoJNkj52i3xp077yuzbs+/zL1XIKT9zPYM5llOVb5vetI2Dk/+fMsE8utlRv8H1+XcT634X/y73Ncr2yrK/h0DdLyU52RdTEe8fuamlXpdc5xvTzjBYE+x1ouFRUfx8Tm55yBblIYE+1P6meCDRMb4rJGJS+Yt2ZBMJkLfQIjvjZtrqPrcF6R/OtnFxWsJoU4AlwMjZr9Oep23lPOugdR3jLd2Wneshz8QC6XRWuWXr7GZ4UgcIxquOJk+Y7FGvfDoMwMwlxtuaeLOW24CGV48D5q6nQIepTzWUp3d0PBbDAYZLnMP6yv2FNE0Jtj+vNr7hPzZyBNyaynOw+L+dlhzz6so4sJEomg+GqRhQlWlCyPOqcmgtrimmXidf1XIDTvUfR8DpN5wVjfnilMtwnOQ9bHwy73KxH0yOWgYs5NarZ8PFTcuZPLZyNOq67N21e3EBkv60pd75MFo71jtaC1sj7vM2Bd7gvlGIyiYD7vimv2Se+UY/czQD1/lTpTk3g/17Xb36QTT6D2hF7m36d9lzhzsoQo9nAKqksApHmIJxvuOql21jNOZ8jAu8PF/UlM9rRZ8WlpMAScRZP3mXNql38T58pVRDNtyzTc+bl8fF2u7R2hoOEgnwUoV6ozXmp8eclD2OSirl8VAbKUypVdm/Z4zsOVmRmG7fzz1K7RKCXKP0ldLBE3QPP33NtNJpWEUwwBpsaiOM9T40TxzX+3lPMzxLuslaLePQkhVHh8jkuj1IZQsVIQc9sIFuDYiJ1ghCgap/+R5686E+oCPOk4AnxxIKOIZ5dzS5sUpEFRRUOqAB3hm5zAk43jZD1FCd44dpwpkcCT/+nhIhNfkfCtLPjykl7wZb5UbfpZfm/qJdDjUl6t6kk6w7v8EJCaFApux479Sd8d8PBOa9FxqpQQ0Lhe99yf01Zb+J8j7zOGe7iv5rqIciZtLHwkdaBbYmpnQPDzprjsrTzeLJaOqXn5TrLNRfzfaRDVIxYrio0+SyY8AB4YBau+dksRdFRKMbzT5A0hRcA/uIWkX+FWocx71ExQ4SK2p1yCzdL80ZX+3BjHMQG/cRzovmPHjnUHoqw7g1HU24lbt9PXtwSXnDXqJXQaQBPnz4bOBG52g17qMn0dXdSZdM3PcJPigdoQUkewB7BlUfaeZ9Xj/cm3b98Z6ytdjCGDsjZEGkKhH1lm6QEXeDLbgtVaitBaC/CukmphRk3pHgZwmLHb4H3svPedR39ymDm7txVupXCvLuBtQ+lH5/258X3f+NGVTQr35rayaDDwzM/vMsQFxVtzJqPBy7J6N85hjHrwrIO1O3O4CBQ7GfxCZa2VW1t4We40qTDg2Xc2lCIHzQbdDrbauLc7NworBUpjUBhWXGvNzDu6IRwIOy7yrMXHfYxOscE2nKVXVCndWKjxn3dLVBGeZrzvnfdj8DR4IjzDnpq5xHWvblu0DJTuTCdJxEJP0Mmg2ZhlYmsprg+EQKksdeG23Pi03KjipYRNF2cUY0D3M7wFGCQC0mA4sFWseWJHhTEKW+9s/eCtMjXHBoOtH8hIjr95x8k8S+w8u6afFYkhB8H9LPDmPIVdO4pxaOd9e9CjjLzJzYkbwD4OXyfFmePLurAsq5MHSkFtMMyZsN75z3iq8hyDqn7vhw5uUqKDsDdiQQOOM9cO2/LLoIswSqHPKgp/fpm+g82vTI7kvGRMYUwTdL7i103OsbIAlaluEwkfy4Xfo7xds+udxVrwPyvQg5UeVaqzYCJjJsl7kjwvPlr1JBWcJ0yW56VP7iCLJctVk8lpTrARi2oV6FESmZpg2bMl1Unsct38h+bAxPWyOVf603nkJjFX1RwELhlXXPAO8lmnGIb74Jd5mISQiC+cOOG+6tRgLJG8EWd+Tr/2KoswY704Z8MXOLpFIvyc85gQ/jFR/5+//jDwNCboFBc1L8RK7QoO4/l0+HNZMi1eImFrga75QSySlG/XCPDs9Qn+eDlBHh4htGcJrdZwRvPd6WBmZ4EM4E/x8gBHLyGHRSDhjIgc4dNRjwN3bj68BKLIh1DO5+oM1Ajg4wi6aYkSmELsWsKZyZBNz2DDrh6RgEQ7cm8/HYtPsuQx2Cw9zeM1+MvUXt7S9e8pcht13KXM+ROEWpafZv0syZrOjVyew9xg9MkM891kEM70WZJ4GrOP9/ThanNDfjQOE3RTnSUW+e/sypfsEWcZeHnJ2TUpChhi09XIhiFJN5TZXt6f+bzHFMDNMs189hlYlDPQGhpZPDyoy84BRz88gCvFRWtjDY7hYE2VOlWYZumYBesu46b8rYuPbjCzkxBljeK0YBuuQ6HFraPTVP37WX4UExof5Nl2LVn/GswLw4Gf5nz53F8SX95NSRgUBNdZKHXBdIn1EJnh4n+nhH1T/4sVwVzCJ0rWFi/jWPwhez+o+0Zpz8l+KrVRjo7UPUhiO+N5eFOBcZYbTCc+WEVCMNhS8yR/PgNlJgsqmRS55CduCCTrJQ+PD3pHH2yvRaAf9kJkfnbJfSF5hsa+SkJG8f3lHSmivKyUD4FiPoKzZGweSqWFWowmyObrvoXYpiEwXEMr2VZeNmdROpTjUqZg87Sdah4iTcS9ROdEv7/aVpbbnfV+Z7nfafc79Xaj3j+7NpG43bdxYP3wjH4tmHgCo+8H+3Z4OUiAisfxZOiBcaDDn6OYRuYGUijSzAOCCWzUi40NRpGiiT+SdjR2wQewJVlSUrxbpZcVqzvNYh+E7RMkmlsz1r2zUp2Vm+dUxT6wTSUMSjoh53EUa1QKQnQJ08vcBGikkYoSrtcCKLODSS3JoE076dmzpa20GisobVgP4L5WSvPW3aXEqRN7oLQbpSlFjdK8dCP13XLfucB/dC8Mg6Zm1GDdOGDkc+D7sqPHweiuPTSBLKve+lySvevZRRFxQVk01nzBhnfNW5aFc1ZjM0nxci+JMvC+uwMeTm4p1VkWS5+/V/Tm9rqtiHqW2qLMJUH7MQ7/exFntF33YXGA7tiVvh8uND6ctWl941TD9mdoNQXa8fXTFFoPACUTAsniU7Tv/jUc1CK0lbTvJAJjUdpnmbLEmYvDYtXK5ayTAJLF2S++/jxAPBlPw4Xa1dk8MpxtoseBhBhaH7k5wpk3Zwsczydje1JR1loYy8poq3c5G+miXw649LLCLhtwbCfb2ILx5KLBxqxfTZ+NANRzLYV7JEQpaoLwuWYBi3ILHTa1OqUTZ3IAK8X9LjEJEnJPKXNnHRdnZyoVS60GdsAbjogVxJRCpUjHgafQBsOfa2bBLtpHIpXJYo4mCmdjl2Cc7Qf96OzPjef7O+PY0WNzwfm+09+/M/Z39HhyPL6hxxPrT4o9QY+TcYhreg1zjGB0GEcym/zfGaAdx6WT5ur77/X1lakHXc39h1ooD0UeB31sXnqk3tXy+TgAYV0bh0tnc7tVvn//O/L/WXjZOqN+wuoLy8uT1m60tuBdFt3P9FIQr2YAZyGvS+PlpdJapS4rRbxkpA/hGJ19gNUbtBWtC9/3je/bOz+OB0M6L0vlvix8FeFzqbyUwrZ33t83/vb9B+86GK3x8vrK1093qinj8YP3H5vvi10ZNqhr409/+hJd1oSXssw9VmvHKuhi3Cj0aMczS8DN+NTuvKx3vr5+Qbuxbwdvxxt7f3g3ztZoItyk8l7vfFnufG43fgVW2VlLo+L6bLZWan1hWSq3Kgh3Ly9j8NyfHNuTfftOG0+qDV7KQmOh0bgtnxjSOCj8237whvKGciw3eqsco3Ds724jy8AWX9uDDq27jTwM6QMZA45ODd22lcJ9XbmtC68vd2qttOpJrNty53575VZfWUplLcJaoIoznlJ4v9bKsiwUaWANc7wd0UI1ZwYfBu+98+ydt8cPMiu7j85je/Cjfud9eTJ00LN5iPr4qDnjdZhGabS5b9tcTkJnh1bj/Xib/vJzf5t2dlT3iVWV0TrFYKFQb97QQ5ZGR9iGg4RjqGuQ9cFj33k/Dp6qDtwMYxudu1UI1j3mwO6mxnMYjwEblb1URmt0gkE/DmbnAHRi235mRuAh8XgCC7mlIwnhfQbcRgQ+QABBpfj7bBiPobM5y3Ir1OaNKW6Ll+b1ftC7l3EZBsM/F4NWYZijBaV49YQzuuJ8CMDE3SYNnzf8lFKcqZz6ZKZktzmvEoiqg2BnDkBN6UPpLlHIMQYpmaoXbCU1npJhnreSPtB5fn0kPox04Izpn+WQA1Gm7BH6sngc7M0TzJv0tOLagRFnWubTLsmIdW0zAXftDpySBB7P+H5JCaHTF45DL/KaI5I9Rx9u6/esEovbnhUBQRD4g68/DDwd5tk2jREuF085Ek1sh/OSpALlhtNZM9K0Swnc6ehaZOYyOAQSswpJpHCE5s98Q/iE6HkwU7w+05KCDYkyZja7Bhgw1KilupiilEDoY8xTXwBC28EXSynuWPThPIKi4WCql1+UiRaeGipmxji6M5ou+jEzzqwRxGMXTSi8w18BkxhP9QVTS/VSGyIzNNHQjFaCEdH8EKbYBHEwnbXULYGcABvSQcMciMrATUjR2EuQXibmzHF0b8dYyswKlMjEp2EtUZurY0zDewbnNoPrLKvIYD7rUM961wzO3LiU2siNnaVexUfGjU5kzIif2fz+GUTXKJsYAxaW+dwJtjm7bcQ9xtxM5CeAhhQfhA9zoZOlZ95Bzc8DNMZSDC8NyaxgZH6cQm5hMMIRjrm9MqCIa18R8ULzeKNrUCdd3C/Lj7y8LDOX8Qyc61YgAIww5GquoxE6MRJjN/qBFWGId+BJcLHV1QMiXO/EBda9C5uEkKmqO+NaQkekFEprDkKnSKpIbut56tV7payDdu8c7+/IvqNFWNQwKbTN69UVLxeIh0YpZH04RWa2QtKqhrF14b4aGQk8+IjSuxL2ww8z5kEnYkjzveMgyKV8Vc+MT2b/dYpfxCIXCdsQGyLGyOtu4vlNonbaQXu17qU+mjXvcd0z1JoBZnbJyhsf10DfnDJMMerqtrdr54g69iItALEyg1bVFB9mskzS6a9toSzNQaZ1pQTTqd3utNsLa/tEyqaWtTnwVA/6q+ISrAWTSt832nPjeGweWA4ju4GZDdAFHYN9G7TqjkWtkN0MJwhOMJIsu46GCyDmOlmxjzyYdHvTlsUDlFLJ4HcE2JTU80nzLg5WFAl9IHFNvNw9ScU2IliN2dAIjC1bihe3U6kBZwQLYFpc8/GXcc4vMKK2tHCeAzKf29kwiQ1WdDKFa5EJvjh9Xub+NVImSQKQbG4/8mxMK1saVhZn1FbPQ1qWsYUNrOKcO1F3LMmOdlznydeiDcW6l8z0/QitCaOWFsyxenqiKJQ+z9EEEhmFLkbVEmdddjNqJ1AhsYt0YMcz+atua6UwRBwQwu1udm6ry8rSbmSHubTJDlQECzd1tBAHVmWJ81CRcoAc3gHmcOCJsSHmTBNT1y3qZOmGOGCxFKQZ0LwaLpiVxZyO7yDWzug7qsmgMvQ4JhtJu59f6Jhrx+YpJTldbouKp3Ed2FBKOShZKprnNG4npS1xDlS0eAdAM9ft9DVeJtvbzMVk+3E46+a5QTcvfaGGbowilsH2BTZM5xI/Xy3PMgterYmXAWS2/FLKKWE3JxgVLqvvbkXNu+1airtZJJ0oVPPOmZnKHgVKtdC2Kx51FaAaIt05/VHemPotZHlmrdS6UmXQpFBYSUbqCDYnxx4swgyifWK8jCN1SP0cKbVNaQUNNp3aoO8b2483jm1nf3tne7zRj42xP7C+oWNnPH5gPfTHjvcALp05F3X5IOu8PmreeCS62lknuqG53zQCJCsLlKVwf124v9z501++RpRqPM27nB09gq1e4zw8XM+tQ+FAUYbu1FulrpWXF+HYv/Pju7CNTn35hbp+9nlc74jdqO3uAJ8V9m0wIcdSWdpC9pKsVal1BFAo7KWyq3Bo5bEPht0oVfn1T/8M+531+IGOdz61wpdl4c/3lS+tUaTwboNvavx1KBV4rcJ9qRTrHHrw1h9sHCiDMgbrcuPGwhcWXsrKvTQ+1dXPFZSv98ZrXbnVxjPEzFUGWnrYJ0NoFC3sb539iI5kXXiqcVhnyE4RowHb4wef68KntvDP450v652v651P7ZVWF5a68lpgKQtr+8Rhyt4P3p/v9H2g+85ybCzyRpUjSlYXDllQ2ThY2Gk8BDaKM6dG57CBi2t0zA7MniA7IoNajWpeAdPwcrAig4XKvcFahF8/vfLLp098ennl5fYKVjEtmDWKLNRy80SIiM/qBWz3mLRQpbHojVIawkJXl2Kwfp6TTeClNJY2eH25hZ9a6P1gKxvP8pWjvzPsoNvG3h9e/lRDm9FwjRvxjnybdS8XPw72zRMBqj1YzuFjNLfxUgtlHTM5DMMD+wHvB1Fm3nl/eeHWGsWUZfGz56mdt+PgsT05wg+kw9COsbofYaGXZ4Vabi4B0TpqD7o68+1EUrongpvrQmVC0zWt/LUssAjcgC9L8w6JIhzdkxFDhOeAYxh7d/spCk3FASQ1tiGpaEjvg2bQTLmtjbIorTqYpF0YhyeWLPMktbLSGHVB8C7uzQ4qLgvhrFk/MzSAcR3eHRrj1NpDMGrEmO5/nU2mwv8Of5jmfpS7fB+Tiho6zBYnaTKVapEZO2TsnHv39OROcOr6TSGWsczQjiKwHwnqECQRZ7h6V1VObejLp84UZ4QYavmcGZ9E3DJBiNOHsfw8/0WGSmhenwnPSRw4w8b4vs3GO3/k9ccZT8kIghksX9P7inG4AiTP52Bd1V2wKpMNUGfRfQzSdP7T0z61aHwM/PMMm7rJmRHLDW0Y2e3AwmcJ8Ns/Z17yDPKvoyaXiUvG02Q6TFc+neugrpEO7AlkXLV7iiRY4ChkLlKuV81EVTynXAdGwmkqGYQ7uCXFnDo+UTJOECIu5+OZ/n+5jJfMRTIpyfbhjs4a1QlnflwDKdopGcgFEDIzhoKX6+DGZ2K9cn5mAkv5g1nzegmggLmA5effjRlJcCSz6bP7FmdZ04dlah+vnXPl86NzTBP0SYZXUgxPA5JUyTPUT0Mk+azxnrk+o4zpXGoB0mX69TJ3xDyoJcWRGWSdwNOUmY25z8AzCqMnVcnc0dJzHhJYnIyPWM256tWUYkGBnr8bN5SfF2KvCQ5JsA6qFLQUZzmob4iSnY8i0HXB4ACk1Ou9izj9PnfdpKMJrk9VDGl4YNKql2oBVZV2+MHtujT9vM+LlZ+lJREIYVHaMoOpNPDRSS/mwSYrIOY693j8WQoOHpYUFk9APYPSYMYUUid0rsOfzgtyP5qKs8A0A6e5+WI9JaAZhY0CqfWW6zEPPrl+gGSLhziEhaCYEx1sjNpkMlu9OYTEHuW0FcHr/YlThtTmnYfWlboslLY4oFgXSm3UsjhDzsxLvKRiUmnrnTWDZB0cLc6A0DJJ/ZF8fg9qa2jTVKpFDi7HJ9arwUc2qoerPjbBfppsKEm2UwtmYoJ9uSfdrphxsk+LUEqj1oaOSO3LtEi5hOa+m+WM057lfAZzSaK8zsAuWjdX4YAJ+ouc5VG596fx9+A3WUOCMAQme008y2chVCnBFJ5nSBjNycpzg3YCsgipk2KlIXXkMf1hz0XuBIKJkV07sxxWkx1ql7WteoqdmlGaXZh1ORk5j0xb6xUb5thcjF09MZy5TnNPEuD4CTyN6QB69tc/vJSG1QUbK7J070RWnZ45WW6W9xEgQx4CvjHDWPhXShWMMZDRA3hyQXIxgWQkxLktdD9feojXl+hAGHPsWlJRopiaUeb22YaXLbruTgAil3GQAOQ9QRXjdD3/bVDF16W3q9ZgwrggMK1TVBGpnjEOO+GlT2Wus8ynmIhnkntn7Ic3dIgObMmukfTlADlv5kM5ep6HqeHkg3/6OTJ9nov/MQ9QouQuEpPhT4mo7+H0Q2O/ZOCR/phONnL6Kb7w5VL+3PEgoWoAptUz6t7pSih0n1eLcqQxQDpSDqzWkEdQ0stJ7ZATjI79D0gkxMYQdBwc2zv74wfH88n+9s7x/EE/Nvr+cLH7vjO2t9AcO6KjYWqR9bnFXNw8ntGp/xHfS/w9KgLCL5LmiYu6FJZ7Y31t3L+soZtjzuTajbEb5SnBbk6NNIvyfkHwLlyLOFDUmqG6c+wPBo1VGkahHTfXcxJPhKhU1ArP/fDAkIJIY11AyuIAYwlQvTgIv5VBF0/G7B0PyMvC/fUTn5ZBGYId8KVVvi6Nr7cb99YoFDYbvJvxpub6eGJUiQ5ievC0nUMUitHwRPRaF17Lwue6co8/zQZaBnVxMzcM9jqwMlDp9OKlWmMYR3eA9diVsY8oS3Rgspuyj9CUMkN3OErj2Ru3pUAZtAZrxFfe5a5GZ+GFbn6fgydPJzMiKKsMSumUAMhMBgeFjc5mlU0Lu1Q61VmLNjgTEAORQRGlFNerWSlUE1bxphptKLeqvBZ4aZW/fP3Cr1++8uX1lbW9or3Qu9CPiml1AEqdzW1E4wTz2MbP7UqTlaY3xJzxxOH2U8eY1QkUqBZJ2VKnDRt6sNaF++LMILWdzkLXiolSWp22aj+MXYwD5W3sPOuDve5sIhy7g1jYqUm7LAUiySotOjeCJ9dMsSF0HWzq+0WBtVaKGS8vQmuLa2gdO8++06PLcTE/+6I3w/TtS+wBT3z4vklbez0R3fcJUsbAxzSsj4nQGtxEeCnC1/vKrRTWImz78L4EUigD9mGwR0c7NWr3s0O6ecI5bJalqHckvnNfFi0O3odY9wBQ2IYnRKpWVsvTK3wGfO8h8ySfdjgTGGZMm+DxSsXL2y8jMeNgmOBTHNt2Xu7i10uczzLPIIlk9sd4jatk4tU9ul6QjP2DMOZMIwNC3FzEG/oUcT2p6avEsSiSnxKfM71Kj+d8fcvpL5E3EucZiSnEZ8T3hrq/PXSqgPFhsHLoJMZNDP7/DTxNcCiAlVKcgeOOT9SFH7FoxkDtwe1WUXtlXY3WgtIWDsIlFvaDJ4IESZWtcCjDN8mz2F+TDRKBhrnDokMuZUnnrEwWgnnmyEUSR4iElslmyTs614qc37Fk+rjTMszokgfaJcLIQABz517yEJ8Dec6d2ASfk+mRgaQ0FyNsFwV6EWhLc+G+4a2n/aOiA51kUOLjppLzllDauWiyDnR0ndoJabRmVt9SiPcUFwdCnyY0ai5jPYG3yGx7RjOD6J82eLxqrRPIyTnKMjr/2HMhCwTzK2pU5weG04l8AIyuryx9yPub4FSgwVk+Mdfyh4V0ft75uTad4eyYkEFMAlFXfRPJ2mZhrsm8h6HK6GFQzAOUMTJASyean8r9gs02mJ+Vmi1mOtk1QgKXCYpcQTS//gyGYu2M4cCbNDlBkxHPaEJ2VLECOvpc3/0wkgHjY+7tuF0yJWu746AvzctxhgvmVjWsGUSt+mQ4hrCwswgFTFju9ymuPHaldmNZF8YxPAuzdxKTocgEh5z05HsFPdfQiBpo9HRM0JOWCnaKoheoIfpXJt7gUZuUBALCSCtI9ly3AFNj2VzXYElQUt2eWdCBUXUuiRkUZ7E5xzhXlxd4FDhtsqT4MZx8vziwMiBOpxPPaKDO+Fpv63lvdoLyGkGzqTM/JVGF4qteTSm10G4LL6+vvH76zPryQlvv0ejA566QpXHFwTUR1ttL6HAUlnVhfz54NAdJ9OjY0RlHR/vg2A+OYAOUUhnDhRLbqOd6IejFprRWJkDee+gMXo2QMUtv1xBEb83PqMR4anTeTEDa7XuZ61kSMBVC++hkBuY+r5EmOk1H2BpwwCjnPQLrK6s07bGLrGZGn/QZfB1cSnxzbVgCd8GMKQEEtCwnLM0ZGcX3JhFEIeFYmSD06ajmp7udqZRloUnathKB+7hwvvzc8XMjghIbH+3iNO123r95RyRn7Pi4aFNarRdvK0xvyXPTHVfPYtYJKII7bJmGTaeaEu3gg4M3eo9OuMkK9t9tbWWExtNoN2pbaesLpXnRgd9yjX1coqwqbjL8EmcCO3Jh4qUZQxU7PPgXO6B3CoU2xdSigN72AIEbtWnol0RHQtUozXItmCIng1xnB6VxlmKaM7UzYVJKMhZPvMWdTNeEqBVEHcj3M3HM0nEpXlLW2jrLCU1lNgI4q/qEnkBj+ibmbIFxaJR1JitWk6R6Ou0wddLScLqmn58DlHMvS6JDcoqqairfIrNk2OUB3DjWsBWGeMCOMyfqiG5x1TtDOqlHfb2ZUQNw81ViroGl3dkeo1NrwWplwTsRStGTzao+76qNMg76/gyfuVJqR4oD9x7cSJSZnHvDnbWOjieqA2HQrdP7xvZ44/ntG/35pL+/cWwPdOzo8UTHhumO7g8wBwckOpz5frMYp0t2xa0pLqruQfIp6B4aX1Emmho13nE0nIZIOtfSWGJ+tmDRldJITbJcK2ZC70YxpdDpGiLUBVQ7x76j8qTcdjIrc6iDRl0Lj71HSaiDNEtbeGwPbuuN1hrrsvoaAn6YoXVBpdANdhmoKOu68PXlM5/kxk0/8cvS+GVd+cvtE1jj0MrbvvOjG2/Agx3Rg+0YDrxqZ+NAKrTW+NIWvqyvfF3v/PLpM6+lcaN6UyZxHdbbcuNPNF7lxqjqYF0ZbLJz6GCTzsOMfSjfjwM7nHnWDkhsfpinpIYphwkP7agY/96f6A5DXHPpdRx8qoPVVsQq1SqLVBZrlLpiy43NBr28sFSlyMKwAy2VQeHB4NEP3rvxbYNDGkdpke9TmnbEDooM2lK4LzdaFdZauNcbizRuurAM7+T3SQqflsrr0vjz1y98ur9wW2/oWNifxhPj7aEcu3IcA3Tzc8Q6al5SLAVai4T6CnQBM479yeOx+dmvJ1uxNj8DsmKh5InVnZG12Moi5sxeKSwvn6it0NZGsn5VF0Z1lu2P48n3H995PN55bg/vytx3tv3B0Tt9dAYa8ineSXEfg4dtPINNLfXUw3t7bGzb5lGFKrfbnVaXKGs9vNKEwVKgtYo2oRdjs8FiFX+8kJcojVIarS3U7qL36R8iwmyI48U9AXLbzKO93Fc+xx74l0+fuNXKWgqPbaebcEjlh8I2XO9rHN55erxtdA4OjCau/ZeadzoGhwp7HaxLY10a7bZSpNP74DgIwAjoitGRUmjFz4Ja/az1phcOjIup7znwDs9pLi21CSNpqzmDwc4CopcDKZcyzKtDpLrPm+fSlRyQ8XarMt3qcQHj/cSyYCrHKZSfkx8zsYbww/O0CsFy6WdsVbNr9fywjF39bEuWvgNHjsmIRBO1AqNkk6PTRZkJ0Ava4XpVfnYe8+/xfuUUUb+EkKnJVczlF/7I6w8DT+kMEAbOs/NM4Iz4uSocHXgqQ4VlOeJnrmHgLYjBdHgwLk6bVAoynCKPnqU27sSHg2we5GC+IDQQxqRSTyZHBk12LmDHc2oo1Hudr2cgk+1ymZAIHGZ2zXRmM3MxY1nq59d3hHn6jcxiUAkK3tDpVKWjiABNvF2vZYByghRSHCXP7JrOcjT/3ZmFtkGRCPpLuRzkvqhzpV9BHPI5IBDVBCUS1EhndExQxstSCpKMiAnenKV2UyuHS1zxHyBOP9/LVVD8+vOrFkr+/cpIOrU0yvyeZwHHfMYrqHWu5nMe06FOBkwGmP4enc//82sakdgMKYA/n+EyV/Ne8j+RAN2SLh/lnmqQHfr0cs8X4A+S2HM6ixpC8hOUMHOnLUDEXJtnGV+undxHsX6CvWQWbL5w5BIcpvia8HV+ovWGMIrvVSQ1jGIhhBaGWgmAOQMYnWtnqFJG93KWKLstURLlWiNpVC1A70YLtlSRQmuNIuJZmAi0vehlzmTYkzDWxRBqwjLu6AeQGATH07Za7GuxyA7VcGLET5Pc92k38PfqPCcSwOGyF3OuvGGAGIkUuWM/JNgCDmg5pVdmyZ+XTtUJ8p0zH98PG+JZMDj1gcLZKAVtFnp5/p5SGqUV6tEju+8stVFxJpZGiVaA7SXELNu60tZGW5rr0oU4dYm5zKDYwcA4asMZqK0isjhdOlu89xd3XkpxYXXN9ZyJBZvrYqh5aekFWHWAVM8DM9Z8HrEplO8gW5naTlN3K6YsQbhsauBjlABygsdnS2gvHfUF43Ma0N/UoDr/zMMldEBdaDZdgAlyE46SU9pz+0vM4fXZrsCTZ6vG6aaoxuEW2m5jYKVjLTqmaplMJycPh4aeOajA+UkxJk5ll9Km46ajYHqcOdXokokQJYnpYs3hdcBdlT7GtLtD9eK8JTvyPI/nL0tuTN/TWtRFfIsD2BJsLSsRjA5n7qRmYpcxbYoDNH2O40y8aI813NBxUMeC6kFdVpKZJBI9iOe+yy6vDuA4iCNYa9SlocPLB0cMdjaUK+H1SXFxCUW9lHngHbJqlCJbgkDDSwan8xhn77TtkQiJMy6Gahq1lExwPyLdGCWTV6NrlEfn+RhfNub5VYpr8XjCQi56PwQ45IKsasYo5xpy3Yj0FYeXwujpT/n6TtN5Ju1yP2A/n+Xn3ijlPCfd+T73EpffwGT6hTIDBQk/05/HgO7OXawVpQ51PUgRJ6RbsNFz9+U5bR4gnYPvwa3UDcpOoaJlRzjAKt02vw8ZlHGE3fZ7LOHXVXFtKNGO9YeXyPWd0Z8c+5Pn+w/2tzd039DnO/14+rrumwNe1jHdiYIhsjSQmVgEjaAlkzzH7qy5fR+xh5i+BUIALB6U324rrbqQ93EM73RUYNeBWgN14WMHwBtFthnsqSUf1UEUhvI8Dv50u/Hp82esfcLqK7QbdTm/pN1AzRN3uN+3HwfP7aCWwnO78frywrou6O2O1Or6OQabCQewq7I1OKpxRDJpqYUvt1d+vb3wp/XO53LneSjPvbN12K1wtIUnT7rtjMebC86HL3jDbUi1xuvS+Hy/87reWKkBeA4OMdfbGUYZxstREXUhequFl1bpxTgWZRN4ymDZn9zt4CmdxSqvVtk5eEqjW0dRWmu04uXOVipPU9g3sMLRwJbK17LSEMoATLHe6c/Dkz1DnTHUlzAX7l924NEPB57G4BhwSGVopUqlmiJjcLPOrQif2o0vry+sy8JtvbGWlUqjjUrtUE14kcLr0ri1xut6o5UFtHLs8NyUx0P59jbYt87+3BF9onowxs6yeMLqdl8mW2ffnN2n6uyw59M7ppopy9JoS2VZM6EozqKnOSlCLez2ADlAvDZ0va1ewldumOvIOBO2eUfYWl9oY+VFXunrHvtqcIyDHsBTD41iK8Jj39n2nR/6zo+90XW4uLsFMINMYoT/+aTU4wQ2TCe4ssvgoQeLNhar1CGsALiQvaWfJtm98zw/rmep4goPiY+nntCffv2FX+43fr3d+dIaVQ3pym2pzuaTSu/uoyKDUR146uoi5u3ojN21vbpFMxC32Gz7mA0Lain0oQzC9ER8PqJbZO/OMhOD5ZYJPTzxbh5/txqdl9PfjsTVqSVpkQDLa3gSpURnXz8LL4SDiNeQOAJKnjNJtwiCxfVskTOpnF3ezgoTZmwcKcz5O8TZkWeSkTiCf0Pn4X3WRp2kA0jd7HhyapTT9WHUoqSA+IxHZ5we3y/O3kpSzRgE8OTfSzwg1Uks4pWMjWxYnIUf4/r/7PWHgacCZxBDBNqSTjx+WIcjffrVynProQPjzqlE0KDDfOEI0TVFZ7Dtb84VGlmY+OCk5ybbKctXuABFYjmxGaCHk5BBA9AnPS+/Pr4mwwU7S08sg7R0bEJgUggtI6KMwz9DkEh8RrmBf9PHrF7ozKLe/U/qxalORfsCRbB05OMzmPORi9qzzCUcBptvlIy5Iej1H5/RpnOXNPeMU84g7uLIarS4jo//WOrBdLpOBz4vdl7z58X5M9vpP/pZ/OPDXH1gQ+VY/jx//wGY9eE9ATIkAJlrKjlLJ9PL5tq5/n4Gkc5guFwrMwmxqc9fYrJkZllA7p30A+daPq3VP+BeucfQaRjnfM37zrnUGcDlPXtb5nQ2s2zLUFHGKF5Df8lAa5cQlRXXLpBcZw4Si/uK57XcK0e5zl8IDWcwaRrBlGe2i9YZvJUqYO0E9goQJWantpEDLwlESZQIzNLHBEdjG0jsT9+DWZIRbeQVLwfEnWX03Fc5CBl016AmlwazZjY/H5tjMq0ysU8oF3t1WYNxEE7booaqEJ1NI+t/ApaUFI5O4EnOkmKBBKBLrZPV5BohCYoFUGvhayEOBFVzJlSt9NHDwIgzmybwxASfSimUVmmrB9UlBNAdbEpWZAAAdoLZ7mD5Ae+sskYRYyyNRVd0vdHX3cvhunk5Vxil7N5n4g6YhK7fx/0fh3WW3V3sF3E+TdCppM7RxVblaH8IehOcPc+QiVHVYJs1p+YaRuoUufmNzRosoGQ8YR7sl1h715NomtFwRjCbWTEhNGTy5wFaO/NS471RWiXyIfA1HxjXESQEYDX0asJRnWA1NRwTP5tyeHIPiBTKWpFuLrQ6TueHTErBWWZ8se+pKTXt0XSE+GC/HECUJAb7MM4Pzn3nILBpyUo7WlXXSakjHCcHToo6OKjFM82GA1Ijus2ldmIpHuRrcUaOakfHgmnHzDU3kEYpzn5SBIlOf0UWEhhL+18DpJ1ipxRSyNrC/ksJsCfnajjjrIxO1REJqhMAyqRQ2o3s7nUmpDKX6f8uc+Bib8S6yLKP1LRz90tguA1K+6F2ah36x6bsgD/DGEY/BlOv0IRjDG/YXU6fJBl1pjCyi5qdmWLBCVB+b/bh/Jznol0a2/hvAHbeX/won39ir+D+FJAacBl4pYGyOJPUzEk5cf5rtJZxNtSI4hUiiXG+nCeUrGMjDbkhUHek7kBDa6cUL0ky6V4SIh68K7nvw7YEOI56maaNJ3psjGNjf75x7E+29x8cj3fvWrc/GH1zJtY4nL1mA6yHjdDw2UIzNK5n6iUWhL3vUdbV+5i6K/OcCYZvbd7wYVna1Hzsx4hxNg5Vsm7FgmEv07YN+jhBYCSKAMy7mS63Gy+fPyHtM4fc0XJjWe+09e5l3esd6a6JVPcD+sEYB9v2hojQxxORA9XVy8a0MaSwK7x3ZVPloZ1jKYylYMvC2hxIeVlWPq0vfL69ctOFfd84joOtG7vCIYW9eJnb83jDzNfEWgq30ijSWIB7a7yuK7fWvMRLocvwNvIRG9QOSxeqRpwjQrOKihN4lgqLDqxBs8pNBo3C3SoHnSfVdX9QSlnC7nhZ+aGG6kFRZ3o3Vl4XZ32U4df37oc7x354kxwB1epntcCQQaez7RvPsbON7t3wxMvml7ZSzagy+Ay81sqvtzu/vn5hXW6stxcWcZaVdKEcnmy5lcpLW1hqZSkOro8uPJ+dx9N4fxjf3zrbY2d7PCj6ho6d3jfuLwvr2iKg9jPwONQFkLvRD2PbjtBpHSxrY1kat/vCGZB4mV2VRrarL8VIbapSB9oFW1wzqhB6djS8VYhwl4ZVr0bxPR1lUcEo7GMw1PVwhylv5cFDNupRoRm7dQ68XNqx/mA3x9nYHXEieQ6GgxtDlC7GUzurHty0sagDY6UYmjdy0U8mZA1QJ4CkPzyjYSFKAoVlrXz69Mrnlxe+3F+4myGH3+fS8jwp1KE0UZbitkBFKMvhDJhi7KZYSCZcI7jeT0JDa671p3b+3M2Ag91jdI7DbesScgwmfk7Mc60kwBZ2fIR+9GThhFbojO7yjIhTQs7z52wg5OdL+lLJRM0zxrVSZd50gjsTeDJm4pKS59flAeO8Tds3q7zk6gNmXBhn2Rwbv2eBwBD8I6rAiO93hVpsnlG5Dq5gWPBbSAnuodBD5WJiKvEztTNRhZ7uZcYvV3zhv/f6w8CTDxEBNsTgRkSXN9f1fBBTFxxT3Rm98fpSWWubgUtGW161EWiv2uwmEjPoXWWKICM7OoXeVIAGU78GmxoK/TiFrL10Irs52dREsJgEdxyC7ROfQzoadk7QNZM1S0kljmxLrYDMROc9pfBZlhb6iesZUW+76WV6wfWTOrWsPGCRMDJAOEMj6uCdWnvyTYZZsFPU2Vdntcb8SwaMc7wiSJIJ0yV6GuU/OGU5ReGvOh3+sTIdf896uoHRyzXjSh+syZVp9R+us0sQOYPG+J1yEXG+/n5mZJPp9DNj6j/67BGddHw5nl2TLHZROpn+nvLhnrxN5eUacpZ5zsBlTubFICEUc4bbdLiH+r1o7qnzebmMpXDW8V4GN6izXk40a5QvCyDXbylZSpedEs6xyvIez1YPD+j1dF6KevDgpVancex67ossPaqlQk1h4ASJ8SwNWVM/QApiQRHVjvaCWXHdp1Koy3IJXs/scVkiQ1VXlmX14OCmrLcdU2V/bhNMKO0M+ryMN0CDCFgcHK4e6Bju4RlRfqgkC06C0l1apa5Rc12ZJVk5HjngZn4o2nD7qMO8lwBxiEydkHA0LdkKI4CZAD9MXNelngLQiFOoa2ln6eBch4VaF7JLF5GlEXUavh9wrhkgUmi3Pk84oXiG7jg49t1LpoeiXYKVJ7Tr3pNgC63Nv1o7O3HWGgd17JUokfOt1Um6PBbPWSvLenOB0FJBYS/Pk5UKNDVvyR4ifpp2ZXoRWXLoJR5jnHvFgRSb+/e6gSwCVtfDMQeGS9bve9bt6H3agLOc1+dOJG2BAxkn6/NkPEoEehlwWYAHI5yFZks4BUJPzZPcw+alsCmcXkqljAAcM9g2A0IgNANJsowgbJI4JTv1FrRnUNtmibuUAJ9K7M0QSC4ldI3EnU1nflVYKqUXd7B3w6JLG1F+7MwpRUIIO3ntInhZaG3OINoOvHOdM6mqqLPqiruVydizqc1leWT5PauAaDDXZJbVeSjY04hEWaszpFIrzXQE6OS+gQQg2csyJQUk7JlIoSyuW9bayrJ+QgJ8klKhVrTcST25UhQN/QNPIjWoCyoNZbi2TABKY7j+D+Ble6VRNBxb8TKMRc6M9ZWFpAmc9TFdGN875/4wOLOz87BKtrJ3lczzpUhBhiEjztZZip77J/0BXw86fS/3nBNMcxFaY1TOwCIBbWT+3SzOoLxX4yw/0I/noYSfcu5vL/OcTn36MJIn5hU0Dt1B8b2vsSezai+DhZFEpxJETDj9QwgpsLDbcaycDXfcXvXNS66kC9IPpDZqH+hoLDdo9YXSBlV8LXbdGSahrXHes5+nBamegNR+YI9v6LHR9yfb2zf2zYEn3Z9YP7D+dPF3Ha7pZFlymWDlP9pOZx+p+89xdrl+86U8P+1rjTkSaGsNxusaIC083o4AzzL55Lbh7fcHz7fO80fn7ccb27azbTvmOC5yAyuClgrLytfffuMv//IvlOULB6+o3CjrV5b7jfV2435/5ejOcvr92+98+/6dPnawHoxAoZWO6UKtO6UtdCk8hvFvP37wfdv4ve/ofYHbwie+8sVeWLhzv71wt8qqlfFU3n8c/PvvD/72ePJ363yTgwc7nY2j7N6lTYEurIvwqSz8drvzp/WFX9qNdUjor0HR4uwmFba90zZgBy2CDHcohjn/pZt32iom/Gl94Wt7cakPlFGGl9HJQY/3bkPpNjhs8Ha88dievO+7f04zdC0s9xt3Fn+23QWr//r7v/Nt+86wwdIKdzOaefnqW3/wPt752/7vbNI5isF9pdbGUhb+9HrnLpVXK/xJVr62lT+/fOLzyxdKWelyA3U70fcxu80tUiljRWpj1Mp+DLaj89/++s63Hxvffmz8299+8Hz7wfP9O3L83bXxpLOsNUDP8LHU6LsxRgkfvtKPHtIknWWptKXxcl85uwN719q13VjXdQbgtSltKaz3BqVx3wQ9FtrSIghX9uMI3TpnFzdZvCGFReKUAdU8vItKgWN0PrOx14NnffK7fOaxb7ztT96Pd+/wRuE4HmiUUg9s2ugecaoVvKxSB399vtGrYotbx1Gqd4UP/499m4xmUMSFPD0WQc5DIYAqWYS2FG6rg8mteZe0gjPEGJWqMLqyb4PnY2Prg8OiSxrehbnVBbsV6lJ47sLeha5+zgyNLnPm+lCP/Zh+c21ug1FzzSdVjsNj/6M7A31fSgidw1JcuqGV5jGKO1nznJOSRs4T6mn6IuKN89a/osEdRaO8TTy9IJkoCl9+aKpEZna+UCZYFRU8JOs2Ekt5LlueNwmmOCSm2JS3zaMm3z81dTkJQAkCXc/2govB50eoORBVSpBwsEsy9Zx2KRkfOlYRzY0nOJeYRyap5mmcbtjHEP9/+PrDwFONiUkq2D+8xFHWDNYzp310p0wKcF87a/O6SG956QiZyJiOgJlFXaQ7NGIuTjcfWs/BOBkhOVvhFExHJZzxPDPDcc6AoGQmOOvbYdLKVE8ALNk8+dlAYlPnPbgN881yCXAs9T0y0JUk2chELrH4DRuhCxXlNBYPrME3m8GpTkOU4XOG0r4AY5Xm/c+7jwAz9VDEkfU57rM8kAkqXUvgssTEF+R/vMxmmVp+xn8AoPz8ugJL/72Xl9b4c2TQfs76ZeVLCryHIeBSQ3u9hcslR881mGPz8T1eKhRXs/NaMt8bTIHQjEpGQo5UsifOoJWLaKte7uUyW4lK/7zW8ql+Gs4x0sgSjCGZ+h2+pnWW712ZNxYBh09/lFIUAiRzI6nxmZo18WltruNoZ2lDjpOpOgWd2FuOgnhYXKoH7eTu864NMpw5kGtHCN0w4UT4sYuWi/9bMgCokYuRrOlPpkEE3Oaga1rNEl0HvQygRtDmz6IqM4gpIaBaE8wqkNofZy0Lni028y5RmeVoRICFa2XoOXY6bN7/CeTOM+myHmLF5zoNwFMi45IMnsm8KN5iF/x+XMfErUZtHlR7Cc9cUdTeaMtCadVFZ0N4NsGSmsBdDLZIcabT4gCUd4ZrUUInZCmF68XEOsusexy3cCnBkmCOtOZd8lrzv5tRhgNYEvpneRBMynI8Z5I5fD3m537cWz5P56mZmiVZDlnEM+9mIYg8BqU4WOuacH62+J7OvX5uqlyjWGjkdAcGdCRTxc5On/EoJWjiQweTlVYu5abhNOmwAIDSMTmdrGQOZ2maWXRlDdBF2kLq/DiD9yJKL75GRWOvaEc0ylkvat0WjLrTzkUgb34ImikqnWSDzrNdlWT1pk4WEoBNSQ2k2MRz0mLPjtMTmo8bZ5mkY1QiSB7K6K5P5Ps4cqLFs7FSBC1wdojMzm8WZcQaWWIPgkepDpwG6GjW0VphdIRCKd3LDot3YSpiDrwGWD51FovMOXXhcg1hagEdmB2TsZOgg6mDFuXYwmY6S26yVvUExxPsJFjh6S8RNl/C8WQ6vQEIxFoZdnavUaCoICoTeEngL3edBcrj3ewclEqST4JUE3hSLt1x0qNlOq5u+897y++dtu48d897uXTbwc+7mRAqpz90vtzHMYLhiZxHuYmPb5TugngQU/NsTJDKP3VU/17BounveT75cvSAcWrfqjOGjUJtO6Ws3iRjdC975cDMRYdHv5Tj+tKgh1ivDWcw7Y8fjGPn2J/0x3fGsaHHO/Q9bO2B6AFhw5PhJNjJplC3YT6HAfpFbYNZ6AxGEu70bWJsZ9LS97eaRXmd26YRvkukOvwZBrx9e/J877z/ONj3wzXFirieZAMrrgdWSuX2+onl5ZXl/oIsd+DO4IbVFkCwnxOLODjy+vpprg0RosrAhZ1bq9S2zPOuj85j3/jxfOffn2/oXmGtPO1J3z5hnz4h969QHNjd3zuPx8b7tvEYnSedjY40WFrlttyRodRhrIfxeX3h6+2FX14/s0qD7sLj2hUbBjREoWqh0hh03jP5qYZ1m7pNPZIiQuFWVwqVKoVbqeFjWHQZ9enaB2xj5zkOZ6MUoYWdLOJ6TM/e6eYi0M/Hg8fznb9+/zvftu+oDW6t8ktprCKo7fx4/p23/sZzfMNWoa6FhjOdbveVv3z6xIssvNrCr7h4+i/rCzd5xawhWjk2F0Z//tjRABIqQik7IsKhyrZ3nvvBv/71Oz/ed97ed/7+7cH+dOH8Or5To0veMU6GUuZebBRUS6znQspKDO30IdRdGH3hbMZROOrC0XaeT++qaaaU6iW1631hPw7u9zuvnzbW9Y7rk1XXqhv++Uurrnu3FFot4R/q9C9aq3Pe6lK4lZWXcqNp5XkcvB4b78cLx9jYnyuPR6X3HbXONg66joi/AzArEnsV9tF5HDvrXnlpN1o1+lKwWhy4LM6A0djHLRJNrVQvlw5pgJ7JybB7iHD0zrbvPBCWutIAqdXtvfn99G70rmy9U6rbg8KgigNR61qRsrCMyt6VfShH11nKNeP62Ly1lZBzcDuK2YdzBbwcuFdBW/BOi2u1oZbKHnGUiGMMCJN5ag5+Jah0JiaCeRXkiVNXyacxwzSP6sM+R5LS46t0W67XZAJGeU9JtM33+tu8okqjSiPlTiQHSM5zeb7yWPwpVriEY5NSgjGTnLM8jmlukMEUR5+AVrhhNj8kz8sz+o/T4cQ8+GOv/13Ak/7kt/s6sTD0ZynPCBFRzIGnbTPElMfa4VaRtbKuzbtSnEMTTpHNh/PvFVf+JxeoRxXpLF3BhhPJO9k5H7t4Bcab0CBEMHYurnlwFQmx/EugG6tlOjsfnGB30pJePK9ZLkulzKc8waf5meGgylniYXH/ohlI/CSAHTdt1zHIIQmncK7O+YT51hNguQIaGaykg/lBOyUBsp8Rj3n/l2UXC8Dm368A2HkPdnn+nz/vP3p5IGsXnZY5O/N5koH04VpcnmEOUgYywQ+IsqlEq4HYgfH5My16bnS5DIdnymVmzOd4JYAiSc63AICUD1plc6zO8bwCT9dxmQbxMobZcVHArXZaPHOHOGKSs0Y3ne5c23b5/NBiyHc4dFQCdLoCT5dxvoIBGWxmMEwaNWcPGepdkUqW8LgDPAYUqWipAVIFCyyAJ01gJuYm8R4LJ13EgSQ3rqlD5I6AFHFHl8ggZalOOGVC6LMY4ZSH0zIkMmFOJa7NBe5LsaAyn/Ykb2LOW5aYWJScqaFFp66JpWHjQoWN2FtmSaZc9uQ57wk8Gfm+CGqzxK24UDsiNHzs1TzAnDpMdgFxzTN9Orx18BgHOgqjl7lWJf47A0IHDmo2Q1iW6DBYwzZZBMbHXNNqWYJikxGaR5clmFYrpQboNIGnQVFnyI3eZz1+AvUzno2g6rTqMTO5T+UnWxTznUC/SIg7mrcqzq5sLpI86DEfDiCAWYu1f9GCS6cAwyLjqv0sj0rgIMvGfW/6XKueWbq5vyeodO7dNBfT4TBnRMx9aLHOo1lALYWa5wtcNKjCniSpUIoLPhRBdERZZjvBolIp0gJICWskFWiRRR70cJD1PADOYDrtdq7T2pwJFZ0OJ+g6D/T83bjP+Jgs8Z3pymQiq7lgsriNSfYjF7aeVaFrj/k4BbgdeHIntVQvV5AyQANILdGZc1Sow4Hq2ill9XEJwVmxKP0tzsbJufQSWBcsT5Fwcj8NF8CfdtkjKXQM75IkwZZObaoJOumH8Um74q2XbZaPpyagz/G5cCxtQyYlIEr6ipdbp69x7qS53uZcBECVZXaTWRsBdC+nLybJejuXBpBJvdOHcVzs1GOBq9aiXYCq3AXnOfpzBvYKPJ9rJ8omDDSfReINksd9mWCSkeePg5txZDnBeJLGr+ecObBY3HZ72VKljU6NbnI6oqOdNNRKgHfdQSKfiAmOjiib03FwPN7QvjOOnb69MY4NO54OkOpA7IiOiQMbRzp2fnbrWWrv41LDXGT1QjZlSI5oiYROJKSKJ6AsJtpi7o5jgHjQ1kcC3z4/R3fh+cfbk8d75/2tM3rMXC1IE6yCyvB9tKy8fP7Kcn+lrndoq+sO0Wa6YpaJl0prwu12i7mOssvcT2KToWnFuysqB3vvPI+dH9s7vYPtsNlG6QdLH/AXxQJ42p4bz23neRyzNKqjLvBcK2stlKGUYawon253Pt1e+Hx/pVpBu3op3DGwYbTqbOZmlaU0nkV5yMEg9nQffp+5v3v3bnSrsFYn0awlmCgB3Elzp2GMwvvx5N02tBy06l3l1JiSBLsZ+zjQvfP2+M7b+xt/+/E737dvqA5eWqUuL9yLMPqDH4/fedu/0+vTAQhZWarwsi68vrzw50+feZGVF135qguvZeVzvVFsZWjx0p1HZ3903r89nfWkipfruBblcz947juP7eC//e0b78+Dx7Pz47HT9ye6vdHsQS3KusAwD/CNYOiZgGUHPGeT5WtoZ8R6dy3CwG4oaPF9BUxdJcpwnaN1offB7X7j8di5rS+U0hBpUVbsRmNdFlqr3NbmzKpWaSH/5wwpZy5659zm66ooRYWXpXMfO/e+cvSNbWksAvv+ZOiB7LDFXhkD13ONwEOkcIzOdgjvm/CQF1pT9vAfD/FSt256Ak9RMXBr0RlSlGN0ZAy3+7gP5CBmZ+uFBeH13hAqSymkxhsSzZC6chyu5SRilKKsYS+WpVDbghqUfcDhiceqRFe/ANSMYPv7GV1rMFYHaLcpbO1+5KDXeF8RignZKFUxWvrdJXGBEzxX8+SdhH6lJVlEzIXL41w5k9z+KpIaTFO0wCuW5DLPnNc6fasPx+blPJouPBIJ7oxfPbkJGXmlxMQ81y6fK5y+kMQPpwtIVHKZR13XuHWeheeROs9MTd+Kj2SjD37A9M/8z48Kx//91/++Urtc78h8KEfD4rulhiM0TvQPeN+M/TCsH/QvoJ8K9xenmueJXgrUBEM4HU0DvDP0WfNKOR2BefpzXq8UX4Sqhm59Ojz15U5tbjCPsc/ucEXOwTdJVoK3ekwg5h/1PghqnMyFMh361NrAIjsdjpsGGlxrZMucQaCXJ6m1srTmnUEicJdYWe5MnnoY6XhdUdm4zBRUm8G4OCI7KwGj0H6WhSGzvEhV2fdOdiUrkYGeIruc43D985yD06NNp7iUNm/w5zK5n1/XUjw3QDXm9RTJnppMuSbyFi5A1LUk8BRiTb9SLmAUc5NLOp4xoKf4fGb3nPnSWptj561NYw6zTCy69WX5X85Xreng2XTahZNpc66v632F230pOUh9hXPMcsD93ZO9xsnSyzk+Aa/zWjpBJJvlLdPTNjv3e47zrAKaMH9QT33ORpQFaa7Pmvc13GHUvP/QZ7q05PaOQdXbtsQ8jeICgFa8pPOs5T7XnmAf50aEZWksa2hPFAmxR3fupwEvvmeLuKAiRHlQqai67oJE9mZZqlO8iwPYmeU+QTiZJVM5v7l3hSwpwUubYtnWHoff0KkBU5q/jwIWmTPDnL4cf8/vxfEcYGBkpoPVWKbgsWeh1UBUQwQ8Wn2XMu1X6sS00bz80Q4HTYIRlDp3ebg542mlLTdKWykhvOvPncExHP2YZUHDdGbPkxgo4qyWBICkVOqysL68YCLU4/C5rYXRD56PJ4xxgq1ZF5dOjFqUNPu60GBKZhc7jxFPJhDE9c3XtISTKtV/Vid1WrHDA5pSjNaY4yNRkugXzT3sjKneewR7kVyIe52g8RjkUSriIIpr62QJkZHC0fk5Pv5y2lM7y+6qFLIIU8EzZ6YcusXegNoaaMHGOCtzYw0R+z3BE2cLNKQWBxadyIsOCSZLnJFVgOolPd2ga5T8uNdY1mDZlUpbb0hduNdGV3HhZalYP3yN4gmruccDNL8cQGEd/OaTnj8OZRx9jmVrdc77BB9K4QgmW56x4sZyrkdaOwFlIZ49SkmlcCCMrVPqQqlrgKSVut68HK+1sEXFHdRgeRcRBxKOlaXtWPdOZ4zCsW/uQ5kEIzQYsuosrt2es4zbxGbm2bKoUtJOC97dpnp5T5RWkE5kgog46JINHobhjreai9AP0D7m2V2jVFECwEins3cfOi9BC+BCDR2pcxmABlBoF1DxBL6LyJza+FHcX/zDzvOmiHzwMa+v/LwR/lYGHPmZYyiWY2jl4sSfXZddXFy8xC1BLb9Lt+fZv1ztA+jkJRHOTMPMAeRgGrumSnR9qp1+7MjjQTkUXYwh1eUTgoUu7kAxQstpPF1QfPQD3R/YOFzI9/HG6Af0PYyKgg70ONyuHAfZ/bnWdoJKKmjUASXoleyDLJ3UqAAoZDJAIrGTgJiDy3oM76Knzk7oI/epB+XH0dn3zvHs0aHM0lWB9EGbUG4rX/7pL/z6T3/h//J//3/w23/5n2j3T/z9+5PnMHb10ralLazLwrYdXl4bZ1irC68v3iHMkMl0zjWrIrwfnR/1d27b4bo07Oz9QR8H9qPzMNioyN4ZtrMf8P548uwbvXTqUmkCK4N7XWgUGt0BJRMXEn955bbc2dWoabOtY8dABrxSabVRS+W2vsDy5P0m/Nh+8NyfPJ7vPPvmiRBTFoOXurBUYSmu47SK0MSftVmh2IJIpVuhjOFC+OUT+vkztIotFS2FIYVv70/e3t759x9v/Le//ys/vv3O7//2r/THN+gHTYxvIiwoNh5sxw9UDn77l1/588tXfv3zn/j86595/fwrnz7/ypeXP1N6hb1w2xoLrok0uvDcOr//eOevf/vGjx9v/PW//ZXn40nvLlyfSbBlvbH3g+3o/Pvv39gDfCsUbstAWqXagtgB6qVztVZqWzn27sybI1ktXp7YavOGME1m0meyIsX9olIGhvvpqiO6snsiets3+hjU2mj1d0oNTb9haD+lYUrIUNxuC58+vfLp9YVff/1Max4LvLx4aehyr+GHC6iwWKUUYWmN1/stQLQvvH/6xH5sdN35/cd33p4Pvm1Pvj8f6O56Ua5zLuzPJ+P54PFdeNw3Xu9vfH3fWNZXjq58+/HOW38yRFnvKy9L5dYKn+8tSs8G74933rYnz31n7172/ezK83VlaY17FXqttLpSysr9XqiHYo+Db1tnU0P3nX4cHteXzstauUnhy/3O/XajtYWtw9tj58f7Qf/+ju4d26J7rkVCXh0QaOuCNNCu7PRpn44djgFLNaSalzGKVy1UvIueVTwBayAtOj8XKKUxhgNXJboed3WdO8ETyxYxT+8OagpCdm4Tc1ygVj+rjqxcIGNEf5WAeTzfFUx19bNohqow4wZvBBo4QoDJQ539OfByfXdv7Cx3M5vsqavvWMR1a+fBK9HyJaU2bPIpLnf+08uivO/y748oi5zxpz+IRyH2D5/0H77+MPDUijAiuK2lhoNCsOJPx5c81H56FA8+jONQ9t27ZCzNfMClzDKHLGuT6XiFwr86Fdpb1/p9JFhAlLMlKAPpfJzARAZA7sMEO6A6HqjhFFjMyNQwCIe/FJn+Z4nJNcmJvk6Ih4FX9sgUFpsBqrs3ElRJR8NtBqY6lC4jclAEoi9zBVzBFGfVcAGf5AwacmxicWopXi6ZqyzuewpmZ5BMfrx/1nVRnsFd3ps/WI5xgkQZBKTe0jkfJ9DB5dr2Yc5yzCeFhFnmdpnT/+yVZZ4fQZkrffEEdSrlA8Azy1QmIHeu49S8umqvGHhHFhwY8IAiNa4u9zOvf5bOJACU68SZD+fcnUEl07mXoqENpRO0uL7/w3iN4PFdAb553SzTsMvvn3M6wRKvNQoK9wn22nCdNQln25ddCQr+BRTFDeVUBo45ubK13O80fK3KHA9Qeg+9MkpkQp1/qyPo5TigmOCg5hdnF7hzYUeQek012PlMfiiVS8ciCbA2u6NlKV+sw3A0KAk+yeXpHLHOcZDQYfLsTvw7ysVMnVpscd+SZXsBYEn1IDlyMherGuuJ8nGtE5pKCEw2WT5y1L+XGh3YAlgOx72U4jZ0KElLFqqDdOmwTUDzBJ4kgMNkaxnOIlEtaXCnjs4IOnfuMf2gwwTM8qELe6GU+VWbB4eutRDsoMhYTWD5HIxzrDgD0uv3LbSrKKGPZAS9O9rUp+Wfpi/OoNyz6toKVw24ubwuIK9YHtWRQJh7PmZNruNQOHWjzvNh6hxdbMV1LgCuDTCyA2zSsfO+07YLzgqiJFhJ2Pz8MEAGs1GC4bokMe+YnFovFg5BBu5hh08/wPdeqV7yUpcVpVAVpA1nFdbFwYp+wBjuvA0vRxKIEjM9y6Y5xweNvTmZGAEUiDGEsLUnk1XxLjoJ1InEGW9pF3I/hg2Wc0xN4zxCQAulDKR26rJQR5t2Tc2ik08K7CcAFGdfbVO829k8zvJTHQEU+tiWADFsKMO6NyYJsGgyneLZ/d7TMSmxDz1AOi2F2y8ssr9pB7WczL5hWDe3WeM8n5PtGFuVdCaGmovAZplxAhd2YX/adQ8mEzQt80fbdu7hzNgy/UsInc/41nTgg8GUZYUxEoEJxX1PP+IExDCja9okAmyMvVI86ZDnXLK/3O5IlNExgfQpy6DO6vUJjPUSY+CA3OA4DpAdb7BRseKdEiEAHZRiAz2ejP3J/vzhjKd+YMcz2EwdGzuM7l+59jXnDkiQDIkkbpRHqhAS0wzNtYAz14ZFk9GwqQVvbW5+Ps5SOpMoo7QoPTL/6pf9ObxLYj9cq0VTEsCA6mXat0+vLC83bl8/8eu//Atf//xnPn39E8rCdqiLeQ/lUHHmkLruXaGyLAtLW2gltH20hMC/INJif/naUErop90oy526HrT7C2XX0FbqLK1xWxYngJrSR2fTncM6nYEVxaJDoDcV8s5YyV40KWxDEemIHHSBG40DL9FvUhjN97Ap3pxiqazNxbdRQQ88WRHzahhtcTap6RGBqIAsISFgHP1gmLNfjj4cFFGhjgDdavH5Qnk/Dn4cO9/HzgNlF2XYQPcd25/Y2HnjoDJAN0odrLfKXz5/4p+//sJvX//E6+ffuL38wn39SrMXzJy117sD0Y99cGyd9+fG3/7+O//t3/6NHz9+8O9/+5sDFOqJn/v9zipQbaCp/cjB2mBdhdv95oDrMRjPACckYsfixVK1iGuEUdAsDx5eLpUKIX5+dmpdnPmLYXZEUxzvLmz4fq3igGV25PVzs4b/Dr0f7M/DmbVZz4x3eHw8fvDj5cYxvrKuC+u6svc7t21l3+8nWBv+AyXmv0Y8JI2yvDBqZehCRbgvK6U2aimsrbGpAzzKoFvFkwzK47nTxxvPLtT6zlDYts7Wd1BlCSMkAkuttFoRayE1cFYQOOjg5ZiHKs8xHEQtxpplflWoC9zud7oZ78fGcewMNfpxIEWx0vhcPCHflgWrhcMKNyssW+cYIOLrOm17nklDvUzUSxMbo7td2vfQbzTYD0WIxF9pNDHHEQZe6keSQ9J3dx+7teplwHGmRygbZzNYTcZVnHkWSVn0A2jTavq8kdyMc8dNzsmKSqaWj73ME2/6bWSIK3MQRL08OjsFGx5jDg87zngsXdpLRUQRiSR9HqOnz2Ry/ffHV3qVceL/FLFdz2j/14y0Jc9Y4Y+8/jjwFC2CAXf+1ScsS578ID8d23NAz1vuw7sO7JuybZ7JXZsHFlbyUA/RM5G5yUcfc7Ld0Q2HNr6Xei3XgB33u6ZTnF8SdKBkRChnpz0hMtYSzjMZlGaGOgSCE4DJZZnO+lnDNY1VClhTCKpj/DO6fkkCXeY/z/d7FlZCR+YMZPMll/G5RqQZ2JzOv056nk0gg+mE+XPl0+a9JdsqjK5cynFyNmOcr6BF/m5mVseIEob5Oyfokf++ZuwTbLoKd2cQmqBWsgj+SIneFdi6BoVZ2hb+/E9gTAScMxvq9Mvz9zPDHoGIDtcH8l8KoGV8eIZzvgK0MsO7LIUvnX/aRfuHBLgIL5/I4n3cXzkXH55ffc9ksJcAYY5nthm1fH866fm+qUWksVRkGrcMyLyWOsQEE4AJ/9qR/ZgfzmthhACrr93cg74mEzD08VBTv36CNhD6DBVtdd53ZqnUnJaeLdqlZolElvldwhqR0LC5iqZ6KUFpyf4BrZ599uzviDUlswyutEs3MMk5E58ntXlQpUBxt07ajKjrcRvaai6AeTh56WcNQKAwAr0zy82bAMXZNc4z8XGQWrSWD0fCMjgVb7Ncou21tBYZ40ptzfVxysAY/r1q6Mh9l6sh15rbBMMFZRFBioM2Zp0xzgPWS0R8XwwdnEvS5rpqrUVmSYOdZZPF5Z/tbBlw4KnU0HDoI5gr5xqSDPSI+5JzL1yGkOyMlR0EKfiauYAobs7i94PV50CheqbNmOBM2j/htHfJNqnxLCM6DGra+pjvHJIssZxugJ0sLt/Dl3V8OefNLnOToIomqysclAA+LA+C+IBkqpGJkLQHAqdmGF4SF2Cqx9QZ1AE65mymcfNrMeevVmeyLbc7JhUzoSkYnrnWYYx9x0anWGcce5TWCKo95uZ8/hOAi/Uff829Mp/DCCaJj1O/dJNzu0TyNedeDDxysjslmAsplmC4vyylQ/ESKlsWF2sXolytnmdnAhfmc+LlS9C1Y1bB6qVboQNGErY2xYL8TPWzbVzYWSV8hCz98GTc6f/07k58rs0kPo95DgTwoF5G1XsCT8HWkcze5oS6AHcOeLb6Hkp0S43vkZ1bc46Y8zRN8sWJvkzf/Pv06xLIsOuZFxvZLt8P/004kwWubxMuvPj1dTrlStdBjbOsSAm9RKDnGcecc8WfUapFE468hwSfwueaN2RuH8JeJgt63w9MOkUPZx4GO07EGUu+Vzt2PNHtneP5ho4jxMO3oCUN6Ed0uuvkpFsE3g48lSmRpVGSdAWelOJzZRfGU4BPOdCOg8ZzFQ/ClCjdVhejPQ5PFukH4EkY0if4eRx+npbqQsOlCvW28Pr1Ky9fP/PLP/2FP/3X/8rnX/7E/dOv7Cocw+gqdHPAsUfTi9Gj1NXMz7ulTikBoYVtaH42REAwSvFqCFmh3ZGl026vVBn0DnLAuqy8rKv7+uolcpvu7HYwZATb4ED7BrmPzUEdE2FI4b13djW6CUeDe4UVuNeFW630WtAORZVm1cG3ttKOQh2Vsnt5+xgdPTa3T7WQ3dv8HC0swcocOrwMsCtvu8z1P1nK6j7KkMFmgx/bk+/Hxo9xsFWjhwA2/YDtie5vPO2B2A4MvnxeeVlf+S+/fOFffvmVP//yG/fXP9HWL9T2hX7c6KPStfHYO9vj4Pl94/H+4O3xzl///a/867/+K29vP/j+/RtE7Hi/3VnuqwfJs2Z1UGTQlsq6Vn759U4/hO3ReR8ux2AaDV7Ey8VaddZLkeosXHHb1WYDGItE+PDmKzE+PUrs0mYQvmELVmtJTcIi1GCwup0bHH3zLoD9UrKN8fbeWNdGHw/u9zv3+41tf2FdV27rGuQGv9y6rtS2sMrKIlHOrYWlrlgtwMJaK6/rDcGZUfd948f+YB87x9hdt0tdQ2/TzvN4oM8DcHaWT7yGIkSUyZqXqK2tUUVO4CmM3K4OOA0ztqHUo/NcXVvrlqBdAGb3lxcGsDwfPMcTHcbWO1RzEXSAKpRWWWRhtULXwrp29sNA+nk+RCytAfi2kMpY10o/nIXUh1vhYbB1T5T04XOmxajidr+Jd3Rbw69x4oQnE6oUNEBDU9dPczfTgmRgsKQv5zZ+dO/QKhf/q9Zg92IMYm9O25+uawl3PytCOP3QOLiuKeTpa0/gKc+58IMT/6CE/JGcNtq4eJJEnHNhccdheYmG0sU9fUeZUQpktBvzkjjISZZh+tf+7otD+t95/XGNp9bI9E7qDKhB0rg8XvAbKyZemnCB80x8AT4PRenUt53XUdFb4dPLwixQTKUsiID8zC4jGfZHu9uLPlSMx7xmgg5ZOnYcxnPbg5pZqe28joMMMXAiwVIw2pwdm/eiegY25eLIzZg9/l6qL7aQ2McCtEJC8LhUz6YHs8TMsuGPP284t6pASaBFZ7ByBu0SGTOLMbPoXnV5zQDPZgCV14EzI5lg1hwT/PjSS5a5BCAygVn1bmpzo1Vyec57+rm0LrvSnfOWAdXJFfoZnJrjEoFcv7CpanTQcvAigrZwLlOMfQ5FgjbqIF+WWkxwwgSJznm1RLCjMU6X3Tk1pjxeuMSI8cwftrLMcR7ZZePCOHJjczrTHxkf8Z5gOuUanyj+h/k85znqE+LSl7Ee5zXTvDjDg/n8GppFI6ITEzf2pWSpaAIwglZCj8LihPcsU9SvJexwiR4+AnfDPNtRSvXvC8Fq9Gy5EiV1Ut3DtQGHBxEFYXSn9+59j5IndwDmGhSZ3ZRmdt88uPg57Dc8M1OLH3amFdXBcexz3IqI248qIUvj2jSlRWcrAI31q+o6M3kvJxLiAJf62JQwHnJrl7n3jjYpeO7aDHH4pHnXE7BwZqVgMijmGllGgIOjIs07I1EuXQPrArWdek+1BaBmbu/twOgUAlBNQ5HLMhGc3A8JhITzOPEHVbRv3rElOsTlQXo2LBCsR3kUOFAV6RovjfPMnKhgw4GUHoBTjz0wNZPUGQPX8T53QATQIpfmFnN3XH7j/H9NoMjCibjYMxOh7zs5K0uItrfaZvOALA01M/Z9Pw/tcnYUO88VSF6OAxXMQHUCf+m55Jvyvi0YZOqgLZMZqRd9tJzCZB7EWg8bmL3eBHeq0mEb0vFOzeoGIMoNatVgowlYlCmMwTAHFyWBOHGHyELjaL2/UG+viFTUCsvLk33bWe6f2N9/cGwb/fnmIECp9O2JHd6aWkoJ4Ka6vkOcxSnansszZ9DZeifo6GdIljZLJNH8/JoVhxJOnZxgc6I1TiTz/TDKgZSBFG8HbcOF4etYHSgPZiFR0mmxb2QyraCVytDCsGDYOVpCCb2gaU9inzPASvV7jkApW0gTHZUML1M0eqyxbMwRgxNi7akVaRAd1aI7bA8P1i4ejggavoaLSfs+LrkePBxhJHihNoEeIljxMyETKifQfvXjft6LH5MGmRS7ejglPj/n9kyAuj2xmHudoEsmN9OJnntpAr5X1qq7pumf+d7wDsQF0O6Hi9VgrMb1QgAu/l3CVz5xxJrXyfEYfl6Ydky7oz/WGfuTcWwuHN4PbBxI7yTKImP4fh/K6ZAQdsDvL/W4xEokdgjNFAccezDvND4mWWMps2DmPrQdynYk+JJAkLMT9m0wRrDlLKUnhH4coW3jpesmblO6Krfbja9//o3/8//1/8aX337j9bffqPdPoev0iktvC2s1ihUWE9oxXC9vuK5M2j0dGRsIz8dOV6Obl8NYaMmNUngfnb+9Pfj7+4Pvx+YA0fAERtPBvS18ub9Sa+UYnccxeDDYmzKAbhuqO6I7vVcU2NV1G7OM++k94Pnr9mQtjbU0XtuNu6zcZeEv6+DOwq02XquDAJ9q40915XWFL1S+WqUfO+N48vl+4740vtxW+r550w8a2gSrhR+Pjb+9v/Pt/cH/+9tbrC94KYXX+51PL6/UCk+UN+182x786Bub6P+Psj/rlhzJsTTRDyJCUvUMZj5GZFZmdfVQ/Xrf7v//K/eu1auqOiLD3c3OoEpSRNAPAIQ85l6Z3hrLwszPUVWSMkCAjY0NKEKZC5fLwl4KTYS63SGtkBrzIvz4wyf+8tOP/OvP/8T3zz/wXD6R+yO6XtA1s63Cuim3e+Ufv7zy+vLGL//2G7/8+iv39Z239xfW7WYNSwSmeWKeCs+fnnl6fuIyz7RqAu73+wutfuXh+sDnT4V/+nmm18S2Zt4eJ+pe2evGtt2x0rjO5Ik01TxA05yys35tA0fMt2+rkRlaQ7KxlMqUXMPMbW+IZEsipYmUjDm3riutNdb1Tm0m/g2mCSVq+1+lsrfGP377xyjBm+aJqRTTgkqFkgvzPPP9dz9wuSx2Hm/igFglSTNAbRJymbmWicu0mLB93fn17ZX7+s5tvbHlhVo3trry3ju7emOU4XcnswWq7IKx8ai83RTtC0uZuCwLORWWebHzYFOqNt7ed1ap3PNKbsK6bOzbxiyzP8fCw8OCJOF9vbP1zQCYPbFWpVH59e0dTRNNLOGUsjDNiVLu5muLx2UctqY2J7bkwpwy0zyxTJmpWZC57SaVE121W1d4X5lLYp5cNiLDpMJUsudi1BLJ6lIFkfm3k9CRBdwvzZTZgAtVTxZitjNpECU8BlJLSCVJ/u/Teeb+VlcnnrofPewx+DmixmIKH1Y9riJ8kHz416fqrTLsM6bjpTh1x748wahEOXKZMsAzHHI5H6dxEkfcckBQB84xsI7AIDiFBH/i9aeBJ0N5vZwtWBPhFRFlF+qxZxoZnwBx/BmpCtKUdavefjAxzxPhUIvX2UfpwXAUPQjRnk4OCURZSgAfAaAEOGT3bvcvW6VMDr+kPDLLgwkEliGO9osnNtL4cg6HJrnD55jo8Y4TYJDGAhSfKA/3lQM51XDt5KByyxGIfLj+eU1/O8nDf/IPxbXGnQnDCSLaxMcq8jv4dhGGQxtfL0dQNoCTE+hzdgjPrKRDGPf42beA0hmMOr8+6pjg8yXfOJ8+WCew65thiZvCY4ahKWM/Ojm3Y2wdZBs/D4DVmDi4AxUlRrEPPt6XQy9dUW3Iybk/BvRYPx9fx8B/Oz4fR+oPxu2bAOz4orEKDoNyKvEbQ9TdIHVGffHAlnyAYg3HN8Vel+5tQf3WxtaMzhRirYHPgIAF9DrWrp6CEms5rj6/iVTToCL0E+PJHFpG2UN8eeAjZ9xkXM+DgzRqq9MQJDdxZeg9EwyYKEkznRXfnynAVM9ZjIEx4UY80JARiNj67H6tcU/ZOqLEsgg2Vcpi9yIy7N0xzQ7SBZMlgiywDi+1WkAkimnvQLBVxjfFiRRrXdSEXH2tdBXSYBnaH/unM+KcYmt71AoaOO+V1tC+OeupfmDjqR+ohnilAQodbIG4NdfrGIeeKXdKMuCg+nh0vyfVWC/AN3srjsljP53OkM5Yf8DpnAs75NcJYByclWfj0JPNQ6e7KLmzZIJJ1HR0DwshzeO4iC8/LPbQdWrn+whHzaduAE84HcMTKZpci4UwM8e+RAaAonSIf9tCdWfFglaRRhOzXSGkL+LA4tAlsy6xoSekzXWBujmPx0SKMahyIZcZUgEVShdIk4PCzub1blyKohvOsHBh3pQOsNM1EbpTR4MJBJz0Gw9/4vAXrPwm0ADtx/gmEQd4Dgcr9vFgJQ5DaV/ffXG2fUcxRqR1CCyE0P84H5o7vZ5xHefScOFkAChWIuJnrGKOfTInNgTfY8XYd7tNaOfSal8lJxsYAGj8qLkDH2VyZ+BppNji7HR/0L7Hyglt+ckBYIxNJ76+YgnE2RR+ndm14NfGORXm5uPZHD5dHz8ZJtTvK17jzDydycEIE183H/2Vw6eKff7t7+2zdh+jKroPQznutLt/GPds500mpYlcZnKZKdPs2mkTpOymx+UZWoNe6b3Sax2ldNrj7zYy4gYwud5M7OjuQsQd85mDGdi9nNo+5uBT+Pbxb4b/PBKQXQxUxtcVITVgoE1ryr5FbGDPEaCfaap0hpaYr7c0ZZbrlc8/fM/zd9/z9Ok7lsfP9GLabyozKc+QklVGdJAGXSsqVvKW8O5cJCtF9bVT687elK13NgdANRVWVd5b5eV247btrK06U8GeaCnF/swTZGMVbiibKE0SkmHWTEsTTdRZ857E7LaC92r6kd0TpDddySLcysKSZi5pgq485JlrnpnSJ0Rg7spFMlNeuCwTF00mQF93Hi8zJQuFxurd+iiZmgzI+1orv20rv24rf9/eTWpBledc+JwFuczMdFY6qzaalxNJcf+iCNOUYSrIlOlZSLPpWX7/wzM//+Vnfvr+Ry7LE5mFXq2DZ+vK3hu3NfH23vj6uvHf/8c/eHl55ctvX3m/vTko4pqxJSN5sk6DUyEVS+5ue2dbV9b1nX2707YbvVqSaZk65TIjTxc+PX2m7tZp7eXlC/u+se87OU1jf3Uv7Xx5eXeAqFlZqgMNRkYw9nXODIKoCR9a4nGeF9uraaZWAxy2zUrrrNNvdCA1sBgvwTf/0RMheMK+KW2tbFtizZmSTGB8nmcgscwzy2zMppxgKTAVoRSxJh4lUZKweJJwnixevpeJa5nZppl9X1m3O7Kt3LsBK62bPT7HjF2tJFOa8qrWfKBNE9fLFZJQysSyXKkoDaX2laadrVfu20ZGmCUxL8bqLfnQFLpeLty2hdqtnLFJo3Yjm7xvO6SVWa1kbt+7i+efGOrEfdp5oFh5rQqw7SzFfPQyl5GUrL2ORIfsAbyolRCmRMYBLWethk1CTY+tj4MJrEOtfDjfbU0JEsw3z+eN8ELcTfdqlkhQjlgKLNHR1RJ3gQUG643wL+z+jE1u9xi+WtjhGJ8sHyP6cZ3x++Ncl/DpNE5WPW7ajkKP2zi9ZHwn8R3jTDwcCJs3HefhRwXof//1p4GnvfaRzRBpA+WLO+7KcABz9jrb3mnUMcBdLLOiasi4HUaJ5VIwqps4kyEm3jUdrAjNHV1zjO281w8x91HUFcCQ0ZZDJFG33QMTJRXTPDqy1+4kpANQO7L84aDrSIolwSVnPPhxZ3Z0WnFPKJ3uJ5xeUUccPXgfVLoIejQCHx2fO+7wcL7gtETCuYr3ioxEmq2XYLX4J/z9sXgPhk44uGM3frOc5GNA50F7j/LEsWntIvG5UXIY3/IN6KTna/7B+04/4CPL5yNodf55BGfnVzxLOAujPCNG9hSYCbjO2Glj+rj13oZOl7E2/FMa3Qh8VxPvPwzcMU8BtprRCkn6jwym8dgf7jFqscdznR9U4bAs3/xuvFdO43MCoSK4wA2sP5q6xFK3N41lMJpbiLPzPPzQKLnE45eO11T38d5RYilie/3D4WMPGFo4Y+y6sQ+y62H03lznqbnxDtCIDzbiXBNtl7CudPHfB+vHWsRnBznMjpn2AGpll/Ynj2S12YMymBgka5N+CLkf7JJAwUTEuyZlF2IXa3EbQqk5GEtH4GVxT3QuFAMuPOjQ1nwvd094m0aH4XieGTfTafu1WbmnJQri1PPTVMXLU8T+nUPjyeeWOOkZp+Z5T9rBHuVku+tUbNA2tFp3t1BfsaYD5hzI5KLDydfDWC8+h84yCH2tlCqtOigJVPRUQhoBsWfBxz4SoruX2Qh/f4+9Fye0/T3iYjn2qiqjdFvV14AHoqaDBfRmrbN93CTLAJ56d1bRqOUyO2LL/iijDSZUCPaGXTEGR7BOv9n4Qd3rBjodtO3j2QKU7bE5u5+x7kmVSYYdM5AQhEbysng7V+pgYNp+CNq5rUk8SLXpzEhmZJONdTeRphnSRG+Ql4KUTikzAU7VfRvrLZgZXQP8dY1DGO/HBdqbR86jpbEeewjO9lCGje4ehTcYZXDGGnKblL85CN1AqmDrzzXnukJNG0k70rMLknfPvn8DPLmHajo91pnJN/kAwrTpaE4xrt+hJwejxLux9jTWjPq99RZdOe2skzCKahlXdcA47qnGuu5Hyd6RFPPrEkCWUsc51sneua2pgREBZhyOj/9xJxWJe3VQfJj48Ehipf9uhR92PfZDfF69Y+fJFsWr98NJVkwTpn/zrWff4MN5H3d2uET2Rwk5KIJhHI98AJ5urSXKmWem6UKer0zLlTwtSJpQMuLnGK2jtR0aTrWibR//7tV1z/xs7NUYjr3GPXTvKGjnl2qsc3G2kwyb0hxAbD3K5uxvY/Y6m03t3GndGAYWDJoKqQmJ2/qqu69ZNywB1BsA2iwAd+CpoeTLwvXTEz/+9a88f/89l6fPlOszGxmVgspCmq7WzEAzUq3zlrIbw0uV4v50Qgz0Vguk9rqztcbWOvdq+7qJ8LZV3lrly3bnva1sulPFgLyE8jAvPCwLFweeau3cUe5Y+3aZCxcg9UKpma1V9tqoHhNpa6zb5kuis9Wd3TuwznniUmaWPFH3nYdp4Wm68PzpwTSHmvIgxWqEJKPT1Q+yxmUpoJVtfbMuqShpmthTYlfl123n37aNX7Y7f9vfaT5Wt7zQlkLWCw80Vjo3rfRiLOLUszUyyclKi+ZCmid0ypSHmYenwr/+53/mX/7yn/jx0w8s8xPowr6aPVtrZ9127hv89vXG3//xhf/f////4vXtlfe3N3JxfzUr02Qd9UAcWLFzYd3vrGvj/v7Otr5Ttzv79s6+dtqqLKXy9PTA48MnRJ5sTu53/v5vC/f7ndvtRnZWUikXVBP7VtGeqLUaONUq1qCqHwln383im1m99DlPmcvjgwtpL7y9GHC23lfqttN7tfEdh20jOPOShVQYrNOIFdq+D9uek4nKl1K431brilgKS8ksU+bT48LDpbDMhSIXCpMBTskY1ZoSU1lYl5Vtu1IddLqtN3h7oew7fdu4a7UkVDjxmL7mtm9UbdS1GSg4L0hOTNNMKhPL5YEmQpdEv3frotl27utKBi45wfVKzsKUjUmYRHh6uHLf7rTeeJlmWt1o2rntitx39i5Mu+lvtdoHkBcmf9jciH9E2Wqn9m7A5UNhLolpmuwMFUzLzOODKIFsXZinRE7GZotOyXiJnfnQzgLvnSQh5WNnfEqesOnqmIb5ntbpuQ2phCDdxNfnqP5yvzHi61ZtdeRsidneAwdxN9PjiBQJFOHwOwTO+qFd1avJPh6KSsf7ZJjNDd8vMinxl55OWPGz7siHjzOVgJsk0rR2tsj5on6t47Q+Xeg/eP1p4Gnd6kGflqMOcxzGYiCMOYScHB57Q8ezrckAqHvFRMtWJaU716VwWQrLnChZKS78bRPhjp1yaL/Edb38REKM2kdiBNJyODlNgaZI7eTWUKy99GjHTWS4Q+OjDyTyEOE+AShiKHc4UrF5UjiN30zDWAxqLJIkguRC8XKTYJOBIumgxpkjwIjuD785giELXkag/w07ARyGOC0S/wIs4DG2hjnHOBWxDkcwsovGDjscxubCAIMV5U5a3EkaBk9O2c/fl9pFmcz5dWZGncuPkou9Gm27jz/xPd86nB/KYvw7o5WwevYySjdP+KM/n5JzjNhxbfu9B+VYbfUITn1YzQFqI2s9nl28xNKva9+FCzqPu45R4NvXAWB++/N4Tl9fXk/88TuOB4zuYb8Dpfy74r6aM5qSl1CKP3vrFhakbEYy+c9MUrUjtIGEny/RIvhIJqqdkjs94oF57HnHzeLDrXp3CcSAjG7gVveW6L3Vg4EXWmFq2diifuhESVGLrKt3winmBMxzscPXy2ODNm9rzdqfD8TZ17B1TUmkUyc9OHS0uos+SmpknxfVCIitHCbEQRUXRkxCniLTIpy6Ag/CkwAh2B0jHiyhZAsAqNRuOkQ9JcQ7k6XWaB3yNDNpBkxjKlZLsKjMOlg2K35rAavPcjA2h9PggXSvvlCFXlda3Ultte5KraK1mc4AicZmh7UmtFlGr+TCALiiYv1D3G8GURwczN0o9aKJtlnbeXIyTd9xDmQXgQ1W1rG+Ys/GqS3jsLc3fWvHx37zQF3bQYluuzUbSBKi5/bh2urYb9qPs0As+0F2hpHCYDkNJzmuo8e1U+rj2SJ9YF1c/EEcXDAAo49A3TQxfI2Vg+EW4IMCtRpTT8R0DWxNVFKzfSvZElDJO022OPcc3ZUAA7CzodHo0k0vzMtnOxmkQJoIBi5iAqHT1c7muq0OnLrPkZIJa5c0znULih0/w0WOWxt+SGQH4/1ClFjJeO7eDNy0eNnOdBPhTf4M6eTAOHCp/v5mhYlJrGU32Zz7VL3MbsqktLm+VfgQCg2iU06vBuxG+beVujXa3g4G2ek472IZAfON7OxPRQdoy2kP15Ew9OuiBt6HM3uuH6djKtL2vbYeIol0SpwQfxsjpNU6AOzecR0fdW2ok98ksY8TB107tCwT43biIjG/XcY+PcoC5LhtGGy47tmSOIu7z00I5wMfzvEDqbV91zQy3kdAcdg3322+p2I9HMynGE6z4wTzV72QIxXKvLA8PDEtTyzX76BcUDK1dnS3+2l7p+/NWrzXO223Uru6bfRa6XVDT5FL3U1I2spTmp/P4kDmcZZr77T9yMgHANXdlzuac7hPpsnsshp4tNfOVjt7Nd/fPg+tCb275lgXZw5Gp0jTE7TP7ujkI56En//5Z/76r//Cv/7v/4XHH75HypVKpmpB8sLl+omyPELKvLzdUU8WzfNipSnAZSpkt4Rt39n3nXVdmS+C9ERSoe+drVl30ff6ylut3IGaTIx7r3e0rxRtPF2eSXTW+43//n//jdet8rrt/Nu+oUtBHmYuD1cmSWQp7L2SFCYRlnkm9Q57p7Xd7MF2p9WVqo09JbYyUXLhXX9lksSSJjSt/DQ98lO+sshElkSWxLJcKUkoAr1t9C5MZeHhMdMS9GnmZWt8XTf+/n7nt9p5lcR+nUFNL/GtdbTfeH9tPLLRc2IXeN039rqzt2oac1TIDR4zqVx4vPzIjz888N3nR/7r//Zf+f75ex7mJ4o+0NvM3govr/D6tvHyWvkff/uNL1++8ssvv/H6+sXYqr2SZRql8rpvNCq13WiT2cO2T+YPOAXPdMo6Wbx4VxtLFp6vC99//5l5/pnWYF1XrperAU/3uyVaJFPywv2+8/Z641d5oTfYt0at+7A5qmI6TzmTc3PpCMiTMM0Ly+XKcrmgFOoO77eNdd1Z7wb4qppyXQ6NU/HEpgJ4sxvSYEDlqTBwChXmaR629+X13TvXNop0pgxPl4nnh4WH68x3n595fHricr1SLlfToXN/c5FCKxfolb0a+FTSwut6Y5F3vvQ7NrNiwGg38NiSKKaZ9lY3tt7Y6MzzxViYeYFcmKarAdqs1kBgb1RZqQkKz8y5c8lmK4oU2vVCr8+UnHnfNpA7W6tsqrS187ZvCNWBdaXeXTC+WlnxYLl7tz7xWubm5/r7/U7NOw/TbGsqTdRu+7o103wKt6BpYlchd1irDmApTZZgtv6hZhNrTaYb142N3rolgXIpQ7vT7L4l6JpWd3XtLEjiyWjXBRNJhzxD79YYSZRSEkZ0UFJuw3/OOVGcaResWbPXYasNUMP9wxKtoFWoAwQD/3rDX05Ywzi5PNdl4FX4iKPq/nSc2n+0k89x9oI/RKf9cKJ/V4H177z+NPBkTBkdJQ+HBs9xKJ/Rr/gTop3AECgGZ5p3ICn3u7miJhKXXJEdRyrdWRlfYo9+oKOhuXEwLNy9GjcV4JF/cmRFRLpR4cP30nEB/6g4Q+C4cY1VMZ5Xj2txTMoH/CMWgDualkXvdNdxCFTxgAn0w71E2ZPhTn1cR4NmPy46YicfgfOzHOBEgBdxT93V/7sv9vidjvs4P0rck47bHKCqnsfBgRD/k/p5PiIYlI/fOcb1PHj/81c8zx8xpT6W+env/vt39xlr6jyeZ++XcNa/HcujSM72gvzhdce1OAIgQb65Lzxm1N+NCRr3YYj5uQDwuNffP/vH8YIhGK8Bsh6/O++rDwi4GI6RJDLHDC3GM4PO8DcDj475D7jqGNPYbx+Mojq75/xDf2N0g/wW3IvvCoFzozdHt0cdBifYNedhOs+5OSAhoJz4sPw8KAoRwQHwiTi7qtiB4x3k7HudTSVqKLt3S/nQxdFtgdkYv7/QynEwPbrNjYAVCKEWEejV5qEnxobWPibGEgVGJqYZhQPpao56KqgkUm6k5iWBEmVq9n/iNmB0PwzLGuvHA9kxHrhdSM42VOiuV9Lb6e9mwVF3wNwhTBcjx9hyEmUj36zf8z2Mn8tgm41A2e9XfekMdq4pwfqKUNdZkYPWTASmwXpw/R//7bmm3Uo1XezS9xPeflc5aXt5wsYCuz4CQiWyajrON9ecP4DLyJz5fI5FnG2Mju1i4IyvaoYIC75HfT5bt3UpwWqLvegAzWCCCi6y7MtOOqrNxs7vK6V4n+8jibNJSV42m7xcJTUrH6qtkav/3WPv5sHOtQxcJpVCnmbyVqgp+zl/sBnHevN5Ds28j85WGAc4KOHOLz7pLQ0xatHhsHU/2wOgkuY2V45Mtu03XyMOOAe4Y41MLEBpbreaA9ni8xxsot4rUdYfZZW9OejoWl3Dzrawn2Zlh9RAnE/urI8SXNUBZMbS0e4goe+dA/A8l4q7s62n8yiAqFhx43d4mWMIVvv3xTl/2sNnF2tkUce+dv+McfnjJcdpbNMazMBYt6d9gnWcA5szi2V8rEROvrJyBrY/nu2HHxU38MErCV8uzG38LCY4hX800nBEB9BcinVAnGdUjO2UunWoMr0ib+1eD4ZTq9VASGdr9CjVVOhRUudz29XKJofD7WPTu3Xvi3NbCbAukq2HXe2um1S9YqFWNU29qtTKKMls4Uc4k2pM/hgcS7JaCQy+h80uPH165un5meX6gGQ7jxp+LmiyEnvvqtiaopE8yOpkYy+R93+rWPK7lMRMIWknqVKzB7pJkWKlrfteqRjwhJjOolW0K63u3O83ek58XXe+rju/7RvUyTuvuc3Tzr6vlvQQ5WGaKAg5dXpL1JaZWiXVjXs3Afuunb1t1GZr8i6Zf7w8kS+VaYHHbAHkRB4aYAKnUkhLVosITYXbVnm977ytlXtVtujQ6vt+9/K6JJ3koEgVZddGVStN7EnpWekF8rUwzRcenye+/+EzP3565tPzjyzLMylfqPvM3hLbCr+8bHx9Wfn6svJvv3zh9fWF17dXel3JNEpSlhTnlFL7BlrRvqPZbHqvztjzeCIppJSZrw88P154fnrg8eHK9XphmWfTngRyNqBEA/wMHTOEba3c7yu328q+VWOcdDnIxXjZq5hWcc7CNCXmy8S8LKY/WAq1Cnt1RlsNqRAhgjFLNJpN0cFUPhzn4r5hzmUkqCJhAwbQtt6dRbNTqdSkZCpTMcmXdZ1GB1/JBdP+s7gvqSAYayy5yfl0MU1O7YI24d4aa29ojUSeWsIORXqiY2uBfWMHSu9MkzNdJbFMF0tcijJLZS5W6rdMVpI6O4gloiy5cJ0X9tqY8kSWSkLZgi2vVglAU6jdQHRPtCRk5ECO4/tMdIDamu3nKNkUoUzlSFE6KaN1K9FLvp8LVg6o7vcmNT0lVIfMjsR/D7/cCRLuGEYZ2TgB/WzQDpqO8zGSmgMTSaFjqsP3CD8w/LecLQmYU/rA2B8dm1tc+bCtQ2qB8F84YiT3qInzjDgnzQgLXo4nOAZz+viofBDEr4sQRQXjrDyv9BgOPf/sP3j9aeBJUhqH8jzPhjLGaYfHSoBlEYMxFJpPx00pDP/MdYW539oIZKdpslKaEaTLoaXSzVnTdNSsB3tGnF1jh6YeAl3JNlmWcLS8S1Y34Ee6teWMCR0xoRrjwURoPdhUM256RADjOU+75WBrdPWs+HE4D10FFX+blxilsW4+OmcRPGAHeIvuWh5syXDCD7coielWDW6UBwc5y4fgd5R/qVOnY5N54BNf+UEvKZyJ3j/c2+9BDl/uIdZ39kn+4H3xneBi4affR0b0j17xuzPYEmBU/GntY0ewQdN3XZ+DFeHf54HKGdETMUHRYVAkng1b8+FoSR7X+ghIfmR5nV/a+1GKKMd4HqATo+zzCKzSsS5j/EY55TEWZ2BpfJ2vx496GP4eMFG78R9H8Aw4E08Ha6ArJAdGdbCsEqJtgDtp3ONRqioC6TRHhqt9EzRiY0tkeURMlD8OC9TYRmqMpUYzXZYAYJytFVNjzxDrUWy9B8CT7TvEHaUAG8R/n4nSlrCFZnNyKZRp/gCiJSL4s/Gw67bhcJgIcvdnk+FIkP36fuAlb4RQpmnMc932sdOt/EhoybUmutld9VIuunUlaQo7IF2R3CyTkYodxLkiqficHQy8Y6EYNywYoLGLu5pOAqiXPpqD3Fuzf/v9Wqmdldm1utP36l1KDfZBkoMeid6C3XUcS+d1Ow57DS0R70I5xKZP+36wRDw48yAlp+5MjCCuZc9aytj/IidWhCEDfgAH+JxcHybA2zqEpetgigk5bEGzgC8cIy+Ws7WhDIZA8iBDvVOWHa9HoqSddJ4iYD6vuygrHOeRg01j8BSoBoRYV1XcoY0o29hstZkweM5Gi7frdFIXLylrpNTG+WMC376/fY1k8e63UqBVYw9JIa075J28bsjSKKLWrVQED4PQlEl5YpoX6mosPdOFymQNTTC7XxHcga9ectvH88Y82fbSMb9mk1w3KxyPAUK47kRXtMe5k90mmLNvAK37OXH8uz2kc+jv5ESiDwbyEKT2ebK/cQZNlFQG4+kkgBqpRzV/qWtzUEdGGUHr7gsFMOf2IPQ4D+DJGSmqA4eNXT20f8b2907F4IDpGZwI9qs9ezjskVkewD7i1xpO1ukV/sOhC/fhJXa/4RSdzUAkgWJ/DL+qm08Vr+57W5WjPNOfMYCn5Gc7Y/8fwJOqEvGqnO5Q3RckzppzAODsL1WcgWg2A9c2S3miFAeemOk9kZoAO3RcB283rbB9o20bfd+hRRcmHax/7cZGMp9XjpLUAJ719+srALsPa0SD7RT+nemx9ma6KbXCtjX2ClsV9xHBKnHdtpDAS8EhbJMCzZMcxVrel0ReJj7/8D1P332mXC7GkVaommhk0MS2dXTfrKRrb0xLIZfJJDK0m3h+74yGItqQpExLgmW2siLttL0hVWl7Yt6F7IymjZ2dhqROLjAhJBrr/Z2XrTJN8Nt945fbyt9rRdZC2TbW95VJhIzyrndSFq7LzKeHJx6miQcSWm0OX1Pi31rlpVXedWfbdmM/tTrE2//br4X2tIMmniZYsnIlo60xqTIBuvcRd0jOdBHW2ni5bXx5u/H1XnnvjU0NuG9qTPBGJyWlFOGejdGx1UrF4wk6NQm9CG0WyAtzvvD90yP//MNf+OnhmU+P3wMzXTNrS7zeO69vlf/r71/58vXGl6/v/PrLr9T7jbq+c0k7c1auBeZi87JWrNxeK0l2Uj/ZhCjP7JByYsqF756f+fGHR3766Ykffviex8cn5mmmdmjNmJxJCjl1klQD82qntY1ff/nCb7995ddfv3C/36m1HfHrKGeKNn7mwy2XmefPD0zzwrxc2ffMXiv3++56RGHXIgkiiFQHLNPw2RuhVOcd++aZMk203ql7Y18rSYqfWe0439XOsK6drSlbLZSWWLeVdDPWueRCUYx5nCeCYW/NZ0wTiqtwyTNLmsgU3veNr+udWnc71/xcTqFf6pUCte3QG7JtLFPjki8sZeFxeYBS0CkzsfGwFJ4fF56uV67TzJIKdbPvveTCPi/U1pnSTGZDMKC2N4+HuiLRCKF6WXHvzuKxJHMQNT+UWovZrr13VlXmdDGdrGU+vNLmcWlX1m1Hm9BboizFvt+1tbJaUmicFKrjfAsQxeK9RDBWzHfrh98e54vH+ckTc5Z7OBL4womh5GBRVDYJJ6mCYhIfQ9JCIfXkdv6o8lL3XcaXeynTATSdgbG4rJ/VIgPsMn/NMIKIrJODmpZIzuwcCasWwMj4Un7/7z8Ob//w9aeBp1IclcuZaSogyl7FS5Y4aG6RHXeHpRTrdtLB26BiBsZvsgvcdzx4b8wXC75KsRKY0X0IUPESmSMep39z6Ct6JHr8GiHOe3aItq0i0qyta/Gyt4ErnsIDd8rlNLCS7L0maJqGczdendNBH2iojHuOu1en7WlXK3jzBfoRRrLD36uFXLdFPONtIFroFIVTWOY0UAR18IvkDsrQgjG0PNrEt+5aKj5GJWczAtIZRTgfgI+j/FDOzqffRwvgkeSlir7UNDIH8d5TGd0JZApH1t9kY8Ah9tY9qA9AKK4b77NL2Qav9WNWk5PjdbiTOt5jHRyDcdEcCFS6psECUdd4klGaYEa1udEIuiZ48BKOsY++BezOWHPNkkD24z7Mef0QWfoYucC1AyiDSVEjKLBrqK+ygYnFM4/ggA/ffX4phxNu3+XlOh0Xcw2WoV2vdc/Eqx8u6WS0TyHD6IyHgwx+YozOWPHcRPmSBwIlGA62tgwXNMchpeRZoUxqDdgZ+iRi3fIEMcf/NMfqqL+kCMCsJarNVXcHA2sFKxnVYE+YcTamkzkd1cEJBSYvuxPJNm5d6OKlQuHYxzwnEBz4mi9WS54SZZqY55lSJmeY2j3Z89hctrTRsunIdBfQ7LVRtzbWga0Nt5kt6ukbfdupKiRZ2VXprZJSZYDYiaEpYoJ0bmM1gvPuJXUW0OH2s3UPMsQYNb1utH1HWrPyoWplJOpIu5QQZLdOcMVLEUI8ZZTZRomxr9Ponma2094rQCa7WKw42+y0pj24wsFT7dGp0Q798w5wa2BrxTOOuUzGbEvpVGYHOTUr8Wgbte1jHYRwpXWl03H9YKZIZLhUqVrHurLEjAtlOgXcuocenTytXMoBLAfUjWXnAbwvMPGA+8i2WdbHyid9HARS8TnLJmQ6TqEow+v+WXBWm11GwEtVM1PxM0eVytFhTqSgWlFd2dOb0fe70JtQLg/M14qVdmHOb+8D/A77Y+Ib1rGri7ougq2dXo2uXz0whwAZwkaNMPuDjet+vh2C9M4c8T92CR2Mo5Qtq3x0BjlKLA+4xq8WpWktHV8Yvxob3w8kBwaat6K3jpjuM6h9/oP+UzA51ZNaKIgF3ZL68HsUZd+6M2LkYOBh2hj483Ui8HFbEWt/rDWf/8EsiLWT/H1hnwLw+MhGsjM9Dx/N8NhYS85+DLdLAujyc9J/ZyDOcXoamHToaRzgml3rYCL7Thx+abcSUz9DVZvPSRoC0Um6gUHpAKAMzxOSJrImMsmWQPU9J24fXevKzqdsZ1rJpGkhlwUpC1IuaLlAWlBZbB23hKTd9kEPYCc67zoIubtuV220rY7E7QCT/JwJ8GkI2Ib972Yh3YOx+Yyx0+OUVt/jQyZDhdpg76ZNUrta8sBBADuTQgDXM6in8nFNneU6c3l8YJdOXmamhytPP/3E9PTMpi5QLNbZcW87vXaT46i+FVLm0htzW6wDF0Iiu5C+vUdyGWYiaaNpJ/dujSdSpeXC5UlZ8sRcO7rutLaj/caklSkJD1Ph0/LItTzw9Q7v687L+421N6Qm6zKHUpLr2zwUUipMKN9fFr6/PvKX6zOlK9oqL2+vfP3+Z972lb/fX/jbl1/47f2Fr/s7ZEFK5ut+o7/+xtveeZreuU4Xni6PfDc/MJNZgIvAlOBSXEhdleolmbp3skLuSuoN9hvBHQtpk1WVfd/Mxxml8pXaVnq7g1bKlPnuux/44eGB//qX/8RfyxOPMlN05r7Buin/+OXOL7+98+XLjf/77194fX3n/fXGdn8jS+fhofC8FIp0ilY/v+wML0khZfL0MBJTzTsg5pT49Ok7nh8feHp44C8/f+bT88zz00wuF7atsK072/rKvlVu9ztKp7ZK3Vbu6818gg57e6XqG8id5ZpYmD3xbUH8tt7pfUO7skyZy3Xhu++f+emvP1Fc2P7ldUN1ZVkq87Jb4sGQWAR7lrkUSoJEYa+VWq0DsvnzhcfrZ6ZpIufC6/s7bWus95263a0jW21uY82nyllYloUff/qOH7/7xPWykLFu7G9fXvjl6zt5ulCmhYfHZ+Z58i55ZmlFG6UbaJmnC+kB3rZC1g71zp4VLcUSPNqoFevKDAb8NmsssDVF+g5NWXT2kkLrevh4XXj+/Mj88EzJE0VcbykpU4I5TcyaKNOFMlWyCkl3B7ga1GbAU1fz+zFfomkbNjnnZCX8uB8e8b4YznCvzbp6ilDmhamU4/B232zfrTPrvitTElIpTF0o1UCPCTtXrTTfzz7wBj92ULdeiYZDJVsCKmWhVo+1u6Lp8Cl6s7gwkh3x0t7GOah+Blki2uK5ebZYeyQwR7hkScGCdeBtTdHqydaIlbPbd/9eDQt+iiOtmbUnXxpe7WX3EoQQwZJ0lkC2uMr8RDstkidBv/WhPrz03/3th9efBp6mAqlALlgwPgAEDwd93oeg4Onn4dSNcrlwjAJ8AhcttAVTijA3n2zxwEz60EXS5IKJRCBvFxhCWuERH5f6iMZpMEjcoYkAFAdEPDsaLZizo2THWrIPhkN7ZlVw+nc4Qxb0xycP58n8KnNiNcpETpcYCyruGcaitGDWH1X0w4MOkMEZYo7aHWBP3IEwxjGePepZ448982kV9+M5RnL9HNx986/zs8YbVfXDO8edj0DjDJKMb/D/PsoOAiiL68l4/7ggpxnyS6aDDRMLM8YxsBI5USZPYMEHY+LzHP5msPM0ni8CBfQ0Rsczh17W+FFYgHgODvbGaYSOv3zt2Eie5vUYjm9e8S73pCV+ciqFOw+5j934/2MoCTBLzuv9WBin73Zw8DR/VlrkVz2traQGkOaSxh2NfTPGPVgo9p3WRUJ87jLZg6E+yDmmqyEewPjAEyVAwXYwYeX4+3gfo5yDcaAN0yLmZFtQ1N2Zc0fdp5Mkrk0TLE0DcWPt+GlEdMnLOXuXI2M6JddkMrZXlO/E9BnV3wbfsyJqNqGLZ4IddAobpFq9zCzT2M1hT4UuFiiR1Z9LsGDNNJlk7AdnecTf6nXy6dChMpH3NMq+6r6btlOtlpGsHkT7PJ4NxFFPD9Ely0AeH7dmz2i21RlEHpS3akyqEWB1D9p9icX6jHvHZ8KYr2YHz0WhsQvx0vKUM3kyDSqRbLayG3hRXE+l5k6T9pF5qIzA+TgjLYhOsQPVr3daemdAyfZkzGHY0D72AL5HFS8RGw/h398HCcbAUz+Ih/h8Emu5nkwT6SMIbfbPzm9/Ht/DAxzHtGWa+nvD+IlaWUzzCFl3dF/pIrQ8UcsF6dDIo3wEVaQ1Y0wOmqU5hJK9hECwNSsS5JJjbjlsZlieOJ/P5/fZckaQbsG+rZ1IGggWzIsLWUlktUTGeRF2zNhHXsqQYhx1zFNoSR5mL4yLs4dVR8Z2NFTQo4wj1vbwAb49e9WC8KPiSdEmzrR2Me1YhwPYMcHnYBEOr8bXoERptgOFJjXhPkbQ8pEBcgygw9dfmDo5nfmipyfXj6xdTr/79gyLs/V0oo/3j1NTgpUY/o6Vr52TOmef9NgZMkrFVNTmL1yc5iBz7FEzj+PieuRYTuvLvie06FIppGkmlRnyBKnQpaBSCM0rs38uhksyn9DtUugpWXMCnBXZR+t49ePW8+g2TwOoizUQc3/8HWs+2AWIjL3QvJFPV9NZ6YiXzTlYeTypP/XhY4okA7NEkQzTtXD9dGHKiTQvlOsDzAs9FwOe/BytrdKamEhw7WwtQKWZMmVyE1pNzg61MyG6bQtCFjFQEEgkCsok0FNj00rKBtA2kpfoNFR3MsqUMo/LwtP1gaU88nVbBximvXnzgkql05PpWpW2kEJYve4UlOd5ZuqC1kaeYSpXrm2nSuH9vnNbmyV5HHiqwHvb6PdX1q1xKTO37cY+P3LNhYdUaDlzKRNzuRA6MElhTplrmXiaDYCS1pw5ZvOTp4k8TZRpomLBvLdgwNL4lUSjCFznCz8+fOLHx2d+ePiOJ64sFNgzvVW2tfL23nh5ufPl6xtvb2/s2wq6M5VOSTAXE9dGrRRQu/k+UXotSchzPmyFgHRjHl8uj1yuj1weHnh4/My8TKRS2FtCggW8q0kMNA/KU0LnQu2Z6t08l4fEtSaWB/f13TYcwPmG6g50LpdPPD3OfPf5ieenJ1KeUCZutzbICDmrRcpZyFLIYs85Zavk6NVYPa0pCfMPskxoS1RVdirrbWdfG3U3Ue3eTaTawG2XmknKlBOPjw88f/7EdVlodee2Ne77xrpu5NIopYJMlqiYO3Oxzp7FS+4ssZW5pIzmzJYze8lsqlCE3fd9LZMnTk2fde2Vpo2mVmKbWuemjZKs/PPKhKaCppmtWyLWCCX2fXu3Dnb32tm7iQ6oOEDvZXbRWRBPXphJNdtqySRbIxFjhMkdthuzB7WFbmq3+LwUA3i8HHkU86iyNiVXZWpK7jCHU+b4V8N8WFQGGQA8VjmV4ecUSVn3QYGW/HxPcjq3Tn5b2MfxI7O0wRA3IkEftjoOJ9Xwb8TOF2crfYjH4xxMiujh4Z7hgDgrh/7sAPLkGHeOcT6NMiElIareHAeC5BKOhJ7u45vj+t99/Wng6XLxm0jK2/s72660ahfsTvENSrF1v3Jnyqm6cVeDCKFjjG0CFfamvN8dySwwT8VFBN259oM8HB/FO74cUb45MbF2YiSGgxaDdQSiXb3Ew5a3H2CmHJ/85qbkjAsxVLl7CtA6RhcSeYh8hTNjJV5K9a7Spj+j475FLNuYJlwsNToIuSOnESDh2iVAV3pPYyPaxuin7K4Fsb05jVCjBv78nbYDxuIJh80FlYMu2LSNID1eKSUb/+7MEH917X6InzfbGPrTv9Rp0Uc2WwgQ0VlJiJcWnLZOgAtwZE+KUzP1EBf/oO+hlom1Mks+fFdvFVUTYTZFAQ8ufX13rUM3aFnmMW5WKgUh3G3YhNgadRp/7wZgWNXXwRDwmCpiFkece/j+p4Cb8Sw2HwcCHsySM/uoxXgrDl4d7IbwMP8QvELRFqsgjKMMLMAXnI3NuDc/HE5BxMfA5/RdTk22bRZzFQYNO8wVtCeS198nL9mK1qEt5lPcPCYsY1bKWNPNWwtLNpp2Vkhpou6WEU65kD0ju291AEqj/TvNS2F8HQ2dJx/r3ulNxuFyzI2NQFWjC7cTA69LAFhCFaUngSlbNqSLtQn2JzC95OiGB2WeyHnywNZULzvJmUEfpzDCZ9MJqOZGaqfG84xyDDWdA21AoqVOmZpp6CBW8947vex2Hquiuptzpptl1GL/+Xo6Ws8bsCa+AFQx7Tlf9/u202ql7310A4kAC6y7HjatY067gqhlYJI7FDTrEtexzqR7rQQNo26Vuu7G9KrYn5YQKWH5fJ32ox4fBbEMlYoFasm1hs52LKeMlGKB4zw7Iy3bpauFeWUqQPZgrZtYag0wwZyIIXYYVGqs1It0nJkiEpW6SLf7SJJd50dtPaoDic1KWXP2/SnijuxRUhA2oLXuekIBnBgIGvZd1BhkknxtB/YgwVzEnLS9enm2WhcmB0ytZK1RvXNdOqoYyJqgViR1koOS0g0daWRkW0n7Tp6Wo7OkNsssa7N7yEKaJsvC9mz29Xw2xZ4WY/90bQg296OCS04gCqe8gFhAXZvSdkV3QdTKdwdsLmLMNs9Agp0TSaBMIDnANnP60zSBn9lW1uoMSdd4clrQyW4e/w5tJ2O9WV1I10yU6ffItuqwBoddOIFOxmIy+3roMOk4y9SfCzlA3MHGOwH99gab41axLpL+nEgxP6d2AsAZznM8m/+vNdtnImLNHsZNByMtEKrTUwmgUaavzsqyWYlANt4nrt0W93AEAeEIhkZfMlBGDGgLOYXuwVec61kjOO5uN6GVTnaGOagzwpVU/KZDIUC6MZ9MM4I8T+TLhXy5Uq5PMF3p+UJlApnN3mQ8s2vdWkkFSQZQKdn9VJwNJUB2MLAZaOxBgWk2MTRpiKDI7UaDAyQEWjch8k72BEhm3zfrUleTG+ZEE+jZurtW6iDjWeLN5mR8v4AwjV5fl0ti/jzx6a8PcHmGvKDlwpYXRAvaE7KbX1irNzFSC2T3ZuBkKgvzBDV1ttZQMhnruFe7leBoh0kzC4L0QlLzzq9yRZKyqvnXe++8r9HOvUPfmXPiqcz85dN3fLr+yFSe+LfbF1LZSflOqXeo1RjVWWkq7CKUulN7oq+Jt8dHtlK4fP8XSrMBSjmxzBOPCpteebnB25r5soPOApM1X3jfK+/3L6T6haxW9vfD9Ynn+cqPD89sZeF5eeBhLuRuC20i893lymWaWabCl7vwuil5K9xrZ+vw+PBEvlxIy8xv97dRMiRURHYm2Sl0Hkvhr5dn/pfPP/P95Ymf+MQ1L2Qt1CTU/Z3brfL6svHbr2/88o/fuL1/pWR4vApFJpIoiU7dq7Gou5DSRCrC5F1Pkxgb6Cj5LPRuvvXl+olpuZKmhS4Xdp1gz2zNtkfRxCITc+pMlwy5IkmhLDzuhdp3ulbysnF96mz9wv2+GzOsw7Ya26u2F4QbJVV+/OEH/umvz/zTP//E8vgZ1cJehS+8m+1tGyVVyqJc58LDxfSNrvOESKY35eX1Tm3KvjdKWch5ouSZ95dqTOhtY91WwufY953o1mvHbUdkJ6kyZ+G7z5/48cefuF6vvL7f+PVt597u/OO3d1LamMpGSgvrtDNPheslc71MTNd5xDpZElf33bVk8jKz90RPcKudlgWWC1IKncRt3Wj7jd0Zt1vvNG3c6p2pZKZpolwWchXmPVsDD+1W9hcdcBv84+sLX9/eeNl27k3Z1c67VL3NZpwKokfiXDzuySAZPIIiOmDbwW6gt6jZna1X2t6t218pzGWiiLLdN/ZqzXPc5eN1bVSptFLpqTCjLL2Rg5EuhqxFzi3i7pyT+U0KqOk1ipgEj9k6RYvfnye8u7tPR6Iv/IxT8hZlVN/RjX0XcbBBC6CQissKIIhaE4OIQcJLHRICHpedXNtxDNv9ePd1f5bhlx4HNagS3cHjJDWlnHhf+PX+XPpRruXPajPbrv+Tryhn6o4wlgQtK7UegINRuEI4Nkbg+A53E+zmTwNzdpQMle5sW2Wb/E1FB80aD9nc/YMU9bV9iJPx7z6/OSrhMLfaRtmCCGybbY55hpIjKMiMwiURL8tIXqcd0CrEDUTtspWtBmvEKG/xUkcUcZSXAMyCyRXBrR6+kwWRuLMIkk5ZRix4H+9BXUg2aHmeXzfvy54lFqHY2GfyeG90pDtDFlYCcL43Pb0hHLxYgMEWM3qiXe+js/17dlU6/b6PTTSmTQLgceq+P4PRvb1E7zQGdo3jfgL8iMw6KK1VumBZMtepGbpkGjo2MSdtXC+e05y65k5hAy/tKCWR1Ma8nxzaEex92KQHg+SjPlNc5zzG3372/DpBfkEW8GudNa/Gt42s8Pkl43pRGzzu4fwfYiBkitq18V061qOfOWPRWlkoIYViAYsaAyfYQBF0AaN8LzI4Nvb9tA4SU0lotu8KQeaUheyAy9G9yQ61NDSVdAQsmQO09R5FdMUD+mQHodOoBosiQIBqwFcnSqgSvTZbRCOQj/LRY58ToGjCGypYyVysbz2vk5iHOBnHNBxMKfX68NRNS6NrtUxc64PxoL4xet/pKSOp0vaNPUHvldTSiS1hDBXRzQB2sRkMrbHRlQ0DbeUcCEswahptrxZ0thDN7XYIeycZKZOBmwHASCJn082yMcxo9eBYLTBvtRnw5FpZ2g5tn5RMbNMC2TQOx8iuJRwwcUcA19Ri6AGZcKWL8TgYMtmfMrsmVPYslJ13re/j3DHgxDWo6mEjB4Nl7Hd3rHxbH4d7BNJYlqkdezg++82Wp3+wq9YlMYeYRUzoOBgPJ8K2pfqxJWN/JReoHoxCDdacgAra1FnHBnpG4scqKQ5QtTcrD5xKZmj4jBbxG7rf6YKVi4qCFlRD58Do6Slnpnnhcn1gaOl5x8wkArWjqQ8wOTvPQQ4lWVsbYgFslIk1b6EcLKEoYQvGk52HoeMFtEpuoCTKZOtsvkxcLolUElJ8TNXKkZqP/TQyqDK2r59E5uB2B22Cfu8UKpcPGkBCnI2mC8LJefrmkMQ6WMbRPNyTU/nbcCs1GC8nvyE5iKYJtA2gwz6bxhlotrAR/s6hR9j5o1fr3rLa52GUsSUrX7OS9SPJ8u0Jd5zjfuPfnEUJRmn9h5eXmX40nYePFYL0IsYoQr5l/QWDCi9ZBRw09m3j9llDu9zPeBCS69BYIFryQs4zSQpCBjWwWDvovnlnpU5KmZ4z0qNLUjZdmFTGPuyuATbKI1U9sZE8eeA2x71zC4r0EAMfvrc9X/ZERyQERlAhrueHSWVUv6ZXXBPF9nYmOMPX/azaO43OpIk8L1weP5EfvqNS2LSw94xUQTalTDG1cd6Zb5HVC+VzpnUrZcrZfVXN7Hvjvm3c9o1VKtNUuCwTj9PClAtTnmmIVVTUxvvtxv1+91ZZdt8F4Wm+8N3DE98/fuIyP4IsqHGovQRHhiPeg/GUjWUNasBIsiTO+n5Da0a60Hahl05VqFtHeyKnhXl5pJVOz8ZwDG2sWldqa6yts9/f+ZInXpYrf3n6nvvDM9fLwiVN5GSsmqcy8ZBnHvPMd5eFt7oy74WX9c6t7kzXB5gmtBQrD6+N1jaKNFJvpN75/vLA5+nCPz18x4/LM0/lwtwziYyqcF87b28bLy83vry8c183uirLsnBdCtelkNjodafWnXV14LIr8zRbcqRY1+ycErnMsDujbdtRFZJ0fv3lF16+mmzC68sXpnlings/fPeZz0+PPDw9WZMiNeZMnrwkP00seeKShHlZWK5vPH96J8l3vLy8c79vrGvj9eUN9JXr8sZlfuThKvzzz//Cj9/9lc9PP1KWJ2ozXb6nh0qvhe3a+HT9zDwVvnt+YC7JyyyFl9c33t5uvL69se27nVfFWNGIUPeNfd/Y9pXeKxCax52cTZIhRQK2OTs49YNJm4XlcuHh8ZH72nh7MxBtr5W//+3vJDH/8Yfvn3l+voI+8rhchsyBOkIw58znh0eqVt63O60lqnZKnpEymSXfO0WMK9jdo21ektdqY2sVfvuV19udl/cbD9OFIplJspd/mQ/+29sL7+vK63pj68bsEi9PjA6zVlZ29occA4hgNpJDZ1uuSnAdUjR10866rWjvTDmTS2K5TEwlmZZaNVvVurLtFW43aq1csvBUhMVk/TzR6bhGyYdUX8TdTovysPrDkZsCf+Acs4p1VY5AUg4SyfABnCmFn2tdMb8DBjjVWxvxSPK44YybjO+SuN+D2ZuGDxFnvfkZ6aRpHMmIPsr7dJyNyZN5Zx/K/DI+zNv5SP5/8/rTwBOnAyaloJkfgxmOtA1nOIjHjX3rSIwbjbXWoYt1CNprZ98q+2yHZhI5sVYYQdgRACb6CT31rx2I8u+fJGbLGQGtD3X7Vm0Z9XwSoXbRRPxQNQEuZdDexx6S89zZPaZgKOlgrJzv7xy4D+fqd/csYzyPsbODfnCXPMMwxMX8fUcukuF0o8dnwjFRrNzpPK4HZ88P3H42GPEcx0SOOeejkLYFrKGBc34OHWPx8XXKzCoj2I+46WNWlsH2GmCAB5rfzn08f9yFjJ9B8nEZbdQ9oxrg1RjPGIMAgQijE89+gF2h7SUjuoQQM7c9cwRCAwuLe/oDkOjbZ/n967T4//B1ONwfQcBj3H8Pah0beDyxnIJhgaMgTxkRk9+HEl6w7xWxLIaGqq2IUccj0PL6ZcBouSK+9yzTbAeSDiAkxGLJCc+3moqFHmtzQONjX8ZBoKe5sQAG4j5PB4wHjvGd+cQiZICF5jyCPwNKlHqNCuDQ/vBxNGDWRKijw1gIp4/xVj0OENVjTE6zk45o1n92PId6kDDsVBwwztrsrdJr2Gw7iQ2IaLhao+efIKxNMJ5CZy33/A1IeRxWoySuux6g18WnbhmvxLGWcpQbOvMlaOBD0NunoxMlSd0YS9GKd8yz2V11QUBVHUstQJZjDZ8AimHu/OciiBh13oKyjCQXgHcXTUj03bWxoixPE1TByjhiK+jYX+d9Lugxd2MZWhmoqD0rimtRxToMO34Cnc4OCbg2Ec7yOa0Nt91mb3rciGUbfb10OX3uBJyFbiF6MCY+gAAcWTvEGRatWyCvNl69WzlIb5XedqRlWt18rjtZyihfBRuL5EBkaTuTt/6OWetWB0VKjT4yBn4vsVb9ZxL2X9VZgbY3egshd/9slLaBMb1ivaGkpqQpU0SsscA8kedMnpzBp2I6Fv59KZfjPsJ3EiFh4Fqr1RalhHyBjLnszuLo3TKPAUSNm1M4Az1xqtmvj+ePaWLsoPj7GJ8PONZYUCfbf/ZPfK+gwzSODx8OLO4Oxb/lWDca9/XR1xmyDZxfejZ3x/T+O6/jbFPkP3jPoZcRIyMfHyrs/+nZv2WNiZeqiaoRhESsjIqEyUQYcJQljxIx22u2BnpX7/DkHdNcv7FLQs+GIZiicpRexrRady9j8ARQGDZCNbT+1H+nIQHHmKjxbPbfIzfv9iDyR8e+F/9kJLXMRoSI4ijJFmG+XFiuj1wenmF5oPeE7qaPWruQG0T3JyERTThG10d1BpivW/XOctI7+7azbRbcb1JRLSTpLF4GlSW55pVl8631umnrJLUEVZHEXCZnDi1MeaKrg9fO8pec3IYlNFk5bZ4K2fVf5lS4zDNTLpYIaSA9oU2ovbGr3as6iJxLgdS8giMPfTYp2StAlLXuDjR35jKRsvD1/orODyx5ppTiSTMDQ9JkDSH+3jIlZZKYzqi2Tsf0H7UZQzsVB8sk8TAvPM0XnpcrlzwxU8i+hrrCvjfWvXLfdtZtt+oOsARRKR6sZ6ITxbmyIpfsLHb309OxI43hthtwTWJd31lXK+Nu7c40FdNIkk5JysNl4mLK8hgT1hJEKoLoREqZXB64LDOqD3z6BPBKKSsid9abdcO7Xp55fhQ+f5r47tMPPD18YpmupLyAGqtuKQuXqbJMF6aSuMwzn56eyKgzuxT0RnWSROthD+y5GtUB2wrSEOmRqyUnS46WkhBpXkES7B5fp22nNtN9nKfJAMfLhVs3ofD3+4p4N8Z5MuBuKti5lKyJRXNNzylnShJyF2reqcl0nw5fxEChkhJTys4qVUbEFgH6ejcwuStr2ZhSYU6Z5tpzrXVe7zfudTdGkp2cJE+whY/Yzwb9FBudY+MP8c3539+cQXtt1vBDTYcqpYRM1p1PwTsoW2me7qanrCVRNJHIJmHRvQtvHFWh4Xwy/5oghVYrx5l7YB+nszZum6Pr5offDD//iA21n8GlftpDFsFbktlFyc/DF7qJHg8djOc4W8NRsLsQCxiG3QYO3MDP8zOYFUdDPCPhrxJxBiNG/sOQ9H/y+tPAU7RVVvyQyMbo6cVFr+IkUxlBwh+d+sO547jR3kzjSR3Nbs2cwZwS/ZLIybthxON+mDRjlTTlKO/joNIfk36+Cc+oEE6eBaJdTbBPBFqxf+doMU4Em92o/0lIPTL/3yy8cOb8fqNE6eiGhQUwQyDInyy544NlW3sPV9K+Izo4nZ2mGGbVYOpkL+kLuqB46Ut0O3FmjQ+F+zOD4WT3JgzP3suc7Pmal/GZoPcH2zAEJ+JwORyZ1mI2jo0n58UxFvs3jt0fLOQkJySZ0Mc5GAG1mjj0uZtPlLaEM2+lGCBR1zLuQ4igLIAAi/PV/30Cwwai+q1ze1p17qXFs6Xk7cD9s+d9E+VdOu49QF0dayjG5ty5KW5bvrmLP3p9tOXHuj2uJR/+reBaPefvPrGD3NqYUxqgiws4E1kLNXkX1ZEykCRMc/YuboeDr96+OUV5TzjPHojbIpchCm4C+96hI0DkMIwKXaxVLR/uqXv211kT545efhAPgGWUk2VGx7TevYuIMXMsa9qOw7J3Wt+dKaOjTFEVkrMLkprJzmJOa8nmVBt/QAnOSAr3v1cPjC1A8WXnAxQgl3mJRztWcXZi3Pdp/uOc797xsdreFs3H3kdBK/IB2DmWeFP7rIgw5TLWTPz9ATxsVnIXyzY6E6ZgEmAMnWVZKK5JEWmtrsZA0CTWuXC30YkMfG/VFHJjr5myhc+0gwZ8tD9jXUfpsPg0dmMyqJdRJZKznWbTCpOJ5J1RUp5AO9oqbduQ0qAKacp2Iu27O15WFHIkYnQIPUL2kk+zNzkbeybl41juHevKJM3tWDOWZgBAzsgcmocaIr/q59uxv0Jb57yfD8DuCGZlOGE+Hv6LFmIOimn2pMP+Ji+xG8C+l3eqNqRb90nVDFR6ETTtSF1d71jo0shaULl4iandu6RMLrBcHiBBKgnY7PpdqbLTEFsDk5q4fvOADYGUh/1VglWtrPfdWzkrNEFbhp5AD/F+I4S5XhrNWC6tk1TQVMilkC9XpmVmviwOMglzte6GqiApW/a/GcgkSVzAU6HuVF1BKypi5bJVvdxOrReAWhloJ0Cofpy1ZqTO2/IADE7giTL+eez/odXgWz0AjtM+HwDryYENP0f6sa5CAHawdofnwwgoci7exfTk1OJ2SeQjEBI+M4fTO3518rrtthQ42K4h1h+vk2TH757B5sfWcE7FfSFvBiK2h7qekoPxDapUD0xEBar7TAKaTGcoaSLLTJaJIjPZuXhJE1I7qhXtG3s1dkjfd6gV7Z1SZgcvKgE2WomyMSS0d6rsB8Pfqe4dnAHlLChnu9mZ5P6QwuHceU4INQffmy4E0NYVa37jgGqAUslraV2elOim+iHA0maMpSnz13/+F37+p3/lh5//lS+romujakP6BC2TdheEx7r9zdNiNoDEVu2ZGpCnRPSd6NtO3Trvt3e2Vqm9kWchpQZSQSrq47E3ZdcAmzdEG4skdhKZwpRmHsqFh+nKZbqQZWLv2RpdTBN5minTjqqzD7KSl4n5eqH0yjUXvr9c+em7H/j+8kzRbPurKb123raVl33n9fbGvm+gOhpoSIK5LAaapEx+eKRpZ2+Vl9cXaq18bTvt9oW3vtGT8C/f/cTnyyOLzKS6I02YEa8sSLx+eeF1W3lrFb3v9JToIty2d1QaOSsXycw5MZP44WpC5p/nBy4yUbycdG/K3hrva+W27g48GdspeYmqajDXjRlT645200cq08Tj9UoW6JFcUNi2uwlZt0atK6E/0xrs+0prG1+/RmySeH/7iff3H2ntZ/768w9Ms60TSkYpxuCxWlAaM71fSKnz/PxASu8sy43WfuGtdEpRvv/5P/PXnx/4609P/Pzzz0zLhTJdUSbTbJTOdb7Q5sbDcmGZJ5ZpYs4XtO6oM4BeX1ZeXm7cVvPJVKxj8dY2VN1PzJ0lGO5uX8puZ0zJmN5Tcy3NYiXw9/s7X1++sNedebkyL4XPn57YN9MvWm93bvcbKUHJwi+//sJ9feN2f2X7YWfKefgApSSWeaa2DZJymWZKLtTeudfK/b5S1TrqXqeJLEJ72dnVO2B6klZVqeuN+77xtq5MJAoGVNW1Eh17d21elptHpU6r3bmD37yciDGaVJ38R4QhBTJeWcaawO38vnd62im1otpM8D1npnlCsiBV2XYXEV8bVRp7glYS7WFxcfhOkfC+8wCdLPzVca8qR8yjdLeZYUTPVCAjWkj35zghEJZsxKVdjjPaGPdC6vb8rXl86HdVSnag9jwg4VPGWXfgCEGwj7gh4kazM4evqNqHP5r8rD4AUP8Sb9aRIi4Y8agJ0v8eYPmPX38aeLq979bVJUdXi6CA4zol4bTGQjJkcKCDIzgOt84nRB1txD5fq2MxqixLJ2WY5xDhAuhesuaonUSg1s2xcWfBvi8GRQ7nSu3O6KafsUzZOyRZ9j9wAfGJav3opqTi5QNN/FqjyH0kyc4OXIBsMS8G2tgY5SIOboiXw1g5YWzCAIcUtUNYvTyQPuo3o/0j7khFcB2smtZCTykWV9xJGsFkLnZYDVaBhPsgMW12P+hANuMV7KzRFQgsXHbfRbt3IBsBfgSlcc9jaYz4KF5HcAbR4tHKONSBLF8DYrW44UzWWocvfqDG551xUBxTEtDs17DxbHjZ3jesKvWA5Xh2G5PuFNnfA2dnauUBjqWzCF2M2lBbtbVjwJMbKYnP5fEsB+PKxjvYM6PkQTkCRj467ue5+yPWlF3THI9wQGNurBLDUPwY/+7ZkQB9RulKBAxxCRUHRUw3ip6PtRtBtBgYA3jWgVFeJTQHZtOoTGnNGCfRoSwOCRFc7Po4NM3wRkaOsdcULzGI4cdYLiknWnVgZSpQPJje69ChSpLBM1m9t4ONYJGdMXpGSYnVliVNtC7HwdZMUwwRulgLZRvvZN8niep199G90KMfpwI7mlWbawH1UWKH5UOxAMoBAxFv7+paOA1EOkoipzitbLYTDkCY+vZggH4ER5W+twFcg2d5vKRRg33o53IEbgHimT3mg/ByGnMRNtzZWWpjHPY4GEuhTaQW79icd9NsUTXGVoD81tXH7qUJFDEH6ax/k+Ieu4lRtm4O3+juhznelj3KSMlW4jhlc7JRcs3I7mtwJESsa4xgoFceVGz8rDTnNTtNO0rdWu5Iqn7eVmOPVdO6aj0yYrZmhp2qOkBjw65drH1E/t8YXD3/6AgoBjiuOroIygheg8Hlf/p4WlS6Ma6aRbA5qxPorJV2w0Tdc9/pUkm6UHQizYmSLPBMJMTthORCmRY7a6OeuitJk/Gf2lgmKPvoUjPmSoPpYWuxSDFbr529OjjeehgOt0vdM/U6utcoDJucS0FSdF2ZSNNstmRSctehMyHdhFVlr0dSQ7sDZmpiyiiqiVZNM8l0k6zUxZw7A1eHNsoADDWW0HDt2+lsHa8B5sh4BnBh8VgP4YRh62Ws3uFfuD8n4ppsrmXp+0zp6Eko1didfiaeACFb13Epfw457hMiieY/OjnvAWuNbkdR/nmyL/E6VTkO2vc50zu+3M85cB+iVWJPZdTWNpE3ccCKDt5hlJ6gW4mrNEGzgJcPGnAnhBx20m7yDL2ibLZPW6dtO/QKvRuLphTQib0UqBM129nVtaMtj5I2Tzu4p61DsmLEbOetLoEbdw6RWP/bgxDVbhop7ej2aLpp0UhDPoy5Ngez1PyzntTPvs68zCxPD/yn/+W/8E//+b/w0z//K/nrnfx6Z//6TmWi9myM2TRTyswyX7gsV0vqSCFvlb2arlNKSk7KXMS1fYwds/fG3istY9prCVR371DYiK7apkRa7Xf7St83elvZ5cZrEr405benX8ml0nVhXe/03kiTMJfZ/H1NViY+TeRloWzCXIq1li8zcy7kdrAcksgA6Kw0qTDTSHsHKp2dVNxGtE4uxUslFbnOFAlmU2In82/1nXl7ZRPz0y4tU7qQdrhr57Xtzk6y8sOWKlIyMhXwhg2ixo65lsLnqwmKf5ouPOSFaU/kLgiZ2uC2Nf72j9/4H3//B7/8+pXfvr440Bg6Nba4MpYwyfPFyy8FUrYOyGoJwJJDswbXJkzMs1BHOX5j3+/sdQMaOds+uK8TL2/Cr1/h+5+uLiY9sTXrAtZq5n53keu2GquvG5uq1o3WDWx7/nTh4Qo//zDx43cLP3y+8Pj0aIkeEeuCiFJK43IVTIb6mSknsiQjIYiYWLonHiQVlDL8zJRCU9YDdTfdzUvt6Eqvq+3HlqjbitLICaYpUyZj/u77OmQhUppYLhOfPj3SayOnTMmJWg202tvG23tl29+5rTeWZebh8sDT4xVJE713Si7MqfA8P1JbM2DzdkNuN+77bs+uFkNL766pWQkdWiQhpYAkehK2Zntu3c0njrihZ6x7c3E72/tw6ETF/eQ+4qM4l0ay2W0soYs5/GkZ/n2c6zo+b2fQuhmjqRWzodYdeqb1zTCLZjFG7xZTpFKZszAlSEWIxkLmj7pknyfAFKH1IAd0msoo3T/Om4jdw5ZC9+51R/WMk1CG/2oGWrt8aLox4nAHuUK+J7RAj8E6x5k+Toj7OXEedI95uktiBDPcmXuRyCfAK4/7enW3UF1Dyn16Db/8+BM6pR8Agn/n9aeBp21r5CJk8ECIATCEtlB0gRvBdYiYcgyWRCR7cnJlOPR+aHYDoKqLczdLmg85pAhWxtycpgEf1n4MLwBDqWd83u7HaiF1CF8m9OyHRGzsZRjR9vfEcoKReToDa2Ny4kv4yCyJYDeJjDpLUR2Lc5QIcP5uc1q1Gydj3IP7YAnoSVzjUlBthhqLolY/YeOT4h4jaDkzyA5nbWAGA+z41pv99r8//mo8ftehu3LOPlucqidH2OdmIN8+nxHIJgcz3cj/XifpzJSScc8HyBJO9RiKY2wlOvqcV9N/sIk8kEkffnR2av3+04Eij0vg2UVfYR/38ces7R/eR1hd+eP36Ld/67js714fyiLlmzWMG00HFf5oxr+xQQcwdjzeMfS+mQIgOwNVAVaaBR6RgAU9hEByR5oxSLQpXfoAV+QY3NNF+4d/W3LiRKuV7OvsNOdifKOoGcqpjANAkw7A+DgQJSyb43Xx33GQOXjIIM5+sM/jmT1jJs2CA3VQoQ0tj9hQPtCGlhKaB+EQdm8xHdf+dt7Hfgjtm25sLBPa9qHQ0B8SZ075vAbrr+u4Hgo9RYmkBenSBZKO8T6Xd4Q4Pxhr9ANTNIJT9LQfz+vleAZJyRsEMOxyb8Fs6R/AJBkTjtt7GQeK+Bkg6bzW3e6NvWkZIHGNsd50nD+4HkPKBhambkFYyh4Yqi38AWyJu+anJXc+Rywblh3gtVVTOhYQeVkZHniOpc7H8zA0AA9Xyt8wxoPj4hyfO2+hruoC9Qrd2YvuhyafzzTOwaM8LfzGGOvewoFUSBb8kUDqZgBVFgM9U6f3C0oh9NIkZXN6kpVfThjTDC/VJHfISs91lCiF4xXPIOO+9LR1sp8lgmkZ2dcSGUIMbFSONTIcCF97dm/ZKf7GgpOUrRFJ68Yo9D2Dds6zYXqABl50KgHedddgbYGORoAfe6jH+eZnW8xgJAlgACUfXjG/HOethg8Qqek4T74xMwN0GmfokUSJuEJ9Actxa77GTl7E6XvH99skjURD3IaOz3/4hrHAQkfIjM/ZEWfMlXz4oyeLHN/XT585fhrjnHz7HXpbftMSPHsf0ZHoErej4uw5s512BIXNNI0zA3rScG572w28wpMVXk5Q8oSWHW3lOBNcky781tFlLkrKfKy/ZRDY8J38pNOZN5IzaqzxYHeP01PNhxwlqV5/d+6+aIlLAx8RKLO1qn/+/D1Pn77n8dMPvPd3Vn1n3oR9gxBOFymkNFHyxFRmcjZx9doSvVdyB5HQd7REptm7maydiUJNlkyxUjzTlbFxCc0q+3nvldZ2et3t775yF3hTeH15teA/NbZtpWlFEuSSx3mQkxiY441IsiSmXMji4OLJF8hibN6SMkuZWLSx0Zlr8mBTyN3alScd29jG7zKRSmZZFlIzf+f9Xvmy3VA1AfInFmYyUxdutXGvu3cI7+y103K1cv7eB3NRtFM0s6TE03Lh+frAU164MDNVvHRJ2PbO+33jt5dXvr688vr2zr7vzhC00mk7T8zwCEY6KKX4GSBjzYZPOJj/dgmmKdPbTu+V3nd6MzDQCAbGPmltZdveeb/PrPudskwUubDVnX2HbYXXt8q+K+t6JA8MyzB2YS6dh8eJROKHH648P01crhPTNA0Q1w5NJeVOmYSLZuBCcnEdbabhGl2Kp2m2EvCy0HrFWE592EyLa30/aHW7pag2N1t26IyOaR6DdTVWc2s7rVVKmsglc7ksPD4+oB32beN+U+51c+JEs7K/urEsF3pX5nlyIeziAuGZ63KhtsreKr11F/O3v5tCVmu6xPAPFasRPP4YAcMPzG77CVVrBCOJIY1BI4gZYWrOPtmHMCviwmH445A4fj8sdPiCaORHAEtE14i5ZvMfMr53qwPpzp7sHebaT/GNjOvGPGSREZv07ntaGT5dH+eml37KwTz/qDUY/r58wBb+6PU/IwMcAFOQU8R/FzaeIy4RsTNFPNbv8uHsPGl/EKSZ8EyiUU34gn4Vgqwhjleg7lsNf4ITkPYfv/408FR3o63mfjionsRH1VC8Xu0XRyCnDHGNPwjmQ/QxBtQMmR3wtceZ7B1HNPmBHwMcAxMOiy149WtHLtCyP1GN6AZGxdLdHWhQkh0YoC6kqx+c2Fqbi0/bFDSr1QH0OHhjYcWVTk5TbJRaffGkBElJrv/TvYIhFOUHZe6EikZ9rJANqHJdqu6opjizQLqXzaH+neY6nMU87d6CtRGdJhJxMMTiVTU6bOunmtNzEObjk7z8zwglnShhSy7IONxgOVDhATKMDRR6J+7Yn9zEUdZFrK+TDoAEE0n9Ob3MpodBiPUVSG3zNateQ32AAsVL4VKJzmYMAyl2oWEYAtiUmN/T32MTnjS9wvGuzpU8PuNaH94SWbsx1Y7XYch+D0jx4WejZls/fnYY7h7XPJz/83WG0Tp/Bac5wtgiKcgfv9NQCwcWIsCNYI4QCcWBnq603coiRcU7O4oFlOhoJjA0gsQvmjq1KDkXpsmuIyKHLhBePnY6EKJYO4HrHXRfq16WFDo/mhyglRFsRIBm6z7Ms629WquPbbJMq0++ZcJO7EF19qQeWZoosTqiNkA7ve6oi7jaeAYwbe9JKXk2o489jVoZVI9uaj32PkdAHVEpMspHDyA0fmcDpb171zQTPefUYr7XRjBHIhiN7lBxYIfYv6aDuVf3PthKUhuS82CcAaSc2bbVHPucyFIIoISuIZ811lkuk41vdh2qqvTUvfOdBfzBxAg7IB6wpGJ/5ykzLzOShI5lEiXKYfEPDJtp7cF7rdTW2XfvuCbeGUmEVLIx6TRTpsK0zNS90bbqHRrjfOvO1D1sm7htTCmTc7FyxGTBq3aoYkw8MQVvGzs/I2OdHFBpbF2777AN4uuTuJf4T3yfpmPIA1wckefJbihxXaX5+KDBprBMYCRWbK+bATKdL3t2vCIGacb6yA2kse+z6acIkC6UqSBSrFW1qMmmedvkTkemyfZXLexrBDanLnDOsrT7dzupbocwIdnkDmRHBgajA+gVCwpyGesnZ8t2lzIxzxemeaFMC6XMBj6CgX69G7vL96+QzJ61RrBGDFi2Ji1tNyq9/bfZgzHm/jxtUFlsTacxyOELHSUwfbwz/j6MdZTxR1fJ4aKdSjN774Nh1b0M1d6rp/UKqolSXHxU5QDA9bBhbs7cJzvOFPPJbJ13DbbxyXl1Jzl85sNfYNhEe+4Ar2T4T+ZO6LjfccXwPcY+OJz3OAdTTuQkgzVlPoX1aet4Rlx8TZ4OwTRAfMwW1Ubdd/b7HdR0caR1SBOaZ2O4NUWrApZgK3lC0oRmQXcrVdpFsHhc6amSUjFsy7tGdwcbB7AUe979WIdSjcngttEe2jvO+ppozRhPo1TD56t1HW3Texdz0HtM6OHHK5Y9lwLLw8Lj50fK5YrMD1CuXJ8XNrly1wu3X17tfOMbANcbOMTqOIcyxrCzuc0qTGVimRIyJXpRtn3jvt7YbzfQ7j676das+866raz7yl7vbPuNur/B+oUv75k+v/G35Xsulw2ZHnl9v7OxI1RIFp90NbkLsAoJ0QCWClo7mtU0vcLnKInna2FaIGvlst953O+k0lnbyt42mq4GMmDzKWINR5ZPD5RlZr5eqNtOu2+s9Y3//voL/9bgb8z85fkHPi2PfHd5Ys/KLQvbK/SUoRhgkadCngp1281w952pT97F7zN//e4nHtPMZUugjb511lX59bcX/v7bC//tv/+Nr6/v3Led5bIwTxMlZ/b7u+2HvbLVFWv64KXJav7OvlnQmsWkOVISLpdlsLWnAiU11rVx73dS2slSmS+FaTKwJKVKrTfe3hK//vab25KFt7eNt7c7//ZvX/n7337l9r5yv++UUpimwudPjzxcJ5a5cL1mHh9mrpeFp+tMFmHvSlEvMxfYm3X1RaBM5mMslwlcn7Luu9NJbWN83hpaFu6teMnszr6/s63v1LpZCV2vaK+s6831nYxZHvplZZ78XDFG97ZvbNvKcpkpPdN6ZcKErx8uF7IULssD631jvd+clbcPX+T95YV5ntj2jTJlVB+ZS+Hp4cJlmphzoYgwpcz0bCDvw3rn17dXXvqN1pUJ2MNOpox3wEFTGNFupWfq56WzgSnDnKA0tFsDGDnZfdO0M7+fYMiEDxGGPsy8Es4rzlz48BZEKEVcc9U0rZqajStqJXc52/qvrbFuG9u205rFqm9bY2/mCyxFmNzeSUqud2XzfjS20RGrn1I+vzs79BQrxO/Ocb0DFh/itq6mb93b6SxJMuK+8KkRcdBdPKQ7WFcnPIpI+oi43M44L8OqH6/zvR+4itmgqKKK+xzv9zMR//7je/7c68+Li7vz0xqU2UrrSjFnuHdjKG2OKI4ysVNAHgDncH70WFsDJrK4c8RiJnZbkLxYVwnBMxb2XsMwnHyths5GiXoAUMTmwJDKQTXzienanVEDyGRO05gQO5D33ercD9CG0ybwTFYz5laAOqE5ENohRl32CXQAKyWlutgjqk4N9ly/mOMTgVDAMEenr2OFqI9HgNS7qeraIpY03m/Zh49BR2vNSzaixCOy9cnZGy6kjoNGTn9sTU9BkzgQ1U+bQE4lWdB0H4M2yuiS3XswQgJo+gCG/09Wc2zwo+RHjp/73PIH35HSWBxeuufYQQ5HOsr5ms+VGzb3QKNEyJhyZghik1v7T5uXlGRQ87s7wHDU7cYrtKhs3cVnj1I2+wr9wJYbAekICNW/6wCW0INdFtGkJO/+Ft+nH+/FwL8AXPRYY+P3/rc/q2oihL7j8wZAHgFTbw4cEONop9DBVlJrVx8rPPZLd2lDLzGTdDi3IdAKnnkR6K0NsDB0vJRmW0RwEtUBPO/ahl2KJEDcf/PMc5RyOXYE4IDXRBKhbqDSwMukAjgo80xkmVurA1RNHCLbOPHf1pNlwCRlaJax3fc65vhDwJXS0HnRqNUG6lZpvXmgGKCxMiKIyNopXkLoh6HbXTtEIqfbabWi4joUwQLp3WzhCMpPe8w1H86lpENjzQ9ve4wIhmy+zfY02r6zrauxTHof9PdDFNfA/pRcmBV7fu0JNY69Mb1Oez50+1S7s8zE6dfWdXK+mGNpwHn3tWLvqa2janpBktMI4A5TcnQ67IRtP12jTLRibJJeB1Lr02j7amSBEZIDGaW4hpQznqxkNjR/vPTNad79w/oweCVMtDkDbp+GU5FI/dj/H0qJ8XUyHJkzayJ+5sBk2DQnXxhhz/eeKt1LSaMkFlV6wrooIQb0iJKKvUeaWEfFlGj7Sk0FVdMISVKQYln03hoqyVhtjkSIj2BCiDbxVgJm7LCu3cvCbOyjhNpw12D7HONgazVAS4VuNs5YOdB6otZG3Rt1r1aep+53uI1WwuZZJttu1ouhuq3VVncTlK6Vum3UbTeQsqoxnurBbjozSOupm5olMx20zEfiSDUdJCafV/X5jB0S2eXDfgd847/HOtiN/S1CKuLniusi5Uhw6QEMKQO0jy49qDVR0GY2Kcodw66ZcD5uA93G5+T2SLA6Sn+va0sa49AZrNrH3ScX5E5xJnuZa3bHcJRJ5gzek+w4wyNIOGmXZcGfYgAe1gEJVBI5EqbYhshdRmKwua5X3TfyZhpSeS0kbZAnNG3HODUFzSCJ5kwNenMdnJ1926wk6dSpqfU+tHKMFduPNYP5mIJYhlh1ZIzEGSe2dGXEd77M7az1ORqC5Kdga3RnFd93cgBy4ztyoiwzy8MDUmaqCu9rY2sJTYWyXEj5Zl3pbjd+6533MnFbFh4vD8YmmZdRXZGTlTx3zPfKmH1closJ/C+ZmjtlX0kp8bZVB0AtzKpd2fbG3rtVP0yCVIXWUd0tUaF+hmpHeuW+vbH2jdU7tnWtxu5YFiQX0jTzWBZy8nbzU2GaJ675YgweVejCZSrWMUxgbguP7YHrdaL2jao7W72xbndu243X7cbaK9Iht0SukLeO7qbxlsVW267Kjcqr7sCOlEZDWBOwzCzLzCSCZqH26qBKJaFMKbHkzCUXrnlilsSkJgNg562w7pXbvfJ+23i/rdYkImeenh6ZJ2N3ve5W39ZaY3u/oVpBO7l4PJWEeZ6YpoWHyyPamgNPk2nrCOT0RN0fqXXj9eUL9/Wdum8s19n9sc5ed1AD7MM+9tZY7zdeX1/45R//g99++5V990Ryz6Re2LY7okKricvyzFQ+sczWHbE2SzLuXS1JIJ37uoP7FzkV02ia7H0pQy6d6uVc2uD6kNh1Yfmysb18Yd3u7Hs1G+esJO0GPoFSysTD5UopxXxYP3tShmlJ1HZz0fHCVApTmSglj9L7VDKodcr8y19+5nKZeXp64PX1q3dDXL3JlvL2fudvf/s33q9v1HUlaaddL+THR/f7YBLTdRKwNY+B/ut+t1g6QTvyjoPVFXECfsZHOB0aQDr8SbOL1m3Tff5Rfw6plOGXyIgJh/FiHHSCl6dFY4ZITg+DPc6o5ixj2XY6sKTEvCyk3pCcqN1Ykb11NiNqkVPnOglTC63Bw76Zf2odMWszmQzFmF9JkrHg3CcKtQk9lbOJJEtYqA6ABk/KxLmbsxyl4qrjjIqkjogn0o/b8oRIMmZTeB0Rv+FnohxnO36OnlnLx+EOMgY9RQA41kngLQEcJxF6ENscVTyfn3/m9aeBJz39IyUDnabJBrj1j7SryLiMRJA7QDr+Q/j2/hR8I+oYAhvljKTJU3vd2z27c9SPdw/HJYIHh7Mi6JQP98KYIPQE5DiKGOs5nL3WqmtO+CI5fS6cOT0NUDh0fTAPutGX/YsTHZpnhjXuxd6Ll6kkDxxCd2lkrPu40EFU4NirijkkEWQGdc4uEoHKEXS01r32NuYooZJQcc2CFPcRTnsaB8KZjZUCAR9ZUTno8xzi9GfUNPxpfEXYz5whdTzmHy7mCCwtwD7fyzEH58/Hfw4aPiZyHCtIxB0ur+UMSmh2bZQIAM4lkCeb98cvD9C66ug8Ft8br7Ng+Ri38aUHBf4IUv3Z/d9uI8Z3ngPRGNzxGY1SxT9mTh0Bpn8q7GTMQexPf64zAyy+I9Y86s/mGjERKI3v9H0RwI7Z1ZjTIxDuI/DSj4eS31gfdQ7dast9/sOSn9l2+MEagE2M93h+99iDqTUE3493O83cxBt7dnDMv99Epwtlmcee1pgb7db5pSkyQC/7ee8NQciaTOuge3YtwEWN8NpYRNFRTlOsTR2Uafvj7KSIApCjSxk+H/HsDpZ3dxQCVOzNRCIjSA8GTKttBPjjIBz6ZZnQkhuZ9/Ofj1vDzGsEabWR9n1sVMlRTnasQbO5rn+UiyXcvSNZ94zfeTse2f/YXxEwC2VKlCkzLcU04hzotC8wdpMFyc0D8IYxORXGHvLx5ig5JGbKs/Yp6dDc0xgwv0s39x4o5/EnuJSxelWDjRAgnu9lPRiGYQe8OvNUbn06y755fWBKYllYTmdwLOywn8JpPpQRaKYTAHaInDPoVyaPpcZWSr4eXduIhAFJLdNTotUdyRtIIueFELg2sD0ZqAKm9+BrkrHGIBoCDMCmqzGsBCQoXX6uo/KhTBZfJ92DesSuY+V6ykGjt32w77t3hWxobSNbGjZBAMnOBlYHsx1QsC5m1cTpq//xzkAtwK8QF+/HOdO721GOhJq6H+GTyVH26PZsrKFjXwRTHV9/x56Rk8M/DufhUx3Ak2suathQGesnmjSc2UrGGPQOQ1VP6yXWoJ0DiYNtGitOx137+zhto3F2+vk1vKBjTmNjjvv2v0VklKXBYSOG7zJKFwxBjXFlrG0FZz0hfbB0I1HUnb3c6k7bNwOepmwgWK+QdoLtZR2SM41ErQZooY3Wduq+W6Z+363zXTv2XjCAeoBE5w0+BklGEtF83Gj+c6z3KKELH3X47GNvh20wn/849g8bhXoZC5gY8/XC5dGAp6bCWhu7Ct31gCQlulpXun27U1JmnWbqw8qyLFyuj5AKIqajF3a3d0/6pUzJs3U+mwok6yQ2lUrK2Uth7H7Bk8AY4mHAk8cQVrnIEIhXA4j3/c7eVzbdaPvdwaRK0k4qkzUXEmNcJjk6slrHOqO+dYWpWMmk5ETuhblXplkMyKKy7ouBTveCoEy1UvpOkgnIpsPYBelW/bH73t61c+sVdCe7ltWelJ4TuUxMU6HRaZvSqulVZTo5C3PJzDkzSbYOXz7nqsnZYZ37vXK77azrjmIlS9eHhTJkQgywaHVnWzcDWLQxLcUYg1NiKoXLMvP4+Mh6eweUqRTmKTGVxMNlBn2g953rJbNtV2rdWa6LAa77xuvrKykbECSaEQfJWq3s643b7Sv79kbvjeUyM03KNCklGzNNeyLJhZI6Uzb7s+1KrcLeu4MacL83UlbKXJgmawKBlMP/Eizx4SXaqQjznCjTFeTVmap9+EetNU/wdpapsCwXHh8erXQyUq2SyVmYLpl1fwFR5nlmmhemeaYU79YnCfIx7p8/f2aeCg/XC9OUua/v3O/vdJRt39m2la8vL9Rtowg8TBPSOpdsYJaV8wpFEkspPMyLNcDojcs0GbtblJqgYVq9wbSnNfO1Y/d7bBqeg+lIDqNAxAxHAypAklUoeLwzbHwcnHHwnKt/3I9C4xw9YQVu70weQI1VnzKldGei277P980SstI9JlW2avpgrRmbcwDsBNvTzmWzse5/xPnoZ0GYzeFXj4c4YiZ1MkCcEbGmjgTTEX+NM3UQAAKniIrH+KxdwRJIR9Lw6HYXWAjjez7ExufjApsz9bkLMhA+N/Z8QnRcTt9+ybjX//j1/wp4EsxAT0WYSnal9QAimoMsgfwZU+ZD1ZA/fJSwDRDCFxPa7RAn5jOjMkFarCNF22lrQ4tQEugQNDfjntwROLJ2MZieMVYwvoR9LgFlMoendcsYpTyOZYI6LurAWhzSagr6ueQBWMS9NFUL2lqjtkbduwNz7oCLUjQz4vpICcIpi6zM2YKXXFxI0p2Z2j4GOWGJhEO478CmxJ7ZGpYcoIbIMLateb2GKFIs4El4Oc5w31JMHiLZx6d52YB1RLAsYvLg8JjBwUiSQGkZQEmwKCxQc5CNA/SxSx6lIsOJIoy6o7wn8KDWegrWz+su/qTBHoLucyjjewKBz97wTtVYHgYeWn37NBkzwS7biBaXQQ9XVct8eDArKYNEy3kdDuMAidQBPj2uDweby9Z4fDfsW/sA+h0Bn54f+WRgDlAuyiLhKHs0p/MQ/BuMK88eS+xRn9d4fxMd3ysiw3AfwYB9Mp8AyGAomb61lQvF+BqbJRaJvd/YiJkQy9PeaGLZTE7sPwNP2vhvfL+GkTcAwkACBO+MMlPyRA1h8N5ZLhebx/geH/SU0jC0llnGWYGFHgHIZCU4aSoEqFTKgvZO69WEThMYo8izsX5vEjYqWr6qjQ/KKMPEd6dl44+yndob+74RoF2txgioNVqRWlFRdB7Mro8R9qdXC4Zr0wG+iCQTve0b9GP/9P3QvQlgIos51tnPhHC4VKs7F0qrO7WaY7PvdQAz82KbM5di7LbWqOx8iLYZl6KkBGlGc6O3RE/Vsli5k1umFHHtDr+HE3QV/4oubJJgmq0dNByaUMeewwO2Tu/72H+orfPoaNp7dZDDr2REKBesBjANEytDaKSUbY93CxobHd0btUPaG3ltjO55qbBXm9N9O0pyo9pb43pEAwJjfvVkYqkkLxHvJuYdD/Ctf2BC+UeoPv5vMOZOoIQHo0Zr7yCmDZbGLj/2zQfPUN1GOBCjdFoLR17JrVu3QDK9KnWHlGckzyQpFAGy2aTWu7FA7pW67Wz3lX2rtL1RN9c2jEUzWM7JSmy1Iw1v6nGAlcaW1Q8kqK6NWhtSMlPKzNOM+P59f30n58x8X5mXmWkupJzJ03QkMXr2kjvTWEnaSXTqvqPrSr2vtNudulbq1lnX6o1O8JIeAT1K3szf8K5FwlHuqg5wqv2sN2dunhIZtZ8mw53IlMuwjzXOQIwxJDm7Rkj7YM8DmMmTnx9jwA7Qy0CCNjyx3q0cue5mf63EzPAXS0x8dFor3n48mR8RduncWMRKl22e1debGlHKArUEAaTmkkfpRXSWzM7ObN3Ly1y+IJjdKt4j05N/IdaqkaQTa42uqREV22cmmTah7ZXtbj5j2SeabpR6MeClFCTP5htQqFUs8KmbM+U6t/dX3l5eeH99NcaImH+WknVNJSmSTD475m34hymPZ4gFncs8EhLazL/4AFx1k4SI8yZiRXVQwuLoCLDNdo356bALpDLx/c9/4a//8r/w1//8r0wPD1RJvG8bTWBrna0au2jdV15evrC+vyGqXHLm0/MzD9cHPn36nuXhkTLNJF2QeRodYMG6UPbaud9W+nrn1ldar7ReyWmizIkiEznPtFpZemFediZRMq+UvKCXnTo98TQ/8N38wPXpinbY9jvb+sZa31nbja7vwyeoTSFPkHe+3Ct533mdLtQfKq00tm4lbUEYLEaXIVLz0jvb3TVzy4wshVoe2JZn/tPzj+za2bWxYt36tlpZ2bj3la/7xnut7K7h8vX2zltv7MtME2Hv8F7NF6DtrPvK/f7Gen8j6848FS7TwufHR56WC5N5FNCTlfn2xLp3fvnyzt//8Rv/+PU3tm3n8nDlcr3w/PTIfl9Z7zfqemO73ajvN/bbhmBMwD3tZDWHf54+s8wL0zzx8mVn31Zu7y/8/ON3PFwf+fmn75knC7Dv98/kbIBPngp7NVDyt99+Zds6+w7fP//I89NnPj9/5vXrV65z5vlh4vH6mZwTj49Xnp+eDOy6Xq10EZjLxFxmUitou7Dtwu0u7K9+WGPAg0oH7oisJElmM6S4JEmm1d0Td5m9NdZNSXlmmq7M88663eia6D2T88KyXFjm7M/7wNP1gZyKl9xlrpcHckmkorytX+laWabE4+MT8+zddNWYTjDRqpITXOYHvvv8GUH57afveX174eXlC3/7x995f3/n5eWF7fbG6+s7+/uNdtv59PREWyuPj1fmaSJP2X1XuOSJLWVqSnx3faSkTFrvvO4beGwgGglMhd0rWCQNn6LtzY9bCaqMM4WTBaDZfUuvDEjl6CreW+OI3I/wTUo0yPEyZRF6rTjPyOJsO5VMk8ltVa2KSIUkXHqnlMxSFuZlo6uwbd2SXqqsm3IrlSyF52tmN0eJ1pR9926No2rJcw7JymmnuXiCIWRbLFFmNvRMGjheScQYkyP+sji4tSPeUz3AJXubxdc5F2s8AR6zqvv9jUgCiSQmj2vj+02uhFF15d6cYwXhExhQi5+rUfaeyhGHdzX7dWAQx/dlH5M/8/rTwNM8JXIRypy4XPIoO9v3zr532t5G5kQwZ13Ph5Z/T/aFnh29BQ4B0yO6Auy772vl7bahal6K7jvMmakk5nCCCP82guRYwqcsqNPqA8VLHgyLmhOrHjwG48V/ORZ9BNMHoiijXASB7oFY6mG8ImN9OCIxNg1zcKJWPCYuMpGG3B5Z7nOG3ZxZ6BL3HKwkewXbidO6sMDpCNAlHXFdqOUjJ7S+p9EJyLr3cSzSFOVYR6nXEciIC+MaM8oyIsfvP6j99yj3YjgtR5z/caPGgnA8wdZMj6yiu1XDaZXxXGeA5WBaHSwivAMLAeKYZ2Hz4nN9MNcOdD2EixNnAEdPRuMwOB2Qpkh2RHqsp2PV+l0fgd/p8x/uNwJAjRn59t+c5uQApr79zjD+0d4WTgFKjOPIQkT8Fvcb36nH3HnpDIZfotF1SsfMjZlU/38rzzmC6BBat7903EeUXoxREnPIjX0DpbiWTPJOjacMATjjzwOM2Bo4m8/sQ/cgTkapXuzvD/MjZ0aFzWKOlrEiaIokuAsK202NLKpIsmwdSuqZ1q17SdyT6VD64RNBptusATzFXg5NNnHA3EstQlulVSvdsM5YYcH6CUBwbR73D4IRqrjT4AeYdjXtpOrsDzkyK6bP1MecnPfK+J6UhnkbwPHpwFLRAzyr1QVc/dAdUfaZyfhxfaZkY9qd9txPpb7iG0LE2IYlJ8ooJbbsdJnjHLNAjrAn/vxD/0sNCLByGBufAfyo29zujgD2+yhL7w20Ofih4kLbvqK72x6F1D0I1s627eDuVE7FdFe2aq2DI5vqwaK6cKR82P/qzGBn34iMLSo+dh/swrAYvr+HvRWGfoMzqQbYFX9z+u9YpD7+yvHGKH0Xz4rY+gSlI6khWtEGe15Bk+lw9WzdX+NM1Wp/fNMkxUvVDHhqezWts2bAU9hCs18GPIcmY4qEj8g4930rx+IZf1uCxPUWzHANpl5dV+9S1tBWyDnTWx06gblYYwJBoSlaq93nvqF1h1a9652Orrdxhpl99dKmYFuZOzDKt2MeAkgWgmV9LqPzs/PMlnabF2vmYObqCB6OEntxp7gB2fXcDJSLNZRzDJ77Ew6Qjxbqu+s/IZY8C1FshUhmGStKPZkVS8/8G/XrhB8x1udYW+F3+nPhGXY/lLzQ0XSZijHXi2vMGXO+j7Xd1DvPRaqhxTqAADFHJ9/WXSfM4qq9mqCtAlKVLslYqqnRaWgyu5fLRGZ2fzRjmiiCNiuNkmSlWfbH1k+tlS5Wsm7r2Lvl+ZrtouCMruLlujgQWLsa67AaizMYDB3zNWvrnlQ9NJRULVnbvXywuQh/a+4zd5u/lDMkodGZr1cePj3yX/6P/5Mf//mvfP7xR5gWerLurJU2kqehoyWCMwcrXRuJRt1XTyZ15suVyY+TphZrVM3skkxXKUHP0HIfzK5pvnhCZAYpTLKTi5WPK1a2VGSCaaGkRx7mRx7nR5blynpXWq/Dt0wpSiFtzMM8aFfqtnFPhbe3N95vNx7SzD7NXscoiBRLVLXKrsJeK1urg9EsmigZZsks5YEHGrV3dq3c68pOY2dnT5k1Z6a88zAX9t5YUXSeYZ7IqXBbV27bzn210jvJxfaol02JxxKinasDM4+XB6Y0ITWz18a+K/et8fp+5+3tnfvtbl0WszGFt/XGenvn/v7Gtt5p20ZvzfwhZxNPU0ayjgNH6dTWCH54a5X32xtJGl+WzOPjwjIXA8WWxcrzltlK4mrlslw9zoTPTz8wzwtJE8u88Pz0zF//8ldyspbzDw9Xrtcr8zRzmS+us9bR3cAirZm6J9Z15/W2c183Z5la8i4Cc40O5AjZGUc5F9fn82qJZOyw9/fXkfibppkmxhYq8yPX68LT45UffvjMMk0sZbKzGXHZhtmS31m58AjSuSyF6/VKKdmSSJ5IFIyVnMTvKVsC4vHxycdZuW+bA2TWJVFrRVR5v6+AsEwTtTUuy8LlOts5kICcyCQuZYarxU61Nt7vd6yywdvG9h4Cj2YTexsMp3Tyz3r4QuKd0JIDJB4vq4RDG8bSbbgXQEQZ3ZBzIew6UWN+xCc9fJeTP+NE0qad+7qSq3WqNsmchORM39tww2qHvXXuu1cAuLyCWfdDn1X9jLEyUfGz0M47daquyQFFzH7EPuPsPR738G0l4hE7u49XlH0bscFKLw9fIEX8MOJbONhOcY0zW+qI27uXmYbM4WjA4+v+g7SQ33XCEi5JIMK841o2x3/m9eeBpzkzzYlpzsyLZclGbXnt1BpB1MEQisGJ23bPyIKvoDEr7oB+nBAU9tpJW+X1bUO1Qq9Ir66DBDkV1+A5xTOnlzkfQATxGtfng4ClehAkbqDjFX7UmfmAHs5caBhJBLddRzfmww08Ofjd/RYvQRLXCBlYxOmjoTMhzREZf4bIdI53h6PsjkLv3q5+jLuNrH32HMWro6qZ6Cpo7bLNySjhUMSX+xgHqDcADhlhygB8rBxGxlh9u7EOFFj9O4Mi38dYfWDEnRbF4Xh+RJPj+SLATV5bG4HxB/ApibNlju/XD4tPxjMO4OkM8KCjxCudVm1r7RgXjk15BGaH0+xRxemiI+L58FzHl/HhZ7/f8L97++GE+w2YuLMFW5ICYLN1OcYtZUKQ/rwn9TTHY4xG1OMG1h3zAyA8HSwEQKzj0Ufwqke3SPFgnDjM9DQ+Et/dwRkn5pk7B08tc5DSYdBjb46ZU9MwGHtOuzn5DkYcQHAav7fyRDsRo157BDknnaUes+hrJUANC2rjwEvQDoZbjLGqugaKi3M2RXDGUz0DT4IkB21FRllQgPdWBuTBpwdM4oEgfs9B+BsHFDJsozkFvt6cFRLMqZHNyLFnJaK9MX8WvPmmdw0vA+cSVmPu69hQvMFyarXSa7Hr5iPjEt3NSIdTM+5ZBI3mCN/YaN8wo6xmcq2EnK0jT8r5YC0Ou3WmK8c1IiMVtHlb48EO6OrgktuKfEJKXVuTc2lc77GP1ZkeiaRiZWfdxsrKJm092H60ed1rG+ymfuosG+sonZwWEaWLdahRD5gGbd3XwbCdviDOJVeR0DkDsOraTf2o6zrOxmGDnGofw9AjcZHcURpWAKKrTDKxbe1KLhsiheylR6h3PhSnj6kJi9PU9A1qpe07bdtpe7CFLIgOox6ldme6f+hrnBbUAJE/mmQ/72Jf9u5V/3b9tlesTXGDXuglo72Spwkt2QAMBxd7t+YBbd+tlXvd0eqOu2c9Q3QWP+dCC0n9TFcgyuIPf8ohw+HrxBnCCaw5nxmH8xmg09gyHD+PdRRr4ByIA36++pANvUdfA2Ls1Zyz28ZtAE/7jgnKc5wvFlQczO6EekMX1xEinuV8vhzzFbOZTvZYtY3pVO0uIYALxHsmF0FaMkZW2FBPbHQXMYumAAfwkEbipIuSerRQ90DAteNTtfVDUkjeRlxAsiXgJPvMpWysvybOGDbAMom1ozeXTz3AF1RcEN9tgRxPb75OzpT5YqVCiLFrxQA46Q7Cua3uXVw4/JRkiwPAfxdJ06bNs/sM1hSKlcGlRBe4PD7w+ccf+M//6//Gw/ffsTw98t4mOsWbBfnejGRAKcMOa6/s252bKL1Xpil7CR2kaaI3m4v7+0rRxIQBT2SrOEiXPLqJTmWhZGM1V83kLqQ0EVISKRtLN+mC5EceLk88zI8sl4sDEPvYOyml0dzCTEQa5aS9GXtxva/c14112tiTaTSJCkVgV9NMvNXOWnc2Z/L0bqXDWRNTmZjLhAJNGrVVspruVJWEpoktF8pUuaeFrXfe6fRlRqeClpn+dmO9r+x7s26vqvTUCb9ZhJDk4WFeeFyuPC4PFKwLXWuwVWXdOm/vK7fbyrZuI9hNomzrjfv9jfvtjbavBsR0te59SYxZMk+QOo39KGl1RnvKiV5hW1fetPJbAeGJpBeenh64LDOX65V5WcxuqHJZHqm7su9wmZ6IpNgyLfBopXvTZCyPy/XCPC2UXMgyUzdnku4bvdra3bbG7bbxfrvxfrux7ZV931nXdSQXamhZtmZNh1Ki5ELoyZVcmOYZUuJ+v7PtVso4TRNCpWHgztPjA58/PfP89Gx+B6B987MzI8nYVIhSyoWUlGWZmaeZlBJb3fxMCxqDMa9yLl7amVguV5cGaDw9WhOD6vVjfd/RWtn3xk1XvpRXEKG2ZrFtdhtbrPhvdrmIfa/c80ZWSxbpIDScDhL1c9DPoLOm7zm8yZKs8UvECA466enAkSSetHb/yM+c4UNLsH9xbV0++IOqVhIYrsm5rGxdV1LOpFKGr5dSPuy84p0glbU2Y5uiTMlKnzvesGrEj1HuFueNyebgrNF2qlQZcRJH/Can/w+rcsQn356/5r/mbHsnl8PX1X5U6aQAgU6x8jkmPINOZ78AcLD++GzyDxjWcE7gqZ+x0HFSin/fOdn/Z15/Gnj69PmBac5GLcOysnXf2VZjPNUq7gvZEwRDB45QLhxZU2U/bjKn7HoawZCxgXh7b9zWxsvbNsqZpmxd6q6XjEyFSS2jJq0jWAtVY/DZ4g6R7yPCA3WmSwAIzcW4SZYFM+Cn2SGWhDxKxOwLrNtJYspWKhS5MevEZ6UktfVxQCt4GURsN7Wg8DSpEnG7WuasJg8YNRx3v2cHBdzPcM9RLDj2IE8jIPBVcTifHhqHE9yVefYaesG1nnQIVuYC82JlIQNIiMWeYkbtAYZi/zjkbNyzi3ZLysOpjIBFxEuAsE3UPJtweKP+jSeQCgmGBR/e9BGkEr+n9OE7huOKBUYxv6CjlMGGvH54f1xLXD3ODulmzkcKoMF1j04OsY7cJwO8OoKCMEbnXXZ+8Ij+Tz+RM4vpW07j8UWH8Tq+b/z25LWfz5BwWg8X3oMLdQOXTt+PfnvjA1wMxkcSHcFC8q4T41nG6WD/F+dXUE7DTnSM+XJ0QhRzcM/1u+pd0DSxWx2Nl1KlYbRxoOl4XjfkMZa+19R1fawPqQwGQsrWlcXjUAczrOyg7RjyX6zXnQ25BVwy1oON5wgQ4uDw/dCqsTiSa4L0FoC5swPrYcOSr8HomBhgYu9hc48gEjxwPa0qYIDjcUfqzkC0bAeliRu2wZw41pxp5WQvgxSirby1ki+urQC1Jqp4t71eT+zBPmrEK3Xc954OlkTKR4e5XApJo0Q6+aF4ULy1dWeRGPiAGgBUPCOYizmNpSTmkoxmXjJQMN1SRSYMdG9ydC7poNVKrXrro2sriCVamrrYqQchqAUz4dhs0JvQdi9/7FA3GAA7EdgrW9vHPmi9H2Uw/reVhZnTlFNh30Pk0xgmwbwdWzPhpUE6yobhY8Il1uD5b3OibD/kMDGnMwrEA+aj/BrXGvudU+o227oQGdiTwfRKQgvMAaSWreV1YoOW6ZOSZ6WVHUkFP5TR3tnv79TdmE5tN40lAese6GK3kXizkkbfcxKlWmqdJ8V8gbrvfuap7d2Ca8QE47kfTnZXz7gCVelrpVWButOLaZu0uVCmQiqZPk/gpVp1r+x7Zduqlai4QHlbN/rWnVlzZhB6i+jawDVByAEcHzpF4aSHuHQ4w+cET9icOLHrXodpOs4GPBg6WK0f9CDciPdeqTVK4WyfudIoJkViiacyZe9KKExz5r41tq2h6no57cTETkLd2ygdTOr6aqjLBChn3Yo/eh3Jhlh7xqop2QR8xQ14yiAekFsTAzupc8MEcHtjj7nw8hJOoCWYjzZKdjNoEnoWRnGhKr17kqFBrxY4aVLqupuuXW+udZTpkmlqukSmKznRUyHRyOLAVg9AVbycJxoOeHODfkr0KkTzgbU1oiFBU2WrnXXbWbc2bPLmbMresfIe38PGHAx2ubO9YyFl06bTLEhOzNcr//K//u/8l//6f/B//n/+v+yirK2xvla6NxAQNZCCInz+9JmHy4Wny8KXSbi9vfL29VcMXN7Y1nfW7UKahJkH9k3Zu/L1t1dka0jtPF6uzJeF+bpQupW7zvNklXhq2i3rXlm3xtasmQ8UK3HSHaTwkB/5588/8tP1Ez/IJ0p6Q3ll+vobuyotwfzwHSVnplzYdWZrwlqVp3nieV54vFzNBrXOWiuT2PlVFV5v77ytG//9H7/yvt1Z204unYeHhcfrwtOy8DApdOvG2brted06JWUeyoWHJ/v+9eknXtc7a2/sGdLzE30q/Lbdqa/VgIqT79WaCX6nBE/zhe+vC399euKfv/+e7y9PfCoPtFelbsq+wbrB+9r5+nqnVmu8dFlmEkrfb7y8vrPdb9R1Y06CzAXJhVmyl5oql8cZlcbeM58+feJ6fWS5PPP950/0trOvb7y//Mq+3fgf//2/UbfPtO8+8dMP33GZFy7zwlQW9ykKDxdh3xvbauX1RnbYebg88/DwieIdkcX9vpKsm+zf/+9/8PZyY73v3F42a97QGu9652174217Y922se53b/Cwb5X7+81093brSgfdXWcDs+d55np9okwzGl28k/D0cKFIoRkJkFaV2/sKbpeTCNI7pRSWRXl/f/MEGqSSycUkFLZ1s8/vuzN6EvOUTB6izEzT4nPsDWu67e/Hx2cu85XPD5+43d6NDbzeeX99oe47L7eNpi9c7itVrcnKWTOIJMzLzMM00x8eqaq8bTde7jfadjfgNs2WVQtb52dTEB5UrcOzxJrAdYGSHI1q1MrywoecylHyfUg1WDxtfnw4NREixplu4MgRd5lvLNnGtPXOfr8jyXzyZV4QYE7Jk4a2V/Yd7qK8rg1JE5oyWbNd0uU/rLG2Rq4bEZPQiMTd+dxpIddwiuc+EApGvGrxiblO8qFUrRT3f3PyNZ58HE7EDS919iuPOCFi16jGOc5Hu26tlYPRPG7neJ+XEUIQKo7kd3IWc0vekVUt0US850+8/jTwVCYbAElC3ZoZAtecOMBQ8eDT/9s/mzxmMWqaC/xG5iNovRG4nm7caNeeJQl/T+G+d1JObBVkSsOZ8hD2I2BwQhk/Zme7T1sf5QRJxLvDMOr1I9mOC9cKajX2IsH4c4fG1OcF3HlyZ1584xGOnN+NAz0x0RYYB8tGnNGodt0uDMV8i34wB9Wf5rTxRsL27P9j46BxJyGWl4TQSYrrx3fbfVitbB7Ip45gKZGIGlM5LW6j1/ZjDP15xTVpzgJq+FjFRvnmjgeSemgyxTif3zoGAQuaTO+AMKSRIY06R47OakGHtGuNRci3r1hLNrbxfk4yUg6iBQWe0HE6IFcNo8Qxz8dzBlJwZo25s8vHLPMxPx/H6Y//bev8Y5nh+O0wRAc78rjGWC0+5wH82ueDhnyy9ufpU5sP8UEaLKt427AR4dT6/SQPSn0N9/O9+pxpIALjedyOtOCcMtbToLqetDfOjym+t6uLiWrFNdVG3Gz7tEPDgKosyUW9O1SlYZmQpKavYkGIl4yRCXbPYFu44JtGEOvBTOg6dT2tDx/HQ/PJxyT2eziYHPZ36A75ow6WzgEz2XrCwX/x+5YTcIVfo8ckiA0Wie4nf4ofx2E2Mi/RARLoCXWWUz8/ky9U7d279BlrIFhbo7xXO6iXZDt6MsqLVYyF1CxbWasBXPEA5kPJ+DNAEQcTRBO0RAtWST/K/rbtoEqLem3/AAPdofcOZLUqbT/mrbuYeJLkLOBDP8aApNP+jP+X7g6Zl9u1A6AbWnanVvagw26HJqJtwRML7Zv9HP89zgyfDPHPjdI7/z8d78FB2fOZfpy4cZaa2TvsgjjSG8ywsNuOTwxHVU+2sQNt76RsHR27KlKt7EgRWy+tU9fNSuz2Rt8rdQQIXm7a9bBpEuy502277R8gnCdwgt4/pqUdILj4oGgzllZXoYlQRU8VCJbVb91KS3LJlln2bK2BzNYRT4cNsD0eoElKyZnR/VghPlcdoLkdE0XJFsSH59OD8XacUUPTwde9+tjXfvKTYqiMymUD4mddlPOddeXUz7awJyKnpI6ICywnY6yUNAIBL04zX7IIuRjLIlZp3GskBISwmz53CV9v7ugem8j/qWNVxvMcpbUMoC6lg/VUiusHJmGv1mnUEoYN01XxlaqRGIl14t66igGimKD/YWqElANAs2fL3X2lXUnaUZppjCZjEXZtrjFlLdxVuwnX92asuliDerZXp052vq67Alslugyv204wLrfdynYNOD9Kdk0T7Dg3xf8X5SMx53GdWB+I+ampCJ8+feKnv/4Tf/lP/8Ly8Mk6N/bNS9K9PLx2X2FCyRPLNHMpE+yrARnNS7d8HWlr7NvOtt7YpVDDD4sjCbW5LCZb0Xtjr7ClTO4mXbFXGYDvvjfrUKWVpiYmPU0LD8sTz9dPPOgT6wzvU6fkmaSNJMrycGGZZ5Zp+X84+9MuSXLkXBN8sKiqmbl7LLlUkWz27dvdc86c+f+/aOZ0X16SuUSEu5uZqgKQ+SAigFpkFllsq/IMX8xUoYBAIMsrr/C+2XNsykmbUmZKWZM0tbKX0sugahXey8bX9caX9cr7dudeFFF13ifO28THy4WXpbAuWsXhCeSWdH+HGNlR5EmpgCRyMDRwjRQR6usdrjtpU7ST8+aJaOAktMo8J0458zTPTERSg1Aa7ILsIDWwroXrdePL1zdu1xvbdiclgVIQCvf7G2VbaXshhYnYlOg7Ju+ebajfrFxNl8uZ0+lMNsQakjhNgfMcqfud9fqNl6cnzqcTy7wwTzNzmkhpIgTlRh0cOMNOgtT9nr0E5Y8sWi5X9sa6bvzy77+w3oz7b2sk493LZ3iaMycuSLgoaTmZfSus9433tyu//wbb/c49FPZNO9NJ1U7Jen5ZOWyClJUXVAPRTZGSQc+JUgr3O6z3m+pKGjlGJi8rXGbl7ZkWznkhkNSOczs4OJdsAFGOwiKVWlbtwNgq63ZjK1qaP0UlD59OiRwSZS7sy4l5mtn3jXW9Ky9dinoGFA2kqF9uOnJStM/ldKKkQLxnJAY2qRRpSja+iyqOaJUmpnVH6f7BL3NZNdvNX+73fk+D0vX5wY/vPtLxe7+Nnw2CVRe4LWP2iZ+hVRM9gahrkCIVTVw2FXG2XVinRohCimJoegMphAZRy6qdOc9tqIj78BocOlKk9LMK153u8zTzv8IBqT7m7vtEip/Nbpt6+bvO+fi8J9zDMSjnJQ2my8Nh3h/txLEmnnwa62IftH86ulh0fUUcGPOfv/7uwFNKwXjElGx5NyWuAXV3XvUgHuUEdj4rEpeUTZGCllZUQSqH7DUWGhmLNBxTqEERUesuxNQ4FyHnQMJXR/pheHTugxncHh5Rd75jj3A29lFuowKEHFsSdrNeO1g8CIV3S9FyEg06ynCwcePQHGHbIO6shV4CN5xGz2aBIsSiOGS12v2cvFSVvdrMdi3nJGAIgXThVaPF+WyqGaqOihoCp8qv7BWyPqujK/TvFmk9GIR9/t3zw41ID6kalNwNyoNRLO7guhi52pDv3hs4bORD5t3lpQkSpM+Xr1GzrPVxwzkhHFhgydZpOGehj6mvdRiy3dtmusEdI5WqBlqtPSBgV+OgHg5jdjnVeYshErOXefnnQ5czoDudxyDTwzWPh4C0USftgaYjibigbekP83xEY/mIB+rFDwT5A3ri8KGuJ7vTwJBRzLASHFHlQV3LbByUdmsavYwewLIA2FijajKF7TdbT3MGdPCuTH2MoR9YIQbaXg5k1JPxjzSc0B0ZwWbJmeTGQa16cBFITJYdBwmVR/WrCylFy4SOX73zgIxggrcbDwQ1ZmU4qL4eXTR7wCBYnCh21IDqEkUuabdIm4Cmax7tYIqiyD3nCxJBjTpzjGMyw8LWxR0pxz+pkvd9ELs+E1soj0nIwxphz9z6wdZqw4OdEQgtYKf8MGg84iVGMll2DTwUXcPOM4ZyToQQ+jXF+ZsMxdCqnlsV6dxArTULPNU+juaBjEbX0WWv1L1RdqHsoQcSamxdH1QvUbESXEV1+n44mC4ihAMvoHKgtI4+HYGUkRHzUrIO5glBo6g9anowKlx19npK19Hm6PvadoNt7P/gekvcgLMS166PDid2885tCsV2mW5GMOVnsMtRcLRrz5Ypn1jdrUFE1RbIytEW1ECsjbY7Aq1R913RT/tuZRLo+deVoz1rnxtdv9oquHxEkwkEb+us62XHW4zG+aOOZUP5D2vQ800ahCqK6IiBUCupKnlq7pFGdeI7h1s1vSTu4sfeVrnZeLxra0exQOcecZ2q4wuH0inxhetr6LrUHQRxsnIL0/SlPJT+EjQTjp1N6khHo1eoB0NZzxiPRsSYyFMgW+ApGhohBbpeylkzuCUJMQqjO6NnaUNHT4jJUIjSof1uj/lR8yCzJrHRdLuXXjkK1qkKYgzkDHk2xHyMbHuhiZgTK0hTpFlE9UWt0knrQ9bgtQi0qggoAIraugKEXZRLrDaqNHIzQt3YjJtD90BIWl71YMM15V8SY2DXhOEQhGaBel0L+t6sVe2+Kt4MQVhXVTpNYNs1aeyBJy0N8c54Ygi0puOSOM4c4SHw5LaQ8p+oBH/4+Ikff/4rP//1n8jzBdqdhmjp3yFh04CE8aNIg/MJ2e/MMSBl0zb0op9rtbJvG/f7nRozLWq5SRC1wXMeslYt8CSlsRFIqZESlJbZS2XdtDvgvu9s+05hJ6dGvkycpwuX5YVTvbBMjXkqpKRt2InCclbuoPPpwv6uaKQaK2m/k0JiTtrdrtbKtu9MeYEYKA2uded1v/Ntv/O637nvK/ftyrInTltmlcKtwZ3EKS963kYtmUwhKN9aa4QqbKYbA4kpZCPnL2zfrhp4Whsx2jpF0bKuthOkkMPMEiOnlDUoVwRCRUpQSsEW2NbC9bry9esr1/crtWyk3GhBg2X32zdaKUhtzEnHAdnNKfO11BaOc+Z0PrMsCyEkLYUisCyJ6eUErXB/mzmfZp7OI/CUc9bgKwkh0mqhFDmQ3qvNIaLop701bm8r67ry+vrK9Xrjfr/z+++/2llSyTFocOu08PR0Ji0n0qRjy3khx5l9bVzfr3z57RuxFd7fA5HCrV3VPpANoWjwKgk5nbRD30nLWmOM1jxHO+GKWFCwFLb1prLZKvOUmOeJ02lmWRbm+cTlKXImEcKsSdAQrHlBchUMomWzRaC2jb3s+lVXPfSCIfNTIoTMFCaqaJOr8/nCXjbe398o+wrOW2R8elq6gZ1fwpwzKc1wXghTpkZ4LxuhKXS71aJ6tGtIO2eadJ2M6U23UY+Im/6OgzH/4IN0G+SRXgU5JFOGYaNjN/lzKp7A4XxojUIgoGjEFCemHElBzYXWGgVh3Rt5FwiNGIU5R7JxfMVQDVfRLKmuqF8JDphx39Z06ENFk/te9gzNwu/BEx2uVz2A62c8D8/ajPJhoOGHv+Y+ovJOjbkeyecBiHmsnnlYkTFeu+sIfNm/Qec5pUdfvDWz5f6O198deNq2G5iJ+f6+sW2NbW1ammDZlF6KESzUEiFPjKyXQ9Sl9brVdux6J0eUgxqv6r8OYRaB26ZEhyndEZloc2I6J63jDIEOeD6gPaJo3w+9rh2iQYZB7AZo7Dd/dMSNTDIZoVSwwXoEPqVJSzoI5NKoxTaOb8TDc+mPXU3j3dBqq93I3/dGUduYKoGc9JB1oYpRa30xA7kltxE1ONU353dydYysxpgoZe+C7NBx7fyCwsWrZtWPCUbf1q3pPBR0o2md8nfCHIAg7GUzXpJRbtedIvlucr57uWPlY/eN8/ge3zAH9NV3r+/LBh5L8b5/r9/nWG9ijov9HJBeajCiwsNxae1RbgGOPCtuLLrR3q/a/rP5eMwMfPfXB4U7nnsooYfPHqLaf+v6HQnTDwGfgVEG5wrVv7ovIv5cto4RnHBb4wcWzFRd351fwMrHdZ+FMIKaQ9FapzaDVB4PsWaBJxHpyLTjerdaqDESwk61va0ogtrXT2Q3B3QELfdiHEHB92627k+JZsTHoQnRiIZ1bjSQUPZV71tWyr4NQtXixOD0Ei6NCxgasI25Pda695c5lI5QCM5p4/wsJhBarGYtxJsG8r2izmXGg+bNJkGDOD4/4XAQgdLrH/ehXduc444aCu5kZC0paYb46EJiMmeGhaMcB+LOUEQihKCGWK2FVq2d/b4Pfhx79miy4A5nsnLKVhvrfYetIbEd5HdAx6Up76DqN3APVyzz2qqwb8UIxwOhGUrFOH86kO24p12m2gjgHxEGjoqBoNlL32Nm0ASwQKjKujd3SMfpx5IfYQRyhz4yTqr4hyOhf3aIkyZdjhtaoJfu+feCnRX9OY96RR4vbZfXppaWVGgG8xbNKIpEZIcWFIohMRjoROWqFTW2YlOHX6qw3VfKplnp4Ekd+lKqkSR0NFMKSZ3fthGTltTlmBVx14CQDU2iDoMjL6JY+bAFEYiBiHFQedw1iuYhSiCWqs7jlLpxqPqK8dXPQ50gzVI+GkEP5KRdL9leE0fYWVMStCy+STX7S7OpA0l9vK5Pjv8i+PGmY4um781u82YUjkb07n/NeNqyc+0lTTDmKTMtk5LDB83Sp6LObkpBEU8ThA0rKw1+NCLOc3V4aO8oF+Kwm5xktSetgp/rnnCys6A25QMNulatFWqD2IQcMspHpeinatB61YUWDBdBnT7XiaEHl6JYiYmVdArqyElRHaR8Rr7/xPj5KjE1QgnsuyhKNmlVQbYS4GaB7loarSriopTdmj2giLva2HfrJi2eJ7BJsP3pKErtXidsW1E+pyrUFui5jwa9U2dVIQiiMu5aoNrfm2/vAMRGyBPTeeHTzz+zPL/Q0sSX95V7aWwtse1Nr9lUz2kAMHE+LUpGHYUlRd6fnkhS+fLlN+73O9e3d2q8EfNEjZHTx0+cLycupwupQiyC7IWQoNWNhu6xQGTfVwu2ZiBSpXC737jerrzd3nhdf4NwZ5qEJ8lcl5VVdj6cJqgz1IlStEvcHuC6NeVekp1bjVQy5IlUKzkkEtBKZZeN900TZjFNrJJYk1DmxFusvMrOe9vYYuH5PDN9uHD+p7+wlcC/rCtsO54wnEIgx8AcE5c1kwnMEnhZzsprFLNRegjzHnkKMyUtvK+vFNnZZGffr4gUQqjcqVxL471BefqBNmdIE5PMhJjYYqSWd+73wvvbyu3tRmsrORck7jTZKdsdsbrxSiKFGUKkWrkzQbjfK6kpWfVvv/9GjJl901KzHANPS+LzxyfO88SPP/7Eh+cLl/PCeVmIRE3mrGuv/CjGNQaZWgu1CXsRrveN63Xl99+/8fuXV/Z9p7VqDrHw9PmJnCo5C+dz4uXlzNPlxKfPn3rH2CAT0iJSA/vWWM8f+Xj+zMLCt69f+TX9wnueKOVOKTf2ckMoyitc7wq+oBhCK9KKl9+rbkkxkWIagYcglFYot4336zfylDidnvgsiXl6oc6B1nZOc1bE6DLh/JJi3Yv3vXJbN+3gWCt7veuZH4RLnjWoK0HLX6eZ55eJkKDUwuv7K/fbVbnU3l+p+0aQyqenJ6Y8sUyZy+mCTJGaIhIqNQZK0G6J7+uN/XY1Y17LSYP7cLVh6BTVu5gPVDUQp4GP4X94jiRKoJbdVL3Kvh9PGE8dluDpJ1g3qHh4eXd0v4bhZjtlyF4LIQpLTlzmWX3tWlm3ldoat60hYWMtSvJ/WSZOU7JSbdX1Mdrg0W6pXbfj1TiRaWq0qqj3lHz96f6TcCgnLEBIHVXsNpfafAckNJ6I8Y7urQeb6O8N1rV6cBpj+l/9UT2PUudvps+7X8NtZjgG+R7tRv/eGtl3eoa/9/VfCDzt3YDe99YJbP/sVpo5VGNS6xTNqHFI8B+idIdH8Sjh0Y81w9XfWysUU3BTVGtpmSxzmBQBJTIyuJ6BdkcGOWwAXd1uXntZlzqC6hj5X0Nwh1odt8YgZBTr4uB1xpIsWxk0HBdSxEuK/Lb+kqYbJsX8ALHHM0xNDJUyJkONQzWI7BFsL7YxVjzOMZyPIwTwoQzH2glIC5aZkD7ntQ7EibPaE5o5hx5kFLuXBx8HskYvpYG9yDCEj8EKMYfzEP6w+4+Fj65AulM2EBN+T//XnY9j5BxRI1QO6+nj86DK+Hksg36e/gsR8XJjlZ0e7BhEnLgx+oeIVujy9rde3o2oozwernGQaeQhUNv/ephHm5GHOff5q7b+tbYDid8hqDHiQ7Y+YyiOIgzBS10dEQF91vsg9Jk96NQBMmoS98K9rijFEF5+s8MBI11Y1OnR7osM5Xlwso5IDaCX1AKd7Fev6bBUrKPYQeH6Q9nPMQQjtLbSygxJhBY1o9uKZqljKbSc+qSJNPZtp9VdjafdEDZFnYBeqtWJW824NwSp7xNdHtORQZ8pOGJJ5LDO9PELHlh0dMWQi84d02VjGAx+ponprRDUSVJ9esiq9MyJy5bvMOlr7wGK0BTtoWS60sfk694RO4I6txUEdf4kDBLFfdtodVe4geuXEPCOhcEupSU1kZS8LM2QpA0kRkhmmJTKQZCUkLd3b1EZ0ESJJk323cmA7SPmvJXi5WXqZDkSyfGyDXUA/T2d9+2gW0o9dJn0/WdreTw3DjvN32FvDsffdHnREi57m7/v4f7hcKnQz2Af1xiLyZKNz2XNZSaAEnGKIgeNjV7vhf/rCJYwyMpFG5UoFN1sBrM7G7o35IACaxYEVHVgPIQHXSnwGP+KoY9fBOWqMnoif8Wo/4kNqvHAadDUsDS+T8VsT4PpK0G4BWmszPiB00Lf1INOnthqVYyvSwVW0SfWqbK1B/kQoXe4FEBqsKBT7J3m+hl2yGiObPGQCy/PCgd5cJ0+Ine6n6PB6OsB1q+BYh2fBiHyQR9I30u+F6NID845Al6RuC7rIDKSGIKjlrooQjW+p2OC0PeAb904ZLMjpvqZJxi+b5xdfZ+Fw738f/bzYR90gz5o0L2ZzTT2idsOgRIhNOlZcQKUTZ83ibGzNc2akxpBEqEJNex6zQptb50brOzVgt0gLWrguhknndD1iopS7U7bKEsc9mptRmPRnCrjkIQzXXA8y6VLjr1Hjw5SDkznmdPTQloy933l69s3ttOiCCXU7u2BVpOJmMX2icpWzgvzfGY5PTMvK7UF1t32cJxIWQmXl3lhmWctE0uNzdqw11bIy6z2QNIAgMusjmGn1jut3KnlTi0bIe60IKzXK+vtynq+w4nueEmx/RqE9brqWmyFnQXCRIozc16YJ0WHKDdMppLYTFeXGLjWwuu+8VZ27jRKjsR8QpbMnuDrdmffG+tazK/SYO4UFdU1x8gSE6eU+bRciHFiCRpMI0YkJ9I8QU60ECi1UMpKKStte7cEC8ieaWXXr32nxZ1G0eDLMRhgujJPGaSyzJm9FZ2PUrUbWKsU2YBKC7ty9Bn5cZaMJzv3bUOorKsKQY7Q9sT5lMkpMGctLWx27kUDC+zN0D0VdjtnmwjXm5K4X6937mvhft/49vpGa415zjw9v2jgKQox7qRUyEk4nSPn88SyTMyTIqpCmJCSKQ3KLmx3qHuANjHlM8uycz5dWO/vtLajiSzlZLtcFqbzQsiZvfP5iPKLTWHs39oodaeUnZiUP2nKkVoL23ajlMK63nl7fyfGr6SUqWXjcppZlomX54t2Q20CErnfVu73jdf39955scquFUUpUKeFSCAJzKcT8wLTaaHWxlYa214pVbnPrreN/X4lSOU8zUxZ+f1SCpAycVJS/jlNnJczT5cLVRrX++1ASRM7DYCog2c2hdvf1hHPyh/cZ7JoCl4N89Awqh/Y5mMw7I4gjBL1pmdCN4o8cxHowXGREeByn72iAai8zFoWauW4fs6Wqlyx9xQ6aj7H2MfRgRjiz8rQlaL+Z4raqCjB4Payh5GmKNHuq/gjhHEdcBvycIb7uRw4GDaH88seX3kezV4bBgF/fOlmd1sAxJI5ti4YpU4QbcyhK9Cv5wE3/5fDX/+z198deLrdS5/gbRvQMD+MQhjfx6BGXcqmWCyYVGq1MpJxgAXLaHa7OYSuiPp7hO5MR/QwqDvcWiOiJJXnKToo+mB90YMC7kR3xNUhKEI0/oE2sFXNWhX1tQ70TeCB3dAGoadY2VnYtw5TAAEAAElEQVSww1hsYUJRSyklM968LfchGOQLqoEnvVY3djzMK0CLalh1Q7QZcbNtyy4APt4/isEx+OTt1mOfHP173QecP8ZATYOHR7NKlrXvvANGaJrA+Sps8nHer2jlA83u4QYQB6WQ0jDgesAphF7S1SLgRGfdKPfAVzxkOvXzDxxOB7SUEtahJMjdUMTWAXqHNjjM9VHeG4MQzgoahU4ELIIq1TaM9yHioTsA+pOG8/xmes1D8JGu38bvjsqkK6vxGoa13suj/R5s9TkpxTt3aOQ+GinsIMWWfq3jtYdTc+gmZgIkoY1SHHcSbOOE5FwhWHxS4abx8KyYfA79ag6T7ZNxqPm1NSCB0OuLH9BObRx2Eh/3c88axIx3ZVo948jBEfPP2LxNxuETYyCJ6o2uoyKU3VASRpDtcqfBEi0PU8Jta/XrytsVuRnqnklSznQXoNbFxx0u9fWi6dbWEVIjoDPExg/P7nT5b8xZ6oF1cfEKXcZD04MpmDMzKuzCIUjVRlDWRTQF0mSkxVWRp3KYT44RBlGjzZ/P92RoKsdJu9OzbytixKk5Kg9UjMHKlPSa0pMfwQjPde9Whd0grfbnK5sjnvR+tVSTp+BiSd2bkVc7zDkgTeXXxEARa6LngpIYJ4t3qpQ30e6LrQqlH9qqWZ0g3veNl293109EExBtBPYk6NkhrpdUULuucd0qYKUXvqHD0L09uGGfcZE3ROujggkEKy8Gz0IO3erBDC+3b+Z4BxdD6Te1gJNQq40zCmGrtBbH3vZSS9eTEmh76y2wva18CJFHZJ4HlRtikHaXVbUJNCEW0sGgg57ZRCK1qlylGJCWNPjZy43CKG2zoJJzyYUaereg4AFhTzo1+v7UYKWwF9ODQfmhalMemh6YtLn1VvfD5hj7eJqmTuo9eC5G8MlRVaBnd61jvRwhEEkPLZJVDzYSUTuaOc8Ydr56gOig5513R8ljbeEjylEULSEZsbNGjNOqHwj2nArDicl4k6L0sTbRgOUwuId+U5nVLGxH4UmzMkSXA7pdEZIib+j6y50fOycJnXvUj6HoTRWC7WdzglLS8cXI6C45TBiybeFA0882IVsJKkGQWNVeyIkkew9k1120PGzVklJFgcRefjv4QJWjpNoctSCG6Ivk3Hef6SkvAZb+WStuZqCK6Y4YbpP64qNzESLkOXF5WXj6cCLNibf7G/L7v/M0JebzM3k+933Siga8YoJkZ03r/GATKZ+Yzy8s941GZmuR0iCkzLJcOC9nTotyLcUGRCVhbk3tmMs86ZkbgjVrEKpod7XaNlq90coNqXekrYSw05qw3l653V653587CbIHnrAE1vp2Z4s3RbhfPjFlYZozp3lhnmdiPhHyCWKmSmI1XSVT5q0Uvqw3vm139ijIFDm9nCAHtiD86+sXtlK574V9HVx1mWC8kur4Pi0n2hIJYeKEMLfIKS8wRcJ5ob4ndmCr2h2wrDfk/gYTtDkidUKs00XdV0qcqDIT26wl+uawS4A0JU7nmUjg6TJzvRekbLS90faC1MJWQBlzFPU/LxNLOplVp9xEjkK6r42yrsQg7Evi+bKQU2DKsJWdVCL3fSdnnfu9NvbdOHf2sfd///LOt9dXfv/9d2rVTq/3+52Pnz7y8eMT/8s//4Ny8YQKbMRQiLExzxCSEUOHRCBBS7Sa2NfG/Va5vRVDK0GIM3k6czo/EV9/g2Cde5M2jvjw6QfOT2dCjnx9+6a8fQKX84UcFUW53gq365V1vbHvG6e0cL6cOJ8WReS97dzvd9Ztpb1+43pvBImU/c7T5cTltLBvn0hBS7tbE97e3nl7v/Lb77/TOy4HLV+ecmJdTkZTAC8fPnAWYbqcWbeN+7by7XVFmgayX9/urNc3aIXLaWFZMoRFS5NzQvJM3oUlLxAja32m1MLXt0DLjnZ3PytAHKwrXlaovoZnWwSiJy2dksFtCex5hq7q+tPvJFETsi3aHjGTx9+LdNvTqSc8uOOmkYhyRq8UTnEmpMCUEnlXHV8bFG/WsCpCmhCYcqTH1XCqESwB5olqK1EOqndV2Cy1G4w/ugjN9H+1rOWDbyceg9CH8zNerbzhjPgZPBJLw0k7dp91xPQffDjzHTpwxm7vjWhGMMv+FuF7+iZHUTnFwQNt0H/y+rsDT7XmTnqKGCHZxOjcJnagRF2kPKVuhHhmRdzAdGPXnr8jD9yJx4VnvLykwFuURgEpwvreYBPuUyWh2UZyMOOAzuUEzZxLF5g4jO3WfVsccdWaGcsWJwgGqQ4SKSU4ahizqpTd3p4rBIV7arY0dQOzhDrMerNkHJmlPC4BL2bowYegxMahRcjmkAaMEE7HG+LguUrJD/Nh/A9CviG8wUi2m/GPuCDq/gndEQ8xslc1TPW+Gpho7mGgdneKmokbRGwuuE6vYYZ9tNbh/jKjrokS3XVj2TioJFpm2f2Dnh0dm885jPylm9qUXsCCBFaOFJyL6+BUmd+gRkbtDqDLoBvY2tFC3D6lNeU783mVAKTkJj+auf8OOcHYL+DK4yASvi+6O0d/nzuvGmyI5jx3k7DvnCBCqM0M6rEOavAG4zAyYz40SFq6WkthOzgXTqb9fQAjHea7NjmMzydSDb4AVnPeRrQ/2B734HMwk9fJ8GwdQgjkw4HULEiqgengH8XAr+bImdNgAQMlhh58JDlPeNDsIXgZis1nJEjqTo53WYzmSQexpEoOvVyw1p0WdmQuFrzTAF5rlVbVOveA0na31ril9k51bdfZViemagvsELSkp3rgdChzpYbTZyiW6haEpLOgRp+jI+0wwPRXk2alcx40joSWLFjgiMrovqJmZpo8llM1aKGxl02J1kV1VvK20DETMKJNwagDAnHOtG1Tpxlr5YvWB7eKZVSxkp4wyo4DXRcQKzlXeow76v21dM+SCcHK8qLycoUoEBotREOVTkQ0+LPXDXYPOFkhtoh2cirVAi/W/aQpJLq2RGtRjRPT68GCEU0a1bdJjNZ+V4zIuZnGUULzSmRvjeZdWY8GmBOyN9TgwdesaELEOsp0IIM5hqXttidMP4p6+SkZl5K4ZjJ95e/lj4aL0CxgFvrXCE5hx4We7T24IbHv4b2OYEHWg5hw6EneId0H3dck0IonEoJ68UXPQ+euaWaAOw/aMcDVDa4QDgEU0fsGzVSmKWpZiQQkqXzmHLXzWG1I2wHdx5enRXl0SlEj2mai9eBVGB07GQFki6r2QIyfwbHbAqMMq3a0ozY52EtT49eCCsIIJIXmXSDp54AuUWArQmrNiJZ1n4fq82rcYgof1PW2M1Csrs4NTe/qJjn1YJ1YIFMCHWHsto2upRgXl9ltUXWkbu9qwaRKCI2Q7MyJ+pk0RUOOBRdGIFLqilcd5smjyV5awLBVoJ/pjrJuTag0I8xNEHWOa2nsPbSiMg6bZu0ZOidEMbtDkEP5ro7AUejxkDAoxKq215SjIegsyBIgRqFUIRUtF227dbhy7qkUyEtkL4GWBDbpa1tro2woMXNQJEltsG+tt4cvm57DWxlOQkiRPJmNa4k2gClnO5sqtZOLm+4PQzt4qEkUmocnVgkwZV3jNEWeP5356Z9+5OXTJ5aXhOSdtb2T9lckY0TLFw0QXAtvb28QgxHv/0DOuSccawWmZ84vkXTaYHlXBHKAeb4wxRMzC3M4EbNG8xqBvezUuhNIGvQlsEwnJAZqVKtpmoSnc+B5UWLxbRJKvUOoTPPEciksl521feW63Xi/v0HZkfudVt5p4Qah0EIjvayE5UI8f6BePnEj8VsovK7fSCExxZkwTYSUkenOv76/83XbCKeZGBqSIC0zrRbu2862r9RQqbFC0KYHKYYRhKISTzNb24h75O36zkwi7zDHBUjc9sq/1Te+yJ39nJD5TLokyttGzIE86ZmYI0qHERsSKjs7db9S68zOiVVW1npn269k7qTUeD4/Q51gnzjlkyLIUiEFSzyHgsSCTEJYkmaHLNGT4qT2AI2YBKdB+ddff+X3b7/z6cOFf/rHvxDmiSVn4jQjYeL9vlNqYK+RX7+88fr6ztcvX/ntl19Z1xv3+zvPzyeUpaTw+fNnfvxh4qcfogYLmKhlUvtIIJIUMdiEsCykeSLmiUZke7vx5evG//1//cL1/cr1/Y29vNFYadzY4o12FpbLhXXdkDQRzh/58NPPnM8nXu7vbOtm54Ta2SlGfvrpzO+//Ub798pW7hTZuO+JDx+fmJZMnhK//voLe6lsZeXtuhoHYOX1PTPlxK+//8aUFE26rXfrmK5IJ3OAAO32eN/gens1KwOubWO6vvLv377w9esb67pxX1dtFkVjv9/Yt41I4dv1lctz5hIyNc6aqNggV/WdlilT5pV6OnN/euJ9X7VEba9qh1kiWuMD1c5iy5464gkhRKWgSGnCieO1vDkSaEgteKdxoZG9nLoKwVDmSaKCMERonUBHzYUDYN7sWbNmncujQovCTmNPlTgHTjlzJjNtsN60DLtV4VoLtQXupalc5qA6pezMEaYItSYgmi3cun+Kcx/ameEl+0EU5RtDMrSpUAXjytJ5SBaca1JQovJRPq52oWY3UvDmYPQqmZ4U9uQiAScBL8XjLOAsFz0u4D61fdZBG37GPnSvQ9/rneBDwEAFh0T9f/L6uwNPw3k9/k6XOARFq0yzbrhskD0Qq1E3o6yFbjD0h35wtsdVYdghwSarZ+ztl26c16rlf6UIOZnOMzteZFwo2EX/DAnE4Zrf/arfW8wQUgvMr6cWQhM5bAC9YUOMbFh/ihZI0SzxIVAiGjHu3aCOc94zQxAtQ6TlPnbdYDlde6bYjWI1eurwLv74yOKZLQ8CDuRFNOvWkULB/AA5fBbj8tJnElrU7JsHjPxhdJkPC3Ecw3HjMO4VGKVvweY48PjxP13H4/jgMWjSrzfcLfFns3Vyi14YDo3DGr0zQ98Hhno6lvv5unXn4Lhp+ny3AzLtMXD2CDU9Po+Nyxy+zl9xWL/HrXmcKB+TjLk4/PGhLPLwGXcoe9ABdyb/RJiOF/Y5su/9L91nsP3k8uP38P/px2Ss12HIzlkxiPvC8Y9Hbcoo5bR5a+OaPbBov5fgh4RnPjQAofIdesak+WFnmXuanhqtDOO+B35EqBgHR2ua/TMOJyn6Wedz8jlqphRrLyOyQLm/KQYt3zgs9lH2Ygi0YLMYGbXhVcb+bn6ANERin99OWu8Xa4qu8ai/d8M8TJyuR5O+f1u1TJYMhxDjg5EHAfV7eIC3UTF+rBQHai3Qy3vFoGAhmI4nDNnwQ9eC3q5Ke229kws771ZrvYMiopBqerC5C5TJvCdM3CBy0078EcwhtI5Stm8IYegRYaA9+9fxuuMljoTwg/9BhZne8OfrJbLjfOzbsP/uOwh0X8bv9D/jXPKZfTgPbaI9Zjz2lJ1Hfh+PJqHoqK5HTA/1c3wM1YWfFjRoLi0a8fShLNHmr/qYuzyPsww//0xX8zB/tv9jgDY44ULUrpT9HDc+OU+aNNOF39sp9N85ithshKpSFALE5ChG6ftEGlqa25zk24KWogEKD3h0OyhYgsqSTEGCll/YvEmzYInJzlHNH1XiUPHi/9fxWJDObR04nimhGz/hOyFy29ZlzBd26POxR/yNR0kMMGQWPyeOel362MP41eHdLqeOftIv19+OMgcNOmHZ3JgCoQo1Wpm5qOw+ZH8P9xyDHeXpUepBrixIVQ09Zs/VmhgPluitRdhFZSZF5ZWKMRKtRBNpSAqK5LRrN5MnDw73Nbdn3IuW96qzZAAA58gKSmLeEhakPn5+DN473nWZcLnx857HtVc/MTDNmaeXZz5+/szL58+cnp8J80xICdCkD6WQWqWU0smQBSXi//r1KzkrP2LMhiCrOolJZqbZ+fIss16blqjn1hGFOHoiJOPeSsq5mbOegwGmAMsycz6dOC8Lq2xc60RdgyVXCk0qjUapha1sbPumCSz/ChXYEdlp98QuyuX1HhN73dnrThLlXZ3STJhmCzxl3vYbG0WRSYEeGBQ0EVhb0XI4LKkSYWoa/qs09lZpbWevcF3fiXVnlsRUIMcdQmKTyBYbbQ7q3DdNCsR66gFRBQRM5Cl3DpdaC+sGpVTWKmzbyr5vNCmkDMuceXo6AZUUA9v9yo7aJvM0dceY0Mg5j7M2GJpQjvtKvxTNqYm5+5J4u95IeSJPJ5aWtPFAhW1v3NfG719f+fL7V778/oX313daK4AhvGulNiXLJmhZV3V0S/c5I0LW0vjaFHUWhRSEfa9Wunfj67dvvL+98fb2jZA2Uq7MZ+GynAlR7Y727Q3tDlm4rzs5z1zOz5wX9XOv15shcZ0TOBmB+Gw0AWp75axy+n69EtadvUCTYmjWArtyBIlIL/Pa1nvXZzlnRY2mRMqp6+LIbkjyBrFS2kpdK/ftasT6GzsCUinbHVohpKrPl4SYIST9vEglMZvfKswpcZ4XPjw/U9+BbWPbm9mY7vM0d5KHMfK9c+Im+9Fct+yLHskanBHMlBBDwR6h0+FRR/ezCKwCIoz3PsCipOvr0hqT0XXMy0QkULaqpOtNQSulNkLVEsUpCDmINspADHxiiW+U6zocnlErnS3BZ4k2tyUeOACOU2O2klI9hU5x5bbYHzh6XSc3iwH4fQ/nYrTy8xgNof6dHd7jJPbyfVoPgAmv5PHS+AGcoN/nSA/xn73+7sCTRuyCCoQ4REv/ph1CIqfT/IfuJ6WUrrsdcu4OYXfOORigPmV+Lvp73OgL33E52FjWtTBPGi1MMfTruPQNYzeo4m9uuH23I9ywP/7sYzAjog/KMlshmAFu2XqFrjuPlJeEKfdINPRCq6EbidWUsqMdNGrpO3I4B80QDE7sKYhxadhB3I1oM6SCZv0VPisPk+xGRZNRlkR3QmyjW6AwiBlG0DsG2PY1O94y6u6AHjZVjKO8zoN0wxgOB7ieW8Z2HzvQmjv4fr0QHnk7/kTQvZzQ/37cKF725nk9XTw9LLuxH8DJnn3d3HFVxXjYdOJr/yhDvZxU1Pk/RpCP2fnjOL9/HTlU9O02pj6+R6O+6/fhPfS9owZ5OMjTH+8lQQwNhjldj2inbsS3wcvxOHaVjK44fS5xomg00PHd2gR4CL71oFMf48DpHfWFKkwxOToKFnhJDH4GCrSiZQ4uQK3vAf9Y7egWDww6oiFYe+tatCSiWS28d5wsoSAISaTXvwtQWunIhn3dqNZ4oDu6tfs06tgYQsCzE7q2bTya0Ua5gRe8dBGX+TgOHtGeM1Kr7vPqMuik35Z9MaiC70W/rW8GMR3w6IWBF9JLU7QIAqEU03Na8pAM1bLX8njWijnj9bBfWyHYXulFz9EPamhSKZa9X5apI++iGyRdpobNo4iDYGVIyWrvgRjICLHLt/QSh0eePYZMMfZNL9mytamtUayErx/AHhxuLmNCafXAqxJ6MKB9vyFlyPf4he8FwdvlumHRZcJkHXncX8fV66++f8RnG3HkyOFZx7kQ+n7pQXcxfejTGL10exghjljrRqJf1sWoicU2w8iiealcH1/XLtpJ0tZLh+flihbYCLEnSXpQhBFcDygSJhzWKiUrdaPa2T7OxcBBBi3go7ZQMrkXnPTa7REx5ZOJvfuM2dB2RjYz7kyninbAcl3kPHfS59ky90lL/rQrozrlus8DxHQwOg+i5Ot30OHDphAlKA+Hls7RxtiZ60e29ShzusaPstiR0sGtLT9zhl01khndiHIxszENhKzKhxvullW2eJa4nOkJgiutanPdkkmHNJpoiWyzknI/50tqbgKMMloH5pl80GKX1WoE97RCTpmU1UBxkvVUtTthClFRvwd7SJOkldpUL04tKTLeSotrdZ3+qEdq073XzB7ziWnSzJk0B5uMiQ4DZaYKQbsLRkUMHq7h58Q4Og//cx/S58G0RK1wOifm08Lnn37kp7/+Ax9++JF0fmILkWrt6VXudyraRW7dVm0KYej29/c35SebMsuyaNfrnDVxnSPzPLMXTdZs28aa7gTRTl95yoogtIxGkAAtkKeJ0/lMSJkaNGcSYqDExPPTysvzB0qC93Xjvr1R28Z21253m6FJtn1j3dZDqRAqp1KgrWyrUOrKVlburZDyrM2FSESU7ylNC8REzYmaMy1FmBVVTRTIA2HdEBJCjoFJhElgDoE1RTZDUtayUSlcqUoITmSqkZQ3QpyoeaZOaLeuXVH72hH4iSkFlhw4xcByOjMvJ2KekRDZ9sr7dWXfIvd95fr+yroqIfmyJJ6fZj5+fOJ8nrnfztyur9zQbq4vLxezgfRsHqXWyqGU0qIk9qX1JkYilX29M88BSGxb4cuXV9a10lri+RnOp0Cpidt959vbnf/xP/+VL79/5dvvX0lRgwSXy4UY9bq3+5Vt29j3wu2+qk42tHIQRWBPScniaw3UujFLI7fK7d54f3/l2+sXfv/9V97eX7leX7k8By7zxOXpxIePLxbEbpTWuF033q7vxN8S+1747//tf+W0LAQC//bv/8b1/Z37viHtigCXyxOlKLendplOzNPCPE2s684133i7rsRV96vbCc0CWJsdHGXbSCkxTRPzPDHNE9M88/T0pMH0CCHs0IoGKjf1wfeyQ1gJqRBTYVvv1LpT9htTbkw5MS2BaQ7kWZs+aMd55RnTCrfGkjLP5zNhisZrFbithZgmRIJS6dQNORq1MnSM6/jWz26nAmhKOoUibJMj3BHPFaheV2fTaHHM0Dn4GXp2qa/WCLplgwAjkDWMD6UaqZMiwufTmRJ3tnVnN44nEQNu1MZ93ZhCJEeYQ0S7eTbmqIinXkHi50aEgHXNM87OUQYv/dgLQf1b1fWHxmFJUXrQrNQc8yN6W2QCofsqPU7Sz43hN7tvlVJUugV787HEzu3dkcyT0Y1Zxvv8rNexP/57bN70n73+7sBTKQU3IPxAzDl2xnZH+WigyTkw2miB6WVlByPy+HIZPdjrpsToRr8LsIcnQtDsJw2ut0aMO05mmrNmn5I5ZRLaA+JBZdbRQYwb4scrxxvr70QsmqoHvaO6QhBaCqSgA44meTkFI+ZWg36aEtICJTQKalQquaJ1ofNwpBttYVwfLPggzaKmQrNN6s5mNIgeOI7O5/a72T4KzAHoYhXDNFFntAvvgcisSXtYH8HKBbCATiw0Ma4J6LxB/jPBEWE2qw4RDMdN4AayzrUbnj1g9AcPahjUHtCBseGOQSd/7hC1TaZvMi9hFDFjJaQeLD0Sb7tC7CaaaNYlNCzD4+N4DH6NYNv3S+GOj4/lQHpvz6DldO0P8zOc4HGtPwSd8F+54xHGM9t6AMq/cVifEKy01F0EMT6OgwPR7zlG1cc8xnh0eHz+bW1koCCOz6JnylFLHNa8z2ns8tBl3a1uvrvvgY9LiQ7p+74fhGLICmsx3USIIaOBlToyMmiQQSyQp+W3MKXU7+8cPN4VyRV8LdrGuhZF2zinkiI4vbW4GR5ltPvUYGC0eXISbJim3INN2rnGsioHPpdgcxYCmmU9BH8h9I4rAl0XiLnwTnIsZlKHoNlIL7Xpe+Ewx1qSpoZFiMm3sAax0YxwCkFLMNASTw9sVKq2qg16b+dXqamaTy+krAEC5b2y7m1B914MxmfigWFzlL3U1p/NiedjVIh03ze2/xDU2Bd3RMVq/+kopV6egt9P51xMp4nUIWPif7PMUfPfDZ3zx9eQ4xE8D31f+57uSBwBoZHs7Ih9Q6hi64El49IKXQ+bvhrHhQuB/q76vIBnNT2hKWY/9Tb1Nq4mXmotHouxQLwcAkJjz3tQZdiqZoQ+DEjRbMRge6p1VJzrE08M9K44gNZ6ujGlhlqMgXlaMAwVphIIBHKcdIARJYc1OfWkWZ8bg+N3cvPmxsrYB/qvl2bpw4mNO4TU3+dz1CMqff39dkcd6vwYAVrturn/T7Auq/rZWq3U0N/Xz6HW71+K6qiUjPfK0S9NqEGUU+O7M1TMfhoE3dolp1XYN3rZc0weFE3WARkCmRC1s1uMWoITE0Rb17GfML2JlaWN+REr0xXRssrWjnvJ95rNo9meDX3WbYPc9HedUDxoeagmAQ9BGQtuqZBZ0s9I03y+tQzcdPwxkWB7FDGC9uDHiCYuAtppKgQtaQlWwu0ltGo/JbuusO+ll8YVK/ctFihTnWIcKQFCCtRi+ohGKCoHVYKWDFeoJY6Odof972eQBnlifxiJjTxlzi8XfvyHn/nw+SP/+N/+mc8//xOnpxdKmrXCoUHdM7FNhKTcY1NOnM6ZaTpRLCH99duVUoXYIo3C1CZO8TSCjrGxl5Xb7aZd7pYnTsuZz58K58uZeVHumRgzgUiME4Gs2cpkv3PEZYSczyzzM/Pe4PpGkrOuRV25vhW+zTcuYUMkMS8aoElyJ6yCIp6altnPOjaJG2v5lVA1iJTDTAwTOZ5IVYNfpWRKTtSUaDGQTydymjU5v6u/dJlmnubAh1PiJSaWkFmYub3fud7v/Pb+ylu5UuoO+84mQiURpjP5ZSJNE3U2/VhN5xgvQLqcmFJgTpFTzpwuF06XF5bzE1NLxpm6U0phuze2+5Wy3Uih8uHlmR8+P/PTz5+ptbLeV263r7y9Jtb7ncv5bDaYEjJX67DXamDfBKGAaKJFihW5Oi9Ri9Si3Eplu/KaN97eCp8/F15eCimd+fW3r/zy6xd+/fUXIPDph4+0WsgpknMmTxgv4Mx9bXx7WyG9GVhY9brLY7SOnzFGphlOLTPXhNREa1dqfaPJO+ez8PLywo8/PzEvgWkRplnLj9d1I0c4LROn0wctqWyB9bYTRAEX+1Z5fb3y7es3DejME8s884//+M/UWpRsvUX2vRFCZZ7PtBZZN0HkRi2FWoqSXoeA1ErOeu2Qs5amGlpqynrtl5cX8pQsebITQyOGZrpM9cW+7RqYu9253d7Z95V9vTJlmKfID5+elRPq8kSeZlpMtJBUt4mizpdp1lKxlPh4+USOJwIza23spSJ1Q1JWvELrpAOaiJVhL6mbqwekmDETEtrJdtPytnnOXC4nni8L0oT39yvvQZu61L1BKGgjmaGeU1YO5HF62B+qkd9Zp/kQNTZQ1sqtbXxr7zyfTkQSp9OFUu80KcjeOt/T7QZLmjhNE+lyJqNE+FIdCDPOxqOPGnsVkP7NO86JQFgmWhOmKVD2kYQKQfVuTBPulbuP7NdUft2EdrbT88ftsJxHAEg74Kl95AhgPU9KtwGP5XOOysPu6TaCJ6W8pM9fx+SdBsX+vtd/odRuEF4He3h/GB2AZyut9q/JyOL2g9wXhoNw+BO4k3R0Zk0ww/HvHrwKvdNaa0rVse+NlGCeDtngoAYzBp3ze7hQ9nvZNd251Nv+0al+GLNby3L40TaX2imj1IRofCH478cVNVA1DvvjjfoGciMGupEZzLpy58PRRkeH/2Hcwx8d0QofSDCBa4f3BTq6UZ9vBFu+jze4Q9vHwIBJ/sGBCJopHWthjoi9vxudZrQFT0m6UfUnkadj6cV/BfbnBn1z59mHgN/n4AB0D/HgeXULcziAXaH+yfiO/E5/9vJg48P9g8qi9LUcLtqfPpM/mDvCrvDFHYK/9cnx+aG+j4b4H8f6/Rz/2e+OTrK9S5+iE1yPNX2Y0u+fyb/rgYJDUNHQh8clGntgXNvXgTgozfvvOxLFJig6uqMZ349xmZk+IajjGQmkZgFmcVSEBXEPJTb6vXFQNSvtsgM5MGRjPJMH6cUQgKOE7w+TdDj4HJU4lKbP+t/eP4ddzhFF5l/xT+TGzidDyonp5jCQsAdJalV1S+fNP86zjPchHrTzi4w9oCXFVpKhnt9AW3BAzNl/vJPIUY8P4uAhq4+nEw8/+/B6wkTM2XWn0xAEKmYuj3KYp/HeQdxuJYy+J+36HoQdOmDon44gsT+5sfXnLzuIgr/xsGoGhxpB8WHQ6CFwIOb355LjPIyvx9+L6eugndx0U6tci3Sn4wGOfhyxuL4f//pq9nOiCrRmJY3WUc3epaBTGee266xggTI9nLRcJ4TBe2XP+nDOfq/a/Xlxjajvq4by6/MRXCcdSiwfsopuxNmxK2bQhUAvpTruMTnu45Eh7qM4BM9xq+BPzp7+oIczY+hCD9B44HvcU0uQBzr3eL66HA/dHaw8QTsOaxCk9mxuStGc0iE7ATThEdTgVfJxMbTC0NnAKJuxEgQv4fHzSYIl6AS8k57ToJjF2s/lVjV7HqJyJPXyizoChm4f/mFNXE+hAdNgdq7uI08OuJ42ORTl2HLbzJ/N763DU1RwSLp/unlm61CbHHjldNxHns1eKmjKIR5kwzUJ6HUU9eH8rL737Kw/7s7DWFVfJqZ54eMPn/nLP/4TH374xOef/sL56QN5uWjCsSk3nLQMMRMkE2NiUnpFSomkUggR5lk5q6IFPJV0XlHE4LodQBFPoQVaqZyXswUeJnJKypOHrmsJjRAKURItauB0b4GyKUpHKw0igYkUJiRMBNGyr1pUt6c8MS8wn09MbSbWzrirpe6TBQiDIGxm92szJaU6Uy4XqVoi18KMBO3wJ9qSEGlFA8etMYfIU858mic+TTOnMHGOC3cy15SZEE57ZG+FXRQJE9FgUgo+jkYLHnCydW+ohx1BggbjiBntoJA0WGxyG4K2vJemwaKcAstp4XI5cTovSGtMOfLx4wspwm3K2nTB7KbYMM5FoXOkSlVdQSN4MsHk03V0q9hfhPu98P5+RyTT5M5vv3/ly5cvbPuq3QxPE9u9mpzANE+EIKx55r7uhNcre6mj4Y0E43VSxRRTJqfE87MGRGOckJaJoZCz8oC11pQDK+yIaLLQuYoDwmlZmKfI5fTUOxB+/frKet+Ut6xUyl4puwaQAOZp4unpidYa27ry/v5qpaeFGBJ5mjmfzyzvN0NroeuqSsYqKqziwn63bZuVoDfO5ztznZRXWYoGnuLBfgiBKc/EkDXRibDnzB4DUzZO5nxGmKglcr835fqrVRFjSfVeCEIOidMUeTk/E0LWUt/3K8WC8RoQicrkZYo+xKBAjUBP3nQ71pRrT34a+CIiTClyXmbT/5W97ogoigsHkQRHtUPMFqxDuT9bxLrKOmrf3q9Po/pCKnd2lqi6JEXVVzE2wOMYsJfKXiJ7iVSZ8ITvH0w1s3uONtqwrxycMb6Pxt9Yq+hGOJ40YVz0aDMdfaxhM3pMJnSqjyN6eBwV7tONfTg4QI9nuxzeO5YqhIGkGtf7r7/+7sDT4PdxDg0tXfCB1lrZbZMPI00DLy1weHB9QOcp6q7owZJ2A0o3zRHqrgLlqIYWQo9utwbrplmdeWq9+0iL4E5qbRYhtdrLMWV9YP17v+dw0trh3a44VahCCIrQ6M9u7wgoqiaowQUKE2xBUTUOY/YazNIa3pL5QZh9PrsgGlqgAQaLL6VZZxXnjRmC406YdIfUSwMgEs2BEt2keDnSEGQOQuymySjx6CuIYEz9wa7rc48FCR8MYjfhQ9+cPb7kDsTBsfElOq7J0Un3n/vV/6Ogkx2WtY1OdM2hnwdlrRvaSiPFI/QDgebRXv2IEmr7XH0/Bu+EBSN6fNy0x/LEgwTS2fI4KOfxIZstnBJGfy0y5tEhrj2oYrPuLRoAd2r8YtJURqGN0p3/YE4HEmxE2h/QZf3v43catE7DyT4KRzeEw8HzoOuC4RXaegVGS/bD7z2w0efAHD0NMlabP4v2m0MoPeNtmRnjZgLVWSFnYtLsuRJLa8Ap5USyxyhFCTS9jLXWRim1l2m0KoRDsXUwx3OUT2oZXLMgiZITjrkSexg1+o7oDv19bxvf+tHR50YPmtRLmo4HzLiEGo1H4sLukDXVI61hh7+ShSugfYiryCCeB6h7pZaqfH/WpMK5/45C7UT+/lTxwVjRucDidjkrJs8bB4AmPdSJDQOpaE/mOsxLTaKhDAWQY7fM/nWUySH7YnPawLqQMa5zcP5H3NqIpA+BPCWOVmf6KPpji4WuEzvaM0TryiNdRY0glWBu6nCNg/SmDl1NBXPujzxsvsUsmHPkudFH94zYWKpjgMNLcrquBgsEHPZ9aAScV8vXpE/Q0OXDXu3r7weDd3xrdhaHGEcCpyofSgihZ1hdrMc5IQR2JeHu7eP9DNIgGTIg6FNSQ71Wk0EZQUyFohdLvD12UNWMpsqwIhcPZ1ZTRKKXQ9Xm86PP2dGXjT4uTF82gVZLf0+0koLUn0TPoFiGrpbD8xwNis5bxljvEJrxs6mjYOxTHdl9RBV3JLFo0FdRlmK6zmgF1toN4jxl1Qm1WUc9m/uABZyadgMWR3a7wevzbfrW9H3t4zY9wUBiZ3OKazUbJgy0VKBRqvQ5Lbvuk4Z2s2qGhFKZ83MgjMSGexS4XtQsr3IV5W7DtKqJRpW/xraNxiSCdetzmybqflG2EOl6IwTvYNisHbrxBdZgTm8gxIQDrbVrtF4wmm3oZ5ynWVrV1vGlYmeAd6eic4OC2bN2CRGVq5QWLs8f+Of//n/wf/5//t98+OEHlqcnWppoEtk3iKItxEsNRJlJYWaeF5Ofphwz+05cAzF96Pu4iWbs50XpOlR2E/Oc2baMSOP6/s4a7pznM8s8cTov5HSiUKlV2LbCvlfWdYdckJAoMbKGwNu28fZ653bd2TdhCidyOEMQYqgaLCIxWYkcSfjw6SNr3Lhxo5REs9+nxRxPARFF8kwkXk6BHCIYWra0xl6EnCKSDH3VKrJv6rvshak2zinwKU/85Xzhp+XMJS1c0kKZn1n3na/PL7zWlXvded9vyhUpghDZUmKnUcqqHfyk9RJZs7xRdiooEikS2VugSqQRSREN4O1B0TLSSEE4LRPPT2eeX544XRYCQqsT//hPf+Xt9cL72zuv37Sb274VQkiqq2Ng2ytNKps05jkTo5BC6XpOG5C43ojkSUsVYeLtfePt/Xd++/0r7+9Xrre7dmacFk7nzL5W27uZp6cLpUzs+8bXr+98+fqGtGrk1Ymcc6d8qaWScmKeJv4pfCLGhRRncjwz5cbTU+L5KXG7r2z7jS9fvioiMzUuTwvTNHGan/j88RMpzizzB75+eeP9/cb/99/+f1r2Nk18/PCido0I63onBEWmPz89E0Jg3zd+/fVX7vc7rVV++ulnluXE+fxE2YU5X7mlq9rwTdjud7OTtHuvVEXJvb5+0xM/Rm63K8tyYlnmHkkOKFrS5+F0PlmVQWbOZ1KYlAg/RZVPSdzvWdHq9UYrBVrj5XIhTYk4qR+fl5nT+cw0PXG+3Wkl8va6Ksy1NA1GxqCceo7Oj9r9WmQkBLox4RENAgH3HdWGScB5Vn2w5Ext74SwWdkmGkwMo7JpmiIhTvZJPUPdYzUa/KF37ZxpRWjbxhQSyzwzT7MiKIOWuHnFwiqV2x1SbJzmwJwCsxkfbrJJcLsTo6ZQO0ucNgDzOcy+9vPYEyWamKg4516wSodD+sk/TrdCu+3o/qqXpMvBr/Wz9pFLOAQN9Ocp9XPd3jl8yRBw0BGH5epBszC+/iNAxfevvx/xFMaDA9RWH8in+ttCL8D/w+tvjasHE4IeQvpeefwKY/rNxlH+It9koN3XNmFeNYOmQhnQDnbGRyRdxNXZj8O4PRr9zpUwgmVHA/9vP5sH1XBHwVpYS2i9bMOdFIBmHDBHNM3hW8Qc3uaBoqjjd8NaROtQgzSkWXt33CnBOEwCYt21BOMbsWNJYBD/h9CJgT26HkJQPqwQ8I5Xj0LnYza4OaHDyaMZMP55N/6xYNdwfOn8DUNGfIQ8bAKfu2NJnb++rzH9WxvB9+3xr56tjGG4bsexHA3voWrGuAC8y82IHB/H8hiE+T4z/RhAs3+dJfFPXu68eZnKQAn4Ljk4ynK4pjsbFvjw9fMubSOgqGeGP1M43LeP1eWkBwMbxz3bx/k4Xf3vHbYpWkvszuhwRw/vPyhf31/e0lwN9YNyjql34HSHIQTNcPh8eVVLH5uJZueggxEA/k65/5EM2ktW7F75cFSIGftWby8Gp/VxIUH52XxfygG1cdClQwpGx053KjFSUppQEcuWDSfzMNLHh0X1eDyUtrjjX0p9lBmx0iJDemkHyoaHiQJidfvNypAdkaEDvV+Ve8EJ0zWjZlxTVtTpxOqu97qaM/hva5btCoFpytb9py9L103+5Efk7Cj5FgipB6Uw+XaYsHc6dIOir6PtE8yAGgThdP3dZau/P/a1c56fY9lnPfyMBZpgZJR8MdwQST3zmJQHhkedEtzEEhXk4CXOBzh6TNHayCu5NX2JTNeExz0hpme+12VH2XCDxxG7Os8OlQ1mfOno+laVI2r2TwJRWELFDOkmamWGGI2brSGldn3liTAPGDTTKTr/Qz9rgqAqMsOCk6lHryyAZMHB0KoFSGFwVPi1TSM1/Vz1wOxB97em5Vv9HGUEcdUAVxSLr2NM1unGZcNHflCgqrsteG42RogDDauEqIdgl9Dl9DgfnRvisGdclkOwcYnv68cz0+H4HiDzjjfwWCruQdEQIGVP7GDcIx7Y1ey8dui150HYthGY9z1SipAylkGnlzkijvTRMbZWVB4C3Q4Mzo3HsaRZS888GFTszKjNZVI/6GdV3R8NcA3c+HlppWy+nmijG2zuNaCkc6EBxNbL+5UvSx0789PwZVe+LQ0UBBtLtS8h9iRCk2aBbZPTREflEgy5i55RxdBOIwBIzxnpXKgMJ9MdbmmdLifOLxcuHz6QTmfIE5sFHZsEKoGYJqaYmJjIaSLnrCU6FuyepolSCvOyUGrp9y/aHpOcs86e7aPL5QlC5Ha7c5c7Uhp1X9m2O+tdOa1KKWx7oe1VAyAxU4iUBlsT9ilzK4W393feXt+5lpUa7SxuQgqJZT7xdHniw8cPlJZZNuHy7Zlzu3Lmxr5fqaxI2Ag5aUyvQS4bc4x8OF34X//6v3BZnkgys9fEVuHrWvjleuVt3amhUG83ioDkzERkJjCfZs7nmZeQ+XF+4nk+82F+QhbYa+V933insEnhWlctVWyV67rxdd+51mrNSAoE7drnthFBOeakNm5t5z1svKaV9/NGSDPnkDifTkxRyFHYKzy/PPHycub5OSMS+fb1jZxUHj5//sTT5cz2aePt9YOVG6NcRdc7r69X9q/faKVoAJqVlIQpVw3enE58/uGvXJ5emKeFmBZrDlX513//d96+fuH9euW3L793XXJ5OrHvkfsd7vdvzNPM02niPE/UnNjPZ377/TfWdWUvOz//9BPPT8/88Pkz665k6ff7ndvtyrq98/vvO9t94vY+88MPfyGlwMvLiQ8fTxBWtn0nxsDlsvD5hw98+PDMaTnxdP5AThekJa7vldv7xrtoGei+b5xOJ3743/4bT5czHz994F//9V+0wVMrvF3fmHI2O6eyFx3TX9M/8Pz0zMePn0gx8+3rV/7nv/wL232l1UKKWqYaQ6DsxTo4KpoqBE0OvL+9cb/d9GzczXZpQUv0UlJbybITXmIFjVI2lmk2UnhNSMYQ2O9XkI1E5R/+8pnT5cRyPhGMg+2cF6acSGTu58LX5Z1WGvu2Gy+QZWuC2xeK9ogEehOpFjQQY7QwrSlZf0pm09XG/f3Kel5Ylpl5mvhwOTHFCGWjhIbUyhTppYfzciHPZ2Ka+f3rO9ta2EpRu6EFL8HBicPd5BFg27wrvZayT9OsnYf3XRseIGyl8X4Tclq5zJk267xFs7fUrhg0A1rVE5gswZ6njKDopm3du60DegakFM2WdGSrW0JiejyS89ST4+J2QwjW7OiIhJJRsh2HX3cMGo2X+2rjXO8JVFP+6QD6DGbXDXoDS4wdkm//2eu/hHjqRqEZ5t874s67Uqt0451D9Oz7QX1vVD1CyMJDcKEbPiL0TJRoJFPR14OHYy/CVKAkyF5q2gM1w3FUw1Eghf9gLCN7LdI/1Y2rB19uTAVu+MXoznHAuQFCwLpPuVM/giwP82T/SkcdjS8XgOOzhMO/HCKRgTACP+34bnpG3Dx6C2qJkSqP8Y3AgxuU4WG+3KhUUxKiDG6m2J2nMfaj/Lggu/P1t2TXHSDfFH9cq/H6Hg31+PcR+NO/xT6GEELnMHFnswdFumzCcYP7zH8fdPnD+INHsY+r5U71cTrDd7J2mADGGABDhUl//8Ms2P7zzTOGNcbXS3zk4df9+yH3f/s15n/oBzccH4ZzCEYNhMMhky50WRuBM3fqB59PcISLO1NInwcXEoeAe321O/vdaRZ3lg/zbQ6nP7s7ef090A8tf1ztNKmORAtaxhNj6hPYbBxi3EHdy0HHcJBQbAj+o+5hjsgtOQT6js6eEny6PlOC7IHO8K16wP48rMn42R096Wgf3a/HMkCbP3dGESO7F0N26sHpyBZTutqNyEpFpM+J7y0r1fOpd5kIpp+8pNod3BhoqR1kyOQmHBsA6PMKjjBq/X5R6yUVJWe/rwMOOIIK9F/Z1zEoPWTKHrH/jn5v/aAHClyOXLr4w+++e/1hvz6ev0d9AeOZQ1A9H8wg8YxatL2jhkoAYifyD+FwpRh6AKnv/cORdJQD3eeOnLCZCsPocue5xxDsIgG+K8E+TLTtx+PeqdKUXwJnZnLFFLoR5uh7sMTv4ezGZcHuIUYS7uxpAgQLEohlU4shmHtJn423B3HCQHo59xdmrHnAvpd7Hc5rt41ao6PlYhBNTlngqQflw1ETHuffdGkcZ9GQWcf/jZ+Pa+njGl0ax9hELJjtXEXh+Dm+E9VHfa8B3FGa5/uPAKmOzq+10Dm/XD5C0vISEeV7svhh7ziH7eMgkXiw/7pu9PVxm0mkB1Mkqp725/HZrIgh8/Q3TvrvOjj4/Zvp/ea6Zlhsug6GGq/fnVOqCHSt8aDrQV8gihAA7WxXXf+4vKhT0WTMo6KTnctJ7QkRa8ZwWGNPEOi0iGXgR3ndcGxc9odFIoBE1bMhaFfVKWdOlxOny4k0TxRp3EuBsKPcV1CbEu2GmMhxIsasJP7ic6GBJe8uGo0PtrVq8Vuzj0wgU5o4LWeEwPl80aBTKAiNWjfW9W68XZW9FFoRtIFE4743ttpYa6POM6uVOW2rkoLvcaPsK1J3WrAuaz1oGixQqYiykDORReUb6eUfIQgTmXOa+Hh65q8ff+D59EJm4b7DfW/EuPJ6W7mWFZreR1qjxkSOiZAyyzyxEDnFzBInTmFiISMB5XHJkRgbe2jMbUG771XmtMK2kkphLTtlWzVo/aBXVSZqEzZp2o1t21lLYSGxoGuRp8Bpgeeni9kv0Nqd+12vO02RZcr8+MNnzqeToUMmLX+VwPW6ktI3tq1YU9MGaKlZjLAsgQ8vF56eX/jLX37idH4h55kQF9a1cr2ulPKvXG933t7fKWXHuW1KXSk10WqGtiMV9u3Ger+anhEtayyFsu0gmnybcmLf3TZoSNspZWVbG1OsTFFoRcnhz+cTnz69EGNF2JiXyPPLmZ9++pHn5yeW+cRleSGnM7VEpN44LSfm+UZOyc6axrIsyn2cI7/8Eqitsu8b1+sby6zIKVCZV0J05SWe55nL+UzZNnJKbNaswOlaeqDAbWsGcrgW5ehChFqCnv0WeEopUWcPPAle/gjCvq96zhVNCnjlzX67g6wkdq7PEyEKaYpM+UQ0tTrFxJwmLsuJy3I2YvcbXmb5+PKxKsm3K1YZf+6sAClEYlArqxnfleREzBOLtmdkzYnatGJjNh6tnCeW8zNpOiFh4u31zk7BG5C4P9ybPrV+awBLAFVCqNq8IEdy0zH4sVKrsAW4r5UUIjlpvwDnZ25VkGiVEW7cyKAlir1F3UhOHf9VPqjSz+DBd6iK3QNG7XDeHkvjDzt+zLsDSrrPajZwNDshyGG9hk/hQSf/0whq/dE//3+Cevq7A08Ofx2ldOPhdFCaslLjo1GKPeD3pEV/x+v4IJ1E9JCJfijpQR2/SLAMMtw3iEkFXEln1QlzFEDPEIooBOrBtFMURzJothsIDwGFg7PmWWVp9r3VuLpS0Iykon5iCIYsikgK5swZyZfQu9o8GE9oJ5QoCsTumVCrlIrJLTczcgwRFT0SGoYbL4RektSfydfxQNbcUTm1UctmJlYwlv2xjuIWqxliuvb6LBLhGMHpWeUHA3jIhZZeDfSAy4xuGG99rSM/vucYqPy+BO8RdXMc99gco5uaB4UwMuHWlVSwNeMwN+MlD2OS79bObzWCTkPWBlx7fO6I2vLot/5+9HdQe9a41aLAARn1vW/wN/VAfwhXJkZ6jBHwBi0TDe6kijzM9d9qB6pOzQgKuN74/j3+Ph90G+QaDInVP/r1YnCyUxnenMuSO5cCXhffnSglIjIn0j7X3HA3mWlOuDqeS9viuhEPEoStVoIhZpN1lIsCmxRt4V0bWTyLbXDXqn2uc9RykxaGU933hG3eY0csJ/72DH2t0gMrbkSoEdKQLh9CUWuLqMX5qndS8u2DQmkdgTO8rAjaJdMOkLEkzXSxIUy9FMUVjjuBVbvyjVPdAmdNKNuhDNudueFh9ay6nuFjDuphLzehB05oIFWoUUt3kpGLz9PR5VYi6lIK22bdygjGoRKcLRwRJVE/BkPUiQudWLw2LcF3pEjvTIfrp7FXEXrnySZHZ1bnyzWmj7ET5R+++j4Ing0buq1adtD/pudsOODIY+dK8ZLWjgCORkLqRMlAsGYSbgD5PipUpDi3Y+hBw2PZoO6X2gcdk/I+pjyaSsTsW/XQadLmyc9I50vy7omjxNnklWQ6WSMieu5qS2kPANVSCGB8Qo4kYuyZkA7yKkoe3mBT1jbo/9XTbt/2LsfJns+DRegsU3oA1kqyRMvrevnaYY+oqg2I+DkTUH9BIGiDCufFdATUMFh97Xd9VreFvJ1515jGK2m6sZ/2rfaAitiRIU3th9h1ZzAUjMpYmg1t7fuFsV7fw/a9A07ZWydJ9XMR0JbdYXQ79SBJjGHogYNztW2BIGF0WWyKHI35WIZgQuQhRNNVqvft2jjSzBDv0RKWTX8XW+i6XbvHSZ8zUPu1VrHyYJuBELojF2xPgZ4XWoaoMtcskdcbq9g5W+y8rg1yDKQGJNM9xyx1FCYnxw5oq3NRqJLOfQISpe2W7FWppMtqGHrTPLvq51wbicIh+T6jbhs2K6/JPL1c+PEffuD5h4+Q4be3r8T1DtOJaXkm5QWYyTkypUT2MtVSud8rMQdijizzTM6BOQTe39/Z6sa2ll7+2LKubYyRacpMzwvL6YlW4ZQmtvuVgLBuV0rb4JoUQSZqE01pZsqN9/cr961w2wvhfGEH7ax3v3Jbr3yt3yj7N5ANSY1v337nlBMfXz4T0hNFEm+3G+u+UwVCmk1onSBfl+qcIp+WM//86R/433/6b3y4fCC1idfrxtttI5RXfmlf+LYWyu3NuAtNtpLyVH36+IFPeeZlOjNLgk1Y7ytl1aLiEgPplAkpazlnBJngnAuX1rjWynS/kV6/EErjVpTLToOgQc+h2lipXNl54871vjJPgSVFFrQbeJgiH54uTHkCIv/jf3zj27cvfPv2K+dT5vnpxOVy5uVy5vnpwvLTT8SgwcXX1yv/83/+T27Xd1JWO0ikMk3w9DTx17984P/8P/5ffP78Ez/88I/cV1F+oBJ5vxUa79zuG9fbnfu68cOPn9jLnX27c719ZcmVcEmcslD2d37/969cv/3ONM0sy5nYKjlAQZCyU9Y7r19+4+u337lbydttfafWDc4vyj1GgNo4nScuzy+8PF+43t75+u0LMQlPT2d+/suPJCevJxPDCQWWzdw/bXoG7DvX6zshwLIof1aeAvu+s+13DSb8W+Hp6YkPz8+6r6Rwv73z66//DgifPnxksu6OOTvKsirCxfVoUHSPdk53fi4U7ViL6pVmtq3ZrXlKTPOJnJKdzZPpZUMEB+XiUxvc/DtDTrW28/r2SsyB02XhNM/aRGevhCTMIfPp8sLtw8oUE9t659tt1b1MGFrF/UQ705obgGG8J09ZuzqGAK1opQzKM9VKgVw5BZiMZB1DKr9cLpzOTyynM6eXT9yLcF0Lv/7yVfn39mJ2KAa+CF1vB+g+xVaaNpeQlQ8fPmqZpjTKPjTjXhQVG43UPGbISYitIbUYQk21acLRtmZ/Je8EG4FGSkmDS5YATzngJqmgPJaxOmrcfH7T+dX287DPLdndhv/qtpcT08cw/ErwCiOxgFp5CBppzGUcDiFoKbm/x6shtFvfHyvU/p7XfwHx5PBXHYh3d+sdsDqhlb0/jMzgcJT8QczhOwYEDiff8SEeHkiglwSYIedBJUcngJbc3VdrYSzNCNQMxmt+iUJ/zaASzxYZYWloYNFiR+x0YnJG0KpZKqy1gBg3QuCwyCLOIGPdf9wICmY4SjfEOq/BIagi9h+PiiqsO+Ltqz2r7BpIsPm2DHcz6fEAkYuERjtVP1FFESRWagUeGR6GWs/2dgfQftfRBe6UBKsO6h4+FA3gJOjBsL4IbpSFUZfqwjDk6DFwoY72kKPjvxx+/2coqPGzOUlhbD69dhvzHlRGvFxLGMGfEAasUGt1pY/tcLfvxu1/H+ubYu4lP7WWLo/OPQPBWrDacwd1Wj0AK8f5MKXQ9ZTdk/58x/mQh/8eZeaIGNEtFvp7HoN9f5x7D5ocf1dr7TLi6+yfHZU+AwnWu4pxnMsI3oWJhlSVNeeFCA5TtWCK3lNLLSq112mHkOiZYgas1QNUrQmtOLtQGAdmJ6ZVHhkNfgWqz4kE5jR1bgEtMbUnsyy9Gi5dc3WeObHAjIhQzah1wzYdghJHGGszx8VLN6KtfSQQUqT1zn2GMhDbd+ZpeNlWCGLnv/HUmDxJc74UX3cPRHlHrtD1WtehhiDq8jKEviNIgvghhelr2+dOeD1Ix7QjHqq/vfPdsQLNT91IYErK6RLj0HmgDmO1wJNnb5QvpahDaHV6wcYUbHDSHLmhpV6thd5NSo0FHr4iqCGUE95pze/fbB/72SjNyq2b31PlxDloXKfoFgtmEOpjp7F1HvZpRwSasx0OvDb9Kxhq2d9/CO71ex+m1u9BUjRDcz0vFqiT9nDmBtMhvpe08UdAiNRWLOjUxgMELbDUORHo3QV9rkaTEo9LCPTiTloYWbs4ziCQ7nD1Z/VIkZ2Zeg5J128DRWgnk+2B3lkyeMLGAiB2INRDw5X+bxN2O/ME5fcQs7NbPRjbggU6VLb03oa8w88BvXewMvRmASGxIIJgAUArOfRkV993dl9d76GTgzmanZAbTwQc3pG0S412sVUjP6VgAcVoPzsXj/R1VINUDG06gpb0+Ta7JXoGF7wbT6uBFBstamvvVgOtRm1KZLuqlYZEo1s46KcRYhoGdvX3Rrun20C+7sEdAT37g9HT637SOSyiSQNV3FHvX0Udo5jMAQwHrr3Qv0bwK1JbNb2iDXA0KRhpYryldejnEKQT4MbmZ7PuUQ8216Aou2ad7UoVSh1Iw0i0xjBup1tAqkXbi0Lx9Q5Y92GdjmIdqSrC6TRxfj7z4adPLM8nwhR53+7wDiGvhLkwFyFPO6fTC6Eqwunr7TclWTbhznNmOs2cTye1NwOs224OcOxB8pwnUsrKTTNNAORUuJx36n2DVin73XRPY55mRSWFyF6KkhCXO1CZpkCaT5QcoTXiXqFuUO/U9Y1W3kE2Sq78+uu/sN/fWKYzTy9/IU1P3O937veVdduoWZCQAA3KuO+MRFJ84nz6ROQEdSbJTGyK+se6txVD/Apa2p6CcJonPpxnns8Tc4rILtz2nYKwtwYt0kKgRNjYNZ4QmzqTQJJA3BuxVNK1sOyRCzPP05l7Kmy1sG27cT0aKk2ErRatosiJOGVCTcQa1V2+FbZ14//+v/6Ff/u3X3l9feX9/ZXnp7nvgTRNzMvC6bQw5YUpz6SU2feNdb2xFe2cdl+v/MNfP/Lxw4W//uUjf/n5R86XJ6Ypse56JuwNvnz7xi+//M7rmwbmTueFv/z8I7fbK29vwr6/Eii0spKDUOvOdn3jMs9clswPP3zkdUq8v1/Zrm+8/v4rt9cvfJkT58vC82nm8nQCLsQU+Ie//IXTvLDMC5fLM/OysJxONBEulwuXpydK3dTZZiKnBUS7EF6vV/atsV53cspcLheeny9s241933h7e+V8Wsg58OHDmde3wu22EaIwz5mXDy+UWshZAwgkKK2w7itTmliWmWVRZFQtpSOZ3PeWw/fOY+lGpWBdgoP6lWmKLKfEy4eZDy/P5ClakMn1/ZPx0mnnzFL0zNvWiJQALfP84cz58sQ8zyzzxJwTOaC8pwKpCVOMhoBKZCLJEjJO0qudYdOBnqWZ76j62tFBZkozTxNTjCw5Mk8TMSZaqUwSyAI5z8pNlRMvz8/kaSFNE5HI9Xbl+u3Kdt+UZ8rsDbdtnP/MOez0HE1qM4uWxpfWSAinZabuO62WDqQRgSKB26bIuNNlwvJqpDzs0BCqx//pJe+1alDJ7MJiPKuK8ozmc7rf5kkoRx9pE4bgQJkHaho1BL2DfHKaizACTKWVB65Uf+m3+rOXyz2CK9xHj13+HPk0fARPjNeHKrX/6PV3B54e0RzD0LJnPgQBOAiY/O0LHoIDjxMxvj8iJ1xwulfNo9PrBTpN1ODfzTPPUVD4byBJ7EaF09E+ImHUOAxBOZUcLaV20zBkH+fFxvSHR32M/vU5crZmEyp1HLGSt+4ZHq7/6PgHRzcxAmF9Wo6CrjM4HCH5Y7DP4Y19DGr1qMMuw1jrgQxkjCcERQuY8ejwv9A4Jt06qqK65xPcYRhjfUQtHed4BDh0AO0w53/8/Pevv1XqNa45ZPb7ddWPGhSRYcB3J9Ky0+3gpB/HetwPIgc5YVxnlAaFB8fgj2P84z56GK6tUXAPGi8FOF7rOI/jGznO0x/mS9/xZ7N73DvHgNb3yLLHPRD6c3+PSHNl0rnUxrlwGL97d4cvG004ECv7LY+k4kcF7ddzB3yQZ8vhvXb9IN2hBgzZaKg+BCc4xKhhAwHv9Nafa8RCNIsvvt903FWLPnpQQ+T4eAdd6nMm+lAxHdbBxK/P1GHRvos39o1vfv6Y44N+f/jc8cMifV77r30uCD3gLH6djgQMfX71GT3jbsF2pKNKBIMn+/P3cYfxswznUYMsR92hXxpkUuJZ74LVmlB2ddST/HGfukPRZKCbPKju3x+DTiLGLzMOwi6mx5Isnbohbypn/oR9pdQ3bI9z/6C3ZOi88Z7HdfvuoocxeEma76+Dlgjh8Gb/lenWKIbGCFpCGSF8x+84VIoH5nTOA34GNIZrHh64Y3Q/eOhA97nlYfocq+NkiOpuhDdz0h0V6I8lHcXjKtEtiBAiLYjB+fU9KdED2D7eZnyMmmAZ8zK6gsrDUX1EE7mNoVjEIdODV8/2gmssbzLw3VzKn30fbK0Cfd84gs87xY4k3Qhw6nD9Prb/+/ybgOiSDV3pKNF6mM8wOLWOen+oJTNCm5fG+vyIPaDxbyYPOrksmzNvSQRL6INA7QEyvY4+7yGIeZjj8UwYDxIHdKCVJXteEPQZvRT7aEuJHGRvPLuYbAfRxADhiBwKBztvlFRqkgMLZIsNRs+CIIEogWpdn7REVnyXUJsh2zW63Y8vsTmvhj6s4lxSY0qCdVSOEo07NfSgT+xIaXt7CL3k0RMkEiAvE8vlxNPHZ6bTTMjaXc1Y2Ylxh7QjIbGIBs1rDdxvK9uqLdwbgXmZmfeFVpsh+ZzTz5wa42iLMduXdpiCACmQ89yDUrWYDYoMeUxBKwaa82w1JaXOSWWgNYJUIvqvlE2DUGzUWrleK9TC67cvxHRhOie2baOUogHwFHT+YwYjmxdrEBHCREonRBKtRSRkFB9bcPJ2IUDyBICQaCxz5nSeOS+TEUdjnHY6/oB2wd5EuLdKDYLExlK1RDMRCLsQjVrkJIkSZu7zmVB3QtypmwYiXEabNA0sRggpkrIlygg9MVRK5dvXV16/3Xh7X7nfdnIKrOtuKIdAypk8ZQ0S5IlSKk9PZz59/MD1+onrfeJ+z/z88w98+nDhpx8+8Px0Ic9zLxtT9ETh/Xrl9e1NSedjJE+ZDx8+kFND2srtmplSJKXAHDJtV0L3GIQcA6dlpmwzddsINLb7lT3AtkWen37icp74+HIhRk0E/OXnn5jzTI4TaVa5mqbJ+CQjEmDdkyX0NPgkoojabS3sW6FWIafMaVk4n06kFFnXyrauLLPOy+m0sG53ts3Gvkxcns7KbYZwvd1QlGlh33em02QB12zIpkg1TieR1pGVeo6Nje7BhREQMNRlUiTNsmRO54lpSrS2d3tC0c9ZuaEa7EbOn1OAlggy8fR85nQ+keeZKWvntwhaotqApuieHAJTTHrNjq6xfdpA4jEp7eN8PPdcd+Y8MeXEacrklBXIIUKokEVYcmaZJu0WOJ8IeSIk5U9qe2VfV1qpI2nF8QaMggm7u4RBoaABoUKuUYNsRr6uCELdQ7XBXtSoLydtKJFwhLJYwN9Lrt230UB5M509ErkO7pDDWnrnZTdohj2t6GiPXTi9gc/ioy8sZiv2ZjkDmG73GT/7Gaxr0A7y9bg2/v24x/cAIf6u198deCplQNf3XfpD5XxEragBCLoRatVOIcfBHyfnD06qfvOHh2rfPY3W7AqBdMhv2V8E1r0Z15Mq2r0GlhIIz4v1rpAOhUvxuxk+vNxh0rEOgfA2vv4MA3JuBk8/0NvDYoQQLMCkMNRHp1wVaTu83w1v/V4NrdT5qLSWO4oQzJjyLG+ImrurJvC4+WURcnVuxNAYYh22MKdG7K22cXKkbMW4NiClrOuLdlERURheKSrcGmkPfV6de2DfKi02K/MYGea/Ne+9A5wpKPfpEFcRmHHlaIHjmo21+f66fb5BO8k8fNZKusCiCRFQSGTpRrSVFTRVJF0Z8LiJXWbsyn3zI57hHZ0HuuyboulExyJdvh5QRua4DYfi+FQHRKCNwZ1ZLSk63M+vGwzNFcbzYfOQevnoMBZAD2hfS38dD0B/tiPKTMQRUI/K0RE6/XdHn7YrR32OFEX3gI/bwj19XqzsyeVRaTM8EqopXVeyavholscNrxjS4JY5qJ2ugwLa/TFKn+YagmabzRPV6g1bHM/892zD+NfXXIlhFZnT0SaBXnYbdVN3VGmnZXOdawaHRztCHk7liE2M8lGpAp5p72s6DjC9rvNUOao1dm6t46GtTqefB+OG/Tm74xsUfVTH2eEf6IGKKP16wch2lY8oHSYsGqm4lXRFR6pYoCoo4stLf0QskFAsINIUWRYkHPbrkDX37j3AVMsIMpWieqB4gNDX0RbNORKGe1/d5rA28ha46mU7R+SaOtwh+twf9EkPLA1d6BPueyMGDMWm73d0DIJ2yPFMHN3+6g/dn6MbLyYHUZ9Ny00r5gL38x4UKeGIvWJOSZBgwVoztrQHWZf3AEQJj+Noh3/6kRX7nrJT8xCsoVuBUdQJaxgiqfm8OuLEL6p3cMSe2Pu0lHEiZUOUtmbIo+6S9U7HTcSQC2MHwPDhxcbtL4Xmx8Mq2iYJgY6jtjrIkCOxelBKkzpODF4t+JnzjJSi9kNnDvLOtIDREnjgAsxBFjqZv4ihnMOQVVcqZuXpSofYCUpFYkf8RYvkHOH6x7jlkb9N29fb2MJ4n3ei9LKqsRcV/dKksm/N7E6Fxurv7SyzdYshdofM0YK9yQdCFFGbL+n8hYB1uxPl9pRD0OwgJYTRSEWjcQFn/xaTRFrrwdPuZNgmE0RbsUu0rpBaNihUC5CY/ZCjOmo19D2nmWc7S1ojZSXdDdHKyppmzUs1QnSc3FtH72jU4LZ2yj1gBmL0DBrwcltWjHslBCFmNAGfAs8/PvHxh098/suPlJRpKdFCIE4TIU9IGOW8KamNvNWVb29fuF9X1nWjCuRpZpoXnp6eWZaF5bRwOl/IWZ1LDxI6alGkGSoxUKvRUoRASImYk1cTsdVNO1RWcw6te/CoBq9IqUitRCmcpshWAkFWCDuwI7KxbRBa4Xb7Rl6eyRK4329s1kErxgmi0KgjgVFhjxObTKySuRVDBaZMi0KLjXsDmWby04UlZvKsQdVT2bicF54uZ14+vbDEE9IiUtU7aXFCQmaTxnvZ+bbfKFKR2LjkzJISlzQRG5xa4lM+M6eFJyo5X3grG9d9JUhi2ze2baVtd/bQ2BDilJhOE9OykO629417reyF6/ud9/eN27XQJLGXxrbtvL1+49OHJ3JOLMtCxFASAk/nM/GvP/P0MlPKRm0bL08TpzlxWTLzoui0Ysnw2oTXtyu///6VL1+/kfLEPGculxN//cvP3K4Lz5eZUFfOy8Knlxcu05n3b29EgSlFRcBtN6YE82RpvLZDgtN84fPHJ3788RMfPz2r/ZgyP378SIwTgURFDF2t5/u+N+5rYds10BNjouwqW7frTilqO+UcmGNknidK/ZFff/2VUl4VCRQC8zxxuZypdScE4fJ05uOHF3766SeeX144Xy5se+HXX35n3Tber++q2wOcTgt50u7Jay2UXZGByZMjdu5HEtn9V9NLfnZjNpzr2bIX21zKLxVjZDmfrItbZC+VfJo4nUwHh0aMjQ/PMzknck69M540De6VIjQSSYRTzjydTty3BWk7W820EJRyxc9l29ddX0atZAhNbYKUEvMy8XQ+M+fEkjLJbenWCLWRBD4sZy6nE9M8Mc8zxIyExNogVEGKASC6EeqK3AM2bkuqXa2TqQZ3KZX39ytl3/nx4wunZSIFQWqjoP6E2paR2gLb3ghZ93zKybhKNdiuJq5Xxww7oTZRFGRVFHMUj0VE8pQ0WC1eDjlsQ6BXboQAOemR5OevWPVViqOao5SqaFsP8jPK5AfibMRwqpXIxlC7XajXHs7Qn4GDPCnz977+/q52/ab6bz9ju5M9nAZ3ZIKtqy/ycXB/hozwIMXhbg8/9ziqHSohOrW4GQbSeptiRREFShNi1Shkk2CAowjePlvaQwReuQACxTawiBo4wzoZ5knncvLN7k5IcHNehWEED3RczeaOo/wfnlOgZ907ksCMfjE0Bfaco8ONQhzdoe4muhtO7nT4HKKOSPKSIKw7nmWQsfKMbMiDVnWzjCBb6Faat59347o1dPObIlQlaRlNaaTo+/2QIXx4+iFrPn82TQZlDL3cYUAD9T3HoM0xK3tEz/m1gqhxNZ7JjEH/WxhlH+N1dLsVRu+y/+eBLp0XPwBqa5bdc0ViAamDUe4Bru83cr9e8Dk/4pHMQTNnO8jIgAw0zx8RSCEYF9h309+l3P8TBjLRS1Eq319PHq974CbxZ/WglDo9vjbSnfa+c44WvbtHJiv+yfH5hpThbCi6pXYeHj9cWqN3WPT9NzJ9qkM8wFpLIzrHlXVzFDxTYSMVMX3T2GOh1UaO7pj7gWkyZTAWz1RbvyjAeIRq6ySPIajboNBVIcXRKTPa+j+yNR9kBLHSJf1JMy6eTxnKewSb/LetO2YxPhJFHxEOzhUUw0DVeRbGAwRDlrz8V0k2j8TJePAPQ0uCoqPMOAnReHVMx0bxMm+d32nK5OSkm+pwNkMLNOtGVqv0rjsaiMTKI13f0ctRjsEnseCQl9dV08WljvK51hFb+vwBRyoFe7YwHEhfUxnlRUOjDa3szSf87DzqGj0fbYBN1zDIQIzIw/X8uPIsns2toEgf2+8xOIqIP3xuyI+d4cGFbZAnu5y3oPOknWwO45UGBW2iYVta9arKQIijVNwrvcNBp7isB7StvFmr+Fk7dJtnEWt/hhAwsvAhkSNgFqwLmsHHQ6RKQEqD4MhD0YBA8ADtCLC2gy40tftg46qTP7gwHctVm3IidGRkMASKP5Y+tOm32GWpeQZUsBIFRbIg6WAjjHmX4rva+Z7svOgyNc4l8Z+l4aURPeEWFIWSEuSswZuUY+ercLspxtTLIn2eWjOeTwt6uSz25iFSaYYYSdHP6jj2ThBSEnI2xJzpxH4uHO2N49nmax+ClRi5rGaVMTv41U7RDncuTn0Pjai/yqnZOqHbsU4L4OeSnUPiiDO/TxjnhJ/LUQO1FeuKFwQNzQaCPafzfXhnIsFQ+tECTg32qt/3bordxtR1bgy7KKZozpKjQDHdRi/XUWR31WfIQp4z+Txx+fyJp8+fefnxR1qaaDFRQiItZw2MNA1o3m93pH4jp4kY1IEMAaYpcVt3mgj7vlHKxjTng/wIpezKpWRnoNpuiWU5cTqfLbA1MU8npI4yQAm6X6rZI257p5xIoiTncZp6YHerhSlCTtpJbi03TQi0xjLNPJ1OfPjwwum8EKbM+byw3ouOzUjBhUYrqoOlwpYq91K47jvXdSMyEaeZ+75z23Ze7zfW1qgpks5nQlZBarJCjiRDt0wps7AwBUXi5LSwErjvK7/dVv7l62/cy0qj8Pl85mVZ+IeXT5ynE6eYmCss0phb5bfbSr3vrPc7+32jSe2ov2CJ7+A2eEQROAULeil3XkozSk2g+qPWyrptfH39ys/bJyQ0co6K0iqFfdsRgSkvvDx/RChAYUpKdbLME61F9r3xdrty2wLXW+H3379p4OnLK/teiTHRqjDFmfz0gVNOvH/5Tfk0iXz69COn5QlI/PLLL9zXldvtxg8/fGY5Tby/f+P9+kopO/t25cvvvyBtI1A4nU+cTyf2fSOEBpLYalWkSso0AttejcsnIhIpJSG10Upl3YoifrI69/te1L+MWQNZIbOuuyJEY+ZyfmLftdyx7JVt0++nvHA6PfF0eeEX+cK67nz99sppuTBNmQ8fP3J9v1Jr5Xa9WhJcdV20/Zyy8cq1qo03QiBPE5ImtXlKZSvArfIl3nj9dqPjesz+nuZXRRRFtcM8IZ6mTJ4CeQqUtpqXI9xvV6acmXO2YGwip4mnOJNyYK/P3Lcbe92RmxnYTTRCYvp2sHlycHJ1PFWEfS+8c2cNkVuMVsYXOeXMEjXJcDqfmefZ+IsSEhVVWHY906espaBF1HYrbYA8up0XRiAeRJMCUaBWSinEIOzbnYgoAsz0esdo2PWut5U2RZii8vWZeZKC8kTPc1a9IWJgBTtIguo4PWc8UFTxjtV+cA0Umwb8tFTbC7EPduvBh/XOgs3oAvRI0OSan7NHFL13sNclkc5t7Mh8fT36bt+DInLO1qn2EQn/t17/DwJPA+YX7JQVd0K60eJOAs6lZe/vUajvrnl0jB/fEcIwk4BuoILhbg52lJgF0TP5wR0GPXtqDzyZwHXkkjsG+qM7b163L4yFQd+NYJnMYaN3p7I76Edzxp37QA+KSUSNDf+7zxkyhuYP70N2hHkQLedxlI4JfHRD7zBgN4J8oGoYmcHfF2G4LSl4JhKDXQo1mNvj15dhZEtfX72HbzIwWD2W/Q5+Hw3uDafxkMm3wQS3hxmGW0CM9H1sHA8wHX/+/nUMLLmTaOrmu3u7dajCo8bpiFbzIAX2s1mZ4WG+v38f5miM7x8gkK1ZlykbJ+OeD2M/XO0hCOSz1hdmGMAuf0e5dIPYxeK7yXqQheO8HZ9P7KJHBNNwRodB/v26/BGNNjZwwJEMx/uNa6mdeRy7f1YDBQNVYQgACzyFpFf37lTdGTisRUcFtFF65xwgwYsPxJ0AFPWknjxBDBFqIKEkPkbdHEed6AaEyl7oMvio5NWZpxlsGsxBtaiPyWjfg+Y+Evw5BzrVxblPZRg61V8Pe8adYTECRefQiX9ECPXZ/27PDXmkb6lednbQk7jsmu52B7JJIx26V3X1FejE2NnQTjHQUQveCt47goxSOendnGqfj9CbUvST3vZLL6k7fFULZFVDO3lC7ft5dGSgjtmD0gHC0DP9XLRgfN/3pjdHqc1xfwa8e5V58Cin1eBNO+op/5yXBfWFOfKCHcYqfQzj7HCZwsbrOlhC6LLRHepD+WZ3/G3B2+EkVLtLdeHAAQULuPhY9VpyEDb/tfRB+Zx4yc6f65aRBNP3jrmqjIjaKKESWpfLYME930e+3oan6jr2OO8qvybvXgpnq1lFtNQHCKTxuf6MR1vgkDRx/cBRXlUnOffTkEEsgKtP1qK4RPR5OyK0hw71lRiBIte2HmCMhprrgfXo54yVinf7Yug8t2M6cju4bvcypQBJ35RSHHqs85QdSvN9L7nOxq9t/He+tzXq2NdE32/BOpP/47b3d8l4e5c511McEm32IN3edP7Toef7CXWwX6SPozlTWdMSMEH3khPFNzzA7yhOlUsNgrs+G18PtsLBhvKpiBFrSuO8bI4sghCS2Y7NZL8x5ch0mji9PHH5+IHLx49cPnxUp5bITiTkRVFW5lTXuiP1zjKLlsrMmRQjNWeqaNco5xwOUZGSuq/Umdq2jd1KmWpTB6zWqkGZaSanRM4zbSooh5vurRqaOXYa9O6l15I08JQcHSXMOTKloM83TewtaTK6CTlFlnnifFYkhaTEssxM9U4oIM1QmyKKGLYyo0Jlr5WtFO77zhR2Zna2XVu537eNXSo1QJgyxIqEqiWlOTEtkxIrh4mJiSQTKU7EPCkf0w6v+8Yv1zeu243SNlrdkfbEj0/PPKfAkifmrM8htRC/Qb0X9utO2XYkajDRJVIDjIUqhSZVA081QFOnNKbMNM3EmM1JxWyUwratVKkES0gV41F0hHGMiSUvhDBBbEQ2cgzkNLFuynW1roVti2xr5fXtytvbjev7XaW2ClLR4OV05jJlns/PtFYJJE7LEynObFvl33/9jb1W7ttKnhJ5OvHy4QliYVsVsXa/vhODcDkvpBhZppld4W00CaxbIaZMzErevluJdakW8JaKtJ1WCtv9ztN5IU2ZadLGECEY51BemNI0mitIZFnOzNOdlCa2/c627dzvG0/Ppx58IiRK2bjebqz7RkqJ8+XC+enCum2dN1IjnZh9pvx61RpG1KbBM20GlAANLpdSjat3Q8pufoF0FeeNQBTZGvrPec5MSyIvibUoqoxa2NYb52XmcjpxWs6krBVOc4wQMpfTot0OV0WTdT0UElY8/2hr9kNd1WtrQqGxys5uOnFOGpRNpwhTJmVD6Vl3TC+TawJ7qXrGp0yeZnJpJEP89KE4gjf4rW1M/oeg50mtUOuupY8pHhp1SQ8+EWDfKwlhMh3rfknOo3zY7YLq/NQyEsxHcIMike3CB1BPtw/tOb1UcJTF++PpXPYuzn4uMlCpHnjy/apXt7O0ycM55kk9tZ9GubufNaNyydHP3/kS/8Hr7w48uSEp4pB+nbhqlnmfIzM2QjRCSgxu3UZ3lOGYHB/0j4b84wC6XdMzV90kDYpm4nCNagEad3qaCOtWaJMSjc8pEWMjhWbdo/Q2zb6JMaqB7IEe9J4ppMPP6gx4FiQE1JgPB0cwoJJyLHOIkZB000bMQbIPBIM4gnYMcuhxdSPeyOPU0K92bTHjRA+D1mJH+3dSSTem+iT7ZA3DVGt1I1PO1vZWgEqKk3bU2irrfbeDxo2XQHGAfnC0hqEWgBBUmYmTs8Fw6gn9Mzb7HA0mh4d1GcHLR9pQGGjG5YhuCoc1PMrvMUB17J403q8Il9YtWA4R3PigJB662HXD7zuBHVbgUAZNaKEd9pNb5ONjD8rEjXRRI80G+rBfXOHYBzgOYyyxmEJMD85cRyN5UCbYPIgqSP+7B5h6mWB3Jcf8/km87fC3EYQ6QjzBxLefCPQ59gn5PpDnzqATtKqUNoIkn42HlzTpDrseMmKGuGb3pqQksqVU6l6NvwHn+3scF/SAdENYUsLL0rxbknbkMK3dxt6QnnIf1+3OjVnkR/Red+rtmYlqIPcAu6EfpaOFo7YkD3UED/zfo3z5vb8/tPBDxPaGtM6ng7XXpsuafh+602eL0nW59Md3PicPZjeJvYTIVhhC0EyZXas4IhXNtsWouskdKdeB0Y9Nad2pba3RiiIu1IA4BpEcTeJq0BB/KfSyQO/K2sspStUyu+aHf6B0eRCmNBzMJk11UbLAzvDr+5o4n1E/IOw6TmgcLQhDP9xthRzlaahMzTqO8tZA6AZSDCiKwvSklk5hXVz0h9Howc9Jc2IP2y1ES0REzXJ6MCWjDuteatcTyQiCY9IW3XpeNSuD8+DDOHP0XnozDRqOG3croQcwjkkp190u0EF3Y/Pz5JgochSUf0YNwW0rVtYUDOBibd1t/dSw71mecd7I0C+RcVb0rqM9YXVABIaxz5s49qcOJKoRvjrKVvexr4Puk561rakHqSWELtcmLpj3PfZh7zA3ngVCP9f8iPSS7KO+bVUoJlvRHFDXoZpZNUQzwWTTByI2t3rd1oB6mL9uiwzjO4ZIyPpstdTuGGU0qF8N4dMsQzyCcpqk6TngNBDIY4v5JrSfjUcqp0hIRgvR6mHFHveAE+pTVTe0ClJ0bUKAlr+nDjBbrQ30tc6xKi/Nv+o191IJ3gTC1EGqiixLSUtpWkFlJIiRtqt+LEW0PKjomFyfWiXdd0mgg+Ogx69xR4nZ8ZUQhZzg0w8fef7hIx/++jM//2//nacPH/nw6TN7FdXdIXO9bepIv26UpuHVbPsgZ+W+cftrOZ97MPZyeWKeJ6Z5Zt8307WV2+3KXpRjpjXthjtNGaQq8m2aKPtCbdrpb7KyI8nalanWQmhmc4qWr4j5GlutRALnaebT8wtk+HX7whoTrSbC4X/RyqfitPD0dOZtv5Juwlp3lFzMQr4i6LbdqOXOtr6z3d9ZKyw7bJvy/bR976Wf232lyUqg8uFp4dPHT/z1p5/4/PSRUz0x7TOtJEQCe2u818LXsvFbufNLvXGtV/Z6J24NyY2/1A98Ss9McySRNHhZEkuYCCvsbyvrdidOkE8BaYVCYaPxy2//E9Yb+bmQt0SsExMz03zifBY+fvrM11ftHPj+/o08wXLKvHw48fQ0s5wypeyUXai7kNLcG3mUonOVJricFiuFzZrMkopm6CKl3vn69cb1urPvwtPTswVxE3WD5XThcs78w8//zPv7G+/vV16v2mk0L8+cnl5Ybze+fHvj8vsXzueZTz9+5qe//kApO7/99iu39zfu68rb25VlObHMhW/fXhG0OcztvkGIxDyxXJ4REqUF3t9XRVO933n79pVWCik0/vrXH/jw/MSPn1+IKXGKJ54vT7x+fQeJ3G5v3K4b76eVy/kD61p4f7/z9dsbX79eWZYvxHhGJPHy/InL6YX3+s7ttvH2/k5Mkb/89BM/7j8xTRO325Xb9Z3tfmfbNmuuI8Ssxql2Jc1qM7VKR+0TrClD00DlXgmi3GBTUl6i9bbhUYyUArXu1KZNjuISSXNEkhpQUguXOfPydOLnzy/88z/+E8typqaNFjUInWPktJy4lMLT+QOFRguNFouWqEql1TLsxa6QGSX2dn6GBrTGrW3kEFnXjZe//ky6nAmXEy0Eo0Io7KWxF+HL2417DUhMTHkmT41cGnvZTWGrQRqiNsk4Uia4jeb+l9jZOM9aCv10znAvVrbmlwpoy17rUFvVh/Ky7uOR6I/caqV618lG14to9x20xDiSgjZXGEEgQyQTemf71gYljZKKWzI2eXLt6OP6V7IzoXUboUrr/qxy2h3iMbZMSqMzEE7Hipbhyw7//T97/f1d7czBC86Ybgd7r9n0oIMZASkNR72IdJj99071MajQg0vfvcLw1w6QURWMLr7y+MhumB+DRuuuWc4YIy2oU4VDT8PIrOlzHPk0sGqd4YkOVNPjM/X6UTeoDkgBF2q/VxDAMj/ujIjhh1tzroJGKYARk4Xkz26GRJTv5swQC96e9xDR8ACEqiULBoSOAVGERZTuY7pDqNlxFTzHlbjjLtDLiMye6c6Bd98hRC3xOBitg5Tb13Yg6Q6u8WHc5tgZZCEeSuSO63HcGN9HX/vvvRRJHNF0QDyBu7I2Jt+84WEj+rp3tAnHsfAwNlU87eHZHanlDpSvjTuh/OGa47diYx6reVz98d7HebBAQXekjmNydI/0Z+3PZNeK4VHp+OuofBza+IDGOqyB76mhpPok4iiPZpB5MY4Va5yE1qvrnlcyYFWwelZpFtIz3w2H0WLXFBvbsfRylBx1lNOhi1Y4BHdaJ5+1oLorKhn7aKyRy+wISnbn/6AI5ChDtgbBgxAP+sTEIozDwA+Mgx/ZdVU/EEZMgQF/bOMQPEiMHK7nz+YOZTw6K31XoLxwjHU+/uv3aE2zino/J1ml75jHvSQ9MOHJiWYBqKRehF3D5qE1W9Ih25gD6fXtCv1VnSriaDoLCNk8euBA0UZ6z1r9s96pY8y9J7trHTtPkqNPxjkl+DrJw7OGcEB/+LwLWmyjXpN9/lF/xahcJ0NHfadjzBBxfa7/qiMm9vsWIAeBprDyIbuDZ0vh8L77Lcgvakj188AQHkHQTGuIxNhsn5mkWTREz4txfWnHZxr7vlNVHIK9cvifJlbMmPMTS8Y7jx+WcPz9yGR6xtDXQ/V8UJi9ePmkb5zYA4G+0rqfW9etBHDC8K77LMFgSq3ve+eIPMq77xExdGHPqIrtm+pzKUZuegjACcbZ9Ih0w0TImxjIw/P2t/QAIl0GbI+JP4OtoXH/KLJMz/Rkwa7MOA90bPrcSk0AIUdEko3jUOp+QC7ZgjEMdcHRodGyvzGh3d0smEIY57GPX9FBXoZfD3PCg72h+0b1h3ZqtPW1de1vCOi6uqpoVrbbpM9Pn/V4oBRw6HmXSgtGu/3M48tlQO02E2GJRjyOdT7yuR1r6oG43XjnpPngTSuF0PdOP1PFta/uN0kB7+4MQs6B5ZT5/MMnPvz8I5/++g+cnl/IpwshL9oJsTb2tVJ2DfSe5otKfohM1ilsnmeW5aRInpR4eg5s+8627WYOqgyoPRm0A1xU5xc7J1JMpKx2Z22VYHwlGmyLxCn1MtJaC+taKOuqjm0pppu0Sx45M6VMniZubWfalSAcJ3cnaDevbWNbV04XLWeZp8w06Tiyk0ZFn2tb4LLStki9X5HzHcjEsLDEQJszP3/6yHYP5LrwJndKDSCFS5o5p5lLXHiZzuQwE2tmNVktrXBvO/dauLfKnqDMEQkTe4YtNTaKdgyLQgqKtJ5aYCKTWlCk1l5pQSgb0DTotcfK2/sr55BY5ycST5bgSFZmp8TY85zJUyQEdXobO3u5c72+8e3bF/a5EFpGWqbu1r2viCGlLCnVknbr3RutJULInOaTdi/bAiHMTPOZ5QTzfCZFJb2+XVeWKZNj5On8QiuBfRO+frv1yU/5RJwqZd9Y9435NPP5x89czgshwIePH/j9t9+4327M80LKM8TEfd2U96psilpKmZhnWszUFlj3xm+/vXG/rVzfb2zrjRwDn17OTIYGSlksQTsRw8KUz+S4cLv+xrevV2LM/PUffuJ8eubDh8L1dielmXUt3O8bKU3k6cTp/Eypwrpeud1uxBh4Op8hBJbTiY+fPpFT4p4z4XrFKUaGIjF7VsSCOrvFFIQm2nmuSMQjLNJQUvYUWeZkZdMgobIX0aYhUZOZDUvQUInSuK0rKQpvc+B6e0cQ5kkIcyaGxJR1bbdSWeYTUjZECsHoSGIQRCI0b3ilZ6TSKmiyW5r55VW0rLYoV1qMkVspXGvh0oomwwS2beW+Vu5r4cvbnUqioDytISgybEqTNcMq3UbWxJvZX97Y6cGUFNZ1ZwoQcmKaInk3io4WcGWtQ1UamtYyGMdbzpbg41hJ4UkMs+GiovoV5a4HtyIJDXnYORQ94RK6gXn0I0HP42TBkZGMHA/lzXFEKqHT3hiqj3EPP9fU3zr4h98FnY5Ajp7sbY3Bb/0fv/5LiKfhhNMP68e/D8O7B56aUL0rjtvNMgw5PwzHFjp+0y8+ghQH09D+NJy2HvQJ3UkEvXxtsO1VD7gc1AAPbiC2P2R//T7+vH8W0Oit32UY0MfvwQwlOBjlwW1SQMkIFdjj7czNiWkovNfLcRS7ryaxOUrRgkvDnR0C4VnzMb2hW6Fj7sKYasGIxgfIHmQguFzg+c5x7d8/OljDynWZCeaIGZM/GL+Bzpd+OR/FMeJ6sCChK96Y0h+CIAPmPn7+s1cPfiD9Xj3I+OjLdeMIOWSwfXzjin96n+M4REYw5JGXyo3v70NID1d4vBZictE3xdCZ3VnSzwXflGKfcae7j0v6590BHE6tv39kvXsGVSfyYQ2OXCjHPf79XAC93tkd2O7AOJLMDkhfm2homXTohuS16XLgr1BSZenP4zIkQm9P3g100VnrXaxq7QZ8DxLJmPOH5Qljv3nGX8R8UHdWhmob10Llvn9/lPPuKB6em9AhtX0+5SgTQz8NnRMfRFIf08HOf/4Su7l29go98ORB6QcJ9zGEP99jYgEG/9fc0Ydn9Y8NJMsIiLvuUB0uXiHjAm7z6gGR6AMxJ8vv7Q47WkZpTyGEQ5JCnd1qf/GxDHSF/2uHtB/WcpDdwGFPHYM2j47/UQZcplobz9OMd8MrKcELY9LjWWe6qG/9g77rc2XnbED1uaLi7JwBiBZsp+Gt2nunFRl6OATpZVt6PZOLiHa360aSylytbQR/TfgFny8r9/GHsznr55k/Y/+vHGRlBEn8S0wO7bgf1zzKZACFGo/SY0cQuzx4kqF/HYJPx2D/A49QHyc9OOV0AsOe8YSC9DO5HeaS47PZfhpnrAwHQ/S88BJP7XBk77MgHP3c7BbMw9n0IIPf6X5xYSH0tW4BqCi6uicTbM6tvLOfma6H22FuggZRUoxgpOQp0QPCD2smbhTb8/R9pWugxO8adHVOsKP66+8LXg4x5vdg3eiZ+115qCjjrb3dbLlu3HtY0s9ORnOG/nm/tgdRDwPzcfZpl4fxjLVp3SFxVGKTQDRZ1RI731dDE1eTCUd0Yp+1y9o9NVmJn7V4EFfnfYxX7a88JU6niQ+fXvj4+RMfPv+AnC6EPCMhE5I6jZoVBySyzAseJczTxDRrK/h5XpjniTxNpClzX1fi7ca+ufOnJOdCsO5buk+1BE+/UlaejtYKItrMRp/bhNQ6bNYi7Fvhdlup20bZVuVmyRPLsnB+flai6HliXidyyvr8orQNoOTRysezoTykgXnOzFMi50huFswP0JLtb6BtBepG21dk3whpJ0kjxImYEj/lj2ynSN5usMK+A5K45IVzWljixCnNRONXkla1axaNVQprLWxSKTnQYiJk65cXGyVUCzwZ4qEFUohkjOOqGfqlNCRWpG4QCjE2rrd3bnlmKxuXdFEdJdGCdZnltDAtmWmKyjkWG9DY943r7Y23txPhEknhTAqRVoM1kxLinFT6JYAkTdYUQTmjNACYpZGSop9SXpgmIabJ0HqB9+udOSemEFmmM/vSuN93fvmiAY+QAmGaSa0St7sikEPg8vzMhxclP39+fibnzPvbO7VW8rQQYmbbV273G/f1RgiJkCZtQlB29gLX287b2zv328rttiJ1Jxk5+jzrnIRoVCuSoGnLKiRxu+3EfCXGxF/++hfm+czzk/B0eUd5zir3286yJOblxPnybCX8yv8E77xdLkw5M80TLx9elGs3p67/26Hs05WQJtq0+123KSzwJBZgDU2DJC0FJOkaL0tW/Sob61bYiwYqawjUCK2oHo8p0PZCqZV939j3jSlnUtS1DI50nGe2UpnzwtaMTA5rEmL2gsY6ak+SuS1P1WYNzWqBm9boaof5VLnthWXfuZadHCNB4L7tvF/v3O47395uSJohzr2xSorW2bIKEppWcpjNFix4FcCQwdJNjCaqU/YcSEG56nIqyk8s0c5NLZ+vTSjSzO8IVtKmOk6EUUHxcG6o3UUInTLIka/Of+e+xXctLA5+guvvhwjAeN/DF70jZcABAEcbZCQLR2BpnHXfB52+j4V44Opv+dzfv/5LHE85a6tLjW7poZfzcRLc42qUog+87613ZAm4MT2mzL/6qwdDHtEEMXpAxoNFh/eH+JDxGdd2R0J5ntq7KHlcFeQEU1Les6npoZ3tk063E4OSTx55O/SW+l3nEpGGk1R6ACNGzUC0+igY/eVGt5Ig6XhLIyY17KZ5ouxZMwhBW7rWJpSi7YUdMRWSfuWgNb5z8jaQ9Oyr2R4PQQNvFy2HulR/thQDOSUk6Ibq2WqwuvlAlHbIPg+ER7P106iyHkRSqxoTB4fVgxY5xQ7LdwJMnVs38iwb6LIgAWGUQ6jDU8f9m2/eeCiTe3TQPOseGAFBLy/6fq09qi2Ac8aAdfoiAIe+zwieYXfHt4eTAkosKh480x0dD7I0jGn7z4CPMfzxPyK5jol/bzmunSvQriNgX4ogGY6XXjM9GMzdf9NsYMoEVCbUMbOouQVFFKBhpY9uAfdAFL3EyxECriOqQYY9eNtlpgcWsD2okfzJ6smFRhEhSiC7E95rWYy4tVYenNOqrBoa5HX0QejBpn3XbiW1HcbRg5OHBga9PMG7i1i5TW3IXvSADIGQI+FhvUwx+w3c2XUeseqIq4PMiGWEQyCQkKCNE7RL1uApOUJAvTIY6e4Z0eTT+mc9uKQPAuTBDPHLWQBaUIMhdFObcQD63hky786619ATVAaqNCPsNkJcc+tqrR0JM825E93r/QSoajRxCHrEwxDCISDUhL3+/1n70yZJkiRNE3tYRA8zc/e48qiu6pndAfD/fw0AwtISaHe2u6cqK4843N0OVZUDH5hZRM2zuiebCJYVFR7mZqqicvDx8svMzgxQuaDd5O4dxe6Z1VYgv+ycSgVJoNSghhrBqN3a0U5BAN1HzsoQESSq3JTmAfb7uUP8dv5b04MGRjpDzAD2nDRF04A7AaNSOzzSizw3iozvLxN/0ddFoAbBi3yuWRsdeLesPbxjoyMnpcYLKm81tVVINVvNgmB7T+7mzwGRvW64mwsgWHeWLodVp/jvvVjlXuZ6F8cWoatONdc5caaOd770VDJn2xVLx7HIjAJHuUcPa63W2SV1UL0tXrlbva5F9Jld32iaunVK2jbt3iO7M2FfC1EFXK3RAEzrnNsAutL2bfEaZUWdDJ1OK/4d4m7P9HpH/gq2f/byVxsmdFupsbSaCO/WWUrayXgYYC7COAq1BNsTARm8c08BY+45G12N+8AowVIMtKaMz5WYTacFTt1qg97aGYYxNNm2bcHAlmL7WMsfFGpLbRVxhn4HHH1TF6yTcRRkkBbEKw5AKV22y4tKL7hawNo0acTcdpWzcrU1emdrBUtr8A6Pfv1eO0PllMt7/VlABkoxluDWDXpnhILofjDZpoC1MMTBQHqd5+zLbctfRZe3MfmKfTcKh0Pk9HTk6eMTp4+fCMcHrhm2ayGkxJJWwIpNDw/MJwULHaDXxRwZxyPzPHM4HPQspcqWVnIphDhwetDOZiKBdV2JBEIcGeex7cO07WuEae2nUipxgBkhp411uZIuWW3UvGk9FinEITDK1OzDcRhw5ia1aI2afOJweuSSL9q2lMlsqEApCZHMNMKHpweu65XL7UZdCqluJDbCWAmTMBDYOBKGUc+uGbISAqd5Jo4Tn05Hvq/f8W298r//j//ONhyAzD89PfH99MipzGzPC+kK62vhulTSMJIPEy+lci6FGxoQGoMwRZhLZiQxSNGaVTEwyUjJQiyFQzwxj0fm8cBYJja5sZUE6UqRRAmF52XiOE1ctgvvxncQtAPkJIFaRz59esdv3x5I9UqcviPIlSFmzq9Xzi9Xrocbf/p0JMiE1IgMyua5WhORZCD2eDgiMZICpCTkDOsKzy83Pn8+8/nzK8/PF02Hu16Zp8g8Bf77v73y+TTz/vHI//2//plxnvj43fd8PmtK2vn6yvffv+fdhyf+b/+P/4VStHvct5czt3VjHEbmaeb9d3/h4w+6Jtu2sa4rl/OVOBx4mg9Yhw6QyMPDgZSEEGakjr1YclmZx8CnDw/MY4Rc+PblFaFQy8pyXfjl59/49ZfPfP78jeeXF758+ca7d+95fHrg9PCBH34QzucLz8+vfPly4eEU+PTpiT99/1/48Hjl28tv/PrrX7ler/z1p3/l/fv3HI8HPnz3nqd378hr5uX5hWW5sW03Xl+/cL1duN0WtnXtYIbysakowCg1MMigerBW0pZJ+cIwznz68Tv+/Oc/8fTukZxXzq8vnC9nXl9fWFJhzZAJHOaJ02FG8so0BE7zyMcPHxiHAfWZKkghRniYJ0qpHMcDt0XT4AhJ3SRBO1BWs59QOR0QrUWWMyW5r0jXq7lQbit/++0zz7czS00c5wORwOvLmedvr1zONy6XTVPfgtbrApd9HTNo5QRqxQvn79Q4zVmjspTCVCoDwsPpka1GMgtpMRZ8KVwX7RI5SEXiRqUyDkJOWes5lqpy2e26rGmmhNoai3jWknZrjtZxVllqzecsga6kMJ8sMhoBIwQt8B3kvnaw6iWz2RurVz/bG8IVA5dAC+Wr7FzXdVcwvBc992CT/+wMu2Yq/YHXH2c80dvr9aJSkZRoFP2cHDlzNEyNKl/R/X9tsUWR2Lcmb+8YJwaGWFoN2WpcmNlX7V6CRnbxei7dLPSrlqIA1KINJaijRluqRCrqUCg9zsqJa+5FS+fwTi/Vnw1pTr93NMGMHofPdO29BkZshnh3rL2obiEEt/r0r2hdxIfo1nPVHN+qPkZzAbNW0R+CFmIbgqK0hNAQZKlY6WUx69XgnHB34nSGSyblTY094a6gLrs1Kfu19IGr1WiX9Nk3x9g+Y/gCXqtAioKabuiJqHFYbP5sm9Cq8dd7it8eNNszcPZd1XqKVx+z7J67Vu5BJwfVavPHaQm7Nh4HNjr32sfpqSV0h84OT9lPVykNEHDauDoFfUnuovf7pRL9oex/Kd3xxwz1auZ3QVrrTYcg7CttbzWErUUiAq2jW0OD9C9vaR92gJTXR2vr3L/Rn8X2XTAUJyBtbvzDweYwRAWdRApBitaoCT267POq8xzIxSK8XtiwdqEb2sjMUbXUBwe6xB1BXydzBgSNPku7pygrsFQrHmispNBrv/l1/Vzr/rUiyNWPRwdrgl28iKa6utPZ+UZdtlSLFGGAiwsB642lcihXw5EER9HF94bNkW8r12V9k5kzg2gb2bBzAtuIbM12Z63aPvcT4grOffbg29jecIWq2cI2xgxeq87FiMsnlReZ7NpNBtvXWAqvaP2RsmNWGTNDO0FVizopiCoGlrTnFrQeQbVUTUu1St7VrlRWC6I4sBIM9JNUGiii4t4AjNL3kHdLLLk0ubiXLb5HGuDcVsOP5j7q1aNUvZOk6+a42+2arp39rLtj3tZB2rl0IND3PTavuUjfIAIh1M74arvd03pkf8IagyUZIO2ALban99cVl0u+b+kAldNSNJCSCdH3rz97txsckApG3ay4DlY2RZPxrdGJz+V9tM6vo3IotHWCnW1Cm8J2HoB7HPeNJbYPRPjYxc5tq2HkctDQG9WTDkDo3DYTxwfWAm/W6bF2UK5S2z6p+/UyvUhbS3/I2q4tqLOon1dmiqZORAvu9PPhe6AV8KZasMACIHZRr/fo89wRnjc6CbWrsutRuWen9dTke4Cpp+GbNei63fZ/stIAQbsLtLH4QqqMt0V0fVwLdyxj+vcULJW+/hVLOTC52VSrrm1zflB5BMrcITgYb2fW5sfPp+0YMJmWDU9pO6uWJmd9HBW07pUx6xEtzF2o1GziJgjTYebwcOLw9I4VIa2J8nJhlQxxZBwX5sODFlKeBry2mBb0tefPGthFNoZh7KCyOJCv+9PB8hgnZMAKG0dqrWzbhshqqaXFMic05T5LJkhhmiqStBsiAowjyEBJyWqoZK6XK2lLpLQyh0okE8iktFJyJsaBECfCMEGdKHkl5czteiGtN8gbcxyZJDISIQ/qoEmBoVIEklTCUdMQ03BkCQPXGrgqIscUM0dRsPaByI/zIxxOBIH3hwNP48zExHor1DVAiZQg1GEkD7M61dcrL+czKd2gLkhctctXjJyiMIXAIJHAaKytYjXRzIIYRyRkdf4lUIuQa+GaNy5p5bzeWA9aFL2wmtzIhJgYBmEYI2GIkE3o1oEgIyGOfkKpJE1V3BJrWpEwEOJAHCaWot08L1vi/LqwLZnlnHj+dub5+ZXr9UbJyrwdpkCcIzIIW71x2TJy3fj2emI+nBjHA6eHE1veON8qpSSCaC2uGE+AMoKu1xuveUG4cjydmOaJcZooVchEiLM66lEorIh1iQsoi2mKA4ePJwVW08a2viJk8rZyWbJ1uUPTwnLg+Xnl55//xufPv5LzainbhV9+/ZUCfDcfeHr6QAgjKUHaMtuycX29Eqwe0cPpie3DR5Z1Yt2eud5e2bYb6bAxhAOBgYeH94zjxLqObOmVwkAlEGQkZ63tW7PqUTMhzb4KjeXt9TFzzZxvF15vZ2QKjDEgcWCej5QsHIAqgYfHd9osIA6I1cELNSNMJnsy27JSZYOYtDZmSpr2bP+V0vWi119r7M9mrLnek2aT64BVDldgK4U1FVIV1qLXer1tXNbMdSusxYRxSVoKopk4GURZf+0+JjrUBjM7gGr2iX4mVVhzJeTKXAWJI+NcCculyWVrcEkNsJbKkDO3bSVLYQAG06/SJmDQUkSSyRr2NP9GCQDjoKA8Esxm1QC9249kbR6kcju0Lu8abKlNZ7pvXjxLim6v6OMa8WOQHYZDA5fcdfeeHM4g2zcE27OlMH28r6v8H73+E4yn0oygcZxQw1Aa8ldrtYKs9AfA6WSYQ5F/1xxEfTBpytlzM3uRVGfGaFRvc8DBNo8yT5oJScFp/vpqGfcGFqWsn41R7zNOkYqye3LRXFbchmheWW3V8ysVzXGTHQB1/zwdAOmRwFK0iPnequosHqVOalFx2saoVqB9GCx8GCpZPPVD5yAAFD3kQwhMw6BMLVEnRAvMlnbgnF3Qxhm8voVKqYIKJZKuCyE0wzKXtsPaM++mujmZanCE9oz3i90dD2eM9TpYerEYggIytika+BhDS6UB7LvhbsPvnZDuFPdBtsiuram5O81QlVb5lCYwnNXlRmh3uKCiG95cIKtTYA5YdXbEvRHp4FQuDglhBe5tL+8+3wbTHAHUsOf+2dR52Y3N18ivJe5Y9u+4c9bcIRM+UYyF5hKogheOa75xA57M7ykW2fWFbvLdBZUW1HOvOhpS74a/FuRVbamdabB0DWf46D6Jw/26dsdEWpRYcBDTRmDSVOnfVo8jBAPibMRBiOLRAprT5useHdrxfVpNiaLzUEJs4+/pkMqoCqIKwveBG/v63JVgDkrrHHknUXwzo6mp5l0FlOZbDR2uDtyibESXeV6wXC+QDcCpuGT050ScSSL2T9m12pa297rD1NfBQTXdBz6nbbPq8xZV6tXmz5sltDo9Ys6eM0gFiAZQmmGSXbFIZ0Bgb3mtm1K8NW1FG1pYzQxzdoVgctblRXRbp+kQd3RLVaM5GVNrS9qZqVq9D/88VKI5VQqKKOvOU8s0ZbRanZgdg86Nn7ZWu7mw/aoz2Y0C16vK9lAZJpY2IwRLSTW2Taul0GytZty1VFpbS5/PQgdIe+0dk4LB7Dq77j7F0P+tOJWnT1m9rJQbUylYNMVZTLsZwE+pj881rvP3vMvQXof4t3UP9jS/istEK6Rtc4qBqNU73bSZ6WfOZUJKrl9otgg13KUctw5l/gTS9xE2+r2SbL/z82PrWStsOfdi4BIY7el6yqemQTbwt9RmT/jP7qQ7c6oa82BfFkHtLI+G7tPTHZDSkTbeZPU1VcaRFih18Kki2dhO0nUbpr+9F0sgEIrVrmI3Je1ev98P++BNMaPMQZu9XeHR5G6VdJnn+s7B/YoZ0TgrK9AA9bbvVT6K7f92QBrgV/dL2mRhi2o760yKXbcHwEpbj75fPDVRbVTrkGqfr21OOiub6owvmgzRIWY8BKHrZfIhBMIQWnfSXI31nHXuQhDm44Hj4yPHd08sVNKyst7gVlaQSBiuvP8QmA/CKR6M7VRY1oQyP9XZ5qZR8hgGrdMUQwOeclXTOdhcDoN10Rq1mU0phSA3aikkSYQi1sVU/yQpZIH5AHGDkq0Q/zBoM4CUSEnT5a6XF7YtseVMGIPW0CuJLSdKTjq+OCJxgjQ2ZtX1+sq23ih5ZRoeGQnEEpCkfkIJBQmVGgqFwnR8QIYD23jgQiCWyrRtVNGaAA+1MpTCocKPh0ftvjYEphCZgoJa27ogWRAZYYiUOJLjyPNt4dv5wsvrK7lciKwgN10rDjwMA3MYGCQidTCQxPRUMa72NCIhIWHQAHtKlFS55cR5W3m53VhOC5OMjLJSc7JC8xthFOKoDIySA6VGJEzE4cA4HmyPav2w27axbBvLmhimE0McGYeJW6pcU+LL5cq3z8/cLgvXrzdev525nK/cbksDGKfDwDgFhgHymllygtvK1/M3nkR4N82cHk+saWF4EUpJVDLjGHl8fEAQLtcb3+zay5J5fFeYj0cOD/QObsOhBYqq3XscB5McMITI+3cfAViXG9dLIm030nrhdrmSt0JeIznfWNfCr7994e9//4lvz98Ig9rMdc38/MuvDNPE04f3fPzwEZHItma+fnlmWzcur2ceTg/EEDgdTlT5xG0deX69cr28cr1ltnXjNH9gnh44HZ6IMRKHwHUZqYyITIxDIa+BbRWy1VGqDpxnkOxap1CDdtXMNfNyfWV+OZCl8ng6QRVCmDjMCjYO48if/+nPiERKVvsirSvL9YzWINYuCymvqgXDoqygzQK2BGv4Y8LcfIxujbsNWC3YbpkquVFCm74GGpMuI2wZai6cFwWellSU4VkrtWa1Ewxk0wKBBUJRoEnbXNqvK1I8/dsAIjM5S1HgSVIhVZAYGaeJIBdNfytV65eZ/bmWSkyZ65qVoBQECYM9sz11jGpHoemVyqzWzJdgaYFi6b+5Jqhox25ThF4H0bOEPPjf2UudvV1qaSnc1XzCpiNr1iBlDNrp2YJLzozVn82YCVg9SfWb3M8p2WgTrv+cwfUHXn8YeDoc5uaMID1qU4oalikVehvqgJF6uadoObNjDw51DS6iSqlFj8xQECy/3vav70v9d2e8vM0xvJsEMRdf54xlVWd2GDTdawh6UGopeq9ciJbSFt3uaIYi0KjofidxC5gGKOFGmDmWpbMYPFWnokCXZWwo/ZsAcaBEIQ+yMw6tQn/bPH3ePD1O6Xb6GQlCxNIjrN0soRLpaQzelaradaqtbd4295CbM1nNkeiCwdIS3243HxcOHirtXHeoUjLd7REJ3bndzWdw5kNw49+6vHi3JD9cu3pJe4bTWybUniHl9/F0jL0J6/vtLl3h3ndo77WtYPct+2KkVWNBDqf0VFDaeCt7AevOTWjPdu8QmdBxN2fn1Pum1vtkc3Z3LpWd1X5Fm4tkLKLYHSkXXlozt2onElutBhBKsRSWnZMiEAcvJOtOEkAw4NWdSwcS1RAAEAeNGj20tnlS4Sq7Ghp9g5VayNZi2kHrXXYlrsic3SAO7O4cVj2b/QzkXS0vryPm+83BT6eZquxLSrGvCjTtHTewtJ1g0Yfiz94LDZfGJjCZdjf+3225tnbV91qTg108OZAF2LiDrY/Od86bjbfa2u26XuCOVN+nMXbWamrpsEKsCnY5wOHzpiCQj9OBLWfhiHUV8bSpvSPmlGBnE2HrEIhRGMbQ0gzVEffOZLE58a6YSzEAyYBfB6t9HZRepcZGA61qbeBtYys2XYQq4txlg183NkOlGvuhdyVzcKTJDwd8ajduXGiUXLVjjTlcMUZK9qiY1hnAzrvL3bZOqDzxs4Wtm4l8jbJxPwaaHPLnrS0VR/C0Y2/PrF3fZOeHV3QdXD4go85wLbvOKBbxrJZeaylsvu/0GVxGeHFK/25p89a7rikA2QEOTyss7XNag0O6wLCuIVmpO/q9VmvIdYe0/epr4xuwVmfP7lO4nUXb19brMklj9/Q0JLdpPE2wpZVXpbfbQGmRjaqFpbGz5Ndo3fNsfhRTu7ehfH2V1df1WNMF1B7BjPfGYtNdhdZIJkTBabjbltszS9S0k1I2BRSCsbQpzSZR3RKpomzEUDUdKiftBLwkTeGLUcGr0Fi0KoSCpRGFpDVMWgF8r+mEs5P8XFY9M17DSFS+FwOBFX9yl6cDsDZ7eEMBb+AhxLu9sDNurK4UhEFawXGXjYJYiqWfd5UEzsCquwl3ddE7EPb1vAO47thN3L1aMKYxpzv7VPxZEa2NM6hMKLEgQyCME5/+9ANP33/i4btPfNsWtiok9vbgyvnyypoSWym6ptX3g+mSbJH7EHh8eGSeZ6ZxIgwDWArJOEaINNkiEgkyQlUAMMaRYShAZCsrmjYemOcDh+lILZV12chJuysHk3MxBkrOXG9XSnnVWjR5Y00bW5q1KL4UdemkQlHmCknHnZeNUja+fv7Mx/dfeDw8MT9ObNcr+bYScmWMgRBGsqwQAjIGpsMTuQR+vd748uWFQw38MD/yX777kY9P75iOR6iVoUae5hNDHNRZzJWQ1OE+Rq2jJTJx2zKXnPn88sLPv/3Kl8s3rtcXQriBbNSw8elP/8Rfvv+BP//5z7ybPzBw4Px14/l64/m6sEmhDmg64BCpYYSYSfFIzQG2wJKF59vCT59/4114JB0KchDKUklrpZI4HEZOD0deXqMWJyfw9O47Pnz6Ex+/+xO5inZXXBPPzzctq5Lg8XAg15HXc+Zf//Z3vjy/8NPn31hvC+uycH7+hjeQSWU1RtLAfIjaRWyI1PFRbc9S+XZObPnMbYOnx3d8/PCecYCvX/7O85cv/J+3M//8z3/h4fGRx9MDt3crMUzAhS1lttczn799sZpGM58e3lmtN882iASJpA3SJmwrXGOmlML1eqHkQiAyTw9cXxPX64Vf//6V19cXrrcz3779xnW9kUvi4figIG8MXJaf+fXzQuaZ6/VPzNPM07uRECbWZeVy+Y1l/UIIkTCMFCmMw8RffvwL63Yj58R6y1xeM+fXb3yTMzEWYix8+PCJGD4gUnj+duVy3ji/JNZ1oJQEdSNdV2WJl2w+p3U9rprNsuaN37585uX8wtPDI2XL1FQYQmQ+HDicjhyeT9QaSFvldlu5Xa6cX56ZJ5gG4TAFTo8TEoQtbax1IBVaOYRaK+u6ApsB4z0PA+vQ7vLLPTEJgreUFtdPweSsCOfLFVgpqfB6vbFuSdlBtTYxXbLXlyrIJD1jwfxKqYFSjYXSgt425uJjglQqkjJbLgxBbYtpiAoCSWbrt2RNWbuQElqtOsTS1yQgxYMfamfdaR63DUo1G6A0/yJtiXX1YIm0+tldV+izL6umAIbYi4t7DWm/l9s7wzA0/SS43VPJWZmRUtRm6tlDtDlR9VJ3f9j5CH/s9ce72lnLcOjsl5zKruvPXhP6xgIn3sObiYaWa87ufd0U0q9iBoWDAfsiqBUUsZR7oEd+r5Xb3+4gpGy1C5I6r8Gcfi3mKlSy1UvBrrdbaDNa3UHz+zoY0B2pvUHYI5T78XYj1tzhHfCmRqEok9iM41Jjay8MaujpHwOyzKgVqQ0QcQfInQuf26LoSBtnMGnhc4T0jeXr4ICTfl5a3Qo3ovcz38CkqpFK9QWMoSQ9ytkdMx/b/l5yN8/dWZbd4euvfcrEv/f3/fccEGlHc3+19t7dHqvVJKsZwD7GBqftry53B9QdC/erdT4cQ3ZHvUKod9dz0KEBl6JCOPgcwV0L4eYgVs2nprqDv1tf9ZIoUns0tS2ib2ydB09PkmCgh424zUkDwX63Ivj+bnWxROdBL61Ojdep6NezOmZhB0LsfEkFaXr6SU9RcTaFrV6oTQg3XKPq3nM2WrFU0r69xe7VSuzvDP3dPOGOnDOM7g9AAxgrjUllWK49h7QrVhWIuBJxAGEnuoDQlMjuJvzujLS9ZaP3NJG9t9M+1S/je8Y/40eyg4gdwATaPJfGvLjfAPt9Xzyvw2RcdWfRHnvPvHAGVaj6O02TCQYiOuji6kXMmPBJvJ9/PadlN99daTuf4M7Rw5mYzpbSlJac92wu7tbS5/Y+XUvaNmlFpREkRDwtyp1U/0p9c0a7qNULldI7l7Q0nlbw6n7+9Xd6hkJtHCt8f7WaTHhqoZuEtl/RtG6xc+Vy21b+7tw1o7H287gHZHQdDDK/myMFGu6NmA6INuacX8O/VfQg6/J2lomfV7Bn2+nACsa4tO+ZTOj77u24+37UZ+x6T0EjZ6C0jdP+buDD/te787l/z9dd51gPodtOrgMd+GiygA6O93F3PdqA37an3p7Lu63SNwz0Iv67M1Fybd3PQuwpwg4S6pz0WpBi+kSNXhV23vJewUs7+5XGkA+i7b+rZ/SUrLLf47VmGMeg4EltgH21z+yfaS80PfBjhfSraEpbhZSMcSwGfu6Wcr8P9vZPY4y3gJkx6KQ08NMFwx2o6yz1nQxRPS27Na67Wd9bEX5Z2b3v52L3jSq93CEYI1b1ZM2lpVvo+cfpHcg0cHh64vTuPaf371luN4Yq5DKw5WjyT4NkJSfStrbajzr8QqladLgkjdKnbWGaD0zjxHQ4EYeJOIzUKgxDtfMgtu+VBeTA0zjq/NaiwRIFliZCjQr+l0QJuQHhYlNey4YChdpZKsZMbOURNAiuqe+VwzhqjcicyauOW0ridrlyeT1zfn0hjE/UbUNyJi0LmyTyoGwKmQSR2EDKLSVCWoGBJJCDkKhc1oUhaHe/4/GRwWqyhVSMBlYIlgK2UbnVxGVbeLle2PKm7F+TM9M48un9Ex8/fcfT+w9IHLmlDGnh63nhZVk4p0SOmRwz1QqCB4ExDITxQAlBmVBSKASuKfN8uxEZOYQDYmjjNI08nA6kXLg8PrIMWtNsPjwyTsryWreNtBW2JFSZtHkLgZSF9brw+nrlr//6N55fX3l5fUWinusYCtMhIiGybYVxCAyDcDqODMOomRpByEnZV6+XhWXJXC4LVGEcIg+nE7frzLJc+fbtG0MMPDw88vHjJ2qpzNNEfRBSVZB9ywvL7ca2LsQcOE1HDtPMND+AaHriy+uF6yVzfs18Hs6UUti2K1FWRDJDKJxfz9wuK6/nCy/nZ5bllVzPPDyOTPMD333/yYBW4XK9ImHhfPmVn36+cpgPPBxPTONMHOF4EgviQyWQtkTdMjVvmgoYRqaHE1ISQ1CALyWtU1XqxvEwcTjMvH83c5gLp0Phcj2wLlcu5xdyyIRBiGHQBjym7UtV1t4wjByPRw7HmYeHB8qaKCkzhIH5eGA6Hnm93ViWjctlZbltrLcb1/OZaawcxsDjw8R0jAxxIAyRMUzUIgwrKmel6r0lg+Tmi+J119j5w24vNEloP4nKLa9Re7ne0BqtVeu/GXmjC0q68SR+ffNXq5cMqk1Q9iD/vdR12yRnbagQx9HqH4WeLSIuc2vreFwR4jAZmUW0xhYddGq4h/kasgs2aX1a7RjaWEaiutR/7lk+7HS+dwOH2upaaKaFeQjN5tlnjLgN17RKwzH8mhUPuEO/t06z3H333rb7j1//ia52u6hkraSU2VY9sO1W7igZYudOWnPK/S1oVke30/c7pwNXzWE3pa4UUlPi/tVa753Wew+qe1XY+pbKVjTyMaVKyoYk7sAjNQZKqyHSh1eoJYC4kdEp0HtwpOD0wb5Zckr2hdhuk3PZOf3dMWsHRQIzMAxCHgJIYttg29SRHQZhGgPRNoTmxidECrIvakZ3stUYqvfAX6NceVqDsTfafLicMOTVD93OWP/dptNTAGLMi6AR25aTau5NdzL0+8Usv72z3w6IFYlUYyQ2ltPbgmp7ltN9xNhTbLiHiGz/uOtSTeD13/cDG3Rx8M3sfadKVTo5ds8OxhhYWnq6Sg309JPAm3F2YdlrkdD2U3Swgfar5p+WneDQW/sc9DQqN/irVfLVTBrvQlmoQYUnTWjRqMm65qUbvD7WOzCG5tTVXepq3CkXNwT9De/iUGtUA75irV6lFVPWa7tMcYDA/3SHwaP5nr+7B3C6/CnWvSwbO6ODT3qWA56O1We473ePzjiDoGUU2/XdWAxB7sbYx7KXGWK55ntl7MCCu40d/PSOGT6v+26QOlKlwMYYd8zArsjbusH93LyRuWKAYGlpSdztOU/XcYbM3YV9lauezZR1Uyjw6N4lxkqyeh4htPlwhmVFmzRgzqEW7XWLQR/A2RnuJHanTNo89SLgoSnXJnP8ZzurDhLmjAVXjGVrjKa+T+7BCq3hZICpyXGqs16c3SMtxVMvYTJPyS2uQJth5efKAxcFsWjiPwKenMmnz9X2JME6lrrB1QEiLfauFPzqKYzVGRxJwzAiPTUWB+ESOfe9pOtgQF225bE5aR0i6Qygtp92MrozUvte3htK/kaX2n5O9/UJTBYXlzv3QZ5arUh5++jvDSW/t6fDejcY/52zPNwAbVLSz0XR2kZuqDUg3M9n26Nm+OVdSMEetdSitvkd8NR1k07F3oDUdxWs7Wzgar+/4/W+tZWk67IWgQ792l6LrQZh1GgAFUgpa6qd6Xfl7GvDGdMaeNpz2lbylvqeNnCsZNVZxeo3xlqpsWpqVBCiORXFyxXEkYCQijISPDrdaiTubbi+7VrKgeXwUmtpwFMIcheka86E+wPVz4ozp1z9hx0QZ2dTsFpmka6ntBubz2W7Jv1sFB/ov/cSQRqA3veQ20iqbzXVHHQpMpWatTZSxpiUol+uoKDTGAnzyOndB04fPvL44SPbspCL1szbVl3nZd1IuVJLpqRVp9aK0CoQXVi3G8vtRtoSl0uwznYzj48fGKcT03w04KkYq8ltOmU1xRgY4mj2b6QWIQ7KZhrCTGBQw2kAYm52SCmZkhMYs7pkGActcqwlG3RuQ0Ab3VB5mA8MIoScWW4LpITUzO184fz8zMvhK4fDR2raCDWxXc8sZSOFjVgiMUdgYI03chG2lBlKZowRpoE6BFKA19uN43wixInjwxNjGIgSCKkow2RTObqWzK1kzmnheb3w9fKNVBMEiONAzYH5MPHnP/+F73/8kafTI1uF2+3Gdqt8frnxuihbah0yOSZySFSSsdAGxngi54EkgRg0rXcpla/XC1ICp3hgKpGRkdNx5mnVQs/burDcZqByOD0RphMlHLilzLYF0hqRYVQm1xC43TLPz2f+/tPP/Mv/+S8s1xsildPTkWESxtPA0/sTcRRuN0FKJUjk6TQSGBAiG5FbFlKpPL+edd2qBp0+vH/iu08fWB5O5LTw2/M3rpczx+OR223hw4fvmKYD03hgzYktbaS88Hp+YVkW1kvm+/c/MI8PHI8z67Zwvp758uWVb18vfP7tzLYUAykL05SJISMkcsrkrXA9Zy6XZ9Z0ZpxWPn3/xMdP7/nLP/+zrhfw159+4nw+c778yucvf2WeZh5Oj/zzX/4rh/nAfJhIWyEnIW2V7bKwbRs3uXE8TczzzOPjE0MoLHPm/PLK8/ON6/XGulwJ8sTxeOT9hydqieQUeHn5xvPzV7Z1IcUNCZUpjmzrSimJUu3cRGE+HHj34T1PT488nU6UzYGnyHg4EOeZv/7yG9++vfD1ywvrTdk3aV0YJHGcI4UT7z8+MATtYDnOJ2IRhkXvUQ0LUD/ADeDu6zV8yWXvTgS6jGxvF0sfOyerH6m6Ewsm9MBjvbvQvuNpqXtGtf395r7dNrYGRDWzpcRgPmccIpK8QJ7dMZjMrQIhEqdJ5xEYGJSckM03KUVTIKun+0nz03PerESEZUNUtXFaDWRo4E+M2Fzq/Hab0vSFaKMTqnbz29eb9flVvWo6renBfWkDB568iPkuhBkguE4rOxb3H3j9YeDpel1wI11CNEe13vsy+7WnNgPAWe9hrzUrePelZgiJ4Utu9LQ/XVnn+h+qZzx1yj//9rWPWG8ZlhVui+XLD9qhRYsdCoGCSKEVyxS/rlH0Qmwb+u4epcfS3XCOMe49vAas7UZOhzDcTNTojLKZqnUPCAyxEG2u4iDM06Dd4YC0rhRRgROKp7jBvh+P14nxU+OgVM1ViyaLWGef/hz6XDTHvz+KEAZl3rij4eBj26wi2v7SvpGSMrICWlS8Feat3WPRFqDugLvTZo4xbybc1n2Pxr5lOfmrFcY3g1APoqca+SJXt+TYeff9980J2DlNNhfaLbA0gNQNQQXcoAGW2PJLj5qCM8gsMuGOpKhAiPRnUkGMjbHXMQoOBu5AoL2Q1c5vQBVK1ufKohG69tgWpda1w9LxeqpdzuK7BrEUykq1nF/dvc4E8c5THp12sfA2YhyDFf4VdQqq1f7yNDufMe9yVau2UU5JCz6nQlNGLjibbmsAg82JiEVuq9HDrZRr7WsraCFOHayfS3fY9/KgmlPT09tsWQ1IM0abDajtT98GLgZ8r3uHi13RwFqLGquqnux8aLqj6/Cy66aEgZpxEKQE65rXgfJpGhVsK56a6MorNKfVz7gq99IA6Oh5sni0o9p8uwOOH2GHP6iEu8/16I8aJgWsFa3X39KN63I8qdeHJKv5ZfMYdjXGSJWd1O1Sy8bagHWzKtr5cOe/Wj2irMBCSlaUPKF/snc99GvY+K3+jsZZRIE0OzvFnGNdmw4gFotMebq6MnmLAr32p2SV2dMYrZ6a6p1SOhzaWAtN6e4MLzv40mZ9JwdtfBUdw5YUbNbHiqSijB4KSBQiAWpoe6UWQVtIFxBzsItYur2LTz0ztdX9cU5Vl8nKzJU7MOrf09n7lGrZgzC1A/YuY1oAQnqNyLvPVpXHboTuXx6wAEgpmTHY7+9MHmVpDBaV3OtTv95OlkjZya290WvjNlC4SuwgeKkePm1rWqsCfqq/pAVzXC7q39rhtrJPO94LJi00G4Psxn03A92otZsPgzOstCuSp6ENNVAMBM8GOsUIJaik2jaodWvz72B8SV5MXW2wBqAIDFWN0mqMaCkom8iEZMmJYk0DVJfoNfNuD2kqwv7Z+5lFPHqLPocEvM6Tg06NpS9q8GW7fso7HRb0rNdSwTpzllIIMdgZ1Zqh1YHdtv9obH3otpjXvmtrwNtX7azeSitej3gqhckc75KHsTap1FS17l+ALD3FaD6dOL1/4vHjBw4fPjI+vSM+PHI6nszxEfJS2LbEuKysm6ZhjPORYZzVloqxMQJKMcdDdE+EIRCGqAFQy/1f19UKiAvXqzcQgnk+aDv2w0i3LzVQWUXYVk2f1Don0dJXsFTtZHOrtW1qhceHd8yHjSXdKDURh8A8T4wPB6Yt8e3zV0bEYA7RgtiYDYmuHyVxnCIfnx757fkr5XZju95IIZA24AacV8I4MYwPjEOk1swvn3+BLfF0fOD7958I48wQArdSueVNWQRZS3iEEFjSyvN65dvtzF+/feXz5cIvL89sQbvnTXUkr2pLb6Xwr3/7O3+XXxiyMA1PBGauV+Hb9cZ5W/mNM9ftylIXIGlx4lqZDgPTeETmI2VbYMtsa+IqcBwEeTgw15GJgYnIw8OREAbSljmPIylpDafzZWGYb6y3bLZkJBK5LSsvL2f+/tefuZzPvD6/8nia+fh04Ok48/7798ynkXgamB9mUt7413/5vzh//cZ6vfB62RjQtLdSA7dt47atvJxfKTlRS2b4aeV6fiCtr7x//8Bx/kG7D96u5Fy4ns/cLgvjdOD773/k6d07hnHgcJyodWNdLnz+7WfSsnG5XmH4XtOEB8g1cVtvPL8+cznfKDkRyDw+BcYRpkFtJomRpw9HTu8+IfLI6ZT58z//E5++/44ffvyh1Tp9//GJb8/PfPv2lX/7t79yPl/4t79+4cuXz8zzkceHR7779CeOh0ceHx+ZxgMpZdL6yvV25vn6wrcvL9SsBd0/ffzE6TSzLk98/fYTKVWrZ7UxxJk4HJjmI+/eB2Ic+frrr6y3G+vtikRhHCbGeWCYB8IgyCAcDtaF8nTgMI7McWCMkTgfYJh4XlcyQqqR62UhbRt5m6npwjgPHJ4eGA4zw2FmOszE45E1C9P5xjgNjNPAMk9oSaSdbK2uK03fpaRvu8PSZHdof2sA1HxVA6vVr9ImSBn1GzoDX+W0NMfdgKoeR+2vXXDM695k19EFrtebgjc5N/tJjH9il8YvnUyXi6XVlq135s1lM5ZkNttE60vXoh3k3Tag7mv2iv+PUqqyr6KyOtVe0bHPk3YGzYVmqzjwRFXd6fjItm3qXdrn/BnUn9FyOl53+K1fvbfRvIa1gmN/vGT4H/7kPjXHi6XalLD/4S0II9RWjNPrG/jmUt+9R/IxwAKbhOJOfe3vvTVL3axo//YInkdOuZ+ottGrgU+psqwWOStFnaLBxiqiB0RaPzj68mCAWjdsfXSNxufbxn7vi+5GZB+PuH/EHrVtOAdOX9dOHnVAUdGqKXbD4FRFc/Jb9N+dbft9KyFRm6GkDpRTwD365wfe6HvQDT0H2kTM2artdw1V8Cdo6yZ3z64tras5g2Z8BEGK7NZqN+O+V9qKdwfDUyXeAk3/Ee3P5zrYwfP//H7OaCi17+f7PXY/Fi/GW+lOTynVGFPSHKDm9DY0qF+10d91BDhbKMT9nR2IUkPTnfa2/6QXsMaFbduTfQ31ZweoFFkvobYpj+LOrbTv39nvjvLvPqKwQT+nzZAPglUctnnrc6WArq2ffb9VAgp2H6Mb+hp7zR5tL97TR329ahvU/u8eCXAHoHXmMv8OE/jiDsruGm0FXCmEfq5bauRuv7YZ2J17/bc73jYid0IJfXx369f3srPlhN1nRNexr7M5eOJn2Nl55kPV+xpTur/vZePvX/vUYQxU6KBFP/q+ufz9DtLpkngqizSFJ5jmtvm5e3b/f5vDgte80XOirCJlilB3GCwu8+/PTVdQvhsqeL2V9mfHoMu1pdd57SYKeEdB3b51V0NHn6ktjemGIMHAF+nn3UJsPo9gssYmurb1pDnk3R5zfaFP0dg1IvudqvrVnrPdxcba9rjRvBX80d9XSqslZzwEXZvi582ZG2ZIejCgWj0ze8bG+EPPSDOofKrounrPTnV2EDZ/PqHeNbbpyd2+c2f3romD/W5f66/tjrrfa/stJ20t9wDR/szVwq4mYf9yfwa/x15/3d2Epv996+D35G4ewpvUUbtTk637+es6wGVcH/OdWbG/luzHV3/3vo83RpUX1Zgt1XZHCGJlCFSWBNPnnkqrjDivx0VLdXOw1+elVFT3S/UasEjc6VYbWxAFoXuAgaZPu0ylgRyt6L7TjHH2vc2k1f8Ti/RWB1abLjF5Vuq9XpU+v3XHtG2yDe50S/X9ZH/vOX+N0/hWb71dr3r3l+6dJorUXtNkKI9Wu57RRy9iDHxHrUNgOhx4eHrHu4+fmE8PDNMB4qApkkUNgUIhBi1ajmwggXGciOOgQc0gDHFgHEaUBRhZlolSEkPU1Kk4GDNdrM4aHrzptty6rgzDQEoHDVgGbdoBxpZvKGzUFLxiMqYaE00VE3EYmOeDyjKppBrVBwnOsLPyIDlr3TtjbXnqYClaR/V2u2lKoUQO08BhGlnzwJJDC9JWKhKSrftCydo1+5rgWSJ5S8QQyRWOtyuvy01rsIZIKNLK2l+XhZfbma+XFz5fX3heblzSjXIYcRCxSiWVzLeXFy5VW7xPMvJwjAyxspWRc954STdeyytb2bQ4Mdr+WirMw8x0GBnnkdeXbyRWSoIcAyUEagyEMBBrpG5er8vIJEUDdNuWWLfEsiTOlys5ZUrKbLeN2/XG68uFr98+k9aESOb9+yMPh4kPT0c+/PCR6XQgnGZKFK7XKzAoEL1qrTiCNlkKEhnqRqgbwkZF2Tq365lBCtMoPD0etA7V6SO365F1TVwvN663jXW5cT6fGcaBuUxEgeM8sZ6OLNfEut14fv3Ky3nkeJyY5oHDceR4GjkclLUFGSFzOA4cjwMPpwkBYhg5ju+AFZHEMK58/PiJx8cnxnGy2jnw4f1HTfkMA9fLyhBfKDmQtkLJN/JWGcKR7VShTESZGYIwHg+kvJJz4nK7kbcFCIyDsgsrmdPDSdnfQUhbImeQrTAfDkiIPDw8kZaVa4jkbaWggUqv51orbOvGsiyMY6Q8HLXA+zwyxYHhMCPTzPF0ImWhMnI4Jk2by5nl8o1phOPxwDCNxGFgsHMe0e5s3jwgDpGaoxbx3hlIJuGbDLhTCv7amzT2/3X3jtuhchfc3hlhKKhDwLrD7YWoX7+TVe5ErgW4BdhSYkvRGi8p0zUOkZRVwLoNouOhpd1JiCo6zUj1Z8B82h0iYEPeZy/s9JpZP8o4Kt1ndtuSqCA94F3v9hO3twX2eEU1/VZ9vppt5jMu7W8PBvj3VLfWZqPurPb/6euPQ1RuJFWj8O4de5vA7tw408O6q4kbKXQU0SfB6VD+0NLRt71LtxvG3gfW68huthzhDGYs2aTuk2a8ZXYqEFLlct1YI6wDSB2pNRCtK0WQ2gCWZsD7s+H1R3w0/zHY4YrU50mdD2gbbOeQ+OdoG7JQJRNiZZDaaluEEBjGXicol4xEr0nRI9JhEGoy5lPWNKMt5zY6N1ZijPpcIZqz4d2Z7BmGnlqY7ZC3IrA+PeYEaZcSTS0RjWMClZLz3aFra+hrXPtmU8fe6zz0g1OrIr/77//uGnRD/g6xtfXwQq172KlFJd1ptrQZX5/aTEv02c1J9etqNys1xLuzHczIVQOxWhtN30u1WG+kioFVpQmzajTM6EAg2gHPDWzfU+5Z2K6iXXz3ahFDk83FHcxcrBuWfmcAyiDNuG1jFXX6HdRo7q/0ecUEpfgG3iHqYDntTtPR6UDACv1VissLEVq/eenGvkfKO+jU9cz+7PkYYcciq7l9r4HPvq625yqGK9XwZvbakndRY/cM9znE7b46Bf1vdwaKsXtAQb+9v6GsMQedxebGvZtggsxWOQhxd+50TFqI2x1/sa+EEMwRlFZ8cH8u9q+943m/n3YOF/4cek2fUwf1XL6p6LCFbjNkoFMQpEbDxnuBx7Z3Auaw6PlLKalDaiyPEHd1WWpnF3ZHepcK/OaJ1AHsZ8H3VrHf5aLgZgef2uzg0boG7BfRor1vwIgQBhxcdflYsst/j5qpE4MXigbE2WuCpdf5pOiDKBNSU0c0TVFaU467IMiuUr3ZYDtM1XRyMUapA27VEzWFENW51L2r8tZrLDYdXfKdk+s0LImhnUFlQ5RWFFzTZ2Pba16wuxanjGO2wF5u+5pinVVQ3bBbW/1c7WCReJqc72kHAPaAlDRd9LvUtaoX8bmrutQMRjf3Oot7JuzemLsHdY2dVzDwztrQY0CwWa0ul712Vtg/f1XDtDOIqrL+WppZGwL7WanYwLl/f/+ve6nle8bZT1o3p1RY16T2Xal4N51qbBpniiqb1phiMRMixMkAHqCsHfRX2SHNIdD9gXYxtmL0ProQpZcIcNB2d3ab/C9ClUAotTlaYRctcRvVu6VpRDfiaQuaLmp2H9K6Cvk+amesdia5B5kax9Dknl6x24ZFur66E/xAh6SEVhx9/9rZg3X3bUP1WmFxBy6bavAzEtT+DlHP3/Hxkffff893f/4zp3fvGQ4niJMGigmEEpAIecyEMBLCCiIM09RSCUEYxokQA6cHZZ6s68L1erU9GxitNopQmyzoKeBZ5boI4ziybifGcdT0umEg50yMAyDEeEBkNLaAgiLK1NbzFIIwzzPDEPj6TYGXkLUgeDVW3m3duK0r27IiAuMwMM2z7dvEer1yvlwZx2c+fHdhnB84HCaeHo5kEmtdWWRRXVMglIJsG3XNbFmZsSkLbInreGbZVv7+5TeGOPLw9J7HxycOx5PqBlvBy+3Ky/WV5/MLz+vCLSUuZWOQQJGqtY6oXNeFv/18g21jCJF3D+94z4H5EKkEXurKc154Tq+267RGX0AbDz0eT5yeHnl498iaEqUKaS2UGCkxkAOEKRJKIC9aq0tqpaSNdVm4LQvDNHG7rUzzwpcvX1luWjvpl59/Yb0urLcbUgvzOPL48MCf//yeD+9O/Pjpkafvv2c4nMjjkZfrQq7fWNfItgbSIkw1MwzCPAhhrJSQ2MLGFDeoiVwzt+tKTQs1L/zw/XseHg788MP35JRZbiufP39l+/Uzt9vK519/JW8rx9OBw2nm8XhgHgPrkjifb3x9fuX0tfIpvOPw8J73n07kmrhej6zrmW3Ts/7puxPv35/4/vv3xBgZh5l3p09mimWW5YVxnhjGgVKCdnMMkY/v33GYThznJ2KY+fr0zHH+wt///jPLbeXr+ZW0Rk7HG+v7wod3HzkeDjw8nMh5pZbMy/MLl/ONbU28vjxzOE4cjzM//umjgRCV3377jWW5sW1nHsp7jocjj4/vCGhdsPV2Ia0uYGHdNgXxthuIMjPfPT1SzaYaxsB8GBkORx6fnhjGI6eHgnZ0FSLw7fNPUDfmAeZ5ZhyHnuECzOPINAyMw0AcR4poMf+6r7NofmIt+R/a2k2hNf+e5ue4P5BroZGpf5cBolctpVh02VOz/zHQZMKzXXsnjtm2zBoTQYTDNDOMA7lWNjHSRulgTy4aJM0DiiEMoko9Z62h5k9W/dGs8ZkoA0r1SiGl3OwQMXstWErDvS6qxAghasOHxsz1Z7cMEgMMrE5VtNRxTTlHFJQMwf1rMeAtm+zt9hP0wCL7mdzpp//Z6z9R48lTatzYsq5U4oqOnvZQPPplf7ueLlU3n7Fo9giba+Nu1O6p4nQlejem+0ifRyI1UopG0ezbNup2nYoagXVT1lMUGANITWxJjZVpCA3xlyKNgVFtuCI+7u4Yt8Hgz+81RaSdH3fKfAr8uTX1wNL3jOqu9kwmSEG7ifn9lCTcbK2S7LqZIF6Y2Y33SqnidXYbkqvPYE6jOTg5a9e5ENzalu7RiaeMBVPUuXXH6yDzPU1cD3pmXVdaRX4zQkCBMufKOIZXfQpr85Lu1rx3INrtmXpfH6SBm9Kj0f47vbxG6nwB9kVutVCqOiiherR3lxKidt4d4NEN+P0uVSfM19advT5XNABkzSZ8gzCOQZ2+oMXh1GgtHfSw8VIFMTyvVqxVO3R4zPdcH1NzEov9qZVUK4K1PA+Qo3VyBFsbN/Q7M8+ppj5v2GfVSLcChlYQeg+Eyb42VgyEGIkGElOt/ortA6/hsW2JHiU3x1b2c6kTUON9JL0LFwVmNQXSQYTfM2xcJbnD0OpvONuzTaLrv2qsl508sGv5vvP5USaNpyL1KLenpjrQFGR/J/tH8X1ijEy/R4uZWkpk8K57uuY5J2Xc1H6PPXv0Tmn4He2shBBa+plHYaCaMqSthwOLfYm7S9Q4N5VWyL07fZUQYpMf98rLfSltlS1WJyAXaw1bte7TvnD8PQvMz3+vrwPOupQuX7rysc90+remkXsEzdc2NHnhDCC9f4+k+RmiFbbuznkxQKt6XROra5OLppBL22+aCoUI26Y1SVTfasqdA+VdB3UZ6Y67PX57tGpr6zLV1wW0+Giri1YrMbhc7DRuXVpp6ZnZnqcW0wlWH8p1S0rb7hyoUeQRun69Lrc7W8gBhep20p3M9yYV1A5eiN1H063EQHRn8pbG5tIUudCaj/Rz4S2Jdb+IhSZzutfR/nO1eWpOsXSQ4E4n1F6DSMHkiDdESFvXGOPowGpp3YFzBkJpjFaXWUPsILl36eu1ta0rKs488/Pd5Rv1rYa6168uTl0eIRrt9RoSYbeGKRXTAcZkKkLOYkxKaaAxVNK6qSgrmrpabHwhDHjp+1IzpYg2ezG5V9oaCeMYOcyBbGmw22Zd7t4YhtkCOVqwuhrTXsehc6/R/xIq4xiMxaZjKsYE7mCzByq6XPcT2GWo6WgcrKomursO7jbNfs53c393YKW/JW/WaIeCqi9lg23Bj72dYxOzS8kmCjKODMcDD9994v2PP/LxT/9EPJ5gmMg1EuKkuqW6g1MYhsjMhIgwjFoAWiP/0dLkRgjC9XbltizE8EyyxkPTNJrNJ+Bpk1WBSO1kqSDMMAycTrM5sFa0nUKpG6VUlnVR8OimsiWIdttWBzcyz6PapCWxWVrJ8XgiDJFcMrfbjcM0Eucj8ekd9Sf4/BVez1/aeU0lc76dIQb+UhKRzBArx8PALQ9MW2RZdL4lQkybLknxAt6RYYrksnHJieuzFsSuFbb/kZlOjwzzARkm5uOR+XTi6f070lHIhwfyayUthe1a2OpVd1nIWh8pwEAmVhjjyPHpA6tM3Mgs6cpLXbjIwhYUqJFSiEXPWJSBvGWurxduy8qXLy86n+uCbImcEmOtxE8/8n488niYOMwzPAaeHh4Y/u1/8Muvv/HL3//O7XrjePqFL1++cH594fX1hecvXxAqYxSeHo8Mw4mHh5lPPwx8+njg++8fyFG4bDf++tM3fvt648vXV379ZeGBE09PBz4NiYexchiAIfGybBxulSVnLjVxTYmSM2tdea0r//2//x88P3+klI0//9M/c3h/YpqOlBL4+u2ZX3/5jcvllWka+W//7b/w/Y/fcXw4kGvlty/f+Pb8ymV5Zr7BcRt49+E9IkJaEj///DdKvRKl8Phu5ON3R7774YGH0wPTOHMY35NWTVVsTVZy4PTwpMDpEFmuK2WLhDrxw3f/zMf3/8Q//3nj8rpojeSUubxeWG4L55czf/vrv0HNBoZOxCHy3YcPPBxvLMvKt2/feH155ds3Bbvev3/Hu/fv+PHHH7her3x7fuXL1888h5GXwyPvH2fevXvH08OB1+fP3G4XXs4vXK+L1r2qmevlhgCX11dizeTlxvt3J25pozy/sJ6vbGthWzLX66o2jsDyeoG6sUlijo9InrScihQGiXx8euJy3agFruuZXCK5JJBo3U41nVt9p0LaViuO7c4JOKWztrqDg8lfY1Abtah6BLlwn1pvcrCWt7l1Klj3PmIXuF1sggY7JAjV0uVyKUyTrm8cBm4vZ71OhhwUS7gtifOgzx4lEHNWALgWct5ayqAHREIwkCG4HbADnCz4NAxj0wteVy+X1HRxCFjR+dpKoaiGMfJG3ZEZgnfmVR/scDS7KMRm8/dJcF3k+uWtP+72US+D8kdef5zxtHv1BesD27sy94aadGOneoT899fbMwNa5Ltdx5XtvZt0n8ry5pr0z/oG7PEpvXitVoner1th2TR1YUuGIu6cEf2MG+8+dr9Dp8rLP5j7WmtjR7nb6JuvGS6lEmKfM72se56d/yVe/8Xur8Zyd7xEuiMq7qjsJqTTGtl1pXPjiVZ/BDek9jz92v/tBvhuIhrw1ExeoRe1tSdvaGn1CLdH+MRAld0Gb8Wk7ea97c4doNSe682c+96621/VD+S94NmnV9gv6E7am2s7KNrSZ/Y7ezc/7T42v2/2xt2/7QB7keHG5FPpi6dY4IDEbp7fHo676xoy4svuLCFnQOWiKZz9PPdnrrWq4G8OujM17s95t3N3bAHbP2aSNwexP6/sBJfpGdntw9oj2ZriIW7T9znmH7064Hw/36oYEU8VclalrV07ixbRt/m/M+LZgR195ts59CLp//jV6ap3UrOlE97PaQdxzBnKlVZ2ykGE6uvU90Tfd/v0o91le/J4F6072bAHBErRXG/fd/v0Z6/CVH1t2gUxJ7ODAz4/OkcOEDt4s2N5+Xz4k/uZsP3dUtIMFOm2gukNcyB6PR0DTOXN+fFVMAfR2+w6+CHc77CdxKevyv4s9X3fxAe0de1L2tN2XH639THZWnfXdGSlp+H1E99e7fp9n3Ytes8a2gNV+7W+e0LXDVQyXV/d7yEfe6DLC5tLWwPX5cHWsbMQ+8C7rLB3QkBaYKS2MSsryLnqe5m8Y774WOUeWPOdul+T+zHcy+oepOhr83YNQf19T4Hv8+OBDtrZbCtjQNRb42yvd/aips/L2/Wh6bW9nFaQv97NaUtQdDtM/pHO8bH297wVNCItsNSCgnYGvUxHcTkEvWhqcFkebBRe540GRlrsyu5vgH91LKU69bQBTw3IN6bfXlfcv2obz/5suj21O1a6bkg7x/oZ1RMN0G7CQPpKdOHU1gHYAY37yd3pGO7lwX4r+P7ZmbtQe0pGbc/1dv/8o0W0pdyJCxFBhkgYI2EaiPOMjCM1RtaUoWrR3mAs1FAFad08YwuixmDdx6IGBsZxsnojgTzqxrhNG7Jt5JI11U7EgOehDcjtNy/eH2NkHLUWqtqBwexhk7U5k0pi2a7Uqmz6EAsi2qJeQUPV75o+pykxYQjknEkpg9UUTVKZpolh0m57KSdKFkoIpFpZ08ayrYxzYkSdzXGJxjDfWSBWsDcEIQzGUpXSg1x5sRSfyrplbiUR1xnGmbmuHCQTn2ZkjNrgYdLaknVDMxxEnd84RoYoDBLUHQiDdn5DvZpbzWxSKNHkbJamN3y/bdumRfkXYdsSedM5uaXMWCqvw8RlvXGIA+/nE0MZCFkDnMfDzHGeyNvK5fWZdblyfn3hfH7hcn4l5xtD0CDENM4cZjidAodjZJyFGirn5cq318xff3rmy/PG68uN5VZ5PAamITCPmTFqBzfYGENijoVRKiOVDQuKml9zu115fR15fn7mu08/Eg8jwzAxTbMWl8+Zdb2xrsHS+irTOHI4HjhcF67ryrq9sm6bAm/jyOFQOD2cFHQrCZHE4TBzPB44HGfmeWSIA8qe1+CLByxKtWBFzaStcL0s5JyoRYGDcZ45zsLDUbMkUq68HF84v56RUtmWC8tt5XI+czwdtSbZ0yPzNBIjXK+BLWXStvDy/BUN6AQ+fvzAOCpo+/XrmW3beElnDqPwcJx5/+E9U6xcb7PWbBwGlm1jTRvB+rysy8o6CEOobGukbpnMgBTI68b1fOX5m3b6C0BezgQSUyzkxwN1HPGUziBax3OQYOzgLowkhBYo6eJOGou5RXXNFtqDSE0QvLWB7uwf6dcEreFXuy1Uy+89h9/rD7MAAyazTI94douNJVi9U5GuV3OtpFzYcmFNmWVLjLUQXS+7A7Mbo1j6ngTRJjw4K0w/6KWKXDE46cH9kD0Oc+e/0vVRk/8733mfKSbm0BXtjqXXputcv7Z/F2jg1Z5N/kdffxh42htjZcd6qmVnKNgruFL2TWNR3rbC4W2crb+cPrh/hGZg1tr9X3vdg09iRqf9J3qvakKB2p0GH6PXjgCQAtdFF/4wZ6ZxoEbzsKX0mXeXy5gQqveLUeitba3cz5uPrU/LLn1MzHiomSDBGCAZL7IMVrTR0Y4Kb2ewXVe0ILMWH3MavlPZzUncG1lW3FN2V6yFlkYnLYXDtn2CGswAzWpIB6SlqOjc7p1vB7/UGI3WcrUWR3UrEIxOrc/Qyxr5Bu8HSGxOf1+7Y3eYwCJpuS2ZdsDr+6UCyRghzkhTELIqfTNo4To/5e5I9QP2e+eh2Lo0Q6nc72R3SBw0dANTxzeo8xt0d6no0XPjIkesG6Kyr2w96y4tsPYUNAf09o5V9VSagqUH2r6z90P1QnI6plxqA5j+8Vz7WnS0e496e2pi4xtaauBOTpqwVvhH/GfPmfYxl11aYBfX+sy79KDmwO0c07ZPxFF9TXZMecdAcYFqG7Da/ik21pbq1tYyt7FHOwsp5Va01luf5twjLWpYuwC3dBTn69ONwwYMFK14pXeM7bxkquX261etAps+gwRCUapvcAcL3xf7+c5tb/TIPc0J8DXNRVNyZQztbLlj2BzbUtnS1qLUmmeuezDlbNcDCUMDnrQNdmmOh89r33uupHc/u5ViKxVkUJaFqxX7VSm7boUFRGIrwujf9f3sKWxSgFwtbaw2g6cRNlodp2qytzbHvJU5Kipb9VAE3khU24OumVwveL2cDjg4SO9dCLXovqaV9P1X2zWbE4/JgbKDQ/89Q8AOoHd0TKWCxHaec9p1MSy93bzvY8HTW5zxKO0c7uWE64NS0WYXO2B3D/q39Dq8MHS1dfTBGnPS5mZfvap3Nd0BbHSZCG7nqlEVw77g+A5EfVNvr0WxO0O96dj9Wer36fcbR2M2efrkTif5Gegy1RswqLwMAjUI3sBEt12f/71MiUYxb4wx6HEQNKimc9xtA99Cvwu6UHdjFU2lEjeUpV0/71joGtASyJCqdhiLxZmsum5D1X01xEAu2l1NWUY6X9tmst80XvGbhEyohTioPA2GVIl50iEGJIulENY7mdTxTUvNy8Vkjs5ZdWa+JiFTsXpUNt8hRGvMUM0QtwBF9v1XlQm/D5Dt5rS0/VTafuygts2cncH93m9rgrQ1vVujSttrrcvkTg+bEqAvcrudpgIPgTAPhMNEOEzUeWSlcl5X8pogDEgcGedMkJHI2GWZBGIYzF4amKYjwzi2ZhMGFTHGAzKNHKZMYGVLG8MgVos0gLGmXDY6UOpOjjIXlREwjKE9pwaJE6lktnpp7O4xV0KeiYPuJdWzwvF40BUeFLnKOastFyMrhet2U9Bsmjg8PHC5FhIFRgV01lp4fn1mGEfmw4GH44HLemWIXRZpWmYmDIHpMCIxUoBlW9lKoqRC2Yp2MMpVGWUJMhtIoqyFPBQO25FxPBKnA2UUag4wCpSkDPhpJIzq6A7DyLpspFpJy0KcIjXAGiCPAsPAzExJgZoSUdBGBLVwPp+1xEitlKpNAtg2ruuKjCvnceL59sphHBk/HYg31eUildNp5t27B8YIl9dvrNtKqZltuUK58fQQGQcFkN4/Dbx/P/Hxw8zxFJEIL7cr/+OXK3//7cL/+3/7hdstkrdK3SrhGBgGiLJS0gvLdgVJaAMDYaqVJNolkCkSx4FpGsg5cb1e+OWXX/n44QfyE8Q4EePIOE5QtetfrYkvXz7z3ffveXw8Mk8zx9MDS678/efPLLeVbSvEMHGYB96/g08fvuM6zeRy4/HxHQ8PTxwPJyQIW0rczs/kVe3o3NjPhfPLxfRqbnXLxnFEamAcB+bDkeFxAgKlwtPjE9fLhafTjNSNL18yXz7/xrreNG00Co9PJ47HI+t6IOcb65r58ttv3G43Lpcz4ygcT0c+fXrH168XXl9uPD8/M4bMOHzg46d/4uP7E9u68OHlPbdlYdk2vr2+cj6/ktPK7XJjlEIkcx0qVQaqDIzDO9LtxpdffuGnn34lbVmZdCSmUXg8jvz48T1yhFCEgUCtgbJa54hUKKk3HfAO1aVqCqmIyVG3L11PQWuMhWcIYHrZQQcXd0Iji7qPEIJnY5UmZ4r5C25L7tRhk5NNngvQQG99L+fCJlrnTIzlH6RSg8Ag1Gx2b4EtFYJkIgunKVIFIqXXh2zdiB1Y8tTlZDLfmE0V9hkHTZs0nzQ2u9lmtjUo8YCIZpEEK2Gy85OlZ4Cp3ip4QxwlynjjL2dI1fbvWrWxk+unPsadgfAfvP4w8OQGjzp53Vkqb+5zZ+TYXO0zpnqhRZ/LunNArGuMgQEtD9yBnreb5Y2R27qm2L/dgHTF3kgq+uU2Dp+yhKYYpQxrUvYTUgmTgg8KBBSiGP0u62oLQAwNm3LnSe/Sjdyc3fiR9plScqs1FAwsikO0byqErDmb3dn1jSfiaStYjQHbsN75yT0jO6FCJVR18J1ItZsQ/YyIRZ1Le69HZNUBL6G2nE8vVLxfh7sORP4HH6uYoNA6EHuD3rt49fbbYkZ60ULaZmxA74j09rVnQXXnYu/Ym+PRnDzd02ndMAtKc2XNaKXmVr+m1YkAFaZv9pMbwG4Eu3G5N07bF8TRbvuE1HY2cNlKbalXItL2qUc/7/b3m+qxpegpdVBYiyXXXpTblKU60vZe6A6fiDAMtQFqpeYmrBzpBzOy93tHBAme9qgGZvHaZcVTb8WKzBrwm11mYI4UzTHpNvRew6iDolGjvk99TivcKRj/Ux10Kxj1X92OkstuDpvbzu7m/eedqoq2r9ndp3dIBHcsOki3Z+hUA8HsDPHm8ju9qodPwEABbRFdoAzaWGAUwhBaukv/Iu3sQl/vveO8xya6A6T7L+eq6RK4bBGt92Y/S9B1yFZoNQRztulz31KwbDe44jNTwFZWQR4tTqk/l5pbSlXNxozUUG+bm11Wi696rykl0T/Rzoqfb7F5aQWAHYjdB0c8tQYF8usbWSPNCdb28VqkNlj3x54movPZAXB/dn3fgCcxSrenfDU2YV+cWhW038sx/0zOqRke22Yt7unRMNcv+mo52FqHCU0zLzav0QwpBVtc9uvcimha0rZl60K4z/Vnd/67I1yxyFjdA9u2DhaNdEHoV9KtI0RzPKMZkbHqeJsRK55K2QE9B6V/93JQzM+Vnc/fBa7wZxVi9DpatZUOeGOqtnvVSpMjtWwdJNvpHgdhHbDT71W2zfem14Gz7/nT/Dt6bs8Or2aMFyoSw+4s9/H27jRiHftqGw/1/rM9mir2XVGHwgBRBf29g5qzg/T9tGVCKJTRgcRgeizafrTunUG7BhdrdODzWIsoGCyi5RKK2jedEe361YAKds9h6xpEeioaera1c67uQ82+qO1MdZ1qesL05baVdq9xnO4CLG6v7ue50iaTfW08dr+X5nRgTWzuA7fuNPjP9wy8evf+3tZp5oanFfp8YuUioijgdBhJ88BzXpDlwnZ+YZiOmv6cIaWFGAoxVMbxyDiMTNOkurxkLtcr25qIw8DhcGjnoIoHJpThNk0HpmmmsmjnsACHw5FhGKzbkpZa8LpPKWWrVbPRHDLEao8ExmmAUHkoB/K2UbKWngixIKFQvMWUgdASNKCpZQs0jXPVHuVEiZzmE+tp4/l44pZu1LxSEWtisfLl6xdOpxMfw0fePZ5Y88bL9cLrurCWRJICY1aW0nGkiJBKYS2FMkF1XzKOUIUwzsRhQuKIug4J8kLabqznTFquarNJIURI20rOhSXf2K66hlFgmA7EYYIIGa3FRNR0wwjUOlGCUIIQBeZh4jAeOJ0e2VLmuix8+fYZ0kZNSZk140im8vn8AhW+f/rI+/jEOI3UdWM+zjzlB/78lz9xPr9yu14peeN2G7ndRh6OI8fDxOPDke++e8fDw5F37x6RYeS8JL78cuZ/+//+jd++LpwvgbRslFQI6crz84X8emMJX4j5FSlXrWgqE5mZuk3EGjmEkVteWJeF6/UMAsuioNE8/SvvP7zy4w//xDTPPD694/HpHa+vL9zWhev1xros5JR4OL7jukSGK+Q0kraRvA2M8YHpEAnvHjhO/8ZyTry+XljOmeVYyI+irDS0BnCRhFAYhkpK6t/dbmdNpapVmUqDgmpbWpBUkLWgDVVURk+HwDideDj9SIyZh4cjX788k7bEtqqMdjaThA8oCSFzeb2y3hZeSuW3X37jhx8+8eHdIz9+/z2BZ16+/cy3r18ZQ+Hy+olPHx54eJh5eDxRgHVL/PzLZ3755WdeX59J68K5rGw3YSBxODwwHyaVkbUgOVPTRknaJXFLC+lWyFdY//ID5XQkoh1TS3UnCCvTanYxEcTrLqvhJaYfak20Rj3S7Rv3ely3K+uouONGM+gsmC9ut0W3jyLVOn1iteDYZfG4LdiEp/Qfmz4187ugvtGyLg109yCzxxypkFNhWRMCTMOgtqOXP7DyDeoGaaA2xpFC9+Wq+WyOuYhooKNUDagOtbNG1acxkoqV3vC0+BaMqGqrh2FfJ2pvF9/rk+pGdVdTGuixfyihwy1wL1Hj7721j/7x6z/FeLoDjFzBh+7ntBI4cu+mNaP/zfXuXmq56L6TDhDo99/we/bX3ylev0unhDcz4HfTUdtD3H+mVg1OJKNCxmwGlRuYBWqUVmvE5t4orfcR6HsHEHNCMYRzN6/N+QrN6ajuQNX9htwbyd2g9Zu50a+bq3pXyOac3bnubh/52DxiHESjiC2Nx5/d6kSBKrdg49k5tm+NJa1V5Q65rWujLqpReQc4BTeg9hHptotMePw7+2e/PcQZC+Fuf4TmPbgY8zQNA8uCMzusLk/tz1IriBU+2ht8TQD4fvgDZ8+f496h8OeVRrColQa6AhR33OmA/95xwPaM76gmd2ofZZ+2+/G7E6sOhXW2qh10bM7X7tnaGdvdo4+2K4yGSwYopdcEKsWZh3Y9eyBlj9B+0Z7R1svP3r6grLdNrT45bVpt47Vx+YGQvh99/nb3FHbnyw/k7uGbQ+isroI57PeO7++dxt017KNNFrRr9n1ffF0tt0kZcApIh5BVecVIcIZycefJ53SXzrTfDz7Pu7ntjKRqY9DfZ2NoeK2pppldSVYaU8eVmZ8wBxS8hpGwCx40qq7LAM97NyMi+Iq7tN6l4tTa1q3tS/GPdkYB/h1aIhbIHkxnN9/7tKvdtew7e5m0zxqLQXrdAqNM72Wh6xigyaS2Ji4X9/vA1t4bRjRdQP99N6z0HjpfSoNz0KCNnb4fioDU2qeq78YGpDWjbzdPLll2n77TwbXW3uLdJ09omdGd1u2/3TnKvud3Y2pnY38P+3zene/yJvLVuwz27/lt9u/tGU59r/S/98/v/+7fu9fD7TzVe/apX68xYRoTdD8WOh3e61iVvjcwXfhWx76xptrQqx/KJtffyh/uxncnv/tNtJ7cLiXT973PSQfquvzwoXhgQwMQaKFx6arxTnUHgdL3WP9M3c2pXt7P3N0T7ZZNYMf46uPe33D/XQ1CaA07kfuATPtj69PsOvs7t5SI+znue6m+Sbu7/6l/Xvf+/jzu57gDWvevvcPQ5zLcT645DjUKdQgwBMpof6JwrYmxJGJJHIBYKyFXdTKjFnqMA1b4VqPeW0qcXy8KzIbIelxwIdZBHmX0NsDV9Ec123QYojFSKiF7DUKvYen2Yg/iBIkKVEUNsGQS2zqQU9IaKjGqDtzJ1s7ADXY9+zlnBaZAAbVhYhxmtNi3MeCqNohZl4VtXUjbyvFwYh4HHuYj03AmJ0g1qU04RBijpr0VKJoPhpQKQYsfaz3GgWCdv4Kzr6sCTiltrHFAhqBtzylI1bbrOXutNygihHHSgFkt2oZeqjq2uqu1gHM1gDNAiAPDNDJMI8lZDSkpm7XtWa2NtqTENa2c08JBjkBQAGsamI4H3n94R4zCNEYomfUws20nHh8OnE4zj48nPrx/ZD5MHA8zqQbO14Wffn3mt89nXs4bJR917SlESazLK7W8kPJvSD4jZSEiEA9ISKQQaX0NDfRNOTOOo+7LWrlcr4zzkVLhdDwRwsg8H7VuTamktLFtK2nbiPGBIJFaIikFtq2yLoW0VksPmwkyUUtguxW2pZI3qDmCaD1DiZOSLUO2epWQi7AuhWCGyTQNto8r1EwlgGQqCaoG7QIDEmCaBh4eTtweHzgeT7ymMzlXliVpwF2Eh4cTy7KSc+brl7PWiVo2Lq8X1nePUKuCulEZt8t643yOvLx84/3TzDhqqmCVSBwKD6eF1/nItixst5W8ZdacWW4jMQwMcYIyIjUzROF0OJBi1mtfM1ISlEKMVkQ8WkMqIyhocM7+1Hs7fG9jdbam/+mC/k43V9H0670y2dny7D6KYE2u9DPNCnAZ3sbRmUF7J1l1idoSDYgxOzKlrLVpBw2KFWecuI1VlfEUg9YlzaW2PRHwMh16w+ancW9H3OlIul2terjssnf0/Zy9A/reXqitdrPbL28tB5+D5tO6DR68vh+mezsZyL/TFpB9gPKPvf4TjCdPl6FFdT2aBeoIbJtS973bUa19kzXD1we4tw+rs3c0ohLoqR1iu6BT5vp3unGhfztNvU0m2HffKG5beBFBqhdN10XNQCqVNVVuq8KYh3mgYkVJi3USMyp1sYdzMCmEQGwbIvcNUBXB1LQJd1B3BYNFGMbYUg1zzg3JTCnr4pvSDqFH2mwyzInWqN40BXOCbGNbR5uC3HUNC2DFbh2xrXjt8lq9M02bbkDZFXc1ntqUStukvr7FHSBLDfKCcnowQktJjFGIQ4+GhzdOlu71Al6jqx3QHhl8+3fvVtOdQDAmUC4IooK1KqqdjFHm6Lwq/MzeABZ2RuFuL1b6P1rksXYH+R86AaKOfhAH4vr1tPNVd3BVABikZNLAWVV7gKnfExX2bsZJT2XYG7MhVKhCDFbPzNJ5StX6BDlLGwdiKRRVmQAuJJ3W6XtI16wLv5SL7T+xlExpBqYEdYQ1m3U3z6a0GnhVvYOhuqs11N+vP3Lf7Wpv7jcj2FI2nAFiW1nEIim2qAEVtE4Lbuu7W/Dm9DvLEZM/Irv7Yc+wL6B9L6A1ZWuXQmgGei6eIlJ718TqwJPvibxTioVaAlQ9+2rM751KWtpQrVoYuDlGVhujtHt2YJPWvehe1yO09CqfTAe8urPuhj/auU1oFOVaMt7QL3jaStGKFRJjB2PYy0soSQvAItLqaWljC+mOup2vEPbnowIG1BFNLvq87NkO9/rKny1ID7LgZyoYvdy6CCpbNbBb/DsFrayJyDDo9bekTkKlWLpeT7vxduCmqCxi1s0olW+0+kISRBkBtvej7GSyf6vq2fDny9k/7oCVP6sdDtkDZS5zvUGENGax6qrSnNzgyW0iSIShsQClj+Vu79D2Ygmd3UzVdE2y7XMThot1VgsibJsxaT0dq3ZbYLcItmU7QyjnTAtw2Pz2udoDl8Yu7BfDARi7dNssfkbvsbD+u7vA3G5fBNfT7Rp2yTdzpizUUZ+nFrwGW5tr03dbyc14bDe0l7N17iOdXWdXqrGdHQDbgfs7677NGx24r7W3thdB2TObzk+2QuT+jNmj3g1NMqEi1ZoGYKxfSG3pVS810FALEel5Kjtw1XVTKR3EtlQDT111my8lTft1eeAd7Zyd5teTWli31PSanh+rgdc65wlBoqWza9tzfapgx2nn4LR90O2KNrs2t2/BJ2S3Bn4edzvNbZJqgHWYop6LEcohUqbIeojkEeqQSaxISAwDjPNAzZGQ9IEr2v0uFSAXZEusy43r5cwvf/+ZbV0QtKOVsgMjD4/veHp6z/F4ZBhntm1jSyvZGE/DGJjnQoyVcfQRKyAzRBAiearEOBNC4HA44gHZcRo5jEEZT/mR5bawrit5S4zDyDxMgFBLoYRyZ395+ojudzVUYoVDnNimE/N0JIYJ7bwcTJdWctq4vr7w/Pk3TvORwzDww/sPfD1f4SakW4YwQhzIw9gt1GHQphgIpMyQNQV+Oy+2B+FwmFpZh9dvn8nDRBotPTBUhlCJJVHSRk4LcZoMYBsZrZ7Wtq5sxtKKw6x7umaW5ZUYtL5ORkgCm8AtrbycX/jtl58paUNAOwduia1U1hjZ5pFFKp+XC6SBYzhwiCPhOHGYIt8PwunxyHq7MRDafZ7ePXI4zJxOx8aIr1T+x99/46+/fOX/+f/5V9ZV7ZNJKmEshCEzTJXXX595ef2F9PoTNW3a/QuY5iPTdOPwMJFqYKvArLpnHmbevXvPOM2M0wRBO29O85Hvvv+RlDJ//etPDOMEIqzLjfP5lZeXZ47vHti2yu2auV0KZ1n4Mrzw2/uvHOdHpnCibJG0CJeXleVSSIsQmBnDpCmn8UBNryAL44h1YhS2dVG/zQpap23TxkqSGeLANEUkaEp/ypmSVO6Gqqzpw+HIxw/fsy0Kpn3+/MzxNDLNkX/68/ccjyc+fPjIcgl8+fyFb1+fOT9fOD9duF2urLfMtq7a5e96hbLwf/33wukQeP/uiXmeqQyUIhymIw+nR2rKnPNG3hI1rdxeXylrYrlcCdM78lZ5Op14/F/eqa1QhV9//hvbeoW08N2n7/nw8QPjNPB6XVm3CgwGSM1a6oDUnMmu9iu5ZmUweRMjXA+ZTLOmHyBggQLNlOhyz6sQ7H3+VqPY9RxOdBJlRxmxQkwfNUDK1Rru65VGLiGrnbJtWg8shsA0DJRUtPpG9VAErEuBmpnGxCCJPAjzAIOYyqta2qWWSi6bzlGIlJJa4KkTJfQJxHww71qtKXDZ9FVGrPHXMARSUpnnTX3UPNP5GdoV7Xe1zbwx7q1btgXiXU448KS+mADeHCg3XfWPAl3/6PWfKi7uoNNg7U61urp2kykpafHb3CN23djTx/ROYXsfDpoe3s+xprRZfncUIWVHUntEvRlq/rWyc87vBr67oeMmtlE79klLTcoFljUbsyIzj9rxLgp4gk6PkplSK56KhNaFamBFZb/1WzpVG45vdqutUdVI6pFcH7D9bQe/FRexrnUORsUhMI66OQWLwAjaXtiQ+W4k2QEu1RxDi3QGdRRzgm3bTaC3t64741mse0xL+9tHba3FZHU2UcVp+YEKMTSnU4EzvLi/zlhFo/NB2Q3BDoKmXL41hv079T/8t35HQa/9JmxpGIbY51J2hp+uXwM7ds4GOyfCo6KhSgdkqtf0CLsx63oro89YLSHc7UWfgMrb59Od6k6iLp9Fhr0bnz2Hwk3d+eitOC19sep5GQSGoTuyvk/csdemC7u6NTvFEERprMU6dzno5NHklErbv7V66qQ6EQ1cGHYpjA0dMSPRAQfPG6CnLe1WD+iFrwETyt3ZLsXX0ObFl98VTaPq6pn053Inz6VYY+C4s9YcfI+W0tO2RNfKlUYHRXfC6M3a6p7o4JrYGjmPLZPN0Pcabi4XaEa6KgJ7rj1I7EPfAVDcATDdqWvsDDuXtTmb9v6OWuAdjvRa1faYvt+d2tqcK7FZcQcw0Ou6xSCMITT2TIihrX1FyHhnwA6Wx+hs136e2pq3ZgT2CR9AdfBWmsxXJS07h6VaVNi/JG0iPdrU9rA9S4cJbP/6HgNzNFJL90w5t/PiaUBuMO3ZRS53dU7pHQyDEKJ+PlhdP63Jot1U/LkdiNXOjr4xTFYLWOiWJuOKAbh05pQ78rWiXe9MFqiM1HTrQgc8VCeF9lwmQhWkMsd8z/zNtsZaAlCvfcdmEk+52jHs7kV4B4N2z9gWg85kpTobwNeVFhm8Fy4mv6sFluxSHv0Tq33Q5Y7q2LbnAa895XPiuqQ9WvWOfYHyRjbvngwfWikt8bU9czOuS+kpaaIpleoE7XTlzn7qzwgOzfl1vfaloDbBXs829ecytViA4U7+QtoqS0jkLMSYmrgrRde7mJBS5od3uPXAiQE8RQ9Xkz/cR3/bqKQzkoKngfp7rldlJ8VFr5ScUkpnPHm9J9A0r2rp9ilrpDtIYJhGHKCwS7dmFOIgatY5VcnVx970Yen2q6YHG/rZxRXmwf/eRm6yfadLmioQiEIdAzUKeazkWClDpY6VPEOdhEQi5gW2K5N84DgNDONMXAUhkmulWq2iSiHljVILwxipNZJz4nx+sbIHgZwS1EJJK9PhRMqJlBO3TQs7S4BtycyHA8eD1ogKBkojosW9c7DgtZASzOPENE48PT1Rg1CkIOuVkkdqWahpoRZhS2YZVrQbXwj270reNnJOrOvC7Xph2TbO68ZSEzknRgamYWaaDloMvAqSE9eXM69x4hgmyqc/McSR03jgGGe2WFjHSkYN7LJWctBULO14NZpNkMk5ad0fitpgQQH2lAtbSVrYvYCUyDBEYoXB9FiqhZoz+fWFEgJhPFATSBjIVTRFWiJl2FqKVxwDYxyVJRaEXAsvl1degXS9IjUhSVvDj4OyycZhYJxGslQuaeXnl29cy8ZRJh6nE7Gi52rdIATm+ci70yOHcWaeZg7Ho7HdIl++vXC5XXl5PfOvf/uZby9nxvGB03HSOp63G9+9f8fj6cD3Twe+ff7Ay9df+Jf/Y+Lbly9cXl8AyCmw1kwezsgwInEghFmLdB+PfPjuu9btK8qsXQKPJ27rxvVy5fnlhVK1iPzD4yOn0wPH41ELh/PMut7YthvLUllukxYgz4FNCsv1wrrcyGlVVlktjDEyDQNBBmrRkhOxTlo6BU1DryVAKdQcdN0LCJHT8UActEaapqprLcpUFHjJW2a9rCxLYhiODOOJuBRu11fOr1dOx4kxjuQIg2TSUsgr1BS0nVoSaoIpzgzhSi2ZbV0IFV5fAq8v3xij2Q4xEGTgMM2c5iN5XlnOSq7IuXI9X7icLyCB41NmGE+cHh6YpkcgUDOUslLzxhgr8+kEIbAmq0saKsuSSbmQTD+qn2yBxSCIRKij2Sae1yE75ULLQgm4H2Y1jysaZK5un+t36i5rBZPvrfarNCGt98g7OfrGVrjTjqYeXBTre6bjgHGIpKChthZ4F9FO4VvmeluYjKDjHcoDlYgSVNQXdb9Bi/17wHkPguWce3AzdoCplEAISlAZBmXkkXelblDMQv3qni7XwDV/SPcbTcf2Oak2l46+0a8tXoJA8PqQ/38HnhxUCCFogb0YiTE2B6W44V72RpWDQO42NZ9yry7b4jeGU3vebjC0x3kLLOx/rmoEddrp7vdv5sONgbc+rBs+KWtEWqSyrglt2cCuonwHK4rRTJy1Va0bS0952LE5GrND2uf3jsu+2GSfgdD+9sV368TnTwt3awHH3lKdNgYFe7xxsQrK0DrmqTNqX1Bj2+oB5dznvlKJUa9Xsm5GfYZOy9tvSs97bc8nO7aHGWohyt1nHJRhd0DcMcOYD1pUuIMV/zOK3z3DxIoGe5qgm6LSI869CF1/tgY6mbPlnpT+ZQCR0PeUH+C7lzuC+v1e5PTeg3InjcA/eBlQ5Weq+ph3zrIdsO6+vo2m+s/OfsNajSso4s55Sy9A6EJF7vdn+/3OIXdFUM0JZGdo2z5v4Fuw82PD0vpO+n0v9NwPb5+/faqHDVaVkq+ly8422M4k2DtdO1+r7TtlT4mlgJQOMMlbGPB+DhrgF9yN8znRNXpbjLbtF5cn7m2IpRkbsFzF2Gpofb1+xvQc75VJCFa4X6pRjWsfG/dpdz6Ixnoo+1SzDha0OWGnCennSpW9F38ueITqLlpPn+r+xxSxOKNBWtqan6fWWbAt5X4v+Dj6Dm/noaXv9HPYz3G/3u//GIhbuhxoNpHPiymZprwdON+dOJclFdhvVQUqfB/WptsUyKjdILrbYW/Obegycz8VtdbGIg0S20hcB9QqtHbmQENvmk7agRL+f3e6qbJbTptT6efmTZop3XtWedTWxeSrs7VMZvj8y33O3u/Wu1Hj2+S8uaX9okUs2zjtPm+G58/0ltmzPysSnKnZbyp3e6Levb8fkANPnbW4k/FtrOwaefz7Btxblu/+326IK4XUP9911x0DavfMrkf2s+zys5+7tmnuxuJ/koPt6FkuQBEtQKqypbS1yrkHDpuhYtdz0zE0/aW6Xp/VdV7XobS/XHbTzhRtnvq67ffv/oxCD+D4WopfwvSIpvcGqnVNqxkkGKhLl9+7Xb/7XT8NtW1C6Q9gurbubNf+sR6+vHvZnrl7HkFt7ihIFOoglAgpQg6VEgolaj3HVBNj2RjyyiaVQ4wMcUKyygWdD3P0ciKXTEFTOkIUA883SsoW8EjktLJuA1Uw5zqzLqs2tEDt3nXNbGvhcDgwDiPjNHWZm6FkC4pmgTEiMjDEmWKp1yKZIGp7Bim+PDsbR5kBFZBakLRRKWyWbrVtSUEy0XpfY7SUu3FiXUdNVSuFtKwslxvX6cx2vTEctGbUIFHr2ZQASZkaRTJ1iNRBkCEioql+RK1nVkNFonr+xcCgVDO5FoooQBaK/akVKRlSQpzxuS56FjJAhDBQqrqwSECyBchEWT/jMBGHgSyaHrmlFamVkjegIFXZgIMMzGNPlUq1QE6c14W8Va51pRThOAyMEokiWpdGhHGcGccDwzBTciRnZcF+e155OS98+Xbh188XbstKCCOHeSJSIWa+//TIx6dHfvzwjsdZ+DpP/PrLL7yeMyVkFNKzcidlYajK4g3xwDAMTPOswGWI5vPpKSsVti2xrpumRAVN65znA9M4GnMDas2kvCrDpEZySeS8kbZFA0RppeSNWjO1aFqiB2ODKNB+H3B0HRaoJbafBWUyTdPR9JYYEKlBoC1lcsrKOtu0Ico0HRmGmRAWtq2wrZm0ZUDZ2kEGExRR/63cM4JExmEkhmjlKjI5VdZ1YbldWW4z83xgqJNl5oyabjrOjMNITQPkQE5Z90zJZJk5HOEYJ8pYTE5qZzwZAocpUIAtZ0otpBrItbJuSTvwmb3jLFQxRk0nKGA6ujkd7IW06yeRaiVA6t3v/TP+nsv9hje0n+zazQbo+qz93Gwfs3vunYV7uW46KDbblZ2K9ABobU1uSrWMIxtnaLaV2P5R9mzd+W9It0k6ZnBvH7ht4dk9rrna51rKnIFc4d62cL/t3l51Q9OvtZ8Bfnf/t77/H3n9YeBJgQ1H85XpVEph2xIpFdY1sW0OrvS90erV2INU/93OaBZ6FFfZBsbO8El3YOetccTereiL1IwR/z53+2fnWLk50q9oQTy2DJRKTpWBleOkufGMgqAbJAatXVIrylZq62URUbqR7F1VupGohy0O+03SCPe2kY2iLUNzyu6tbHUa9mkeCjzZpyqtiLamD4lRfRVAqgXyZkyyYviwBGoppKSgUy27tK5aQAoxCxCplIZ4NmBG6ClzVkRU944d8Zop5b4YrwjecOQuRUIBJjFkF4pYq9kCHr3e//E94PO5fx/6wQiiRfCqG8UooKRdzrQ4sj1IF1s7xwV3oLprpz9bR69m5toe8Dl6+9KDbqfWIu6lWZu1gYEiWNrX3jHoQErxmkzGBOlGre81+2NC3gvy4ulCpghk55c02dM6Gwzt/Q4ouqMl1q0wKr0zlQ4gtc5BVufHDERPu8jZGHvtXPRaQzmZ0UvQ6J3c39fH2h2MnWMRgKqwjBu198b77ucAjbvrB0Yq3vnFWzc7U9CFcQjB2E0e7TDBXNgBqp1J0sa/2x9g3zWFo5FaqwEhlSwFamgKV7KnDAgU2a2f36s7tSob3auT1smwgzLGUqIznLrDZaM0is1bhdfTdfoe85en2IUY0WKOWWsf+dpDi2TpLYQhCMM4WESnF0d25etpaE2+7CR/V53mvBZlLOobDhzrHy2AXu9A2laHJqu8z6n0lPGmXHyOnD3UAcC4E1rqVDp4b6k2IWIZlV1pBWUlte6Cwbp02fVB6wJ0pd73UDAZ7eaaT2xKhSEORO+QUvt673Yn1aKt+8YEtShDIyd7T5Q9u3/5U5aSzYjSdzzVrtDHSvvZCt+LMXV3r30qdAh1twf77/c3rkGoIswxqlObkhX39ICXspQ9QNaNoGpyuDOJu766P4t3RtxOt/h3W1phuwZtjvfG1754uAaCYmekUlrgte2b6s+sDqtIbvbO/nVfi/Ae3G02T9MBdZcuDr3pwb2NVv/Bffx9cUNib7C135uczsWAJ/ut7XXNPijEjHZtCXo+shv44gFoOy8mejXbqaotEsQYeNLfr6WlKeXqTE3XaT2A6aPehS2herdWPTPOeVf7CyvyasG4inXI7BPka59TtnIFJmXvbBCNzDdnpMl9k9u+AGDtvh2o260z3qmw2xj719450LFadF9Q0GkK1Dkq4ylm1rGQhsIqieI1APONvF5Jy4UfauFxjIzHIzWtTQ6OBpoUMilv5LKpnSoZCYVhEI4PD8zTgfcfPgCBWhJfv73qfiOwbJuBH5nrZWMcJ6b5ytPjI8fjiXfvBksNUeeqlkANkVoCOQkpwPl1QcaRKsLtJqQtUvKkaY7UVnhbAxcwjD3dq4qms6SkhalrrTwejkwCU1EH+7YtlFrYlhueap7WM9eXF75uid+efuLh3Sfmpw/EArJktq9n0pgpEeoo8DAj80iQUZ3EqHWvDo8zUmG7XkkpkXJmWW82NpDHB2IeGZIwpErZFm7rmZyuKL2pwKopdQ48SRxBRjwPSArKWhpHvnv/HWEaqEH47fUrqSRSSUzjAFk0s1pgDJHHeebp4QEJgY3CNW1sFeYjXK6vhE3LI/zz9z/y+PCErIly2ShL4nrbOL+spLXw5csruQaqjHx7Xbiticuy8vyqANI4VqSuPJ4m/uv/+hf+8v33PJ1OHOLEJJHIidPDV8bjCNcDsJDymZrPjGiXuxALw/iugYrfvn6jGvAzDAdyCfz8y298fP+JXCvz4cDT0xM5z5xOD8RhoNTC9fbKup4p5co4JsZxYJwyw5CoctN0uXpFZCGGRC03KFeEVcusENmSgqQ1Q6pRZUyFUiaoGaEwxVl1UQzM00TKhWVbKVnTldatcL4mSs4GcgzEOPL07sS3rzeul0QtX6klULKwLZmahSADp8M7tgOUNXIYZ07zE4/HJ7Yy8m16pZZsRIMKpXI9X5mGgWGYGEeIcWYYYYgDD6cHQv2O66uwXOFyXllW7XT37fUnwvCFOP5CHB5Qvy8yjYFpjJyOI8MXYZ5GwhCROJMKPF9uPF9vnG83ZXYDEiPDYOViYiBnIWcF8SgejZE7J7AUayxVCmUzZuBeEJbaqUYOJNyL+3uHJgR65OcfvMwXVtl8f52OZVRrirDpWtdixfB1EBq4jlr/zQLAbtUV+6nYc3qQtiar0xQ6q6haN/vmr9H1y942db2jxchV4TRASgZNLw/C6NiAYOzIbhPuQbeKB3zVV44x4oSY7vtIK8Pj//737Ih/9PrDwNM0T8ZyspbZDc0rSpEu3ZgSkdbZqJSq4Sv6IN1/93Xtrf46IqfpOmZkWC59AyDdWNyNb298+eR1J/z+1ZwfNxTbbxTsKlTNbVfWJMOm6UdIscil5uYO0VkJbRS6KUNPhZAQ20ZvRdY8NUbU+YgO1IyhOULadaYYC8HTEmKjjzeDsIZGP/TdbSVQmmvWfDixtKl9PQs36mEHdPgmUofBO7lkS8erFWVLBVViebP5dyc5luYMN1DDx+sMGFuAhphCB+zsADcPGmlGc0k7cFM0guApMY4mu5PRwAno9URqyxDYzU9nO/V9qiBDyrlNYHNSlKZjSH7ZOXTVavyYo+MGsDhTylMY3uxfc+Bl/95utwq2tjs0uTMzdq2093+KrYcYeBk8nakzc9xpHgdhGLzj2GDRRLivI7YbKmpAqwDzGLW0NIVktd7UyA5az6N2umgQIaL8HegOoIgLvGApDqWd4brbD6V5KN2p7oy1nsKkr9C30d2kG8hdu/MNxsSQasXz+z7xtKEh7NNKA8VS4tzxVEVj0XObfn9GqgM3XVaFYB7gLstCH6waeFLV+Kw6tpKLHTMhx6oATgHtOFXIyZfcGUr2HKWPU+uXSNtHmh6twKBvoFKxAtbS0m58IrujX2xv7dkcFYku/wJVstXx6s/teEI1aqqncLfsMHEHTQW+O5e59Dl0h1+v4lGrng7WvD0729kcfkqxpLLekU+Dy8V0WWft7kQGVgm0baEOMNCKOrp76OCXp5iJ7WPHVRREtvS17KBabecxl2KGqM4ltj89DbQFZ6QzxUS06cMggSjBis+q/qwOVuKsDktdbh6xnhHdqqprQCB62qZJyRDBxlxqd4Y7U4h2LkTKDgSgHSTDYc1h99o63Zh52yXMv59r1XbFVDVwXWb4je9Snu7Bo/6YgtApy/vonEdNW82kEFQH27lRZ8cDDhb5LZ0BWwothfY+IqjgYrHz7BHNPTDW0vHsOdzG2bOfe2SxV0Bsst+AsWgHa03GaGit32t7DpX9XY+3s7J7+T3d4M1Zn02Dg362/Hudjen2lOt2ZwyDtpj2tSp2lgTafBSwBi26P1qHtIJ1ratIkRYYKtXSY3P3OwzZ6XJhx6aKLlgEO3e7syC9Ll5LO25y0PYP0tJ+lQ2ZGSzUvbcvfB81wF8cVHMdL3fTvWdcCUoJri6APeLnINW96eSnqgFUpUCOUGNBpsBwEhgDdVCnKMVKClkDZMbAybWwrAu/fvlMXSt1g2OdXHQyxMAQIzEIgxTyAFOEZdQi2PXhoPImBFJemr0RogcZE0KGslFzYk0L2xpYbgNlW9iWG9oZbG5nRVlyhS3BJWaC3IjxTJgUwF+2W7OxjscDoxX6nceBwQKawyBNpxJCS8k6zCdS0pSWSSpzHSgBlrxSa+F6fmFZNwsoZdK2cqPy+fPPrCXxSCaSiZIJNVHWmzI3SyAMgVBBJFKjMqDC4QARc1ad5ZSoJbmwVLAM66i93ig1USKEOEIdgEIYRrNTB4bpQIja7l5tpcjheGI+aBfB4/HEdV243m7UUhmGkThGqJkaAzKNms4XR4Z5VuDwcOBweiALECLjeOSzfGM5L3zZVh62G2EbOBaIsRAmYaiR59cXvv72jX/5l5/IVZA4spXAlq1Q+eUL41B4Ggf+21/+V77/8IF/+v4HpqDFuz9/2/jbzxd+/uWFX79t3PJEmJ6oCNECfqejzlW1iKey6SqFREqZ6/XGMM6Ukkj5LxSzlyCwbFrzaFk3ZSoOkMpGlYxI1c6L44FxmFXuGPNkGCrDUAkxsaYr1/XCbV00hbUGXq8b6yqUEoiSrcZTbAW2ew1glXHrqk7ZMEw8jYfWXXBZMxkFiSQG4mA+TYAtr6zLmWUduK0jl9uFWoR1Sby8PPPy+sz5cubDp+8gJLZ05bfPn/n65TN53RiGiRgrWxIut0yIK7m8EONqdv5kQeuiez0JuYxUOWgdtkk4vy7kbSVfExI3MIZdlMI4Bh4OA58+HpmmA8M0cdsyWyqknFi3lWVb2XKiBq3xp52QCzUV0raqDClbUzpS3R80uVpcL1dVIrV5RCpnd12tgxFimv7E9I8JzgqmMO60XVd6Lvj99/HNR3CdoPZIKpV5GhhrZc6ZujgBwG1h/ZzaDGr8iJjtVZW4k0nWaVxLEIjbSKApzmq8q53fAk76gX2zEoUA7LOGE5jWan64OBNaus71IETTTta9TpsfBLNJYw9gYf5yhdQCNBa+2dlT/7PXHwae4jCYYag0Qnc89vQwNyzUeJBu4JnChP73fojujOrf3QOrpXRgyxf/zcPJLnS3dzDdCX17r/Y8rsDxzzvXSL9U0KKWtcCaYczK3BmLRrfMOmqH6S48Wdpk7B5aN4GuuxlqZoA7Ilnw+mvdIW/gmRvP0g+m8WOoxgxyw0nLIlS3w3yi2gOL/b42Cpkecwdkeucec9xq39ylVCRDFneKNBdfDTj/Q3fSxJ2J2tamMx+ae9wcXi/u4gaaf18LcbNL1dqtlwhFLMa5M9Qaemxr4oZmtbH4NvWhuRHn89EYTn6N2h2h5vS8ieK3C+GHEZzeUw3YEPPQpG2ben8NXxc/N7VHb+tuvvYR9/s/tbEh3CFAdoa97QtBszIGA57UaaPVXtHv9nUziW41ODAwqY+9sSbsj6+/s0tUeAWq0T9332z7RkLswGNjC9melOYp2bdq63DlLCilt3Zgxa9VobOq2CkvpAuL2h3eO/ruDhTr7e6lp4FVqMbc0uXa36cvbxPwrhR9gNJ/FvtgDT4nBc+/uhuT/7h7z+XyIO7ANaFJH6grLN1N1uRHneMmbyzqYWdQlb/Ooqfr+Xt6XbHvVJ/Rdq5dkQYHUOg1mdonXV64UvQruXIszlLq69YaWPhWsQ2d8o550mQ6VrpS58rZpkWCsRxdl+2cc9936LVdTkgTHPZccg+Wu9rzBJy7c2lj6cRVMVDKT6vpgcaeMx3TlVRjrzbdIS4VFGKNYu+ZwXJ3c+gATW0rRLW0wSrGbDbGlEbqSttCmn4qygSs+9WmnZN9bTgHnvaDd3Cq+CbGwHg7T+KsFpd0LgsqCsSg6U6uzvxMe3CrsVf2dsLuPO7H+jvgqe0VCLXbNwo+VFyOuFJ+O7V9P3fZsk+DuwMZpG0Ck4VyB7y8fXXdvxPg+49KZ3lViwxXMVBWxGrw6Re8HIFeRrpqbtPhY+6RVU0h3qvXnY1Q+zJJ6Ndr4kk6sAQdw1XQkTt93PWt7MahtdeQqsXFgSJu87QZ7UfG/1mqMqaovcORoGy9Ukn2+WYL7YzwvVh1ME0sSOBAXrH1ENcb+7H4ulYfv94HkZZK2vbOTr7gNsx+Y9Vu73Sl0n/XH9oaPgVgLIRZmU9l0EBwkdLSt32AXiz29fyitY7CTJgjo2id0CEGRitoO8hAicpAClIpeTD7wMC1nMEA5ziIFZAvhFAIUgg1sWrRULIEoiirc55G5oPqfoisq9bUkq1Q2dq0xjEgEVKxIt0xcjgekGApcMNoIJk68J6SPE86aSllYhjZ1pXr5UywVLsTE6dpZpkOzMNMDjeSLVDOiZXMy+tXZIwMh0nZIrEQo6bxlVqREpC0mQzcdH8OmhJXtXK6OtxVnfxasjl5Wh8mBgXrNpIChzEyTZNa+aWQUzYQQ4hxREKkSkSsntR80hpH0zQjIViK4wLB2NrDwLZuuo9jIE5a/DmMA8Nh5nB64MOHjwpwSWArga+HjbxWbuuZ5+3GuEUGGbVJkARCEXLZuFxf+fL1N7X54oAMIxWtTyXlzBSEd4cjP3488cOnD3z34Ttu18zlkvj8fOaXLzd++XLl5ZZJRMJ4QOpCDDNDgHnS2mIKgCvwoXo7s20r1+uFuC6M48CWrpSyqYCT0LJxsgXJwiBI0s5zGvQfiWEkMBhDXz3BcRSGUQgDrNvCbblxXRZL3QjctpVt03TQGKrfTsF/Ac/+8LOaS1HiRogM40yImVQrwzAhZGUxV4FckVDINZPKRi6rApFoumTJsKyJ2+3KbbmypRvDACEUSt14Pb9wu10NcJwIQQHP6y0DK1sSgqwoGhqb7z0OQspCqQNw0GYAA4gkLVSeNmoQDbpLQOrGmASpA0gmDjCNkWVLVGvUVKrWsMo149kVDYgvhZI2lRleHxnX6a7fBYw9WnPR2nk7G9BNHFcVYjVFcevazQezXO+Bpa5b/v2X7GT6TuTicYFKHAeGWhinyLopA9epUR6QKq5zAbyOoxmRzo7VoukGlMnezjS7RkyetYCaBTuaXSGtLIQH94QezFMehqeqm326mxK3w2OI3YZqRJDdfDf71mup6kWCdNvrj7z+U8XFc7F84S01x8PBCMwgaXPVCjR2E2UfmGov8dpEQ2uB6kKloPnPTlPrr7fa983L18z+6cQN30NBNALm5qj3MwPItVfpaEZ+gZDUaBwixDEyRMFzJ7zTlHZt612OgtWJ0esMnbUSRHO6Ra8/DZpism4J7YRSlCFgBkkYjAkGUIsZ3uZqWIQ/i0aO1SEqeM2nTqUwp8iMrEKh1NwEpkQoyScMhnGEXElLopuRqvgKsJZq3Q2h5EQY1KEcRktPMyPbHQ2vXSIhEEMkSkCI3fC0dSihWuFkwVM2SvHOB2IddyCEoR0iZ3iEIqScKEbFDwYQCMHAiNqepNrp26cOtWj3bh9Ncbgz9l1QhSC9pkWMuCXvAiRXr1AhDWho7ztoobvnHhDbbVxxD83esxlVg2V/DRPkbZXEBVR/FnHn1AANsGL5oRKiGoBa66nvtZJKcwZqLqZ0sOfsjpdKO7HWoeZEBS/aXNiMRp9z0cieQCTiLTuhsw/yLm2ipY2gNREslMQQ+ypVShPqDaCip7rsGQrEQc9H1T3hjRDae1UMGPQ5202grVWuRaOaTUkUq8FkNEObi+aCSGxCMfsagBPkQTRS6uBTyfY8RY0JQqXGQhXUwCkGFI7aRCBYkfFx2NVZax4KUPcQW3fOPJi+rkkPvwQqQRkFpSrjzCY1ZT9zwa6i99KUa4xl5NEoFAQqWY1kYz4huY/P9po63F1e5JopVTsn1kpjiXT2nCBEqELyVD/B0hN136xbIkRaqmNj/QB4bQHdcVrPoGaNXjV1JXeGg58pT5Nzg8jrldVgCyrtgWzPBItc+WbSQ1xyZssqaGOMYDXVgoBoFwibEf2m1hBQMGmw+hK6N1TexYAab1Sr7ZMbCBPM6hls3Wvd6Tc7K3X/71Ihg/cbVLvOnGJEaxU4I2d/MCQ0FpsegQrhvp6Ay81oZzdGl1t6F03ltfQ2fG11ghsoJcFkljTQzdMZ96cUamMDaeFjHYPWyaAZU0KX/y2qIVggySKEdlgKet8hxh3TyPRSxVgW8XeGlzKOVHQFiS2FKqXSxtInjn4wq4PRbjz2tMded66zbbLx3mOMDM5ySiazAU217SkJNd/b1C7G6w7U00L1vfufssVMBoifR9Xc7T7izESzq4I2Dxiin0V/Bp2rYh2s9o6HgDrFtk51/70w9PW2dC/J+k13OqAdYQWIjHXqE1qB4sEg24Mp59bMRsKAJhixu39neIahy9RciwUdpIEhnj6Rc4asRfed6RxFdoGJPUMTS2EzA77qdsSZ281Z6AD6TrB3vTxCnivlBDwIMgtrhK0GUnUBHPTiWzYHvHCtZ6JEJEYOD48Mw6iFpceJiILN0/FArZVtG1gGtbVyyRaAqaS8tfGFMLT9nJaFQQqhbNS82J6ODHGk1gu3m3C5vlBrABmpVXVRkYFtUwdHS0lkJBZCTNYhbGKev+cwj4zW1S673kjg4YZchMrIMD6wrQVIStNH28HXLRMKTGHkw9NHvI/r+vqFlBdySnw9F+QQmLcDD6eRBwLv0kjahK0WimSEBUkZSRVypYZAXjJympEpanv1rPeWnIhhIkrggNrsEkEkMIwHDqcjP/75L4gE1mXj5//xE+t1oa5Z01qTdk2c5wfCcUSeZlYKS77y9duL1g3KmRKUXVIkczu/glTV24eJEgfWIbCFSA4RwsQUD2yp8PXzC19viZdc2EomPn9lWS4cPn7geHjgOI7IJTEd4eHdyIdPE5fzhcv1hVA0DevdceBP3z3x8d2J//rjRx5OE3MAyszrJfHbl8T/63//lS/fnnk9XylDMH+ocAiRUSZGCcxxNpZeZDw+UohsubKuWjR+miK35cL1Inz98jfePz4xxKOmNxfIRYjjzDBHxkMgcuR0euAw30jrV7YQ2W4D6y1wnCceHgY+fHxPqQuvl5mXy5nweeDd33/j0/eBaT7AMJHWhVQyUlaKLGw5Mg6KzocKp+NsnQgtSyRo+rpagmoPPT0+NZb18/OZy+XGz3//hefX31jymendxOOnE08fHigkrsvK+fXGLV2oITEehIf3M8enyHjI1ikwcHp6aiBnSiu/fV4IYSFIZRy0xhO1Mg4DwzDw+HCyDI0jRQIyHJjCkXeMXNeNuG5spRJi1DTWIowRHg6RwAZ5gRIZIsxz4FQnXreRqWxES++swQDUnKjZutx5mh0e2A3aBdds7xYUNQTBSQvKSFXt1PSRRK3F6BrN9ZiInvOSrIvJTmA2Bdh9jVZbt7u9dx9vMdcQmOYREdjSRr06c0v0/Ff1qXOqpFApSYMebssMMZo+CFp/Lie2vDX7JA5BZWGPgADWUMD1TyPlqM+lj2LlAGpFghaNL9XKAe1eTgbwFL9x1BphgrGSjVSUnOFusjWVbN1rO+uKZtvzh15/GHhSG9aU9NYd8OYANmugmsLuv22D6bp/76OZve7RZmU5tYczo++ND/i7lxpGbp3cQ1M+huqfE3fCpH1YAQAbh77bmHYpwypqshxyZYwwBC3O3TpedXux7eF95DOIpWJBo7qDR4d1gMGq41cUdPF5oc1NbVFNjYz7Ado5lKV2hqBajx3V3CGkim5qoUPtYhaMHu3fcaCmtPoken49DaVqelZU20joQEg3mAE8XcpbG+uh0/bGwb3k9nyUSqq1GcDeNdCRVZFgxelCd1yqFZi0u1eL5uvhExuDGY8N5NEJeusY3e0bkZa+4M/V63yow6Pt03vqjL8C6k32OhxQijoubf+3zwYtGm2bfO9I9R3Uv9A7prkQ9jXuQtUjL27imrvc0ixFaE6c1nLp59bvFYLY8lhakFOdzUltstoeSGWuoG1BFYzYp+LtHb67CZB+LpsX7M+62xudvdXPjJSAVaLd7d1+jT0zo5qy8nOiKZrtIXayyh06+jz4PXevzrmxtB+PRjSiibVKd8fJj32waEXo42tzL2L1RwSpmjJVs+2LKsjEXUe7YOdhX+Bf+77uxlm77FanIFLSLl3OtcakAwABAABJREFUgcYmOex69pR9/3onRFOcXp/EUq2peuazga+1VG1EERRq28sFn+dKaYeu1kr12kMmY3KTN3ZGnRnlK+bvi0Kr3trc5X2TEdF3tXSHtKWp2l4p7sRbHRp/VnRdHF9id+1cMpI9uq5j2Dv01JZQqncXAzjRdJ2+74IGAaqlKNaqzm/TV32PsttzUYJF+uxZGluIpm+7bOxyruehCOJ4hAhBPEWwuuttz0lrMV9KbXMpHhCxvdt0+k6f637aH3kxILG0Pb9P1czGPAuiTLmetuTPTgMW2gbf/ejs26ZT6Lr4H0Xk9oW/9y+Rrmf69TsI8Taqrf/u99Ftab800PiO7dJ0sTQdpk9bjRX3xkZAzxrtV12X+3e1tlB/Rg9IeD0u/djv56Axavwj6HOJ15n0nWQLuddHoAEoPxN+tvX+etXcYxaUakGl0udMrNxCt/a7Xr6X4arDU2PUhiZjbaIt7V7T/ZuJJ7W1r96ZQne+xd6+76m0oa11yTvm6U6PtfRQjL2301P/P8r+tEGSHEfTBB8eIqKqdvoRkXdWVXdPz8z//yPbux+2Z6e7urorj8g43N0OPUSEJPYDCFLUPLImSjMtzNxMVYRCgiDwAnjhg1et6lSJtbLlzbzXlVMd5kxGqpBsm8k4ECwDr8pncKypZjIFhzsM+ENAHib8/Q1urKXzecWZnkYDZZIKWRaW7GAMnPwZXOTu9oWwh5vdyCpFy0XS2vZ6KUUrIGo5vKsZ7TGHBkaVRuoP024guKJB29htBj8IsHC+JHLxeB8Zxj1CqM5SAK/2kQ+hBhQ04BFrWROi5eeJxLqsGkDMhXEc1Fb2rvGxzPOFy2VmXRZSzqSq44Zx4nEY2ZfC7nKDHzyZwvFprwTnJVGcJ6FZPD5EptFxc5s5zQsurSy5dv+TTCnLVUdDiUJwg57dDiSExmnFmrjIpen54h3jNLE/HBiGkZwLy7JijVZCTR2WolkxpIysK6V2mysCp8uZkuv1fUGzTUQ7slUOxWmcsG5a52WucvbEEE6kLHx+OXG8nJmXhZJWTmUhppnjLnIbI2UYGILj9u6G6COI4+XlheenJ3CZaYrc3u759sM9+2nCx5EljyzHzE9Pf+OnTzPPLzNOCut8ZD49kc7POM4EvzAOJqUw7kYFnlxEvG/zEMMEFkDMwpoSy7KAU46vaRrV1hEFlud55XxeGKcdwxA5HHbsdxNOhPPppB0OhwP39/cgv2KcHPPyyvH8wrIsPD0/s7+9x4WBEAeo+kUzVpRSQKpyEfRciTEQYmRdtINiKloKZWdcMqLxXBiniVI06O8qV1EIgWnacTjcME178uqZh1LL6LSk0EpHc87VrqmBiGZ3etakWXY5LcR4UX9UpJamRpZ5btmCCmYsiOg+GYaRaX/DdHOjNAEO8vLKGBwPtxM3hwMxRqQUQhwYvGMojmFcGNJKuPiqQzKSV6hUAs5Zhnj1N70CzhqF881/kiK47Jpt03ztZrjXjJ+NLbd9NdoCUAVSul2yUcTVUHL9cPg7L5OnNaVaxVEwfmr7bLvc9lI1QBecyq8lYBSUPsPVMj3z70MYmq2hFT9Kc2RnVQh2Nuk5a3aC0iNY1VRpZ/BbfksL8De/rGbvmw+mz0azrfu5Ke37V3bVL0SefjHwZO3hG9ePzaVttq156xy9dfDXr2sjuhsYNolWXmfRIJGvn+fnUuSs7E42Q+n2UjfefHOqOnppxs3WSbCJzqJk497BmoQc9XehRuEFp76vLQh26FyJdjfMCojxgnjfDGsXggJPUh0RZTeoDqttlvAza+v6lxmV1cluz2a1p4pA1eicpxQFaEJRh9Acvh4Slc3c9SwXKwcx7oRG6ApY9kZbj5K7o/JGyAXZCLMpj9wMWD3IK8BXy06svEXXnAqp1DWrGwVcIyLdGpidFLmO52eM8K2zYigyoht/W37hnEY4t87m1rm6+jy0DB8D9LbvN4l0znUZtHFsBclt1veNBDSTrs0x7b2mCBvwxJaDy3Jw3lzT9VLFUlM8roz2Yi6uq/+v0XDfwZfGbeGkPf92U7RH2/ze4uhfrclWcfyMI6l7RD/7c/qhGQViGVv1fXJ9xz5v104QXINPHXgCA1OttNAU/rYOW4SWBtsOg+04nd170wULoQTfdFo0h8N3+dLyPwMo5GrqbG/lIg2gdK7y1ZhDZwdRPcD7gnR5UqdJM7LMIbP3lGzlYioDrStkrlmRlWS2lVP+nbNJx9p1vu7XTRJIsXJG9+Zz9c02ruoUWmlWlcC2L0wXlg3xsslq62a31QFbmXBOs9Bsdurc6t5yKPmmvk82S3EFgNSpvQKjNs68N0W8AWysA6qtjO0Xfd5qjJXcZXors7Ax8KRdt3qyVdd6BTu81/WkP6NUPoKeoXS9K7jag10vdw6d7Wq5n/m5AwdG6g5otydH7X5XX5tSrn/LONwaVwZsfT1Gd/Wzfc6+b8GH7XWvzhDbLnRAqhOE9n1u9ly3l+TqmnUWdP86aXADW/kTdTiNu8jAeDDZ0/PNsqGdU65IKwvoQRBpA28StQFANo92pV+v5nfzs9uMM1+td9fFpfQx6jPXq0jVZ9Uo3xrq9p4GPDkdXymaMWYg87X8dWO86YXNtZTrrdoHV+KzHdv12l+DX1+/xwXXdGgDntq01gYXqN6xc+dqz5vj1J6l2kFd6bT1Epxy6bhaZhq0BTre4cdAvNlT7kbcww3h/gY3RIJk/Drj0op2jUGP+1xIJdXufBMsF4pzvJxemEJknQ4sJFwWSkr4IeLrvtbMLgVBzDbMwcMKLtOyOp13THFgiJ5xjPhI42zNQM4r86qE5yEODM6Di7QGG7W0J9QsVu+9du5qXbWV9LwU4VzJu9d1Zb/f1fK7oCU/FZRQZ7HUOVbndpx2DNOO7D1x3nFeZo6XM2G3gxXIq3YDRLM+ndesj8NemOREcY5kAdNcNNu3ZjSWBfziIWi2iGZqelLdhwoQLVV2wU8jwSswZE73Oq8KWuMwt0FUwUJKyOLI8wwhUhzMaUaqv+ar7xAEdrtJwYUYGOOoZ9eqLe/P60o5vuIIpCw8n2Yus5LCkxPzunJa4XSeWPYHMoUpRnY3B3bTgeAH7l5uuTnsKWVhmiL3dwfePz7gnSetwrxG5jnx449/49OnE+dzIhdI8yvr5RlZj8SYGFxmGpwdPsQxIi5QXCQ7h3fa6RDR0szkKoVD0TlVpz0wDkOfwzVxuSycTws+ZkLw7HYju3FkuVw4n06sy4JzcHNzIMZ3OJ95fvnE5W9nUs68vh45nc/4MLLbT2prNnO8WQQbXdR9HZHahKFohnkRDeSs69o63E3jgTJptqdm02tQaRwndrs907RjnSGGRAgDwUeKy1XmtSteqSBYWlfs7IfaJCEllvmi3MPOISVruWHw5JRaZ0O1J1aElUxW8vLDLe8+ftRulpJZz5FpcLy703EpWXjBD57gIyErPU8IkeCcBq1KRlJvsuWduwZDTNV18kolj6+8qZK6n2J+cXeOehC1nWum+5utX30aV41K19eprdzfsyn6wY0lx6xJyxBFpPJqdlv1+v1gtQ5mt/tgnS81uG9Z1qZPvTdSb7P7Sgtu2nC6n3DtS9pNpc6JfWbLCbm1S3pmej8TpdoaIlgGCc1Oe+t7um5b/9LXLwaezuf5zcPp4Rd8qAZVf6jt2onaUbX+tf+uZnIhCDmlJoxSH7pAi3TbZ9ou+nuyYQMUYetKv3VU7BL2VcQK3Laf6edzoHa5EzhRcJIpGZhiI3lF5IqC5u0QBUhZy9aKOHw0PivfWO/bncVdAUXmkOncr+SsyqLdxWn3DEM8PV9nYbW3olEEVTIVEHCF4DQVMWchJWmZILGWTEnLTLpeE0NojdDRSEi3ncoQYb87XDkA1lLUiNT0raXOT8ZawzonNaNC6KWKRp5Li87rI9a/GYpfVs2ay6UZdBtvqQ5t4xC+lY9qSFId6VRSUwQxxkb4liqYh9A6cpm8mptmYIH3oXY22az4G/G0f5Y6d4LgXbh+j3NvlI8qUs3acO2Zm58rteTU+H6cgaTm8DYW4+ZU2nqZM97mRnqpHfjKXSBdkVYyupLt9xWQsRSiKs/ZsgWdcjKZA6JjtmwKd7VWVj/eAIOWUaVKHQeSy5Wc2pjtkNBn2irZrlD79dQR1D0VN/MNRkPX3W9zsHomVa7GtfEpWXc7JQb3DQRSZ6tmfkTfrqZ7yiL2gtH1sMn+68ZOI1ACpyU9aujkGn2uXE52kLiwmZvNPFSnTv9d06Br1o1lV0no4ONcOwSJ1NIhx6ZEr5Y2VY97iP1gaq1jRdN2twCMiJXuuTpvZoBWEKpkrKOcgbd5lXYou9AdaIPCXD3EWyaUdM6olLTl8DwrMbvNhbZdrtlJtQ4/l9L2U4y+thUHfG7qhZq5eJXXYDZOfX7vFfizM4/6flczWL2XJo/Od3kLtbTZq5rDB3DRMRARKaRVSzIzUkvJm2VVv8u1nEqq+6Rn0MUYEFdwVW9qLb8JS5+/7bNZdoOgnCkKCITKW2HG8OYDijb0fzYAjKrL+34sUtfbW5cWVzMRm9Q0hdmyYLMFaTavN1Ohcnh9Sm9BJREhxtgyjLfv7dm2VuNbQcuc1DmM3ayyCPQW4PxqUJufFJy5BrpAmi7dGqY51z3n9fzPDQCuuvCN3fMViPIzhqK8GeTWdhIVHOVLMmO2trKzBgNAKzeLMdToq1pXZo/rWm8M2Aq4WJas6pNemmsl7dRnzvU+ZlQ7Qo0Eb/aXyWQNbLcWII529v3cs7+ViZSsU9B2Pbqt2rX/9hpaqnodFKFlNL69FjgItZObc5CLlqZU8N7WpFSaBHHggqcER/EedwiMh4m7D/eEP/yGcn/L/P4ON0WKd0RJcD4R5gvH5ydkWWBJUFZkVVDGxYVUMpe0UL4TTsdX8rLy7eG9gkGlIDkwhMAwanmOA9KytLIOcAxhIIbIvnbAjjGwn3a1QgCen584Hl95fn7m9XQikXA+MwyRcXTc3nlcbWAU4oALEfC1U25AiEzTDRZg/fL5C97r+udcSOvKsizMy4VxHJimkWEYCQEOh4ndpLqS/MB5XUkipHHEHfbIEOCy5/PpyO58Yrh7D/MraVVAa5GBOXuSaOrVMASGMrFmwRe1ZSR4/DSp04YgvrCkGX9aGMuIj4HBe8SPlXvNQRgIvpbejAMhTuS18PzpC3lN5NOZ23Gi4Lm8HCt4mCGtlfjZkc4ncpWhcDhoAwbnGWJgCI4xBn717TdKxO4cn7886Xrd7bi5f0TEcbwsfHl55XxZOJ7OBD8wRYfPHs5K0P3pC9zt9tzub3i4v4fVUVbhIU58+PZXTHEgUJC0ktYz57kwL8LzIjw/Hfny6Qv//H/937x8/sLlfOLy+sw0RcYh8O5h5P7+jv1hJOUTp8sr50VIMbDmwjJfuLm9Yxxv2E0PzJfC+XxmvjjubwO3d3s+fvgVt4eDdvDyBYcS3L++nPjhb551TnxcPSU5bqbAEDPH+ZWnz1/415CJLvG7X78nOLjZ7/jtb37D6XzkeD7x9PTCvP4L0+7A47tvubu9ZTdOjNPENAwMMTDGKl9SOJ0vcLaAswLEa8qczjNrSlyWpfFWTdMBP2oCw3JZQTyBSMoQw8Q03TBOtziftXRUPEoYEzm+zoyDdox7fT1xOp44n44IejYMsXYXdoU4WHaBzotglTOZS7W9NWNUuZpCdBUUnpgvM8MQCMGx3+0Yo3JkXWYtsV1zYbgZVY+JU1L3ywVSxmXBF1EqBTvDTKcHj4tKDh6GAfGBLEKW1IOjKPDs8D0rvmb1bDQ4ZqO03xRB8qauvIJ5vjZKMT9vk1bfSx0wBV91eTBbVO+dU4IsRB8IYyDGuRKFa3DI2Xkp9OokFyrJt0ecV/xfAB+IA3XNemaTBT+GYVCbbUN7Eaud4VyuZ6Fx52q2fAPetud5O7uvA4LG9ZdzL6234PI222k7LduuxMYt6n/Gpvi517+j1G7roFsktv4M6lhJdXYB8ZW9w4xnh2ZCmFfSFp0OXJqbXtd3g1voGDZPb4+3Rdq2Tj5IA0P7dfQXpboFQgcu7PPNgNjcQ9p7YU2wBAVrhqh8Tlz1VaIBPVvbykZt1ymiXAhrLrBSOyNpPag5rMafpZFNryU4aIc9g6p0XnXqlYei8lHYJDYASq7mzpz74B1SG++FGrkrXrPavPO44BAjQBEaMa5A5QSqTlAFmvTn3nFJ5WFrgJnzqWOTLG2NRBSwUhDFHIqKztfi3oIocu423Asim7WrjlWVRd3Avq/jxrj0zjKupEWpzSi3duU/J2vbyHEuGy6I0J0pEctm6Q6KSM/y2krZ1rFpf6sKsGAR+6pYMJnuCnabodEUqdRsgY3DJWx+0QaqvzdyOFNIvVJ6o5zh6vNb90THUUC8ArPFHI0OkHWwxj5Vf9fmFJSAuJZdmOy47byGCqRtQZI+c3bP6/i0PpntpZ6JtN3hZju7dgCpbJgcmuMom1rqDmhKU2IGoIUGujRHul1emo7IrROWpu82uqAN4ObslJY61zaOJgeuyaABIFLTtw1g0SdwXSW07MfNDGz0g2x/3qyyjauDVLL5fMWG66c0JbkflCIVpKdnh7zBMPrc2H3eymsbph0s/U+df766uU22qqzVudNyjEpCXywSpiB3f1K5knXLLjNn2JbHe4ePvU298SY5oVoUm0u2H1073Ld8Un22pcmcrbGCXMaZZZmL+v7+P9UF1q2unUdvVtF0nh0J9jkdWdeppSg43M7oWlJcK1z6Q5kervrElaIgmgUr2tpeT4dlq1yBC6YD7MR8o3PBXcvc1tDZAmx1n1HJlBsI4K6W4gpIeJvhYr+371egg42hPljjmcO17KL+7Ns9uLl3g0brf+ucuk2Kaz8Xac8fWre6bdZOPWtE0NJy3z7jaAHk6wVo50/X822MIiYNbF9brdkutT07q950bhPBts1ie78d7c4EC8vSarPY7AS7pqsgjO6dEKz0U4Bco/hdxlRWrdwAM03pQLa0s6I928+gUaZnf+73UPdNy6DfOj1fX1fH7do50rPmdH7KmzHIZq/axLs6j+JQsuLdyMPjPfu7G+6/ecfl/Tsu+x3ncUcOjuKgEHGD4MXjwgXxrnYV8SA1wOB9C6TN68zr+chPz18Y3cgujow+sEMDMWOMtQZWBVOy2Eaoj6OBFgOEpHgt43aOEHcMY2G3K5rFIlqe5qN2nhunqclUHELrALoCOdcHb1UyFYyuXwgkp8GJdV3QoInUAKsGH4L3NUuqUDKsuXBJFw0WRc+lrAieME7E3Z6CUiqkcmHNwuvpwuvrmXG3Iw4Dt7s7vB/IpWZShMB0e0sWzTyZlzMlL5ScSfNMyBEfAzFOlFDnx6tNU0QrcvOamc9afldSJi8rec3keWE5HmFNWjaVM24IyhFJ0TWJAbfbEcfIMIzsxoHoaoftokHdXDTTxoeB0SuvVxFHAlacdraLgZK0E2FezsjlxLouPEnh8/MT+3FiP+yJDAQiYahcMlA5Gh2SHOfTyus58dPzwt/+9j0vT184nZ/I5Yj3M4eD8OtvH3l8uOf+9sDhZs8wDTwfn/jy8gVenwhDUJ7LUNgdDux3d9zsH3kuF5a5IMWDC7hqG3onhADj6NlNkTF6lnnhcp45DYF1SdWuyNQCSqSsvDx/4bu/BqbB8c3HR3yA/X7PN998w835zHlZyeLIWTi+HpEizMPMbhhIux3TOJJjaraEjkVBBh8GhILLGhBMayLVNXAOSk4sy4VlXknrWnmDvYKmPuJcqMTPNXtqzTW4KQoQTnvubh94fYXTlAlR6S6sfNm1rIhCKQkjEtU96qqPXn2N0m0ACszzint9VX7ToNmHU3Tsp4jcHzQJwqm5k+OCBLisjstlZr7MZCMcF+mNuUr15cyedpoFFKJ2akQ0+NC0obkuZt82G4kWiQsxmPGs+rNYuEGagdoDfp3D9KvXzyj8q4yediZ0O95Vm09tZ9VRpvUtQSJLz4gqSOV7pAaIy6aM3l/7o1X/e+cwwmoN5JcWbNra/tuzs4FgVzYUOONXsLNGenaUBvjqZ6ollmr3ZfMpzCZphp1lmv3cYfkzr38X8GRGjP2nO2WKdBl5rqsMqAYO2IB8sFIlXbRmkXINMpqQuc1XvqYtAWjkk93I62UYBmK8fdlCbmRoY6Bv7+Hq9brPV0Qzn5akZMxrRo2m4Boh7tbItq4q7Ypm9NT5zKVuLin4TC3l6uUG27beDXfceAttfmx96ECfbUx968aQxvZVRSq9jlEqKTrFaYv4otE17zw5ZSyDyoeNfe8UeAqV9NY5+1nq2mwN5reGnTn/5hjYezcGDB3gVPCpPmdVmmLr+Wb9NEOhbkSv7Wp1PQqpEg0rD4Pn7xmbdu2cs3YdrKlZyoVlbcWzpqDHsNF3Xf7IVrZjm1wq10Z1R6TX5TpnoPvGqdqsXXOMm4Pk2jVN4W0VYTOsmwu38TWafKuSlAIuerqoGlAGWPmjbK6B29qZWIZHMVbsTbchJX7epLLaRVyXxZatst3zvjvnbUac7jMweS/dSXKbNFe7QXObqrG+4fpqy37luNqnvgYC+2eydrCpit/KXkrpY6eVlVWaaMt6qLfblpT4qitNV4mzKH7pDk0dolYZtU2tshNcG0N7jPpMVl53Nel1XTtY2X+PcxUHkSs5QWhleKGCq25TfrVNVdZL6r+yCK5Gm2LgyvvVjFeb464fdF42FsbVy7Ed2pZcX6puVYNJM3W6XHXQSaBloZTc94t3DvFWQrwJkLSpc+q41UewtXRes4RMUnRuHZWfG9o8f71G3nmVyQ0PXiO4rucmroL43tWMpwo8GWDTdElpoJNuW9MIXdZsjU2v2EuooKwrNUupZnhlzZZrRZSebhDRgX+bdwMjcTV7q+lz+lkkYJlt25LpWquOdfHr4tc5/fQatZzpSjQ25WNdTLoIbUXJ9c+8NSj+ntFkYNTPgRRtX294hrZHitS5alk2rn++Bxn0P1IsAGJgqclZv6CVGKn+qWslTZtDlf+uh5Ss/m0htemVbVCojetK972Zk2Y/dZ3RsjKvnrmeXVSgyXV9rNuhy2c7Vby3NF+a/ja7qq671ChmCK5m1VY96zTT6xocfFti2Ydp57u918DEt+Bix4bc1e/7GgLSs0K3OvZtphzOVSBGmm3R5bIGsuqHrykAbJZU+TjvSE65jsb9jo+//oabxwfuPr7nh/2ONQQW71mNhN57JEy46HBhUvvQg48BkYSStFceJe9JJXGcTzjxHMYb0lQ4THtunDB6h49aCqSNXozf0h66rmcTR0dOovdzHhiJUdjtIQyT2kautHMsDlEJ551G9F3NMigZnCjZrvkiRhMQQ8CHoJ2WVz3nczbHGsYx4L12ggve4xLMGdJaWNbEMa0s80wKnjToXonjSJz2jYcvp8ya4Xi68Ho8cesCu92B+8MdMYysGUpKuHHg8O5RO66lhfU5US4rkjN5SQrKy0Ac9vgQKSGSfaiduzJSIK+Ji5xV5nKhLIl0nknzzHI6IuuqJX0ihDJACQQnaoyXiMuZ6BzTEDlUDiOPkNfEWrlplmUljpp1IdUJTwIJbVTkvKOUBVlnZD5S5hNuWXkR4en4yn63Zz/dsh/2THHHLkQogmRtPCVrJq+F19cLTy8zP3w+8ee//pXz6xOSjrgwM4XMfpj4xz9+y6+//Zab/S3DOEHwxE8TGc+SoYRCRPAi7A4HDvsbbvf3nF+1Q1tOFYgv1PL5hHMDu11kvx+YpkH5vc6RIQbWZa2+WCEEIXjtvHg8PvNdXjifXvD/53/m7v6Ww+2ejx+/4bLMPL8cOZ5n1lQ4n2fymjnHqMDTTSJNE+swKBF+8EzjCCHgfCSEAch4r4iEFD1jw+DrXK8sy8w8L6S06FngHH6Y8LXTWOP3KaLZKUnB0xAGdrsb7u/f8fKSOb4uDMNASmv1c0yJST0vKtjr1J8LRtdgh05DULS0dF5WUim8no5Y5/Lb/cjNYcK7wjiNOOcpDnKYES+cV8dlvjDPOk81d1qVgrOgbm42gjad0ixZnCeVgi++g0cVyPmKGaUa1C74GgDsNmGRmhVvtpzZWJX7zV6dh7Zezw5e08XN5+qZyEipGU0VzDJA3CqVzJ4vlqlPo43Q4h0FopxAKqWW3Jb6OK75pi1AGxSI1Iqafn4YB3I7jjfnRRvqzzzD1pax59/Og/Ou0b/oOZponcntPRUZMR+s22H/z69fDDx1g5PeOtx3XpPtw1wRMpbyRlh0VbdldPrZ63//Wy873luko72kLcqV8cob45vupJqRdD26t1ZqjSajinkp4DLEdROzNMM6U4EfNOuraOmFN4S1OYVQ1qxZDr46MDVdXISGZjecybEpZ62/2IIONTUdEYhaC641px2YaXa5QB+5gmjRQxmsVApcLX8SHOOknRm0W57Nt6LfMTr2h5EQUSUeTHkZW74Ke0oJ48GhAQDV6ACMT4g2Ko0cs+H8oJEZA76vXZsjXO+KlnOto6UBfn1dfV/PKgi+dUpzOr4NuFJAW9A2xebIJVWw9DqjS2XQZqg7/l0hdv6qUg+Qa/msh0B9tu2stDdiJSgGzoh2xCmaDVqco1Hjb5SumLLz1vHQUTJkp3wZSjLdAUFX5dVXAOV6X/QsC0fNBilukwJLP8iwjJw3jszGIWygjX3HBPtqF9cZ8e1AtTpowUHSDJZSa7BFaomi08MrlZ7hUqpj0Cm07b/bU8dtZDZjIKDfoG7maOvLeI8MqhYQLUUstftE9b+03Nbr/IOuiREpb6WpZbuY3NXafXCtHAyvB6xmFDnWrKBTqkJlcmXk0L62nb2S3zb5UsdXgW5XZ7tGqFLR8jlXo1JtVVxQAl/rylfHbrmZ65IpQY0L7zeZzd0DJq25OtrbA63u97o/culSF6KS5Qs0viZfU8b04LQ/So1bm9fpamdC18TMQHNHBf6rQx9be1l0f1RDScXQQaB1P2tGUjNaCsaJaLLvTV7tbKxrVLK0bouavRFUvtWuapmlbitirs0SeEcYYgVmq37bnh/tnhtuL1wlR7Uy8Po7saiWgftUWS9V14R6TVe7m5ghWcGnTGtfbXJAvU6XDQ+hR9i0w2TN9K0dEnW/FEpxxGgX0y5hVwGn7VxitmjPBtoaWU1nbroptm6m7prLKsYO8tjrrWElG2vYb55za8QZF5FU4bB7tkCDPWuVIeV9rwBUG7eObxxim9fgHWJgi3QdakGSbbmhiPI9mc0zDOEKLLPtsc34+kr9bp/76ieVA9BSW8uA0k579vsNkGNnnYFRpVCqnsPZWeH7XEkv+c4lqy2UfAOJ346qZU3XNW1AUQFxX9uGfY6ugSbvr0Gmn3t9ffeNndkv1uwG000g2rm4fq6gGcNGPm46R8FgVVLOjLrg8FNgd7vj7t09H3/zDfv7W+LtDZfjiS+nxA/zop1gPYRprNnshegixWeKEyiz8uUEX0GDXLMKHGtJvC4nvixHyuAZ455w2DHs9kzTnp0LhAJl0nKvkjTLaFlmlrRwfn3VR/eB/e4ex4Aj1M59kRDuCVGq/ScMY6WK8K5F3sdxxDhrQsksOFIWLudz5W+K+HHQ2RMhp6WCDtZl0muGGUriXOZMNOAvF1LKLPPC0/MTL3lmcYXh4YbsMrvdjofHd5xPkfNJgaFSKRIu5zOH3Z59nHh/945LSsThgD+/snjARwqF4qu8UXBSGGtDDi+O9bKS1kIOCcZd9XdVPlJKzJcL+XypjkLdtLV7qe4xC+cVWDPLfFa3PmhnWi4XymFPPk11HxVS7qdgGEb2UTmhssCSC6d55vzyynI+kV9fcAGETElnvBeG/cjDNx85vHuHvz3w3esXIkeiG3h388BIYJTAfZwoKXM5zfzLv/wLP35+4m+fnkFmdmPm7nHHbpi42Y380+9/z2+//R13Nw+cz8LL68zzy5m/fPfK0+vK68Wzu9szToFxF3AEljXxko98/vzEy/ORZc54v/D6PPO//uc/sxuFbz5+4He/+y3LfGQcPf/9v/0Lp6MSiD883LLbRYYh8B/+6Y+8f7jnh9sbfvj+R5bLzHff/ZWSV969f+S3v/8tj+/f8e7dHd/+6nesGc7nhT//WbO3Xp9fWS9npnFkN008PNyz3+/Z7/f86ttvmcZdk2MRRxzg8d27ds7My8qaVubLjBT9UqqUXka2rInL5aL0JCUrRYVXzVFE7bFxHLm7veXu9sLry5lpDKT1gjVZ2O0GIODnTFrE8BfVj075iuwQyNmsUKclz7WE1XmtqPFe8IeRYRjY7w8KsubMeUn4HMhu5nUWzpeZlI30PCGyqm5uGcm5XlMz8qYQuNntGaaJXIR5XjldLlrmmla18ZvtU+1P75Qb2Xf+JAcaVNz4MBqwNdBPKBtqoGsdTfMJrFPs1l7bZiJl0S59gmbQpyWTk5YeZde9JW2Wpp2YU1bLIwa1TZ10UKofMe4rDEUTIGh4i4j6juY/mu2i/+hnn9lXVxlbm7/Z1zaI3DK/W0WJncPSmvIA1WeuHpOrlBRXfvzff/37gKdqwJbqQVn7Q1sIe6C3i2Uo4jaKZAaQ+Xpm/NuvNvLQJ8vevrn3NlrVYCIzrM2xufIGmo311ddVZoYZQPWfBiCoH+NIxbEky9SR7hAAoaYCuwJGtG1RbZ26ynfjzJHVgK92trG79rsL1E5I5uiqw2GGprvKttBNZx/vwNMmStmepXTHC9HWjt4hjacoIKgDpBF2E0x1OkI92DUYbcZvBSFc6KCEU7CgO0B1Q0mpUXSbcntvXTt73jrkxmfsNnWn7as72CYo2ywVM/KNSwi4claavLX/1ntIPfjN2dkCDigXTOe/6uVDbzfqdoNfm6v92W0cHcBFa4ObYNtzdv4smy6PI3qv1T3SdGyX3boHSqnZUtIdWZdNGdPIQxExSKLNh6X5Y3Mvln3g2db2WvZB24OSq9NpmQquPbN3lSfnaiU188PSYZvTJmqcW0cr+7yOxVE8emC3Eidn6qUfLN5BockyzjVCfRFp5P5F0OhoBZ6+rid3b74bEmDAcc2ogVrW1tyiRryu8t2vopFc1a3FSct6sSwWXzerZYJ1YK8foMXWvsl1jaRnS8t1eG9ZEn0PmePaQQbpZX/WEU56Zuo2G2Kry7NsMruCA6s7t72AtP0hUiHeuqdLoX3WxqKfs+s7hK2c1edjc6bI5hyxQ7OVK9OAB+8dMXiNRLc5vF5bVSM/41o6NOjir88nlaVNxshmLlsqdD3cWsaZzWf7Wbve+GqQ+Qo+VRVa52qTyVZptHRthJ7zVLn5DHyiy7WqtHqO2LlCnTz6Ga3ZirX8w7hm1Kqr7+typtk1/aw342c7DzaOjTq7+r3plGv51UumbB3wpMmMnRtFrBOeckEF043m5JtTd728mzNiu6/1DQb09KW9jubJ5rNtL9k6WCbvz35OrubN3nl12tc9u7WHqGeXZcnoWZOv5nGrQ7shu8kyspVy3fBs62N2itCfvby5+tYoq0Z/fybLQrFy8n4O2Hz35iG2CFX2BM2eaQrISjLeLotrzRneZqDZuWq6ZjtM1zZe1xE4vlrj/pzX/+42SF8Te872AbO9pDT5fWvYN8PkzatAKz9sfKGOGlS0a1uwFyWqHpXgOkTHsi5wORN85VxKCdZVnT0HSG5BJbcmfNYgVUk6zw4FnXJ22rkvBiX0947TcmYYInNSQuniQLzHh0jAM/iIxJGSM3GZFXRcHJdlVhks2pDHuYLD44oGB3yhglCudsdTXhgnvmbNe7wbKGVFsv7eVe4cdQA1c6NUMEaK7vBxGIghEMeo34fYeDeLddsT5aaN1lUqJZbLmUtZKVFgcIgvag+XQq5lUZIylKLvPR45vTyzH3dEPPthR5xnFlk5nc/kspDzUjOmql4tAlnXdhgDLkRcCKy2f6SwXnIFuTKSEu1QzBqgjWOA7JCcKUtCe7QrcbNmfgSYZxKCrAt5GLSsMiifVBxHxt0ePwwQA0vJ5NORZc2cj0fNNkOz2nzQGhaJDu8j3kfiYU+KnlNJPD89E4gMfmBJmZthx+1wYIojLnjcOHJzd8uSEuf5jHfCOArv7gduDwOH/cTDhwem2z1+nHAJTsuZT09nvvvhC3NaSFJwayGMER8iFFjWhdPlCy+vr5zP2sEPSSxr4unpxJenW/Z7z+9+/1vevbtDpHA+XVjWhSKF0+mIcztCmJimkZvDnvz+HeucOI9nLueBeV15en7Bf/c3zsvCtNux29/g/KBE4NOEf3jksN/z+vSZlBKXy0yMJ1JWIGe/27Ouid1up9lKjq9AAAUgAiVCWhekLLpcFViaLxeen74wDnB3dyDlFecK4xhJq4Lvy3zhfD5xPB5VtobIfj9xOR9rQMAxjgMhOIbBsVw8OWv5m3U2trOkGYL089g5tYV3+5EYtMz58f6eh4d7Hh/fcVk0C8yPBRkm1gLr6bmDTs3WqUFDEYxv0gm4IrjidR/FgWncUQoMREiFOUMpK9nOlVC5YdQo7qa3EfqZ32ZOQ/XbLCvedLmeER0/sIfuP9thoXaUBWrMljVaB4HKi3Vt69jRZ9n9GqTrwSIRC7Jo+bw+0ib7Svr4lBdUg0cWbLdzyM4a82d9cFef+zmeyq0Mtutv5sTmSH/lNuclV+deryiwufvqePvZ1y8HnlyPEOqcViPDUta28yUmzBpVaO9rJSZvjCGzZ7ZgmaXWdVu/Tcq2xG6b8WRV/XUQ/fpf2xbtts1EvLJLq8NUD/4i/doFyOhBOK9GIlnLZ6qQJ4FYarACvYY5tGawU43tUmvQvZ6MreOeM/4SZxtWN42m8akTahxK+I2zAJ3fpJmyFSDwfUIagLh5cO8hYKl4mtYsBIIXzVaoWUFSd3yIvoJOfUOq8aRglRl9zvXa5G1dqj5VBXg2aK7JECJXRrzxvXRjsXsQzZivykWVwSa6LPaMmm4NRhxKmwszC69cTRGyWDbFdTTYB03zTjk1gl0jle4KSNoXVX56ptKV19qAgAb3ONdALfVHxLwQjC9Kn0nLCmJVAFmsJvf6/uY4Bu/V0o3O9D852gRZpoS6sFbSYxEGi8eCpY1uSkCbtJmtXB3s3Pei7hWnhqLXSIXyXpRmpDXgSrpMNMVaMyIsOmhzKaLRmOpDXXHG0cCGmqlxxeVjwEUvh2tnYyUiVJnqwCltj2xLCF37sjKu3j1HGsCEQ413aGW1UJ17bxk7QqJmjOjkK3mv6w6xryVIOvYNgLrJDsL17nVryqRV18EHaZkcW56nrcxLVj2DtyYIuuDtcDWlaYstNX24lDZOHzad/kpSIL6SETcAGlsPpwFd06V1WMrr8TOK3JmBYQDnxokWRysRtT2wLc9wQVuPO8jJAOjSQbtiZ0AT5AbMGBeaZoDaFHQ5u3asr2yXas9VwKYo/1WXmm4YWFmdRrg0I9VKcnF2dlaAu6nAzdnc7lN1vLgN4Kf7Nm8O123mDfTAkguRUPfFmtLGENnIu53DpiMq8CSbiG3fy/3sd5trlHbdzoegnDz9LCiSW5m3IJXey/XnrBl5Ggw1LrE3AMFGhJots9HNukauzZ+93v5d6gZoWXubPYBIJ6G/Okj6tWzq7blNXlqEdvM++6g1PUh5UxJW9fnVmWmfFQO1ZfsoDdC0sXUjkiYP7XebDNUroMwMzs2/bW6dzbdY0LGpjmprdYmvI0LEyoJzwy39JpjTL67rqhHiviea7hbBb23I7bPY/pK+X7eGd7vHG2DI5roFCFzPFGjz3tapnyMGVun5ZnZD2VzHdYAO1bXOO81T9qgz1h7Cxiv6twjTFBkG5f08nV64lAW3XkgoqW1IKykr6a+kRbuBIbhcCFmN05RK41wpedUd68FPIy4USoDj+ZXgPTf7A0tOyl3kBEIkeM0a8RVhWudRG2QEz3meW9Z+btkVVbcWy4MVQvQMLpCTa9xTMQxq/5ZATtb0ISiQ1koV9EsdaJU57dY2MIwj424k1EyInDM5J5ZFkKLdkWMcGIeRYVUeo3Q5s6wXiIWwH2BwBClISizzzDrPkAtehPl05IjjyQceDw+EYVLgyb8i68Lr65FSFpAEtdmEcw5y1hI5XxjjoOCOV+JsqeDRsi49BcK52goeKModFKcJSZmyCum8IsusmVBFcDFoGeS8kJeF5B2X6PDjiN9NsBsZ4p7Dwx3FB5wPzDmxnp9Z5pXT8xENegTcNBHCoudKikpjHQf8fmLxsK4zf/rpB6KLjHHkNC+8u7lH7gIHDowxEA97PvzqI+MU8W7BcWEc4f37Aw8PN+z3E4f9LWHakV0kR8/LJfH95xf+/Lef8INnnAb8vDLuotpikpnnmS+fnnl6OrIuiZKVp6ksZ57SM1++7Li9jcSh8O7DLfvDniGO/PTpCy+vL5xOT8QoTJNDZGK32zHEkZy0M+LpdOHp6Sdejkdez0c+PT8xTjv2+xum6cA47bm7e+Th7g6k8JN3fPnypX72zLKuXC4Xog/s93t2uz03Nzcqly2Lr8q/97joKVlBY5GFGGsjESecTq/89EnI5cL79/es64LzwrSPpBTI2XE5H3l5fuLLlwPOTUzTwO3tgZeXJ2RNOCfsdkq0DztOx8C6zjVDcWnnq2pAV+1K22JKtzIMkce7WyXUj4FvPnzk4eGeD+8/8Ho+s+TMTjzZD5zmhfTTZ1LRDC1pDlnTqub1adKEB59hwLGPI4dhB8DiBpgTYS2slXunONFMwg1liQUWSg1sqy3VD2fLNnXbY8dsnA3w1GzSdr72MWs2T/UtpQcz7Twxm1hwLYggVZdnEZJxioqv/Jm9miUEDxLBF3Ld5w0Eqn5LDJGUjLtubGeINaoBWiOKLUdUq4rAzsme2fT2jNz+bhtU256IrQN6tdfMF9l+7pe8fjHw1FPxRTv6bAh2vfOEGNtgVdH37A/teuEoaeOA8vUx3xev3aq/GaoDeW1Mbo2tvHHAXFXaZohrm13ZLGgHkzaFMQ0IsduL2N/1LwVYjSDOFVKGddX3jYPXzwa9qe/pVkjtatCMJPXC1HEYaMTUwWs2Swjm1ZRaq2uoJFjHGqv5BSvn0PR7y3jy1YpxCCKZkroxJG8kSrAyFjWAhhDQ7ldByeVqdlJv6dgzrszId6iDrpOqndWkaH28a3W9dkfNhLBNmJdMbsaka6Ca93GjMKqxu8kYERzGbWmlQ21OxJyWrWHZ11c3aN+QHb3dOjxSDWdNd9wam6Vow9FS1IH0wbIC9Q0acfc64OZqbeW2k5o7rLSiAixvDGCA4Go22aYmu0FBrvkhzcArOTcC1naI1HCjI+DQ+cZBSbpHJbq6Nv3+wiZrSqhgc6jimZuyZgPEtBJDnEa/MJBYmiG99T+cc/hKQOrsphsnJYSId0JGDeZiB0AF/EopNetBrxWCr5kQb5Whra9GHJCalisGMBtIpRNZSmFZLPVZDehcyptsT7BOJlIztXBWctwdI9u/rZwIBSqtVDIIDAOadVgEXKI41zqldLl1eqAVAwOs7NnmHorY2DKluI4TCaRUwSEc82JkmJ4hTnWNO6ivoGDNmironm6HdZ/VlGo02YlmSDkF4NKaKN4xONecTzagRGkqUiogbNd1dGLxfrA1wLGWtxUDVzA9r3OntejSZKFlieGIPtb9W5TQUlRnauckaWWYllHmvJHd51o6XPeMFCRJ40YJPpDzCpWPUIHOoqnpdY71GXxtvlA226ADACoTrs6HtG1g2R5ZcvuM957grLSp7uGWHWv7sW80cb1TnZ4TOq5tJzayyZrT7jKlO95bAAIUxDb9UHLCkAPTq3pehXpu+AYoQNUjFXSwfdTBGG2JTQNq1Gl39XgJNdQZoofs8FJaVNkkzPSvqwplm4VCZsM91F9bo8z29/Zs6MGHdpd2z0bmX4zQ2DXCZjPQLOKbXMZVvekEJGvyQqp7AQfKlVrB5hiaLvWYoW0AvImO8mh4YtMzKaVmA8VYQU+kRs5NJl37vK1DM36lz4uIlu8a6GQlCWzmsUW4m6xUW2RDimqBQzVc6z27dgM0cAIWVe7HgdT9H1qT136Otv0v3c5rz6aiTrNbvIFwPSBm5Zm5dUXcGufNj1G+USntfpqVtA2G6rNbd78QTI6s5HYjdzZHKGiK03PezlvLSvYeJdseB8IUYdRM68vlzOWnFT8OxMOBcHfHwXse8sLz8ZUlqf61JhO+KhKPU/fFzlFVHWqvzUvVsSvPqbCez5RlYeci88Mj4QO4vSPHiZtxz363J3pPHCbitONws3J7+1gDfoK4QIwDIQ6cz2eW+aLjvlxIkilrYk0OycKypO4jVCJnB4zjRLUgGbxnHCLDOLLb7dq5hhMtsQsVZBOpch+JMTAMA61T4CIcSkFK4mYMzFMk+oEQK4+h9+QQuBlH0v6AXM6kMlPSynxOyHJhPb5wt7vh5u6R6f6Bh5sDbg0sC5xXT86r+jyFSoMQKOvKvKxkF3H7A26acMtSd4AQprHp9lKzmSgF8SqT5+VS93zBjY443eBQQnJXst7nfCZOIyGOyDRRhkB2kIqC98NuJDvPumr2lixCWQujQJkXkIILhVVmCgk3esZxzxhHXpaZ9XhiXRJHyQzeMZLI8ys5ake//f6GQxw57EYeP77n/eMt//F3H1iXIz4UDvcTh5sDPkbmFdY0cLkU/vl//ZV//tOf+e77H7h9/8DhMLI7RI6nH4nDyH4XOD4vnM9nPn/5wrJqFhuSWNcjIS4c9o6bw8Bu8lzOz8R4w8PDno8f/g8+ffrMly+f+Zf/+d94eX3i0+cfuL97x/3dOx7u3/Of/vP/zjKvHI9HPn36kdP5xOvrM+f5wun0xF//+gMhjAzDjnfvPrLfjUzjwP3Nnj/+8Y8Mw8DppJlHx+OR/9///d8ULIyR3/zmN9zd3fH4+EgcYrOtSkqUsuBYuLsb2e0ikj1fvnzmdPLc390BmfP5yA8/fcdu2jHuAuPkmC+C8ytfnp5wYcaHmX/8x//M4+M9+/0t4xh4fXnh5eULVB7R+/t7hsFzuQw8P38hZA/imaaxZuYU1lXJ16WAD4H9Yc/jwx2//dVHdtPAbozcPdwyTjvAEYedymIcOM4reV44z4smSAwB8YPKbwHKigUFg9OAq89CBIYCUwF3nnEucPABN+yZkif7lZe8aACwub2mOy07XH3NnC3bSe0LkhkvTv0sZ/bZ1zhCO8+oCRb2a29njZ1j6vcOMRB8hMHxek6UJZHXoilrTpCaJVqckBqFgdr/SQoBx24YVPuLEKybMo6Ul2YLOx/wQasIlnWu9pDUMn5fS4undrZsbZ0ePCmtbE/xA/17z0qjBUnM5tHzob9H7dJQz7PSbBGzN7bcWf/W6xcDT7YCzhlngR3kDVq5erhtdEdtqY0jW23pxk1e3/OzYJk5oq4v+Fcj2yB5Vw579cJ7yrNZUf3vmySS5hCbAdSQxKvfWVaVfnCtGQtLArwoD1Kum0DUvdcFNNJWaslJH59IzUCpznD1h/sgt2V2rWTN2kq3CW4O+5VN4+q4W2aAtNQ/u14xQltzApthKNV50whzy37ZzLkaWrUzAq5Hz/O1Q4gvfVBWskcfk4CWfEmNWvqW99MdQOexTnG21mbgXnfvUmfJgDSVt5p5ARWhEszJbYaOIVyuG+ibmW3gDdWh1etW9Jut/Jijb8a1Oc7dAbSMsL7K9W/tHv3+YOUR/QoNpTbpdHpNcwpMFjo6T03llFqPC0bcakT34gRKV0itEcbmu8l9Fz3pz9vWy4RSB93BnJ6TaJ/oTlyd1/q/ZkyiwJB3VCBCr7GNcrevYo5J01Zcv8zB0vd14to6F6WX8TicRmar3vCNU6HOmQlEk40+z81JeSM3WwDQss8auNL2pK6fltqpTKlC708hG3kx2febeSziW2ZSkQ3M45xmPdaUq8699/cOCwVttfxy80wbnWmdSVokRc9blZ0iFUTbCDDXct/u77bTuVmXcv2+tjPqHr4Gs13jojJndasLNbvv6tDaKNqfm4Pt76T/qsq36RaVI1/1+CYCtfmA9Alr1/aN707/JBWZU248S6HerEXZXtX0omtroXpL71daCWJfr551stVlqD5uB4BrAJcmqPVgDnSjxn61vV6p+tA1/dm/XNMLb+bZXf9sz9RAhPYWU35Sdbk9Lw0QaiDNm6wXG/c2LbyIlWYZSNojnVuACbh6/q2s27+brreN397bP6sglOvnq89KwP5GrmwuqfPp67nXM2z6OnVZ1Otss3CgZzZts8yaMWljl9LmefvqGVfXOutqCD/zMn301bwpmtv1nutTpk/Qz1xXlUGzQOpY9Grbxd0CTKabN/PdnIqud0yu7Kzedjq1gJ7dqV9ru560z+n8vpED0439wZqd0uR7+6q327y92Vv2ZD44QnSM+5E4jcTdRBkjuZKM51QoJIqbieOED55dTlxS0rb2IloCLQaqK4Gv93FzSGS7uWbPVF6ysi4sOF7xfNr9BDmzCxMue/JUoPI6Dj7giiBoB69pF/qKxUAYohLjD4X5IviQybJoxlJRTsaUM+d5aTaAd0GBqAqg+qjZ6nGogHTJpLxupaFtniKFECODvw4QaRazcryYdvIiBBGCFFxKar+HyH4YSdOOvK5c4oCkRFl1z6SUOefE5Xxk3O2YuGc/DqxOGFbPLBVQL1oB4J2Qk5KCSxFkntUuqlmvjburdrhzdhg6BZsLDorWYGmQLhKnQYMOBebzhXK+IDXwEZ1jihE3TixemPVgIS0Ll/OJOO2hFMq6UFahLJkyr8ia27wUlyguE2LEDxEfx9oHrrACJQay96wePInXdGE4v7ALI3fTAZlueRwHxsGzGxxlUud5fzPhp5FchOfXF55eXnl5nfnLD9/z9PrCnBfu7vbc3E3c3o7c3j9yd3fD/cMtZM9yEfaHhTwrcCklaxbQFGo21R03hz2Ss/pjTjnt9oeJlA7cPzywrDPn85l5XrmMC7t5IfhJdW4Y2B9u8TESh8h0uSjHUnlmmTM5XfjCF85jZBwist62rdMDdtqxcZlX5eFx8Hp85XI5c39/zzgOjOOgdm3RWhoN/nnu7255/+4d4PjyBPP6ouWFpyMxBHZT4Pb2AKJg0uvTQsmJ4+sLry/P7Pa3jOOBx8d7ghfW9UxKK5eLlugJwjAO3D88MJ8vLPPC6XzR+aq6S6Q9UAt0KxWMBtFK1uybfIIFT3GeXOA8z1zmpdPxBA9+oLhK+C+pHXLNghOUwytE5UArUikGHLE4QlH6GpcFKJqtbjpWrnNotfpi42sW1+yqt4p2e1a0I6QfNP2iG1uHzTnYPIJ2Rpu+3xzLZo9YlmwrI3ZQAxw55372yBYgsmC3rzxZpfnl9vhWSmc8kmbT2LPZtbT6LLWftaJpY2fV+el2jT3xhni+Tkr7yXW9KlIQrz7TL3n9u4An52p5Ubw+/EEzEHIplFxYlqVGjfjKGGuvzYL+zD+7Y/3GmIKvDUH7bqUbOirpttnG6Nz89crmA7VFrAzHNRbU5mfUJ+2ZUs2XyDBkkCRqGHugMtD7ShgOWrqnHAAOK7JQI9/eYxFHBXC0/kwPc4s+qtzVBW5Gj47GoQiyBTGtO4U9iM6RCnwuPRXeimTVMDaQylBMJZ2z9HJQQyPn1HgLNAtAnyEl65pQAQZ99A76YYY9rWOJLUDOogTVXhqZrmYXVOK42p+nkHX+t4CDdJ+uiHKC5Fw72PnesU3BhbqhoRlkvmqHRsyKkSTbv/W9dg3LFlJyuJ69Yo7fNSjbrfW+bbcGbddsWyClyWaNzHbgb6sdaXKgynBTDFcF1sqHUD3cZEjX13yhrGN3ZvxUBVbkmqOo3sMcAr2NOQvtDZv9q9FVXfNr76pF0RMNNDME3+FqS2I1JjsxuWuyrF0dOjzXprE5Vt3Z7VPcY+uClRnV8rjm2NfnqQB76zy4ORxEhFRUTluqr5RGFm573u4t0svqGunv5nDXa2bLsG9NA5yrGRetK5o018sIeNVv6FEdwVV93Fu4Ug1uJ05Lc7HyRHNq/VeyZ0TezQWtOtRmSNC9sKTU3uM3gu+gZT9KhR9tfre62vSKGPljmzMjuqyHqjcATJBipIo21yqVrcx449V2Z9GmWpS+8w1w2R1qoTmMNfGhB3L0b6XdFRR0cpphtN1Xxcrqcp8fb+V61NbeUp2oGqgR0PbwUELP7FADRZo8eh+awWC8bluZ099to10m9/aevm9ck3g7k5SAt9Sudsad1GYgu34eCliXmq9frumm7es6A1H1vAWpvHd67DVN6ervQyUl3a6TBWO64edc171mSFlWTysxqzLkthfCSi77WfX3ooZbEMZI6C0zdwuu2/i871lU19FIaaAIDm1vn2x/aPaXqzrZhbCxQ1yfuKbXXJ2fDWLxdt7ZAJli+6KWbLa52OpKW+P25mY898DU37HHNj87oHdzVWDY7AmNVLt2L4ppFuCNVOk8g+mKllEFKoNVX1m3ROsQqOtmo/INmBQxo3wLSl2JRH/mjY2yPWfsvJO6h/X3rh1ziNAbIqgt0spkq87Ba1lte4+rS2vLPHjiFNnd7hn3e6bDgRQcqxTmlFlyJidhLTN+OOFj5OBhyRmfMue0QimavZgzuIC4gB+mjSyonSceMG43p9221px5nRe+L47L6xEqtdDt/pZ5XNiNO8YQGcPAOCi30hAHYgzE6Bl3gTAoeDZMhcvFMYxClgvLrP7CklfWvHJZTsSgfEKDH1nWM+uamJeg2R7jSIwTJScSRTNMXV+DEAJh1WyoYRxrgxnLZMs1Wu8Q55SoOa2QEz4nQl4pS8JFzVh8OOwJTvX1y9MXyrqQHThR+3dNK+fzC7vDHkfiZjdRgmM8OkItZfQJotPufOvxBPXcy5cLLCsunHE3N7gxIs4z1CzXkrM2Jqo6JeNxEeIw1uYwgcP+gM9CWTN8euIyLzXTtzB4z2GaCPsdp7yypgVJmfl44tl/4vHjN5rZOs+UuZCXRDpd8LUbtADFJ+0oFyd8HAjDqL5KdkrTMGkAPTk0K2s9saaV9TLz7nCPPAr3d+9wlSd2P02EGJgOO+ZSOC0X/vTdE3/6y9/46dMznz+/Ms8XMoXD/T0P73a8ezzw/t17xnFkCBODPxDcgbSOpPN3zJIoCCE67u4m/viH3/DrX33D/f19O1elFHJaiNFxuNnxzTffsKyLkl8nJQuHI6/HVbm/YmSc9ky7PQ+P70g5cT6fGcYf+P5vP3I+X/j86bM2ZQqO4/OuAUrTtMMB0zQxTTvOlwvPry98fvrC4bDn3cMDv/vtb7i5OXBzc+D2cMB7BZ4QIcaBDx/ekYvn9u4e9yf4/qcjp/PMy+sr025it5v48PGRw37i9mbH96yUfOHl5YkffviOh8cPfPy44/37e4bBcb688OnTJ06nxLrO3NzesNvt+PjxI6+vR07HE8v3PyCsWnLnSj1GtvZaZr6cCCQGV7iQEe9JzlOGieIDq488ny8cLxfNdgpeS3LxJFcQlynJbXRO16W7aWQ3DYwhKG+lKODkkuDWAouWoorLUCLW9RrMnjKPWmprleoHVP8Fs4d86e5Y0+31fN/4NO1AaIPdnG0GPDk7h0qlwti+vVpbLWNV6RlCCIQYKn9cgiyseSEOg4KVRVjXVaucnGt8Tsu8VCaDayxDu9xaVrWeR1tbPufcSMgta6mfMX5j/5erv0s9twxEDSHUSoJON0GoPq9V6Bg9xy94/WLgabfv3Xhy0UnxrraRlo6wUR/eeDpEeqR1A9a1t9rvu1vZT/8t4NQROPu3XH0v9WAVqN1CquFqpVubCObmgmznyaHAjRjxWR9RHbsZTvY5VbxO4LjAkoVL0k7aAgyRKmAOcq6lhg6IeI3LazcQCiU7wuirvDu8i+bjEoI07qCUMs6VygPSo7wN37In6fu7jdnKjqzrl7akd3Q4zbXPuE0BoqstQM3Y7Ia5Gm+Xy0KMWm5ipWlQHauaXhiiKIDilJRc3xWaoyfmjNrnq0x4Qdtqonw7RVZKgZRzUwY5G1mvggMlF5I54hvns62+OcUeLX9wOlbv+rw5vHb1aMZkl7emoIql0fvmGHbOMemEvPhaurUxpbdeX/331nht61rLVHywDLwut7Zv2lrL5stSXeyrfir4oQJA2rUALxUQBYrgq/PcEEPLLhITq7c75s2/t+8xJ6UXZXAtm7IBA6iOmEZVmrNioGK21qtUwMm6afXrNlCk+UmmVfo9bJ6LWHae8ghJUeDAyilNV1m1U5tfb/Jvh5keZNa1rms1W1TXxtdG+gZU987VA8ptAN7qGEl1ykUqx1e5mnEjsG9gW3OSm8mwWR5zzn1ztkKIbe7qLLYDqWWQWmmv05I0sfHgWrA81PLr4H0DCLzbRHdMdJ2BMzVbZQt8kRsAYiVLpUa5OhhpAEBdp2qE22r3LEzd267KtS5Nha0rOXfOnXQ910O1ZC0ptDINc3Tr9GGokYL0ui/W1TpzQlorj11SfXDdXEANI+WXqiXQCGLNDyrw5KOv83R97lmWpAiti5gqla4IXNWfzjKdxPjeasestq49a0+y8p5YthGuZo0hdONQ9Zie56UBFVJlRksKNpldZhD6YGZgAw2bEbc543PJtG6arqfDNwMrBopo+2Dbi8YVCAb42Lltzr2dKcZ5YBG6bm30f2+2yVvkYbvfGj/Hm2DW1WdsLvW5RbSrVs9coupGLT0UqWdjuT607X0ZatS8atLN21oSt2zWqnRemRCU86dHS6+H2802wRAZ5zoQuB1HyzwyGdvaZ/Vi9vft68qGr69cASYpSnpse7Y911tbzzjcsHOjSfDmc9J1ltvo/DY/9QqFapeUq3m4akvteiacrqd1ljRbV66ua987+Hn9wD2Tz9cAhLS90IEt1QiplpQ674hjYNzvmPY7dvf37A4Hdje3+GGg4EhFOJ5nlpS4LCuDRKKPTDc73t8+cMkr3336zJfjC+d5RtaVLIt+dp7buJTDBJWtGDVT1VuJe8CHwsuXzyynmTRnnEQeH1bKPbzOK4HA6CP3Nzfsp4ldHLjMMyKJImfCoKWePuh5sNsNfPjwqLQcKXE+X5jnhcN+wvmB4APDMHH/eE9Oaus1PsqcOJ/OrOtKlswwDgzjUMtRlPj8LgblNlxTzcgPTNOhlhEJfhjZHQ744Pk9v+PD5YF5OXOaj7hpwA2RPHjSkjhJaPrRGbExDlfgx8/fkUns7g+8e/gD037ivK6QhWM5cb4kUilQMn63p6wLpBXSShir/ZhTTQSppbFZO+jtxqGWCEbmpCU7PjotT4+esBtYXmf9jPeE/R6cIz0/MV9ODEPgd7/5FfucmOaZv33+CclnShYu2RHDwE0YCONI8ZFFHLthAu9YWFl3B0p0ECLTcMMQdzhGwrAS1xU3nxFRkmpf7d9LWvjp8sQiK9kJvmQehokPw8ToAq445GXl9Xji+fmVf/lff+Mvf/krz8/PDDFQ0gUkc7P7wO9/+4F/+qff8/5xTxHPujhKfuFy+oGUvxCiZ38YmKLn4zcPvH9/4H/7T7/l4f6O3XRgGh/IOVKK53y+kCXhXOH9Nx+Ybm/59rd/5F//5194fTnz/Y9PPH15YTfteHh4INQEghgcd/e33Bzu+N//8wc+vP/E89MLf/7TX1jnMzmvvL68sCwXfvhh5PHxHfcPD9zc3fGb3/+OcTchDj799ImXl2deX545n1/4+OE9f/jD77m/2zOOkcCOaYwMccd+95Eh3nKzf+HHHz8R/UQpjs+fv5DSyvH1lT/+5p+4v7snOE/0wsvTJ56ffuIvf/4zP/74ib/97Qdubg6IFGL07PcTy+I4nl6Zlwu3N7f84fd/4P27D+Rc2E17np9fOZ5OvL6eNANRCnmduVzOfE5nTp+Eu5sd37y/53B/j3jN7JvdwIrnlIXzqvLuo1eahZyBWqZFVaIUtLacDqyWTMqJVBLBKbVESivH80UzqNCyv+AdxRtVAcRaYucQSlqB7n8KNbnfbX5rhn0xftFNhtD2y95rB6x/o9NF9+tlnslDJsaigfJ2Qkm1mGoCRdBHV+J4R6zgd3FQUiajek0BooR10DMw3XsN4NvPX2fjSjtHnHOV7ii3LCfgipTcfHntNq/PNk0TFlxb19T9XNRncEHHHnxoNr0BWmtJNQh3ffb/vdcvJxev+nab7l9hl2aEiHl9zXLqi/T25aCV2ln6d3NazQDevK5Tqr/+/XXUzW5SzeKNo9ffa45Wf5p2RzNWfi5ai2w+01+pZoQUYE2QIurIVieG6tRsP2gzpVnOQg49m0G8iS1YOY4CCn1cmiVifBrqsHWHs8+vtCfVn3MzllxLi2/gk+uRb4GaJbF5eulfdmXNSigUb8ZXTZYWBbusjMuLRrN9dZI2M14NVx2wdJuSnGlAlzkjLTFgM4dtNNspdj390Azj67VEjfmNoWjG6RY8QYS3hmRTL9XotBJDae/Vz9n1rIPB1+PoyP3VtqkKxHvLdLHPVaOa6y0im/9eD7TKubQt1p1S1/++nd/NKJpBXWQzJ7J9hD5vbTybqdtgeVe6QWXkZ/ZXBUTMkbaPWbaHTusmW6MdKl32f/5lbv7GkRHL+LLfuwqESeP7UIdE2kbq6an1sBN+/jls3d+UKn2V3rudMHOGm7PUMw9bzLyOp4G/W9CJPuZ2fm6Ar2267FcHxJVIfi3rWwdNqBmT8uZgarrDLuP67+wZtt9tT4jNgFWMf20DCFJLOaoO2AAsLf9WNnK4Kam7kmmxzJZtlKvLuWyu4Vx1lHwFBp3t+mvAD2n5X8o/VqQDT6JAXaiOZF2J3pXSbfZCdUy3rYGvXq7Pbgf4XVN+Aq3M0SgJmn4SWkaIII3fqO2ZuqfenoGmbOw525psDB5zzC0Dr50NzjqcbcoJTY5RUMgQggYY0PW93ac58lcD7Pdv2TdbHcTX79tm83nnNs/T9XYDg33fI9d2w9slMW/9rbxuPtdH8eZzVZpM19WsxLdzDDRi04yV4Npz6feWlbRZN7Ot2nebZ5sz1z+PDaGNz+TiWldlsazJv3Mm/l3Ds2cNdZuNtub67817+i/7PNmZurnGdggNaLoKjPU1NsoCu4EIGw67srmd3svOdctMaxnY9NbVbx/XZKeX129l9O8K59VDCFpe54NXrp5pVMLvYSTu9uxv74jTDhEFnoYxsabMZZkJgyeOgf3dgRQ957RyWpJ2L0OB+1LLNii5gk2OhnoD5hGKA/EJcZESFLCXLLz4kc/PXxAc3g8MYST6yC6MxDjg8PjiNBhTErmshKTAU4y+RekdtYPdEHAuMI47hmGH95EQIuM4sS5JM55OF/KayClVHZvJNRtfy3urlEhBJJOLZnvlYLyLAe3MprLkfSSUzIBwuDkQgjBGj5Co7M7MQCAQXGAYRnKeKCVpxzlRouPLfOZ0eeV0fOZhnfFxZOcDk4ssBGY8WWrGb/S4yolJzhokKEpg3k9woGRcyvWZlN+p5BVxkJy0oy3lTCpZg8iAeA8hIN6RcmJZL3gHN9OOaZpYLhfWXEhrwZ9nwgi73aC8LtEz7GC/PyjIPzpObmFxhTXTAMjgh5rJ61jzqsEbqYEhp+GKlDNzWTmnmaflhEgmOGE/THgJlDVzWe26A9EHonNQViKZEB2P97e8u7/n4e6e/W7idF65nGe+fDnx/HzmfF4IwTNMOx7vBn796wPv3u25u7tlGnfEMBL8CBJBYF41m0dc1s5+0469RHaHe46nzGV55XxJrOlCKQ7NOnYMg2cYB6KPDMPE3e09nsDpeOZ8jCzLmbScSKuW1DmvnQVdCBxubxmnkdvbW+aL8prN85nT8chxN3G5nMk5VbJ7zRIc6v6JfmAcdtzdPnB//0guK+f5M8uycj5r6V9wgThO7HZ71nnPfJlYXk9czmdyKizzWXnmvGMYNCO31EZJKSWen18YhwnnPYfDLRAZhh05wZxWJK1IXhFJpDVBzkyDcpdJ1R05C8k5luI4r5nLupKKIMGR09r2qAXUFTRxUG0/raCK7A47xv2OMA6QK+emFJacmHMilQyx2plVk3oghqBdf6nBHe8pQW3k4npmEhXo+fqA+Tdeppe3NkjV52atZCkEs122xtfGlLcTTD+r+sm50G2/DbfpNihmIFA9FijiK6WG9HGYPeM9na9RGpeT8jn1yobtZ/pjytX3qkkxay2XrDqdWtZXgae3NpP7Ob/i77z+HaV2Gtm3CLA62hnr/ORrdMgi1fogNqjunFVzof+3ykGvr3ft8LXJ2JZEXDnbPzNhfdLgLW7UkM2Ne2RA0s+9rszGzbXkzbsEWIqSA+cC0wBDgjWjpNwCpILUtvV9uFJvor9Y10yo3AHaGc6MHKFkBag6COVqGj+08g61TJGaJlnYGI3eNyfYyN5tHa1cAKikyZZtY8Yq7XPGDdXKheor50LtS66HvHPaqSFrl5/B0cjRjHjVB9/WQ7sqmLWrmR6uypjgKEE55TR7TtVOc1XMW8WMWZUhH0Jbn7IJ4Vr+TS5CDL0DgDqTuc3DzznReo9u2Gp5aY8297W9NjT17z0jZ3tdQ1S05XBXjlclDaW2PHXUbmEGfvSd1XeQjbw7uma4W8mceKA4XI3ierfNZOuR4yLqbJij653rYEed/C0o7Mx7cSC1fE6qs9S6TjRn+808QM9ykc37nJKM9jJWfW/nbnAdDHiz57f6xsbanOA6pq3PZhlYAKXyExV0b5c6P0EpMnAOgoVht2vZrl3IqR8k1slkO542ShtD0Uhz+x0dZGhObRErNq3ytH0+A6tc2wsCtSNMGypXWarSeVm2XUJ1Dd3GOYZUNEvIMg51PpR7oxEIozKnXRErmFRkA3KrbGlGgSggU9SoEKjp8dJKaG2KiuihvnmMNm9fLbqtQx2LHTaCU54N3DWC/eal+skxjDVD0IGQEDRTQmrHJi2bruVVYgTlpZJcgjnu3sq9XP8CNLNAqq7FHLChOrlKau+dw4e6Iapz1bK41P2jGS7Fzj2TqQ4c29yquvH4mtrdMpJFmi41HdvP7tL215WKa5Nvp2UtdxQLMGxXvNsAUp/DQEmLFRrg0QEJzVQyMn7LatRby7W8vlk/EZr+BFqWnN1ISrct4Dr1HGhG289d215KIK+ljbnxJyg/RZtL18fdL1KfU6SWcNesv1q2mEW0bL7KrQFFWZmt3+ia2qxA+tnm2QaBtrpS39+a5l6BY+2G+ves89QNVittlBp9de0Z/q3X28CfZRIV0VJg7+kBt015dFPU9jJ53k5ivf/GzKGvt5W02aXqGVg/qtwvsc5TwkrgDGzSa9g8du6vbpdVigPX5U1lKLT3lavAQy9j3L7snuawhOAJ40AYI+PtgTiOuHFAhoHh9o77j98wTjea+Z0KQ5xaiYa4TBg8+9s9i4dTWpidJw8j7vhKfnlmvVzI60JtF9fn2dIurWq7CBlPcQHChIREiomUHC6MPL0eOc2J+5sH9uOedSw4F/SyoyojJ3qgliyUJCxkQiiEaGXsCkTd3t1hzXJiHNQZnXbN0f7ur99xPh6rI6tZ/yE4xnFknLSsLrV6XVe7dSlXE+ajeCUZFwAftGV98OxkwbtCcMK8nCAEivNq07vAEEfu7h6IQyQMkePrSpakwNN6Ihw9X778wN3TO+LuhqHAKI6BgHeDdoUWr/1YhkpiPytBsCyL7qEYKCkyxFgD1ZmSE2WB9exIZLKDHBRcCuOAiwOselamUm1j5/C7yFIS5XIip5UP9w883D9y40eeX154enpGzolRIre76rAOHnYTh7s7psOe2w8PfPf8E8/nI6+nBS9BW977qFEUPDEtCvIlIQxeO70Gp6VtXphJfJ5fueSZUzrxeHhkcBGZYSAQpz2/+vbXyLKw88KnH//CLnpuDhP/9Lvf8qsP33C3u6dk+PLTK//yL9/x//kv/8zzl1denl94vBt593jgH//hI//wDw/c3ATGUAhuILgBykBwI3hHTgupJIpLSBxJGVLx3Nw98vQ8s+bP+KClcZ8//Y1US/P2u4FxGJCiBPe73Y5pmNiNO56+/MTp+MLL84+8vL5yvlz49OknLsvC6+nIr3/zG0KMfPj4gWGMPD8/8fmnH1jWmePplefnJ+YP75iiI4wDYxzxRM7HmfkiSIn8+te/Jw6Ou7sb/sf/OiNFuFwW/vb999zf3HF7uGEYRg43tyArayqczzPPz194fv5MHAZu7264u39gf9hze3fL8XhiWVb+63/9vwguME17/sN//N9qQwBICV6Or5TLCWTF5QKp+t9odUgMjuJdSyIoKPBzni+sWRta5LxiNDDmX3gfEPXk8EEYh4HDfuLjr79lv9sxjROX04IsmTVnzmXlnFfOOSFRfWKXiyZEeMfgI0NUEpa5ZMR5xGtlUEabYUio9q7T+mURqVn511nLdi40pdyCG+5n7YyGEdVkaufBBRRV6Qw71e7SsztlSDVJIzqPryC3+Vm5ZdjW5gSlN7WSN+ehlsbp37SRxaAAVcksiwKhIqWVyrVzd1PFswW3LDN/a98VKczrSnBq4wcfNCjiPCWXqzPdUTm9fsHr35XxpGPRTmNmtFmHj5S1+5N2s6Md1sZN83NIW/c8K8fQlRG0cYB/7rO/4LV18b5+WV5PN0y3Js0vuADQq5ic/SwwLxAojCww1BS5QiUmpJNRI1CjaSE6kIIMVrKwgcbqjlAjV/lCOilmjcQVp8YR1Dp266TTjVbvpRp25rBW57j0yJ6SGldnR4TgFaHt81/aA/tqgAXvNaup8pqUoo5Ezyax9a9/KzqmlNShUa6FvOFe6GVVpW7KEDzDQDNWRPrcOKfGvvGYeAohdCenr9DG8KQbu2+XnFLYFjQ552rKpG//bhF6qY4y6jhr+aIZ2dodTssjNyUWG2VHXQdzF3SvlCZ3LVKN7rNrs3uDuG3luAKVUjdiqaTtSrqclWdG1LEGrdH31Zn1leiwVAM6pUxOtcTTu1qP3vfm9nmc93Ryoo3CblmSfUN9va1sTkwJ6vvNf8sVtPKgBNlX6/r1y5nfspnjbStmA24N3DBuLjtvHFTFqmOXBppVJ7H5aFJBgrfPwub95mxt1u5KBvTNVpqkY9dUZHXkqSAQ2m0SA+lsxVXWDKTvt9k6fO5KdraAda5ATx9bLZGl6kQr0fNOZQBPrO9rAQGo2IsiH/rsoaY0O0ra8AU12aBm3WlkJoQBLUuyboz2DN3BNvhiu7bbDLDtc5uOKAVi7Bw5WtalpZzWfXWLZjm7pVCjmK5yHij/AbUktGSN+KkzVI2aOpcVH8B2qUaKvJYkO9PBOhfBO3z0eBdp7aydeqI6FgNHzdG1DE42v3cgtbRQpOmkK0e9GS8G+noqug/98d/IqMfRSwUNeXKVLL4ZZO7rz1v5scqQTWz7a1sf012m223tFJysZ2QNfFkZXb+32QelAYQK1PZ7tn3mNuCHWKdNAyikyR4VZOmde3tkT8sCKpgglQfHuUoUqjNgwIP3rvHQlZLaHG4DGNp5rpbOx74nbd8rgOtbCe2acwVSqxFf7YBctMOMOBh9aGVJxc6mWhpqU/G1OVWbGGzPJ2cyZs+2DRy0KW164GsJ0Pk3PdJwzRZIrNdquv9ndLkY8N11pX2mRWUVWW37tgcxSpvPPlqur+O67MF1EAU6ZYTJZv8SSvE0cnYxm4wrW/UqSi49KIvTANJW7/qgWTHEgERPdo7kPEnAZeF8nnGnC9N54WG4I4aBKQ7sd7c4ahdhl7UcfIDiC0MYuXv8hjmO+NtX5hi4nE4s84W8nDWlvGQCFXDKgpbB6OyWJSF45VYZ9RxcXeTL5584Hk8cjzPvHj5ys7/lbnfL6+7EzbRjvbtncAGPY50XdTy9IwYlBx9GzzhF4hAI40heBy0pLdpB2fmV06jlqYLn8fEDh92Bdb5wen1iTVrGE4dY7Q7Hsq41qyHo30stM0bBo3HcEcKICwHxgZSVcPdynlnOF9I8U5J1lQ6MIXB7E/DTnhmNq77OJ9ZSaSuAJCvn+ZXvv/8z+9s73r3/Fb/+zT/h/Mju5ZXTeSa7DM4RBk+uXEssswaDfKDMKyUGZBwgjiobAst8ppSsQdnBI0OEww43DFryB8RxVCc3OwWE8kDZgZNMdGhWzTwzCvzh8QPr4Z754SPPrycyQIbD4x3Dfke4OxAPe9aS+ev3f+VpPnFZV5ZLUU5ZycyStKRIVNY8MPjA+fjKEAP7ceLdt++ZwsjO73j58oWn0xNI4nF55WY48HH/gSlOjOLZ+0fuYuHy8Z6fHvfc3uy5vb3hV4/fwOz5/k/PfP/TC//zX7/j//5vf+Lz51eWeWaZE8/5xBhWlvWWIb5jP02Mg4MccYwEdyDngJTCuqrycZUzVs9Z5T96fp356csLeRUNSvmBX//mWw6HidubCcrC589f+O6v3zGNE7eHG/7hD//Ih3f3QOL19RPf//ADn7984W/f/0hKideXF8qvf80379/z8eMHXl9f+Otf/0xaL3z5/Inz+cyPP/7Aw92BnO4J7p7zcSavnuPLgA8HCoFlzoQwcXO458OHX/H68sT5dOSH008cdyduD7f87tff8nB3y+4Pv+Vf//SvfPnyxKdPP/H09ExaF84nz83hgB8i0/5AjAM5ZZY5M18UoP3y5ZkQBrwPfPz4DbcP91yWC09P35MvR2SGQ4B3D7e8f/fA7vaWhEPWzGURJKdqt2VS0hatjbq48QBVwKjaPUOMjIeJ/e0N0+2BOAzgAiUGCgoau8OkuteJdsAshSKp8sYGhhDYDZEYPdMw1IZIwuvrkXlelQPOVK7QbGnXaGpcS5oRNLhswX/ZRqHtVNg4CM47hknLYV3wb5qC1fcXpd4pXm3QcRyZQmB0AZ81i78kPSeC94ztLCmkdH2u5pJZL2uj4zA+XMtgs46gCh6qzx6Ca/ZIjLH7CJ2MtgJUHYACVKfWwEr7fRGyy6R6XpdshOX5ymf9Ja9fDDwZb1KdzuvJlcqPsYke6u+5PvQNQdzYEa795/plB7gZYd08vX7p56tR9TPX6rkfNfPC7v8LnrnZxT93z/aeOjLXfZeUYU3CvFZmfmigy5Zh38Zbct8ZvkYRzUg1o4dGZM2VcWOOsBKR6ntzUUdJo2jGC+EwTqXO8WK8G5tMDyd4K75Vb/0KBKA6Tb46oObwIKKp2FwbYZZ6rl6pOci0jCYrWSml1JTD6iiJgQ6d2Nb7XInUHKERJFdhqinIDsAruGXXQexxXF/XaryaYjEDVB2JjfF4/W0jVT17yVw551wrZ7HPCK529GFTntD3UsvAoWyuubmpr1L7do+Y/nMm4bJxnrfGsz2i5UW47SWaLJXKuVGcOSBiSRyYu29+53YO24xUR6U5LFc3+WoCsQ1jc7VxK9qkdnCvOg8GVPxMCWzPrGTjYNfx2phNn8ib57Chbn9vMsrXesdk1/vr671dog4udWduW76zdYibMrhaOvOkNs/sTNf0Mrw2nbaW3bdpn+mZcVW+rjzQLrNFlJyxZcjUveBw+NKH1R3UXn7d5MgJxSlwbfLY9Hldz57pp2MQ+/zVWUIn+29OMG8cUen7a1uDRF/LzYroM5ZNptvbzKo+xXXcVW8JmsFna2NfhZrVVlMWqj5rclcf072ZM9tMBuhZWZqtlOK3GyF112O0bnXbjD1vB5tYI4QuH1L1ea+s7TvOAHQT9Csd5fp6uVbmYeeBa+BMkyGnWTcGzHTJ2vJlddDhem3kZ9aMll3Y3ne1FTTaWioJXdP5Tfc5rtrn2gxL/7z3voFPzYapCsdKbrsKvtbdNmfdVqEPDjYgsGwArK8zta70kIEVdg1UGWk2ObSz2IjB7fftGWs2sFg7+81ZtzWSXBPDr/Wzs/UwPVrPgI0c15FsnuCNpjTBFzBSZXBXc2UNM3qG2ub8q5fd5qTbWdZVx7XMbAGs6yxkW70q02ye60ro6nPbSenqfnyDuDXgXKpw1kzCBmIW0eYp2+fY3KtlYRq4GcDFiIsBCSrTUkSzDSonSl4vxNcT45cXQrhhGh27cWBZqu2QRcvWapTdB88QCjc3sPgA48Truqqd5T0LuXZBc3g00EFQ55sCLqsjphmWCU3ZT0hZWdezAvgoOD0vCt7Muxvmac8EjF6JhfOS8bXldx5CbcARoDY08WhXPkFY1hnnFKRXbjZbulgzlgbGaSIOIwDDODSbycWlCrWH6oSBZoKpXtO0BIeyCebKS0Jt1hCClvi5Grgd4shhHImy52WeuSwzQ3whhAkJGQkJKi/N+XzkeHzlcPPANETubg4U4Pb5QL4USgWcjOxactZ7l0wpK5IDrKX24jDuxFSrFAp+DFpG5DSrwFU+1VIBPbwnjJoxI7ngcsJXnpy8Lsi6MPnIOIwcXGTnR1IRVoSbwx1+P8G0Yy7CMq+8vB65pIW1VELoot0FSRr4rlS1jWh4CJExDozjRIjKG7mkleNyJq0zuEQBlrQyuJHdPhDCyG4/EOWWw+gJsnBz2HPYHxiHHfMsnE4n/vrnn/j+r5/58tMzl8tcOyEmhiEw7QYOhx0xatCmVjGqvnTSAt0xDIrm+awBHh/BOV6PF06nmWXJSCp1S6qTHmqVyPn1hWXW8rZpmChr4vLxxO3djnEceHx8ZFlXshSenl+Z54WUMuuiwOlu2uGc8Ppyy+3NLS9PT5SauTTP/SvNhbQ6TqeBcQr4GogbxxHnDzzcP+JE6VgurzNpzZxPZ06nMzF6Bcru7ilFmOeF4/FceYNW0rqShwGHZhkRB3aT5+jPrGtmWRYcOt5hnPDOMY0DN/sdJRRkEO53gYf7O+4fH/HTxFIg+hVZ58ohbFnRAmY3OTQok1WHKWN4UV/Ie0IMDMOgJXM+4tBum8F3DteCKBdSrfoQKVB5noaoMj0OWg4MatNdziuLKyh52sYgrnraCL+bFdRsH5qNZ+fvla3c9DcNPLNyxmYb/JwRU/V9TyRoIVTsnBUUTDJewRhD+3SpjYfMH7dAqzXmUKDKbHAL3IMGL2tf8Vp9gK86vT27Pl/L0q3Oz7aapgV9pWgZs9tUcJh90WyA/+fXLwaexnHEyK3XJdWHAyqg0soKcHhfUz+Ltnr1Gx+jGY1mpLn+S5uKrfMkNTvH7M2rx7qyF7aulb23RpvpVNl2y77s/fu/9ZI3P7u/+1dYcr+Pc47oHFF8nSTLzHMtOp1XqaVEMAw1xllz4Z0T7XhSb6FZGltjySOEtlE8CjxJ0nUZcEo8GHzfLYBUotZtS/lSI+qaHeNqS9daR+9o6XrO64HjCVjekBPNlEpO616tFeQwDMQhILJWgyKAeCRr5zkr3cu5RpibwZ7AaZ2vCrzHuYz3A85FzQpD5SSZA1BlyVDv1kXMgcMySep76kJYOVvwDpGg0cJSOzq1TAiH+NCcKe00FFqXQm9zcGXwqiOqfC/gnAJrvnbraxQQQiX+zbU00j5rQJ9gLYCbE1DEGh42QXOycVrrdbwHCZb+6OoDb6LZ1ZO3rgQOJcOntoVXG65W99bIrm+Kc+sg1N1Qy6ZaNLpAlaT6Lt/25FfOTs04ciZ3pSD5GhRwod+rO6I9St+aCjjPtluRrVtdnPpzVZr2h7oJ2tva85mT046oJkOtEkf6mFzTZzqWEENTdOrE1ijLJuJiwKp2XJSNX+jq4dzJFLet4q/AJ7F9pOUrIC0rxbFZt4KWk1aHT0vOpJri1Ct2JxEMTC1anonaFFSTYDNb2rQg5wam1EBv3Wu28nqYKhdCLcOTDlpZG9mNeutnRhOcfltBM9N8JZk0//ra/3U0JqhS5bI4zUoq9WAp0om5Ae+Ut4LqgvrN+hsQagT+ae0GxNXAUDDIOKJaiuXm8NA17uNz5FruK3XP68OUVPr1qxBoZKuC9rjaZtht9M/2LrQ1lTaNNud92NbZ1IAK5ZzqTrrqFIGaZRqrfOv50RdKCFdp3c57nK39xuHuE1I6qFLPFxyVlHPTrKRY84FeYmiyKKabDWBz9tcO9uk4XCPV9N43jgUq5+F1ObwO2Fm3JwFq1lURgVxq5lzpUVNfuVuc/r5jISpj28xZ52jBppS7ZeFa5pc0rgY7pxt4UTIGotlRVZwgsTa72KyJZ1MG3Zz5zfTZyzI/S51HNnOx0f9dD9rntxdks/E387a5XpHN2/wWWdxYYm9NMmcy6TZ/7/Nk97fzJnMNKjXQ1wzpAutSHWkDgV03xG1Hmx5VNSFVp/bxYDMstcuq1bO3Y3YLZtJtFQcNcI4ev5twMbCWwrzMrHklisPFCN5zviSOzzOff3zh+LvM3c0D93fvSOtzDd7B/eMd435if79jf7hnNw1Md5mb5cTrfCKOO3789ANfnj7zRTI5z5Syoj5OaiCIpIKsVedYsNQnU+aIE7KsnM8z8/xK8APRDzzs7rjb3cL8G0YXGfCMfs84TkzjhOQBitq0OcPsHefo8TGQc1bnvnISBb/TjJ9cWNeVUhYg44cdh2nUEqPDoTpDhXlZ2vGeCqyrlumVXCglIWRyXpAMl9NCCNpN8Pb2APuBvC644FlSJouw3x+43+9x44j4SHCBvBZKEubLK2f3TF4yUlaWtPD88oXpcEMqM4/vbtnfH8jR8T/+9K+sX2YuX55RLgyByhWFFHysZ0r2SvxeDwvnPL4Spw+3eyR6LhT8qOVu6zqTXO1462GaduyGCHlAlguyrqzrhfPphePzAH5iDAO7uON3v/sD4iOXAvH2lsXBp/nCd3/5C19OL7yuZ2anBOEQKliWyHPBBy2P1GY8gnjP+w+/YhwGhmHg6dMT83nm8nLmcjnivHDYR+bziSf5zJP7zPrN7/hw+8Cvbx8Zhz3T7cjh4YAv4PEUGTgeX/nphyf++f/7zzy/nijzQr68ApkhCv/wD//Ab3//kX/6j39gmGBJheOycjkLkleCj8SgoNT9/TvwK7jMpXiyRJwT/vyv3/P50wuSHWnJDMEzToHjyxdevszM5xeW1y8E77h9eKAsM3m+8H9dFj588477xzt+8/tvuLu/BQ+vL2c+f3nhdJp5fbrwdHjhZnfD/hC5Odzwq29/xdPnJ9ZlZZ21YiUl4XhaOL2e1VfghsgO72AchZvdAef3TBN88+4983zmb3/5ntPrifPxxH/7b//M/f0NHz+845tvPxLChHMjl8vK6fjK5XLieDxqVQlwe3vLbr/n7u6Bl9czp9PMy8uJ8/nEMq8sy8rNzcjN7cj7+5HBD0T/yPv7O+4f7nj/4QPnVDjNK5fjmXz6kSVrd+Ns0YNQDbcs2ql1WSGvSEzIgCIPftRy2SEQ8UTxeIngI6vTvbpcVi7nC/M6U2RFA/RC8CNDdNwd9hx2e4Y4NkwiZcH7hMO6rlVwQgQnGe9hqI09cFQ/T+ldtuEgK8u3M7bbodUH9p7dbod3rmUct5hG1f++ToVW4OhZvoqSM/gsVd4rJY0Iu92kFSnO4YahZSut66rZZPZzKqwl1UQMvZeViquvjoKIcVBAz0XMgLcmNaVcc0ANw4CIlm+nvOh5Xz0Cj/qbVupvro/zTnnwgFQUlPolr18MPK1rUsKvTSmdgQYaEfU1dVgXMrhaztGc4ZoxYWUDXNnfzSC58hHNgYWNK2TO/ebsdl1I7I/G0aNs8NXeEi2vcBYp5MrMaS81g//t19vxe64dniwwZwirYwiBqba/djVNNdaraOtf7QDUu405csqN0NYMfwSy7x2YFJ3UjkS5WnLqdKswBqcpeCF44hD1aUWdFe3otDVkFSABKK7Ucj1pJUa+Ro5j7UrScAsKiIqnOcfe1r6W3pTsyFKI6EEP1f8T6/6khIdhiC2yqG091VD1XstbfECjZV4Iw1AJVTPOJd3IgdbNzvlCqArDi2/SI80VUYVgNq8LtKqTIjQOjO6gKW9L/WftvGBCpOMsb8qD9PmrpS8OikUQN+U/TssINa2zZlyJedtSN3LWfE0DWUTXCDFenSp4pcpSAB9Sf9bKL6Nk8ttotW64ksBHVabBBzVkxBDt0kCsuktxhOoY1ntvnXyx1FVpmWwq45VLq8qbdVly9K5nQu2KVkGM4GgdJltrcehOettw5ohIU/bFALUsuMqXptmgrnV5AiFU576YU+j6mpvT1AlRqOiPxSuk5ha46tDW6Sj9GgbA2hVbV7Q3oJNeugMxyudlIKI5P5BqTbdqMcveyYj4K/3Zkzyk8WyoY11YUtoMqIJXXsvGWkRH0QHVLak+gyu1DGzrc1Wnv4u9AqgiG+442Tit+oksyo1mMoHNgjOAzpbUMi51HbYQUC/3pIKwrkexmo+n7y65z5sn1lFTs7vU8Gik3E2PlQraGiBVzzexUtYePDDHunWzF9UtvhoB9alruatyqukj6ZxEb2vVdW53knVBDTQRYNsmOFT5DiHULjJ6c3OA2zyJNOBTsSvLMO3ni9QzwbXz2+Sxy7EB58rNk9sV1JCr3Qdzn08xoCznyuOiHIZt7ZyvGbdamhcDrTRM/5dr6jeqI70+t/HxIco5ZH93VddZyaOxQvmgC6tnjK+yanuYWs7m6vkKyRVCgFjtCGd6HVe5z2r3RSk1QKKvUoFaU4++8gi29HbX953OpxKuliKtjG/La9llnVpe10v9TJcYGboIbX9L3TMawKnlh/Yrb4EKy44DX+24FljY7OktWmIZSIZtbjGVLUF4059Yh8t6tlNqUEvHvs0CFewskHYmtMsJDVBtKsNu3IJWrmbhgJDbeevUMqfg+97bnl81yCBq7Oj97VixtzktZbRswnZ7oZWmBb+hONjoIO97Nl5BGpdXHJTnIxz2xN0eFwNuWcjOUeaZ5bLgfNJ9VRxFFuZ85OmHH5lfL5yej+AGPeN85LLODLuR/fmG+1QYD3viYWLnB/x4Q7p9T8ii9qgkTvORy3qGWHBhIgYhLbNmtsxJjSrtEIMbBwgRNwYqo6+SXqdEKk7LhGTGlTPH40jyAyOBi3xhCFGdoCEw7Xbslz1xGvBBO9HlWiKujWpUS5+PF9Ylt3JoHwUfA7v9XvmNQmROatNLcaRcu1kiOB+Iw8ChlYGCiJbniRSCJFyq59IQNc4WA24Y1JRKmfmsZNw+Low4Ptw9MsaRIJ4vT59IS0HCCWXiW/hyeiH/9DfG//Ff+d0f/wPT/obb2x2Pd7eUtPJ5nskkhAg+oR3hEoUV5zTQMOx3SBbSknE+4mJUInmvsjkMQxW3pF2Ug0MzfYTzy8JaCt4lXE64khjiwDJeuJxP3NwM2lErBJbLQnGFJIFLunBKiR+en3n64YXjcmbxCdl7XBTWnIhhIA6eaNlAQUvXU87klDk/nTgW0Z8vl5rh4ggx4kpieT0hKTP4CDc7XpYX5JhZ0oW76cDOD0RgDIHRRQKOtRRSXnEsuHLElRfubzL7mx3v3t3xn/7Tb3l8vCeEyJqEdRWenxaOrwuOgW8/viOMA3EcarqtUMRRkufHH575y3ef+fGHL5xPF1yBXRxwZMo6cz6fkLJS8oX9fmAcIrf7UUnF5wtpXsArZ9Tv//E3vP/wnvvHe5a5IDKSly98/umV6AcGH/jjP/6K/TTx/t17xrAnFVFqmuRwbmC3vyWEsfLFRmCmMGtA46JgdlouDMEz7A9c7u7wIpScOJ9f+fzlidPpzJIy+/2O+4dH/umfAufTkaenz5xOL8yXmeUy8/rywjiO3N29cHv3wMPDDTc3N/z002c+f3ni8nIkrc9cjsLu13cc3j3y/sMHDjc3xHHH7AZOZF4l8WVOvCyJc0rqolQ7Vf0dVY7R/KNqZ2IukZcOPBVHKA6fHGWBvDr8DMwFVlGGAydoR3fY7yJ3N3s+vn+n9lxRYD4lYVkLl9kzr5GcB9XAkuuXNhG43Q/aXV2Edc3Ma82sks3Zp5kAzWaVWgLS/I6inJ5CBbiytHi2E/UnfdCfJSugk6PSmGQgS4ZSCDXgpQdp1HPSAnNS0KRMzQulqI/lxLXGWw5PHDxE14w3tQW0w6dzARGvmfn13CnFOgJLsxsUy1Hfz+EJTi0jXzP/EPOvhRA84zjWrtXq383Lwrryi16/GHiy8odeorA5dKthZsS2akRapMu14JerC9uM6fbqh3izAaAJgBkhUB3Rzft8FXJXPTRnESnXDSu7dvMI6tVl47NeGTe/cE4EmpG1CfA1QywXJRhXwwuC2JFqkTMLPrpmrPQMMiUl934zNuNOaTeXjYFtxlRhRYGijBCj8uMYKrYFDN+WHjW+AXP4m0NVWx5Tja8Gygjm2tlcW4Q/iFcDTTbp5/Va1HtpNlD/EkeLopTqObtAPWBlk2mhqYZO7OfNHG2kRhMW1HnugKbrzvx20av36uq1TQY6mGgOagWzagS+iCLwVia0xczbnEqXC0W1qlErfhsw7RHwjQyW3NuHbzst9bKmzX6S7fO5asxsDPf6qK3kA9gSU5vz3oxxM74r8NEzh+q61z2mStrmTKC47hgXqUR+0roxWilCT3V17YFdk6fqGFQAsyHN9ntnTstmsut3A7bUQauuUtMHpo903WwzbcGUa2ClTU93RH5O2qoyaLPpaI7jdTS+XmxzPTZ/ddu13KS0GUCx7YxpTq+Vwqr+db0bZxsvbf/pkshmLd88S32fzpE02W5vsHI2Z89of9jMk9DudaVvm8Nd1+lq3apqkO3EbPaVsMn26n935qjKZkq39zVQc1M32cCrq8OmP4OufS0le7M+yidDBZ7svltumDYF1Rd2bV/rSdbDKU3OakaUlUoXKe1z0uYJXAXQpQJIOlbXvzbr2NdUOsVa+6bnTJPF7XlczwfX9pe0e9rc9DlCrStb1TrQxqNk/32roxxNbzT5Md1lk7DRzf15LQhit+qyaXKweXAd1bb0WZxW+FS9KE6u93j9WME1mcOJloyWzXsNsMBTJF2dpXpOgC+057DMKgvwNEN2cyZBz1Tbns9tXJstvS1vs726Hb8Fofoa0Pab2SjbrKFupxk4VMdqa93G16+4PW9EunyI6YgmX/p77zofmGwGvOVA2mYa0XbJ5tx21+ff9rWNShtw1nSRzlQ971ReLb+wvVEq6GT3+WoC2zRiHG9NbBsA3fdjeyZ9yO6sbK/pHGEIxHFkOBwUeAoR8VH5h3JhWdYWlHIuIDmTZeb0+kJaV9ZlIQ477Q427hCfSSSIjngcKBT20eEGz+A9+3Hibn+DSOG8njXg4ITkk3aNGurYXdLnGqXyQAl+VCDEDdoXXHBIEqSi1VKEdXVcnHC6vCBhpPhIKCAxIhLxBMTPEFZiqcBTjLVTHQiBIYw4PLMfSas2GxG0SkADU5FCpEiodFRqG6ZUgx0ooOfQjGNtiKJ8JHV3a4BAVJfEGHQtSmCcJjKO4hKrCCVpyV50nsO0Iw4Dn/d3zJeZIUysfgBJCIklLbyeX/n+x+95/PgNsZYq3d/ekNaV08srS1nIsuKGPaUsZFGfxXkFqN1uVAeWhAuDfg2xZ+8JLb1RsgacnBMFJdeVlDIxFAJKjD4N2nEQUdshOwUAkle9mErhwsxpWTg9HVlPMzmtlJgog6eAgj/iKremQyS3BIOSNGuiJG04si6rBgltv2fVwWVZtQQwCOuq87SmlTWteo9xzyFO2jXPD2Q8RE8YI/ubiTVFUob9TeTuYcc33zzw4f0Dh5sbgh+5zCunc+GnT0dOx4UYRx4fM5MHFxTszjXD43hc+PzpmR++/8T5tJBWteuNopRSyOuMyIpjZRx37KeRw36ipKSdFtOF0+XEdBpJOdXyz8j+sGccRpwLXF5njrsTr7eviHzDEAM3hz0xxJptmUirZkkO41A7bKosL6tyJklOlNqwBEk4p10Id7uBtI6saeR4DKzryuvplU+fBx7yPfv9jtu7W6ZJr4sULpczy7JwOp64nC+UAtNuz263Z7eLjFNkGDwiK8syK79bngjBsd/viOOkYG9xXIpwToXXeVEesFzT2z3V36qnv/nmVgkR0DPYo42Noqv8m05NiQwuodny2RGKJ0jNba5+UwyO/aR767Dfk1dIi9SEDWFdC2vSRIpSXC1HU/3rEaLXz4fq0wTncZJJWWrzHN0jzipE6inUjjxqVQ2awSQoh6lVIqmpZ+frxr4t/TwTaGCTSM+2V2SpBn+aT1Xah/Ry22CondtBfSVR2yZb9nS150QMNKvnV7MvzOawULaVvHfqB6m2ewOs7Dz1SjKuQbkKQL09MP/O65d3tRNq/WwHKxyuRvO0PjonIZO7Y+sUZrHMHcc2S6rXcLYDfPMyp0U29+dnfm7GXjFjuDqXvhsxb/kbivRUMaCVW+n1pDkX9nkz2N6OsX3+yinVnzM6X25N5KwZTFPwBOcYXSBLwtK7/aBRH025F025n3Pt6upq2pxePIaItYu18RpprwllTms1iyGERAiOkocNefcGCIL2dN2RrG3lcVhpTHNaK6prhj9om1zLgHEBcEH5b1BWfklaTrBtYa9lmEJaNaKVEngRnK9lZl4j/CVlUqicUlNspK3bbjExBN0cAi5tO7W4K0O7EY0awOP1ELWNufV3LNbu6y9bdLfeZ80rVgbh7SYmzPWd2UoJq5fh1KtsTlvOpWYO1LE6BbSa00N3WPRv3Q1W57DPga2lZiPW+RNaRoaWMNWMv8q3YLIPvgUqsFkzgatOotUea8TQxtvMdwwcLqVohyoz8F3lIpBMlrz1J/VzNRLVHWeNaERLjRPUQfROu70FJfIz2f/KcRTN8lNyUakORQBHk1Gclo1Sy7q2AECM3fkwfWGyY9e3bo9Kzq7yk9asMlq79Jg+0bKxruRblklz5DfOlDnWm5oxqYettaAGJd7OObMu3ZlvHSjtDj+j/7clWB0Uoz2vAXkiSsbpnTUX0HFun8tKWU0u33KlNPHZCJZsHDrTqS0hTD24xjm3/bIzh5w1xb9liW2c05pNSLazpzuonYeI9sydI6kSpdpZVN/aMjQEtZKwkibd13ndcu70M2ALWGrrcE+Mmy6UzmCGPlEm+02Wvemfev7UuU2ptPUeh6mW8PX1VPrOvgZluyZus5+EDn7QZahHvuyaG3LLjTzpeP/+gaxgfH1I5xv/QWk30oe1ToeWFeicYxhMlxsQUWpJYdHOifQIpAF0bM4yKdaIoA/YgmZQNGM3OMJYC39dPSlNWbq+lqVlmRa8ryXPzl/Jk2YOG1hUly8ILti1a6ZpoelLtVdko1/q+botK3ZvZLZeu1zlYleNWbqsIxqVdPQ9oEDb9aesg83bldwii9vQXd/a0vbO9RUtuFMDDmwASKd2zNe36LpE59KacLj2968ApjcK3/5eKrBsMR09w+q62nvM0AeoPEIdo7OQYNdNb5/QNsqWHN0+uf1E2SykZhca4GZBGLVPQwjsb27YHW7YP37AT3vwkWm5EMJICC+NvBUK3ukOL2Xl+eWvhPPAtNtxuL1n2u2J+zuG3T1xElwMnM4rSx6RcMGPA8SAQ7i/u+Xm7sBwM/H9px9xn3/iy/FJ7brsKcUhot3Wwtj11TCOevbWrm8FcMGTQy0FlpUlXcjnlb99Gbjb7bkZd9zttPPcuIMwOEQunC4XlpcV7yPTdENOdZ8QyHNmNx3g3hHjhHbKUwC9CFx8IY+ZGB0xVs7QXJTIu2gnp91urLazV8AseEKM/WwtKtvBB/b7PXFQO3ccDxzPZy7zzPF8plAoDoYQKcAqhdv9yOWiQMQ5RYQBQqE4x7zM/PD9X3n/7j2D8/yH//h/MBJ43N8gy8rn58+cLoX93QPzemJOHjftcUPEDYMSNheH28EQdlCU/DdJRlKiXM7E3aRl6inj8goEhnggiK+ZCHB72HG73/Obxw/sGBglcHm6sMrKxZ351bcfycXxerrwus6c00Jaj8RyZmBhzguXV2H12hnsnI+6t+LQDfiUwQdcCEy7fbUrI+/u7zXDE+HHv/yJPF80x1iUpuX741/5FEeGYeLx/h3nZeHx9oF/+u0fmaYb9mHCzcJN8Iw3Bxg8z19+4PnLX7m9hbvbW949fuTh/p5hOBDjDZ9++IG/fffKf/l//3d89NzcHLi9fSBOAT9ATguX+czpdOG//4+/8dfvnvjhxxdEUDAUbQChpVEOF/R8GMLAbj9yc3vgm1+951e//Zb5svKnP/2FNZ15eha+++4vPDzeMo4DKS2s68xcOaGOR8/LSwBJjOPAEPbEoON5efrM0/Mnbu8H4vhtBaw02Hw+J+Y5sazHSoFSCBEgkTLsdsIw7Ll7GLm5DXz58oWffvyJv/z1X/jydOA8P/ObX/+2Zj/9gbu7By7nC8fXI3/60585vp4o5cgwPLGumWm3w/vCzd3I9OyZT4V1WciiDTcu68rsLhSfSb7wMq88vRz54dNnXo5HktYIarWDaeDaJEVGhwweiDhfkFBwAabDwLgfibsRCdpEAO/UjnOamXeY9hpcnVfMH5qGyMf7Rx4fHtmFgeN5Zp1X0pI5nxeO55nLZSalBUi1esY6YcI4Re5vD825FzzLvrCsmZfjmXNeNDDu+nlgNrvUQ76gvtq6rnhRom3zjZuBUj9ssTRtIBIIMeCKgp1G9D2EQAyh28rtjKl2Z7YspW6Lgz6Lr1Q6uUDv/qtH0LIsGCWS9652ldcn0KC14QiJ1KqXaqfLzdHb/MUaxcw5M88zMUStgsApn9zf6QT89vXLgSfN02kOmTkr6ozUDi50gCfGarwHg2zMAZGO5rx5uTc/izmnvDHW6Zcwg705I1dRM1pauoimm8vb+zbh24Bl1XFRCg/pxvrfG+zmUu17lcG1GpilGkDRiAClR9281IhZ1uiqViPUfIMqnAbcORzBeYZgXC4OLyokW6dNHQAdiIgDlxpvBtYFyR5fdH07+atrgrd1KBVFLRXY1hs5p2l+IkqWaNHiArVkQVMFd1GjLikpn5GCTVpip0a3Q7QWDahs/Gg6oc+QswOietTiiHFQx6MU1rQ2QzAEzW0slWOpGcQNLOmL1IjqkGZocyVPrqdO+jr/pluo+8BdG6Dd2dg4Mk3M5EruS8lqFxeHD7Z2qsRMxgwYUFk2FVgzh98InjkoDXwyJ82i2Z6qVLpxT83sMOfNeHa0Q5J0oAyVUd+Q8CpzJnR0QNqAzc4l1eWoZVpZBoFQ80+qQ1BJ4Q04U9F01xkHG8/gOivAjH1VxA7RslLJaNaTb4rbuZ49oSAr9CKSrlf0u2s/G9Chus/XvytIY3K2daCu5roNvu+pLYAqFGLdh8pz08mbU0rkJqrqzHtfWlSkEQjiNOKNtGftItLHrqU/Wy1Kc7q387N1hLfZOyJd5+pz5831NyAKBtLVNtZSW8ZKhXY35XjatbPL71swy+RNQeI3nrQ9iem8t+Oo29mu5jZ+qbPtVi+53Vu2pjpWK2dU/WjVan2Mdb/XObJGCDpW6zJHKzf3qCoWlIwd1fgYuaRz9rwW7e4PY9mXuZaOtAjzZj50/Nd6zwAYBR582+9NNdVyTKABCGZQWqmUSGkZeD6EpjuMm0vaEX99JjeIw6m8+gCUToYpIrjcS5m05bruYzuxrKTe5qPU71336J53zsrwOoCMUxuliKMdhkLtDqPBkxi0ix9ocKpnq5l+LX2+hFoaUY/UzRwa2OR9bSWfs8pB3Vcl9+CPZV90XW/7T29ccs3CFQPQ+iI3wE02v68lhwYwbkRzc6boh8vWwKL/bOeHryTG/Yyx/1zff/ty9dDbqj2TOxvrWwDp6vMNBN8C9GZMy888cx+/6V9dWqn6sp/rQOVo9G8eu8NsmpnfQfo2Ld610nzvXG94YDQH9DFYRySH4EqNGAuIF6jl5T564jgQxgEfB4ZxTxgm7h7esd/fcDreMU4jl/OJy3xmns814iz4EBgGYZoch4Njt9fvw1QYxsJur3amj1DKot26CLgwKI+jC0xx4nZ/R0oa7FxKYs0JV4b6wKXyjdi576Eon4lmLQTGYSAFkAHCdEBWgVV4Pr+QJZNc4eH9jmEfGfdDzc5X3pUYgjp3pTCESM7CernwMq+c4yuSE/vDLcFHzpcZcRrkvrm5ZdpNTNPIuBur/qll9dW+8bVMXIqW2GuJbawR+sC43xN8qMDTrmWTpwTOR+Iwalll0YDZeZ1rc4nC+/d3+FjAr1zcM6fFs2bfOqiXlHj+/IkpRD6++0CUyP1u4t3tLZJXoncKcpSAl4EYBtw4wX4iDpOC56uQjjMlJcpl1dJGnJbYHM845ximiZv9DdOwYzccCC4wxMi3v3rPfpzYDQO3YcKvDr8Iab/ACi55Pv3tGRcifhyZwqCZJwfY3cIpXfDnZ/b7Pav3PB1PJFlAhHG3a4GJfc0Ai8PAuiqn0jgM3BxuyDlzPp9Vx+TEspyQ5QLOEXZ7ite28qflQjg+s6SVdVl5f/fAw+GOx+keJFNCIj7seTx84OHbgdspMQ0Th9096yI8fXnm04/f8a//+h3PT8+cj1qaejkf+X/9lxd+/+l3PDzeE4bIvKxcLit/+e5HPn8+czrOSno/BYIbcaxEXxhCZp4TIivBrUrgHh0PHx4Zhx2n05n/9Zc/8/ryysvxmf/+3z1/+OPvePfukWGIDGNkGAKlKBG/lJWUZnK+cHo98Xp8YllOOF8YBkccVK/EqHw+bhjaWXpzsDNHyCnVvSPs7271/BHBO91HOWXWPLOmC3/9659Ylpn7uwd+9e1veHj8wMOD4/R6Yr4IT09fOF2O/PTTZ55fnrm7v+Fwt+f2buQPf/yGy+mG9XJhurkjucDT8YxPQvGJ7Bb+9vmJ59cjL68v6n9hgZlaum72skAOWcs4nIPKSeQ9xHHAec+aM6/ljM8JnyPrUhotxv6ww0chDoLzI94L4xS4nQ7s46Q8SaL+aFoXlvnM5XKhyKr+S8Mf9MsoRbSBgs6dZpt5gk+czyuwVpshtTLrFsCo9kAMjrF2qaNox71W7W3nEzUYFcxfCJV3LDB6KJOjhAgpVWoiK+n31c7S4Fcp1j1ObbVtF14ponNr5+bGfkPUxy65V6GFmszijC5ElEallJrMUdSXiaHjOWok1ewv10nFSxESGVcKrjjWpFl6v+T17wCebAXa/H/lWNmDbD+yBf/M8Le0rfohmr1VD35BWpXJ1jiATTRf+u87YNDf2TNBuoF3FVzfvMzIegs+iZG2vvnE15+//p1sv5sRLoKvdc/GrBGcOt2F2sU2VVTbaVcLV/pFrATMmOeD8eXgQKpxWGhkolaaYGBCTpnSSpsUlOlr42jlig3e8m2NrjM2ZDMjyrdhCrCUWscr/TMK+PV5TslSXpWFP2+aDmBcNLaWzuGy082X9Znsy4wLI2XpwIbfOM1uM5ZuYTdplcI2ym1gQ3OWa7ej5pdv5K59bdZIroAn2ptdtfbfyk0pNcWaPlbLUhBonEa8kS+TuTZPbc43Doxs5tXGbWPZGPZbf8OUSTFvpM6N+mmymRfXnL1GwF7ntmcW1pKYzq2teqPdrctHKw1Dn79lLAraxrfed1uiYc7n18CTq9w6rnXgskyfzodFlR+7ZpXrjbPkXH1817mJbCFMTvT3ld/MbzIqSy+VeutEXUfx+15ps2LOqN3Eqbueix6UoQHsvqW+U6Sva1OydH3W5kvvanJtHTGp8rcVsr/nF26zEa6zRDfydvVeX9ekkk1fyWh3pO2Ze9aNyUi9n65Qc4L9VZmUtGdv+w77u/v/c/anW5LkSJYm+BEAXkREF1vcPSIyMzqruqZ7zpyZ7vd/k9m6qyort1jczUxVZeEFAM0PAsAsah6ZkSN+1NVUVYQZjIVAdHHpUttD2goUtrGuS2y/xutV6xwr9/7uOUvf3o1X20Pe9xHbOLDti1Ke0ajd+W5u7GSVtvW+/abNtT3w9JcD+nY3s0XVZintFK9Z9nKzvcQ8hj6VdbEBKHdpSbXnd8CEddPGTNuDFs1RdQbCm3NU1hHlAKZeJ5eDGDOWm61rIGXZ2XL9fbnjDqig7EWmjXG/NuuhQWXveduq2zqvNn0D/zc7V7tsu82WArzNZQpryq67Zze9pydWJlK9T7M9bJ95P0/LbxGbRd9tGLKPBHZjtfkn1QXTZltx21W33UuLz7FbVc2GbY3b29I9YLZv93sb8v539ef9672NuX9I+9b27LanvwP/t2himyPv181ub6l9s/cPXc33FDtg010PVUtT91cp3VVNrM2BNrmKuLrpcYS+5/T4iPcm9upEees6eBOr+FasUQiOvveMY+AwdgxjxzgGwuDp+sDh0JMpEd7uZFtcMP8JoXOBQ38gHZXrNMN8M9A2OzTXAKhOAikguWmMWu85SxV0guIIvkeXTF4i0/UVl2Zc9GgnuMHTjcFA1DWBQnAjgkfU431HksyiK/NyY10X0y1xmRACt3lCs0fEm35gWslxQDVt+7PWPbnsy9XA12IpAHicdHTdWFjEnhD6Nm9C6OiyzfEYV9ZkX0taEAyAe3o4IZJY08Qfz0eiJKvcZxchRxN1fg0dr19/4eH0gcF3PIwj63IElPN8RtQh6nB0iO+RbqQ/PBjwFBLrzUCvvCvS4bGDSRGh94HjcOAwHDj0xwL89Pz4+SeG0NM5T1jLWOVcdFFNHP12W/AdHPvRRMGD5zB0HHAcYscsC+n0wIzjNq2INx9qGAZLrVPl+PhI3/d0Xcfb6yveWyAegkNzRNOK5mjV+eKCriviHaGUnk9klrhwma0C3nSbWNaFeVngWXAJJGZk8IzHI4fQcfQTQQJeBi5viZdvF/7xf/yRf/6nP3C73cgawS3oGrnO3zicehIr3XAwse3bytdvZ66Xhbgk+m4gBE8XPEE8wSt9l8l6KTYrmS6Xg/F4YByPqBMkeGKOrMvCy7ev/PjjR/LzI/0w0vehFFRK5BzJaWVZJ3KKvL29MM83Ul5xHrrO7u2dlKqKHlEh+EgOoANFNkJZWBASKsphHFFsb1kPkWVeOJ1uvJ6/cL2uvJ3fUDENroeHZz5//A19N9L5I0/PZ2JUrtcbl8sVronMQn8QTl3Hh08PLIfAMo/0wwH1gSkmRFYSkUWFry8vxgxc5iIobnOTEqc2c6qgLhcxccDX9CzTK8wUUfI843LC546YFFFH5wJ93+GcMe/FdziX6XrHEHqC+ELWsLycXCr4reti4IvbUuKqP+g706K2zlNwWpjPvgjp0/znlLaFJ36z8M5JYbJ7utChKZvmbt1z7l3p8rt9POBMIs8HfEutqpkX5T2Y7iViAGQrXtJ8PmtoVjvYMLJUxS10awhblpmItII/rugY3vnXJX0WR9M9rft6O4DbyX/ARooh7w74/orXf0DjKTewoDqIZowUyIVynrbTUko1MqTlXVcnrKYf3bVx56va+XCLl797ybtfboGVtip4zaFgcwp/7Vq6+6wIrQSuK+JKolvFub3z//5a+f2zlPfV2EGAtTnJic4V3SQvkM0ZJiZ8NDHaGKXRxrvOENYQhHGsJZ63gFFV8GWC5BaE3j9lSkpDgDAneF8K++4Daic9NslpgrWCiWc6kaLNag72skTL1c65OFdVY8EewDl7T2XAaGlPjLAuNO0m57WlSKIgCVyg5ZKuK3RByF6Yl9SYCd4FKOmHMaaqaVeqmRQx/AK2VVS6+iQ1dc9tk6gtTCjsjpKytY27tvltF2FzZls0W4EoYwXsnXN5NzZIZStURLs43DWYrsFinUtiOb0tQCltr3m89nazfpsu1nsH3uahavUtlao/lWI0kLL4nSJlrlanW3w7EY4x3S+G9pyFvIY29o4PvjTVUnIra0JLHwh1HZZAoQYEaqLnGQoz5PsVeJ9aUwyzGOBRGQiwgT57Ab+ak54z4LaKaqEUBNhKOgu5lBKtz1FqJ9lmUuivqaUj3vd3/b4FkjUAL06lr5C0FvF11/7Y5k8ygW8r+Ws57amki1mgUIfhe2u3D+7+rZdISY1p82dLv8o5lzVTTsDtiXeAzHsAREBNoDzmVBgiG5C9gSsVJLYx2jTrsPz1BsAZw8dVEKQGlxT2Wu1aLSveGWXafKMaQVZum4EM+/S0CiIVJrT9rtjtlGp+O9t+o1v727GJKjghxlz6MpX1Xcd7gxXq72r/VTfgDrgqv2/la9tY1jXp22nZPUtkG+fthGw/0u/XUPnudyBbmUmuvqHamrKfrzG1udlSIin2s9inUhxwsw2aUdlgLZsvltLW2E/YYYPF5BXktv24ggLVn9Ay3u3eUlk6O4ZQ+ZbqPl8qx2gBcCuby2BkOwzyO3aLsav263j/Jbt7bCeVbe9o/Su7f/vdPlDBu7yBfLtZVZnm1dn8dWBmP9Y0gKOY1vb79rad/7gv3NIqE2pF3viVV72QNp255vPsnmnftpzvbeKvsUH/PdCp/m4/v/eMqLvZXJso76+z21fbYdT2p/Zh3R3K1P4sfq8TjLlekLlcWAjNtsvuWo6SOlvsSWG8axGYnWNElxnWBZ+TxWfeMx5PDMPA8/MT37595dvXr2SklJJPjIeRw+HA09MjTx+fDQDoex4+fGQ8PvD86QfOt4lljdzWBdVStGa1KnFZwKnnOBzp+gEFvr58Iy0r87ySkmnckCNNIaWMoWZF+h4/KGEYCaHD+YDvehgEjcZ8TzFzJXLLkcfO0T0cOfZHA66zcOof0QTrFHE41iUydme+vnxlWRbO5z+ReSMMHd4H0EDOjtdvF85vJu9xejhZNbfxwHg42N7oPcH1lgIizvzDMk4xgXpH6KwaqUjkel3JKRpIkFOx2YHHp2em5cY8T3RDZ+mzwXGbboxDB6L84e0T2cEUF3KKzeG/nF+Ii4ENf//7/8Lz8yeeTge6PnCaHvhv/3RDkoNFyJP5vq6D09MRVWElkkZlkZ5FAnk6W/ET73n8/APDMHB8ONL7ns53dKHHERDpOL9GZlE8giwrB9dzcgNDPxJzZHErnz59wnmPBEd36umOHafPB1aZua43Dt+e+JaU12Xl5eVMd7DKiofTids0sabIcBgBZY4L1+lanj/Tu0BaV6bbjeXtGyma4rB/fsCHQBgH4rSSYiJp5rZMeHEcugNLiny7vPGHP/8Jr0Injt/88Bs+Px15en5CVmFdMpfbwh9+fuPnP77yr//6J15eXsk5Mh48vleGQ88Pv/0Nf/P7v+Xh6Zl58dz++I3LdeV6WUnRsiqCywTn6YPj44dHuk7ofOLr139ims5knQmdcowHombUCb7v+fDDZ8R70rry+dMjP/70Iz/++AOae759vXD45RUlsaaF63zjj3/6A5oTt8uFrCu+E7r+wOnhwOl4ZBxOHIcHRDzLsiJkvHgO/ZG0RjIRwkBfUrgPw8A0W/pgXALBHXk8febt+A1VZU0Tt9sFzQbw/t3v/hPjeGTsTpx/uALCt29fuU5n5uVKzFd8H8FP/OY3PzAMD4Cn605WmC4rb7eJt9uNL69vvFwuxALwV727VqQFi1dz2R/oFHyGIgtg8iImP3O7zcRZiesF73r6cCDQ07mAC4GOjqELPB9HXMiIK9V0xZGXSCwyL50PiCZyiiY144rTJK5lagQvPDwceOh7xt7moCZlnRaWtDCvkeU2W3+n3PzIil3X8M4JdMEz9B1d1xNZt4MLkU1Xt/g0e8AmpWSV30XswLj4DEYIznSdVf+th3J7f69W6q7xRS5EkxAshg2hMEgFBFdiwIh3hs/sU+18kHZ9ESmFfgzfufM/StxT/cesmRCMvTUMfam4a3G/ZansU3H+8uuvBp4q2mZBOS2v0DkpSNmWtuSKgKchdbU6mTl91XlLW5+2x9yfnbZxbA49vA+nLJbcOiljjvW+JHnb8Lfb3fkX371K5NEcGmhB8P6adz7K7qN3l2LjDSXMaVYogogQxMCJpMZ+smBPqRSoAhCT1TWAKeUNbJAKjFSBQi2GYNejO3d098DVab9vrxQHuzn0BSC8c95Vi7h4Sb2glqwsz++28XKCVeOoYAjbybIt4O0E2P4uhlZIrYqkjTaj6oirsvqEFC0Y03upAZ25RykVmjwbAqs173b3nFIXym7Mnbgq59L6LSUTUqwltjVvDB0tBqlWgasCpYYPVODV/l5FoC1lsjq+2oKq6sjf+cEtYtvGoD5GQ5obmKK7cZCtGECCGgxBzQEu86eKqVNSYqUCQbZGJdeqi9V5l+qTs2c27aZVWwcb+NAW8gYm7R7EPr6tTLMxNh4VuG8BbAtcy6d0xw5iYy9YnrGNh7EtZDe3N+ZRC+4dRTxTWvtb49oj2C8b4FHe2AI8qfZL2DOrcq4A71Zdp451i/HKaYevE2/bw8p9K8gjqJqYYd0TKyNn3/B6YrIPUt/rkmxzbOu7aihrH9o4bf1l1ajKJlVsTWW81DG1NeQ2m2mtaMF4yluQus3dwtQoIrKNDaIUZoBdpYrIguziYm0V1ra5aG12xTZWRlADKOo+obZn6R0aU7Vq2C3Hrb+rLmEtX65K0XAqwE+xfrb/36fO7VOZkV2KaRlHqT2xt1W4wrzR7Rl2L1tn28974Glj2G1zWt6dWIE2ALbOHa32UEuKW10jtQ1wt09sz3Dfrrr/2OmalCWp7MHFrPvPSjs42dptAXNNHatkzDb367/ztudtIL4iRYOtjmf9VmVK3IbVt37fM58qyLqRceuMqIaStoHVz1eb+X48XAMzt2uIlDVRvNrvfIj9Myrc25F380X17n51mGuWW1uSbX/bwFLA1nfxWHJNFZNy8CH1YGDrw62R9//YbCt3829vc+v+8B5IAr5jjO5fTaBc67qyV9btRHobR3a2dH8ds8d2Orzx4NuOVAHesjTqdar2oDnv3j6htD7Kavow9b25NELFqvoigniH60IJ+gPRnGR0vhEvr9zWhWmeLGXHB4a+wwSFB8bhiZgimjJOAjn3zHNgujhIgc4fiXPPjONVFmM8ycAQBlQc6oTsHVEzSTIhOAjGDM5pIa0T061jugkrjpjt1F1zppSH3HoqZ/IarbpXzOAcMs0IpV+ckB2sKfGHn38p9rjjP/3dj4z9gcH3HMIRyWIsqRiJ68o49IyHwLxOTPFK6AXfOcZDj0ZHXODl5zdut5WYEpfLkePxxOn0wCk+0/cj/TCWMTbxbZwdjqWSrh9CRly37Ss5oUapb7pQ9SCpcxkNlpJqbKGEp2PsT3x8hs8ffwJnB3GXyyspzmRJLGklzRH9RXn88BE3Djx/+AEXB8Iw8PT1ibQmljSTzjM5JvKy8DolfNcTuoFT19EBklYSIyKZfvBk75jJxOuFfsh0nVXJTvOMJsflAh2OoIJbZx76gcdh5OPhRPCe8SG0/VudsqaVNGXi18wqK3NeSIuVbY9rxOOYpxtrjlaNVg24vFwvqJre5LJMpHkmTTeWWkUYoR8GshfW9YYslq6nw1BkOTKd6xjHI33oGYKlYl7XK9/evuLF0fuO7jAiPuGDMqSEV48PPcOj8pQcv10y0iXm+YqThR9/+sTzhxO/+/3vGI9PiOu5nCfOLxPffjkzX2c0R0QzSxTiBJMIGo90AbzPXK9nYprxPjPPK9fLjZeXVx4fP3E8jnz8+AO3843rYro2fddzOp1Iqyf4gGAMppwyt8uVt5dXnMMOdXMiF9ZYKulJcU1c40RKyvnt0uRDgg82N1JmXXNzSXOEeTItoxwV73pOR8enTz/SF0Hx8+sVkvL67Rv/8s//zO1843R4IK4TQmYYPMPkydlBjrYGl5WcsgmNDydOT5+Z5pW3y4XXyxder1ferldiSpaQLmVvLj5XzTnX7FCNWMJ6LFZD6UJgDIHBB3oJaBSWtLCqHcRMa8azMHir3jjkClKY7TTfMhOTkvNaYq16AGZOpuZYNneKRIrSeeEwBD4/P3IMAyfpWfJMjIklZtZ5YZ4XliXuYq1KoNj2fhMBl7bvxnVlXSPrGsvBW/ED6r6zjxdqzJIzsaY55YyuESkSNtu+u2lTKjt/SqrcUUaLZA0YAcB718S+jba032vLv735oX1Xyu1RpUEqplNiqn1gQ00DrX6YfW5d19JWZzGxK1lIf8XrP5BqVzqyPMBmoGUnbm2buG96NcaqqI5tro57daRgKzm7xSnNaWEb4jJsbTx3AV912BT2lOfqIMn99/andw7e3WsfzFEYWPv27d9aJtWvgU7772DciFyeW1PRVyCjKoa3OJAmumA3qvoPWYWstYTi3uGUFgDeBfotvtj3nm4dzgY8NXhq9/lK56tABjXIL0+0CQXvArXi0O0dWydq57i63ceJQ50hrPUEUQtQoGIAQyHfmOB6tuBjXTPBF7Cq3NfmYU3BKyl/zQFnO+HXzZHdGAfbaNXgu6LCez81l4CpatM0X72qxkkBnipITqmu0px0K7dtDvVGB6cEBFuUQgvE77/y3fyqTDVrTi5/LyyRBq6UFMu0TYayRNrccoXNJNlO0izAtEC9Bd3V8laDohtrcZ8itqEPNl+q5tD2x20W2nu0AY4l8bP0VCGQ0eK57ZkLGFobcpcKsV/fjfZS2777Wwvg3venPWMFGOt7a1uhBN5319rS87bARguDrAYl9R6ujcvuCtQ0QJC769XdartfBQUrALWBILurlcCyAtLbX3W3JrZnkt21pWgsbamCddiqVRXq/FETQN29z/pVimNQ94VKIy7j2YCj7Zn2f6/2qByclSWmBbzeV+dkA5FECxPBQAsn3I1fTcO6Z6AVgKsFq9tcaazMOk8a62M7FtFc10C9VwlknWvvqiXbvwdJqmXctabcrNrV4uOUJu13vO9fbe61frkPyL97f5ub29h/f83SAbVAQZuTd+8C9qCR3r1hs7PVlmoBoFxjO6dcCztApYVoLqzXBhTaZwoxfNMbKn3Zfqz9Whpq969aYPk75lEdv1altwzzfo9o9rGuxfdU6/fgk1RfpTpf2uYfFJCu9EU9PGq/RzcR6nd25z2YtLdhTuq++j34t9nvjUHe5pbsphb7z+TNN2OzF1IswD2Ljvsbvu+d1pd1fLaffw1UqiDUe2bUdj8tIuX376u6R6Whu89p+/f3wNN+Dex7bGPzCTQpMBEK4GSpGrbWafa2tUmkZBdvhzgZIefy7M4hIeCCMXMyBs6kZWZRcPPE9XrleDxyGA9WYEUFcR19f8StiUgiZyGungkIzjbRvvOIg7gm5mViPB4Ifc8w9MWHMba4aMRLwo8B33vwwrJcWJcrt+nAdOuZnJqPqiuNSV19u7KX5ZSIy4K61CoC4qx8d5Cu+UG/vLzifUffn/i9dPj+yGF8YHSDVawaYF0mUoz0Q8dwDCxx4jJ5srOUpNPDQF6FdUq8fVlY1zPX62Rl4ucH1vWGAodjQpyVztLiL2e1Pqx7XtcnQm+MJSWTorG6nEDXddSCCELVZBlAIKbIksDT0XvHafQ8HZ9Zo/V3XGdmMplIypGUIuv1jZfbmXG58Wns8Sr4rufx9MjtcuWchXVekHUhz8LlfKM/HDk8PHN4fECcsHgHXYfzEI4dKUVSTkzLQup6Vs1ITsxLJE3KtCqdCgEIaWEZB/LpwLHzuH6gDwN5iS2eiLcVnQWdHdkpUTJRhbhaWl4QR1xXpmkiqdrcDZ7pdi2yGZEYF+J8Y72ciZiQezeMdH1HdkqOE5KzadjWbBKx4lTD0DMMI0Ec821mWSZeXl8MeAo9D08PjelyQBjDwLHrCCc4iucHEdZ8ZrqaLMdv/uYjnz9/5Hd/+1vm1THdEtNt5fI68fbtyjpHRBccK9EcWlQzTifLupDIPN2AiHOeuFoq2+VyQ3D03cg4HBGcZQLFjA+BcTiwqLHzzXa4om+VrApiVxj0hSmekgEW67wwTwu3GFmXxNcv3xoQMI6jHcjlTIqp2bkYM/O0ME9WcbDzHX3X8+HpI13wiGbSrMzTyu1y4U9/+Ffm28QPn34kLhNOEmMfmIZA1kAm48VZhTdxhK6nHw+MD49EuZKuNy7zzOU2cZuXluCh4orXXoEny46xqtZW7RFJxtZDGELg2I8cugGXhSVH5rgSNZNZSRpxurCGvvSTR8WZHhy++QYpxlK9NdocjrVwUQWH7LtqxpFLWnHg6XTi4HuG5JEIjjJ3VxO+T3Fj5oqv3pw2n6h5TWWvjzEV4Gnny4R3e5DU/cCuUSu6k0yXLsfUqsHnkv4nujvYR0p8ltv+adfPrcBNS78r/sAWB+wO1mt864zRKcX+1dR0m3NVUqA+Y913SwE0BzGaBlYsxX42/0juDjH/rdd/CHiqQqkhmJK5954qMEW0nE3awtg5ELsgpwa/W/i4/ePeD7kHnepvrCE0anz9UMpF8LRpMGyvvXxJ8zW0Xcqu3Rw4uXOo9qHd5spw97v9P+79MGlB9fZZLVsTTcdJpYAbCXzOhconVvFLhDXawmJWOp9KjmlJXSpggRmncoctI2PniNefzbE3IbGaFlmAAvGtj4N3Jg5egku1qMBQ3WIIq+Csnf6Z7kcFT7IqqQVnwth3xRHbnO/s1KqIqSDSsSy5pbNY1T4DrZwrgTkrtZjGg++LM2esJNOPUcQFKD9X0ERwjXYtJRO5okTG7DAxfBFXUpi63dSKRZxNrXwtFgyDq5pu1KApVUcYJXIv2lurm1VNr5quVcenBtq/5sdvv6vrr2sMRHv2fZDy/TU2AOz+VVlTW9qS9ZWNUz2F3xhlaAnWa39nAyAqo60BmbI52gYE2B/t1HADW3Ky0fE7R6SMTAE5toepFbCybvNcBLYqDlvgXfWhVGtudA0k/F2wQtkwpaUtQnYbcFcDi4rwa7lPFZiFIiBdxfoauHBnfdgzKOq96+lIq1QBaE4Mg9WaNdpsBQGgAsbO+bJx2Vppc1zku/HdnlPeteseIKhpc048G0tGm1aMb5UttV0LakphseklvdEVQLkGYnWcXOjYpxdVtoDujFXerYFUNwkpbFpzJQgmgldKY1vHObedZteArzoG9W6qmw0sw9n6wp6dEvhLY1bVQ5I9mNEYeU2pbzsBktq3raiAGZHKNjOAwbU9cGNDFbvppDBcazvNMWhBc6Nfb3tJGxet+2Da9oFfmRC/xpp6/9qPW/CuVX1t4uW6aSRY9dK6xm3A7OQstGutZaxsjw1UeRzvrcpWSpU2bn6DC1AhPEGa32EA+66/mnm4Bydqlbztb9vf6+mf5lxIHEpyCQkCAUIIlk4qUhxbm0d516EtDldruy3Das+xwhtsdq46fHs8cL8fp5jvbOXejmw2Y/vsXh9KS2ED2Kj49QbN59i5YZvjXL4qENkq4JXPba5VuY9dqAKJLetTpIhVbzfaALvtGu/1x34NdKrjt2el7tNHVdX8IO5tbDth3re37gtI+/12zy1t8e7lqh2u/iCtzL1zYppL3m+pn3U/dGJsIiooZQdouYB1GZBgYJXrO8I44nxAvCcmCyin6Sv4gPOB4+HItEx0XU/48s3Sxwj0wxPreuF6feVymRARutDxMlwJPtB1fyYMB7p+5PT8zN//5//Mx08Hnh8+MC0LMUUiiWEY8Z2nO3WIV/DKYej48fNn/v5v/45/+Od/4Mv5hT+fv/Hl8mLg0rK2CrkUlotqJk2THaA6hxsO+DLX12UuJ/rKrJmfz2/MSTk9febHjz/y20/C0WcDnlJh/ItnOJ54+PAAkljzJ6JOKNF83ejIS+YQBv7855/5+Zcv/OM//iuvr7/gXM/f/X7hw4cf6EJh60RlmldjiqiYbyiWknKbX+lKRSiwysjeeWLMuGnBOcfheCh7w4ilsVt1LM0rt9uZl5cb8S3jV89D/8R6mAldx6Q9UVIb/9dOkfXCJ4mMYSCEjt/+5m9I08r87cr09hVlQdxK9pC6nuXwM8vjM9oFUnBEb8Fn77sSFzj64cTp4w+EfuDtMrPmhTWvTF8u6LLgYuT5GOgGeOwGzvlCzhEls+TM+e3Kn/70lZ+/vaHiODw88fz5M/1hxJ16un7k6Dy3cMNnSMvCusz4sTPgTkfW5ca8TCUGUKTv0GW1PTtFXHAQPO5w4NOnT4yHA8Mw8vL6WlLKHMvtyvT2yrxEE1GO9tlVhXm58f/571d61zP4ng+nj3x8/sjvfvwtxxDoHoUPT498+pv/BY8ydsLD4YBzjuWW+fMfv/Dzz2/89//2J37+4yvz28Rp9MR5Ic6v4GDoBw6HESEx3S68vX4FMSkPJeNUCNpxCCeWa+b6eub//H/9D/7wz38krhM/fHiG5Ez2IAmqBpisa6LvTavt86cfeHw8cTgcmS6ZL7985ZdfvvDLz1/QlCDD7ToxTwtvr68cjyfGceDx8dm0yErFQKnmWjx9T9H12vbacfyBT88f+Zuf/ob/g/+Db9++8fXLF/7Hf///MgwDt7/9O56fHumD58OHntA9ssaBYez5zW9/4tPnTzx9+kDyHVE8f/72xre3V375+pUFyN7YLalUsbO4IJWYSNFkVSWjM1F51KpDhcHR94HfPn3m+fDI43hCcFymmdfLhX/59o15XZnXFVLiosI3/cJRPadu4KcPHxm7k2mw9R3qbROKGaJGomYOpwOPyXzFeV1IaSWWCu8jwsl7js7Ti4FY43Ak+IRK4Hxb8C4BWwXiGs3xbi8UNZDae8caE8samVcDwipxQouD4koav3dWFMw7X2K/GuVo20drWvCW3WB+QSi6WLGkA4tzhOpT1Pd0AR88zgs5blpQlG2uMbHKK+fUJFb+kjZTKBWkzWc0gH5OK6ClAviurXdIyb//+quBJ2XLX28Ds3OM9if67RRR24dRthPiu2fcozmyh5numUv179WPKDEJ6HZmXeLf7fv+AeTd93e/qg5uu1Y5nWwsgvcflzZfKM2oj9rab39yJTZ0zRlKu4eOpbGaa2BUQJ5EAXAguQ3FTTFZbnIwKi0FVc1a0c9ywp8tGHROS+ne4nAreKlgzBZk13Grz1dPg2POONw2bhmr8lCymWjX3npcSwqXsxj6rm82dtU2OWycNzQ3F9ozRWg2JkGi4Dsp75fSr1V3g3LiZvTOdjOF1iytzmo9HS1sCWpwvwWHKRcNmTrU5d9STy2LZgxISc9yDXzRtoi30DBXEfN6vTJpaplx6/u89QV1nZRKSMCmp7NLfWQLBq0Ecm6/r4EM3ii67Zps65d3/7b31OjknYh42s+NirLb+9it+Rr014CtAqNSyoe1WxVx/P16qsF6BVF01yZprC+bAy0oKeymPfDmvW+gTGVv3Rua8sYCIlklCdmBE1vQ1sZyz3Yq9sxJPR1QowHLBvDUwCaXDWjTZLs38ltAVkIU2fVJ+WFjtJStsAFWZUW1oM/eZylk2jYlG+dtrrzvx9bWVohhO2nZ7NsGwmwshl2wWtJC989en0ExkUsTfBb2f0Wk9Q2y7Q9Sq0619kOt9kEBhypgimy2ksKgrLYcNSq2350wNH1BNTDD1jE0yKCOYQEUWv8UgFfZ+r1J0lX7KfZDRts9nWzjWOdLbXMLsqn9XeZ+TW2/66f7jfN+76m2w0CEPXNvz/iooEz7Pe9fOzvlMA3C5ohtc4y83W+/h7R01btLtoa0v+3ZkmZzta3lyuQ0C6Jlb/DFXtR1JDs7aO3aTgi3DacefGxN2X1G9+3PWHVRv83xunbZ7LqWdtrzyp2jUa/cqpJSxD+lrv+65ur47ff8HctYd9pUu7ECGmNw77s0YLyOgW/G9B6PUW0aaE0AVrXsb3J3rxDqfrE/ed3a4VzVy7r/nH1X5PuJdTd/G6ty99pX+Kzvf/+76sN81zey3zt3Y7zbU+7vU3BStSpMdb+XZjvsGXxwLd3SeVfWgxCbfmQ238M7A2GdawedMSuJXfVhMbsmvsP3Pf0wlHYofpmJxbdJxV/w3jGWtDHNxS/05WArzRioe2ONAR9MWDrEhbDOJIFvX78gonR9IOZE1MxKoqekVag3prHAGARPwEvg09MP4AKLCNecWNxEkpm8Rjt0isX5E4d0nsqG0yKsrZI3dnLx4yKRW574pz/+M2+XCy8vr/zw8JkxDBzCQOc8nfcccoe6UNKWe7oQmggzEbRTvIyIBEI3sMzZwKVoJ/cxLszLjeOpt7QSH3h7u7LGRFqyzVknrLnjeDoQug4vHg2B7AKaTVvHe09atyqdVb5BgRwttdHlnmN3wjlHP3bgMpf1gsY3vM/kkm4ph5E1OP788sLz8YmH/sjz8zPzpx/Jt5Xl7YVleSXGiTUnMhl1ys2BDAN6MoFnRYjZivMoSlTFXa74JXFbszHnckZ8xnUlWyAo2gn0Hhm6BmS9ThdeLhe+nM9c1xUVx3K9clPFdQEZAwxK8pnramy0IN4q5sZk89pbQv8hdCxxRWO0MvFOUFFiWjf9VnGQLX6ZdWK5TSzzYmlk82KpZy5Q3U+rCGdu8yJKlkyMmdAvcLsgrz/z6XTg2He4w8BhCC2YTc4BoRzMX8reYYfc/QCaL6A3go/8+OOPxi48HHj5+o11MeH6Kvo9jD3X240cs6XorQpJyKsi6hGxSttVkqSeiwh2kBeCZxwO/Oan33E8GiAWQo9zHc51zNPK5XLl5fUrcVnIOTOOjq7Lpg3pIyI1/Sqbxq4PHI99Y0IBrMvKNC0EHwj9gbEfuP52og890+XC2zKxrhNv5184jMLoR04PA6ETUk70w8jp9Ezfn4jRMy2Ra5z448srb5cLb5czczSAh1BSuSiHvBnQbAfzatWitOZ3o3isqvmpG3jujzx0B47hwPH0yPGwMAwPfLlOrEkB0wPLapUvl5TwApflRloDfQCV0Jg2Ua1oFiWW7YeeB4QhDqzLzLpMkIRjFzj4DokZXLovniDGwraEESl9TYkPy3NS9sMaTrQwSUocugUzdd+sHoGxjKRUqS57iRbnUQUJlL4q+8NOVsN+idnvlFhTtM+LELoOxWLV0BnwaySJQkbI9zFc9V8ysK6JJiHbDqk2e1er2lOkZVJOLT6oB5E2TuYXpZzvfM5/7/UfYDxtzvbd6VQ5ma7AU62yo7pDwLJ1az3VLOPVLls3fNn9vgWUcOcUvXdo6/De0a3379vin/23zSmr9y+/rK6xotskqx9570xVRwsqXHQX3tafq2O5/1075y/rUx348qZcJ4naqauX4nyrLXcfoNNMboGTthLUQKlKYmWlLZ2tOIsFBKgTS6QGIsWh3vefbilVG+Yh1PLnUjuP9kPpt8qUMUS4PqNmNRHnXR9Wx9c6JcOd4OrWFzllkt87x1ICsQrC7IIj3V1yHxQUUE1r5ShRVGzRuvZslUli2gBVIBfYEX+KkUtaZJ3KwkbQIjStzSrVMdf7E+S6hto6snzezWEvCLIag2Q7Ma/A7h5QKO1kt+a00Hld7ee8nZLLdv8NfJKd0dTtd3U1ZJu/NcjOJRXK8kPL8zVgomq7SLuZzTstb98xlOpAsa0Lcbtrsl17mzMVqKgsvW2RViDGiSvVFesG6Frw0QBCrEJc3QjQykIp82g/R9H2e6hAQWlnA1pqbrW0YGnPlEK3vjWQsWqcOEyT3Npa8NO7MWkbYUFmqiMM21vq2Aq0e++DcGOhbHorW2UMe4+xbbcKoPsNpM5FbWCPfaVU6c33AFVJU981qGqe7a6p9e+bxWw2UkpQs9tr7sa/9qpU4LdqB5aovAijC3W8K9umQBnVRijsU8427axdSvR+097vaaVtGxy8Az9rC2s/tPW27Zvovf7SltLlzImj7vu6pebKHgCo/6v33toFshN8lu/v3fZxu0bLCmwGQtvQWJPeM0RqP+3n2rb/3YNkO0C6GZn7w6mUtRSCKB/JxV5izjY4Swdud9+uv2fx5R2V+n4O72xZWZPtN2Vv0qyo2/2+9YQ2anzV+qvnIpWFV+/3fh5Qxm9bysq+Kky165XVuFV4vAee9jpeWx/vn+3d88p+p9zNEXYpalp2mbJNGPCibV8QtwNodytXdjd/n3q431Nab3w3Ttvv36fA7fee/efe70nv77GxPXWbw5XBdf/WsrY37cqqI+m2hysHNnYf7wsj1HnElyIHYgeGSUt6RX0/QmazT6uaXxbLHuTFmeBzsOp14/GIL1om3TKzxMXAg2Slxodx4PR4Iq3KuiZSXgoYrGTWEtgn1mgsnpxHgiZ8WoiqfP16QDUyjB3iPeqEqTAVnBMkWSqfUwuSnQ84Ah8ePpJw3HLmZb4hCIsKMU9NdwShpQ1K22szKRe9ErUTR0XBZRKROc/8y8//wteXr/w8/Mz1x9/zeHjkw+mJ0Q+m8aNWyMR08xzHfqTrAn3vEQ9k5TiA9wNDfyKuwuvbmfPlWvzZlWWZeHx+IoQA0nGbTK8nppl5XVFgiQHkiX4Y6HyH5p7sk1WoclZ9rwupFE3KxJRNQD105OQgB4IbeRgfGRlY/QH1SlgH5kmJQUlOWQEZR2Lw/On1BaGjcwO/efqE/hAJSbn88mfObyuX65mcktnDCPOkiCT8oUPL3DJNoGjBHitZzki3El1vgKBmfChaVepQrxAE6T1u6FAfWEX4dr3y9XLh2/VKVGOx6HQjXi/GYAvgDxYU584Ca+8dqkWvdE1o5+k7T+h7lnnCDKNtego2P6GALZ2Ju88Lqyrz7cYyTcTbjK4GVvjDCVdYFDFnS0VS8wdWgSzCNS2k+cL6GsE9sMpId1D6MOBw5DUjUTGsbcSHgeB7uuAYR9Mzur5d8X6l64S//bufeDg9MI4jy3zherGA3ztfKv0NTNcJjUq8RYhYNcIoOOnwpRhNLsW3cpEFQR1ePH3oGccDP/7wG/q+Y10XvOtwLuBdx7JErteJ8/kNRyJ4z+nhaFXTvOlN2cibj+98T9cpDw+D7U9ZWZYF1QWmFS89h+HIh6ePzD8tSFb+9K//zEUgp5Xr9YVlPTAcHKfTiWHsUSB0I+PhhPMD86y8zRMv05U//fIzt3limmcSmUQ9xSvVnKWCsmrjT80kKB6VGE51DB2P/chjf+AQRkY/8OHhI2OM+P5G/4c/4t1CM9qiqCaiJpZUgKelY/WCHAf6AuJkNXumzqo9dl1nazRnlikwewcrHHrPGHqIiSwOhwfxVEaq6U8XDa0S49n+1vIvGvBUtUDMJdvtvzVuKP1RQ5x66Fu/fPHFS7UJPJ5UmIhVqkJV7nz8GCMxpnZw6IIndJYuJ85i7ZQyWWs2ijXGiTe5p8q6V0WyknNssjLO+eKqWxGQxhJu8WQ5OC6+jHNi6dbQWNap+lD8da+/GngKoSJ33qovFYd8rzfTUp5KYFrjgEqMAIsJauPriKW03ac5Os3BKe/bOc41pYldgHgXLPzaA+x86tqv752Su/f+pevAlnqwa5OtFZNSe+di1U+1rw2eMdd1rc63WqpFAXDxqZzel7QwyXbS6JOyRsW55d4JEwOXQkl5q6wUW0DJJlnVOiofiTE1x3qrcidNXNicQ906S32bkEUbDZ3jFmB5dgEhu+GT3eAU59+BC7LTdDG2kq+LARMgrM9lRiUbiFG0btx2OfuWsTTjBEVsoTUilyCjVlkUp0bZ9JUNstPPqYBWcSSzUpzK8jsHNdHZ5r45JzbFBPHO7HMNIsr8dLzrBnbvwcAn70sAClhqYA08DRiIa25MGRNVNgNWA0XTRqolS90OaDAmRn1f1WgTAV/hb4oouapVtitRk/diKSVqqSG1bxxmIHOyNBmRbGmLnd0frYLB5eFr8N9WQOmGbMCUq2VhdqDBtnr2gYeNaYq16EEJhlz97D5Vqs5jjwnT183Rt0pyKVvOcmWzWcrOllJY11kVsZbieDsp5VmBLa2mts9vNFaFNW4gWdf5Agb5kkpmJa99cOWUXfbLB6RqimTTSNvbvgo8lL5yWOrHlm4tba7eC5/XU3sbBe+78hxqVSjL+LdKpFnJGssz+nJPa0HeHTZIud8Gou4ne2nR3i4USMHS5+zzrlQIrO3cwA0TNByGbvf3LZXLft4Ftq7aad+euwb2cQd2bEFwXUs74FAr0LA9xwaKGY16/6pp4FrSfyHjsfVg96uVX2olRAMynTgaDC5SjFlh9cke3LgPyPevNg0UqtbWHnTaqnVuGo1mw+qzZpwLtRsos6vYEPu5OSoizREyAHXPykzt3t77HaCpTZegFEEy270HTuoe7UB1s8lKTXO8B0DqqwHGbc3fp6htfUfbH+tazaom8txYf0V7scx7q+q7Pzwr63O/Ner9iZ9InTSyX8htfO9t+AbetUOCneuwB9H2wMx3Xkydt2XM74/j9p2wzZVqo0Ro+4OVmN4q6Noe9m6eVz2Inf3d2rg5XH9prt41+9cA5jvA6fv3v//9dvhRPl9XrOrua2PYpVwO8zKlzHdlJWmr5ipOLNByQnZSfB5ltbiYpIXRVJqSCvM8Kaw5W1AD5JjxJPKaOLqA60eOD088PX+gHwa898zLXFIJHR8/feLx8QnvA798+cIvv3whMXNQB2EgiWOaEtfr1XwxBwtn5vkFloDMB6J+5cu3R6b1K8fjA77rWWKmG0yAe51/w+F4pB9H1JsOUsqBLj1ydPA4JD6MV3oNXFfhqsmsue+LI1/mV93vzGUz/zAWdJaMusjqZiIw35Tz1fNFey7TmefTB354/g0/PP3I2B24LIp7MX9k7Ht++PzA6XiAtTOfWOBw6Pn86TMfniOPT7/jly+/8OXrL1xvF7NpTjmeAofjyOE4IuHK2zny7esbOt1Y18xtVpb1QvAdx8OJznd4F3Bi2jJOPA+n5+JQOEI30LuOEHrG0QSxD+ORx7UnyUoKK4fbiZfljFwOvMQr1zhzuZ0JBEQ9314vMAvrdeX/8pv/if/8P/8n/pf/9J/43acn/uEf/9/8t//x/+R1vZG6gI4jc98TnSM6QdcV5hu3nycUB87jjkdS7OhGx6effiSHSBpWIr/Aagyk6zxz1ZEJ5aael/PC+ds3/vs//IHpthIjZLEUHqvCN9sgdoLMHXQBGTqODw8chpF5nQl9oB96fvztj6xxYZ4nzuczUioKxnk23wLlp9/8lsN4YOh7Xl/fmOeZ2+3GcptI64qmzHA60Q8Dw+FQ0v3hNWXiupr+lhMQJbmVS/7KbRZeFvjyJhy6jqfDiY+HZ0Y/MnDgaXhiDAeehkDygdOHJ/7+f/07Xr7+zNub49uXMz9+/lt++9OP/G//9/8dVJhvM3/813/mPBqbSMR0x77dLmgWjh8Gfv/733McjlwuM+u0mqxLVl5fXnj99sLr0wOiI+u8oCnjfU/wPcF1vL6e8V6YpxkngaE7MPYTy3SlC4ngO3749AOHsacPHTEauOioBY4U6ToDEzCfIARjdaWYOAwHgutZZ4/QMc9a9M3Mzufif/cHT3f0hIPHDQ6yI6tjVeHr5YaeF97OEy/zldfpzLfpTCYZ+8d5Msl8/L7IY5DRtQbUglPDBkQTQ+jovOPUOT49PPF0fODkDwzhSO+PXN9Wvry98sevv/D27cwSV9tjci4gZiI5z0zi6/WM04S/XTgsN0bn6JwwiBBweJxpbblAFzqGvofjEU2RNJ3xJDrJsBoIviIkTcxr5OVy4XKbmNdYAmyz9zV+0eIsCJTUTM84WOGHy3luldTbXlhZ3xWmKILfIVjbOufxmDg45bDHY2LfIXTUmFLEwLRcYq6aOlfjhhCCrdV2AFT/boxNiobb3vc2gk5iGLodsKbtsKnqvLL3L8RcwXtXyjY9wzLKPit3t/o3X/8B4GlD7cyh2xhB2wa/OU3mUBXWRmsmRQxz74ftnBTZORnNuStaD8Wp3MAlbc5Tffu/+cx7h5BtrO5clzvPt7pN9y951/6y3qhgjNx9bvNIGgtGawBdnEykVbsDMxBOy6G9WKWrqoeCKj5vTS3SONaOghuoq31cWC9VE6QBIJDFSrLvT9zv5hqbAy27oKqCEK2v61gXo9ZOdisoUwce8NuVaYvNl/TMApAl5S4VoDqRBqCwUfzK/KP6wrtxe++gW9BSwK1yr5ouU4PCGmjWznS6gYqNZaQ7QEbrNaytFsDmXfqPIOp2qRN7I1THz4JNa0PRjml9s6V71PfuHfd9ZZ+UtnZsAdc2Q7c+dCVA2K7TTrdrlFYvo+zuC5VpsQVY9Z3l/S3Q357P9K2kbJRapuF2CrBLIroDdvZzMNdnKuNZmrL9PVdWXm7sNJdtfu/nwX7FtplSgsuU9uO80UXrJrJ/1edroMmu/d7voo9d392xtXb3v3tfCc7sJOHduGOLwlHBiA042HrCGGXVHlZtJtl1ah2zKvy+D+pcFd3ZtTQE106yqu3ax3l3QbbWVV3+1zpqN5d2fVjvsdlx6ztxZZ2i28lL+9z3hreesps4ot5ft7YvYwBqBW+kzpl7u3c/d2lgeKqnOHUs6pNUW1EBT7kf+zbWvxJwi7g2nnsAZQMBtj6qv69z5L4Pa9/W/WpvnH8tKL+3k3bYUNux9Z+rJx+ypWaxS5+63yV3fd76iYZbVQBBS5ssPW03MXa7ZjPlrU92/VMMkK0TGkBcNcwqQLpfY3Vc9zblbhyorCPXNPeavWnAxY7xpKB7xBfrI3Tr33sQZtt7m39TP7kbxJz3+9E2XnUNb/Z2A502G/G+Le9tQ+2/3fuo+967l9S9YsfEkqrXx05fb7OR+2f5Hh/6fu5/947ds9yz8u776P5Z39lVeW9ZtYC1lX25jcO2PHTrljrwuz4QKUVG/D3IXxlMS0qmz1TB5dJXSXORNtKWOmd6T3bxmJU1ZdaUmdfEGjOhg2EcjP2kEHzH08MHjifTNDH9OscwdszzjXk60g2Zy/mVlxeYpgkDjDOFklFEyS+sq/L6+meW9UboejKBbplY5gEXPNfzga4fwAfTuHPOqkytK7Jmnrojo3gefc+XDNN0YwKSZLIo6rJpz5Qy73amo6hU4ElIPiEdJdpwaBJizJznN/COMB4Z4wNJrGpzmiNOhSH0CD3TNTF0HX1n2ofrmtvBjPcDw3jieFpx3jROQufp+45h6BjHnqenh1ICXDlNI/MSOV8Wljmhmsh5JZWsgqzJUpgU5mnC+Q4feo7HB9NTCw4ltQDOWaImqp7Rj6xd5tQ/cF1XXFzJt8y03nBuIS9wXi64Rfn5l19wHz7y8Xji829+YuVKDiuvcWL1nth1fM2Ra4xc5pkkDqJHUzmkcIEQBg6HI/3hgafDgVlm5pyY4gxphRxRZ8BgdsKcEpfbxJfXN85TBTk9SkZdRrqM74vDHRzhMCIhkCgAvSZyXElkoiqXl1eymrj42PeNjYXUg1exFLxJWnBeGfEumFajirN/O1eyK2zO+BC2tS1WUVeJqEYyFljPKZMW09ZZF2FwC6NErr0yhIm3MDMGR+jg+DzghmcePnZ8/vHI48OJp4dHpnXhdr3x8vWF63Qlpmh6bFX6w3ljjmni6y9/Zr4s3G4r8+1KXCaSLiyLsiw3lmWyQz+1NKacI+sK0+S5XM4cDgf6oef5+QNxVc6vF+blTFwTKSolnwUjJQZjsjiPZmOkDd2B4DpQx9vrxdLqvOd6uZa9x5XDkRXlRswRCZ7T8yOLTojLfPzhmePTE/3hACGQLHOSaV1Z48qywuvbles6cY0zy2q2pTjytk+RkD6U1DHA2ziK8ybBohmP5zCOHIeeHx9PPB0fOPYHhuFICAP4jtfrxLe3K99ezqYJnWpK235zUVQy2RkbJ8cIt4koZk4WEQO4nC9apGYDu9zhMCBFfDDCRRG5ySWTaE1Fn2lZWVNJw/XOUveak18Dlo3t0/eBrrO+T4WJ1Py2Ml9d0eO0jJVtZ6pxnZE/LD53YsXFjFiwZ903D6T5KeK2A6viFVIlR1tmkyvEIDb5lXoAKKVrLQsF6qHvfm+tfnf158z1LocyXtoYpZy++9x39Tr+wus/ADzVPPfQqOnV6auxw3ZSJ9+P2+YCbQBF66jyl/2HypMX/6t91SL1zWHQe5/qV/z8dt/3HnPlXnz3kV1s0fze/bXenbbJr3y9v9i+mpHuvOHExpbKqoXxVAChWsEFD5rb+2rqouTtXs5Y4HgtQI1QhHit57JGNGHIdUlfaBO0Boe7/jFKoVYpnlLdaOc565buU0+tpQJOih0jFod5Y4eVhcLm3HVBCoBgucYIm06SFNFJz67SnF0/Jy3PQrtPDRK0AUel/1pAtwNLFUz+0Vlp2eq474N7pNAXN7G2qgFV72hi56kBIFYtoE7M/F3AuAdWTTxbNsOOtvdUkHcvIr4vQd0YTN8d6W8irvvAoPbdbvW0e+3bdLdEFANjbJQLI2M/T0pyYXEw96KyKRXtC60hk949f242YgtK7ZS62pMtAN9CU1pQT/l3jPmuf61SZKVQ7hk+9wwq2ATfa19pLkBercq3M0fbuMg2TlUjLdfPbIFTm2+/apC299X3iqiJ2JZ72byxyZrK87iad/3uWjbVXdsga9ps1SRDa0qttPGp967MpQpySbleCN5yyouYr5RNpxWqa89lDdaqDN7usXH72rWbHZW2brdxNh2ILCXdNZYNs1CT6zxVtrViuew7LaS94BIF0Cygk03/YnPLSWDOrq2fGjvaddl9be23fthRqNtQvtdfqv1jk3/DzIrTwDafmgOhxuStxTHavlEHfA8aURwHuXsrNY14H7i/n5P7DxgraceUrM6VNxCw8hrN55R2sgU08J2yVxlNexvvSldHN5AilwDa3t/KLGxru9oC2Zyfu7WysyEVkBHx7X120KXNufpuLHavtqapTBfXxr8CRC1dt6SX1yyCyrzU2soyr2oxhNqP283qN/luTDb7Uzig1TVow76N210q9h1ItV3/nfPRhltVWj+biW0bZ+uLWvHGipcUh4IKSm5z5h502tiZ7Wa1TY3x9e+//hIjat9XWwxwD/Kp6n3V4vvBLzjnppdRvztHYxPiQJ02B1VKOoEEZ3ag+BYxm+7llKyEdUzGaqoMqcTGgipEZEtzU8jiWLOyxGwaKtPCcFtwruNwcAz9SPCBvh85Hh4Y+5GuHxAXGA9HTtcT6zKxLFcengMvLwe6UY0NlVaoPHBRnEt4P5NVeTv/iXk5W9pRdySEER961pjwvsf5Dhc6QtfTdQPqlFlnNK88H4/IcEROGbcmzi7wLWdmNQBCveCGzlI/gpWPzymTWdpEVp+QHqQH+kCOkBflcruSZ4+f3ziuz0SERZTpbYJVGaQjr8JxuDGEnsOxp+8D4xjoOgMfus4Twsjx+ETXd4izQ/K+7+m6jq7reXp65HDoOZ4GlmVhmle+fj3z9esryxJxlEMONbBgniPLElmWla4b6PsDSkIl4TwkNYAwpYyWYjg5ZTrXc/CZh+6Bb/mMzEK+Jm7rGVUI/YGUV6Jf+Kd//meCCMdx5PnHz/gDnD4eeU0LM8JVBPf6FX+5MH/7Bi5Y0O27cjDtGYeRp4cnDqdHTuORc8rkZWJdJjStSM50vje2HnBdVl6uN3759sJ1XqxNwTQ+RMD3Dtf3EECC53B6wPmO23U23ypF4jKTo5CXmS/LDR88PniO48AiUoAnK7jiu8DldkOY8GKi+VIAztANaFByjCVtR4hrBF9T80LzgzVnokZyXlBNOBdw3ciaLb1tWTI3EQILg6wcw0LnAqPz/PbzM0+nA08PHaePHwj+A4P35igm5ZdvL/zy8y/8+Q9/4u16Zs0R13kkmT/SBQ/J5sW//NP/oO9OrGtmur2xzldUVtYlsSxX5vmKd5A14pyS0so8r5zPiZeXF7rgeXr8zKdPn0hr5svPX8lviXWBdY6kaHhhyomuNwaed95AXAfj8GA2OGW+fXvBOxPEv11veB8IoQfpwBkwvuSE6wIffviMGxQf4Kff/MDx4YALnjlm1hSZNfE2z1ynldsceXm9EjWSNLGmGS3so+p34cC5Ae1qeq75pVYoy/bfToSH05Hn04nf/+Ynxm6gcz3KgMpA0sDX8ytfXi98fbkQi9+NlvTnEv/ZhutQX9g1KZGm2Z5NMzNw7AeGrmfsD0iORDHmU3AltVk29rxt8QY8zTExrSvTvJh2mgBVHkZ2nxBabB68MA6BPgSC86yrVcLbdB1LnFAKDrnmfN77IMa1Md+nhigqsiu+VP3Ouh8Zq6slpohsmTtCec5KJLC4vjL/KxDmXK3uee9/Vn3hLcunXsNibJMAKYd03jU/M8XUnIfazl93QL5//dXAk/O1Wg0syXING2KuFXTalZBXqGhaLYYjmnZOVfNcGluhBiV1eKw7tAAtuaQ7baDT5vi/e+m///ju3c/f08V3Tg96d70arJjTumk4uOo0sp9m22C2n1R3U3C7vmIOfVXND0kt390ZOlrktIvjru2QX0pfCZDEEOnghTC4lrKSY24OpvGP3G6MKohRHWczflWtp0ZPIjb5VWnC5fYnt2W13QXVuT0hrBsA4go4VHJMxVkKYKbDJSWulnokAi5A6AUfamBlzmIsz2PjtM2aFhBSmR2lhzWXoHk3FtkGrVa9Awus19V0FpBCoy/jVSuk5RJoNX0PqYCOadlUyr6BR2LdXSaGE98ECDWW+SD7tCjdBcP3wNKvARnvT4nfp2B8B3o1LbatOpClzJSfm2O+zf27S0pNGTJALqfcdN6qs2DBwBamarmwYAFQHahagtkSVE1TRCojrQa2da000fgCjpQG5bw7DdjNv8qoC76mu9n42ThXW6Xld8Voe9eqJt1fSxsLoAFZDYC4D/JrX97rPNnL+ao1VZmj9v4uFBV+rExyKmlKu5mM5IwKpaRu6VRVqhhh3Yx4Nz/umEltLHU3Thug6p0vl1XWNZYTyt0JjbhyGrxtUlW/Ia4VfFWqbTGQ1jQrKohdT2yoAXiu7dodJghWDadupnUDoYgYFuHp/fvNLljKpxSGZK5+i1S4xvozpzsXYEv3Ku+xtufGbuR+JregtfZvynXOVEDAvlq1yGor9vbqDoDY7xu6ARhgIuPlL/V6W4rsDkQsgTFCE4veCg9sc3FvM111Ytqz2XtiLBVrvFTaktnJAvaQDYTap5yZTlNqJ2/eSQNu0poKq1VKOp60MbsbxNoDxYE1XbtcxiRZqo3TcqBSU702e+69nZrvncD6rLWf6zi1/VN1Ax+Kg9j21Z3vWwlC0v7vmr/SPrefKZt70+bWXh+tzh1jXRZQ2Mmda/T+tV/H9z/v31TvV37cKGvs/9VSTPepw1Qaf00Brocs29xoB2jFPt77TPdejf2Ymy14/7oHPN9f69df9b77PXJvS++7Ijd7toFz3PmO4i2zwnsInbODLielWISN8aq5VS5cClvpOkfWUtHQfBrMr5HddCk201FOtLF1crmZkO6yZpY5cRjPXM43hjDQhZ5hPNAPb3TDyIdPnxnGgbF/BjqWbqbvb4zjyKePP/E3v/tbzucvxLSQ08w6J2JMLEtkXSuI7vBe8UE5HsOmg8LCus6kSfHB0seCs7QzR8KrEi8JH4Ru6Pjtw0fefIeukXOeWIgmZD30uM7j+44UEy4l4m4duX6ATqBzJNOVgE7JPrOI8m15gdfA4+GJ3z7/RP9opc6ZEj9/+VeIShATeh7GjqcPj5yORw6HkcfHR5YUiTlzuU7EFEk5cr7eOB4PPD09FTbZyHE4MvaZh0Pi6bjw/PCNZVnxztF3Pd551jlyPl84ny/807/8C7fpxcZs+caHj5/4wf3AKTyiKsScmOfMGiPTOqE9JEkMqeO49qyx55aPLJqIOaM3hZxYJPF//Nf/yuvbN/7453/lv/z97zkOAz/+9J/ol4VLirCuHGJgkSOn3JFTJK0L6+WVwXmcKmmNnF/fuF4nXs9XS70S4cOHH4nzTFxm1nnh5eXMPP0TPgem843z6xuuVGgMPXSHka5zDEdHGAAx2QGkJ67Kcn1jKekVeSmMJid0MpRKXXB7eWPNkZSMZSN+S1lSpKRz2b62KasIEjqzOVKrfrktwC1C6yku5Dyj+YamCY2etEw8f/xbQjggOjJf7bDqvE68vHxFY6TXzLfpkcfTgc/Pj3x4fOTxcOTx8EhcI3FOjMcnfvjbEx9/+h3/t//tf+f88o0//+Ff+frnP3C7nrm+vnB5PSNOGY6OTx8fyEmY5hvna2RNJlg+zWe+ffszmnvO5yvreiOnhdu6sCyJ//Zf4Xb9bdlmPP3Q8/j0wC9fhevtyj/8wz/QecfHDx/49PFj86XTqu2wb5kjMa6sy8rXLwY8hRBAoe+F4BXXge8cYezQYaR7cIzPA3/X/U/me3kpgFJkihe+Tlferle+vpyZ1sgaE9FVhyhZymzd/LxrG6JqRCjkBrG4KcVIThEvwunhxMcPz3x4eLBqoC6AD6gbOc+Jt+uV//HzV263ieQ7RBOsEZYVSIjLWD2RsqHVwwApvn856J/mhfW24MUxdFdC6Am+YxkinfcE5+gk0TnoyiFA1MwcE5fbjdu8cFuWwjhyJT6q963Ud7OjXWe++tD1eBHSmohrbLI0d3tPBd0t6IESf6zrinMZSYJLUEkOdvCUyXEHIIgvMYcRfnKumTWxFHIwaQARoRNv8bYqmiKyBeTlUK0QEnTzNy1k2PkiDWAyyYe8riWOU0IB+vuhNzugmXS7lcr1BfcR91ft4fAfAJ5qPmDOxgJJTfuk0MNakEL5uXqVdbIUSlkNKtnAAuqpFbu8/DpexQFvgpB3jWr/2w323pn+d56p3W37fKV2NokCSuDQAvvd+7dlYWtDN0Cr+qva3llbLrt3NNe1/dSgmjoxMPJQLS9tNQIa5EF94NqSStHLUpy9fSWx+tRlEYhsQUnrP7WrmzO3tRFK0CjOTgvqBK5jXPtm5303V1yVLNpiGOvnqmm1AQbe14CkoNSi+K6CnmAGT0pAec+cEu4G5v5VJxwWnKpsKYbbmNgzZcUEJksQp3Vu6iaglrUGswWFryl4WcmuzkHbPEUKW6DQLESqaOvGFNozH2yN2Xxxd8DZ9nC5GYj9fNquWZfePeiwC3jYxnsPPtQY0PqzgGkl9Wl3Xr4BQ3lju72POfaizS0YahQKtmeo80Qra2ibV211tGcqLJ1dUFeDplqhceufjXHTpkA1KuXDlYVVwaRqw+q1a/v3qSfS1lp5XwUXZBun70Enbe1EtvdvgJmtU2V7hg0Ir2mYgkhubLuariSFwdhAhmI4ZDcvpDyQlgHeg+xbGtGm9VTHB9n0iu6BjtqFOxDNZau8+a4fUjImjxNtwCJYmy2w0zYn9rTgbU3sGVr76F+pYu5t/u7mV7lLs0t7Rtqdjdql4DYAq9qBOxuxpZJWZkldEVqS27f+e2+ArBEm2VTtR6n0c/+W8jy/Vt3Mvlddne0zBXSq8608YkvH3bVmA7zum3ZvR94DCdt+tfWHPW/hIFHBaYW2b9p7bbxaWmM2lqntsW5jSO9yslVzERav9okNuNiltbW1tGtqtVr7/vr+OcueWqswZpunZqcpjty2BvZpmdtULXep862t7e9vra3f37fm/Vyp1s7t7MuvzCNoc2MzL5s38J4JtR+v7+/P3VyyPir2yUlZz/v1r7vn3a/N/UPvvrftX3/lPltbN8D2+7bsf3/HMv8LTl6zs/U9ZU3U3zcmHtrmSmN53dl5m+FVCyoVe7bEzBozSwGd2hSwrduYU1L9uHJEoptfJzkzL2vZNwUn3g7R1LF0K13oSUmY54wPkZyN7dSPA2u0g4mYwMmAd57jYeQwPgERiMzTxLquzNONZU2k0t6UBZHAYewZxp7QDYgPxKiNnRxCNpZUmtGUkHVFUoLgkQwDnhwGnk4PkDy3vJDybOQRCgNVrfpRplYpdvgwgPclHSebjqNTNC3kDEteuSxnnIdbPHB0AyF4ukGYppuls2QlS0+Wnn4BFxLqIr6DdY3M88zb5cq6WJrg5e3G4TizzMKnT6bL1B1G0IRIYug9D6dI7FdEYBxGY2zFTN8H+iHw8vaVy/XKbZqJ8UqMA2s6kNUqzGUUxJd17xG1CtAjHScZiDJy0R5dJ/KaWZYFREkCbxpxLhPTzGHs+OHpI58fPtm45oBXh6PHseJkMEH6wuI5dgGHEueJ821iWWdWEU6nB/rQE9yBmBNpWchrZk4TaVlx6ojziroF35VS6SEZ4O0cGW+HRKImZJwzcamVCos9WVYovqJbFnTo0aEv4vpY0Op9SXv0rIVVrjmzxtVWi3OFOalITqRk6ajS9616d4wW0KeUjQnuOzpMnyd0HcPhgU+fPuPcyLp6luWNnBPJLeQ+om5lWidebwtL7FnTjds8cz48cDkmY4NnQceAF0foDxyHDh8s7ug6mK5nrg8Hbk8X+q7nN7/5kYfjM+uaOX7pWTWgixDTTMoLSmI8DBxPmWlKKFYQIC8LLy9fGceOp8dHDuMztdqkc8Yku91mvr18wUnieOg4HI9474lpbf6kX7SITNtaTymS82z2JS/kvNDJEe96Ykpcl6sdgqoydiPihGlduNxmpmXm29uZl8uV2zRxi6sBpJJQj41DsfPt0Kzq5JhjaPYxRWNEpWRZGWIH0KfjkXEc6fve7LI4VBzJOW5x5fU2cZ5mlhhNK68wJTVmXEk/60rKJ86V+VmkGHKGaBU2WaOtRWeC4SnB6iyts+8CfehwncEwThxRa2EIZV4j82qgda1mdxfOvBOgdM7TFZ0mJ0XDM2vzFYuF/5X9yH6XUiJW4Ck7fBIruIWQJBU9Y9lAIvY+dv2ed4ehdmhl45BolZBbrCRsIjc1LrFncr6CWtau9+7Bd/txicn2+6/3rhSx2cU5f8Fnef/6q4Ency4teI5rIiYLtl1zOp2J7dYuKSwDwfzFLfVprxtRnncHLr13xSwI2Aa3klaam9ycPb3rvIaMtivdPUz7CK1Vu89SF5y29u3f/yuds/vcJsTVqgXtA+Dt0b/zU6vvIlQiQJnwUn1LKSLQUFlS0vqicMFyQU6TGSmXXXGiTCAadoFx1mZILDCwllX2h+nGFKZJE1Qv2lAZrHBJFRZu0UIbt313qVIovdVJ1m1xlM7wQXC55JI6+zK9YztDzFlNvFwhR20Gyk749+Nni8+5+wGrjri2NpYblzZlxU7j2CiM+MLeKCfT9rw1eDOwIJUytqq0crIOQ6m9dwQRUpSSPuSMvXI36uWBawCZS7qI20DDLdjY0u4ao6q9pwRJubRNd9dn+1bfWxkMqgVJL3+r2lsVJAYLRLZ1o62KBzu7YwGcu4M8KqiEsgX35TldQ/Cq1pV9qWygUw0ltS7+vKWn2j1rQLE5MzWQ3IJQ2fqvgAPObyxOilijquJ8NfjYpqCgRai9AkW5pW3UqhB1XWnryx2+1e5tP2/BVqOvlg1dJLDGpTBe6rTUeuiCUJlpQmOTam76XZXJtokbbo2QFiTKXXtqn5jtrde2eVQZidrauz2TAXaOPSBXmW51vuaSupjKRiDl+VWr8PQ9y7R+1rndCQ3bNVuFsPIZH+w9lYVlzLRtotege2OPuXZf0JJGqztdr80OaN7AJxubbS6x74dCfzZmwVZaomk/IbuxAUolwDo/NzZX7YMK1Gxgd32ibfxkA2Lqmilr1bEbi5qyvJtve6bW/vvGLKtsxf2etQdgBHbAWE0zbayV9sz2npSKLSuHFTkWSppsrJtt/lZQddv76++rDpIKZE1Y0YUyLkUAtAE87zd0vgcqnNhz5Fwo46q2n+2Oi1Ky9qdmU9+Nk5r9r7dsd9jNj3pv935N7vrXOblrbpujO3ZR/dj+e2MgtXVeICutPli9xeZ7tECiXkc2n2N7ENuD1UnZR107DXV1Iu5Suu/B0e3f7Vl1a+L+tQet7kGmDWy+tw8VUK2g83bbdqCphY3YHESz43VeOOeKVkn1y2wfCMFYXq5om1W/ZomZiNmCNUfmVZnXzBKph9XtyevjW4pdXUuUYhbbOE06s7pEXDM5wdJF0pIYu4GhG9DkQRYQz+vbwjAe6YcRrZqdkhl6zzAMHA89Hz6e6DtvwfL0yrrcmKY3YlyJMTLNK9fbxJoSXTdyPFlQOI4jGbMl8zITcyTGG7frjbwqugCzos6Rxp7+GHDdAB8+EeKFtzgxXb4yaSKmWOQcStpJjnjxOHF4d6CJPElEvFVqzuuZnCI5rZznV5TIaQy48YGjtxS35ToR14kYVyT3kAbm7JBlJTGRmYmrMby+fvvGfJuZbysxKsfjiesZev8Rpx2H/pGcVpAV7+HhWNkDyul0ZOh7BOHh8cj1euI6vfLlq8BLJDGR9EJMAzE7RLyBJeERL4EeRybiNdMhPIcTLiiTXonTxHpdWS9n1Fs3rNExLRe+vf1Ciiu3z7/H/zjQPzyDWLl1iX3RaurwvqPrhcenDzwee4JAXG7893/8R85vZ1Qz4+mE+B7HkTTdmF9NwyoyMxftLyeCHz2hT2VPi1YdLwlpEtxi62JZI3E1UWPNq9nflJHbRFoWWCPZB8I44o8HDj9+snQvr9B5JHhcF1jybPtsLExuZ6l5xgpPsFiaky9aT1rypOdlNnZ3zhwPI6ELBN+xpszh+MDHjz/x0+9+Tybw7dVAlBRXsp/xT0CG+Tzxennh9ax8fXvgNJw5dA88Hc88jEeO44GYPWM3cOg8h9AxPj4yHDqenkbiPLFOF+Iy0YWOTx8+QXJczjf+9PPAkjvSRXg9X0h5xQf4/MNHQjiABEQiOS3kPPH124z3yjD0/O43HapK13nzHTSyzFf+/PO/sC5vjCOE7kecG1jjzQpAqZLTtdn90GfWZWGZF1JMlorlPQf3AZd7JHe8vp3NP3YB7XtUhNfzxJ9/+crb5cK3ywtLjERNZJ9JLqFFRNgXlof5kuUwxJXNRcS0zgTmZbaiHAV8OnQ949Dz/PzE8Xik63rTCBMjE6ziOS8rv1yuvM6z+bO5AEirCU6Jy4TgOfQ9/tCTRZiTsq7m08Q5GTOqCFRlZ2n23lnxBlVYU2YYBtIIXddTswIUy2KJqsyL6TstKSNd0RnT3d7QQBWz28F7hr5jGHpSTCxx2Q6lpO5bv3KwV/bbtEaWbPIuqCeow+VyYEwmi8WOtg9tOr/3X6Ba2E1kZtWis5ZITZC+FKTBlcryu7ik+DddCGVPvN9z655F9dllT0IomEIw/817b4cvO3xE3ztKf+H1VwNPqCMXRyxGyEkgC1pSlJyYA66iJFJJdSjgSGWBaG7sfXv8wr7BNva0d1BkmwB7d2ZrDw3oaD+X197vsEttzuH7a945XbvL0i5dgsB312zX3rV3962Fho3B9CvN//6RpLVPymcTyooUnlMJmtlKSzutTrQ5ibXsqRNK6duiD1PyAM3xzCUQlVJFojjaxVOVoq1k9L8SZFZwsJSvb1Ws7r5KINAC6W14nK8B4J6JouVJWo8jzlILLQUPpJQrrf2V1kRSCthkI1j1FZxsz9iE76CledS2WOUZm2+kApxhDypuY3moWopidUL34q/ViNkiFQxqskCUImYe10ROybS61E75LKK3YCy7bAFZzljFtS3ArPGtQtEe2pV+pCDliZIbXft50wDKVRwRaVXXtnErm8luEm6BzGY8KkBXA9Z6nxQNn8u5jpz11braOaC0tDTQlE1/TEsPNfDA4Z0vY5c2G1/WAdiGWQ1BUqusoWJ9uGVuWK+nbH1RAW/vtkCpMjMM35O2ritbR7OW1CGrKKhsAaLZL+5Owp26Eui6kla5S8/KuVT3q+8vudIl1dMA27ydXuTK0ILQWYnXOk62C9aKUjV4cQ2YQTO6Z8CU3KDKjtwDh003Tgt+Fwv4J5Z2K9xXKwzeI3fAxm5usgEnqpkYV3IqoqxFVL6KMPu6LmWbPxsrawcW7AGT2v+63bsa4X0Vsppuk+I27iH4AibZwG3MKdeeDaHoFO5BQin2d2Plmg6U9akArqTMenaHfygp1cqWG1AgvgjllmfxWNt9/bvYXumoKcO7aor1dIVqhyoHxsrsajRAr/Zh7RsBtNo+TJDUXmkzxhVYbXO8Ki3VMag7Sz3tY/ue7fk1C5q00Otp67n1SEmxrOzQ4Pxmy8r/xKmBdlL0hNT26S21sIBoBXwp550IxqITyQXc2zSzyswkiBBLm3cW22xzsS4bYG/BP6qoL+BbeWatFOvW8NZx24X1++vX/bv+sdrh9to5GXtHtYKn7T7VMdk9G9zvuZvXu9NZKFusON3Sy9+LjldwqxzwFF3bSq9GxZzwrCY+a6fS5lOgm52vfsS+pze2+67b9g7U1uTvAMF/71Xtcq3WWu9RT3urqZRqK3b3dVKyR73Zpn26v6+pROU+SaUEKMKaISosCeYls8QiWv7e0Wyv3S/3KYZmlMlxQVnRNeKSksOCXifW0LOEHuZMzHb/pJ7j6ZHDwyPDcGj5sW8kEMU74fMPHzkcB06nQ7FnDueODGNgAFyYSPqGLAv90HE6PfL4+MAPP/5AZZ2+XV6Z5pnbPHE4jqy3heU8QW+DJ0FwvYfO83A44a9CN8H1IuR5RdNC1IjmaPsSmeQC2QVS8hwenjmdHkjORIzXuHA4HMgpss4zukTm+crPX/7MOl55Oj3y/LtHfvfh9wQceTZha0F5fnok+I7gA10YC3hsm+v57cKrnlnmhCOxTFf+/Mc/cDufma43ui7gghDGVAy6kOKKeNPvGoaOMBx56Ab+y//6f+Wnt1fOl1eu06UAlJ7QJZwTBtcTQyAnT+6EdZ2JcWG6LYR5JUwL7nwhff1KvLzCfLM15kEXR+wduXP8968v3B5+5vz8J/7uP/8v+NMJdzrg3lbkupBeJmLILC5zk8gXlwlBOIwdMWa8CDFGvv7rv/I1/QFdgzHsOw/Zl1MRoT8WACd4pssVCkNLFzVgaJ0hrmX8hDAeCaHHD4F1WYiakEHQcQRxDMOBbhgI/YALgdPjA8fnZ768vjJNNy5vZ+hMmFvTjPrebIvzxqJzHhlHJNlBVHc6keNKXmbS9EpeFzRHUjgVD8UO1W/zjfWXn/n6suL8gPNHRBeCz5bymCwVTFmQzvamnBLXyxtznpnOV17GgX7oWaYJUsZl5dB5jkPP42HgNHQcDyOfPjzxfPyd7WEqrIviwsjf/z/+dz6fv3G5vPDP//xf6Z6eueF4TTNzSLiT5/l3j0xXYZ0dmifO11f+8R//G+A4Hk88fTzyw+8+Mrwpb98WLrcLMS0MB3j+eORwDCAr83JlXVcOw4FxPDAMIyd/ZLpNXG83S98KgdB1cOi45czb+cw0z4Cj74Tzlz8zLytfvn3lfL2wrDO3ZTIg1IMMvvgkFuuRMCmQzhh9TaM3r2hcyIW8JiWC60LH6fjAx9MDp2HkyY/4OaMpMTw9sWbHdU788dsf+NMvr/z89Y00X4t+VIR8AVmQTnk4DTw+nvjxxx/ohiMxKV9eLnx9uTHFxQCq7BCCCcEXk7uuqfh8jnk25uNturIuBoYdjz0P44g6h6hDgydHR46bL5vvIvbyVfWVy1+WZWVZFm63mTUrSaUxpsQJPgjBl4wKEkNwDMERyJiMoF13H0OnwhT1waqY10Mn82sLO1BqLGYgnnOeEOzAM6a17Y+VQaY5E0IkeAOJxNk4hbCJk9teXg/WS/zawJBgTMVkRQM0Jea4EkKwPbSkAQbEdI6rT/JXvP56xpNW/QRtp5dgAXY75yxghQV4ldGw+UKilFx3aY5oDVobq+m7O+8S4uTu250Dt/99YztVh6PdEXMwy0f31Upq+kS97C6a392iXuVXOld3n98DFFtovmFlu+bvG7/5t9tdsliaWn1P1XgyB3rrxybFgSup1VqcsS3mqOyQ1lytqQzfU933AGD7ALSx0LJwtjdagFY/0pgq+8/o1jfagippn6gjU0Gdet0aQNkhdTldzzv6enlGSlDq1EofVy2lqkfTgtCqU6OKlJN0SVoO4qWdZCoGxtdUunKVBl6Yw1vBp/Jzopyc1xDExtCJBVuKnTqZgRcTs06yGZYStEhZxDVArGmQUE5tW26wtKB7vxy2dSjts2aUamBXI1XdBfrlORoTbreWdjGOliD0/bzRQvOTDJVNRZlfxX7vgoA6Q6TNnbZ+KRpApTcquEe5n+ZtPkkZpwqEVT+/Xbm2l90zUcevAkb7+V7bVeZg6SaR+wBwz3Oo9qJdM0PVDttWw+5V+ri8DVUL4qxSqLR2VTtbl1mdZ4VUd3dV5zfQuA6SiYy3cHVLH0MKqHLPFEix2ipB6glBtVuyrUjrj21S5FwBJ3ZzDWMa7J6ZXc9WUKCOxRaEtonXAmv97sZ1ze3sYhmfLZW7rPEy11o1rtoc3VKMoa4T6++aNlttBLrbwyr4WGwFWgDsd9UC65yt/S51s9ENAnOqO5tszj4q7JOjNzuzrcVcxoPyvQJZtXuqqHFNAdRi9Ota2R662HRtKmvFwbcLtLTPNn5sNqJSZXQ3L6TqxxXwrLZ9v+nVf2qF+eyPdeSdOPbDvf1fmuNV14+K3jtMUqjqzrTIslTaeZlr1SbdvcpaUUHzBiJbm0oqrgDtAGTbi1wdH6Cxk+6vXOzHO+CpGdP9m2ua6t3QvLsYbU1AdfKKgZPv365sLMftgtXeti2k7BPYAaFtPlYZVGwuVrZe9dGaz6G7H977RO8fbzMaNtNl/wfaXtfG+10HtDG5sxNlLqBl093mkT2iLVybMnVVbanaFCfeiSsVgCk2RJpOU8IRczZNpqjEUpig7kV7SYa6sNsefL8jbw9Sxi2vK8kFUlaiJJxPSIjMvi+gk5DxTAJoIq1LG5Nk0ZIxWIJnWQ7EmIGlMAbsOUwnLSD0xWYFNDtycmh2uOBxznE4POLDgO9GjofEfL1x82fWabLp5R3h0CNdQIfAnEYgMT88E67CZRHe5ljSEiORBJrRnNA8keee6HtLxUsrOa543LZxay7pLwtnNY2Rb5cL3fNAGHq63iEpEVR5OD3ShYD3ASfBpD9i4nQaySmyTBNxWUhp4nZV3rygeWEYAnDA49Hom2+wrqaLuqaVjGtzYhxPtn8EjwuenCNKqgURy/vMd1FAChIflwnSQtDIIQinzgCmtCRLIYu2oWv05M4zZ3idhO6SGccj49Mz3fMzTBN+iQwJbutqzCQWxCW64Aj+hCB48cQ4G9sjKWhf1rOgOUA2ANr1fQEoAm6eLZlBlbzM5DWSphssizm9QE4K/Yp0nfkoAn4IpeqXQ8YOPwz0w1hEwz055ValTdXWlRdFOo/vfdGxs58Fh/cdebbUzpgieV1Iqwnbw4oQyeu11CMDel98g4ym1e7BiqRoX9n0YcEK/fgx4LKQr4apiyRSnplTYl0XbtPFtGzWlV6Ese84H0Y+Pj2zSCYsI7nrcWJph8Y2ETid6J2ifeBzmjmcRrrDSA4Bf/AM4vj8u89czx3zJRAnhxdH3wW6XujHwPFp5PmHZ/yQETdze7vhBWKO3KYbfd+BQFfE+30I+L7DdQHxHp97OhTpO0tvDB2z88wpclki85qAxKoQ48I8z5xvb0zLxJoWki40FriXsgeVg8Jy0Jrjfq/SbR/ZbdJOHJ0PnA5HHsYTx65DllTStTNCIKlpQ5/PN243W59U0Ekj6Iq4jPdwehx5ej7x8eMHnAwsS2adHFMn5OiJrhyea0LE7If5eoVdLZtfmrJwc1atEpdMH1Mt5a5wZ5oOk5Y4xGx4i95AtRT9sQ1ijYllta+MoEWjWuo+KuWAw7qUztlhmMe0zFzZt5CybRUMxTUdpuJPN19XtiwOMdDJthJHO0wTq4LoKHGtSMlYqj6c3g1aPew10sTGVK/tklrYSiiki20PrkWxpMV/Ul2Kv/r1VwNPObmSvpXYB73mqG8OsAUBxUHw9m87U4caCba4tjyMmYktv5I7N02bA4fq3cO1A936c/mqAUJ9ud31aiDR7iXb93q/Gnzs3JstAAdEN02KfZs3x7R6Y/fu5vbb4r/v/lgDMt21ux5WRnITLle1AqhQ2Rw22+00TwjOY2V1M3HHettXxqksj7s77wK8CiDWQKAtOi1gE5buUNFhV/Ugan+LBWZ1qme2QMGcYFdOS92Wdkm9tk0ODy1oqKLENqnUqh7UoSqOv6UrlNQbpBzyS9GZySa86PyO4ZLK6aiaw1AMQj1hr8r9aE2joT2rMV4KwyVtbbFKe8ZCwTtc17q3rAXsdKHMKhWFVVnV0Pa7xVsQkdAm7magzOmxY+rKyqjgmOx6vZYIr+BULftpG03h0JV7V6KDCfvavAuhMiCkpB5tUZwFatr65c6/1pqyZqmhe20fMIAPX4KobMi8GU9hCyq2+2oGTa6lbuUCyFQboxl0Tbv5WwCr3R6p5T8pO4NmKdfa1oEZ6/IwLUCo19MWzFHaqdX2VfCxjI4Wo4w4A4+ApjlVN4LCDEpSbEamCNiCFuHiWj3Ughw74Y9rSSkT2wy9WrUSr4DUFMPcGD1A0SmTokmigNsYDGtlm9kuXJ3q7ApTLdDGrImrC1Rxx226bQBsbtRVmz/l7a1/GobXxkd3Rnj3R8lkFao+ntmjen9a6p0Pm5h5jNuEzCUlNas2AFl1AyvqyW4FK6QAlzFva0or+ICAM7aED0IIgFrwRrF3lXGqaKOX22mWjaFTMQq7NxuZso1VfV4pJ/C5shGLfWoC/lRHpKwjKRU/Xd1Pa/nePRiE2dsyz2qaaO1LGzqzYyIO7wUnoVz/nhEmpa90Z48senOlwIIUsclqF0rgW2zkxsKW3TcTJa9rN3jf9mjKGqhvtuqmxVPLNAFyt0uh9M4cMnUGsosaMFjbTnteSz1vfoKCJgEJxWYWLq4zJzRX7b06MLX/Mmi+Z1RvYNr2++2B2L2qQ0ixZ83C/Jp/zz3Tqfy92ii0BQxtOe3Xkr679b5VTs3cOsAr6nLxxzwNpNbKxCvPKPu2vXPEfu1VRIOrrWsPWfyKetCw7QH3z3ff+mJXSv+/77MGxBY7iewOyVSNfVvWtHPe1r6XjXmPkqRUqJPMnDLLmpnWQkLVaufL/KyAk2vN27oedo5eGzQsuEhkHNHFkiIbUB8MGCv7lO9G1utKnN+QYIDUmjMpa6kO1mHaMgcO5yOhc7ggdJ1nGIwRZWusQ/DkBNNN0bzQhSvDYaAfBg6njwwjnFAO48h0O/Py7c98++WPpGTVL4+PD4j3Jg4tiYdx4PPTM3/8+mdeLi/84WvmsmSmNZJ1RVmpE2tOkfV23TnUEFcLbtJa6BN4VhKv05nbbWZZIf4+8PGD5/n0xNOh4+g7Phwf6PueEHypajazzDPPzyecZHKcuJy/ME8L53Nknl9Y1g+cHhwhPIMbyenEHE2IPS6Ryy3hved0ynSdVcs7HkcDvFxPyrAslvZHYdOakGpCC9iS40xabyzXN3S90Unk89NA5x65HIV/Tm+crzPTPJGnFfoO6TuceC6vE3P8hbQunJ4/8vD5R/LxgcEJzxKYL68s8casN1wHeehIxxEvgc5l5uVKwOyj+mzMTREyPTkHs2d9b+BFF+jHbBpQ80yeZvI8I8uM3m6F0p6I0wwhmC/7cMQdR8LjYyMIyOAJh47heMD7nmWN/PLLL7y9XVFxhOGACxnxHukCPniywrRkfOjxoafvRm7RWG+XZULnG7pOwIpzCSeJtHwzZu0iHA8/0nWBoet5GI54OjTBtC7EZcbHTHIZnKMbHzgORzyeW36h7zwhOyKJFBKrm1n8lRwtHW5eI+fJ8eXsuenKaZ15S5nu6xuosCyZw+mJYTjwcHpChiOuH/ifPn3Eda5Ugs10Xjio8l/8yvnrV96+fGV+eaFznkM/8NNvP3M4HRkeTqThb7heHnn8cOD68kJaZkQTX19fmNeVz59/4OnDJ7rO+tcVgG/NGYaBfhzpKxiNcLutnFPidc7M04rmhHMTKc6s68xtvbCkiZRXIIKY9ppNaYd4h+s6fPZIEsv4iMn0lJot9wWYsr3Oe8/YjXx8fObDeKTLwvLlG11/wI8B1BNTZl6Vt9cL67RAVlyOKGYnVFecU7pB+OGnJz5/+sxvf/qJ+Q1mycjxyLoMeHcjZUeMcwEeV3I2EWyLF3dBLxZ4nFNmXh1zDKxpxbsO0Z6oRQuZeghWD5nMRicqKG4+pqXAuZKiZ/pQWgvluAoAaUn7MxDIiwFPvfd0Ja51WmLNGsc4QfBNnqFmTuw3NdP1qnEfOFeLJm2fFe/N7yHhC+iU82peRtGuNGb+VqBFi30WtEluiLNMjqSZmCJLjEXH1RxN8bZnbhkyzdu4T4H/N15/NfCUYiLGouuihZgvUtKzbBOudLyqhwKlAk89/ayUdky7YmM4lbKCLcTY3LfmbL9rj/zK9/1C2Pb4QmcDS61gx56H7bBw13l7Z29zgeovd3fcnVruCXqbgs/9ie4WOmzX3i+T9y8t/VE5GHbAXBkINT1CIScTCxOxihLVK6w+utb+2YLg1i+7E3pDVaV9L94uLksBE1N77lr1ySabLxNTKki7C9y1Ob32HIZIWVBnuckiFtRa0Gj6O+Kc0RJblFo7pSDZRRy9VnpKyVIwQtgAlbuSrKqt2lhOpulRK/coBr6XGA3YgJZWTj2X8ZAqPvtuZhS0ppYTNj0oIXRi1XK8t0AHLal/IFhlCC9ip5tq4tGaijOvbNqVuR5E2ULKVYviTjyuzLkSkGcpgJa4nUZLmbvVD6eugRqUbesAbfyrEjzq7r2unKbuAlnn6+Dv0Hm3LRnqSbcWXSx99/6q3WG/yykZOJQsmGyBX4vVjIEpmKh7FYltwsoKtfz3Nn3qipIili/sUwvrlc2O2bPfaSWJ24KOQlUX7AS6sd8AO0lyZh/b78pzaWl36SPnKxLSen5noGyj0JJemGvWlLQpV3QCanCtDbE2Zl0B8NSsq82BzFrStVLMxbCI0ZdLW523Ck8uWeB2x1GtQIlgc9CORcqfC6OPwtzKu+pwBTx2bVLXl7S5VXVrLODfdGT26bwgbf1be2wNOLffe9zOPstu7pUU3GpHtwdqXd5Ov8rLqnwJ3pfxy7mMg/WBd3V9adNjUAGv23NWxlPO2tZz1RODeiBSg2QacJhiBR8NKGkpn3XNsAX+QmGdUUCXMh1C2DTKqk6d1mBfbL/UHLG0SaNm13TjykBKpQ3VdrXxyAUYVNpJo6idwtdUzar6tjuv2WCP4iyKbn1Rll3zIZWiXZbKyvXlc7kcWQmWtlspDDmT6smlYIcBZc1nrSL4pUqvq8zKnTGsrzIh6l7tZAMWywNTq3VWba16enr3aiar7rW6zf8d2LRNyGpj96uu/u29J7S7DO/9Fy3PrbtZsr9+6d1cTn4zFBlPOzjaMy3rei/3qumDe9/pL77KRN104BJ7cKk9VSt/vP3yXvup2ug697Ts69uH6vt1dwizw7bKNbl/lioqiY3vkqzqUUzKFDPzkonJUg73dqtupbJr7/d2TXaDUhakbH5cygnBgK5FE1FX4rX4Rc7R57WevKHiiCmzRNP08D7Q9SO63uj7nr6kPnXDwMPTI/GY6YKl0CzzbFWnNNF3HV0/cz0nhnFgGAYOD6YpJc7x4UNACXj3zMPj5kP042CBbwh8+CGgXsii/PD2hbfrG799/TMvl1febm/8yy//whJX1pxYkpXxzrqW5zZvNhX5UGPAebJTknPgzD/405d/YY4TD8dHfvfj7/jNw498ODwT8onTyXOQAe+g6z3eBx4fTjw+HHl6OCKSuV5v3K4TzgV8p5yvL8xxwYUewmHTt5pm1jWiCsfjkYfTicPhwOlomik5ZS4XR849qp7+dMSpw2WPl4jKCrIAM86tHI6ex8cT3p3w/gPr+gO36caHTwP/+qc/8OXbF76+fiPlhTRPJZ01sKTAv/7j/0n35xPdH/+Fp59+R386MTw+8JAjLq7MtzeiLiQPv0wvxux3An3geDzRhY7Xby/cse1c2dfFo+JRPC4MWBF2z/BB0LiSlpm8LgQRnh8eWdTSD+d1IUomC6aH4x0SPP3Dgf54pB9HliWSJIOHv/+ff29VuES4zBeWNDPHG74bGLqOp08npnkhxUxKa7EH0PcdwxjoOME8EsgEyRw6Y/V1wfP8/JkuDPRuwOWeuGSu55ngRqbgmHzPTVcWjcwxcmNBBNYOtHes6pjnGcXsR/KKjg66AVKH+EDoevLTyFWUy/Urca3yFB1jnPEukP/wL8gyEzTz8XTgcDzQD12RUTAfXNOKDj2Hjx94eHhgCB3HYcR1nptmXt5euMWV5AOHp8+EcERjhJw5Ho/0/UAKI98WSPNisaA3yYnX6WYkBedIwG2eebtercrbGpmnhbguiChdcAiZlFcS2vxdQo/vOqTzON9ZJUIn5FWJy4IuK3ldGyORVMSp7RTPdi0nODcgYum1WTPqHP1xsEqRfTBdIDy9My20W1SYV8LOPUsiHIbA8/PAw+FI7zqW68I6O3J2DP2B4zGTxTHFlXlSVjJxmVBNluKLbHv2DgDJKbPMmRgT8xxxEvD0po9VTlOkbAF1b6Mc/tYzEqsEWkC/eWaNkZiKXlMx776a+mS+unfQd0LvA733RqbINaKytF3nHF0I5nNm01azf0c7tC6HiBV4qvGIcwaU77fe6sfEmAi+HvRsvlrXmbbaukbLiCp7+7IsJZOtxCVO8F1iibHJWTjvWzp6ja9SSu3aDTP4K19/PfBUUDhjTNSnNaBgcwy2CmWbk18GpgTuWgOMMljlQJ8tmiwOcTsF2weD+06mgRL7kK05VGWz32K+vWzo/38vFdkFKlqCq+qGbq7lfYu3O1b/o3RN+3f7rtvf3t15H4ciQFJlF7cYoLYPSClOWFEa3bah9+eTe69pc9A20dnN+ZQSWFissAVnaqgjUNPAdDsN3HnN1fnXEhxlNQPtnGyV5tAWpNWTxfaMW2RIztrE0tv19Z7B8t5hrT/XdJx69RrwNvYOJbWgsh52U9MYEBtzps1Q3cZQKcbHux0AX4I8KVXt3tP1aDGTsUfYUjlanFNGy0ArZav3vb9I66L2vTnqd0xFacwCLZOxrs16831q5v1196lq92Ow6X38BSNU+7IGBRQGVLULWu1LbUv9/b2mWG2QVsaIbsEQ1LHYPU/77fevyl7aBySq7AxpsSyyv8K+LdKCoAbs1Xfld+PTrl/X1+69bV7cf6alulRmUuneLIqrjLAsjVZaL9HYajXM1/21dsyU0s/SUvOkvfd+8tfG0/rDwMnW4/b/CuTsAYoyxyrwWLqtrSl0YzMZE85uZ+93QB3/+wATNjbnNgcKq+3Xt477n/f9X59zN1Y1vG7jJJudhH3qT9mA63xlS6lryd779uynYuvrQm3OoG18NuByPxz1bGHfFvt3GQ3dGISNQo1uz7Eb1w1AqGOhDShgp4uUdVtT90BgbdvGTGtaUS3o3va2jQcku+HQJop9P0b7OVj7add/tVM01y3ImFBVD84JXgs7zm2fFdlS/arJ0tJ/zbfQ7f71dpXFVldpexKxldaWSbOX9ens/3dzTOqa2NanFIemMj/rPfZjvN+yNwBls09aV7zIXSpYXTs1Ba/1fjWnxaaL1nRfubtvG7/9vNo1B7b5t19X20juB3j/+195vTebbV+p99Cm5abfvfdXr9jsewWbzLRIG8DK6lqjsqw1vS43javaFa26n2xj28ZoPy93PXM/07c/mbZgJpWGmb+2lEMAhySHIbY2HrEEDikmkvdoWnEaiaFj7W+E8UA/jog3XZsQ7EByXZZSBSsRu4F+UPpwoPNC9o75mlvgNfUZxFhVcS2HzN6TUgAJBBnouwOu80gQsnj68YQfBo4PrzzczkSUNUfWnDjPK3PMLDGyJqvGlWoQW8ZAgs33TEaC7R1pibzdXljSYtWkcoDsOPUPEAzY6Lyx1zyBrusQAl4Cnz9dOYxXruO1aL8IS5xZNeFiT+gVHzos3ctK1a8xcb1o0c/UnTSeskzlwMp1CCMOb8L7XvEkfNQSTVlVuz5Yleah9w4HBO4AAQAASURBVIicWOLCnK7MeSbqyi3eWEoFvpwyVu8Tbrc35rjiU0S6jkOc8R56jSQSIUXWNKMxM18SDB2EgPPBqsdqJuWi9+CaZTXfMmUSiYgdAPvQM/QD7nQkp5XldmNdZjrvefj0ucz9hFtmpuXGkley8+3ALqmyppV5nYkpg4N+7BiPAyrCkiJBgwHbDvphoOsHjo9P5BfTW0rLggDBO4bOc+oCoxfC0NE7GLzwMHYE7+m85+n4RJCOQAcxECVxWTu6JExx5ZIWzmliyiuSZktNFSBYRTUVR9JSGbzsHQ47JNGUjQHZdaQgxGzBd4rFKxIlzhfAEeeEW1eCKjktjOtMN3R2KIIiZELOuBhxOdEVA+tyIt5W1hyN6VVOgH221FrEE7qe1Q+oBJYlGdCsinhPFsvU+Ho5l/NCIYkwzTPn65UUFzuwXa3anG0jBjzllDbGswjiA84FO7jLZSdTQWNG14iuC+RI07BIqeyZ9XDbNjvNJmy9LDOL73A+0AePejuIiSkizsbv0PfMYWZ1npgMLBIcwXvGEDj2vUmQxMw8L2geqTqnNauDYsNdY10Z6KV3PlbbDJufYge+GZFsJJdUsl7aBig7Q14FB+wQNHSh6CS5goXcx5db8F4sfPFng/dWLVXEUtOr6S/7vi/vUS3SACmW7BDbZzZ/QVtMsgd7tr1t880r4LQ1TYvmrwmKV7+yuk6pVHGvPqeogEubP1eLCL0rZPX+6z1b+d96/fXAU0pt85WCAxp4QOvMbTII4FsjMnbqnXQ7GN8o3Oawaunf2tGymwBU38B6uDmG+5/fv7aAp1z/nS9iocyu7Wzz5v31dPf7u8sU33TLttrOyd9//0uvet+db/3dq6Ku3zUiG8qqUtPvCr2viKHVSmm1/+pFUgOENpWN7eL7RmzObwUA7J9bKxWaVlIFmSvYaCfsaecZtqcttL5NWLcGsdRNUmsubElnqA9c8tUtJcRtqTfYopnniIid8tcAydhQe3FuB87htaLiW5DXnNbyvLEcc7bgoHzC14W4GzwLYpxpa2HocXaUKi/OnElvG5irFytAgCa1gU51AyjtijVI2qitNUAqwi8t6PBeyHnTfNpitq19lKC8sp/amqs9sZu4VsloK4tcgwkzVvuUmrL2i0PvfA1kCyBTAj1UafCvFMauM8evAX+7xnhXxz/b6UIzjps+Tz2p8K7mSN+v37Zcyv/E7RJv72MDqoh6nSPbPRx78eSc8t18eX8qX191s2xXdDVYE74HDG3rtDZtAVbtl5S1MN4KKE+toCZF04ZW/rZubBUUqsw9G7Mqq7Exabb36sY8Kb+7t35lXsoGOlkH24m4ONNPSVXwns0Gy/4S1d5nbdUgAXrXUwPKek/fhPELI8FuVajGVcx9pYJD3vsyRvf9uwdKVKXNaSkBXc4ZTbYn1TXVxrQAYUWLuaU9g4loZ61Ba950A2W7zra3KNXWbYG7IYeadvtkAez2dFjB2Hu23mq+v5EhjDGw20BE8IEiwGvloWvFvcp8UlftFM1ZgcI91upo137A2FcF/KuMU+tjszm1by1ddTuA2hpVh79c1+2ZmiXdrsz/e+YgpV1lJyq+gWUzF0YdlpwadgLR3rWdhlp5F6d3rCunW/CxoXrWNidCJlUfcqvmppRUSC3kwvps94dDmd3JMtD4N7uNXkQLZX0/UWtPFbCS6lfs+re80ewmG+jUxnB7xrbwmu2W8uvNBgm2f1OZQzV9UtmtGb3zvVzLK9vd7N9wdvYHlr8GukNh/4ilpNa/759rq6ioqKZmZ+y+70tQl8d21s++BBDeC75zDXxCjDGSMfHwZc3c5sR1TsRsabdpv0fug4v2cDRdNXPWtEwYbRuQlr1+myH2/uyUWD8b6uAl6uLXnPFqgrOarQKjxkicLT0tOY/OvVUU63rccCT0I8s6295abOIGPsM4HDgeT/ztT3/H08NHDg+PnM83TJQ8MJ0TyzpxnV6Zlzfzp7qO8ST0PYynAUUIvaVaHcaOYfzA49OPTOnGbb3x4dNv8J2H4PjD2xe+nl/5ennj2/mFabpxu15Jy83Guwv4oTO/YoqEsTM7FD3rvLIuM9Mfz0Wj5oLvOk7rlaEf6BCOw4HTeKALA1134jB8IvhH5vnG7Xrm68sXLrcLr+dv5KiE0PHQCw+njwz9iEjg5eWNy+XG5Xzjekms8411WqzvxDEv9u+u6/AyFhmDTNdDygJEcudQ7SF3OMk4B33neXg4Il5wgyd7QXpPDMr5euV6uzHPS6kimMk301uKuvLlX2YOpwd0ufL8+YkgiRuJK4moCV0S2lmqzBoXXl5nC6jWbCynvbq+GpDnvGfxgS4EHh8e+M1vfmIcB2Jc+fr1F6bphveepx9+A4Vlfltnfnn9ynk6sy43co4kjbyc33g9v+GAh8dnHh4feX56IjJznWZezmcenz4yDEfG0xOh7+mHgafnZ5ZpZZ0X0rLQeaFzPR/6nufDgYe+5yk4TuPAaeh5fjjSiaPLQohiy2MFGXr0KMRT5rrMXOeJn8/f+Dq9cY0zZ12YvDKR+CqADyTn8eOAS+CyEtcF7wwkzNHYJgJMeSHHzBJXun7Au4ATx+16JseMqCO4QFb40+sL+voVRHFdqcqN0gEuZVy06n0eIYhjTZmomVXVRNaLL5CWiHeOx4dHDhKQJXI9X5rh6bqeNSXWuPL19YV1taqV+KrjocACxR/wJT6JmVI9MpGiiVC7wpYE6880p7I/Oqs8uy4QJxxWSUijOY7BO7q+K9kNVqgpLRO3tPIFhZRMXHw4oCRcWvDTxOE00I8DP336RIenV8frSwRMMqIfRg5jz0N/ZD4vpElIo+d0eiAjvJ6vfHt55TpPLHFGNVlqXiesxdeksHVsl7JMh73/TXOpMol1+73IHUO8pu2L84iYeP9hHK0wgXPmR+uOaqI1/hEc2sy/d47D0JetwILYyniCnWRM2bN8qbKtpUJh215002e1GKUSezbwS5vfQMnkMfZZe7a6VxYh8Rr3VYHzukftr+e9a4fIZgflLvaq4Nc9IeCve/31Ve1gd1pUOg7oZOuMSs83g7UhafV7dVQ3ErS2wGi3HbfAqcqt7GM0012olWw2l75MPaBWZ6MFPeVyzacTtiCiBkXtSjuK3paSsF1DMKYBZbJn7u8B9+lz967VLgC7azk1BCn33d7f5tPeAWYDuypjTNSCoLQqfdF/cbBpRu2cvFzphfvHVVqgWVHg++DhvrX1LLa+Z9NPEcsJd/LuursvrWyx0p7ilNbFpaUXLY1jv8gyoTq9YgFKjJlajlqwYKqmGKZYnTdrQ1u4xVBblmgx+ilRWTVWcazOr6ofYumJQgUDtImaV5qhpfTt5mQJosg1mFIoqYY2vz2iuZxSAerwDRixztCcLOh10hZ/BV9y+Xv1abd5I8iuWmFutEIp3W+gXzMawlZ1UGki6zX9YBPhLgamMVm2e1qgZeJ9nj2YpITCQZXN97X5WYDDyhSQsjNoYyM4CxqFIlJa/p7qCYZJEEgx8k62udKE+jDwsJ5S2Li6NmY1eDfT5crXBibtwVbNmT2O+l0Z+BJUW3rfXpdtG/sN3DLDphRwqga2uzXnnFUcckXYGC0s5zIGaKlO6bC00hLM+lKK1QlFHyiXalSbDai4ZcrVvmrJOS9sO1fnCQU0pMwX25SRnRCzbkw3lZJKqPV0qszmnQCjTYQafO7aU+ZBbtTGGs4XZqEI9bRiAyDrRTZ2xrZea09uY5lSbnbPdOjsHTkVPalaOKOkUOVsApICEGxtWiXDsv5KHryVla0obBneth+W1Dcs978KM1aDV8eivnIsYo6ZUhGysg/rnN3A5mZo2J69YkepnBQFL21eV6ALvdfoaqlTdQqWPtYy9+u1qnVzVUuozgfd7cB1XlagZge21PhXit0yG1fWRzX+uvWLSBHkDN6sjGTTNyt6YxWMyimDBBNb9q6BTaoQpdiussfYc2wTz0oNV5BYwCuCb4NS0+hsbF2hqSvq1CoMlvEpyQeNyVtDgb/kjtU9UNo60ra/5wTSGAv3F5Hdwmma2DscSMqaaDa8OhEq98UWdkEpZcxzscHiDYi11Mo9Aiptjolse7ldTr972Koj9h2SWP/u9gC/3L1v33fN+2jreA867dfCvZ9a9wSl/tuAUdy2JZqWBUxLZF4z05xYUx3TO7N57w61xfD+33bzpktJDYaq7do5+2KMDPUgvccHR3DeGNMpk3NEsOAHVbxTXABJ9rOQCEScZoiJJJmsM+l1sYMjSpqI8zjx5AxxPKJp4Xp5sZLuorx8fSnyF2LpN07B5dLPyrquKAtxgZg8t1sCL0TJhN4jnYMOIpGoilt7vDNdn8fxGXxHOBwYjkcu05W365nr7Wy+R+/59MNnUkx8+/MvxGUlptxStonCPM/8fPkDl/WVS3zl6fiBh8MTnw6fOYQjhzDxzc/0vqP3gbH3CCN95zgcFhAl6g0fLLXleOx4eugZx5FhGBkHx/Uy8Iv/VtKlF4ZBCZ35Xf3QtzgnM5GTktJKUEfWyLpkE9J2jm4cyGmlWoSYrapn6E789NPfMZ6eGR8/8qef/8zPX37hfLua1lTMxNtMjhmikuKV+ZY4f4XDqPTHnt99euKmI1NOnPPC2nekzirx+aLbcnt9bbY6p0Q98XehxztP7zwPxweeHp95evpAypl5TdzWTPYdvh+g6Bg554lfvxJiJDhHeHyg5FcQp5tlLIgynh7IAt/Or6YJ5j3Hx6P1hTpucyLkyLIq65pIMdEHjz+OrK9v6DSzTDOCYww9Pz1+5DQMHPqBsR8ICCFj6V9JS2XT0NKDBzfi+4AchefTA6skJpf559df+DJdmDtFjgcIgbevZyRmXIKjH6mpcVNaEEoGhiqaFvJ0YbldEQn44UhaE6KOrhvpvNnW65TtkKL5UKaQt6rgSmq3poioJTeuKbcMlc53dnAIZGfSIDHPfH27QcrEZcVrMa05FwJItrRZKzMKqYBXDrJbEQ+upNdT0uf/f8T92ZIkSZKmi30sIrqY+RJLZlZ2V8+cmTnAucD7PwougEOEoVnQ091VlRkZ4e5mpouIMC5YFjWPrO5qAohgSZHubqamKisvvzD/nLMdokixYcR5nC9yJit522lpY3GDvCHZqlSKKkHh6eHE+XTi6enJCgFsO69vr7wtkT3tvOYLKCzTSn5SHk8PTMPYgCovnqfTA8Mnz9N44mvw7HEhpwXvDACUvQhXEXKCt7cry5b59dubVerbV7a8ILphpOSbgUO+yPsihmulYVfs6arymq1eQQUpuqkdHpidZDZZYvCeYQjM82wBFYUz2GiHtOTXSbNzq+JyR7XQIke02UpC9RPM/nHeIgmbzex7JWCv5pRVO6UG92izyWsmmumaSoUAivcBEXtOLLnNggGPZm84dKDpUgu0ML0cjRvJeOGK73mkvqg6+/j7/88jnuzG/V/xYUsEhxl7x4pM1ZBLMReFdnDi6Dbme4PkqM+bEXz8TKQAUveRTmW+mqFM/dn9iOaImBFCE869f9W4PAxu/V1qy3vUVnXSjj3Qdz+7nSLfX/TuJX/lgtZuuf+kxvBY2V8tvERW6tWXRaB337BOVz+33vQQk9CM0oqR3DelGLtiRrMUNEwVAwvKRjiWrO+dkDZBzWDU3r50cHRIJS6mtkGKC6pK9vVEQd45qgfjs66zw0+txndFQMSM6uYctDWbCzDQwae+oeTdPTt/xGGptOf0/9eHQA34qe1p/5W/tXAGFUiWllqlrngXAqXiUHUe+3qkjYNUh0PVnGl6+2sETOW3qpNanR6pkSy1v+X+tTz6fUTCIfQTqOR6OXe3S51r43e3lto6ODgW9X/v5dcR5TqOspSThuo4l89cJbNVMG6yDmiIVNReezuqI0cfw/p3TaGq49bnzVno8rvNXp3IVo2ydaHKpeK4ldVnkR71Pe5uJsXBq6SH2dgQzYep6Xc13aTtxQoiCC3XpsnfOi/vtvZ7QfZu/PvQa1vruS34Prf63fXWiTb9dyK2KxKhAxR3z2rk7F151L1ar6swOEjLUa+nOsc21yg/AwbuZdm95P5u8VG91Jq4WP8pFBC3AIIHxXuMmNICKljkwTGV8ficwwC9m9N6vz5uh9Y1+SOtUca/bWCRE28y7SB/23bSboPdDQO0aMXjSZY5XzYvVonRvlcryN21TPtYcZiLNsRV8FI4MY7jXS6phSq8a0H+DTR0Rrpk75qAMqCq8jYVHUNOJYakwozFgSxzoAUAtDZoiVqR1n7KzL8zFqx9rgDxYpktKhV00vfDef+Sw0pq67j8v8gCA/XqeBQg9I48lbvP+z36Z8d9VlMRbM0W2cxBRJR1np21v2ZYtPXSWlFly/FpXYbdtUOkPb3bGDUVsIzsYaCqXuv3bL8dlkyPXmzfbxNV+lTttjslI314y0/FgMM9JbY9s8V8DzrddUj7dMlf+ydUcK4SPIM04lh1ahyOB/VjOhKzpb2ddpvKVtJuJwNS9oGBh2Jl0LN910vnu0P24uh2fafZlcMIS9tzknAu8fryCyKJfb/x8u2lRFoKYRwJY2Cchx69jRK3iDV0gy2iAluODKcRFzw6aCGmz8jujHc0BEaZOA2QnSeLAx+IIkRnqYUyeh4+fSKnzBojcbEKbcREXnbytpNyZJWVlBN6yay6seQd70aWNXLRjSHemPzIaZz58dMz4+CMBytMxGFjHEbj3AyW9jMOgXkMnE8zZAjOsS4L67pbQZpBCUHxQQuIqGZLyIYdUkZisqp6+w7BYdXH/IRm45NTIKXi7MvEw8Mn/HhmycKWhDUKDG/s2aKYbpcrad3Jy47eVlQSy3ph3x+Z1PH8+IGH4cxGZlhXLsDmHDlMBiRQDwXqRi95oqlGJXucGgAiaoccMUfjBVp3q96nZodaZKfxj4ofCOPMcAo2DiibD5ATohk/jIU/ZgOxsRymCZy3SOKsbFtGnIGYJOMOcjnjixEz+8BDGHgaJ56nM6dxYhpGRjdSC27uxclOmhGM3yhi0T0eYfQjow8kp4wu8TouxAy7C+zOs6tgJc0USTAMlteZc7T0MhR80en7hsYNzYJzCcLQcWUSldsyE8klGlhyGXPNaImc9Q6SEyQrkUwkmS4rQKV4499MRXGnGMnbblHAMeGz4lRJ225AQy7rUWsIRxNtSKn/14oFkckaadymlQy72WT98AYtRUxiRLTMqyrBCaPzfHg483h+4PnpmTUmru7Gcr3ZOkqZnciyboAwTithmnEok0g5LDUweRoGwhny+si2Ctva5ZvVubDKgXHPLPHCbUm8Xi4s68KW9kKMviEaEUnGRRocwZWDYxX23QIPEv2AotkDR/ndtMtBlxzeFlf5eS28OGXjPau6sY29CJDbgVO12VtE9eE5gh1mabFZYq4F2Fzzo+6+ISUiL8ORH7Hq/nr4rVoDBe5tttqvlHPDTuoNBDpXVLVLKSBWDcw4AEpHYOkIOr1zzf7N198MPLkDmOCcRff54AqBs5X127ZIjEpMmRi1INPGR3QcyDvDF2N6fx8lJNIPj47v2e9yuLIPcq4OcGmnHG/YfYC7e75/3aVUHYygbqYVvP8w0O/W6p2xeXRjfu95798/joO+e7/xBtPRVC1tSdlOHqyMo2MQaSflQKmCVcCosmCkGDHQeSugz0t+Nyk2NCWNrpp07/ZxTCX1wd3PDRRnqEQVmUHbgQ1LqO+GpRThqvh+mqu2kY1LuMxIW0f2nEoubZvi4DaIP7Sjt63iOkc+J+MfANX7FKtamew9MXsV4seqRw7BF/LaVi2vAIO5pE05jIQXcZTKtvb8wyLKsc+JyiFdATPSM5V/jdaWdlKoHZyoAqTx+yjkViQA0FrG3E49RSnFAOoQNku9jXMbQy0E3sVYz1KiGw8gVFNyhzGs6XrNiTxwxNmarJEIqfAKlLVxABVqeCrUee/j0F/StnIlE/RlndRUrrp+Lb3QxqHeQcsENGoPDoK47oQm05Qclfu0veNJgY2/RSpLd4bKhxVAODbfeNPs+uAdqSjAJl3U2VpV+ztnLJtUxJR4VYr0/SbFgadENkkBVlxNQ3NSIga6wKwRbMc1L2Ih/TVCp4GZh3n8XsF3Re98UbbZohj63JWo2MPpzdHBzKnd4iDbtYAz2vl8Du1uStKZzHRlbJ3aWOSDbqib0XtPcGY8tsyFMt9yN69Wve4YJQepROUce135NgoYZR3GIWRXqpOWk0qS9oM519dES0strxqRUrGAaoQmAecshS14Tygmj8nYUp22rJlid5Y+C7giA5qMM4J1VbBVVZqYLAUvlxXWQIXUo7O8WOSeVqhF6tiVP3JCXddB1agGi8SsJOB1LflysOIEnLeKLKKZmqLkZLD9VUNaVHDJAIZif7eKWDkr2RlJci9trOZQUXdY/63ueJtPITgrqW7yv9gFTe0UsKj8sy3h2hy0ZUaPqqpGK8fbIEXmKaqR44fVnqnrnvYdxRVdbc3vvQBK1E2JCMa+q8XIsHlJJKnVkvpdu8yq95YGGtbDktbqg9FW26JFUCoCWQoI1A+Rjvr8aMw2I7tG3R6adAS1rQU9gs6RzZtBcVnx4grXRk9D3qJyWxOXNbNHy1QyFpCDwDHjAyT3YeimQVlqvSE95dQudEXPWBW8Pv+1w1lTi/z3wYhc1Xsi0VJ0nCPUCOScIe1lrUopxmJ7ZTg73OBwo0XB5py5vL2xbxualGGYWG6edXX8P/6ff2GeH5jnE1tUwjAyjicenp44n894/wxi9r2XgO4rMSVyTA2UUyeQbO+83t4sctoLYQpWJTKZozv4iYcwIvOEk5msAxomkig6OM4ffiQEz+nDJwbnICVub2+8fvnK8nbh8u0rzhs/y+v2SvJGxu7jRL444qty+fOV5+mJHz/8iOh/4uE8cT55hJHRn5nDAzltoAbcuewJDJyGE/4hMI8TDkeMkZgS27ZgIRg73lvEpDjFhR1xjmEK3G6wbXC7mNyeJ8/p9EDOvkSZKJsEcGajj9Mz4wxLmlEemeYfeVkupCGThsxvX35lvd1Y367Etwv7beF2eeWarpz8zMcfnvnpj3+Hmyd+u63882+vfL0ufL1Flj0S04YvwBCiRnC97egWYU8wJkThuie21zcuX35jPJ9Zt43LL18Z5gnOyvq48suf/yfrFokoYQ48zI98+Pyh7OLEdnok7hsp7sR1M7tRHB9/+IR4T9TMbcmoeobwyNv1jZR2HDuSd3Rf2b994dl5Pswz/7c//kf+7uNnPp+fOUlJH5WBgKWYrevONQb2nNlx4IKluQfzd3SH25ZwGNn0st74+ekDf3j8kS9x5b/+8z/xL7/+isQaKS4M80hMK/u6s3x7RTUizsatRi65YcYPnnkKCI4cM+vlldtm5MuKa3aBkVyboegfHgkhGBBWiJ1TjOhWZJ0TGAp/ToK0XUn7jqZYHSE07cSqWPYVKmXIeW62lxUpMcmX4l7sJk/SUjG6cClZgYKqggRxyQijvUdyIO2RpAk04kgEB4/TwOM88/zwwM+f/8A0zgzDxOW24LPwFq54WYhitsWmmHy43EhuZMsCTKToGCSxXm54TJZ9/vDEchWuUjI+PEgQXBjZs/Lt7co//+Ub1yWy7sWC0Ay6Ql6BiBvgdA7Mc+Dp/ICXgOB5e1tZl8iy7GxrLDqhKsxmyNMM9xKhWosbVbvHOStcYMDpZjxWZd4raFdtfS0nmw4YvJjNkrUVN1FAncOJI/jQ/IUUSypjNuzkmJFibXCMw4BSAyNcs63q71WVZNUWLVqpbqpNmHJuZ2o+JVqUu3PUIkk9iEDvnlPbYllNrj27vl/td6kEVf/G698BPLl2guK9EIJjnEJBy6QZBLV8fSG+v1Peuc5zEV0Uo6O5GdUpkvpMDoYq9apyE6l3KcBBvgOHmq8j1fAvnygt4qfaDe9Br4OF34wZPT6rN7VfL309f5/reB+ddfesd3/XHpamcryTHq7LUg3O7kQVrjcimDFYHQc10MmLtkUqNV0N2uJSdcXB7qeJ98ZXN8K1EPIdK5EV87Gd/teUJUSao0Udv3p/7QJBXOXBgJqO0n4/OrItGsnSq2ra2fswxCqOm6NXRlSyCZr79VIrONmm13KqUonfujNtjpeS21w3A7M4ZUIZ75oOUpwSqsGWKq+T79EqJXLFOGsOmHdN98jVQbBeSXHExFlCGlJO7qlcSXYMX4EOS9uofCIVqKlroTs7WnKRrUR4FZcGotX1l1IqjsthZR7u0SOLaFiVljQO43+qwFgR7kXoIfVkuDgFqZ6EOIKvDsd7h0Ra2o1vQljbvJojLCUMvkdeyvG/FtlGA6+qM1e5XLxzzUmqukprXrg44/rJJvdSKmXt0eIYl0EubbeIG9flX1GAlYesgWdFAGhVjCJ3fbcUKHAuk2ImVwfLC6g990ginrRG/uTDXs5tdzup6UuuREyaMK77+ztCxYNrrFr2oLWgCKMuM7thVuVj3et1TOo6KtxuB0Cn8wf18fJ+gHLKGGOXlBVw1oO8OYKR7SRKKErc2nKch2Man0NL+LUrkXUG8AfL+Sbj2ZORW1pGQ1XQdZJMNzipEYWdW8lpMUTsAgqlWUtzRLs8q8DP/dhXoE2+A6Ok6GkzGoRIRjOEwgninKB5P2xQe6alw+fCs1PmqO6HAsz3iMc+5pZ5VzTiAcGztuW6YepEFOPXtXVn4kDa2rCRsnGRIksr4OHKmhUsjdAVRZZTKqmSfU3b/WlAWk2Nt8ODHvkopa33UYrSDLjaJmte0YL2qHLIUOe7GGcVdKoouVbwqYAtFYgp86wl7Kjq7CqDgEbVqGUOm5/TNNxBftPByr7L6ifHnhUL6MAfWA0Y0+OH+X9nzxzjwHhnZzS9K8fn2J16RUDa+sklosbsKu1q73Bdtf9MhB7kfx0Hqb0tY1EAXMq+MZLW1AhS62FbxkCnNWaWvZCIK+Vz40XK9HGpeu7967AV+ntHw4xc0qmr81HbVtZ7No63lNSq5k6ukYKrzy1tYwpjI0WvMqrJwyEwn048PJ0Jozfib4GULB1lD6ZfnGRSsgpu+x4JYWePG+M4M06eaU6k9JW3txeu118QN+LDwDCcGIYJ5wbEj/bPeSPo9nYA/TScmOaRMA7gypyuyuA8YfLMzqO7Y9lW0iWzb5nolDzA19+ujJNFWj09PBOC5+H5M87PhPmVHAIxbSiJs/fIbtWx/udf/t+41eG2wHwa0CmQxzdu+StsA3v2ODI57myLEccLyr5sSHrh9raz3rLRLyCQS/pRzJA9MUfjHnPZ1psrRMNlvl9fr6xLYluUh/NMzp60C/smxKRs+0qMb2RN+DEwlugwkZmH82ecP+HevpJGJc0ZN428fnsh6a/EnJAghEG5SeK39UL49c/wOPPkPvLjDz8h4ZGHtwX+9JXX/cItxlLx1VK7Y7KoHbaNvKzsLpD9G6LF4RwGpscnO8C8LeRlJV0X/rTupGySVr2Ql0AaPcS9cZumfWvSYB7P5lM4x8cPfyBq5vV6ZZ4E70ZO0xPrshLXlXVb0O2CxA0fd/7hH37mP3z+gf/06QfOMjGL5yHMOBkQF7itiSUq1w0u6ojOEb2DYWCPibd1YUQJqkyPZ0YxzttTfkJCMOJ+Jq6nDf8Y+Mdf/kyMG5smXjWRdDfCdu9wYSLMnhRXROygbxgmnHi888Q1opLxUxmbZDZkdXhz2sqhncO7DHkjpo1tXYzMOhmfoQn1YEBoAt1XNK5IjshBL3lJ4NX2U0G6BXBTPajZSXk1uSeCRfNjxE5Fxsg49EMdMsNo3I9OM1pS9uK+WMTY4Dg/PHCeBh6mwPM8MoWBKYwMMpB35bbeUByDm3g4feCyZdhtPBXPnoV92djSN14uN9bHzON4ZnIj8bYRcAQcE8KeLA3WeY8fPMNpYMmZdV/5+vrGbdvYVVHvjAe3HnGVg9VxFB7OM48PMx+engluQPB4d+PqV4SFHBdiLFXYRcpY5oPDbgdYdsDlCjm/2V6+vL+sK8uysC5rAZ2K3XL4nhNPEGUQZZ5GpuAZg8fVUHvMwDMJ5BtlUNJEUuPMtHYa6GQVT8XSq53JJ/GBWgVCxDUuY+eSHapnGyNTxybrfXDND602RUyJiryYf2R6s/rEih261jVUaVlyzndpdzVV3jlt9/5bXn8z8CTFEanRCT74Ug7QStKn5uDkFlFhnT8YbQdnELrR4IqloiWkpxsacgCdKN9tv1V77jBYxdgqN+5mGd1YRO+MhGZ0lecdHZ7qYfZn1PDrd3ZGbWNBgt5zFbw3+mrftf1eDe3+XjO/ax/fTarW6+X+76xmPEntQzV6VVFXs3hLCkMxrFxtc7Nw88GicwfDqluVNbSQtnh7T4/z2zI8jgbjneHKvTHZXIr2UfNcba5a5qzx+DhXirvVmSmcEXWfN8e2n4KKK8iseLTAjpU3CmiAl5Qxg+oMFCUjdk1N1ajtaXPWnNgCsijUsvIWzlp8sOz6cbiaU56TEYg2C76On2RIzhxloUSmUDa+hTArNCBL6rhSFFQ24dArFZV5k77++3hLp+s49OW4+Cqg0SNf+rzlfBRCNscq1dEvwowOPtUKWFLa0xd7B56o89fofPvY2DW1L/eC0q4pRPTOQrIq6N3vcZQB9rf37kBIr2WsKNFkeuhnj7JqET/lGSoHwIRioslhrR94x2zbaVuztg7v1/5RslcQqgJJOeeSMmMlZ4UahXFMqzwAvU1o0WSjq+Mkna+vAsu2/lvcRlvvdWXUtvQFe5TJ2veB9qip9rlCj6Rybc9B72Ntd51n547kx7XOeW/rMSKxjnH/V+e02gO/rzSbHNHaGoMLDKADSqSvd2qh9PJO63SB0BZq7Y+pugKatM/78DmR7rxLNYCqbnrXxqP0rY/WCmAVwvSSNucybW6Pm6ACulkxYL40W4u8r5FxuYDjx1TF2mMRadEv9e6/Q/vTFkuvXFtuhNqBSjWJxLehaeTeTvq961yUJ7b/K32Oy1g25VhS7N63qoIAdS/292s0Zo/4biBPUfO1qHIlLq/BiO/3bD14Q7uqbeCD1lmgmh1NttVIpK5X+0Kp1/T79PV3FylY36Ovn6aj2lIwqXy3Gdp6Knu4zre2bV70mh4vrxurr8y2MKkPK9+thWXMhjzqovfjcGjmof31+iMcpndjY9f2PUixezLCljNbUrYKOiHNwesP6r+2v+86S98EBxvJQCXM0alpEHUdixTbpaTNp7K/khbi4oEQvFXJUgMTx3EshytwGcfiwNrAhHFgPM2cHs+M48AwWuWuGHf27cbmhRgtfUekcrYpEBAJzPOJYVKGMbEsa+McEhkIYWKczkzT2YAnN+GHGecHhnFmGkZEHJP3zGFkCANb3Njjbrwig1okQvCE3eE2B4uSVitnn7NyfV2JUZl1JmZHcCPDPBPOF0LMDNtO3lcymdPDA/G2E68bl/UXfHSMDDycn/FThGkjyoVNRzR6QolSSUnYV5Nf27KQduE6bew7zNNMGIww0sDrAgxkGwcXsGh7NRvNjL/E7bqwrpkcPVbYRRqfoqojxszb5cYed04PJzKCH0GzYwgzzgXWFNmHxD4mTprYtoib3nDphB89Mnp23bnEDXn9yvztGQ0DHz//HY+nRxwTb18jeYlkXVlyif7UhEsRUiSniK6JjDMwvPDtIo64rOC82cj7TlpW8rLjhgnnBzQ4NHry7iFHA86cI+2REIIRz4dT0d2OMZyRnPAuMYaBwU+cpgcGF1gVcozkbUPiyijw6emRnz9/5tP5Eb+Dj4LPVcdbZGpMwo5jwbMBuwgpK2uMvOwbk8DsHGEazQsQmAvPY1I4RceH8Yl9Vv7EF2K29ZnWXJLfIgw21v40QDS5Pw4DwQXzCWoBEMm4YBUnOxRUbRHT6k4UydFAhJTY99UObDJ2Cu28HXRni57JcbNoqcojK+bP+FBkBdqidYviM8A6Z3LezIZudjS2PgtvkPPeQAw1yCMMJdJ/z2T2wuNkqajz4Pj4eOL5fObpfOJpGgl4PJ59SewpErcdNwx4L5xOD8zbTvYrcVtMpmc18vS0sm6RwEAaE5MbYM8M4hjFI86jJZvB+2AybJpYlsXmdtuJalE6TX+XPlj6vWMcHNM4ME8Tp8n2E3imMRN3Zd8yN2cpeWBRPirFAGsHCve+Q9VlzrkW3bPvO9u6sa179wWLLHfFPgliEdCjF8bBKvsF75E9Fm/HDCotuscVPaNiui+lXNL4+j9XD8y0PMeFgxJ05SDC2pM1IcUW7jo1I7nbvVVLNt5GLQEXDrz2qHPT9/1w7GhPN5Un9+DT79nQf+317+J4coXgeBwDYfCEEJpTve+RuGcrPan0iCctBNymW5tDBLRTwTaOiqWIlAkPoadHxRiNB6gZjd14OQ7I0Ua4swvqwGtx8IoBZKkAprwV2iBWR7fCGfnd/e4e+Dtv/e61h9fRXfjXbqff/UJzSCrAJIf2qYKkTICSWnFIESpVY2p6gCuOaCVmPj7/MESHCCXMEZVSSKEJ3Duz9v4+5e3KjeMKebaKdOLi5oLaxS1NqnyvpqPUigWuWLwpZTSmO5Ah5dgiM3qFRRqhOlLbXfp7QPSkLAKHK6ep9nc9XTQnxjZ7biGR9UT9fgazZvY9lZQgO/1oXKO5GKRaKmlF43Iw4XPf1joqrVJc7f/RWfCWInVXaaEIRanvZ0PEMzUKiiY0fPB3gsUdHcIyvxax1iMSjIBdWzuhAjEFLCrRFtLGVbvT1ZycQzRB3W96v59rFNOWd/tytevruEh/TlcYvoxdidjyFDCjcmKVqK4GgpQIAycF0S+RGIdQUi08Pp1ipT63r5lMJ66GXlyhOQfBt3Y35zfa80xJ3DuLVaEJPZw2FbRZEHIuhMt6rLCnlsqRIWpiS3uLeBIniLfQ7AYc1kWW7Yzf0kO9RcRYHbNWJcPWSHXGXEt3c76WG7e5VDJZIBYAu+2j8i838O9eflRdUisnWLqKvwefCu+ZHvbtMdzYfmTeK8nj3yllnKcYdfdrSUVwkownyxUVXoDbSppd6D5sTZSfdAKp9pxKHum9L5xLFViwkfJOjKy+PKdyzlTZ8j1Y1vvS+9M/TynXrWTzlQooEqQ9l2jV0LyIpdq2we2AjO2RorB90fsSynrOaDLSSleieawYQKlC2bjl6g7HUoTkXcScFiOh7H9fJk+0FwDwNey9irsSmViTyLwNsgEfue69Eml6TO0KxmtSK2NKBtVjNGoPa6+yCQ7VQds422+14kzSUoJerf1mIB7AVBM9GO9EeU5pVZV9AqTiWFT5djfP5b0aSVdldhPOFWCp36EfyEm5h+EcdZN9b3WoHm0wqZP3/XUU8nHtUXbaTma7nO/JdtD+KlF+/M5ablV7KO2u+kS7/VB9rSDdbqxtP4Jepl4TkgvvqHbLrYhWOyRFSA5ua2bdMtteh8eUeWdPqa9jow/PlsPHR6PHlT47sQ2eC8BUif6LcDc55hAfii3iEfUMw8w8TTgULQUifAi9FT5YlArKMA4wjugwgB8ZxplPHz7gvKVaTMPMui5s28Z6u7DtBRTKkcfHM0/Pz3z+8TN7jCzrStYbKe/EuBF34w5RPOfzM95PODdbJFKYOJ2fcZqYphMhDCzbyg3401/+zLIs7DHy/Icf8ecZd56IJFgi480h12wRPepZv25cvy1s+S/88z/+mfE08fnzZ9blxr4nVg0wnBmHmT/8w3+EfSMtN774/4pPkUHhx9PMwzDwGDJhvOFdZpCZSQfyHlB13C6R6+XC16+/4JylI378+ImHpydOJxuLaToxDjMiOyl5onoGP5BzJO07t1dl229crwvfXjdEAqf5oYAZENPAw9MZ5xzXZeS23rjcLqxfV4bbgB88fgiNH/c0zqzbC1/fvnHZb6xbIsxnPj4/mdzUnS+//onrcuXlty98XTae/ulP/PLrhf/8H/4PPj585vR3j/xj9vx5T1zfIsvyyrbdmMNoZe2HgfVyKycLztZkWXv7r7+a0TKMtojDAI9PSNgMkBKQeYRxQOOEmyZ8GFguV87PH/j0+MTT6SNvt4WvX98gf8WPE/P8xA8//IiosFwXHsYTzBvECyl6vAx8Pp05DwMjwLoju0AUvi1fccMJN5yR0wN+cAQgLTfe1hu/vr3xz19+ZUuWWvbx6czjNIALvK0ro8KnccJlV6q2KSd35vMp8OHxK+mi3NiIGpEBZBgZT2ezC7yBM84ZV9W+RnKyqHI7FIYhTISs4DI+Y/QSAl7GJsvXl68mfzQXbhqHBIdGxbiYpPgvatXmSgocqjhv2USn09TAZi2ROJoz18tbswMseFjwIdAy/RSrvFMj9YmoqBXpcAqSCQMQI87tnB8DPzw/8eHxkY8Pj8zDzBRs/CSbLSAhW+qyJmSwdoUHIc8PvNyu7F+/cFuupBzhQJr+29sbL+mNoMLTdOJhmtFxwuXMODjm04nz+YR4K7TgYyKME/P5gUUWiJl9zyWlUCApow8Mg3CeAoMPSBaWZSXHlRStKJ9kYRwmhiGR88oeSyGmKsCd64NlDgS5ZC4ADH4k1GqG22Kk+CkXE8fsGV+4vlQzPnhG75iDZwyB4I13KowTkgstQSz2K9qCBZatRjkpqdm2luLnvTPwqoynd87SKYue7dVlu1fkvZZiWVaNtFJEHE3i2I1qO2zWgrVIt9XXdUXRQkniGy5Tq9bXn/a16hv+ba+/GXhSVUIwMMgUOqzr3sLD1jWx7zXVpNuz1RwwY6iDTtVFqYeRRyTGSc1ddM3oqhFVqQAY72OItFhPR2aWbshIe2Z9oKXqy91JmAFTZgjVfMgOqtjrmJanxQGB+rNfKXfW1fs4jfb2O/uuJ7YVX5CSQt9fv2MQHu+X6eV/s94FxTeyM1XFa8EznRnElYy8lnhsaZHVkFTrpCufVU4YoZxU1rbLse/Hn7UTxeFsi7Q6tIf5OPZJD5cWZyCV+9Tv9ZQJu6YCCvVetlmOQ+juWmTP0bt/x/KRQEfDwdLwUj2pNWBHSjWsEpxvJ5kuG1GhN+ev8u5UJzonRY2HEDCA0GFEidUYr3Ov5JamZgSBNSCyg3YiJcpBsKiFunarId+iXtqEtnXSzf7j/4vDTV2ZepiPOh7lGKbYM/chnaUPKRXuGinRQBQCenu+K6i7SK1IqW3ejnNYJWKXIwfgCmmhqd+vid4rceCK0dWcv+rMHICk3E6T7MSq8w/5tn7yEVDLUKsh+srjlbXMn8kmczhqc8scFkfIxrqvSRFalIuoK1FyNY3O0ubcIUVQK8hTFnbGDJRcSr/atqvyzpGzEXiFUpkFh6FHRVK5Uiq4yoCqjCr4ZFU0bQ3lsi/b/qPv2TupV6PDKnFZ6aiUx1enXAvwSXGY9bgWa/roob9VbtOe+9cVoO2RTqTfHHXt++L9t60/Gc2Wbp5TxVfKKih2i6vAr9LGwFKoMrn2U2pxDMOqKiCDaxhM23MmT7uj3vvYwYU65mVT2XxnJSbFqZ0KiyugJDZ3OWNlvctWq9xOWgDKRqdUeZ6ygYn9oWVt1bYXPeOkp8weObCbaVSBXFUa2Skms+rBB5TyCiW6us1Ie0aR33Xe6/2yMg6+yAnX9HSN+MplvfbDqxpWXg9ZKtAgHYAp9kTKarpPXKk+U6Lqio5plFQ1LbpE4xkQ1TGJOq4gOF/lnzZApO01anRfX0v1Z1Wd0sbFmmop57R7tc+pf9eowGp5VYukgM/0PqOFO1AtfbRWCe43qzL6oMerXoP2nh3+HPggim496t4eGV/Hpi+z38HIfse20HszoxghPQCg6BiHpT07R6KkQcXMvpfDnuN+kr4++7tlQn9POLSmqFU5OrT1zgKri7ZUQtJCTG8oqjeODM1c1w3xAaUcEmKsagbCm23qx4kcHXvcrUw8wm1PPGRPZkLEUp+8z5zPjuAXxmEjuIk5JbJmxMPD4xMPjw88nB8NdMpXnJvIGsk5styuhXg6gSScz0xT4XWVzLZdeX3JXJxnW+2QI6XE29sriMOHwNPzgx2OOcGRmRM8u4k4P7Fo5LJG1n0jkYhpRddMuu38uiQ7SCz7QZxActxeTbZJHjg9/cDslFNwPI6eSYTBeYZ5YvIzJzcz6kTalOQywy4EzaSXC6+XV3LOrPErn9KP7OkDYVTCAKMTxikQ086+w3pbyzRaZcC0CzkJ4+jLQdtqXC6SURlJhXfRh8zpIZB15LpcbQloQjAAP2lm2a6kuOBjQpcIWS3ibRhIlApaYUDHEURZ9x3e3vjLr7/yw4e/5xQeeJie+OnjJ4JX0viV374G3t4cQbxFugzKoLBvO/u22XoqSZwp1qrMQlw3iLtFBJb1mr1Dt4k8DsSrJ44GPOWkLEn5tuzcvr6xpcxt29nXjB9H/DQTkrOqiiJIjgSUh2nmtl1wJM7zxOQDHiFvibxb+hoEYrboqNdv33iLmdcU+bIsvG0rX2831rgZKDY4vrx949tL4tecGOPO7Dx//PQDH07PTH4kDQHvLGXs448/ER8CeZm4LC9ABDFCb9WI5p15Ho0vF/h8emIcRoYwsVxXUlK8GxjEAOW3b9+4vr6yxh2ftRx+p5KWiAHMhWzVohsTFEoOq55qhysEi1DCe9wQLJsouG6LxgwxQozoZpFVwRmHp6hAFLTwV+EcGo3rKqfdDl69Q0skv8MiKB+GJ0bn+OnDB05DYPKeQYXzNHOeHtHkybuS9kTMGe+U0SvqBzbNbPvOliGqRYqqOJSeoWD606rxxSLfco6ktCHzhDBa2t9owIfmzHQ6kX0giue6R2JcibqXzByrYn4+TczTwPnk8TjSnlnTTopKikboH2Nm25JFeuaSWkcpxBAcnfa32j42dqFUcTvNJ0SkVbGr0bldwIOmbIcJuJKWGZjHkSF4wuGAJGNRS+IHBCGLZ98SMWVu62aAl2aOxUO8E7zzhAAhUX53zZZ3RU93281WVC0yULPUpER36dHBgGZ7I2aHWP/NhvPOkdW1tL9jRHj9G7qPVg/v/lbw6d8Z8VTJxCkVDGKZFAtps2iNgyHRXt835jtoouj4nrpDc3aympGeagrfwTX+Hdvk3ROl/b+G0fUUvoMxcDDuK/h0sAcPbvnh3np8wvu2HE7luDe2jqNhPt/71paFRXHri8Hzr01pHQtVqJzQd2sMA7q9mN2oBUSiOBoqWsCnfj8zyg+t1moMSnMSK4F5JVh17w2t7xp9Zxn3hao9tO/4vLoGqsFdHZ1642PUytHp7PZwjc65f69+965leh9OeNxsleC5btBWgU8OQE6J5KjVkcwtNXCp5hy2daAYD01JtROt80A5JS1RRpl2CF3DIPmdYTVkmubwoodVd1yg3wkGE8b9d7qxXDayOTq5vQVHZ7j2qEdoWGqKXV8rkODkjlCPhuyXeavRaUW43wOYNd2lzcxhHu13y53vbexzqZ2YWZRase94UlBlgys516jl4ddIojrf5jAWcA2BQ2rd0YnW7FqodK8cKFadpLRZisypgMdxm1UQvOaYU8DNXMYhlyjBI8hXOccqdxt0PittA0oH2imnZdVR0g6EmHKumw/I2sLEK0dTbn1zBdCow9l/rxXe2kft1EEO+7rL3sLF2AjepXCytNSvNj7HvVvBR72b8/c75Bg95CrIc1Dyehir7wBLLfNUoohUpO1DtJrvlNTlA/hU9mHSTrRdAZ06tBWYFL3n9WlzdWzJAVx7DzzVdlc9GZMBYU7FSkejbZ2osZfjGoeethTdXORN48ipz84V+Ku6qFxYPHapJkvdk4dgqpr6VLm7KmBS3fIKOkMTkyXarwIVRZ5qGe9DWmMFstAeKQ098KyNSQOeaKBOBZvqz3bAcpAvSo3kBKsD4UqKgBnQzlcunSM4c5i7w8auOh2RlkpZ5XtXXf0goe1b+lzX+YJy4FHWYJbjeB8ArbYQi2xorTnoOql7sTe3PsaKgfTPc0EmjQOwr49+n+OqPI6Ha+nw/Rn3uvowBO3Lxy3Qd/zxL7tP1RfSANwiV8o6kZqK7WzNx2TcTjGVNdH6rLTTxKPu/Nesr2PD7gayVqg9tLtsci1CQ4vdQIlCjVm5bTsubOCEKQwE5xm8QFl3KjBMM9m5QgfgDUzbIzFCio6cB3u+wDgGHCPBb2gue61E+zw8PnA6nxnnEWUhJscoFayOXIKwrCvKQhgcYfDMpxEIaBa2bWdZIilmXl/f2Lfd2rFvjNPMfDqRlqvJXFWzM8mccHwcZy5xI66RPUXQiKbduK6WyHa5mcHqHGGYjFw8KdeXjeAyXjJhfDBi4dPA7DIDVgHMnWd8mBiGmVFH0pqJmphiYMfhf4tsLy9s24rKwjA7/Ah7PJN0QmVkCMF48oBt3XHO40MoMsX2wDiWAyQx/qlMJulkTiaBMMD5PIBM7OmGuEwtApQ0WST6doMcCRkkKh4BFxA3kDSyK2Tn0TAgAnG7wrrx7fWV15cXHoZHzo9nztOE8MzN/0gu4IdVCbN05N0F1tsNVbWiNggtJRTBo6QSIZ3QttbwHkkzeR/IQAwDPlh03brtpMsNcQMZR8LhloQbR/x8IqhjnkdOp5G0rZAiUwjsTnDqOI2jVSPLoHsiJ4dLDsSTgC0lfnm98m1b+bquvGwbtz1y2VbiIEiwQhevl1fitiDrjSEnzmHAjwEZJx6HATcGyB4XlPnxkdOQWCZl0dV4mlJGtxVJG8SNeShprVn58fTIaX7gfHrkbbgZUOcGTuMImvnznuC2AVuJFFY0RsTSChCMN6hJkJSbjOl+oSklDR43jrhhRLwz7p9shQRSzMiekJgsAsk7RHypKGs2tdTzBSfGVZZKWuPoyyFJ4Tv1nnmaeZxGHueJ//iHP1haZoyk28oURqZxJseBqAlNEfH9ACuKsCfltkfWPbHVbIoqdIucrxGymjIdIEio7owB44qWAXy3g8dptIhO8UzfXtj3vRRKMRsgOM9pmjmdRk6jAWk5JUsP3pUUlayBfU/s+06MBQhs6XV28EMN8sGRc8TcEGEYBoYwME1T+36NIGq+V7W7q+0BFuHkLRPMNy4+WuR0VsE5j+KIGZY9s647y7Y3jlgOOtk7wXvF75kQMsFnhhL4UzmEG5dzO3QSKLyGlrWTD/qs6lw5HPTVaHjT9ZVWQAqnrB3kdz7BzitYbemjz35I4fs3Xn8z8DSOvp3kpQT7rqxrZt9Si3I6PrNUHywnFcWgVNpJs7z75ygGeTFMbbL3MmHaoo+Kn373Ot7n/n1pObjV4bKoHlDfzZesPbKjcQFx775878rcP/tveXUhc/+qZ2v9Xv03V5ZKiwM5GGV/7ZXg7nyz3rGmySIGQrkCaDmhCA3txuSdMXxoa0mnqnNRHeSa+lINeQFKFXsELY5+tTh7j2v0nKthprx3/MpXlIMg65u+Ak/HrzQjVHzZQDXM5DC3CrWqj3GoFDJPLdFuBWwo27Ab87k6OWVNufo+kA/rDKtc5svmTzGTo8LgIVm0U46CZrNAB28nF+osknBPZbRcccJcdYwypBol0Pvc0+9s4o4n/iqlMEDqwqkN1x2Zbhd69a8qDO+XXK12UC+2NWr8b+A8h9Qsvds7lbQ5iG+8WlqAUHOecrXQaYUKSvqbc1KqVR3bcr9Q78Ci6szToxn710xR9zUjjbtHC8pfHVnvAU0WKVJTrg4AkhT/G61V+Ow5zjmGGr2W+zru41Ym+NAhC2kVK/vspaTyV4VZnSgjD7V0RprMrNEXIVh4sAJ7GYs9Rihj43xx/kWpgBWipRKczVdMlBMYZd8jlb8vxdwiRFKtXKhVGZex4F6G3v9iPBgt1c+ltl998CXiMjfC/iZfMqhTfLB104nYjyvTQqWPAE6dp1r90IdanS1bJIf21L0KUpitpN0IqChGljZdrq69Mua+gAolo7MdllgbtBF0ixM02VzVYjRC0ZF1bbzD3xuHVwWvKmDSnlPD9Uu6rvbKmC4ridTSfAetfIwcInUwDosSVVcBzsEfgKk6h1WE12IN9T01p0WK1nXim+HSAD5nxhlYqXGhyt6+B0R8O0XTw0NNrJVIK5WWDhr8gJJLWqMrRX86wGRr2fbllnKLKmzV8PoTbIrpeqVosaKfssn3eqKtVsWw7RfNxAJW1/s1naUVvKfrh7Y/rPJalfV1Xhso23ZNWZ+qVvFVKrgkd/LkTrZobv2xB3TZeo/2FNly1OFSawQebKC6DXIF7rSv3+90RJvR3h7uH1t61fpy1Dt3ds7hxtV+kTpP755osl5bekEdkyYn1Qim15i5bVbFrkU73RlM9c5yeL8CbXp44rsOV0PVgcZEy8M/RlzXKIjibOKUHCkcYcqeNuKSuaWNDw+PzMMI4pGcGceRU+GxWbeN4Xrh7XohJqOi+O3bhXUR4hYIPjCEwMPjCWFGxLifhiEYKa0Iw3hiGE58+PCZ00PkYV3Y407WnczCMJ+JKfKh8D0NYeLh4SNOBlKG63Xh8nZlWRaG1REGq2Z3u2w4t5Ni5s//8t8tlTAENpTsPQyBp59/YhoHnp4+8Ovlhcum/LZlNO9kEvu2kIOg3pHHiXHcyX7hl6/fTM6jfPr0zPD5E3l+IBZy3CTKLZxgnAjzifN8ZkQ4/Zj4+A8fWd8+8vRD5Jd/Hri8vnK9LMyPiXDamJ4U9QtrVNb9auk5EoEd5yEMnm0zzphhgOHk2eLKy9s3c9R1YY8X/n7+I+fTEw8Pjzw8jizrQvCJlIzTZxi82RmaGTysMbLESMjCrpld4Lf1xr4t3K5vIIL3I+ID6cFByiz7yv/5X/9P/sd/+x88hid++vFHnj488cPHHwlu4Pn8odigVsDi11/+wvV6YThfSupYZFvWYovuxNutnDxk8rIeTBQh7m9t/aYSTihhZvcDzgfihkW7uICcHhjOZ6YPH5HrC9/IrOuNTXbcIDw+z+i+WdW0+YRukUWvnN2JIIEQBquIljIv+8Z//fM/8+Vy4bfblTCOLRpzvUW0SKk9r/hBeP78iGhGNPNPl1/Jp4FPA/zw/AeWy85lXfjTb7/wul+4xishg1eHJ5CukdMQ+Pj4yH/86WfO08w8Tnx8+oR3gRhhOT+AeJ6eP5E0EVPkU5h5/fAD17dXfv3Ln7lcXrnerqx5I4vpiZqihXOI901mkmKzT0nR7J2sSIxIEnLcSRU4UWV+eLAKZzGx3xa2ZSGmiEU3OqZxLKnIQhRH9oE0zbhpYJgGHp+eeHp84DxNfHp85IfHJ56miachNHJ5hkSMwnqN7Ln4EM6zoVyWla8vr/zy8o3rtnHZVzaXSWJ2RnZFwOWEqlXnk1yjbTJb2olx4bZAigvrfmbXR4YpMIQR5zyiMHjH42nmP/7xZ27LwuvLG+vlCilxGjyPj2fGIVjkFA6VgPcja4pkjcQdliVyuy2sy81AmCCWq12yT5p4F2GcJ7zY+J3nE8F74mag07quBjyhiO92iYjh4sELQyiVdlFysip8ogox4yjFaVxg3TMxJr5dbtyWnW2P7DF1DOLdwY3ZjOU5zjEMnmkcWmRVGFzHNDLFno2WllmZDIvdWH0Lc1vFMneK7QgGUKfUD3BV9E73qir7vre/a/pd/exvBZ3g31XVzoz1fTdjJyW1EPws3bAqytkVjhEop+7SFXQzm2ufDn1rp99HgkzuQ+Hfmxr1muaUSbWj+gAfU2jgcFoKLZ1GORgy9YTweP/fecm73+8Mr4NRdPx5sN3be0cXtBs39QPrkEixhd416v1z399f3l0j3AN3CW1IblKhFhHuj6/WYDfRtThm1ZBuURSqlrl8bFvh/2h8QIceW1RFPe12JZTx0PrvBrWOjr4zYA+fS29TbWd1muv3mlNaHCCUkhJT1s3hfq5WEKD3GUqIYfkX0z24QnEabN+qgV/0OTyA2vZT+7JXMeDGY8Us2nRLAWBTdcTMcGzODNUdtd9ahJcUZ/jgCJVWNeCtG/DdAVGke876ft8Z78P7SJPc2tsjoioYUhH2GlmSc69w10GioqBEyu9Hkr3qHNZB5AAkSVEgdVSlteEoA/KB+6c5Y9VJuMvruF90HbTuXF+mSGq57MrJVE8/tUUK1tVe0+L6eJc+1PnV7tCVEWzjXtOIbU5rNFBXTM03EsCpGbeVuLDNT+GoEkt3MEDnHvSqRIbWnh6W2/eaNDL/6jPZQURtuHa5VxZ1BTbqvpPj/aSPrV1bzmPauqKvL+r9Kq9S55m5c9AbWFXvUyMdaBxB9aWtf3qXptQQi/e+Z1lLrUJduX893KhV71RpYNx7J7pFz1QHWmpVtiN/TpVzdcD69++B8wLglfE1Thw5PNfMcilRNc2olRrRVO95mHfstAsscsppTWs9gPAivYPUDmJRixxL89LWHkUPVEDRiSHIVT5U2WGneYfw7TL/XYfbxUoudCUVHBNStL1ZJCQ1zS7l+q9LyBpV547jjLS1pscxL4sgo1bamn4YRokISrly/t3r/T4GXfFIW2iH3+seyF0/fW8p3FkHh/Vbt98xEk+/W8Yc7/tOr/ZnvJN93INCR/CzagXjGZG71v5uW7Xe7/2FPd2vSs229cq49LV3Px7tFnL8V+X18boSsSiWZpeidkqIuzZ3W+DYNmmfcmjrPdimx//Vs7WMbcDKfWbhTf1Ldd48iPOQPZKULEJyiowBN42EYcSLLwS8I/se8d4xDiMiV6qhfLveSJsiyTFNE9M4MkwDwZvzo1gKRcqOpIqsGSRx3oQtCtvuyDkgzkAkCYGx6I5YUozCdC4cSI7x9IAfRsbbjXEabJekyJdfzGHb9htRPeIDLgTmpyf86PDTQLy9kTcHQ8Ddrrhtxd+upGDWuewbMjhzGLXweRbyYFXI4liC48UNCIFpmhiCZ/CBuEfGoHwbE8sjTENg9o5xCPjHM3/449/z8fmR7Xbj119+AwIhjExTwLLPk+1pwAdlGAXnFZGE5hXVhPNqhO8Bsj4ah0vJBHl7ewOkAPDgxRlI3g4x1FKM3IB3gduy4PKNPM1kJ2Tv8dvA5D0pbrzt5iSKF/wwoi4Tl41rvLLqxo0VDcqqG394+IHH0xPn+QElEWNk21ey8yTxRGdzzxAsJeh0IsfEfl0s4kGVvO/EfSWnSOdPyWac1sOPFEk4Mo6sHsSDC1jk107yyhJvKMqWdlJQXBLWISFxR4ZAEMfgB8YwMPqJwIDDUqzWpCwpsaJsomySiWlpDvN2u6Fpt4pwIcPo2V1sdAaqyi+vv3LZFr5dFtKq7Fviuq8kTQTvmR8fCTkS8o4Pjqdx4MfHE5+mB+ZhZA4Tw5qBiE+C3BII+FORgep4PD0SsnD2IyHD+vSBfVt5Wd+4bjeu641ILrqhKPSkZDvdM9tIM5I9EjyDaqlaDeTU+Ay9d1aZXBMp74TBMYQT8nhq8nHMjtEH5mG0wgkx8rYuZCc4FxA8jkDwEw/nDwQ3oMmzxUy+ZfKqxCWyRav4uVRgPsOyRQOeLhde15uBpTkaE6jDqirXg2FNFqmeFY3duFLMho4o674SNsewegN3YqIGCyDGezd7iwDjNDMDGhNBjI9UUzYSeDyKpb5ua+Z23dliZtsiMfYMChyF8qSkOR/sl+A9wQ+M40jleV63jW3d2Dfj+NKm9rptq0qLBjdqC+NPcsUGlAQ+WHThuiWuS2TbE2/Lzh6VlIWYpbel+NFHs08KlmJBEUb7EbbEviWG0RdeVld87UwvtGUNdM1XqLaX3b1Wgm+HbDUSX2tkMw2w6kEeHT04UtEc3/tbXn97qp1Q+JwSqC8nwyXSJR9UsthppNYqLJrMCKy2HXQ+JG23ts8O3kkjfS6btfkEh/b8tQ4fnd570Kl8prTj3lyNxYPBeOxztbl+bzjlu38HY+zd3b67d33v7sZyuM/BZGoO1vun3/92gA/aBwqdXBw7tM/y/i7a+qmU6LP2bD1e1a1pzPh2TvG4bsDp8b60k3a7y2Gzt/dKv0sfW3pUb8BxtIqNfj8+d9ffewslmuY+/7SivvW6rD3HnXdr5fc2UnXaK/AkLbqn+S8dFGn3KuGP2ttXZ9uV/VEnyTkjqw1QSNi1OE72gOQsjaYaxIchPTgI/XdXU9qg8LVUwKfPwTG32Np2bP/7MSgrvEz4PT+Wu5uP6ljez+/BAXcdFCzWc0uNU1ULu89KCIC6w/N7W47AyHGO6rpqYIQULqLmsJV1fwBV+/elzyHdAatpZpa6VAR1dSgL8OCcKdzUwJuaHmSyrUbtVRmph/HUw3hr1QItKsna6RyFkNourXu0Ol6WcljBSah8VzXtT7mP8KuKpwJPlb9GvxsHoaUAV+CHUompgIG5CJLjWqxcUQcOxzZeVRnWPXN0cu/Xlt3Q8tD7nL/fn+1Ex/X9bNfkgyPav1OjRv5aql3reVVNRXHLoYOWylBAqbKXK1CsbV2WqCpoaXVKIfmm7FE1oKUCZ+0JR3lSdcx3baY8oxgOh3anbIc/zg7KjTdQtBbBKTeQIgtLGhglRLwUk7hz6o8jaEPbdHaNdqKAYlr4Ke4AUurclLUi0sbEi/T9XwjD+wiW/ZMLP54kCi15M5a0PcT6kNQqS6dc0xql9dnsLC0AbFmDggFW6F0waFV7vTppsUuaQVZBp74223dq+nC9XyPdp+lSGwtX7c4mP4/gEtD2SmvXQc+1cWjfrXLtoO8Oe+v9S9//vyzS74Hd4820SG19Z2f1NMYqU+71yL1spdxJqPK0tKMMRrflDjJEDodkdW861wDmGpndx8rWo3GAQE7ynZ1mN7unRpC7/7vexxqpJlCdhbsRzEojXWwooB6u6HOOgLgSJZjV+H8QZPL4aWAYJ5xCGAPDaMCTE8dQolurTF6WhV0iGuF8PpPyifN2gnHAedcApBqxl9X4VubzTkyJdTdbaJhGKyDkptJ1x7JsiHjccGI6PxJC4IS1e5xHTg8TXuqJ/yvx62LpTxGcGpn0eX5mOg0M88xfvn4joRACsi64fcXdbmRvOs1pQnBoFowX8EYWwbtAxqMSWBBEHTEJ0/mRcZyZJ88bO97tDH5h2ZWHaeL5PPM8ek7jzKeffub088/ovvP49C+8vRqJeRgGe6ZqSc8RxDvCYPMtsqO6FttFGEZPwCPe8fr6RoyJbdt4fX1rXECneUKw6Mwcc1sbIQTGMHCenBUC2iPB2K1hHAj7wOg927aS4sZmChkZPNlFrsvKGhdIcI03CLDrzofPTzw+P3E6n0kauS5X4hXUBdR7cghEMt55AyfDSIqRy7c3/BBQzaTbDb0oumXjFcoFgGpAv0LcOkepH8GF8i+jspNdYt1GVITkBJ0M+NyukaHwfki21KnRW/U4Z5VgWPadRWHTzC7K7pTkYUsbmiK6R/bLG3ld4HZBZgdTYPMbjN5St5xnf4k4eeEX/4rLAVHHmiJ4xXvHw3liJDOkyOPDAx/nkZ8ezwwxM4jn5EbWWyz+ridfN+vjaocpzgmn4cxwcsx+ZLCYF1Qzv75+4be3b8jrV5Yc2VMi5gI2pYzuEU1qA5gTDk/QwBSMq1EpaaOFaDxMg+nNwiU2zSPzNNqaVSBlxuyZh4nn0wNLSlzXBb5+Y4nRMioylmWhgWk4Q1L2PcOeyIv92y4ba0osKfO2WbR7ysq2J67rxrfLlcu+WuU6OQQLFN1dFa9QIspT7n5PkcMpZ9Z9I3jHLTiW9UZwAdTsB+89wzQxFOBDppGEkFMi7zvkTnlSeVe3qGxr5Hbb2KNaBb5UlGlB76yoQ/Ngyhl2tueFwBAGAJOFy8JWUocVLc5sF/Km97rNqI0g3KKjFcGrR8STFZZt4/WysGwGqmoBzJIewx30nd7qGqoGHcSUcS6xbjvTbmtjHAa8p/jjls7bvt9dnnYoo7n7BF2B9sOR6suarebatcdiHe8rh9/bBv/6628Gniz1zYhVLWvDop3QeotKJFk7lw8xzNX8vnfwmtHQDDWzmO+M9fLJHa4mR8eSw9Xt1u8GwdqhuVdW0aJ4Y86G/kNr3V3bis1QYwP0cJ3QnY3eh/vXXaj6+8/vjEEphvv9qz6nd+X+xPBvmebW7jJIlQ+iTk9LuxMtDpZFPnlKxb/jE++tq3eOz7E7ffxVtYQn0yp1qVQgpHNI1Ems6+g4uc0QPwxaNVdrykgzbcvvVkHAnl+BlWNO6pGA2rlc0jQ4kKfJXb+OsWJWyaqMbUmzo0RjlHgiI0H3oGpVbPpYFjLtEErUoCPq3oyZcRrIqvhUwnSLUtEDj4hSUqGoDYBQ0u+k2Lo1QsA7U/CSFK3xGWInBEmzCbKa63/0a8wupnnS0MarCRxnbdZcneASEVCAJUqf+rja+Ne8aXEWndUrgBUntERYei8Mg7ODtprH1ITxMWLnGN3Tn19J4p2T8l4FxkplIRXEKT1ktN9d3i12C2euSqJEarX0xd4UJ4WHSbATzraWu6OjaCEEtFMM1E5F6zilQtTWCZb7/y3t0JFTrWRXlHNxpIcwotmUp/NWtXCcRlIFQoSmSFKMbfTqSYiodnDsX5EwuYj4mgkINR20cuJIIzavpOBa3EuLGKuptn1/9hRO62+hSWiyJEUzgnwleNaq/vs19Xofjnu9rt9s/Bw10rEZDfQ8eerPHuXTnd8yewoiGVXf+J0ESrSvGu8CXVe0YTis1gr81di0bmGUX2uUaBFsxzTw3DjS2g25F5QW4QcVLAVXx7LuodIwAUvpLg1MuaQPFk6FusfvbIryKAtalWKoWLSSE8FLqeTnapppMdTLODqRku5WxlN6Dm0ui78etjTAuDy4Vv0rA9HGKGluY41zzajbYi66vkafQuMwa7+3QTwos5rSWMHxuu9rmqczx6F8VUWKXq3tq2DFEboojT2QqwvVIBaSdCOvXnuvg1y7nwmf2s46krVYgXT5e7SDav/+FcOhP67cQ7vxexyp40HCd/cowHSNJjdg1uSWUkneuzx6f+8mzw9/O+kcfPeWWG2ryZMQfHHQqp6qp8W5cZKmVLV0tafqpjv2vmubsrsPm1jopVYOI3ds0nHDVyGZzeZp6XeCVbsaAq6AQ5JBNws1SKOQJwejs3LXHmKOFpXjhMEJD+PIkjOXdcORUMxpZFtJXHHfNuZ5xvtAjLHJuWGYuK0b67oz/q9/YRgnpunEpx9+4HE8Mc4f2NJqTti2c1vNQQunk5F6z0ZCjndM68xyfbU0ubTxh7//idPTyNPlzLYvjOPANE98+vzMMEx4PwAjt2XjulxI334jbxtDspQ29Y55GlnXG7FEVYhTi/gIVvkvqeP27VeWb098Oz8zfvgDfjwRBksfdOIJzvEvv+wMPnAeJ356euDzPPBfHkf+7sMTk3c8f3ggpa/o9cayeIYw4H3gdHLcLldulwvXyxsheIZx5HQKhGFgHCeieGJWrApVQsRxu67crl+Zp5UxPJN3zxgGnk8/kqdITol1uTJNE/M0MY2en55+wP9d4u16ZYmR2x55TDsfpweex5l/+jpx3a5c9jeyV5IOjEF4+fKVLW/4xzPftq+8/vmFX3/5jR9//JEffvyR//Cf/wPiR6bTE//wX/4vvN3e+O3lK1/fvjLNMz/8+CPjMBD3nW+/feXt5ZXtdiPmDY3OQI8wWpWuYP2+vbywvF3Ib0tLGQ6DxwWHC0pmJW8L2+2L2b7TjPv4mTBNaBKW1zd2UfIQ+Ms48ZHAdIbXr18Y/cwQJvTxA0lhU/j17YW3eGNlQ2VB00ZaVkgLpBXiFRZIu/J2+wVOAzJUAO8EfiKElcCIk0D2xoukogSF52Hg8Xzijx8+8DwEPviAXm5IUlwWclJuy8ZvL1eSevwwMVwXqxYoSr7uxGUhx8jD/MTpNDGOAx8+/8Dr7Y1v11f+27/8T357+cqvX34lr5txGewJJ950bYAffjjx/PzA3/3dz7iSSu6DReK4UljADkyEp/NjIbEOfPnLLwQfOM8nhuER5wacH3lbN75dLpz+8gt/+vULl2Xh8roQF+H2sqM34Wk4cQoDjy5w+21he73gspK9EB18+e031m1ni5Gkwhojb8tClGx0NUMw7icv+EkYfMCpR30krxYllOcJVWfybC9yPye2LaLpwr4tDM4zD7NV0xsmo3hIqenHkzhScOyaedu2Zo8FF0gJYky8vNy4XDe2VdmzouJwYTAScTG5mDQW9VH1ZTnY12T/UmS53NjWjfW2EGPqNvzRRiu+llcYguc0B87zTBBHUKvk68UzuIFlTSzbzsvrlcuysydFZYDC94TzJZXyEE3UdGxVJJZtUH3IrMoalS1upvfcyjQYPcJpEkJwRvMiJUuh8KWav2qRmY1L9QgalQNbFxzTNLTq5NVfy4fUvCPoVNPuWqTev/H6m4GnkvpbeE5ySbErZrl0x6iZONpPq++NnIOhVn+VpsvbFWbAaTM+6kmy2dfavldPweyG/bPjQ3O5YT4aSYf2/d5QVWOp3eqdfdUMRt4DXEfn8ve/042pe6eq90ObDVTvVvt5/G7/Xe+a+TvNvWtPM6Gr7S49c6I6QYY3HE4YpW6E90ZsBR0O1lY57exmmVL4pasFau9qTXEpjlxx6u3vGqXSiWerQ9ur7xxHtroJfYBsTXUwoq6zep6ZUo0uqBFXvU02L9qckndLp6zrYsHpER3QOizN7qzOORygEmnDQKuW49SilcvJRPVWJdvJiqs3LRNiAEtuc5SLp9HTgOql0kh72+5oi9E8yJQPHawCtgrougDKwxUtEVo9zamRulIjZKSKy7vT+Aqk5IMTbGMvzeFqDm25X4ssyuYEHBdkJaTPNdy1IfPFvyoRSNYkKaAKd/nUtUYd+NI+W6jV0a+Obo2mqAaARU+5gz6yz3MF8Fy9t42pHNrdnJc6x/T0I+vPIdqjXF/7Y7fo82tr2JX3+x7IqpCSpU2EgC/vpVzhH9rYgo3LEUDSMml1qCpvTSnQ8h3g3CRpUdL1c9U+DsctW0Gcv/bqSvfwJXq00Hu53aNCpTz/sD6/v/Hhjn2gy4FQSyOUst46EC6H+0vzNR0UowBwhcNItG3t971oSq6uKWwt19Tk+nmTtxWoL59VEM/S65qo6PJNKCmzeo8zlHSzjAmlJt+PCrkCXtnkka3Nw6FIqxBT9jcUctNqOJXUOFdTfssIHQhV6yHEce7s3kUflE0lIhb1WU8FqECW3OkjW2e9gl2RLGXtdnnagEU5TEGLhruP5mlpJ8eBL9235dJrwzWdo/2Zdx989+rvW3TQITq7jE8Hr7QdgFkrio7po3cwCqSL68NzKoRzjMF7/7rTAEorJFJF1vHCDkV1vdBMAu0X1sinGglpB+IlKlB7a447soFdJWJLtK6/mh5+2CO9iX0t18aXzWxAV2Y3X4893xdg+U4CHd7o0lsPo1fbfOjw8eTxu8E6CNWspViCtn0jYGl2xl5vh3LOk1GWlBliZAgJ5wODd7jBM4QTcdu4aWLwQvbCXpS86eaIqAGj2+rwLsNg/C97SdeIcWfdIvsey/qK5LwzvHnUJdwAkURMiW3fWZYFX8CHt8sb274R48btdmHfjCvI+4AfAx9+nBjPj5yXK+t6YxxH5mni48dPDONECAMSZt4uF+TbCx/2xLgthOXK7jLqHH4KjCkTM+w5EVMh4d1j4QkUMgOyQ94UosMPM2k4EcMJ5wLeD6RhwvvA4gP7yxuvU4DnmeW2ch5HNCvX5NmYkJTJzjGUgxHEwJcQjBdrCI6HxzPTfOJ0OhMZ2GPmtmzEPbJcF66XVyMo9o5tueByJIWB83wiRUt9u10jOXk0BQZnXC3eOebphPgELlrFQglkHFtKXLcT8z6y6c6WNl5zZhgnq2Ktqen2vGf8NyGljaQbwzQyTCM//PwTUxgRHMu2gwi3NVqaVUqUWnvghDDPiBhAIE4Y5olxGBiHgIYBxpktvCEpI4l+MJQt2qf6bhIEcRnSiu7FCdBY+CMT63JDnGOcZ9zjgNOAI5AKBYdHmX1gy4FdEzqO5AL4+KAwCQwGSqomYl5tbxUyad1XSJm4RTRbZIzOE1q4fiILnB+YxkdmB6OIpUj5gZQTS4ys4lidZwsDy5bI28r1t19wQcxed8ogQvCO6IRlj+w5I95znh8ZxollX/E4tuvCJabKvoOEgRAc51Pg44+f+PjhiZ/+8HOpSm0yZ3BD4TTswPfgAkE9Pjqe/IkhjJyHEy6cyXiSBoIT5hGenxKvl52YHNclsS4bcU24KPCUYT7hfbJKySEwD4NlVZBxYUT3ZGmkWUlxR9MOzjITXImcDqGQyI8W87WprauYIDtPVou+z8lZ8aTCcZcEtpx5vV3ZYmpRYcEHS8H0JhM7T6IgLuC8LwcZA/u6s6fMnpSo2QjZyYWjSIvtVKJ1TBmZ9C3VwUXtgCTGyJax9Lp172lkQo92clUfC+Jg8mKg02liLlGpkhRXQqwSjuty43pbuW17q6prAe4WLXZvjXaNfdROze7DMsqqTZpTpPKVxmQa0O/VYC18pnfqqNyv+EtQKUKqrVM5oXpVbS12mBOr+HcM2DB1d4w0fq9Mf//17wCeShlm7Zw5WkLrq0HRYIrinTQelWaD6RHUo46y2ZFHA5JOKN4++v7EtXJr1BPpdj7WjMBqlJewMrozJS366WAnvLdA7m3K8vv7v6QZ+keD7GjQyLt7HL/d0hjop6v9+QdD/bhA9egw3d/ZUYjF343VsUvvIxRqCkzW4hCUdinSiq7WLdFPh3sHj8DTEdyoDngZmOYUNSBBOZS3Bq/ls9w76Og5qXflf/6a8VtHpUbZKD36xOwIG01bohbBIt3hqA5MBaqO4yjSoyx6ilRf99IeX85Rq+FbnqXFUTFkmdrBfr0DvLb5xhcL2Un5qIY5l2dmyLGj1k6EXIiYnesrVcRs2rYVpYydlLl3gtTInbp+61gXJ8+2tRQhLm3YFRq3S11IuTo/KpDFTiuLA1H3cr1Gqi1S9/0RkLJQEmoKhymPnnJhkWSGEPTQ0dz5esoiralo9bQdPVQm1JLa6D0txLUADI20uUY12OptedHdoa95UXVd9ugO50pkYXWYpK7nKifB8uYMeKqyKtXxKeui77peZv4oi+p6r7s1Y4adZotmsaz4ss9TagvbiSNL4ampIHyJquxFF+oa1gY69QqjVfYeXb9SNlhp42Qf2fj0w4Iu7w5b5/51/FvudcBBJXOvXhVKuoT18d1GLtcfQSkLfjNF5pSWalgVkNY5a85sF22iBtSH+pyspINMOQrgJkfB5r4BnUKNXmt9yN0EqRrAtr9SS4w34AktzrRrxoD2O/eRqXuscZWZjK2pZe2JpbvOW6Smr58U2dd0oxMqY3fOCRVzGsEVcv4qdEvLcwUOlFrPOBcArHEkNYDIVWFgUWqHKJl64KMF9K/gvjlfbeeQtXNQtnRCqTK+czIJtPE/pnWVhIEmd7seK1N0mJ8KpKYDGG33fb9oyyqQvhqqsVfnyqJAKTNbZIUU2fLeEDgq+KILDo+5kx1aPmjysSut0qeuq/ttj+m2hwfVbx0j7w78nKi0j9oB1OGymoHW23i3O9r/nVo0uI23NrugRTqWYXDl9yp3yi5HMcLmNWPpGEXWtUqA73r2/g1p41g3bH22Nj16N1x336HbM2DVqAoBvlO1aKdc5LYa/1IdUhHlukW8j7i4M4YBvMOPAw/jyLo49n1hHBwkIQZwwfZUTAnHDjmxr0Zg7SUzzbOBHxpZls34KVUAT4yRGBdwiT3fSKxo8CTNbHtkW1e8Dy1SNYTAtq1WGU4Tw+A5nWbGceL5wyMP28q2Lqy3xYCneeb5+YlxnOw0PZyZXr6R1ePCwHW9EV4dm+6oQJgH9uwKALDxckvELbKtG0Qthm5E1wzXnf26kcNEHk5EP+P8gPiRfHrA+YCK51tOzMGxfDjz27cXns5nnh8/WOVhDUiKxrFE0ZtiaSxMo3FqjYHnpydODw88PD6T3cy+Zy6XG9e3Cy984/L2wvPTI5o92/pK3hdCGBi9Y9si67rz9npjXZRtFqbh3Hh8hmFCnTnOs+yIG5EwkRGWuPCwn7nsF67bjWVdGaYTURzb9WJRw6LkvPPyunG7/MaXX//Ehw8f+fzDT/zv/9t/4Tyc8AS+fbtwjRuvL1ezjwsht5Eow3A64eaZGjE4ns9M08gUPEwn3MMVHWckJuMk2zfiurGvW0fmneCnYMzI+YauG+rtQIJsxOrbuuKCZ344M08DeS1VyXAWTSLKYxjZNbJpIp+9cZBNjrAGJI7o4i3SL0X0VnRjsfNIO8SdvEUr7gOQz8YrNgTi6nEuM58nTpoZUzafww/EJFzixk08a4BtUl7WN5ZtY3n7yjg6A1wmz4fHZx7mEytqVSBT5vHhzHw68Tw/G4CXlOvLK/u2sDtBQ8JNE8M88fjxkQ9/+IlPH5756Q8/k7edvO/kdWWQQHCBaZzsYCPDcrlZOq4mTpyZZODEiZRGdhXWJMDA4D0fnwa+vqysUeB1YVmuaFzYLiuDeDzgQmB0MJ4nnh4e2VHWFBlfT6x7RHVFUzIC9LwjkhAVAlb4ZxoGPpwGns5nHMIlJt62xBohYtGJWaFVRfKmG2KRpN+uF8ZhY0kre9qZhonTeML7E55iWyCoOLwf8GHEeSMkSWtmizt7LhkikkgcqtgVmK/bLUVxHzgEUkmBzDmyLhtpj10N1FOy+q+YNM7BefY8nEYezyemMKIJ0pZNnmdhT/B6XbleF26blTc32zjf2znabYJqg5mNZOvYtmGx7SS0rIedmxUKVDtMQGFVLQcZNE5WrTqx3D+njOEPju771qJKnYjcMiuS2dDOMcgxs6QH8/QUxu+06e++/mbgSfGknIyBHRrTetHy/dCnGhLFifEexBvaGRuZMQcD8BBZVJybbsgdzWY9WCna14M7DGYZlKPhlXMHnO4xr98fIPndd99/cnTy7NXP4b4f+uqO1agT+9mN2+ok7Heu1Lu26vf3e9/WOvy1Vb+D8d219/2zXOmTQwpHnBAOve3moAA9DLKWhkZ7elWnMqpRZeb050xR8vYv1VN3EfyRIT8WB7uETdVIqGNHerRNHff6+eH343dqm4pxPtSKAIdIBiMlrpEz985ICIGcreJivXetDmWyyU5i2qMxBydpda4sgqA6akJN2Sj9LKGRVkXiMM/VuzzOX+rdq3o+JYvuMaHYI/lquKRVhSsDqga6ebU2xigNWKiFAXCWEnXnqFBdupaw0wA670NZqnrnuNUUQScY0UqLWDRn627PY0S14qx9ruQNdsfMwJIKklVF3KtqHtJ96eOZCxj33kmz8XHln78TqsbJc7/bzJmtZOiurR0LWzWjKmm6ByyLkWVzLiCeXNJ/UtQCaAprTM3Qw2VSqYo4BA6pTsamYmPUo8Qses/hnWCmlwELLe88RZBSsnuP1u6S+tIdxw6iJ1IbBylghq23Ik8FKknQPTG7zYHp+HzIhDqG9XbHrP+UBuzWKm53F5jXTU3VtHDfDp7Un9IuLSBHUZj1ZWBN33cWKWcdqt89ro0KuIGRETdFXQAqq0yDRTIc9VMFaMqqrrqijVTRj66ktfW12cE/7r9hc1/J1Sn/Sl/7e1pv04jOBUpZbbrAF7EIS21JREUOU6qmYSmopeX1kAcRtITHCiXKy3vEH6PowEtsc90qUjpHThbNZ3wFpVJkyoXTghL1Z2ScdV0bAFrWSGXKxE6MK2+WjYGzU9kKKrdxq8dTudkeKmI8MUe9UYdHMcOwkWBJH2/MFqLMVCU/r9/TMndNPllD21S2MT7YNo0Hj3cv6Yuw4kNtH95pboMd62oraH3vz2EcrC+Hd2tk0Hf31cNnSltUh7/q9ytHXNPLx84e9ESs6YX1ebVUaxv0MiJFTvrSGqdiBKtS9n+JyBO1Qwcp/2oam4GoYvagmKVyjcZftEbY6HvlO9H1b77eTSb0w5Fmf7y7vC6jaoTGXG6jVh3SJdgFfATn8aczwQ/4wUFKrDtA5OHkyeMI88RtXUkpEgbPp0/PpG3mYRqIKRYj0MjEsxrNwTw6zueBT58/skcrM/715bWATRnnYtN1ToR92/j67cLDxw9FfiYul99sWcQbpJXTfOb88NgiGsbxgafnT5wezmSFLQeW6JHwDH5AGYnpDNEiAXY9Q8icnxSGmbBejfxdVzIZ8crHTz8TRs+3yxv/68s3fnu7QthI607ednRN6O0K2yvor0gY8dOMhpHsHNkF8umEDCMyTcScefOO18vMP788cz4/8PNPPzP7mcEFxgTjDSYn/PT0wHkMPJxGOE/UIiLeD2QV1j3y+DQzjY5xmFhurwxBGdzOvi/kHHl9+RdO8wPTOHO7Cdfbxu268euXCykJqOf19YXPnx74/PlETInbuvFyXYmF78kNAa8TI4IbHA/TA8t+Y7tu7GsuVN7eKm65DG5l31diVDSfef2aSdeV//sGHz//yA9/+AP/x9//X/l2e+NffvsL366vrNvG7fZC8I4hDIznB95eL8SszM/PME/kEFgkI09n5nPkt2tEfYKUkWlGpx22jRKCBUCYBiCx7wtpT5AEmWdqnlJW5cu3bwwy8OjOnMKJyc98eHzC3zbi5cqzOvaEpSCOigQYzgM5lHShh5NFfqSImx2+nELEuJHXDd132BeoYMS+INEhq+fDwwd+Dh/5T+cTP4XAQMDnQB5mnBf28MTbsvDy+sZ/+/ov/PLnP7MuV7ImwiS4oIxD4sPtM08PH/j549/xND9wCjPbbWW5fiPtG+jGsCofhhNvYQSBjCefA4uDX14vXCN8ft05P/zAc5iY3IzIRLrtbCnjJs+2Z/aYWFZndnWGgHBzyptfraqbBDRMuNMMBRh7et5Zs4dfvoBzqMus7Hx5+8Kerpx//gMPj088nU6wxWIzj3z+/AOiwnZd+PbylRhXJK3MY3FZdvj4/Mzj08RPP37g6fyEk8B1eOS38MLr25U/fbmwp2QVlnGoHww8kNRSzPeUSGJRUskJE5noHFHMJyUrXoL5p9MJlcCuwm3ZeVt2buvONUUikeQSKjsNdGqn9WJy1wvlpBARjxNP2iwSMa8R3W39lCoDVF+ISs/hjb5kCMKHp4nzaJFexg1JuW4mkrndNm5bZtmL3XAwMuVweNFL1FQlYT+PqqT+nkrav3PCMIwwJLLu7HsiJjWycpfN1aqZEKVLrvTHO+u3d96qXGtGNSHe2db0RXOXaoTk3O3bgzprRZ+Kr/GOFOmvvv52cvE2RGUQbB5M3daxOgxOjSxxBeFsxkpNXYImnOrv9XSxW1gHg6gY6u87f7SCmqN7MMJVK/59MC6lf/f37I7je7+fiNevOthMdLNN766q/yrJciXorQuiGa4HHotjRM37p3Y3+K+3vZmKR1voO+P1/qdFP6ml2Km5uKm2HRs3p/0svfuE0h54NOEVmvPqnEcL6lxT3CqfFGVcCiBrtyrORo65RNQcOli/Vyaw8TigBzu5O0eVLNda1X+vRGv1xtUgNj6g0gftwJNd0/9u5GotoubeEaqj0NJBKBu/2Kwq3WBvlTgOkyjFuQVKIZzijMVjhJlrETi1HzXFsXbvyMtUZs4Atkq+XB6Ys5BSqSSVMeO1pNPWdNWjCyLQEe86RkKJktHelsar1B2p4+v4V3VupfStRVGWC6tjZ+1VKEh/Svn+LlJBRTqxd3m06qG99LKgzjk78WuRPtw/Hw7jfFi7mCMr5Tnv85y7o1k3SY1igFqgQbVUhyurR1w2UMBDriC/9LFpzz0MXlVnbc8f+mjV+HoUkKU05oN8k/77USYd+q+iLaDhvVzUfJCy/ZbNIeuRkkr1xI4AYRvPdy959xykRrqktsPqfUy+Hp9zjPqrqbQdlOh7Q9q9m2w5CM4KaNUe2slZjT6so3TUT/avVnLMSEu5O/T2oEH6KpPj+/fK5d0+fgeG6Pu1oIfn9Xlt4NzhmUfQyezAWonS1p0Xk1sN/FTXTg/vIys7QOzoETzeH2RRbbHcrxU7oZZ2KNA4wQpw2sfMbtRH3b7bo/CsEEPrfe86Vna5jmF9v849h/fNZpBD+nEVaVW+Az1dr6ybumfqumh64KiDS5tdEwfS7i/5aGgKvWhAl7qtXwddeVwlyvfvHfvbX4cYQb1///5n/f1+9bb7VTul6kd3/Ky0+F6EHgDZo+lUUsQPe7Y+se6Jrm/69yvRfwWf7d6uyDqrMBRzZk+ZqFox4t/v8l953e2r1pc6N8d7HG50t6wqMCmWCVAqXTdw3DsjeSk91Rjb/rbiAFaCO2aLBHF+ZDx53DTjzo/4nNmWBSeeZV3MLqlrI5fKlN6O6GtUpxQuLOtTwpeUFhHBBY8bPBKkHGQpMgijN74bzTs5bqTdk/YRQQ2AVmXfdpxfcT7YtSpoUpa4sd42UspGWj54tj0BnnE6lWh0z7Zv7DGgZPwAH58+MZ1mTudn/OmZD9cbv3x94e3bC9e3N5btDXRD0wYKmY0kG+SB7BzqPCoLkgaEmSwO0cAeM29XZYsriHAaTkx+5MP0gAwDgx9I2NrZoqJ7Kr6nsO2ZRCLmDfE3nHhyVoYw8PT0zDwO3G6vbNvKerswjhPDMDJMgTEnUna4kEpp+cy31wxyIecTiuGSMYOGGcgkIi5DwOEI4Dy4zMlPPIQTOhqAuaaNqCWGxHkIikogCiw58stvX1izsqsyPD4gGZ7GM14cSxjxKeO8rdf9upLKfKWwFA4+IZZDNc2WhpWIqCS0HObgHOGQEuZGDyRCCuR9tZ0QvEWGZFjWlbfXV05uZH4YSDKQXSLFDdWIk8zgBacJthUfnR1cSCLtN9CEiAHvuAyDwzs7AM1rqa7qjWwcjSgZnOnmwQvneWIegkXVbNEC6bICI8lqyXG9LrxdrlxvNwO1vbPKcmq8N4kdv1xQ8TzMV4IbGPxYaDXs8DT4kfN04unxicf1FTZPjIsdboiQnWfLym3b+Pb6xun5I2MY8QRjc8iK5sC6rtzWRMpiRRJiZijV7pwk1phIkshe0W2H4JApsCU7SPFhwBcCbTSyp41lVa7LhafTRGZE2ckl2nieBuZ5YB4HrsVnCOIZBiGMjulx5IcPHzk/PvAwPzD6GYeHObCfBc0Dv70mtryS82a+kDiQAj04bDzFfN6ksKVsMmnfDRwRbwcJZJwYl22MiZgyb9cbt3Vljbtx+KkWHa/USKe7V7Whg2vFHNAa3V/8OQd3eWPlULSaExYkIQTn8GIRRTlaFcychJTMR85J2fdIioeD1GJfVO1n9lSJ3KXWhrU+1OAwywhxzeBQTRawEa3okvNWGRI14vGclD3aPcdBCN4jztnxcbXbxFJ7jTi8H/J6V/VpCfTQTiqe22H8wQ6WHun973n9O6ra9dPlo5FaPqTlbhXHyBer0vtgldRQCzE267wIpvuTyW5Y1/vmu78bsEDX86actS+SYvDVanWZXs2pfe/feDVajfqA95/TzcC7sPB3jsJhdA4GUnFQaw81F7JHbVvle/iKv9r+O8eCe7rL71qif+X9w8eK4rLR0iYR4iE6xapllmgLqafINZxeayAP1AV+eFatqGJEytocHCooILRqQdUgVbXojAoc1Kiden039ktlhaMX1TpZynXXcdL7Oa2CBO6BiBaaSUmPamTG3cGyLqYGmPWojWzOT9/nHVQr36ddX6IdWp5AbZgguUZglZEWi2qK+96csRCCKb9U54nGT1P/NszBJseprT/nXSPeFjHP0ADBTNRU1mABfkpORKrjUWa2nupTDDLDl9ScyjodLcqqLjIt89ZTRjreUN2Mst7qCtPDV4VeZSH1ogdWQcYcDqABSa5m68hxTOTumkaMV4RtTek5AiE9Cur+Hv1eHeCqhNkN6HOWrlQr6nWwo4JOJqP2rabjWdSa8X+IpYO6EgdS5EflTGrr59AWLbLXOdcUXkq5Oaq2JiqBcVGqHe6w9ihYFND3SWzanlEAEC1RSiUap65t5zoYZ+2qkslI5juhe5cx9ed9X7rT6wuKYW3sRsX7qKF2UFH27vH9dBcNg/XwAHIa7mE9r9xGdeyO66Ctjt8RqPZcu/txzuX3Lwf0+6iXg8fbImvee8HViT6+X9foezlH70tNjTc53OP6mrHjhOANNLIDQm3vi3hbV6qtimBNIa3zXp/pqP+j8Xq01Dc5rq0D6FRksUUx3a+P1lLpc52zEYfX6Kik9yNcwapmJKma7UHXn3KYzCq3K5jd1jyH6B5qdGCThm1fHFOxj3q7rhmBllIMFP7DkobtOvTYDiUOcqjNd/uz3rG3s/WB71+tRQeb6k4fHveeHK6XAyCkx54dhLgc2q1qPBtHGX8Qwl2G1HGpOq7PRT2wEY7vWdSfg+aweBFqhbmspUiD6ylna4zsyU6Ac2/C3ZjWzt0NdR/Qu415pxfuN+zhd+k/jmOd1cqLF5vJhLFDfCwHPRn2zTj+vDf7OSb2pOx7IqvgwsTj6cQ8DJyHAd13bm9vQECvb+xpN6fYDC47eAuBJEYOnLPxoLgQLIXWiZGPO49z5hK4weNnI5d13uGcZztNZo+R0bSTdsd6FcI4G9C0b1xeX1huVx6fP5CtChFx37ldb9yuNx6fHhjGwDAE3OBwXpimE8M4MgwTMUbWbQSUaQp8+vAzj08PSHD8Xd657iv/45/+kX/6X/+LP+vO9vqFxAKs4C3rYUsOZMA8dg/7ADrg3IwbZ4QRycJy3bhdX7m8vjGNJ07jGf/zH5nHD8gYiArLtrOrkm43c/BCAB9xG+Aiy2ppKT4ExA08P5/4/OkD18sr63Ll27ffin6hVCYL+Mnz9e03dl1Z05Xf3r5xWwdevo0Mw8w4n5kfngkOEmrpaGpRfKaXrH+Pw5k0ZwY34t3E63phiQs6FK5IBdFAio4lKre3r3y5XvjnX3/hj3/8B84PD3x6euKH54+s+8ovYTIgYrnx6y//RLwZiLluO3NWNJ4a0XtWJQwjiCO6iEYF53DTyHg6mazOxY4paUnp9kaK0Sq6ZbPbLm9Xvg5fGZLjh+mZ7CJZNq6XV3ZAXCIM4Ijk9UZYA4mdmBbifkGdIkEshU8KqfI8IuJRH9BhhJRwOZHTjqZI3q8E75iHgefnZ6ZxIqfM7bogyUMOhDSQXCC7wLcvX/n67SvL9co4DoyTJ6WVLV1Jmtg1clmuxATz8IAvqXEndYxDYBgHpgB+dBDgGhfk8sLyFonqQDx+ngDHlhO/fPnCp/nMeZhAgq05EbIGbuvCy9uGH09sa2LbEsNkMemCctsSSYUoK5dtRQX8PKKDsGdlnGeLyPcCEVJcueWN3755HqbAPDokGSCs6jnPgX0eWc8TtymQvSLiGSbH/DDx4YcP/PiHn5hOJ8J0gmQnpfM4kB8nxD3w8BJZ9q8NHLbya77JPyl2eq2At5f1oWlFKCmAfjDeLAElsayRdY18e3lhj8ZBFbNxh3VPOjcjSOjAu3hPGIKB8YpRT1TbSgyUB+k2W/XZpdtO3jkDdDLkPbHtiZgEVQ8aEE3sW+HTirFU6G11UKl+U/OnpHD1uq6Hqv0VgoA6chJygm2vJN8b3o945zmdRiDhNmWJBjypGu/TLAMhBIuATxFVJTjf/J5tjzZODuuTlLnImawlGCFrt+8PKk6qQ0Hty51C/Kuvvxl4cg681xZ5ZY+pZk8FU2q4mBTDtFyXu6HR/IiDUm9goHYHvZE6ty513e9cyfBvpf2kGUZOzNjIxXnqJa37qxnE78bonSnVjL7eZm3v9/YcrKc7M7r+PAIm/dNUSouk6ohz5Iv4a87Jv//1fhno77z3/pUPfXLao8W9mOJzInjtUQs1Lc8chTqJ9/dMh9KL5dbUkuy1ndVhbkYq1Yi377iCqORcK0JZj2LNOxPBBzFeEn8ss30PGmiqhrPxkZhDVVoh4HxAnIGiqTrulVjPWsgwhO4gvHOS63NyrdiHWIWBugbKgNo6P5STb5uiOxP2Qbl/rqBI3Sd1bTlCMKPc+5JS52qKHa0K03EMKICDRRVZCVOVXENr7NpY2qLWF+OysTmuLfSlAqET0BTbJq6OxHF8bExqCldG1Zz9Wt3KNee1A8z1ZLg6Mea0elQhxkzcqzMuxKhYOHVPfQvB44M77D8jJW1jizmYKXWOqA46dUf/bv20+S0gUQVCK5dYAUVqdF9VXvueqNxZKp6cSx9iuXduTTI9IObe5iCG+4ulLR1f3ZfrUaUVbDJwx5fUNQMVKeCoc5ULq5y6YxHyucxNzpQ0q5rT3eVzXUKGo9kpSD6Mz9GBbEMjHWSr81Bf3VnPpY+eBuCmXkXDuft0W1ciuCzd+m5YOi7RxkMOc9n7UddZbefRX0TKCVD5vCYctognMLJ67e3zJeTDojVL6mRxrFvbDj8ddMBJlffgc/VN6+lpjzjr6Y9gDnV9Hyq3DdR3KvTmq+EkFmhhRpQUYMnmLBT5ERyEurdVca4STzrkcKpY569GTIClTdf9nLEDhxgtVb+uzSb5pXNWWS+NPzJpoh4qiPTAdNesDlsjuYS4Z+RuTDoodABQ66JUS8+qY1Tl6VHzdnhFDpE2roM9B9vijvvvDpihtfb4ugcRK/ef9mIaBwAoV7n0bgX9NRvhfbD7d9e1PXxvY921UHr//6q9UAHB416u7x/2qfzeDQ578e6hv/PEdvhc90EfdLv+CJwXGwWEPWfWLXHbE1suoNNf68v/F6/W5+/fLfv3sK7eD0Y50hYyTpOdyaYC7IjDDZPtdXFc3q6MfmIOVx6mB0L2rNGz3lZiCoyPP/Dh8QN73rhul6bLUkpoykQRdJwJzjEgDLNVWNOcGYbRRjCrOTVih37zGBjEMU8T1+CNlwpP3BbyvlmkVRhwLuDCQBhHwjCS897mJaXEsr7w8vqNb6+/cDrNPDw+8PjwQBgDaCBrxruBnz7/zDhNiMC+77jk2C+eD58/MA0757CyPr6QPrzBtrKvb9wmx7o4ci3b6YBhoKEeOYOu5LSTtwWXRrwkVAMiVknQyYDKzm+vv/H16xdcVp7CwE/PH/j8/MwsHq8lGul1Z9tvXK4L27YxTzM//vgDMUaGELi+RoYhEPyZz5+fCb7ohhGut1feLi98efkTm2aWtPDtty+Ep0+c5j9wOs0Mo1VF27OlQcZ1Y983Yty53V45Pcy4wfPD6YlPTx+IwMvtxj9/+RNf3r5y8Vd84TBKGfYtsi87qhvGfrPxp7/8mY/LB05h4PPDjzA/8DCcyA6uyxVi5u23X1luF7a3N76+fDN5NwT8eUbmiRx88wHdODcAbpwnVI2SIntz9P08Mj08kWMkrivx7QrbTtqVJSu3GC1AwSlJMrfrV9Q7svd8/Diz55l1Hfjl11/Ztyvb+obOgswe/zCRywljwrPEFScDYZ4I89k4G2NGowFP5AfGAHPwhPlEFM/bGtHkcNHKtg9pQn1mc5l43WBNTDj2aJE7cb8S840sET+HYnclvn77yu3tyl/8n/n7Dz/y+emJz09PqCam05mfzhOnj098fXvh8S9/4i+vX9lJFgUmmSg7v778yh8+fmDygUdGhvGE14GX141th9sG27oY19S2MuyBlCN73LjcbsSW1mbyxQ2BqNEKAVy+Ge2CJlyOaFxwOfHLvjK4TM4bP338hBeLoiJlns4D4YdnPsz/W+FaMi7HYRp5+PDEfHoijBPOz6gEchb2aJaHc57zw0euu4Hnt+srNWXVhQmc6cKUk1WBCxMumxxat8joM8PseXz+CKrElHh7vfB6uXJbNm7b1nRp1ohqBGKzo+wgOLTU45ou5/AlCy9DMp/Q1LtYJTxx5BSpR12KImpE+t4Z/a5EZV0SWRxBHGho0VYpR9IeiXEHrZaJMAZfKDIgpUhN1PClCOP5PBX/VRFS4Ykt8ikLKQqvrxfibhFWe9wQ55kSzNPIOAzktBKjBSMsSyR4b8Tgp4EhBPPjc+W7oWe8FzvD7EBPjKYLUs5l3mk4S/fbq6Hd6XT+ltffDDyJZFwJ/zryR3ZURkqj2rmqGS65RyB1p6XmFN7bKO91d9PRd/ZgB3CEmlZXUUO7rt/39wehnyh+77C0+941oH9SfDxqtFN3LI5JK4enSE0Bad5FJ1Dl3pF7//P3237/en92L7yLCvud179qTB6uKW480Bdm611NE1M1vozan4PBdfylO8Nyb3SLlJXS3JC2uO3r2oxwEWdOcokSq6ZxA2Ho1W/ue6i9Q+9GTFv7yxxq90DbKStYiXQ9fq/e7giqHI3tSkJdxq1yLOaDk1vGUVXu1sz9Kbb0dXJY04cDZhPiTgzIuV+Ed6878KDdy/7lQ+daRJHv4aE1NcSc7b6P/aEkekrpbi9IWe99f2t7pjQBVp7Z5vgAWOjh+1oFIyXV0H4aV7F9IadSutvZehSn5GzktMexqQ6u9buNDjXyqP4ud4N5FELS+mNkfPW+hwiewxoX6evzfi6LTaw0nqG2Oyt44WxduXxYaiqFS+wIJNb50XYPOYxpHccOT9X3ugA6ps/VEOQedXJc83Uuy/rUIguldE56n9sAHJtZgdR3+8nWhSvAWJ2bezf6faRFH1u9e48GwPRG67HdB7lLkxl2C5HDU/TQ/DInipb0qnfjD3T+tuMavt/zTV0e792AnL7GWorVnXK7f5y0f3KHWdXPoFe0bD/F9puXHuHkpX5mYJtzBZhydK4oqWmNWrCbtjFLtyrA11t1bHY+zF6Tc0IBCmh2Qv1CjVrWoh+6PVHB6VLoRDmQrFsn74eizLlIS9VvYMDvgERIBezbt1v7+rjWtV+jso9A0vvX+/V/bEN/gqU3d+mvh+ur3IAqB47p4/cv/b3f9Psr/vXvybu/9G7v9xseoxPvW1Sk0LHj5R79p92imvZHIXdsQrfXnHQZ1GWZ3qU95nLvmDMxq1EqHdfH/z9eZU3V9dk3bkXVMqjpT38A2DVX8Dpze7sSJBDcwOPpkTQpaVDWZTeQOwuMAw7H4A3s1ax4zYUjRZgfHqzkuThzfPbYTvxzyqQcyYeRNWcwMI8jp3nGux1LtS0yxzmGIVg1u2HAh4ALjuDNNreI/h3BDsX2GMklHSylHdltZzvvCcEzjhb9pKqkKKQ9oSlxfV3ARZSdh+HE56dPgLDlyLfLC6+XFzZiOSF1jZ8lK+R1t0izlO3whYTmzQ6wvaW1J3a25Hhb3shbhJhJ48gQHEPw6DDjXcBLJmywx8y6RGJMOCK368a+7QwhMbqNcVSGEDidPO40FCAevBsYhpHnD8/4AeaHQAiZj6dnnp8emcYTzk244CB7wCoTatxRLSVCdpsvH5TgrXqZDjOvw8w6zESJ3ZMdPTIM+HEk+YBkQbJj3RauV8/rt5nH05lhHBldwJ8mvPd8ePqIrguSE2ndDLQrFbQ0WKSEd67WvyiujaIpkfa92UbqLIU041Hn0OCtCt6YUByqkZXMNe5c4loix4REtLHywuNpZDufuJ0fuL38BgnSnmF0kBRJydL9RFBnxR3UgVNPqmCD+HLw60tBHQUnDONM8DNBRsjeZEQWXDLg7BI3bm9X1uuNHHdSXkl5I+cNSNQAiZwTUXdWXYnbziYrj+PM+TSS5ZHgxOYyJ8ZgaXcfHj7welvQuLIVjqOkmWtMvL69cvIj8xxIxVbIGcIwMc/C5fWN67pxWRaCBmLaWLeFdV9JFSxQDGTJnpg2UtyJ61J0Voa8Q7IooS1u3NaFy+3KD58+2rp3AVBkCMhpYvJiEcs5kcj4YEBR8DPejYiM7FnYd+W27NxuO7fFuIdqkRpT+ICCcx47dKopceWIrPrJObHHyLZH1i1a1FxKrNvGFjf2dFhnrXiPydfqExaDzvwLZ9FlItIq/hovYD9gQmindM2mKtE/1UI2SnMhiKUdeucMyMK1YiaZkl6Xe9VxBMZxKBkRsK6KakS1HwCOY2AYHD4IQqS0Au9GcsKqDYpwpJSo/EwhjIX3KRZ+TDvU3raEd8I0BoLzOG8FI1oAQLHbK2+qOkfwPSuiZ0fQOLmQmtFwyBTRw8n5v/H6d3A8JTsFLd8ofFOFJJQybdVZkzL51nnLq+/gglIdrnvDvTmcQkvDgHujzoznfp+j49RuYl/6N3t0NK+OIea1EdXorf09TDVQ0gfpBpCt2eIGiLSwuXf7rUVD1KYfD8T+LdP1u5PTu29ov1ZqJNLvD8Vfe0435UwUFDqCnsKn9090IqbU9a8MuVLKaOZe5Yh+vcuZXBfxd73FiGulR/akUrWshVGKRT6Is+ibRlBeybexXFvjGzi4DnIcg8pBc4jAqqfNB/6kll5X1sZ7rogOrmkTfvdrvBCWO6yaWzmMs3QWixpErH5UDebr3G6dVNj77tzVKgR9zMraag5yeXJdX0XAiGQjtywPsYifMjqNH6kAxGQ8Dpf7fqg41TBYubxcStbWlrgataSHyBqtqTk1l7jMedaWctl5Po5uXnF9chGGe4lGS9C0hCqxBr4hZKkbNlmUkNcC9JQT3TIGruZ50x2nOuc1as72s2vtqE63VZKoSg9Ua850J/q1g7gCpngPSYux5roH1V4131qNA0FAkqVX1sPbvtYOXy33UQxo6yHCdfx6dGDL0a7roQG4BwkjFm6rmbYuzImozgR2n7IepFQLNJ3flVF7aSEk19oe7uTF/U8xgwSbO3GK1M3MvS6ALu7vxWIhpa/Prk6cHsatPL+R+Ov7m9hzklYZA1lyMwCTFg6nauCo7ZWUjacg00+GvOv75QgomJqsa7404pD2VuVUlTs17Uzauul3q5W97oeh3eU7zibvxE7ixXhcjrxOoRBMDl4JhQ9TVVsRBUuVNGC3zkn/KWguUSe+2gLWFj20CXFNN2W1PZGLYVC711Ll6zzmAm1ljHtGSjp97un0Bw14WOdlzUifkz4+94rLSkQXQ8rCLYvMh1qK7b3GVc137x2BTPnuc3m/VDFZUFLFKrF7Vd5tjO6f2fv4ri215/reNvhXXsetWtdVBbvaHd+blHL31fs1cOhpQ1wreNav6/czxVbtqbp32xNKJKRUm6aAvvW7uTyrgk6pcFKsMbMlA54O9Uz+9f6/v+B37Ohj1GWbz3fg+vFPKSnHRm8iraKThbUWAZQNoHEuM/iAImW/R2KEHJX99cryduXt5UIg8Hh+5PF8NpLtZIbC6CfcODCdJva4o9kiHqdhYBwGPjw+MgYDQlJKbMvKtq5c3t7Y08K6W+EU5yAMjnkYOY0zD6cH4nNi2/ZWIAAEHwbOD48M44j3oXDWOIZpYt121s1AizA4Hp9OLMvCNA1MYyDnyL5bGfOHx0cGP3KeH4xOIEb21XhcUkp8/fJK8IlhED794Ynzz4/8/PMfefzhR/7561/4l69/4WW7GKfNGMw5jom4bsTLjbzv6LaXYgpKZmcYZtzgkBHWeCPvCxe5oTGXyoNnwtUjKPH0RCDgNSC64vA4N/AwW6TPerVqWJvLhLwispkTOAY+//DM+WEilJRJIfAP//AfURfJuvPty18YdWBmQnMgJtgjjH4mqxBno7/YEEaHEXWvG/EWcbtFy8xh4MnPpPGBjcjuMlFgPM34ccAPA8tlQdcIa+TyT1/49rYRr1eIicenJx4/fuSxpJ793R/+Hp93Ri+kfWP3YrQGKJozaY9MpxOKlTXIsYCWKRKLolDnCA+PKErcc7GJnYFR8wkJA8mtXEiwXfnT5RtJlOSUKTjGyTNOIw8yMWpmTIn88sK3lPm6rSRnMiNtO3lLJAeEgewymYiSEJ/wbmTwA94FnAxFphsn0PzwzMPwwKOb0ZeNrJm0mx11Wzb+8ts3fvnLL7ytF5KLRBYjrvYJF8xuzWqRJ+SIDg5NRmlx8gMP55FVnzhNM/sWud4WFMVnx+eHD3z57YVtjyyXC8lvaN5ZLgt/mh7RXXn6+QFJO0EhZeHx6SOnJ8efv/2/uNwWvrx+w8eBPS4s65VqsmYyOSWzL9QTt5WcIuwr1bvLaUOwtN+UI9f1xngLJFHCOHAeT+TrTgImB3I+kTUR404sNl3C4f2M9zPZDSzbwvW68e03k1O3ZeHt9sqylap4zU4RQhgsfStHrGJbPSwsLVThtu52wJxgHAOqmbfbxTidNBunYEoWwSPgghUKana5drvEO4/RinTcQpVe7KraKZVWyItFn2omx9QCSCYnjM4x+8DDdDIAW6VQf2TSXqC0wrdSstgQJzycZsZxAIFvLyUdLuYCLnVOrWEIKDs1ul4wzrzoDDwXtFEgCCYjx1Fw3jOdJqMdyJktgiyRnDLTMBD8wOQH9mjp3JpN3melUbZ453F4cjK+zHqwB6Z/a4Ed52ysLcgik5K27Il/6/XvJBevirQYzE5MECl22kJ1DIwMMefi8FMV7cGgSB09POp6qYhe+VmfWzLTDqeQpSSuHu5TT0jLew4aOfb3hlO5j76zGaqFc+jz70YolZvWakGGd5Y0hBr5LZ2IqyKMcDyZvTcof699719HXpS/dsJaq8wdDc9/DYd7/9HRpanjV8EnqKfQghWNLKW21cTFO5O7GZvipIi7EvVTHGMjeLMrG156MEpdMyhLdbjqkKTcPEY7zS8lwZPeo7DZnPiebtfR4nt3oW+YmkoiIiXc0L4bgqPavDWaqRqf341v7UNZTp0LpXoTNKcmZ3C5gEnS13suaLwBvBzSXKVF5hy5r1wrA6jmnd2Z2t3hTymTYkZcUUyFHLNe15J0pBj8JSqC4HrTm79maWUpmxIoB0ktmsNQcbUw0UoqXwR4dQJdqV7X9rvWaBdt8sTSHjFwyXXgslY5SymjWcoz/Z27pFoUjXSSvwam5OO8V7BNmuLqOLbdsZYardc3V685R7WPdQ269qzKHWXARbITjJStQqEW2dF2TWr76MinJs0j/esekqX39RQoPaw1pQIxRwfY4cQZoWSVU835vk+jqycdtk5zG+W7V0cwqU5w3fN1U+TMu1Rb639WCulsFbSuEBa3eJo23s0Flz53nWfIHYR132f3URmHz+u4K43LDAyg8c4VwKZXH3OuRg0JXmw9ZIW8JwTFaakOmjFuAr1/lvWsRx9Z9dvDSVYz0I77t6wt5UCb+X2A8506K/dsoFKLZNKWUudcj3jyzrgFaqrd2GRePoylpWArng4q1rmwp9vJccapAXFG8Fyj7kwvpsN+wHkD4lVMXquWqmQVoFIzdrMat082cDsWEDnn3GRBwQHb9FZ7wLCjMo5lkOvaodgcBUtsYrSIuLaXeDfWFYqv+vz3dfh9imj7rnBoV3mO3F+D3mmm/uERe3k/8/+asv8bXi1V8B2Y8ntrrI5IizM+fOddN+iRjvfta5yH+Z5Xr35TDg8ze0/xZfPYYU0hzRaz+mLK7MlS7PYCVt5JzAY4/jsG5fde96r1919HAEqktNmqPOeqv53gBnN0cNKijrIKObvGAZrJLNuVPe389/+emcaJeZw4DROnceLp8QF/8rgw4mVsoFbwjvM0Mw7Ge5RSOSiKFnXiw8Q4W7XqWCgyQvCM04ALIy6MhGHi57/7I6pWJW9ZVnJWfBjM6SjBauJtJVyvN8Q5xnHk/HDitizcrldU7aAsxp3Hx8eSVm3RTqqZ6/XC5XJluS389ttXK02v8Hg+8+njB07DI7P/hA6OySt/DB8J55+Ynr7wp2+/sOadNW9clytZdzIehoBIRNkKsG2yhVFgBB2UrImElspwCkl5Sxf2lxsvr1/4+w8/8vHhA58fPyG7kuPOelv5+ucFEKZhNhtD4Rd+wXvPMAx8/vSR9XJlnALTSRCv+AE+/fSMLzzhH//4Ey4rPmVSciABXODXrxdeX698+/aFdV3Z1oXr2zf27YZqJkwByLjg0bDDuiDbxoAayW5Stu0rfh4J80TaI/vtyvbtjX27IVnYuLL9KTJ9nTn/9sx/SP+Jx+dnPv/hJ3786SNxX/nzX/6Ff/zHf+TLly9s6wrBI96RNiMad6Kk5UreVnRdiuEnqHfIsiHjjJ7OJQ1WyTlaxLYoMnmuKbLpwn/9yz/ytv/A5/0Dn/2JcLkwqPA8nTmFkf/84x/54fSB1+srv7184c+v/8Jlu/CyfsPFnR0le3BD+P8Q92dbkiNJmib48QJANlVb3D22jKjuquqaOt3n9M3M+7/EXMxy5qKrKzNjczc300VEAPBCc0HMDBYxNQ/Pqu4ZRJirqgjA4JWY6Gein8AJxrlyIBEJEklFv8p5xpuEGSzvHz/yYffAe3/AHw1mBVkMlzkRn56Jnz6zhpVlXUh+xe11jse0qI4vlnE8cTq9Y5oOSHZcXi8sl4VzvPDp5bNyVH3/GwZjOewnJZv2ht1k+bB/JsXM5/lZOagkYseRawy8zFderheSEUYmRndkGAcylhxmctR/ab6CE8a9IVyftX9zQqJab9lZJCVMzrDGzfXZiEYsWENMgefLK0tcOPz1yA/vAt89fODR77GinmxxnYuea9jv9thhxO0OzNlxXhI/Pz3x08/PnM8LLy9XlnkhxpW4XohpJuUVqpVnIKxrsftUJggaSicpQ5LC9xRYRLi8vmC9ys0UU5OLenIoxTjtQQ9pRmxPhVIJxHM56Km7uXUDdTfXAytFXIyox9LoDZN3TN5xnCacUY+n/bTHohEiyeghabZRyb2TemtWHdxIVq/BbPHeKqjrlCReJBMizPMVkUROyq9XK57Tyrom5utKCKllg1fbRqM/wppw3jCOI2EMiCTWJRGC2stPL3PJ+huheJ2qutnTi6gNmbKUQwRVfjbdSmkwlAPUq7w31V6SG3vql65/Q6idKrAbAWgx66zBZINY03GG3LpoSdGsGiDT6WDCrX5T8JrGN7G9aDN0NxBoUwKrsnSvc5mvfq/qvNwqRlXDvPlss9iasQ3t9z60oXpi2XrCZ25L27gfivJb2nMTtvjNOn99VWCllX/3zNZWebOQzg56401fn5XWv+u0qoTuvSGn09Z09dv6S40Nc6PvmaYsdsqo2ca1hu80wK6Ody27ggG1PeVfEzalAq3v6zOlDplu7m3xY8oZU+ZIls3lUE/ZdR3U9dWUZu4ma1Hc63y+Dy3TeWxaVsOssX6bIVOA1pTYwKcOfK3tURyy9JapgMdmcG2hbXURdZ8XRV+saeVV7w0M6tFQp3M5xdrcKre+NKV8W+TU/XRThVtoTkhyyxNluye2sdr+5SytDxTg7sJMGjl3exn3V91oKqiyzdi+Lvqcc9y2r76rPJSlAgadh+TNq02bE63tbETebZxKoWa7sQFVBvUmKfpbA1Wax12RgXcWcF+T0u46RreeTtL2ZFPmkOmeMd0z2/11PtXDg7oOS4uL6zKt8NrL3bLa1nRbIl2la1fmW9Lw5kELTem5b/gWnveWR8t930j7r5hNLlXctVdGalkbsKWAdNPb2slP8XkVVFmopOy5rCNjOi+lrVoG08q3bOur3VNFYpmz1eu0hRXXW0o2OLp6991qjDRupwpNu7LH2vpdx/ekwFT56UzLqlLnRfUuMqJ72TYvy5CaEuoqIEZKliZpfAa1banOr9IX+hzNy6kHDOq9zZOszOXqFVXHzZSZLd141p/bdlND5KTN/5YcoZ8lxpQsr1tBbdl1/X0DJtV+f0MObYPSybt+pG4y/m7f3wM1rU3m9gNp/27vv322f2O3V7Pti1XfuVk+clPT23fXfeNmH7yv8O24tLLMVoftUfnq+1r3SiVgdbKqLoAeTulhGCW8TohJmqfT3VvLj2/3020dv/1dG++7eqsYrJ/K1k9d/2weYaZuzYDySmp7LFL9wIzWN0tCQub15TPLMLKOO9zDOwZngD05JXLMmAyuHOumNREo4WbOId6rZ25WGea8ZRgnkmRizuqd7izGepxX0u9x2jNNE2AYp4RxF6KeAhFChOKRXT3+MRbrPH7wTNMIaDjSIUSMtXjv2e12TXakGImiJ/yX84V5npnnC+sa0BP1CWsc1oysS9FRvGP0Jx52EPFcQsbMZ8L1jJWowL/VLH1iEglXQtYEbCZbwGbEZsQDzmC91bBFk1mXWUFwDEs8kGSPtcXTXjKSIsv1rIdqflVPh6yeJt57hmHA5JXrZWKaBg6niXHnGXcDcRZMVoL1/XGHyQlSgCiAQ4wnyUUB+6hhZPVA1RUvg2kcSrZClf+7wRFlJBo4xxkJC9f5lbwM5HUlGUjLrABCIatJ1nKVmTVk1otweP5MsoLfj+wnz+gt7z9+z3UJWD/y+vpCTJGYM8sylxAqNbLrP2PRuRZBjC8p+ix2GBCLhlpqwjjlcUIPlS858rzOuHlgP3omLEbUW30YPMfxoNxNfsBgWOOFwRocidE61pxZRdCjcI/1E1EsMcNlWcoeIkAAk4jZEUNCJrBOCe9N4QBa84rzHucdfhzw2REBcTp3JGnoozW+jIljGDwhCJqxNRPSynW98HoZWNYH7DgxOE+OWbPEYtj5icmPOOMIWdcNbmRNieu6EpJmqMNAzpEU1nLgn/BkvBHWOGsdvCHKipWIuoRUX1CneokxiK/7qkqWKtwyyoknIfD59ZXB7RjsxOFhD6IH/yGpp40mDFJON+MGzucrL5eZn37+wufnM9d55TKvxLiSY0RyIOWo3jVl/6V4CEkDjaq9pWFtkqXp65Swsc2EKbZdYSA1zmCkJNIp+EOz3Tv9WYreLFkaLUc76HFV9xJEUtno9fDXWpj8wH4Y2A2OyXlN/LMpLxhss4GszSXio9LsVJ1HAbycIrgBZw2Dt+qkg9qZYY1FdxR8x+caQ1bPuHlLLKUyVfW7FIXk1RvKe4PzDhcdxiq/qyTlzNIwPhgdzcZoNlHVcbdYw8LdLWWv2Ha7PipG97vNXvg1168Gnry36kolJUsGqBtvyyRlyWsi50wMtAwzdfzr3lkN37euG2W7V+aawKiKX94UwPJI0iP1gtxtX9ityLtyb7U2qWU3Q50bTor+egvcMhQjsTHFbkrepiCX+4syW4vpwzA63ferqxoqtU96Hpb+ymwGbdXnSibfX3VJVRLZeqn+vFHkRIo3UnWS1A2w5oeqBogqsdqySpJqUC8Xua+9dOBWmfBiyzjmYng6V/Z+DQTMm8atBNjSjSk0wKICCbVOasTVe7swUdnCaEQ07WtKaIp7U4nia3iK3QhhMd1cNU3g9IBQHaHSferthAoWYWu7iCmAF5v3U61P2pBlY2yLzXWuZnLTmVQzjfUmSc65lVU7XAm/69+m/dc4NUoF0zwSqOMs0vq9KptK2KeNkjIvjVRCYgrPZ/H4SZtQN8ZjnG5+SJkj0m0SWYrsMWVm33r91bBHTTpgijCuyrzZCO9rGGK1qqS6mPaz5Suzvb0LQFImYdQbgx4gt+1ea10L76rGltT6FYBEOdB1k1PhXwVCASOsEgw6R+PcqS6temqT2lhUo06vjeAZaP3Xt6mBi91cM6aOTdf3RW7FZsUbKGTON5hRBcbKmLcwGh2Um9pt75T2s9ZX5JbgHWBLEtCvq62+UozemhoWtr1ie9cm22+Bxw1UNJXb62bot3fVFtT135OOt6eMZjrJokBJKoXbWn+22VU9RKonEtzYoJvR2sk1KCG53YhX8Fy6ddib6hWiVaBJimeu3uuM8r44u+1fzqBpgm1JPmM2YLImS6hCqt9/6/5Zu64KB8lCKO7aqesAg6HO4LpOJRdZWw+sRJpnnAjqpVB1D0DaqWWpfO2zrl7tFT3AwTYfdK+3Op7NK1c3ISXd1I2zJPbstAUtWPr3/DdeW2ndZ3f7ev+bdGt3e8g0Y+K+Tn259+81d39/6zDrvo33ZbajolvF7ebZZgxQl9ft/d8CeKRsxNXTyVrNXoVzJbSOtuYCwpIyIeZGEyCtwvca1q8fubeAxNZXb+hgpv/M1g8M5BrKYaCEYWPqtlm4UGzGukE98DSL/QaSx4zExHK+IOOI48g0PrDfwzRBDgtRIA8Tox9IMfLp758wRjMWvXt85HA8ME0T3jnNduQtfhpx44gbJ5ZlIWcNc9vtTxwfHnl897H0o2VnLeJGlmXV0CEHNE4+DZXe7Q/4wSsA410TbseDejkN44j3nhAC5/OZl5cnQgzknFnmmRgjENjtNOvsODq8HxEcf/v7E2Zw2HFg9+HEYXjH+PjIPAuy/Mjz5YJnUt6eMZMHTXsf3EKMiwIfNrGapEJp8Nj9iHcD425PuM7EayKcnwCHcwPiFoydges2d3LEyEKOieucOb+8kGIEBO8d1hp+/hEOxyP7/Z7vvvuO0+Mjh9MRbwbGcWLcTRz8HrGBnGFeF9a4sIQrn59euc4rYp1yEXmHM5nRP+K9Ydp51rgqkTEw7T/w0WRmB//697/w1x/PrH/5iewNTB5/2qlnaI7FM27AjXvAkLLhNc7880//yk+vP/Pl9Ynj4cBht+P7j9/xH//jfyblxF/+8mc+ffqJL1++EJaFGEMJ2UIzhfk9hkSOK+E6k14CdtgxZBhPJ2RwzHSAsNGsa85ajB0450Q6v3AyE+P0wH46cpyOTMMBb3dgDM4m9uOJj8ePvNsfwXzHEq7M68KXlxeicRg/Mj1+x5Lhsgb++fMTa1hJKWIH1TUWZ/jbn/+K/044fBhBJlz2WLwmURoH9qcjH3/4iL064iUTzYWcV3K6YvyIGCVYX5eFnITrEgjzSkwBwXBZDM9nOF+POHNi547EQqqeIhz8xGk6srMTq4skm8APnJeAyReyEYZpYOdGXn56JqdnUsjsTOI0QJrgy/WiMsUaRjPjvDA4Q4qqW3nnmMY9AMuysqyBGBNrDAqEKJJPtoZgDD8+PRNWw/WSOQ6PeNFQyiVEnLVM3iNOsz6ul5n/8l//mU9PL/z0fCaVpCeJDC43cCNLUuCp6mL1ZMkVD1AVqAV0yu2QqyUFctuBZzu8JBedy2MNhDWRUkRCaHLXWgXW646lkRElYqbKame6g3V9r5KOJ6x3jN7x/vTAaZrYDR7WSFhX4rqyXhec81jrix5hGQcFRhFhHQa8W5sjQYwrSvEheG8wxiM5sYRMTML1srIssSSq2XR4zWSntkrV12CzCxUQVE4oP6n8YRpIKWs21CQsIeOWgDGCP40l+2smh0239c5rxxVO3M22iVTcpe3bFeeQjb7k126pvxp4GgdPNGoseqcNWlMsE0CqHVc6pwtiMlXhV6Ot1qwHQfo9XU+te6OoKJ0VhKRTAGXTJ9qp0lZq/X9RWmibn8HenKpXJa+V3xXRFdWu6gFnDTip5K3tZdT/Vk+LXMuQzVjo3/WW4nl/vXmSWN77lqFVx6ROEg1FYMswyP0c+QbI1tWtV+gNtDBLVXlt0f0340dEijcNbQxM19LUcQaB6ELoDJP6gLB5mtRx16eqEpmLiWUbUXiOqZFr9t4mrZ2G5sqYy39qSArGNaPTuoyrRHRdfZohWz19asvKYm2Z08qrdXEqgCDt3s0ISgWQ6+c4QAg0b58K3kkH5lTOrJyFEAI5p2YoWlvBvWrQl16zpgBb2+c9GFVDXb0tYE9Z2NLq3AZJK1tinCWX00Bb/Uj03ro2a8ie2LL+1b7TLJRlfraNqer0pUMqv42gYT613NQyFBYy90Z2ozw0ajfaMp4FXKloJjTQpZ/v9f11rlqrWYVqP+eugsaa1ifbKQA3njubYK4zuPN0sa4RyKpXXRm3Eu60URUVz6ys4y9ZSkZBW8DHCtYIPQi2hY2q4aOYk239nPPm+aHhiEVeFJ4q6cYPVH5UXh2N77adXO3HrQIiGwjeHyDczv/bz6y13dzM9EZfnScVDKqAZo/G2MoxJRQOgdwAHNvat8kF9aTIbSOqnqsaAmcK6KMgCm3+13WXkUK+nQSUq6D0URQkm5INlHI6XPesEp7UCdjmwVmMTFt4WJootIXUV6QZtnUJVmDEFBncHCGFNv4WNtLw0nIEJVO1aGKFAi5WDq9cjxnbPC4HSi3UuHqcQEzNpRHrthDTkGieTNvemgvYWg4BJDVZIxVISAVEkW2NCZus3JCu6mlsbj+v85AChjaeNro9fSPJdM4q6FQBreLGL6ZkoTX16TL+RmXeV6DDG3tyf721BoBGst7+7n7WPb3os00WV6+ZDYCXrp5llppbP5sbL+UOyLv3NOxB2u3p27r1n/V/1L7ty7wtyNz+KvcAbJXLG9CqTZU2x00Jz06UPVKEkJJ6O8ldiF072q7j/+3x+bqqm8dpvXLe5MVbqpm0/9CiS0A20Knoi0b0tF7XcNF/vMf4QbPrYpRrI5V5VoxECUlTuq8wLy8MQ2Y3wW56h8fDEglLJIZImlemccAiPH36TLgu7A57Ht89EGPQrdCVA0TvIYbSLMfL+aoei2jomAAhxpI1KbNGNf6sc5wej+z3R8Zh1JCZ0gFKmDux3x+5XM4FbLqwLLMSnKcEJjNNA7vdxHUeWJeFy1k9XZTbc+X58sx5jUTxTH6HM4br65lkMpHEsCQezIQcPmD3FrxBHLxcnrlcL3xeFVDLJfOVHUfwTj1JlkgSIZ6fdfxEsD7jVKvkev6ZdfJY+8DpdEQCLB5khXVOLMvK7M/EeNXMXWw5NsP6wHo9YOSVdX7P9fWB5Tyz35/Y70/KG+UTYgPn+apPGsd4OGKGCesGlssr1sLjh3cMHpxV/r0Ph/f40ePHkdf5ynm58un5mXh4ZPqQ+WG3Z5XESmQ2iSVHLjlwNUoSLqNTAveYyClzvq4syythnpnsxDRMnH9+5cPHD+x2Ezu/4+HwiMVymEYu5xcul2eW+YxzhmEYGT2k6Jh9Jq2qn6XlQjAZBocdLIyqUxkMo1d+sLjoOMyr8M8vieW0Eh8y4+PElFdcNPz958+AMI0Dv/n+DyCBHC5czs9c5IwQSVhycsg54MaRwY2cj0cuq2dJK0mSJj60lvW6sFxnlsNMDoG8CmkRolgS8OH7DzzlV+QMZ3dlNRDFElJCoh7izpcr63VVbjqna0QshHVmWYQLidfXI04yo4BFvaiG/Y5pOpK9Z3f+mdkOJJfZjwOZC8Y45hCQg2CdILIwWMc0Of7H337k+TLwdPF8vhoigWQj3kxYo55Qzmm/DsOOw+GRlIVPP3/hx08/c7nOeqBr0GyfxqidkNUz5imcCRd4HH5iNzhGBxIT3qmnYFpmsJ6IZ4mRUE/QKfq4SaSwInnFhCsiAY2Ppyo46vXWkqpUoxqUW1GKDq8y0BQRXo7rVJcoAj5JKhQsuYFUEnPR/7qwOinbgNVDcqmHY6KeSGR9p5RkC6hYZHCO427Pcb9jP3gCMw5DwhJDIMWEMUmBV+NK+LB6wTnnmVflU9KQNyE71UmddzjvEBGSBOVYioqfQMkYXjeYrC0fnNqtTdcuSdpiyphV+8GNrunBzjqiEaQc8+Vs9HCvKGfqdKAblDpbdDYFVcfTMdWIB9EDkxLaWB06tNvNVzrMt65fDTzZwnWB05TeFd2qp9DUgeXWcK6nsfr9ZkT0n+vfW0gDN89Uo6srv/tZ23lzUie3v/ShF1VR21BTbhTHG3WkNm3TVZsCBMUTQYy6TZrtoa1+28DdFNv3U/fObw3ZjUu8vMWDsFWzV3haf5Znt/TRt9cvqmAVDCj3VdW96VLt542qS/V+QqpQq1/XAdMfJcJsU5Zlq2+9bQPspKtsr/RtrvZb3+fmESHd/TcKczUQyjhZW0NWDNU0axwMd51UkV/9vXp13Y2LbOOxfdWbAN26qVwUXX0rGNADMT2YuIVfVSNdXyaVL6jxDNH+betsQ8ubnK1jYqqXBq1vci4J3IvgbnWsjSkeOQrQ5Js1VzvBGGrIcGt37b/qB1cnWrVXhK0OjZmlGlf9dLgZG7mZU/2UaXLjZix6mbQt+F6+aD8ajNm8cbRpt2FGps0f2dZNV9ENHFJp0menqO9Rl93NTbd7eLu3F0Tt2jaBWg+hAk/59r5STi+DW/hjmTNZtv6qr7015u6rINuPmgmNrYw6ll1nb0/VPrUb11cDEujGqyNqVpCqrrtuYt1VSe6+ut1Htjp0s7kNfD+c9wVIe2f1zmPbu4SywAzGOF1Phps+6yTcrYzowNAe0LamlNHWhn7bvCShAZXb+WDHq0YXYmd7eHLj6GkOu1KVDUoY8BZiu5WsddU7S7hiHdPa7wVEUuCp8xCq67zcW/memtzr/gGblzX14CaXPtu8a/s946aWrc5afltTpa0VvDT1lDGrEl700LZ/945Gd29449Nt/nzl1dvP6n5x9YpG+eV+nvbk5m3UfkkW1uI2Renr7+/n9z+4bpa96fax+xs73aE9K7XPO8Bftqd70Kn9bO0UjFEgtoZ46mkGjaMnJk0IIHTr7a0G1Pp967vatjflbJGRbUeirY83y3nrHX3oe18ZY8A4jPMKAmEx5cBXJG9ZhbzOiSyRNc6swRLiyH560DCPEq4iMWGzQMpkEZZ5aUlY0mGvnDsGGGzr15iUmDuFRI6JEDU72f5wQIBlXUsCCKOe0E6z2g3jjnHaMYwTJsTi3S74wYMILnuu12s5JIusq5I5G2DwnmH0HI8HnDcsgyXnoCf3GCREEoGcV4zzCJmUA/EaiZKIEnExsRND9oOG6xa7wQnKUyNJjdCWAUsH2KTUwnNS1gx7xqAcTEn5+axJeJvxLnM6TpBgPzhsCsxXy+WaiREgscwXcg7lgEuIIbHahcvZIDkS1oUcIcyRuCSGYcCOAkNiTitinE7rYcA6sH4onsOOcTcyOCmJ+zKH45FpPymJ+GXAXwdSzLgsHIeRNbxnjgtzXHiOM69xgXhhzSvJWSW6z0WWZEgpkEOANbNkz2BGuEYkJk4PJ6y3HHd7duNIPB14Gj3OZpCAdzBNDu+EEIQYLbny3KSFFASyo8Q1YrItcteDh7SsSn6+Zp5iYsDjzcBpPDIlGDycQ8Q7w2A8esAiYAZGO5Jd4ugPZGPJxrKKQ3A4AzvniS6QyqmnLbL9er5wmc5cdmfG5JEIaRWMHTHOc9jvOBz3XOSKv3qyG8AoT06+LgoAh1R4c8CNeduEUyBGlJg9B1IKpBQZ3MDgBnbDDusMh5w47E+csVib2U0D6zUiKXNdZkJcSX4AIs4YBqek/97tGceEG1eCrEQCowdnBG+EYdRMjNaNHE/vCEnX3fPLK8sSgHArrkRlTJLEnFfybPj0+YnTfuS4HxitHnjFnBmghKdrSK11TrPGlWRE+i8gWcEndSGWEtJGdaqh6k6my2bXdnlpG3Cxo7sNwxTxWQ7J9NKDb2uMZn9zFustznsl6U/Q0qIKGFsTKknLWgeVTLfoXJTATWfVE9w4srUY57Ae1mUt0Q0aQlw5YDVpkYatDd6xWgukduApotFizlnyKAxBiFGIMXf6o2hEjTU455seVzOJiwhBSgY70cMJjIYtm3oa253Kql4ljRubQh+D4SZp23Z/9TrPTZa1JKxWdaRqm2ndfile6/b61cBTTsVtzw9UtonqBt9Ch+q0kM2jqYWelU3ZuWosmy5c6M5FG5rhmQs3RKqJjczmMcT20fZcp/j2399zCdiSiUmJEbebNx+aWqAW4LoX2cqB4Zze2FloqXt/c3uvilBXr7cV1raeur+3er/ZT73x1j1buPs0hMT8m/TK28rUn129M2UGmMptotwKVgRTMinUetbhr/p74/MxVffaFLhKrn2jKNMbOdu8gMKDw8axkiixwFTFsMBkVdIBN4Zr6b9trtT7Nu+VDWrbCL2heBoZFbw5aYzulgWtzgGprywuo9UTQ1qZ9X4Ru3nT1E9l+6fvtCWcrD56o9KXdZepXjy9ILhto14tLD/WkLft3kpoDmg2u6QZxqxT19Vt1W/9ZlwZ1MptI2X2WhT86ODKlqKzQ2Gl6uLF0Lrxiiz7Us6GnFWwWqskfVU46rhVTzX18lAFrYS3mcLTpSZ4qUcxYm/6Rid8zYBXh3XzbKprUuvdQmVNnUvVM4TWS8bajuQ+3b2va6OV4kVVeZ6+FnQt42eu87f2a90EqhQpROD6VEuSoNPGdM+ogOi9i1LKTbT143Djo1gmipjNe+7+AMDWzGdsYrJ+eZM8ojbxroz6fW/g1T7x3jWvRclCQrk12kN3hVQQJactPDd3a7DpM1YNN2M0pHJwtrg3S6lfDRVVZaVkjG6yuhZXJZBBlSCdDtue0I9CmVkNAKJwbTUHPmO72SnV87z0XQfQmbf2ELasdSVM0LlbcGooYbo1K2gtUbGzboTEtMVY97NtGZfQaQFS4W7JSpNf2HnKHNj2yPpPQ/O1X+pPHR+9Wvh0Pz8M1NDHmi2zF4tV0bo9+FGWKAXyiot97R9rGKeJmBIhBjW4u3fRl13/7PbGep/c3f7GVGy/yRuf3uoz256r39V4Z7O9v/79TaTl9vrWAdYvHWx9s6xvgDKt8j3A3OkqN2u6LM4qxVz/flPkdwFLc3filW0hFc/K6bQmYY7l9Lu959e35eu2dfXjay+2b/b2Wx/2E2E7UWBbSGb7h8W4ATuMWOeIMZJdVEBJrBrbbq9h7CKcwwtmSUzB8+g+4r3BG6Ck+d5PI/M8q/dTisg0YlJknWekkr9lpVGIknl6fub8cubl6ZnD7shuv+fxfObd+w9470kZ9sejEofv9wzjpECUCJd5xa6J/e7AMDistQyT1VTu68JlDqxLJCbh9PBYuKQ0kYH3nsNhT0oH1nVlGksoWYq40WHHUcPDhpF1nrmcF1KMzaB33jDlhKTAP//5n7mGhYWATIZVImm9AAms4LxXQG6NmBix4wTDAM7gRLPIjWPCzCs+Rf7w/Xt+eHfi8TDy+999ZHQDNpsSGnjly5ef+Zd/STw9wU/7LyW8JSs3ilxBFl5fz7y+/h1n93x8/yfG8cQ4nVjDBb/3uJ1j93AkG0MiQFIQcFkWskFBBD/gvNpRgwc/7vF+xPuJ09Gx35/4w3e/J64rYV05v75yWa5clgufrq/87fUz//zlR+bLZ+aclLdncLjRMhwc4fVCuqzMn79gzwIrPMV/5a/HA4fHE/+X/+U/809/+iM//OYHxt3AX//+Z/78l3/h7z/9K9bDODmu1yfOr0K8CCGvSsmSHTFEJACvSfvaO+zguTpfXHEHCnsGcdbwoud55hwip+MjD8d37N89YAzMkvjLf/2vmLRyHCxH7xnsnh8+7BFjycawYrjklXNcsCkja0DWRe2FEFlj4i/zvxCfL8SXC9+d3rMf9xzGI96jGdImz8PpwDVdABinPX6YAM+an4l5gQgQQTJpPrfwHGMM4tS7fjc5xtHirHDYj0zDnv1wZIiW4By/C38kXH9mJfKw9zxdFsLlzF9+/CsHY+D0iDMB7wyjA7Lw8TTxw4c9xxerHk8mMTrL6B3TMGK9J8TM+TLzcHokZrheIz9Nz7yeF5Y1lP3RwDi2zVwzaQopJv7L9X/n4/tHfvjhPd8/7kr8vXA4HRinPXY68ullAT9wjYkwn8kpgImQLhBnkFWBU+ewo2+YQJISWpw7sE5QgyknKBktmySuyAu22N0GxPZWheqGFtxo2e137I97ht2eJSTOl0V18CRIsSEMxWaPeQurKq9xgJcCksRIXFZC4c/z1uFHJS4IMSrPXYx4TwOJMGA9TNNATIk1JE3ekGCH4EsCgmHQEGLMwvkyl4RsIOIwzjF4z/GgIKV1wuArSX7mellYQ+B6VQBMUmKel5a0QfUtV/pbk0CEmFliZBxUJ3TeoRCZV/1CKu6SyTkRwopmmDb4weOcxTl0PRfFRHUwB79yv/3VwFMMqRh7OjtaVq+mPOaSZrUMnNVNtZ5Gq+cIhYem8rBA806oc06qAWDa79UgqIruL6lWv+Tm3rtvK+CxuVXcP9GboBuPZe9poiBKmfs6WUp7JHdAE7eK4/3VQAWDopu1rW+0oSqFPT/K16epXxseFGX/G93ybQXqrfqyAUn9u2pvVsXfoIZlLqqy74yB5o1R5Yn0xlN3Kl4MicrxUU+sdR7kFh7nTaO01DuK0CgmP43TxqCDhYY2dR6Vxa1RlcAY1I28huuoAW+bO381lrJIyaao79wY/Tctsxo4m3/BBhDUiSd1PeXNiIO6mKtArulAb0/sN+CstV77SCCESO8VYoy9Awe2lVdPmNsYUTz6qtFZ94aiGNcxlu4EvpKAi6gnoDHFg8Dk5ibbA5IlqgdKWE+rValvJjf5YuzWfzllNfozjZdF0DSgxtasa2p6ZBF1QxUKMKRwsDV1XGube4NW+6qCgBWQ0bmlhpSg6/+Wt0SN3F521RAo2DzNKlhUJZ8tFBhZKjlhiW0vwFMXzdbNBw1RrOPo/VCAMD1JqU2ppyuadaKOeQ1pkhb+JV07oWSdo4ar3MMYm3zXtSA3/dDrCSpr67xhm9ym89xov2wyvhVSFlutpSvz1JW4/FazIitSAb5Lj78p81qSg5pli+3Upr65Gcel34012Fz2MaQYxxqKVYdEDWPb1k+2NURWoXWD2eKJpL259VXjgctbf0ou4HrnsdbCWOsa6kGLOk+6jjXltRZ103YFfLJNXhS+ugojlH0lp61+UvanqlHpCVvNTEcDmWq4XJU1SSCWzzK0cN9+L6+HSxu32CaH6vyR3Dqt88yr/7a1tc3Uco/tDiDox1hD72yRM1KYCk3RXfS5N3yV+gORe1DqZo7dTTxz8+XXZdC69ubJTX705W47ttRw0bYGe23q25d5qx13n9c19UtX/5Zej/jHOoV0v1X5WWpv4ObwtK1BSyXSN4XfKQssKbOmzJqS8hjXPtxQuTfee9fv8KaseCscuH5eeyfXTaov9v7VtntRFj39r3uCtdhh1BCRkvFOkhDXiCmKk3Mefxrw1qoXUAzkGMhRDY44OPLgyYMje4MYYZln1mXlPJ8ZvGc/7Ri8Zxw1Y1LOsfCTWKIIKQaWsLJeZ3JUPpcYV8JqmK8Dj4+PSu48eebrhfP5jHw2WDdgrcNbx35/ZJp2mnCo7kHEtodZ5xkmgxsGxtGje3TGD55xHNnt9jh3IufEbrfn9fzKGlaVH9aRBF4vT1zPZ5Z5YXSO0Q+M04R1hpAiU4D13TvWtLIQWUxgTiveJJKpWe2KnuIcp+++I4hmH73OF9Iyk0LAO8uHh0c+Hh74p9/+nsf9iePuqEa98WQRpt2ohOQm89v8e959fOT3//SDkpjnRIqRy3lmmVeevlx4fVmY5zOffv4zMGDtyHV95uNvvue73/2A5JFMZI0w7GyTYdb6kvVQx8saSClyuQTWVRijKevEsN9NVJI+Z4KGSY2eP777nu/4I39MM//3//r/4afXJ346f2ENQfURieTLlXxZkPmCRKVQMM6BCaQ48+nvfyOGhU+ffuTwcCTlyDju+PjxB/bHkcd3R9blwsvrEw8P7/n73/6mRjmWdV5JayAsS0sEomHxVZfNG63EbiR7mCXwt+cfeZrP7F+f2Y0HBucYnUVyYBoc5nhAnMc4z27csdsfwRier1fl6Tpnljkyn6/M81lJzmNEQuKVK0MWhpwZUiZOe9JwZRh2jNOeHcIgwt57PuyPhDETbEQQzC7jzUg0K3m1ShodA9UIcl6BJmuzgoRWQCI5B2JcWMSzRo/kzGl3hKdPSqj/tDC/PpPXGZHAp2nA5ZWPfo/xA8NgmV+vGOPBeBwO7wfc5PHO4YyGWK0lfNJax9NzYE2JkCzT/pHjI/z8eoUYdT+1ju38UlSZ8ZaYE9dw4flVOE6PiAyAJ6wz3o/s/cDj8UQImdfztYTPLiRZNWQNwQwKLBpjMc6qJ5Jz2AJspJTU46h6lGS2f0WoNlOsSJRNtven07S9Yn/cczge2J+OGv64RIIYwpqRoN5kIuW9eiLcTkYNiq+ddgOHcWQ3DmrnpURIyiFsC5dqllz+RRD1GrTZNp3ZYJh2IxlhXlZiyqQkxKygmvMe7wfGcSRnYVlW9UhKYLBYo+F60zQVOyHinPaEx4IMOKc20RIiKQshKMCkSbBckcOFe0tUZ4spNSoP46pNp4kRJJtywFPDFNWTzFRb0KRSXi58mBXvEKxx/JrrVwNPKRVS8Qp65M0jQaR6MFDAkToLOkXGbJ5CtrhHQymjIVjleUwzBnp75peu3mgutbp9/3YnVNCjGjpsJvvXd2p4ghrhpjt5Nu0gNZWbqxF2E45Sf9YXFGWunpxv7ynld/W49R6QN3/W59/qoht16y09+NYGevvBWnr3WQWJ+r6+U89bner5eRbZvJ1a0eam7v1P6Srd+rVadMaol5rRxWVtF8ZF9cdrM4Cq4CkQYDbDJks3LGVeCOScMLmE2BVXRXUFzTcEylQjC/lq3qkrpWnvr40S2drTnmjAGlBIxesa6oGnG483sz3b2tfK24w40MQA1SOg9SlbCA5wW3b5W+d73saoejC1AerC+CjhMgVAE1O4zzpPBKnvM9qjRkRdNnMFIeuC0P4ypS+q/SllcLesFWDFbn3XGaFtXecSCCQUBadvv1bIWLuRGtYRs7abf7LN1e6zvHX2hq10S2XjSKmysDdyqlFb+t2ClVzzNBQP2TrHuTOq+7HfxkvnyDYX27rJCiLQxsC8OQ/rM+3ZbZi7jX5bK7S1UJ5hq+TGxfL1PKl91L+5gXPdHtD6qZsW5bemuErt1/KExqzrjdbYm/f2wFupRjdG5ftWKG0+tRHsKlw9Z/vxESkZ4DCaEMEYNTBru+uca+tVNPysAkRbK7Z298K5q0vr2yIDt56phxi0AazbrTEFcDLb36Z7c61oc7E2Gz9hm6cFdE7FUzimrW9z3sbZlH5IUgApKG7mm8yq/V9dxTc5KDROnjL3tiZWeSA3n20wwPZ+YzYOo/qFDpu0fmr7gtwT60vbc27gJ7O947bXb9fRL1394dHNQVIni9vVzcm2J9697pcOlf4t101dWsnd/O+u+roavl/1iXqQWMe23f9GBes4tenNrYx8y9tT6k2FkDZlIaRMSErO+vUB340WtM2Rb/TBt579Jji3Ff3Nx2u0g+4PnWDdhBLOuhLbpcae7nHaGuss1jrcMCpA4x05DeSgoFAKgWgswVqigWjBO0hGSCaTneAnzzRO7Kax7fVSYu0tKHdgyuQQyVENMYuQYyBaiMtIWGbNxGQN67pouFxI5BLaP7iBeErEfVTeoLKGEolh1FA6jGaZM6IhMCBYyfhhYhgG/LBjN41oqveBlMGaWU/rEUiRnGYN38kB5y3TYNnvRqwxhGTxFr5/fCRIJJB4jReuYcEhiBOSZEJcWXPGGMdxOrTscTlfCVHIIbMbRt7tj/zw7gOn3YHdsMNZ17JxZQHjFQwcc+Lx/UdO6YQ1CUsGycQ18Pz0wvn1jDU/E+MX1vXMdX4hRuX9NF4YD5b36QHYUVK/KfdjnUamejkY7e8spJiJMWBcYsoO5xSUzKNBpBy9GjVMRzOwPz3yODo+DvD5OjP6HTkJ5+VMiCsxLUiSkq0rl0xoQE6IBFIwPH35xLJeeXr+wunDe6bdyDB6jBgGO7Kfjhx2O8ZhwohlWSPzshYb6YUgEAvgb1D5UeVxQnQiGjDekG0m5EBYZq7Lwvl6ZXI6T3bjwN5bjJ0Ig8Nbj/Eju8MRd3xAxBDmlSXDEjNrTMQ1EteonK0xavhmClyAZ4TTMJDXBRkXdtMRyVk9UhB21vOwO3A2M4Jgk8XbETMYJNQDoozkYn0U3kRrBWey8ioawZAUbCGw5lWBchEGNyAhEy4rYXkmhxnJC8SFebky70aYdlhvcL5LICNaD+u9eh6iQEOKQgxWs1TieL1cWGJkTRY37BmnhPOTgnw5tfKkKdqqK2cSaxQu18i6DnibGP1EiiuSIhbYDSOHacd+3DEazypG+R6ri7t3TeaYkhHPeafROMmSxZDj2kUOVeF5q58olUenpzU9oWgThlK+0fDT3cQ4jgSxWC84P2iIpEgBnwTITQ4iNNocj2U/eHbjwDQMOIx6YJXkOtZqGFz1CspkTPku56T2QiG1HaeRLIIfHWnWvTqWPcvGhPdKru+9x1mLmBorVbUaUxx2qh6SqYfQw6hAz7o6QkoKaiXBUTmdC39g8VTPklV3S0JyGoacpRzMiUDe7AXj+n2v6mzl0FxUe6XqSHXf/5XRdr8+1C7qJCwWnBJl5cK9IAUwLKefvcEuop4B7dTVVG8hqGjBFvdYx19jPuvfsKWOTkYawKBF3IeglQGrE5TOUKJOWkFSwes6w6O/DOo1Yw14axqSbEohm2JKUwrLuG1rp15vvKBAGXrOajZBYqpy8q1x+BWp6bbWltfflXdnR24f/mKJ0Cui9218q8161izq/VL6xZlNd668HbW+/RTPzbuAzSCg62egMaXHREuJ3VVZitFmq0CtiqBTt3BDjfevhtPmaVBJ7reuMxjjMCaXjbh4hOSsQonNeAHa/Ks/U8qkpEqkEhnX77Vuzqq7ozggVvLwmtqymVudsv7WgG0eKNWjUInEt1C0GvKn3adu5+JSt470nc1DAoNpyLYpxmQNw5ISiqX9FqqymWlhO140O5tuwCBum03VrbMa75UsUMqpNlbTQZMKgk+9VwVgJt946ZQKU7aTbVYWkNIWMEBbJE3pobQllfA4Y8BXo2ezglovV3JxaROxfN28Mkoh1WAs5Na5eIRQ5nT1yKtZEespRWtOqbOx1StKQ/9q77l6UoGjeppoBsBY5kkd59rGUh9TAIDqtXo3t5rx1ykADc37SrpUsKucXNJ7z0nz8MmxvLM9J32Xbn1o6rLe6tR/v4W7Oiox+jAOujED8xxaHXvvxFp3Y9TIE6ScGGxeir3Ra43BdRkrdV7npiTnUh8N9639Qtefpm5vulmnqMCU89QT3jI47TlpHze4npoF0ZW1XOvaIofbTJfNY86ocVhvrX1XAamqYmo1dZxy1vWghJJF1lrIlcfBOmqKrUSXrj5BXUVVB1DZvfEyJjaZ3YBkNlm+eXoWz507pXNrRg3XrROCogR1ilNdf6VttvW1ad2mXqCuhdmlVNKg58yVciKYVTHMWUnjt3pt7W2VeFOD+OXrHnzS6sm2CG6K3zYSnV7b/OlDFzfg8r/9+hp8+uWr7t86loLrgG/KZ296oJcHa1Majtutwe1eHeMbIF80/fcaM9clssS8Zd/8RuW/0ot+RftqG976zJi7sa+/di+q3ruyPagTqnj6ZpOxVsM3rJT08WjoaUKQmJDBIIMhZkuOEEW5QHIUYhAkCMFkzDUwrStpnNgdPaeH9xgR3i8fGPSMHrKoF0uGsK5ITCRRnX3AKJeT98i6MoeVGFYkDQzO8C//9YIfBnaHI8fHdzjnIScurxeWJZCT8Hn6hPeedQn4cpp/+vjI8eHE8eFYEmIUbxc3MA4ju90OY0wJPdmx2x9KaPDM89NKWCPn8wvGJ7CZ0+R5f/iAtx6keIM5p/2ZMylH/vRPv0esZtf66ctPzOvMNcyMkxqfn18+8+nzZ+ZlQT698Hg64f2ew5hIZsLsM799/46H3Z6D3fH04xPLEFimxPXlr0y7A4fDA24aERGWFHn48CcsQlxm3j+e8M6yXC98/93Cusx8/Ph3Ht79hR9//MSf//xXwssr1/nKj5+uTKfMu48Tp8cd3u/wg2eJi0YchVwAL+Hl+cxidZOcr3MRc479UcG9cRowSTNl5ZzA73GjVdvFDgoQJcP/7X/6v/JyeeGvP/2Vv/z4Lzyfn/ny8ollOLCuC+fdE4ghxcjzp0+EcCUswuvLTzBMmHHi4w+/Iyclkeb8wuHxgccfvuPf//t/x+Gw54/f/TucTJyXK6/hyrMbmccL1irgKIh6uxghmwTeYrzFiBDXCzEYDdleQqFtcEi2DMPIfn/gh9/9wJIz53Ni8jumcc+H/QGenjifr/y//5//L5Z1JsaFNQjZTdhRkFU9+ogR4sJ5nVmefmZ9eeLxcOTjw3s+Pn5PPsz4nNgdjhqK+f57/vdPf+Z6Wbi8fsFOvuyNHuOLV4izmOw1c2BeG9+Sk4iViBFHDIvyqBYy5pwgr4H0upJeZsJyBhcwJhMJDIeB43vNLjn5Pc4OPNo9xuieLNNRFUTveXm+crksvLxcOZxOiDUEEj8+vbCECIMlyEh2e/z+SMQgcdUAgZxLn8QCfIJYxzwn0pL47sEwuhP+4CCuxOXK/PKCTcLOjnw4vuc8vZLXQF6vJFwJ01dBKNZg/YgfR7wf1K5bVw1zS51+aQdVCmzWeWuKFVR46GLxjhIBYt33NWpltx+ZdiPHhyMYy7wunNdIFoMYj58mMFblWlOIdeysg8EYRmsYveNxd2A/jQzeYyiRMGHLAC5ACAvF2KWScGeyhsVaBdedH3CDL3xdV9Y1cbkEUoJ1jFg3FGL0kqjKaCmgHkwxZpZV+b9AwxithWH0eD9hjGEXPSFHpHg7qZ5cvZccm5e/ej3FLNgMLquto/v3FionSEsWpaGR6t2fUiQEyOWUvbrZ1GyBWsd/fP1q4MkUjpCseeWVnb3yB8nmQm+KB0F7zth2srid2hcl35Zwtc5zqg2qdLt4BzrUj9rPZhea9rO66zdbqRqYGfRoxxZTWsu1nf7Qiq52rCnGdxbNSNIqqu2oP6vyvwEe3Na59k0x4nIFOKieJZtXTn997UvUj0lRNo1pzP03X/Z/1qre2dECms2olX2vZJntRwd2CGrc1yG4MSa6d2YBxzZ+Giahkzjn3AVBbAVV479OCCn9rMaV8q5Q2o6hGUsmS/M4SGk7EVew17a+r3ZIRSnauJVQOmPAOof3rmUYuOt0ne+ZFpJnmhFUerGbA5rlvayPjqW8AgPa7G1SW7sJiR5o3JTyzcOpEmVuV2+E0MrZDIAKEGy8KLCtX3XjVoC1ovr1dErHz5BibgR1FazJUjLMlbWh7qeQJTJQ0ri7YrwVK7ga5jir66vy7xRQJNcpZ+22Pq2me9c25RZjXEPsqsePKR1Ws7rV124yaAPGa9YzY7UeUDJzytZPlo37RN/dBgAlAaxGs870KgeFvBnXHbiuU7eurSo7RQW96UKHDC1UsoKIKjqESiAPpoFb0j43mxHZyYIqD2u2RwXubKtPfdaa3PidjNvaXWW39l3X12WN9uHMdZ5JmadS+46vxNNWv9KGPgRS56XRk3+TsaYDeEvfNFFcpWI14Av6sZHGmzIXyjprnEuVhJ3bdSGKPGQEk3I7PKljIKLZSUxdbKUOygGoZeYEuWRU64HuhmnW/3bbSivHmMY/ZNocMSUUSZCatRIwWVoYnfcGk7e9sxr1da/pD6YqAK5eRFJO9WrGSNNEZU5bBpUY1OMplUyIVeamVOfUFjpdU2dvYcSmmxcq+xrQ2MEoPQhTa9KDE3WsXPOq3DqwvUHqXKz3boc80v7XhaTmSKYQcGYNFUzSHSi1ibvVucmmblL/Gp6k/p7qWXWvAvRr5nbV1Pff79e3e7G5+70+0fjVbuaHaROzyZnmIar/eatVPYBW909Ty64N6Oq1rUTpyqDpTjW7p5aJZo0snKIN5EyZNUbWcnKcW31b594vpm7W3fXT111I3Tzf/K49X8dfvh40imxiO6nfxrZ/ThX8vAbNxGRsSVxdTvcxEIUUy4HO4DGjko5nOyCDRWxktYbnJbK7XpBh4P1oeXj3wG4YsQnSdSEugevTKxTv3hBWhmHEOcduGsl5YBpHnLOc9nveHffEtBbvRt3zR295PCl/U8pCWK8gEUtiXRZelxlrLOMw4UoqcmcNIpkQA/ihke/Oa2RZIy+vF3bTDj8MLGsmRqNcfWIwZlcy9ln8kHEu41xSHcVavB8B9YwOa2AYlTfleDoUg0k4jAf1cAoLkEkp8P3+xD+9+56QIksUjPcIhpfxgOSEEWHvHB6LWWC9Rub4ws/plY8ff8c4ZZ6nzMvV4v2AdQMxeowI4ToQgxqv3j7inbDfJT5+d8DaE6eH79kfH7hcXrheL8QU+f77Rw4HhzUR79SrxA0DIQqQCEtgmWeefv6i2cKKoYdxWOMZdzOHhwO7/cTl9ZXDcc/usGf/sC+eqUK6xrZnvb48MS8XZL7y2+Edv/n4QPrNbwiycg1X/vb5b6wE1rgy/n3k/HxmuQakEHYLjsvrM3UniddImL9w+fxK/HLh/ft3/O63v+W43zMdd+zNiZ2fuJxf+Uk0a25Gc9Ala8gW8uBVzxIh2YiNgomCiTQ7CefBCGs68/PnjB1GzDThzIT3I9PzCwZHDJlnA37aYaeRcXUaJi2G5XJRseYdBqee5pJZlgtXhFfgYdyx5AxrxF5mGDy7aeD9cEDGxIu8EIOQTKJm4jGiXtbegfOWg3G8O+z5eDpxPOwYjYMszMsFCBiTEAvnJfL3n564Pr8QL7NGXJAQk5AYuFwvvFxeWY+PzDGANRzHB1IyxCRcFljiyhwu/O1vX7jOgXmO7A6RROa8XrksV6IksslECYS4sqy5RBwZKHxxKuQF4+uhm9pVRhLzfGYeDGEdyXvlbHtNz8QwYrPh3f7E+fgOkzJhfmEVR8qpcR0rLmDJSbnkYoxKph1BMxzUhEhZXY9sx+/Etlc1Op6mj6qMHQZbvCY967rqO1JmjkI2DkzCGk/KGirZ+D6c0RBmYzgMI/vBM3nP6ByD8wzWK4eoCNUbPUvV5aSQrJfDcEnqceQcmhFX90XvB06nEyGCcyvrGlhDImVhGK+4IqsG79rhXUx60BxT5joL3oN3CWNLkgkM1ioF0m4/IFZYgytZ9FR3D4VrU7fGohtTvfFudRYouq0xmo2+dLK1xT4wgm3gWLU11Pbyhbvb/kqC8V8NPKmRnjaOhmLv5n5zLnpi1V+0IVWR10kidzffGzE6wfTeqon0qkLTJ7qrKqHbY1+DOI2DJAMVdCon9LZWp6tZ75llpAIBnWXQlJzuhLh7Za/zbC3uwo6gKSP1NLq/btzU+8+7Ova/9Nwz7eO3kKy+3zpjR++8qzDQZ19pBhLQO7XL7dM3/VCnYW7fFG6R0vheETN9xp4edOrKTaW/W5iUkUZcrho1bfLVw24xulVKNejvOrD2lRShYowtLpuuuRFup8Cb0ZIRTIZsm35+031ZwObqfVOVcX3XNtydUV8MIlsUeMnSgC9j3iAvv1lPnSFrtj8q6FG/2wBiiscMWOsQiV05NT15bmvXoWENRhQcaqE2uXg+QUf8XnqogDfWqRLezwvTBkHBDlvGSY3TXHD0Yp7cGPVKyidIcTvXQXZNxpR761jXkKcygTcfu6r3b2BQ3fSkA9EUPFHQYAP7urEuJ0PVaFIRIQ2sEmr55uZddQ60kLLSJ3V21TnZj2kzVMs7ts8K8NyAshLbYSjh8N3KLOs938xpoYVy6rZU+Lw6UFP6dusv+Q5F6uVD/0nrF7mbAzel0eSXNKViazumgAZlM0w5N69EfXRrTwXQaltv9pNWptn6T6Bycxk64KkY4Jp5SQrBtWljfbvB8NXVwKISMtpkYDXuS12Ldd32GJXLCqRsY6J+eptdvc3H+qlxBl8AWF/DJOq+RV3XVYkvszN38pQKoOs8TSJIlW15A2diTEUp6sLtDcSkMiInFGCv4B11zm1zaNuZTPfzZuNhUyb6j01bH1s4sNloAEzZr02345RxU7DRbvK165u65pOkxhFUzhboPPGbTGr7nbTA85t1fTvb7ptwt9nXEqVv693+L/0nbRbc9Vn96nYvbuV/oz6tn7RyNwLujWl996Dc/H7z3k6n21r8dX1Fvq4fpS4Ve9wgQg2VTykRYiqcGX1ofW1Dnf9yW/LXXX83ON/4/a1LuO3/e8HWFVT1EFPnuwoGfSgLOdZkBXqwpsp/4bRS92LUHNXDISUdVS8HsZ4kmWvIPF9n/G7HaoXhuGe/PzCI5WpfEa6FRkVThudCpuusYRo0DXzKGWM1dC0dJmJaWNaFl5dXBZRGz+EwIRgNBUtBDwOskNNKitqG3TBo9q3RM5QscTknsvgSzmLUOAyRsAb2+8jgB8YxEIMwDCOjH0AGvNszjQbvNZ37NG7g9O5wVAAsJmK8MA4jh+OR/X6vOoGFnd+Rc1SC8zCTciAdDgSJxJS4LCtrysSU2DO29WxWTZWeYkSiYb6sXK+BYbjiF8H6yHmxTLsjDw/vSNEgCdYLLNfI4A0Ppz2n3cjgDYfjgDEDu/2p8GS9Mi8XLtczx+OJ3W7AWg3LGgYH4kAyq01cQ2C+zjw/PXN5eSXFpLxabsS6gWEMhJhY5pUXF/jw3QfeuYHxQYHMNSfWJUFMSIx8+tcfiWHGSOC737xjd5o4fNwTXOISLgzHgdkuXOMMe4f78WfOL1dSdqSgoYjxdVVvH+OIKbMuK5dlYXm9Mn/8jkkGvvvjD0x+xO5GnHVM40RYAmsOpJxYSQQjGhbqNRQo54wkdF6RsYMt3scOM3pSzoQQeLk8I9aR1h3GjGA8xp2xZsTiNCmBc3gDjoQvvGiioTrKd2hcy0weU2AJhnkp3GYY0hqxa8Tt9uz9Ox7HPQg8jy+c88JKJBkFig0GbwyDtYzO8DAY3p9OfHz3yH7a4cQhEdacULXekph5PS98/vlnlsuFtK5gFVQ0RsO4LvOVl8srSwp4cZjsOIwK/K4pc10zr5eFp/OFf/3bZ5YlESIM50DMiZf5lWwzmUzKK8kkskRSTsVGMg10qiC5EllbjETdS1NmXq8sqyekgEYqJcJ8JWeLNQOHcc/D/khaF57sQJYFyZasg6kyOZsSKRI12UFMGvImmy1QPUl7e7TaOs3zvKpR6BqvoWqarEBly5oiISZWKbKyyClRQkndW6xR4AnDaC373cBx2jE5h6eQiDuVr9ZUxuItxAyDZsN1Tr33KIeVvb5u9BByt99zWCMGVIeKyiU8zwvj6PHe4rzDJSFZgaQROSnDuqZ2QOgaP6ACdA6DmSzYAecNCSWHl7jp20IJ9SwqlSbskKoutD2q6qPKfan7lC1e7wo85UafslHC0CiUbo80v339auBJ1avqilWpm3NTyDAlHES7vjSiGjCq2Kk3QzVWNoNhI769f+emvJYRbLVoe3xTwIsCaUpd7w0XSqgJNaZ48zFx3L5GB7cnyRJqIqp75S2KJjWo4QRbTTdlrg5Fy8xTABMrNTqn8xy4Mwj/oeLXv7EoWtVDAeooFUW6v/uuYJGegvWm5V1LuLnj1yi19b0B7WedOYVjgy1wQv/ejL/709z+7RsXRl1UmzGS8mbAVwO29qsxSrS3Jf+pXB+V+VKNO0FjXJPZ0uy2sS2T3Zqtt2KuAKtt5dYWJNk8r4wxlVO0lVWLzUKLHCzVLae/ujaqN89GPVRP6IsOWyZa9YAx1pbwkYpK6+cpbv3apzDdUpKKbjQ1JsfSFodATTbRPHJD3MakIuHVwK1lx3Jaiyhp3xYaW7P85Sb2tE1ZAbdNQ6fuNHXttvoY5Z5TTru6UXU/0zbfio6PIDhvNsM4506AWmrmuR7sqVw0OiZsRlUdsDYdDCJWvSRyHQ8KkLrxRnlq3Lst3ooq62pGu0rx1IAqUaHunBKZ5pTLu7a61csPKrtizKQUqZk7q+EfN4yx9ONm/DcWWCngFQnJW5dS76ttom5ZZR7opG+gH1JizCuxfe2walF2Y9bn+hM2z68KFpj6bTZ62uu0jBx6bh7bvBt7YGFr681CxjTpKM27yKGk+NYokFMVM0tW9+kKzIL2T0UejSnrs0qlopg4JSO3soWaVZDQlPKr16BIXXpaRso6WKYLw9y8n4ySdZb+NNbhvam6lCqwUrMr1ipuoBrl5DkikFPZrw0R29yxcyyKaNzC6Bro1NbTJhtqyJx6Dur4pRIqnZvAa8Kh/GpbBTfeqdt9xNw8dXN2x/YErU/bWBcwxJT9LcnW/+rFUT0Fi+ZSpyO3QFkdUZ2q/a7VH8BA3Y3q361mXRXl7m9qKXLbZrq+vemLO12Ftg65u/Omp28+Kw3Z7ukKbYdjbyhl/Z5f/xY2HWeb29sTbcz6itiuf8rnTeQU8VNPkuu5gU4pzdQTUiJEIaSuTuZr/eWrfi+ffd2y//brXv9pDesmgCnzvPIc6nabafHhTQOqfVI8WdvEF/UMNmXOpVR0FtsSPZDhfF3w/sLnLxfenUoK93klvM6kZQVGSAETDQc/sJt27HYT4zgxx5U5Ba42qDE3TORLQmzGTTsNRyvZr9Y4k0Q4Pe4IayAGIHus9TjneTwdldx3v2d3OmqmMQyWjMSVZV24nK9qgK2RP//zvwKGw/HI6CeGYeR0fODx8R3jOOLcwBoTSxQYdoSoacR3DyesM3ibYQY77ZmO75RwPSZyjlyvASRrNiZ/1FTzcmR5ema5XrmcM5frlZQzj+8eW6IFOwlhXljtyruD07DbJPz8+ZnLupCMYRdXTvKOh4cD5/OV9Rp5/XLl+nrBYPjuw3u+//jA4TCAW1WG+z2//f3/qGBYDqxB+2NdV/x0ZBgPDNPEy5cLr69Xfv75mWUO5JR5/3ggLmcuceF8nvn48T37vcUPgeX6I9ezYNzAOgdeny88P1/Y7fdMux0mZSRFclj5/OPfma8vxDAzTn9kmr7j4+l3JB+Z0w7rIY1KbfIf/jDz06fPPL288unnJ14vV67zQlgS67KyzCuwh9Ujy8B1mfnx5Ueu/9uZh88PTMcd04cHfvfHP/C7H37Lf/oP/4nrfOE8X/nz3/5G9pZs4BwXLtcr12Vm3QcYC//OIeGsZ7K+eAXCzlquYVHAMazIoBlaTJoZR6vhbVFYX8/MMSjnVo7gAxyVRydb2DsFKJ0xyOWKGEcYHOa0Bz8So3C9vuDTgt95fv/D9/y76Tf85z/9E397/cyX6wt/efo71+uVuK64nDiMnsMw8Nt3Jx6PRx4PR95P7xj8hHcTT7vAdc2cl8Tn5ytfrq+8nJ/IcS5ADxhnwXoQz6fnF67ryoeHj3zcZ2Q0DMuZdclc58jzdeHL+cJPT898unxmjZkslvW6lkPchJBAIjmtMJiS1DlhHJq9zzgkCZKL8lD44dKyYlCw4fOywiFx8p7ff/jIYCfmc8YG5WzzFk67kbzueRyPmJAwEcSsxSxKpGUuh+oZiZ3Gl9RzZxPiqhOn3HyS9WSrcKdJscHcNDH6Ae8c3ntCDMzLpSQk2HyIs2QkBzKzylNncCSMEZwz7L1l8p7jbuA4DQzWkdfE4AcGP6BHPGpXxZxQJwVHStUj3TZvnxo27JyCn6nYkKNzPBwOjG7AZMP5ciWEyPU8k7PyUflhz0BECIR0LbpJZgm6k1pvGNyAdWpN56zAr3Oe0Q5Yl1myJeUVqeNOono5eScMDgZjGTAMwCAU5xrBEKkOMnqo57BOnRRsofxQMzcTA+3g0RhLkq9YnL95/Xpy8Sxltyzgk1FENOdy3lr3T0CV+DoIut6rQorQCH/1zs7IvlHytrIwm3HTjPjyzqZs1RPOpqz1vg1aX5HtxLgadoZyeGRrKEtVzkv6a6ncJNspS9WrsqgHTpbiKbhVd/vJZr+3G6QzStqncgs8dCZSf90rkmrUde82pihobIrrvUJ7U5eqwN8pyvXvZivIm5OqjdVX2tftdQN6tdt71gyop8X6ZdVGu/ADs71EPV6kK3NLz95s21pymXOqmxWQoTSsPmMKcXZFeiULMaRivNS6bifMDSihKpLF0q6D341gdUnsWtpqXRe5s1YVm0wDuqR0bLUtKndTK19kA5ZElaWtc3swyZTfN/PAoGFzdXwriXkFW5Twunh1FdK8msUqJSnkhaWexrTXVg6VzQja2qJeP6XfpA5nB7puQ9dZV6bNh2ovb+6BW6hqJVw0AjlWIMI0+bTZQlpeTiV22X4NUhd9vvMC6a2XMp96L0ik2QHUdxU3POc2rrrWt1JaWn6a+p21bZ3VaSTFg0SK225dIKYnzr4zECtYqSfMeTuZKf2r4TDVI8w1AK1PuFD5mPrsfhUA1fHbQg9vG15ljkCCmtGtyqAqgTUjaJkncuup2c/B3h1YiueR9lcx1sQ04vQmyYQW2tjLpOb1Wi49hJMmaiqnljNbmLUz1dtI2tjUUtreAlRvmjoeIkIuIJRGUJZd6Qbd1x6RZnhun5eZRzs2qHOyPlfXQyHEp/TZNga59aWt8oMiN8seJLLF++tjGVNBU0E5ZdpxQAXHDSlbqrv5DfgkKlO2bt5k9X3fb1eRqlJ9QW77obnVU+VK9fwyd2PbrYN+udYvUQAsl3Lq44LZQnpVkJa2bHO2ymCgeBbWqgtdl7fqFEhYdY6unduPbZ3QP9u89Go/3B+/dK1qa4dOVva9+vbP+tyNzOjAvr4d/YHD/Rr9qk713ia4yr5i6lrZhHwv2qUrz7QxKB8agaKHCUUHNVJA/X587vYPKc/2l9AOJbtW3XXOXf0A80bf3pd7X9z951L4FaUCRAVME2zhiLFY77f9unLFWKueT2VjFQmaKWopXDhWgVdMkTk5E2PmiuOnH79w2r1jPWYGYzHZqieINRjnMJLYO89+t2O333H6+Mg5zMj8yvn1CzEmCBHnJ0Y3Mu6P+HHAFgJrOykvSUqJ3W5AsrDfT2Wfs+ymiXG0WJfxru47un/kcsomORLXlfk6E9YZsKzOYiYN6RDZM8+vrEH3KDs4nB+JZmSOiXUJpL9/aYc71+tMSBZjZobRl/DsEbErKUdCTkhKGGAwjiU6lmC5XjPrqmNjxBedDAbv8fuBaYy0OS2iYXtRy9sfYJoyzs0M3pB9IqWFZbmQYiLHmevlZ6bJYYfE4TCy34/88NvvW/9ZlximpCTs0x4xliXmwguq6cxjCDjreHw8IbJyuA5czq+MkyCcuVw+K8dmNkzjO15zYrmeWZcr7969w71718KSp8nzP/wPf2BdZ9Z15v3HR/bHAwZLXIUUMnKFISuR/XF6YHjc8eAvTPbI8+XMeb5yCSshKHD29MkS15W0rsRZdYazrITzzwxhYJdnxt3IuiykkiHdieO740eWFAk54/3E4Xgk7CPPlzNrCISo/5IIa1bPduc9fhw5h0X3Mlf2yRSQdSbFoOsii5KFp0i2gqAk0MPDjuPDgdPjiT98/z3np2e+fPrES0wELGEYOJNJFvxegdYkwtPrM370HPZ7Doc974YRK0difCT4HTlGbAzsBwWePkx7RgZccNjocW7EuyPTPpNc5Corc7owx4RYwTqNzMieZmaLNURJrCnwfH5l70b2fmKNCyFmYo64AdwA1gvZrkQTlTaJUOhhMhQQwrhQvFdUzmjiAj18j2UvxDqkPIM3qp8YWI1wzfBlTfx8nRmdkKNGdZicCCGyrFdiVP6kHEtSm+o9Xw50KbKqZR0B9e4ph9BVN9FoiRJ+Z23TWxXA85pwwZX1KhRybSXOboe8VZnNbQmr3BQQSVgrDN6wnzw77xm9AVFPLLJRz/rOYaYSpJfUSSXLcrEjO4cPUwReDVXMKRNKOLUVYT+OSEwswBwiYU2kHJgmr7p3abPyGxZdwFiMGbBuKuFvFsmWZNQujUlYY2JdM2vQvUBpK1QPHzwMzjB5gzdW+ayMhhjW+jabpMw9rHq/bXaRHoxLtkg2hJjJSXVTdb/5B/tluX69x1PZ/avBo6SnxbiuXkedl5UrhoOIKaCMGgmVB2cDmapa0hktvK1sVb2k6TCm+0edW8UrQYRmUbSbu/p1j9YT7Gokan2q71ZV0jZFR4rhlcopfTIbaFYpfPq3qRFjWru6KneGxKbkvqVw3t5/q1m/BVFJsQS++ubuA9OVvClvcnP7N6dSp3Tf6HG94lbGqj8XrmfUInVMN0Or8sKYTult/VUNqM7ApavfxmfTCYDyeeWNskgLjavGQdWAW99KcZe8KYVNmb0zeNrpZPXwAza+p/KvzKsM2JqJoQCcxtqmPOVc+Sp0HmycZdu/WolqlJXpuSnisr2v/SuG1Ma/1gGdBpQ4vS7ybaxycVVKZZ/owScFRDrvi2IM2874yG0MQAliWwe1quWt4mUMTW8pbT9M2TSqF6UBU2KLjVMyaFX0pbkgNgCvrssyP1LKLeSojSNyI2C/Gv82P6T1ZzV0kkgLz5USWlXHry6S5v1UBq1AMlTz1PZtLfcZKZ4kJSZb21LWRm1fAVXr583DRNLG/VbBxAKib0aebf3ez598M4c6j79+bd15SbSZ2QHCNzJzGwY1Qm7Gd4NkN4Chv6SEjMrNPXUcqtBpc4379UJrZ73PGj0wqN6SzWOP4v0EW/Ydtr65qXb3fV0Hum/omNTn2tpqArWXsRlMTVGwbXCmvq9XbkoDK3+RKQcqWpBtC06MagOtzFJsboshF+Cp/KuuopWkXjQjXU7dDJUaemg24vAiQzaMr3InlfnZjf42nreSuztPuBvxrb9veM/qWq2zpI33TbG3cpoaZa/t3Lyiqt5gNvBJqrzSz2nrWtrcAm6SnNxc5nbfvNmt2o/yabeutuVW+RXMN8G0fq20z7u5fVedb+7hPTfmTRm1H7rP7gHuutVuonobyG2X6tZAveWuPm356gZ926bypM4xafNPx8d8VaetxK6SfYdRj7tMkyXf6pOvSn3zXf0Yfl2F9oygXr8WbFWUje4/1iqQ1A4zjGC9xXjlpRHK4UEO5XuDtaM+K8UoyuoFm5JljvDzj5857R4JS+Zxf2LnBpz1enLtHE40a9tunNhPex7ffcSEC4uHPD8TCv/Kw7Rn9J5pHEiibG3OGUavobohBsZBQZ4UUiPq1xAsg2bFLXQBYkrbVa+wkkESMa7q62UUjJKsXEKYxLJedPyNZT884NzImhzXFa6XyJenzzir3gUxBkI0wMDxtGcYBybnycaTEPWSC+pBunMjMXuSDIRoEfHF09Q3mTv4CTepB2kMi8pZEU5hR4iBNQb2J8e0U94WN45qiJuo4NO8cHn9zPOzenoPE3z8+J4PH9/z+2FfOHI1XGYcLGbQLFkxRk2rXjkvk3pujYPj8d2RYcgsy8T57AjhwrrOLK+fCasCT9aMrMsMGFKY8Tmyd+AHz7Dfsd8fOP3p96SUWNcZM1qGaSBnQ1yEsGTyBXy0DKPnOD3ip5GDPeHsjv3+ldflwvN6JkgipkAygXVdWNcFuzjSuqq32PmMTZarBIbdyPU6s1xWTsdHxmHiNB7hcsXEiHcjbj8g3uLsF87Llcsyk9xCjoF1DUxGw5r8biK/mpL8oh6eRVhnMgupbXMRkZIMyAhiYThOvPvd9/zmd7/lP/37/8Bf/+VfuYbA05dXokBwnpecSGSOo4M8kNbEy+WVwVlyWDk4z4QFN7COR4zfQcqYsLIfBvaD5+gViGUFExxmGLFmxzCAl4jxhiVllhRREEgB15Ykp+rHaLKL18uZd7sDcdoT0TC6nBPDODJOhmEymCEjKRBSVDdlBFO8so1RMEm9c2iggnX1RdVpoQIzgC86q1HoahbDc0j89Hpm5xM+O0bAJkNeM8tyZVkX9TZMCkrggZypWdAkKxhTQ950cIqMzqns5UVGO6fgmDONXmF/2DN65aZDVO7EGAlLLO8UjChJPSKarKn+XvcDMSDq3TNYz34a2HnHYA0So6oJ4lWmkgvfJXpoUNxWDaKgTCm2UqHoIQDq9W2lHB4nwrwUHnPDbhwbCL6ESAhJD2qtylih2GpVl662Ih5rRsVhMI3rNGfN3LiExLImQgGeTNH1vYPRG0YPo9OQUG8cg3X4quMXL7O2T9fT12p7sencNeFHDEKIGWflm/vmW9evBp5qgqmqtzrAF7dnyIjJzUugGeNi1RWthEWWCJWitPYKVT1R7DS5ptjXPzcfkxbGs1m5LWStPm/6d5Sf/blyzfDjLDjvNITCOU0/mXWypAICpM4o28zEFmz4tvJ52wzqqaKhhv58Q9u++/RegetPJ+X+5nKlfPvhvbLXurgaeAV8qYZC5az6P+Tqmrkp+bUnyzBKbZv2iy3Tv+qxVU5UZ4Fv1a32R++VZLrnTEHaK7ZhW/hWtef079vT4K3021C4rp+K11FqxLXSygKwttTaQEo1gxzqjunBm5I7roaylOxwFbjdyOz02Uoy3feECDceYBvUV72Myu9xMzAaafUNog2So7ra+6qcb15OKdE8TKr3SzNeNtEEhS9LcvEGzMpPkWMVlBr6uM3n4vlk2qy4U+jre3Jxmy2Z+wCxFptVOdM7LdaXU4nsSojvlgHPmOpZRtfPUuqg/TsMnhi3DBamEK6n0ndaXjf3RDfmFmZYPyvjbbt5pHOhE1TlilklijHa93X+GWhE7hTydKTIpzJnrFEFTGPN440BqWFOpTgL42gbYHBjAJYF1Iy8WoFuEfdk91umRFvmzuZqvK2PW8D+Zs62kS2j1nv0NJPTsgHK3DxxY8uX9vbcVfcbYV8vLcV0YB7dmjLkEq9PTgWgpGzithGdN4hJVOZGScWDsmSGbKf7SfeKqmO1+gHWFmPMFi8tyqYuzRfKWvXo896h3kF5m09GgezalykLucwpKz1Je2NGKmFyxY1d1Astm2r4auh7FvVsz9XwN1ufb3K8/OvW6S/J57vRo2A6WtfutFDLVGXUFi+RCuo22WC0DjGXUFu7eZ82/r/Wyf0uqhVudWfTe/uwwX6fp43dP2iZ6ebcHSAk7Z3fKsPcAtO/9JpvKHibHPvH1z1ofPN7Xfv9uN6N8a9XMbvrTrerBVUJ4wqvorPbTi/lxiqPYqpJK/TzolryjS75BxX5+vq3gE7/qKulLhSLVrh6cOXCk1F0TuMd2UKyeiiG98jgi+GRkZCRGLR+1mKdZ7JgJEMs2elSRNYASViN49P1zHz5wuH4wB9++wd++/47HnZHDkYBpJgSOUbEWewwscyZ8zXw8rxAGjlMe3ankYMbySmxLjPn85UsCecN3iuJ9+nhxMcPH5imHeuqPETrupbEFCpLnp5fCUH5VipI5Jzj48cPTLsd07QnpcwaAq+vF15eXgoAs3A6nRiGkSSWlITz85W///RnUuGHuZzPjOPANE0M1sEqGt4TUgGXBbEKdCXJnF/PGJPJpx0//PCB3fRb5vn3rIuGSi3LlWWZySlxPO04HvbsdiM///Qjr6/PvLw8MwyO0+mBw+nI4f17nJ+wbmI+J8Yh4RnIKfBZVn76+2eMiTgHp4cdxj4wjpaYVpY1siyBYdiTUybOgh9GRByGASMr3o0cD0f2uz37aeLx4YHf/PAd1kIMM6+vz8zzhfP5hc9ffubl5YXnpx/xbsAPA9jMl6czLy9/xvuJ7777nj/84U+YVYk3jdkhybPOls+L4IYTpD1chPk5MEvg5a+fYLQwWD4+fMe73UeCifz16W8ssrLmwGgML+cXnl+/4NwR7x3TNPD6dGY+X3n59MJf//w3yH/HDTtO+xO7YWJyE/P1Sk6Zd+/e88c//YnvfnjPaYKX6HhBuMTM+bLwcjlzkcj0+MB4eM/jH35bwMREnFdkjWAsoysZHEMkrsqftixX7H7E7Ub27z7gdg8EmfjLj8+8nBNmODGePrJeZz5fZ17+8jd248TD6cTH03umYcTZHVc888vKX//2X5R4XyJihN3ombzjtN/hjAc82BHvHNZ5MhPXFV7ThXMUzmvg83Xmy/OZ59cLl3Um5oUkgSyxGDwZRosV1SXm+UJYZvI+YF3Co0DaOI546xmnHSFnfn5+5q8/f4KsHGGSEylpRnrviyFvKNmS1fNfD7wTioyop41JGeM8NbXydNgzjBNRDP/8178x2IG93/EwnfA4ZBWeLi9cLle+rBdWE4mueDcBG48oKvA1fl9la7ELKNmb9dxDARJnHN56jg8fGMeRcdqRk4JNL6+vrPNCCIGY1OPGVECm7Bmmohyq2GIwyvtlHKMzHIaB/TAweotJmZgESYK3pnBQqb1gvY6l2g3FRlNkkMoFqqCeU4/Vspcot1xEKoUIhmEYORwmxtEjiHpwpsR8eWHDQTatWbnHFcBa56V4XUl7b0qJeY2EmJnXSh+gzw0ehsEwjY7RW4YuIQtli6rJhqTME2VbsTcWXem+bT+UEiFg/637778FeOpCBHL12KgdVE7OndsMRpGNv0cVO2mgw41yWpW93tavCqnZGt3p2f3Tt1rQZuE0MOPG3mOjrHHFxbC6ykEJUalhKiJ3/zr1td5f29KM076O2/s3TputulIabrpq99c3FfiyatspZC3gW/ffvnSr1w3odHfv/0HXTdGdkdhXx3Z/Z9lC7ooluKn/ZZ69Vb275m3v739pa1mKS+d2Kt/KEfmq36sx3v2h95Rw0fq1ejr05kovPG4rVD28EsXLgIRzRo3GvGXsakBAM3q0ITlvRnIND633bWunvLB9p22uYVhavimgmNmofVQ3rjoyztV5Im1DMKYCOBsg28jdBd1gbDXAc+kKQ05byMoGhtwahZXYuQJ49d7q7FHBDawGyZiSda8f53Z6DkqsvWFZ22hsi7OAAzqa1hThesdrVAV5LoK+eqXdegrUCmxhi/VhjbzbPKpg24AbOFSkutHmNcknRqihPwrYKYjQ95EerkjpKyUCLDNEf2/hVPX9FXSgkUa3t9e+uZHJ5uu1UsGemhmvH5/tSW1HXdtvmaz1lR2o3vdfBR02sF5o5MG/cL0FQN1zCNX30u6lzTVTy6gJFoqyVsOytX8M7UQVKe7QhUuu1cPc8GTVUK/mtVUhrNqnjZyyhETWcJx64lLWfp1HdS9pjm+1sU0h2tprrW18Ui1LmGzjIqWc9g82IKTJDdmApxuZafq7G2jQZKKp50Sd8ll+NpklfT9J6XYpsl/Y/KkMGhbXwTRFbmyhBN0YIt08L3yGZvPCqzK0UgJsn9HaJDet664mfszdB03YbX0kvFVCK7399Q1U495D6aYEka/W6T+6fk0o2T1kZu6+b+OH9kHzqCz33iTekNvn+3nQVoPZ5qK0vbDug9s/rX/V4cwmy+6b9IYe8v+Tqxc09crSkj0YV7Lo5kzOQUnFRYWM5KCeXSWltfVbanLJkbhULyKQlJCWIVgQEiKBeX5BJPJ5GhgNmg1tOGJDxoTMy3nh9XplenkhTyPRCDt/4GFvG78dMbXyvfOa0KPwwVnjGNyEegmpkWvMULyfIjklUjIgFj+MDKNhLFn0vPecHhRUGkb1hLHR4Jxh2inReQ0D9MNADJkYFbRzRX6REyksLHElzjPeWcIykVblyjFWk264oaa9dzil4iXHzDIv5BQ5n8/4AgKO46TeCSKsS2AaJ8CwPxwVHAoJ5yzjNLHbHXBmwOCU+zKqrjNNI8fTgZwDKb7TLHxW8INhGB3GCvOiadVDSAzDHkyNA1CvbWtcyRKqmXudc5rspuiH1jr2+wOIErF7NyACznmEQIwRySspO/wwMQyeYXAKWMUVI2OZmok5rKQkhCgM00TOmfPTBZMiRgrH127ATR6bE2Y0GC+M2SEF3Hi3f8BTvISdpnrf7ScQj3MTIiNpjuSQ1TMOw3UNnK+vxEVDsyRmJucIlwuYjEf44Cce9o5Xa5mcYR4M7rhnmnZFfgeCEuCo7BjcJrudITtDFguTRwZHtob5csXYF0KwXF9mltcz59e5HLRYcJ6QMxIi+XzBMLAbdpymI856LIZo1dhX3TGSJBOSYZYVJoMRRxwsUUBSxMhMNEpY/uW68LqsfLlceXp55jpfiSmQSWSTaITCtVGih5wxrISwsq4LyUfAKvm1dexGjxkGPn74QBDh59dXclo1AUCWAmbpoZWIlEQHonyc1VY3uVPkVaY645Sf01iGQTMHGutZ50iURCASLkEPv9bM6+uFZVEwMjkKL92gZdtCwV5Cbclmsx2KPdHUKtF9Xx1cYHCULJGOtGoGzRACYV4VHMr1WFOqWrYpQ207NlixeGuZrGdyVkPPBq2TRCUt17OuAl6W/U+dEzPZQMqp6HwqE+tVqUSs3UCnRvmAehwakzTyr4yxtYZpGsBbXHQsS2hj1JKalP0jpcy6hrL+S2uLzphyZo01zLDYEEZBp3GwjINlmgYGWxLQIBs3YLlZMs02ziKkGMuhpzrmtMx95cA7JaVzcK7q/PfOAt++fjXw5GymMJJhqeBSzQhnisdQDRcq3IeyKQy5eBBVVVG9imVTNKXjHSkdYUrZzQQrllKnD7bwvi3shIb0VS+xvjPUy8ngvS2kYLS2VA8n9XIy2+9sinavTNTo2f66Ubh+yTLqtPP26xuKylvK3m09bhX9Zkx9+83t+w20qAbEptQ3E+If6KXffMe9BWm2fr5vT5UPqcynm3s647GG5vUK/dZltz5kt/1lut83O7KGYxpT5lbth047rvOqL+1GAa5vKC+vRn3bCA0bARuUrDSlS7KUzAUlBLUIqc1zafup/MVSQtukafN9n9Z+aoZtaftmVJX056U2pgEaG88QmEYgl3PxQrHKQSW2AhvVVC6tqv3QhGTxNio9X/swSfF+BMDegGDboCkafzMHSxlUkMlAJXSuWa20/6v8MG1d1AwTavSabRPpVokCfYXDq8qrG0FTwgOyejClztuphosp6Hezy3VgSQ19U+8M1/Fp1f4UtnGs49BmQDO6+rmoSqqOYW5jrKCHLYpsnX+CpFzCIDZ5q31UNzk16/tQV0FKdpViMJrNY2jzfJI35+DdoL5x3bGdGftVZk9jKNkytD4Wo3GHv3Ddhwzdg0/V+2xb59041Q27bOqmLfBbj8At611RLEQaaCS2gG+i/VhlcvWANNbd7Wtl/eRaRgbJakzbukfZxvlikHbw0zop1Xld+Ovqu8vLWzrjMiEqqJT6+V3kl4KqFXQyLdT8JmSoA1Jupfmd1mFuf7XmVj5tO5HRLHilv+pJXpeVoegKuj/VfaHN0TK2toFOlpYbpKwLkdyMNgHVZluTOllK5a3qxq9TOL4N1NweiphOCdv6qcjjtmvcddW/ATD677m+BVrdfaA/3ni+Srmma7S19fUDb+oiwldzo/5Z58cmZ7p9OQsark3TBYxRsKJOqeqF3up+966bbeu+ruaX5NjXl3mjjPp5e9390lBlWI1mRcowRko2uOKTX3nrivyx3mMHVdVzjOSYWNOq7xKVnQYN28s1FbmLhHAh55XPn8EjhHXGHBNDspgovHx5IqesANLxxPHdI/vTEW/3LWPd9fJMjEpsPfqBlC3rKiVrmPLW5KQhFykawGOM1YiBqO1yzjNOE9M0KZDkPc45dvt9y8CaUiSkQJbEOA045zkcjuz3O6xzGAJgyNkweQcp6t6VAksIpBjxzrKMA2HZ46xm50s5s5sUvBp3eyanRnBOkdfXM5B5fv7C+8dHDvs9u92OGNWb6ny+Mgwju2nisD9B9RoVYRgGpuFAzp5UMnXFVRNxTNPI4+MR72EcwbuMMYl1vTJNHkzmer0Qiwc5hhKa6KkHWEYMMWZC1AzCfhg08UOMLIsg2bPfPbDfG8Zhh7cjoMAebubl+ZnL5UJKBrcfORxHpvHAOHjli5KBjIbjfHk6c50D5+vKNO0BWM6vTGQcmWwi03HCTwPMFrf32ElDdHIxtqf9A6P1eOPAG/zg2e1HwgrOHXDTO/UcWQPL0wspZMK88vTls3qnCYTrQrhc+Hn/dz4+PvD+/SOPjw9M+yOvO/U+u55Gsndk7wqPUOIaE6a4cBvnkJRIRUfO1iDewTghzpKs4fzyyrzA80vEW0deF9I844qOafxAioElZ5brTMqOwy7jxgODGxicQ0YNa7eyIqvqhiFmclghW4zxjNkQU9KwVbsSRLgm4aenF15nzUL3fL2S8goSEBMRIpjUGReZ6l2zhpVlWViWhThGvB3xzpaMbiOT93zMmSUl/vb5M+uqmZ8lQUq2hOJu1qzayup9KbaGd+s7VbZanPWIUY9o55Tk31hHzCtpTchy4ZwNJCEtkXVZFSw1DjN4jBswpiQjM0WnKgCBUDy7pIT8oTp0zkX/MjDYAjo5y2AdRgyXy8Llem5ZMcV0DgCAlMxrVNFvqp5nS8bBgaObOI4j3oIlIimQkmCNU/qNGlJXRLbkTDJK1RKThm+CgPPdPlB0mZKZTxrQp99N40QwoWRkjRj0gGzaDbik2RotxeM8JdacWpSYZEiSSTETQrzdY2qXliljzIZ/TINhGjUb6W4c8K7o2SkUnKVskDWsLhfdL2tGRVtAFOdc61MFnVKLIHG2oyj6lSrMrwaeaggIdMZM4ZZwVgVNJVfNOZZU8NKQ9BiFsGm6NyBBKkpECyksJ8E3p+dSa7F5b2io4aZkVEW7ggIUQ6EqHq4uUqepF+vnIWhqyZhyqxNG31WXaYbbk7R7peOXdZRSxx4kugc0vi67//qtV90qtG8rif2Y1QxK95W9MbZv3vCGJvkrr2LTlbpJEzB9XauiCDr2CVX4K2BYAY1qgjvamdD2HqqCaLp7tU25sOb097d3FiPD5VRidvmqw+8V0dquvg3V8KqMI9X9cjMvTNcWlYxZCiwjlhTV8ynZmmrMNGW7R7Xpy2otQT0rpAJCphjFdD3btd1oWJ3kbcw3RYfiyQGm9rRsQIWzTgk/DVgCqeusKmgb/xJQPXQqiKE/XVOSQRBTM4KVAO9iXGQqeFLbLq0fcosv7gySYvgbUePTOqtKaVZD2kBzrdN5kXU2FbAvpUwlsq6zZQP/DNYU0KmA5zVMr5E2N0CoAjamDngLFWr9X8ao1r0fX+eKa2uRgS1Ep5Ay5qw8dJtxVuRwaUM2WRVNV/q58B9UcGUTjOhnTRboZ7mCI8a0MCzKCfyG9d6uhxtAx9p2Tz8ubxpn0BZ3w+u6Bbx5vhWXX6MHHl1ax180oG3J6th/VvuttVikyxBHW/P9HpRTbkDxV+GSZT0b65q3WSm2eM5swKp1hYfCbNJI8nZ61EqsfHfWbJ5VRsg5karXIbdHBLmI1pxph6VqiBcFiC3MLyad/TUUps6NOpdiFnLacv1t8KIqX22f3Ubxq72vAZW9tGrcXP39206wnVf2YZ7d3k7HE3UDXm2eslJOEh0VnupBjG7U6rop5cdUAX8a0XoL+r4DMr/e59/e+Puo56/n/7Y79D3xK1SI/1OuG2CRW13iLQ2g1w62JXi7M33rmZu/+7VmynyRouSndFOvr+RIKUATAjj1bgCMTSTZDlmkNuiN/f2+cp1o/Or6R55km561PSxtVlNtku1FWXWiHIMqPoNBE+QYuKatc72/kdvGWsxgcIMvMlxDdEkJCaEZldVtOZF5vTzhrGENC5Mb2dmJwXjGd0fiol4of//xE/vLwuF0xY8eSOS8cHl5IsRATIFhGBoILkkIc+TLT1+47ha8HxiGST2iBGK07HYPjOPIw7sj4zQyTgOxplQ1hmmaEBFSisVDVFiWRYfLqhfJdbkAcD1fCYsgyTANOz1ICYG0PrPMSmj87/70Rw6HA4fDnsfHSbl/sDg/Nt3DWkOIkS/PF3aHCe8dh/07jsf37Hc7coogM8si/P2vf+XT6Zn3797x7/70J/zwwMcPD8QQdHTFYBjxxmGsx+wHRARvPRA5nUbCxz2SZ1JauZwd+8NYPI+U5Nsaz243gZ3IjHz+/KUAfVHJiCWXDLyZGBaen9VgnCbNRKjbugM8D6ePHA4nglyQrHMjJ3BWM1+djicOh0dOp3f44cC8BJ6eLjx/+cLT85nPT69q9ItgJfA4WnbeMAwOkw/k1bM+B/AGM1imxz3TaJn8xPOnMwY4mIOmfl+FyzXgOXE8Ok4fBrKAt57H/YG///VvPH36mfN1Ic8Lsq7M5wtrmPnyDD//aHk8Hnn38MD/+j//z/zTDz/wn3/4yL+cv3AJK5ew8PHdgWW/8sXu+PL5C/P1yrzMpf8SaV0Qylrae8x+wo4Tw2HC5BGSZ316IqeAJCHnqOGrOZINDLuJw/HEx/ffMfoJsuPLspKWyPnnF3wIDCK8nzzjbmLwg3otuYkgjp9eXni9XHm5nFlzVi+6nDkvK2vMXENkDQEh4l3COhBrSFV/z1nXYYiElLlpxBU4AAEAAElEQVQsmet+ZjlEjBuwbsDagXHckawlAMfjA+9i5vsfLvz0419ZFiFIVDAoqYJgHM0oSjmV8x276dopodqWK+tZSBK5nq9YHzB+YLnO5DUiS4RQ6hoKQfhgcccdflIS7BTV84qs4XukpGpldgp82ML5VA4anDVM48jDw47T6dh0uZfXM8uaWJYtW7NIod4Qjaky1mKcOpaYojcquKaOMZMfmezA0e34cDzhLeo1eX2FHHHG4rwHsSyXiDEJMaoXUfakOV2LPmjwePU6cwO7nYLq4ziSUuFqmxeQLXJrGDx+cIziW/KAuERG7zBmYOc99WD3fL0Q1kgI8YZTM3XbQ69neEc7HB1Hx+Ath/2g7/SWwZXQS1GvIKUrqDqW7pUlX9/Gbd32RD3YECMMgy/h0pkQYzvQ5itr+9vXvy3Ujm5TLgaVKYaes4V5vsBuOSvJV4rSUnlv6ZT7DXoLo6EpIZu72nZX2cZLb1eC714hrF6Cd5xY1JPzwbmWMrt1qjFNqflKORW++rx5mhQlqRlKb/TZpniYRup6q7jT+qO2oYXxvaXjNHykGji9ev7G7eY+dAnqSWz1cNrCML5Ryrd1rVqlX/VM3+a3lNLNBKEZgPfG6G3fyE3fC7LNF+nml9BAkjYfWpvr83cfUBXN23r3uquU+kj/Qbmr+I40Y7ZjkVLDnnqSvvVefmPAt/CnrU7bsXLpGKMsFz2oYSydN1FfRjEya70LOlh9T6RZmtLmhxPdCG4Vd8MmSsvvdY5JPaW+N18K4NXGTQEVpDMOoGwiBcCz2pv3GRVv5zNtPps61y2QTQnHq/XsgJQuVLEh1N0/Lc+0d2lWjyqn6uhVWVje0Nba7fhVoKF5arWR2/qoAnMbuXitSxefVW7XUDvZ6lmBi9rVGbIp/Fk102ERLPej0luQ90B4nR69V2vtj/7n/XjUdm//al9uYyH9W4oMrrCxof69jUiV1TWs+F7mfMsgfOvzOq8VYKv7Q1kXHfDetrkKALX9pHjPSDd3W//UmUY5ENn4rarw3vYT2eLqW2/0v3Vl1X2jBad268qol48SzFegzRRgVHmbVM6XMLKS2U3QEzKdSlrJlEUPX4rMUjlRZQFtnXYj9bWVXtZIE8T1RxFdPWDUy7d+pzdtj61flrnZE8u3OVf3wq7fsmbhrHKprv0supaFmqaZpszVNdT2+ioWWtu3PaReVc5v4y6tf5pKJ9v4cfPs7UpANiWwtvGt6x+F030FDN++5c37770Dac9sQK2K7bdKMrT9unvbfe3f+tuwgcpVdiO6diTf9Zl0Ohtl6yoTyxYlT8M0lFQ2iyAptbn+TSL4/87rHnC6HbdvalW0zaDGx0bdK+oBUEW6lSRX96yadlN1blcXVIuLtdOAyyMimiFNX67lrClwXWZe5zN2Z/HjwH48MruZ9bLyej2zpsi8LOwPO4zJiATllMmJLIlsDeDwzrAuC1kWUsocjid2057Tg8faAWcdgzfqxYMlrAlMRIAYNauW9169KYqusdsfoMirWI1KtnkZYyy8LZbdZHHOMww7lnnPvEAMjvcfduz3E7v9xDSZkrHL47x6XRgUrPPBsoQD3g045xi8w8hAioZlTlzPkeslINkTVjifA5dLYL/3TNPINO6aLhZFvYutdTgzABT+lEQYHSEYcrbkPOAHq2Fx3uuwG7txxiTRw+8QNYQoLMo1lat3QwElDaxrIMbATz85pnHEWkcMekAiGPbTe+LeQB4xAtO4Yxz2GOPZDgmVRmEY4OFhj3ECNnOdV3JKeCyDTWASISbkuuCCU7LpVT1kYpgRb8FbxBr2h4npdGCRTMiJJQasFZKziHfM60JMmfO8sKZEspbhdCAPDgkDMjriuhJjYCHzEq/E18j/9q//hYfLF07PP/McV6II2RiOjw94sZhhh9sduIrhaYkEDMkmojV6mO4M5jAh01CAXFs5BsgxKX9aXMlxxZDBZMRZBAdOyKiHYZwT4ZJIS2S5LvgYGHImL3CMe6ZpxHjLNQW4QMgaxjivC2vKRBGiaEhULKFKkhR4yhIwTr1orDXkjfAS48CQyVlD91YRsvdISWcnw0DKJaNZziQB5weymEZQL1I3YIdxVZlpShXNMaDoyCLVyUNKxm5DTEp+botuqSRRtgZCaQa9Eh4vVhCTC0G67unqmVT6F6FPtKD0HfrXOGgyg3G/A+/JIiwpM4egxNlrKpQ46h2uUQ2i/VRsBWcN3jnl0XVOnU68Y3IDA54dA4O1LaxuKNQI1lq8GzBYogekZPU1uemOUsO5DSVrn8Fah3ce7we8H1T/xhCdhuamVHRpW50DLBAVFDOlX63ySmnkiyWNDm/AF2J1jRorNnux91LdvwWGQUnYvbOMo8V7yzQ4TShhjc4hSS18vWhGZHRvTZJv6F6c3Q7J245W5gfogY+1hWvX0GyMX3P9NwNPFouU1HA1zK4qU7l4O8WYCUGKYtcpdNDxnWxu0tZsnk41vEJbq/dt6FzhROHGdqLpPtST8jIJjXoKTMVdWXImpMRGtkoDxuraS1neIBwt1SmGmi6c7d29rl0vVT475a77/K1BakbG23rnmwrndsJ8e1mr3g+V/FeqUifVENkMldqLdyr/r8Qvv3F1yl4dO3NXy/5su6mtpmuLqbxcpo13P72NFFJnbsdhU0xvjQaDqXKyuTFWD6j+vbZ+1tTb+mfX2Z3cfqvdRR+GBir0Jkw1Pupi3j7tT//1owqouGK8CiXFl7aoghsl+4MxNRxHGkjXmFZ6w6/9p7pKlox1OWEMuJTBlxNOU4Csun6rUdLWm2n9npL6CkINlSrZHopB2N6f+5P2Mi/R049soPIa1hBi7U/7FZias27qxrlm2BqnrrLW0XjbQDBZDZQU1co0ZuMlMpVgub1N14a+S7N4qqDdwr1s+Q67eQXV0Lq6ji21n8qm3EsUI+X9lpRv371dddZXb7VtLKSba7XuqRlo6iVYNIFbAL2gILrxlHwWRc5uWJe0OXNvWH3L2+jrf5vM6lvXQRnls608S9VfpKwlvS/Rzjva++7r8pYR/VX9YONZKfpTueHGFtxAp2p8b8CPpPJT0PC5bl0hG5BcJVMFe1PqwvKoY9c9WHum3bPd1/a7ugYtzQAyNQ1NdQ/HNhgt1XDALNs+zBZGV/2aFHiSTUYIW11lq2Hr87rmuzH5agbXyYmpyT/bOmlhn0U63QAq3X03e2gF+BoIvx1AmXJfTdBXvdaanJCtkqlX4rq6aN/fKlBt72qbfKmXcDdy3Zq5B+xaY7aS+xXwje3+TR3BdGX8I0+c1v39Zx14u43vG2WUAdM191ZJt3Vv+tedLmJMv59u91bqUltCqDdX/rzx3XUHDLV3dfvLbb82ph6O6Ae26jdRB7X3475pZVfJt3C+X+rXm2LM7X5Ua2qKjL1p+o2yWL4oca82lz18tM1V34gvslsBDOM1hMVNk/JyFH2ghnB7k0lh5fry1PgAnR8IOSLrlafzM9O04zBZjg+PiLOElHh5eoHzK844Hh9OJaQ44WxqwKCmQgfEcjkrl8vr5cL7dx85nR6Zdkf2+1E9owrnUIyJ65cnzag2ekKMTNPIfn/g8cG1tXg6PbI/HDk9PHK5KsH3y+tL8+iGEubshMPJYu0eySPj9B3rOhPCwve/OTJNO8ZxREQzyY2DV88gozxUWSwxCsaOKicwen8yzCHz8rLw5fOVl5eFaXhAMlyviaenBcnKpXQ4nRQ4857rHHSNWYPbqRw2JjEMhhAG5kXQQMfMSY5QPNTOr2vRKRQ0SjkQkgJPy7JwvZ65XF6xVtjtRyh8oN4bLpeZdQl8/vkzj4/v2e12OKuZrow1HA8/YGTP4C4M3pf9y2IYkGxIKeEkYW1m2ln+8E8fWdcHns8nPn3+TAwrg8mk+Zm4Bi4vz1xfFRh4eHjX9rHXn1ZNtmIdH374DQ+7j/z23R+ZJXNdV17OZ15sILjMYjJhuTAvMz/OV9awEnNkev9ADjskJbwRLs9PLJczOUde14Xn6ys//j/+ivcjw7jjdHzUrHynRx7+5Jmmib3bcTwZrn7CLZElqbdcdEKwgjiDP+5Z0exw6zWom2vISIqwrshyheWMWNH4rtHrmpOVy/JKTvD6PBPOAVkFgmGICZMin69nTqcDu/2e3WHHssws68qSU0lJb4g10zCi67nIOYkBJJLMgnU6jyqoLBWUJ2OsIBGCscxZCN7jhhHrJ9IwsobINQVe54V5jQi22eAxlHVrHNYPGoZuUa2vJLRpNoXIpisKOu+cx3pfQKyaec/jvAVxiI1ITBtVQNGRcwpFH0lFZ1WPKw1Ty6qjW6dYQkp455jGgcNBPYf84JU8PiYu88JlDYSgYCHFg2pT1tBMoAXEGS1Mo2c37TgeDnivvHIDHpsNPlqICSMJJ2DcgFinwJcfscaTR7cBMVDkRdn3RXVIKZ6rznqdo37AuwFrlM8q+qS8axJIOWkon1VQqHKDOgvOZBwoEb3Rw+Pd6MjekrMjdAmSUtHTnXOEEvImIuymAe8d4+Bwg1MAvGU8LjRCScEuW/cOKs2LRnOEwgkmIhqW52wXyVD0hXIoVEMx8ZYUi8PBr9wzfzXwNI5ODRsxBeGqhrChnkSmkoI1xZpWVVqmniTFU6Xq552iXoNv6lW9HmyneTawpHhNbLwV27MKNpmS/ac8mDV9pCsKWi5u3GssueUK2WpdaBWMSPV3bhXrOgDCpotZYzRUks1I6q9bE+vrS4lO+SbYdF/WW7fVw19DOXEpYKArcSLadiXD01PtvqbfVir/z7+qhxDb3OA2UKyqbhbTlO4uglK/rUpoK/UNhbso0an7rkUAbraWglwFVMlZbsrs69TMaWPv3rWZ1vXeTFd+qcfG1VK9cfon3qo/VLBBgYNb5bjOYRVKnpxV4Kfq4SPFe7c8vynLm6eOUHgHECigTza6gSnoVj0StTW5ACEpbtaGzq3yvUAlFaztrB4RG3ParbVSD1K8p/FNmcKtU0mdK6DRh6MlknJn1FO9YnzW8KyUQ3mvvr/y5kjSemi61i4UqvxMuSPLtUoO2kJ8Sx9a47YD6E5wdFhAMZJqvQoHltT6VeO4GC1pe7/WZet7/VtnVDNcK6mNCBtcLA04a5WrAEQzNruQSCv9CzWrUpVrZZ7VTe7+qvHe/b210abvzPaxrvstvLrDElrdu9+pm/32jnuDb6ujPut9BRTN7Vyp+8TgtI1ATql4GFTHghre1xn6bf8ymlq8ABS5hGrqib1sa7QSvEutkxROjK5tNxZvOTBxTvukC7ernoxqSGv4qGRK6GcFqJRYXl0eVdlNLWypyjbfZFcNLS+923id+gnbxAX387GMq+326fpdD2S0+b71a71ni5rcAIcerOlBy1p/RMii4dGq01d/V9qa7CedkVs53P6oh971u7IPbI6nhv72++stb+MNuPoaqOv77b4///+x8+Y31vDX1y/rBU2edT/fvAcavx5tWtytXWg8Zz3w1AM36qRwp2EZ0YWQE1ir2Yps4Z7xVj0LqvHwjSa/BTr9917Nh7OWXUXpV++q+ozFZfXIJ+ieK06zWQ5+x7DbsaI8I8kajBvAafak07t37HY7TscD6+sz8+uLZn0Luu6t88Q1kuLKT18+sabI0+WF8/WKzUaJoh8GJGZIGecz4+AYRg0fQZTX5OXlhTWszMuKcx7rHMfDjmG0YBIvL1+4Xq/6nR1Y18C6Bi7LrIbf4EkpMQwDu92eGDLjNGr4eBEGMWdeX87M85XrdcY9ePa7Pb/5j79h8K6cwisAZYzw3fxOQZr5VcN5nPadGzx+0AxYKWRSXAhrJkZYlsinT68K/BjHbrcroZmJy+XCfF3IKfO6nAlhJYTIy/OF7z5+5Dc//ED8QXWFy+XKsqjOMO0mpp3T7FF7i7GaFt46PZ3POXG9Kjl0ShrO7LNyTaV8IWVDiPD8/JnL5cz58sLh4Dmd9nz3/Xus0+xYl9czIS5c5yuvLxeu1ytjA2SOjOOO56dADJYcd0QxxLAQljN+sOz3O2IKjMtF9xln+fjdI1h4N+94fD+yhgVS4OlLYL5E3HRguS7EkIjhQlgCYY1cL2s5SHTMZuBFLD4VNi7r2Q0Dl3VhzSurzOT5FeKKTSuH0ZOd4cUuDI9H5dx1Fn8amOdDIdBfCMtMePrCGhIhLISXJ15ez3z5+Qtfnr7gvSaD//43v2HcTfzmu+9YUyQiBDJK2S0kZ1hiIOSIM0rUzmiIldDbZsSjYWiDICYQ18Trz1fOuQAsDJDLaagFdkbX7eFA9IYzM5+fnohhJcWA+IFKtmOGsSx3Ia+zZg+LqWw4GVwC8RixeOMRZxAjpBxpyWKc4WVNyMuZ3adPytnlJ4w9E1JmCZGnlzPn84UvT89cXy7EdS2xWcUzyTrc4BVQaPygmRiVe0iyaIbZsgFnEYz32GHcomNSwpTIpno0kfs9OGdYZ0BJs1Wv1CCuXLx8RDKjG4qTiWU3TQzeayZGhCUlni8z11m9KkWEbD0y5AbU68vLAYRRfcIZcBh21nHwA8dp4vFwZHAe7xwmUVJTw7rGpjNosgRTKEU0LHe/PxKT8qARAjYrJc80TgVEE8ZxYigJE0LQPlyWFVCPtmVZtHTrSDkV+gc9OI4pkiXhXe/AouTykjMmJ3Wa8cWek1wO9VXXtM4yytAAocFrgjdn1K9bs7hH6mGNs6YkVXON37nZhaKH/ansUa7w+vZeTzlnYoqEkMj1dI+N8qO3R/7R9evJxZ1FspL7tUNHoPKwZMnEmEgxv418bXoo1egFOrDla8VFOu2tP3mtHBD13z3Y0Hg7OuPGYApxam6KjcaZllNuNiPhVrHpfq0gxY1d1bujS8UDbprfK5u3ZsZde83tZzdd2P9+d18FnRqQ1xsrhmJs1hT0umC+LvprRdrc/f2terc6fKPuWrUa6lMXek9Pbd4o41Z5N1JCiO7rdfNQBTbua7l9Ut++hUxut1YFujc6vjK2bgyK/t6+Rd1zUrzkbxcAG+l37atmWfGtSwq6v3l63Br5uQAkYu7qVpbjltls81S6vbZV89W7RQFijJ6d9R4jvYG4lWS6Z0tPFuNTQ+duwS7tkWKgWj2t7DK5KvmgUe+inGQz8Nne3WSDqWlNu3CcYgXcepFIe7/Om1sjVbqwQ1tdn7t/9ZnWdW3O3npzVpB9A51u+36Ta6bJtu1bfSCXdznTh2n2xnGdxKZNoRaO3I3GDWDX7oLeAKSAOggNmNnqKe33tq7eEAi9l9O2Vm/nhXo7bAZodZOuIZtbK375qsDSW94f96BU5SJT+Vg5kGqfF8+h1q5NrvfltpAghLqy61zYyJC3dS3Sh3PLzR6z9U8nbeq8LfNEuvL6XhE23jFBinFPe3/K5V8XpmSKAaw8T7f7qN6yyQy4Ndbf2o5uPJNLP29/auv6ef8tD51f9Npp3WK6D3ReV1mnOkh9ayfbS+PuSze8DaptgODt3fey6lt15G6Mbu7p/t1Wpm9X/fX2rvv58hbI+625/2Z5vwZ4qh3Y5NXtGjD3vxswlYD5bne/mRLcdm+VObVeN2BjDxyafm42sdoWhylewPVgwxqDMyjoIzVxyS/tsL/2Mre/NVlw2+em1Fl/0n5+1SHtC5Sbp3o9WIdzGpKmSQlsm9u5GqwCORbS2RKGkhJYNyI5bnIHPdBdY+AyXxAD+92B/TAxjUrmnddAWhKZWPThynGm4TEaIqPezOrlCZhMzpGUAikFAFKKGBOY55V5XlnCivOe/y9rf7blSI6s6YIfJlUlaWbuHpG5h9q7Tq3ui3r/Z+mLXn3V63Sdqn1yigh3NyOpAwDpCwGgUJpFZGRVaYS50UglFKNA5IfILz4qB9K2JdYlEoa/Mo4j4zTivS/gumWZF9Zlw2AZ/MA0nnh+ftF6ekvaVuWGIas3tjVkI9zvNzJGwcZN62ldIm6iWeeSaLrxZeH19RuSUc8K/0OzC1qoFZllUc+rddvIedPQtEE9t2JMvF3v3G/q0XC5nPED+ADjZBgnVw7OdMXnDNuW2baSUl38QRfIObFtkXWdiXEhp40QJoYxMAwappeT8lLebkqA7u5W7a6kHFzruiivbsn+Vw8E13VlWxZCthgL/m7JJLzXkEfJG9Y6hsFxvowMUZ8lvDCdAvFp4fZ60yyASyLHRETI20qMmozi7Wcl9c4xKhF1GBimM8KKlYiXlWGNkNQTpiarGTCYnJVjyQl28AQzkfKGeEMeLOIyLBGWhFkNKcGcIvn6pn2YBTcOTNuJ8aTcQlPwPJ8n1pSIOXHfFgbjSTZxjyuyaWiRM7snzjtPoAzZGMgWcFSvYiNFbzCGbMEUEnMQFlayjYgXGKqwE4wru0HKCBvqMp2aCNj1w6qDF1LSbJRaRpTge0kZlpW/fv1GCAvej7rWxZAE3m43bveZeV523h3jwOZdjpud/wg6aomqJxR+OG3RblP0e5Cpcl0EiQmJFUgrqE4UjDeYbBFRsmwpJ7LOq6fM5fykpYhyyGIt2ZQ5jWETS8Qq55Ux4Iq7tit9UxSauuOYogN5a/HG4jA4ARsVxCFBjqLjuqFjiXorpZwxSAm/VU40YwaVeyRS8RwQA148jZu2k/epJPDZ/9Y1LbJ7K0GnGxZdyTqDNw5XD6/L9yunJhQ7SHTcqmZdE6lUPd/awv8pGcnV2CpjVueYrY4Dekiamof7/qM2mGkHn70NpdGNOxZTo0GM2akFfs/1u4En71whMd13bkEHMUkixsi6Vk+n0tj2T//7gxPS8nEzcuTY6bArJI34qhV5LEv1jD42sXSYFLb4ekJs6ma8K6lF1hz7rhuXXmnsmtOF0nAkO/+oI+tmkz94DxpRbGuVHG7bX5v9dws/Kfe6kn67LuqcRb3Qcv5NQ+Kj+v49o+/3X914UM2GrhHNSC9NKULqEXzqF6Z9aEVTSMtnfT/uTz8E6tHnerb992oMnTmSluvth5HYn9+9qsp0+13DCeo3pKQwfTRq24tOQzY7n88+7lpSStLmZyqkgIKeCtYMeZVMPOd9xfTedaqUF+PQuiKvctfXpj3TGM06V0GuHSPYx6p6i+imVon/KuhUw+8MNTpoD6vQz70H55V/wBjlenK+CDgsa07lkFvac2o7qqIdgilGUGmjoXg3dh4ior6TqXt+5X9LaQcKchac2z1spIywzhMpIFzeXY2RBmzU2llbPTT2tatgU27jE5PZhXe/F6D1LvtsC/9tMkmghsVI2dV6gK1KteZ1U2VrrYhVj03lAOoAKY3lanXtw+do90AN9fzQmC2b+04i3G2GuLbJ2SIU9/m/z/NeFj7Ko49CAPXlbsj2l3OuuGSXyd0BdS0sS3puMDiAyh1A97g/9TxBDdTp5MV7sPn4fSlZ6ZwrxMG2eFQV/qbc9iLb3t9iItUkH87te13e65MLcagAlLFvnE9StyKddNKtpV72PgwLHe55GNMqB7Qbd9DJmn2PxJjmdcfjM7o50rgIzMP7nVzsFb9cQlCrntTfW8GIusHUNfy4H9a+MLLD0K19Zm/fvo91320giTnI17YfHJ5Rp193APM4ueVYfuuiQ4nm8OmHY9W97mtzmILvHt71s+xj8Fj2AUhu87ObHGXNHg4zjCrNdW9F8h7uDo1ThJyVG6M80JjqkbbvPbqMS6+KoWO1w5ezAisGxLaQCUz1bD8uwt/C4szDeL571ebbPudrP0k5AKwym6rMu90LTEpUgH5sCX7AjQNunMBVTiCVSkaEbYlNJpMtd3/nu/1GXhfUiJ6wsiEpEbet7RlREtflxpYjl6czw+QIlxNeDNstkXMi5hmSgWgxm3og5JSwHgajITY1WcK6LayrQchMp6ns5ZZtS9xuM/f7imDwaQDRPXFdF97WV77+8gvDNPL88sI0jgzDwOXpwu3tRs6Zy+XC0/mZ56dnni8vnM4nnHfc72+kHDXk3Xm2DD4JrJmYEmlNxLjinTCvBomqO3g7akjSPPPLL39jWRaGMPD5y5MarVYYJ8sWYVkj19s35mVm21aW1Rf/mZUt3kgpc7stfP8WCW7g06dPZBYwERcSn79cuFwmPn95wTlXADdhW1W3qHteNoZxGojxTtwWluVGSivew+k8MU0jPjjGMeDsyPPTGUEYRg0njFGKLpm43q/kdCVHXzw3LCmtbOudbZ2ZRDP6GZMQmbBOM0L6wTCMA34YOI0DMnqSBJ4+TRgyFvj6t1+4fn/l+0/f1Ms0C8RvbAXk+P7zL4ynM5eXZ3Aa3ni6XDh/esZ7z8UqdcMSE7IseAwSLCnD9XpnJcJosWNgOI3cE9jRMTAx/vACW1Lw6W0jzivr9cbbvCDrhqwrC4kwTZzOJ/713/6Nzy9P/Pu//7uGvC0rv/z8s4IbwNXfud/u3PKN7yQyG0k2vC98iDkq6b8BvFfieAzIVgA9g8G1w5toBeMDGEMaCiGAcdhp0vtTUlecnBGJICtQ0r6rcthS1luMht3anVqhedAbS4qJOc5c//QnjPVY6wnjmRDU82Z5W1nnRb1unNfwZXH63AKo1QMm1SFK1FpUfZosZEc5oKp6bcLkqHqQUSvJOqteT2kjLit522BbVJCZott5DaPe0kIq0RcuDJzOJ87nM//0T/9CisK2bnx/vRJLqCll1mU/YHDYpq/PKqODB1clb8ZIVhxaMsE6Ru8JWFwSWCMx38kUeyApCJyzEph7r4DrnBQwG4YR7wPWeoSAsRnr1MtoiyCJ4sFVwrhzUj4mDROhZnwDBaK2bWs2UM4JY3Xv8l492JVz2jGFkcHX8ORIjJG7SOF20ogR6yzeOlLTi1zTFQVIaUNyJMUIzmKlUK9U267oYdU26UEyHbQyrmi0gLW5AUsNLGt7oe6ySuXjCoXEx9EQH12/G3iqBqIUULMifjWtXkzV04mDUlBDKZqiLnVzpsX2O+dKgwyNqb7XurQGGlP58LYpmo3qRX1Y2d5BucSw1jjbqvzVOmmZx9Pf2rUcnqWfVY4gYw3OFHLLx+qWq4HOPCgv5TtV+cQUBQUpYXt7fUxfRvmpJm3/uhkCqgVTjevqvv5rc+LRiPrfefXK7/Edbck+V44AT0VkdwNIDmX1AGHfL/U6hrbt3+sC+z6s7bFMQzU763vS3q837WVJN2A9CNa/EPY05u0ZvdEtUGM4H8eklq+GlRzmfi0/ScYkU1wpte9SpqV9twX5MMX1oUETIkXprQquCp5qEHs/NA+RnLOmsEYFo3Js0Nacggk7Ml9bY4yU1NdF+Al6UmNSN+4qlJ03BG92QR0cIsqDlIsnRy6aeu/BUwWkDwacxThHipE9PbrOAD3BEKx0YXSYRvhcQRo1ZPcU3nXW6XtVTlXA5FF69B5OqqvVbKB7pviHmSv7zINahz3Dk4JQUkDICvgYxHbPgQYw5dhNygrOONeemHvBDM0FF2ypbwEzPxAe9XkppQfwoc7X3qtqP63v7+yTQNQy1SumyLZ24kID1RAOz3v0RtLMf7RTpuPpjB5AYFC+r7r3lIUkCJJqfk+7Z9jElLmvYKXBlLWVkc7rqe1x0E4ca+1Uqd3vM5jWvrYf5YxsEe8MXiyhKAI76KQlxpQKeGQaH0xMmqUml3D4WvMaPl7BsdrRubRBkOLZYKgSUr/XaRtQSI9pckBlthJcavtyF5Yo3ZihGfnYV4e1Bmcc+5DqiwbOSQUZWu93iTBo86gBwaISNCPtILl92+z39nNJQwv3ArvVzcfXcZM/rIj6oDbnj/fplnz0l5LST7YgZUe9pqvGQ4Ef6SfyweuMNOD2XZ0+evPxqjqK+bhHGjjb0L79/bpvVhC452yqoBNVL5QKru77qpQSsPvepKHG5YbC5WHK9LdFiTflfnVcyS0TbqpTuRw6HtQQDtP8w+uhib9yzz7nq6ypjdmncpFPzmG9U08b0PBwHzDO40LAeA/ekZ0rskTXRkyJFLcGRFlryXLHeKck2kW/SUZIJQQmt+cbrLcaauMt3+c3Ntn4Pr/yL1/+wPQUuLyckHkjrguv9zdwZ4YwcDqf+TQGwBTDKLHFjevblRCsEtuaEqo2L3x/vba9c5qeWZcb17dXlmVpMtn7wHQ+YQ2chh8ZguN8nrD2i4ZyAK/fvnO/3UkxMQwnnB+gceo5tphZ10lD18LIPL/y9etXrrc7Yxh5fgpMw8QQBmw4IZIJYeRf/+0HluWGkh6/FgNduF2vZCLDFHn+YhkWy7IYIOHHGbGvZOMQC84nnBW2deXPf3plXr9jbOb07MH9iHGf+DH8SPDqkWLtRkx31iUzjRZEM4et88K2reS8Mo2O8PzM0+XM6TwSgteDdCw5ZZb7HYPlfDrzr/864N2IMZYYE7frnXXZQAIpRVJaycwYt2Lcyny/cr9lfibz9HTBh0AIAxjH0/Mzn4ZnXZvWMDqLHwPOO4JzfHpZicvK959+4pe//IWvP/1EsJ5vv/zCt29f2bYF65bi+ZJZFmF+BeY/ENyIkQHZNiyZi8tcvCeYETk9czdnZjZ+un3n7fbKPa1wGVqYGt7hxwn/PDCfFlxMTOkzy+sbeV2RZWUBVhL37ZW3//H/Zfzr/+C//+m/czk/cR7P/PD8mZMfCNZxDzPzeeb2fMfLwnK7st6vSPUc21bMWfeGZHZuRA3ZjCWjYlZCdgcygHEjJgTM84APAe8HLpcn4haJ68pyX5BCR2HsiBFN3KMbtcFYpxFgAnlLxAKE5LgWeWcxYT+0yBLLYbFDUKB1Kfw9OGE4BSgHltUjETLOQRjU2y5uKzEpUJFTqlk2ENmUv9mBPQX8MBKmUbPdxkzelGBdebI2yApOGq/Z04wDG6yG2XlDOD9xrhxY06kdcK5b5HabuZZsdcUCUS9GVD/JhZtIKq+qU327nlo7oXg4wWg9wTqCsXjAZoG1kMcbh0H5pCyGVHAH5x1+CAwyAYILA8Z5bXxWKgaHhh+nnLE50aINjJDSRkTtKu88dVPdtngMGS+6lYaoqaHkiv4XQijhj44YS8o6awhDwBW9n8INZZ1Tsv9SrAJPqusasWR0b0EKxQKV3sAUmiH94vnslT+vvG+dZbDKgwWClUIubkyzGUU0jNEY9ebMheph2xIxpg6Q+vvXPwQ8VeVVUVgpJ6upeFVUxYKioO9K8q7S9kpTbVRPXtUBJQ8IU1WHD8pZp0D07vwH93OKwSfSPBuEXRmvfz/olN1z94KEY7cq9luVr6Pycqi+6b5b6/tYWOujjgtBHoyy/qcphJX886hJPXKyHNr6D1y/bxq9v7+e8PVKfVVH+7b0V72/TmBjDp8cXn7YjoMm/sEd1eio3zalPkWxzYZ2CLEr/eahCHNow8E4MPvLOmF6z66+P9qLCgaU3pGPtNuDYd3P286YK8/XkGfhQBgvu3dDP4ukkmCLFC8nQ6//78/v+JWKFacJbvR+a9CQAruHy7WTbykmSE/mfJirQm8a1c/7ECxrq8+Jmjo1610usgje83fsUqf0Afsjd6PgKCtqVzd0X6pM2VPNSgHvTPOU6yHr1j3le/JuGlbjv4b/UtZwdXNu49YZe9U4q9nKpIS5u34udABtL0NbhsFWrzIbO6C3AkSmbC5tA6mbHse+avah+Ths6qNrX8r7BOu9AvY5V72O9knYgwWm75iuT/t7a1kfhQWKCFLci01xk++NT1P7upejQpl59US0bOaNbHyX921WNJLvbi8o8+oAoMh+cFC/n7MUgslMthX8KiGBpcBUebrY+0qkGNi5X++1DrI/u5NT0tWx7lMKnuxgbp0vndTb+7P+KwrIHRq9DylG9uQgepUVUPfrCspI12fv1nTnq1PAmgoc9e2Qw3doyXsaYX15Zuujw3c+2vG6fqjv1C+Y3cup/yUP9zZg/KPSy8RrRQLdJK5icm/P4z7TVf2j5SjIEbzt7v+ty5SHmdLfj7cfZkIDH3vvwL4OezMO/dj+2z+sa0cBGaiAJPRqTtk7uv2igsRV/tU6VR1JOOp9/6hy8ztF3YMOKl2jHx5ooPJDirWIssyWpFu5yCkhi0XKyYKkqASxXYhEThHjPHnIjZg2W2jZNyky1IDzamwZb4kkNol4ieANdvB4F/REPanXXhZ0b3eOMI7a19FhY8RGyxZj4USREm63ktIKktTrxhrNgkUi55Vtm8kl8sAakBwQiThb9IikpME5ReVLWVcqwDlOT/gwYd1YQkB0/sRsSMlruOHmWBbYVh3zbTN4C9YIMUrjIjyfR6zbyDmyxTvn86nwqHhiNKRkcf6J280yzyp7xyEwThbr1KAzNuKdJUflH1rXO8Yl/DawLneWZWTbVtRKcFgbsDZirR5+JJexqRAtk/FeOZjO54nPnz8VPhYFKr3T8J7kM9MEIWh0ifcKBi7z0gxIbwPLAuuamr6RUmbZFrZ1Y90WRDLjODJNmXle8GHkvEb1onFOPT5kQMSRxSlI5Sbymkmr8huSE8Pg8cHw7dvPiCSMjYioN5rkSF4mstkwecCLwVk1Ov284BAwgfOgqd6TH7Fxw6VEEiV2jiVCzIeSbSwkPVAUj0sbJjgYPXFT8CSnRNxmlriSU2ZeNuZpIYgj2sBgrK4PdM6dhoHRAqcJa2DbVub5XtagsGZNZx+3yJxmbVsq3he2ru+s61PAeo8N6sFkCi+jJk1QsMQY1GMQjU3IscoH1UvaYUgq+2nOKNFpVeB2WaRHXrkcNqnHp81gREF5TWwDWKMk52ioZa13zrH86Bxsu2guSolREMh6U4jE1fmDRhReDk1K2RZK2y1udJpN0FuG08Tp6YnpdCK4wLKsrHEhLgvzvDAva+GVLfUrur4ImpEvJUiRSihej+mMAW9gcJZgDZPzBGsJxjKagDeOYLxyeolCTvWE1tld3xIohO5ouF+1KZKCTHpYeNR79gNjPUjOOSNu1zfbQbHZuZRU/ypeZ/rUMgtKeGFOpJT2THW2+O8KYBQEUwqRXRNqB9um2K9lL0xZ7bucis5Tg8nKRtt7O1UsZ9e9pekMffgn1Rbr9IyUKydjyaz+kAXv167fDTyB6tkaQ6zhKUp0tW9srsZ8lRN41ct3llzT/WgmPNeyrtXKN+b26hZSvtgbYfq8/bcxpoTXdbnDmiJUCVgLyTLsp33SgwI7M0Q/xZrBUBRX233WbJZ3CvLx9+P774amaf1dgQ9f7mTO3of1p2ZAKZ1SUeJHT6ffqTcdnvkP3W9qyMw+WtULznWG1aEuDy/qPR95UDxej2UdxqZ73Yfd/dbYGKknxFLG1hzKaO38rdrU+LFuHKUTFH0Z+3zr4nb7mn5oRHTKN7sgqR/u9pAU4t1HhbnQ2EkPShaqaqNhCaos6khU/b0JOAopsFHX1VyyCykJV3m20c129+aq/VG9dEyrV3Mlph/zEjbWwGsFm1SoFDNCajhcB+6UPdC5ivCXpmqFSFlp5Y0z2FTLfejfFq6js6i6murmrpuMkvPtYLkpfaXKsG7AtS2pnNTs9PP6wOqR59oq1gY0gKu49LZT80IwmbpNohqDIroBUDfA8pw2kw6gwb4yqi30EUCmY1/fz13djmP1W+BT87aQY+hR9Xh9DNHqZdhxjuf9HlNdhw39Bt+XXX/X1z1hfEpJlVmj5OKqEHbF1w1CdoCzcpvpPaaUqadFKSeat1QnZ6X0bV2QuXlRdZLJVAVSG1x5F0zxuIugRpuzeKtSTAkmRQGmumflfdeq3g2ZPfSsbHX9yHRKV4WLOlCnjv1+e5tHmAo2S4kG7tU3GojUfbVr8+NV9949RHb3XDxKzBpm35a6VaW38ia00L3+O/3vvl7dUH48df+Bna8usq4n3t0iDZL77SJ+x/U7tsV3z/49e+mvPK3IiH7n7Ot63Ke0HbnJNtC9z0DbhIs6TNUT9XumeLOXOdAOiErRhXi67n21OZXDUh0jOqU3Z00Y0XW6LY9zcMgc/g8rRb/jqvvljj31G7OmODck9Uhzxagkk0U5cFJa9/ga52AYMCFoeFtKSNpgjSVspmRccp44DQii26S34DVmRkM6NNHMOAYNNXYWLPhpYLycmV6ecMaq16QzEALhdMb4gWwcm4AUTyMxiTBOhEFwzjPPi2avm2+kHHHe8Mc//kA5EuV2WwlOMKNFkmVZIktcCOHEGEz7sRJ5/fYz1+uVdduIMfL2diXnzC8//8Tzy4+M0xOZAEaNsPPlCVuIzq+3yP0mxM0R3AVvNZNdJcPd1hXJG8YkhmEgJcuyJl5fr/zhD5/58ccfyPlH7vc767ZhreX79++8vn7HGAghEELQ5ERLZFsz00kJ4WMsySmcxfvMsl55fYO//fRXhnDG+5HT9AJoGOX3b9/JOZH8yjgph5Mfz3wOLzw9PfHDly9sW6ROf8p++fJs2baNbdu4z3c1VJN6yFyez1yA0zjy9vrK9Zq5Fl3FYLnfN+7LG2+vr+QUOZ0vWOu4Xe8gDmNGbMnOdX525Hlpi+0yDYze4ccLL1/gfHni3//9P/H1l7/w01//xP/n//3/YlmupLg0LlFjLI5ZOYDWjefnzzjviSTevn7jLhEJhvHLM+Pzmf/HDz9wvzxzTxu/xJnrunDbtl0XshmbVdeRnPBlXRhOym+VFRBMb1fyFrltd64/Lxix/Om//Qd+zXiBl88vjE8T4TRAynx5+cIPnz/zhy8/sq0rr6+vzNvKmjbuy8z1fuN2vfJT/Cv5urIVygsTLHgh2hI+lwXHiMsZkyK37991fGLS0L2iK1bgyaDZ1bOovpditdXMrhQD5uSxwYFziLElNqIeigqyzWqLp0KZUVde+Vw5ptSDSoCUI5IVoMtxU08nqjCs+rwerhorYLJ69qwbeSuJhFBuouAGJUJPCjTaweMGx/Q0Yr3DBs/5+RPOBYxxvN1mvn/9xuu376z3FVN47HSvyZqJlFiwhqRZByvwVMITLVlJxA0M3jKFwOgc5zAyOE9wjpMd8cbh8dikIXZpy4WaRIH0mBN5y1hH4ZhTTrt12UhRlCcJTQ5QicGlgG3V2zSZtWhTCQ1prDqoFHvYElNs+miMGs7MFknBqYeYoQBBWs/9gLfow51NrRzNVZPU/beam2VWILrLNf0VpNl1VedflrUUa1iWbX9ejUyQxOjC7mxQfjQiYrebtri37R/RM34/8HTwoKCkEaSR7jZOE6PxkzrAO0eDrQuqdKSrxK4iTXjmnDUcrp7YUg3P49UEcbexG7ufzDUSLwqXvqiinuSobNSTlONZrmnP6JXfPfxgv0xvlLEbPd0j3r3moQ7v7uq019q+3VTvTEezv96FjN5Ts5hV0Kmzy9/X51fee/e8Y9U+uIrA63lhyqmWghq2tV1d5zswRrq+M0URrQZ4BywcMK36sqtQPn7c7L4Wdvdw2vuuzcIRfDq0fTcUTREqzaB5NLweC0VPMPf51sxsXcTVbJTf6OHqMfSbo9jZVm39mMP3zKEWtSaPs3U3/m1d221+9Z5oZX2K9vLuWZKp7qgi9cDGtnTZepJBA54kVbkAYFWAZ7N764iAFUQSOaEpYuPRjbWF7zlL8A7JmSipeQaCYUvVfdRqKtcSzlWNhKPNrHWqpxQ1E2Ttoz2ka++PCkzVwLJKynf0FTjKUQXYdZ3mXEmo9T1dTxTPnG68CqDovG9kfxRSxix1Eysbn6tk8EUmtE0Naha2BphI71NiO5lSfHI62foYttRfxzC42mTz4T0955XppkFua6HOUQUXdjBV3pX1eD2GvtR7bTkx0JOeGpfVeeaWvaqGWB5Pt/ZwzOrlq14UxRtKN4KmN+q4duEumLYO6nfJqiAaUw5kfPUGpp0A5qx7UPXUoYDVqQEuysmViyzdSSNL/aV6wXX90sCSg+9kB++UtUH1Lih9CS0cUYe2tmzv9yqbDSV88/CEMu9NLqBpn2f0I8nWf1PKhrhL5yYFjN1b1G2nfd3qq+Z91a19LWOXUX3g9b5/HPd4KZuamOqRdgTtfn2/PF79bP/oMu/q+UEZXZsfP/69nonva6UPfnzesefrOuvmB2VOl7FypoBLcPBGwpiSibQYlHWd9Q3v2lDXf5UVmslIScSrLE91K5H9PqwtSQW0orEkmjk049i44/uP7Te1Tr/ZgUivgJjyRkx6kJkMBFEQqMgFYx1uCPtcqq5AVshsYDSUhiCq6G1RwamQsUFIiHo3BFu47CxOpGTrVJg5lXDhFDNxXbh9+0peI18+feGHTz/wx3/9T8gWWd7ubHf1ULotG+ds8M6BcS3V+3g641wooR7VY9YwDhMxKmdLShvrmhEi57Pn5WViHEe+fPmhhYqs25VlubLFyLJsZMk45/FO2HLk29e/8e37d4wNDOMz4zgRholtXQnDiA8DxljO00mzV0ki56i8SfcZa4QQLD98fuF0fubleWRePrHFlbhFnl+eCP5UMvld2LaN17c3QhgZx5N68AhsW2r7gbHw+fMFxPD5y4mv3//GlhawidPJM06OnDWNuslZgSQxeB/48uVTkfnCst41MVPOnM8XZjfz6t/ISXn7xnHS7LsIKcJ9TizrxvU6q51CZi1cMiBYoyCmc5YweFKsHFwDIbzw8nxG+WECQuZ2eyvE5gkXBg1Z3CLWjapX5MR98ARvSNtMXO+kuPB8DuADLz/+wL/+H/+Z++0799sr52kASaS44u0EyZFnR9wiS5y5zTeu9ytb2shGmOcb4ZcRuS9sFsQa/vnLJ24ycJOV67Kog1WO3O63Qpqf2W43RLKum/OgYYnjQBoHwDC6kXhbScvG9row3xfktvD960+4KWDHgLOOp+nCT09f+frDlWmcmMYTT+dnMsLTeeNf/ujYtoWvP/7M3/70J+7XNw3PsyvJbCzWqyMGhjzPJJvIZkN1WRQs2zLkRJLE6orOaDJJNPuhysDqdWRQJuwin9KRSqG+p2eNBqJ6O4FBnCUDUXI5uDTqRSmpKNuFJ1aElBbdu62ouwzlHlQOWQ/GpOJolIjLUtxqHGGc1Nkjgxs8zhqGwTGdJtzo8CdPzImYMr9cF/J21/lsHTF5fHgirjcQQSIKMJXD0wqoV55fREO/vBW8NZwGTYgwBM9pVNApOOV2GnxgcIFgB0y2mGRYrgoiLltkWVYV6x7EiWY+tsIgUuhdbCEJF7YlY4yjHryIFHogFzT5kTV6CICK6HrQV3Ux3TZsyfJpydkiZNXzG1VGgSAf9JXmBd70NbPTEhlaxFRzVDCU5whRSiyWJFLaCqeV0qNUziep4wxITbYmgrVKw+GqASkqX7JUaglhP5Sl7LE1U55yRP2e6/eH2uW6yR69BHSz37OoVSW18Xk0Y8LsxnArtCgi1cupdUAZgM4+lvasAjxB8ziqdagFVwW5mHQqFKSkCuwuQ6fDtgd2ykp5hhTjUQzYTqk0socJvVPZf02DrE0/Nq/061GBfyyqv38P8zMdP7Y0DbUZ0uyTuX/277s6kOGDur0rZ7dgd2CmwRymKV5NMT0YFHuhB7jvo8r2iuGDkviP6Ncf3SroGDdjp8xdNTA+qC9Vs+zL3Od+/bN5BlIMObp29uP3uLjo+7yCXb+jbYcQwX1e6zzrwaPdqD62af9OW2/lH2NoPEh1hlWgrvnZFBBD6vGyUQHVuJNKuJjO0/0eyZo9U6wp2etKeFAhSc+5JjAoIU/GtMwLNcuDGuBSeJBy8wjUpu1yQitsujEua7ATPkIFcItzbDM4pAjaLlyoukdjEB4F8HGiVqHdDNe6VmWfQWbvzX1amH422CIMemlCA+SsK88we1/3M9T0hvLBYJZWr8frQA5uqtfRu6p110HiH0Gg7p4d4JHue9RO6pZIJ387MOnwxO4Zx/f3YoV9Y6+XchEqx552VbehGHZ+Jqnegrt0o7VI2jwSur2M7pbWMlMftH8olHlclVNtj3ow9V4hfV2qN8gu9w8hNuz7wO4P1/0ItM2Zh/pCA536zmonae9k1H5bHc1c90lzvKe1pa63XTHgyMNndgCzSwYhXVmPbT3uHQ9l0ZVzEH27J927fqgyrPuz9V2pcb/fPs7iQ00+WifSrZQqT37j6tdcf+vhuUKTTf+zXk/VO/Gj+hx2MTmOi3m462Ez7PpOyrTvjqKk7qhHkLbpIGbXBatuoSC9vmHr6673rbXtoKF617X1BMeB+u2uL/qhaX1z+NpvfbdfZ+25tvxtmy4avCMVr/XU5rwahWJQ4MlaiKWnPRgPBKCEY8jg9YAFMEk0e7MIqZAmCxBtyfQmBv/9G84PnE7PuHHCuIxEA8kUvqCI8yPOubLXFkPIaoaqnJIecJS17L3HWatAFU/EuBHjhmAYQmCcJi7nM1mErWSNy8XwdDZjjSEES0pKjHy73bkvb6RsuFxW8uUZSGzDgB7cZPwwYg0MQQ+etjWT4sy2XtUT2nqG4RPn08DT0wveB7a4keLGGEas8Tg7aHYTAt6uBD8yBCX7rXukcw7xlhBgOg1YY5gmy5oC65bIwDB6hkG5VoRKLlyMPWNw3gOaTj1GJcBeVg1b3Ge1w/sBxDfOTBFhWRLbpgas9069P61HCoFziiVkJ+VyQOYYhoAxGj6kgJy6k4tkYuERci4wVOLhuLFt5WAgJdLmdMqtd7ZtRtKKD08M3jKeL3z54z8xvo0M48DL0xlDJm4r4MgR1jvcbzfyAlYcLIIU7480g8mZ9fVKthbxjuEJjHi81fTwKRtysmAnIomYI9c0s6VMlA0zBKzXtPU2BF0HbqR6R8f7RnSahW7dVoxE2Fa89cQ5s94jeTVczk88P2VOmwLCGeF8dgQ78XR+IX5amfzA3QVW7mxmY3IDa4zEmNmiKaGnVqPDiq5bSeZE9BC6nHIX52pVqqsnf+81XA/BazgmUmzQTCGhEmSNmgzJWDCurO+irBgDONR/OisAVbXdCkxZPYSVEtLjfcCODjt67FAOBjDkQqZnbWDwQdmSkhQZYHCDw0wBExwSrB4SA0vc2NZM3jKDN3rQLI6asU/BpxJGp65OxbZWhxKN6jGMzhC85RICp2liHDznaWTwHl+Ap+ACwQUcnhyFtClgnzLELMSkHrdSOXWNZrSLScHhnI0CbUkTt2CKw4ChAcU7QTeE4Nv+mjuAoYLTyrW+64g1gsKYyj5IoyWizIW61+48s0XOW6v+V92BYtWrDOptqbZV2RizZhiVQvpdvaeqF9MxlC4XXj3TuJ0OuqNo0riUilOBmHbIvR9Gf6zafHT9buApJ2kZIJX3rGz3HRLbjLYSSG+ERiKMVEAzNwG6h6OUTTZ3+7atG3wbMyXzthAKOa6k3C1QaDuqofGbbMXjuv5UpbAFuBjTwozqVQdUPaiOapSeandsFSKtTGG3VczD61rH5nliUU8R2SdStR+bvOifXN5zZleyepOHYnxgClLcKYK9svt7gBnTv+j0t6Mqd7yqcSQxdpMZwO4GZVG4jpOzN9r2fn002MyhE/fO6funZkGqI/aoS/6Kvv/unj03nCqxuyeVVD25tKNT87vxauuBru+lzB1j+iyXNIAGDqGcfc/Qj7TIu3n1/qqeVKacZOh7BsNO8qq1q4ZL3626OQopQSgoeUXIlUg/E7fIuqWCoOt3NWmI6cqnCD1LzqYoPoWssR3olJ4tE9NGur+zCn5bPYIgJsO21X43GO8aqawK7j3zJaYKfpU1wYUimIu3ShHe1roGIqRu97AlxIOcsU7raV1xrBX1btLMbOombJrxLschOw63hkZ1oEc7fTDV8IWdlaSSW+rcrmGEUAEm037qCYoxu3dWPd1uPWYMxrhuQ6MZ/8JulNFOb/ZA1f47fahb37aPDd39OW1sZT8VavVoDNocrhqy1zKQludWd+dHo7r/ew/f7kCZep/tDFMDuRmmut9Vj4iE7POxCPptSwoQWacywtDmWhu3vlK2njTxjo/MPPxOSZTYE9v6Mxav4Nb3pZ5VoSqqSgeIdA+RXYHZnerrumtvHHC2vT7m8F7vRQa6Z1WvtX4/qvVQcVFkaQt5rB7C5a9mbKmMbMRN+mF5WWFY2n3Sxco1OWtM8SDT7zWlrX7Vth248F6gU3x3SVMlsq7jrj3v5O2+pRVujl/bHTvh+uFVe+ux798X8/dAkXcly9959G9++eMy9v211PtBqajDoPQL+3puniJONKSglC3Vm486riq39Ptuf/jjOpd9rZvuud7pX1vsQOqiuNdwPCMZcg2h2CkB/t7VJzvovZ57j+135bT36iJ7WJtZMGRCAG8sgzGsWdhSJJHKIkO5bbzTPW8YdD2noB3hLOI9fhowwWOGAGuCLSGzev7kGDX7VIza8c8vmDBgfODn60yUb2yb48vzHxiMB/E8f/4DrkQTvDw/4awlJ01+oKs5M99uxBhxwLpuxDVye7tyPp/59OmF//pf/5+aJckp6e6yLNxuN37628+s20ZKiWGcGKfANF6gA1/u94Hr9cb1+o35/gv3+4ykOyFsnE7g3QnQ8ESbNo2a2Da27ca6zizzlZzuDINnHJ54frI8Pw2MwxPb4oh5JW4z03DGMbDeE5VneRp+JKcTks7kEJGqRwyBFDeWcWZyYDSugk8ysSWLkJjOp+KFta8VDctWoHFbZ2JciHHhPt/4/nrl27dXXp5vDMPIOJ0YhwveDwzhqinebZ3DOg9Ppyc+f3nBe8f37z+zrkpSfnt743ZbuV7fGILjdLrw+eUT8/3G7fbG6+tXBDXmck5Y63A+Ewb4/PnEOJ7w3vPTT9+532eywBI0A+19fiNG5YgaTg73/MT58sx/fn5huV+5Xb/zfD6r8Qq83m/clpmfv39n4gs5JT7dbvzpf/wPrt9f2ZalZfbK91k9eDHM4jk9PfF8PvPD+VS3AP79v/w7STK325X/+5e/8cv1G//xy59ZViGTyINgxkB2ltu6gDfIKZBuDvv5Cft0geUZiRGJie06s10XXr/N/PS3m6asxxbPY894mvj0fOJ0Gvn0fGYMJ06fTny5fCLZGbERe4bbfWZZNpYloma15ae/fWNeVuZlLRE/xXuxGskm48ZB164tAHTKxGXBDLbZH5R15m3Zw5vuqj9b3CBXezsg3kCgeDwCNhWPPfUmqhnPbVCgRjmQNMwL4NPTM2EMuMEpeTqGJPB2mUEM1gS88S2JVSoJD163mRSviDO4xSNG+YtwJ22fhTUm0ryR5hW5b82OMiliKcCTRBV3xnAKAe80TPg0eAbvOI8D0zQyDIFpDIzDwOAHpnFSQMdYtiWxpI0tbdzWlTVG1ixI8Iio55nDFHsBlgIsxy0BGnGxrrHyIKhnrQPnNNJBsgJyp9NUxbiG6BVmIWsNKWXWTcFl1b8qKbjFWE/1+I4xYZ1rhyxZoM+OB5R9VH+897uu1SftcL7o7lHtvmQxKZHTRi6hgjXx1Pl8arpzCLnoMpod0BvLOAwq982+R+VUQgVLZsCUKaGDuel2h4Oi37h+N/C0rImUC8eT+v2rjpdKf4jogBQAqaZz7hXXLAVnFD2BqYZfT4Sqtddv2aJJ1NMVPbUweLtn+qkGGcVgExQ4yBiSoRmhj8DTvv1nzeRQKmlN3eMtu4JQlSRpIYbSfQrv/6a1vCrlZle86heagVo9UJKaeWYPnytVbH3SuHPKE2q9msH40Ob6qNZew3vPM46AR330QUXqLYr3Lw/PaWh14aXRNmgPWfPQb7J/tz7m18Gx2n9V8SsLrvSl9Kecv2XcfbQ25OM/WyCltICjB+Pg+DxT+re+FugP6QGjBq7Z+1daqRUwqZ/tIS77Q6QI68d61D/2v6QznpqhIGUGFjlW50y9/2C0i540mVwEhSgYtaVMzLrOjbV6UgIPCHoFRgpoUtZ5DVFq2Kj0FSlZwmJ5buUHMaaEFFVPK22Rtd14SDVwpRAy78ZencvKkZEbB5rFQAnPq92riD5tgxaBbOuq3WGFuphqG2vcOa4CQDpwezRgNW5kb3fX5yIQZZctxlSlo8wEsxtntU0p7dktegJ05xwVzty5c+rYtnQI+1UatYNOtd6dwdwB7I/XIy+T6f7d59YuS+vn0sCt8n6Vuf1pQ/mGaW2k9QelT7LkI/jUUGtp+0h9q2/DMTS6rRBMFs3SKmrz7UataXI854QRgy0+8BbUs77IYlvKr33futnsLspC5Y+ihNRJuS8pOaSYei6no1mamCvIL+zrot5V157Z9wapfVKf0MuIrj8QDg6BdQ4/bhYH+W2OkUSPclaEPfy6/kitV7+ZSNERKnh2DFFVQKJ6xtUHVK+zMkcqqNDtD+p9dqx/rVxPOn64Orn5eH1067El8u6+Xg943HyaZ6E5elq1Jtb1U/55LHdfVcerfmYeP5NfaVk/7tK34jFU+Fj2u2JMBSJLSLPZ97B2UluzEiGNm6uBnh9MuaZ6iLTBqluGEv2rh6mIAsaanMkcZIsrHgZ1rZm8bz0amtLL6v6Zx/bt8rbe9CAXHzrG9P1Z9/W6DtrZgkqfnCLJCMsiRDIJAW9xYwkLGoJmqxOBIejhqYiSi1uLHQbsNGK88sGk5a6n2DEVQnL1etBjc6tZuYygIIRnnWe+pV/47//tv3MeTpzcSJ7OWGOQnNjmjSF4pmEoRLbqgXy7zgo8WTX6jBuZzieeXl54eXlRXqYcWbeV223mPi9cr3fu24og+NETzgHvA8YbKKH6IobpMuJHTyYxngbu88LT8wun8xPTNJBkJm13UoIn9wnD7okQ/Jmn80hcNdTOieft28I6v/LVweubpp2/Xq+Mw0AImmXvcrkwTWdiXImbJ0aPsZ4weMZh0DBAG3FuhPiK94bz+cz55URMkXldNPU6FmcnUrTELbPJqn2EZZk3ckqkJLx+m5nnDUlG+XNtJm2R2/qmukT1jtBNCOst3lumaWSLC8Pg2bYZ7x3jOJA2z+fPLzw/nwihsKtKLmF/AzGdGYqhDTCMQ7HdVpblhkhinDLDqFm+nHNsMZJy5GQ93o147zhfLgjwdrvzdDrx8umP/Ou//BfiurIuK/frVb05JHAaA3FbMJKYTgP/8p88248Ly3xjWxb1zChga0yJ+f7Gss7Y76GkuFeQ5Jf/9h+knJiXhcvkCdMzpx8dc4DNGebBIGFkM/BzjmQM4h3mx8/kLZG3xDrP5BQViB0NMm+ayXFbMcrOr0l6VsMWb8zfE97Cn4NnCF7bPgTs2eFOnslfmJ7+wOWHiSGccDYgWM6f/sbr25Xr9cqyLhpKZ2GYHBpmtxJFQYEtRSRGslHPjupNeBqn4rmogjFF5YxKUoAkMqkKTQSygg5WLME6vHeaNc1dEBG2bcUYizUWbz3Ba7ihs17XjrFcLk8M40gYAwlhWVdu9wVJkRSzchTlhGTN8pdrmKczuCHgjCWYASXqNtzviXRfyUvGSES2FbYV0ko5rUNEy7CIhtQ5y+gdp2kgeKfZ6qzVLPLFyytliGJw2WFCwhvBFV7UtGXipqG+1hrC4HHOqcefKFRsHUXnzEpcj8EZT4pCLG1rXj+5qi8GEY+IeiAa64vOl0sSBg0rT6lQBhGbGm0qjGjAWq+hb+0wpOhtUrwS6wZVNp0CFZafYmPV5xZ70JCKTrgT4FtT7B6n3E3GVq6n/eBY7abqidX9WIerOmcJb628X9USsk71LucqRcQHSsEH1+8GnrakDOkpSeFvKpto1o3cCoXrReMXDwdIzUio7tSmca8cuTo4vDbsg+1Kdh9naG7UBz6GqogUxb+BTL9mdJR/K/FunRDVcK4pBOsD2ml7dY9syv6uiBUdor25x2Gaxk3QlPlevTT1k9ouDgNYlWvtl73NXW+1CShSPBjNsb2Huz+YHL2CelD3P9Kgu+udYkYPYkn3tUqJJ62z1U9E+lub4fMR+NS4c0QpTHdDsK+8OXZYV44xXRPM+wd91Fd7+NE7c717/4NO+uD5R0ui85eq9TDF4Gr31QnUG2j9i0fVfG9bNTbbXebhu1XrpnZB9X4y3VpSD2Gba7YsrV+syr10oA9VGe9PhPtQhtK+vPfpR2PcwoZkD+MRaqZXaYCIGjO2e34RhmVx1vA7vbsCEApG66kR6lUpoqcJ5bLWlDpU0Ev2DYc9FlubtAtvY2igcAVIerBFSoMr6EAn+Ot4Nc6RMp41FGsnGOQwnpUrRWTnpAMFcAzKF1XIgXbLp/VGmywNAGqUJ/V1kbUN1PgVK8w+osmH0otM60xZU62xQzGdS3Fps7Zzb3cPVpjmuSLt+3VzL+8e5323HvvWtxGSXVbpfKtzdweJrRg18IrcMkXhq7PMlA1LN3j0cAU57EH1Ccd5W+sn5X8ds4zB5GNcuVAOUepexw5CSS3ZaEhBLuV/tM7aHHsglhfpT1k7sdFtDtKNS63bQe4fpleVBd0c7uRdHYVcxqCuAXko52DeP2zkbU7VL3Vl73Ogn29F8SoE6cfG1hlWH7ILzn43a31RRM5eNu+vTpUw3QNVzmnlpcn//bMOi2yf9cU/TOtjM+rvso56EOZdHU1dp21F7Wv9uLkehr2vf5NYRVbuaZi7z9uXK/JTDsnKXmMKENNGoM2TjzfzLOqZLLIHoyhdg+5Ntb7G1HBxafURK5pVq7ShAcQPfXM8+Hnf11rP94Ne+/9R/LS9q+mWtMUrKZEQTeHuDLl4uJgQcNOEP40YKVmeQiXkFWQ12nkuYKwSbwu2cHsU7rqmVBqkAMGm8ANphi4hxo15y/z8088sw5k4PSGr4IyBnEjrxjQMcLng7U5gHNfCuej0NN57j/MDw3hhGC8YO5HiwrpurJvSUkVRPhprwY8DfvBYZxGrC0p3KcsQxn3ZW5jmmcvzM94POKdhMmkr4WxE9d6xlpws1jiCG1nEKMizZW5vK/MN9Zq5r8zLxtvbG8F7fAh8+gwwAMrbE5MhZ18cVQKCJ+eIMYEQHGJnxsFyeTpzBraU8Lc7b9eFmARDUL7KBOSsXpYi3G+beiKkyHyNbDEroXKMJGOJ1qqXWlagMRcPQO89YgTrLKdpJOWVcRpxDqydcFYJi50bMGZgGDQEL8WNbRmpYTcxbkUPyo1Y2SDktJGSRSQyjEoy6INnnrNmCPSeEAaGEHDOkpOG9slkGYYLnz//ke9fv7OtV7a4EGNAsmatk+gwNmLcgPcDOW3c3r5zv70pOXiMGt5pjYJDMZLnmThsDM6TfeDbdVavtpR4+cNnzoNnOD2zBFitcDUZvAJPyS1sQDIGOzi2dWXzG8mm4hFiMDY3vh+ZN1V0s0E2VXrjmlnmu64RSvu94+lyYYgnfB6JTxP+MjJNz5wun/BuALGcb0IyI8kM2HVRjyybOJ0DQmJLM2wzKa46xqYa9q4AT47gBwWHjEWyKH+UTfp7S2QbMcMe5ZJt0jlmDd4Y9aB0XnnCMKzGqw5jHMEHvPManugK8GQtw3BS3jQ/lCgSQ86RFA1xg5gSZCGnrPNoXdVGHwecOIw4iMUWyEJeNvIcyWvCEPcMdRIxJSTQENEwNhiC8rSeQmAaHd55ButxUsLuct5pLRxkIyQym0mIA2OFGHMLAzNW+wFfwujQfce6fY8I3mFwOAurxELzkekP0ncdvtMNykGiVCWkyiopkQZW2h7prENQZwwFamxLiKYbvCHlEjYpCdfp9PVwwnTJoZqeWpxv6mFnTrGF3Wo0iGt6x+6xKy3youpNpiRsMOXAqPLy6v5R7PcSbmisYCRrZKcU4KlyKP6O63cDT+umrPupngQX17PSZTo52wiUU6gyCJXU9KhIdhtyBwLUzVoPhAyWis5WwpKy8VIy/xQPBYsSmuesHk+1/BozWYGo/pL2MK2JAbxzexhbPT2up7FFQU7sz6jtf6d6VN23KFS7639vhOg96hCyn84bFGCrukkJcsIYo89tBsveoakrs9athXrsc+tjHe7hd6ej7r+qcmrkeJPZldqq5Et5ocpzXTRFyTN7G+vfzdOiq0X9d2/nQy3LhCohzcera8hHdkC/OA4nrL9yf72OFLj1QRVtlqbot7LbHfXu42eHUkxtKwV8k5Jf4LdqdCyjlrsbLzvw1JTg0shGG9GNXZ13eyp4IaqbESbtoWRrUrjQetNxzWi4gK0xst1VwaR3E60Qvep79ZnspM11qDOk2Hl2FEPCljoaK+oGa/YQWl9DsCqoIkJu3AeJuAnGKongMNBOlXQdqrRIOe69WryY1EDUE8iMbk6IlLTHKjukZPtLFKhddgFfNwLdzIUYNW10kZpl7RQYLe8Af10DWbLK3ofx1xhslYnOeyp6uPMmSemZx0GgcGdJP3GKvffxfK3gYptzj7FjD2BuA1fYAfXjDCnjXeS/leo1Rt0fW//VDHeu9IeUMbBl4/S+cqYU4Cjlh/2gFGsK59+vLC89WJBiNBcCSJXCCqGbMsZJvSlMyWjUt82UDCDk3ORMi8sXaf1Wid8xmrVl7/biXWyL15ArSk71cjJqbOcK2LHL/Qg7qGRal3T9bbp5dZQyVc65dmc/SrVxR1lTP6+yvZc7sO9Xe9bFx/7O7cAIqg73/s4GinVyq7bGFugrPW6wB2Rt1w/Nw221nsfWPiguD58eN/+PJ9NHBz0f3fMICB1h6I9L/7X3ml718P5DV2j5nQhu66R7dnv9UTuM5mTdT21zk71HfjHbgaP6dzaioQ5l/6+nyoe9AjANoK+6lP7Wg5AS+pz1+VukyQ7nqqJs8M6W/TA3EEqM4B0kpyHeGm5bqCR+tW+l0yvyUZw+bviPnV9dA3Pf6dIieKPU1wFs0Ix3Q0DGEaYT7nLWx+WsYRUlHCOvqGfTnLFxUznkHGlJmIRmoBsDpvAJxRxJkvW0OK4QBTM4cnZs2fLnP/+J0U2cw4nLeGZwnsF7BueYhoHr5aKZpIaBT59eGN0Jb5VLFePJ4kA8SzTcZtXJ5zlzvyWsn5jOE5fPP3C6f0NMwnmIUbOSrXFh8APBDzydXricnrHGcz7fsGHgdr9yfj5r6HGGl8tTS0SSs8UZj7eet+/X4kEDt7eNdV6YbzOncwTjuC0ZrCPlzPfvr0zTiWma8GHi27dXchb+6Z//qMahG9m2hdfX7/r8y8TlPPLycuEP//SvnE4Dl/PEPK9sMeFDwpgr9/taMsYp35bzgRQz67Lyt7/8xDovxG3DO4OYjJC4vn1j8Z5xHbndZ9Z15T7PpCRM08S//Mu/8Oe//IVlWXDe8cd//ieen9WzbJlX9UibTNM5pvGk0y9npuFMSlHD8W5Xtm1lXVe2bdMVaS3jqJ5dp7N62CnfIAwjbJtn2zYkCzEtvL19ZwgjYzhh8GwbvL4u/PTTlbfXK9++zaQtF5BjJIQzkMksrPHGnK58fbszzzNbXFWn8xbrBy7Bs22RbYm8fvtKXDWr2mjVM20cFUQbTxPT84UnExBvuTgY/BMyBP759JnX7c49bbzFhV+Wmfu2IIN6BCcsZgyYZ4vdBswSsVlwCeLrnXRfSd/vYOayaB1x3UibYds2nGzYOGGt5ZfFcjotTOMNZwMWx+06s20bMVpcOJPiwrJcWbYbOa3E7UrMm4Zi5ZL5rhwUppzYJBPXG5+eXwingXEcCU+OYD2DH8iFvH+5z8RNOdTu6UYSDdGVLOrBtYpmZPSB8/mpgLYOa50SaWflM9LXkW/fv5KxJAwxU4jnN9Zlo3rXOOsw1quHnQlYYxjHiZh0zO63VwU/MuTslAtKitFBwtgIvoBPkgneMDjL4D1Pp5HgPaMfmo+PwxJwJathJJiAtwNTuCBiSAt8v2pIqnr8Q4zqVeid6ubee3IuNqwdGEZNSJCSEGwAMaxrBpmRBCG4QpqtHu62JMtwfk+UtK57tmuNCEtlzNVbKgzKf2eMYRhCS8BWN2IBckoMPuC9Z10NiZLN0tkSHZKIads93pPuoDlnlmVtHLSm2I3K46V/hxBaaGXPSViTueWSzM0A3rvGzbfTDdWDXKsE9xZKQlSwsfFQea977P924Klu1L3yoi5WenKiccdqDqUWAiNQmfplN1DrBm2EFkZHKbeRokJxRSsZ8GotyimviHpeVQRTTG4AV5bOwCjamzrU7Vd1aNJQDUoYn2spB3Pa767hE1l2rpDH61d0snYCSGl7NcR2t3p9nkU5DW35nqsTFPVIMGg5Giqk9dGJVg2wXWE7KI97d+/Gn+1IgaW2sY7y8Trq1PvE/Ugdb88oyv1HZuuuFGtDK69RnVvNjGgGzH6aCkbd9EuFRTI5STH2i+dJ6b/GTGO6+pgd8a2KfjMw5dj2R4Ok/6T3GGmvDh4Aeyft/lKPhoUc7u/vqy0+cMR0Dzz6WB1hub1vdq+KOif2z2jAggKBlZi172uhekukBNsaiyfNQ3WatVIAXrPPVaRyZHWTq/L6HMwb2Q2Vuk6qkVJe1HDc2ku6PxfQubBBG3f0SqvzTEpHqKBVTo9mlNgKKaj88taQxOj6b4tiD/PJSUr2EX3fuKyj4U0xjGwD3wSDKXHzlXhVAeSSLQ1pXG86D1OTV5jO06aUZ6gAkQosZ/aR78O6YoxlDtr2XuUoUo+2bv6+m+DVg1C/eCDg7ftVpH3ZdB5Pj3ZXuYMkqT2rysSeyLm/ek+w+ndbSWVBH7yfOiM3t0mi9RfDblHWZ3e3NDnVydI+WUM9IS4jRyrrRmq4uewnZ5KlEblnun2i65QKVOrbUuASU3z3dGXX8Lv23XdrvrwtdX7Uz7rw8JZyl2Kg93UAyFAIa49934/bTpFvTPunlFXGpO7lpfhqW6uHQDfgbRxp86q2se77H2yr3T657y2wy0iV8abNqfchfH0Zj9xjR/nde731f3d+o933q3yt3peyewx25ZpjFxz74Vf+ftcHh3p+cEP/nuz7cJMOH6Fa7GN2uPdXii0V3WX7oXw6INrRgGmzZ+lMOe9hoHwsVw4PzIAtYdrFG8MYinKrZTu37z2pHIaobN+91vUUlxI2XbzCTQGuSzIcb8Bb2MpBxCaFb7TOta5z2tzvO26n4/vw2vUd3re5nKCIUT26kJvs+1ZKpHVFnNVwiRJGV1OgO+uYTpfmBaLeTkV/LQqQDIGIxWRLFE3iU0/JiRliJrvY5kPcrsRtYV1nrLe44cL4dGIo+/9tvZPSxpai8o1Y5TkUY5hf3zQ0Z1k4nc6cz2f+8OWPDINmHRsmryEuTjhPT8S0sm4LcTNYM/B8+sTpdGEIA1M4Q7bkKEgKTOEJawNhDIQSoultIJewTeU0GvHTGZGNZVmZbzPX729qDK4RXCJn+OXbG59/+IEhDDxdDPP8ja/zzyzLVyoh9zhEBQBSZF2XZrgts2O5nUjbSrBfmK+Z725jXtfCv2OY50xchW0TvFdbxnsh5xVjF6ZTxtrEthb+LSLGJFywDINhPAnPnz4RY+Z2u/P2didn4du3X0AUhPr8+TOfnj9zOl2Yhie8dUiEP/3Hd9Z1IafE7Q9OOXK85fOnZ4YBhiEz3zLq7JaKp4IheMcQRoYwMIQRa5WkW0SUPkNQL6RirI5hUj6qYSDFxOv3b7x+e+Wvf/kb81wI0293EMFbS0wrQsYFAZtIeVVOTWtxITTD11sNq1OPmsT5dCdtGhpHikpIHhNv1ytbihjvlBRdPMF43CpYI0znE6cwMOfIdL/ihsyYLHGAVTY2IuIyJhfqlzEq8BMzC4YUPNFbVg95XZFlA3SeJ7sBMzkm7Fvm+3zj6geGcCKEAWcHlruCZXHb8MGRcmSLi3pZkZAcC+BYstvV/acY1CIKCL1er8zrxugD03hiGkde/ABOwzY9BvGetDpszOQckazrM6eE3Bfm6896eGUd3g3KKWR2rsVc5CE1OY+1iDEshcMnm4z1tgFkIg6yEFMkbZvqJyXES1Imp63Q0ghOlBhd+ZsS1maszYSTU6DYwWVUkvBpCJzHSbUiMaRVT8ctFpfBOBSkcQFXOI1UxhtCGIkpEWPiPisYt8XIOAww6KGkMUqS74LhPJ1LJjgHyarXZlwYA1i8clqXfSpuK7ZyPFmPkvJnJfc3BmNcScKQWJalAE+WEMKum1BD3coBZdkz7TgqQFj1XnTfctYgDhDXvqOej3pf5W2qwJMthzLO2uI5Lo1Te9dnTJNvRy5mvUIIeOcI3jVvrF0XN60dVPyhGdi6v1UOxb93/X7gqc8CUx5YszoVsvsSJ1wUwiTYGhfZCmmW42HPdtU7yhhd+FWNtl22vGII7SffGvZX7bBsdtApf6AE1Ge1v2u95AgOVOO3DuZe8/3Z9d6+8A+7uw3MUek+ainVBDeNkE8njypF1RzplfcaKmTMEQjaS+xs5o+q1RTHHUh8NBgfv9t0r97AlGO7e+W1vS8P5Uq1R7owOcCaBzLej/qZOvblw1xOTKuLfv+dvcsA0xblkRy0LOTHOj5cx8VZ/JuaMdxx1rR+eSitLNzq/fJYdq+MCrtXSAO4ui81A/Qw5/ZnHzq8f1YVHg9rQ08v7Lt5Wg3KClrEmLAlC0b1fGvjb7SulbBb4LDYeuPuIA269VSN66qc7wDZDqjUVVpD3EyZvPuGXW0saQaGoX8v1waVeVA9NIr7KCq8JdPCCCpo1YCnXFxoASTjjLSw1l42Gqwqaw/hd/W2NkcKKFJ5xNrQdKiFsIdf1vCvvusehzoV9+h+E9BmVy6kuvHt7TteZa72GxfHdVANsLZ5mW6LeNjM6ilZG0HTr8FijHZC+53MrPWvK8KU0BzqmJs2+I3z7/Eyu4wzsGdENX2dd5nU9pm6yVLWo+zytbaydWG/B5W27DtL98Xad+weQrv/Uf0PCg9t15Hdi/p8qd+tzSzelw/y/yMZdwyn0jpV7yvTffsI5+7t/bAf+GC/b81/Dyj3u+GvyWB596Jv7f76w1vaV/fxaHtUP5+bjN7n9vtadEBpv+bleFf/nI+Uu8Mz2+t+v/rfc+17sRza/fE9D797xaJ8sO/pRwDvMGcfntMO7bIcgKc2Bx7L7p/Z5kylH1A+PlcAJVPk4J7ltOzJssuFKud7mdLOceshiCm0R0Bsmb8ehraX3Y+9VxfCR5OvgKIY3tEImI4wFms12YEzBRAuwjklNfbXFfEOK4MmmCnpuK11uDAUOb0VI1LUK8qod60ZAlk0VXjOCUkRSUbPhOu5cCG0EyOkrF5RK4lLemYyk2a4MhZyYr4rqJFyJviBofAAWWe532+8vV356evPDOPE6XTCZOHzp8+El5eia2gneKseQHGd2VYNdxnchdPwUgCQiW1WY9ZJ4jQ+MTAhfj8Uy8VeEJvZtg1rShtJxLRwm9+Y1zdSMaBjVi+PefmG4UwIqvvc7zfm+c66fCOEgTAEbjfDum4s68KybnjvGYaRdFMw0CBMYcK7oNn5YkQMxbMilQgMnZPGCOrRuoFZ8SEiJIxNJFlwJmOdEIYCPI2Gz1+eyBmmqxqv9/vC9XbDuVCApx84nc4Mw0jwAwZHSsLXn1fuxQtG0sQweIbR8Xz5ATtoOBEyIHlDksM45cT0Jawr+KAeIDYAtnAWZrVNZGuk/hpyN+C9J6XEus3M88LX778QNz3ge71+JW0RI4l1W8AI4+Two6MSKNoKoITAOIwMPjANZ6qb8HlcdQ2kjWV+Y1lm7tcr87KANZy2iF/VT9daC/OGEaPP8Z7RBsRGspvwAeIAi0Q22SBI0wVkKMDJFnEpk7wnBg+ysd2FKOu+5E0is2JSQu6RVa6IGHwYCV7D1OIqpC0S10gYg2YwTFEjhQwarlTCXXNVOk31iNc1mbeN+7IyrxuLC8QkRIFhmPYMiM4jOZOtJVtfQvGFJJmYMnHNyLoU/dzibNhlD+WQwDmM91jn8cGDc4g1rHHbRZkTNIIgqrzJmRRXclQX0ZSjyiWppDq6Np0kTPmBjEOB/tOoZOHD4HmZzkoWPgxMflJQdMsseVUswRgwOgeD98pJVdpvjMU6xzCMyLyw5ci6rM3zyFmP81U+a3t9DWMMgcGPxE2wJGYiwY9YPHkUDX1NGtLobLXRrYZGJiG7elBY9dhMjLF5PNVIiLb3mCPwZK1l8IG0KZja9hljmiNP1dcryFTLOuoPZYc35ZClUkU83Fcv+4HNV0N5vXcE70vys0pvsj+n3/96neUf0V/+AY+nPUTJO1UAbDuJ0tOncRwAw7KkcuoO3luS6DTccmoKhpJeFcCqWoBIC9EToYW8gRRW/t1wr/wzNcTMSuW0OF69qdt/Vjmm6j1qX0gh7FVysfoww85F8Fh2M5jbM443qYG0++00gLCzRdQAEfW4oucqqSBTOUfuEGqok0AAS+xMnMdrVyZp3mVHxfGobP+a8v7R1RsbRyPueFM1LCzKv1DHVjAl5LE69fWDsi+K+vvDqJ4ujrI+pye61kW8f6fNhyYIOiX4YQ7tBoRtAkOqIt0bd6WswyI/FLSPT28EdKKjzZ2a0cccu+JQHz54r9W1n2u1zXUtWVM4LdS12jatuNOdm/Db10YuRDK2kXEXY7zFKtaQw65S3c8OntYVLVR4Q9/orY8Ha44yb0umPqUg1IGvIWIiNEFpbYlvtur+ufdB9czcs6Ed+jbraY0RDcGwVk/slwxSjJG0VU80/W4qcelJwBQSdSlttd5puFLpA8l13hRApywIW063csqNb6SNh2hIYM47CK91FSWfNTo36xg7pwSlj+NfB2V3t+0lI+29tnaNLcTV0t/wUBpt3v/qnlOMPse+dg5l/MrGWNdmu6e3/Pp509qxhxc0QLuf0511awzY8kzn9pOkvrQ6dUsXtxb3a6vZ5mYv/mMJKt2sL31Wn2X2AEhDL7P21lXjWzoDt3OcKm0t4LPU/WRvQ94L6mrEQwGPS3ZvSfPC6qRP79HVvFb34Tk8K+cKeJrDeEt/W7/8u6vfJz+6o58Fj4dFh0JaU/8B7eg3rsNT3ourw3744fcfQKf/nddxZf+O+//OzQY6vspj+R99tT8Uy9VDO9d5aLrw9m5PfCyo37uKLHCmcH2WfbjKzZSg90ysqZ/rZzr8u/eiN+rZbk2fxVQ5Uaw1GK/6WErClqSTIX2HdJWUvgH7rG7yo+iIhsItUk8XS+YsYy0EoxmknEGCehtkW+RcSrCuJGNI68bmLMwr1nnlfhonwGBSxhWgIG8JP51wU2D8dGbeVlKOjE/PpG/fSbcbORlMsNjiMaahjxk+TXoCnwyv8ZV4i2SXeTldVI6LsG2JZYvEJDydL0rO7T3rMjPPV+637xpWdB94GgfieuN+/c50nrAFpIo5scWNeV7Y1g1rV5ZX4ekpcZ7OfPkUmIYT0xT4/OwxPpMl8rdvf1VPi5xY4oJ3lhAMP375gfl+55df/sb5fOYlXJhOnuU+KZl0yviSEfuHH89lvO44J3z+ZJgmx/V6ReROSg7DxNPTwCf/hHOBdY3M88q3rzfmHHEG/n9vG84FQhgJgy+ZTsF71ZOGcURkY11nrtcZZwUxkXn5ijFCGOHl8yem08jpNBGGQft2WQmhWA72xLZthMERhsDp9MQ0nfj0+Ynb9c4yz8QtMo5nDAHvzwRvyWnhp7+9qqeGN8RNCN7iHHibyckheNK6gofRQ3ADwU84BgyjZiaTxBQCUxCez590FqvCxbIsLMvS9qkweP7wTz9SM/F++/5XXm8/8/3r3zidThpuNIyQB5yxnM4TMaXiyWGZxgvTeMLZkfP0xGk644xjvl+5Xr/z9duf8cuAGwOXLFhjGUIgrht5WVl/ieAd1jnCX74yXM7YwTMY+BQDZ6OcadkJ2YEr2foMwrauxKihiNdxKuFrK99Ojvl+4/WrRUEiUTL0TQFYogE/gHXE9U5aFNq2fsL6wDAGvIdtzZBX7DCVUDdbAKIESTDBKghoLbJGkATWUR0Q1phYXt/g7cbPP38t68gpd1Dp7y0V7i4Ei8N6z/h8xiQF1OfbnbgsSIwlprgoMj5gvNeMmdZiBocJjmT3w9ocFbRm3YrHsgI+CkgJJkeC01CtYC3bupK3hMmrhvSmyDQEhkLSfh4DT5czL8/PnIcJp8Q6OFw7AAtj0INgs2drTjE2jWosXFTWOraYMEYBqMtF2DYFgMCQkzDPi+r0JTJivi0kn8nBFDoP1cmD93jriFvUNufcQv4shrTpqYQ3GnpZtdNYvAHVy0kPQbdtawDTo35S/87WcXCsefi8aT+m8/SFkkBDGiClexpAblxNwzA0W6c/lK1l96CTLXurhhdqUgLJygEoxX7Rg6T+MHoHsBpO8Tuu3w085WooYdpCpYIkZlcCakOctYjNpI65sVfGnC3AkjEte53uzKYpJbXT9eRgD6UDLVIJjstWv0e/tOugHHX9cTAqTDWKa0YrKYZ2F6rAUfEwh9emxHua9t2GCnaWi+n4AFra9c54qadArYJm/7rshbUKVIBT2/w+TKEBXPVv+1hv9ofXfpE9iOy96fTBmx9ctkd4HurWTt1L/fOhQqbNhwpJVeNo93opCp0cDZJmAHWVzVkauantPpC96zvDtowJx3IaaGWqy76ynuRCYFoFzs638/uNiTZ8vQECO/7S1fNgAJd5ceAnMXsxir4XA7l8sZ5Ht5DWqhjX9dQGvQATLYukLetb9myOUtYL+wDs/W9a3YES3117tJrW+73H3t6N/368pXumnpj3PEUPMQ6lg+p3GhDRzbPdaOnAT6kCtcg0qxxRtQ2uGikGfJZd7vRWbzFucs3UVgRyDQtuGT5N/aWVsqK8TeSyRmtzOsed6unTywEx1TuneuDt5s4uk0u/Sjnd7qTZo8dRvXZPB3lnUFcwqAeF2vv8SjnlsTXrXg/OPoIEH3lCdZ1Qb+p6hXcZyfbp3D9/F379rKshBlqNHU7ULE4d2FPe74Vg7zWpL4pHRzfM+/QoxwgGGjcdxfuyjWG9KkBX9thOxtepbvp6dA0z5YCnwsJtZRT50MF3xz2tI/Tu/cUyXfBeL3SRw/cfpkmrV9kVi4zeF4y0b5XvGtPmLA9l1X5oIEXjn9vlWN1zqe+9m0P9rDDHPmV/3ffNYz3etbPff3l/NZnd6x0fAqwffPl/5XpXyXdv7re2upX9tigVTSeSfaR2IHT3zevL7PfT+uwKGNd9po6ZPqYLHTXdEcQ+5Q+NMtST4n1sFcAvnqxUOX/0Tq3t1Gzlciixhj/XsD/N9gRD8BgranSRHjJHsifGaWAq+0DWBdc6RffAphZ1fWTqHmuV2085NNT7IJc1ITWcoHLeFQPBTRPWeewwKHiWBIlZicMBm4XL5Ynx+czpx098vb4yLzPEDRlPEAVZInSHIcZZjDfKA5lBjLAuNySt5LSS8w+chhNP44XJDQrgZQUSY0ps28K83FnXmRhXZM2s842/esvt+szT5YmXz580nMMHtqLXx5jY1kTOkdvrwv1tYxpPLNfI5XRhGAsoMzpwgiSjybuy4enyQkwba1y53+5KUp0Sy3LHGA2N+fLDJwwaVtYQe4H5fmfbNra4YW3Cu8zlEnCFIH06GYRYeJGUZ0lyJngLJjMvd8ZRwSYh4tzQUthbZ7Al9fr1OrPMN5blirOCtcL5ctIM3d7y449fOJ8vnM9nMJZti9yXBWuc8u+sCfuHoHw+q4bngbCuV6wFPzlOZ4e1Qs4R5xPGqTdVjIseosfMn/+6MHjLMHi8EyTr50NwSsZe5u8wRuTicMFgrYYzueBwTiNcck7Ne8daJaluXh2U+VSAkB9//Mw4GM4n0w4tp9PA6XLBB08W4fu3V7a4Mk0a3uesgl8avqQp25clsiwbglFQaRiajFJAUU1Ziy2JsBJLvLHNK1g9mFcCb8EvAYKFwRLOEz4U/h9vSTayOc9Y9DljhKfzyO12ZRwDMakXzX2Z2e734hGTcaGEwWbIMSNpK3y8EfJGlAECykE0aGKAmAU3eEY/8jy8KEl2TszzXbPS6gRW7jE/4K1jWVa2Vbm5bLIF6CwxuqZQRBhooBCVnqFwI8cNSZuCTi0ct4quDOJItmgsYhFPU6YlpXKqUN0kUyMWt8bgDIxWHVOCs0x2gDHgY8Az4ZASwqUHCNMQOI0jwTqI6kGZspDxqF+RxxuvchFTPPlhOk1Qsl6mnNXrTJR3qmaVHkeD96lxLunBbvGcyhC3xGY39VpKINkQY2aZ56br5ZQaabuz6mnripJurfI8SaKjINr12rY/iRywEeUFTe1vVbrK5tJ5KdHKq2VUBwqLK1yf1mpZ/b1ZBCO5rFXbQurarlzKX9f1AIT14FFOmWQ0NDLnTNxi4fYutm+3jypQpTpa3X9/z/W7gadOb9ztyKJZqdKoJ01NUS+dJBooiRLA0iZ5ZUA3FaUrRqMpyGAl7KrlpXLy1Ihi5Uio3be32QL9/l+NgfKdds5VlX4p4FrRLh6xu4Oi3pVnCihRv4McFZxmI1RS5wd7uweeelBEikV/OB1uaNOu9AkaZvgOfOnKhh18aQDXB8ecvVHYq+y/6zJHw7FfPL1yLRTvNKO/D+/bPfvfroqaBnqK0Ah52yF212d9nRvoIGqEtf4qhCfCjhzX+fvYZ3UOq2B1TYA07fhXOucjY+I3jZjudRYO60S6D21/4+PkfHjZPi7Z68yhh3ojqDcMy3c776M228o4mqJY92GaVdmua6Iagu+Ahb7c6qHRjMDuxrqvyfF9fWpnQEL3925aaiheZwuUTqzjXMHuamBJphBb70JYTyjUm0ndfPVkLOdMFRKV76fwjivIVFz/NSxRPbNS4dWwpmwCRSCZIiskiWbYsmVPhwNdj6mNKzKk6Qpm99pqbrUU46XeX3qtZuur41TbeZiID3O/GVjd0DyCTvW9o2x8L1vq+4/g1UfG+CP49KEXS302PMiX6l9qOieE42IxhpYCdjdgq8RXpUiM8mHVkJu9j1VQ915JB4O27GNSB6oZymXOmt1DzNXsUvRgHG1dVOyv65murLIeGwygiqqeyR45DW3Vb0oJPbjUZOhH6/DxOw8fSvf7o3pCnX2PY9TdVfux2zv0UUc530IHe8HPcc/KXcuOQKj2+6MX3eE37+dxe0pdB92+2QMov3U9glv/M9ejPvPbD3x4Xdb3r21Xuxyl6+hySNHLH7o5TL/G5eHvvta5ADu7/rRvM9I8nbVuxxoedDe6vbj+V4ysPvxg3+M5AE8A1nVeoKKyzRYdRPc12eejUwAqWVO89SDmkgm1a93eb/1mfez32vlNvBS5/ti+okCV52vGFKmIWf2hZgt0DOOonsfWEe93csyw1dMLLXuaTlyeXzi9fOaeMxFDNg4zJIgg271kmFIgw1iw3pLIhcdQ2PJCjIZlvWN9QIzh6emZYZrwONISNZlBTiz3WwF+NiSnlqnM5MQy31mXO8YI4zgRhpGUyz6dDduaWNeN2/XOfVoZx5H5beHp6YnTdOL5+YnxPOCCI2blVxERTqeLhsityumUihfHsix4bxmHwMun55KBLRG3FbJm6jMkjMlkMTgnhADTeVQS5xAIg2NZlbR5XTMiDvWo8KQkxLgyjAlMBBwuFOJhBFwFWlCC8Pudeb5hreCd4ccfXoqnluMPP/4Tl6cnzucntpjYYuS0rKzbRoqJ1UVO54uSpcfEzz//rADEdmcYxkIobkmVoNqtGLuCXcCspLyR4sZ93pRHZxrwFpCM5AiXM5IdkhLrvDIMC2THOIL3I94HjFPAx1urtlMGzbzlMd4QhtCmsK69XICnL5zPgfk5sG0L6hUVeHp+wYfAFiPXt1vxalHAQbOOOuImpG3VzHLLwrysejhoLdY7vHEKMK0bYxg1C5wD5kX7cdlYr4uGnOVcFrwlrx47WuzoMWLx08A4aWa37BzRek7OYb1hmAJP5xPX+xUfAvN2Z11X/PWNm7Nsy8K6bfhhwHn1PIrrSlxTSZwQ0VRrYKxXwnbvyFlIWyYMnvE08enTC9u2siwz8/3e5KVxlmGamE5nhjBgXt/IktnmGykX29MYDal1HpGEEQUIjVHvRJGs3EwpQiygkxQ9NndC3uhBgZHdK7WXdKbwWlJ4SUkZEzdc0Kx7g3NMweKtvlawzBBEmJwlONW7K/dTCJ7gPINx5JjIMZNX5ZNyNqhHF74Jy5Q3jDVM06RzLAn3+6ZJDRCGwQMZY1QDci43mz4WbjC1D9S7aTORZIW8qQyIMTPf7+yHjDQuT83aVvgFyeoV5CzZVA6lfW/IKakML/tWDw7lXO1P2T2eUiqcVp3DS9Nr9MfanZNJD2A0Csw51+nSu+FkSohf/bz3cKqeWD3oVH+UzyuRNP03UnjWcscL2OsxpvSJJuv8FZqLD67fDTxpOJJpmEWNXfQF2VejrGSa2xLrKsQtsyyZWDjbTClHiby7cBdTldNyelWVwbSDFiJ7RFXswww+qKvpflooa3/J0bivq7zZ0N3bHz3joNI2W9o0W7EZMw/393WpJ2BVmdv/258ilFjdGvppKMJM7+i9Vczjb1rIMNABQuypq+uXP1JIH/vi713v+uidUVnNeq2/yYLYYpZ0hoOYkr7X7ICkbdmcqElgCjWONACx94NpbZDuNK/GoNT7H26u8bi1rw6hiF3fUTJYeW+RrIu990DQ+ztDS/ZPegPt8XX/005WH9vDPq8fx6bTafdndv2f++/2gqMAp43TpxpnpgrH2pe6X6knWQFoZZ9ftba5nEDX9L/VWKjKefVYyAjFmbPVrW50piowWWFmETrswDQyZSl5xmrP6bzSTSPn3ROoX/+ViyL4wsEkuWyEdj/9LRvPluIOPFhT0oaCsQ6XNfOIscX9dzexqeaZFdgkar8awHUSYd/bdqM67XbDI+hgSz9LCXlUd+qMiAqSlIpHaYvbEjKxjQt9mF6ZJLX/9mjJXWbVEDtr9lZJL4zNLqu0/YU75QMwqU2R/r0yKP1pUL8ffLj+DhNh96ys9FANhDOm7RXVoO1lsZEd9HZGSYdjAR5NO1Eq3o1xP4LIKev+VOZ4Iy7XSh6N787Abn3WdYsxOo/1vV0pEErIZdljTekT1yqvilvGFicIQ+U6yEU+mhJS5ErL92Ci93takzld3R73QPPwwWH/619X25l9T9N7dDI/zguxj35y76/WL/Leq06fufd7n1W3b0eVa7Ardm1/ewCbfvX1oSO6zyTTwO/SwQ+3/i7A6df64e/1z0f379KYFiLXXtNsh2N/1noXudNA+l0qH373tVNPz/dekGqbvKcoqHV4rHcPPvVegDvXp90zBGNKKEUqe9Jen0ounlJVlKEeleQMOZZEGdZgxOIEDLmTbxCcpvF2PrDFRMxZgYCyR+SqkBQSXOSRSUt+fezqJm+U2sEiGO81tXnwGOeJlCyyjevTNJnhUSJoUCPHYUq4HtiUS9axyE9/+TNfX7/hfvkFcR4XAn/8w7+xnm6stztv/mdkmZFtAWLDt1wJMU85YfyoUQjJcE1X4i2RRNheEoMNpPvG0zjhjWW53/CD59P4ifN54Nu3nzXz2WAYBxhH4Xr7yrIODP7Elx/+yLYlvr29cbsurMvK9XojnhfeLPzH//V/MgyeaRz553/+J4bTCT8MiPOM06DgW9AsbE9Pn/g3F0hpI6WN76/fAMF5SxYl3V63TFzU28BbzzA9MZ2fOZ0n5uXGui2ktLY5ba1jkhNZYJmTZmYbTrx9vzc9YV6uiMysAslsWDuA9TgXlKvHBJ5ennh6OvPy/F95e3vlfruxLit2GLD+RHB/hDSxzgP3ZUYkYM0Jk2cMieAj1uqkCSHClxe2bVHOJDZEFr6/fSUV77HX6y9sMZJM5vT5rJwz20YII4M3DIMtp/YeQ2AsoWp/++vPvH1/BQwvz5/453/+V15ePvPjj39gI7GtsMUV59X7yQ1BD2nE40t4kaDebzmt3JeNl88/8OnzMyZ/Zl0XthiVm6kw6T9dPsE/Ba6XO3/601/59u2uyyp7lvvCOq98evlCCBYfAKfeZ/fblbhFHIbBD9iTYxpPPF+eSUnX1X2ZS6bByFYyB2fJ3G9vrK93Ylq5Bct0OnF5uvDpx88M48BpHDBe59fTyxPbS2KNG//24yvzOrNuG9f7je9vr9zud375/k0TjBhY1pnr9crtdiOtM8ZrP42XSYGN5a4Z/JzHTyOfvnxiHAa8gdfv37i/vbH+9BN2GHHeY51jud/Z5oXgHTFGJEf11M4Col6LkgwSUc9HDFksBN9AAZMjxmTsyZGH7rCt7JkiggsOHzznpwtRElveWOOCtRbvPKPzkNWbLBhHcI5T8Hy+PDP4QLBKqCAi5HXj5emJ8zTxfLq0BGE101xOSZPq5IzEzHybWfPGLAtbzGSjIZPB++Ll4xinQZ1VjCEmDbd7enpiHE94F5jnjRRX4hK5Xt+a7Ve3FVNkrwK0C0YCBsOShGVRT7b5vugeZ5RE3AeHDw7nYCj18cERUyTGjdM0tXm/LAtGYGNVMvyciSk23dRaS1w3rFXScedcc7TZ4oaU/eoYGqeaSu0D/V3pIVLznkoptT3JmWr75sZzFWPUMW5l7MDYY5RSzhr+WYGw1EW7Vf1TRG0ak3XvCT509s/fv3438NQAot7YbIDRru9VYz+lTExC7kEiU0Hn/bS5lllBp17RrOXWZ1CbJY916/7oFKedO6Pct/ed3toMmo+7q/8uD6/b512FTHd6+pFC3giNrT1k1evHqxq9tS+l+/gRzOjrXNtmC4dPVXx6o++dAlw9pWo/FyX8902dhz55/FIrqBp+hv2veo+096AnTDctg5o13X2mkLuVSShkbNrVvY9OhHcje1fCVVAcR9b0HVXfPTSueDv0inEBYw/zq95dj3kNDbx5d8+7J+6fted0nXaYXb1BQR23vX7tIONhXKQ2rFhSu59Ptx4Q6ACiNgSl+NS5GjZfqoPRUStt6AECyV2F2to2XTvKv3UJmC6UzvQm1QcmdEGm1SGlGAJy5BvpTwysOXSqfm4txhTjpM25WvdMTZygJLcG9V4pc6PrMxDIQjK7x6ZWsY5TJzCLDMVQiMj3q/6VO+FniidCNab1lMHsGyzmAVTVvrOH8amAYjnhKt97Lx/2Lvp93hrFC6cDn/6e19JH3lOP4Xz7d/d7+57qwcVW14MM7WQE7ABB2WCbd54xjf+sFrZvygoyWzHkmtShzFOd1kWJakDd0dOTj8bQtM6l/dftc60ZvaCQ45/72BYPr/L9zmGueD8pRJu6faGW82vnVH9vxB9l1y6xup2zCrBOfvTvy+HLu4TTP/f9j+699vzS17383WVY9+8DuNS3TR7e+7uzvBfgfT0/uOWAQ35QcNUL3lXqN573WO5Ht7/TWz54+GMdm9edOfZnDX9v97T67B6v9feh16WGsL3v13d8TnwwttDAJ2tsCfuuso99T/qgnDrDexBbt7ySTS9DZUFp8qdtmLpfVFDJUjIMA+IchqRe97GbQZ18eVeb96Lr0F7JmWzApISJxXvB2Z03rm7VgmaLyhsxJVbQvSNrCBFF/KccS1Yp5YUSYxCvIIjxG7MNxLixRc0mhncgDkr4lMRMCBaxBucDZnS6l0bIs7Ckjdf7G8EGRjfgonK0Dk7DXE6XM6dpYBp+5PLzxLdvJ9K2Kddr2khbVBLd0ZBTxFnL0/nEZTpxnxdyXolpJq0b83xDJIAZeLt5JnliyGfG8zPWanjUVgw55yhZrnR8L+fntrcpP7KAOEI4F16gAR+USHccA+72ils0HK5+zziLc17Txk+xHDRqSJXEYvSZDWzWbIsuqpeGt+QctU9zCXspYxD8RBpgvSe2zWBN5m9//UYYFkIYWaMCX9YaYlwxFkLQLFVZ1JC1Rg/9bawUKJohLXjPMFh+/MNTC0s6n5/YijeYZtR1GsK3JgwWZxzbshHThrUwTWPhw7nz/dsvpLiioKR6DGTJhEHJ10/nczsYGaappbK/zTPWCs4lJZsmY13ABwHjSJmSCVEzrI2jkLJhGCdu15umiI8r27qRspLEG+cw2eKc4JzndDpjTuCtY/Qj06jhaBirXFiAC4FhUNApJvUki3Ej5ZkcDXGLrPOGrPozuQDnhEnghgB4ZEg4ZxjEc7FnxjCQXOY5PPMcnrmfZ57HTxgrZEl8+/6VQQKjCZjzC24I+HHAhqAcQ0kAq95PxhJvN9LthsSN++sr27LgjFW+ufIjKarMEIfJGStZEywUsL1mOhaKx11JvkNaMbk4hkhC+ak2KDqPdbZ4/mlYVggDfghcLieSJLY8sEWPc57gPZMPkDVkzwoE65iC53k6qeeSdaoDpUz2cHKeyXklCy/6lmDwDk1+SjnEC1nDK8OG94uOiQBYDWMrNkMWVfAtRsOM0Trr4eXuZbdnny+RU8XjqB5e1IQ5khWMTDkTk3pLapKhat/VKIW6g9UwQ4PkpLI2mraRp6QygVKXGKOCUcXmGIZhP4w3eyhejBFJajPsgBPFU0qfXb2mjp5QtPd0r1SbR0Ng35OY1zKAQwjeRzp4rpFBxfAzRXE2xahqfVuZmWtWpt95/QMeT7Yp+D3IpL87Th0KSpYyNSS02kQVfKnAU92NqxtXS7FbNo/Ko3JUMMxBgTX95t5K3J/3qIhVA7QpTU25P/Ibme5eQ2f8vXtONRaK2m3kQMRZn1ljIaun2O59oDGV9cEtNE1q+3cwqD6mGjsPOnxxw66eHLtBrm3clXC6svrWPCqIj4rU3p7dIHyn0D8QjOlQParCtWod/44UkEMAI+2Efy+tABxOBWVTVIsHWFXiPwIRy237vLH7+8dh3fvImH1+PoaN9SAGhWzTYArXV7nfSCOQVn4JvWytD7+uOO/91qmz3c2qGJnDCbYakE0MULpxb0/pwbomSjoNgEb6Whd4I8Rvdd+9gDDKhdY8Gko8loqgsq4KYFRPamstd5LhzmCp/WE+mCNtchxMy65P9L0eOFGPINMKz0nK+hOdO6bndtrHtpLk7SHD0hR/YygkuepxpEK72xQrgNuhH21zKHXEVBlS+Z5qE9uAYFxtpdk9nIrB0QyuvukPE7it6Ycpo6Ba3bQoikkFxd6HzvVd/cEU7cala0MZ0CoR3oWudvV6X9y+boA2T96HKcm7NfNR3aXr47aJUue/UU+7DKkEZ+k9yo+WObo7t+wfAogjye7kJOy/q7dND9624al90dZjqWO3CHTdFH6VJo9NBzq2XYlHqdqAJ4r3oCltKd+xdZ9F5ZTwHnwqHdTa0/fzYU8wurxKQqJjvz/OF1N/6RwXMXsndF+W7vv1DUG6/jU0ULArWsoi7lYTx1H5eF/76JIPXpsPPjust8N4flDm33lo1afqs/5eHeG49N7N/Srnu27+8Hvdb1s+rHvKXlbJmlZ4j6oM07khB12kydFuUHV+F+qK/sEfyIBa5mNdDVVvsruM6Z8ncujDff/eH6jhBiV5QzlB1tATraN6UxcdzHR7eFbva4PDGQ0z2ktNpE4WdfDp/qpNouNA7N+heC6iyrwRxKpmY5wCP1I4KitQnmMqCn/x0q2yphgR1lj1BCiKt8SNbCzmvmAFkjFcl0R2lmxBbEmb7oqxmjISVyY/YKxDBo8ZJ4xYiHBLN+ISeb29YbNh8iMnP+IsiATOwXN5vvD55Zk//PiZp+czP/985pe//ZW4qdG/rIlhELxX76RxmDi9PHE+n7lebyzzd37++jPLemeLN3wYcXnjejdqrDrL2X3SMJ2gvEfOKQhVeV9yhvPpWee1ZK6vr4iAc5o1LYSB0+nM+XzGB686jvXgAlvKmBrd6D3jODIMI8uyMd9XbrcZnEVSZE0rmA3nIIwG6zPWJXwYWJao/DE5Mo0XvPNsWypgy0iMrzr+KfIf978VcvIJIRcbwZAlMgyB55ezjntOxLgpd1Q5vG67goHTNDBMgZfPJyj66OXyxDxrvdc1kmImRWG1YHAEF5hvN1LaFIR7fiLFyC+/fOXrt79xu31nWd6wTrmsrHOcTmem0wlMXV+ek1i8C4RxZF4ixoi2M28gCrQYUz03DGGogIElDIZJLJfLhWVeCqeWEhpbB1m24mVoccAwDAznM0MI6okTRvJWAAGjYX/WeUaj4VMKLCTu851lmYnxRlpvbFmY7zN5Xom3hbOfkDVhIgwnISZLNCt28FhjmHLAuFFDcU+O+7Cwxo0fzjOYTEobf86Bs5m4+zPDpECOHwMxb7z5Ky6qHkkBAe/fX1nXlfl2haTJt4L3BOfKGBtS4dpxqlhiRJRLDN0DYsdFNHivIidntmXRsNJiMYkkkmyQIwYYXNDnOA3dHQbN8nZ5mkhQOJfOmuUsDIzOaaRKTJCSAs7WM4WAN45gDXmLGjxgHYMYXDZY0WyLOQlkDWn03mFMblvCMCTitLGOK1d3I8ZE3GJR5dW7n5RJYghGQXHnPN4NiChIE+Omnj+dpxAosGOt1Yxtziphftr1fF1bkSwZ57qQbmuwTgp3WkLEtr0nZQ3B3Tcgw7quB/4m5ZpT4EkzYg5NVjnnGlC1bZqF0XKkoNCydPesoXGmbAb1IOUxXE7QvkjZYrNtOizsei1o5s1fu7R9nYHWbFvRiJKmB+xhL9WZ4/eG2/1DWe2qIZSzZniikHpVQakhdX1ngCuZ68qaKZwp2lEVmdxiampm5/3XTZ1OuXtQXPoQoo9rTJPOVdFqGznK9XRQMIvSDjRwCCpgcDzZevzd7u20yAq2OVcZ442i0qUSKeWSMU/KiUopUd6fGPY/7SoVquRjAM66otjkPfxAPjjZftRbH8o2D6+roOsee/ye1HCI3mqp6mhvIPSeEbSx6b6ipHHoWFTj32BKOl4llavOCK77dkwfq+/S/kGR5S6sbgdQcwPDtH7uoVcOZg8YU+bzjizX+meTykJU7xI9OQZvdg+/VOoqdEBip8zbInR73bX2+zuPkto0aCnadz4UqCPTg6J1zPYxMs0Qqd9KclxfIt17zcApArE5N9UBLSp5R2KXK5Da1rNp5VYAKdc+lKPxJuUUWkgcB7R6oOwelKl6LcUExUNlGCwYdUmN6MmM5FzmlbSNvjcoW1hrXaOUk5diwBiTmzxphq7sRkmNx+5B+g+vbjH1/jl1g1HCznL6vndv+05d3CJ5z+TUbJN+c6r3GXby3T00pa6zfk3Xe/p7H+dEbzof52adn5nHUKl3oVfvgCYO67N1lTl+p18D/Y+ugdqneodRYYmgm2uNWzfQFk6uc1oUrGw3FB6uut/W5tQMl6rvlfCeg0Cr4ND+hmA0BK7uE7VhRv2TqgdUIw6sH9f+d7Y1dJ9/O8CscrN6e5kmSys80BNEdtVooNIBMNibenijYLOHvu/Dv618BNJ9tFO/r8u7fe6D5+u9x0OBX1UE/hevOgytPVUu/GYl/9euR1zpN0Gn+j47jUAdnw9Bp+69mtzlUUYZU/W1XbdIUiHBPruNOYxVk9+gCURaeTWOOO8V6AClXp+q87jtWSWLZ1XsQUo490PDhLI/lKMRAzWjkHMe79GMTp1xkApnkHUWWw4O28GB0XobdO+mHOyJy0V+qDdhW697NbpLOhl0/FxyzWSq9TDREUrIXQXdKtGwtRqaYb0lnM8qq1ooRFkH3hUeglSypK44cQrgeCXrNUNAvOV6f0PiSrrfNDNVjLBGtpzBG/KgoNt0uvDly2cu04X525Wv/9efuKeMDCfGF8+aVxyGpy8/MJwnTHBESeo1FQaePr2wzHeWeeHl82c+f/rCH//wz8QoOOMIbuB0HsGshFHAzmDvjCfBDgu4hAme588jL89KwvzL15+If4ucLhfO24WYdDy+fv2Fv/zlr1zOF56envjyw48M4ZOGnawryWqY3/n8R4ZpwFjDFhesf1GeIrfpArLggmc8PXE6nZjjV9YcuS6R4XxhPF+45IizF6zNeG9Y1lyyFjrO5xFwiDjSBsu68vXnn/j+7ZXr25X7242nyxOX85kUM8u6Mi8rp9PENI2cLydEMuMYWJYz02lgCJ6n8wtCxFjhh88/sMVV55AzTNPAMHrcoF4u1hhiynw3r6xL5ratBYBzCKt6JQXHD3/4TNoS83Xmfr2xrCtrvPH123dyijwV/qlpOvH86TPeg/OwzoGseAA//fyNMIyM04n7POOcchcZsTgTsMaxrpEYQfCMwxPWOa63O8YEhtHz7//5v/Dp02deX1/561/+yvXtldv1yk+/fOf56cKX4TMvTy9cLhedBykRY2KdF05PF0IYuJzPDOOgnmfWMS8b67rx7e07noRY4Z9OfyR+PrPNX/j+/RvX653r7cbrz1+5fnvDe8/nLz8yTie281JCJpXEexgmfAiM04RPFnLAZMfpPBJOnn+e/oiQEJOxg2FLG8u2sKx3Uk6k/yMzryvzsvB2vfL99Y1t20gvn9iiAhfrsuK9L5QQoemv3vuD4N7WlaXwh1mvocGX6aQOCGRev30jbisprgSnNrobR4bhieA952lqYXTPLy+EYcA5z7omnB9wYWQcT01Ovn37TkwrOSbIeoA3OIOsK7F4wOQtIlnwxijdjt24/ZwYT0+E8cQ4Kam+EcM8X0lRuZemacTYkfE8Yv2gwNO6scVYuNk2dVApYXHOrcqzVAj4JQkpZtZFPeW2TYHUYfAEZxnHQQn9nSHFlXkumQmL3LROqTas9Z2eqiHLKW1scQXZSMk178Pd00xthq3UEXZgJ8ZYPKkUpNXECn7ndyp2bj3crCFx9bPec0lESuhc3TalgV2mHJpY4xjtqBEZ7PpxBd6q/qjZ/vTz3jOq7v8iKM1EtdeSKr2VR9M6W7AU0/bSXD1tf8f1DwBP+4Svp0UA2ekAVf6nnIQYd24Ya03TwnsjoQJUjfSKo7H57ofeENonRguEMB0fQVWIHw32puNofXvtdldgOoXoQbkz9fm9QifQIwNaO2nGYQNN6k8pQyiTtmWAqCfkptSPNgE/UsTN4+tDt+yKXG8YdDrgEWz74Hos39CHndQ2vL/eGZPdq1afYtxCZxjXynUKmkADiXZlupajxM9KpGzb/bm4T8rD2P9a63Zle/e2o31fdkOyKqINCNt/1/b0J6+dzd083ay1Jf4WJAumENO1KSTyzqitxbRxM8exaaPQ5nENmejm8ePdciyTZpqW9vVjVevw0Il1DNo90n9SC5e2RuSDsT2s57o2jahnkUgDXvt6P8Kne/OqjCnAUS7eSCJt405J+1zt+XJqXPlBcmmLLTO1MH1XN1vTDUR1+ZXaIKGFERpjIO9zwRo9JbElDW8LDur6s3mE1J4xhbODDphtz5d3wypQwj71s3o433sCGitU1LGJ0AKy1TUp3Vj0HayP7WbLr6Jn769Kzlvnab+JPpb1GGu+V+HR++n4efO1EOlIMSkCHzC7ezVIIxI2ufNaKGNbvZ6qfEpZWh8eQpFN2fPo96gdgIK+HoD06kxZO1I/rM8ztYZdu9qs2HnsuiV2AM7LZ7tTkWlZMuvTLbq+6tPaGn5YR1Wi/tZI17IbUMuxD3LX7raHtb2pk8GP5f7a80DXWFfPw1Ua8i4c7Dfa0D/v1+rRv9+39e8W/A9ej7K9vvfuvne7cznI6aW60I3xYznH0PJ96FUI17VQ4RSVGSpMKsCy6ya77NrnYQHo6/wxdVfZO6x5DBvT3Prrie9+yS5ngcatxvGkVz2i9DkqY8v6KVxMOwF5n9mVEvqR3sk2KQta25SKc3AN+wOv/+DU/qJESRSwrWul6eX6sVndAxvJevssF29jdlmgIJfynuihgXLM5bzrEApAWPAWYwIkMKKgmeRMjpF1vkNawRlSnNt3nDdILKf1W0KikDb1mLIRrnjyksmScGNAyGx55b7cYBjxwTKcRvwYsMGzCRgfGKYTzhumSUPujFHvCowS9uacuc1XMpEtrlyeT/yz+wMprSV8acM45XKZziM2GOKWsEbw3uG9I+fEfb6xrklDyox6kyCWHIVt3ZjnmW+/fOX56YXptLBsaAiUs4W3UcjZIAzklPRQ0FpSdogZeHr+gognJoPzvgj8hCTBGiF4S4wbgiUnq+CH9RjjucVZDdi8scWZLc5gEsJGloVtW1kLZ5NwZ0sDWxpxzhLTiLUZY85YRgwnjAkYEdJmkRxUJxaDlRM2B2TLpE0P1WNOSJzwNjMMpqoXeHfCWccQBtK6stxn5tudJBEhMgyWnDySYRgMw2gYRksIFmMFkcg830h5T5DmloV5ntli0qxz1jB4UKXXYo0vB/COcTjjvGeLpqWhN1YJ8XNKzM8F0HNwuwreG0SUzy3FxLpszWNk3TbNELcs3Oc7wzjivcOFwFp44La04bzFh4nJnyBO5PjM5XLher3x+nplnhfmeeH71+9INIzjxHy6Y63X0M5hIE+JYRjw0WCcwxmHiMUmh42OyZ7BZrCC9YbNrDg8HkcW9bG2csOJwWZ4ms5I1uxk83wnbhvrojxathCHV3LbEEKRdSrv1nVhWRbW80XDL4unjoYHG07GEreVuM4YicVmEqZxYhwGnp/VE897z/nyhHMejGU2Gz6MhDDh/Vj6b2UtXjRRHDkqYKL8UomakW1bNnJMbCJYu2GMJ0rktMJ0UoDIlcx225qoWaDjlpvzhDEO5y3WelzSrJLGmsKxqeMPpkUEpZQL6FE4OKsmUrwEkYTgtB+Lo8w4jqSsAFBOCWtd039NkcMxboVHKaJhdiXpQ/GoMmW/0f1FmteZqWPhPafTiRTVK3McBobC7VT3GANEOJg1jxE29eojRmr7KtjlnGt2jrW27en9d3r9un/GsVyafXrYskQK4JZaFj9TnV1M6/F3df616x/Oapdz8UpC10ROO19IDa3LSX8AvHM0NVaq4lC9pipRY1d+edYhE0qtQ6dQVoWqom62d6vqeWTKV4x0hlhnJFSQSnqtr3Zm/5ZUg6HvlN22qf8eiqgDbqqCXwY61YUhiuzmvQ+bIVP7q2t/vcyHv2UHL2rq3W7ydirpu7IayPUbz+ld9h69Vx665MNnNTCjnth3C6h9txvzqjhLLrOn8GMZUcdLQ/GkoxKlaWhJLmkfd2X4aBwdAEAeF6C0eijXz5FzDDRkS8Q2vq5qmNfxbO0tE7S2tZK6KTBRy61xviVDWmEHrpGXdX434KFclZ+orplD/3cGwkexu1Ib2I1MPz6F+aKbU0ePq8P8zv3f+xyuQ7qr+OWvVs5x3rSVY+ral10GSH+S3AFdtPPwfVCrfdIdqNcJaQzEQgJVyZtreVJSCeqyNK26yjMmqlUZBQ8zSp4pUgR5mbCSFCBtc7cAjd56VZaguDvvXjZ9/ShGS43Vxhbyv/IcKcT7kvd1VMe0jU2Z166kdM6d22t1le3XmJRFVmPo6791Tv7q/Hp4/ejxVz9r9xYh23/+kSeT68JZ3pXR3qt1pLagAGn9JD3yu6jnp36UofBOwE6+tgMxih+Wv8um0c+lfj4KO4fhuz2rjGvPu1TrX59lACvd4u5RK/r9pq7pfX3uz9k9UNqz3ovWvWtQHjPT16M+3pSeqEug7LPHXaT0g5HWX7br2/7BVf3pZe3xjr3Zhxu7z6VvT9njpNzb3u6/1wn7fu/8Va+o/vXjXH//1rFefTGGX70+0CE/vJpa2O1VH47h4f0mPY+ygH7/PnK8PXI77GBgV3iRj0hZO/Vks8iHLCVMtcj7XVfpDsrqGuzKFYoHVfHmqU1oB0ola2S7is5YZXgudchZAXZjUO+OUlYvQbZNT9M3ySXk2jaSW5rBUPrEAkWh7rkwsmQNhSsHARp2p6m1k618prpFVK6lPbRQdnD2cRBrJ3Xzpu5pDRjX1ar1JJPihsleAadlKfLFYL1DPV0TdgzY4DAhYNas4FOClCIpRrblpqfWBiSg2cqGQAieHJOCaFtSg0sisiXisDBfZ7wNmuT8+USeI1vc+H79isiTehacB9xpwPjAKoIZRibr8OYZh2BFeP3+hsFwn++cThfitvL121fCTUGkH374xL/+24+acdgK1/srKSem6YShel9shHFoHjbLsnK9vnG93hExnM8XzqczwQ+kKHz7+sbXX37hv/2f/40//PGP6nUx/Bk3BMIQ+PTpheeXJ4YhIDKwbav2l8AwWqbk+eGHPzCOzzg/FWNPeZWWW8YiOBMITsnnY1SupBBGgg/crjMxbqh3dMLYyHQy+JDALGzpVUOg7MZ9icyr4Xp3nKYT23bCELEmqyNbVtJjEeF6XdjpHgzBjjgZWYoXRM4JsRbhRLAjl/MFKb6s52nEO4d3ltvrNxAhSmRLC5nI+TJwPj1hUMDjdD4zjCem06DrMG/crhuxAE87rYLFOs8QR6yB8HRSD2OxeDfhvcGHgdPpGec9Gc88a/+IJEIYmKYTXz6/cD4FlucT377aAmxE4rpxzxCXpF7oJYxOPUE2lmVhnDQr4XiadE0aBRqeni6cponn00gw4BFi3Ljd7ry9XvnLn/7Kn//8Z/7vX/7E9duNIQycpwveDXgfFES4LEzTCb8ZhqcnfPAq81ZDSuBHr4qAVX3QZcOIxXlLEuUFuueZwQwM58CXHz/jnSNvkWsJu4sxNXt2XdYS5pUJQyD4QkptNFvitq4HbtDv375h0HA99/JCTpF1ubHcr+QYQSKnaWKaJr58+awZJn3A+0AuYaojG8FPhHDSsMwksEFIBWDLmW0rXqNmB51EIN4j27qyrgvWOATLGgOne+R0XtmWjTAE7bccoYS1bmtqarwtoJMfFJ5IKeK8L9x1mXXdSKkmBdq5klJWLx7nLCkKkhNxS0DCRYhR+eqcd0znM7nIzG1d8QJSyPk1815i3RIxbUoQTtHpvSUVb1oVxKrPx009lSroBGC8ZxwGqlfRWMIZqweuNab0434Q3tvGvXND1Xd3R4hMSpF1XVv7nbe7d7IpIF1Kze7s9e8+7G5/lmmA2O68oPtlLnx1MSvw1NpZukGKjsqvHB4/Xr8beIqxKhiGXE/0jf7dq2j12ab4q5ryCG1PphzNl9ai2lYBn5riXn7Xv2H/bdjd3Q2alchYW7IraD10ocrhe/X++t4/wIP14dUbD+1gvTygnsDVU/L65D6tYv3dgDzR0zNVqz4g+uVjBabVodfVWviI7A2mnqA99mmnkP5K+crzsOcPo0xQ+3D/b+nXrlTUmD3sxLT5Yxog2f/UOmvhghPTvr8ryzvAoqSLZs+c1hTlh0LrZ3F326+LvHa7ouU7MFQvzdbbZ20DVyMIurE2ZaIqBZLZsxJAW5zNpVJEjWElmMHmfWSaZximAQtKQFfAmcIjVeRSM0aLA06bh20qSF/2+7Gz5hi+Kg/3PujKu5It7Jm3Hq7H+VnL6edh7ePMDnqkerqNrgsLJV69zu0+DHOfV3qwIa1D+vUZY+VQKPKpVixX0GivqGBayJEU4S/sYXyhLoBcZFWuvjK2gcCpPwMvBhbShWT1cwudT8aCNbunXSVzN6UzKzhVN4rdG08v5w01/aPU+Wf2UVSZI+35x9AVKfMLPg6L2of46AH54a2tvToe+f33uqvndvotr6oGnrU5wz4xy0IQyikpD3tJmVx1TppaeQNZivJTDPX98KDfLPqx3A9KdrlRntdkiU7OXA10aMAW6Jp5XF/HV3vB+t0CiFeD2ViMdCu29IG2ucg/cwydPOxd9T2jsqqFRvWyrFbJ9PXbPf4e5cWxDYZ+tPt9XB/9fpxby39rQ/k714O4/9Xn/+ZVu/ODgupe8VuA0//U1e/jv1J+7znev9fmF3Wfpd1X32sy83CI1E2ad9Wp0lc/7PW03O7ZPX0OapVIjeNr/SUiCjpVRVc/fTcP+r2vP8GtHk+1+Me5pvfrt23/nCJvc13zQsl+WTwau5TDvVKec9bDbqP7BkWJt6iczqWfnRgEDTFLWT2U4vvu/KiDy4OAmJAsbMzkmDTD3RRIJfTLGCW7diGU/i7h+8GjGX4FvG1cD8bT3CRzjHogZx3DOGGDQxwairNtzMuMXG/I9Y4pfFd4x/nlR/w4air51ysplpT25dQ/Z5ij47YFvr59Y1lXhjDxfHlhCBPTaEnLjXWZ2ZaZBJotcBhwPnB+GjidL3jnCMFzupzIqIfass0kPFvhhgrB4/3Ay+dRObeMY91m7svM221WUuokelhplHPlfrvx7es3Xr99435749tXJVJec2Q8TQzTyP32mXX9gcvlwjhOxDUzLxvLnNiWr9ze7ixzVPslO5wFZz3kwCJrCQsSjB2wRr3Htg3WdWZZvmIMnM4ngrdMJ0+KnwhOCYpzjkznAgxmJcBWD62F+/KddbuxbXfNoiyZuG6ALankV/VoMwbnPEP4SggDT5eXpk+P57EgtHqc6IMhjNrX3hm8BTFvuDDy+csPPF0urMvM6/dfWO6vpLgiexw/1+sr25aISfB+xHvlzPJ+4DbPfH99Q0QIYWC+ncnxC5fzmenTJ4bLhSywLBu3+4wLCniME7jomecb6u3i+fLDjxo1auHb15+5327c3+6cTs8EPzCGgW+v31nmhW/fv3G7Xlm3lWWeccUT7nw+MU4j4zRxnn4kbQuLJLbrG2PQbH6fXj5h3UQIZ+ImgEXE8Le//FUzBL59x5n/P2//2iQ5kmsJggf6IGnmj4jIzLp1u+/stqysyM7//zvTK7MiPds9XVWZ8XI3M5L6wH4AoKo098jM6tuzrPIMdzNSqU8ocBQ48AjeY7vN2NcLTssCLhseqSCeH1CnCbUkFBS4ekJRUOD2/SZ8XEFs1FQztpSQNwXgPeF22URG5QLKhIkjPBxqkkxk++sNpomlW0biFUTANEXx5qmSCtl5h+A9/vL4E6ZpwuPDGY4YOe24XF7w8vWzrMH9hslNmGnGyZ/wuDxjmmfkVHG9rdi3BE9BwiPhcX29Yd8S9i0jvSZwrfAUMc2T2N/OYQ5CPj5PE16+v+B6veLXX//RuJ65Ztxev2G9vuLla8TptOB0PuH0cBLvH83uBvWgKVUoLPJe4INTmR7BXOGI4V1sZQswJ2G027q2TaFybnr+NE04LQseHsQTDiQ8T54cfKkAhwbcp3wT+5uAUklI8Un4mMh5kAsIkSSbainiJQaxx4yw24i8bU/rnmrUOKgs2gu6/9Ra1ZPrnvhbNonOydo/k9+HvbNvgbA9V5Ytv/kZn7OQbgPEbIN05NsBEXlCrg5lZ+XDEsAxUGjZ+cTD/n8y8ASb/m2nHxy+BwXAlBq2QGk2I5mHU7HeT6bjsio0GD+z+wYdyxTk0Qgz5cI601E/jWPuYzEeLPdWWKWpf0A4Zsc5nMAN5QFiuNqjWox5w8iEsnd2Y+oezGhFsxksb7804/r3lPF3eFsPfx+epaHtdg+/NTWPAMXgCfPjarypw6G/2vP9vfd+U+NfNjdGQ/M47/REtMNsXcHWe80wOrylPWuLT59pi3poNb3t98qs2YL6e7r7vyr8d8/Y/L8/cXaAEgsrQDB0ntOBEmN4BB24uUNqpILZ3IPd2I2R1rFH6fXmMltZbxo/ff/e3/n7+N1brqpuzgipshjyg7dNM2b43WfogGZRM9QMtR8vG8OqVlMHhknXu6H8fLhf6jF4mIDvPISGX9oEZAF9gBYTDQzGYZMDvZoMNCJpgrr963jV2r0lhbvBtXkgyr/UzLAlp1xFzL2PRr6lDmC+EW1vF8ndSh8NWdAQhvdmgd1d1s5BBo7l2WfvgU79nv6SEWwF8MazCBgMY1Z5ruvPjM9BdLf3E5RbzYmM6kG8RzmIcZ4Oa67PEzrMjzZF2CRV3z+dylMeGjTsPr1+dP873T038pP1msBIvYdheiOfWQ1Z9L1pGGmYlD4EDFpY+F1ZDF1P6MFaQ1f0jjiUfGwgH+7Vst8bZP1oLJfv7vo9cOtNWeOftj7o7hb9/P9K0OndrwfRPa6fHx1SjdxM9pw9Y+14u3CHcWn9ysO80r/1UZNbw2w7VmL4997jbZzj1H+9e7QrV726WudxPTAf20emUOtBwHivtcpEYju9aBXF4TIAl516JZOG6alMJlLgCkCVwwwGJJTXmvXOXKH7vlchwrmgqPcseQcOUtEwRfgQ4EPAXoynqstf5z3IO/kJ4iVCegLlY4SHhg47AJrnksBAIyt3QJwAL20kL6FiDh4OYoCwExJyCY8U7/KUN9zWC3778hvOyyNO8xlxOsn693KIkSsjF+nDyiThvj7AOyFRjkHIwud5Qa4FpRYwBeTiUHnDtq/Yk3CunE5T8+atCkRKn3fi9Vozghdek9MSsS8RMQIp3cCJsZUVFScUnrHMAioELyOyXm+4rSuYCbfrDa/fPfYtI0SPGLwmuBHBX5Jwy9RS4SNpdj2vyZFER3t4esAUA9b1htN5lgx0npH2DWnfQFQb8JRzRkoRcQpwr1e1i3Ljyi0l43bbkPaM9ZYQfIR3Qti80grvIqg6mCdsrhl+CgiTB7zQDdRNQttKcOAoxN9xmvH4+ISSF+z7Aq4Fjgry7uFICb2nCakIHxrrIU0IhHkK8MEjZULwLH1XdwA7zucJU3TI5dwOaXLJ4A1wpWCaZpnnSklATsHVoBQVVDHPc/NuWWYhFZ/ihMvtKiFYtaJU8fASfSgjp4LLa4Glly/7jswM5AAPB9LIHB82XYUO58cn1QcJ27ridpPQt5qzhEquO0rdsO8TKiesdUc4nUGnM0KUTH/eeYhHZkXeMlzwctDkAa4EFAePAJBkpgvkW1Iodk7mfa2omUCZhCDaNM/MGjomh/BcjVOnwE0TwuIxTycs04xzPKPWJEuaIgJNYKqAq5jcLH9nJz/eCYDJUXQi9uBMKIWRbgl5L0LeXgjeRUwxYp6mlngiOAG95nlGKQRyAZfrin3fgZTA2wUlCQyfNwLXDbXsYM4IPsAFj0WzIjpdO0CR/xXf9FouXW5ahumiYdQG5ngn3qijTuyIARTUmiR5AByYokQoVBn7HoFCQPPg90o2rp6xJKCVhMplgEmSMDBptsUOPN1Hy5j30Zi4xu6xv5sn1OgNbNqk4REDdvBe9JDZTf2Qie6eHUPP5bJ6Nwxl2BPHzx3pHqDJvUac4/7w+4+uPw88Waw4gH6GaZ3ATRGTSjpAY19zHlC+OyXUBJHFyDfgie6UmMHYEWVqCLVzw+k0pBcqnKRKvNeI9RdTYOx+MTy7GmQxjMCgLDWgwXSVIRyj60YNZZXBZgC1KQfjv1rk2LzW5vHU0OYAtLx7Be3wIHGrl3XkqNp075Fjl5AjuJbpqhfeubKOFSYIIDISs//oalVv9R7c+O71O2q3HJvGUM+Trq7aZGcGci6HxWf3yCIRrwKufSzZ5uLwnsYTgVFBPi5464KR9NrABIKFeNmiZwWNqC12M4payN3YT22Bd2/FNsdgC7//W6ukYQaogTVg8cYZjYDRkGwG3PAzdjaRjKnXLrSeHA3ABlrcjZ1QIgMHBKBp3J2XayhqmIvcwnd1xQxztZ23daPWxgZ9HKoSj781BjVDnJJCd+DITrpHj42Clh0V/URe5qAk4K422GRhT1By2P5ihvBGVQZqKS2jXG84HfreZJ+FFkoIY2nyohaTfUCIThTNOy8A6yAnohfWKvMoHLuFSNzAiaWe90C4DVszatDnZ/sdg/xoa/ntxiN92NeOgPFHd9MjIM9vnh/fb55+Vt6h0kMXEw0Z4aweOmEq6/zl7lE5gi0EhmfpSx6ASJP74yuP/WbzZQQqrWtMKbB9w57hA0F1500b9hUM67CdQEAyUWEYP+4hQjZf33TOUFaXAwOTVN90cRzlu/U3xvUNAHebO1DvKbI9pHdWa8d934+T1MZ4+Ox+ab+dbcfP/yi07whG3F3Dnv6eHvHeYcT/v6570KvNySGE0pEphm936BFjsaVrANu45uVdKompyzgVYa0unVVjDDNDyxAHneMmIpo8bfxEg17I/YCi6ZPoY+/IiQGFrgfWUpVvwvZe2V9DED4ZMWqpy1PlR2KGJA+wDrN3uA7geu+7vKpVPV8txFYGwgeShC5eIJpUCpgKcsZxYh3msmWbbFK0jQPnCqYsBw6e4CiAnJesSNMMHybsRfhRaqmgWkDeI8wTOAjHk5uiKgPSw/M8wzuP7XJF2nbkPSPGCMoFrlQwOdC8CPAE1f2YwJVQUgVqFsJjIoBXVM4ablax3jLStuF/Z8Lz4yc8P3xAXJ4xx4LJewRUcAZqldB0rgAy49lHhCjG+nkRzh/yHlSqeBVFh1wXFF6B2wsul1eUssk9pkORFxLmKWDbd52PDEZGjBM+PJ/w/DBjmYBvX2a8vL4g5R07r2C6grEg7QHrGkEQouqXlyuu1xtSqsrNVDEvAU9Pj/j48QOW09QSD+U9oRbxlogVCJN4uFQ9DJ2mBf/yL3/F48MZ3759hjAvVXhk3G4X3K4XhOhQa9bQmQSTyt++fcO67livO06nCcs8oRbCyz++4fJywbYVPJ7PmOIEwEtYEROQCyxDuH+VTIOPH54Ql4g9Jaz7Ch8dpingdJoxxQkxRJznM2rNSPuGOQS8Lh77dkNJCQ+PT5jnBXuqAF0B2jDPEefzgvP5rDJiQuUZ6/Yd+56wbRUfnk/YJ8L1NqluSiDyqJuRdSdM8wznBOhwLoCiA1fhW6plB2k/xjhjmR8Ro4ScvV4uWLcNIQTEGEAOmGIU76OScX35jkiMSMD28oIShNj54eEZ25ZxXQu+v6xY5gnn8wkfPv2E548f8Ze//gXbdsX3b99wvV5weX3Bvm1Yb1e8XgUY+PIyg/4uRNjh8RnPzx/x+PSM4DxCiAA51L2CKqGyhkTAwXPA4heQY4TJ4TTNCM7BVSAhIfEuYZnZwVWPJSxir9QqRPKZUUtBRUYtEuJVcoZ/dJiWJzwvz5KdzkXcNgZvCXUj+BrBxHA+YAkzgvPYb4wbZZQUJPkAHKYwI+8VOTFqSbh9XxtA4jhiDjOeHh/x9PQk9lWtKGkHiBBixIObEOcz9gJcXl9wu13w+vINNUv4ai0VeY/YrhHr9UESHsSIn376RTPrzZL0q0hWO/JBbOrBS14AWOX32nfhCOMK7x2WecI0ScbMkhNK2WVOpwrhVAOIIkJ4gLiEdseYWhilaNg2OfgwNTszZdb7A6ZphncZ2YmAd/R+OBszN7Jw+3vkW+qOMg7BA5XeB5768+pOo0rWSH9jurEd9fkRMBrsTcn+lw8AWAih1U3oQ1iTVAmf2KASCkilvN7O214poNobhfh3rn+K40lrCjtFZxZdt7IY3c71H9lgjMPJMkK1QiRdH1RZ4aPb9mAuwFAiUUC6Wk/2fYMjRqpjHDUjhUzJU6vXoXzqRub49sPp/AC6tNrZH+qZ7AjwRIie2juTDrBlFLKN16rQFD8YuHLU6QGIix8J3Geo/v34GhjwVs38/cuZ9a0k8GzoMcaxkHpXPmamEuJku+Mwavrv4PnVrEX9h43Ulu6Mk2MpLRMOEQozkk7wMKQXsrTENpcMAIQprmp0NgBI20p3hu5bhd4hRnV7JDRgrrmQan1tvlsZgHq6Gbk1o2WwIxhYCg330mZXBuv8YdcBpsafYzbeMHZkwIetN4giXRVwaEZE7UBO61nmN3OFtAPGdOnUxtc6qXnvN0NFVmHndDk8QAzHMj/u7coGSIBaqEbBCDq9f3V1fSyzh0WO2Sjlqw7q9dMHSPgCm8rfpln3LBvQNSERFANKQtmoEcEf/fe6IShdrzxZpHfZmDYjr+pYyFwxwj4xeDr45JUzyjkn9zhduwY6UJ/3PogsFM694XBAfy+l6klzQCk89Ftt61WrBfNzGU80ZMwHD7wmO/ug3Xv1VZTDxnxv4HY5P3x+BzrZwDP/eG6M4yWZOAY5YDuI9gMB7cDBQOH2WifrwJYxWEJqtZZH2XgIJuvGdu8SbqCiVEeVD2hmO+nhQW7Wu3XeItJljuhcIi3DjAyRqSOoPf7b+9ae6zXngVC98zqNa5CHdr1tIQ58iPK3gMAjZQ/h7bi96430A+Wl+TqaAPiducDv/P5Hc+bdcrQTDnMDvU3/V173mJGBXQ2QsR9AO1fHtmXD0ZN0fgv2Hsu1NflW9wGOM9nupzaLuY0BH6YdHcdgnARAI5WV+ajr28KPoToSyU5AJvOoGwUi44VMlod6OT3tNg7REAj+bj9ohwdeMjqJvOtZTSUkoqqcUGNh+FekdW3y3emgNGOCHJgY1UmmtVzReBsBKIeiyTRtl1f9lAgZjEq63nMF+wp4h23bgLSDrwREr0uAUS4FborwDw/SV94L79McRN44IJ7O8M4hUQJxAjGweI+UMvZSkG8baJrglhn+fEbZEvLriv26CeBWs0grJ6nca9nBWTighOOK8HVL2K4bXs83sFvw8fkjnp+e8W8//wLMGTXtQKnY9x3X2w3/+f/9/wFA8OTxr//6H/Dw8IjHxw8K+AiX4uevK14vV/z6+Qsc7YgT4ee/TKhckEvFNAfEOSLOAb/85WfMk4Rh/f3//O8oOeH791/BJSPlG54/TPjw6WeACgptWM4nzPOMh/MHeLfAO48YJtS0o2wO3z5/1b2VsF8vQK6I5OD4DCKg1Nz0CsmOJ4BcCNS8AMkR/tt//T8Rgsc8B3z48ITz6QQuO7ybEcMZUzyrF0LB5fLa6BNiOAnZdfiOy/UV275hmWY8PgbEeMLryys+fJgQY8Tryytev/2G6+WG9fZ3PD094/HpEU8fPmE5V8Rph48MdhUTEXIVYmKuBTlE8RQhh+gXnE4LHk4P+OnTR5S8Yr1dkYtwKSFtOC1nLPMZ54cHIfH2Hrf1CnIFp8Xhw/OMWiPIAU/PM2Ik3NYXMHs4FzDNZ2zbDTkXlPIinEkxgquEVgXvEeYzvPPISfqtGePswJWRa8Xj8zOW0wk//fwT/vGPv+Hy+opvX77g8ekBnhzS8zOCIwTv4GvFBGAijwCHpFpsBbDninq94eX1BfMc8XBe8B/+b/+Gp09P+PL5H4jfgG2LWHaHeRbwaooBL9+uyPuKuHvsnxO+ffuG+u0FcVowxQXn8zP8PCPOQCoZITicpglwHlwK6iWBtoTqCOw8PDy8P2F6XuC90MfE6FGyZHX79u0rvn//jsvrK7bLNhw4eeSNcfl+w3Zl+BAQo3jWlZyREqPmAMcCcHg3STbJMAF1QtodXl+ugDCxoWQg7UJy/uuvXxSc8JoVzSOEWcA0JhA8tsxgrihw4pG5eDx9+hl+mjHfFlC9AnkD14w9ZTVYCKUmoBSUmvDl17/Dh4gQJijjCEqpiJpF8LTMmBZJBsCQ70oucHA4LSc4R4hePCe9d9i2K/YN2PeC4AkxSoY75wNqDUjF4+V1VTtOwDyu4sm37RkMRkmaXdA5TOppFxW89L4ixIJ9X+V5roeMdOZsY6DdPUg07r09wzojhKBAaoR5RRUlWK9KQi98aJ2DuO1rVbxQCZJZ08KzneIHsk31DHu2IXvv24/QAYksMooP8SoVbifZT0S38151RpZdVf79cwjEnwaejNPmoNM2Qw7tp4UgsZmag/qqf7ZnoGos24au16EB/cSrmw5ouEwzqgYt5z2l0DZ5AEc7wUpkHDytuLXBnh9eiq78DRUeSJnHunXlWDGAAwmtRuUcFTctgPRF3dD+/UG16t2nyu417Mr/gVzW7iFCNQPtHnCwhtxXY2jo8WNqfUTUAYw/bIAVaYYobOz6LZWPAzHOwbGuph4TkXi8aCdXG/BhNnUFUx4393nvTem1OS7cT4Aa54ZjYZgjOBpEjXS7dReLy/pgYFZ7fzMmqCHO0hVWsCnxgxFmfd5+Fw+2xuNzZ/H9/kjInK9AB4ysLVq+ebqZx8U4h/oLtH6sPBpv3jL+GHD4Y9Dp/nlbzsd3Wx/1+WLrhpuBbsabkXT3ckaZ4owgS/9mDX1jjdN6Y0Rzf+34na37w1qz/5A8ZOPmJVOC1onFsw2MnhWxh991ATEUZzKpGUh3ddSKtXmmdSDte+fH+mkI6LCu+FAU467Xhq4YpZX+t8lf7dNRZvcF/+Y99qbDW2wx3t176HNwA3+P/l7H+1u5Q5kWltj2hbaTWZ+ZnOAmn9Gni9aamues7Ysmd9s++KY2rXvGraa3Wz9kHjy1hr7sRfNxSKh38d3HMO87Z8+hc/ndQxUdPObju8bypAPHFh335nfmS5fF45geanm8DvNoLMH6id+UPv5rpR7qRcfvx4eO/fXOPWQ71Y+uY33uvmp75WEDubv63HrL0dXlSt8vO1h7L43eekG12o3719g+m2zU51tfl3fhlNTXv/z5fpsM1DZ5aq8fuqWtqQqAlH/OqTe5hCVoPZgbr1PXEI9lda/Ovg+LAt6hV+9dC2MGFPhSviMGDv3mWn+zHhChHVQ4Uu9UQuOOMo6OcR+FhgGa0DXZMq57Uxq5sgA9DuACTPEEdiIMSs7ye8niZliU00p5U0Sv0/0hBrhpAoHw8PCEzYsX02XPoODgYpCKZ5FfpZbm4m1AJnkJ7aoMcOF2kJuNK4oCvn3/Cu8DYpxQyQHOo5LHnhL2LeF227Bdb5osg/D4+AzAIYZF0rCXii1J6vSUCxgSEuaULFSyqTGMMN57h8fHR5yWBed5xvcvX7CtjLzvADHiFPDpp2eE6AGqyHVFnGPL6iUZbjOICxwKCAVpu8I5D+c8StqR14D9FoGHSU8CimQRbGBl6UAwAK4V+56x3W7wjvDh4zNqIRAFSKhaRAjAvAwHOxSQc0LaJUNeKBUhRglPA2OKHnGSvkjJI85AjMCcCT5WwO3I5YZSIwoHsKaAT8mBvQ1lRd7FSN5BSD4J341zWOKE4B2mSHA+gGhGrBV1S0AVrp0QPLzzeHh41Pkt88QrT5eYc8IVE2IESDy/TTbUmpHzjn3P2Hcx0EOQcoki2Am5tHNZeXU8nPeahl6SwwAZIU7CbTVNuF4lLHHfNpzPJ0lqVRchsGYzpDMSEWjfUSmgwmtGNCAnQtpX5DzBe4d5Ea6xVDawq9jThpRPeHw8I0YBnqb4FetlA2WPbStI6YKXUjDPJ+TphOgcPFWw17XLHuyEBJqZwEUltyNU80JX2Sbz0mOeImpklCjhfll54LbNdRuVq8xhIuwpgXIVD59awFxQcgaB4JxwXwX1NFyWM5yTdXzJO2A8uyxrS4BBOxoTGZ9zRi4FoVawkpFvm3gclcqIMahMhgJnAefzCQ4BxAUpVz3EBfa9KoBUsW8rKCU4v8MOzQVHYXDJEs4XNVvlsHk7QjuUNTDFuEJlzkTEIACeeMVFlOpQEQDs7ZCi5KxyrMphLFgy95G0v2cTpHaA2BU/29M0jI1rA5I7jxMBCLrfdP0cuq/Y/m3tGHmeaj0ebB4PbW0/7z+y70t9j7uq6QW9PAG++r0dy1Gu7MoKPElyI3KSYMMI7Y8qxr0S9ePrTwNPpVomMWpGTlPdidX9Si7plB7+IYtJ/ijDBszWUJiy0pUCUyTFWwBoJ053Jo/9x/gQu0Gipbqhc2wCUPc0acoL9NS41V9GgICeNnAwTBqggq50WtifuWLXFtc+hBPi6JqO8W8zHkwRIzsbQzOAgOPY9nNH7QfwwWA46LNarhsKaADUMD/H/uX2t5ldw8n8/UN3F8E8qjDaiv0aTiLvv7P3EDWVTBV0cVOpTYPju+d6XR2opRmVd4iaXFhSijNa4It4rTm0BWWGvneSxcaM/qonsWDZLFiVznFAx7A8MFqGR9lj5JSFiylOY+VVuYMqrEp0OBo2Bs1UG6QhnKG1nyGnsFatJhiPfXxv2lmCLVakqaDPj/tn7mehA1AUSLP5pi1o86mR22uBFmprZ9bvgU72XGub/ZAANZ18fuyDQSg7atnmsnpginsrw1UZ3+6Sanq+zJFWE5KECubZaQaRVaqDQbIm+rwa1rjWjw5GUu/gNowtXKTIXGCSkwud67Vw68C3BqttVOJhal52bcMBAC88FMykRl/v9RB7v5cqcsLBNc+p2kW61Ek7X8K6rKsIZsWbXCd7wMafDXzXdjAdOJjapf0stqnuiKPI4ffEjvQFWxp2tqExQkXAkNi2XTR5ayA1DQNsXlM0/Du8anjnwVoma6uFaFqTOnBQBpna9rvDSAJmSAuQBfW+ohYeKoXabBtLGOvIY4Htcsc7W591uW+wgs2+QVni3paDgGi9Jv3hWPcMbg8NvdA/YxpbbevurlCd61YH1j2g7/hS23LXLitxlHfj29oN7wi648d3k6/1Or3XvXd16PL4IPK79jDMLds/eq273LPkCvq86ShkHrIEoHsudo63vg56jfo+1X6nQYqOyu2w/9h8rlBP0EM7B7nH1DIlkrrkQ5Vz0FB+e82wUR26uutmwUE4WkzPanLXvKC6XmKHugL6KOcGNGsryUGhkftDeUpMx7T5XZpst3bJ7PHewUOADwoqO7Q+xBVeTi/gWX6YVO+wBtvGpntB5aIHWirvSUODTYDVAuwFFAgUJKSEiZBqQRUma2CVlOEcJMTELTMoCBCw8grnPbyfER8iwiPhX//j/x23ywWX79+xu/8GOMBFj5JX1JLBJEAXBYc4L5im2Ly18z6hpIx93VFSEQU3FeSaUbcLfvv8NzgnHmfX/a/gQkhrxa///TfkfUVNCUvwoFrBueDl21fUnOFB2FJFyhV7rsjsECaPX/7yE5wr8F4M4pQScil4enxGDJKV7zyfMU8SrvP49ATvPVYn3hoxBpxOk/C/lILb7RXbtiGnjO2WkPYNzA44E8p+Becr0voV0zQjzBLul7eM67cdf/1J0tAXLxOSiVAY4FpBnjGFgFwKtpTw7bfPsHTny3TC/lCwTxU5sxqUE5bzqfGRPX34GdfrK758+YLrtklkiCMNZWGwK4jRI1SgYoKLMic+/fIkYNpEQCWwy1i3C15fI9y2wocJD08fADiUynh5vaJkCeEydzwHYIlR+wt4eAwIk8jXVAkM8S5blhOW+YSnJyExL7VgOT013fRnSHhizhmXV/HgEsBYdpx9v2LfNux7wromIQT3AY+Pj0oeDUhSKhFie6qIcGrLObggQCZDPIdKyTg9PAsRdBBOKQHPHHLasO8bvvz2D9zyBoAwbTumeEYIC9Zta/Jl2zfMtwkpZXz4+ITl/Ag/RXz4+SdUFDAKfvr5o2Ys9Pjtv/2G1y+vuPzjFX/729/w7ds3vK5X5LSgnE5wYQfTE1x8Qi4VqTrsJWI5PYBI6u/dDICRS0ItErrlHaGUDJcdcs2IMcAFh6ePz/CTx/lZQiIFTCtIyTKbAduakHPGuq7gklXuFUxTwOQj5vMiXGrTjJ8+/QJyHjkXXC437LuUF3yUPZsYcQ7CPVYTbtcbChf4KWhyCodtS3j9/opaKkIMCE71Gc4AMogYT8/PmCfXkr1k9Va63Xbcrisulyv21xtqAXh3uh+Ircc1oeYJnhjeF4Qo4I0Dif7pAC5ZMisWQslZwl5jgHMByzJhCqERzsuhs4CZyyIhctu6qs4gsrYUSyRQkSAeR9M0gWtGLUJ9wSwAU+GMwkWy0oFRoeG5uShheG6A9DwxHE0gx81LHQDIB9W9oODWgE8wq7ehemap3mxapJCuq2ZGgCMvmSNDkMygUACv0XF4TZg97puh2Uhm+1QwSq2Ny7DUJLufIzjyErXhSPn/yBL8DZv571//RKhdVTdezRymm2LRbFyVRxd847QR9dhraJPww3XggO9/BvW5EylLiaZ4wdjToUq9xoRYCIEpDHY1G4J4UEyAykoo5tBcqt/3tRiNQmlS43UiNGWvqeYM1CwpiAuLC3I3ZiHEigB4NMQGdd84Y1qoit5k35sXiyibHbkU4Ey0ywJ07wvS0CgzWobLMm+NRpP1/Uj0bv/SOA7Qfniny+yeTj5mwSN3HmRWNvdQvFY+9Xlg3FUO0JMZiILVFuJQBe7lBc/wxJK5g4cxVnBJTp+OlSeGpmceftQWzVXcEIkqQlBDrZpa7hBDD3vJufRutf4nCa8bQzfN468qP0spRddXVYEl2nPPAsRg7iR1zo/J1dWtk4sAFlD4d+TFGeojz0pfVyNZGu8BmrfUOA/eEy0FR34RA2WlPsO5N3XDpKIr5Pdltzn03u8aGep0c7LvzbFsPPOW0Az5pNR6yEJmAJuMM0Tx1DrbSQXQvd2kbGpZE1scNkn2OmtDwyiGgffUw0CPIWcVFk3qiIe+U3mpgE81BnmIZci1oqID4FBy9MoCFplnZT9Fpwb4EcmpIaOKsaGCIiBoqK2QppqnoYN0Pmmooc2ZQRAoiS1AmlDCkkoYrGKeczYWfaxdG9mCvmZGGdA3ljvvpWFuNjFG9zMIByD4GIbGJvasGe071gcsxa3d0NaRol7dHIf0J/VKm8wxmd0ulUN9VVj5Y8PG3+86ggDLKNBD5IZwbqvRKGMPK+tYvEUE/2h1G/jktKrDGw799/ZdI7h2N5bjQ/ef3Q0x7sdlePoYEjYcHr19y3CfjT69/eJNO7Rvh3ljsJl9e0zqQYcS7JP3PaL6SSeIhowwfNgjiNBmSwNlGgAlrQ0wkloxgqnx2FnmTgkfawOu77FQXOMruu8OZgUo9ataDHTiJkvbWqVR8nYdrc8Ta48BvIr0D/1nXlqWIXTcL3rIQg8jhHEtqczxofP/sGUPYiOdtmy0EtLuoGThWjfz9jYhTjbuzrXPqnkfkZ20Ay7IXBEy6SqHPhXwQoIBdg5UGQkVu9ICmAy3zUJAC/ldQmrV07p5XAvgVEn2pu2338STyfU5lGoFthUcPHiOmEBwE0AxwlcJc3J+AibAeY+6zCh5R5oDsmdwTkBS3pIQsfz8UXkrJRwODJRasO8JNUM9Nrw2pgApg52clG/e49uLR+GMXBymeEJ0M/acsUwznp+esDhgv17x/fNnfPnyK15fvuLr539gOp2ErPl0xjwtcF68OdbbivW24fq6Y902lFwQ/YSfPv2Exw/P+PD0k+xtteB8/oBleYRzwIePT+IBg4pf//F3XF5fcVsLiCeEMGP54FH1cKXsGVMknE8eP//0IG33wH/8179inifM84SHsweIkUrF63YDnEecFzw+nJVYvOB2fcX1esPL1y8g5xFjxPev3xBC1BDBKLYMOdQiJNMRHswF5BecHp5RaoXzASlnlJqVy2rCMs9w3uHh6RFRQ4GE8Bg4nc6Yw4Rt27HtGakWRC5CsK0GsKOATx9+QtoTLq+v+O3z38G14LTMqClISNhpwqNfEGcBRkIUfdfBicdMmOD8Iv0DoPANKSekkvByuTYOnpLF26nsVzw8nMV7LFdMISD4gDkuWNcNKe34+uUzrpeIaZpwflhUa6ii63kh1Y9+Eg8o8sJtFQi+Vjy7iPpU8Onn3DLxBU/YtivcdsOcNngvh9CcAeKCUm8QLs2qfEGrcAPVjBAjpmXCND9giU8AGKnuqJiwZw+4iPPTz1jiB3xYNrgQMZ9O+H75Ch8d4kQI54JwzgjnDBRGqarrxgfN6HeCcxG1VKT1grS9otas/e3Vi0nkl/Ne+DtDwHRasCxz2++2bdX+zojrju22CuCnHHPEDrkmcC6IycOszcv1FcwkoXz7Di5VdXgn9g08wuQQQPB+liyQccIyn+C8E+5RJkB54Mp6w60mECq8KwhBwf8ZQIjwS0SIk4ShlYrlgXG6rZhPV8zzK3IqEs5ZoV5fESUXsRXyDds1Y3d3upDqdM455V4Sb7xpnpR036PmglK6JVGZkTkLKDVFnJcZexJurW3dsO+aMADijZW5IucNOQTE4FsYnBHbm65FTtaHrEXZZxyFjk2ge8MyMERgVAHDlONp23fsiZrXVM4FneaFMYbN86ATORd0rTiQ87JfKRdgO2RmAHDIJaksUO8sxQ72lHVfgmbSlLDBUsWzzqGT4XvdYwuocSgP6tjvXv9UVjs7DBZ3MW5KaAXgdIMCG8LWFXMx0AhUm3mo4Xg4KB5NlVNjylH3dBGXFKsIusGBu8fR9JvByDP9RY3I4WZ5ntsitufsNWJHcHunlemMesgpZ4vqiXICYKeBIqzbySAfm9v5RYb3tXr3NsCUt3dGtbVHv7KTSPvITrVb190XwYzxJNosOFOs7289aNx3tsNghzYl8t6t//7qXmZvn296p45BU0xhYJ71+VD1sR7oYIUZe4KBygt6dI8p+vTm5J0HS9uR1IJJUttyZVTixm0khM1oB5TN1FPddRzXAycKAUb2woymHJvwAsRV3imZlHntHGxoHNuvXvjvmEHWrz3dNNocGxaV3Td0x/1648PM6v09Tg+Zg8f7mlFCXVCNZd/PmPGUX05i+twycHp8dxMOx1d2M5C6fGrGEY+ggvUlDf1qTx/fK9+Mgzm82MBj62+LkVb+G3n/4Dmp86RlYlIjpajXJBgNPDevSufGhup9xG1Ts6qJd+m4otlsKd1EAUdOsmqidkCWBIhtIdwDQNwmh020u1iu9n7WtymCZ22B9nF7bBBDXQAcpVD3lWF7XJ8bQCQz4Jusol4nGxYeb3h7HQCmYWTBx36QP+59h6x23UeI2n+GW7V570rIcXETAB6D68bCxr+ov/mdQg+f8Y9afiyzv63Ps9+T6O+VyX/4pvfebFPqTgDdvYmHgb0/OhqW8Ns6/ajfD6WPtZF10qZ6u+vYS+/smu+8h978ZnvgKMvNh6tP2qGEcQ6h7y1vZafcZGC2neq22al6yb3GaP3Yo8SlcqbXNC5Km8PD5nbYy608PnpKj+EF9/OjhwL3uhzbY3ujHsbYoZIOuP2vlW2iB9anBir1drOCRlA52UMP+tttnwFZhh+C84D32oeV2wGMG9ohBw8CEnkc952mfzX5dTg2lYOI8fRF219z0QM0STTB9hkXcJVwFF431Mpw7EBR9p2eZKXimhLWUpCYgRBAXG2ExdCdwoHHUEJQVFUhpy6xHuQquJNCQs79C9a0gq+Ewv/Aw+kZD+dnxOAQlhnnxzNCTkpMzLitV+xESGnDxzloSBfgfQVcQSpVvB9qwr5v4qWQiximeiCRdvG0SfuOWgneR0xTxDSd4IiQc4K4p8mPc2JExRiBCHBlrFwRawBjwl/+8klC3Crj+cNZPDq8ByM3nSCXHeCAwJMafMC2r1hvN+FGygneA8U57Clh2zbE9YbCQogPBUljqCghyjxgj2k+YckJlRnbtkk4mneYlzPO57NyK7lG7+G8w74lEDlEy2oYNlQmuODgPFBq0uhLIRYHKkIgOC9AaowORFIvF0jBDo8WWsTicb3Xgpw3EAV4zapXMpAzY9sL1lXGQaa+h3MMdgkhRA2RLco9R2AvIZo5AzntqndUkOPGZem9A7GGf3nAuyBcRUo8Tc4jxAV6lIk9rWAu4mFDDPKEp/JRM5QB6bahpCLrJWcBR2tGLjtKzShcsdyuKOJlgNnNMt85IicS3b4wXBXQL86E08MjnkqCX0QmuEACPk0ePhJcDMgF2JNETFQw4Ei9fzJyykjbjpKTrJ8SUaIaBRMECPJ20O3h3dTkgvAyZeUYElu0FCGJt8x3pQh7aqkFuTgQZQmLrdCQugxzijESa+egfeYRp4DHxzOCD/A+wAB6r3OEkLCuG3JaARTMkYHJA9EBUfh5CxGiD/DkQI4xzeKVRCSZ7PZ9lxDTWuHIIYaInStKrSglgVMBFFiGRQM1Xj4BScRz0KNW8ZxzRJLN0DLKEalTCCMEmbvwXsSZ08OKWkAQ264UzTCtXEvgqnq6EzqTISGXha15QtuXUKvwLTFrUiDfCLnHg0nnZX8sxnPIncPJDsFrFRCoeS+NeoTuRxZKZzaGbe3mGDTCLqSKg+z/QxY+QPqVMby/781EajfC9PmebON/OvBEkBOe4B2CM0YIiU9yjpuCKH3duWu8l/hr0rAhVx1cYVROB3KsUZlzRAjeN+BJvpfBKhBXvfu6AeOp5NFgsFOy9vUw6M3baaiHmH1vlTkzDEMLvRJGelLTulYjRTRy7v7wGzNEQ2qYSDOI6HvdvaJau1U21EPaMgRcDBxA7V8zbn9Hwxb+hKoCDI2XRB3T3k6ksVz9uxWvvzgD48brTotkndSjznsE3N6CVhUaGkkAas+Kc2j3m1dyJ0zXF/lhLpSRfJlFo2ZHYBZy5lJ2IaZzEbOe/lQlZswWQ80Vjioc+Yb4qKwBs5wJNtL9RiesIMJdPxx82BhKJm+tKdp3iqY7Epd+yFyr5n1lygfkVO7eC8CTuGLGKeoaYyRYpoghRBamnPewOCvjPpxz/KNlXGNuoRiEsW3dsBFbYcjMd1/mADA5UvrDps+7vuaNg04FpYX6cGFxCybxOrL1R9pu638R6N0IAdBOEet4Uu6PseTST2znvq0uMG8/DIahGYAmFkzoce9v2dhl88y5IGfhM7DCDZDsdR2JAqGx9j2DaAP9qa+5XlOnZTZTrMnK5tHHcnLinfWDESjieDG0PytgaWm1L82zbASHOrAn95vhZgaYiRmyyaJ1btk49L8isyx0727ujGNyhwkcPJ8OfTLsHXfzwU6MoYabPO0UVBa34+Z1o31tY39fl2Ye39Xr/Wto0Y/uvQeq2oQ5Pt/WHR//ftM/f1Sl4b4/qv6f1EXevPv98ewVH/uze3r1Og1447+jZu/dM84X/oN7h0piGKa78mRG9YQVhL5eHPoe0Ya27ZPQZAUy7kKIL4a4KcCA6EaVZC8oXA+KYu/nXrDNcDs0O+xTQ4uIHOD7Xl11s7A91bz6ajUPoU6y+p6Wah7kVfW9EbilFu7OYM64z9ZTK+5kYU9oEIJHIQhXFNDIe20/Z+YWEs8DAth0fFhyh95W58XIFAxGOE8cQUAYJmhMgxCQgxFIlIGsEQIFgGWibHxw1i1cAXaotsd5Er4lB8A7+KdnMfq8R0qSWa2WAs67nPw6QvryTcLrHh8xLQs8OdyuN+zrDaVkXG5X6W8wpqcnREeIjlC2FSkLEXBat5bK3nhDYtDMXbViv61w3gFFSB6YtN1LwMoSSvV9y/iJMuLjhF/+8hc8n054Pp9x+/wFtDv404SXX1/gvcPp8YR/+esvOD88Yi8Fe85Y04rfPn/BFCOC94iBkL1QKTycFxAYry8v+D/+y/+Bfc9IKePnn3/B6SQZ1z7/+t/EGydteHp6wDQ94sNHj5L3xv0TYxRelYkQUsQDHvC//vL/wuvrC15eviPnjG3fcFlfAQh5r/cTsrglY0uS7amWitfvL7hcLsg5I04CDEqGxQrmhD3d8Pnb50YxQBBS7zlKOOPDwxkfPn5E8DPm6RHRn1A+7PDO4eFhwcePHyWdvSPs64aaC3zw4BLh3Re8Xv+B02PA48dZIi5EA8X31xcBEeKMyTEoVsSHiv/l//EXeEeYY8S+ryAiPD09IcYIBrBvGdfrim3bcf1+RUpCdHw+P+F8fsDpdAYTsOUNt008n4K2IwZC8EBwH/FwfgBAuF5WpJQbQfQ8T2Aof4zy2+Sc4IJk8BVuJyClgv0qXFJTLEipalhgbLplLQXOCSAWPCGcA4ie8B//+m+oXFBKwrfvv2Lfb9i2G67/eMWaV9z2FVllAKcL0t93xDhhnk5YljNCEE8f77xahwmoCagZnFe46PHLX/+CD5/+n6L7U8Hnz7+CHCHEgIenD9j3gtfLpgBLwXpLeH1ZUVIGSsJ+exXQwxOcE4+wdEp4eHgEzyrnqnAkYU9t/TMmoAa4WjH7gOXpjJ8+/YTXl+/Y1huul1cwB9HHK5BykXbWC3IuqLkipdyAkVKShI/VAucdpinidFpwWuZ2+CKZ2Dym4FD3jJec8evLC27XFwAFTw8T8DgDLiInoK6EBAFVvXqsLcsD5ukB51MGELCtK9Z1Rdo2sPIKVSoCDOYMVCHuSCU1mex9aF5AOUtI3BRnnM9nLMuCZVmQShKvrmyAsQMo4Hx+1JA0j8Aewvs6IwQvnGScmyfZvm+oSvC9rlvbB1hD5GWf8Yiquwfv205qWeP2bW9euGJvZLEfS9Zka7XpmKPt250ttB9srmsIr8iX0OoknHdQe2XgQAJgyYy8ciWad5ZxOrU9WL18q4XhamilrM8eDticjN7fzn94/WngaYpC7hVjj6WvTAooddSrsmZgMsXaCSoP6oogA417adQqvRmTimIeFJTBkBn/HU/EK/dQjDElvV3jyVg3wqR8w3aIxEPDOSFHa6Eseq9zcrrQUtqzDKYgo+pO2aKWGBgUim4LDOCSKcdkp2RDmnSwGnHcOm60KXohoxbeDXwDDtSk1DFQw+lg+cpHZvzXZqTi3ev+cwPppH9skdyN0zvPv2O7ShvNUGNu9WVAstApKGSFWDOIzIDuoNWo5FMvtGXU6TGpMk40FDh6FFUW18usbP4yTyRm2TkJWyJC44di1vlnfXJH2mzD5YPczNwzH4uCLfcIeWefq+OwW7iBpLvshnATgixhhA3o4PE5zY6mHUcQASRKv6b/1DXR3uM8cpZY41SOdeGBqNvWLdn4aV8DRqUuZdsQtprfW5v6mX1vM5VlMssYEQS4HfrMxtodiwHAjQ8FJAA6BgD6R5fNqzFTnoEf/eSBhx8dA0nLBONnIptrNo5khmj35nKK8o2nDE45KlqWuXYygTb+FhLHbS5p/doaGGWelNFD/SzjIsOYg6QVXueHbTC6nmu3e9upB4AWj9xENasMlrLZMlTpm8bRufec629gjF+N4UCjh6qBXDa2YykHYn0a7xu2Dt2YbATd3Xw41Ow9eUY9LKfqSS+4hxkeRO79s0OV3/v+eKfJyN6Ph2fa/tq9wcYvDx5Bo3Bseym1PYbRZ8Khm7h/Zp+/keN3H/xZfeQNQIdxh7L9EOD7Eu/2kz/7vn9CT/p3P2Vy5EclMne+ot97c5OD6DpLVbkCpQGwZWLl2kiazC3G12bywOpo61WNi+Y9zcfxBvpaM0DdJhsxH7zZ+0FS9/odT3utLCKo4SO6FRsIPcw34VAioAop+NuTWBw+qyrnDKAyj2HzmrV7oAp4kPgSTTfNfUys4ysauXnwQQxE5cuo1fZjDYFlFo4V3aeCI3gKiE5O4EutSKUo3yT6WjWR6xjsGMxF9Gx2Smooe3YpVcJ2ckFNWcbGObhpBhxQnQNNk4TZPTxi3xNSvcIvJyzThFor9ttF+ojlXdU5VOcQvUcAocIJsKIh0+bZJodVDsSEiBlTEA+I/XZTUKKAnQNb5l+XccsXfLn8imlm7PkBhZ8QfEV8mPGT/0X3uIo4TbhuN2SW9oUYsUwBf/2Xn/ssY+B2EiDk27cv+PL5M0phBB/hQ0QME75++YrLZcL5tOLp+QnnZUF4/IhpDjAi+ZTF68fC1QBgrkUPFCsKOcTTGU8hIqUEf7uCvXg9QffdHbvqNVVCubzH+WFBjGLQxTChL4eCPW/gjbGlVcYkJ6RcgeJBxWOaZjx/eMa2JZxPM5g9Qjhhve645Q2v36+o2YthPS8oCeBKKMUh7YScRJ87P5zx+PQI5ychYq/A00fJVFUqEMIEAFjOEQQBLfd9w/Qwqedzxb4ncAFuF+HhWdcNt5cb1nXFnjJeX654fHzCw+Mjtn1DrhmpZLjgceIT6nKCnyOIGKWIR4wjjxgnqUcR/pppkZC+UoryqcqpN6muF7xHrXIYVrmg5IrrvuLX62cQEZZlxjLNQhFSM6YY2jvnOWCeAqYwQzKlAXE6yToKDud1A7wHO0LJDC4iG4PzQkodHOYYEVwAZeGByinjdttQ6wrmhFqvCIEwTQHxFHE6L4hxwrI8Ilc5zN23gpxEJxTKgoJSV5S0opYCz1VArJLBBdjLDczAepnAuWA5n4BKyKWIF9zrKh47UQAq0kQCuWS4ABB5zNOC4AKmOCGlJF5Q24YpRgFOyYndCjmsNO+h4DxqkuxpdlggsrgixhnzvKAWj5oZqWT4KB5RMXrkKaiuWJHyjrpJ6EdVO3iOC9gJOLKuCaVU5L2gFAK5CcviQUyaxU0AzDDp+lSvpj2lw2607wkpZfG421Zs2w3bfsPpdMJpPwHoGUiDj20vkMMKBvOGlMQ7zIqVw98Jk264OS8CPBUB5CSsmjWs3XRpbv+WXNv+ZfZqSqURdqPtfwIy5izZ/Zi5gUkGCtnBiNlt959ZFrxuj3RbYHS4sCx7tVb4QId632fgI4auBdZwa69AVoAxI/Z26CHRAEL90fWngacQSBDkYMSOgJDYAQaOmKeTEU81w8V2C4K4UIKbC7Fxg6gtCSPovtfRGhDC42dHVdNO10gti6NufTyJbrr2UP5ItO0c6eSTdpjBpzZeu6oCTS0tYx1OrrRqY7UH/eIIRgxGRAdJurJt/7RHhj/GSLmxXKtr92hA/682tIMallnsqIyO148Mo65cHo0+6+Tmqjtc9+W3NpE9NqrZg8Kt4W1jlrwGDphSNFhy3Wga6manBujvMoCm124YKV3AAjCR9q1wZzhHqCTUdCIU5DSZmocTKSjCra7qKKNhUmiGwhG8g5wcNw6OowHYXSqlwyyKuKHl74whDT/SSlOqNe02AYBTVF4qJq62ItyALP1WeskM4+6BKKMDoDLWoEEaw7COWSStfg1kGOppbqIjcK2UHv2+YXydc2owqMxpc4hhckHCJvVd4zxtdR/6bajYG8E6zO1xbbd52/pG+srkkM1TM5hs7tpm0WQsSBVB2zzGenXXWtbNlSsbtd5BtoyXhOiZEahtas2SCrPG0dyDRMMChXGlyXzTVlcATuZEbXE63MfcBMxgQsOIwMfacg+JOcx94AAmWf0PPEzjM2PTDrJ7+EPHcKyVjeH9HnI/r41Tqs/D3j0mm9sT91MHR+joEH77w2t4H91/On5vNTqs9gGIGFaYrYUB2CPu379Xp7ut+N394v2av3+NvTq+b6jS0Iofl32o0w/2sfGd/7Ou98oa9/OjXOxXC7dCHzNCb2cfvfFZBg89Yd7g9e5+UbYhYFT7nAZep2EptpfIgyMtQPuXhhk16i0NDEafGNz3aAOdugytXUnVAgmdS1G8s6x/Wk/1D+7WZO9jND0UJHLUFPV+jwOpFzmTyEunnhaivGvf5gJWQN4OACtq4/ejdvAzyq6B0870TRVYzjnhngoevlYUJhAqdktZPXQ/OYherWFHrVMdlGfVwYUAkPCVmI5N3kuIldhoQAzgGAHvkUsBMRAeHuFDAAPYX18k81WTRBWFCIufQFThmUC+AE48+1EseYiceDvIXjvPixiG3qHeVtSkJ/tK4UWBsfOK15WwXBxAGSEQPkxnTMuEMM+otaLsCayk3AzJiOYICMHjPJ/UMOyTkpmxrTfse0bOFc/PH9UDnLGuK3Iq4ArM0wKaHRx5lKITkjyIAkCMMM1N53HBi7FpcyM4RB8Bn5Aqw6eCOE0iM5kxVRJvBSbxgCMHWmbMUwRAmOKMouDDbV0F0KoZKSds+4ptW5ELAzkAJQgwEldcL6t6TTBqIWxbxrZtSNuGZX5ELQ41ewV5ScLKqgchaIjhgtPpjDifFOBhnEm8qLc9D3pEQC1JuIQSIwYhkM+5gDJQs4RA7duOfd2RUhL+qG1D2sRQLgpayaEgYfYn0W+JJKyKGBWu6cUhBBCltqqnGIWLxxRjyNxn9QlrdCYaelogRvzLywW1VkzThIdlFgoYZpzPs3iDbTcQLyJPinpnVIJ3ETUwPAHz+Szces4j7xlVvbA8BQQnfFdRD2U5V+Rtx7ruePn2glxvqLyh4op5jjjVGXtKmMqEAILzEVDbcFsFzK6Fm60jWecywAVOJDOIxTYpaUcpBXnbBMSs4tFZi3zvnGSMjEqm78xLngs8CKE4eBfhoocPAc5tyCmBS0UIk4ZpOhnn0vvdZJkRYwsdxhjyBcQYkWH1F++ZEAOmeUKpE2oBnLdnxFOpcX7pCbtEoYgnUtozUtKDVpLwOwaDqSJ6Se4k2fJEloc9HerUHV889j2pVxCrc0un5gAJ4OWcJJGolQHWbIEpAdwzdwIkHngajisHHaEBT6UIUINU2oYoYJn0lyM7GKptf85ZgCvTt83+aqmZhjA726/u/5VQ1X5wbGBUy/Kq8s/s2tG2acATVwQKTS+x0MoDd1S73w6yzLYW70mo3s2q8Np+Ptonv3f9Ex5PhBDdADxZXJ9OUkvbpgaDD3JiLl5QtU1oOQFmQa9bK7ti5WyyNEsFxwnWe6b/Oyya7vF0PA2uurEMel67Rr3LQqK8c5iiuOERIEizLh45EZGNKSnwVO80cR5+3rsa50+rwI/V4Psy7k2K+6edQ+uHNyFrTdmjZmyJO30Pp/rRe9+7xhNNGsahLS4+3td+H4wCwtt7OvjUvyQoCKFNMDTe+Gmat02ryBjW1onS6gA8kbOFTYc2NGEFtOfkcwNiPJx3SsCWGrhhArbWAj+slbHthiL7YfVlTcVEcJqNQEPnqKIWRso8OjUNAsfDslGJG7DUOemp7Ugabm1pQiVVVfIttNXBhSjCsUo2jBAkrWsIU4uNdkqeP84PUzTs/bLeJBTyTZYpNSb5fgLcXQZWEeS9YAuRM3OAYIEl3sYPMojOPK1MPDAOROWW3no8EbDxtX9bWNc7JxpElopbVhDhuM7IDKrBWCMY+byGX6hBZkC7vVPeI6EWY8ha1U4ncnBePKHM+ClZUtOmxHriRS1NagtVdDRsboBlQyOdvXIKWXVT5T7Xo25SzoOptvVthl0Ywk9K7huqcQfXd4UK6+j2SdDGRizRvhZhBiAa2MWwuTxMmNHranjL/TT74bS7/4B6vX5PGJZaoNYz8lCnQ/3ePG9S/N9/jUWbl4qJzy6TMczz7ntmvfu2TPv+33+9F2r79n1/3Bv/TG1+b+/9n3mN+7BMl96KP3P618LXDmPzzlR0Y7m9bUZ6MILHTa/AEB4KdDCJ1Qi7b8hd+Ye5dLiX3h8sLZxH7fOw2GrTk5peAPOSHQ+OrBs7l6bsh7UVZvuqySjzcG8nt+/MAGrv8V22OAcfxGhalqWHTxOhuH6yLUaj/g2GDx5gf6SgG/q3e9OLPhuUHNlHMaoqV2weCHtGKhUrgETiJNv4XJz8kHL2sHfw04RpWfDpX/4VLgrp9svLC1IpSBZiTQxQRc0Zdd9wyxnx8Ql+mkHkmtwPp7Pq6wznJQmQd4Tz+Sz6w+0Gn8UYt53WBi1MoRllyyJZ2QoYW97BWTw64AWM8qeInDZ8v15Q8wVb+gh2jA/PHxCnE05hgg8T1ssFX3/7jFQYyyni3/7t33C7XVFrwTJFxCmCCPj29VWIgLcVtTI+fnzGhw8f8fz0Cd+/v+LXX3+DowhA+J7+8//2n5FSRkoJv/zLLzg/nPH04UFCSwiYporbekMpBefzCc8fPuB0PqOUhD3tSDkhs0NBBXsGewE2PAE/P35ALQXrehOPK+fgpxnzPDevil3DyuIySWgUM8rLd2z7Deu24vn5E57On/D88BOW+axhfA4vL1ekfcN6u+Hzr78h54zgPX6l73j5vmOZb3g8Sya/eXaI4RGPDwGFHaIPKNljmqKAP57w8PSMykIF8u3bC7Ztxe12wbfvX8HMmOcZqQKcC7brDREzqCpBcSkAV0xTQCkRXIt4Qd1u+Ox+xcPDA54+POPTzz/h6fkZ0zxhXibVzQk+RizLAiKHkhmOdhCJl+HpfBaeLTC+v7zgcr0gl111DnMAiCASwK9n/iLsW8K3r9/wWQHKx/MZIfyM0zLjvJwRQ4BHQN7NM8OBwgxAgMfH5wnPH0TGvH77im1dsa1X8SKSuGWEwOBSkFLGtl2xXle8fP+C6/YNqaygKeHnnz5h8Qv2UnDbEnIFUiJsG2PbCnJ6aXLrfD7De0JxhBQgHpHEwMwovgpg6hOgRP5fflvx1TnkVGARQTEuWJYTTqczynxqBpifHZhD0w/Fi8nBe4YBN3OcxMPTi+yL+w4wkFMWkJF3rOo1BCqoNQrXVpBEB+7qUQo18yoEj9Npxi9/+Qn7tiDnHTVfUTmBqcItAS5GgDy2vQK8S5bLdFHQSbLAeUeIwQPIEnb7cMb5NMEHARy5Criy77vqqZLdMoSAZSkAHqX+ace+7yCC1IWr9pkHcxCghdFAIDsItj3NstqlbNQXAlRJ2KeE5Brf0svLa9PZt01Ar5wzYhBZELzHmoSjLe1JubQU5DZ+N/VACwHNzrR9TLZVbvtXCOEQbmd2oN3X2jJyNg16SPN4cr557+Z83CfFbszC8GF2l/eqgwgtBimOMGIqfxZ0Av4J4ClG3/iaDG0EsyCwlcEWK2TKbtV4b92ywOq2rOPrPSEqPxTYQtYkFl72N+MK6Qo8M3o2FZgBiPbObvxxU+hoGDjrmKPSo5/pj6POZSWZT1S51AqIC50ZbkPH4/cV3XsjXX74wGM1speMlxH9Ou5gXYVwB0lFqN1nhiQN5Y7GXus3/bxyPdZ9AF7uFcT2+fCvlW/jdAAUhnLH58fvCQak9NDKjmKrdxDhTaHO9RIauEadtG0MuwP6omzKKsRt/qj0yzWGVRX1cpIfa5+YUp65jSOTCRIBVo3nigaWbyJx4RQyv9LuB0TZlFNfOdmxKklqWYa4tR07XQDfZoarsanKvwIrfa7ZmlGODJS2PrzWsaHoEEJBi1U2DyLJrFbF49+Mk9rD8eTESUMTq51sHM5s+7iPE+OdhdNIl6mvywo57TJw287478NJ23i3CUy9TLtF63kI+bgzGu89oez3UcZI2IZwIFmoJfpowE7iDx453HuDuEp2EBoMyPZ+8wyw90mYjHOAY/OOknVfa89QpRJAsjaxzh/LhskAmldmAelcY4Zk8ijcvKbEQ5hFaWkGIMOgqpbxcVgv5GpDGoiEkNbWuO5hB8+MnvCN28Z28H7i3pes7TCi9NEAZ7B6z45enIcZJfcZcKn7UQ9sNvhtnI5H7xMdmLE4kX3am7X2JUokoShMIrTfkepNiN7LyPeu5uXV1mh7/VA12xs1cxbU64R6y6TPxlbZfBvKGd+Jt5+/t57v7xkvq/rv6SUm4lvNDADG3fq7e8ehisPhxB9ddPfvH917L0eP31EDncb132aUCd4GamOYN2/3nzfvbYdUqlCONdDF1Q44WIixRTb3k08Tpu/qK9bvIoTA0Ay86ONm7eoEpvocDX2i7WxTVes34lRtTw7Wb4NcGvqigeWtbX2va971Q7slAQO370Xs91l3f2osDR1Djlk5QDqgbjpFyUVC45IkXZC6ZBljFsEoHEtVvV+gxp6HjXIg4VLyLCfxTEI47FARq1BZ7MQopKS2pLLSi5yuRUL2kDZsYHz99hVxWRBPC9w8w+eCtO8ABEyxjE4MKJdOBq8b/Lx1eeNd029L2gEwKgFft02Mun2XbFdV9jkuYviWGJEgwJwd2jlH2PMuXnEh6HwC4Ai17nJgESp2KnhNN9DLF3x8+gn1gRDjjPjwAAoRtRLmEBDnGbmyEBbnBO8kREs4aIoaYR63JJnIUtqxrheUssN74Ha7yHgwoyQ5GJjmAKCg5ITr6yY6TWXs+yt028TL9x0vLxnLcpGDGtUjYozIKaLkCZkiQnDw0WPfxZPkel0B3uCdw2le8PjwjGmakNKOUjfUmiC8oRLS9J/+03/Ctu/Yth3MwBROmH0Ec8aeNuRbBlh4V4gYcQoAWDLRXS5Y1w3XcEXeM6YYsa47UrqCOePnn2c49nDVY3vd9ECZsN+iGM4hYKIHwEdUH/DpaWkhp6XsKJwRHGHyAR4O0TnUUmQNG0caCRm4hbM+f3jA49MJ51OAdwWEBK5A2i2jJGO97WroVj0YFW+718sFgKSxrxBQdzk/dqOaGFwdSnXIWexNHzweHx8wzxHLMqGWDO8IyzxjmSYs0yTeSqHz7eSUkdOONWcUIjBJtjZyDFBF8AswiQyPXkKJas643b6jpIq0Fex5R8YOCglLiDg5j/kp4MPzB5zPD8gV2FJBZYfgp+aJxnVv9mbakvIG7aglw5HoWP7kVSwF7MkhpYzXVwlZy6W2ZDylMK7rV6zbgtsqPGaS9S/iMX4AV6H/SIryl1pUvyR4PyEVRi4ZNcqhtXMBIUSxJ2pFTjuYq+h1JIfZJRe8vLzgcrki+BeEMKtX2ISSKmouCNHD0QLmAEIAqIA84JYoCZnIwbsJOWmmuCSeTmkX2VmdyRIBuUKcEOYJzgFV5S0zpH2qFxt5ve0wp1PE6fSAnFPT/3PJKvvlQD5n0Y2ZXdsnxMlE5tu+77pPVhQqbb+tZJ5FgGSbU1CeHHzwmKcK7zIcJUxxEj5sBYpyzqpfV92bZXclQjvssP3CHAok1K4CcE3mCQh23CeZK1La+/5G1jc47JFjZEDRd/YwdI9p6rQapVSwRwt5lz0SeiDN7RmiqplMxQHgTQbnH1x/Gngy0MmRefeYgWJuc7XrN3dGnxlRFbUpEt67ppSUDFBVYEiN+hbqYUbEoCzJ63tnHEEntM9N0T5+Nlz0HvAkyo4fTuBGoMa4VsYyGYQ+PDj8NiphbcMnMa9M8WohgtZX99Vs7eKx6EGXPZouBBoM927IsSqVDNYJdezTVgKNpY31OCqTb6rEQ9/8GY2+lUUtptUuQ36t3u8+2ox6e9/R28APR+wH5JdknEPwGHm6xop3r74ehtd/t/50baF347ufyBAZj5KABaR8PdbjxocFSGYcKUtOJBtIKsRnsJTY1h8W2klU2xxoXmbmHom3HE+2dqqGy9n0aQYBoOlqnZCwq2teGVxanZK8mqUoYG2PP+5k7toGvDU87w2/eyPo/lKTAsYt31YcudGmOxiHtm5ZgSozlByoyzDuc8bK+JEheASijjxgREAP8zzKnT7KFuKn3D82ZnhbB7AqPndx02Y4Wod1gPboXcMWh9ieU/PR5kiLxxNSXGYIn1hRGQd7XrNuaOf1ekqmJkva0D0QgBb7O8gJIoBdDzOFlu8g8f9irLVgyN7msVHW/tH0Jhw+73f++OorCTCAoD03TL7RF8i8uN5cxuHHHUQbQ32HrjjuTxg65lCzu1+H/ckm9nuPGNBqfVP77a0Pefh7lPl8KO7t6rt/3XGve+caxmT86I/GxcoftzTuXXl4/6FM3ZRaPX+wf40vuZc/v3f17WWQme07OsqeYf1C98umJLY5NOzzQycdyx1+7OADeKcT6Z0n5b4KDIqgKPRt/O4GZBz3e13LREHTDd50HjcOu/uv2+/UXyg0C073JZFzJq8x/NsOb2hMVtBDLExfGD3ineuykMzjsnaupzEU/6jHmTe0AU/iTRoNaFNPaZNvtRYZYmZAwx+aDGY08l0Rucp7SoBDbWTwltnLM2FePKJjJDA28zDSDizMqCUD1A9er9cLIlecvIOLU9unbUwJgAviEcUkdS8piVFZxfjx09TaX3MWEAGsWeE09CNLjBJXhsTQOBSSA42W2IMZ5JyACYB4aMHDQNLKBSAGBaA4xlYScL3g++2KGBc8AThNE6ILOGUF57zHngu2PaHkhJyLrlunCVAIlnFNPB/ESyOXDBBj26/K+5IRwyRp4JcA72TstjUB7JBLwbdvL/Axgshh2zdcL0k8duZZPEacw/khIiUgJ4PqxPshpxX7XrCuko0r+IDJTwhBwt2YAUcZgBi/pVQ4Jvz008+S1j1nvL5eQZVA1WHbd+S8Y103THHSPZURYkCtFfu24bau3R4pEh73/ft3CS1DxXn5KzwYVAm3dRUOKnIo+w3TXDEvatTDYXKE6XSSstMOLg6A8DTNUTJ0cXCSWU9T3UOzH15vGroIxukUsSxRvUqykFYjI+3KK5UrtiDhddkyMqr+kLKGldWMeRZvsfP51PieJLQJSMmMXlnb8yLgUggeNSUQAVP0Sg8xHAKweJvs24Zt23BZM8hFOB9AkwdTEQoYDvCuYooFMSi4gIJSd6SSkFnIrikUTCcHHxf4yePhwwnn8yPmaQZXQq4MzhVRPdJFjsnacgDW7YqUNqzrDcsc9B4gRNciN6YcsKeEzDv4mlCRmw3CtWDdL8jlipQnVDxo2N2CM59Ra0BOpbU9l6w8SQLU5JJUBsjBm4iwMROaHAIGCp2LmSW7ouibhGk6IYYJc6gC7FaRcSEGaYMXgmsfCH6ZkSEJI4g9dipgTmAIGFs1YohUj5X9hnTtSUQLZ9OYRbftdrhT8EkOE2KMCvZIOF7lipySHjJX5CygOnHSzOOyf8fgAIS2TwmQUg86m8hyAiCgU0oZlYW/L/iAGic59GEJRwzKG2g6O1HCSEZrdovZExZ9Y0ksxM5yACSizL4bq3TgbVLPLNlv+/5m+sPxsKYePJTGcg3Iy6w2JPphV2WjG1JsRG0ChkZN/chYv7v+KY+nUX20zb6fEg1GUVN9HZwf8j3ddYQpy9KAflLWvVNsoMdcYOZerso13Sn0d4bK/a/QZ/xAPcUwwxGIQYkmfdC6q1LCmgLzTmEThbAbZPqptaQpjHyvlLEpovatPNe8HhhDmdzq3fic7NN7Q0QqfFww7f5umNjPfXjdO48dM/wRDfeIZl3K0WvqoArrLwYY4O4+P5BdC4+QocHHELWxew8KPhQcghkBw1wwW7tx1JviK6eHRIDzAtIN3ouHSzz85B0p5cPnIXgBXJT8OWsInwiUALJYWDUD5W9B/Slyi5FmsLjzKljA6KFc4q7NSPvbCh68u4hav5FziF7AolLl1M9SPBf0kItxfFLWjAYAXAAcGMzCDYHCSOqlBe17m+HiTX+XNXKsI+48JKiP3RtD6igmtI1dn7YfdToU/gdNBQxRdeWqGo6pKUZVqLR1QY4a8GrtGfu0f35s0HhqfgCpGGBHwz26pgdQ6bB/0cFMRu9N4Ih/UtuYRlloQFPO5bAWicSTtDJLpkp0D4VukPVOllBIS7F9b06jzQ1x8UYjyTdZICSIPVNVP2CwdjCMx8wyBJp3QinKI6MCWFYHWdUABcyN32vspR9tbWydo5PsbvT6+NkgmPGP9+Vee5ftrOO77+alJWTob+tj3A8XjrLvUO8ftclAi7sKjl4oXar39Sa/D7Jw+P7+580736mj1eXPqRV/rrwf3fN7ffS7ffUH399fv1eft2WrcmjP/sHDg01+AF3kMx0x04eGn7FeTvfbMQStCdE7AW66F0MPSGAyqsOnSb2Cyt17xsa86UOT1UStPsPW29YogHa44QetV1KiE3zo4QB9v9amgNVzdnAZBMCVxLVCq9hDy7llXxWv39IOOtphlMNBRhsA10CnaumplZORHNKeG5AxzV0P9M5ruAbhcKCinvq5kcZWSTpHomPEEFTMFAl70bYGr3pTFTiCHCEuE6ZAyA4IqaCwAE7XPYm3UhXvxRgipuWEHYxyu+H1dgOmGXAe7BxqTQCq8DItC1yQbLyFJHVE3jaUlMD3Co/EsgC1wsWoPEEOvO+ouSDvO+CEcwjbilSUNKdU5NNJSMxjFMDLOdFtcrHYa4RlRlhmeERwIWw549vlghAWPD4mJEdwFSAXBFzZEi6XKxxXITuGx540HXxmcFWfXhLQb98lE9a2bXh9fcXL61d473E6nfHp0yPmecZpOSFnNdZShvcLiAk5ZVxeLwJU1SIhMiHgp59/Rpwm+BAko9q+Y91WxBgxzxNqOiFGEre0QjjND1jmGR8/fMJpeUSMESlVcL2hZiDQhNfLN2z7LhnhHh8wLxL+mEtCTTds+4ZaGSEC0+IavccyewQXgRrx5ctX3K43vL684FEBj3lZsG+S4e6//O8Znz58xOPjI9ZtxzQLIfT12xcNLfV4fHxGVOLmshekXPByueLp+RHTEhEjwSMDnLGvFyzzBK4ZXAo0tzDiROC9oOSM19evCIFxfgh4eXnFbbvh9XLFNJ0Rwox5esC+vwygsoT/hRhgWf8+Pn/EcpLMfjEG9UirmklLDOJvXy/Y9w3bpt54LCDt6RRgGZpfXr7g6+eMy+VVD0Qt4Y3J8BPm6YwpnpAuO1K+IaUrzo8ecSJE9Yzz3sOfZkzzpPp/QU6ip8cQEecoYJEHoITLaavilZUZ6yoAXNozbtcN4ALiiu/fPqOUHcwZjw8/Y56CeDx5sSvmecYJKodOC9b11jxakoaRZQg4nPmGWyooNIF9wro9AfuOnF8lo6X3mOYJnLJEJQQvtmyt2C5KqF1rs8OmaZaMidTpYCQboPRHKdK+6+WCkl9QMuAhmeqm6HFeJiFk99S4n5bzGT7OcH4CIQhf2ZoQ3Ctu1xtu11U3nQpGQS5CXv/t2wtyEXDRe4dAAg6bzSneg+K1ZgBlCFEymMqpCxxVnM6L7lsMTzfkxEgJ2BpZeMWFS7NhJLubgL0hBOU9E8DZDjJykfngnYfXcLxpmpoHURhAoLaxyqYBAJjn+bAWcpFwQ3lmCAFU27hH3fRMdAY4Gb2L7KkMduppy9072K4Qg4SJDxqV2Rcdl+l7Pmw/bcZa516thZGNWqZwy1T5Z64/DTyNQICRpBkXyBuySgUkxEvjHjwgQDcMIwj2XoRHYXEjvFce20mY9MYR4NCOcXq81VzOh3vM7tTH278NwNDfLYOU0+wqpmiP7bRCx1NB1Z76C9WYsu/tXa3O7T4z/qzPeoljOA5gp0vUTAweyro3L8gqaAog4U2fjmNyr+iPvAVu6CfS+LY3BsGgV48GwsGU5bs6UFesW1mDkWWZFO7pIjoINircPeTN0jwCgtqTLioL4zMBRa233l7jHBqR4/FiFj2t1ArPspDFmB5CIXQ+1v6n1sHDOaBUgsEytrC7O2Rvn83z8fTaRs5cMWFIud4bnIdjgqtCfl4rY5i+bYxJ+3Qkk21E+RDBDuprfQQuABvDo+dg60PwYV6wbmZGStrDK2rLljbOm2Zcm0FlNTZ5oDcLtbYQo8oSqqL8g1rKbDPA2lAOYMI/e40AFLg0I9KIBQ/hvq2u98TUKtANRlc5Vg15YrS5TAO5l4mFbmDKzWNTmml4kHmu92AD+nWeGTjXkHxdr81AFk8Crp1zpclNOp6W2AYPdcc1Q1I+s3uGk0seZLL1A/rc6f6apC04sg+NMqZNN5NZoMGO7WMmc2rcl/RBsnf2guvYs8OaGWVqA1btXWzrUi7zDBiYCw9XE4Fj+WOz3gigHi7I9j6rw9BcHvsEx3/vf969xn33roz734eq/c714y/vZ/D7z/Hhq+P7u6D5vWX9I8DovY+J3ntHB3SO88jCxsad3vYPA5lUZr/z7nv+q67baHpkO8E3smzjaGJu3ptWHTtUMcVR9lFuJ5KVVV63ednnivzTpYqVJ38N83hcP8OwNBk3AFT2KlNJ5KeDsWP/NiUYQNX6CZeehXN7fY+BTV3GitHQdQjyXfaNOkMuFayhcczCtdcT5Bign1E9o3pugJH3wpkiXr29P1qPkfEcymeVi8pRCVHzTkPv1Us5TB6giAI9zQ4BMXj4KBK/MBBiwpoztlxQ1ACppaCuq2kOsud5D/ZeCK59QJgCKATAyeHvNE1wIcBPE/ZNwsOMq6TWinVbxQh1LGALSWhgPJ1QS0FyDiklkIYzEUsY0vXltXGF1LQrPyRjmud2WJu5gEDwTkJzKhipML6/vqJWQi2EczxhDhOep7OQerOM2zTPCN5hSxml3DSEccbj4wlEwOl0ll4gQogeMXrMc8T5QXiYpnnG48OD1BEVpQppfEq7ph13eHqcAUimrImUpJcy0n6BQIMROd/E0K0FcxSQ0DvG48Mjcp5Qs+iUJQPfv73CkWSoAwjEDsFFVDCCi8iuKsm0hGOBgRg8KBC2/YJaM0ph+CSLi1yROVEZpe4AZYQIfPrpCVOYNBtkAZBQa8LtUlsoXM5FDOMQkLNmLgsBL9++YZpnPDycMC2LeBDFiEAOjiHecWWFkF+LET7XSULuHOA84zk/IKUJuSTEyaFyxu12AahiniNCfJZQNorwbmrhXCkJdxZn8SoJIYBcxIEXtJRBTpoOx1jmgBAIp9OMmpN4Su3ixVdLxrqtSNsmKepzgZ+npm/LpkjgnLCvV+Q1wXkGkOGJEUgzq7OAC86TeMqdzgp4O+x7kVDBvQCuAg6Is4d4+DnUklBLRoGSuKve7Cz7NNuhshzaTcpd5j01XQpOeIR8ZMBFhGkRB48qXom1FPgomRZzToOni8O638AlIWeHaV5A86TRJObxJDxB1WkipCyCMwSvWSgrWIGo4B2myUMOBgp88MjJOMsYOzJKTigKgOS0A5wxT5r10Qk3VEkZoIDKBTUX6cNUELzHPM0Ai0wrVZIE2KYkslzD6SwDXxHgOSUh6Jf57ZoOWqtgCCkZaS5h1j4Q28+jZEZJBE8rUpIw3VLk3VXnu3MOcZJkE1WUe2TlUTWgx0AdC4Mbs8LZ3pxzlvtrGcbd9UQWrLpytUPmilo7f2EPrzN7sNsTIwetvVP2r3w4dLGrOclYBI4+Z20x28X2wVp6xJnde/S4EuXADrkEM8Gfuv408NRP3Y3XyQahn9y9+9J3EIcRvRPFqoeGNWPq7rE3ResG3xUsdMDlDyzKEXRqBL/OSKNdM06qTjpbWPcnvpLM4l2V9U27+2k7dyWzTQ7tJ2v0XRuOnhbdOBqNPSnH+o6Vr4Gb9nzv6WSple9q/eZ3N7zjXZ39HaPH1G/utzQugbH8e9DpfiFZexto2B4cXq//HU8h7RtbEJYGuI9B9ywzkOc975YxDKsbHb2vjSNAhAwp8NTLZVWwGT2MEsygYCcPVvQAVqCoKz5g3D4gq78JklHpl7+JJPuDuPOLsUIgIYeEpK2V3J/d0GmgFoa5wMaxpV5q3gARmXcGLttzzveEAMcAnj4HePjATvClfvLiWqllbRuN7/HZyoP6MX5B6k/WwEflnxJeUwSMxtDhFW2c76+jof++J9f9ZSlkLduhlSMeO4MxpAv3brbBvPWMr0nuN9lmfSXyo20GjPYuA4HkOXPxM/PYziigig9auCSBGg+XgUYmOlp/tPXVV3WrP1HnMdPyoWU0wkYyQ3VsV/859sThNW0d2ufWD8M/h74UUTp6fNzdcQ84weTBsU3j7Ht3SxnqcP911XGysm0tvzeNGHcPt3a/c/Obmg+KyAho0FEWG7B2L6Pf1p2G396H5e+fPz71/v00/P5H11hm65s/sf7eK8Muuvv3/vrBDv7udx0kvZMj9/cPQnWUi+/VrYH0bz7XMGaiDmg4zToqCorePchmjH3Y5555Jh3XtdzVAKbh5eM438/1UYYd96MmgA4Z7bpc6ioJtb97+HorykA1x5rFtoeCjESqpjBb2VaH5gk8hPPA+pkZJRfh/ykVJrqEN075LSoDenobgvI9tZAZKaug6LukZ6RNY4gPqxEtns2E0LhLSs0SThMllKWAkYgkVXWMmHyEBDMB81xw3ROue8KtFvA98OQ8KMYub5T8dpomDdUTOTjFiGmZsTw84LpKGM8UJYV9LgWp5KZ/xTiBagWVjHmKYC/Z04p6A53OZ3jnkFOSsC8nekfaE0pKQAXC+QzHyuVSCsRAUY81ErbG1+sV+56x3hIe5gc8nR4x/RThuMJDxtzPsxD0Xi/YSoGDw+P5AafTgikGTNOMlDbkkjBNFrZEKPVRxsQRpmmS8KR1BSiDUTW71ozgIx4fJuQkkz54r6nNK3K+wrkC5yb19hYbYZkIIRI8VZzmGSUEbPOGfd2QU8F6fUXJQtb9cH4Qbz4KYC7wLoqXdgWIJdMeIN4hMRCAgspZPLsKKd+m8JHWSgBV+AB4F/BwfmhzLacMt1cQiWF/u0hmtB7GKga5815CMMFYlhnbh2d8+ukT4jxjWmaxTWpBLjtSXsFcME9BE4ws4Fokw3mUY6Cck3hrlAJGwbpdMc0zpjAhzjOACGaPWiRbmXgnvqKsBaVkPTMV3VWM9JGmwQzvvh/Pc8DMQQDgIoTxtyuwb6tm11uxbTfUWhB9FK6gYJErAFdGyTtS3sFFuNV8JMRJ5jApqFwh4IMPEx4enxHjDPIR2yaE39+/vSLlFRkViw/wFGQ8PYOcrP095WbWeS9REZWrHoiLrRljEHJp71FZfKNLdfBRvGxmP8NH4YQqRcBSImBSD7d930AE5JKx7+JJVHJBzgI2VS3HQHMQSyIeJyAstL0hRFQq4FKEt1rN0wABAABJREFUP9jLM/M0S6gbKpwPQua9J5TMIN4llFKJtsu+w1FBrZL5zGtGupQyKmSs016E4ylXELxmOCQBtbPYAq6FownoZD+5VORUxfswZex7wr7v2j6jahEOJgFZScMuJfwueEkIUQtQAsDVwBIBL3POSHlTcG4I4y7CV73vqYXvNnvyYCt0zyH7XYCyrOHbBOjBiYTgiaNCrUX2F9DAVdh1OwMMO7CFdmDQ9h5VjBm4sx/w5iKVN2b7iGzrB+UNeDpEQhyBJ0anazEbybzC/sz1p4GnXMyzSdBGmQAVJeNgGHdkbKxAV8O5kti/nkFM8JB40ELqMaKIZcF4nvRW0WslU0fgzLAfr/Ej6RzAiKmdI8RImJdJuQSEvI6ZkYrGKVdGKsf4fSvTwtRERh7UPeDwX7Tf7wGcFgJx17gfhfmY/UfoE7K1Hb1e92ggu6O31HuGw3vg0CH8Rd8zvquVNdR/rPpBoR2+P4yZXuOC7kTj5VhP/aMayTKRCFQ2ITGYUdwXpYX89H6l9tMMfP38CIj1rGdju8Zwq2ooPcT90FwgSY1y58TrSN5XMM+EyISUiiLctXl4AcC0SCpe+RzgSoiBGnqeUh7Q8iZuZANTI0WykIhnyTx7+EJIuSDVI/Bg4Jo3PozG8aNjqmBV43ZT9w5yIkNDGOZglVjvQ6iszQ/tbq9kj9H5tpBqLqhkPHF9btHwvA09M2BJGBiAUYEx+vwNBPgqnlBwjOD6fGIIiMamlI+G2AhKDDLj/joCpN2jpZqQrrJRN2NTO0K4TQSsa9YXZPwIgIdwmRw2Hu0Ay05nbsBjHXulzVg140z6k5Ro0BOJHGCG85qOW2UtinlCqJHrHQoXFC6Du7q8xOSouL/LOmvZpLhz/QknoLnvFgVqAeHjJeF8Khobbt5U1ic636hq6A7JmPmqRvQwJ6DjPvLWdCCS2ucHFYHNO/R4HeWDderdy1oZaGTp42fj0/JiOhTxw72M39bnvauvB26F2WcjIbQZxfbfwzp6v0lv3vFHn91/fqg/Dd//ybb9Xpk/ev9hP/1R575Xvz/62+pMfVe//64Bxj94H0ONmbvyzTPVvJIYDGeHJnpTz/Qm+7Aeh6E2H0/GMMRaV5V1pAKXdQ/DUV50H2G0f7un7jBH7peB7pWWKl0OILPKVc3WgwFYqtp+S3xChElD6pm5p76Wph0vdeZ1IsYHoOv9qx/OjN62fZXbviSAlTSmAthzQb7chmlD6n1fsOnpsXkKWCZRlo4QAGn2TW46AlAlC5gZA+KML+8UT3/S8EOPOEcwAdeSMc0nhHmBixOgWYem8xm3lHHdd/z9y2fcUsKaE3A6CSAUI6aHM/w0IcwL9pyQ8o7vX36TljgHv8xYr69wIWB5ehJPMgUHS6nIRcKZYhTQKl2vyOuKcrvgVU/bSawdMBFeX75jWU4yFt5LiFepQNqb1+z27aXrKFwlnOmywbLqcSXAzbhRwAteMPkJTw/P8MHhIS6YQwD5BWutSMzIlfB0esRpPuHDw6OMTdrw3//2K2rNcB74t//lX3E+n/BwXsBUcbtd8fXrF+xpQ8kZt+0mwNHJ4enhBOIK5h2hiiFLLkuImRrD375/B9EGIGCeJ8QYESePZdkBTsiJ8f/9Ly/IibFvCr7UisoF23VDCAHXh6uKaEauBfNpwYenZ0xxwnZbsW0bHAi39YLP23cwKpZlQoyTZsnzErIJ2Wj++pdf8PXrV6S0w0EzWEE8Um6XBfttBe8Z+23Fvn0W76I9Yd8zpnkW76fscb1ecZ1m5PQB07RjKSeUPKHOM1zwGmbkQC7g/HACsYBcwQM5J6S04fu3r8jqdZNywrZv2Patz+0YUYoHEDBNOl8So3ARrjIRT0qenVTfEOJxozqRrLpO9nNmUC3Ytg232wWX14vYB1w1hIjw6acnRP9JgbwoOmIu+Pz5C15fX3G73bC/XkG1iEdfDIhzwDRHrHlBnALiPGE+n+CcR9odvn1L8EE8YEoN2Hfg9UpYt4xad6y3FefTGXNcME0n7FtFKRu2dccyL3h4OCN4wr7dcL18F2LvkpFbFI0HsOC2Kni0XRWQCjidFsS4iMde3RFiRAwe5/MvajuIN822rtI2Bcau111lWUGpCVQlm6fXVNqmW6cq2S/B3GSs6GzdHnZOAKTTcsayiFdRjDes647TacXL91dstxWXbdOMc0BKFaCKwgWpEBgbKksWQkmuxOKFRU4P2hkxEJb5AcAiYYRlxxTnprunfcV62/Dly4vInFoRpwkxzpgmCSk2/W2aJHLJew/vJs1k6jDPEfuWsF1vIJJwaHc+IwSHlBP25Bphfq0Vt9sNYMD7qKT4Fesq4JR3hBA0G2iV8FznxLOVK6sHWUGtAjz1jOVAKUlsIQ3x9k4OHk7noOV4rOsNzAXb3sHolFLT62qtDbgzrY8g9TBQyrzBACjJuQDFlWNztrE9706btg1X7ATUBqR1DEBtXA9wAVxwB3vq964/DzxlI7FiAZw0Nl6pPETZMCJG29jIgAdumRXEA6CaPQtTjt5oRnqN5sG9TnkPzpgrY/t+KJLIDCU9lWJNIeudpKFXUrDKVV36ZEMWHgBuHh9dSbMDRzYe0fbOVrcGTozn0cPN2nfNo+DOajk27+j5cwRLcOgZxrGfAFW66P7OY73NFrZ+Pij8rZ7vjNG7VpQ9c/eedzT0o8HPOha9z95T6o2Mjhnw5Fr2qPt+sF8O77BZNTDX0kD61powzOH30OPGaaNx5qa8d08XwFUGq7IFMjTZvAV14yi1udqqfgc7AR65d8YFbyu8g6nUDH1Jp1lgy8FHUWKdJ1CWrDfkSEMN7H0EMHWFgCXMaAC8W2I9QgdwDWBuYJO9dBj/+zU7ep+Nnzn1FmKdfGQglr2/zc5uJI0GtNopHZRg4ckgDUUkp6C3DSh3LrTfM2h+7zsM7zO0jJiGOqPVuVobKqB7bV/rLETxh0xUKhttPlhf2avuZQIO3+lzmpWigzriVUXD/KHWrSM3HHd5oB5ttsEdTnu0zQLQSv0PFqsWEr1HUc82nWoqU2Xd8js7lhn11hcEeY61kdZ9bB3NR2pssr3FhuYwE49yYhynoUN1jryVY8PwHOTMexepkWqC9E/uzb97jfPetMguf/rvduM9UHfsifck7P1u+/77/7Buh9//qOXv1WNcf10WWFHWrYdx+UHJZOvv3bnygxroM9RiiceWdA5Hq8tQa60Xm+h/v1627oBDFkEr10EzsLa3EjpcpAdDtu6tipq0QlQKbsu0l3C8Ro2pzRvccVIOcpuGWtghkXka8/gCk3/a37A2KRk3MJzOHjoFxwykQ0UlK9D7nWm6gyj39Ibnqf9LQ3+7tk+015O1rcsQBhp/hZG/trZBKuscCX8TE9iTynQHp24PldXLQCdDzgmBImAk6kwCtKsnjHMe0QXUIIdEj6czppix1ILkCEJZrR7VtYBzAmoG1BhHrZryvAJeQ++8E7I+51By1hBM8QJjCEhfkhDzIgSEeQJIDluIJVxoLwnYrY8lRNA55bfUULuiB1+sgIG4F2ift4GpYM4oXLBzwXVz+O37b7j4CYuP2M9P8B8/4Txr9r4QAXKSCSuLkQ54THPAvEQ8PX3A6bSIcZlXIY92UcbMOyFw916NXQkBqnryESdCZY8QHaYpqmfWQ5unp1NEnISkvNYEtetQc9XDOjHgS5GseTuLx0wtGafTCTEEgBlp25WLRsNnHGE5LZjnBXFybX047yGEzeK9NoWIWipu16tmRhYhKIalSIKSArh65LrBzxWTI5weT+B6Er3CwkMZgBJHl7pi218Bl1GxoGKHywEuR5APGqYn3E7MFUG9ecRLZlKQV/TxeXLwPmJeZuHa8RPmeUGthD0xbjfhsMpZgJxAHvM8DevHaSheljWUihKwv4K5Cm9lzSg5o6SEKQYAko1sXiY50IxR7oWAX2BCShn++0ujCnGB4EHwBMyLzJ9pnhAmMfq9j3AkGRbXNWHdLiC3Y5oKnJ/ADGlbPIERME8VMcwCWHL3JMlFMhT6lTBFL6FxJatOJbK0FJnLnuVAWUCjtXnwlMKY50nq5QjiJEbwU5TDP2Js6ytK8uASsMwTHAUJhUsJzEWIth3B1YrCPSmDJFtwYAMfCAqoyNFBLRWrhtd6L/OUSHltSQCOeV5QH4ApRMTgEANAKNi2F+Scsd5WpB0oSiKe9iS2j4ImweaYF2BvnifJfFcyto1F5lTby3TqOsBHB8eEaY4CFk4B8zIJRlFqs3FAQFYep1xk7pdkBySihDMRvPNAYJCbAYi37LIsCpIZFchgi1VGrgxHYl9IpIIpJrrWWITE6ERhc6OWAqdzxXsvJO8tW5x4wtU6Nf5Cu2yNHGhPbOzUK/g+812nSNLnKlRft7J6+V3H1/tZxsD0J+GKNWeMbgs0vfNPKrd/GnhK6v0jqVmV86i9yMKKuoHXqHZQ2+lrVYuWdGAcGeGbjddQ664zo9keGBQRGkwF7kr2XREABh4aZ9nTHKBkYhJzKe6uhQVssjYWRaSzORn0l3clHxjcyqmFppkiAtjA98Edx6Zx67DeZ8Ze12paGa1tZN5OQ1sHRdxsv4Pib938jm5P4w+RhCqZaj0q2sNQ2bvudcBuxPayD/cf6vT+LBWvjv79e+8Zx1pcVwmVuvI72M9NAZeyu1eNpU0GaFCG+1jav84djZ9j6wTVbswzCr7YwqwgOANPdIxLqSCqjahPTm2MpFlT7pJ5voiw7CSqXRB10Anq1iqbhoOcKNqpxjQFVK4IlUAJzXjLJPHEMmTiNSbeUlLPDFLOKsDsG1KjwCmp+NjP1n4zGN4zuA7GzDBRWliWLoDmzTWsp2YKvUNgZ/PVeKFMnEhmBmgLqd3pzPD8s5Lyneve88/aZ4pUa28D2uTdhQWQtHusXjmPoSPdi09+XJMJ1ucte1MDhYYa2HMK6rSQFocO7BpASFbG/ZozLwWra8+gCFhIS20k4fY+k5Um00RJcXDVodQKKhAAqrKu2c4eY21Q07DNkWZAogOM3F7VvcRcK80U7O7V9t5Im1gfDw96HRiWhcSm5gjmWAHcX/XWa4l6mCP3Uv+HLx7/q2Nkn1l/jJ6tAIbP3yvvnQ3h33vdyd7+rj9+pP1xOCi4K2P4YMzWaY8eV0LfTxtn2gFkeFuHUaSJIdgnR3s/dWCmhbsOa5OHitr737bf1q/Vu8/18eCqJSLRcq1+3tqjBdgYVzoq6uY63+aDbdJDZa2mI6hzlM+uZzEb1pv0j2sAknPds8kGZjzQGgEs02kGtar1g73qcEjBjMJH2S/lHHtVTrqdehqJXMoDmbaBjwbtWf9Y3zNDUqyjZzUGj5nzxLvYlM/KtXmweU3dLgcMIlNDgKROByPlhBAlbfq+7wARXPASclUInAEXgQAn6cqZwOQBDzyfHlDAKAQk77CVhOu+4ZYTak6orN7htcCxcN4wM0rNgA9ACSiOQD6o4tBXC0G8tVFtvye4ecL0dJb+23eANHRkXVHT3jxjfRAZW4iQNyFNZgWewAqaWuIUr7+ahzeLx1upBevO+PWbR2SH2U9Iacfj4wNO5xPmZQHVgFIJ6ya8LNKXE07nGY9PZzw9f8I0iYGeSgFRRPAzGLI/TnPAPAXx3q4btttVOGUqEGYPdmIIz0v3btq2DSklnB9mTNOMGCNevr90wxWmPwn/TMmpcWgBQMkJUwiYQgAB2NYb6q1KsiYSb/1lmXBaTpiWpwZ6MjP2dYN3Eu50Op1QUsa2brCMtwyGm4TIGPAIk0cpTvhzCIiTx9PTM2IQz6nL6wU5FaRSMC0kxNd5x54ugMtgyigsoBvcBBfP8J5R4ZF38RojFATvBGSIUQjha5XwuwAsjhAUuHPO4/zwhJwrtv2C14sQg1cuiErcvJyWBlpbKHDJBY58C6f69v07asmgWnGagvAwgXF+OCPGgCkGLOcFMUYsy4JtXUXPcALbp5SFt8yLJ8l8ivDkEbwQT8+TZDCECxKWFSd4P6FUxraKJxfgEMKG5fSIECJiiAjzGUQZcaqIcRLOtKx0C06I4fcqnEw5BtSSJKrDOTiWw8CcC8hl1JrVk2zH7baqHHNC4LxkTNOEZVlk76qM4FwjsN6u37HvFTkTTk8CDuWSkIskGiglyTJzHlSFvLzxPvncgLp2AOwdWLmM1tutHWqHGEWPU53GO495DvAuoJxOeHw4IwaglB1fPkv2uJyFVL1oJFPOqQEa4kEaEOOkXFdOONqmCTl7sYsqVKfkpmOFQHBeAOV5Fs+wOInXmmSaG1gKmdVLqCuBY2Z60rY4R4DzCOQVaHNYTksLr9u2BNKoFYJ4RQnpummkvu1ptQpPlu6UGtYm+r0lLKt6UAsIwb54FNn+4lq4tHgp5QZI2XVvOxuHlf0APRTvHoDSrRSNEmawbUeHgMqlUYh41RksIsPCyAmkDhw9xP3PXH8aeNp2SzUr4UxNMRpIqpwPzTBxFtqlRmwtQxgPC1IYlMWf0BUEicWQdx4UQFIlueszrQPNshiVpqMhaB4hPQacdOEzZPFXZk3fmjVciptHV8uox6YEiUVs4TQMy2mgXD50DINr9byvty4mdUo4KNVmBB4UY4KGDVmspYVLyQRu4Ar397010e86CF0p9G0Tlb5mHgOGcHxgqNPvmi6mOP8T9s3IRSGKbS8n6GkjNDyNnBEu15Z+/r133XtVMQMwnptBye2Gd8/UZaDPeAngIw9Xzl2pdhIIwTBg5qhkM7iVZWh60flmHkQp3RRUMvS6n6LovtNAIO8ldMvisGtTHBlRXaZ9DMIZUDPCNDejZN2USNxJulvpCwGwmAGqJpgVtNBkCA6aFZIszIwAr3NN0S4jaeSqAIO+M+csLqhUVG8Xl1RT1hsfhxkfyndFzsmctDATVi9EsvHMba5XHgzQyuBc4R1LXB6zziMMngTvX39mzt4b9eMjzTdAFUy5X40YfdgyLLJuiFbGCDwbiGmGrW0arQ4sIJSB6xZ+3EQV22mLeDqR77CNkN5KXVkzK9rrvMade01oSiAlkrVxZ7ztgS77Rm8yM8SdiM7WUd3IlH5pYBi6jBw6tIXulVoHfGLwQh2glE7q/baWB5n2g3Hm8atx0xm+Z2AgFT/e54xnjbsRfx9C/j963beD775rn79T7/8Z13vFHg5Cxu//xPsPff2DR/h3Pn+fnFt+N0W5gSEg4bD5g4p1ma7vaXv4nYLyg1Y0EON3B9zAl35o1UpgbiBZtRmkwqLrNZ2T0sI+s/G6QPfSu9fT8N/2iQ5oN6MHpcQGWxfc/Qmp9wY8Df1ia1j7TaKL5cMxE92A2ele7+B1vEbOCQAtSysI7dReMaE3+7hkc4qtntu2tXdW7Udrhj1vvxMxuKhXaNO1RGYy0DhE5G8Go4A9gYOH93MjDgaxUgGoMcdySJUyt2x/qWZQFh5RSoQQKk7TGctJMpE5H7A4QnWEn3/6CYkrtppwLRmVGNUTfnv5jtu24bKu4l1VK5AT/DzDhSAGDMTYSdsNHAJcnPDw9FFCrkF4/f5dvE4d4fnjJwl12W+YHhYZ1d23/p2fHyX8i4G87igpoWZJmB5oAkoAVfEo4lywxEX0JAJSEZCM0yZKVPCgaYIPQgC944pUCHtdgdeKx+8PKKj4+ekTZp4QEeBowsPTE6Z5QskJ23bDtq/4298/IwSv4ZAO3j/gL//yETmrwUgB0+QRA+F8dvj+8hnX6wWfP3+BnwsqCT8Mk4BQLnp4dmAKAAUQRXi/4MOHCd4FxDDht19fcXldcX19we16QU6ShVD4pyIeH8+oJeF6SUglY0s7Si2odcP1dsO6b/jpl1/w8y9/wS9/+St8EK+NnDKur6vQK+SM8/mkCQYqTqcnnE6P8E68pMEV63qFDwHTMiFMD3BKIBx9FNAYhLkEnB5mhBjVYBZdwYWIUitu6wpAeY2ePmJLHikDXz7f8PryDevtirTfsCwRp2XGf/wP/4Lz6REfP/yMrHxLm2ZfEx3EY1keJJQeQbjEUtIMlyovGjcoQErIHnxEqQDDwrYKXr99w8vXLwgQ0O40z/jLv/wFDw9nTOERngSg+/D8jHWahQiaJa19rYzbbYf3M5bzIzztCEEySXv1gCNyKAVwLsD5Ccv0IDo5J9wuX7GtV6zrF/XOCTifT5L9bwpYHmbsm4BFNSupuXN4eDwLv0/O2PaktCEFi2ZZ844kqmbfESMQo0UQTEh6f0mvWHlD2iO4ZPA0g6dZQhZLRc4Fv/76DSntAlztK3xggDLO5xk+BszLGQgBDMKWssoeBQ4doeQIVMn0WHLGvt4k63NlcGZQdHAuSOYyLgAqQpyU50uTPTBAqFgmD+aEeSYkDXFNO2PfxaNrY0bihFoS1nWVDHQloJSIUm7IacXjwxOckyyO5DyMkD6EABDjwS0tARIRUHjHbduxp02BGsu+rYd+Zn8pdlFzRdlr22eIGD4SfPRYlhnzLJxbDCghPsOHFS8vN5R11XNvApFHKZvq1wIe2v4mwBxppnZS26yAQjiEvxExYvRIuSIVycqZc8a+7y10b55nTQRRhYcqKal+zo14nBXIsxBB84gaqWIMlIrqLTfq6HaoYs+OyaRG+iQSfA6snMZmZzjnJEKl/hBxOFx/Gng6ejgJMDGeXhnXjrRDrH9ThszgllA7+bqShp4QaxaBflpuSqMZJQynKCb10+VWM9b/8xswxe6zMJMRJLF6FY3JrsyqmPQMMO8p7WwpY2AeGNx+a29lCIqs4Xs8KH9SBtTIMtVlqPe9ETN8zmwcLH3imuIqb5cGkp7Gmg3XVEI+FNlqbEpfc6PXh39kqNF7dRtuGvuYhnvaLcM8OrQZGNpy/M4MTiPQNsJl84www/YAFhymRF9kZC6W7QXq8VQkvbyUM85vNKOlK/yWZWc0BLiBZCxV7Mqw9XNTkFnD64Y109ovPh2ifANgMafv0eTWpyYwNBMIgYGiabMdgTR9s1dhamlqTUGrxKglaZlSaQZQSQSoOmi3ee50PJqH7mBgkSM4CzXjToBtYZECkFShZm3oqBHuM9hYxUwo6oR0CjxVtnlfbYjbGhrnqhmjlRlZNx0TYASARvk4GCx9rgwTkXu5h0cMfG/3DBNkuFHqzYcybO421/d3rFLZOOT7BuLU5mepc9OsLjVQa+2yTkMXZXwkPNMMxQ6kaiiQGdjK0UFMnQdLZQqgng+6aYmn3ri5sfJYjTJKx4Y7hG3z3zwJjAycre+thwZ3OVuDVb81T4S+Bnr2SAMZHA3QAnehZfP5vsct3M+MXpnPQEOWNNb0vb1mrPK4d8l6kTFksjHnJovfjvr7Fw+/dXmuc2qYW+2+cVq9O4cPO+i71/1UPnz+3pfUgYZxz/kzl+kK7xX93h50eHYYnnE/A/W50E909V4nk122uh9Xssl+rUHPLKqfD3t7n8O2J9ond5vSm7Z37cFuoWGO2egaQHV4/1Aqs4ZHDwdGluxicES0l/a/WiIUalPlULLqKaJT3nscoR926IPmtWFKyP14GgDE9e3Bmu0htiVKG6qcqlKv3QhKHTxPVR6NGYaIqCvlpaLADqi4he513ckqVIcyWw+3dgq5uEw4csZNWpq3siMhgYfqKmMjzfDzwcO88JiBmgq4JqQtIceM4AoIDi6GlrYbNaNUEgJu7xGWGYUrlkm8EWoM2LIG4IUA8h5xnkFFTs4TqpwA1yycjOqdIdV0Xc9xBESPeFowzcI5VIp4oFy+v6DonlrssKsO4S1MqCXLfuNIqQhEn2lJRSoL7yUBRFmsGU+AK+AC5FpwuXzH3//x37Feb6AKfJifcQ4nOJYyb9uKy+urGpySZn5ZFvEemiZwJDjnUYvTyIWKlBgxOkma4hbMi8PjE+H8UFFyweX1AkCMquvlisbBQxNAEYAQc1d2SFlCP0tOSPuGkneUIiAcohimYAk9FNlWELx4ipScQACmEHCaZnABXl5ucE7Had9lHuQsfE4UMc8R8zQhhkn39Srlc8EUK3zwYF6Qa5DEKt5hilGiN1IGNDtY8EH2SyXSJ+9BlbGQF2+fMKGCsKeCdS14+X7B6+sF23pF3m9Ie0ROGbePmwI1QZMwEbgKZy9AqFV+QKRgzRmWHS0pAFdKapl8JcxNuJ1S7sZ1LZIFkKvMr0BeUtwrP5BX8LTkivW2Ydt2IaJWmhSA4MOE5fQAwAlpvJesdC5GCWslJ1kw4eGdb/1TlTQ77xvyvkpYWoxAtXo4THHSEMuCbbMMexJRE4IDO2GyluhXRgySZS14h5wTiBjOM7wjcCCAHW5g5FSUs1b3LxQABVwSrrdNuLu2hNv1ilIkbHS9FoSJEGbAx0l1IOUCU0DehO5BZ26ggxLvq77ccl4xkJMAZ5UZzk0g5VBSC0wTNkjJ0zTBO0INBdEDMUi5p0WSAexpw/X2qqAFUEvGvokNTkwIQbzOCF5C9HIW8nMuand0u63tK7kqMEIi21S/FgJ/0e+M2qTkAheiHvbLnPXNW4iaPLTD+BAipqmgZCPdloOJmjeVB2ZfQMPTRCc1UKaHogvXnx3WNA+pARwC0MA2730DoGw/s0MX4xG2i3Wvteza9x5IR4oTcVaRzyxUUO43QLM/Mzw76JIWadHAJ0IP2/yD658iF1eVH4Y8mPcP6amQ80eOlmYUUlfOzOMJDI2P1M1dFZHWSU7JdkGocC1cSTD/QdlAUwe0M/Rf+9FOO2YbkfsL1L0Y4p6Xk7gEGsDWOhzHRQoeDJrhOiixFWDUA3cArD9MoeSuyNzXefzbGmaT2A2IaS3ab6MhRNSItX9Hpx4mUG+nPDu2id9ta9NOqfPqjPeNIN9ByX3HALe+kM+pCctD3cg4jBy8Ga76hE0bRu+7buiNrzXvk0F5hy08OdEzgtdGsmxjQe0B+U75wUK4Ow5XCgczruUrIfVxo0GqSLcIHoLw+/W54Ug2LRNyxi8xGjb2WuNq4lo7F0gVUNXVCjiGDx5eMymwhuuFIC7/lRh5zyjEA2BAmuGiu7i2+QnAgQ91ADQ+GWLOOQ9wJTgu4jmlz3EVrw/mciivzYVSmiIs7ZQxFwJ50rVHqHwEc3iYqYqddG/FqkS8FY341tmcoT5ebf6YJG2TpE+qbpSRrkmNdXxz8bC+zWjsrqymCBg4TIzD6b+5A7dwS10DVV36RoEPtuwY5qrLbZ6bZxKzQpm6cTFbRtJm1kpZjvqYqHwf55wRjYvBqSllNbOpvNu8MORHNtzaPLJa77C5G9vcaTOgeX4Y54hdbkgiADNuu7htYXZ9M5W2VBPm2lYayu1dPsqlHuJnxqiNuaxXgC1ZQat16y4QjJdH1EVHo2xUWT0O9jvXMX5/2O2H72xuye8dkBozrb7HnYXhubEOI0Rwv8PRO78PovYwTjz88qNWvrt/3u0Nv3fZdLHl6jDsOdRWaPd2AjWFte1zMAXyCOrfK2uHept8VvDVdBl7YesTGzIbu2EKdhnSyz8C/Gj4zqF8651BgbRthsGSvt5AJv1X86p1/evd+TYI9/YPAYM+BgV02u1mvGiHmCw+hEyj6zjUPJFZQsCsqLvqmK4GljXGeVCenQAJB+/f2vfMVn6tyCXDZ9cAJzsZrq6CyE50VXci9WpyvQzAH9tmLqqjwCGTidLOnMVwcqQHqyXL4Wp1fV/RZDrOe8R5AkMclMDiAY3EWK8rPIkL8QLC5D2C80KyXiqQC5AyQgh4nBdMU8CWE07LjPj4gFsWICfVgkpAmCbQukKy50I2F/WO4FjhXBC9Rj2sa06oDkAMmB7O+PjpI/71r/+K6/WKb1+/4fVywXpbBWCpkv2O9KRbzxqQSxJdLRBKLiAwPDnE2aOo7K6lAFR0AXsxLbwDkxiHL687bi8vOM0PcHBwnwj+LLxJ+75j21b87W9/AyDhLD99+oinpw/gjwHMUYzEXFGrQ8oFl+sKgBEjYcsTHh5mxPmET/EZp+UEIuC//tf/hsvrBdfXK758uSmPzQyiBcCEylESvJSKUnasmllsu11Q8g4uBaXsYPZgdih1A5GQKHsHTFMEkcPldsNpmRCnCT//9DO2Hfj6+VUImPeE9XZD9AG1FKR9x8PyLF5U8azhToxaE8AZ4ApHETEC5CvWMiMGjxg8TsuM9bri+nrFsnCbws4FpJRxvd0ACgiTx+k8gYJkVFy3gust4XLZ8etvX3C7XWS+5A37FpD2hJdPV1QWr50eHQBEJ2ZlKZKAynsBKJ6enmSdOuB2uyKlDetm4Ao0IkU83M3rY1PieiKHGCacJ2mThHVFBB8RwwQwIe0ZX9N37JqRMpeKGGc470Eu4rQ8IPgJ3y8FlQXwmsIZzimwyxCeNQZK5QYA5n1FSStqvsEFAtWI6CKW6QHLHHE6nbHeVpRUlGhf9GtHjBA9HAXRi0tCzg7n8yLjEyMul1cwZzhfME8iN0P0Kk8LEpdGDxNChSPRuV5eXnC7brhdtwEkAK7XG6bqcQoT4jyBCCglg0IEOcnwV42Xq1qUiCb4Md7ZUlUf1b2ryr37vqMoB1eYCkKYME1eHUeE4LwWB++EmyzMaqNmNxygMlLasO0rPn9lIbquFfu2Cxh5ZdQMxDBjmhaAAxhiyyDsgIJPZgtPU2hAzPW6CoBUCTmrAQjTd9XO2jNsV/RewhV9EDnlvCXwYbXPerKxEIKEOkKy4pm2tfMNzBnMBWNQjDivSP8FrR8RhOMPjBDmBg7lktr+GYbEG+b1ZECVfW5rrXv99gMY2fvrgWPK9tVDFELfcQ/AmEThiHeaRLC57lWtOoJlW2+Ak7O/39dl37v+NPDERTYFO8W2BhMp6kZWEVPSa1OazKjitnlD7zga0yOQQQwZOCY1pp0OtapnZErPqKAPSp2W4433xpECFt1QBYT0jKsQpeeqkX4mn7vNhxZ7XYEh+G4wnt92+r1SevhuUAbfgGVDmfflOigwVCFgnaUgs4NIsbTe1K+dU/LRjml6FhhVgQN7iMZy+yOtj0cD5MC50gwCakpyGUIox7Kkn/rvRLbIpO+KhkQQ5ASnh0s4YFxgquA6LxkFKnMzRqSO3F7k1Xum8GCsqIFsP6yk4I64xXGQ6zG8xBLhj8YZhpbmWk7/agcOuK+NoC6uphDLqU4BkXLlMCuxqCjCJUvop6QHVeX+DuswA1yMD52/ps9VRlBXWUJEqZJGFtWMHbliiIiOEJwIejnBKq1chyG8UxUNItI5OBDwaztdM/AgYXjc62lD0eeJ1rnp93LCTc7pqgdqLpppCEjFjCnunjmwNch9TtIReJGtfJhrkDmuURH6jHmgHU20bubZAjJvzCbY9NWH1dbKaV4AzG3NNSNVAcNAXolYh4HVjGgGYoxGqzfjUwUekUMxkm92R48fDAaOY6RkITMC4HFV6izi5pnj9MdigRmQU2rWLHew8EfLygiYY4LTsD4xIiVVsoXgjW7S3qsXSYWcQlNvH7gfArRxGI1jMu+h7nVGevKuCZGbnB0c+tGI+YfyRjFN6F6yB/BZhk+IaSuaF58txVHegAE3zgNDNnXDlnUlc8VqM46t1cnUhHZsYsqF/HGcKugFjOP+7nW/B2gNBsjtcOv4+yj7rY7MYmz/j1739R33ljfr8M1+SYf73u5NPIxlB5wAOyjr4NM9EHXvTWOXbGd8NzdVPg81FhllfxxbeQCPhj7o49537z4/1SNVvWaqlpGVOLYwo+hIVnRVYOw3bv896k4m09rbiXSO8/DcUO8hpLatERrbReLF0mQkKeDc3zueWMve7sDKoTF6l7cxN20XClzb6hm8iwUMrxKuUopmTRomvNQEjipcFLnpLGQBCowN7SzqZWonyuP8AwBn8oeAmityBViN6QakgfU9TgxRJ9m+HEnSjylGpF14Rdc9oeKKLWXspWApBXNlTKcZPkx4fjjhKXhQcKDgcXJAjgUP8REcAj6dPP7103/AVhPWtOPX71/xGV/BqCgPJ80exkh1Q952ACQHpBlAAigV8bJaFty+fAO2gnorWG8b1nUFdsDXCEcBIRJcZKBmbC/fkdMNNW1AZFAMQmqOKHsAy3oDi0dt8FEMxWlCrhWcxeNLPC0Y0RGiiwjk8PrlM/7Lyw1/cxNmf0LZM/KecP3+iqfHRzw8PePBzeDrjt9e/4Z5OYN8gAsRflmQS8VlXZFKgneED68zfvrwjGWRMJZbkD3p5euGl5crrpcLrrcd57PHTKYvVqAkvFxesK8bbtcbtu/y+75ecDqfxPuGAtZtxZY3PISI+Tz37FtR7lm+30Qncx6//f0bfJwwzycJx8srbpdvyCHIAWLO+Pzr33F9XbBdJMwxBI9lnlVXdsJ7FUVb+sfXK+YpYlkmfPx4Rt4j9jTjpEAEEZBTAgWH5RwQYoT3ASFOMi9SQr68gHkHuR1xuqGUFYQNFBMcZTAy1vULiDZUJS/PWfVUNVgJHimzejIJiXcDhzMD1SH6CTmtyKWA6oadEhiEy+tFsjeXip8/fQI+PIPzDs97szcAIY7eUsLsI2oFrpcr1m1HShmrcmQFH/BwfhDvpVJAlTDFCT4ClQvyllByaUTXMUTd2BnTecIv//ozSsnIWbzaQEBcAiiIPlTSjrSv2LYbLq9Cqs1cEKOEfQYvPy44zNMJzx8/YZonzNOMMJ9QS4ZzBfPkwLXg5ft3gFcJ3SLCfDrhdD7j+fGjyKNSEW8emR0yCK7ozk2C386ngOenB5wenkAuiF8vBRQm7Lm0pEqlVKRNuKVq2sVeJo9pOTevrZySZj2u2PeMPUmInPM36asopO5gKEgq+yCXHZovGcROQxS9AEVTxHmO/z/a/q1JdiTnEsUW/EIyIjL33lXV3fPNmTNzXmQmM/3/fyPJ9CBpzkx3V+1LZkaQ9Av0AMDdGRlZvXvMxLKsnRlBOv0KB5YDCwhzREo7tn3Ht69fse8JpSTlk96QclUvW4ks4ZQBVzFFmcRcGSUV0VO9gFA9O30RT79SEPwktgQ5UHXYsaGmFaVuYCakKn3ovUPFLBkZEbCEk/BjccG+7khJspUGr/sMQcDlotylkIOR4CUrudVvTwLm5ZRE11fS6abD5gzLwJdTzxrnyIMZEqK4jtEFthtTO4x16l1qejqrq1pzZmBGLpZZHeJ0AAX02IjRvfBWVSCXikC1UxPpBhe8A3tWYGwFa8i62HD1oCP92fVvhNrBDmy6MUc9W5LzMuFILSozuDuLOnQjPpbb6jnoF9Kl3fNGJq9ZFqYgA91FfCjDftXfzXDoJ1lo1pEYutJxtQrQZSpeK5Z7WWTvvHvlwSgc6sCt/jxqk4c6sj5EwJACHF2he2RJVDTCYEtw1nXbwagaHhl9MkYV7P6+aoaR1f9OK/7IQLj/+96ANLChD3JX6A/PDkahcCT0OvbQGtI5ZkDF6HExvHhQhrvW3TXx1v8wjxSoV7zE52qyEJhbpVPXy9aHLMqvYyVz0xPn3qRR6+9mRTOCHIkXjq0jNtfQjm7LibGFA9z1NZnCTW1+V9XxmzAgIGcGuQqQnmpUcV0Gm6eUGDQWIiBhrT28rgkTOwGuJvRgd7T1fhxLaVsgNUqpA7vFvKD083Gu2ZgQV4AFYBTeU4ZygYKH/uxzc1w/RyMIOp+sigZAybqzdcxKOm6g0nDP2C4RSAKOH4cWo0FHKqss7MvQNZNvB+OWgUY6NxRF/a3t+WM9WtMAjECJufEe1yIDqFm8lIrOPSt2lHyjkTm8Udfx6GUgrswNmIe1Ubza7LkxXnzMyGGhgEQK9gxv49au7t1o65yHT8f1xdZ2AsxgbyTc+l0XIXfCrY3b6F6Mw4/Z0O1wwvoJ4z4zVGscUIIylA3XIC96Xx/l4viB6BD3gBP3dh7ac1cWHbrq3WX716N7xvlva+b+bX3v/vAVh8Lut+6DbEX3Tjw8Nsj07oeGBiiN88f637Xv0IDsu13+TxUmm+/397wLodd6VXDfk7nvLQ+6YHiWYZ7UdLiLh1Y1B3kAdMhUmBWQLDr3x3XS+o3am3odqK+Cd6Gtwz1HZWDo7wY8ucOzrZa2aOrYnt6+fgrbZ5jMcVtjx/3ceqOvIQZcry/QeRu5Chk5W1y13mTaWqO6M+47nYRER8lwACL1fzY/ezUU0KxN6ojMdyQAmo1ZJQlJKlKXFupBAWECPGsmVudQmLHnDNp3sJPsU7PzWMKE6XwCnGQJdSGggjGXLCHsIWB6umCrCbckpOaVJcSJksdeMgpXVO8l7NGyQEEUhpqznPCsG9bvr+Atg7eCXMRTzFXxvmKu4CJZcMG6VXtZZW4S0vTGzWhtFqWpnUTJAYcdMEkYGjtGdRWVhBMr5x0vL99xxRsiRXx5/g2u6lg5BpeMvG14+fZdsk2lgqfPXzAtJyyXCzwJR1ZFxXW9yeFO2lH3imWaMM0TpkkOAvctoSQxeL0L4mlNhFyEhDlnxvV2RVJPp3kKWKLH58sJy2kGeQIj4/vrd/F6iQAFBnzFnjc4HyX8cZqlfPLYtiz13lchhU435HSDwwQ7TKt5Q9oYb44RvJCgl71gmicQOay3BFBFqRkv31ZsU8a+VMzxopM2gmgCOdHtfJSoCM8Vznk4Lx7xdvA8TUGJmgnnk0f0EaUQAk2asRBgFo8rQta/xdCXsD6ChCg6JZCOOJVZ+W003JZV5lUBiitVzfan2ZlBjdZB9AnJgghA6Zw9KlfsKSNM4mGSCuO2JmzrhtfXNwTnEUMQHV0P6tkV8ehztphV/zYjW20Ick6yTIYZtQbkRNiTyAIXA+BFEuWc1JOlCpDKss5D8EKiHoPMdZLDgjBNCHGGj1Gy5MHBuQoiD1CBcwnkZhBVkCtwPkqmvSg8P2CAIsHPDhEevhBaTBw0ukHnCDmPwiRgeGUFxEWQSkZGBmcJU4M5aDgPch4IoXmwOqLG7cfMyEk8lLb1huBDO9Sx8SXUJredI+UfZKSS9VCd4KOEdAYGltMF3ifEkGHJvsQ20dBlFwxk0JBmWY/eeZQ5SgZDiOMBOSG/dygQDlMB+r3ziCGhhooQdvWsF/tKutWBd8AVh5Q9yDukXTi79i2pNxBriLI0z3uSkEM2eokA72ILvc5JEjhVFpunlgqqpB5F4+E9QJXVe00jFBp/cedeapmjSb8fkhTZDit0J2qr1h5yJwc+RgBgB3C2nx33KYsY6DzDwyGT7sCHBEiDzfEz108DTyVL0JtlzxJdgQ4Ltrlig1oHSQY82dCcA2olHPhTBqXC9BvbwC1sj6qJ3w4MaVe9UyDvyyMFylzrZDWKyAvoBIgiwIO3UzOq9E0MrfNgbJvhxNROOKWOo4IyKLa6sY6ngzy8owkmdCBrPHtu6mK13/spnG3gI+gEmKfYYwviXXY7Gvp2+OejaTQaAfbrAVQcNTQw+tSg/sCjScritmnhNm74Qk4APIgkrlgUqi4MdR8TcHQ0tggNwBIduCvRIyjolJvGBIpzAJWuK4VADeGVvqnqiilBoX0ztTFBE9q9PyqadxWbCKiiBEOEGNBdfXtM8F3/W32d67xSzftoAJ4A7LsITLdnKNu/8C6oQl4LGnignSmbKyxe2QAwWXU5FXjPgHmg8TA/WU0HJVb1fsj06MV1tRT1qhlOqSv16dBmRWVUFJBmTqvM4qE4mAVHs6yvqTEmuXl2Wcgvwxg6en9C5oxT0K015w7IJS2nT/XuVXOfLcvmnCRQMGDGKjq8XYG8Wo/eEodrIAyG1lHGuMsewABN6Rkj4HbUgU6AUDKjZPWAUqyrO+X2lWEtdsPCZr25qoHmHMGHTn4vZPniPl2hnnEgOQl91zQ+dKwjjV9hMetkHI8ZuSz9d9VObiCb1pidyQKdGQbmqLzprerjZPLT6mOx600GtYQOWkY7JZL14AeZLq9iS4bXAKravGH6Z0f5x42/6q6H3h0stD2G+rgZ9+G7hz/6m99/Qa3vbV2aRTkMk803XUgih3s9aSza9OEH1/1991vBsI23fXBc58Q0bCU0TqPD2BJ1jyfiYxkjmHTPFTSO5wi0js+CO6De6jyCPcOCb2uLcACl+ndD2K0W5uzzcf0N7bO6VTAyBLCwuc7o3k4MHGiGmhBU+Ty239puQGpr1whQDRcBmn778dUoDshCgUUzkRN62awtfK4bNupl1ObiqDOx6mrq7aTrlGyMx3v1npHuoIfsE4I3na+H3BGR7sVo2f9M1vU1iGY0O1sA+m6hPiCwuNtrmmzTxKifeJQKJFbvZyAEh3mehv1fvJL2lFGwYc8FmQEXJjz5Gc+Xz3KoVAqW0wlw4vW27jtcCHh6+iweT3UXwtxlxvfbK8LbV6wlIdUCBI/bumJdN4jx7eF8wE4Abwn5esXr24arD3iN3xGXC3wUo5khYEzaVrArYCqCop1nOAqYZtHzGUDKhFrUMzmpUCwSgu/g4AIQ4DX8cEamioyC7BLStiHlFbf8A1zEQ2Y5n/E0nzD7CZ4LOGe8/PiKr//z75IkpTL+8//+X/Hl11/x5ctnXC4L9lpwzTdsf9ywrxvWSviKPxCcx+XpgsvlhDhHgDvodFpOiEEoGCSzmRAE/3j5punQGX/723/g0+WCz8+fUJFRUbDXDb//seC2rsi1AqEg1Yof36+4nDPOyzNO8yd4J15jz08eb7cXvL7+gVIlzC7tLwh0Fo8d50AQr5yX7+Ip5ZzHq5/w9PQJ3gfcrjfcthv2fcXb7Q0hOEzTismdcDrJ+IMmiPZbMC0LQOo1qGnenXfwQYAS5grvgXkFoj8BmOGIsUR513pbwZzhfUGMkoCEAexJQrGMsuR6E6+jKUQ8Pz9hmibEyaODvRLmxbkIsDqJJ1Dek3gSMiPtCfv2hn19gcOmpM0RpxhQuOC2bwiL8DcVBt5uAjp9+/0rZh8wxQjK4lXuHBBPhFwLOFX44DBNE+ZpAcg1zxMVIKiVhGiaK2h3yCTyws8RcOKZue3ineQccDkvyNmj1ILTacY0TZimCbfbTWUWCbdQCEJmT17skeJRSKgwhMZjgw8ONe8gNwEugkkI+gtVUCQECjKkXftB2XeEqIBpsyI9Ss6SQTvp+SYDJVXJdlfkMNI5BgdG9JIpznuHfZ40IqjqfCnYd4d1XZH2hNvtJjxEXsj0p2lGCPK7JFlwArxp/dZ9awcV8zwD8HBuwqfPv8pBQc7NM23fE4jk/lnBpVqLgNDXV6SUQERYNAvlPE/gGZg0LNNTQPCs75Cfacqqw0m2PfMgz6UoCfzW9s0fP15Uh+NGTA5WPMEp3crkEHXOyHr2IETxDtsThGm34wulMEAV2y7ZTYXcPcPCAo2bW3ilgtpwqstybaFwjTJj2Hq9Grtt/kJsyMq5AVdjFJKYo9zqJxafJHnwnhu/VIyx6X09ykzGsPFTdbfuDzSB4/XTwJMYuoKIhigpS0d6E4lxz43MUk7bNTOcKRFDbGBjVXe9QaN31EHZO8R8GeuT7ffclVjqdR1Bo2KGirmpsTgBikHgmsJj99u/72MWuSGBgEOtlpnr435jdOW23UimKo+KFSHQGKLU393qxzgALccXmfoq/zd9CMNp3ahJ0qMy7j57hAvR4fcOALTPxtPBd+N4159WHf3eq9bNVRR6RxY/Klcpgk4Tq4u+SgjJoCiLyJnF52pzdwcBPoYGAOVapRwXgFoVCaZGAuk9wOwUZKpwRIhRTk5qrUgKBhm/zYGoWdeg2PjUQtRac1lQ7VoZMUqK3RAiUFpsD2plONS25roRaOvETgEcQlSCP5L0zETqAqf3G99FZTmJIWgoVjkq9hVF6xnaaFo4lSHuwjPFjTyPGIheNjly4ZD5bwyh8JLSCM47ZMooriKhSry8giHCj2Hhid1wYgNadc56WIS2XcPcG/49gE99ciq4zU2cjFO8wry5jtdo7N1LBAPvxrXihnuJAI8Cz9xASYKQk5qBJ3NGNiRP1J67v8bVxlBDmnvf9Dq51om1VjARXHBKoikQWBkkxehNZ+TgchKtdWky3v7tc6dWWe+dJNdOZuSBqiE2tr4AaAYjm8+lGb92glKHzdA5WdcGblSWcJTKrViVOcOc0d/FWNT3aCsNaBYZYhvo+/G2/SQE3w4uuqetQ/AAqzdDC9NSN2rh86BWlmXSknJJT/wrssmnw5ttDJulfQBL7J7xk/s96F2pd+L/o0t66N0Ml0OXYT+k8X+PNokH1/udYviMj5+NP+P/Dx5Oh3vu71dPWbJDob7/9nf10Dpb8/eA06H+w+fjfYfS+3bzYfsfXTJfB8CqtZV7q4cCqigCmi2K9QDG/tYMu6oDvQfRrD2jC72WOwA/IGqEqSZL7blHesOH/A7aqJE01fYJZttre3jjPXdUK7vpc3a4UhvXXGsPSQiNWgsiZzWbzX3ZeeA3sWdd8MpLFJreZLpBZQlVsBTVEF5uOJJMuyJX6qGzZW4VVK7IpTQKAMkqJGF3EqbCjeekZ5uS8JzlfIaPET5GsIYv7XvGt68/xJvIyd7JBKSScb5chPOmAHmTdOq/nD8hxAm/pBXPb5/wsl2xpg0JFfucsV+ShPdVka3bTCjwKIWQ1w28JezlihReQXGCP1/gpgnkHfzkxZuCIXuam0ABmC5nLPOMOEXw5rBdN2wvN1x/fEPdE3jbQMGDFsm4FmLE5dMz/sv/8d/wP/7H/8TLtx+4ft/gWQ9PggcigUPFtf4AoaDQhFt5kfL2gv/0299wnk9Y5hO8j2C/4+X1n9jKGyoRqBY8z4RbYXz//XfUnDGFiKfn/w3eRwTnsO0rHBGWJeJvf/2lceSdL2f15iBMYUHJksn4t7/+DU/nBU+XM7a0Yk8btltGXBZQDAjzBOe8ZGRkxjR5wGV8ffmf4g1RKmKYkcqOzDvOlwWXp0/4y18+ISfh1bm+XcEkPmGpZFCV/NNrJbxev4KZhdS6FHDJ2G9vIMfYvMMfbse8TJjnCZ++fEKcxJDMadPDCkZKRfUzj/P5CTEGXC5fME1n5JSwrp9AqBqRUXCab9gvO4iMEFzm66kC5yfGt68/8Pp2w8uPF1yvm+jlLOnp53nBl18+43yeMc8Tnp+fsCy/wnuHaZL54khCjuZpx74nbNuOLQDBKTepd5jmGZ8+fxJOKnYQ0usCOMbpPINRcHsLuL2+4u0t4fb2FVOImKLH+XlBXALiLOGF0U+YwoIQI4ybkiDJU1JK4jVSAbBH9DPIAedlgXNyP6pDnASUjFNUILui1gxmxrqu2PddZS/hx48f4o1EDtfrKlxnlSWruJKOL8sJIQSktCN4j1oI+2rHpQ7ORSzzBOdIM7kl5JwwTyI3mIWvR0As6VPvHDgwiLzKIjkcLGQe06JLTqcZMQpwRMm3TWOaJ8yzjOG6KviInuVUZHtW3U5J2x3JQWQpqFXI4iXszTxEq4L1ckg5xYh4WkTGZyHad95hOZ1AAPa0I6VV39Npf7KG5wmhPeBOHt4JAFYKNU/I4ANqEODWEiI4di2ErKn/CuDs646SleS+ahIFhoIyHsFV+BgFeIszCB5gh5IrgvOYYkR2ZltV7ARUzrIfKE1RLUW8sob9yfCUkb/J6d4w7sHW93JwA6FjMU5B0xWbnedgme3Mcw7oEQhcRf9z5IS839HDfdm4o6Y4objSs8X+/yPUznsnfEne0pUaKGBs6JaOr4d4mEJHqkOxhk5hUHosrt6ANOkAwxRM4e2KY8tcgx7Wh/YtuoKin9VRcVeDU/6p6vGkgTvcnzqCTx8YgWbY9ldiKALgB95Y48W9b6wfJO1pV7DlNlXKhhNAHiv5vmayoG1hD5OmvRA4mO6tvv/CMDm8ZVD47pXORyfEDWT6oD+6sS2ThRp6YMa5LTQNA6PmQ9aVbJuTDCXQ6/w6ToWdGJ09oNL+q5Wbm5TrqRi1LtSUjspqsOjz1l5YXXCcG90cGhR8ZnCpCAEtAxip+6SBI2LwjaE+rvUrc+dbMkHSQarev/1UWf/StWDglY2RGOCW7rnCEHErH7WzsVm4Y2ujghQN0Gnzo8+LwxzXrDfsNEOhIB0AS+x5GTx72Cwx+0CF6UfT1G65/96GsgEKhtSMIOuDsu7LBd6X3UTL8N3hfrF7AIyurmgGnbXPvDHM+He4M/S1XJvf/dV3pvy7Ct59YIYgACiflck+M+4b6NTkm62/owHfsJGD4IPZfSa+ddgMHGIEbbjI/ooWqmMZ41pZR+veek/gZ6iHmXpq2vd8LGHYOdo+0+YwP+ove0jKFg9IXe/mecXD/GYC2zGIDagukIMMsHoRSQgpdTli672HRhEOXnWMgzfdeHXVaxjeYb4fmjWMGQ5jd+jm/t428QZw7m5OWqjzeFk598X8G9uL3t/nX1/XQzitSVXqf+vgyN/cv+sVGnY+26d4mCdjH0H3i/bmQZ+xO+6ef9yOBzrE3TtlbhzXUMXgHT6sbZsntXYC8dFjsb2XhpG4+9L6xNZul93Wi6z9w62sR+CTKcWPdIDD2+7mm/1rhyhjZp820kO5pGWw1rmFELfv+z7d6sQVNBzC9DaovGh6Sl/X7/qPJXyf2MIaoN7CdvKNpt9WHcjGtaHZaKEhSFwli5hzBPYODDnBZ+5JP1jyyCNMEaR8M3GaEeYJcKGlm+96kEPKsm+nnEEXD09BQoQgRvQcT4D3mKJ4VC3TgltacUs79pix54yb37CnhG1PgCsoHsgTgFJRkFE4o9YEZAYnj6AZwMhLKLwc56v0cg7EEQ4RnicBGEsCZQCpAnsFsmx6rATgTBlZQ3dyTqioCEuE8xUokENErqgu4217AVxF5QXh5CRsrRKmp4h5mXBeFqy3DSkz+FZRkeFCEE8Mzyi+AryDOaOC5XQ/MJw3sAAAxMizeTvHqYGn0U2NMFvIqydUOOVGYeF0gQd5wnw6S5/kDPLi3ZJZMnRpvCBcZMxTwAyP8/mkHnket9sKujJuKyMVAXAkhXpo+2XVtOe5JFAV7yWUFXnPyKh4/SZeK/syI/iKeVlQlxl+mmQdE8khJCT0vhQlXQ4TgndwCGqMqZd+SaBZPI4atynEW45YFIs4BYTdqeegeq8kAYYqFzzlE3L2mjynIASv3jEKEGg4HVT/nKYJhAJHCbUWeOcQYsR0muBcRK6kB1IVuUjIofeEaQ5YrxW57FhrAngCEBESwUVCRADByfQtFW7S7HakoIQls2ExLhzJvHfeIYZZ+byEbBolgTXTJDk5UN63m4JC0h7xOvfIKUsGNhD2fRdi7yzgk3OEaZoAoI1zS+ZSuMkqT+KZFmPAvu8AC4l/iB7RS3ZCp5xVPgREdhKWigKGAOkCNBfNhl3Bktav2RbA4NlOBB+iyl4DOxyyZsuUCIlO0C2HAwWVgZx3AZ7Ykt9I2HDa9w48MbeQLtuDLCuggPDKL02MeZ5RSlHPngNxgdS5iNcdBykrZzQHgR7R4sGkmEXb87veZnNPkhNUUBldRcx5hmBx7ZY1m4Vp/WCvk+4lIQgoWSoBkCRKFtrpycPpsbrthfbveNDb++h+j9WxqgSgHhyCRjvs8Bz3v8d3NH1cbbruUND3aaOeae82D+Q/U4SG66eBpzgJMZj83Lly1dq8OGq1jCGiIDSeHB1YMz4lxaFUPDdGfQkTOnJCMajlPpehNzXQvJ4etbUpc1yVkJv75xVNYTv4TtwVNJgB7wAWG1Cry/jPWILNZ0ZXkjooJZczAMFU3A8GrwEeH4FODQ16/DXu6n+vGx6tDgxG6cfFiXAIbaGM3mOHsuWtwx/8/nsa+no4zey3Wdwvo1JtCr2TFIiqJIriiWpMC+hZF9XHlFpcl80Ag1VsxNj2HDAzgjd3UajgqGbpyJhWqavz/hCWZAYjjynYub9JWiQx7eSKGsbduHFEaIz4FjipbbS+J1jbZBxyZoAyKneX0BCGrASqQ5gC38dSUh4D5r2iYRh6ImwbFSBAVQiSIcNI6qrGnDwyVGxzIChRPDG8F7J42aglJCFTkbSpqscOjjttfCoJD8ZoWB/NFet3+aUoOHGY763dfaxG772jVDg+YjOYH3x3LLFNEfXYOZZYTH6YNwlLXb0ZNKBGjm5+O81NFmiD1w2nbpyXcQycAdBQLg9bYw6+ofjCheJhxryBT+4uzM5OO7THdIOiRsgOWMaL7l06GJks6+tAGmxMPiQx6ea5YW2r1Z4belU3ReFT4/YO5kENob7BWqgSA43Y2AAG9w6Nubc+NRynVsAyMRKpR5NYnVUNFTj0vq7m6SfypwNHZJPz2KbDdSeI7+4koIXWjfOS8T6E9P46AiuP3/puPbW9gQ73va/d8Rp79b6Hx3c1LEC7RnpWlSV0zzsB42Q9jOV2VVXnfPueji841O1OiDyo+ftuMv/A9w1v7bv77LDvt2vQRYZPjv0yAsHShAYJ6dwvMOBpeKdNL22zAS1Nn7L32ToYvFTtAMHaMZKA9/KPHk+279t39tm90t0PJro8Brr37+jZfP+OY6jdgzVqffkOADuCZeOeVPXUlgaFq3kTD1wmDPXWImqkqiCCC4TgqfNEMXfvXIiXNGuiBtFHWD2sxPvJsWScLTmjeon5kzCKio2B0+UifCEk6drn5Yzz07OAUNOEt30XTpYQkHJGzkBKDIJk0SJ2WOIZLjgsyxlTTcic8en8jL0mbCXhn9+/Yc8Je8l4va14vb7hJb/Ce0aZA0qc4eYohNfbhposNGVHTgyqHh4RyAVUKpCKuLBlgD0jrQXsd9Q1YXu7YX+7oVyT8EdVgJ14IfB1ReWMtx8/8Ps//gEOAT5GPP/1NzEYU8Ht5QXYdtS04x9/vODldMHT5Rn/t//L/xVfnj7hebng+z+/Cj/NBFx/vEo2PXb4Bb/gdDrhtDyjuIriKqaJUSJhmhymEyHOQPCMWnes64ZaKz5/+oR5mhGjeJDtW5Kwr7fUQCfmgD0BW1px21Zs+4qXtw0FQIgRcXoWw61s2AsDSUKHni/PAioGCSGapxnLPHcQs0rmMnKMlzfC92/fULIY23GaBESLUbJ9M8MFSHakUkDrjv36gvV2Rdl+YJpnzMsCLjcs5zOW8wWff/kVYZqEP8g55aAhlCI/tXj18iF4t+i+L55R8xxBBMyTx54ku6CtdecY0+xxrhNKOcN5wu224uX7KyonMAc1isU75u36ipxnDStyGqpfNSOeADRPT89Y5oB6iSA6Q7ybGMv5BCIPV4DrdUNKO663K0oSiopPny7Ybi/I+YaSZEwqGPsOTMsEgtigac9IW8EUT3BB9BnLjFeaV7KDdxNiEON/jt1DKuWMt7eEPWUQAYuCnEbanXISInEv472nJHZzYWzrLtnz1g1p3wFmTNOEy+WCaZqwLKemA+5pb4eXwU84LyecTiestxuuLO1Y5gXzPOF00r5xHi5EhAIkXWspCwiUNGtfLRJv50GAU3C0FqBkCaWzuUbUuMB8CFiWE56eLkgpCe+Sgmy1VpRckNKGUgput7emBMYozzrnsCmBeS21eX+WHFByaHsdIE4v+w7My4IQPL58+Yx5nhTw6rtfrTZnCtbbDc4lOOchlHUFJRdM0wTvgHmaUIoctlcWTj0LNRVAcdA/NLN2ybnxm80xYpoiMq+SmGfP2IokauBK2FNBzsfQuHmeJWNhzWDOkk3PADXlTUi79GHRcMNxL21g3gBIjXukcW8b1cq4Txo/8bhXN3taPz8cPpEcCgu2kxswbPWw+2SN9DZ+6Pl8d/008DRNknbQDZwAlnbPwis68ISWWlAJ3NsGL0ayV8Z2I/bWDCaWqQxHUKQOJ1Oq36sR8UBlN+NjULRE1SGMhVYcFb8PL2bAUnOrQtQNcNefPyhpXekyRVIGcqhYG7t+Mt6I41qR/P7nrnrvhpn6pHoHAQ3AFNU7l/nBmvgIUR3faQixnDL6O3T22B3HOvKBlJO7fIGF7HjfDdlqZGpaoJ2wN0Ob0MKT7F2tawcOoYMy7JwYnF7mJzNaRirxojNlFYhytCfCWTeA4BW4ZCHuFu8QB+8cvHE0lDKsi+5VJ4CRtVEWBltldVPpmQuO/WaGfk9/ycN8pF62c6iuqoeieUfJxOLcgR+rj4F3zmn2iDZT9fSy9vlX1VOnI/J9lrVTAxxD7ajVH/BGJu0kRMGrUl+deEFVGwdD7IEGFjejjFpXHQy20SBmO30gtPk4Gl/3voU2Fmj9OrLJPb7+THaM81G8c/Szg8XeQxZJ7xHgieE8C+cUhEPIXJMxznUbQOUK4ybQ1GuqZc9gVWalTa6tXetQ+Z5bnJqchAr+6KU/MHgGwsa6h89Ic3jYxGzzk1d4H0UiMWtGOGm4eTwQSZhsrcbvYuOrvGosHEhMTq3i2uaGyXtGN8IbwMJmDHZD0irVITTuD0Ex7CpKakp58LLt4G0tGFAG6SMir6SXYmg6T43/sLb6SYbPUrlnWNSJa/Oa2ofH6WLzh4bH+O53goCzpi9/OHc/+MIka6/H+Mzgcv1BueOeZ2My1F5+s/Ye7uNOkA9bo12R6UAUH3jQuno4rrm7HecwZ+XbXA3kPOzKDfRB84Y7LNhD6ccn8f7wta3VoUa6vu5LGH9622Q9erIDAX3NMNft4K3rWL0dfR+3Nh0K13CL/mzwvjW3ltrn2x34fGzie0VzVJStLqbn2L7gnMkSkbWiL9IBgLIyREa0T8ZvW/sAAX7sdJaofXF4r+lwlm1zHHcrrAyUEQDBawba8VDFe4dg3G9cIATBGiZvh1zallqreLeQZSLlFj6866k/a4SAqJseeU/YacXXP77ivGecc4UPM0AeLkwIbgI7AuA1LKKCkZASwCzcIntOYDDijx8g70DBwc8Rn56eEC8Tfr38ilQLci1Yc8Zt33BdV/zj93/idb/hZb/h6/oD1/WG/ZUBWnXyFVgqWGYApYD3DLxewUXCuK/fb827oOuEFTEqV00m8c6pDILD85dfAUfYawZpSvH97SpRCSyHejUII7TzAeHk4U8OJVakULCHgt0X3WsJT789ixAsQNo34Frgwfjy/Ixfvzzjb//xG3LN0j9hRik79u2G6+0V621DSQX/5//3/43go3K3OIQQMYUJAUI6na47fufv4uXhPUoVbiPmE2JwCD4gbxP2tCGngM9Pf2v0EcuywPjPct4blcHT00UyoDmvXDnimeSDEyoFAJfLBTEEeOfw8vKCtCdED8meRwuSr8j7K95ebnh9ueFUL/CBEQJhih7z5LHerqB9h/MBuYq31p4r1tuOECLmecHkBWBKaYNkL2dED0wxIHjJ5OVcxHISjp/C3D47LTtOpzMur1es24any0UAm3nGb799aV6BpRRcb1dde5IVTH6kvbfbqnKhgqjg8hTh3AQ4wjSfQM4jVCDEGbkUPD0/Y70J/1DeVoB3nM8RP779gWWeME8Rl/OzghgBJQsHD4Fwu65gviElsWtrKciltPDE82mW0LwQMcVF9FZmrPuOt9sV63rDPEXEGDA54WxzjhCjcBB5kiQC3gtosm8JVDewetWY7llrwbpekdKOUjJO8wLvvRBdl4xaC+Zlxr5lOEgomCOH07yIp1qcEeeThJOxgAPbnrDvGeu+q+dlBYiFgsEF+BCxzBFTjCgwACfj2/fvEG+dgNOyDOtZjgC885jnLltrkbC0t9dX3G4CsHWvJglVo5R0XkkGS1abP3iPaY64nM7KLRR0fyjYthv2tAFEbX6E4MEs5PXmcLBtO/Ztx7ZlzRgu4I+N6b7vCJ4wTwIAwQ4XYPtvQS4DOEOEqHxVxj0lme3ES4+LlzDsVFBygh0T72uSzIrbjspVvQjFGhAvp4B5jghRsuDVXFGzyELnHFJKB7vf9kLjtXoEPJVqGoTVH61vJLzOnIJE5x630vt93A575JnSdD/5TMo3LlezAdu+9xPXTwNPzrJ8oSsD/ccUCDSDoxl5B0WC22BK5zXLAC0UQ49yLRyidwSa0t0S3BH+pas7t//Zg+MHj69+uvagvGGwzdC7U5VaGaPybieYdsdBqVMFpxM54zC5PgKd/qQFQ1seczL82fVngFMvt/fTeKrYy+j3Ad3YsMaPiPa9hdNCsnB0L232IWCxmAdtm+7/HcZRUsbX/tbh5n7SO5oSUtEDyksG7mifqmeOkUg7csc+aGBsPfSHKByS7cVCQQ8YIIsw7oCr9S0dhEi7t9ZGTGzlO+Vfs3BY6wkzvpzrLyQaDBVCCyliqNEygE4N62ARcEd+tOPa6KEvWi/R9dsYeSeeI4zu3SNhDRL1yGYcAc3DgwiN32cElO6NtsN8Ge45fG/TwKzWhsSgveDRM/e/P7raGke3YYcpdijDAZ2YWf/1DMmyBwbD6++k3Xn0hrg3gS1ss1aCG7NEqgHaXYtFSeex80yesnhpucZhddwErXEMNGCYIePFQzmttnawADU4zeuHgZYNtZ3KYFgPutaMVJ6saAtM7Pe+mwPDPLG/zWPC9pE+T8y/tZfDrC74trbcUC8dKB4G1YA5IytmaIiOZisThgyVCTyUNe43wybBaN3UpqcZ8dazd8PW2nAQqfdz/8Ec7L3d96q21tt3d54o+PO94r4u7/a/B3UY722hntRn+hhqb3XCcG8vo8/JXjZ1udFmz/GyPm8HIh+xo4/lfnDLAag7DNTjB4QI/+idREBLhmHB4+NYv6vLuB+OCtQ9d92wZkyXAnp/js+PB1GP9In7g6rxXxraNIZv1yrhAI849R55VTUgWRW+pjbd9UJTqseF/6g/QG1ejXqMYMY9zAEgUJXsSNwE00DSKg8KSKqeHC383VEDNok02YuGArbDxlJQiFq4DJjggxDOJkcoAJx6AG3bJkKIPBAmGETrQgAICNFr1EBCLjtyyQAYpWTEeUKoAaCKUAgzIkKMSlbMSLViywnraQMqsGxXhP2K7ZVRCLhuV9QsJ25UWRJMOc0M6AH2QKoVvGdwqciFelZqDSchRy1rWhMwOrbOeUlWUiuoKP/WnlF9ABzBuwAfZY+oNSPMEXGOEo43eVQPcFSdyhPO8yKUCYmxY4NXr9x5mhDnCefJoaj3ekoZ221Fygk5b8hpR04ZLz++I4YJ0UfUwgheyJNjMC4gwpoSjOzLdPQKKPcmkLarGGhcZNyczAHi0KZuzUBGhSMBQZwPiCFIWBwznkvBpp5FOSXMyyyZ2hxh3iOck/C4U4yIRKhccLs+YdtvqFwxLxPiHDTpSFWunQq4DOcDKgtP17ZnybblPNa4CuDhvITxQYCnMik3pYuoXPSwMognHgt3Wq2kYWIetXBb74Bky5MD4XF99+zKsv/Ld/u+Yds2GfsgHmmgU/O48SFKRjE4+KjT6cTwLmAPK25ccDotAGek/YRlCuINdDkhRgmVkzA40cdzykg5Y72tTW8vgiTKWp2nFi0gCXK6R0gpRx452d8FJIkREuaq7+FKSjuTYd7T3jnJlAdWAFuM/bQ7RC9metqFx4m5CndRzkjKcxRCFL6t6OFDBAb7olQIAFOK8rSK3CTjcHXCZRliRJgCGOLxlHLCtu8Q1UwAK6+eSV3OyuG8eSwxM0LOSGlHygKceeVTkn4r4CI6Utr2QX4zEAOch7bdHWyMogeNRBJaazL4/sebR1bu+6gdXDAzUk7gSnAkYammA3jdWrraSU2GhxgAD5QsvFIZ/WBdOL6K6sCWxVl5t0oewBkJS7TsqeI9JhEfzjv1AK3vKFTGfdAAoBHcse/lUFnBvQYEjUTjaHZ14yUF2h75bg/HGEPxfn8XexAAat+bh3L+1fXz5OIOANnkobbgci7DAB9PxG1T7+CTucFXIYSzeCY9MYZ2mp3oybNQLhwpYUxl3QS3ln4wLptF+Se6ninyD74/GOMwUO1eGTIwafz/B/1nyqQhNs1okZdXLkAZjJ9BiP27Fw8z4ejVdLQkGjAzWAL/DkY1eoGNn43K4EGJtmoN77tTBdui6wuGkFm86g6mgik1Ng4HQLMrh+YJsu07mjui6waIaN3HdpXKMH+xKYZeeb1MxlSGxLaEoQiL7R1AJ+sH6wsJwZFTpnZmrQasERqOa8kALRNK9953zHVYY6LQx+h1PLrgJSfhbePaqJU1BKubMpWLeiIKp1VllowY5sGidWVm5Jy03sM4Dif0BEhcvJOwBGInAY4ESXlqYEMTBb5NzAqgaPiBxoG1zw+gEw9eL3wXmqXNup/WVVMTwNQBMg8gzVJnX9+vHwM7huI/urrY7sxmjcVoeNC2K6+/gwFX5F5HgKfcvJ5cMQJr9HC88W1Kxkpa14oeyttkWe0gLGkKJ2LzKjH5IPNi59rBV3CTtRLmzJqJpB7G34w6UAuSagoPA+1EyQigpT/kRNY8Zk1IiEdi7z8NpTd+7nfASxuqtlk+NtIZkgWkgt8BBy2MjRmSyERBPwOZqRvotQJVXf8b+aSORikMqtzWZoUewlc+4ABtL9P10uYKt4/FtkHfl1qbR9ndex+g7in8M3P1o2vcMsbDE6Ab1X92HVWXoVz0tsoB0gijUZMBZEb9g7Ie+BO934PHOpK4zbNY/Pqej9vwv9Jf47NjXf7l4U9bej0su4+bCTHTRY7j+uh9P3v1OXX06GnK7V29P2rHCEqP7vym0VTmA2+dKdX27/i5vX/0Lm/etk5aa8CTzU+ne1JW48DCDkyHuwfOZavR1O0Dp0mpFTWn9j6AUfduZEH7C1X03kJA8BqC4iwtejdaqNbBC4sQnW/rxvlO9Lqtq2RqhGvZaXNOcFGAACKPCgevoXaXT78hTDNCnDEp59DldMLL2w9s+4p1u2KeZ0whgLzH4k4ILmC/bVj5hnqrQPSIy4xpjggk3gshBrjfPH7hgt+QQH8X4OX68gpECTd2Tj1zHWEOHgETkCt+5IStiqcElyR6ADnAs+y3rHv5eLLAwvPz+vIm3tXkUL5/B0qBn0/w5wAXJTX8cn6Cd4zXt+94enrG58+f8etf/oLgIxwclk8VgTzmMOEUzgjs4DIw/Rok3XmlBhoxEc6XE0CE9XpD2mXM931HKQmlZHx/veL56Qnx8oR9XfGyShgeESF48QryyzNylextInYFGDSPuZIzzpfzALhIBsO//e0vmGbhOSq5YqeKLSRM04JaHdwpwvkZp3NAnE5YljNutyt+//13iP1EiD7gl19+EQ+qaRJOM66Yfv2CT799xv9+/W/wwSt314Zagdt6w23fQD5q2NQEUEDRUMJ911CpApzPF8266BXwKAiB8Onzs/QdqoSDzQuephMAwNcKQkBwGQ4R27brmjSSbckAN88zQpjU8ysCEH6nfRf99+vXrz30dNsQp4BlCXiuF0x+xnw6I07i1UPqHdZCy+gPvL06XF9fhIz5fEYMTjx6pohlPsFRAEB4eXmVejuHnHestxUvP16HTF6EWjJKIuQ9YWNG2nes65uxAyODlW/pgmVZQA7Ys2R8c2S8yBHGyWWZ24gVCA0ByzKpRwwjJwlxyzljV1yTdocfP761BCbny4KkIXun04LnT0/48uUL1n3Dtifctk31LAI5j5SLZuAWGUqOMM1TG1d4wE8eYYoS+lfEO6owkJNkVLzeVizzjMvlLCThBAQfwDwhIiIGwjQF8BQAYoTgsc0zbjHgdrth3zbs+46cBEC73a4NHJnnGQRuHqG1FpQi3oA5Z1mf5EDOYy6lkZ8DaPaS6Z0hTAhPs+4DDikVrOuK6/WK2/WGUjJutyTZ5CAbSJwm+OAbpQrpnhBjlCgWZuwbATtLhk7WzOBwknU7i2eWAKisMlCoRSqLl9S6Aqxg7ek8Qbj9ZG2VVFWP7nuwVyDv/gAoqEeoJeqobb8Qb7iqc8R71/i3bK+zcgE5VH1w7tP2XeNeM84xc4gwbbCH1z1UCf70+jc8nnqlrLEtC1VVMnHVhsy4F1RPwSfSBhVDtCWzVi3U4vw7IdcIZADQzV0KcWoEs2ZZaDZ7ByPI/qdlDKq67Hc0PPRONz2gd38WdtY/OyqK7a06KOOJXesLmGHREQm55zjJer2oAVL318HL5t2398+8P+fthsU7PfPBu96Xfc++P9bF/goY+/Vx2Za2HEM9TDEELBTx0UpBByXqmLa5G5CC7bBk+NIMIZJufiAgt7lG4loagsc8T2oQiCJoWQWJBCOZJjRQRzYZpwqxGezyc+8y2ZVqOsy53q9iuDoiJU3vCnIHnh50Ih//qLW06U6V5LStgR8yQqIQmVcBN0+tnKEk7cd6jYkBGqlcA58I4pYNBYm75e/CkZRWEHwFuBQtChZfTVDBLqaYD771Y+GxD+W9XCEcOzqJm0DVfnXoh/73M5Tg+7wlHPvQLBz93QzwVs4H68XmvomZNrx3IAED7RS4DPfa/K1qb1b1CvJEcEx6cHpnkHNvKw3lGhh3dILVtgwdRWaFjm18J5NG7wWdj8GpLdG9Xo9msKWJ7V5RMr72OgMxi84LXRcwUns7rhDAUE6W7wb47upm54NPD5ulDvhdcQcwEwKyOchYCEko+n7TfqjPl2Gcm3ci7CQUrT3cOhlHMmz0PaKtXxpCyu72JusPp7xTVq705/ue+EjMd1F63CPv+3Gcv/fXvbM1tf8dRPVhffRDHDurVcCUpDwLjJV76lDCsRKMPra2n9l7bB3IMJkcbCN37IcPGniQ0wQh1L1r2bjDdjk7lkHtO3AnBjfZMu6bpK0d39ImwXgj+k0tMcCwb8oBRL/N9CoDaah9ODR+kNX310fhd+9DAFwTlEZUO957DL/re1wnMe2/l3oEiW3fHJNqWOIOg7m9d/DtkMYUZ2i4RifDdXfZje3QlFWgMXTd27qrtclkJt9khKxlh3FC2Smz1dnRndzW9WTytNYiYRfVgUoBeQFLt5IRphlxXrCcP8H7APbCp0IQjpJpmhFixNPzUxvboGTRjhy47CiJkSAHnTkzaE0ojrHlhD0nLE9nhDjh5M64Tj8Ad8PX3WGqQVZKLUhlB3PBSpJOnUDAAtBmfZDBXjx8aPEw3kjYAQSTEIzDiUxXC5uY4NwM7z2W+YxaCDVXpLoCESBirNc31GvC9u0NrgRcLk84n58Q/ASKEewmhOUCzw6uAIE9XJX3rSkLJxUTKpJ4G8Dj6ekT5umEmhlpE76dN/+qB3gFlROABEcSwpPqjlI2UEooFVj3gtttlYMyBbgEBHFwtYLnGSEGIb/mikgOPoh9FKNQL/jgkPPvOJ/PeP70STzSasGeduw7oxSPZX5CKQneEZ7OFwnLJ2CKXugguGIKDsUFIM7Y9g2SLSyAnI4TSGWCpkufFtU1GXP0yLnier1hW1+RdodpmYWyQU4Ose+bgA5Rss/drhtSqkJk7Txy6bZd8DNizD10igR4UwkwgL6ErM4M+75LGBZEn7bcpLUKeXsuQK0OKelhdE3wPirv1gQihxgmnJYzphjANQM1NRnBLB573gdcns56+CoHbU4dCnNJbf36IAewe9rgo+nrBNaQ+T1nRE07fzqdFDRRm0jLCJpJDRXISWg7LKywlIxcNg2XlajcMHn4KO2wtPUVFZULSpExsCxy+z6DkRGjRwEh5YJtl6QBBIcYoKGbZh+Jp08PVxPlozIj1wwQhJB8mhAmAZDJZbHribAnIXknMYywO9lJHTHITfDOYVmWIcsvlJMp4Xa9Yd8FgGL1Do0hYJqFQ6rUinW9tUOLlNTjioSo38cw2NXSt8YzBAjQRA6YpwVG68O8C7Clhi7XAgtj51qRNfOoADZeZ6batRo6TRCPp1prA6JkbzAbjjScUOeMHuhWdiD1WAMXOUh2hCkGOVStGdsmMrmql1bLMsfdoWLcF8ewcbvsc0cAxTBs5dw4o7wPsI2p0wTxsN33gx4MOr45MQAGNjm1b9+H1T3keH5w/TTwZFcHnljTII6dZYqAGSX2e3/WFDFz1SrFwvaOCvQI0jiHgS3fgXI3itC6b6xj/8RO1JsybXersv9nQMs9+HOvgI226vi3PDsqX+96semNxr/S8LZ/AR9+FDo3un7f66P9rcMXw2v+Fdh034ZxPAEMbumPldT7cga1+1CvsR+PHl+DwjcsFBxKkPb3uozKcLcFnRq5jfRTitfPpP+Mg8lrrD0sgx7lZvzYvARoABW7USuu5eZFIqd6ve868GQKWePoGUw6MZr6PB6B0A9Nx2aZ2h+HlQE7TR+/ugdYmbmDyQfBJP8aQNjdNbuRZ/V2TsspYlgVKHis99UW9y1kfC2zhXNDG7STAyMGVe4rmleZueIC6CTRJHuBG80/beu4so7yYlir9302KA/y3J1xOVrV42Xr4Xj33fqjd/eM66zhFzZ/1XpmUr4jcJuPBjbRXRn2jhby0T7pRqYZs8cwm7EXTIZ3UFF+N2LwI0mvAQlj22ydjPeM8tfmhIFXfZ33frYTxj6uDSp9vxyIDu18BFQdR62Pu607BgZDV3wgxdMLcENx5lbfdpqhL3j4aetEf+qxK/qjw8W4G1v7dJAHpRbYQYu4zw8eYhj2IutzbVd/71Ei27+uTYKxc6l11SitbM7dz63hr6FN4/o6fkfDv/2nz/PD3B4X1d264gMgJOv2sG8QHZ97V9OP9rEH82fInCa/mRcfMMoBqT81sntbe3bbYe+0W8YX0ftDI7uJdP2aEdcOqob33rdJ9jpqgIpUaTyU0DoegCT68PcPvbSHV9s9j8C4+0O3474E9KDD/kwLJzeZUQcdEn0fAvqhlJT76ACOGgglL9Fwd60AuWM/GXDJtWpYuDWXh7HipsfadDsmILnb3yFwu+jWAEqBCx7Oe2QAQU+pS04oIcJVIfUlcogMBB8BB8Q5SJ0hhk4Mk6ZqTyB4cIFwHKWMSgREp0TjCZfLEzwkY9cXf8bmT/jsFmTnUZFRsONWMxIXyYoF4a9CYGACqOoaDwTyDm6izkfAQqTLINSdxcs/Sx+iMqgSiDxAAY6DZPsqFSXtYC+aRNoT6pqR3Y6/h3/g06eE/XPF0+UTwB7OFeyFEQkIcGAngJnzQN0l7TdlgKkKlyIRYpgR/YSnpxv2GJG2DWVP8A3ULAAVOFcV4NFDsHRFqUIJsa+v2PeMlCvmaUH0ETFOKCmiOIInoGYx2m9vbzCHsGWehGvHE27rhnVNyBk4Xy4AoSVcYfYIYdZQIUIIM7wT3rBpEuCJuUpE31zhqhjLcA6B9FBPpiRySspbFTBPQUI0cwBXIPuMlAjbnpAygzLDOeErMm+LUsTjpXH7FsnaFeMEo0sBJNtd8FG4vXQHD6GDBwfbsO3/ssobEI2ua+Zi5MkkgEHRTH9OQrqmqbQoHO8DvCcQIjzNqMqPlHMSby/vJGStFGSSeWG6TC79MH3igMqEXHaUKuFggOuZ4XJG1MRCIWiWO+YG/B4OjFv4EzUHCdlmE8hD+8hjchPAwBRn5VJWGcYCPm3bJiG1OaHUhDh53G4nUJikj6pEKSiRRetL44e1PUGAFpJFq7qMAPJeuamEtwjUeUaLHuw7cIt8kvYCPnsgdJBeQg3Fa67WqKCf2A8p7eJREyPmJba+lGx4yiG9bwCAGCdMbKC1OJ44ZxFYQgLvHBpdzUGmkmueO3lOyl+oCSCUZH1Lu7TROcm+V2VeZbX5vHMouQiYporrwYOW/HE+6/8rOwQn1kgpnV/XK7lwrUU8ypI45ZjeYmWPcwfAu7+PXsZClu+DnIqODg5S1lhf0r3pWM74btMjnM7b8ftaoTzB4y46aoR/fv008DSm+OsZ7Ox9XYg45xBjaKFxvbLi3V6yoYKkAuRoYLhBIPkgyGGMhDgJWpcTgzEAHUDjYxibPaJ4RqZ77KDj9UhfeqRI/QxIY/c9AmsO77wzh3h48N47Rsp4r/SNAsUMbxkfI9/9uQq/08k/aMf42Vj2EXzqbbJ/j4bT45db+4Vs9OOyzSBv4ORQ9thmHu6HhuWIcB8Wmb0DFnYgQtdOI7JmMWA2AkD1OnHduKjF+qhCuJO6t5s1uAOw3VMIAMhJRgVJr3ok6wZMePaT4O5hVoabjvc34dTGy8oVsLgLR0HrzSUVQFfcSUMCC7csaQZwew9JNKB9YB5HHexmqR/L51nHIHgF0yogh3MFRqhibsBu9oe04sE7IeELcpK271mBARkzAQdZ+9HLNluyhEwYGK7WymDvHZILsMUpDwRUTY7g+Pux00cz6H/9ambSg7Cfsa1O6y08NwxSgM2ZXk/UjBpP1LxOATSybAKUMcpa1tvRgC4CADs4gLgdW6upx4w7knCYXI7r/tFl4ZfMVT0Oe892WW1JJuwzbj+WCU+U0A5EtLtoHM87eQYJq5N+/KCSZri3fue2pxCUn2wor8116t51NPwfhxbqJw+2oGHJHMAbk2utbgaqat+0sEiIfGBSLyH1GCSgKcaOaDjYUcUBxnM1LIwDgEM4dPDYmfhzFePPVsRYZNvz7r7rYvPd7oihx4ary3vZPwYiOXKH+tTKx3HAsF8dlMb/levYYfflPOozW9sftu5Bfx/mBWyoLPvOUUFsJ6cAvBv2T51ThM5X0fQP/beDwPo6m593INHRC/eoMzWZ1LLI9ecO/cA90cC9ziOZT8kEX6ufOyjDaHvLvUFrB5v9cJQBaIa2IinQY+iGrndO09RXpJzavt/mpMomkQvKo8cCFomXmQojdA+rPoq97d27U8PcQgA5h5qKekEU5CrxvT4GTNGDq0PNAbfra8v+5aeKmKtw4UyxhYzUImv/fJLsV957XC7PyEXCmX788Q+s+4ZUM7785VcQAZECXJaQbuKC/+SecHn+T7j8V6C4hFQ3vOw/8H37ga1s2HjHy/qKm3kxLABNE8J8go8SzpVub3AxwE0aUqU6k1sZdcuoeZe9tzI4MUrKqHVHpa15IOScUbc3cEnAKSIxIyFjy3/H9WXH2+uOeXlDjDPmuOCPpx+4LGd8uXzGJZ6whBlPyxmTm3Rcdw0rK+CS8en5CdMU8enTL9jWG/awoqa9Tao0e4AFyJlmYJrEu+Xr6xuoVLjgUEpBjAX7muFdhfcR59lj8km86MGYFw/nA0pZUbN4mezXN+QqRNYVEvZzOp3x61//itPpjPPlgmme4UmI27mIEZs3wE8BPgZc5gvgBLT8fv2OjRNWdrhlwjxNOJ1m8f5hASp9kLTswXnE6BECgxCR94ziPWK44MfbG7Z9R85vmCbxOv/1t89q7DPW26r7usPf//E7HAXEMMH7CUaXcb5Eyap48khp1bVEwpHEpGADt2gZC7v6/Pn54Pkhexch7RWbz/AhYdvEO+p6vWkGQwHXQlBPWWLMs0cIE6IHOBRdj7WByJXFl9lDPPyZKgpLaKJk68oIkwNTRoGH3xmVhfRdPPUlZEnAL0LeMpx3iCHil19+bcJpXTfd1zymaVavpR3khZOK4gwfqkSmOrF1RaYHXK9X4HpDmDy2dMO6rshpUxnE2JIHuQrngfnyGeQinA8gEiqcbdswz7PIGC8H6VTNHtH90YutbaBQDDN4Fj09pYSUEzx5BUp2tZVExt3WVcG6CbUWOCKkfW/8Ro4EbPQhYF5mtelFTk0x4nRacD6fkVLC9XrF68sPlH1H2hO2TTL57Skja3KCaZoQ46QePK5FuDjnBRTTMGgBvGILdXbO4Xw+yX6QM6YQJNzZe7y8vYqMUfsq54zr9YqitrR3ffMMIXRuaf17ihPmaW7hb46FpypM4sQAZqS869wDJOKryAF/3lGrQ2W5zyhabD8cqWfGv8VjLWhYXADDsuB1j/AxFE8850q3PZtd2cPaD7iD2YKe0DKeH7Qpp8woR53jZ66fBp4ke51tluoNUWyTZ1UQxB0zBKd7L6vBrsZme05NgBY5padCFr6ghpRMHHH1IgclTiySEahaGAo9VPMOao0qAeY+fYB8/gU49P4E/sE9719/BzodTZL++7EelY/3PDppfKT0HVBQevz8UNNDDT4yrNup4GAQMfdT+lpt3Dsgcd92HtrzCCACD3ou0EJwCr83LpoiCjlP9q67vI4cDf3+oc611+Wguw517KCQuPYyC79Qj2mFGoCSnYDRFfNO/toLtL5hEpQ7kOZjUiAJJCg6OXNDzwremKsjNSFE1FNW1qqZtrT8EHtoH2n9CCRCTFvZN/C+4UrSHVE+yAm5Xct6oEqB1KtzbDgnYFSIEoYoir8SMILHxHztX+s308VHYKCqUlcrBNxiHQjWMDsHzWI2EuqqUGYRiiY8hS9DlVQn5H6FqpBo6oAHGjwRzADlMXBHg1oYbV32ZlAblv6XrUObzH1e6YHCw7V16JTxYu7eEPdP0Qg69RIMkAp3OIE4hvVaErhnz0M37Fo4KMkcsvAyp67CMkSkBOnDYQMJVxOzhqyOKKv+M3pZSQYk9RDorgGDQLAQWPEUtNBL5gEQw3DA0bpJFFJue0Ffl+O+oNvK0XuoLet7wW9396vCwJxhrAxcGrYS8y6i3q04jhhaP/R3i/FKj2aJggq2BsAKdA1920q6BxCa/NeZwtw9OKiXD+rec/eg/PuekU8Pnmd43L/j5/fr4OBxdfeMnaw62BjZGNo+3uvdm8qDfFE5B2r/AqzcYKpQKfGzgXFWx1bv4fBnvKgNts2aR0oB6Z7wyEOJmyBscvCuH9Had/wMsH132E+trxR0IkhfVLY9U/emAVyUPb1/9gjwOdR40AHus8M9OhS7v+QUuvMkjaSpYxkNABtAqPHyzoF8X62j/mPzXXTMbvAwi66YC7c9yXsDoepA/UCY4qBPoQNpmSU73CBU1HPBqceYlGUAH1hkbcuMN7Sxcs96d/BgZrS9OQQJUXOeUPYdte7Y0w28oukBX//5d8T5hGm5IM5nTNOCfd1w+fQEP0W4JAaFd14NRhbCZ+9ahtBpPiGVij1nvH5/QZgi4jxhv94aufeXT8+Iz79gniJ+//FPbDkizB6XpzMyCooveNuuuO03/PHjG27rhn1PWFNG3RMKEjxJqFGYJ2xbkuxwpxnz84x02/FKL0jfb6i5gPcKquIVVUmI0mHrmyCZ/AQhAECoe8b68oq6Z0znC7yfEPyEiIA5zJhmyf61rwmvP96aTOFaMc8SFlQr4fX1BudWlLyjJPlp2YMZWE4TvGeECAkNmiKWZcF0CUKozYzbW8C+JVyvK9bbipJv2NOOZclw7gTnIshJyNU8R+RSFQQs7QCp1oqSEla64fr2JvO0Atu2Nw+atItB9YYNm9vgHfD24xXzMiNMARQjluUJYVoQp0X2fgIqS3iU98J7QzCPlKCg5AXX1zfUUhFiwHyacFtXvN2uqMzYthX7vkmGWvVMNx1OeHYSbrwiuNiI2M/nCc4FeF9V16sKCnjthwUliw6ZkmQCA4TXzIxaA2RBDnGeQU6yfm3bjn1P2NYd61U4kUrKCJ4QvMf5NOF0iojRI3pCCGKjSkijAH3busGsiqqC13mPaZmEj6l6nC8nTLOUY2uenLwjBI95OsEH38AJLkXoEUptO0A1+gASgKh5VCuAMHkPH2XNxyAALTQxSVa7+fz0DBci5mVF2leAhfB9WSb4GFBYnEJ8CAgxwPsg/bpL9jiverKF2nnjoQNaqBkzQCGIHeEc4rxIHbOXdcMy9w04SfsmNBjM4pn3mpt+WarYT0KTI8AWeYdAES54hEkAm2VZcDotqKViXk4IQTihAIdcGVAu6fJ2BXnCNE2Yp0UJ1acWUichlqKB2DwSkNSogQqgmfWqZacLAfPiMUUJRd503YsDTdRDOz20zxKmWEvfg3LqGd9sHypcAc0CGYiUV1fkr4RwMrgm8U4nYJ4CUiLkogfyXA97oJV/b+/f/8sYeRF7qLpR4di+2/Zcrqg2LkM5Y+I424+Netd0hx5m1/UJXT4/df008JRzrwQrkGS6rbg7y6IR8Kkr2NniFhlDaJ2qZpZRiXrH2uYtQJZTd0mPysr/oZ4M1RRws/AOKrj9Tz7q9k1nan+nFj7osKP72aDH4+MO7qeC4z0dKWwAxwCkoA3o44IfgU6P/kbrAVVqB+XuYTttJg3P9XL7v1ZG62oe7/8YkKM+JGIsjq/nY33tDzMc70rq/ar18+q6PS7IQ1Hc/x2N5aOxa/1kvCT9y6pobympvV9OAwDjB2np4AfkbTQ8Dz/OtdNQM9K7AirKz/1JvPWPgL2C2jcBCllzcfINHOs20VAQUwOeagU88fB+336vKuwsxI4hBmAPCkUHnoJX4jnXY9lZMuWpnvZurdDQ5xjmlAAXXfkXmVB7mVrAuF4NvKisiQfIskN0QnWAmzu92QvODWNuU3+YBxje8Wgkmg2sVl83mo8cMWbu2T3v1wfh4WAf0IBjXUZDfiyuYfXcUjSg6nsNZCBIKKLTAmorCWD1bGplD+umtW5Y8y0LFUE803icd0NPEQ78UaZqmTHWABXofCVbV2bw9/eat6K9Q24f6gGRsO8N+UEA2Scmd/vjfb1QnxSHMRuX09BRzBqK2m4jOLY6DgJLFVvbi4buh4FK7cPhvdwfP4wH0AEwMlTO9k+greP3svW+N7SHdCy4LYj3dcHhWW5r6EEXDZ+9h/Q+uqyd9oyFHbU3ct+1pSuHBah1t/YZiDYWLuCkKnRD/9Rh8pL+216Iu70TtvxlQN5Pkf7ZI2Bu/OOwT9v33PthEC5jdYa51n/cXT8flMvWpD4/LMvH6Hlz72o/vrM38rjXPgKP3vWXLmLhyjjqMv8KuLovy8LgRhDMlGAjE/elImdNUKAhEz1hgT7X5BlDmfXgXEH1A9E42fvkpztg615IeuLsHQi17bFts+H7GYD+vbYleN9IbA28J5J2BRVklAUwSGkFXAvuQ3kBwrph2nZMS8I0bZJW3QFhnkDBIcRZPA2Ud8eHjDjPTc5P84w9JfnZdgEvJ4jHUcpIW4L//BnzFAWE2K9wOyG6APYXsGdgImx5xbqtmFzE6/UNt9uKr99/YMs7Uslwk0dwDpOPSFQQQ8D5dMYpnrG5FdvrhsxXoBSgFBB8k0emi5BMdJk3tfQNtmSk2w1l25FyhfOSrv72/AXp/AxmYN025D0h3xKmIGTB0QkflnCQEbZ1F0O5JqBmgEufo2AFSiaESDjNM6JmSFswoXJF4Yr1JMDT8urw/VvCtmbs6wpGBAioSCAOYI6IUwAVBhUx0G0li5GckXbGertpIhAgpgkhBCzzIhENra8KiCtQMy5PFyznE06/fBJC6zjBO6/hSwk5VdWdHbLqnhYeN00R8zyjatnzMoOJEaJ4yFxvq4Z8CReX8D3pXlTF2M4pI6cKT9LPqGL0Bw66XiSsq1YJnQoh4nQ6o2jKe/G8kL1XPDrEBpznGeSFRBxO7sm5iGdKEqLubduxrxtutys8SaY11Au4CmAUHGGeA6YpwLkZpcg7c5VQS6/6ufMBIUZ49SSpteB0PmFW4ClriKFwujo48gjh1HnyTPaip6GXeazr3kE826qAjiZvfAjwkdTRYgKxHn4Xho8RPhVM8xnOB0zTjOsbgVm4ik7nRfmzdA8n6T+v4X+SSU48kXzQZA4g+ElAm37QV5uda1y4YZrMnR6oFqIHAAKQZg2XY+WbSkk4zMbMfIBkbiMLi1YwnDApiDRjmheAGTGK1xDIY9sztj2pjaAeQ1mBFQaqrhsBn4DmHUsO27YPfS82U85ZDiz1b6MKitPUgc6UDp5EAkyLF1XSpDyyUStgB8Eksno5qaCHOb46Eo4wR4TqPICs9S8gVk6q4KGRxqjGVXgIC+/cTve8Ssf9GA1sMjvK9snRe6qDU7KfPd77uwfU8cBI5a7ZDwfd/52h8+H108CThT49UiTt5f7QMZraD+rRkMVDSk6YjhWVzVZ+ekM6b0itrKk+C7atCLmcPV2hXgL/utGjsja6t3/UHqvbzxas+srHoBS6gvr4ho9f9hhc6ZO0LTJwm4A/U+1W1lCFg+HUxkiF2mgYmTL8L95FOHpkAGiGv4a69j5vCva9QioL3Wv4kPfU+rzXx1wU39eHSE46QxDXSiY5GaW79tRKSLmqgVpb3DkgAsTCzKRM1nK7x5XXDdk58cYpGrdrp0oCwJrnAaOwLIqSk76rtO+BHiv9qD3dOLPTe/OWMsVbejKXMTRVPJlCCC1rQhdCWpaRi6M0AG60iKZp0pMf85gZT6pZPabQgAPfTprkLRb2IDHNCkgrL8SWUquK10261KKZFQg+RL2XACUnN2VdUgzLiY53hOI144QaBf1gXNeNTmfFTzSD2V0/49Fn3bA1IuR34zP83kAuvTrw82BczfUZrMTFfH/D4SP10Wp198RwFcoD1cNHLdTMfFps5oyGt8VHM8RLwASWnYQBg0ceACI7xfvIaOweJQ7dy0A+p3firsWR174XdIPRNjrb+K33jnIK+q6WmU7Xxvu7cHj6/vdHoIEZbDAZew9qvesE/XQEEe4AhA4kEKCZ3fq4QcGR4R36WRmFpnLNuarKxgAGmgcdUcMbjsrCB3tOqx/fgao2Dz5q84PPbN/j4V8DR+09jbjZ2j6M7kFGtzKPv1mZ9rGNeQOJdB5WDGTeP7FHProeegXd7ZeMu3kz/I0Pfh+nCQEfhgTe/w41eMCs6bPNlf59nW0PPY7pe8XTnjf5Spbye1B8xxPUj3geaykHHO3+Gp+JMcozqmRb2aVvZvA4egp1T29qYXLei6Kdc1Kv5YLQI4Tf1aWWgsRGLqyeTNT3NFZS87bnkpDDmgdETpt6inKfa3z0YCRHKs9q6xN4zSLnHELT3VjC+0nWhI8EJs1IBQkpj5OEauWSsK43TPOGECa8vfzA68t3xGlCXM748uUXLKeTZD8NBRQC9qKykwiXpzPmZcEv5Re8vHyHUy+OGCMQJ9QT422/wVWHuEQslyeEeUZm4aPx0ePp0xlwjJIT/nb+K67XN1zfrvjv9P/B12/f8GN7xZp3zMHjtExY5hnTsmA5XXB7W7G/rdje3sDqvcHIqFQEBAjioeW8wzRPKLcNZa/gHeJVUhnIIi2ZPLJjeD+BQsb15St+rwXl+iZZzivgqsPffvsbzsuCX778KnxFzLjWKt4824paE6YoIUmFPfZ9xb7dsMwR8zTh6fmCz8/Pouc5IJ5mSaDkCOv1DWlP2LcV379+w9vrG/75z78D2LHnHS/XrElrJrip4HJ5xufTJ9yuO/a9YN8KyuuGrCDRt687fJgwzSd8/vwLluUE7whpW5HSjmvaJUwnJ2y3K06nBcv5hP/83/4rQvQtayIg+qzLrGFOAZcvf23Z1OZ5bl4j6yYZFl/fVuxJuAM/ffqCEFfsSYCAXAEfKqZlQUoZpWZMU0QtBXndwJCshjlvwN83nC4zPv/yLHtbFSoQI0UHO41sET0ZGL0BASj4ReqdU2GHr0IEPkUPhxk1ZThm7LcrakpIJWFfHfJ+A6ECnHG+nHA6L/jF/wofI+J8xvnSj8NTSliWhPP5SYWnZC57ejqr10rF29sLckmgkvtexRlOw4FZ9WSCeJqklLCnXUIlnQcB+Pb9u3y+J8RpFrBp9ogpwHuHEKokCQGhFmBPjMQOTOKFdr44nC9P4JpBVPDrL5+U9oKRiwNIFO3gPWqImKeIt9dXzSaXJTFNCPj06RNO/iRZIX0QW71pawoAhqh971GVy0nCIyCeYdMsXoJgw/BRuWLfMqqCdD4szYYI09RtJVLybzswIwd2gI8z4lwxLxekzJhqQfCEdb2i1ATm2sKvBUxRb/nKCtxUCftV0CSqjJ3nScjEkwCxFQIs5h/iJWbeddFFBZtjO9QgCBC8rRsEWJL9ZqlogNuekvDFRd95lmpBDHJgL8wipPg6g1g8sABGcBEUgvDHtTle2n7T7UuvGQW7J9OwmzY13iJrRuCotS9GrOuqNphwotn340HQuKePpObdowrNq03W7Giv//n108DTUcnXz8y7w0HJlMUN0cIqAIacOglKLSF35jqG/iypN4Uq0F0ZqeIJwkDaC3Kp4h0BMyisu7VupoANdb43LMgszVH1Gzrs31ZG9SUGChvyzWqltKgxOlT2aD8On3UXef1sqNc4iey7w6kj+knuaDj8bDN+5s7RcGnV/5MHzeCxAae772rtilC97xDIZmThQNS+G03nsTwNlaN6mGOtHjSE5RGUsF6+90QgOIAtFFQNu6q/E1SwEaiwevVJOKIbFnvLyqcKrLVhdEWUDVgISclcxmvnwHDOeopls1KPnh6SIMLVDEciBw+Nm6/oXks2Bwdh4p1v8cFmuwrQpUYGlEyTuGVpYIzhlOatYuCSKsQKBpKGDKnurAaBEhY6tExmznEDtZphxmihcZKKGu3EGpR13JyG2rJm1dT+UuFsIGDQ054aS4vTNp4ew1QM57DPgMEobxPn+Hmfl8P8YoPexsnYy2buQAjMiwvvgYs2x9kkV73/GhY21IFEuRqYxXdgrtPo7GExNDlCHZQhoHvuNUNS6ti9YXS8G3BhJ/THcpssMkYlhmaD7GtpNMp637I1sstErZzco1wrLPNzFEajdBiBDsbw/ChXx/K5/3sPIw61HGRq/0vUNPPSGZ7jvg9YHazVDB7AyF5bWX9DvWHgHLU5a8907zHbI3TMTF5V/dwIzsapdq8baHvMG8huuc+EeJxr6GGn3PvdHm5z6v2rZM7gWKUD6qJ/mIee9UgbvtZ33IC44/M95HCcr+YB+NDZ8MHVwLufvXlY873Wwxz8kzLp7mf8fpRJNH45dHpvPh/HAqY72HqlBsx85KXU6kSj5/NRAbZ1PpbzsCwDE6l7KH10jfV57MF8DMEb5U11BK+KdTsZrkK0bJqHFWnhS9zmlvy/NICdwU4kQR0ObbwTn9LRE8o4tY79LenoD/Ld9X6TR2xO6x7Wss1KGJxTjw+KPfyVfMA8R8xzQM6EXCpS2iSDWS2QrEkELgWeAvK6ISu5rxwqFFy3TXQf5xCieIBMccLT+SLZ77wXaeMIFDwyF7joMZ9mkCNs+4q3tzds64ayM0pkzPOESDN+PTMWPuHEV5TnjLkueHKvCJcJ89MZ8emEa06SWTcErOkG1lPk0+UMXgpS9GAlK6fJIRODXUWdi0Q9UBavJGJQFX5MBkM8lAocZTg4BGQ4TiBO+Pz0SfSoSjifAqZJ6BK8Ku2n84J9vyHtki3MuxneBfEsYgJIMr8t5wWXyxnPn57VK8aDQ5CQGUcAInxY4XwUPcY5vF7F4K+1YgmzeFa4AIZkENtzQkVB5R2l7pimCl8Yroinm/cFITBCZDhXkPMqhOiFse43cE5ALYjBIe8brnnHH/89NjoEHwS4E05OADEgMCEzAVW5xaKE6VQGfDghTA7bXjBNXoEDjxhPSKUIL5bOSOeEnDsG4el5fXkFUFD3AiKGdwxmISp/fX3t4GsWMvKUZO57H0Ag3NYVKaXODdQ8JE1v4EbWbRmnxdmrIjiHZQrwEA4iAjDPAY7ESAZLiGT0HkIEHQFEFPViET5EGWsfVP8kaFZ2QqmMykXDKgE4B08BDh6ojFR29WLKTRikvKHUilIr4tT3nqrg8rbvyMwIJaBQFEDPe8To4FSKl8zISXmwKqFkAB6YphOcE8JoH2fhmQMrgOQA9iiU4YnkQFblZc1FqTWUyDsXAeunCCYPx4x1E/DQQEDTC1qIP4t7Dms/OM3yVl0F+wLjAa0q57yBoN41gAcQ4AmgxuEkYYEZ27ph3yVLXQgTmBlBAVOGosiA2D0uCkeW0mxYpuyR26jW0gAX+b42GwFQTmTdS5x3Ol0YKaUW5inrKYInUaxtfhATchFQNJlMp6p6VEXlDGYPrhLM6Zzp6E0plYxzbha5UaAZ6Dz+DAew38eDYKc4jB/I5MUDTGxEZ25YkNDnksVTsyjYBV3T9tzI6y37Zv9X6lGbXi/r9ScVK/w7wFNTBMQjYgQgnKGOLeuHImLornsddEJX9IGG0AlBsBgQjbODuU0UicllTe8+cL5YevvRXWqs97vfeVDSRBA8ch9/3Afv/+6ABgbgiQYAaNA0B0N1tLV4/P5RG5oxJ9/fK164L0vv+xmFuQn24Wa+e8dQ5MOL+XHfWJ1GQ6R9r2rW6CZo7+N+03C3FXb8pH+mxkpzB+wec+M4GehkFq3zdspOMHTAyETttL+9ifuPvZKI1O0W4gru1JsD0FMIp/1js4EgJwtymmSzsSpHU0/ZbAquCRHfFr73Asja5TSGrFYlUNa9YXTx7eDPkNoYdg8GRZyadcPDtDiM7zAXbZb3TJbSQd3rbPSMUkOBpJ8sk8ZooJXaga3KTkg0S4ULubkFd+AJYC5KEGlGiEcMvp1U1BCAqhJD0QbH4xQYQ7oY7q7NrEZyd0x9f41zpHWTznvG0RPD7um243H+jrLxvdl+vB4ZuBWDhwwDo3eWFcz2O9kaRJvLY5n3iR+6F1OvgY37CG52UGaQHUO8nGELTPygQ7W+Q8hqE40AOpLfGvhAxg8fch8/KYeP91l/M8SYsdEkDO3oTzDpGubuOda7tteETaYSMGZY46G8NvJ8bOP47zgvuP3ZPaMqAGKrt3qUybJqymtvw/3cG3ryXrZ9dN+Dv48t73+TSvn373/g7YZx3rMO/51wsBE5Tgh54sGa6TrC0O9tf7nfUe7/ePzRz+yphzVkv/Pj/mx6EEbesn4To49J66NhEKg9O4ZKflzLn9V1xnvbz/C5/SshFX9ShjbSdMOPgKf7Q7TxvnaICYhepXvjyEHBFeAWPhTUiDCg6NgWSb5i4SXdQ4mrcF60MWEoLwg34KwbPVbeXb+S7anqpWWfs/WXO7RLMuIRoPs8g+HYYZqCeCWzh+2yIDH0pyieE1wL9ppRi5FgsxgdFUA8IW87kvOY5hlwwvN0vb7JYUTwWE4LgnfwccJpXhCDxxQ88r7BBQc/T9iR4UPAcjrpeBJubxvSegWYsfmMCQviFPE8fUHIE6Y6oTxlxBpx8Wd8+vUz4nmGXyZ8327IYGRi/IGv8Cxg12k5wTKyVU5gx8BEKMioVFGnClaOFiiwASZJdV8ZXASYcUTw5DA5xuQZkwc+Pc2ILqIWxjw59X6rEKpu81AgDYPKyEW8wXNlgBxCnDDNZyynMy6XC07nZ8RpwjRP2Koo/t4Ttr2COQDssJwFoDldLtjWFbVkhBABOAE+gheDOycd3wxgw7IE1EqIhbFlhveMaQJiAJyvKHnVQ/qKUjZwTnDMmKcJ6+2Kfd/xNRVMMcr8iR5xjpjmCXGegKnCVyClghBFB/VxaQepcFGytrkNwQk454NHnETnWrcNe0rItTSj1rxJHAH7dsWGVfQO1fFKybjdqq5HalEv3meklBGVX+e23pq9573JHD2iIAjA50nBOwEcwAAXOTieY4BHRdo3cK2qQxcBUtlj1jUFkACKlZBSabxpfetQbjTvECePXBJq6dnWAAIpgOgRgAzsexLeqX1texFDSJDbgZ4KcPOMSrWgZuWWSkKM7T1Q2bVDl7RLmJdEIVDbR84n8ZQKgUBO+V0BeJIMfKXI7kskBPJETvZUCzdiKNdRRi0eUY2Yyoy0JxQFmmKMx/1i+GGTe96BKKicruAqIW8ly14kxOICPtmcAdC8lEqp2EtCTgWrcsQJcAQQhQZ+ztOkXEPK8Sqkb9axkuGw1AOnk4WuAuLtl3MWD1YI4FlZQgarglHa86gshPEEgELARJqNMBpkokYEUwOhJFpFIljEvqvtM0uw4YhBHgC7Fk1TTI/2Ht7XFiZ5H4puPyMHk9GuyH4HOCYAoenl5kVMRG3oAAE4Mfw9vsf2UOm/Hk3VcIh24GQQtO3b+Onrp4EnQx6rhgPdKy2kYFFVZJi1YrLB486wbXaPCAedO83/gUVZTyUrKblyQ5kngKKbKLUZAR5dIRJwRk/Z0JWz5rJvBgGNqQKpLaR7JLG38fiHKXzint1PwJgBdp2Xx65RgWz1GP4lWLa0I5mYgXDv6kTDD3rb742Df3X1U4V+ycni+7qP11246QdlS82qjcmdiTLYh0fQabiY+dDfXkFOO8ltZbdTRejf5moolpgZarVUgBhscdrOSb0Kt1SaUNDJkWuEgj6iAUj39bPwmJyTehtVVSaNd8WCPBzAmuZU+Z0IpMaj7U0y5s6xnrI6FWy9bWJkQjdpC31zyMlOeEhdKHWjpM6LdUSx5ZZajAujZ50M3sLRTCjJe7d9b6F2ACvvhvCx1crIrrb6NcO+lyKC2kNCg8DwOr7d4Ogoui13qZu4yBYL5YMc9KII4XopFcERkmbLEJJYyJpQTxCZLzJWIym5gFkVzuLydYLLXl3N2ca8ibXcuyX4YF7bd2aEmhFhn99LmbGs+9VgbX5k7OsBJhxDz6rU70MOjkShgQXyVcmWxLLhVZAYWc17oXs8AXTEekBNkDKbXO5yrmUip6F+suf2Og+NtDUMEEaDc/QQbEkn1IvnAykBvAM0uP3fQQzWdzIYgwFu4X9kVSRxIT9cqoSRwwH4wNHkP0pUm68j7HU8mPDDc9B320mV1LGOzcQheJDcIbQQxI3vy/6nKuE7oMVkUjO+h7bQ8LsV1cCuu8//7Pro+/s1Y5xg9p4jH1cvpfFbqUy0STVs/60dDByIwnuI4Mhfpw+o3JVy72v3uCWH3WDorHr/3YP7ba5JBqbuCQnWc11+/6wHDpOLnBjaYdiMa0p3e6l5nXaPIws/HoGTd23TOeHNxR5ATbkBOd4/Jgk/1tm8Yf3hvpEeYFzz9vm97gTVjWgAsPp4t02mG5Ho4b1WtmSqdQoACA9G0ax1dthksq9qZiRmbvyP6igAZpZ09I7hnJyki64rh0Ol1tYOIoC8HCCBTGaaUcSYAQSWcbRTDiJCnCKWZcbJk3jXRC9kx0WyiIZAkE1U288JVQ1Zdg6uJOyvL8ibgB7FO1Qi7Mw4Pz9hnmekbcdrLljfrvAALsuCcF5QbhnFy1ifzgs8E/xekH/cUNYNUwnYvm243m74/f/8jr/89S94fn7Gl1+/CJcMCM/PDo7OWOIV5bairBnVV3z+/IT56YzT5yd8vvyCbz++4X/+/X/g5eU7btsbUr0ixAgEgrs4gDcUVzEtETxX1FfxLgk+IviA03LBel1xe7sBOSP6BU9zxH/9z1/w5dMv+Pz8BV//8RU/bhu264a//vU/UJYL8i7hZKVULIsAHyE4LMuMbd9wvV3x+dMzTssXnJZFst5FAS5e3m7AW4ZzCXuZBISIE/ZNwC3RL4F5WfCf/mOBd2jrT6gDgBAXvL2tuN1WLOcZ5/OCQBdM06RhWwHfftywpYJtL6h8A+cNKRUscYb3jKdLwH5NQsqODdvtB26vb3hLv+NyOksmwxiwB491CmCnJ6QkoKKPAWGecX76DB8D4ITfyHmPKQSkbUMtCSmtCNOMOE345ddfJSGOI5SasW2rhu1UgCp8cLg8zbL+nHnmSHvkQJSRULDvO1JKePnxKt5oqrs7JzxEnz49wftZ+MDOJ/E4mWMjzQ4+grWvS66InpBPC57OC7bbG9K+Yb1dEeOM4B2mSTKy1Vrw9etXbJmwF9d03lIy1vUKgOGDw19++w1PT084XS4oqq97N+McBQgJIWBxCwI88i1jXzfs247XtzfVWR0+fX7GNM+Y5gkuSLggk8fnX3/FKWWcLitS7o4TFnmw7xBAqDK2dW9JYYKfQHrw5fwMkPCDlb20iIKcVhVjDiVnyfAGxhwDqEag6L1ewpLNmz2nDCYJ4c+56jytSOoRFXxPXkEExFky2O1bwbKcQQBKStj3DahC3N9oEYJqJgT4GNreA+UeKpVxfbu1g5NcKtZ1x9vrK0qWMK5ljvBOwNTL0wXeCYhbimIMmiRi3xL2PWOZKva0A5xwu77hdrs1onBHDsEFVRvUkUbrV5PwbkFt+VqF9N6Zwq9nD5b5DkEAt8pqq8gJhQBszECVcaiFEYNyEpJQgIBcy+ZYakEqmxy8OwkPjDEcgKEG2LkeBj56Ro0HO2bfSbigRwikPFeleQ37ECTyhCXkrlQBX8mNCcsEx7mPtBIbVZwoPtr7/+z6tzyemnLKZvRaWAeBqyDZINucAa4S/mOcL1KOTcIeE6gAbA8zUyW9ashQZaCyGEisyqEZcabONz8o6sa5AAf6XphmflS+uwLdTQce2jve1+6n/q9xAhhvQgOuhmdNOT4aI2hZtZri3OqrrtekLPNsHiTdMOCh8H6i387GcI8lmcF3zJqF1nK7Z9Tx3ynNg8L/sAD07+/bqhF1pt/DWtxJnrn3x1gWuHkBjZ513XLt/5iXTwM4B9OGmZTLZ3BdhxGTOp0X1sf9JBVw7ZTASWxcV3ircq2A5HSnovMpsQAm5sVndWDt4FqqhOgQNF09t/aRIz0JUC9AO+FVVv/mik72XQfeLPa46tpq96kbJrMZ4IPn4GAUV1ZvvcbBI+8OSg5IBJSs3iueYESgZIa4jrN31OaL6TtigAtYbIqehQ0iywbU+12BP+cQvcb3Zz3pMBBjmCsy/lXOMAtQjCOkuVFzD81lmF+qrjHXwvVEtvQZwrC5yQ3Y+elLJzvxIP/uvx4+7auX29/jzc3QHu+ivratbSYfAaCocM0MSBADwbxjmrcOc69BnxC9r9ql8pG7nLSKtLp0MdpBUpXrttEPTTwY113edrD90BM0VI2Gtlvdhjkvj2k7md/15dBldyJnaID29VhlGy9Zu9KHbihrrE87RNFnDRxkdBDM3t3CPzGO5zBWg9Bl6kC1bGuMPle7vEF7us+/ce/g4X/3+4r9XodGjfUd94l3+5r9fdjfjvP0+CF6iOD4jgdr5sMPhsLrob1HT5pWx3GIbTIpgMGtT8bV2Bv0sK3D31KH/t19dW2fN/3H0fEetro8eK7NA+oHFS2Md6hDHfreDmFGhXW8+agr9FXhtH4EoIUs2n6n8hxN6dS982685WDFShz+G3TJpgOO4bj2TFuD1DJp2XgZmGMhplX3wkeCkdlCBJTjymkqaBaghlURYZVvPcwA4jFL3NYtYGwoDEuMA3ZtPAjcBqCNzTDA5olcK8PtqWXzJW8bJaPkipQKPALYEwgBwQt3pHAlymHJVCRzayksBM0uo9Yrrm+MSgKIwBdU51DJoToPnicgTsjkQAFwgRDDhJI9tpVQa2xky5UJxATPhNNyxhQXPD2Jh8f3Hz/w+x9/YL1eVR4ZYFfhAAQnZMmUA0otQm69ZoSQUaaMuXpc/IJfzp8QasV5ijgvAdUXUATmzzN2l4EAnJ8vuP3+hvXrFX+sf0dOO1JJcOsbSk4SYucIMTJOJ0Lw4kGU0hXes5BDu4g4TSAnng8hSlgVQw9PmFWfV68MJqQ9g8sKj4AtiCfC6+sbwKQhcwsknpPALGDkNAeclk/wHsCnz5AsiwLSwFd4BnyYcWIPF2Ys84ToGZOrKDWLzuA85jPAW0Kqt5aCnSjDDjQvTzOCq8g7Ie8rvK8IUeafnwAfAR8YcSKESYi5U87Ytg05J8B7uOuKtGX4OCHOC5bTWcGvADnQcMiFgVwlxM/FBk6VmiX8q8iBKyggzot62spPrhVUGJ7lEJccYVkiSD3+p+gkrXxhzfIlRPTLLHxgyzJjmWbh+oKHZQYEPFJOQhK+C0hTAQ3p8nDBw4cAOJELWXlUcylgOA1JEr2YUVBKAtddxt8FBMfwVICaEByB1buqQsO0YoRHALGDD0CIkhHS73Lg6YPXjHAOqTIoV8nI6VgOrZyHn2awKxodI+CWbLKyhmqpqCUp4NPtGQIJ0TYqwAXTZIcOhJyrHiYzOHdvLjkINycPOYyXM20GU0WuSQBFIiG+zwSn8pIgerQlN7A9RkItp26/OI/gI+AYjkL3BHLdtiJEbadkta9FgK59k/BI5z1K3pH3FdvtTeS1d6iB1QFF1qVzQTmzWDAB9bytmZBJDgSCFzmcvPYVgDjF3p8OTYYftkTVrWKIanPJYQGNuhVpRnKnwA85eNE24BwQtE9qTkjbTRMiMLweLHgS0K0yI1fGlnbsOSErFRGYBYC2QxkJzRo8m8VmrW3vBUbVt+EFbX91Kj+a4tE26fYZaNib3ns6tX2YJAS1VsKRt+DnAaifBp7G0552OKRNNq8kU3JqNaNPPhePJ9aGq+I1xLwb8mQnYQJADcBTlV41XicjYbTJLKf7tRkDpsg1XZ0wGDFtnASR1EnTVXRZaPenjVZU86CSeQtPnfC662+mRN9NaGsvzODnQUnraLJlWXBONrTKjEIFdvbWTgy13Dq8tQLN+8u4XqzePCBmXC3h89Ahd1fnp3rcF48iZVp2B71vPGmWxYNO1GlKIbgZynf2SFsjzkFRd9eNqVZzaouwob8DQV63ZAgt4oekPCNMLSm3UseSRSEhyTIhVt4AAEDDTpUHB2iuieK2qbG8UIQY8lzaZT0ULuJ2qWPlHOCDrI1SxANH3GgVoCniHs6oDQQy0MnAJTv5MCBK+CPQPhOEWlIVW7pW2xJkfSnIqQq/PKvKmNO1kau67bqWlQfc+5og7cEwdqTHNiYQiUQpBSvop8TTY5gYwAheNkIASAyUZEACjFO53S6h54yCgkyWwcGAayUwZ1u7tg4dQMJl4FjI451tryzliWFS+ti3+g2CHs187dfB6uj+FWNI22CVtXn3SHYTHtqi/VV3/7Y32lBW4UFxKkVIZSWqtfew8w6del9RtDpa0+6GTO6m9081bis+3mtXYQuxkt6U9dKDHM3oOzw2vmCQb0QCNNcq7y0jajLef1dEawkPcI7JLa1791ui5lU7NqjBeDzINt2DxGNI+5v6EwZqWpe3adPeY7LyTvbdDVU7lcSgJFn/2b1DV4z/8jAvCZ2Ee+zrEQzi41dSTt/OocJgUJeHZ6VzG3hcgeO0+2ANtD7RulrZtpUy0ADsvqaOV69bX7FjKPvj+48ttTIYOAA/4/jZ5w1MHPpO/VgPekOvtpxq0zBmo2wRee/6HzCvX/2djs1wJGFnbYwa0ExH0KmtXTvogXCHECsXSi9UDvJkhhD1fXfsJlNSxbi7Pxkdfrd7uHtc9klU+5p2rtWRGe1kmlm8L9DCtDH0idS1vZsZFBy89mEI1rPc5guzO4QzSCp0XcnqPS11lJESPikMSr0TA7OOc6UPV/f4kn3RPHu98gXBEdJewJwRWQ5FvBcvKC+bPHwIOtcrtiRhPrdbgUNGrQmvb2/IBfBxwrQQCnkwPCguqMuCGiNSASg6uCmA/IySPW4Z8F48NJyPyHUDVyF1P1+em8dYZWCaJ3z7/g0pbeCaUfImGcS8hDV5M8BiQN0hHhhrAmHTjE4VCwf8Mj9jBiPXM4p7xoYVLhKef7ugToCfPD7/9gu+Xr7h2+kHtm8bXr5/w75t4CQeId4D0RFOC+Hp4uHdjlpu2FYgxhPmGOHdjBgXAB5bqlhOZzjvsG0bShLSYiLCFKPoMwW4batkXdsqghdj9/v3FwjwFBG8ZN3KpSBOHvMSMIULzssTltOEefG4bVds2w3r/s92wOVDxMnPWE7Q8EmHKQA/Xr6rbHSYTw6VNqwpNa4yXxlEEv54WRZMgbGvwI+vrwgTsFQPRMZ0coiL6ILT7LEswvN1vRbc8oaSdjlkJMK6rohxxnJ5RgAhEuCxyEEleiSLyFUBf0KIcBwEdCqS/AkuIM4nSfwDCRF7e31tApG8zI1lDkD1IBTwOWJdN+QsIUYxiHfSeZmwnGbM84J5mlAhPEvMQexLIqx7EaLotKsA1bBV7+DYw8cA5ozKBXuuSPuOUgpcXBCcZKRjVu7PanxaHqfZYZ4IwVfUvCkvkYYJwuTG1DhIKXiEacLEFdO+wwdJGhCXE5ISjDMRnGf4SMpL5kA+wEGS4XCpMG5V2QgksyJzAiBrnptS4LDvm3gzcYH3J5iPey5QwIoBrqhZuJyqMuw7r3KQlGZEgadSK4KHZM2bJzgv3jFc1HuzFgHMoLIc4okUXZTyqtgp3keRsZD+JfPqUXlJCCALQSsFOTHSnhvwFDTUN2037OtV9qcQwJMTXrss9BtT9HAU4R3L5gEHZoe0VThkeAoQnjqHKS6iv6NiWRYQqUetGcgEjdASGV65SubLKSLn3KNgxDhXO9pr6KfwtcGiMxwheo/ondgzLkjGzFxRSewZr0pjUWwjlYJ1T1j3Cmb1tnIOUTYpWLipORVIqKDGLxwNXN0ba8NoxJvLkmXYfo12f9NT9Ec8sCpyLWrfC1hpXIfmrGFaSz3wiBwMhj+9fhp4Ao5Gbm/nQByerOEA88C1gwpymmJQXaWFs0ZD8woad5MYhzQYiuPJo6mabCajnF4REBxaJqCu7OKgPL9TpLU0mzSCmj0wUIZ77R0EBZ2oh7W0k1UjeWU0Q9cmk5XUjYaufFLJUp6DhkXZoijNUJEyxShofDhaIRv24CxGuBu7AFpYoXNOXPlrPYT6dEW+t7feffHeSLOyAfNKssu8vuT/xjjSR/EwjWBK2fB+EoXCe+M6ot5+Piq7o1HVPqv0ro8FZVfgJjqJf3aEzFXjc3VxKlADNucY1rAsqbFXpLsWIb0nFhSbnJc54iyE04SugyP1FrK4LUYjMQ0xIESHGCVIRkLHGGhkegSiDOcYGrYri58YtSZAg4KYSAEo6ObiNCSAepu0xwtbeB0jZ1LgRuPfbe0Ohg+qhluoi7NxW5HOq6CpTD0B5C1c7qB2o59IVzUkCc5VxCh1zg2oNmCXEcziJIdKBYVa97UQJRVFTTb1zUIAQyavaYt1b6eqGUlEmkhVqIFo1mgH1lAIoBrh+tCiR6KWPlgl9/P9ANoMKO4jGXW/Ng8FWhk8rNn2nHjniJGiqYMJ8O3z2rwRD54XtiPdvaiHi3VwzmzEsV0mgxufj8nXOzBE5oTcXMyTzeaoggHiJSftGse+2X93sklCnp0avxo+24xPq1tv2yCyuvwYhNF9v9u7Te5bWFvrA+pApH1mXnQGPNk2017X7hueY6DzTul99lzt+2Kx3w2LAB2e4aHs++3NPrffrTKjp9B42Qg+2iv67vx+tj5cEfz4S7779+H727wb9xv0Mf43r/+FR+SdOI7j/e8AdB5CQV4Zw0DooCU6OC7Pay8+Ei59AuufChDqxGiAsj7qBpnI7Xmp1OHwp831PnssGLGJXxHBqr81CaAeRF7rLKnVAbk/NO8RVYb0GQvJZVUw5ICgayPe9cNL0vsBINfS2lk8mr5B7bjA2qP1M7Wp9LKlf4Tfx8LoD5m0IG0cQwKtjrlIaF5wDoyKzYxebVk/KbY+o6aj2c80oYX3GM1ByXJy673HFGeAPUqC6pIFuRScMDWSXhAjTBHn5xm/LRNKybhqRq+SC9K2I2UGkYcPO7g6lErIa8L33zNevn0H+QUxnjBNJ5zPb3A+wrmA0+mM5TLjDEZ2K+IUcKEJMVQha04Jnz4/4/J0wvPzpWV9SvvawpnSvgEcxRt/XjCViqVU3NYV2/WG1x8/YBn6nk4zfvv1f4OfPKZTwI/rD8ABT7884dNvn4SLap7wcl7x4y+viPsZL99+x+3tBUsAomNEAp5PZ1yWE57PF/z4dgPVgjg5fP78BeCI27UiGxUICKfzGcsyg8G4vkp4Vs0FnjxKqfh//t//H7i+rdi3hF++/IrTfMZpPmNdk+g1lVH3f6pxXnC6zFjOC1C+gDhjPy+4fDpj3RNua8Lf//FddBbv8de//A3L6YR5nuF9kNnDBQgyL0otOD2dMZ0KpuWMfd/gCDjPXwAu8AQsU0CePfIW4aggP59QUkLaV4QgYUm1VLhQgZAl1DQUOFdQsuhfxA68F5SaUD2jTIQdCa9ICMsEOEKIukbAWK837FtSBdMpJxajVgfvZuWoSnAeCJPH+fKEmhL261VI1nMFZo95cpjjjM+fzki79OfpdBJAy3uwZgCrqSDxju+vb/j92wswLYhxxul0VtyggnNRr3pC8AHnp2cQKtK+4na7IqddABo4UK0I0yQZ1MiBUFFn4Hxy+O3LCfM04Xw+YZ4XMDNy3rDdNoA84nRCUIJ4Lg7fvn/Htt6AkgUUjgHPXz7Dq7cVO8J6veLb9+8opWKaF5wuT5iWRWU+Y9M14zjjNEchTZ8itnXHvu0oZW30Eo4iHE2SIa0mBQPE29F7kr5zEsabSxIZWYVHbM8J4IJpDnBeyLJPTxOcj4Aj7CmLd5gC/Vwrai6omjmNIe8Q2VYUcKgCCCYhKS9bQsmid7vqYJQht21TDzSPp8tFbECu2Ncb1vWK69srfnz7A8zC3VZyArNkg5s0cyghI7gTHHnknbHWDUQZ+14hh9fK8ZQLuBCinxFdBQdGcE68DjkrqEaAd+JltG1YtxX7uoErIyg46pxH2nbxnvOukYw37x/nwZroSPYLIbz3zmPSxEZc5b5pSljrDT9efiB48eBaFNSStc6okMOEbJzWRWz+psmxgHKTZgUk5Tobw+wsRP317YrKSoECSS7hNNs6OQdiQlJeq1orkpL5dz1ZoK4QHSzlRUrj3mZaqmZxB6ncf6wzPrp+GniSWMpHSt1gHNgGfKf8jadQorxQ23ABBZ+Y0dB1FnfnkXOi/782ZcIIH3UeNUXpaNuI8tEU+eF7EbzopR+Oc3v97i+zoVoT2DykeKj/8YSZGDgCJX3CkimBDRwgVf7llLGDLN3ToPOS6A+RZnsy5Zza6Ix9b1khLM6TrHMeNPfw8WBL3BscUrYBij0LwkPOh1Yov/8cx3liCqEphWzGKGNQCI+Xxbbex6RayebiTqD2ewcNtf/YQhMIQghnPF6udVIfep2XFeBc5J5Bge2N6vUGBNhqvENg2ax8TwVNZCGF9lzvFzvxNp6N0ZvKOtJ5ndvqLdWV336yb55nVgeGeUsJksBVDRfYmuZBGSc4ZvVwcBKG6MMA3vTwUEtGQGSGhryfXRealnHBPIsq9Tkl42cnvx6+9PqMIPhoGFETBLYghrUHNPdmBxzSlvZT+E5ea3Vs/WVLho5LphlsD2RkW0e2ixy+/fPr8I4HFnxbnw8KYgjQQS22iHuf6lxvRubo2dOK6304eo1ya/ydJ+koR+je5+buOiBGNMi4Ozl52AeG8sY9Rt9g43QPZoxyZfjrUBUJL+X23r5FdfDH5KmFINHwzX032B+2tvpqfz9cNp8O7YPugzB3Z7T+Gctg7ttVxeCxN/RrD2Hv70MrY9hLbFwfzDN6199tdhwbAtwRx/dJ8dFc5+F7q/thXtmvPHg63s23n+YZoLHYRz5RP3f9bHa8JrOd7i324aNOboXjoUdx+5p76OroOWSypgFF9pq7NWUy/j3oqrNajboKVu8g4bE0MEWME+s7Oq6rOswvq+ewf5jrv/eMMoS1j0q0/dt4Gq1Tqq1BEsNLXG/RRpOPk7ftWRYqoWWLki5KtHn0CmeVTCg7JJTDL9/buDMKJH16zkK+2vQvQuMvqbp3Wjt4kLu2b4v3yOA1bKJ22NRaWm3lFKFaQUX3W0eoPMEHIcNmAmpRIuJSNbMsIcYFVb0h3l537GlFWVdUfkMIM0KYcX17FT6cMKHkZ6SyIGNB8WJU1ypZwSxk/nye4RzhfL60DE3TNCkJc8bmA7yfEGNCSkWzYonxuq4E5gxyhCkEnJYF87II+TQTIs5y+LTO8Nszgj+BqkfIDjMR/uO3/4Ln6Qn77Q2zB05TxHmecJlnTD4guoCIHygZYPaoxegvejQF2COnjEQezpMSLcuBoGSZk6xqzstP4YRcd+TqUVjTp287eEsgiP2RUoXbC65vhEobpuuMNT2DSQBLNuZ6dtjWhFqA7ZbESPSi70kVnHqAi+57Oj1hnhc4AFPwABc4AHP0mHxBjgtKYezrDSltcMFAZdE3M2dQJXiuYCpwQXQ3QOZeYQYjY93f4G6EvWzIvGOqi2TuU6/4Wgjr7QpmUg9VkpBTPQWQMDWPQhUuyNj6OIFDRADh+vam61QOWG19Bx/BAOZpVt4Zh+vbippk7syTkKHLettQixyneRu3nOG9RInQFHRNVg0xY5BzmOKEiee2d+YqIKTt8wI4iLfPNE0AWKgbSsW2CWsmw4MowHbYUory9+wSUhq8EP87yUhZAQTnMYWIjCzrpBZwzmq3kgDYxCAW+ROcgBchBHCpmKaIfZPoCFYU3nshjTZyaqf8UGnPyNpPOVcQinL3VB0fjxg9XBAgxfsAHwMs2VDhvk1Ixjg5SG8HDF54snLOzWOTKzdAsaSEkvTAt6jcq4zr7Spj7R1qTrCQwpI3pLQhp108uGzNEXReEKYpaqY/kXEE0rC3AgKQUxGan6rZ6UoVYnmLCIEeusOB2LX9sO1c1Ln/zHvVkVPgSDzoKoT6n6qFktCgr3VlwsLKuQKZJYSyFgH/HQlHX6oVOQNcJLyzcoHzmonVW8iu2Uxdx7T9TbLHGb0JHexgC0cn5ZAyIMr2slLLwTYfCdjtb9KEHO3Ak+T9za5vNpHtkWaDGYcjfur6t4Cn0UV4BJkI5tbMh+9aZ7RBMvfodjQLRk9jW7mr8LUaoDWoh6ZlQztDF65zQoRs3iptLtizzM3gbRPmYQd1BaqFqX3Qk1014FZXAMopM5xg6he1ciNLtXpIf1hhpnjIyqvoIEnhOvSDGWOD8s/WbFIFiI4vgRnj/aeBT6NBRfdjd+jODy8rrwFEtTbXxffGptXraGDeG12kHk7ehxaWaVwOXLsSe389BvdM2QQErZfPZdGJstlPfCHx305AIEYPfTTgiYe52edYRS2Dgm51gKQNrYMgAETA1nYHN8XXOadACNqG0t/TFQq7t2c/sH4VBdsHG2v056wfoP3IUm8hb5b1a8IdEEXD1u6YWlP2MQNWhXfCzu7N+4lqHzPrCRrWpfxYHV0Lx+uIutVXTtZIlXQfgFjRwiDaFkKA8WM1DrA78NHmNwMoDFA5vqvzp8iNR+DpOI/aZ4PNR3Q0isc1a8sb4xq7AwL+dJ2ZId7aMYAFo2Heb++b6yjHtG0t0woYGkQqm3QDSNArrNfQG70oDHWxtd2F46Fe94AQN8O3G4Pj1cH7x8DToXCnhbPePYydZDW8v4ZNQMfVGSg7GLF9Sty/ndumbDJy9E06+pqiKbz3HjKPBp1bi8UjTTyAe80qN4aZXh6jZ2BkgJibd2b7figfD37Xio7Ne3fRUGW6+7lrwPDn2KuP3on3PEX8wb2wsO0OoD8o7l9e1setTu/R4n/rGke7LQM6fm8ypIG9953WBMQHssBkkPVN29/G/pKH3Z3sa28x0MlEpL3b3juITVYZdsxYLLfeHyyNS76LG5GvLeSX+5q3rDtWp9Eztq+542EAN/JQAE4IXhuopw+Vwho+Lw2UUDkxSDp/D8Rg0lBB7wg1MJh9e5/3vT5BgR0i04PFCDNuJaLeftPZrKotzHy4etITasATSPSOcUFJP2rmopyx77uEwxIQijwT0yQ6Rgg4hYBKBPFyin1U2IGcpM9O9Xdcv33H29sN+1bgnXg5eRcxzwtOyxklfcG0LrjtZ9QgISfbuilRrZLulgvmecI8zzqWgKMTai0oJSPEGTkJWHa7vkkfOcIyBbxFJ4ajJ8zzjKfLE8I0oTBwve3gfQZXwroHbGGG204SflgyiCv+y1//G/bnG/K+I4Lw5fkJX54/YYkBNWXs647z9Ia3tyu+f/+BfWdIyBU3wITYY7uuKLsAa/u2I6cENKMsY14iGEW87kMFfEKBQ8GOPd/w8vYDlCqC81iWWbLg7Tvqy4avrxU+BHx++wXnp4scLDrxpCDncX1dkfMbci7Y0y5k8qcZz5+e1bD1KIUQQsD5fEEMmslQM/s5Aqbg4Fi87h0i3sIPrOsVYXLIeUdOOwrUAM4SPlRREWaHAtHVQ/TYc0YuCet2w84bQow4lTOWdBbAZloQwgQUxjW/IOWClItSQYge+vz5U9NHnasCjviAJUZgYixxRskFuWSQ8+J5ouvATeZt6DTrnEOpN81uJuFHJVc4OGxJQhsdJFSsFgmhi8EjBA/CpKGf4j3DtcJ5CROVQ1rg7XpF3Xdw1tA7goRWReEochSQ0i5eiblgva2qJXl4N+ne7nsCLRsTMIIPB4E8B4+n0wkpJxWcBZQTyGvWyhDALDpudE55iwjBBSACy7xI6JyBTCRz4vn5ucnEbdtQcsG+7di20sjBgSwk5Sx8QcERpmVSPdppaKN4mDnnsaeMpP0cNENa1TAvcgQfHVJmpKQ4gBJvFwvJyxL6WLOE+ElYWMXt7UVADzDWq4B6pCA0NNIk5ySfaxZJ76kBTyEExGmCcwKSlVpBmjipGMddrtj2vSWGEnuKmg5EjiErSLLuiaOtHPDHGIEqc8W7I+m62PMkyXh0c3Kaoc/AIrvPAUCFUH1ogg+zsS3zc1bC9x2MqnP0dBEvKx8mOD+EeB/hDAWaOk9Uq6P+OOfhNJNdGt5vwFJh47u1jHhKIl96sjjzbmuOGKDDXmXlip1rHFSs2Qahc/lfXz8NPHVAaTwVbt+2+0Ylp3/bkeXSjEVume76OuUG1tjfXcvqv0rEHiM4QgzUPEWYDfDop8JGKlwhQUtqMmHkT+iVB7oHUh/UnvFEq1HVI8PJ71DiYeig1WbUv+/DgzJKUqLRPDO4sdxL3TVDCvfTMtZTmXvlH9wRUuNiIGA4ueuKo008MxqbYfDYthr/vO+uZt93foNuuI4hP+M42hv/bIqa542BToAI2UYkWj+ac7ZI7mt8VGwb6p6ycGJUUUydF7TYiPEkfNC1eHcpSUEY1rNXXXw296rGO5Maps551KyZA9Tl3zlVTLUuBibkXFqGtk7yZuNoJk0BkVd03tIty+mxodA+aO/ygJ47aFw7qdJd1QgAgobvBSVEBwM5QaMCbU6/XzPNmCLSzaUAxVwvu9Brhkg10IIQo7iMgnVNVYCrnE44Yt2EHbpnp5yocRA5QhrjLmsOemqoyouCibmqrwkPWRp54F05CFl5hxhgcrJigOzooWm4uXMk4Yc8hiCbYcgHkOkIQ4zG2fD5Q2tz6Gt0Y03kRb0jST4agLrNHtcwj2vvYHaqVESrt8mW0Ujvm2Cv07FVOCz8ZtgXRtFTlINnme4nj/aNwYRvZZuH0dFPZQwPsjERpcIOLBo/DQEPXNLuri4/x7Y2MMGM57GWY1XtycGCH+XhR2/n4V+739raxpXfe0yxvf+ubDuJPnoOH6/7efnout9rxpFyd98/atOjuf/uPn7//Z/10zgX/52L734evedf9cfPXIe6sYCBg8Nsb8MwPvLce7kBQGW3HIC0gxegg08Ynhk2VlNQx7/lxUNFSPWhvoUfBEnHrMe1O3hOQl5uiUu8cjGx6liVzau4Z8q0gyrnNMU1l0cYYq+ztm/kBs1ZvACa568CTS5CwBfnJVsnA+zqAKC5NintoFAURD08rRLqDpK2EMkBkKVyj1E6aZ4XxDh6bFUJY2rRAbXt6bWOwJdKKqIWyuHMtRiyj3qvXlhxUhJb4SKStU7w8YJSgW3PuF13LKcFl6cnuHkB+QgKU+PEKiXDk0etjN9AWM4L1tsN63WVEJlU8OPHN9zegP3mkfbfEZcz4usn+MszpnlBSgmfnp4xLzPm8wlEEcweKQEl79I+T+qhL14iOSXknJG2DEcVzjGmKWBevuDX374ATrJcTfMC7yPerit+//0V2y1jWwt+fFvx3/9f3xD8hPPlCfEMTCfC519PWPgJcIztumItHt+vFXyOIEQwL/h0/gLHr9huAZ9/+YQwBbjg8fLyirQXlM3hdt2wrpJdLQSHGCf88x//E/u+IZeE6AnT7OEjxEMHFaXeULABfsN0Krh8OomxSkCqV6yp4m1n7DmDvEfiHZftGVOcNBRFjMfvf7yoDishf2kr2NYEooBpmjDPE87LJ8QYJLGLzrGCgvNJMrURM/ZVQrF8fMLlecLpsmNLX5HSipR2zCk3PT6GqB41Drfbhj0lbPsGKg6+FPAmuiUcxADOK1LNQM5IpDxHFLDtGSll7LnAe+Ez8sSIU0ScApwXYUdckKoaxD5iXi4IVbKk+RhBANb1JuuKCKUIBxgzQD7CedJMWwHnS8Ty9IyX67UBWNeXFSklbNuG03lWMvIou6XziMErf1bEp8/PiBouNS83vL694c3dkNIK7xxicJin0DyfrrcVpRTUCs2CKUJVZJWQtQfvUX1Aur1hu95Q94Q4Tc02yDkhqadiKaWFgpcYBcRdZk0ipTJY9ZScSpOjl/MZXg3+mgumaUIIoYUwMwMpJWSUlu0ZRLr2FdSGazaygDeiZ++b8EdJSNsMQoCnIrzMmj5hzau0pxT4IFQaznnbcUAQbzEmocdJ24aUE7bbqvoxIyXxxCslY7+px6dzeLqcEWPEMs+Y/+NvKLWgFjlM8N5jniaEIORmYq+69n7ng8hKztjTjn3fsa0rjJ/WuG69A+LkEYJDiA7TJPOjQGx97yoCeeQQhacKxmGkY6UhaNWMd9UpS8pIzAgxiJ2Tc+MfBqNhBpIZL6PkjBAjSpXQun1b1aPSYVa8gEBYlqUd+Kzr1jwxrT61ZtWhxdN22zadpxUhmHdYVAAXw37TdXoDkMYDE7vM1su5AEUdU9T+abhBs3c6fDQmL/mZ66eBp376T81oPvK3ABgacg9KmeHbjC1FElk5newhM1LNUD3YchB9SfkXm1ueAQmi01BT9M24M73iWNtmZh0+sXaMCJGAKtyUMI1IwdhEU7IEPLLPjn3ST/K6Aq8MNADUxY7khNtOuQ+E2Wb18HHCiCdV907p7+uKYQufwuBBMwB01lfH/rh7z30fWjuGY1I1h4/9PT7I3YBthtzD0geldnjOFuXxOpo3AqbYaSpwP/LthA5o/SDGJPV+YlZjwXW+JkNI76pKriv3FqIn3l/AY4Pa6ogeWmnCCqyKq/0YoKjujuhmNjMUyOreR81ACWgGikDnDv2EmYaxJj2pYhX41MpzDn0uD+tyGO7DHJPTWQxt6ICVjYUBAM5ptcjqeXxHu1/lTPeGMqNHxpHZAou4GzPkury4634Dh+wOmb+9fnZPq8+9DBrWrow74Kp9Tk1Q81BgUyz0sz9dUxjX3Dj/7U99wqxDXdPjbY/KNRDDpHhtS8ZCx/o9QJdxlpFPerhzvoize293E3iH9XbXMi10HN+hYZA1P/RD2xa6fOvFkD3Rn7XiWj0eV+PQw/fzY6hR94KhLsdt/dtntiCOzWheLfYSy0I33jb+/u4ilUGwcejPMIyk/EEz+diGUag/mmuPPr+fn8ARZBv3hUe/37fpUTsf1eOjIftXdf6oXX92NY+yFnr8bxbwwfVQ3JtcGWbrWHkeFoSBNw0IAtoBjB2CVKpN33j3unFfGpD2UeocP+0LcvTMoWESmcy838uabmEKoc5xRyYDe9kfdW/fP1SqvJPXtrdo/YZ7jx7HfPhs9AYjQk96QmO57jBh7fyBeSCoh5IqU23tsX+JqCn4PQxBPIBHcvJ+gMmQQyOn4+l1PKjpmKI/VqGP8A7THDXblIerBZLZGepZIhT1pi9KewLYBbCLLQx/nmbZE2vFpRTEGJD2M7brFfu6YVs3bNuLHMKVHSkB7Fi8neIkHES1h2emlAAAKQnnSClZvNFULjOMK1Lq5n1U4Klinmfhs5yj8JR4jzhNAHmUKm0uuWBfV7z++AGUNzgXsF1WnD9HnPOET5cZjiQsL10rCm9YKSOdK2KIiDFgOQV4mnE+fYL3E8wz1caCSFKNA8Db6w+EGFqID0O8MOJyQpiEfymEgFIycsoIFXAuIMYTljBJXl8CXCGUWpFrBTsJb6o1I6cdqIw9Fdk1q3KOmmdFVm4dAGlNoEogJqxvNyT1tBsPjTlX8ZBwhJrEg8M55R5CBPsNLgSEKYknh07uQObl4uHiBL+tyK8FqA6uerjJq2egE2MdQn4NFHUgFu94LhlcMmrOkAM9xrauACqCJ9DgncXB9HaCCxFQTz0iuce5INxE5MAoKCycQtO0wLmKEIuCOQBYvMvYVVBm9YCscNRY8ZoR3uWHKNlFSYOpSIhtKQIwOxKgydLXd2/JfkrgPOu6dnqgKob5tm1Iu3iWcc5IzmHKufV3rhrqZh4lJgcgh8TVk2TGcw5QbyfnZYyMv4kYmKJkmSy+IMapyZzuXdmdOFhlnoQHA8gys4o6LGTfD/MNRKuRBUjWPqm5R0SAoba6/BAsCgVKt6DtqlU5h0llph4k1AqwyJWcNhToGvMewALvCdMU4P2MUjJS2lFraQCKeRTVmoeoGuNaInXOKG3cq3ZELQwqjEwMUAAoIMSp7y+FW0iSee/8/9p70yZXkh078MCXiCCZeZd6i6xb6rGRZPqi//9rxsY0GhubVvf0q1d3ySQjwhfMBwDuHsy8VfXM+n2jX8ubSTIY4SscOA4cGEBBKsec90AtcCwE6RYSnYtmUbSwQw25HHXQ5hWkXl+VZS52u6JvTqVWhCp7urVPxqcI9x+jZbOzRBRWRucY2/M6X+Fomx0PfcfIJ/M8HPfSWqt6Rdq1g55iuhN3pxXi4/N+q/wNwJOhXN3z4qiomNHQDTpTFiwERtLE3y0Ytg1hMFe4e1a8h8qZWAhOT8vRw92ap5PNK/t76DK7x/i7vTBNZehAR9QX2V1hbWe13/dGz33dSQEHHh6nHVAhi9y0odEF3aF7v4zVbX+b0vfGFMBh8lmYmIV+tXb8oM7HZ2h7f6QcqjIswBMfrmsL0p431pK6UEdTEnsfHMs7nmqwIZM7tpC/AaQYiyw2BaesH0zJh5AcS4wsdfdy141imdeiKDal1hGCuvuO1wKd92FU3scQBudJybCVGFBjqEtRQ98ZOBSlXZ6RNXygFlX4SE5jvRPQyQclMM0ijEVw6Xqo6KcjEAV4mvqUZxTxMtITTPvOe6UJOEdtU7a6jyASgLY59vbXBiwZgHIEqpTMW70KrfPNC8k7TWDKjOpYXYZdD1G0maYLTYAqrTfMhukDZUBIN5XG9cE6N3u7G9m9ax3XvzOCTsDhXvb8+7/pzZX3Jnu/UvrI3V3Nh6vGe9mdmj3JDDfIFho+bzcZx24A4YioPdmAttbssQ7cb3ZvvDIfLninjXdlGLgGOt1trL3rh30J1A1s9O/yuFfdP5KpCztt1duqsk6tcfTetsf2qi7V396mV4C7Eaz/j1Pf3h9BJx7+tq93oPD93hxr+vZz66ejV63t+vTO5+N9Dkvqrt7vlffe/9EWev9ee8xh/v126WuCh7//fYusi2OlnK4DC7m3QyrZj7uBCIx6D0k2Vz0Acbb239EDrBtsbfV9ebivXaM6Rwe9hpvYs/t/h/3Vnk+gxtdZTdhTT6Iie+kg9PU+Ixhz6DMDsu6U48M1eu96p2iNSrGcEqORLI3AXb+dpqZ25hXZ98f2txohpYVkm2EAMKvx7317vnnbWtuMP0O8mFPf61AgIQl06AdmCNhdixqPDstJvIGcD4d1T+ppEkJUAEvS3lMloDpwFRqK6ANOTxcNA6mIMcCB4Zix3V7x+vIdL9+/Y9+/4fb6ivUmRM+lAEgBLl3A86K8MkIc+f37NwAS3ne5PLXxqtW4Kj3ghLSYPLBMEQ5CTH46L5hPM5bLItkFQ0CIEbkIUfH5vODbX79jW694+foz8sYAO2yn7yjpCchn5OcLKEwAO1x/WbHeNuxbwjyd8PR0wcePH/Hho2QB/PzpT3i5fcO27ci84Xq9SjgmzzifLth9wP/zf/9PJVz2+Pz5GbVmABWnywkhik4n3FQrrtdXuDCJl4z3QMogCJ2CyGLxktiUMBskfFb7XvDly3d4ioh+wqePn+EoAOzw8vLa1sh+XVH3jLTuuL1cwczIJSPG2NbCrOFHyzxhmRZMMWKKM5yrgCugKYM1KU0MkmWMNeTUKY1EPCW41++47qtkwfaEEKN4+rF4scxuhmPCfttF3+QKBw/nJNyn0SPUitv1Bc6dcTpNiF4APa5F5zghV4ZzE4iEPJ1ZkvpM8xnTNIl3356wbRL+dr586GBbYazrivW6w7HMXVShqwjBKZeYgEYpJ6GqAFCqk5AzIrxeV9my1ZtxvW3YtoQYPbyXMNN5nmDE184F1CpZjg2DNhqMnHdcryvyLjxUeV9RcwGYEaepZcpuYtUQHEjAXk1CdJ2pItACFwKAgKhrYZ4m7PuOnDNyTZjUiwoMOC+enBYqlVJGTrV5z0HlEHkvIYNqL617UntdPC8JAiBPU5YwSg4ifwpjWzcT+I3nqtSMkAUYm6ZZ5ChXcAgwPq3EkoBJokNq49oiKihlRdqvYJ1biBHOV8TosCwTzucLSslYV/FiA2mWT8iYkQO8jwoQCUjEbFlHS7MdZU+rQpZfiybmCoCbMbEDU2zAoXiiyr5FRGLvaFQKEWGOEcb9BLLM3g7rtqHWDSlVpCLzreba7mVzxTkHdkrPzbYjCjDvlAfMOUJKGT4WBLYQQfFSylm8myrRAXgSLUA26ZGv2XAWAO0+Ivaln1zPLiX2JAuoF0I47skMvWffO7kauYPZvkJV0/X9zgP1e8rvz2pnHUddsbSDLqnMsHkyOokwHXWaCmjGOkNUGaVQq/5YRgzITlwdgKjxn9F7XWsdCTQlbvy57wrT9S2rDAM9lfSgFN4X+44IXZmIpUIyZdSuPI4GxsGmIP2eG8LMTF5A2wHZvGD9Y/3G6BLwTU/pM5vidwxnGU8BDXE/us0D97iau7v3j56L4T7MPY50vJjZ7Li39R/RWVOL++sOvI1eX84dgckxnLB16zuK7XgNM1TA2CltN5ZN6TUA7GgsQ9Npaisqmqu89YPxPoyuhyMCbQptJ08nUWwrCyDJJLGchUHewZPEnnsfdA1VpF0zSRQ5HXCNmNAA4aKnEHpaxQLQpr2gVEbJg4FDosjKHCht7XrvRQi1zHk2ZkN/OsBp5kGi0BRuIIvLbu2g1cEohQFyYpI3byGW0woBSXtGv+ZJ5jsButOMdX3zkZOaQnUAWPu6Y1U83jPaDoarrkn5zuARYe/b8Fe2Wh8N2B/IXv7BR2/X1NsLD3P78JuGxatfbDKH23Ume22VZeYjPxWA6rgRqDMb2GC+pINsY/PMUEPxTX/S8FrXDvW/37SDO6B1vIDfXG8nhz9y6/29G59hSURvvzOCYqOcefc10D2/GLAZ0Xterx9+xvYM28N7VWz1vC/j98a6/KioOB0Awx9fL/WkA7jkhtETD0zT8/rOfeAVGuahbVu/Vj/+HX+/9537OfVb3+Lh560X9K8/773ifvD3oVaqwEkIsMzfmovhNHIofH/jQenz3vhLaDg9l8o2ElU9WCBST6lxLSko0EGtvu+/iUiHeQZ1yWYHQ0IuW9s9pR408MXp+6oIgwieLPFF91iWW+Smp5h37IEbcdi/TRfoGfDktFk+M51M7uW9g2/8kAbSWYZT0QcT83C4hX4flaVyMuwhabcrxMGAFJARjgvvvWbL2hBCDxscdRHjhgqhIgQzFo98GlVD79lSqRMEZGLJTLVvG5aTQ4gzTqcLKhEKM7Y9gbwDaeh82itKXeFqAIUKisC3tMvhjGYOJ67IacNpnjDFgLAsOBHgpgh4wnp9xe36irRnwE2geAYFj5o3/PyXf8XXrz/DwhTjNGNZFkyzZhjzDq/Xm2TqqwXkvKSvzxluig24Tt8Tpp2wZofT8xmeHQIRYpzx/NHjv/63/4JPH57x7Zcv+Pgc8Nd//YtwNi0F85IQeMft6zfcIPw+X37+GS/fX/H6ckWpFaflhOfnD/iH//QPuDxf8PThgr9++RmFsxBezzPAFd/++hV73OB9wH/5z/9ZwmFqxu12xfl0xoePz/inf/pPSGnHut7w7dsXgBxO5wuenp7Fbtl3pNuLgCCkfC8AUi6YlxNKqVi31MIPp+jhGCBkvHz/AmjEx77uwpXkPV5++avKdIcPHz6ACEglY103ANy8XUIIeHp+xh8+/4TL5QL35BAmOZxcTn+AWRLTNClLJmPfNqWDKIAreHYz4nTGnnbkkpFKAtMuxPS1Yt02IDO2bYfwcXpM8wLyAXEKCHWSw07vdV1n/PLlr6j8AS7IPNlShQ8TluUZDIdSgXXLKEwKns2A85IdjQnkI4IT7xQJdWKkvAunVM4AWNLVnxY8P527HcaiC2+rAmmO4EIQPqpSUJiwbTvSnrCv+6AvzvCuYA8CgghJOeN0fhLgpwjvkYRcFexbwr4nvHx/BWoGuIgHmRelSUJnBRyyaAnLqJ1LQto3vL6+AGD4q0N5fkKIE1yYkCvD+4Cr19A6NfZJBZT3AScfMCkheCkSvlYULOHKCvQL3xRrlMak653A8MTCX5Uz0rYjbwUhiJcdWICD2/UmBOneKfm47fmSOW9eZoQo15YkMoqwo3gvGSiVr7bkhJp37OuOtJN0F0vo2zSp1xQyUt5wvYpNV2ptJNvQHcoHh2k5QzyGSOwr5UubTwvgCC765n2Wc0LNKvepoAAo7JGrPIvVEzPtuTnUmIOB2M9qk3in4BV3byoCqh4MxCDgZHAe7Bl7So2Py3SjUoruv6XxAwIOGjioMuWMaV4QYmzfMRzFiNHdGD/Puk+DGnBUioRhOieg3OjF1DidqlBztL2VANLDktFDt0faDPiI/nPew3yP2mETJNssl3KvTPyw/E0cT6Zck2raR+BiBDr645tyyup+O/IftXrLzUcl9l1ghQBPQPDUiMOqajMtTEefZ6DT+P3+6o73BDhW+J1iWIMZSCM4Mn59PH61tWMYhYUGOqKmpHb/ijGk5Z3hG43Ed6wVe1/4r6hd1CZfU+T6GJlA+dFk6RmvhmqY0W1AHWy8NcTOFMyDZdTbebj/vaE5PmcYuzfGJI39cFSUicahHMaH7+4lOrO46TrZ6JvZPKDHo8FpXh92ummePmN77k8wJTa2wNbLUdnt93eEbpwPE8CyEHrnG+G9PGNI22xGCPrflinSiE7hAFJPJ8l6g6Hu3RRlFWr2VpvDbc4fjXBH/bPuUeRgqTUHO0XvM35/WHQ6VCYbah0/VyHJI6PMOA+GuW4GSltLNqZoLsbVbtn6XlwQmaEpvclu38d+fLJ2dF9ONum4/x7rNcx+W24mE2jomzdrRu81Gtdtbo2PsxsP4BOjt69/of85htXZGi93652BniHtUKjf475vhlU3vtd+MR364031xvbZa5Upo9PdQSbcAcNjHe+a3rrI9om3Zejrdz4dNxKTc4eq6PtEpO7HfJCjo7R9b5871OAd0XzYH+72FwANOOxRgub+zT+83z140wAHdAjNZD7dXTPepz9v6ORhf3x/l3mnmHw43Pi+3jS+eO/PH3wPTfbfP/P3YpbAsGbxg/EaxmB0azdgprfxuBb6nta55e63yQ7TC3eSHZK0zIZ0v2/ZXOemrDIUeL67eU8aAb2+t/D+AOtNnUj57tDn4aiH3PffwTPxV3SBXhsRNpZgZJSzFtbgvRfgqe1V7+3htZ0iHz/X+a3KvhCj49Be25ecU/6PUgB4ISNnXRc6huYJLaEhroFlYoyg92tVA6UBTxZeUpv3MyCbrZyfU89eRCScdsTgXEEFGg7F2NcdYMY37xE86UGrGO5CdB0QpkUyGRFhOZ2wnM+43VZU9qiI2DMj5U2ALgVHZuWmKSWKkQfhtGSohzIA8saPwkilglgMYlRGZodCGRwKQiGESmAWPsfT6YI//KHivEwgzlgisF2vmOOEEE7wYUYMTj0WdqT9Ffv2Hev6KsZ6WUEu47ZeECZgTkE0U9UpSGMCACDnBEfA0/NHlJqFm2ZbMS8zTucFHz58xLquIHJ4eX3F5CNCcPjppz+BS8F6u+IlJ+R9x552MaYs27DyKFDK3cZh4ygFMidYl5RUlOSZWqgQc0bZVoCE+2i7vqJW8bKrEP7LmhI8A3lPcAwslwUTTYg8obJwClECvMkHDgKwlQpyASE6XMKEsK9IOYH2FcwemRL2dWtZsn0QoEPmi/AdMQBfLPxIsp1tace6rZiWCbFG+OhRyg5fCT5kMJy0Zd8lvCgWzcY4AtCyy2c1+I0AmVkJruFVLjn4KOBIjFEAopSQ9l3WvQJiWbnjcinY9yRhpTcB4AhoMiOEDD4JWMOk68s5oBhwDrCGmzU71REcBUxzPzz3PujaUq5gFYGSIa2iFAfnnXjiKLF2KVmyTtYbAJkDJUvIoXkQOueACP2eRXFwo9MgkoPiyeSkyTUn/eN0X3ZKhl5RVJ6xJB3Yc9O/960DobMSE5LaL5LQS/itbA/Jadf2C4hBEHAmO6A4Bpcg3Ep1AkCYpgnTPCMEuUfOGSXXvnUqp50jJwcKTsNx2amHcGlhqiHGNmeqgoOOJTyO0TN/iz3X9xxLoiRjwPC+wOKFzEhpfMIswHGL+FEDQ2wKI3wVeV69hMeNNonNmcMOOOrugyZo4dr23faDe05F+T0edDjvMYbzjfdojzkow+jfHRwnDnW/1/SsDk25kfnRMJd7+qUflL8p1M4BgvzA3CwVD1OljWs3vN8oPupiXNEBpvdOHLviPrynxqonYPYe0xCnaqBTbQMENSCB2pSAQXnWl7YXvOEi0ocdDAglaZRwtqZRtdA3bgZfVxzbg/SlU8PXG6gxfDwak6YeyutBvTaDdTRW9UOnPzL5elrGUXG590KSyaJvDIDC6MYvQNadYmpcR2BJw8qQWG5CU6FHI+NH6uQIQPQ+MOWuDn15Nxd0waMplb3fW7/ae3pf27jGtrXi7buuzSk7wexu9NIq8eTRtWYLfXT7w6DccvcMMldISSHtmnChNgkKvI/C3aFePpJhTtztLYTP0Gg5DZFMGvJM4wXroC5n8WqqRdeDXj56IQXnWx1K6aGzBznF5nrcCQrtmcDotWUCEMPrngXvvutFETTh3cemC9ve7xa6SG70tuJWB3kuaSw1H55lJ++yMbvupcnWb4wQB5fU1IIZmgw4GJmDXDvuHtzG/tdKA7vat9BtdHue/t1bZ50hgrbLh7t7t//GZ41yqX/pfiM0mTJCe2JI9i+ZcWnGT5NXXA/AirPspHSojtRb6zTKuUMzMcqRNgnas0wBKlB5PGyerQOsbRWwk5pD13C7uyj/NiajTDJCwrYRvN/HvZ7HvrQ6mRff/de6qjH8fxg7krbpRHk73/rcac+zNmh9qT+k9YvN6qN8puH5vRKkn7T787izjTMVAHWI4n6dj0rLWN6ulLGT33765h3GMLq/Xt79LvUhbv31W/f5tYcN88T+Jog3jnDPyYe17Vs6L7QC5np/eJDKXwm7lrEwGSiGAIbQboGibC1X5d2w+S6XHGU80AH53kZVtMHo1en8KUcOlQ76MAAaPnPUXe/Hgzrxjh0OXZzT+nSi7vH+vV5VQJbKBx3BjC4Lf/IaDtfq4ByE9JtRKoAiGR8ty9WoeJvu1xcP6T5VR+Eg+qXSRRTlRKmuJ/JwyttiesQUXSMrZpVLzlmqegZnRmYhNHchwKm3shAUJ4SU4LYVIN/kpswHMcaoihEdXYBzAQyHsu5Y1xXfv37FPEsIz/PTBQChVODpcsa0SFa6y4fPKDkh54Tv31+w7xnblvFv//YF6/qKL9++ASDMy4J5+TNCkJD+bbsiLhEBExgVu4Y6CXk0AY5w23ewce+Qh9+BmDxetivCFLGcFiwzI0aP8zLhz3/+R3gq+If/8Ed8+cufsN1edSRmcA14+Z7w8v07vvOOWl5Q6ndU/o7CCYV3ZGYUfkFmj1wnPD9f1Esswwi+L5cz0rYBVDHNEcwBsQSs6w0fPn7E84cPuJw/YoonTPGE66tk9TtfzvjHf/xH1FLw8vIN/++64cv6M/7yl18wq9fCNC/w0ea0CmRiBcqS6hhQGgGGJ4dlesbT6amtGdHbFXQsBUgbas7YuGeLvn79gpevX3A6n/H6pz/hD3/+E54/fkR0TkitUwKwwjsJ1w1kYTcF8xQxzTOW84xpFkLosN7g/U2I51+TAAzR4XyJmmkswIcJgFMwpyfZSZmQthu+vryAgsfpdMIlXLDtWT1bVgDCK/TyKlkOzVNjWSSUc9/3lnwH5FoSIaOcWOZZIC87WVRyZtFLI7wjlJIEkHVOifnF06SUin1PuK0b1uutAU+WBIeI8fR0VtOGkFNBykKiPh6QEmQ9n88ncSTwhPM5YppmhBAwxQnmfZq3vfX3eruC4OE54uKeWhgYeScRBSXh9nLFtiVcr1fVuQnn8wmn0wnTJJDSvkuIVghTmz+o4vUyTZMA3Cx2n/AsecTgxMNI5S812Swil6BE4wp2r7e1UeP40BMgHPUelT6uB+E77xEsPK1WeAdUTwg4wVHBsohsmucZ0zQDCjau24qkhOoAdK5FxDjDzRJmHKPwwNUKON/DwqZ5bqBLKRnQEFNyFaE6MHvMixJuR/UW9B7Rn7BvEmq35x3b1sPVDKhLKcEcDY5ahmmv3AAy5xyWRWy7tKdWv1IK9l0ENGmERpMLOpVTynBesj3W2r35i9KpSF8ah61vdlmttYGSEkon41sHO2Tcfz15FPP+xdFGMtAphNDmlay7etAPmm2omcjNDrPolVE3+LXyNwBPAIhBtSgT/zGmEIAYuhWw07qDUqcNbfwGg8L8jr4mjbOQGmcu1IToCU6hR4tzLZWRfwDedEOJm6eDVgkjcMemrRuQZbVoRkM3HgT5lqUnet1R3T7o+3elGZg6+JZdzjiijFzUGsLovDLSHkPRta/tecZhoO36Nf149E6DZZRqAI6inmyK7mDIDZZbt4P6CenBY4P769/S598z1g/eLugA0wGMg4Gc+hlXRX3VZCKoK3vPNGi3lD6zut6P2FvPJOdoIPLuz3XONbfdfr0I9U6C1+srqUx7GsouGKCCv8B4jgxMA9AAJ4kxT7DT2G4CdsAETE3BAuRUBnD6fgeCrH5ErEa3fL8ImjCAP13BH/uEtT22+d+DxUVdLx0p31rtYyWnDO7Qt5XtlFRD5KAAt7M+r1pvG+9+v25sKdDnDJm3OSTF0myDCVWzd3j3NtTX5Jbx85hcanKD0MOJYV5WR4GO4btgMxgtBKSPnfmI2NzW7m9riyva551G89dXVWuRrUEDMrSjrE69Bcd2AiIb3bC+AZYUuyRcBU43z26iYagdHYzvsbRnEA4PPK5sbUXb9O1m3ZPJQDEb5uYHMrRx+Caa6a5Vs3BMsI4n9buMIDp0PMa2qKRt97/bAnTsagNU7Xsj4Dj2tb35xhPncMcfy3Uafo/72uHmh9/HPff+XuPPj+ozftfCvHtf9zrXw9Pef6Z93ttP71713tPfq/+PnsP3L2yavhmM90vTawgYt62xr9rpMLrHG9Q7ZjzBbHUd9tWWAAJoMYpcO/mwJ6cHXgb8a7YiMlJnBsg4GyCAiU7w5p0K0rTs8tTmpWSfq7x2w3dsfyule9q2UGQ2Y4bUW0dbwFDOSu48mT8ozqHtS4D9Fn6Qxtmne8i4Zxro1VajnSqoEiSfSYgjUQWpvmjtDs63w7Sc8+G+VorqaM7ZYaMdcOr4MDdPYtufnNPnEcG5gmkWg3SaJjVOAe8DUpZDpIoKYqdk96QhQhWpVA0VYaTKYpRNmuVtWjDPS4skyEVO5T0rP1SIYC/hYy5EODjh32GHnIFUCbVICm4fAnw8IxChhjOWnFFSxjSdsO871m3Duu8ACGGaMJ8mxCmgkhBOxylgWmaclDdlPp0k21ZKQCkoWVLTX28J+17xsl6xbi8IIeJ0vmCeAqbocT4F/OHTGfNE8OTw9PRHPD9/hkOBwwSCR/kjsN6uuK2v+PTThOvtBdfrK/7Xv/wzcqkAOYQ5w8cMFwpKTVi3hF9+eYEjNdy9en8w43p7QdrFY+b79++SnStpRjMf4JzD5fJRdJ7q8csvL6ilCBcOIub5GZ9/4gbOTLNkFCy1ovALSi7wruDTZ9dC/QkVu4Z+OQZ++vQBf/r8B5Rcse8brtcbvn75ilLFe+I0EbIj3G6pGZ6pFOStYuOEb0HW+rZveILD9XrF6/WGfd3glGf3PM/wJDZbcECIHtMccb6cJMQMMwIYS/TwnyLm6BCCwzxNbe8M0yS6EwPfvr/IoW4tYCLEZcbHz5/w/OGDeI2dTnA+oxbxOEpJyKOv1xu8p8aHeltvqi/Wxk0TpwmkHisxaoa6EECloOSkxN4bGIy0E3zw3VsMtem6jhxc8PAemGfJ2JbWhD2vyGlHKQmAZFs0oEH9DCAePJPKP1nbwQeUwpimIvxf0eF0mZWnSqgmgoK/NQtn0bpeMdMZsc5KRL3BtC1m4Rq6XSX8reaMkhJySQCxhn0V5BxRyo5aElLaMM8nGM+dyHRWDi9WUM8jkhfgI0lmPUfK3XU6IcYJy3JC2hLynrCuK0oS+o6cE5wnBPIAF9mUK1BLaYkFXFKOIpLsornI4YgoSQqQhAnkPZaZMC8RJW8g5zHFCTFOKMzIKWPfE8ilBhAKDU9BZQHucilwPmCezzo/aCATT40zhxwQpogQPRgToGGl3nfPMSLJkr2uq2aIFxtxXXfYAfvpdJJskkESC5AexNjhkfeuhc/mbGFx3HARDv2Qhsgy1VXkKHxrG4B933R3kXtg25F1/puTQlHQqZYqYdvOIQQghknaW/r+m3MWbzOyg5K+f7VQO+5eZUHXUi46ZGbL1tq4r/K+N+J24+r2mtmVQBpia0A4gxyD/r09nmSHNSVbJ/t4QgegUjlcLgYBHRUrVuV0UNxGZW7Uxh0Z+bJHVHc54VfpSHv7GWJHemYYDNYQHcJGjoYSmpHaDY1BwWn3OnaqeTr1zwcl1u5phlEzrkblSoSZGXy9bjTU1N45vFTltpMCD7V6q4gTNcDv/uoGOv2KUtg8LAY7vqnO780zmycMvPfUruAOhuagxTfjZVAwTbk9PGYwiO+Bov5J96DpF/RfByPF5uBwQXvvB/0zvtsJ3PR+FaJIDh0VQk+fLIu2k5u3xzZBYD8AIEK01jL0S59bpK+tnubVVDWDSvNGrOae29eIIzv5tbrekdjTEI5goILNhbsEA1YsxlhcXcUwrdT9J4ioeZb17xVYT5mMgOvjrzZ8A8hszEZj5RB+OIzPiPw7HeORlPjequ9NEaDbuBtHkAOWTYXv1+vdLe/u2/pTv9eBtKG+jpoXpwBxY0UJ761z+/h+qrb+JTr2x51t3/p96Lf6pm3W5iPo4IbvGXRja6mN5fAcMwxHxMRqd5DBBtD2Xj/Ule35XZAPQ9rnzHt1OAz50HhrHzAA9MOvO2l83Mxa33SAGq1PeksOX7d7E34VHMSxKtZt78rYXtf3C713zSATxm37ICN/8Izel/Y/H65/b684vNTJ82am3TGrvzMTD/e6m9I/rPf4QRP5dxc1mTdec5wgsK2hrxnzQ+nrnADh7XtnLsnv/obJTAFQub1nXnWS9dZAJZNn/cSy16CPJRMGudP1FZOlPJwQ2Zq19Xu/R497afvIti+ilj2NWcOWre/c2/3+eJ/3Z6qd7HKThV3gj20n6x+uICbl0kG/rnFe6D44yh39PGfzbuAhDXVvpIWvMzO8Nuy+TWZs2HMBHE6mCWIkNyJyCMepI+FlAUFOvlV2pZzh0w63S8aQCmDSMBExRDQ9eGUwFSEo9h4OgLcfA0ErI2chCnaFEZeK6EizlwUweeGUnBg+FGDKkuZeuSRfbzfxpCm1tcEH/fFiD1R2IAfMs3L0aManwgW5FmwpIWcgZ8LLS4ZzGWkV4vIpeuynCF8JpyVgmRlPlxNiABwVeArwLsCRw3KacN4X+Fix7Tes2xV+qli3HXvOOF0mTLMADs2AqyyhOKS7knKtpizk2bkUMAg5ZdxuK4Cvkr4+RgEFWOZASkU09FoQwozTCeK9Bhm7GCPIuwZQmtdCzanNXe8gnkW3G8qeEQKBnGT+844RAkBOwoaICC7IqkyarKzaXEcFc0ZON6y3VwjC8oSX1yteX6/Y1xWA7I9pWSS0THlmffCYZslcN81RDkTZwVOAiw7T5ATwmScxpBlwTsLuqJFnEggecXag4BHnCcvp1DKSea/rNg/8MUXaVAqQ0g7ee5bOeZ6bxyLpHlorw1eAqxM9UkNTc85gVLjqFDwW49j2hZJz47wBNOLASQRBSa4lczKvpFKKOlLIunXOw7IpA1UNcBIPVnIIUcL9fPAIk2SbK7mAXIAjD+8Dcq1wKQEgOK7gUOGD1I8Ikumt7gJsKajuiVDJZE5GzjsI4imakh3WekgPkdStAsxJ2wkhi/ceBAPjVPMgAR3YCSesg4Ap+76jqLzyanMLWOPgfPdW5VqQM4BaGgiTkoBnpVQN6bNoEJkbcj+glgACIWhmPirCAVIVyAQVVM4gJS5kCBe0KwKGTBNgoazQ6Iacc/upXFv4o5O03hBy8wrnpa7iIcrtENz22tGTVw7/Xd/qoXuq7hPBB7Drnj5VD82PhyLm1esQowBC0YfmNHC9vbZ1zIzm2VhrbTaReMeqN60S5tteOHopjXvkvfJvnxnH02HPurPXLMLHOY3Q0fAQSWDFypfr9aCKm+1iYdbOMdj9UNM6lL8NeCKoizLpTw9PsgwOpih2BUYJwE01Peht95U0RU29MNSTIgRh/BfjokraR71jYZbMiHY769NO4D4ojfrcOoSUEMGDGrk4t7phQJTRJihhIFEltHAPT8N3R0XPFMBmUVD3brKf4ZlvlN/7HhoMAgstG/AG6ZcBhbNJ5pzrxmtT+Gi47/vGlLVn/GrzQTDj6L3ygw9aeMAAPN17PBGMKBXt8zf1e6eMIV+AIb2dZ8ia5YY+JB1DLsUIuLoi3MAOFdqOjnNsaFMTXM5eA3tJsDN/IqiyGTFNESF45JIb+CQbFsumRF43ON9Q7FZ3ZyevqsD4/p4RGTIRSu5pY10kVXCrCj4DhgoYTp/XaeSqIumkY+GG8Dq2NmrrzQvMMuuMY9pCbh005XAndXVeUjFLTLgQP+57Qi5b4x9yzoj8ZS2OXozykC60TbBaRh7HenJ1YPG336R9KV5htmGYcLfPpB3oi9TqZQCOCl2whPUap4U95Y1hfXjZ51mf25pxhAhQl/vKjEzDSRCAOtz5fuXYm6OceFOF0VC1nXUoVvf+Uf+ronMWielP8OicUTLcZjxjMGaP9eHxNdl1dPhcGsvoFIeDnLe/rb4211jBy3fGwThxYIDw4TMdE/QwwDeAtcl2fenAMq+1T8drDQS1ciTe7kDiwTH52OmHe42F7i6l4f37W/1WuQfR6PD+rysRhxVFOjfEFHr3ml+7x1jj+y5/7++xxjx8ym9a9OMnAkN77zqM3nngcZ+VsTNZ0H90vwW11yO4ToCCCqM32PAsdfUcFTrz5LF5bpQ/DdQaKsWVwa5noLGsPI0o3vazoW0tWYPrnBGO3XENNfDHvtO9uoyg3EGMnYIuk21tAGKsVTs0HDyQJfSuH1b0DMp9H6nK9zIuGGdGICAKMhic5cSFzXilzlvROLZsbaMr3N6PwNMYes+H7EBtX3MQzsFO/NHqZcq+/W2/zZvDQCgBntD0Bhe9gjfi+VtKwZo27Cmh8BUVJJ4FDAm1YcCFiHk+IcSA5RTw6cMnOHK4rSuQM6gUnKdZ+j4X/PLXL+Lx5T3YRSGYnmckDQFEZgATpokwR8LT5dwOLV9er7iuK758+QqvRvzlcsGyzPDe4/V6xZ7EA2A5LUhpw+12xbevv2DbJIvYtlaAIxwWbK8Mrhnr1wJH4tVyPi24/TVhWSI+fVrAf1xwOk/wPmOKDjE6nM8B02nGk3vGT3/+BLgCRsZ/+Kf/gNttxbpueH3dUTIhZ5lbIQR8+vgRu2ZNA3bRibhizztCnHCaIuI0ISUJy/rll//VDDwLodn3hM+fPuF8PuH56QmfP/6kHtsZX799Q6lFw+0m+ODxh/hnTBric335jpQ2cC04n+aWUfDf/r9/xcv6DS8vXzCHGcGL3ne5TC1jl4TBOBBJxrgKIGcnoU3eAy5jS69I3zO+XHfc1oR925tlS2DcdE04AmKQrIjLMsPD43RasJxmAckYwvvFHswOXAPWLSGlhBCK6GzOoeQK5zziFPD04bmBP9u+o5QsnhNs9n9FcA7wQQANtc9Kztj2FTkneO8xT6FlOsspI+0J37+/ghgI5DBpgoOU5RnOEeLkQTS1rMalVuRSsV5vSjtiBPziQXNaZkQH5Ek8PIIn5Jywpx0gBrko5NUqg3MWzqV13QBmBVw6EfRtq5iWRfmGxFtxLwWXywU+TAixIGNvAFaMEyzDXK4MkHifkoJO5/MM0ATmipw3cEkoqED18ncCdg27ApxE/GThsCo5gUg8Hk/LSYE4BvkOnFQWz1rvA2KMqFkAyW3dsO+7yipCiB7nywKQHECCbN7lZn8AwO12kzVVGXOM6rHmzZwCIcHHqDQiaPuhpwpQBNwEuAiXMkC7fi6cYhIRZHKvwg4Y1n3Htm349u2rkJiXAqCIp9IUMc2xPR+HA3pCcRWcM+Ik/ZdSxhQlVNgHDzgS7yAag5qbeagREpIYgNT+yObdqVuBcQZ7J2GnZsf5GHCdJ9y2m9hiYNuAAaBlQoU+F8o7aJQ5zAwurLxkEWNhe/j43gBMjTqWeWQxV5iXdduvWJ49LwtKLgKOlyy4iVcqDQ1ZF69Fj+ChvGr/zqF2krkKGk/r1eWKDJ+AGJ82UE4VHAMnuHEASbvG4WQ1hNA6BTCX5bFL1aWruTqrSURi0Pbn6Tjav+aAIuYEC8iqxpN+YgCRa2zlujjRBt5O1+xHBAfD0vQJ58hQ56a50tAONZS5D7CFFJmh1UPKelhGN1oGg+5QtDdI+6WlMT0aP2jjgUOdfk1RZ7s7HfXwN1w6w33cO/c3OnUz6q0/7YRwVGoNYrifAwfPkMGgNcDJBKv9LSmMeQgJQPshUlCDzAPGhkyfY9dX6dNaCxiCqBshoU3+t95b0BMZmavOE2JwkgWU6HC9hX6VXNVzg0CawYhcJ/aTNKYBpTh4Xw7Cv4F5Cj6ZyVMbH0Zpp7Xk1AvJAeQsDLFCzkbR3F3BrMR+HQwu1frnwFDUEXsbbwM17uaB98I1QM5C/OS0TtSiAqKKGHvYRQMJ1evL+S6jTQZIxlbNBDGEaki9xEizPm4n0Fw12xIP19lJgj3PNWFNCpxZ28ygAfPgkNG9D219vYnkVBkoJ5WDwUoaKkJ9cxOiURNHtgHJqYPTdWc5JEbj/SAyxwk5tPfNer9b2+PdSD3z5CJ+s97trqPx7WAeEwbj9Pfunzs8rG30bd8Y+tZkOx3eGeQPj68Ggw/DdssDaMc4erypEU3j9/mdfuGjPBcgYZR5HXhgJWFtjyHblzT0iLmN5dgPvY1vy/3Y0fB9Gi8yLOIePMOw775z17fz51cOF4bLeh2O4/LetT9+//hde3Wcyj/arcZBeecaHmd/v+Ob7Vpf0PipdSAde8q/jWe8r8nwnu3r4xztOIoptqC+Rwr4b7KUmtJbwIdQfRG91IB3oLv/C7hsRyfSdvuuIygI0nU5K8a1wvKQI+ikss2PCmut4p3YNnF9hnI/GUHr6AUI9H38R3uGtZF1IdsS60ZF71XSNW3y/J67yvQ4r5xSJqcN9BIeRekjO1StSgLc+rq1wY3LTOTrADiNYyxFsk/ZvmLZyVp7qXsyWNYqEDAbzwgRonrfOO+RcgbtO9z1hsqSbSpGYN1XEAjrtiIEL/w5QbKGMQGTD2rskupIO26vr9hyFr1U+2IKDqc5wFMR7qgYcTo/IUwnkIvYU4bpGCXL6X9OFS/fX7CuG75/e9H2M/Z9w7auuN1uuL0mEAcEmpFWBooDcQBXh50c9pcJ6zzhtMzg9BFlr+KV4yriQogz4XR2CFE8pmMEfBAumnn+A5hXMN9AVFCLUA5MMekhnBP+qm3FbUvY9h2ArJnnpxnLcsL8cUFV3pXX//F/YV1X7Cl1fhwCHGUQMsA7vn3/2nTOwhXOB5zOF9FBnRj3BmKcnz5g3yXES7y/Cq7rjuu6I20bakp4OhcsbpHQx8nDw8GRetOUitvt1vZHCUEShahwBVxBxY5aVgTHoAnIe0ZOGSXn7sFQC261CuHz0wXfo0deF3B+krVfK27bKgf/QTLZ5SKGb1RQLcaI6CdZ17ni9nptIasxBsS4wJ088i5k6lwIKWes6w3X61cAcggUggNzkANUcgBX5LTj9iohiiln7OtNwOgqmcSIAaGakDBPRkGYAjwCnCPM04wZgHce1+uKtG8A1NNrikB14EhADWLHqPLlPMFH8dqyTJulVGxpx7auePn+HZbJOMYIF0Wnd5NQRczTDd5FVA273VcFC2pF2nt49OkUNZyvolZCZVIQKAgXV5jhgxBfX6+ij3rvsSxTA8kdtF813Gvfs3gtpSRE/mDUtLUse9M8ASEIgGC2px0CqF0Tooej6eDJuCwKsFUh8yjqmTVmP0spo3MMkZKCe9XVRQAK8KIHU9VI9jPIA9Gb8wjBV/RsoD40L7MQZKxSyki54OX7C263G758+aWFc0uIneydIXi4IG2Pym9l3psejHBi7FuCgxw4xDloHwRs29pC/EQJZHCpqM6hqk0m9mHFvu9IKWFPypGl+26MkzoORN1Lc7P7Ypzw9PSMlBMkFNAf9rx+aG+ef31frbViLwmBJQPieKglBySEveY3fIzmjTzqhdKvwn01egWDgRgZJROqA3yIEpbYDo0EcSMi5MwgKrDsqr+OJvTyu4GnDjq5A+ikzbhTcK116qmgyoDgUYOqR6YM9feajnd371rVvWtQgkyZb0bd+HwycMMmv1pXItsGE0PNp4O2c6+YD5/YMaNe0x7/BuAZuuHOsmB0UIhb1d4qSa12Q936393i4P6HPm/0PxgU0P7NO1Pj/clyUPyZ3/TIDw0jOtZfkAJV5Qfl2tpzD47p4xqoadc223J470elgzsG9HC7r5UGJBpY8+ZZrMJEF6+TbCLkCOQVXD3UXc+V9S3bvCJ5rYcJCRuP7hUkG6mAt27IsCf9zy0+27L1gKtkskGfI9raNisNJLEsDAA38EY2em7augFyxi8l4QQGFvaxe2v3cZvLAiKaccjDd/vfLlhqUDWI2lwVYSZyhRuvkS038prdz/fn1rYJCsB0Lzuki7n1hRlz1qs2fiMoOXo2vp1Lff3f25z361+nw7tgANp61AtYUTYbOeonLARCJUlKgDaeR+C3Hh85Ygboq/3egOehvzoUYV/h1lab06wytl/rYNKsN80Yag7yi3u9xvoNkqz9oRKrZcdsm/zYFKv/fX8z3rzHP/j99oW2n2UVN/k81NMqzUN7zLfk3tPmXm7L/XUdDL3w5v5421f3u9EPZR+3aXRs8/1cffN//+QodX6jjLJyeNahvu0Fv7l2qPabGzHeH7P3a3XczY4CwPSEdzfjw7fH7xqIaJ6fQxOG7/TnjuNI4481hGy9/qAFNMhwk/FQWNcAcUA9WllDMaR0kEX3lDrMXwNzcOy7DrCbLmeAOtqe9F533YOurf3c9w20Z6okpaO30Hif1u5BDxj3/j6Z+/esH+xvk0EA6XZmst2ecTfLTYbfjYH0gyjfR9CKda1bRqvjRDBwUPbPeniejYM9d/Tezjk33hG5WGaN96EBTH7KjWMqzDNciPDqQWPJY2hPsv+BEPatGVNODSnvPaoNrvdArup1X1FSxg5g28UTWoAnj+oJJRGih4aKSKp05yEHUNcVpcoBikQ76IEUO9QK5fFRSoE6zIuaAdV1OGXUDCATSgbADruP2OOEfV4QvUNJAiq4AMQTIU6EZXOYJgHolnNU7x2Ccwv6mi3NTonRwZGR5TPE4K96uExCXjxNmOcF57Okbc85Y1lmpLSi5h2V0DhOcr5h3ytuvoCrem/PM/Y9wwcLyawg9dIupbbvVpYDPFai+woCfIALEr5H0QGBQMEhUJSQruAxhSiHa2T2FIT/SefpnhNaAAxbSBjEYM4ZpWyoLGGwJWfkPaHmiOAYt+iBkhAcxJOpVLy+vgJK0h2mVeY5Eaa5CLAyVwnzrFVJrGXRkiNEH8Xra5pQva7DSljXDbVk8XwiFkPfi1eVK171cEYpGWnfxIs9V9QqWc9qkbAfW/vMpeUAyVkynTlnXD6EiRmrZrDjWkE+NM4nkc0CihfWMKRBTzW9tbKG9WnWvKok2Dln+OLggoNn4U9NW0YMM7iYHr3K88ihZAUxVIdilr4SbzDRsXzwcOyUX4h0ns6aVMfJWjb7g1jDBO3woSgZdRbOrSLrzHsPH0OTZ867QXcdIjVIPZGC2BkC5moyJJY1Y/uROHYMnuWsstf6rdkvXc76ICF70HUPljBJ42J1PsNXoEY7DBkTFtn+IM/LBkimHfu+N6WDnLWn69dEDsHHIXxth3MM8oB3VX68h/MBzjuEKaDUItx7KrOYq3Iiiux3xdR2WWsWCWJh2KXUFhJMJBEVBeMhP2GaJKlD5foOjiJ7Sc+MSAquofW5HR5ZMU9a2/M6MNhD98iZdq62WvP29RjtG1tHlfrhFHPQTIgCoNZKh/1M8DiH7i7z6+V3A0/TJJm1QuzGn2RbkYHOuSJn2+xl0olA6OFHPW09eriOnuab0Ttu6qMRLIz1aIMvTxGW+K7h9UIqBL15mYCBKhK76netjqXpNjIghc2YlQ+cGXuQ0wA5beNDfZz+eW/YmLeQbYhmGYyGMg+DZaq/1dlO6Hq75BvN8HpHke4hghYixe33qMz/yH4Zqq/G2G+aIFr3/vtgqENDGVUBP3znAKodm3MEn6i9d1Qqj0qvIb0AaViZKNFysqLx4vpcZ3HQZFw7vQ2dRLQ2IzhOBAcPHwKcuvzWYpURt8pR0bT6WWiZuI4Kap+LoN2sCznnBDDg4NoYG3m+dx4IATF6MHu47Jq3GA7jU2GEjFOU0NTsVGVmhidgWahxTNkcz4kB9c7oxoF5j9l20zdleWbfqEdjooU0DK9tzJ1jBOOCqFKvPh8zgIoQzGQzIlt5OU1BY/+p9YusA9189TrX6jeOgWsZ7WTMbKM+rnMR9kOYnZFPU/fSw3j/FuulC7/29fUWhRjmtf7XQJti5O52O4MzZNMJTk4DPfcxqpWRLZT0Tu6MUtQ8gVpECI7Xvq1sN1B7W6jLGmq/BtJoPvxVTCSjg1LWmh8/VWLr2/objNS7yr0rt+6v/DXZ9l4fEEYeLbQ5QcARbDWZhD7Halv/5uMmHSBeT1Ajr9+7JwYYe+9Y53H7tnvc1/fwvR8I9t8W3e/3FBno8TvK+3NquLuKgF+7ju/r/c59f9SWu+H5zX3NgL9xWRrgfH/DHx2M/FaxeztASFmLylZTeWzNkmbbVI2khaATFMweZQq1X6OyahU2/pY9sxqgg45Cw+WwzK3yHAO3zHjoSrqC+xB6g/GJtteO8t6AEAMZqC1+3cvUc0loGtoJQg/vcxLW0jycMGY0JQRHoDqA8w2guxOxzKpcUwPzrH5VXWmp8SyqYaHksbbvjnOf2/7HMF4/GvtzmC8GPI0h/8f3O2gkHtniyQs41CI+kpEJPkQh6/ZK/O2FR4ZJqBr2zADJfrDtG9ZtQ30BUi6IMcL7AOiBWgUwzTOc99jSjn1fkVLGPEehGagRTg8/SAmFby8r/vL6IuE25zN++uwQpwt8iFgWj1KEuJh8gPgDO3z88BM+fvwjuDK+ffuObVuR0gZPhNlHPC8L0vkGzgU1Zfzl5a9Cvvy6Yr8lNcAjKiKm+YR9+4+I0wUhTpjOF/iFEGaH04cZp2XB6bTg80+XxlFZa0HaGfsK3FbJ5jZNAbUIyfOXLz/j27dfJCSJGZ8+f8bT8zP+8R/+QTLSOY+Si1AheIf//t//G/7lX/4Z//qv/4LX129gzgAX/PO//Ivoas4hhDOW5YyPH3/C7baBQfi3n39Ww1K84mVNAOezELXXmvH8dAHRjKcPf8T58hHLIqGS379/Rc2Sevi0LJjihGWeUVJC2hNoDk0miE4aQU483JLy7NSktk0FVr/hhgykTULMawFKRkkrtuyAfAXqivU6Y7t9hWXeSomxJ0IujC1lLKcF8zzhfDkhTitiDDhdlrY+aKCpWOIMF2ec4wn+JJ4q+56Q0o7gCefzgjD57rxwy8iomk0MQBWgTMi9gWUJ2PeCfc3Y99y5hfIG5gpyjDhNCjIG0SPIwZPDPE8AA9++voBZMt59+HiCHTTLynPw8Eh5B28SfhmjhLIaubvRZKzqQbatG8KkYYbhjHTbsNUVt2sCq5BPqQqI7AOW06llF3ytQsY/LxFcCDUx0pZwWSZEL4TupQiQ+PnTh4bjlGpAjXmuqe6q+ql3DqVmlJxQ0g7mInZH8hLKGCNO9dQPtk1nZdXFScLLChcQE6j2REQiiyWsSuyfoPJeQrWqesiSD2CQAt8iY+M8w0/CIVZrBuqOktE8/x0RpukE7wtCkGyMtVRsaYNlchM7XoANpzxq87zg6flZgDYFQLyPIPJgxQbkRzKBsto6NRfUvSJrUgeTe+QkI/y8LPBF+Jgk1FXmBDGDagXBN/txigIOWwhjzurdZPYCNOokF+z7hpyFsBsAnA8qnXWfA5onrOyToXFmlZwbr1mIXm1NFuANBjwFBbhFNo8HHt4Lf59lupUQU9dI120/H+0/sZk0DL04lJqQyy76wAB8EQHOVTAfuE1+tfxu4CnG0HidiATRt44uhZGzcKuwkXA0cKBBKWrgA42lWhUE/RNmSEpj2G7TjADcG/Wo4nYOYOgHBRBMQXDNNZx1rbkBrLCMIBbWUnggK9diYEJtGeDsPmagK0+MWgOjkWDVstMVQVA7j4i0w/rpPlzHFMGe9t6IRaVeqhANhudokBwUThz+HNBpmJ3UvtyQTEh/jGr3nQ39w8LK09DtITVkVFBW9ew5noDeacewSU3ttxnAg96qTTU+JzHquKqgJiB47V/q/e10M5FMBBpO1EJFRSiWKhxJILQMix144Xba41p/Oux7HhRnW/QOMUQBgxwAiDAjQgsTa2OigyDfV3AFgqyXOvQm9bBXU6hzLig1w9z2fZD4tFIqjPMtzsLN4LwT4KVY3zvUYv0os9ErOSGD+8ZCPaSD20knwXFREO9+XLT/9P1SC4h7bLGBox2YpuG70E2BEJXMlEhIKQG0TdfuLzHv1kOywtwb70y5Z1G5JRhll1eka1m8M/XkgXRCqSnZ1oCF5joCU9WsDmaYaT10TRmoRZC51NpnMk6bUljkCnNRw5DayYdXCVEro1BtshMDXwrhyLHT+8M+Pxr0rVsGS0pOafr4qWhG8+qh0d4ahA+U6+lOHpkBPobSHZ79prLdm2use6vqD/4+XDOs9cM92n278t69bvvafsO9ZJ9q4whoXm7FPuReY2Y6EBiDbZ+qzYy1D/uql++ObbJ+vgeihqq8ef++3I/FfZ/dA4L33333vnS85kfPt/r/Vt3GUn/ls98qB++WjuQe32M+9MXomePoqDgJWOS61+tdpcasvof7UV8rqkAcgM2xNM9beWKbkwYw9yw1jKwHHeN22TiR2kaO1nmWsa6vV/ndgFXzvicNWT+gWtzuwcM93pstI/g0elmZZwmAw55osvwIyBoXBymfja6Ldj9uukrnYMKbhWAHb3ZgZyGApi8xAKrK4UGkYA4rlyErh4f+U6/c5tdoNA52Gmk1U723Vmrh7jQ+l1m9y5zIBhYvDQMnKkuWUNZsRnuSEHR4wrJAs85FGNgkYfse5DxylaxhOWW8XsVTpdSC5XSWkKg4oaKAIIb56TRjmiKen54wnxZM0wwDmpkZ19sNRUmMvY8APPZUcLvtCKGCnFcdVjJE1b0ID2EWT45aK2434cMJfsL8HJH3G9J2BeVVTtqnAP484TXs+FY25NtX5a5asO1A2ma8fCe4cIbzM8L1An+aEJYJn9wfsG+E65WR04wYZ8QQRecrDjkFXG8EcALRKmEjZQcRS3r68wk+TJhPZ8RpwnVdcb1tsscS4XI+YVlmfPj4ASEQPn1+xtevP4NYeDivr9+QS0EtBfPyEc5N8H7GL1++IiXh7dy2FZWBXKqS80r2r5Qke9bz0wdE5fqsNWFePOZTRGIh30ZlfPzwAcs843w6Y71esd5u2GvFbb0KyXvOQJCwJgpeKDYqI0QGFyFbfroEBER4Dri+3sTjzBXMs1BNxMBwEEP/dk26yhyAiJwDciHkLWFjoOwJ+7o27t2nDxcspwXLacEUF5n3Dlhfb6hJ5uPT0xOYgdu2Y73eJIuf8y0Ui1nWGzSULHgBWQWkEN7NooANxwCvGdNC8Ci3JHxK64p4fUUuCZWLhDcSARUCeO0Salg1TK6kiBjFG7ApZOQQpknWWYgAlAPVQHQQYghI3utr4TEK0YNLQfARCA4bhAtq2xNqIQUlvGSIjMI91CN3KkqSw+uW7VDlsCQF8jifTiAvQi+XrDQVDilJqGFFAQqBG7E3A1wFYGTVG31QLjxGVvoRE13eiUdW36ZkropeLLq2ReiIt5WDdxI2l0tFrUn7T+pfiuVfrYhO5JMPExgOpRLSXpFSRVL920B/cFG7zJmkR2XGpNnlYhTgnOEQGIhx0r1E76GHHt6T6ONsB9fJmGcAZqQ9oewZ+21HTkk4xtIuYHMMcOEkfeIm8faqRey8EKC3hndB+5gRovCBkWZ6K7Ei+dQOqYt6SjHXhpkwi/OBshJCslyThggGbZfTcTOPuYyUMoBN1g51jzBWm93syO6F1A902kGNcxI9AbQM8N1TedhrSRorEIeDUy5gZq/2TT9EIhIv16oed7+n/A2hdkd2ezBQLf1hgfxkqHZi3ASAqSmj0tOUfv1vBFKsdEOBTW+TlwMpgjgjohlGZoASugJjoJMjUUCqXmyhKhamIxwEdjrd2910V/2vqiHtzPgik13m0XNsB4DukWAXmOHRrb5D/9g9AQOeqNWlWnayBkigGWkj0NNrTXfP4eE5Vnm0/up9zz+0On5oENx9MHZD96JQYx5oynxvuXjFHEO1et1GZdsZAGjtbwqe9Lch9UIwbZnhrG/lphKTrhkxBrcGq2MjqvY2h5zaLQZaGl+Pa3Xr3jhqghCUIF82S1BV3h71VjLDQhlmuuHEQ//Jc8aEASZIfAi68ABQln7mKkopiSIlh7wkJ0PRtZMIoopic0ZDqEqxvrLQtN6/5r1WK5q3EBFAVjE/miZmbHDj0JI+bYhGc721JguhILVr7dSAnIBoFqNcq4DftljIwC8l/eihIkaYq+NuBucwb6oNlXRzB1oGNyJmiNs8QXixTIjLRAQrjxRXDYMZZvXB4uNh/qmLJFtWc+7gExN6hiPrUTLgnlq7q64TWf9HOTsKmCPQgbu/qV0F7RsDrHm42Ayvbmodm3bf5NZvNEg8vn92v9fYSTx8znfXjlf+eh3e9Mg7+8vY8l56YOrxE7r72+m1dtYy3mkMpTT53MM8ex3u72l/EfCmYW0P+aEAvrv+d17avBnHvtLnH/rh7maH6t0/iH780bvlvq2/s43HERwW2vBrkEbtDYIoVSMfoQGAdKg7NfBmvCmNs4vu9u8ftGmstYEosL3NtmmTAYyDjHLO5Cna3LDrAAOf+NAfPHTDfVVYdZkmsu/2H1OQWyjFfR+N97VNmrv3qH3elO1DnbpnlR3gdA9HAWiipqYGkRIecwem0EMEpX1NwWpPvg8zHFd8qw2bhyy3jieSeWH6Iazutpzt8Em/dtRxxoHvYKZl0htnh3jzi67ACn7JxqoHuUn2cs6yx08sOoIdKkXvJHuWD6Cs/Fo5Y8+SlnzddyWxFO8KaFh9DJOMS62Y5xmn+YR5WYToXA/SSk7Yg0cMQbhKfAAzsCfhgQpB9SdyclhbigJprAdpFWnfJcNeCDifInYHOGTUPSC4itkTQrlgDhnIAevrjpwl49e+Z9SyYVsjGFeAJvjpCredEE8nxPmMLWR4n1D2iGVmLLPwRJpH87oW1JLAvGI5EYiEX2s5LeqFcQKTZDx7va4ouYArY4Nijm8AABbSSURBVNK2Vgb+8NMnfPj0EU/PJ1zOE4gkNGdPn5CV12U5fUZlj32XrH3ruol3jqawv94sbbqmKk8JBAEdY5zgXACjAk6yFro4AU7C9OJ8xnxacHp6kgM68phuK7aUgFKRWaIzHCBhZEE0Dw+ggAEumMMElAAuEdv6ClE4ilCnOELwgHMClgmxtNTV+ZOoqNUBtaAkSTqz71BwRHk5wZhiFE8QTVV/W6+NqJo0LfFt27Ftu4TEkYSmyZJjPVgnzJNwR4UQAOdQUkZSPVA8ORwIQQ5yY4BPHrnIYWZKu4ACwcF7zYymXF05ZeUAFT2x1gKQhFYJR5aEFM7LBOcjnA/qyVMGuUMtLAksS2uKHi4QwFW5SDsvXNp3cHVNDjgAEvoGFE8Qb//a5l0TSLZFqT47TTNckHXsc8/4Vjnrj3ytOte85vV4EhIBIdnGjMydS0EqWQ9XCfBB2g+CZdgWHVjGp0UDmPQncYQIBDDnJvvl+n7I4MiudwJUA6jFIqMqSpZDlFoKSskgKJechUHqthKUAD3GCJBHZQJ5VoCGAaptD8G2tn2VoSBYAXLqgExJBWlP2K4r0rahlIJUUmv7lCfEKSi/bQCzAI01BPGhsv22AIyqe5jSD5GDq7URjot9WNRrmAG2KA3lyGJxmyHn9RDzyFEcQlS+LNcAOckc6Jr20XigyB0OfUBo++shqkj3a69ZB8Gd3/aIW/TDLfFKE0NKPLuqPtt4qEQTtux7v6f8buApTGqUqcGcc8W+M1KCZS3EECaLUVsxTx4UbidqptAaEHQwfIZ3Oih1p0jrs5rKSSJwDWgSl+yKKcjEkc1kMJq5g06lmqLdlQqqR1PrYADZqrCFbidzJH1kARf33SGHqQyuaKijrX8Chr4wwWOhP33yiKAykq9jvdqzCMMhoIwDAeKRodVvxrgBMmCJtwaEDK+Ij9J9eU+JtfExZXjsr1Fh57vr6e5GnQS6N0w2uX6thclZxh/ACN1U2AwdYd1ZGc01UDzTZB4WOBEePITJMEvWxIrGTeNIQhOCxkq3kD4uTTEtDHAt6kkjaLBTj6R5nhGjhw+maPe5x3DwTl3jmSWWuPWWLPBahYMhRolVBqEROba56CAZKnQ+W2fUWpuHk/eEeYptLjk4QfFRkXZpuyMgBiFfzZaVryEIwlVVuSIXIGcB5TwEvDOXVhlf+Z5X91VmRskF+97D55wTQnEj4ZRwSPMIMT4qOV2zUx+AJWuTjqeR45Y6Tj6ZBCP4bLw9VAHHPSvgwfuI1CCDyhA1ELkquECaxcypImE2C7iBdUSshouNnrzPo3HaFi0pb4i8VyH1IxLFphQIwFYKnK/txJwg2ZzYEyqceJChTV/1JETzkDv601jpRhDfvWKdUsSsmcpw910e7mCQKavh2mVRtntBvIL6M3oN3hata6/yO1Lo+P69rBnry+AfPEeKO3ypHwgY+Hx/f/vpqxNIEKAwc+8TuR23zu2cVYem3UlFGyv0/cXawfdXHvvl/i7y/7gDjNeOcGMXmPVOWovq2sd67IP3BmVs1zsbwO8ub+ebFK/ruYECd9c2PeOdOxB6P7Q9kPq+0kVp32tFhNU3Y2Q3bIcZwzP6ntY9nOTwUD0pVXYb6XYxKxcAnKRqBrh5lZr3rHz1CIyNc1QOF+RFsfAJfe647kz2eNe9U23Oqpun3CPZPqZr2IkCPAoaM4IAavsuYZj2BOWx6Qtp7H9pi7CFcOnJHYIe1FjYYWL1Ti2MGMUA9YGavMulj7V4AHfF38YZkO2L5OxWqkPUvHS5MipLGA9p6CNgSWOkd3wjBJcB6ZmdipxbecBPvrVu1KB40D1t3tQqYYkuC+8MSoYP4knBqKDsNHxJTppT8QgxwscJl+cT4jxjmk+NANl5J54wJaOS8JnkzKjsESYJlZqmM9yWkFLFy+uOPTssifCHPz7J9l4L5nOFizOWyxnTPLVwFzNygKphVoTbuiHdhP9m33fRT5kRfEQ8RZwvE5bJY4oLTgvw4SJhbMvkcTn979hur/jrX/4V/+P//D/w8v0bXr+/gkIVwuL8F2yreDE5fwKFBT4u2L99QQgneDfD+wvOl2ecn54xLRGl7Eh5BYUVQALTjsIR8xxwPi/wUUG0XPBy/SbPKaxE5GIch/ALpmnCf/yPO54uJ5zPMz7/8X9D8ID3jE+fzgAYKSW4eELOBa/XFf/4T1chVv/6DX/5+Wd8+/YNr9efTXnAvjoYz+f/+uf/iRgifAhIOQvAdLmo4Sbz9vZScb5c8NNn0dvCFPHHP5+wnF+wrjd8+/4VpSSUQnh6foIdg3DasN1u2LcNBAl1Eo+IHfu2Yltv2haJBiAq4FpQkxmfEtLkvXhgTDPJ2BbJPijkzw7X719AnMEl4esv1ADUPSW4EDDPM75+vSJOM/x0GugrCGWvcA5YlojzZYbzDufzrN4mMu93l1BBoH3XJVWQ0opSZLGdloBlueDpadLwIwlTM1DLuYCX9YrbbUXOBcuyYJomxOiguFSj2hD+Gz3MdQGVKghV+ZrkUNE5j2WZhRQbBXGS++SSkcoGqhmn0wRHhHmesN52TUZQUWkVXY/E/iiVkNaKlBMKZyAQ9lJQakUqBSF4eB+VWH5Svrd+uL74CrclEO3Yyi6E2eQRnYeLAcFPak9VlLRhVm+xwgXIqWU+z5SQAexbFqDYe7gptHF2smEJhFUcGA6sVBmlsGbSU33cQDrZYOR1FQA4ZfE6K0lspJqBtBaUtCOnHUCGd0AODstJxhNwmOcZIU6I04Q9aaQFZIgr0PZYhoTaGijgvIIzlZFTgXkPl5yxrzuu31+xbytqEXuaqoTRlTlKmqUg3gbOC+m4JwJpG+sugF+uXa7LHOnE7aUqKAJI2KSCTr4d6ssErMwoiQHfwsUawJlzRnBBdix2cBQwxX4QA2bM86nRgEh2wQqyKB7HLURPt6lmOxMJIFeVp082yH7vykL+bvudWBriREEcBHxSBwfnNFiVGPXfO6vdp88/9YxXkFCVlCqUw0xOPrKdEqEpJICEjshLPrhYyzhKuNuILJtSz/r5IdzDtEebfeiKk1eQxnkxlB0RLpepAWY5iXtgznKTyqLMNI4ncs1NT0LvuneG2vbqbif39qZ4DvVm5haexoQGilRWtzRAkXdzTefBk8PSD6tyqqi3cdsQietoUaWn1RvW39r1d1p5V/KG3y2LCtpimWJs/b3njFKBNITxHMAiPhoG9r6jUdnidkLYQyG7UWQHpX2e2J+11cmI9Uw5lC1RFOGqfT3y3DRwUn87VWStnVxZiKpJvGjslNd719ykLJMdWAwAHxzC5HA6Twr4AHDciBqJHVBFGKdUWlYL4UTzeHo6IU6ykQNCAliqXCdGjkNonFF5MHzG0+CKaZo11NUyjUlM8Ji9oGTNQFEsNWeWbB2+Z6mwe1s9ZQMpLfTOQgGMdFBGSEICmNV9OVWkUsWFV+8/BaeuqGKwGRjhlPROTjtKm0c9lMxrKK+DZQ4yIle5v9PQC6lLTkXW8V5QWU5BqhKndMCutvnodQ5yUe+gCix7lnZi6GtmdR3tBp5tWDZLLcFC464ymVTNi5KRa98Q5UauL0ZboyobSjFznzu+R+ICbVYiq+ywbB3meWbu45aanIc1VtV4NfihgBpnVW1rUMENk81mYnN/rsmxDk+gGZAWHuSbzAfMK4vByI00HQjop0XvGcLQNa090fqpH07oNc3obhccsI2j8f8O7vHO8+yZPNzbPGBHQ/qA9Q738kM7HIb5w+PdpVSgZ94a600DsNDGRSokdTmODe77ATavBhiEDcI9Fhr+t54++srYuPc6ju0Zxw+HvzsbHL/9cKjw2wqNIV6j9+pYHFEjELV2D9tRa/s4/vfexzY25unUe4t6PSB7ra2tUuvdPYDuyj7Ma+o92zz8hj2w8YWQeI+LXsCqX8g1lno9ZyWLNY9YCzfH4HWuLTeVyA7NsgFPgOoOOnYNCOsyTAyLgTdJa59zaeAN632cxrez7jdGStpC5nikTZB+yg28qm0dT9G31OeOdJ/KxtMhRkP0BnQIX0gpsnfMs1Nuis5RWIvNFc1+NGT0acTpYxj3MD+CDzJnawfcrW/sZBq6j4UYYCfjQqjc29nmbou7dYpPKadI5RZKETSkr5SixLYkwJMDyHucL0/S1xrCMS8nLKcTpuUMHwNCnCSMbpoxLwtADqdacDqfBbBkC7kHzFNjWSbM04R5PoEowruM6y1j3zJKWXE6bWKsOTFmpmnCiWdMc9CwKC8eCtrnyzKDnGSemkJE1tCvomm/vfO4nM84nxdMgQCKAC9AlRDy4AgfP5yR04rT+QQm4NuXL/jrz3/B5ct37OuOfatYXzNyBoii6ngFsa6I1cOTQ0031NUhOcBhQpwcTk8T5lOA8xXkC86XBdMUMC8TzFM9ZQmPSjmjFEJO4olxu+0Q7wGP19cdOVXcrhsczDtIPMW8dwBC05eC93h6uuC8LLgsM54uC67XT3g6Rz3IrBoeJXN1W3dM0yxp3MkDGjaZ0KkaSibkjbFeM1CdghEzYsjgyeHpDGzbDZUrpjAL/64jBGKkyybAGAgoEnp1+/wJ+3bDtl6R0irGpHr7MwMpMbjK3PV+BpGFnAHrukr2rzCJF1wIeL2tWJYJyxwFkBClTsJHFVxPqaByRoRx/oiXHpT8/Xw+YZoCQhyyjzkBgoJPCC6IJ1oQwGIOoh8HT5hmpweHtRFSex/UDiUQPPKeQSBs+4ZlnrAsM56fLghTEI6mYKFDYoc6EtB5ilEM/hOBCqHEDK4ZXGdd5AlBAaxSs5gOleBowjIXpJRxnW8qPyqYC6YYsZxm4Z2CUFbE4FFLQc4ewWnmUpKwvmmasCwXROVnSxAOr1Kr8MKxB6oDJ8AzIYAQvXhqeS+ccsIll3E6nQVEIYdt2/XgXPc7BoLbxbMoBPGwnIQaRHQkHVsW7yUXAkqVREu1MuZpEh3ZSObBah/LT1Qw0MEhOo/iGdUXuApk51G8B3ECOQFDT8uiFChQb8yIEGe4IIT8sUhW0Jx37JseHLDaIk72jyl2Oydv4tFnBxLlnHE5XRrwVEvBMkVMMSqHWYQLHhwkhNXCG42Pp6oXXc4FgD8CNVzhYJzU4gmXk4SAlgZKMbZt7/hHLfCBEEL3eHLOgVh4m7wPqLlnEayadRwQjjdLjjUvN+Xdc3pwJTyCTRfSPX7EG0qxZBjU5gu0PQbmdH1c6lqaZ1zVvcG1JCr3+taPyu8Gnj58/IiUina2ZKFISdagAUTFFABVAmwzFuDJFCELGTE3bNnW7R4ged28WLifHI5tEsVfhKYpwsG8gzy3TffpaW5KSM5q/BZR1bj2NJFyU3d4fu/8btB4dC4ET9DUlX1gzWA5kIiq4SLAAwANrZI2jSesg8rupK/s1M/ArnU3Y1O5RVpn4JjOePjM+qcp29o35g1iSPUyTU3Z2lNBZkF17/t+bO+hCoOxdKeVDS+7qdCBMFWkCW2emJYqwJNeWLgRsAKEwjp+bH3/Tr1IgCethdTLQVDsjnTJ4jWEsL2rQjQ4hOixnGbFEKou3CJEkOyUX4Ab2X4tQIgOMXohUwwkgCiqAk9ymkIkCr1XV8mSs4agdQNMBETBMs/qIumaQhyCb9cBAjwJQasBT7LB+6DZUSYRyD3rgXxn35MAGBUQYSonOW0OUVRlXICnPRVk9WB0Xn5i2zilnYRusDATUq56+qBz0ABV5zBPUU+rCwor6R+4uVg71+dJVhLNnBgMuXephE54XmWMdByDuabWHoIZ96MPjoFG9hw3zFMhkJdX3knKXTd4L9pnlgwh3wtgstU3ADi6VJtRO1wv+puEExro7lQexOjV4CUhaVUZZrew21QAWe8tPeLEE6L1SjfCSMMw3F09mNFko4FPdkNrkQMhjAvOKfDEjIwRuATcABTY67GY4Tya1GMd2heHetjF49smLt6UeyDDjWPSDwsADH11xHoaT9dwPwIG4EnnTzsUGfpTf0uOiyFM3O5NCoCgy2dAT8XuwA/70ntyeQyefNdbpz1xVCsO3dn64iBLh/E7QqlHAOhH4/VrOkkj7wea4fXmmnaI8f7ngPWbPe/9i4hIPWfv5wm1vVHqYYcaw9ps98Ah6Yd91sfMTiX7WDYy1YGfaGyrkKyKfE5JQqbMu6uBXcO8uG9jA+YHncT0LRo2yOZFqkCTeIPyYbAl7Kq2sTQ+QcCytdZ+D1NYtQ/GXjdlGehAooR7q6Ho3gee2mEbSPcx0duW2SEE2ROaV1hRb3tImnMB7Cy0Bg20G2kLrDglaa2170strHvoX6IBeKoVKecmx03vIVDzbmFNBCHEslnvLQcHI/Bk897Cacg5nC4X8TByHvAB83LCPC+YTmf4IBnvJgWH5lnD5Ag4V/HEsYWaa5JQkpQxT1HAl3kG4AH2eH0tSLkgpYrbuiNEjxAcLk8nPcQtmIwT0gVse0HW+y1zhPNRgKcYWlKXnFI7Rb+cTjid5uZd441rkwGA8fzxGVyFuLpyxeXpuRmN23XDdt1xDRvyXgAOSLt5EiREyghUsecdnDzKRqixIiwLni8LLs8BPgIhMk6Xk4RwxYCUJEtgqZJ5KuWCyoR1lZT0KZlNQVhvCWnLuHnCeVngPYOo4umSJNlJ8IAekDnnME0RDsDTecGH5xO2bcVpDs24vV63pst9/fId87zI+MUz9lSxbRlUdxRS3p/ikBMjbQXeiR+2AJczENXPuDJKzQg+YpkmTDFgnlzzdGh6PzPy9hH7fsV6e8Hr69fuoQFZPykBlpnKuL2MpDJGRkriuTbPi3xOQlo/z3otObBzEHJngJ1TD4oMcgXTJGBy8HKND4RlXrCcJsSooW+Nz1W4q7xylJYguvYcLHwMWE5BQ+vQPPIcBQH4CgNw2G6besdXLHPEaZlwuVwQ5yghVZ7amGx7aWB3cAEeAVQdOIvnCJDhLLMXdoRAIA8wBFSsBXA0KedxEZoPTR7EJSHEgGWRcEIDnrL3muwm9GgdAFOQrIDTfNLEAAFUM3bKMJJTriQeWbFA2FgJ0yReefPsVFYX3G6rjlmAc0J2XnJRj1DR1RwRYpxaVIV4R06w0F6GhNVa6JyAVl5sfts/qvKT2a6hIYjina+hgAhgx6iugjMjOIfqHAAPUp7UZRE7B0SYpkk8vxQINBNNyOWDhl8K8GQeOT44TMoBxVyRQoJFCAGQ9XjOLdSu5ozo5PB/Pk2SUTR4YAqgoOAbkfC3VjlIKPojEIoBTwnKfIdaMwji4bTvqzwHqlNXxrYrWMkCUoVI8EEPxRTsA0syCu9890Sq3KI9CIR5jgqCA2GahbicRP8opQNP4z5meq9wGNemt6gmoLqA+bt3JdewmFKL6kTiNGNgbaMf+R2F+PdCVI/yKI/yKI/yKI/yKI/yKI/yKI/yKI/yKI/yKH9Dcb99yaM8yqM8yqM8yqM8yqM8yqM8yqM8yqM8yqM8yt9eHsDTozzKozzKozzKozzKozzKozzKozzKozzKo/xdygN4epRHeZRHeZRHeZRHeZRHeZRHeZRHeZRHeZS/S3kAT4/yKI/yKI/yKI/yKI/yKI/yKI/yKI/yKI/ydykP4OlRHuVRHuVRHuVRHuVRHuVRHuVRHuVRHuVR/i7lATw9yqM8yqM8yqM8yqM8yqM8yqM8yqM8yqM8yt+lPICnR3mUR3mUR3mUR3mUR3mUR3mUR3mUR3mUR/m7lAfw9CiP8iiP8iiP8iiP8iiP8iiP8iiP8iiP8ih/l/IAnh7lUR7lUR7lUR7lUR7lUR7lUR7lUR7lUR7l71L+fzd8khsvGZLBAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "caption = result[0]['caption']\n",
+ "print(caption)\n",
+ "plt.figure(figsize=(15, 15))\n",
+ "plt.axis('off')\n",
+ "\n",
+ "plt.imshow(image)\n",
+ "\n",
+ "save_path = save_dir+'/results/caption/'+\"_\".join(caption.split(' '))+\".jpg\"\n",
+ "plt.savefig(save_path, bbox_inches='tight')\n",
+ "\n",
+ "\n",
+ "plt.show()\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "303d531f-dba3-40b9-a1ff-1be92d8c188a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "ofa",
+ "language": "python",
+ "name": "ofa"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/Image_gen.ipynb b/Image_gen.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..572e8d34bccb291b418b0c324b5c38540bc0c348
--- /dev/null
+++ b/Image_gen.ipynb
@@ -0,0 +1,301 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "399f2fcf-9241-4910-a30d-6ca19880d0ad",
+ "metadata": {},
+ "source": [
+ "## Import"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "97e68340-0096-475e-8ed8-22f5d627e3ad",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "import numpy as np\n",
+ "from fairseq import utils, tasks\n",
+ "from fairseq import checkpoint_utils\n",
+ "from utils.eval_utils import eval_step\n",
+ "from tasks.mm_tasks import ImageGenTask\n",
+ "from models.unival import UnIVALModel\n",
+ "from PIL import Image\n",
+ "from torchvision import transforms\n",
+ "import time\n",
+ "\n",
+ "\n",
+ "# turn on cuda if GPU is available\n",
+ "use_cuda = torch.cuda.is_available()\n",
+ "# use fp16 only when GPU is available\n",
+ "use_fp16 = True if use_cuda else False"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "719cef65-c00c-4c9c-90b2-e660b386c3d5",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ".register_task_cls(cls)>"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Register caption task\n",
+ "tasks.register_task('image_gen', ImageGenTask)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cc9c1d7b-898b-4ac4-adf3-832891d9e4be",
+ "metadata": {},
+ "source": [
+ "### Load model "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "568bb6ea-eef9-4024-98e6-35e74b5ffeec",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "self.sample_patch_num 784\n",
+ "self.sample_audio_patch_num None\n",
+ "self.sample_video_patch_num None\n",
+ "self.with_cls False\n",
+ "Frozen image bn \n",
+ "Loading: all_resnext101\n",
+ "use bn: \n",
+ "load pretrained_model /data/mshukor/logs/ofa/best_models/resnext-101-kinetics.pth\n",
+ "_IncompatibleKeys(missing_keys=[], unexpected_keys=['fc.weight', 'fc.bias'])\n",
+ "load resnet /data/mshukor/logs/ofa/best_models/resnet101-5d3b4d8f.pth\n",
+ "\n",
+ "RAM memory % used: 10.5\n",
+ "RAM Used (GB): 19.574349824\n",
+ "encoder\n",
+ "RAM memory % used: 10.5\n",
+ "decoder\n",
+ "RAM memory % used: 10.5\n",
+ "ofa\n",
+ "Working with z of shape (1, 256, 32, 32) = 262144 dimensions.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Load pretrained ckpt & config\n",
+ "clip_model_path='/data/mshukor/data/ofa/clip/ViT-B-16.pt'\n",
+ "vqgan_model_path='/data/mshukor/data/ofa/vqgan/last.ckpt'\n",
+ "vqgan_config_path='/data/mshukor/data/ofa/vqgan/model.yaml'\n",
+ "\n",
+ "# checkpoint_path = '/data/mshukor/logs/ofa/best_models/image_gen_ofa_stage_1_base_s2_hsep1_long/checkpoint_best.pt'\n",
+ "# checkpoint_path = '/data/mshukor/logs/ofa/best_models/image_gen_ofaplus_stage_1_base_s2_long/checkpoint_best.pt'\n",
+ "# checkpoint_path = '/data/mshukor/logs/ofa/best_models/image_gen_base_best.pt'\n",
+ "# checkpoint_path = '/data/mshukor/logs/ofa/best_models/image_gen_large_best.pt'\n",
+ "\n",
+ "# checkpoint_path = '/data/mshukor/logs/ofa/best_models/image_gen_ofaplus_stage_1_base_s2_hsep1_long/checkpoint_best.pt'\n",
+ "checkpoint_path = '/data/mshukor/logs/ofa/best_models/image_gen_ofaplus_stage_2_base_s2_hsep1_long/checkpoint_best.pt'\n",
+ "\n",
+ "\n",
+ "\n",
+ "video_model_path = '/data/mshukor/logs/ofa/best_models/resnext-101-kinetics.pth'\n",
+ "resnet_model_path = '/data/mshukor/logs/ofa/best_models/resnet101-5d3b4d8f.pth'\n",
+ "\n",
+ "gen_images_path='results/image_gen/'\n",
+ "\n",
+ "overrides = {\"bpe_dir\": \"utils/BPE\",\n",
+ " \"eval_cider\": False,\n",
+ " \"beam\": 24,\n",
+ " \"max_len_b\": 1024,\n",
+ " \"max_len_a\": 0,\n",
+ " \"min_len\": 1024,\n",
+ " \"sampling_topk\": 256,\n",
+ " \"constraint_range\": \"50265,58457\",\n",
+ " \"clip_model_path\": clip_model_path,\n",
+ " \"vqgan_model_path\": vqgan_model_path,\n",
+ " \"vqgan_config_path\": vqgan_config_path,\n",
+ " \"seed\": 42,\n",
+ " \"video_model_path\": video_model_path, \n",
+ " \"resnet_model_path\": resnet_model_path,\n",
+ " \"gen_images_path\":gen_images_path,\n",
+ " \"patch_image_size\": 256,\n",
+ " \"temperature\": 1.5,\n",
+ " }\n",
+ "\n",
+ "models, cfg, task = checkpoint_utils.load_model_ensemble_and_task(\n",
+ " utils.split_paths(checkpoint_path),\n",
+ " arg_overrides=overrides\n",
+ ")\n",
+ "\n",
+ "task.cfg.sampling_times = 2\n",
+ "# Move models to GPU\n",
+ "for model in models:\n",
+ " model.eval()\n",
+ " if use_fp16:\n",
+ " model.half()\n",
+ " if use_cuda and not cfg.distributed_training.pipeline_model_parallel:\n",
+ " model.cuda()\n",
+ " model.prepare_for_inference_(cfg)\n",
+ "\n",
+ "# Initialize generator\n",
+ "generator = task.build_generator(models, cfg.generation)\n",
+ "\n",
+ "# Text preprocess\n",
+ "bos_item = torch.LongTensor([task.src_dict.bos()])\n",
+ "eos_item = torch.LongTensor([task.src_dict.eos()])\n",
+ "pad_idx = task.src_dict.pad()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5e4a45ec-bce1-495b-8033-3b574367b360",
+ "metadata": {},
+ "source": [
+ "### Preprocess"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "9f2e7e32-c9a0-43b3-bf86-2419d9f7dfe0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def encode_text(text, length=None, append_bos=False, append_eos=False):\n",
+ " s = task.tgt_dict.encode_line(\n",
+ " line=task.bpe.encode(text),\n",
+ " add_if_not_exist=False,\n",
+ " append_eos=False\n",
+ " ).long()\n",
+ " if length is not None:\n",
+ " s = s[:length]\n",
+ " if append_bos:\n",
+ " s = torch.cat([bos_item, s])\n",
+ " if append_eos:\n",
+ " s = torch.cat([s, eos_item])\n",
+ " return s\n",
+ "\n",
+ "\n",
+ "# Construct input for image generation task\n",
+ "def construct_sample(query: str):\n",
+ " code_mask = torch.tensor([True])\n",
+ " src_text = encode_text(\" what is the complete image? caption: {}\".format(query), append_bos=True,\n",
+ " append_eos=True).unsqueeze(0)\n",
+ " src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])\n",
+ " sample = {\n",
+ " \"id\": np.array(['42']),\n",
+ " \"net_input\": {\n",
+ " \"src_tokens\": src_text,\n",
+ " \"src_lengths\": src_length,\n",
+ " \"code_masks\": code_mask\n",
+ " }\n",
+ " }\n",
+ " return sample\n",
+ "\n",
+ "\n",
+ "# Function to turn FP32 to FP16\n",
+ "def apply_half(t):\n",
+ " if t.dtype is torch.float32:\n",
+ " return t.to(dtype=torch.half)\n",
+ " return t\n",
+ "\n",
+ "\n",
+ "# Function for image generation\n",
+ "def image_generation(caption):\n",
+ " sample = construct_sample(caption)\n",
+ " sample = utils.move_to_cuda(sample) if use_cuda else sample\n",
+ " sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample\n",
+ " print('|Start|', time.strftime(\"%Y-%m-%d %H:%M:%S\", time.localtime()), caption)\n",
+ " with torch.no_grad():\n",
+ " result, scores = eval_step(task, generator, models, sample)\n",
+ "\n",
+ " # return top-4 results (ranked by clip)\n",
+ " images = [result[i]['image'] for i in range(4)]\n",
+ " pic_size = 256\n",
+ " retImage = Image.new('RGB', (pic_size * 2, pic_size * 2))\n",
+ " print('|FINISHED|', time.strftime(\"%Y-%m-%d %H:%M:%S\", time.localtime()), caption)\n",
+ " for i in range(4):\n",
+ " loc = ((i % 2) * pic_size, int(i / 2) * pic_size)\n",
+ " retImage.paste(images[i], loc)\n",
+ " return retImage"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "44dec799-c5c2-4d22-8b08-7a7ca2cdf3c9",
+ "metadata": {},
+ "source": [
+ "### Inference"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "02d5cd7a-8d63-4fa4-9da1-d4b79ec01445",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "|Start| 2023-06-29 12:57:39 A brown horse in the street\n",
+ "|FINISHED| 2023-06-29 12:59:03 A brown horse in the street\n"
+ ]
+ }
+ ],
+ "source": [
+ "query = \"A brown horse in the street\"\n",
+ "# query = \"Cattle grazing on grass near a lake surrounded by mountain.\"\n",
+ "# query = 'A street scene with a double-decker bus on the road.'\n",
+ "# query = 'A path.'\n",
+ "\n",
+ "\n",
+ "retImage = image_generation(query)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1a8a1654-1f17-41c7-b410-c7491a96dcee",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "retImage.save(f'{query}.png')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "ofa",
+ "language": "python",
+ "name": "ofa"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..a7767b63a8d61b2622642ccc9012f06af5053e17
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright 1999-2022 Alibaba Group Holding Ltd.
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/README.md b/README.md
index c08115d2e840e7406f6d3df559ba45d334bd3017..f0f500e2181fdd93a7108690942debfbeec2f5c2 100644
--- a/README.md
+++ b/README.md
@@ -1,12 +1,618 @@
----
-title: UnIVAL
-emoji: 🌖
-colorFrom: green
-colorTo: green
-sdk: gradio
-sdk_version: 3.35.2
-app_file: app.py
-pinned: false
----
-
-Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
+
+
+todo:
+models
+data
+all readme
+animation
+
+readme of:
+rewarded soups
+and others
+
+
+
+
+
+
+
+
+
+ ModelScope   |  Checkpoints   |  Colab   |  Demo   |  Paper   |  Blog
+
+
+
+
+
+
+
+
+[colab]:
+
+OFA is a unified sequence-to-sequence pretrained model (support **English** and **Chinese**) that unifies modalities (i.e., cross-modality, vision, language) and tasks (**finetuning** and **prompt tuning** are supported): image captioning (1st at the [MSCOCO Leaderboard](https://competitions.codalab.org/competitions/3221#results)), VQA ([link](https://eval.ai/web/challenges/challenge-page/830/leaderboard/2278)), visual grounding, text-to-image generation, text classification, text generation, image classification, etc. We provide **step-by-step** instructions for pretraining and finetuning and corresponding checkpoints (check official ckpt \[[EN](checkpoints.md)|[CN](checkpoints_cn.md)\] or [huggingface ckpt](https://huggingface.co/OFA-Sys)).
+
+We sincerely welcome contributions to our project. Feel free to contact us or send us issues / PRs!
+
+
+# Our installation
+
+after installling pycocoevalcap, donwload needed models:
+```
+python -c "from pycocoevalcap.spice.spice import Spice; tmp = Spice()"
+
+```
+
+# Online Demos
+We provide online demo via Hugging Face Spaces for you to interact with our pretrained and finetuned models. Below are the links to the demos:
+* Image Captioning \[[ModelScope](https://modelscope.cn/#/models/damo/ofa_image-caption_coco_large_en/summary) | [Spaces](https://huggingface.co/spaces/OFA-Sys/OFA-Image_Caption)\]
+* Visual Grounding \[[ModelScope](https://modelscope.cn/#/models/damo/ofa_visual-grounding_refcoco_large_en/summary) | [Spaces](https://huggingface.co/spaces/OFA-Sys/OFA-Visual_Grounding)\]
+* Visual Question Answering \[[ModelScope](https://modelscope.cn/#/models/damo/ofa_visual-question-answering_pretrain_large_en/summary) | [Spaces](https://huggingface.co/spaces/OFA-Sys/OFA-Visual_Question_Answering)\]
+* Text-to-Image Generation \[[ModelScope](https://modelscope.cn/#/models/damo/ofa_text-to-image-synthesis_coco_large_en/summary) | [Spaces](https://huggingface.co/spaces/OFA-Sys/OFA-Text2Image_Generation)\]
+* Generic Interface \[[Spaces](https://huggingface.co/spaces/OFA-Sys/OFA-Generic_Interface)\]
+
+Also we provide Colab notebooks for you to better perceive the procedures. Click [here](colab.md) to check them out!
+
+
+# Use in Huggingface Transformers
+We support the inference of OFA in Huggingface Transformers. Check the [README](transformers.md) and [Colab Notebook](https://colab.research.google.com/drive/1Ho81RBV8jysZ7e0FhsSCk_v938QeDuy3?usp=sharing) for more information. Codes are released in this branch https://github.com/OFA-Sys/OFA/tree/feature/add_transformers
+
+
+
+# News
+* 2022.8.22: Released checkpoints and demos of **OFA** and **Chinese CLIP** on [ModelScope](https://modelscope.cn/). Check the [README](modelscope.md) for more details!
+* 2022.8.16: Released the **Chinese** version of OFA. **OFA-CN** needs only switching to `bpe_dir=../../utils/BERT_CN_dict` and `bpe=bert` and using our provided Chinese checkpoints in [checkpoints_cn.md](checkpoints_cn.md). Temporarily, we only provide base-size and large-size pretrained checkpoints and finetuned checkpoints on [MUGE Caption](https://tianchi.aliyun.com/muge) and the Chinese version of RefCOCO(-/+/g) (to release soon).
+* 2022.8.5: Released support of **prompt tuning** for OFA. Check our paper [here](https://arxiv.org/abs/2208.02532)! Please see the [prompt_tuning.md](prompt_tuning.md) for further details.
+* 2022.7.7: Updated support of OFA on **huggingface transformers** (fixed bugs in forward, add sequence generator from Fairseq to ensure performance, etc.). Refer to the doc [transformers.md](transformers.md) and the branch `feature/add_transformers`.
+* 2022.6.17: Released the pretrained checkpoint of **OFA-Huge**. To use it, set `--arch=ofa_huge` in the script.
+* 2022.5.15: OFA was accepted by **ICML 2022**
+* 2022.4.28: Add support of inference on **huggingface transformers**. For how to use it, please refer to the doc [transformers.md](transformers.md) and our [huggingface models](https://huggingface.co/OFA-Sys).
+* 2022.4.16: Released lightweight pretrained models **OFA-Medium** (~93M params) and **OFA-Tiny** (~33M params) in [checkpoints.md](checkpoints.md). To use them, you just need to load the corresponding checkpoint and set `--arch=ofa_medium` or `--arch=ofa_tiny` in the scripts.
+
+
+ More News
+
+
+ 2022.3.23: Added [Encouraging Loss](https://arxiv.org/pdf/2110.06537.pdf) as a feature. See [README_EncouragingLoss.md](README_EncouragingLoss.md). Leveraging this feature, OFA-Large has achieved improved results in both VQA (**test-std acc: 80.67**) and Image Classification (**test acc: 85.6**) recently.
+ 2022.3.21: Released codes for pretraining OFA.
+ 2022.3.18: Released the finetuned OFA-Base (~180M parameters) checkpoints and running scripts for vision & language tasks, including: Caption (146.4 CIDEr), VQA (78.07 on test-std), SNLI-VE (89.3 on dev), RefCOCO (90.67 on testA), RefCOCO+ (87.15 on testA) and RefCOCOg (82.31 on test-u) .
+ 2022.3.11: Released the finetuning & inference code/checkpoints for Gigaword .
+ 2022.3.08: Released the pretrained checkpoint of OFA-Base in checkpoints.md . To use OFA-Base, you just need to load ofa_base.pt
and change --arch=ofa_large
to --arch=ofa_base
in the training scripts.
+ 2022.3.07: Released the finetuning & inference code/checkpoints for Image Classification , which achieves 85.0 accuracy on ImageNet-1K, slightly better than reported in OFA paper.
+ 2022.3.04: Released the finetuning & inference code/checkpoints for Text-to-Image Generation .
+ 2022.3.03: Released the finetuning & inference code/checkpoints for SNLI-VE and GLUE .
+ 2022.2.22: Released the finetuning & inference code/checkpoints for Visual Question Answering , which can reproduce the reported VQA accuracy in OFA paper (80.02 on test-std) . Check our results on the VQA Challenge .
+ 2022.2.15: Released finetuning & inference code/checkpoints for Referring Expression Comprehension
+ 2022.2.10: Released the inference code & finetuned checkpoint for Image captioning , which can reproduce the results on COCO Karparthy test split (149.6 CIDEr) . OFA also achieves No.1 on the COCO image captioning online leaderboard Link (marked as M6-Team).
+
+
+
+
+
+
+# Model Card
+We list the parameters and pretrained checkpoints of OFAs below. For finetuned checkpoints, please refer to [checkpoints.md](checkpoints.md).
+
+
+
+ Model Ckpt Params Backbone Hidden size Intermediate size Num. of heads Enc layers Dec layers
+
+
+ OFATiny Download 33M ResNet50 256 1024 4 4 4
+
+
+ OFAMedium Download 93M ResNet101 512 2048 8 4 4
+
+
+ OFABase Download 180M ResNet101 768 3072 12 6 6
+
+
+ OFALarge Download 470M ResNet152 1024 4096 16 12 12
+
+
+ OFAHuge Download 930M ResNet152 1280 5120 16 24 12
+
+
+
+
+# Results
+Below we demonstrate the results of OFAs on cross-modal understanding and generation.
+
+
+
+ Task Image Captioning VQA Visual Entailment Referring Expression Comprehension
+
+
+ Dataset COCO VQA v2 SNLI-VE RefCOCO RefCOCO+ RefCOCOg
+
+
+ Split Karpathy test (CE/CIDEr) test-dev/test-std val/test val/test-a/test-b val/test-a/test-b val-u/test-u
+
+
+ Metric CIDEr Acc. Acc. Acc.
+
+
+ OFATiny 119.0 / 128.7 70.3 / 70.4 85.3 / 85.2 80.20 / 84.07 / 75.00 68.22 / 75.13 / 57.66 72.02 / 69.74
+
+
+ OFAMedium 130.4 / 140.3 75.4 / 75.5 86.6 / 87.0 85.34 / 87.68 / 77.92 76.09 / 83.04 / 66.25 78.76 / 78.58
+
+
+ OFABase 138.2 / 146.7 78.0 / 78.1 89.3 / 89.2 88.48 / 90.67 / 83.30 81.39 / 87.15 / 74.29 82.29 / 82.31
+
+
+ OFALarge 142.2 / 150.7 80.4 / 80.7 90.3 / 90.2 90.05 / 92.93 / 85.26 85.80 / 89.87 / 79.22 85.89 / 86.55
+
+
+ OFAHuge 145.3 / 154.9 82.0 / 82.0 91.0 / 91.2 92.04 / 94.03 / 88.44 87.86 / 91.70 / 80.71 88.07 / 88.78
+
+
+
+
+# Requirements
+* python 3.7.4
+* pytorch 1.8.1
+* torchvision 0.9.1
+* JAVA 1.8 (for COCO evaluation)
+
+
+# Installation
+```bash
+git clone https://github.com/OFA-Sys/OFA
+pip install -r requirements.txt
+```
+
+
+# Datasets and Checkpoints
+See [datasets.md](datasets.md) and [checkpoints.md](checkpoints.md).
+
+
+# Training & Inference
+Below we provide methods for training and inference on different tasks. We provide both pretrained OFA-Large and OFA-Base in [checkpoints.md](checkpoints.md). The scripts mentioned in this section are prepared for OFA-Large. For reproducing the downstreaming results of OFA-Base, we have also provided the corresponding finetuning and inference scripts for OFA-Base in the `run_scripts/` folder.
+
+We recommend that your workspace directory should be organized like this:
+```
+OFA/
+├── checkpoints/
+│ ├── ofa_base.pt
+│ ├── ofa_large.pt
+│ ├── caption_large_best_clean.pt
+│ └── ...
+├── criterions/
+├── data/
+├── dataset/
+│ ├── caption_data/
+│ ├── gigaword_data/
+│ └── ...
+├── fairseq/
+├── models/
+├── run_scripts/
+├── tasks/
+├── train.py
+├── trainer.py
+└── utils/
+```
+
+
+## Image Processing
+To ensure the efficiency of processing data, we did not store images with small files, but instead we encode them to base64 strings.
+Transforming image files to base64 strings is simple. Run the following code:
+```python
+from PIL import Image
+from io import BytesIO
+import base64
+
+img = Image.open(file_name) # path to file
+img_buffer = BytesIO()
+img.save(img_buffer, format=img.format)
+byte_data = img_buffer.getvalue()
+base64_str = base64.b64encode(byte_data) # bytes
+base64_str = base64_str.decode("utf-8") # str
+```
+
+## Pretraining
+Below we provide methods for pretraining OFA.
+
+
+ 1. Prepare the Dataset
+
+ To pretrain OFA, you should first download the dataset we provide (pretrain_data_examples.zip , a small subset of the original pretraining data). For your customed pretraining datasets, please prepare your training samples into the same format. pretrain_data_examples.zip
contains 4 TSV files: vision_language_examples.tsv
, text_examples.tsv
, image_examples.tsv
and detection_examples.tsv
. Details of these files are as follows:
+
+
+ vision_language_examples.tsv :
+ Each line contains uniq-id, image (base64 string), caption, question, answer, ground-truth objects (objects appearing in the caption or question), dataset name (source of the data) and task type (caption, qa or visual gronunding). Prepared for the pretraining tasks of visual grounding, grounded captioning, image-text matching, image captioning and visual question answering.
+ text_examples.tsv : Each line contains uniq-id and text. Prepared for the pretraining task of text infilling.
+ image_examples.tsv : Each line contains uniq-id, image (base64 string, should be resized to 256*256 resolution) and image-code (generate the sparse codes for the central part of image through VQ-GAN). Prepared for the pretraining task of image infilling.
+ detection_examples.tsv : Each line contains uniq-id, image (base64 string) and bounding box annotations (contains the top-left and bottom-right coordinates of the bounding box, object_id and object_name, seperated by commas). Prepared for the pretraining task of detection.
+
+ In addition, the folder negative_sample in pretrain_data_examples.zip contains three files all_captions.txt
, object.txt
and type2ans.json
. The data in these files are used as negative samples for the image-text matching (ITM) task.
+
+
+
+ 2. Pretraining
+
+ By default, the pretraining script will attempt to restore the released pretrained checkpoints of OFA-Base or OFA-Large and perform continuous pretraining. Continuous pretraining is more recommended, which achieves much better results compared with pretraining from scratch. For continuous pretraining, please download the pretrained weights in advance (see checkpoints.md ) and put them in the correct directory OFA/checkpoints/
. If not, the pretraining will begin from scratch.
+
+
+cd run_scripts/pretraining
+bash pretrain_ofa_large.sh # Pretrain OFA-Large. For OFA-Base, use pretrain_ofa_base.sh
+
+
+ If the pretrained OFA checkpoint is restored successfully, you will see the following information in the log:
+
+
+INFO: Loaded checkpoint ../../checkpoints/ofa_large.pt
+
+
+
+## Image Captioning
+We provide procedures to reproduce our results of image captioning on our paper below.
+
+ 1. Prepare the Dataset & Checkpoints
+
+ Download data (see datasets.md ) and models (see checkpoints.md ) and put them in the correct directory. The dataset zipfile caption_data.zip
contains caption_stage1_train.tsv, caption_stage2_train.tsv, caption_val.tsv and caption_test.tsv. Each image corresponds to only 1 caption in caption_stage1_train.tsv
and corresponds to multiple captions in other TSV files (about 5 captions per image). Each line of the dataset represents a caption sample with the following format. The information of uniq-id, image-id, caption, predicted object labels (taken from VinVL , not used), image base64 string are separated by tabs.
+
+
+162365 12455 the sun sets over the trees beyond some docks. sky&&water&&dock&&pole /9j/4AAQSkZJ....UCP/2Q==
+
+
+
+ 2. Finetuning
+
+ Following previous standard practice, we divide the finetuning process of image captioning into two stages. In stage 1, we finetune OFA with cross-entropy loss on 4 NVIDIA-V100 GPUs with 32GB memory (expected to obtain ~139.5 CIDEr on the validation set at this stage). In stage 2, we select the best checkpoint of stage 1 and train with CIDEr optimization on 8 NVIDIA-V100 GPUs. Note that CIDEr optimization is very unstable and requires careful hyperparameter tuning. If you encounter training errors in the stage2 finetuning, you can increase the batch size or reduce the learning rate. If neither of these works, you can directly set --freeze-resnet
to freeze the inner states of batch normalization.
+
+
+cd run_scripts/caption
+nohup sh train_caption_stage1.sh > train_stage1.out & # stage 1, train with cross-entropy loss
+nohup sh train_caption_stage2.sh > train_stage2.out & # stage 2, load the best ckpt of stage1 and train with CIDEr optimization
+
+
+
+ 3. Inference
+
+ Run the following commands to get your results and evaluate your model.
+
+
+cd run_scripts/caption ; sh evaluate_caption.sh # inference & evaluate
+
+
+
+## Text-to-Image Generation
+This part provides procedures for the finetuning and inference of text-to-image generation. See below.
+
+
+ 1. Prepare the Dataset & Checkpoints
+
+ Download data (see datasets.md ) and models (see checkpoints.md ) and put them in the correct directory. The dataset zipfile coco_image_gen.zip
contains coco_vqgan_train.tsv
, coco_vqgan_dev.tsv
and coco_vqgan_full_test.tsv
. Each line of the dataset represents a sample with the following format. The information of uniq-id, image-code (produced by vqgan , a list of integers separated by single-whitespaces), lowercased caption are separated by tabs.
+
+
+1 6674 4336 4532 5334 3251 5461 3615 2469 ...4965 4190 1846 the people are posing for a group photo.
+
+
+ The checkpoint zipfile image_gen_large_best.zip
contains image_gen_large_best.pt
, vqgan/last.ckpt
, vqgan/model.yaml
and clip/Vit-B-16.pt
.
+
+
+
+ 2. Shuffle the Training Data
+
+ (Optional, but achieves better result): If the disk storage is sufficient, we recommend to prepare the shuffled training data for each epoch in advance.
+
+
+cd dataset/image_gen
+ln coco_vqgan_train.tsv coco_vqgan_train_1.tsv
+for idx in `seq 1 9`;do shuf coco_vqgan_train_${idx}.tsv > coco_vqgan_train_$[${idx}+1].tsv;done # each file is used for an epoch
+
+
+
+ 3. Finetuning
+
+ Following previous practice, we divide the finetuning process of image generating into two stages. In stage 1, we finetune OFA with cross-entropy loss on 4 8-V100-32G-GPU servers (expected to obtain ~32.5+ CLIP Score on the validation set at this stage). In stage 2, we select the last checkpoint of stage 1 and train with CLIP Score optimization on 4 8-V100-32G-GPU servers (expected to obtain ~34.0+ CLIP Score on the validation set at this stage). During the validation, the generated image will be dumped into _GEN_IMAGE_PATH_
.
+
+
+# run on each worker after the distributed and data configs have been correctly set following the guide in train_image_gen_stage1_distributed.sh
+cd run_scripts/image_gen
+nohup sh train_image_gen_stage1_distributed.sh # stage 1, train with cross-entropy loss
+nohup sh train_image_gen_stage2_distributed.sh # stage 2, load the last ckpt of stage1 and train with CLIP Score optimization
+
+
+
+ 4. Inference
+
+ Run the command below to generate your images.
+
+
+cd run_scripts/image_gen ; sh evaluate_image_gen.sh # inference & evaluate (FID, IS and CLIP Score)
+
+
+
+## Visual Question Answering
+Here we provide the finetuning and inference codes to reproduce the VQAv2 result reported in our paper (**test-std 80.02**). We believe much improvement on accuracy can still be achieved based on this codebase :)
+
+ 1. Prepare the Dataset & Checkpoints
+
+ Download data (see datasets.md ) and models (see checkpoints.md ) and put them in the correct directory. The dataset zipfile vqa_data.zip
is around 100G and the decompressed data costs around 135G disk storage, which contains the training, validation and testing samples together with other necessary data resources. (Since vqa_data.zip
is large in size, we have also provided chunked parts of the dataset files for more convenient and stable downloading. Please refer to issue #68 .) Following common practice, VG-QA samples are also included in the training data. To adapt to the seq2seq paradigm of OFA, we transform original VQA training questions with multiple golden answers into multiple training samples. For the original VQA validation set, we keep around 10k samples for our validation and utilize the other samples for training. Each line of the dataset represents a VQA sample with the following format. The information of question-id, image-id, question, answer (with confidence), predicted object labels (taken from VinVL , slightly brings around +0.1 accuracy improvement), image base64 string are separated by tabs.
+
+
+79459 79459 is this person wearing shorts? 0.6|!+no house&&short&&...&&sky /9j/4AAQS...tigZ/9k=
+
+
+ For fine-tuning on customed VQA-formulated tasks, please refer to issue #76 , #105 and #73 for more information.
+
+
+
+ 2. Shuffle the Training Data
+
+ (Optional, but achieves better finetuning accuracy): If the disk storage is sufficient, we recommend to prepare the shuffled training data for each epoch in advance. In our experiments, we use shuffling which brings around +0.3 improvement on VQA accuracy.
+
+
+cd dataset/vqa_data
+ln vqa_train.tsv vqa_train_1.tsv
+for idx in `seq 1 9`;do shuf vqa_train_${idx}.tsv > vqa_train_$[${idx}+1].tsv;done # each file is used for an epoch
+
+
+
+ 3. Finetuning
+
+ In our experiments, the VQA finetuning is performed on 4 8-A100-GPU servers (with RDMA ). Here provides the finetuning script train_vqa_distributed.sh
, which supports multi-server distributed training (as well as single-server training). Please refer to the comments in the beginning of the script and set the configs correctly according to your distribution environment. If you have shuffled the training data in the previous step, please correctly specify the training data path following the guide in the script comments. The command should be run on each worker.
+
+
+# run on each worker after the distributed and data configs have been correctly set following the guide in train_vqa_distributed.sh
+cd run_scripts/vqa
+bash train_vqa_distributed.sh
+
+
+ In our experiments, the finetuning costs around 36 hours (for 12 epochs). After each epoch, an evaluation on validation set is performed. The best validation accuracy during finetuning will be around 80.8. The log is saved in ${log_dir}
.
+
+
+ (Update on validation time-cost) As will be mentioned in the 4. Inference section, we prepare 2 types of inference: beam-search and all-candidate inference. By default, all-candidate inference is used for validation during fine-tuning, which achieves better accuracy but costs much time. Now we have added a new option in the training scripts called --val-inference-type
to switch the validation inference type during fine-tuning. If you feel the validation takes too long, you can refer to PR #79 to activate beam-search validation, which significantly takes much less time, with around 0.5-0.6 validation score degradation compared with all-candidate validation.
+
+
+
+ 4. Inference
+
+ We provide 2 types of inference, beam-search (much faster but gets sub-optimal accuracy) and all-candidate evaluation (slower but best accuracy).
+ For beam-search inference, use the script evaluate_vqa_beam.sh
. Refer to the command below. The inference on test set costs around 16 GPU hours. After inference on test set, the result JSON file will be dumped in the ${result_path}
defined in the shell script. You can submit the result test_predict.json
to EvalAI . Using our released finetuned checkpoint, beam-search inference will get 80.15 validation accuracy, 79.36 test-dev accuracy and 79.48 test-std accuracy (around 0.6 lower than all-candidate evaluation).
+
+
+cd run_scripts/vqa
+bash evaluate_vqa_beam.sh val # specify 'val' or 'test'
+
+
+ For all-candidate evaluation, we recommend to use the distributed script evaluate_vqa_allcand_distributed.sh
. Please refer to the guide in the script to set the distributed configs before running. The result JSON file will be dumped in the ${result_path}
defined in the shell script of rank-0 server. All-candidate evaluation computes scores on all the candidate answers in the VQA dataset, which achieves 80.82 validation accuracy, 79.87 test-dev accuracy and 80.02 test-std accuracy, reproducing our reported results in the paper. However, the inference on test set costs around 1k GPU hours, which is much slower.
+
+
+# run on each worker after the distributed configs have been correctly set following the guide in evaluate_vqa_allcand_distributed.sh
+cd run_scripts/vqa
+bash evaluate_vqa_allcand_distributed.sh val # specify 'val' or 'test'
+
+
+
+## Referring Expression Comprehension
+Here provides procedures for you to prepare data, train, and evaluate your model on visual grounding.
+
+ 1. Prepare the Dataset & Checkpoints
+
+ Download data (see datasets.md ) and models (see checkpoints.md ) and put them in the correct directory. We provide RefCOCO (split by UNC), RefCOCO+ (split by UNC) and RefCOCOg (split by UMD) datasets. See RefCOCO and Refer for more details. Note that in the original dataset, each region-coord (or bounding box) may corresponds to multiple descriptive texts. We split these texts into multiple samples so that the region-coord in each sample corresponds to only one text. Each line of the processed dataset represents a sample with the following format. The information of uniq-id, image-id, text, region-coord (separated by commas), image base64 string are separated by tabs.
+
+
+79_1 237367 A woman in a white blouse holding a glass of wine. 230.79,121.75,423.66,463.06 9j/4AAQ...1pAz/9k=
+
+
+
+ 2. Finetuning
+
+ Unlike the original paper, we finetune OFA with a drop-path rate of 0.2, and found that training with this hyper-parameter achieves better results. We will update the reported results of the paper later.
+
+
+cd run_scripts/refcoco
+nohup sh train_refcoco.sh > train_refcoco.out & # finetune for refcoco
+nohup sh train_refcocoplus.sh > train_refcocoplus.out & # finetune for refcoco+
+nohup sh train_refcocog.sh > train_refcocog.out & # finetune for refcocog
+
+
+
+ 3. Inference
+
+ Run the following commands for the evaluation.
+
+
+cd run_scripts/refcoco ; sh evaluate_refcoco.sh # inference & evaluate for refcoco/refcoco+/refcocog
+
+
+
+## Visual Entailment
+We provide steps for you to reproduce our results in visual entailment. See the details below.
+
+
+ 1. Prepare the Dataset & Checkpoints
+
+ Download data (see datasets.md ) and models (see checkpoints.md ) and put them in the correct directory. Each line of the processed dataset represents a sample with the following format. The information of uniq-id, image-id, image base64 string, hypothesis, caption (or text premise), label are separated by tabs.
+
+
+252244149.jpg#1r1n 252244149 /9j/4AAQ...MD/2Q== a man in pink and gold is chewing on a wooden toothpick. a man in pink is chewing a toothpick on the subway. neutral
+
+
+
+ 2. Finetuning
+
+ In our experiments, the SNLI-VE finetuning is performed on 8 NVIDIA-V100 GPUs with 32GB memory. In this task, we experimented with only a few sets of hyperparameters. We believe that proper hyperparameter tuning can lead to further accuracy improvement.
+
+
+cd run_scripts/snli_ve
+nohup sh train_snli_ve.sh > train_snli_ve.out & # finetune for snli_ve
+
+
+
+ 3. Inference
+
+ Run the following command to obtain the results.
+
+
+cd run_scripts/snli_ve ; sh evaluate_snli_ve.sh dev # specify 'dev' or 'test'
+
+
+
+## GLUE
+Here we provide steps for you to finetune and evaluate our model on language understanding tasks. We demonstrate our practice for the GLUE benchmark.
+
+
+ 1. Prepare the Dataset & Checkpoints
+
+ Download data (see datasets.md ) and models (see checkpoints.md ) and put them in the correct directory. we provide 7 language understanding datasets from GLUE benchmark, including COLA, MNLI, MRPC, QNLI, QQP, RTE and SST2. More details about these datasets can be found in this link .
+
+
+
+ 2. Finetuning
+
+ For each task, we have tried multiple sets of hyperparameters (including learning rate, batch size, training epochs). The results under different sets of hyperparameters can be found in ${log_dir}
.
+
+
+cd run_scripts/glue
+nohup sh train_cola.sh > train_cola.out & # finetune for cola
+nohup sh train_mnli.sh > train_mnli.out & # finetune for mnli
+nohup sh train_mrpc.sh > train_mrpc.out & # finetune for mrpc
+nohup sh train_qnli.sh > train_qnli.out & # finetune for qnli
+nohup sh train_qqp.sh > train_qqp.out & # finetune for qqp
+nohup sh train_rte.sh > train_rte.out & # finetune for rte
+nohup sh train_sst2.sh > train_sst2.out & # finetune for sst2
+
+
+
+## Image Classification on ImageNet-1K
+We provide the finetuning and inference codes which reproduce **85.0 ImageNet-1K accuracy**, slightly better than reported in our paper.
+
+
+ 1. Prepare the Dataset & Checkpoints
+
+ Download data (see datasets.md ) and models (see checkpoints.md ) and put them in the correct directory. Our provided data is derived from the original ImageNet-1K (ILSVRC2012 train & validation) dataset and shares the same data split with it. To formulate the classification task into seq2seq paradigm, we use the synset words provided by Caffe as the generation target for each image class. Each line of the processed dataset represents a sample with the following format. The information of image base64 string, classification label (1-indexed, conform to the order in synset_words.txt
), synset words of the label are separated by tabs.
+
+
+_9j_4AAQS...fzX__Z 769 rugby ball
+
+
+
+ 2. Shuffle the Training Data
+
+ (Optional, but achieves better finetuning accuracy): If the disk storage is sufficient, we recommend to prepare the shuffled training data for each epoch in advance. In our experiments, we use shuffling which brings around +0.2 improvement on ImageNet-1K accuracy.
+
+
+cd dataset/imagenet_1k_data
+ln imagenet_1k_train.tsv imagenet_1k_train_1.tsv
+for idx in `seq 1 9`;do shuf imagenet_1k_train_${idx}.tsv > imagenet_1k_train_$[${idx}+1].tsv;done # each file is used for an epoch one by one
+
+
+
+ 3. Finetuning
+
+ In our experiments, the ImageNet-1K finetuning is performed on 2 8-A100-GPU servers (with RDMA ). Here provides the finetuning script train_imagenet_distributed.sh
, which supports multi-server distributed training (as well as single-server training). Please refer to the comments in the beginning of the script and set the configs correctly according to your distribution environment. If you have shuffled the training data in the previous step, please correctly specify the training data path following the guide in the script comments. The command should be run on each worker. For quick evaluation during finetuning, by default we sample 20% of the original validation split and report accuracy on this subset after each epoch. The accuracy on the validation subset is generally ±0.1 relative to accuracy on the whole validation split.
+
+
+# run on each worker after the distributed and data configs have been correctly set following the guide in train_imagenet_distributed.sh
+cd run_scripts/image_classify
+bash train_imagenet_distributed.sh
+
+
+ In our experiments, the finetuning costs around 80 hours (for 32 epochs). The best accuracy on validation subset during finetuning will be around 85.0. The log is saved in ${log_dir}
.
+
+
+
+ 4. Inference
+
+ To get the validation accuracy on the whole ImageNet-1K validation set, run the following command. The evaluation costs around 10 GPU hours. The accuracy will be reported in the stdout (expected to be around 85.0 ).
+
+
+cd run_scripts/image_classify ; sh evaluate_imagenet.sh # inference & evaluate for imagenet-1k
+
+
+
+## Gigaword
+We provide steps for you to reproduce our results in Gigaword. See the details below.
+
+
+ 1. Prepare the Dataset & Checkpoints
+
+ Download data (see datasets.md ) and models (see checkpoints.md ) and put them in the correct directory. The original dataset is taken from UniLM and we organized the data into the tsv format. Each line of the processed dataset represents a sample with the following format. The information of source and target texts are separated by tabs.
+
+
+factory orders for manufactured goods rose #.# percent in september... us september factory orders up #.# percent
+
+
+
+ 2. Finetuning
+
+ Run the following command to train the model.
+
+
+cd run_scripts/gigaword
+nohup sh train_gigaword.sh > train_gigaword.out & # finetune for gigaword
+
+
+
+ 3. Inference
+
+ Run the following command to obtain the results (~36.43 rougeL).
+
+
+cd run_scripts/gigaword ; sh evaluate_gigaword.sh # inference & evaluate for gigaword
+
+
+
+
+
+# Gallery
+Below we provide examples of OFA in text-to-image generation and open-ended VQA. Also, we demonstrate its performance in unseen task (Grounded QA) as well as unseen domain (Visual Grounding on images from unseen domains).
+
+## Text-to-Image Generation
+
+![case1](examples/case1.png)
+
+
+## Open-Ended VQA
+![open_vqa](examples/open_vqa.png)
+
+## Grounded QA (unseen task)
+![grounded_qa](examples/grounded_qa.png)
+
+## Visual Grounding (unseen domain)
+![vg](examples/viusal_grounding.png)
+
+
+# Related Codebase
+* [Fairseq](https://github.com/pytorch/fairseq)
+* [taming-transformers](https://github.com/CompVis/taming-transformers)
+
+
+
+# Getting Involved
+Feel free to submit Github issues or pull requests. Welcome to contribute to our project!
+
+To contact us, never hestitate to send an email to `zheluo.wp@alibaba-inc.com` or `junyang.ljy@alibaba-inc.com`!
+
+
+
+# Citation
+Please cite our paper if you find it helpful :)
+
+```
+@article{wang2022ofa,
+ author = {Peng Wang and
+ An Yang and
+ Rui Men and
+ Junyang Lin and
+ Shuai Bai and
+ Zhikang Li and
+ Jianxin Ma and
+ Chang Zhou and
+ Jingren Zhou and
+ Hongxia Yang},
+ title = {OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence
+ Learning Framework},
+ journal = {CoRR},
+ volume = {abs/2202.03052},
+ year = {2022}
+}
+```
+
diff --git a/README_EncouragingLoss.md b/README_EncouragingLoss.md
new file mode 100644
index 0000000000000000000000000000000000000000..430b45ee0720084347539901909e8222152ab99d
--- /dev/null
+++ b/README_EncouragingLoss.md
@@ -0,0 +1,34 @@
+# Finetuning with Encouraging Loss (EL)
+Below we provide methods for finetuning with label smoothed encouraging loss proposed in [_Well-classified Examples are Underestimated in Classification with Deep Neural Networks_](https://arxiv.org/pdf/2110.06537.pdf) on different downstream tasks.
+The implementation is in [label_smoothed_encouraging_loss.py](criterions/label_smoothed_encouraging_loss.py).
+You can set the `--criterion` to `adjust_label_smoothed_encouraging_loss` to use it. This criterion has a hyper-parameter `--log-end`.
+`--log-end < 1` results in a approximated and conservative version of the full encouraging loss.
+A high log_end will more strongly weaken the gradient vanishing, enhance the modeling of the data, and increase the growth rate of the margin, but it will also bring a larger gradient norm, which will bring challenges to the existing optimization system.
+We recommend higher log_end for cases with higher performance, and 0.75 or 0.5 as your first try.
+## Image Captioning
+We provide procedures for image captioning with EL below. The preprocessing is identical to default setting.
+
+
+ Finetuning
+
+ We propose two scripts for stage1.
+
+
+cd run_scripts/caption
+nohup sh train_caption_stage1_el.sh > train_stage1_el.out & # stage 1, train with encouraging loss, expected cider 1.403
+nohup sh train_caption_stage1_el_db.sh > train_stage1_el.out & # stage 1, train with encouraging loss, and drop best examples, expected cider 1.404
+
+
+
+## Referring Expression Comprehension
+We provide procedures for image captioning with EL below. The preprocessing is identical to default setting.
+
+ Finetuning
+
+cd run_scripts/refcoco
+nohup sh train_refcoco_el.sh > train_refcoco_el.out & # finetune for refcoco
+nohup sh train_refcocoplus_el.sh > train_refcocoplus_el.out & # finetune for refcoco+
+nohup sh train_refcocog_el.sh > train_refcocog_el.out & # finetune for refcocog
+
+
+Evaluation is also the same as the default setting.
diff --git a/VG.ipynb b/VG.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..5ffe98ab2d8a9758c6b39afafb6e133182154224
--- /dev/null
+++ b/VG.ipynb
@@ -0,0 +1,419 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e41f4047-63eb-4a2e-9d32-c4f948dc93c6",
+ "metadata": {},
+ "source": [
+ "## Import"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "9f2a1f74-c39a-4b9f-95e4-93c6aa56819b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "e3b96baa-e717-48ac-bfd2-2bfd28ebf198",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "import numpy as np\n",
+ "\n",
+ "# import sys \n",
+ "# sys.path.append('~/ofa_ours')\n",
+ "\n",
+ "from fairseq import utils, tasks\n",
+ "from fairseq import checkpoint_utils\n",
+ "from utils.eval_utils import eval_step\n",
+ "from tasks.mm_tasks.refcoco import RefcocoTask\n",
+ "from models.unival import UnIVALModel\n",
+ "from PIL import Image\n",
+ "\n",
+ "# turn on cuda if GPU is available\n",
+ "use_cuda = torch.cuda.is_available()\n",
+ "# use fp16 only when GPU is available\n",
+ "use_fp16 = False\n",
+ "\n",
+ "from matplotlib import pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "c3e98948-295a-4511-85c6-aecc9c54b5b4",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ".register_task_cls(cls)>"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Register refcoco task\n",
+ "tasks.register_task('refcoco', RefcocoTask)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bd7532c0-a88b-45e5-af3f-3d7b64119bfd",
+ "metadata": {},
+ "source": [
+ "### Load model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "fb36d81f-1c5c-4a71-ac0f-7bd811da0d3e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.5 acc None None\n",
+ "self.sample_patch_num 784\n",
+ "self.sample_audio_patch_num None\n",
+ "self.sample_video_patch_num None\n",
+ "self.with_cls False\n",
+ "unival\n",
+ "getattr(args, \"stop_on_max_len\", False) False\n",
+ "getattr(args, \"stop_on_max_len\", False) False\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Load pretrained ckpt & config\n",
+ "\n",
+ "checkpoint_path = '/data/mshukor/logs/ofa/best_models/unival_refcocog/checkpoint_best.pt'\n",
+ "\n",
+ "overrides={\"bpe_dir\":\"utils/BPE\"}\n",
+ "models, cfg, task = checkpoint_utils.load_model_ensemble_and_task(\n",
+ " utils.split_paths(checkpoint_path),\n",
+ " arg_overrides=overrides\n",
+ " )\n",
+ "\n",
+ "cfg.common.seed = 7\n",
+ "cfg.generation.beam = 5\n",
+ "cfg.generation.min_len = 4\n",
+ "cfg.generation.max_len_a = 0\n",
+ "cfg.generation.max_len_b = 4\n",
+ "cfg.generation.no_repeat_ngram_size = 3\n",
+ "\n",
+ "# Fix seed for stochastic decoding\n",
+ "if cfg.common.seed is not None and not cfg.generation.no_seed_provided:\n",
+ " np.random.seed(cfg.common.seed)\n",
+ " utils.set_torch_seed(cfg.common.seed)\n",
+ "\n",
+ "# Move models to GPU\n",
+ "for model in models:\n",
+ " model.eval()\n",
+ " if use_fp16:\n",
+ " model.half()\n",
+ " if use_cuda and not cfg.distributed_training.pipeline_model_parallel:\n",
+ " model.cuda()\n",
+ " model.prepare_for_inference_(cfg)\n",
+ "\n",
+ "# Initialize generator\n",
+ "generator = task.build_generator(models, cfg.generation)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d7099688-d23f-46ce-aa5a-a35a745d387b",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### Preprocess"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "f1c1d8f6-ad15-4965-9cb1-a4cfb7b31393",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/data/mshukor/envs/ofa/lib/python3.7/site-packages/ipykernel_launcher.py:8: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.\n",
+ " \n",
+ "/data/mshukor/envs/ofa/lib/python3.7/site-packages/torchvision/transforms/transforms.py:330: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.\n",
+ " \"Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. \"\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Image transform\n",
+ "from torchvision import transforms\n",
+ "mean = [0.5, 0.5, 0.5]\n",
+ "std = [0.5, 0.5, 0.5]\n",
+ "\n",
+ "patch_resize_transform = transforms.Compose([\n",
+ " lambda image: image.convert(\"RGB\"),\n",
+ " transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC),\n",
+ " transforms.ToTensor(),\n",
+ " transforms.Normalize(mean=mean, std=std),\n",
+ "])\n",
+ "\n",
+ "# Text preprocess\n",
+ "bos_item = torch.LongTensor([task.src_dict.bos()])\n",
+ "eos_item = torch.LongTensor([task.src_dict.eos()])\n",
+ "pad_idx = task.src_dict.pad()\n",
+ "def encode_text(text, length=None, append_bos=False, append_eos=False):\n",
+ " s = task.tgt_dict.encode_line(\n",
+ " line=task.bpe.encode(text.lower()),\n",
+ " add_if_not_exist=False,\n",
+ " append_eos=False\n",
+ " ).long()\n",
+ " if length is not None:\n",
+ " s = s[:length]\n",
+ " if append_bos:\n",
+ " s = torch.cat([bos_item, s])\n",
+ " if append_eos:\n",
+ " s = torch.cat([s, eos_item])\n",
+ " return s\n",
+ "\n",
+ "# Construct input for refcoco task\n",
+ "patch_image_size = cfg.task.patch_image_size\n",
+ "def construct_sample(image: Image, text: str):\n",
+ " w, h = image.size\n",
+ " w_resize_ratio = torch.tensor(patch_image_size / w).unsqueeze(0)\n",
+ " h_resize_ratio = torch.tensor(patch_image_size / h).unsqueeze(0)\n",
+ " patch_image = patch_resize_transform(image).unsqueeze(0)\n",
+ " patch_mask = torch.tensor([True])\n",
+ " src_text = encode_text(' which region does the text \" {} \" describe?'.format(text), append_bos=True, append_eos=True).unsqueeze(0)\n",
+ " src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])\n",
+ " sample = {\n",
+ " \"id\":np.array(['42']),\n",
+ " \"net_input\": {\n",
+ " \"src_tokens\": src_text,\n",
+ " \"src_lengths\": src_length,\n",
+ " \"patch_images\": patch_image,\n",
+ " \"patch_masks\": patch_mask,\n",
+ " },\n",
+ " \"w_resize_ratios\": w_resize_ratio,\n",
+ " \"h_resize_ratios\": h_resize_ratio,\n",
+ " \"region_coords\": torch.randn(1, 4),\n",
+ " \"target\": None,\n",
+ " }\n",
+ " return sample\n",
+ " \n",
+ "# Function to turn FP32 to FP16\n",
+ "def apply_half(t):\n",
+ " if t.dtype is torch.float32:\n",
+ " return t.to(dtype=torch.half)\n",
+ " return t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "742c41de-fc34-4932-9bce-782f8cbe9fca",
+ "metadata": {},
+ "source": [
+ "### Inference"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "d6072ec3-df2b-4da4-88a8-877c5639d53f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def inference_refcoco(task, generator, models, sample):\n",
+ " hyps_ = []\n",
+ " gen_out = task.inference_step(generator, models, sample)\n",
+ " for i in range(len(gen_out)):\n",
+ " hyps_.append(gen_out[i][0][\"tokens\"][:-1] - len(task.src_dict) + task.cfg.num_bins)\n",
+ " \n",
+ " hyps_ = torch.stack(hyps_, dim=0)\n",
+ " hyps = hyps_ / (task.cfg.num_bins - 1) * task.cfg.max_image_size\n",
+ " hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)\n",
+ " hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)\n",
+ " \n",
+ " results = [\n",
+ " {\"box\": [hyps[i][0].item(), hyps[i][1].item(), hyps[i][2].item(), hyps[i][3].item()]}\n",
+ " for i, sample_id in enumerate(sample[\"id\"].tolist())\n",
+ " ]\n",
+ " return results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "d26045cb-0980-4589-b93a-519453aaf799",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAAEAAElEQVR4nDT82a6lS5IeiNng0z+stfbesSPixJkzK7Oq2MUi2WQDGqAWIOgJ+rLfSG+iVxCkvheEJtkNtlhVZFblcPIMMexprfUPPpmZLqIE/Ff/ncPdzc2+Cf9v/+PfYhRxtXv2/lZtgA4IqrSA30rLju88D9J36zKkm5flmoYAZLXuKXo2qLnkNR+GubRCjtteoDQGDOzMgJPfc95q9dOhGD8+rqfhVcC4ocXj/HI+v76/f/nwy93NsMoFk/ZrZojBH5yP27qO3jcV8a5pOZ+v03gK7D/8+PHd2y+VsIFezphSKHXzHgklpKAgS9nZzV1oYN9cKduSikJiYll3VcIwTFsnhWDsRVrp9QCORSiXCdzoXWuVUihaj5PbLueILNWGac5dhinlvI3jePPqJFBKvry6va21CtL5ehnS8Xq90BCH8dSW7hsWzTm0/Uxk4J2LCe/fHi/r+XS8uzvd5fUlRR8c916BkBNvbb9sL6/u3u179hy0IZFHRLM+jLHuL4HJMeetMHlCL6Zm5iK11poZBS+mqqpdHPEAsZRi4PbSfUjE0HtBElKzUqjlgY1YH16ex7v753XbC//pT3/uzXrvx9P06+/eDU7bvkYfSinIJArO+do1xomIDHvOeRiG9bocxgMDYgcQTWm4XC6lt/cPn56Wy3C4eX37BZr77uu31+Wx9m0+jCoQvEdEleIDEEdV102RgRkBAIC8G0y7ah/CYMQGXFozQwKVVlNggi7SUwqtNVVFa2bc6vbw4/Pv/+6f5sNYjMbbcZVsUP/tv/ubf/Gb7//uf/1PhPH2zbdZsF8fvvr26/l4uH/z5v/5P/1P4zCnNEsTAzITH5yIiIhjv667Z8fDqz/+8NP5so3j6AP8+rt3WgsBsh2Cw7K9qNR5nosI+lBajYxVCIPrWoDCsjdMTFFclny53ozjLz9//C+/+3MxFnYhDkXPdzfw3/zlt9F822CaJgAQg+CRmfd9N8UhDACkgiLGSMy45sVFr6ot71rbGFJtWbqdr0tpuZu2bj9/eF6X6lJEM6/49dtXqPnp8oETZGtf/fY3x9N9bzT6RF3avpW6G7tiZSvZ+9hy2S/bcl48OSJqFsXIjGvTfSuI3HvXbi1XRPyX//pvMeHx7d1/+E//GWD89qvfpmH6+rtvf//HfzLoxLLv6+lwcz5ftv5+GJNIG9JcN/3Hv/9zWST4oWZh3v+H/+H/8tVXr7Z9R8dKKtDZgkOnrRvhUjMFv5es2m25MNCHT89baSElE8EmUsr2eLk8PWMnJb+qNefZOSbqy67WnSPH+G//u3/7dH385eG9D+Ff/Yu/9sxqlRlrb8fbm659WS5TOATnoSjW7p0za+y5aVtgGVNicqDYOyQ/SO2IXLE551+Wq/OYpuCJty1HP0rbnXMijVCRhABBwJFvuZZ9n6dh2zYO/rwtt6/f5N5R/MvLSzfIpV6WDSm8LEtK419+8yUCJx8BwMWwbJfcN2QruZNqIPz9D3+m+UhxQqPRD0Oape5DYG9yfnz+1XffHA6Hh+cHuZGAbHs+pclal2a9aUxz9+yCe7o++xjZU8lbl3Kck9Owrus0TbXWreXxMINorXWIE6JGz+eXp3EcewPHEZFLq+M4rsvuBw7B1aIMoeyQph6jX9ZzbjnFsVaRjsfD7fnyNE6s1qUTghekLPj2y1998d2vmxGEIIgh+FJXsc7MVp1zzjpKt8M0m4j25r1H0GVb91xfv369rxsaISIz16bsKbfS+p7G2Fs+TvO+LVN8/XI5pzGamfTKzEQEoK2JI2b2Ztab1iohDgAE0EUbgBADkweg8/P17vZNy4VYHatJUYVuKgrkHSDu24bAzG6M8/WyhxDByOUggMrI0KnK3qEjsaEh7iIlDimGIHsnAwPalm2KqdRm2GOI27ahAYpy8CEequiyXAAUUD04aYIdrk8XH8cs6eeHPVd8elpvjjFw/dRe0vH4eH6ZfnmZ0/DTy2XtV/VSt3WKBzbxHCV3p6uaCONwOFwX51wbomd6/V/+8IxEfgzPWrgwGUUfUKw/rbWX8TCHiALgfXr/tDtI7On5fEEmjBOQuxZCP7bavYAHpHW/1LVltO6j+SE2j1Ivz69f369rG8Lp+vjctpozNcQ/f3hWhPs7/eHTx3EO7PDpYjHMy5rv3nzzslyPp28/PX/a8hnNAuHLtgYc5sNx2dZV8jidnpZLziUNdNlwnG7XvCk7H0IppW/aDMf5VZamCGIdySEqIxqItJ0BzbDW6r03JQUDAHIIANolsXOKYtiBi/SUwrU0ChzjGF3frhsTiNaUAqNVVI18xabaSiDWLq3nJQdi7wnjSGbJDygbI32+dXvJaZgA0DkqrROyOQppRkfKVmz3QC4gATYu6Rj6Bq/fva0f8P3Dw7bWIYwx8TS7m9tXl8uTc84MyBCQkgtgDEDMTA57r2YWo0cyJgIIwKCipoomQCC1IRkTeudb01J3VSVmEwXAYRjInclT79WYiUVr5oDHw2FfC6MPcYiRt3UXsI8fP71+81ZE3rx5czkv0joAphCdp8vyUnsb0oREw5RKyQovX313Bz+3Dx9+fvflfZEFUQjR1DE7i6gVILi+97Kt3vu9ljTM7LgXPQwBRBvWkldn/ubmeHm+nJe9EdZqvRkaarWv/uK3CSeQFgJuWxbTlELvKNKZGRiIAYEB1Dlv3InQuqxlY2ZzQgh7W/b1Suyn2dfrrk2USNkguGLIis7h1vbkoZter/V4f8cuIYVmDZwHQD+MGOPT+YWTH71nZhFLEwWXpKl1YfBI/vyymsDtzc3L+cxIIfm8N2398eHlV3/96176NAwfPzx9dH/61//dv/7mm9P7j3a5ngHhMLpazsmb8RydX0ojRCIqdW2mkVixfPnu7XR8dV3RbEhxIGtoXa0ZgoBpUwYyMQeowG58/dPPf95FeIwY3PPDeeQg3T7li6IOY6jd9tYULBHU3ozbIQ7Y2pdfv9nzs2h+++p0e5inkUHFBEOIgQMrqdCYZo/OIQmrGyITqoERgHHAm9KECUIIqJ08ll4BgBBr7TGwmJLB5Xx26MRaSiOS1ZrRUa+CoDEOpgBEcRherquqRBfG4bReio8JkL1Pl+crkg9+yjW/ub+dT7M6kiZmzSG3srfWPPunlydydDrMzy+PT+vLl6/vXIB8vQrkc70gWlVurb16c7z29frwTCKabyB4Ua1KxN7Idlk7ZrDYRTg6FxgAROQwzlJ77zmlBAAxRmWU2hCRiNipqm5bubu9711NdFk258IwznkvMfl92/d9jzEqdB4MMVzWZVtbCIN0kq7ReQIbIrZSEBFUwSFzDBwOh4NzQQWRI5j2LoSBKSqYqISQiraUvBls2zaOo5nV1gmdcxqcf845BucdG3Ri6q16JqTE6DmEVmEa7hHMe/beqyoRIei6rnd3d2CVmU1VRJid89Racz6KVCI0RGJqtTkXbm5vc91VJRAgc20mIjGNJj3nHGIMMXoOtbbny/M83fRmSOh0DtqEKbARAAAYRuigalyLA/Amlbp6ch5jFXHATWpXjUNY+0JEIuCce//pKUTXxSvI0/lpjtNNmKJ3x9H96cPTKkOzKfobT1fpwyawCz0/vHAcnjMqp6ayday97304+blvFmAcMbqujlSsPT3kmO5Kh6wEpXuex8P4spzXAa1DClEhenYG6iOAD41YrH9aBN1rQHjazwUOjkYlV8Vy0wDBY4oOfN+AAicpzhvOtdm1LonUO//m3TvP8Msffui9Hw4nIF+6xPGUrX+8Xvay9Ofufbw9vHl6+Ol4ert1qfladRSZxikt67mSpptX23WZT+zHeDod/QAIDI4bkT/crP1MPoH3udduQMyojOBUhNiDmJkhmGNn0tuWh2lAgyYQQtpyVlEgI3SijQiCI9XemwChtFpWM3atG0F25FL0yYfaCEylV3LcQNWMPCvStu73t/dWLx/WjzEkItQmjx8fv/nyVQP1gYkQK6oqItXSvI+1tl55nLy2lnzwzlAbIHbtte6OgwtoDe/vbgn48eOjGb88XIhOrV3JczcYQqqli2hvtufN+zgdD58nYDNTVe9VREwVIBA5cmS91bajmWPu0gGQHVoHJAcAHOK+Se9t32oIyQdkYlRL0fXeZbeGVjN65rJXRqA0b/t6uSzdNIX4KT9McSTCWquapcEF81tuqvXm5mavm/QrYru9mz89vK91ez7D6/s7VOt1Z/Sb7j6GQla1p2EI3jeh2gtbr9u6mbZSwuxq33uFnfCnn5/OW/VhXLardTDUf/cv/u2b2zuTPZfnEMFHZ7W6QNZFRJnZzPa6gzUVDAERy8PjMzk63hxyrfu6euIi++E01mbLsg1jWp6fgQISodNtr4c0KjP4oVp16SDreT7eqbAYjuMMxB3Me0aV6XjbLedaBBDJGQiRE+gA1mv3jntthOTZEBQIieD+zevlsv78y6e7t687tJ7r5fz0/bff/OpXbz98+MPp6B4fFgY/DnFrGYlTun0+P0UOdS0///SRUKcpmuYO+etffT0c7rZtCZ72XGJgBnZeERjM9p6dcyLijHqTJtVxUNtEpGx6/+rdpx/fk8JSZBzG3PVSd3SBGHLeWs6v7k+Xp+e7w5ymOIzheDc4wsMwPb88jsMQOLZSa1HP4ZCGZb8aNCMwhCzVkQMyRqxV4ny3LhdRc9E3FICuVoNzauQdOQQz0toCO88BDcDMcQghBcfXWk7HY6uy5px8uqyXcZ5Kk/O6OxdSHI/p+Lycry8LUwD0qioihHJ3GoHTy8sLE7oUy7IhgDQ9xaMGE8UPL9fbt1/Vqtv56TSNbE20QXA7WY/0Pu9vU7x8enbSv7v99fL8BGKj525NyTBGNw2muOznYYgcIG9FRJbrNg5DjNE5l3MWaUU7MznnEFFEGDhngzG20rwPKQRERkgpBh9IBVwMCnLdn46ngcz3XNJwMEHpdns8iJa8n5FbcEFEyCF7uOS9A9XaVUhEqBuy77UhMiC23qbpYMDOURcBFR+Tcw7Rrtf187O9bdswRiIIyaFp66BFnHOMMeeSfAKAvNs0YdemOHTTbVlubm6GkV/O6zAMRAwErauChehq6WrVUAzJe0ZEZANCBOy9E1G1rk2IKHpfpe+5MntkqnsVKWbQeg/JA2pr3QmIGqsmBue8guXea++N/TynezOxvqNJyxWJHNC+LDFFzyitM7BzQQmcc5frhcTvuwkxuBsMw3lbQ5fow1bLcPemXGzdt6563leK3seYdw0+lWaPz9eQBnLRu7Bh6ezVQwUO5EV24S7UsjSxaoY346G0ItbBiEYc40m6eg4lt9wyAt+9vl/3zVGYpmPJHcGt2xaHmyF4U1d7NZWY2ADIk0jdO4R40NJLq50uPrDq3k3uT3dmuu+r86oBOmytArqAYDWv3SoAtQ6I7vmyC7IhPT4+Sluu2z6l+Mffba/ffdWdpQjHdGKklEJp2SVnvat1tVphE2pIVqFLL8E7wO7BAtue0XlGBFE1gBCDKBmiw2BgiCKKagyOFES1I6iA9l7GcXSBa60hOM/eCXbtum7dHDOrKjruqi447RLMTERaHV1qAsuWt3UNzjvyKuDZnw431+saPRCTmRGRmQEYADjnWuvJvOtYWwuOsalo89GTuaqNULT1Q5rqspy8+/o3/80//eMPOu/71Ti229ezQe9d5vmmFwH0ITB7L11rrkjmHAFA+zxPEH++5CKNqKeIij0lD6q9995BRBSAyddGCI6JkYKxL7WKWe773dvTy8slL7uEAyrXZrAWNyb2mM/nl+uFGV+/unt5fCKUXpuLE2BrrbYuiIkUt+uGiqf5brnuUO3VfPP88WkOqe99mqZl35atovOU0tpqNWDrUqqAqAIzEREzOg+qnYnScPv8tDw/FiLXt3UgxIBjcsfD0Ep3nnz0QC2E4BzFQEWMGZ1zn/sSFUViM0GB+9v73mvdGiE5ivu2Owwvy+59NCTpGmPMRbxzrXbP1rs689erTSHWzEOY9mWdb24DuRhTK52IehcROxxOz5fWqk6Tj5PfOnrHyrJeNoeNDOYUOcRW63Ec1LArvSxX8iHv659/eO8Ht1yXX333/WGe/ukf//DFF19+8ebw9HBGk16NIQTnSqu301RaFbHT4ebx47lKrzWbo+l0fLo8t76PiaMzVWPAfW/MnFLCRqrSayM1bCL1chrD87P1amK41iqdLudr1CHZICAMAhhAIQT/+nDz86efv//1d7/69XfHcUiO0NR5VDDyzvnoXFgua2TnrOfrmiJWYZGuTNUEHLfWxxBc8NhKQAzeoSiLYQcnxITE3sy2vCNiKSWlBGoEgEqPHx7n4+H5+fkwDyrAQFMacs4++fO2jNOUMKERARjo8+Pztm33b949PJ21l8j06nQq6yJUTsd0fn4ZHIAUb9CKXF6u4TBn1N6n3GCKQ74UW/PNaWpS97LjNG7SaoFfPq5vDjfHNPzTP/4gLd/fHHojM/KBvUNrqFbHFFXFevdMzbnooncJ0Pa9EKEZOuI0DGYqrUsBRUjx1KtnDNophtB7NyVDvJwXQJPSxGrwQ+soauSSNmHiWvO+6zCQaHbI8BnYclLbDuDvX72ej4cYkxZRcA4DEhERAHEYl+s5pYRG3kUQVRMAuF6vZpZzJkD0bt+Ki6gq7NARAwB+/tScc6rapCnwOI7btrAPx5s7RDQVZFdLq9CCdwBQa/Xe0IF2xc87BNBUBAxVAbVrSyH1bq2Lcw6JexUfwzAMl8ulS8cOx+NxGIbregl+DFNykUyYtGu1iqxoO/YaVBmGQLSVitA5EDDEMDAjkpHjLrJeFlFjMkO6XFcXuGvv0A34cDogqO463x7f//jLOI/XfC5iarGCoB8flxeqmqa51j7ECaQRGKJq6wM7bBJ8VNFmG8AqWNGpA0wDa7O87UNKtW17LTf3x3VvBB1VYsROyM5T9GQJY+jIa1vHCYiwAjXgUndGMNDjMDtC7bk3c2GOLjQBhQeQzTnvHHDD+9ub6LErEFm3cl3y4XjT64JMx4gPi43D3PpWi+1WxnG+XD8E7wmFzcq1ssCnn37KIDHgmugwHl/K9fT2dBjfMrSyF0rSy8UFNOnI5B1EZ7XUwTG0lpBJ1XnfFXq33kVUfUhqWGtVdapqyCHGpkXE2HvsDQEQkQicc6IGoAg4jWnfCpED5GbSRbppk04qDObQARiyU8RlzWDUWgt+kia999rlzaub88sn5sbODcOw7eV0OlxlF5HeOysYKhtGl1TVhBjHqtVxN7RhYIf99e1hc/16zij08nw1hBG5FlVs5kBj3/cM1sdxBLRSMzlkZgBjZtGKQC4G76N26ZJBu1ozkW1ZDISZYxjIca1NQQwhDkmlg4MugqghJp9Cr2Laiay0CyXoVhLPLUscggtxXa/HeXj3xVf/9R/+Pq/Np6gq5JCImV3woxIh2PHmeL2uX7/+7vn5fP7w0rcycMROfZdDOilYM/UutZqJJA5Jym7IPe9mjER7yS5FI2Rl4/ByyYgeen97fPXw8D7n9fb12ypbcnOTyp6InCkDWNk7IhGRqgIoIrFDxwGArONy3YZpIuu55r0iYFKkw83x+eEZLaCa1Sy5YzUW84qERMBSbM17qy3NkRpPLs4cyrYH9kDcycCs7XkeJzRApnzdJdcYZiYG2BmJEL2j4HA5X30avAtSxMeQ915q/fTwcjjNqu78sjT5wQ3TOKy96+l4vy0XAotj0l4DqymoERpZozEeWpUG8O137+5e32LQYXSmRVC12jAeFCHXQsGX3gDAO0dq2NXH6U8//zyN48u19Nz8EEpue6lRvVYlZiZfRYChlbou57t393/zb/9WUbtqsx4d7WULQ/LRVSv7VoJ3Yxyt1TFGg160Op+MiZAFjJ1j5wBw355CSD5wL5XImRBYUGEk11pGA+cppUMr3czQY60VEdHw5vDKkR6P88f3v0zTYV2XpjUl33recznMxxTcp6cP5/N5PpxeXh7UOmE/nU6v7+8/vf8lHoPsq9W9LmBVt0s2wTmEfZNrLtbIgK/LTuJKlrP2bLs4074157u56fj6/bm8eEtSxiH2EM9bPow+hQgo27ZxADbshtDbOMwtyzBMZtZK7r1/liaQd0hQSiMkZp/3fhgDIofg9rwhmkHvUk/zyfnBoK35gmhAodfPGg9EBOeNnfNsvbcYY84tuECIvVdFYvJAGMMg3QAREQFAFbSLSEdyh3kGo1qrdem9e8ef+7NLPjuO8zBf19UMg58d4T8/q2aO/J5riiFEvFyu4zi2VkoXZEopodKei/MBSgkhiIgBfEane68ueCRVNWbuXRVIegeQw2G+XC6q6pxj57TLvhdiF2N8fH6x1t6+fbuu121bUhprzT4OOW8UoA8sCEVhFV0Ia2I5JRpdoX5xuowBhuBDCGL9fH0Bhj2vnwUvjgANnHOmGn2obSduRNn6tZeLETSz8XgLhNGhR+myd2xLWdExxxnd0IT2YmCOjKS2nvdUGTajxqAMZBwR0bqI59D3bo1ZPNTAOpqk2jxDCc4IWox+nNLpdMqtuzgKKDML6bo9oqt8cOMphSPPp5SSI21TYGo1AQzs877XDimOUzrorrCZUyY1sMpIU5rAKMShdpvn2czytue91NpRmZnn40GktL6ZLip1PZ+15VafvLtGukbIZcl/+v0PEWJ5rg9/et6e2jSc1peVDagDKw0uDT6xOg9hcGPdWmREKaiFWMhJtVp6VcbaTYyQg6FDil3RlJEdIDnyA3tbsl73iCjStrZf297YKotFaCRA0HoxESKiEMW56liH2BDVANTIsYgyexOLPknr67oy++Phxrmw78U5t21bTL614pnjwVMi9K40LR2rxdz92rBBeLruz+v1eXmukP3AaU5vv/mS083zxR7PuNUUh9dV3HWXYb49Hg8usmptbW+tACgzI5p3wTnHzL3pnmvJDZGDC0TEzMEnx6G02nsXVTMLEYml1Etpa4UMzsR6awXNonPIpcql04ZBYvKImKUdbw7btq7L07Y+/cX3X0uvDklVWxN2aRzmnPO+bwiU1yJdSykMeJji/c3x4/tfyr5Jt1qgVXScyt4J+DSf8raTdzUXAMhlUwQ/jOj8vnVHp1Lqn/70hxg5BV/27IDnceq1tFaQahp8CAEhgDqp7HiKYUhpcM4h8ue1ExEiLnlXQiDMtaD3YRw5RvPu5Xw9nU6ItFyvrBCRHdhpGLGjNwRrwXXTnKKX3Ed/gNq1dhQJhFJL8sEZtn2DZqyge/VAx2lGs71kZFIwZFDtoC0G1lZBzUQH74PnkAI5fH5+bq0zsHb9r3//X3/58Zc3b9789W//suQWQorR17qxk5jcNIwINKZ5HI6tmTb95suvmGxbz/u+Og7bIjEcyw6BAyCX1rP22rohSLfc+uOl1x5ah3FMoC1vl3VZ1NCglb6Vtil1cNq0LOVCA/zmX/z69Zu7tl+HiOZktx2peWjRyXyIPgIGDimKwb7VsndGQ1DV7pITUEDrvasqBBUoRUpHI+dz12oMfqi1tdYAlBh8YAVTMGQysxBCrXVdt/P5ej0vrUkvlRhAtJYirR+Px9ba2ssvj58wDuB5zatoZUfzYbqcrwpeW18u6/3pdrlc923LOedaSm8c+OX50+OH95q356f3xH06RiEZpsTMY4geqJd6frlecn4p+WPbP+b1Yl0HLw7O68uyndUyG7e9kQIDt1IJsLW277uq/jPJWisi2udRkByiOQ+KVXRrsoRoQEVsY1/FFnZtb5duu/NacwkuAkDLmR2qdkAlctdldT4RDeB4KRuFqEZd7dWr1+Rcbp+RMAJUQnOekg8xBE8srcBndQho8qGV7Ijnw6itmlbtNaW0XNenx2uvgBKSmwg9ghq0Vje1UttaamfmYZhq6Z+X+XnAUAUi6r1ve1YwMwMTMCFEM2T2ZBhdYvaltBACMyMiARM574OqllJ6qdM0520vOTORmbAjdghklLe99YJcfQDADqhmpl0CIchGUMCk5ibdeq/orElBthjdPA3BeTSzLtH5losnPozTGLwz9creh9y6gIFaBHIKrdTam5gBQMl1OS/QCRow+MQpUkoUCTobEjpkoIAugFqvuWITqErZTuFoGciimnt82WrpBA4sQg2aHXbnlY5hSEbB7Nsv3r0e70Z0gwcpT4lbRIsEKGZVWckzeRaCCtii95589GmI4/3dq89AnGpX6wSMQmSuNjJO/nC6ubu55munLFxetodN146ylqyo4yEBaxg9YPXaA5FqPx4PgVCW1ZvNw1yLDulA5jx4BtYG1lEEUJ0Iejf0Zl2gCYiZEXdVcKyEVRF9Io7goiFLt65miq30smUp4pD+GWpGHIaBPBkZB2dkpRckY+YxRSbovRpZ1l5B/ZAOh4N2kabv3ryrex7jSAZjHEwg+uB97F3NrNb2+WiOQxxGv+drKbuZdTEfRnC+gZpz6L0fx5DGME5NumCPB3Yz5rrnVtnFba/TNBEbQatl6dZ7ryHyOEUENTMiUBMAUoXeVVWd8yEkMF6XfZ5PIQxmwN4jknM+xviZHy0th+jiGNMYOcbaQcwFHgBw3ZuSy72zHww5hETM27Zcrk9IvZblN7/5lXOEAEOIaLyt7bpmn7wbUbBnbWEec89LW4bjECa/5OV5XZ+v1yIa0lhKa7mQmPSOiqgY/PB5L+Z5NkIRGcPsdDw/bchOGVbdX/aXu7e34yGAazenMYQucs7bJhUceTNTsdZEugEgAHzmDfK65XWbEp5mX/eXfTvXsphsXVaAHAcQ3fP2vG8vTNJlm0fvA05DUM2IrdQtJeccmkkrWbox4pASIpgZ/DOUQmRAANKaSiODZbmsee9gAqoqBl2kpeAQtPVKDPmynB8fxiEOQ3j9+pVJPb88tJzX5fLtN18FQun9u2++R4Pr+fzFF18wE6Kp9uPxGEL4i19/TyjffP3F8TB5MscmvZesJaPjEdm9PF8RXOnWgZZcXi7b83XLRVycXRy2tThzd/MtZoCiVNXFYABFqki31sq6sMq/+Zd/czMM54eH4zjUfZeSExrUpjW3df/448/eewC95sXHiIjjdBjHVHspdXdI4TO42iSQT/FA6HsDQk/kwD6jo+A8DoMnr2Jl3VchNXYdOIyBowdH5JhcULNhmJwLeSvTMB/SjB3J3Hy8f//pctmtIv3y8KIUL5d8c/NmGA9N1A8JOYU4lwrr1q9b29R68B+Wyz/99MM1b44kbw/ffXd3uuVGV3DbNKdpTufnl/V8OaTZs51O8bp89Af48i+++PJX7+Ict5qNXRoOBq4WDSGpACqXrTDzMMRaN+cpBCfSAMgUiRyhc5xELKXkPCm2KptRR1axzuwfHh7Oy7X1juC9G4boe7kyakxemgY/SXOPTxv7g4uniri2qxtQVA39NB9eLktpNh8PPgZyBGCqjUydB4Lec55itFajY4/UW2Ui086Mog1VxiEi2jzPh8OJKUpHIqetO+dApfcWQsitxhiZ/5ll/3zwReRzq1RKMUNV9exSSimlGKPjAIrBBaLg3eA4bdsWQgrOg1nvvfceQnDkVfX+/j6FaCJjTLfHEyF6dr1X6ZWcT0zeOecciQiYA/RNGcS3JqqqQkjeBd+0APTSMqKVVlU1eI7R91p677XW4IeSdbtokIO3QSvkLgZtDD6RC8R3x9NhmpmZ0KhLAKCuJEgdylq8ckBPGHyYDeJeMZdem6Kl5E6MFsj261lr9YSt5lr3NDjprlcvOWAbgk6ww2DUlpcDet729nRJNfKGXMrMGkW45Js4vrv7wlP0MQJZhzIe/e1p8B5VdZqGYeTpGENww3icjqn3igCn+eDId9VqlsEyrn4ySl1DTieGAOZAifdeq+Qseetd+hD4pmxWtMeZ5oOfZ3JYQwQiKKUFTjlnJuq9l1IAwIVQcgOg3gP7g/NTN5+r5qJq1AVEgch1AwBiCt5HJte7klEIyRxb8uKw9CZg2npQ7etKKiYSmEIIjhDNrDcEJQDp3QPVUtblSkQgtq5rCqnVOo9zr+3meDKzx8dHZp4Px8/sr5l8hoOic8FRcE67mWrNe86bcyC1Red7V+3qiImg1Ou6Pby6vQ+cnh+WvkPbmlVF6Q6s1izaRJpq/0yXfi5kjI7ZI3CtLecsYohMFFSglr7thckDQOv9c4M8T7cxTiGOqrgXyxVa5xROveFyaculte5Vk6LPRVuF2sp0nNhZ3paHh4/nl6fvvv365eUFEQmDd0NXA08NyiILBuoMFlwYEwQ6vLoVpJdlW6ru0o0JEaMPQ4xkZKplLyENMQ4hpZBiznldV2l6eXz58OdnqSiMGfvXv/1+fHVouFHI79//wG4HvXrqY2RE8YFEKyJ+rg61VhFhQCIahiFyg7Zqub45xWD74HXwSrKb7rVdh8nd3A5qOSWv1JvmEC1E8J5DCN0UEWPiEMGnYTocmFlEUkq5dnIMRrlszDzEBGqtNWBKY2wgIXlg8J4BFNFC8KiWUppCmtLgHQWP55fH1soQQy7LGPyPf/5T9OHmePvdN9+dn67TeNzXrGAu+JAGM7u7u00pfP/9N8MY1nX54x/+8PT05Dm03Bjwx5/+aJAZQwjjXmqpvSoCsvMxTnOVZd0uKQxQ6NOfHvWlx4Kj+a5g6BEcK99Nt3/5zW++vPmCMvTLvl037yMZ3g7HUR0LOHRHf7w73HkOyCTSDfowe6VqZgBKBMtyAe2OeB4nMmAJiQ+Rx4CexIboB+96Xlsras15YwfAikSAvLeWpeln9azjruLTgETLvt0cTg4ZOmpHhiHvtiw6nd7Md6/NxS3LfHpzON13pdyl9vbp8XpZ26enaxG87L0Yfrouz7msKuNhvr09ffX21TjSdf9wc+cPNz6XBQBCSEzhizfvxiHV/eWv/uLLr7863hyo1xcmnceJwNUdIp98DGKQ0li7IDIiqrSY/PE4f24BnXOllG3L25ZRjTCogCmCEaHb1uw4HQ/3UnEaT0M6eDeneNuqY3SM2upCYAgEFhDSMN6O4926dHJMTgV2IW0dFGiYZsextXbdrq0XdugDswME6W3/TLchgYoA2DhEkN5yWa+LiQDavi/sENA+j6fOBQAAgMAupeR96N2CH0Qs57xtm5n13j/3oJ+X+flnCOHzKKyqiEbAiGSKBFxKU9UhjmjwuYzHGHuXz14Vx2yq2rqI9NqkV0+IaCY9peCWOh7mKHVtuQ/xxsB1FjfwVSTd3m/XDSH1qjwQem/E2lcMxACouC57r8bsB/bq1CM4E0Np7crMta6AWDAmdNiYNa1bR44x7wNyCA5NFQvEUJiKEg9j30ANrvmqrqY4g4RiiVA65jEmAuab+rhfDvMsWbSrZKV02AVc4Mqqqlr3OczbWp4THGIE7BdeX0+jPzfnp4U1cmyAe9/c4KqxKatW1wQJ/OC6i7mq14D+WI2kQoonCtmFjkZQN+9sjFKwSBHneJfmHQUnMZI18hylZJPow9HMkHkpnZjmedbkw+iky7o/LDU1J71tvfPd/X3OuasWyeoTKiCj9166ldaYsYtrIkNkQpLuiFvrPfq4580hGAiYsHKT7qdUrG+9ApCCIfraZRgnRJQq1tWqlnKJngHEMalK+wypBV63fjsffe6P66NWgajDEHK73Keh9KbmUpyc97XmzwAUISAIghLV7focXAzAWjdPPcSxtEV7HYZxjAPU5hyVVmlKyXE+2+VhT+F0Xu35bMf5bs8XYHDJA6Aa9l6d56pNqnkfuzQzVIDPDKj3vkvrRnvJyG6eXpVsRONWVoMyzHEvW8DYsw3pMKTLsmyMuCxLSBjHSS14fxMHylWmZCoLeVdbubu7/bu/+9/+r//n/z5vl3EejOGSN0Ri9qcp7ct2mI7bWkIIte6tm6mmMG0XGOMXz49PkZfb795pW1EUjCgwgIQQnMOXy2MIgZzfSytVzDDe8B9//IfOejq6+vw0kH1xd9zzFQivl/z9929qTU9P+93N0HtnJhFJafgssPQumlkpBcgcp1J2pbH3jmmykFq59E5VO0bi1rq2BptxQKslX0urHUUZ0ZuCZnHWKSba63n0o+E1w7SAqGcttdR6c3PsBda1BWdl3wQqRcx71gweoiNQreaYmWvtogIee6/qyuk4FOsZtzZcHWATzLs7Hd78+OP2t/9m+P/+z//p9f38+qvTw9Of0uTWDZr0z3hea7tn//aL23/83e8eP6kq3Nzd7deftrqQwdvXXyzFKth2fcHeNPcPv3x8LxoISFvdc+k2noarlGfct3xxgwPuCLVA83P44st3r+/vnj8+Pfx8/dr4cm2+rjen2yEd0IE0C3726C9QjofTXqqUHg8zEPbevUEFZPaJCYC01GMc876gmjvM+75rr9M8NBMzqVYsmnVsjORT2/M0H6+tkSdX+17X4HwagjY8nubluoFKKUW8jT49Pj/e3t2fjsd//3d/d83rYfI//fBT6eXuZv7Vd988vP/p3RdvhhiWmp1qaerdgcl73y7rtarttURP3tvNPLKpB/7q/ptd8LJsaPDy/EI8fvH2y/Onp4/vf07HMaYZtjNSbdLPy+XDw8dPjw9fv3733VdfM/t5HKDY6A8Ktta9LyUNQ13Ltm3MbNJTisxcyZDEsydv3XLHakgu+SI7GdSuHNG0Vy15ffHejyEiO9Bq0Jz3pV5bt2k+uhiWbecIpaAPsfY2nm5KwzgeptPx08sKTHtdOQCwIPleigvskKArI/XezKS0HMYgpFzzdLipQsQjCCHKVp7HKYUQl+s2jmPtHcWpYXBBtQfvelcfPBl0aSDA7Na8nw7zNA2f1c4hhFwqCzqXFBqRK62DEREAqvMkoiaSKOznhdGCp26diEqWIbF1ZA4lawiBQHuXUoozZ82qTw4ZBKDW7GOotQhpL8KBiJnViZmZtdb8mJTRE7cmGFwKoTVpItE5EfE8U1RELG1XIrGWEvgiYZy3aoL9oq2EupHNLrbWwFjW2iF6N1cFbkJpup0mQRLpZoJslND5obMja0zSr5fL8uKdu51HsSZVtYsAoHO9d+djF48MeX8ew5EUonPArkDrCMYhdyeghAVw57BFQpYEW2l5McaY+FLXMMSX8nD0iYmTeB+16t4F0JOZYXcowgBl794d96335mOMte2CbRpvTFkVassi1nobAu/LeriJ63oBMxeGFI/Sy+Xl5bys6ty6rm/ffQEewaCVbqLGUFrBQIawW/WRzHWw7tSIHDNoL4xCjJ9da957osFMtdXoPYAqkUsu53xdNuecc84YITpTLaAGos5rMaz1Zp5KzrfDnLddSME5HtyeS275u++/JE/Xy8v9q7tSdlVoTZiZCZs00RZCWFTQcdcWAte+xTE12A2FEz8vz4dp9g5z3gyBzDtGh33wcD0/fHH/HUoNPtQKTKBdTA2QPDnP0cxM0AzcmHLOJp2IAEysE1GMsfeq2kNAdsyOIkRVb8JchZ21VrQthutSP4UQhMLgDjF4DtBto1BzzmKe2EDAORp8PMzzH//4x1d3b9BNt7e3lw1TiggGIs6J9U0l16IIjgiBWbqmlF7f3788P6cwffjlx2+++taktdxqBTNT64icONa9goAFP4zH0toff/7lh18++Xh4fXP3/nz5za++16plLXc3rx4fnn/5+OHu5nh7e4zR9Sam6Dh2UVWttSMaEnjvWutNducCOO/JMTOYMXDdK5IRYm9am3TRnPdWcxf1cXAIvWzrck0RxoEhWK7XkPyWd5/Sy7alw3Ev/aeffyKlH/7wx7u7u2GM63WpeeNAQEQM5IgU2UHr8hk9bq39cxCH6Zqhta3CDgPMU1jOK5qbhyHQdTs//b/+H//3b775OhB/+fbmv/7u378Nr5O79eS1N+l5Hr1Jvbw8tvry/Mlaa1Jt25tLI3l3fXn/5z99VDAm2LZ1Wbd1bzEOBL2WTSi0fbtdSm41tyLcnSMPVLcenEuYBjd/+uX59//4xxDD7/7we6P2b/7137aSHdum2mw/noYiCoql1S7CgdnTtu2g3bPznpnZkD/znbXWWor3XmptUsfJV9lbL71XIpqmCYujEMQ48E2Ece9XIpO+O/Oo2IuJdAauUkJwJGzazuvSGK69/PC7f+iAd6fbl5dlHPxNGvO+bPsljPx4eaw1n6+Xtpb5cMy1f3j81JqYGTlEtQH9HAdTCWPa9tIaPG3tvNXTmKbTrTZoe861HKeDH08//3K+H7Y/fnxcLtfa65J39v6x6frTx+j4V9988+ZmvpY9eldKOZ0OMfj1fLm5uUO0dV3VTMSIXCmNEIMjACT0agjoTbSboUMfwnk5m6EP82E6LsvFe+8CoIFqA+rsQGHd8x4iFjFy3gAUVI0Ox1sDt9dGHl30pWntzSNJq0zOsZfet31hZufcujfbmyipUicrWp1zYXAicr0uzhGo157Z2Z7XEEdRIHD7VlSBYrEmhthUpatzZKCIoNpjCiGEvBdVTSmxo1qrNAyIoKgqYxp6r2TaWvPeqWiMsUmTbnveY0zOkfep1uYd91oA2ETA4DAd3DGiavtM+ZRaRNWR3/MeklcTh9GkEXtTDc5H556vL845DUHMyLuUJt225bwePNUi6Bwy1V433c0bIVt3ilBh23AT3wyjIIrxxXUgI8SmZgLAFqyptbE4As7azbqLDh0Dog+pDrScnwdXx1PHPddNSqnEacYjMhObgmyaPTJKdYC3c3SkjpgRL9crIJ7mUPZ8Wba7tyeKitR7K8H5gLzUPUEC5r3uTtQPMo0UUyZn+9rMqtgFlMfhYA2qdiInnQjiONwno73s63U3xeTdy7JHckhCybZWppuT7PuchvvTZFLWtXOMy/Xq3Mh6UL1xPqURuunz5Yxoh3FykVvN0WHuFRi950AGvUQC0iYICNB7AdAu2ntHZO8SMGlX7MgUkCS3vVkbhkHVVOUzruKcN6TWSu+dHDtGMt/WHVTXvLgQPMWsvdUevPNEPjpEc45FWq19HEcC1i5GRgZE5thCSk0JRVupgCC1KUHpNYTgA9eWAQBRHDsgxdrQys3J7csF2prXvPqQBm+mhqCAYCDNwBQRgRAJ91Jrq47YMQkogBoiMoGGcXIifc1X3dW7CMAqLGhDTH25tL4F1uPge+un4bTvO/R8B3d730vPBt15YEWm1No1Tmkcpst5eX7ZiMc4Hl18RWAiTVsxqGI8xFSbOueYcK+7Y3JByvPl5hivlw9fffUraWttJY2z97RcriGEz5keInqYZkFal+3+9bsPH59COg5+vL6c3725vz0M63pNKZXFwKUp3pgaoF7Xi3dpmsZacy1lGKMZres5RH88Hi+Xy7Ju96dp31cCNqGyFe5CrfgYrDXwtbcFnbgBBdh6VwU1SDZPTmLE1p8AAIly0enm1cfz9e71felCjod5+uEffv/m7vXdfGdQzIVhYmPILXsOLjkoKtLRhB1Lt6bN+0ABpdtan5t0ij6idxpq2b7++i45//Dx79I4PX74+W//xRcp0vWS/+Xf/J8eHp8IPBugiWM3+HBZLteXjDKIIrv46cODi9PWmkJvUhyLR2JCqQWRD2ESxdqqdDKlkU5BxvVSIw2mnrui2egiEq3n63P49Pj0NI7j3/7t3/78/pdpit9+/RXVQqziYO39pa1sOAy+1JUdHw6Hy3Yu1tKQ/BBsF3axlIZqYOg44IDjPOzPl7eHSTQvy9WR3R4Oz8/PZuzjtC0L06ANa4cpub1cHMOcEhHlnGMKIhKHUGseDtP15XltOd4cIESonaDXLE5oydstHQ7j4f37n+/vX73/5SdrnRXa2isViho9ECgBO+TjFIYxqGpX3Ao9vmTwqQmI4ctynZIG58/l0QjFqFweqwJt++PzkyEfTkcTp8Srxqaxdk2nu2vLZV9Td8fT6TBO1+uZAK/Xs4iwQyTqvaHzLjoyJYLaBJABsPeKiNM4LrnnqmABDGKYu0AV9QM5cuu6IiIjxTFer09d4XQ6mbStbMMwsIvrXm7upzgOTQUdNqkKWsrOYTAxtd6rxBiZWbvW1oOPALRvOaUUD3PwqZeqotfL9XCYAIDISRdErK2GhKqm0s1sHIYARcnAPruTgNDMWgok0lSLSBMRdvRZC+3YgyN2ofU8DIOBGrRaxXlgBiQ0Ix/9dbs6RynF8/lyPteUAhA26U76NE1gaIaO16tjFgIfkzGEkIiBmRNAimPNTWs2NgUzVAcu+kQMrbXWrJVWiw4hjimQsuFWZUOmIgUJTSNxQIStZVPczO29+ehjdG3LvkQj3FtnNIVOtvshiq1mVCot0rvz0Y2OPSjg7uqyU2VC75hiGKAVgUR+0gho+Dl8URBayw5UAI88OSIUsy4A0j2ufVFrNzeTSX552d69vp9G7nU3ljhyEoiDsxe5nhdoE3bPkFxwlBzCPvBL3aoAkh8Mm3qQ2qp0rMX52FVyLTH6hqRUihXWHhwitsfLHtX/5ru/tpzjML/UbUzDiCOgTqNOYy5r5+Drnk/zIQSXt4KGx/mUn5cIAbsHIEYJmCL4UsSNDlWCA2BSBUImDEyulo4G5MK67yH4kMY9r7JuAbm05smhUUBWQBOzrkOg3kUBwhBb3SMPde8//OHPCv10mp8fH+/vbk37vsvpMF7XhdF9lt2qiZTmHRCgNBXp+tlPhFFEvQ3aejCPaoMPeb8ik/deRHqtg3cLXlHrYeR9eZziSTX0bk2655EIidi6GTIxA1k3IcAxDWDNJJtII/18hUQAq9ZWmL135H3a1uw9nYZjL/vt4Xj26edrlh1DehXj20T7NS8I0YyYQ3JRKpJCtj1El3N9df/FH//wT/N087//P/z3v/vDDw/PL/5wINDxMGybAHqiMQYnZRDV4FKTys4dDoftuhjIf/yP//G3f/1X43Qwp8DCHgFsL7sbh8Or20+PD+Px9su3X/7nv/+Hl08vo0+61CmFb97dE+vhZlpK+/DwrBC2a/vy3bstP4J1wrBcXxAlJVfzLtqOh5kIHh8/IeLxeLhczt0NnpkBdwPvQ+8igF2k7FxrNK2OXGAyB720psJO39yd9ly1IvtYeg7eTnP06E+n27VkIDiM0zwfwShvu2cbXEK0onXvQALRuaoFVQNycEEYS5EiHSk0KwYOAnBi73xvcDi+1R7P5/X6nBjGOLh96c+Pn9beb1+9aY/t6A+tr/M0tLpdLhcXxtevv6nFn/ddoc83x/O6jdOQpbMRe47opRQwIwDomstupjH4Xsp1betW0NwU/RiGbb8oMYGItCGFp4+/GNDrt68dwb/6l3/z6nTclxds1QfIdU/BsWcmso6EHMg7YFYMGEjZ8SB+K7mCmIKOPpZeOVLpJU30cn3g4P0811qX0uN8ElWFyAwOIc5RDbZWxngQULFnVUxDuLy8jONhWcswDM/Pz8tyuX39phv8b3/39/N02xv2YtGnNBxK3oL3wY9/+vPP2tscouQ8vTpkKaWcpzfjTE5q1yp134uqYWQen573UlhKXeuahuDcuO65z1RU85bn6QhquuUn2iFNRnzZJeBwGA+sbnlef/uv/urp8eUwUHAcY+i9Pz8/M1JIEUC71CYlOh+nWEprvTBgEUPgYUo5ZyQLwQNXH+X89Hw8Hom49muVNhyk46o9kXMiOIRD6zLON7Vv5LtXGNED2WcNKTJ3bZHHLthaHecRTE0BEJJPnx32XYwZW6lm5mJQhOfLeT4eWoVeAUxTnIKfPjO4tQMxxxTRMZGQaggUnGkl6sjkCNQlBu0ARs4Zghkikfd+L9WsNunzdNxqNXSNgaDXsgeHCt1554iWZSP7XPRaGodas/e070WM972ebu+k9XXfpXYEoCIdg0Ny0g0AEFRKDYRSBI1abiLSWgsh+DiwD5655dZzC84fxskzmnZWDYn9AEB7l2fnds8CXcqSpYcQji4eFCw535dd1zy5MDk3IAYQBg3OvDeD0rFWfWn9AtasS9uK5I7NLFd33Y8akjjI3AupuNZaawUcVtBcuoGf0u3Iw2mY7uep71tertaqVw3En7ONJue85Hy5fPX6HWmA5k3dZckcYzZZl2399HK0uP+8PP/5/P6fnqlNlIfAR+eS9xGIXQhhJLHFk6AVsmpaEXoIBCiilWkbEgzJoej94R6zvT3dQi4znxInafV8eQhB67bUdS9Ltd4OQ/KGshfZpK9dK7VVHad5Pg4URxhGHBOn2rUTAWJrDeEz462EDpFFxGqvtbJ3PIwVoasFdmNIiAxGiIRK1kFrB9HA3LcqTbvo83q9lJUTccC7u6PU0up1TuzZvvv6K898Pl/3fQfQdT3v+aoqBk2tC2iXGp057ExKKh6cFLPsA8xeU9t74sEEtm1XIxExk+OcxkSH2V8uL4h8veQh3vgwobA2BAEPlCgk5z0iaIVanXXLpec1eJzH4KMjTzE5CpziQBhbhVq6c857Lq2v69aqHKabiMOAc7/q8inrhtg4b7UXww7YUIs5jN57FcoFPjxc7+6+/Mu/+pcKbt8ykzHjXvfaRYxMuWQh8+TQOQdGZua9V7BXb16v6/rF2+8A4pLL3muuxciAxScy6I+PD865eZ5///vfPz08jEO8ns9SXr7/9u2eVyGoqj/+8j7FEBlEtsvlQSWzs1wWBnNErezJ8eB9r3lbFhRFA1P1ziF00Sq9GPRmtUotWpWNXR8nT2y15b4Xb+SNR0jMrdQFTDzxwEG2xt005+Q8lE7d6nWV1r/55qsUIyJOwzyEaN3IXOCBKRKwYw7kIketGshPaUZkdG7LZdnP5ImYW4fWeRxffXy47tkcJxU+jTcffvxwfdnfvfrmv/7nP70+fmGoMYYqVciOr24s2M3bG/WIPCKk7Vpf3x4J9sBV6u7M1VpCcIfD5BwY1BRdGlwum5VPgXJZHw+TEjwrfDqc7HhL8/3xL//mr7799vsp3UJ1VvH9j+9JRUrOOVMK6sjMUKBvxao8P34ks17Kdr0G5sHzdjnX69kFX1vuvXtmA5VWei217tf9JUzR0G3ZiqQqwSCGOItVg3ZdPxZ5FtrAaq17LkUtIsTeYRwP1gHFHFBZ98Pt/bqWn394/+Xrb/pupE47Pj2d3//yy93NrYk658ZxvL+/n6a5NX2+nEOKwzSio1qrdkk+jWlScK3LXuq6bpfLxXp3ICBZcRtmr6CErnVal5q3jCJmJArzdMMUpuEAVc8fP97EdHIJtn17emazti+mPYTQVXrX1kwUHEfkWErrIsM4kndILsQxhkFEEMF73vYlb5cUPYpCEzZIYeilkxFTQAqEUcztW68VCON1KShgYlrBBKbxxOC1Y8vijD0ErUDgyJyIdaBqeLmuRMTesSN05L0bp+gDDS6MISL8s1G21tqkdxX2A/pAwW+tlJ7Rqbm+1vNWS+5NVRkxemZGQueRai6O2DGTJ2ALU0LHRug8lbI7BNPOYNoboYHquq691xh9KfthGqJ358ujoQ5TcIGbWanyfFm6AHlmz06mQ49JVfd99+xApJfqiF0YDAC9I+I99yE4I13r7hQd+SFNItJ6126mwoQ5V2lAmuqOKQwK3gVqgCLapSlUj/vr28MvdSkFeqOQ9gYdBm+g3QRQcukE5qyiykA8M5pW690TEoHFrKpd1LNTUB+MwLzrUmpy0dijuIjegAfjnttxDLmLc4yIJurQgZl1GGIQpwGgSR2H+HLZx+EE2mcI++UlrXDrvZvjp+fHfL38Ka9/9a/+W+g9NxWPYLWXzEGxXiQ7D47ExpSktVKqcmPUELGVDhTvTq+9hqNeJ+UE4sK5i6XB1Upr5g4TOuvmjuG1FEdAATE5xoGImljtyK0JKEciNRGT3bqFMPhgah1QxADQEZJBF0nRI1O23qQhASIh4r5ucT5RUEAHRApkaAaEZI4ObAgAVs7TYey6YaDuypu72+v5mQBe3R639Rqcd0TDGE1r7905HobYBcnUew9o1s8qe4xDWXv0Me8NOTn0ZuiYmLoiGlIME5uW2lKYgmuFyzwfpePD4zPzePPqhgV7LxS9J+dRTJpSR+iAGChQcFgdibVSVTQMqeVSN0lp7rU5DIFDiLSu12Y0HQ6919qE0Xnrjv3BB2MLnHrv3nMrtauE8WhIvTfnqDadj696zrXof/pf/tc17/f3r/c1j3HOe++q3tvt3XQ572loTbqpMkFrklJg9rXD08PW1N28vlVhF8KyPHNMITitQCka8PpyqWUnj+frI3l59XaG0E/TXSm9ljqFufbVJzge+faUSm1EGFNCJEZXq2rrRIRAMYww0Mv5suzb7au7YLvUjEbBAxhQwm7dp1g5iQiIWsuqmQ0RKztu1fW2ec/REdp1HoAcD3EagscmHoBcMI41t/nd1Eo1VGRSBFVVBRHcpTMhdPucyN9ERYQAPwMkIRqj1irSOMXxuuTauoKi2tOnp8i0Les8HX/55f89DjPlrcl7MezagPByUXbj8/PHw+v55fmX4DBGw3b10AI5CmR1TWlutYoKOTYT7Z0APVOr7ECPLAkuEku3li/9qy++fv3rb1HoON0M7vbf/3/+l+vj/vrd8ec//8F/9910Omzl2sp2GAetRUrtaizl+eHneZ6v11JVgPj169c5X16uy7rsDLzShqK1bn7gNKaGOQs+P+9xOJqyc24rul4fDsPoAIM7Pj4Ws26K4zztPW+LOYJWdwIr2+6YH97/oqo7nD+8/xh43Jen67UgMbkQB7IdPz38MoxhuZyHIT49nLd1HVxyFrbn3YWgqJLRKj6+PA3DYasv6TA9vXwwpN53A1drJ4jkr7KuvbJK/O6LX12WdVle0uBZzXHYPj37MNzOx5fzUxzTuy/frM9nkdJhe7+/fPHu3gcUa2EIICC9AycFXbeOSNM0ldZKUWa/bF16IUxgJp1SOPXt7FxwNDH4vVSiEDCyESK2tjvHre/Og/Q+TSfLnrSTofPJKEWeh3AY0m1T8OBD9Mu+OeOU0lpVCErrIOpDrK10VUCtLZsJgIL1ViuTsGcict5flnWc523PKl3//24+zwyKhl7R2DtAAwUjUCRiEjUDp8a9ViNEROccAKzrOrkgAJGZEFtTMGQDaDCEwNwFkIj2fR+GNM9zF0WH5+VK5D5LBByxaEMzp5j2itGH4MF9nsBVCamBQutxSKbAKoDaW2m1IDpBJLAOwMF7D9Zar4XIPCuBwyYgXVsBIELLZe0qp1f3t3x6eGkiFmMsDYkc2WdrOvcGgqjiQzp0QQQF8swBHBpINfWG7CKqVmmGwRnG6FCaAeS9hEMih9JaM/UxdKIK5oFS8kCYe0V23HvLrSGXsqujLa+9VrTApGB2eXourbR8Od7ScjkT8PD29HJ+Kdr+5//wH5j9spQQ3GEOphXRR30lTitBFwUmcg4YvPc+UCmdKAA4AazP5/t5en0z/+rXXzw+PwDp8XjcGhRWcb7kuIg7QJAmnjDG2DSTx9ozMpTODD6G2AGtWwwuRgfo99IMUaUDoCMAAJHGyK1VBmfSPSIz9loINI1DK58Nqc6xIyIjX3sRa6pdG0Z2r+bTJT+1WojDhw+fZjxdzsv33319Oh0ul2tKCVC29TwdJs8ewJAJzZVaBQUAPJEfBqbozJqoec61mnNIhKa1ZO+dj2NpYMYERB1P86tteQAov/z88f7+/unx0Qe+mW+YwHn0TATQ1VRVGQ6HWUVq7SYAjhjYzHoVUq7STTT5ICJlzyroyLOo1OKJ99w6cNaahuF5329vDq3mbS8KpgjBOT+My7IaVKakRGTUqv75T3+urXzxxZtlWczIDWHLy3SYS9629UKmraQQUt3zOB3Wpdzfvr2ct3df/Ha7nM8vOU59Hg/eQqA0xPGynE2A2Tvnt9x++uFnnxxCv70dbr6448RobVvPjgcHVlXYuWmO6JzHqUs1NEdY9l1qcyHKZ1dg7+g8YWLSWpDYt47ReQATAEQuZW8KJrJdl7w0yB7V1dbNggIDLbe3t5fLBZ3P+77XfYjQbQ3prYFgt8M0ldyMOpEatGvXyEQR+25dzJhEuws+Th6Qyl5aE2KexvS87C1vtaBpDQfvT34rl+W8zMMsQl3q6y+/OK9n3Gz9h7979+71NPp9/UDE13VzaWpCAqEJgfk//+mHdVHxFIjqYn44Xrd9Ot40gZKVkLtZ2bOZOAJp/fp0QRhbvb774lhZQzps20reffubXx/msTcFwZ+efkoJTFtw/O3X36x5IW8BzDu3np/2ZXVI1uXhl8e7u7uXx7Mf0+PLBZjMhtPpRKqn+RYR93WPw8AIpi0Y2wZ7uX79+t2y1VJqQi+53brDui7vvv7mw8+/QHAibQwxXx/VGVJovR/n4cNPP8/D2FoL7JR6WeCrV7/JWZUSu15aOxwO1+v19l0MwW15uz3dRO9J8XS476bAgIjeM4pKrEMcD7f5el2+un/rY5jmEMPw4eHxeLw3Gojjy/ZwPV9vD3fb2md/EsbD3eAiom0MXLy8++abP/3yy5bz97/6Zq0bYnx4//F4om+/eXPdt6rtME1TGHPPVXpwkwoQOvJOIezb5iKOw7hcsxGd5rttW0vu4ziaXcAIALayOg7btiADu6BFBheQoLQGIilG6c16F7VhmNRgq1lVfUwighS2XMY0BGJSQFFQ/aw78+NQpTcR733rxXvPnMj2YUrPT08iYmYu4JZ77f3kA9XqKKhqCF5aL1sRUedciIFUrXV21EUMQQCbmbFviIKookRU150VGKjseRwGNtIm2Mk5F1zIOXfDNAzPz48hcuSh1trViCOakbUhedPmGHuvvSkAuNB975XAM/mSNzdGZHJh6LmIyZjivpdAxNKd9NMQGwSUJqYhRc8u77uiivUADgwQjAPXWgXFTIGUSdNxEJ+bWOcWYpSSRpyMMmjba0UXjHxTT8FV9tyUyUTlWq7WAckwWzO0EMhxE5iHJAZLb8uyh+C+fXNPRLntpk2AHOCeramoYc0lTICIWosDnFNEg+ott/Z0fp7jcLlctv3iVJy00DWQtu3y/bfvvvz6608v5+E6/Ke///tiPIa7Md30vEID530vYDIjk0Hj4Lael7Za4L3XwHOBBoBg1e2P91OQZQd/vNZrmii3ntf8eBV358+57rnaEDXsSHBZlvvh0Ir66EupPiSnBsiGWMUc8b5lEzkehqxbSkMr1fmA0K1JlxpcZO/MbAhetEnvjkC7ldxIOBA5IxHrXQAEDdBUeg6czCRnYXXeYr72GQ97ae++/ibGUEpxjkJwKYRSMhKpqiEgcoy+d1X7bNVNgGbk97YRMziO3qdhyrKDmR9jaw1qd5xAcUipLHmMg8nDPB3cwbfWDseZwOIQSq/depauGMk5dNGItloY0IfIEFW1N0MFQ3MYhhisC3ryjsC47DmlxJGAfW86HG66vE/hJIVONze57R3QE5emYNiAqpiCc5iZUZXR6PZ0ujw9BcS//PV31+v593/8ueTtcDjmmpm8tIZGnoIUHf3kIKL15bwAUPD+j+8fjve3vRibK3t34FtuBF5Y4jg6Tn/44Z+mYdj3a0L88vYOMPZSg6fTzAhUpwjk9lxKBe+m1pUdmdbaVmIKh2QFzcz7ARBzbQguDQMS9VpRiSFu29q7CgIqg/joqJKMweWy9l5zUfasTVF97obgW2sKxt6hY/apSY0xKuJ6XZZ1B4BhGFIK3WptQmRdW4MO7Grr5EFFpXUBdSFYk9r7ej2PKXSVkrunOJ7uPv3whzhy6xclHF69qYQ9RCbdRcSBUl/zhXC8mW6X0l+/fqfktlyJXJfXP0K1th8P88efP22tq5t+/OUpTcEBIpqCEpsR9ipahNDfzrdhOpZ+jpxmd1MK/O/+j//tOMP7P/zp62++fL7++OtfHW9O7nd/+PMvH3/69V995wjK+YVUDNq6Xrr2vLe27skdpGKp9rxds+G+rP/6333z7VdfPf7ycZynH3/++e7+FandfPH2xx/+eHu4ubB/9XZ8uVziGKbjiODIZgb35fj19fnpzf3rAr337lS/eP32aXmhYLXKmORv/+Wvt7Xue41hMDMRi8PhsgvFQ65CzLXkv/rteL1eT3en6/oSvGMFM1AOu4hzxMzbev3yzeuXh4d9u3z37775808/nuZYuxKHFOe8SwzHvUKp4siv+9bBmhqT+/GHP4QA8+heffVXAd39zZsf33/8z7/73eu3b3ItN/N0ecnd893bLz4+fooJjzdvwuDX/YrUXcQQbV3qdDiZ4bYtKSXj1bAjK4B91oWYwb7meXyFiAbSex+mCZwZ1iqLVqEweIxNIIRoKFJ3x2boumRiz86KrOPklHnLNfihq6Q4ts+OOMDPWVXOGAB674gYwxB8bK15H59eljgcLi9P0/FQSgPkYZj33JvwHFJvBTt6cg0KMSGhqqKZtOrHuRbpgN20i47zhGggZL0OKfW9sfNogH4UkdqyJz9Mh5eXM3JSCqZ2vZQhHURzqbtzbp7mPZey5xSG5J1IU4VWOruBMDiEQMi1iPfs3ayi0Q1g1psQY65FoYUU9rKpQgAnDIJkKjnnRthKQwWgoXckjARQ8p74BqCt+55ShLBYh54RsgQZD2F42aB0Ze+7aK/ikpDzQAiCCCikrSkagRIrTHMUsNIqCaBiIL9d9hBC9H4Kk9Ra1+dhTCLXIQY1LFtRDDGNQInKaqtFPxBqk4uLXpoJIZtq3SuJA0jYQcvNKWEtH37/9DrG4+1EY/30y58L6Os3aX1m7xuWj7fOH4VV6YUJ5mE9L0V6SCHGNAM+PXwYQqTeUwnmC7AjUhjo/uZuGHdqZto1C+36Nh3mvR+czxyG3oFK6TXMVLDON3NZC3E0ZXChZjFjMsjSxpT2dSu9STNKCATLdnWEhIhkysIAYGKKCEKoYORcQMS+C4LLrRKRmXRrIYQuED6DLSaA4qPryNv5YtyPkzs/v5/T6+BmcH67LjDOAK5ehQNLpwKCTikERABRtcF5rHljBMTdDaH1rejVO/SUQEFUTFEUkZxLrjToKKfbO+u8rJWdu7m9T5Nb96X0/XhzbKrApKrQUQEpsCczFfK+VQVkz77nigMjYm+V0YkIGPkYfIp5X5n1MA8/XH/e6ofjfPP48TlY2+Qy3Ux7ed4rMyMDrrt4DvNwXJbFzLxzRnR7N08xlOv1b/7mb//4w3tie35+GubZhdRz9Z60VAFQa7X3EH3rfRrCAzdz5rDtLx/XAQ/zaUrHbdsDT2u7Opqfz+fL8wuhXB8//OVffZ8GrwSA8LQsIw9lWUm1lauiXlba9x17Y+rsFBJIl9YWQ2dgHYp2aKaOE2JhcLmvvVTHvcgFPYuI89Z7L82J7Mn75rJBZSxN4HR8pb2u1yX4QXutKo58DJMZEw4Fws5NGVwcey65F0Y3sc+9gXRnbQ64l0yAgDHvl9aaCXiG2mFdZRjvn85rrbsPY1d8eThHSAMRx4CeeqnFYMnVxeCZ/vzzc831t7/6xoRenj/d3X/Blm+ON3c33phef/H1918fCOzm+Op67WoMDOu6ruve9wJAL4+X6/Ly6fHHZT2H6A7Hg6PcNwk8MoRrb9//9q/ffPXt88uH//j7H7NLX33x6v2PP47xaKUx6cmLGG6qVdWMyo6tKCuXSkVKXjoByvnS6vKb3/5q6vjxh5//5i9+/f7Dp+/evNt6X1pZwN58/yurdT6Nw5w6uulmLqUh8HJZ7t+9KVujeZpPR16v0zQ9vVxovDnQDdJWww7OVjKbY0zJhBjCzXFa8nKcaZgs733fKjucjlNIKZfti/vXn/nFV69f76WlXDvazWG+ePTen06nL9+93bbl199+d5im6/I83x6uy/Lqi3nd6le3rx8fH4836Zdfzm/efvPw6XJ3++7NzRzjkLf91Vs0oLLvL4/vU3TNYSf384cXF/hw+Poff/dwepPiMFxX9/z0nOaeQhzHMbeN2ED2QNy0eBAAspo9mLQ9g4IpI6saqvnIYjYdZw7Yes/LdRzCZ+IUIBIRKTKNAqkrSBVivi41zqdhfFM6B++YIY60XBbp5h24wZlgVdEmRoEpmtbc6jSldWtEkNIoeS09N1CIDtVSmvbcc9WUUq2dFIDMeps4fk4UIfAizYBbBx9SrRuyQ4Deq4hY6wSw18WBY3Y192mINS9fvHn1dH4qsvOom55L60O6AYDrfj2MaRpuau3Xy0bOuziZyXpZpzHVvE/DWEQaZOe9N1MDRGTVjuzVrOR9GkdEJMYqWroNh1POVYFJGgCIoDNAA4fEzjVrXYAMctlV1ViaaQONjkc3Pp+fA/potJbuFBwZRCFCk0ZsgCJ9NxXvBucdNHQxWLMu4hSpYvQuMi+lcmJD9IxmUms368fTOM/BEJhS74QOwUkI0OxK2PyERFplTyl4Cm7wnRtKR229NFVN45jVgOC8XKfIcYrej9Lt9//lj4dpev/nf5ImidJoHA0PYr5t8XQgx095TbyL1CmMe77WIimNoNYVCbtDQsFJ/CscUtO3000rW7Y9xdGRPLxceDqCwdoe5+mOFFCN0WltexU08opMHgxDjGbIjpGx1uK9L7V/jsFDRDMLISIoqBlqbRY9I2irzbPrXbspAIGAj447AAA5HpzbtouhEaVWW/TOUA1lWa+lYK/+eimvbt7cHd+s1z3EWFsOQinFbugcsaAPoYkAiDYRkQNzYA4h7Nr/fzz917ItW5Kmh7kYKsQUa+21xRGpKqsqq6rRRgAEIQgSBPkA4MPSDBcgjWagkQRAwNCEtSjRlVkpzjlbLjHnDDGUu/Nit/EuLuMiLMx9jP//PpFWtys7F0I0xm1brGGK0YUI6JrWVlckX3JNKTx+WVpTM7tcl4c3P//8+Kc0DXtehziaSMmZnPNjTCkxgpRcW29ip3nOOTvnyFS6fU02fgXWtGbbukbvAHW9rsf59Oru4eXpGvxQSjudXu/rGtLoWjgeTr1UB3Fw48vt6pybYpLeVdunz1+OU3zzcP/l+emv/uY3//rvfzvOE7EvuTEQYQAik+qClfbi/OBj+PL8UbV/8+3Dvt4AXc7b+XAEVCMVysGdS9bf/dt/zGUhaH/2y+9//ctfPT8/h4HZk7U6zWPednAQRmblIQXnXGvYquW9Ayq54NzYoan06Nwm2ftApAal9VpyG9PQ1cSQgVygfd8ZeV0369rRnCMFRDUia7o3uYWBYoCyqA/0fLnxELtox25SoatHGlPYsfshNOmAYGQCyqNvtR/T/PT5ArWSukAeCFTQlGIa1ssmyk0HBR/M92rajQY2sxSj8/x8WYdhCH4MhMvlMap9CE9x9M7Rbf2UaKhPT8e786tXb7q4d3d/vq0XRzgfHCJebtdvvzmj3ZOGH3/4ktD3vB/TcfBgUE8zx3RcX5a219PdsaOczsM//tPv/uG3/3jZ9y+37YcPnx4Oh4+fP+Te/uqvf4VB8ybkvLbeSvcxIFLdK3AAs1wqAFgkRH68PakXH/yX9foPf/in+4eHx8s1TmMrxVrFKue7049/+mGYwvPnpZQyDUet8umHn7BTnNK/+rt/9d0vv/vh/W8P0/Dxjz988/rhy9PjfDws18ze1SbH+WQGDL09PXWo1dr7Lx+ncS5FpvH8+elP9+dXfVtvt5JzPh3Oj58/p3HoZQ1D0r63dcmmqvpy3cdxLNJl29N8/+X5EkJal+KC/+n9H6Zh/PDx3x5O51qf3rw57Munw6mpbPNJ1xuOY+rl+m/+zf/08Is/+1z18eOXidPJpZfrU4r86uH7y/VJuYC0t+9+Fjxu6+2r8q+UgmkEpi3nYfTOMQL3pmj6NYWiYCU3BVHopReqjAYAtG4t8QxIJfdhmGrLuWwueADbttvrd98sNSPaNCfvac+r81HVTEHMAE3WFckZ0hCi5CqNvxLoTDQNSVV715SGZVseHh4eP385zCcy8OxUOoiCCqI5z7ctz+PYtTdpkX3vVU1q7187kCbdDGpbo09EITkvrZsomg6DD6ktW366POlXQJ3pMDE6u23vp2kis9obGXoe5uSXLcfE7IIQA3PpO4lBr2zmtu0RERFRxSH/O4yw99En9/LyAmghJlFd9q1VGecJr44BHHrnIwDsvYABKLlYRcQqYIK1rt2asmRZHMCQqO7rQIfvXr359NQf+4Vi0K5ofQgs2ETgfDzkXMu+912GOB7SoZlqbW3L5pyZodOyr0rsUzQTHxyCAbZ4PIJxFnh6uQ1xpOjdzKjFTLoIMqQhxhS1ifNUX1ZRdQCkOIGz3EhwbyUMTDGe3rzzu7z/8Fz3MmT49vjd5XJpmgeRycIBEjPkPQO1OVKrN6g9lgHJq0ntQuS2vQZW5xkzROelyHye13UlszTeA44qT9M4nu7uxfXH95/fvzw/vPvWuzimKDlLrwQwp7iVHdGcS4jMHDhwvTYXY6s9hLlJRUTvPZIhQv2K8XJBUVGECRCRHZggIgub9761hkxgVmrlr8cgHYCoq6EjET0cHrbFRLcUJxXbt3I6Dbf1ej4fjXRvq/ejoap2RE+gRCwMaHC5fpmmiQmcA+c8sgIjWEFKMTpw6Jlb3h1370z6TgzjFJ4e12W5tgrsnfd+XdeYiKA7JlRBYEdEnhltX79qVYSIFGwv2ZpGn74y2VvXrgIAZuC9hwYgdjgeXp4ey1bQEIykd0ceBFrp5/kwhrlcMwPGMZHg4XTIuQBT3cr9+egAPr7/06fHz895/bNf/4ad64hdFR1Hl1jhti2Hw2hQCNWRPV9f5vlYav/xxw+BXd61RXt5Xl+/m9mH3quP8sOPv6/9GoIGF87Hw9OX52GYQAuJSC+5rVtfbteMwHEYxyE5hCzmKUQ3kPO59pp7RwR0Xclxcs611lBBFRBGg1Rb8+EgqmYg1pmcdyX42EvN0raykaMQXZWdnXjnoicptqybTzDM4e7h4AYu+w4dYxjbbZvHsVqX2muvRWsYUtnXrq28ZK2VgEQVFFW1CajCtm+PL89GnkISwnXPx3ni4Ld9ffXqlKL/9PgFDec4Se232xbIJz7/9u9/Orydj6fEu8lz/cWvfvnhw4fLZTkdXy28PdzfS12IhQjORzRZfv/7P3764cvlJZfCL88rMxynWTQzMzohr5NP830Ckh8//lbA/fCnP53fnP/2739Hgvid++lPPxwPw9tvHwRaJJe3nZsSIin20vbrVkpzU8yoiCgI2YC471Cm6D5vT/O70+enT2EYW88OqZVct3yz1Ttqe2bo0Ozx6Y/354d8Xfbahjb7gX74+GPXYlDUysdPP7CLHz88CngfXFPI5eoZpNewd4zCIwPw9dbG4fRyuSD1x2d5eXk5H+/MsGitbcmXK6DKcrk8dQVTaq01HwMrl1o56nLt+14P5lsVLwpqrZe74y9ak3UXOsC2bOe76enlcb091XW4+F41z6/4+eXDDqOLQTjUtrT+PB3vr2v98rGuzr5//drj93W/3R0f9nxFq12qKHTBmCbGcV9K7/DVWth6NUVmNpLehDwhcmuSwjAOsZRCHACggTJ7K6X3r3BmqNJLreTc6f5umOZusKzrNFHdHeIwjR6sbfsljay95LJaJe/QMwHQvmfngnOu995BTaxlOR7OZHi5XMTweDw/Pz+ez2ftVVXGcXTRffnyJaXkknRQh2woIkjgehMiBkEEjwBb3nrb5tErVGB6ucrhdNi2jdklH3IrgEKo42ClLsNwwM45KwVppR7H6AhKE+b4fLkhR2Y3D76sN+fcGsNghuiIiQx7bVmBbjec5zdm9hU85sgZlHytg6PeFYxUiiqgNUSMnrZKrZkPExE1uUR2h9m3Wkt7lLYzU0p+X5u2Pg3xVjcg9ggAqKJzjMvzYxrmlFLBqr02y4paLacUzCoAIBgRoTOxqqpNzTOo6vZyPczHgX0gdsbr7Ubmz+eD7mtpZmIxsWjbSjamXTuUNo+T9m6GQD4O1KDd3x3X9ZGljdHt6xI9ltttuV6dc4kHbVJVLqbzdLzll6Kb93AGAFHY93SaKLS6ZwV1hJ11V43jSKcBI95cd+N4W/azo31/5mGX+tyBt9ynAxBi2a/e+7w27UZAwQ+9ANSADgCIfLROqsQ4ogXvULqBoaiEEFotPrCZMTpFQDCVTqb7fh2HAwCs2xbd9OXxeRiGLp2Zvq7RAkjYqpQUfG3dBZ9LK60iO6YGJNVuTZUjKEptzUx8UDVRa2AeSR2DYxRGUarUSinDMJmiclIQdq7sZYgJwdRKl+z8iIb7VvwApdxCHOaDl07f//xnxGZQnEMA/cpYAPYxRiBT6WhEgQ0B2MXgUMl53rdtnkfyrFJ9DF8VEYDonIcul5fVueBdKLV77w3JsFeBaR5yXm/LZZoGImh9T+NUzUSklOJDzHv1MZzuX316ekql/vTxv+9APvmUojR9ev7y65//speWczmf7+vlsi84pHNu8uOPP36FFfa2Pz5vtR8f3p32vIQY17z/8NOn0+lhv10Pw+E4v932peT+6hT2to8pvFxeQozHc9humQC36/M2hBi9tr5t+dXDcV2ejDSkiGilZuf+3dKPgAAQE9W21l6mefbMtTcvxtij89L0qwfiq1bEMTtmgMEMEXhZFsdmBLW+5HwIfTgcRmjswStx2TM4NO1fiQrWG6mdx3nv2zFNt5fbNMYm/enl5lxovQ/jdH+etirbmg3QO2jbCxMQqY/Ox/D9N+/WdWegy3IZPTO6VuXu/tvPywc3psG7t+/e3W5t32uKdH02tf7+j5/ztpxPU5P+8cPj89Mtb7nvzbkQhzDfudv61HzYtuVhentdHhu0t2/f6ljY85knqXgYaX95eZjOf/Hr31xfHsch/vN/72++fffd49NP3aBDQ29S6y3fBJAiEjOUBl1CSLdtd8796rtfrF9u+bI+vLpbP3+6fXlUVWnacrm/u2Okyuvz0xqcrzUfj0cM/G/+9C8Oh0NZM2S37Pu7b3+el2V/khic9nZ/esDaTcvleiVPMfFtfQmRtFdPh/d/WOfjsfb+/qffz/OxNsvlGkJY9qfjaf7wfFXtKYVS8zAMwceny8v9/YNIK0vRzxpSbOqC89rkE1F0vpR8PB7Xj5t3Umqe5vjxua3XCn8YP73PWv1f/sWf3z2c3z/9BG7C7qxwU7SBVeB0d3+4O//+t390Fu7mQ4jOtHrv930H6gJFLQMGhbWrI1TDhgzmvGFVzI7Q+1BaI2fkHKOodEBkdnPkkh/XLSuSbRcCJKfsaR6Pl4XWvBuFXCSmY1O+O0+XZXUha7fSdQj+eHwIIVyvV7Y+HlC1S7c0zMHNIqINQBVAmb1zoWxr8P50OO6lqnbnnLTSew3jsNfsAI1sK3mYzgrGTHm/mVlM3mP3zldZkp+W2558CjHlXckdpTNg2bIgBwXdayaifSlxSNYFu3XQ6L1hr31HZ7XVcTrvpTXJTESknqnlrdbshuDUWm8CvVdiJFY1QyM/9a6lFBM9nA5S657z6XyoUtXEIXatakpMoJ2ZA2KpBYgMEbSJtWa8XBcfiw+kQEtdlLxLZLkE4g5MyKXkIQY0Qh9vz5fjgQ/jmNd9W168d8PE4+i2beu9D9MJmNbecs3jOAJgLRUDloLe25r32jMb+cSeHRsZARFV6ctyJUdIti4vns2HlLeMwNL705enLvnd62Pb1GpSgUL29rtvceuY5W56vSzLy/Nnz4ATLOW2VlRyh/n18ejX1tttS/dv/vjpU5xHLbfz+dzNFMaOzcg+XD/Yw7Q11JyCH/YWsvQO/ro8Tusep+N+w2UV94uo3eI4PF6e3r1716uY9MPhVK38O/el9poBjUHRuyBSkFjEAvq9bcxM5IgcM2vrZuZDAiP2rpuGEEQ7eXSRSbH0Kq0RoXeePapVYDVVYKpNrsvWxEpd03mIg89ti0NSEB9DcB7RzCwmZmcgUtuOiKLND965IMC1o3T0fiDHhoiMTKlLc4AxRudQrUdPRIqBW9ef/eKNdBgGE21mtdV2Ohz3fTcAEXJBpYtzBKC1ipCiGZp4cD7Er2jWVjoAMLtaq5k16aDmOTCzIxPANMYt7x1traunuC3r+e7QRVzwOe+vDxMQ7dsWQgI1QqqtmwGgf3p6aV8uv/6L3+yt7TmLoYje3x9fLk9726c4366rWjBFaVBKfvv27ccPH7RnF8GkDKN7uTyGNDXBxy8LcVrX7Xg83L8+l7bMB2+gWhnUOyZHZSt1ue0Ow8vTl9/8xV8SQa4bGobkP374wQW+bdeAPsYQk2OE1hoTWQNmYuJ9X+d55hieXh63bbs7zCaqCq0VAlNVBi+GVgEQ2HlHGFy6O93/8fe/Gw6j4xB9ShykSvCxtd5qJWJGOM+H0vzz83NwDgSg1MGH23XzQ1rrclsXYmcmZn29PjPwfn0hUT9GUUMxBA/ockUEPM7nvMNPP/x+HGKt9XR6GI/h6eXFnH18/HJsx/lsnz98PBwOz89/yjm/vnt1MypFPrz/klvdS44hDaeTOV3zIiRh4u/f/ex3f/pDOJyuXZ9u1227fvOrNxAgDkPg+PuffpciJUcPrw5le/7hT//2L3/zF3/9z/76w8f3BhAmB6jSKoCyMwMx7oQGwoMfl2VldoZQd+WDDxy8m0qF9x+ft9syDWPO+cOnp1JKehNvtxU5iFjyCzM+PX/+7vu3NTcVvC35y6OhkXXxhCjyT+29IRtz68redamXy+V0OBw8k1868CdXW2ul7gafVXC6izlv6Gxru4Dc3T+0Jvu+Z+3H+fTyfLk7XcC6Z+o1H4/n27rXWu/uTiatteK937ZqyvPkpeXabyLl3ZtvWnGPn9vPv/2r6vn5tn1+XL5cdoinojW4EH3vW1WaPj/f0uDPafr+29fHgZ++/PZ4/4qo7ds1ODgeT/u+B3eYpmlZsveDfh1PmLwPaFZb9k5cSFWklOp9JKJSN7WKwGmazazkNqZ0GA57bl++fAkDKfbj+RUwb7mk4bRuZQiDOeXgtdvltkfPrUlr4n3M5dm7gIitlGEYS84+JEJDI4fkkAoQApdSVMU6DmNseXeemRGZbsuSptEMH5erWr8bjwMfTIoD6iYRuddQant1PAtI7TVNQY0vL2v0yXvfewZA5wIaIpZW1DIF77RJ0+I8iSoBupjWUrdtI4bz4eC9A7JrVvCDI/W1dYLIHJuod8OQvJmt+VZa857R2bp89kzBtxSs7KSGlSzGwF9NgaXE4DyVaUDkr74IK7ka8PE0bHsTYDXM0qRv1RwHhAIqpgKoniFs657S8P3bnz293GS/HI9HB8BsBu36cgOgMY0l7+a9Cz4isY/WevRpDOlpt+YEY/Q8VmrMCF5L3y1gFnPBmxYQSC6t+x6Dr63fbrfa7GVZBfHdw33ZhJM7DOPxcPdwNw5KvtjH3/2wr5tKMVDDWtvFudQ6uHiuEGm4t4P6sfnp/Odv3v7bv/vXAXvUTKX3qi4hJEcxkOqbh/t6vZ7Or55vVwDnw5F531c6HA6XL48//+6X+4rDMF4v5XT3NnfpUhyBYlaTEKjs2TmntXsKhIZfJx5QRtIujARmX/0eIkbIYpS7pjSKKgCkKbUK3vvbcv1q1VXt7LmU4sgbuFwy+a+NeDHw3rEPfDxOMTmium3bNDpU2bbinUOirwAKM1PVr7DJVqqzdBrDcitMbIJoVHv1IREEVo+CYFklG+QQLVd1nIARrMXkAQqCBB9a416aJ+5mBvbVWAKKyIAAcRhjGvc1M/DXwjqCK3WdpumrOCzG+PWhlb5tyzikNExrLgIWklcgYB/itG0dMLRG8+H+ettijCkMtXZENiQkzzEkDvb48us/+8V/9V/9n//F//y//C//+t+c7mcVW2636Pz5fF6WRcFcCE0UmAzaq/vzettqpnUtTXpp8vxy+8u/+NnHT48fP/4YAlyuX3723S+PRyq75rLmnP30vYmuy65K0Cn4eBjG9fKS9x5SvN0u58NBWrstl+N5BujH4bzsKyNVFTP06AUh+PH9x0/TdEAI29rOhzdkL9Zx8CG3j2QQnFtNHCHT0HtvtaEKDoMZMoVxuuvdsI9540NzMYV1XaOPPoRe6rrtIXp0OKRJek1p7GttTeI48DBApioWfNrXPA9pvTx3tdmP08jN4LZtGNOyFwop0pHAjfO3SMOPP73PvVE0N1lLWcYdCj9/edpWefx4ffVwNw2Yt/2Xv/h+DHettbrr4+NNVL79/pum7XbNy/6RvDs9fJvmw6cvj08vzflyXR+n2R/v3/z+3/74y5/9/N18f9v23//T+3FMU8Btv/z48fe/+quf//U//8v3nz81UZ8YzfK2ay0ERmrY1SOh9ZUMQBpa7/18PJFPW4fzwytNpw/X+j//wx++++b7y0tF5JzbVirIoHWWTomH5ANp04K3H6cKuOQShof3n3tgNzBrKWPgZRUfo5mV1hx7dvNxeEfqv3zMLhk68S4sNxzH+zU/+wGe36uAF2jG8zQfnj9RqbZsvoL0fE/28IffPre8/fIX35La+6esMsR0+njLt/0WBkyJtXnpVLekGmpxKUqKr8U+N/j94c2JTr+YxvH2d89byc3Mj1PEQi1XwCXbcrt9f3//6tXBe/7y/PH+EHzUmus8z5787TkTjUzeWgJduzZV/WqqVjEV0W6Ibr3VNB4ST9tehzhPh8OXz+85Ou9CrXWYkmrfy9JFx8P4fLuR848vT9/98o2PHsiGMUgThYmQffIGK7K6SMc4rOvNh+iIa+37dvPMiBYDmVnO9Ws6mpFEZJqmvWRgLGWPQ3KEW95LKc45ALpcXh6+fbMurdTVREnQ1PoO1DFgRIJ9zciaxvTx8+cvT9fW7e50Pw5z77Cs2zxPKXIu1Qey2kG7mHWV4TDXJvve7k73JS/I4Mj22/Olt6pozMPh6KRyYA/kmD2YoELN1cyii0W/iuTIugzpEFifHxeaGL2VtpEP7KiVzbCpec/eam+7dUHmOYSwbxXNEXtABLIQZGu9W/XD0IxU4tfBBIDHcQo+PT+9gPE03jE5xlbLygwEHFwIbgg+3PYdjVKIX8/fyHC7LdPpXa8NewseSlctRWtjH400VAspGFHRlosIRfWOOzjnPrz/6XB3p0DL8+3h3ZvBJSD+9Onx46cXLzRXt39adV98gIEcmILBFMZKBM7WXtaq2eib7399Wfe8Lg74bjp41YAoyS81k7PJTdhWK+VuTlaXCHY63//44Zk0TeM9or+7u/vxpx/i8V0t17uH10C4ZYlxylsNbpK6K7K1xs47RMcJgFTRrAFqcKjag6PgPCL23kuz03wgcuu6GqhnMjQREbWem/NeVc26C77WjIjMXqkyMzGb4k8fP+W9ek6knQlUOmh3DL1lIjYz5sjke92tkzQUcR0xUkSBnHsMyWFk9q0XNR2jA+1Wu0fP7BgRSKpVQs7SyHOIw7JlZvI+iIFVG/0h52UYoqICO0Bk8tabc4NPrhqU3MF4HI8NNna45aIKZlj2SsAmiswinT2VVonwdDqpggptaxvnuRYdhlG0rdc6DdabpXkaxklqOx4Ol9sCwIR4W+qc4vn05r/4L/7L//b//t/+6Y8/DmnYr6sLybtBgUop7CkEEmuB0NR03S/XNfi27xuyWqPL7frm9fT+w59++vHDGPy6LcfhlPx8e27RpcQuHZxo+eMP//TtN28P6fDjh49a9MPjS8+83FqcoFRd93p9upwPx/efPo5zPEz3NYt18s4ResLQW11uZd+eXBAXj4619W6aa2lYnANTVYCeAipS69q6sEPnOLhI7F2aupCP0/H89nR4p9VttQxD7LUyMppMw8DB7bW4mDpa68rTeEB33fZ12YH88fBQa42RseE8ztdrQW1lb01liPOttyJ4F4b1tiHTw327O7z61fd//v7DH5L3T1+uw15zq9TT3fGuVQg81BV/uD2a9uvcfrz97jDH9+8/399/e3d3SKOM3j0+rj7OgLit7ceffieG3zy8+fT45W5OpmALmAVfpx9++/7v/+Efpul0Ppxz+bKV7T/7z/6Th9d3rTXnKQ0RaN/WqoTGLpd+WaoqOOdEDEtVhcnxbd+2p0d8uD+PbwlwfVquj9sU7m9fWkBPBmjp4Kbt2oY4bq0TO0CnChxOyybRxwEctcgYtmUzL47o88viA5Pi9Xob4mgAtdZrXdMwdciQAVSCb6hYsmi39WbOUQh+3TQMqVz16XJL8/E83rUOrsd9zZM78mF8+nBNwXkODu3yuLnkHZ9i5OV6Cy6BuefHDKgpunE+moa8OtBXNZ89syo8XQq5YRwnAvRCzGEHn9tYitbif/zh/R/63786xyGdnv/4aZrG2WZOUy5r8hIHyNtCUNUqo/fkAKA38MhxSLfr8/F4QqbWa/SQt3W7FeecYSoVlrUeDpNDb4iifd/A+akpT/OJXTSjmsswTNL6PNNXmRgHn3MuZT9M8zA+1P2lVElhOownFUPtt5eLEaaUvPdNOpLVWrbHdZgnBFOwnHMI/na9/uIXv3h8eQajcZj3xUgiERNokyxdQvLznK4vF0bP6IGsl7Yty3J9AqPNSetbiofTeVbVr9tty82TEjntYqKgaGbM+Pz8SKxTjDnv0XsxTuP0vJTtZXfMPsa47WXNa4gJEbQ2DqxSHaFodz46ji/X22E+D/M5tzyNqfWLKLDnmGb0ak2aFmZynLpYKYV5YufBQhPZbpsPCGhDCrWXn748vdz6Yf6+9xZiEhVQe1mvyCmFiUK87MuQvAoSQowJxO9rRy/SRbGDoJgGQkIXfeiWhxSIsTQhoBCGSJ4U+lYCxsvTI0WbzyczT35EMbWNiA5Dkq0Ysba+Xm+fWpdAGGgv20RTW+sA4Xg8q1xYU8nMPgWehoCntw+L6qUUzsPn379XDrflcj+f89Jk351RjVCrBuN9r2OKaLLn7TTc3U+HvK5kcDrdmZmoCoiCgLa7uwfv3F4au9AFnR8QvKfGhoQIiqDmmFtXREDoiBC8a60rGKK11nvvqFxrawohTa1VADUR5ym6sK7rOIy11t5FRL7qXHrPLlLZ2sChSPYeD8dJKmjb1YJ0TSN7x955ACetm6ICtKbMaOr4q3scIwI4R+yi5l169YE7ZNEeyGurzhEj91a7VEMf0zGFBYEZXXQBxJSRIZkoMpymu9y3OERgJ4aO2AxqafM0deuA7ALve+mts/KQxhEp55z39Xg85rqzdyLCjK9fP1yeX3Ku03hsBfZlZY4GggCt1BhCzS0E551blwUUWjfvhpCGmnNMsUtnn/7r//q/vjy/vHn9bhwPt23vRYdp3vciVl306345nObSSzeNifp1V1VTlu5CmNal3WL78vlD2Tcif3m+nM/nctPzcdZeiHuvm8Lyl3/1M2n6w59+MvWk477WeXhzd/dWVLrAtrfz6dW+rEzpMN+9PD5F5wXMEd+WJYTB+9hqefvuYd9Kl4LEl+cXNJpC9EADUQXb9kvLtw5kFAyagUkdJYIpPb9c9tIE2u26unR59fqbED1bQ0PonZEVsYuaQTNT51xgyV3ZEblXr15fbtfW2jAMFVuX/vj4OE/n1mRM0blwa63kfT4feqsi7XB3rNfH5Uuz0s/hoeZ8DlNe97vp8Jg/Bj+iEhP0LGOagac//tvPDfTJPfauJsvJxi8vn56enso2EDZEXJZlHMfPHz8dj8f7YW6tRcdWbYjzy+O6bBfvXET3+YdP4x3+5//5//7167uXp0cE54gl39CtpDEiV5HE6f7wsFzX/VZAkdSGGG/r1SQ/fPNdiPzp8dPp1T03bfs2+qiVsEGgIILe+RCjgBiraS7r6p1z6Pd1G4++rRlJgvO9KnPAwBJ8Ir+t2xQOIOYdGZsbKNdL9907RwYIRuikGXNUQwa8Pa8pDLaDIdzPx70VI8AKyDoia+/Eyo69o96qaZ3nGVx4WW5yFdBYGjgk70Z2uG/P0Z1KKa30+9Mbj4cD6vPliY9pHGi73JyS8rDUinFuBmk6I/nl+oIgau7xS/vx/e//8i//cozu+rK+efWw3J73fTsdx20vyacuWssOFoLzDkmqBj/tW1NsyO5rg6M3IGYeutbuAqr2ZgbCAI7JM/oiPfjTq7tvHQ/IvK7rNIzX68WHoUqPYTydTst6XfccvTue7i8vLyLaTVprd3d3+75f18UT11pd8GZGRKd5Lr1+rW2yoxDC4Xz6/e//eDidQggiyi52hZYraicwdg4IL+vS+j4M1BqMcfzhxz/+/b/5uzR4n7xISOhDlK4XMOc8lyLJB/KSt/18vn++3J6enr6GTH2C3oCIELk0BXS1og+Dj5ML2EzFBRA2xWoQfUqIqJ2YHYCKiEJQSnuPgC3EqeyS8Ci19CbMrkoRM2Nn6MCwWu4pS89Zyqvjm+tLcaEpKoJorhHdPPjGgUFdDKUqM3Xp6TDkXbIUVhkSFekWhk1MMKYQvFDzjUfeexVsKTjV3qmN07jr3sCccsnqgO4ejhGbZ8XzYXnK7KAibV0Di6E1EhXSCoc45XWLCCIoS3lq+vovvkXTeQy+5oA7+9pKGw+HzHuVGkPbZCGOsN++/e4tfPqx4/j56SbiZnK3yzW4kKlk66CaXGJU60Q0YvCyqyo+1zoe7reXx+u2vj0dHp9fYhrLWKlCpLDveTyc9r0ASODYWwnkrPRgcTAPKDUvjoOpoXOiVaQZtHFMrXWVFlwo2rs1BpamEw8GPRyGLEXXHJB77yYaCMc0d7EtF3aSy0boOQ77lxuRW29Xj945rwrzOIKsvVSOxJ5674GQiYJPKgTIxEwuCLgGC6KLnuOc1nVFgta7WvXJBLRg11IcuS4joWsa2YJ26SrMyIxgmZx26NSognXvK7MhoSqaMdJ0GEDAgTfncs6eAoInJYcjE3gGDaKqQ0zaJIW0a45Ex8Owv1ytZFmXmciu1+lwbnuBvSZgJxbR97Ux0eF+yrsEP/RCgzu0srfWpzTsu07T9B//R//JP/7279alsxtKvnpOgiGXxnzQHsrefBxLX9Lxda83x8aOv1JPtnUn4DEcmrV3796VteR1h3nygZ6eP57fHFsd//jj02k8IgRSttZSSm6InI61bIHO85BaWZd9S4N7/fDqdnlE4rZvjoYpEXvovfjYoaW747kqmNHgvRaxiuteTjGyIfQ+p9Skb7UlH4l90U6Rjcpt/XI4pufr5c3wJs18Wz+8PbwuXeKY0MhE6SvSzzGJJHQ1Fw+cOA5DyFsJirW38TD0WpAsjalityBV2g1bc3j/auJeI9Tz8TDMUPKXspQ9N3ADRr/VGuKQ1z7wyQHHQNHDOAzffffdh8+f1XJAe3y8Hebj5frYegkh9lsYJ3I9cIiEbn2+/fLNm//0P/5P/vEf/uHD+8/H+L1M+pKfsywvt8eH0+yg/G/+w1//5s9/o6q3j8/TGEtfVXdVC3IXQ87rxtACB0JtqLkXomB+LKv6djg474TncTqe7kmotfbycm2gEPyG7QIrogRuelVm1t4MLcZIwL3rEObrWskCGKpl8q3Vjt0GlpptcENir61Splx3N3g2QoiJ/HK7ITsj6KopAWiPiMWKqnjvAaDcGvU+ous+7fu2rOV4PmEcisDLtqYUC7IJ163O7KHUcbhftoYUas3O6/F49o6s19b30/nVeDwGPq71y+O2tqpWETC1TrWL9o2ZNPjLrd+FO07p5em6RneYfy59/Pu//dM3b17dnZrIGj2RkVacTofLsnYUz6533LeawqAdDcEFblK7lBDcNA8iEtRiimttpe5jcK1svfZpPnfNlOJ8RHDS+m10Jx/ZTJlda5LicL3diDB63tsyDvP1uZqm+Xxa1qsf/OP1JYXgA1WU3Au2Ms6TKVXSajowM7OI9N4J3bffflv2UpbCSHXvp3neb9c4xNu2gHNIrrc2v/pOpQHk9bZE9t8+vFnqi+omEh3PWgXN+5R6rykFMnAxtD2jgUvRM3liaRWTHwPXWikk5tH5NM9HRUgpueJApHnykVwV7bK5kLZWQgjI5JC+spTvT+Ptdqu1+vkM1gkxpqn1XaQGjt16cLTvpZZiqjEMpaNTvDztd2N6WUtTNRCXYtlViZFokdJK6Q3YYWJWFMUGZmttzjlDLa12tZi8mq77xjgaEKJ3DmP0qJDLWpeafAjJM1BA8Qjtdh0m9/bVqwD2lDmIXw0/P642D4pCB5yGerve5tn/5le/PkzH68vt8enz2vYffv9PIYT7w+kcQohB2guzEhpDQ+rmuHp89/Nvwji1ebw//PrjHy8F2tZbjIMxFVH2Q84LiEU31I4xxdttT2z3w4E6Ual+1Hf39/tP77Xb+fTq0+MX43h+dW+EwYVtufg0MGCrGxMpI7F45oYFg/ZSyFGMUQV6VQVyLqha76oCAjLQQECi0nptVo1FBPa2k3OOowEakPS+rrcQAkJmtTnyuhWvGj0/X54qljhF29G5UJom8uMUAUhbTY5VipF6QiRoAojIZIyWxpi3ksumAoRgvTkkcoEUPLGjUKgaO2Yww6qCbLUXUAneIUIpVUQ8eRyga2HnoZuRSBVziX2otRvocDiWptHP0I1cCOjXktU6EYZ5NGtZWm15HEfUnrNObigYmUam7L0HJiaqijEOAuYdb7Wl49GnVDPX0lV3770Lbt/Ww+GorbOj83QwKL/5m1//v/7f/z1wqq1o7YkTiSFj32oCh918tclHnvvnD+9dB+l1wggNOfnWe90MRnhcnsIRees/f/v2zevXdS/Xy0LgerOShZmW5Xb/5s3z5YVwU13O5zTG8MfHHwPzaT7cnl6ImNENcfiq5W4qpojEIY7kvLa25Twkl1vT1n3gjti6IjgwrnsDpd5lmidAn29ZvGuNyPObN+9utxs6vnv7ipwj0K3sIObIhxAIFUoZh6EWmWIcYqqlcKSnz1+maTqdH1rX77//+R//9AGG4IGmw3jLt3xdBOJ0PNa8zaf5zdvzx08/OR7OpxRjvK7dMfMQWt9joJhIgdetZXPY2ofPn54+fUzRm7kU/GV/vn/zqjch79++/iYvy7ZcfMS9LA9vXv37/8F/8Pnp6V/8y3/513/1zz789KfxfFj2q/f+3Xff/erbb+5Ow7s3r9blFlJMU6iSARXIHLuurW/AMBL29bKSmGQZXCLHe+shuQ1zF4VoWYrcrofza33Gyc35emVHaB7Icl8Be/cI0DqWwGRAXToqg0O5bmk8BscNezeoAIrEiIHFwFrO3swTa9CmG3tqRkvLGrjS18i/y7V47z8vFx+9AqiJmbnRM/ilbFbKOE0xDev+JF2rSkiDmVntfmjeG/RKKFLX0TlHEnlQbLf1qcgpsEVG38t9JIawXJay1jWXAUOBuuy1EJrrIcTz+Ors+eE0FfbdkZW27vh3//CH77558CF9eP/p7ZsJpK+3JTi/XlZpEHmUAoQ6jKHst97t7u7O0LBTrgUMa2ue3dYrmUnvA/vRhZ3Ej2Pp4MNwu+V6tuQHBVLV1iW34ofJEYNR8oGZgmfoEUUMAcgMtfXOLqlx65ZLZ8mmOo5D2bNoDdERtF6VEJuU1o2IvjxtIUQ3xN67tJwrkCcBi+OYW23SyVDEaqsphHXLz8/P+77nUtBJ4JB8IOSusCxX7900HU2ktjZMh6x9qRmZv7Z7I/pxmt6++5bjuOzVuRSdhw5l350aOXat969cOhCFYJ5IehNpAhx9Iujb8pHAPGDblxQjABCImiCYZ9Iqda+TD9Q7A7Wsoz+maSp7yesWjCKHvUMXBPJMSqq9bON49nOstUsvtTcjEe1kKefFD0Gj1dqfy5q88sG5m7iBgmft1qsQGrN3hExKhATKpKyGTUbyh+AHCnc/u/vx89MfPn2h3vLy8uqbkz/0M7uh0/3sv/nWPX75qLIOkbYdWinHV4fkpikdDoB5tzRLzleicjyl5+U6HV9nydsu4W4i8nyOTx9uz7Ud/NH7bllAdK0yeuNIjl1tEhla6S6lIQzMLFJq7t6x9g6K96f73/72tx8+pYc3r4d5Os6n2lsMDkwcsXPQW9/yGqJTAHK87Eu3HnwyMlU1w94UgELwIDq5WHpTs8McDftSSq2tQx+GIZeqtTLg4F2vBZBS9OtyISXu1JbGnfqWoWvZ1oNDT8wMe94HiKYGhin4VnsXVYGQBgI0k5rFsDa5MrrgofYGWqW3mBwZOoPapFhVQFHpvQOQ9560BccKaGYKwN4xMzkuVKq0g48iBgpZxUw6CBK13qjsXcl7NDAG13oBVgQAkia11M17RlZy5lryybGhCoWQkMO6l8PhtC03ZAjRG4iiNmsNRa36NqoxIAHZti3sELAbiGCpvf2rv/3//u/+D/9pnPhrlfZwnMv1yRDAjIgBlQReHcN6e5RmjGZIIQ2tQ1fVrgBoyWey4eH8XDdX6P3L5wBU95x4IOLn50vtRWv52S/fTYdDt21bP97f32/rrdY8Jh99ePPwerldQgwASmS9V+ccIiqjmbbSCKzWkkIA1SEyBl9zUSUFxy5J64HHGAhzqVuhIeZVDm/vXt2/++mnD0eMh/uj9760XrQLGjj2wQX0Zpb36p3XJiDqY9zyjgZr2dTDdIxlr6B0vS5fXi67tIfzqe+FnDsfT2KA0OLBv347x0HvTinEWIt59sSQm+S2alvSMLkQlm2vrYF1T3y73XrvPKbn5yef3IhpLds8n8taPcfX51fzd9/9y3/9r95+8+6f/6/+vfEw//jjj+fzuZby7rvT3ZuHb+1NiOnhfDenAFaWfXGRjHurZa+LcxiiJ8JtLcHP0KWpeQ5oykQqpeWszdZWrnmDoN9Ob7xnJFvKdrksUsXEaq3kuEll4LpXm4bWm4EQAlhtTQEcECD02tam1J2oo2ao3ZCCc11zJkRGkC5AwMxA6Mx3FR9ZwGppJt32fjwc0Af0nhkd0rZtOe/OBYqOM9ayAwlzYwdShJFAeYqz5hy8+im0Zn1fRj9KbdP4cKu7gM3398v1T6AWQA8IYxz3PavC4Xh++fJ4HCZO5NHiq7Dn7oKA9MtaYR6bsO+ijlrFy7rct/E0x9z0+nS9OzyYwro29jHFlEsR6za4vS6RQkxUyq49gzVCJhRAAMetyuwjVsFqZLTuFdKAnR5efXuazmTRBd+LdbW7u/vSkIhENDivJozmHYGa+U7oPr88BZ+2UofhYL3N8yuEvi5LzTUEH9Ig1sE6iqYUehbtmcLI3gFhVekqPmDv2TFf1zxMByQgxBCC9NZFzHsjI4etVRC9f3g1xfH6dD0e2YBNKg8+111FfAhbKdu2qHN5u33+6cObh7dv4hsk50IKMYY45r2a9ryu27K6vvYwTwVECDuZIDoCH75m9DuqeeCUeMtLimMtWJsg9daaR4gBt73kvCNQJMdkCM0TAn21BViIKBbatlu1GFPvPZDz0mLXX5/ut9xeHq/Igck1U3IhBF5bFzRGgA7JyClSa2QGzIjIZtBNmxhCDMMQ/NaX3DUysQtUa8vl8VPxpn/zz//Z509fGpTb8lyysHdOU2gie3clIbuXT+thnFtqeb19+vC7V29/jmVxbbBNq6iWtZA4B61pK+U4jmW5Nuf9NC2fPpXexRitTIfA3KcYz+fj7XLtuRARMAKCoozHaRhwl2p76QRqJQsxQVtXGgYW8bV3IPapCzg1NMx7m8ZJRFQkhlnAm1ptOc6zQDFzQBz82Fr76kB2jF+hAV12NTHoxMGA0JDNIyUtYFWjYzTtfe3S1rWNw3GYjnWrpzT1As9fvvzq1c8eHx/R4DhbYLAuZkQ8lN7O02FdFueCNjX7eu8MCiaiYkraEUy5WCtj8BRSTD7nXPbMLqFzYGgIwTGoEaFsNc2TAVdtCgTsjLkDolZCNFFpIqIIRAxqlQnTEBRyirGUCwErOjVx4ErbrauL7JmYALrlZQHzCBVQ/bw2+IDhhiLNbBpHMyl9r3XjRKMLiIaISP9/p7ch2DxH6RmwBOanpw/jt7GW9Ve/+sX/8D/9bRqmbatVwzwdRZuZoem+70MYXPRB9nk6f7mVCoBDrPsG0tHEeTPAgdLtUtPx+PLT87ff3g+H9Py8qYJaG+dUSuEIj88/bfnpDlOXHCL3JuOY5vEAAIYgoohA5AC6Z9+kM1JTI+8AIIQAAF3FRV+2DGRIWJZccrYuiLjvqwseVPaypMHfrtey9+N8NqR1bxgjYhBgJWMmU1BQNEwxglEuGxPUsiAiO8fi3r77fkjD88un4+FBMpTtE9t8uSiSM4omG2lJs/v+F995B/vLxXsvvbXaDJxjmBzP87gsFbQAyXHmV+fD4+dna9kP8/B6bCr+EK/rMs2n5WU5JudIX725//7bdy2Xv7A/n6YxDWxSf/3rn1nNd6f7V9+ft5IPh1MIoVWpdWMSdq7bBubQ6Uih9iK9NxMkDQ7XWkvfhxgu21PrG6ASd1IkVRcdkrnOWPXVmzOzPd7eX/cXZDawBpgVXUjb2qJ4rS1BQAPPHkAEiYKHSUW7gCAQmU+IaOw6q4kJQwy5VgAQQwBXijI7UKiluui8OlBQB9K6CynnfYxp7w3NjXGo0kFYgMigVnExivRAwUM081baKbhtfb6sV/Qhkmut+Hh4uj2Dt9dv3hm4NUsEd75/p8Yv+/VluYFjZDocDtg0OcegIMpIgNydJD89P7WI475UGmoa49vvXodx4OhKz8oDT2cPLtFuIIaiUAC1NXMhSd2+fPpRERCRAPZl8d6b2V6qI2/kCLSVSsjzPK/NlnWZ42Ec53Gc1pIRXBqmvbbWyDlXSo0x1rKjOVNF1N5VtZ7PD89PN2YnXWvr0XHON0Pb94w8QDEBAYBas0MIIWxbMS1xmJn5ti7OOWjV+RjD0OXrZ0615n3fHYgPDlhebo+X6xfRcjzODFj3Os9H61JaOd2fBZVYW++Pnz/3XM/zwVotZSPWRm16c0blH3760zTMh/GAAKX2XfaM2RVAUDMOcQz7vpIRNAU1KdU5F3ys257XHUMjrKoekVprX2EhwXnvYq0ViRiiSPber+vu4ny7bSLCABjcdsvWLVrXVmOaz5F8I6fC7AsY8lQEVIXYS1UkDT4RccuNgAGxixEZRCm6koBzgdmRsVXaC/n5iBJL7dA6donAJHA3v95vmX0w7GjVpCnGx4+fT+c0BE/Fvjx/+rO/+dXzl6da5M3D6z/87oeXT09v37yivHjr2DE5DsPQQdr16nnM12UaBlzbtl0uLxuPIw2jcTBkNegASk6A0jCXTsScW3OJc22rs0ZtEeHgz6cH6iSWATgwf3z6/Pr1aToMaQy9dwCb52nbNjNjcs4FaDKEg4IhRzX0zgFA3isz9wrM5JgMrKs4xqVXH1gF91xNNEBwfjCDUjcPCXpXUzEbptGUkEm7WuvbvgxustI//eF9GoKqJDf3oufjsfBuSMT+ljdi6s0UgJnVRFSUENnQeuhoJk7715B9a10aOuJVVEkMyQAQkBAcMyP2GEyx984cmL2Z1b2o6mFkZK9NEUnNnGNG6r0CO4PO7NSqaCZ2ak2se04+opohmpq0pp659+4cIkJprbaWa85tNXCtFYtz7a3WFjjN6Rhc0h21tDTFEFNrkvfCzI/PV8eNyYJzrbVtWf+7/+5/+Iu/+GdvXr0pTaUBBb+U1RMTAzNy4FteHLo9I7u59UJj2vYd0ZAlOFr3xxBOSl7UX69t9GMt2lodhsHMviI1xnFMKRmqmI7zcct1GoaQQkfbausq7AIS9VaccwiBKZa8KTIC+Bib9K9Bedn35bYi0svtwmIMnMa4r1uV0qgq9l12BjxMD2VrbFoFWhPzsSkndF3JEJDRpLOZNSGiLuxd3POq2r++MyGC2tZrOEyN8On6MoZ4PByu+1XYpIp2ff1w//D27JP/8ccf5zihCCIeZqq11npjAu+Dn+9VNY6+1srk5zh1AecHJFfzXruFOAL6w+G47ztI94EBpcv+H/2v/72Pnz8AFaG+bvtv/vmvsWsYxxSDark9fUnDNCRfi4Chc061E4JPiSqJiHZ15NZ8K60Y6tZyaa30liKLdAxMwK5b5HT2x1fxLjH3XptcjNemjH4SEZ+SAGIYqUbNzcUk+yZGVbWjVskOOrI5RlOrZfccPUbbcwVxzu9iubVhmFQwb2JGU0oeGnRNzgOisClzM22992Y4Bi1GRIChdzUT57wxqHozbEUBTHruLTsgH8NpOrH2rSsg5a7mUB2Qw23bbhe25k6vXtN03+fzotvn65cm0rYelAcfzMyZ5tVinG7X+nFZD9RSHYxgPry5vPzxzc9fv3v4/nb98nm5HA/D8dXbzy/LNA6MSOyEgD2BWm4rE4EzxT4Pc5W+bRt7l6bx5eXFEybvStlN+5QSMN+WzTqkYb67OxHRtu+l1VZ7wToMEzAJAAdPnj2EKsUxggERe+dr7cMwMJFq92xdckghOF9rZWZDRWQi6uRU8GvfJ/pBa2uS822Zx5EU6KtgNI69d+/JHAEoATFba4VJ2KlgLzUf786H+WSKX1OyebsV6WEciWjZskPnh/kQAgOj8cPrb7hhF+u1P6/P8W1YbpsyLvtihK7NgyJqrcfqIvjoXMmbc46RQZDQYmDnjlU2prTvOaaDicZh7FK2NRORge8NmmpwwXlnkAEA+au/iV1EPzIqoij1HrDxGFWBp9P6vG1dxyF48q1UVGMir6ZmUsGQO0KWVhiGKUi/ae8Bw4AI6BTQjFExKqF6z6S9tD07s73r5/dPtdhwnr58er5enmOcXLCSLyBwfx788ZTXtl7f+2G8vqzPn6/nw8NhfpX3l3Jd9tR9nIf57rZtmIYQX6s0ItrW4gRX6H2Ifoxd/K3SWsrr128gpI/blkWECIlVkdjX0mKg2lEIxnEMzNu2ldJfXlaksJUNAx1Pc7fy4fOP9/f35H1tG5LUrmb25u718nJZtxxCUFUBMABEjGFmRsJqWoEBQHrvBgwuNQBF9A4cmhZhMmYmJfZuy2oURTRDd0TQNlfLafR175fb58+Xn3gCcwqm+y48h+tlR+qGHIdQ88aB1YjByGHpGRmIEVGtd2hIBGwAZtKqtJ5VnXPn0303bdLFzKC3Uo0YyCsjePScEFhq770zYnSeDNGoC3CMTMJMXwW03qd13+d5vC63r6U9RVCzYuKDJ0MR6WIAmIaBnFq3XHr0Z+YYh2/gGYY09g4GznsyQ6mGnV0LQzwQ+t6ESaN34eyYoBYoZR+GsdeXeTpfXtaxhf/mv/m/ffvdb1KaLkse4yC9OXIoWvcMZlMYgWhz+/V6lb04w1MMte1+iHteY5pflmU+JRvC7798+Pm7+6MNA4/4lQ4EuZXWu6hgyWrquuB0ODLS7bY6ZBcCMtWaPWGIA5G7XZ9UXAonANi2rUNVsG4otYlokX59uTqi078b5hRIRTozVi3DHK3qPMXL4+Vrcr61lpybpslalVqMBQwCkmOnCgQGXkWBXZiHu1orgTmH0rI4jofh5XJ5//gn6XW7bmkekNlse3U3fvPtg4Itt8wWpnS8bi/71qN3zrlDGruptO4pgpovPKfTWq3k3o0O59e11r7mXuFXv/7V1vJetsvlknw4TvN5Pt1P/p/+8W+H0R8Px2ISj363fZzT9XaZkk+Mfo5I2jQTQQhBVFWNA0s3a6ZVk3PBh99//ujJD2F8enmKcczrjhRqK1lWHw+J+ZCOMYyGfHm58hj2fEMSA2gtA05amykO5KCC0+DAVe1dGYGYUAEYsNYdiJ3zhIQIQNJJCRFYxAy9+xr7IlZC19Ec0cjJITWpiNBQG3SiiEylVWPCEHNrtYsKhMlyzl26keNIDBhCYGSrer2tzCgOHVIIiT3VplXXYO58OA/sKIy1WFai+e79H/4ut9xFj/PZllxyGeN4vdxwPNVezAGGcfDnSfTudHy6fT6m4zf37/brvl3K3f0ppRBCGCY0LAKkgGaEFBy3SM55iHRerremklLa9lK71t7iNPQ1b8t6vr/rItf1ksIQHCPx0nOKnFJwnsnYqQOH0YfapLfmvddenaNahYkUDMG1Jialdx2GyCjksTVDglx3RtekI3PrBiA+hLa3ve8xRkYS6dj14XiyLqfTcWv1tu1pJBVhUjJlR73t7D2JmdTr5ZEIcm1bLiF2RvaevPfSJcSwXG/Pl+v9/bdpPhzvHmTfx8Hevvl+jId82/deOfi17C+3TcHyujsXQgiOHKuoqt62deLgg9tbZ3LG3KvkvqXgVEPe7X46HA4x7633zo6++gDMzLng3VfbXe2lAJNiQ+4KzRDX5brvu/dxSsmR64Bbkz7Gl9IurRfmViohMAOSdt1NChJaR4/I6ACd09ZuFx6ZQBi7aS0igIHdxN51MLQKzrS2ra6qBN3+8Q8/Do8vS29GhnDSTh1pWzvfx7rV4FzgMzntCtME0K+H2c/BVZnUKpNufdmXmmsNlMCBqDWm0oRb/e4v/vJq8LQ3MfzZm5+ncbg7v/ry+Ol37z/EwMGRRl9q8d5Lljkdk4emIEaicH15OR7PPgRREqKYwrXmU7hPU+oKX55eHu7uRUWlxxg/Pz1GcuwdsQP9mhWX1pqJKSOA1l5QwXs2gC7iHZeaCSEG75lzXr5uV6qgpYuYjyGMJNq1VWxtW684Teag4OKPVDZtpuu6He7Px7uz6mYK+74zUCuaOPqUWitESNRi9F27gAXv45BqK9te/l3EcZr2UnPOlmtIkR2qVSbAAJ7ZevfkQKXWQuARMUZWkC4VwYN06cAUSQGVVZXZmyIDM/vgIiB1Ue89eqql1yJocJjGlAYRkaYi4gOCgKheblcObi977z3FeduXrwTKbdvi9cYQ5gkdOnA+51JqA+pINsSEnbZSGf3x9OqfHn/3+PLlN3/1N8QerA4Dl5fneZqsZJE2x9hUxNq6tDRHH9UF8SSSNwTBSgM57XIf576WA4e7u7t+WYunb77/9rJvLy8vrVdROZ/uUopfnr6U1pxzOecY4zAMKuadq7WoGSCvuUxjCHFEoNak9z5NB5XcpK85C9KyrdJ6TEFVjQ2ZSi5531U1Rm9VSQGNtJiI7rWosHYJoJb31/cP5ykIWc5b177WFpDJOQJct206nsRACXvX6AMSOZprxZfHC/jJMAZKwYfbZT1Ph1//+hcx0fv3P2qT82GUmlvZ5zSpdQbrvXjHwaFzUqV2rcEBAzS71obPL4aIztvBD+9/+rH3GscQASKAY4wx/Iv/+X/8+7/7l//H/9N/8enjj+l8Gg7HZVmy1PEQ274mCgx4uV5dGg6n47Jcg/OiTQsQEQAmP5po21tQDx0AgA1QDQFAbYgpQpQOW1lrjE/7zQ7+9dsHdPjy0nNhEadCjrWV6olRAIDJoYgYUBdQAFPItaTx2HJuoOPoiKhpblqQfCQGFcc4uLCuKzpNQ+q95fbCpg4s+YBE0TkD0dq2bfVpUEEDyrn1rgSUhpCXKxDOYxDsX//EuTfoOIQYTgcVgH0NDlSafm1fOYheDom4r+V6OX33zTQmMzFVEnt7d3d5vg7sCfi23abDuBFikG15UU06RYf29PTFk/3N3/xa2mVZL4H4zfmkVl++fBaR8RiRCNAjIzvOeXEguXaXvI9JFbuY98F77gBpmiK49x8/d3l69fp+HMfPnx8TD8fpPHIc/UCI0kS7eIpE0LeNKYApm4IBgo7BA1r06fG6jOPonKNau2RG8M6V0mttngN5lqbdDImIKIZhtWuMg/e8bZvUNo3DcTpcnl9qKSriA5tJSsG0E6J2kdb33kBq3vaXl5dXr16/ev3axwmCN7GmkvM+Hw/GdHu5vbp/eHX/Kh3P+1ZY6TDfmcqyraychlB6e37+wtHHGIkQTNnMxSYK5g+Hsu+79gEUAFprLnAIgRiG6FrVeTiXra75OkyjDw5AclmQNMSh1b7nOgwDgJpR33cjIoZpTrU03dppPsfhEF28Pj6XLk+5luhbbqWpj4MIA6FYE8jA9TQMolprA8DeCzKnyIzkyXVQ7uKxCwF4c96A1DxbsGxb1VW4o6Fjr8Qd+cu+dZFD8tIzwdVs0T4vSwhjVN2m07y0bZiIYYoulWXvsoPH7pwBtpK79Wk85G29LbcmFZ2mwzDPM3NsuM1vXtU9e+IYnAsMHoZz8mytmpJpL2Ok/fKiCYfZ95ptnsbzcd32dd8UwnE6tCrPy8u719+f70/btozD6eW6TsMwDmNrzXuPQKBWRZHcsu0ucBwGEGmt+IAhetVqJmYGhNILk6nquiuF5OPoXGi5tIbEEIfQIFtvpooNRzf0ITe0veaM/dazMqOCj1G9hMktl3IYx7rTttbRzy2Dedg3cR7MSL3b1x0IUwoC6GNyPtaMteZSyrpuZjikAwEyASAZtFw39EDkNO/eWWBPjnIXATFnEHCX3UMIfgzsArMLYWs7APa2I+G63lIaW+9fxSG19iHMntl6swytlxDd14tzdXMut1d3w/E87jmFEVFAtYN1NWp9U3NddsCq1sx4X9V5dM517SItV5sO0+ePX4Lzp0N4/eZNGt799V//5tOX2w8//GkcTtG8QwmDW9e99wbsUhrAmRGliXyh1jsSgYI0GbxfrFmHSDFfFlE5HYcY3JfL53WrgOo9AopZ9sFiwqZa6joMw7rehjgicVf13puJKnQx57xzzpGPMT4/P/faooMOOo3jVluMEUM07WXb15JBjYiTjyjYtxrNkxAHlizfvPnm+fm3t9tlmqZAYPtabrhH8VMktDAMfW9m0HonjPN8NLLcNgUAR0U0+pFk/qd/+v0ff/gUzwfxocsOGU7+nIgiTh8//r7UqwNDSw5dihBcccSmUvaSfGqtWN/HwcEx9b6WPff2eR7vQ1LBcNlqrdc5TvfzEbqNp7vT3Xy7vfxf/q//48vL06uHByAMIczzvOz7PE3SOnL1kVot0vR0vFPGfV/xq7U+BgBzzpWlOOdEm6Pw/Zt3Hz9+KutymsZWSgxc64aI2Kjte/R4ephx4pvmd/Pwj//4O6FZcN1KC8Hn1h3jlJy1uvUdiHJtLnhkIkQAgC5NnY9HJvA8KkiTbATRudaNDRKxE5ucrypgdc1L8skxYlfnv0pPWiRQUT94JMi9OBe6kTerdWdm51KHjiBqGczIsbSvdJ22d+5FD54Gp2vbq3ZAHaOX1hKLlH1KdDem4xBlW0iQFMu6Eai04kN0gRrU67YhxbvD0elcb9ebbN98c/j53atuP6ru0+CO891y+fzx44dXD3daxR2SY1elqJQwxL60MERnoZQWwwCiRDxMh9zrdVkpRAd0f/8wTGNtm3PheDxaR5+i1zimiYz2UqR3gKbaGJhNHTkyRIfbvqQU9n2L7Kd5WNdlGAYXXM3NGJ8vLylEz8Gzr7mxcwBG7MV6ry3nfDhMy7Z65oZmCM/Xi/cu5y0MYxyHp+cLgPbWiMAQzOw4T0+fbtu6HqdZRKpoDGkv5TTNqOCc2/f9crvGGM+H8zyH63oZ/DSloW43C6CErav09fpyMSgO2xjTvjdFqCpu3beHV/dlWxMAogO1OI2ACiUjs3NxyQUpKRpZGOJbNNFe1BqJe/XqromttxfAcGsgrc4DHO4mEVuvlURn8hLdOA5b3pfLNaXR1v3V3d0/vf8ANhBQa2U+Hb48f2Gnp3kqrRePuUn3EJI3Dfu+OwitSfQjglltaIZUmMGw9t41ng8KUXdXayfXRAygldyuOmFANK29I2kHxvj4ck1tSgi13sLBjdP4+fH51em0Pr5suUhiTb6Jnqfx1Sltde+hWxM/OmBalzzFGe5erdu+O+ov13ev35Rlud0uS95o9BqcH0dbczLIL6sjAgUMYds1HgcXjyI51xz8eNv23is4cM49L18ObaCkGorzsrcXsMAOwVGp4hANsDRJybNH7avzSQGYgVX3WgSMvTMwcmzqvXOOoJScgm/WdmkUiRgJCYswoHNUsQrjEO/FOiA9fvk0uTGX3PONVcc+yONPE4gJP6/X8+kktTiXiuxKvSl+1ZCRY0RT1UoYGQgUPBMHF4cDRU/+edmcA+647Ot0nh0rFJuCb0y1dnLUVdk7BTM170OzbiBd1orKzHkXJHLkmoIiTCmKlH3bpzT0mueBA9VlW8ExJiTSYisbcOsOyxiL9AZ9+fLDn9p1G9JJoVNIHairkFdx66afBlKIg7ME6Fsj51P0o7S23pbgqaead05p+vb1m//H//P/g9NwPxyb9AENUKvkaU6196J9zWsnVzZd6tb8Xj3noswuRFvLF6LYHBUTO6huVyYpn/eH+7feoXaotQLgOMxPT9d1b4bgOOVc2VPXRqCqQESKxI7Hw/z58XMKUVoXrd6zofbeHVIT9d77EK7LbStZTKbIe17323acTtKxdEMDURxHRsJt200VmU4P573nt69es/V5nq9SmoGWMqVRmtRm5CwE//xyubt/eH5+jAEMJLdbv2XlGo6stquYkYQhBoHjfeh6nSIfx3e15X27ENYxqXXtral2ZmQC551jCuwk63A8bcvuZy8Bw2mGnZLl8XBsvbfgwhFtsG3YLs8v17xMr07ffPezp0v+2fyt0zCwtuU6eJ9WLGJCXhkMWEWdC6XlCmBIITgCvq0v4eSblTVvc5xiAlFr2Je2GDfFSkQFWw1y622EfU6nNIasan5YlkY0dttQeQjx+vQ5MIAKYmkGEElIemlfccdxDC0/m2cmp/ul5l0TxSFA3QaawYBNDaC2nqaRPa/tqq6LcekFmgVy1sXMPEBZ1I8MxKU2sEgUyGvn5gOKySYV1AafJj9Wqpd1UR7vDo4n+PThU0tzGk5Sbuxk1/U4Jh9wva7BIzudBi+g7fn5z1+/+dvf/Q7iYEO8QNMghhB9sKySt7Y+/ezdw5/94ucK+1W/eG0pplJs3+3p8ZEo5gWk9Ytd37x7I03CPAAAImKH3nocQu9CmKpgSGOX/e7Vqe67CcUwUCfvpmu+kk8pTXVp7nD2YXBxGpmfb+swuZobowuBl2Udxrnsdd/3aRoAoNZaFJkioeu1OUApjQmM+pjmbcui5jHVsiSGbVnj4R7J+TAShqZ5nKe95RRiBzXzt7xxK9ZrQ+sqg0uOEDE+P12Wfct7iTT0BoMfnY/MvoiC9q4dUIHodLo7zEdSprKztwp9I/DIjhCcUBz15RKIsdSOq/SqnsI4uXGKt9vFEaCRaSf1yQ/X6wunYW9tXbY0Drf1JYQRLTtyjhyzDT4+Pl5u+0sXC6MhM6NsNVZj7YG0TYGldKlK5HpVbVClgvY4cqn53XR33Vuzdkh+vz2exjAdEnsC6bV2BkeOy9LMDMwZkqNgRRyEcBiQKGvbDQxpPJ23225df/Hm7qc/Pg3zRIH3tSKCd0FVBVVQAMibC+yktBLb06Wa7PF2OA/pdHiXt365yLriEI77rYwpxjhhb0w2T2M6vP788XGxXLxDHj99eYFxdMO4LNcKSjF+/unL876bP9BwfM4FeQrjBBtvrUfPGyBKs1u/5udSSopxK/nueFdy23vm5Hq123U73R8dsajVuqXojel226NPxs5EAZSIHbm1FZGNmUCt1kpEzjv72pZrhSECs3YS7VW6Z/GpOHLSDShi49YUyBFzF71tNzPsjZ0cy9ag6IAOrM+D44B7XmWtIVAu13k8kKmapsEzc62ZCK1rl1ZqBwI1FALmr1BMzaVU6NExAbTWRHHZe0fHMdyATBTZiwIROkVEjC5o7aTduWDaW98VYzNVMceKSsyIqtp7dF5ESm6tteYlxKG1BlmBrKu6FBAgxlEVHXFKaZqHaRpL3pFd8rH1jI5rx7t4AvBog0pgQB9ZwZCbgZEHFHZ+aG1HZCD+N7/9QwP3/as328s1Ob8aROf3fYVWU0pZemk6zGlvdat6u8F0Oh8Gf3u5LHVN8cDsbuuK4Aaea8Hh8GrbLujj7bY9fv54PM7zPCNFAiP17FKvnRwjIICO4ygi27b5GFrfGV1KIYWEaqYqvYFZr5ljIsC65ya63m4AOqahrTcimg+nl+utdmVmR1TzDjd4++a7D58ekVwc/Jfn5We//O7988svf/lGmJOb63JTsNt+I+cVyEpzLqQUpOfDnPK2o2jZyoenj9dc0aFjqtfFB+6t+/HgE05zJJfWZV9vW/RBmziMtecQA2LyTtMQ0Hrw6ByXrWrHY3r4dj49P5fa+tJFxgFKdY4B4OHhjRvoy+NP//of/jaE8Pru/sOffvrVz3+e0vgVO5/C0FutYs4F9AF9XJbFee/Ym1hvZRiiSCey+4fXrTYxPBzPz8/PaRpuj08ppbVujNbQTPtl37uYMvuYVGBI6fr43PL+/PI5jidOoTbrPYP3uXcG6CBqyMAiXUy17Bw8AEAEBC29oXdmTkxrMxVF7qC9ianINM9b2VvuaZyMGRGDx700QXDEBGCI5jErFTGBgOwVxDyp19techeXEghV4910z+vxOP383bf392ft/e3rt7//00/P6+qT31qNIRhiB9tbS+MxDnMT2cu+fv7cQe7O47WXjkLMAUnEghX0fIxDdyEmuGzXNV+85zEcWvPry7YNojY6g6eX1bQefbwsT0bSs5HGu9PddltcjF3QBBB7bSoIBkoUEdFMa29KbGqMAYxMSdDPw6HWLr6JwDBPe6tAZqRl34BxKSuTR8fXnNeSE4IoxBhbL2XPh2kEAVXt3ba+ich8vLu8bDH5vWyn07GWcjzOtewigmxNcrfelXqVcTq2pWz7DkDzOAZwRWrtCmroWBS30tu2s48dNbc1+GQG3tCRE2nN4HCYBLtI4DSVbmXdzsdjyRsFztvuyHsIixZIA6QUerBuelXntMfAUluMUZrWrszqXFDnPTsA7dKGeUJEVGt17QUBrDX0AZ0DhZ7zzuj3fS0ShBIjUxWqXao6F50YYSCqyK6DGHRpbfbTy5J7K9EP5u3+1ZEc7bWkEDXTvhVgCOqYmdnnbnEYQbWTNkedQNjdyu4ACMCTHwKVXLtCBVj2VdWc0uSagJhTVdFOWvswDsE5jL5rmae7y2172v705s23TFRbX0vRva6trrftfgjR4eD49vxl0fXu7vU339z99//D/+KHKRvkfTfPLjljuN2W86v79XNTg1pprziFBGhGMUurqLa3Q3Ikett7a4UwlNy2/XI4n6bp1YfPH/JUg4sBHRkC0GGeW6ulFM9eVbt1IvbkiQgAiAhVmchEpfUYI5HvCkAWvTdlU2pNzKy2ptbUyldrIgIokrETRNXeezbGFKbLY2nFOQhGyWFn7p1xR9UxOAiHYbqti4IgMjIggZm01pIPjsj7Eck6JWldEXrtIYZaW0gRQVvp67oR0TyfhJnMVEGMassxDsTURXrriMbMItbEfPDkQQxMzIXAzisYA5qZNClZACyEmNLkHANDKc2BY2LHJFSl9r10xgqIuTVt7etcAozOgUBWVfZxq611xy4CTtKQIyOyWUbT3oXIiVji1Ct1ohgDOvdn3/38P/oP//2/+4d/+Nt/+W8OD69fSkXvzayJAgdEFGNpMoc7nO7IYqn76BKzU2nc7NV4rgVRwnE+70/rfDjuzwuG+P0vf40oD6/OzK5tRZreH87eD+MYmrR1u1VXHRIRmUmr2Tgw8J5XNnbMTIgIIbll35T8EIeBsJWy70vPRcS8j+jI2CHb3neoLSU/hEFEhmGia9tbD/PQKFzrizuclyLMehhmVoBIe66llYf7V/u+DzGo9eXy4oBO8/375w8/fvyJp5k43V4uP/vm2+vLMwRLhzTMiZiZeRoTSgeT0nZmDqPzzrcmhtq1a2/oHJEbX73L3aLqn53v2jdUjf/2D398/PI5RPMIW16OZbYt3x0O/9v/4D+8vzv9+PufTu/u/388/VfTZFmSXQkqOewSM/uYk4jISFZZDIUCCmhAIOgWjEjLyPzsln6YR0gPZlDdYJlIEhkeEe7+MTO75DBVnQfHzD+wJzt6Vfde69e//uU4D6/r2Uydj1Y7kiFT6+JYc2lzTKU0NQjsQLu0ZmSEThQEXTPcul5er+PNTdvzMB/Or88KEOKguVVTNTgd70DNGT28ffPf/stv7+9v//TDZxePTZXRoUvZhBGIoxoCOe1GDk07ICHiWjfPDtUyYYdGRrVWYLrW5h0G78BTRm1EMU29FM9JwATVD05aJ+a9de+c+lhVti6IntgZIjrbdVNQPwxqUTpMw/T69HGe+R/+7m/eHMZlWTA5ZubAmnGrdZiPBBt6BkfC2JA7udpbrsvdzfHzcibSMDg0iS5oUSgqWp0PhF28XLW+Pu/7luf5eAUNpL34p9fz8TA4bp8/fvd//1//3bI+/vj5p1//+meBGRR7ozQeay+RUrWuqsykKibSSwEFIvqCkkkpceNSagdy0+BSUvImuNd9Gg7WlQOXsjuMIcXluuMQ5puTgA2OukoAcJ5EDMAcMTCHcFTrrYohGGFTCei85y756fHlMN+mIbRWxHrTxp4u62KGbpyK9BjTEFMXba2JdgDQXEXay/PZlMillGLwDKgOIW8Z2UXntm0rrU7zAM69PK/jODoXv6gYFWyv+zDEuuTHx09hGjqIErILpqbdnG/izKpqLxnQV+37tdzc3Bg0EflSFAkx7WVDAOe9aYshfIlfAbgYQm3m0FF0jFZaM8nOmeOgTLWbQSgiRdS5MaZY6oZDk7Ygg4HsJcd4cOj2fW99TymBJlICQzLqrXmm0pu1Lh19jHvNLnlq+uDHgGhLPwzjYUjb+vru4f3z+QVb77kKYkQFxlb3mjey5Pm4S3upF8LjIXmKE0kG1n1fqWuIPAbc+iswb9fzm/d/s70+Pj1/7oBzSl37dx++Hw7T77/78Mu//auuvdZ8M8+15dpL6c2sLefzfLhNQBOoiRB1+fL/jOZ9nGIyBWy+ke0gh+mw7Tsi3o7HvF0cKYFpraXnmLyZIWIIruYCwIhIxLVWQufQMQIZEQNFCiGU3qQ2RXA6qCpA7bo5RwDENDAMIOiIRbW25gMhi0lB35yhYX96/WkpyxCPpewq5fY0p8PNqmcD4AawKWGsRY9DOF/P3ntQ8xiYQusVFZG4u0LE+16YqC3ZO66a2QwdkIJD8ujaVoYUTZVMyaBtS0iREdGxOc7WFBTc2M157z2wKnh0DL7WZo5a78zOM29rdYjE0GtHJ1KF/YDIBtC6dulE/ks6aUyhWkt+mKbDdVmbWm81hMCeAGAriyH03oMfewfRpqY+QK9dtVq3zvUw3l3q6nubR58vT+ePn/7iN3/9pz8/IoKZKZAREpNUaaWp8MgzlOe2lZiMpZu06MzA1lyyFnFDSEmk1rJJwwCIYurCzSl122sFQ0Cr2rOn2URU5JBmB1xySTEYCLj/X1nZAEyYHRAA2LYXYEKibdta12EYgqd9uVYQbfX56WzowxS1Z7VuQMMQgSzGaOBqE0/p5bLd3b/7x3/8z3/913/51Vfvlss1kG+1GaIj/8WISaC95svz09uHd1Lq48fH28NNYXfN/c37r1rp27o+PNzf3B5Tcmaggt7742nutURPZc+OmNkw2MApDKnt1XsfY3zubb4f3E1TvrQi3Nw3nT25emmvL8/3t7d3GIqW64cPf/+3fx2Tf//PTofDobRyWZ+RTHrPRTyBIQlCbgV7C54Dw/m6xiE61LLvQGgGe62ETlXXvU3z3aefPqXJP1+ea8kIntizix2vFDyZ+/D9x3/xD//ser4MYb6ZD//H429DiE1RyStAjF6l15I9ODXURiCUQgDQ1juiVXFG3jH2rmoWo+uleiA3xN7LnPy+LYFccOQAvHe9NYUuvfgwqMJuvZg0cKJNATugSEMRQHNe15xvjgdAn/d8OtzWdXHY//Y3v35/m7bzR4/YlcFoX54O43zZmuQqWB7e3FWrFoiHGGJEBuJOs9/PZTyMl+fnIY0TpWU7Q9UhBTHeS61EQNQbdfDLlYmz595rAyk//ukP7x+O/+Z/+VefXz+u12XL22XbhxCZ3Bzj6+uL89R7vru7Ne2fHj921WmaBu9yk9p3ClFARTr0hiBrubayffObv/VDKqaIvO/7tm/jOHp20lVaJ0ZE+/JwIJNqcy72WlXVEeVt771P81ByG8fxum7LdVOz83UZo0otx3kShVpUFVwMl+s6+9nAYojbtaDStmzL69XMjqfbFNL5/BrQlb0ur2eplUAJgJqSSd9XqT07zQwNkFIqTbCrSG4da8uG2Hsfp1BrK227XF8r5J+//fo0x97L3hTAuSE57ZXjRGrdMKUhtzYMw7LvHpERwICAHx8fjzenL750aCgdALBnK6JiBpBqt+4ctBKUHKNPMe8tFynNWnfGSNF7dth62xpE2x0M80SrLLsZ0VrEAIio99yrtT0TBgQiM+jFM2ovGWQpizni3hiQlWIag2eq7Zy3+TBI27HWBOoH14lybg5Ye49I0XvnWViHKb3/6ptImBxsa0UwaXvwg5E13c+XpQv84uc/2/J5up3CFP/w3Y+vy7JmuFz6Vmjb6+vLFWMk4uVa9irj8XB5eQzTMKyrk3JzuEmOPm8v4vrN26PVvjy/bpfr4c0DMa7X3dgudd9U7m5uhXFZ8/3NVMtWgxkaM7S8p5TMvlwiyIcoHVRAlQ3J+1TLiiTOkRlUaIAYfTKEngFYiTuxEKM2MA1sbt8LoxEDOwgRAM0ATZDZzq+f1vIYR0a4GuY0uvkQnDB1Ro8eSIsOh6m2IiJmighAkEIMzpuKfiFjYWfHMQQiMuiMoIAGoiLE7Mj1Xsu+OVACDdHTAOveGIBDouCK9N66AaQQVGHfi3OO2VdRp42ZSu+qCgDOuZjEOzDooN2qHOZDLn0XCey3VhhhTIlMGdAU5+GI6NYli3nnkmdvoF3a8TjOBw4BAVvrq/M32g2BtSGZMmgavap2yT4ggvZSl9flw3d//jd//bdfv//qwx9/G1OIKW21tFyIaB7GnCtjPMzDlrdczqrQWmtFzJRDKMsGpAi55OuY8LLtQeLNIZj12vYh0ZhmVXKeDDqYiCjIlwYXImLiuNdi2hVARA7j1GtpfdcuAGZMIpBLFkVFcs5t23UreRhia0ZECliLBg4pJi1brnkc/dPL43m5bAVmdtN4WC7X+/FEDQaXmqsipoBgXyBN/CWYba29f/cuUvj04ydGnhi+aBkRZd0v4zj8zV/9Gnp1EfK6mVkcht6h9ALEPkQOnthQG4Aa9o7K5CnM9wffLS/1vObr7e3J4zgGF8B/ty4M+8PDLwgrSL2Zx209H+d77FUF9rxC5OCT9apAir6res/kUZtOQ3TYE0ug1mtjMzQEMkdopqjCDExu8KEsG5lBb95zN10uV0CspYxD+NWvfvXDDz/8q3/xL2vR7/7w/d3Nm8+vS861CDoOHVhrNwykXRFbNybXlb7c4wFMydcQ1pKjonNJQlB21s1aHRy7Wt+ElJCGOaXgt2XdtHdVGOPz9cn7oD6g81vNrbELwTMiCqoyusnN7Bh7K31L3pFe9/r0P/+bf/ruPo2h0BFLaST6/HqR8uod3Q2xll5DP57Gp9ef1u367t376Tg5j+VlPeenOPJ6WZ1SW8rGKtrZIQVfRdCU1Pq2gQU2QtDL5WWapuBpvk3jePif/5d/bbX+6b9+d33O//J/+jvnvDnOVWDLKQ1TjNuyae2ie4qE7BCkltU7B+iM0VC7ZNTSu4RhuHl4wETZcq2UppmIeEAm7qXPaVyWhZmT87U0KQUYxFSMRISZfYig5pk9ebTifDLMBjgMI7Hl9Tlv+TjGL7WlWjs0tY6mVPZWNhExz9hKHofYxT58+EAM4zg+vj5J2UvdgBsxxchsoFlVewpRkNY9V5Om8vvvv7+7f2OgueUvqfg0hE+Pn4YxEsEfPvz5/ZsHIxORUipwMMca2RVilc7OOfS9CxntWwHU4/Gh5E3UyPE4jqXsBj2lhIb7vg1xnI93qhaADdy+75y4r2y9EVBTuV5bbxTjYRjc67ZZ7wyddbsb/avYl5Gamadp2pu9XLaQLEQMMcC2q3YXgvSWQiytKcBeG74JBMbDnGsFCIbhXCuq3fsSh/j0+lFaHUa3l1Z7U6OqyoWi8pgSA5a6uiH+/Kuvvvn5Td9W6sV5t+3bdVmmN+/ff/s+rPO+/un25ubv/vKvRLY9tx9+/Hy+bozz5fqENOUMor5nSC602vdugSgvtVko24U5tlxt1OrJ38wx+Lxsr8+fA4aB4+vj4r2C6NYaxnjZc9IO5rrDtm+O0HtvoIZqAoyOiXJriIjiUA05GBhTYA5xVEdIBKXsvUmMERGraIhoQAAkwGQOTKFJt34Yh1ozYFfoZVczYw5SzFxlZiItkh1LdJ1bLReIx4EQGVgQr32Xisyw5yUkAyygtu17dx7UiNk5V3PvXeMwltxiDG1fHKEaadduSmzBOz+EzmraRAWsp8l1tS7FN2OD0bneO5Ycx6Gqtp7Zk4JU0xTSQKQKRL3WLcSouoM2ZnTkRQoiOs/o0XtGUEZQNSIK3vfSTfHm9s3T+VqqqpEPyAhlr5fzyzi2tw9vxjFsraPDQAFNTR1aq6WpdJElHMaKmOaTKrzuy4c//u5X3z58/9v/c5qnbVmZEExbbv4Qd+0VW5F9tw3DABiYI3SQmp3q7XzXBCTXOcWeN2Bn4ADgMM+eJfk577pvWYGV2AUqpSiCc86zlyrX64KOiMgxm3Z0plW+rEkQCb3XblK2rijSnuu2La/jmESViE+n02XJTURFa+8evYuhSp2OU//pJR1mDv7l9enN3TGvV2fa980jOB9ScrlWA1HtzBziLMUNIbw+vcQh/dXffPXTj3+65MswpG35jGCAgFhM9+uykblxGptp6TLOd7126NJVmxRRYYc+DiEG6VQqhiLG+HD4Kq1pbD7nSsTvf/m+cjzme3Tupa5x5lzLp/On48MMUrDLMNLr9axSYhiIKJedXXIIzGzSSE1rmVNsrTJw8NxUpPboUq01RV/2Za+7g46sc/IeUy4rioCUSFRNxyFu2/Lw8PD4+OzdWLZ2fd238/bw8P75sndR76khIjrQzMTqkFAUtCM1aADauYPjPXdPSZBy656dqQzaB4OHEAbtrvd3cSolD5Jvovvw8VMcBscWp3At8rrXg4tnES0ZEAMzGqHBFxnDVtbBc6/rZVl+9Yt3f/8Pv3j5/F3XAixqed9bz8v/9M/+ysdjGo//6T/9txVaZBp88MfTNEZGdRREYI4spXgT6GU63ubWixGAGYF0GHyKZq02dFq0D8N4mu+/yP7e3B8H/+bH77774bs/m+jf/5N/+otf/Gqv19K2kFyv5c3tu+vLq2dW610qmATP0rW2jEpxDLmJcy56b0RP109mNjGBZ+dijCO5KCJSCxBIMze66OMwjt7788srmLrgDtOx7iXFofdeSp2GUUSeXl4UrL+ckdlEmppTqzWnlIjc+fWcUiKi63UR66/9ZV92RqeGzZn02no2hLXuwRHs7bo97ctlr1cCUfC7Nt43Nqo16xWIg5iZc35IW+3l6RnUUkqeXcsFX8ETL3t9fX6Z/GGMN4Zpa5iFU0hGlNfNpdNJWlu3/fbmWEpd9x0Ip+Ph2jYjYQTpZTgM67YFF7oqgIQpMTGQLMsS/NBE970EnJC4UhdDlpD8sWu33rLlkhfQvu89WB9iTIreDWeqXvfc1iYe4+CGAUxzsyJ9PJ6mNL28vDTQDgLEHLldtq33JX+6e3hjWjkOZd/fvn17c4DTeJwedT4d/+N//T+3Lx3c2g7DDYkL5lRzw24ezET2tr68kOohsSO+rpmdCvW1r6Mb/+Xf/f1hiMvzp9v7N1nE03R5feQ4vV4rMw/TTQJ6vV7eDKM0ifOQhqFaixgZR2Fqypfr7imyc9JkW/Zt2Q148lG6xMjeJ65g3t2kg3TwyW+5VnTasFU0snEcXKJWqqqgGjO1mgHZeaetoUc1zW1xxMzIDg2+JA5UxNijwRcUBzoi8IDQpBVpGVScc0wBAHpXNqfIteHz58dWHbFb9zL4MAx+uZxf11eGEhOD88hQ+j5wAGwpjTXv0zhcXs8qyMwgnZGlFJeCSAPspZbgWKUbQgxJDJBCAwDvCcFHv6xXtB4QvyyKaUTHnhEJqPWdMcXkGdA5Vusm0uoWQjDVpr2LOOe6iIEy+6a6bts4zcG5XrNHc+SJSHrvvUvv1lRVn5+fG9Iwn7Zrdi4GP7IJ9RRxYEAyi056K6YovZqoc06aDvNh3S7a7bItpezS9i7l//qP/+H+4eHd129/+vQ4jiMiKrg5Ded1IeJtO1fp7EYlV0qFbiMHRNpLMbYuyo6cj733VvLN3QS6SG1A8PnHp3dvf77ppTYbmcyRKYPZlssUyYcgisjWpYsJoJSauzSHgYjN8OX8QuyBXcmrqnrPIYTWmipgF2lGBsFxB8m5pMNhWRYX/Lqvzao6Eeq3pyNgr7384Q///at3dw5RDQC5SQ/Ji6moeGVT7s1CGm9O4/m6Pl1emZS1j8EXbX/1N3+trebr9fju0BsjhyZZXSjGZhwiud7IseNRrQIgI7LDELhv2XJBP4yWkjrH1BkxuK+P40/55bJcUkyPnx/fv70f0nRel2Mgkz4OY2UHZh6piwWfBKk0cejAqDSJzIYoAs57syYivYtZIUMHttSsDRBUFVqTdV2JzXkKxgS2Sda6HQ+jSEvj/PHDcxNaXy+Hca7bmsh17dCK1urYm3RUQEC1zRBRsVkVVWbAhgnRgVHXXip4AoVibQJfli1oe397M0iek4XjzfO+wM0YhwDkKIzP3FHKJgY+5C6qRoRm3aztZQWAuuXjm9tq6Ab/s2/eXJcnjrq06xSmFBx28w83HQiD7tvr3f184jFfy37Jqn1wiQwJXICx2WqyPz8/n/danU/TjWnIrdWNEX0rLqVgvjkShk1bV6nL3mC+fSxF81rWR0b5F//wz3/5y19t21LyRtwJayD+/NMHQj/E2HsFMAUptZohkmN2okBGde/GwN4N8/2m0BuPw2nPmktFsJRS68TBDcMkKgbUmtSqZA4RybwWinF4uZzneQaHl3XzjjiEbVuDUUCXS+lNo0cEFdVPT483h+PT0ydDRLJc9yDeg9b9qmodzHm4XpeqgmTGtLyWdXlaz0tiD+zMcNu2es0D+wZdBRB5q62bHR7eHu7eLtdiqOt1O4wDE+XrOk9T2Uq+lnE67GsfRusR1tL2dkHEdV0dCEk3MFrXzYD8NDXoj8v59m4ktH3bp2G8bquIMUcRc64aQIPWW/EJVSswT6dBC2MSpYLmcQ8sSfpiVjniEExFW87Ese7q0aKTrdMh+E4UQqIUhiGW0vJekRiIt9qaQe/SRHMtx9PNV3c/f/PV26LdObydh+TYM8Tg1vwhVP76dPz0/JLGWFjJ/DgMvoJkdcFtis0jIgLidS2/+/9c39zfwDEeb8efff0XS1n//ONPy1puLP3d3/764GE8zbWUTx+ef/zx1cH4/LqkNFAYztsZmb55+FkciRr3vq+XPfiUDNW4GYkCOMIOhyGt65qMvnn/7vLyumzrEPy1lNdtyahxPpj0iIxeb8N0OhxrgVGdmoG5fcsoHdQU+5DmBs3MAIvYTg67NGKtvWCHcRyZybpqtyEOtQuy98FAG1gTqSa11W0IU3AMBq0pEfciDdURJDpK+bSvEKcxzIfr9eW6b8cxxncP9fVz1cqciBGkmqgj7k1ybnene8KNyZlazY3QpRDQe2DL64oGPg1ACGYiVmpXspRGFColj6c5mFcFaJg4dnQMWHOufRuGIYzjsmUlF9MozQgp+YTSgw8iIsZMoEoGDokNHQQbcAQ1bR1aI9UwuVq/PPc+xfj48ZNzThEAoPTiggdjrQTEHdkOvpQegipuItl754Kpmkr/9PJyj7R1hGVV7uX8wgFfXx+vT0//8T/9X/fvvrq7u+tNem2esQEwcxd1bNFFbb2DelLEStoCGiFd6y5opn7dyTKwwf769OZhPMzJAwU/odG27S6GMIStttY6ALBzCtC0EmHTZtq6VEeM6Lz3IFwrgAIiP37+nIZpHEczqTV/UYiCMii2Vru0fSth8MAIDjz6cZoez9dmpfbi9+U4+9JLOo6nOf300w8Pd29r6+LldHtzzUtADCH12oOPJh0RBWzbFyNOfmawXvocxtEP+3a5OdxKRxPfjJrZdJhLNjDrWoOnvAm6MLiJWBFs3685L4/POYWYWnIY1r2ZYYwRNoiR37y575/O4Pybmwentp/X7fHp/m9+3XvNW44uAHJAX2qhEAyg9xaHBIwg5nzMeSeOvWsVEenMXhUYIOfs2bEfP/701EsjciEe9nyNjve8qmyeYJ6GdbtO8xERDZkpHg6Hda9VO5JPPqqKi0EUUIMCOsYvA6KSeHTWi2W1Lc8heVDP7iYk0UIRGzlDyOv+1WHWvv/qV78qrZCnoY+HY/DOAfJe8c8//N4soJFVY0QkJuBm3aAqNBf5Pt3s6xYTm8LxeDze3V4ua4yhnHOkVKzO0/jT03kexzGmilb3AsDzcLOsr/e3d4FdWRvTuC32+fPqh0NybZhP5ObXj49MI/rjeLhZWxN2XZckeR5vDh4fP39/f/O1Gq0v++2cfv7L39zfpV/88pvHy6enT09s+ld/9Yt1edn3BXGIcR7GuCyFGMfp4KIrpUmHXoWRok/aqndjkR7iqXUY031vABZalVJ25uhCRO8VOZddelcgMro5PWy5OBeAULECMrFvvXDwTaT26sfkBLo0h8Ae2cGXQLOCbPWqVqQpMC3X1xi9lNpLDcq95+k49HwhQpFeQdE0tKW1/ZSmKlSKZc1eNQ3jcn01YiXiYQhxvFwuCMGUp9Ow5VLXbmbzOG3bEjhMh9mxTym9PL2cbm/2dW3aDfVyubi+bSj4Znr/+PnjmHg6yVbO726H3D5Y56CDnnMAD85rETBpXaN3BIbAamZqjgiZNVTrMOi4LXuICUb17HqH5fWzEiIBBQvRiN1z7rvSzrpYAWXf2WesS3bOT4ZXZafJzH7x85913Pe9fPP+m+M4MqXeyvHm1KU9fn7cVXvJjnG28vS6eZ8en17SrmR83dfKPuKJkADFeYpjWvJujbeXxrtv+TrFeV/ZO9+Bup5fLtfr1h6+eo3zzetlvV71w+Nz0z6N881XPhcp3ZxLTW0+RJEV0dIYy1baVmkcbFQMnDa+O9wWyHvZzCnAtq2rj8MlV+1WenUhuFoShNJEiK4tp0SH25s0JQ7mfVJgHyaQ4si2dTVDAEJA6xpdUNXSm3cpTKlZu0qdh0NZS4xu364xDkTYuhgYAHwRiI58MtBcKkBnZDUlj4LI07Ber6WviSB2ldL0ut3dz2/ePyznz7XmMaCDlog3sc6kqrVufgw/nZ+MjRwmHKSiCTfNESCv+zhwcE5aRWU2Lg2ci0xRCwY3MbvLy0aMU5oFxDnOyyJG83zyYq2V2iCQJ6IA1lVMec8wuLmzmAURMGT2hNgMKmE34RhCa621SkSevXWx3gOMRlQzDtNNOq3jTSiNgJPsBYHUuggcD3ckVC/NHKUpAkJvRkSfnh4Bebw5nusuImXfDs4nfwhM67YKuf/bv/t/5Jw///CRiG7uHnKrfS9jGM99B+PWtm2/IOJxnAx9b0XROMT7w/hyfaVAZgVjH6OH3qTX7byywft3hxgtUAHFG55ab5JXcqTWRYN3E1TyGptqYg/WSajmFpgDqmhxtn/77qELqLkQ56cNUAh6QzU0msfR+wx8yWVNGNql3N0PzFxNTsf7vcXQrZZiQIiWd8U5tdYw4uk0PD79MA43qgRmzlzL3TsXIqNTwfr48nh3+9aFcS3Lr7/5dhxO2tVPQ6Bce2kqSckpOU9VdwM1gxjjEIJzVMvug5+m077v33x9DBxaa9pbIBvnCTmu+67i729v9g1++vgyTCMoANhwOL5cynEer8s+pBCjL6UGFxnYqvowQ7PSWgqx1trRwhCXWp0fsHjtgtLFevDxknPpG6LFGPetaFc0ktw9UOM4ACZzU5q8D9t1+fTDj/t65Wa3MZVWS9+wZ0BScSTo41x7qbUHJmuSAiO56NFha+oH9QrS9hr9HKep7Jcx9CnCHDgwfP3uAXk/zUHQpWE6TPPojx8fz3/88x9zwWsXf3e3140p9QZW9uANgUK4fXzeij+74CnEf/53f82Jt+Xct3p7c3our+F0U1JA6m9u5uDSmpE2NQVr2S6XX7771lYIh9hV2usWtWnNLvlTmsZ0/MMfnmb/znja4FBr/Pz88maNb4YU6eWQitSnn3/zligcDw+nw83DzST1Gjxpxx/+/MM4DDc3d8vSWqV5fiAK+1YeX/KQvI+Qc76uNcRpLyWlUVpf930Ypq0WNSp1v3n3zXSYt1ycp/k0hNJzuWgvzo17qUOaMbht25xzuSsSiiooOA5TTCxmpXQAta69OzFl024lF+0GRiJeWpHe99rzXoZh2Le17VsAp5KJFBG17GUpknNulVOIDi/nJ+rKiqQidUcf9+XamJdlCWn0bowxdgMtGr2ztveu69KOh5teRVT2PZvptS2OQ9Oml344HK6vj4Rq64agh9bd3okA136FVGykHXGztp7r7d1bZNjXdjre1KaGkJsSMhCRo7ztQ4hqHZlbbdgljkPv3VRi8ipdmuaym9l0GK7b6r1zfmiigkLBs2AAIsyMfo5HVOoMBhCnybfOPiCT1NZKcarXj8/fn//7cT61VpAAEc+XK3unvU/j+Nnpxx8//eyrn6/oxY3jEClk7aowKlhnWPc6h5iMgndSsgGy8h+/++H+7enb0y8Op/v3NJ4evt0fX4W8Hx72T+2Pf/7z09P68ParEA+etGP20e+IWvX8kr/+9m3peymbIixt3/diCHMcwLGAGWGK03gaP8r+dL5cry8xTEgIwMicolchBJyHqeUirX/34cMv48/nm1G6lr6lEBgdMo4p9C4hzK018oGZc94cpi/053FMedtVeq85+GE6jHkrjryhAWBMQ5YWfKh5c86RUyKHwCZABL3Ltm3LdW9VfZzACIG9G1M4yG5ry+PgYkyijR0iQvDuS+c4hGBi3WSaTsvL1cW47zWmI5MDUynWDQhYVHuTEKOh1bK0bgYpMDOiiiBpb6XUxgQhJNXqvO9ipZ1DGochNVl7V+ngMLCnUtQH5kBqAKSMDgylS6k7Mw9xMM+tijH1bo4HxWaGpTUiUsSX12tuME5EAujRe08iql0VzAwJ2k6ehipNDRHi4XA0xO/+9N+/fvcOKLBPNzc363Ke2f/mN7/pa3l5vjgcDvOhNdvP1SF3RLLAjkKaTvMtArdaQSjG03lZEUW4iRh06b0RKACi2H7d6XQ7D2NvpUtVFWZnqnnN4zgJdTFC7zatZgSAQPil/Ds6JwSIYtQ76xxHEbus1/lwo1bA9nFwGt26XrVj7VhbBm2JmVBBjENcrvu+VBAMGOfhlLwzdFKoYj8vL0D75I4fP35+uH+jJs/PqyMeQkwplZoDuLz3P3/4dDw8eJ+en16Px5t3794giYFu24WdhRQ8YldTNak1ECsYqMUham85ZwNFdiAGSMt2ZXSBXXC+S1XV2lY0YjRpPYUYnNNuRCANOsn5tY7jfDzcXpdzGmZrnQAdO4G2Xhf2zhGrCAJ45HzJjsHMnHdG1KtJs7rVwNOy74fD6acPPyBor1vwdLmswbFzcd3qND/sGY5v7qXT+Ob20ot9Mby5AMhNDMF1AVMiAmAHJqrmyEkVtY6kFCdCMHKG/ss0Rb1P4GBv0rrzPoYxHWZl7NiNlEPQyB9+/PTdD0/nUleDntzz9ioxtZa9j1OYvJXecpcyDRAOw/H29M//4a/fvj++PH/fqgQ/tRL8+KbzNJwGa3lfX2SrY5qf68ZVhmPaimsMxkzAbVtJBW168/YXv3v60cX0uPSsIWBUjTsCmyDby+VFFvvZ26lXcTCh9d77dbv65H98vE6jrwIv1+s8H+Z5Dj4C8zTfLMsGVg+HO9UO2EVE0TsfgNwwOFV1LnBwgcNeGzMRimo10zdvHz7+9EjknQvSlB0iBOe+uMMzItRek2M1U1UVqL0QkZmpSBdR64jYakWEnItnp6qqVVUu2+vxeNRaluV522hKcVvOWj2SXc+X6NhUAcx7j8HlvO1SgnO97a0WI1OEL+ZsIiZCM3x9fp0ORwoe0Zyjsl8JWBbbFIqoi46Ya8+Bg49ORIzs9fqaUmKk0ou17hCdEhNbY4mH0bzsraTjiTg+C4GAD+61lcgh7xuqIeI037bWDod523KpNo8TUzUzD9R6N2ki6hzWvBtZ8P58eWq9hGF0Luy91q6KhoZMfhwPZXMOBhFrJZPn62UtpWyyIRMajeis1e53dq5t+en58zSNzcynYa+Nwf306eU7WL569/U/Pj0CwGEYElExAINxCtu2demUPIewlx2xxpuJr5fb40NeczoeCtL9/fvpzVuxPjL8+P3v/9t3nx8/r9dKbj49ntdvv3mXt6t3CYjqvvVGG7cOWLRsvfphrI3TNCDyktthnK97DexCiB+++/jd9x/IwByFKV5eX2+nodVuyFYKU2oVS+4hMM/+S8TYBUZkJoegQKQgAJxb76JkTbUwITODqUjdXi+M5FGUmdj2uoqadlUEQ3BdCZ0YNLGuPYTEzKW0WqsZknPjOD799GJC3QyBCNw83V9eVzI3n25Nc+3mPJtZ3nboAmpiWo1QMfoRKjAFA4qj15a9CwxJpNW9MaEnBpJWNmASUyBA54FxIC/dqlRpewgOAFT2bVu64jCN3kGpK1HrvRM6x46s1bYij60XMOAQ1Uw7mIAjz2BSpRMQMaJ2VVX9In6T3lykddl6g8N8Z1shIiRc94wmhyGB9RTT6Tit69Wn2ykNebkg2ruH+1LKDx9++ur+4e5wKqGebk+X6zPHOKf03R//+Pr5+a//4Z98/P7j7WlSxdEnAFeLEcXcFocOjdZlTxxV6XJu6CZzCsiOO6MBKqIzMwDdand+nE43y+XcVUrvyYXrtpfc2TvwpKSm1rWrEiIzekQk8sYExkagAibWaotheLi72Wspe5+n0Fpbl1fHbi9FDMwMuqIBmPkhggtb3XszKVBbdnd3zrwYsh9Er0CYxpHYT97XWmteHY3ReVAqpbWmRG7bS8k+xng+7+zSz372s9aKNBmGyIwKZtK7NDPTLoSs3cyACAGgqYQ0qPbruu/7zp7meWqttyZs//9MQwcjz05aubs9qdCnz8+t9hSHL8Ll87nEN1OIRzBnoiIdSEHUVByHIcbWWi+NXNDc53kuVsl5ddpMeutkzrr5MErPztO2XJm11RIcg2JZ4ZAOkvt4A1JKVf3d73+rHtYm3VSKDGFA8tINHde9L8sSk+cQemum1moNhCmFVrVDb30n9ixiOUOn2zRFilTXm8MhuLhuWbzNaRTtUPaPPzzuF9q6vG55vr/78fGpxsAudW3Efq3iuib2IfiHh7nh+i/+6V988/7m8en7MXoBU4rP1+7SqIgiCsrDzc8CjH/8/R/+629///XXX7etiyMKMY2Dc65Bl0DXUp/XxZxfeyce3DT1ximNSdJ6fQkmADW3vjU3Jf9wfGP02oGb1df1RVo+5BQdM/nb2zdfPPG9CQKQGxxHg9BVtj07B3EYmlnrveRsZsdxJKKXlxcXw1Z3DrHU/Xicy7Yej8d962CAyKKwLmWaj0QdmYnIRFoVRPQhMTOYrOvaW2FG5/y2tS69tBpcjD6JiGq/XM5pcHf3h+fnz+VyOUzj9Xp9fHoG6K2rdItpHHxQ7XteXpbLOKZaK/SKQta6mdVaVPuer+jDtVbrMvDBiA+HqUrvvfWyr+t6e3sLpV+2azwdfQjmMPno2bWSU4iHw7hsOzAu+26E1YBTcsmrqlpj8FG7aade2awldA4dCgwpXpdlmNLT8+fDYVLee2uK3g20tzYeggTN2yrFHIISAHZkR566VQXw3hNir23bdwm+Cei+kbDjCE0ul3xh29Z6c3Pc1gUR9n3lIOwcalAkA8h59eyb1CZNCFqXy+WV/KCqfprekcO9etF5nEcfrRQnQN366+f7YTgeT9e8nZ9ephSDD9fr5f2dQy5D9Ke38/wwawKfwsunl2zNTQfL8Mcff+u9BxADeLl+armYiY+pVm3GQ6JrvWbNYxy9Gz4v59bLzemE5jjj5XFzh1s/hm/f/gyln5cXfX1dXp8OMQFAjAMz71tLMRCBj44dr/u273spxRvv+87Ho5m2HVAgpgDWHTMA1L34MDAjKY1haHmLRGXZY/CmQijG2HoBIgAqUHzwTYoLvm57ViUiESMCR05Ezk+fnx8fmRHQqVLea3JsiNN0IOldTKowc5U+D1MgltLuj1MvTQGwamu7qil0RcBaWmsppeFw7JK3bem9hxBEwAgNwYCchz1vQk5qOxx8r8iEvXdGmKepVMm5pjGhQxVgoBhirX2vW5c2JjZGVGfSzdiRBzRUGNKp9fKlPUkBai3MLFq1OCJQbYwu+SHw1LZ1ir5ai9H3WjQQYM9lKXVyzkGEta8YjZ3t26WsC+s2uanmSxMt1V2vr+MQW1/X5flf/eu//9f/7n/93/+3//3Tp5/imAxVvwSBmAdM1+s1OTbnyHDbm/2PcBmQEUGwWlEJAGptpZR3b+/U+2vZx5uDKDytWb2viMeHu73uDtGUVSQ6L2COKIbYexNVb9jUpAqhDT6WvVXoiGjdvqxeReRwuGlZq6O615oLdT/GUKW2qp9fntV4HOdae9nM2xf9oAlW5LBl98MP9Z/8k79alrWD9QLznL4Aznrv7JICb5sqRCLe9/z+/bs3b+57zSEMoq3UzOz3NQeP7osUiKCUFmLY9x0RVQwMW9em5mIKISg3Ri9SFcnF4EMgH/atxBhy6Yhwc3vcS/nw/UcidzgcrvkyDnMufUip1uqca6WatJi8D1h6bl0AqWkPGJwLvauoaW2C+qVNNwzp8nxxwe/7TkTRe2ndIfnAvXddMqLK9upauJ1u94wDAuQG3vVuzvvcm0nz5AFsnOPe1obSTY3NGAGcWu8ikS2igFdPINKmIyfnSIW7JmancEjzXlaH8aVVl6JHy9rn411Wmrcl9/bN7d1jqcv6OsTkvdS6p5R+/Ytvarv++PjjV/fzm9OpXNcvjAVKw8uWaUrosfVmIGXvJPrdf//D58+f/fxu/ObN58fvETGyG9OQtb7Uy8UWTD6fm/OBXdz2dgy3Pz7t1Npo04Djti8ghX0nQjC8Xlv02gHf/fLbOKe8LVOIKUZpvawVFTwzsS7LkuI8pNh7X9ddxHyIpWntJYTgHI8xtZpV9Xia91Ji9HttDzf3MQ7nyzqMB+dcqwaAIQQFM7NcrFYNKRIoIpbcnKfWlbV+qW56H9d1FZFhGMZxXJbtfD577wFsHlPJy8enzykQkn36/GMIDrCz07KXUtoQxnpewCkyOgQQxa5sHoo4cuNxyDkbYmAqtaB1Zuyw3xzvRLNJ71Jy6eM0bvvFQ0jjdJoHYi7SHx4eaq0YoXr88PyZjNrruSwVO7w53etFnG47OR5Sak3FJIX45eTXXe9GaRj3mv0YyGOcozm7rlckhmrex/lwfH5+vpkHFVnWZTxNrWYgLL3FIdZau2nO/TAkRJN90w5aBUVHDk2qw95wD+OoaE/lCU28c24KDIVNjezaNu/NO5Beel3uH46PLx/TNAP22jux69aTB6t5OiQm6201ENH9MMXffPWN672VmiWPyTF7UPzZu2+aPMdpaFXcSA9f3S29XK6X6WYeGZ8/XYqu77/9+cdPPzISObjk50M69A7gHAbdlsvNcDuexkjp8nQmim/ubw/pKKW20tbL9tVX754v6+t3f5xuxppbXutAIQZPSqQWk2P2Nth0SOM4nq+6rlffoZRCiPM8xehC8KWUYZh67Wrqo9v3HYzYuZwzpDSj11oCeg+oKHenm0/Pnw3sdHPcc1UFMRDtvWS1zgjes5khgEqX2nyCFFxtEBPtpXZRQDdMYb0ud6dRrFOvPlCMvksrpQ4+VBHoxlslhd7VO1dVkmNhXrdtTNibMOpyeTaQaRxUVUSYklqH1l10ZkgY1NAQulhpjcDGYdhzbWX3wxCAesFpGkrdGb80bsQRDjGIrKAOKBA41a6kYMKAm+YYY3TYmqBir5nCl1VVEGmmOIZ0Kcv502MEDkAdAQ2cJ0RrrTADsR2O43nfYvRFspqhl3QM0/ym1dqxz4c57683h+gY1uvldDdQ0uX69Jd/84s/fPdf3x3fAKGasnOtN0e8b8/LdfUQ2Uxku7l9cy2FidDEE5bSEMU551P0hCnRcY7L9SmE+dPn52Vd5sPgAwg01a7iCIiMqBOIoNiSX0JwTIDKDIzMJipVjzf35/P5cDo0W7c1hzRS57wVMJBmIuLIE6OIIXKcIkTrWfd9l4aRvcceyIGDDp0Y95zjzc1eahwG68VxEs0AoKboCLgb0Xl9yXUNLt3d3X7z9XtVba2VkgEgJj8Mg0n3CCrVpBmomTKiiPyPNxgMiOIwErlcS6/NkXch9daR4AvHTUxrb8BIzgLx27f3yFxKe3p9CYmv12up+y9+/nXtCNDJW+l70+I9izRDJfade/DgXci1seNeq2i1XgOTQTdq58sZjWrpDINhV5Rt3UopQOQ8v3t/j8H25cI0tnU5OM/AKeCyFiLG6KpmBNp1OcxDK7W1BoQCFAN5YwcyEG6vL5MLb45zSwS+EdHTyyX6k2M6juNhSPfffr24y+IKHQ/b9Xr37nayYdtebP349u4rt9chDhfS522re3v/1bd3x9OPP/304fOH+W6+Xuvv//T9u3enUsp8fxSmbkoqfe9fv313eTpft/27P/z5ww+XNCUe/bmW2mVyPIfgkJa85LYgtVqFDWSt8/GQS0WmX37zqybx6c+P3lsSW9bLcAdvH466XALHvC6/+Mu/uFxeQrx7/+6u5z04MMLSnYkq2eBimJ1zgUDEGpEh8jAMxsIdl+UipY7B+4D7sjBYCvHlujo3xTjVYtM077kN09TqjmjsrOYsVqNPXyZZdFxrRW9b2RBR8jLMIwFs+xpCUITz+QwA7IKoOjMAu54X0P725v7Tjz+KlIH9ejmXUkIIWvJpONZaWtnGMH2Rp7Wt3hyOKFrK3k3H6HPfmgiDWcsheO/dVnaftNRLlZ7SyA66tN7EHyYK7jgfeofZz7CpB8wtf/rx5fn5uVU9HG5R2IpdYGcldxgPap1Zat8YMcVk0AX6KFT3DVGDTxTSy3JGRxi9rnA43GxbVvCoagq16DQeAqlRj2N0adz2Jk0BMec9xUlFpXdo6HwY0CgAA25lNdLjbfzw/JMxh+C8cw5kX2qMAbvuUvbeMAUS0V6Zat3aaUSjMt5OQEHEVHVMAb1BN3T0tK9Nqo80HONFL1yK9rrpZunYG4BiE3X+dtk7GsbhsOWipF9YPz7OTPWXv/oNoPvDn78fUuo5M8HL8hrDJNq2lovm18tLWudqogk9G4+hS83rEpx3M/90+fT4/OQYnn/4eNn2GCM0CUBEAXvKVxAE8kMp7L0vO0V/Nw3FzEIIl/OLcwDY0zBsZSONBkrCpohIwzC01lIc6rYSYPAsaoJ0vq6lNGD48ukjYsxMxDmXFL3IF5qH77UxYBwGZt7Ltq7nve655HE6Xpct+uRY0NowHnTbtDcAJiJDKrWPLrDjkisAeHZIIqWCkXQKDp0D5/y+Xg+HA4DlWuZ5fnx8jMMxkDPRwHGvnUOwLuSwlDwMU3Cw5+wopmkQNdEeAxGKmXSw6/UcHPmApa6evKkIKAGbaDcFUDcEgF7KCgD7nlMcow+gjBDW65WIUojJeZA2Rtc7OMCBvGoHonXLwxCPx7DvOwNO8VS3YtgheUDfUYWhkJFmUecZe2vjMNBxOp9fzuvrhx9/90//2T9/8/52Wa7z4cbQt4oqZFbYQfRY8z4OPmbI9WoqptbBkmPVCqgM4AhSxLsJqS8eC3RmMs8WvYEsrcfkohqpQvShS2NiQBDoQlgBLG8IHFxi5qb1su1hnK57RYzscNt6ya3Wjihp8EyW1720iogUGXoFBnJBRGrtY4inm3E4xU9Pr6LkPZ+XT36sW52dIKOCtVrrNE3SVZHM+rZeHl8+kKsxHZjxdDqUfUWElJKqGtJ6vYBZN2UiF4OZOYRcS0ip987eIVPJIlKHafQuAqCKxeDXuoBalaaqaCYgIQ69l21fQprZ6fX5nMZookNKtebLy+u79w+tldJ3AzMzQY1DFNMmrYNlKabIITJzqzs2YbUhumW5IusXPcO5Sy1G6EwtpqmpdqgYubvQen93+7Bd67qX83L1kDzgwftVm4IZ29Z2DlG3ldUQjCi01hCQQT0Ctvbgx7fHmxs/CsJP67M4OMy3ZZdjoFqzY6htxRE7Ajp0fjjdp5fvPn364bs3x9GTmHfPex50HlXH+YjiPnz4vJUWhrel80ry2x8+w4jBo4IFFyeWf/zH387pdIKH3/3nP7++XM8XjXHY8vr1z7+huqLY/cOtjyFMw/7T08Px7vOnHxLL+vo4nm5Kuc6H47LtWV+fL7X5XLRbW3yQaQzb9XxwfrnmeX7z8addPR9vx88/lbvjSYuVvInWMcZ5TqCqIr1XRFOrSMJEJW+l5WEMpG0+jgSKptG7kjcRO8wncyOhH9Lxuu7Mft93ADCQ1nqXcjycjsf506dFrfSuznMIcbluZjZMIwAogAJctwUI4xABYFm3JlWrIaiogci25n3Pc/T7vg4cw8CtZpS+XV7m8RDmAZ1p6d77YUxS+75uJp085FYNSbUhgGdHSKXUlByh5pZdTNu2dMHT8QEJiuH98TYOc31dfRwvl0vX9uGHP4PaMYy76/t1F4XX1+vd6Q2aua1sHKADqhcRW4o55wj8apxOBxDNpUhuLjh2flsr+7CVpfW6r3UaQxh6l42MjFpI4/l8Xc/Xm9Pbvawicne62a+ZQBnJzHfFL4b2rM2f7hzt++fnaUzMXkqXrRPz5CN1BsUxmE+eSB3gdBNAK4DFIRjSZdt8ojGk4HwQMOvB+Z8enz27MB4xwFKrVnl3ODRGXTaPBB1N+/V67cKO8f7mVHaMDS3QNIyttcvltWndr+10d/PzX//mT3/4HjUa9eBi6U1aEYU0zk0Q1E1pUOusnDgN7ND3fVnCmJ6fXtzgXj7+eJim4CIaJY8gCigdLmLWzQLGJV+X7SOoPdw+lNKOQI48Oj/Ocdu2l+0lpFG0DWNQKTGQiLZSgGgvufcaPeda0YAZSyvpePSeQdGzoPXgAwCY6BBjrbXlnQQACAB67733dS/ndVu29f7hYbmsJr3LGgCm4HRbOpT7h9ut5VLrfDhqF+l9HEbNKL1z8styZeY97yHF6Idacyv1cDhqb1UqM1+v19Y6+8pMwTGDIHRHrrmOajXngKToRSQEdB7KkoNjaVs1ZkeGKE0MObmw7ruoxRhUATUzWBiSIjLD6+U1xhhjHMdYSmYKIt3MpO/dcPT++z//4XiInloT/TIKlG4uOgoBKRCH4AdEZlPQnlIS02YQ3ND6fphmb0ouiCgAlqqO3Xw8/ef/9N8m99CK+81f/v1/+D/+/XVbsyhxvDmcPn3caq3jYe59qb06R0vZOUQQATXyMQ5jrdkM1mVngyGdRPM0TS+v13WpaZzDkLTvKtpVmlgtJua6VB/AMbgQvty52QcEv9cKqowkPTcyAOqtr7mY2VqySfOeJJe8LSYQkq9qwE7U7k43y7UYknMOyfJ+9bMM0enutqWOwzvElKu9ezhuy2tvXVXZBTVRMwP89OmnZb1M4+Hx8advf/azwzS85D3n3czwf/yMHH0Cc7U1NRHp5N0XPDI5NoRa+hd6TBfb9zUmz/gleTkHj7Vm7xyY9V73vJqiQSeo9w9HBblcFq1atp3Qyp7XZd/bqizDNJDz6/k6+NBaYx9Pp6nWDgyoXWsDUTQgRFBDRDArpfQqqsrBtVyZuZkImGoHhk6a2X68vF5f8qWUauQ4dpUtN/lyWEEIblCB3jZGYsdMgNFZq71lFJ1TepiPSUC21zANpzjm3q5aAa3U0sdpLeeyBBqG27dvaTwi2Innp7aBHl2I13N2hzkO8Lot5rTYsi17lxqHCOCf14wew+Hwn373/S+/fbvXS+D6+z98+PTxdZ34w5/+/XVZqlQKwzSOPqOWnRhE5LVs94HPS/YuWTcpmG0d79OOBYbQbHnaLve3MI3Wgl2XV+L9kPD+zchOA0OV1uPaQR0Pj5efIrnAXXqZhuhjAOrorOauXYJ3oi3nfToe6l7Knp3jQOgRkg+gtq1Zug3DBOhyKcf57v7uTa0dgGJIy1bTOFwvr03ql2Xqy8tTrTVNY8+ZiF4vZ8eBiUuT3juqKWgzabl9cTERkSKUsqmqc6gKT+en4TDXuu7SctmHwW+tdwPnqLNer9cwRmO35xw47CWTJ/TOULe6m/RcC+KXlgZqszgPUjW4qB0QGQD3LKbueDrOx7uXdY/T6fG6//DT0/ny7By9nJ8VbBiGaZqg6S++eXcajz/+8IMTX78QAQ09eQ+c2Idaq7NQ9sZoLjpEQOdzFTNm8tJFRMYpEXS02vpWSiFgbeQ9B+W9ZB9TIM7bTgDMXJv2rkDRe29MRFAkKqKj2vbKRCQBxVKYqO4iHIdJMTuQMYwEltfLeLhpJecsHNggMqV9qwXbbMRiyDRQ7KqtQ5XWJc9h+vT4spRrJpIuAwdKacVyiIMDWq758fE1Hqbg/Ho9X68vU0rsIqB9+vy4bNcmlHwQ2ZoCIKTBbVVKVfY0pHk+jh8/fn5dlv3yeIrj7KNS2LMIuroXZ96Jc12bVvWdVNglIR986K10lRhj3XJy/uXz8zTy4+Pzsiw/+/bdhx/+cHN76yPUDkYNCVvdPZOBIipzUjSMsROgoWhHDqDWwUyNxXqX3oVZpHVG6k3JiEMsuaToA4/nl9eQ/On+7lL3MA6XddMuwXsndjtNEXEOYcW21r32FlO6rIv3fkzhZXk25cNxumxXIRsCRYpEvK7rOI7KQORMzboZovd+HFBZayseoVdgz112BWm9xUAmKtLIw76vrTUffK3ZOYeBq4qIHQ63BKhNgp9AFYDAGqEBo0GttQLxnI7MXHMOIbSyUwBHJL0OkbxPoH2aw/XlKQ287+3y+hyHOYW47fvo0jAd1606Xm+/+brUTJ4ERES7tMiejbA1ZF/31sTIuWEa67aaMps/P7/89re/zTkDkKoSkfNUtv1wOG17v5y3LVfwhM6T2Bf+SS2lNzSLIhJ8YMLk+Hh7l8viyBWl89bfn07XtfnAgrZv65zuOCCxd6QAe5feq4TowbC1RojOOUbU3iE5ke44mTQX2ECSuNYUicnURHtXDlGJQF3NOa15XfK+7/sm7hgPh3mI7uX1kXka43Hf8eVZYsinw6wCjON0iKakQCqqQM8vC4Ij9MeD+4tf/ur88vry8hKiJ4ZuQiBooALOeVNF8mCmYi6EfV9jjMi0l8rKX1LoMYTeLIxpW1bvfRfd9zLPY+sNEcmAAkfyueSuOCT//FK0IYXIiPuaX/3reBoExBAoeCFgH0tuPrro/PW6DiGSqaik6LVTznld9xDTuq7zeHran8ZxLHvuVkW41IrkvJhHvS7PX/3tL+aH+dPnl0bUgbJ3tYImZsTeKyowECn7IZlZ633dr+w9SJudm0Y3e+eUUHQaqfY1pcEBE5JGo1IF6XV5AvPLYrcFXdS//PZv5Kp5GefxV8tyoTBv3W9NM9UNTZDJE3trfW8Ib9++vbz8dHktRPj/+g9//vr9159/+q7WejrdCoS9ZxhnhVq6tnwdAQ5pXuvnAm14OGoILg2Xy7JvpfPQ4obHOZfSSboIBlgvn6m58TgzwXK5TvPkuKCDYstf/N23f/ruEZlP93fLsh2Pk4FjBz4O5Ex6Kd2FGIpg6VLKHiKbCRFGH4JzNRcwK3kj4xgGAeldRSuHgZnNrEklF3LrQNi7pmHqixDyumcGZA7n1+Xm5qaU4nk0M1Pcy+qcE1MR/cKsNbPL5SJdjRCZWitr2acUxeOuOUuBwQs0SWHbLuDRD+l5W8mREIl2Jc69d+0+IDCwGREX7cBkxtoNySFB4tkEYop7aWxQmo2H4+PT9dc3b3o34JAN/st3H16fnkXa+fVxPKSmcv/1+yGG5Hx0fBj8PP7MsRi2iP1AfjIlMjDp1AzdHiKKZmniwhz5kFJ8rZfRxdrLYZpEpLbds3c+ipXgsXQUiEOKUED2juCim8nLcrlcLxdP3gWHSAaYtwKukhp1izSXLA4pqIZOouzZRaamagBsYFWcBa0dkVMcHl9fkWMtgBhjTHtfA8Lr66NRzBb2vY/T2Gt9kStb9/4QlaRC5Tw4S8DEzcSJ6Ovj6y9+9Y3TJnnhXkZ0Zl2AYsCsm8Zs1IlN88YMRC6wIOu7r25Cik+vhdmZgBld9vbw1bd7XrbLM3lYHs/DMLyWCztwAdGRgWsqTWagCOalNXWAaN7FyLyt58N8W5b84x+/u707inRDNNPTcFKpQ/C1bmAkEsFMoTsXVFQQiT0ymTVVk6ZQFBk4sKGiZ2nSmogIY/c+isKyLnFIxrRu8vHT1loAtegH6qI9X17P4/2t5zQh51pR+3pdkVSk7IVicEDWZTcCUV22nQBvDkdQvSwFTXlryYchRgNZ9osPiBiW/fMURseKFqGMREg9EjcAEAHnXK5bb4jOk/dVcjJyxtZkP+9m6DgeplPOue4thMmz38vG4NBcyX0cxm1dfHCgNg2jSBPpiKiNupVaa+tgnrcuw/GYcy+lHG5uPVAuTapEb73ueV/I4XVdyEV0noHzucwpoEDHisym3IW32qpuc4jz8fZP3/3+x+8/wDCF4wyKIcR1b90ohmEc75eNwkR5r4mjA6SGaykU/aVuiBjjpIJi+/tfPSz75mM4lxIPU9x6lT7G47ZfHQ+n+VTWOoXRWnPWidCxE0QWV0VVzAViA2uNEU0nKYUTqapoq7W2KmauLNu2VY/HGFKt1UOLSU4nD1lH8ocwV966bdfyTHX2hK/XzrSENKz5XAXWmqYYJHfD2KpI1+iHDx8/vT5td/dv13UfvUWfzuvnw8Gzx9zPgExAyvGLG9EcEQdU6Nq6VkNTMBRiYIfUrSOiI4zOe8LqKOfsEZi5lMJMRhaA6t67YwBILDFSv3nYplKrQ4pK5Zy3eEpTOubrxTkX/JiFNIxKfD6fD87LnhHYpLthWK1WMhdGM+yFFLtzPue9a1eFLt2Ic6t7qQdH7+9OLz/8SCqSr0x1mPC6X1sH75IzShhQK5qi6Q5kYF3M0Ec3eE6uV4TA6K51ZR97GGxfY1uRXKRUrSkO510PxzBw5FL259WPQX5u2/b88Yf/AqriujQDczWAyY0f3K4A6tq6B0dDHMvjwuikhjVrHO5+98encRjmu7vzclEow5zAujWJMYgW9fpCT13PLnin4e7m5rq9nq/Pn3764ECqHwyRXQShmcdIF9fUMbIsHpoHvsfhnTt1q+KmeoGff/Pt5+cnzfnN6TSHdDcdIiJpeyqvPjCD9aZEbhxm771BtWplazd3t7XlkqvzMe8lxoHVu+i3vCtxV1EgcLRvmSOwDwiY6z6mKcZJVZk9qQTvA/J2zWK4bXsISVWUGH3osrXehmH8/PlzYBdDgtiua6mmPkWXoJUl16t3zkjztoQYnh5fwjCnlF7PZxdSJynLdjMcDCu0StCTH/Z9heBMxYNBF1YorapTF5xB2feOPm57NYGc6w/lT2E8LEs++HBZXj78+afz45kFvCM3pxTodLq9m4bWWjDzSOBJvTnWydPQyQx6iAFBpfdhmno71yoAltJs6LblKnZG7XXVUop18SlGTsyoSiGkJtXUECHvuzMOwUtTT27dVgp+vjlZt753Qi5SGNRk8qCE2urFBddr9S40FHKefaggNIRSsklDx+hc+eK8a82F0YdkBiKyrlvnS3N0deuQQiKXXxbb9WZIntWgNQNpkHP2xF2Ah2NrffD09qu7r75+ezyNW7lApdEfWWLO23m9PD4/sckYHSqWy3aIdHOcwVogFKS2nGf2gnDZYbtmRCxWhMt0m1R83to4g6cWguu9oaNd1KdY1aT0vNcUIiN4Acehte44gKJ0dRxv729qW0UtjmOXXKC1WoK3EBJ0l4bj5XJlVO9T6TsaDNMQmM7XbR5G57hoBzLRSkQA6L1XMA+szdcm2iWGOThq2lvZUQ0dEGFpO6GEhAyI3ra21raypxA48pc0U/cALApZiCQEP0zztm0GmHtfyu5xPB6O0uq2LymOl+tr08I8GhVH5hikla6NPSGZd1il9KbMjGgxODMjUDNDxeW8hDSkmHLeVAHZ7XkREURExNqlK0U/kJpa/ZKAdQT7vpoZojE7dphLaw3m6bRvtew1hdPrefduQI4v5+t0OyQWdGsYODgOyba1Ju8ouAb2RfmAzsSU2ZyD3ouBLa+LQd3K+XZ+4DT+8MPHmzc0HmdrNUtl8taEyGmrok3JGipYUZTaK5gCcOvF0JoULZKCMUqrHHwkgS13q4SBrZLT5BDaumMHCMpMtYHVpt5RDGsXBPIxSuu5rqTqPQtc2DMRMjOh66WUrajqXmQ6nPbrsp6fmBB68RAP832p12XZjuNYK9LIcZwoJd1r9AgEZq3W+vzp+RCjvz1OQyptiS4y+ZfX86cfHz15EYtheHj70NGLBQBEouhTac2YGBsZA2KV3hpZB1GQZvMw9t5LuTpHwB5MtIMo1t6raymNgYOI9IaIoqqO4uV8LqWGlOIQVbV1PR2PttblejYzDtZ63YYWaai7ca8pDqV1YgCjtXQcI8UZSdratGRpffQDALaqMUzn85kd1lpLy2FMUuq6LQI23tz4Ybxet6++en9It+X6cbm2vXIzAueaASCqKbNDUXaMrXrnAA0RqapHCuaicWvNdTHoDTKCmvbguUuBHnIPW69//uHl/Zub27sTQyIFW8/19ZGlgurd8fj54xN4r6WjVsXOHJyzOPqtbA2QEzPH3hszeXbZwHufc04pIbLU1psisok6psn7ycfni0bmX97d3qi03ltgOR1LKefLVVuLiClOrYgoGpiAcLeEjsNUd7kuK4zs0D1f86+++fld8Ot6Pd2MtubLy55SdMErRXShiEUXkPx1L4Awz8fl8kIxSnfaMLIPAQOFVgkj++TQ8eeXV0H99jA2bS46cljKbshg2CTXug1T8i7VPQNi7xXYQdcQAhHUWtUpmBBRKYUA9EsLCqA30ybTOK3rddsvgSDS2HODRtRDKRIwYO3EHXLpGYfExgiSzYSYTLRIccF1K865Wgs4kC7sac3LaX4gciF5IprG9PL49Pz8OJ1uqmyH+Lcfv//uh8dPP37+9M033zx++mnwcb4doJM/pIvs4/H4sqxe9PXaHh4eHIAhKXO95hefDsSMTo3EgyeKvWtt+OW6FhMn7wyYKRoQCLQmBEGFHTGwIy0M0GUPHrVnE2MXuxQj7GzQVSUHcNiqD8y6sqdjqr0sSgzORLPnsbWCBgoYCNB3YxOtap3cYGa5ZACyBr3pNI4huFoao7u5PVzPGza5jQlE3N5LyBQQHV/P1zenB6fQgas10qHXel0ef3P8ysXecxWQute2Yu/6pz//9Pvvv4MQnl/Pb27vDMrN+LO+tl6ByHeQX//FLxhpPowff/rJTB5fnm7f3z+V1xNPFkkMcr1a8HOKjv113zpSV86tO8YU4xScrKWXPAxDqX2rl9M8xBTO1/PN/SgqwzCUfWMgVjB0Uus8D9dld2ghJERFrdDrcZpQlQwOYSr7LoAujOypdjATNDMEAzUT8BHRpLWuULb9cDhoOzNIdNa1mWbnWXozIPS6bJfoRAUs6zAmNGFDNIPaCHCa0rbvLsXkY0jpfL0450ZOaGrSEHopF+/Z0dCrsgMEJ6KltK4wB9FuokVR2SER5H13zjmE3g3MGAMHX/bccxnnEQBa2xllnCY1LK1rszRMCK6WPfi4bpcQCRAdsZkBABoyMEBRpX2rLcMQjtdzDjzWauwJiM/n8xgV70Jkfvr4/ZubMbqbDlbqrmAcGMnl1lsrB+aSd9A+xJMKitB8OA5D+vGHj/dfvfu3//bf/u67P/Zam0M2/bLpUqtiItY5ubLu1mpib4ENJHpSAFE5zOnbr+9OxwG09Lp6xP38OahjzSyBWSUrM/uURGtTExRip8AtqyJ6H7oYO0ZzprL3yvzqMOVSHU8oene62Zx/fX0GgPPLM6hNU/TsGAfPbl1zGpmZP338pDxp7qWIryCdpRsGE6kppff3D29Ob6bRvZ4/+YSKEMPpz3/8sReYp7vrZZ1v5sPx5otyGBBbq633bt2hL21DisEPtTVFiUwIrL1oAVEDxeBHNA0E0tWpOopNFQBFVNV6VzMFUCbfgdjHIQwG2g2GaXQ4Xja5v7t5Ob+u12uMsWxWfLuZTzPF6/Uagttydp4Ph8Plch3CjNwUwBOBosew7nm57kievNvy1VDZu71srav3Xlp1HHvDcXpgdzxfdNnBx9t8vUKIZti7glMGMwA1cwDWUdS0WYzBWgcTRiQwY5rjPLFDFTD0zFMYfJUsx2E+du7r8mnbOvYXg0/f/sWvnMfS95hczyW/Pt+lce9Wmu1YPTE4bl26VB+IApxfX4+HQ/QsAq3sQ/TWpWsH8gG8NiHxbBai07qGZroVD/GbNw8skq+fD4fDgsVhLdjenobvP119GPf1epjv6nUruh8PM+YlDse1dnIeg3teL6fx/vb2/vPz5XAzvzlOrWxz4FZ3AXTRQyMkJ70XKQyooM5hky6MjLyWjKpmkmsdxiP5sO7LQGNTOd7euuE4HI/DYV7WAqDeM7DrzcwkjdF53nImx4pghLUUIlJV7yOBhpikNEZ2xLW2m5ub6/lCBL1J8L7tG4seXPSOtrIEP7a+EWLu2xBTbSvW7eSd91FlV0TtzcAMARzufSewaU611qa91hI4+Diwckh+rSIGRa5ai/S9bhekHqf53/+H/+fdw9vo9PYQHj/+1jk2aAZ8mO+2bVm15cdP13VL43S5LL/5zW9clbqfc0j+qzcP5Hjbti4CZEwRFFSRmQHYemdg5xyib0y596YN0VS7mXWVag1AA2JwHDxveRl8Ai1jckutuWZn5FhIhbADGpiWpUSmntt0vKldRQGqT4zWMXHIyyaI5jCXLtp8JEQE0uA9IzLBmDBGd0z3T09P3QCN4jwShW1doicxj+Km4XCIQZtT7UTmQer203yT1nX5+PlwenvAOHgNIVFfLk9Pl6+//vXbb371w6ePrf6utxwTLc+vbAkspsOhtnOcZhy01S0mlPN+Xs9v0tdiTGFsr2vg0YURCfYm27aO87Svi+06jdNa1trqa74kIk9Qu1HwA4c9n3kt4G+K7SFSswwop8MxrzUibxkqgxrvVQ3BTIagLsi2vzAyKMYYg0+991qrAxapIhJjcI5Fe64ZsK15F9U4HlUUrZ/Pn8mq64IiqhU71nUBszp47KrYUVGsK2PJVZoweO0yH05rboj+6fEcky979YxM3Hq+Xtcx+bJvp9NJVYFc7WJKKqEqEE/RIZgT6Spau3jvkckUGZAIeysAOnqvKimEmDyi7fuOyOOQtlJaVx/HNI2tybpnNJPeHSOBtdKYqdbqXBARIhtCNOWylON4dznn+/v7p+ez88FY857HcXCsvVBle7j7CpWWkl3w7Nk77r12a2CWQmx5VSuBUfbFmjoXgoufPn6mON6+f39eN1UtrTbHWpqjsPcmqN4zmKB8EUIBsiqIKX/JxbHj29PxZj5s19fT8WG9XkII5crzdLoZ3pD61hrpxcDAGhKKSe+dAb8gKlIIzHTZVyQqdefgKLrrT/39VzemVrMhRMZY82Y92v6IqkMcQW3vFUCN6uFwIE/P+VmCv1wub0/vToebaZief1qiO3a0Zb86wLq27//7H3/1V2+Acq8hS217vrzsgAFZQwjv378fI5b1Kj0zGaMqtDF6REA/lNzF2l7LF24egzpWUfGUKCSEIW/rkALooqYiaIBLX5t07z0Ym5rzPu9tPpz2fW29gOHaNmPn+p48FOjjCK2baF3XdRoCYlFes9SDOwwu9t5AuwMgbHkrjtj5uG+1Sa9Ntlq8h2rSxGoTxzwOh30v25ahgKDG++l6bbfvp3Uvn8/787Kyi2JORIgIDRCxlsLMauiHobUChMysotqaDyE4Hs1HMRQDQyAHxnnt+1L4IIhsxIxUGrS9OQLsqf/u06f/9+/adTUHwrDDviW/DeA3I+u9ZReSKLoYjNiF2EuO48hkrck4jkbGigqw77sPnELMOQez0kvgwWmHTcvWMA7hJr3WLFHH2QN0iJiutuhO8/y4vYATCshOTqe0tzIOQaRtLadDpMi118BuCGnfz4c49lyO9/divfc+pATWhuSZSEUYuvRWSjeMVXPvfZoGkViqEWHt6xzi9XyN03w955t4h264XjKHoeyVPZug96FsOyLWmps2ACGiNAzOkIm29UoAMca89dZ6SiH4cbm8gldVQ6QvsjJEG6Pbln25XBhQQXr/UpkzJAOs+7p5jp7+vzT92Y5t27auB5WsJq21nkTEyOaaa66dn8z28cFwJEAGyX4DJG7M0/AQmAuewOICgbhFXCMLhG1h9km99157rZmPMSKi95bUrJTCRWzuu5q61LpqL7X8///9+ddf7tM0hZwU/HbcnUwCCVMppZSaQyx7G4Dl2GOaFXCIEOG+7dj7vm0xhBzisa0ood1uvvd5u39aEgfuINSJQi/3248//dSHfX295WnZ25hpku73KS+Ark3Xl/16vWKwfd8rNlUFgGlKzKTmo2kzYN4O7YrEzPM8gykgujuovoHLhSfvnsIsTPUoEZOPntPCDjlOYtDvq8XQRldiVQE61RLacEREIjUFh9FxdEBhCinFAGLGAGpgHmNkZO9j27b77WXJqe4YOT6k0zrggIYx/PT89ZvzNY5QPo9TfDK2eYbnLz8JhA8f3708f0bG5+fjy/N2fngMAVwtzDnnyILffvz29vL87cPjy/PXiHyeHkyDa9x2XS7vXWMOly8v2+uXX7Hr+9M7vRtmWngmmd1v0QUAEXyar/tRczh1NWx4jYur1X7E8zmy7PuutcdgKUm1vvZd5t/sdX06XzrW7djYREQezo911JBmc+wGKefab12VnXLKAOCI6ooBR21JsqTcWwG0WlaOEBNvo0znGDkECGWEbT18eGTRYTEIKoPZ9XzKJMwUYkQ7gNCGd/OuwJQJo4NzmsYY4LAfLaXUWouC7CGmqRcLApBZ7ehdhyJJGormyWBMMRNC79WRgHEOV3dX1cgUghBqLxYim7ehg0G0dhJepqSO99ebU+SYxhis6u6MQAStrDEKIQC4IHdzBgTAXjoFQPOY47AysGIYu26AbVQHgqLqiEcLOQiH3H2WHIcN6BAA0CTHOFrpZZC7sICZmwUQkbC+bsyJMv3+j9//7b/720/ffOijo2J8I3G6Bo5PpzC2/vPXXy+XB42xHqXrQcbYuiB8+vDN+bIwAoVc6zHNuR4VbLSya6sNGjMDiWq/bzdJ0RiIiBDIQSIfbSdrQlS1HcehuxPjNb+3Tgja2o2ISuOu91LvddtjzOSshojmgo61+AZ68ihKOqjs9WsfH/fVTvP5h+9fTu+uMUbvdr9vpMf722zc5/wQaP7X/+rvUzyBy1Zu0yWdptjb0bRfTouDqXvrtY3D3SUvtXYAyjlyEK+1tw7gbGzsSNyHdbWJYhvmvaU4hRhMLUpw8zcTTaudVlcUvwABAABJREFUgxytOqgBglnMaVpyu405ijDsh6q1PD2WQ3/+8vz0lMMlQMDbtrJkRTR3FhijMEVzraqH9t7MXMlHOyqZTxzMSYth5KHUOzpGnqawnCFSVe29m1mvLeXkTYMjCxK4905mKUZkqr2DWc45JgFwHZXJyJy6qXUXlhhJggS0pjnPyAchMuVlelB1Zw+Jfvjx85efPjvy9PT4fL8pwFabnB+sHnU4xoiGACQhNG3W2jJN0QaMHmJMUXprJPzmXItzIMcxmo0y3E5LPJ1yrVtK8PBw4hQhn1pvxRxYlvPlS/2CkU5y+vnrEWUxxdGlFy1xqFIfhoh1jCmcCeP99T6H5tfzY7pu9/V8fuyEqC0zGaINq20XxiQpEI6hpiqgzjhySKdp3Tfm5AJahxov8xkwjN4ds2kwCH0zxKAD2zARBY8I3ltlThyZmVvp674t0/zx48d6HL22JElQ7q93szFPl9qOy/npdnsZQ8/TtJdXVfVuT+dHMzuO4+DaQYmhmRnSAEHg2j3P1zZGL5qXOU3QtSCOGKN3GG6jIlNKeVKoIS0OEufp+fnrlESC/PiHej0/quOUZ5qu9zJwH4tMjn346Kosod/1x9//YRwlp/S78+X5tl04w9bly+3ze6KHh/foEIhrKcwIAMAQQkBX8O7uTMgobyBJInFGNevayZwZ3SHxXEprRllSW/dTPrVyAIoPbhWEwratHeEyLSqZeDY65nfXX//wRc6n19eDWSSgkzmwkJTWJSbFpgbd1PuIOPfRcVgzcOsMaO4EvCl0pYTBOg3tGOXh4TLHlFR1azgCBri+f/juTx6enqfv//jHL7efFfDj+2//7C//o8fHb1JKfTtyDrW/fnh8vN1fErdPD/P2WfYRTtNlG7d6NAQywMfTn358vI6muI5EiZBToO3rxstDNCyj319+5eHgiEGOcgAEpvyGgYbSJQSJZEpFjTCaDRsGMbdev77s62ExLV9vO5hnCec5r0dj8DF6mgIZnVNYj9cgC7OmOWzliEzM4AjMPIU8wFw7iyeWYmhjqGuQ0Go/6pF4Ok3n5/tXpqw+AF2Hje59tMEsp9AAHTxKlkDOAxBjkhAyeSiljeZmKJEfH9+ptT7M3ZFZj52I7vd7zrIfJeWJgdXM0OM8Dd07GKOjjMC59BLl5O5lDDVtRZF0aCMN7gMMmjXAOIWptVK7h5hrG08PD9tetVVH6GMIwZSju4/WgBwR366/iERgbxTout/TNDdvX48vxQ/TflouxHDsr6c88+T5Ot23esbIrmMoIgpJbyMguUGUJCTCuq2rhIhEtZRa2/l0smGTS4WxxPlvfv750qc2fL5cM2LbN+14nfNn5n20120/LWcaY+w1AV6X9PgwE+PoNS/BAYnlp59/6EafPnyK09K7EhGLIPqwbqJNu4MBkJMPgdHVTQPG58+fGSinFDy2wnfr50t4ev/4yy8/tWb7vh21hOU61MvweZ56P5jt8nSq/YDRYbR37897uZ8fchs7MmAIMXurW1dLkgAozqdW+PHdx1b9y69f//CH7y/nd+O4A/YPT0+Pl1SN7y+1upfeiZniabQemOu+oTmoja69K7ZBEERkqFtToIMjAw0AQ47g0RHG6F0Hcei9T9OUplhrVfBAjBTr0ZABne6vN3J2jYgsMce8OAmH4EQSH28vX4PIPJ3UAYgddG/bvCQdVnvXf1hDYwiMU2jFv369kelMSQVuZQxnPi1HKUeGH26/fPfhQ73fjtf7OYZ3l/nltgdeKOAYQ5DVfArCRK5Ow1SVxbxUMZtYJgDqNXCYEkbSDkdvThQMDWPgPmMHboCKRx/dm4TY2hFOafU6GvSAbhiXazUGS04OFGOK1ZrhMO9EqG3rBkTUO8SYgHyvu8RAhNt+ixwicsqyHy/X6bxclvVehu+1rac8QTPRmMP5db+hYXW+nN/v9/Y+zKW4GYMJCTmFWus8zzlnjyjTpOrffPgt9uPzjz9+++mb83JdTufWGhjOKW2t5ZBv21eDMV1nAk+SOJ3afjcIgQR19LYCGtAUWMiotSZBTstDDHPKJ4fYu7ojIFIwM0tT0j6EjJjZzVUBIHA0g/V13baNEI/j68PDQ4yiisz89i9rZknm9b6DomAw5VJ1jAYIwxT5Df2AvbOEsxrsA1BkPl3cvfTShqpZEERkHZ5CXl/vBNyPpl1HGOdzVqZljtr767qGaTqqd4fHd488Tm3fc4wdDwXPkZbp1Js/37cY5by8h9Hrfny8nI+G5euzPD3+xXHUuEKv2+VyQRRDopAIDwYWCFOIYK3WiuQ5RBQWwgJaSqlHj8gS2M0Cx9178yFRWFwQqjvHVLWLSGTxHEybBlDEdT/ivDhw76M1neZkjimFo9wlLMARFYmRMBLjsEMVfKC4ADoB9aaOxsIc6AbVF9mA26jT9cJTKqCdoex1yolp2qxfk4iEbz79SU6Pv/+7P9Q68vRuOT9IVMOX4a9/+OOXia+O9t133yDp+TJdLqevn++KcijKaVLreVruvX+5rdendxKTxPj15y+X+SGQC6skVPbH3/zm9fnX2+0GfZymZTjknLe9oHmOYWhjJlRXVZEwzVMIYe/13Ydv8pT6gJwTJ27lKEMzqZETewgRyEavp/NDaTC0zvM8WlcfwHGYTXNux7HXCmiI+haFJAAEJpKuOueleOuld9ZhXlorpUSOiHK9fHTT+/25dWCB7laAszOLgA9E772PXkfvUxAiUFUzuJwfa9lUuyAh2pRP+46t1XmeDZBD6nWwsMToo7VSmSAIClMf1uqaUgri7hgCgzumxABDh4gEEiIaWt3fSnALUdrur6WN8/XSe2dEQhi1oIQxhlpzMzUYbYQQQggOZDYCI6EyaRZKyDGdoJP3PmOMiBGglhWB3Lv5YCYhEUJF1D5aLykFZwohI5opQQBHO59Po4/7/T6HtI7xj/7iL//sX/zT/+P//v/wm2+/lSloh8gCZkdvMgmEiE27k0AAtDDx9DDFMzua9d5HRYqjjLUcIUyc4loPbV1VAUiEco6OSAi1lwFjTrmUbo5grqCTxBwSAZtZWDxGeF1/5QLELgLGIDmQRRYYvZs1Fujayu7DRm+vx7pVxdaMMI7hnz4+/e3f/BAjS8h6tO0oNvq76/x823JKiPj3f//3aRIW8zC+++2nP/3dxy9f/yjTiQWaNkBuw7WqDcMQ0MOSFyKw0VQVidDJnJjJsfdekXBoW3cVDxLFrPdhQ4e2NsYQIZdoDNi99zrFkCTVUYVQzR2sW5U0nx4eME8//vxiGve1Etzen66C4g7aq+FoONx9dENyh2Zq7KPVpn2U0o5acg7WQPfRh7uakXXrzY4JZZmWGO3j4/LrD394/uX7svcgCXwQhNE6kwsxAGgfDjTFqRTXPnpriXxJKRIKcwjMYseovWuSQMzEUL2hmpkZKJMsKUFzrR6y9IivdeVpcsJgbOSlHmKS57wdxxDgyDqAkBIHqsMRc85dx9FrjLGXTihqIwkzkrsJUowBEEu3+97naZqWB8KgtbV6lN5CjKUqePzwcPm7L397DpnGeL3tp2W6nM5uwxEk+HwOBQGQU+ShJceQUtjr/hCl3G9dNYXwelQCAhEOE7MrwlZqrfXp6amSdy1uPWJIiG2okSKSum7bPs2Sr9f5NHWrtR2MjBCGKgcRRmE/9l2tJ5nr0YAQCAmMCITo4XpuranezWuMuG7HfnQiOOo+z3PbDmJHgK+fn5dlab1UPUrdem1MymghJLZMJKWX3isI3tsdAADAGEupDgQkjuaO2kcOJCxEFAn1qK0ccw6rtT/88fcfHr5FyK2OeDqXtTUdgGNeJJ5O1eu2bwj87t278/kcQljvrxyg7P3Du/fbOmQ0NqVlWfgEyBRyvB+7AmCn2l3dM4aAMtTM3UEDiw7vOghjQIoUycl0IHqaYuub4R5lDN2IoYzaqYcMQ3eW0fpRlSgFHErjSPN0ykag3dwxIY0UubXNBgqk/b6JQJoi2yC00SqYI8CSkmSAN7CVtpRgs4FRY56HdXE5X08/7Dc6++HtOO7ny8OX5z9GuMFw4mUOEjD+xZ/+WcpU+su/+jf/r7qvGeI3T38FxFwDIj59+ubrvdCvX52JfGl6YIwV6dD2+6+f/+Pffajh2MY+sO39tbtDcA88f/z4etSW8vQYofX99hqEQJChxRCYcYxGQImDAhAzC9ayU+Dnz59P1+/QwWys222Zpij0BgToNkYr8zwb2+1YwxSDrWO0YSaBQ2bteqybu0uKROBaEb2WJiiIQoCtlAgQGCFya8cYZSv383UZK9ZSy9oYHI0pRgISFsC41mJ7C2RTDomEyTmQkrXWRrcost7uyzQxxV6LTLE3naYZMW/lVruelmQGMHAfzcHMCJxaK0qdkYfvtZUxjIiyLDqMmdx1muYxRu8dwIiggwFyiJkdzTtYB1fTzsw+AJGsj8hyWHN3Vyei3ru7j9ryFKJENwtDT5h2aFCJgVQpxPkpnvEYiHo6RYHax4ghgbW9KgHHKamhgWlTbcMdQxBANRt1HG55H0Uc3//mU9H+L//n/+l/83/7v5feuvfWmjk6h703CNhGD8Tj6EjAKRc7frl/To8x52zQXQeodkMDBfbn9XXJEwRABPaJCRH5dnuJM8eYVfveKjsSAACS+vl8OdZNtc/zDKB9jPt9u91eHt9/cJPT8m6M9f7leZmmlNmhdVV1HxZIpuD7+XzZP28BT1mexPOXn2+fHn7z85dnN/bBzCCRlPR+f6Ve66it7ZLn+/71FMO7pzkGL+st2iAO67ZO50citgGJAqpHueDw2jdDJTY3Mx8A3GtjDmZGlIS81WqipEREFHiKUykFgYf2tjeMEpBHGetW4rIEmUi79u4hlL6CD8MUcnI0YjuOQ4hP8dJ6WcyH7o7KKTIhjI5srB1N2b1r7eBV7HBcX+5wjKDIb4ExHeiDrZ5wnmBkss9fflj3F8k8q6yH1d6CAAAMtxymbbs7Qk5zGzbcAhIJoysiNm1gqhoOVzBzJCKpe6VAAxFIlMET1VKj9hDBgiuWl5VMZIChe2J0c7eRw3xYATp0KFDsvZEwKJJHjNBGV3cSPkbhLLUXftOlyVupxUZe5GitdpUw5Xx9fP87DpOzZQi9VAfvaL85vf/h+z8sp7gfh0z0lPNpPhFAq/yQF/eucMR48gCtb+IUwtNymrLgMqfnX76eTheJYevtIU+qAxmGDQKI57hpufeiKSIY+2jaAGT0LsE5QS19OZ/UofaSprgd91rHMs0CrqMfrZvZ5XROmRCgtpWAWMJQXZaptYbIprrv++U6rfc7sjgMYmVmZihlI1SH1ka7Ps1fv35RG2oHBZM23KuNBqACcYyOPhx359xrQwxjDAnh8vAUBV7vd7bmFZIEGypJwHUK0rY1ZrA6yvqaAjXrAAwiDXS7f47uD8t5QmxbiUxCQQfst7WZna5y9CJT/O79R9ZU1y8y8lrG/vuf6++++R0UbUW9DyKMmRyHWd9HRyZPzMCIrMyj9Xm6lFIcUEHdO7FXHertknQca0pxe9lNImTmLrPwtr4gI088oAYeMjZK06j9uszH/RaAkNyhJoYmwawg9JhgWL8fxRFyzjnRGMPVetvdNWVxLUTK6/M7yWBKYNcPn2JOTXfev7a0gyQJIdAzdr9/pjlw2W/d4p/95XcPDzZJ+eNPvxxf3HreUV7Nnp4u+6vGOdyPdjjgcv56K9CD9SxGIee9HH9of5eXoGQCen5c7i+vLrjuv+zl8Zvf/flath+f/w5qid3TLFM+H+uWYuqjvb7cfvPpm/vLK2eLIStArc2BAsjL/RW2euYoaqfl4b7eeJp6rynMSIwShQgT7kcFzwgTmgk6Io5qrWmM8xiDmcEbExGhiMxh6bX20iIGOwYwXU7XbS0/ff5y32tI6ag9YFRFYjoty1FeMAsZhJy1IUt228HJFOfp+vzy5eX+/M033zzvn2206/liNtZtXaZ8rweSYzMJ1MyN+OjdGDsOchgDp5SHN1PK6GAURFqrEqi1o3VCx7dAEQobmMvblAlhuIEHDmYdIUjgfV8RMQUarceYVLW2PoYRAwcxM+9ODtptsCGSIygGD9xMwXsQdkpg8vylfPz0BEa9Yis959APBQ9E2bCVdiAjIpJM8FZtj+TDmeZSR2sHqliIf/j3f3i/PHz97//2P/1f/Gf/l//r//mCDAOrjkbmSNKH1T6qiyRWch0OVjv9+OX+6WM6x9TWcTpd/ahCfHk8GbRDVRzdIcVgVdog6KwMhILmUItmyW/ovqExZvOOZIA8ei2153ROH5/MoPbqo5ENCdrrcY6PrTZAzYmwtymE5zL2e+91LCnU9fXy7XuOwRzvX28Q98bAIszcmyuE1y97duL4wIEO3KbrDLH/8uXnOM97XzPPxF62z0mmgIjABuBuJiIUe+lubz1IcVQLIal2hKH9reWawWkv5Zd9+3C6CELvXXI8XE0hDaJSyzAKsbcxZQR2157ErcPoJWff7vd3Z+nqzy+1kvxav84TGRJHIgNhAdPWjiTMJiS5glbB2nttDfqY59OAUl/WURumJMR41OSxdbzm6+P8rpF24df7tu7M4RJyqKV070HCbhWnzIDNtDuFeK69neLEvY0+JE8E7mbNicIpCHRw7JA5Yq0wOSI6DZ5p24p3vywPAXOt6zCGkaZIr8+/fPr4jhoUqr2PELx6c6A5JnEyI46REI/RkGk4OprZSDEh+Fa2jh4xxBhh9HOeI6tRjbIzriITaj+0LSn98MvnebmC+r4eDw+XGOPry/3jp2/cYd/KtGTMtB83UVhiPIYKJ2ZyGDlHaA3cphxGqynESeF2vJgPAnVw8IiyQIRGmWkafQNsALuOFbFFEUEuMJzDfrTz9ZKWOFCW5XR7PuJkInzUluZ5q5WNgsgsYgxdVRWxufBcy6Gqy/m0ba9DWZuKRCAqRyESdBAJugH5yFNIMQxNQ6nriyxDm3XAomZ9ICILQ4NkByBTjBJ5W7+iSpT5QmfvcfPVJwDjrY8Up32U0/s5L/nn73+ABu9OT41CNU85lmNrXRNh30t+XEBJj16O/VBNp3P1djwXzinkZa0Kfe24ylhv4mi2PW8/PV4eETGfBdy9mgOJiLkb8hiGMWgf1ganfBxHznm0br0jmYGnEMCHj0GKJBGwxzw1QgCFgQAy5ylAut1flyT5/SnEaS92Xahe4eW1IOJpud632+WEOiCmaQzbioVpAsJSCiEtc0gh2FBylgBGCcA+zn/6+nxD54fr415XHds8y5999zDhe2CnGNb9fqx6ijSF8PDhYXj43e++ef38fH8ePu4f52id6q6yejzjr/eflw/Lbf/a6vbukpcQ0yOqWpRgXl+27cO3H739OjogeBJ5+O13IYXBo7f7j9//dZrsL//kW1/3DIFIWrdxOcfEbdQQ31/PF/P3c8q1dgNw4JCiNZiXv3h6ekQY3gdgmGIKxIY5Sdr3PQR2xKE9MmvbHZo7lDau18cQAsDhejC6KZq3LGhmRGIGTKF5d9Oc07ButYP5u6enbV3XdYMhwM7MpRxMEiXUo21rOZ1pDJJAPrxZu63l22/nGCMC91qmOeUQt+0emacpIaKbEaIPU7VE0R0BkJmT8xieQKQ7ohGzoAFi7UAYgiQd4iYISDQAvPfCwqauqohCRORUa7ehSGaAISV3q7USYK0156Ru3nsr7Y0894agQ0QAB6BaIMSlloFR9n1oQjQG5oFQjJiSar/vnRla8xQjEbXaHYwIVdX9WOazautjGBBziHlhwRxdVe/37e9//8cYRYRJYu2ODJfz5etthdav0xIvyx+//7X1QVGGGlAwkFFJi1MIIcTW6k8//aCqgmRoZr20/rCctY0Up/t9TVkUB5qheggxWLp9fkG0EIJWJWBH3GuBRmbMRO7qblPiXWtvK3k6zansx2gwnTNi6bq+vO69M3MIxCh0HOt6f+napvMpnMLL/Yink1PY6/Ch8xLW0QcBj4AbMmWWKU7n9fVXIgyUcsgurqrunSmAaa3d1UtxoYCIIeQQwu11Iwk6ukjqzaralGMbY9QWQ3y4oqsCogQCgForER1DRxnCHEQ40H7cUmQE29YbDJQgWss4yun8+HKv757mdWsvL1XCNYwQBRgI2mDVxTCHZa0HNCUAL2DVxIJ228vRjzrFnLJ8/vqiiAae5uWULvsxjqK3fTteO1MmwjGs9M4sMQkBGuBbWrm2ioKK7ji2UmdwIyqlCXhDdfdgvGAc5om49i4S1Kq6l6aMpObLsrwe6xKQ43z/fI9TZPQYTjqIadrWVd1YJnJimgiYAAKjA4FrjLGN7g4O7o619hhlmZ7AhtYSc5DAjw/n9f752Le//O5PHk6P4LJtt9pNRK7zgw0Yrf3u298e7dhLfXz3cL6e9rUE5hSmrR6OgU+5OLShYPpP/4P/0OtxrGvOqWujxMyha5lPJ650NEs5Otq6bVEHN2UdIo2GphBqDzjgPD+02hDIFFgYAVJckAJBqEW1jcbDCOc0IQVDH0OPbX14eGDEMQwQ1GDdbm9GpVaHcBJO27Ztaw0hjG7zktfbvegIHMYYv/xyA3Mwb610bdY7EUic2FNzF+Jet4jBdbCbaG2lnzCJUQ65lKK9GODoDAAAHgOHaT4U11/vOuS6XH7/hx+aW5hPE+Xauqnm5RqS3Gtto7ZSWxsDsO2bEUxxZhBoJopTnHFpcp2mrZWqWvVocrbascL1fOlqTORIhhjyvN1XMJiXcylH7Q2QDLyPmgljkFGbmwYkNw7pzM6O4hSGe5pzWevp9J4A0dvHh2lbXx4eHmNYTgu9Cnz7zfvb2m7r/end/Hz/jFRSPMd0+uHHX1JBA3Pyd++uQnReTgz89HAd2kIKr6/PCvrxdD5e74/5vEzzH3/8oYnJOT3v+s/e//nn56/xnJq9G+opxHG4IAPFun9hOO6vv757On9zur5+LvP1/ajA8iJ8EyRgfHcJ78+BCeaQ2mGn5QxUtz2HOd53+/77r6eHpW11SuEv/urPi9dG9bD96bo4fsxPcJ5yh9FNRSBlqb0AWK11macY4/1+DynmNA3zaEvOsbdSyiE5MP+DpUj17WjzGAKiwtAg5OSSzut9yzxtt32eZ2FpXpHU3H30Zh45MMkYBsNTnsTa6I2FTDuov3z52lqbljw66VstNjMiErH26uZaGgDfbvv1nB+v19Vu1ocgPb6/1lr3vZsgB45BmLmUHQiRRETIgd/2wOZmww1xGKNrrUSDo/c+mJk47XtRM4REkNz6Wxcexygsbag7jq7obw8V58pB+jAhcIdSDkZ5O6lDjDkkeyMkA5pZKUV99O7oRCrB0763dashX+Nyev7ymkPMGTx4aUeMNs0Xd0wpunlrhRkZyVRTiIhYjtURU4q1D9XezFo1a703/e67bx30v/1v/5uX169/8Vd/1UZv5l+/PLszDdNxPD/fyWyWDJHK4W04A8HwXcaJnDkOHWZ2PS8xSek1CTrJtr8GuBS9hUjmtRwFNTG4axPXk6T5NA3TW6mqvrUecjjnk+6rapcUoPehvZYbC8BoiF1VT/OTKbSjxCU5ysv99X6vRHxs+2+/+2ZOuUN8eb65ECVsrXk3RAShWy2dCRFpaAQSwk8ff/OyHgbijuPwe6+ILjGoKpEKxhgWAqy1d1Qi6q1KtNJqQG+tJUyltGWae/M5zqVu4Orjbg5jUEqp24hsyGTDiQaoWwmogQBLHQ/Lw/7yy7unMzrtpT5O1+fn23m+1nYA2jIt67ozLxIndb/d7ycR6K0cLznNhIIOD1PcINzX1UsNlD3C0Y8ItpzSfvTAaXSljoAp5DMd1lbQSmMgSyBEQnbQod2GEpGIxBibVeIojFhckBkBAaaY5iCqvfcGAI5UzUSCi/joarbXcb5eAtE+RnebhNq94IBMITomSWMbHNMJlxK1y3QUQA0A0EcToTYKgE2nZe/DhksMkmI79mHK3gGGh/7Lyy8P17SXEagv1+n9w/tj25fTJDGfQ1jXNWN09MF8K/1+3zCFy9OHEDPhmNLMTnPMxPG57aN2Gf7n3/52iXnUgyTEICDYdDBRa92KBosBYZqm+3bLUxy1LxxdDbS1vXJayCWludU2HFOMwAORY8p5vtZie93BKMcJAIjYkcvRAGhZ5sKlDc1vpRrDQpS8zCLy/PzF+jCtRPTW+zuGs2ArFRFYqNUj55gyvXx9ZZJlOrUOt/YMTkcZc8qtVUAOLDks2/4cCKL2FJhwKm1YHz56844ym6kEBjAVKbXG+bSkqxX5/d9+X5o/fXh3P8rP3/+4LMsUw31bKZ2NSEPq3Z6PlZk/PT116/t6IJb316dLnoPjIJHWhoPU0acwu4dj7xljv2MUMKCmOjiYWjOz3mKMQOSK0zK7DiKKTEmC96amIqQKaZra0ablZClFsG03ovTw9LS/3omTBGyHBT4dx12SPHzk2/3fhhP+7pvl+fWXD7+Zu+V5Wn7442eHNi+hj3LUFXxcluunDycbCnAQdYB+vkopY6N2+nTVar+un6/fXD1wgf444Y7NIne3GHJIm+mPYbpqYxYmOT4+xvgqMeq+3dM1nZYQs2+1TAiAgywFYMCSxIcfIUmpBR2yRByOx/rNJX759Qu1IaRw3D48XtY+HperooUlTcBR+HUrMQUiAseYTswwz9Z7LaW8f/++tl5KW84nHjpsexPtEaHUFTl0NaYY85RSavUAa8w8eh+jvbzcluUkOUQjAqzlOJ9P+7EFtkHaWot5kZgR6b6/xCTqgyOP0WrV2+shKZ4vFyeDKNataXNUd3fVGAKzIAIZPJ7Pnz4+1GMlhIfr+eXW1vuLxBCiuGsITCKONi1zIay1BmAhYhYmBrBt28jd1IeC65gXcca17I4wJyECZjIz88FEzKGP4e5jGIKEEBml7nWoceCcMwCoei17jMKM7hZjDhJLKaMpMyNS2ataFxGOQiBalUG32/N3n74d9tyAvCuBMXehjsYhBNHGg4zPwxphIAYzIwcWbL0QBpEAAL13RgeRXuq85F/uz6dpzkm0V+bxX/xv/tf//V//dfm6DmVGGQpgDtovp5m438reO1U3h4SYvEO5jyO25STrvqqqSEQH0PF8u7HZMs/gY+iY53mYBvcgFhzdkEgpyG29fXm9KwVJp6rRNE0eYjgrjN7q/V4YWHt2dSGJLAP20eFohwuGKRoGDrSc8+31MLN5Wj7/+owhni/vt/WFGK13RjcdLFmHElOveAri+/oXf/W7d5fly+0ZBgtHim+oDUhyIoJSSuk9BjnNEd68emZdx7DOAbs1hXE0jVnUGgMeqkRW+kHYCFiYj20/Pz3otkWRomXJk6lqV9c++nDir19vp/yATvtWGFIvXTz4MAGcU1zvh4LugYe2Tx8+aNhXGMhmvSASA/Vu5thqRdMAUHsdVptVoDHlVLZqMMYbTFjo9Th6c6smmAkGGOaUxhj2tuaJamaMyBTUCtkQQkcjUDCMEoIQmiYJgWmvOwkCUYUxSokdY57Sw3UdlUn2clwvpza61v3xlOYcrNVWShRJkpTA2jZsaFcEJwYmF2EF27Z7XhKL2VA1Q2NFBXdhikFax7zEd++v2uvllKGVtm9/9uffcZD9dVuWidHrsT6enjYdBHi+XDt5M1skXi4P0fHr5y8RYDqf2OK+7797/HSNad/u3luMYd/3nOPD+VLL3ntFdLcmMdS61VFjjDnNBNR8YA/zNJd2nC+nps1sRJF2FESvrUmaU5zckBCZeIqJBdZSKHKOcXQ7jkM4uvu+78i07lsCQ0QzG2PkGLV3ZlZB89FaBfM2akrBxgDsiu6jE9HotfcOwCFmACC0NOW61yBMrq7tHGLX1lqjGNScEdrRCCDlU3cyVEU01SnOtZbplO8/fNXuIU/5lLZSazui0HF/OZ1OaYm7VgnJkc/vPymIDv/++x9PlyVKOC0nAS5bicv84cMHmcPivU5pLkfd5EgxzpQRMMZY+nBCDrTXfZoyI/Xeeu/TMgM4gCG6qipDjHGgojlSMIVmyim20epoy+nxnE/7652julkpY54vptwdksTLw6la6zquT5fX/fl0zc93ve0b5+hrnXKcSC4Wz5eZUJeFR1XtQ0nVR85RDXSmX29fr9M5plM3bzokTVq0zPDw8WNvuzhKintHIiNlHzVkrtApJ8pzzG7AP9x+jdLPl1MCDIg0aEqTmrd2i6cUKL4+r97s6frx9evr4+nh+cvL48N5u60PD8v99utvvn1ADgOpOeakPIagpOiY3NG6GiBHjrU1RJyW2d3BLQS20c0N3AiBJYyuFIRjDMBj+HjrxbFOQORgqvN0cbzFhLXegyR3BOz77qqGjkEWoUmdX14PAhyuAgSCR9lrre5YRnMgiamU3UAVRyA0Uwoy5Sw8iMCHjm7Xy7Ktn6ccp4fTvr649RAE0NMc3J05RJZem6PUUcE5xInUzewfRFnmJNHGW4tEJAS1IWExAEBD8qF7710tTmkOIQmSW69lGCA4kHAICQBySjr2WqvE0K25eQzSunfVbX0RiSEEBHB3YWQJzLiPHTSKY623eb70n4++1UFg3AQVrQD00X0+vR8FvIFFdUfHZu6A1ruRQe+dvOU3apSEYd11MELrhYSGK4ABjH/5L/8nH99/CCTr67o8fjrWdT9KYgk5iPjEsQs+v7wAZ0BiJ1PYt7Hn9ng9md1aG9M0laPtpeQ4ofk8XY6tstC6Pac8MUJv1dzQHIR8DCc6P5xf7/V+uylSEBlyd9ejb7W33nWeL4mm0U3LcXRLlzxnGq934AU4dWvpNI+1uuDwUVv58OnTz1+/RJ1aGb1oCkxklKn1jQwBIhJqK5+u8bpI3296HEzi1uroyMKS1VBVu5q6Mve9HgbGgXVYCHTUSknc9XV/WaZkSNZ6YBpjsEDKzC3p8GHeqmo1b24wrI3yVmqomoP0UdKcpiVoub/cgUCQuWh99/7xx6+fkVDE0oLtGG2/t0PnBO6jaAuBEVqn0ocTkXDS172tR6AQOL72IwVhwa2sjUb1fnp8wEyyhPk6axlbOXo3ADQbpOyjgw8kZGIDdMNuPZKQ+hiDrAEyISBR2e9H4IlCDnFUBcO3Wm4HovlCU/RE+9r3+8spxTZaFgoLln3fxsgpgrsSFdaXWkI61dGnGY0VUNHNiSnQfM5ODVElIDK20ZDdQAFCHwYeSqWj0G/ef3z98tMSJU/BvK+313dPlzF6DERZtv0ZOaWJSjV377XwA1jtMWX1dZnPIdKSLzeCa2KwTsh8nnup83wKQDRgDku8ZiRfy1FGD0IhhKGKwTil7bgnEfeBOVYwQ3C0lNOxrSLSRz8veTpljxwQoFst27zk3moUZskocNt3CyYi8zwDoZrlZT6Ow2yc5qx9IDIAjdZtaApJdaSU3P2+bg4uiK+3Ncfk1v6h6L7YGENE1vXeR5knKesmjCExtJBC7KZOag5mIBJr9+49ThJj1E5TykSw3X4VEQacz/PX11t3z+cshLsWYd3L6/L+UaHN8+Mf//DzLz/+/Ond+5yzq21lnfNSreaYwjLp6DJRJhEcB4Z4mdJxbB5xvd8Br03NObp188EkaBpEdHivZT4thkQpYNeuTmBVmyvMaS6jmwgJsHkGhLH33jE1YCVwHkiGqPh4/sSUXj73y/JP72v5+nN7OP0jHap+e7mtWc4hZkTq5WAerjYtUXtptVyWE0AcqE0HIw3Qj998wO59L8LpMs8OxCeOMQqxgzGRDxa6QhREI3VwDPSwDRaLTmNvxSLz/PF2FEJmCDmE0TpReLz89m6fj33LQSRj6/fTOYwqSebSW3V8rYXJtnakKR7HJjERdXJHstOJih9pmY/aqntVpYCjdfZxFBURRkfrtfv1fBYRdBi9mJm2xiEREQnWUkdrgUUwcAi9d2JV22OCMW4pTUh+37ZpWqY8H7WwJFMy7ICe5ql7Na0umON8v+239f56O2LM7m+4vCEpVtPSDqTR6xaE5hjXdfv1y9+fl/h0OU/5nKe4t+ImY1jAaAZWmjtq1xwyEZKjF229pyBk6KoBxIaaWeAowsdxtNokBB21alPtxMjCImA2xjByQrAggSSDExowitqoR0HqY7TllJHkqEVicgoOnpe5HeVoPYjkIM6u2ocawEAOxJxjmmI69ruNKilwllqdBQAg5cUskiQM16ElRB6ju2mMQdXUlIiWiVrbWsNlOfejOWJM6fOvX1OclymxQ0jphz9+//PPv6z3EsOipV1P5xCnWg8O9OvXLyBR0pkwMgVzdDMnKL3fd39Zt89fv8Y8q7v5CCHklH3Yr7+8nJZJtZPgGEPVzftbLF+V3lRSGKrtYLPzaWFsTns3nc/pFC6t4Xqvz6+vrdkUuyp6L7MDCICn2tp0jWXFP/78AwGDhOu7p2rt4f31tq6Xyyf0e62FYGhrTYcOCsw5ORu9++3H6bT8+NNPl4en2pskOT+cVB2cVLvDIO7O6tyMOiK9fc1puppiqT2kKZ2ABcF6jlKPY76c3L2PziQg1nQo8+eX13lKQJJSKjre2p8G43I5325fj+I5Z1nC6+v2uOTT6eHn2y/TJWaWrlBG+vxzrUfJKbT1/vTu4k5xyr2EVnvfB2MUGG4MLq7oQ4OFanY/mrNsMDxxT+HWS1hvHz9+PPpWRnMJQrTXajYEAcFLa+7IHISjA5AzoiNiYBKEyISArfUL54milva0XF/bcVv3NM0x5QN9rVu7l2YVQPe6sUeY09pK8w4kQwyzrLWSiZxzP/ToRSP30RA7M7sZSiakMYaqqgM6qXrMobVWRyHAKGGKyZRimjZJp6cLCJuCEB/3tbXaWwGHOmrXNU0nqiMgW6uRUCN23z98fGRKe6tziBIndgUEA9uL2dA5Zm3j+59//fDhAye5rRvnicgQSMcgoVJXSc5ZEdbba3n37uPLl9ecEiMLhSkldez9ICIgRwJEfNOyASCEgObbepvysky563DX2/q6LIuD1noQwVsoprfS6hARQhHOrbUx3KzlGFO8bPtNiObpbNqarkFA3QjwTWBS19P1ZKYdPeRp51HbeFzOWI48hdu2dwHnQIQRxaGOviWKY9sul2UrFQQUPS3haXr/9XYHRERCFkRPp2mvawz5+cvn/ViZea8F9ViW5TgOG8MlKdI+WshBegNTxCHolC+To0H3nGfgSAgSw9HbkiKAmfac4unh/OX1xS2M3kfrM4cYw2g9SnB1yad9v3cwYowsS5CuYzteH94/fvn6KwEKs7ku82k71g7rGMYQc7Cj2yTzVrbg0znL89d1SkvrB3P48P7dh49Pva1MuOTpzabBMUQmT5jn2Wu3Uh/n0xjqWg3JbXjVgTDl0zTHr19ezM8Eg4MJs3WGNiYIPNDdFk7xMtcGoHiZLmV7RfYkLBJHaxniHDOil1KihNZsTjl/ml9//AGF1REpfPny9Te//XSeYxkFMTKgNqUYbBBPOWDiENUtx7DqS281cE4SRuvMgUBdoeyrcAyOwjyAUdG8l0NbL1EE3MYYKbIzRI4AUOvh7jlzt7osUxv9KHupLWcijhRcVQGGgZ2WqZS9lEN9GPjDw8P6ursDETro8GFgXY0HKWAQ3mqRROfr07uH6biv9/W59eCkTX2YjmoiUUJ2oxiikJRtA8Th1usYYyBaTJLSfBwbEBooCKV5EpMxamvHNIcQZndvrekYUVBERKDVBoauHY1NIcc4xaw6mhUR6b2Cq4O2UUOOjlL3QojE3ntFH4hq0ProzVSi1oaZll/+/sf5kk+tf70fgZWRGYJ3txFWbe7u8rJMMmplphDIQR3+AexuWpbpAoat9MBCRKY65RACJnEwNx0//PjjX/2jf/Yf/Y/+k//qv/o/ffP+/Vb3z19eQgpqFEJgyetW5zATiaorOTAq+Wvf9NcGCGmKDlpamee5jfH1p9dvPn67H8/m9XS6jEaqTkEMzRAgeGl77z1KmE6hHi2xTzO/7mnfy1H48/PzfW37oeteU5oEYHQdOqYMYDDlTmLrT7/UBnl6P8UJdXC8/PW//utPv/325893p3js3YGXx/Pt+EoSAXkvum1tSvTDy/Z6jK+/vDxV2UoF4Zh537YpxhiCCCGTuz4/Vw8MAGUrhGHKqC5tWNdNrSUx1GP08nC53O73PgARVQ8OYT4tzYswr811P0atnJJ3jTHevrxMxJfz05fnz7++3D98+5GWp7/9+XY6nbZt2G1/eHgCl8+fn2u1bdfefT8qSey1CpUUJ/I8z8t97f/qf/g7U1jyYkOP+/18WZrTeni8LLviJNPtNnrEHI5ff/jlp19/2e3NQEgYrbeBQYgIjXWYgwOjkwxVQgoMSK6uFdGGSZqiZHB3ozAthLAffUBoIJICdni4Xkcvj5fztt/fPT740L6p52nTfr9tc57CvHRkI3IB7WBIfQAjM0cFMgOrHmNMKbc+hrqbRp4hMLgRmNnQUR+fPt232+24//Pv/oNP3/7J+eEhkP/6+afrw2Wv+/PLjSeJ0YchYX5/fpjyckrnCjK0Ccp8frgY3l5eg+PT4/Xr189omIHSPKsqkcznixPXbjHNgdPr8QqRQ8rPXz6ngCeJY9yG6eMSMyETbLfX9x+e3F049jrc2Ax6UyKLMZp7YCKiKaZmJkiuiu7gKiIhpFoPEQIY67qa6oeHp7atKYd934lojAEI85LX17X3zhSZpBwt54vb3jW1voUQpnBGh9KqgqLwfbvF6wOIOHI7vu6qEgKESRKxqhIAeEypNyWEJcW+lWgg8bqW2+l0pTaEwktry3RKIF7x8/NnOtHysCAigl2vV0L5+fsf/sf/yT/77tvf/t3f/N26rrW/vv/4ATN++vAgL1t/9+5dfV1xsIz5TNltOCjNqR+HxKTlSCkhAJB4b+u2B6bj2Od50T4UvPWx3tfl4YIow4niRO4sQL0xEDJV4l9++Xx6vBzrlqepvO5DD0YHoFPO5diQUiTutU0hfv7y+vnX53l5ONYjT0ESiYi7M7OrBZEUY2ttnuf7usWQ1JnIEPGUpJPfym7MYYmZSQ3bEAZQpokvCAcMI0HHxn48zNx7e3d6eFk3LMNcMwkrnNOl1aNbjTH3UhY5mVZga12YT0sMamU/fvnwdP7x+z/Ex29QqRezMq5Pi95qOj0kAvOWU+JYR6u19ukSHWnbNjNzd2Z8Cw5FJidhJJAcYxxdq9qSohHftkNYTtME7r20mGKeYu+1q/TeEXJKcV+HAsc5BxhuI+fUxiDvSJJTrK0Lx1rv7ipJ9pd77x0ojt6JCBFCCGbGzIBshAiy1xbA4xTzHLayzVlGx1JKPoXt2NWBxYDEYKCKBFrvOwvV0TNFSsFsEHF32LZ7Eo4xttaOY0sSANXIzg8zAJiCDovhFELUUUvZLXiM6GCulXk2814bmLdWTUaIUrY9LeF0mtej1VrbqIGCuQViZkd0tU6Cc4q67WpHSJdjw3x+d//l+6PfptO17seczzDgtExswglr28IkxAJAQ4saTml+w2QSUZCpVTUVsCbCHry18viw1KNofyPL++U6oYz/8J//s3/83/3l3/71v7m8+/T47nErh4EdR72cLgE8E5uZ9d7G6OjM7gRrK0L9u+uptZpzREQd/vT+Y6lqBjHl9b6dlg/C5FQP3YG5+yEz4aDS+xSnJYbtvv7N7//mOE6/fnlOy+Xz6xamU4hTqW/YiWrg6gHoVLb6/Dzmk9wPTAtDoX0t68vr93/4erpefvrv/rDX3nFf5geD9NN2s+hNCwGIU64hzPa3P/87tLZI9r97bkrdcWEa/Xj/dEar23bvphLSdtTVZVnmWvbzfD72v+UwTcu87veHy/V2++WySBb/m//hh22ty3yVkI/ubbQ6qmq/nObMobd6mpejtYrm6GPfn+aM2qdL/ro9xz+8bJu68TRNIZm1Q/tPYLzMl3U7MEo65dv965fXI1EcTbW0eT7XQbftOJqdz5fXexPiZrzeOpofg0Y5OoCOXo/7fRKqdvv1+V5rtcHCpQ8VpImaDQSMOQcP1tAATH1Jc9M+QM1AHUwV2vhwvX7fD63llOcfP/96uFuKh5q4allnpzxPD9P5+cevIac//PHzdpRweWr9QBIWKLVS1wZE2YZ6630Ato5Rsro0tTq6AGkdZoM4MLJ6L2WU0omjAGaGnOe6H798/enD0+OPn196/bsUI41e1lckq9Zu2+5IR7tP+aKN/lC+Pj6+k0RNj6PtJ4JiakbY9D/+5//k7/7u78zGX/7pn9Rj1DaW03ktDSQ87/uyLEHCsb4kZolx2Hj//n3fVqouh7fqp4cMvT0u6VlLq3ukWUKkAu+erh8/fMMhba1nDNoHaRhWSbjXkfI0xkDEHHIfnQQB7e3S//T4sK9bqwVU1UqIlHN8fT1EZIx6OqdjL0M1T8mCmHlvYMrCE0CAbuZ4mi6tF0WI0yktp9t6Bw/z6QrUYgz3bUg8SS9BYKeCgeZwngSTalMdR9fBpzQBoJAMlG9+87spLeuXW06jngYuMGzYcUTM1+v5u9/97unh8s1vv9nW+9evXz69//gunSjxfVs/AuD/9n/1n5GgQlMoy+P0+O681bt6BxlE4O4x5laNcCILhGlQU1US7L2/RU4BwNWEJ3YbvYQQ9qNACA7AzA5jjDb6MU/RtfbWdOApnx3MTWoDpJhSHsPAvJf+5fa11qM3T2kJAteLPD4sNhzR5/l0HIU4ta7IwsxHLafL07ZtBCZJxuiGnQM5AehIYcFhoMWGBz6V1jgKZRu1tHqc54mJjr1iiI5EMrW2O6kqK6SUloSOVglHM6jNMy1QVJB6UA3w5fn+97//kSGEwDnRX/3l73Lk8+lUitXuSAlZUNBx7L0s51lBb88v5+W03fecMxpGiWYQ4qKqzKSq7qrWAYCIDIhYzRsRmXLA5DZK3TKGmFhbJcSU5710CUndAkHTqj5C4CDUSjUFR9BaWmsS569ftn/917//9tvvXl4+c0Qw772Wff306cPL83NKSVvro6bEQbAcW2C8ni+jtmlKezvqfghxjunxfEFzrZZD7nWARERzavEk27GaacyTGSB6a5ZzZLTtvi7LxYeOXhgDGwgBmAErBXB082GsOpyAg8yjE6jPUcht+E4MBtrMu4OEWTiOpuAeo9ho9/t9nmeS6K61F8ROrCEwQm4Ff/z5l21vz19LzFcgIQaw/vHT48PD5f66vX/3kbSL0La/oug852Zq4DHG4QPUYgquRg5vrYgp5TI0cCSHWgojPT09/Of/+X8OaP/lf/m/e3r6FjDXBnXvrXrg01HtaBsIvx53Y1Q3kjw6tu4f38dvfvOultd5CqM1AvYO2g3JHLgNiGnihH2s5AW9ceTaXNJDOeTf/rs/1g1evx4pni2MvTQgpBiKmeSpgR21ZuDWGjkQURBx91KKiMyIqh5j3Pc9hOCEasbMHWyopTSZjSFQ0Uwxe6JxRKBZIhCuvUKU/kZXIQkG0VAcxxjI0AnU7QC/hJwQ93507XOeGNAJDfHYN2bOKfh4Y5WSqrKdUdBgDOwIFlmgOzk50NBiQQs2Zo4QmaJxXPdtuDEFMj/FjOYDfR+ti2eSE8dajwq99JpDTIil9dO8AMBxHEAYQmBHdmiOHYYiOINa964BIYc42oFEw4yIELja6OiKIMABOWMg5TGsmJkIxZCVovAYrfQGAYl5NB2tZaJzSmSqqgMcU+pO7ui9uaFI2NctSYqBBdFB3cqwkZe5jdp05GnpQ3vvcZlqrcMAkBFRKLjqnCcrQkREVHSjDNux5rAwR0cXs0yQJdRam/fpPCtoDtEVRq8EvftaRpG8dOPX4zhPsx3tab5gGynkfT3c/fruPLz//PzTN999mmb++uWnv/rT3zyepuSyXM5PHz+crk/3o9QxArEwsdtbGtEN45QDhVLKspzKupdypGmapunl5WWaMngfoxk9nZ8+nd7/thLP59kMwPk4epacpth79f9/uiEGBoABVnsLKa77bl1t+ByTlqZNgdxAVbX0GkJ4MwCaKRG8WbfGsN7r0Y4Ype1HzsnGGHXkPAPA8CYCfdQxBgIzYCR0bcAmiZ7Xr+n0UAdpw6fpsj0/t3pHwegCwKNxOj0ujw/V9Zdffjn2bdufyYyGnaa51nZ9+NSM5uU6+ObY1XfA1lo7VoOe/2f/0/+lWPz1dHnY99JrNQv7cXPqMeF6tJxOYGJ9IiAdnSNKcK3Ab25XRDN7c+SHEHo/iJBF1XtIANz7GBwiALyhpY/jyDESMBj1JohoQEBGkYwUxMj4+fZsCjGcwAvF8fh0XpZpuCkajfG2/Y8BTIeZm+ocU62HQ5PMIapBdVX06AoArMMTM3KGiL1jWE5bWekg5llSuq9HFs7pcaiX1pLjKZ27tupW9zqFrGNMIRx3xxTMhgaUSQjt2NacFyJYlqk3LEdlTDpYpun1tgHAfHpo3Zig1JKXPFHetm2aUozR3WNOqjrFaZrnl5db8Ibk5lbqAeDLshBRKSWn5IBmSMQODODCIYQL6G6uHBMomEGMERm3dYecKAZEHlZbbW6DWVDYR+w+CHDbCzJsx5rnxAKjHByFcWKUIBMqMmUjVAcb3pxr137fpzDZDilc9j4cYYpxP1qK4mQVesM2jh1ghMxjBwRg5l76cdTT6SLA2+04X9J8Om1bmabJnEOIvTZkmlLu1uuobgORfICZuUNAQHdz713dhrkykyNJEGZSA3B3G4juqkR4Op0Q2IY3tZTObq3VV3Y0tS9f9sAn7TcJi4HYgFO6PL/8ut1HkKbDRSKLqvWYRUKsvbZheVqYIiCVuhOOyIIAgCAxEBG69l59eIpxu68//fzDv/93/99//s//2W+/vdy3F7clhlnOFGcHbMdtZ3QUXyTupZOFUbt3BR1QH6BagujNJ8nax7TMvdS9V3RccuQY9n0Hs2U5gfXabUnnf/3vv//+86qeaxM/Pe4eW/s6n06999o7cdhebxjCHILqIEIC6L2BGyIiIwmYxN5at1HAFB0BgMDAiIAM3LVp7zo8BELqo02IDPQPij7C6JqYDIjAUBUNwAi0IQoBMJM7sKrqIPS3fMhA1GFEZA4MYAqugMgxBgDYixMjMYnLGGMYuIO7DywUQZEQIzg7pCjnPhy8TUHMDLyTsPam2mbhrbmhVzFFIQoBBIgUofYauzESYTD33syQgAUZaLxNACAoTmw+jj7GGBLTACRzcBvDjAAQDNRFDMFRFQERXcco1pDVwMzUByipmbuJyAC4t8GqSA7CZuONiaWsTkhBaBEFK+hCIEKjwxgANoAYzFXN3VNK93Xt6hyECd2pjWrDiWgMY2Zy2FohAidsOFixtxYJPVLToWxt6L7ezIxgSRQCx1br6XKdpmtVm/OJrlvbi3ZXRpCo3TGepjS/7gdRvD78yfff/5LmMOXL/+df/WGO8v6Ricj+dfizv/onf/pnf3m+fuilRgnQdzMjlAadSPZayr631s9xWpZTa+31+SXE0Fp3N0C6bTsvY0FCktbG6XQiDIjdu9ayz3PuvY9hQtJajTGAWZQAQNM0DxrrsVZtggKgo3USDCGgkLububuPMS6X077vZpZSGmYx+jSlHIMQuyqdqWzlcrl067Vu03zpvb8N9wkDuZXezP3hcoXAEgfOAGN8+O2H7XXaa5nCtL6uJhTmqK6j9+vlfF2WWq9/+Pu/IcT7fn94eCp65OniODhFB9puG0ssu+Z8lWkmjDLwS3fbRyGJIZIpRVl661O4CM59UN0hxiBEZr22PcnctNWjEOMb+oCJwF0oAqgOHKp5njiEoSuYO9K+l4fLNSz80w8/xjAzxBiW4Z2RAVzB9/0AR0Zp5q2MGHg6LSRH9915IkxD9ylER3D3Wo/eR06LKgbkgrtCeQPnBhlBBAl7d3NXLc2wj6M3rYoPjx/SMrlFIdjXu8gUYhpdc54RJFCsR3EmYbxehEDfDKGTzINgOYWX9XXKASUETzb0KFvrFSCklJb58vd/+Omf/pO/zOmCobsrMbiOWvaUA4IHllqP3jsBEgly6Ga3dV/O57K9jDFSCqclAoBZ68MQTFsHAAVHJkTsvSsQERGiGaSczaz2fYwxL+fL49XUSysKSiwsPIDaaEzgCCHFl9fXX375aV4yor4V89pQJCfEdd19OHCMImBkwxw1xosTlv3YbwdUe7pcGc4pSD8aBkc3EVbQMuq+3ubzfDnNrR/uHnlyZE6iDWOMSr0ehYRLb82cgguxMzlxUa2tAXgKM73F3M1tNDAHAzBvpoyU4pmIaj2GqovX3mNU7RV8wJs2QbE1NScFjEGs6ZzfAY7SBiKGKID28f2jU3y970j+j//xP3boT48nAChlD6l3rYjuw9owhIAopTk6gict0AiFGBkIRIebveHvAQElhvX+/P/4r//rr19/uT4spTyHCfvY9313pjDNxi8usTsQJGtGHnH4HCMF1m6vz/dlEoQhOY7SDSt4R0TVQUbWYJSD3ZB59HEzCEqvGxidTaZ72UOKx9GIUHsBcyQk18QkhG0v+ZzN5A1RwoxmxuoAtpsqAoBr4EYApoxI7gQU3GM3BdtHBdc5zuAjSETAvdUxRozRzCMSqRqO3t5+noGRCNHAzT0CsdsYyokNcYCBYXOdkGMIjGRde21EZOaqWtiguygwgZoCR2UY5s7RyRWVHEHbgG6mrsN7YcqsYAo4zAd6RQmBeyFhdTB4m9LCMGhmaX4wQFBFF0F/mzgcpWsHx2DM7gBQvXf3AY4hOrA6IOKbgibo5k6Iqrq24e7kxCiCCO4Gzc0JUQIAWFclp8CixcyMkQMRAvY63DsgIqs5uCHAUHd6a+ga3kndoQ6fJCGxmik4EaZpIR0A0HoHAEZxtDoqSnAERO9krp0ESyvo7cQZEA6tOhSFgcnUGIHFj17Ug+Rc1HpvcZp/fXn2E1j1gPl2jIiRKYLi89fX0/WhW9O9LcsnhX70vpZgFI+fbyGEeYl//W///l/9+5/+0V/+43/053+xHlXcUkoIqqObeiCheXHVlJKZKXRieXvjKc+3bZ2Wh3y6Iid3U3VXKP1gjETWhvZaSMT6gMTuTkTk4IS32wbEKU7zTFiHqUamGGdHux3rGGNa5tN0UtWyH6/3NeYkEktrMcY5ThJoW3vtzdXev3+PQOHNWQNGBCqIlEL0zHPgKL2X0SHMPEHwPUW0VqAD5RN6/HK/GXLKaTpPjhxycvf19X57fq7FeIpEeH58+PGXXxpAG89+46MUYc5pYjoxpBQmdRGH90dld49T3veVhFO+mlngcy8aCNIkKQVDLk3V3XAI0nDzt+53YWB2d9UeIjMJDXPXoT56VxsiwgJq5fb6Op9oTv7y/EXGATGpSWnsmEozAKjbXgdIyArQe78s6XTKZqa9Ro4IyJz0zXkpGvLU931vG6QF3FsZqITEhBE9sYG7mg9wjLIIWfQwqk3LvO43E8pT0FpK2RARmjlxh+EC3awc9/Nl9nYQTu1ooNhV1SElV6vb0Z+/PO9bO3qLMYxu23pngdO8vL7e3717FzF3G2ZGgL/59E0bbdvWMOU8zVMCdy+lLcsyuu7rwRxSCvOco8hxHETEiCGE1poQmQEYAACJCZkBufuwRERdtY+dZTDZ0FILBsyEEfFteDYCBEfoVo/ter22Upc5gwuiowO4t/EPT2d+azYkcDAlGoAMCuAAl/TQoccpvFkga9FW6jKnUSugmakTYgiOVGpvtZuZCYJL4DRqI7DAuNXNhxiG27rmJWp7jYGBHbuaeRBBp1HVEZgAjYjAyQBgmBNKqxojI0TrzUzdVHt1U0EXhNaVI7oIeEASN26lx5C2rfSu6P1+//r+Q/gX/+Ivf/75NYZPL7d9Oefzw4c31MlPP3+u9VjyxMz1KEwJUEYHQ2fPp5xHa947sdgYRQ3Igcjd1bW1xoDTcn15fv5//r//zV/8+bcO8zA37+dL7sO66vX6KJxu9+PlZfTuU5pB263c2TroKFrn+VOKyc1EQmuN0QEQCY66EWIMTB7q6GB0jnPrwIpRqdTjkQlGndk/O0qUUQ5rNZEIc6tbSolQxqhv8hBxVFciYcZu/kYNizEKkfYeid/2WNEswpA5QeY2hvSB3Z29oVeBhtBhkLm7oYExKICqiwREHAjjLTCLSA7OONybKyMCOAFq6wzo6Db0LclGxG0YUgdwfrPDgpNwBxiqRHrYQEI2Z+JOWI4tslDKDcBsGEEZdwVDtu6DAYEI2BzJxjBzR3BCJB69U3+rjSE1a97Vhw1nBCEmouFmoMAkwjaambsRIBowgiGgELprG13dmJmZyJHVwUbTioTISIgA4AiMKGTIiEgByNXBwNUCARE2IjAz64Bu4EBkgGaOOdIA79YdcohjDHNoozuLmiGiEzIzOhCC+VvjooKDCA0kRCACIWZk9+7uYI7mTg4AZj7sjkTNW+twSqfWYFtvEuPoicBDjHrUai7UGSXOYVgpx3Y9L/f9nqdp3ftyeqytTPxx39t6aAhtPvG/+9f/PpP86XffJIwANloXJG06tBFgjgkA3CzFSIS1N3VK84JVB2CIExKLMyG4mrdBIUigofjmhbbJAwsAqKoOzdNyOvEYxhSAHASJg/ZR6oGBU0oxJzPrvSNiylPXMcZI04QsacovL8+A4XJ9QIdjW4EoL7MBSEisFmOMCABgw9GCAc3nx0nkdvSUAmhA9DxfU8hzH/NRt4fVTb98/mUb7Xq6CrE2nd69j3y+XB5KO1T7WoHCaTovbburWR39fH03p/l33303ZXl9/ry3X4Xo5A4pxhjivq85BKCI4KWUFIVQR99r1Xk5LyketZfjCOENtkmIjEwI7o4hz2i67wWRrHuaUgpsrgyehALFOVsgRPAcJzO3bgNsLxrydDRws+NQGzzNUQIKa4oTOwuZzEmrq4t6HGohBMN+dN20AYzr9D7G6L0LAbiNPoZ3EUmBVc2tIxKZEY/e+tgBrIJRSBM7GTszAfpRV0ReLtdaWggBaIAouEmO6BwD1tFAx17Ktu7H5qYMHlprKfP5KgC99xpiZgrH1kjY3Lo22FZ1O51OR92PDWJKb6an4zhMcZ5PaC4xjzGamg5M87RvdxEJHF3Nh5saB/LxdoqBuwNqCAHAkNnATT1KioQ0FBCczKy7O4IJArJU4F7tp+8/357XKZ/mPKli4KiRa61DFdAAVXWgKTGCuYNBVyYKSVrrBfRW1lNawG25PKzHnbunIMfRc85xyV1t3TxKRrBjV+0lRUwZey8IIyRBTsdrU/VyNFkmlthtgCsTNlN3F2IJAd0NxltJgQJ0AyMIxqMDYkA0NEOHXpsgKaG7AVAprWtn0pAyg0tw7bUeBwJ7bz7au+sE9tXb87Cw5GB6HMf+9PEbs/zL8+v6fHOTJZMDi0Qze9s13NZ7mxoMDYKk7qBIIBL2sde9G3mIYS8thznk07GWUvPQSoAA4gagFin0gdrbnOc6+V6Geaiot+7LlB0VSSsaqI2jzkmiBCSHMRygWSOH9CarmBMHUrutx33dB8V5PkkMv/7665wn0bRv+xzzdDlt640cY5r6GDkCIpmZmZv56G6uiD5Ny5uT5c1+BsCCOMysoTFWdBcPINgVEWXJe2tAyDFMiqNUQlF0F5IwIXuvrYi4upuDSPMB5ABIKNWausYY0FwI2cnMGICI3HGYwnB3t4qBOXIEp66tDewO3Tl6RAw0gPqYYnK3rfUQ0ckJHAWQ0AQQyMnVjQiU/gGKSQRgDsQsMnoX8phDJmL0NlzNDAGHGUBlw8ADvKiZOgFif0sMiykMU0RiRiLuzcwRgYkI3/QPdTLPhACGAOQ43EjdiQdYJ3bEzgEMyX24EyMQGrq+fT7I0NF7Y+Y8T6pvqym30Rm4tQEMiPRWEsUxhMgAYH281ZyZDQRQHZIJDNE8B4nMdT/cBrvOUczdhhFxGU0C9N4BgSjc9r4fKjnbwFELg7fQRzkCE0tYSzEziUEce/ElyL7el3k6Su3dBGmeHyRwrZuWYYxJIKC6NnIC7yIsjG6kfQxvt3Iwvt1iEciHjf04gNAMmDlKItNajwGQUx7dgLH3fppO67oyy9aPJMEdkOR+v5PEIPGNiEcKc55K7RIDBynahr5hKSCKEPH79++/fPlyHMcwUwMHJOSUQimFQ0YOOeRaK2E8n2Yz31tlppQpx8mHHq32XpeHqztewjejW2/tOl2Rj/nEF6+9V8mZwOvowzSQ9K6Xy+n9N5/W0m639Xa7zVwM27RczPndu999+vCbJU85iXupY3u3ZNnLLyllwlgqEWeWpVTbaz9fsquW0U7zXGs/ykYM6OpDDYDQhIgCu2HXAUAwMHJeEgHTvhcYwQ1h0Dwt+76vLyXJstcKTjGe3RlTwKGAO5A3PbQPETLAdbulDO+erufzZbSj1iNyVCNAUoPWjRiBonpJUwwh78cXMyAjCkmIAQbAYAFkAGrgxmDNGgLOU9i2r3O+AEA7SgiBGRCRRagTMmz11kbPUyytwVAM3rW5LjLoOGCv43Y/juMIIZTS5tNylF62NYSgqhTl73///fxPzwTRfSDzPGV3b6V47/M8D4Pe+zBNaRpdQxABRJJ9KyEEisIDmCVIZubee+DoZAAWQxpjgDsQIgJKLe3QgUwRMftQmSdtJQiOsY/eSTAm6XU4AjifTu+//PrVLT5cPtXae2ORtG+bsbEEiiHGOIYyuXZHAkw8yjA3Iaq9DLSKgx/yWo8U4h17J4BhV86KUHvYbiVGEULICU3dhwiyxGF1ryUxISEo7GttbTD7l6PiEwohoUHgMcZbqNLdQM3d9f9H05/02rZ1a3pQy3oyxphzJXuffc75kvvdG3EdQTgcdkg2CChgQEKCMJJ/AqIWkmuAqFDCP4EyFCghKshCNkUkRAFkQQAyKJIbRMS9N77kJHvvtdZMxuhJSyisj58wpdln77O1932eUBZmQqFAjEBqOhP8EfUsLGYoKVHQcdyJaG9HSmVZkrn2sRfWPsbsjYC1t4eVH7eT7fMhy3XveWNFIoh38926no6vb9eXG5yxlswoFu/PF/j07ROGuXUMn7anxCJi1hBs3ZbL/XI/eslLG8Mh1ofz6+1a6tLaYMyuMUdLKRLh+7yxFFlO+PXtbRJyzfcJRcwQru2etiUvomoM2McMhPcwCDIBEDOxIEm69Pjpcm9E5fFhcG6E8fSokuoh6FlHHwC5nHpvOSekfDsORERk4hQsUgjdIoKmiyM5cSB6EIAEB4pIiooHG4Anw8plEPmpzq891DbEChRKnPkAaAgYGMyRYhL69AjDIEOwmBiQ3NUVwigYzSOCgFXNCFmSg6u5EOa1ikESYWYzA4X3y4wBwKISj97YPfFkiiyQ2DuAiJiFBiBJU51KwSk2SyARMftA5JQTIM85WBIj4PsS1yzAE5EzWnKDMAaXUDMHiwg0yBEMxMg9zAIosSFMm0FEnCkcPFRnQiJGIC4kBhaoEQ6mAQgBbqEE6oEAnBJ6KACAW1iaypJEJBASpghE4xgUZmiEwfJ+wRMSY0rJTZkQKcwc/T2LRe6O/g52DUFwN4CAAFUjBAhLEAV5mIJHKqLu5FAStTFIEmNKgjnl6f1hg6kDTJdVEHyMm6OfH06AqTDtr5e1LhKgrQtGSotra63RQMnp2O8xYb9e8NtnCA0gJG9tvG/Bs1REtOmqigHb+XS5X0pJCjZ0PH88nbaFMRyQCWfrOZcIMAVA7FNJpCzb7AOJ3l6/Pjw8UAghHcdBAetSiGi2nnMm4RFqZimlZVlUbaqGzvvd3H09nQF5XddpOsbwmAjp4fFBdUz39fTk01ShltOIW1ly+HjXgzOm0+l0bwenmuvKQpJjqBHKaavXDjlnd0fz87rdXy+J+OHhwQD3Yevzh/PH+Yupp9Pa9Dj6bVu+JWKbfl43BPv69bcQOadNmGqSRaT03gPR2zWRkKCGA8YEeD0O9CBAAAgwEU4psaDZtDGnmzmIZPAx7AAzAZFkZQnWUNbXlx8eHp4E0n67Pz19eH29XC6XdTtv5eF2vA2z2Y6UmCCsD6T49O3T84ezMLTxim4i0oaZx8PDIyIS3pmVCMac6ADTS019VwBESB6MEIE4BoiImiKRYwIUSig500BwR+aSS2vNpm7bNoYuuUjiow9Jq05f87ML5Lr02G9jjGP8/OPnh4fna3NOxUKZwEPfY/FJtvD89jLO57MqbEuarsAxfc5pdVk9rLXBlIgksfxxcMscw9dldQgEnCNU/X473o17ACGpODSb5u5juEgWpCBt00QkSdaJAgWZwmiOpuScmCkc1NB7aOIyFUj156+vb7d75sUJD20CQsL+vlRzd4U5p6CgoGP4HIDvZS00s2Wr2u/N9rImj3G73h+2x5iuAMEZQAzMTOaw2YYQbssiJVn4aD2gBNCc3VRrOrE2ZuecF6puw9yGKgZgYnAwVw9NLO72Dhey8FCtKWOAm7HguxLTDYZ7hDlQSqUEmkXvHQhVh49pOoRBKAigZMhAq9R99ELLcdHHb77r01CBkv/Zn3xr19vr62sSYSAzDwsEEuTWd/eBoR4jXLmcACki2NNxsyV9CGYzc57np/z29csvfvXr295+/sMP3378RMxqLafq3jAovJVly9rt7ctouqwfpxIqutvLjz/Wb5+et1OfDUJEhJCInIPQ0QcA4AT3aMxnMlzSVuX8uh8k+XH51NpYijyfH4796tpESCEUQEpyNAQyCwNgc/R381/0Pgklp8JI775eyImFhdIFR6cQxwrMiUff21svqRhNdQ+HKomRHULNArojMRL4xNDEbDEYPbHVACLPIgBSURDC3QFAgozAGRRAwVGCOUoRANBQQ7diCMAGiYnwQI+cgkiEMUuJVDDziDBCd42wUmsiDCZkmlO3VIrx9XIBZKkLS+6tYUqhGj7cBwwnRGASktd2AFGwW5iHEQYhCkLK4kPdggKEKBDNbbq9H0B2J7d3XxYiAtAxzMCB4H12hAhEZEgLpQ6qbhrh7ok4CDECg0rJiDSnlVQykZn78PB3GiMiwTCN97yYuxO+6+MBws0SCyMBhMPEcKHAQAIkIsJA90IcTJIImN1dwVCH6njI2/T5cC5jmqTYTufL/bJIpIx1WffjJlkYENaCQLPrWutWy1bLuHcRmQHTRm83EiBmZmJGEXl8Pn/69htKYuMwdRBatorCNvVoPaVUEpkaElIiCxVhwmj9ljIh+pgHp1KodDgAkRPvbaTl5GBS8tv1Hmbrui7rySACnQUf83K/7q3dJCdMISFt9GZTciHho7X3/e5x2R2sdVrX9fXtmlJ5u15FpNY8hwMKUVgoMjNUQCBJpW5ASJyycEQQhAOVum7buU919LoVUC+cersVSYG4LQ/oseb69P0jgKvqsmYYY2DkihJ5rSlNeP740A9dagEDIiBEQD1vy8PDgwCQTU8cczYDHM0e6Ckty9xHKWl73G5vrwghItNCuIQPRIyIOWfOudaqFu9+sfBIid4Pm6q2tpvPuuS3ly8Pp/P54XS0G5Ia9DGJB79dvnSl/U3XdYWI1u8fn58AVVWTMIsCOMtmU9Tmvl+QIKwzEBEzzIS81O1IrR8TUDyGGyBikuTurU0WzqVAyBhj6nHvN+I0e09c7vf+Ht4Om9r7QHhcHyoXI9JdpZx++Pzzl9uPlOT19vm8Pk6y62iDgcKTWxHu7S5ZUlogkmup5QTBP/zhpz//s1/mLLdxK0vONe3HIcLbth17R6LRBzOvy0nbzPxHbVZrB3iknCicKTHTnOBoQM6Ckog6l7yywBh7jJWZhDFQEWG27tZy4WE0AQ2NJAfz8da8sAcSWvc+QXMOn1O9m2MppWC+3i8OlrOQyLvqMTFxhDCFEQCpdjg6R1QgsIEAOZH5EBImBgTtlk4FPJhEx1TT47gmBnddl7xs9Xq7Ens79FyeiQCsVU92Ga3dKGNdBDFI3eZBq5gGJp9zOpGjiyTK0o8BDjG9AHVrzEzCYFKXfL9fX15e6rogc5+jlOTu2pEQicF1P23w9GH75nntR1P1nNc+4/raoaCOKbJ3uJ+Wpd3vNubN2rqukqSP0XunxIAIxESCmDzweu8MXPkh3PrBUkpru4eBjWUt/8E/+O/87g+//+nzX3V/WcuK0g3A30f8aFPD7PrxmVw7eQuvTLJKdp1sjuGJcY62LM/7fgSSYPIAQRZAVDXySeCuX79+fpa1cEUs0LHC1riNeQCq+bi+3qRkQzjGPYAi1ByQ2CMcHNQQgzwIHDGcIZA4ZUwJQsAAHCqJBABAJKm4nIicxMltTpsTQWLaSkkg9phTBwrDDAxfEjebGM42JIgAsiyOQMMRAQDVJwoH4og5IYDRMLrNqROZMTGIIKEES+BWViHWo6fHGonVjZFu7bDKYnHMkaqkEGZBYOd0aa21iYmFWSIpkBpwTuuWj96dCTiRg5urO2qQOC2MLIgIpgiIxGSBESlx65PgPY+BM9wRUkrE2eYI1QRBEAChSMABLAaIpIwQ0zEAAgMCzBNzBDh4mFFmJDb1Zh6hbjH7PHHGcAByQrDgxEgeYXNqSglUwZGL6OwRkZmbz2FDqpy3bW/NzAiRwAGCWRC8JIo+AQJJBvgkkFwYYcVQDYtAdEbRMYVmQRQC5yo1iUNZioep6mk7w+1wh/04yLQU6r33fqQsyypz/jEFbl0jIJCA+L7va0nmNlVzkoBINR3jYJgalBKbxdfXl2Wr99E4ETOWwoAebu7aWkMmKXnMyDkHOOfkEUCYZImIlMqhO0Ycx53Lxox1yYFxP9pQl5IFQ8MJeKmbqbqDuwNByfU9Bd17//jxY2stJTmdsoio8ioUjixLi6keJS/7PJZScyljjFrK/dhLLaqqMcomOt5KYlfX0QTRAXOup7Le3y4pi6QUhHtvTg5sj4+l3fdp5oFmkBLNvjOnJa85VeE8etgUgXi7t15Oz1h6O5Rk++nrF8DL3/rb/87U/tPP17WcADtA2Oyp1hxZbaoNYFA0cLSgWotPnhOnU0TURfZjFzkHmBCVWlqLCEOIACzbiaT0+yDAmJOBLl+vufD5fDbvnGBdV9c9ESWsoUHouWafwcgdhEt9vXw5r1uEH/0+TMMHs41oLMkcANIMn7if8gP5OPpP61rD5fp6AO6GRfdZy1ly6tp26+t2GvuBDBAeGj/98PPnL7fr0S563Z5qi6NEZdHr7YeHh1PbD1eo5ydQKKWYYpI0+kGSjqank3z+ejk/FcnS5shJSik+hh2dAxEZy+ruoHMR8WFjHrM4l/CpDubkwtG1U4p77yLi5EqNFt9HS7rNAeHkJtNNVdd1RozeZubzSunteivbYxuHbFJKcZ3Lsr1+/nLst20tPo+PD0vrRkkux10VysqOOOeRiAHNwt1Tb0NEiMQjqJ5CcOyjrIXF7/e7wzzGrOXkNF792B7P/E6kAiQID3N3SrUNP3b9pm77vXAqgPq2XxIQebndj5Q55YUFzZwzNrTWG40gTKUUQMosYNrHRCAARSTMpISpnKd2ZgRWC0CGVOowJ6Sc8xgKjuBukRGYrIXN03JG6EP7kgVRtywzJoTpXUMeztsjPMt+D50WTG5jzoGpEFFEUDAGafe6ZNOYYy6npbVLySuoXm+3yHR+Wi5f/vBYi8/Lw0aPpzSmtbZzycMchB1o7xMoO+CcE3zkpEWw63F0aruB9219CHQpeG+vhJUhz45mgWSKZhSBuMeALaUP2xv0WioK7EfPlbNNcw2wmFNSJJrCEqbTYER0MARMKAmJEwMgoChEWk8mzEDDvPVRSzloblCqoYM1gUA4bxuaGp7ueseTIG/Xfa+TuDlbMDClZGbCkYRttHVJE0KiQkQitmYEHIDEjOCZkwZg5mOfAIhIzHnMyYkUiTDnvI77LRAo4W7HyosXaa48OUJcOHN4106w5ZUBbYwsmBK3YfkYqkBM+zzcLRV21/36mlOBhNp7TpizONdxgIabB9a0rY/tfmQFxsjEPQwpoae0yZhzuqVUog/KgsKzt0xcWAqyqirEDA+gyZgkE5C5OkGmBB7kNMnIsBBheGcb0ShIraHj7GoWRNL7nYETZySA1B0yBzNSUMJ4D1QpGtJ7EX1GQgl0C5vhxvw+h8PEyFkZi5DGwEx6BGMS4X2+5UW0z7ot135nQU+RSwFNE6A8rkjeqTQHKudmESEpn972BkyFuU+rtdz60eKOFSd6oMzIAWZjbmudx6xlWbY1ZzziDYjCSS2KZNUJ7suyjbsj2bLy0ew4urmqH0stp20rpbgSEgVYTul+v6/bIzEc7R7TxpzLsoiIO1hEDpk2aspt7sfoLDjGPD2cxtsOAEtd3253TLwsy+12AwrnmHN+8+2nL1++bOv555+/CFfhOo65bOuck2RFoXb0hbHUVZ0tjo/fPHz9+lmjbuuDuS9LRc4YupKnFHv0lLJIqrGFRO+jpiQMqWZlwiIQbCMUGsn7TKIuy4NNaW0g0rKkflz7uKuCuyMXkpNwTpKKBrnxVtajhyDebvd//Zf/7OHx9HQ+rUv++uWqwRaA7PndxKhOEOE2xyCpc/QgSjWrupvdbgcxnE5Pr6+vR9+XZTuOTsau6IaAwQLX7jOgLJKRp+5MLMDffvzw6fnp7fVrogoTUUo7jrKI+xCUCN3qouZEi6HMmDnJuAPzmjO7j6kdiQycBVEYefQ5b7cL+CDMELbUE0liyvej7e1atjq6jnkE0uevP3/9ciVYj5sRDmesy+Pstu8d9tfvz5+WzGTw7Xe/uFxu1+P+J7/+DhlYbN97Sj76baun+/Xtm4/LaXvaRwhKaJBAzoWRPGZEqDsAqYfOBh5JhBjAwtGQEAPcHVzfgx5jDCTxoTlXc9WYXDMNCPMAA4fZlTmJxBgdJE7PZwgKmPPeV0h9jHG/cHeZngnMVdxWxuvtkgCXmizidjtsWiorKiRKj+cnOoGZ9d5VDR20W8FEHXx6gVIkGcRxtJIpbIAPYmBEHcYsAAyOhpDXpfX773/6sdaaWY7jtq6iDkIkvKQsAOCmbhQIqVZJCB6lFDPb79qnJwZmBOqgXkvRPhlLOLlx23dBaNGYEzOHQyCq+5xqY7JFWGxLqvVJ8nU7P3S1GT5hmCLgAsxUeO8tjUqyPz893K61N7tc73N4LhuFuUdwtdmFiSC1Q5k552UOR0ruHqgkY4Re3y5Z0Mz+k//0P/vzv/E3TuV07XfkfEwzpAmm5igloyyRw/xxS9cRnkagADOW6IE9Ysll6k5EPgxpOiMLI4OG3Y/9GHOAHGPmxJiYwnFqMeOjNervVXsGdgUEEGap6222sPc2TUIF98AAJJxstVZDtzmFEnoAIwg/1ZNr229XyQmR9j5YEiFPcSQJU58DLVTDMRwchaaOiFA1DBQEGrbVEo5T53GMkjIJC5JNK8L3QBN0EpfpAIQy3KYbQFUDmzZH8wEOEBLCKGFIgsgzAJknBdYyFSzcREynpAzIbpSIE8zHc84sx75zFiJ095JEfVBeInCAWmAWpEXQAlSJErO4BgVnYArOEMLlbb5CYhcNVQdMYigUAHMqZWZOQAyABIFhERTgiAhB79EoIIZAQEwgYYqO5V2zpQFgSRERBZMzIpIFGJj7iAgGJ4xwM1cEICKbU+29r+XMSAiAWOvae9c5CqCBAwUyMwERGCkLkGNZZe4Dkbnm1lpGRsS1LgYGzPfj4Ay9HU/LE7EAyhijpjRGcwfzCYCSkqoBkjsIF8IcMPd5EAohIPj5VF2HsD0+nR4fH9Rav71n31R9MCsDl5TbPo99/+Uvv53TmJgQghWTAGZAnh4eCIFlO7lryunozaaXkvtsSSgJHX13A1UvWQiFiK3Pdd0sXA2OY6zbo5nd9r5tH5h5dBOpYIk5lVLCPMyY4nyq6ypEtDdOiYMi5xxhdU3hLgKFs7of7fLh2w9zhGQGQ7MJsCMQWOp3y+lJxwwLt45QkaoFm4Kk7O4AFAQ5ISjt915lg+CpZHNmScQAoCmDpLjfr9PvnK1uKK9HX72qho70+PBhtOPydmHMl5efL19+Gt9++vTx8WE7AYapI0n3CRAo3EcDR0pJErfegnhdBBAJKaVyu1/eLl+mtly2t/u+lG2pp9cv13BfH4pC4wJi6BjX6+t+//Ltr/7k8eF8KtvtckDkOUIozUEI8sfbaO4BGExjmpm1oQFOEms+A7pPdcCUqvs8+k5J1nUbrWcs5+371lpJmIRdkRmWWhwhNK7t/uX1MnpcLz0oCMsq6T05aXMUqeTxZ9/8Cc74uD1+8yePknP3sS7LVK1r2bZSqvz0w4/k4/b21sHGMUwfwWcoiEhgoEd44B996TSnpZxmGL5PmAkxnITeVaMYgYAGYKqUMnFCSMcYoRGMo/ckxhFJUh9jrbXNQ805yRhHErjvh4+oucBQgKjI5bz9s9//Mw4QiJIz2Bj9Tm4ZWdvOLB9Oy+hKJJzS/d731wsShbuqChICstmSlwhrA2vOJNS1K9xLWk8LA9C6FvDo/dLdPTxlGTDNTHJiccXA8AnwdhyFRAgrkB6KAIIoCcO4Xcfb7WqhtZQkhaG45qlDsS0r6w33oyeWELheGomktPZxUwPo3R1yKankMcbUiRgSZO46/W7t2/PZjB1weDPEkHDXoSNZTkXOjyeR3Od9PdU5L3M0N1LsxKCqNlpNORSYyAzVY6mny+t1XeLabkQghYEkXMHwcr3//PPx7/69/+ovvsPf/vU/+vjNk0NHYoIQSewsVEKndavLw21e+rjhEKAEKPdj/+HHt+8/rrXUfuwrI1KaNB21adPw7gMIMtA8+tgtpyQ5LyVtOWvXSAJhCKwozgUB3UgJEAnRE0g4IKC7Bxk4BIa7pkQ5ZXQED0ZR1evlJoU6RTAHCAh0JzWF91L2VHZPwW0cSGHohwUgCBEAqQUExvBhA1MC5JBqJASsEEFAOScLxNj1PT4QgIEABdPRD0QEBwbIhKFzHHNi8HISQWTKORHxmCMVEq597O7OLEjohhGOjjkXZFQIyjlLsT4FTZKgw6HdAZA43DDQA8w8AoplP5wmJRQm7L070pyqWMBD1TxwzunqOI0kJUe0mGoTfLoRMyADRkLwqVM7ASYSN1INIpQgm8YEnJBZ3j9ylvRO7XdzkSIIQDhn1zlLTRDuCh4mIoJsMS1CdaZUCCAT62wxLHFKJFM7CGmEjQ6OaxUznTGR2N2N0D2AMBBEZN9vuZ4iGCRR0rRWLuDEAYknxnDOkjgbBABERObMKOSB6vO4ISySN+c+wzU0zOa9VUFBf3hc72Pf98s5FdWZRcxCkMLivD18/fJaJF1eLur08PjNl8tr97FwSaVSrg7kQO+1yDYmi6u6BBAgATKxju5qOedwb8c41cUVRjPhOm1G5GVZ9/211jUVygtHhIEtqdwu1+186m1vrW3LEja3JS+VXy5v54dPEUEBR7u+a9gkZXf1OACnlDR0IMnl8vqwrQFTiIqk2YCjzKmSEokmTgil1tpau7fr+eGpzXE99u20gGORdd4dR3F1S2SmqQBimCthDB3LWpDBYtz6TbYzMcywKTld7z+N7jWTIz09/+a47/tbu1Gix6WspavmzEh4efn69Hx+eFz3/aaBM0C2bRz97XpDYIj45psPI3pr9/W0tv0uSSTZ69tPXBIDXI+v0xtwcdVAqJx+9e33JVUyWsr2pX/xqU+Pj3NouCHR8IkUDXVd16E7FamFtfXeGlgO2QHFTY6uZc0OyLmMeeutktO9Q6YzYUExCE1lszl/+un13se1t6/3q6NAJIblfttrpi+f/3Be0vcfT6fzY8oFU13XdU3ldr3u816SttnPD1WVPbj3ySS51JevF2Zct1Sq/Pjjjw8PT8v5tLeDmZmzh4+hyCQsIoFkZlOEGBGQ9v2W5Y+IpQDAIAiGIB8gOROXnPLQnlKKGIBINXImA0lLarZP12kTOCDuYbGuJ0KMIJ/DIt5ebl9fL0jS21y3fLleU2Zi2dsoiRNnnVokLbke9/aQ2S1Oj6cx+n6bEB4e4aZjqvpw1hFUEKjkko99EK9MPPs9IgKBBKYagAMhFfJplPj1y2uuJxFS84ih+8ghiXkriwKwe0Zp5o6JiC2EQ0Jh7nfTDtF/+YuPzAeAElNrY795KuvKJQBVe0mZGSDCFOec7i5EQMGJuvaa6NOnXzw+LH/xL/7i0IGUElciqimPebQ+as7LsrSAh8dHdzh2hZDrrQNGrltMtz7m7KkmSbCP69GO9cw2DogALn3G0TpzKpS20/awWD/km29+cz3+b6kpUuld3YDI2hy58jF9OD1K/cUjXW9fmupUQ154OcPE+6suTyeZjqARA8xIOAnBCDJ0hSu4S8rbGlT28KGtphwVqoIhddNj2lQXEZEEQjQIZwdVnQMRmYAQGEIwJfPKmADNjFCSpO7KjMS0nLauFu6llKYTBCUwDDKmKuizh03X94QSEJH5FCFhimmplHccIBEL50CgJBQQYEebXqS7HXP4ewkYWMfMnMg7EbNjDSILJHEgR9dwUCWHgMRZipIAAgSH+IRURH0M05TK0XYSXqCMMY0SYSImYZ7zboBmziTMYjHQCAbECCZJLqiwUHlvrigDCN7a/bR96rOZTeYkgiigY/jQJZVAHGYBCMScclAwBL1bghWZOXF1dQ8lFCW2CEUTonifRQAGsr6nLBGRik1FC3QskhKxzmBiBoEgex+CpMURdDpT8ni3R/MfR7IsGjGUUi2OPt2QokiC3secIuuYCoo58fQ53SoWVyVNjoEKaynt7oJIFoszNnuXgROyjpFUxjhijkIB0HPyy37p4ZhycUpIhJTdl4xnpE0tS1HvCDCaLstCkVTnREvv3Amh+21v+7HkhADH3p+ef5VkMceIYEoBfjqdMNBmp2AdLSUCgjlnSQIeDCE52/R2uxcuiTPn0np3jaU+OsSyVgdAQgs3B07ZzHLOc/aUUpgKs5ltdUksb2/X08PmoWFeliKSLm+3YGWRpZ4svLXx+Hi+X65LzURpDGVk80Hh85jregoHhLHfWhBatGt7pSSRfNc2Zzwt68MpE6VOE4GY2cYEYQiMYJaaUibZKB3Mm8x9SE7bVtveQWp5Pl/u2rrd77DVZ/Lx048/7fv94fnhw4cnRoI5n7czqrvPbVm76+v9vmYSYqDYtm0/+teXNyIKLsEpS8xph88+7ilxrXWp2VrAhH7rqj77+Pjx48O6rWvdjyuBP37YTA/EAUSE5O5DLeUyxlBry5Ijgis+rJsZWlcABKKyrOGoZks5h8tWl3a/zX6UrZa1HOPeu972drn3l69vwNJ0IhegcB3fffvth9P6y++/J/THVULvrnNMd5/zuF3aPcKHHzEs0DU8KJAyBLnR+fHT6Pzy+fXlemx129/a6+WtPnCuHo42jYEli6qCYxU+tCOoqae8vFdgmTkxh1FEmAcRM6XZZwxw8pwLYCBQSSshIMb16AD08rbnui4JL/eXWrNHp4yQ7Nj3OTtE1LJ8/eGrKgiTMN1vXVIJoiRlRVMbr6/7tlZCGu0AHSUX9QF2W4tsZfPA0eForEGnlH7/9QIJh3XtuiwLBCWW0RohMEspFQAidJpHhGtUSWB2fnyM4KFdMhMRE2gPEuoRoRauOSLVLBUDJmMZzdGUQRnJZ/r8h17KPD8sb/d2vU7A036/frm9LFtayuOcY/RDEkpGRMaYYDF0llLqkr/9+LCU+vr1suQVUIAqUx7T3WYReTivj9tKDCmdiaQ7TCJw4lL7PsJoy3XXg4PG/UirENH9fn3+8Mj83sYLs5lzBqDe+uz68eH8448//52/9299/PgRCfpsYVTzOsdgpHhPlKQkgVUkc7oVPiL2adMaigykOT1xdWwa4QjqyixuILgCevKUUToAcgESdb+ZjjkfnDtqA9OciBIGWQBYTHXXqJRLZmSarqFmoYWYjRGMRYjSVL/1e5LCufTenMPNERAFMUJShsNCnUtCjt66s0F4EU5spj3UMCClfGjPCQijsMw50INIIsCRM4uBu3AJ6BMDIQEwYqiDqRQg8kCHiKMfKaX3gjuZG6iFkCG4Jyk+HREziYORm7sFhwiwRIBG1AACFIcsjIgAYEzONgFIIAEwBQJwUMo56+3KzOp+jE6SOW0KkRON+0FkiRDBETxlDgAYhoge77VgAeIIs2ERnqdmZqSMQGI4DMAREZXchQI8AiLofUuAwBbhxgyoLsOUICAoZwn3cMqSMbz3rh6cmVFab0hpTKglIYorpJJ77FN1WdY1Urg068iSRVhNwokpUCCcGdFjzLmup0AgEmauICki7vvqdSv1iAFCwyYEIjMDBwgYPpRi5NbvR3+hRMQhkC3EkEKNxqgZOfz7T49gQ49DOZZt7b2Xuro6ErVjrttHmD7HSClNPbo1SEy0EJZatrfrzqnmlIaOCOitLXVJlIjAwOYc7s6Ivff3doD7XEtd6tbmCAdhfo+XH6OziLu++8GnTclMgSmJu4ebGpRaIiJJurxeH87nfvQl1VSkaw/0lBIBl7L2bmaxLtvt7fV0emAkSMlhztEeznXf7+k9DZDXhCIiRk715MQoyc09UEcMpUR5jK7WGSVL0jaFOaU6e0si13tLsiHc7odKjkf08E6JFsDCefnz77//7e9/pnQat1uMI9d67/v48qIWWfKn0xYRow3J6NHV5yLkx2HKTOTamfzY28P5OYLeXttjWYVgvzfhRUd/bZe0nJhr5aQV9v3IOX/z9Iyoah0xyMKOLimC4u3t9fnpk4NgqETmBC/teGkvzx+fxrBmvdZV4lukOI57SlDX6rbqMBz489srY6j673//22mhjlnO99vNF4Z8GjrXbXn6eNqPt+8/PT09bDhjTj2OA/Ap59Phd2QtuQwPpGAgDw7w9bQ0HcN7sp5kQSymEMgkBRBfL3ratsvtvt7k48fnOaDdB6S8pOLurfW0ZjQ9rct+3ChgzklEIkIYY8wwAABEcptLLsNcdZoZMqLpmouqqoJwXur29eWzurS3mxq6kGIEgs9Rt0KD5tESJVQ/r6f33CMynM7L6+sXzLSU5dZ0ezgLRMm8ZtEpj+cHm7O1XbWNOacFcZXKYAYCH77Nc87b0RDUwNWHaC+F9TARCYWpWsumPsfouWQisOlLrnP68EBkDVOPXDNyur8nygn7GFWi9XvJ9LCdJrQIndqT46me0LLO09ev5oSpnK/3Fhgaw7q2neY4lgylLuHTVcOCRPIi5n1MVeO6fOoDxtBaluHvO/WcmUnw9nYhn09PD0xhNp8+Pb+O+fOPXz49fGrXHQOa75JkjnDD3ghkcaiff7KcgYgMete+ris61rWCxc9ffrzfL3/r3/jTb5/W3/3ht1SKBvVgnS4i97eLD81UEOdsnYFNsetgqRoRLMvjORLtc3/fNWLOER6UDKcHTPXiUiKOqY6BHOZAKFkkydJ8n3pMM3LwaTlxrnnkBmNiWGh4sLkLplpP7MDMCLj3XSTnsnG8zzqZIQvMTMkBZzP24GFI6Iklkfo4fEiSjFiIZptkKFJG607EUodDBNQlTe3hUWryOZ1cAygJ9F6SPEjq5mCWmUoSInqRCQBIYOyjdwAjEjVbbEFESphqAuKBYQTLUo/rWyrJTS0CI3SMyml6jOlE+b1tH0jDVAiQRRB773M4eizrRjXf7/c5Z0clt73tCCJBYdzv7cPj48vxWQgycoBPswh0JxFRNQd6F6UgAhFjAABbHyAJAeY0MhREFIkwf6dAR4AHBRESIAbgglnDA2m4GYEjmgEAQJC6izvDFPRgCoxpk4RZijqQgLYuaYkkQUk5z+EIuFDOgDhnBc6QjDgAu2HmTOSMQImRZepoU8f99eM3z0vKHkoB835TQRZxwD5GZlKbSBA+1kh9+jEmlxoUPr0fRpwOeADTU37gDW/Hl7x9e9hUYrVbOzTlbGDDbBoyF/UkAjbm1OngqSZDKlxzOqkCOq25zKFm5m5ElLMc+yAGAOck6ASAtazhjhiplDDo1jml9p5HJZra6yLA4e5qBwuFKQToAID8/gNbtxNJmb0TSU14v9y3bVPX0SYLa1ehJCKMUiTN6BlTYtFhIOgwkzB53rv+sS2CEThuLbZtu15fITEX1jEcMOW6FJljsjCSrSIBkBK6J+Bwn2oTySPiHYzFzIKQwJUhjdmQVcftfnx+fCLDrv0mKY6jldOScsG0vLzcodOHpxMzHW2XQAfOa22jC+VSEkAQY5ScAjAopXpvb0vdUvEiqR+GFsJhsfdeb7eLuz8+bZJCJEkqZu7Rw3mOgcAfnr+7Xu7LstW8Ha0xZ8Z1TRVjRRgpcWsj7O38UGu2/fbl9mLaYRxBnobybNN1BsyyVDvGxd4y53NlVf2zX31DGbbzyvzQ2z73u2DJmYnz6+3rkpeEOScJj/fGvbtzWojoXfL2nkSzqcQkiR6f89eX42i+bo+QYh/N4+OYbqaUgMX3cWdOocbAmWuismSLUKcJ4OaAhAFKjIjIbB7oPokIY86pQkLO5MAe6AkA+31PLIUpmNayaG+SEnFR9d5sjmHd2+Xt9eWOlhlhv+0fPj0ixvKwhiuK10ra27LUIuyhiPHy9tVUi6Q5OzOPMSyijemI1j0S5ZJ/9fyg6qOrLqB9gEfZ8tevP+SynE7r2+WiqqUUmzqDa67gxCBFbMwdGFPKfQwHgiRMyW26aVMbHmjwdt9jahVKVMgdMwnCfpgkMZvhf+zC9QNO9SwJ5/QAn+OuOh62E1DGiLbvT49LrfNPf/Pdsb9crl96P0DwGNOdGMMhF0l5yQ7hENfb10+/+P4+7de/+ODj0OP66bvzz7//sdIDofR2GPLsOptRIkAPya4mpQDC2L2wILl2rQG+7x+35b/5X/+v/C//1//Fw8dvwkX7kHoWpDmviCAFJePQyLkKYLt1AKNUFPDWBhKnVAQzMPU55hw5k4iEu/UZnLr33Wfm4uhIDCSAcmnqJUl2s3DrOg0BKCcpiMobZFUFFnFBpEzEmVtrhHg+nwil94HAC4vaLGQEQAAKwISprIjRdQqTgE/TlQTcUgjMQMviIQEoDIQsDCRAqKGEQhhCAIUccPqcYxBzQeDMydl0KOiEiSAlNnVVCHNM6YSIQpkxUIFzTrKkVIil62RioKBauSaPKcbh7gaSFrbgXMHUw8y7EwdMIgzTuTcCWsoyZh+3a4C5Ds7JwdTVoJV6AlAzQ9ht0mlN2ht6ODISY/B0j6AQxAiwd3JxILCqunuqxYg0IpyAKCEzh7oKzncoJ4AzOoBPm4YkQUkYEgyfEQoIxIgYGhQA5so4a+ZpMWIiQUnptrdcV/WOgqfzw1V3KbIzqfalFgvIkNe0UHjMMQV7xAxHIgygCCIZXZFrrZlTlrQcTcEgsVBJHBPQc5YgJBQSZATXee13ZPQiI6z3PQKRAGGm2MHnmnNvl08fxOFlXcoYKnAasy3raSoGZ0zAaWltorV1Kyn43u4KYRa1Ls8fPl1u15oWAuytUZJUlyRyu96W02Pvh5lmpjlmOJZU3cMjcmEgurfjtOZxn6qRGJsmV3KLlGrYZKRS6lLKfjvMfV1OXNKc8+hNiG/7njmLEDDFDEliZhEIgUPnGB4TkCISnNaKyBbY972cThGoQWCecnU0F6nndbpzWYDJ3d9VuTAHatMxJZ/fD1E3bbM3n9lkepSa1roA0MvLy+XlJf70N3K/jXVJaTtxLkff5+whb+cPD/u4nx49Y5oQ6j2MYx8aclj6+WbLkinx8nS67TdVcEeI3FRZNEwLiY0beQhRrGU/ruAoIOQJQQpRm+11/wI8Tqfy+FTNj3kQNhBeKElw9O5hc9lOUqCrD2uUEspCbMu2He3uLk/bw49vf8B6/MW//LEWRkSY0XeLKaE8Z9EOW904yTxuT0+np4fl4an0fXpgWQ5gavedy1mmEwhT0qOVE7q5sPfjnlgSy2yzg8u2OEYAWZ+MuHCengxtqfXo91Tm0wcG0FqjtTbvyLIOJYJ3qcp0h0DF94sc0v1ycIqhByYgoj52hRBGQmptAJCk5CDCWShY3h/6rR+UcwF182kIdS29XTNHFgSUeUdMzCy3tqtDrsvb9WooHkbqH7/71PTexswLppRG29H6w2kpifQ43kOSb9dLn2rDxujLUiIskQjHspWuE1nerpeEoIDMWEQmORNE6C/XhzHUvD09ZcTtOA6cClh02LsBpqSK4eqTUSb5NC85T3cLkJQ0NJdKhK0fRdiRpyKom74uRaRugRNJhx5TezjnypJCW5+6n5a6ncpxGwhuGgLpXB8Y53nb1kWul5EL5RCFCeyOYTEWSWrm4Zf7nmqi02owtyQT/MTw+XitD48P32772xFhkKLtfUZIXe77fTtvh43jaM/pA0Ntt/t62qArTMwzKMs//8d/8d/67/772/kUgVs5tQMt1AA8wCg6znhHHEkV9vVxO9pEZjC4vhww89PzmVRLSRgQoGiehQGD0aEi7Oq6R6wQiMjk7I4AGX2GB04rLLTUDvq13yUmawSHjRnJjcCntj6TrA/n0+zjcnkT5DCqqaIF5qntkDAjnABNbYpw+FCjJEHAYSegPowhYAZbh7DZ9OHxNGNe75d3lkFEXlLN4PO+EyAwc86AMIfeWzfvGJ4TsSALkMQ0OiwCYoLVlPvR5vTQsLxISO+zHW/nbRMiIN+/vngqfY4gDzVmJko6YQbh7GO0stY+2zRFBHcQiC2TWYiN2Q9ASsLhA6f6HBEzJXK4W2AiKie/3v+aUkqUSkpzRpuKkcLBHZqJEGFEoSTMzKlBH0PvMcJRKDGTR3RtaGBgRoOQ3//cE5KDoxtgRJQJDuAGkwUTCw6NOSNVEmYERhLBYzRDXM/rbL3W09Cxrcmn/vjTH6DKy8vn5fx8u+316ZsgjIARNs1cCBQmhSGhjsTQjsMDy3ZGqhFx2s77MYCEUIIrIpbRtE0shQL6cdRaI9xnL+fHNvrRtasjrESQBMDCvS21INns7ZvvfoMMFvp2fX3+8F3QMpWGxrqtssC+36bN0yLdByI6JUAPRsBEklHdIe73GzJFxOvr67qu0y1HBCEAIWLOWaebWaJkYEefKSVAbn0ON2awcC7ZXIkxUBnDtCFgH4NAOOdDxzgOyZkESqnufhzHhw/ftNYQ0czUjZmRGQjCsNYFI8Jbn0cAOmQGbvceBICIiYcHSu0KztbHkUoGiCVnd+37nYhKQpC0lvK6N7dACi6YUiHHQDeFl68XRHx6enp4eHB3YTzWsrTjGNM41/NaLvvVG2RhZX5+/sjp9PnLSynr3v2134faApsm0jGx4xziNte6gSZiI1JiSJiv+93YQ2a0eVoe+4gZWLYkENNGwMZAmRNjyeVh36+AXhfS2caIftmfzqeu/cvr51JSTjTnnGo0gxnafr3e75fb9evry9vbW9A0A5p1NE2RwXkcbVkWlPvT+enxsZ7PzygGtIdZySEEqnY/rqfTBwkpVHe/TTvquYLBcfQInmrnx8c5bW/7djoft6ve94fnpzGGMbdjnOtjP0ZQAckUdir0wmg+X96+ktZtPf/wu/btp18umyQZrsZQdBxEGEZE2P1ILFUqhBuCSKgqACOmlCXnYlP33sRN3rkIKaGwmWFJPHm2vtaUJbwbadJBqoRUXIEJn8/13m/7vn/++gLMwnx5fRNNZioCvc+jdZ3HAokZR+v7seey6FSXiiBH7+l0bq7AkrMgRpKiAURQUrKp7kBETnRcbzmx61FKWVlu41jqOSCo5MjhwarR+5jaCdidNWBqBBAQG+Zjzqenb/fbdfbbtpXRPaAw0TBjTMzFIDyoj2tOa2giyFEMYp5q2m+f+7g9P6w5z3a/n5bFZgsFEsiMPu8fn/5k3/dhfm3TmVvvwktrO+d0DCMBJqJSIeea3I5r4q1EOi/nW97fXl5Pp9PA5sexLY9H1zXlpvfn5+Xl7atiflwfYkCEJo7Zj97GQiWVh6O9/ZN//F/8l/9rf/9Pf/Wb//wf/eNf/Obx3ockQkSDIMDCRAGHTjPUoIUSMk+LPgcz3jXWWNkp9yAf4iMIVQ25UF6B1gk9GJsxEgqjR9NQzTlQyYe4soUQBGpA1CzDmqOWBTIYh3MtJqnkteTl68vx8fmDqXKl3g+wcYLzZdwfTokFZoADk6AOlZy+vn6RTFkShztNSXD36/PDhgNvr/faIT3WDzW31s7nYtbatZ3Lg1OZLsGs6mMMf0c0S9J5LSkhhRN2Pai3NUmq5XYfGWh5fpxzCokDZoS0laZ9P37ccl2201/f/lDWB43gnBAxFIk0vIVBFkRTHnNlN5xzjpTYZ8zjvtbNh2+CAGBhDFNVa5J9hjOhB95aJdoyOxV3uVgvDyv7XJwVQZY8xgCfKbOHTh02MHNmju2MGimmrcSYyMEMU1jPzGjZIRCCTUPsYINC5DBjh6BwDsIJ4eRBjoELzTvSq1uNtvaZSk5cjq7JM1j/5dOjcPzFD7///m//HXH6W/ZpkvzeP7Mh9kO17zG55NHmG+Npe3B3MBMiygUjDu003JHerm855zZbSqnkdc6ocOWcj3ZxFqR8u+1LKmE+jvu89THMuBAXcG1qEyNDJxgE1mHPT2dYtmvvVte34Ws+71d9fH5q8/bzT79dKiyZd0ihseQNoIZVpMzpdOiFotS63NuRUpputZRwz0mut5fzep4z9n3UWrOko+8kyElC1cBSJZ1TUJg5IhgdBQKUkEoRFAA1ojisQxxBHhAsEmZ7vyBjXujl8tO6nGqtakO7MlPQNLNwHjaZefQZgTUXRJyc3r+QQ2dKZepEgqZdC5MUD9B2+Ih3uAZCZEALHe0iBViW4baPgYiYBQIoMcxBTL3re+BcTusyZz9tT/txKct67H1ZtlLKrauZv77da11/+ev16OPl+tOyCoO+3n64jQqE13b9cH58OG9jqo6XTLyVGhE7dmOEgJVODRp3+u78fO9juF11+CRXvrwdZuZnenu9rlsqW3GDCE0Zc9pQOOE65xR5YGbEuLfLy8vRpvbeWXLbYc6o+fnt/vPsHWZAmNlepDw/b7Wk0+OvSWZK6HAZQwP8m4/n2VvKGAhP5XS0BrCoWV5PALAfbcY4PZwY4X65395utdYlL45Ql7XrvN93AMiSHk+JAIXREQA9CyNnIX54eDgOHDtN8NfbD3/yN59SZgrEIPCZcglQx54LAQGRm7FNpMwlLdsi+76bOlPpzY5dU1lLqsjQ5phNJdeSat87DF2W6hYv+xURy5rH1Mi8UOq9j2EOyEBuMWzcjiaS1of1sl+fHx/MOwN+++Gb0W5JShK5Hq+SCiLO1omIALZldbfpykmCkFIeY7S9rcupyDZNCYiAQGPLi7sXOYHBsmwlrZfrPYhyEuGMKK3pmgsiHUdXi8qZiDRC3Wcf2fF4eT0t1WCx42AmgORGGMXMzBSzqx7B+WjKyHPOuqQxTfeJlJalLGuNcWdGtW5mD+czQSD1T8+PT08nwPl6ebHpCCnRgliXkgETUoL3cKzEsWsIuXAtLFyePz0bxF/+5V85BJFwnZj2ujWNqKmMY3zz+NHRKULY3S3E35XGeSte8+U2E2//6g+/+9Wf/Zn+o398ve85b6Zw3+/gUdY091EyCWARLijdaZGkwH/48nOfg1Pdey+ckgcCs9RhI9c8VOvCAyQiHAEjIMLdGSnnLMYG7pGCfMZsQw0Ba0qC61ngfv3l8+P3D9vTQ+lDkQpHsWH6fPrmw4d+tHWp+76zyPPTA8KvIToipFLuR3dXtSki+/5cEj5up5KEEJBMfdSgrZwylrfr5XW/5PMGxF+/vKTKp3oig3ZTqesM+fpycYPtMQPAfb8iRoSjeF7y5fIKcOpDUfj88FTWtbfpDksujtD3Xsqyj2OOkYDquv23/71/5w8/f87r1l1vt5uIzDnnnDnXZd3u92N47DoG+PRZJJmqTCVA64OIgsUQzMLMrk3H6xdIIhC/+Pa7J/QTwceHba36L374USUjPexdf3i7dOhFAmABdHRYThUc450pSPALzKNNBjYIE4lCw8XCshIAMIHrVPDsBkTC5A5mAcRAaKZhnkW280k92q0/123N1ea9TUXyLS+JYMtr+/wTqf7P/8f/o//oP/6PW0Ql+hf/5F/8w3/4Dy+X1/1Qu/mvHz/8g3/wD76+Xf4v/9f/89vRl9NpGs/RTtum069vt1zTn/7mT1X1w8en+/2y7/vb2y3V5XIc28PJe0vLmssyu9qYwYARS82MdOgwVXJnpHCTXBHtdr2d6irAYIEe33785u2tX69vFBRRfv7xJ0m5UJ17d8TMLKlwkTG9zbat3yJIqkXDU87AFKbMDABECBMJmEnXp0VVHXBdH/rQGIZIagEQOefWRmtt2zYwB0OLMI/JbqqCtC4VjxaBNdejH/frtZQCHmqqquu65ZT3vRFBKUtEMItINkUiBgASIaCU2TSEDYmXZR2vbzqdUyaRHAjNmJAAV94i7O31+vh4lpJtTAtLZfN9b71JKRGOzGOMkjIFMPPHp+eXy4vpIHBRm+3ota4iPMZQV8l8fbukU1mX9Tj6HN6nPn/8Tn7zdL33n/7wQyrPXfdAv9++atz+8OX+53/6p891YU3kZIhztqWKUPFhmVLi7G2M6/029hDa7y3nsizby9vXPpo5S01T96lGkvu8PmwPbg6B5+eny+V2udyEs1m+XPrtdmMhEeWUck7X61vGsp5LkqhCS0kP2/r8cHaz++wBjZimNpSl5ucff/7th4cVCYhjjJ7zokZzzkQJiA2OqX7sXZiTLDHVNUTkPiczl7yYBQO6zsSkY5bCFt6OW658tOPbb767338gwPW0tNZu9/vQF6BMWtAZYDAWIFfbdQQievckFQAC5GgzJWQuju7mHrSuG7zbu5pJLcLyrpRJaen+Zt6JJOdldD3atHgHRu0RYabiZQ5t96aqy1YN8N77+WEDivOynYtwKFP5+vJqY562TY8pmZ9P5y8//AQRdNpUJ4SiSJ8DgtyhpGrTAMKGp8QUqLPnJEJszcYYly+XslZBQILW7rw402TogFBSJXMAYaBw6AGS86315lrrOsdOcxBCyWxOpqQTKXKAQnTJ0NpOwEE450Bys4EMDGGQ31768/YAOixiWzdXZXYme3yo4VOt7bc7AYS5e8zROS0BSERAaBaItB/9/M3HVJYBMGDIVvxr1G25Xa7fffP99f75dn2p6xlH2ve4X5uO+PRhGWMQKKJPUAvjla3Q3Wcs64+vb//Pf/YX/8bf/tvP331Kae0tMpawnRxPaWu2JxCiEITKmXhcrvcZmIU9YvcenZ7PctisRGZIIYJ0zKPHOGzu/dUjQRTCSi4WBMxoqmaBEZiCAdwRIEXe345vn7ajXb//k49PZO2nH09rdTvQEBG3ZTl++ueP57V/bRUg5zp++rFkavuVGXnZVk7mM2K2a/tYRRz48sZMp6UG27Tpt5lPH87redy+2mjLKhGs1ityHjb3cXLM0dXN6EXBFhfhzLYnWRxovw8Zpe5zzp9W5OHB6HHcUG2rK80j0M95uV9/OhESonfLDJe3zxUQtdWUMJR89LkvAAXt/vPXFLilbYm4g97deczog1MRd0FCoomugTasH3OWhetZCq6Czys9e//1Kf3qA23b+eND/r//k39xGZ2XZ5H12o5SFxzdAYY7uIYGzCgp25wP5AsSQdzGGNNBsnMYhkSQhwUoEyKXSIn5j+FuBlU/9p0Sr2vNmEA1Gzwj03E85pSeH37/+XMCewI/SY3bvUz99M3Tf/gf/AN3Z07/h//0P/uf/Ef/8DGX02nJG+2t/50PD78K+8t/8U/pp5c/++Uv98MuQlhL751TOicW4bef/2Cj/83vH4hH6O1v/Zf+7F//9e//xm/+zRn+r37/VyzQ2hWIKSMYlCR+H+N+rSUH4b43yYncIJWS8/XLT7/57he//u7Xa1rGvt9eX0t+HH3nRH3cvvv0bQSFGvMS08M8NA099jENJSKSbHvvSJRz/vnz5/P5nFNWnRFxWjcE3/eb5McAmnMCcs55tuiziZAIJxEoJmyILaboHJyFURBhWSsRXY5bZjYzAsyShSSlBIitHw/bySzerrfR9en5IefaxhjdAx2RKRABcs4Y9l7Yrjl9/vyKJH3aw/YwdEbEUjPcLZP0o5Va23Dh4pD6iDkDgKxPI/FwM3P3hEnHPMaRiMI9wo7bvabsowszl5rVG2Uw12VdIiI0xr0vj+tSMzFRgmP/AYhLHsuDIw/C1KehnDSIOfexvo47SwYSRiRGZHzdb0vdTCAEdz1e5ldGmG1265ebZ80pQ8oWPCx2C0u1IgDxdj90HtpnfP1XP5RlCcfWXsxnzvn0uEbg7XaLHktZT8sHYfz+0zduI3F8fHoMG71fKYhdIhbOVGpMbeb10/Of3G9fj/3ttG0MmGUdbQKD+ZzzILaFZdpww6fzE0ja92Oacc2qihAMTEw6vdkEd0nEIolwzGOtmTBlEmfa2w19cqL7ZTx8/y0gXa5fcjadmFIiOM9hOeeIzlSQ1UGJfeo7jiAiYikLAPRxIKFaQ3fOKSJGm4VLLnS/7YnWZTkFss0QRFVVHgAg8o5RYOvmU0M859x9pHwK05LW2drtfmn3ey6SKOOIp/VUSxm340SM5uO+J6bltALFfbcwdQ0iCXQSXhc+xiEBJQuhmg+YfK5rqhLkr/Mo8k7g5n3fSxZwJxiCKujgJMKZCEi3pSzrw/W+7/fZMdSm7XeEVKiiSckngNzHEK4ZwCx04Kl8q+EBDWwEKhEvNd32Y801MbjHuuRxvD4+nB4eTzXLfkQSzCLD3KcpIMYYZkzqCNOtSg7wwESS87oohLqXUz09bPvl7fLyNaUCdm7H6pEBcd3Scd9v97aU6jZZuGY6eiOU3g9JVUq5X/eX170rPDx+ersMyet+mx40RutDAWSq0/togYMxICwAAiaAIVIbTeSx73dEtJgpc28NEROXI4IZk2T9/4uhAiACgcCmK6g7IJOgoAFNYD55x6fH737/41dY+fvTE+sAYzPIWbJTqmvMmQlrXtzBYuQopZ5FZIyxrnJrN9eRMbg5kydEQVfbIYUUOT2exn593W8U8fFpmzHf3i5rIbAgRMaMQPM6MdPT9ry3+7jdjOZWJaJ7UCJFJwFgESCGqRSuYwaAEEcEcWr7kSVNU3TdahpzZCIEmh4SaIDjmIkTQeyXC2FICGl3VQ0LAEg1cVZ1IUnC6taH9tA+Zm/HcYyYI+O25frzD195kdegty8/f//tL3735fLX//Lr+eN3w/eY47yVbgMtiDFRWpYtNPZxdfeSavcDzBLmLIREY0wHFabEFG7moAQkXEMkGAiRHIKQJ1dyUPJwsCUX7UcKONVcXeft+LaWz7//8cMvf7UhT4svl7f4sP3qN7909P/9/+4/+Y/+B//DX2zn754+3O6XVLEo6cuhn4+/9+t/86/+4ufjhskXBDPuS4FDj3MR99lu+4fHx3/5z//J7f7y/PwsHCWnv/n83b/+4bf/jb//7/5/f/uvfhivqeb9mJBoyXh529EbmYMwSxhMTsLMx9FTWhAScrnv7evL63fffXu5v7KgE/705fMvf/E3KPKuDYmHt1LWMQG4ItuyrMRs5iIiKd3vx8enj9OtHw3DxxhLmcDLsmxupOqArDYEXTK0caR8jvDj3iiw5pNPAzRZFsnJ4H2RRw7hQNMmM09TACCU17drXrJ79D4jkFCenx9FaHTNkg2Cq7TWiMhDj2MQ+Lquc9h+vKEgIm7b1lrjJNpbliVnGq2Ha2YyIc5laAOmclpaayOmqzFzzvl+v8sieZWcc9uPlOX19TXca0muU8JBRMy7gUrOAWMOSLIw8pbX1+vFcEqhYXP068ePH1M63/b24+cvwXS0ti1LTeVf/dVfPp4fvv2+InUWGcOL4+l0ut2uxoSGQsQ5YIyUYJNEw+YYxL73EZdRVq5ruV3bbb8e16HDMKjkVdX8OMw0Z2HgNjvCtDn/9M9+Y3PmQk8P5ywEHmCZEC+XS2hHUsaZJANISnw7jFlIxpi+lOx+dpXTdj52ZSQgmOOqoQm91LUui6nv+06AlDjlchw7EefMYyiobdviYXP2ocfYb8taU+Iwvx/7eTm9fv4xCZUae7v97q9///z4y6WweV+Ws1qE29GOQBaRUrJHV+sWkFLisrh77z08hg0AmN5LKWuqDgHmGO8wo4DI53VxR50OACzgoOQewjG15qLHRPW272Bea7pfL6F6f3vdyqJHR1XCnCvY7ICBQvt+zDF8dJ/zvFRyc8KMfO0tDIgEGbQPyuDqiAg2QATQVc3G3NIJyXu7k+C2ViQa+20gMGJiBmZmFiYGmn1AuJrO3kutbW82vRbatuqRMm1mpo7HPgHuqk4+PTRlSCG9QdMY6khE4ImdKboak+m7xpij6y1v+t0vvt9OovN4ff06ZquyIaJIDkpAmEk4CxCyogiLlONoxPL58vbw4UlEvv3+0yI5em+XtuQHreuX6zFMgZAlPX3z6e3tJQDaPoTj4XEDE+YkKakqE5/K6bd/9UOp/7KW7V9+/vzNx/OMSbmcaqa8zDktXACP2X0qIEGK0GAhcp9uYdH3fsplTdjVAx3AOeVpMUeYZuBCnJEI2ARQ2CnSUHQFRzf0AOQAVziXhUzBrHD+9PiB+5sdxsSJQwD6cTudax+Wi3hMByj5jIAIgM7h4MZbfQSMflxH20kg1ZJFzBWDEWjvt1JSZm5t7P2SlmXZwMgTP+iY1o9cMwF0HarmCCWfiAjA9/1al23dFgtKC729XCMwkB0EWJiTAvfR120BpjZHqYXQRp9AFK5A1aYeR0MWkgUgunYpD8gaRupsHu+O6xbo5mERBBnzMcdVdYYbWBQsTjojRvc7zxZ/2K9fvn7909/8ChTl8cM3333bZh+3W0kCWBEtpQrCTXXebkK81SREGHYkE3o3FgW4JwAJAo3CmVgmBQBMA3MEfRcoCQO4MaATMZPo0OYdAaim62gs4gox7dcfvz3VkkEtxsfHh3/7z//mj//v/8//4n/6P/tf/W/+t7/61S+/efy065gY7XZ/Oj9+/JNf70T/+f/j/3U3eNwej5e7qpZzIjMCrFnubUpKL7dLLoR5+Xo9Xv/JP+/NP//1//FXf/qb25eX9nrdkPToS4BpcFKmOJ/Xfhzmtj5vt/0gBm3HklM+nYLYAJXIRY4ArsRUPKSc8z56zjhgTA0ubhnfbvuHDx9ul+vDkiSXVAuZHceRc358fPz8+XMWySllSRF2v95yWXPORN56h/ijPJSTuCsGLTnFcBgTLbwoSb7dLsyp1uxD3/bXXIus7A7tGCnlgEBhtTDzurApMiMzuwcAuUNrvRASYLiGe871PR2dSpVIgck8AECE1qUezdp+DHUwX5caoEiKYCIeYn0YEtiwutSECZHO67nfRkrM6Pf7Pc9cUvrmmw9fPv9gqkKU+9xrLutaVTUiGNltCskffvfj49MTFb5eL0/PT3vsrz9cI6XHpZ7/9Nf/6q//8Lw+vCMjfMqXzzc2/e7Duj7UPay1XkhPLErZ+iDXZzl7cmD67b/+w7G38/mThxnYGO3r18Y3+/rlWsoDQk0ZEvIYfVmzg6FqoPpcE+bvvvuuVFmX5L6vlT0uAREIgBBByMisAUPEh17cYVwF8RtCcv8a5pBSotqb7fsf2xnELiktiBzBwrfWTaGUAkD322GIz8/Pb29vbpqF1eaYHRFzWQK9LsvwCRC9zyILkZ1OD3N2kdnYJIXpndZtrWV0X7Z3tGp3pNvxwoARsZS6rZ9utxv0EQARXNLyznBxB50hQkzUdWQpKZcs6fLWcqWh08BQADgcjASxkUjus+mcs+u2rMexmNlW6gENPMbR3o7xzkko63IZ94fzuZnvx52Z1qVQzpc5z7Xc9uN4tVtrlIQZElFOyT0iYvoUzBx83OZaFsmLzp4xLFSHLaetjzH6PNVlOT3O1uecbmDTmCEY3Q3B13VBxPvt8vD4fD/6GK3UeoyO5EHz/JTMbXQ75dRa60dDTFTS5eV1PT2fzmtrzcKEK2GEuRMg8bS+POB33z7WVQPvamPOXvJCWMLClCLIIVA4UQkmjxlOEGl0//Bxc+KUKmKMMWpJ3337zT/53T8lWHKpVXG0XVJmyre9jUg/fLkz4nktbXCo2DDBcLWypC0/2f4WI37z67/xF//0d25wjOmzffj4pIQjMOdlwuwaNptIvs9+74PzEoA+jTkd1/3x6VF1jqHThqRCkaaZcGXmCcDMHjSnTtMktDKzRcJEZIePHpMBE9GcPZMXhGeRcu9JDVCQBeNGOoWxXb+kymAjHIDYrUxDMIeMS1lH33MWnzMhUBLhCDMNI0EmMDV27n0agRmEIThygI1p1OvGlHzq11BjwTBJgRBScoaQ9LD2qfutKwYz11oMAIOmaVgUqVPtaP1o8+Pjw7quwYbhknCaA4P2nlK24XNMACg1q4qbOxb16OZHQAfo70hXZIhoMxKHYw7BoTrCQQBnGDrqaOAkZoQXG//057+UL+XT+Xz+cPp+WX/3hx/U+O1Nnz58/O3lxyCuy0YkhKG9hdu6ng8FILQAx5hghJSYBRD9/VmBhVneHzbvvhUidXczYsAAm0YASz4ddgxnkZrrliAu/eo2KcgdZlluwb99bf/9/95/eD59/Pf/7r/3c7s12yPiGDdy/bf+7r99v+3/+vLj+ReP9z/8ld9FOGdAMUjESFkt0rqa2d7c4I+FMabCS6Yyfrh+GV/+8Pz8bL1lQkKZcx52BdeAQGb1cb11ACos7lFJ7m3f1hNyvjdbzx/Whw/tdgHMY8B2Optps959UuK3+1uxmcv288vr3l0OXbYzEBy3Y1nX3ufr6+v5fL7f72OMWqspCtvQ3tst11KQEbkdY0IGRHMoWUrh4c3nTAK2rNfLLZfy4fyh3XdifH78MLQPHQhcloUwv729lVIjgpkj0MwA6Ha7M9Np3czstG6BwbmY2UQjkt7nWz8AfF1XD4+IqZpSul3fiAgcPGBZVo9oqn10ESKBOSdj2ve91hXM733PUhilZFYbt/uxns5mM9Wic/Tet1pEUt2Pbp4Iz2NcCDAxYcS6LQGwH9dTXh+f68vL756eHkI7MhWBGf73/+7fud3bX//V7yHw4eGpz13y+tvfvcjPl29/9YtgOsImoqDlmjDS3o4JcLvcW3A5fSCsQ0dKdWrcr1pWQtwQqjvbHEdvzDSnIkPKy/m8ffjwtK4nphIR5pOcwMxmYEwiNDMIj4hSCqMMHQYM2C2a289rfeoDTqcnbe7gqS6qhplav3NwrRUcRm/tcpW81bK4OwJs2+YeX6+XMfpaKgllllLKNH99ea1LiaA159b20Y0rLaens5ff/e53HEhcieDl9YeSf1HS2o4xmBHDlFJKT6fVFBEllG5v90Balm1OG2NAknDSSRCJCUJNQ1VnlhQIbZhkHHbc553yu5WTTXW/zZUeJ5iN9vT8+OXnl7fr677v27YcNt/1kYDv2magvIaUtJw88OhHWUubTdgjwlAR0u7g08ITWtapwPauAMglH4NUFQzJqKQ1HHs0h9jO59777X6klM5Pz+7+9uXKzMyVkECSozs4kCdAIdQx1nyy5hzEWDgo55ok2tHAPQFrWKFEiVNbHOAX335T5T5MjmvDyImTzkGJBHOVVDK5TSYiYJT3zqWrugdpU6RVWAjYIcxdZ4BHBAlJBJHR65fLN99/en291lpTzub6/Pzx4fnh68tPuW7Llg+b96OXxIh8Pj9eDTBgBOk+0YPcKAw9juOgNFNJ9+telhtiAHoh0ZQQsU/rGphoqkegSd57d5HweNnvhJJSBcf9mLc0EgGntebFzMyMEVIySRFdCRECCYqkRUTa6Gr0bqd9h/gzEAZNizEDGM5p5TE2JCYYU4lWm7Zsa4cy762sC2fR6dNmogSO7gqIFmoRQwe5BkCYE6MNZUMAkUKzIVFyRJ3EkIGWUhC9abTb25yugCiw+KDwBI6F8suPbwF0Op2mehapma/7VSd1dac0AxEr0Ei5bttjxFRV1Qg28CkIQ00xAFI/GoBUSarqagwYyDABiCEFMMFUUx9BQTliTnB5t+Yiu1FTU7TNYCkpZigwSe42lDNAfGT5+UULwPOnk8lDWUrC4/z8zbe5/PzTFzeefRTGWsp93y/3fVlKa8PAS12LlNm6RSQkd3fAAJRABvH3HYwFMVKwgvd+LOeaSgFDm5oCTV0IzsvDcb2hkap++82nny7XHy9jrh/+T7/94ft/8+9lo9/fWpR1P25rXbQd3z1+KL4sS/3Lv/zXf/53/+6f/63bX//wuXs4kk138uGmBOZTLRSlGxRJiEwoM1hFCfj09HiY9aGEWEsWSuuyfT5eb9fX/x9Nf9Zsy3aeZ2JfN5rMnHOttfc++zQACIokSFGQFKYd5XKEI+xLh/1/HaWQZUfZpagqOlTFEsuURLEBQYDAwcHZzVqzyRzN1/hiUfN2XmXMnJljjO99n2ep62l98NkokHsslKLPGNb3/vz5Vhe53++Xz+Pt+XF9PJnocRyq6m7uThKn9fz8/Awrfvj08vj0/r/6r/+PfY697w5+ud+YU5Xap0nJx3GgKWPKZRm3mYizpN72QM9LHnPnhAAQCC/31m73mguX6hGllDC63e6L5EDo1iMw8arqDuJOOa05Jx2dAFJKpoEo7v7KAJ5jJJHjaBaaa2Lg4ziI87rV1vY+dFkWQGfBcBRJ4ewAuSRE3G/3bV0Iwj2iaWBiLoIgWBMnLN72LoxmVspy2+8OlOs6XCFczcxMzMyBbebb1Yi20e9AMwnsx8fTw6Ox99ms67qdj+s8rW9qzZ8+X5AXo2NJ+Uc//OrDp4+9N+ztCErpEcLtgOWUIcU+OnvHuvapmPn6/fPYFZwUos9xuV0fHh9z2W7HJbrmnLvO43rdSt62lSWW5cF8fPHF28fHx/tx+/TpeV1ObqhzZkEmZxCimgQBdrNppq0PDFCN8iAU4J1T6QGj75sNW1bR2WY7OFOta5aEju6RaaMsKfExo7V53tapYw7dtg1C3Z2SIGBvrfdx2h7O69nMtBsApFRyhaaRUm392i22+iDot/3OfH3YvjitdcnVLFCoJB7TmMp+7+ft3Pqk0om4924Wr+OKlGKM4a/JWz+IoRKZ9zmVEBUjL7lmVJ8QXKSutLXRu2OWpNw/3y59tns7RGS/HbCQM9ZUaPqc04BfXq6yreJ673sme3p42+Ye6H105nSxySUxZoIgEqDJ6GATYIw+bejrJSMLBUVgWbfeD+gTiNN/qUtN9XVda93GYb3PVOoMneMIhgRsDowrISIyhZUlX/frsJa2HMMCcNnOgo6zrOlM63y+PMtoK+oYg3ps23m/X0HQp3MWBBYuufhWLSVc6iNLNZuBnFMZioA8mjoEEKoqEiAwIhJJWEzTiCaUs1ShXPMyDtPe/vCnf/Tv/t3/V4rPGOu6qttoY123y/NLKWXf22y6LAkQAzGlNI4pkojl06dPE+f6cD6d148fvyfP9ZQjApGIeU49WmfxPq336cSGxJKRcjgRUBv36ZRYbve9rK+/AjRt3cM1zIICIV4T66A6IFcYaGZzqHvklBJRuBmk6XobY75hwgSzi4WwHJ0I2A4kLpmzaYwBiDywS83Lms3scr9IokCmTMcViAhcMRE5EXI/1F1q3voYROSGEDR2y1xhshI4ZPPsRihZdagqEd2Po5Qy53x+/rQ+PM4Z17urr+tZSM0gxXRDngoAwQwpSzsaM6x17cccbrlUg8AWRITIbg4eFK/iIK2RW0QLj/AwDwsgRi5G7hENNUwzYUTMoAnI4a625GrmYArEMbWk/PH545fnt1LWbz+3GQKHnZ6++vJ3/2j8+le/+e2eMRNKuGEISZS6HvOWUlKLWz/GYQlp4WQ2gcQR0RHNVZsyA0BCBlMIqMwonEn6foRFOGcB3Y+6nR5O21LKr777zfuncowb2EgGYVzK+WM/2IFp8eFDxNsgkONof/NXf/s733z961/9w2+vzx8+78alPG4B4GA9WhCHcCJGAY9gihmGZpQQzCwBRdxms26nZQWHAS5C/RihvtTTnHPowJxiaMVaUwVwqHbeHgTl/nIIlUqn68d5vXyIbHkto2lOVTK2caDBed3c549/54e///s/HWMERGstp1prNY2hEwBE5HQ+m1nru4aqOlHAPiFCrTnOOYfkZObIAByRUAlu2uewktZM2VooQBuHooUAeQrXMRWCllJHawReSnZzAiakUnKEu9krACXUHh7PQDGm5VTM6eiTONWlIAM66Jgi2Y0IExJrVyJMsplSTo8WI8LAlSgLEETa7/P8eCKU2+2m6mWpUjIQt9GFEd1TSvu+y/bQDr12vVc+57yGhWmfXX/0g68jpjgueVFjnQrRR58ikIR726uwjdubpfLb/NvvX6C+uIJ7XWs9Xl7mrb/76s0jQfd9mO9d2xHduZ4X7vvt8tny21KBeUxtjoMYXu4XpnR6c3rzuP3wqy/ul5c3p4epg3FePv59Wd88rZnIKYlXDFDQRmgDdoBVgxyhnuuY+/AB2R2xG3ukJR6OpnIGh6K0+FLHcacgMGHGrj1nPlwX2Jo2c5dE92N/rXmMMeqyNtvNpwjnJTPg0S7CPJzdSX0i9uWUoPd9b3WF5cR7P1Ja0OW4jZiTYwIOBDz2UZZaquztvp7X1j4/ffH280tPuZLjUsQdpt8RMRVsozefyM4IbkCKTAwQ4bv3QQhVkk6/v1wKrhx5G/6y3zrqm3VzEjCf0xKn/XKgYJgxJpiO6u/kjDMUmIER/PnDd+uaZXqCzMZdEYAiDMkFNWIwQ9AEbYScUkhKx3ETKfv9s1CaiETZHO/7/vbt2/v9DkCJZdkePj9/pAAKdqc2J0pCw+FWUg41dX11ZR/7LQVKWu63w+nES755AKG3g9pkvaWVu92MhkUDlj4NKCjvxICCkiuE1yIRypwTU++fX67fdg1KqU3NJTkSMQEFM1mMCCJK5o0plUTC+PKb71ggQ3a8S4Y9euZ6enyaLbb6gDhveFEb5ulhyW4zLWGzzXFvqsjL7nGfmI62oD+9fQxUSsuyPeLHvbW2nMtx35k5uTBlhNKOMccRBGrRxphBNSftPgOM+MUN0+JAlEyIW9fEZ4pEo53KqTXLNUH40GbhODRxAQc1z8LuY1LQwmyNmXL422InP2BeHZBdSqpDNULncMnJ3dVnrimnfNxe0nYioq0uc3Zvk9TFTAAlUjF5basTJp9x60ckdoAATa5g7dj7tJFW2Ud/dTSNduyzq2rNS2Ro+yFISHC/PQdlx2wR1z4Duc3OZR0TbPrjWm59Uu8kLCjWvA9yB5yeOKvzsAlAQDHJBGHOaWq3DBhCO+RIY9Iikkn2Y1eSEFZrGgaInhAsI8A+muRyRx/t/phL9L6hwL5Xgm1RzON+b53XRnYd9/rbDzqNCJq1lNFjXo+Xkgl8qrFRODoCbigFiBUiUMOwpINdzZgJVWsuwybNaWY5MRQ2CVXjnDMVIsL902lh9ZdvP35U/fS7X/3Bu0ofPlwdlKBkF+Is2W/7p7SsZ5DWLsLTEH/803/+7//sz8vT+ac//enf/+U//PL52VVn4JJkNhSmmsRE2jjUG5rCNAJKDBZYcSEmIg7G296X7VRKOY5hPHfGAAci64ZDe98vqz73l61wXQPpsiwhqYRzG41qXZcac6dh55zbbIjJjlYy924p1T/+g3/6+PCIlD/u17KuuVSdEwIJ43Wt4ADHuBOV/TjOyzpHux7XpzdvQN0jZKloiGAQpDqByVFJJDmOfl3Pbynn5+sLMOWtNOvmtwhY0ipAx+2O4sBMJbWXA4FVZ84JUcacKVFQPLw7R0TvisDgRkxzmoOgW0yPOaw3zDMiJCWKMAykJEi51GmKyL21dV2bByrEVGds7sBcyrKufGhLIhGeUgp0A5R1HbebWOabHTltUDDEqmS3uF+O77/7/ObpHUvu05zQBcq62GwfXy5r2bbzCYGEQa0xx+/++Ae/+VT7kfeX0a6X88qO0frEBGv6IiiizMv14zS9H3spJZaVxQLhaC8Osax5zn6q6Ydff/NQT4Su98t5SR6z96OUVLdtjp5zZQidx3Jar9c7gSPhF2/ffvz4EpBrKb0fQFFSam2nfCrCU0FnQ/SUyLCFDTJYMpobkdiYVVIclki63uYYOeciKS3pODoAsNQx22lZ55xBYmZAZBDExkKCxFzDUbtS+Lu3Dx++fxm9CSyhFoFOfNv74+O59RYExDy0hysApSyuer2+nB7eRkRrrbfu7sKJmcycUFwtTHNdiEsEuLskcnebJklCIaMkob6PnNHCzudzDejHeP58wKQtl+O4n7c1FUEI71oSmxvAlMRDtW6VWI57z5LAAR0EsYcRokMws6thEAKqKWBa8kIIwxQk2jSAIEng6OAEjEhmbh5ERCy3/RqEjqhuYZ1KIoIA76ObzcSyrlV1ahi+jvAFYgIzz67uzkGllEQ1IPXZNGwENnfJ1EMhgwMRk2QIUAT7+v3XrR3nlQn0dr8g89QhHg7RjkG8IjgCCRKARAB4uFqgB9D59JhzRkTkqm5mluXxfvv0h3/wkz/7s/+1lGWO/c3TuZTx6eNzyQ9AyCkZOCHrcQCL5JwQCBdj+Dj3fr38i9NDXu8/+/6792/fd/PoMk0CUcrs1sZsfQam3M2RKpjPoULkHkJ03G9bwvNWgebz7drVJUc36MzOHJInIFJAFrNh1pEhVEMsaJgPATZTmOaGOBo3Be3JiRgYKQhKSsjJ5whEkoTAxixAKJhwIYKuvZSFMWLO2UKIklC4QqiaMiMYjBnhThnAwQFnOyIi0MdOwClcervPfowwlhwg2pWpCiUMPKYhVVXv5n1AXaqsW++z7aPW9fr5hZkVnIHNbXgEyYjh4QkNKYycRYCQDBVBUSYAjEjCkpJ6jD6mkYEqIMQADSEIwNdM4EbgBj3zy+UiIgkWCabRHrJvRb763T8w9F9899skggWuL7ff/8Mfv//RFz//j39r4QDgwQG5ZCICHSZY3fS1XCQpmUNMwwD3ZAOcXTKhhephamEa7kjogNMmOUtdQPFyu0UwOa2P7ziVMcb56XFyuky4TsNSrv2YQULIaG547CPSsSzUru2bL39YyjK6tdu0A//gp3/83V/8+d18K9vl8/MEYwiKfPtwcY66ViC3OeY0nViWzWMPZzVklFITQRzHoQ5d2xgK0wmxUKZEiJFzOWDfZy+lfPHleyKiBOZYc50BFoMZU5HL5YVEAOl8Xqy5mb15++iByHLZ76lUJPJ+JGYUAsDXfWHvKpzAMed8O/YiKZcyxjCLXApqREROFRGB0d1JSN3dLZf6cr8J17qsnLjNxq9MfU45l9E6JyECpAiNGV5KEcSmiojEqXuEhdgopRBnEdE+ASHCGJAiicAxJkvOpSDT0bt7pLwwEgC00Q2BCvGaOswkLFXcbLiP2ewVMYqyLScbEwktYt8vScgVc17l1nTd3vQ+xxjjfmQmDtjK+rS+8wmtHZCCFgyMaW7hKS/DI8zmbEiBHAbRpi7LGwgHnMehtKTn5+v9eAGyH379WLd0uV321o2S5/w8jmCb7cjIp3U9leV0OhnEw9NZhOf+goQOTR3ngJQzEAcA4liW5NP3/VigllIYY7/db5fGkMy83ZuHlTV5xLo8xqQIZHcKhgQORuAsAjNc/bSdxhgZ0HrPmEJHLVhLOvow5TlnTququ1MoGAUivnJfp7ZyynvbWWhOT2kJkIAggLHfao5TZWIJSKpIBLf92myLZBjOmcwj5aLqfVwBIeV0vdxEhJgiDAgDzQLGHNu6MsR9n6qaOAPSnBpBTKepDQEjTIST5IE25yi5Hvth7rluy7LYVAV4baxjRBZOgetSlE11TBvTOzqh27Isrl6kTB3A+DojUVViGnMKATp50HC2HkRohsAJxJEJMtphoUZES15Cg4B7HyTs7s4IRJLyMbpHZ4uFyVN6beLuNmbvhJFZdE6UAkT5H48EXSc4yAyYRvuAsiylVrwNzknncNdAlJrM+vV+ffuDL8H290+nt6fFQiF4Tsr15Jgkc2/hY895xQgIZGQgek3IBtq2vH1+fq51e/f+PbG8EvO3x4epe+H0hz/5Jx++f348L99//MxpfXxY77c7S7HAW5tj9hmAZO12qans5iyCNpPCh998Xpanen6z08oH51kETx1Gt8uYo6TVcZjDMKdEgT61IYsQYwBHgKmNGP0+5xCpMaI1G8NnDC4pPARdODDChdl9zBk2I/x1DDznXHL0/dh7a3NoYE0J3BHpfr/mXBemhQgdwWg6zhYzWxjs2ohI0UREbYY7AfbefYTaWEplZkfovZX6cNeRHBEAAEc31aPUurdDzisnyjkTeLhiqgYYWEfvPbzkxXCaxq0dmLK77M0I5zTnJCnn1lpJ+XaMytlG+LS6FkJAQU7JtDmYG4zhqhpATFlSbbcrYdnn2MM7hYkP8yDKqhGRJHcjAHR3OiZ0Ay7neg4Cu7/s7f6jN+tPfvebH/7gq//87//i86UBCNg4SXXKt1/99mefLh8+XMI8pQQO/zhERCTMuRQwndYcrOmMqexQS0FkC7VwVw2d4ZNSEUmjzQCc5kPdWfn1DZRrptJ0b5Pel7W3wcS//v7lg5S7krLM8GAyDKGSk4zpJuN27A/LOUn5z3/5V2VZ93H//OHjH3315TfffPU//8VfbG9TFbEAEKa8lIqUhNjHaEs5nwrPYd4RN8EAAqKAADfvw5yTuIJw5SBQY3R3A0yBhQv265gjal3VQt0NSUcvSw6IWmsWulwcAAC8tb6mjebMdcUsx2zNegUxm/122bYNk/ShwHI6nS63u05PjCmlkvPtdjudThHR7/da1nkcrze25LSWpaQ052ze6rqO7tOjnopZuFsEmvq2rX14REQE58QQhHG/3sq6QmBTdYNcSxC/tiTYpjrM6V0VACMsMefEwnk/boR8fnitabjk4kCzT2Bk5n3skIgMkKm1JmM+1vP5fG7Xq5rlXG2aumVnV6+1bjmjB4LPQ8+nVXCmQuLmfd+/+fpr79P6gInjGJLSWhZlNvW05DF2BmDhiHAITpQLT5/uRoInWYQ8yGfQy31ft/faDcLvs18+703nw+P7D8+XQC8b1y2dYfN7f6DtB2++LClfjqs4tdZNJqCHQIQHRQi5u6on4b0drsaZh3Z1UyCQMo5BmGtKJLzvN7SE7jM8cYQFRGAgQR1NDYGz8JLuz1fZB0xdtiUK17Xcj6OPG5GkzGoHc5l6EGYAbceoi7gPD0sEl9vn7XzisviYJGSowHjces7iHjrnj37nm7/8z39TlsdSSt+Pl8ttzMfHp+1+v74mZYjQfaqqEGRaIggwEAExGMBMA1wYx9FqzTUXVT3GQZiIwGyG55wXdw0FAH7db5qZhhdhc7vtH16Oz0YmKMYiGpfP963kLaXD2nG7rufT09PjSslVx2xgGoG9Twy0CASZs1u4I6SSIWyCo6SEec7JDsxp2iQRyRwILDBVZ/ecq45Zc57awzwAhZMRGIBBQIC59TmQWFUhJ2bmnEDNzBCx752Zx9HnNKYy1BVizv312zjczGgSEuCYpch9f17K9viwUoWv3j8BtnBLzOFkmo794LoFMCBKjsRZZ7h7AAknZlF0xIlMKRVA4SxtHC769ObENoEHM99utzcP5+N27zN+8PXX//DtR3A/Ce3HrqGnulx9kKMGJadx11wfhiJ5SoKfPrz88Z/8fpV02N5BpzXCdsQhVd3N6RQy5hxBQIKZxdVm7yCUcTEdNoxSKlRFSi1beEoTd9cjslDBcNKZA9D5CEZFsTKRewzDFE6mYBHqrilfiCoICWfwzOmhLtqbjhYzEqVSluQ4pjo6g6ADMEhOU6H1VjJDFh9DEeawGJ0jE5ED7927xrAJ5k6ClCE8gqRkM7s+3yGmmfUIDHIjwo3LZhbPffQx6nkLi253oYcxjwAKlrxuAxVWmQLkAonDgwEKZUYa2tt+hwSITEQZqEgZXU3Nw0UyS7Zx13BaxIja3pnE0QQ4TAnx1aJjDJOdAWfv4MfbBD/55ps/+p0frGv96//0V7/4fL03XB+fthMvNbe7376/KrxILVspQaSqzIyIbUwimv1Qn4AuiRjCGQFASacfAECIhOCgkhhJxrSAIpw1PDFi4ulm5kzJAJfzE+VlWR8SijCqFfVM9V1vkxI5o45BzK4wFDOsOuZ0+ME3v/v9p4+Xb3/rOH7267872v3h/bvfe3rbj+uaFsA0Afd7b2ALiSAlWSqndhy6j4JpvyMhnpYKENMG8WvMaFioqqfIEBjep5sDHcPKstUF3jytj6c3X73/6ruPn66X6xdff51yaO+q/un7T9t2xpQ0fD2tfT+CJRAopwnOzO7KyFw2R0KElHnOMUcTYi6MAdOGu58eT8fRsyRmfsUl1Vrv9ztgdG8iYlO3vI5h4BhAAThCX3EagCy5fP78Yc21qWrTdatmkXI1oD66RdSyOsQYXUT6HIUZgIbOnCsRCfDwBkBHuwthLtXdiQENkTBRAjV/zcomoZJ2HSJ5OZ+qwn7dX777DZYiubTjoCAS3vcdA+acl8sl5wQUrbXeu7CTu5630/N87r0XEidKKR19P+WzLCkCpkUEMJWSWNjHmGa6bEvX3kaXnBBY3EP3x1MKRwI+9lsEnx4f/v5Xv2bBrVayUR0A/Lys65LO9TF9kfU+j5jAjJmOvlNiRHaA3hsKpZQQrZTF76ObZeKUC4BrgAW7R5Kypbr3vfe+SiWi1/rza6NLmJA4pgIAkyAjOrYxlnW1brUst/uRivSrAiFIaWOkRFxSKXK/3yPuYLA9lJR0P5pwvl8v5+2p1O163xn5NZVpqs44DHTimzc/vPbj/PQYAH226dPNP354rmULq2bJAr25h9RaQmdr47y+N7M5mlmUkggxHHMuxz6PexfhcDZVYCiltLYP68tSiEiRhgIH9AFEHEAQVvNy7X0fk5fFQEbYysxEHO42BVlhHuOqt2OMY11XcMegnKs7qE9hRkwewyPaOJaSI2DqlJQgXhenhZFgOgaiobqB9pwo54IOc04MLpJEJEBmxBzKzDkl9cmO6JGFB5A7qE5y4EBXIOI5x7acj+MIx2BhQYW4z55zXko57vd5jC1vER4hhdPj49sEgQHohmS93f/Jj3+AEu3ztJm20/u923AHcAwnidmmOyAwIBmChTlbSel2u5VazXTO+WZ7e7Q5Z4uIdd3G0RHp6enp0/PdIW/L9vJ8TwE+Dw8rtZxPqXXoI6gsSg4QppqTHMfLd5++/T+//z999W77+3/4HjfyGsFgbefACPZAlpyBJgACE6FkkEgRESiB3oYLe8o5EA+l2fv0MlQxAZpnIApEtUAEpwgoeUUdrQ8UDICaSiBIpcR0HZpBCTljvBy3jEwYlVOuGObNDgXELCsDB5JwN+9du1ogAEqnPRg5SWZBxwhsM4gIkFJZZ9g8jlDdUulj3vsdCnSMbnMpOaWiSEZ5zn+0SIU6YnKJ59utW8tLdZ0ihClpRNfdnUuth01mcgRkGn1+/PyiPtOSUIhZIvDeplksiwShWcRrsH22ICRhJHdwJIsAXkqBFLe2kuSUwIcVJozr5ZISbGVdIJ7v9097/+//7M8/Xp7PX3/jAd89vywLn0fuvRMLI2qoTw+EQHCElHIgznDHBUEqoyBMPTw8KIbqhJZQCkoGdhbCPAP34Sd5JM4+ZjcVSYExfRggx5g+ni+XT5+ew2BvjZKQLJCLGkFicwtGZ+5qkAU8zQO++OE3H75/+eu/+7uBRsKUmJkfpf7L3/uD//F//bM+O0oylMZkYMnQuhIih+eaiOB2vwCfCMIVXaeFA3kIolN4630woAACBgCgcATqmN5b4u3t04Og//7v/mj+7d+shd6/e/rNL789r9sdr6Ws3fzysqfk7oYsHjQVU8pjHDmQnRQCnfe9I8VSKphv63q7H8MmpxSE99GCIm/LNHcIygwMlKjW3HvHMDSffYRDknxt9yvS+e2Tu+9tZ8bbsb9q2R7q6m7qikRDB06sqUjJyHS5XM7nMzNfLpcZlFMNBKDoc2RJo2sYlEXcTXXYmKWmTBwROg9QXZfF3VvTCSApk7PNOGZoUD09drVwfDidbUwNz6c1IgTper0sawazp3dvmVGO8XI+n/d93x5Kn3dFIabe57ZtHS36zqWmtd73gxjb6GuKWpfb7WZhy1JqXtSNWQR8kTS8l4LLuowH/v7Dx2Me23YuLHPf23758Q/ePz5s7n69vdz6p7ysJmBmn9vzViqqE8SGFZk61a5HTOAiOqaZlVQZkADUIXE6xk3VuG4djnUrx3Hfj5ecqrv3dlcbRFRqFRFzC7eBjigYk0BqLYf7bkq1HGbeFYGX0ymnGegB0cads9kcU/t0rOlNVSEs1lOCtV0tUR66A4CZAYWaMfK7L765Xe7May2ny+0lp1UwH/f77Tp1pJSKjghCyYkjECkoJQjXMFVXQGCODGFzmiMuZeu9zWGInNJiruZQ69rnsR/XnDMStaYLVyZBArM5xwyQdovn55FzEWJv92Hj3bvHLfF+fQbGZcuSMNAQCQDBKOW8HwMB5jAHYnFJFIY2B1DCcCBwiIzEmYmw7buIAGFJBQAmexiIkKpy5jGPV2VqOIYFGggzQMxpDFRydffEMsx1egbKqTo6IkabFm6hdake1Fo7dAx7BSeYwZTKiDz7kESz9ac3b9wOn/HP/uiPwC/AajDvxxG+IhQfEQFZGJlauz2/fCzrO7JASMzkGBbBRMSsOgKYeDHA1iBCtu3L1vdSaT2ffvvrXzPL0FFrffv27X7dkfn89LiPcduvadkwJxbyAW00sPEKgSun9Xn/+Hz/7vd+76tf/t3PfBLKxplKFBsWBoZ3nZTLMtqhCu4mREKlt+bQay6U+DKnJM61hvkRdtfbnV0kAK0QIUqPGBhA6N0BbepQmIzAgZlzU+dAsgCFnDMmhhw+iLnEnN2UkVMi8AC3MHVAd83lpOFuEwAo4WhdIfqYZrGmBSUhkM39NWjCAOrOqUAMIHJADyfMgGBAGksYK2JACsJjGgOOae6OhNMRqKjSrgcACJob9ql1Pfn0MOO6tt4REy3ZIcK5UTgEjSDCAfhql7HwGRYODHy93qMISJq9O2MW9unkUZI48UrEbfR7c1cxhQVanwrpBtSZ/81f/GXY/MHv/eHlw29zPUmq7qONQQsZeZhhSnPOUgpQXO77nBOIh3nMkwAFipvOmYESZyaECCFnQgEN82bsgJhL6cc0RzUETIAJUANBzTR0YShL+fj82YlBUiqZiD/uezBNs0N7KhIex2wpFZ6zUHz99PQHf/B7v/ruw9HvIfz97brx5Yt3X16v1ygFM4FiuBtECevXlyJpOZ1Up+Is55pS7f0OImHkHgzJBphhqoXiLuQOM4Adwgk5SQBhtJTi3dvtqy/Ord8T9XdPRbAtEl9+8VRl1Xfv6naC+/Hu6c35/PDr775lym2f/ZjCG2EVWmoqdz8okSQuSdBNxzw+fU5lyTnvrZ0fH9scTOloTd1rqiKy9wYIGj59kqdSyt73ks99zCXXx6cnQLofN4g4P5z3+31dqx4zAl45TtONKYWFjslMzx9fvvjqy33fEfHN42OoBSElbH0go4PVbQXz3hsArMuSaur9mKCM//iAs6nocVo3JWzucwQyUSpkOKY7IQPYmEww+zzQwhw8zk9rjKk2Wr9jElnWrNbXJX/48LGkuqwruJfTmlLKpQCTg2EYEtRaw7T1A4cTJ0a26cJIQXZ0WAUUEFIty3IqHz69pAx93sCKdkteM+Xry54IHx4ezus7y/3luJdTPT1ux/XmNjiw5qUfw3zmpZJrgMfwfowlbwKUWABA+8Tim2QQnL036Jww13S9HBFHTfm8ldZduAQTMgikERYO/3gc7aB9lJRv46i1tta282PmdHn5JDmty9Jmew341G3BfjDR5+f7lh6Zl8fTouqmNynCqR79eKX2l5IQ6OXlc0RklC+/ePr88unWj5I3kny5XZ8vL998/b6NOwRVWVS198lIqWQbe6ATY0SM0RAxQKcasxIhRqSUdZq7u8eyLkF9qpl3wkJEr7SzAB1mlBOnVEtOQgbh2jOiOxy9gZI75CpOjgSM/NyP1kbJC4ATZZvjtSUyxi0lZoq0FKZwxyzZI4a6AGXmtKwppVc91xhj2863221v9yAsZXklg7jHHK0uKzODqfkQQgK0qSISjEL08PAuurX9MHN1K9up6TRQ4JhjH7ObjZoZUX0oEmTJszfzo6yLq1+uHx7O9Qc/+Npxzn58/eX78+NTO/j+stvwMFpKmd57b+6+nU8eAIHh7q7AkhgDySxSJgPDMCa43W4PD0+qXvJSCgWYLCkRn9+eXp5vHOntu/On58s0cwRz0DYmBKYyCerTY2/XpZR5DxsklI7b/Uff/DDLI9spdjnug3KhqLnQaJdw5QyZBZAdHQAYiREjXG2wlAE+ze77bfYDpgFVTNBiBKQEjOEaYACE7mhqFmRZHBlcVcdQIwJ3BsA8Da4HVJJU0vPe86sd3kIjEgJ5MPNdLZNgQCZ6zKsSdN3n0JRYlUOxTwMIRDQLKWxmbbbp9rAuImyugAbgQASATqjA6jQxggyQhKaIHHszs0QFmZmyupvkOScNFRThWqRkzhpqHuqGLPDKhiO06USEhB5EKJLI1BA5pzRCU8o0FVjMgwLFQYgHROg0mk7qIlMHMhDx1MEM4YNMAmiYlVIKb8/ffdLCxDrmESgGEBScZahJRNh0BSIqAOwITuwUCAgxx66ClBMQokeYCyyMEkATR4sg18RRUxoWc3YHdsJpRoylpHCNIJvXrt1BYC39mG1e3K6HkwdLWQGVWJixVGaO6G1JfP348fl8ZqQ57bSesvrk7HX9/OED1WXqcbS+LsuCxBYp5SJJACeYBoz7dcwmagYlREoqgWRq5OBTX0mFEW04AnKwRCiSmM7QdtpWtf71l+8+fPp4WhIQX5+/RxcQfvO4ztCa9Ol8WpcS8QRBrWthjJhB4WCKNucUZCMYPtmilkVnjDGD+PHx7dEaAlqEdhNO0210dfe1VCAk4eGvMYUYrb1K1I/7PmZ/enpCj8/f/pYY6CFbKBBN0KEzp2pDnYAQR++n02m/3tZlCYdxbyJy7DskVhtlWWyOlBcN68dYlsWD5vR1eWPej/sdcKpqBKZUssjQicicSFXNQlXXdZ2urgYEEVRrnRQhcbu8JMyCuC0LAPz2+9+IAAHgcTlQKeeSg4XLPMbt+bqdz8t5e2XDpgjtLTOdH97OPihlJmZwAkj8CqB1zvl+71JKu+vD+nQ6vbsf+9//4oPgtpQHn/N23I2uxjzVtc9tOyVE/XxdgWqq973dbx2WHAGGbJGyAEwrVMlxHK2rJZalCDhMtVormw/MY/pSk6TymgDKwlkSIDXt2l/l2ZnzRsAxTVI5jkOmbqn4OIShzfu9+9tTOVrb72M7Pd37AOC+R1BuNyVYCJZPn54fTpESQ8yEDEj/eApNojpPp/V6eTmd1v3lWTKeT7V37m0Sw7Q+oCF3lmGAHgcgpMQRcRxHLUdoELMpqMVaFhZSHUjRekeSnJf7/VpKIoaPn36TmM7n7XK5KKDkbc45tZVMiJirtONlv39PcQde5pw5JOWTzWZBAKn30KBtKcK4ngIDWhswtJZ0Oj1gGEbM2RlxjIGJjmY6fVlWQA7go+n0WNZy9JZYsggzf3q+pMwkKaXk7shkamyQa5IiOIykmAHjBPNQdFdkmnNq0t67q+da5+iQWPsOAup9zImgQp6QQI0Fe+/qE4HAp01Yaq4LP50XyaZmpZQkte/x8tzGOMaMbXv/fH/hIqWUuQ8zI0ZAsFCKEGZMyRDcIxBLTvfjmgEry5zHv/3v/u37L9/+yZ/8SUlyPm+//fCdlOIwJOHTU/308mmOLnQ6b+vzfXg4kLXWHbZlW3RapnOKrbfxy7/+9f/l//p/Oz3+9+KVSO7zRWk+X+bDactZbeDou7kFkruLCIK9Kg360Vo7mhubMjP2KW6Zyu5xbTvmJWMsSDmIkG46OMimkTt4gAcGRPiaSAjNuokPBGJSCArvYCktTt7MZkAmDAAEr6UuaZl99N7TtjBGDD3Xcm03tMiSKF531GE20RyAXpE4czIDMBIyzD5I8W5+GHjgfzkgcRFJEswacE2pAPYx1CkhiTsyVUScFsK0t4mc96OV8wYkRGweDFw4d+0YzARjTHVIiWx6zZlQWm9KkiQDJQ0tkjTAg1jkDfPwaP9YGYblfPI553FIxNO2oM77aJMoOHWdqYgb+NQlJ1VpBsiGGjJhKakur/Ruq7QgMoTUdbn7CIT76D2MU6ag8FhScY3XV/vAaeCZPdzcFNCnTskLc9GYBERM930PkFPOU1XDL/2ARCUhjikA19s9nRKYHcc9peRubiMFEMb//k/+d3/6p396uT5/8eW75/0GFJ8+3/6H/+l/+Z0f//Crh1Par33+BgPYzZDIY7RJJOt6mj5v++28bBw621QdyKDmDsElt3anCM40e1OIzBswTNXAseYaPh8eHt3i7//+l49vnnBMDIpovbdSCiDUwgB4e/luy1+CXYmYIBAPZHZTEALGrUo31T5TrSmly+Xyxfv317YTVuthEwAAOZjSsrzuWLpIVvUZM6WMiAZGOTkJIYXaWmsmwmntfntctlK520w1qdsAJxGI8Km8JCJ+TXghYjt65py5Aqh7uI5tWwyCONQ6C59OD3MYU50+hsa+T0l53QqYR4QQc0pzNAOXugBlUGMmgIgIdzcARNzbkZYiIk9PT3Yc27p+++23f/M3f/Uf/uovZaVVw9N5MX1uzQmAQpNkLjmVh2V50+Zesnt05GKMoQFECVNEeCABNh3bVoZNwC5xXf1hWx5v98PjulZdv3x4/nyQPxtHb/eE6+X50zfffDM8XfdbshwkzZHzEi3WWmeYQUimAEFDopSS2PQlJxOIUCAcozMLgGOmfvWHhwdXqDkjRe/HbfRT2ea0VE5MvF9vay42O7AGw8URMxNRBILytpQAU9WXfQdBIlCcQDi61boex1HSUjmN3h8f3pnZfnSRfLvs5aGiow08nx7CLu2+V2FxqLVcbr3gudmONFlQu33+7rvf/fFXjrDURYcty6aqahMpplOfXTCYUyK57XciYRaSBGzuNDTO58fZGyKmVKbfU4iH6vT1fJrTzKZ5AuymPsa490m5zj4qJe0zVd4e3ywpvfzm2yr0UNfPt4PWWh8eYhqRgDkS3far9baknMiS++gty8I1GTsA9JjsICX3OSAWZLLw4fN+v5cqp8fHMcbz5bauKwstFK01YPHLJWNqNl0CMzGjkZmDAGRhG91srlu97nut9druKYu5763rNGGx3msVj+Q+RRDIEWg5Pxz7yLhOPWqtTJ5TjP2oyzv3URNd5y2VpPY9QkvycL35mt5ITvvxQkQQmnKSjN0mciHA/XpFpFqLQVP3e9sf3tS/+flfPb1Z/tk//ael8tPDm/vl/tXbh88fX3JJ33z1/pfttwFCuDKBB9l0miFpHzuxLM0OFDlmu9y+S/XjD7/A/eXjujxutn5/9NPZzsUWftLVe+9Iec5JUvqcx3EtpbCI8MCIh5TcJtAwjlLWtKzw4dNjqg/ElbK7NnFLpmzt+SBADEWGiEmMDNIxRt9TaAVP09HQAHXJRPoyDskpIBZOFoICBDj3uwXWlE7lIcxt6IlYPExZuyUJC7M5DRAxhctA0HABcbOJYGEYwKm04XOO0+Ob5zGDqYpgOIdCi65NAsEUECuJYtKAEskdglObimWBkj9pXx7XYUQUqM4GwtKb79NLLtqmR4R7EGXOOp1Jay5t341oQERiQqoo7oCO7MHhiUldm83MhKbvlhW8X9vtHsNqng5z+JpKgFeR1SOZ3WJ3COuQEEUCMYWFT0MncFQzEfQ+EV/23ihhEXKfPoKCJ02hGjEgQgAFE7kBxkQnnevKTuZ8JzN1tM4RfiZG52OmUtlw9zl8RkppjlZSRtWScLhZTPNInBwHbvUX++dvb5dlW3V0BjRgpoMSqHffh++dlSHVBq79pebFARJLNwBgRs6cwXOHO+JroJLU1FxVJ8xmmBDqwsXD1MyAmAoErev6xZs361baeGlzX3KZXQuX90+nOWfKVR3vSm1C0zi/eff8+UapLOlBB5+53q4tCp4fV931TVky5za6cP78cueS9n1/enzr0wEg5zRVGWJMpYAllzZHzuucvY8G4Cml3mZXe3p6uuxHSSIAdVuP253rFuitd37F0QuDBScYQyNiqyd2VNVX/ripqyNTKatwlv3502k9i6Tr9bpIJnYEg1B3SJkj7Ha913Xz8Nt+cFLidBx7ECIwovQ+QOPhtL3cG2y1gfUwOg4Cut1uT++e/pf/8P/71//6X7fjfny+yPWY6l6WCqke/Vhz6X14+Ls3b6+XuwJigkRQ1vWYVtMixq1PIkJAySICfZ8v+y0XrLyk7QvteLseRMipMmCW+/t3D7c7fv/9Tfjty0V7+yT0YXnz5vHhi6Fz762m1JsCJgseo6Fwa0NVa66Bcczh7obAhBGoFGkrqr7bnlJ6eHoaY5hr4iAAyVwpzTmAaVpTpeBAjJRYVdWNoW3LSTB8GKdSZUklXy6XDFmYmrfr9U5cUsoRRgTrJn1vx9Ha3te1IhlgONwvn/t6esKcXC3MkWJdV3Drbc+SlqU2Ne1xu97fv/vm/nz7+7/97vd/8kfX6zWlEk7hsORiPocGWhhwppVISloigon3vRNvr+wjV+9TgcFds+TZ51I33krbe63rGKSquayIyBncSCK5R+KENd/Hdc7WhIGMhc6P6xRtNucECkC3nNnCxzxKEUkMzksq5qqm/8iwDM3CTEJZ0pLU1dy3pQBEWQrnvI85p27nU5akfeSSiFFEXj58ohQihFWmz9GPzMxZPJwTM/K0AQzbVu7HnRkFyWagYaLigMvpaR/HUjbGpMcuQUz5OPrj+Ul9vnnazg+51ul6X5aoC9m04SZS5xFAvC0ndUrEgHx9uUnOtRSV7j67KUAGALPI6TGn7cPH3379w68DLBzev//q5z//xd/+7be/88N/ttb3//DLv0aioVcQHGFC/O7tm0+fjsvtUrgy4L2N01KNYwzX3rb6pK1vdbt9vn77t//wv/3pv/w3/+b/BZhH0OO6LNPH/TI51/UUTO6KiVMRESjpBAwkXMoGOj14mnNGAiZMMYaqjqIX1AGTwN0cAKDNxUUkmc8ebm6AGI7shJAFWR0cQoRFCHVaIJI4JXUlRw0DNQJcJXcH7V2gu1kCQoiIKMinXPt+ABIDEWcCIIcBgSCYxM27zvSa1MF4dXnsw1LeunnrWLECUiKImGRNwwNogs+Yw62Dbtu5j+HwyrsXDGj3iWwcTCLqoGMC4ps3b47jGO65VB1jBAiDRRxzECDWEvFaImMy99nBkSUPDOR/RO4QMSIyc7exH3cizCCzm0ju4doOESF2JNQwYCAm4kREU6fOjkERzsicOQIHYHcFTBARGmSYJAORB3mEhmv4a0ERgG0oA0qqGGaODtCGchJEnNO37cG7m84gtRZqGJYoJQ3SYQAARQjx1ULNCAWsmQ2229gfv3663G7DgDFSEuLTcRz/8Jvvf/g7P5qxt9YcYs5ZTosHI+BsiuIsQQCzDw9hqmr4auYgTOCOgQHVHNwB2REhEMGnm2vo09PjmzcrwiRU8JmWosOu+w7ga93Me1eP2d89nT5//5vzu3enWqSecmZXV0BnpyV8jMoCgcd9384PMObL/VZZspTjfogkSWw25xhCKcyn270dxIxEkpOiqWqbYyvrdVzJPTEBRrPpriFxvV8QMRHb0ODYj7auazcFTHVZjuPYW1vXUwDOpuu68lDJZYTe7y2nbRzafORUas4tvPVroN/bXJZV3QFlqI4xVLUmwYAsiZHM1MOWmsJ8329z9sdybtcLuJW6gPv6sPw//9v/x//9X/032tsPvvxqW5JIzhi+t+N8Po9hbRwP5/P9dn25vni41A3Iho0FBABcDT04HIIcY7iN6VwzOiwbPn/eyU+neg4Yw1vrPecaOtfz6d4OzilA5rSjx+XSd3spNZ0fT5UTBkREruXlen339OYYh3sw5emBAZAIA0cMEQqAESMhKuqh3cexChJhrmw+jn4EGAG+eqPqekIARpg2TrUKEw9NBDG7Y2IRCP/0/Hk7n/ajPz2839uLq0uRlJOqjTZKzvfjY6L89GZxdRLoPVw1ySKSZutAYmOutc7Z9ts9MdaUJS+5wuW4j1s7n7dxNCK6Xazfvcq5t2McLWBglanH3uO0nCBSbzBGqzUzk6pPg4Ry37vpfDqfkHzqrdY62tFazxmdxuXlIoxMrjrJFqN4uV5b21MwIZn5tBBOInLs91MRtXi5vgxtbfanx/fjfnRrr6pBTsASUw8KiOS11n3s7oYBIsIpA5BBuEebfSlVhK+XCzMSp+M4UkqqOvtYclEd4DG7l1JP67aP9rrXF5FQB0dAMJ+SOCd5uXwiopTSCOxHKyzN1BzHNAJ0KcMR3AmLzwjAh+3dx8uHZcuPD8s4nh/ePf7q77/94z/6Scn4+X58ev7sE6ZRlXLb7ywEzvt955TCKZwBwGBAEHEmInSUdOrN3zx9iSbTAIAe1jffvP/DT5+f//zPfvZf/x/+5Jsf/OSXv/7LcqqS8eP3H9ZccmUUCJgebI5ms7UdCjJzJWGZd99PK495uz5//qPf+8m/CUUBm5bAM0CuCwbY7BxATB6go6tNIiKEqYPRg0KIUZgIGAg8NADDAXm4BZhEuA9G7H1mT8gMhBxhDqqGACkXmwOAXsWF994SaCkLU3bwObTP4VIysgUIYuFy0wGqRaCysGTxHDaJfF3X8dyZkFA8YvY5HcrDto9XlJEQsiOgW2IKOwyiHT0chwGGpFQSJuAMPiMShBkaolOKFPr52nN1c9i2TSNaa8uyvlK7EaErBCDmrKp9DERASuZBxMys4a9LgnAMBLQQZAAUwg6Br9IoMCZhJIjJDK8fCyeSJac0+7XfxVkQlZmYFiKDOWM6AFhMDU6iQ5mQEBAYWYJFzYfaNCuJUZaMiOaMyYk0QAENJgRSIDMJgQa6A1nJJYZ6uBEmQnEINw9HJHbTAGpjOLADJ6hjeMkPZkYo5gNCwVQCGYLRllV++/m3l3m/e5sBkhYJDkdK6wz/1W8//fSnf3x6OP/8b/76tC1mSA7g6BQ6RqokJSuYjoHIBBLBESUi3M2HMWWAmKgOPq0bBpFsJfnsa5XQyVHwlQNqr37V0ID7sW/nxwXhdtvrspR3b/duyPTm4QGYEufWp1SBhOPaAWApCyKrqois64koYeBrGKW1BuAYgIiqBowsklK6t8PMWJA5IWK/3woLAwajRwShAnCqoL2Uwg5zDBEhkqPP7XzqfXroshbCJJLdYAzbW2OkULgfh7tv6wKhNSciul8vAEAJJBMkoSw4CYDAnZNwkgAbY6aUBGiOjkxMnEpiJLf5+ePHvORlXY+X697b/+ff/r//9N/96Vdfvaspf/7tdwVZwEZi7q6z3wWNgjJ7h0nMKVNAYwkBG/POVKYeBZZa06GNEqmP/b6ft5MHQccVSymJaR7titZTwJbX5svtdnt6fPjym+0v//KvEsmC9ZgxPn1fShGBL7/6os9xu11PX2418q0fZjMXIU6O4O6uU+chIuoqiYRljI7AtS5t9Hbc1rWax/A9LewQYc6AT0/nAG5NiehoDcHQnFEsUqlLn+M+Zq1pku5zd9Ghn5E1MynGGI2As6C1vixnQgBQgw5BaaHZXqeYlpeacn15eTHFUhISl1KO0R3i+fJsftSMhAoQieL6/Pny+dObt29Hb7WKmSeBJa0kO8TrkDKVwkju4YBacxral6Ukzvtxk1f47DB0XvL2OnA9bxXcEgMBqc2U0v35w2wvBkzBnJbACM/WbEmnWnK/PeecT+tZLB/7i/aeBIicBHOu4c5M4DCm5pIKb3NORkgpmbu5z3Be6rquYR7uGZkBMIADCgtzmb0RkJm5B1PKWdQBADHI5lzLChSI3MdQNbMhRE/LRkS3Y8+5ekqjNVWHcCFKJFOHxRTERKJgzPnobVvSN1+/Q3354Tfvjs8fSONpXfvRXl4+5yxGcr8fKfuc04OIEmcAjDksojkOFkbCOSdaYymAqqrqsSzbmtc+PfHD26cfXV6On//8l//kxz/6+odf7rtbeEkLS24xQ+L8tE4YH587pvJQz5+eP1u0jFkEj/FCCymNy/X2q9/+/H/z0x+fH4QqZc79QAyutc45VIcH5FTIAc2IhZkRQ4g8pk3VMSOQWSxM25DtnUiplFyFyCFA0QyBFmr76MNcgxkNEJEZCd1OnE8+TwYnYKBQC3QrOaGpuYMjIgYhMUtKvbsiUMlApBaqVsEZnIsQBVYWZAI0hcKkEP1oxMRUjjlVdSuFwd0cU8U5quAA3YogRMKhNtxwgE0GDZwWr8N4B89pmeq9d2QiyQKC6mBABJKSG3pQSQuSXW/3ba0YHtPkFUXu4BBEZBg+JwUxcziGJFh4eAwzdkJHi5D/Eg80M3DLLIRYUo3iQeiBI8zDzaJTUE7isFgkZIQUgEApItwcAyAsVBkxl9zBhBiJvE9wn2YjLIBQmBEgPGwishBbgFmAsKkj5bVI92GqOefee8LXlILHmEDIQgDg7sRoocOi+Q5gGCaULSIneP/ukQA/fP6unp9E6u3wnGgjRgAkcMIPnz89vnn68Y9/9PL8kYcxcGhgYgUzQKOQmoT33gdBISndnIAz15zS0V4MImBS4pyTJ4RAZpQoSUqWcuwjp613U/ciZSlJRO73+/fff/r6668TJTeMgN7MQKcBgtx3Dc46TSxSSQyITD61D0XBzEIpIZCqcmKN4aqlZA9lJiAI9zGGINWaw32MljlhJiJpewsgrjkA1SYmAXIFdoQRpAYRsSzbfhyZENzAolknkiQVIhA4yIgxJym5EoSFrzXf7zcAYOZccuuz1KXPia+HGoShQQySckS4mmGvkkC4SEGA3nspC+uYYzxsp3/48PFf/et/9Ytf/vyLN2/B7HL9eN5OfT8EACSRTGKmbduO4ziOYz1tAECE/bivspSSAzg4D8UJWjKPeeVgRCqZKSgMe49SS7ju42ZhkhYE7MO41sJj9s/z5fM/+8k3f/eL75f16XbXMzJgvHx6+fThw9O7pzfv3rbW9t5Ecq0Jwm/3l1RWIkCMktncdQ4IqqfT8Glmta5ccs4GELd2mTAlZzNVH07+cr2kVCA4MZsQCwaAu5kTmAcyEAydpZScMyOlQrOBOpVliYjZexas5/L503PJUkpyNwMXygoknFFMXdvxUmpa6zL70Y6pww+YIvL1N1+S8N/87Ofr6XH04eoEdn1+/vr9+3Nd52hZsu7hbFy8tyOMc+KS6xhDbRDBnLeSl4DkPsdoktIi9TiOCGJmRI6wnOU4bhCRpDhoDIw2MrHUJZDBUEcvWJbT2tsO5pTyGCMt1fq+VaFSXx0+aigiauYBS97afg8zFsnESAYBFmqGVNJx7FJyYcnInDI5hBqxrFLux25Dz0+nHoSCyGkcrasSc5IESqZo00i11pIlz95jWEmZiJaH+tyO6THduAoaE7D3YyEgTuZTWNJW1eny8vzlF1XgKBIx+vN3n//w938CnQg9E19ut8CaSm59sCQHcJskoj5zWRABIZMQIlgYoLM4oJq3ta778XLazuu2Pr98t53k4WH9za9+8zd/+x/ef/3uJ7/3z//iP/3Pj+fl3bsvfvvb3xLy47ah59ut3Y4b5VJEkFdTBYp2tHJ6NDdi/Pxyfb59evvVm7/5h8ty+qEBCafb6N37eVnb/Y7m7i5IidKcw8bkzIieScAgkSy5msFIPiELVFQBRggC8gByNCFwtjD3MIxE4YCAFA4K6HMeDgUFIqL34UgrTQZYEZGTILu9qvFIyYYbYTISNOs2OrqQVWfTDsLh4ENtKAUWRGMcOo3i9QGkqga6FFEzDAOzFMGUHMTQFGKCKoIyGMSM6a4c5K6l5jkO0zF6LJmJfGrDV7MosLC04W3vQAwgR1METykhQu+dk6iqRQAhAjAyAQ5zIDAiQxvuJWVDAIPMAgYUMEIRRUNHVzUzcARq/YjAWiuieASgTB1zKiaOOcGMMGdOICEiiBg6h04Eh5wCYYCbgAiBhzgSkRugu7urdUKBV+QKwn7XriqFOXAOQ/Kc0ojhOjMzjInRMRCADSxnUZ9OrzzDACIPNEqjOQKU9YHcMAgDXmNcHurDg3COmWr5u7/7u9lvieLt0zlh2q97zmuAC6Gjt9EKF/VuBADkChgmnDQgYHKYs0dMQDePPsLMFGVBOJ1O63a+Xb7PNZW1BlAfugB5gLvnnANg2dY2h+RUT1kDHp4eHSLnOjwwCBWNAEWGQ1rqGIruhDiO/dr2h8fHPgZikODQ7oDd42l7cPfWGkvS1oW4chHme98BgTjV9cHCb8eOkTIWlXi53ZdlgZQ9PCPPaew0VVkwJQZzs55rEqY521TLVEa7C/krzGPf73O0UlczD5dwtE7kKSWe2o85AIABU0pZkvkExyS8Nxt2K6XOpqXmRCmz/PV/+sv/9n/4t7/4xS8ezmec1tteS73fjz6GYF2e7/eh8bRtfR/7RHV7Klvf95S4JM5cwhhIxuFOAgkNQoSnDgw6L08+MeV6nfv06X4AUZbzMdkCmFGi5xw18/3SrcfXb3/0819/P3UkEQh3AOE6ut+uLa9bQB5jCEURXHIKCHBAwCLJIMDQvLuORXIwUbBjuA2kSCklYDcg4JzrnFOHlrQIsY5pNq2QFLapEDbmIZISExgQEPTIlO+7spwEyCaa9zGmUMLCdZkQ7s5zEOXqkQFF7ZUwowSu6mbCzCmlUpY5b8dxRMRSVsFyv6lAzikF+efPn4/78Xh6/Nxn4TSj64SJU6SwFDOb2t0UkcIBfNb68On5GghrLRjGXJa87f3mDqPPqZ3Yc5HReoARFhu+lfN+673pcBNKTDl8Xi/3lClYmCJlQpopw357FiAhWpaFc+lqCIpBCsgph0dEiIirm6vkHGicOK+n0+nUbrvOXpKEee8t5dTv1/O2aan3+x0AEJHQDSxJMojwYBJTdffEDABzzulaUnaI+/32+PhoNh1j2dY5tLdWSHTft4fNMcwmGFzugySfH+q2UJHx9vFUREabMRGM9mO/fLgZuEmYEgCS5ONogAxhAYEEgeBG2kEyU2IA0NljQLi6tlTTsqHG3fnz+nDKH11q/Pb7X//8Zz/7/Z/88ZYe9pe+yrJKZhIIHKDnhAQJKA1MvSsFM1Yy8j2tua4r36/zw8v+L/7lf/Xv/+K/qRkycWAAakC3qK+CJgAMD2LOLLQmfaUl1ZwzMzAZ6DTGpDNIfboi5USASAXZHeZxWQIp5Q4WroYRCA4mwho6UrQKB6FNd6FSiunAoJwEkRBAIdTMJgBhYAx0BpeUgKKDdgwEMqWaVpiTyAiUEJjxAK2CLdxiIENO7E5TOwlm4bHvdVtVCRCBE5EoHt1cET3AyZmYhcN8+F1dt8cTUB4e9HrRZqDUWmdw5sQst37kuri7+gFoQdxisJkzA5FHABMEh4FDmJqSA4AQ7T7IoxKxB05LyDDDhh82csnTrVPUyu7o3dydS7I2g8m4WOYQUrdcFomMxDrm1JGIHQExHCwm9nAQdnAzwMBMXCRZ6JwhzI4ZAdWHMBMDKqKTA7TjcNQiSXVGeIRDAMYUIQdX724hZWUMhiByIZ7hr3dPU2PMn66dZieUwjLGDtYjBsGGQYmDYmxLhuXhX/zzfzb6/vnD51999+37pbjFNE0pl+D+cs+V12ULgzEboEaM+zFaP7ZcM4MBMZNDCEBKsqZ0PH94etxK5eeX7nM+nKs76LQ5e17PMIwyfb58v5zOs/U+RjvG+c27NkcoBdu2rG3v5HRt7bRtbrCU1WFCDMJEbHWhY97rsgDA2I+SciDtYx+miJhKzSL77YbE5LHfX0DymBYE8NoY5rwsFdyb8Zo2HbaeVp3dA8gisdxjeiCYsaAHDGtADAnYyXwg+Rx3IpJabcx1XZHEIZDytvHnl2sWMrN+7EBcaiIiVA93DCImg6i5pJTbfV+W5Xa9LGtqx/3P/+x/+vCbX/V2m5k4l0Tsc4xxSBKZAfc+zufzvc+j67o9zj6msuRFtSd+nZzhmD4dnDylFA45nREOnw5AYzZSrSUxqgXHRMkZgYMwUAUgbDhaSnK/X8+P56/fPz6/vIxmrR2Pb8+q43K5aMADy7adnz98qz4pIVPq5qkuEOHmFgZugHC/XWtZCPPUAwDuxz1LYiAWhjGJEwL0MR9OTz49Ahhp27ZpQ0EjXPvx+PgGDHvv5+URHI+jrespUdJX/Boac9R1cY/LXc/rD20YYsplBjqjD7+5jUILYnCSY+82WxAPGxjibkvOWWQavXvz9tvffMCCd53uUHP5+1/+4if/5PdyTnvfU0UDTbIxcygiBkYQkTsQUV6e7LU/KagwrY9ECYDNLBDcNRhRsEiKCO3Rre/X26frXQ1yqoRIJA5g3sqS1Jq6S4J9tuGTycJ8OW2J+bbv47inspCkdm9LzaUUcqNEiIBCgIEZc12DsM1xvX5OxOoDY+acEzEzA8CwHhG5oKoCUaABuiEQyrRJCCJY122MduiBmYLhsJElRaLP7RaCW12P49A5Xqstp8eHMZvzWNeMBKqAiURsrRx2tcmfL/dllTdvzsdx7Htby+P1fkcQDDGn3matJ4d0u+5lyeYRETMMEQGYUMzMAwj5/dt3Fjpm+/Wvvz2/PS9bDh5f//hdG/3jb59/+avvvvr6d7/66puf/dV/Fnp4OD0+f3zGsDdPW7D84tuPH5+fUdbhgczDwqCQLQI1LH79m19+//H4F//8p+8f3yTtyDBMlwJkGHYUwSShGjrHHEcWSTlhYjSEMA4it6kawCToYwKqmhFkoUThGROYA4iBAxm469QAEcmAaLcuAmuuOE1jCuK51jQNJSEEA0IEAr3qKTDCA1JKmEhNw03NJgZzInU1UECeJB6BzOREwQgQgdbWtAzVeTREJGGfCkxEEiCO5CBmhMacl4Th4IBhNh0CgMNpRJO6KNXA2pwAzu4wZltPGwxFRyFGBu+zqSETCnQfBkzCw0yEkBGCBkW4MYIjTPBAJMTEHK6mfSkVxggiJEBhzLx6laXubj7ndEPhmqtgDtCEgMGQZJKajtHVDZAJIMwVAYCJUZyQGBaWYSM43ANAITzsVQISphMpMScANw2KV4tXKsyGEPP1VgRVjQgUV4jMREzD+oxA4uGGHqGmAMQErhhEwkmiIH/89rs/+N0fvf3i3aeXT6lkcYGIPu6llHMpfQwb0yL+41/8h1zz0+Pj6c3ZwRzCXc04kEhTbzOjgQealZQlszCzFDN9XYUzYGJ5vRlj6CL5fDqVlJkZEG7XS5GMNjmXIHTG27HXWufs28P2fHkppbx98+Vpe3Pd+7IsAFaqRIRrZCl7b9dxzUXM1HScz2eYoECvpaNSlrYfLJlQnLC1hkgkXE4rqrfjjkRjDhIppU6dr70g0Gm9MYKN+e7xYb8dqj2lRIlv1wslOdUye0OA9bQebdz3tpw2AyDE9Zym9ql+P/bE2YN8qgeaTUcPms4pJZGliAh6gIUkmQZztlIWYjnubd/3x/N5zpkyMsXP/uY//vVf/nm3/k9+58vbfhz9hu6MUTOpNer9OJ83ZvapSy46JhHZnN0HMqBga23YTJkf3jwGem/z8nLcrh0tJ1mFS8o5yDCUiGpZRQoiErnwBNgxjIDnNM6QV7/dfr0u/v7teTvlZZXe78Na3dLt/vyb3/z6fn9Zc3nazmg22v56zuyGe1NEHKallECfNlu/jXEgOgoTi0aEYiiTccbysDxAEBgyMLgTgNpEolRLU3u53yYoEnXtzXpI3Ppt9tuc13WJJLYfL200A3Yso69t5r1NIgLUlJEQGJEDFsnkr7jXMJvLtnDmrS5JyEdHG0ni4e0CeeSTz1AHU53us/VLKg4yIfXeu445ZnNXteZuqmoarcPtbhY01JCIE+19D3RkYubplnPOOR/HgYgppcfHc1pziwHCaI5TwW36JEl5WZfTFgjmXtaFU2FJ5+1htulqjDhG2/f9aHspac45+1BViiC3kqTWHGFTm9nIidQmMnIWZ+hgzjB8GnqfTX1SAhRn8VxwOQlycMaUX8Oltu+Xu+6eIhbyDFhBk2n2yKFol9sLEWx1Oa2bWXS1AWAcw8bt5fnptNlxr8LgE0BL4U+fv3/3xWOQ9bFHxCvtICbN5gyFQdBTu/WalhjxqhuJCMQws+M4jqObRaLy/W8+77fpmh5O7yFKQL1chsO87fvl2p6f948fP7774rGU9LO/+VkQl201hE/XzyNm3gpkgcQ322/RPuzXw8yDzTk4y/Lwq2+/ff704YvHM857gVHAsGtWEXAmDRsYk9gDJqIFGKDXWkoSAEeIRJgyqY4QczSFSaAYM+z1ER9RckPvYU6vK3uz4TYdU4mgNS2ntK5cUZ0iWt+nqoUjIji46uu/IyKYhZkBVe2I0CAETB75Htg5dUyakpXSmZ51fGg3DMDwGA1n59CFqKbMSAkkNFDSpe3HHIbgrgTKfSFbCm5FtkRVMCMkdMG8Qto+fm77rEHvfvV9//mvrlDff3+0IcxrObQ9Xz9LRUyuOMwUIWwORBDCML/dbmZTZzczM3N3j0CmYDSEYo5tsoWrTbPdxkF2cARhG0NVhdjMeu+O0F2H9ywsDm0/Rhvi9CjrBrkKCjmCIwYAhCMi51RzcoJJ0Rh6opnQwI/RX14r026vg2WMYIxw1aNfAw0ZSkn0X8jShBiMDhHEatFmGArlYkiICUDQWSKxCwcIRE1yivHj92+O28v1epVS52u8W9LpXALG/fqJQjlCAPpxEBC6/eEf/AEATJ9lqdP8ejtyWTNxPw5QXXMhAG1zNrcRCm4Y7m4WNp0cl5Qfl+3x9FhTvVxuJS+l1JzK7GPuwwBRUj2dQcp+zMvLXsqmE45jkBfwQrDM8Y91XgRJSLN1IcpCIpSSMOO+X+YYWbjWVdUxCIPCwFSVQEpB4VvfAXGCD51lXR7OCzMgecr49t1TSnzsFyYojg+pZoMHSW+WjSPGaFylIItD0qCudu2ieE4rjXDH15O51lophSkt61lNwhERDefteK6bBE0jDUIGdDVXDTMGFMmlVg3IAmvNre232/O65O++/fs//R//O4JxTnB9/v52XIytadMYAMPHLhlflvy4H3PhRQEgxaE9MgTNdjQm3LY8A5kSoGax5MGMZsFhYUO7FREyGNZac84JEJo1AKhcCUg1YRg4lMTuF0xT43LM4/zlF/48jzaXcjYlZDCDn/3sFz98/x4SUOFal2jzdvm+SFoy3vc9ZR6mvG1jdgKqgKthR9A5CiUCVgukZIMAWNibdqsmJZEkaOV+aw9vT2/evDmOPufEVyc7JwYaajoxM1J0sPb4WNroOtvjev5HO0LigE6u1nXNBaCEaW8HItVckhQK55T24zAzd0SkZcN0zPGyT+MBvjw+ms6P7cN3F3l43K6jZ9lIasGY6lkWiuRDIYgFNTzMdDZiRKQ5UxhtKc1xTchHtHISZO4dbGbKAuRqPUBfnwwKwcLaR+YEOo/rQWxJnN1ZU0D0oQHASQDZgR7Wh6FTMpEEk85jIDJFikCuOeWEUwFozglIW5Gc5P/P05/8WtO1eXrQ3a4VEXvvc87zPG/7dfllVueSocr2AMlClCVsq0qijASSPTJiABITZhZDW8zAEhIjGNAMMBITBEjIYIxcVXK5uoRyVTkrRVY2X+bXvd3Tn91ExFrrbhjsN/0PnDOIrYi17vv3u67LfhYRZax1btvee4eMWgohsdbWmlmoyCIyRqvMgOzukDBzGcMZQg3M060jEDEeafaq27iVWdp6CwTEkoMJtR6mLNxbVKmfPX5CcJ6Xkh0V9Kc//I3z5V1Agvnz80esS8A2ch++6bQM2w0sEEMp+wgMyEyk8I53mVKM8/4WkKaybKP7npp8enp8Pq/Ey2/+5j//8fkP3l63f/r7f/T48l/44U9/9Nt/72eH9/rqxavRQZQi8cWrx1+9ebdeL8vj8do7TWIIa7sdD3Vv6aHffrV++8Pnx6dXr7+9LCfx7aMW7Q0AkDIBPT0nEWRJD4Hvmzy3MRwgiCAFLYAowtyHJCOERXT3u3j5sJt0D3B2gJGVJkTwEUUxtu34eACAFGIqazQXiOhFlpsN0SJCw3pEIKK7QWIVDU8AimEirASGWHRGiNZzjxYVu/Cw4dTYjLHPme6jTMcWvTn0AsG0DFlZVGYqSwaEo+Vw997GPUDRO7QRRDPouu4rigy3N+9f/3N/+V8ygv/sH/zd3/jB558+zMRZD0csPLwzCGY4OCBi1QBwTwAQLpR0iCJFz+2GRUhlWBcRy3EnkNzaWhSb70TsRirHPp7P12tiBuZAqHKKlSYqrLTZvuGtj05ECQrEmRgtI4KEm5t5G9aQCTx820jYPWyYKjHSsChcxnBVFZGA3LatVh0xiCGN3B0jlBg9gCk9GAiHG+aemYSCUlJKZ8hMi8rV7/KuwEzZ+6jKp+Or3/zpn/snv/OPb9s+0dE8IUMRjJiAUbCPK1EmylSWto5fvXvz6tWrTz/58rtvv8Xhlbgcj23fknel4katcziN3I1uqM2kRHMBGR5uSH04xce4fvqwwBhm5u6Xy/Mnn39iDtZHRkd06/vDMlPCvt68rcdZh9FyKKPtTEwBpU7X9dLbOBwe8q5oVUocpLnvRqkGgZuN0QgwawJ5IjEg3isKmco6er99+PDpi5fe25Y7IKS7JVyfVwhUIUA36ofT8c37bw/H4xjOqt65N29gqtWTVJhZLWxtuwPKMjOVvQ2I2lvO8zEG+hi1VnfnUGv7PKkIj60tLACI+f3Ldh0bMq12G814oowhVWQ+fHM9/+4vfvbdm7cT0HSamMr48HYpJYTb1lWnOy/1sa+AnjK5jRWxqZhIPEz12kcCWiqVaffRPrydqjBVBCQg5dL7bgEI5MEesEynJAIKixuCJQw3VOx5jyOkAhAkS9bDdBR+HHNJ39fbYJlmPXaPIqdvvnn3iZ8++/zRui9liea+dyAy9LmUEQMMOImZh4epTBDenYkKV9WamRYeEWXKmcV9eOvtuk1FD9Mycbldnw9EGPc6JLZ1JdHTPK8eaTbSohvyPTsbZgPclqnaMDNjinSysAwAzCIFksZI4txb69fb44snIhzDnj++m5dj1elYDeXw/uOHsV8pw/e1PVw/+dEP1ra+ez4fHx60HCDdPTAdEYswCkfmPrrIEhBtdAhXJkToY7AYESCzQ2aCSKmljHDL/XK5uMdxOaFBWk7T1G2IkJaSsRPArFKYugElKfNhOfTeBaWUQiQkCIQBMU3TaTrcLlciouH3zBoyiAgKjzFuty0RmZm12HAWVeCIEK2Zua4XIiJGcxcGzPQxqpZZ676TY6YDDkAHDBTSwgUAzDwSzCDCjoeHHVq30LpQwuvXbx4f6rbffvTDzwEuHz9+++nLL6+3d8Jhvu37lYjWtpHgblvGaVke1j6ulzbXaRJu1gCBWYgEKD0dMoERAZgxEM3G5frhcHgZg4Okb/3xcdr2j2u7ffIpnZ+3bf3uV7/6/S8+efry88+eX3888rGYaJl/9vNvbkbVuNbHS0+JqRtePp5Plbu1p8Oy731tt19+9fbh4bEc6m4NlFlnjkRKd88kAIdERASEDHCPu1MwzZg5ISAdESrqUeRmFMOVcZqmRFjbioiIyKTDLDMBAJKkSlhXlt42nOrou1IWkWvfeZoDABGAwTLaGPccQDdLRMsEh6QkosSwzODoOCAd2IDIvXgS8LK1M0fOOpnWhH4z98RAmvoRmcRwKsCow8NGR0eZSqQpJjMTiiMgo2pNFKaAWgYfypP89X/z3/5v/rW/8jf/03/wH/wf//e//u67f/5HX4zxHsgyGRMgN0YmJADsNroZCTsmYHIGQSLiGKMSgUfCkARVpbl6b3sCoACJKu22RYwEYy4kFG6ZSAmZ6T7cHSkVSbUoFwCKiPTobgQICKoKhJbW3UpVdxcRM+u9Kyp4iGobVqu00YgEMdd9kypICODEAJD7vjGzIhNRaw0xOTMlERGQCAmIEHEbWyEabsQ6cUWAHnsVfn7+8POf/7EqPz08tEhEVFEK724MOM1FA4DidlvvKZlpmg+Hw3Ga49NX7969i9GLTM1GrYfcPc2EWVWc6uqzhRYQQKtI3lFYaq2AAzOfHg6ff/bpvq8vXh1v+4WI5N4Out3KVKuW775788mLp2VZPnz44BlJFRETgrlE3G/Agsh5h+7pbGZ14tZ3JhUpsyiCEtjYW5pPtUZiJqLHGIOYy2G6nZ+1lqA0zAyEICAuRHeR0eg+MqXOl62XOm+t430ZQQ6M3j0iANHv9kWgUqYevu2dSaflsG2bJ+89GNIio/UqyojHeiDHYEnONWxSHhlE5JBaS2bewcC5pbuXuUxVf/dnv/P/+f/+Y1T14c/fvpMqx+kAkfveRnNyE1JxfxRyoZ3CZh6VbN1v03DIfWFUrvs1QOP0ME0FhCBCCDADvGeVAxAg0ui7lplZztuNGQCh1oXzLp5JuG8drIRVhJpIigpdjvzw+Q9++O7D8/lyPV/avDwSltQeu7z56vlHP/5sYnkeHzBxmg97y9aBoZSqSekJRrB2vBcPzNP7BgCZGeAkLFL7timX3ge4LwV7X/e2Vy7u4Q5IBC6HedFStm1TlmG2TIeqpXlDYp1qW7fw4QyEVJTdoXdjZgCsRTMRkQGHeZZpofBta8yIiE9PLyHtUI6Pi3z75uxbvnjxYux7Q3vz5kP5wz95+erVy9MnZjkg4Xs/bSLAtm21lkAYe2OhosplQqaISPBIK6rDh1swV1FJyBE5hqcksQbksJDk0RszEyFzTKVA2th2cM5MTKhaKbHvNobbcB87MiEpAAoGC49wXabMvAvbM7EUGW7M7O7EXMpEBM2MQAkQSBAzAogQALgIEYUZEXHBsEyHzKSkMQYDqZb7lKnt/e5ARuRMEp4R83iY3PP23CNGpenli8+QrqWQ55UAfvjZiaNv/fbpJw9tWxF59ESYwtKTkbiNwGRG+Z6nkxgAw5yZbQzEIGH0zLSIaMHHxwcAeL68rrU+PL0yu0wFXWCZZV/0/PG59+39m9efPz1O5fDt9TUY36572/u+5tv3z/X0snXfd9PDU/ZxOhwxydJvLQnKuvc379Z5eTRUT8wsNJhQAdK8O4AZZJASFa7E7LDR/fvrjoh/erUqCOruyDRNFQTHGERwrPN2fm/hxGKYToxIw71iIQytsrVbkori6I2YD8uxD6taErHZICJWYcDRuk5TRIBnIfBMS3f3oCTPpCACYgaABCFTQABBs9EJzobgNKypVGE5+lwyA2N2c/CE6GGY4MPAHQPYOBEISOepzqejytXGaL4Fl+Xx8csf/fJN/+rd9u//L/9X/4t/93/+9/72f/Rf+YtfNFsMPP2qcRBqEffMErEWEEYBYE53RCxlwjEkEQMoYqp1b32ZZlNGom1Yd+M0yzXZa1VEsgQFckBmLipYKAXQjQKU779qF+QsOmkhlW7DAwKBuRADendIZpIyeR9MylxKmURCRCKCVcp0uG0rEHm6g0MaIrJgKYKZd+BPoTLcMZCIENEtBieLBOYeZpmaOSHLXXUSTsDX820+HePjxSMQNEE8gRmIICJ8BDHUMgMVc7jcPupHvLGEuapmdow8lClDiUIVK1JEj8wczDINH5TIrKIpKBQDcjPfXr38jWmWOsn5eial+xhxWY57bJlZS/nxD768ni/P14/L42NzWw5Py/GhmQ6LzKhVAnKM3aKrTsi4ta0uB2J1T/cAz8yhpMGGiIWlW9QibR+zFhL2Pg6HAyFez8/zUo/TU+89LSlpX1skJNPhdGw2dusPy6Gdn5HCzACCmVNxmEPCaV646H6+7r6XOh2mw95aRghP9wfnYaVqEvZuFcrMZdubnJZGuUeiZXJJQDOrdbbw0R0SmXWu6m7ntx9//Ue/2D9cv3j18vLu3dPDi+fLR5k1AIP58OLx+d3t6XSUdxyKoEQKwAmc7ANS6dmgsEYUFkWa+khlJSTrfj/CtG3V42F4Z8J6oD42pyF1E1nCJ+vS2qYaRdljZ+1IhVmFa+QYtjK0zNzWM/h+WMBj770flqdmgIaj+x//0S9+8hufl6ne9va8b70NwJjneWuGyBEx1SUToDGCEwIz1IkTc12ve1/hVhIkPKucGG/ny+vj8ThadEfIUudDBJ7PNy5xYh0I4G2ayrpvrW0PTyfLuF6vc6laprYPIFDlaZ72vQMxJA4zIhyjd4tSlBKX+Whm5+fnx8dT31eAZCqPD9PX330sZbptnkkpkxO9Oe8/+jOfRtJ6vjxMgkxhvo9NgNa2c1FEUtV7u8PMHCEzqxaZ5sv6jKIGaeEBcPeLEZEnT8sBqPQRQJIoEV6KzPPssQvA0+nhONX9tm+js6iSjjHmZa7me2/MbBa1Vpmp976ufVqqewewSSVGRMQYA5i0TKRlbXvhovM01m6RQgSI3VyEyjwBZIIzs/n9q8iZ2SNFaxW18EAICzN3JK1TWmxtZ5mUyrp93LZtXlRJLucGaHtvWoZqaqGw7fh4KGA0xlGnfr2I4DY2CLQwZCFa1tumWpdp2rcRAUwFI3F0UAALpBS8J8c4EbPQetmQeV6m5SDP794sxyPJSbJPVLP19aO9eHz5zVdnhq9/+OUXy8P6z/7km8LLz/741y8++9Hxi5ct6N353TZi7Pswm5ZaSzBfE0hFF60i8Prtt9Mi++hLXdbrlr6isIEzs1ICREIGSjrs+w6EotpsUOTe3C0OUnrazb0B0WicmIlgnts6WkeGu1hVRTM4wls6pguONdraLsxISoFgdrfBGxCyFGBAB/OgSF83B8xAFlWGALE0xGSUAM90i8xMt2FpkNl9AwxgMUiqoFNFpAgfeBYpTBTmxtARWXkbFqMpCgOENcMEKobe2tW2kTotx+MwON/e/f2/97e+eXv+j//ff+Pf+Kv/9f/1//bf+5/9u/H3/rO/A9LKpOYg4A/J9275CItMNLAMTiTA72cAQi0zMDGSEjxzuO2jU6nOCgx3GcHYTYqkQ/ZAQozRRyMwRDF0ZGAiQDeLMZJEIBQADKCNAYwkjABtuKZjpI24k2IxKQJvrReW7bo2a9C3Muk92p2ZbZgCImItUyB4eO87M2e6FIHINL8f9w3SzHSquw8SpSRwSDdVvu6XV8eZZPv29beXbS3HB0JoY1UkQGSSMcYddH44PjaP5h0U3j6//eLTzz797LPn98/vfvX+1YtPwn2MwUEJEGQADsI+0A1lnpLs0kcRRe8V4cXj4etffRe+//AHn33z3a8sQ4omEFG2dT0cDr351+++fvH4kJmn0ykQz5f1hz/+8wG499ZHAORM1awxs5aaAYGhqrfrqkVUNBOhAxMLiaOEdaiqzImMle6XhxZ62uYAAQAASURBVL03VWa6i4THdbWqBTOFhCCDcCScrytOCoS3dQUARnFPcGitz7UCYTpc9ybmQFh1LmW6to6IrEVV3V2rju6klObzUrd1XaZZRNbrTed5hCOKkvTePUAOJcdofcx12s3CHFp//euv3//6qxdc+Npks806sLy/XnEqu2e3iGV5hqQs29U+9vSguu6ytRL5CHk6TZ8xzPutR4dTnVVobdcGSQRhgziXg6Ia8j7gSmUHXi0uLAOxCSdTMsE0VcAw7wABGMTBEiyWuAYNYNcJX3y2TCd48ckhpG9+K49LKIXyurW37z4C0IunV7XWF6fl5eORFbaxjtwD+vBr+BUwiCgzu43buu/biJQ6PRAX4slDgirybKHDBfmYpAa4myfT8nhIjOfLB1Ekjj5WLDA/LLuNYTYtMxaxhEAy9z5GszHArm0d5Ki6mxlgmaqWcrvdbrdbZk6yxIh02LdhFkjw8uWDTroca2Jgkeu+f7xcX7/7cF1v02G5rB+3/bLut4AMAlEdZvuwQCItKpOUqqpSFAgjsehyenx1WE6IiARIcd8OIkhr7oGsc4KIVq1TILm7cKl1Cofb+db2gUmj+6314dktzJNQPLG1EQGQ6kHT4WiYUFlnSckUX/ebiNzjKmZ2N6h3jxGBwqzCzMhk4SRs4ZCkqqoKiAYZQk6wh28+RsbI7BGOgMoOuI/uSG2YZx4OBxGKbFLseCSLi/kGQPvmRU5M09gNEz59eigY6JbDJq4QojQLVCQrBZjMvZGSTLMjGTCXwqzHh0epEwAB0G3tfXiaUContdvVx0q4xXgmuLw8LBPRT778yQ8+/8mHd6uWpzH05798szYZMf/q9fPjF79xSf7u0v/w6ze7TOXwGMmISGhl8lLM/WbjBtGvt0s6PD6+4iw2cJ6Oy1S1iKoQIRBkRqYDRIAzUylaqpJwECczSAWpW2JHctKeZMCsVbUiqBIrlxjh/fvTGjML0j1P93Q6HpdD+BjrPrYd/fvvhNaShMPdE0iEShEpggQAEP59wMrGaHvPZpDG6qgjcY9o3rfYEDMR9tFvY2zug7UltsQ3eftoH9e8Zr+KbdS2GiF3/3ICATKmEKDE7vvby5uLIU6HbRs58JPD0z/823/3j/6L/1/N8n/5D/5P1+v27/37/9N/8a/8N3721a/3PlhKMN8yO5ERdY+9jX2YjXSDnejifnG/IZxjdNVN6NnHSLz0vg27jXEdbWAOSdNE1UQKQOQ/LRErgngP94gR1mN0s+7WYwSkQ46IiLijhYlohI8xwjzM03wMd6Rk2Xw0M2camLzUFBqRiChSRIrWWesMJGsfl23fzVtgy1whbzFamKVFGITlsBy9jxUgAACZhjsQBoalv/r05Rc/+HJd12maPCORtBZW8Yju3dJIFFC6QRsJqEFTYlmH//zrX0eBH/zGFwM2h82jD46N8zntzLkLQBEgj+Zt9Kh0xd4Vd7R3Hz988cUXf/bP/fT58gE4iUDKtG0bJBIxRi7zDJG99942Zk6gSCap697dfVkWIrqut3XdyzTt65YQmT7NRUTa3m+3rZRy17vdq4xxd8BlWuvxp1UtVb2npaa6rJerSRp6d5MiIhLm7gPTMbzWEu7zNAkpJ0FQ4QJJzKy1JsJmHe/TdYhlrtNcUKjZ6L1FGmJaNhubFgTykQOFwkbs+0I0K1OEplOMHPu+XjJa5PDWcrSHue4fPp6/fT1F7h8/4Gj73odFonbD1PnajefZiOQUfYSpiQRnTKrVcd8aHT0K8qTLfr2ds59eLpTOVBLAwsCxzrL1C2iaj/U25vkUDuDUrSkZIyNE+gKpMRYiSSsZ1tIQCeEhZWLW4SMjqB5GjtPLT959WEVbbxt4zMfjt6/fX6/rjz7/8nCcL5fNKaBIWY6MQBFkgemoI4Z160SMWJJLRiKoRbTRGXDddiJaDj9s3Wp5GO29cHHbIX2ZCpa83W6UpKKrW/hAFRTKxJFgm1FGqaVIBYhbu0lRhBwwcsTWdq0lAjGNlHq/V7Ml3YW0HJat7fu4ffLpi+fLL2IYw8jMZZmqyvXy8Xj4wvbrPFcUbpdVmNoYzNrdkOT+O7MMIGQWjEBEAd22YRaOAITCxFW8RyYoT/s2MpBZzXpmCIswJPp1XaPgaSpM7NkT7hM6YCTzIaxIyADH4xGQbrebqDZvrEAVg72P/c6RcffrdTucHkiK9+YW99l4rZUSLIcI9d4zCZHM/P62klp6N2RG4THsvicmAM70jK2NxCG1oKdo3ffdzDBGYRBJlSSWsWd4TuXx/bvbjz59enjS7fm7z56+2G9rqXPr7Xy57PvQ6ejhGYwg7tB8N5RSyQgQ0TJH78eltJ6AOJfSWyNhpPMdW3M6PWyXXiqXWdr20dr+dHzaN3j5ON3Oc9u2X16viDzWASmff/HT6/BvfvlVaA0iILztmJ6n4+G4UGFDR8g8lIdF5MO7j3yayTlNAaa13RCNVAAUAAiBCoW5R4zWRYGVAsAhPRwICXlYCBUCLqzBxYfvzSqLah3bRYUjA4jS0IcRgZkjde6dfeqX2xFxWo69xXZdYTlmCSTso48xihAxpANRMDPdb8l4n16WCB6+I2gGQAqEkHMYEnDvmQnIUkoBSM+p94ZIztbMd4QlUe75aqIqtTWEZAYYARZmEUHECAPLh/M2LQfsweTR94Oc/uW//Jf+n//h/+v//H/7G//av/FX/sf/zv9k4tN/9H//v756laLHNa9pQ4gTWapCZCQgKgZgIiJipg0oQsLVvA/rVbWeZgPY9xUQMsmp6Ky36xUSSMR8JGCZJgEYBpZhEYH3dg4EQg8vUiIDERLYbYTFfUDKEQ4JTNYjGbgwdCKRm/VgwAQniggwZ9axN4OMRBHB9DpVAODQMYYjJGDi/V+EZQAmgrfWpuPJwpLEOUzknrp4evrBum6lvNoz9z2mZd72XpmZIjOAySBZykhAUopgPt3258vWkQZ3Pi7FrvtmlzHmUsFZdu8ZqWGFmBiyD5m4uQXC7k2Zi9a3H95TYaDsPvrwqeDhcOi3tm9dJnx4+mSabspqo73/+GF6eIlcSz2QVG8NmKbDIcKBxrruy7KQ8HVdLXyapmlafJiPIEQza62LMKvc0ZgOcI+zIeI+OhGUOgfkfDh9tH1eqpt3t8xk5lm0jeFmBKqEzNx6J2R3n6cDCwLitt88k4QsbKy2LAvYcM861yzigtt6ZqZJJypyvl20lmHNvZUi6MEJ1i5pNs+Ku/fto7X9+HDysTqFzMdL3/7w659/GLdYpg45LEL1ctssAJOnpIfkcu6KJGBtqkoZbh2UeWFz2HubD6fmTWrpWEBRDhrd9/a88Hw4luF9hO8+hJTLARNaC8Iy13mRyNgRHYiYIn1SqZQ1epL6sBYISDzGHp5ICABIBtg++exhxPj4fGPF49Nxv7RpevIRv/767cun5dWnX66jpaAg7dczui2zTnVpvoEAATCD2RDQREBhlamU0vqqxBHplrUsKjV0UdUxGoSHjaoFptn2LhOdDvOl77e+q0yUAgHKx4BtRGYkUSYACRfW8/n6MJ9efvZqdNu2zRK1sHefqgYkZLCwcN229snTi/N6ezwevv32m8enV+fzWiYdw96+fntcDss07evOKgTBrOgpQjYAvufQgbsjQ6abGQIwiLJCoigDRIyRYUVKBiEgA9ZSIgwgLIYDMitBzstC6Nd9920vQlwwIVgwbCQkfR9MABJp+zrPByl6u16mw5zoHoYIqGTugKBVmDkBSqlA5AnfHxRgRHaPBEpAZCkkOKwNdyGIiBGDKDMzze/2vSTCAA63YdM0MaXbCulFhGnJaBarKIimkEKwtbictz+6fHg9xyeP8xdf0ml5vF4vtz50eQi0d+eVpqXo3NqKwlTU3QZEMv5pcse3fW/eEZFMuGhgsi8RoVHFHwBoQtrO2/F0eHrx2HaPsffbc6Hx4Xk9Pb4kKpsV1vL++bwGoEogHJZ533eViXh89mIOu2nC1tpSZmVqrb148fjx/bc//c0fI+6tdy3sOZAAEruNzPuhPu/wV88Yw3v0e6lRWBAUAEdLdIiRmUFIpVZlSQgqNYg9RusWHkLKSkRUBRWOIqIihcJ7H82WOtG8RGQMq1IFycwGAQt1d85gZg9PTApgZiKe6TCG2bDwCE9syaHMWA8xRou0hDY8bIzdrdZ5uLrliklSiTgi03IAsM5CFBHZ74gpplo0ufnFDRxv9fRw7VeA6cc/ePnT33p13V69+YM/+j/8b/53X//J7//Zn/7g4ekEzAM2Ex7uBeBOWAvLDHPLREQgJvYMoeIDREhSm3iyeGAgIBckdEDCxw4bkBp4Zlqyu4cnebJWQYKirAQQiNxb3Gta5uHuABkZzCR6zxpC37snAFNE9N6BKDORiYG6DU9C4sRkVQKYmSJiuI0x3P0OtRYSMKtVmcDbPsKXqQrRdV2rllIFhgNlMOxhCInIbz+8j4hb38vh4XTQy7bPU21tn6ESBXHclSfEkpZmHgAvXj5etwti/urbr49L+Zf+q395vV3/6Pe+Q0ywXoiklHSfVO/U8WS0DATPSOBo3mHi04snJxAtxAwBzFpK5rIw0rt375ZpzvTeO2sh0cOxDqNaucxz6wYAkF7rNHxsbReXeZ6H2/Pz8zIfD4fT8/PzVCpAjjAmASBgQsRlmofZ6L0us2IZYyRhMwehp8NjRDjkiEHAEZE9hWSqbK3XUiKiViXWRCDBdV1LrYlITAApIq21fVsnmbuPvgcyFeWstRTNTFZqW89swjqGEZJOZd+20ba5FkSsWra2LtP0MC1rrHntE/bf+73f++Znf3KUarcdcFSl58ulUO3NWGX3PFTlKtZ3YWACKMrBsW8bJR8mTh/PvWmlltmBAMBaJ7c5JLlLLfu1O8Dx6antzjwzEBFYH21twGTDWZIIzHYiZingrTefZMogR0cKzVqlRg4bF1koq5zfffvp08vH6eH1u9fr+XmqD20EFSGO97fbdFyDkZO8j8O8UDaibL4BMiOBADMmhmiOsH2c1T9texP2rCAs1gbAiBwJ7IF9JBMPA/dAKMw82soEnuHugFalMpRwLMtifYSDWZQy2wDWojIB4b7v3WxeprbtBCRCrW2SuiwlA27P19O07NsKNo7T9PTik20bdTr0nofj6cP7N2MEHRXG/qfd6y6sAEEMmQ7OypxJ5j1wAAKDCBKqjEwf1vuGbjPVKtO6dt/bGIOZPQYRMGBAXG7XQ8G5FHPvbQe35bCw4rCNhcMNMn0AEmImBJwOs7vv2z4VhnAARyEWIeLokInzPFtGWAARk4zRailmI2EgRO+tlILIEe6ALCV8AECtVVCsOxJb75QJZhmhtTzMhzEGIaby5XplBESBZEQZkcMaJtU6w+AqjF7A2XP99u3Hj5fzy8Ph1csny3o77xlalxdGsu59Xa1MqFIAc3jue0PLZapK0Po+lZKZY1unaeqtT2UGmoxhPTdRmuenY33SrN/+8vUvfvGL29YS4dXjiz/3Z/78L37x3ccPt+Xh01trBolFZZK+2+XyoYo+PcwTl1nSwvveT9NDGq+Xba5LWzsTtv1cJ5QQj4DMzESCO4oBERPyTofMyDFGH4MRhRiRIAEinYUAMxPuxEvC/T50XldUQmEvTKki1SO6D0ESoQ6QLM33MEcVmRWZETgS3SMCkjAJDZBUunUET/Si3JuxOwQA1DEiI0SICJLu2C61sbkDIkUYYFrGSM/sVSYKv8LYCCBTWRLEPALQEyMZAQSRibsRbMN4N6RA2q7nnFSUfvXNL3/+66+Ept/6ycvD9JOf/dPf/9XP/gA0d/RMshxai7CMbR8WykLImNlZ7zU5ZKzT1PetA0SCqALS6OkIidibRwDBHLlPx8fr+dL2rmViQexZa8l0j3S7j4JDhACIiSOciJDJPcOD79/RMeqEyLTtfVoO4WBmp+XYWjM3EgEiBASicN+sJySZM5Fn3EvA8ySKmIBFSnhAAitFH1vbmBkIgKi1LYE8wxN92NM0pbWvv3nzW7/1W59+4u+ut+3apUyt9yITORG5xw4I2+iV1NISTMQ9uuU2cX3x8pPR+pt312+/+rrKIXKkbyJagLbekyTAiKuhQQICiApP1Po6H2eq/Hy5nA6z2di2/Xq9RnNMKIrWBgpEjGVZHPD8fP3Rb/4FKfV23aiUCKi1bpvFvhPRXcFi7hB5322N1h9PD+fLx9PxxV20MIYx6cgYZkQ0ldrHAMQkvGz7MpUAsb0hotaCrO5JjBBYSnEbd7N1a01VR9+AaFgronGfhwu9ffu2VHl6PPXeObhITQYSjjCIDHMLByEkAgC8kwEBrm2TIioPzHQ5X+a5EFQhaZtlRy2sU7ler5B4OBzef7gAdya8WfcMKAeUoqQIkGaELlVgEmaA0UFIeORofUIg9zEwF5HiE6WvxkJGCR0+vL1gITNLXN1ljI4oBDgvBfxq/TzPtbURIJEQo4cQitKcW3ysVWCMtNyNjsfSW9P07XzhqXz56Wcfnrca88vp5dv370e204vTd9999fTy8d279+9//vbP/9m/AIYKtO2bcKA4i2M7oARhYGJGSyDWSM/EZ2CXcuxtJdymQplmnqqz3Qt5DKnS3UfYUgt63XpAWYQhBlpHqWBja2tJNwif59l6EiWPdiCT0MwE81LvIKJEhd67uWGvt8v16eEFQLQtnQ8uDckMRinYbLXdA8t3bz7WaXl6WMwsA82CkDLQ3VWVKu17d4NSJpZ5XW9BOCCy7YOSaxGd3VoGuw2w3V0q8hgNE5TY0733p9M0bL31XlQfX34mkLavbd9FeDRArKJAwAXZwLw7EkyizAiKzYdgkSQEdEvGMmz4aKXWUCIUdK+BTCO8EQIzyzLf6bcZcPc/ChdE7L0Pd5EiJFQFI7d1TcD9tmmtyNhHR5Jaq4/IQOIQmTLNQ6T4vu0MHAST6ief/CCM1ls/X949X/tXby42dilKGoenw311njLt3cY9nqpl5sdEMEt313pAZHfzMaAcfGw7PkOq6CNh9aQ3by6AH968/XbR+uLFyx/+4PSDH/xI58PH2/j6TVOfbx4pNdga+mXcgOO45I8/f5n9PrAsoo8k1m4jewrOamnRp4n61ieemzslQtRIosCC7ICUGm6WSYDunUWraLfmaO4eIeEyrI/IINoggYHBORGQqNSkhMIZo9mOmOZOiAOBokOgG/R9ZwQpsvtI27UehoXfmzcB5pno5FC4KssYI7fI0CC6u1EDElUsYh+7p3OVTk6+hvelCNwvIIj3GlmriYUn1AYiyKxTay3QIXQzMwhANIaMuKODJ4UOebut3WZLFUbEjplx2SYurdnLY03Gt9GnRMikRLBgjJOezMwHnPedaylMhniv7iCAM/cYWJCSMh2+h4YpOIukZEZ5uL5/X5VZdBsbgKiIEnVzEfGEAPJwBnXoHmN4eGJYBgIxJkIkAmI4YaYQpZub9W5mttRJkW/XnkBSBCMRMxCbGyMoEkOIUBAVZApsW2eCcGcVIAyHwR4ZSYCYiMxAEaREKmQjR4OXTyeU+bu37zeH5emxdVNUBGK2jGQqhqkgce1CpKW2fvZMVWqj4yDb4+uvP45Rb5AqwrVgjhFXrboPdxOYSai4dyiRDOe9P2j57HAA5Ov5/PmLp497C6eyLB69AIw08y7mRF6PtRO36xUCh2UKocLtfHarp+Vw2dcWeTgc6jRz7621gxYzvzNnM3DbbsgEAMRkkT5MEEIgEYUUCISLxzCzTCdAj9CJkQQywpkybY9MWsoJHAiDpcRohACBwJTWfXQLAgEz27pV0YCOHooSdm/SRDiSI02iyu6+uSHLvraDlLiONvZPvvzS1p1IpfB1b0QgUhrHr77+6j/57b9vY11qlpn2NSepL+Zy3ZsjsCTCyEhDEFEhl+4J7uFZyiJchKDtu0nUqtCitx6KdXmIMCbafQQGs3ChMms42LDMAC+Zbh5A2kd6oDABkZtb7BNz25sKJaFOUySamzv7KMQ8z5NUQRGiBotBjuMn0/P5er52LrBul+PxsN22X/7yVz/54Y+OpwPu7tEPU30+f1TciYgkMwJiEE6UkA51EYRgXJtfkFL4CCBt70U9W9OpuAe6EwAi99umWgvR9bYBYXqACJCVA0A7M1O3Fg2QxPcAZc5SlEWEIAhSlNxGa0YEZSq37bq12xMet7Uf5tlJlfB8Xcsk1/1jnevz87tXT0+X7WPiF9bQLCOcBREzYUwVLbf1mgGoquaNpR4Ox9F6762PfT4eMsGHEZENBwjVQjVFPbKdpqN1g0gVnueDDBm9KeXtelbiysK0hJlDzlMlQEqYqsYwZxujZUCt5d35fV1mAcVkN89MVBQRQsxAM8scCCwiAFB0AowIj0hCdUh3p1SVGnmnO6lM6JZ7WxlQiUVkmqbL5ZIQfextjLRY5rkc5Ha73W59WZbeEnGOmlIDwol4b/bzbz9Umed5Xh4/td6itwB1kX349d3a3eZKwmjmAfdl9I7ohUveL529kTABusOI7g6tZ3gsS+597+ZmHXDMx8c/++d/OtWa5r/3h3/4O7/7B0CL1FOAzseTAcbe339411r7wRdfHkUmrtvYGSl7XC7XxxdPA3I+VkoIH8Q4Rnt8Ohzl8LM/+aXozKX4SBFmCPAQJJlnd+99t+622XRYDnJI8B5uSE5wK71LozJhopsXooK07augJyC4uzmZZRJDMAj3UPNy5z0SUeFBcNubDiKZmQsRZiaGIXNkVhEza9FtNAAwT/fMNRkQiBHRo/toiBAeaY5ATCWSCDEAzIBpTiQczoxMFOkWyOBImRZAHxPSMgPLGDkCmSaZ5q3chiVijTDlgpYqU1qWAmEJbncrGgcg5DzXdr4F5NC4eG99MLOITKwMPBwDITG6DxsNMYqqpkaYD8MEwgBCDLOwHKPotG+3PjYuYm0zh05dQ927MBY5bJ6+GzF1dyHJdCRiwkAIgIT0yPV2laKgfIeKsQpmOiQHCFIAcSIiVGQiOaBkugo5IiJuW0NBGwYQSFJEmLmPzd1JGBHb6CqI4cTibiwTMhIgpk9Kj4f51cvH89Z2b8REQqPvMnamaGOQygioyQWVWep0umxr9yFF980eHl7YyCBw7wvXA848NCMDBYW6wBBAxIrKloRCSs/nb3/rN39wnKcB8dVXX718+VLLMoafL9ellMNhLg81h3m0bdsGy/F4PB6PWpiBMkFQlMQNpnrabVzPV0yw3uc6IVJmM7MIO5yOd5wZswLAfc8SEWOzRCDhAChTXcqSmea9UgBwerb9NtUDAJqblNLaVrVebxckul53RGQUyJyqBBEittYmLaUUDlivt4XqcZoBZW+tzPVYlnBo++4DJImRBMkyWcXSsaCqbH0LBEDeRuc76Jsc3b/+1R+39cPYrmisSJMu5+ebTLMkA7D3odN0T9Hf2iq2jTLVZMKCe5ibNR8NRo7kNR+WQ0XkzHVdp6kQcCmBrCi4e7td36tW5uoGpU6tNWIuUvveEGk+PLbRR/TwAPQEA1AzByQqhZXWdWcU0UoMt/W6j/Xp8dNvP3x7enqUfSehdV0fTi8/fPgglI/HF9fz5atffZ1ffn6YiyRt533herldih5FdIyRRgJKIukGhuTJBeYqBJzGAKS8pO3b7Xo4nISpt11EhCAxre1cVAWYSZea5iP2yJzkXpsLFq/TtF6bCjPQvnWcIGyYdRSepjLG6DZQETs8vjpt7TrVamMnjBj74yOs+6oMRPbwUIjdx77d9hf1qdTqblLF3fdurMX2PYMTR2IC03DE5IgQoumwcK3rtvV1L1KIVEWZOW3d28aMSRk5AE1Lef/utWcg2KEWYfTR92HMzMg29vCSkD6cAvreiihlSQMQevHwiopmOvypWoHlnmZGG52BgcjTkBDDixZAGMMxETGBIAmZ78hfJ8Z7oFGLJHh0S4DI6Na6NRJBlSo4Tcv1ehbBTIPoBEuVKZzauj0cF4Qx9s4yqVZgGojb1o6H2Vl6AjODUmSi+26dAgIKkCARJHn3PZwYENHdh/dSCiPC5gAw1xNTdVjW/bqZHQ6LQV8j/+Cf/fGHNx/6Pl49ffIbn/3m6DAcgejjPi7bNjAnXYrOi1S2jMin+bTvOyO9OL4AYyWdJ3XbN9u9b3/xL/4ZBlKZf/TDn3z3+r0bEnNEEgFDWtuTNSIIuOiBsSm4ArgPJKqqm0eOBMI+xj21rggCqQiQ4d0pWD0KqSAnY7qDhQAeVA5KfWzWepZpnhfJmYEt4H4DhUgOwMgOdr/jNW+ZiciJOMyzNa3CgARAGIUpyRPiruHpkSLqBGbxvSYoLMwHjCQsE5NS676PvUwZCAHoGC1w74Y5RHDF0SHbCJlLv15JPciX6TBsFZkQ8bpvyaFVCbz3Xjjva+/dzAmUFdLDhybmaO4AykRQSkEEzAxzyoQEQYQIQAoIYqo4m5ZEiJaco06EnmBbpBOlZ7b9ejtv07IEFwe433ETAoEiAuDOZUoSvUNseu/KwkJgKYQ5UhGACCHBDDEYkjwCEo0ZMQjc0ktYOjFKkX4XEU6Fmo++AeJcJkXYWoO7mIYiMp0BC0nB12++fv3663I8KsnwDgMLJuQAIFVMjshMyD5cQDHLaXroz2cEnkXbrQMLEJ+mCbbemh+5qJaWgWGESUnoJA6CWEVE63nA4/FxKWo5v72cvUc5yL6v0zJjwO12o8gcXZVEqLlN8zTPdW3mGZYhSVOpwwKYSynC2fediPZ9V9XD4XA537Toul4RudbZRggzJGfmi8en27YN97iLAcwjwnxEROKFVQLRbTd1D2BBmbGNuN4u63778ssvr7ebu8/zfF/9hJsIT1NJhLb1pU6H44M9r84R0fc2JhanzExiDfNwRKaM9BwsEuCMQKTnfouMRU+SxX2Mvs1L5R2+/fVXirAcZ2+tbV25CtZ2uQHLshwGIjPtrZVSQKtMU6Eql7Z54uadUJw8ih+gFIHWz3OVealrWw+l9tGsjTLNY1ikT1NV4bF3pYLhe9tqrd0cgC3cEwIBBTKttY0RGNCTtj6eDiffByJE7u6aiBlcacJcng4v93UvWMthYqPr9VpIOMlafvryi/P5/Pbbj/uhvnycvLdlqVPVfW3Wo9RZZekNe282guaL2a7MwoDB5h0DmTGcp3JkKhHu1qeqALGu6zQdh29zKcPNm7MUckXBNqg7mDOiQNTmHoiCnAhr64CYBGMMGI6itRwSSOrEGGZ7SgqjhaHGBP20MK/cLTjFd8sBb75+8+rhME3TGBEth4PnQqNklGkmy92xiao7RBtFlFFG2/zWhGQpMyIikmVcrysRoFQg+PD8UZkYc0RHDox9KhNkCFaDJMUy8b5fSy3dd29eWMklnAxZuVr4ehu6yPBeFUuRoERMT2TmyCyopZQAd0BU2i9XwoKIjHincCBCmWRg995rrelp1tfr9vT0VJGHhrkNG20MVAHkBHBEh4o0AyrA9vLlJ6P16H2eD3PMY9uEASNU0qLtt1HmqR7K7v2yXom4LnMSjn1LxKfHT9d1zUgDHMOIpOgCETY6M//pjbxyKWaRAe/Pm4jBftt7v9zO8xiHh2mM8Q7g+PmP/fn23bCnufToI3sp5fLmZgDlML+YFzNbqCIO78MSmTK8aZlaHxFxvj7Xgn2sD8fp8Xh4++bN8vJ4fFz+4e/8k5/89DcDwEdHACJwtAg0h3meyVEYYlwjerhFCi0MgLFlSQ3DGEESrbUBqYrpCkkcDI6IDAEA4B73jxMB5hgcrqwRmEZU1EeAqBCBBCeFjTSj1XtvXKgieIabKWkl3hkJMT2IgSEJMzKAsE73xos7RhAahIelWyEFQOXCzBBozRJB52pJgekRPSggjMDAwOOWNMyRxCKYcrSNSmKQEQABMERlT2CEPlwIDbIARDMcPoFUZOdQVe+rqhOzY3gAASGRO2COjEi3ovciX7hZgKMcW+taDplpt3cC0S6XUuX0yQvLGJGYVCfemw90qcqEnOiUzAl+tykDId1NJODBnoJBnhCokD2DEQkh0QMDMTECIQQlkpBlpIPIbt9rWJq3bjbCBFgKs0zhgAljpOp8WE7XtgciMUSEjfb4xavzh49a5eWL0/l62y63qiqQJFPCoFJu1kUkUMABWMGw7+N0eui9h0O/G6Ep8zqqqBxKt7GO71VmDAmZzMwInrG1fUp8qsunh4dZ5bKuVcu23wxzXVeRIloqc/RhFj16mebeWhUGIKZJmEqmjS0z3No+bnWeiwgIp8c9jLauN6QMH4+HY2tjXzdC9cRLu4jIN2/eHI/H+bC4+9Z2ghQiTjEfux28R5kn1mN4Cc9EvK5MaAkwTwdAvD+jiLheLssyIeawplSGByICIBFnYSiSjr3t4JF4P1ASJQBiAGUiAEWkZW7h80RSpxb72q+IKIqjuw97+9Wbb3/xTXZAkWj7rNN62wpTEDo6gd1Pab1jJhIWcUGDSAEgWKRSEpKO3qXDNJUQfL593G798Xi4XdfldGSvbQSgTseF2CGTKIQVAZY63dk9h8NptL5vTWdhqIhofSgXIkoHaz3Ma1HztizTvu8OeToe2jAbz7XwvlkiLNNh38uTfvrtt691nucqyIXn43q7QreXUp8epg9vv5kOYojElXC2SDdQ1cNBwjuTEsGdOlC0JHimmSMgDw8AnOYjIN9r/T5sjA4MymXb+jw9JvpwEz4EJE/ZWmvDkhi4RmIysXAC7/vVPUWEUMPCO2pRFKgHvVzPzAzIvLBdvejhkgMAx9gIfZrn7mNrW51rZCYmMs9lHgZIHAmRNQE8GTJJhITCOiS7+XJYCufa9sggRZ11jOEZBiHTrKLHZVrXK1LOpYS7RzpxQNwulyVqZPRowqxFWdX6MBjpUaYDAU4yb32NsCqFgr6fSRKrFkriUgrybWugyUUOy4mI3B0RAwACIzwTPAYl3GeCc10YhZm33h0GMVFwZpLIvg0LkFKvt+aWSkxwqHKgceMqhanZTVmYeXTr3oX1cJiBlDgzs5QitY5wHw4Ac6l7bwEppRTR3TxGACIjM04AIXcSvAiRDB8jRk90QDeXOitmKqMchUxBOLQyexh6QQ9FRKfT41FrNcRh9vF2DaRaSkQmJpAXhd6ukZIEhGxmh7LY1v7xf/5PtPC2989/+OPPvnz54frudDgidUBIJFYWVuhxhwRlDEYqegSF27A2ehBV4cJhNiapUsTH3VckI4MAEMmT4Q7vL8oCHDtDYkJGTlyRpAcgcga1iFIIMQkS0VvfMRLM2I2C43usjQKk9zapAKFFZgJkRmIgI5K5t3ADTI8ARhEAJMKRREmCREmUhCQQkUhtAJJEDuvDIpPYEUcGy0RKieJBiKCcZvv755Wn4zaC2JApMyYn8ixVjLMPR4eJNQJy9IQ07IGJwneCY1IwixBnBLSmylxZidPDMBNLYN5uI1Eh+cPrD//dv/qv/st/6Z/7W//Jf/z6m2/PEMdlqvOhr5scDl9/9XoL3z3rfEjMDu6e4Q55zy9jRhBzAgghRvbRCur3wUbIBDNw52BMIMSgDA6ETAjSVLQYwpiZlFHnwsyRZvZ9E4pQWA+ZORItyCNV7+4GXNf9cDjVWt++fUskS9GJtRBGgIO4BQMzCaYQcSAMSneXEcrMEFp023cLLDRZjm7doyW6ECsKjJB0BE4hUlTSw1y0Pnz++NC2DcLnWlhVlOhxvl5upAwBh8PhYj5G7C1YjqeHzy6X0eL88PCUme7ZWpPK1aGU4q3f3xsiwsz/pSUlejsuByYLYAC4v9PqYT6vlznNrKsqIVjvlKAI09PTm7evx3WdD0dCBMQwcxsBwVyYcV0bMIvwaI0ZiUCE7rfDDNBaE7lH8ly3bohcDwsW2drqmFPVAePu33ZIIU4MnWpvJoBC6NyQItO9x1ynpS5/9/d/Z71+8N5Y5hi5950pkWya2Zg9u5sh4lJKgA4LuXlgJKL02z5roeGLTJi6ol3XvmUv8wws192LcB/u6Xv3UiuD9DESDAI9TAIBoXtD0REjMfpoqOD9HtzH4a5CIrTMlcBH22udenM3YObregnYHEx4nk7MKpfzs2FMy6GeHq9rnxa+tl2KMM5rv/36zesf//CT8vAo3DEIAXdvkFRrJfDW1zuxi0gzPQAyBmBmBrJ/n3dJWqaH84fnopPKU3ovyswMhMPsfH2elmNmAtyIudYyWos+OFGouGMguEW6MddlKts+rBkisioCjjZa36eyOGRkjja0vpxRaL22rTmPABfN8/nDx+tTPRxQKdIAwRGGj0hAO1mglAOYm3Xh6HuHdHR2y33dpCgxW3g3KyLu/f3z+0w+1OPh+PjyxUstl63t337zFWM8PiwfL9eimjx5VDMpRYggIRMwBZc6uQ+jPXyEU6ncmuf3BxbJTAA0zz78WAsyR4BHpnkYE+YYcWcSq1TEMPeTvoiIdW+JWCadDuV6OzfbCbPWmtltZHrUWtgSkOpEt8voA5X0dm0CrCJt37JogvSRvDy6261vUxXvMCm4QSZlMCSpFIJAxH2/MQuEjRFFiiVgZC1Tut29b8wIAHvv7u4ZRsSiZiM85uVBhHrziJRot7EpT8t0DAfISsyRpjoSPEYstQ6VtEaFdZLm3W0gi4V3D+EiVEaPo2oy/fhHX5yeDqL6r/7Vv7b29tv/+T9imJATEd0HAJp3iwRHYm/mAXy+IhFB0W4rL5C69TwnTZNKRqdEBPXmsDAmQCApRqIDsgMCSBCGycSF0T0ywREO8zQAeQBEB0SkEAjOgYTGjpIokAEIlJDuscdehrAKZqQDoTBrQgYAsiCYkjRPH4DIEcmonlaZgtAc0pM4DdgRW+7MBMgYET0SIJEjrY0OJCNdeLJwlYpBxNDXhpqeNigV4FAqM5OBu2fivCzE2vdVRKpQ2/bUCgDhfq+ueOw2AtI5QVAisdkAB890SINkqdttmyj/rf/Wf+ev/yv/td/9h38HLrfPT09fVN1tpMV8OBWgf+Wv/Qt/4+/8/V9894aRagYQdkhINkTLiEwFAgwLS4pMQBUgGeYICECR5uBO2SHRAQKLJbIMM67TvbdKSBhZC27b1tpQ5VJKpt6FMQbYxwgYdD8SuWMkE/36Z7/+rd/66cvHl28/vB8QpMUAw2wCLFWu+1onzUiwgZhuoxOWIm2/EZUibDaYkokMo9kANFYEAwtHFV0minFf/JNnmq3Wx/7h1q+q2lrzTAbo2+ppkG3fUlyxYB/w9OLLj+sGWY+PX4guMa4J3T3LpGvbGEst83oZwjhGj4h5njNBtYwx5rnenm/TcsyIw8Ppcr15RpV6vl6Xw4yCNmJiZiJv+x2pwYgvHp7MzLsB8sOyGHXrzbm01kIJGEYfTJDmS53u2XVmJSK9u18FVCd04wkxgcIT8jhVQonhqpwozBLZM8OGIRKMZFaIoKSx9ft6S1X/+I//+Bdf/zPPc/dVpiUvSSSM0fve00UqkBBSRDCBWXcLiURCUuEqUaQggDuY+XXfQenx6eiZ27ofl2la5tH30+PheDye1+16eZ6Pygijd9ISkQ5haZNqsxsAUeVuDbLcC4UQ2WwwqShs+7lwEb1D1Z11ItURidkcsrcV25gPRy20zI9FD3/8819va2PBzAHZmfNyuXzzNX352eebP0eEFtSqmWnZMYFY3VcAI0kukGSt7wispW7rrlIRYAwDD1VVLvM8367n4b6vGzAdHx/uA5jY9kRmSEqsLApk5hAYnsO2Za6kU4weAenBWszM+/dsGjdwolrryGCJgHK73WxsUrjwtN7avu9l0ufzejhup+PsMRCxNxNWUEp3DpaYiDPDCUdEApAUVtVt25IFVZBZITwiHR8OT1szB1wOp+Hx8fwMEJ9+8vnz+X0zCJZaFtja3oKA2x6DiDExEtLh+y1pHo9zG12quBvy3VQkw42UHdAxBqYg6DwjRmBiwYRIgAQADxVKzBi0RUSEJyPB9bqWIulxOi62NbSgCAZX5lK0G2zb3vbOAGAtOJjIPcxcqm4xEGE1O0wPiJmDAsSsuZRhwy2lwH8pVRW5k+HVzProIndhXYwxGAkRPSPMmXFYuw8/SAuwUGREoIGbhXmdlAlTOAO8D4vvOQBJnNnTgjM18zRVd4fwdQwX11q2LQDmWZmZ3ey4nPbLc8T4o5/9Yl60TPL5D36Ywx6mYyUBpBHjvlVs+8gELuQRKkAskOxBKIQh+9bWvUUiEQHA6A2DlSqj7NAyAfOOECYiZAS0+6DSE8TSu0WZCyFvo3sM0nIfJisBQpTpnsby3jsnKEsgrNvuCXPRYcEAyJTpCOk+HNAhMSUCBIHCCVBIgJgIFBXChlsGkmgVdevuCSyBFIIB7DHMnO6zs0q7WRIZRJHSu4kUIj5UcaSIACWBjN6CJSOYJywYxGvsm7fKXqH0MB46VxUkZBwU6ZaIRSs5etqwgZGKJQHNYQ97KPPt+d2/9q//6//O/+h/8A//9v9DY/y5n/6o72M6nJ739batn776pCRMRD/90Q9/9c23fd9pqkqEICEcAX34CNcCZt8XtB1AVRNwQHAyQSIhkwZnQrgDE97R6YIUMAicQTHBzVNUpBJ4erghCyFDAEZ4rRUTPczdpagwpsc0zWP47bq5u9YpItreFHlIYkQigqd7ohMJTFqQ8rZenk4n762PHYBRGBA3u7KyaoHITOXCjDKGEwITMLOQCyJlHF8+/OQ3f2IR69aZqNbKKG8/vBWmvt+4PCTh1pp//LAlvfzsc63y8fo8TWU+Hq+X3SAfHl9m5uW8KVf3UeuptW2qx9batg4pGonAlAhl0tZuSLFM09Z2zHSLeZ6JxhjDEFFLejQ3WNfWWtUy1wmALpfnsDEvNchFARlQaGtGVabDggm9d/dkptY6aiEWC7DepiLRRrgzM2VGZgYI675ticwLChGEMYObgWXfV8ysdQ4ukX3r+zTh2w+vf/HNN71trz598fr9a0ShBEcy1t4CQBCFRT3ZMoYPg5DwIVwwggjXtqlOfQxUJlDKUSKd4LlvD48Hs85otl2HXVXmqhyjCedUK0YOZFEeNoCCCHtvU1nGSATKe9lRaeyGEqLU2m1ZjsN7JJRJtrb7gMPpcdtuwlymg1v226hlef31V8v8+BtffPb+vPZ2zdwR2vF4uJmPW4wbHl9+um7XvfcROxExiWBBEOGemWP4SEfplsY4Z2pRQuQx7k6FKCK9r0UxwkoRSDcMi4zh6/XKrKIMhGajKqqAXZsnJutRZkRnyBTp9/nnPPfet77ubZ3mAybFiG0dmbmPnXU/zZO/Ov7iV7+8a0nIl33dLpfb5XI7Lgfhwsx970hiPQB2wslHCIoSCwZW3tZ9RD/MhzGEiLbRkURV+r4+PXz54TA+Pn9VRdq+Q6HRb8txZrHSubUhUvbuYUlptdDoCd4QYnnxNE2T9UaIAbRe1uV0XNe11opEwwaQO4QblDpzpZEQrdPdyS6Y2O97I0S0Zk4DCFnAom9bmw8LBtnWa+GDVoxELhE218nM0vz68f08L4fKA+d7NXaMhkSO90KTpSMqAdi23dI5HZCiUK7bJrWg4L32dH/0LJIjmPU+1IJIRiLRtHBM0RKj9W6B3odHemsjSzIJJKKDgylxEYXhRadA6D4cPCB7xNq2OpeDlrt31vZWk6iWEPK2cWWCkgwEnB6RXkkpctv76WF2a9va1vX2t//Wf7pvdigLdEeGGGkZpdY7pQTBq2in6Hap0zR6tg7IYjsUfDGrbQbhXKoyill0G4BOTJAOgGZdmAVVgKFI7zsWmabZr90hGRE8W28PtSYERA4bbmtSAgSglSKIOEYnllqrQAYkowDh/Y0EEMMskUWl2Y6I4Y4enIhAQAiIEhiQoRgBzW30PTNFlGIanoOwE3SMSGAgBdipIpEBKGvivb020h2QQwgyUTAhR/ORlgMPizKU7j7AadYWMazhxJOnMLbmGWGUgeAAMJK8WboSk3Ak9N1R5HQ8nF9ffvyDH/4P/3v//X/0D377q1/+/NOXx0+fpvPHjzk94jq9KJ9V1V/97E/evf/Fc8+dkIukUBvWeggXZV2IkdGzhdl9IdzdECBtUAKKEiBkBkQmRgIAJjJgAkJR3fedCRkSM92GmyIwE3mMdDCCAEQSbzsLEpNIab1DpEOk26c/+sloWxtdVbd9R0RFLsRbjN1jWo7NnIgIYLhp1dyvmtDWG0Rn1jYagFr4PaThTuEUFiWJmDCDWCI80xN8murYVtW5rTc6nU6nx3Vd970dZpmKAMBIMG8ih4fH5ba3AE4a+zgfHpbnD33bPh6PDwD+8XqZp1InTYNlOrp7LQdz1LKUmmYWnjLXEQ4E62VlZq28TDMmpkNb9zSXZUHM3nsfvZSCwhRcpgKAmEiVqaJhRpoW/r7rXqi7ldC2t1qEgEXEPIYZAN4tk2t3Bkh3gEBGIsp0CKmowwOGQ1p4n2p1ZyUOGr2Ze2z74MrucVkvf/LLP+q2PL548frd6yo6uguweTAXFqrTkUrdRh8+LAMEVUQ+ESGh1ZwYWIpBRklm3M+3CPvkk5fuPgNNwufrh+PTaSYZ0SeGMRwpI3hLA0IFwRRG6m2UwowRA5Vmc4BUQiEEmh1w7P0mIuv+AYGVFKGIiI/cb8D4CIHmK0BfpgPR8TARoy9L1MJffXXd1j7PJ29c5FFIL5db1ikBWacyMwCMPTxjUkItS5nNd6cN5eRB7qnH+Xw+M+PuvTD1ABWK/TZGp0LmwDwps5C4+NNh3raGpKPvRTAyNzNHIkhgS6LrehEhZvZELDKiN1972GGeKIwCBLVU2du5zCFTHdFfPep+O+5bmGczIJ4Op5fvn/u82IvH07qtpUxAoFUIY7Rb4IV5JkoAMgsAESrd0YiIgZkADDDLRCNuniunnQ7HF0+Hvl9fPh2vtwulPDxMW+e2x+XjNgPXItm7AGTGvEyMBM4Fq2174HCjEj7XmZhY+br3UiswrWMQ4Xw4RnPEuENLWKRtjpGKNTOjA+F071fMdSo62zAhnqQq8bBm2RE5gZhomDskTnNHhIQsQEDWTGUxs1rLeb152nQ4BOBUD+3alHGeChAAT7l1YqkHfff+/WE5ZqYgQUKQ3i7X03KoOq37VmtFgsAklohA4SJzaw2Zxr4DYyAAgXevWikSIrsbIlLYnSJlAyKGqDw+Pt62K82FmLGHg/cEhFSaJi2JxTKS2+hNkSDIwpnpYXkUEhLu2QkxcgprAkwM1/UitYrKbbQUQvIN1mSYa9EW6/M7yxxRehaUBVLdALGCFBaJ8NauoCg5Fw/fNhDFQErmQo4mAfVYz+MawyZhACqIp4fD9vzRvN29wvf3rEWLNBK04ZAYhMQEAZkJ6SyYEcySjoiUiayEzGDDMpgFhGxkZQHk8+06GBcRQVrTnVmAYQQkVExBAvfuTgSdcxAE8t4tEQGzhTkjZWJkIeRMypYMvHsU/VhMgRZXdMd9oNnhOPGsA/O67QS8Ro4x5uXuIUhGYUrETGQKFC2YmQ2+L+R8XP/SX/4X/+2//t+W7frrf/qPDrL3D92sH+fD8/n68fr29MXL9NghniG/Pn+cToedsltP4mQYMRCRHYqoxy4RpBIsCIJYS1EfloAZQQ6JOKOAhbtnGgJrFbChGBmI4Yg0ca2gPfr9LxcWYlnHnpSlzADQRj/MUlmst9M8XdfNLu+BhVXWtK6SETJNNnIOTIo0t20TUiCdtOAIily0IgMCAxAh7kBUGCC9GyYkDMwBqAkBBMwYARDCPA3Ec7v+pd/6CwHy/N13n37+w9vlukZG4UFSlbm3uO5Rg2jRWa/75fBYiYRynudyu7ZpOT0/X6o81lLadpkO7D0AgEQQqd9FDRDIwFxtAHEcT8u2bdbbPB9s8N4MU5km4dpac4dpWgAirntltt1ve0PheZ6JyKyHkA8nAzIQg8PpYV1XTOrd0iMTiYUSMlJVAzDApjrxVNq2M6DWpUe3GPPhab+dw7pyegwL2trFEh6XI7BNc4HI0/H49kO/fjj/0T/79etvfznX35zLSRHs9nGead1HOJfllME+QoIASBIyHIbLGl6C2+geUOskrGmW3T7/8rPvvvn2fF2LSCnz5fk21YUc3p+fD6enlBkpiFJQjmW63dpUDp6ZLIGGORBURHu34/HFtrZIIIY+9oSeaZTECpiQpJluDtM0AZCZ1bIAzq37cNtu70uZSpku6xkZdZoCOQGvt9vpcALAdV/r4MeXD+t+dk/38fDw2LbR+02wWGhkeg9IhpRMev7QECfR+uL40Me+b3tZpsOi27ZpJbqLI4abeO/dR4qU1jdmJBWz6D2QOZFbG6jKOhGTD0dWStzWgaizTODQYygXy3HbN+VE5e3ynISlTm5t9IFQFJWIbdzavrV+BFwiTHV2z9Z6ZUbQaeLeGwvc1QvzrIgQmJXYIAUViQDIc2xr65tNtVrfwDdIm2pxm4g4HJdaMZo80fvXb5CnzDyxOOK+7601SIz0ZaqAMZW5EU8sSOwA03wgKeGhFS0i9t374AAhcgoczkXcnRIJJYNGUjoG6j4iwgCABWWaLRxI04EAWl+HmZlP0wSE7jlsFNFMVC15P+2OwcwMGGZtuJRK4IzivSehzNpaq0T7vhNia+3uzd73vSjewx0Ofh9NEwJkuvuI71tVAEBEKiUQho1wx8gMi8hSKpKMMQJhbRuC1DpDpIelgTA+Xy9FGBJFJANba62vhBK4swoRWXZzX+osyL13glTVy8fz4eEwvL9//16Ji5TI77Mn4SGiidCHmZkW3saOFlRKAQonc3LwJDccPdJ7cCgAJdXMZA8hlUpIRHnfzGcCciXFZEEGTEJmSsB9dJE/xZxCEOQ99Cp3dbtEBOT9gp8RmYiYHgBgFndab9XSw4kLFOx7A4da5qJsQYFwfPzEwgDSIqTUMca6rovWiEC+Xy9QGBW5hyUgAAAGAN0nKJh5D2pkQjKRsmcAEghHJqn6IK7U9xYe/XlMsAThwgKEAoAQfW/38mh3Y5Ki6tb3sbZoYC5IAGJ99difz79+8/Znv/0f/t0nHPWgRWqRg8Jyfv6W+PT80cc4//yr1+9u1806qBMWZd3vE3kGB0jCMfbjNLu7E7iHewIYERFSOiBwsDNSDFfPypqEmG4ZFsMzGVGChEiE9W64AjLIEZ7dI6PitPmuqrWqu7s5AATkfJj23n745auP799i6w/zct1vSGlmxBwBYSap6EDMgZSZznxnU0MiB4QjAMLAAY7AkxZIG/e9PdBdaqksQPDJq09fvnr83ed3tdaHx+N4/tjGPs/z2vfezR0jxvH04uP6/nI7kx4NpNKLST/1zn2/Tctx1LFePwB6nabWbh8/vn/16hUztTaE6hjdE2qtnli0ZMa+31S5CEw6QZI1E9aqAknpdrnclmUihtb2aSogmYgkPE0TCpt7Znh4eqKHEAiRUAFAZg7z9GDWUgokMwNquc+97Y4RDWMkANj3vdRp3/p1uyKDexDcU4RIpAJkDq17qdBaK2XMZf6bf/9vgtNPvvwznHnrz6BCQrvjcNZJLXL4QCZkQhKm2Hdz6+LEuwckC7GiKlcU7L2bxW3b59kBpJZD73vSnZNZ+8geYzqeEPF8vuQ0SSw4mBgpLTAgNT0hBYm23TxBGRCBGaXMjuLuI0f0BkULa/p93eMQg4FG7701LWU+sFs73y6YTlRffvrJ9Xpd17WmktB2bQD6zeuvSUMqOvh1W0uZiIUUY2jbg7lGYA5E0rnOCN5772vH/z9Pf/ZrW5fm6UFvO8acc6219z7N90V88UVkRGRmRTmzOjdZVaZs40QI2yU3SEhYCBmpxDV3wA23XHBpKK64AyHENbIwEiVK2EZClkVTNlVZkZmRkdF97TlnN2utOecY4224WCdr/wN7a2ntOcd439/veSpTFrd+ufZlmuf51K0JKxG3boULFY6ASMxMIt723cBIKJEzQkT2PlS1dReqjMXDl6W2tnnP+TA323qOUhhRbWxjb8fD3TY6sLz55BPWre3Q1gGJw3aC/PI3v/jeZ69roXV7qWUmCkRRVWbsN107wnAnAoB0DyAcw7lUTkoMTCxlGmOkdxURiMt6jYC2dkyaDneTzgKMB/N+FqmXa/sgeRM5g+f98X70nYTmZSaaRgQCURIHTHXBBO+7zsUiIkyEOCEzgNFimHUEJqoffdSGmalaCoE7BQ6mYMX92kspCFwEwSEwIsAsEiEDIckDCQAQ2rZnpqUhETO3MQigUA6EWUi5DLd9bzdTig+vtd6UKUWZaBp9r6IJN+I0BaCDE1BA3g4Et1cMi2Ihdz9WnQr3gLH3Gx2QhQBACidCBgSMNnZAZ8DwYeDKSkAOJCKaDAFENMboe7sNUSEywMYN5Y3Ywupy6Oal1JfnJ55rYL+NDSkoIFXKyLCRvQMRuzujEtOw6BFAzMjbvrXRQA/IOcx6u6mzqtnqBOjkGUCIiZmJlPvluSs6aTB4hqpCRLdGEJCDUIT445wtCRGQMDAch0YkYnzkSAAlAGGYmfXWB0lp7pidiKUunnDZB0JKqQCcwW1EhyBic69ScYoIPxwO1vtwj4AMAAZGIqaMnKgYJCJGIiJwIhVSIhtdQFAoEta2JvlujXh5uj5VKaRVENOyTEIIbl4II1xYVNWTwklBfXNIYFDBHDFu8e0+Bqb//l/7yePl3fuXbz//4fdq5bH3y3nr+2W/bp1jdP7q3XuS+f6+fvGzn+qkayIg98iRgIh5W94ibq0DgCMEIbAkUHfHQHRMTgAQBPKcgZHECTw9P1KekADT81bfyozwARQB4QSeiYjeOjP13gCQUaoqgbS2A9o3X394++ZV1XK9bt6HsjKg6hQRCRmBsxYfQ0nNzQn7DSIKoCGcTMgaREjDASESHdPJkxgRAxjcHWkiUJIFoZxOD69evSKCh7evL9cL0oQgl8taKiGKOQbjCD/WElbn+upYP732fe9b0rUoD7uqatvOiPjwcLdtVxWej8u+NUuapsXcM9EsEJNIMACCvXVkXZZD65ZoRcsaAYht35mRAMNyZNgwjlRVUl2vFxIkZRiOTA7Qzcy6RVS+DVj040nVjUgSoptpLW0MIdZbXMljbz2DuxkRiZZmnZBENDNtxAhnqsj1ug0phwx4fHz85S9+9vL47s3x9O7pK6ly6TuXem5tx1y02nUrpZSigWE2ENEZgItgkX3dFUS5eE8MV5KbTu4H3/9R77bvMagX4VpFKFGLBYtO0exm8LY+lqoezlK8OxIWVQAMAxW9XrZpmggz3G4I0GEEieAM6TaQEsJheGciYo9xYaBjnT1jnqetrdb2eZpE5n2Lu+mtgj22971dj3e5bs+506+/+M0PfvR5jnjz5pP1ZSPI43xnFglJRBRikeZdFBlhKtQSzTsjnU4nvNUrAIULIiFib42Zl+V4XfcxRibu3Yhxno+JYWaZ6DcvGPiNuo6ISMmMmU5EzFikXq7P3fZlWZLLJPNuxUGva9Pjm1xfRmvO5IFKUep0XR+fHt998smrp5dzQGjVvq+FqzcSnjKDiLVkZoYlookokovIPhoAeUZ6EIaPXg5z35t1r3WaNV5eLncnHmsnkWh+f/d2az28FyjLPNF8Wl+eC9ChLgSwkJaloFuEeUT3pARMyEzrDoiMpMpo4eGIkJFHxfCwthkaBt3OIujp2TyNOCFQmYGTEQk8egoJCQlKd0uEwGDWFBLiMA+MUgsHRwQx19uCOZzRzTpBRmRE6KTEEJmqiojn8xlUmEiJEfG2lAYhRr7lZomRgAHgtrEroqi0t1aFijCIdzCRuVtHx/xI7hG+gfVHiDBADHO+Obrdo3sRKqKYN1ww2WYWoZVUCTLDEhj2NvrqOk0ACACvX78edkWJWRSRI8AC3dMibh4nc80UQEqAZBAhgAJUuL9k7gihAkV0mWRf3c2Bb6nntEhlAgZBIgIUOSgfix4Iw40zPDLMIxqhIKUQMyuAYsTtnR3RM5CZiQg84pbmCUTCaZq2thORxxBVzyAkgvBIDICbbVCEmSdmTFchi4EISbhvfW+bRyAxpkOmkjpjDzAzmRQSEDAcIIEICYiFwFOIE8AQ7qZpj7FbZOZSmZD3rbFOl/N5GeWwTLOKVr1uK7EgF1+bAGtyWzctKICMMDKtN5EiRKj8j//zf/KP3j/+8H456v2CvtwfYX/f3F5/59W31wsdj8rT42X9z//Lf7TIHSBSRrcQVgdLAEDsYaKEOQVCpiUjsmSCjUBIIUqkTE8ErqLEzRoAhg9KIrMRmUREQkAdfHWbVEqp6NYh012IOKD7CoGqlRkhMimIQbmcXklrDZShSBS2NgAAzBGxqA4CLnq7iqclEVFSZtLHQQPBrX2XOdclwwQyw4EIIrv3FjZN0/BetYweH96/PD9d7+9erfsmp4mKrNe9mwtJ0WKjtd1YqQ8/r1f3WE5vwwcj1ToDQYSVWokk00Ro21cWPJyWTJyP87ru5+tL0amUeosgFCkCyImRQUAInN6FeLTet51UAGKeD4hlXddkOi6nzBzdGaIqs+q2bdO0ZKb7EObbw4CZIbOPQSyZCICEQsSJAeanw51ZJwh3L1wmxb01KSWZuCqHJmazATaAaSpa56mfzwhYpFyv27dff+XtWqR7Xqdpua77Uu/7vvG2f3a8L1ivSqyaEREhQIgJxNaHEJEgMSnlbXCXt7jBGJZA5p6IkahTva7n41G5O/Nck9Z9J4S7Q43sLT2TNYpFK1oBSJD2fSeVZVYAC+tEEAm2ZziIloPeO3nfdjPXqZTCqrxtBm4ZorJkxPbcIu2+LAzYt8sskw8ns/v58P7DdR8dUt68+ezbd1//5tfvfvw7Px7dI6AUaX1lRFZUJsCsSiMM4LL3Jii353NkJqgnUAJJ2beuqsfjUbettYaiiDkfD23dylyG99YaK92cq8rCwhFDtUIMkFSOvu9MJlofz+9ZpUzVrEeAG7kR66Q6Ocnluvc++nDRiumw9+vzeTnor3/587ef3BVl91Hm6TYuBZQE6mMIgAgmJgNi8M3CkQjuzkxF9enlCVlUZyLJxLvjMmJc1vdapj6282Vb6ql3Fym+DyG9M8WzqaBgoTZqLUje12fAdpyqY4RgJgI6BGamAiEjQQoCQAIgEydhdickRiQSJAUgTiCScLu9Kns4RBBrRJhZMnvE3noiBOQ8Lb13dw+HNlp63OK8/8wGyiKjdzN7ON1hwhi+9S2BbnzEm39mnue51FKEEL2nu4vwyDB3Vk4EAMjM2+SZ+dbJTCQsKioQMQhjmSoiJgAiELF5R0okSUjgCITbMFkOS997ONzCupkImZg5rAuzWbR9gKIwZQYizce5Des+iupHawXDSFPlGG5GNnIbFonIJFSZa0R4BgJpEQRqI30EBtVak6mPvXB++uazp3h5froMkSBCZsgERRoAGJiIYyAGu1RAc5AABkimSEBMyDAzRGbSTMyE29I33AEskW/FM0REVUQX4VxdlcFiEhrhvV2HudZpnqsHuQ+3CDD3jDCoOqnsbR3urPR8fpqOJ1GSgTepbRqMsCAw88xkUgS8rQcQ0RMHAYXXeQbLiJgR7+7uHs+9tZFux/nVX/rx73zzzdfbfhZCErr2fT6dztd2uV4+++RTAXp+/+57b98+n7+xMA5ctIY7ERGXPfr+YuT1stI/+E/+ixrXv/w7n09F37179+mn350rr6N/+eWX/+Tnv9z2ngKtd5oqehKBICciEbo7BHRAQnIgB0CEm7MWkQaBYGJmd3Mlo9xsqyQcIIiYSJaJkZrGPiSy6OY+Wk8HFqksiGCtz+X2tsjbbydg8/Hh+cPf/ht/o5Tyxz/90+XhYQyvLGEuxGADhAdYeBaSsB4R7FKAHG7zB4yMTEoUR9z7RpiiolQlJTgz9gRKDBC4+V1qkTdvPnl8fH7z8N21t7kuM1TcW++96lSALi/n+e7ILfeepDkfcetPrMdlWpzi6akRZqkFgRFv/jS7Xjcgnud5mueElhlmA2CoToQUw82GaomI9+8fVfU20Hrz5tV5vYpI27e9NcBIlhHsfbRtRwhGmAgNSZB6mFlMUyEACncPjwgAEgbADLTwAjLPS2vNWkdMZPQIy65aLYBV177bmpahRKwiyj6itT3A97GfDvNypMf3j3/2s59+ePdYpLatu0E6YBIDpg1Ib9u5LkeAbGYBXor48CJkYRLetBCYmQWLIqOjg6Cyfv3117VOTMqqtep2HaUcyBOBKfJQarKL5mZNisSAxF5nrKXa6MLlJnScBLd9TUzRaiMRuACmY1gWVdZwGAG5bRvRLCIY6pnbNup8bA0BUEVyDMLrpLb5Os2AMG3X47aC8Pz0+DLX12u7/PpX3/7g+5+eToeX58daOB0pIbkhqOhE0CMbUxBAZKgWAHLvY5hKrYUla+/tsp2pEiZ2a3vv+9gpxcFVOcwBQoWE1cxugFNIx0y37uGqGoFMOZeydw+KsBw2Kh9IJ2u979vdqyNaf/X5d3/5iy/7vru7iCOGWw/w7bIHEHFdr6YyrbuXQqM74I1iFIhp6ZCZxlhKGFASoRad3Z5GD53nIBzetURB/+zzu6+/2q7r0xi5BiLU1rYAJwKrCJHbWCuTFtWZtUgfcZz5uFQL6wyIWEK8OQ4gTIxM8DDIsAi4kc4SD5mElCwSDu4+PBg8kpJuiyvoGaUQYIQwVbEefeSt5igQTmCRVXk9b0xYa4lhBFBFM7N7JpAHbMMgEgCSiQAsBqIgZkSs60oJo3fmj7wFJkU0tyBJBCamm9pbGYVkQLoPylRhgu7uKuV4XN6/e0pIRCIiQCQC+viiwsx0QijKVCBDiYoUBk6PhARyViIQFgEMpvAxgLCodvMeg5mH70oI4aqSgG107yhZitRMHBlSNCJSGYMy/YYUteZjEKEyou8DCpZSAfzp+d113aZaLT0TmNEBRjhkRAILzjoVBEmmhAIMnhFBBMiIeTuQ3DKuBICZSZyS7ERmEZYeKSqAAEmednsQIyJB2tiBbKoECBmj27CBSAVLwSRl7ACFqRCCsAg58yExhYlICSyye+69NaQomkF4m0kjZAAxBzEyTacTugVgglWSjP7ui6/v3n5vOb7+l//g7/y13/3L+8vl//h/+N/Z2BCXoORS1u4O8qPf/Z2/+4f/ja9+8Wf/1//4P/IdGVr4YNKpqLu4R0Ri5mU/c8LTV+98e3448G/+8eWv/t5Pvr5uf/LHf9p7/+Ldu2+2bXn1uplZjHKc1utGWiBTAAMALITUbbTuIoyIGRmZAKgIBOhgigKAm3XLBIboLQsQkhIX1eAIyAYxIG4AT2ZU1YLsnr3b7RuYduNGAxKEeYAnouj81Tfv/vLv/OTt6e3Yx8P93bVtATFGVwoPG77tPaEs5CDEkcY3LTEhJAQGEBAHEQZaRO4e5DdOCxgwMid6REyFIMbz02NV+eH3f4Doad7BfMDwsfd1HpLdICyHMApilCplVpAY3veey+n4+vXrbduu1ysA1izTfHg5v9/7+M53v9t7H95YuJSJAHu3dAsSs8EoJAUipoVV1X2s22W/NMAcTix4d390H88vlxYOmfNSj6d5W5sPIwjzrsyBFH1EH8gYTAE5MjgSwgXFPWLfp2kCSAKKDES6uzvul+v18hLEPgIALY1Ftn3jjElYiJmZCNzW63bVOq7bN3/28z+h5DSZp7mPx7vX5fHlEUX41bHPGuAYLTODkwgG+mbbSAkEGe1CJBAUgYUhY1ikZwDR3etlv+6EXAj6us1St+e9TlqKgEgE7KMVgTG6KkXsEFx0tn7JUAAANGL0SMRgYUQESLyJ2IdD2drezbtOykiB3nvv3dBFhJz6Ol6AiFmuzaLZ6eHBAYE1MxLo4ZOHuu3uwb58++23y2lpW/vZz37+V37vt189nIZtEgphmAmB3i3QAZhRiRAgIvA2151qscinl2etc7Bf2rYsi3DZt74cJgCgvA3OYbsO5aIgHo5cEERVrPePdzUbh3lu+yCCu+MDvmxt77VoEaVEcF+O5eV8jv1FwhY9KMR5PZciDLAc7tZ1VanXy3h4/brU+bLtxKqViQG8I3ki9j4ScUIivo2uqIfVWoffQFB+3c9zleU44cSAbjbqNE3VWo95LpdtrzIcG7J69wZjWQo2Hm2vjjFSpJQysUxb2we4uTGrCErhRdTdE24hpiTmhLQE1kqjdmut7SIkSqIilBGdSJmLJ0YkhLvtCeFoaO7p01Ru5SUf41ZioUxhIki4bWojEIlZIfpyON0/6NZba60qMyTkLaXSp6mIlHXdb0yizPxnZVlEJoGAjxEfZk64FTOQAAYMQlTh1gwRiJEZdWIbbjYCY65FmJQFIauU5t4jkaht/fYxRHPERMpIR0iq2JsjUJEKOTyahwPi1hsJYwFBztFV5LJegwKyMAjhpCjBgNEIw9AhGxMyJ2Ds3SqhVAGUl+talIzBzFB0JKCWvZsiSgYnBuIIR2RMQKCAuCX3EJAYLdPdCRAwb1sXlo/T5oxgRsSQIh7kjpDAgESQnm3siJmYdZ7TiEoZsUWmhRsmEqpWqTwczSEYYlgPw862N+GEKt2sLoexN8ooIMglwYkkBTuhSqVIReaAgATSEAnivflEjAjj2gThr/zub/dPQV99+h/8D/9HEP7Fb371//t//xcX295+5zUWMYK14yff/d6/9of/5u/97k/eHKcvfvZPlXyq6bepQ0Dbh3sisIUDwoJhbsdPjtaZ0LGW/8/Pvho9rjAk8jnQp2mTkENBp2u/UKksBEiehBG3qi0iHqfKzDfGOFgyEyML4ghizMSYlCKMHHiaMNIiHDIzIiMzlagQZSaR9Bg2eifyEZikokhYsFoM98wMALRIknI4TZfLjiCfffrdX/ziF/u6ASUxMHGCBQQxJgRCEIlMc7eRTA6OBAQJlpieGAg43as18xYZIlSYmdlJcbMVgeaplJLbdfvhj3/w5vXD04evTqVuWzczUQmyRJfKNoizttbMXZOR5uPx7ba7rc19eIxSOaBvq8/zhFxLvS8zfvPuvQidTqfWWma7aQQZmUlw4lJKRIwIrWVv2+E4zae3X375pVYRhQg/ny+I+Pq0JOG2bb2v1w0jIIk9UxOURSr2bWcgIgKmIGijUTgBM5OqxLBhRoyRNi9LH+u6rpRxdzzoXN89PZeiw4MYiWiqFT0z0ga4t8w8He+tjy+//PLx/dd10knp28cviXO9moCNdT8s9zm6jbEc7tz9FucJjwKUbTCwsHhmiM4gDBBmFgiRZomHw3G7XFRgltL2vRa9mxcnH5Ee2MKA+Xg6+uOOHhKDADBG28dheUACa40iMZFvmvHwJMpIAFhq6XjBEhMzK1y3TWQSKZzaIEDicFfO1wuQQkobfZ7mrRVg4FJae4yw4+nQYrz/9tt5un/z9ri2fnd3bP3685//4ie/+8ObL1cICQlAIkjrASB6c2CMsByJiDxXZgYLJm3e6lz6eU9MT2tjZ5XRd9ut1vpwf69CjKRcELz3EUHTMiWAe5vr5MQ2gEi364awTHoAxxwb5NjbWnhJwfv7w9bPU2Hro9ZaSjkej7Hvl+e1zst129a13T/ghw8fTg/3za1OGta0hrsBMvFMVDQjwdNjH/ve23I8phsgAo7pyCpej8Q1lQvHUmR69YovF+uB0M6DVp5BikIvMNr5w8vpOD28ejhO876vhnk6HFJLb86TkFYfrbXGzixTZibcGt23H4LEUiYcOZVaCyV090ZkAAHg3tyN3FBEVDktSZLgNsqNyuLYq1brQ5Aiso9Wq6aH9V5KsZ4fsVjl5rOjdW9AlCyJg5GYyd2Fyxijta0ejsQMAH1rzBxjOCQz36apI5JvpBD3cGNmZbkdrI7HZQzf2zifz8uyREQbQ0SKSLohRGYSUe+te6gu2fNGO0wPVk7McGMlIALCsNjXndFUNYMu15VLpUKZsbfLIrLtOwAQFsRJoIDhMHcbgUNLJREUM+sQiZSVYFqm4fxy2TKNINzNieZShwHVOTHqvksCQpIg5W1+G2DBCcDCdWJIgjRviZAAU61uGQGImOljuMctCR0qcrvm3g4tANB7V65J2WO45RjGqkFERYeFcukB5iFaADkhk5jnicO7DwGKDA+QUj1jkeIjERASMaOUUiZt6RSMEUpMAJ6RSR5oGfM89/OlSv39H//kX/hLv/tXf+fHlvz/+qc/+/mf/copzvv5n3zzq+nzN6nszcFhO/d/6d/6W//NP/xvff3lV7/51ReP799pISYTilRKgLY1RNVCfdsDHJzu7k/nfeUZkuQClGXSZVmv78flZT69Ch7X/cqQQuQDpruyd2cWzwAgEvQRLEojCfJm/UVCRkYP61YFAcHAJ2EJoshS6+Vy3TGVxTGaBSdMBCUpR+dI4lgxiAQYFYkIxrAOjgy3WIPWAo4WCaSQ46uvv93GsKqpZD4OWqK3HXyA3xzp5IkAyLR3MwAzY8mJiCgxABEQfO09LCBUQAk4gyEDCIlKhu/73osw2bY/97ES4/pyfXh4eDy/eNo8T5a2bTsGYHJvptOkZW5ddKMxbJqmPvZ5Efe9zlTqFBnb2pmncmDPGKPpVN19DFMuYYkQo+9JbO4AlOndGiOZ2XW7TEsVoXW/qqqqXq4vD9PkEZmeGIHhBAhMQiI0RvNmvrW5Vo+IAKxSYV7mg3Xf9jYpqAqEA+CkxWO01jhz0rKv1+FDBLs3d0BnIlDV1hsBq06iWsrUm708r7/4xW+G7aWsBlGX1nYHrDfOmEwwMg7T0voACGT2cOs26TSizTKJwB0CEUoCeEAiGcRyfHW5fqDVfCDMoff+ZE8thFJ4sEii7RNhIF+33lMS0OBuMjnWh6S2bTk/HMpB18uVhBae27bXWrVMW9uxyDkzx9K2/f7uyC7oaeZ6BBQhh3RYX1L4PjMiG9eBBdhfzMKN7+q0DbFux/uHejj+6ud/lskqMyUXWGL0b784398dwhrNPPpQGNAbR/IkI62nRELRQ5G5XVrGmA8TQBjvAFDrwrT47tVLnPtpmnPJdbTn6yVVN/fetmmZ+9hLqdf92np7dXc/+m7dDgdt+6rCrT324WWe3HOFhGnaPWvuZBkoGBnePvv+Z4Hl6fGSULLIOkyW45dffXN6dZoOM1LM0kZz9NLXKHVhRiKBkH1vzCxaMNvpfnq+vMyHqfv+cr6C4flle3O6D5Gnbbu/f/X89Ag0VruepruZsOikqnsbue0q8vrtm77vtdZ1XaeiKgpeFAlzgY0mOKz7lpSDx26DBdCwchluDlmXJdogi962aZoQMIKF6na5ihJAFvVkpiIwcO+2ExPwlNWjY5L1UZjG9qIivV8wUssS3XprpRR3b96llghva0cKGHYoBIneWi2caIBIrGYdAKdlNsCPNwtWa3mYjtE7kpMAF/A0gJilQKYTtDEskqkGDNw2ER3MXBSZMVOZwSMi3aiU6eF4vFzWI04v4xnQpUprrflQIrOtainKDDg2KoDgY9w8Jy2g9zfzscdme1KpTrPQIuW47ecimsCjm2UioRGoLubgntyBaBFVCO9ji0DnaGiI2GzIfGwGZxvAEjB27Mx7Io0EG6g6s0wxjFXb+YlLYS/NzwNWgq7KLGidCheHRIcAv2WikjHIr9t+nOaKwhIv1xcM1ULu525c6z3yNHxvYyDXscfNBQSQzOqGmTmJRoT3/W4uiUIcCBl9sAGwbHzwYok5HSbeztKDu09QlvCN8xHbMutMNZw/ufve9WLfvHzz2etPPr+7/9d+/68/UB4iTOjHn779s3/809/7F//G4/Pzn3/9xXQQPrzp6B++XX//d//6X/1rf4DA83SQN9//+Rd9s4fXekIl72ciwFwj9t6AHChZ5lcJSpDR0zFIkdjW/i25Lcep9zM1X4yRyTJqmbY1HAAxhNl7i+4PhyXM97hEkHApt1SdpydwLSCEKNmsjQY1QeIydpiLOLWRBKwkkyhirqMFK064t2cWi2gsi0cBR0qkFEzcx04SAJt7J8Q0gVp+/pufHcqigoYGNb5d3x0PBwdZcFqvu1EZXKJH2QcWHZlJGjd8IjF2YoPKlG130B3haayH2QthDp+8UCqwap1Fy/ry7af3d/fL8fpydhpfvnwtSsjMRgWXy8v+6v51PU7aezci4KlAwHZt61157UN8TOhzIPZwA0cG7+2oJ9Z57NHPlh0PemDU3nsp9TLWOhckZ86tmSUbT30YQFnb5aBFp/t93aYyM8YeOIYRToUYewWLUisJK7BhG7HJQa99n8ockORwV+/2vdVpYal9byKYiQHes6dBqiKXy6Udp3tErIFCbhCjOyW1ffTo3fuh1nZZtVbFcn5cv/rFV6d6Us3L5QXhEDlmnrwNAG1ehvBIefQmWBaomlB893Uscuw9BECGuUpmZgQQIUS8vDwRUyIhiXle145IRNysHacDC277Nh8PRDyGEyohg+91ntzHsE2m0vrZw0WDCIoiTTrcPYYIIaKHlzqBBXgkZ63zLd59I2hHRETeEpbEzChgiaiqYRGBHTA8i3dP0DeffvL8fM7I908fEFEQxode5nK8f9jWJ3dDVla5tuvdMs1TsbBlnl9ersrMFQtXjx4ALDUzM/ByuUhSLQUBLJyERBVZwu0mPbycr2aGcsOIR+/mFpngfjtwIgaJfKw1ZiIyESEz932ryijYfPS+betZC+27EdO2rQsv27YJF0Eao01TwbQEOxzmdV3n+9MYI6Mj9cS0CBYUEUgkOPTrapYIReU0WmHR42G6XtfldNiehzCdXzqR1FpJEr29en0C0fP1Wmr9cFkZafRQMLa13P5cygAHRCkTQR1k1gd4CCiD2OhGWbVkpgj1vooIC+77QCZi3lsjCEG56ds+rhw9DICJxgC+RYeJ+hjmIVJ6eCaUOgMgQjKrMpJIErhHRCAiIQOTm/XRqk4EdPt8S1G3FEGzIILj/RQeH2N2HJ6JzBDZRh+tqwijRAwwX3jZs7uhoCoVSIhEZU2KkuIaHvHuw/vz+YoqupTltFz31dwRCUQJyRLGMCIiTQb0MDfr4VyUSXuaxTTCYneVag6ZCDwHQWSmBGNkBoIhAaQgQoB4grknuTNzUYICMFoGoN7kwGIEjhBALTGRmIUhgTEhzLyPCF8Ab4FYJsUQxFu6FjkpMxkpIjCQCCOBgAC5MIVj21OEGY+ICJ7IlUWQOSOFC5M6BaRlIiJaeEJAAgJBGiYixLa2eT5gQqRpQb/xxqETMxAQRFVe6AaHILKZMI7H+enxMSdWWf7pL7749LMf/eRv/ev/9b/9d/767/z4p//P/+zdfj4t9z3y4Uf38Edf/YP/23/6yW995w//zr9naX/803/09Nimafqv/St/+y/93nd/8Fv08z+Dfi3//n/v3/5f/M//Z69ffWaWo0OENUOSKmUBAUxsPIyic7+1sS0HAkPBhTl8KNXLOBNhZFp3rRUiYYxa1cyIAJkvl3Uq9XA4tdYy8haHBMzbCAEBzLq5AaRbRo7IQGYAgrwVNKCNzgi3hjpRCWBOzMyIYIgkJkAkMHMpGhhEIEhjDKLSe3znk8/ef/uBRFT4vF9rOSGWsIFSmMiACKoQkJN5h2j80ekdEZgBnuSIwEokOOwwV8Uk75UYeudCjMCEkBnDHh4eSpF5KWvrmFluDV0MSK5T6eOaOc1z7et48/YtF916Q6K9tzIvYwQjeYQUTbf5uHz48OG6Xtz94e5OWQw/ehdYxTLqPJHSvu+FVIqMkXtfi/Dd3R2m921X4WWazGye5zHaNE3dfKqHtvu8HDJzdGu+T7NIKXOtzOKGwDh6pK3dhqchYu9tmcsYkZmshYhab+kmzMMsIkRka72UoqqYNkbLtgmDYnTEZT6uu/2jf/RfPV1Wb10HNAMOL6y9hQdmMrkAUBDP5VBKaa2Z21wlel+3l8O8SHrJ7G7paRG3ClpoUaYajiQ1kq5XRyqZsO97KeV0eni6fh0NpuXYu6tWSDosdd/2Hs7KQLG3vUw1IYUAYmSaD0cmIoZMSkCPpVR3v7xctMi0VAP8i5RBAiQiEooyA0n6uPVezPcMBxQiyZtYuM7HB/r1r78oOk2lRISZv3+8rmbHpSago4QFl7s+psS69QtJLYV2SwXoYwdIYGh7AoEUYUZMDIPbA9w9dh/HearzlIEIe0RwrQjKJCAowsI4BjSzGNG8lXlSmfbett5KnZmUARFxng/pzcxU2Ub77d/5/s//7FdI4WG3bRyR/PqXv/r+Dz8nygH8F/o8m2odbex9JQ7RvN0Ru1kkRxBTWdcP7iZSxMtx+SRppIMwZJCbCxQQXJal9Yu1/bpu83fun7fr8e7k3VuP4zKVUolgmuvp1nWznoQiJYHspnmXihAYSEiKCQZFNTKCVrehxEAIhJNOWoWERzNidk9zS6Rb7NwBMKGUUplG25lItY68+e8iw1mEABBxqdXHDmiMnhAEAMGBQSTMlGFKEkAQHhhEOayJiMdIACB18CAfo81T7XsLy9Pp5H34sFpmZhaU3o0sqhztpp3BMsZIB2QIj8xx8wu6DxBmKQm0tWHuIJqZzTyFVMQRRwRDQGSEBUb3KEnTPIfFiACtvW0E6aMzEwhsPkQoICnx1kZJBCJKjzGi2wClUmikwYiEhM5V5tTsLjNVBYWEcGdHJ8VEtECMBE8iRkBATHfrY9+Ig1EyE5PAw8xBcC5z3jbYQsMCAQBE6eaar+lKYR5jeBMhFLTRIk14DiDPcdt6ShEKdPf4yBEmULQG3dx9RGCCJ0oiBqRnMNykfKFcJAdZeN8bWQK1q0/zsXuJOP7+v/g3f++f/1u/88//S4L05d4f/vK/QO0l5sMYG5b88e89/MEfLn/pr/7lz394d37xL3799Pz8jHg4TvXhzf2vv/ywbRvl9Ad/62/+vb/39/73/9v/zSdvPq1LRZzIym7uPI2MMTrSzskpVgoBgDt+rIn7bt7NDCBHjAwWFRueBCJk1ltrgpQBiEKsfQwPQsRhg93/Qp9NY6R5AgATEiShMGQmGsQN9YCI235VlbrMhXC1HakgAZiHh/tWdFKpLbpjIlDeYNOAGOw9p2l+8+aT60vf2g4EkJpB4dr3SMwxMihIBiXectcTiQf23iNcS6FZrftluyyloKREqIr3C9mYlwOMCPLMrFpa28xs39fzekZJ2skyKIsbphkSLssyxtb73s0C4fRwMmQSvL+7az2u6y7MMtWq8vTyjEJqVqsiYq3Tx2Qf3QBowayjDy4KAOaDHZBEKKqgEoMNBTpfr9P9CSBHa/O8rN2hj3VdWereTfwGmYGplmEjM7dtn+rxvF8nXQwDxRPcY0zzTCmI6XYDY5FoqQoESAyjNUREIUZNAvd+vbwc5jJVnapez5dpOl6v1y++evf+8bF1OxxONjozxtiV6nXbkBWZvEcSZkFKdM8eHml7awvHNBFSyOWyLcsUMVrbl+NymudL2ywDAfoYkTyCSYi4EEXk2Pt4//jh9SdvR/i17cIlM9veSQuiJmYghBkDKhcfe2FtW2v7EJ0JcIxBgHOpHJSYBIicmdmbDQhmQQaIREzCjzhfTApDZCVOxQgyQHYnC/exR8DbV68fHx9rnc/ns0BBlPO1e9Iky+FQr5fnu+PU9r3b6pBU87y/f3X/dqzNjfZmRetcZy7cvUVEZoAlOAgXUereIdHM9q0ToEgBit5NC+777sMYZ2UmIncEluUwjzEsPAlrraI1PCEpM/e2H5dJWS6XCwBh9u99/80f/dHPSpnu7k/bupdSrtftuBx6b5hQtWx9G7Yv83Hf91qoTiVguHvrgFANmYgAeuS2Xp8nWmJka20+zqM3JGEtb97Wd1+/ywxRHEb3p7d1sUw+LifwCBufvL17/+27fZO5TsK0I4RDBFIUd0yK4Ya3FaeA7QMdRKQPa3DboiIrR2Zbd1YBpPXae/RJJgC0cCBiZY3YhwdSRKZZYmJGBNzcq8FUpik4KQkiW+8C3raNKGqtiIzIGeyWhCSISJNbACSRMDMyiBARqLJnXLYXnSQpbTTR4oYlJYa5e0CO9PCUWkQKI1Eo+PBbGDSAgAECMx0sQbbRByQrSRULv16vt6gqAbS+oxIgAWZCbj1umm5dJh8Wgc3YBhJBYjIjcUQYJCGH245eMdCD3ZGIIjARe3pdDuN6dRsspTJH8nBpMWgkGaITFY0kYkCFDC6gmO7hkSHCckM8MEJGuptZgSBFG1a4IEREyM3bfLu5OjISAAoyEO5umTQ6uCMgailmhmBIWXRWoWb0MYrHRIAAmAjEBACEwYQ6ySzcRs90ZPIYABrAIoWQEREsWbiiLBVD8bq/n3S6bv308Mnf+Vf/7u/+c3+z82HQNDwT7PHx/eefHB7m+7T2ez/6veOr+a4CEIhG20a7tu+8vX/z9pXnOB4qEczT/fvxcnl+98WfP/7tf/kP/pN/+H95/PDtPM/mjshAdKt7BcaCmu42LDyIkRPB3RISgaXsbYAwmEthT2itUWWtApBCyYyATKBm2T1EdNLScLslI25XavdgQUgCAEi4fVrD7RYCHeGTFi2kygDR+0BJDCRSlExr48YjU2wwSCTMb4QMgCgqZr637d2HD4mx9cbAf6HiZuGZKUg4yQEiyThTiMGcb4y43HO0pFkI54m0J2DEcBEgchRnMpf0tmpZhACCvvfZ5z/60Y++/PI3h7v51atXz8/n7XJF0UJldE8IkdJtdPf58DA8Lm0dScEDUBNhOhx66xDWfbx+eHO9vICHx5DDgRmfnp7nedm3VnRKcGQyM79NvSKInAAJjEHaerXoRZkJzHakjPB5WSICSba1lTJPdb7VIhLBLT1MiN36Ms0eLkwWKFyidx/uBm0dRMSsHmY9/6J9B4mgRQ3T0tDToz3cHZgAIyMSiLUWneWP/7P/xx//yT99fXe4Xp6P87Jb9JGQEUC6VFKK3hOjw16k7L0LRjJstmnhuczX9SKqOtcpkvtYwzzcJVFYkShZXN0dWRbI4TbM6HCqrQ9ue6lzZiO+jSnA+piXaV03ZjwsR8vcr1242p61HIx2InYD5SIEEOlmfmu0w43vBLc7YKRn5A395QGZrsyIHBgAmFjSyTMyvWghhesmYfnjH/zW5XJpl3VZDr2lRVqL60u7Px6O03EfqwMAcxHBKV5exhitTDX3xGAAiqDue0C0sYsUVdVaEHHvzTOIeZi1tU2lJLBHllKYONFFlZGIqPAEUMw6MKUjMEE4EP6zzgc4EsnLy8ur+7u74+HD0zMPnor+6Ic/+MUvfrVt22G5U9XL9fzNV9++ffs6o+9rIuJxntxb0QzA3ryNMU3zMhdL2Namqufz+Zuvv2SqIrKu12FXdbBod8cjAV4u30buh2Mlgn3PzDwej49Pz8fT4dKeHl4tP/j8LdHemzEiYgYwMoswAJl1ZU5igCBh9oQCac6iipgZANRGX5alTvOHD0+I7HnzsoIDRLiZJVJJhHBFkMIVyRjCh3IZ4ZAcYxAKAmeOj/kjRLcQEQD7iMJARELUW5kcwOOmX1JiEgEIVe29IyZDpo9MAsxMPz8/RfNZFjnc3Edi6Ou2L9NEAd1yLq8c0D2CgIhuZWViQGUABIcYfktrT7WqkPvgRCUu01JrHWP0YUSkpACA6URMyjEcAwUl0lvblaAgg1KMngET6421n8hMQsKet/BjvngLSkoMdySpWklr8w7tGrfsFGEPI6ZA26E94IJASgyUjIlgBOg+hFAZj4cZxpmRDJgAmUtkL8IAgQgZnn7rjyWQJWdkR6HsARAAwUyRnmhMSGhmDYIRMzCZOCLCjSJFCCmHD4/BWoTBIR0QESAACYDYid0dgTGcgRShIE+o0+vXhPrjH37+J3/6hWD8lb/yu3/0579++3pC3L7/vU9qPRbK7749ImZijN5fVl/Xbewj+lT42Np2er0cHurxGL/88/bVF+vd6dXD6fDL9WJ73h8/+fbrr3HJsIZS+9677XUuSlhQww0jCiMDBgFkQsTag0tNLGZdp7nW+vT8PB0mEfIMvB1hYkxahAol9UhAcgAgYkxmSnDvA5AgMQkpyfOWo7rpmY1FKCwBVSKhbfvWRteluMEAUCCRQhk9cmsdqyYAcgqBxM3IFYDJglro+LCs/SJVzutVSff1nCh7OKPHcECDcEgmlqLsEVUosW5t39dn1bosEycE4cCk8IJyK96BwzQdADkzbQy9hQrRt23LDrVIgkOm1gLJrUUCjhh95PIwdYvD4dSSh2WkPTw8bNvGwqSiLs8v76dSVeV6bfu+39+9Ui1MuhxkDPcM8GDGaZpuXpYxvNaqRN6bFg7z+9PRYzABFiGKdRtmVkohJAB4eXlhZlEWERGKJB9m1iNu+lEDqYfjnVLtfQhKRM6zJuF6WZmZkRCJysRFA6H1xpyRlhmR5j28O4kOoHXv7tvXX3+5FEq7TmTkW/ZLPZbR91TYYFNQFpjnSYnMV/CNgYFymmiEX7I3GrLMpY9NGe+Pp1tHI733bZMSERTZm8UCBSM+Nl+Dw+P8sk1LIOHhMK/nl8M07dYzR5nUfDw9Pb1+/abM0+PjMxedmUspQDz+YkQTHkU40zPY3VUQCAGit4YMjAKYjAQU9BedzM0GABOpcGGE3rv1FhGV7sfWl2XaAgqXx3cf7k5vSy1tP3/95bvXd/eH42HslAG1zhDR17boKY0ghclJY4x2Pj8e7mYU8fxIAQrvQLhZP50OvfcwFyUhJkSM6Hsr7EWEkSDcby1JQbNofVdVEdn7bsMQkWjKdKICyEA69lEnff3wkIjb1tLteFwSpLWxrfs8z+u10ydlqrquey0TIu7tOk1T5YqokdzbQDdk9thYlhwwyYmmaNf1eDwS57Y/Pbw57e2ZkWqtynzjzM6LXLfnuujxTi3s/vV9xv54fh9spAmQXNEM3YeqEWOC9QG3XQi4jDaKFoQY6UjpZul+vDucX66tDyBC1rbvFn57WqVDIiBmZOcIShDM3tfMdL8xizEhbvuIcMcwEoxIRhotpzKHD48EIPcbeAsBPC0jopbJzDwib2U9AB9GDBg518kzMeH+dMputSqjtN6HdSqKzMHd0ItQphEM4mBIIGSl1t3HKKXuNhIBBUGCMrfreRLUm0rC8gaSw+FgTpHCRFXdffQxmt+aQAhJjNECDLTWdFLgyJtCCJERER3GLZAakIiqRS62MhMzA3EPW/d1gJ/Nh1I3d0zkDI8baoszbg8jFkwAIiQLIogwlgSIUui6NUCaivgwAoCbeBGTmQHA3AkYIkYzmgoJF6aQtD7MfG+7aEAmAHoM64FSWTXiRonJwoIcSkgMQggEPIl5TvXQPXrvtyN1xDZ8EMo0TeTZfe0WDhUUAhZP/vKLD4dyen14tW3rdz99WObyw8/uXr+dhIERzIDU9309zQuc9M0bWq+2TIftOtaLTMe99R4B1jNHPtydTgf/8Ov5t97+1r/9b/67/+H/+qdji3Xfkc2NGRktLNrLChmWMbJosntG6z0JEZfo6UbDETF9XTMCDDxvZi5kpAhsbTjh6ElazMJ9IHiQJ8DHnhGmJRACilLcoJ6BJOidSVI40wADkxjzNC3DHDEJbvfeSihMaYAJ2PpWhBMi0279QgS4XtZ8+5aZ2ti04lSQFACDZFy3RkCTEFENJA466uzcbPeMIMEiCiqZ2PYdGQQLKwEkAXNGNhcUYjVPs76366dv7pfDhICXzR4f33/3s0+EYd/XPkBl3nob3R9evxox7u/eMMu6riNY64FZtu1647Rfr8+nu9P18jJXZciMedv78/Oz1uW6b/N8yLSImEpt+8oCosoiYxghu3UkYOZMFBRmbNaYwH24u4jUWs0cMZfD7O5jtLlOvY8EC7dJy8vLy/H+zgKv1zb6DkkQWUuJ8DGag3vaoUxCZH2M0QLBE0RkXV9KlePxNNYNg7bWqkwDoKr88hd//qd//Ecw1rnUDoMhcmxQbM8dp6VOQghjH62rA2Cw+sJBEZEgLb1LiXIUHxciJtDeRwTUeZqkEqiIzMLJCdSIHW+rC5T3798vyzLN87Ic97GP0WrRbVsjnLS4R4Yx4fVyJuT7u2VkrO2SiUUmIl7b5sKHaR5tjGHCXEqZprKPK0DOpY4cldU96WNhMTLR40YUz94HoczzjMLujpJ388N1vUDCJ28+vT+9/vnPf5OWI/sy319fvvnFL371wx99Oh2VzLbtvWia2bIciWi0psQAyQIwhg1AEBW6oQna3pKQlZ5enquWqZSIvl3PtczTcjBPiqEoPrqZMTOkF64iAohmZjZUmRkzw6MByL7vLFhKEZbnp5eHh4eIWOoE9/Vyvj6+nD1Ai7jFhw+Pn7x+i4cpBrhYhNWyhDNQcc+icwdK7AlRp3KYyreX6+P7d9PpVKv6MOEyHRfVsu+rKPfeGAEgCGGeyrZf23aZjwdHZKa+YwYWndexT6pamIts2xAVxKylXK9X9yhFMgagO0RS3oibHpEQ170HhaWPERZZSilUM33rjQmVGYhKAkYPs743IEhEUHYgRoluyqJcWhu1Fi3ZRm97b6NjKkRKEaTb12BEhjukIbMQAd4+XUMSRsS51o99X8RttD56USampUzePUtpYXnjEEgCOGGKwBhXTwCkpARWKeSEVFGAAjIJDocpB9nebtgJ9yTVm664984qt3YTp2JCFfW0DMMMzw4AEDdfBtpIxGAQAkoPFMeA0RsRQd5aUsERd0ptt0gMZdWKkeAogNu2jwyHBGdlFEJoTRAtDAPgFqxISkgmjkzIBIw+WoSbG5JGWgQR0808HTkiElAznYUhEpETMCnC96ARmO5ATgDEXAkFNZ3x1vcgYEwooopAmMhQCJh5u3kKiASJiFQ5b2pa0H3fc+yAMNdCk3inrY0LfPKybr/9g9/+t/6Vf+Mnf+WvNafDaT4JHw84F7DuAFiEbOBcjyy3mXY5HjEMDgfVAjbozesKgdv5q2kq23r585/+fKbTP/4vf/Zf/X9/eqx3wuNQp90GgRFLZNcCIRCWaNm9o3kgZAQCtbEDig1TFh+dwOai+95LrQJsGQjkkG5ARIiGSLfjHzJl2C1CRUSESJB/cbRC8LCICEeg25ISMqsokYxuSazJTgEKBn7rwRPzNGtzE5FSecIQCyGO5OaZyLdGg/voY0fMvu8BlAQJXXhSQqI0dm/WBnnst7twggNGqQpJHq3FBkxAkg6JGU4EDMmOFBQ6ce/BDKXy+29flsMkr9m87/uKiKoiTLUKCVoAsehUp2lyGFVqJLbRPI0JMrMqQzoz2mhFaxXtaBkfQTfn8/lwmAsXjCTBG5ktEEfCzSjqnt2CWcySiKMDKfbeCQQTwrxqcY+wAeBTVUiPtNH3u8PRh1WtlCCkWjx9d3cAJMxpmp7XS5mmiUBVOcnA933nqWSmaj0cTmOM56fz/eEIaa/v5y1iOc22r7/85S8FSUTRDTK2rXPRHiMxEgZmycjIYU7pwOKTMAaamecgTmRgRAE0QvQwMxMU6zeKfbHWAWiMLdJaP6MBlgIYRRQREflyXrmyWQgEE2gVs31YY2YpHO4imNGSAcKZddvOUqqqMPMI3/e9cGHmfd8jbNguRaTy2AcyuPutkUzASJgQRIRAvQ+LKGUyC7Mspby8XNb1cjzNyZyBb9++/fOf/+Z0ug/G0/1D2y8//dOf/cHf/htba0Q4FSk6jT4QGSITcCqURGU+tG0Pa8kyzGo9kEpAAmOt1Ydtvp7KvJQ6mo29AVNRBggbjZmnqntv+747pNPNnAqISAzhSYyQeBuc9pEGvUjFpIhobZyOD/f3999+ePSAaSr71jDpcllf3b8lora/iEitS2/JWC+Xx3pYMgBJI3zYfrHnfX/yeElgN+xrJ3gLWfbVmeZwLNVuQBI3K6V+59PPttYOyx2LvbxcDmVBw/vlSH5GxKnUdT8nDMB5jJjrwrxjuLDtYxOhPkYSa6lEACOJxLGxUjiUWTPQfZhlrVVrQQuP8LCInBCCKSDWtk6HIzF/eLqIFA5cpLTrBYAsfd/WZBqOx+PRR4SP3gcpR4AoFeUwdwhhhnRiUMREFpYbqun2se9tEEstnMPaaDjS+1juTiKSwqCIpLekGZgnJAABklkAJQoiQLcuJI4wRl+W035ttaqP3seuUpmRWQEgAVXVPUf4LXo0aRFmt2QiEirCl3UF8OEdkggEAm7jSEwDEHAqNBGTp7fo7u1Bp5X5Oqz3vUdP1FvLkRCEESwzOmvljOu+KzHrkjkgMzP+Im8O7sPCuBZ3r7UO3/d9LcS3GXu4laIfB8QQ3kdSiE4RmESI6eBmO6AQqjC7hw0kyqR0H4kiIpI8zNy9CAsSMQVEpiPRstTmVom4aESYYzp1T+Vyu/3ctAzeoLf80Ma/++//d/87/86/98995/5lzXd0efXp/J1JAmJYqBDQABBWBgSzJlgDMr0guZsziypAECN89v3T8XikjHaZ/+H/+f/+n/6Df3h5/jCXum9PQQ0pRLn7vu3nw1HMggAxAy0xQURuRQY0RHYhvjke6lzWdbUxXrwh4nI8tNGJyjTNvQ9l7omMebv5hg8hMesAICKJNKy5GQGpCN84REiZecvZ9t4ZY1gyExk7NIQEJIDoHpk+IY42UBDckj+OjFTrdV9Fy771x+enUooQd2uIWJiaj5vEZb+cA226X6Skjz2QkIXYAc17jxjChQWqE6WHQzonsUMCSbfwbfvse9/Z2ra2y2c/+AmBRxoRMVOEqdaIGMMs0LKt27VkXQ7HMcbLywuwzIfT+/cftCxaNXwQMzFu27UIb5erzFmn+TYpDIAy1YSx7/vxeEShRQ+ZcdlWSwIH5sDwDEBELQuG79vOokwf4bK3bzUiEmFmMsltCAThtdbMNHOVCskRpgKqt++92bjMc+l70zoLT635xHSYZkCc747X6/V6PddyZKEIUJq6raLsvTHT4+Pzz/7kT5+enj5/dUdolIhIEb5dBs9zII/WGbBOpaj0yxojI3M001rm6ZDZ92FS9BZLdxWRoszqHQiFAEMULatRmqd2KGG4SgTQ1PZ2fzr2kcRiRh55mO4v12fgrIclAG7cuTHc0CQPlqEiENnaNk1LInfAOk+9dyYrE4d3ZiIgGDCRk1kRHW4okARt3Gx3NdGOS71ez+vl8Xh4RSiYvPtmDI0QmT+sj9M8f++3P/vw/umbbz4sx0Xv9eXZ/uTnf/Zb3/+cO637ONQ5nHq3qgvCZIO3/WWahXDO2JmgTLRuXbTOi7ycP0hZFBUdMLGPhplFiBm2rQFhXQoArP16EzmgA0IW5qo8hrmnMqOQmyfCzatVeBKRa+uqynX68PR4ujv+4Aef/+qLrwPyeHfqa398/+H1q7v7+8PwAiitXz264JCZrO/MSqgxxsyH3fb3j19SPU1zfXz+cKinu7sHQ7NwYTzUsu/i/VoFmQKcSfj+qPv1UVGmQCEowtfH59M0D8/YbApRTMqM7Ov1PSPUSW0MStZpRvU2moURZ3LvmRycDirqAfRxauFrWwlAhHM4ezBiH12rKCiCbOsutTBmZWIkjGCEtm1lhnmp3W3fe4d2mE4DcWACuAhHGnA1ayhIFDf257btbl5lRubLdiEKZMH03rtM8yAN5bXvp9MMIvM8uw/bGnuc5sXBukXWgAjiisOHmf5FsMpy2HB0APNai6qen59VBCENugNe2qXUOVA6hIV7XjMEssRwJtYC7qNFBDZR9tiBxMGGJTiKCMMkIjzLZW0zLohMIxcUcpgyE7AlX6490+vh6DHK7VJNiJRgA4gnLRldAFNKclIEIPYYACBSfO9JCeThHSmZJCFNghKHIyETSbeOt9VlerCNmxxFC8CShMyc5COEkRBoWAIhKqYbpDNhZFSmUsoYQwATGLkIRyAg8ggDB2IkSlLQmDakdu73dakPp/60Vaf/wX//P/hC6h/+6//tuYpN9slb2r7C9mE8P/hpUSno2TMzw4nQrKvqLQFmacyMCGDOqG1tfOBP3pzGcAD48Y9//Ns/+eI//j/9R6fTIX2cpgnIPzw/waAfff5dLXc//9mfLkSj7VNVVFaZ92YSqMnmgJiAnZG5qHU3s//x//R/8urV/f/yf/UfPp6fkD6SSZlJkDIBANICIgUFE6tOSNmCCFgRiRGIgcjDMaFBTCxmzqSobCNqVQKOzAKHSCLIhFFqJqeNTWsSgCahgQVBEhOcDg/fvnv+9PX0W5//9h/99J8Q1wKQPigxjFEYqUQlJqpwwIgRQywxgwEB2JM6wI6YKEVG80SUG8lcuLy0/fj6NcI4X9a5Ur+8fPbmfuzP94vE2LbmyzL3sQ/PyliwIIQn1xx3h+Px9HDtiU77dSMigJh0XteLp6dnmA2XSefRYaoyK2bCdVtDugg7Z+TI4SNhqsvYbDocgWHf27IshBARexsAYDd/DkjluQfc3tz7vovIvu+HwwFRUUJAhfj8/PTd73767Ydvs6eUmhBbcwQmUi1164ME9u1R5wMyXto+z4fMfH739Pr168fdxtqnuTCXGAnAlEwOc6nvv3r3xa9+fbq7O3dr18uktQr37bzw2wi62gAUkipDfe2Ss+JkGQ23nmi7JeP9cgcAYgaQ1CA8Yd12VYUkAQzfIdJjEJGIIKVEgpuymkdYn6c50IFxqQeInKeleUfQMlVM2q8b12mepw/P34jW6JhGkx7BoY3GVbhMse/X63Uqoir7vrPKNnYIXCbRSm3rbkFSmEoaSoGIjPAiao7uCW6lVg9cDvcWvu/7PM9JxLVgoc++/6b36M1Ox0+//PLDXJ4+/eRh3677db2/v7+cn0WTuY+xzSfu44mQHTOtcClLrXtvfSNv2vp2mOdMA0SEIOI0INTTUbZtsz5SKG4AfxSpLADuIwYwFqAY7hghWgHDRiCRRRBQN0cWixQRETmdjq8erttufjNVuV+f19evPlEJg33fo5YH5Jl1o9Jbu/rA1sZ3v/u9p19/e7lcik5t7/N0mLi8/+ZbmVUXdcenvisTM2e6ciUqNsKsVz4OCPcekfVQBGxAa94MZKITcd22DT4WBG7am1CiMMtMRobAsXsaTaUGRIKR8NiHmVX9mB0gQohUYkASZEf0jG69Tstw2/fuIwY4C6EIBZzuq8ceZkKyTJzBrW/mlqiijCRh2W00GwwZ6ETz6A2YWLh5J6LlOEfYGM7Mp3kOKZKBiNsYAXi9nEVImes07+t2PV+EtJTJ8GZkLR7Dh0cEZGRARkiiBWDksKGqrx8eLi9nRCp1Pq9XQLYEcp+mKTMpEDwgxxg7OkTnTA9M4jmRVKWP4QGkSQmiOFrftw0Rg23PNSOJIdMllEAqspCgyNbcNofAATESLJ1IihZKJGIP6bYxSWYCgo+kW5eZ6TAfq1SREt4yEpEjXEATaFrm3jtGkJQxBkQQkbeBUjMwAxA5EsGTsERi3lKScYN/A2MyoQAyqzBjJCVY91Lrrcs918M1+lKLeU+PUgsXDUBA7o6sCgVkErv019959a/+4d99/7Ru7QXxhEzzBAZxeXl5/oY++fRhOZVbuvtytWHjoVYE2PpQZQQ0d0IMyLrU7HC+9qJlbyulvHp9d7ir1+uHo2zuF0b7zifT6M75/MNPfue3Xn3np7/4J0Kv+7Zf1n7dd52P694RcNCOCO6DEg/T4fp4ORwOy7Ksu+0jzLLWsjUPGrXOvfdIIEgmEkJCwPDIxEAJAHBICQCzdE5FQeKJKmUijNabx8hEJ5gVOTPcAhAoDR0LIJL7WIr6MAIUYuLCrMhzAi93h998/dV8WD7/wW89fviWsAQQA08Vu42wJBJIaGOPCBKai8bo7sPdPJyYlSQQKASDmImTmFEQlqI4RsOBTOPcEun+/lXv7u7z8UR7QyjLrGvbwcHQhOTtqzeXd4+K6DaWw9ECns4vOs9Q+Onx/bIsHhGALDUdHNXHuFy34/GYhOp2f/+w7fvlcgkWIo7wdV1rrYJkZpRACVz0Nr2/Xq+1zhm2Xq+HeYrwZZndjYgi/FbR3Pe9TEVZzZO1vHt8ykQLQ3dAdhtmfZpm90BQ1Qkg6jTt28bM7iMzhdFGm6eyNxthSlyUeNDl5Xk+TBrxsz/5Ixv78TAH5N3D231vwdqhVyp9jKlMWiYfwK6RqKoV82V9YYGerRzqvl62l3WZigAeug1C5qKIlsyj9W6jSAABIHsAdVblKkUqEGOye9sQ3CC1Tlm59UGOEHlddw8MJ3cSZbfkcmARDETEZTmmDxjgGa01ESHh03EByLWtA6xHHMppt0CPBAUKM2cSZnZbb1MeIiHHMHeHjnuYSa0vlysJT8fDeT1HxiffffXVF1+3vZcy9d4f3jz8yc9+oTS9ff15W5+29WVeitlotk5z4Yo9oNmFqRJRekYAZ0aPSTREfdjYLqdX9zyrAK/X4Z7b+VlrLfO8DWtmhMhIZiDRiIEAExMw6CNVaTDJPM/MGiOQqUwTMXvbMXJdL1L0cJrX/uQZSjL2tl7adrludpVKMhVzeHx6keJE/ba/iRhtf/n66994DNYKolpprP7qew8Dcx97mar1oQrhZi0YcvRBxOHsFrpM1n29biICgAEoWlV1W+2WFgbCBBApfduZhSBba8QqyEjsAzll5sPTeASkbhYYd/fH58cnQRSiIhwBwAyJFu6QyMha991ESnGqM6YnJoaDAwqJO/voxMzAu5lnqHLEALj9hZRJQICKJOSGlllYEHhvAwOZ0bzdOMYR4XvvkSKCwBkwFTGzve3LNE1SDVhQESnckIWwEBO5ZdyiV8gFwcEyYDhaZMCIONQJki/XVUiWhZt5RPS9mRkmV4VJgefEVE7tTogZN4EEkLuN0VQAEMwsGUUKYl4uvUVXLcxk7h46lwL72NZhSaN7t6GnE9nK5r0H3rTt5pmIIKgIhO5BgJRYuUI6BrGSe6ShjZsSD8EpARATbrMZFSDyHJkJ4dNctUyZN9EVFw93T4AAQ2SghDTCJBYiVmIUjWEOiICpqqUAc0QAsIdiUi13040yROCQu3eshUuu3WLrstyFvHz5zbe/vY+9ffu7P/lsvlMP++TTY2T4qNt1NeuX55AK05yHI1x3fXoZVaPOtfWGiKJESYRofdiuz0+XEX6Y6v1pmeYZFEByEO8bHutx79GHjbH//Oe/+M6rz07H+9/85stIvHv1CTZ7fz0PSq5iDQGCCMGxTOXVq1fv37//+3//7196Pj6+f3hzAi7EIxKHGxBiN8hgIc7ASHPDBGKcmcMhiCHZwjHwpqJixEwnYUlmCUT0EZFIiUK6lOKSq3WnBCIagVtULKUUYRxuYwwERi4tmwO8mqb1cg0La12IpWpm9wwBBgKkBITI3iN4LJAAxJiIgZEQzUckC6eFDWNMEVbCWqqF1WkaY8RoP/j087vDw7q+C5TVTKS0NmSqiNyHK7p7HOvdpSPPp5RpOETEw93Dvu/YrKhGhGpN5BGYCBRUptmgvX96PkwVI9t6LbXUUmIYVUbEy/Va6zxNHy8BADA8buTUTHYDGx/H4LVOt36gEhEwIiKxKGXmsNjW9f7+/nJ5vp2h6zRdt45cjpMiMJd6EzqZJ7aIzeZ5zkBWVdVmzcPvlvnD85PUaXcHC1G0vv7qiz/71S///OHhobctI2x0JR7NCIgBEeBY1cC6NyqLVgy/7g2ZuUwKPSny/nQHMaoWYZ7btUO6kkQiuN/C2JCByKWWvu99sMocLhnoti1zRfLMfpgn4nRrSOlA82FBGyISgNOk3ftojXGy4UzDva0XQ0QUXfdWuTBgH/vl4u6DGYlICyaORMwsxIUIkBwzfDROEpHbrF8KI5ARZHYFYqRDnRKxXy+LcmCWifHTw+UsL5fOrOb48Ort4/PzGOPz79wNs9Y7ERWdumV0R1wEDghRRcxs7H44nPbrZVmKY4LinsXGaNbmuugkRMh4fH65nEevh+N8Oux77zaUJVxuyZtMtO5SCtEN0jAywXqf6mLWM6CZqepY2+nuOCTYBC7obUiSCj0/P+/7iUuaeT1oxOrQ7u9er2fua0sf8zw9PT3tbWWlFh26HliQ4nJ5wcLTcQowZmxtVSGtgpEsSEhmQ4VwjIfDCY93vXczEyqsBQM7rmZ9PiyttTCHSBuDAEW5AwtxJnIigXiat04JQGARHpYEgE4sTBm9eaJIicwRAUh5Ews7sMikRInNGiVEBgD0cPMgLrVOwoWkrft1eC9KCW6giTc2nNpHgmInpu4DvCMQszCj6kJphBKBk1YZPtyYaIwRMKZSE0vvnYBrmQPgetlGEmJwOJIKM0JgZmEhGBFBhEQiBADQfZ+1XNa2Xy9UKtcJw5kKuAnkAiiRNQhSwdDdYUTehEhpZk1pkDgBMhJ6IM+J2c1CClLpCd5hmu+frrF6ZtKLR48kYSMw8OFmQImYQBbh5kyFhdb9rLWoTJhEAYyKAEQwttULtzbCLBgwAglHOCSlu4i0YWykMgWk3faRdRIp5uHugEjMmYk4AkYABCciYWYaGmIxx0glFOA2Rp3qum06VaoyrAdy20edCzE7RWQs09sgbLIyY0e+7Ejl/ns/+Ekf59/+8Xfu7xQZhjlb3J4/9w93gNC7dWtPz9vpeC8gns4EEHBD7jAwQJqZFPU+6gEWnQlLJKz7Nh0WkKH+jCjj2nDoxK+KUD/v+YC//1t/Ffaq8+FXX3x9vHu1rWZoRbTga0BTpujj8rzO8+HT73y+jw7QDqejAbYYKTfytSPExCUTCRJG3CpHRCTI1kcbCQwgwDd6OEGYtxHuAxEdUlVZxHN0j0hRhIi0kfvwgalKArMgR7j1DIFI72HhzRNPh1Nr4+Xxw1InAQiMMNvTlCs6Q1B89HohQGWMtbsgMUmGJVZBSkTBxHQBx5uiJt0S0CDCHh/Pn7x9c77shY7FwY2QcH/Z5HifCNd2LtMU3rtFKfPj08vn3/ldjAVs2r2LUHcj5u5jmhdIUq3dAMKLVgjkAOTifczzjIh7W8eeh8NsFmtriFhKmabpFm9U1TFG0O1/IOY6R1jhejpO2/Vl283MVA6jDykMCd28lIIUCaRlMncSEYRSayb23g+HQyImQN+uzGojmNmroidIWV/OFKnHwwTYRyT6UjR8DI/e2+FwMN9+/fUX794/KuG+rosIZVpzxSyCZzuXpYyxrX2cTq+6Zd/GPM+DWzrOyad6/3w5H1+fHrfn89pEKtZFgyGgWwwEKMRESTiZO7J4YoYzc+9jHwZtx4TjqVoMBnT3fb/U6VAmBQZ07HsTohgjvB+OtY0GOFSIPNa2IuqkhZCVuGox7ASQmIiUbr2PlCTSjMFENroIIDhkABAA34z0quwRQrcb8WibCXLR6fz+3fHubp7n7fn6cHrYz99QOHNe24UZt9Wara9fT4g4wpep5q3ybjlNC6ns+9oiEDmzJ+ye570/E5FIKYJMUqZ5uHcfqhERMs0p1PpgDyIuk2ASorXWknQqJYIIEtI8AyCLlmHdRhvDtRRGRM7lk1fn9Xy9XN4+nHLY11tHSkjx1vatf/7Jd8/bxX3tdg4PjCW6h/vhOBPRN998k4FStGhxZNt9ntUw5kIJnRkAExPHaKVOgBBhJMDuwJ6Oj++/LaUIl6lM+763fVMthP9/mv7s57qtzc+D7m6MMZu1nuZt995f37i+xFVWuVI2VTZ2wE4wPsBGpJFAASUhCkdwhg8QCDiJEOKIA0SErRgwgmACKChSghOV5Zg4uMFtueqrqq/b3+7evd/madZac84xxt1wMF//Det55hjjvn+/63JE1NaFuKOjR0nZend+ry9QVQeI3bjgLoC96TCVS7V392+Px8lb772VECGKiG7W3SQngOjdEdHVOMBaQ3MiBnDDAEokmcDXpakuwIhMhYt5e6+ACEHkzKzo3SpDSJJwVVdCDHM1QLZM1L1bN5EAgwSQhB2BmFSNZYeCwHnbLCCVITM3U3Oz3tyDCAnDtQkjmHvznDEsgHAsZds2ML++ulpadW0JCVtDDDSnhGZQjRKm3a+LwgTJormvrZ3TyCjemzONpsCJau/rVp04DICyORa8Wvr9/WXhnJpItzaXJAybttZacGZKIhmRPfr7JnbCZs1do+MoQ0SYmlnPCMMwRfSUyqVdSFCII7R3oICUODGlVMxCq0Ywj9G1uqs5uO8sRejaAN3AAiEIae8Om2UmZ3LAHrF7kjvGYl0aScIgYRZzX+tGwDwIsKgZGA3DQMCn01pVMI8k49On4/Nng0I391xSOIEDUdQGiHA+N0Qap6vW7PxQ52kumVvtJIwI2jszE2BdNxR88vyAlLXC/evzZ5/+/NNPf3a8zg1aZhmYoKK3du5LnvPxcP3jH3368uV3LubDVR/n4Sn6uzdfxWbJI0IxYUIxztuqil1SmoYcVS/WjZGCulo2vxoHMY89PhwGjgTMyBgkeTBUQKEkHLuhZK8zEhAFIgECSxATQ7OGmSlUffMIZNyfrzmldavaOhLkIEmRigCTOaB2au3Z7cs3b79SbdOUlnU1pOoaECVPTGzdq/amnZgNzRBJdyMA4z+xZFs3FGTBCFNwNe9aSykvnz7tdTFbv/Xtj949vr09Dm/v3irGdbZLbUa2tIuDlWFqam/u7168+D6mvVKNKaXQvq3b4XjV1aZx2hE6w5C0GVkAACGMZVwvW6AfDoe7xwdnZErMnKRsvqlqSgkRz+siIhjGvIcMOyIw4eVyar1xmtz9+vr45ZvXDJZSun84BTo7q9bE+e7xlBJHBGgPh1wSEgBErQtLCtRmmmmgJgJMzkOeeq/dXISqWoNNhDjl3rsjUZK3X9599vNPEEwSE9pWt21Zi5R5mi6X0xKdMVerQd5w27xXr3U7A1DifHlYpnJEKq3Rw0P7o3/sj8nd6StEAEf1HmZlnEI3V0dJAQZIjO7hSdAjmuswz5vrQCxpQs7ksIsmASHUU8oGepzmVjeIEHSXSyAQF2NiyhGsHZiTmRmZqgrDDsmcpqJbJ6BCougpqUP3AHTkEFMNa4j7JlhbrSTMTMFNtYbyWIabw00EJM8aplv+4Ok3puH+izefzwcBjr7x1utPf/7pL/zCL6xbX7ZtHBKjp4RDAqMlOYIKAEohh9Nw1WvdWvOnh5e9weXUhvEIkInY0Ja65aFkka4GAMJIEK2vhylVbe+5Gyki1EPDDXHuVSPeO+Bq3QAgQX50X7f1yeHgWxu6ff3Fi8++fLu0Rdw+/fSLw3ybRgrAkg+OsV62tZ5ePP/gfD5vrUeEBgim1mxrdZLcunfVuYwo5trJTVIhi9aadS1DRmbD5hHjdLVZRSGNhhiQjd1JgELISXaylLkw9t7Nulnal9OAbhERhgSUKIdYAAAOw4AdkAVTCJE4RqC6M5NidDMiSTKE1d2r9H42G6HgHkGCgaCBHsg5pZK6ajNlGFD2dUi4WsosFJs5KaC6EKdEGEQkgOgI5moeKRcCYEBmrNrBHZM4ggX67uzLsr9Qqy2IKELECABC5KG1VsGJmbkIBOw4ldp7U+1qe7GEAJFYhCAiyBp2A8pcQlJvq0YTyYIB6AICBiTEIKZKnDtaQgNvxE6SLltjSN3o/vFiDQHYzIE9ZYboaDjldJESIMGFiHdbcHMztzwGIhZiRWfoAY5kKaEuNdGVtZ5HcvdEKVFwFjq0XhvAJiTuZ7UYp8EshuF6026uAQjOABSuYSpSCD0oggwgEByFUqIoxVSX3hJgGYcLOxyGahYt8phUcRgG9Q7ClEsPz8KJBc0h+Gm58UucH6327XDF26rDmNRXokAAUwiO0+ly9+4sZbi+mUQowA/HtC6LpEyEYS5J9ty7Q2xbm48HFjA3BF4fly8++Xi7vLu5vp190cfHl8PxBz/42kcvr9+evvrq7WmOu997++XnX33xwbe/c3NVPvn85ynzzdObL796U8xkTF3rqTbmHEThtNRN68kQ8pAUcKttzsM8iK5rKCMGIgYCEiKShZtCgJsDcIArRUcMR2DBGo1SJhb3aF13eqVDKNQgA6jAlKWAgWtXh04KAwoLkDc3UEzIgLxdLhj0rW98kwnuH99etlOapHs3NgsI3nFMQJmQLdAYUSgBQATy/o8Xju+XTeFoyECSCZCajONgD5eb66ELPn12ffPiyeP5zo/D1usNBWFMQ1FVTNJ7z/lwdXP99vLFy9/30dv7d6UcQzt6DGnYHjY5jNvWiEgKR3iAEtMgKQAMQt3U41IbS14u29VVvj7enM/nPUh2Op3meS6Ey7JklpyzdQuGxBTgKaUAX9u5lHI6vysDJSEHvbqe3J1EOKKb5lJKlsvlxFRIBNB2GHC3Nh8O27YRAaDn1YGZCVMZHs3eLZfjkyPdHtpyudQNg+bxQBmIhAF/7x//UPVkaQBWD5d5aA7dNYaBNFcDlJwF7s5v00DlCh8fvrxKL8IMMzXuEOIIz2+e/LO//usiiEFo4WCQOIejGjKm3jsyUUBhadZCjTkRa0jemp263YwHJ0TiIdFWu6pREnfwhlsYeCDJtrZUuMeOFkMWEioOFmHArG49HJHGnPYTArp12/LMghi9C4GZAYj2vnvSkIIJiHCXRnBOtfHuh9y2TTK7e/fq6M0fAYbjdPuY20N9dOpM1KMuTT7+9KtnT59C9Mt5PY7Zeu/r0lkIxm5ADObsmIZxIu402dq4bgpUch66aai5dwLlSOzA5hRoocBMROglkSNyb4yY9kqSMPZuKSUIi0BEECEza9taQZ5e3bTLY5g/vb69bPV2nr68vB3GRK7kPct4Pl+cmIgM4+rJ0/vzJedhO291i6vpunu4tgQy8Njq5f58vv7w1jG+/OrLr7/44PTw+Oz22XK+WKikHAjd7ep4NDMLW5qWLM0aIjqqhkcXAGDmtVUEYMmIOAyDNQuKro2Z96OOAAyCgt1gXRpnRs6n8zJJFi61rizoAJQZNbR1MRIpLAEAaI4p3KwHBBIJLXV5LwgUll28as6UiSiA3C3M0SLQkB3AhlTcLKyjQgQ7CwkhIqB4tB5OAAxGwSmlROlc14gdCUmI1FvdgficS+xyeo0IBCJJhTi1rXvAwCUiRLhqfzxdAMAB13Wd5uMeCSFIyIEo2BzdKSmAd13RI1Oi0OYqiQUHqELMiQIhuVtrbW2VSkpD2gzPl6V1FE6ukZmQHDCQKLqaR0opAZljIJm7akcGYAzDrW8MyCkjIWNixK7m4IcpSwJycLXMKdTUACy0GlHKnHvTMEgoGefTclaokpCF1cIhECGIyzgAiKMjhnrfHcPhYGZYe04CyNAdSB16LplyIie0CN0gEpIJM1IQxFpri3Xg5IAdhNPwB3/tl7//g28fj1kvYc2oDAgRblK4OVr3jz56Ms75sjV1iJA8wDDzmy8fcs7Hw8EM3L21tizL8eoKgtZtHYfx1advHl8/ZKcPb56WANiWP/Ff/PXvPX15g+Tt4cg3L8ut0M2T358f1na/nvI8fvPrL169e/fTz1/dTMc3j/eHaaB5EqYIbOuWSw4z73B1dVxrr83HfBDiUEVO3Wx/mO0F9EDYra9EwMQARKAR5mAGZICUsgc6QO+GCvslTYQQItBBgAggjIKNxIkNbYdZRuwVJarm7n6YD+fH9c393TQff/SzH803o5I1964SgEEcBgTMkgi0956FAyECIVAByIGQOElzN2/WGyJmEAlKNFqDoUxK8HBeL9sFwdmca78pw5QOy+kdRkC3+TCZ4Om0jWX61ouvseJhPKDkda3qPh+vOyzioVanaWptadrHMhCFWneE2pSSSClmdnv7ZDlfEGB5OAnROAxVOwaAh3cVpClPRNSjMmFALMv55up6W2uAL8syDAME9t45yeVySUNJYVJybF2E1I05MSdV3VtJtfUkZV1XIgYIQsFDrluvy7mUMs2Dk/nW1PswlVLSetlOl8cnN0+b2w9/73ebaikjEQ3D9OrVq/l4BcSpjI4gagDgEQFUyq1ZB4Sbw4fFRXKOyLV7SplB0wBazwKRvBlyEpShDMuyhdJhOiRBB6xdrWFbfeE2zzNE2qw78f2ygiQOGFKephnIGfM4HgGJMratEhGLtNiskcJGBS1amA8lAYBZrL0bEQo5xLIsqkqG0zDXvlmtO/CEErdtO4zpeHM8nR8C3FRhpxvg++6XxhhKKVEz7XoahuyonmKYhtPbx0ngW9/45t//rd9M03HblkLZED79/MtSpg+fP9suWLeGhutW03wwdoeak0SniLFtJaXsoK1XYiCi0+Wsug0TZjFMTG5ompAAqXeHoJzLdlYI4VKYOElZtkt3yzmngoywbcYc4Y1o599z6tIvq0h2sR7GRC9vn9rj5snfvP7sJx/b7//FXz0enq2gy3oeZTqd6zzf3L97+OyztxE05hLWLRgR22V1pzwkQ+m93jx5YYHzMLett6bjOF2WjTPncfLArtthnt1dkB4eHrMkIg4ANR+GoZmreillD/f3WveVW2tNck4pEaeICOQAkjxxxhCotc7TlYRH04gQLl2X3np3EpGMmYw89rpW5GFS1W5q7rrjJyNcFQASi5ltTcexOGrT6g6JswDt2eJEiYnQLQJEJMlkFls3IAocDE0tpkHQ9LKunMgxMDDlBABdFUA9rKQiIps2DGKUMScz62aOhCjDJF57612II9whUimPj4/NrJRxn7QCWO9WSnLzzEONFbACM6KjUICt25lZCBP34gapjFMSAyXbGoRIBuTLeW0Ne1fmcRznbVu0tRzBhNYqo6ShVHVyVHMkAPeulTJ7cGDshy4ERUBttaQSjqmURNB6RcTW2uF43LZFGIjdVcEc2YVoGsfezfp6dRgjiDkpWLiNZRDOtdatb64LMgMF7PlHEgNwQ8EQYkzZEPabjbUGzMxgqjnl8MXBaqvMLbKUfA3a85Cbuiven+5/7Xvf/egbL7/4/Kub+Wo8DOqwaR0z966QysuXV717r2ZKl9O6rDUXOR4PwzSWlD0i3E3dA6b5kJIwQQBpt7df3VHDX/ze7/93P//zx+v8Cx98+8Pbbz6/vuFtBfXr6/K7n/729ZX8wjeftpDV4t15kcPxHr7///iN/88PP301vPiOTKXDOl4Pqv1xPXnvASaSMQCbDs7Jue+QfUJHCIiIAGJE8EADRybq3QEinEMBPdAV0YDCYNOekN0hMw+51LqadjAxMJZg3mU0BEibekpHcAVwB0NGlH1upJeOlPO7x9OTm9ur2+fn9oCIwZkbajgRetCeoyPAaRgBCII0PAKJyAFcPRwi7bG7fbqLvfk0jmjetqVI/tZHH3z49BnUepRC1XzVaPhkflJ7Y8SoFgG9tqvrmzI9MRhbV0ImGbSdT5fz7e1TfTyx5NCaEgNTt+YurioiV7fXBrTW7hB3dw+HofRa62U7HA4YYFubh6H3XtdtHEcGarWKCLjnIpXZAiLQjEop4WS+N9RwPt4y87peet+GYTJTtXaY5t47AAkyCHHYOA/NFIG79cfLMsVudA61lmBk5t7XAIOKppoQKWWHuHu4+9EnH1uiqTw5n+4ZcRwOXq2MJTFFREcjIiQ5b71MY2tYGBOFVkfP3jzvwz7yFx8+HycRJwFkIjQzJHF3Jopw4AG0qSoQj4Nc5a76GlJhn5e1pfmI5QbJuBAWRo/z9qa3R0JmF+swpKtoCaFEWQVyZkJWZwjqEiLIHRozmYajG2MqOTyad0QUSR45gD3AHImICVgaRJg1EWl9ZZ7TeFxbIKRwoCIOIFjMNMhzYq8+DJMGPJ5P3/vWt1+9euU4eEjvcLzOP/n5b0/5e8d8FToGwIsPrmq9P11OaUy1bxA8pBuIUi/hjqmUAAVubXsnCbpz61DKEBGraQiVkuvDQhCUSFOUlNZt4YiQ3nFT614rEY3jLEUoSJ0ABBEC5PYmvXr1+XyVEVqvyzjMHPnStuXRnj77HiAqtOZba5BkwpTNG2Z2doOKbMHuqsguVhX4eHye53F3p0x5FCBi6K2OYzkM43J2MgSMtZ7b1q+vc0T0MEoMQjllM2PZmdAM4eGImCKAOLGkCEN2pKQGHkFIgVRl8a6kFI04GELMA1lwKKuayBMBsG1VN8dI6X2PmsjWrRIxEu05u0GoanV306DNrHvhbHWTNEowMEYYgBHQJEUbBIGjWE5m4Pt/XmBbq3GLxICwXC5XU5aZa285EiZIKW21NjMEzvlgGi085VlbbWoKTu/J0hahvXYAQUo9nLyOQvNxuprmd4+PS23VVMpgFAlIA9ytuTrsrx/jQ47mq2meZsW0XGrmUSStEeQYCu4eKTVr3v28aXdBKY745uHt0+nIM4I1qJqEy5CwZD1tZt2D+raYRB6Surv7kA/eTDhDADsDQyMEjxK0PdrNN5/m+ogC67qmlMM7hAjPYY6RvK+WNMDMFBiyZCbQFoKcAayt2jZ0ADcmRBAIQCNmNiHfGU9dSRITAVPTLsIBYK6MA7kAEAmEiBtAJeA6T8+a9ki6Vvvjf/JP/ZE/9qsuTeDWSLqDu4/DYF5JOAx6OFAkZlW9WLCAsJLbYR6bba1DyQMlTkgIbN2JfPXys59+vnWaYvil3/+H/2f/03/r//KX/vd/4zf/U8rxZ//4f+nl8YiJJvFv/OCbX37x81XzdlGr7chtPX2R8tWf+LU/fDh+9Q8/eRtDW7Z3k+SJ0jEfFlXm8sBw6kqY5jIum+EeSEN2AiBAjC3MzTAocXYLpwLaKUCYu0U1pJyIMZAFARzR0QJadVcUHESi+YgMRIQeiMJIBBgUDgguHKSbO0ZO+PR4s6y22vbxV5+B4MsXL+Czloh6OHBae1cFQKCEiXhZFmKJXoEkdgg4EggghYWqu4cnyoTIwUBhYSwgTA/r3WEOGeRhOc2p5Hkw97uHd5w5jTmoXGpU5cWJIS2qsV4qMCpOOZVSNm13ywMnEQwGFLUM1MxDsAMyprt3j5zyNB6Wds5JAGLZNjAAj7BexlxKht6uaULETVdAYEAN3KoN43w+P5LgjrJA4NYaCgfhtm05D1OZIkdEAEoS6VvPeUDE5p1R1DwCw5GYvVcJgmDAMApg32zpvuUiwzDXh5rzrN5NHQA+//Szd1/e1ceaRstM58u5lLGbBYvGrnUgcNSAwYEbGKcSIG4ShAFB6ISe6XR+fF4+fGyrdFcRySlfHh4N6HYY3exQyuNWAS0P4qptrUZZEl9qJZJhFkyofQm0U7PzycdxzAVF9idthsAy7rpZcaeUh7Zu5iIi26VNA2nvqWRVxURdg5nVPJEgwXJZUhoeTo89/Hh9yDl3t3d3D4CQU5KEZhaABqZtJRmQ+npZWOZ1XW+uDtu2CEvdWhrFvS7b6eb6GSIPcx4kNde7t/feLHu5+/Jh/HCaDtPr119Ss2kcfTmpKiVhkrU9Mo1pGC7nczQ+XE1uMQwDUhhSbVUSI2FrGxCG9jQXAGhRJbNqb/3cl07pZhhTFwhz5HDcAhwlE6KpqgdC3D2csLCxBAyc8bL2Iafv/8J3fvrFm/O23L25e/bRB9M8DAnzKK/fvb2+vv7yi1dffPEqlWkPw3ZzpNRVxqkEulndFgfAqs2REiMA5JR23I9qY6K9t+0W4SAiV8frZVksgFm6supu/csAHAi9NyLYK2HEbOHMrO29JiGXqfctNFIqpNCbmpkIb33LhGZ1KIlRHXAcBu3uEU6oPYI4D7n3HWsXAIGE4ziu60pEGlbS0LXuq+idCE4Y4Na9B0SrLZg9AIHNPdRFUgKgzC1MtbP71htlYpTwcMPT+SKSj4dbd0BHR1O1aJ1I9turmYd5oAd4ILh5b22QNAzDul5QHVlKKQ/nSxqnZV3BASRhEgXs5ns/Dgx2904qmVKujwsxeIT2Fki121LPOacWHoC9mWsk4nVrw3RI41i1Wz8n8EnykDIhJGYOH4acnFbDYHRyb1012EVoBGRrjiDu3mqdh5LzIPXSWrPTacoU7izeuoIDIIgIRhBgXWsZi6IJEjMiA+dEAd21thoYZcy1OiBoqLoiOGFiQeYUDqpKxGMpgNh7R8SSMxFpByYhTuqVKEse1Sk8LuetjFNT6Bp/8p//r3z47Q8vVVGlNj1d1sMx2aIpMxMjqmFPNGqFbdUifH2cx4Hb5hZBHJmQGS6XFYDcO6V4/ZXcLWuNuZEz4quHd7/6R37tm9/52r////zev/eX/o9vf/L6z/xz/+xHz279mOeX37rm8qOfvbqep5fPnnz66U8UIg5xPei/+Kf/0Nu/+JfXh/M/9d1vkqf7u/N2efuwPlbidP2yNQ8Hw8BkoRpE3VoAExAQ7rEmhzA0JtHWGZkwLACZErERppS6wXu8vQh0QwAicm1pGHcTz+6poYjYI1oOBJiHoW3rLkVvdau59rUx04unT037qa5mhgoW6siURHvtZserQ2bptVnXbevMDsiU2MyIKBwY03EvEoXuDNIwXxYdh5wGDqfhMN08e059fbxccs6cZL4dz8spS8JwTEQI4vzk+XWaSw9IQN366bRdHY55KF3dKEgYIlpvGXmaJieMCrmUaT6EQe99SmVZz5jLNIzT9dTNHGKt27muHnE8HrtqEAKAIWp3dWeiGpFYMmc1O84DCd+fHpl4HOfdp0REu5t52zYG7L2WMhJJ713VV68RwSUxs6SdEcCqrl3VgmhwRA0+R79JI24mZkPQ/ZdfalsAdW12fZjdYLNNcmbmlLO7U6RunQJySQAxOahrA4NUpmkqnB8fztfj9bPnH0LQ3/97/1g4EYB7q2NO1CsYt3UN4gBDAkPFjLraapaRDuN8UTXXAlgk9dYYYRiyu0rKKQ/bVq1r4cGxNTsDZMGRUBAcA8MIwFMZA3FVBUJiIk7VdZc/sxPnYoFPntyctkWtlZK0GzFnPjAjhoZXzmKBy7oWohqLDLS2R+L0+Hg+Hq40POWxa0eG+ZB7f+ga17fD3eX09v4rjPAuH1y/0NZeffHVi68/zcf07vwmpQ+GqdS6JkpE7uIpu+llnvYye2irxNCbS0nhotVzzhBMAW3dxsOMCK01tyoi1zeH0+kUrr279ioiAX3PP7uMEaCOO3oBEw15DqDeXWRKowbgZkuw0hTj0/mTL778he9+z7bzuj3O42TNTqcl5QMEbX1NkFrznAdg2LR5ezzgsAVfXV0xC4QO87SeHi30clnHPGJKyCCQEUTV8zBERIB4sBk6IqAQA3MKVe0miRUIIwiRhJFTrSsillKIyM1aD8BUmMhpny1Hwm4aCMNUlsf72uo0jV3DvIuUrpsjBII71qYeTkTMKBARtq7LLvvbm3yEkqVEYMAehQ4HYMIQgA67JCAiAAkTO6IHRjhFJEYmMTcw2LnETly76r6wNAj1xDlJVlt3gOXuXAIIj1BrkDAsxnnwVrfWiYEQLSwirq4ODYGIHMIRWlitWyklwlzDXUVyLsUs3t49YjgREVMEJknuUTczYXBamxUpaE7BV+PQVBnDGMExiYzDMAi7q5Cb1nAOCNwX5hAQllAQnIJEctMaASSMQcF02parzESQWJIAGkA4YRBAlgQA2joFwP54g0AMDU2QEVFdI4ITQejaL00bEbFkToxIAK4GEEBAzCyE+yZoSJkTQ4Cqh1FQABBChkjgCQyI2VRYZl+wlAlIllOt2M2H83kpCRGDEyEwIpo3wdE17t+9YzlOh2xUW8ePf35hxu9872rb6vkEajTOMEzDV6/a+ZTW7iJz+BkTfuNb33z9xY+E83/3X/3XfvUXfuEf/Gd/4/b2ZQd49dCnUp587ZeePvlutOXhqy/Gq2fW1SF//pMf3331+R/9pWc3T37fsxcfLvfrpz/5+R/9zh98B/oPPv34J2/8bWssydqW0AEVXITKDp7cJzBB6O7dLQABKRAA0dWAEDBUDRK7h4eFhVCyMIyeBQ1J29pNHfe1LTOKAropU4oIbRUxhAARh5yjuQidlotDeBnQXDKTiDidWw/mMo6supzOjXjMQwR6AhLuHgFgZoXZA9W8tZ1CCEiWKKWBa70gdQNyDETOuQRCcgjwHr48njVsu79zoFwOXVfJicUhMXYgs5HFmHrv29am6dCs1ggiyjJ4eDW1Zkh4upzHMoJzqB2OBwTPOS/L8tXDQ4RNh5mSENPpcn5cT/M812UDAOFMY8mEW6tYCrLUVRPz1joADOO8G9JS5lrXWut+vxlS3m1pa1vNkQhTKpfLaZqm3rZt2cZxKgWYkZn3ZsFejLSuNEuP6lYPJd+//vzzj3/87s1n89WwnvW8npHCA/eT/n0kcOuScpgHQbge83SJdu7beHW8v6wU2i1qd1nNLtt2UQHtOQu5DTkFuqvlzHfnuyZyfHL19t3b6XiFOWvI9fxs22om45wfH+91Wb75ta8jOEtG4bvTGcGsKxIAVkC5uj44ggARY4LkDsdx7t7v7h9lECRK07B2JcHLw/k4zwFU3VGkY6huyKDd6mpDGhCgNwhBRIlQgj15COY9pY0wyzD0i6EUdxASNxdJXVsZct3OBHacp0vzm6txu6gQo3nm8dVXX0Tmb337g5TStl7M+lyGcNuWSyqjbmcpA3N4eF8vRHQcDvf9PKRsThxeWFgKgJ/qRtJEhINqraghQxp5ZJD9K5coedQIYAgCN8DEjFmIBAMQqbs19a1VDHhydf306bhAfP7qSxBetWlokZLScKnrl28+DaIenSmnATB6GaC3x3G86Q2GsbR1+/qH39na6qEAUfvWVac8rraS1kDQ6qmIKdamZTi0Vs22nCdmZuZt7Yi424g79MykUbv226ur83LqveYstdYgsk3HXDpaSZicrDsjMURK6RI9Jdl6ExHvra4Lp2zaHDYEtq5BQkxbrQTOIIwohOZ1Ny9p7YjMzCK51xbhhAgRZobhq7WumpMEwFiGrVo3TZLVjEWit8REgCS035zAI+WiXcdhBiALzDl1772bCCIieKgrRjAyJUmI3SLQumvrS8kZ3aw7ZWxrtSDOSdctkBAQ9kw1hjgw8iTJ3bu5nzshDpgCVF0Vyd3a0gwJElcPb7E2b63mPLqDo1s0086c5zHNgwycOVzDgkG91hYOyVyYESgkUJKgs0YNwKDubimlJCQ59LIqknlJhQEbc3hsJe3RudiLwQCQS6GAlBILAb3PxsK+3EwM3tu2DMMEACQcjhgcsYODPZdJ1bZtE3UU9ghBmaZJayNhh7BumBhNnDhzxizNsfdeDZ5/7cPnL198fnf/8pvPtmql09NnByEgcu0WwYJDa3B5jHF6kkrzsLaWV6+2ZZlShp/+tBXJqv1w7Vu1ZSvLIv28Xh3Hy3K+mcttyVniOEyXrX3yw5+8mK//zD/3J5e7L9XWt2/f/fTnXz5/9uTlk5fPnjzFgLh52tfl059/Qls/3z2++M43Prr9cEjTTx+/+GCkD2+POh24+/3rH43zdF8bEiSCda3DYWrBQOrg+30jMzrSrlogRvCwcKQI8O6m7ladOTGFaRdhBzV1QmZCAB8kASGjhIO7E+waC5eUmm6OQAjkJoECkHLZerPezq1OZei9S4S7Z8kGEOYYMeQCe6sb9t+XmJ0To8aepAEIDQcg3mWv3tyA2TwauIDWX/kDv6Rr3y7Lfv2VzAwppXD0ZVmmWTxF97g5zOt5mceDqllvwzRW80BPRaJHM1UDSgwG7NBVc84lJXcgcyJalmXrazVl4ZxEVaspMoUpI03DqK3f3NxcLpdWe69bHsa69ZxzBPau8zCdz2cAmI6HtW7ruhHAOI85pcyyp1hqrftreFeYi0gSIcQhF0ScpnFZF1Lqrkg0DNM+URCWdWljKYdh8q29+vTd61d3Y56P8+ztTa1rLrmpA7pZ37YNkTQIzNG0JzLXvtkFVAHt8czAEQBq5/u7GLZ5nqsuckgiQEGgrRJBhT7dHs/3d2Vk9TYeCoQ+Pj4unkq+4gBCBNfrcW5b9a2ta50OlAqNeUKPacpF+OHuvmIFQneHoZ8vfR7msYhbR/DWGg/ZEEwNED1QhiEPAxho7UzICXt3Ah9LxoiIMI0wyimjuEAEBBHOE3e1ICPQvl6EJ6s1lXFrm7sjIDjWc2UiYV8e3rL1Qx6286am75a7MR2PV0/ffHUp+fGDZzfqjyWlIZfeNtdwVskDBYSDELfagcJUQXvdVjOrtYJbYi4pRx7IMBEB0FiOptFO3QLcIA8pIYRzYgoMAmNO2M3CzdXRrMIwjxieCWWade310sdxHHi6nV/ePTyGt/vHNx++/GjtqxPc3Z9I8rb2mycTdAe31rdMpP1LdGmdnj15Upf15ma8Oz9Mh0NvKzA0787hjO5g4eyQ8+AOqu4OLMU83NTIh5J671tdhpRdezdMQtN4rG0lDCYQxgZeUtZwwkDqqr42Syjdqam5bxaaJIVHKZOT7ENsYkPUActauwMLZwyDACBEx2Xb5qvR1vPbt2+v5iNEaO8siIhMTIy9u7unxBHoHo6MiBEY5gEYhO575gXEw7x7AJEkKbrPWoiylK3VVruMzIzgAeBEABG+l9tcUSMoPBoyZkkg0GrV2lJK1jqXLBqny5pLqlunIDdLCAkhMdV1jYiSckFWcEJKQhYIHbZaQ92NnDgQL5cVnJAZADu4BwhBSFDmjD4MkpjdFRAcollbvAIWBCRmAAh3iGCH3mqesuoWYR5YVR0sKQ+ZOAzJABXRKAWYA1GYeWchSiK1rWGuHkDYm45jac3MQJgBIrQT8WGcdrdemCMy7tZQJEBurQHS/kVLOdfWlmVDFrVICYDA0ZGTA5A5YJjZdDi26I+X8/OS00H0nk8nmw54uM7m5oHYI6WkPdzQsQNbnlJKoEa6RLO1h7bLdVMtBUX8eD2eL+3VF4/W5onH9bSA1sNYhhF6rFc3V6f7169//nt+utN3n7fTVyXD1c1hsrdzg7vP317ezcPh1pSWSz8tdnt9c3scUx/W17WO/Pz5t//27/2nANPhg+tPPnmLVfPAjKCuTigDd9s4zaZOvk+fA5kQaZdBISKABQQjGhBzDJmaulndEU4QWhJhgGoDinBnSmERoYis4R5hblKKWieOLJIlRa26bM+ePnv98HDgXHv79f/Crz88PPzdv/P/y8drRlYPN0vDQBju3s3MnCQzY3dF2hOsobol4Sxp20zdAiELhfetrtfHgYXIAQjuX3359Fd+5e2yMjOnVHstKUVE7bV4gkrtvqfp6iBP+9pScCLcvLupqeehtN7BYM4zJwnHTbcylPceTLWSUhlKaxqC03h9Wc/3p2U6zHko61KP06R122qDYUS17XShiMMwLluLblMZdkJWpLQsy9XV1fl8Xtc1D2VbVgpIV1dWdau11q1cXTFSHspSF0TsvQN4KWk5PQ63t5mptY2zWDgBddW6rNu2IQCUMoSkwFprmL16+9Wq2zil9fQYUHMBpuhr25saXatI6sbsQTugQBiaQ/DIGbfOjELA02jawjYCMe8yS26thTsRNbcGoK1qTgK9NkWmMdHXXj5/uNtiZ9xzdK3TNDJGydkVWtNAQuGuloDNMVwyD+8e3sxXIwDuA1cH7HVjkXEcA9AhLo/n69ubbVtLzuBuFiSstWv1aZpCLcwJsXd1ByTYtIE6sQOSNk0pYVg4C/MwjW0xTkltS8yXVt36PB0tgKJnYsYmkpsDvbhZHk966etmhUe37e1Xp0K5JNOl5yelNp/n4zDOl3W7nFtKLMQixVV7baUkBc1FhnnGoN66aziFusaO28RREkb0CKiqbBjBZrBj5RGRBNA53IQYScz77uuNpuLMRK21CjXD+PL6Zjv1x8vru8d3H3zja7W2ra9SZLksZRh7u/R6KYyqp2Gaif38uCa+cpDz+ZIEMkq9rMRxGA/hOs5TGFjvSTLhXuAbVNUDxlKWZUFECAOQCAezEB/HgRhUm1oHBjPzcAAW4rY265oGYUZidtA8DLbpNKVLWwRAmwngsm2ESMRmBrAf2D4WaRqqG8FOzUIISGVUD04ZkdZWj8NVScOyLEQUAWHUe1e1lDOKMNGuDa5bZ05Cu2AI27odh6EwqcYWZkAJKAyqdwjq0AkwpRRuCIDk5urQEZEQid9zr5EiIhs4IdTehmFoARGInJpqBJdSAlFBIYCJIgwAzn0JMEKuEejqHhhOQXXrlCkCGjDnZAGq5s0l5V1PeblcpEigmm3zOF6hCAOFQjASUxJnBORACsTEyQB2HSQiQrgr9lCi/b0EgGgtkGW3Wm/bxgO6qVCoNvgnLjwDEyFEIOYgAkwQGcIIgFE8unZ3DsaM6AGISOEYET16NQ+ElKdxKL3pUrcMyDmhR+vWA3rUPDIJqFk4itC6aZZp3U7lMI7jfDqfwwBBHh4uJHJ9NQGAduhm7v3+7vTqi4fb54eXL59fWn33xWU7X1Dsm995frn4Zx+TZMxDajX+0T+6F0bXUWsEqZR0nIfjSImXw80U3eC1fHX/+dcO5fnL6RLweP/6/vKqLsurd286b+VwVa5fXN989+rZhykfHx4+lsT3Xz5eXb+8bzGW4YNf/OWffPbF23/4m7/z2c81TZyG5XL2BIaorpwZ4cKIgOjgZoaBiIAKkqj2hhgeahgRQYIipbd1H4pSmKomJGRys26O+J5ygogiiJgAEU0DofUOAii4Nc0oZZzOlzpw0da5wY9/87d/5Vd+5dXT58vWADAnar2HG2F0bUxILAbuEWYaDr03ACDEiKit05hcHQA5UXQygIhY1+XJ4Xq9267nqa/L9Xxc2lZrRSYEVTWrOuQpKveVb28/3E4lo9TNEZ1SFk61NckZiepp1W5lnHLOCOAaGNhND9O8rpUw196LZI8AEqC2bZsQI8DDu7shl2dPnntvFOyw37IjIW2tDtO8rZsgJeLLepmnaZ7ntVXwOIzTtq7aGgZgwJRHNIiI3ru717YaBGdmwKGUbdtyKQ4+DPP5fK5bN7OxzDeHEcwjQlKry+Mw5NXX3/3pP3o4f5nZQWvXJpLMNct7O0fO2T3Sfkm1gEsTYQTKyNzdHVVbMIaQWo/ol/PmrnI5b7QLS4UBSCStvQHJpp04D5TaaYXgLEOtXaKVw5yJ3dXZN1uN2cGDKQLdvRuZtZRKSmk3Q/VmkoatdtDl5nBkSsG+OYwlmQY7oYVvrQImlsLZ2Lba+1aJCN0cKc/jZa0AYdHN+kB5X29JLiTpzdu3NvDVKODOguo1lcLZwaDr6hrWqzaWJOY9iYQuzLxQ0JRPl8vxegKzN6/vv/8L33DXd6fHCMuS6lr3iGPf147EJNC65ZF7q+qdgxJnRQvEfChq0cy6auueUgpBQGZMlDkMvdWSBneP2FXsICDEEo486mk5ZZYsAypIShHooER+KMNVFi+H3vDutKQ0tscz49WQZzDXphQ5Ag7TU+1dAFgYhU/L6cMXL1tbhiQYysxu5r1jopQyBoG51ZbKmHImotjatm3unpIQ4lq3knK+yrXW6Ju1YEHJaatVUgmttXYAkcIlgTv0zUfJIKwhajqOJZma9SxDq6upztPQVN0857G3zVyZOUsC2IVwEA69KwQyE2KSLO2ymtlmiwiYQ0QQ4o7FQUkeTpyaNaaEbMJJzXSrRJRTWq27AlIAEwQhcpYS+N7BykzMe3oIkpA79HBAeH8yxXvJsGrvbpxknmcM7FvPaTSIda2mlst43qorAgAJGiJl2nqVLAbkHoREyKZWW1OLgQZg2Hrr0d0AIa7mY/d9533OhZhhWS7zmKeEAyC6MRGyAIDk0oVF8qW6qxVBAIow3LGgibaqKIjMjBQBQ0pshq0TUorCUBCCEEiQwgR5KLOZhTciiXAAUEMgKJhKGcwdAdAjJLrq2mrOOQIA35/ce8PVCbr32BAAkcQCw6K6964yjBbRTD08OJiBgBEhoBPT6Xx++65/9w/88lZbBAL082MNg2malmURoSC6un3CaVpWe/UKuvGyxuPd0ns8PLwp4zDO07v79bJi1/Xh7vTiyTfa0q5vek5lmDAjtrYeXwyWQTJ//Qff+g2cf++zr/7A8xEkcebz5fz8w2cfvnj5sC0//viTjz//3Q8+wh/8U7fvLu/ut8urTz8u4/Djn53m6xeXe3v3ePrhJ5+9ubu7fnalUDbs6ZDWrtWBuGjtWQAoAwAjuwHjLqsKAhZkRFAAwB1oymGQOAMxBREKRKgjuKuDByURyQOyR4TG7qXiAGDkaUod3Nxa63mechlfv3p9Nc4ycO3bx59+8vKjD0G4gyNggOcxd+sAkLO4u4PlPKy1EhHyLu+zJASuvTbDjYkwUBXIUXjoFluLx2UlSd/97neX5dK0D4fZvAI6IjU3LoWobC2G+ZjGQ+2Uj0dM0WMz68koRWYjksRXcl4ul/VMdGAEIhASc922DYCZWd2gVuyRRG7no6R0OZ9vr27Xy1ZrlZEaUCpZSt62rS5rKuNhOrAIJF+XhYSOh/n+/u7q5npI+d3D/fMnT81MmxJgIsmSNHS3aqaUtt4lUTdX1eMw3717F0BcsmsIpWlgVW1bNUCISMSU87aej4fr3/zHv/3q1ethOKBt3Yw9+maBkMugDvtMP8IRfatVIA5BUaOzC4sTNQyNEEYQcARQ3/pGO97PzLtbvWzz1bG1ylLKOGxbRUh91QnnWhWN0pDI/FzPw5hP6yMj310eSz4M41y9EsxN/fqQrG/goaGHw40pzoerh9NjzhkAz+dzGIxXT6xZKXQY5l77cZha3YRRkBgDwsmtpLyua0opl3Kuaw+LiHEcw2jVTaEIsQNZxIdf+25d1qbGKQHutNXKTEQEEEAuOScsKTH0C6LdHPOJ8PVddevDUNa+FKK7u8f6W/U73/u2RqIkq1nJGVkQhdE8yMwKpwgP5DQUbXU7LzB4rT0ixukgOWEmFurQjUJEzM0gQA0tzDo67x5ls0AQyVkkq7riaqrIo+DQWkcAC3XqwvV0fnhyXVIefveLL/JXb8dx9G3o65Y4OTgLa3cm7r1FsCqD0KrbUA4BxJETpySDxtZbJ8Je1cgLZQ86lHzuvdY+ztMwDI/n0zAUdwcMor1Ssj+Rs0dvW0fsKTEQdnUzEyIgUou2VcoHiCSU161tGlQVghMBkeTx0Cg4Uaa0LFqrZpnN2vm8JyqTu1t4kuIMYI5OXdXNDtOBAqw3kULCtbX96+8OrWoHR2GW3M1IHbzv2gAEGIdxY7flwoAo7BrabU8b9dZ3XBEzRQQCvndOp0iMEKCqYIAg+1A6l6FbfzydGJmCe22c8jzMy6WfHy/DfADogKjWa9dUZBcDWzcIHPbROWKWVA5TRLh6g1qBUZB1dza6hQ5Dctd1ebw5HJ5cz2FKWw+ILAIGa9VEGSFsa4jFAAPep7Xd3R0EpSSPxEQUAKoKHuQB7kIy8JiSmV4QObqDUncIqEhB6Ko9wDBllhyQlk0l404nJCQmMQoE6c2BkHZwIeF7GR/EDiUlYt5bSYCA7Eg9kAhNTVEHKXsxKcuur67j8bq3h8t5G4Y8z5yvRvB4+/YeoiDhfBhMoXc7HBOmvG3goN/8xhXqNYd8+YVfLsGp3j6dlgu1zgGSS4wD3F4nZM8Jzu9Oc0nDSPfLKQxvj8d/6d/8N/7X/5M/98F088HVk9vnTx4e7xD40ksDfPnB71N9/cVnn99cPwnC7/3iL6cvXvzO7/29j7/8qtzfny7nd9t2883ftxzz2tulnXtXwL3/L+AokYrRgoYYBHuIj5lTb9X+yS+ECEHIImbee9/Xp11tzx1aV7OdkUYG4AGuBuGI6AEMFO7dXLsCB2WRYVxM1/My3j598+7tVLISlqur++2ygl1ChyGbq7o108M4uKuHAXJdL5IHVw1zkryua91cwHKW5o0wh6ODq0UiDqB5HjzqONPS+te/8eFv/tY/+ujwtXwc7u/fYR+KlNoMh1CwDjhfz+mYN2OQCEqA6B0ZgAwyyhm2PGRgctDWt8TEaQi145Ob1vx0OZvZs6e35/Pj8nCa5xlZhBgiRAQRu4UFmnYNTylt2BARiU6n0831dat1f8ofDofH+4dhGg/j9Pj4+B4frZaAOja1jkxOMaRCJBBxPl9uDoech6FMiIjCbbu01gBgv3EOufTeheiyLGUcHk/3P/vpj7dlefrk5v7NGhHCI4J11baZEyL7+fzIzMAAaJjz0KCfq5Vsru/q2jLlnDt6c6ewRMwQbV3Ey2HbljIW545Y0AKBfYOr69v7Lx/nVGRgBNWHDSpqSsHp0sHlaW82pZuQYTOhNLovlBx8hegI5koRAUHL2ghH0JS4cAJ3944DluVxSSUnzq6WOAmit8oDch4gZMh5XWttrtSlZMrWfVW4aDgluaynebqqXRmkb31HPHpXIpIyWCgRGyMRWe9E5AaPy6kMGUmo9ynDRy/T67f3oJQxM2aRsvL68zefFclPbm6Ph3HdTswGZKsbhwhzB1OtqJgoD+nQYmPG61t+eLjjUGsqOTEylJ0Q4iKim8pQHJQ5tKm7T8MY0NU2rU1MlmWhm+s0l6513TZhWXpHxCTjcZjf6RnH8Xjt3x1vPvn09/D6hfAkvkQI59GNNXJvjlwAvVEPIIPsIJvZPGT1jhoWTkTTOJ5Pi3jS7mpbLgMxlDHXvjmQlNS9l4SEGOGm4U7TfKi9AYq7ZqGu2NeNmK6ujoz0+HgWkuF4sIpm1tGdfBiyWRckN0R0j2A8uGKrdSzj2ra1eWacxkMEmoVDGHhiwCAoou5IOaG7OxGkIrWtRum908X3OZJKKtDDCXu3krIZMIkQJ+boPri1lCsGBBWIMY/aXd0yecq5WXcwQldV81117oGChLkU3sk77ixpbRsCZRqJpLk1a0K2tt6aqcOINEretk0AwCAba+0aoUilzNbdmqsGU8qwdQ+3ngJcmweWYdpaS4jHYQ5r2vt1ySObbWcMj2i9YYKEQYkIkVqPHpBk0PCmPY0TS7bLujaYSk60rrqES5YCauibIAgGEno/K6woBIGtaZY04qAe7yMJgFU3QoAd2F9yAHQPdXAiYG4OFRUAELBwNvSO0bW6GmMAZwdwiKZbAE0lEdLWdfBYq1IuORWKjM6csjqxmjkvS5JULOYf/XA99Tocx9ubjDqUgQ5TMu8pJYMGKd2I96vYWgak0wX+1t/4u3/l//0f/rf/lX/9D/zgw1efYy4wuqaYMLYXzwdT3LYOZ551uLlm6CA2rue6dL399jf+zH/rX/+P/nf/tn/z9uWTg5eUUjIOfXzNiM+nwhbNHKj85Ic/gZvBbq5pbeX62Sld20P7+PPlvAXnYVCWiKS+NmsaTlgZVlJCQQ8mQid3YMKcJwBAhj3106wDsaCAkwQBUDNFRguPiFJGh1haD6a1OwMjsCAEOpVBEMwiCVgoUBAzutTeMcPh+ka3y9XV1d1Xb7719e+dzg1gVTcLI5RRhIPDTZtJkiQZKLKwA5pZSYNQcDi6BWh2kJCJBzdRiN4qZb6/Pz377kfTy+Pb9jA8uT6t/cPjE58wwM/nc0qMyR/v726ef8QHh3HRy8U6gCREdKLDzfF8PgNi8p3S60xUJgamDjocx9P9WsZxOsyP5/N53cbp4F0xAKvDFh1bD6eUOGcSYcT7x7urVPI0BEAzNYildRnGtjymlJg5pcRIvXcmur29PZ2XsDaV4mqu3RFTKVsz4lS3beQypQkAUxEHK+gn1VKKu/faEolG36K3pk3vX9y+eP3F68v5IfTczp5A1AaEYGSDGMdh1eYEFu7IKYAyINZFiI4opAoxOrFgYnA39ECKHmFcqqFszSMQUFIi6y4gfasSEts6JpCM53YB92Eu7k5ImMrbh0cecjCv5nmg1mthKCJCvFxa4szM5hI7gp8LAvTarPs8z24dPUpmbTQwV+0WygTKgQLdOyDSyOd6LseEiN0aEa/rGXgfI6L3NpbsvdWtlTTIKGXMGHRxTcIIrl1tp326hVt3JKB/cp/qVTdHokQ3T67v353cvekW7OByPtWLN+sgIrV2MerWOAsxgPm2bYWTNdNY5hkVaqBoa5C4e4hI24wZyFkkd3U1S5x7MyQXEhnkdDqdz+dpHiOCSJjTOI7LZRUJAOKghCQpe4R1PVcY0vhwWVB4KldPrz9sTdPgkoba23K5n6YJuYIpM9suTAnOaQ413fp8vDrdvTFGT4GAYFYjHEESl3Gq1rxHB4DgoeQgPJ8fqQz74wow3FsP87BSSjj31g9Xs2Wsbe1tqe7hjfMEYJtvAMCMgMAs5OQAAbh2ZWYMDw3E8DAW9O5MhRgcIUwDQMAczF3FiRFZEoGHuakiM1JGZrQgFMlC7I4EANodUVISYQIKQA+PzVaAPeOLasbAgKTaurm6SUqaKIgREU2FMkdixmW77AJKd7MI8AggRJzKwQx7M8fIuTBLbXr37gEM53netq33Hnu/ogxSct02JGYSd2XhvtWmLedhqVHNlRAkMzsFOoSDcc61LmOmUtI0JgIjCATylIeU3FCE+9YYyTAwjYop9oxwU/AI90I5Iz6uCyUhBnAlBmTwAE7EpIg1Q8+cImjpoR6ddthkq+YgaMhqoGhEFM0C0SGaewQ4grkHEyISUjffv3oOyCSZxAEsnJCFyQJqrcHCzL13ZnG1VdfzeUkyHq+vJOetQY/q/ub2xdXf+bt//R/+7m//9//c/3A+lC/fvf7Od59E2OsvrfZovQ/zlDLcrfD5Z++Y8ic//uLf+fP/9uX+8XR6/Wf/1L90/urD7bT+x7/xnz97/vwXf+kHDfz1QyepnJMjBKOV/O68MedhnOvWX//47lf/5H+VDf+T//P/qZTytWcvNKphHEYrE96v8MMffabj9ff/wD/zt/76X/+r/8HfefL8SSAMF946qGHfGoVFrZ453J1MUY0QCJECMQKBGRJAhJMHuKl3CwTX9z5t4nBQ03BHYYAACg2PCAQPdIgowkFIsO9kHAMI3HUjFCfCiO6u2oUzEQbC1ttTLsbJtiaM7968+e63v/Xq9efDMHgL91Bt3RDAcxbHMDSCVHsDYkRkxsyCura+ylCIGCAZkgvW1oe51L6ELR+8uHlyPZ8fHwZJr796k4jLkN3UXd3Zu2UZxzInGbRDUHbVnCSxNK1qXd2atSHnsG69b5umKYd5Xy2nNIxZcry9u8spRfTWfZinvlXFwExUWEDU/bIt4DrkwoJdVzMjkpIS89Trdn/3MI0ZAB4eHnJK7ooYDl575YGJ0+lyypKGYwmhHh6hEJASMvLW12oBoZRo6xWYpzElhPPFz82EC4SH1cPwfDgcf/eT//zzrz4XKuQJqEMBU1PVVWtfbU9WJyaAaA6AtpfpOEli6KYmcCXX6q4OaUjqCozIQhmluQVG6EaA4JFS7msdBrZ2IbfelsM8Wsd22RA557z0SqDzONdaTc/hUISi101FMCGUlA5MtGyLql3Ph3VTIspjCgWzcAehqNvJzD3lbdtIEIkgiJA2bYAAoBEBrYvI+fw4DKWkxEN23zMNGAYEsC6rmjVMKSXBBMIKCI4WGB7jmGvdkBNQeEQSNutIMYwliJbT+XC4WRd7vFvG8TgPh2XZBIQTX84t84BZPVopY/UO7rlkqyKc0SO8a12AySDMkWR0B0Rm98TJtUseICzQKTgiMMjMMTyl5GraTUSEkIgCeGIuuaCjgg85u4eZUkqX0zoMCcESCWJ68ezlmzdv6noySClTMHpURgUBcAu3RAmAM3JrdTk/bMcRBad5OusFMJy4zHOoqXtmbk3HYd5680D3MHd3qN32kkkiBiRzMzPrvgP32rISEVkQR4TnvOO6V8ymqoTJzQB8n7FHxDDN4GGtE0ESWdsK4IG+P3zVvXqTgkxspgAetQITAggLgmgQIBmYqRMLc9qHeEEsIiJiyAR7IKTv+kcPS5kZCiIUdwwA9e5mED28OYgFQISpt56REcAUmUsABADSzv7yCATAUALA3e9tGhag6qWMvSsKA6JQjojamqmRVxDxABTeau3hES1PSa1q5B5hQAHkAEiooZQoQLuuV9NhljJkMW373ECRmHIQ7HDg7na6tEtVz94BmnaQJMwg7BCXvrKzYNZubb+KEYcbI5yWiw4JupoHEyVKRsmJw7wHqAdoOBAAkQUHd+9ERMxA7GAOgSJDSrVt3fbsQoJ9tMPs4YFISI4OAQ4EoRDc3c2BiVQ9p4JIqnpZKjalPFo0jZWLlcl/9de+//0fPHtzfxd8WCq//vJuvVBAQhx//Ld+dnt7/PAXn6ZDsiVf3U6/9Eu/9I//wd+5f+D/61/+9/7y/z09Lo//4V/5a/+L/+X/iikjwv3D+uR5ButEWOahGqjRumpO+f5U21p+9ydv/+Cf+FNtw//oL/07v0ZyNVMgZJ7U/cnLr/3iLw+/8/rt3/mtH/72p19NL7/9uFUSfrzfLKCM05BlYOm91bZZeDM19wCmEAaGoK1uLuLkDmYBALwn1oD2NUSwiLnbrnlF3HrV8AYBAAgBuoEDEA5cejeLAAyR9176cHUmYKJwDmRAdk85EfPDtrn2wtgxfvSzH333e98WsL6cBPOYcyfc2oqCeUhrV2bsAOpBAUQYoB4miEPOtQdliYjNGkQSkdYaC4R7aG/LBbuCteNhNG8RqKHzPIfTcmnRacxH7fi4XfL1MwEkDYj3SEhkxPBujQlTyXkeT8vl+vpa+5mQiaK2JQmCWzhoRIic6vrkySguzVQhUFgS9hpbW0VoXS8kDAC99/0jcHN9xYkIcJ4mdyfEcZ7fnR6WthrR9TRpq06xauvdkYlESLGMY23bZvVqOKhBqxsADBOfH++EOI3zPLAGbWt0Z0G4LO3LV+++evUwUrks26pLh24YgUBjdmRkbmYpMREmo6WuOedxmM37w+lerR2vbvv77YIHRu0bJWFCQJc0RVdV1PeZsTETJhYn8lLg6nDo4BYQx/GzL98M5WqgMQR4hcGTaNR+efr0adNajofWlJkvy3me53meL5ufTifmJCmxYHNdqw45z6Os61a3aFoRkTm5WXgQZ3BEppTYvLdWKck8XTOBu6/n5X2RC1AoNe1XV4fLabHOEKGs8+H6clkJEJharZXGRhHoSAHaq3a0Ns3D43ouw3h7vDEo11dPMOZ3b8+IcRyu3N1VVf2zzz77/ve//vj47nx6xJKarYxHInETbx0hMoPg4B5AbA4I1KolSIyltYagEZGS1NZ26YK7G3gpRQrWWgng8fGUc845pZRFeF3ruqywR8ZVhyGPI0bUhM5gHjYPAz47PDzYm7uzVkMuVdvVfLCutbcyjN3cHcw6k6ccl/XNMKbNW0mpu5s2AHBz6BaSGTgI3QAYu9tWO5fS3IkIsQSSIBE6hJk6YRpKKRm7qYK7o5myZA9EyuaXnS67W+gA2d0CoOsG+7STiUTYsFs4AiFBADIQECMzMXRMxOCGSA4gyIARzIHkENqV3c0sIiDcuzVXIjJlIto9jwCBTEhgERoaAZlFgLe6BaIMA7kruAcSc1iLMJYMQL13EvbwiCBABEBih3AIIlqWdczzbrsyjXVpOY1DodYaJyamZg2FDdwRzUMDEjAzW9MgCCZ3W9aNciHJiOSqzTbr2zQNaHacxymlxKG9MiACC2eCsO6p5NbaVMSES5NR8gqWhMyJJICgdq3mbW0flRtAIjRkJEkOYR4NoAy34+EJrWfT5hBO0tUdVddKJQVSdwVCEQEsgMyBahHRdy3VvkoEAHft3YSL5NRbdQQn7l2B0MI0gpAp5QjftQOQuYd1syAizAGx9Aom5EAJAsm6iwwf/+zzf/j3f/zBhx8dbsoXX2yqeP3ycF7VDP/KX/9P/vb/9x/8N/7sf/1f+Fd+ff6Ib588/3P/83/td/7Rv/w3//Y/+Iv/h79wPi+H4/Uf++f/9O/7p3+wbW07X57dHu20vnx27M1J4fHxnIaClN4+rEZpa77U/lu/88kv/vqvnZe3f+s//n9982Z8Pg/v1kfO6cnx9uab33j3yeeffv72YeuLiEzXzTsnAuvVW0B4N1VllB3WAuLmRJAEGDw8nIIMQXmvayk7kYMT7lEYDA8ABwfktTcWZhYKMwi0wN39QtR7t3BI1N23/U80IKWErtHRIQqnFNR7l0CKyIFO3Ld1lKG3FubPX3745Vdf9OjqwEmc2DF26hMZgsgOiyAiCKi9OnoSmXQozM0X9QbgwrnXnjg9u3769Q+/npC6rYKRSCFIezyel6v5quRxi2hVS5kFhTnVdTlOsyC11qr26JWZW10JeEc+MAEigoNIDpC1N1MVTkSy1u1wPCyt5uPxvNWSc3OLCCJ02kMHbubMCZGYExFa19ZaSflSl8xCAFMZgvB0Ou073XA6XTZtNk8TuDKCpFx79+7ATsiOftkqQxDlRDzSYZVjV6vn6nB/vB2DQqErwON9w5WiS+Oah+DNrZmQADCBACR0glYzpyzikgohdPO7dcg8zIdzX7Rv0zSY6rqu/XQS9wPPpL0uVdDde5OEAOBura5FyMM4EWhrsL15excuV4fbtV1sERcsOWttU8pCHB7R43LepuMTa2sacUyodgrgXCiCKFxS1H5Rc3fwcDUmcikRsaWBEfu6ViFJSAKIHYRkOT1Oh1G7BfjWFBFN4XCYl23llIB50+V4fdvPl2QG3qr2TBLakTOLmNn5fAlGDU/MzCOaeYB1STDrRsjc1QjT1WF4uF8xCADO5/PxMFPIZ599hlif3M5DLoGEKbm6GQnSOBxMV+EIdQh0sgggJleFlCI8S1LVAEBBiG4O++WXiMyMQNw9IlJK4ziKyH29SCQHa2gD6lgKVF0uD5IwXEoaumnKeFnukGSaDodO58uGXNycYM4DEV0QwrkDmHC4WkBTcAOPHeoE4O7hLCiU2QODeKvdMHLOhgTiSILgQUgRqt0QGQAR1Gz3Z661RnggRkTrlkADIechWY4wYVbrYOjo7oqIXXtiQYpatXfhJEggSOtp45QBEQy8ARFgJQQyCwZyNHVzUwvHJA4+z6O2ptqS0Dglc+huEZ4Ydm4VAltEwhRoW2/uJiARZIFIKQADOJWM2twNMATF2EUkIiwwEpvusShkwr1RoBpbu5yWZd0aBpUyEqDwQCjAO7aC1DWQZGCAvaCVtNV2ueScy3jsdb1sSsCcBJC1KgoPSVi5dZ8zk8NhHAt4b9uOzUucIjBzcqy9961eUs7dDJGRDMATinEguOnm1hmFU2qmHIKCCcWBLIyEXdsWcNZKugBAQu4WrelVKa17SRSM5sSIDoIOFrG7vc1MkFEowrRVVZVEjEQcXVfz7gA90AQVotvOtE4I2FonIGRu2gEABc91SaKSD5IEU1Z13YwjE9DhmH/v9/7hf/Dv85/7H/2PL1UHKWuEecxz+Y3f+M9+9uPfGpL/hf/Nv/Xn/7fDv/pv/A/+xf/OH/34k/HpNw//te//oX/6V/9g31o3PJ1O0+HmzZtPf/o7v/NH/vA/8/z50SpgoG3Rq6/LRSHy4bBszSTa2dbH5f7tmx/8oV//8MPnv/Hv/oXl9c9evHgOqXy5LQ9v7t90/fzyuHHgwEs0A0Uns+atMlPvCgA5MjJqkBMDSBhbcJgRF6eI8GDcJTjATISMHPG+VgQEhIKIHkYRRGymasYBFs7vQVoIRCiMDs0UgDWMhBhC1cFgV6hBEGGEdyRhkrXGMA7d9UeffmoBWA4AuLSWGSCPQFBrZUwQ5GoYsD8GypAMoFt3xxS77r4D9iCtrR6ma1eNKKiCEefHt1dXV5ECxXtbiqQIHIYBr4eqZ+K09TYMAybx3joil5ISqdmTw1W9YERookuvySWRuEY4WmbQjJgkFXcvg1xqcyZirtuWEjHnlASYvCuFSUrMCRHvHu6Z4OrqyjG7LsIDe4+A3rQup/l4LOM0JGmmRJQ5xdZaaznnpVX1bZomSLEsFxI8TuPp/JBSLlIup3PiUhc1xJKTm/RFW1MJFpaff/LTzz/52ZCxW5MkrSIZJkru5EbIgpJySQjeWwB1JsmlOEO3uq2Lk4/DdHd6cxgP45i9GwMyIChkTMKdBxjIgoikpPWysuCLZ88jrVs9YeE+5Nev3txdLoF7DGkZJZl677WZz8eDI4xXh9Pjo7u2qtOhXJaHYRgyD5dlLUnEQnsVyZxSW1fdbChcxrS2mjJAkCSbx0ECrXVw9n7JQoRgrWqomc3zrN2XZUulNFUCLPPx7vExH+Z4PBEztt4e78dhYjJglEEu53VIZduhg6lImjrU89qu5qfbtlnv01SaB2Z8eptaa6F1GuVyeZjmQUTevrkL069/9MH9eR3HEQAR4rw+8nQQhnAK2ynQxiIBmsTCu2klHrMwEXVraTdUYxDx7jyuvkXEsm1EtLV2ubvjq2nb1nmYhwM169jDej1fTk+ePGk9hBN0L2nshj3w4fHUGxAOImMmXJelZDavtS15TuEtj1enbdW+Xl192LuNUrqv76+NSRjF3asFSg5TxKRmBp7zsLWaUjKzIZOr7N1WROQgYnBTRIIIDJDEkmdmvpzPl9PjNA+OwQ4eAGEBSuEBOOTCgI6urbfWEhIASxKlnpi6+e4aSyLK4QopZ0hE3iM6GOwfi2adyAkiQGt1IqK8P0S8DJNZgIKBgyE4ppS1WSCXnBm4N8tD0XCLLoiFY7WOFrtUoPd97u6+x04JCAnjfR+pNa1NZZ8qR/TewwmZt6rWo5RsYIGEKFur+7k1DBNrcjNE7t26UW3AQNMwdtOmGzkQingrWZ7Mg7U+iGCYIg7j1D2Q2CMudeMkrW2ckzM6BEvGJFRbBLIChjHQhDlLASa36lQBQhUAE5LkTO6KKWpcEBeRbI6O6EQBQnkM4vCgEERCR/OAsOqKGJKIhRwdwSURSwK3NEhXvSyXXEYSWbWC8B57BiTf/fLIoa7uKMnBJBf0MFTXtZmR9t47gGQsl8vqMXzt2bf+5l/7e3/x+v/23/s3/+Xhyu9afrzA47tXf/Ov/lWpl3/hT//xD7/23+RBfvzjt3/7r/1kPmT3/Gv/5Ze//IvHzz5h4vTD33rXt3q8uf7syzc//NEXDfwwTzdz/urTT7bL9vGnn/7opz+5P1+O108//PbXxNLv/853kQaQW/WvOs1UplOHj3/yc8X8o59++unpfgHI02G1FpSGw7xsaw8wtzklICDh5WwYuDdmLQgiGMMgOgY5EkQKJGJAIGZg8do9dB/bQIS/H+EEQAoLCQKIRMweDMgOLTQi3lM+dkWs2dYb7o8DxA4orkD7YzragNtW+8CdDBlVtXdNKUVzSWNz39YtjYMHhcHAidAQw8BNexgSkXrqasoAGMAITEwsKVNmEtRlvbm5aa1N06H3LmlAIkftrm1bH/G+dj7cXlPh87odD3M4UpLH00XMr29v1z1D6+EAORXCyCytbWZBktTDmg/D0Lu6u5qVw9TDU851reqADtWbiIDHDqUTIXdHoJRKrV2bhWOtdToOfatccovYNcDmIZyadjWbD1OYR5gkDID7+7fCeH19TQStV6ZIjKabacszGXSr3To5FcGrA1niXPv6ox/+8Mcf/+azp4eZ8v3bh941lbxUk5QMJJiRQCQpuFuH3nIRI+yCNWLz4CCvenX9jIBb0802QdocAZBlEHdAYDN1dc5COJjHMN+gcNdtGManN1l8KMhgcdnclNalJx6Cw8PUCTc7Xl8RedeqYVmSUNJmGG3IJWV8uHscp8NxPJ5OJ7d+ffv08njOQt6iuQIBAHhY7d0tCCQs0pCXVoFwyHPXutaNJCOTRThESfl0Oo1l2H91pnQsIwGxCJLU3lMehiEQgZGaWa8VUpAQOBooC4zDUL0xuOQ0jkGhl7qO8xgIp9P9YZq35XJ6bJ/Z/fH6ejt7t3Z1PUuB4KrmO9xtTxUJh7sRkXer3YVIJCPRLoUU5DSO7qDa3DWlhMRmtkfeiShj6br3aEAt0HtO8uTJk/0VWkoOx2VVBxnGab7C5cs3XWvKmEratmWrYaZ5yAmSmjFKTlNOfBjnbduiQcpjBIIRBbmHqjEzlwSA5tG7dYvD1cBIjAQYbo5IDLTfIg2cAbt2cy2lmO7u3FC0ItOYaVkWAjBmQdnL1juSvpupuxBKLuLoBhihrQ65iIjZtqMkNFwJOxo1cwNFy4iJhTkksTq1ulwNU85Zt7W7RRgSIkHVCkB7uVdECP7/RP1ZrHXdmt8HPd0YY8651t777b7vO9/p6pwql9syjjtkG0wqKcdyjJwG5QJFClIUCSUIKYgmEjfcEGKEJbiIICEiEkhIURowBkuJjZMANk4K7HLcxeVqzjl12q95u73XWnPOMZ6Oi/lWuN9b2s3SnGM8z///+wElNWnumuYg6KhAyZxmHWEEB3EyFgwhKgwIoIRl05FJnEBIaJEJoBC7owMmidREyARE5CJyTKqZBDEAPZMDMqw07mOI1FIoIm63azggMnIZY5DwaW7hw8dGqPenaYLY0Md+ZeY8Nthpww08AIAyUbiV1lWZqu6hu9dyZ3bApxsiOqUGAqDMk0N3HRhZuB1LSECstUREJSLivVuRKq11Tyw1ABMckcEz8RDkcCJxIS6UGO5u/kGGhUwWjpSZzhQBnh7xAcEpBASKyDhLO9YEow8NTXdEgHRESsBMiBGlEIzrVErsT7WWT1/Mf/bf/t/+4T/wc1/5XT/zzuizt+tf+ff/H1/+4PMX8/369jG/0V4+u+dvtb/9N/7aX/l//Sc//vH3v/1bv/Xf+uf+mZ//Yz9/W/3nfvs3HMvbN/sf+EM/38f+r/0f/o/f/c4v/7H/yh+0x7d/72/98k8+++Ljb3z1r/3S3/gdv/33/It/5H84tvWyPu7I//r/7s//0l/5D69f/trPfO2e7c0PHt9xLbenC5+nubIFIpMOOJ2fz+fn3vvbzz4jj1TLwForMKVpAmKQUuLBRwUCBHRiIE4IyIiI6Ah5BMwzDDMlM8yJiDI0gxgbciNOVWHACEqtUgEAkI7hf3IFxOFW5aD5EqNHhnm2Oo3LTRIo0dxXXb/xjW9Y+Ns3j2k63y1ddRsHOa7YaoUZmCF6FTByDA0HChpqeXJAS8gIjORZZF2vBP7xy/nbP/uNH3zn796fCvGUQZCYIwphkDva1rdPvvHtUitaeqJ6Vm4PDw2B9aYFCwu9vT1OpwV2vb+/H2Ow1Kdtv7u7930/nWYmcs+npxsXwUxOoAAulYtgwhgj3RmRj2mCu4e31qap3m43gJxPJwS4bO8FSdVIUGoxD6H6/vGRWmmtQmLvHQhZSp2aSN2221Dv+woQd6dz31W73z88pzhNhQy2deuUoNrTdW75k5/8+N3bL16+fL6uj1lqm6fWYN/HhxYsZsAxasxSMBkdODE2dcPSMUNqK8QhecmkoKAZ5vCDFSCtTOJCmcjIZj729dndMyLqHt5vpzaNa7/n0/3D/PbLL5fzeT6125vHfYyc8bre5mkCHBgxbjGdFyIqidtqboQE1mOe0S3P53sd8fjucTnN4b7eurmc8BxSEs3AIvq6DQ6apikcjll5ndphimVqw62dZNu2Mi/gsK5rlRIaQkzL3b73mZu5395d6jRr5qv7eVczUzns7uYat1pEqm19W6bahwZknadtuz67P40qal/u2+M83xNRaMzTuZXp/dtNR3z69a8Vbx7dY1gMAprraftQgqxMIkx0bFUtiUAtfIxpnh6v79xpOd8R0jZutVZEvF2v5/MZALhIQEqWSSZMMjNGirCuNpWCiGNs1zCm2cy5LhFAFc93JW8daH26bixUuK03aHUhKBix3tQ0CPDNm3d3cyNkjomSIgIdMr1x5VJcExBFGJFhGKO0cghtCJIjExIgmEiIHOgg3TIkb+uYpqnV4h6MHApLfTAzN9cAc4AQZs5M4AEYnpkOhYXSGfn6dIsJA5AAl6mO9OEjibFJyWIYGQqQ6X5UdUupBQMRzexAVro7AHIRJ2bghEiHo5Oa6YhYWLZtK4WBYtNrY+TiavumwTQxV3AkLK1O5gMgzTMhJQE9Q4ESKlRHDIZt61Ob3F3dAiJUyzSb5t63aZ7V3MxKaQkszFJLWD49XXrvAMBCkFCrYOTBOAKCKrzM8/2p7es6L7VvO7EULMPskNBJlTA3G7WUGIaRlSsOLSERBRKQMFCCYIQFJDA2TRRJilpEsOnwHklKy/SS9FYBCOWyX3kBqrQNLVgFEIkPvisHsQgzQwpAWAZ4JBARuaKalYm2bT+dl1Il0m04kGAiHlJ3YgDO7mEQadPUiFAYFDIBhjlLQJjuStiI1XX3ARO9tNvt05cvL4+XNd63+/orf+d7IPp3fv0XX7/9bnnx/N/5d//yPxLbP/hHfv6Hv/53/oN/789+46svv/G7f/r7P37zP/jv/gs/9bO/67/9z/9Lf/i/9l/eXefp2YuXAHX86O1v+8Vf/H/+6//av/rt58/u5vtnD3fC+a1vfuOTly8+uv/4Ej+aKurQv/pL/+mb2/vazr/8+VimutWHGPsyLwC5rWskt/kc3Ny41spE3k2m2qAwiaphEqojkgVwJjEgoxowEVEmYmJiJgXEsTQmxEBXr0JVxBOEyJwjHRIQsRB79oIFKcCBM12NuXAkMgKCpSKgBDBmK8AJ5mBjUJvkNG1PNyL28LlIbLdn98/e758XEd23WsrD3WlzLaUle4Y3nvf1ipAEFhqYtMx3S20Iaq4IxFiYSvRcan18//n8tXpb3z578TzVMCUihFGk7n7TgaeHh12hznWz0do8NJImDUr1pZQKtO7rbdfl+UOdZr/extMNmco8YYS7z1wy1ALC/e68IBEA9DGOPoX6EGIRKqWku7lSBBOUIsN03W4JUWoZurlaWWi9bYVLegKhD0/SaZoMWHgBN8KGBH3o0C0JE6s6tOlu7Hvfk7Dd3T+MXffHzSkNOQALedrtul4Mps/efuc3fv1Xn9+/jA49NhJc37yfsJHI7sPRC09tae7uoWZ6kBM5gbitA1YzZnGD9Az1g47i4CJsZnu/SqHNzMw8gqbaIPt2u7yP97XBcFK1aY7umnfTRpmhN4rVlFZw5Mv1sUX56lc/3n2/dquFK3Lf19M8qXURccz1ts/zwkTM7H2dhMOdk/YxkHHdhzQCADNDEAQh5PAk5DFGcHCiuyPTsEwUG3E3Hw0zqKWYWSiLTNvQ83lhU42OiLZeqvRKB7whTRJQMicOcngcihkYab5dpCKglymnBuvakQCQLWHr6iHD0a5Pp3fLw/15X1esZkjgGWMQwL7vmtEQzHwqkw47TafHqyJmq7zv691yAgYb3cLvzi+v12trbTmVSKitjTFamy0wg0KTicwGAXItPZEpURrxHMiQsNrlNJ/2p8csbngzj/Pdkk7vXj9949NvldKSJg2/bI+ZsbRzYFkDH+5OagGInoBApTZhenp6uywTOgzt5/MZMRlzG3uCEyNmRQzzgcQ2HJLHvgvTNJ2G9tPpIUz3TStLJoClwcrMhGlmTEFCRDBMNYaYY3og7cNriBQ+391lqGdEhA2nQoy56wrIAVMyR4RIC1fC2MZOk+w3pUpLq1u/JiZVAeRhiZrI4EYECBjLUve+AaCGIYs7CqdhTyqZfut7q7UIUhynoxQh05GZrYinEaK6MlFr7bruJOhuAbbutzaf2iSb7sCpvINbqbT3awaD57bdSEqPiAAkL0XMPbFkEoURRHCAK1NUyud3D8vU1ts7AtMNAdgNgEkKR0RKOmSkAmRkcBUYMMK5MhMACWjHBHAQqt0SmQh4z1vpRpJOFKFzLQKKDo/XL2vYhOju54fJVft1r6dnFbCPlTMoHSHmsgCF+o5MFuiOiExA6RiAQdx386TLqqUskC5VRlfLKMTmqWMs7TzM0EOEXR0FQZM5FaJve7mfkKLrNkuMDgZZ2vT0/k3QU5YvLtc3/7M//S//s//8f//tlr/yq999850vljJ/97vf/S/93G//h/7QH/Xef/Ev/6dfffFsrosC3z+cfuEP/ld/crn9i//CP/2n/ql/6r/z3/uX3j+5zB9d3+y/8A/9Iz//C3/ir/7F/+g/+Yt//iff+d7+9ku8XLbYvv27vnXd39x6EJ4K2rOlrCXa+aSqm6+PY20Tg2XBdCSpkqit1bFexo0szef62a7h/qxVupPL04ZMEDn8OrVSqOrwCZvqAMYgNHMEECSIXJCJU7OXmknumQRAjugx1WoEPX0bQ1od4R4q86QOgbhHqkRSCkEBUM9h+9Lqpk5Ey7I0CnTrXUlw1ZtqPy3L9fYklF/7ysMXn71mYoohBvdYsisAqI/sKoIRHTCYqADFPsAzThagQCLcPNnDGQ0lPvnoIyJKpIxGQAB9uA4Pwpq5Pz1dp+Wj09394y251tMyXS49QbhwcgBQrTUSIvNyeXx59+C7bVufpd4tc99XwBRgivS+JxG1Qlyk0LreSOZSmJm2sRXmwlIqjb5fbxsJWx5DRNTQVopZ3N7bNJ3rPG3buo7OhdW7FGmi+/7aPSuLYwRqnc4eGVmRinmaS5vm0bfY1zZVSNdYk4LIQrnv/vLF1y+326/8ytNtI8Z3hfoY22XV4LobMIMR8sTtvm79ssdQ1dbmpUB3ZJE+vux6nee7y9rn6fR2vU6tZWA3X6bZUgc+VUnBcQWnpd33kQi07mubxCk0EjVaq6W4FImn2NZxva59+G3b6/lskDDxpvt1W6dSKWFfezufprZ0GwDc5vO274jEVA5jV0S4++EyMlsJZGp4fr48PVnvG9ey9i0RsOAyzwq07jcLIOQidYwxT9O2bTvCMrfQ1G0vpbDYsiyXy97Xx/NcxxiIsK7vXbf7+3siuKzXZKxtCuvh6GGMBMi1VU/vfUQEkxR89nC6f7pZOE3TZHqZlxKurZyeni4P9+dD4nm93R7u78d6AWQUBoRAQopkA7JNn5B9jFHKspyWrja2QUTIPMY4mktcRFW996OLxIQAmBEASEmZqSMz1JgSuBQZXVG4Qh1j3G7b6ElwEoL1Sadpmua7JESB05l/7XtfkAgB1CIPdyciOojuiEGEIhQ2HHGe277vRYQI1/U2hiLyVGXfBzoG9kxHhLBBVDDdXRPQHJBcMIIhHcx7JkqtaSGtMtK2ueqWmfNp8eju2zxNYUdkulnkmoZEfExIk9LMtUemJCYApkMEEblZA06AcIRAKrK78UgAYi7poAAJWGrBRAingpTxgXBZa2aajQhVA5L7VjlCvdoHc0M6oJNkwOYwMmI9JnWVC1OS99gMh5wqBWnaNoYOZ8dEmGQBRJ7nvVsYBKSZTW2S2tbbPromWJBl5iEfTHf3gEy33haZhDPdfHxoehwKHKRAikykTE91I4yE9Mww1wBiR2YsENlRYqKSCR5jBt/3jUWkRhNAgQgFsxAPBhFDyGmWgtDTRxpznk9l7U8XhfN5STf3IZD7vnKRAIrARAk4cGGYmRmQCVxkIgpGM3M1INcEtYDCXCQJVtsD0iAJkBNDA5gcMwDKPGnGvq1YWTHUjKe6x9i0S5sJ4/mr+Udvfvxn/qf/o1effOvd28vd/Qkgpmfn3/sLf3R6mP/sn/vz3/vy9UOZLm9fb94N8DvX7cXXv3X/8lvT/IkOenr/+na7nE9znM614T/8Cz//x/7BX/hbf/uv/6W/9Jf+/b/wf344ffzbftvv00EZpDpu++NPPvuh+dbAtD/NfLpbzk/bNYhlmqYF2lQoYL/tt8cfF2lbz7kWkt5NYyvebaaD76TMDG5DvZTZPR0yMS3hoNAUOZYVR7sviElY8BDAA6TACO0RCoGI5imJiNDDCpIQCDFnekYEGOJUZHdzdwBA9d67u9cyLSJP18vdvESrMTpEjssliO+Xycxu2ya1ESRgCAMw7q6AQcfai0tjQSOHQCokdbhlKCEHGKkuUk+l3k3L+22TwvvaawNBGhbDo04ndSZsOqCWJYD3facCRejx3btXz1/dbC9NCtTaxJ+srz0i5vulVrndLunKzC9evnx8+6Y2ISKWMjym0phZ2vkoGjEXSOpdt+tlmadXr16t+w2xBYaZYYCOvVRezqduqraLSJsnVd13z0SAspxOT+/fZ8Ei3HW7re+ePby4uerQUoo0SlCg4CoaPQ1Hv909O2tyT5+e3+nYyMfly++cztVYbiNVt5IEkUedui5Tgtv1UlILpaKXVLQkoxJRsU0C600ZGwAv0+moobpqjM5kMwBDyiL3A8MsAJBkqmXq2xNPtCzT0D3SHt9vRGVf+9PTtq1GwonoCJf9Vpc61WYWKDRxscSwtHDmSkTuEi4I8YH/nlmYKb2gi/BmQ8cuddpu67Z1hIIoGdSW6hFdx6Y7MFauqRHh89S2wzuNR5MHT/OEmcB5W5+22+V0uouIMfZEKIXvTov2HSmEgionqLkzVUGRUlR9OCSKlGYWmLhM9f5u6vtnimk2WiuWCuTv31/vTjMJCsp0WrqOvo/5PHcz5uJmbmkjCmYpJdynVhESmXrYPgYyDXdGGGNjKt10ObGIqCki9n2fGAtiIg83G0nCrRURufaNpTxeL6XVsLh/9vDl2zf7ppmNibfbzljc4Hw+T4tIw2HvppnadHd9vNRaxxhzK9tq9w/LGGPbV8JJTftm9/f3GSEiANl7RwTTPk0TAqSHTDUCGHPTBPzgCxLhSCNCdXVXZuZC6eDg3KZhATGYGaB5BpAkS8NzAJonOPHUAtEswgZFYmaCIyYSCHEE6HCiEGIG9Ahi2nctUmqddqLYR6IQY5Gym2Y4EG5jNClIKXgcjeAwbweAxxaAgCeRuffNdVSej/MfQjBmcERugM6V2tzMjDDTIyMBIFi5cpE6cYvVIY/2CRCBql22laRyKYIckSmUyFiqd0UUImRBP7TEDLVWXS/3p3aaBSEI3boRZ2ute2ZkQgYeHFn8kHorBSMjzdVCM3AM524bFAp3iIzIcJinGu5FID2rkADqwYMMD8xuWpdGRI6BwKp7mAmHICoxIgaliAiBu7kbCgcI8dEAw4Q4sKmQ0MfgqWJiAgELMFUu4GEBAeCUiSki5k6EWcR9EGMieyYVNgfHnFvxBD1+AQJsnC33uBnm119+RLV285ff+OT94/r973/5x//Jf+z3/N4/8v/+a7/4H/zVv6x7dqRvfPrx82lqd/fPnn/0zW/8zLOHV8+ePfvo+bNPPzqv62299Tc//Oyzz37y7Z/+2YeP5p/7A7/3d/3B3/+P/uP/9Oc/+X6bzl98/lbI7r/y7G//rb8bGOfzOe3WKoE5OCzzHddyGdvnP/ns7ZsvP3r+7BsvPn718Px6eWJXNDtVPtHELsONEPexiyBPzSO2oXsMgAKUwoyIJs4JgUEEFgmQQAJJEaBqHJSY2GqG+ZEUPxwaCQy52UBkQJAEAQRASEQ4oggItTKkmRkm1UZTJYPuhj0hTBLH6J+8fHF/Wn7wox/e1nVZ7i0y0jChfBgsCVJScoaFhtk4lvOiS6BSePeBME5tqkA6/KcePr785MtWCBDrafni/Wdl4rtnd5999n7r/eH5V87nj/eOyISFIAPJi+AnL1+YOzAYJEGMTV/M52DcPcw9+za34gqXp/dvGTESIXrvExERRxp4Xp/eAWAphQH3fV/m2WtVN3eNCIBY+57p52UhZkZa+zUiAAhJVBUAa22MZOaII4+kIKOIpJqNkZ7MnOljdMbKjFxI1adTtZy21Qw4kNVHq/njH/zyZ69/cN0uy90LZHLD5w8vxm3bV2UCVGWGQo4CllEYWxUL1oyMiHSmWqRYyu26tTKFJVGlVmulhJHo5ru8fZymE6FomgPw7bETSju34TeHqyqb3bfpbrlf391uQUX33mpbt/3udAeUY9/L3fOpLj5MavVIC5Ba+rbva5+mSYTMxyH2KFQYc4wNEhGhcM0sMSh2KqXcTw/ruj9+uS7LAgU5uE4FEcduBSU9lmneqTtEqeJqt7Ex4Pq43t/fP7z8yCwu11udTknBrezqt+1WqxCT7yaFgVpiyRA1GOptmUtld49hwhXSmfHZy2ev3765XW8Pz85771SlzXV4X9drqXR9vz6cPhq+9x6ORagINcaaueuQKnyAHYQqJGz7ngTLXK/XtRYhoswcvecWBEiHu0KVLGqbmYtGRAIGHGj7cGQCZCQukXHbbF1DtWj0VrhUsdGZ5NXLB/W+73tC51LWtZMs27rPU7ltQSS3bS2lSBVEmKbWEccY+z7uTnXojkitVbc0TykNIIaCUAFiKcKIOjwiPZgZAyGBI4NAmI5Lqpv70XBYWs0MiNh3IjwB0OgjQwqCd+/sCQBhrUzufkQ+M44HPf0XRmuLKMLClOlcGQXBgIiYOTw8EgCT6EPdoxaESMyhAyCAJCISsbQlkdUpACDFvYBlqRyqiUmQIoIJRMLMw5PxUAuZECGDJYVpZCJ6mUpm+lBT2LZt9MDSEsg8Awyq7Bb79uiWWSjN07IwAwAlRaCZTbU83C3C6apmxkBAggwMOVTjg8MOj38+UXEzTIAQiCSCxANdxHrQsCEdIRidcXA4woPcVUoktLDIzBBHx+BISZCwUFPGcmqTjVHrggy7DmEwzIRkYc+DAc7JlIgQmQ4Jx6KSsZTh4GYRURA8rFL7oIzKw/MjiZCZBhlmkOlqSGIBYe4BImJmSci1mLsjOVJqgIiGKzxtq+8gn//kN0ynu+evvvmzv/PdZa3n05/6J/+JTz/52k999eufvHxVay3t1KbT+vrtdtu/+PEP/u//t3/n7/29v9779mu/+v23r9d1X+fz/A//8T/5J/7Ef/OTb55/y09/7Vvf/OTX//53n7+87/3xV379P/8P/+O/+KMff/ZTn36aJqNjrWmKzO3x3SjT3b/8r/xPvvaVTz//8Y//jf/ln3n3+frq2SeVL++v7wHrUs4jVmTxiOOPv/bNIIFZj4ZhAKpRZJgho5IAYSIQCEOJCDVTAxRGxgwNgESwDPY8IETmgcAOmZYGhsgZiEQEHAHEJVm6uwEFEGTs26oBXqqn19aQ0CF/8MUXv/VnfvrFV7/65ld/PVVJSgSkjiOTEcFEFMiQaOEBIYy18g0TmTaCKFxKe3Qtbh995ZPx4uwvHt6+fTM36f1KUy2FxjZqnabz/bvH/aOvPgBMQBPCIS/sfbvM093unYuYjSoslfdtdSSoEu6gWWoTqtPpzg3uTiftw/CglMiBBpuaZCKxmBkBIAYS1NL0yH8CzMtZVS+3LlxbYVVnZiktAnofB5bShnqMTJvP7XJ9ZOapTMv8sF73dG/TdEgfAVAjoqu7R2xQANBKOLhc3+/47Pl/9muvv//+3UcPd9DfiNrdIttuj0/r0qYBMFQnrnT0CBAAy21TQQg4sPygNmo5wQABxPTQwMoosgN5UlJ1SVnuXmCxy/ULIIy+RerDs6mdhRikzutqAOBgFsMpaGpTkW7enP3SiWCWul/HO708nJZUVzeHqE3aVMCUQj3N3WptEHZ0G3Q4SxkGxEzAt+t+mpfKcn3/bqrz+dm9R+x9c90VvDZBt246zbOrIaK7HySU+TT3bc+IsY+oCUDz6eQZt3WfM+d5lvnEVdItzRAmSHTnQ2CKkgG+jd28I0ZpYJqacf9sefcUSLHtuzu4xV07XS/vXr97/zPf/ubju/eFSh/bbnuRKRlrmQu1VLLhgFxIIAuCmq1UwFP3ngBRSgtMM5um6TftqgAAy7L027VgQamczMqWkUNJiJEOd15ElLbcVnvzbt07ytw8XXUtGA/PTr33zGRp8/n+e997zKxE9O79epW4uz+fz9Uj0bOWOdJIpCb0ronsnjqOuwsS866DRQAkPQLZRhQpEQHgSJSr+uwCAAEAAElEQVRAQRAR3Kq06u7ugUmAbNoLSyt123dERuIxFICWaU6sEFkwLZQhEIFIwhwyETGIzdTCjzCPuaFHOBAFYmLFYUNXw0DIwIzMiAQggEQkbKVE5ohRiJMyE6QgQ73tu/eCRJYdshcqIhN5pkWqHjQcYQEg2y2CvG9IjIQMjAmEVLMm0XBPxcolIQdRsusOAOye5joCjhOAQnQIJ0gMJCAgQAp3jCjMVcq5SmaqDiGOyNKqSNn3FZARC1EyShICRCZnZlp4RHoiMCGHi3XV3aEJYCQSAiLkGINICDmJEyMZCSt6EiAxSpmkzAhRABFyllogIt0S7GAhMUcefA7OxIB0MAj8YIaC9IzIDESqDT1cFYEyEywULAKQifNwM6CqiUgclXdAz0hwSPQIj+CZVQcQtGn2dEzMhAip9ZwU00z3rd28/PE/9cf+gd/38/fL8/PUwserT17cL8uPvvd9c/3PfumXvve9H/zkJz/5m7/018/Aj+9fW78Wsof7EzN74Feef7LrXVumP/fv/pv/9r/1r/yJf/Sf+flf+JM/93v+0M/+7G8d6+vw6Yc/+NVf+853T3fPRtB2s6ktUJrf1slwXN/91p/9uX/un/1TGob4u9/9+Lt/4c/+X7728bO///3Pv/b1jx/f3rbrIwq4i0cmQgTslo4wlVIExmZHAh8BmBmJLHxYMCABEqK7R2YkEKT5QbkCBshIyCRIBETghhjgA0bA0Q8j9GQmisCkHJGZlWuV6pBqRnLsfS5j97mUVufG89/8z3/l9/7hP3D3yfWLz18/m2Z1IyRmAY+CJRyAEKkE2a57+iCCeS6aSVyAcYQXIEAmrs8+/ni4bepcoC6n7dKRqu1KJJkISJ4ACYUYEbd9f3bXNOHt9X1rs/YuIhmmRlw4IyF8qo2DzGJkGtRTm90ww+blTt333mutwpQEXa1I0wz34UEoCRDDc5ia50zFU8ZQ5xyqTJJBmZQBwsxMNtTMTqfz67dfTjmZ2fl0j4HaDTwIPggZRRggQ0ehxkIIvPWtVLJdGeH5y5dP+/r+/dtnL++tr5JbaA9nanfYSrRKBDbUoURyJCaiiCTECI9McgfCVBybMmIR7OM9S21FqMgw03AiBqrS9y+qTxUXKai5lpNexvtnyyfZFVJ07FzRo1v3WqfMEBIbXmQ63oXr9cbz3f3pfpokIpCJmSCi9w0i5jaJMCK2MkF08w6JDo7lJBT7Nrjw3f3irn08zXOLWN3NLVstQLyPnghVirmNMUopjIgAQdS3LcyY+dmyIKLbqMupjxGqGIZRrHfI0D4yswiTp3u2OmlkZoQOBa+T1ML7Np4ub2qt4RunLSdJOl/XrdQZMJ9uvc33qmjqyyQYoxDJciIqo6v2p6mcSmEmxgwzM3+cpsrkXGkY9n2U2t69e3d3Wtx1Wc4Que+7mfd9FxGurKGmtwykimyUGWF5t5yv+4WL9G4OrsNNg4gwyELvlrtW+Hx6Vuv89HhNyzevr1O7u97GPJ9fPbtvFfZ9RaBlOa3rKsThMcyJWBinJgUFgI6N6XI/5fAEAEqQiBx73zMFIAFNSkWMta8AIEkfjNaBR4v0tJTMJIn9cj0vd8zkHhG2j02kHOA+KcQBqc6A4cEkxBwopRRP88PixQAAtZZQc7dlWW5jJSIABE8HB8qkTCQMIEQ3S6JDAkbCR+lrjF7LhC5MLOQWw3VAFEgoIMyNGQkhnAAO9LI8O5XeezqQCIR5z3AiEAGGNAoBRKkwyPt6TeAMToQ21eG27ru6x4cXI4nIUaUI90ydl/nutKRdIizDRYpIzcChfnw943Eq0PyA+0l3Zzi2NkZcEBG5hJtbyoSEEhGYWKmoaqOKwCMVIAgEBFMiDDiD0DFGQlQmyczUvm11mTZ0GFna7O7MpQp7KAAShkFGWgITIBBiHDa82LcRhEJMkPKh+4sKQUwO6Me6wtwDCZAiWRgT1AKRBCA8orsga99HIpBEOACToO1DI/kawJ7UPsq7+WK//Df/+ne++yvv3r/+8vUPv/jR91L7097fXxSDl6mWSs9efPLyqy9O7aPCWet0edpefPTqJ59/drcE1vV3/o6fXvs3/vJf/gt/7s/9W7//9//8n/yv/zf+wO/7fb/3H/iZhn/0//rp/+nx7Tt3Nw+uy9P1/UNb7ia5vnn9/O4MCdazze399ccPd4bwmL5nOqCKoGPBgMOw5sinZXJ3DiD0uU3ubu7DExCOd2dDPIrdSMAA4Up4OHjBxh6EyFiAMJPCGZGZwyIoIzHwg38ZAhz8jqoTJBxSToruSIDI7l48S/DSpnAtLNb7i2cv3755ktKWZbEIKYUQwZFFUoEIkYSEHdgpAJgFq3mMMd+fI+ByuZxOUwPyx8udESaWeiYQc5/nWd360NOy3G7Xr3z6M8sytfN5HdHNW5vH1o1xnucPeWlIRA6AfWyn5S4sQD0BPAFLTXNzCAQuExC0ir5tRJyZfRtDvZZTYYFUomit+XBVZSpIsK09ic/3z4RoW/fMDZEwSbUf1xt3n6a2rSY0ned7xOKODBjhUpBJiHDbbpl5Op1SAMEwkam1nMiLoV+1zw1/+W/8f374a7+Y6xMgAvF0Po9bt355OJ97JCNxKRholiyVAMJJUIw6ekbfm9CpnPZurZY+rvND8QTCm+1b70ZEjSojCsTmCku76/32cCdKG7k9nJYs9enp6YufvPv006lx1rrMRJ9vX47dALEV2XeFzFaq9m19erSNz/cnThi9M+OynHXv19s2NQYQJ8AEtx0YgCIB+q4aXggCdNjWx0YlWfiyXhjrjPWgG0IgE2Mhi3D1w2lfhUY3RjlP08J0uT0NV57LiL1MrUKGGnjOrQbTPnbzDByZ6LADYiQQKQL2fc90QZ5PZ9MtkTHz7nyapmnf995XKRPOOLWSNn7w/d94+WwhnOZ53gP22waEpYjDiMC0gQmFmNGkFB3R3w8gBoCpNTfz0Eiz0YlIhEgIsyBigpm79RWRSmmCOIbr0KfM2gSJ+rguZXn39nXo/tGrV713Va/cPvn4Y6aiBlKbiDx9fgm109JM1+sVcplevvxo227ajYCrVAPyMUphYFQdHUYm2tDIYYrgPROJJCMikikJ9BjwHrPSJhwACWGZKEx44GoBw8ydCKSAw56OTNmqrF05KRGcwCkhgI+XDgYgqaV7AGcguWsAloIQiJHpaWZARCAYlJnABJBJ6aFMDTyP9kVhhipmOsZORARMkTF0rlQKqzJGRZZI90iiZGFiyEw1ZW5JB54PAQAIgSmyZCYADQtEQmipycws5D7cM8FLmzPBzSHChhYR8yQiQqJItICAyslCbUrk4yGOx4SNuJgFZrDgcaGkMHVPM2D6cPtFZuZMklICSFqb57g7n3cIQQwMFGKM8MRwNyvTPfhQN/NEDQqghOqR263OhZAsR2S2grWQeQITmGU4SUGAdABMQMAMwONAQwRAhOEOEeDGeWCd0iNKKQkuhCnoZt2MMh3w8J8TETOaKR53+gBEUOtFWkSOfaB4JAyPhGtKA5aLd+T69nH9N/43f7pbXvfukOfzeQo/T/X58/vzWX7HT7+wXRnQwW/rhQGeHre5TWPXve+/9uuvl2Wi3PYrYXuKAb/jp795+p1/8G/+rb/2v/qf/39Pp1f/xD/2j3/88tXTl2/mSS7XpzLVx9t6N02oWqBCbD/zW74KGCLuFr/6y9/76NnH69svGp72G5Q8BZg5Om5ABFQ8QoBBR4RWQTgSOYTHEZKAMiLN+bDsHtHKcIA4SuuRjkACRBAIiQQMx+ErGakcuUOEjAgMEL6NlYsQEQGWgDFGEZ6mupt778Vd960wr4/XeWqITD306TYhqludJNRUrbXZMAAxIMAowhKcOCRJM9u8IFVGPJ0Cs3e9/pZv//RVL3fzJEHCrGPLHG6m+7a8+Oi6XyF1uW+77xrAclC+cb9tL1+92vtaa+3rVgBarXVeDj9mYmaphVgd5iJmXoSA5Hq71amhlKGeHkVmIfLhgTFN076v+273d8/Fgpmltk59DEvv6kAclSUTp6mq9gO4mxkiwkAJTkBNKgQRCpdMU4cQLoKKlE0aOJiamT67v4NWbvsFGE/nGhFf/uTtuy/2F3esbhY+LEGdUchsxtyPhQ7A7sM8WysA2vtYbW+lhjtF8ePlLpHpMUJNEXiaFuBEBDBjIKF6YpJ9uzTJ7B7Wl7nR5tTuQ7ftEudvfuTDS+VkfELZ9DJP9/voSQRAmFRYMqyV1m9bYpZWzeN22yCxLmcfqyCHY+VqsXnsw/Lx8nRanjXky23NzDIVaqUsyxhDsUk9aZQ+lLBB0kF4mUS2bassVUpmQp1aadv7J6c2Espyumx7abUsp2HXsetSiwcGobQF0jFNw1ddm3CVJsejEDCpNJkoOU11+OnhtI9xdz4JweN2eT7PA/bH9akmDrOvvDzfLje76nx+WYskBjG5K3NSYzQPcCLJpEqnBKttum2X7baKIGYWZrUOABl4JOz3feeCtYkU2rZtXUeVOrX5vJy+fHzsttepfPrpV374gy/32/U8ldSrbts0Tc8fnpXS3PK2Xdz1ri0vH57drk9INvb95laI1+vW5sk9GTEtBQmZXY0ZhRGLpDkhCc6UymmEQIBYWpqXNrn3jHGQ9dKBUDBiuCcxCasDRNY62aoIHAHTfDLtSOA5MuLh9KJfdxsBEwcBMyBYH52ICxeSY4SFmJqJkEnEADj6KFwoSXu2eRpuAS7MiJEJ4VEIGUSgQKWhGghAMU1TYaEPe8uC2NOdosy8eKqhlUoHIz6OrTNBKWgZEbqrOSUijvBhNtVWp0pmmUjI+9ozkZMRuUpBkk2dpJoZEFTkQqL7Vqea6oWkUWFBLsSiy4mRwkls7FNtaXB4u2ut6nu4ZmYmsCCCAFMiHNTrUisSBUHfdyZSG+7KicAQmB6pmYaIUlAYRma4kgFx4VaFCxqlPlvmxuG+lyaIWAkfLxuWqRKq61SmSNu2XgoLU0B6HtNjgIiEzPCwoW4zi2MiQSKGBaKbhyOZgiYMM4iY28JSIBIAhvdhYz6dIMJCWYoOUx9INayHmkylUaqOTA9Fqnfmfv9wckSP+JlnX6VDL5Sbqyk4Q75//8M5yIHWcKklgZdl6l27jlLKqdRMzQEEirrMEdsXT4Offvs3f2od/Wlf//f/5v/6ax9/fZlbZSbIiCAsqGWR0m97m89f/ea3AajIZBE+rj/40ef3TYT03fV1g7sMAxia2McIod2sFWDIiakW6kMpWAAQPizsE9kB5lLdLbxLPdQdBRMORAwzBYDr4IDD0OAeIjWZKMXSKMPTExM4oiaUdHcJIK6VCYSAgEKF8VTmYTZNkzP7UAtn1ebhAKWwjx0Ti5COHU8TOIBHugsBIREmhCMKEGkfiSAFIILYP/7kvpG/+dH3pzo9e/ZiKvS09fV6ff78o/fv30611MrX6/v54cW5zNseUsqqXmTqt7VVQczl4USO0T0Q9rHd3d1p5kiFiH3rL+6fbeBb32aaSXgfY5om94hAchap5g5oiFTrBBnMhUqYWd/Wg4bn6YAB4Ez09t1jKVyKZB7nx5KZ5lupkBk2XLgCFci8rpuI+FDC1lrzEdahtZOg7/vOE3NhH2Ou0/vPP3t8fL+jBbWZaGxXSDAsbiQYTN4KeYxSZT5PY+zcsgqxAI5aSlU3qVUHEjUzraVMfCZbgXKeF8Bx67v6PtEkUpmSqVUCW/f3UOz5wyvL0i/v1bavf+PV5fbFp1/9Zlf43m/8aIdc7s/vHi+t3SGS6yAIINxNi1auTs2NHKH0dbSlGSjLXRIFkjJRfaH9WiYAgNvWp2kRKgCQCh40uu+3flyyrN9qI3cHmDXD7CbTKRobYqTrGLZ3BJraTDxv+/V6vdJU9jGSdwBgpK07gLe5gsVue5kaWAgIUDHA7Rj/siTkpiMz5zYH2ro9ubtwfP0rH59Oy3XtwsUpCen2dPvsy7fn07xuN5H6/PlDIr+/PDGjWdQmvY/zadn7SFXMpCIDnE5LE95v12AopVQWH8okhZgyS3J2TeRAdCg9hyfsfUvfXr74WLedSD7/jdeP7x/bVEJxvWpkPDw8AGWEJVOdK0B9ut5ce1tO7x5vbX443y0W9vp6+fr91whGYGgGExokE1qou7Nhuk5TRcjex4FDLsXJ3cIzgagkyjFRbC2Hq7kjZEGgQxqcyQJmfKQrwyOz9uGSM2bxQUmNqgMgqCcxMDqYh2vfp2mBALPIBGZBPLaOjsKBTFOdWCLC1RGYRJDIRpbpnIjOOcKIRMkAQoSReJiBY2EWyG115lJq1XT1CGABxDR3A3IgSEJHYwl3jXThIsJumZIJI9w8RwHpw5BTPdOoSDvPy3VXlAMhFWDE3GxoExbQkT5PCH4dvX/88mNiStuIDCKngyZyhLUbqXbPDB2RhzKGAfAo6Rfhw23FzOvYpBYWDAysYJ6ZmImJdBSEEAiJpJTUIJQIKFSH2SSNuwMsE9i+6/3p/rZddC4KKcjMDAmBPSGI0h0iK6AgsbtiOh+1OHBEXNpkpU6lDFWLwFa6u2UK8xFrLcyJZGaaDpCeVrEClb1Hm6upAWSbTk+Pq7FyZUTpQ4MYa/UANQdfPSCApS5IdH26mFmVEoephQAAMmInMhtMApGJfllXZja3BK61DB1WWmSivY0IKFWTntY3iTDN0+/83b8l3NL27htJB9oTWcry7vbufr7/9ic//af/x3/mzY8u3/7Z3/J3/u7f/o1few19W8+8mfd+S1Zs86V3BQ2GQGISjCScEHHrw49RM5ejd6ZuAIEIIzIgEh0gAm0Ep4ngXBr6UEIkRmCABCTC1GAfEUNTShtDuVUUvo4uImABmhWZC7elRITunaRiaFpMtfXe0wMi1pu2Tz+WmX/ju9+dTyd3hlLMPcVBU0QiPTKq1HQdBsuysGfvGwgDogdWIts9Bsznu/XpSapcxxihH7/69C29BsHtOs6n+8AyTGtAkFnuqrTct33f3623O7nHHrh7YWHhSlRKmefF19uptLWPaZr2UKll3/u2x1zPzBzuXCfXzpJIOhV2R+uGSFVA+7VwG91LKRkQ7kwkUlbbNaROZwOqU9m2LREBoU117ytnef/+UaQWCaAOaa1GaaTq7nrddiHgwiSKnJoAMRoQY5GQL3/05Zff+42fvr8DVt+g6ZzDTq3eRPfcSp08hWleN4DIWhrF2NatNOHGkeQu4Kg8elwJi9+iPrRyPqcbWg4flPbR+QwYou7oTp5lovvTi8frl8h16zugPXtx1/jZ7XJ7dv+w7d5K3W8jQc7TnYW4ZqWlVsGgpc0FoUpZ977tt2f3D8tcITMig2ioFcJWW/eBbfYwd09zVnV3QCKpkDF6lnZydx0GGfvQAKjFdu1qXSwgsRBXlsqVG4WGRUBxBK5lmu9Oj+tlG30uDQEkOczTARJO7cQit81clYOQYcpCToSMiBZhZsEw1ZZuw9RtR0Bh1L5xaQw8tRM/5Hob3/rmTxHJ49PNxth6x8zl7gQQ27bN87xvnUhUvbW67p2nKnMV5kK8j72wdOuZiBUHJhHJ/YnUL+vt0OFhkhBvWz9N58fHx49fvHz3xdtUv1/uRuRTv6rZRx+/fHi4u25XD5NaVY8gMY5h29oRed87EZ3vFgJ8//5prhwRrcpx+es6piqlFFfwpH3fhanWqZRyjPfTgZE+lLYh3RMjAQACCpcARiBMLMSZiCEiEWkRkQHMzEQQ+V884hMyjzoGERKxSFhKkcxkZnfPhATKDALCw3QIiIDuGQpChQjUvFZKFkAZqqUSM299K4UB2N3T/XAo6TBHr1MjInNVi0QgAg9lABAmRs+IhKHBLEhURQ4yaGYiAWB4OCN4+jS1MbQyumeG1cJN/XrbQZyZdXgpxdGLSO87YWzr+0L60UcvMvdwhCCCCSGZSkYiovqORBo9M6UwA2ZgJiIQMmdmJhLOGZQsrRQACKMYTFGZwMyQmLk4IQK4ZR/quk2FqpDUCY70nrswMiNATlPdxhaQve9SBIUdyJMxCzN72hgDSLlARhJmRoTnUYTTECIaHsNBE3fNRHd3MydLA0QGhaFDEbi1OTP7cJAA5IBc+65mKAiQPFW3HgGJbpEZAY6JJNyS2HwclHIzRxI6gmDEAOARCZ6ZAO4RkeoEnByA1pUZNQMiqJbbWCNGETj0RJE8dHeAEkfI3MAMw8O9TmWY3vT96bS8u3x5f364X+Rf/TP/i26KiL/7536PFVJwIVpKHWOomaDMUw0AT7AkU4iMqEUjgfEDehXyWOIe+1p3ZQKEGkAQJSIosxTEJAcCQA/HBGDwcEDCREFyTFfLSArCIHIc1uf5lCURWN2sR6lMUph5gO37vkgFR0QkZtPe1/7q1YvvwndvfVCdMbHOy+XymDEG27HXM3NBrsIEjLATQULUMqttFvb8+fNnL19cLjdmAUAzU9cvPn/90cuXn71+PS2nUqcXr16dX371x6/f3z17fjqdhpvvoxBPpRFAkYIJx2BeLYlo3fpt0+KYLJ7Rh01cW2uIYH4DABQmLEyBSIeU7nw+X26X3vs8zx/y9gxtKtfbDRFLKRrOzInQ5ikze+8BkBFDDxRdRaT5tGRggIe5md7dn/puzLTvejqdzIe7D0UhpoAwQKzCtO/wwx++fv12fzifoT+aDSgOTbpbN2NEu125PSfmkHSqPGPXPtLEoPK0bTuXphCKWU5zmgR4OA3LudYqNbsKADv5MIkAYTDfHepYDWn5yWevf+rbX58WHn1fu7Z5ev369XrTsfXb7damc+FGyGohVAoUV4fGrUyudp5fze1E4JwoUgJrj5gEh/XLdaNKHGXf+zIt80JhSchItQ8dBs45t1Kp4uJufRigcApMS+MuOrzWUrCEhWZmyHG4npfT0+1yvW5x2xCp1pIeW98qlbQ0Cx8+LQsoclIrLRwgkpFcHQ7Ea2JGaB9JjD4qAWF65nkq+fLZmy9X5vr0dFtKwyKff/Hu4e6egPe1l1IYw4c+Xi/z3Gqt27ah+3k+q+dwu29nc39aL/fLXAubhQ+Ved51ABOT6N5POUuZzQZmSCIH3c93AWDe37x5c5rPP/rhF5Yg0+wZz1++ON+fPUOEWmOzflsfWz21Nl2vG5U6Cap9CCzUwq013TcpJCJmAxETXCMzySOPALkItQAPO0zdQuXAh3kkEEameQDAREJEGBGQmUCJmQSOSM6AUhAcIyIyMDMwCGHEiMBSJyD0sEwhKREKhF13ZkYGZsmD3+fJhSJcTREzjYTKeT4PH257FgKUBFHrXBghaxUick+PI3cIDIQMFuGuPoJInMjdBQEwHBEAPCGApNYMYpTRNyRnYU+3rh9kbR+kNrj1XaREpGonKIcsEgO1D5omKkIMvY8ijTgYDMGePz/dn+u+j32zJud0EJIwCBuADsh4BDYjgISQiRmC3cDMAZGl6pETjsiEUE9G09QBLklUiYtm9mEOSCgkXAWZHPCw5wEiMsXUBNLNR6sEhK229CFUhvVuAUAJDIYMtbYSaMMGUVaRDAJyBEiAcNCMrh4OlqTJCZBIh2YRRQIDKSozIhNlBDGXSEyI49MFhS3CTaUWg5oIGXbc2z2PRGp6jj6UktLcPBAVkdd9K0iBgYgkhIjh6QBMFMnuIVQSAQCOkQURd0NMYWbTHuCA6chcCyDtvRfipc3b5TLXyYcutWruu2/PPnlAj68tL3/2W1/f95GZXz6+hqOe3hOyUZV9vSzLFJDubhqEIgmEJQGCYLeBiMAEiERMQpECeXwsUbAwFABjCqFg5r1rRCKCRxIRE5sqESGkSBVm9bSxWx+SZZZqRhVZ7dgcFUgr0o4zd2avUtLdzIiBEGutX7x+K62++sqnr9+8cwQi2lXbdGIuZgZJGWbqRMiEY9e5AhPINCUmM1M6An/lK18ppdQFtvVal9bXgQHrrUNWHXEuM1K93DaP6KrMcBwdmCRYCLiUhgmpw9Vuw4tIA0lg4oqVzVW7FtyZcaolQcfeCQthTXDEk5mJyLt370R4meaMJKDDOmpmBzaRa4kIZklMs+MDTCLCzA6+9f08nxFxqvV6vUpph4Z87+rmATmfTlvvjMhcxlCoxMiRaWGJeFH7/PFRibfA1OwZQZpka8+wfH6eG7JR4VbC9breDIgEyuk0xm5jlNOpD7tut/nuvA73EbUsJYv23bCs+0ZAjJVCIlK4CJEJl8+//KKW9vD82bb2dTdqmIC1tvVpZ6LrrW/dl9ODSHl8WhFKbbMg7Pt1eAQGF2KpqRwpmSrgfQ/t2aYAzrmQYQZCujWubHldL3OdC7dAZCinaUHEGHHp17uH6u7hIML7NpblLFjFVnIRlCAkFCLZtm3tsW7vuvVlWRzyfF7evH0NbkttGeYeBEnElGRmOjwwEzkxaxXzxIx0U9O9j2mq0yRgqfvqbtPpDEF084fzvQNS7mPvQrDu8elXHtxs227XfpvPCwCcz4uHPt2uSSiYTq4O06luYwcIAth6h66n+wdAJhFCCXBTiwgncrdWKqZXhL7vZV6EC5/OofEr3/nOPqwtp8g8n8+llCOtg5iPT2/v7k4Pd6fbptfrNroh03bbRaRIaVV89GRCCAKM1CPUSgQfbIMshEwimTmGHXiNTALxYxecFEwFiAEMgQHMMzwcMRH5gKsQHeDoo5/hAAlgQASZax+1LkhskWaWiIgYR5M1w///JWDGwEMF72kWjkilFJKCRjZ86O5mJuKeKEEMkB5p9MH+lsITMBBggB9zXkIMVQAux107HdJDjZkAoTAjkKUnIBFs3UuhJm1qi6tt23b42oiLRyci8+Ayq/rex+6pCSBNEyK890GZrj1U7051mZcXz8+3y2M4MbXWpr679sMIGZhR52autZziEER7YPrEUiojpQcQB8MAJGBKcyrIpS6ntukY5sxg4cebGiHVLSJOy5zukODhhStAMgOGBQgwORKIrPvecyiBZSC1zMMMiek+erBg4Xb89VgoAyLMHCx8eCKX8DCAYIxEACdMwMh0i0BAlIoJqp6RRDRN8xgj00bkMcmw2MmPGk5YRh7r0kwzc0CohEUsIhASADJbLUc/lpAQMQnTwywIsJZpeOiutdVZqpk5BSSt6w4gkBkKggVIktHNVT3yholVprGPWeYYel5O636b5haEu+mLu7M+3T774WthTqBSKISebldJziBrHOf5Te9za5pOgjWRmQBy65uxlXYmggB3twj39Dz0GoI2nAAAJR1FhDD7PgDxiGwlciIlsvrACIGM8MDIQBFBB0IqUrMrqqNFpDsgJaSnFNnsOG2JRUjjfd1kmZnqGPuXr197BlYJBAtzj1ZnAMhMxKAExCwihdhDtXfhMrYdpUzTNHZlLnFITiqf5byOUZuAupkJ1ve3p6+d7qfT6Xufv6VS3X1sg4kqMjMKMSJqN4AojK00KAhApbYAIKKh6qkJSniney9Ec3vo/pRJzFNBt7A2N4jMDLM8JoullHW9tjZvfWt16qaIHOEegQWSEBFFKjMnRmuNiPb1RkQ3s/v7s6kKya67sbvn6XQaYxBKZE5lAmBCXsfGBTdbn714fnn32Xd+8PeNxpOmoSeLEA6NEa7p7DEXSoQ+9kw6lYbhucPAcd02andzZoiEVaQavhNWBgmH0939XKVvl1ba2PeBjAVk227h29253j+7a3XZ9pFYvnz97rrC/en8uN/2da8FH6+7A3miO0hdCAsCdB1SqQF5jtv2VOZzboM4ao0iwlGIOfXpII+wMIEMTwpxgEKFAEfvpU6t1KGmFoWllUKec6m1sHrsa29yKsgBfFAYMjLDqYhgEZQttnme+hguvj7Z3XLatxsRTK2NNEwsVC0MEEmY+LC9mkY6uAAmhlReZMaE9XormHMrEeg6TGFuVaB99uWXyC2JIzEBn27rVGQ53UFnILztW2kynxbV4WpFQFNRGBF73+d5riTbba3Cmal9RO/MvCyLg4/hVNAtb+v1VHhpLYdVpm3fgstuDo2X07KtOm7rRx99dH93Asatb3enViLdho2YSutpFtlaTbhlAHOhjIDQsRLCvnU1ahMzk6cDghQJCyBo85Qe6c5FMr2PsWuUUkQkAz2TEjhIROKYT4YyU0JodgAMs6nWsXcdmpClVpaWEWG+zPNQ191YqlT5TTBfJGVgTFNT65DkrojcyhyWhFRrzcDMPDAU4HZe5sQIhCQSAQMJ64CeQKXU427rGVzE88j92EG3SwCDBKR0L1IYkAj72D4IaTwDkynn6c7MhiWphTuilEIZGem1tnW3UhoK7GO9WowAnBdAVBssIhnkwQjT1M7LMsZYt2jTC/cca393eZqmCRCYmblGBIK4ZQITEdJICMokIkBHDEAFZK4+xk4oCUksHh3BIv044A/1CGepmQg2iNCCjhNMAhPPCT503/toLx8IwMKExTskFoskKUWqqrrvBMyCkhyJZsGF3SMjmQ53dlIh9gCMSPXAoBKQkI5gCE7ElUoSD0s76m3EQGhD3f24l0Agc0NGM/dwFARKcwPISAokJl61AwkyunkSHvcbIlI3IgqEsACHdFhKI+AShgBk0SoTQCA7IHoyd2aiBGFOtKGGlGHBZdpvO0oD86kt7uGbLmW6PF2Xh9Ptctsu15ZQC0eCmSni1vvhb7zddoApWEiK+iDCQgVGECICJVqdSyqBRwJkxJE+ISZEIKS5EjoSRFIScTokCGIiQmBgUiIE5AFaIUxkZOBunYh/00utKOyQUMgyCTIR97BIGm63sXORfYypTHWZV+1zbRb+6uOPiOhXvvurd8+frXs3s3DtuyIeL8gUJqEAMMIkEgASYndQ9bC8v79flvO+vxP0BN37OM934VGlrNs4nZ9FQCQ/e/ZCI5e2XPpTYQm13W4eWBoBYykFwroObhMkRjgX9jDAIMipSCEwABuxh2tPFqyFaqHedxu99z7Nxd2neXbL6/WpzdO0tMfL+4iQ2lorgKiq5l2k6jDVzjy5modFWBUMHejGGY9Pl2laMpGyaOxjjF0NERlJLXR4mRihIKa7uW0//P6vfvnj7z3cPWTmDck6Ey3kJmkyQyJ0y1YZIiMMD9DWxOp0f1fVZb31aZkhQLsKtUhwBBNlxtFXBM0wpBAMZBJmPJ3OmCoi7l5rFRRPvT7tl7evl3musrx7uwJKkcJA++ZmYTbuT0uZBCGQUUrVXGtzoySOALNwTC9ckU5c8en6nh2SCbB19VYK+A4CmLGtV0CWOjUm1f7q1fn92zelCgui28Q11Ta7mGBGeKQAFS6UViHZPQplehUeGYS0Xa7z3MJ127b0rNK4sqtnxgG5dd0wk6KU42Popp4AIERSyiSEqaoKUgCQMZdnp8R4+7Su69j23ip9+eaLh4dTaydzG5p1rnu/JQYTBcC6GzNLpev1Mk8nSl1vnYjc9Xp9EqmTTGa2rVciSNeyJFeiMm3Xq+uYltPaV81MoKftMkJ1U0aux/agNQU7nU6ZR1uaEKxKazXdViWttYa57v3d27enpX6olkQwSVgy18PCBISl1UP4BZlhdqxV5vn0eLuSMOOxxzIGByACipIkSEAHJzgxMjF8VJ8RapUWmQRg5uGJKX1ELTNxmplZMBMzegbBcStgiMMUBL8ZTiY1P1CjBEgMEDZ8pDEQaGhmRCShG3gtxT0QGBMAMhygHAFIAYBDZpyZkUEHQZEEEiMtNI9HHhFFxLHiIiJGCrUEaK25+/V6PZ1m7WYWUvDN2/eatEdacmAOHR7ADEK0X/dpLqfTXLg4hw4Ig75vzEiMgVbbB3UuQo0A4uamgYGUIlIQzXsM09BEwIQik2kSyvA9ExMZEM3d01trpZBHZjp4NuF5nj0mxuoRhWukiFBqsOBuutlu4UU4iRAOikbafmNmKZhu4ckozJWyWFp4ehogAB1QTsjDZxsfbM+AQBCIyQIWBsQZFA5hmARUEY+NPyVgMuMx/ABid00WZnQLgEDMo/gMhAQSEVJKUBCxiOzrVognERSOCMtAgIRgMB0XTmgCOTaNPTMhKSIbwu5WWksHShhmGT6VNgkP948e7rxvlYhBl6W4q7q9uDt1tQrpEAbgHkIsU51yfPrpq+32NDOfPnn5eBtfvn9SxMdNjwuW75HBXAsiGAyOkhkIJoBIiZDpBh6ZNLfZ09J6IlsPVa11AkrAgICAcPUjC08MB66XCzMTCbsHYiKDYQa61JIOillZLDMwDENq2XoHQgs/Kl+awa3++PMvfttv+9mXL57dtpvuHYJRvBKgkCCGG2aEA2YwI+Hk7vMyj0iAWLctwtL62Lf5oanmgTKk8KG71EJ1+fSr37ysvU0nBgzL+/nu8vh0Xia3LIwCkBmYnkQRoftORB4grarpPM8MSEQ+1tO5pefYV6IkTvONEXvv5/M5cz+ErZle63SSedvHtm2n+zsiMo3edwBESiFBzMJHx5lExCO3bdyfz4+P7+ep6thr4Wma2kyIrLH33klY1bg1dzUf7lxQro+Pn3z0yXp5fP/9L756/3K/rVwLJNy6C5J6hsW5zlVKuKNFmabuffcuXCvK2l2EWwohTNjqLMi064jCaluWWEcHH8/Opxx9KpUhOEikkKqmabhPbUHC3nsiTG0hhgx4ertentbe9aNPPq0i3btu+77vFeLjV88BA5n3fc8cwplk6toq1VL7dQRjm85j3JhgqrL3OES2ESa1mJkUQUbPTFAPyLDr9YNGF9xGXwkZKaaFVtNSBMNcTRWGw1zbcn54fHettRIJeNhu6Ul5/GfA03oM3wOPgqOmZc7zgRAxIoRIM6dM5hKZgBGBHhlAjDzXoh42bqdz20cfowoSi8gk2HDVa6RN0jSCa9mGvnr+at8GuELiVJYoXgDAoxIxM0CYeegYmafT6bbpZr3NbX96P9UqxLXWPvRpX0Pk/PzZjz57fe2rhhWS/Xb92le+djrPMgkGmaru2moBdx3OaAQs0kxViFGIAG2oCwJ6neZa29SapWVmaQ1IVNVBAcAhpiZAtO+7OzFTKYWICBMYCIJIANJDdVitcvREEYGpIjLAkVRPkZLpnuFmR8CKkSzcDYgEOdwVAI5FbUSYfqAoESUkmR3YJa610KGP9aAEqQwEEZagRBg5EJmYkcmGJ1gGllJFgJnREhFDQogzYu8jAqROhLzf1qN+PU1z5hF9IgBg5pGXo5ufABCx9ZWRTqeZC3fXNld1u6xbUlXPZPEwIW6F0y1Mlyb3d6faOM2FmIiIgRkhlAUjzEEJa3ggMpG0CdXCXeG4VkYiJAsXrOEQiWMDU6xEiCU9qX5w0sDIMQaSFOHjXp+Zofs2UCABAAoL0HF0CgRPcwqHCOucYBlEwkIYNEYHgFKKCLnZhyMWkBTSnh4JTOZq5haZgswlCY71QcJxEIJECPdEZi4IDBFuCQBJEejqxlXSoWtSJgkHYDgcUoEDXxXhAH6SunvHYSUSQCsgAWImDUW1zGQMZjYwJgAMYWFAkgwzIExMT5fGrokJCYAslalgJDIAHsDrxshgc63ha+YgSgwg14pgkCAExKaGAKdapoSXrz4hdew+TUV5ez/6Ms8jPTOpFXYOcKqgNjApjxAUImICJHhGREGG4zlG4hkJQQzEto8RmQlxdKYhYy71+N59HwAQ4Sx8QMRsaA9FZmZGAB+hFFxKZoqIhhNjAqobIhw81yS+rfv3fv17Carb+vz+2b5pRhIjZAAk5XEGIiYkAnBgLo+PF65lnosI/OzPfGuape/JgJvZ09PlvNzNJGp2Wbfnn3ykaoh1X3ubFkS8Xa4vHp6fpul2u6mqjzGflgBIIqkFPRMAMDRN02gMYQZPtzrXxTEyt1obMkWED8Dkfd3vTvdbX9tUhvW37988e3hR52ld1w+f2yKZMbohYoS6pUglIF13wKzCk3CEu5mrn+/viNxs7DoSiJlPp/npepvnmunEOU0lYTCXqTbd4vLl/tl3XvtFaxG3nWxUMM5rZs9wd0mU6CZzHaO7dREuxDacsBaqeEQ4+06ZYc5hz188v8CgiuEqwmi7jz7AZmlIRca+EaOQCLOHChMze0IfTgjkOc9LgTJ6kLogL436qlMBytEk1vV69+xh7FalXd5fprt5qm2/rDwJY8EkAmW2wgSmFTF18/BamEoLMC6SZrVIRAzr83kaoy/zyW1E9laRStHo676CEU8THJrzyuttv1kHzdrYdWgq13JaTtsg3fd5bntYnZoQq7ogabc0g4irayli4TUrEH/wyCEw4bZuW8R5Wdq8ZGYCgsPwdZmfT1O9/vjz+9N9UnbbWzKX9Iht3IBwakuR1jXXtbecS6PoSZ5ufWql1dLHSAd3n6dpU7vumxPIMjnBfWvhrmYeKVO7mu5uNrbP372ZWrOxC9avvnr1/O7OMC/bysDL3KL3/XZDsiqyruu6BkkFAASPMAAgZLNorYADYNhQajxMkcQj3JCFa+NtvfTuBHhMOAGQkcJVf3M6KoKZMHwIFybKoEOVA8HIlUiYtr7tsW/MJLXUhhF5qDcQMME8nIA+cICAiJgoVZW5uisc1J+MUioAhLlnCBUHz8xSxEAjg4gB0yOJALkBpkwzRmp4ZhKgJGYCZAIFWELmUqsFZgJj5gcNEyHJGCbcICUCPIHlCcCG9sNeLuWIi+e236b5PDR779M0rZsKFSo1M9UNMxiSEOZlOp3mBNOhU2ur7sKlSkbCgbZkCGYA4dEdMAFdiid2/NBZBEYhknCERAzw5EwmLMtSbHRNV9sjhsgpPrCS0N2Oq6YNn9uJIgMBQ0UKoCFpxgCeITIyCKHUQpmZYBmeAUyQ6B7x4WdwoCCstYoaaHhhysBwYC6bOjIzMUAiRmRGuEUCokMkOyAd72+PMPPpRMjS956OFpiAAZkHi5ES4DffE5mIKKXA8AYckbVOvXfodj/N6SGAw8xDSZAotlCi4EJjv1DC+XRKMA1HFMSMiNJS0BEFIcwHAKQPYLFuU21kNhfO3AiVSVV7qcgYlCi13KwDFs8Ajfnjb7T5NEZ/enpaeJGkKzxtE3+5vlE3pnKez5CgQ1sT9U7l6HNjAmRgRFACERLCtu6Va5V5jA0ISiHzrdTZ3RNChBDRtGe6Dq1VEJMY1CyUGVKqJBA6RQT0LlQIsHARKUPNKSkhMw9yuqqez+dt24hradR3XdfH5VTBNGwwtSZtjAHgCICZkQYRfYyCUut0f38ebtt+K5Ufnt29f/f6fjlluqouy7lJIcD703mzy3I+WcQYvc33mEjAU5kwabuuY9uYkSMn4cfbGsJUi6o5Qpmnw2o3dmUUz6Ss+6aR6jEYAqEgEwTM5QQQY2g6RESrsza/rDciWZZlXVezMU1138dtvTx//ryrJrgNJQBEDHUMLaX0rdfSjkC1p/V9zKezZ0K42sYCfawikod7DALFUGjv+oPvf/aD7392Pk1Qe993JGnTGPmodmM5A0MyZKHV9SDSMCANJcW5LJfrzco4LQuYx64vT/dqfX98OxeY2zI8a+Pbdn12PrthOFz7JsDGPKETs4yxd18dY5jOMjFK5eJqDt5O7JhZYjmd1tHfv70gu1GBebrpvsNtKtN5mvq635XzV1595enpyfwWov3pMk0LAA0ftRUH7zczLIjqFpo9M3xcDy7B0VGdYHLLXalMbWwj3J6dXkZu+651LlRo225SCIUvep2KWHgo1WwweMZp9RHd0/csxUj6vtN8mqZpyy2TMiwKmCEKIaFm1sKBYURZWVI8U9eRiefzlAycI3x79mL+an/5dNnW3mHgde8vn78CAhZs0kQmXYfaTubcjrRtDEyqfEmtAEBMRIVLIBUUCWJziUQEQ1LVQDCAWieSiQPe3Xo73dnqDe8m5k8/+cpmO6Cc5+Xxsq1fvn15dzfNxe0GIHYbOECwWjo32G2vpQryaWqt8DAbHr852wQEirBSeZIpY2dIAoVIAM4sEd7anKDuliAJzVwCEkWQ1CMsrApHeG3ovkfkCG2TFCxoYZuam8wVidwwwhEDkYUIPYnl0FanZQHBoMPqhYiedqyYDyOQhQImCBqZmbOUw3PSWvMI06BSGAKZMoIwAODWd6A0syKYxMTsgQfczgLKsiDIvq+1EdWibh6dmYgBgRPgkFNpBkSKCAAAlUi+rbc37y6lLjKxB/U+PKAIpQ3V/aufvEA37ftUGxTP0FMpAIilqcLU6hgd88BLBbGPMVqpHkJwR+lmlgTcygH0bq2t605cFxH3ve86n86efFtX4jtuSx+BKIwYuoE5ETlk4lYATSN46n2bk9Ms0TP2I5rVwTA4wbrrUR2vUjEQEdODBRM9MxPXkZWm6fiNkKDU9n7b63SGQM9UUzs6U4i1SMIE7ts+ylyD4ji1AEc3JWCWuo2RIFRqOHi4uyciMmm46QBqzOIj3ON0Om19V4gytdD/H0//8itbt+bpQe9tjDHnjIi11t77u5x7ZimvlVWVLkRZuCxRGFlCSEiAZdMAOjSMEDT8X7hDAxqIBghbokACFwjExSALZCEZEJWVdpWrXLicl5OXOud857vsvddaETHnHOO90Zg7kVZ/rb0jZsQY7/v7PY/t+16QoUlD9EAUAqaCJSM56HReiCgCZGqLtPP5ISCHxeo35uLufZjwoexANB8UqXfMAKaxDwIiqiUXGQSgAepmM4or7Yab5o9/8Ft/7Td+yyK+1RF1/ks//snf+V//L/70D/5DO9V/9V/7137+1c/+T3/77/xg+rxSdfepzKTnXXenIEGkzKHhObfJCTgHYw8YUDyJEYWxoBAcXSyMTK+Vxr63Wn2ocGOoSUQoAYbAkeE9p6m1UsIckZnY3EGyJo/cASLApQjJpGrMQpDbPtqbhy/KF6eKf/LtV+8ePtsdR49S5ohIUCCyUCFGqpdl3rcRnqe5vl5fMUYtiExzqWu/N5pqW3rvO7n5oDp99vn3WaboBkzpI8lalQgTRKjSCYjg1fqAmOrMrYQLutLuDMlIJ+F7vyXDUi/ErFaCZPec6kJE27o2usshc0RfRxTAulzasVYAisTTcn5+eWXmpzdvzB0Fl3JW9bGPy2kW4hgdAYEJMYgowlqZHqYpIl7vtwAvUyOiTB8jCtJcG4bXWlzgu/X1j7/96Xv8GFxLv+P+eqsEWdUuQBch5iTKIBEID+IeFpiliqHd79epnQhjf1k/e3pE4n3/WFg+O70N59T9JA8MfJ7PpS3X2KGUIBORioAk2PtmplRSCluAhtfaLHxutU0SYU1Yte/r0LGar4vUdbsBRIARsKttvray7Pue8eoZdV4s9qjWyUup2+o9ITM7u5OIHSg+SA4WpgNTjshZd9MDMlBLUc9N9bZ3S7U4Dt7ZPRGgCDFTDwVmBtp1V1VhXOpyvb7wRBgY6q1MENh9cKFt26TVRGZINAcGQvRAy0DHVhvFQSktRaa+OxcqjZ5fP5zOb9599va7b/+UkhO51um+pwi9OT8RQQYlBghN9UQ2+rqXwhAqUjXz9cPrmzdvk8WGuVprrdS2bX7t21TL63q9LCd3H5q2mQEi8VJatmXdV6q8LHNwpgGJ9N5L5bk83teBjTCbu58eLvu47eYRgQqZbAbIkAiBGcmlMAK//+756e2bXQeBEHLCbr5F7MJEJDoyLAAII/tuVISIPD0iRXjXwYjogUBjOHi01jIDEROz74aFMJKLOMHoGn/RcJ2miYB610xgkYz0EAZGwDgw0SLMzFjH2I/yp6cdOCZGyRSNTJJDmex2wNccnTyDCAmLlJoH7xHTAyy1EFvGUGMqRCLMSAR6bIgxwg67IHPNdAhy91pmU0UlRNZ7TNMs5NeP++g08eO2dSQhpqWU8OExXPulFe/75TyH5j7u0iYzo3BOKk1SkRw5OPM43CSHMEpqColFaIw4yio90wyRLeG4mwIgkZTG697L8ihT3bc77rsHMGHigRWGJAKHCCMqzHhggFR1ImIQR/ZEZDpAb9qVgOYyKdgwDfO5Ni4MGBmZmUMdfJh6LVLqpOGRUFnMIgANUZMSCCEzQDMDLYlqrQlBhN17YQmM9EAAz4zkREYgC/fIFIoDxESExAd7y9PqPD/rxgU3HVWoNenrcIgY2oo4gpsCsB96AmRVr8KEGBHbbo5bIjiSQdEgHz5GICLzIfqLPhwCq7AOYGAMKMIiqNYZE5Fcdds2KdN5vqy6/0d//EfX6/113d7v4/Gzz/6///Afff3hl3e7Lu3hP/ef/xf+33/3/7U8nUc3YXq5XydqTJoSnImRQiylGpqCNxQAdDdmZir4F2fN6/2FiNo87fuKEHVeSimlFNSjZKAAn1IRZqYeUFApITUjK1FmIgQfSzbmJmXXvdtgLoxSS3H3ZarPz8+/9Zd/5yc/+PL67//ey3evy+VtokNARABiBmQkCE+trZsCoJn2+5agP/jBl19+9jll9L5q71KmsNy37bpfT5fP6vz2vu2zLHVqOhwR58JhgUD3vu06psuplEKArZB7jtsI98vlYmaSiEfTiazO1TV2tWE+1AMJmFprgSFUCGjoCE8SYhQdhogAmR6YMPZ+OT3cbjcqGB6JuY6VqLZpSZShytQAwO12sO5Laea+3noiYPA0n7gUVU10086HciZjuw8o9drHz3751eXhVA+8zem86g1tReR5uZhxcEOR0M6Mak5ImaBddd8fHh8AvGQdgCMc05+e3mDkvbuUFn7RTV9ur/Npun/z9db1y+9/P4LENAsToBDFslQuqKGtINPS2qR7V/cMjbCZ2yG1eLycCXKeq9lea0UgDMFMRlmWSQfctxuRJBMwjizWY2FWaJUqMxdURC6IlocUyAHAMphwmIUxcJnnhYemBwUIcTAm1dQwKIXk2F3ZSBZUCswkKsQOkeEgdalcw1Xkk8VTmBw9GKSJuzNjJXQdMZBKiQQ3Z2BMAmBImuYTAL5erw2Lol4ul+vtOjX88fe/9937VzckLPdbL4ULbZfzHJKYvvd1muokUWowYpG6bTswXU4X7ZYFRQQzMvC63jMdEYFQ2tQTIgCZa5kK8abDVO/Pd0wiwvPTQ2RykXvfS1sql7D0jNUiQ0WICZNxu25EGYCRuZu6gxTislCVrp2ZC9exe5E2LXWMvW+3wiAiEJ7ptRQEVB2E02k+A5Fn7mMHtEySchRqaW6nfd8jDFNcd6YyT4vmQDomv0hcCITgWDoSYzGNjIPCT0RV0uFIJTFDftJ8CnEpzdMSFA4UCDMiJ5IgV6nAEZZEBOnESIIA1TMCYqRFRIDXIpVrIAFQeB78rDA3gLDMSCToZqW00Y1lGQ4Z5XyuZqZjJ4baykFBBmRI3vsKWQmzCNbGw3rEYNsu03x6fJqner0+C7gzBorUgohpiuEMpUeoeiJLOeRRTgClVLM4hDk8TSUBMSEypWUmJBaZw4+VHgqLOnhGIhNzPdzvnhEhCCBkGQ4x1UqOEClcGMrQPQHVPHYKQGbKYAsMEKS0BA2rUkAoIc07CgekuZnn5TLvOTy81GbbtumY5svoQwkN0JARQADxyPWBJUQSmg9IBAwH48JBDREFICyPPT4dE3jTzLQMQkY8AC0GxMG5b9t8WgwMgmsVLOiuiRQHmAURmMLdExihlMkD3MLVI2IEBWGyJDBkpqE7H7gJP0wgSXgcVwQpAsLM9uHGgO5hGbUufEKEgkB7uO8fbzea5/nzSWpu2/MrbffPT6e7f/wf/Q//dW51327n8hlgq8KNTrv9grkIivuxm0BEKiQSkZhIAigJZOZmBmHzMh93XyIikmFeRLa+z7WMSMcIxGCPw2YYoKQGnomCdGgzGRGR731zVWZoLEDIzOFJGeO+z/NCbf693/u9+2/95o+/96Nx/SlZ3EGZiYtEWlJSVg0b274QWcBBSGPCViBjm6p8fH2dpzNBlVJH28vcNqPTw7synwMYpFkfpQgCm/fC1JZ5X52KIGIG1DKpQ7deiYgo1AYAIwWge26rzvNpaqz3e5h/9sW75+dnZJiWZns/tabuc2vBuI5BRGnhaNM0lWWqLADQe2+tidTVXgEo3YEw1CBirgyI+12nafKIPLjuxLW0qaEjjGFmXqQyM4QHAouMe1/Ol+8+vP+zP//pTMN6732nWs7zw77ee+9Y3WpxBKFkSkPgWtIBMqdCkwDADhCmyLW+bFslfP3qu1brh+frlz/8iUet0+mLzz///Msvxhg/+cmv/uTHv/L7v//7QsCCEpaElZAwIbov8+O+ukYKTvtYManUKZwT4BBET6clAZARGYs0VRMAEtn3UWorhFx53e9zmYTFRtc+MAg0CVKQMqOPTzhbJnJXTuGsRFnarJ6qimGgo1SiSUJIcOpguuuAqCwiZKaE6RkZIIgsFSPd7La9llYwgYELpXZ1s9Jk9DUxF5ldlYRQwD0gAsAnqVJLlXZ/vRfE2uC6vtYTq9muvjA+nB/v9+38cLZsf/bnXxc8WR8Pp88akwDenp/rhPNCmZtz41ZjGCOLFIuY57l33a8r1amVwsLr2qepOovZmJbHj++/fXp6VFWq+P7D+3Daho7dC0U9zd36xNUtmVmErDsRcPNuq1R0ko/Xj8aUQFxYc3WyUhlRRuRwYvbSJBFPp1MAkuDt9ooECBUhmVwoTLvaKkjC6LYXmXUkEkH6UQbwhCYMAMTAB76WiJgBcWzOIgEejO5KKEmYlpfLQ9/2T3XhY+2pXugwDXiGAiURhYXbgKTWZoxUd6QEPJQZDuCHFgIQgRPCEwIwjmUyhAcGIjlFYgZkYngIHdwuEYhAPpotgycaoyNzx9FO520N4cU87usKCOoRYUaBiEaBoN9+e3WHWsqmnQU0RuLOJd88ngtxJaDU8zS3Mu2mlpR7FJaAIErEROEBXtq0aY9PG2EUDGRwhKCMXf//mXIRMdPDimpw9KpBVaW2dRuunQnu962UhojpFqmZgUzLVNKgD4XIVidiAmF1SOIJSglND2UFIC6SAn1YIT4q1EQYAap6JAZKqweJIpG2PoLKNE19G8hgaR3YMEkzAQEgCamQqRIKZKZHK3UfXWo1P25ZZJ4emWmRieSYgQAF4Xh1KJwDiMBUZ+aSiSSIiB7CGInI2K27J0sBZGQhwMjUgehGGukJR+MCMsLVoiBAHLJDt4PO5pG5ikgkEJdILxMNM4sYerDBIcyZ6tARumHF7N99+OY7YCBh6HguF7pdP384Ya9/9//y97P5pS02buCrMJmuC+Gm280RqbYyVyyphiOhAB9Q4gQ/OGPEVERdjyQBCgGiqc3TKVx6mGYawogOmgDAXJIoIwASEAXooHJGJmEQ4BFNFyRISHUPJ0yY2x0sCevnT3/43VfvYO81by8fHp4uSeBofWyIeJqaG3jv1Dg6mksML0CtngtX163Ns9AUga+vr1ITp3p91TYtbTppknokiyN2jGDq4JQExBngCRDZmIFxqmA+9n0/Au2RqerExRFKm+73+xGNXG/X03x4Ws0SXre9ze3leg2CJKSkaaqQ0E3v9/v5dMLAd19+iZnPz88hsbTZLJpQpIX5Oq4AUNpUp3mMsY1BRIjk4Aj8+nqttbap7aMfbwAsMnSUZbpv23/yj/8x2n5+KrGbgWM2UizQVo/Ns5zIbIzgQjQCIAHwcLLYdn1+enzofWvLu+d1Wy5vfvev/G5JZKQf/ORXz2/fDuuPjxeu5c27t8t89j0+f/c5AEklzLBjJNjtKGtCZfC+b/uYpgnCpYhUUVVPqjQRx1SqhQHAPno9CPIyE3Lfu5Ri4OGx6coNGj8IEwVPpamqxTEqSybMdMbKhK6BiX1VImE0CPCwU6vpAaZJ2YeZN5LCSUeSTc123afSOAkQilCGBoKlElfNMXPpfWtlooKqWpETq6dhhqd5oGccZnmwTFd3NdDzct739eX+DGAsUgrP85uu6unzUtTXh7czfu2W69t37yx07TzPcymtVKhN1p7X7pWIgNe1n85zSb9ve6313eM7i2OLI6U0j3BAILk/35ZpHroGxvPr7fHx7fPrtn58lcSHy+Wzz95eHhbVvu2jlFZFfDgLIZU6n4d3jeS5jrTkSEEIZqyAAUxIMjArKiEPVfNR22zmXffTXEkaU0Iio5o5QA43ZqTYRybiJEXAAAGESgyTmcbQ2+2WR+uUE6skIu4JiKW2ra/EXGsLyx4KkL33Ulqbll0HeBJAgrtZKcUT3e1g9xgRZkKaMCFOidlNiTjCEJEiMCgTCAH4yFQmEKj3zCOSzYwMcKTDmBwqS1Iy0b7fT+cFwzfTwpLkDpnqBxiWSbCwpAzrc1lGMAl65uv6QsgghYtYAjWRmoBRpLSJJyngUbiEBgWEI0JlBoyUIgmYoO4OEK4DMMydEKUwB3kMQjHtkIkAkgSQpgaAGIkBgdF9TK1BovVe61QQBYgtpGCpSYTG6Ipmlk4QVKgiIQkdaE8srAmltFI5tz0hiIq79jGYSqvChugxxjgOUUVqIpgFoVh0AMgkTaBaCciiA1NC4PGk4CfeGSC6IaRkQC31yFgxSBoebVpAIm5SJAG6d3MXBkQMR4qMUAHOCALIAedadLgAeZq6YwIgqCoii0gC9G0PKqVOADm2vQIUEuAMBDX1SCcAw0BAPyjWCYSZSYiBAwk8sztGuCWpo4VwqcxIQMPcQ1PAMKQeDSePMQhYjJTDKfroOOzdvBhHqglWYHEP0OTGpzJPldQyhvUY6DlJOSCoefQFE5CZSQiyB2QQIJtpelRp++amzpjIRQQd3NOQkgQjvAQBgAAxEiEenVo4QBnMR6o8II+nyd01k0thSEUIyG10x5gfpiLU+2YZ6UqEqSQJrTSzTjIdBagY9zdvH1jy/vGlzY+eKFRqI03f7rd9IBXa9pE8bWPUNlsoBrapmcV2G3VeWBoddN+IRCiMSCUyiwgSZSJlBkCr5eXDx1prK/X1+eU0z2E2z9O+72pDRIgaESFlqZWIzEwIEnFpEwautxtFisi7h6eP92/DTFcrixzOGEBkZgPc4xNARpgBwNOFsRZCCg9DSCQCBPdQjeV8un338fnrbyvL8/VVCtByzpB1vRoSFAZN2WLsqoWMUVFs7EXo1AR0vH3ztK+bcCVhj/jBj374t/6Ff/HN6fGLd1+83G/Hymbt6+XxvO/7er9at0l4316F0Latz/MJMI4hTauLmc8TmUbGzpLAoboDUClyv9+RKAmB2N0JEZkwspsWxtImloa6Z+ayLKVODhuyqXsrZ8YkzAQFyFQyc80NpaFhkWppDFgI5yq9R/gYupfCdWqYkiokZez9fr9bzqfTPHHs3jHpU48zLNI99Pz08Pp6S5LM9Axhjoje1SwsAYtAY2BwHwFJTHD0L6ltt/vDZZYC97uWxvf7jQtOdE5ENafCUuXb99/86Cc//PDx9vF6FZ4Al19+uE6zmLFuCdCQaO/6cD4D8YhPwaIYY/P3tVZ3CAcSJuaDZLTUN9JkG1cpIqW93K7rOtw91R7P3xv7dgcfbufl0trUu7rtnhIImMUtLLzWMoaibJ6NZEovY+w1Uc7M4qYaoIWFRRKBRSau7h7ZsTIhBFQilIndDTIDjQhLJU8rpWyriohIPUY1B6bnoCUAEQJwkeGj1WWsNxFR/+RpWNf1KLpEWAJQoTSPCE+WYAQCLEiSkISCkAWPgmQCACYT0uGTBUdgxk8tX0YQSydmzw6JkJDBQoVI4KAZgwkVgmRMBeYk8wAqxc9clt43ZBzbOjGlvVRuNSdMQMdGcwZpN+in7imFInHb9nmeNLfzPEtNgNh9RFdoKAdmmD6BJGkqiKAQFEkRlZilEJCCZQSEZ2B4MlcYionMBxwJLEZ6HNUuVdUcNStCtlrDspap8oAcJGaRqRABmIBZA3FooUIshCLmMFyhsIVrAE3NFEJDKBsLRLo5qDlgrbVw8SMEThUQHId5TG2OiO4RLN0gzFu7bP2WEEyUBA7mmeahI0/zfJADEBkgt3UtrfWtcy3mCQLxyakHmZkILohJqiYJlMwsjo6RCEEJGOjxyTvloaVUsBGRhMClgGuEhWsECCNnEma6w4ENBYAATIjw9AAILkJ44AvRXBCYiDcNALlrIDULnDDHsDJhMGokFjHPffQSLTOZLggAxLsaNjliiuoAKAii9ulXuI3dhAEZaXIDQijg6UGRUQIDMBACgRAg3DSCWY7BA3MhgoJEEJDM7pAJQBjsEVyIg4ZHhQIAhCTAgpyEQEBCXe34n08AJiKpgKGqxQHDmsjelQRji7lM+7r5PsCyMDap6M7dGFkSYqYUMu3zVPrz+u6phN8T7Mirb/uW6OfLhSxf+z6fltPlsTvsFrVWj3S14IKIlFRkMnMiogTVbmaecX54yvBjAYGIzMXVKrXTslyv18enp3dPb2wfEdE9TfWyLLWUvu4P07SPYfsorfgYTKyqU50Y6OHtZ642eo+SrVRwOE3LqT0cQDTE0lfF2cIiARNwpONRITJqU1XV/b5Jmw6Bpg5nKuTlj//JT7/75mMtp5cxRqZ6ercQcuitUnWerVksAdKzj723WiuD916BrI/TdCapTrTf19/59d98OJ97t+t9Zapj204PUssCMaJfEWG7Pv/8+tX19c9laA4NwJ7h01QjYaJ0V2aRelQFyH2EBxFUog2zVQmEI/YtRFNtPXsmqgVS3UcEcGZm4O1lf3g8J1L46LsiEjBHEnMyc6S52ghkKJjBlAjaRzcvfqDXRZIxHG1Aq3LYx94+TW5jf72h5NM0X7cdI5ACPSjRHTmLOAVBIPlBXajTUE8qlVnVLYMLTaV4Rt83RDx4VVb522/fX86Py/ygPh4fPnu9vQ4AIBoRb08P63Z7uDyVdhkddVuFmmlKIcLq5gB4Pl8a0H1/1d2med71vtm4LCf3JHoLUvZ1VfVpmpblRKnhVguFR9+DTWSaKMD6amO8fXpIMCHGhIf5st43SUEPwJxq6TrG3pelmZmZL1JvFSDBLRGn01QJDRMxcpkWZlb1gCN5xBBWazEbXXdMOk0nKhMEJlipZddXTx99N4vTchka4TgVVkemIoKtHb/UzA0RNT2ILaC2EwCoHuJRBOTTNKu6mgVBAniaIIpwIAASYwEic08PJj56FZGgrkSUAIgcgcP6fMSs3CUwCRLQAAJrEYbAcKgkCGyfQIcQ5kAQGHWegGr3IDlbSnjU9uje50VMN0Qkin6/MpcAIOBt0321JieCuG+vrU3z1E7ndl+3UrkKm2stHFhFmnaTWomFMeZWXMC0A6E5cCJmEFF6VBZzz0wgQkRCWqYJga/7SgZEVFmAKMBrFUtDBXcPi7nOfU9iGoGODFAIKQjAzQOACFFIihE7RRBVJMHqBSVrRRzq5zbLjAYU3cOjCLFQd48AwFJaVbdVNQiJRUfEbsSgSKujAjIRJhU5YyowGPrOHoQACG5ADAgZoe5mlgmMhEkVCxA4kQEMt0QkkooHsjTRmZAwkbAgIiDIsddkEUokIUykyswJ1HvXTVvyPM+JMMwiVERCTV3dDKqkECFhZmRAYBIGECAlcyZGwGasQCLsalVKENeyYKJ7D0A+ujxxTFta4anUeWxmjhhpDCAUkIAgS9t6T0VGPjx+jWme5s0dPDOMKIk4ACIzEosUtw1xMCdlQAKQBGBAttIoVIgwEsYohatwyRJAAKwJ5ocsENIPODlgYGQ6pAgHJgC00tTMENSMEKtIekB6Chw2iPlyMUDksqvy9ABDpRRiwIwwRaSGBRLBBtJUAsRQ2uOX736QVkbH+UwRrtGnWa73/vWH+6//9n+aaRpjrN3GUOZVCFNNfbsslzqxML/unYsgEpcKQJihashIJBHmapggRK76+PB0vV7vt9v5fD7O6w8PD9u2pfmuxoC1lboUzxhjfzpdeu91Lq3Nr88v6XE08bZti5I+sgluW9dhQFlaRaZjSRaBSZluUutUqPeuw+f5hCRw0FeYI0m4CuTt+lIKBxbeGJk9redgqpVgKnTCufgMrXXQQnkqbdu2czvVutxfPs7Tg5Tyel9PD+VHn3/xo3efvT2f4lK//ub9aVnuL68//aPrvq+9b1/98p8yIAL03kNNWE4PjxeINBulynZf75tmkCcAIDPniPAgItsNxt4KJZhbBCShaDehEpZUmBKB5KiPMpO6C8e4K2IWLuBBiK626cac83wS+aToYSbAJAyPEQi990IFCpdpWrfedy8gERABlRg8SP3UpiJ8u17bzExFmHcNAp6JY1UOKqVufVATB+x9JBbmaol9W5epsVO6M4LQ7JRgMOhKxKfTmwxCMlUVm4QekBBLIfDrZuFJAOvt9dQkp0kdt/VO0/Q69ofHqZZ5e34tZXlzenz/8ZvbXS9Py7IsASTMEWgOIm2emvax3UaYi9RD5/Nw+ex23/c7uFPhdl5insvYt3o+h+VmW+FauNrY6tQCjdBaMVBDz6Uu37x/thH1uHxgzPPU9/vYtCwzJIdjRnRPAbCwjGAkLpWjRIA66AhEVksPdyoBgJQgPAKAqjAFQri4ZVoiACQzEhgAhgkJ0cvrfVkWVY3IuTZCgOS9q6lymxDd3JhZmMMcAMIpAgASEZEIILsOLiwTHW82d0eskAiFZS4QmRrIQMQRcPSHiBgs0xQPniOYMMIhVMDYdz0tFy41h2OZt7GquqAQSS1ChO7OpZJ3QBSSddP72JLI083tPLU6VSKYT7XWcxGMsPRgmUpDiFy36+Njs9B9jDI179p7L8wJAIUjQBDUPIcjA7BkZlqs273KfFBzj+kIMweGqWERoCyltFp7GKQEWCR0DwMGmwIg0lzj2MQDYrc+t8fIYRkESMyqoyFUlspFXG30kcSH85EwPEQkE8wC8yhqsad3cwBCQvPYIgazAkEkEIpiAhFmsgOg1FpElDUgwgMJI2yYzstCzLVWyTLC3NPC7LBgISNgQ4AIhBAsmElJEUxEBo6IlCgkhBJmrUia7knzfFLV4ZpKKYAEpbJ6CAAyQWIwGKSZuXvFBgQHTjwjyBkAIHG6vEHEsO4I6oOALUYAc3CtEjbMXLhEsKOIVAOjmX0oIPawkTaVJY/t6nQeI2ZqGUYU6ErhQt3RkySRNaKPyKA6L+67hU8lp0phHjrC3QxqaxTemMa+F+KpCphiepJjCiSXI6QWkMwHrxMRMiEDjlgvZB6LALNI5ACPBPQMdURicASYawtEDRhbSDuNvjkUpIQ0AjomCyBTekwtIwW4xD4KFAoJtXluiHlfb9JqUiDz48OX2xoPTseDfDk1d6/EDoTD24k30L9IlhEACTIhH4SR4SbCeSDmEQHou2+/nUv78ssvP3z4cLx8CPzhu4+11nle3H3ftu3lOi0tIcYwTPh0h2Zpp1mHwUG9SVdPSD2aS9PM675ZZp3Kbp+IjYSZmTwSCmn3Qthp6NCDCegavXeA3W6vv/jqz94/f/X4cD5TieExOtv+0N4yz+5jy1jjSrRqt4fzMpcJxyDLAvVULntfT+eHKdK0n+v04euv/j//z3/vw9pvu94+vngfc7188803rZVaJwzMREoiqrJ2K1UAggqPQOdikUubu6kgkQhy6H07YYlJusc8nba+J6YwhxlhIIanCpZhSqyb3gFgglZK8TH2sZ9PM0BY9lIF3CdMRBLwCChYzKLrqFMtZUoniRGzqIcQpRqaFpnMNIK0j0840yL3saOTtBYIY2gpwFLTg1vb1AN560pSRg8oOBCRYLPeWivLBMRDTYgSHRjS3NIAgw8i4bBJWqvn6+s+ny9DVwGYa+m9n9rZbdSWZvu7d9NXv/jmzeNl7/u6DamIiGO/g3SkRwIkB46CjCM9Bc0s0sKUqne/llJk5sxt27HURbs+XN7+8rsP67r3vjbGfeQXbx/HGMLcaJ5x8uGb65Ln+KSpDwQfW6/1nDyJ1EhMcRHwGBXZh4LGNsY8naZ2CsZPtxAQV0TwBCMKYgSLbdOxa2uTEBhgnQuiRaxzbYiw9wGRiMytWJr5QExuZGZU6tBez9LHVYgeljpGR6lh+zTPH3QtRShhcjyEhZQNkyjCkNWcBMpUUzUXsxEtHiDmxJE4AkHBmIobllIhsJtJJRT2CKaEMICcGmNG79vSpiQcwypxV8B51laer/flNG99xyo2dgwrTbTrIQBXVWq+d6eI274iMyAJEBEttcxzc1MeNiEzUCLu4JwZ7r3r5XQRkfu2ns7zfV9rrcPT0U0QSAhJTaUKJRtCIGACAstStszVt7kUISGEPhQxeW7DtJSWbpRRJT1WEvTUYxvK9QhJoePRcc3EKEUMHS12xEgsiETkd81zWZbJruuaa8W54awcEKmpbkhEyARIY2ggzMtiaT37nuGFBuKwjohCYq6CWDnAu1AK096NSCaeuwekbf1GhPNpcshde5vmVx2IxClOIeicwerJjJGfOKOCmJiIKRSYhcF0QDJ/qom5+gFVRsOUUyXDMG9cIjNIkDUBDAClmqt6BoBDZm4mZUdwLEDIEIIy9sGOiea2nif2vpfSkvd1qLRTdy8FIp2Jplb37lu/ISdJKyV7PrPEY7ncx44JMfTcTiUFUDUK+CCoG7wK7RFVcYQsCQGyg0qAPTJsFpyTGYeNtFGFylGUs6zcgCsienziw0Gohktl81RhxExCc6rCABkepRYgtkwpIkz3bZgFSyUswx0YAbIwhcfEZYxRkqc6R6VhQxiOuf+6b8LIlba+wYgwLzC4bOpeQH/1Vz6bTwHijLYP+3SZVrExtk4/eLpcpsuLU0Qk2jI17X2eZ+2qGYHkbpmu6oxE0pDwvq6n04WlmrqaTrWJiLo9XB7NbF3XWiszE4pwnh8u+76bdgBC4PP5rG6OyK2NcEcodbr3LrVe+8bMtVZCDi68tJ7q3h8fLxQaoHVapo7kYC4EnARIkAA0c+V53zaEwsxjdGE+TU2Yvvnl1x8/PnNtAYbTmvv6NNdzbw1zOG5YjZKn1NiD4RV2Gzotxfexmi0Pp2HwMTar44fvfuyhv/8f//2nd289qK++tEW39SRwOcXjY/32/S8T3EyXuX18fZUmiGkI5sOCiBPcQsEL81h3rHU+z1XYo2NirXUfu+pAYUHMPDqEWVo1dw2XQ/BdJwDKRBERPK/3/Xw+Q4INQJQikpmqo9YpASCBhCNs3bcylT0zRq8sNb1xqdME0rpZ76NMDYm20d3svJw8bTXtFgyI6gZ0nuZSynbfw4KBENAoKXNKEpQsQCJ9G117EjpkgFch62Fmp7l5xvChobrviCiNWWIC9rQwnwuHd9Xd07AypJ7fLuGw3fdynlOou0Gtu8V4+fhwORWq9/udCrZpEiSqHpEoROBTk0zAzNE7Z3AIALnr6+vrGL1Ira1cnhYimadKUnTruu7cplIXpKLDw6VOs/Z7naahSUTz3LruAo6wesdlOhmWbdtqmSxirJuBT9OUARjYSjXTCGsn1OjA3ObKXAnFhiNV1yDEUjgseu9SC3KxA9fFmNQSkhiJyhgKXCBRZBIgZqnM+7ZLK5lZazULTOBMIoEky2DARMhwFjyiR4iJWKRx95uZCbFDIlEpTGwsobkTHy0UHqYOAYAR3rhmQKnloGcSIAmvfW1zU7CEPk/UCgNMuo8qcjnN4X13P6w7hHw36GZmuxNg4MObB/eMY1YmQoQIYaPv216FS2nAsvcVqQTKumli6eq1zBl5WR5fX19P80xEriMg1nVn5iAIIA4SwIMKPTHr2B0MIZsUgDiQ1L13ZhyeoztzASwBKEL9fr8sDbCXIhwckIfpmEW6agUopZREMgjIKiyFbrfXM0IrNQ00XDMZiUvLcER2i6NEFBHmwyGJCBMjMoAggYlLSoJDMTVvMrvDGAEiFonoAHiww6DQ2rtDMlVNiAhkYkIGzEQhzsw0S0A8XAV0kEkywsMDIRMRMhwS81NqPTOlyj42T5xqwVIsvLsDJxfGSO3d3YOQqjAclfWSAO6mGQicxCzCQm69VJxOc+pOhGZdda/THN5LlW3bTvMpDfva6zSXUihHUAoYcW7WMQQSL8tl9HrG2SluY53LNNXHdXueT+WOAk6qL5qdkpaKqq+VuUfNA8CtAZaYVISw8D4gIoziMBi6GyQgQ0IapodGoKchACYyo45BhCKCkOYjM5kEhVtrRO6AImKeBEi1YLgkhnklBsixb1RqgRjag5NEKoAAQFpmMONc2qZoicuyrNcPU31c5jfb9lFocQ9IIqr9vkltb5bP++61Tvm6ulo9zapq4Q55iG+pMQrvmxFR3/tpWTKQCCNTCm37Xms9+s1j9NoqJgjxsiz7vk/TdL9t437vvc+1pWmVtu97MgElF8kATycCZ1Ttml7bNNx671N7IMi51uf768uLLcvy4flj7/3p9Ga5nD98+7yPvdZpqEtlKS0CMjAhWmueptoDocj083/6Z999+wv0Ho5HKNeyJ2DC0paJkDyiNurjvscQSekB0FtjFtZcgbF7Ik+3cRWR03L++OF6vjyZ2cv+EUy/e+99bB+eP7alqO2I6cmXx0UqRKYz03CDAEZBykpQC9NAxrTRTTdJhMJjbFTnQKB0Swzw2goxMMnrbbMwVSXExjLGUPM6T6He6omwTk0ioq93RGPBqTShchj5wCEAPYETFRGE1J0yCdItxj40MeJ4zv6CpA+ZQEWaYxAcOWpKkNHDNIBQoHZUD60swpB9D2YUlEJp4QQDwtOFGIhKqYdcFiXmVt0NEwJ8314KCIADQ+GaANCkeyJRCNjuH16ez49vhsbz7Xrs8x6mxUa3l9vjZWltEuEiPPqOjByUiZkoOEUeDuUFXIaClAcdtMxP6/7NXIuGb33VXQkaFdvu10oCQ52ltHld97HqUmuGXS6n5/vLZkOqmPXSLE2Za4aXUsYYQwEwgyzTW4U0N4UwlIKXp4eX128c7Xx6dIR0yjjwXKCjI0RBqm1KpDot5qkJfSgGSKtSxQl33ZkKIg0dVSZi6l3DAWnOqCMggTOchQg8IywcqblHIqBgqSUzCNOdABzQALzUglTD4SgseepwzPRSytZvyOGQEVGmM5DvfVQsE5cMZGJ3DzIuVd16qDBaN3cMx9NyVlWCYqEZogP2fX95fS2Xp3VzMyvEY6xcCjOX2grX4e6OrbT58eRuABFpxOVULyTtKIaFjefnD6NrZi6TPJ4f77dbKUWHShVpS2YikhyLQ/N0IMRKgnxwGp2ICFhd3fM4s4aHSI1k1XAOZiwV1G9qm5QFmY6KTQKWSRoiugEjBQkHMjbHSkBgRchDMpCQD1Ukk2zrXgoEEouUiml9hHs6InmEOyDERNRIMLzH1sEhkrN4ih/WC0oPZ+YATkJkwBJVGEjM0wAZESHRkyKSwd3RoM6zuyv6EdxFpuMHUGupGbTvw6IDEBURIQMtTQDAwg+jZFkmkGI22lyblD52g9T8C8y4VMIk14JUZKI8AlpuiphYpbqZcPFMBiCuMV6Ap/M066ba47Jcxq2jsKG/rrdJEOaiHZEeLqe323djrncMxcip4nfXP64Nb1fl+znn031dz2/LPE/7zW99SFluu50ao1AhQT8OOkc+A5glCZBIxzgSNgickIHFI90N8HDfQox+gNkxEiM9lElYChH23hnZIt1dSgHtESlFmIkhKVIAINHC0zoyFUIowpiZxBjI5EU4LTOkPQxT4jn8hWm+nN/Z3kfvhnubzpBols+vL2+//+PPv/zBeh+FJQMYiYuIiGFm4fvYHy5P675FWK0THLgFKqXVBL/fNzySzLVW4cyGRG5uZuvtbuFEpD5E5HSaxzbO87JvIwmIYdhwpaP5eAhj9n0/nOREdD6fQhMhXl9vT5eH+/2qu85tGsMA4LvvvmOW0+V83/owTUAMVt+FuZRyX691KgVkvT0zxc/+6Z+k728eJrW990QoChGU7k4JjFRRoDsq4zBTe5Tz2DsAQyM1z9LUaFN7fv7q7dObDH59vd5ve2tzQZrazLScLg+7rp4+SfXQ+9rfvXsnhxMGGAjlSL4RERLPp5N1VXV3a7U14STMsCCWcqwTACFKYXdP91KlUiWgTGTIQmgZhdELTFN9fv64LGdmpiJC8KmDOExkgoyt7ylQWtHwIJ7avG93ZkKE9OwWwq0Je2SiI0BrxdUSodQqiO551HvcwN2RCYC6qWdAOoijyK6WaTTMUUAIISkM0lIx3auUsWtkDtNaa0QwMqF4qIeJkBDG+AQuFpC963w5PV0qWBkGYUlJp+lkZvuIVqZpmdzy2J6t13VZlsiaEWq9lAJJ6e5ZSqkGr3OZLOPjdx+3odMyJ+PQwBGS7rZxm7bhj1PrquttI7lN9SSFt224u2UPaKfT47rfiQHB5kkki+3KLOfTw3V1A2h1ihxjjLSc28Jc1v1qL8cfXm+bTW0ZoZwZnGYq5ES4jyG1BuF9uzmShmPhUisw7aYklIwIo0zVd/McwC1oIOZpWV6uL8zs6UkC3CCrmiJVEB5jiwACTAREDARVn05PY98R8TSfDH0iyIy9j+VcAMg0iKTCmbkIExEBCU9oxTEzhSMG1VYLSUZjToQFnGpNy9DMxLm2drks03ysXUXquo3eu7RTuJaKiOHuh0milFZkOjxOQMiM9/1u3s1Ga3M4MhcdKUiT8F/9a48Q9tUvfv6P/sN//3ya5rqMMTDp+eP18nQxCzOjBAGRLMeG2jMaTUgZEaYDmQGw732apm6u5sxsqhoxLQtSttZG+CE6Nc/ASEzzVO3TaXEHVWXgSoThpls4U0vVrhGSEwNDWCakYyntuPi6m3tqWGCYWVIBQgKSgOpeKQM1aOsgWGnLHhIKmKFComrDFApqpKc7YGFxT1U/dDSYWeDTC0yMjck9AEC4IFNA2qFYIkRCJ8BMLlRKS8QDkmXgzMwoggJEChFC6+iMaAmMBMTnZb73veuIiAhFiUIKzI3dzc0Uo5c6EUFmJktgRiaRbFs/v3n7/HqtRbLJ28/e/fB7P9ZdpU0FytPnXzy/vnw77vXp6f3z/nEbp58s+v5Pf/bdn59OF+c3f+1v/hdv64sbJTw8nk9LW37/9/6d1+9+fq4XgSW9T1VaY3Bjt8gufAwNEkD20YmLCGEVIkLG8DRVFg5IDxdm4Qrh1lOQGEu37ejbVWIpjIgQ3tUSXJi4FQlCBoBQ93BrXDARhVrh7mYxmNlDzRRDE2ASroWPEMZ9f18qq2+XS/7wh+fv3v/0tFTPvWAhom0dU1s0pJblzZt3X/3i/cPbx9t9LW0Srvd+PbDXxLLZPnwcqpUqJdMj8dP3MQERCrG78zSJu0di5Nh2uZxrrZEZEfu+i8jx8dK9YyByDXOKkJkYeGyKiA2EpImhu3IpMaxV2VZtj29ywpfX18e3bx4fpuv9Zkltmomo8VSt3W+r7fvpPIWHqiLRvu9m/d27p+cPH9b1Xgu6bWjZ8AQHBkZiXeN6uzM1TLIxWpFaHzy259FFGqdAtDVCQ8rDwxj7lOfa6t7H5XL2kWaBKDyf933YvpmN4XY6nV5f+/X5ut5QDAoRDI/DO5wkkLT2/vFn31Rpcz0FDCR0SwMb6QiOSMJM4UYEkWPvieARdZ5M1T04o7UGCWY9PK7XzowkuG27sADF8D7xNFQB5DB4ERWRarpTlH1TAg6HgEAgQWAuUoUgu+6IAATIR58YUgMihCfm4zABUst2XxOoMiGAu4akzRiRrt1hL1ALyyJkCqDaAFPHUmcovOlITxsBSLWVUurQXUQIyV1dgZiRQJLIqiBM6Pv6ep6XTuDdhetUJht67dubpzMCje5E07bHsoijQ1IkinBAappq1FICqI/xcn3lNrFUi9GW6XbbBPXI9LZ6unaoXEuDSI3skElFZJoSawJcX4Y0rmVe1/vD20u/KYIMdS7CE3fdbFi6zaUSwFDvW0cJH2DQkMGcu+6FawAkog0FxARyD9QsZQrwN09P9/va1aVOLDVgz/QAMYBZluU8930NlPm8HLmqMuXj5eF236I0SixQpZucZyLal7XWWlnSjwgeH2b1JZ5qOSPzur9Sxcr0iDLV6fX19XSuInK7rSJypCWPL8t2Kcdze36S3jcphcJiRJ2W7raZPcynnTag7OHz07u92xhWssWgPurUnrb1xlwTvPuoVSLCNex2vd2/bdMCTH0YMCADMg0neL4TCaROZSqA33z93de//FAL/6f++u/+5d/5K//X//P//vX2+vbpseuYIscwSkCPwoWBbOwawYCqvUoh4cQIT4BE4FIalWp9BxQLDXKUBIp97Pe7JrV5nj0hU0tpUiAAmcS6EQAgQgIDehiYM6RldB2WwJgeHhkMFBnMrJ6B5Jk9FAW5NCPo4a2UAlz2LGrsHpVqWYA4AHfLAMLSMJkA2X2kCZdaUCF0dAsigFKIAhIdPDAAPII5EyIhIBMBCQ+Ct0IkAgtFoiUIEVfiwgEJCQk4tZMNRZDaFpAyttURS0MhZotWMGs9Xy5+fTkSrTSwTFALABAkhcPUhIUt+WiwYcAwQ2QIPi9nKu30MF1vt/PpBFN72foPv/xJLbMr/eqv/5Wvv/2wfXj+0e/81b/54x8pJhv+4T/4u/+P//v/7sO4ff3dh//a3/ovPb79/u2+Ak1fzPHQ3vy13/jtv/0/+9dJ96k2A7PUbcc0lVQyq4KWrmgHFGw3pYEZiJ9CW8aMTMIYTgAMhIedEAiTARlRiEUKAPR1cCUR2e3oZ0B6jzCpcgwgD+AcBGdqCCmFEyYjABESu4APd2CiQ0d2eVhK5ZcPv5xpLDM9nOf1/hKuIDLGTiSmtq7rrzw9HlrMr7/95ntf/nDrY73dhQuXIyckm47MxHQERsQ032MQlwgrhVU1EaZS9vVORJAxzbO5Rvjc5vu6zefT+/fvL1PDIh+fn+dp6r1j+CTF3bJrkSnCPbI1aU0QAKUChEj4Ph5P59uHexIKzRnl+eOapbRT6+5hg1A8rFSZpzasiwgSXU6X7z5+x8yq+tVXX/3hH/9Bm0gHmoaPyCwgMfZemIGEWiMsjkzChGGehl6lRXIGqufIwRuG9U1dMrSvVcrl9JAB7rbevklM1b7r2qa693shfrjMYbto5swVMMaulHjUdgKwzKdK1SP7SEScpRAShQEU8+HaKxEHUSADClfjpCAAqG06yjNmGq6TzPft/tkXn/fdr/e+LAtBSCkkDKr7uDNzqYwIqj0iaptvz+vb8xltkKdIpYqadNeeGJvuy2ky21zDLE5nLEkewBScrqbD9CQnoIQDj64ZmQbmTJHBRZAg1ACJkAiCAOd56l33baswCWAiSykIhUiICH1Eog6rshAzkaRpK+i7qeVS2tOPf/LVL7/ZrrfT5SHMb2MFACF8fd2l8MPDGTDVdB93IsKaFjtyC3BiVu3ib/ehWx8WMLW6jg0wp2XZlQSj1vp82x5Ol9f3L7VWDH26vHHtmQlU9j0A/XS61Goo2tq5lTovZ8pVuCHJcFPXh6cnEUGDRWp6RMJCyAJSpufbJqXMS3t+/vD09GaMwYhPbz4rLEeVSH0QkdhwkIc3D5l4v3UiefP4hmvpvbsOc5iWVkqEGrEARAKIvGntzbBbFCTAShjSqUkEQMmUogn7vgpKmZhkSgqhi2rdNzOU4ny/GaUgxMPpR733260/PX5/3a7vP95aK+FBIhqcMgUzTlMmreZMJFUUi5NEeJaFSVjEx4p1IvBaIIMR5XJpgDzNlZkih9ggAvx0U6Evf/ywbZu6UxVg2MeWmdIEhxYuAGQ9vY9f/c3f9KH315e/83/4P/4r//J/9b/wX/mX/pd/+98sQwmRpBIDHTrbdHMdqYxYal2mc6glISAXlt3VIkjKbdtvu85zy/BSC3qoai2tNg6Yajltfc8ITAKECHcbjIWFEFHdE4mZRQozIwVywQOgm5GciahDiQukEXFgpjIAeEB4cqEA8MRChCBhaYAmqHjrDpaiQVhYRHbbpWHledcByVQqDgfAwnIYKRsxMgBiQgo3MxtpwjUgE9DUPcPSpRSS0j0KCIqgezg4hrRSi+yetVUCNiBTx9KWpZYi9+sdUpFICCMAkwpXZh5dIZmJDvE3YjAXBN8POURhBGx1yUBT/fH3fvX5+UOOeKxvfMRu4bjF9q2OeNluf/bNt7bBh05ffaMRf2+6LH/+h38ynff+Asv85vNL+x//D/6n54df2bbbrX/sv7gWxu8/TtbH978oHz98BE6LmAURkWlGKCmRMDItaySUiEABBCJgUAPkUtg9EvOQlnpgjEhzJsKSrc4ECEnumZgBMNyAYfQRlgif0jgOnpTA7EAi5O7ddqpFuLiHADAwYmRSQqpZACKQmlw/Xuc6kccXb773/pfPp/NMSY5xjFvWfbfwNtcPLx8e3jw8v768vr4St6lMGRHD922blrkJuQYxA2QVWcdKwFMrCXS73U6X83Zfk6WUEhHgyQiPj5eff/W1Yw4zCUcmzxAMEgbEwxZVRDZVDduHHwlqiwxzRDwvJ1Wda/aMbevzdKIi28fn19dXZgbJvhlSCiEiVAELi1RmUu3Lsnzz/rs6FaZc9/W7775LQir1/vzKWIlFh6MDofhQoqq7eipSHFy3Wk5s3frAdBI5tTzLtPY7OlCxGAYWCdh7uhukg1uZ5jIxlurRdfTpdBZA9SEFEyGIAsHwgHSjNWGW6rsS4FwqZ6YlMrUydQMIDA2nZCJOblSlNLttmi6tTnU+/POttIBwP5aRXSNP55mlmJqG+3YXpNr44LnoUHcULtmVUSKAgEcoACSxDkUhZi5VK9OwwFRGoHA2YADr29EwtNGtlTK1fdwsONGQAJ0ExAKmOjvoru4Z61AhjEh3ZyTHSA8qnJFADJmeQ80iNYENkBmLTBEwTAlRCj49nU1128fDmzO2Uqfz/b5xrVWKjnF+eACPbn46neb2gLCXUgKjj5FEyCC1pjh6PJyX2gsvsptPjydmfro8ULtPJLXW+bGfzpfL+VQQMp0TXOblPBvgOhwSp1oZcdvvRaa5XQDg/HiOGMgERqVOUuZwjOEZTJAJiQxA+XLfa1tAWAPn08WRArDvYyqi6urYzm0fY54LII7w1+crA7e61Dq93laiKKWQZIR7EjKFZ49MCBGhlne9B0cAH4RCpzocMQPrUto01brMbxjFPEHKfb/LNGOLNufcRISiA6NAJnh/+24RupgZtcvpdHp9fa0naMu876PUeri7H5e3kJnmc5s8o4IbpCSnT8iE5YSY57kkRu89EKbW1G3bADiJy4Rt33dKKMyIqKq1CgYO66HWmCMj92GqyU6JkBRhw8fa93I+/Y2/9Z/9N/6t/9V/77/73/6r/5l/7u//vd/77OkSzkw5xoBMtS7E7aG5+23fKQ/pZxASF7YERwZiA8QiAcTchCXdt91Kaa1xN97HrqpEdJh00pi4MFJ4RCQmqHoTYuZMzCSSlmYaSehK2WPXhJIwUt2OxWIQEAFOZUqAkdDzYHQRGfaDddImMK1Ujt6U6+5kyVCEXdPMhBCBCwlnqnrunfn4TGFHEhLADERLAKRDPQlEBJDEFp7Qukc5MlOMhYEaWzpRWcpcZfKgZJkuc2KMsZ/qqV+vtm1psN13SAIg1UgQc3EQRAQGAAPMoYaxZxJXIkEuZH0w6rtzm9q7n/75z9f7/vD2y3/mr/+zc738xl/6ra+//vbN28v3fvil7qN+9uXv/LP/zM1seSP6av/2/+Z/+z//n/ybY81f//W/8V/+b/y3nOovfv5H33749kfvfpvi69/4yQ//9r/x3//mq//g8fxmv7+eKLGQZSAVD7D0pOqEiTjMnCIjxhiCNJdauBWWMUYQiqCGUghCcm1Si6lza/uunETEpbWkXPstAw4FoghHSc1AAgRwC8FklkaFjRISHVQBj8lCZiFhoURiwgCaMptUiNuPv/fu9vLNF28u6fs0NcuOwugkUh8f58fHNy6xrv00n0up5oiBtUzuCmnpgBiVpE113/cILyy1VkIabufLMsZ+Os+29QB8eHj4+PHlfr/Pp+X4bnl6evrw/Pz4+GhmIrJclrFuiXDsEB2TuSBiOGBSHkl6APe8Xu9lytbazPM01dfbtU3Y5jrMRvTHyykzr88fk5mZu/bz+YxS9g1e77fHN0/X6wsV2bb+Rz/96b7vXCS4mjsmGNrR/ZJSBTmBDLWQZWwWHDBrdghjBsS08FRLSEHk7K3OI5Mo7+tLaVMRQiHzTbUTO1JeTkslXF+vQkUmQbcOmejKjG4Wma1NMVbUJC5BmObcSibc7nskS+FSJkEvQOmZnj608mQZcz1n4FD1sGkprgYIp/P08eW9tAmxjb23iVUHaGKVypTprgMQqzQm2bbt8fGy9b1U7qlH4U3da0ArEyStry+UeZkXRh5DYWSb57BVQ6fzSQqo9nQMsBTEJAhLjZIc3QLU0YkoCLva5Xzybbtu+1JbZFp4QfFws/1gjBiYu5a6CHMPI4LhHgVBgAp8uH3HgIA0cjy8eXi97+3UqLapzbjvDpkZ87KUWtdtL1ISipoFzqqOIhpsxtt1lMmAuLYlxRySi7zc7g4jUbZdS20vt4+nUu7Xe2vzUs+bruHy/PpaTjMxXrcPc+FWGyKPQWPY5VIidL2/SqvHhybTEiDbbpWkzuIUAHA6zwHomIleS4PA88NbTA3FCCxUz08P9gyn8xw+tN8/f/xMuO7rICzv3r2rdVKzfTw/PrwFwvv9JqfSanVXRJypbvdtOU8dYJoWXXeeCZoUwohQ1UQuTWqdtl1J6uP8ROzdbwCYiJ4hM6M5E9jQ7qsfQEoGQEvQdn5Q1VXXU2PDhMjoXUQS6WV9nebSbbMMxImiEM+CpNaH7Qk6LbXrPsYGRN5QIxqXAA8KIpZSde/aBzIg5VzYzQ8GVat1tfFpPghp5J4GBVcbAfiDX/tL/97f+71f+41f+wf/+B8p0em0jPUaxNPUYk9zI4Zu3sGXedLMiEChzcZwjwhdPTPny+l+vU9cGJipCBmRW4428f2+AUCtVcPRAYEKN8Iwc5FWBbBbhCNyZurwWQqSGGYg7KiJmJXrJNgTLDJRgjIQIlsVBDFUJ++YcGDqCKhId85ETl0q7n2/Ds2ldod93Ik5wvdthDmYmwVn1FI4wzODKSEBCIBAOD0ICYjBDRkEa1CGB5UKGcjHR6ozwRFon+riCkMPVh0lkJsLlTQrXIktgca2SpEIDwsUBpaMdMgMZQpigpQFL+6JRubh1m3om9P5zeW8fvWz7fn5fP5MN6BYxpr7rvveP77AV9/9/P7yyk+f/eM/++Pp8fz47s1v/spv3F+eP388fX3/+ic/av/1/+avDFzH9jf/9D+RX/nh+Mmv/s7tBf7df/cHf/Kn/8HpVNupjf1KTpkAlMGJTEBolj6COKWWYx4gyUfl3cZxrkrPjIiERAQEMA9kBhJHr6VYhA4Fdo8gxGVZ9t677j0sKOvUzIYnVgAbnxCppgYZT3Uebgnm6pGhQz2DpLLUWYiInt+/Ppw+f7hMOtZpmly3TVWq9B0Q5d3nX3TVrp256apNpof5fL+vpfE8t9u2BgK6H6v2A9Rz6KqE8X6/k3ApRVXdLMxFZJ7bgWutrbW53dY7ANzW9WCr7dtWRTIzEI6cXQKdltN62zJBUIAzPRlIkLDB8/3l3dOb59tHd13O0+32ERGXNlXQ1+srITxcTl1HH3FfX0q7AGZrpfeOTCTMUre1L8sy1DXSIUohQHcdSMncTDtTq6gEe4IiLsM6kRIxEo9hw8xsf7ic3TRtJ6bt/np6fHu6nPbe1WWeJvRNivShhcRHjgy2GZLlBlJKI4Qy1WGDhCJiT3TEp88u+9ojIlGGlNSxyLQiImHf19X1dJoLSQGBEcyIid7X3T2lUKurs4hME1zvz6fHpZuarUyVDOYQzb4UdLtmhtTqRuEDIqjm8JvhzkXW9VphmuR8Orf19tpCTu3MThCZnYIIFfFMd73rARLyjcVSgoCpTl1dRABYx+jWZW7KHj0jckoWmNvezDmYEqWeoG+DtJj28+Pp1m+37GVqOF029TAeW96vu0j79sPr+XJhQuQ5IpA4cek7eZ5Q2j6izaeta3183OOu6jmjVXbIW1+J6PHp6frt+1kEAhvL7cTUGjObBYCf52a645TSaWrMzJXrpVTTfPryC2a+b/3p+58l+JeXp6Ow0eqPtm1HRmDwcV+kATP7w2m5nOaFmV+ut9Pl3Hctn0/r9Vbnc5jXWjPT047bXikizKaOjsvDvG0rgFbazpOrrfPlAQs6stRauY1dSaSnSuE6n9WTkab5YbuvXkTqNMbQeqnlckhL9m1naU1o33ecJ0wQKoCYUu7aqVDAIPC0mEAYZd/2I+Wx2aiAUulY8EemoloqPc5XcpfkZcYq6SFCR4KpIleeknDykq6nNm9bZ1KQJllVdZqXdV2ZF8jMzAXgeM8DwNPbN33fxxiBdDo/gdhtvUPK+bJ8/PiLNtdVjc+n+/VWqBw9pQyrBK0RrPsPL2/vr6/vaPnR9Bh9JfLoyYVf751L47Ls+0ZJD9PiqogkXGyEaUx1UlUWOp3Ouo55foyw0dc2TUD+en8uZRm2UQlgMOhExQMRKRMTT1JPuQ8iJGQclgbRGGi+7QnAUPgGplQjrKBs9yAQoRSIJHc3DExlQrsUmgKEUWFbc5dlWm3ds0spijRieCVo4GTIZARJkI5SpfLJtIc5chmDVDXBXb0u86Zqpo2lAkWkqxGhJezalZxFynglqntwJEfQhK1uGDaqDAAIRs1MSrKqER76ul0bSXbMPTCnPpTbFIFKxj4w3bQHeVZ2yCBNkCAi5IA61QasO8GV8pffPU+FYVylxB/+R7+vXP/p+z//5Te//MmvfKHr+vXPvnq9mixv3vzgyyz68vrN19/8YqqC5+kf/oN/9H/7t/7ur/32Z+vQP/rpx3/73/mD3/yNX/vwy6/+/j/8e6fLsusoXEKWrJQSlgHCgXDbN0PnViHJ1ZmoYmEiYHBwC2uA4MhOwsvumiRJokhpCpDU5m2oiBThSE/mEWN4JBPSjG4Zbh0wWxNikmHZPURm5GrrXqQw8VAPIKmcARiCUNBIJ46+ZuabN29PD5+vry/bcMx4hGadiOab0/TwAyiJWjyhlOKue78lxfvn9+eHy7Ztj2/f3IfpCN/tPJ8RwT3MMyKQGgABlFpqkdPY9n1oXWZ116H76OeHC27bqRVEHGOYZ23oPlbtBvH4+MZ6mo7YleoUgIPodn09L6fe1zJPCFbLvFtgaZF4Xa20BxHpGvfrOJ3f2f3+zfPr6TSXNmN65B4OzIWTAVvJ8ud//LOvf/5tqyShSwn1cDSSilCs78QY0aeSOtYIldK4BBarMZlZZmIiAAXwNpzLFMbf3pPbF92lumdsFuESNXomnoBCw9w7gU04dJME83BPpwwWLEWGaoQzz6+3q4h010jf+1qlMCAFQOQ00333LH7d7qC51HapD2bGIljry30l9+U0hdlmI7SXKpDkR7TYwMPbtCShe3Eb7iBSC4qZM0r0mOVMnS5SVf26rQ9PlWpzBANPCgKPSIhETMOFaqslI81sBARDQaYxhg5Pj0JCgMhcpQ63gGTmoUrA1+t1WZbz6Xy73SjlgMyU0hILy4zKHz+uD4+nn//8m3l6OC9vwrjNpy+/kACvtW7bNs0zl6qey7KYZ61t3YORv/f9nwCAlGWep/t6BZAkT2IqZbhM5zen5Xz08Z5mdPdEOp+mI5G05WuplA0O8RYBAyALkIi5s7SuemhRpEllUbP7dv/i8fPr+rJME1byCBBIzgD3vc+F0J0ptuvLVGdIA8gxBhERcRFOD1eHACIirNuqRK02smGzLI7gu3kux4m7ENdJMrOyEJGI9N4jwExPl4cjRd/NC0YCMqMIxcwRYQz1UgEzHQQKUyHioYFZSmksua93dV+m+vD0Zh+mHg+Xx6GbEKVDnSYzW6QM65EWFo/TOdgp6DTXcAAHMCdKZHEDcMag9IWyQTAxqikzhvM8PRwOoohIjsyMCHdXDw9gqdN82lbzno9Pn91ft/Wuy/QmITIsg2o5gYeZFmkAcHxwtNKmSV5fX9d1XZbldXv1sHkpStSIj3ToAe81dyRk4n3fISk9xr6x4FEkq41GVyIpfPZgwhQe69DuQMQAaWaAHgkJ6DHUolZJMMskiNak1MpTUdAcnh4MCEwC5EHoARbIjAGZiYSCkgBmFsSEjACOhO1cy6xw6FZrAgURFEYWiE+U2FIqoVRmAILIklgaIWKMQRhqQYKpRolSKCKNAIjUzBMQkQXjuNw6AIBp9yDiEmlqkRmcFBFj7B6E2MbYt22LMMsIJhsqgGaGTD4AINOYhAgEiD3jsC1D0IAY3U8zQ/DtujPRaT5/9YsP19V4OpnnPvTj+/fzw2fr++eXdf+TP/5mvz+/eTh9/kVJmd5/8/OXlw8e2xeffdH36/myfPOzP/3v/Kv/csprxg5wgTBAFpl+5Qc/nloloLF3AnINtQjIRCpSuM2UwciFoKuTBhMXwggH98IckBHgkMwYDu5DEArVROq9CxdubBmBSCzmkYaZCcgQycDICGHCYqYHLRwAe99IarssW1iOHVOJSRgAOQA0zMPWK797uPziz786Xd440oBI20UoyHcdu+3T4/fn83y97W0611K67hiOXOZ57mrrtlGhbbs7+Pl8BgcbCg4iAojJeJLFIT3MxsiEeZ7Zuas2FmZ+1Ze+boXYhj4+PlaW233nWiapKbxqL9SWltttQ+sAFgnGPBc6V+42OBGJs5TDE2zhpRRM0D6WZbnfVXs/GvaqToClTut6I5JMhEPrAvHh47elYgZIMpiULB64Dh8atV40mLAksAkkuxFJUAFJAmll6/u6d6pSWh2Rfd+olmwFS8NCisMZgctqo4+oUhgx3AlIiCSNMATRI8J1CBEguYNad0ssICKGqrFPU1UFjKyt0ubMuW/741SEEQo6xW4bdmTAEVzaUqXMp2Wq5b5eiblmwUgJpEThquDArKq7Hj7gCgeGn2IfO4FUKQXL/b4ngpSqFr2rjT2MlRDSq5RS5eAD90jVrYgwc7JAomegY6jNdcpMAjydz+s+9m2Q8MEZDoRaSncPoDHGuq4Pj09FGgJu+57Mu+N8/uz9y9e/+OplOX1+vjzZSBYGZCAupTCV5VSZOTOlcgTs24YAp3kKoKFbJJZSqGCttbUCVVQVhbsqTqcOlIkJUdSZOIBsWCkFGIkbYDKLmmcmIiAyIDgCVq7oCV5qRcTe+613Zj4/nnliv/aFF3TDoQwIGAS4pkzTtI4+TQtTm6b5+nITkUgE5MzIxCbNDtIdlzCUqYrQPNXrx+9q48eHp28/vOeKU02IREACdk8A0m4Je6mMSBWnCDcfmHh5nBpNYwwGCs5aJnWzNCplH8GVk3m4ixARlyoA7j0u7y4F4Ha9JnmbRVV3XYUrIpqbJAJAKTMiZ3omMjBmMNHSpr51Ijo36cOoFM2YMNV2JJhOdWrzGIZMR4mciMzG8QU8MABAiFANAMosY4wR+fj55XZ7fb3fpjbbTpmybzskB4CpT3WCYPBk5gxkPmrBBQJ719pk2Kg156Wu990zwen4LiQRiFGKhAEjlMqsARhHGUPVFW2zgSgCxz88MwGhICFgRnhkHqDbTETEyjBV9EyEBNfMNBu9IxcAwrRUVddMJHacqCQqI2ZmN0sMYiZkFDIHHB6QHuBF9kgdQTQRTQE+wM0BEgIIUBiZFQMwIs16RlAC1RJhuPfCB4eDtz4MExAjPQCJJRDMLT0znSDZBQNEkJIggSjMhoaK0BqdmYMykIU5EgitVK7qpj3SsxRi8gy1jYg4OTWBWUgQ090zCAAidZlKmJv1uc4OyVwQxIDMIhnnt09/9bd/94sf/WqA/PLbry40LRW/+vlP1Xqpy1//3b/c9/X6+vyzP/gn13V/Mz391b/5z2P5F//GP//PGeMvv3n216/+4A/+4z/7038C2c9zfPjwYZqmCPAwJiJgR/zkIUASxoY8LQsn6LYCYSMsyBmugoe70SGksDjKAUNn2nofYYyFmIE4kQALHpeQw62NIIhbH8DCQuBRqaDwOGQEjGpj5oQkIaMAMg8AESkkmwnLMs3lBz/5SyBy37dpZhAYrtTKsPXxLDK1gpc+nISkFLMwiNCeDB42Vn379q33rqppyUi1VPfYXds8W1j8BebFtPcMOgrE/z/m/qxJlmzNDsPWN+y93SMi85w6VXfqAUBjagqEQAgEIRrNZILMZJTp30j6MdKT/oZofNAAkgANAAlRENhsEN0NdPe9t++t4ZyTmRHhvvf+Bj14nrp1e5DpAYO2lVVFRnmGe3hE7vUN61vrPu++/fDzH7z/+OFyuZRanj88A7gspyOm5zw0ECZ5vHl4HPN+vd3P5wcCtWW5317IYs6glARKKae2AHD3jFQSCZDF9XZnlVJbZrZ1HXsnKhEZ7kfYjZg/+fG/2vvtYV3SLHwCXHSRmQwXURLOyPucu/VyKloERhkwG2Yxw7UWKQotiNzNJxiegZ1YAQNTKXUOYz1RbWE+bVMKZWdypVBmJiJEUSG8alQWbVJOtZTy9ddfZvjCpwoS40aySiVKG3cVnWNvVevp/PHjRxMrdXVD751IzezmMyky4kgRAPIIj42ZRZhKwZweCaYInxlFqCyCzZNx94EFw2bFsrRCnkS8tMbM+xi70wBDNAhcLMKplCQKH4nDwRzn9bRtW+FSKvdtD4vlvN5HB5NyOV1aWGotEfHy8qKqTNCm19ttvaweQGrvlN4eL4/DPKnUkzBiYhAzkoMPL7BMJMzc/XK5EBH5JOLT2pJp34c7tCRTFECZkSjEy9JmN2ZRKdxcVT1xu24gRUZtKkLE4QKVQ9OcAwkYMQhsFmMYWBK1tbNq3baOsi6P7/S0wI1rJpOZSat0vUlbChFpsRhOvF7OmZSYVcVmUBoLF2bzsOwkhStbzmCul9V8dMzz44OZ7/vB0ZmsWZtcXz5+9dVXP/zzf5FFM0i1MKuqdptImsLZ5HRpESFEbHNlLqU0mccQPRXUqtP6IUd3L5YestQlUkQAnN++JbwarmWm+VBoEV1OLRzOh7QsCwiRtbRjogBE0JLhbVkqzmE2PWdqrZdakem11t47cwBQZdCrIDlRHNJdrHtEfPPN/d3nf8Hnx2njs3cPL0/vk8dlXbfRRTIiiPIwcJpz7MNUlRMB97Q+Z7fe1tr7VsuhCBERTgiKMB9Bs5CKBrHXIszSZ79vvbXmwet5iQj3Xqpgt2EjUlkEASEu5UTENhFOolXJYJPgRZGUcE9zRDZopjsoiFV4hgvSrRd55ZeS5sxpEcfgiBO5uwFgGnN0TySLLDPSlQbQY6SF4LBfKjb8UA1QkJSSYUROiMgOKiKUCEG6p3EmU8eEe1K4HMMqyYi03YyIBIeEQKSZRcyEZE6t6hkzYu8iWaqUKm27b3POVOo+VYubBSIda1nCHE5cFIDnJKSSylIocmIIRW1TWBnz629+XquC8fH5A1r573/7//mP/ul/u57fMPNqxhljvxXRYfY//tY//dEPv399fn/frm0tP//6D5ZT/bVf/8u/+1v/r1/5tV99lPFH/nHmS/fb42l5eflYKrT4tA6iRQSRbshwywgKS6RJJWGhWqswKdIPQzc3BsBkbqAoRdmDQXPMKjRzerjWlZh9OjwCQoKISCLmBAUzi4gWzZgEkNu5LsM8tq2JEJBmiGBOcU+Q5XS2x8uPnj5883C53J6eK7eHh4ewbd83SqwPJ/O7jR4z6qL32y3Al9PClSKiLM0J7l5a7Tb3fS+lEOgQw2EWeAybJGDmTO/TCjOpBPLl5eXUTm7x9PJMItOjtUZipRRHZBhXatDt+Qnhy7IIx6BSGpMcJC+M+3g8XYpSlphz7tt2RDmZCaCUcr9dkfHFZ++CsM2RjGNwZlnOc+8szEX3/f71Vz/76uufXk465zNxmnbznHY3ZChLKXNYaYUF4zZoTIKm6NRKJG4TCGbZx0gHREsptTQfU5HFwUJueTDepvmwcRC7CR5y+IRBrUd6IFJUw1yEM6jwsl17Z2vl9Oa8pEePzlQy/f1+E6HyeJqzewa5u3uACe5wUp09SuERHpjrUrf71hZxylJrTh8+apImE1UiZGTM4/QeTqDgRs5uSC3lYCgUFkoiKZ5pZtPDIigJnplJ5GGhkiwJ1lqbu4/pM/qyVOs2+nY5Pai5ua1t2W0wc0Rs287My6JmoxQ138lFi8w5gsQC/flm5n3H49u3UGz9ui4FyZ6sUM1kERYhzvQ4irHuzlxaWy18zKxaENlqFVDYJszdZq21VYkxlB0ZLGxhzKwLr6e2bRsyQAJmArNQeIBJiLgUZiAlQAA8SVSXZbUZEGwxs5TNTYlFhSD7eLnf99oWtOW2dYEtp4eZmUf9w41brSzIYBISJk9GeqguC4veR18eTj7G02afff7usSzTBoCYQwuXUlKas5Z2bnVZW9u3AWHR+rjqfduW09p7P58v+74TUdI87s8R9ByidBY6J0UIEbG2CI/QIEoHEbm35+fny/kBgCi7CRHdZ2gWd6/rqZtRQJjHsKaFSyN2rtHWheeMiAyjWh9K5VL7/SbKEShLcTnM2KOUUmjpvYu8svFFpDSptf7Kr//6h/ffvPveO/Pxkz/4fY64nB/6uL28PC3LokrdxgHa2qQS6iI2Jku2VkhYa5FS+nYNljkHM0sSEkxHeGFbv1dtmTHNRCtIgthT7t1OpzZ9bHt30iBIQWTuY9PD4pCIk+2whAVYJBCOJDCBg5NKpVKmJUE8DJRMKUhRMMjDQROAk5uERxxDQUbFNA0hRWjkWkqQTvd7TGFNBnmShWbydI95FBI8M5FInjbIqSh7tZ5BYEzUWhk0AK7lZd7H2CEopYBYkZKY3TJ5227gydIACgKzuoVjxjRwClEgwqa5Pm83SmchKtptdHcWLqIEKJELUQbSMi1tEBFx2vD00ILWivs+nJISoFpo37fP3ixG3eZeIePlfjo9pu+3+5Y2pZ1s31ttH7762bZ1XmVyZqWffPWH/8O/+B3yer/d5rgvnz/86PtfrLWNMdppnbZdtzsziyqACD+U0GqplhaEsBhwmyEZmjTS002UKD0JRcuwPn0GhSQvizCBiyBgER67u/r0TIrgwxj0MHPyNJFSSgEBx1BWEJXY5n6YoAhL9yA4E1NVRkamR9j2RHb77LzQ7I2W+9aBrNSEWnSeN3/z8Plnbz778DRVxGe/99cJZThp0+vHq0g5yXJZL1XqjBkRmVnXVgR9WCCbNoAK1zC/9UHC6+lCzDlZ2gL3l/tNWzXGsq73+3Xuu7tfHk6Pj49HmUdEZt9E9PnDx8fHx3VpsPlyfTovay31tKw7877vR2R/uNOKlmC5367SqhAlCTMLxIe7+yEeIErv3399vT4Xishu3Y6mRrpxkfS89aOMUUmrruoxp+3smpirrMcWZ9OPv0R3F+G53SmytMZhVaXH8NFLXWbetp5Vq2od4ZHEohahrSxJ7mZCSiBFSSSlPrTz0/P75bSMmRkjig/Oe2zzzEvRLUb4ADkgQYKzMKqDGLmPbTeXRVsrKHQMV8zwTHdGBhw+zFhAVJo2j5kMrRk5u42UFG6Mur+4SmMRB4UaQTb38KGFL1pE2MaIgHOZyDGsyAFXGNP3fTfJi5ykFpj33onFw81DiwLYto2EwiMimNnM4GYWxFraKSI+e/P5//i7fzgmTufqnkAKaWZaBksxULgx8wwnIgEtyzrNl+UU5gkOZCtyPp9v96dTW8Ln3ViXBYNoWbxoNNW2ZqYNJ+VkBgTadGERYkFbTvt9AyAqAr73XV2UOCJS9OHhYbjt+25kzvn2e4/3bazrqWlRkbnNovr48ECUH21nkcu7x9PpZGb7Pk7nVuvS71SLupgSExFBBETCffCMJNIJJ1dtC7F99bQp9UMjLBM6yawTtfXx1zjr7EgvEeIjspaMgiC2B7u/dFRzXtaVa7bTOmxG2FrrwflU5SNsz8zTkmEePjNzrQ3Cy7KY2X7tEFZVHIq4zKr14FEfoe7D+UIkh8hwKWUPK6VYeFGsTYseVj6pBUfgdUgRH5HyMVnonq+Ow3j9X0SUsPBX3dP/8v/xD/9P/8f/85/70a9t1w/PT+9bK3/7b/2N0orZiAgihBxeudPdLTEtLODB4IL016kcLkfWx4wIEJKleLI7RbLUtVEzCy1t22LffU4Zc3bEDB9wIibhw6U0mbWSBwMxqToChHloXyAJuNsQkSJiQchIiznnokVLMeIImB3ZomojspzTMiIZnqFCSQFEkG8+7HCBJympAq7EQHjOTA/HNCfmZHUOoizakuSYiQr3wpSe5s4sS2uHGQPAMYcTCatIknKfJsxMNM2JSFgjCMAc7jFFhCHkXJqCYh8Ggs/JwjMig4i8SPFgIlYkMtKZIcKiUkSWRGzbNm221pB5u91aWwhTOMkz+zwv64TV0+np6UsAp6Xquti4P140QffN1uXhPvdBk1WM7d2PLrHji+8tS/3hHE+zf1V4JsO6J9DWU9+nbUbkwzxSWFOJMg+dhWOww+XoqgsAzMyAOajKAhROsjAjiABFhk3iFOUEiFOK7GMA4gm8ypswDMQ8bDJESUJAlW+wa85z02fbVnBPa8LzGHQnciFu2tL3HEvhL754XFuZXT58uJ7PZ5U2t/j+u7/w9vy92/NtbQ8iEnCjsPC1rnvfXg3QZpTLmwIebhEhRcFs4UiWovu2tbrOOflgjK7NzPoc01211GOGUPi67cuyXK/XbR/n85l9bnej8CNI3WIshU7nE7lZvxv7w2WJyv3en18mC15rV8xmlhlE8vJyFRGtRUVmxrTR7/3t27cfPjyd1kbA4cr585/+0dh7XQsRw1NdJHK77aGqp4vWZp4jYoxpAhM1sxZSjYcPEUEQERVmrurEHpAilMGac0wBJ1PALbrInKM7R1Eyd2cSIgNr05IsI1JARFxUvXcfM4MzkxJ920tJZp5sLqCCyWF7bwurV7OIaTbtNmeVsrZlXdfuR4pj+z7bukROTfUZQaoHYSSckyiyMMNFwmvVwx0hReYIYhDxoXbEAq3q7iogFiHAekykOxMhl2TCpzOaJatcLg+ZZqBVa8S83bbT6SRSwmLOKRKHB3Df9tt+U5CIKNU55rqcSJbZx9PTCwV98fatVmbSDBbWHBYU6+UcXGy/7X2s69raamN6ipSljzw/PG7b/vnnXxDJdrsuemn1hMziWddl0SlFgyhFm54psdVSqhBRBatqy7TZzQaXi1Rl5tZalcrXu6qK0G7QzIAQoZSotRp5BBfGGHPbpmUMS7AT+z62xq0U2Xd6+rgxiLkMJPNM1zsjgtfaSimqlSBCdV3qyrRcHpbTyXxwxuXN23CA+7JUoSxFl6Xa7IdsxZGPMvPS2uhWqrCIqhblMUYpxTNYJAjLsrBKATMTKIsQMSImcTJxQumwF4+gAyQJmSCKb6ExkASiw5QNB6fpF1D6CTg5wA5hQIBwJ+JD+jQTh4osEb3qqCGJgghmnpmHDuXxgKUIo4/ZGv+lv/qbb95+7z6yLg9vIWPeA0qI6QPgMd3diRlcSEoEZkRCIFpp2bZNpc1w4sIpNidnSxaW5bb7Poa2xc37dkcEQchp6z0ipdTkDHeWwkCyMsEjIozBxJTMIInDN5Q1M0VYQFVTFU1ZiEWUMqrq5uHud+shxJAISmgyHR0NNyqtEZLCOdIyU9DTUUSQRCQOCS0BRQaRFQ6fkUlArc2JJLnb9O4+XFUVeWgrKqNCDcCkRVYAHhmeM4yUVBfARERYDltKJBCcGUAtlJy8SBMuwwYngxGqmWnha6sSZOZCRaTNHoUOaVPmPNS2Rbi+XJ/badV2ue83n7m2ZX2Q3jt7VKkUeHu+bKPbmPv2UpNUuW/DKMONS1rOoqfeh9cc7kKuxGPs4pg96baSKgcnWsCXRW7jlrmpBnsrpbQCdzcwJQxg0tLKGEOZ16VGmM0xI4AAC5N0c0ppWkb2yNyHYRuZuRxivFKCaVCKiPl0c1XNCJXCXHF82w0JlLYY0nOWVhmYcw4nMPFSM45ZtWMGpyDCMR/evpsY24yvPz4ty+V5n1795T7PDw/vvviVHuyRorg93+rDcmqtNJ6B+/3eSjkvj9989f7t6SK1VG3g7BE0eoJZdCnNh1GklpLAdt8BZMS7N2/c4367rW1ZWNMC030fq5RC7JlKfLqsiLzd97Y0m32McT6f7/u+z2EzT8t6umgFXa/X6/1+PmetNfM1Qddaaq1EyQzro2+dmJG+tOLux5Y19v7Tn/6MSIgoRtgeEqzL2lq6iDnd7qatsrQkuE+XiEyV5dyW2fscB/0vwyPAXAsIEUaIPg2I6UYqQumY7i5MTVAAFg5kBOVMtTmPaVkCiKDKxTUydXHqtu07h2tKwEnByh7ztu8Py0J7SBJZctWELO9O++1+vd4fHh5OtU2zdGfQPgdiFuE5zDN5FWcGoUAouJAKId1zBAlKasW6o4OpPpTnp2vhpqTorozC5BlpYe4iAihTCY+mJeCgAAsQmdl7P0pAN9vJopRSSrvuXUsZY6RHEptZWxefpsQqEgOXtUYqBYeTUFHW9998fPf9dmmX6ZxWmM2ib31Ig5RaWcDinm259D5O5zOTPm/jcvr8eoUyfJ7aaUHoGCMZ+86RNbURyFOG1Zix/OCLp6enD88f1+VU1Y/UsNTlvg1AptmYeylhgVKaRYiyJ03HZ+++X8sazqUsTJoSy1LXtZFAVYVRKjPj4aIRxx5HESHg9ACYKJk5wmspzIykTCEIqZW6GCUzVEkIY5qqCvBJ8dApj9wRGXFs/USE/BYokcikIFwI/G1aecDkUeaNSCAjUqRkHuKwHhGHY2hYPzwJwALPo0px1JcikxERQYXG3EXk6ESaGx0O7+FE4KQ8POIZEdOCKcEszGCWTxjsr+/pgOijD3wo+QEBS4gqDubt8238uR/9aL99mEZffP4rt+uoTZblMs2YoJlEmekidVpOQxIjeUwPVylsc3N3uOybCzNR3m6bE1+3DTqSCeFMwgixDARg5tMTnrDETE4ECTNXOhoxFmBurS4k7sjgMYZldB+LZBRiRi31EPvUpD0ZwsSKAIOJD42DMAtmubTTHtaEJNGHObOeT9E7JcE6Z1SuVaTm0W9yECQ185BMb8NmUNVSRUQxWHCQOt2dWZh5jGEzaq0HC1JrMZuZGVCwJ8HCBaqqzMoMDq5SgZy5N1lbWXx/frVjIW6lSMQh0pPOWpYMSvIkigjyyExiCafhE/Kqycp1ZZXdbC1al9JoseHR/eXDlZhZijCxlPu8CalKU4Fypu0gr02E8dnD6dpfiDnDWYilxGSpK6VnWOP0mEVaqQ8RMer91JQ9wbJPG+keCII7V1X33Pu02UuRUhfzQZAixbZJGZJEE0VlbH7iWrVwZN7deTjBKYtq0MyMVuS22RjjqNOKiKT03kvhOXpynmvj3hcphrAEJY/hkVZF4RFzjJpOsT6e3nz+5quf/7ydTwH54t3nH795mZG/8ht/uVs83a6XN4854+Hhofs2EUnhPonk3bt31rNpUZJjb6aqpagHbFrCmYgiT+vJMyLifr+/eXxk5pzmc55Kg8UiBWABk9bL5fT+5UmVW6399qKqS9PhncvaPUhIl0uEuc2Xfa6tMfPDm0cpaja2bStVqxYzO51OYwyitOFmVqsql/v1hUSZZVmW2+32s5/9/OPHj2/efKaYNPcoMafv8EkEkczCQbZ7XUtExPS1aCYhck8XoLVG8TpOYj7HSDBJQREVkaW2OSfIkuA2VQprLVTIjS2JmNLCTPt+bSqi6NtNRLp5XZeX2w7P5dSKtv1+07WNbSfDQz09z/uvf/YjGe7X20Nd9sxth7bVsRbGciE3v91uTizqba02lYltjFXbhJNFWcTCiUglKbci7MfWHNFnn8wJZ+H3Tx9Ol8e1LfZ0++JyeXq5bWN/OK+GDI8wJhGqlWwU4eBwdxJ1m92mrqVo82lKJIu4z9u4KXOOflg3MxCjCxETDj/yRGMtxGzmGf18Xr/60D1iEVAOilStENjwprhvH0+nR9Xa6jknPPjy8PnTvbe1vPveF0Q0zVjbqZ2W5dTWemEw6no67ftOKp999hkRKfH5fM5GrbV1XZdSRY+5HRGl8m2OloTXhl+8wh4duPHqEBIAQPJ6DOMXxdVjGcAHvY4ER++TiUEG8Ce84cw8tAMjXDh4ZiniDhCWopERDoQfZ0yKyAQCTOlGRAj+BfoeZ87D1OUwPP10PQcbN4DjGEpPOyJWgsvhUwgSKZmgw6SNiVkAcNJrpnv4sQeK1E+pMSn04NIHH7EFAIp8jRWEEMgIO94+fnm9BhDfeQCAIZGUBGFtrXzxw18N5baeY9yvt9uv/uhzYrv3TWtBsnkQYcyZFFrKw+XNuN/6mDZzZOTNbPj0gZw2IME8S4CklXVpkxGwMXc69JvYOIgp26ruvg2aERkOZvVMj4gUMBuT6ImWLYalO3sU13QqOdMHy53CYAiXTMFcVh3TiSM4ksgslFiRFk7KUpMHo7sCV0pbtfv9Pu6Xy2OTtUyv02OaiUxJDlp8BpemLZhG+Fo0oIEEa4grcVYE4IQeEOiFq+tUre4RnkZgLcPmsFmEitQMyvRMmKEtJ7cpyFqrtMLJ+33U2oJpkGeIBS11PdzB11YpKTMNLCAwlbo05pnYx5hzQlSE3CeX0i1LOT3fe9h24gYPskznzJQCKuzuyJaIxG4c3V21HtOMy/k0n+dZ3oz+Ivoq8Ndpt45WlNL6GJQBxOw7M+vM8XSVRNFahKiW+9gUDPg+Z6nc97sqH5R2gs4+puQkpBBHZMSSXIiYvI+B5GQJ5iTKRPauLKQ09n32jYsevI+qLYgKOEZn5vTUzc5UQG7ePTi2LGjMTcIetCyq770/nN7Cy0/+4MsPHz4KV+Scu3z/+9//tV97++7du6+++vn5zdvbdlWpqrpIS0IfHhOn04Lk5+dv3jw8lFq30VUFQsR8v7+IlFYWzvz48YlI+rDr9fnNZ4/BFMg5BhPZHOfz2ceYc+TMti733KkwkUAKt4fp0/ouIonJEURIMgWRIBBKMW1EZlBQ1RhBotPczXofR1jV3UmFiPgQ/1Rl5u16W4renp/MbLttS+HkQhyJ6Da5iiEDnYuKCuXOPi9Mx3AzKptNrrztXYldkuCVtBQNT7apEQqnffqYA+FC23RVWUvZdlukIE0Qp1Z2PqoXyqelZZowb/s9JYit3/dSSjdnyYBzk33fG8fCdWzj5cP7x/PlpeRuBpWc3beMvSPTzLSWZa1mY9v60pgYJbE0xcgw5+En5ci7MqdlN4/M1tZjB0wPE0qPIlqd/aX3OT7YUJWShZmZ0IqKFDP3cTs9PFyv19Zaa+16u4XQ5XKx8NvtRk5lPR0D4aI8zZSlCPn0zFQuMW14vLYGK7pdWQWky1k/vny9NnbLyB6mGUxgJNVSrJtbhPn15Uq42UQE1vX81Yf3/7v/w//+f/Z3/saxy9OrLdsnsEHkkRqCjvIqgQiw5GP+mOj1HwYSifBXwDzg4FPF1Y/CO5CfKH8HssUrosUnIDmslj1ShMAASeRRD0MA5CaZVqpM60eX9DUZxBIBEUQG8et1E5g4kvg19z1gGExESY5k4u/2UI/HrzhHxAB+kTRnEPApXeZvDzty8td784sV3+bQv/T0L4M9ZSaS8hP2/+LQ77z+n72+E6x858QRxAIQEGNuSQZiy33sL28+f4McGVbYrQ+pjSmLsHMyJxUER4rOOV/uRuzWBzNbipkncSLde3ATp0wROKVflDInExRKSpRaokTCc9aYcM5gINJSBUWLSkxzu9+THIRCQq3y7HA/vNsMya/yhJTwfQxSSU7vUQ+DoMMVBDo878/3KIUoDRlaQUIs6yo28wSGe2QGEbFw8rGBqpT7GKySJKIFSWZzbYVUtv0Gh4jsNt0OQn5orYacCICDWYumaOWkuYlIW2rv0y2Dwm2PCLPwiMycDB8TAFVNYaaYNn3uAJXS9u0qXM2iRxrT5tkKRUQq3CcxKPS+dYdjhCdlBKWF9/1o8IuwiLvvMXIAiCCQmw1Oj4g4n9nHAGD3mMM2M5EcZFDZ5y1RZDpMw4aNrkLKlJkBmwllSQ/AHTzGxhk5Z0RQpu+2kChxDN/3a61VmcccR1W5agGwgACwy+wWaaSZEFYBhR0Grgk3qySHF1LOee+DIEo0p3cKABN0p0zvy7LYsDGHFBVihnaPzOnDlrWc2un56cUtnLyW5Sc/+/q0nP/mf/B33r9sl9ND0abIdlpHt25ea923rbS23TuTXi6XYZYxpMjeO4TN9yJVRPu+V+ZTW8yGMK/nhZTLugybKZgRnHwdO0V2MyJKm5I09p6ZHoNZM4JZWlumYYwxfZIwMxdRSt52S0xiZtbIJIh7FhyDEcd2S8xiERaWlAiw25xxOq9zzj/4w9+/X29LKYIYFsqVW02g5yQhCcw5uRWbpqws0udwIWfXKs/bHQhJoohCWlVXXsDADB+zMg+bJy2n1u6+F1FzyWBdiieS0mFjv4aZemB63LbdLILjYKdyAYhBCVAk5nAiEtLnjy8/ePvoPqG5l/nkm0te2sX3IZMaq4CE2OH36xMXXetyWtoYe3ePCEEqE1kokqUwc5Z0ke6+T09jximTfO/ttK7lwfdZWzt99sXz9sJBANzdI4RZ9LCETCa0WsbeTa21NsPH3rWW8/qYHgy2OUEBcAKGqO5CQJIwwh2eWhZnTI8gn7m70Xl98PtclvXj85NIkWNWMiIStfCIWYs8ruf7y/71V++ZKpG+eXz39c+/fPv4JgLu8xC7df+2LBuZZGYHtfuYDWcid1dFHvXS41hKzzwK6d9tf77iBH3CdQDHFwyfgDOPLPb4MTMTFABI0n0EAAcAESVQIgsX9zzwkZgP+/RDcBUE5ogjN82Do/SKgnFgXNInND1A7k/Ds3z91xETMNGnp/4Y2n1bo7ZPQcCnU+GPPfilE+V3bk4SQIz8RQr7HTA+OFfE9KcjceQv/ZifCg8i5IGjGS1CpUqf+5tLu/hbhp9qSeQWkKrMlOCwIRzC2LbbH/3sZy9PVyJ6vu5LTRFhrTbHHs5AiJ3erteXHk4Eq4DNWSoikxmZTkTugBUH+YyYgazJXGtx7GbD2D3TkULeWB1IFp/edxeiVEnVMFJdW1WCm+37uBUWkA7KeG03MJfVKMIzaw6MqdgRpbC7x5yVZdy3QYcyvk4HcYKoR1omza2uazcDe3jvc6jW+7zFJAYh2NKZa5b0gFMcJordDg/NOAYcACzwMM/1NMcQVVIdNjwwM/vY3b2owiMzM4hYp92PT1ZKG1twch/3UqoWKdJsRPckEYRb+FI0cjJ5EU6irfcY9Hhq07HPHSxSWggb5RiW4Yws7IUKgsjV3bY+Zuwga90zKD211DQDwSIhOX2AjIFfoG8YgC3nos3nwBzp0iO0togjMk7KDE8Pzwy2EHWRSiDO1IiSgQya3XwIn+AhSszY9m2kCxclJiEkYhpRereDvoDjW6GFhdmMVUR5+gDnzYaUUqmoatgMZPcISK2LKtbzZRo8WGpt58eHrFv3IH2+76eH1UBzWtwnAK2rRVzOb5h5H52ILGM5HTyYIKX1vO77ziQRrirp9vjm0d2fr1cVnm6FMMwBdzMlrarEjA4AVQo8qh61Lb/fn5C6rpe5B6u01shCSz1YGh5HjpFKQkifs6jGNCifz+cxZ+/dPUkkM/tuqbzUljFtDCHcr/c/+slPCRDivm/pjCCzIOExQZVEazDPbmlealNSgYPjbn3PvQKqrCQAsdPsk52VCycBnCRxjBFnYmZlCFHfB5eagFBhcDLqqWpdLpQ+9u28ntyNS9237hm6NAuIVDjCQxJnWbvv12fXoo+PP9hgIzau6lyT2OcoZUHysixGvW+bOwUwzA0MrSOQJEKMDLdDKjRJSNbGc44eSF7qmSgfzw/9vjl8PZ33Oe7vPxYRbTVAnhQHmA1399bavu9xLEtmjcAc0wy1aWX1PimZpUQ4CzKQ6SIH6RIRzkSgQAZDkwG4qNy3vp4fb1cjlNueZ2bVQhlKAXKWFMb9vp3PD1/+/GlZl77HslzKssyDGj3xOl2NPBqKzHx0sI5t/ejRumetOsfOzEKHhTYyj9+VYyP+Y6hApN9Bo08wCCDBjGMwn4g+pYACiglipkJyqPIeMQERZTgIfVgpJRORjEQ4SCPTj/iRDzXkV8YT4U9LFr+9tk9X+J1U+JdwjhiUv+A+/dKLUB4l629f8PV0hz7Lt6/xndNxfuflKQF8G+x8e9OOKsDr6Y7Rpu9e82sMwUj8ogT9bfJsZsTVw/X47Egf3l7i/vL+mw8/+sH3jr9VRnGPBM99llJG7+5ZuBzSLsuynE8Pbtd9mvdhESIiRfb7NqO3U8lpJWlRTVQgICIiUxOAUWzDE9xJpqRDAiTCwcUpjMlB0vT8+Fm82PP9xikZYNQiJTycNKl1k/t9prtoHYF9MLHc3XMczBE/+eh9BouWeu/tJmbJ51qojzDjyrzjYziqxsx9jAzTVhMyMiSldNo6ai0ict2nkANeYVWL7QeRUCHqicx0j4SbzUwnTi2tKouI9zwc4GMaEZnbfU5DQvnYZwnJQke7JGOkIwltWV7ud60lDURSkOS2Ty+lMXOmEVwo9n5V9r7vdTllUlqk533eCwVHjjnMjF43dOeYDJJ0YQ0LkLLK87ijWtDcp6y6nJZVAaRPM02KyLsMByuzSHqEu4NDa1lkJaDvk0S0lUKFVWP4SEtkq3X2TiTMvDysPg1zKJGqZCb5SHiALKbnc8ArVz56bl4o1S05Q4k5SViGG4GUCyOCAohSJJNZWJVvFlxolQawDevbQFgp5SBEdreS/LINbcvueZYyAk76537zN7++3trj5z2JI6W2kXm5XPqec3prTZUraIwRhJGznUtEMOH9x68j4s2bt773l5eXzy5fEJGZVeV739+8+ezeRxqqsJCmR1HmxATgHr1LKaWKe5cix2xnK+U+u48pWsOG06uDDoC2rDPnbb8tp5UEwqSklPT09DTmXJallRqHGfR6crP7y71Unm5fPHzxW7/9zy2cmD88fTx8EIikT5MoABVdQjBHnKhSJQBjnxwohSVouLecpRQmzDBRsWmZDE+WRGFjnqIciDG1lFKEJcS5Qqq0JLnv2zH/q5nuNiLMjCI8CLUV0XIdO5GEo3AF0vuwyIeHN+9vHwvyVAURHKyqc7qCSRiiwjKijxhSZb93tboNl9LW8+Nwc/e0KcyHnSkCFhaeDhFeiMWNhbh7zORgcs84bLsymShIE4BwAtPdIimF3JhkXddM8kBh1bUOc0oIMTELMWn0cIJAKUHDXdKqFi0y5uzbS2ntaM9EOBVd2/r08fr4+L2XF9v2fr68mRa1lMipxEQoKu6ptSRBW2PVFNWyzqMzSkZ8ZKsAItIyiEmZCcgMI6IIcjci1VJwyHnk4U//CQnA30Lbdx8ciP7HYO8V4/JQziIi+VSXFQerqGfYcOAgr5mHFVFmFSlHIu3WCRCVoxPhGUQ8Zx52H8xp9m1U8QsUxJ9IWA/pLgAJfkW+45ISgfxuGflbDGYQCN8B2l9g5J/Ml799s/Qnb8Av/eLxosAnoP1uZPDHwog/tQStqh4AOJOWds6U/WqN68Pj5+Bqzh5KXIFACkiRwuRMnUiE9HJaiui23apKTpdaOXzfdyJIISKIGpCaUAWE++6lKADhChayPfTuxCPYWJ2yaDGKaQZVCPd90Ei1/N7lceuzz8Ohr5iFh8/hnYmZ530Qp6J6yn63tjS3IqIAtnEfmZmCkPCIcEcaxT5MLXJmR0pW53DQSB+RdDiWEOZRsBi7iI4+VVO09b6LCBg2uwhpaYY0dwfm8FIKMUQIFObTxpgRmcnUQJEUpK/OBMQqQvMYPAARyNyZEceXP0WE9r0fn9Er/R2zaDXPj9dv3Ofa+HxaEHFZV+ONUyxmW0+WI8P5lZ7NPm2GUbCqqjBFQTq5uB9MbeelcgqVAqinhCoVpYiCkplOB3nOR7qBChERQjMojSz3KKVwE5aye3dihKgWdjr6JUE54QJmomCkx8FyyLAgBkMKcV3SnFWSeJ9jTK91UeZhHdDjqytlWSqAEOaYk90tPEBNOJIOvZSM6DkFVLSwgKlFBBDTY8N89/j5Zz/84fPzV5fL5WXbT6d3X7//+e0+fv033r3c3Wc8XN5er1chuV17BOach9pX7x3CpWrvnZn20VtrUirc+3Sp7fs/ePzq518P88fLWUTW2sa2U3KFpmVTHaNbH63V01IROee0nO103ratca3lREQseHg4xXTLKExFMJEMiEipPHuWVmot33x8z4laq7LWpZzPq5nZ7GCSTGIwE5SRVHTp0z4+v3z9/r0iHx4ePn79JTIvpwdJMY/wPAzFainKKrXsc4yYTaQkGrEFhfdFufeedkz31EROn1WXCENpXKpbjnAQZyTvW05wWXC04JKO2F/Ddrchmtv+fDotFMFFn1++rnUJC2bYjCLV0h3m7uVEa5HpG6VpzEbq6WAu+mYfe5bY+o0LPV7e9PGhtBKDpwdP33rXwg4kSEQENdKnc2QGgUojIA1gN01bq1OkW1MWrTbntvej4RTJlpGsoexScu+1SkRYJEGEmYhSiCh9HBtFcGQGhvVSysxsrWXYve+llOXUeu9j32qNsC4FZn6fL+fLOTF04X3spUnfg7SMbXJRMIu0Wvh6u18ez6py7za6L6fLvo9MIkg4RF6JtQz+RP055sQVADPXqgdgHOsTGBz4CvoOwnxCiFd20x97/vjd40U+iTodQM6ZWTjSk0CtlaMFjVQV8lmenq5zupl9//uflyYeSUxzjoMzxaRBR3n8iDhfU/kkHA3Xo0L+6drkE6n40/UQCJ86w/nda49PJDI6+Fn57TG/WPzp7Qt+eX2nLx7Hyb69Ffmds/8pyMp/OpTzd05N38nRp02WlpnElJlC/PjwcPvw5X10VTk9vrlfn7exL8uCpHDSWmV2JmUSZvY5OCbDj0jIfCC5larKEUjADcISie7GoD33zNrn1L4E6Uw7RlwpQcnIdDuShERAwVUWdxrX8Q16Urh3Tqb0CVpbtTH32Ys2lBQRJ+829zloWTzvDAEwcWccRTKaZpKhTEAeJGIoXxOBONSfwdKqkDnSI6wWGhmtVuIwM/ggkWVBpiUoifexxzRmBlcQa237dheFlqjCB5/CAfcweG1yCFlPI8/XrgVJEVC6mZuFl8KZyCAwuWepJUc+f/Ph4eEhM/693/xr33z1zZu370a4KPr2Isj7y/Xduy9wOv2rf/Wveu+Xd1/Mpw8fP3xFdQkbnCWEwEiJEZ0zmJKBEciIWsrtdquykJB3AysFxt5f9r4WVWaTnJmi0qQeQuJmIUKqGoQ5exHNCESykIiAuA8j4gomprH3Q3TQ3KZlrZWlpTlTHpIRnjETyZwoEZ5IkKiSCJWSRbTvh4hRuo0kIUqxgBl5ShMgiqrN2PZeTwupxNzNItklQ1XNTKSwtLLUVPSwh8e3ANeqY+5/+S/9xs9/8ke/+Vf/uiQK8fZ8L8xrW+7Xl/V0ZsacHUyksq5rwM3EjZWW0aPVB4sgCJOYy+ObdwzqM+CZoCZVWB10n0ZEpdUx9sbUhxHRCCsgItLSiHTMnQnMQ5gRmGMQJVOmdRCQMbqLyP125aKHSgEXRWL34WatNWXps4/ZVVWLMNU+/HRabPqPf/xjdy+VRfh8XnXuHLMQC4cmYna3KEWvYxeKEcatEktYIBKgZHeqHl7Xxe3QQhmtLGtZt34nEkQkOansPsPGWyxQYK33MT1CTyxOpYhm0rKc1iLXlw9936TwUtt6qm6REcw6x+Sl1qqRYx+383oBa0YqV6QtdN4xE+JBYNG1VGpAbFsnStE8lfpyvY/9btZrWaRkWk+HYQ9zJGmp5pm+k4ALzxk9pjnX1jzCLMAkrfq9AwUEixg2D+UE832tNY7yLiMzmINZ3WfMmIHDskak4BhzZmYVd3MPXWoS3cc0DzDPDBxG6zMiTHUUXd17mGQ6sxBYtAXE5vAcS9WlFUE8f3j/+PCDytK4vby/Ekh1ibBMIuKMo3d7TNAkEMx0lMyPZjCJEpOAP4Hot6nktxASn2hN+dpL/WXo/QRHBBY6KsZ0HEcAhCAs4fj6y9uXX320Ma/X91/90R92q949k5n0Bz/4wdsv3rLi888/+7VffxwzajuGsF9vWiK+HdTBkad/IlUdqlZ/DNFwlIU5fwGtRPRtx/pTg/bbnJdeCRPfRc1P2E3x7cv+KVnv68H8bb5M+MXx311/Ws3gu6f746uUEgl5PW9Qzuv1mypRV+Ya1+2jx6iV59yOHP6+vVhMj/ny8rLveyAdsDQyEhESUtWizebsYyQBzAmy8OmhnFnEkKwSIwNGRIwGEqFcVGbQEV2KyHTLzMKVE9btg+1LK621SIsJUHbrFrasBYkRjpgMDgqtPG0XLdscSALpTMoQd/fQpEmRggyGcxCERGaQhFKGBIjYPEDB4MJFGzJxv/dlWTxj38eyLG6WZKWVaW4+CreE54QSt3VBGuc4CrUkhZiJQOlg2JwUyZQk8sriS0QEpiONAWEPJGWae6nF3dalnU/rh2/e/+hHPzot63Zqp8v653/wq5fL5Y9+/C+3+/Opnc4Pb24jvvny/f/8P/k79779zr/87TdvHnxMEvYAK1eRiDAzZDAYQBC31piotAIATgSWZCJKTPNpnCCNT7LozOWwyJx9uIEZQpxZiFJAwhUJ8Qy4HkNXu4kQJVhIVWd4eDoxmFMSADMdY3VhEZlVqmMyca2VJSPMbJ+zr/UEFiq6RyQTJxGj8MJhtGjQzHA6eu2WjbmtD2PvNjsTi0gpxQPuQW6PpzX6vPsUKW8fHhFpc3/6eO99S9RSSsA9wgws2Lfbm8/e7mMkIRwfn54uD6fL5TJuvbS690mBsFThDEpgDCva1mW53V5aLcO8KY8+iWN6iojNYdGS2COkLEjcrjuxTouIQwEir9freT2xKmWaTeYjtk8R3rsVaTF9KU1KmXPuY2utueXL9RoRtRURAXOE4fCwUf3mm2+27U6cGbbNPXMwo2/3JBaR2jSF+5h7N1rPm8/pdmllRlQpe0aouosnTeJSWmLOOUVKXU/TLZXv/X4QLkWYC8JzmxvAHOoSQSGqGWM6adOHsHEfY2mXvT+3upiZ+5xU19MpJqtASIroy3U7n06LlDG6p0emkKRlGIEQySDc79eEtbKMMdZ1RXhwVw1hFpalQAj3PoHgqkHBEAFNd08HEZK9uEayTWHMaUZaWWMbxBxwd0qCKmvhMAufxGspeuifqUqkzT6ZuRSh5G3r7u67DR/LsnDSft9qK0RkgemzlKrLad93LQsoLLCsdb/f7tdNHs7M2krzGWZksZ1OJ1HAqdt+qp8Ps7W2+qiLthxxrqc//L3fB/4j5ow04oPsFcmUmYdWq38SVzrggLmC8nCzPbCW6JfyXKJfZMOftE6T/rQK6lH6JcKxfSeBkUC+fMzf+Z1//tWX3+zdX17uYdPHy/v3P/3BD3+llvP1aSt6+fHvf/mTP3p/vV8f3z4sK33x/Ye//R/+9dNZgex9EyHR16z6O2Qxem3RJQP8LSXqW/jMND6mmzK/TT/pEw2LfkEO/wWsfoc59d31JwacvvN8Zr7SvZkABF4h888CWiL6Y0j8J+/nt89/kgGxyNEWXlTY/fayX7erlh8gw6NrKXN2c9ei+9yH7aR8eTyzIOY+UdZSjJKLMqv1MYeVUhOcB6HwQGIG15USrVbXmD4iOaxmSPgWEWTighkTRCwKcEYCxMzS1n2Oc2scYGVm7PumrQ1OIpkZZkFpxLm0tt+7SO7ZmVUEBBLRYKRjSFUz5ADFjJ6Wjc4WPvmRnSgjM4KCVcz73IdqDUAbe1qfY6YL1MkFOOYvS9UMdw/FyhDPeQRdzJBsLJpUMjj95SDtizCQGe4+WUqpxJEiGQELJx5wJ2ZiBdlprQjKDEpfqv7ge59f709z+pdffdzu8dlnPzotp/fvv2rr8u5tXf7jv82cbz9/c/6P/ta/+Bf/YngqVxNG+LSdIgUhIkcJtMqyFL1eryIazOGpWiJAcBFiFveZmX1MT6EevYxlObXTpbSwscPT3MOSj1QOSYlCGm5MooHUlpxVdZ97IEKoruveR+ydKZtoJApIoYGIDBtDP4lvewYzQIWYbOxUKnFBBqsiMiwSXJe1Y3ha37ZTWc6X9fm6C4l5MItKVQ7PYJZpse89+/3zh7+2lkpaDzX7pZWn9x8+++KLoChrvQ8L5PBufT6c17yP+/Wlntfr3pMgSjZm1UKYCBB8Dlctp3Od03vfa1lE1COJNZmK8v2+ZeZnp4d99MwMc1ic1/P9tgNQKfd9O13KDK9rVVUf3uopgHVd933btn1Zloi4Xq/LsggvS6l9Ts+UQ0YAPIcty4n1YKFjzMERACh9qcvTx48f3n/z5c9+utZSJD5+81IZ92HJtCxL733bt/bwoKfq4NrWeX3hSCWefWBd7mk94lIegjJTr91E1QXtdJqED/N+Oi2zT1FWEc5ohbtBLspAzvtaGlJmerJsc+jsgxFzRjdnXrdBnuE4AUK6mk8uNNLPcnpz/mKMccN+SCCN/V6aRnqIM6uomHkkCbdpGZ6l1OeP17YwgymhoBzhnMJctIks27hL0SpyqZpJM+ZEsCpnIChcFJxzRrj5bHUR/qRgROTDhFC4vuxPrRQmRWbCD4oTKI0INmqh0tTcSZtngLguTUR89DlnRJa1mcVB8RCtY3ZNr+3Mdhq7LnLuumwzmVAKXeeTMouKUDXE1ncRGZZZKRSPn795//zk+MT3TY4EkRAo0o6t/7sN3GP0CL/IdPHLBdHXY/CLXuZ3j/ylx5kZQaphMLOozJEeKf/4v/mtf/l7P56GUpr3/ZsvfyrqD28e3/3aj/YRt+szg6J/mTF14t3lEvP+9KH5Nf+zP/j7f/s/+Wt//i/+4HQ6zekEgI7CgB5KGpmvSTwF/LAlyOAIIMEyAhWCAAUIBDqIEBRCHJ8A74BOykPVGxKcYBCOeeQ/Ac9/OqzilwKWP16w/tNg9Y+/wp/RD06YkHhmkgY4w3oftWiyMAJCeYSxGRZG7KmiKkKsjEgD7PL24RTrh4/PLMA+gCmOFQI/hDYIx805hL8zkekzJMNGViXEBGECGYQiIE/LyEPDLudMSl7bOtOuu3mwh6ebFuLCCIs0kLAE5e7Tlda9zxH7guV8fsj0McbwDCabwczhyVo8onBU5D5393muy9iDUwgFgMCZEMyZZBGsxfosTYioaaEIocgYniHEirrPXbhyoek7eapKQqZNgJE1kvY+lqUJMUkeYnYIKIiEYxATBEIUTpRhqiUzG/Oc8z6ttRXgh8/ekbZt+K/9yp//5v3Tf/dP/tHl4fQ3/6f/k48ffvZbv/Xf/82/+Tee39N6Wa/X5+3Z3j0+PBJ/QFLVQgWIbduIgoJi+tpqkXq93yOHlOIZESDiiFCtGIMhCICUmLQKEiJlINx97BtHxpjhLiAlYgc4LYKEA0QkEcnMREmAjahcLWFmfdwiQrhFuvW91WLejx6S25Qske6UxMU7qFC6J3YTIaQIqpQZAxEEZuaX+4egaOtCove+NaRytrW5DcosKjYcGQQvbp+9e/grf/XfZ8R2ffrh9z//7E0dY9zuN0u8fft290HbNUPa6RSUFOmW1KqUso/OzNu2XS4XVfXZhSvCm9CyLGNie3qGSBESWnrvrVGpkul9n+vpEhFfPz8J8ZxjWRYiut2uqjrG2MdGRBEGfxWxEuVk2PSPT0/a6rKeIrD3IVwJKsQ+zcZg1X3fuahqZRUziwDATWWtOvpWuADqfS61/f7v/8H1+aWUXE9lKSWmFcIA9hhWMSbM90hNkvv1XoIVjZOz8c/uH0jbjNjFS2ZhqEUx3vowYCr77KNPcLUo5NzUKbLSsk8CWEQoOOdgciE7rakJl1pIEWlJYWbTrCzN3d2GZJaiyNj8JdJQEOy7myrLuRohMw5vQfSvT8tlKQ/bbdMixExU1rVkuqr2PpPg7qp6Pj3OOe999zR4WpJkETo6JRTJFJMgbl5qJWCOuxZJygScHEA4fE4VEaFSysE7mmaanMgjGwZTVUVQH7bNIVVKq6S03e7HJiuiVYg8MF08fQ9awFyOhr1mJMWw+4h5XpfT5bybFy1zjHpqpZWRrkuzfWpr99FTl9PDpYeFuSozJI9u1jGpw/xnVED/NazjFEVxpNeLLmahWv+z//y/+OrLj333/XZXoXWRzz97eH75uL9s2zZbk7F74yJM2/ZyeTyDZQwrJw3M6/3+f/u//r3/Zf7Hf+7P/5AIRDUTqnLcW/f81r2AJXMauxDXlINhACHz1E+MsE8uJZFHGfvbCz8qjXm48eDYfpNeA5N/x4tJPzUdUUpTWdKnDS+6KGrfLT0tXVgB8gBlXrc7EbXWiMgzxhhz9kUPvRT4nO6uWkFk7kSH/okdXf+jK5HpFpmcwsQMz0lsLEzMTtYWnhYkOecuoghnqad6qrVm2LbdbtumKUstFuGwRHwqmSApmFSVPQCLcAOY5Bh3g2dkZmolOqh4VAuYj8KSeVimEElSRFDGUdzB0fv0fSeiUpQ4ATq2PXcXpdYaszKpI6SKux3aZ57Up4EUXIOYiYM8KQTkklxZVXebZjMiitZWch/j1a8z6Lxejum4231b1/PXX3/8e3/v70/ftZ5I6t7zv/oH/y3BhpV//E/++SL15X5jpstSfsfn+Xzu3YtGcjCQSW6oKpQxe8/Mqkyvvm0JpqIcnjY2dksKTjBLEAU8MiNQQQSXYERy5iFKDiAooARl5oIItnSPMBeRBMxspKGICgurWwApKt36PjYmVwIhVfmxLbd9m8NEgxhjuPmmJYq86rB6WMJbK2IU05e6jpxm1pYKJUFSzn1/0qTSdO47I5elrKt88b3v/92/+3dZ7Pd+73fHfn/zZvF5S6D3O7M+Pr49red9otTm7uu6jjGWtgz3bdtKXc7nU2aOMWJaKeW8rt26u9tMs2TVyMxA0qyFM+zIEpj55eUFwOPj2+1+Z3YRWdd1PI3WWhLu44WIZIzyyYyHwN1GZJRWiaibLctyYn55ukYgxDPDfZISEYkI0avmrKcvywLQ/f7Sqq7L+vTho7Iw08vL89LK40MZ/ZZhl8uyvRiTWjJIWGS6Z9h6XvfbUKnJab4lbFmJSsY+Ka77voG1liJKEhBNUWLhSIf3xEwn1nNCobyPrTBp0lLbejlfr0+gGD2UlT3N3NxfVa1LaWtdt9vH2FMgwpyZ2+gpuSxtZgZysLMggMxspaTm/eWJJ1ROpbTTuT09ffN83Zd2AQU4ZVERMRvukZk+baTVWoQZfnRsg2tBJTgYpCqJOBzRUlUrO9H0Pq0zs3I5RokyU0q1MZNfiT9IEHGtZY7cbjuRlHUpIt37GPdG1XFMjUWaExfASxKlMGTOw7sEIkCGKs7nYteh4ub95eX29t2b9LBhpcpu/fPPP3952fbdIouZxbTby/Xw4P5uwTMzifiXM9t//St8CilYep+llv/qv/inv/c7PxMu16c7p0nBdX/mEkijCBqbyptTO7nHy8vL6bS609PHG7jc/efEdlovTdd/8Pf/8Rff+988Pp76HK1UMxMR1XpodAOEIGNCLQ4wPD0oOVkceshvxKcKMh2d0u/MRR///fSREQhB4PxUWP53jcHfRk4A4EnByo0FN2cpmiFSlpgzIqU0KcV8AmAlR277bmYPl3OmE2LOyURF1APuMwkBiyyebgkmYpDDExmZlZiIAslCFh5knpZprJLwyKFcSiUhiknCNvqWmccW6T7Np2dEGikQmZJKnMQMITBpHYMyw0YcThiRQSJHUz8z53RnFuFAcc8Ib0XJgxIEeKb7ETKp2STh1ppnfGpPBDO11tzd5ojwpS6ZFO4H+z/hRATW8DAHCYm2fRoj00FHfHaMbTNRVRD5vsNiWZa1lt47GZWmYxtILqWuZRHSTEvHou+Yah8TWSVbpp+qHBrM2k6n0+n28kQwzLUsyzZcxA9OdYQhWaT46KLs01jBwkIZ9FrcIWSr6paREYcI9yFwQrkQZyZHZkTB0WxJzxjZ4ewRzJZJSBLmotLHFBFiiJOZRwQJM8CcKpJrdZ+UIMrCUZCgWdWdkmmmFLQ6PVicQ6Z5EkiIwUI4jNnMUkWDgsJ9jrKUdZHz5fzVl1/6yKWVz9+9+c2/9Bf+1n/4H1Th6+3jj//wZ7fnb5alpu8EWJ8vLy/t/OZ0eezTgpRUwm2/b7XWp+tVparUUsq+7wAvS6VId//w/qksjUhStDRJ8PV+W9c1bLbWnp+vl/P5frcRcb6s+74/PT3xUTgB4SiXPr9oKeeHB59Wi6YHEqXq8/VqFstlHeExX8kopS7nB4Q5CTLD4UsVMyPKiAgkmFQO4WET5jS/Pr+Eeb2sP/nJT/7Vv/wXe78trSLmnNuz7TGjnZYshYiRGdbNus/ehCgHwE4hFEXh6EUn5wQ6y9IjbUxWKdpA8bhcRg/PEI0giszr3kWxnloB+9bnNhecaM7T6aQ8FcRjDi2iVUB2uLeOfqWcSy2FyuieLCoLCbuBOZZ2HraP3qFJ4UaREQ+PZ0kR2meMvpfMDZTTQ5vuMbnojEMPKW7bC9KDBBRjDE2pogASHpYWWbkwQ4huvRPRaWlj9Ou8q4IFoizMyUhHJs1ubi5LYVYRAQ6DRF/rJQJuaZGkWiUth/mgZIIwC2UUFgQxBOFMQQEpVJQVxjnHiDHDxtbH/XJ+ePP2oZbSRIS57/201Ozz0tZ+v59rW+rSWMc+hPgYesW3TdM/mwH0r2W9gj1TRObMWvXp+f5P/sl/ty4Xpnz3Lt49fJbTvv66b91I9Pn5+c16nv2bmXw6XdY1kq4HE32726wM6243evgezfqf/1/+7//p//bvXh7X3ruqEuWco5QC0OymqhZwDsAUocfE8zEw4nmYLhzDUXiVwTycFD6RyjIJdIwq/UKRg45C9L/jlYT0PEhgTJqZY/ocu2o97IxiOrNaTBDG3rVIrfXed7NXwcs559h2yVfiHCUQQRQi1PvkqpQiAeYDCRnhQOQ+jw1ESyHPo5NPgnkYk6gceflt25DpvpDXbj0iyuO5tZbd8PqVSFBSJDGYhFwBAkSZmY5zwt0TB9eSEziovK01lYq0OXtEuG2vbXWu7pmvs2eUmUxUtKTNMUYfsxQhSqSLHJRIRHjvpqRF2zbu3/4txCuBncYYpbRX/rwQEyLN5jSz5LmWWlV9Wt8GM5SFWQ/4I4bNISKz3zKThZHfnJZHZot5YzmsBnTYtLE1ZZ9bLVaE+v4NFVXQsLI00bYoi3Ii5ytXgygAEZBQmO9zSHBRpUTkjARFItIQSUnKaaCIzKRwcApJUMQ0VUnhFGYpGcFOZKBIVT00OFrVVgRE7h4BAplFaydizH5Tiktln2OOvqyViOaAJ5VaBQzOuM9SqK1LMO39HhFrKet67nvsY2+11RJRtQrfbrcffP7Fv/9X/0rv/eGyKofN+//42//scl4o45uvfv7u3buHy/rxm69rWViW0+nhzWff07KM6SR6zG/c7/fz+aF3V1VVHdN779oqDkesjNZWEtFakvjp+U5EokW1mt9t9lZViSkc6bP3OfdlORVR/lRHqbXe7jtxQmupivDe+7IsS2mZV48IZKv1NrdSSyQ9367KnEn3fp9zWhiQQHoYMQS0j65SimhtJ0TMvkVEWxfP2Me27/tS1OZAjNPptG8bq3bbX27PA3l+ONdSmAq5K2l6Hq2DJEKk+6jAqa3RzRMkQqWFxz4mgzIgXJUTOYpQ98klylq356e6LEn75jO2W6mNiNBFMwmg6R42EqYcUlRKPJzezPsw60pFit7GvncXOSbqRNEyqKSAIM5j9iBi8skv4fM+Qkq7XE6efjMPuAT1PovWWsocu/JrzS0iwETK4DxSXhE62kFOEgzKtIAFnc/nzNnH5m5ZSLlBKIKImA9VZGYRqbWNMfZhFn7IfgyztC5CKvDwwiUjGSSlFKlzzqSkIrVUElh0G7e7+aqtcvVSe0mA7/f7TIjw2kqYR86m51aXD/OG5FKX+21vy6n3/mpMkK/+AXhV4Yh/0ynd7rPJ6j6F5Hp9erm+/5UffW+7v9yvd308nx+WOdbnnz/7DM8dKsdG+LMv/6gUuTycHs6X27YvlU6Xc86H2S1HtIXT8h/8l//of/W//l8cHgbuoYUjDcmsRJSV/XDbA5VEWhhxNpYwggMUdAwVHZ9uBoPzU1/36N8ePxHTd9hW/0Zv1f+PK76de/aYQCxLrYW/+tnPy8O5tTKme9pBnTsI7d/6HNdafRTro5Wl942J4K4qzLAxtK5VxawzCZLZQESIiPDMjDkJkpkh6RZmOQyUnqIRmRNSVLioHmdEzSgEUrE+kpJBhDCzo11JSDiYiKDhjKSEpxsTYOk2mWHhAIj5+HOcwzLULMyciZMc7B5BEWbkiQwacwdz2ivv/FiqOsYePjMFmZlwkQjr6Z7JCBAsDhAqVTSh2+i235nxKogsHAlCMgJA7DuDFIdEOTLTzNK91lpU9n2fCWYkISLqsrzcP8zpSqpaEbBJB+dp73sm1Vqnh54Wm6/OaWOCEGk+4E2wnk/KdHTGg+CAw0UgnMpxqNyICKs6HU7eJIRJwQxCCjMTuDCBCx2zAUSUwmKQg6fqjKU0uDOCRYkAlgAlJ1O7zh5x6G2cCjklCUu5qCqbhcUwR0iSqKi007rtfTqQWbTVIpTRewepiDDrmIZgYS16evP47nJ+U8tem55WDVvG/fnLn381R//8Rz84LZUZj4+XTDJLCE6X83K+ZCker5MPqnW7d2Wd01WrWcen2YNWKoC0DIttv3NtbV2Yec55vV7hVkqBZ89NizRRh7eliKZ736cv7XTv+5helzYs2GVpdWzXWpuQAPTuzduX+22MaWPO6WttM7qIrMuy3e4gYpW3D5ejO7a9XA+KVk1uojHdLcbsy1INwSq1tH/2z37r48ePbx7r6D0PU1dz5iTCeiqnQlKRMZsSp8KCwELsM4moVEnLzBzRi1SWMiMpoxZNsYO6X9Wqltk1I+B3VoxtLBSwnoSsy9OYb1qlYw6YMtZ1cfg8rGlimE1henneKklVnnN3Gyy41FK1TFvCUUAFC5kc1RXqvZ7F5hU6lmXp3dJ5dkyfM/QYsWdqwicbzliYknNSSFMRkWQOD0cIHzOUMwADpFUJNnPVGj5qK1rI3W3GPjqhCOmiZSB9mIj0PtzDM1U5OTMSKqVoGME6JaoUJn7lBGXO8JlRtDhjsvdwSi8i5K5cRqJwSR5a6nK59GmUvt364Ttyd7s9Pa9v3tz89tX16eHyjpYqsVxvt8/ePYT7d4Z7/22sIi3hB1/6v/6v/+HlzeXyeFoa7i9ffv3NTz4KuefDee0zuJ5fbre996WuiYVQxkYv3ilQa7NrnMqjIckt591g0U+/99s//nN/8UeXx9XdgTQ3plA5tPVNuRATPAjQLJmUiVBkgtwVrxNTR6XfCIfmM38rFn0Qwj+9kf/vrKt/a+tI3jOcRUW4FHUf9/vL4+OlKJmPCHN3VjIzEWrcfMyoyxgjI5ayzO2uTaIUM0O6aIuwuTvmBAvZlKOKGXFwyg8i+ZQiItPcPYlkqc183PdOHK2tzgTn2/WaQeYDrUXfk9BOqx8GJ4cNhWRE18NaMRzAMQIexAJzdwIijBJFlA4TocJEYjPcou8TIOYqkmPcgyliqFZiESgEyHBChBnAosyMUCLKJCmKhLkxEYVDhYM8o2oFUJIiwqdNc/DwsFVEVYlgaXBLn+kTzFUUYGUhoukWGawiDH4Vg4v1VO/9XmoNuHuMsNRgJQsncoYMG4cHuReoilGEhIhAq/WxtqYsAjqy7qMBYmaRkmBiQnhhKaoFzBEiSt0cRMJC4IQjkR6qkSkHGGUmvUoOH9bdcGQEQMxKlQsLE9dSWJDpu01kHG8TSQLZuiX5WooF37bBwi/XmyoTiacQVaHW54i5n+Q0nY5vaeQ0HyWTPYlKkuz37u7r2swx5vjd3/39fb+u63q+nL744q1bfzjVx9O7732xPvzwcnt+2vrt4fI5s7x/urtHXZtKvQ8jEXMj4cfHx9ENQVJkzpmZ63q+368RcTmdRWRZ6nQEF9bSxygV67put3tdzrXpdr1RYuy9rVVr9d7NjCAeYNWwAEeSLEvtY/Z0Aph06/uwySIATssiIvf7/eX6dFrOS6m9b6q8z+y9Xy6XbdvO57OylFI+fPhwWVZYuNmyLNfbuFxOW9+eXl6W5TxslqYWQYIAQyUiudXDiS0z5pycxFzSnUgPJY+IACUZijPAITZ8RnqtRdnG3IX48nCmfd7vz9lOjR6IVYUcftvmm7fvXq4bqF4e3vaZt/u2e7CF9v6SaEZJclCQxJKUyukkvo99dE8rurAWnzDzDA3zo+JSSolMgFpbCS5UCRgWLIW0uBNClDIiyAs7MjkmtDJTVtS0cEoLlCpcW9jIhI+wkVIQLJ7CiczklCLlGILzdOAo7BVwLUwQAHFalq3vZnZo/mmVGYebMhQQIiDdwtFLaa9dKwDCzjGnc8V+m8Jc24mkmsu0pBK1nZ+vdz49qqqNThnrum7Txz7W8ylFemQ3L2HXMYLlpz/96WfvfvOT0ZB+6gH/m01/j7NEDGX5vd/98dN1/uqf+42ffvl1AS/189lfri/PGfFw+ex6+2CxBw1mT3ARoQxOiTHP5zMn0z7uzz+e4evDgmhLXT9+8+H//fI/PN+e/87f+ZtSZOv3WpVJ3T2TkssgNhj0mJ3A88CtQ1qsRGepSOeMJEqmI7E4RiQjwfQ6ekT5/y+4+4uVR+pOAMwGyLTSivblT376cF6Z3x7Nzm/dLcN89mFjwkHJSyviPvae5FUETHu/u3tdTyHUPQgtEnwUqDPNLTNIePMuKGNOzK4qheVcBINSmN19ZnIUMBVmCGcuazX3TCdij9nndHchUhUkZ1pEIGfkntBUHMadbg6A0iOOKqClMfNr44RFPimrZC0nIfdAKWX6YWMOEZRaPWAWZjMTETGGEVEGkUBrZcAO0/V1yaC5DZUqKoe8RqaLallqmaYqASc/ushSlPWI0kAUScS1LlUpCRGWcBzdbaFSSql1jJGE5XS6940IwuROwrWqunulrGsdY6/L0sd2iDmcSD0cEUSaHkxEJLNPZZ5zgEmEOdkdoDiqxGCxDA+mmK/hUmbEtMP7IZ0AhBdjzsgIQT1yMkkJj+AR4J2pZKrwnF2UzJ1VInxiCnyEO4l5Kgt5upMkXx4+c4RN7yMygEKRNM0nwhNhwRLJCZ8ZLklAusuYCS5keb3fH5a69X7b7iP9D3/20/oHBenf++zxV3/wg7/0G3+Bt1jO73g59zHWdSGpp3N98/az0pZxf6+1fiKXZVGlSUeBpzKpsruflrW1lj6RnqAImmNwUQv37Qak1tL7XqvaHBGBINvdHafTQwLb/nLdJrMsp2Xfd1ESdATV1uYYRwYzxmilFCnufl5PiPTReziA0lq/jqM4waDtdldVRKytWfh5WSOzj3E6nfY5zOzz733x4z/8oz/48Y+laNLYxsYMR0LLdc5WmmLNOFQ1vNQiAkuaPjMCAmFkTk4vVCyJWZIgLMTMRTPz+nJrIkGltFME3289weD1s7e/Ouy+bb7ZeHr56s3n7259/sav/YWcqZdTDQYcnny/DZ8BhwuyTHKPJAu2kQjC4JA6rTctFBnpLDMzus1TW3vfzIycxpyn8zkCNmNZHwib+SgsESbEbanKNscmvHhaZs4wS1eldDCDJlMWpoLa9t7T4qEtOcfsI9ntGEymgzStra5jeybiMDczRLbW2H2MIekzhh2zkloPIknE9AwyA1CXRmB4BFKUJrMlSiwUq8oS8ELJIrNPSLndXlTrpdY03Lexnh+SWLXcts3MluX0Osgk8rMvv/z34jdfQeVVquLVYvbfCEx8ax5AQqofvvrmH/7D/+bN4xcs7d4/2LadeF6v99Ny8p7jyVsu5zO/vz4jknPZ9rEsF+GqQmlk5g8N5+/Vni8v9xuh/vynX33xw18RyO/89u+ez+e//jf+ikghYnOTV3HN7sGJsoG+2sa//Orrr263UP31t6cfPb790dqERO3gP6dnOl4deg5V8E9gx3RIhdGfqYzxb3m9SkkTfyug+UnwyI4D9n1X1YP2HGbHp39QOs3sum2XZSWPfUakg7P3DqJ2WXskKw1QmBNcCZkxc0YEi6IIRCQPwZ0Q4LzIouf77tOcM8K9sJgN5ETGGOmBdGvrIlJW1d77p5aHHnfY4YlINimcfsixoWrJTGZOim30w1E1ECyqXDLZPZmolpPQ9IAIWYTHFBEtAuYEmIGk1pbMmNZFCmAREWmsCubaGoG3fS9lZVXhkpmMdE9HhvVKHPAjBCAiPQjWOKQYBQ5HkvBwnz6IkgqU2My9p2pxT7MQrZT8eH7YRvfgKotkycx60p5beITR/eUaaQRhhs1BzGAhQXiIKhL7vlEtIsXcY4aF+7AYOTPCnEoPkHBjZrMZaUKcmRPT3R1+xFLJqczEgiAQE4iSKCmPVNXj0KhNAsv/h7g/e7Jty877sNHNOddae+/sTnfbai9QDYooNERHkSLFHpQskZIo05QbSWE7gg7ryRFWOPwv2BHSkxUh8UEmRUuyKJISZRIiJYAEyELfVqFQHarq1m3OuafLzN2sNeccjR/WuVVFCKZFQM2KOCd2Zu5s9sq9c6wxxvf9PsYXOhYUEe8e6FIKBrgHMUkaEOGwzKuEgjg7UiAhEjMf5zmlJMzdF21N2DKsXkF2CM7FHLt5NwXO83LiJA6QSpl2W0IwxIdPnt0ejg8+8MqrLz242AzWHMJ7wzRuLq9e2e/37tF735bREVprRco0jlWX3ns3LaWsRK3r62djKXkatWmEIBEz1tb7UoXYrLvr3BsGnG22tWsuk3rvbWXnCgZwynOdWbD3Hr5sN2dmXbWnlNbXmoj01k6nUy5lO43rq09Vl8V3u93hcFhOCwDW+bS9c6f3nlhOrc2tEstSD7vd9nC8ReZxHB8/e/zwvXcT2WZDyC+Wp8iEnKpRVyhl2oxDbaeui4VX7CvKXBhYGMyRgDHqoiTIOWXOzQyC0zQhYjNya9czaj+UPG23L737+Hk/2SadffQ7P3j/3k6pftenv/vmdvnON37Pb375TTmewMNpzbtHHzcZwnANTMtDKaN0nftc0ZV8ACbCRtStD1NZvJou425Y7MZGtxpsUEqJFVuI0Za9xtEh0I0dzYw8NwASGRLM3YPJI1KBeT4MwoScGGeoC5mACJKZt9YSQnRPJSGjRiAxiah59DZCBjNGsUXVurtzyQ6hVgFiGIq6KTsxhmkwgqUQdrXWGgAQykDp5uaGMqQQiKYqSDxXo7zZL+aW1GizO2cxi0aCAolMFH051u3uslm+uambsYwpq+rNs2dMUKsSAVHAi4CEbwqPfgeV4H2BNwAAINA6w30/c+mbWA9zS1/4ynvNU+vz6eax6kFjgeAxc18WIjrhkXf5yX622Mq2GNDh+unIWxGZEg7SudSPPnj5/tVL5y+/XF595WsP3/vCZ7/01a89nC7vbIfNzbMbBBCh9wmSDuHiDE7IaAygzmYXQsNmuKS0ARgA8gu3bzhQANZwMyWILKkgMYC4I64hhf+jHu9HGb4AjX27qRoRAx0J3IUBAAUkWT35bLvdmXA+Hm2zPbu9vWWEKacAAjDogE5hcX52efPee6YNAzKLo3OiuZ7GzVYVWzPikhGrKRlg+JDTkMnCNHSOKEKt9VJYGKzN4ZRzzpzMoqrXbotqgAJ5kJWyMTN1QAxAcsA0jO7BWrlIKLIUIjhY69EzMRB0U2RUVFejdQIqjJRBkAWIJEVEABn5SofHHCDmJtI4UUopAs0sPHIeUirazRxyGoGRANfQ6yB04IYYHkuYpNTVTqd9luTu65oChBdniPBAC4QAxAhHd8+Ys3BAEIkbLE2diRDZWQPCGUG9u0EEJLPkGsvSWlcAZLeEhG6D5WbVQilFbxUpCCPcCaFXTCktrYfGKtxgRlWzQF1/IMRwRUKLUIyBxC3UIrO4GkXKmRCsk4iD9YiIVDIQJ5G2LI5aWLoNJsCgvQEVHnHT9OawHLe70QI0QMroES0ck+jSChmoEiFhMsTukJkMCYjBEwYdlirQ1yESA6F5uIa4YpBG8lSIF+FjdE8obtOGKYdqTxTdFkjctKnq2Wa722y32931/lTrmx945d6Du5f7/X4xeOXyMmValhd6K6JGiKlsWvXWj4zSW88it9fPN8NwOp020wQAz66fl3EzCNXWo6VQG4aBkqxDntp1u7kwR0x50SUXqv0UAJttujmeULBb5Dw07YJnptKauodq3263dtTT8VhKGYZhnuckUkpxMQLsvUOPi2HnYN18t9nNxxkcmXlC6V2VJKXd6bSUwoH07Hp/c3NTxm1h7v2WVsF/hFoEiAvUmHPBbktoyznNtVbPuUyOeFrqFnISNGkHazHIMO2ur2/nm2d52ihANgUSHCbcnZ1fXgrQR195/dV7DyRxKeXq7vnV1YUAjqkMmCIQJD3bPpY0ZAAI1zCj8MLJ3MwgTwmFnj57bygFhTGMENG0Ln3YpjIOvdcwTYl6X80LVJCBkDAHgrpxZkQEK2aGyI7ALECo2r1qTudqkRKVyF515JSQwc0AxmFo3frzA1HioBe5kZmDACmFVnDo2iHAvbO3QAAGztAaANgAHoQAkLM07d3WfLd1dEYiZL2nkkKBALTrzc0NAIwyUMrE2bq3vgQAkY8lN6/hANHdXEGnnJkIvKcMIkxY+3KDAVqPzhhmt7e3AFBKWVPJkIggzHRFQP8Ojm+HN61qnTXh9f33rxMwZKTnt/vPf+mLDfBiunjv0Vsj4oPt+X5/q6qBvrQqOa2WGHXF2ZjktTuXgjIfbs/vXX70Ax+iWD7w8svplQfDK69AHj50efHaR974wme/8Nmf+7Wl47vvvvveo2f3X77qpivKygMZXBgDHIM+eDa8evb6WshqwIhQANAd4v17A5Kq9d7NnDuWPEoCXoFZ79fF/wk8SP4tDfb7Sl0m6qYYAgIWUbUDYJryfDLONI1jmItQuM51QfDCZN7rclp5AhreNQJciMyttcac3N0dW1uQPKUUocHhAR3UXNV7gJVUEDHnLIxIXtVUe7IYSjIARBKhyRMSAaGZnQ6LmcqQgTwg0NEtkghiFhRIAgDuPoEAgEOYdbRg5oToiGAAQAjobuwQuEK2GiAhOSEmWnWwK0OG17MDDqsH2ADNwdXNFXX1LruZc3ADtfCCSESSqLcZzN1dHdZ1Gjl2Xbiv7n/30EAAfuFDO9VbyxkD0GNNLxCmCO/avDsjMVLXjhiURFWvj42SUMqM1HqzAAoIDNUG4EyAIBgchmqu1pgSUCAiMIIFwopYhZXYxQCJAZIkRkfoyi9stxBJkIqYd0Xz0OouXAA2zE7SAOthbsO4NdstgRZW3BmBd9PSWquHnrbD7qLpkliE3KobGCdZrBuLsQCx1Q7oHguAFcpzX4Zpau1ASsVRIdI0cMSxVi4ZLBeAAhqgTjG7GocwEyELWVtag1aVhoHySJLUHVg6QgdUiDxN6P3J08d3zgeIPp+WcTOphQJuhk1EqFhry4gGDjUsp8iTjOPICzbrzS3qstvtBjojIskFybsbBhAgeoB5nxdBQo8gIsCmTgFMJSIYZJMn71aYltNxLGk+LsxlHMd5cRHpapIyoFbrrbVcEjI2bafTabPZqCrzAIi993ghWyDwCPWSx9C2tC6laHcDzDkRwny4WY7Xw9kIvmitwEDOYVGSAxMjdquODCkbFc/jeYC6q3fmYO4BiEy57J4fbq2e5tDX3njj3oP7T59fv/6hjw7DdHH1apnGe1d3rs7OCrIu88W9y1kX0Hb97GkG4WH79OZwmvvJ9OvvvivNl1AL86EkISLTeV6A8NRPAYKy+kYsE/buQ0oE7KrIxCVBWO89qpVSAJCQe1cnU4gWPaUcYYDsFCDSe+d1D1gIQQ7aepgbA7r1Pqbs1gnQwBlZGBMm5tS6Nu1G0bymlMZxSJEDEcNIACmSBiRcXDXAE3vr2FsCoUAz0KYoyU1UNaU0Ly1JF5S6mNYYSxHJiSEiyBAQAt2jO3oqCckpbMqpz1UI0jAwciLCIFX31g192OTNhodC1mso3zm/aPMSBt0aryTKVd/7O62+6/FNesW3bLT+IlH1fa11gPPTp89uluPm8upg86LL6fYw3bmXc67aEVhSKqXM85GImFNGy4SJYhAaymaej8+fPXn1zsX4yt3y4ddOS5+6oUfK/Mkf+NTlK3f/1l//23PDr3zxK3fvXQlz75U5RURIAoBwx7ACMJKszI3NmiHsCms+BEtCIICcs+bcu6lbRPTwQAq3TPw/qmjtH3tEhKkJs60CJgQNgHDTLkjeuiDObQFw5NUXG633XIq7315fW+vuLnlordXekcnDUyqurl299hBLFEmAWcy1hxtZYCBya4uIEJFjhAPlgSmQ00mViIHRVbuZLg4ARJRS6qqIqAHmRsDWNbEgDd49whSj91YcS8o9DAEkEN08MNTWRck6QnFf9cYGaAHqgQBsWDSU4QWPKiDUKiIboQeboQdAABgROkaEoxtCYDC72mJ1RYUbqCBxTrTmeLhhsFczdUqCQhFi4R6AGEgICY2UHYCBgQnJ0Ze+LO5DHoWyqwWvWZEG6ChrdKUzJxd6QVVLyCiIQQShgSGM4twDLGdCjkUbEAeFBK+OLWYCt4SQ0YGMkNSDfE1eIwdDUCRbwZyQCe3UHQEwRxAYeCNsAC3D6CiO3ZsrJSWwYQI/5ITTZjgeew9wzlhKZ1Qh00M07UoD5cA25dR7M+sWpQwjIHGS7XajvXPrRdLhqQOl6joOw5RlOT4N0DQO81E5IgFgKHsws6oxZaCRuTSzuS5EgASLmxJp7YUs+vz48aMi6ezs4v79l8yxWnAPaz1vUrgg8DSVJVqdaynldn+MiKoWmNSpG2lrzGDeuhsA5MTMHBHtOKv2zW5ba6WUSXgVSCfKdal9P0/TVCQNo9zsryFwnBIhubt2RwI1RQzDIGLJGQjVHSOa9tSamQkLAkoeOFFvc2uL1oYeGRO5JPHj/nBxcXF7exDmw/H5w7e+lqj2Vr3NmUQNerNSUoQtdcZMIak5QFA7LuoEwsKQOEiAMJipGS6njpD+yB/9kx/9yBsoaRjHMo0ANI1bh9JqzZI2km+fP0P0R48ePTtcn/b7m6fPfGntuLS5vfP0aTk729dFIkyKEDghttbYgdyHPABy82BEJuneGehsGrXaZtxY+GLLsiwYvWQuaWq10srsBgtwhTB0sGZmOW2RkHOqERqBYIkoMdZuMuY1NkBwxbC1lLm5tbkBUM6o4B3dMwJRogE8rClECFMRANGmCwJnLkuv4LgZx24UXXNKpgHEFJxwAIeAJJgVeJn3wyCZS0is4WGcmDHCltarcwNyFEw51zqHS2jupwUce9cW1kEzMyEEwDRtW2taF6aRGMENPCICCaxZShmRzIzWbKbfaXX59vYX4wWR8tu+oCMSIvbZHj18vJl2c6+MTGPxpT28vjnfbShndau9zYdDScM4DhEn8yPn5OandkDggrHf37w93371y5//6Pf/3u/4kR+2QoYEXbG211598KP/3B/5qZ/6zOc//4VPfPJjF3d2OaUAUA9BighEYQIHeIFlYELrL4BWTIC4ikYpogcJEydWoIggXDsrgf+p4BvoEGviBX3zB0BEogyoiORuWRIB7o/He9vzkz3xMIjIIkywLKelLTnJdhqPp0NrdSp3d+Og9aitl5RnN0wSfe2sIRFuysA5rTR1td56R16JH+HuCk4EQODq61WjWagRkrSup9NBVRFZ1cNhGCbh7Nb7Ag6OiCgS4b17RHjrCE6CoKbhxO4Qc5t5vTYKAIzEHORuhsAMKQAALKBjGGFCIDMDA5Icrm7hbh7OHB6Th7uv8t3E4OtffKeA4JXrjqlEBJiukkdminBVB4AwYKSBB01kws7oZt0UwBkRAiTlcEMGRtF1NMwiw26EAMDakZGHlDwWd6UE23Gr6ogIYegmIgBg7iwsuHbehk6YCQVBYtU5qVUKBmQjDEfEQHNwCHTAQFxTTRCEIwKICUjVIyBshb7hENvuHIBinJ0hSpFyOOogqWmbNn3fTizDzXIkvv/g7INvPn9cdNmNOwCoi7nJqRsQNaMcZYLc03Ds9bmxRiaApRIBmkXebBNk89MIy7YF7fT++bYery2Oh3YbIwYUKiUFsttEbL0CRB6HeenjONbVaaO+lYKIYy4EqRuwmxIMeXz05Ljb7V6/urrY3XUsT54/3T24MgWqtJFNt5htyZKm8dzM3EJEdttSa1ULpNyto1Apmdxba4mYibV1FJlbLaWo91LKPC8pZUlZO03TZK0XyWbajrWQgJuuC0ugkgYzhwDDSLksvaFjbQoZBGk7bcGjpKJNzQyFjBwQSxmLJLKVwYdCaXuemnEersap/OKv/OJ+v3frQy7Ig1ZIUpb5UCg3cDdNNFBKtVYiyNmzeWcMCI4oq1kAxTva4h/5wIc//R3fuzs/H8fR3VNKwzA8f3ZT9aS9v/PwcT3NdV6ObfnNt97cz6fNZkMAaJqYUkkxRKN5usiSWQKxqkYEM2bJZOFLm6ZNdFWzVIZaayY+HvfCwzRNN/trCihMTUNVc0pDGW/2N8yryBGFGVYBMKKqYxiIUwAieZivWaBOzBRmZh4YZl2SEGEGZmaF0DViPaNwAgBwiVBXWMtfYmw6h7YKk3eMZoSM5KRgjrUbA+ecAldsPUC37nVIKdGwzHXYDFkEHcKjnuazszMgBySj6KCBZmiAkISFi0hnydU0y8BEgNIVyrgNwK46TGfvvvNkN16d3bl72NfIK+eS4QX8+QVo8HdcXX5L8V7fXK0jRBSBRAgAt6fjqbazzfYspzxkfXasObZ5OM4HKqmMW5BeD6dl1pxzU2BK+6UPHpuU0GzImTzGafPBN16vN7dv/sJnX/7u7/JShnE0s5P31z786p9+8Gd+7G//3Z/7hV/6Y3/iD3bViBAZ+MWK98UEUZgi0D0YJV4gn9cQQoOVh0UQ4QDEK/4qwCMwDOj/L8j5f6hj9c/APzL9djdDWdOraDku8+380uW9+fn1srT79+8i4vGwx0xACAQs0rSflgUBems319cJeSwpImpJAGAeCDCWodfWzFHdVQ2CRZIIIFqoWbgHp2QRvRsDmkMKWZaTdhgS16q9BwADCSE6k0N+dnsIt9SdCZAJXdFjWRYIRYyEkIwS0eK+7z3A8jD23t1sNSmdlgWAWGRMHEQY6B4egOsWB9jAKNg9zMAUkNAAPMAhgjDcVz1wgFIYQHAgC6lDUyXiknPgOntvgKjd3D1L8XAzgJCZGQKs2xrqkzExEQXkSL1XwCBiCnFwUwhEYoAgBsTwXpsICpK25qaEyExmhubCCITdDdVBYn0lOoFxV5iDW1MAgAQkxE4SIJ3QkDYwBiiAqSmSmLkCWmB4UCBAYESRklKp2lUdwBIhMrCpm7ETEkf3IyybPB6OWM4+/nzpSuF69e6Tzfa177l5/h4IEKhPjpCHTZk2510mWDOCM20zURIqKZCn83v1MJc0lN3u+f56V9JLm+FOkbe++muxf/rw4U9vpixlcz3fTuPWowgZGoE5qTNTzB17QAoChR6jxThuEDFTRhAyPtsMa9TK/nDANP7yr35tGn/9U9/16VeuHpxtz679oNXn05I3RQBg8du+n6aJUQi4no5S8jwfTxjbs+3xePTZVufY6ow/nZbd+Xaib6W3DSkTRVtOTUFQMFBVVZUFUim1zrECCtyHktGRkS2cEKcytdbCAJ3VVJh7qxFBOSGwjOm4HL0rJRFMwtjV9qe5TJtAbh5E6cnNftpdvvvue9vdBUStS62n2G23d87vgXg99l2emLMZNDsyoZAKxvnVWT0s3vrAxcEAmIuMQ3rp7qtXmztj2T59/PT6+no+HgDo4dvv7JfDs+c3KNx7D3QRGRm35xeHwykANrvp2E7L0jVU90vcmiQsS1+QWAqD2Wmepfv5uLl9fis8XJ1fPbx5modEJAB9sX572B8OhzJkYeEySuLlOM/HZTsUAqTAVT9Kq3tfTSjMTbqXIGd2B3LgCAcWd/R1yIACuBsn1T4f5rRJAG5hlNDNdWkARJiFKGAFC5ujEUDJ2Ti7OkgSFGsWCLmUDg5aw9RXKqS5YJgjuJZMptHawRQyZyFOGU1PHrY2mW5uodi7GzHHmg11PB4x5TxN/P48WC0Y1rnImNIxkE9zO99dEEZ0ICJzwyCi1Wbyu60Q37z9vq+J1me5mQFAIHz5a19trUnQSMMI6Zg2T+rN3YvdsB3meX7+/Pmr919aFCD5zWGPEQTkqoDGna42Z1eXF5T9pQ+9cnn/Yru5UEy19TxNi3V0HElaa3kY/oU/86Of+czP/+Iv/uqnv/e7icAsAu0FimsNJgpHQqJw4AhwdAjgtZMIAABBMjdY+00EwHVKL+vKHN4HLf2uztc/yRG/zaXRSrElcAh3ZjaL4/60LYmCaq2ttYgQEcdAIkautXGESEqJkKirznWpjQXJMna37saAEajqvRkgD2Xb+uIOGODkro5IQy6nfnzfw5ZESs4jky99nmut2lMaSbg2Xfn+h+MCEDlLJhQId+82M7GHAqqUjOrRO5Egk3u4wunUUs6AaVkaAmbZAJKq7tsMKMgC4ISJQIgTs9TltC6OA8wBETBA1ALZAhHQw83DIQzcgBGcIhiQ8AUOTNex0Iv8EQMmYZZwUEd374szIyMIhHgk9OyMQWRARiiIL5Tx4t0sXChyThBh5ok5EQFSEu4uHiEsYxmcByKIiCwJX+CunQdQQA1diardXZCIGIApqHkErrrJBEjgrYevA4lwBKCwCDIiCV8RG8yB6N75BBQQTeFk2KRI7Qcctnemiz7L8bS999F/6t/8N/+tp7nfup5vrw4LEIRkg6glDVEZFFoDROgSHYMQuUY/mBvPXaM0tcZI21Tm/Tylwmg3t88//uCHBjge9ezzv/S3P/qhV4cZ4eSUgCLIMYBZhs2Q9vt94RKm08haGzjo6SCSu9u02xbk5XC0wDRux82D0xLW4N//9/7SWP7fH//YJ77n+773E9/3vdt7dx89fpjdyGwad0s9TgPv9yfJealLYjk7L8uyIG0221FVl2VJKS1da63C0kwd4VSXsZRlrmaG4KUwDtSbCYmaIqOkbOHdI+UcazCJrazQwIB6qpIHDEqUrLcsCd0QMUuiwsf5ZEsPtZwzE5ua9l615yEFxXE5dZPe95dn2298/ev37tzfH56pe4JRGOriPRZImLGM49YAnRhyUe/WFk6oz64HLEkmImnoTtzM57o8P+7/4c/8rJk/eveh9m6mvfeUUnRo3nYX51AQ0SBsPhymkmNeUkr7p6cQen57c3FxQUZhIFqtDJNDv7m5AdftOBZK+9Nx3GyZy+3xsNnuAA3cEThP46m2cbMdclnqsS6LZkcZzq/O9HAKCDUDDiFChCziASTUOyEGITsAEAYgQ0KgcCQE5oQYprEsTVs3lKX76pImQo9AZObElMFcXXvvKSMiAmUBPKh5V1YAXMODHBOxQA/vvSFiyVkQhSkc1GuffTdObrDYgoAYQSy1LURAJBRUJAUJIAOEABr6ZltMl2Eo64KhlHEFhXsoo7RW13xNd1PvZ5vzm5vbi3tnFkovIIv/fVaUb59Ir8hTh0DAubbT6USYnr73+MH9u3evLuN49DZXn121hD3++tcGoP1+v704P7/cHg83N4frcRxZaErp5ZdffukTH873zhiMxw1TSkTmkDgxQ1RjSRFmiL/3B7/vC1/40jfeefe1l1/y0AALZEJilDB3VwzENdQVgcPhfeJVBEYE8yqVhQgIt4ggQPyWTetbeqjf8mD/+zqBv+0pRaT1CbS+GWCMAvSCo/D48VPixJKWtj+/vDicjkuteRzmempLB4A1Bq2Ucri53U4TlyEozDonctVQTUymvj8eKSgNY5leSJcBnJlyYkVa+lKXjojMBCwRwJTUEJA9GJACqGtgeKAgkLmb4lASM3n0Gqa2uqEcwhOlFGjgioYUjDIlMTJ3VO0sPG226DHPs1kvpSghEBpiBKkbBZgpoCorBjmgIDFjBCMAWDQ1IowI9woObsoEiCyBaoaMwsnfFy1IYgxeJ2JMYmaIwpLUfVDNyEwKYQjBHhgeztVDhFCgmzYLwESMhbmwqGqtNScat+OaXzhtBkGu2j0i5wzhodZaIyQWNI0luociOmNIZHFx7A4ASN2AkKJ7IgSA7o0CkMAAiYXAmWkdg0cgM1qEmaG7BxBKlit3C28BGFQwZYIAksOxZoy7F7sv/dpPfObHP/Xpf/5f3ve43bdnB8pbOZ5wX1Ght9qFS53bLoq7d52TYE6sdQmwZVmw4WazQbfnbS/VZu4hOGsEm0D90O/9/uf1G48ffuFcRrGGrcJq3yZygK7OK+IsEANFpJN1CCfn6GqNw/N2o4bqcDo2M7hzee8Hf+j+40fv/v2f/MyP/Tf/1Sd+z3f//j/+J37gh7/v3p3de++804yns3ys+9qOxJYL3+6vt9utu86nG1qF+q3lMhIzWxCzmiF4mztlBMfdbjcv+xa2dimpJGtu7s8P16nkPIyHZc6SypDBw11bX7PXwlpPmVe8EQvWakQEFKpKROouzGGg7kKCWY69m9bwVoYJmm434vOzd778Bd0fzsrUGzPzkOS9Z89lGIkFhZr3bsYpRRgTipRRhBRyygR8rEvHkDLkacQhn2z+2V/9uYFLkSKMIgTheRIMGijN7RgArS9DLiXleZ5FuLVlaXWYtncvr9QtsSCGMKXj/liK3D27iuh9XpDx4upyqVW9DtP0bD4SYYogSU39cKp3zy7MgiElGbsrImvXLGPKYt4iTLGra5Zk7OCtag03E1EWYCJTR9hM5+Z96R0Qx5wdqauXcQISbUoYxGHWkDiPg3ZoTZkxp6JEwlz7sopUgkxEwIyIcuJaZ2tzggySknCt1cyExMxWgEtOmzBgosR5GCb0qLUlFrXZHZg5UXKMpar3cFEPG0rZ15qFxpw6ggiaq3bdbrdLr8JTzjIvx7IttS77vbz77rsX985iDfJ9kQj0O98B/5bj273FbkBEAY6Ar9x78PabD80sDeWkTdupQj2c5llPZ2dnxZMwYwtFzBh3z3c5e2a9GEtZDMCVYPvB126onlMOFg+IwCzc6gycOGfXLokVVAM+8V0f++Vf/nxr7Ts+8kEwjljD9ICCGHJQBDiC0vtBhBAAQIgMCK62nhCEWC3BALDSFX7bB/tNWfL/QDU4IhC/ffrtgL6uLbp2kYyAT58/35zt5tqr9qhVEpVSaq/aPaeEmOu8MGFTY+ZuVrbT4cltznJsSwZKxKmUBdphOeU8qKG1lplTyeDW+qLaAz3nTAS9GwCtyOEIPBwOtXoQm3kqWT0CKEleau/dSimZSV01OAgjIQUwIBmAM3VyFMsQYclqNFPtLCULQ2hfbsGcDIREwHX92ybhEA7gCEFKCIqdIAGoSAJDM2cUXFe83wpZXrtYSjmJYoA78prUQoQkawYfUQCnxMzLUoOZmdx9FHFvbpWwJxYpOZxUHQg6KrJ3duSEgMvSwrH1yDkPuwEZGgURB8vJ4Jwpp8HC3Q0imAgRVZVJEGn9msGWEhMligJp1vAe4AElD4CRQaB7pEAARO6AQBaG5C5giNCsBWUhEmZ0ACcE7r2Qz8wENGqwd5pGOSw3aQu9HodNeYnSj/+1v7pc/T6499LhyXV59Wr/fH9Ta96eAeflVAUqgetuOXPeHmRwadXVZUh5M5YyTsuybPK5Wtuc0Zi8tZtXrs6Op+baoky/74/80b/+l36dfbkrkbyCbBXCGXvz43w6G4pa4yxL7TxkBaCckJmR3J0AuypRTsQgUk9tPhzN4g//8R/93/2F/+N//rf+2le/+pt/+d/9f/z0j3/0z/0b//IbH3vjeOhk0FpLQ5FSjod5s9mdlo6Y7t67fPb8mlOSLsdlZkolJXNPzEycWQjYTGut1TQPKUEGAAsHwmHa3BwPFMkBQJIh1d4JfH1SEqVSSu/r1stEqKuq97EMy7J44LiZonYPMDNiRsTWl3BMRTQstKPXKeV3vvHWgJAxoik7LkvjBKkMF3fvPt8ffMvaNU9M4MtxvynjUDKaVxmXiMQkwwuBN2Xcbc8RgyglJO8tl/G0nABgbqcnt48YcLe97N0iAMukBuBlund+3O9346ZbBwpd6ciZxd3Pt7taF1saYgzj5ng8BmsAKfoyPxvyAACqFuGFEp1tD6f9yGkcRzc4zU2KE5Hg0jp7Lsylnw5DilYrAER0B5+mtD/OBROAdFNMqfVTrXOYTdNk2oA8MKov8xzjsOlgiAKGidhr71qlkJufFhuGwYAdSaQQMdJTtMiFUL3Oyrks2udllmFkTsKsXachMyBxgaBm1rvnxGbhXd19yMWdCIET9XBH0BYUKQ8CiOJye3so2y2TnU6HXRkDw3K4R7dKGCxR6+yRIfG0nZbldDrtwxUDzENkdXH8I43dP/nxrbh7XwmzuKqxYo1eNIrXX7/3C5+Ht9578sGXvvN0qkLMZZjr7MTW+oB27+50dbb90pf2OcGk87Edz8dRj8ftmO/dHc6mWE777cXdCA1DcGSiCEx5AAAPJQkA16pEEgDf8bGPfvbzn98+v/Py5dbCA52AABAtcMWkYXZQIsJGkGHGnsDZyNEREVYDDKOZAgURgq/nh76t0DoAEBCsStsXacFgGAYmL5CELxBaayf9oqbit/7/xwG2Vos2rSlEBBAIa+kBRgGoxLkqjAQ1hpvjzflua5ndWBg7aPcFKUxXbRH2IFvTNAHmeqhWM6Uk+dTqSOxLQ7UybZpGMEDri1gZkjWHIIAgEEFxcwZ3N07ZKUjIXVqtAiFl08wBjFA8EJGQxQIAyB0cydFoRYcEhRPlMFOICA3rkLC4ueQtvc/fWJYjMxv0QQqySDRENPXW2mYc1ZopmdlAFNaZ2eZWZBQS10AHpByqa8BVLoO7L6dTIC1hiAxAwzCelhkczJXAU0qBgcDNbNzsltata2Eee2XCUCdAbz05IyVzsMyN0QW93xT23ubLMgyEywlVfRhkaTMYTtOg3lW16sSM4d7ashmHWmewnpnNoi4zImQWQ7SlE2IhmDVcLRFNLG0+CIpCRaaltbPNxq2ye1uWJMIQEF5yQkQkiWBzT5wGQWY6+CNpRSwJcIXFEizOmAdQuuJtneMqX9TaPveZ/+en/8U/9+GPPnjz4Vdfe/UDu0r744msv3a+IXV2kIC5LZqwC6aOqdMAaT6eKN1M3g9P3748O7dm7z69pUTPT9ZPjZbnm1rv7KZPXb7x5NFvnF1u9rfPNwkLYAs7kA53dt5UDbe73XBu1bQaNIpxzM+e3d7bXR3RwFo/7O+e32vzfkyDZMeU//O/9df+1X/tf/Wv/Rv/+ny4/gc/8WN/8S/95X/733n+b/2f/y8vXZ3PqpI28rPypQABAABJREFUvek8R54u1KMuNQ/pcASz5GEovJu2WjXCShGt2tbUZ45NGo+3szghQmt7SlJKmQ9Hcb8at7V217YbUtfqYKnkRTWX4qaIjAFJZD4tOecIc9W0FTV0YNWWkqRU9vt9r23dOSSRlBh6RwdAq3a7nx/u92+J7Ft1jMIobkxANzfHMpbsIMPGPcLs7pBHyV69zpq5efQ8yPEQlEcWfHa4LWdLYcHgk7GrH6GJsHB06Be7nWIg+xgujIinILs43+7fu6nHY0rFqy71xMwhcqwqMoj2noQEMGepvXmohmJiApry0HsHjzKk2vvSmuQYCrV68qWRCGX0aMIZ3N0ClFutZBoGCbGU0vp8Os41IItEt5R5KsXdwRtgYGLQ5gCullISkSRCYUVY3RU78QoxBERkEX8hFtUypHk5RIRTE+QkmRANERUTJFAfjFU1c5KUGFB7RZJccoTU2o69juNYzd1s7rNQogDJzECnwyx5oFSYOOdce5A01d60JsmSuHvvvZdS1kUgM06bYVnQozlYIDx69BiJvHeRrOrrOup32b99WwONEcFI5oa0CvMYA9I4/rM/+qf+w//kr+6fPRnLiBhAcefOnefXj9pyJDMe5TtffTm15WtvvlsPN+cDhQUNWQBsWS7PdzkhoEVQAAKtHsk1J8ERCABMvZQCQN18GvPHP/7xx48f39ltSYiA3A0giMk8ulMCkETaF0KESBnRtAsVorRiiR07ARHzqukl8v/2I33/HwcEIPhaeQAJJL6Z4vD+mCF+i2c6vkUv+W2PF3eOb8X7xPrt1j00JQcMgkBYfVwrfcLUI8txPhE6InZtXSOJrEE3S3jtbTnVkgbwQMTM4gQdwUE4kAEUwIXCeyxG4YBuLwKUbL2/ood5N6UViEEUHO6+oleQoLXaTFd930HXfGtlCAoDgMUCgNnCITQii7j12SvnHNEi1vg8CemcMVFCt6pVw3EVySUK6BGm1ogAEdU0ItQcost6ggMJzaOHd8lJ0ir7RxHwCGEy61qt13kY8nYzae+hXpceEcxJ41RIAKO3+YjGhMiYUw7H4EQoSzQE9I7hBFhOYJFQnNopynmx08G8IYFBPD81AAGQEhUNMVytL4tr7y9SFtWzyGlZUknLMgd6YmndBBFCGZgixkytV3cnBgY3C0ZQW0pKEAERpQy1VlPlwt2rqntk8OhLzWO1rhnOTY1HcQxTbd293SwLbqaLtJOXzy9//Tf+7tt/j+Peh9jED+/C0jeUn713jVIKye31jTAQkav2+ZQISaBhU3S7ec6C1heryzSMrc+Y4fn++oI2L11t9zfv1tHvXsKDux+2Pm82w1neEofqMm6G8I7Rnf3YGwGXcQBhkPTs+vkn3/gOEbGuG8nedd7ftv1NGcLc22k5v9z9xf/gP/gL//u/8J0ffv1//r/4V4ez83/n3/uLP/vzP/Mv/HN/sqTi7r22MY/MsN8fmi6TDK5WcmrNlmWBMqTEvpKXOLnWpn2el/OJKdFm3JzmGYWHaay1YiaDaN5WIkXtyixCyMzDMBDRohVhnc/QMGREPBwWVe29I3ASUVUhPu5vhzxEisPhdrvd9tpUI6UkxHMzVXzz7WezotdMDOaudmztAJIQhGMIhevbp8Gcx6G2k+17ljRsJj4t3a0vvQXVYzekhopH4AEGZiaUaWRmBxuGMSdeWtW5hjs7VNPT8bjU/ihuEBEgBjdmhOy1q7WlqsqiR0YUktPhZFYkc5JSe0NKZpaEI5woIFQoHAP7nFIyVYMAwJTQDDAMhE0bOjPCdtrYPKu2Th2FLy4uFMM8zNSUIIIAmy7MXEqu2hmweUeLcCUeWmtlGgHdzZpaELgrYqjDZpwY8HSaN2mj3R1CYOdqHiSYWCAAhJCikSl154xIpOG1AhCeFjUIJJmro4i7lrQhj+PpBOb707zZjLWHojXtbgvqUSE4ZYeodYYUPUkgsKB5h6DaNVyYmRI8u70ZN7uq1tR8pQ0ArNg/gN+tDuu3VA5ERAf8VuZh1OpDSn/2f/bP/qX/1390ALq6OG/amRDJB+IzoNEC58N3vP7g8nL31TffOc037dTO8tbqsru6tHkBMwiPldLyfgV80UGig5PIiyhBQaqt76aSHjxwMTdPLOvzGtb4OwkAN28iYusvxCGxwAvVjpEgcQLwCMMIAQvM3/4Y36+j1Ajo/ZPntK5qkfxb2cLfPtv/LXP+/y586UAg4G8ugAFXOzJpUIsgQg2/3R9PpyWn1M3NLFAiLGVWVXc1CyGuSzsuJx7HSCK5oMuY+Xg4aG+e2RGFhDvmgEDCwuSkvXJiNIhQAkCgnLN1Aw9DD3d300CFWJkbZp0oIYWGAjgJu3tHLSQUWJjWHPLuDoSJ06ktEVEwSU7VegxEFlR4xYRIQY2GBq4vdHwGsUL53J0Z2T0QgYEAhzKEYThjECIyxnK4yVmCyV3nQ1fVJIKrqI3d2szMm8KAXpejmQUnGJgQWWRZFvSGvha35O5Awnl0h0UVorVQNcsiJefowi7uvrd2fvf80dOnuyl7QC6Dk93uTzlNhNZUMye3GtBOs0bE+XR5PB5b5yFl1y6TDJlE+Hg8WsSWhQN6qwarU847NAIGtEBb6pKlqC5FppRLaw0DNpuNjOVmvx+mtNtsBLCeZCip8Jm3Ye5WzrKmrofb6Szv5O4WxwRD99jb00/dK/HVf3B69wtLsyXL9f4wTdP986unj5+lcbN11DZvxmmQ1I7HgF42ueIynm3ePDweMu+GFHLakigdpyldx/MrT8WljXP1g0ys2lrvJafYwdJuS6IS3o7awfN22vLQoY9pnA/HaVfy9mJAvN1fb852GRJm/uT3fPpXf+WXfvOrb9598JqUs+AB083f+C//s+/5xCf+wO/74e/85Mc/9JEPaCxLP9Zlzf5aVJEIUsZcJmY87Z+JECU5241uDVG6eq11LAOLqBkx3ZwOCdPc26nXcE0xHOqxlCJFmqmCInLOwowWcJxPqm3IIyK4mptxSWawFmZVVjcWdoPjYcYtr/kizMxJam9pICQO12YdaVDjh09Os8VUNha12g0kReicRtXFqw5lUmEcBiPQcEwhE7U47hKahYKlzaZXT5zO8o4FMEjnptFw8DSOav3mppnZ0ioib8ZtGNTWaqgMY0RoKALul1ksMMjAWXIREcrmGhVME2ivY9k48ZiGDh7Q1Dwl4XBtPedMBhAO5mOZALl2E5JMrF0rBUhCAmu1NXfQPBWjdZkUt8djHiZgPnWL1qdxbE7MAsENNDHjMAASEB3VFdwghFLwSsGCJMWsg7k3jKDQvBzhtLft9mxVwTTwGta1BkbOWbVFrUBMzWrrIjlcAmWeq4hwkub5vefPNptxGOFwfbPZbIZhOFw/PbXWzHEYcgJU9Nqn7aYbyFikDKfDCc23Z7ve+1gyM3cL5jSU8uTZk+35XZIxGaUyENGqHSBCVQVw5vRPWmi/ra68Xx7WuvLCkYbrEy7CISJltt4uNuP/+l/5sz/2Ez8+z7M6tO5D2m5Ah8P+6mw393p1/96HX7+/vbO9fnr91pe/TvvTxTRMHPP+egMAwYYQ+KKrfvHdX8BS3c0CiBl7aGZxj3FIrbtIAgC1IDAMhZXLwQOFdA1FtO4DUXAoVsIBiNEUweFFcCOAZHB8f9K+RqCtqigQCPIX1y+xtuUOYBDyjyyG/zFit29+6L/t5gJ4Ec30zXd+81PWmx0MEQyipDJK7uGcqPeGGGa6LHMElJTNooybY++HVonT4TRPiZel114BnIiBCNxDDRyJANAJw6wHrgBGhwAkMjN1q9qbGzKGQ2va1SEyAQWCQwA6MjHDGkWOkBw4XKspIQQiBKc81MXDU865dcf1ikqREvdupuAeORc0ZwazIMA0sJkjMDhGRGI2yMjYvQG4JMIkWhE8EgMh8FCQCRANMAh5TMyMYXOtiVjKiGSB0Ho3w5QSl6SqdWnMdDaNYLrUOYmc9JRkcMDeDYEkZRTqcCCPelggY8lnoJ1IVHY3t7C9eA1wf9hfjwBjoQ2ngSW8V45pIzfPr5Fi2KalVio4yCYpM+DmPB9PN9tNTpnGjNvtdkQiktqbI3S3PI1HrQ6wGwfz3uty5+zqdDMT5M20Synf7G8xSTCdXV3szjZk4a0X4VM7IgyA4zZcuVEZ80VJeRAQn+tWimKQ2qv53E7R6TYN26AGO3Y/sB9ef6XU5UlKabPZnE63gZwukjt71P3+Zmjz7/tQOR0OmyEGHufj7Qnr2Sbv0jiQFJLoYjaQII1Fg2uPejoGK7uh4m48a2hL04ySEnGDy/EcDVVjA5KHCdSJHMOePnnvE5/4BJI8fHY7jtNcby6vdu88fLsdZ+H8tW98LXH60Ac+dHF5r87mrlOZ9oeby/Oz9/bXvffdbjeO7G5uWtL0fL9PeWKWcRzdFQF5xRIFdLMwB+RU4LgcPaKHLYe9mQ3DJEm09dOyDGMppbw/OyR33W0vAf1wOPE6G13VB0ymNm4mRJw2m9PptLSZc5rnWZA4k7WGAMNm+86j6yePr+e6jKMAtnAHAnU0tbooRN5kScQIBQwGCEFLHedj7ZmYxYMwQJeq1NFSCHkFJsg5aV0O3m2FTAWKiDY7PL8pLBGGAq5t6c2JAcC1J5S02svDwkC6zh5BaZBS5lND11obADEKQjaKADPHCExG1IMotx5csiqEmmlwEmxOGQk9TIeSGMDdQlLvi3OuqiAJU1pmDWCSdFyMcCLmrmiawoFIau+C0CEBpKUCkbtSKAKAcEKQ0+HUkyem5WhHOHY3rYfQcIS5L4YRFDkn7H2/P6SIPIxAfZ5npi48cGIFPjUbBIKwAdTTXiok4mfHfemZZNWPsqod5wNH2uShN3CO4/XxPI8XV3fEQbured4N1mzMk2A+Hvfn53ckbw8ni94fPXwML3RSAC+aYPldi7C+uRz9Fg7r278moQM5o19d7v7UH//jf/Nv/+3jzQySUsp+fM6Q7r708uWHXir3tuHL/enB/Q+8vtls3v7sZ6csZ5eDDajaxDQEAQkAkd6n4kPEi5QVI0RgwAAWDFPXEOeE0D0CDJnjhUYXrEGQOAGwD0ICYObIWX0mZjWKkMKMARQBav5tsLAXbC8IRDJwJ+JV5wW6yrnWDID3Qw6/bfWL/z+73nVr/u0f/W9X6xfLY6A1gBYJtXtKQpwEkMPDOoJrbzmxaafV64+59YWZHbirK8bV3TtRl64zD6KqiIjm1kzNBSXA0VC7hrlhJ6FV0B4RSzuxFENYle1hsfqUECIQmNkRwowI3GFNIBZEBkRmBCSOMJMAdlDkXS4i6bYehpQHRotWa1OLlNbIUzBX5iyEGC7OboHr5UZA1e4IxLzqwmqdIcQbUlCQY2hiqfUkIkCMwa7RqxEgUdRl2RQx7WotlyFW1UwNIspFEMNdTZeSabsd6FiZoiNEUDCzsAwkZRTUqdwhzIbnz+eap/t3NhO7LMsCfPvaK6+SLUNgcsEgi9PCFcl3Z/l8NwHT9c2t5OIO03CuvT+4c/XOO984243mzVt1DUEiooIDcTq2JU8T1WXWJsOEYdPZeV00jeMoU2tq4Wfn57O25kbCiFjbqR+PkIoxpUxA3pYTIfYa3gCCgRNILK6L9WMELvPdzdkcfVN03OR5qeOYD/v91fkmcFjmtqXl4hKrWUcPgN1up3eTqyFyHkkg2OPlOw+699nq7vJsIfTWy8SFQdu89LbNpd/u63t1d3WmNi89PJuSeTIWJyimBglbb6UkCLNlKaUgHsdhM8+npv31j3zovf2vPr1+++r+A612/+qSIv+Nv/l3qtWLi93P/8yvfO2r75xtzz7xnR9jwg++/nJCzoS7sw0l0nYcx7F2qHVmxpzYHNrSHdsa0Ntq1+4pFWsdOXkoM+exIOI4Tq01f0ExcmIMxG4WyEycOLuRO7amJW8S4bEeObG7z/PclcZxPJ0O3FvO0hu5OwldX9++9PKrQ5LeahYKqyXL5W5TT09DoHl0BfcEkTXwVHWbfTHTeuwGDLi+pEqMp/nABK4BElEbl0GXGRMzMCEGOMh6DYwacJxPKehye6HLuofohXNzneejTJM5eMKOzu4jEXkQuKC7pESZPRwzmDslMjMONFASMQd0Z8q9u0AKSEihRl09ywgeoF7SgODdFg/NKQkSIoNpnZcQYOEybtTQWh/LlDkvfWFObEwBCGKtS87qgsw4GxApuK/5qEHdPFxRGbzYEoRdiGqdHZ0IujVDbOwtAIi6BiNiGjMVFA50KYgUDobYuKQgfrp/jxjzlJd6Urcy7Yac+0HzKL3XtbRd7C4E8um0SOC02VEYcYZg7cpJmBO5LK2ngbS1ImlflcTnw3y+LesScR09v/Dp/q4H0N9eLdb2d53GfBPxodpdjQdBiKnkf+mf/9M/+ZP/4Nd//TdOmDY9UvDXHj176ff+Htsg8wjLEs6vfOI7cyKdb8vZlneXLh7eKfL7xQgRcVUwY4CHp5TWQagIq7ZwTykF1wAREgRZY9MJtavn5ICDBxyPJ7LImMbN4AElRghwDgfooAERECwsa6QYBAAD+DcjFsMiiF6MaJ0ZbCXTOSIAATp+60Lkt5e5vVBjvX97lWvF6lgDCKD3UYzfWhtHhKOrxrxYSSnnsS11oUgsy75ORQZJi2oibuq9LRGoqqF23B8utuOz6+tBZF6WlBIxYRC2Dj0CyTkCI8wsnIVSykQQrUUECwhx7R0Iw2FVD+fM4Rrq6i9sP+GBCAiAHozE3AHWIAP3cPcGEWaiXdmkLjS3JeWdz7MIh9UVJeEGoRZhDhp1cbCJz117hDKLSO7dDAERJA0MMZQMIY5MwIkDwTq0qZTNOIa79iASwGEFHlmbz6ah9VMeLjdnZ12hN3fO3SOnsiYWh3chd9XXX7mHXBzKqYICqneNJokgc5Yr6i66Haj29CrLWNJY7iU9vmunt8mWUkYJVJ/RfDMOqi1vxrnVCBunAYkj4nS8fXDvwRtvvPHGGx+9uXm+zPuo/Xi7f3p73c1EZGW39aWjc7JiFat7oAgPECswxix0brX2RpIJpM0qlIbduUSY3mpb0jgRVQpJIOeby1ZR1ZHcoJeSABAVjsveKZSXMtzjIu52frm1cCbKw/i8Nuxh3TabDSdRja4gUoJZJG+GpPN+3OVsprd9kuJVSEb17mO2DIXKRjbH2mSzNEgy5iYLTxMEDk6D5KXWKKxZOnnelqX3i3sP5sMxpRKQRMpS3SjeeOOTv/K5X1kOxwJnJW9uj5bGexdn20T6xS/85hd/462m+19+9Zc34/Dqyy/98A99/9Wd81ISMy4utRtzudxdAvL+NJNjEgrKpt5b2263rhERh2PdlBFQ8jgsy1JrJeJaOwV49ySQU1nxzjkXi9C6mDqhmtkwDPV0jAimVNuRiMo4HedZUq5t4cwppVoX67qbNqfjHj2GlLXVd975zccPv345SgvW7r1R90hlA4FUgJFOtoAwUiBDONfW59oJQySxk7tanZGAqZupm0hi8wiXze6CBtnXeUjCeSLM7jF7lUEYctXeWh+GAYQCo7lWbaHagienIUiSTBbRT4tBAJCbZZHEzI7hFNEFIAAIvEcAg4IDs0KEkJTC4a3OlKkeTyRBGPv9jQSXUgqX7bg9tW6td69L85ImwdQWzTwghnVV9957rZWzmnvOw+FUe6gUCVw7SGqm4VhoZAgNW5OuDUKSOMS4GQ5tCQw1G8YJ1NBMwETYvAdCTuShAB4xa5ud8JX754fj7VDswcXFsixE5Oa78/FUj5zj6uwCG6BTTmUsQ20xjuPNs2f1+c0ogwBZBDFF0DorLUOpcerHw/G6vvTyBwcuiHjYL9tdXi1Iv8vS+00fzjcrcbwPNkDkiBfTGMGEQ+m9I8KagvbP/OHfj5l++hd/cXtxgS3efHj96bmNZxunjONZmNJwce9TlxBtf/14d+eub87IGIFfJBNhAPmL8fcLVrATESCu0Xsi0mrlUsKQCLUHYGBKC0BN8JX37Bc/9+aX33x6dXEJfSGUuTZMkgZ6/e72Ux+489F7aSvMhICgHYL92683VjsQACyAM/rJ2REGjA3ABEjwYqpKsDaL3yqc8M1oYcIX1fcFXzG+WaIj7P17OwJBOOCLDAB4//dFBN7oeAJiQMqJmALGMvWb24GLzmat1daIs2tPqaQsYP3udiqIiKwAw3ABEeAVAojQ0JDQ0A3UrNkazEMUZm5AxBSQmFutQIyGTETCiNFDm3UIZ5SIdXgGGk4ATNRBKcDVJIH3nrMQUc55txuBGLlsW5+Gcd7zblMkUe/LqqUnoO12S4DH00FVdzkDQKs6DoNwUrce4AiAbF7HzRgobgkhZQEkX6ITqICHGgUxZQNEYBIkjExwu3+WSgYUCj/bjlrVPBhFKDMGEHu0bqrVkLoCthr37r985/5d1YbR33vyhUePH1+e38GmH/iOj75dPvlLz47l8uXTN372O87vffojDzb9WTs2jZrSnIktYhzHpR/ffvsbVZsgnU4nIr6azsTiq1/8Gqfy6PF7iWlXCtMW4gShgeBm6BFuA5UpcQBsp40Jmtnp9hASY0m9exY2S0OZArm2ueviFMExlBKYmoVIGdLgHV2DiM7TtFdAEuttGpJ7d3N2Ou3jUTwDlou7d1KeWnUPJmIedCN5AMxAtVbilKYx56G228XbwKATX8831SydnT/VuH3y7GJzfrg9XtzZPDs+q+KzP9ucXfZxc1gAVBa/1dM8BA+G55M4AxOf5u6cTzd6c31zuY1Qy6Ao8uorr/daj9ft3v3L++ev3d5c826vVm9O7QTDdjPePHtv2vpQplTO59N8c3Nz/ezZ48eP7987355P2+2wu7iT02iKQG+bGSUah00gEsrFxdVuc7HMxyIcEWe7sbYlsK8ERxnGWrsEbrdnvWqgu3qYIxIQtrm6wzQMWbCUEuHmfbPdAAAG5Tw4cqt9t7sQIXdlhCkXkOzuc10iVpKHHffPTGfrm/AkhJnYo4OFQwhSKWVRa7o4WEppnaRJ5mma2mFGwSx5tuqgCyyDcBYG5G6aKHcTbAJRJGQapiD02qvQrLMgkbkQcypP97fDdkCPLMKcBoDBIQdKGKYkYD6ktWejMHDrgcIJau1MawYKYZYWsbQFIBkCEZGDADSvYWqkzXoaiClNaYyOS1OWNIxoSAD5Zn9tztW9HpepTN3n3ntihiCzwOBA0RArsT/OG0ngFqbWV0ZmMnYkqnVxliGPECuJR05LM8RU8vX+2chCaIXDvQ0CAQSSmEUVSilIcqptEDg/G+8Mcjzti9qUR4jU3Yck47SrXiEqG2VkNKUAIlFVFtlsz/M4QK2pJCJvVUsZ0WOZ9+GK1Le7qeupYHrrzbeunz/fbl82UxF5n131T1yJf1v3cCAgoLuvBqc1YweRENAcMGVXZaRwI6Qf+MHv+dW3fkNbUsrPHz/6+Z/+2T/wz/0hAwreIcwOiTcXDXR3/nKENo+BhhcMwohVIfV+WYI1lGMtwCtLCCJyKdUotAMDJpgx/YNf/dp/9dNfwenlp4/9yZIXuPhouT8mU7NnpxNTnh+evvqUv/j2YYf7O3n+gU8++PiHLpI009VSyu+PiWNdCbMMJ7NHvXW3c8YkPCEzYMcXPTLji74WIAKRPb6pG4v3lVr+/ghhvZRcJdUBQfFNt5J/U3kWYRGg0FIekMqTp/OTZzetaScg9lGmRGk5VSTAiO1mPFE1c9MFTTOh1SURUyrWHSyW4w0RrcZZAlD1Dm4RUqTNS3ajgFLGIYu2CuC7ceiG3qpQImL3viLP0ABWmHqAutEKrHYAhpxzYrlzuXPr46YYRMpDJrxtPY3bZT9vxk2/ukgc0FqiYRw36lCPLecMQIMkRPT5etpue61ZkpmHcw8AQvdczRlCXSMogpfmAY2mQTtYPw3EQuIGbmFh0UAYKAlECpMIJszamEi5iHr03hURXBF8miZmudnPiPDg6v7HPvKxXOTLX/zis+dPru6+lO9LWw4eu6NdvWXTn/u//ul7H/LnX/0jf/ff/fe//u6X78Vt9HHYyc2zmxGKxfLINOeU83A6nUxtN4yEWFAOTw/Pb97rHotaq/NumLbDmDacS2KG4O6kHAROQxpq760pU9HuZ2cX0C1cpeTMiTABSusGIalsAlqgpTjvyLXOu7NzNzPoXZWYTktrFg4xTUXrXOtxk7cbKftm3iCfD+88eg8R713duXl+s5s218+fVMnn42bf9fHT51gGc3j89PqC8OLenev9LQ88nk3H2srWWgdRePRkvxt2y4kTXmro+fbMTM7vX4509/n+9InvvOt0ev3yNTssCCZtSUVqnK7uXW7PNsMwPX9+88pLrzy4yu++8+g3vvTF2+e3d+5c3j6/vpjOuJva/PjZYTp7JY0XX/jNt3h5/sGX7h9PzWm+unv1+kuvXpxdvvfwna9/4xvXn308bsfd7t7V5YPTsaWUzDsKqLVcyjLjZtqe7bb3ri4//OFX79y5HDeD2bGqA4CqMtF22vaqh9sjOnBOkgpnPC7H3rvkhBHdW7SKyG2pZgoAx8OMxG4UCOMwHA4nAE1CrTY0n4YRAo0QQaJHx35z+0yEGAUAmDl06bURxzCMzbTOtSY2DEBNhAKYcwZH7D2LqHVFq6ieAiw0YjkdnDapTHfvfXBfa2ux3Z6haQ4Ar6VsNmV8fryNsJgVutdqu7Sdhp3dPlfvwhBqFtTDBENcgzmrKwH1biUPXdWtZmIhCQQgEKTa3ZmFgJmGYepLg6rERA5am4OnwI0KgKjS7B0ZS0K2bNrmett17uHhSdmPdd7mwQisY8kjMCIkiHCzAYhKwZghu4VzWp0n5oEhOOyGkjIZAOFQCjN7x977IMP5xQP1PgzbqjVvdx1xOc27TU6BmyTeas6QuSNKvXlORJfD6O7u2lUzs+0VRkqZuzWWtNgJqUPiGtMM1z0D6PHMzw3hVE/AuE3ZENyUEpGwtc4pgAjJwOLZ0+evvfbyGlW01q3fwRT6txUWhUf8Izosf79GuiN6IHEKc3D03rdl/DN/7M/89f/q78TheHZ58fy965/9sZ/6wR/9E6qNhXtouHIPMMZcMoeqkrwQi1kgBiMGUWCAx+oMDncnSYEEEOHBbL1WiCEQifvGx68/bB/+SHlpwN0u+QCpP3sg23a6vS95qc+Xs2E3Ta3RW336itoXnp/K3/2Jf/1f/P6P3h+jO4QaIQBJpDA09A3EXePLYg1Gsci0HDCdRwvIjChBYAHoQS80SitUw92RE7gzkIcTOsUKfCZERvKAiCBFJl+FXbEGLEbYeukdLSmfdmW6eTQsNwulQ5TJ99qsJvWAjWCZhu3xeDAzc4B+kgLXt4ctns1zL8qqLRUZp61bB49A5yRtqYTEIR6EyE21sACGajvNh1IKcXIIHsRBIay3udUFiFHWdQMzMihFYAR0VTcs0/jgzlVOtN8/TyJDouPxVocB3Wx/W7h0bRQAS7fDKeUNVo/5NBFC0woWCN0NoRyuK4crzo6+aJ82572b7I8FlKsMlJo3nsoBpQZOLaQ5nAA5TKCGulDznnNmtNC5ICClGtQNRLCxAhyzEAS75xnQS3rifbrtxJyn6bbXX/i1zz19+uz62bNxSkr3VfeG07C97Dh87e0vvP30jeF7Prb73vTJP/n7f+UvPswkE924z5thIzru51PrrbmNm20e1NtxGMbj9Un15vJyW3XenF9e3HkJoRQpb3zkjc/81H99c/Ps4mJcjnPOBWhoANetx4BL9dvb/dUwHg7XM/T70xW6fOPhs8vzc9Nlf3MQ4gcPHhxPe2Q86A4LqvrDx7dG5IHDMI55s5su2tP3toMg6ViuXnlpQtDCMC0z5PSFr7+d8sY7vvv137g829miPJWzix2q3nnt/kd/5NPl/JLz+ODug3R2P8Ln2+MA6eXzi0fvvvXu05vzu6/93u/6yEdefllPdlpu0xVHwcN+/rVf/OzxZvmTf/L3b6/OurbHz47HORPm0+ndn/lv/uHXvvr2d/2e7/1jf+IPg/iXvvL5EFCK9955+Piddx59/esP33vvjQ/+M5/88Ae+8bnP5Tl6DPVQYvq+f/l/+X/48jee/Kf/wf9939ru8ua4PFJu++V48/z245/+3o/+0A9txmnwoGsxgefzNbERKILt57l1e/r0qXq89e47X/nqlz/z0z/56e/+Pb/vR/6pq8urR0+fufrZ2flympd5Ro9NWXFj81j4+nBA5EAEs8CggMSr3YjSMKBHzjkCCchwP42yzBZBZMkUMKBXZkGmrNAx9evb67cfvl3V5skphrkvhjSOY3SNtmxL6eHuNRG3XtQ5kJxZwbRXYXaMAEIYvUKvDTI10FLAxK8PT9MwnJVC3nqdIzFTLHbabrdpcwEAB983VJvn5FCfXe8SdwgOKCyhBmay6nU11C1qa8ysHg4hOYWtWeW44tEp3D0SC0H0Oq/ORHCchty9dwMOCgRVdwQSCoq51gyGYLnwZlu6ce2KYIgmw4QdTroIiiN1t5SSQxDZmHHcbppVd0eSNYm09c6EkmVbxjCvMzKTCId2QBiEzf321DsiJXJAs+CUu0VXHVCQJAINUmHRbsz5WHsiLmXq3su0rUkr1KaNMHJiSdjc1VWMuAwA0Q6HU7ndDONigeCBRolW5eowjb5muZnLKLxa+sDXPvWftO7+44/fUo/xfco5BkHYOiUmYCRQAFX90J3LP/YH/8Av/eKvPX77nYePnzLwb/zML3zoR74/TCgICD2TApAGoJNwRLcX+mIEQgKMb5sNIxEFOoS5MSIhCtD13JHa2XAVQJvddjdsB4k06aN33qUi0+5qDr09Pi0suhz01vMrw7FJ45zvbMpuSvP3/K1fPv3pf2Z3kUAAzC0TqypSALOFlUwJcgsDMjIYBDgygwGiAzg4BFAgOZCHCa6gEoMIJMCAF9Gk5sAAAQ6A4LQS9g2JYG3x13V3kOELvIlw5mRp3LfWxvzyWNiWm3k+qGoeC5h2ra0tABSeiuwMK1pT55w2TOxhXlegm7lbRDjBGjQOppTJ3YdxwIiwcIKUs5ppD2dGknBnERFJJZNkZu5dfVWAh/tKEUEQSpthI5xN+zBMbels5A4lUEjUA7Rb9JQkIWx2W1y6zqcM6KqqsWglESQ0ZiLpCwzDVohIT2DC4WVovQe4au/jOC3L7dlmI2GwWCYYz6baewNP43BqNRAIlIgxOCUmkUzSqTJWF1BNoezATHnKWFsbcvZs42aSId3e7pny3fvDR974eOsn8dKaOInVZ/Xx1x8sux//t//z45f+aBs2b//Uz9+RtJ3k5vn10U+7gsvNcRpHthFQnj15LszWNrcdiJP1uZpL3iwLvPPONWE+221+7ud+djnFdryqx+PlxUuHpSnKknB230znpcCrOV9S6tPh8kOvPHzveUj+8Csf3Q7j2TDtyui1r1uYQAA645zuvfQAszh6GXOEVZ2//qWHL//+f/o7PvR6a/X29jrACOLv/fh/89WvfO35cX/sPQ0ndMwo+5vDO2+/LVP+1Xrank9XV1dX7zy+d+/+n/1X/tz3/+AP/O2f/PyXf+NrL91/adztPv/Ww9Pt8mu/9huvvXr8+Edf/+t/6+///Gd+4f79++f3dh3axcXFO28+/Omf+Ydvv73/1Ke++6/8J3/15mb+gd/7PSUfMG6/9I2HX//KW1/6zTe/8sUvH/bXv/LLP/M9n/745fn54dmzj3zkI5fbqyePr//q3/ibr75y//LB3Zub69MRP/HJH/7Ml9/++3/vM3/h//SjX/7Mj37xs//xhXCpfXn36Xd94oc+9MHvGO9f1W2a2/xg2I1HhywdXg4KRiBABWDJy7LsDwsi/frnPvvZX/6Fv/af/fVf/qVf+Zf+7L/ygQ995HC8PR33IrIcT9MwihAGVrXjcV9SBiIkWubZ1KZhCPe1VO1vDyJ5JbTPdTavw4C11pyzg61By4nIrCOAdctj3j8/9FMXymFIAaI4cDnVU68qJaMHRQhEICWKADQzh3BbjUA6TKOqpjKeTsuifdhtGdPSdUrAmRHBWgOCaciMgOYpCSiCYkRkHsoACYSIHj16xJEKxcDFtKt2QhRrhpkBknY3T5ILEM79NMka9YJuACwJGTMrw+lwtPBSirkhQkoZMUItiZAbs3goJGYIDW2tOVVKiSVnS22uhB5iBFDbgTltz4dSijUjEmRkFrfuYYnIlsokBKQO6ibMq4XU2YRSkUAksChZprEAuKqdb8/SkBdt3S0j8yhm1lpXdgSoralqxzW0BbuGC2rEjbZR1dwMgXIid8JotaKwEEH0MMyQxrFcbTYakIM5s2lnZ3eXIqs6ICJCDRGfP78+zcc1D+T9zKL/YZNuETFWSU5iAEcLDyAiZtrr8rFXXv7Ag5fffvjum7/5lSe/8fnP/uLnprPdBz716dpUDbAQRIwIGOAAgAZrxC0QgsCLTXNEmLkjInEiQAePCIMQ79P2PCG2ZpiiyQLa5+cHjX6WAKxeCDx89HY+k9pq6JEWrM+flfE8yKDa00MbGLSXv/Nr7aNn/fteL9vs4eaIgdSaI58yT7Z0IJacEVS1GgrRC0o+sazzcgAHQncnFATGAMcIQAiFcHyhgUYK8ABDAgRag/LWEQIhrqvlCIfgzKdFmfmVV3bE1pZAVF8W5rT0+bQcw5u7piToosZa3T3cY55nd4dAcK99SQk9PCKAIpgkJ4JM4M0Deu+9a18YYSylbKfj/tS0MzIw9N6JqKt2N1Zdgw1UXzxqZGZmigCLNtuJaklIJCCSRBBkXRxxeMpZVTNz9IVSQjTHyOPk7mG6yRkSEtF1PTDz7uLcDYnyeZkIfD7tI/EwTEIp3JmxIBy1FeCL3Xlry/60j8Q0DpHTNBQ3dW+Ld46o88mWecgjExQmqhI9QAaSYqERth1KRFgpx+NJtCIok7v5PHciQj9FHXpA0rgQ+65p99bD/Cv/t5+Xe5fn8QzpG2/qYx6nvCnbM+n0eBjuTtuxDNvz5d7xOD/4yEtjKYBNaDYLQJk2l0BjSuXq4lIYY77tba7zft3/eRnuvfa6MR9m73XRetIn71mfr33+9I/88B/8U38KWr598qRd3zx75912OOz3x4fvPtqcnX/qe77/9/+BH2n98OWvfKH1/vTp893Zxe0hq33t3Yff+MN/8Ic/92uf/St/5a8sSxORx+89vCy7DacHd3evvv7ae4+enE2by4uzJ08ePb19Noe/d3vz3nuHr3zuzZvHt3/zL//9u/c+0APu33nt1VdfvXxl/Pq7X/jIh1/ty9s/8WN/53T75W+8+d6Xv/j2/Qevnl2eXd4/f/jee+Nm++R4+x//F/+fd64PD5/fvvv2w2HsCR5PWTCVUvz6+O7Xn27vXF7de/nOL//ST3/8o68L32MafvDTP3D95PnVxeUXv/7F115/uW347Pz82fGt5XT8u//Ff/qNz315s6OPfvK74PiFD955MHm5vymffOOVL739VsikrWGQOZ5uWw9HwSysqoY8TtuUUmu3d+/e+4P/9B/6Az/8wz/9mZ/8D//KX/67//WP/dk//+eRkZACLE0FmPbLcch5U8amptrKuKm1sUNJBbqbKwCYBwCsKXDH+cjMJQ2mkSUNQ26tDRtJLNpqdBORqUxZ8uH5cdn3i91l1R7aCvLp2S2GTkNxpu6mqpgAzJkYkJqpdUVkJspSrDkA9loRsYxT6wYMeZgoJ3XDsJRyQszE7iaUkhQPTETdNHMiBgJhhO0wElGY+tIAo5RCRDKkEZAsWIA4Q4ADk4WTsJtzJEIM56U1xOApiZCrhYS6JmZb46RCZSUKETuqtT7rIimNpag4AHUPVUOLTSmI2LUKp5RK7YrUKGFE5Tyo1RfGE7cEhIGuigGZ2YGTJAwiI2vdHRIhIjq3ZZ6dEIXBox4XeMFqUAnCcBZmjNAgjGmaGiggqXVgRISlLyzY+nwxnC06M4C2TiHQnEEiXD1Yclet9Rju2jQP3NVyGjW8DMXB+irzMau1IuLNzc3hePz2bvV3tgP+735EBOGapq4AQIgk6A6mMfnQCYL1k6++/In7D44/+P2//BM/+eP/5X/9Jzd3H3zodV/5RxHO5N3EI8IZGZEAGeBFpgIgUki8yDsCRBCkwEDAcGWhhNDMDdPXrw+nw/7ueK6OUQ19tsN+EkEkNSDbVPelt+3U2/46t63XwA1Nd6avP/NH1+Xzj5ZPfZg/9cq4NROvIkfHM6oJGIRBZw8OloIIHuFIDUgBAqIAZCQiSCgA4BrowQzBDrRafSkAcBU6B6xvMju8v1b/1smElbYW189nc3nw0nj33tlb3Fo39EbC47jhlDywn5QZe+/RIyXSZUbSPAw5+XLYC/Hlbjq2EzpYWDfHjmoqQaFGSYY0iIAbqfXjPAdOzYNShlXtTGgQnJMEuIMDkLAgu5N2NzM1D8LLsqu1badNTsWjmYfWSGXTe8fA8822WUslL6dDSSUAabMFs1NAsCgzp9S0z/ORiFPi7gun7NFVAboJlxlQYCw8NWttPnSr0/a893j43tNxM+2u7jf0Z6cluo2SODAXAewa7exqSzxawylt2SklPtU2bjfA1E0d7c7l7nC8PsFZsjllGApuxkGIiThJARW1YXtve7l5XT0dYpKYuJAB3zv//o+9cSelylyevvf05r23yOrz2/3jJ++Ow+alVz78nd/x8c22fOk3P7/f77/8lV8ijZv9/u1Hv3l5df9/8+f/t5cX93/qJ/5h0W0S+NqXv/i5L335sD9SHv/87/mh43z6pZ/7yc1mUluevvWWAH7j4ZPHP/1lklefXT/+pZ/7mQ+/9uBjH/nA13/zS9/42jcc6ckvP/vC29/4hV/7uScP3/3cr37ue777e3ttNzfPX33t5ae37zx58ugnf+pv7ve33/jGW1eXd7W1y/MruSiI5XaZP3x29n1vvPFf/I2/+kq/PxbO4+Hq6gPy5Fw1fuTT/xSp/+zP/WqzeozhzS989u/90k9e3ikvv7r57K/9vY9/8BWB49d+/Wd++Pf9wTFp4fTqg900ptemuw706Y/90FLx3r373/fpT//1v/qf1cO73/f9n4Dq0/nww9+/eXb9nNL27OL1P/qH/vlf+eyvv/PoYbSnX3334VtvvrmRnKZ07/Lqq2+/1cByOp5dxPd/7/l7j/bL7T/c8yee4PXxyel7Lu9+4uriH/7qrzzq/1/a/jPI0nTJ78My83GvOa58dVfbmZ7p8XPN3rt7118ssFhQFIAlYUQLEpToECBDDDJEhUh+YASDDFIKikGJokQABKGVABAQYQhi3V1793o7frp72rvqcse+5nGZ+nD6LiAGFSEIwPuhourUlzp1znnzycz///9rr754vdCVs4N+1ohyxjgQDqFnUsa4FMN8MdXKFs70XdssFhuj4e///b//1icff/TRB2k529jYmC9XZVkqZTRSYcvlcpmcGQwGq9SEzicfiAhSRkStjNa67TulTBLOSZiTc662dr5aGmtijKvVqizLwEkpRQYFIIQUYz47nRKg1tS0bc5pgAYkl65IRvWQskLtCiXgQ0IgrbRxuE6nUUoDSEhRUPmQi6LsohhjhWTV9fVgIJKV1ookp9TFaJRmUYFTZkRTxEyAyCEI4mw+VcZhTsYUTd+wQtHGx6iJVM6SmLU2TNiFRhl0VckgWlkkE0NmFkOUIacQEjBY1cZOEIzRq64vlAFCIoo+ZfaArLVyaAFAkixTcLZ25LTSMbcqakVgpdJax5xLbbvQs6Cryhg7YwwLKTCclTOKABNnyUmYhRF11j8wKuL6IUAWxqIQAs8ZMhutHRhIudR2LachBTkF3/fGqEpZy5CZc4xKKS1ghJUt2673acGQKZFiEcgKDIIFZkCltMOYU+SYg9baWptTxwRraA6QiZxZ664L43KSkzjnEIl57QCmvx8Y8N9DDUYQgDVFQGg9eCVmyBpsykZxl1pjnMHiR3/vz4wP9v7W3/pbf+jn//D2hfN98MqYzFlp5X2woBCfw9bWztrnq+g1h1GEc35+niAUAiKX/YJBk6MzMHeOkyAXin0Cn7xw33We0CxO5r1HBaqo6sBhvjhB1Dlyu4yFq0RpCrYzftXg4Tt841731lVzcVyMdKUsWwOZIAtYRwwsxCgeuIwIC84zCQZpW1snyJyJIKEChShICAlSRtRZRJGIKGZC+gEkQwjwuWZr/QUly3qcj5pwMK6fHYZHj2KMsfdzMra2uFwujSnaLhBiFrUGHEeOCBDjqu8WKXeZvTbgCJtmqawGAuDnXilFGhkzZy3AIn0XEcVay4KRhZEkr0m5GUX6vldGI2KOCSATaURDiEpxhiSMBBRSk1LIYhvvjUJTuLbrsiQiwwzz5ZKZMwelpVA2ZVj4VikDqIqiSjE03mtry63aiFRleXI629rYy6xyTAppd3Nytpw6O1BUpRTLgbaFXo9GRsM6pZiFo8hLuiCh7cGkBLWSlgyayjS+b7vgbK3B1cWwVGXMC8DYxzSZ7M+XbesXw4l79e2fyhLmi7MYmicP7h8/OxJQJydnl7fO/eE/9k8fd8dnR33TzNvDB0ePblZF9+Q+Li5d/Nkv/ounp8e/+Nd+5aVLL81P5h988K1Y8tHREwB68dqiHk8++K33v/LV3/zUp94Sqb/ylS8Px4Mo9I13vvPgmLXWv/mbv/5Dr1x56cJBrdXH73+4s7N7/+Yn/9f/839ui/Kjm/fPndsbT6rJxqBr+hcuvYQPT37zr//yhcvn+7Ple8dPJ0N78dql8fZGt2ozsw/h5OTki1/84rCo3v/ed1+7ft0MzcNb78+Xi9PF6cOzB9ffePnT59/c3ti+uHdpe2vr2dnhYLjRNn443v53/73/9Q99/s1f+Av/1dtvvwL9hRT1597YK4vN8WTr6pXrov5iTPjH/sgf/drXf9uHxSe3Pnj88Oa4LO9++NHO1u6Tx09+6ckvLkIfOb3y0rVBXRZlPdrcMiF0zenjvBC1/DP/93+/rvSXf+mbv/Q3fz0un80OceFXbjD6na9/40d+/Mf+jX/7X1z1q3/pX/qPjmMD09OSJEtio0fFeLy3bQe2O/TVeCOv5qra+2A2+8f/tX+iMO4//w/+Y7Mftgb63ds3NnfP7e6cOz452R0MViEQKwQorCXElDMwW22M0SFmgBSjn8+ipO6Vl6995au/ee/e7eHkbWMRCJuuddoBQD0crnp/ejZXSuXoieB3eere+7KurC36uOq7kIWLouj7Nvd9yJ50KYimKEkXy+VyUFUirJRKGDVK69uyto1f9bFRypwtp05RImhzCAajAsRsQPXAItEKF4q0whxTZgbEGENR1Z3v12iJzgdXFoN6OBiMOHRrJqxVCllIK0LHAhl1yhKYjTE+sdaq3hiH3oe2A6UNDkPmLnMCpZfLxroSEJVSmRMhchIFKobEKfF6u2u00ipL9DFiqUkTe0kcs1LG2vW8vOs6pYw2ViTyD4SpSitHtQLNCS1aXSgCzCHnLE0IxlkwZHTBIJBFIRILZK1JrddxWfLvUnSsVZIzS1aotFlz0AIjgHaZIOVEpJVRiin0wSCllFFRWiNvRQpltKLYtQkQgLRSKJB9j9pgTkqEkYvCEhGi6lqvlGVRqCwL+F6yoNY6hFBVetU2qKH0jKTzsisHtWWNusx9MxkXfR+0td7HdVTLuvqub/j/8KrveuuJgOp5viOuQ7iswk5S0uDIao8L4PvUFspdee2to9PVX//Lf/33/8zvufjWy11KBWnOrIoCfRYRyQDrHS+IIDAnXk845LnHeW1GSpxRGasVYOGhP81w7+nUWUNZYr9QNvc+kS1jG0dVTdT52M+Wp/VgbPUQIJ/NHhGUk2JQZVlKMkykkOry+4v+S186vli7FyZmbxw2yrC1Ox7Z2M6W9eb+aEA1lhHBhxw4oAGjiQDXBKDAcYWQUCkFCiQDZiBOuQIpiBwwgwCBYobncdJ/1xR6/QMgAvYxl5WqKnt6slouQvA4GQwVc5I5IDprQwgKVNe1BogUxRhzzkiCwJJT27ZYVlrrtm9IP0+rZhYUQiLn3DrFLOckQCFKShFIaW1RGLIQIGoIvtcCKEQCxrjIOfoggoCkUSdkAPBxlVPsgp5s7KLC8+fP+ZCcKzc3djhJzjIeVSl7RAkhpIwiYgtnXGFtQQJCuL2zM13MQ6+cKznjeLLLQovFjFNTV6R8t1x2SMX5Sxda3/ahA4DoUz5ZhSyB87RZvvVDb1+++tL9O/c45z2iD2/eYOVDDg+fPL569fL+/tCDf/bk9rNHi43R3snpYRe+5QblvUdniJM/tfmTX/vmtz659d6nPvXykyc3H9y/wcjWuQ/f/6Bh8+7Nm7HNL764H3N6+smtWoEI/u3vfvd41k7n3e/81q//0T/2xbc+dWVpG8s7V6585mx2evfew7OzX3a2qsvtr37lK9WgrIeU8lybycHehft37v+pP/0n9/bpm7/x1cs7m/5k9dLlC6asyvEgafyxn/7JF6/feXj/7ksX97zkvDHizrxwqZ7N2n/1n/oXHj29+zd/6b+zyj57etR13c5k5/f+nt83XWZCfuONV//4H/nZf/d/++8UBu/fnc6Wj9q23d7Z2T5/8Ef++D+7d/7c97/7tbOT+89O7zo19vMme/j2O9/+r/9Pf2V/fyev5OjuCfJZDkunPk5i3fBy7/2rr17/hV/4Sy++vvXv/+//dPbwZ/+LP/vhdyYFqdV0paC8dfrwdDk1m0PK/ps3PrKA0UdCC8YFSWjG01n327/zjc9/9od+/Ve/fOvWrVGpkTuNKfrg3MZ/+c3/5nvfefypH/pc8E3XzjZHJkYvrFKS+dn8yoWrSpBM/+zJxwfnXn16NH1we754vPzn/+23bnz7j/7Kn/lP/7l/6qefLu5+6au/Nt6egJMzWAAGpwsOiKAQrdYakGLMgtlZLSJWQ2kcMDhTOG1P26UqCxaIGvWgni2XTrsuhtiFyWQikJu8XEdzRGalFBCGkJQ19WDQNB0iFlUZc8qht9ZqbRNnYRahshwgEOrnIoOz6cm9h3fmzcw6MBZ97wFZl0XkvL6JWVMLQu8DOKe08sGLiCVkRcgScrR12QZf1rUtXBuiVSYnYQ6cuLBlWdjlbKosAUAMSavIQELkU0qcBXUCIFIpx2XTUJacwBalQAp9z4Rr7LYhwhgjEBdGhxSzcFVVIUVmLorCaEgpRI66sKvYBp+jsGSxOpfGYGJSKuZMSoXMzBm0IEISVkoViUhIMgSfcmRExaCVcRZTYkbBnJKgQJYYgrJOs1LrCUYKTJQlMGljbeYI6xA/lsiRmRlZK50lcmSnnda6Wba2LEmTD0FVlTGGooYUjSKNiCTed0gGADIhCUROEEUTKFeCYM7sQwCgGNkgISlMaEAhaSD2kPq2rcuKmUEoOZVFRBlGQavaAFLZqW8H2hHqo6OjnEBpzDlrrUUY4B9uE4yAnH8gwiICFGEBEYWccmYkLFSKMWX10WrVjTZ3rr3+1V/6nV/+67/8wr07v+fnfw4AOLEAM+HzP/V3x7IsKD/wRBE+9wdxRgJFlCQoLHokL27q4+HDu3tUg0jwnpFJI0MOnGIzZWSARNQqLApdJe4lrzYm5VALrToXTE+YS9etohPaLzYcqqeHq87j0z3z+Dv3CsMnOYw30h98dedqWRApQB4gjcgUQi4LIwSFC9IPsz9mgCSV1oYMMPguXqzMHqoCVYKogdaOWjEKAX8X6gCocP2ERXofYx9tVYw2hkoXpEtA1bXeGOe9j7FHSUpDzjmmGHtGFK0VCUffIASjBSn5EEiLUkTKEOqYIcQkIEZT5pSZEQUQgQgVZeGURViAGQDXABJmVoigtTUKImQISUgToSJiEEKDA05hvmirujt37tyrr33KuOrk+IxERx/LsvRdZxTOljNSbjAcj4cbg9Hw6OSkWzWFdY8fPX14/0QZvVhx27Zf/Knf8+jh07t371+5euHZs3v37ny0N6q61i+a9rVPfUoXxfffeefSxYtbk4179x4oJEn5/qPHxyfT/XMf3frohha8tH/uyeHTZyfPhuNB37ezB/dfuPai1vrspOu6rmmawWCQeoPRnju399HNG3/tF/9sSnz7/vt9eMY5IDmtbTEccvPkzpMPL1zbeu+77x6edU2nzu3txratB5uf3bo0Ke2f/pf/5N+4vvv++19rL26OYfPO/eVwQ5arxYXL5y6ev/TTP/HT3k9/8Vf+28IYxOCcidGMx5cePHr06RfP/zN/5H/3H/27/8dCYWyWFy8deMni3Mo3mcKbb70ifkmpBYsni9M/+HN/+Pf87M9843e+95Xf/tL23mR/c+P00aO2WwWfzx6d/mP/2B89f3H48ccf/5v/1r9z4fy5J4/uPX5829o8npQF7biy/vRnP/Wtr/1yUQzOTueZoR4Nu266s7nDWTY2d37na98aj8evv/HDwbel22K/fPTozt37D9jMP3ww/dnf93Ovf+bqX/qvfjFP7SeffPj++9//4u/9ydfffH3oTLdcnXt88N33v79/+dxwZ/SVr3059b50RaFNt+h8lPHG9rQ+/Vt/8S/8zt/+70fDzc2NSY8xsC8KjaUDp1594cVvfu1LNz/4zoUX9kel8f1SI65av2r8eDyenZ2+9OJL3JwUpmjas+Gm+uwr1V/9z/79D3/t8+d2Dz71yrV3vvbtay+fj6n7jV/59R//4s8YOxB1FjhLxsqVZVl6H1CAAHPOfd8XpauKslk0O9vbzpYouhAzP5obV/i2N85aoMrZ1Xwx2hyH1OcQN7c22rZtew9ABtcj0tz1vbVFzImI1hEOGVhrcs6RwKqddl1XFEXf9XVdMffK6NPp6apdogKlVAg9SUQtXehEpCxrq2xO0MXosqBBJBUjJyWAlDMrZWLMCkmDJUbMbAGIwVjDQJCyz9mQQe1cPVqvINsUUBmtNABq0AqFrCmtUaBD4Q1Su2pSiMRQGgOk9Gg0aZomSWq6VT2s1mH0Rumu84a0c0YQcs4KURASZ9JaiQLh0daEsvTzlQNCAo2ktc3CTIYpMnCQbNGpZaNtRVgwCChE0iyKSeeMoiTljKREMHhf2WJUDnQ2qzYkEZ+lHFUIpu27vgtGKaUUImVIQKiNElrj6gCYxXsjUCIS5z5HW9kGkmXKzBq0ZFr1jTHKuNKSY+YQgnZOOeO9h0RkDShJSbS2zOCcEibKGGNEJUahJgBF1igiqqqKaf0rrZSy1s6XKxEsXBV6bzesKyZnp7O2bUfjSin1PPbhH+YlIgiMiJoMIghDzowopBSILrRWMSUtwqFSpRf8pfee/PxL50e758/u3V987TtNbP7nf+znQQPGnAgRUT1nHfKa2QeA6xxmRMwxxrZPKenSuboiQGBaSkpKPzuZ+dmymmz1fjkotlueNt2i1ytXVb7LWZhjMpZQ4mr6DFBRprIe2XLiQ/BtGm4McxfzKg43B8/6aTEw2xc2JAKq7g/86GtF6h8P1VkOgBQo1QK1NYQQBVQWYiQUwbRAehD6xyAIZky2AEh9nJ8tN8xkSwMgsOQMQkKYhXVeHyueR3o8DzlBzuJ9XDZSVIXSOUbvvQ+RnCkYhLkVyJpyiC1IFNG2KDl3KUrKHoDLSoMkgQAqoOi89tUaq7VOEYSTiBABkbZWxxgj5+ebaCAiEBZhSSkTMDOuNwo5J6PV2n0bWVIMmVlr7RMRFUoXzkxGg73vf/8TAH10fDYoCqsKq8309NiHlUgOjPvnLhRu7ip3dna2Wsw0KURVjcZni9P5dFpX9utf/hJzenZ4KP5ZCCsj/dFZR0TLbv7RrY/3Dy5m1HfvPUgX0tbWJLTdaLCZOYYYXKWHW5Ozk9OT5RkYeemVq4VDTehssbGx8+z47LU33v7GN77V9LJzsGU3hhn85s7k4rXti+ev/tRPffFLX/r1D999Z3trogy4suhieuGVly+cP7h6/aXXrl15+PDueOtl5XuT3WCiu6nLEQrD/8q//sf/k//0k8PTZ3v7F/+1/80fafvTcxf2/+s/+5fufXL7F37h1k//+I+2Z34RjnY2t0pd65SP791YPDv+9/71f/OFK1eVK+/duy2aP3h8+/L1a0D0+P7906fPPvPqG48fPnx480Z1ef/jxw9/8Vd+7a/8pb+ytTn8q3/tF2Lqr714qWnnKQUAPZ02/8l/+B+++fkvfHL3kydPH966+35VF6OdTaWBLGHp0Yanz+7kwB988GFme/7K1bIaHB0dbYzHB/vnjJ1aV8cYtaIodPzwbDSukcd7OzYpczadffL+rS9+/mdtcN/52tfeeuO1k5PDb3//HRbcHVTKr2BkTMX3H9++Nr7++//Az/7Wr//awJhJNbDnBrMpd8G/cGnzpQu/7+qVa7PV6Y2bn1Q27p+74lNOEYKXnOPnf/iz25vbJ8f3Hty+eXF3L7EMq/FobEhTMXDHJ08OLlx8dvpB20wPdi5WL4SS6dm939bNflnrJD4vZheuXrjx8OE773/w2c9+weq6cAOWHAODhL7vXeWUUsxY1zblmFJy1qaQCTShGdWbw2oUszAnYHHOOaNbJUpz23VKq0WzSJEREUlpV0TfK60FoOnaoigQMcYYo6/KMqQYV0tb1HU1ZEmGCKyJIRRFEaM/Pn4WUnTOBd+LoEOKHK1zJAQhDQaDedsWQJWxIYNPyUa0phSEHCOQmdQ1AWYfUhcQQDNrVFYwG2NIrWeFqGwU8DGh0tYZIq2M0wyQOfVeASrAxeki9ZG00Up53wMqpzWz6OVilXI0hSoqmyGpLNn3ylpDmlCBIuAEIDEHU+iYc0pZK1WQS/PGKOu045yjjyiahIQBBB1R5IyoFEM1KIE1kpbEDJyTB6U5hUBISMYoo12OIRAopdq2B+61LbMgi4oJSCnIhFkIEVJWVjnlfAgZhLT2MTirDJoQuxCgKNwaFw5rMhkTx5wBCZMqCIh96kWJpCzM4qPRShtMsQfJYEB8JNRWmZyydSVzEkkAXejR1ANRts2gEigRDSlFqarCoulX3aAovYfjs9VguNNMl6NJNZ/N+q4bjSsRIVLMvF4z/q5rCP4uidbf/4WI8gN1UYYMxISATMDoCBroKqt9r4fWdYF/4298e3Gqfvbyvr38woOT+3umevdr7y6Oj//gH/9nq+3KZM4xAoCg0tYkjAJJEVJ0zDybnbaLuWIYbUyKwrFkjdqDbyB50J+8cy8vOj3oGz+L6UwpGrmaoQuNrz0qokCYeqVHjkvTrJItx2642QiHGHOlgp+XztAEjpYnhTOjYd15X1j3U9twoYaM6hroTpsC4iBrQGaIjFoYMyBaFpAy6VrDSFVzkZkqZpGHjM9moo/toUk7F52DNJSCcwfaJkJCXuuzUk6kEYRIMEPQ2ipTRG7AM4AeDsdQQwzCkthHScGIQxDKmoGEOOalZA8iklSM3LeI5JiTNVWMMaUkQBgTEmki0SakYFCLSErso7A2pnQpROLMrHJMIEkpVETaWOWIfU5RlNKcU2afEgOhMCeBQm+VToXo2yYeny6MrbLEshhG5q6dxb4fFjW5wsM8dSssNnPRHc4aQg0uKKONVUJhcxPLmoySrS1JXbLbxXz6eG9/Q8YbQVXGFeVwMt7Yb3uTZK9dHZKVSxeuSNsZzq9cuIJFXe9vbx2Mnp48Hapqe7SZ2pYwmYr6EM9tv9D1cOnitT/+T/7zdx7fP5w+uXPvfZFucfykWbYQwjcUnp9sfOGf+BPBN++9/90nzx4zMFPx3a9+9eGNG7ubG8c37rpLaffK1cenT7753QcDMpt28qf+uT93/fVr0/Zs1na37/zOH/qnf/qlV6999O6tD773SaVHpydP/9P/w3+2u70V25OH8GB/f78qR7du3hmUg1cvvnrzgxtJq9H5yVF3ev/Bw5nPW8PJg5t3+9XyHlvUVOxt54wvXHjh8aPD3/czP/dDb3/60uWLD588PJ7PprOToihAYjmqVt3Zt7/xK4Ph8NLBtogoQ3v7W2dnx6tmYYEDp1sfHL985fWrl67fvXPv6OGt+dltL+H2x48+/hYj2QRUVGWMoTRaFnNTIhUQOW5u7c3j2Ufv/eblC/XLV7efPb3hRunHf/St3/i1L92+8b3j3b2TttmuhjHr3OYnH9x56+CFH33lM1/7+pcH501mqipdV+Ouj3Y0XHJ3/sqFJiwWx0+3COrRKGQeTXZOVn0jCUd8uS67OSxXj69ff5PNUJXDPsRhVaeucaa4fPHczRt3Dx88Gu9sTaqt7dF+0rhsV3VZLJvF0eGz7c2th7fvjmj0uTdfQ2bPPkOWbISQGVARgJDRwXe+aSf1aLmcn80XjU/1sLal61dLpQAIfPQ+tK4s2qZHUDGxMhqNyiHFvrfGpCykcL39AgAUKKxDgc6LcwNE6Ntlznk8HvZ9K9Ij2Bg5oJyt2s7nrbrA1FSAQs6Vtm3bwjpBid3KCdVaq6LITTNQyhitjfEhAWjMlLNHrY1SzpAWFuI2R1GqLhyJMBgOZLRmzxBZG5OZhbLv5lq7QldZZQXQNI0StlYnyVmLIp19QM5OUHtO1lllxMT1JlEsqexTPSizYGBhQAa2zmThwhSFdt57jhlZUcacMoHSyiBCClEEjVKY2a4h4SFE1MwJ2acckLAqbGZJiSVnTZYDd94D5UzccSsipJRVKBm1JUmx74JTRlvLKRGRZtEkWus+9alNVgFzEBGhLAoFomSCFEFMYQ0w1tXIIMXU5+xZREC01j5kQsWcc2JjdQxJRDAqTQ5Jg9JEQhadkiJjBwqU9pI8Sw6N9mXprLWq0haAV6uVUgaJFGNtSz9vir1tn31IIeUMACklrfX/SIr1D0mThWsfzTrFGZ5nMTa5r3XlY1862yD8wt/4Zf+gn5QudfTaa6/e+P43WlD7Bxfv3Hn0X/0X/7cv/MSPX33t2v7uJiBk9iwBBUEMMwRuMKZCgxuPBKkaT0CEUgpaezFGu8dB3rvxzmbJWqKTAUkbfSjUkAILUNK6S361arRzRYAEYvVw/9xVrcp50/a9V8ZVhe6CL4yhQuvSMeTjo2fXDuKVgxeZ2aJRqauxzKAIkqACMQIAmBETA6yFhBbyeWvbhNMmRCfHvT4+4Uujjdl0dVTGjW3DIgJZ1nKrTAyMqH5wMAIAEMHMMhyanMcnUx+CXkxbEhLIpAWUAOPZ9NiqTMiC6zSX7Fy5XMxyZGvL2WxJhM5Vy9Vca1JKISoQyDnmmK21rih936QcUTQRhRB9YE5ZESnMDGz1GpRMWZICuxbz5RA4JwRWmEEI9do51XQ+g2Qf82wO5w4udE03HgwH5ebu5qXJsCqdXSzPqkHZxOjK8dyvbnx86/rLLwMwYXZGaSLnnLUORFdu2LbtaFjFtj169gwyL9oGNdqq6vu0ubH1J//kP1849c2vf+W3/vrfHtSuW03PZqeLNnQMn/nxL/zp/+BPQYD/9s//5d/6xrdHE9eE5dHJMeG3OOpf+8b3oJRPf+41cuqv/pVf3d/e/8ynfuJ/+Ju/9u7Hv/Urv/obHPC162986vXXb3z8/oOHdze2JuKq2Wz2zve+vzEcjuvqo3c/fvZ0Nm26h89un985d+nN/YOXLtx7dt+W5uK5/dNH0z/1T/2bf/jn/5G/8Of/mxTpC1/44UvnawmF1l7sgFmatmWtz1+98ODBI7s4eusLn172q3dvvDfcHoi4OJ+5wejlqy8eHT/pCnz9lZfdg4dHT4/6bvXC9sWD8TkAOJo+MZbnZ083RjUqmC+XLP1w04rQxYsXzp8//9FHHz5+dHdrTC9c2D454Rx7yO7c5FLf5e2t0eZ2dTY/rtzmbr0fez/Yqm3hHj87HI6r4WB7cTrdufBSF5ZooRpWs3nz2uvXGPT9x5/s7+/vXNr4/sff+Zkv/vRkt4qxO9h3g1UwKL7QL7zwsvfx5v27e9t72zsHILR/7gIHz8yXxxuZebqY9210urZ6XNgNV1Rx1S4XXdMs7Wg4PXkshd4+f5GDdwN3Mp2NjB2ZsjmbA+cP3//gzbdfmx0vbj9+bAZq99zk4cNHPafBeBS7zhh3ePRsrLAo60ePbwk2b33q7WJQ9z4woy10SslqXDZLJ0ZQBoPKWbsxLI6fPBhXtq4HHHPX9oPxKOeskBBQo+7DwloLAppUztlam2IfYk4p5ZyNMWVZeu8T86Cqi+Fo2Xa9b7S1DGCtbdu+aRqjqayU7wMpdXT8TCm1bFothoEBQ9e2iTMwKaVi8jGKUyWHBAZi9llAQtd3wWjn294OLUDqY68V9RIBETVCihZV8lE5rQlD77Uhay0QOkUhJas1IYTYcwqMZEmaHELoMwmigGRSbDRqAU1Ok8IQe0JGhJyzKwsE5VPMvFbbiDYABKu20cqaLgKAQiKkQltRFhER1NIvc2JU2iqrkWMWBWKV8oAZBDFqJyF0vW85k9ZWK1GYchZC0EYnyczBFjrGLnAi1posIjkNVhMIsRLmCByzh5gTEFqlhCEBp5yQsjIaiFFEA2IW7jIy2FpAMmQGIBCMOWN2SjtJubA6pz70WVGlSLHGLoSUkrUOgLvYm5zWiUqAEJkYgDRWg5JDyiwBOScejbfWQmmn9HE/d3bQh3ZSD+arJufMzFoTEYQQ/oEncvxPXPw/VnoJgjEuLyNUmhH+2t/+jbufPH1j65UHxzc/+fjOZz93IRv36PSkKvXW7sWwav7an/8b19585eKlg529rY2dYT2s9w/2ZK1K0gVZFJtI6yzc51iYUrIJGL3mZbKPT/3RcfP6aJjSirDGHCRFC0NHpkOac0JnKJVeFgNdxyYVGxtl4RbzWd+GPseiDgJ18EFQqqqOzNOnz6Znp9Sd0k+/aMmnHpBZFUGTBSaAJEB9EtSZgSGTwTKHMNKupSS+hTMq68Gqg3plOXbPIrgwe3FjhyETZkBWqBBIGIAAQVBQRJAQhBLnxGuxnu0CI5icRRdaIPXNamdrNKicxuxD03etiGjC0GFVF2dnZ30IZVnmnEIIRjuBjCiSEwArMBpzjj5HyJI1rAUQREI+JxFUSqNkrUkREgEZlQMDQIw+hFTXdWGK1WqVu0QaDKqmby0BSNYGQmyaLgHuKJ2Ho/KLP/G542dHp88OHz48HtTDk2kjWGrb9IVbeDvYvnzhYPcrv/Nrx08fK4TCljbYyebBsj3Z2Bl/5vzVx4fvv//Rne3R7uMHd5armavr2SoymWf37v/YF378nW+9/+6H915/+7VlA9M7jx243qf/4jf+L3/7//Wrr751/f7tO2eHh6/UL2ooSZdtFzc3Nquw+o/+w//gpSsvG+S4VGft7Hj7wUtXt/OT08mVXZXd6nR15849hXo8nHTz5tprF1+4cPH27dulcyjAiStTTs7vjMfx448/frxZX7y838tUG1gtjj715rX54elXfu3Xfv4P/uz7778/n935/Oe/WNf+O9/+ntKuD1GZsjKTwXhULIonZ08uvXghcmMN9/PTsSucNnE5v3DpinD47p2P2rbNy1YJxZXvuWGlQoxYck6+Kq0SRuHCkiptNRoXZmSNs6o+t3PBz5vtelNF2ao2xhsDyUqBtVav2tOLVyb1mR6P9sqyIgCFlCFd26yNVYvp2cWrB5iAIlWjcrVaTSabTetFYQ7dSRvGexcOZzfe/fDWtRdfnh09bB7fG1Y2S0ocj469uPLD+/evgWy98tK923f6e/c3Nybbk/HhkwcxZCEVFv3Fi1drM+6a9vDw5PzBhYtXLsW7t2ezqTJ0Ou82NkbL7ug73/3WYLx96fKLvkmSU/a9Abp/+875/V0P8fHp4fj8+fOXdu7fP+6bnhMvYg+ETXNysOkwhQePb5PDa9dfqatRiJkw930bI6GsBb4EGfoQrHV37t8bj4fO2RhDVZQkkFJWhMKSOm9R5ZiQMMdEWscY18YTZXRKCQCUUkbpDDn5EHtPBoSyNkBKGXQ5Z6OKqizmy9Oiqp4cPm5XZzG1AqKtCq2P6KPKoNFbcUb7zifkKJ7IGmNCSDlkiEmEXVGxkEHhHIxWqDgDGEOKqdJkrMpRgESIMyQA45whpTgERBGSxndGGeN07rqYYiwxELBkEoacnQaBHGLSGTlI5BysQSAVOSdgpU0WEA4KUIJXRvoco0RRgCLOWKe1MDOktSUxxixGm7r2vlt0i0GtyKnQ++AT6KK0RiALCCkBAEHuQ6NcJSiogECIk5YUYyTEQmlmMQaRkyajrG19l5MoDcyJSSNygqS1QcKYE3si1LD23iBwBmMMZyAWUZxzCqFPkoyzWmlIqvNt6QrgrJ3NzMLRWgcgvQ+Dqu5TlByIiAEQjAib0pAyBmnVxhSSMWblI6FahVxX42nbW2uNUgrycKtazRuXpG/JGcs5E1GMERGttcxpjQP4H02h/4FYhP/uoI911vH6/4yANlJwySr1nZuP79ybvn3+qjSdYbz1wXtf/D1XX3rl6u0Poxg8O5luVoMrl66keXj3q+/6EJSjelgoBzt7mz/8hR++9OJlsAqtygxKCRL1KSKZjGYZfTD4jW98Y3V6ai9NUr9UijMHEVmGBsoyIfeh01YlzIVslbBhClXVGyJ5YEnnbEIUib4N2jotRZh3zNys2pjSKkx+++vHP/YjO7ZgTtRCqwC6qJYYNaDJUDGUhEoINJC1PsHDlX4wo0xueZaXSyY00yh1NLPZPCdQVgsoFgTJIOuX43dxFyyoEkNM3HQRoEShwpFR+Fw3QM+hFCGxT50idK6M0acQjUmx94AJEXz0IhmVKAKISKQjh7j+ZGbJkDOgIXLOhaZlzqi1QoqcADjnrEQEkbQiUgARAMhYlSUJa8jKGoPS+8giTBg8aqWipJj74Xjs+4SsTo7nv/S3fh1Ydc1UpDmbflBU2z5BH8P5Kxc2Cvzv/8qfsw62JnW7mKU+xq53tn73ve9s7VycL7e//vVfyslXpiiLYblTzvJJwK7aKAHpoxvf/epXvzQZbtYjf3Z6azLciEPjtBvqarj/0sovbn7wrd3NnVDS/VsfffqH3nROHh0e+dXZaGNzY/za9sa57fHW/Qe3jk8fNF1z5cUL7938Npj6H/1H/5H3v3/j4f0HB+f3EPrDsEjdtLY8MHl29sTawhT1/ad3dw7O22IwHGzktoc+5GVrKpNYtX1XjtylK9dGWxvVZHTn7ifvfXgTRXb3L5OOIKiLYdMF4fDiC5ce3LmzmB4t56dvX39puZopVMtFd3J8/ODRk2pQ77jh8niac97Y2BrX48WqSSEMRwOGqJ1VIsiZkS6d3x2MJ2RLC1XTNPfvPdnb2t7duSjRAUsz7y6dP79YLFLOx0fHZV1ncYBytljwaskMr7766tZ448NbHz24dfvKhfM3HjyhEBAxPIiDetR1vvW9GwyKqpw+++Sl669cv/DCh+9/8Oarrwzq84dPHzw7a37k8y+tfPf+jZtuyCPn5k8OX3/99VNFj46OrTM/8WNf+Oi9dOvGzaKoAtP9+3f3L44/uXd/ufKe5Kd/7vfOmuWjRw+0Jmm4YLl65UVmuHHn3sbOvY3hZi+91VIUZtWtCPWbr73evNOdnJxdvPrCxmJxcjyrqmHfJUIlQZ08OdscD3zj50fPjqpya3t/NJpwyoZU4jyuxoKQGKKIaH3W9mfN6sLlC2XphESAAYUl+9YPqhpRrJSCKIhN6AlAgBjyfDnLglZrq02OyWnjM4cQRASQNFLsPQCxZOdKZvZdPx5NUgyUA/tma1JMT0/7zFohr7y1xgMDEBAKoXY2hJRy0gjamggIDFqhF2FNLYAty5h8WZahXwBKkqwIu9VcaacTWaNsaQEg5ay18jkLIQqhs66sQtvNu5UG0BAdARN1wTe+BVyrZVEH6QeutMom3yuGgSsYdNsEU2oEovUJHQBydMZaW8YcYg4ATIwoKYT1qUSLGMmMxMaIqNiFgGjKYRValgyZU1lZQW6aDsiIJgRLqAgTSOKUnLWKKScQJqvJoIqcgda+0wyEYAiRkkRFZJ0ToJCytoaSVQYZExKG6GNMlbM55yxJKxPEJ4xgJIFXIjkLKRZIoMSHNqbOGp045JytG7LEbnWKBMPhMHLOjMYW88XZoB4WpiqJVqGL/SpDRlMWpEPotSmV1gwZAHPOq3a5NdkwiNPpPPkA8twgFFMkgvX24u8ulr/L6vn7v55X8ed2p7U8Ta0fIY0I8K3vflS7rW1nHp4d1YON06OzfsWvvPzK97/2bqOhrlSXgqSWlKUSq6pSDJaxOZo9OV39lQ/uVaNq++Dcq2+8ubW/jZSL2o02R5H745zF1N/5+Mm3fuNbr55/qVmFmk3slzGCdSUTdpRBsAJGz5BTVViBPNiYDLZHq24VFov56clka8KpZhFlBHPbz9r52XzJ/ejc1vXXrn1yOG++/vgnf/igplyQ6ziyw1o0IBqglJVXIABPzxbzhv/6Nx/OSn39rVfOZkuDQ+pyF2GgSgUcM8co6BDEChCpLEkECST94EVBFggRfJS+RwRRClBS4Ug4AOicGbUJMZMyfc9RstaKsEBnUBIorbTNKaJWwQf2aTiqOWZi1kJChrRhWovTmTMmnyUjCkrKmhA0CAdk0cpYTWVR+uxDYuFc6IKdNG3bTXs02hRlAEksaCxGNNbF5Lsux6RWq34y3kSAo+OnBHo8qLUdbClMoK3Sqs+cg7NuXFfLxZkeDnfHey00bWiKstqY1MtVy/303Pbo6eFDoNSlJ4UtB1WVc161Z0Ux3hhvXbxwEPz0/t3jDRwc7G8389m8m4Ymaa2cMVcvXoCUaXN0crTiblkjVxg8J8gJwWrU1pkrVzafPf348MFjh+rCzs70bPqLv/S3hGmwOWaXq90qL+KsP7a1TCb64vmrh0enduAmxYaXtHdw8OThA0OoYry0s61r3QYpq03ANG1X3WG+9ur1k9lRlsQ57u6PjVGrZRcSbY3HR8+end/b3amr9uTYKeVny77pHjx5PJxsjTY3N63z3oemcxuFj/2ib7/wEz/Udd2Xf/O3UOef/qmfIKL3338vxgiAs0U73th3prr58Qdd0124cKH1q8VqIZA4hvliOnz4rKjNxzc+CDHv7V/Z3Tu/eHaW2Gdl5suVGhyd5+LpcTtvuBxt79ji5OEdERSygcGU9bAc9jFkMc1q+fjB42vXrrWXLnx88+O9/a1FDhHl8XRmjBpONlbLdjLZWiyXj+7dPTh3ft6u7t1/8MFHNz73uc81q+nxyVNXFvNutqfGb33m09/89nsf3fjkt7781dffeNUY470fYnn73o3Dp2evXH9b2eHho8O8k4ejGnKKKYGiJ8fHUNRXr7703W98+/RktTXZsOgePzqcbOyt2k67EoP4RsaD0WI6e+fk66++8eb+Zz/fRSYwftmeLmZlVWnr2r4fFc770KWQiSPHnEBQfIxZZHNzs21XMcaCBhk45RxZMmdtVQZRZJTQGkCyduusu2GttY+pKMp1G9M0HUGvEIxV3apzhpan09T7lPpBUYau10gbqs6AnDwkDJzwOf9cKTQ5CQPGDJSRlM6ilLMh5BTFFVXXtTUU4lMUEGUBQGlEEgVQOsfMCKQYIlnjnCjMMXSd901PRBqVSmEdjcmRS1fp0olITEmXgyIHDykaIJMhL31MvSWN2iGoENiVIzbiuJCUocehKZiZBEGEADSCAm2M5UyoQYtOOUrKpbaMpl30RVFZSzGkGHKMzGCsKXPMDoocUs6sDeWcA4sokxhFsibjc16XJs7ZkTZWM2GiAD8ABBEgInIWjCygokimKAI5Q9ScEyurMwBLREtFqaPvGUIG1q4GwRSiUoSoUmYiAqUiZclpvDUi4t43ymlji9PpSV2WhqRvG1IFSurbhatrgWAyWG21FiUpRk4ZFOhhMSIFSqmdnb2jw6MXX75KRAioyAhk+IF8AH6Az4N/oPvg5121PLcRrQFBaDm1SVdmb3P70cNPzMCNtzb7eRtO1Tvfeby5u6lUnTKwSSElVYSUughsjdPanJ1OR9WkrManZ8tnR8188fDWRw880ypKx+Gf/BN/6As/8roX+Nq37v53/8PXJnmrWOXkl8pqhohC1hg9GHkRTHnDuNj1BnSMcWt/kqxrfJKoSzsODvwSy7oeDJ2XuV9NOQWRdmd78/qbr/c+EByfP/8CREnKUzIlu8KCEUziW45RmTPWnzT4pY+7v/RL7xycf+EP/NyVieOVG80DIBAwRME1XjrGCGCFFRMRMKKwAK5DRlABcMrg+xQlG131HTOzMXo+PTYaq9Ll5DmnnKNSWttCcmQR5sgsuE4CtXUTlsyC5BiAMzHHnLIIKm1ROeCYIWYRYAx9Zwmttb5rwZHRijkpIGdsXTggliTGGI7sYw+kdOk4emZRIso4EBBGU2RWiRMYXYAYzpBzKzmMNoSAi5JD8MphSilyiOx7WDlSG7ubrnKmcCkm0FaV3Pdd0yyKoqrNsKoncRSafhkjD0E2VN3Eph5M+oi5jVFRynG4Oezi/HR6X9lmVFA92FrOm9LUyMaYQmBWFnXwiazsbk4S58K6shh0gf1qduni1f61V/um8dOzKy+8tLPf94EH443j0+mT6fFw5A6uXV4tzprcDwdl5ry5tQHKdjmXSp89Obx+9dLy9HS5Oq2HtRuV20XN7D65f4sTzRfTZ0/ujio3Pztum3k/ql++/ilO7uzBk9OTh9deuvrB996xpApt2757/+hka3/30tXrPidQtLWzUzr33gcfnB4f1XXlrDp++qioyheuXrz9ya3aGVRU1raft2ud/PTseDxKCKn1iyY0k8mkmgzavkXmwWh0Mn12MDjY3t+ZLaZn7dNNNT64fO7+/fsa7eZo+9nTY43F7tZOMzu9c/PGyy+94A72p7Pl2WwlhEkSoCIFy+WcNvXDxeNhM9y6sPvk5EiofPHFNz/66KP7R8tPv/3WhSuv37//0JpyMOajk5PNc+feennna8df/ebXPh7YyaDeOjk5IWNLpI8+evj2pz73x/8X/8J/8xd+4be+8o26Hg7qqm18q/vB1uhkeqyMe/3l17/85S/Pnj2rzV5ZFyFmtHo4ck3XjsqNt9/+9Lsf3Lx8YWdUm7zLbQijQSnMHMIi9l0Ig8qF0D99cm9zb6uoJ0pX9WQUQsfMSnNVkDM4PTmbHj+trl8ZjUYxcwhJkLTG+XKltSoqF9qslKqGA0HIwm3f5yREZIxbByDmLJCzKUpldIzRJgUMMYU180ZrjSTr8swpL6YLSUpB1XWdgaEVnWGVEfXAeeQ2+LKugBEtao+gFTMaY7UmEUnMKSXNwiAqC3ehrqoQsymc0QWSIBMCSmSWH4w5g2i0yQsTEJA1ejC2Qdknjx4fXNycTqciMihqQr1arCTJoCy1bxa1K0gpjhGULV3lMvYhxgzAkhNkJskgwmsfEjKQQJLMnJQyDIQAffCURZhYAZKGjCEycNZkikL3vo3Ra2OdrlgERCmlnLZBIORcFDb3GIVBAVijRUXIAAlBUJICtWb9SoIsYq0RyClnpYiZU4wFYU5JSJhBKSLSiEo7hYg+JEEUEe5D5mhIkYKUG406Ze+000Zi9NoWGrUAotG+8xl4ONxKOfgmjMuhIoNikNAOx0WXiHSt6+RTzlyVhdJ65VskIqNCyPPV1NQ0qKlpugcPH/8wwxqyw8yk8H+y2f0HpYh+jsUVwb9T3EEAInChywxw4cre997/eCUQ2zNNZnd/+/BktnvxYHN3r1scpq6vjFaSFAsRee855YzQ5r5tCetiVNfT6XRjY2t+ttg+f+nw7OQv/9Vfe/BkeUzbf+Nv/veb48nlnQkuD7FoF22LdqiLsZesGSHmzBwFfWbIEjFlIibI/crllPqmsKlPGbjsVi1Tf3RyHGPc2tk/ONhLq/n0yeEf+uLWG5dK8Uxks6COHoKNGMS4lBAFTVy+UhVXfnTvs9tv/cYHzY7o+ePQ9zFQ7uc9xDGbPHJkyCkCEFhTdTMlZIsKARnWMSOIOUOIAlp3PSyW3XhQr71BzIklLlczk5Mh6bp2jRRLKWmFAJCyZGGfObKElBWQUsr7yBwUKRKTEkWfOk5iQAjBCGcRhawkEygAjmkdqw6cFLoYExE6Zzx4TjkxZ2allFI6x8wxA2gE6jlSYqOMc3rVTF0BhRlUo8r7uFzOlVJAkrIvhqp2tgqqcANkmNQby8Oz2bzZGA52t7dmZ2d1vaGs0oYyc9MeT3Zc+/RoZ2cnMxYjl+bdZGtDaWdduVq1fV+MrBbJVWE3Lp+LAKsuDjcupkzTZ1NtaHJu0styGlYFWVfVOxuTvisfHR567xGbo9k09L3SspjPw3J66coLm8Pq3qOnp6fTq1cvT2dHJ0eP6qqaHZ9kH1576dXNjf0HD5/cuXPntTffiIvgY7s4a7QOH3x8f2Nv5/W3P/Pk8en779z51Buf/akv/uRs+vQ3f+NXl/OFte5k1ed4d2f73NnxKkU4t38hxvTeO+8WRjqOl16+vrWzK4oe3bv75PDxT/3YaFTYg/0dpwU4tL5fzk6N3h1V1dZk46tf/bog++TLumhWXVEU9+/dunDhwpUrV1DR3ft3rtevb57fO3z4sO9Wo0HVr5rp2eray5++cev2vUf3Tk5nl65eGp5V7apnwUGpY3v0wisvFXDw/jvvnI6qa1cOzk6XzpUpZ2u0UqQyFNalCEVpT49nu68dXHrppZs3P37xtRcuxL1792/duS8DVxiklJXJps7zojvd2Nt7/bX9+w/uHJ3eHA3owqUNURq0hTxsm0Vh8ed//n/2F/7Cn/vk3kdXLhw8Ozos6kE9cHvF7nI13d/au371hduf3GzO5pWzmIWBXVEtm6U/69+8/vrjZ4ez5XxvY3T16t73PnjPukls03AwiZxj9JJVZd306Oy97777mc//yGg0WS3OyrpigdC1sY89AGYutDnY2++bftX11hVd11WDkbEGgDNDAG+UtRq6to85x5iVUgAYun6dcEDGxBg1oQ+hC740NkvWWvfBZ86BFQDGlAC5D3HZdG3fCaLWWiJkzrPgs5AeDD1xm7wiUuuyEVkZ0/rAAoi4Th3KzEn3RV3NF2ejUbFiH1RyxSALq0hKkTNGGQtKA6OQjSkmpbvWa2tM4VIODMmUZmNrE8EYXRKB9z4TF4OBMC67VhsU4Bxj4CRZUie9kOoloYgFVTorLDmEPvbOOTJkUYcUWTITKwckGgFQiHLKQr3vyejSuRS7lJJzRds3OQWltawxegx9zJHzyjSIlFlELIPnLKKEiEkweK8NREnMUBSV71mJEBAiJc45R1A6pehjLlwFOYOItjYGHwLnLABQWkfoQGg4nkTpQ2o5QyYhIhSNoAtnYohEpEzl+yQQMvRkXEQdMxAXnHToxWpliUQRmMpnu+gDYxo6VMnYupjNV/WAUs7agLYacjJDSCBRGLR6/OxorVL93ZyH3w2G/v9WhtfX32sx/jsl/DnDSADWe2VEwSw2c4ogD48eoiZt+PTkaKvaEwxCqRioYmwl1UXW7JeatJBOGWISSLQ5Hp8dHQ5GLoQlQwaKs25aDNG3D0sFbSp++Re/ZXcmb76wVaQYl8d+2VjNUNUtKJIkmSqEypRdCtNmpbUeGNc3q+Pjp5vnDqTtLUhYTpfRJyRr9WK6KutBUQ03trYPDg7Ih2f3H+yqs09dfim1waDNHpRB0D6TyUqxgNHWQNgyjoWamM+/vL81Th8u4kmBfVIqO+WQBFypQ5exNIoMgBDR30X5AkRgFmAWksSSE6BROXMI8fRkkWLMkYE5+sYakBi1UcE3pVMAjCjGmOiDKsxsufDJa6ti5szZWJWiFxABIUDOyEKKLFPu+yVYBQZizhKBNKJS0fdFYRFzjoGgBBQiiMknTlprBJVzyjkbImAySEpUStxjGbNHG7Tm5XKBEDZHY4mqqMq6TvWwLIoCddYldTHnbFKkHCWxnDt/IXTtoLLWqd1yWwmEHKJwlJwJUvB1NTg7XebaVoUqNivj6MH9W0SkoZRYCPSJ8+Nnh4O63t/Z3ZpsPj6efu/d995684ci8ge3bheFPTtrEzcbW9qOR21KN+492RyNv/DDP5Jzev+D7x6fPnWFblZ6MJyfvzB6dPcRohoXE3DpuH2MYEs0XvlHz+Y+19NF9EHPp+HS/v4nH77rwMYg25P9tk83P3lYj3a2Rhffe+fO3saB96fz6WxjYyvGyKAOn55JdJcuXvvoxoff+t67Z7PTeR+wGO5fOd+uuqOzWVEUly5dmc+n7737zqXz53LXSeoiJ2t1368Itvf29owyt+/e293ddilG3zqlJ4PhaDg0WilDu+d2jxdnZ7NjoE1XaAPF1mQciklR1bPZ7NzB/mx1enJ25pze3dueu6ONjcl8uVCYV4unL169sJxOu5X3HU/GO+eqUQZBypA5peRciZBNWazvmbu7u9PTo9sfv/+FH3qT2qZUZjKuB4Oq67qqGNZji+Sb+ZNPvfWisb1R0ftkTKntZL7KZcWK+Ovf+Orv/dmf+1f+1X/57ie3Hj58uLu9F3JaLObOcbdc5rZ9483XFvPTJ0+eFNZubIyWKfR9Ww2Lw5Ont+7Q9VeufP3rH0Cc7e3Ug6FZLJ5Wpp4tV8o5yCr1YpQuXTF9evLBd9/53A9/fnM48B4cGt9nTmDRkhBn4IzAVLmyrMeKfOe9j8EYY60Gwz73cZWUsojonAMApU2SHgF812utGSQzr3xHWuccYw5FYbXTEhQDpJQSoDE6pfj05JAJIncxSKUMZ66qehn7lLItjdV2HZtIAlnIkEpaJCUiJK297xNn68JquZxsTLquK5xjrTvJtVY+QKFdIhNBCVDipFMIicFBtgqtEuQM0SAb68rNIWmlha21fj5t21aJKstSidYENkZJWWmjwZrEkkGKUdXHjkgvQ+98Ei3JoSIw2i1XrXOOskSWkBIobVGtKQCFpbquQgh9SLaoHUoKnoRtZQUgJZFICpSljADCWjnLgIu+rWtnPBCZvskZA2otGkmTEZ2Dt6S01pJERDgkQEQUUgaRASDpIucsiWMGq93GZAQZ2qYxRhSr3K+a1Vk5cIhaicqSUo5Kg7Ym5QwCRjmndQhBcZkZkaSoXNPMDdJkMloul6wNIqboASh5L3WdwJNORiNDGwTRUM6JEqCIJVQQZRWKslqcnGBOoFEykCbJ8hwG8JwADwCADPADVtLvYoPXpLP/3xOk10ougiyoWFDAAjKuHdlrD7WTgm0380l8boN21OXT2NLhvXvzl1++uH/l9mwpORFoSciSEVgjJ1BnPXlXKUxJWqPtYERdc+q0a1b99tZ+6/1mQZU7nXeq7dBlVU92D33jMWlIVlFiZlg2fpgEBiPiNlBsaagleuoypWLZdTkVBtHUVnwcVc5YvTPe0XaUZryazduu0btFCGxtArEZECQoPQ4AijMQQMzW2ChMwFqrswzHi06tKuqS1RICULKICFEt296WXBUcBSwpYWBQgAlEMyelihDYakFRodOhk5iwLicxhbIYaU2lLkpSkk0TV1rjqChS6GurfejZeyMKYrAqKZ18WMfxUU4REQUYlWLxSUCRTZljjkkLgiCL5GyNKhAB2GjNfdaiBqqIvVcDw8Q2CYMkZElsNcCgzBklgiJLggRRGwoCiSPLGltqESxR5fRkUO213Wy1WvZ+3ufoyuHGeB/JNIvZ4fxZZY3kNF0kkHxwcG5zdxNW7YffeueFq9d3JhcePT1OPJieNd3TOB6a8+e2mMrcrxjp/NUXVGFhtXz4+IlCMzsLmiSBHB4uQNz57d2N7Q1IcT6fg6JBZRezo7t3w6CebIy10v5s9qAqbFlw9MZa7baq2emhgrw5LJez+Z2PvqeJhkan/jQrJaia1Xw8Hoz3HMNgeninnz0mTgCSwHtRPSq/fFZPBucu7Vvz5J3v/1aWdjDRWS1Xi9XmcAOcatrFiy++eDLbvvPwE3Ry6doFY52qVTtv7bgoRmVdmGsvHjx5cNc6qEej6G1ZV6iVNmXXxxT9pQsHq2a5ublRFIXWJMhtu1JW1YNqOn+2MR6/dm1/uWg2CijHO13XiWAx1s6arlud27r0xuuvHx4eTiaTojADR02z2t+ahBC6ZnWYj8bjnbOT2dMni6Kugvci2fuusCpz7HwTYxbGcjh88uDRCy9e/5HP/cgv/+qXPrg9f/WtH//k9s0bN58Nh35/b+fdT+4PqzpniT68XW9fe/FTd27fevLw0WtvvEzaTKcPTk5aATo7Xezvnf/CD//oN3/nqx+++/3P/jN/rNjYeed730gx5hQePbxXG3fl0oV2MW2Wi3pgC2M9Sghhe3N72bQ7u/aNV964fefjk2W/v3eJ8HA2mzlTcsTClKvGb2wPVOmcVQ+fPey+kX/kR78wqCervqtGBURtCzdbzMnYejwxZdU03dl0URa11twHrzUIhCysSKeYtHbMOcaILEZHkUxESmFI3hbOJ6+sYuEkIKg6n1NKiKi1NmQEpC7c7SePZ/OmdMOh0ilMuV8JK1cMMrHSkmO0AjkLiGRhKXXmvrTIGkK7kqwGzsYUCJWudM7LgdGmZwuDrLRJmLMUooRJMgpDoS1HKICKZOZNV5uy953TVhFDlFIXAFDYorSOai5R5+idYO0qzYVBRIqcMwg8p66n6JVgjB4VsEbUZIxITMgpcjJgWBJqZY3uY+hzKqxTRvsUcU3fSynkHiRrJa5UIcUQgrAuXOlc0Xa+b7tE5JKgZETu+y6HWCBZVKwANQjkyEKKREMK2Td+WA3bti2c4RRFMGeuq2FKKUVUyihDBIo59e0KWIBT5QZtF1aLFpUYY5AlxIiUna689/CcOk8xZhE0ruIUAJAIOffOglEUU8vQ9X1X1WNFSlQejauytCF1lTVNOysL4xy1IbqqJtQdp5jReeWq2qiq6c5Ojk53DvYAOTFoWvek66wlkTWAVoQzi4hSSkRyzoi4Ng3/PTXBACCCDCLyg6wP/IEIi3NKohHPZqdK88CZ9nQFWDLF1XL65M6DC5P9U/tw1XfkiFQOS7bWImbh6HlZTNx8vmAGB1IURURCQDLF46dPxlvbre8k5axL5WzM0IcGmXUCQlbFcECDytpWe8hxYPW8DTNsNtIIjWBs24ReAigPKfTH051zk8loM0VcnrU0KMHYx2ddYTb1xHwy8y9vVR7FqkShT5oUUxBFAMniEkAgS0yLpL/zsHn4JKoJJ5U429gjkZ4vluPR0AgZUms/xHoY8/z4QoBIz08/wCGyD5wAjk5XZVEPh5YjI4n3caAdUZniTBwpU7RtLyQMyvu+KoYMGQCK0i6WM4065Rx8KooCFBBRyGmN82AEQNYCLgMKpMxoGBAzAhqFWlLMQbFhwD6UlTUWJfc+BKWsCAHFFHIWMCRaGaOUz63RJKJTRG0GRTGYLRZGuwH2TRtns9l4PLrwwpUuxN6nqhxcf+3V8bC+f/fOe+98t1ktkKDrwnLVt/3p/OyUGazV++e2WZsPb97OIiNrMKdu1S1mM+8TCcyfnUwmk9573yekgpC6Nvf90Xg40Vp/+Tu/tbd3rmt9DhkypK4Zj0vyXhfdxsAdPT3+/tefjYcjIiDBvu8DzqpqIGzOn6+OTTOfP0GUqqoMY6F1CEmJJD/PmQYjtfBCym9MRgbheOFHmyOv1GzpBdvzB+dmJ/cA4ttvvrpspidnp9s75/tVGNhhs/CHx48Wy2PScWNjvLc7yTlrW5x/48229YhorCkG9aWXXqxGA0N4sHVxPpv5Pq5WTVmNYh+naVaVQ0V2NNxommXMuesidL5ZNFmU+NXsZMnM44uTzveLRdv3/d7+/q3bdxTZe/cOjXIp8csvvgIcn56e3r376Pz589Za3+XF7Gxv92BzWxGAIM+Xy7Zd5eQHVWGJUghobM6yWC1B63t3b78+HF65dPndd98tSr3y7eNnhy8OL19/7RXQcuOjjzc2NjjJjU9uHRycPz4+PT46Cs38yosX+6Y4POmU1UqV77z7O8GfbW/WZaG/853vfO7HvjiohrPZkVZ2Y6M4Pp1evXT5/IWLT5/ePjl9unfuvNUmtMG4mkr74Uc3P/eZLzw+vH/3zs3q9ZfGm1tN061j/7sYfPCmbbzkxLkajc9m03feff/NNz9dWLdoOwCA0AZJbexWfhlz6ENXlSPlVFrw9tZO5nByclRPBhpJg5CAiBijFKJk1qRJQc4ZWULo+xTJWKW1MetUWc45hxByzgrU+jY7PT1brRa9bzc3C2KTVYohYR9QMnhf2TKy5CzVoGh9n6wiEd/1FtSoGKxZq9VgKC4t2+T7Ho3uQ6wtF2QMUhs7dEExDUzZtq2ighSlyP2y4ZgkJEmRk8TgB1VdWtfFTqP23nvvJ5NJu1o0y4V1RnepR0aFZJQmIVzLjnMuiiLkyCwRGAExCwSffTSmIAWcAFlySoZUYo45ccxWaa2NUipnVoSKwCqKsSVFzpYxsvfeY04gqtCRufVtSaoojSBkFXPOBJRi1IKgMqcQLTGDRmWM6WNYK4q997bSnHKCCEJrEnBmAEiKAAGFMwqvFkskg4jKFp0Pec2GZUWKNSkU0lpxBgaKKSUO1iGR8jEI5JQZjUXg0hUiApxR6eBDG9i5kmydGBwhsKTQBe+VVUlCQDYDM/Op7xYGkkW+/+DB9sEeMlqDmZ/7gv5OGV5rfwSYed31rg9xa0Xf3ztCmJ5PnteU+ucMROIMKTGUuGp6VEVOvixLK0bbwXKxuv3he/Dii9dfvvL4cT46fJgEjdOadIKYQ482LbpOtC10zRL7iNVwa7lc5czFYNj5HjXCYBxCXDTzAlWp3YYpV11kQ01YjTYLlDIsqlkfj/V8aNzBzu7jWx9XmW3lPOdeZ5QcF/MxlXVVGeTj46Onq+nk4AXUu3WVfuanL77++lizn1EcgMnRI6GSlJlPAz2YznLCreFYg3nwIP61X/x+6859+sevCLMVu2opdcQx1qYMXbYZndaOAAVFMiAhIjCxCBJyzkQWgEKKiQWtUwpXS2+NKjRpUr4PrUmFNkCui7nv2boaMMXQqqLwmQWli6FrVxoRc1KsDNm+yyiQkZMwExqFCkAyAIIW0MYqkJyzLQyK9NEPBoOgo49pWA9Akk5SmiIH7jiuyZAEKAiBc4IYAJgZJQIQkRZWiLBqWhHZ2t6cLY9izEjUtt3stEfQW1t7t2/ffvzwyeWLB7t7m5PxuG2WSltX4MlssX/uYj2YYIKbH3989+79arRhOViLOXR9H3NWhvTGaNgulmfHhyfPHvUcnCtDYkDuQ9je3hxOytnyUDvo/DLEZJSpymJ+urJUA7CStLMx5r5z2jjn+r4vnEHEWdtOtiYxxpSCsqqoi83trbIsu+WiKgcERjHYsliFvg9+sDEcFeXQ2tFw6Fb1IvtqUO+cG5wcTWHsX7x24fDR7d4vV918MB6klJVVIaX5cn7n7n1GfvnVa0VtUwoicnZ01q98iNlae3zcgOZVM7PDikl//ODhsydPL+ydD40/PpqnKAIkVM5m4eDgpabJ3//O1yeT8e7e5vHxM4O0SMkoXboyrmLfd08fPfXJu6JQCpfNyuhCGZ1jf+ODD3a2NuYncwnCPbz59meePjs+Pj3Z2d/rfDsZDau6uHfv7s2bH6Pivl8lJKdNCL22pjTGR5nNztrVamNjoyiKm7c/Obe3u7u/9/jx4/c/eFcRD4Y2hEVIfVotduLg0uV9jsuPP/rOcvmwKDVnyW03qIuuC/PZ04sXrr799mdvfPjR13/7qy+8cHlnY/fs9DRGJpBP7t7b29sL97UROjmcDcebo3K46lsmpY188PF3X37lxZT6+w8eXL68d+nqhbt376+PU8aYpvO1NqPxZLZckrZPHj0t3fDla9eUUgCACCH0p9Ojre1NU9g0T8t+ZVJay51CjFU1UqxjCpJZNGsCISCAnBkQYsw5Z22VABmQJJmUjiGuWxda58lonVIi1Clx0zR1XWsD09kZUUCG3nN2LEYba1sITBkUd6nVpTGYJaVKW4Mu9TmwUKmj5477mACp7LKqRmPAyphCE443J6umz0lmIRbWcQizxaKoKgliCzefHmfIVV2mxGdns8VsFfrOOdO2K63go3v3nMGN8dg3K10wMzNkFMgAShghM4lYUqgle0+kFBAJ2MJwDF30CGxJAcmya5V1wND3nbVOCAXRxxxjRqs1UcIMKJlBRJC0Qs0IIAIkhiyIaAYUyMKoKDKXWjkqgSOwKFDGmFXbpZwVg9ZWERHqsqiRlCILQFqZ3s+VUqSfd5AhJEO6qqqcJWUEDRlYRDldaFK9byRE44oQAqEGUKS0K6z3MWelSAPzeLSZUlCAKQbOQES+T9WoUsb52LbLUFejzNDk5JxyxhnJJGlgSst4Op2XVFbOKcrcNqdPnyJAyEmRXlff5y2q/J1FLyKuS+/6Pfr/ty0YEUmAn1dfxudtMSllCqMzw3Brv59GpJzjNEBfQpWtFfEffvTOxYsXjS2CFw3IwAkjSjJkMpACZNE5MmlNilZNXxSV954zKqMBqVBXQXmhKUGkJIAFlpVUeuXN/X5s9aSVVOxWb739xld+/Zce3Hx0fnPigTN0TuVmeQopYecnk3MDqk6Oz46Xd7AgSe2kePyv/K9+cqKiyq0hHcHaDCEarlzP0GmwIb48GRhSCl1V0AWlr//Tb//FL33n/ierN66/sTxLWisCcKIl9Eo7TGg10Xr4LxlJCaAIk0IBWJOOGWAxb5uWtDhrTdf5Z4fHtbMxcTGsGaHNIYNoa8FgjNx1S8A0rGvfRiJZjy6stjEwZNBkQvIEDpGVJmAWxBQiClulgEgZAjDWqJxzir7SOvseEKqqjDk6wkqZHLMRVSubsmQQVFqsQsgZNSMBkA5KBLUyShkRWa5WRe0630KhR+OyWa4Q4OGDWyDm0WNlre598/3vP0yh04ZsYXPgoqqTT13stVZReFCPqrJczE+qWgmxHyL0iWzPHda2Pu1no43RYLTZxWXOeaCotKVCQow5LXZ2xm1bo4JL5yfr2cvWzoiUASQEKauqbJsUvR25ye6o65rBYOC6c9bqxDGEfjR0hOV4uE9EOxfOnZ5OU+Sz6VI7Xw4HMURmB1i4amPZdienq2xVMztLeep96o4b4KiUANhLl1998PDxg0ePFajVMvZtvHTpBVcW88WMTLGzd/DxRx/5PuzunX/x6rWvfOXLPnXKQL/qu65z1V7bzxeLEDfwjTc+dePDm6u2BVRdjCnHDz96Z39/f7wxZO5RQlUqy+gZlcblak4nuLO3vb+7c3zy7Oz46YVLl0SmSThwwxgTQwhqNCxyGjw7fPy1r/4WEM2b1Wx10vU9grR9U9YFaAbAGHJRuK73oij4KIKD4UYN8ODhvQuXX3jx2tXbH9/syubi7sGt2fzD77/7kz/xBbW7d3J65FQVfLp7684Pf/7HFmerGydnbtpvwHh/e7JczoVFoZ6ftRvD8Obrn3v6eH529mhnp1CWN3cq3wWrbLtqtvbKC832Jzc/HNFwc7KfUamy9iz1eCQ5DIbmhZeuzL932vZNPbCjcXlyPK1NYbTu+j76uJyvJuOxLaqm6U4eH45t+cYbr5+cTYtJYbWz2vVN53MsB3WOwJxHo6H3PueslEIBxZQ4BM/KkGQQRAFUACklRLG2RCJMqu06FJDn2tPnn751/JFz1Larhw8fzqanGxvjtlOZSYmyZd0Lo9JR25gDqqwRAodKUeYswIYws7BWaGxQMOsWBjSgNrbwvbCUIUunMyuDwmXpQDSIYE4pp6pws9mZtgUCLcNKGTp5dqa1JlGISnNuoieC0ebk4Nola9A5PR6NtMuJtMkCKQoSkFKMyMwxRgAohJhBCxhEMpSVsQKcGUCccVknRBUwo7FoTU5reiCZsmKJETnngJhSZJA1ICJnTlGyz0lxGujCio7Zt8knAmDSmiWLxKjVejqoJIPVTgOKQAxRa62U6tqetFXKxOBL42IKwQfUyhgDhMIYUk7MPrNyJnLWSsWYkbA01neJY+LIaBAQUkqkjDYmRQYBIxYChj4BgDUaEWPISEWMmTmUrhAgpVTkpJUTwRyyQSshkxKLWpPJIbfdYrzhrFKLs2nOWVtDBAz0d8bFf8cmBMBCRGvuzXoHvAZM/j1Lsfi5mRWJ4fmOmREkcepiLF39xtuf/tXf+F4fMrpxYTfyvBkMK2A5Ozt79ODxxuZwb2+n71bRd5xD7VzXsWQclcMco4gkyDl5kkAgVeV8yAKaWUPKFsBwzqEVJqVdZezJdDkpN/a3yvNX9z71uasXdnBE8r/8A//if/yf/z/f/87dyweXU2CDVCyDluhAyM8Wx7dmU1+60WwxnYybP/VP/KN7qoVeUxBxqkDIKiunYsgnoddFvVmiwqGDBMEDkx7qwZD+jT/xw3/uV945eXBk690uSUUoIqTIKuoDaBAC5gy4jr56vo1HEURFAJATrNq26dGII9ST0WB61p5OZ/Pligk9xJyW2gpjSBKBYjWwMaVlO89BjCIBtracnywgqhhEyBulQggJBYFCTKUrDDECAggqERHS2PmeQACgD94YQ4ra0FutBUhCb02Biq3SKeecA2QiXh9bRXC9uXCZY8hB6QgAmX2I/cnZ2bm9vc77cqBD127uFFpb771zqkpW6wJ5mHIsB3WISemirIcBcH56YipdEG1tjUfbTjsBJSvKWjsDTkXTzNvdg3NF7VxptRcgKZxK3kcfCz3wkYwoq6rJ5rgsXdcv56tTrXXIIcScY9J6DsijeuyqoRAt++XR6aGr9xaHU6VwuTgbDAa+9YUpxqOND27d6lr/0vVX9s5v3b53+/DwARmttAUxdU2PH58cnZzu7u+9eOWl4XD8/e+935zOykrFCDdu3t+/wKdnvVLDk5OTgRueP79jrV00K0ZadoFP56ycz+HkdP7CFbx84fL9+7cIZHMwWp7MJRejautYnR09Pa5U0fWN995WlbEYYz48fFIU9rXXX3nv3e8dnzy7evnS4vDZrJ87NQBFR2enTHiwf4AZnjx5tJotR/XgweMniKqwJsTU9nLh/N7p9ElR58Xq6WiyoW08PXtS1UMASLkXUClFY1WkHDDb8aBbNcromAWVcoXqQ9f1q73drXs3aTlfXblw6WD/4Mnj+48fPdsYl1uTLW1d53vOsOwXL7/1qudwcvh0C92gdoN6V+kC0PpATRt94E99+rN37ylUypoCQY3GQ6PMxsbW6dnilVffyDkmH1hQa2cMsfdd78cb1b179w4OLu/v7n3w4ffffOvVwXAyGG7ev/1se3s3iPgQkkA9GHWrRnLumtWtWzeZ84vXryOqh48fD4YbqIvg43r9l2IO0fe+c84g5uCTM4qUFd+tNZJJgNaEMgAAaps+C4tIykkpRWgQNWIGAGaOOUvmpJJSinNEyZJz6arlMgqqwpZ9E0TrFIRcIYmYw9Aq6TMilq7qOh85DYeDLnDf+1E1SQDzdqWScrqEIMaawCkh+eWyKKoURaGWGDQpIFzFVlFomna+mBtjqqq8eukie6nL4eZkYzAajMdjU9BgUFpHbbPsulaHlCkjoBWlmdYYdhSFmZkQnTExZ0xAgF1MaGntm0wpo/RKKMecOenCBsmZswEkUMaYmKIIAyGyJqVJVUqpHLuUA6BYTRgAgDNkUqrQRc8pJwBtkg+ktCiAxMknCawMIhALmMIxS/RBay0iqYtFUXgvAlZQE2BOkjgpJGaetwtXVFZr76Ow8X2fEMcDC8zRZ20sKSWAMbPvurIslZbgm6oofL8iBGUIUDrfKrLaYc4xRK/tIElkzspQ7qIrCowggBlUMjqLimAlkyuGPoIWbJbt2otCxGodOv6DbvXvzoxcZ5yuv2fmv58mGETw/zPdQyllSIcMSsPnv3B9W+PdR6fHT2ej/cmzR/c++/pLW5M3vv7Nb3Z+ZZzFslAqx6bvs1fWYCZea4NzlzJbq1XpkCWDV1oDImmt6GwwHogSv5QCXI6gRdemHI/cv/QnfqYaYgZQAF3TlE7/a//4H/u3vvufQBeEhtYULldGWuCubWZ9mKHSxu+NeVTE4/2aQmc1MYxsyCISE4gWdXr0bDQZVBoUaJN78A2UGxEJQm8EtLH/7O//3F/+7We3lq2lyq86ox1YAyDASMgiScQgPGcbA66Ro7iOeEcBY4w2HDnm0A/K0f7BLkS+ffu9pl1UpVFaUFJRFgpzn3xKHikZZRmTUbow3HVZmYJZXAEiMUO0DkhEMHd9nwSN0qRIJBnAnDJD1laF3idOpiwWXWuiqsbDZYykC6VU4igKRWntVA4gIpozM2gGkWwZOyBAzdwzAzMrrdvOD4YbrhyIhODbwajWhMNhDVD7mBTWk8lkNZ+tFstBPfAxxcycAore3d2Znh1yiuVmKV61XbdqOmDwYT5bNFuTndRlS2p1Ort86YDNcDY/efJ4erC3167C/cP7Vo84KzOqI8sgjqbT5fRk/sqrL1/Z3Tmdnb73/XeMMcx8KvPr10d939++eXxub78a1tqpjz54Z3dzQ2Kyipr5EjxLzr5ZaVJvffZTxuC73/uuJQSCWTMvl46MroeD+XymHoKfbCn2I0uZU5/90ns3X7Ho27dvXLp0aWs00Jqa5ixFr6uij8kmdXDp4OmDw/l8/qVf/pXzu1vE2c9XZFAR+VW7dX7z+vVXZ8+ePXn6aFRX9cCtQqdViQAbW7uorFbl7s7BnU8+3hivytKNYMzaarIDZbcmG5Ub7W/K/GxJySq2L1293vleIYyHdVU6V+Dbn37r/Q8+IKKDSwcIqg/BmiKGkHi/KFzr26IoSJkQAifeevGlzkeli5S492EymSyXS2f4hz739ne+/b2mXb300nWlcTzZFMpl6doQdeEE5Wx5LBTHk8LA1oVz233fgqLFcsqit/cuNO3y9v2bL7/88ubu77tz98Zq1WxubvZNPGt7znFUV7duHo3GF548fjhd5L473T3YI9GFURzJanfz4xuXL7+4XDarRa6qKoRQTuqOPVoVUyrK4vHRk8K68XisCCPH7737PXDm7c98xpRVAtHWOGubZau1tnatgkSRrJQG5JwBAIi00S4Lx5AyQAjBGGOUFskaKAsrZVJITLi+hRKR1bRGpiLKcjXvuqUiSSFwjJoARXIKJICogBQAIistJnnRoEq0hXWJue99VH2hrYCKy56rAWEBZCSDJaUQEornwJoWfev7VFg3rgch9ES0eW6nqApN6id/6sd2Jpul0ZUuYhs3B1uRITOv2tX8ePnok7sAHGLnvddoBj4wkCI0IURCsVYTYIweUQAoAGht0EsUJqV8TkVRWCUpBs5xreZkyFRUSjFElASQAVmUksLZ4HP0GFOyFrTGypgYY9sHi3UXfE5irVUaFSMonVkAiVEFiM5Zhbq2JQr64FmwdEVKIYQwsCMACjEarVuOpBShAhQfAnBGjSCyMdgUhNDF9cqtKoaYg+8jCqAIIoYQlNFEiCSALDkqFIXAwD5HIQ1EZCjnBFGMLSf1OHhpV/1yuao2hrqufEwoNKiqHFNe9NaUO8Wwa4L0mVUYDAruEghorRHXwp/1hACf73/huVoq57x+D02n062trTVC+O9Vh4VEz6cxwIAMAGsdQ/BeFZUG+O63v/L5H/2hNw92r1zZ/2//4i+tGMoa3njz4sXzu/sXNv7LP/P/2CgvJYHR9ghsMT9+NhoUwgkACBQlVWkdfBejN2odzuq63iMl7FMvENtE7JKqlqQNUmHKnub1CH3oGqWO0H6yVNvcXTtfvvbq5XsPDoPVXBI4iQyIFglSH6pKZZ6Vtjp62r334f3XX7ucQ2hDX0gpzgjDO+/f2d/b3KxHTZYCoiCythz7rK22RQoCGQqE3/uje7PffHQ2lZGrW+9zUmzAKm10RHxukxYQEVAgaf2BBFmvYIbDwaztll0m1M+OjxD7jeHAGXIKaq2jF0SSLH3rnSmsUV2/0GhTAkKbQ5zPl0qpyK36f7P3Z7+2pNl9ILaGb4iIPZ3p3nOHzLw515RkFYtkkTKphmTJpqRuS+hGow1bgADDL27AgO2HfvC/0Q+G2xZafhBsd8Ntoa1Gt9mkKEqcp2KNmZVVmXmHzDuce6Y9RsQ3rLX8sG9mVZFFQaLlN39PZ+8TO2JH7HP2L9Zav8GQWEFKiLTopl07Gw/FhAwh1QEIrGRFiG0gMFUtNQPi5GBeh7zNY4yRiErKIQQi5whqLWyASNUE94I+1WqquSoIsyPiJIWZh76WaldXV/deenncchpqwbpePf80lE2///796Lxnd/b4CpgAue9718bZoqtWd7tdeHx5cnx7typPnmzffOP1n/mZzz/4+MEf/uEfTpu2cUxgZ0+eJihXV1cE+MZrX4wUf/M3fovIAdJu3MzmDWgyGRGklpHQrMrBwYGI1FqL2rNnz44Ob9y799rl5TU8e1zSeONgwQCayzim6uvBfIoki/nkvW99/dFHPwjRTzwb1ELAjM+vn09jGwKr9Lvl+f3vfWfaThexq5bNIXv3/vc/6Lrpa6+9Npt3eVzVYgj59t3jbZ+X661pt2iaenC0Xa5u3Fisrs5uLGbuxmLdr9tpmyyq5MOj+fLy2WQSj47nGFzcpXbSIXI7mfdDQl8Pj2dv4ssHi8l0OrnJbhwUOYTQSJbVanP79q3N0M8X06Zr9yJUQBuGHSE+fPjMx4g0z1WvLjMhlpI8j2DFvagWymY9hCbmVFxsHj96ttn1oekm84Orq6vNemWad5uLg9nBzZPu6ccfNQ7v3r5z/8EH23719ttv+qZ9+PBhjHHMabepB7N514Xvvftwu12//tbrr7z62oePHnx0/we5mqjOL7rJ/Ma33vt2SbsvffELP/+Vn3/w0f2zs7PHZ1djWr7+xssvv377G3/63naTu8Xk5s2TUqSbtjKV52dPry7PfvqdL5+dPc+ltItZO2k+fPAw+A7UtutNCKEJbq+7zyl1TfjWN74+P1g0gYfdZui3jojQvCMzy2lg5/ZEnqadDLsRRBE5Z1UzVUA0cgHZpVzAzHuuWWaz2W63K6Z7Fx0zUxEzC84TUd/3y6srq4VDbRx6DjWXlHa+nYC3wFiKolDAkFPC4Hvi5XbDzGE+2aShpB3HBqMb8tC2jfNx6LcVeX29ZA9DTgeHx5rra6/cE5GTw4Pjo8PFYnF6eto4z8ze89nTJx5h3G3rqI+uHzy9WF6tlk3bLjfr3bADUANpmsYpNtVy5A4RdSwhuMb5mhJFZ6hpGCy27CKZOXDEXJwfSslVpGYHGprIALuc0HsrQgkiR0Q0VRmzsXcYPINiBCi1ZsIKaqyQa2bnXeuY9r0C8i5I0f03pJoBuTpmE0NkAwoh9n3fxjiZTPq+77pp0zS79SZPFdRMjRENlNk5F0opDmJVYCUf2u1mjCEGF8c0TqMjsKqqKgzOQAE0pSE659nVnGPTlCRVzRE4DoJFzfp+VPGgcdItpOJ6NSwOG1P03hOwSlYpvu1M80ebx7ODGyG0V5t+mtuhH9tJI1XpxYgX4cdDCT+jQG+32wcPHpycnOxZ0v+m5a8CmiEAAtCn0mNAQOecWPHofuVv/DvdtCNN0+j/Z//hX8sqrdNppIq1Eg0Cx67FLGOlbn5nNrnZ7y6VkmoFdDZalRonE6iSxyQCqua9VzTt+HJ5xQaLdjZUxamnNvSb63yt7/3pe1/4mS+8N/QfOf/UpAywfrL58OJ+u5hQGNZpRxPLteZqhIGglEpMrnpz3ew//c/+y//l3/+7f+Vrb4h0Khag/He//c/v3nn93q0D09RagH3KlpshQVXjOnjnDKkf+bTd/o3Pn/63v1MLgAO0rEDkPXnPCPtil9X0Ry+yqhIgASzmzXILuerz6342mW2328vLs6FfOjAqwIVqBQ8uUqNJnPceGxmtczM2Jitd11XLE45WSuPCzdM7m3GF4MAseqqGhjCaGZp4MoQM6gmtKhnMFvPYNGlI+flzLIIAUYELcCRAskoMbIjJipgqSSUzkK7BUrAC1WIIwbkovgx9CTfCxfnyYLpYLy+ZzQjmixPv49FBa6KSy8F0BgDMWFTu3/9QOBnItJ2W3p59dEXraVqnU3e6XVcTvrk4+eKrb/Tr1Wp12S46YyFMh0fTq4vlN77xTQ8uNjiOWwDwhrvVs24xWRxALvXxkw8efXJ/N6S2nXjPBaqPPMpO3aLYdihLv1IARTLfNKONTUsh0Gp3dXrn5vnDs3nTRM+aS+eot5plbCZzT9zE0M6bJx9v2hg//+abjrmuh6PF0XUalmeXMcaX7r7STcKTx49un05evnva95vQNvMsr7x8DyGmMd06Pnq669n0K+98addf+44PbNbndNDON9sh1/H09sny/Nl8Ptvl8bXX7/XDAOyGPhPBo0ePbt083u12OQ2Pzsu0nb586+VJM3n25NlqteqmkyfPPkl1vP/wfDrtxnE8Obl59+7d9Zi+/YPv3Th5iVzbtZNcNQ0SPDbOXV+d17SaTSd5GJ1zKaXZ4mDbD94lcYjG11frUtE5t9lsAsmwSQ3IO2+99t3vvH/++JP5fA61SMpW8umt448/yqRh0i0eP32WE946OlF3hTZ98vj6yz/zc8fb3cXygxBbE7r/6MHNu3jr5dMnHz/4zne+9frL9w4PFxeXZ1PftZPmydPzl+7d+dKXf/pP//Tbjz65P4zL4Nz4WIAq2G63UTObzw/atr28vlCh08Pj9WaHhqaifW8IvWgXWyxl0rZl2P32b/zGjdOTL7z52jRyGnZjv4kxNE0UEVN1PorImGoViL5BxCIV6IUNDjEzu6LJOeec26w2k3ZS+kSTRqTu53fMLCKllO1m8/z585zzwcHBsN0w4zgumcl7oM6J1TrWlhxUDOyattmlcaOpCbFYHlJPDBRcRq1WfXC7frXreyaMJ0d3Xrrx6p2XrNRq/Oobb96+8/I+i0VrGceRUr1+doUI16urs4szF/jp07P57Gi3GabNfDsM680mdBPvGh8dgnnvHST0ruklOUYfYBrcuN0hWjNpxjxkIqfcD4NYZQqBZ17AGaECgxPNjtt+t575CQ4h5cyBNY/B2Tw2WiCtUmi8Yy5WShGiToq2vpOyY8is7Bgd0eVymHQLTYUIZzjJYw/kbMwcCB2YDC2oVAuE3sUhJ9d1A2WBVCc5FRccTZrg2aVhzLkfazHDVakxthhcUQudQ8pZILbzarlP43Q61ZyhCKrOnEfQXIs6rCTbcYtKDF6kpFrZB0GMk+moRclqTnN/fNIeQnEKNozFiIydCz55vt6OhbfJz8so7Ljsdrra5EnjyGUwB0i4d2o2+LROJfR7xH348OHnPvc5ANg32P/1u9A/BBITAkYEUBQzAAUmIkcGCPD5w4khAIQWYDYLDGZAgDiW/Mqd4//4P/4H//n/9b/2kxvDKAfdjbodW8+O1q1HB27Q3sWmahmGoWtaM8lpcIwidSfl8MaBVRExw3TYhrGkMGsH0f/8V//477Y3X3n7+Gdw/Jnbkx+8/+w3fv331IpzVWCs2GCFaQiat5VtbCM3s3W/PZyHktYHJ7P/wz/8h4vD//UX37qzFvqn//0ffeNb99/5+18Wq6ZMiGNJMUYAc4CNinOtqppaF2ut0y+8rJ+c7r79ocvzQJORKoAMCMGAawXPQECKgwHv3VzV0MAZgcJwdAje4faawXLXTWuqUotnh1QpMhTLRYpU73XIvYJAAMHKlRWLN5qEOaIiSa3l/GrtHY+7Iae1ABY1IwMyKTnEWUm6yxJdJ8VqruvrMwSNRFNm5li1DKitK85KQ7WECtWKEnnHaioYnFPVransbWqUPTnL5DF4jruNLo5oOazMdOra0pfJ1DkXt+kqRLep6+3qwrOXsUIVsizDPuMLgfPsdLqxZXdrvlpu0mbz3/6//glYbdtINc2D7zfX3EozOYgB0iRtVxek5Mm7EK7Wm6451NFNpif+IPQ7uVwtD7vJwcF8JymX0k5aKfVgsiDAxWJhSDRsusmEvHOexGoTXd+vjw7mVkWPW6t+Op03k0a4bMdVKcPcL9pmvl2nXPXll97YpRW3zjd+dnrj8YePPnny1B0vTuczj32DdnhzMta03AzTyYIQ2qipDGPqh14u5EwjLDfLZz+4mE+ns9odLmZpM/ab58ur64aj92Ho0/sffdKn3DxZfumLn3v86ONPPvnEVI9Pbn50vVptUmy6balrXlM9u32SP3jv66XkOy+/NBB/+90fnNw8fvTkyXR+crF+MNZtF/zm8pohfOmLpyF0FeCV1+5NJu3F8yePP4mfPMqDVYwkzM51SSA0UwTWKhH44GihIH3pm+ARG+/my3E85nj68lsP7z8OMdx76Qvv/+Bb737nfSP8whtvXZ1fFav3jhd5WPoav/zO299+772nZ8++8733vvjOl65Xy+1mxVrapoH1+vVbdw9j+/573/3j3/vdX/kf/+13vvRTlWhTrh4/v373g09++ad+5qtvf/kPvvFtpvL63WMHWzH2jSuKm/Vusbi963Exf/Xs8oM7i5msP7zcnNMkFLbtuHWV5zi9uThJudeak5Rq+s4Xv3Q0OyxQXddkrWm3BTOtZlkb3+zSqIEHqg6QGCqAd37YJOKKRMH7UlJ16KduJzt31FgvHiHVYsZD1n3v0MD1250KEUaiIaWR3cGI2tdary8nk4lDJ5CIRdkZgnM6MZY8FtHQxFJK613uN/OuKag5bf/d/+FfnxyexG467SaHsXnp6GS5yUo45LwehlTKsydPrs7OmxBXTy/GlBYHHYY8XAyT7qjfFXZhk8ej06OzszMqjirW1boDJUmOHFXUWqtVpFrHfX2mIkMa+m1oOpOqqpFt018zY+MmSQoiRu9KKVUGZgCQUUfz0Ew71NAPu10amsjccZIRNKgxIyGwohlW8iCCLrDUYmbRBwBAg0AuQ+qtb7x3zpVSTA3RASoZmdUqmUARDEUIwaNDRBArQwKqIOKREFBMuOFUd3m0fVqRahGphPvQN37BcjIDROAXrGEjZCJyARSkwr5U9d7vUbPW6rxjJoMimplRVMaxn0waQ6i1emfeh8X8povzMY8iuFyut9v+eD+i8D/0iCTAzzhZe6xNKd25c6frur0kiYjgX3t9asSBRgQKZmBmBvajCP4CpH9E3WRAIsLONd5Vya/eOfrf/K/+wXsfPNpcriSD3XLV/OWSd30ZhmE3jNT3+5SlvXMbxQn7ELxvdZi0XRu7y4trGkZRmswWu344vfny1br8V//k9w/uHL1873bThkf3Pzq/vLizeLuW0USQMrlkFSeewEu1klfDAXVxY2Rd9AcHNyf/p//7v/yVv/srT56ev/utR9jbb//67730H/6d2PBYBu/DZ4bs+w90/94AdE94++rPLT548njXH/hu6hnaaZ40JjJ63+wJ40psSmhoaESuigGicy7nfjZb3HsDvvGnDxfzk8ODE+855xrIgeWcUw2IGAGVGVVUxFTV276PDUWKSSXWnNMwDJOuEzAOnsCBqKI6BwaeGSftRIwdRxFpAjOplHG73uy220k7YfC1pKKGgGwueqxS9h8fM4upmdRaOAKoQjXTIuCIHKgO/Qp1N529evPkaH39rMhKtVwtL1LdLocEoPP5vNYqYiDKSN57Jud8QKTgm91mO5sezKZRJcs2v/Ty6fnzJweHE0k8a5s5znDiJVuMsXVh2jUOEMBGrZ+7e1fBzyZN2Y4Q4unpK6GbTINfbZZvfe7NzWaTc+587FzYXi0Xi0ULTTU7OjxRQmOnYEMebhwfX1yc1zSG0GxzLjJin7ouNt2i1SmV/ODhhwIRfRxqEquy3DbBPT9bXl1d33zp5WqQtnrzpZuqUtc9u/aTh1fj+MmXvvSFqvLgweOz8+Xf/lv/E8EynU7f/c53Hz9+nHNdb/t2dvBsuX304KM7d+5MF4dqtlw9r7Zz3k+ms69//RshhK6bIqKI+BgPgxcxa2Zd8GdnZxePP5603dGdO2b2yaPHaPr+e9+L04MPPnx8cLh48smjWycnL7/8ufXV+QfvvntwfLTabe4/+B4wiVSrUjKEJhoUZJ9F0QBNAZQcJyk59dUqsq2uLg8XR5at6PDg/qO33vjC+dnl9fLy5unRz3/tF//Zb/z358+v33jlTaRm1HpxdVVSfbbe4eL4Z//KX/3VX/3VP/j6N6hp2tk8aWZqahqv+wfdzbdffuv1XPHdb3zrvfff56gUIUFRlVfv3dpttm+9/ub15vrhow+vz2F+44CBpY6sSlCuV58cHN5Ipdfolqk/fPn2LtSnl+e+a5hZqp6tt9ncYXfg2nYCvLpYhuDa6QKBSxEmG0tezKZoIEWKjhSUoks1pazMHhwbAhEZWj8Mbg82pYKomKFIVWBmjmEvvRlrdc6lKk8vrsNkNtZS1ADANEfnyfNgPudcsLQxqmnOPSIDciECIiITqwYy7HazrvOOdZffuP3SX/npr/p22ufK6Prr6/efvHexud6llESvN/2uHwwZFbdjOjg9pl1fSUxtMpmUYYjkpaQmyicPniy3u8XhiRSKoSlaBJIbxk2cTVqKuYz7aLYQnIlBsXmcDmX0PhZJ49h3TUPQ52KlZgAg37gIqrXtfM5ZNQHwZrcCAFJzgcVBzimAQxWHRORURUBqKSqp7SKCjOPgOPjoEbVU3eViToULMxpDn5IpBQ5MwVSrGpTkvQuBxyyoZIbGoFVURdjIgBAJTNTS2LfNjNmkas6VHQbPqhnMOccvKMdoYFKkmigQmtZaq4J4jt4HIleKlFIMUQxV1LcTNBMdRUfH6AiOugm5wsy1AmDNZbi4vmoKNS40XZvHoaQRAUTVGaPpPv/OXvhSMhqo6Z4FfXBwsAeS/cN/fQD+UYjda9JfFNAMaD/mP/1jQUyGzK6WQqyeadcvj9vpL//0a6QKAOSoAmwzrNf1cnlZ8ravIdcyDOnZ84vNZlOKXF9fD5erQ5LLet34OI55sTg0wMbHRNUkLBYTJ7Ld7X73d/4k9/XV0ztHfAtG9MjCA4ZqaMNaGXwaV1MHbXTTCEhD8EGtn/i4Xqf/7v/2Wy/fuX3Kh4vD2er+k3/yf/mv/oP/+d8Ls2b/CRLRPmt5f9FEhLg414jQjVl99W5cfyjOIA2XXsvpjVuOTaupCjkGQEPPCKZapTjnBK1pvFU4u1rfvTd/++2Xl1fjenMNAD4GADUpXdeF4PZzfR8YhFk156oAhkqMiFi1iCqzmx8cpGGsZgqIgIJIwKhABHlIJYMokKuIxq5lBxxDnExSyUMeQnSCooxFDZkRHeRsCECGDtEg11wxOyRi2HNFiZDIjDSXFEOsZWMwZQekWAmQ6fjw9Ba+4Nhvtv3R0Uk1LSURAXANbQDCnOu460seTLMPdjALpzcXN25MQhN3m20d0sHRojKkvjcz7/30cMFmoWHqfLI6DleV+svt1bDpGjczhCdPzo9vnGy369lsSjSrfX76yZMW3fLyygjH7e7s+eXs8Ch0s8OjYxV8791Ht+6eTufNo0ePqtVey7Pz50eL+Rv3XgXF/mr96Mmzz33p537653/h9/7w977//nsT7+8/+Th1YX7n1mXJsu7v3r77M1/7xVs3T//4t37/w++924W2ZF1vRnTUTg4mO/v+e9//9//9vzeMu9XpNeT6/OL5tO2ePz/fbnfEk8vV+K33/8gTS06euWkChbDbbhsfnj19cvfu3e12vd32SBS7djeOeRi81ZYZcpZSm6a5vLz0i7mqhuC7WQNkl8vlZrXOQ3397uk49uPuglHHcatECliyHB0cq2Wttus3s+nC+7gdeu+9eaKihOJUmiZMJzeDc478dscxMlB9+ZVb3/zmt588f/zv/Xt/58HHj97/4Lsnh/e99wm0gr721tub9dY1jffTL73zla9//Y836+2Nm0eLxSKnHtHunZyMJc1Y7r7x0rOLJ4nqJHrBytxEzA03kdqL68vTu0fr8cn580ft4dw3PvXVyIj91fX1dkyvvPx6xetex87Fozunn1yfQ62OAxJMmlku0td0NG1KP6ZUUuJvfPfbv/ALv8AIwXvvY06ZiBABHJUxQyFH5CaNKqw2m4Go9YGdG7bbEJ2DUGvd6wIAzHnc5yb0Y980jYE5z7JLj588KJaHcQt1YBMEJKsOsW3bGCMQSUlJq4uBQxxTEVHvHIABYNO2mhOpYNFJ07Zt8+13v3t8cuv8+dV224tI329Lquv1uptORkmuibkOAjKZTJ9uL6fdrF+vOo+XV7tIccwKVsbNtRE3E6CoCY07tNAqRMciDSKAqaH35IjNFBHB+z5tnHOICKZdG513iDT22TEAYZWR0bIWr5rSEBDZc7GSa2m6zoGDIiboKZoZqBoOuSYhBWJw2vdLZvaBkGxMQ6rmYkPe1VpDEytIHndi6MiJIRh7QMQqUokli5aaABmARAUJGb1z5JAYCQiJqo1IBdFcdA4YihYAU1UEUzCRTOYQzTknNSsqVEAw8qgVSsmgiABAWHMBQthnSKBVLVUK8aLKrunaLD1RWK3WTK6J07bhxUFXQYiFg42rfnN9dUvMOYewV7R9lgOMZmAvjP7Ve29mtda/HPq+WGoAPzwCvlDZ/HDevLdx+BSG1Qw8O7WqIm0TEES1miEYyShIduDdwYl79fgU4RSwqimiq/LWmGutdbcbAOBK2u16c329Oj97vu2Hx0+e7XZL9O5SdjUjusjs33rjbdmmyycP/+pf+emTw+53fu+3Hz5ORY4K3YZmevfOTVeeeJLN+eXq8uJ0FiaWat1N4uzoRlOdX64/bFpeG0wOp0+329/47d//G7/y1/bXaG8ctpdv7TsBosykoERIb949ee/95xFDjKGtuW3BwAyVP9X+Otg3QfY3RaZV2PladXm5SwkPj2YH80kaw7vfQJGCgRB81VEAkayWKjrUWl64zzAX6bPk/URfVVSBgbKaGhs7IkZhExWpWipYLAIGJGpEtFn3OxDT3MXpbHpweXGGZLhP0NLKLmbkwqCCYiBgQqok6g0ICUEAAE2lCDAgiJZd4tHGQTYUkcEWU+smFrxGc1WsbSeLFEL0pRRwjUgpCM7ROOaSh6ODmcPQBARFUri4eBaaOA8U2q6bLK6WqydPnkyOmqZpVqXfPR+1VFG999abs+Oj9TU+eP9s0Z2+/VNvffTh++fPzzsMF88v+mf5nS//9HbXf+eb35nE7m//rX/3cnn9u3/4B62kIee0C3W9zYb9OFxcXd68dfrOV74yWxz89r/8FzduHN+YHaVxePz4KRGgMNB0KBbb6eGN06s/+aMUw+LWjeZgQY1ryI1wtXv+7Hd/7Vdv33kprbak4pAdwfXyYrqYzueTzXJ5fvH4H/+j/7NjLCUFR4eNk369Wl81gJM2Pru6OL98HkITkGMI6363HEcphRFU6vc/eL/WTN6VWjePNk0z7ZpohMNu2zVtNt2lAWeTChCm3fV2yT4A1fmitZIffPK9SdRbt24eHh8WK9S4djbtx+Scy2NqQtt6D6KEPKT86quvr9brbjErfV5Mptv1ygXm4FU1xrhetQA4pvXhyfzuK8effPLou+995+e+9vMVZTKZxeC85ul0Wna7Cbu0XH981d976c7u+rVJcNurKx+wdSECuew36/6jq0c//wu//A/+F1999zt/+vjpR6X2JycHuYz9qr8YrrTI8a3jg5NXag7nq8cznbWzptQ65hq6oAIXF5efe+v13/zt3yw5zBfTz7306uPHjznVpgnD1Sp2rcVxsxUtenR0pEDf/NM/CabvvPNlJzDm5HwEBQUB5C4uxLSUmkpGJvbOOVI0saogVTUQm1YAJDUzA6nOO0ObBHIEChbQqI6HM0dWR5MCWmsJvgEkQnIIeUzonYE1k46IODbZhg4RgIxYqxDopJuMw46dj+zXy9XF2fMnHz+zimMufU7T47mfMoyapPfOeTQXnJDbbTbA8epyN253I0sXXMXaTh0gBjooKq/cupM1rMYS5ouC2M06dzKdjUPWnLwjRw4Ah5TRlBo25wUtjeN00hGVp0/Ojo9uqdJebpvzaIRgCGLRxQCUcoqBiS0QjOOIlZqwSKk6QEQxrkqCwRUgM7YR+pydoTd03AKxGFilmpABVVTNHHKMEc2Zmal6doaoKGBVEIgdEe95xVpVFMG0gpporXXi2jzmUqztOvYul2qEqkBOibyZiZRaa4xRpMYYyXOWgcnF6E3MKlWpsWlDMEJWxiqGKggKyN7zWNJu28/m03EYu9jMpvOUZBwLmNus+8Jy1E1KqZvV2hGWWhkAxBQAgeFTKTAaIOHeheMzB8p/0xb0Z2vfwNi/dh+e+edNtdBg7wdCBGBWizDzi8wowzymbkoyFgJ0IRbZAplUQvP7vTGbYzdtnQBMp1NCuAWGdzqAU7DPE0EWKLm64O5vtsvr3W6bH91/mnebrMnCeO9W89Pv3P25n/uf/tf/7z/+p//8u3e/+IXDl1+ezLrj459+4zYMm+Ff/De/tnny7ObRQvsNqpGmlreLk1BUwIi4CQDDmJ2jkqtzDgD2gPeiD0+kSkDgvILi4bxMQyMVTLuDQwM0qUDMZtWseiKTfQySsNtfK0OAftsPu76W+dPH9w+Pw51bhz6g944Ax7HGJtDePtbEOUZSAJMsn97lKAAyEpEvUlPKY7UX6mM1KMZiTErMKRmRIxdKKW1kNCC1NJZSd/N5N4tRoRATioIAKjKBMzYEVSXVPVXRM1cFVbNqaAQAoICIQKEgbse07odZ0yHz7GBey3B2fo3Q9H1P5ERtHLP3PqWeWNtJt//zCxQiN+cXT88vztq2VYEiuQDs+nzvtTefny0f3X8ybaZfeufn+n59vdptN8vGeaT45JNrPB91B+POzcPk4PDuV758+C//xW9BFkaEVD7+8HHTTRazk9QP7733/htf/Pztl15eP7t/ND/abcfJdL7pV23bntw6/ODB+xfr5zmPRVPKg6k64uXy4vDGAblADb333ne++d1vjzaiM2y5Brx4fn56euPOvdsfXl5SsDys3//2H6HodHKwXK2aabPZLieTOD88WE+bcRxBhqZrG6Gh36IGNih5bJuOp/7icrhxNAF2Zaih8cYkRi46EGVyJjCdzKsWUjg4vmMYVdUZJkfmPAaXc0YiAjYAH5oKFRVzKo1zzP79B4+6g6MbzXzSBgo8lrFrXNc1bo673SbnMYSwWY+bzY4wtqHZPLsupdw6vrkbRnC8Gfro+frZk6P56Wq7E4Vq6rtgDN9+97sK7stf+rmPP/zgB+//4PjWjcXB4cX59WzSrYdNzfL06f35tEv9crfbzWYzVa1F3bIxamvND35wP98Znnz8/MGD56/fe8XG2F/2NWl0ULWeP1/eunWzHtuDR99F9kEttp13DrlZr4btpt+sNj/1+Xf+4A9+JyqfzA/pCD959rRPyXnP5FfLTUW5fffO880ygn/p5PTZg0+Cxa/+zC8w8zAmYEBCYDAVzYWBiAkIu6YV0+12G8OLSVMxk2qqSntXXyIpUrWqohQxs6r56uxyebncDrsqY86ZQB0DMxKwY59RvPepADOXqlZ1HPN0PhvHsQnRmIdd37atp5adV0GK/tnyPI3S+NaUhfFyu+6CFzAmlJxW1+eHh4er1So0MTbceG4ns4NFR6yTbuYbV2o/9GnRTtpuUrbjbNIVYQTdO/QQFIns0LlUsnpEYjOqe26iSjOZOsea5WB2FGNLaOS4SK2mDoMntgoEMJ0c5uvnaOicEy0Cho6EsYBWM+8RHBUA8ZhFFYJrpkgVlFTYYwMVrErTNEUUK0b2iKK1WlbvTU2BaD/iTFIBzJDGnFTVx8bAtAghMTERgTNARoDg0DMiFTBhp+CcCbnga5VSi4g55733teaUhya0pRQxcc47jMQksj9LQ48eSFGtCqMTRVNmnKjodl2mk2lJw7Aeq+IkzlI7Wa8up90h8wxklXbjnnGOGkzVDGBvcgovYpL2M2lV3cPJZwXrv1Ed/Jn/swEA7Q0p8c+zqT+rfQGgFPHOOefEFNEJADPEzomCsHjHBlDqNEaqVh07JEPEWrXkii8KTyu5NMymii6AqaQavfceVeT12TQcTBHAvnSKGEwBCQwLqlmR/+Bv/dxPffULl8780fRqmZfPlh//wVBtgOwuN2m9fBwtd85NYtfWIqsSYkSjTMP16vkv/ZW3TLdmfn+zAgB74danJT98eo7ctrZoFsukRRRqbgIyh2oAIkyAQHufSFNTEaa9GBiODiaPHl1oWUfubKDrs8thsyo5T6fz2IbN+hq7SDQlIpEsKs65pmkQrYhzjhjBTKWoGTAxO6poYkCGTOwQmRTZGA2BiUxzVlFv6kAcoaMq4/Zg0vSjIqCpgQFWbgIDakEgzaTAgKhogIOgCYACEhPtb1WBEQRrHkxToLYtRZeXIQ0wnRzMTm8Pw1BqvXXrpVp0vph+/PDB/QcfYkUEESkZgZzNp9PPxOqxm2guReDjT56PQ+ninKttz8cbN0+Dvu/jgSOQCoFj087VDQ4056e/+Ru/zhBNfRvjMAxHB8fjkLrQvnTz5uXZs0c/eO+D73+rmh42BGYksltdHRydINSDwymS5H5VQKiBdV43PmqVZhp3u9Xtu5PYHT19cnF+dW1pnB5MT24crjbbm4c3utAm0dtffPP52VMdx9P5cePDdtsfdrPpfPbSnbu5yPZ69/Ldux9//PDo9CWpeTGbeOY6DqT2x3/4R2kcbtw8/dxLt77zg+9thzpdHAKA25sRIbWTbkyDb+KYemRsQjsOubcspUbnoYoodU1bUWup4kArmAkiInmCac0W4yRpvf/xxa2X3pocneyGbdtOaxl3q7HD5vJ8fHzxvJl0zvl5d/PDD87m3dQRXK6X1J5bdNcX18N2NXM8Cf7J5mIstZ00Srv1dtV1UyT3vfc/eu3Oa+fPl9tN/vxX7r36xuvb8Y/Ory+FdDF3Wm0o6+j8dNr2fY/k2LdUu+BpNzy7fP4YNZ3MDy7dYvlkqDN8/eV3Li7PmIdcdsQeynD31uFu88qzZ09u3OqC5zzktsWD2bwUub5c33np9tufe+fjBw+phlduvfrs2VVfRolUchEzF2OfhBWbGBvyV1frq7Or+9//6PTObXYgtYZJk8pIDqyOngO4WLTmnBA5hACgvokgqqrIVKUEcgAGris1K9QsObADNedjGuDibGxnM8bQuDF4BK0kCCDsWwIILgbfEENOOxScdQvnHLUcvDczIjZ2zjtD9E0DnrbjGOdt6qsPJFXHcQy4mM0OLs6fLWbd8fEhE56eHIYQFErgQNT5GHxsfTNtuumjpw8NglizWampS0PepfHg5snq/NJdDwM79N6JKYAVFQ4RgLSKd6RQLGsqhVQR0aFLWrRqrUroAIiZwQAEhj6DeRbnGPq8NysZ6zi2oZMxkzhVzQDVTJS8YxUAQxMgQ1PYW/ehUdtMmYydEUjRsdZa9zNTNAWsZrWq59g0zouYGYxoZlrQEMyTiAKZGewsWbUQQvBgaFqkVitVcy1EzjlHBIifVp8MuZQQWyIicgRsFb0jVZVqppUcAlhJmV1bC4yDtNNZzjl6Tn1iIinqXDTDq8sLKYKKpYgqXjy7ggJEDgRR8YVtmu2xUpFI7UUXeo8lP9ox/jddnzWf/xU4bSb7n52PqkqopkYIBpaqeOeSQPQgkLWiI0cAhIIIJgiIBOYcm5nWwo7YezVVBLIKjIaopECgtQZWBJ+GHBuWWtVYxZxHhj74yZjTayeT9aOVY1iMsPz4fPvk+sat9u//nV+4vnpzfb1qJu0u19WQlltdXl15pqPJ5O6NG/d/8D64GdLUe90Tr7z3ex8xAGBm5qxGoEyAzjmTIVCYTRQkBZZa0ciCZzCtYg5ehBOqAiKqVQZ65d7B07MrgCmop5oX89nxwbFjX6s457pm4j0iMu7/KM1yzgQSHeech2HwSFSVgT36iig1KQEaIlCgQCq1VClZkAAqATIYWkUTNImeAKqk7LEhIKlC5AjNFJ36htETiKhqNbMMqIINBTHBvdcusJoVKc6FAA4Gqf0IXWugYogkufSLSXu4mD6/uNj1Sya3XqWah67xNqqPDKBMWGuBWjwTOQKVnK1pWkCWat77xXG3e3bx3jf+5HtoxODZ1usNsV9v88LooF10oa63l0qVAWLQOg7kDA2mXYwMr9y5vb14XpFffeWl6357MJFhKE3TBD9RcE3oXBs3V9uD2Xy6aHbDZrGYra43pUjTtn3qVaVrp8/PnorpyfFhaMLxrLtzdHSrvVskr8bN4ewQZruC0IQ47RrfxVqrQz+Nk4v1ddt1/SZ5H4dUvY/bQfvtehIbzTkXGHeb1rVvv/nG+vLiBw8e1mEjlEpGR46wXV1eMXM19d7XXAbJ5NiZMHFAj97nMa/zhoiYQ8qpa2c1l+CoFnMcioqYMvMPPvpwqONXf/Znd7sdAJARFJnSJGkuPRCan8Y7d1+9cXJneXXx2qtvfPd73/348flrb795+9bBxZOPl+dPw2LmQytjWq635KxpQ9PQ+bNVGtdY9fTG4XZY/sEf/N5e5D1bTLPlfnfJaA4shphzBgDngiggPa/FTZswDnb+7PoXf/EXZ5Pun//Gr/vm5mLxxutvvLNcXn3yyaPry4uHZ8++8pV33vn85y7PnpAWLHnauu32smlaViTBWtLrb73x/gc/ePz8yY0bN44OF+Uq7WPZCMBKHi6vjhcHYHU9DIcns5T7733wrmvo1kt3i8G235FzZuhdy8ilgLIGYgBQEdsXvKoi6pkNwYhVdbMd0WGMDSuJGomCUr/ZkVDruj5VqQaEIlatAFMkmjdzDr5qQcSDyQKI+rFy5cghD1lLjs7lcVAAYqx1AIKma1O/EsEYYeb9lKLWHWs9OZiEtmHykq1rut1uEHXgm1k3ccLDKl9fXru422z6Rbvol9lUEQ0ZHPE47NoY3GC15VDSWGsNbZNLrSbOMVVom2ZMIrV6JvZEFHLOAOi9RyJF1ZorKBpJVhB15DVZ4BjQ0KFaco5cGQWqh4CuUWgLWrEawRFrPwwk4KO3KuAZvRv3ClyGMY1o0sboHCACEeRc2DtiAkPJFQBKTUQ00dbM1PYEFBYANQUwDcFYzfskolqrAnkX2wiaVUHEEHHvqwIAwzC0zcTM+r4PoWMwE4gxImLTdDmPBuLZASCRA1ATKmNCBjRlUmbMUrpmUkSbph6d3NhtMkD03j/55JkVgBBQVPcOzXtHJrL95B2A91Lgz6wo9/XcXwKDPwty+OwhfZp1+Ge2AQABYEQzdY6qFiQOjoqkhp1pD2qBJmaopXoXoZp5MEVAUABCZB/MwMQM0blQVV6QCM0AwDmnJgjgYhAD9IJVoiOzIuTQIAasUv/oV/+4+oWkqy/effXVt14tcPnW3UO4e4hMClYAEpgpiZrV0sTgDH7pf/BW8KxSEHnfM/gMel94soNDtj0FPNcicI0w6/urbmoEVYGRUE3QgJlVgAhMkciZGDOrFUOeTN04+MVBgJw368vtejufH+R+p8aIqNVKKWBGRN77WtRUSynB+aZpNJdaKzEZWK3CSAhUzEBVtCAgAQAzot9bBxAwqDr2UASJhlSZMaWCzLmOns3AiKxqQHaEABm1iAKKggGwGBki0p5AwEjsfNdOUr/Tum3xtPPd9fW1+DqfTs6eXfbr301lpOD7XPaYjACOqGkaQxrSmpkCeRVhJKhgoGZWTVGk7zd37twdr5aax5ObYUxlOp2b0tHhzargJ5NByunx0eqanYIuZNI6RIZdc3BwkEoh56+vVv1m/cbrn3vw8OP54e3ZTU71/vRGQ9ZYcWQtoXcu1EMgN8QADaQpEzEV9DsRZNdv7Gq4NPVd1zryi3ZStz1ienCxdy4UyTuruZS8xfL87GzSdv16p6M1fr5a9rPFHNiK9hfXMgxD8H633jBB2mw012lsl5ebq9n1G7fv5ZwfXDzniR/GvokzK1WreUBEl/qRvY/Ol5IbNWY2MELm0Oa6/2rSSNGSRKSakmNXy8COk+wa1x2fzPrh+sP737lx63bjWs2oRkXFAd49Oun7nsZ8/vQxtG6DwxDw5KXbF9+6WD8//+qXv1KvrsLhMUDKpWdGFzjrICigMF2EEABjKdYfn0wvHlxenD35xa99bbu5ul5dfPe7T5sm1pL61ca54IxzP4Y4cbwm39URvQ+7nB988uFbb7/2Uz/3zu/93u9QU++98tp6NUgpJzfmBwdhvVmeHN5454tf+uj+B43zN49v3LlxZ7cbgm/Sapt2K57iz37tp7779W/ff/i9L3zhC/jheHl5CcE572tJDmi8KnXaQHCcSxrF1L3/AxaGbj6n0CKF3aBT9GQ2loQRiQxA2bQC11pR93Gt3oCAEBSa1sGezsqGBsxUhv7syZOTeRMZKlQFrbUC01iVAMpQkFw1BYCcs+6t/sDVNAbnWc0hsgJUVFXnUBmraM3FVLtuejhf6JiZgBuHjkfKw66nEFWpX14DEGEou2G3HUzy9fX1dH4opsBWVrkJMUZvqEMeJWBJ1TtzQM4UAzuQCqKOGVUpC7KmrKoB2DImkNLGJudkwKIikvexSQaEyEgYAktVAc4mWap3TlTrKBONBN6TtwpzpDEnCKAw1qF2rGrWDyuEkIVYGmAyLhmBYkxSUy1dG0xzYLJARaR1YRqmNRdLdRpb0SK2JReAVIyq0X4Ap4wOiAMOaSR0jA0TmCpR8twA0zCMoipcAUCMPM+BFAy96zxFNhWUKlkRTAqgEToRI0azGgKgH6q4yWSS6wBWu9gQ6Xa8bLqJa+Xi2Q+IZ73nLHi1XuXlWg46hw4Rs2aHnj2LFiAwRNA/W7m+GGraZ6qlH4HPn/Tkfv1QX/RjVOc/j+J7sw4g1f3vTJWRGAQNHJGpAERwaKBgQISKBh5IAVDU9h7TCvsgPwBUMq0EACovHLhw32hHoIKful6/mHCbQzbSEahRgy/97L3vvv/o/oePbh0enWo2yAiUS0J1CExUW6iGnhmB3QutmCM0JPAG+ufPlIgQKoJXA2AACYvZBUIZcz456s1eRSxoogaOohRghArGRGCmVgmYMWSzw+PuwUfrbd96kNm0nc2iQQUmSAIATRcBqlo2VTExNMNq6KTmkkZQ8C4S+6IVTbWIITpiQERvBMjioGBmn7T60BgUSYm9Q/NMHn0WhAwCSNjOcslsWqWOdRNjVFGD0nZBx9JOms0wGiggMpuBVkuOOQa3250bOEespFe763DQmtbt2J+ezBW2U8V+uwuR2nk35qQChDidzcY8NhLn83nqh6OTkxfmBp1nCuwaY6cI83a+Mbzo9fDmAbhEIUmJngN5VZiU9e5yuDw8Pil86aKfdgdBS4ay2q6GQcdxbNvueruezw7mN47Prq82w3jz3jw003mcPfje/dJfQBUiFZHkkwlQ0uflOlkprWPyebPbjNuz1RpiRMWJYF1vQjMB9jhG0b5rsL+6HHNyTRwYMMJ4MYpY7NrGuzpiWV8+fnqWayFu+lyquQoYQlMGjNR49qzD408e3Hvt5ZOTk6fPzzopLpIFn7bbgISlMHOIEyMeJQnAQGilMNSGIxnQvivDXh1WMWVWarJlwR0bAELJ28Y7rfLxhx/evHnStHNzIGRSNuj87ORo83Q19lu8HAGglPKHDz6+devWJOrQP8+2eePzb/z+7/8u2GgayBOBxBj37vRdyzX36+uLQHR0uLh3+/D73/3jg6YhjiLl9uGdxWxShsG0tjGIkjE33UR0aqK3bk0EaVsquHJ5efnmG597//6Ho8BWhnDKbLGVFooZFWjKvc+9tK4b72OcTxF9g64JbQxOidOyvHHj9fHW9v73P1hdbA66Yxj9g6cPT27dcBAsay1qbpguoknTLVrC5pPzj3Ea7rzy2uLYewoVODtf1ZgVqhorEBKw3w+b0ASg1gxMgphUomRunJgoqViO5FqPoWwbLySbGVeyOqgKslgF0WyjrIW8R0QgUFNR8REDtkkzejCzLBmdAzKNIatoLh5dnAQ/nVoTQRCKKriSZRQr5mQoKqJFHbrI6tntLld8OKduglbBCTuQsc/JSeVSR+cBEhs2tkGHZlaqIyREtTqKKrH3WIYcPJphiLFKlVosstTKzqcxq4lzpGrsCQDZ+azAk1irrNK2aG3YOfQ+dqPwIL2vBVQiE5pgJU+eWQ2sWlU1AI0+lFoIg5iAASASi2AFRtHUV4lNp0WXwyayQ8SURkMjokJTMN2LaohIERRUVRxB1cokDOoZSjUDUqMkhYCd96RqogDqgFWqU1fEpOpQBgT1RPuJWjFFZM8Ogapig3G5Wi/mFNqQc841Hxwu+r43saad1IJ1tDZOAWIpyTOUmq6vr2/dPRgvN03XOnLA+ysWVNXsBd/qJwxrf1In+S9CX/hXdp5/wn5+eLj90X+4a92bfct+h/s2KxjCj9CnP9vJPtiJ9kNlAAAjQH3h9Yh73y9+Me/et9b3YXzkVQuS+9rPvnnn1uFJVyIuc1m8/bnXgYAcM/OeG2z2wrrkR5eCIu3H3T/hrNW8ijoHRdP8kP7u33tHgBCAZX/voYiI+7stBNXK4EWFAJmDgVSpzO7m8fF3v/Ut0NnhpJtPprvVbnl13cUQAvSbkpNaE7z3asUEVM0U+nEwxeA8KEgWMFXDnGR/7moKAGIGKqJGYmaDZyplRwbBa9bBOU0ghtUIESHVIcbWBMXARFHKLHRVhAtkqUkyuTbGJg0DeweOzExqVRMQSZpiZGZab5Yt1Ml8Mo513K3nR8fH7eLocKGqRWoGHUo+Oji2Ks8vL24eHexF1dv1jogODw8vr6+KWc65Xy7RqOna+48/JuYyGaBbNM1BKv3YlwePLrZDznROMWYdID89mIUvfuHzgcP26fMnDy84eG5crix9ruPq8vz5nrHCwV89SM2NMMYBkuYxlTr46FxwOmTvIxEbWEsNVa1SFmF2fb3s/KQYtq5pXIzElmtGiT7mIutq6rynCIRFMqgPKOyjVDy7vlivVsvLZUopti1AqaQVJJXKABxQtKyHhB0Nqcb19uTk6O6d29//6CPyE2+9D+wc5VyNAL2VmoY8hBgRDBBMNWNhIiMTNbOxFgMjBKeoZuLYkMiqeAyIfkwFLH7nm9//6le/2jA70Eo4ljSWcX50vBt3r7/99q3jG6AKYCJCrgV0s4M5YD49vXP1fO07riq15mpYREuhNraeuFetxa1XycfZvdcm6rBiEZTTO/e2m+vpwSI6GIadIYWuG1LqHTkireIcovNDyU+vz6eT2Zfe/oJWaSdtL1v2zOx3qa+19OdcZDnWJis+vdjkYQQzEy2lWJXG8dNH90XklTdfGsuu1nrrtfkWFucXz6fTOTGO40gbssmiCQCldhOsaA+fPMqgn59OmqbxJKmMWHUymfTDjpFqyeyIwBfdj8+w1hpCQwZkUBhSGvezdhUoDKvV+sl6PYjWkkod+jpWBjV23oFABTO0QLgdhqaNzCxah10PkapVM2Vm1WpWHYci2RS890WlX+/CXp8tqrXkvhYRQyDvmJnEpNQiOTjG6GJoxlrZ4ZjHIfdN8Kg2pBGqMMJi3gVDqcWV7JR4H2DnTEWUUYkJUAK5wM4QRKoCgYubsSCzdygp+8DMpFCRTaRmrVVbqkXQ0HNgJnSlmApUYnHRrHgUiqwVhn7wBkSYUmFHZDqMO8esTFVH1ICIYOSQADRXqEIA4IWJnZEIeWYyxWoucChIpSQidLRvSFaFqlq9I7LssTIAITA5UUNlIExjduT3ZDEtyp5BDbNF7yfztkgexr5ocirOe3Qo1dAhEWlBAABRKwrRDBE5rrYJjZumG4fcNHEWD55fnYcmMquSIMuTp4+O377d931oIjoGxPwifBCZf3Kr+S+vRPrXW5+lQaB9Wn/bp8YgewvLF1t92s22H0ffzzZ+8dxnnG39bD8voB1eGIJ8uk9jJFEhZgRpgN5+6fhzd//GdrO6PtvND2eAuh+KEqGpEvLe9BgNiOiFxcin1+cnXiWiF3YjDDHnQlSqWIwNGJScQ2BRsb0c2ykYGCjaZ9QtQlQEYIdf/Pzd5fWGLS+vh7ZpPPF0EqUfEKpJFUFk2XOh9/oF17SWayA2tIKlHwcDjrFNtaiqSdnrs4saGcF+8oc85oEAXPBJBgAQVXNEDgAR1BQEyETETBnrWDaOeDL10FfY1mLFh6akJCJZRUzhRWAwhhDbNu7WOyKi4EUKEUxmrWHdbcrls8umafqStnk8vHFy9uSDcdef3jp+/vhs0++m0+k4lHYy9d18U3R9tSl1bJoAUoZno0gJs7DLm8dPn5zeenV5OdZiq2v8qZ/95b/zH/2d8/Xobfadb/7hv/hnv/lHf/zwC2/cSyOfbXYnNxZ/9Zd++dbpze+/9+7v/tZvTttwfDRVVCS4fr6b4OZivAgEVkYXEJ0oqTkYNVcFBvNEWuo4JoxaCxSp4nwTJoSYJUXPaSwZUJ0T9i5Gq9VqyaqOMKXBxRBj2IzbrFJIoQ0JNckgauw8eRjLTkqJiNH76z438+mT5ZoZX7v3ymYYnp2vIlqyIoYWTBFS3ooBMAFxqbvgnCOHaqpVAGXv7k6sAGrChMgEDFKkSm2abrnpQ+hQ7fn58oMPPnrz3svT4LxC0brLwyuvvZZzPb9YPj+78sS5311u14e37zy9uBrL+Pm3Xj05uvHwwWVanU+n85JF1VIq024SZ/Nhc/XWa5+fzw/SuA3RSh2rYtO14LHPOeVacq81AWify3h+WY3LpNtdXbWFWvaxbXtVjP6JnjcGJuqW5lp43o+a0LNHRzm9+AdfD5vgdkTYxAhmSNy2wUsSU42YtZqH3WqwTT25cfz06dP1Jh0cHS4ms5LC7px2bjg+Pk6jTqczI/3k0Q8Y6xfe/lw3PwKjdRqdOnWUcmHkNNQ2ktaKiETOALTUUZJjb2RFkNgZgDFwbM43H59vlotJu0s9BudiYyhpzCjoyCOAaiXfRYgcWFX3I95cxiH3yi/Gf56iaRpzdUYQGkQmclhhs1obKjEAcZFqZY9IwRGhYyWsUKSoQF33gwvsSaNKy65WisGbt1JSVSuWSzYGdRiAkEANGR1wR87Y5SJOXMe8S3nMg2tJGXdpjG3LhYFaJk7joMoIEZBVFcBJFt84tz8rQ89OlaQWRHDOEQAQu8Z7dOyjSQltVyUXSS6G/e27D3FfjoEooDBSGRIQhrbLw44DMWvRnbL3bRjHkkeRwCLZEQuamCIikbFDIkJzilZAiwAhS1UEq7lKUe8RhGrSXIqjEEJwDvs0DlKAQVmcZ5Vacg3MUpUIgKIa5dJPp52a5KLRRyOXSg4hqKALTSolNE07O8hVVUYPMla/Wl1SKYvFjAgUFQj3uAJmIvbCt/kF4tmPgNke4X70t/92UPlTDKO9S8ef0Sl9poD6SYf7s4mKAEDww83sh+j74uX6qRGI4T5RzFQKB5+kEjMBjNutZ7eYHc+6ozEPYvspsr3QSiGYCr7wGPnRA/2FA3IRYTYRI/TRxarDJDrVKmbBs6kRBgMUMbXiHZlVRIdGqgZkjljBSkr3Xj65fXpsxTZXa+8xS641ECIxNo3vJo1BrqqoXGutprVWBqk51VrJe88+jXVIxTMyISLXFwxOraCqmitLzSLiwAJRMAawSH5XE5FDxyGgSCXiWgRM93ZpoW1AVSVNumYUBCLvmyoCBCZiZgQsWbXaKEMbu3HIbjeUIkSw3m1Nw1Dj4dHpbHZ4YzI9v746O382DhUAL683IoU956K5gI52tUmbQYuwi9O3v/j5htzD9z5cXi6xZ1+mmWS3WmqSfjWy8P/or/3y137+rf/H//N3V+XJ/+4/+Y/u3pn+F//4H9d83frm7undcez/m1/7pyEEBoNI6qAfRuccofG06XWMAWoZm47HvGMIJtpGN5QKZjmPtS/TpvUtD3moKILCHJXFd8242wJq5rHNruYcutl6eXU4Df326mA+qXmg1o15g8jDuF6ut86H4GMqdU++IybNFQma4B2RGVBoVLjflSflbDF//Z0vfPHy6verjQrOgGuthqL7nihiZXbgiIhMwdARe+SMpmqAvLe7I2BCZYW9z1rSap4zSZ/zjZdvPT57Nu+a5s7tvOm7WXd9eb6YzqTIw48eDjkd3bxxcHBydHQTa/7yWy9fXy0ff/9BeAOoG8bnm9i4V+691jazEGII4WC+ePDwvhocHs4ePbzYbbbMXJWuzpfAAJoYKoNIGYFcNR6VkLm3YdYsrAwBG0gQ0W12g48tRzPTiydPjo7mTlWVPLqJbwYbxnFs2zhvpjlnNAsIWWQWIqqIaYWK5KsJOje/sUjXy9OT2194/e37Dz9O61ppcJDYtmHWnkxjllqkWLUZdeNFf95c3nr5YH50eHB4mEp2jlQSo/qAWsWzU7CccwihaeJuO5SaG/aArAzFdMxjy3G9vnYMUjOS+sDDsCugzLxnjQQjdFzrWLQMowCTGgQER9g0ASOoSq1VrJhQIPLgSsqK1MVuEtpU8zYnc0BUfPDkyKqllDIiezKHAw61aGy9lQpY2SyS4tDTEDmyBlehLHOqgEKoMjqWqmCjlci09w+worUIGjFzSkMIHGPo8zCJkZl2203XRCLw7IoWRBS1Ki86eliyaSYAIwGOZoJQwcBhlKq7VNumIXI5Z0+h5lqKWiXvfanWuQiGVQ0RQVVEJ5O2JmVkpwGiqVVCBVQCChQU2QQ9ZEFzRGpmYuSJmRiopKxWQxONCCnkYmrFqgQkbiIIpLEQh/ls6hyMw26UVMRCbNChKgAZIxIgCXokEMU9T1nExyZLDSJFlF0g0hCClOqIPNM212W/nR8cKfQm1o/9xcXFsFpPF0e1ZufjXoELpkxkAoCfpQfuG7n6WWDDn+9L/3+PwT9iRSlmPzTK+jQdF+CHHpnyoy9E5B/u5Icbg73IHv5s0YuH+NmmPxbrRExmsi9nNWvXTQkhZ/UOYvQvRrlIVapjBrV90xgA9ldmX7vbjwP/j659B4mISlbniZnMRlX0vlORkiW2ThWA0UNEUIP66RmhmqpWBYueX6SNOrpx96A7aHJNYtOUREQEXJE8pk21ikQAFHzjGLBQbLyNsktJkMkFRJCCSIRmKGQGTA7BEFUKIyKTOaKxCDB4dELsjVDETAmtpMoeG+eVasPN3nzNzIKjKtbnZCypFyNE70BUanWEpGaCaiiEIkDmVlerGzcO22aipgMJ1TES90M+vvXSxW7jQRbTg2G1ds6ZVUbSmqMP42ZgBES7urr+5p9+o0Xwog6F3CTiLNe6W5VpO+dZt7lY/qP/4z+ME713/PLV5dOrR8vHH310ff6Jvjxt53417HK6RKDrq2UTQ4O8bwaIKQAl2pGU6eFBf53JFBgNAQjNQa0CzuJhCJVbZGQvvUxz++zBo5t32lfunEYPm1Dns5aYm9r0Q3GxOZr7g6OY+2bRxbQdB9TtFuIknJ4e7oa+SC15n9sYSymqBmaMBAC11lrUs0vbfHI83w27h588fuO1N9567dX7zz42wXFInnw3mVQ0AUxi290usAoBKe5HWgbCSC26DERmzF5zJgappYmR2a/GdTediJRJB5vl2bRp33v33XnT3b5xs6SxzVJXy5Mbp8Px4fVq6SQdL7o7L738nXffRcPPv/m5+99/tF0t33z15e9uVtdXz2/cuNE0zWq96fs+371zcDJ99/s/WPWbg+nMB7g6vxiG1E4nIFXqzgfHoOQ5pWzIjMFAZ4yNA20cIWgRTzTnAAay3jaNv7M4bGPc9FvXelMZ1+txXE4Xc8Lc9733XhU0V1J1VTdpCNMJW5dridSISZWSUjo/e3bz+Gi9ut5st6jigVuO/Xp1+expnE0UIDjH3m+urz7cjX0qb7z9jusmUqvUHqSGEM3QkxtzZu9CCN77MWcDCU1Iyx49mQESWMmShtXyDLAwKGFJYyY0Uig5i4nnAMEENddsZDEGIyxDGba7WZh4z+PQm6kPAY00g1YNDQMhIOcxFfbsmYABQK2WUgjYFBQUXjgwyqbsALBw20bHUksWNgLjppkKGKHzoamaqokP3hTdHIgc1goKJi/MlMA8CcKqbCvVxjUlZRlLbAMViI36WKVUIhMZPSABdW0zFkZyAJUQfQhFLWtC50pJTWjFVAUb3xKgVnEGzmi3S8EzE+Y+q+DkwKcxCzomtqoq4N2kDQQAllFCY1IQJLBDURuwww4cK68RiMlnUUBgYBADs2lohjRi5YJIwZWa2hAm7AitZhGFWTtVol0ax1K9d+aKq4CmWqxKoeiJnVZB80wkFaqhd8GFyZirGh2dToc0MjhmHIfesVUxNXFNkyWnkg2ERfKQCXzaDt5lJXPT6f5fXWuNPpgAIX8KwJ/h2J+tg/8trh/qjO1HU4N/pN41/bPP/Pmd/Chs//hOzNSQCED3fmr45yp4glqEvTNACmBaDdBFqiXv82L3vmM/iq977DczxBdtcTP7C/D3hRknsw8BAUAtmjrHrFoRODYe9lUysJFJfTGDRwRAQHuxdyJSBTFRleD8dD673mxPjm6IvrA3IXQ+tmTVzEwgsE8pbVfbnCqxR1RVZQepFFDPimYsFhEUXhxCOkTfxFzEORqHfpfFeV+qhirswLEjgtA4EUGCIeVcip9MUhpjjJMujGXrGNG7bhaW61UbyLV+uxoUgdlrKd7NqyoArNfrybQpqQb2KY8GYxrt3e/9CXEspsGjlbTOwMJiyTsYa4ku7q4v2tm0mXU8DQxtQCmbK7PsmriVHcRZgNhOpi62zPW1t156/MmT/+R/+7//4ju/yFX/s//0w9D4L7z5+d02hUn2B9Pzxw8///KbeHTaRJ93PZhI2yobOZoBnZ7cWF1dg+NcKgV/dHraNE2ydGRWQUJ0lErZ9KJ4MOkePvpe58LpYnHz4KgJeLKYAWitakyzrqrYwc0bfd7yZLodE5oruTfD5dV1LeK9T5JVChOZVJTKHLxjM8hj2isSjYQZ1tuVa/Bytbm1292+fbpMm+dnaw/OYVMGSFqUAb33zlmtDrn1jtREaq7iHPsQVDIgsVkuEtgreVSsNTc+QE01DY7BmzrzrXfvf+e9+AsTV8ZFE3bXl0oY59FtzXbbR+9/69nZ4xKmf/CdR4vpJcbw/MnFyfTGv/NX/+av/dqvf/CDDyeTZwrmvX9+cTabTS93uxOOh7du7FYXJ/Hmk48fD2njg3nnEGHMoyNjZwimUh3rZrur5CdNl61SoGG3nbZTqYVSyXkwE6ratOF62CDyJMyDTFKfFbWq+oC5jiEEAVmnxE23yokpOmxYFUWb0Nlcc0qHNw4PVu3V9vEkzqTgbqhxvrhc7qbkDw7matV0OLoxfX55cfYs+xZeeePzngIzaGXUoJUGGFPKEUnNhlQQzTOnNIDn6LjUBKU2iixls1lvh1WIbdPG9bZnwkjsYzBiEx0IRUrKSVVmOEWFhhtmGVKahw4rIJAzX7IREKLmobjgYwybfpdq76mJTMxBoIx5LHvnYCYgUFQzCBQROY+lCWhifcpVXROng4xmBpXNBKRGkda45uRYgc3nIkamhgqGDEAQ22YcR9d4A6jVkLwKqwD4duzFo2dAj0AWRQzVWcmGtbIgklbJpQhY68i8d87VJKJFFcexmCl5B04mk4larWMJTdRc+7xlz0lGzx5AwUGyjWB2zukLZqwEhwQVEARH4IbIFxE0YBPUFxRcUgmEznTqPTGZ9xkUSFB1rGN0FJwrirWOFVwIoaj0466ZomMK7D4VnJESJ9EQGzBDJqwYQmDviwE5Wu+umm663lw757o2glbHAFiHse+6JoQ49Nmz59itNyNjM2yTecZtwsjsfWC/T4Cvuq/w9M/g3b4m+zMt6D8DeH/p9SnBCuCHhfVnuMs/aeOf3PX9M2/m0+b2vmUM8CJ2wj7bEhGrVuccApZSyIOhmRmjRx9VFYAISEWIX6DsPukTP7PW/JG39Bct50KtdX8eCIQMYokwqCmampr3bGCg5ti9uFHYy7NREWHP7mcMyCDVVKkfymQyJ+dDCOw7MgEgh67WikpkoEUbCDU0UnXIqSQxQyBAMtOqyMQU6QX215pJhRAcsIGYADsDQQFVlc5zCK7UQaoC4N6mtAlNSRkAUgVAJeeYQgyUSu3HFELo04gZ29k053KxWR/MD3fbEQhijMO4beNd1tL4uM81YVK/iMCw6YcQmvnh0bjdtTxDVwyyiAU/MQjg2TlKOdcyHE2n09u31TJ3zfWw5TZ49ENa+gYK6fXVw9fePv5C91PrzbOx2ud/5lXRYdHMUp9yHmYhvHX3zvHRATODWmXXxWAgSqaMZnG72ZzefMlBPD8/P1gctHFuKlEdiKy3m4u0i+S8+e1mXO6Gxk+tbnfr/OyT56UOROi9H8fkXEBU01ofl74fQdGqkEGWbGbbYRxrBfIxYq1Vq9QyEJFaTtmAEDxU26dSGSJ2LqhQN2m/f/+Dt99480tvff766R95PynqsqhrJ+O4raUPIVaHClKKeCRgZQDFmqoJCBqhAaF5JnNUTJMI1L0xPtVaDqazmqVtY871ybOnd24c+sPZMOx6LF/7ys++D/jRu9/5qXtfrc5fbMY5ucbo9r03iOjmy2/ee/3Wzy53333323/zb/51VVUpIjKbLfpxd3x0M8b2/e+tUHVxdPD8+TMCYKTNdkeo4vCFcY2BlDKN7W43bMq6jW0esmdnTsfcT2eNYmVANaQQg5NJO7URjGk6m5Cnqok9xSYBEwA4bhSsNey6aUrJEaRhjM7fvHUbkY8OT84vev/xahiTQ4kzVznlmh8+eUju1cV0ul6tmP1icbhbDQ8//Pjo6E5om2kTLNquX3Kcet8U1T7nEEIMEU1MKhpkK6AyplFLnU06EUWDNjYYfZEM6AlJShVVZPCNK9WYffA4DrtaJXAwIFE1pCpAEFVVi9u/SgWQuGbxLjtv+yEkK3JVKRaAKToDSLWoVmYmABBCJBGMxdisMBJhBRthJCY2I8Bp9Hv1UcbqKlAttZTahhgQxzqIaYjOJHnGnEtVM3SCBBSHNJ7O56u05BAkJ0YHAmBWa21AiygSKJIZxDhBU00jcTOkMTjXNLHmkmqaTmZVpS9DrbnWmkptJzMMYUgjoRRDUwNEZt6mQUvuXAS2CYICeIJ+2CE58mFXdlqJ2DySEFQoamCS2YyYNWETfB56FDeMowveDFW1igXXOceIlMbqPIfg2LUivalpFXRsxWTPpvSctIhopJAly2B5t3FNzALcClUMHpmBQERzqeKDCw7rOCwHmk2aWnIa6vK6t4pNNwHHYLwflIpATkMkR9EDAOILLvFfzoLjL7X2sAoA+7L1s6SmH9vg021+4to7h/Bn7/lH2+aIewIW0h5jPxsGExmAVXPkwYzRRBEMDQ2RtCrsw09MiFhM8ccNRj6TG/3FF0pV2TmnUBBQjQCAiRXs06wLUMuIjEgqhvxZ691MBZDNLDgHAFWM0Pe79OTxWTeZAcB2t+4IRh1nU88OsAIikljJKWBrBbdDBsDJZNbvxtQPxi62UEupqqQOAdSqY2MHBVQtAWpOKYTAnqyObDaW0k0OSjVmrFVVIEtBRB/DZrdDxMZ7RMfeSKCW1LWzosJeU8mbIZHzPJkldqP20XulWuqwujoPdhjBAmLTLnLpfdDF6WHWA1PS4hbTw0BzgYGCppIn3SFxsxt3VUsApel8tph3PqraWNLdo8Nu4seMS9y1k0jdISvNptm5EmN0EQQxJwimik2qg6pF32QbnThGCjEq4jAkcGysWmGzqVcXT3abbR0L1vX97983qa7hSAig2zyICFenEjF0SkEx9EN98uzSoIrVGCYpZS2u6VyxXRp6D+FgflihDppZ51Wyo6B1ayQqVUTANDakhlXVQBXJzMxpCKHWWrBudLzRHT0/vzo6aj9+8vHnX//c599867vff7jL1XezogqE87aTUswhiokK7DlXAEYOCJAIFaQKoVWt1TSDKoEiKCJxMMAha8lp0rTq4PHDR5NF89f/+q+0k4kmuDE/xqSlpFde/ql3fv4rX/raly1KTnrxfLfp+298508fn53ffvnevdfvXV48IZSU0isv3fPe59WzR++dV7Gx5KfPnnvfgHAZK/hi7JquUVWnyOxrshAiYJqfHKWUTHSymNZaEXFxeJDVtkOKFDRZo5pq2Tx50tTGhfbR5cWQeg5sqMiUigzDUMUxQh3Hdt6dXV8KEhHPuolewcnpAfv3z88vSabs5hXWBVPpC8eOE21W6wbpcDKDWhyHGLuc9Y//8E/feOv15pXbiOjbLoltNtvJZFLHMeVspo6gpuQJmczAODB5R01z9uTjy+dXpa/naRQt07aRaiWLc0FViWAaupSSjtmTJ3LgfF9EiKQoJZm106FPVTCGWLLGppGipnk/dzKCLClCdMpmzhwDUpaKJoGZgWrK7IgI513bipR+E4I54lR3hBB9AEAwKzKs+96xRcdOMec8cssQS0rFAjqMQ58JaTKZMYZM+3tVqboTqevdxiKubCBnAbWLnhSyDDscwQfCwORQBKsyuyrRN0FVVSsySa1tN+kpb3RovHcxSAJCM6xSlMlAxUuVrF0z8RRqIVSSwgKijkRFdoNzgQmcgTOnqr6JksuYCzl2zhWpCjBAAE7FTAAQRB0pOi0loCi6VRpi7HJOtWIoPoCrkjFPlEVJaqrOOzSVmn0MouCY0ciHYIRWESn40KKDEJyIOLSSSuDIRpiMqb11ROdXu7qT+fxEWa62/chtiM3V8pqT76aTusmTSWxim0tqKgC/aArvw+JfQMtevkP4Yz3ef5vovEe1T+HyL9jgX7l+goDqR2rTTwVOP16wuj2Xil/s3wyJwMD2vpzk0GDfXmb7tBH9o87Y/xpOYbS/DUBw8OlEet+xts+MsoFeqJj4hUb502OxigXX1lrRkYhE797/3ofbbd85V4eE1qw253du3XAu5rRlZIdkpArM7IPrLO9816hm4BKYBUzNxjyUUtrYYUVVKLaX/vPe9I5jI1qd58bFEHxdny9X5/PpRMSiDxk0iZqjBhhQAFEUjECB2bWzadNnCAx9HU0yGeWcDbGUoVtMvJn0/SzGMiYwdjxBwcvz6zfeeo2jKenUI7Iro9WCYEOuY9fM23ay2Q05r10ILvjWYgER1KzjuOuT4sU4LB/nXBkNuuvahC0a5dyhuLZZ9Gm5XJ4vZtP1+nnbtsPQCyTnYX3Rm5kU9eTJe3ZuuVkPY6bI7GAYl5PWa6w7zdxGwlnJsCuFoMbAufSu4bGMIvlyd6W8S6al7KazCRoGyh0jYLPL6yZC202lWOUqVh1jSZk9pjRAGEDLXpuu7BGICffbAGJRAeBcE6MTZXTualjH0GSbbbdlWG/vnd48u1wOy15InRoJmUi1TBRFMrI5IqgayWWFVAr7AKClpiYEtaqqTAxghqYlE2NwoJp8oKLiQrOr6Tvf+vBo8Y2Tm3eLOeHHpQ7a3Pr2+vzq+9+3Wy8dHh6nJL/zW3+U0u6b3/oTkFLSMOmiA6njENl967e/eXBwQGoGsNysjm4cXl888Y0XESDsd7mUcr0kM6u1mmgahq5pS4bVahND+yLEKUbkOKZSTQEdcey3mzag1d4RAUAtPObh6MYRoJydnU2nU+fcZrtVtVs3TxHx7OEnBdE17fb68sKuZ7OweXBmucaugcYbQACknpACGs2mk2HsLy7l9ObN4JrlZmDXchc+ePIIjxp/NF1M5l61MS57/U8uRGRVixqhF0NvpaIBwGazIQPJVjKYNeYAyC7LGNXa0EFVFwJYU9GLx2pIRIokFa0KIwcfSq3X251zgZFSzUUFpJoU7yCbMAXHAazuPWQdcapSRSl4xwSi45gYsMMGnRstX6CUxjNBYC5WqwoAl5RzHrtJAxNfyTKAS7W44IlgGIaUC7OPwbVtLNVKrQpsagDAaCjVOVDCJOabrowJmXYFa1Efmmk7qaIA5D1XyGVMZuC9l1raGEsaUyoYghJihSPX7sbBhWgK4D0CIKhDBCZR5xwQMwAwe+edc65KBsNxGNl5xxFB05hUddJObbSAbapJjaph5UCOd1UYvBMmbqUmQAfkkcmwSDVFzMVM2YdoGIecTbgN3gVImkCLqrJjU7NSLQv5mK2OWrxrgFFRqxTb6sH0UFUNCYwM4zCm6EMMvpSqRZs2prGogvPx/OKqXczadkLe7b8+01AR3DgUdRCbQI72PmtE9P+7AfD/f/35tY9QAgD4VLK8nyJDkejdxbPLBx89bELcO5HPFtMR+1qriUdENDEzMnTE1TI5DMGlnGvNw9C74ETEamHE4CMBFTUDUgARhQzEVM1qTdHj9erSsZ4cHfjO15p7ySQWEEmtdc4AxpqCcwCa0uBcCKE1kO12HVwHRLVYJRdCCLWOOYEK1dHUJrE1kevV7uQmZjUD4Dh/+PQ8tLw4XFwt1961Dt16vYzB5Zpg2WdRqCQiAgagoBWlWkrTEEsq3XTWqwowmSDi0G+LY5XiiR3xef9RcM0w9Jq2Ked+cN5TliEAWkWttWunaUiBcL3ZcIiLRZtk07aRoANVqRJiUCeqtXUO1MUmimapuYhlYfaeiMk5NargkbpaaylG5M1UMdRaAxAhMELRLKqh5aqiqQIDEaOR1DqOJhERcMyyz0GJLtSanbmK1mGLgikNxmiWjO2Ts6eG8IUvvtm/+4PHz65d7Jp20g/r0HajmBkrmFTUatmM2BEzsUMDZgUjM2D26BhUEMAYATTnzIguBAQSLbPp9NnT5//yt/7Zz37tF8k1jz95+vqrrw7bzUWlb/7u1//Lf/RfjENpms45Mil379765JNPiBUsm6U0bLo2oAp8rKAiYiKyOFssVxtgJ2pNnA7DsNlsqqlzrvENAaZhiH4AL6i4hWEch9j4Knm1fBLbFihkAXZNrgWQprO5c5RSmk4XE7KU+zTsjo6Ph76/9+qrv/RLv2RE3vvLy8sQoyG89dZby6vrX/+1X/v6178+my4ODo9yrl45DxkbN6q1XadawUBEzMtmdTmdzx3AqINTO715eHn29D7Ba/dePzk8Nvbap8Fq1zbEXGsFEjMzq4YwjqMRhxCIaLfbbfvehSCQVKsjErWxigcv6iFTzZm9b90cCYZh4whUtZTiPStQrsWjdE3LaB4NMQMaMgM6Nb/rjSh0bQOlZoJU1bxj3iv3jSli1aRZhrEAFMkueu94nwARa9adRBe6eVdN+zKWakmrC7HNeQRV5jCZtqWUfhyaphtrtSTBT1Ts/8Pen/3K1m33Ydjo5pxrraq9T3u/5ra8FCmSaiyKcqDIggJbUGRIkR4SIDDyljwECOAAQfwQwwjymPwDQYLkIUAUQUksyJEbqHEji5IINrIkSpRE8vKSl7f/2nN2U1VrrTlHl4c6373fZeM0jvOk+XI2ap+atWvt2us3xxi/hghYMCCPS1OXMECVtEhk4SLkYBmIQsXTTJUSWpUEjDB3TR0AkEgGARET0AwM4lVKDCUCVXU34pIR10BctT7CMqTIrOo2dDkeCk21iHUlploWwPA0jCKt9q5EwkwgBITd+9X9tlXWTYM4TZmIpDg4FUHkBCIk88yE0uZzXyETyAGRGDEBIiGGABMCMZRSkAktiDN0N3dhAGQdQSweUeY5ABKZiJjFzAl5H+YJmhDEj+sJEed5PhymiNSRCC0zMwABkDiRrpNfSEwIAvx/XYX+i/VfeX2vc/5pF09EtF2/9utfi6Hr+TL6PmJwehEauiPOguSf+u2U6fhwd7p/3IhL38c03yDkvj7MbSqtIeK+G3kelqMTXLZ1etnMXQohTDc3s9uzKhBu6+sPWVCEmIgTEVlq9QzTQMQELMiI6dETYpp5bFsCIbigu7pATojmnq7m6UDhYJH3p0ee27IsbX52d/+RBHx091F6FdHz6eNSYZq51orGPoyAwzJjlFYCFYmyCJbCkWaGCZTeBBiqA1AkQEJ2CcAygHE5JomFuHp3iioJYNQE2C/b2tqMFIcbGuPSN61S9HRuRGZx2w7nx0cRZiJyFWQ9r+ZDCK6xdA+X9eVbL99/74Ohfr7spXYqQszDDRCI2TQAQMAjdvOemX3rwII1C4nvw9SxTHOp574VIiwtr+P6QEyBTARn44pVMwM5QaSVKPz1D771pS/JD3/u2f3HH7hjhNRpGdo1E69eakQspffhAF1t4YaYCHI18mREDkgLByMCzCBARHT3DBeZXq0f3H5uuVwefuODf1rqcvd49/7P/+rSptLrMh99Uwo83X1Q54kF/vkvfkNH3NwuSMoSCBoZZZJ93wFDall43raNEKd62DS6AvJUWhYARJzaVESaTASovBMgQZhpK1IKHQ+tteaxTq2e9vPv+eEfef7yhdT25NlzLi26P57ux37+9a/+8unxXhj3vn7u8+964k//3b/Tx3j69Om3vvnNf/qP//Gf+ON/7E//qX/tw48++s4HH/q+3s5HV2coQ52Px/t1ndu0lArumND7NmuZ57kt9eHx8bAcpor37337YW43UyvV2ixjjEw227dtY8Sp1qG7AnERpnbeTutYHx4e1I0rlwTXoIIeEEQpFVA8RQgwSxoAZhrKJIkeEcyUmMIEDIbdIbhh7xsAhk+mMc0HLiJMCaTWB2cKAaJhekS6cwIioGoCLmXSTIGi3YdbJABIYjIJQonRK8wVoNiQMQhpRkEPzwQgtLB9DCklKUsFtIywMHOzLEUvm4iExtIW3RSFl7m5jkfbkjJCGbNSQmKEE0kT3vfBpRHzsBHmtdR1dKrVE5PQMjVBEzgDElupIvLGnzGpMGR6EyxoScmQQZThIUiCkTlshwwga1M1yEA3h4Zw0xoHFEoqgsKaZAG7jixYOJMyQd3THSIig4MQILiK6uDMoWOZ5zpNl9OajoAFAXS7IMo0HXdVwB1hz/DSRL27wbLc7Ps+1wUrX/bz82c3kZiA3/jON+/O9+/sQy3m43FTh1UTXFVV+2deHFU1gKUQUF7JQW+4vvD/A93Rv1j/5SvfiIzfTKyvDyKiCN29vn/90cf7ZRVA73trLEjjsreCRBSRSZgJQeAeqz1g609ewtPb43qK4+FQiiS+MOyAmR5NSkUhRCLsXUop27bdHI+9d0SsPJVSPvrog/lwCwCAsV72fThyESERnoWkUJiGjcxE8CuVbAyzYaU25Ha5rIV5XubeeyRhogcZRKn1tD08hZtA2uNbMqtQISIiwOitmdueMCDFNQiwSEOw4RsiI5hUgQqRe1SDBCkCiOcRt7fP9lMXEWHeL1srlUs1TUvICIVMwiKSPmx0qoZJjg4QnrZd9lIaI22hAMCYCqaZOwchECY3CO+qvRRBCs/uAFHs7nzu0YF4hO/eC4VIAFGgIjdJZgICD/dpaYis2Sxc1YXLYZkj981QEwgFmSqR9k5EblZYMoFRcmSpBHTthsClK2wItt09vP7iZ9+9/PDnf+ObHxLDZdsjjMtEDNd8DAZE4VIbsPTeCRPSkTgjgPgaxo3hgkLMScBMkOkRiPhWeTu7TznZBzHN8G5526bR19X4vPXRpoml3kA7r4/zPGXuT5405j1yJBhRRpqq1SqbDQ+jRDNnRI893JNKZBArM5uZuoVCWGJCTjlUa63T0oZ2z2ht3tbe6pN1tXff/fyXvvhjBrGP7TvvfVSntm+6HNrTl5/5ycNP/ZN/+Avbev7a1379r//1//DP/Jk/v67nD+/vLeMLX/iC7+Ov/JW/8if/23/yz/35/87/6S/+hfvTx4yBmpWFRIa5Zexjw9Qm0vuK6Q7+7jyxjiY8LhdkOtb2ja/+qq7bj/zIj8rxVs22/ZGIiB0sCJFCTZrueyGY64yYr1+/XrdLneUoxEIK3sFGWlgAFSQBrCIcAUIwtUKUajo1QabRd2S5noqYIDP62CGxHg+F2/cc/frYwi0BS5k9AQLSMzzco7IwSkGsQMIlPO1qwchygtHapJncR+y6yCSJGCzJLSEYqNsGGKVImQ+CdCVsMRqKRdiVOOfJ7bat7uvoROns5v1iCaYp2GrBCN1WQKrSiK7TuJRaHdHcKokR9AwQrsRm6lzGGIGIUkgqM9uunpHgiBjhQzumFxZKKxTpXkrddrPwygyMTmFp0pDAwlQTzKyUVt1EavqoAj1NHaBWpMkJBgCYYyBCSJUCHGHI4uDggZRShRkd/XHrUMQws28Q2EQKc6pt+/qZtxdh3Hed52msRlV261Dg4XLnqHURR9UIZAiy0/nusm/DvUb0MTxiarVOCzMzo4hweSNw/YSvxN+Dh0+GwP+iL/1f18qrd/UnMuur8ZYHuLswMQGnHZdKlKbdbLRS1IfqSPKIYCqOYb0n2rTAzRN85623rZtb1Dp1WDI9bLRayH1sJ0Jk3JcKtq8+lCxEKqXr1gsCUNVwphqFFNwTtm0LhMPNJAyReT1OR4ZlIDlwGBmCAHEyAqOGbWPXzGlagCkAgMKsh69b3w/zsYCk0iTl/Hg3TVKFu0drx8xUU0hCYAIgL2qOAfXJMtQ3VYDCRLp1EXHwx8sDE2/7KsyIeTqdlra4g0Vk5WTc9VLbYVtXgiQACxeRte9TmUi4lDJyFJ7VtjGG+mh1ng8Hz3TLdVgYiiw9BiUtN/Pd6cEwpB3mg5zPq3W/xWIBNsY8z6q9q12TfdP7ej7xVIc6ANR5isShewEawyzTk9xGBiRhgDtiYiShm4F7IuywBl8yEHI5Dbwf+vaTad314w9ffe6dz9yf92+8//G0HC141z7NFTAiwVQz8+rnO81zmFIACubV79fU1WuVq1Td3BBFRCJJzTzOEFjLzMDDfMTmbJe2W3dGvckWfUt2ozG2gZBjf8jM1spUBSEzMpMsSErhIAKshSJC9eyZBC0BzQcgFyZG8Lj6I1VNy8yx7SLkFJ6hFiFwtn62wev5V37jqy/eelmaUBFHnJaWmRD+2Xfe/uDttz98X/3S/97P/J0v/9AP/fk/92f/47/9t0c3t5gOy5MXz//Zr/zqn/tzf/Zf+xP/yl/9q/8e3VYUUpCxQrGJCmVk7xaKkTZN08f3p8e1f/FLX37xmZevHu4fL4/10KDnq4/ff3J7/FytFUPBzKJOTdNW68mp7iISbj4GYpqN29tFrccYU+XwHraZj6S11YVqxQIOoabhDGkERGBI4GrgQYwYgMgYCAiH6ZmnZSJySDEhRPCwURuf9gGkniSlmBkhyDVmRYQQ1VUqe2heWT2cvTuREXBpJSHU3SIKkZRC29Y9UkSucSJXVTMmQNjQ7ZoLzMilTgXr/eWR23R7XDY1mcS1d+uHpRKR6haptZbGxYaHx3yo22bcJnVTHdKm1qojONJ5WwFgWmYWDlVVvWZTzDIBAADhm5B1S7RAT5I6leHOhciJEZElwKeyoLsAqZoHYilmgCBG7AmXbZXGBhBSHMnDrg0qTOYEiBQRZDZ15iitAKS6Pz4+llKA0iHmw9HdTX0iWuoUjn3dhQS8ukqR49goQ1japvs01TGUCtV5un98PByfZuI8T5f7x+10XrdtXS/Hp0+mVoYphK3rWhCPt7elVg8HCCJiZgCI+N3w4l+s/2/Wbzc2+S3f9QwCQsiIIEAimOa6LLXvJ/Pe++7RWxOehGtJDC7MImqWmUyClPcPD5C9iGs/2UjhqmODaMKsBl13yEAQEnEbPQhkSmbksMzuIwH52PbT0K7mmImMjAE6xjTVvObspFUpALD13SNqKTLBxOhJoVGnBgDbdgFKKTUQrrpqczUdH3744buffQvDM0l7L+hzdSZPg1S/7FgLIxAgj+7AJLzY2I+H48PDmUpNEjObC98eX7j7wWWMIcRlXsLUw26WQyZSCartoj2EiNvQTaYSZsTz3lfDcM/LfjrMx1cP95UFksfwUgkMfNWH0wlSWKrt6ZZIhphrf+zvj/N6mpYlcVa1jCki7u62fWxEeDjYiH0MKyAVhVG2DiXLZXcirEiW1rcxS0kAtXjYTlUqAA0AaW03I+akdAYyxSI9LqVGqrlLaTcoRc0++OhMjsebp//SH/iJu8efX30v0oiFatHhCe5gpUhSIkGmRWqGURJSElNGVAHMSIOAgEgzj0izgJTCAoRAqBq77nIoxu4LjzAKZLNSeLdu2UWEgNErhCdIIrt2Zj7My77vl9NpWRYPu+rZixRKGBqX9eTugJWlOJhDEJCBonPBqqibDWmU6Pu+Hm9vH7aP/SCr3J0f7t/68vPaZF27qT9p0/nx4eLljPaTv+/Hv8L59W8rUP6lv/QX/63/xb/z5/71P/PrX/3Nfd8//OiDH/uJH//cFz+3red/5Y/+yx+/941f+Ae/8NZnP3u6PNZyFIY2kasVovQw88veI5Fl6ud+hw/SytPjE9v60qbtfPn217728vB0ub1ZlsPHp8eApFb6GIAwdD8cn1YU4/7+++9957vf1LEXBh07cUV1dJMCWFimK1liTwMEQUp0I2RC3redZKpSMiDCW50z0tXnw7HH2Pet1kTCgJ3gDelS5pqQEQmFYySziJBrjAREsMwisakpWxAEZLAbqhBkEbNwBBLQdNkuHyAX4Xq1FA/PsHCANk8OlEEY7miUkOwO4yhzGJp22DsUKQwTTzXZuklKZFiYFKllGajrPoDFM68B7pYqKAQChnNrw0xV99HXbXsTmGMJMCiIABmYWYgroXvGluB9REAFC8AxVMORiDHYwQjMAESkzpQcJKfh01TwcJSarkqAQy3ACxfmKlARINTcMzPcc6RWJoAUplLacjgoWOhuGerBpWTitncIRmm3x9vT43luYz4cVYOk6TBAOm/rXA4QHNHbtHT1UP/o/N5296iXS0HsY++bQBhEQhFws04EgAiC4m6ZGAERcYXh7+ccQPyLIvi/yvrd0PdKM0dEzO8LoIkhzT9+7739fPrMiydf+bWvUoG9mw2DGKhxsMrpkIGZpi5IbljweNlifYTb+QkzRlhrYhmqOzMiFkJMj3AQngFbonukSEHMpKQij49no4AqYRmEGJAZCEAAMWCqAkjoAZRMtWIkslyrS0fNIASPyMxSGSj76ObAWBE4UtYtABaQadvOh8O0r49MUblaOAlLXVg+OcJDCleIHFgSWyklC++6F5kua7+7fxCugnF397AsB2YaY88wgI2R+tpLmx8uZ82YDm27PByW5eHh4XOf/fJ333u0DKbi7oyXvu03y+H16RtmAwBK+USUv64BeagHElHV0oQYkUqZnwWQaawXm6YZpQ2HLAtP7eLuKcDoAI5ASHW+eWOUATCYnMQyjIAw6wQFoNSq7kGUpWyxNSaqgnqdGFKaFgpz6LqHt8KsyqUt77+6cPn4h3/4h955++XXvvldTdKAdHUIoCxTY0B3N7NSmelK6IgID3CwKCgI4GHIJLVlugckEAsDMhFp2m7WynS5nOa6tDJlNTJA8D52aRBJ675WmoRqa+yh5gjBnth3Hz0ki+4eQCwY6UM1PN0TyYSA2B3TLQAJArwn5VVBA2qe6erW07DvgDeUtK/JTN/8za8/e3r78uXLh8fT4+XUBI91Rhuv7u7f//a33OzJzc0H5n/5L//lf/N/8m8eWlMbn//iuw+Xu48+/i5pvnz58k/96T/zKz4S3FkAAQAASURBVL/xtQ/vH483Tyz8/nJXTQRJiMEDpRQmKe38eLbH/u7nP/fWWy+3PhiZLOa23N8//spXf+0z77z94t13rixuRBz7gIjSDvu+XrYuSOfLPcQomOCODKoKngXbNUNJDRCTiQi5lJLDwiAg69QKEoBkpqoKkkAGoAZsa1ew2qZpLqo9XFuphXkdmyzHSBxDfQtE9DQNzvTMtAggHO6rrshQZRKiMaASpat2xwwUhARAksxLK4dMHwqQQsmChYC2bVBQkwMzeAyIAe6IUHhWc0pabp6d9y0DWpt8KEcCQWTuXYc7zeCJXXuiIFpEOJo5eIS4t5xiJiDefRAhEZEwESkYTRWTENgVCCpxAYzRN2QmQaGi7gEUwAIkIud9b0iFJ4j0jFB1d3TatCsHpiY7hFepeIU22ymqqWViZiKTiNR5UtS8jnKGR+AYFoRuWAuNsU1tDkT1PE5LkJxOlydPngLQvmk73F7t15fDdNmNsVz2fd8MkgHj5nD78NErO2s/XebjgRH3ddv3tRJDbTfT9PDwWEoReUoFERkwEa82yb89VfC/bCT8/6mA+P8/0+X/Orysf/vOn16/Y6X72x/81COZQJ8EUH1/Bpzm3/7WN159/AFzlYLSuPK89S0twBQgIg3UW6kJVpCMh8Xl2ZPDYWpMEN7bzI+PH/Jh6tFLKaBJIQKUmZwM2mckCKeMzEy3mafd6KIX4WpgAcBMAJjm3e3JclOEXXtEIklhTg/LEOaxKwQxoGYSIjG4J44dPOfpJlxshBs9POo/+WdfbW1+952XD3FJWwkwLRmld5WmmT50B+RNzQzQMocFw2b7fHNMjIf7++N8dDV3p9ou5114BixICRBI4a4jfJ5vEnBbL+2E4Ha675T09W99ONSBUCT3fRARBL6+bCRCQK3NZgZUTdc2zaUVRw1QaQwIBBwWYClSDdbWSp0mddMMYgnhHjkCpsYRXV1VO0JVBadwWbbdsZK7bX1QeJ0WR9ojtjGwtYmFl0MCOMKuO7oylEoNwkWqkoy926YqDWGaaz1t/f70+CO/58sj6Ktf+2Zbbod7EKQlIVgoOCCyu1dmZnJwTc8IzJQiEVcy3bU5AaWUTA6H8ASEQDcclDm1SdfRoDIkBaSqEISlmTE1REHyUsQNAKC0OczWvRep6OweJBwYw8c+Nkhi5sJtjNGHikgmMpVkBEhhYIatj6571mYBrR4tqADtGsLh+/h4W3/iS194+eTJs8OBjefG28Pjd77x9Q+/+63nT582668f7+eb47e//e2f+bt/74/8kf/GO1949/X5o1udtV8aH443t/Ny+0f/xJ/6T/+z/0wNzAcR7L3P00QRXCUiVXXihixdx7ZdvvOt7eWLp1L4tK3L06eC/P7pbpX0uT5//py5rOdLNSTgXbVInabaSjEb4SPDGDCLeB9MRaBkDHMQ5qlNpCRUOMkBlnlycLOIJLUhItNUp1L7NjKhtZoI7kRE3RQQpmVOD8PEKlUKc9H9NPq4vb01HxgppQ5T8ChTS4wGjZEKMjg+Q1lK22wLtdqaQuy9t2WWIkfwMrqWOhPVbevH42RmsxNwpp2osUPfdH3y4vayrpJGhHOZkWI5zKuN3RQJq0/qA6jMS4NwHSMJpc5JnGCEWZHAMdQBIZujEbjPUgqYAoDGsiwP+lDAhUG4ZWkjYDeoRAtP7G4eBu6AjjzSLTGGElu3uKnFxhAQ7z6JcMnny+3QrYjsvUeM7gNZpta6pepaZSpQwxISQnegrJK76bQcxjYoQ5wFCYwv58dC1bY0QBFe0d0GMD2uj4fjbQSkuWVPGqYwVQpfXx6XM58+Xh9LvUXjF4cXl/N5vz8R0UU7z+Vws8xVzvcfw9TaPIG5qrLUci3HMgAx4I09FkIA4NUs8frX+1u0sJ9YPH7KKOr/DSz+RHvzA+FFAPCpmvvTkPnbG+JvRMAIAQBx5e99CmITA99AGn2yQybCp+KSfmB9L3Dpt0Qu5vXpGPTmglxtPTyTv6cP/rRLdoAjIQF/oqYOAIgwRL5eOs/IK18GMSKIKeO6A12vfCkcETjZ7/+Df2CS8v7772GF+8u6LLfpO2adiiztSDb6vlm3Si3UK8hSb+9PZ7fLO08rIfR+OTxd1J3IkNgwSCpRCV1BN2Rmplpk2y7qhlzW/WwwEgSxoAJGkAjQm6GJ944uiCQ8eab34Q61TpI7OGpQk7rZ2OPKxPFNvbHw2LLnYZr2pCBJoG3dv/nN94f2wqVQQUS3i9nu/J4QQKAmIE+FZg7hQNN9ubk5XzY1m6dbkqIJLpyZdakRPrfCLDp2cK8CFdTtjhAPEyNTDChMnHDpW53apsMgveJu+zyJm5c6BfeL32N6LUuldIfeuyO3pIoZ1XbUKd9NfryD1xxNIbx/GLjQPD+M+7yfFp6IZR/eIh8BFqhQxWnCSlZG5FLTg+tUJe/VWtCzZzugmRauG+6HjDEKKNPTSvtaz7TEyHna9RK4NalYG250Oa/yfH7v7k4qffkLX/7CW5/7+Lv3905mwXUKCA8q3BACM5ggEiyCmUvJwDSzNTpZMHNoOoGU+drYD4yKEm4BLoCYsI/NG2x2ZjoUQjBVd0gEqZBpQwl9s5imGgDDlJkj0CkLeoQbujlqYOINMXtg9J45IYFH1DKNoWbe6mxpQy2Jy7IQsYChRWhnLAeuOga7tYrf/fpXRr+bj8fHbz7c3b86TgXGuF2Wx7u79uw2REBrKfx3fuYXvv6t9z/z4kXvG9cyRr87r13Hbr6PXtsRLGcoORzAY8fBmT6YOcLNHYFM+0f3Hz1/8XQnNyY+LKru+zjWOU/+3m+8dyhP5tsZqXlRae1J4v3p8enT2936hx+8b3ufmSKiew7ETMhEtKlFET6gNrG0tBTcujpGhEvhghgVSxPJ3LcTmEurUsWFSs/Nh3MRntKpAh1q6fsuhpeHh4l4qpWH81XEGMDJs4iPiMxJjhDJI+dSiQUHMjYqFGYC0YQlQsAWLK1KuDpQLm2y3jHybMoE01S7KwBzbaM7olgIZmRXh6GIAwKZmxSHFRAiE5MyiLmJFC71sp+RCJEg3FVtJDOAQFpfptJVG5eF27Zb9Hx6eJYxKCHNHN2BAsHSEcPi6piuFFmmMk0UlMMNDAjB1Sgh6Jq4k24qKJB4WYcOba2xCAD2kaHEIQhEhK00s7HrxoXUAhP3dWWUqS06dnXczaVWJqbKRGRDTUGgzfVW+zbO24u333m8nEMsckiwIFqP1kQgG7EQ3b9+vWC5/+jVw/3H3DAZIKnveyHyjPvz6QkYQ5QJny4vfejVsykLEX4/7C8hIZMImTmvPK1PYWR+3/nxEyT7HSHud16RCJ80Yq9P/+116u+KvgCAVxeLN/mGCG/gHyGv9l7fW/zJt36Xn44SPsFM+BQMvwHXpADIJARABMTyvb2/R2O+LhbLRE9DYAACIEQgonA1D2YmvF6hgExmMh/MjMARBkCZ7h6RVmhpczx7+rbuYRfDDqXB5Li6q9GwAHfHTE9PA0Qzc4tZ6s3xNgvvwz3MdwcmQhESIsCkiMhAAzi2NkY/XwYAlDb3YdIKjjGxpCUmCTEAhsNQr6UYQEQQEUaUUlCSwDyv7wId0dIBgIgCiiSUCq7m6okYhApm6m2aMwAZJ57Coqu2wixS62LCYR4RBdiRu1lNqlPTfQxTKYWYzd3cS6vMFPpGQNh1kKapyjUjshVJcE83S6MIuPrbeoaZUV6FCpYOyFSIunVibGXKsG1oXzdgaXUuTKHwiAVCiqviNi9tfliinPnF8+4sQ4vBi/nZGlkwNw+OqcOSIrxG3/zCmWnqyzndaaKT5RTP3/ncTn75yrfQTxwwoLJODzlg1untz8z3eWj4fIlHnyuNpLPsBTLn2Ms8dY9+uUD66eHyun78xc9+4Q/96I/+3V/5tSeHQ1I+bidi8gBmAI/MSiiUEeGeSIToEpaMKNhYMhEIy6bDLadpSmDQlcOBIYlGQCRCFkhdlkM7zB+//z4PKIhYxK7GcQwAwUiZkd1gOEg6MSIQYWNBM4cMs/QspXh6KSXBI9zdMtOjM725gVAkZqAlUhbiiVkTaq3uHBRf+8Z733r/lZQGVnTfJilNmMKYafv4lGNE1cPtsp7Xf/bPf0lHLvMNYBljGAcRUOHEMO1VCEkyDYnB0wwDgCYqxAUo0XMpZ93f++pXfvJmWXhxNUrKjGGlSrk/PX7ta1/7/Je/JKWctx7AfWg4bFunjFevXwfhwLjsZ2VYluMYo++OjmAx1UkCOnuGBeCbxLzg65FjKpw9e7o5EDCBhFMMX92BWaBIFgxgAFTIYUOJQMJRsGQgMSDRvq9cCBLAEwHQrz7z7AFcuEqzrYc6YXGArASHRYRnRAIyQmRmZhrbpbUqlccYhctwT/NSDhFYmE9jb1yTkAAQDTyQrp+YHgE6XLBIliIllPre2zwBROQ1WKq0qSIiEu1jLbKQWzpM0IAEHKqIpl1HJ56JGJxAQHnVASIBergyoJoaesGcyxRhvg93ZxZkQeIEOm17q5JBtSzCZd87siAXCoqIRN6HjbRSsVYxjMx0j2U5piYDptR19DLNPjpSpvbAFJLKJb0ySGm3rR6SuB2XyzhVaeRu3StONpyK+Lql74ebp/q4OeT96R4b8tyezA3dr4yzy3qZxGHsE3lNryyJkrUiz/AJ1BK9QVl3dfdS2vcw69MV6u9YWSYC5u88PH6TB/yJIfSnIo6+X17jD5bSnwD/D7THI+LNbkmfmFsRZCLGGxusBAD6BFADf5fyPOJ7cqDvV/NvStYEQHrzuld0RnL/gbAmIvnkrUjGVcQNAJ5pSEmJiEQkRNcoHiDkCM94owH1TAAmejNvZWIEsD6EWLcx8TSRXF4/TvM8fEVEZFZHZAbABCzEHmGjY0Lh6kTKBFz4Da+drFsaIXoCchW02lU9UjMRSS0sEzw9gRPVnQD6GKVVqUXd1MIJGFAQ3CyIE4CLuDtT1FZCQ9UQgZBco+8ewJGJEJERkKWwgwE6ZOgYzPyG+k0YaZ7hFgTkEWoWhNdU1N06MmmYewR4lWIWvfdMvHZQzAxRiwgQJKK7e1cGrMhCEoyb5SAMwJZgNhKubsQkdJ2N2qABmopZWESkLYeIAIwIsHRjJCLOHna3ddhGDX/y+Eu/Se++u9w8pXZYuSGdBsTLEhjTx+DLhb/+unZ6AbTcvHNTv/wj04ubUp8+o3Z6fHX/H/5VK/6j//3/2Y/90SlZbhZ8Bw/P2uS3t//JL/7az//v/vePulq7WcbltW+Y7SAOY2+UJ78zoACel0NHfu/VqxdPX7x88eTzz1+89+EHstTjMl36thymy+lxqY3IR++qyox4dRwnaFMBlUys3ALBNSqVLNd0251MZ0lmDiYXAirpabY6e9Ry8+JZuOp2JvUDC7YrT9avwaKAWGuda3vYVhRGZCFOASF09xBMANst8Gopn1ipIGbacCIiIfCe19RtEcF0Aw8gc0MWlMKlWUSERALWOcq0hqEIk2MolYLQ18sjodwsy/z81lMu57G0ZeDggoDWx1koCzMQDnW8Jkj51XzhWm142HCREV6Px3/+lV/9w3/4D0sR38eT29uhqb4B+re+8+vc6LNf+OI8zwFZygR26bu2gsNtHxtXhqlghoNr6IjRSiNEqujQB3SAFC4TiBA7UbiHwxgdq9AkyDjcErEGgAG36kienJYZUJk0wwGXdgzIrkNq3fdd3YtQpnOtaQ6QhSgFAnx47+7SD0vmXBam2MZuGFjrTiBJCkj72LnVENxCYRJlAocyTd0dqDm7cLEEd/SMEeqZiJhvbnoZ4ZCl1TYJYpL1ARhIThDr5dJaQ47MIDBmTIBhoxQeY5/rrAOQ2Bk8cYwRkcjEzCWv+etIyYIS7pt1ImilEDFECnJB7NsmIiITciZSeLg7MZFUQEY2YRIRtgxCQE4CJKYi4KGqXAQLuatrliIMCQgxFAFu5mWPIVQbiY4twuZlIuLVdM0xNLedz/fR5no578+fHLXHVI6UlFk0IZlkmV4/ng7H+cPL3Zc4Vtubwb6vsLH742GeJimPj49vv3h+EG7bxkg2htVS5XnM0xVU3hh54vW2z58ufz9xY/4d7Jq/V0G+URT/NgzGq9IpP1Vrvvnn+8D26bHob8HdT3Z+kwH8vawFAADMhIQrISbf2FziFeE/PQb+1Inh0z1kAPh+2mF+EteYV9UqRESEJzhz+17VC1ft0PWFMD4l3GJEuja3A96c+hEZACMhAImIwK85xYjgQdfzBAKyW6uktnXdE6Fbp1YDwdVAGBMwrlc10jyZJykqcqWHuHsEhEeic4IQCRVAdEvVEUCRUUgACYgc0syX5WaMEQ5jbI2ncmy0rigU4K3U3XdPqFzbXM2MGeGTgxMDIqG6hw1PZJmZoJTJKTwRMaJ37aO0OhFRGDHtwzBBSiUiIHBPd2MCZGIWA2AszHx1KSJwFkSIsY+kTAfiGh5tbtdzG2Bc2fsISMSIgG4BRggWOVyRJuJCnJnoPsKwloJMpgqupSGB4LVzZslEcBXHUjh4UUASIy747P5C56dfeutf/VffPdy8/ge/+PCNXzc/YQ26ecfRX7//LXrC/XCQL//Y//T/8m/f/lD9SrcNj6/meZ905aJ1/Diw/eqf/Mbj9mN/9MsfVvjayLc2+1aZ7vZteTbDj/1Y02/2/8O/azyHPJx9n3leK3bhu31dJraAPWO1TQv1xN/8+MMvvvPOT/3+n/iH1k99M8vCxTRrOah5EgSSlEYMlnF1LkBqVBDMr6u71XkqlfddJwASrpUy0R0KIjqqWqFp3PfPfO6tj1fd3ep0w33w7m1uiOhupZQIjogEUKEoBZkyHAKvJx4NS2J3D84rSTsDMs3RMx2pACUyQyASurmmZqahA/MwJwgHLtJGBIQxEycE6aY7VBg+qqAgFaWCUmsdu45+iSAmLILhmKbJUYRIJg2HCJrmHUiQMgwBrga0RAxFfDNCTsBh+Ru/+rXf+8Nffvbk6baeLXSaJvf+4na6f/Xd41Kfv/W2Oe7q03yohd77zrdOp7NDtlrCkzUvl7PUQhUNDIuADCQmN0xEcCYKU8gEyiIU1IDAMBQyqwTSUM+wQzkooiEFoEb2QiAQUDQ1CQ28CgY7EWEhpjoBeCIFI9Qw0QQEvGa8oRJRQTfSaAycEGbi1zEY01UY466t1HXfBKm1eVgnkoRIYjWDhFop0s2DkKo0RCRkd6eo5JzmCAGRiGGpkb4chBgMnNIIFDAtwzBLmXUMR5BW1UDXLZmvhVQCewRgCAICZCQD9N6piMxlpJt1AjzUxdWAhiZJIiAjgIjYsEivywLpCGzm4Z2ImNHTr5lzkQMRSiML1W5US5ure5orapCjiAhGEAYluk3JTA2NRvhAI6EefnNcDjdlqfVJfda3/VDmcExnqDzNN7D30+nUltuhdr8+PowtlRsol3Z7eIKa7OlhXtAoer/cZDPbBdAVvDMfWqYDyJVA/mms+hT4Xfkcb3IAfwAdP0HWa3vptzd+v/cfvh8JnJ92h/7e+gEf5t+B35SfjHjpTaQSAgB82iQq37Smfxf0/YF9rv3k+PSrUCYC0FWXdS1eEdKjw5sS+ZO6Ga9jXb+2vsOvpX8AXKOEg968ggckIQGFhVZhzGCUBIhMYSK4Hnrk4/vTtz/4+HHXD159fNoenran5/2M1kswRTCkIAJJgvG1vwp4JVJyAkcSERWaAcM9TTMQMwGNpYQnUgVXgGQS82EWV6n9gD1ShwYLuA81w0wGTyJIc0VCTNUwQ8zKrBYstbaUrjrSwwRLLbx7V9VK3FpLd7QokOieRMmUgAjp6ebGjIhcgswCiJY2qWffOwNM02RjQ8vWKjeJCBYsIpvt+7aKSLiWwhGOCEBSmAXYACKHoTtEpFKAUIZHKQ0yxhjJgUQZu1QZOqg0TkkHVS2lsDALKkdacgJmME7IT7MVm2//0J/+s3/wv/XWiP/edy75wSXbE7l95vGbl7/2v/zf7r/0K6AfXOTxL/67fwt+4l34vX/wxWfLfklYuN/YRe4O881nfvJz+9/8x//0n3zNfvxLPpfv1O2Xh0PBCuvxneVP/jv/1k/b9Ph//AutTC8m3LaHogumlJub3vWa3KDaVSpNh49f3xWUH/rMkx//8js/94//kUslIjOap4O6WQwiBEBLSyAWgYShatqvE0EiaoUTbQwFCImhBHtWDQALTmwliBC5IeZH3/ruu1/87HlbP3z9/iKMUxnqLJgAnhEZCcksVz98RDQb6YaRCA7pGHA9JDm4eyBiQLoZQlQCcPAQQSiFHRwpmcgsKeMoEpoMua33BshFRJjSx3rHAsOSmRwFgAuWS++Xvs/z3L1HRO8qXgALERCAQ0bEUHMUAlRwA80YAmHAFMnSCLAkT9IGxNRmPes3v/atH/nhLx0OB0DdLussku6Y8dF3vusjXnzmHZymbV914N2rj23fJy7RNULxaiTMDJFOAb6nAkiZHAmAkxASKCNDrWcit0aAqMYZPM+I4GqIaZcVW60TK4KD5/WDjpSpEZCgez+r9cPhwACAqJYYhCREou4jLICAMJmQ4PU4Y4RUpsIcVBxk3ZM0uLaMIQkL15IcyMbe1ztmrpXWdbUYQQ4AlAyQUkt4huPoXgqpJqNjIH1yKHZ3QCJCs+4BmUqomAoZQFxq7RflIvvorREQJyUzBQIEA0C4A44qSUyZiGAHnnbvFhlC3bptmq6NpM2HMYZHRigii1BlQUTtGwFW5ow07deZKjPPrbolQCZkBiAhYwHiV4+v0nKZ5oayzBURL+vKS4W0vttElbmMkXLgSXDT06HWcXm1PD3sd3dP5kNhsNiDJdTNsBaMbUNkVGOg7XJS3Vq5FYa+nXYQSjCwyL6m3Z0f3mqMgD4uru5TdV8LpnkgJjPCmwnlD0QPfYKa38M2/x5MvvniCoz425u+V6im3/I4AgIQoH9v209e4nsY/zt0pL/vlpl+RdqEyEyA8km6NEBSvkFnArBPUPkNvr7B3/x+A/wHDgFohADgGZjX7C0ISMwsAIDXNF+AawWAiBHAXJCA5XvvKxIcoQFABFxh+Bq4hRjWqXe9bKfT6dS33cwul8v54fGXv/qNVx999+7DDzHz9f3dJDCxMms5lmMT8p3NAK+fo0gLemOZEmGjcmXCK3cuVd0MApiZWAApw7SPN6SwSKSgtO28SeUMY8nwoVvM8+xgc+OMYCzDtG8XG7xMc2amDsAUnhQAMimBkRAsPRKNkPhKVoO8dt3DjYDC3DGYxSLHGAEe4NwaROjwREjC8JFBHADobnspDGZjvQBAECOVTBfhNwcaShKGwAgY1iHpmsIcCAkEBFWKIKMZOJAAx5XR4B7qaZhJJGGZYQWL0DUjz2y4EalqcmHIaeSgtcwF7r76n/yv/jf/8ef/QPz5f/3Zn33nrX/pMLQc1dpP3PzRv/a/Ln/r1ev/+//tl//e3/n4L/xf0W8+8z/6Nz73P/6pU9bLR3n8jfPL1/L6G/kb3/65y3/81+/eeQf+u3+q/pHPP/vJZy+fiONVBAIff3R++90f/bou0s8MWIdMlfaeO44DLt23ElCo4MVCuzusdPYn8PL58ce+/Llf/fo3hWe6VnWYwpxhCREQzEBICAGpIgTX6acNDb+6FQEAUgagUSYxZPreIw0QG8Det8Jy9953fvz3/pifH967++7xxc1BZiACCHfXPq7KRQmgMQCRwggZMyKTLACz1jrcrrIkEWKkRIzAMpxE3EdXDR2JYO4RzlzFicLFEZkXAGSUwhod0sDXygKqyYJUIfk+FCKIyBWv7Euc0FLJegJBkBNACABFhPlgRkiniEJRENMcAjOJqQJEQVove6rRPL/66LXZ7dSQgcBzavNl6+e7Rx+IRsvbz6vwobVUWx9OT26PfayFOBFulmM3ZYeJBAJYA0IJKwBEagCRYKR22wISLvttmabEuFo6IRJQrWxDJREzUgPdBZgtwSOQErywZKYkkicCzKU9jkAChgDYnc15WBpS9mwMZXCICAQ0FPHkBJmKOLgQETNBpMc+1spSpWgfkxQBCMEITfJIY7xNoiLTHqYj+x6lVWTjijYMzRGRGYkoPU0NJImLVKHE6Kqqig4hgoyYJBlhRDSV6oAE4GCYFOmUgUhE4B4OlBQsVd22dW3Cxye1Ao1t090BqNYKTtvoNrROhZAkAQDCUYilLQQxRof0zIAIKuIRo3cphVpxtefPX2ZmqHPiampm0qojEANWTkSFTEdBmUKt+4ElNHIbBSFjJEJg7BG3t8+2jBj7zbHogEwb2yhh4+G13dQU4nYwllba3i8e25P5FtaLV9FNIAyT6iwdS6YRl2v7IsIBkpkR3/RIf/v67Tm+3wfKH0gRfvP0xE+znb/33O81qz9pSOfv/MX3YZ48ETI+XePyJ11xerPRD0Qd/i5qZvodBEuZCcCfcNGAsFw3zAQGv1b215MB8yc/AJYx4LLZ+bQ/PJwf7+7X9eI2GtMYY9u2eTqMGA+PjySIBI8f3anq4+Pjul0YKc0fHh7W86Uuy5PbKmjE9KO/54tjf7g9tPPjqSFABEEipqclQnJqBHNBxyIsTCSo5m5q6/Z0XhDpmq00xjrMpJYqDd9YKCvYaIyVGRDHuo9tJ+AqhRjQAxCRiCVRASJZqIqISCdKt6uTjHuYBWQyoEEwMlJymWwMHbv2fv0QFC4BwfTmQqGHCAMiWUAEAbCUABwWRDC1CmjqY9vGoTWAUkrRzG6wrRci4Yk8TcO1b0TklkSUYG9+axGRycwUjChhLsBhGEFMDYE8hxN4OKFAoqAg0vW+gUDuQAhFwBkwK2Q2slYKBHz8Sv/4//xP/N7/wY+/f4Zf/E+/vr//zbv3p/V8+exy+sIXfvQzf+yP+a//itB3n9+2+7/x//hbf/M/yqDWuWMAsbhaGT/82ad/6I+/HY+/8Qv/5//8wxc3j8+eI01qnJfLx//4F/yrX5k+80x1HZd+iBZprbXsKhUAWJIaTW7gF2Wm3rf7e2BuX/zsF1/dnd6/u5+fPDtva5HmXilRhAIzE0YfDMh0PbpkpEfEVTZ6zeXdr3+ZEUgYQIERVIs0EHSPw1Inbr//J378y1/6/L//N/597R2xOFgVYkYumI5mRmGNMQnNJTMDARMoA0jCgwNqYbnGg0ZKsg1HBCEOBwAHoCtlPRNaIhO5GzBbWmtzhkXvACMpAUsfTihkTJSIUZkckJHCfCo1IoQAELGgukPmJIdAtNFRlQkEhBEJhRMJOEDfXJCaEQZUuFBp876v+ag8wc3xxb7vbn7Zt9bmZa6m6wff/frbDeZnz9HH5eG+sRyn2faNEB2AqBEJI4sDCxYSLmUkB6QO77a3eQIk5lIIsAp4QgIjagSIoFA6tLYQEimWJE8qUD0TuQBhZJYqZsZBvSteHZ81CdjMIoKLHEojQHDvqO6Jw4ig7+qlEAAjSPgjCXcNLIJMEaEZQbhke/pk6dv+cPd4PM6OipmJBYDcgEXyyv0iY2lqrpGMQAwZ7hbpRnj1bGmesW2dsi+EdTrszmfN26VeLufj8agjEtxtjB7MAuiIwoCAhClu0BUS2EGRyMwEiJn74+aU81R1BECgCzM3KcNVCqsqIYuIdutqrRSWwmgYaelABBFmlgDdlDHrMpv6MGtttqG9j3meqUlPR9PWGiCbZSb0rWPaszpjL8ZYcIpWVl0TPQToWO/WD42WDnr/8CFGmw+CYHMTPz3qafGSBeFh6NwWJJtmso9fTXNBFplngyy1hZW5Hq8Fp3tA0vUUdLlcXr9+/PznP3cdev42oPpdgA0TkuAHmcz4hvz8Cepe2cdvBri/ZZ/vy5M+XQF/72vLkVdGciICv8HyJKJAgN/yuglvms+/pdGdmQHfJ2FdlbHXFdbO5/Pd3d3j47mrITKkuAeojzF67/u+99577+5+DafaR+gANdA+et8YXQpKh1rred1FJMCHa5vrtm03hwszR/RDw+NhcR2TLPjyMBFd9ru6JCSOcQIYl/NKKEKhNvrQ6wAVhIAonNZ19T4oyF27RWQ04QkqI7nblQnFzJUIWTKTCoWpCCKkWa+tDrNWifG4X/ZSig8lIndnIkAUeSMh7btCI4hkLu6OzIQwtYo0Ae269V17IECVayvdCerUdLgBpFAtxQ2JmK85ZAmhUZCxUiICoAhlgqomKJCLCABmgAWe1hWlATIg7mNjLlSLewaRwmiFmdgiUo2TCheRauqZCCkAGAMgUUrRME0kbgABSZBkEeoGmbVWLmxOGVkYKvQg7LDeYPczET2vz+I7f/vvf/DVj7/2z/8ZfeUr/OrDTtJu3/766YPv+B3eHsvLemP3y+NHL1uu/ozx+bjROXMk+u0JoR709PLD5d2bt3/q7fabH736B7/6a2/90O95+uTF+Vu/+dP/9GeLRPSLAT0v1WEjLy6+tKXHSgyhsF22Uo+Rvqehru9/tzMenj1/+UOf/1Gnb33z/feTBSfGzD72LTURaq2YFKk2dGkLEqkaEd0ebjETE54cjnNrGBlpCgZVoEyH5eky3Xz8eP/i9ilktlJf7ysj/tC7X1xPr5NyjJ2SBBkQXSjCgCEDEyCu4uNEj/CrrbWF9j28ACIQFuJEVu0xyYjUBCoViNz9aovNDpmGDHt4MEdYJUxPCXHAgTHSJ+LGZD4SoqQIoI8oRCWxlNL7JoSDYJ7nSB5dtzFqLaWRuyagUEMoGBSBSQgSAdphI6nXsdXSbirJaXuQE97e8PPnz+/vH9tSMwJREdwd7j/6YBayrXzw/nvHw1xYMIGAM+Jyf0Ymd0+i1hpAmA1LRpYkRBLhmhgtkxmVIkZQKVTbYAwunDQue2hw2lTb1NogcIANiEojBwffNt33tQoVYSmMpejj47IsXGpXxUQwSHd0W6QAk61KkpWlCpvuRVj686Z9tDKlR7hXAqYQ3Qfx2m1E8PGmQxZq0IOxAPVKMLYHwHTA+Vhf3X8AQMfb2/Ak94KUpjyhg1GRtd+1NjdhiGPXsE2npS0cw4CwmTJj3fe9FM5E8wxP5CEFw9KNgKuhU2PcEyJqKWbaWrOxt2W2CPdeuLq7cCFgBk8d81QoSXVHIk5sJJADCEYKUwAkJmAp0zx3HQ7pHpt7twhOCjncPAsd7h6gQNF7bxyVa1ROAMpqIcuT5fH+7mE9t+MM82HTbTosmrHWQLPbm7kdj5czkmPjuu/7uvnp4dIKcJZpudlxq4f6ej1N2/ZZe9KTXqcdpkZpK8dNmQOauTETQDyet2lZfvFXvvqrv/ZrP/UHfuLtt9++PR6Xab7eoN211gq2AkqgmGctHGFhKSLhSG+KXfIIQGEGVzACFjBLInB3LmJmRCSQ4WAJhAyY4MqCQtcqU/yTFi5CZAQSAcxvjJQ/oS57BhG4kqq+AcWE6+ZmljAiQHc3pfOpny8joX706vV6fui7ufF52wKCKHo/2Ti7oYNzoVLpfHoIHYBZSklPTGAmZj4ej4+Pp8Ph0LtKaZnJRTIu0wTL7HMpQteg0Me3Z37jpFMFS4hciIiYohtgPm536+lchEYf96AECOFzA+0PTIkJBD6GZQAilCJdNT3UY6iilMf14flyc5iPp3EiBhIWELUeEFf2NnNFQPVALmPfpiq2j9o4MCG8bxsimiUAXCkzBgmIEc6AtdaIMItSISLULTRaK5K4jk5SMQ0h5qn4uHYkyS0BeaqTqUGkpzGRe0I4YmakKnEpWNzDKlaN7EOpcIQlOIVDAJMklsS67454QCBmyHTJAkl4DVr2rFiiAzIK8wg3gEzQvUMgowhKEeq9IxJEgLowIaFCpkGtou4QMNUJAUdXZMrcwyYDpMaYuUOO8GXe8vLr7/+t9/eNoHZ5V+CH+FkcJnilh4cRmHA/jTHJHuoPMGXZUT6qWQhbTcvHFF7v++Vv/tzp3/4f/hu9r//yH3r7i+PFX/r3/tqH89EiePa5Bu1lMeoR3PikjwVhRGCEJ5RWSYjYmUDa1H1sPr778QflZn7x9m2n54cnqOmX/cLSnixvoUpb5stYLbQwMVyt36WUgohb39fzJTVmqYd28+TZzaU/7GMlQQMEjj33aPTh46ulttePj//sK7/x8snx5Yunvt1t0Q9zdTPtHZicQN1wbOnQpDDSBjHSrxRGSzUPTZ2gsPC2bb0g16JTPhJeqbTNeBJ2x8xILg+5IXKjyim+G5Ry6ip12sc2YavAjXAzNUQDLEUOOW9+komk0FA796i1KYYO2nsadE2XqVhhSgwGBHYAck8MZO4+Wq3D4LT3LDELsPkB57XrPN08fLQ9OUof43h8aW9Ik8487X09ne6hyrsv33KED159jEWy1dePj9Phthzksq6lFY8YQDxNwzQz3TwciAgyOdAVQH2WmgLnMKDczG0YejSSylSS5ydP9n0HpMxsCLqeuC7gnqqVkJkCYh+bu/pSHhNGHxPDlHm5vyxT4ZbIeNHx5Z/4va9Pd1wIw2Z6WllknJRZuIiGrt16wlIm4SrgASOzZ1TEJjlZ7Oo7kiUCCl5jzJN8Prbe+0cP7z+rS+EajtwO0gjSwwZCc2MEAgBhIaC+a2ZKa8IVkq4huGHOFEwAyYkRFh4J7B6b2kiAw/wkDAqCAJLttYD6FgjSpLDYSBvDzRICQHxoAgIEwbX5733sgJgM+WZqiEMdLbgICw9V0yEk2RWSihRN6OtOlYkKmkN61z3e5HoKc92HQGE+HFZMtTEfD6dtK6X4qrUuOjBg2d0mWsK91frdDz86HpcohLCFldKC3CCGH+bXY8j50bwd33o5tvXm7Xc8FKwKzZjwzW998At//+eSKQnfeeed2o5/6z//e672x//Yf/NLX/x8ayXDdOxZl+xbI690NZRIlAzfjN6MYlkECCwDgIK8UCMgRIOEWjgzMbMQeUApUD4pWFEKQLiZKW394paZeTk/Rri779tGXFWVC41u67pD8rrb+byFhrvf3d2NsbdS932PiG3bTIUI3EYfl3melmW6e3h9++SI0DJg38dhecJF3DxGf7Y8sby/7HttLbLfLHxcnj+eT5l5uxyvlfT5fIbcjgfO6FJy2+8BoEFjDsQw3c5bhDkCMPPY48q4frw7o/DhcDi93pbDXIIeH+8x/XiYxxiw2bwAZnhG6ihIzGD7cEthTnBkBmbbd0SuIlffkanxeT8/tZubedKxpZohuCozM3NkOmSERzhjtlbSgZnTEqEAYCtTKYWyd8jMiIiEQBIAyEQNC0AA0HC+8iQieu9TbaVwQGamCI3hInJezyQ0T/W86lVMSEyqWrAyiroiEBcMAHVzd8JMsIyrBT0mAiQgiRAnlPB0d48EICTCjPRIIghw14ggEiZEIGYKDUl2yABDyFJqYcoAjcBCeL11CgFZXmfXhGqBTIxyjeO80tSzsy3gYCUJdfICzjvhSSb7/BL6dNkBKuxkGnCimJqfC0tBSFel9CpkmNuFp+MklLiexgoFJ8Holwn6tz74mm39Lfni/f359XvvHXg6Mn7J4hXCTKWKUSYwiBMmEBKWgxRkS0QAD0bUfWCR7qhrfOf9uy/UyZyePnnpFE/yJU/ERtmRCLks2+iH6SBUVDsiMuK67x9/9GqMUUDu98cXL+LifYT3iFqFi4x1S1r1bABAUxDK0+V2O18+gpHPb+Aklz4yCbiqGVahJusYpJqWyRQIgRAZQJAsiS6FLdLdytQAIDznMq1hCQxMiRRXE7XEtCSScNjDIcEokzwEnJMaOI0wAwCnjMQIyBG11mQKTAtKB3EiJURGoURIj0TyMMx0BgBgavvej3Pdtq1ymeZlHauZT7ggEageD/N5u9uHlfbi1Ne7x9MTltz2wshISLj1lQRZ8qPXH2SMH/6RL51ODx/f393c3GARpchhtdZdB0xlUDYmdb7CDRMicQJqWCYCyogU4ZvldqSv55WlTMcbIhIFAepuirDHkKlFhDNkKqLPh2nbzyx5uZwJA1HQjLlNBEtrlVFYpqnWWarI7MvxpgbeRARFzlx03WVCYWToVohePHm+nS9hiCzaN6kyy4RIqaC2hw/CRJLMpOQEYE6LaHNDguAQFnDcto7C2gUxXaPIITKpFFelUkvDvJxZyL1IbarDLRDBXa8uGuHXlHLmUpz46hAmc8trQq9HJTTVUttme5lKKCUiYgBkYakI1zAKD+Va8qreKcJxHTOJg/vwRKwkImIRrgaZT6YlgFQd3UONIimoUol0Em7IEKkQQA6YSemOgfnq8fX09MYRVTW61tIO0y2X6WE4BvtQn0A3BeYbkoePH31qNScPtdMeE/ZxfvnO2/tlu+dzvVm+vV7e/cIXHRwrhZBl/so//9rP/uwvtNb2/cyMU5kOy/MvfP5H/v7P//yvfeU3v/n1b//+3//j7372MxDZAUqbIBMQPMGRCIEoClw9MCghPbNQEiAzjcz14ZSZEbBe+r4PVb+c164ZZpfLiRnddN/3eZ5Pp7MHrZc9DCLi9HiPCMx4vjxCzEgSkIi49vPtk1ltZcG5NkTcdXd3lAnYpNCxBImKSBgw387zYVvHtLwY2z7fxOXx4XCIaeqX9VFEBMe+kw6oIrjvtYiaXx73VkpEuvXL5VSICSAc3XPdemZKqxlgukV66EA3wkwHBGZgU3DPAIQsAqVvNlc+398BBJhPS+vrxc0YIMZwM3cNcKSIBDUXYo+s0+QauxpKAYCxq7sLZmXZY9/7pdCEboBJhYKEkAkwMzwzKN09XbketPeCxU1ByMyvYii3PcP9Gq9zlYADmFnAVb8O7p4NEZgpI+Ia48N8zQPL3VZBWab53LdW56m2vpt7RkAoJKNGqAczIrBjWkZgEhFgAmEmXif6mQiAmYSOABhJAYZMdJV8RyKRICVlwNWdTRIJEnfNyMAKIoyR6d41MtOBhQjS03USzowRFuEkzdQmWYQkzBMQsUCGJCNxZARRkIyMUXA0A9vdVyGq6BwA1/JDHkcM1ZyRGgtxvTAYZ2FoeQ6ks/WYig6wkUubH06v/vJ/8Dc+/+RF+dlf2gyfJ5vZqe/H4wz7x9KOEaEK5jSyCXe3rZZDuJeE28NkWx8eXGoiK3BhfPVwWr+6D9ukkWNQkYA24dS4RHSH6LpbN0ZSVQIYe+cifd1amyPSPF+/vlviKc8tuHUDifQRRMjmbZmHdYt9mQ88NYM9IJxLcFpAhEFt6poIPJV5PqLHPrq6BSHklfTkmM5I1ywtkZaZ4MHMhZIyGPkqPGOURggBS2lG0N01PBFHOFLGG59j55LMJMRu7EqZGGnInACQzISFBDAyEzUSsfAUjD1GRAagAyFVLhQAKGRpuSsDZdANHRLCcadr7HzDcz/Rwq/X+2z41vzckaepjb4Ba50bmY8Y+/r4/OmLn/ypP/QzP/Oz695bm++2y/PlRki2MZLkopbJIx0CixADA0FAOoALE4kJu2teerg/rXNIU83hXXe/PR4T0SnXvjdBREQCBw13SIuwGFELFaHDcV4okQFSlul4dbrOTJRyOq9I9e7V/WXdEaCRlAK6DSGyCAWPwnVpLdTJ8bbyuIYKqAElsxMbN2JmN3LLgAxLKXWMTUNFqEFRVQcrCwkSBGayJ5TS1IxIVl3D3AXyk1yBzCTi5FKLEIZrH3sHYuQlkl2ZA5EmAomNiA2SzAFBNICydA+GA4iGAUstyIyIlOoDKRGIiCLRzCzCKWxYwKgkAhSamVqlMoZmtiLr2BCocEGgTE8A5mIWDi6AjgQE1/yy5EQMImsk3rdjfZmZ3teCUHTAYHS9KXVBPYgJ9ijBImO3NFymw772ft5Lxcozhb36zrefLYu38vr16/n2xQff+PDdp+9OL5Pa+Ec/+/f/i3/4S8dnL199+MH96bHO08P9/cPry7PbJ9t5/YWf/wdvvfXWb37923/8j/+xd955ByLV+NVjv6zDQ7ftsu6bu79+/brW6paWEWlprvsFPQJijN1dEdx8ZHqmRwRCa6Wo6tg3Ebmsp6dPb9d1ffmZG9W0HpVrrQHgpeI0g+qagdJqAj3nZd+GcGFmYj2fz20qrbLp2vuGADfLwYbd398xI9fy3fe+Xms9zkuAffih3x6OOvxy2ms9jnUHE0AktvQIU9vRE5HF3XrvOE22aXIAwHbZh/rNze02+vn+IlIBrmpSK0LpOcYg3vuA0eN4vEXI3vcxemEMHBpKRCM7dDMbV4vL7XRqrc3zoevqaTrUI5ZlgZ6UZR1b7/2wHN0dEmuZrHdVX9pERGPswhgRPkyI8BqBm+FCQew21IxC7XpPRIBMdUNE9WEQgeCZyAgZV0N/DwyUMIuISAcIwCAEIgCGzEBMEknbiWjsOyAu89EsAEUqjx4IWFpNJCQUZIBwTM0IBGCyK/gnBCQDAVImeKSHYwgR0fU54A5BAMScZligcUm0iLDwzPCrc0pEWAAhRFIgIhNxiEQkI6FTYYYIBvRE/MQkBRwIsDBnRhJ6DQ5h5dKYMts23EjpGCAaMndt6ZeludxID7KzNVBy8/DhNJgXGaQnP7OiGeyQ6cYDOVgr8u3zh/sV/eTbNt/M5SBuXvlwN3bim00NTEEqUOkawDWhqO8COFy3hy7ImYmRrhsiH+ZpErpsj/NSCZJEEsJiNTSi5o4BmYhdHcAFEhCXZSGi+XPzR6/upNXPHI+HekOVzrYVvjKnIER8KB8PAQApZarnSB+a+3j55OiT3m97a02VuhsyJ8LV6XMiSWYIT01BZGBOdFOAaCxE4qaESEJuMTskJSEwAgMwycQVANycCJGJUKrEdcbHhAN2IkRKQCPgSBOumAQhtdRrJ8YAkCAhASGZVZ2RkbHUwxY2INaht+mtVB/aaI60fV9vjwtywkpMHBm27aXNIrTt4+nT52OL9777ITq9+/Y721mn+cAR6+kysVZPGPb6g4/m483v+31/4B/+o19c9/GZd172rQ/Xgu2yjvl44KRKhQSEkSMQ0hIVE0SUeIU8ShVT8OAiGYnqB5ZYJkS0oRQxI8XYrgQ6TRDgaTm89fJtEVoOzcY6TdVC0vu+712bOhYhcIBRzud1Obb94uFUqyDmNs6JIYiZZlUaBozL1khaqWlOWQEILYA8EBIjwS00HSJBpAoKZBSEse4KXlvbri5epZkaBUgpLlQIQQggahPd+8wTEQIAcZh1REbMCChlQpS+R0phmSpXJslwG2sJCACwKFM7j62HOxEFapRtB+GI4QVlqAkBM+26ISURWR8ALRwCkoQjVaRgCuS1iMXEGKaeJiJUgAgqY99NkxIQECOvOVCgV8IRpL9pv+VUmLgubYmLYsYkDUm8K8piAdNSKivY/fm0O5ZBh2OrX3/13Q8e3j+2tswNQr/x/nZznG5bfe/ba0Y8W25+qX9laU/n3/zO7Ze/9ND3X/3lryQAfPvrj9tDPcxHO2Zb/ukvfv3p06eqY5oOj6e7j+/ir/4H/9G+9365tOUJ0ozcROiKpgCUGMxFVROAilQhVBVipp0YCQwxwFeRRAQR2vq9BR1vb1bK29v2xHDo9uRp9PUBksGRKxbCbb9sQx288bL2HTsSATCNMYq0Pqy1lrn3fccEdy/MrnYJQydTlWlKy0KlULu/W5MQMR8eHuZ2GN3GrjYUw5apPq4rA06lorCFqfbrFG3f97AsjOmOSdY3PEIOK1yLNN039WG+mSIzJ+Y+usgbY6nH+8dSyjxPj4/3SG6hzOyRd6fTVNv5fG6tlTJl4ui+71oKFhIJJM3RLRCmOhE2SFkvp1qrSN1tu5x3oRkRUwiYOME1rv6sV38QQHIEFwEk9UGM5kaI5qqhUgtAZqmB4aoACR6AhsjMyIjOmJ4War5nJhEkhDoAoIa7GwC0wqviGNoxdTgiSWl9bAF59eC8Go9GoIZ5BDBdzV4yEpGvLtuRiEDX+tvNACQRFdRyXCUizIIRHqgYmO7hcTU2AjLGYArw7i5BQoW5eGAkRhgBEZJbeiQIA4SNjlhcRzgUEEzKdMyESPBAD/QQDAOPbNBb+MZ1g8Kj44gKGByQoy0znsAV05E5UQJKAibUwxNTrYSJUNPFbL+GFU1+tnO5kZMouVmKBa7tENvASGFAcCZFidpo31YPD4MqNRHUUgjBQyCzoUaXkMM8mSkzUQYQHpepd+26J5ZSJ0TophEhSCwlXC+X83K8bXMVqSx8GZfChcDBQ8ee6bXWdlM26xkhpZAEeC43x+fvfvb3/eiPnE4PP/3TP22XwVUw3DxTqMnBR/fIdAzDDAQERiIWZstMEQEmBUNCYNDQJ1ASCYgBMCOBIBkBwCwQCJFZHKkQYiEmQs9DYlimaxCRRzKLZ4Z6EQkkD43QQGJmEXYzlKyVVF199KEyz0tZCEiHM9ZIBKhFSDUlk5kmrr2HtKZguo4mk64jAYng8XRfEI7z0moNj6nOaF6FzD0g9XL+kd/343I8/MzP/tyru4elLde4i0MUBOaEntGuBb46pkfitT2oqgxsaJfQwvBGrRShoKPQ6L0G3Cx1EXSkdphvbm4AKiYdpsM0zWOMCN/2ra8b1IUYPAWSd/WSGRpuybggTIwpDZBCs3f1Ulg8wYPIIf2aDC8D2NXIdZrqxBjAmjQcmRkpisQYA4ncrfdRpjbN1cwaM8o8PMzJujd2oYAcfQfPMMhpmhyG1GmM4aFXiyfmiAzTEBHAEjztw9j3gDHVSmkAPdMwKSIRq6avtnMtElkqY2oEBCCw6NAMoloIZ8REZEwXrlczQAPztFImT9z3UWtjlkvECAembrbtl2maoJKll8IZEBnA4hbwxhAKR3okZCBFlvlgiTXrMChUAAlLMSVHctd0vX12zCoj+TJCkXp1AU4WnMquXSCt+8Twer8/PLu9P19woTIvZxLQ83v/xc9Nz17evPWcwiLWz731ghnQbeyvbo+cfjfVwkxD12k6JurhKE/f/qxtFxqvjsvBkSyysAjFpY+ptojrUSOqFI1BkcH5pj8vnDoy2SL24a3SZb0AQAI+nu4ZUfsF0goJcwGg7dIfrUdYa8VGV8pCsp06AGl4rfVRLwDRxVtr+7qGZWuNa0sv62XnBrVOl8cLQExz3dfLNWRBpJ33zfplmpZ93zPjMJXAqHUK026dkQxzpIfuZZCqpwdmU9Xj8SgU54fXl22j0nbEdV2lYK2kYWvX4SbQapXRVwJCkqE6HtQs5iq+aw+dDwsh7pvbm4CuiIRaeeYDpPXTigCReDnvpbRc7XTZiah3LW0gYh8r11JKIyIA77pXYohQTGIGpgxwyKvfMgtjZCnV+2CidIykqzWZXSVBhBXZIhnwqlaBq2aUIR0snBmR2fN7aROBIK3VoZdpqsMthtcmxMUCgUHdCIS42BhXw3R649CeRIAEmUhInhiQEXFlXDMX9z0xKAg4gK6oiJAgUizdMwgCGIE4iTNhhDpcuRKFICHQMzTBICHAIAgQruFATIRokZU5wxGQOCLH1eysOIdcfUV1EK9T6yiRUVkYaC/xiD10TMMHQJ0xi9rYlCAFwiHUBLJG6zp8GLJAhQvuBUNI8nSBcohIKre7d4GsdTKSZMonhwxPEdstAgokFRCecD+x5Tjvk5TEYAAhtDHGmwjRIGBwqIVL4bnNoyckSa3DA6S4mYiYDR1aSgmgdlgU7Pb5MxseEeUm3Yy5uFqbFuAw1Jig7VFanedDbHYo09SW5enT+cXtr//6N9eLHpfFPcbuWISDhevN0nzTVXsm05UHAQkEjAUQFCLSs7BBelgQEJVETKQMDAIVNA6FgEoAkOjXQ0MgbK6UpDEFoXpkpqAERBCZ+4CNzIGCEEsRZGQkRoIcqumBYTa1SkKY2IfCYY7kRBoOiEgyZ+qIsSCoh1m2ViEIMshh33aabJoPquvrR33x8vfUie7vHwEA2OdWx7YnJRF9+4PvvPjsWz/0Ez/y1V/+tZ0dkroPSng2HTzhzQQFwPGNcS5DAiSr3VLRGmtGMqO5j7MLteOxFlkObU549zMvEzMILaOUQk6Z6Opb9Ff3d1db6Vom8z3dTXfFoWkjJAmDcOK27xf3TITzdr7GnZU2CSBKLabEUlHasEjCdpj3y5q+qXYRARYIRBQm1LFmSABzKeCZQCgcjuuIWmtjDgJqBSKTgCPhzb3jSv+rZrDtHkiTADIDQCncLRwjkHaMq/F+2rpt0aRO0wGSHk6PtRy6GhEVYmKA0FqJIq/tl0AIkUAZ+f/k6c96bdu2/E6oVb33McYs1lq7OPsUt7434oZv+NqBbWxIW8q0SCslMqWEByslpHwFiXe+AS+8JC/ACw9IgJAQCQKRFAKTD9jG6UI4nY6wIzLi1vecs8/Ze6+1ZjGK3nsreJgn+A5TY/bW2v//+zGxAEDrlYFvmAizbqwdjLQDqSF0jK0110hpGMbc2jYOzEjRAdxbqyTCwiIYmPHP2TEklHNmSolzbQEil2WeDnvDuNpGyNXqbipN2/vTFQVevXkAZOPUzHFkNAfthYRgN0jalrVtdfjoYSUa9h+JTNojPBH5lDHrJotFb0Ru7ostt6X9lI+9tcBO4bUpEZQyXk4XXOf7Xc4JtvVp7ZrKCCldlmtH7Mq3cLI7OA4BIcLrYjnnbZ0DeinZXWtvw5BPp0tKSW2NiMvlMuZ0nHa66rpuKQVS6m7zvLa2TUNe52U45EYdoJ5Pj/v93nTo1XM5tB69Vd00swDj4+UZhYno+XR+OB662yh5uVSR7A7MsulzKaJbfz7NZRwp+Ne//vrFwwNxR3CH/jhfGvhuf+cOQNTVh5Kq9uv53LbKzAYO7r2tu91uKBKoHn2piwVwSt1q29ZEohGZU7eq4VvblgtLzoHw/vGDmQlxSun5fCWdtdkgCTHcbV3XJFJknbfrmMdam6pO0yTC6+VyvZ4lwbAracoiFF0ZsLAY4GK9uTkaYbABq3l04Xxrw0XcbFd+m4YRiRFEOBwLiweTpObRu0YgkAAbSvgtDEWMyOgWEWABFDdiGkYg+FjEwFqrTa27OrK6sWEQIxJZMKUIM+sMgABIGEC3/pffQCyBqooJCYkZhZmZDYhcMPgbYUrALf1ORICk4RAYEBzMKOIeEciY5JalEPDwbiBMII5BQqJKSawpMgSFqzmBeQAxQqRv+C3MTik83eI8kLQLiGcUgdzE+OBdpmEYBxYAdpOBdyMUWlXhacyAmb6enyuAAcKy7od95DbwbnOdt+AY8DwoHFcofHpS7xs9AV0hrqDrk2th2V7ev9gdOLF5S4zaejNjkJscnhzm1vbDaAhk0Xsn6VJSGsmbAyGzDClHsnzEm1QjANba1DCAx3FyaMQwDjtCzDk3raft6ojDIFV7LJC8tJDn06U0orv5aVtns0JBFJJDCpq79mXt6IrBjDI4obsCOCc2sIhQdSLKnKP3MBzy2DXwz5t/zIyCyq6uQRARGOThEOTEmxkBISsyeTTTAOsAAC4GkVLu4Td4fTBZeISrY+2IJE7ZE2ESBzakxkEdkqRmilm6O0bshl1onpfFemeE83qSsYgQGHAqDoNZroYkw5/9+uvvfTuLDBHRqBN4mYa+1VLStl7ffbn95Hd/kJL803/6T7//ne+dz1cgea5LSomEW+1E7HEDFAUBCN4oKN3NTRsRY5720/Dw+tX+/jhI2ZXSl01ETvOsGuHkwdv1SiTVlEu5LjNLZqRmXhKpgTYpEyl67xEO2pvqpmqImErmBJwKpBwggnK7OHlKKTy0bQ5YF82HqTfzoFQypKjXddsgUUEYEKBtjuwWUjdLJWEeyQkhrC0NlA5la5W8jJiCzSyKlNBgkHVpWwMpmRkRsa0LALhbYFASSMgQHhtJS5zZqG43xMtdD9eGeRjGQbpu2zqDEhKkjAjsBiw5gNdm+RaNsTqw3BojiFhKUdSmdRrG4BskiIhZ1ddFATgh962BoKS01DURIkKtGoYAHkyA7uG9g6MBaKgUST26Y3fvkhnZEnOmlSZOkkTybrc7nU6FUaJbgySi3nvbdtPhuq2cck5j+BwOtm7zOo/jvuyk6jqMHH5xzwwIwRiJaQDGLLKtttVayhgQiVPdNogA7SnWjvtTa4EQaKANOXFKbHE+z2E27XeAtF7rfF1zHkcKty5dzTUsmikiIuN8rvsjW2waVgZx9cvTSkBD3m21V1vyUHIZuhrTsD8MHXletsJAWBgSE5tvHgvxsW91GAb0cFMzG6dMOUW/XOusy9IAo6lIzsM0rytxWupWSiGK8/k8jfv93X0APz++30/DUs/lfmfa3j+f9uXuxiutzdq6ChUzFEm398XWv3k6WOi4H7tZVYu1mbZEnEQ+fP2OmZvpOO3XVg+S9Ho1iPP1oqqHw2F7am2rr+8OwzSM44SIqloOx3E4hEFen8YyJErCuCxzyoy473rsbVnbKpnUDeo2kAQaMkoqzbbuVgRyYiFuEZQEKCcgScTkIuQM1SylktKGjqttYA7mxMzESMhC7gbGSGaAakBhJDww3wbWiIiw/WGn1ytiuK9mtxU0U3cMoqBAMAMODCA0inBypJs7g8DDzZwJb3/kYQDmmG5QFfzm/BzhgBh8OwM6IAU4BHgghwcmSiIkImQB0RkjiBqaRTBx69VMOY3EcJuMQh1CtTUkcTVTlZTULRilm6AYsQJCmGDIkOLabeeZSujdzDIn2VrnymYEzenWj9s2qh06+dJBT8gd9+ADSOJEMuy5xXa5gqj2a4dg3j+skPo0pFffPf67/97di7u0F975/oHffHKkiJLln/3P/xc////8gzuRAm5t5UHQhTCFPq3NvWtGziVNiQnBo9km6FRdZRgzD5KIISCge3X3unQectnt37z65IvffPH55+9f3R176HJ9X1sTkdo9D7s8TO98ESQwywhXijQMQvnrLz78ya9/YTkqbqZr2TNi3y7Lfr9fukREB1QiZEaA8OY3Qb0qRGRM7OTKJWjAyXhDRNcA7RgI2Lv25k14QHMhMv/Gq2J+kzOtWUqWIEHyMA0MDHMEUDNn1HA3W13HPCZJhMRU3MEhNQsQNMMIQmeIEEJH9+ihrpQJkgw7Nt0N+P46I2K3PsmUJW+dPASFlcjML+t2vNuDGzOb2Zip9oYbjSzLtiyP8dO/9BcuT49f/Orz3d2DChvC0uqBJ6+MiQLDKDSUIILBGFbxTPxQDu5OjPuHw7c+flMvl9ysnq7n64VyUeRqUKh4Dw7aam1u5j0Eqrcx5XldPHag0WpHgt5b3aKkUjBkGgFAVYchU+GOUQPndZXQAOAs2VqPQFU93N2pamttHMeOMdeNOrHL/TiF+TzPkvk4TfO2oit5sFp0VQ8LR0SU3Cr3JleOSAKWZlzqcn2YDhnlbswY5xYbUN4i2iSBvq09g7BWj9DoQIKcDIk5k1NdVZ3H4egQrRuoSsqHofRtzVkqNuIOyc0tXHCXjQzQowIMvPaFCNydHBkFSaH5Xor2QJFu7u6T5L7V3VCs8NoqpZQzaG+FUl03iDxOewutvuUxswg4gtM47QAxkVhvJGTamDIHbA7WVgYUC72YdE9BvmFIhGrmlEppW8fACFMICCx5qK7OgTIiiG5bVxuHbNEN3brCKshUtVrhaTxkKRzctkqCCOZ9C6jntRWtCKWUQbsj0brWw36YT88555TG5WlR1buH+3AdCkHv83kpwgigoCmnpn3btlzwfL6mKUd0D8swkNl+N5zWrWov0/i4zZQkcnrUBhGZ2AId4Xjcz/MltGIqp7kN4xbgczXQthtT4Ho+PQfiOm+83yEBIkVCp9h021QpEnIs7Uq5XNt6btvdbne+nog2E76ca7RBzdZ13Vafhr1rW67zfjfoOoOrfQBTYhqNYL6epv1Oyv7yuF3mC9zYp1LW+cpEme84JYj6fGkpj5fVb10F4t3AsFxqQrzf3a2X85vvvbw7HAiisGzL3OuZOMa9pIQeGwDIoMFKjFKwJ5EiQJtFaDJHGJDEIXkcJLfQhLRP7KQKuIQehyItSh6s6eqahUOvdxJrx0RcmM9aMZH3NboPIhaCN9YmiakVEXbOId5bKseENC9z3o0WmkPuy/GyVOVYVFmGaZyuS+vdwoM7iRASdFsIIAnecp3qlSN2ROGhN0IrIzKF4023gAHoORAQI0jJ2QAkiYVTBDN9AwNlCnXUZhBNAjBQG27KIgIDRRhigPVgR7JuUz64tpEFAXKR3mvtLQipmyJ0iBJULDzAk22hVrw4RLcT57VNeJ5f3TMUKux5ukvpjtMQKXkaYXgdcsy747aj3/kLP/in/6f/w4c//GeQu0WPjrT/tDv83f/N//Df/9t/9c+sPycQSGeA9wDskAg6wNUtE70EvFP/L/7vPwX5s7l+PTY9QCzQCkuPKjyS8BbbFtGW5V4OJSUh7hwYWEAY89Y6hu9K9vDWbcjl9bfe7HYHlrzfH959+YXZ8mFWRkolL2E1rEyjkLPW5Jgc0AAEK0QLXfuH04ev9mXcJxKx+bpyRDed9jsHFG9chhzSqpsrIkJwouQhGbrZlpkJPBEIodclYXH3lChKWtsGRkwlqkOBlHeteu9bYkeKHZN165B8dZHiasgM3oi9EFRvo5Bq3+om0wApSSTpApI1AhAyZQWt2jn8GAhiCLzgmlT2Eh2B7APuR2mw+MWsjPLgbpG3nitvUdTH3cOl+XXWu4fjF+8/5ELHaahemvaFQIk7ooebyHWr/uVX/8bf+pv/b/hHX3z5bhgmxNiNRbFj4haaslDYLo9mqtryriQQa9oViIopzVd4+8UVFe/2L+f1wnmqtirE1luHdVfi3fV9SYwQ56+f71++WNWaRUcjncHaNFCmlMfp7jiaWS6SZKx1XdZetRLivGyXdaGU5RZIrrWWMgnwOI5qrbaKJK11Jk45R5iHLuspsZSBI8K8mbcyZDYniqYu1MG8G7qVcEYekbA7jOCj5G2ZW90oqLsmQZa0aa8RRsCMgpQgGHES2YJqV6Gx9QjGxBnIk4iFd2tShEXMqmOorR4DXK8gQiIIYmGEccuLlZSsrkQepupWl3o47BIzaqzrzJgTyi7l6s5mgGC6IXLiIIjM5BqIeCObEzsGulJv3cyKjMtaAZM5oEhKD5JlqwYABOi2SAIwR0naW1AAw7hPpVO4WlVBdEQ3oEBzWDGu10V4yMJm8fj+icD3+50ZWYAQEydtfRiKu4PZ8+U9oQQRIoonEtbmRJw4t+qgKiFr7eNEu6G8//qLh7sXWpt6hHZBXOdrQjg9vx9lQIpa67Qb3z89vnj9ap5nB8hFAHA5r3licFdwcHh8OtXaSWTrlx4OXcFuE5Gf67ofx4R4qauqZSnr1ojLui4i6fT8fBjH03Vb17kMKUkWhm21eZ5TSiLS2trVKUmgQFjbqkOMh+P1em7r1ds6UdL1SWv/zbvPjYdADNxmnE2bMHnbBGxb5/10N1+vuymR7KYi67UOzoA05ElE1m0D4pLGgVNdl7dff7W/O4Z51Ypu8zwHxVjKcr1OQ+7b6m0F7WgOpuGx1e7uiERMIlLb2trGzBYoSFurAMGJiHZ1DQTcj8ck5NYdEAWmMkrrmcXdUk4H77vQWzIBKUD6SDTsCtstjk0kLDAMTL0bAZjGcp0pZ5BkZgQRAaYK7qs3IertOk37MZdQ87AkstbNo3d17d3V3Zk8EhCz3CLHZuam5i7MmFIi9hukkskB3W7AbQoAJjYLuvmOCIIQANQNEJEpEPjmOQqQQAAsQI5oEYEGGB1NMqYh50joTsw3t7GZ30y51qu2nsdiXc2ChaI5c3LpfmtICbJjN2vdNSCINmWGcb/S+tHx7/6P/6P/+t/56bNV5rIHfxX+GnEHrABzwKzwDkNkgzq+/fzth5+9te1PD9xnmBhqW+jv/x//0dfvhsfC53dfwbbGfS4seNbTb94tFa4e9fx8H9h+9fn6xR/m5XkaPWydo0dKYhjmXHJVG8pUXVV1Ue+uGEqOD8cHVF6eWylFhOalufWUhrrh28+ft/Xd8f5hXX+5LMurF5+xeAPfQo/j4LWzE5Gc2zq4QE5bt9gcHEVCdmlFuDvsTs9LmJaUhiHFuprfHNjo1iVR58bfFNsMJYVuIoQBBM4EHo7BRfi6NmZ2UwdAou4WDsMwVFervdYuCCKitvW+UcoZhQLDNrRA4MKAcQO5dIREQikdUs7u7qoWy+7w8fvHD+56OOwTIyIRcKBLJESavIsMdTsXnjY3qXBd+0UtpT5iyoDCk29GBpwotHvXwqluW10vv/jF8pMf/VCG4oaEqWRMwt3Nvapqrf18fv6v/tW/+Pf+3t8jmqdpD4zmuBsHAHi+XIaUCyQNVCTUxCWZpKa1lBFBtMOy9kLp+fIYEYXTutZgSWlsrT2d18tFbRIizOWuzg5AJZc0TkVi4MOUk1nU7ohyXq/LvHa/ElHvBuDM7E4YSTcTwoTIjj0RRyAzG1hKIkPWrbXaYSjMnMrQfBmm8cPjVyLkJgaNvAdgcM7MjIlRtEd1WW8CV/euPVMA+lRkN1ByZgBm6m4bOXPGwExo3DMAIZDgtbkhMaeu4J1SN3dHouhbUBROOeO6qfZO7Cy+h4mIHEg9GOim0jHzMshlWcrA61aPD/c55+Vy3e9GYUZGASF3cSdmMDOtAUQcicldTRU80q3IiMEUtVY3RQgMeDw/plTWdd4f765LpSBGBkdw7KoEJCUtdUGH2+y1rg3BRyJmjlBGMuvNLJwBkOVhbXOIilCEIqJ51NoCWdtGAKUUTul8veYi5g6ckBIhEycP8Ea3za22xpQRZF2ruq2r29JE5HxeErFImi+niLh7OLbWAWDVOdQyyfPpLJLefvW1I7h709Sql5L6oq2uQxFyUWsDjaGxahvGQXvXDmAxDmNL3pteml1P78f9dN1O82ZqWEqptTHS+XxKQrth/Oqrc5aMHgbhgR+ez5JTSnyZr3d3x9o3q1sSDjUMsFpnVfbAoJxRu2caJI8KGALX6yXlwgjLfH71cNzW2d2Px2M4PD+dmHnrdZiKan16/lCGlHOODpfnp3R3v5uGaXytbu50/+LFZjWl5NpN20cvjsfd1Ov64v7+/Pi0342ZKVCbNWSSlLe+WWiLmqYMAK6ubmaWc1Jv1qBVGPIAwzgvs3tPKWlbx+712ojTtc67ccC6+bI0xHk9l4Hu7sfvffc7GcmWSMzYsiN4aNu6qifgMubn+dI25+KqnSTdID4AEGaplPm6rusM+I35PCVCcicNs5xzcE4h4H3rDULdFCQhABMSEgKE9gYgLOFqqg4ASIE3uQey0E1q/I3t0UHDzZwEDcECRJACvSkFcQDeJFEY8Y1MEoMcmH3dXCOJMA+9qkWIMDgiqKQQQe1NLQjRqSF6SJg2NFdThwRIiBQRpBkRpeyfaET5+E//0a9P45ufJflQN1KkTqINrpf4zdf+J+/tt8+tB3mcPrxH+8BLvefsl0uZ8LCJsPz6f/V//vX/7P+F8YCQPSxBALXuzwnWI9velj3RyZsyyNEPAxCsVEAjHFQ7iCRoTcIBkyA4Ueu9Wo+IOyqXp/NQ9qUMoNjMu3bESMJ17Vo1D9PpeSmlCPv1umXWua+Uk3tgrQiiRYzi8fJIubTuYjJQTrvROzuGRS0lpSS93tjBKMjqEWaSKKKqXoggl2yMFldAVAMAC8BalYE5iRtAIWB21+7m4K33Dk4gnHNvgSSSxaIDOEt0W8bhEAGoIJkZSW7cNPWcCZDMJYKhByMIEzCd29cgvZTCJcBCjAHTikA8YYoxyAEAU8DAw7FvsInn6Whal97XbTvuB6LA0B7Zay1Mzesyt91uvy3rr377/ns/+nbOmVDMAyJlwrSbWtiH8/ug9uLh+O/8nb/5D//+P0hUkX0LQxqZ0phSIsJuEpAlm0PXyDnXWt11HAsCBdncWhIItW75fH42JExSewN0ERqmkRn3w2jdwSBPOxBpW+21v7/UeVm3rikP1+t5GAYSjsDl2sFDBFIRAfTe8T/4N388lYmAwb33TkQitNQ1ZWRgdFb1lNJut7ucHpkgwhBRvRs4CTPJ2joA7HkgCDNzkc3CARGRwoeUlrpwhsLsW8uSgHCtyxacpsmDMMLrUhiBwh2e1qaATRGRySGhAMBWWymllNz6BtGFQiiGktZ1ERj9Vj0MRkmcbjYunaZh2xZh6NYoiapG10Q45EKO6BwaN5ACgPfexykv80pEnKS7OlgpY2ttmEZtXYiRKdCbqQKmlMyRqUy7owW+fP2q915KYua29WEY1rqUUiIwpTRfltb0OI1ZuG1LhAPTuvXNfdwdn57PiJzTQCKmUYa0zkuES6JvjtlNe+/H475bq3UdxwNxMvO6dQ3Y7Q6qCojjkLdtK6Ug07YtyOn2+SzsqooAiRggHKHWFQjXuRZJBDgMAzI9nk9pGN09CL1zuII30zblY936MAzvT8/fFK2Fa28553VdiQiMmWDIbLoB6vN1TnnwYEQUSdM0Xa/XiJiG3XZZ0bkwS85bay0UEwYZhns0Vqzb9X6/c3dzqNUohIBDYyjFXUnw2udqbpAQchloGLNui3DcH/attWVp03go42GYdmtbLTRnLpMghqoWLhghxCLCELfuwbCbzlvDgF3JYNq3dRAhUFXVXgkhtHetTMkgevTe+1AEABjh8nwBwJIyIrr2IHNLbTGz0L55bLkUd7j559d1pSFfu43jjjeNpQa1pS8Nrsf7skv4+z/8gQCqqvVsBD3g6XLR7n2z3bh7fDottWGS7sE5ARA5FmQCbn27aQ/MG7EHRQAsvT/O87wqQHHK4VRrb1tHYLXt5pm+KZbTTdBtDkC3RZcTBpMze6BBgAV4MAAD3vJZCOQQwHQDq4kQA5oqO0G3cCcWDd9clQIoEFwgxAE8EiUgqWohTJJr7aTXUhJEqDZEQCZKpG4gKcLcOgMnSMKTk2xqU8Jz4w65H47dpH2xGpTY7zlWiwPYHg3QVuRmySELbs+hK7+YMvsQpHXLU1p1SW6QU7FiuMvwUKlsrsMu9etlOO65DBywvn8coVNUiCZxhdDWL0mrkRdJB6UWFuiU06XWHh4sRGwWzAxVwWA/3Zc8dtM85iBrbaFmiLwfDxD04enCicrA23pNGdu8HsaxMDXTzXXTTilbIoEkOGSQjOnu/mDoeRrW+UPrC6MRuraltYbAABSeUXBrax6ZMwJFEJpGb7RtW0Qkkrp1Cio81tpiHNw9XC3cTIEJENUNJEMQAQsg2IpgRF57K7u9qocjIxMJ3vQ24MAALIECBtZ6SgkIFQxyZsxqoN0LckHewM7oKTsGjhEYU9fKNMAI27I+uicmtj4yWm2Zco6QiMRkoQo9FVmXut899OBl7b/zwxcvH14xslcjD3VL4+AISt61aW3f/uxbl8vlz37+s7U3zHKtnRAPw0Ru5IERztitdaBpmmrbAOBGumUkd69bD42xTHhLK6O16KnIPg/3xzsw6L2vS//wdKaQLPm8zIggOQG4kUui0+VptxvnhRKJNmPgMGdGFnBXQZBta1lKZmGMVjfr1GodZBrz8OHdk6QxiZzOVy7j+fxcciLBjggoAbcNMojItkFtc0Qf0wQS3kFCBimttdYaASkpeVB4YmbGrJKUNnVAREcnUA0Lh0aSOCQAoq4L5ZzTNE2joyMFgDKjpLQtVyJCSosFBgUmR8Bwc4sIM/N1YUZkEszaDRyFS07StoYOiYUkSxnn9UoinmDpBpI4FXe18DKW1ntEzIsSo6kXZlWPQBK3aNqAhxQROReh5BgYOZQEwywSDxE0z3POlnPOOaurhzU0SQKSm+PjeUnYppLNbOkrKptZNam17nZj7ZtatNZ300EkPy0rM/N4vG6L6kUkkzA6dFsAyd2Xrda2zf0kqSzLkvI4jrvT84dM2HufxjHUWmuOToRbq7s8uvt2mfNQns9XHnJp1nsH5GnYP314vNsXCrys1+tlvn+4C3NXSymBB5kT+cSDu7fQCJrnZZrKujUR6b3fQobgcKrPksq6LuGs3RKQh5+XEzLJkJrWbjWJm7ZBeDqOy3V++fJlANhkyJRSFkqq+tFH3zpdnh/oOO7vaoM3H33rw/MHMJ9Ktr4NhW/8Z3eovQPQBFL7lsecErfWsklOAjcHH0NEtNaQ8HR9Csi7cWzrQuECAK5Nm1oTQbXGCUTStrVhGksuy7aER9sWDMhjFmBvFq4MaAoUxgLhuswnra2MUFWtKwkrRGJaNr9cF1Ykc7UaSRbNp60eC378sr9+2FdrRSwwMGi/H9e1LVutYcNhJ2NRBzZ1hN5Vu/fAIZc0MRCqNmvNw9wMs4w5HfPRad0qupt6d/BARTAiiOgOhMCIZBGh0Xu/oTqJboF5UFVHQqLAAHYC9IibiQuRkNi7QiIzc7BvOlvWzXSUEkiByEQAETcDNwSiIqGZRbiwEHFAOICkITG3WplTRKj2xNk02AVvPQREc0Ek9JDuPaUwxUT3fr20+fjpODku8HTMLzuE8WoWqE4MkRxzTQvFfjBr/dTa5phoHMb+AdOoorqTWBL4shHw2K/WfBgOOL/TRzOGPMi8Xfcl9XmGwNa2cINGkNgDVmubN6SWpOTCYV4Kd4vQzRtiSiLUdFm22cyKZncN0IEIHZ/qWjfb3d3Vvq2XdZqKk0+7RNHTODhyr9UiOAeYm1tJKIHsul2fJac8jeX+Aew47fLT49fv561uYdpEhJE4suB42N8rtK3X6zJ3VQBqrmqeElHJatQ8MGVFDTAHBwxMnFIKwpuJuuSda7j5kKaA7m5lLJRGhh6OZoEg3ZwpIQbT4GEenf/8qtgBW1fVLSd2HAxJgKv7RtCEetOCaeaY0l6VIo3sWyTOlhCNcupg4JwoQd2WennYlUikqgnTm9dvTucFElmO0+n06cefoYVRqHYMH0rarKGHIHMqj+8fP/3002Hc/8N/9k+I8PDwaltnQ6p1y4Qi0npzpkB+up4JgAVRbV0WIS5lTAMTEIYnzuMwGvlOIJj6tn74+l2f18u6REpr1xTcKlenlBISqFvrG3msupCCsblLEDLl22+/W691xf/w3/kr27xw8HHahVprG6ADwDTsrN1YDjhMpXqrutW+7YpUbQZqZmXMEGQWEREweGzEkYpoB2ucPEuwR8NM1RpiDLlg74KurY7DvQbOtXFKYU04mnYLBE2XbaGc1Fpd5t3uoMAkmRlb30L7UMpuN55Op4hIKQUCYSa62V/9z+W3tPWNMYYiEVHyaOGttSyJnVV9W7UMozN374CYssyn5924F6TWNkAtU9nmJeehKhERC7ZtLZJkoGW7YopPXn/7zSef/vGf/OLu/uV+fwxMTBmA2nbllBARmQBCVcM15yy89t6DEAgfT2vI5JiX5txm7e4O424ayri2WmudpnG7bIhpq/ryxevzfM5DeXz8cH9/r/VSay2lpFRaa9r6MAzM7CE559p7bb5VBSZEQIrMEub73e58fjaz+xd3y7bWuo0FM4urWevD4dDNurmIeARGCvMswQSgZHajaGPfqmpPKZmqdht3ewC4Yp/K1PoW4eZ1GIZuNo67rXaIOO4OQLS0bZomMD5Oh4I4z/P9/dEhqtcyJQZlgHEQCNlWQyZMkQe6zO9LEaZhW9echnWz/d2ry3UjBtWNcCqpgIcQEXrti1k3s2EYgjiArvOKFCKEyGHedS2l3HQRTGmZ55wzmAPJYZxQHU0Lk1oHcIOwaIjQe8+S13VNWbZtQYa6LWDWWoMIr1rSgG6EuCyLE1o4Ac5Pl/PTOZBZkolTSYpsyqySgfaDeLQ0ZQUkYev6o299Ats8lgDsAy1KsDSFkHVpS7MAdocwdwgHIKLWtHfT7qUUFnMwRERy09a0OrE5nJudz23ZAimrBaD32sLcLDwAgJhSSoU5uVrvHQAFEW4AF0aFb/iEt5oTgt/YTzeNcRgQMglpuGLcjsqh5u5F0QI5ZWJupqtugc5MGV2QwBwRidOthhAOfDtIu+WcLdw8HAGQtXVKCELIFOagLoEYgN7HV9NT1bXFMGZ2Yr6vh+MVSZpNnVEhyAPRWyd1xTkcJTza9bgTd98WHPODxtkRmBPJbmvxLhv0Vbm+whQumXf1WpOQJDSrtW9EbdPOzARQSra6QF/TJOhr732/Py7LliTfPkKq2pwZKJRu1XARwujjOCTC0+kypCJ5Wlsf97umq1ql7IUpM1+uJy550QYlIUtp5MEQzC12SNfnU55GLENinqbh44/f/Oznf7rO15SSttZ7z5KYClICSed1BuHLuiFTGmypCwCkkhEZgm4pOwdjQnenAGF0g24KAEKCiGYxcMmSeu8ORklufiEEbq1lKe4uRL33cbrXPgdUpgAFB1aQANpQNSSoABV2EhEbZEVPjV0r3odvmhmO9x/Xy+Pbp3ef3v/47fNvYepIkZveWbfltL8bJDSkrEoIudCQUtqif+tH3/1v/Vt/Z57nf/5P/hm5obu7cuHzetkd7ublFOHathcvXn308We//vL9P//Df0XCiUVbj677YRyG4XK9djfeTfM2EwEDDiWH3WS4lEouMlgzDCaSuvUa1k2X+TJw2uVkGKtXIx+EJfAa281k43DbK2ittYxDU8yYBIdoHhpIQRSALmYtZ6GAdb2MpZQsRORuta4l5YK0tjpflxZdMiMoKHNg4qFFDyUzJxRGbH1LhTmLO7iFhBTK0RUUcspNNRgRMiKQ1QHZXZtDszYkQnAhJsoeaATRXFIKAzDdVlfwskseMJQ9Zuu9XueVJXO+LZDJDdSBbp5Y04hAgCIEZtgiiazXZVObDvu5VnRlFBdqiOZhgNu8xNWmaTwvSzQdc8llqLNuK6BjID6fT3d3x2VpkZE7Toc9kH/y6ev7u8Onn7x8/+HETCXvr60R5pyn3nSe5957LmLWa11ZyPuVmQM9D7vn89K0UtovmxVagqg3W1ZlnrfW3H2+Vjc2096861OEb1uzbufns/U2DSNFqotpNQAypOu67PZS++wIBMAUwzC1VktJbVsZUBsc92Nrbb6emvbdfm/aPjydssh+2vXel9ZTSto95/z8fBmGYZlnEUoypVIul9PD/d3+bgcejMGUAGC323eLjySGYYyI1upuN3ooAJQ8GhgacHAIGTkJCnFf2jRNb+IhunVT5xIRCaEvGypxKWWEtdUpldPT+xevX5/Pp+aqivu7o7N2065rITzspG4V3UPFAyWnfTlcr8/3Dw8EvtbOMowvJmZmRq1aax3ujgaxLnXcTRF4f3y5zRszr+u6XVtmseqUuXU/X68OphjzPLetE8p8uWThJH48jLvDuPYZUcwtOPeArXYKUINUWCNQI027N9OxZJLMF13SWIQzgdznY4IYB3RblIfereTpxvOqvrm3lFPv1onAkQ1T8MCi7rU1iGAM9hARjABXcNPNcaCUEhGFd22OTikVITpk9Fx1U6ZSvRKHJG+uaUhuoR5+I3SShwMEcKIIjOZuAEC3ixACoH1jq7ztrBMndFTvAHbrUBIABZijOmROFAEWCYgoucaI2RLAN2Q5QApGcHc3hSBGFCwAkFMGItcQktbNMSQnpEBANHbHQOJEguiGSwe86otptO62SEycr5fsHZyBJlBF34DcwzznDY3aShCe8dSCkWUnFatqGlMmgrleFq2ZYEAXDvXNFbb1OpWJiAJ6b7NbB8DCENBVG6Im8M5Ejh6MAV594lEoRwQKb7pREgoGgVIGM0uJBZgC1G0cR5FUW23mZNo9gAgB5tZjLxXxWPLdUBypmxXJgamtFcCoyHA35DI1jdq7aD7PM5Ag5a0qBDGV3nuDZRh26JEQ3ImdCcvAYshAgQjdGkC/bc4yD4ScEAkAAwGDEd19QOm9Z8JCEKaZkKQ0N9PORCwhnEQInSMQABgtiSQmIdCEtaMgEwo2sMS0S46+tW0NR84iJcmL8fXDVgBwB9o/XOonv/fdL3/xxzgd3uxfRazb2pkwQ7WwadwV6eo8RLp78QbT8Ps//YuI8df/+l/7d//23/7f/8f/8Yf3X71+eDGOY+/dXEuabIuBDmEdpOjZv1q+/s5n31k+rV+9eytMncAJ2Syb73Jqiqb2Ypw03MxQMcsUKA6h1UG9tc5hDL3W7gCccBp2RNAQhUCM0QCFOxpS9q6qIUyJEnQXHsIFtXdXSR4aiTMzBhiAi1pDj4QpwqZhuJzPBoAYw0TW19NlHsoUDLbWabpjJA53cwArzMiEkrRbuO04afMwAObklJAnEYLoQWY4pKmHh1FCJsOMsmAAATIGRriSMztGUBQOV13VQzLvzQMTmJOpMor1Roy1NhROFtu2SZqsewQKcWIiEHAPh771xJQw1drX2l3kcm2cGEK3tpVhd16uw7SvXYEIHVBYUpI03N5HZlBkt62K2R8eXl4up/uHF8tpdtUXD3ev3twzxbJe74+Hr7/++u2Xn+/2DywToX14etyWlYgTU9tgHNNYyjxfd+NQxvLl27f3efzs489+9dt3T18/7nZHtUhJ+tZMzaLnXIgpnPI4Pj6ehaTWmjKBW2Zg1FQSYyzXM6EQIgKhG6i3GXOh6/JIzEHcAbVr29phHNu6DePu6fGJkoxTSSkhwMPLFw8PD9t1fvPmDZCcLuckZb/fa++fvPmMhMddMrCuQDcFJMuYEyHa1kTkButPKdW6iOTW2n6/Gwc5n88AEK4GLVPypiUPl76CgyLUtilshQW6ieQiw+VyQcr3u4d5uXRrMpS7Q3G3w3DAbXq9e63svXdrcTyktZ1evChJyKsdHiaBwbu4Qm/mvT8cXob7fD1f5mW3PwLL6fQUatu2TcP4xAEA427/2w9Pv/71r4uUbdkiginNp3MmPo67Nx+94iT/4o/+ZXer6imlsUxu4K1z+HFXCuSSoW0+TMMyn0mSBhiJYbCkzetmDYMTyVjGUoCkvpBj60vYuUhCtHm+hnIZSLdZgEV1XWsQlMK9bQggMtbeSx5x0whYtzWnLCmZGRH1rbIFmHsgcbJwX1Vk8O7WjZ2FSgSv1adh6EyzrxRJo/PNNQ5qTYEosThx3HbDDOHoroUSJBaUIDR3xxCgMEfCQIgbsTAALaw5EKBDEo6AiKAAcChJLId3DTCrW/ReUuKcmrWO0dzoG1w0ppQoQFvvOjMzy61grCknEqzdgoGQUB086BugIip2M/f1CYssDSWnMtDQ+4JRAsO2xI0AhRNwuvbNrO8SqVFCA1gVgfO+2oyozMOyXiaeyH2Qm/OsZeKsDVhEHOPqzbV7Qi75OPMm0CMaY6PeGLMSagcO3skwP88vj/cJs4UTsbkSI6CbOYEaqrkxYcRtrAoAG4YsE8kwYIuUh5zIXZnx1XdfWG+2NXDIQ7lEDC7zZtV10S0fihuKY2vter2+/eqLYRjcrdUqIhZBQMyotrZ1c/RhPBzHtG5bPRUEMjIKG0sGbGpdEiRgUGVmMHe1IZc8DOu6soXkzBgRSsCSMuXC2lfcmIkZSZgAw9k9ihQgZ43MBEEplxv9mQKOx2HG7aJXETvuc8VkkHflrsL+vajc3/P+k3reIvnjPuNn/m4+fZz36WkbcRdTATgz1jJMh2lE88PhcHj16t/4t//tl28+nXhsp0X9Ctj2h1xKWq8zAAcVhozQRIrIHh3ruumi6+Pppz/8QT3Pz8/PObFTWK+rN06UxZfFVHlZV87FMWmN5oCSBKSTeQSxMTPj1nVDYOAcwktvyXgA0qWv6hVdIRDptjzzMPOKTNoVwSE6kQQ6gPfuZh0ZZBrNOoxMGvz0/CFLKiV1reu8kgzj8WXfZm1rOZDBKkhEyYwR0NRvyr9wJ4sOBgAcjsZuAWauqwAlC0cltAKYthACTeWZ60QAZgPbyG5MbW0oycCIh0hY+RrhQkBA6qAwBPZmva7XoZTo6Mau2DQvvhKJq5Y01M0SCxkBQLA0NW/gPUoeg2PuTdXHYSDBVauKr7oERE7s3euy7qZpnZd5bsfDgaAz65i89lFbJ8BWFyr9s08++u53Pzve7fu6rds6TdMPf/Dpl1+92/oylGEchMfx/mF6/fBwPT0LWCkFEq9tfzwMRPTxp28c6HSth/v9h8v1VE97wqU1Qkgchfh0fVJtOecDv5gGzEzbtgrldTvt9pkY2taBEhcSTufzcn/3QpAmxpcffRS93t/lcT90xGA+TAfXYD6UTNv1/OPf/QGk9HS55nHIY17PT8fDvaoul2W/33/y0RukaG3bNj4cDolz733Z5iww7MrWuFB4b9HbIAmh166QUlUzwN7WVCiwntfrMKbMyTWMmAEVuyR4GPbVK7K9+ujBtmitjQ+7jOnyvHz2yavWWtcmLwYGWtc1e+Kg6XBfl7pen0ASCF+Xc28h2AL0w1a/+vCkjYWKcLmerq2u45SJ/KOP37jaH//Zr87nNk53da7H3X5dV0f44u1vvvWd7/7kL/3ln3/+7he/nh+OOcGupCywMh/c7ev3J6D8vR989/ji1eP5RKMFQIc1EZvXlPnD6fPp0HndpHBtG0hTaACACW/ZQ/LYAZuCJ9ooMChpHmkhaSxtXt6zHIb7Q92wVkSygWnr51SAsHetQyqhjkMcOdeliSBPslRWiA4W2kVEVVUVKBMyifjW8kDztTIL8y5CA27P2sYxUCiSA1Q0BeBEqUYPRWTxEGY2N7OGDMEAjrVuWTJmWVtFxFESuW8JE5A3JyQkbt0IMQ855wyErTWDcOuIcTM5IsJu2NXeg1tJ5oCEXBINbuEUwESgYA5maFX6kDIiEPgtAbb6hpkimTSLiCxMuSGIQ1a1krGBmewsCBk4hAharOJ5QMMUhK0kdvPmEIGO6P00ELKqQ+RRlFbSPkKq2DJybNuIEQPN12uRTC3EDuoa4hAerbsbCRtUDvRA3zBpxoAsIkQuhASZ83AsHPT12/fDkPfHfULkhOEe20ZZMlOaUsoY1hwpl0REy9aGMqVEwzQRQUIQGVWbr5UdBDIA983zEsbx6uWnwf18+SCMjnBd61YvIkLigdZNeRAAB3AEVu/uVUrcTZN6X+p13O1SgtrAgFLKxBCKKMJZttX9Vn2WDALuwJx2h+S1p4wWYqYsKYghay7ilrhvu2HsvK8WZGuWfQPf5UGjLl6BBCERFrVQ8oZLLuUlP7gW3xuFen1T7ketS/7WH6z8ML98DT/+MS5vt3/9px/tX8Pyz6dVjlXjQOeoYxzS3U7CjnlwjK8+vP/khz96c/9mL8dxOL6/AMFuPzysl/7RXYq8pRzn+f0wFdWGKWuDu2HqfsEd/vb088+mb/2Vv/Z7//Af/eNf/eZXH3/8iWU+zTO2IEFHCq0KPRyYuPVGRKhaZYBQ8E4B3hTMEUMp3HuoeJg5qCNQdbPmveSdmo3T4BaC4ordlMwgVBixnQRiyGNXD0JAEXED01pbGCVOkqBr7b3t7vJ5Wbe6MgRlcsTNOjbMGQJCOFm3VsMhhPN+GrfLOWW+OdvVuyBCyiS42QIFiUFrbx0c0MADbOMSYIgBTBXcB4IAZkmJj4dd7029VlfKhGphizADNBYgAtmxaQB1Dw9AgkiZwxaAMHVJmQV102FXVLdqGzuvbdu/uL/WZV7PHpiGkQlEsG/azY67/bu3X06DCLeyj/DnlHi/359Ol2HH7v7mxUGt3e0/+vTTT4XS5XHm0tNAtS3rdn3z8StzZN65E/WeOblfj4dU0oiIl7UlJkC+zgszxy1/olXXy939iyJMlCJQUuJM9y9eaWjOmYS3tZUyRJT7+6PIJ9U2RESPh4cHVSPMbpyHPRGJyOlynoQygYhc60ZcshQBOa9LRNw/vOoW0Ui47KahtWUaj71WAL+7H7f1GsEiybTvM/f50gIDYDcMGk4WUTvtBAikFALIksdxR5zWtfLeLOQGXULElFMS3rbt1d3Ltm04jlutGhEuAHm50Ladc85Pz+t2/TCl8c++/lVOQ9POZSCi3W53Wdqvf/3rDx8exzzWrTtSbT2ETNff+cG3X726/9UvvviTn/9iHHf3xxcIfLlcCG0f47ycyn7yGstlznn0viHUUsbbJf71/XEqcnn6uiRA0qVerCkTSXcCuNtNW6trXd6+e/t0elzaWqYRTAFiq1U4La0P++N0/2J3t6t1dTdEBjMGRATrVpDReri6hqtGdqJCCF4TkDOXw25EyhHFOYZholqjt4LIZgb26vXra5uXrXFjhDDx6ihMaZLYeu9bHqaq/bnOTjQMDEQC0U1bp66KZiIWEeBg4KqKuWNGzmBuklJEIFJK2dTdgAh6V9UO4BghmRWUEtfQ6BqIHro0Y0IOCIKGAIySxQwhwgJnXd3d1RKjEDhC02phTNy9BXnKBEG+bVa7hyYakmT+c24XSYKUnXgwRwFiBEmDGAJx5mBupAAGYYSCQO7OCOEpi7kIeghRggDbQgTQWjgzudt1XWrtDlyBDCAJu8dEORNGRO2taQfVPKQykmQKteZrljYIJRatrr0ZQGLOYymI3W3pq4xDOERi4QAzJe1oLmyXKkdZt/rq4dV3f/id48PxV7/5eWO1bgl53Gf1thuOKeUkrEjA5OYkIhjsmSFtteUsXVWpqzkTFRL3OF+v87L6isx8vL9jxwFjWS7nedlqQ0hufRzH2jYgtIiUmJgZhYFaN0nSPBDSNCUNWteVS86Cqtq2RkEpJVBJCChYUh5KQcStbUDo7p7HzgaAXLgIaofQXqaBOV9pN3PZ40RxknTXq6eynXEe011cdyBlg26ou2Gwuady1zqRDhvashSWj84s79vd8jAO+jDn+7/x09/7y9+5e3X/6n/3H/3xV3/89O3f/c7p53+G+yns2us2ME7D6OZ5mJrVn/zkLw6pXM7nnHauJ49+nVfKCXNScGBZthWJbhVzQmitPfcOFMwJ0D68e9tftL/1b/6N/vfr4/NTKoUn7r2qh3WXnCgXdw5VcDDAwPDekQUDOiatwcQpI4cr09ZqhBkEpuS9SsYjk7a1SBb3XrV3p7jVfIm5JCC3Cu5YGwGIITJKbwtzqnUDh5T2DlStjdPusp06IOeCAbVtAUKSqGQI8dCtwro5SuKcPPy01HGaIm5mhKCEANCw9a40kpI174yQSxKkRlhBW93YobAAuKJzKRFIxPPynNgzk9NY56fujgRDKREOQTwwQeTCHQ3RhCMF4zcNSGIkcMUwANgdhlBDtOnF4f7VgxNe2/LqkxcJ5Loudw8vSh62bduXXd221y9fzadvEdt+SmVABG9Vh2G/Li0kmDEPpVcFgDEPGLhaz7t0Pl9zKWlg84qU3ZdtNZ6yQV1rn6ape29VO1Aexud1y5JRMnqkZB+/evHJ69dqNow5p6G7E0q3dnw4mlVgWLdlnA45TafLNRBcbeBBJK9Wacj1cilZrn0bAk2RnGjHSrCt1wEKjzkc194EfRhSRFTraRgCaTQoJO5wmyAw+iCCRZKUqnrY31EAInMuZkYEAICIQimiK3liEWLXuJ6ukooHvnt+V0pxBLV4+fLl+w/vwPzt27cvD8fT83PJQ+voJNV83E3f/va3l5n+8F/+l+fz2c3upj10196J09zt7u7w3R989+v37/71H//JYX+31CCiIuwgrriu+P79stu9XDd68fDZIeV3X3+4u7tLSCnTOl+8da89IpAUfQ33/Vi++PxPh2FASXnk5/Pbh492x6O8fjVta+OBmFIGHnPhiMPdx9M03L+6/0y+/fnbz0ONEwuSgu2nQ61tHLOGrGuoQZIBsVJguAlSyokxumm4CgkNSThBiJmJMNFEyK233rv2GZDrbNv5Whiibbs8NNPTdpruhnF8iA0MKiYwjQbYSVebhbHZtlpbSTFlx97WdhyOVGQxDcYkrOHrtgJAzjkPBdilUM58mWcI0R6IfGM2m/otMCFIxNS9R4STOUZEACI5ISKgK6F3YEBg6gHq3qwxIhMkdA6QhAjAxEzYAzgn7NHdAgAZGIQKEqCrB0JJTMC9QQJxRBQ0cl+JbtFE5MToCAiA7imhW1friImQ0G4F6AIQhOi2JQyOptpZCqAQMpAjAgKD9m9ONjkJT1RVgHIAdhs49QEMvIETNAOwaAx2zOxgEBWLczIkdHBXY2YiYNbw6g63HFxAq6E91BX2ed+6GcK1zh+9+Og7v/Odh0/vLsvlZz/7xfPj+8Nu380cLKWiqgBZI8zBanDeO/B17r2bKUXvkLj21nsFANfoWx33h8M0rfOyXGewVXu13tGjlKKGEZan8cZNiIggQCEgikDAvKqNebAGzCUTlwzNm9pGDKXkhAlDwJFFbpTddWuSE1Jq3rdWUXrO3NtNQ81ubDFGHTVgTYlifLx2gyllAxxJ0Z6b59s/37aKa4rnZaGAp3NRpBmAy/11PEzf+f1Lw5/+N//G/LL8/H/7Tw7T3f/0v/HRXzneBfcf//f+vf/u/+B/8sfv2LouyeVxnrrFIMnxxatX425ftW9V86pgcHc8bts2Tmk87vO0k6FctypgFkDErSoSWLjkBGYGXuuSs4T1r999Thl/+gd/4R/8Z//4aX46HA6RsXcdx7J21x4EmBCIwQgoSZgBk1pUQLU2OCOl1jukEboAEBBZkiBjR47AsL7apvMg48QjAyKiQbjrwAwk1teuCgFEKUuS3sNMgTiVRImb6axtudo4DaHW1YMS4chcAMQsWiOMxIgZJaWUizRr3TazcFchEBFBcvcAD6La1QMCb54u2TQqgacyFbm5xrwZdmMxJLG+BVdirHV1jyGn6XgXEduyQIiIIHKvysycEdyI0QOJOMIY2SyIBnQoZWzbiiR5zJLT97/93em476EhcHd3N6/L4XBQ1V4bgguSEMPrwzAmwHa9njgJBAPItAMi0tBueqNibcu6G0c278r3Dy+fnk7agZlcTViGkrelseTEgysiEjEWlnXbWEZMw9paYgkI9fqtzz69Xs8A6NFDwwVE8nLZgH0YhjprSXhpCwmLZBpk2xrhMHnCLV5M9+6eRwnkPJbaOgp7a8dxN5RiihAMiRKxSU6Jz9cTsBH6uJ98a6/uXp9Ol2ncqyp6JGYLJErr5t35dHmWPDw+vZ9Kfv7wviSxrX/rs4+Z+aLr4+Pj4/N5mKb37x6lDKBYbWu6Prw4tqbbUj//9edE/Pz2F+G826fLpW8BDu7wfhx2j4/P7z9ce+/Hw25el7tpb661LeNwWNd5a6uFznV59fr1uiwMXJc552FdqjCbWe+11vXxw9fl1Uc80KoLJTyt15Rxejg2itfH3ffg03fv3qs6s/3oxz9a15rysEU7n88Bta6XqYBtbcwThX/3R5+1rc/n+Yvffl6/bC9OL7tZ1wBHYK51czO9nFXtw/Pjh9PTH/zk95gKgoJ2RgJCihCWrdUgBkKi7MHntXqvAgK2tNZuOO/EOTREhMDWgGev63Jd1/eE2Vv/5PXDT3//d4Rs6XNYRS7CbJOQEgKzAUK4KzgSSHA4m2sPppRyhFHE7jCY6rZuqm0nzAG7KS/LYuFIaGER7tEhwiMQ6CYbZkBwREaFQAZhiqaMBAk7+OaWCG4P7ZQE0SEhJ5JWU0pFZF3XHnGjuEhKjJKdIoIDBILSgIgbELA7KyIWEVGu3mrbqjUf7weF5MwsLYGCqxsZJuSAggAcgBSSCISI0CwjALMRBUWICAsHogA6EBDlNEgeb2l2Eu5qkjEPI3evl3NYhwKBsMs7j4iMyMFGjBTdDYNEEBCBiSTIchIkI4ilV7jZHBGDkEmC2MgB01L7kPJ5WevnX63Wf/Cj73/nBz968/G3Hx/f//xnf1bckbhq5xB3L5DUrdeOyXvrvSkjU0IB7quNnL5JxYBlzjuSqiuwnucnchV0NxzSXgFzgd67md0GVk4pwCjJ9XrNQ6lm4TCSNF3JgykFR9OqYFmEMNBa2MYovQoRdVOHEC8orKrNNHviYWwWihBOChzil7qgfHK2F+e2i+98m3b3FM/1fC3Xix5+vUt3saGu54wzm26b7Xcv12n/yI7334HXn+GnH5XPvg+l/sF/+/fyTn779sPf+PaL6e7u0rZi8pd/8unDj/7qh8//EDhVXHfjKGhb5jOCsKGr5BSBx8PDh/fPn3y2vnz58un0OORxt9sty/Ly7m67XnLOBNHC/xw4FYCSpFzm8y3BnlN69+7dt7/zvb/5N//WP/vP//kXb7/a7/f3L15dPpy6BvCUpKRwhFa19rDCQhwdasPmg3YQIdQehIZCoA54UwUeE1AOQtqkkN3aJBA93K2b95TSpgrRA4OHgkAQ3AMk47G3No4jCmpXC9zvjoGICgk4ABlZTcGVhDhlc4Pbqz9RSRRaXVehcCIHQAwAx2/cBehhHugOATeXUImIcDVGa90g0D0Jj7mgB7Cvfe1+lZJjAGtOSrGpiBAKKAgnQEHim1tVrQtyUHYP9wgKJIYgJwQSyGJmu+POXTnBmzcvDex8vbSt3u0OvVVhygO3rU0l13W28GWj3uswjE/ny1D24ziAdaaiWt2Cc1LV6XhXW8MhE5Z370/zvE3TdOsvMjETH3cHh1CI3jsnZMFgHPfZApqv6jrsmEAi5c3P5Yh1rofpzo3XGsO4NwtkAoBPP/n+ZZ5fvXhYe+um7jCNh2GYxMT6GtCl8LDbzUtba384vAjCq5276uW6juNOhJ6fH4mIKF+u17uHe0q4zEvCtZ7XellDg1lq7027g7eov/uT33n/+O55rn/6s1/kYTxMB+uNzfZ5WM/L45eP3/7etzHxb7983wOeNgvJqewAUKvvdtPXb99//OaznIf5cs2crEMueatab/5k9JSE2IdBJXUQ6FCJ+/PyLponkbYtKDimLC9f3R/ul3mehtJ6PezTYX/Y7Upb2zhx1+373/30eFeu5/M4SSr5eH948+b3Pn/75W9/88W469vpwxe//fJ4PBLJZdmw9O9+74fX6/KLf/WH0zT+9tdf1loRUZuxdSI6Xc5C6cuvv9paS6ksW5vXhUXMTJRVNSdZeyNAVQUobetCDgkgQm9WUYSuBiRIVGtVa4BlXfsyd0IRgjCpaytCdbsmYnAkooudibV5Pc/X4+5O15U++EdfHV+8GomD1L22YGQ3QVhrU1URfjjsSQYi6dxTomvvrdo4HUKdiMYyqKpZZ2R0Q4cpF0KsvRMnCAACFme+2RbAu4dHlkTClZEDUZgsQogggADQYWT8/+sWItjCtPfN883ynnjDiEAEREJgjDBGFECBIBCi0gk7Nsq2RQutEiljSSmJcOGy9CsBh3OQICGDUzgSJBsBcuFRYzFQkqwRjotyAnBhZrrhQTiCI0AAqrqFqaokHjIxUiBErYDoVLqEJsoyUoIwzVLmvkaEI5QysAMLgqQwJzcDZE5qhta8bdbX3b70BtbRGzgABlKgqbfwXMpWGwWZwZ/+619+9fbxzSdvfvA7P/r+D3/87vHp3dsvwePVw8EUeu91bUAoImYd0KeRe+8QYea1bjIkMGOmxBjIbb12sjxkFvTurTdkALIEpODCTmC7qagqEdTeXT1LDIV688NxJwTpvjCIhT9fZ5AkMjrI1ozUOZDDS2EgNOMIb9Ft29Qt5xxml/msmpm5BwaRMikN67Kd3nz8+u/+B9t3f7cw2snLV2/TF3/0ePpXx5efwLKsX//S168eH78e3nzyTHftuJ8+edOP34aSQO7e/+b07/93/iB28Z/GsvtLH/1ixn9K27WkT9H/1/+X37z92VewPx0OAhcFaxZryiOnoS+tp9FNw/HrD4+/8+Pf/+j1p8NUzP2//Fd/9P/8v/1fP3n9UW9bSSKMktB6a+EpSV030xhSQRlEUkHk8GVb3/7m7cff+vbHD5+2FdXt6d01p8KE5tybIfowDEUYEW1dkUnVQ4gTO1EDIBbDa2jwTb0BqAbsXCgBRoSVlLRbysldW+uBEOgBQUIIhVKuzdXRAWU/vph9rktXb2VIANBNIwKYGNFBESKRJRD3ptYdaoCjIzqMMRFGgANSQwJyMzczgpQoYdy+WTEMxRGiaYtVHRTBHA3FwTqamnKEq415vzvsazODCAQWpmCdzQWZWVIh4DAkIgiHcCJixquGmTFLmO12xcKsdbPr8X56fHwfTb//g++OD/m0fujdSimsTB7W2rAf13Wbdrm1ZtCH3bS11htkGQ/307rU90/X3e4A3YiyIGq1ZTOkslRT1TGlWm2/e1BVJBjHoTdFxrnOVbukxMzNt5wTsuecioyIaIG7YdfadpdKb2tEf/PxR4/Pl97x/v71+bLs9/eAvCxLOJnB9bJWbdN+ROF13c5fn5e1m/fL5VTKaIrh8uH984sXr773O9+/XPRXv/rV6XLJOZs3SZELPX3x7v7u5fm/+NO//Ad/7f7FR//4H/4D3Wr0NuUXZpZznpfLMEmN+f3jV47t/ftfDqVPw85t3q5LCiYe98P0dH5GllSG87JSSfN1nsb9h3by5bS1DvTicHy4nNfjrpSBwTfmyaBd+1V2ksc8z/NuNxHPh4O9eCkGeV7Xw3AEsyGV++NLXblq/fKLd6mM/5Wf/vW3b98+P7473h0Oh+nNm09KKj//+c/Pz6cvvvh8fxjMOlq31gV2tua+9uvT/P6rp7ZEgruSXrcKCtpU7LS8nOvz07U99wEndyAQYCGCpTszXc/92996U7dfjsNdRIR6YvEwVb2Vhm+g4yQImdCt1yqTJKHEw+INgDNzaw0cRFJgMBoxG8Jlu56X6uA5lZTS03xJSar7OI7N2sCUy0icpgFZIt3l1y+m8WNe23VXssBAGKGdEWU6Fra5r2AAhELS1dU0yFlijOjrbOrDMLnDOO4wYNs2782AWXKmtLpSEgK/CXIiIgwYbiCggESAwMFFcncDd0nJtYf5kIU8LNxJnQJQCgsZCzMW7KbaAyILp4hwq9Y0SDkMiBEJgwDA3IFBA5DY+eZVMFJwc4V+CAuGlgjCyIFMETilhIbakZiIEpC38KpGTJTITR3J0SCcAM3NjfJQRDgoAyFC074BBkF868X9doOkg8tAJRdmxroCWWLEzAQ85bJtW1fXaDiAW5gZcAQEUBDEGMIpJQwXdoEwACDh7O4V3boD8TTsEktCLmX48pdffHj34Ye/8/1tXmqthfJY8mZ1zHLBBgCzrczIZD2MMwGYmU7HDEzzvFJKjAQQgxRzDQBg23QjsWkcGFBEgopa+0YySIgIuzyKsOS9uu3zXUmZAMH8ssxD4cmGFlgNzQAjJ+BQb2YOCwmrQwcPAEBHcIgWAk1rSjuIcANOr8wHk+P5Mn37P/y35L//k/fP/dtH/9O/b3hOZzjIw986xUr9t2vFCY9AkO++d+ky/sX/2u5uOL+/1sWOieO3j3/0R19+9uMfmuLZJz/u/0en/JOB4E/e/Sf/y/9kutdteXsoh4yJezU7mde8/9ah3Jeccs45DTmPv/zlr3/wg9959ydf/+mf/sm/+Mf/6dPzh09fv+GU2ros63q4PwYFOjbtNzvx3ExD9tMhmQ+ICAlZ3v323U9/9y+iyX/+R/9ydzhIyh7KPUpKGB6E1kOt3+UdpyGgNVMFW7FtthWGtS0JeV/G1pabs5xZFBTdCaFkYXJErdtibsM41vUqIsI5AnuLujkABaJc1oYsiJQgpaGY2bzNAMAMzKhqDigEDGC9V+uUOA2ZEfu8rroy3ojtWNfV0PFGYrEwM5F0mA5bvWJAmBF4SWUkIjcNAIiSSg4xs942hYBac85CRQAs/LpsZkyYGci1I4Vj3FqKHh1QEd0AAS1lSklqNQ+7MUtFcJ7PueC0p4ANUAGEUYY0BVlrWxJprUUY0gjUXSRSDvO8z6f5wpQD+brWdx/O0apQIhRVTSmdHy+QYK0LxYdSxto2BBLmbdtyKSKUBQejbxzdBsfdTgHXVa++1toI85U3bR1cTSuB/2z78MknnyHJu/dPX3zxFvnzD++f9vvD+brsdrvffvF5zvmjTz76/g+//7Of/fzxw7O55CxEZPY0X9tuPIbh+y/evj7cX6+X+XHej4dtXXrfDg/T+vy825XWKjM9fXj/1VdfrXXbjaNRyrt9axsQGN1s3nA+Pb18/XB6evfixUfX+YSYdvtRgJ6uj2Mayo5DfNjJtEvLsn720aswSJTiXveHh2XuEHI4HIZBPvro43k+IRQWC0plJw8vXvTWzk+n+fH9+XztLToAwHi+6jZfP/t4/+Llm1/+4vOf/fIXJY8IeZl/k4uknM6n6+U8h8s0jL/9zRcafRjK1hqgt7oy5efTvNX43R//lOirl68+G6bp8m7b7coNJmnhEtG3+ur+7nR3p72xBCIgOZI07bX2F15U234/PX94TiypiBAAkGRCRDNEU2EQjjzlXqt7E8m1bgh6ozOaOSK11sIc3NAMfR6TffJqUCiSR2b27rv9a0Abx1RrFZEX00Nbl3HkUjgNGNyfz48O81AGV9BKiSPQIsAsWmtWA5FL3pUyLMvi7iI0TcPXH96busiYZFyX7gYBGOibbcQFYRh2+02RiAMNmdz5RhEJQOZv/iBbNGAxbdYsIiAnQEKF5BLaEMAQAADMCYSRBhmvsdUe7CTKJY9EgDk7LB6Owg6oEeABph4uQB1zAHSzrffBWZCJhBAYRakoibsnN/EEiAYJqSlaGCYmIHBXEmYZiAMiwgMxAXQHYBaMQAUMAA5TJ1QOH3IupXg1uZlLAJQQ2Yl4HMdAH4YCHGbmEJhknISINsBQ27YmkiFDYjJbMfqYuIMxyo0+2LsJGQXupx0A2KaqjhGGPggd3rymgtv1xBTf+/anbWnr+UmQck77PErJ67ZJwoB+PZ8GyRiOCXe70t0ONO6mCRG3tkpKS43aGwHkYRhLGcsEAMRcN4eUgyIirPVvSN0Uda1t2477PXYah6GHrlGj0pCSNgMIFkQn+EYMLN02FBZBD0MMSdS31eqGvBskM4v1FRG6blvCpQt+8hcOf/UPPhT75E3pH679t7+VS6cALael2d24Iy+wrQWG87XL68+c7s7P12obwKvz2afX3/n1z45v/7/95fc8vhzhr+7ferQn/bP/x1eyH+M3vyLwp/O7181GADeWq/lUTbfn6+03L9umEPTP/rN/fL1eEeOQr9/79JPr6Ux40+dwt0aZUvBq5og5D+5gW+2qdZ0N5cbj5PDPf/Wrn/yFH0PCf/Ev/yhFB/OEOBbZVC2IGSdmrBGgJW7qbpSUAD0xue6KpKFMXi+sGErGpG4ihIS1b9p7SiknAjVt6zhkJLkBcJCpZOlmbiA0pVqrQzDLpW6llLTb9d5Tptb6UreRxiwDKhloEEcM5uQYiiyIDuEQmTkP09JXdyhFmMSb3mYI4UFyFtfozTVq37qaiahXTBkAupsjlmEf5tAxkAkiA+8yBY1EAlpB3QCyCNxK/I4GkLIgQ8EqkhEwKJJ7KaVtQAaBkfOwnM4f/d7v7csYJmXYk5dVn8dxWOoCECipeRgIJdk0mkeE8iDLvJyelw9fn77++r04DWlInF+/ePnh6UO1ea3zdBzWdf3s028TETG6ax44oj+fL0SU0kAoIkPKsix+3Srl8fNff/n4+IzI27zeHY51Xnqtx/305XxZl/TmzZvf/OY3X79/7+6tar3XZnA+L0X2APHu7Yc3bz5BSF+/e/r4sx+cLs9b3+7v71v0pKtQYknerwhmXi9XBbckOJ8fhXULuJ6fXz589PBQkOl8kflyHYfD4pfmjUz3dxmhF873+xfs8pMf/8HT8xUPLimb9l7bx9/9ZDdNDPF0fvc8P3700R3Fw29+9dudjJyHjo2i/f5PfvcXv/ztL375s/myfPLRm20TDDOva50pUaKHu8OLP/vNrwRJNaPsZHe8nC8sKHJ89+6y3z2etlP3XmhqrQ/TiOCtbeaVIQHAfr/f3+2qtta2urRxLCPlVv2uHLJM64d1wuk3z2/Rsgy92eVyvQzDME15W9dCxBZzP5UhdavCol0BU2Jws+vyFeID4YpYAzw8lvWaUnJdIEjVc86K0daemJbrfJ4vL9/ct9UjTETWddXW9/u9FfDehaAMErYRqwwOTLvxmFJJQOFbyZAkYgwERlz2B6rLnDj53Obt8nC4i0CtW1iCIJRQUwC2CEfIMna11s1D1W4xnG0+zcwknFsHMyh5YsZal5yHSIFYanMP7M3dHQjTQG5gigTkAADOgqFGhJBIN4UwIjEIRs45S5ChBQQFClDCRMDqsKjHLktEDjF1BmYJLNwMzUg4GaGaURCbUBihExYlNwYEYBhyiBAAw6wNsKiBuxOIcY8IihBqPGDv2mNATymh5OyeTbdQQQ8eMkMxbVkSRACPxDk4m3WSwtgBYls7UDCCEDPeRNkR0YUYABInD4Mb+Y+gdmt9FkillJzHzNksbugN4QTWCX0sJaVk1lvdcs6ZU1Be523/+jgMw+l0idhzTg5mvW9t3k0pJyLBoQwQUYahLfOQSuGyrNeAtss0JEmcKblpY7fdtHd3EhyGbOFZCIMxgCWLpeuHJmUARjcQSbd9hivmnK13xGDjvYxRMac0P3ZK+X73ya+/+JIzAgSTBQdgC3MLRCAEcQUji7BARSJBz4nYay5jrRbGSGX5/7H0J73WZFl6Jra6vbc155zbfI1/3kS4e0R2TFaSrCySIkDNJEEoQEBBgCQI+mEFaShAmmkiQBrUoABVCVQVKXZik5nBjPTw8Ahvvu7eezoz23uvRoOb9gvOwOyYrbXf93k85f1944N/8sVf/qS/+CEdPqm//o9nPiV9vL4eXlxWEtnQz7Rt89Vfja9+s/nhZncz0HfvPwy6DhbbWljGWp/ir+TDrwfexuM38Ooef/PPv6HzB4C3dOkT7yba5jjpWgfaS+dvvvlpLu/uDy+fjg8sgshEkiVlpmkebg/7hw/vbvaHtq1dbdiPPXozFR6GqSytLb2WccfWe/RxSCWVtm6Aatb3dzddty+//Pnvfvq+h3Ov0FeCDQlICijWrZVI0HoSN6sRTVhUrbfWq6H4mEtJQ0apuLkjUqqRnuURkjISWignyjmrO0tq1YJINYYpIVCEyrr9RETDMGmr4LotCyfx3q9dZShcKBMEtDVRRxOHHlcAaWYqflVz9THl2ha0nEoyqLVfGMozLAkYWwdcVwIjQCJ52K5ONg+J83ytLaVEkEhx652RKBEqSZblfCFIHJYCu3sgO0Lvm7tLIgBPTKraqxbKKai1JiEJ2Lr1a7u/f7mt5+u53r14I3VOdlACxWjLhzSOZlaYzCuB69pkGANoXWtiMe+SSyPr63Z5etqndK0bpdzb+Xju0zRlmvS47cbdbr5VhXEYam8i3Fu4x5B3pZRW1Z1XDQdFzuP0clnrb37/EI7zPBjypWYDMinvr87l1cOx727tp48fkCDlgmlojix5qxcQ29ZNip/Xp6YVabesJxYfBLWdUzLEbqacqePqYnmHzTsDEoL30izd79PXX3zh2gufatvu9jrlfF0qgZfsmeXubvfixQtVXZbt+5/eJt6fH/p+v9e1rdfLOA19rZEmFLpe6nE5eQQiBqAxPZyO1+Nyvrabw+27H3+3no1AHt8ec84ObdVVMdbLdlm33cy1PgYWSqK4bXXhJG2rUjgogtvNYf7hh9b1knO2tpLgWo+cSPtxs0lFLvUHRAzEcZiJpHnLQ1rXU63LWj9Rv+TRlU/1ssluSuIQ1jdZrv3j6WnIuHpFwKoNemVAIfTqsxQMmMr+/vaVb9hbA4/beZ8Sn69GRPPE0zBS0LYtOfFumt+8fhlqvfdpyr1VSlxyqq7PXJK114ZOhevaBxyshUpovVaIIjByqVsbhrxs1yyJy4gyr83IZUr3UUFVgQpIJqZj/YjoBMiYRGRxU/QQWHXzcHfqCpzHQXttYd0rVBqkb623FVApZeBIjPOUTym697Wr2xQEwADE1hshmAVggIPVbmHGJJLIEAOQwbyrX8mS5RGRntdaHG7urjZeuUQ+Jq2oG04TNLEXYMuFEFImehyj25YSFbBd9dDWFsQB2SE9mrEzAnohDCUsHc8QCG4t7qYEiG3z6yC5+GSUulvuco0KnoSZJbq6IgGOplAkEfBaN+CNiECTO5LTgLOiQRighzdHsOg0pI4azQ/T1JYmIqv1cL3f78EnAswsaIDOShYUG2HOnKnUWrdlHUi8x9384nkgy3ms5zUnIuiF67Tf1b6tvclc9jBK8JSGNpOrJcS7fTmTlYkdaJgPT0+ncdhNw+zd2borpigRAAKdPFRFuNYzOpZSQsMMSplNIfEY3P0ZLOquCmZdvU+7GWIRTOh5rXBdPUVul23IuxYbeYibWiVhLuSk3UFjAESRQgHmvWkIpe7dgezqLRizkOEe5h8/LvHF675uw7fvXi2f/PBXcv5mnGLKZS/Ld/r2+3F3WJ+OTHJq1ekj6ypv59P1x3R+2o7vN6TD/Wf1ONtvR3v31Xa0NJfyL/Gqi/3uP471LTy+zUajEMW6mObE6uaGwuos163meddrzYyHaRCI8/lpP99UiHw3xSAy79bjaTUrUpJzN6cK2JOtFbzeElmrxEjMas2MX372Ytu2qOunbz79p//5n//rf/XPV2uGHuy+baR9LIdyuBkM1+uCROyUpAhR5kwaKQe61BNlzh0RCBnRzHDkjkyQrW9YQIZU3ZcOADTnqa8XiG5qXWWt1SGklKTqbl1VU8qIyMzWFZAyiwxhXSNEI2gooREK3TFNg5u7O/WWxhG6ZYOgHgDaXIQi4JkQaw4Qtq1LKSUlmnc7DWVAtCAWAqxbZxQhycJC4t616lDK9XplSh0JAAyNqQCEMA1DVgUNYxJOYgppnBSqUFYjcEjjbmk95Rvh7eUnX8y722vdeCxmbZhHJtmWK6GN4xRgS+vo6AHPDUUAcO1C8Nlnn3z+yaeJ0trqfprbcj2dTtN+SiXn/Ien00kdL5dtXddhGnPOrSlRIHBbjSghokUAUcdoWn///m23ltPg4M0NwogFHILcFG5uX47TQdII4GrhIIRZHcZ5R4z7m8OL1/vdvnBOTeF8vpZSSpq2bZn3d9rsk5efvHz5ykCvHz+OzDsW7RXU1VTKsD1dXt3cvfni9Xe//+133/8wjPsPD8fD/rbIWDf/6e1P7bpNaRrm6dtv/nKtC8jTNO7WeoUIAlgfz+1p/fT2zdKXH3/8adzPw27etg3Qz5clS8mI4YxQXr/67Mf6FjTCtjBH6QgtCVeKnFh7TOMtKudhUMGrmcEavszTy8vlsl6u4zM2ZMJmyzAWCpymySE4F+acZMxpdz6fidIaihhzGp4en8aSJdE48d3L3a++exDK09281dPWrp+8/Kz1dnM77G6Gm9vxj/mr77//3TxzSmnMZcjzcloByCQv1y40vnzx6ePDQynpq69+7mEPj08fPrw31bqF9wqIm2pAP12W29sD4L63i7sTgT1fEBGQ8tjalijnkmpt87xT3yRJBFBOa23TkC10HAeRsm0LAe52M3qu65aGEcBo5G4AFBl3iGYWbpHnorFtywogkvK69tY2REQUiCQCrCrCarX3LknAUViu67LpOuQbJCU0jujaiBkZECKX4r2FOxEjo3sQExIzs5ubWXeIsJA9OjozU0pBLbQUOkBsdrAXAb0PsT9yD5tGN2UZQnZC3Wjx3QqWR3DfkKDkOQV6IAGY+6sXN9r7RSJPf2g+pPx+t/zBpf840jRsDxpdcXTq2ofk+6oa2FASGJo5P1eRgLsZPD+xvWeWdV2BhJkBunfNLPMwi2CSzAJICROpKxCmlNpSwWEe5666H1PxwsFZhDTI4DCNZn3ZFEimfFtKMbMh+ZCq5DSTDMPQWuvm59O6m29u9rcYer+/CbLqI5/PnIZEaZ73y7JNh7ve67KeepYUh9o7MF0ul20NTHhdq6B42veqqwERUKEWfl7X3jum3KturTIzRKhu2h2XIyKlJO5eewNwRFz6urmu6zqWSTh6j/O2sHUCIwwSAAcKek7SACdOgzh2c2bq1lVdEICgeUCgO4dBgIQkIUGoiaQtx9vy3t5+8x/+z3r1M30408fj5en7Zuoffr+WeV3PM7diF22baHv4y/dCq9cuTXOatu9+a+lGhn373V/QsVIaAoTnYfanXVnnQ3br9fEdI2SBJGm9PO6maaBbN3TG3iqALVsD7YOIJKp1m8uuat/OLSJYEovUrofDwcxMccwpxpshZyII70SQCefxhpmHYei5AfLd4e7Tz37+3/33/313v7m7Sym1DXu3LbpwtlQcFQMFA0JbrfFciS/Pb8NwVw/DcBHJidZto5yDGYUv24oJWDIFBMXT6UgRY56ACTDSwFtrYigsoOogXK2XUnqYE5QyVu3umhCJQbuJOwMx8OPpIoogaRzHrXvryhEKGm5J2MWYcWsa5AGALDkPkhNz6s0QHANCLVZlRs4FgoRTqFELVtVqkmgYs5bcTa91KePgAImjte7WgV21A6G76bOgpV5NLRK13hllnvfu3qxRBmMzsfkwn7Zl2s0QcD6eb24P3lutKzNnFjPPks2iJGltc7V5KACg3YuklCJzDDfjzd3QvV+XxVxLATQicpRorfbe3IM5JREMjIjACDAPY0wgcrgZ33z64rKsXddxKszkFgCUZbh9+eLu5Z2U/OqTT969e8eJd9O+t3BH967un9y9KKOcrqcff/jpcu6384v3b3+62c/edesXpnI+X+Z5d354/O1vvyOiaRy01WepXlTTsOPxeHe/++67H47nJcs+Exax44cPwzDd72+ux6s2K3txbTmhZ+1xpkilFKGsiLq2ra1GRonX7arehzx6+DCMz2WckkdwWi5X15pEDPvWrinY+hYBiGFekcrh9vbdjx+7JxhFwyFizOX08BER7w/7S1suywenJbHU7WIWu/2NcLmejq1qa323269ry2VkTkRk1e5fvqaA3raunoby9R/88lLXatvXX36dAz++f3QwQL4s58vyqH0bh7xez3f3d19//fX79x/P5/O6VT2Pvzp9Y02tq7sTYS7v94f5N99839tGEMMwPEf7kbA1/+mnt7tpGEYmIiSyru6KCM/lhMS5qQaQiHR0cxQJYj/s9hwBCuHRqqWhIChxaNseHrZMc214WYyT7Mf71o4sXnin2gBqkHnYXFIv0lovXJRJGwREB/eOqWQiJ4Jat9rWAqVtdQR0dwQrA00zn68roBOLg0Vg751zMQgIAAgCRgSECEJmTlmQHNCbA7JMTJmRjCnKB/JLSVfgrexav+xuPk9pO3Vs0jRe7U+abg/vnt46YCl3mWldrwOqaAFrl15jGjXSpavr7YePH9f9MJz6scHNej2u7/c3/NUvPvsA5h9OZYTMBzW69N5iywnWtZppCKhqRDi6mTHzM0UrET1nsFuz0CAiSCnIkjC6WjcAn8ddBum9l2CGZKtONzedrMzj1ht6WNeRC4dGtQScTdxQIMUGOadICACb9ZzECSln7n7Y7wCiNoiux+3crX/2889+OH/gCYvQw9M7wgHJVLVuvjwuAqRu6r2FNZXz1oqU8C5erTsFcWYxNrZNzTysKnNq8cwjIIPo6GbKKE7hbk0NmQyjOoLFWlWhQrRuvvQ2c2QBQux1VQsSpkjdvWEAPGfZmv8t4dOf9YMEGADoICAWVJdQ3oieRGZ9u9Tjh/rbXzl+CoOOg+rDQ9hTpN2ndm5H31MhMLdjGWCXpLtvS9uluQxTM6heU67VNu9eJpA2zMPB/BTSbTt6e0zQCwDAELqt1hT74k+2JXcf8wwAjMFE4zjfTLvdPN7e3hzxx5JTSiUspmmy7tu2IQkGHm4OQx57c+s9SyICJsxCQEJEqg0Rq/bzcv3sq6//9O/9/X/xr/7l2qG5O2UECwNzv0QPZNdmtSKZJIyMCnFdzwTCwBgU2iEMUAQ4BV6XMw1DymXtniC5xiAJMLZ2zSKb1m699yszM4Es1UUEgYGg9sW7RpgR1LpyIoKwMLQYSg71dr5EGm7HnBI7RCGcstR6JfTuHmDxzMOAgDB0kCEDUq1Vw9uyljRl5ixJ2yJFuqmZQpJuVnvHgJw4c0L0p6enoKiuFtZdPSKLBJi7mSmgswhSsd7Hwtu2EAlSH0ZGBI1L1y6izbvhNB6+MFhRortGszyU1ppZJxD3yHkgsF5NkKB7oeyoqh0QGXFdTkJkoUjWqy59E5FlvZSUa7uabzc3t+fzNQJTyv7srEFycxZMZNE7QAGPfZLfLk+hjoEk3FUJmADrup4u7Ysvbx4ef/jmN78ax8mc2tEARXhWs6213//w/sv85uPD+XffvRuHmw3aq/tPrC4E0q5VEixIa63n5XoxzcOhU6Y5eVu7rRw9M3SBczcapjlkWZZRctQ+FK7bpeQZScPr5XqcpuF8PipsgHxzc3u5Pm1bG3LJ+0Q79m0xvw7TSKACm7DEeo0eYZZ3pa9r4rguj8NuaH0tpYTTWMYW7Xx+Wpfj7c8/+xf/4/+QuTj29awulIgTSUp4d3+TU39xkF/+wee12TQdGBJzqrVfl+Vwux/nYdu2w+F2XboFHA67N29ee8Xf/vY7RElp/xd/+ds0jx+OK+V0uh7fvOCvvv7FT+//7cPp1Juua63bIhBCuF7bO314ff/ZuuhPHx5yGb3WPKecU3NPSZb1EmCtbcKhGDeHm8vlQkE5pd7XcZzd9el0eZX3KWc3r25ExMxhBhDQtgEjVAFwTPn4dB5KRNj5eLFtK2nYjbvrtVpsEqz9CtEJhdiutR0vx59/+WlPy82eh0zeufVAFAdvHXtfp0RazXXjQO8KQJmHGoaIAN760rWJUEqJgNvWmSMi2noU7AgNAkqWrbtHAEBTBTP0Z5YzJhnMm6qCYzFmEkypUAqKXltQ6gpq1mV+rPlJRfDntpkf10HSdvuKv78svv04Ul3X/OIXvdV9u8y6lWl4Wh93YjbeXeaXH2OY0ssl8nn38uZPP5tevz7f77/++wcex//1vv9f/4//r7/89z+g4O3rd0k3O12irsIXGTpH2S6NUqSUwL211s2QKdyYCNHW7fyccCECl2By82Wp1RUyUynFw6wrA3OjQoksugUZF8ngrJuPw9DVmrUxj6en027cJ57WuhhQrVcoEATN27UtevRACidVTzat6zqVIQmBh6qert83Jbh2BgWAoEaCzZq7GhUioUQkrOtKDHOZCBAdtXfx5xCCb157V3VPzK32JKLNrm1NqXSH1oEkB/m2Loxo4L13xehu27pov3ZoEWgOCtGAQnHTTgAI4BrmEBEOHgicMYEtW2PmkpN2DzeR3Lsh9HDLIiUdaNStPohLSpmtMzyEXyoV91X7MU93Ha7m73f7rOvZG+YSTLRdL0WsABXspkcBERHv167LMOa+9R6T4cunxyfOKZeRZITu9cPv9vdvHq/XYffi9tXPf/jx2/0w3d7vlvX08uX9fizzIHfzNAhu22mYLrUXRB6GEZCnabct6zDOl8tlur0Pj0vbpmGadjMxhJm7e0CEP5+nGKiBPR4fqtfDi7uH43G8vfNAUwCn8gzAsk7CRInYsDe3hkYpcwOI8O6QGDhzYkYKbRW5TGVYet22qM0Qcirpumxjosw5MBSMCg/PCk4A8cbPDpwwndKo2jgxR4RQYBAGuNVe2WNK47SfO5OrQ98YJY5bYmhtlSIq5E5mNuQSFimxumE4iwDKPAyXyypAFMAAROgeqO6oCbNqCLEQZyE0zykv9QoIiJhzVg9EtkDixMzCrAraHYSImIIoaOBEADmzqpp3ZijFkoiwu1ZORThcW05DJl6WBSLyODIgAoI5eGAgEwmzAYUGEjOnBEKIl8tpGDIi73b7iAinAIQg1VCFcCbilPK2VA0XzojBQuiaM/eAAHh6PL599zDP+0B0aL1bOCdiiyhRT6fH4/GISO/efbi7fVWGdL2ul15z4TAjlJIPia/7+U14rleXAHBxb8MwnC/LdJhu9tPTY0sFm2nb2t3djREEmbOtvebpC0olDfPT8Yzgw3hgLvtDef/+feAm2a7b47gT1bb1tp92tdbreYmI3TRfz5fz9vT1lz9LDKo9LGvE+8fHw7hjQwqUgVP2ceKX6fb7H9F1ZbSbw0D90LSG0hef/ez13RuK4e/96X/x7t2HNPCLNy+P66WkdHz7sV+qNfzdtz+e/OJBW/N1u/zy669f3r/65m++3bZOAN9998NyPe53N6qwLtu61M8++6L6tq5r31zVx2k+b+e123Za53H3+G55tzsfr+vmNk8zOb/cvWrLtbbtdn4J4I8fzpQG4SmchkIeFQEdNpGcS5zO7/eHT1+83v/2Nx/XBuY2TYdaK6eMxGpVVYFIXU39Od0EEAzMBGEtJYiwtSvDcLmelkXUwzVu5tunY31I2/l62d0caDOIzFyOp+vj5YNiXNaHb58+vjng/+Qf/WcYeTvrc7jJdOMgYrGuoIYUOck4ZABKWdSdCHKWpjVnYU5CPMxlORvSM3sgbuc50Nvj2tYVKGNASsm6gzuYo6MxEjoCZGQGCDBzEHu2/zk4aQ1z6IlXi1pe/vF/9b+5/Sf/y//wm+9x/Xj/6XQtdyrrH9/en35//vW//mfTgaVub0Df/fV/vH11OL395odvfsfT/fryE33xMx0/ncptj3Ll/SXnl1/P/+B/9Yf/0uEHgvj/TjR8+8kL+un//l8/fvz9z3bTfppWXVq/oAAVQq6tKz8rxAlyot4rBjARPntsAPm5jgwaYeYQpXQKRl2XbbmuQiVHhiUAQN3ff3zq4Qp+ulz28+xq1+W0nw7W+671JOV0OecsdVvzflDvwG6E69YBRSQBJGPcv3iROG/XNaU8D2Vt/XA7t7blhMt6hujPXAL15JsomOoa5JLZvD9cH7R1IvH6t0nmiFBAd0+ULCWv23XZnkmizVt13XoLI2HQ2hgCiZyxu1u4N80CLBHhYSFAEa4Wz21vRHo+V2JJFtqsYyRiEHJieVY/mUN3VfcsWApHtKU+EDqieu1syhmHcVSzxXpvD68GfDw/+BhWr2logJrnvVm0xW/ygLGYEFA/r9eUBwn2Gvv9cKmn0vY2lw/Lx1Lixd3+Unut66HgF198dfPq9eMC19Zfvnr98v5uN8J+N3n0IkxoFCoQpUgpewd7MdyZeS4jp/IMYMul7EmCRTIza8rStJJBHrPWnigjImHkQszj4HbatjHJL776+nCzTymdlxXdp5IJSWtjERLoXT00oTMCWNjSEhYk6oDdvKM6ohAZx7Wv4szItVZGIqKtPY+8Pg6ZDJrWcR4DQM1CUJI7A0o3QmBARcSAIHBDcwMHcB7nOZhUoa0bpZSRCYHArtuyv7tt4I/n083dLRFY16ZhrSfORATobtVVu3doptBGyWEdwAeXKQ0OhMH6LDxzsLUZRSlyONysdfWuKQ1am5RSW0dTISRwRNLemFMupZ7WREMoBXjX2rWRSMqcYADk290nZAkoIEIYra0bZ0qSiAHJA9xd3UVSrV0dzIyyIA1dtVVNJJtWllF4aH1dnlaPYOZlWYDGIae6ksjBzCAKIYaDBSCSKahjcLpuLc/Du9NSprsgPl8veZBhGNfz0hBLztfjqa+1LwYtvbz9FIG1BaOkAThha9G2RWvT6qeH6/3dodmFujLG1pqv15wF/7Y38cSx7fLUjYZ1HbwD4fl8aWGhFubv378/Xy+3t4en61IKfnx4DxCH/Xx6ePzjuz8CAOaUqLSViCfdGhGF217G4fZwwEGTffn5zx6fnoLh8y+/dIeMqW9dYTWJp+tRVef9fhAecvniiy96T99993v12C7tx9+9/+v/+MPdzYvtgh8+no7X7Y//7i9bXX768d0uHZ4ejsO8O/UgIc7D0/H9sm1N67ZViEyEva/aoTUXHpPwttTeHCyWZWEQyckxhjEZdxkKrBpdMSwxJ8FplOvj2dclc5qGcb2ehyG7GTO9uDk8Pj21qPVSb3Z7Se6x5RIPTz/+0Z98+e13b8uMtV1u7u6PD8eUckrpuq1CGoicspuLpAiwrkw5kBw6AjhqKqy6qkMey+9/+JhkEpqXpYIHS6taH376LgW2tTENBsNFobmV/V2QBVJddxsyYA/yHi0QciKKok5DcZZigPPMEVB7m/bibgSgm0age2ek/TwX9Mt6BQAINgdoiA6CZM7uwZwjGnICUAQACAwTcHyW3LBgEBKDeV+vaRi6QjjSNFgTTYcXf/ZPP342lS//UO9+9tmX+VfX5c9vvvjpn3/8y3/1BD//49PTj8XGD2VOv3j52x/+U7tMw/3fP1mHfv+zP/rH50h22vi0nB8+wG5e/tvfbv/z+xev9v/6r9be7e4/++NPP33T3r/78N/8n4YJ2+WhduS039oW0QXBDDgNRJQxEBEjJIgxhFlN0btZEDNQEJODn7YlMQOAhZtGoIX3ujQZiiGsVXv4OM5cpmaY0oBZV+/jLq1Ql+hnWyaclTkgb00pcc5iFohklAnTtV8er1frnqkUHs2uiPx0XRts6LZeT/c3t+fzhWHYl5vjaUVYOPPSFkpo5CQ8DPvLeYWeJBGiA4MDujuh5GBvodrGqUimpV+Ag8S3vnmkPDCpR/SSM2L0ru46ykAABNTNg5lJLJxEwgGAPBzIRQgdtPfovaoBs4XX1pGYSZw5CSNQBevWFLFAQpyBylQOhpvj0YID3eECMGdpwzDPMoL3oG54gTJwBLGOkpenlm/G4cUnEEQNwPlmenlO3fdtSb6bdp/evtDVPh9vCkkOl67jbn4t+0h106O5zRMIqncgcnAQzIf5RltrrRnYfgIXDkcGrr0zp21raSiHcb5eLuQ+l7y0dlkXokMEAgIza68C+Nz/tuu2fTy+ubl/ub/baiUiFKzWzWAax46GgORgahYwD+MzURxZRDIHd1PVTcEJCViSMBts56shjeNsfR2mUcpQaw0ghkiKvnVj5DJiFhFujARWc0nuXhKubXv+FnMPBmYurnxdO1vsZVfCTTsgYBKFOK4rpqFMd97YIQB4XXvCFIQll0BobRlziogysCsygwGoRQdPxGGh2pMM6oYYTIzuddsCXZurUZbkZqaU0+zUGRzdmXFTBQE3KilnkVpXkeShiRMLJ0518fEw7McX5MXNp5FP18vd7nZTaK0lKUCkvYMDU/LQ3Xw4XY5IxDIs14s5usJpXVKRsDh+PAJAC0DGdb28e/fu9Zuf5TSoWi6D2dJqjwAKEA6AEEqEqAEJBDR0a9MwEpGqpixTGbSaUGpVX93fv7p5c3r/LXSygJzZrGcG9QZmtV7HSXY7+fY3jy9f3Ari4r2wOEfd+rgrH96/u73fE3rvel7OgAWBj6enofAwZJbx05sbVNiPw+dvPvm99rFMz+WZ+1cvmOX0+PT1V390e/OqN3tx93Ic9kE0jGmcc2vbh3cfE8h+nB4eP2zeQnUoGQi//vLnTPLNr/6mterRT9vlxx8+SkrLetnPU+hyc/dmt88PTx9b05xQWcZhOD49IprFsqxXh8vT6a3DNY/7phHcB8nXZQlJnGRZT+s6q2pdN0+ci9zeHgigt42RQ0h7K6VkSRCkZpy996raUhFjrdt5zvT5q8OvHn8I5dvDEEa69mXbxnk4PT68fv3y0xcvvv1P/ynM57sbRNy2RZiXy3naTdNQPn58f/vi8LvfnVNOy7KUMWuPrVYWIbDWWu8dEcMJQgAAMbUObi7MZpUcRQZA3O0l0dF7y9O41WXKGand7Bl5mMY76x7O0+0Nj/naL9OYC8NdwpFpZIDi3ap7hHK3oHBMOY2zemxbc3dHN+juqwWlMuY+uAO4YWjXDdynnMKJaWzdE24p1KkwFMRAw8QZoyM96wGRWLSbW38W2jFL4hRdsSQN3ZKoJ1fclXm99H/+f/m/zf/7/8PxZhpn/zerfnEz/Pszvv9PF/gRRNd4fIrAh6H9wR/+7PT7v1TtISPoTfjhyYpO4/L7d/DhHWvwtS3r4Z//13/96n/3T47/7C1U1r/z5octbv7o7374Z29qfBhTZkwiBJHNN7cqTIgYQUSozSgSI0drIgCASZKGs+Tm4cHhjkmRxEPUo5tp6MDiAOZqgIs2C3DtYNGs4XVLKdW2NrcKvQf0rpcLYAD0qq1LgjGX1pobIaoDL3YVkbFM21ZrWzHIzIZxXM6nIafDPF3W03go63r50E7jzWDNmi/5JqkqAYyDuKlwaAzB4Wgo6IDePYCaY8o74h7gqqrqxpHGZAgAyMgc4QpgCKEUgE7eHCxKyhQILMhyaasBJSldFRCECDBSSkl2iAGESFINqkUAAQCEBziTpCzMCK6ljBhDsLgpEo1DN4rDvdR2Y8e022VTz+PtstWbVz/roNdlG+dsrVkavvh8t5nnaXKHw3i7nHuQ3IDc3A3Vlzzn+eb28cNTEh+kS0LW3HrdjZkC2Mdxvg3XCNwd0un0VIY05AK2EdvhJl1rS2XS7tetBggTD9O4rguEe6uFgTl5rYllng45jeixWS/EQWyBSIIkidLj++Mv/+hPPn/16b/79V/v7u+rdwggIilTa6s3n3nk3dT64mg9LI275r6puTkySS4Q3dzcdCiDBOVd3rzxgMRhurbujBLuaoGSiFOIMLI7CkiNAHdvoZIEiBxsq23azWOaejVT8o7TcPBVyfh2oGtEtU3B05SahyDlNHk1dSulgPA0Dt63CFyuC7EKJW3qBla9I+QhMWNYuBkogOIw8Om8OXouCQmef8847tuyqZMFhyE5EApRuFYRBgB3QHWIigTCICnWte12u91h/+rVKww2pLFMvfcsab2u8zC7e619HEdh2bbGLIxgVjGomw7TvGl/ulw/Hk+t+fXpcn44jftyGPd969Y1EIBBvTPllBgA1LpYJ0LTlliGnFu/uIbwCOp9aTfTYa09V304PaaUirCA1/Xcr8u0v2utaUuX07WujVHA43p5GneJIFpd2LwkQKwQ2zThj08fkzQZ+FLPwT4cipn//KufDWMB13/4J//FX9Cva8R8czsMA7k9PRx3OJRhGobx7U8/Tlle3d5nzjc3+5d/eKfhf/VXv0oymqZ/8T/823AM9GmaLu3p519+fvfq/m9+89PH6zvBcu6n5XLNhIghmZdl+at/d/3Hf/6PcLtu7x+mm1eAMqdsjJKiOgXzU3Pp6/H4eDgcPKpqEPZAQ+iSHNnMe86ZmbdtJaG1HY1XGUfznjNt25azzLvhcrkgmnsPaEUKMToEeH//4fs//YM/Y+aPHx4//fRnrasThPPpuN3sWNt6efo4EkZdV+SrI0Jip0Sy1Y7IQyn7cfrqsy/evfvw8Xzd73YMwUjTMJIAUuScgenrr7/eVn36cFS1lEprTRKDw7quEVFK7s0pCYFodzQmlSyDhkBTtC4J63b5+SefefSc8JP7VxTt5f3ucj2KiEtioN4tzSUKuk+gxgF7ntZzDQWLxbDlcafh0I3S8FyidwfOKbx773kuTZ/o+e9UvLcIMABYrxdvdjgcLuda20Zc9sPhuvrW0UASQTNNRK2pW09Jcs6EhCxEjEmcOZAZnouzOxIncwYRZwOdhro8fHP87/4b+uU/afomrrr9kdT/cIK/7vD0lg21Y09hcfqL//SvpfYxHdbjCnkyTjWV/c3LSt9bHlBCNph2s9Yv/ur/Yffj3dPYLrlOIOM8/cGf/sN3//L/6aCQ8HpehFjSENrVew9zj5LHtrXdNAnR1puD92XDDIHsgNe1AhdOqfZWoS/xnPcmCK996Vv3eXSIakYk7XQm9Ztx1K5kgCzH45WG0gUhjZtrTuyxuSgjd90iIMAIKRFAIBB2aymT1UZElFz9BIMpxmZWe8UKxJHQlut7R/KI8GGL7gBr70mGDepU2KA33cATcw6GHmDNzDkCdKtl4JR2ar13QRy7bt5sIGFk6waQppKAA7sh6oCph0UwBBGgpAEIwbEMSYi9d0ZIwhjgqr1FllzK4AEsRATuWlh6LOQpCwnKVr0MESlS4TU8z7ltl6Hnz19/8cE+wpgGo7G8nPIkyXXuL1/tL8sxp5vL8jTlNI7zsrbpsJPBxmHu3WCMT9KtdV3WPg3zBH57U47LE+0KVG/2IcfhMNxa3wAlla2v/XY391636+V5vbr1Jik5AiRmzSgMgXXdkohqa30rScBga3Webgho05BUTrWaGItAr9AVHNO4O1+uU959cv8m9NfC6bq23TgPkpra0hyuHTAKgxLQmFrY1hshqqMGcoD3DlaTYGbhZhTUuhnrsl1tvcyyZ5CkPs/jGh2TrO7sgdXHXGTq09U7jrkCtmqHNI3KyXKynQPmVCo0s8DeInADu2zJYgaY+trLmCIqaRdsxIRE1lY3WKLlMoYpAu3Lva6Ngdy9YsOSjuAhUp5R8NQlw6WfaUJztQx67d00pQTe9oMczw+3eextMQgZiwFQoWuvwVESqS0CY1uQIbtDASTHNy9fvXxxf30+yzYb5inY2XO3WHtNKSN6bxcETzREBKCbw/MOYV3r5dqe3l6//fZH5ny9rP7h42E3CUi4PD4sN7e7y+Pv7u/45cvXiMEKsHV2y8wJWJdqyIZUaxfGvJPmS0OP2eyjzvNuWRZQZE63u31v6zTyzz897Cbd3VJF2mp/ffOSzIRxGnMZEmYaxvHx6TzuX4/3Ocnwi69enE4nRDwej+vS3Er3+VffPiD2ZSMLAF5f3BwK5ffff2zN1nq8Xtpy3QZJ5LB6bcf22YufPTz+uFyVCS/rUfK0tVpKeWybIn3z47v960/Db7Q9UEJTGMs94WYa3mjKU+ZR0t6QeR4k92W93N7eLdc1fIUW63a+409ibW8+2V2qhU8p32jrHVeXDF4lhM9pF7fb6sPr7B7Q3ZYyMSfC1hpCOwy7b+u3T4/v9oeZXcjCuV/XbdwfWqtIGXJKeSgpPR4/aCIoVOYEEhwy5/x6vBcC/Dv/8Pv3bwPdXIlISNDwxZc/W5f64cPDfr+/ud1/ReV0uX74+LBoR5QCuS/bj787nh8fXr968cmrF9j8h7cfYOTqPYVos01XdsLu2MND29bGeQIPULyePhBRmQZvlEqeM3DKbrHbCcYpJ9xWJ0BXS8FEEGG+LthATRMlRL7qJhGFCGJi2m/XjsycplO/plxS5t4CHcFSwgQbebbW+raeKYBcITjJ5EjDQK2BiAR5QJhBnubLZbkuZ8kFUXpAynu3BlEjIqgOAtFbuLqrk8WwC+RtXVNIaU0Fwltuc0qYt9Pv/vIS7QzpH5P/7Pw41XcNuM1f3tHj2ylu81A8xfX8080APz98/W/+x3/ThYZd+pN5fvP5J//vX+H1cXs97Opyzh/X3v7Zm+3rnudsBt+eox/fff/N5Tf/nz2pnda7KWc31YomRLO1TkRIEU3nsVy3S5WEkt71dRx2qi10SWXhBOqbtoxdkVIEAQJJCENAwxyZsDoYQKBH8jzJtZ2GfWr15BqZQjxGTQqGlEwpqSdKA6ZeayBsocq+mR5o3rbVCDknZ+1m4zC0ZpKC3RAgJ1nPl908EWBOyUS3bSO3XSlrC2HSut6UIhRrbQI2ptxrTVCEiIW3JUrO+7tpjaVhTYO4KyrcsZVDNm1mlkru6sGUyng+PtJYdEgQkhAI+6FEKmrd825cN0XAEKl94SERxxB8k0dVU13UYj/vNbxpT6IJ0UeZ0zijQEjZvVwUVvef3X5pumFspeCQ4Q28FimVctR+SAOYO9J12764+XwYhnZ/p7WdltPrT19Wq45bkj4W7uqts4jMoSO4qq5Ln9KorSbCUvaJ2fpjuCagDNkYwgCDpnEUIdXetmXgTOBgMSeZiiznSxAKpRr95nB4fHwcpnEax227ACKB9u63Q+l2HfOohr13ChhL1rqYPn35i8+X//a6u/QBUjh7JA5kb2kQAqvoHrhdFsLq7TrsDznxaduAB8dw5cmnMbJebQXoqQQNhVrZ3+lahVInPzYzZVu6SJaUhaCrCTiMeeiIAUiJa0QQ4TAoYF1XTqmUnBh6baFKlBo3YgoIbWrdgICIElI0TYmQRMgMEN3CFM37uqa/xUrjnCdIgmAdtEBxbd6RkRHJ3Ygop4SJAEC1DYURPWUgVrSWeCRAVe8QOY9BJSwoCrOHY0ml1w3Jc07jmGq7osxA6KhbW/M05mFa1i1RVm0UyCzIZlYZkSjcdYDRiYJZdsVn/tg/vNjfj2OY5WbNXMdhePVZujmkm+mTeSgDl7opIjMVHmjblmXdmLkjAAlyQpbEjNbI6/3ti6p9GAcZiSibUjgPaZjG3dPGPnLZvUirjyPe73afvXjR1uU3P3y7XurZXLFhqpnQt2XTt9+0D7/85ddm9pt3b/e7u1bX5XruvQu45NkdrOqQ03Je379/f3t762QtmnPUMMEg0ebb6h+2djye3h32d0gDC96Um3Vdx7wzaMMwRPetviM+E5Tlus6zR4Ra09YPhwNxb/1KFBF2WRVRLsumHsHCjIfxlQJLOaz6FhQopau2br1t224o5tHRmlBKqavpUnvvxJx2Za26qic0IStY39yO17uhoUSSkmfyuJUhS9kfdhlTP13+7E/+6PjpJ7W1S2+n5ZJKUSmlFAb49qcfw3Sapj/70z97PB1///vvdNMNnZy///GhLdv3P3zMhC/v73/+h/d/85tfv/34VMYRKLvRlOZWK3O6XtZprIfD/dvHs2qkUq61DsRpTD+9+/D5p6+CiJkT4ul8FclCLPMeMao3g1CM2lrOdRglEAinriE0PN/qGpY4LDYW7sHEOY8juJt1Sty6lvScWTSDcLKSx4gYhmx9AaRQMw9ErBfWwJQKIwX13rU3AqZr04hgZiJCxJRSMgjzIedlq11XIRlyHodCILUtrgEIaCGJiJMCb61ZM7Vt3To8cyDH3M2aHg05r0zHn/B33+/y/CbPP75/Wx+/HQfdxfX84WGedqfzU//wu47rD135x/f3h5fL+fgfv//db25vru9/gsvlvcMujQ8/fqjDiPuXAQnMwc41jrE9fRZPU9R53Kk2RBY2Eu/RQCBcEYAYzEIwWUVEGGSPAR08ZFAASQItCGmYRgJ+jkGgI5IHMbJrVGKeBJt2BBQ3IART4cERkAwjEHoCAG9iDpLcrRk4YiCYJfQ8MvVas4wk+OywEALhjFmsRsmiW+Wgu7sZwcJs2u2veqVnuP0wg3QPBglmROzzlKpaKiBJrHcANG/jnRC5JC6BoZxzphi8K5IgC2dJiDkN1PszPGB38yIQVJswC8GYZE/jZb2koRDhXgZV8Ihh3OXMrS/TsHe1lGSe52k3995JBBGJo4yDiERvhWQa9qvSDhIgAzpA2u3uIVprW5HSmqHCMO0wZyLKyGyzO2zm7iFS7m8/Wa9b2c1TOSyXKxiVkodhyHlotffeRVIqiZkTTLXW3pwHzjk7ajTt6gjiEeO0R8RA//jwcH9/66HLuonkMMXWXYSIgomG4VQXHNK1bYGS8lS3jihZMMCIqPXNwZlimqe+1ev1eFoe717uD4dpnCUAtr4x8ZAHkPl6euzamZkpDYWR09napapkljwTMbiWUbxpw+ilagBwcnMy7IwsIwjzqpDYSNPNAOAgverGBDLm8dS3p/PVRab9zhC5JAxo25Y5lZS09daaEJciFGjULcghKCMxh7t37QFi5mZEVJgwJUPo5hyRKQhDW3MHymw9iEhQ0AMcBTiRYAAIOwYquEZKiQICeu01ZTCtAT3R6O4EbObeGQKEGMEZmyOAW1hLhVNm4gAOFtvqNuxeGMRxuUzzXmRInIsXtRbhhKjeIyDC1Bpyvi5N0efb/a3v/6v/7X/509sf5nm0a3v94rXXTmh1u2bigabLsT08Hd0gl2mpZ1CSLMMwmcczp5aJqveuW4QtW62tW+jp9FSrCk85zQRo7m3brtfx13/zN9NhWLcTem2X01efvXz8+LQtsXQw3jkNbnS6PO6SD4zr+bIfd8fjo9XmuQMSeIxlSAytulvrDQQiTHe7mZm0LuM4AvJ6rc21sB1ux3GX5JH2cxnG1JuRdwTo63m7mEcvL+/2A7EvFEspQ0mTe0RAzjkJdV2p2uPjo0h2xwBSVZTUwWtvCZJ3/fh0/ez2F0Hj4/JxnKGttpvmYZhKyXUND5+mHQB8/fUv1+syjbsO3ngbpmm91rv93VdvXv70w28P+/3f+/t/992yVfPa2/p0GRMXIgC8Pj5+s1wQ8dUnr8fD4fHb79q6YsBWe63b2up6OQvS7W6/3994tcvjOYJBRBIDJdklW6pFCJfj8WwWKaVh2iHydt3AkQzQ9+u1+32Z0t6VMYtrG4ZSmKq2QKQk5NBaY2ZJxFKIWdum3gLCIM6XBQFUm4yTK+Xx0DZDHIQsZWrWcsllnLdWyzAQ5o8f3+/mofs2pZ1wMjWNAGQAQKAwdXfwEKFta+M0nY6XCAifEKgvFhZFRgAzdUGpAF17QuRws+7EwigQDZwIklBEbNuqfcuZAAEsHDzMCboqaKjIEACSZtOa8nBt3aBGgCEPKU2o60/fbh8u67/6Z8dcQG3o2+Plw6Ndbobhp8cTeXy+z6JniZar+WmdMB/fftvD7xONxOvluhvnVzdD9ertqmtjd2F1OIMvL4Z0vl4eGxnTPBTctnAVSbUrIgIShavGNMyK4Yrs2XwTTmkYWte6aQTs52FdFn42agAiCSMHOjLUevFAZiazIeWoW0QE4uZggUAMwVlSSYksAIOZnRQZI4d6B3SEjo6RUx6Kg7XWRMTdQxXchTmxDJNQACVS65iHHgrg4zjq3/ryaMxZu1CAm5Yhs0MzZSF3z+m5IOpMrNo9LLNMuaBpknLqHhTPYm91N8VcSqgqRC6l5BnQBV0SXM+PN/uphZnqPM/DMOVhvC4X9zbv7oZy0Np2ux0iEtG6rvM8A/jaVgYG9DIcEFEdxrGQDEvdNOLu/iagL8vG4+hBzFKMeJKrNwZGbyNlMxVmZxLOzKl2TTxkJoN1kMIcutZ1U06Sc1Y3MzdzxyRp7K1pD+BgSpzEzEpKvfeuwUzNLA87oCG8c0HmbN0NScEJMMzN1dGHsWznbuSMyoIAkVNqqizobqlI772Hb9ZN8OPT05dff/XVL798+HiycPeodQVV9WjaI8I0MuOzD8UouRQHseqFgRVTitXr2RxH1ao5TSNnwbxcNxPzgIxOKJwsF9doZTeuWx2mQcxsLMMn83jsbW0VkYdc3KwI1br2tpQhpYStbeYx5MLEZj0cEIgTqzsCREQaSvQW3pHQ3A0RyMtMrTYKBIjghESm4YwWcPXG4VnIBEED0IPCXHu3RDJO47Wee+/DMNRtIyKCiDAmZi69G4UTU5gmzlvtEA5A27Z9cfjkcDh8fPpIlDhJGgohhfZura46j5gF3JUJkTBRijBERmSz7TDK3KFfnv5gN211+/zLr55OF9lPy/WEZuNYCrD2vq6PIrzbp6bGCdwYGQC9x1Z7xTQgBCWH6Naq8GCbvnv37rwaIwvPodRaDVtdTUXCiIP6VhERE31cHv/m/e+3dnl7/LC/fYFeR8kRON/eqF4U6GYeLuflw4cHIOluLDTvD2a96XZazpmp7CYEe//uh1ZXD02E1+PTvLs1IaHBW13ObTkrYdYODKjRej21wJxcoapVRma8ZmLvsV6PGIO2xFyIgCmW9fz661/c3b3YLv27377dHZgLumsZxIMB8cWL1zc3dwPmn/3sZ/PNfL2eb1jaUodxdMc0TRPQ8tPx6XS6ubl9+ebTVPI333zj1xVTzlE+vq/nxx9Y4vH4/etPP//lH3314Xj85pu/lqBmfPXKKGb2k719Oh3/wfyf//zu89qu2hYzq6o5kVktu6GkvF3r+Xx+Xv2t2wYRp7XJMKIHhNaq758+fPHLP7+7PX94/GZZFsnJqTZdwbRktLpZjElK+EZW6rrON7fXyxG8me4Lk0U42vHpIefB9ApGdVsDPaVUStFmQylYNfoADhg7t0U7q7VmatZ6CzNfa1e8pAzLekK62y7n6Pry9g6ACCUg2CFxUo8wLzlv6yJCEZZKrrVtfYlAaxYGkTJiOIJDlzQ6KFA0r2aKjonyNKbjh6OkDIymwYLh3ppyInNnDAA0p+bWrKMGAPbeCXNOQ2g0VQQ2aBF+R6dSt6C3CYEJr1sbysQJzNqg6wIXRsBVLa4pcSRLsSQu45yXbQXvcxqG0RG1+6kul3Ecx5mbVg4TXRPZRclGWHofyq6DciiaOaKj/W1qG9G8mjOHAAQDom/gm9XIKROQC67bKbB2NkNwSkwTRnA0BuXEZE6omWFfEIogcCCoJcUIYoUgIuAA7+QeAA7m5IpmgWkqGQWM3TryRhE5a0poZhGBiETGsSRgcOzqxJyGtG2ahpJYwrqHZaFhKEY9zDFPzMSSsbV5nlvrIgxh6KzqCDQPs/Y6CDNDaL2f8zAMTTWl4kY6xlz27qBoeRi6+TQNXddpTvd6lzMnclNkycy55HHdslnf394cj1uZp8Pdrapq3Xa7CclVdSwlATGRE6dxOJ2vzdpAdJMJWGxZgWGgjBZEjAAlgUU33TCLI2oCZY+MuBkK195ubifXbk1LCcLNe5RUiNnBu7XnJicyLa2FR+81pYklu5ojsKRmTV1dfS4zId/c3X348CHnzJnWZ5gJgHXnIQkhAIR3bYoY4P2ynOZx8tYUE3EOMwByo/C0rth6spiezvXl1zvh7A5jma2uOQ/WFNRSSmbmiozs3Vo0AOi9imDhMoOAbdArp4BMTqSh0a6iHSSY7fZul3dc65qE57wDV400ztMDxjDPsvUGwUQ5IXTmHl77BhFD4M08ufZqPZgggzsYGfbOKIm5aicQQcLEpnquaybMAh1a62sDZ2YRUfbEgonDoYIpMQjVtSYRc3ASJO6htdWcExAhhUeYeTgLDwiJwJgkrCOymQ5DwTDTHqa1XRPfIRByEfdgZEoWkPLgXIZhIk7mRswiwkgM3QxyeubVeQSYo/vfgozqumF4Qt8ux918OL17X2QEaBMgstj1CmEcQUynZTlttQy7zbattlSyiGB4FnJVRIzWHAyRUZJaPZ7XYX7de289AECIhPl5OEnl7L31CKdgoZeffHn45IuHv/m1Z7ZoYBgQSNLMm28aNlHGDFRQY60GFAIJHo9PSWDaT251bQsnutnvHx6ehkRNmSLMq0cFTFs/f3r/puQR8frw8CCJENENhDgXGXLW5vsxl8yfvH51uZyR2TVZHso0a91SxnE3jPOu9Y7Cf/pnf3qYyu9/+P1SNwSfhwGY2/X607Z99+tv5pvx519+EfTy17/+9fn8GLtYLy3nnJD+8uNfD0NOffvy7pfH09O7n97u5nG7XNHLNO8+Ht+nKZmky1bX61Wv1/p0nu7uzYlyzpJs3TiP90PeWnV3YeTQxGks5Xo+AfTajXAeSwKKeR4vy5E4pcyslgpr0zwXEm6hGs6Mkmiay3W9JAFGt1oXN6K4bseX+HI3l8t13Q1pXU6MygTX48Ppcb673ZcpheYI69oZaTegOXZTTtkwWjWJ3duP5zBdtlDtQ0tmNUC7tbb1JAMQcCHo/u1v38nvPgjEVMoff5XefPJCmHRdbavemhAQOmJk8a23ZV1YSsrg68nDU8lZCmqNCELQcECSFIhOjkzoDoR+s0s//HSF5BiMEERJsqj1rVdkUCBEJAIgBKBAj0BOqNGP6xmAICAoGCAT9Po4YmodxOAwjXsH6gu4L0bLdRmmMXFetytJr1i7K5VBrQIhFgu1BrVMEwSQW3DP5GqmVgFJEEAgLIZAby3L5taEIZCNmc3NDBOVQi5k/ZLSJCISzaUzwTgOTOPpelV0Dc1jUewKCFSYBnAGJYQ+lZkRvVVrS8J43tCrGQAhggsSMQAQOj8vO0Lpmc2NkIiHJBKkzYUG9c4sEQIAqsHP/WsCNAfzsJCcMIuZTvsJwyKslOwI5kEc3XpiIU7uVlIOcwbkwCIpgqJFLkNrbcwJM4+FwmEoN6ptmIZ1a8M8IzFhLmUilGdt+ba1aZ4NRuLolXIiAuUpuQMEAfoz/v16vR5ubzBgqzVc85AY0Xor4xCBoAaOJZduQSK3hxvdqraWJC+XhVMWEUoiSEhRxHvvN0yOrEzOhAgQTkK5iHnPCWuvSYCZulaOBNFUuwEgJ2EIALcYM7mFCTL6c7RYiDkJBHBmIuq+RuC21XHML168qNtWl3UqIwJwQJHcrY0kRlj7NnLKxCDpWc5IwlUBHJlwWdZpt2dKpUyPj4/vPj78MuAP//APf/rhbRIeowB4axt5jDnhMNalgxm4lgzTblrr0rZzSYEtSoRB81DGZMHj/i6lIp4Sl4Q07zIlvUqAx5iybjFS4Zrv4MCtiIsIsTcD1zIIBbhaSYmqu/bemqEDo0IQghFkQAzgiAQkCJ3CwhWsIxIBEgRABAJxR2vWUx43V4YIoG7hQUIFmAgzkAGAKUKQYGEm1R7onIfau3kQJW0umKJD11rGqfamKimJeSh0EV62dSizQwTxzd0OiJdlm3e7p82XZQnA3c0Bw55pWeb4/FkQEb33iCAgM3V3C0AejN1FYfBrND5k7ZE2RoPe+zAOJfvHx8eUblpXBa7XZd7d3N4clmVpq5WcMTwhkZRlMY+gnHqj66IeFBRShIAJCCN6bdZ7RJj80AA4z5nHZbWnj+flpRHsbfutpzEwLHrvTbXlQrYtT08r4qe9nU2vnVpXr3YZBgnnaiuHj/Occ767u/3uu+96XSKP63bNPCrUscDdOB/ui0ubJ/57/+CP53k+Hc91VQSOAAKUUtZNvvv27bK9/8UvvxjHF7/93bunx8t1PZl1NhLhv/irv8z5r13tz//8z6ecaruu6wbIgeAeEbHb7U7L43V5uJ3LJz/79OPjBxwHJ8xFmFgZnfJGdHp4+BP4I+Rhx9nBIvp+l5uf5j2c1secmTzm8Yvzw/pinzPbYo0KXvvSoBKksRRongMHlqMqJdOljiXNZVxaBYCtbU/Xx1ef3stErRmjMwFot9qUE0X02t99/E6KS7KtnnrbCFPXjhglvfSoXbMpffbm87/+5m9yIXhW5Qm9efPJ4bBz176tiaP3jtgxmAApmJHAMRCZ06XWD6cHD1usiiRbLrVuta4pDSXz8vADp4w0XK7bug4BytSPD7/9zXe//1/8z/6n97ejwRasJeXoCq5d2zBhv3rUah6S8rgPxgQWWaJQqtWuy5ayIDZBQYRAIkmq6qAp+81Nqa1GkDA7aFdWjOqNgAAIkNHdIRyBJUvKTd0MarsWmRwCCKM7Rs85G0QaMgUcdfOInAtBSGtT8a0f60ZCgKFhfSDurQFFqxUlhimHhfkSLr5tY8nE3ep2k8oow9L65gqE4e1+J6Xw1sDMFWM375zCLDBhzhhCxj4NCYPJjWS6tvNRV6I67ofkoEaKzsBsxJETZkDqFB7gaiIJEXMaIBwAGAIYU8FAMiRkdgNvmjEnYBCPMOcAek5Tg5m5dk/iBszP8mhILCIZAChQEgepoiILMZl5YmHMvVcmst7NHYDGkud5BqDT6enTT998fPceIPZ3BzO7v38dvQUhIu6nuW5LKTkXYRHTJiKn5TpMc7B4kDo44DSNsKyHoai2eRjVth4hRJQGCAKIeZjWpT89XnLON7v7xRUZ3VSSiMi2XIS4tZZ5AOCUcjiEwTzuLpeLMLUCWLDkXRi2FgTQzRiwAyGIYAILMGCDSQo6rhCuUSi3yyIAQ05ruzg4cQAAEQknAwhXc0XEbetJyphZmBA9vDaL2mIYMSL61hFxN87mbX/YHU8fBy4EEdq7akTU1c7XU8759u4Q1iPcWgzpsF3Ugt19nAcjReHVFgHTVkXE+2WrStFe3I5PH3/Yjxm8S8lJlIxrvSKTOZjCM0ob1i3pZVcmiTZOKaO0rl989rNOsCwKkpAyAGdMggTavMHMN1X72sM9Q8q62ogjLyDOMo5zX5duCA24iIbrZc0oQZzTMGRZoatCYskklAPMtSsGWusOoQFAuNvvQTv0Hh5AQIIR6tardXdnDOH8jKpo3iSJ1paEHLybAgIkB6IWXaMXzk07IRKiqjGguwozQSRi7T3nZ2lETonXtWsoOASag037aZjKZV2I88uXr1vT6+nEOTFloeQA2s29h6l5S4kxRaJQNTKCQDcyI1Ocd+O2qjZLPBFzybAs58v1yvlmbW4SgjIOAwA/Hk9DLimJdkuUwAGNn9XcWLi5qWpOUuspsdRu6Bjm6JGEEsvFNsSs3VVtGnZ3N7eh/en9W4QFSB6fHj95/Wl0E4xBZBxlf3P/cr+/TNOXn34CJCS8tqqqCNIVpnHc76bHx8fM5U/+5I89mqf597//fW3bnKf9MNbtejw+vn//I6P8/Oc/v729/avrX29ttYYAhIhMCVp7ePp2a49/trspE33//ffmECgi2XqYR0AOREr2/uHH/PLT63ZFKh7EqVDE9XrW7iqROQXitjXidN227Vp3wwHBTpcrl4HMCbFtNYkIknsy6su2unsephkM1XbzJJiZsikqRg7pqwZjmube2vl8zhEYlFJeek3T4ODXtUqXAO/mTftpvWy27g7zw8eT9Y2BpAWED1IQsRzmPNL9q5fN69PxtN/PEb7VZRxHszbdDjfD7t3Dj3mY71+9dDDttXeodft4Pr54fdu3dbcfluUSicHAFVyNAJnZvJF7KjwxpmQPDw/n41MZ5m3bnpse59PmvhXBnG2ta8rTfn9zuVxuD/Nnr+4Ft5zldH6axoyMtdcMZN4RUTgf5tRqBAgC5zyIyLZUs46cn49q3ELcKaNADjSCQDZF47DP3tw+ns6XtQeCOao7hEuhcABCpuT+zCD/24tIRAQR5Fk4m4TCsmLYVgpWvJgbMyaS6CtjoQzAupuGemlhLgO7AwOxkyQ07x5VBIGTa5ja/HInYW7KxLtSvHoWgJRyGkgvFM3imjLscokIpQYzuwcQdu9EkIaBJIUigARRnhP0NawBRETs5sOm+gwVIRBGRgoBDsicEgAEpMITh5s2AB+yuDsn6uEkamTN15xHRHRiN0PgCIRIFgSSCWOY4jkiE39LE8JniEKRHGZBCYiQiYhSmgljHmazPo3ZIYIZmCj+tov95vU9C+y+/HlKuW42H25607pexqlgwJBlyIzPtTwPdHHjcTiUMijg2hUI3aN1IxQKJ0DzXkq5f3FzenrctO2mWbs1Bc5lnks4bmujnVDENA9hqqrMPE9z7907lKGEgTl6tXFMeS9V14yQENxgSjOKnM/XnIUl1mUDRE/iEEnEkUJyAGTtgphSCogxFRRorYGER+SckcQ9UENYCKK3/urm5bIs4cEMOXEkBAhgtug5p5S59951Q6Lw3ttGJULCsAOBMDPzjveUSL0HYQQhSMoDhA5CEWFeCVEQ5pIH4Wo6JHlxODw9HB/fvv3q8ze//PzTXNguW79e9lM5XbaABh5I0jEIkLSPmXeHN3Xdbm9vzCxnuckvLEKcd2VWRzNSN04shGrINJARBAQEJNrcTVXdQLt092VZo/apjBtqr77Lg+QRPHTtbk6JEFNmzpyg6bWvUxmAmAGrKgibdwg8Xy9slhERsastawsEzkLkKSUiQkdiZJatNnTUZCwJwxU9zFSb50yD+2pbr733cRwTEbnb1pKgk2gzSrmrmVm3QE6mxNkTszUXot4bEbgbkueCYTXUmZiBzJFTgXBKyUwRQ0QCtLUaYB7qwrbFIPtkOdTr0S7XxUEqt+v1Wmudx931pEj10h7nu0Fwui6X3f42CwN4eAgxoDtgbysyA0W36O5uV/NVrEx5qOoeBugikFMQKOeXFsksEZZcht1UXr4YET89HfOrVy9/9/vfevf73e3luLy4++R6ut6O8/fffK9b/Tu/+BODePvuAyouejHopLhetF5PH358b5v/wR/8wZtP7//tv//V6emYUiFKT9dz65uk2PoWGCmleZ7Xda21EuYIZ5CmHVCJ025+8+6n5bPPD9NueHq8jvNeeEgyWDOeyvXy8PL1QYo8XY/jtHs4LUQjY2qtHm5enE9PuQyB2AhxGOZxx9SAsplVinmcyAMcq/sWjQyPl/Oru1erbR20lFkvTbwgw+m4/vjjj/evXv3qr39DJKOkh8fH4cX+7cPHaZoyoZmllHb3t9vfWAGTIvM0FyZh3mqVsdy9etGjv/zkVYQPedgPu4HL5bKox4eHj5L8p5+6+0/n66puKaXuHSiu60mbPW0fL+P+etnytFdAB3NXYiCAj+fL++Ppxe0Oc2nLJQAsBN1GGTiw9x7oLKjtminvB6kpG9I8jBnwcDOMU86EQmkaRndv3qb9NAzDtm23842I9+3x5d18fFwp0DQyz943xsHMJJV13YTnZe0pZyQwtaHMAtirCQ+7OZ+XtaszImfGYEADVErgqGWcd/v56XI5ntem0N0pOBMCiBsGJrBn4ydAUBCFapCJyMCCiEQK6CNRm9BZHXVwGCgLiS06M3fkK4aHSeYIcnYqCI7oGL4NGRG59oXzPE672rGDUW+DYKAEqUKfUi4IDFB2pWvnlNtSMwCSX9slDbtuAAQQQoFFduACwUYMEHPO2B7naS4Dn69XR9wNowVrD7MA0kQxMhEkLIO6Q4NABE6CmBOLSNvOIowWwOjI4clKtsAMkFCExLujpO5ISVqY2QbgJILxDC9yRixlPOzKuq4QUYb9fndXa0dE63p/2F+Xc0qUUpJh6KYA1HtNPAyDXK7nnIqk0XwrZd90GXdjzoLeGM1Bk6REWCMK5edoEjjWbbOu427PQ4oGQDYmcbDqtYM+XE4ypJt0aOuGLCLFurnRMEyJhysu3TQTNe3gMQ9Daw0AGBMid+9MZSxlvW6RjUd0C3cf8rBd1ykfBk6uyiT73VTRV9dAGIbB1VqrFn7ISQj6slCEQ0SHUooSWEQAtu6ICIERTIAlpXY1NMlF3My7IriDWuvDbr9t2zhks86cp6EsyzYMA5dkZgEQCNUaI2OmarpWjTBmtohaPxZJyBRhxGJmvUWYgwK5eJXoklCe3j++/vT1/f7mu+9+mO7udkN6/+4nHpOAq6okLtOUKIm1l7thzHetbCmJkTqjQoSybeFILIU59+3sqN16aw1J1Gpzp5wceF3XaRjW3nIWaetaxikIXDsQJqZ2WVhyW1aFiMzhzAAj5+tScymtRl2WUtLWW84DInIkCiLnCHtGsY4CGUu1ligv9SpD1m69b1kyek8dxHAgRDVCNkNEScC5MTOWPLS67WWkjmbuwJA4yFvdkIUygNtlO6Ui1U5WBBt2SMIFMO5e3pZSzss1lRxB21KzFCJReIaPe7cOYeM4bsuaJZk5UapVI5AI03A4LfLup0ur+Pvvvh+GtNtPtL01X/Y3+W9++82L25dPT0+tr6/2v1xNhyTbetmNk2ojJsNoEb06IFPYOM51vSDSNIwvbl9QLuu65sOQEte2RBiVRAxejyXtdDP0SBFPby/16d3L+/uvPvkMIArlh1ZXq1zSh8eH7dKezgtg9F6n/eubm/1vv/0hnifXtG/YWyhzRu3b9em6nRE+1a266Xy3X0+XQXgey2lZKQ0Y3rqnMlwvi5k5u0giYW21955z3mq9f/lJ2KiVGeV0qjnDzX5YWyXXIcsP33338ubvfPrF6/PHx5+Ox9sX83o+ATiMgKQT4+Pj47of9199uVyu3R2zVq0QZZ8HxjBr5Iaq+xc3u5d7O28kbn2llNQhy6Dad+P44vbTF7v9Z3eH1lrX689+/mkZ9zfDbQK9mYdR+PL+Azb/oy//qAeo2+vPX2TA89Pb6xNHl++O738a39d2OX5Y9tmO0P7pP/onB1n+9f/v33kZz2d4evQAN6OUSrt2R3RkwECknKQ3YJQE5O6cx1UbqhECGesZ881he1oL7ltv4BroRs3QA8gd1BXAh4ibedwP027az+MoHN3WaT+19TQPs6uXlFHicn3MZVNZ90PfekOJugjjTmgwX0CEaYwAN2sbYZBQSqxgAuERLM9yNLJqQcgMqMFhStbRUUNbLKWUCFyXSwBEr4Wj1iVzYWYn5iSXqz47RRIk1405Ecm2ReaExBFOHtwjI+YhOBU0cbNSxuRMmx7SnjzmgGLSPLxIC0OHkQSwNw+SEqweMCVuSxu8FZdmbR7LXFJdruAdCnCC3vsCbp7Cs689ISIBY0kRhXMRVFUFd4wy4HW9lt0I3cIkOg48ZfK+XneltK6BPA5pxTUxEsQgvG3b1ru0zimXsUgaWmsk0rwLUx5uIixF70sbUpqGsZtD4ln4ejruZ1briSEmqb5Cr7e3L59H3mma2roxi6oi4u7mUKYC6IjoUIdRShq8miQah3kopWklAFdT8Dzuoun5upRx54CPl63kfVd2LYHPq6nwhJowD8JKVCPltIQ3d1dPzIdpbK3BaqnkTW01NdCSxLq33qCMrBZGOQ1mgJiCsLXm7izsoWCYMKWBmQicI6JkYUrdA0VkSGoBWRy8sW21ISRHd2oy8tb8olrmxJypB4s0UEoIgQXLRS/skjJZGGQLAHfr5s2glJJzdndKtF5WDLjd7a/XyzBMJNg7CheU1HuVHAAIQN3RQoLTtZoZDeNktnjrEZEoJ+EI762ZKgmMeUo4WlfK7t4tmrsTcs5lvS5FSt86ASM4dEOQfq1vDnevb+//01/8etod1rrtpnm1SML7PaeUcpnAmWJvAR8f3x/2d43S1XDpZuGTQC7YoMG2UYhhPKwboxmougX6tN8jp8IjpyFLAnPrKjDmDd2tZ2SBZxYOExEOQyJ0wr71JNKt7cfB3DmzancMyYkE66KJEqcEqrtxQERTjQgRIWaLeLW7bdrBLUlOKYF5kDOGqasqBQEQE2MEhg8ytL6x5Ei8qrMIAULnUE0hzJxIIrUejtAhLDoJFyIiIAgLjalM0Vx46JpCSs47CwdQYti2SxJhwOXytJtmVXWnIQ9E43U5a3BCfv/w9t3j+Xff/rhdm7sG2O3uME55c/z2t6d3bw1B716WTRu5DMN4OV8NO7irK0tCDyeKgHG+YS5qdd7vAI6Jqa5qm6WS180tSre2bpASB+TT8RqadsPcMU5PJxb74fH9H/7yy1LKT/9/mv6sSbosS8/D1rSHc9w9hm/KzMrKqm40Gk1AEARSFKUL8Ub6wTLTf5BMAgQaCFJUN7rR1TVm5jfF4O7n7GENuvBiXIdFhLuFHd97rfd9np+e+6RUJdAQ3CFsXDNToAFOtX53f7hcd3en5MeSXi+Nh9+ty+4rizt1SsKSxjRInJfD6J0k29g4MyW+7JflVC/7tUi2mK4ekFhIVfd98+gOV6SeFxcABJt6uTsePn3801Lo4eHu6fnzv/zLX+3Xl8MhzXnOKU/T56+fAHxTqJyOy2p9vj3evVyv0+zteu9gFBZD798cmJIkOpXDL99++4wvS1o+HN+vx7s5+XLZW2spUT+f//HnPy5JCNTBHt/fr4f79f7wP/y7//dpqceyEFHTgJy72eVyToX+1d/8i7//2/9E8aYPa0MBRKecDuVY6uvT66fnn+/vHz17822pq+twMzDgmtwBiCN028dprTmnDDRx2ATwMOuEkXJZc9pfnsbsS80v+ytLZAqnZB4OAfbnhoAgAwABiLiTQ+y9bya06660HXJSu7rb2JUTyMIOkLhe54tOK2XReal1ZTIsojrMQERyKQBgA3CqWUzVYCBGQbmOMyJOm0GoYkQMDN0GAwOD8DLVAyDlNRBWKdi7AiHlbq4A4EiB7JA5MblhAgCSiMNKRDadAkvNc/RpM5ViwqPPlIgk0JUh+rhkSU4aAcREQhiIIZkIlIh4huayGiUkz3UhxwQcloJpuEEWnwroTJHXwk6IosiUl6WUtr0i0d1d5sSOvvtYl9paY4qlpohZ8mEGKTg5B4FgLjWnGr23JIiU+r7VnFHnISeq5bX3IKrLOuZEiswZIwVizogUiAu2rSylrMu+70j0cKindVlKMY3leAJKTWNG1ApmBuZEUqiklAQJETfvIvl4qg4xutsIQOaEYFxzKrm4K3gsywLEbagTA2fKokPrknNKQ+dyLDY7odWSiGFznLNHCCU2VgoEoiwZwsxVMlPKl+uOSYgZgwiwSs1UiZPaYBSdEx2YEjmoziKpo95MwznnUBNJER2DA8ghQCjnbASuSgacKXtyAiIiwRvIhBlTLcMiERdYYkY4AqJQ8sCU7xAxIsymut1aJ0BMrAHaehPJTKku7FORrApyDHBnMO+qbrkmRGzddHfttq53wuIIQGN0v3m7mKiwzDnnGER0ysv0zhoeGg6AiMHhrKoJfBtbEgEECA/E3a68Sknl8/OXGfqLX/+g/8//FxBe92GhlEtKiYgjiDED3wwNidbD1ee+X3kpeaFr6x9ffz6kJJJjWkRgSVzYDNJyR4iMUFLxHjgiB/fLvu9b711EEhJRIEToNAAPQMSwpZjZ7AMDErK7AvjerliQUYCD4caDdCPoGrMPd3cfiZGATZGIiHjOTkRrKg6uoyMGE1G4CydhDBzbmIE5JUDo2qcGCAXRHqNmSYDoSIpOdGvLzT6AwgyEiCMySzi4T7r9/IDKZUx3BiIJEffpDkRkcwjmhDQ8CAARhZOp9zkgmJG2/QnT16fL3398+kPl+1qPwnmHXkv909fPp/fv17pOHfffPV7xz3ckFWPOwuiqgZITDbWU1rbhHiNmbq/68un85eOXQ17FQ0czYJTiRmpmSRIfaHp4bldxBKyn49vDeX/eOS3LwkjHnAN8EOCyOlK6zpyo7R3FzpevHr3tL2VZTRsgi4MY6WXHOTOH2rbvZyBqc7BEszkM3XE51r03B6traWOXgkhOIPu+u7EI5UR3x+q254KS/Ocff767O12v7bjc98undUmCo/Xzv/5Xv0LzD+/fqX+ewVvf61KPp4fElDjraMf1MHt/ON0RUJ/9uBzfvX/Ytsvr9XI+v9a6/Jd//M9//M0/XZ/PM+UVE3h+//7973/6+ps//PGwrjjs+U9/XHJCcmB/Ob/Y7/G//e/+T3//m3/48O17HfPaJ0JCEQhq27aUQ+IKISJyuV7rupwyIjWMpmO+nttyqF8un+XA6US92aavh2pMsu02R3MkNedEd/fJZpjZuW2rZLMJYFVKCN8i7gLRz2cc/ZgwMX96+oKH9bbLMDdmyowMTETePBAijAgQkYRrPpSlout1v2ZBluiqmQWRLZgZcglAFKG+b6peaw0IWlStmyqTIEdeaQngaW1TYUabpjOYFH2Yg1C49SAO5HAhMct7b4GMxE7OUnh6zgCYDJwAuVQicxDGCDPkG5KT+iRCyjmBBzNBLYjSEIgsIaYkGM7h65raNsx7TgsFECcDcItMTAiUJfnCPplQiTyaEwQFSpSoPrWF5pQ4SanJp8457lN9vbQiy2E5qQ6OvCYG8GGj1ixLBQJMDKTmlnKZ3TnjgJ4lkxGGQ0hKRFlaayLpdLrX1pe6Hg6n67a9OT06xOjzwzdvwfH1+fzdh29aa0sSYFKzPNu6rmvNc3QAqLi01Jk5Aj0wPB2WA+e8tY+Fc1nyTarmDsxsZqeybO06GrpHzms65DBgwWiGERFQl0ObVzczR7OgJIIslAID/4zI1ZpLXtftfAE3dyuSc+EwQA9CZuIwYwJmUQUi6rNxychk5hjo0xk5sWAkJEQCn0qMgshI5CYIzdx01lpVVZBtmFCyaS20lIQMwADhy1KQ0XAypqjChOqqATkJ3KRyATAjobiHO7g7CUUEANst4kqJSVgAACggM7u7TY+IMcZ622Tv293dcbteKYwYWZicgWgfPeVVsiMyUprqKaW8UETM0cIgEd68LDnVuI23qUQAhDnc1LiInNKy+jwPnbkWdwtCAB8+SyEH+Hr58odPP/5v/5t/I/+3//s+Z13Xre+Gcwy0DogUGsvK0w1sDMrgwUWG9fPXs5FCsmvMA87D3VpT9pRQuG2NRS6tXxtsoefnV+t2Wta+XdVmmIpeB5fkDBZAgZyFiAbEWXuRhIkFaNokggk6YtgkjAAFoaDAnHMEOqAsd1O3wCglZcm6BThUqdvcS66IOMdobbBgujmfKQBARGRJEWjI6pgpIaiagWPA1JvCgzRwEHOQCCRAySnvo5dcEFHnIIyxj/u747u3D2pDwQCReAaPofst4AAeNRVE7NNSWfbeS80MMEYLbUWIKZ8v24fHd/Vfn/7NX/8fbfBhSaUK4OvT0+fH+3fH9XQ596742rZz2wJwGEkCj2YILKja+c8xmE2Igch8G22cn/7w5nTabOR6eLnsE9OY04mcyeZufgbno2DhIoSuBucvev78zb/81Zj71+vrm3e/2nvnFKN/TikFApDccMQp8fnlueRUhNWIHQUyoSQKZPE5w0bJsJ+3w3p32V4sH0cnYmdr7kEkc85S0rZd9nYmzKUWDLLR0Rghfv3999vL9Zff/cX94d3r+eWbN8txOeqwMUbY/KZ8eP489PVnVaG8gtrp8fjdd98tZf2Hf/iH0Wfb+/jN73v/BwPMOSPG69PnX373od4//O63/6Q+xxiqtshKjEH86fPX18vr6fHt3fFkY6Y1Gw5Z1rSUPrZ9P+dazGbKLIw/fXypOZuHCAomnx5qnMXbALX7+/vnL88YEMP7nMf1OOWy6Z6qyJKg0JfXz+vxoGNeuy0pQ1A4L4c12mZqqsbcAjmieUy1zjntfY8BzaEwg/Wvbb6M50Q0Y8iagZURPWigIdj0HQxSSt0UEYUo1QU92hgoDBpD53o8hY2U5Lisl22fE5gzaHZwm/v93eH+xNft4hFAgeJ/PrySeBumTWc3jcOxuvu+X+fshIWltJcrkpScdYobmesYrh4OgpkhNDAoBzgysDkkSk48EblUCiSCcGDHiACRSokC2MnVbmgtZp6mMdMqB7ZAcAinwCQ1whlSBBAlwyAyRPewwFjyMQePMXD4cA0wyDxhCrCBISIncVePoMQlLTNcTskcRrIRM1aeAkkSNUVEZu6j1VqBmcmRk2qsS6KxVbIUAlwYqebyte318OYGy5Z7QiQiOtRHzqmP/f5elprn3JOcjqdEPGteAPk62nFdiaiblnQAnSxSKYbbtO7uS15zadovZIREAgnIAULBmJGI3dub+xUzfX1+1rFx8rGPkjLnSkQKGmAznCQjCBAVOUJMdkpUx1A2O6USqgZObmToESTJDcM0Iig8AtHQ3UnY1HhJhNk9hJMwMLOOBkEBMtUUQBg5ZQazMYg9JfCxp0V0jhtDSS0copCkuoAb33Lg7t26EM/Z995rziklxCBBd4WUdZ+qVlj6bAEkaRERQc6SwqYFoSRntLAxms1gCABMx4POUSUD077vloVFztfXZLarrYsQhqMr+JhzRgCZk6/LOmyG263NBQCYKpAr0E0wiRiAN8WdMzMnjsAAcOCIMDeAiCwdXP123XfKyRA0tBzWGQ7Ij49vX7cGHkgptAIxCxNE3y8BFZBVqc19u1yEcD0s79+81VAUPh6PgsJK7PTx69MYwzTG/qWbX7aOTJe2AzpIhPfCQQhSytJgdpvAmDNLohjaWpOSfHSclkpV1yBUjZS4yKJmZsYs1kYp6do7EkRKTkmANYhUiFG19XHRBEPbnEokVBfh7OZMafYr821Gx0GEwAagBgDgailTJYIwEiTmEWQQiO5olAtIZiWCypTa5afj48JgJeP7D/coYNMU4W49ABELWDioAjiKmKpjiIirOmDbr5mlFrap7OObh/vhbXk4cKzoSRj3/VILvT282faXl+dPj2++PTd47oOKeIAKMpFNnTazJBIytzknoK73p71fU/XW91zSvl+hZJTIhTBi2hQkRN77fny7Qgfu5uOChAIKY344Hse5bWPc3d2NuUmC6/mZGYXK83nvrG8ev/FJ7z+8YeAw9zl705GIpHS3PsZh4eNpfTwdH+4P18tOYCVTXVLJi7uGcE383Tffa4dffPsDeID7Ug/v33/nOj/9/Hnf90Nd/vi7Px6Px2nw4+8/LcsitfyzX/36cjn/8Q9/+PjpqaY1Aj/y9bJtea2fzy9v3r4/3r/bLvtv//CpprzUDAoORMJbbwgqjIlhTtvPr8vpjlLOay35eDlvPsNTmYx5PYzNtpfz+4d3zXyP8fxlq4VBsmRU1Z//9OMP3/3iT7/76AzMiZEIwua4W+vU/fLyFXwQ4d396rPb1LUkBjWiw+Fw3Xd8ef7w/XeHw2GOThFOcR0bmAhmbReKLhwGBoyjXXLi5Zi5QABeL9d37745jf5wfxezHQ+LgwLnJBmZ+j4gAAI4whFU1adGhJFSkGKaBjll18ni3VrYFEvbpYdfj4fYtoaIPi9t18Na15p+/unzX/7VL1JN5+3aR1+QXS18Cm0AnhNZBvdQs9uIzx1gmjAxIIu4RagL1SRECDgmJJrW+Na9CyqUiXUbysJIjJymm6oJMVEGElXFIEZGQg3NRUTk5pxfpRpVIQJwCFMf6o5J1mWBOVmBmDSc3ALcQJGEeGJQYgCSg9xxYudwiO2l361rWVYAGKMhOAO4u4JCIkZ33Jx6SVxSwiDMlZhImCSRZHM4HNcI9NjeH09zpyKlyiGc3P14PBwgci1zzm3bHu7f7FsHllTL2NthrcuS+rwg4rourbXbO6kxkSnVYuY+g7gASp+DsyBGkZxS4oCYXTzyem9Tw50ADCLQJ7hjANK2XdmkHk6gIChzRFrr6IpEXbswU80idWgQZDc0DQYMB9fgRMxsNtFwrQcAmKbIqHMApCzEmGbTQsLMnFI4gVK6NbgHRkSI9zYNYlmP5bCizjANdDNHQSAT5gmaUAZESolYAGAMVSQkzgHWJ4QTS6XsFBCpVr6lugODM/mcjh4CJZWE4jDNIWWGuM2J2mjbUqp6mIYBEnAWYQJXG9dp01LJFEzse1NhlFz2TYmS+62TDu6ecy6SpsfNb5sQMEuEuU5mciN3QEIQtnD3iYiUkvZBQkAQcxJRTTLnHGOYOBFr+AAAuIVxxd2JDBFVrZTy/u276+VPNgOECmd0nJuxYKAju2RR9fePb07f/5BTenk+B4LU3NSuX9rW+jy3r58+l3WRjO1yLjl304RAwneHaugeQ6OFBbjKRBwWnZyJiXy4CUKWJChunQBgDILAgFBjoNEmEBFlpuQYa1k8wAkvsDExQuoN1FMRcIzgaRyIHMbAgpA8RHUoBDsKsU93d0RnZg+Y+wxRcBPIAKKmTAkpB2T3jYh2HYmlawdOaol5FREdvWSSBOYKCiwYgMzFAgkFIWYMlkCYQIEcGhME2pxjzkRMkCDABiQR05FKjP2JNPcJiPS8j+VYQR4oLecuL/scIIqRsJiiKeS0WEifXnMJD6aYbnvTCUTCT5c+I6d1AZ3b53MQItIBbtIaz4TXj22RTBbaOwmnIsPcRaR+YHuJ9geMwRz3SRqkGcthTUzIlJhyu4y/+su//tOPv0eiu4cTFAIpo4eY3a9c8vrpp6djfXj/ll/384e3b3/xq1/vV/jHf/wtqaDRf/n//cbMTnf1+ry1fnnzBtYfyv56en16Inz4fGmqrZS4XlrOb2Z7/un68v23j4D6+cufAGkfu/ACslCRa2uEed/7ly8v96c7Iql1TVmIoKyHob23PSUAsNfz55zz/f2pqaNzb6ABzRLGwFImzK4mTL/69fcGg0oIFEoV0bLAdXs+rHVJcnnZjjURIXCgqyC/bi+HY5m6+7X13pDs85ef7tba22ZO7p7SiYRbG/f3lAm/f/fu65fPEdGAfSCltKbFrSdOGppSWhC/++GdzpEYSynIaZ92d/+4718AYG+XmqW9Xu7eviPl0EDLZmaOAcQcgDSIHHiqM2WC8sefXoS49fNyTAqNsH6cF3awqczNzJZl6b33fR99jt5ygUubD4+H9998Y3HFGIgtYALOlDznohPsOg1zzalW2fcRHtquQoruLHWiE40sUgvPEshwvZo7BCJ4JBFEHhqGGOCnlMcYHS3DLbGMEoLAM5yJJKeUkqsJUwlmpMHTQ4V4aMdMzLfJVXfcgwlxCkDOQMQQCTEhhoXKmlszI6CIcWmC/HhYkRnMeu83II6IgMSRlq23ZSkRZpIS8f3poe9jLoiIp7u7MSYAJSnnbX/75t3zy5d390eoCwdxXmZQa42ZF1fdtyySDquQr1VQ0t42QD+dTufLMwuu63H2wZSFb5g/K6mQg01jZgBCloDwAIRMiKFkjhwsRG2MMGdBTsKBgWDoSIj5zvsWRASpt3Yoa6rl0iaiUhAQBhIA9Wk6MZMAMUriUsYYUCvnvI9GBKQQEdNUHQTSnJgwAhEowgwoaQBwBEjfx5xGGLVWQZrTIpASTdPL+cUNlpIyCTImhraf52wsSB61lFrrdesswpIZaW/tXrKBCSOYI5OrgyFLRqTwMJ2OMKcTgjsGwWsfmXPhlEGmTmAC4kjJcQYCJTYN9ximlYWEtfVSkkjS8LUue2+3IJsYpcz79goEZAQ9CEm7MucDHXSbSEGE7iHANKGmpAiB4ACI8GcJvUeWwh4YLoBogTBxjsqxE0EAsMSc4QyOfw5aUvLps3UMuL68Hmvhkr+8PqOY4OIgcwsjmNGSYTkImm/X6x5kGk/PZ/W4bK2NPoevOZ2OtcV26S0Vvo5tBi4pYbi4k2sfG1B4ImCU4UZEB8lA6GDdegCVkvvWDkvJhPu+awQTE9HsGhAIdENHuuFQj8A5TQpRBJgxZgBqM0hKKQnGVVICEVPoOtcqqRSMMOURrtpLyhgxtTHlmqWDA4CqOniYjUByREWCjAJ8s3AjQKDaAKWS6mXbUuIP374n5L03qbWWZXZNeZndasoRKRMFunNM19tKAgCW4wGdRps5l65fIgpI2tokoLwYSiOIJR2vbQfEx/s3z0/nZHBA9v2awcOAnAsAzzl1kDtFMCGzDFMU3Lf+/psPf/v//Ycl68P9uzlGoLtPyUzgiJwhUVBmKULkwoyIyOkuL3UtFF7evf0+SS0FpTjl9POXF1/WpeaY+vqyPX99up6fD8fTGL2eyre//O5PH79++fxppfLxfPny04up9xnLsjAU2+HDw5u///ib/eX1eHicww6H4/OXT+eXy3qUUpanp6ec81j0Dz//lzfvvp2ukonWRNMsdqLCAb3jm7fvtyaH9e56mcvxzSR3bctasFkRBO0J/VgZQU1dA8PZQdb1jtievn6MiJzr+dqBkycE5DDTPoR9SVlH6NYs4Pnl4+l0stmYi013N6qxX14oBoKtS3n6+ulwOBxORxYmnKdjlcxUDr/84QNm+P7Xf7Fdy8Ph1PZrrXWqWjQRubs7IiKH/fVf/OrltNocn51evlxgJAZkzAGz790H4qE+9fH24XBY5XK5AHq9P30+f12qmE1KEomPp6My75ct5yos4TOBByCAIqEnCoj18LA1tZAfPz8/HN+A1/Zkl8s8VMmJ0XT0UUq+7pt9PhNR2/u2tZqLvlx/+vk//V/+r//n/RoCB8QD40S6gO1Dd+GaKz+8Ob5cprsB4FqXui5EOGLO2Z3S5g1n6w2EJGcgAjrWa7OhikAQTIgl8wgjJFBLSCmXnJJPNQUUdohaSoSbWSK4jL3WhRKFQ0ZEzEQUEWmpyDRaB1XGLCWTx014B4Sm0EdQZkBIOasbI2FYknyohyRoZoh0uDulkuecgbgsSyAs6iI05yhrMZ8p1XQ4XF6vp7v71obktdY6xrg7HAnsmJKrociYKjiRWSo5O0/PJRkCIpoNBOKAQ5VL2xw6MEyfHJhzZScCyJkiApjUNRM4goYSSc751vSdvfttos6590mi4JhFEG8cSkZKgTC9Txs+vSyHQ0oplFNiNI+MLIVoa7uqplQKMgZEGAKom/pM/yqTAAEAAElEQVSMCOt63c5ZUsaEFEhkBDd0D3lMmCEODE7RZ7e9AyGlm5rBtv2aOC/LQoWvvfV9MKfjYZ1zns/XnFgOJZdD+MBwRFzKobVhZtve3715a6pFUpDnIiml67ZlXolSQnIHR2cSgJSIWUamPLTZcMJMKIg4xjAzCMi1ZMy10Nb2CCIkSuLq4ajakCmQpulUExGyQMcAa7MhVNMAZvNATOAcUzNnQkiZPSYwTANEVlWyiSxBqNqnKhGllITJmk6fRZhZ3EGHzjHzIpUkHNyCbtW4gDBDjCUnd7+/vz+u9XRYXc+XyyuTrelgE0pChBkCnmKMiYhXPa/r8aeff/r05bn3eXd3BwCl5Ax1tEtGEUZKGYMcgyQzOqgxAAZkFGIyt0ASAMg364qbUhjhbjZ0J8br7A2CEyPLmB4WJPlQZJ+qasJEXHqzQERkNiJQcGWmQNmbInBoTtoAUG77bjchAIjWdytYk0RTQ1c1JOYMAYFGDjhNKQExUgSCretqxu4elLd2FRH1jkyG1g2W4/3s22E9HY93doYxzK0fH+u6Lq8vV87rdLKBhmQIkijQVZUlC7P20WYznxEHoQMBZgomtXEFKm1sqbao1tvUZsgIzRPwqRz76zVzrbmM6QR4Wk8IcEuWs5DIsmvEsHo8/PKbX6Jjn/ru8U2wqStipFuBb9tL3L978/DtN2/GvPz4848/f/5Uj+uc+B/+0787Hh7a7lvbCeYv/9mHX/36u0/Pn5/Pr1++6mlZt0Aw9ZhtttfLy7dreetxfr1eX3o9HtiYJAdRXsLdxtA597kNDl1IKtTreE1iS70z35h8jHZ3d2c+29we3j8YhSMNgOswTFW7z/ay1oVT3bofDm+31lNdL61T1sOxPD99WXJu2zl0Z5gUQ4iFWA3N3MK3bU85lnpIdNiuM+XFiZHJffbWGY2MFq/X635EPjweH++POZEEosHh7uShjvPdu18H+uGwaI7//r//715eX91BJD9/eV3X+6Y9wi7b9ekf/8s+Xr55+8/f3N/pKMtxAUQ0R8Te93BLCNH3d3enmPr7P/7xy8ef7w5v3MkwVAcAqcLHjx8Z3333zcltrKswpdav94caxLXWiHXbz2rR9subu8cxhppGOGBEzLARYkgWgcOvGlby8evrl9YGTCFK4blfXtfMbX8dc18PGViAJEzzsj6UEzN+881fXK+fTnfrHFcRMUjuwbCyVItsMR2UxQiGR4BzKTnMh9qwYeFpwZLI3XVE75YSzemc1rzmuffA27OXl1xAhyEwJ7ytycIMjEtKKfXZkMPVbWxrOj4cl5zztjUUJJtJkpkWxiw8xjilBJMUFgHWOQIGMaZSYknYfbolYAY+5LXUZGaSc60r7JciycwcYV0OmLgNVdVjPWxbIxLJC4QBcSBP09PxjpmXw2Fr/QaOYHJCO9SibpizMxoFkVvMZuMg2dAdcMxZUgpzonRbZo8x1nU1n33bA40l2XADkETWGzFykmlmAIEwtWJASrzUysyja7e5HtZuLSwUwqcBQATe/s5U5ZDrHKMYV0n76yYVEuMEGZuWpVZeDCYGuAG6krD6HD4CICIMfa0li3AqYzRg1D7NYikr2Jh9SM7m4DFBCAjUDAM4fNoOBIH+cn7mlEpdSqJQ2LYNEUVyTmXfBlEkyRYaGLelcq01SQilMBPiafsNwGKqmECAIXg6gBA4UlDCBIExQyDnJUeE6rBQR80Hsak+9r73gnezO4uHA0p4n1BQAHE57JcdAJiSGxJI5UQRkWyCcs23N3NZ1jkNiFLi635Ji/TZpKThM5BMXMdEMOHERVzANdw9IogFER1hOFCQ5AQAhrE4B9K1jzDHAARAYjPr2yCCvW1EuF2e9+sFhQScXK/bdnd6Qx7DOwMjBaCPYU1fms56WtNqyAjghgPhmpPnJDqVzBk9U5o6LGDOiYwRxiKM6N0gQlYJMMvBY1cRmpLOPjTiJBJM7AFqu9oMvyuH0n3u1zmGHO6f2tWmHyndlcLeZzunxEQ0tGPwQ01qV+ub55Ju8AlEyKJE0XZqHY0x+4ETE7lrxrRfGwZxXU61BnW1CxBYkGHtc5/joqrruoSYM6iNDIkJGJcxlCkth2PTNrTV9QDEiWXfLsR43TcillJtGgK4KQEQpN66ZZpq68PDdtnrkq77VdGmqZndWvNhMs6viZIPs+01E5tGC1fwyDLDwEbJ2R2mNpI0wZRAEpmrukqi6/l8ur97+vI6QXTGbIoCY0z3npjnsBRPn6Mtx5LX5e9+++PxeDxfvag9v9jl5YUN7k8P4HF9tfYKX//w2UPW5ZT4eH55vVsyuJpiTXemmMPuuW9yTZRm6HCTlHvzVHn417SMDT+pzNf2mcVqyS5Xpxi9h4ZNRycRuV6v3ba8AEdYm4IrJOIiYHnfXiGPQBv6lFIK8DDKntrzi4C2dmGJssxunw/3vu9P2zZFci33PjEXQglVxLK8ub9/8+nz1/MLgwN6SZgyJYlM23d/+eabD3mHyze/PP700+eHt4865rg+r3k57y0tj1KX//gf/jEFL4f8ix9+lXP+9//+36s6Ug90SvLzj5eSKYY8z98XePPDDz88P38Ul3wX2sexFHLh0LTe9T5VsviCVsB49CEJVKdDpJQTlW4+TBIi+Bi9F6qXr5dc+LI3Df/6/PXXv/5hOa772MFgMgAax+RQtY4RhK6uJSEgYOt//csfnp5eHj8cVYeHHdL94bAc1u+ZKaW0HHMqdN0uy+EOQ8fWjod7jw9Au+s2gyXubuhE1QYsBLfEUhCGewglwgSECDSsAWjortY0CFgopWkDEQANHLJInwrhAO5miTmlxO4D3AWA2diliBJ0iEQaC4GUXtz2/VCW1RembK6jTyQSRDAKRVoKJYIxT3eH2ZukEwBEGLNIdS5VJPXeU1kAgEgAAMw5rwCwpMWRVG2tOQrfqrQpoQjOmCBYkphGdiakiBhzEBGSkIeIhJogOuENEOTuNhwhccBwrLkWKWFuZgOmzc7MxyLTlFQhLDNRYKIEOYjIwQwhgNhkQSGm7how1cYMXJZ6m/1N9a0pSg+AZla4MMpUdVcRSiAxuoyGCNceREnV0RgIKGhuA5jM4CaLdHR0AwgK1PBAD3BI8jp20W4AYEBBiaW3bVmW6dFfu9y4ILfpPQsEAdAYg1Q5aOGlXaPr6yBdT5mwiBAxThvqzXUKsggJkRCahQAjxOX5pUpCCOHFAK4ReH/6vF9PhzsbXYokXuYcTND7XlKKOTBc5vRueZWofN50GwZGS1nTwsMDJaV1mdfGnCYZH5ZtoI99gh6PDzbMhxISgHv41pVYudAYsy6nDrr5pjEAYovtYGLaqamERgSYoRyIwMAYgTAMpkcIceY0wQOYnYLtam16L4NmAgI6soh5CmpugcBJhiqm+v7dt2CCUNaFdt8v23XgAOKn86fD4TD2HYOlZHe1YPORCwnC+bq1qTkLIiJ6oHdvpheECUSG2UCQvQj23m+0QVPDMAQQnSPMS6WIYJRAvFuOI2y8XtO6MEtvkxHW06ldrqAgSXJhiyg1SWHsSoleXxuEB2khFOYi2U3R98TGxXq3iExSeRorBqAmhAgMmHMqhJkZGWVhTjFmgC2Hsum8XPe8roTVHS0fHMdACYRwB0AGSiTToet8c3c4Ho/X6+st7WgWyCTIjDKGppKGNRTWOXUMQnEIktRaS5zmgLbb+uaxXeZQO299a/uXT5+XXL55/2Hs8Lyfj8vx/NxsTgA/vDlxyYaAyOrABO6qGCixuaHQ8I6QzG0ty9/903/59NPT3elNb1ugq1vXmVLKqfa9l7LOfrG2BeO1jzbjvtz3Oa8jZK1rTtba1r/mlO7uv2Pgx+P75+sWAa1vy5oBfXQvpWprh1TQZNso6HBp03w/HGpKZGiX6zkMH4/vpJ/S6If1TtmH2ty3VJfEmWwey/r5p59t+Onu8Pr6+lCzTwOFGeoOHkPnwLCUknAA9VL55fV5XY/7PgmhSE55WZZa+XDIp2/e/XB9vm6luwilnICrAYdV4X3fiej+/jGQmhqbCaG2vXc1tH3/Imt9/Pbx6+v53LrjmRxtQqo1r4fnr1eDloC2Ma9X/vWv/+p8vvRuEJRr9gidES6mUcvS+xnQT3eL4QIh61Ia9xLiCjb99fx6OJ4g4uH+zU/yxSwCwWyyBKF5bKQccwjxHONv//bvzOLN4/vf//7Ht2/enc9nIio5/eFPP//6h1/c360p8z631qb5RAqmDADiyK5hchRuo//i3eFhxTdv3iADAByWI1IwmrsC47TGKacFcm0Enhjcr4l5zMlIAEjgNjoiR4C7BTghCvNxPbV9RrDOOYc6uAcgMSGXshDGcO9DA0VEMCRUIbzcmioICg4QEaCJOKXpquHIpG5MshwPGWhr+1prFrm08Xq93B3uIThxNrgeTncAZOEHvMs5M3NrrdYqqYgQE9z04gDgQmYWhICeU40/c6OCJYtIuM8xELH3rj5rliCTRCIULoY+hyHi6XT6/PHz3cN9KcveZ0QQUdtHXTJLjdFvM1ohCQAiokQ+ZrjM4e4eAQgCgBC0rsvl8uq3YSlnIUZAuE1ZgdyAOYksiAyAFLPrlsuC5KoDxFNBoNn665oKABAEot9AlElk3sKYACIZkC1mqrnPETF7B0lERO4+tKdamNnUwfzW6sxLDuQ2dgwPhMu+iSQRMYiwYer7vo8xODzQX59ej/enPkc7X4Rzznnf+9h2Cd54OmCwUOHLtdl8lcQEkQs9PJ5ULWyM6ZCOeSFG2LeeRUopPoe6r3VxnXO45AQzWmsPp4fz+Tz8+c3bh9fXV425pORA4TZw7mGZqI3ujA6QUm6gnHgbQ0puOgNhWKdEre0emsti6jZ6GEQYMA5GM/eMQYQBpa6m2GycTo/PL18k+O3pceybIEtIBEXAksVK7b1rH3GL9IYjEUvWzh4IQAiBSMwIiDHNHUUEHF1HOqYAHqZIuO97n4NyOe8jOP3pjz/evb/P6+FGCSRJCgzMmCkE1G3OHQDmnMthPaR06R0GsUhKyRESMyRElAic6hiuBkQoqZqZGoxhtWQAkDAncERkQFczDdNwN+EKwX2YUCJX6F0IJ0zhE0LM2Y01cXJtHpyXQlQgdhAla3OqqkcY+ARTI5nA2YGdcMYI88wFKADUjJlRZHcjQDB7WI/7dZvNmNZUM6VlzJjqWFdgcQgicldAUmAJnuZIHELTLOeMCNvlcv/4uO/7ejhJSdPm0HbezsthpSRCiYTnNGbOuSbObR+1nF7P56/Pz5++vPz2d38yBTMDj48f27v17dNzW4r3fXMb6yktj3l0K4ekfnuMTDd1BMTY0SO8cEIz5mj7tpT8enkBTAEIyBAonOYMcBQ6tuuU4tMnV/70+atJvLQXSnl0rZLOrS/EDkM1Quf2evbRw70kGjENwkYAIYDv7RL2cDren7cxQQ7H/Ho573o5txegvBwP7dzFyj3ff+xf+q7TLC1sI7avX465Zpb9fHlz/1CzvE+/XPjuLr/RGETxeHp8enrKS2Hm7775ABNrqr94/93L5eWbd29F5Lr+uVuaQDLy85/OfbHxavsuQWwA+zCAIDecE2r6249/ewMaN9MAAoCcKGxGTDA/rYdL62+kbq2TcBD3zobx8WUrstpITCBJOmAfr1+ffjrcHR3G8XS6XF6JkwawZJYyVbSXU/1F3+Xv//GP+bja5eX162uFRM6J0tZHLuWv/uZvgj3QJSdwcQ2LKUxTO4aA43YdQ/UyKIiuz0Pe/vI8B66PZjrCvj6dv3m7Vw4sCfrFewsEyOKRXIOd0Us4pJymDOResjI1BDQInaDaj4eSEgZAH23fOic6v35OTBKS5NRHy4lc1eYsR9y3EWEi5CQIgH92/RoYQKi5uVsqmUD6bACCEACTE8zhGY7DovtA01v9D9yQIhzUMNCBCnPKxJUksYArM2uoTn//5sM+Ntf5wy9+GK2HU1lWVV3ziVg8gAKnGUsAhxyqBZsI8+1OZeGBFEEYgczs7mMMs8g5p1Qy8eVyqTXXdWlt88Cl1NaaixGiaQRASskZxt7avi/LAh7myoBqTllIWAEbhCGaGwYxJQR3hAhMUhBhmrm7IIjwjfTkfaJjKSkiiMTd7c9EYmAUIANkRzI1CzDwdT2a3dbtQAHhlojK4eDu5obgCO4xzV2gzDkhQggBeBrMANAZhAaAhAbgOIHB2dT7NFRVAiaiMFP1rV0v25lyCgIAGLsCgFDKLOE+thE6jUiAAlFVVWdKHOF97OAonDNJhGu4+rAN9q1TjrXmCKM9RGjqWJayLOvry5UpRyARB6K61aXedrHmIJwur9fDeiTh56fXlBKm+Pzly+nuILU01dfra64pJbGKm+nWeylFOKeSR5v7nBnFxhRGplhK3XpzoBtWve9bWaimClkubQ8zIEAACBimbGjq+zYjUHh5fbqM2WotueSU6xhjjKl2Y1dQzUe8HaaAbUR3KDe0kwEhhbsiESYnEs46TSQth/T0/MxVHL33Plr/5v2HMfRPP3+Uuty9+9B0nwDOGUAKlTGnOqAbTB1jJIBaCkcsiY75lIFmm+3aZy6hFDoCQxIAiAV4uAd5RESoGiIGUAC31uSGbjELRCaHTDIniNQJzpxmG4XolJfX7SUvBWrtZsTImcMnQ+TkOi6p1k1V+yjmmRAscqooPie2PrEknWZ6WbkqRpsTEibmMYYjCnNKKcZwRCL5Mi+5FHNIueiI83ZBxLUuZiq3FhcBABvhRApHStBaW5a3iOjuAFFKYcR1Wd39+vo6wlLiui5AaAjBiIER0XtPLGbTVCFQJz992v/uf/nd3oA5C9cw61z+8cvvAezra1sKRPSV7nIBVAtLUy3nmiUHiJnt6urOlNyhpmR9JMa9XTVMFh77Le9NBIKhOj0VvKVIHt88Ei7hfDo+3u5hgLaWuwls3Zf84KMh8vEg7q/u8/n1KdWCJO7IAe1yVrumJa7jGYu+vDy5HMqhqo1gIZvAw+mlHsvjm7j7OR7eJC0FvBhFqqcq5VjL8wt9+P7D1gboz//i1x/2MdNxjRHe7eHwdqr5nJ9//PLxTz+7TxakWHtTJQq4DA03zFyvTm045U3dkNWnG8TtvK9zjzCLkhI73CIxnPNqPtUGMQlXCZxuvffter073n/6+Nlp9E7r8dBnM9wlMQwLQhHhfLRAFEamNjrlwlQQIsn6uj0xUKFxfvrycLi/PKXPvz2XEPLHyDK2a8kGAj/++Mfjt/cPj+/qwhYjnFgSmSOAT1sOuO3P5+3Lejru85yW4z5eweeRsyD22bqN+4VTlYc39+im2zMDIhNxNmKHcEcK3ualxcREl7ZloS2MA3MSERIurbVSEyIsKedaHD15AvAkmbCwmPkmRMshz7EBOBIBoetwDY6CUApHg2FgIkBCLKRTdQZEuLuGJ+HeRjc3iKCZIiLCDUw7MwFzSonyQnkFSQiQUkksBF5K2fets0mqx5TBDQHWQzGzvQ8pXKiqGzgAEoADAzAQSJihsCM6cQRYTCJQnUQkKWEQESEGOqrrpB4ZOmhYlDW72g0PZOpAKQIxOAxzYpLEgcDs7mCeSgW3fXRJKQAu+2vOOROBOZEyRyBMG21vy7JI4TC/fViCBwDNAWFuTQMBGFTd1CMRgklOAWqmE80DwhEZep9ElFKBMIAYcyIicArYichs3tIDZg7Oal0kISfvZgaEWRVyTfu2sUTve4CLUJ8DggAYERPJmOruQ/dpypT6UGAQEQsHg2AFoEKCoCRl2y9705yz9sG3czjCtu82IOc1InpvmN3B3cJDAdK1Dx0TXMM5zB8exGasZX35+vL27futtbJUdTeLCFMbWcq+b8K5pLpt27os7rpr9GEnXswcOFMJjSh5Zd0C4FgzIxJwXGdGpOCYdliqxxijn/fOORELCvHwDCTEr6/Px7tTuFq3YQq6CwEjtdkRE2hcn59Tycw8dC75wKV25C1gIgqlIhcIy0RzNgaQLJ6Ek4w9DCiAgouazwhGYeTrVPAg3cdsUuRyfUYMM1tSWpIwAjM7xMvL08P7+3bZHAIMIodNIwTQW08uiASBBT3UkOBYSwu2NkjKcDOIgJjTECQwEQcDq6raYGEiYuZbpE7MDBh8KgYupYQzTGMScL2+Xu9qZbe5bwnJNeZsIy0xNVcRQp/tWFJv2vcLlpVydQvElQSR+bq/mmNwxc4+LEK1MHMYOKFc3AAx1VUj3GA6YoSIndUObD48Awb6YRFCJ99TaNMBge7AknUGoYBPh3i8P759uA+zJDxGj4BAnqMFC2c5puIQbjDGJCFEVNWbvhfBCEmSj32s+fjP//JXvbUkh+tlyzkfjisRNDw9Pqyml7tjGnuzCYe07lMI85gbgo/RYiglAYVCxRUkVYm07xdVHXN+892HPjqK+BzmcDyeLtb2fT8cHtve2vmlLjj389hf+/Z0OCxLXT5/ftrGIJclLe3aEDwXbvOSKh4ySK4B9HJtD/cfwnTs85c/fP+L79+T7P/ibz483C+vL205rCB83bcTHZziF9/96vHAl9kp53cPHz6en2kiKi5piYFXnX2mHz+d//4PHw/s170v693lfHEj5hTeSNjnNDMRUhsidCP+uM/jehy6g4MRuQMnMpjMiLmAxexdJzGYOxKly6VZaF2PgIxOtwiGgVkYqCJhqErgMa3crD+f7z98wHUO/WqmORXhSplS0tb7Ze8OajgPD+v1uguL2XAAsNfDgmERo892iTnGZUvBwgcEB2BOMmD2seNy//USLM8Bs/fOVJDIwePmk7G8CHn3u3fr9+/eX65XZgvYC7sbPN7nvvf7t6vR/O3Pv/vm/dtdYEaEK84AgDAwJEDgpEN7Wlb1VOopJDPF8bCOrWXhu+O9TWXEUkqfM9wWvkOEMcY0p0wlFTfvbeSciUhjAHouZMg+kKKm4rSDqgFDuO9j781dg6WqtTGUCgZMQPPQadve/HYDxoiEwClTqpRSAHHOhGjISLekjUwRSRUSZ2Jw09YJyN1KuTFwtC51mqvqWioTI6C7qk5GiUBzd3QDZ/jz7AeJ3D0Ci4i7m1lwTJslZXLsOhlwWSoA0ER3wJtaCtQsACDcb5jbGxEwldz2GRHI5O5CnBDUhqu6GwqCuxQAVjMLdwQi4gh0D8K01mKhEYEsOgfnAsw2lB1MY4KzECcBcABInlS16aDwdT3mpZjF7AokyIgR5kpkSBAwKYNHEDMm8TAKNDfvpm1SnQzTzOb0OYdwFWYiVo0IRGRETJyTVJgNKKZbkYKJMcDMhhtZMMGSC0BCRHNNkuachAzTlrRQhJlCdIpwbYDMaDWVvje2EOL2uoHFy4gv88tf/tW3GPD6+sopvZxfT2/umk/OFCYKcLg7kUuoUQDolEQHyqdary+vwjlQFlrUp+0qKA4UHuhQUlYbjgEKmcXGDJ8ZEFOeqjpbRICL9+lVx+w2F+tdx7xfD0ZKRJlls4YQnDDXpfXu4Mf1sF+uxBw61QMkTaQVFgpbMCVO7t6bBmA4j7E7EkXRsDb6RCRSMQIKYWxt630/cOl9LzktKdVc396fwPqPf/jN3/zVX1xfvn7++nk5pGkaZuIOgIasqgwkuITH2E1IVFCnCRIJrqdjnyPmkISSZB+qs4sgBRHfFtWYRW7dga5zXavcTmjByA6lFG1qaDgnWCdVHXO4omk+FFOr5QhE520AQa1ko5tZljItLLCWkzV3K4h576M1Wu8eOcnsc0keGM2u7gEeMEKJEmdkgakEWDkjBDNDTehYVxaCfbtWTh6jtY0XDJ7hKCgJKRFyTFMfCXzaWqRkGq0T0Xo4AEApZZ+KiEMnBN3Eapmr6TCDcMtEgOo+wDVlFOqnBP/23/xwf//YZ0sZWr9s25mOSxZse7i3vMD2rNv2IlgxcOWScgm1KImS+FQGnACooWrC5XB6+OP/5z+ipLqerpdnZiaM19dLElpWv1z/KCLffiuUN+TntY4fvrvbzhvs9svH+4RkZh8+3D99fX779u3xcdn3/e2HH67zySzMITCfjvX9+7cPx/Xrl5+//PjFuG+zj85gvD2P5Xjwzk8XNIB+ta3qD28f9+3yu3/6HSY6MNuMl/MZKctS9oFEvO20e0E+wCxOyza3LOA0bbZEHBghCgLBAGEaqmivtg5XBC/mbr1mRh3ubsZI4hCONHwK2VpKDydMEeFgzMlUiYiBDRyQHYGIn59fCqU1Ld88vk+UkCKaC1fxElM8gCvf3dW4jtfrl+VRhu9Td2YEBFeNoFIKQTbLZgzooWdw7/MJkcwLQmptcKk5l9HkkH/x/hE/ff5CREwmOWnrKfH7u+9Ux/1yWGj5q1/88Hr+ioLCeZIiEjGzPEzdny6fH+/vLqNdkwEBGVAYhzO4ALJgICYid1u5ePcxpqPD0JxzU7ddxxiJ0scvX0RIdep4RYwIXJc7GvH+3el4XLfzJcKAblhVy0RIN8qeKw9OpKZjdJJMkgM9As38xrpyc0L3uBIhqis4oUwPJoIgVyBQcCbvSz0GgCPmJK42t4HATrBdR0kMHmQSSAyAABGQObtGqCFAmN8YtkwEyEQMhIjgDrecFqEw5oAINfeIFIgkhCrAxugI4RQhwoEIALdAGQA4grlHBAaMqSlXcEg59b6hcK3VEdocJa9gaO4QghgWRobmkUsNh9n1NpciTk6OAENnYYpAuIW2IIQoCElWZBYkNw3AAGIUDwWgnLOk7G6I3voVgIDBncnBgwIEEVnACbJkNWytkWcBClMIvZx3IZr7BgBwI6dMxIgAmFOdoEjScCJ0x7E3pGBkC9MxKUxKRkQ3BfcIZkDmrDFdnZGFZNs2YU4IbbsAQGWyMFQnYQaLdsXRK6cqy2wTCUV17Ntvf/vb491DKnM5HE4Pd601yrzt+/FwyJhmM+vj/nBcap66W3ciNHdSO9ZF9XY+kH3fZqFc8ugW7o7gQnNOzum5nTn8UMvLyyUMBOXtw327blvMdV0lJ2IO8LvlMGJfOH38vJWlfnn9ikTP59dt9KeX529/8d0P3/+KEGEaqUtOSAiYuk4bog44wToC0DSZGNhiREKSIDG1rY+05gh3+199eu7Hu9O2vaaSibi1vqTa9/bpp5+WnLZE65Lheeo0YQF0tMEQ6OARrkTIQTxsIKdhZDZrZmSkwiW2Hq8+EalU5IkqoAS5j8EBTOyjc0rqxkRMJJIZGTXMLVQ7UuREAX6XcmeJCMlp622YSi46gzFVLrdWXc7VhyIhi8zpEIFBc5qTdzWQkvLStt1n5FyMFA0EI6VEjsYJgmxrPhWQhJgJUTUHzQBIiIQCGGrARHlx9AAOD8BMJhAhDuwRoMeaayIfXRKbx97nMa+39eyfv9DhRo3WSYCFJMAIATA8jDA4JR3u7rXWNvbL9WVZ0jY2ZEjjFgZe9j7NuekYQ4+lEKGI+FQNN3QKRKIU5GDCeVqUw920+Od//S+/fH3axzzev0kIoSrkIoQEp8eHslSxPtVrWY8HjHm9e3hsl52Caob7b04Pb0539+Xnj5/+4//0M8tCWJ5fW81FhJni6ekz4Dwtf/nx55fz095oDMQxeU0HDn9+/ZhzTQTk6LM3m9v+vM+X8J0CgEX7oJyHdWIBgX3fmdPkkViurdVaiVwSI6bRJrIlkQiLsOlqpgAuImyzChv4jBEJdnIXcodEVQ0RKElx7WOcO7mkmnPee4vAhOBA4ECILLlrQ0SRVFNRhczVFIkRqa5SzSBUPJAAtr2vi+z7fHA+HR5Py8OnH5+LHJlYcmIrjGahka3ecbnLv/qLHz7++HQ43p+3K5LknIEiF3brv/r141L0L//Zw7ffZ49uvgu6ay6Siy/TpRS59p899ft3CQBMlTBqTRZOjBVq7zjBL9umGAwERBgA7hGKERRJLdgR1CqWy+sIShfrX7xnztfrNec8hx3uTr13Cw2Yh3URhN7nx7/7HTF8/+39//7f/sul3r2cn4hE5Oio5q5zEGFOsYenlcXxMnuRnES4uZPbMGRclwXAQWcf51LrUuphrYC8751Iwhyc0JmcEhBbCHgwFgAkmTY55RkRLLdzc0klEXpMtSaUOKd9vyJAkTTdmIiIwIACKcDMAZGCANHVmdmnAwCB3PKiZmYOKSqSoOrN/00BfTR3Z7qZ7Ul1ajiEl5RKXn10ACaSsi5jTmYCh1CjZZ1zgHvOGRPDECQA1cumNRWmLIBuMMyDgoiSFDXXOQBAchIRFLQINyUCQCAiDXAHRAijGZqILWJvOxEAes4MALppaCCSMAGicBo+PYCJzmPDoVUSoyGq2rVIickR/+v3J2dOgYzogqg6hykRMSOCYwQ6CMScY2oIIzIhQS1JDHSMNiczJ5aIIBQKvm3fQKerMfF0ZgcCcoh0K4pCTG0BhshttqkN4f7z58/Lcnh+fn6vmte8b6+ceAIhWaaK4O26Idl6SAAK6G5YUr5uZ6RsQRRQ10VZDaK7ImEH5yqBsc/BVcDjqorLAdSZZZs2p8GaLn3fn7+ez+dPRH1v7XItkn/3hz8AwND5cjnfPzy8Xs7ffPPNupwCoJRCt8//fbbWOWUiuYwRU7cImHZYChITxL41qnWqC7nNCWq3EyRG9GtXHUQwhx0O96qjt24z2oT3hxMLPv3m92/fvjGbREREY/QSSW2gQyAwIiFZEAiz1G7ahkY4sjEhhR/v7yB5a60PRMhAgJIYMowh8udlvztQMDKOPsVdgdnBmHDbXwuyGwxTd8hlQUrDBpY00IGIiKX7sZ4mjPPly+OaRGjr0xMzorbOlCwMkJBCSK7XPYWRpCCOsEKZKcDVNQSZAlStchJihBAEAJ7T05KbTgQCoDFNUsUiNDFw9tkF8lAQCkcARPI22vW41sR82a7lcLh/82YGqbo7+JyYEDwwgNH7UAQmxCXlMfepnYhKKdveb9G463Y93N3legBiEXbXNNDMKNdg38NQrk6XXfeaD8SgTZXDCOfcE0gKJpLpk1O97uO6bXU5zvnVB6zr3RwNHdalho3X8+XuPt3fvfv6+fe/+e0f6sfn7ToFcsZUUHprX8eu6iyynMo//Oaf3n/4xdPzK2EZraKl5jumbrD76YAgfac+80zLkDxyUu0VR11WDJpxycx92w4PuZTRxleSnkTO4xkTIYcOm21Qygwh4JQWVzuWw/V6ZgCaED4qOrHP0W70UPdIRIgcHn0+c0oW2lRZ8lQUrkhk7CxVJkIHRlrXFdmaDd/M3EjQfSbMEdimMhCJTFXT4cPNkVM9X/YFYM6omcboFsBclmVR1WHzdCgPD8da8w+//EXJWVBcJwAw5pohIurx/Zt3b4z7r//qlx/evU9p6WOUtXTd60JznvdzP+Sv5kdOUWXu7VJTcHjGBAbmz4I8uWNGUCSpzHlc9kS3/126Xs85y7KU3g0Cllhuw9UgCkAH9Qgy8qC574VL5rJP7e7nPhVjZWK+Ry7T9suWAhnINMx2267npy9fBfOxyv/8v/xntPl/+N/918xpTHWgXBYmQwEAs7iou4NNmI7hYHNOM1uWlSOPubtjYoGyWNsQgoJLFpYcgSXV2aeqUyBqRII2G2QRCbOJjgDAiGBI6RaKzqGh4EiIQUSifYhkdzUzIQIDCDANALgV+ZglIISTuruqRpSUFZQC+lRmTolUMUZkTolRrTEScigBJzKdXRWJ8rL03rcxM8JdWQDxer2mWm6/SN1SZidDRiACxq7z0veaCjjmtCCwG1CAMCODoyL/2TmTa7lFqe22KgUCHBqKgEDIwAAEAWDAiQHAAoEYb7qw5tOUkcw8pcQphwZJsm5z3MpIOYnEbGpNtXF2zqYzizAyucHQjdyIIhAkzMNT4jEGEhFBmDInNT8eVrCY4X3fCbCUZaoiYCklIszgdpJbDuvLy0tCyoQQPnsA1XDQbua47R0dJEHXSRAEMXzQQtu+t61HhFnUXB7pIQslFBxmMcvdnQmJYPgYY5va0rKMqYEJJRGlQN50MgfNYa4iySFeL6+SKKc6bepoh2X99PX585fnu/vHtvXnjx+tt+4KED513y4R0baeUs6lbFtjToakXM595vX0X/3r/3q7XD+9vjx+ePf64885pSQZ3G265MAEhCSAQKjho3fJeVmKJ9c+Ahx8Bkwdo+89pjIthAgRW9/2HVU13L/78M3dw2Na7n788fdvP7y/PJ33fZecho8IQOFQu7HHkCQA1M3MORdzBCII7OZizuEv3ctxKWXZv+qNxD5nUFCWHBE6x+FwGDqHTiIxRzmPazJJSI4owl3VXInprh6McXIYcvNATIECIm1s2BXAj+kAESPADWg6pIBMIRo4GWZmD1Qp3BSCwNBRgU0oYoSe9XIvctN4lbKM3h1McwIKQ5XACL/Ofrg7vlxe0pyFaE4nIqcYMYskZ57gZnG/1vvTAUnbGKlUkPJybce7UxvOkjFUZ0uZEMM9EhLGza55GyWIRei0IPRYAqeUUJ0MiN2LAQbhoaL11+vT7SJdOaLwnIZ7twDOAuGChKGArggUAgEYRCjL+vg//rv/IeWFM8xNdZiAPD91Co/IH//w/OHND7ul33/6+viGhDKEg/bAaaFc4Hm7vKPvjAqwNJ1U2NRT6sTeba9J9usYY+Sadr00n5IOY99qOSQEVEvkAcP8uBzKi22eMyz1dfTnrsdyUoIZ3rUHQ0qJdBcAD0+0brFPkCSaARIQF2y6o2YJylSY0hgaHiLi4ZCbo0Xg4XicpjqMeV4uFwCoB3LsmRhoeX3tD493/Xq9jnF3uNufz4kzygQmCk+QC7NjWOA33/8S75bq9+/3b46HcmCwqSmlEDK0w2ENCzK8f1jvHh/63L795vj+3TKnYbCqFkYiKkm2rfm0Pl4L01rmZTxLTW1Gm4pyFFrLUrZ91jxc4e74Tlum4aZdOTITuUyMMZ2Ikkl2iTkeuBrhHLu73qXqptrbWtfeJ/pYy6IOvfdwlFuWY7rBRZbcbI4U806fPr96FB18aV0KBVwc3cfLGON6vTDzNvcwT8R3a3rdz23smNzkXGWZegHyS29ZPIurXQ3UgznxsqbuFbAAcF64JvZ9MPmSand1rJDf7X0QGWddS0WOmFcRnAzXNks9KHoSQvmzrrWmGoTDp5LYaMzkOCQTGpqBY0JI7ZbrkhRhwwwZmQgIzGaVhG42ukh2NfdIwQCAjkTiSADTzM2Coi0izIweVUTDdTgJ24ipgFyDeTgGZ2Z0h90mApeyhAcGCVICn30mFxDuHBefASZCLB6mEDdfmbhGSkzC+zC/4UkBCIiZ+5wOwcxOTiiMAGzoGBGEGGAuHkyXraVUci7qpgaELJz38bqUlVAAEwrPGebJg9EdTQmn+lCfhoEB171N50SLRL5uk9IJGLZxYcGJTAiF3aOZcSAFhOlk8wANhJtIIKXkbreqMYroVGRGZAwgj/S/dm2YktsMHgDz3HeDAFMSul6vzLe4NRAyByu5LCkiONz269/9j7/75a+/f3i4x7oa9KfLV/d8//gwXD3w0uYJDyPitFQbNJozceUC7oZVBMxsrXXhtLU2xyilxO6q8Jt//N1v/uG3x/WUcuE177PH6Penu5fzmYjXdY3UHGgydT/EHGO7Ptwdj+vy3/43//bx/v7/8T//Tx++eRzfvFkWcBhShMJScsTxvL1wwDFXBF1yjeaX7dnC+a6OuVfhIL87rdt2RTVBSogAAQBE7AA5l2Da57x+fb0MjeBv33//6eWffjr3uhQEhmQg6761LAXAd90izwbdo4qaqadUUs42uyGHMJJed5e60D23r6+Zsk4nmR6TEFBsH2cqqc2duCi6HHMlQCEkQHcFdPV5OpzUrA/bzWnJtdTRbTbNuVCuAOqhJMHCw4NyEAXqJaK2TmrIGQNheuDwEArG8+VaykJCNbPNyBjmQIRG3n2MmCQ8fACg13xVRWSiZIEMbHbL/ythEkACvs2V9zkQ0V1P9/dtKHFlrmq4rFXNEEMSBSXvA4CIUIcty5q5jNbH6CICmLbepqrkOsZ2Q6ggkqtjAKK7z+uXc84ytt0dUjmMawOnQ1302iycjacasCHRbaQfjq5O5CXx737zu9mvnOhy2aQuJefnp8/3h3Utue/7L3/5PdLcrueH0x0iEgExh8FQl7X0/SqAzv5yfl7W5DqE6lLzgO4xaq1j7wzpdDoQm9p1PcmAl1oh55BIMNTcpMiyxHX/ejqsYbif27vHD9vVzAOIGOSY6nRLKQEZmkmgxnZ3yhFGGX14Srm3GVFnBHN1EJ1OSBHeWt/3/fhY2745Qt+vOdVM5HOc1sXMEqbpvOaT8HI4hEf/5odfEY3TehhtHMuBiFhyWctluy4rpbRAcFmXw9Hv1uPb+7/SYbW6mUlKu45pQ4gKCk8gYr2eW9tTSogMYwDymuvsQyTaNmxYqtXd+xgIcSz35k4COaO5X68XRCpLYVBQ3dvmrkxcyoJhfgtYExYKAEAwBnQSInaEJEUtPNQBOQkAqVqu2dmQMAWDAbirW7gzMgUMV2ShzM9te3k6Mx9QR54wx74kYcal5HKqQ8fd3f1hSW/f3L++fHpzfPf24S8+vD210do4H053AG7nyUQQWpjAYFI2deHKOK7bRTAveQFQqIyTRgwu2c15TuQ8++jNdpwIwowabmolr9OQRdQ9YWYiDHEQFu463QYiEkNEmN36diCSzSwxA4SHI6CkDABuBgg5ZzdXtZs6KSJSZrMJQAbqAMzEIH8mFsnBAKYZBWKAIxmVMY0zcyVAntrBXAAzZyQebRABCAbCjPAAJAJJERY3BjMhgCgqeEQEIA1zRwsAs05B6pMSkyQPN4cAAskY4UAWFjgxiQOoqnCOMEbMObVtPy2rO4BaFiRht9A57u/vhXMEmkVvfbpPUwfIhR28jW6muS5ho7UWQJTL3jWDAoO7MmLmBGFsZnOohKuKZGQBSBEBQNvemFkkC2V09ABADEqv15FzFhEWNfTzvmkA6kAkQ9jMANCAGJgBsDAAuHjOmRFtesY0++DCjoBhzPT15QvneD1/2fanX/76ry2UU4qw19dnQz0e6+mQC3FdFgbJkgpKG9PVhNHBINytt72LyJJh39sYIyPqwLf3919PdzpxTrs8PWPFtRzadOKCiF3BkJCImHPyvKxWmTH+5l/99V/881//w9/95/P2ZD+2/+p/89fruu59fzo/tV0lLTlnDFO1PZwsxhgAYDDUDZTQbQwDgA4dEQDRQsMuOec5eyDM8FIOw/zzy1cp692b9e39m58//fgf/sO/LynXnD5++no85THOyNOip5KFwYkzV5Tk5lOHOpKHDnWCLNQ5untJnkqu98u47hNn4OAWJeVAEiSGVKQODQiUFZmIPFR1ksjhdJrPTwrR+pZLXSRNC1ZfSG7RBWC+AQtx+sxF5yRColFSDO1GiWt2iAggLmOquddMS8oRMMPQIKavaQ1XvDXjwW/WSVUzDyqZU8rEs7d2OQujo09riIBMUtinjT5ECF2XtUguuRxOD2+23TUImQORORn5sBEakgszuppHfP78dUnHWms4hTEnQXAdgSSIbN763twVAHLOXz5+XZZyvrwstfStbdu+llGWo9q0OSGxKyIhMCEDM5n57SHFiffrmVNZqjw8nvq0ZUkN/NJe66nO6E/nZ4G4vn764duHdm3CfDzeXa/7xLA5l1LP+y7JKDNnw7DWz8f1xAg2rbVyf/+wb1cil+SEcTk/m+71eBfhzLhvLzkfUYCRzSYkkhR54adPX9Z1fX5+HmOwZLMZyEziXYEYINyHIo7WTHfA2S7XRAWXx3346e4xwltroKOUAq4Sfn+/lvIIOBCPy2HdejueToFgAWVZVxGW2q7jfn2gRLtutcqaGOxKREI8Rw/0UkrTftJKYuAokDjHtn9sY0+yLLUEYuszOaTESz7s2xauETTmlQDFrIgwBTGoKeEkcDMTSmktXdUDJS+uGi4YloA8XF1FBAgtzMNFBAmWZYE/d5DQzGouDoboEcGcGBADEVCIVA2Acq7DhpkNU2SeAaEegW4GfgtsCQDAGAGY6hESXc9PnOG7Xz4e1sexP394fFiFTqWOtuWlPry5VzSkUaoI6XZd3t0/Xi+XRKhzSuLWrtM91eKqOu24rDZEMDM5uD/ePfp4yrma6bZf0nIaNlQ9Q0gqgeAIQKgTvFBiUZsieR8dAJdlBSkeruoOcHeol9dLyjUIRCDCI8ydVJFIkMSJMW4+PKCAgLA5iUCYgcnNHQGEEWn6RA9ECgr14UC3iDgiopDbrcnLbiMIJSV0D3IDN58IhjEJLAu6m1sACEMCIEBxhInTIBCAGFjDbDpgokQEAPTnV0zElISktTG055KAQ3WEZDNXi8R0Yy56xDTgjJsODafbK1PNRIypSkrE+2gAwJwAHJgEsJTVLIIgwiFxAo5xoyGauxNREJmqWQCyu2FEzsJMYzRhZhEKZhY0hUBkAMZIHMARaG4sgrkSkoXnnB2sj+HmNfEMd51jP/sczKw+mAncAiICOjqAR9y8kzh0RliYgZqZR7eyCAdd+hMRS86IiNZTzh79fOlPX77sY//uh1/tbSyHFcn3ds1pnV1rLjamR0DMnBgY++zmPcJyJvPRt6sQ85xhg1Datt8fKsY8/v9p+rM2R5IsTQ88m4ioKgAzXyIiIyOXqqzK7upm9ZC84swd//4Mhxw+w+lmd7H2ysolNnczA6AqImebC0Th8Tv3C3c3ACpyzve97+Vyvd907ph4OwIRC4uHRygyJEwXtLlX2c6X5X6/v93f/svf/Ld/+Ju/P1+en5+expzP7y/ffvr2fvRWtwhzZw810yJChY+jL8uyXFYzQwRnUjVCGWrCtVYUavf9xVxZKBHGnNNkeCTG04elbfi7f/17ofZ2/XS9vRZ5fvf0XrDPOYWjzyN99WQzDGDER4aFC3EjKSUpA9yXVinY1PpxEOL56aQ2Pr29uj/MmTQz1ZWkMkVmSEZ4ZkJMM0yLnl17XRdZGgIyMliM6w6AItXc3RpLWZcPmd5qcTFIBfDZscfNSatAOKbTo19VcLVD11Jvt7e11cYy1dCTpKiOwixEEZSRAsJIMCcjMTmGe0xgjLQkTgHARIZwF8L6uDPOsSMm4qFTATSzogzVwMRSTCcJuaFOi4h12VpbBbc0D8C0SISM2mqzGdddP3++/eH3vydCRPRIZga6E83j/iNmpEeV/u/+6ouuPTCRt/Bh05CSE+Nx3H588AGYKTNtjL7fDdgAECx0IEv6fP98Oq6vpyL3l09piC7a/bRcbrfb0jbzmObn8/vr7fW26+W01HLalvdhYBrvviq32x+p5LLS55fvpH15upylLKoIWN30i3df9Xvv/UiP02l7ve7rJt/+8F0twA2wxLR+WlYB2UdHFMZaZZ3jTlSr8Hlrp62OefvZb3/76dPL8/P7D++//P67H7nU02llirVVRCd0CD+d1oaMwqrj8+un91+9k2U1ouvtJp610VzKWgaV0NvL5fn9uN3IkAu6jYgJlG+3e1AAoh6NEzBDFJ0qBGRUKFVnL7zUZJrBCtVEWs1AwSRAZimIZgYZkRZJM7WQDN0DibBlAoqs6zavPRIilBklschP9r2hxrVBJiNOdwQQZC7iGWYaYZCBtRLSozaDilw4qWQ6JTE/SElo8xGuQwiIiKTMRzF9oT6UorIzB/3yi/fvnzcGpeV0XghVL41sgIghfur7/Xxpx6fbZbu0wHkbqExNMhIClvVk42BZnMKh3oKQG+hea9XRyZOA08Ndl221YQLZWlVzXhAreTgttWEZY5RNIqD3npkIMUbP4ef3F2pVPRGplCbMQMnskRD4mFkxEQFiAEZ4JohQK9VdLQY9AsOOqp2EsWTXTskFSTWoiAVIZQCYczBzrZKmqkQFMx/UIvQIVxWizHhk2ZhDpEyHYeYRF9qSMIAUzDALEYZHBNcC7mHq4cCMbsIFmPrUGaO2FQshcWQScin8cAAgJ0SEP7pMUAmolDktAakU1SjIiXgcx1LaVEfkOXtCAMTpdCEiT1LtgWTuiFRKwQQP5aCpLgiRAhGMwAR9WqpSocQZPg05wh2SE0OVBaUKYO42E6JwXdbNVRVD3YjB0jXUbC7LYnkspxJhacoNItTdEiEJVDXADJOIwtxjZAYRQSYghil6IkSG0mNMCDh0WsBSTmMaZB13/eG7H7jw5x9+/OqbX04bBB6WllnKNucEjyJxvd/cvSzF05EaC7j77X6r3DLSulYRVebA01ZKM8J7KboBZaaPOxGDiw1zSCKItHVdGgfakQSu449//Pbzp1tCk1r/9O2366l+9c3H07mRoEi53jshQCZTAWQDAimaMI4j0ltpAIjArZ0iEeKncP12qvvemzRMarVauo5dE/a3z/96fz2fz3/7t//1drt+/Pj+2O9EAIBuwEU8NR2BxBMTeQ5fa2utkGfMQWlVkCjHfoBOYamtEWCq64RNFjlTWpZS3VI90jMYAFEOnaVVKkKYyKQeXGpAukdYINNSSivsCBZgphBIsjAt99tt9s6okcpIzKdteT/ycA8pLRl0KjRsW3l7O6pIrXxqlYGwrUikGh7YltUxZiQA1GUNz7TBQHYMYmDmJOAkbk3dIBCBEQgBI+C0LuO4l7b92W/+8rvP30ktXKiudDk/3e/70/b+06cfpJQxjnXdkECntlb2++ujtggAOrtNq8vp06e3f/jH33/+/PoP//BP67KdLqcfP33/8198fTtuCZ0xt2W1qZn5l0RU2/S5VpYsplGaZNgYAwAiIJIJpZS69/n29paZl6fL9TiIcC2MmB4+1KWeuCzny4dx/O5yegIpImXhyglC3N59uF9f3j2dv/7yi7//h//r7e2NodZy0vQxdhJym4F4Oq0R8xHb/fHllYpExHj7rpZlqeuy1DnHuw/PzHB+Wn7zm2+o5H/8699ul80Bny7PiJxAx3GcTqciVBuHzrVxpj+scH/17/98ms05f/WrP0+WcDWzNIWEyi0zbepIrViI/YsvnphCj1dPaAGAEN5JIFIhYz3z0V+Ei4+IqbUsXFeHRKgijMgIXJgIMC0g0KHYVCIIH8wU7phhEFIw0YwxDfgBUgcygEhPZiylMKWZp6eFtObTxzjGOAhYCnFEmEP6w9tNAUwrJOdj4cdInswYboDIlEwYmSyJmchIgJQgkBlgCRgABJlRsLCUR1EVIAAiKIHA0wkZyMe8lWyXTSQT+pXISjn5YWHeEQgZkdNylU1MNhHKwkja040EK6dkDAqsWG0EkSylQqD5Q2Vo6TGnntfzMSckDw1wbNKY2Xwe+x0jhGDOjmZEcos3zHRwKS0h+nEtcp79YIy6rGP01ioAzKlpE5iYOTEjADwcAQGRhQGJYJpDJHEjosgwSyLhgjOGk0spRIvPCBfhggAAyYyI7uZIyUIeCpKQruaRkWCAjJLMnAlqY7pFMopwiEMAQGR4KEO2Iuigx6EJ/ED6pLvOh6eBhNfG7sSVEygzETA8QqMuVURU1X0AABNQkoeRnhqVRC6ldu9LXZhIA4PYLIB5d393OS1ra6X13nVO8KilEMF00+k2Z0QgCBOABjlSKWEa0wUXkKJTuVJpS0SEAxDN4VJKYA5TAECARsJAK9KhzhpUiRrf+oGYROA2hXiMQfSQ3MBDPijS7n7XeNx+AiiBzHl4pDhiJAOE+VIbFdE0gDjUkCgTRGq3AZYE+KiJj37b73K7nhNDSgo3JFSLjAc1cwZG2QoJ23SNzOm1IIJEYAATrKY5LW93/bCdai37OErl01b6fn+934YHy1JKKyiqihHgUXHx4QF0Wp7B8GW/bdtp3o716fLAdj49PfX+rdqR4EAsVIB5TguHy+XCBLODCPXeIyIM3ZKpmFsfw/Q4ndsc3u/XzAQhWVqrUgEacmHhjK8+fvAYJBsXctcxA5iRhAt5EnEFnJAzETWUESFSEISoJFFm38e5Nip1TsvM89NZkMqgkOjWNS2JpTxWnypNxAAyghxmZmMB8kqyH+PUzsykR+/3vW6Vm1iapQGMSBc8lQpCvLRyHIcgRRhlFX53nXcNCzLnRMTvj+/bVgdNlfCxF2rctuvRz2tJhsnonpOQmbPIjJFUSimWwAhFEDHCucFCqolMWCZYVwe3spTg9fnd6e32CmhS69717e2trZdE1hkIIrxAIyKZs6uahV9OEp5h+5yztcVCAUn188vLP/3+X79///7jul4+v/5weZKAl9ZGPS2PffB2ObV6GuZAJTTu9ytzYaFaSiapzlIqkQAWpqIaEZBEpS0BmZkedL3dCUAopJ1v99vdcEBlTMx4/fTjsizpoZoWKiKldBaQcv/wUX7xq/e1LD98/+n9uy9HLEtZMqy2fPfzb37xy4/qt7/6j7962/fTel7rylBVY2kbUjIjCc3Za5P3z0/j6Jfz+h//458FuPuRACJE9LwstR8HoiJkzpmZS1kC8H5/2c4nSB/jddpAREYyi0rt5e1W6/L09P7qt/tUML8sm00TKHPfl7bmwvceBZdEDAMUUz2KiFSHJC5lPwKpENUxTEQIrjp1EQbMVEN34pC0Y6gDOGStggjCEuFAiCQkksAzc1okygzT+0GNbY6tNmQkghBCIDMbPgkKYDooZEJCQSoMiC3w4QVQIchUQH9ovfmhqQ4CiOkGEYTMgDq7+gQmJjC1cKDGVVB1BLgUSAgAAAjG8K6nWowiczy2nlOjXs4MNTwAZRgLNsiSmUsrt6MvyzrcAOeyLKh2u39+enpaT+txHJVoTiMyTEIknIoLmhkyldKOEYClLktAQiX36OMQ5nlMIV7qsk8f4VtdxjhKZQAY46gLr0tttalbpKh7E3kwF5FRqMQDe4nEQoiFAJEoESDSIzMSAIQ5H/dXS26SaRHxWADPOSG5JIjInD1SaxWkDNW1lTvY0fcmhZFMBzNTRY8JQpkAmAkUyREgVFhqWGZm5CNHQ4yESIGP4pN7GiLWUkR+UuOlB0nhSNXpHrVtCNm1g4fHyFAEE0JGQnhcR00ADAI0OWCMAZlCxQBv/UAWlHJ6es7M25iQjOGCRJiYwIBmFhER4dQ1JhMgZCbu6u7EzIaUpaIUMgcMTMBEAGZGs6kWRWShIlRiqo3X/nI8vXvex1B3QSaCfuyMrCVut/1yeQ4rx3Fkopnr0CM1zQVozA6ayOCuEZHBlFCIwSM9Unifg4gMwFWXZQFOnfdWRSSEccyhZpmXv/mb//rNL3+xbQsUbLzWcnp5eRnjWLdlWTYLvd0OktLnlIcb2KmUuh9KSa3UHz/93t0BW5Vny4o457wXyS9/+eXL67VPV4xpBwAurSlkze28NmYepkRVxIaOvh/dsBS6v+2QuV8P5FKXNQAIZU7LRFffb/tSixvqmBbOKBQw9k4S6qazm48RJiiBuKzLPva571wLEWJpgY5Zfve73wXA6+06Z1+WCvKIOQcz63SBQHCkubTNbYSBAANIaE43AtjWy1Q3BQsMiGN0tV4EgQpdZEy77vtpeSpIoNiE5On5/d6PRCAWNVedS11ICuBPxadSuZZq6RkopTFBug79FBCAkrgyF+aC6f0Y22lZsFpAACKDZ4pgRt7vt9PpkiCv+yEjEEkQoLC6OQQwJdMMm2GQFG5UhaUkhI8xd1sRODiAHBGlCaab9uGQaHkj1lNb7/s4n95xPY9upZQxDmLsYxeR0TUCz+cnd32EQSyCGaWg3zsVev9h+5//5//7H//0/Wl7j8J93n/29YdPn/9UhB1gXZcxpikcu+331205tyqqj4M89d4z/VFmQETIcHeLTCApzbOnWWZMnx8/vkNKPfYx9r/4yz/78t0HIjifaVnl/cevXl5e3l3OdV2kyjF2hKe/+MtfmR/v3z+Fw2n78Jtfl9u1f/1nP+t7v1+v799dPI537zZEvJy28/2tMrXCFTGCIb20BRHVdqgU4Gg7u6Y54mPWXwITAlVneri5JApJH7dtWcf9IClNytjn2lZGIIaIEJZKhEjnc0GUYx+KyVilLWM6Y11OJ88CAOhcOREkZzDV+92I1nk4BpVlfbs+FqkecSfh/diZHA31sMegTErNyP3NKJnbIoRmM3TyUhBQStMcAGSRGm6ZzKWKZCZ4bGWriMMGsWTi8HHaztTH1MEItQqk25xEIiLz8ThGdE80I0zkqEL4iOVgBhMQIlFkEkCEciGi6mmtrklonsCkqk5BxCQY5uGGlqFBSRwoUmbq6CmlJnLHwgWFuJXKwEICkIiADTOpPC37uIPzAbqu9Xkjm4cdKYX5kdxhZkid83LeRgYCRzgt5TruQaRT936cn57C5zFGK+Uh2EYoGVyX1QBKXaXw6+01IsoKQuV6vfJ5vbR2qAIQ+GP+hA6S4OGRiRBOqIEEgBkYaUJca31kISMCkOoqAQEpjRciSg9zF0QEpYz0iRhClSAdiKIEOFNhFIIsxMIsIu4+w6ZOeDCKgSMTIQkTKB9MK06ITHdHd0hKSGIGYA3vc2Tmuq7LssyuZkmSIoUZPQMy13XtY0chES6FYqq7l1Jb3WrdhpoEJDhVMbPIB8gtkWk9r9u21XV7e3vzpPO2Re8P4J2ZATIiSquZmenWeyACQ6ZBJeJQU1WrtSbk1A4AmMCYBDjuykSNmFPSYOiOkYTZ1nY/7oFR63o9rsy8rWfrB3MTjjlyv88xfjopRjgkYwIwRkJ4IiJgA0pCQA8KKSRpYA6mCZzPT99cr686osdkqFgkgdUjAZbT+btPn6fmmHa6CKTc7p14EakAEOHTNDCAOByEyzhuNF2QDnObua7bd5+//8Mf/igiHz5+9as/++3/8r//b+/en+paIKcjS8ulpAXQNIFCVNwMmaeaeEa4z3notPC2rjZH7/r2+SgIq7xDKcPh0+vbJuqea11JZO4HJ6T57XbjxlKZWUxdVWdq98mFFdGAklCKEC4QRpit1fPltF22P3737b/+8Q9P796/Xvft9DRGJxSzwRmITJCcyQHE4hbgKSiVBT2JodW6tPrWDyOVtjESpNzHnuHSai3Lemr7nDMjwavIQkkA4hphzlIzfLolQEAOnWtd59DCXKXkI22IDAEZDDg8HlLe9M46YV0JiK/9c6IT4rmt6mF9FgRqlQDvQd4DW6KAuBbLeWQpZczJtWiGu3soMVYAJCChPu4EeCoFSnFVJ0CCxEh6fBGkW38+nb/55YnEf/z+87sPP4esjE2KeIb7qFUe5WVg5J9orpDZMJVwFbY5DRHXWq7X6/Pp6T/99ZefX3+gAhoy5vcf3j/t1+OyrV376PftdMnEl8+3pRKTOCERIULv/cH2fHzNEaAUiYjp/v7jFzMwIJfTwiVblefLqRK8/Pjpi/dLQW3F/m9//dvPb691ab/45l2tEpgvt7ev/+ybnMZiEEZEv/r116Mj0/rVV1/98Ydvf/H1z9eKzNqWduyv+308PX/kLM+ndR4vbWvXt1utC6fPMQVx+ly2psd9XVcb4UFhhFwIgSsTOD98g9MpuXHFoIJz2863o5eCGRSZ/Q5taTaUCIYezOLegaiGRJi0ZbhirX/84Qd1W5al/3h9+vgcud/ubyd6GmOmQwGqdOojRCpCDj1KJZZpeTjWZTv7JAhD9AnOUFg2zO7TmLlCQUScMTwQGwKYmSWwlAf2gYGKFEHS44ZClWomLLX5zDnnuiw0QOSBJdbEALDjGEgFkYhIsKY7QpoZZSytDDMzCGIqgozgHmlIGWYQSYiIePR+qIkIymMRBT7cxhSQkyxY6HGtyYRICU+ojBWg5G4MZg2NQlupANB99HlYDnoprZ77oXZooWxkv/nV1x+eT/vYLbStsvejSNthAMm4dqkFhY9Dj96n5bquz+15HPu61LU8vb3dyrLc96FTDVD3Xkqptb7d7ua5LKt7SOFllREx5+TajmNu2ykREDERiViEIELng0nlhCzC7swP/Jj7NENELhwUoysiAgBCNOFFyHWIcNgsBWpZAJJSInIclgzndvYxwk2QYHo6lMLpBJGJ7InqGBAJOWO0EHf/ybD04MtmAtJW2DLUPTO5CHi4+xhKWAN/imo94i7pBiKyrKp9mkEhQIAkD0GgvfcxJjJFeFnK0gqgvHy+EUcR2dry4Lc/Ttv7vVcMRMTHe4jlsYR2d5vB5UQQx3EF9AQH9NJoTR62QxBLms+ARKFp1qgROAO6O2Dp5ohJGYq2nJacMWwHtKljzNz3vRyTgPf7PQJqrQ/OcEaChrtRBbUICvJCgBjUfWafBn4qDZOSEFLc8+3llQh8Ti4kwpFoga1tFiOzPD0/Icmn19eu/Wcfv3k6nca4P/75md77TE5A3u8TqAjhUiqkhwVS9Ln//T/+rQ368OF8HAcRe8D9sIfu2HxEZCBaBIKYhepoUpJn3w9G8QCIAiLTfVz3Qvnh/VefP71JQABq5KDkciIaa21mpsMwshBP8HXdII0CMqZbOFNgOuNyWcY+TLWuy21MYmAW87EwlbV+fvv8//pf/9+HTTNXC2BKlEwa2lciRhQiTM6ZKUxJYYEMSU4IHvOut/vhtCyBeeh+670tG6KclgU9b7eDm1ORbdvu16tAFsSYQ2bvtbRxzPPprGS9d5xcoplFWdfjNkjqnN0CkHldTsMU0qkskekO4b4uzx5wHPdleweMxAmFBFOy2Uzx3i6na9wr1pIiWWplA13ZM+FUeB+DkZjEkmtZKheEgDkKAKDZOIBDEQNKxARindBIwsfHd6dx/5G4SkluNHSs7YkE+zjWreWDNU1VNQEH8XDVjKWKU7J7zu7pflme9NBzWdL07eVPUHI/+lJWCLQxa4uZAzyWKHDN/tp/9u6r3eyYHpFEtO/7uq4AmImqCpBUNk+b4yYR70/1/flnXTtgnk5Nbcx+f75s79dnAoCYiHdE/fLDxUJbYypsZuVp2wjhhH1GOhUGtHHmi5S1j/uH81O4uuvz09M4rhCw1IIxPpzX/bgSx+HjdDnHyH47zqdLQBIWHFCMadSliFNo+IiRhPd9PD8/79frUhuATs2lkHYnqsftOI59Wdd9jLWe1VKcw+NB2wac69rG7GEptRzTPHz0wyi48sxePvB+fE7LdV09obVWsaWnuTMDkWV6FUR2fcClE8wPJGBChKDMCA1ACa8iiBFhiipVivA+X4hPhQi6rtTMMZKI2Mw1YVJJAb0fJ+YVxCJvNhYRM5t9tlY8HBE9Q2qxeIwDjz6O01rAAwFNjahRVJ+hlJ4jyJiDPBmYBSEAAubsAIFk02aFSowafVqvVS5NSqTvBxfDslyPI5kuT8s+xv2WxMvb69vKNcfxtGwvL9+yCBRaT8t1QKsS0W36/X7Xfd8K/tPfffvXf/2LX//61wzzuN+FKwRK0n67nUlMvYAsIB+28+v1rschtVQHOKy1ujGq3gHm6fnd9d4FolT2uG3PAkiJoL6He5F1qKFtp3UrC6pOEREp1+OlShNlBiSGWigcVFVzCnECYooAEyYxmoVNZ6baNjMjT3QnSpaSgumJSB6EyMfRiUiKtMJzjiZkBma6LDUiYgRKYaY+jUharZSgx2RmyuAEQdLwQtyoqE3IBA+EZGAPF0OhhbEc0bOU8pOL1xMIGYKs+yG8pFAYqGHhBREdkABmKlZMwHU7CXLvHSiKEBC2tbXzkkTTHEtNtRQ6RIhojMEEb/e7e6oqIuWC8+X6LMuKy937zbUu9b7fShAzw5xbXTIowxphAS4zjOllDPPctg3J92Osp63DeHn9JCJUpHsPmxhJmYATuaR5Bqj6nNNDkdH8zlJVdavSbd7Gnag0ZwQstJKDGmiGoWORzGS46YylNTOvy7Jurfe9tXZa1oFaL2gxvyxPSzlvz6cZ91Jl2eT6+aWwZDgmAPhpTbMblnpTh7Dz0nTe3P0Xf/ZxrZcfP32adATx9fYjwRcxoklDZ7MhlQuB+fQ+1iqM5kPS91pbynrtPQIgFLDMbk9PZ+birrUWYVKdHk6aiIEeVSgxdB779dZaY0HOwESU0jGIEVHuu1ZsXNA0KTlCk6JKIeK5j9vr7IeY1be3121ZPWZkgmcjAUtHm2EanYAqiIJDWiYAFYcclsQMAalHO52PoUDgoa3UGS6FAfmwCeAkVNYWvffeNy7CKOAAkWOMR3KhVFGf7rkuNTdy8G4dCZhKtztmmibAIsSQDhAWAxELW0gZWBRQ7wa6N0HkGMD79RaILqScgAzuYFMDLUcCEXICElEhHmMk41JLopiNCJe1EVMiYCZarlzGrW9FhowfPv94frcVurhRk4IcBN0UhdjGXGpTVQcvtSCVMXsEEENkjcAwP23v5hzqOi2JFs/ZJ2CWpTXXg5laW6/XKzMzYln57e0a3u/3iKylrE6ztFr8EfeQzHhswjCnzlElK6PZrG29bCcz0+gnwfPTCqnbScDDZpAfT+uTpbEBAT+028/Pz2YWDltpxoIQTRbK6paYUsWauLZE6KVk5aYzRncUReCESCBNSAKooDTH0IgoXNdtyci325VEsODshohEOI+hasdttFII0LLsx1xXGPMOFMe8pfPQToimSkTLcjJ3MwNYCHjdeOgkLCBJhNonUZ1uOqFgOS1sZgjWahl2w0xACXeW+hhhCbF7pMNSOhhDFkzBpASnBwqYlgCEhEhywHAQZKRFkB7J1cQEgrR090TISFdLzYKShhMMEzjzp1QOPGiaKYXdIyIFQXUAJjNHACMDGACFE2JwLadWegwNh8Ai7Do9kBBJCiJiQMHahF0f9+VsVIXFAszNCUROCIyI6Dlvtm3vXObvv/1xLRKEM7ATW1m5MBFd3/qxq22QQq/3g6Ts6Uj83e/+4KQ//+Vf6pzM6yKMCRG54spiCGBKheC8bG45bNSlKYX20S2oyNbO0RWiFim9DkNE4SQuhTNCABAkE1prpRRg2uqSmTq9+6NpWhgkw6Yp2eNtw+iJ6Zn4mM8zMzASpRjPULU9IoAIEhIFEVVdSlH3fhxUpDXBQsecm1wAMhKgFQI+3B2ShIXIDVHwsRoDeLAZE+hBiU53KymQKcBMoFOTiYlJQN09ATNoOyE4A1mUSFS3CAsfmcookAgkHiDM5sbMiFCkPBaxSLT3AyIR8Rj7l19+8fTuHZb68nZ7yEwb1fT5dn9blkVVsVYEXteSCGOMOoGIepipmjmOIIdFW6lreADCGJmxZMZ0QkwrrsiBEmhHn2mKEJgxbvcqDQHHOCLMLNCTEviR/BzKKAAEOQiySfFcFAI8xnEkZ2OKcDctpcyY7lmTEyEBKJ2J3IBRWt3qwsKVsVUpBJv6OD1/rGtTt+fn98/Pz/t+W87tz7759Y/ff//6SZfl9NDLT1MhOm+nbrkUiWh9zsvzU6l0jBFmz7QR5+1+lFKm9lKbgzFmISB6uOBTpAmRu6eoCBkkRJRSJoQwj6E//8WX22WbY7AAFDjmYT7rulLQ29sbM5+2y9BuprUurS1IHmpEQBSpWsryJDLGTAAwraVVps+fXp4uJ3b0HuePT//nf/3H6+vVAN8/v++9399u27YVRAPPzAfa/pHMHOQYWJfG/JBkBDGIiFlwXuYdwmiRKig4PdJUFQApMyIhmALW9Uxt9dFFuGTmaTkBgGdUKYWFmRlK79MtsWBZKrEBmpkxYAQXOjEuVAxoAGqmly2mWc6o7cwInsKIpXBPur++Ui2eMcMJIub44nyh8N47ABFJAmew2yNFHEHZpKzbs7oq2FBzioqtYo6X+0rtxHXEzSvjZd2WL+c+zaJVyxwYWJcnABqjl7IQSvgw7cSyLqu7Ty0MhAhdwQ0BBIWRKEacT0+1bW9vb1s7Zex9f6sl0rpZbNvWD7hcTm/X6Za1FTM1MyIC9FJpdM0IlMboXY9a67Kdb7ceOcNqZkYY1lq4uEU8uhbMGIgAkoVJiNgyImZajn1QADVHyAhUCsaJEAWFmVytUfWuGTFRRWRtghBIqCkBlMDEhII9DKtUKmneTYXKsp0t4ftPP4LHu48fhs7Xl2NdVyyuFlUkcSEJZhagtrWjDyotLE7bZWpHTGRgREtIwiRWVSICALMIIGQBqhC4rCuZWx8IRIimxogpWIAVYIyxnk8BaZpbe8JIsZEgkfTYpzMKAIAjNXp4dYhCAh5em1IbU6hZUo7oAIgIBFSIAwilOHgrC8zJwEsRjSPUSuWH9TwzANgiMrmgh83WmhQM18RkYCawSK4NHaepuhIzE0JEK+zuqjZVUQoCJYJ7kvCCjCER8WAWOuDglET0qK0JwO31Ze5H5TaODsaf7TYjfxwHABajfr2nTu0ptcxUg5zeY+6j4lc///rXv/51n9bKQmnH2NFga5sO80LhqOnIsi3bDNtfbvdbb2utpwZAx5gwRwQg4raejsihysyOvJY1I4ggAhiBuLrZPHoWz0wLqEurVMPBIyBRpBZ+hK8AIYkYgRHZIzX88WCulcIT0FEMgCM5EjAFuYAUpMfZLSJMAjwUjwMzI4IwpRZTA6JEVgtVI0AKd/+J6cHMiK7ubqFuuFRHMAgialuLTAuHSARZpamq9YE1A8mTARmYhCmlYRISMUsEjrsa4WMY0HVwMDED4dvtFuandfOMdV3beQPh635/hMsYWJC5tM2dkLlQHzMir9crMRBmDAOAu47IEMSFKiqWqOjs0wF56GTGTDzmZIQo2edElgLkqmiGENZHTUIL1aGmWJmRW60xMhwIkDHBIcIKCyJiolkQQ12W9OmgIqDqiREQXLAt5afWFkCmhkEpayk1E8MBq+RjlM6M3IhKhhRZ0uvtOkqpS9kw8Pp2D0dkRuaIyIQMCkPrRvXERMfuIriP/X5/O63lUYn+/PlzKzUggGdXXUpiJjOCJQJAMhBDcAIQ4xiWoFRXCIVIG/s3H39TYV6Pt7asMQ20v1sXwFHrttTn3qepnk+XMUYfh6rWhYNT9WGCjjgCkra2vN53RNR533U8n8+hythWWt8+HT9++3LZnoPwdn9jwvfv382pmIaYSERIFRmYj/Qe2rIWYkRUU3dlIhGKIAxOs5J4bqsgmU2NBEz/KagIEOQWQSBtGW7i7u5eoGQmOeAEd2cjD0tCIKyloGCYQWplREQQEmI354LErHmo70UWsrFaXkpxwsEloYWXiNtpPbe1vuxvQrkstZsPnY0FQApXCixch9o8xrYuCOKHToJ1LRgYHhixLe0sl7nf3z19Yar70bHUoeP541e1LWOGYNtOlwhc19UzEDHBMzPAkMIjwZBbJXYgtam1VZsdmz/qQ5kMDAafMV+ux3f70dZycS8JdNzy9fWtVDSjtm4oUgQBp7ujBTEI1UdtxJ2ISG0GwnADm07kQZ7JtW5l3Y/by+vt+emSHlQbcd33/TQlCQEAEzGiUY0Za2mCDVAt7TFoAjpqaxY+O3jAtp0zE1B1Xpm1VBi9RyCgeAgAC4oQU0qkayQiL9LC0jwCiNvKkAaALKfLKiIYebvuFshSlwX63CODZoRTazJdi1AkRar5dHAkDJwo4NoZy+h3Luu2LtPj6Aczhc9aSjhSMItkRmTqVENY2oY0AcgUIhIqpyXgRowkZj4yE6lgiCNKRjw0H5H80OsEtAKBEjGDYoLKQ8IDQYiAJoIUBABIYo8ZCzMloKebARhkAGdhJlmiBwESQgLGo/wNSYREZOaZgAhVJGJmhKenaxKSCBYSrgA4p805AbyIMKS7BxISJhEjz7EzoEjxDFnS/Si1aP/8w4+9rJu09vntc60V3QXgZ19/eN7eQ2STYq7r2j5+vBDM0PHx/UnHfY64XE5GVBYeaU66H72UFkKZialUsK3FnQBoqCKD1OLuFJAxWlkuSOzpqe7jSEWAyhWTbEKmID9yuZAALFhK0UMf9O90DwaIIEB3r8QRgYAk/IhrAUACqFtEIGYCmtsj4QaYDMXnTIRaK2Kk68OLDJaCREXCXIIBKxNn4gyrQIwkD5fAT4pl95wMhAnoUCzDjD2ZMddMd3BnKiSkGTM8IBauCAyADgngiMhQEMo4xgxj5nVp27b13jGD65JIkUlYmKyuyzS77/vHr3729OELNesv19Pp4gbebYQz/BQZi8RMTA8mst4Rw90T3LwjomcmILi7h+Ccqomg5kGSmaadmcFBh1ZutTRKjEd3YgwRmqZEuC5N3freaxUfkUEA6ZpCGBaeCUBAaEChPoZGdmbgxIKUQk70aMchEUYKEQQIkiM/rJGl1YTOkuenJhSZwGBN1u30JLyMMWvZPpy+cuWMejl/vF2Hqq3rWku73+8DYszAMaU2weqWeoDAdv3cI/L9h8vx8k/gEwGG3wHiNicjlXxwxQuTAAFihjOJELMFRximAeiH9+vpvCBFO7XT5aw6x/1YN3H32eecRiSQ+OnlVcc8ndY+xz5132+1iYhwLQtJOPXrvRCbey1lbUV1rm2py/b87uN//q9/97s/fr/PARRf//yr0e8R0+3QDOKSQF0TkYlLAhIyGkVEd7XxEyoOCIGQaSIFJRX0TE/wxAzG+ThioiCw8AIASdROZwkhTyf3dG9cq9SIKGWdqlxbELrb4+6cEUWKlMtMQ9QxAqmaB0ghqsfhJxYWU7t3JwPRKDZGoeBCzLxRIcYmFRbtBY+uGVnDCwgCuuVSllbXQjJUp89jzGEDICqTDO/HW4TtGMh0154e79fty3W9Hm+ZjkxqbIGXuumYCCm1mltGVkEpxZTVwMxFAgjVxrQhQkMViI99EBZmP75/Nc2319dWg5Gv17cxhoUn9vW0TeoWLiKPM10mPfidx32K1Cac4UJwOp0CQs0SiFuJZGSCLMLbtkopy36/klNQlnIi3AgQMAEiXROcGIAycQBF+hQRaQUQllbU0hIoyX8CA06W4t5tmBBlSuUVoYEnBhCASLvbHQAgcrddiNp2OmzOW1+30z56RBAZAa5tQ8Rt247+KvSgy6IbY4KqmvZbKhEApboSERC7JyEnIxEQEYZneE5Hi4JsPtW9irhnAgKy9i7EkTnGSAzVYMmtrNp3TGBpmBlggZngFkkJgOKOGfiAWwAFAD34fADgkEiZ6SCYbuGgoQCg7okcJlXaHJM0SykwjRILCCAEIgFlAkbyI3hi9gjQEZGZPvhB5hoAAUmCD6ZSqEktP4V9AswnADDK6XQy3QEey5yHryIgggPXKsfsajrT68I2PHH/4ovtm1/87N37j8zsHl999eXRr7VAgp9kW0rFyOM4TqdFbVRuSC3FKEXVNSGwdPPCBELFS6GCzGbm2oVgLXXXm2eEGUDWWsOyMY/IOQ50e5xXAhE9qhTyxEzA4pGuBqQEWEpBJOsDkzKBAIGZ0BERIJlZ4yEf5HyAlwARkREmGLCQIKZjJjMjMhC6RWaaG2XWwgDMFmkRYYFYaxtqqhYJmWBmyFhY2iNhh4hEcx4P5zERPZyGAMClAjkAHHPHQPeYPkQqQBBRIchAwAT0DHOIUCrYGGtFAYmIyanWb2DhkZCELEngwA48pyPSl1//4t379xY0NQ14OqSnA57aFuZjDFVblsVm54dfLSPc3CchFg9G2Ef3SES0DDVwcLOkIkgpmIRQBSlgkxVcCNI9PCMgPFyoDJ0WxoJpoLfD15YKZvr49snEyAcsJdLwbdyWUgmRZTE9xjFrraXUiBg6EbFVYSSakxJKY4t5Pp/Vs9byqIeZGUmez0+ZuRWWVAh4/+45lD4+f/V//Lf//E//8vvn56ewGWERRkRJyWUtpKoK5sxgh1FIlQW4JmXj1YcXkFJrNyJmx0GQ6JYGTFyQzdLHDMAxDAtCFEaulefUr7748usvfnG77ftuNvdtbZjb9UWZ8egdkEOnKdRaSVjdxpzJPkx5EXfjibu+1XIqte19qjtKmUP77F98/fV3f/r+f////Z9zEnF5etd633/8/runS2MEypnUSl2mx9V2lMIRlNCkCJO5pvkjjpeZ4UAoapOZ3XOaRsRwMwKsxSN1WiJWooUqZOTQpTUZocRgEeBWWDAjwkTkdF7VM/IxnuJCawRmsClnJHEyGUAJx8KLlKbH1blY5W6ehEkQOQz9vJ3nnJ65LYv2vt/uvUAHR4JSZTosgCMsIJ4v530M9J2EsbEFIEphFEIww5oOeM/uCVgDdZbgD4jLVo8xmZobMa8eZWgPiForEmb6VCeiUspjUEZRW1mut1eCM4CEiyt+9+13//gPf59OfvjT07unD88J3Mf1frtvz/z646f7fv3V5c+EE1CQ25j5qLoHJBHNOcOMlgUAKIyAqBXG3A+VCHV1zTBh5spkx14QirB7FpHjqlKoVmYCIvCMZVuv9/uEY9s2DHSdIi2T7u5JbNZR2GzUWgmtLcsYbs611nBAL48hBeRU0wgqDd0dMRkw0ywg3ZcVAV0KEjVXb6UQRLiOcRC6Q9Rlvd+PDBZZCH07n47jGkCZDCkiW0bRGcglcziWbV33/Zi79j6XZQOQAmnquxkyUHqGASpKIaTZe4S11k6LELnPhzrOTQMAEBmS3RIyRSC5/VsiyxAI0CDNMhGCIDKCITiREBIjwRMpMFlkjM5YgCky+eHnYSaSTKQHvNxjqhZGIc5MiCThzIxHkyzDwZHIVQEKIhOyk08LIiGEwERAAHL3MJdCRBKZluYe9MBHRTAReAIxIEQiEI4xvvnFz9KgSW5NYto6d7KjVo6wxZ1SsMjlPd/nCwhkEIeMOcLhvJ7Dk0ESCAPDkDJ9OKM9jm0iQqVoIlLgIoEEkT6NWBg4DEMkEgISuFSR1podMyxrE88UlKU1EQEASAoLEQqzzKyCBBkegA9hLmUmELnDozSc4MycCA4ZDphJAcyQ6fC4KxMiZARwAAVgkrkTQz407gU9IBCQ0ACtz1KSmcFj6vCZh/VSeFm2yJxgWHhA5ONWJzy6VqrruqYDM6tq+gSkmR7q8LAZMz7OuhlJSWur5jn7zTFq2ZLFFNxzaesxJ0tlgePoUpa6nDQ8k2ppqgpASBgAh85ksulEqPNYSu33N6TMTJ29ILF7K+JMWYmEdZhGcBFUZZI557SZGUpEkUzVlUzdwgIjUMecYjznDLUidKrLxsVHd8MIk8KRMVUDIQES0cBPq2CCDiMSwsqIDOIBQMC1BoQVAk8NW7igFCZLciE6n1YE4SJL29wdsJ7WNSK2bes6CfXXv/mL29un2e+LUGPQdAdf1tq1TzWDxEyEkUgB6eFL3TIAmYT5+x9/6GMSFqaFUdJgkZZu4JORBAq5cESpGy4xPVA4nGMmOcaEU3sX1vp+b+VdeszOGNt+3JdSnZCJAUChIwQVSQYwOl/OsjQWVNWtbT7BDbi0QoRmCTDMp/r/+v/532bX++0IL6Xwbb+KQK3tuPePH5/HPB6xKIFgqVlKJKRGRhIjWiLwgy6jZimJUkwJnNLDEIEkMoyDhDgE0wlKegpShucMTpWZLkiNESqlePdpaSSrZvSpxA2Q1YxFPGsYIUwiNDMWQByUGSE4OYCHBiNmUm0LIE7theN+3AQoNfXxEkSSve8VKxYU5mEpFJB45LyP+6lV9VmoPEaB04cDBRhLmR6PPA4CmfqpSTsvmWjTQaCU1pbz0MwokRZWAI2QMhECHaa5V8HMMdXM+rIsiHm73b//4e0f/v6f//TdJ+/2/t27/ul4Pb6XtTEVs/ju9R4B97t9PeCbrz68vlyP+8u2XjDYwyKgsqx1fYyyAaKrZWYLTCQ0IICGSMQgKAIBoWrABBnuOkaUciJ2jxkQhvb4UjUijGZWGSuCEZREnuq8yPl8tgzV8WBWjzHCiaVZJnIJC0SvBZORAxWcIgDyYQrDQFAlx4YijG9vb62up7YiovZjbYKYu6oQMhDWRMxA07DiyaVaAKEkWAYjMkRGutQ250Qm4bosm9ktAB7i+FLKsJEWKIiYtPL9uDdelqWmMwCMfSCBCPlULJkZmESYgECUAJHgSC0tEh8y1ACgALSM4laAIBOByZIAAjGBNByRkH5iayAzZppZQEYEJZkZADIzi6TZwxlA9PhF7oaIiUEoEAQA2/mSDqrq5kzVzJBECALisZU0M9Uxp9XCRMRYCJyIqyAivt2uIowkHgZBVcpu9xlTqA7tp2UVqTa1gEC3dREhHjowZwZIIUj0iFbb1jbVMY+bEBPwdnp6/Xzd1qc08FCAJII59RExq3UxmxCo7lurvJzS0DOkSBbUjNnHHBaluIcOExSCHKYJyFrTIwKWtWzLpqpVhAAIzCMgPKkgMiI+vJDhScIkbGrDBtcCGQmBAAFuD0UjguvEx/86MzLaDGLisigEIvb8ac8AQJhAAbUuc84OiohDIzCmRxCE2UN7vCCH+UMkU7Hc+eQzwPJ635WIVvH087lVIgCAICQShkiL2MG4tGaumF5rFeapiQBChAizH4jkmLfb7f3HLz588YW6MTMjtVLMDBERuM/7mAPYEPPzy/dNcIx7W8rr7S0zpUoCjICAjEQfll1vxx7AzIxJltNUPZ0IVOcxDsZC2QDJ00GCBDJAfQZ4YLjGtAN/Ggxxw/ZQ6QmxNLodN4+oTfS+N16FkVncjIjd1QHNHKqMmKRICUIhaylrwceioVtECAMBuyeRtNP5du/n09M0RK7L8xkkrv31qZW5FL9fCT0gI80zHMHTBYHgMWCCLBEl06Y5rOfLP//xD0aSBYfng/Kr/giEEEJqAKU/Cu6j7yguD4C2pQFsy/b+3ccdVSspKFWZ6VQ4Yd0DPVzHJKJlPZXKZv3ed1V9/fYNmVprs4/P/a1yu77dX293WNg9H+0V0+P2dl1KndNaWz3nVpkI51TB+v13r0/Pz0efZpaAVQpTAY9AwMgwBU8WJOAIc8/pIZBYaiYgBBK5OwBhoHVnFmBy4ESYABlZGABAAHHYQORCmQRDDwdnhIjl8LlII2GfwCLheIzx8UwiZYwRZAnGhU3nVLhSPiXWJJ0TqSZLDIcMJioUsU+bSqtILUbYUCoTAQrSve9rqaWIu66nhTn9bjGBAAtDelIBEEouqeFm5/NTIXyzrM8XP2/iINyYy2PMkuGtLgHphiTJnG4IGRndrENKayVT162OMYogANyu+7fffy5ypnI339XyeiQWAcl9f1uWpd/3y3mrvL69XE3Hu+fLcVwrbgAY7oZWSnkEssyMysbMLFVncAnhalMRENCIUFXX88kjzGw7n8wMp2eYh6JEYqCUt3lAKQs+j922QkwTAQFKnwOyN18BAHkxtW1Z+75L5QDTsHUpGhHh0zPCsrAFFiQpoiMRCiNjknvo3ts23y+bZaIql5xhSMLEJLUUvM+7iBhkBGCmT88QIiq1oeXULmIkjwsrtVJUp5lJq1jBITITBaf3yuyeoB4CMzyEijSbXrmlA6Ux84OOEtQQkcEDDDFRxBymefW7uRMXRgAExlBXCkh8EDJYUiAsIgLIMZGKu4NFKQUeuZTADAcmSGRpQAJoEZ4B6lapxb+9Hkz9R5iCUEpJA4uIMYxRPB2DAEs4xuOt5omoiMnMyOIeoUGAYKRzKgaLlK2W8vgrOURO77VVQ0WshcoeUAiJCpeaelhQiEgVCKuIrmaR2/rsRvqytwWZfFlp369vb3vK5hRcig3LjFaYkOe0Wx/HMebAsjbT0dM4Ht7cpCTQLJlYGNISfFhPwro2CyfmFAQi4gLgYfFwzQMmhHlMZqrLEsBqmaHMXEsb7uqm5g4GlcA1MYgSBdMiiSyAuDCTu0emQSRgD40AIpoQSytjP2BGIxHgysgz+LyOW3eIdV15KygoY/d8gCZIez/60GO0Uvb99vb2eh1WpWXg77/9/t1XX/wP/9P/qKF7H8adkhs3ISJ0VyNEqhGYo0+MJGBsomMSA5FMVRA2CE3Ytu2rn31p4aVVmFal9H4gwpxjqe3t7cWmoniVMo6da7nfXs9PF89Q99feocq9HwWEu5FFEnZ1onQzArYxHZIZgUjdUCQMCamUNo/bmPuyChMmwhgmgI/YfxExgK7TQ9wTAgCNpEQEkrn5glqcXNE8zOzS1hGu+FM/wEJbXdZacVhZKgrVpVWuhcrl1DIQBdoiKIwLLXzOlNLOX/z8q7rW3//pD+PoP/z+j1WIpQLjDFMF5IU4MriQhBITgqD7cT32iIwsLeIP33+6DV3qmmg99lakT306nwioj4mY27ahwxhHBqDlYTsGF65EdHo+SZP9eG2LvL6+Pj+/d4/r65W5ACCkSFnN+6eXz1P3CFOd27rux3G9397e3gT4JHUtp+++/xGZ7+StNZ92e7tm2NO6plpDLOlpqmaynaq0CCDE222+f3e57Xc3Zwu2CR5EmITpAJHwgLNGhrmRe6TTgEhJoig6DZiYZKrq4u6JGQVpgoGNraHaIStIMBJ4ZnhCcgFakrbwZVtwlc2m2rg+wKqM0jXOtaSP1ODagjgLOPr7xOITfZxKhYggnrLN8HMpZgMh61IS8bgf0ErxLFjCgitutdicJTM8W2uHdi6EgGlKiYLhExyhJZKcJ8b9Ntaa5wLvV+JxlxPD2N211vN0P50vx+iY+ZgMeCYSEsoYtUFjYXEeYxRIwcJQntbLz74c87e/iqi1guAQhufzKRB638vy66f18na7iwhWiYxla73vwgzhRYihuRphLER2DBHJYsdUYGEBn4eITfTgVpgmxAGeYe46x40VGYHqx4yQxsQEbpGWGnVZhcekPpKQOTKJbVl0n2O7lNttx0QEcNNaiBjVs5RtHJ04HfQxnYWuBSM69RiXy8UCJ0gmHfMGmYCLVMo+MBzsMR7lPkbCnC7b+TTnsGEQa601pQMefdx8UJEFsoRPLhHZC36pEa0UZoJ4uL4dEBJECDHc00kYuYAZeqoFBk3LVpZCnJ7g/ghOU6qQQibRoi6URAwOIRJAPUAQ1/gpf4uNqk1FSgQMrEkJ4EI4MjUDzAlxq4SR4QaE7BwZ6UOIwhICkICzOLC7ISUAhJq7iwiRJKYQkdc5LMNDAtEBgAVUZ7gutQKEmYFgZP4UFCasZVGfLMRcPSLjgSfUJA0HEUGo6I0f7HJgSG9rDe/b84Uy3PSyncPc0y0Hk9gAH9Dq01LrHAKHXmTpapFcPQwzTEvFzFBVkfLxw9P/93f/x3Z+Fz24iJTVox/+5gGoByKRlOyGEYxk05jqMCsoKcmEqVNqc+BHrW6MAUJAkg+KdhCAV+aklvnTOQQg8RHcAkgWCy/E4V6hgEVCBnkBeKSdIzw9EFOQmTnQ0o5C7qiIKczA0Ifmfm3nxcz+6ff/fF7a2A8CPo5x9Lnv++g7JpjN63HnrUKTIExLNv6Lv/iLL7/84vr9Dz/75ot7dHYIgCCcmWSx72NbTk22Yx5N2u12WxZRN0cA4pnuRFWKhIVpY/rlz35+vd7++IdvX15/BKJlWdq6LnVR1VKkLtWPF5zz/eUJ1J+3Z+uWuzPG5iRKq5c5J2YcdjBjQfMo7mmJhYsgZqYO95kTIOeEGondYzAjoYQaCaIHsQDLnGpziEhJZ5xVEpE04LCpmMQkwpirpqMok/b9uHonwBM2N23SPtCKB6+witRzPbn7lRdmWpey63w+rVJLn/N8uogIZGyEPzuf353Ov3/5gUv7sq6ftj9RlWPsLMWCpYiriwMTjaEsy00NhkaC6mzbSix/+vZ3U6/P7+ocL5UKOG31VOFAj6napHAD831q5wpVynDkXGBGrfTHH37/7//T11++u91/eKHaWOD2+u0Pr4f2PMt54+Xt8w+ewK3+8cfvg7m29t0P3zPzdioQSSCzH4feBF+eT8+IGB6VoaOVRQgoQokiPMgDEQHLdPehBI+R6nYYcD2537CgPuarVAjRKSEBGZkgIkupEegBSHWaYeOUpOitckT43DM2Q4TCiTDdzhdCN8kUSHnsLFRHYrI0puZemMSnAiuDnhYuJe+9E6J5zt0E2ghwF01VNXIFJCZilEyETLPOTFuV3ntDrMxJRCKFOR90KssHHWmt1QHcPQnbwv1tZohjhmowAUByqhnC9DCScmr13an8+N2PaecPT09vfccoUtfRfTlfbtddWi2l9D6YyczX2h7xh9aazX6MeT6fjuMAiDnvS4W/+u3Pf/PnXzVaVHUfeyms1qvAuvCcXW188cWy7+Pl9b4u5zEVEjAwHso15MIiCPhoSKSPbonUjyukCTpVQoggU5ZEzKBdD3Br61IQC9MYEzCY632/AgCLCIGOXpcihao0Gx0z19oqVXW/vURdnokIOAlTdRzHvS4tTBO8MAeSUEkPRmRmnQHQiIp1A0KpdWkng55Ixz4IfkKFMUNmiggCSqG+H7WdeBFVTeyIPu1eC63rphPDORNcSY2R9kcxY4wxEAFIamPmCKcH8Sh/ijsBEDOQYWQQoOpAxEgHoMqVRNIywzEDgAACEBgS+SF3AzVFAFVDjALFEpCBseTjy5MokNwDMdeyBoL2MedcuDBzRPw0W86MiAenKQO4FnMvlVUnEbYqEayqiIlJYwwEliKliafNqQjwsHCVpWJChDMjAgZhkTJ9/uShQwAMIGJCBYuHCBAYMQACQvMx5oOK+Dj20v02P/14fTpfbp/7a6PbdXfIuq1m4/X1O5/+/Ny2hf67//CbQv72+aXIksn9NnOb0hA4LSwxPWL6YRnX2+dlydN6HvNghiINAhJt9BROoeKohaVQuiVhLCtzk13HOPy8baflFMCq3lp75P3M091b49rKmBMJLCOnIRFS8mMlHIARiMiOYImETCXAzB/luwAAEUFCSgJIwCy4EWaiMUWVen29ff/dt8uyff/yQ1vXTy+fzSakVhGmoupV1iTcnp7NJmcpl+2uA9c63Zjo669+xsz/+rvf/fYvfk1mEkDM4eDuoUEYhRbhOodiZmAsyyJSE8mGYQECkSKAeRxHhP2n/+4/Yvrf/rf/9vnzy3re3B0izJSKzDnVTFIqSx9HOvbjCI1pZodyEbfcb1ftR6lSChOB+nR3IIwM5hJuZvYY5hdCAizLAmGgP9UWYd85E4IXfPjVnRNaKURkEOq9MJdSH2v0pSwW6m4KwQyUkW5bwaW0MPdxX6Sd1+V8PjvSvR+0ZJwyAFkqMZWlkZS2rIBxubTtdLKEdVn//JtfPp2e/vj9d58+/fjVl1///l9+rwk6JhLPY5Dgg1oKkdOmm9ECLJFurbRlWfY+369P//L2xzSPOVKP5H45repvyAEA56256/2+Z2aCi6wRkTrbuqTEhy+eAy6kc397/e6HT71bN74n7g61LPcfXptB7720eoR19wkBU3CRGWn7PdzRrTCtpy0zb74fY9ZaPQkZkjISEgIJSDgpAcDNMxzQScRAw/a970/v363nBulHDAEEsBlaS+EKEDYthCsgqwEiB8B52yDC9/taqyDcdC7LEpiYhkTTNGzOZJ9D1kXSOcGZpJRSWAA4jDIBxBEcvCOMKoAAjZNEJlZJJpSQApXd94YeaclAvKRLWKbrCIXCUkuR5EAAmGbTHKUJ0hMvx9Ai5B7Rp6fVJojYdagqUC6LeCmPDzkWCmQlV7MTFYjs9/2rDx9/++e/eXt9ndCYNoHT2t7ZSMjmxqaZEETEmHMcp+V0WqurEsC6VdNRCxKxagydNt7mHABEvJ3XhVrpLzcDnQ7HuGUmYWmtFuxsCdNaacw808kz4kFWg0eOPzwJFykEqOmzFKASPgcID7CISE5KRKDKYmMIMJcyDutpjNu2bZH++KDaVKKSDuFSmI7dAvx0eu6HEoiNgARBZCwQk5FaLWqe6WEOIpQkLAKUlBEwB0QgkTzWt+bYsERawuNphwCQmZHx/PR89Ld93yHWZREsbt5NLXQrrWEsOo7wIKpr2071C9XvAhMJmJGlEhERRyTEQ5NKCInJEcGBzAXJhBkiI5yJEfiRoWVETUwHRH70egGcCOORvEUsBFRICrmnZegc6LiVFRMzUc0fqVwMiABkIqoPgJa7R1orGwGEAyISortHhIAkTnVlARGZfad/O4+MoYxIlO7DISMfNaVIA0RkRp8aEaWUBMeIOd3BETEwkBEQkjAiShFVjYe0FuFReaKI+9vtc/8Eybfb3lojonnMy9l9WtqVsJK08WknQTP5/PLy3ecfwY4fP33///if/oeytLe3t3fPH6b75IGYauahgJJhzPzVV1/+7nf/fD69Y0wDiAASKSiqY6nU6urTrWvqLKXUwgFw7J/Zqiy1nc42tR+vdbnodKkhhUhYCBkbMY9wwyQOAMAAgIBId6siRIQGGi5ASK0SWVp4AgQB0KNjSgQAjpgAkOGaHkYBYTCm/uH3P/zrv/7+6fIBGG73t/W8ZbYx78h8dD2OsQogJYXb7JZWlzZMWTFZfvvv/z3s9vr9p/3ldX7zM4HLyvxqnfBBsuLKLUjB01Rb5ft9386nYwxkLku73+/Cdc5rW0r4cPd//d0///3f/d3nT6/HMZZWa2WCuL592s6nbV2R19770XtkTPXb/RBiIql1ud72VqVQaSfKjP24a/w02WYMZAIIc02Ax89ORCh8TF1bJWLAdNeELCKHATEzEjIyAhEhZpUafTc/BBHAIhJQAAhBmMFtCjgRSq2l1mVZ1qWqIws6UWslN4DCuYBHFFAErG1ZthNTyaDz+RlZEO2bb35Otfzuuz/1Pn/9xTeW9KcfPpdT9akPp1a6/xsEG7nWdl6nT3fd1qbdw2V/G+y3/tbRgDnDs9VapejsGTrnpNXfPT23lh8+fMjM89OlyFoLS8XydPr3v/13P/zzH//mP/9fw562jx//8//zf2HesDQo7AGvt+upFKjOS/a3nVtBD4Mhre23nSLW1io2N7uPPm3yInwuoTbUp0cCYMEMFWAIKxBYShAQUZInwlA378taNXpmtlbqijomItTG6CMTIh6ZTUBqiCUMgoKRdE52hgljjtbaMA1TBiDwgpy8RpqCHEHi7ojIpT4W4u7BqQjgYy+VLCaAC0k6brKqJgx91JIcCcwwsxA7cBZKQwAGxMxR2T0UTfuY7tl4jVJDGpdF75qmjIRMHiqVXHXOmQARQW2dHhMLNTLMrp0QJvpW6+i3PPL9ukJm348mpSJrjnSsbRMxSLrfb8INIFsraiPDhcpDnmzm27IEwN7vEZ7glamwjDEWqQ+s3vV6h45cObK/3PaltdfrXkg4IJIFeZVl77sxFVkTISFByCHUEzBnOCaneW3iIZARkXNOFintMh/RfxHOwswzejhmfZOKbrOWNaNnWKEQdI2uClhOUghAqxAy3a4/tPUpQ4UFUWx0FmzS0iEfkz2Cx8s9CAIwBRfDsICfTn0OEWAWCSS1umoCRWYC1Mq96/XtbdrxdDoH+L6/IUUpsrWqLBE29gNh3zY229WPPoEhiLgIAcgDcvEQwhARRCI8wq8EAQkPI562KokOaRmQQBGAJGYUiYkMAPw4m0Iq5OijyEJcAdzmngSBCSxMbKHq1mipUshMIQISEdwNIqUIIrl180lEkTOAEDAffwjgcSEGnCxoUzNZCgLkGEN4CR9cCmOO2d0TmB6gCVfLTHd82Hged5VMLEUY+eHJffwWYgKlqk83YmbBDIQASgKsTfBPP/y4nT4W+eCGvFbkHrhYviYlYk+zQyGVuvYBgYAe/l/+/m+/+fUXv/zmi+VJlK60TndDSE9DosISAUz47v329vbcWut9X7anod3NijSRVXdlTAtba1EbY8xlO5kFsngYeMnA0hoSElE91dvtrUFZtwU8I8LMpvdaBQlczd0xoUkzNyZw9cJSgDCRkCETHChBkArTozeMiY+RRgBFxJz3Vqqrhnkmm/fL5ewxhkYizpdRFm619N5LqcwN1AOjlCKF7m9X0Pzy+SMS3ef8w9/9i09duC7b+uPnT08fz9t5xcMyfE7HQJKmY1BEqRwRIjLGsIw+DmIJf7x1TW/Hg8H+z//49+nw4f0XMcft7ZUYlqUS4dyv19eXuqzLspDw47R4en4ax/zD7//Etbp7HAphQjjmbhEolVgCi8dkIHMPSCEKs3QHopT0iLv1WhdqZRy2nc7hIUJm5uDCON1sHq21ZakFRTUTHZgIHmC2QpCXpUAaEQQ4thZCt/S3tHfnM0Hut5sQnloNz+IEVLXy+6f385g65uX9c4Lshz5/uHz1i6/Op/M//cM/c5EPX/x8gfJ3//SPfY5ByABsthRJhRhjWRYR6eCPTI9Z7tde63Ycx5cfv9pvb9fXzx+f362tvr3wZb209fJ85t/+1Z+PfmOBd+/ObRFiqFWmTWBa1/W+H7vZ8vT0y7/68DrqP//LH0BQz09JnEffkO63m+Kw95cYPvw6uJ8qUe/eeyhVhPP2LjPHONRdaqlrmTaO/XqmBZi4kEGyyEwLwkCM6QXFPQATIom5EDExeNp0IhhHLyLpnuBjHpz2QBEhUERAOoJEeKEKmhAoZfE0Dz+1k+sNQJoUG95aI5HdJq+UhJIZwgQpppMwhVIYCruDk8RMBwYSJC9suF93gIxao5QI1WMUocBMXtzm0JDASpweRRjcfM5TW1BzXZae8qkPUGzJXBYLY0JIC+IAikhEJJK6XOzo5kxJUrAUB0p2Gv32dD7BSN37UvnD87uvnr84+tV9EIuIvN2u6/aUSQgsIkMPQiAiIrrfdwRe1tM+diHmIjZsbVsfe60t0+YMqWjWEXKRYjHNdW2n+95LWQV57EZAx3VfantethEKkUGokECQLNMszCNAwF09gylLMGSS4MJGmV4C3R+iWAxIwppBhdkBLNBVhxoRMAaSL0VSJAN0argT1fO2ZaaDq3opAPnAgBDWMqyH8b8BJTg0VAMfOz1wLoUs3CJTH4/nRDALAETmx1j1EeglglIQoDFj4SgMCC0CR5/hQUSJ2OrWGpm/EHZEYNgyMzMREQAJKTMf+QgPy0gMSsrHBRtSAWakM6BGR8ShWaRKkamehInV08wDIDANM4UbU0ugKjLVAczCIlKklKUWLOBgYUggSIg4MxHRESAhMpJQSuHKORQgkWomPB6iRGRhQAkAJIQYVIpPzXQPXVYGN0CsjYm5u0aCiGCCmZn6UhsBjjEQqdRicxo68k+FZYCHL5AQmPMxSH88roo7FWwI6in7EUcfAblMf3n9ThjcTDCmHpjQlksGv9xfSxOgweR/+R/+4stffX0fuxBY+jH76XSKCMwZaZjOSOnT5v3P//zP58DPnz/jI0JeWBh0jtbQ584IfCrz3vvsECWFCzQqch92++Hzz362cFne9ntp9XQ5q479OJjoMb1vpbppTGXmRQojpXlGpIMQqxsiYYT9VJGEWoqnPfa/mJnASZxJHuCewgjp61JfP31Oh9NpfX19TeR99MTcj+Obn395e7tSgj0G2plS5L5fMXJbVh9zvFyJpKGoHtu2AREI/esP333z735VC1Hw/fWeXQWrqYJDJaKEo/dE6NqxiIVjWitLeIaZm9rUUkphzoz99oaJ6CbMNjtAonAtldx13y2OpaxtWbFJfV8v28U9/vSnPwnD7fa290N1np4u3XyMDCDE4gCItLTmOjNzOy0AoDGWbU3EOU2Q6/Y0PGtbxQMICaVWMR9DASj7HIzR1krABSScRFqt1cZ8alSblEJHjA7giwAAFzrcTtxOy1qBt9JcAwAB+On0XoKIS1lK7/35w8f3X52+/uYXV8N/+N23u9Np2brhPO5v15f1UodpRkKk7v3SGjFftnXojJg+HUAqn+bR366vLPL5x28j/N37y9vby7t33/z89Kvf/OYv373/UJe2rXL0e21ofpj3bWvX22tbllL5vt/O21Md+Lu/+Zc//w///Vd/8Rf/5Z/+tVG0rfbbayUT/P/z9CdNtjVbuh40Snefc64VEXvv7/vOOZl5srq6Mt1CIF1JRgvDwITRwdS4GD1Qj19DAzO69KBFR32MBk0wKglDxVWRmfdm5sk856t2FGvNOd19FDTWEf8gwsJiuvsY7/s8UjlePn/z1nfrR1VdCWP/UI+nS+tzmI15f9PaSmEIcgCIkOSia7G0bilEmYxcQQtRACUzk5KnIJMSA0MMe+zzWDNxjO4IwspcILkfNxF2C0ZQ1WkZYaJCM6YPQNzNShFi3O+9UoHelTnSzRwDzRyCPFKYApEzKKOwEmSHmCwQfgqv1+vnMf08Dh/mBsvS7ufdsgempZn3Ku0cjiqRjMCiJEgIRTiTMNIAZfiZfRgBIwGjQ9x9NEEUtIQ5h2eU0kRkTh+7kyswpXm6CwERgiNh4Zng+Pn55Xz9aZEnN8MELhmQ3Xctq8NcN7WYjzuyjUksIhXSENnSgAh4RDhpdu8OOSNnpGpZ1uX28bEuPM4PJFukvr+fgkoUTPTT61c0utSVEcYcmAnyqN6hZ0KmQ4IDAGopNMM9SrtmZu/nqldgAIdM8khBZsCwrPL7X9mmq6zWXUSbljkOMM8IYrl3L9qul3WO8/XtLKUiJqTZ9EfwFSUQgwgINZHQgyETCBISyJHAfY60cAJkJEYLmEQBAHPOUiUzACHTj6MDhEcS8cf723IhJiWskETEpXpmzDPTNIZSbCgTwBBozDGmARAJI4ADIgSnRD7864FJiMgEAFGrjjGQMdNb26afWkSE7vtJSgaPVXEqC3ElAj9zWo/EqkVIgeiwYWZNGJESPdDmDEpgVi2lj5kEiZAIEI6UFjPMFQmRmNEt7YGDxnxMv91Dhf/bVXG2tkYEE4ZbegoTEKGz+2QWAFQtYQmPrREQU2EQVIroxEiUQOjDbAY9Xv8PLgdk1VJ4gYGMOm/49tWkJMvycX8/+yz18vyyuM1aoNVUycvarpfnHoYqpVKrslQys+mRxIKaGTBewgxjMkB4IGIp8rRuE7wwfXn59HGcZgPYApgRFvx0i0NL9YxzDJBmUZmbh339+X17/tRKux9jpbpdL9MsAUor+/3jsaVK8yrlY5yqKkRhU8vilJeluudDnfRYtD9qoZGRTu6BEIIMj1pgUgZlAKHOOZmhz3ndnm63u5mRFGTaEM7RL9f19fX1+elye7th2rpejnnmhFrVYBznnYOKVIzUJNXW++Cl3vvRLu3H17fn777Jjw8fvSircD9dpJBwtzEpbP5eINiKjjHMBiUUAlW59XN249ZGH0yhqvnAwbgTkU3DyJRQVTxjv7/X2jDQsRRC5PJnv/71x/m+bI0Z7+dxu93OfS91QcLz7JdlPfYbRLaiDwJMa43O6SPcXUUpaF223icGF8jkkjAFsJX2+XJhleM4gLOwQKZKyxBEbtp8WszXzIf+F64qWNsxOiR+d/nGzn6tK87UECoaiFpLKQ0R9zgh+en5+U/+/B96xPvt/LsfXzNxvWzCcnl6+u3rXxlMn8fLy6d5vwsmGVZlpGI+xjj3+XE/BmErVI7bHdC263qO9+M4/uE/+tMff/zxer2+XJ+fP7XlAqWk2X1ZCTGnZaurzXh6+i4iNFlRF35ulGWN2+vX7z6//Dv/1j/6q//qXzyLN0IkBiSS5u/2DM1i5Ok+TURAIobBHEV4KW2EmYUQ00OgCS7E16JjDEgISDEMIE0NgiMHB2MEBLEQMzeuTHofOyCw0NNycZsA4W6LNCzu7pgpWjITEogjwZgECR0jIV0xA3GiqPDskZMK9OxJzso5jQPlMSBKZCBCVZ/uNpNDucbk/haZUGDBkt2OCYgVCMDnQKBSSjIxYxKOV1tWjhgGyMJ9RpZtRK+tMS8ICBYLsWM6RnJOwGEO6UREJIHQzSNSUbQywKMsHxQAASVLK3Vp2/v7zTyx6qc/+u4jzmN+tO1X9/0Evy7XzyB6O06AhKA5d0SmpPM4AKA13s89c6I8wA18u+3r8nTfj3ufF61fPw6zeLvflsrvX/f314/LciHy9+PDI4jksm4AZOZG4JSADgCVCyKaBzMHgJnl41nK6AQZRFQgnCNVMgIHJPRpiBGptSDwub/XuigHqAMAEqnAnB4+MnNplRjO/oGIiGE5CapWIZSMwASbM5CAqhlQYiaoFkQGSkAMBJCHCxZqeWTdLdyIkwkMIvMxfo5HF0iUa22ZyScjlAhAGo/Q3DyRWVUYQM4dIp599lJgRicSZHrQgzMTIFnUwpAeUojHWgXBAYAAIQJGAoIiqGpCollU4YdjMiDNLQzSHQCWWgFcmNwGBidBlUVKisg4+xG9SeMCHOg+wrMiOYIzkjAAR9hIIkALA/BpAUCJgQCAQYQJRQSP42CG1gpQZiAC9cMJKGwCBJZEAgh4MDdUlZnDg4BVKgC4pzs86F0RzsiEApSIaDBFhFjdnYgzo/cDAJar/tk/vJzTSrN/9OUPRHCO/XJd03Tb1qYZ49YUVPnWs6yrIM3ZlTx8rqXYjLOfrTX3GzKpoBCP4WP0B6Hcp52ne0z3qLVaprs3pD5fkZILjdFBTmXxMIQwwyQ8z9ODWtXj6OShtdxut+vTWquyAISdPnyGFE0Az2T6PcsWkiKBRBg40iLzwd3oZpSUCQIIXDAzPOARrsxETmads1cSc394/cY4tTYAKqXtx6Fl3Y9OSpS0zzsgj5zuaTY4oErNdCGiSBIppfR01fpxu7ey+H1U1NDKlAbuCClMiB4egHXdIqJWJSKM+7Is4e79PM9zjjMzMSECWtWI8BxjxuOvj4Qx5jj7PeO6rOmOiEnYZ2fmjFmX9dPly9H3iGhPl+3z9Rv/log+Pj7GKGbRlk9Vy+i9tbau2xiDpW7X6+vr+5cvX+zsfe9/+sd/cp4nuJUiEDPBMz0JEVMisDAluHvR4smZkJSl6cGLVq6F9/0mJAVLVSEiH06OmspFE9GQDBKLhnfVWpft+eWbb7/71ez009f3Yc5mDolBIsE6fvf2919vP2/L+sP3fwt9loCF9by/nnNAkSA08k+fXvp+/vpXv3h//elybdvTZmHEkoT/6J/+a69f37flQgDMTtLNOlM1i2VZMhMJMtAiE7KU4jFmnutlkXLO22/+2T/5w/3v/pt/9fpjSSbhj3Grtdr9nYAgkRC1bQmw93O6Jy6A8uiiV4QE6OP0R/qSarcTEdbaMtPM5hzpRsKIyUxK7J5AOcbp0wCgVIX0mOaoMYcWTkhhWrU9ku1VdD9HRNZSpltSEIKFi2rvd/TYVPs8S9WIGZDDOoUjqbLCQ01DVQJw2MBJSOJRwJORqqy+u5C0VoJt6hgxxnAlmR8ncnGk9/1tuSw+J4G2omHd3VWv+3ki8+FsxkpIbmGmypzewRwTkBBCqwA8SorOVLRqeFoMG1MRBAM53R2B+4iIjlrvMetaZsOjeKjc717XF8By2ydSWuRj9/SImEJEKaX34zg+WJMIEbHvO5CWtr7v5753xPKf/Yu/+Pr6Lo1LobaU8+OoqOM8chro9n58fPPLT6djBxPOCeGc7OYzOCEt0l1LlVpOxP2cxKAsbx+vRdvL8/O4Hz46o4kUJj37JBIVyYT9fn9+/hQR7++vT5fntOjnToBEXKg5EhfxTIhoy7LfT0QmomGTkBA5ApQKALgF82RKt05J5hkQSQTMkMGFFQHTrZ8RYcMiKdMfEIlHjTUzS1VmHH16jG1bkOp5nsk9HMJZaXPvpQIAJUildp4EiYAMAAiUBEKQiRYeEdMHIylhBjpgPo7+DFESru6OrPs5RTSSwKGKTkyDVAYGVqQ5ZwZGduIQkXG6gkBKEh/joyYwMzESp7slC0VmWE7gIpA4R5gNYoBIIBSRiJzDAfIBE/U0JsRoEQkphHoeYRYPuU0tG3lOP5CShIny906eiDGGsjAyM2bgGINZ+zAQYpbHBF6EbM4xhuFobRXWOSLmMIRku6w1wrcrvNSybI2kI8HLy4IIYBn+Eaj1Aeecnuckzcxe0CmyEgJ0klROonM/UaRAUgAgiAgkgPuc1j9/+ab3Pr9+HPNATiUtKo7AgkAkRaWU3ocHqQAKPpfNUR88sqpFWrWMBydZ2MEzAljJCZA4w9Ksss7Rl1IhHqhORwRBdMAxp9ODKS0PznwmjHNERFmIHutPA6YUESb6+9/89ttvv/30+ek33/9dkldZ+7DW6OPjLXJetnrb78zsKI4Rc4oIMDohBKByGJ02pLQJoaRFap5eggWVdDn6xwiTdmVtPo1aY0SPnNP2facMVf3xhx8y8/b606MUjog2A4Dut/N6fS6LKIslICIkQGQRApaZkcwzA4hDoTS97/vr19+tbatLOfqJDOtlRXS30erl7QNqrYICgWEJiVXqQ6SjrS7r06XV6y/X2+v72so4bszYioRDBEbA9MEiL0/P0yciujvyAzteAECIW3uOcC7aUFR1zplBtS4LM696f78nk7SFlJAiwNf10/Pzp8v2RMQW8Lvf/XaYh+fzWo19KfD5U/nxh7/67Q9/zVLA4w9++QuYzmYLayly9PP65dNu4/N3397vd+/2vCy//G5TRSxk4cc5ZjhiXJ4vMYlYwvsY1lpLD2QSkTnng4Nb1/Yx8nx/RZW6XQiyCRWAq9b/0X//3//tv/zxd3//vVK9lNbjPmgYGOPzvu8cQazBlesViCDJ/T7nxARhLwhSykgPjCFpfdhphEhEwGSY00apkhB9+hijNiUElkBk4nBwFlbOJMl0ygBAyCgqEYmYyhgRSKnEaY4QVSHSTutIMiOQMIhFimRekh666KwcBIJGBeWYZjF9BmUsAmCD6hI2K9c0NINAt3CbCY8WH7dHfAay9INILo/Pfu83CjLakuoDgnkYDMerNlUyP1JiphsghYrImJ4e1k25aAN0t0xRYeLIGWCOxFL66RJyHmepTGxv54dzGud5DubvEVfRTdvWz1y2CwIdx1FrRQgMsokEGzH47EYeMZjKenl5ez/OM3779/d/+S//5evrq8/gpepaPn16+bK9UOJ59I99ZL6f1n9RqhQ2M4NJAHN8cNBS2++xOAgxejIIZuUIIAt7/uZ5nv39/mM6FBEqfLu9I9Jar57Q57BIIrLhfY4+5xkDADPi2p6shxMVWc7jCBmBcD86sCDNCRZpLOY2EOGMjEjhMuaDvkndJpJEhIcXkYyM8J5+aQWKwgNYjxSEgBwzAEDI26LuEwKm9QhAQsyZ6T6DmSMn0WAkTDjOe5qVy6WUQGRlcnfAIJLplonDjIgERUQiAAgCHBCkinvejw8AWNc1Pc7zqFghEgByLX0/wJNEkGjmTIzIIDgKNe9ZtM7wCM8TrrhJ5MghDc2np5FSpCV5n1GwpjFhED/QTc7JfhoxV5YZjpgBARgWzlGJqJRKzH0/zbChAAULzAiqCjHMusUUJmQopbg7A7hPN0BkjASOpZWZAEnhYBmPxhErFSk+h00XQpAGKZzUP8KItvppzBN21UaeJ0AiBxEpCliSlPPsorzVBqOzDsgYx4G1RmYmiEgmY/X9eCusAMXCAIKZtGKAvh0/vN/OfWbVQkEQbqZHH9enp5HugbLUkQ59jPGmUJBb9GP0gBlE4DAcIbMR0zmG+7xerz5jHP2yyuxTkChn2Ewtu52EYmaTCwkCgVTFBDjH43/E0c/7wYAicjteAwCZLCZ1Oo/7688//PD9b5ft30gExN39SD8TCYm354KO4aMWjiQNssQH2olrmUIj0RTfEdPmM8ncu/c7sf/9b3/z6frd86Jh+ahr7/3ACTAhz+kZLMDiwuyW7z/8TA+b632/XLfjnESKJLePExMw3+SgUnTZGtID9A3gyskmOGw6I6p4+DhNRNd1BbGPcxhyre3juAlORiSArdZWl3AXkZnWtD1yHikQ2a9PzXx8zDdcc2R//rwhmGf2Y4QAicYIqDrHRK0RkahIBJDTz9aaZ6+kVJbDY1JJFBSpypl4WIpEroIEAw/l9rQ9PT29nBFO8Xa8vr7fal0CYlm1jzMjFahC4yxz93/w6z95ermOecYRqny5rLf97u6/ePrFGOOLXr6+fr9t1aAPsKLiyTBJSr1eyuVy+cu/+qunp8+XTy+Q6p6Z2FRQMNIuyyKM+34DytLa5xfOXz552uPb+LJ9+ni9n4d/96tfXb/79F/81b9q7Gtb5g5QLx2tzz4lhUEYw3J/e2XmWusiKFUgbI7OzH3MSQBCg4AXPmw2QGFR1d1mpI9S3NLNKlVxdHebSMLOgEgxAUWA8Ljft8J4WpotS+u9u9sYJxC7TxFJiMAgQoq4KiPScLzNEHOE2KpSEgp7+HAAUikv13c7kVEaq+o8bgAOOX33UqqF6bKlWCpI6JjRZxIGpB7HACaWBZiQObjdczgqEmYisABxQOY0iDDw9AkRBMKekUCSCCEAgclFVNlsuLv5CCkgSirdAqxzHCoSPtZWZx9c5Lo9f7k+j/3d5q1u300nJTUDZBl9yqMMAxiZ/TxbWTxjDFuWxgIJ9PZ++/6H37b28vXnH//Ff/5f/O53P1wuT+HUb13OOd/vf3/uMCciX55fvt6/rpfl7e3b6+VC4YUzc5ZIEcqchKi1cJLNiDQkYkTC6NZvr3dRfFR7LWd3SWUzu4+P1tqiHBF9TnORsmwspbR4ZFhZE2c4njFnJgMhoCcCJhHbY4gKBMiiDxlLZmLQtIRMQwJVlGSMx06ChNnNz75DTlUlgvM4GMndWaVWjZznON0nIrayIcmck1lqLYQIiRkzHktVc6KsTwJwzxzTDOOTR2SilJQkFJZHr9PGODsRtdYevcneD3dv24qIBJgIbVH8vWohcw6VR6QUH7YigOxhGWyAyGThERARTA8+slSu9/2dOEXEI1B4mGFhEg4HBCqYmTkT2QOImDkTH89ffjhoATEHRBJQRhQlQhp9T/DznAToEaKgzDm6KA+fWjRHZDggIFJmzJzswcwQ6UEQnhFOQYTMdJ4fAFi1uQWYiWgChSQzzOEJEQmEDVLjzCSUuviMpZXgQKJk11aO40AhTLguz+GWmYBkGZGWQa0uguKOkFBrPY47ICfNh6WnlMqs9/fXhYQlaxWPeZzH777+pGtzj1a3HAGBjChJiiyAfnQAWC6beZy9b0/L0Wk/H77wZglMFdLnmCql2xQulhBI6JNI9tmhA8Dvn7zEXJMwMzNszkdMMTAeGck+D0t7+fxMwn06qyTy6AOwuCUJl7bZ7DC9yQLWYxyE2ET6GDZNS/EZ5MIYHz//Tqg6xDHOb5++u7+9/vR1tzyBB5rYGAkSgDOCI1bRec57/xAiQXaLDBSkfd+Z2d2P/b2WtZRynqcZ9N7P8xQlIhKRolA4kdequp89+8mFBYUyEQEjSQS52PCK0nSxfmamCEwbyhI+SRKL2zTAuCzL29vb06fnWvXj44MBgaiVOgKZmagxkwjBwKMfWFAVGYv1vmzbee5gBBwQgYIRxgmlkEAyRk4nIoshvGxPT6f5WhYRUZFx3ocjALBK+nR/1JpvCIGyiLIUfn37mYtc6Xrse2vt6/n1aXn6+dhJKRS/3j9aLdbPL8/fJeV1ZSGOCYULciFhJ0fKf/Pf/vdqLW9v76WUMQYzVy1MFaEQFTvtm2++qWv9+vZzH721xuCzz7Vefv44zoQvv/zu//Wf/ou//f77silk3uMjG46MCdCZB5qCeYQQLksyWtjRQTEhIrAwq+QYjGBuQJ6AlVFBxnkgngMShRMsf48vB6AURZBk9t3nw/gigBEpnJmwlIpa5pyLtmFjz0RMTzN3gZg2CZgRmAiBBCAyi2ZEnvMEjMLNIZogJcjrOX32IhzTJFMRclo/9++++zbTuanxPGOA530chFJrnQM8A4UjkZWOfgqVBO/9rCroaeOMlAQSMKqaFtOHhxNk40dR2yOtsPRxFlXgdJ9cJAYUJqC891uhhpQWgQwTo5Gjw9NS5rn/8S/+lG1uVZZydVrcvNXL0Z25lFb7OSNxP25Ny7IsYa7EWmpM2/dTtavgS7m8v922pfXzuG5Pv/juV/u+E4V5Xwvrtl7Whko95pc/vLTW1qVUFbLH9QFLqX34A0vt0QHQExJEtPAwERaGYb0tbOmQ7p63c67rqq2O4+x2IqIyFoUej0RUDDvSA1Me9CvInNETc/iQIizkFuew3x/AFDE9IAMenzV0TKRAREqIGJnJiAzAoJ7ODAleRFXVAANQhSICE+Z0s4kqpVQz68Nak977I1QmpBkUTggbMweYUEuf0w8RCZiA8GjJEghgpk2IwMAqNBwy/Tzu1ImECYKULaay7P0oIiSZ7qoMgD6dARCQMiCSkQAjwYCWiABM80nETFAQR+8ptC2NYmY6IE53esDaHB+Bt8fpikRFQVAmAou4uxCZGxHZA7gh4zzPZdmKSu/O8FiKpyoC4Jwxp6FPD0ML611acTNEFmKmCJCCwqwRRhwMuGhNnxGGAolRlC1cCxEEWBDECB/obMyqCri2BhBP13WMswhdtuYeqrX37hFSisVcry/H+YP3UfVKKet66cN8TkhQmZkPuRMCZUQEIAAhboD8r/7lf9l7/sN//R+0RZQj/UagCCEclE4YilhZJhkHU6QiIqL38xwD+xk+luszZIT5nFNKNQ8EsExBSk8b3WOOMYSLe87pqIK4jLNPt8f5ahBFNUaKcviE8NI00KcbUuJZVn0ymdLIeqro8/Xlp59/RlkEVBJt2j4OiwkAjJOPY4lATAGUGSOGBHimB5GmgknStl6+/7h/fnouSocBESMV7w6nI07WEsyYeRwHgWFgTH/cDqYZqRz7TUshLiToMM8+RalSHT7nnNMCEWtZOMUU5+vX6/PTVgRVMhMyBBKArGet6iMzs5TCCaU2BNjH0Yq0Ur++/qyE18s6Z7/f74Xg+WlhimMcrRUMNLNl23ycYxgJo+A+uhbdmobPWpfzGG2pAFFUUpAJWrtk4HkOzlyp+OhbW1ISgHjZuvvHsa9Pz9KanwOGEUvm7dhvrPV6vdyPmVR8lqUVzwDPBL/d3wDi6XrF9CL6p3/+54lweC/b0q0/Lds8jk/XJ+iZCKXItl2P2yjSHpG8Y9yWtbzfXw3n509P7lOYqvI5hmWq0HmMKsu+70F4DkNWOLwAHG/79t3G6Kih21JW+f/8p//vP/v1H0GM14/3p8+ffvrtq5ZWcVMRZbTRhaJqYgSI7UQEHJhGTsieVpkjPeeBKCyVEjiJVMkGECVm5PScPd08kSIxA8AymxZi8twhRYtQUADOMSOyCm7LRsRvH+8PmlRwJgY8QlkR7MmJDVjSz5hBOM1QNNPFHT2EdSgBZ5eVldxtmh9UXKocZy9lnQEkbDlESGv5+PGnSI7g4xykUli0gGef6OmHhQuJSAMKIgqYKzYAjEDKgJw0D5penUkFI8Nda5vh7pOEHf30vCy6KWSM3u8kCtLqes3Xd0L0ecS83V6//4Pv/slvf/rtdJANr+sW5gxo03qmSLFMbY0SbEwAICRmmNObtiLP+3ln5qerXi7wz//5//Dc+5zupzj2dePrtp23s4rWTfb+5l5m+Hl09977ORkCAyybKAtC5JzTA5MoADGwz/QMCGeE2UdmRiKRCFdIBiDkQgQQaZHgIVWQDCKBJiKFTw8UKuYDEJdFp6fHeMRtKzJCIaKqOhEALXz83go3jR7GcoCM+cjWUYY/Kv88Ex3cZ3jvno7HDAAmLAkJWSUZDOZumakKqgUgxjhnmkoTUc89oAQAIdxuO0sKN0SYNoiEmfo4H0V7CITwcYKIInKah6WgAmgm9DydDCkdjALcH7Var9oIQIgJYvY+rTNjET77EBEQmOHhLihFERDZPc6zPQCPyEB0nB2ZKjPkhPR4IImBHdAiBPlB5ABHiIgMcAtwFMp0ALNxjmOU0ojh7CMQEFGEp50YUatiOjCFGUEISSDMmJnhDvn7vDdiRhEeNsMN0h1NGcw8wgoJI/XhQBmYCR3QEWUfKUj2FkU0Jx5ffwYgD1RVh5Fv/ef375e1EFbr53/5829+8c3Tly8vf/TrX46vt/BBXOb0IECgyDm7F2WPM4FFEzHfvr7vt+Npk34ea6lm56Pqtq3iaYgIaUU4AyBTBR5MS0BAzNFj+FHWZb+f04wR55yPdFKdyZAEFknA0LEHk2FupBRZkJdVM73bROjCwqsgZ450T25IJDTdImg7lOmbL59fX99+uH19evnmw/2no1/XNbrhSAvv0MsqRSTGeTJwq5F+AmRjBzIMRFw6CAAII4LNIYxh0+MQHBEDIjFcpDw4RxiGzB+3u1KAm9tMBCJwijEmtwZEw4aoYM5xnlq2ERYZSfkQz/nhYwxmWSnv1o1RagugZVl5WSIA5gBCSCMMiDTyTCeippuP6YAv62fCnLdhbpWaWdS2EXM4J2EfVtan04lAWytmZjELKjtAJDr7GM/r2vv06ZLIXLfW7vePUBakWkWJDSYj7TZZmGhRSdR57rf9dlvrZU5ApZFYWu3D12uDw9fLReSwMYnzy5dvl02Kfvawpa1fPr0gcjXyDCrKhS2m2yzXZa3LyRMY78dOBIAx7XxgalZFO25XFQCY7yczb7zaMRxSJM7zFQmTBkne73stetoQLhLwsq123MZxv3y50rz/W//s3/gP/5f/8//D/+5//2/+k3/AvPXztmFC36NcmTkxZqYnnIkZplrHaZUxgU6bAV3TiEUTIoWD0CACEISpREx05IxwZwEmYJZpnTEjUoXDnVCmZSn00AFhobt91CITzgxYm5z7kYgR0TEDDIHCAYIUirISUYYSYClL9AHOqyp4aKLM81iLIqC77+dOBFrbMICtqqBFxkQP73EQwbQ7UfocAKVUaEs9+g0QCfmq1QF8dkgORDBIcqT86fWntb5s7crcxvi6z3uGtLLt4xwxl1oBYBwnCvfjJFZtMOxUhMxZmyzLut9nzsHIIhJjfPrmy+X56be/+2FCEtXRD2YpIiLikcMi3ZSp96NpIeFzP66fttvtVls5j0EYfewL19vtTUSE4dOn5yqVMoYNUDzP/elLzbDbx8+XZbnbQHfAiQRUUFhZ2jGmR6cgzAAEFEYp7njORF0snJKE+AElFGIP3kobYxgkUmESZEyPET3PXhsVFo8HbQkZWVWBo48jLBGosDpkOiIyOhBkukM6gHnYowpVaInp6UmCwiREYT5Gr20NzGA2M3MQeiSnQFpLy0fhFoFsBBFd2jUI3B6+o4ckmDPIZoDaw7KQgFJYGGe4B2Tm9FFlIWbI8IhwR+C1NEB2d9LiM2IiAEZmcLgnMxMhRqJIeM7ponj0TuFVizAzUITNOUdGEhIBcGQCqaSgs7daxjiVHhdORBaU+D2ICpGEIgMAPMAsw5MrPvAg7kaUZs5EEbC0RVjNwsyYFYEZea2Mkp7AzBYOOQmJUEh1QvAD3+k+42HslDmstZUyMBIgAAAIk5IQwhIcrFuVxqgUU4WTY9qZie/3+1rX7tT3GyMBINnUWogILW/3N4+uqsdPH/v+0cf43fe//Zvvf9pW/e8hXZe6tm2MIcQAFP7fYpIq9z76eajWf/3P/2Tc/+LrD99/efojZEGgTHaDTCjcRrqwEBABT5yklO5BMyQ8wuYg0jEsaCu1UvL+8VpF17YkRGMiSkuYMWor3R0hBHghGj4ZDJ0z4qItS6uluqS7o4KIZOS0cH8UFzXA+9m1bmrQ+0ASkTLOuxhU1MJknnYO1oDIRpt7zoTTJzIII1kIMwH6DEQC9ICxbY1LGu1xHo8wThCJUkYidPWw7JtCKW30nZZ2jMPCHLJnVtFABPLIKQRtIcDh4ImJLJiE+cC5REBAx2N0YLIzQRSczyMoaV2b+1y3Mmwc1tulvd7vqnqRFVIedLeELKVKGBEFhUWcswNJJBQtbVkfD25VFS5FG0JYH8I84szEHASDmtaIEOZzOMniOYtq4Wp9AMpueeuzcJnDzIaNWVWvy8VGFCkeuGwvgWB2ArGovn289/N4uV5++c2nX//6D7//4TfXy7au6zhOEc1EkJRARBQQsA4WsrT9PKvqMIPwjKmS4IaMIjHHOUdfliUiWmlb2+acMXJt1TLqo0DfrdbKnNPjUqr3k7RmQo/Zrq0ovf/0O6Qv/8F/8D/9j/+v//e//st/9ad/+qfn+09frp/sPIbE7dgToIkEwhg9HZkEwhNJiqglYoKwgSe4IiBmWkybyBIe06yoKMhMF8IwJ5IciaqUIM4OKbIoqUo1G8NP8BEkAxKR9/v90/X5y+dfzGm3Yx8RGMMiMpOIa1kwBQymOQDBxIoFJgqzuzmi1LocZ69Sy7IinLfz/vnlem1fDphtURxYE8/9aKozByGsrUXjj/eDAfq5C2smDffhxFKTCyAhaGYCGrPwxYf7OA9iL0W4LIQluPB+ijzKhARnqgogAUDlsIDptq5LUeIEraRgWeHleX1/t+369Ktf/8mIXC+Xve+Lrtf1yS0jTbQcsy9PT8dxLEtjlnGc2/VyjBMFzvMQFc94fn4+57hcnhLmGOO4v9J6rZRzBmHr04aPwl6bnPvghc63W59TtaoyGFKgTInsHqnMgmwMngjImWhBQsRK4YPBIoJpyekcQIBAGED7ORCxiqq2WtW823AAVWmOaDNiDtFE0Awh0AiKmIAoUpSNGCEn5GCFxorIc/ociYQPTWliAnhyhoClWQYGAZYEQCr5KAFxEBGaI6IKh81MU+b7nABQS0FMs2FuqrWtZbiGp2eAxXZ5esiDhVSrWriIsGhouOcDLz3GCcIW2UpjQIhHswwDKdIQOWw8TruAIGCzYFItlQCnDYAgURbN7EbhYYHEWlF4gB15KpbgICZAGQ7TnNuSmTNOhFQBdEIgDRYCjwcs5JF/jgeDWkplgK8fH8wsWEprbmhjuqfboMqZmTk9AwHO05oWAMXMRIyESAAyJUHQieCWD4XIGA+bOkIiIhWtSOojHEC5CDMxpo85qNT6un+Ej/M8CxfEVBav5Ywxx50Ug0xY344kXA0+/f2PvynXf+2n/Ye/+v7vP/3qx3/vv/OP397fN12AIDwRQoSYc8w7s1634u7ffXn59/7tf/N2uxE4oE1LgIKgtUift5rwQEPYcC7Kqr0fQHhdrue0ex+llVa2zGy1Vl56NyH2ae5ml5UZj/0MyJqgSGjQhLklDhCthBozVKtNPz9GMBzHAUiq6h5j+ONKvX9FVSXghNkcatXX+er3vWwlMPocra0v6+UYcw5vpTLI0Y8QBgEPUxIl4Ewt7KGJGDkIQ4SoZLe7aEOk6ZkoHSkJ2V3SH7S1cLOYEDmjB+Ej/DzdMKlqIYz0ziSIJILD5vSBwADEyMhCFJhPVXjkPMeE6PdxEtG2bdhPyEnZuBVKCCeVrUhNwXPOAB/5SM2TGzUt5/GGLBCpjxeT6NvHV09sbZkRzNxqc3dwqMtKXFSW4ziuX77cbreAIK1fX38qRbbtcr8dJ3WYHumCBNoG0n68CupSN3IM46otYJJGP/r28nR5+fZ+HH2Oy3r5xZdvfvHttwXHjz98f1k3pHh//ZlJe++qpUiNiEJFAsbwL58/7ccJDrKt94/Xbbs+/ss87BFv1mVbrk9zTswEwMPO2ionSy129m19OfwkZhumVYBmgUytgAhLy6BQuHz5kh9vb68f37x8+7/4D/9X/5v/9f/24wMpLvvtuF6/9PlWJDMzY9pxbrXVtvTj3EQNQIE2rUDgMD2dkgEdIIGSm3JtkSBRai2FCisK5PBZUC2swIIABACigsqlIJE0svM8vS8qmICIVMoJQUAm8m6OpITEmAG/Z+hmgmdwqQg8p21tCQL3SYUSUKa/k1AQnH1EAskc9k4mewDXpsRUihqg4PHW0/Gcg1kh+7ZdzNMTRp8UVFljBDACMWKK4pydPDN25ZVLQUcGmmcCjxAHHFLpfr5va7s8t1aaSJln50hnOCmWQiqAFsulSbKNE2N/eS5JU6uoapg3XvbOsoeWMs1Z5bI9RcRDROqRrHW692NvlWf0835bFt0HHvtk5vM8r9crr+3YezbKzHHe16IJaT4Ly+H3hdaImDMJH6bSZMtFMKgyJEISwjSbGVo0ICCCtGTGDLc0gmQ0UQiaKD4sEsHBBdnDVeTj4wAM5hSp4doPY2FWNjdA8B4qLFxIKNIyZv4+hDMtBjgCMBNHsiUUEmR46OQDExFR2BIjmaAwYUR4wLAZQGGuVAAj3Bzo4Sk47THQloclF4AA/MEJykwPA0Sk9OjmAyCAxHtX1dHnOToAiUitdXZrrTpjH/0+j+xz0fLoSkYYuHua+6zaEKVILbJ4BGRSYqZnYib59IjAKhlJJAwoqNYHshHniE4RPQNQHMQD2MhnJ1YED4yHcgczlTkhDgN3IMnpgIwzkVIAIACFxRPu/bQeVUutYn5GSmYQkYIgiplZcDgBoScmzISMDAZnksCMsEJJlN0Ploog6ZEBKY3Jw3v3AHLHBJsZXeBQoi/Pl7/5++8t+M0mBLnhNDY7A8/b+fXt/fW7b14QeL+dn7/9Y6hxWl8u26/+8B//8Z/8g6RK9WpjIGIiJFJkZvjMRMzwu6qO8bFsC1K73+/CiwURz0QjkgjzgEQhyogY+zx5ehoXVSHi0kTKsmhpsw87AcgLr0wMOVQrOxGy8OIEIRLmgN6DSoeP93sCqS4+/R5HOAChZYwxASDbQ9D7aLajbjbnvO8frZV7P9532I/Bspg5AhmOmEfNmH0OD2IAPy0CU5Q5kNMhENwdYBJfzai27Tx/LssSD0vAnMiCJAyYnmFz2HQEsjAzzyAtnsMz02CYUWStSxqlByIBlAz0ICKAJIEEfmgn0q07QEBjx+5z+GhSHpHvfc/9cE3vr3B5fkqu/Zi1rezgMjCSUBISSSwjIu7nsdQNAK7rdYbf7odUJEBhcvda65zztp/MfMzYjzcishzneerRM6G19v3r6xi+u6PoxzERUwge5ZeknPMYc9/a0973WjeiqI2EJWESX8DB5zzP2zdfvvzyF7/YqkLsblCKjHm2Vp8/fTmOQ4kAwDiD2DzcJzb+qd+X9SIBkUlKJDitEwoKa12CdNpEIiC0aQ/+a9ghje72IJ29L8sWFh7mEctayextv7W2zsjugUzD/Pn66f5xe/3p/R//0//uv/8//p/8R//H/+iXv/wl1/Xr7U7LMuA0n0sVcj3tRExtBIGQHvMsqJPcC5EwWs5jZIAIO9D0DMAkPU6fozdFJBBICleknBaBSHKc90RbtsbMwekxsRBMSqJulthuk6al1iWXL7kbpLMi5ozMaWieYFFKJMSM04gD4uiHKiOi2Dyftqt1j4BaVJD6+2vDZX36JAJ9v9V2WZ51DN+2bdyNS6rUbdX7cYiIn31brgGMiGNMUR3z9JillNpsWzi0IgKEhZWlPFtcWH5/al8ul3OWwmJmhShtbmsl0wj78rLux5sdo7WWjqxFWWqr3Y/nL8/md+I1Q5puzk14ISxMY45IyWH9IV059kEUS22Yzfy8Pm33+91TCfXp+rSfd+ThPpGRJWYo8mxsiLjfhydYPbPcYOpWW1hGss2oTDM7RioRZbpZEGa4iGrhOAMgiKKfB8BE9FLIYieSAArKEaeqqlBhAJtFUJ+XdBuzu7sK18pa2KxLUUKa6FoWwBjnnmC1NAICRhYp1BLDLSEIUVUDMdMD0gWRmR51RickFMKSCeFThFCYCSBAGVGKTwgfgIEPFiiZsry/7UUXZMpEm9PMtAmgMYlU6ecpIqU296wciDxjbsvFM85j1EIs8rF3F/THkLAxCY2zJ0ZVoSphc2YQkZtBgkjJaRGBxEWEGR/RNY8sWYZ1AqDErZbDZkIKBmUQZiX1wERiVk4UKmAPSCd6BAA6zIAwHwBrZrihByFSZolky1yftrQ8jk4gy2UBh2m9LMWDzIKIRj+JSEpxYyTyxIzI30uFM8MgKRORkAQAIqYhFkKezoxw770Is1bDHBCRJmhrIYfFDdLj+9/+zlFZGkJRqSz+9HIds/zRr3/16Zvnt/cfr1td1kqlQgpE/vIXL7XG/f37r+9fX65P3mfRJlLOc0yfCbZe1tv9lVGZZFl0v09io2JzpiMhDkryDGJ/YAzCp/lwp3AH5fD43U8/J3Bpa4Cd53HdriolHQmreSDV49ghLQHO9A4OONxmI2nIp2dAJaL94zQftVbAnGZJKrVkpucAgMQ0xHBDzLPviPmAM3/65pv7/YS8My6AkULDBvpoS1HIPs4MWLclAAMRWN09wj2yio/pJG3YYGZEVNWkjOGkAg81aR+cYTFSIIBLbXsfmA+RXx1jFCzCTgFI7I7mRiTAkvAQHHtiEEKABToCEGaHIwAcPCknuIdXLec5ClMiRtjxdiMxR573g4i0bUB0jDMzsxXvuC2LzwnBx3H6xDknJgaEUkWC17c3KyUAwmG4Mat7urs0RRVzn9M8A5FQ2N33Y5b1Oucx7FwWBo7Ru6omKCvxVubswAFzaCAmMNxVNhT4wz/4xR/+4R+CJ5hXqbJw7wfRYmasoLXUWt0dgQJ4WLSyaMHjfkNEZfU8r58u5mcSMTKCUhEGYHIVJpFSHn2NZITadD92JrNxM5qkwRhEPGxPw9pkWarv97Ef3z1/93m95JxSlrufNo7/2T//D/4v/6f/cz+PHlGftvFxvrTt7h84fdXlwaAPt0tdhfk4f9/7nczALc0im6CILiNperLKsj5ZH4xWK5N1C5sjfi9LAmKuhQmZkYdqCUbC0s0th1DFgnM6iJDIMG/LNuOY4zAbgAYUCIwMmGB+JgBKThqJ6TIAiJCEl+cxkQYsyDzRXYpvn+K6JM0dRNe3/dUht3otJazf69KIwBOWy+X9/cPtWBdBpHV5erM8xC7rqk4vy3K8vWEk2V0KpOAYtycSJDYyKtCZZ/8QYgcDCE/DR7eGuYLQiNrWdExoFJc4r0PPjvlmBwE+M8zj1ngbvsvTeo6zQAChxwmJLNCHA2hr7TzHsFmWmj2PEcAVQhLx47ajFFb9+nHf1qa1me1Ci8358f5aq5ZS395eHZ6+zl6Qw7uy1EbuaZYP2q3PwZgixD6G3X0fiZThx46MUpQBKNNU2WwyA0aUYmanSItkIho+rO8iregSTpnmObyH+1y25ejvIoXKch5GBOnAwMnu7iMSyLUgYCT4YzWbmZSQEVDY3IlEZEGzhHDvIOoEw2LuY2GlVef09JnpxMTMYwxmhMSIBFZpZc5pNtalZeYcBggJfoyBCPt5Fg6RgsBpiSNUKQJU9TzPiFjWkky3eSISkJx9ZGREOqZkxACGJrwMm+GgWvrsl7UxRh87qzxY1U/Pq3sqa6RhoFuPMIDIRAEkUSIBfwy3O7Ke0woAS/GYmT2zYyqgskjmbEqBsxB4umiwZO/n/byLiFRR0rDh4KpiaVLFwJGIVSPcbCa6ZQRkgKmqKKBxRGQEMGbM4U5E0mpmPP5YhILZbSYTikjvR2RwWd7GKEsdYwzJf/hP/szdt6V+/nLt/bheny+boM1Gl3CyP/zD9fr0sc9+7pdlDR/U3/IYV6ba1nHfmWnMO8TRbZZSxpi3m5khS5xjzn6/1mV3zFwcHNkykhQMjrbB7Rzh2drTeZpkdqav1udIdGzI5B63e5FlP29cFFgM9gBJgGGdRq6tMYgChYC0QgHmpuTgERGqiRzBwxPGNOBAQCQ0swf/zHxGhCNwg7W0837TItM/zv7R7R6Mi27hypQg+DZuohgEws2AHIlVxhhEqLr4PM9Jy0rp7xnTvROUVZfjvic3cmEgG65cpg/VShwDoBZxNFba+85MRTDMj/tojVQE0ooyAAhgRDg4JCERIyV4KTLHIBGID2IJTJXS542YTjdRmSGs5X46O2y1+pxkJ6aNMTKjNi2l9PMeiV2O1tZx9NH9bXyUVpHJYYLm9I6I7/c3EOaix9k3alutc1jEGGN4Yq0Vs9dW6zAz44KFHBNK2Xqfystwbm3jhe77bVXYxw4mX758GYGfP3/zq219enpCys+fX3o/krO2cr/f0/jp8nSeIxGqlsMOIpojSAQy1624u1letmefI2Moi8/p6U9Pz7ePs5U2ZxDg+nTd70dYiqJUOI5T2yWRn9tqOawgQWQiAlyul69f38aMdb28396ISHJuDH7e5vA5zjQfHf7V3/wtPtOwPI6wMVPzvn+0pYbNPs5luQTYGIMo0khl4aVF3wVQQ6bHxiuSzMDTDUqxzHF2ihSbUdRRziRmnhEAOefZ03UturZpkxAxkUTTA7lMRCORuvpwOztMV/LUY2t0vPcRaE6iK3kWcUgaHuu69DmRUHgBACSQcdqiGzPYmDZ8WZWFZ3fwpsSRyVCLMhGhwNPL5318kCgTvr+/97E/PV1qFWYFmiv0L6uO/l5owzcoE5+et6VcP873c+xLQ5RJiMx6zGE+Sin77RApaVFUmOQ8ztBQLopEHTlqBzzngRT9sNzt+bLWXK98nXCKMmCIUK0akEkoxFykzyHCr6+v18tLa+1+v2dqAoiW835f6+LDpbbb/axtRZq3+5kxj9uHO4z7sZTym69/t13aTx+3t9tZ1/rLb18+Xepx7DOApTBhVeqHASEQMitDUAaCIVVE8hnLUtL8PM9SZfaIgHBnkSIUkXM6pgsKJpVSEQmAjuNorTFzKYpU+7whRWQf84OEwocKJYxHyzkwx3D3ZBI3y3yo+AgxIB+IY4qAhCAuESFJ7oZ+piIWdEokhEhWKVI9zEbnhMb1nGefZ1u22S3C21KBsO9nuzQzs/RWdQ5fqiKSMuUxH6+Nx/2plPKY7bthIEJSZiKk1EKZD/UWAqAHRCZMxCDGSNPKw4yZLdWMPMnTf36/q1RiJNLerWDosk2YNr27SUZiBJi7kzQ388SRqsTIACSUISwRGTgJFTHc3TEQcMyTYBaGSZQelHl/3OVFjuNeSgGPmGPaI0xBkWkxWdjGzEzEPM8RESKFWSImIgLQo/310PQxETNHdsgc40BmFs6UGR7Ew3EmeMQvfvELUWAMFSDkUu/HcSx17ebW4elyiY+ftxQF28gNcc5EohiTQpYodKH7cVpEraWUOsZ4nHCKlQoLjjHmslwPH/e3163JvhOnPuiRTAsBjdGRJgiazfRZtKgWMoh0DwA7Tj+eyrPHvJ0TkBMBKRvymB4AWLVbD4eL1ggHZOIAiMR8fGIyEzWJ8QFcQxYiDJtEUKoec9gchVBIW1lGz3HYpV3PgSmPQNk9Mh6sQKFSlInVMM/Re++XdctM1Zpp5+jXpc7h48jL9gVwmWGIOMHN+iNDhMg+JxJE+DGCCPd9nzEtLGwutT49877vkCYilFFKsWlICBBadJoBAgP281BVn7aR2pjKgNi1EqG40ZzuyLd+T5xB8m6+7+O6XRmFszNjJRnjZGDh8v76Fpckrr+Hq3gcxx7s6AQUxPDNN9/czmM/x7ZdGPB+7EsrDHb99HmM8Rh0gRlBVqYYpyMSyXu3c04lmYlu3pKel+em/Ed//ItPnz69vHwSbpl4WVn092RQiFyWmh6XbWXmPo513d7eOgBeLpc5TVkiQZRtTCJiZhGquoabKp8TyGNdV0oNAxRQVRHSJ41wVoocEJARc4b5WdsqUt7f31tbMu3161HLBWE8QD1E9Pr29XZ/v30kIs5jj8SXz/r/+H/+38bYA+TT5+f7rQtlP/vsg5FUeVonoky494CIVot7ABADnHunyASJDPPUKrLWj/e7jXlpWy2rB2VgIifyBDMbHj4zm9PYDRSTFBE5QKlMjlI05nj76cetts/bdn9/j35vnIyghXAmB/h5D0RkYRRmnMPTMQmF65gTEeW6NPIM67VoBFgYCj1fr1paH3ct+qRPhp5ggTEtSaqUmuDIJXGIaK3Vhn96WcbNG4hFoNO0LEHLwPf9wCpLu8w5u0OkqZQzklGP+6CJ6tx0Ow83gD4gsgxRnyEdlVoveMAsJXMCOo5zPm9P3icpzTxckGAyEwMn5X6eFPQoIL68vMzp6Xi5PM3Z3QIBmIonfP24reu1j/jr3/z16+vrD7/7u37e/vBXf7BdLz//7odfffmylSfbjXNJjHV7VlzH7jHAxaXhHCOHAzJLiTmOowfl1hZHGsMKa6qM+1Gqrkt1n1U1As08w0S0leqeGNlKE5HjmMJMJBHp7glzGhIRIpZSzMyjK4uncW0+ZhgkPJCHGBO0SUBXFffJSGGJiIxEoj4jAxGJg0TIcYBYCHIJDxYAB4cAd8gIRgRSBJAUVY6ZRI81MrrPxDA7M5MBGMQhECndhkd7oKKR+hjHNGRa11VI55wQqEIBnhmBHukA4R4MTAwsgpSiYDbHnKo6p3sGqQagMIN3MweiMacIRT5KMzjDScV9EmkiJmEmahUOkEI2LJkScoyBPjZ8tDO9LjrncOtjDFVVSqWptXRY+3EQU2vt93yiOWNaJBMwYHCyaDP3sJMoiMHTWdBMIdQnJyYkMcDv1YsJmYmJCR6RkMTMWpiYUTgtItzBAak0QZLzPDfeWNrs47p8y+lYns6zb8vTUmT2QwkVI8jDz3N2KRxhwhTel1q+3m8iwogeMcaodQkHRE6L2TEDIOnjow+ndX1yPxJLuCJVghzjlKKYLpSOIJkNGJDBw4YjBhIzMzIY2ggP8AdcxzLW7WnOeRx3JJ3pzCxUkBPDmBmJgRIdgCkiiTQS3GdElFIiPB5V7NFbXVCq2ySnS718//bj/v7x5cu3Zvci4d6XBRFpzilSwjN9GJhnQvpaeKnce59m1/U6592xAzkI1+uzQ3UaTXhGB/QRlkHWR+RUzNY2ERnjXJb66fIZMJ8u27Zt17K9fX396ccfxrH/9PMPy1IB4ByTWd8/PpZlGWNs2zLHsOEMuPGyG6rUSNzHsY8PZmy1ZIP9uJUiydnN5KkOCojkcd9kMevkwFyGj2VZLBIwioioRrhUXC7X0/ppnRl//vlHKe26bffbCcq6NhLeb30/3x6CSBFZapvTltoua5PSHPGibb0+LeslM5n5Vy/fbltFiGUtBDinb+uTWWCx19fXy7qYz21dMlOLRMT02FqrVeG6qaqZFS7Pnz69Hx9PT0/v7+8kXIpkuLsXloDemuLM+/0Ozkya5h9vbw+d4nEcpHyeO1J6wOi+NE2j5+eXz8+NtczZH6U15vnoB+3nScLH3pvwsR8EsVy24/7xw+9+SxiE8eMPf190LdrXNgkgIpTFPIq2TLz3+Xx5BiCbARGjH5TUpDwymAkTHXJ2xSxNRXORddrpGfEwuXBgBgkEGrB5BIYYJBOhhyQ3lb6fhfCb9VK12JwQBgQAiIxSJdCao80IgHN2pVRVgvT0efp6vSTjNBP0iUBApq0k4t77OaY4S8gxDqrI3MKnQSfG9PRQ91pKUUYbsx+y6AJuX7/2OThDrtenMQY3jAnvr4dui91HYNikta7H6Hn0Wz+el20cplEHMhrfd6eiCBLd0x8mWw2pp497fz+PsWZhBlS8XjQ1qPAI5FpY8mO/XS9Pw2YppVtflnqeJxGVwsd+RgQis5RpRqxaSkT03r//3Y//8X/yn023ft6uW/uLv/zb60v59R99+8MPf8eDvv78sbxcZvW/+G++/4N/93+QhwmWZUuX2W+xtStAQHJCEkKGzxkBrqoc6ulSSoYlTEyfY5RSkSUgfQbi45kKDxEK4Qop7iAi5kMV55wAUHQhAIaR7vkALEQCic3x2EspPTZbkOYkhJRCiEhJ+DCbpmNhjukAhAkIswgG5YB0z0QvqBFxHgczb20hoN4norZlOaclBkECpqpmZvipqkTiYQQY7pAIEUSSmXPOIFBVIDSzx+sW3IQoIAIsPQGDGREo3QE4ESJmIosiRBIGS8wxqZJ7ZNK0oyqDDYYoQoKSmZHd5oEEosrIkAWtYHQbAZCJ0+zGuImIFM5ZgNS7RcbbcUcEZlEGJimqez/nPIwaY2FUKWwWZmMpjZlypJKwkM1EV0Z1dHADAGYmlKJlJqUDY5KMnJOYMz0iMBgQEDEitCweE0mQ4kEhIKVz+DiPFIoYj8N5zn1Zq8fulrVpW+o57qpVS5mBw6FuYpCIrUcKrzMQlA4k5mmREYlEAKSyWMR5nmgESE+XL6hxfH17e7v//PrzuuCXT9/c9w/3uV5WrY2IxkhIxgBy1sAIAhAqJYFm+M3n03Y9I6a71vJ4xWb4x3Hf1vWqTxOCMNPDzcpjEoWYkBAIQOBAAUAkUo/jQCDlYj7IQRB7dwIyGxRIif1+o5ifnxvTKbgLImISQMzJPpeq1MS6U6FhsaAiMoQVRhXd959LxQkGlZDLkfb928+I2I/B4tKIgZfloqitUVFY67LU1nvXWi4vz+az1tpKPT/2X//6jxDs+9/97evP3//n/8V/eox5HP3T5+9a+nqlOdPzfrnyOEatNf3knEA252TIrZVM4CzHm71s3+zH4KKrUGCMfheltVTvY3u52DCVmqzB5Zy2rNUyMrsqoOc59r3vXDUTmLn32bsdpz09XaYHifB2eb5c1rYAwKdPn5ZSzewXv/zuQZKPiKfnT70fRaVWnf2oy4aImDnODg+gu04kZ+bn66VVZWgIMMYpJED88rKNbse+vzy9mJmytLZmZi1y+3gjIEHYP26ZARD7vpPMBJru52FCWlAeBFAiMDNmXrZ1nj0SrtvGz2LHnROu6ya1fH19NRuX69ZfT1IJT13a3/72d0JUSkuLZbk2FWD5i7/8y7/927+7rpf32ymJ12U99h+VhZlszgwDAEhRzqd1FcbRJ0CCBwO2Uskz0zNBCInSx9mYay1jjDGPOTtxEOajvY04KU2oFEot2j3EQ6UEQUbAgTKjFlXRRNzHTJYJPjwXECSA9D6GDdfaWil9zrEfa1s/PT1/fNytnwHZSpNzPxYtKgjkw80onfE2zs2ftG0efOwzkbtnpq/L1dzm7SyaX3++5RRetv0DmKuEmMXuPgfMPhRZce1QMMvRM2Og47AsWC3HJZf967Gsl6OfxPB1/xgGG+ucMyAEpoN3BChbYb3QhiA0djT//PkLZUfU+9nPpCZLIqpyQIqIQyzLwszOcf+4lVKWVse0R7BWHqPR6M8v23n4X/zlf/03f/tX33z7i2VZ3G2a/eY3P4z+LhPiHgz68cNvO5xfvnyLEIHBwmPczqNDqnuNx0cEChMDTsuZ4IwS5ja8Li0A+jlbW2opoxsAsnBGJAAhigom7Pu+LjqGAXitZdpkwZiIQBnFPDMReUSMRztChXM6ImfGg5aHSQScDkIIHtMCWYEQAAATMPghOzLvPqklANEkcvQ05GRSrtXdb8dRpWppex8/vb2v62buonjs+7o2IgJnIsnAsIdaMAFIq7IHAPUxgIgZkcXMhHiRNueM6QSYSeYOQKQqJPb7S6h4OEAgF0THQPJggowzPMKRE5U47ay1UuIIAwApZSmXPk+3RESIhExMGPuuVdynEmdkBEJqJJpLoiCGKjyEE2bjnGPTlYiYxcZcr9d93/fzWNeVSCAMkeLhSQYM92HOzEzlcfaoyBgGWedIRhHODCTEh94QAQPg4YBildu+i7JUwXQf43G5xAmSLB7XdStFtrrNcLe4Xp/AoY/7l89PiDHOqbLNEVg4EooyRC9M5zleXp7MZoJv9fNxHO6eSP0YTiRca9lYaMx4f78T4MfH/Ot/9dtkum6f3j5u1+tl2jmsz/CGC6KGR1hICBFH4kwEUUfy9P3YR3LhUgSV1MZ0G0R0P04Abq2YOQtDkhhS0AxPIM/IdDdD4MwkUWQnp4iInulEzirKBfscVSRzEuHDTiNFzvOoKma2LBtABIDU1sdoJOPsMEaf7u5KamakUmrdtGKhgYNreVo/f/MHvyzUXq5PS2taAcRba0y1SqG0otCPXkVFypyTij6claW2NDjmfFrXX/3Bn/z5v/YPf/XrP8+Av/7b3/zNb/4+8NxPO24nYiJAEaVBURtoJDqrUSYmnscohA04d2vJAurmxLRQEcBP28vb29tx61rbGaFNByMv691PRejnXiaoULpbzMYViEXo86eXT1++a23drhdtXGsh4XVdH+gRZqZHZ92MiNIBPFeWUmqm45xF2OcBQEu7ukBrLSm4wL5/MErdlpwzM4V4KRWF55w//fi1KM/Z7/tt3/feOxE9qKJvb2/X6xMinudJKiJsNs/7h5a6XF8wnYApsght29b78ZjkmVlr23q5lFaP4wjqZmP0m+iyXggEx7wxxX0/uLaf3r7ez+O7L99oWfZzV9LXs798efpP/r//1fvHWbQJaiXsH2POFkitqtCSkBDpk0trCPzxdlOtzGSejTfBkuBE2HtHCEFB94AIcEg+bBAACzMphKEhGgiKI4al1HIeO6QhpSM6yzPXVkqM4/31XZcVqRRtiXjeT7unAl/r01S7n8foNoeFUF0WRHl/v5lFq+uEPO6HrLpShJbfcxuAsOjCpLe3PdOXZfPEABheMzNHDO+tlEgHgFLK7f1DQF9ePuNNwPrlguf7z5W4H71noi5vP98Je6vAnPevP1StBCwA99E/zAYAoGHllDTumW5ujahh+DAwbqgF14zKG10WuZT2srwcPo9pT5dPzOsYY1k288zM4WNdl/v9ePxsIjJnzwBmmcMC/MuX59e3H8wzIf7kT3+Jgip19mP0o3153rY/xoStKti8Lg0AAqhK/fj4QRvKWvw0inLdnt4/7kttlMlImZkPLHDEfvS11PLwEzAXXSAlY5n9YAFAdg8kQUQIBkpRCEiPIAZSEMwxd6aq0iB5jiRGYg8EKTo9mJyYkSFhZjJECitGhg/CYuHhAASIj35NWEITynxshtFNOBnTGGBZ6+hm45BalqWNMc0jbKKIAPQ5HIyYzD0iMAlBY6KZEQkhIWJkKGk/P1prXMgALVwI/SF7mJiGGQQMRRdLA8BCxSwyPEgwH9Npx0iMzGSzKa1MH5RAwG1ZwQM5JOncJxAGwhgP2Z5AQkQITRGIiJzeytIHI7cERRIkD3QIFkL3ObpFehKTaI4cARYcyaphNgBi+gioSDndw51ZIjzpv33zpVPCo9/KxEc/i5JKKAYTQGBkQAYToVAE9YfDi4hqlsIR0U9nrAQqWK6X6nG2Jm3R1sp+9sZSlta7J0jly/FuSvP+NgTPSO79rGu9338icC14v99+9zd/sVzLn/zpr8KfPCYgMWYphZAR8ziOxrVUySKz27e/+nz96ed/+dd/jXH+8Z/8Ytrp3rUJpaaHW2bAoxijLDOh926PXZ/I9fnzQ9mLCP3smM6Ay7JeLk9jv3MCRcY0IgKA3wMhEZMIUxiEgCIziRO41DrH2buVIog4xkBEs6PpOsGQZVmW3/74w0yU9SlDznHst70K2nkoCnFFubIEiXz55rmU8unpeVmWJFy2dVmWl28+7z4+ffuN1oKJVdv+sSM6Evz/lV9mZmmSUuoyH7IJ5GXZAvI47vt+ZtC6fZqJvaeBPn/+8wz8Z7/4p//2P/Pbbf+bv/mbn376ab99fLy9Mcr+cfx8zohE5KqihRBGknOTbZXjOJg0oDtEujxtn+Zhx/CyXG73+7efv5y9j+y3W1+vl9vH2zfffHNpl7WVL59fPj09M1Jr7eXzl2VZ1nXd7yeXkplSZIyzKAKAMjHzcb8RUeU6bX5++fz169tl2yBQSZOrY1rEggEOZCkgx/08x15W8TSgfL3dFykC+Hbfj+MorQbGcfRvvvk8xrnvt3W9EIF7T4yXp0+QqyqP7i9Pz6xl77uILpeWICwFWxQWCrCz3+93xDSf06awNir7ft72g1WWdZvj+PGn76+2XT8/qXI/zoK4lnr99Pkv//pvWPD5us19iNaz28vzZ5b6X//FX0yHtmo41KoZ5Pyr9DmDFBEiPczMhnErSFjdSEAWlqOfk0O1UQJz+jQ0bFR7mJ+ubTGwoPR8uNE5HDi5Vj0CLNmyPMhLxxGnMK11j8jzXJV5WVCLJPRzIsKCpQCJJzsapWhLNJ/RZzRsnoQQTDC7J8JLexYVLCRNaD/eKyVpmWNEH1yh1C0muFu9XKfz7faxVCQmBArzwiwq77c3YjyPe79Bj6mTT/tYFvUwh1Fw7uc5+60WeLlcqIS5YToiv3z+9Hr/qFXPsLJUP0+PkwhXnUt5SBNmUVU5MRkRRZbs/eVXn5nK/nG7XJ7fP26fXhovG5Iqynmen65fkJyBzCxyjnOPsG272gSpYh5pRy00zlOW8o/+0Z/92Z/9CQDZmBlxuTQMbm358cffaQ3FqMj71z0dPubNKu6WGYVBCsuySvQ5p0lpxIEUniYFmWW/70SkWi0eMTHfj7e6LsqSCHYOFoyI0wYzi2BgtkUjx5gfQH1GV1VmdAOiR1dvZGCyIKY5SFH3KZQA4OEMbIYAAqxFmyhMn5bTowsgUrpTZJSyNmynuSMnU8e+3/ZtuzLj2W/TGAMJNSJQli+fPr/fPuaMzNy27RFsVing8bAfYkICMLPH7G45RxISExKrakTM2UtZF602ZwJwYc94LEeJIJMCPNwsjRiRIdHxQeQShBQGYBQMn/MsRNMsM5d1c8E+JyA3rd0cIJKDBMecqCWIHUJYp4GPHtkFEgLXZQP0nJMQLc6KVReZPh60rIxznlFrrY0iDzNjIRWd1gEzEJJRCSLA3RXqdJvh6ZA8RB5YSURMVn2wypAJWZRoZnSfUloCmifLsrZNsdowQiJpiXH0/eP2s5mtl23YR2ZClnufaUYQlJIOGFDKsp8fUvTnt9tPf/P613/9d4RSlX/8Hv7Zv/OCyIAeboB+jnvTellL70ckUIZUdIhf/OrS/eW8vyK+hKMWZmabHplIjhSeOcYJSUAEGEwEmOGR3iMMVFFVCzOIxxjW6YwYPVIXocNnhE/MhwkuHIyRiDIQmDwfLXITihSafagocyGIiLiuz6OfwLDP4zb7X3//9wHSfX96eikvT5z+B7/8tmRWrl8+f/f08gnBa2nPn16UhUhU+Rx92dZzGKL+Qd3GPMdxQ7LzuBUploNTlWtGsiDY1NpaW/s5awMVMbP9frJK0VUaitB5DmQJIWrFppOgLLzvx/bS/t0/+nfGebx9/fry9PyX//V/g0l/9/bTcdxu99fb/Q0xGS/3m/71b9+u66dl+XKe5/38WLZ6u799Si5Ux3Gyyvb5pRfars9PT09m9uXLly9fPl0ul+WylVKqKESm++VyeX9/L0VU8XJ9REaOpqQotSgmZDoBLJcLEd1ut63Wr7/7bWae4B/3HUQjYQwjFTz7Q6b5/Py83+8fx043dsjPL9dzP0bs3336olpKqQEBTNv6hBilFGLIdJJcr9vw8zhuQnBZmyn0GWG5lksgDN8RaczMhHPuaSbIov8/mv5sSZZtS8/DRjcbd4+IzFxr7b3PqVPNYZUAAirKQEIkJV1KegW9G/UmNBNvZLqQSWYiCwRQQDVA4dTp995rrcyMCG/mnKPRRRzkdViahVuY+/Qx/v/7RIgBH+kWdiDihAjq+rreiyRTaAfwaoAsWCGM1I/7juCCET5MG1O9PJ9LKn/1r/6Xv/+H/5CKQAJ1PcYQLCpEKUV498hZMqbM0Fo73PNS9+sW5tNcECwe7EAIFChMBJHYE+V7P8yPwyyzhBu4B6EShguYcM61iMUDpiBNrR86pUJTUiEsCUBbNGSRiTHCdzMIR4RhWFJO4jTW/Y7MWzvQ/DKdJ8ngMMYgUCEYROBjoG4fX54t8Lrdal7mFOvtPeXZ0b9++T5onqeTx7Gtve19XvK6rhQYEQDQ986Jllgicqqz0tc6QfiOepTzMp1nDOgR5XQZw6c6JeHb9T4vZ0yCehBSES4p97YXpcjUIxLzpYh5H2qZpYzSxphr7WEudN+v53nKtA8vPjxCcy773lhijEH00MIoIra2E+UIAPA+NhsHohPqdb2fL5/aoXUpWaSPdV2393c9XRbF8fr29cx0WYodfrfYe07pnIX82FyNGVJho0gp+ujAkTMF+rqvQiyZ1XYkRyEIg+xNr+ZnEQnUAHMKBCMWErq9rZfLRcdw23KNlMhC132jAIKJqQ5rZhwogKx9UPbWGk6Fkf4zzoCLVI8IFwczgJwzEocPUFNwDytoWcrRwglMottRpToMC82ZppL3rWFYyWVr+uXHz5ITAESgu25qYb7kNHykJNu2PdDH0zQdx5FrBgASUTMdTd2FCJjV91JnCh9jgLt5Y5agwACiYMQRzmDCAKHuhyGnyhbBSRBZglrbkgALJ0rQtUM/uhoioWkQczZDd+mKrTXJooEaTlmREc3ETCBsRODRx0aMtZYxzGkQYNu3UmcMLDmZDUQdvgsXdJUkDi3IMGh42BhSawCEA0J6pHCtlKEHgSYmCXaFOhUzG6rmDgSplHDdW6vpNFQBM0Cs2xHxuLkQgPd+rxPXJEDx5ccvSaZUKkfvh0kqu+211PXo7r6+vzmsXOT7L1+///I+UM71/Psvr6//9j/9l3/58wgTQYeoRcCPgGNYTzlpOLgiRIT+7E9eKI+avru93d1NNYap5EqEbd0AR1cb0GoqAfSwloUbI6n35/M5CNU6SSZBCG7jeObMNbdjA2SmQKJwxZSTUwtzNycydyEIYQ0PsGFRSzmOMdbjkVRqY+djCuJ5mcax/fRn39WPTy8fvx0e5w+nOp3V4vn8lC1ORRBxP47EGQBUNRha31S5g4WTMpDxsXXUfqly6ErsiJAghBkdiRh8TDkFEBgCM3jM0zLGuN5v5zpvx8apxiNIwznPwiUDt6kU9845AsYPX359OZ2fPy3jWP/yX/wzQfl5Wx+JwtvttrcegUDy+vqKsnz5/Pbx43fvt7e85FJxv9++/eYbhUgpvby83O+3jy8vKeLlfGr7Vuvc1aQWh8cswfZ1g6BPHz4OO/poiNF691AdsK63mzEBZqEIf397y1mKpO22jTHqMt/Wax8jsTMzk1nvknNian1NZZD2D8sSIMMAAH760+/ub7f39+vldAbCZqpmNae399d5riknjwjz6/qWi8AwpnK73R4KbQdvXddjTzW4TK03ZgxXRg/C49hVNeeMiKr6dr3O57OUdL3dUhgFZZnWm3cd3373KeiOrEa+rXvf9m9eLqcqY7X1/ra34/lnf/LX/+5fz0ueznOgajRIaK6NVmFWDdcxgiOizvXwDby46XwpY9vWbSVySGLYAwDCEKn3ri2m0xKk+xiUplSxHUfTRiFAgoU6hNjIUvfjGjCceYxhhzLxiMqEx7Eduhvz0MZADKii5MIs0LU4m5uwcK0RIyGiUx/39y/3y/lcUu3Hhv/7f1L/yc//BLbN23Y5nX0ADs4yDbV+tGC5206JzQaS3MdBDjlnInLXtq8JYS5lKkkdl3JuasO9o6I4mpGbIAwPyRNEtuZEEiwjHClcBzEggvqAsCKpMPlQNcsGB/qBACxbO/7040/j7Sbs/91//y/my3QdB09Vcp2mBevi7jbcHZZlUe2P4K5Hi4wjHNCtd/BwCEgco091Icf9thUSPTYu3PtBKauDGrh7Jhx9hxi9d3O9rwdxQZAxDDkZUgAWwTHaPKXRDu2NmYmE6BHHAwIUCMYYfd/6nmvJ8tSGG7DUeQQAxd6PXKQGAYO5b8eac2ZOfeuJ+bJ88jYQwxkHxtqOLEIOiZEIw51As6RtO2pZWHLbOyS+H21eFrUjFx79bt4hMJUEiVtrZl5KWbcDADincTQMOM/LaEokoymzuCcS7OMoJfWxPzabGCCpjDHmpYKHq6Fi5tyP0XiwiDMO01Lyvq9TzURA6gwJEd+u1+dPz2u7+dC5TtDTGJqmkxIc3j1GyQLDoiXhEAg0B/UplxGH4yAUZLmtbTmd22EGiER7O1LikgV0xBhzncbQB+fSmp+Weehq3qUmd9j3PVGSpYzWyIKJiKgPG+FNVfGec06cetdw/MPrfslcMzhub8fL8g2Dma455+t7k8w6MKeTmSEok7dtR0jnc7JuY6gOqPPldvQ8LxYwoNvwUtLeb0E9zEiRTSTBsB7g123dhz0KVW3vuqurLfl0rNoG3Nte5zllJrofxxZuU2YWnKby9OH5pz/7o58+EbL05o/ZQ5AhuVqvKfej+dCSZV1v7v50fgag77/87u16iJyC5bbeT6fzem9ts3u7k8h2KJKUMrXWkuTRdD4tJEyRGB/bXF5HK5dZtoZh5+V0vV5BGCV1cyQikBjae28xeCr5vGhvrnapSx/j6enpaOtPfvpJXZl5WU5ZnsZopRTwOJ1OY4yn8/O6rhia5rq343FDx4B2WMrFFZkTEjMnVS1Tbu0A9ECs8zR8RPdLqqN3TuQUAEBFhnU3O/OEgbt2EKQgEXF0EXH3h+vpEU0Yw1KpEYjAiKi9T1NhCxEhiD5araLWIgwpmMowrbVyktu6EadUp5TzfVsZomZ2G3OpqUx7a0CSCXPOYNDa46YBfewA0IZFBDLr8HXd5zoRwO12K0nGaObKSFMSd39MiVGQAjIxhueUPFDdLPDx+8YIZiaIo7eUuFk/lXldV6YkRG0YJrlrK6dZdsUIACACHccylW09IEKFWWoAH2qKkRIJox4tB2HYnAuGH8cxn85d1Ym7DhI8xuGAjJJAoiuaJ07MzEzrvqHwdJ7v+y0kKByAe/OXy8d92xDxj3/60/e3r9Ocfvvb375fr5+++/Z+bJzK+9v24eM3rtP//X/4Hz7//je93SmOzOKO7Qg6l3BUoGbezIUgA4l7GsMQ1r65iDG6+1IyuQGACB3bjsilTCnXr+9vpaR97/Npvu33CCr1dL8dKDjPdT+u5+f5GPu63T48Pb99uaOJUFnmKimFQD5PX6+vtVZE3PddLHGAREJFCMlTVmtm44jN3bt2YsiI6CGAEii5tQR+h/byzXMcIwGlmk/L8v561SJGUDWliTdzRLgQGw3k7mCuyguYgZV0oCDBra/qbqFpLmqDgZKU0cwdFClcw8Ig1PuI0cNSSt7N3UspSOm6d3JLFkfrT9O0mnX2nDnn/MMPv9fb5z/+o2/nC2HWzDGiHc0kEbZCRMyJKB47HsR40PAZhTgQIATB49ABhuAy7h2D2IUojQ7MONXztb2ph7rPtbZtLTlv98jpdL29CU+AaXQjwJz40NFNu8tohkpEJecJ0AG0aw8nRGR+LOPACThnztWCkKmmMnxQIAFNwNBtBARBriVXVtUkeVmK9eHQlUaoAfKug4WZ2cPMlCjVWrUdeztYpI0uDoEETsKJiNtqc5268zw9qR5D9WHZzJl60whkShwZE4d776pj5IxEgOhVOMBQWJggkqrO03y/32sS7VsoAvhU6mabITx/XL7f7iichDPm3vZTnWz0lLPGAER3XpblOHpNJ0Oz7kl6Tvx6/WF5emYBdAxT11HzipAppjGgJFH0/ein81NrnanMSxndmfPYVXI5z2ccLfogKZs3BFt1H2M8PT+H+tv6ihh1ru/rnSRRKgOoX1dm1ghC8zEIJUl+Oj8dcVrXvZQ5UahqyVNv7+f5ed9Ga+3j+af72lVbKqTduc77cTDLva3LnJn59naf6okiD4f39RXDROS+v7YRe9vSPL+9vRHR533r2oePsIam19cvkdK67875CCzljMjingkvU3p6uuz39ac/+1Cm6X29L+elLCnxNyXlp/NpKpmZh3VVLfOk9y8CnlMgj8BBwOFBTjo8c95bd1cWKjltfR3NwvPz82XdVcPqvHRVYOKKEhm5QDuQ5LbvYA5IktMYY04Fmd0CGJ2wnJdmwxjC4PrlB2aOoYmwqU3LTME5y9PLJU3VGMtpYmYBfD5dRBInFiEPJcExRpKyH/Ly8pGZ3XW7rxG0tw6YGAU9CQcR9DZO83xayrqunNLlctn3liSpkDDzUhGxq7a2T9P0aE9lyJLSYQ3A3Z2ZC2d0JKSlTsqRKLXWIIIAcy45ZwBIKR0tpHCuZXRlJmb2hKUU3fZ5yhHRx05EDALAKfEwfzo99d5H66d5mpbTtrfRj/N0ToxMfmzrth18qJRKTm7x4+fPhKKqKfP9fh2jSU4BGsjuziwAtN46I00lm3Y3W0oNVwasNecsw7SW5BHufrSx28i5SsoxBisQAbOExtYPxAhi1Hi7v53PZwR291BlxhRMA/Zwd8/EaG5DMycCgkDs5to1BDCI0MDGPmoucymj7e+321wrp9xVA8khuo5TPSVApiSYbDiKn56m7Xo7n89jjBkRiCio5KkuSYebRUk8hrXu3376+Ha7ESUdcL8d5/MTA1bJ5iZk33x4+td/9R9++6tfIPj56XTsfj9WkRnnpH0QJ2JAgBF22JBAcqtGteYpnw9VB085YckIEUMNY356Es4511KnI3zft28+fLzu95IzAuvRl5RqreqaObVNgfBUz6YwTUsMcsXW3TlGV/aaSu1qqj3nTIOrZAEe+2jtIDNJnkrobof1JFhKCjNyzI9Gk2hgt0udM3IQoAARX++3Nvp8udz2bT5NqRA7IuLu2jimJe+tGeFUzzYEojokNO39kISqnpnbqrpFxhjDiAT5Dzh8Q+uohsCJBJMHHHtvR0QEGDBzdiKauidFoASv768s8ZPnp1VptbWe8/v11QA1uMxzLtNwYk4R4e7DeiAAAkAAkGkgBQYkyERogGYunO/7llLKtaz3e1kuKPjl+pqXZc5yu727ayl5u2+5nNqhbjM4ASXQwSLeAU0YolYBO9zADQg5iPJUg/u+KTJ1c/bIwpwyOnZFYPUw/EMmHoQwcQrzSFXhAWgjiMdqlTTGoXdXZU4ONp2nPgwZH6v3xzljuHX10ykfTUcAIR5tPz0/dR11ykObmfXeOUmWZGPX8fCf5ynXoQ6RihQPDespARGBuDBxmLmnzMgoqaAJUXroppZlEaHW9l1351Cx1349Tae9NwwgxMIFwZGSdQOCINSm8+nJ3M1CW8z1TElv1+3p+VtnpDgCVBKxULt1FlYww5CUDKCBoAHQeWuNGBAJA/I8jRH9aM9TPbrtY8jpMnDwVLmU4V4Sp8QPi9Hl6ZNDtGM8Pz1tn1fOqWsjQgdPKRPR2+ttQFqmb4+1E8Aw2e+Wyof7NdZbn6b565f1fHpatyZ1GRH32355OX39+tXM3jatRWzY1+tqA7Rj4rivr24twN/er5LnX/3mt9OyPJ2nMUYEvnz8zsY4LXJ6mafT83J54pyxzKfzi3a9zDO5Jegfny6EcRzbtEyKdluvKeNSn81sv69tHDMtCFZLCtecZrXj8jLf11ckYKLeXKS01gDhdDpt2/X5w9P7eoeSSWKW5b4fBtGGPn18VuvH6z3P0725OQLnNFXXQQERoQCVUh+GGEA0ug4MomwQ05zHZvOHpz//s59vx86SORUiWlJ9Pl/AY4CP0DJNjIgBNlTVwmKEmekpnQzRnep06qpj3xJxmWZ0IiIIQ2cI8kGcqZTZAsVDRGqq4JqZhEltuGOAS8mz0HoMCANAVf3w9Kyqx97med61AWHNhfUPftKpVO06T1OtdYxuZkVY3RITJkREZiCJP/yQunMYJiTyiPjw4VndljI/IBhCwSRTIevDhvnRoh+u1tvYzdQaI7g7kfjtvm1HQgpHETGzPWK5LDkxInBOx94h8TwvQqzDIML6kEDJmRABUEcD5CA8dA8fQAjCnlA9Hnibo2s2LjVZUNehQISoQ2supnjddgucpkkB2raLSDT1zMemHSITEiWnFABH7/NUTOERyuuhSRIQlZS3bas511pJBAAUEAmReD5dJOejG0sVyhSh3oZCLfMY1rsSy/vtRsJpTr/9zQ9Plw9jjH0fL88fh67IQoGPsDSSbNtxmhcfOzOWLKNvf/e3f3s+ndTH9f5uYLicQIoH07DRtTV9GFu5JHDToWVOSGToiqgWgdaPO4Y/n5bT6STEKZXj6Gvfv/npt7fb+w+//qEuE7ghYkrU9r7tWmuueWrjcOc8lTE0SepdESCAI1iShHNNsye73eyhCY8I84EMImBwoAOGlZwhoh2jje5mmYlSQnfhOo/Dv3l6un59R5E6LUHl2O8htabT5y+3tMw/vr/Zfi8lNx2KCYKHF8T59fMY3QsLAnjvQZAL7wdoj30VVzjs0U9lUbIAxdDwjpJKjmbrfccAoRThzCJZzMyQSNI2bE8AFvO8IPVtu9+G/tM/+ZOBXOoJNcCk5meRi3aPCH1QAIXLXHpvre1oiPhogyAhOQQie4By7aBB0/V69BYf52Xbtg7zpZ5//ZtfpYTrulnbwoaNtz7itJRuUXCRAlOW1hqhCQBaLTJRhoABjEP96KYDUTjV6bEa93Bz58zgONxIkhsCMAVq85SIE+2qXLJqmBoSPxBFImyheaqqHhHuihDjOMDBwQHwOBoRsmRMOSFDUNgIGwaHxwBwVScGxGhdg5AwAwKRhBMAiyB4EIkAGQCn/HhREBEbbhRAoWoaXlO97/tUFzUw46E2LU9Nh6IpswOcURxNUMzcA1vT8/msqkm4tc7C4SyUwF0QbtdjWp6R5vs1du1H8whMGDnJsvxk9wFk9VwV09iV53N/UKhSmS9La7uqjujplJj56/v7hw/P4rbt62l6btvOwgAApFkSIkXv7z+u5/M59v7j2w8fvv3ufntHD0miGm9vX/IylWXe3tt2tHmu7++vIiKZrvd3QjGIrTUd9qu//9t5rm/329vbtQ//3dfvX14+PrwCieH99WsWmsosEIiQCy3zJELf/vHPUin/zX//L/OC67p++vAxgFKq4HE6LUmgd62Zejs40TB7f2+XCzGLroGk7j3g2NphELlQzvJ+/cLM8zLv68HMiNSH5ZwNLc/L0ZXzotabgpTFLKRK4eTW0vy0Dsd8OobNp4tjZqWCJVJDyufTk9Snf/iHX4BUtwDBffi+H+aj1lryJHkCgJTL04eXlHM6Td2VkyyX5cPlyfaGbj/Ndbh5ICU5SW37oaOXnMno4XjuR0PE5+fn3hQAeKYxRqIJgIDRkec0M2NJvK8bC5ZaQ5GEFVySlDxt++0YfZqmRNKPllMBsMQhmYZ5FiZBogUAMCgMIqKbns9nIpCpdO1unlKulBwMiT48PZuZiAii+RCRCDufz9d7ExFEnEt6RLu7hQikad57O46j1ul6u6VU2ujuDgDXeF9KIbfHKJVFDAJKHuMwG1yz2WAqgvjp5RTmY9hcqiNEWO+HWxch7TRPxd1vr69ElDkDgKm6++l0WtdbzYIMGmbqQNG8h0XmAoAYYWbaDvPY3B2ij27h8PgXvRkWTHLfNovoQxCCkbLkoS1Q2KmUwkg29qZBKROlnLNxpFRSeAbLRYiIAkY7gChNs5lFhKRs4cOcOd3ve981E+zjeARxPAz7kXN+e/+KwChJe9/7DoH361pKSSl9+frjcj6nOb9+/nGe57f32/t2/y/+7OcP0XjJU5Dtq/67f/+3Q10DgwpwCsTD0AItOBAcMQIRiB0SEieH5ibUyHYHo7SUOiGliFomDFE1gHRaPqz7xlh//l/8KeHfPT2f/uMv/j7ccq0UkFJSCAZKaQpVMKFg72DdkuTRAkNhcLMOEshwLks/9swErjY8UeIyRRig9qGn5bmIX/U+xphrzjm72rAmfaOvn/dJLt2KDdi77fvr2Nrl+eX1V9//5ne//w7o6MMOzeIKIWk+Nl+3o5QFoUYfLQ4RAQAudQwava4DwkopEwBAdHZ8mJsCfIQ6AhHR0KNpyZIorceqaohk5lRqEBkiMt+3KzJOpba+o+SynNetUTgEQ4g79hbIAUgPWOt2v09TfYigtSkREWIiQcRjNEMCxrWvexxtBGWZy/mXv/rNPE0R9nd/859YZPTYt1El3a+3UjMAuGdGLvm03XcNs+51ng1QVd3Vw9wNnJAoAJAhAFprwyLnmpgshvXuoZIKAY8W5FyXZd/XYNSwCAvD0TsgTKkihurAMFUXYAByNzvaf05Eg0h6jNy7KiU6Wn+Qf9GNRXpvj3OHmc3LxCK2H90UIJIUAWljIDMGsBBjmKm7Q6CZwx/W14GAxEIMpF45I8PT8rRvHcl7733jIJGAbRvE6fN6FaFbX4mIc0KUt7e7mRVZWlMRONZbKfk4jjEGEF+3fTs0gM9Pz99+851pI3AiAAmNHciJAAxKTkudxhjqQVIBEDFJSu5qboh+/vjx6/tVkM7T0/p2J2IFEBGq9H5bE+cpL+Fju/mHp5/e9Pr2uoMzetze7tM0Ec4/fn9F2T6/34YeKeM49tv9/f22qsXpdAlO+7qB+eU805fY9/00n7/99tsy/4xI5nnOWeaaTstEaM/Pz4nhfD53NXfoOlJ60E9Jkr29XT9+/NiPfdtv8zxv6xVwBu/rfSQONnbzp6XqOMB5hBOoan/++PHo2ocxMyHO8zxNEyMTtJSKWUgOAAihVPO+76fzeV1XzggAGBgRGpDLMvouObkbcRzO85w/zKe9t6/vb4YYVMy9nl6mehrdhrnkhBi11qenp3mes5SpVH38PBjrXDUcMXrvuh0ZOQKEuJuK8DC7j7XmzFIxvHLqvSPJ5XIJ9bb3VKZSyv1+n+dLSsk03vZrLSlChXE/1gBXG7XIoRoutZYAa64pFxZKnNn98nRGj96H1MJJxImFHF0Si8g4Rq0TONSaichCGSGxEEPmnCg5OglZN3fvvRE97hOharfb++39KKWYD2YeYxBR2w8RSUVUNQJ77xFwv98RUSQ7Bwf21gRiSpISqyowNRtFOJ2nB4hKgG/rVfuYSkkMR7s/OrsALkwIsd9XTb3MUy6iw4e2cGSiodp6t/BDLQurjW0cJAxMYO4GNjQCHfVomlIZGNq7uksi9xCkJFm7KdjpclHAoR7g5/OJIzLxGs5JljwR0R4B4aUsxKmPHRMphLmXwm3fAYCAAGDdNyICIIeIro4whtUUjyvZj2PfD4CQBEcbE9LYjpwTs6gDBJlbloREre3np4vBGLojekgMGNd+Wz4sh/aS8rYeKDLPz3/97//2em9lumzvr47ZzVrXQOAk7jsE4MMFphaIQIFIIjL+80sFALhFnqaneR6q+74R0egDobnhej9u11//H/6P/6fTqX55+/K7X/9GxSEESaz34SPnLFIZKDGt252NMzOYF6xuVrAi+rHtH7/7cHe0bWWWsBhDg5BTZsjW4YheSpnygn64wXpviAicpeKyH/6PX24GIUjkho6clqPF3WD58JPeMCxhOTuheOzHMLOSZnBUGwy+zA9NsXuwBjGztoFuHY8RXiWFh0QAA7KGd/duNlKpAhThSi5zDaQB7EAI3g8dR0eeT6fntO3WnWV5OeVUcprq/fVLTXNOXISBY0RghBRJRfYdLHxoS5hSrWAe5t0VGM09OIAxI0+lHN3/9m/+9u3H9/cv78/np6nU+bScLlMbuq6UMI67PD1P81QLXzTUlEc3Sm7eI5KFeQxiIeJHiAMIu7ZAh5AkJCwQbr0TDJYAAAhPwlHlOIYh7kMhcTedcnHXxEhEAvEgaAyNp8unrj6VrHqotdbXOmWDiAizkFyPfg8ghABCADcHEhlj5CxM7OARafTgVApnMwsnBwDHWnM3JdDj6BFRcn4wm5BYJEOomWVMCNRDbbOCxQ4bh63rioj7fg1kyaX1wWxrT9M0JUKw0FWXZUIdGfG2XV8+PBHE++vnnPzpqeyDJJXbaB8u03R+/vbbb8MGeg4w6+12f0dDUx5bq0KoQ1cVQAQD8KOtYXzso0wLAgPhly+vOSWWdKwawV3V0bf1DZNfX69TXnr7XGT+5T/+I2Oa6/K7X/+q1rweO2AgAwE/WBlpmVTb8fX2p3/8kzzll4/ffPrmu30fH3/6k/V2//Tx+eVSpkSMkojNx5TPXQ+WIA53Xab5WA93P9TUNg9yoGmexwPRJ7mvx6m8vP14e7rkj5fl+vp1meaSRdEgM6Cg1HH0kqfsRhDzGSCM4gmQ65JPqbbWsqTb+g5cWTI07hY5Vx+jlMJYx9ByPnVnLtPDPSeJtSsYsMy1vgwzQagBzJx0cMrZTKZTzoUlf0mv//wv/+vPn39IpSLl8/m89/2BjUTkUJtOkw0PBIvoRyuJEbFy8dAsScncvaYsJWNrLEJEzBCGQjSVQiitNSKe53l0Q8TT6aH4HO7+/LSA23HswpkrlzyZeq0MFAhcSu06mg5meTB+ORERJBFh9Ig8Ta13SoKJ3Z2ROIiJc86S6H6/ppKPcRARixyt3fuGFEDg6og4RkcPtV5KijA3S1LcaPQeOT3iKUTg7o9kCRE8NI6EUHJFZAdjht4aMxgGBt73LeUcZXp9v/K6Pczf6zi0++nDvN7u07SMrsxZhxLJg3xXStm2TcOZWdWZWXIKNWC6bWuZ6rrv6vJg0DlYBDJiBKAjIZZUiSzl3DXgQcwgkkQlSUIYrUfiXXtEPF+e+rZjQN/28zTv0WO4mWEAB0bQaOreG3YBRouwMRTVOjPbcMhkAWZOwu5hw2qtRNz2o5SC4V03FkiJgwIsMBACRKQdKpKFi3cIDyQQkW1fEeHytOxtKzWpjs9fvnz68A0medtWR7kd/enT5d/93X+63bfnlwszZxaDYDYPRMDMMHS4gYMw00P26upSsGnz8FonzBmCIlnDDmgkIYIA0MZeykRJvv/+d7/79Q9//hd//DRfPuMPk1Q36vdDSu7R3EySYKCboUJm4cAsiQGJknfLnDPp2EcippSYWZiGgmECTAFIHJSGh5aKTHL0tvW11Cq5yKrqQl3VEU7TdKz7OLq7l5K7e83T19f3lBgKEgOqa2iqEmTb9p6IRfB+bGbDAc0PTCVLITUR0tDhQxQ5gBEd3CCAgCLQdLf1IaztbGrRrQNA5ox+lJxLShupuU4MSPF+ezfEn3z3Rw/xe0QwY4BiDGDe+x7o3YWZiNhCxxjMydyEqPWGTg+aIyMKPX3/9ff/8//8bz7/eJ1kGffyZfWXS0qQvu7H5/fX02m5ttW7/+aXv/j5n/3J5fziZkffs0CdEnVrug11RyiIqjGV6sGAAVIe/d0AiFDTwaAlCQJagAMd+2oOQRSUzx8uADD23cwRYs7Z3W0oMDMLc1ZVs9hvqyQYf4h2W0oTOrVh/Ae2Rji4iLTWcq4ppfVYM4iqEvNxdCDkzMfea53RMZGEHKYHEzCzGwF4SqzqSExEqvrYHLuhuwslsyiZRkCe8nW9TvO8PJ8wwCxqytO0vLd9mabt9rbfrvM8MR7dtvPlVOkEMDzs+ZtJIEpBsgzMFvHy6cPp9Cml6fZ1/Kv/5a/DNef88jG7UbgIYJZy7DtglDr1Y4RqSVnHjqHHrbvj9ba763xa/vbXv7YIRGzj2I/NXVvb3Syl1Hqfn57UQiSdU/vj//JbZPpg4/LyHGAI/OnlAxE9Teej3V8+zMJuoefz09BoIzxEKGWJbfs81aQD+96WpV5f358/PN3uXx9zy317BwcAqvPkABBOwr0dQjIOxYLz9Oyul8tzW6805MPTT/NS1n1LuTKzOk6nJ8zWuqZcppxa/KHFoyOYSjucInWD4GKYrusxLcvjwARot7bmqTohQu7qUqZtu9flrDbKqY6OHhmlqh8AnhNNU9lv74QciB9eLkczZv7m03cAMM0VkPZt3xiZkVk4cwQ+Tpu9H6WUlAXDplIFcLSOJEKca1H3ZgPMz9N8HP3xNimMKTEBt9EezCZVq1PWfgADQBBinQoyBkE6zYQQYe6KAa6j5ISQGGmuSyG30DCrkgqT9mE2ksi6rpJoP3boJLVu20aAjLxv7xFRHs3sndTtISjUYY9Tl9qY57mPHu61ZjISRrMwV0kUYRFhGqp+QHf01vfTVM2MmUXY2mAUG23f27JMGg4USggQzVpPEAlu17dlmh9yhdE7ANR5al3v+9HNReSxxQCilLKqHkc/n5/u29Z6ExFCsnADZ5Y+VFIWtTQV8Ch1dncHZKQIgxQEyDktUgk5azgE4kNrGBzg4QHeuwFRoL+/v7fj+O7yAgBfvn71KRHwsK4AbRyICNRHtyhAHhmZXFu3VBMxOUAQPw5nppqlMCcOJgDJafSdEnNhCz/6EWG1ZlcDhK5j3fd5kinJPF/GaBb6ONC8v7/+/M//bNs24fzD5681TykVkhTY81JSrl/ev/6bv/7Xp3O53b+G99Pl+b5eH8aU4ZZikBOxAEsDGm4GiAxtIPOSkigT85TK5Dauq1YhNekGY7TT8myQXt/uqT59fnsb/1Hf15VEVD1RlpKJiNghgMIj0HWwYKi5Y65FA9zjaHsFq0u671suRFPuqoA+AAHD/QjzQPPwfhySmBHmhQ/Dge1oTdqE7DHWrZvqGEikaKdluveNFT2lfKostN6uxFCWWY8NHjANUUNNtfqISRZVfW8jHGIYm6U8oRMEBjoERNDofpA5U8IpYXKO49iPrlwYGEiAmZmdwM02MpRcwBXCayl1ec45m2E7DEJY0kM5IDk5RqaUSm7tcARwF86Bfl9XYb5cnncEd0eK0VrC1P34+vr9P/7mFzYkXcphIwX+9ocf79fbYW3AuK/89vb759PsvgO2dbvWWkUIQ8Zoqgoip6dLb0OItm2NImrmIzwwOCFi11YSJUFwivGAZ0yGGiJZkJLc17eSZ4hc0wyxu5oNczURESnH0O6hus6nMxHtbb2cZ4jhBupGFu5uZkkKIgzt8zy1diC6+5iXoqNNpR7HQSQAKFLGuM+zrPd7Salkum03oABHxCCibdtUdV7OOZf399vy9CGbPTC5tVYdtu6HUKRMP//nfw7gYwztbUo5S9nv65Lz/v5aEn/445+8v78Cx08+fTuszxlFaIxey0JuYxh5LOfna+N5enLI/+bf/t2/+at/tb6/7fsuwv/kn/7l88vidt/W2/dm19fXmqn3/f11LVM20PfbW9u7cHFLEJJKLbUe6rnO83x6ms7fvtCHl5fTvDAjsKcTl0tt1j9++839fp/LfGz7MpUsCSnUApPkqcLvdvMyzbRtX1Ki/f41oCCStzuVeTt2FnUnU5E8OzBNR4/G03xazqqurZ/Py7HvghnYzRpKzMuEkD88f3AjBxwjAr0sFwkGc8RwVMRHPN+93TILVthHN7d+tCJJUhLm3lUkY7j6qNMCACPaKRW1Pnwgw/Q0hTILJCmUMRDOT89AkXFCUAAEL0h5ORUIhWht3+bTGQLHMHNCjHlemh6qgxlrnUqZRASJ1nVl5ggL95RTOs3IdLQ2TYUBwD0Rl6louLo5RHr8sbhDShzmSYgsUioOUUohhtHNPVLKQcGCj8FgkkyUPMhcKbCU4g6mjphM4Tg2TkVBt7aFaUsS5nOtX77//dP5MsZwiHYczbXE07auCfnxsguGzMiU9tHDvf/h2ZkiIsBzlohAREryIMPjlCHCzNb1TpiQBQMiYD32UhIiPuRXrnaY5VzdDIEEYuyHhnGi9Tim89RNQWiE5kkcx+cvnz88v7h35hRh276XKYMHYuS5tvbQqKjaOF1OgQiEH18+kvC67imlDJQCS60yFSl1ymm93ZPIGP2UZ0fv2oOpj2Mfe/LcWlum5X6/T/PpoUBIQkTUe3PhYFIiVc85ve8rm6U5sToRDe0jwMPTVCEximEMRqCIR/nCXe/bmnMGLO6eax3dRCS67/dVKJWKzU2IzVVNU0qIYsNMBwDUOp9Op3C+3e7TsvRmklPre6BfLk8RaBbufr3eS1kI0/2+Tcv89vb2aZl/8Ytf3tavl7zUQorQ200opokBbNiOWAABAlzDwwIii3AuOGy4p2niXHezbV1B7Wk+NTtSSaoqPBmBMZd5Wbfb9+9vv/7y+/e3HyoREwVg4tx1ZHqECNEhHLGUfD9uWWj4EM5tjHyag7G7BcFmo5Sk7ojcvSMaJSEywGHKqZaSSO3gnAx6VyTJYsB7PxhlmIzNAodFHBjPu3TfB1Jwets6IsdQbIj1sh6HyIyErfcGSUp+bw09NUcEKzkPG9hYwzGV3ruBKyMQJ5qkFmIb7YYKkxQIn0t9ff8qVWpJxzjURk2ARawPpsnZTOmHBodYwQABAABJREFU33z+y//qz5Zcj7E5Rk2Rsnd/G/3e6YKIMGCMkVJSHyJSCmeaeu/v9/cIPJ3Or69fn86no92G7R9e0n/7L//ix8/vX69fP/3FU87y+Ycf/+TP/9k4mhCfTvn2mr799CKMjCB5IKqF++hzzoBsMl0PL5K7GuAEPo1+n6dqMTyawKmUKind9ztzYPLRVzdf5vN+feVINrTgo0a86YiynIFc1SSVQGzNwk0Iz09P3TpqW7KgIUAGA2ARZggfYyARMTGW63rHhOHehlqw5Pn9dpS0INL7/XbmyHVBYiCyCEp1WcgZp1LNbAyb59ldH4CtyDsRqFqgB0J314gyT8R8WLt9/XJ7f/v48sGG3rSDbbf3+z/+8NrWO+rxF3/603/2v/nz49hmmHpIH0eqS4AgAUkm0BypK5+mDz7k7cv7//Q//j/b4TVPgktfx7//17+WFJhahLlizfU0lX4AyzJIcpY/+vAXl8vlclqWOU9T2Y8+TVOt9XQ6tWObkiylaB8JTEENQ0oGi3Vd47pfpimangBs25l7RJAFU4q3NpyJkzoNm57O5z7MAxGxZiZCEEIMQpjPjEQpJc4pIuachdLwbhkzCHBxjkcaP5wAeah5cvXOYAgIMbVDDcndMIjwnNjNTN21A4m0Q1M59cM8ajMwEY3mDA4qwojlaFpKqedlsw4eKU0l5X4cy5TGGCLeuhJSSmm4u3siHoTAbtCEiYgiMjMzUgSWOasqkWFRwrCBOSZyJlPJrG61pNNp2fedSB6RAiaaalUzysXdBxtViQjtUVM2s1LKGGMpBVxLrQCk4BFYy5wym0bKYDZyFgB4BA7MVdsgQjVtbSeCYzd3cAP3PZDNIvAYo6VMiAEgaN7243Q6BTonOnoHwiUvNkZhFpHQyCxqI9y242BONScL76pHH5ITEQzTgAFAY2jJU3clRWYG4sTiwRCkYQYeCPve5+m07Tcwn6bCLL13CnjslRxTuA23x+Bt2/dUqgOlUrT1uTyxS6r56Hu3ToUYMefCzGMYJ8iZ3GnKCSBUYZmfS15a213NSUR42ECi7bYxUr8d0f354/Pr+9s2eoTtxzqdphjmwtf1yiQ7bOM4JslklgFiWBbKmN0lCPowIMRwN0VADvwe2iwUrgKcQsQ9ustoqWQfGqpISALOiCkbiHqnJGaWRKI76JhqxjBrtszzocMiMteIIOZma80LozCWAG1jLPXSjsMdRhuJi4Wd6qXv0Bt2673ZN0/fBbji0GPPkWevv/z7X4HShjszeeJhpqaSp23buhJMbcoVFVrv4MhMnMN1V8S8iHE7QpU5PxVuPafxunVTPo6jTHntG9k9pQwVVQGSsE7aNXMezXq/n6a5ublbhCNz8xEGtFQMZAgLJYE+dgkgEqJwc+jdxuh+kDCEBXgI70NLaAzswy7LyYd/8/zT3/z4mXMVbR7O3YMkp5TCFMxp9zsjp2LIbVO3oMQR+PX1TjVDpDH6dFqOQ31X5lCzpVYMBG0N3dAwqdohiKfTSbUPf9ztN6RkGdboz2WaWPr7nRvPZXaPtml32wA3iEJJaLrexwH+6TRhyHefvrucnt5uRwdvpqf5YwSaU5nkkTqReY4HY6p7OBoQciLE4zjGcZxzht5LkJH97NuPp6nO//J5bb3pYOaa8qfn5Ze//O1leTZVij+GMB8KYff1rTcVkfm0HNvdAiMaAo0hYJ5SZkm1LENVpISLgQOE9iF5Wre3UkmKqPZ7f8dEXUfO9fn5+cuXH5e5bmPd9kyI5GgYT6fT9X53wiDc1Y4xkBAYhw0wdw803l1EhFLyiN6HCIVLLcW7JSEiyDlhwDRNSfJ8uRCJuwb4x08fzvN0u14VKEve9/2xVOttpJTu17WN/u2nn7xdr72bg4JiSXW7305T+fy7z0/PZxh0gtP+uTPLj1/ec5p++9svP9xX0h79+v/4n/7tT779v12elnyiDGVgZWbwYEKzVsrkwYRp77dAOk3yf/m//nf/9q//ZplOpUyJeM7zvIhH+/TNhyozBOeUIvzjN58QbWiLsGWa+7H3seVE0zyvx3Ech9prEkAeR9/29U5lcXAuDLuig1DSfnh4mXNEOnqrNQ2zpUz7friP+vy0329U5Vxf2hhBWErZWxfhQGSeIwwCUMQhrochc5irOcVgJkdYw3bVHCc0ZJ5GP9Q9gvreEDEwVJUQc5lKKj7GMY4A7xbMoqABxJJjkg6YzqczyXasCJYSE7GgiAhEEFoqmSIiAgn4sQZMGQJrraqdxaepHEejoPCQnIEcWdw1KIiQnARFVTX8PC3I9Pr6GdCnmpJgxoyIamEQhblrqKq7f1rmvTdDNAKklOeJSJBItxWEq6Scc6gxkgAlycxoFn0cTIlZaq2fv34Zyu7wyBzd73czc/cwJ6I0P/e2q7ZchA1b21WdKQHgA2yjbsyYJZkN1Aei0UL9cWl674g8YmzHUUoxMyZUHWYW4BHBoX1ryJAlp8L3/c6MpeYx1B3MnTgBwFB395xKbypM7j50MGNhvu93ZWZGYD7GIURIMYaWlFDYAfg/20JrnZgSStrWA4OZ8vI0J5FQHeGnU3UwsOTurStBynUqebKhEcEYHmYGt9va+4YEpiPMBfBoDVi2tjMnSvKb1y9DR3KqNadSrA+KKMhZSu/dhMo8N9c+es4ZAbq5CAOQmxMyALp5okkI2n7UKemxS2DODGau2m2UqZqr6RBAYFLVoYrIuUgGcXc3JwEgwJQQo41ObmAOrhGOKY1hFGiIqk6CqhpAEBQIKIkUPUJKOe730+Wlt57T9PXLa+aaUkmJ60jW4cPLaTT/T//w64A0L/X9dh2ju4MZTChI5Xw5e6xdQ5BBhJAGw6qKCLkkQMIANjNEA29DNSyYRsR8Og0zYgagMYxRzOy+39yMhNbeyFCIN+2lBiIB4hgDtKEjubiCchAGICYiYRIIRkilmBkqnOcTMPXeEcQ0mKbEmJjut/cIHMM4508ff3LbD0nmDHBrPQMhCwPNJYXrlshHX48mPJdcAn24uqr2Umv1vm93dC8iZB6mamSE4Y5b2AhVRAblwOv2qgBIGQkYEdE7wGDoYdFjXVcCuszLaG04mgswqMPYLLsmqQ79+9fXpzk9nT6ubzftA3IOKV/uWsvTlOZb+0Eojabn+azDxRGAYWDK2XCsx50x5qn0w0DB1S90fsDh17drrXhesoW6XsdwYR26uYMNr8KqykS1XBLHvh/X951B5vPp1prZw2cJxLH1VXtflsURSGiMvY9BmMIhl6lUahbpD/5amUpZr9udWy3n2/09pdTRCDhUfWhE7O1IU0WiW+8pp1TTut4ul0s/Wpa81EWB+tEAIqc0QQEAGw4AOU9lLt0OYHhZph9/fJ2nxQDbsZ/Os4fu6/t2x2ma65Lf32+SACDN82lb27o24VxltpZUS2uOmL788LXmdtzWr/Dl9v76439UAOCU1u3oyLe1G6ff/PaH+SOPfZ14/O/+m//tx+8+lJICATkJkfUhwCXlPQJJtI3ElLARs4v9t//yL/75f/Wz0bW19uHDh+PtmhOJUN+PqT7gXMgpfXn/lTBmZh1ts1u4MnlrYz9eU0qnpbgHBmhvgFCXxFIcIpgMnSkVKTQmQG8+JKU6T230IDzArWREdDJZihEy5wexwZkNTB+CBXOh1LtWShY+PB6PDW8jIh6eVOaU6mKHeCg7DEViYkaIAERDRHl0S6GNXVUNdJmnMUYQJsmGEBhAKJI9HPS41GJgQxsT6xj70R6sLnB38JRYRPTY3axkwjCR7E6MknMZQ1MSRHRwUAMgkQwAEeYBGJALTnke2kcf0zIz475u53mBEcM0pZwQDSLnhZmnUuMP7du0jWHugmJqxJAo+fB97OGurZPDEYEBSNbasSzLPrYxVFJR1b2DDmfmlFLvWiQxIaAR0XasHhbhquoBIvKQbo0xgsAhzAYxDDXrZqCPqC046GGe6Gi91goBBMAYpt2BENUsEpLZsEAzBccEwZIE3M0iEIgiHlFhlfKQQIcQDwsLZYAshGiEUTIJBz1cQwi5ZkTscAQDM8njSz2wVs5DNUvmmpIUQ1OF4ziIoKnb2oYPtDZNixs6xLEfO4wxBnicl6WrYhb10VubpkqAUy3b+111pElUlVFKzZsdH775dPvy2cxKSvvaaq3aes6F0bY2RASAgtj4sS6IES7gAQgaiZkouTkETvUs1TQIh7Kau+eUiBABB4CFMwqRUHhCB2TEGPsIQHd3DdXOhFQzMhBFgKo1ShIwPNwdOSXde865tR0MylwCupkyU/dxaGg4ABBDKXnftsqp94Mxedd23z+cXn75j//4N3/z7/My3467hqZpVgXvtu4dEMKNWEDBUbqZEnT34S4imQnCxCIC1HygOYSzJIzem7lbVxR+RFhBTNsx9j3lP0A9ckmZGDyQjJkQYwwHtECKjI99f6CrOzlgMJIbeAxOqWRKtvdgImSNgBB5iLLN5/mkqiml6/3+/Om717er1OQkKUCTAJOHq0O3GBeqR/QDrcy06bH3fYxRykR+ZepPC7a2EqOIDFPIDooBf/CKDkPowUYeMGVBlEAh4DDFgAJIKLi1oFTKMpB/XLfWWimFiC7I6qGAuZT7bSW2l+f6fJ6WJwDacjVlDIluvaACDnBnBnVLCIFAjCVPqhrubnqqRTJ/ffvi7s+Xp2bm0EotiaeP6fn3n79QnkTy9fYeQ0/5wzG6MCPtAc4S4G7Wjm51LqVSO+5bu5r7spy3dZ3nWbWZjwGDFIjIEeChbWW4vt+maUp5aoc5hBBFwAiTtLRO81wDvS4ng12A8jIVSCmVD4jBvO7bty/Pr9e3UtP59HT0VubKyFuzCAOEJJQyotP9fq+1jqbzsty3FYX63nHmy/np/f02LefzU3l7/yrCnIrZuG2r6nvXEUdA0Pvbb9xIeDqO/vr1tm0b5Xq/byTc+yGEc5Ev3/92nurTpb6/3+ZlMaTDw/LME337L/70GfDlPL0s/E9+/keX56X1NWWyaCQTO0KgECcpIJScMlDQ2QGQ+P3LqxPmWi4fP76/vz/NZb+vhWZrAcnDPMBNcSrzlEsSOrbGgMjIgp0aF1TVYdC7nefzVNNomlkcOBBGeKkF4nEAJ0SkoQjkiuRJ3ZiqjsaSe7unVLbtcHfwIHH3w8wLh6t7My7Fhx80+hiUqGByc2FGDwoQykI5FLkYELmbpIzCEcFRzAzAH73SB500R9LwslTZN4dA4X0MEoRhNdG6rglrZooI5pRScvbWRuJE4Fxys6bazI8ilBPraOen594NtYaFWs41kNT8QCYIAiCkDACCDtgZQaMjBSUsiRG4pMrGNc2SdT+6hqdUvPck3I4GAM2s957qBMhj6HZ986GX8xnNhtsYI9Af3858CBKoMfMYzczMQwAcSFiOtqqHehBQBCAEAFgfwEQQnDjU1PWxmlVVzokkxjiAQ3L2MSLCIwCTmwFgIDIRSw4EiMiSHq2hYxyCYmZMKcC6+rIsZqP1br2VqXbrj0EUBjHzcRzT+UIPkowkfjiP3UphJFfVWidAdqADWymFhFU1zWBD1UL1eC4pwmEAMmVM0T3UVQciHqM7mIikVCIMFHs/hEmHMTMAEGMGfog13R3MEJyIGHAc7TB/8LkY6VTnIgUdbN2b45TLgz7EKRtBC/cwrIkHuSMze9BQ0FAfKsTEgYAEWCQJ87qvTUeuaXvfplxYJCPvx9p7gLCpGqrkxCjxcJIQmZtDAFJ69D4AJJUwHT5sNCMS5qAgItUukrejUU6XSzmOGzECw667aaRSzQF81HypeULoYceXH38E358+fmO+b+sqxCE+qP+vf/tXUmFe0ue3vasdvYXzXM/3o5/myWw8rp8Nw0ACZHiYUCiHhSsBs0fSwOAQLo4JHUbYek+cMECtK6iBJ8AJnA1ILWGqBGSaJUkDB0MEa+EH7l174gGkaKnkUnIiriyJHqOZQUSTlK0d4YGJzNECVEcfLaGfJhGOvV0jbN++LgvJ+3EtpQIgIRQCZLZQEDJtTDERc1jhSKdkRqVMul5FWgKGfXWzKc3nykRkCusYSuyUJJxNOMQ83q4HZ6CUCQv6xOqiLbEynQIhlcnBIGw5FREaY/Rda6pMcL9vXPNPXp7X++97DJAx0Lr2wOyK83QuOZHbuZyIKC3i7ubNgnS4mZ2nOg4PCDMPiuV03g89BpScu2MbEeOYpzNBvr/uz8u3oE1KOo4fWQITuFpEQEAqeT+24+ilpFLnYV3VlvncDncHyclCny7PgWAWRQR9HtQzy1/8+Yf7/Wph3333HUvSbhHRu+Zc1QCQX6YLInP8LhxzydFgXVdkSaUmmd5fr2Rgam/HbTpfzCGAEZK1o5Sq297u91ozOI5hw/x+v3e1tsYYdtzXR+/2+P1XLvG73/1uWRYb+ptf/7IkEaG329syP7vD6AZGEDhN0/ff//inf/qnamNZpmmZv76/ffPdp8vp9Of/7J8i+Lcf8rZtnz59opzz6cR12SGa6rdYBP2yZB931/YQXkfE6FtBDvQxRhBhMBODhUFYOKoRYakJMdp2Dz18cErJzD5+/Lht2/kyk6DZqMG9d4R8uZzGsAhEBh5gjLmepmm637fRjTQfm+bLDOtBjzC8YwfY+kOqHBVLPwYzOUQgtwFtAHtU0344OmWZgOAPJcWEMYYYMafKNZ1SR0P2ulTsrO2YpyVstP0oJdc0Xa93npCQlSDAPQAeHlcW1SGpsKD2Ye5q6hFtPIruMkwRcSpzYi0imGpKdT+Ox3x1mDLSsizMHF3DI2FaLovZcB1ZBCm2Y0RgnU8zS2uNJU9T6QNDIpUcMekId2dh4sLoGampZeRw3PeNws3jvl7RhuR0HF1VLdxc237knN2DSHS4qj4aNUEcEcf9RklAlZhy5jFGAhIWVYjw3tUhEKmrA8B27GWaQ+PR0W9jUETJEmCgQ/ugIswkLHvbmdkRw7tAam1LmQHJYWASNDAIdydiQGg6AsJV65RRYRytLOXxgUSJmSURMxsASLos56E+fADI88dn3TZ+7MYR56moJDAvnFA1i2xNr/f1dKpDTQ3cBwQB0zBf7ysiJhJwdjPgMPUIGMNUwRTMx+l0WdcVhWtKjnL0nYOZ2YaelxMAGlgSQUIzczcicqSUMVANIhExkRGpai2TQ3TrCPxgZ0pOyKiAxLz1XTIfrTNT0yEiBAwIhILecy0JUoc+18Lhoymgt761MKAoFR2OmqdQO3rDlJmyhSMSkzCiSAKF4YrCkgRMgWgfHRBVDcBLTsTMaHmauiMmKsJmHhZzKdqNEd/f3yPiNE855947p1BtxKkit317enoxG5IQ0PrYkSAzYiljGM2lkf1//+r/BxTr7crAT8vUm+kABkpIruZumyl6MJEDuDoSuimWzATDfB8DiBEhIVIQNx1dYRgOBIlwQwaGAAg/WiUsiTPLwjMr9W3N4JxkOAbGJBlTRFgXcYTBqARMgBhrPxJhEnLgwnD0PuXSw/begyUCWGhJBUHDW55zEE+X8vb+nnORmMrg7O5+DBTOCT0ihDYaSbhE6nvLiRDdCL3txSl5Io9vzp9G25MkRzfVCAXtwCXnkCJEZGYAQGkKJg0YZmAogFU4Ea3DCWJKTEEMwEFhUEqB6TkUem/5NBHRto5o/PH52zpd3BVYmGpJl4JLhhyg1sZAK6W0cXhiZo5wTnTTnTIlqfuxMhWBnCbpDcOyiMySW1+nktb1fk4Jxpqms/soKQPqVBaIQGCifLT+k+Wb221FRACvSVL3ZXqO50suMqylekjhiNDhAJRiItDMoUNLmZChtTbW7VE8FckOhkgjVLutR+MK1nvGOSHX82kMu+/Dw4RJSPrRxOT98xtKMnUwiO4r+/12HWOfl9rH+OHLV0DsW0m5Xq9rktL2Xqf89vb1+cMzVf/7//C7y+XDUk/n/Gd9HE9Pz8zXjy8XIrpcLmbj5eUpF5nmTAQvTA54ujwFMiAj4qPCcarT7XYDcCLClDuEAm5hp2yt7UMHRmzHeHn6xt3v6yYFDAIpWDChqAEicRFXr7VEBOlgYmQI86cPLzowIp5OT/f7HZC2w+e57rvXktysOzLnwDAPUyOet/16kvSLX/12mWZw7NamurxfDye0MRCxaWPJVbK2RhZQLNrgyhHBhK3thVmICtQAwiRA0odGgBsAwJRmACssbpYKN+0Q5r0zVUoChBBUpkpADjYtFYAQEEEBgZk4CQAgIgsAuGq4a5LEIoYmiYnO7h69z6UgIhOrQwTWp1NkJgIiiN6FWTgDQOFJwykcgtyCWHiu1tMlP7XW9rYxcNc1IYcvvUFJUxsDsHkEUgx1GISIroOI3Hu3HqaG3o5WZOrd+zAUVtV1XVNKRdJ6e09UImIoBAswNfdAlxgddSIOdApA82gNiMItGId2Zg6D7qZjPT9drB2oGhE6BguZqXskoXAsQpyYEcGDmbIkIIzwrgOZ3N0VtI+IICKzEOZU/mDXiYipVhvKzOd6IiKpSaYyxphKDTVh7B4PWT0i50oCQeMwCzAADB+WOR17NzPvzgkIqPeBxOp4dDBjMBdJZppS6m30btM89+FTKlmk6fu6DwwkoqUu7nG7rls7iAAwAN1VhTg8JHFJFSIBgDAhiIMjEEsCgOGdCC1UiBwx1JNkSXzs7bFSQcJdGwCY0GAlFMDhBOHGjABACOGWM5uGh6qq71tKicP1aN2VCZAgAAEDMRzcbLyiM2M+T699EAkAqxmBVvRQG93chiCamWHUeQnoSMQ5MYQIa29DjTCCyrH3XIuOhiHjUDIgxkynaS7HcejQQKq13m5v5/Mc4O4wL0+IqNDfrncHcsBQRiIPKdPy69/+eF8PAs5SCBIp6OgVCBSX6dS1lToPvz4YPeu6HlubT0vfu4ayyPAxwM07c5KIggDoSc6Clmpat7tbBAKgAJOeGUBdYFe9j23hCovsboyuD7gkjkCnDMweGNrtgfuYcuGUKMApzGw3y5L3pu6eStm1q+rT01Nc7wBm2m+g89PS3VDY3SVTQs6awyOcRTGcONgbBEsCYNEQgnbcck4IIllMdzDIJRHSsK42OHOYzrNEEHJogqO3Y9vDIqeTRnQwjVFIHjaSTTWVWUd3PbKwEIZ5qHFwwCBKeTo1b631Uoopzml2tQEKbMOPmU6JFIkdhg4m4WbRg0SoqQqxDxMRCNrvB3M+n+avb1dJ06ef/NHr/ZXnai0wVWNZpvP9upW8sEDf7cPHn9zvtyT4fn+vNa1biwhEY8nzvNz3NSDlnF9fm1nkUo9+TMt5a/swn6dza2McSoFh/OHy4b5+Ha1fPnz4/PVLykVV92MgOqHctxWYcs5h52O7f17X0XVrfdubBUjO2/1tfX2dOJ1Py3B73+4ppbYf9AjphnvoGAOQHeL5w6fb+n22Upc8FfzjPz6dl9N9S99+++29X//Ff/1/NvPLcrmczpll+EgpZc45Zw1PiYlxmtJ9vY7Rp3rati2fTqoOQMLJHSLi8/uXWnMEAuHe74EcCOKBIzOU0SCXkicc7qqjTum0PPWxQ1hOtXcjlnCsc8mhCNzagMAkOcBHjDEsEFofejUiihRE/Hp9JyI9vJR69HZ//zJNy3Ec2tvpPLn7+9sNEY/edETN07W1muvj5m2gDs4UmIg8JYc0F0hkZtM8tdZOT/Nj2ikwR8QI8oAQyjJhBBEhs8Mgye4jmAULMSd5PFaZAIlSmUrEQyrApojCZEGJiAgo3IaqimQRISJ3CTUAQJRcRC1sjFJSydJaKzVHBFJCtFIY0AkwU2FO2i0cWWQcR0lJcu4oh7b77QCKfayIQWgRncl0jPu1964QeBwHJzEIERljcCREPraeMpfCM9M+BhoIITN2wFrq1o4x+rIsiNGPA8M9Rq1zCmrDHBwIHEOjkaCBEQZj2OiPU5pBqKmIrMdecnWDVHJrrdQ0tBMRkqkdzBwBqu4G3RsAPKbHIsGJAyEF5lKzpISSmAAcWMLBhbMUZrbQUpIkmkpd19X6yEupbgbuocKZJY+xRQAiulkYRDgSA2M/RmvtlHOo964g2EEtMKMQpTHG3l3qxImGOwWAe6FsTA9YrKTEnI5tywgBZgaBkXMard+PXSRxzcwEQO7ee++qpZQIVPUIjEAzC4BHRq/WSoi9d07ZopsZeTCwmZmqBQOhuWMEUJSSUJK59zDmCHVKYEOnqWpvScjMSAAI+3YkIfOekDklNFUEZDZTByOiMUZEiMiFkDlR8O04SilJxB7ybEYmkUKhpKNbH04EQMzJhtvoQIge6MiUIowshgYGJZkxyIYTVtAQFO8EKpSo6wDMpSxNrfd+vnw41EXI3L68fv2zP/v5aTnt9329Hstyman+f/5f/++EiYLQkQzH0Tii1rQfbfgYMdK8iHuiBDhqEe+tCkcuvasGoMxMEGhMTA5ITCT7thMAoOHjoP1YhYwhEZREHFCJUSapxNC1eQwA9CA3tO5EFOgBVksGALRhSjllJNSIYJKy6N6S5GVZtn70EaWW/Xov5lMtDVEB3tcH1+wixBL3jRcOwEEwMhg6CkKiJTLouB/7UuZSCXaiGDDUXEqZyjJd73cLTzWZxYjONYqTH2baqOY6pyLpUs6v9+uOoNrCOgUnIA3aA1BXTuJMu2vbW00y5xRdYayWyrCOMAqSuwPHy7Is5fmu112vOQvEAK/HcZAQIKcy3fYbZ8GU+tHrMu9ji3s7LRdCIqBtO85Pz2/39b3v5/PH0zK9v36+H623Vgs1x74f42jHdqxLlFzfP181IjCGuQ1MlHrXoeqREdNcX9D3lxf88cvvZZL3+2qhuUzX+4rAYB1D7qveX5vaqEv+xf/692mqv/7NvxPOSz3d3u/TNF1vr3u7n07z/S57O4iIS/789XWEc82SUm/bOSUjDXBkgBi11OfTC4tjwKePH0/Tsm0bkJzOL8gkhZ6fL5QAYox9JaKXl38eEeoNhadpen39Mhc+tuPD6dnC27GrHpKTjtBd+yG9dwDfoLn7fqyhigBB/Ah7L+cyxlDTTKkUIeJhMVdhkAcE0hFSOgsxUA8d7QhHzjkHYjuOWtMxxnEbDAiApohcjx1aG+oDAEIOBH5fVwA4n8+6H4CMQA7p9dpSyUH5vik6Lst5jCbAjiA5l6n2NgAkkJyIhJIAe+dEjtSOVVByrhAggYgkgBpORhE2xoCp7K2jpGmaXImJ+2gc7siOMACo1j4GSIKBhGkiCIqap+M49vUopUzTNMbA2fMkets5E4BFxOm0uKq7Pl7pMpNB1FoNgoSyK6SSUtruK7kKkIbVTNq2MC8lJUrrtg47Muec6zg2P0Z47MfhEElwHz1lbu0dEUm4t5aLgMcY/XIqR2slpVSm+30bwzw8FYCIkhjC9RgBgyAI0MycyWzs+w6EpU6tHVmIIFikYxzaAAj80R0agJFrUjV3T0CEsPVDSrYHrQC0tfY4pURXAAD0MYaFs2ROGG65lCBkTJSlXp7G0bSPp/MZMVS1m86nuWsw4JymxNytB0BTy1JR3d0jFJm0j/djR8eay+26GqqC7aOllHrvOpogMTMBoiMi99GmZSFgZIxg10BIBkSSRleWdHQdGlLqeCDZWQg8XEMHCd73fXl5GgFjmEhKqezrdn5+ent7kwR5ns3s7XYVkTnNahHuxHyq1SyIgDlFDKAId8kJ9EH7aBDQrJGmlKmUCXSAAyI+CnDuwSIAAB7g7nowkaiyBBGNoWijNxMhC+vat75dTme1tpwvCAQex3YTQMrZelcMyWwRf5AfjAhv+GgAp5Rz3tY1I4swBVofiCGJC0+IuOpoWwM1YCgpM5KNZm61JABiA0rZ1fsIUxJKU07mox8H1cekn4Wx9x6PKH9CysxVho77enXXMY59J42Y57mQ2N5+85/+kcOJiBndiLLoaG29qluaJJfytn79sz/6ZlkWsxDOv/iHX17f3iEIAA+NlCVY0JGzgI4euls71UwW2+2t1ooRYIjCDmyRORzVM4uQ7FtXNyc4TdXA3d2ALCIAFNEZSTWVHOZ67AaEiN2VE5mjpHmWKZGcpimQ19ubIKKjDogQkjyIUILTrMPkvFxWt0CUnNZjPZcsHrYf06kEp+Ej0xir6wHTcmo0EuWu0HqTPI/eumJ36eqVMyCkhZhitB2CSXizdznF1G0iHloYmVLmAInoOnpvnFMtk3Ay182MAoSSIOm25RROGKZLkZdvX/ZxPY7XaalEk0cKRlOUuAQQeGFEV133VuoJgInz6bke+70kJoq2Hgb88fT84dM3nE+///7Xv/vtD//h73+5b/Htx5/ViUolH9t8ntf1x3WzOpGP9cfPv5rnyXp2WbZ9tNZq4fv66tGQ4jefC0Ta7rHdj5zz++211hoRth5H28zGtq9c8jHsGACUL5fL168/gP/249PFv1yZEqWnH35ozy8plfR+v53m/E9/8hfnp9N9v5/O5+fTE3kX0p98+pRZtvtaJ2KBj5+e1nub63K7bpfLh/04lmXZ27GcUu8K6j7k9M2n49hEQURGkv1ob7frPJ8xkKBTaN/WmiaDqKWu+5pnzpknnM0MU4nI1lXyRCEE+AALZ0ZwAqYRzkzurn2Ikwoi523fRYSS7DosTHIGp/0YdrulVDjy23VQotFahDGzmXEahAIEWfIYxrSwIFEigohgye6gEaYNGURkWBcBkYKJsqNhP3ZNkqyHUGKUiHA1As0iHVFdkfl8nmwfo22pSKnSmprvpTIitKZ1ylgyMiEnRBCmCC+liEiMHpk5MyCixSnXTbciKWVBDPAoU0ZxZpCKTqAeBHE5La4jEFUVXEnEu4K7jUBMpgFFhu+mZntLKfVjAGCRZH1ARMCopSCn9barqEgOdAhvbVXVXFLvd/NRSomA6BtALpn2diAkYui9hzkjAWDlet82V7XR6jIDSO97kQTEAGA61CxnGWOoNXGUJISsar3tBk41d1VVT4ndHbD//4n6sx/Jli7LD9ujmZ3jHpGZd/i+qupiD9QDIYASRD6R/7EA6Z+QIEgk9CCCA9gUiO6qrvEb7r2ZEeF+jtme9HCyKeRLPmRGZpxwd7O99lq/xYwFwQhZaAZuCy+FHQUYCpMBRbFgk5Yi5L4+fdGIGmM/j7XtHRIzEAKEuN/7WksaHzl1U0uz8opc08cY88xCrEo/bF32YyUE8PW8XjyIBZ4FAYnmZscprnIbK6Hpdj4PYRqtuftFlxMUiBQQDGC4ghuFRYjg0yqBiah1N3MHZzQo8qxVoehY7MGjA8mcRgnh3ojRVsd6f3ywCms75xSRPnYRQRKqsAgiDKzls6pgHkNHAaoqAgpxJkJCVQlplREqJroDQJGQVzLgWYkMBKFQAkCFFRjANvO2qchGMljonDMxIURYH+/+sn853z+aiggRYt82hlpIGbkO79vQ3gDAly2zOU0Fx9jD/WW/QVakgXCaQUF4ZRkRZVVTZNaKZALOZJUqJKLzPAGlwDFyEymRiJkExzqkF3AuewoQUto0gqZyawIb9wbIVf/4p99+//l3O29gKYm55u3z63/3P/yP3379uPV7a83mOtCnnW7zCuL5MeuI195/+LSryvv7+97bp9f29uvaxn2tZGQqKUOoQiCou4chrcwiJmq54BszepLgnsGSJ6EEgGG10Zjx+PjYxnaSBWBQnrRyQwrExVuI47zJCFsoGGGFed+6nyfGG48+6xjtr7+8vPAv6Y/fELrIM6uSN2h3av358Z4k0llwWgOkLmapJIO4cZ0z/eO9jSGqTBSVL59uAcWIfhpz700rUQmRuLdGROecBnlGSFfRTREwvGrGt3P0zUH6GDmdK58xHbzpQOSosrDMqsrWBQuO45SI0QnZR9fj659HE+VHWL9tdzOXrVUSFJEySFLGaQswlPk47YbNV3Rtay0ozAQAQG63T5/nCu7j7WP9P/6b//a/+W//773d1slD/+Y//8//8/t9y/jzH74aEc7jfH9/J9IM+OWXv+dUaW3OqY2Wffz29c+P8/jx59/96Q9/+Ff/6l/+8Z//cB7xw5ff93779//u372+vkLZbX8RbeI2tu3+SX/6/e++fnu7f/75L/7yyxD+4fNret1uLy+vn7dt135cRkdSGWNYrIDSroDOVBWToCDy0+c7K6lqGrYmhfn6Za86tBsQZL0/P/Y55+dPr9z4OL9GROv3x3E4RGttv32qKmHt2tO89fv9fotIZI1AVkqASIhIKEXErDBAwe98QDObs5KKugZ6Fq7nHDzcijh+/frWWiOib7/9BpC32+3t41sVRlhXsUjPicSArG1ExIXoCqtEbP1qD1zTjalRo++Ig6tToIq0q0h4AdC29cfjkXlJ96EEm4zT1hD1ZQwEAtyaCN3ap8c6LLwylKm/DBbJzBADqIsFwTyuhmBt2nRUlf1HVKEgpYioAoD0diBtW9+aRgQgEjFhuvtt2xNyPo9t6ysoPdyXqjKzMnlGrAUV4cioHmdFPR+P5Drmc9feuF1IZKtkJBUlovP5JJLvdO7KtVYXFRHzmYWixKWZ4ZHMXFW2kKGXQ2YQYiKyoJ2TwJmcWXujionAgnQcJ1QTIZHOLACV5YTNPZEBENZ0ZNpa94zlse/78/kxWhcdEQYRIgJXbW3v8h37rMgyxgi4KuUvEDG01lTVPQlFKBVf3BdmqtDllzQ/vMBXUmubtuP5zABVfZ4zAawKsjhhCK8MdkDE8HD3q8vvXMcYAwFaa+7edLB0nAckiggTMgup1EoiwqyoYuFzTmy01hqjmdm2beicRIcvmw9mbZzn+TH6hggMwABEjAl5zE0bFILqYROJVgU14crMPB7PzMSCiww/5yQSaX2tpQjaW3pEhKVhyMWJzPTW2qXGExHiCPPIeb1+LAMAq5CyqLAKr+BQQbW9E8B5+Hms1gUAc3lFAcLr7dUyn4+TEX/44afj+CjMfR9vb+96xddECxyA5pwVWVW0tfIi7c850xLGlhEAiQXc2/W0GSgzYy1CZGkWXgWFdCnt7ktEgLAKsgo4seL5fHJOHa0KZp7IGBF9qDSlah/vx+788kL5eM7jgLX05caEiPzL1/ehWyr/45/+fPvhExKttWBjIu486lnuvmnLCCFkhPtttNbC5/3W/8Xvf/7zP/0pbDIQNSSIROIL+wdIyERtLjMw0lEFAQbobk/iVjKwEWIG+FkHKtKdF6/wdfUuF3qgnRYUSMB3FlpTCAorALUpR219f1oC6mkx4PE0X/nIoCbUt8+eAAgzzpxLYtLDhUW4kCHDPSwUSVheVIY06gKIb49HqGQ66+buiW5gWA581VwHApZhAqhXEVnhskTICGdbXbA5OKVjIsStNYby9MTQxsxoBYBksTJTkgjq9eW2zIAqIM7lp59/sf3w+7/43cfXXyCEcfeTPv/4hTt5HJ5vBcpETGi+Pt12qDoez0/3F4CNZUPEZfby8vp4RL+9PB7xf/6//l/+n/+v/9tf/IvfnVYyxt//0z8f/5+z0qJOvahjUeeHK93mCf/JX/2rY34UPtuO375+9Pb646e/+umnRl1//Py/Qz7+j//FT63X5a34z/73f/3jD78309HGzz/+pI3O+Y1HvT2+vXy6O/pt3+O0IXvXoayPxyMTHNItesPGwHVwRUDCOY88VLXcIo2ZmGXNnIczbEQNkR7PN7P1w4+v83zu+8AURANcAEhSbYzRBXEUHZYmQh65/ERgEBqtf/3t0ba9rBD7+8dRVea5bTcGtQyPKoQzouYUQIECEiszXwuciDr1NRMDs55jtKsb9dP9ZmZ2ztvYVgWWVqEqRzgRI2ElCjRmltHWWmYTsbJWgV3Vb5QEFY2FEAsw3JXk8f54efm0aXNfjeV+281sjJeIkDawaPTmCFhAgIU150E8CKsJYxFyEkGlL1u3bRRhZmbmvjV376juLhGqmojhXhVKeLrf77f3j4/pqyptJjB5OQVNX4goBH4EM6vQ8/GAIhG5onzH8WhdfJ2JNbQhhUgFYlQi1NCemQS0lmMFIyJwhF8I61gREHQFxwUBw6rcbdmjql9eJGCqrKYKiMfD9n1fPrtucz0hqzzCbYwmlQBLGDzAK5i6cMvomFBAa62CRG697aedudbt1tsQRGbmTGzbaGMjFUEiKGit6lqbEQCwtIjIBFUFpoAyz9aahZv55d3LyrAgyPI63h7r0oRHO+eTlJYvVVXE+XiKSGWytASctvq2r3lUlCAJgAMBojCXB0L1rsuTrxKkKGSqoNOXMmMiAXcdBOkZCAVVZobIQDhaSzdtAkrLAxGj3GN5IANAZfjEiPu+zXlgYe8joZhRCD1DBD7OE9kAURuvc15ApSvZSUTP5+meqgqAbfTLJhaFFWVuF7E5vbhJpldhVUVEpjNzFV31BsCYWAXQ2gCASiegAiyEQqzIc86nzS43Gb3SlxkziwgzPz+emHgbIwPe398DYqjO5du+X1faCIiojgSQxCzEj1pAiIjKDCCIeDHhVQUIZzqSVBUREqOng0NBZGJUYAARrWWtNaVWJe6WDsTCbSeVYsw0zxKViFgW7t6kWAEa06a+Vgo87fz5019EFUBIa+N++8Nvv/3jn//8dj4///TjGfM8j6H8fM4VkxHnnFTgttLt8XaH2+3Ly/2Pf/jDv/yX/+bnn7782//53316/TzPg8mIu2eZVWsJQL5cG1iAAhM1JIqwrAqbUEUdiwOwPs6DmRMqzJsoZjIBAlXCggVNmLEqZ00CIBbDKiIp2rd95Ucy8PaJfuSPdfxmvxSpheOTWYkowM8muImwR3MQB3csFO7c2JLd0WADPm3J6E1Eu7ojQo4uy0t3AgDAyFoXkDmyEClg3mQbwBPgQFwFgryh2tadqPXuhzWRXHOTtg95zBMdVJpDQhZUVDA3qZi2TtVN5Va2Xu8///jDX3y8ZcWemTzycf7Ji2OySifURmjp6UUAUGkrblv3WEJViZlwe9nP9cyqb7+9H+f+5fPty+dXTBSW0cd/+V/+n87nN1/vL59v7v7jDz8ztn17mY/Y+u22f6pAEVn2/sNPvfDom1B/+e3NCPhf/MVfPp7feqvXF132dPdt3OZZ61xfPtHXb79+uklSffrpd8d5Dn4VFNY+tM/z4/TZOhQ4406wMAuwwheyYiUAdN4Z1dGJoym3NtxwzWLctavDun/umSshAJWptf4iuptFJGprAPQ4okqbvKCvx3sQq3taFLMu43PljPQKEb6MJGuty+d1+ApA6W3vWwGJF3ggI2M3NCzQ1mKGSBtN3v2ttVZVvXdfhgVNlJH2rpl4PCeRZEaWYUEWCioSEFvfUhogFiIBMIkqcWJe5AcEIMYguI6cq6WxELZt+1436Q5MFwERIMboNhcAqAgJ9K2XQWZuraPnPM/77fWOt4I457zdupkBZFeGojkdq4SRCrISMwBLqD6+/sqtZbgwV8XH+/vLy30+j8u0LCKXiZJRKpYqC1/qbrjZNhojQbovL4S1FiOZL+HmqzAjMRgwIsKciJoyA6atplwALHBMKwARyPQ5lw5lxjXDPIaMqjzPk4io6PoiIgRFmVGIhGqnFVVmFSKLlqEvZ2nMTiSMQBevI50UA2H0T1XVmvS+RRRHpPZLNVlrYeXVsuzuV2xm2UREz5rmFs7MnlGIa83MAhIBqoQyqgIoynpwJRFDIREhMNMgaAbPErSM8OoKWUWtOVQbW0VUgEUmFABVYgUU42Vl6m1EQQLajCocetmnK80BINCBESK79MzvTdvPMECwcxUmYPXW1rQqpKqLvH/Ms32HV1wW1ilNS3B5cJci4saIuHFD986ghYDURN08EX/88kNmujsypcf5PFiliay1mPWy1yMiZECWsogyIp6nnWtW4e22td6qIjKy0s/jsjYXJhRBcUJq7yXYOCMMKi6WCF2sUCEkoColnh5uyU1INSOU25pehP+xqCrTnYGkCXgoCkzvpCwy5xQlRMKCeZwVAQBzThFBwvLsIkkEAIh02srrUsZ8xqoKc/Ms1lHECWXTsmrftvBIQmYUUgtPSL23U1PH+PVv/hlVIszmQmQBGax//8d/+A//4T/8+MPPjzkfc5Hq02e773Md6ZFWWBTLf/zxp+MjqCKHv+xfzsd8ub389V//5ZcvP7bR/8Pf/9PH+9H6JspMntdmvRV4fW/CQKyg3reAkkJFCkhirnSspCpGUoTIjIi0kMBGfM17xMqC5zpbJ1tzndlU2Z5t9JX+9fEnPl5+/vTFIs/Ht5d2q3AgUiRmQagy46TXvYt09fSZWQieJiSKtA0FW1ddnZJWuj8OasoIHsSkyNJ6y8wCyExmtXIh0AwIoyZL0ROelsFUEVuGr8cZCwKWuyBsLLVWQUImgwshQTbiOBZX+VyYcN/vcX683D99+eF33375Iwqd/nj5dGstMwAqjudj102IrHL0Npcpoyqb2bQnkRCK2YmV5/Het10x/ov/w3/6u59GUY1+Xyu+vH4S8Mr1+cfdrH759WPfPlERkYgQAtzuLQMfj9dPr9vbx59616fh508/Vz0j3m6dx9bO5xORMOXx/uyNPn/uj49/VintMN2/Szsca55KYu6tM2gjpaqKYOrUdIQZspoZshKRCCKycBCD2xmeQiMwSXPl03I2osiV6YX5OD7OdQRwukLpsayqIg0z6g1674/jQFmiHQCWr1g59nEuY6KnzdfbvtY5ujblw9fWOZACASBYgBDMHTINUoawtDnn1jTOqdsQZBZyK7py/oBd1MwaSxS87LdIa0LurozIEp5VcZzGjNd1m1ndk7GQigkhpQg9QolJBQA+75+ICAJba0D4fD61NwC6NDppug4TbQRKBaPzx2mP41mEERERAqjKax4XKtzWCWVRCYmIiFoiRIRmCwCEMRGmH136iozw1vS5FiJt25h27rd+Po+umh62lohQ4evt5TyP8/FU1UQgwOfzjLDe+zUSWS5iUiYSNDuRUAgv6+/YBAsil5uLiJvTdSUCP81aa8XAnaooEpAFMq9RP9IBYd81KpAhInoflcrMVBDmJAiYy51Yu+pccWXKAMA9L6F7umnCtt+eH5OZM/NjfZsrxxjC+vH+XsSXJj8zKrLgcqJkUCFQZpJoFRYQVEERUyOsKiyvqCJEyBJiJLr4JOaLWQq5Mo6Y1Wv0kZk1fWUBJXGLCItgJCoS5jaUACGTWjM/j2MCVSG5O4kCsogmRkWwYNe+ri7Wqio41mIRFDVzAm+tIUIkMmEkFpEgKUtURlYlgKof3lAwKyoF4PF4tNaq0udCxKEDoI7jcZ1JbiYiV4R9znlNvdePgAAFqCwwSlUTIMzd/UJwiBJUIZEoU6ITrPKcXulDByNUxt7b2/NB1XqXQprzKMh5riy/3W7zeQhpISQCYK51itBoQowfx+TWLdw+TuXmScy8wgEACxhR+1Akmwsqi7MiHaEgzSfL6L0DlbujKANmwkXeGNs4n+cKR8Sx7VmFTG3bSTX8JFQE5CKSMc3CQGR4+AqyaYSASBCeVVneRTHi8fH8+sc//dXvfr5LnwsQ0QDA45c//iLF58cTGKXQLBPAw4jov/6v/us//P0///f//f/40+9+/vU4+7GPtj0tm8ofvn398ae/+Pnnv15rRWX535/nk1WYsXAWJpLaupbCZFEZiEWcXFDSJEHsXNJQsBNCZBDAYPGADCqLckLc3NPNG7nsXQJbSUFG1YYiWWuu10+3jVHWZt9cZt/gqOPIUVFyLgDCrg05HPzNngJuAFBgwZwES/DgCk5l9WNu49ap9U4ObGmCyEwJGOZBEBGAzKokCnxPosxVlhuAIhhhIQoSYoqtqqjIMXZ7BmZBVrkxCSAlYkLl8jOeQ1vfeusCiefHW9f548/b29s/Po6v2l6KGtZ+HkxETeHlta/31KGDNQBUFQCu98Dt9kIov/76LaJ0sCgR1JoHpf2bf/n7rJOUfZpKpEMGRrzbqi+fb8o9EyMia2bYb18XSwHl++MRTqt0DPF8Y2sQazScHx+sm03a91cjP88J2UQ/Vfk857jdT/MGuLUbd2Skb7+99dsnoP54i95upX8HTMXlAdokIAKqIDgEy32ZFB7n2XSMUZF5zg8WMp/P5/Ty1/vNoxDlmCfxxiQeFJFCLDIyHSE8S0SKMNP7vlUkJp75EBVhAWSArExEJhIqYBZVjsz0Z1WyaL9DYaNyVPE0St/2u3QMX0043VoTZlRqmbnv27dvLsQJ/vKy/fbbObYtRS+IoIn3todvVYyIiCVCAKANELmqEOgy2gAWIpZXYa2ysQ/LAADdm4X3Tc2iDMzdKyUC6NIT0zOA5Xa7lQd6ZlpVUcVa0Yfi1ueczDxuu5mt9MIqQEi74BgJbmVCrCJfv713uq15KjRVPY/zMCsvZ4erTqfAbK01mRkgM90yVLWNPk9b05jFPKvYPJEp069qVURBrEw/1wSA3hqpJAArA1NBaW9zmVVVVSVSURWoqgBEgrbRxy7Mfj5FOaGuY1t192XMTDrWWhfMZLkThWWEu+pA4POMiMnMVTxnquJxruvHcR2Zx+PJLE3FAxiFiCoRIKGQEAES6EqPQQMAxCtyk5mj9wyIjIoEwqu5EiK1NUSKXGamhEhJDSRhMj/MhYhap/red01Er72X15qzbCXizFDiMYYHVhUBm3sBIwipIiJCLZuYlaqAmZHKKiqX/nyRqIXwKu6sDCCZvoY0NxdCX+FQIi0NNm4I+TyebTSKEiQlASQqrKzMtAzurQiX2T76fB5Ectu2OSdBXZMJZL3ut+dxZBUhrnUSkTaGdCYgIkZaawU7Mo0xvh2PzEu619E6JE5/Zob27bvZraqQLvwXJFCRas9Mz1AWBAbOuRZQNtY+dtLGEe7uESy60llFROY8nue56UXpUKm8NvfLQxqJjhmWiPGcUVUIFXBRt47jQQVEOHQUAjIZpJIC02krVnDTKsokIa2EMGs69p4X/IsAMzPMxqakbUdpSb/++TcKUOlzuUPZMgI9z/k3f/t3Nq1v+3Me9zZmrplJAD/9xV+4+6cvP/z+X/y1hbf99vY1wo5963/3p7//1//mr/d+//b+hojpINxeb6/E4nVCrAQIN8LXKmJtiY7lIs3dhSiFEgFFAbkYgZnQker5/hQi5dYgLUBFFy7iVisjirHlBCxqBFgIACRyHMf2cvv581+eH29Nb3E75sdpfCA0CxK6SbsBeuT5iFOIACozwjyq0BBsMKN8vL0PbWZ+/Pa+EY+urB2oHBMqnFCIQ9DCWdj84QbEhFAO5eGQKMCK4itIJRC4vZR5uXZCZjnm7NKBsAkxYwACkkcdazbENeNlf2lUt0Y/feqx3kfrADL6HaDGuFng84yu3G44bbU2ItKiEFFZoeo4Hhm03Yf78jLWmvHcxt0OUtXH8wNzEdH7x7d93NroBQUUY7S3b9+EBzNDJRGN0dyAuBG1iqNvwzwjuiCfR972H8EO5NZfaMaz1MZGXWkdTqWCxDSwnInszK/vH7fbrem2fJo9HSLyQ9y96rHOKMw5EXG5AQCGUKWyaNsY75Xy9X26e9Z5f/lU0ZQ7Ux6nVykRWZ0NK3AVESlmokdV1W2MOWdrwk0/ng+PZW6IzAXbPtY5b6NXuipWlfvZh1ZVuu9dQb93f3qFqN7Gi/nMCZ/3+zqfn3783fv7O1Yx09Z7ZlaVuUXEvvXywoxlx3WOqnYAL3BCV0FlzRAkLnBA70OIHarMAgmRQIgz3StG71dnYqRDpmeqKhKd56oESLxAskyZnhUzSccYpO14Tj/nS+8N1WEJM1Cttc7z1NYK4VyTSREzzBDqWkJfEisirPL5fHJrVbX3oarfvn17eXk5jmMf+1VMOVq/1L+CAKwsL4g+WlY+n8/w2vdbQp3nCUQViQgI14laETWniUhr4/qnM4KZKxKRqpJEBRRZEMg9saiAiqggfVkCCKWZPd7e9/vNPLHoeM7W4DzPLu1y+jBzIlSR2QSCiDjmUtUquNphienxeD6f2bYdKCNXeIg0RLa5Iqq1rTI8E64lTyFcgaRC1oaZWZgJY+gV563IymxEQHC1E86YnoDZKyoCq9QcGAo4kcFXQCaSIkJkXXdoW/O0JcUCoEQBVZWWlfOB4MwtMgGQSBKqIjxTKLNKCRGTlLDILCJQkMISbDGhAF43AyHJLAQGIASIFZkARNK6pV9XHlb1qsy8vXy28EtZRYDluZZttx0gCxARLxeY2VSm8zxnuIi4JxHBNQ0ThUdEDG48BmSZ2aXCI+IyR8RGzN9XGHk8FxMB0ukOVxuVOQmLUEQoyDHnLBMRCBJiBFrr2ZqoDCB6HgYsdcys6GMAZoQ7RhZ5zMAqrBkezwd46L0VYAIiBqqw4OP9WMvHtknWnDbnJCJm3rbbvu9ff/tzZwLmM8yhhMkqPQNygRkRJEKaK6F2YjjmNAxvXa7OiX3rAEVw2aFphe+vL0Fw+Gz7npObvv6v/+4//Lu//wdqfdu25/O9woVDiG+v959//vl4Hog89u39D398vd1b2/7h7/7xL37304+ff2TgX3/9Ct87rObz8TBPQSqEwkRWps2BLDJtRQSgCzRII1aAqvQmPQjWFWHA0qoiCcBGmuhzHQh1rGfb0AHFgFnBUrUjE6gYE6sgSNXNLcPBKJ9Z2cmkbK2ur60NK3w+z6Klu4phVUFrDQPACpbHc3lmv28btfX22LS9js19uXk2hCQgZiDPyqqw7Mrm0TAUmJlT+mTKWXvCHpQRR/pBorpvIjEXFazlpaRClhHmy5cD77d7Qc30xGSqMN9E0dcPr5+b4MfxFG7mUKVZm61CqiI84oFM354f2gZrI0Cb3lprcv/t64f2AQjEMH2yiJUk5beP2duLXFiGW6XHjKzivt2mR9uGcGPECqrImn7bXh7Hun16ZRqIV+Vin+uxvfzktL3b4+WGUfNhpzRtmcfjBCMIOB7ny4tOsyq8brDzrNb6Op/P9Wu7A5Ifj4FMV77+eZ7MzCRNlQV9nZC2FrojMUXl+DTmR85p+74fxyyHtu1XMHzHn6qK5ArZFTiqKAFjnU0JIIWqN0ZGKWy9H++m0CyXMIMkJ7bWCwICqiosGzIyQRuecZ3BZkZAr9sNAO77yx/+8Icff/qZSjPzqlJvrYncIHPfd48atzbnfHm5FRLDFQBGvVjtGVmg2BDAfIlIVTJfafZw/27xZai0lQCql3RaQoBVvhYwqajbRY2OdM9whIqIuUx6zmO2IkyM8owwdFZhQCIkommOmKjXRhGIkC7cTyYRqOrhi4iaSqwEYl++j608mrTjOPd9Y1xzHq21AgOATB9DV6xjPqpQuBPRWi6Nl7uqsihWipBDqaiSEkrvvaoudHlVVl1IJXHz9fRzWaGLtDmNAXsba53XHrHMbZ4eS6vgsYBwPheyvL1/ILLbvJxBvuJak0dgF0WGqogqLGSmiKoqIhm3kYUeJxIDQCJgJlCxiPtEFCgqwKtG8EIQq+pyq/qeUo0IBFCRTC+PQMCE1KxCxNIu2vqcE1J7b1mekGnpZcxCLJilxCtWgGtjhARgwOTCayfKjKxisRiCGc+5uHdkrqoVCxEBUFUz/LSTtbFKIUkJohEKAEBZmd/HNp0SyGNeOaX7tvlcl+BMVUG5IrECmgKjW87j2F8/+ZoJqEiQLjKkODK1eK11lUzMOUfrzNxV11qIsNyQ8eKTXH/gOE8FIKJI5yKm7wRhSuZCSkRgYb4erLZuNiETETMXFiFiRr68fuosyxATG4KvBC7C5rOIMUV1U19OjAQ41xFh2ptFXjubi2QJnpkw9m2eT9EWWQCVmeUljKr6sEO5kQgj2lzu/l2Cy3wcT2QGEVUFwnVMZhbStebt3hvi85gIMsYeEY2SCFQiqtZ0xn4czy/3L007S/v67f319T6XSW9v3z68gPff/b//p//pl8fjZdz/8Kc/vezN0k9br7dPlbnW/PXb13/+5z+S0ZeX1/n+GPft5x+/uK+3b8en1703nT4Z6fF4VEVrvYALpFCFBsII8tZaVG3SKlIRkWTTxlJrLRXAwjRPLFFIQLm92PM5w60yGbVJmDmzA6MSIWGxyvBKKLFpA9lW9dtdEVBEJff7Z2315sat9vYKsyjrZdxWMVZJSIEXR20yiMnX7MAdJKMgyY9gHcsye5uRkhAszGxmt7Fl1tfDFQSVqgKzMKBNb6JeGsXfgPvoaVPKhXTVlJaStNXIUZkpIqfbvt2jgEkzQoHWsfZNW6f17Ze//usfB+rxcfip1dNp/fjTl+Lg4bbATiIZrTWWcE9E9kxWneYrAySU/ZxzjNcVhcCKsvXX5/NtEOQ8lQQASUYUBRh4YU5bUzsx78e5EAZWPD48kZ4Pf3ysMXZf2Xuh1eP45ttsxb/+028yelULw1/f/PV+X9O1MenL44S1SljMa+u3eU7MKGjhn9w3QJz8FbNaIDl+1v1iytcMGZ2wVSYi6k6rZlNuHc36aLriLDxkiPZcFkgYDjZt3zZCRESriKzWG2fp4KzIqtvYsMmLvExbNmzl86cfv8w5ETUSIJhJI2zZ+vTyyiyPxyMyHJC63qVnJnh82l/OYyLIl9uP6GJ6sqpAg2VjvxPROhYUes2GjQXvr9txPKsCEdOo0S08BDIrKZMYWiezGQHgrpkslwjq4CnEFlaRIrIej8trChANoIC4oCIqnJAw4Zr1tRETVuZ2u6VlZmIEZPr3/k5pfY8ILAj3lUe7BqNIAM7LI7qLWQwZlbgexsjhptyaDltWbNfXZ5XOY60zysdoRGSxxr29v78jKQ/hamvGeVgfd2au9Kg8jikyzrMMGbIyILOep7FSJUK4AzOHe0TE5Zo5p7kHQHv6uvavAMlCUSnah9yqanki0orwgsa6j818IhYjWKwLfnQu39pmWOc8uzYinM9z7HdptzAETHPipghBUL5OFiQsBgoIx0QGKqpCJEHKiyNGRISF4OFBhK0zGgXDJSVfNhehxLJzfmNmYvCrvasoixh3BWAk97nW6k0SAgKZmQQIEBLDA6gAI8JGEyT1WPttrKz0YJVBLTNRPcMdHJMwEwIQADXROTyELpnPUfVl54/jAzCTMtMe51OKqVFr/L7elLiGphFHKvdHLssanhTUmxwfjybSt/Y8n2OMrMS12hhV1bUBADMnQBvDzAopIrBdcPRSVUSuMkB6fflkvtZarDRGK4jpc/QdAiOSgUAYiIob7ezrVMQyUxaqenz76mFb69cQfwnwQTV9AgJFeM6mEhEMgJis1IS8nBXPZXPakF5VhUhN6QCP2fu2loNb751KyLFbbQhlsW23J1FCQeLXX7+11pAxGKVt396OHthoS1+Ued9vNs3dpTqz5gL36sRJQtkjTSk/fntwZ8JOXf70y68eeNs+K1esYpf7yw/r29vbnz5+/+U/GVzR5e38lohffvzpdtuwgD1+32/Yb2/ns9I+f/kh3JgC0Oc8LD4Eesd8Pr/ZPIW0te2YJ3ASKjNJK+Q9MhlAmEgIZt7GrTzqY923m3sS1SAGKqYq8D6P+fw4CZGQtBBg6EvnkYytjfmcXCzMnVtaqUrDoWJf9vkK5HA8PGaABXI29IrnoyUQMDIgB0kT4MtjiuZeQcriFYOZ2DD9hx9fX3X/+HizsOv+y1B2HtsY65zMzFjzeXBTJJnHE7L46k2Lk7gzZyBmLI81Op1rGqRclnnCc52FoMqJeZ4zciYQhXWqBpSni4y//tf/6WM6cru9tOeyT18+k/DHcSbhuG+V6GZI1VVV9f39/X67HcdDVRFRhixPKHYvBBXtj4+j6SnS3t++AkYT0r65R0Qe84FckVbJuWAeX8fWqo5pk4SJGNcRgZJsZV9/+aV1kibvj6+kghiKScrfvr0LK5L3DY7jA6i2rbPwOiczsohWJp6FoKOEvRBubQt3RiIsrLoUrczMiNZak+4R1LUBHfMMJyEWEY91f/201nKrJs0zWtNP2+08n7exF1WJQCbATM++3SL84/nQocd5JpzI9PPn1zWt0IO8ja4KOa03vm2fPj4+kDkSet/GthVLQPk5iYA43x8nAgjDdhuZCSIX9N7dr5t7Zt3Gxiuv9VtEEPFaC5PMIuDx6dOn83lEhLvtt8Gsa62K0DHCKyyishCwqBBFpDCvj/LvW+SodL92olguyuELuLD19FyOWeBp7n6FE0W4vID4eRzbbYeAiICsbTQ7pyds255BlsVEULVOA4DRFKCwIREFJ2BVq8KqYG0KiOdxMNO2vQCAxSqgcxoxaX91y+MZGSdTJ0BfcdhJDEQwT88ma/k6P5SYiIpQGpvF8/mErMLL+A2kIihm08zG2DkBqK7HGxkRmQi9y+PxYGaPareNHZApfS2rqjrPc993Ao4IEZWOz/MkrdvtFhFrrXEbiHEeR9PRhMwj17oIhUqKULEiiLIqEQQuqnUgOjIAEEYCCQJRKREgFAQhOFMxcAAUQVUlZ0AxYJZDIgJiIREiMkChUGZSVwGM9EwEqISCpKoSRCAsALx+ZbnnJdcXYIDTddZDUWRmMpFSYybLoKtg9zITRjJRawOZz2W2snUFgN77+TwQYe/bEabEEZHEGYFIF1R8tH6ep0dUSmuNEa/n4DaZEEkIeYVVXaNqQoBXiggzXBib6xO38qKJr67NySESAAjYKzJhv72EZUYwKbdu7maGROABFtQ0AKZb78PdAbma2DGJiFG+93T1fqkj7k4E5zkX4dgHMX2s2VSRqaq23u153sd9Pp52nH3TtRawl1gVzghzU+Jta5BRHKvOlKhERNhvaua996iMa3zMiPIm4J5CBVSsrKSxYp4LEIPbsrkyGaEL6X071vFyG8j8j//0T0VVHN8+3pSYIloef/f3f/v45Q/b+OTH09ajaX7+8kUYDp8MLDJYyaNYsDU657cBzFye8enTKzE/nicwBWnkCZTH/DjDECEhRdlxRUYVlKFjU9ByWOnKWLQ95+IOgYskWVlVzeLjeGBDKISoJlJX8UNYVQ+ICiRR83r/+Hj96XNWIdF8zuXmMc5pf/znP90//1iI6/0DiQIKWICwTt9f7pokrbXzcIsEJ1+Oo2UFHs8OySie8bbekJCZoapps3AlXqdRQRbuY1sWVeVADty+V36uyhChTBDm1oGcLhQ4sCyCs0wMEhGpELMyhRMA0tcmQiB1mkNil5RWoo/nIR1B8Tmfrz/9dKxaa77bR+9i5ueZqnoQ+rK3WGvOMcbx/F5tVkBea1pEHOWF+BSl58fHp9f7x1zxtpBkThMF1jrnx5fPP3/79WPrd0Q87ahexzr2vkNGFjymRZQMAkErx0atsXtUeGb8+OmlqjLXaef+0r182XuXvUltQyPOvrfTFjPftD2Og5mFpYliFnCVh/lTiHtrSejLCrAYM71YmDHC+lAWlJDLV3K/3+2c+zZsrr0pmigVUM2awqwsz8gIRwYdKo0HCjO75wAkIUPXTWZMt/V537oQAmzbAMLHOhrLXM+AYpV0ExHpzcGIOWohU8Ri1nk8AvVCWABTpr0dD/1eSJDneWYmkyYkEK5zRjhA9d4qHTJsrcqMyzBiF3lOI4GYtPW391+FmAWrcs6DSK4kFSFG2Dmfvasqu9tjvp92MnRkMjNE1D4wqzCX27iPwRiZz4/Hvu/LTixVFk83M8Lm7lDYdEOsqpKSyKDKzLwsvZGwyjDU3LAAiyvq8fEEKkSckYh82rpOxPv+YivO8+u29Y+P5+Vv6r1HlT1PQm59r/QECA+DBABunQjKI6CYMTOvHrSqAMjIhYVR1/SIyACAFimqVl4Cj+Obji0htLGvdb34EbEslLWqruQVU4sIcy8MJTYzwCCc4dAEE6U8IItZri3Au5+IiP9RfyZIvA5JIkYBxGu5gIUAWauAEgGQsAg9PBESMyBuTTELEijZPSoLGYh4hocZESkTIBTCimRmTImwogIsv+yqhQnIpACUiAj4PZ9WBpl7ux/HkZnZHKsgDeia02W0XkWQ6R52ZlSyjCxf56LRrgahZX7OSV2QJONiljZkqsioQgQRqaoi8DS07EOZWRCj4jrzLp8jIBZCl84qERErMqsqAllIpalNYGbGq1r2InUiIlfScR5dBzC4n5VATHPO+96j4HJWZ8Hj+ezbMDc/jm3bbDoQFOElEUfaOs7LcjFEI6JWFBcFiOA850vvPl2S/HE0Yk6ytNNDGK8+v6xqrY2xHcfT3RErcgVAVuXKbXRV9WUeiVwUxd//lslo2CTT01KpuKkQAEAKkwwoW+ezHLrKfW9M+edffxNp2+cbCL98erXjGdM47e/+5m/dzgXYMRr79npTzUjfbsOmPe2Q4qBwXFQrawVusYJVsvw8l/Q2zyVNPcszLK43CyXk02Zkdtoab4Da5cbIXpblCUQ7VAD1qizEAnAzNzNQFG7rWO6JTrYmCUMCVK1zEikzL7P7D69Pmzz06Q8DCwhL46a3l9c5JxBxeEIhpXkicXlibH5MqUSfC7KJ9PIkFkGMcioSYlHmhICCiq3vTHDNJmnOLNMNQYoYkZdbAhRRAeZ3mFEl5uP4UFVVmfMEgNbaSvDlnqHariRkemhriAiRwi3marIxyYd9+92//P1HPrnBCU5F718/juNvXz/9mIeh4HGcgXdE/Prr27WJYcbjmfOwKm+tuce5jhYORBGFhLd9fPv27fJSZVJWuvl220Uoaw7ZjvMNOYoEqI1+s37docFjMXcR9gwRrhSzObbua4pQl7ZOE2LzWRkESQwMtE7nUQLivr5vX6KSixD3Ma5Jl4khQ1WByxC7kiomFBMkTCYJ8qw59l6BIiRC7qDKAKxMINgZ29YI/X7rHqv3jphQVRB957bxx/Hh5YKjD4WspooevQkTpJCfjljcCBAhF3EGFYu3ncuXz5nR9GrPLJcOlme5pRdTgRNFtSEAcJ4HEBOR2QTgMfa1FgCca728dDBgzv11W/YkYsIqojnPLBdhwsyMuc7eNiS+XLXugYhACFDfW3WJwx0Azjm1S9+2SGOIQshMYApPQmxbxyygyyfDqCOShEdiiuYYOxb1rvsYj3m+vz+aKnFT2ea0Kyhiyz2Wu1cFUK0MbOLulIOAILIiAWvOqV2Y2bKAsRxIdmWZK89zbn1kJiKyirt7BopWVBGf52LG0XqBF4O7I4JHEbEQIFPYjCghHtowI/O6TSKpCFFVBUJdQSAAAycGswMTvQI8xxjYEAsqQJSj0sz2+y3S1lzIoKqeEeVDJT1UFRIqk1kRIBLDs6oAWISvwxeRRREy/LsellicmVVQlQjgHtCoEgGpgCwmECYRIJoDJFEAAzB1B8ysAgBK6YJZnkGAIrLcEC+EBlYVEBQAlgAglgJAAWReiVoqZEIsicfjrILWujBF2grfpSFSFSb6Ws7IqNJ1rGv0LBidEaEIPerCGKHy9FmR8t2CgFiwzufr5x8SKj3WOrFKmcY2Yq1vb2+37XbhEK468ATI6zaZBgDM2JpWlZtVRSW11q6zHACwMOP7I0ZkZu29R1p6AVQVhrkZiQgCIeHQbpERdfG2IqK15p7X+2KtxSrS29AW5pturLjCoUqKBPg5vXMLy1vf7Zza9sws3JGliDICCjKhoayTIXehTHSPmOGIGJG9KHMhoohcskXfeqR9HCthSQYRAcGcRlSIaOG2JgkJI6uA+7nmX/3+rz1qTfh4P7ZxtwVRdTz99eWLAf/t3/9h3F+p4PH49uNPd7kpdYWqFWcROCwgCZ7T34XHGG0Fc29ehayBLMVbu5nZeUK4tDauHmlEjjOpCWECGkFWgQcWRmGG0Cxj5bk8zEX0unYzM0vDIirgSkgoj6TCRJFgIYCc9kCWVe7orHLYsd/aeOkl6FEy+tuvX4lo5tmaCuV5PLbtxQH++OuvP/z4l4KRTXo4QSIRmQVhAMYj8j7k2h5JR58uSped4Xkc27YDCQFYQVYCAlEG1wwrANQm6YFITbACGYDpcRxNJC3QciRz50zPLFWJy/EEgDQWEOtIkOf5vH/ZqMXtVR9v74Nu60QK+vrr+zxWEQI3SD3y43a7mfGcLhxjdCiBorWWmZnPvjXgPNdDROY5x/a5bUJEWLTv21oLM0gJKi1SdD/Xx5cffzifc7mxbjZxbz9B+n5rDHwcD0JUbtO8a0MAIrpvt6qCQeeaWx8l9To+fcyHqN7vL4yqXcw1AW77jfsAQDNLy/t+NwtETHBmYZGuTZvMOT39tu/XGASiKzxz7aNX5Zof+6b7tvkyrFUURH6cZ1Pd+ijj4zwTMSIEiRQCnJWBIDMgU4nLIoDLHQjDbO+9VN4fj9s2WuK5Jg9BBrPJgPvoEYFUHhURqC0zoSorhSnOxYDldkUvqqq1jbaBjY7z4/F83u/3gsyKIrC0Tfk8JwEnUmYWhAgnREIAJEBFOTgCUyVG+AV/sOu4AVAZKNy0T3/4svvrzReFrzl9jHEft4B0d1ZKL/PAoojyABU+n7P1vm8vb2/PZacl/PGXb17RtJPyt98e21ZX8S0AtKt1vCATgSCKAalKAxEQ0xMqBbmPwcyRdoWaAaAqvJyIiMDTAkL3dl2lg6BiiY7zXMLSmlj4seaQXgiRSQARFVicwCiZmQkXoplRCiGhBDky55yF0FrP05BQpZGUZ3iEAokIEpkZVH63Q6uIyNX6rspRl4qdjTrRJfOyh1Whdo1CCwNMAmAQTCaASkwEJEKMrCIMvCr3LlG5CgmrMlGLKkmuDj0gYCoAyETIikxPuN1GLl9hVaZQIizKZmZmqtrkkjavE1uQAUmwiBMRONORCRKyMKFqQQIBQm8SEX6t97NIGFQjPcyUtQ+F4scxLQqQEela6mU4IlWVZTUmSExzRgIA84lVTDRa78q/fXvvXVtrBZFub+/v1ziY7iFyOemISFUSEwAug3RVrdMqHQAaMxUUckRUBCKScFQlARVdGNRpZ14eRs+Ien35bHmOMeac65hmtY/b29vXL59fI8JWONplTV++tm3zDJvTzF63l+N5RMTr6+vXb9/6vj2OSazP6TrGEcnbeFYGlbgCQNb3V29jYWCzjKAxWsQRWMAiqkTLK4ELgcJznVN01DkDqo/X085piyg7CwlVVHglZLvt53mE+96UWT7e3lH6jPj2258+f7q/vtzXcRbgCpgo//SnP/7y9mtSZ6z99f7py48L0wozKqKYqQ2EDG7A2rL0OMrJpUhVQXoWHisYKzyZOtPKTCooBCUtSE4igXTPtISVCSwDilYUMG/SPUq1MSldNT4MzyMqgmAgeKY1HTwIFC4oXFYiSzEEZRZmobZhGc+5qvg87Qzst5ePt/f99mmuo2nbd01Q7AJJazUhqJf7/v4+z+MY4w6XOwa5j/Hp9fPH22/Tz3F7gRKsdF8WUQiezkwOhYxMOI+TOvcm4eWVBIDKbgZEqHDGpDLgaNuOngzQhYtxuq1w6Z2+l6FexhpMrBULGVVDcIUfwotPkmhZymiyjRku7QVgR3+b9d52xoK1ZlQUeCH3oRGmrQGB+fP+Mnrv72+rdc2KpuruxzqIiACYMSKJewSP1t2CpTVtyALr3ogAcH6cwvSy//w8PxoJ8EHMgNlHG2P7OJ7AJNSY5apSVx6IIEPmca6Mzz/8eMzz2/uH9ta1peW23Rpredzv+8fxdFsyBiK6RxXs414ZhCgEWYXEj/kspYZknk0pzicCEEH4KoFtV0h8+/j2+vrZqnobazkRZc3nefTem2iaV+bex+PxaKPbiopSJkoMgCZ85S+ElUjDF3gBXf8FnscTiEE4ZhJwQnGJrRDELhrmtqb0ZunPj28AAKDHcYyu22jh6/h4b234ms9IAHSPfWxVhcisfD5X61oF2lsWXb7rqmJRJSwgLI2wcC8EYiXh26fXx+PxOFZ57m0vllh1upXkuSYsqqo4vfFYcwLQ+9czM4E+pLUrenvEmtNE6f3bhzzWmhGIAFRQiDWP81qwQUI4FGRGERG1yvCsVKVCxEqPVRUi7TieiEUqF1OsqOY8ZOsWHpWXyTwd3I0FBS+cUF1AEkRUFndjaRcySVDye/UPrsihkIC2LPI66yUz13NxAVRx4nzMIuQiVrFjMlReo6jQWnMIKmOFIWTBlaAhLKpCtyDEtVzk4rRkIYCQSMswcabCqiLEArBwgABCIISCxETgAsjvHY4UwICZhUwoIgAVcRXOMzFmhadblEMCwyWwnc+ja2utVWR6iAgAFOK1bS0H+P9L4Be/iIkqr+8jgIgIZa2z914oRJAV7ss8K5OF1/QqU+3XmUfXzQbK5iICle/l5ed5qmrXhogAcB2u6Ymib29fCXDOiVQiMm774+2dRXWUFEUlMl0hIsxLHeSqQBRCurQDd4+CgCQUi6hKFSXCysQqT6tCEUGsy1Ju5pmAwK2PKowo1mYzGON2LVZWUta+b8/zuLqMlk9gunbbTz+h8ZxJkLGPX9cJWW10y2t3HkycVUVIYcyQVAhpZsVJ0grC18waHhO0mJAkC2Ctp/SW5r31QYLAKyILw2tvt5BudkSUqgJW5mrSEKA3Oc/l7pUwtj0Kjukfj19++OGH8DfmWjMijbv+zX/4W4E816Oovnx6nXO28YlQAnzaVyyIMCR8ffkBfMSEANCa173tOI4pzKR4GfVjisRaq7VWAJbFKhCRRu4hpIhCIIybJ60z+t7DoMqQefliUNWxTuvcAkyIj2keiwj+o6ugBKUAWeG51m3fOeJ4e/7wu8+q3PvNo54rJ9DxvAqJ5XR0I2A6nqtzG9t9HS7a+JrKA8xTmHnNJ2AA8uNZQukQx/lGWNrGc54FODZZ7lB8riciKQuCc0BhFNOySABBXTnTcB8C6QXYBxGbL2PiM70VMUejAlgFl5KEFanA5jF6w8x/8fMPr41tPlS0OLbBf/iHfzIAAaRtX+4Rp8MxV/j0z6+fAINZI7ESWXPOte2j9T7trMiPt3dVdV9VARj3l9vb25u7S9Plk5lVeBu3gghbc53bJivcbW3jZR725YdPkPh4fLvftoLZuyIioiw399han3MiERC2vs33d20DpVRVRI7HOdNQaL/vVTVG7yqcYHMBHAXE4l4ewAiIV2vBfv/4+pWp7rf7x/FkJqUBoWPv9/HyeL4zIDN55X2/WTgCMQvAqgQEjiggaWOcJwlXrIi0JhwZYbMrpzlBBRYjvz/ezNbnl1df0wuQweeqCNFGiLauAjiqKITycCLCAmAiqOM4eMOmamGZkbE847btxC3ZMPH917fWJRm4sl8Vo8BemUmZ5GkgFACFuubsfc8oEV7uwtx7X+eRWUpcIICYhWudv7x9Taj7/e6ex/v5gBM9AROJ5vqgrg7FzOu0weDTx9hZpYt8e39YLWDOqjWNpGct7W2MoT3P84mIFxikOIkUIQsIMwGlyqPS5mTmhLRlULFrxwrEC2kGog0E/rczshQRca1JzJlpvgjlOJ77fvOYpzsDFuF5HgAgvTNRpjMSVfm6TI4062ohvbzeBemqXZnKw8yQuYu6W5M+bW23LSymrVvrypoQiXUVtiAio1iYmbXWhIUBI8zcL1GR8YpBVzElowAssxsrw3cvhVVWFTMRQmRCYQIBVmZaOBBGJVJixiUJ0CWJRFRRohRiYZHC9AMIRVCUxDHIL9BS7z3MLvwhkSDU5aMqqmshDQSewd+zcthUo1KZEOuMQqzn8RQRbqLaARK5N9GnP79fRdql4idSITERCF8ENOy9ZSYi2FpIVFW9KTEBADFO9yqsTGK91OEifJ4HAa50NxtjkArm9wzg1d9QCYDwHy2nDkCVDJAJTMxJUATfs9qZYdF6v77N5UEkKhoRPuMSQj59+jz5XPP8/PLyeH4Ly9vtdpmrqSohACjqMnxIZSBLEh/mY2zSOsZayzuL29rHnpnFbBGRRwFkFimHH5En8YaMYyvkSWkFCERzTsAszKvPGBse9gQglS6sHx9P9CaKXYf5tHlWVUSw0sfbtzau8AJVxU8//rhr/+VPf1TBsWnBGVWR9eOXz/Fx/C//3f/wfLzr7f7ly6f0aZ6dSlkkwUQTHK7s9La/v52zjrZtrViLzScQVYaHD20fj4/z8Y2ourg2misroriJaoZDeBYUpAhknlXVOg3VQiN2q3PFEmwbs2jM+ayKLCycosZEWQFVvQ8l8MSC2Br5+f7y6cv5DDseDdvvfv6rtfzv/+HvTjtR4rb152/fPr++ms/n+eysmc8oHPchEeu0oyD7EIvJMq5elLYBkkOFCIhiTl9r6miU9fXbWyGf62BWrKxY961D4vs8AgEQiVkbcoAqLztY+FqTmD+jXLcXM4tAEiQsqxkZRcjcIF1howYq8Msffvnr/+o/Y/eIrIopcOTb/iN//XjcPo/ffjvMq8mnlMftfptHrPxQ5o/H15fbvSo9r/q21cdobXh5FW7jBS9tVmT5lKZjF0QU1ipcMWd+rfDPr5/gAyOnCP/0c6tcRIC0kPnldYjWcZ7MQ7VdM1y6X5KFqvT9lub7vrs7IT8ej23rt5f9sa4UzfUcjsfXt/u+j9EV8lh/ZO33MT6OJ2O77bc553E+WRCvOxEgEA0diHQ8FsM1aPFaCwiLMaIKigVH3x6PQ7c9CgDqPE+EUWGEPNqI9cQrspt+HMbMum1RiQhDW2PS1LfzwChWYSG3dX2mADMRmTuBd+XM9HAoZ+aX19f1PC61DRFut9vySQTvX7/d73cReTw+bm1/PB7P5/Hp5dWCoGjbxvmcxA0iMkC4nWudxyLZ3h/Pq0aGiJ7vD7tAUaLXTqHvGyKeawrht2/fjufatzuTAidAmplIZ2kfH2/aEJml6XzOtU6ScYk30nRNQyZpzd0vr8h5PplZBFhgrRMRhAUxMq9hjFAZPBISQaIKEKVpBgCVz9VUmbiq5nkCFUkDoIgS7uZzGzcASAi3vN+UUQhJmjBzmhchi6y13B0BMpMYIBOrlDmqbB5yJf0BWEVZqnJOU8Tbvrm71zViAjPPORGRlJl0xbJYIFhQM3xwq/yPXZCAfh4yBhOWMjNWgcdkJGrigM/zSTvt+90+DhJFxAiLjISgKyMPWkhcXIhAApFEFMBEVWWRRkSEAFBZhqDCeJ1w2sfV3Ge5jufBzrfbzd0vzzaoVgRcvE2kqrzMfUSAFUDBzFUZGQnVWSq8IM2csJrKOREJ4Oo6wOraPj6eVyT6OtvmNERXVQ/HygBU4oCKtKoS5usucp0fnYWJVkbrGquKOQHWWmut0ZuZDW0ZiUDa9Tynm22tX5Qrbpp5zbJRhQUIxWsZNwEoZEoIczefGw/EIkJtsqZZpIggEwIiYnoy87S1zmkWWfCcZ2b2bZxrunvfNo8FiIlZACzMLLY8Im5jC4t8rDnn55cRMZVol57LMjMyhygNcfdK79oiJTIjVkA1KF95vSVY2rf1IELizkAz0syIsDWN8AzYhgrI83xoQ0FILICLcJev932FQ6T2kRGUSeVvv/6qOo7j6Pcx56rATdu//Z//v/Vm+/ap327IUjULo9jf3//08+cfVsbb48FMre3M1Do+l5/xdWXYCtUm1ChFCeI8yGwf27IjK9OsMoh0zhmZTBuXCkpmIbL7WWC9t6IP7UIIy611LF+e70DVd13Lj+dHujFSAUGkijDN97cHs8q4jW1wH/P528u+zzy2Iefjzx/n/PLD+IfjV7PnbbttnxjqqRB3TtZ4O0+v891JhKiNzpUf56qK5bO0VPU4bbuTEg1qHm7FUq2OAiCV+/JEJmBFoo/3DyRl8FjOvalqRD0ehzKHG5QSAGamOyX3NnxNBD8zc1ZW3F52n9Z4QwAsCnZM5IpGsO0vJD823t8/fiOxZUu1Cekf/vHr2L+M0TyeSj/YiZCqokIslEjCgHM97q+b1/n+eHt9/fLp9sPX97cEvMtGSi/9/ng8ujRpctoJ5Sys6JVze71//fhoemfmsMOKhGP0Wuev+/ZpzUjnnV+e+ZbgkTG27f39ZL1htueZrYWv5e59KEJhLF9wtYIzs0cUuhD/8OMn8MAwaUxVlHXrzVdE+Dw/IkJFoKgiv319b7d+zDPKmyhGqejo4/39PaG4KbJARTqk4DTnplEexWaOTFRWaZXxtFCB6QZMyBRcKGQZ8zh7a8S41jrXkQ5jNC5cj1NVr+AHZ3HjwgQEYZlxJXYwPL3q9fMPv/z254L8tL98fDwhi5SGtvPjbK1R8vvXRyGIjse5MnhNd3///rmq9Hx/PudTWarqn/7xj8iSsRKhEERIMLHg/fnOrLpt7x/H1gcmPk+QLqy6ViZ5xexdA+yYhmXSwGMqNl+hqh6LvFilq55reUaT/t3JAmd4EgkDXZLg1fQQ4ZfuSoDSCaBWFiIDUqy1cu5783gKd5SadqgwEHEfiBzLMpY0XXFKYcZE4avn8Hkc27Ydz7cmSkWIWFAeSxuvtbBApPHFIqXKXMtt762IoiIzAQrxghJCIExb123ytHVltC5Qxn6/vZ1PZryaNEfv4EUIQ/W0hczbPuacy88mKoRuTgBItDCjFiKOIRVzlVGaR42+MwMBmGUGO44uVYjmMz1RaXQInwhgcsusTioF5caM97Ed09BJkKXxcU5m8JhMwIIivOwprSOAu0PmOq21JuBEJMQJYvMspRRaiVcBoAghYti6SFxQRSTfrchV6cGMcx5QcTkwqup4PlV61zbXMc81trsvS6jH8Xx9fbm43BEXfhEaS3qYe2YmAhYAQwFAAWGNsTcWey5RMSxp7e08urYhLTyycAYI4vl4vt4/VZ2eFuDMTN0tFQCOmYUpIv32AsAxl5fOh4nA7WW350oji5mFY+fjebbRRNp5LmY957rdb2GuqumBVQicCMfH44cvXwrrfB6NBRHDfOvbOg+lKA9lqUgno6YR8FzWmNVbOjK297dZhayjcVvLHc6GQ0rTa1l2agCAxRHWtUEGhq9nSNNpT5ZWKmyFC1joeRyt9/22rbUilwJFQs0pSH2M52O+fTt+95c/laStWJaf95+fB/7NP/7yAKTkz12XH6uYRvv4+PX3P/30nE+voKLBe73Hfeu0f8a3I4F/WV+Z+3ID1NY4ArKqsCIBEBPL/JnFwqqBDdkxmfnqFQ4/tqbmptpgJTXxSiqhCCjiUhJ+PCeSenBigbKFico8Deb89Pn1XNPiRNdwI+nPCSvoJ90M4rePr+9v3yifW9p+kDKf7mcAb33WohadkCrlPIyoULp2fT58Lmui4Hw+TyW/C/ForNxbc3efyw1Vtfc+w+daWCQigAmAUUWEZjH6HSGmLURUEvBE+t7ZkIWASkRZuXf1tDWDUBEZgVWVgfd9//rrtx9//1dffvrLj+eSVtR3DH/dX445770Bj2WxjX7OJ5IpS0ZWZEaN3oUYorbxOs/z5fV171CFH2+P1/tr1oqIbduW277vhXAcz95VejO7+sJ2piGs5oygL7eX4/lWiUmFQMdxNB1mS4eIa3i21o/jkKbM2Fr7pApZt8/72/tXROxbY/0krS07vwN1KzIrwp1YChMhz950m3MeDxDemsrFJoXy223Llunh7r13gM6Mz+MrgBOHdAIAFCwugBTl83zMOYfsz8e5319bZ49KP76zAyGv8jgSdHfRHhHnfG59H6O9vX273/cxdieD66OQsPceEQGLhFS1ECwiM4X5GqTWOR3t/fHh7pn5/vY8zxMR3WrOqaqPx2FmIsLSroTr4+Ncy7ftdvHrfeZxPqQxhF8NGEitCC0rwtxdZSBkRkXQcy4AXlZQKFpXXgiY3bOScxbrbciaOTMBCyLDwghytA4lVZVVXZSIqurqboJUrMCSTKgCRGRqo7c1jyyChMi4UpCIuG+7lSERQROCIlproed9u6dHYjJKZQihJxJgQ866dm2oTa5TlvAyJSUTEmFBAcLFxMYr8YMMFrZWZgKSu5/nc9xfsICRrnyRqNZ3vZMTEJiY2N1ba4R8zPWdkkHUhxJSUZg7AJgZAKzH0VRLYJpl5lXRUACCBFCeCXD5rVB6y4BlZ0SoMhFBfGdaEFclViYGJMJFvYI4bqNhgc3ZCEQkvTpLJngGlxCrqmb5WqeZVSdiMrPMtLCrYTgzkTHyogOKaCcVh4ICMyfmrFLiBBBkIgqozDyOs6peXu5EdJ6noHYZmXCt5McQ98jE1rv5AkgSJKR93y5P8uVX770BoFcWASIzICZEpaCUxdgGER3HcQU4j3kWSxExKSIXQAKKNNVuNgPwcRxzntKpEEiIeUBlAmzcMjMB3DI9EJkFCYkZz3M11rArScw212g9Ip7PDxHJdMBELGTySFa5Yui3cWufP5uZz6WjE/P0WOGC4mietkoB4WrFrvRy0wqBINCuHQm0NCKmrUC7VB8iwcTMzPLARESoqKq9t8rYP788nx9rrdE6ENp6dhXKEKFPn16Peb6/v7fWhMQ8CBCzdO+6j3//t3/T9nZ/eQ30aac0wt7/4e/+/G//7t/vP34RxWocp2bALq+0VTkhEGArrHlAb9taJPrSt/fffvultd2zWDtIc2SLFRVFZIIZgClcwIBEmr2qKyZAOEkwYWYBBiIRCMaoyXOdAKI8lNkXLQvkFu62gKiR9kq3TGRF5NMVqLNqUitohSqqTYe2L8z4Vz/3//WXD7F927YVuAxHe2X0OBcTUmEAGIDcty9mtqKubwORENWtdLwSd6ic09ITBClLmNM9y7GQBAnAfQ2VQjuXj32zyuexEEYGlfPYtgzLdNVm68SSjGRUpnbau0g13T7Wu/YtAwEwI0Xax/vpgc+Z/fZ5rq+/fXvb9warBjHTHh9nYtzvg7w0c3khshSO1iqqYYvll0RzfHx89W9jjNvtxTwe7x/7bZjNazOfHpfRHBJjGQNEQiWexwJsRBRhy4BpXZxC5va9ODQiibHoqhxfHtvW3d1tqWyPj3OpXsU7c05L4zRENF9EVIBMdBETISHcCV52HQvwONa2DYjMTPfVKN7eD0EysyLc9/3xfAoTSUT69BAiiyozCIn0tGytAdPz+Rz7FmFmlgldCbKyUog9UpQzMzMDsYBVGRLXsSDQLBPLAwCqyYZU58zMMsu350enBoQW4XlcJMKKdPfAd9W+zklEz+cys9v+8vZ8762ZLTMbY8y1ah3btmViIklvKHid5arK0gjZ4sQsIoIIIoFCZiUCs2Bmpk4ssWbfRviEAAK+rBDhiwHHGGuttSaSJaQ05cbgSQGQYLaIytyLWNu4bg8VJSIFhSRQV9tBRfgVopXWxxgZtY4TipjF3R6PB7UCqCYUthhJRCr9Mg+ftjIsoro2Zb4uJdK0Cq/fA2GENeHbtq/jLCxEBI8kiErIQsQLt4xVKExIkUXAY+yEGJlI5O6XSwgBEHHavG07JgLAtm3M/DhO9+SmUZlmzGzhdOEjoKjgfr+vOa9gjDClcETA1ceMyIiXwQkRqvIqP6qkSq8iwCu4Cl5ECVej1eVtci4AwMviC1RIhexWvkK5EVF5hdeyWDMIQVl7H7OMSc1XE61EYe5NI1IU52kR7iQVWZhZGUgABMQXIqP8CuAoVhnY6N1jreO8IGK9b5dd63+7i0BVQDaSLLhcflHVvpMj8Ts2oL5zpgHgYmsgIQRgYWVe1jzIAggk6b2fCVUVgODJBWFpFce5Wmvb2IkIhLXraeeygAxWQESW711YKhqAnlWVTARQbtkbZwRVIjECCLOt5ZEvL70KPcLL/bJ7ZxSVmU1bQpxVXUdvbYYHQjIe6VAJjNmlPFbMqoJIZhZCwjRfdWFmWhPmTEECj4V0WY1CgFgaCADDWrOcsSSz3t/ft22LiAqHAMhqQ+205/PRe0dEQu5tPJ/nOu3z59fH870TetphC/f29ng/zocIUeuL89//8vdv8fjpy09YFuhjDDGypwecuPdPL69Msua3aT64H/N4uW8vX37451/+QHwDSiK1q8vJIj0JyrACEIvwas6CSmJGnssyXTgRMMLdikEBhrBmpELrXQnRzLySiBJMpUPRubyQRVpBZZXq9pyTGRmpkhKBgJi6+cc0+qQvz7c/dGjIisFZHguwggIiy7OCMKQe8xS0GjwA05JwyLoYeFXlkJh9a4DoEpYrPThidPWMFV4gRYmaVqdlZOK+38Byvw1fnoYinUDSFgDg9c4pumgcDSmo5Qzgdln/E6n3Bkrn+4Ek+74jw8fjIIHPn354Hm9F9Xy8H+/W9DZ6X89zB/rc2z+df5zZ0j2X2jmfqjmjqnS8nPN5no9/+a//1fNZt5dXRFlrtaa9dzM7juP15X6Z7y/JlxmBKpD0/0fUn/ZK0nXpedga946IzHOq6nneobtpmpNIg6Bkg4D9Rf73gmEQkADLsNTNJimKb8/PWMPJjIi91+QPcV6qPhcKledkZuy91n1fF0trLcMqRuRgFkhEaqqamW3pUaGNWTgqb7dbXgB3yP14btvL169ft/sNEK6+QQAgYtfu7gjFiEh0eRg9QsnOEQjeJBGP6+LIkiJkFkDl0yDAnXtHRIhANyNRMw8vrxKpTFTu3x77uq6vHz8+n8+oYmZVCh8ZQIWybGEOhXN4FZQ2T6coFhzDz8NHJKoA0HkMqqiAKuxNELvPyipgnJ6ZVUk+AaqI1MGO45uQVqRbEMmckYnn8NYaYHhEVUXkGCMSrsOK2UFEkQUZzFhVTfpV8SzAzCQgzwJAAieERGChGoXvg8CobIzcG/HKjJDpkCEMyO2y9KRZWSgzESYAXhhowPc2TWUBUmZUMvI7iZkQiisTAIR7ZLkZMF2GACooIoAgBqyECiwQRUcc4yjaAJFJqjwBCwgAlmUZ6ShERZl59RHPadf0+wInVRURJxTxxfGGzFRiJsGsmJMItCsAWKYQ1aUMqkBEVW3LNmwKXmqlICAlDare+5j7ddZ0yyYtCjKSiSLy+oxnQZaDchJci2RMY+DGkpmRF2AkGEkZALkIL2sfChRcvy4QYhQGgCgDIOV+PIf2hXmdblwIIJnEjCJ03TVVdekd3L/++rl/WGA6uhNKVc4IYfCqTLRMFiXhwktIj4SVCEWYCCKUmVjv0kltDBXpg5WxgokY66o2XehcAESSykxAZi4UpArzLCrAq/hLBFUY4QVwLd0RiwoyMyBEJCJszpeXl6ra913aSogZCZVZIMS9yRU4MhvcmkdaeAUWQtOFAIeZMIBXDOMm67qEwH6OnBcQvojEzBHZ3YgIIiFyWZaIiHCPWWU+QkgLytPXvq60irBbWDgx7+f0DGRpfF0tCEnZsRzTqzFF5q21CCsvaBzmVZgZ5gFUKlrE00+LRMOmCwPOmJnl7lpbJamsx+mVV1c7rmVBRFznGMsgZBJ6Po/eboQ+Z57H/Mf/5B9bxjFHVskd1KopJ+BxvP34y9/99k8+CcE4TmBWBi7Zj7Gsuq398fzG1IDBczzm121dqwE769KfHkQUGQCEhVvTQLQxVaiS/b0uhAKIVeA164AyJESk5IByJAg8i5KVGMNiCCEKcKGFn2YvDZaVaBJQqGIQmOWMBzLyldBhSMQEt3kQzqyRtf38w2c/QoAshigiWIUbQ/Wrc4nMtAQLzlkCMWLaTHmfthF4Q45xhgCga5O4tk/E5cUsDDkiCpKbeEwsXLY+fXhFb3ebXkCCOI/jvooBprvZmOUEqAgQ1IgLuJOk9oCakddH5fayueXXty8fP77+9PPfLx0eNFXgOfdxmg9/ecHE/Ks//N2Hj99/9/3vswwaYuZxPnMahkBWRLg9H4+328v9tsmElJXcs7V2W1bIAiiiLasE6UJ3ZSYRX+fQ5/NxHnVbl97oHB2CKzGdAamwFGX6RKbj8SBhZj3PEyDXvlz50ouwf/F8h50fP37MzLl7QSBzYY45Id5HTGunMY6E7E3NjnE+ELuqIi6IPM21L1hwaWUri0kNAWmpTFbEBCQuTNZ7r+bmxzlb3xah89yP/bitG4KbxbevxzjOK4qCiLCajzmfx4f7y6LtnIGVb1++JaNwo2AsEuRj393muq4obmecc5C01hoCuhVRkJByc8ulLU3pOAYCI6gwPR8HK7EiMme4pzPz2+NLZvauuiiYISYAzGFtvVddhz/OLCYqDwDK8vKCQsgmSG7ByJbsMbMYA4u5EMwHQEQl62oZlcAEhBBVSEjCZxoiAQQmYEV5QCIxew7RTswZV5WGiDoi5uXZSX/P/3gSkQjnRXUOayxjjFmTmIhlXk/SgiK2K5EUXggZhQhEJMxAICLP5xOYqriKMwmRABjKkQgRIgKALkILva8tag5rXSkRgRgL6L1jmpmicoxYliXHoEoHvxBpUEGAAMBIeV21iQuACJ/jvCw9TOjpEW7uoKyAGJAYnYgA01NVsmFEOBYSJmEUFgEReHhCMSAgQVhVEQAQIAlJFqBHZpY0bZ19TIuJrEXQWN193/3Wl5eXFwbPTCFByCK+tgCEGFUIjMyZXpAVjgyZUMwVE8uhvMCvUwIgJAJWEOV22+ac02PGrEQWbV0zM6MAMCprTiIIB9UGBRdDPrOuwBcmITCLItPwgR5ILKwRsSyLiPiYVFBRq7QwL0RRWaQhInhiVqVHlRAwYwEJYKYjJmCOMZmUADhxax2x5n4k8fvsB+hKnPlMJRFBZsbKCGNgIpjzBCoiIpUYhohdW0T4NHfXviDWYUYFisoBADwstLVh8+oZF3IhZsEIJ7z0j4aMmFBYiBAVx7RC0IboIICikJA+DZm6KsMWPiPitn147m9R0PsCWOcxMmrpbRHZj2Fht+2lL2shz2PaPF8/flqW5b/81f9+vj2//+1vAKjxGqeTovvkWd9vL8dzV1nTDuCiTAzLmeNsHpREz/3s945YTvPtsG29L/cPxy+/skoFqHJACLE7mFtCRHjklZwAq0Lg8EpAIkVSQEzwhACqAdZbL8wUsBnADJCigkJAlDmRUhvZdJ8nAAEkcaxLo4rKg4iEiZARi5VWSTufHz/89vgy5/EFwfxMqpDWD4hROSHGcVLBVYlz5fb6cVXvv+77MFNRS0eicPdywaQEdIgCi/QSBgpPYoYELK5kls6MnsHS9nNX7ghkflTkvgMoXgU1BCHg8GlhRMpM53nadGncmKBKCC9y4W1r43z7qz/8b//dv/lvjn2C410/bveY6/E4vmI+f91/4tvtldWfQk7CTOGEiImMICKEhlu7Lbooff/997ubMjHSlXd1N+F21QqPYxCRkHiYu6237eJQlseXx7nJawUqaWBZTFYwi0xIqKpa+/J8Huu6zjkTUHR92w+PWgRFl3aT8+w+w31mMRIQwKUnQ0AiQQSLQFZMg9JwX5cPgAgg0ygcgRuT+vQm+nx7FsLLfUUom2ABIlxAFRUBx/k0M1YaY5jFnGcTBeSf/uHX1hoUuY9M6CoRmRl2PpkZRX/6+del6znHpi99ux1xZsXwoUi63BaVOV1aHX4aZXJQi5SYYQGzkdi8SiM0bIioNB5jXPutlw+vXvl4Pm+3lTvt+2Pty/1+P45nW9R9uptqL0hhSD89s6oK47pWcZGIhGVcPdRMkeYJyCyItHoiVGG4ITEzK7cZfvEIWRozqgAjuoebFyEUMDOxQtY7WPmiGVJBJSABJABfCVjES08TiBVhBVhQ5lNAMgIziRivp4VwFUZhZUUGMycVK9nMmgMRIyMLiQgCGRkAVZeBA4EqoQghK6OAiokungkiVYGotCaZFZmVcO3k6oodi17nlTlPgELEKCACrIpwBLoy1cqidFWFkZARcfoU0a0vYxwjPKGItWmLTGapius/U5lQJChOmDEACRASEOA6xLw/rgIviU6+0yuBAuqKDmS6KBCnVQQGImbMTNC2iFCYewQKY/r1/jndWAqRA6qqMsszEgoqGBOxhBmFzK83V7rPcmck5sbM+9hZEAhn+HADpCt58HgbfpzMrCxmUQHIKML725Ars3adw2wiJQBhJgERIEIJvhsHRRrytUGfCFWRY4x1vSF6upWZXawo835R6JWO46hRbmkVRdVau95LiJOAsqqxRKR5ARITJ2B5kHIlIGJCCGFWXGcdG4NEEFG0RRgCNdaq8oz967dlWTwizQGqbT32q7yAjKEIKuIe2TjCitCqimn4VNXIoCgRMY/WmijHmFetlt5BnpCZBp5QANVI0v2a2M8JlcSilpWZbbuFu3mJyLLdaPicNsex3BdUfFlfXl+34zi+fv7yuq0dGQ3TiLLf9fXXn/6uG4/HgBkksvXX3vXrr49KKlCbtNxeROSXzz8f5wCsD68robT19fvf/hk/jiIMhGJ8njMCI70vVEHpKCCIkQAOiMKeJHGPsHOvgmxtBc5E2kfJIuGB0BAJkcc4wlNVe5d5WliFl83MdJIGdEFbiol1XVHbPsPzaNzv6/bhttksHzBmoagS7W+7p4lVEBQiJQovrISIoi+t0KcfEyppFtfMOmfwDYDhWblUwZwZAUKl7CXTLdOVGSH9GIiQ4YO0UKS1OaP3nhOmDRK6sh4zAwAcEADasiK1mAmMWChNiagiAuJ82mW3verIVWkZnnWMc+udlZ5HyHLrW9+2zewcx9dGmDEjq3JCeVgmlRBHgO3z5fvf2z7ndrIyIjzfHqzvFLe+SGaO6dtyO46D2sKEouwz3hHrpLxwWlUWMjbiCKsMRIDgqGLuFy2viYblHI6CAHlJesBtPwdiAdTat6S8CPhEgIlMLbwism+KCUTNQ8yz9+7mY9gYu/ZFiL489vkcnz58d44LX/d0z/38hsCs7foijIgsZ+Y4Y5p9/jxVZNGoqnTyKub3xuGFeWLWMYfNs/cOVLJIVzznAcpUjAXaGKuO+UYEnnNOIqUrikUi7l6QwIiNFZGV9rEHOgpWgPRWDo99n2/O0pBkBAEQyQaibjZHkCQRLlcfMZKZoAoypGkWCOv1JZvp0rr7LMjpI5ESoIKF4PTyjKV16RzTbA5gYqXGVKQAkCOckkXfS6Uk147fLghiFQBYxOu62gzL69uGmBERCqM1GfNwH2vvBWVWIiIiFa4IwBTmykysnjhsIhFfnXjG9w9IQyEsD2Wsi2NXOI+zMuecIgKIFUnEhe/XPiKSUk+/KBSIeIULEbEKibiqoCitEgOxIAu5Iux6mD3P0Xtv63KOQ4GZmOryYFVZFhMCivYw/2pviNiaAmGEM7FR/nHGDlGFQCSSQBiARcJciRmJRUoE5QvpBZz1ykIBhgB2LyRQZQ9vpCp8jJEJgNJEpAFSXTG9vvWMmtPunaFowlX+BWZyMyxiZmSEQpaWboxlWRkBAEjYRLEAualqVSXCtm1mVlU2AKB5xHBP8LXfzQeKiraI2RogFgEKV4EhFbMiYgAwNRbkhOnmcydlZSylqgqfxBzu7608rISablEocoE1UEQhUVqzq8pMAABAJUjAKE0yCxQhvP7r+L7oAlUC8mHz8kAiASiWvc9/MpMZE5EFPcrdI9Istqak2FAz87as+777NG2NgLPILFSqkEAyYqjgJcqIS6dd8s4ks9JFW2vuT2Y0n2Z2v70QkZcjBBDPjIQklYhwz3k8COi2rJm59sXTDzuB0AGB5TiPssGkqh0LWlHMOe0cFbcXAcRxPu7310X47Xm41f3+8TzHj3/zD+fXN4dqvX197vsZy7KMEl63wvICKPIybkzE2+0FS+y04xhZ1ZQf+5OamllNAwRwF2lt5nt6ARPqKkZRQYHl2gilxhiV0yLW9b70Ddwaa0UVKhTft2Y20iw9K4pRIp1VqHUQBkIFtTlBChWqwjACkVuk0Dijo+Z4rJt8/uqPMda1QWJkEKCiGiQhqKqlyUwjhXM+QwB7ZcIxqkgcGZj3dEbEGcQIAA5lMIiSOZgAKopA+3qeJ1Tb9wcHtLad5jmjqzLzOIeAAhEQFPA5Zl03wIJyV0ICmueZmR9eXgFgNzSzm+he9euvn798feuLCm+OeVqB3pk1PX/z4Tc//fDD/c/+9JfnZATS64uTmdlseM7OW5fbh/v3Hz5+mln7fi7LcusLCH97vL2+fJzzZG4Rcc7RlvXYpxJ0ZUqThiPO4zwzU0QxGGE0XQpsHvP2codEYAiz59vOTMdzJ1Fd+vQg5NYkzLZlm+fetAfCY38kRe9dVZj5+RgAicCtLftxfvv2WPpdSM/TaA8kyqxpD5z78xj39aYoP/30AxF5xhzIzF+/vC3biuZRRXTtFw9WRWQien15OY+ZCYwKcDURCyFVdIxRVdtyizQRmfNEhtNGVFqEKKYpYVUVK5DSsH2fe2u60D0TZiSVV6EgI4EFaPk4poGhYIpPt3Gcym279WkJAMjNA1QVKadBJ77dXhLqPI7eqTKuAaAyGFgVzWHQyS0v4cAZI8NEASCIhIDMDiIBuGWeDlSe5tZXzXSkTIuMIGrKooxVgYkqDVERIgHicu4IE9EwS6CAZBYiuiw8hQmVDNWYGBmxwg2AEDF8UiUwq4jbIFYkSQ9AFRHIRILr8ldQWGk+VxLhFu+BrD49VdUi+7qkh/m4wj5V5e4QCcRQmFGZed1ZLw6DyBVVBmad8xzDiYCIMl26RKWoSF4F0+sOVUUJWYnJRO6EhVnAWa21YcCCRBJhNgxaMV0GC2LmAkQRIvUqBozADMgMAGokKpAzwwsQAqGASVhar4QxRgULCWUQSTmUCbIA6vAnBfSFryNpVU1P0bb7XljD7VIkFxJ6CUvWrMJMEOyZwCoQl6OiMjIL3E2Jr1iGxzXAIBEZY0hTkgZVZh6VWWhm1ypXVc1GVfSFMs2jRCTC6wr9IQEOFQZgoMr06YbAra3gEW632+3x9naOoUsvICyE92V6AUAhFJJnRCWzXHCsQgDGTJ/TmZmKvFCIotjClHz6EBEERMKEd6YpamEBMfa2Rvg87HJVq+i23o/jKMSIqHJEGue5SDOz9IiaygIriUCiY9Y5H4yCKAAwxtFVwrOr2pjKCkk+3GfwTYc5oyxt/fXXX4tFkLQ19zMwkQQCMrMpM+A4jpftPsPdrPUlIY45lAUQASDKqRQLi7Ah3G8fPO3Dh5e//7u/eu6P33z6zue4OEba6R9+/GGeT8hBhJbxGG/LtlyI3RqzwD9+/xEVtFVf9YcffgDU++3TeuvM9t33L7++3T8/vwmwha/bIsTPb480W7KyyqkAITPSk0o4WFWZKtKZrfV+kTjPEQmfb8tGqAl0sfOgbOlynkFIBlgQhWzgVUnCx1uVO92azZGQfF8r5iN2OunPvv+TV21/f3w9zrcjnZCdAJNb48qkBCk0G17WFhUoHvt4ff30GG/f3VfhqRqnh9NZiQtuCeI9Zp1W0ys9ZNXVwwq4L2xz+iCmVzIMS1zhzDmGL9xpUTtndkmq3jtB5Zgv9z7GICLkWEQJCty4a5YHOTI10tb7OU8R8TNbdU1V5cNCsogwnieraioYQfLK2pC54JjZlmXO2UD7IsPOZevf4vBYA3hdbvtpRbiW3PkVD78xj+P4zccPv7x9DTZedYyzEtwOCtQuL6+3RDiHM2mBPM5diFmpKlhFiI+ZjUlEEOFx7FnFKhHz8AQAINuPqV5J9ePnrx9fPv7y5SsRfXz9YBPCQoi//fT5/ITDJqh/+ennhVXxylimtKUAiHyGm7vUxYl0T8z0T999mHNGxrIu5p41GNDCZ52tL2bJKrxs+3HcXrc8jxHWVt3HnpHhEmZRsi5b5MkCAYCEXIEugDGtlrZUludQWFYBLAbnec7Wu81QFaxsLGY2/BS9rfxx5jweOxGwShVlqBIDUDGHx/RRkD6NBJsyVi69neez97629vbtmzVQFU9v22oWfV3HMCpkQQAESFHIHFHJQqcPpvj44fZ820eEstisxgqRjW+BIE3dp0MAkpeDTYJgpbSYY7R1Y2Sz+WFb3I2ExxhQtK5rZNi01trhc11vZTLGEBEhQPCsi8GU4YbaEsFsRgQgVYC7FwIzXvWVaef7m6QlIoHAiAlIUQgoYY6IJVRYCNhaq/eLefWlRYQWRXpECKsq5/v0WFQKkCIKCLOySzczQMi8niUREapq0ymgaTczELEYytqI5zy1bQvxsDHLCwI4E6KyWEmYsQAcMAHSLjteb2QxM4NlmZljoMjmlRGDNZENKCIzjZVbsQIKq57nA8m3WwfSSDoNgeD5fKpgRAAEQJzunaEAWmtIdJ7n0q5Zd0FpumcGdfQ0BmHl8CQmQGSUIkTmYVlYiRUYnMiZ10sghoZMGWOe67JgBlZGDFVEBo9qqgC5LhSeFSDSrlhyuiOWNiosuFZ7iO4OEMBw2plU79gsYJtTPtxiJhAeNUGKYWbZyhqUlNmQqxKJjhiWwdpQy8ZU3c5jiEogICspI5tKO88TikQpPZkIPB7Hg6nu61oJHvi278k1cRLxeZ5NhZncHIm4CZpDhTD13p7HfoU0VTsSkVxP3DYOV+JxRtdVtQ1/8wxt/Hh86+uWmV8eb4FwW1d3P2J4hejaVB/jG3dIo4gExNNjuAMKABYKVlYAUcNKIoICiPz08vLzty+fP//yJ7//jXt+/Ty/+/jP2vrp+fyKxcR0HMdPn3/4qx//YODS+4+//ngGZa7HNNWQzn7SX//N3/3Jn/7ud8umhS992xg/3nmeY+zHcrv97l/9i7/6+vPM+PTb7z//9GNZKAJDQkdwGJC7H22TPIKnb7RA4wjzSNE1A4/j6Fu73TQy3nzcFkGEzEwkVtltIGLv/fTJDoR5ecQI2gl5/7gZEAA0aP5l3O9rwvzdsvSFf/zlx3Xl7ZGs6zjznstbTOr8Zr8GHrpwU2lFeaYAzKXTPB/KfD6HnQ7JEthlnTXcdsOihKoZSDO5EqclWCnzOfOcAVUixYD9vrkPP/2+3DDxeO7LsnCW2cW5DMxaVp67u1d56cYJkA6IRNKR2jmOtCoEsyHMb/vxN//wwz/5p/94fz4Kadu2Oad2FW3HF//dn/3p57dvqN9LU0iHmgCJNCttWIIVUL5ui4g4IXgsJH3dPMY5DlBtvR9jF4+l3c8xcGGRhliiAJDhMNyJRHGx0xFx0dsPP/zw6dOn52NElCrbnFVFlYlQVecc2iW89n1/eXn58etPlbmu63PfAXF/nu7gPisfETWOuW0wIPenMdKvv365rStdCnbBTH8+32TtlUVM9Eewu5lRhvb+fPtGooC873umA6S0xgw1/Ypuesbb8xuLPJ9vYwwioNaSOBDvrx/9rLXx2/Ot93Yc+3pfRWQMWxZiIAe3SIAUFhQmjKsZXFVE1LsAgA2nciGutjHpOYaVta4AmeYkVADmVyyWWckzCUnaO/nYPYiv7Wld9iFCykAiPc8UWcJFqEVU+s7IVXkcI9NVlZgZ4br68IUuYrn+kSoa7pHwLstBuiKa18iFCbgzUa+ECkufx9Ow6H3jlTntvDLbBe9pKWbWtmDBtNlFtcmYh9m7NFe4ISaJMjODRFj4BJCrv1IByIyUEVWRxPBua4AsiDntuiBdWaorlnxlo8xszinXZpv5vbUcEwCqwtwjg5jwPbaDqr0KKjLek9URgUCAifOqojWl8MyUpc0JBWlu7k4MzNy1uU8ARELIqmszHf5HHDdmJdI7qTghsDA8dBEwrIIwJEJmQqALjW3hWNWaspBlRAbA5R3Pq3FARPmu5EoCAAi4ilckEAnJx7mvbem9j3EOO6XpOQcQXXDpqkROEkaiwsTL+kx8daaYOTKP54ORWmuLML6PH9o79DGiiKc5EVVkRJmVKiFSITBzXk9+C5FGRER8SUGuXfX70DuTsJg5vu0IRZ2HTVWZPg2ydUkbZxgELWt7Hjs3ViD2vLJ/c04SBsLr53394sY855yqHQiRqQDTIzOXpZvZNFdZb7cbEox0s1y3JT325957JyI3KyiquvIo53Rm7ssWYRF5HA8AeF+30QXhrmHTfItKANNGGTU9C11Upr2xYFMlh+N4I3ohkqW/zhoXnysgEBGpIrMgK+3yeAFizCACyDqOMU9TWTzg62NYMXjliJve3o6dELTzPk4rD6r98UbC69qnn4wyI1QWdoZ90GF1JrgpzPJjPPZhJdyhaEX9V//s//KHP/zhl8/fttePmbm0RkQWcf7N39mZt34/jicATQJcEEYcc6zbciGJpN8T2nTsywtKkKj5APCMorpqO/n29vUclpkiosty+Nyfb6JrWEJFeCk2QY5jIMPf//xj//QdKL7FvMKhCZQCM3OaZW+VNOaEik3Vasqc+7J2m0Nbz+kchJZz5H0jQJn+nMMbiSIhtQwIwJwgweSCnIxRQsichOPYO/O6LBVwubGCgKKUWZkZ0TEpqxETYBIztTknkGSVxSUZ1cMHIqquQIVQP/70+V/+639pNSP3fcxtuz0fz0Jo6+3L52+fPr14OHpyDCTLSo8n5iSoDfV1fX1d26xkXChw7mOOaK8bN32OM4VI288///Lhw6fy2n99XjzBcDczCweSvsjPv/7S+8qcz30HrJ9+/qKq+xhU1Vt7Pp9h3pq0pSPL1y8HM/be55xjHmHZdHGHZd0OnyKakY5YRME4KiY6F71u95/ffoaOx3muS2fC5zwvIzQYVIDPaK0RATIw8lUDFRGPEiTsPcKuoqMglHvjHlVe4GYLUdtWr6wkRBjn896yIH362lqE3bYlwvY5ma+nPFyzTUQGzMoAFgYEfnfFu4+IwoIqREIzajdRyhzXE4UhALGKqrIyA3IAMiAUXsXX9/guEl1tnOHGzNrWcxqius+CIgRGnMO1qzQBbBlUYFBUgZBSkcNORIYsL0+bjhBp0hQdr+dxRHqMhGBmyCQAlSbIWY7I3BQRC+T9gIMFkMRXwxaGnYCUhfNwVS0kr8zwQAK5dPKciBV07W7TnQkLCeoi8Vw3H2GBTEACQgJID0skJuImVQUJgAl4ARcxIjNRRNa1wzs8BRyuJkUhYlZUFgBEJmESEdb7rfdKTsAFerhSrQzhWICVSESRNufQ9g4k0caQVZEgcKkbIdEyMAqREUiVVdnMMp2QiN+PmkCQmR4jqyopkzD5Xb1dpeSAklnEeVlVPGHaua3tojxChopCgUgLHzWjAJKTRRg0s5pIaV38yIgoJma1OaqQWAVp5iVzCnIgIm6KJGYmSFV5nWxufQUAiATGun5xjpnJKteri0gszMjGDcLxvSwMiEAMrel5nhGZmczFTJkeEQVXR4ncg5jdsqliRWeF6yFNlYmzjKgiMTDtNI9YmVdtOZxUimFGCmNenTtzIbZzIhM3RWarjPQuCqIEUYTTA5hmBVhBRmNBgjmnEK/rSgTneQJAbw0RHfKcM+qCel/FqhJpVx74QsoAk+WF+Wpzzr5quAf6y4fX43hmOYmQ1Jdvv4jI7fZiNtzz119/VgFmLYhMr0xmEcIrVSrC5YXAoyYjcWMiSJ/fff+79XavwuPI33/6vgnP/dHbdozj7fnl73/8aT9t640A/Rw3bQQR03pjH/tCrx9vr+Pb+ct05vjth1dd1ywU6czskR75T//Jv9heP/7hr/9wjLH09vvf//48z9/+7vvD8X//j/+pd23Sn/u+rJwYIYLYp2ggJeD+PF4/vertVjMKMSo9TRgjZjpdiUczYywWqSo7T6i6rxtQ6yyEEhALKDKbn9vS9cNruy9ZMn6CQUWNi+KzfYW176cpNeQ2J5w2EycJyLKt7g5Ic04CVpYxTAGqvADcSWXhUKlqyogxkcpBitEKAAQJhSw8qliFiD2AhFTXgHqOsxUykp3n0hoxzPOUwiufmZFExItMt/Q4xwQo7W16JrOdozO8vb3ZmMxcsalq+UUbwJfX5afP/+C4fPx+qfP04wkxqbjR5VsC6v10+/ztDV4/xJxciAnA+OtPj6oAwsd8jjG0t59++mFOX/Tl8+dHV75gNKo9If7+7//2fn8FAz/O4zy2ly0iZuacU7lJ4m17rSqAfD6ffV0QOMKY+/Axa+rSvp5fpbWR0+cpcr+ePfu+VxV6sdCCTDM2UcokRgOfULCKzVF2cHGXHuERZTZVhJiJoC09qyxDRJAwo9I9Z2hBhDmCe663l4joxHVp4MyX3m99QUgGL7xqqUmEx3mw6pzGUoDIgkiR1+MGnAmAmTgFETGJAaEYkBEgvYie5xMwWhcEDrMqrMLT9ssnDeDDhluqalPNiOs5fF34AoqAECkKPAvTe9cCRPSC1H7dmUqQOm/A1/w3CcDc3h85GYigixIVFVc5C3mmigKQUAIDCWF4ZjICZiVQYTGSp22323E8p53IICLKHFHn2Img9xaOhVmIwg0wp8+C/+PGHB5VBYlBxQUkWFWVgIAsysiCTRuZWV23XwShmg4e1qVHWEFU0bU5QwYEYPivJAwgImaISxR2XZavLBZzZmYkE0OWDb/C3FiAhE0ZsbBxeF3mPTO7SsNZKYyexoKI5GGZiYnMjMjMnFCFjMCZGRWcSIKVdN3TAQAQGIo5LZ2JiRiKqJAAEQshfbpIeXgWFiUyruuiPSutCIn5klZGFJSFZUMFyMis4ncOSYK2BSoSAQhbazNDRLwy4uqSQWtapWl+YSXsGqIQIYJeRM5MAtSlzTn7ss3w6RaVS1OE2s+5NE2PKmfpC6pHFF2RyjiO4xyDiJZlI0CPWVXaG/gQkYKQpoCk2gkjmCIrfUalPR63221VcbOAWts9An3Etn7IGJxIxF6YVReVFpi6SoQz80hXXUjEE6DSMiBQmEl5RiRBIaYFURGAzXG73WxMWhQR3L0I19YjAqq4qXv0ZalCz2RkqCRGZp5ubelQdP1sq0Db/rrSMZ6FpU0zjFGa9HPa0td1QYByz2VZMp8AKIwqEtceAaMgM7Au1UbWacYMAODpVYkCH7//8PnrL7/90z/5i7/4y9YaCY7wMywzPnz4+F/+17/78uv4sP0uwxZS3dqq7JT72Ncuz8fwnMz9+XxCNZZg1qIqwr4uw+ZMj2Qsc4Lt9fXDO9anvX56/W57+Zf/7J8/vn17HI/e7ualxTCtsTpAmvscva/r/UZz4AO5XQanRMTemo2CKkFOj5fbfYyx7+dV6otM9JRG6cFEgg1RrwRJJnyQvkxDqhbw6+O5tmVpMmyikzL5fkDJoistLwk57RRP2k9nRgBGEqwiri5UHAmQDCDqJZEDK0GhJjDS9QXqM2jjhPI0JgqvScgqwDzcLo7d83ncl1UKiynMYlqTvmhPIAsPyDmnhXOT62T27W3PhCrc1lXSl07nsYtCZ1nX5evXr/f7/RgnEf32u+9/+eWX+8YcpRWRlYatv1AFZH0ZB5xw/PKZHZNVQTry8fnntdaIIAwze/lwH4952Ly9vH4+jrYth4/z2KFoQZXe7u27NHg795eXl0Xgy+ObKCNiXxZM/Pr29uHlBQsAsLXF3REJhd72N20ijftNn/vpZIjRlNNPAlfU+6KtNbMxxpHGpbYKjvNAAWlsCFleytq6gOz7kSNeXl4qK8uHm6pWgWWytJmBloUkyJlZCdu2VRJKEl90QD7GIa1F2jmGqkw/zM5l6eM8by/bvr8RFSMRR4FHBgBUEiETV2VEZdjZSc0nAC39Dlx2Ts9ae7cxWECZMct92nRSabpIPTInBve+EukZExM5KSMAi1mi/HIhAyFkWaS7o9SycMTMjIrkhmVkIx2ZSAi5CsOCL6zDZRRGqHIkDHdVtXmStko3IwbOSIhwBywT4qqKDCgGlEyPjPP5CPDeFRHOecQElbYsciEMK/l2u4W5u4kSEQVSQHlkRAAAA11w5nVdzIZ5AJOwVlZ5AOewa49LEZE1C6G8AtAM/o/ryKVfvzQAFlV0Za8iohCgrhE6QKFnIBKzVHlVRuRVhVqW5SJ3IkFrYjawMhyJVFUzIXJcoIkMyARRdPfrlkkkVRV+DTiwkJG4ADIjygsRhcNnZV1/0yFFSKNBAWQABAFAEaBkFbMCFBKISkBMt8Bx0aKqrjMGRRITAZCqYiGz5FWXRiSm/ZyLIjNNd1QpQryyPwGEgFmVURFhXlUqTVUvQmekB4AyVWG4Y4ESA8C3ty9JfHu5p9iXx1tVrbeNCMMToMxORo4MLKoEM5OmzCzEV+EpMnvTCK9Et/zjOgYighiOC/oh0rvuUADARDPiigHXGQp0I/Ws6ROuAQsyEZsPYsjM6zB3u90K6XQvoNZXQM5MhysSkixCwEwEmYzAvWNh13ZxaltrIgLMEWHuihgAVZkJjAQFJAyQ1y4DACwnAQERMEQ8x3DR7p45kkQh6zimLsvj2zmGf//998exf/318fK6ZtnzcUa7pvEsLASYYW5eIAwVBcIkROnTcjLwcRyvH14qzm+//ny73R2GZeBG8/Bo+pf/+a9/+GX/8NLmvivF/WXxMSuRisprWdZzz4p4eXk59q+r3Lbt9xf++5zTct5utwHH8zz6tt7NfFpDvemKAb/+8OX7j7//v/3b//v/+P/5n59vj94/rUg5bdohwiTcWKefBLT23lq4TdRmkDEhCKqIqZAx57XWAUFWFhJeEBwKADMroVgZhGVZGON0qyr0ocrA5J0flAhjlt1AemOY0ZsWwLCcyKiv8vXbo6leHXAzDxRmroJhE4RJY8LxxUsQMjlmSKjqDQBJxM59oWY5AkkDoXCR7ghv554Ir+vNhy3bLZOiwI9TGNa1h6WZJYK5oygDFl0lzmnmxJqVWUXv1no7n/v2ulAbNqM3GPPw6YCy9ddvdNYUZiFeBOuCtoYPyNqW16Utx1lfnj++fP9bBAfm43kuq6iQjbhvt+MxS1X49uXrcIz7y+1Mj4iXl62yjscbsxIqM855zph9kWvpiAQV0bpkOmTt+669IQIwiYjZMLPCOsbpaWVmFt+tL2aBWPvzm7tbayqNkUTBfQZU6wrCFpFp0qUYznNXUkQmleEWNhmhAGckIop2FN0fj9alAE6oBOjr8rD58vrR3p4AeYxzR8vMm/QszERinD608zmHNAYAUSrEMcbtdrOMLL+Y/kiMRQFJCGExZy199ajH48koW18Y6dgPXqRd5aJpvXfdFssY00V7uPuYIiEkW1/SkQKABNKZ5VoysigSZ0AUs3ZkGOOsnEjJFBnRlxuQQ2mlAzYRxSuTJYJ0uWYhMiMAorhLBOL1KypgIiYF5qIIC2atuliPBAXIpEwAwVkE13xTuJCZKiOsqvCaAl8p5XyHmcNVI6FrDg1IgMJ8QdYA02ZEjLXfvGCcJ4tcf/lqEDFzEGQCvBd+8totXVXaa0V67Rf++EWPgCmiEXE1jzMrogDo0v/x+54biLQgITzN7RxFqG0rTIt3w3x6oPLFpIS6QIdKqMNCkEQ0gTw8yvCPQ28DSDdVAUJIQqLKiihM6iRVGWBIhUSVVFDhCAiVGVB0uYgvtXNmQBDJ5c3FIkCsLCI6jnNZV2CKjMpS0qxKhDlHVYniGIcSUwYmNKTIuCAmSAjAhOhmY4x1XQnRMzxDEHrXihw+qpBEiNgzPfPd2lvgcwKkCGU6IhYVIUY5EV241ul54U6vk8qydoAYYyzLUlXMMt1EZMHLnmsGRkTDIhGKGhaNY1IKZKQ5EYrI8zjbsl0DD0bi4nmOLjyO8+XlZnFV8piymCiLFpV934kw0iNs1ZvPBMpl1bTAhOsVsaiZWU4kLIQzAonmeQLAtqxXZKE1mT4uCCAzWnp6qWpMabpmZGOKCAS+v2w/Hj9iOUHeliXN525N1pyMhMLMpACgxJkJBZCEQSREKCSQAEyVmInRVKhy3fTty08Vx8fX71ujL48nEeHa/vqHv//z//Qff/n57edfviyqvdWZ/rKxyiLL62kniZ5jLFznczcuKciUccztwy3QIM7j+fbdbz+MMcdj37++fXz91HXZ1ntGzGg//vS19fv/9V//P/6H/+H/ZeH9w0Zdkc5MG3O/3+9xRsTktliOVsIsCFBo6e8ZA8hclu08T4jquqSHny69UeWIKa2TMhKdYWkExJEei0bjx/H4wy8/vFFI00YM2gbQ18fb2L/9yW8aVfphWVIl0jpsS3PPaTlHojLTEp4I0UiWhTMcIqX1YvEMjsJkBkFgRk3DShLoTQAJ43Sk+nC7nWPM50nAbWmCLIwzTTCIIeyqTwAkYiKgUKadCSjgWVGQ0FoDgGVZHo/97RgffvPdt7dvzMDMhdaWtp8HV/WtvBgcx/NQVWQUShYMd98dsQvUinwjnqdl+et6A+W3fe/a3uwkkYKCzPu6zTnH14MxVlaYk4pe+3Lsw318+Pjp69s3ZGSFyHcSb9hk5udz3LZtWTsg1rtI+6wIkX6aC6qEvtxen1+/MQoKRhVyskoCJrN5BUfvraZllRSsJIKVs4oAkMv9GjsmlPaV4EL6FBMD0DgnAELRddnpfWUClvbL5y/btsX0+7rtM0Qq3cK8tYVRELywkCAKj+HEiohN2Kyu1gcSTTcouFJBfelNelpmMCQ07UKalyadVgSYAyuackeAOQ8rUO1jmlBDgAycYzA0TERlJZ4eCEwoLIUsWYQEWYLEAGFzEMEiTIyVafbIQGLIoit1BXT5ESLdq0r0OtczS6tkxo1QmRwTlDTLqrIAI9BmJlQRA2BBKitilQUAQGF5VhJdox13xl5QIjLHwcwqlPCObkbEoneuBVUhAGaZu9kAzG1ZKznmRMD7uo3wMQZUAiTxtYtNd2+6VVVYVJUwVcV/vc5eAEVEZFZmyqiLDVL1jq6MiIuIxEwX0vwYR2+NmYnQ3a87mSgH0DwHoBIjc6vKAiDizCJiIslM9wShcCjMRCyoRGBAYkUMt0JOIgaqqKpCQI3EUQAIkcTIUJgJQBxcSpIIEfa0yYAsfPnpqgQRoaiIoMCnv2emRPN6ZAPYlUS7TiGRIkQF4VFSFYUAGQGFAEAZBEQsAJBEy7JAZGAmJWKNaTHt2uo26YjgAOccV/BKiMJMAACSWROxEIXkkvkS8cWBz4LWW1Vp39w9o+TCeV5pNcIqzyTO9HQS8EIRJmLwhEx3j6TbbQX3gMJ0ZsKCfL/YEiMzXtEzduR5jipsQATiuyGhEmFRE+3KPu0YpzAsbcmaOW2cU1W7aCLMOROKtLl7XbUBxNYEEQsCIDPjNI+I1qSoWJgsoKiqCDbhNvzwTAD0cb6Fffr04TieKvh8/ros3zFbX9ZxmqpyvfMcksLdr3fsVbT3TEScdspVpIMaY2Dk6/32n/7yP4lW+Dg97m17+/r4+Pvf/G//4X+x47loVY5zHM899tGPY1mW2u734UCtDKk32c+37fYiotNOnxbnSko33Yjj609fPn36tN3X/esh1DP42N3M5h4UCJEw/d/+m//uL/7ifz3mE+oUnxB+7533sSaIrP5mCCRtCceEvFjfFAgFkZECc4TPGn4ScO+dgMqDha8RVnIlomUQ5KJLHrl81OLWdSUWJcaAQmmE60vD22tnKo+XVkpo8xBhMD8riYBb27wkU5hozOe02ZgXWdOTUdBx4xblZCTEGEztnpVKikz78cvHl4/mp/vcuEmv/TkggGYhpLtDFLSa5wjHAiBZVNfWl0K2cAsHIq+CSig0izR/2bpl/fTzr3/yj//09vJaeOEqGy9NwaMCBd/Ox28/fufZWWjYqCxtVJml/JxPlIbbcsxDe2fgEpoOqK1685hV0YUYK+zhrgAp8j7xm+cQpCa0oM7nswFKU0/ziL4slkWcy7qWarojIgmc5gCZmcLcdWHS85xdN5y48d3MSMjsZBWDBKR0mECOI4lJMD0pArMwCiKQUkSAuIACZbgj4pjGgK0LkDweT0Bct1tCNF0o6/n17cPrnZgFqJE4RA1rrADJBQsyzATP13YPSOOLCGHXB9Xsqk4hMCJgpQAJFEEllESEnaWLIhAU+sTy6k2Fm2Oc0wQbC7s/vZJZPSJBI8HTF1JgwqLwuGbimQUBiKjSs9DDGSVLwq0ge9sAZ6VNG60pYQATc8/IDL6+oLOKyKGChJAI8vqttXMm8Q0BmAgyqiATCgKhVLplBIKwZmFmeAZAShZUeb271KkJVKbn64fbl19+7aJZSYVeAACJideDJwIqu6qIZMScE0W5MMsjAiKIBQrDDQhEuWuLMPMxJxSQavc/ri2vbHkEQV4V8Lxm0cxMJOEZMatQL2ID0JXAyrgU1FwQouTmlYmIt6VDlixLZM45ufXWWkVCVDFN86rqy5KZ7tG0CEUUGYm4JSZVWcQ7BjqA3vGQdW1ew68hsXqlMAApYgCyF3jFlQZ/7uO6k2EVQCJRVSAgAAByVGIRCZe7tl4ZbenHOC1Cmi6tRYQKuntDYqTKaKrppqIMGOa9dc8gRIv0PC2KWVQV36cV+Z5VJKaCAIwIJKmKqmLE3hojXQeHirwQKFUFV60WgPRKzZP7jPRjP5dludYBL8vLrem+71cjHODd33BFoyFPO+fam3mWxfrxw9vj/LI/tnUxm9dieNEWJGMcvXcswCghhURhVuKqEmpE8jiP1hYonPtARp8hxC/rRgHplmVV/u6yrMoqd8drq898SRTmcS7LggDned6Wjtgex3NZuqWPMfd9Z+a+Logw5rSYAHm7bcf5ZBVV3vfH/XZ7e/vy+roc55e2NLdH0xXgmnPPquoX84YIsSJynBaMuApmCUtD9YxjnrdlxcSff/759dPH1lqOVMcPem/Gf/E//c/nr798/7vfuvvzOdbWz/2wfbi9ffe731KD9sq8LG92vn7/aR5zEQccH17v4ekztpt+9/HlgDCzqlzaTWWhkv1xZOaK1ETHPF8W/c3HPzsev/yX//LnH17FT5alcwFmtWXdT2dsHz/8JoOfMRKsNeVKAiRECLg+MoiIyI2aoGTkbb1Phrf9Od2X28vtZUNkP4eiUnDMcM+Ptw/jhJ5YCNRvi4is3DY+zwdXss2NEeeQst+c86hKoOKWNr4R69XAXnSpwnDgghomLOjVCFkg5lFAgIDK3srwLMH9OGx6ovvxRo2xccya4SQ4a3YFIq5wQONeWZZBX9++QiEi6tIBpbWkjMPDMxbpY39uIvuXb/7rs71sXrY18WnztLX3YbsW9PzlTpvbAb6+vHw6xuPrvq+NO+IZhkqgFt1GBlfrsNSxf/z0Oo9TpxVCcIZAVnGjAhng+e57l2/7sa43WnlO79v62A9dGwBEWpm3toCbjzPMpLVMbSJVyKDg+eXrE9d1kNCc2bPYyqsVrULmU0lBdLphJRFEBCZjEFKvrMYCklHglZaGGarUmNynUDHrdC/MvnZggsrHt7dPnz5xxstyj1FAecdez5MRUQkcLtntBVNEpNPG4fvWXhI8ckjTOWcVqnRETh4RnmFYpNQqgoIrkYDRc4zBoqodiQHyOCa/NpJi8kiHBKomnUnwMaEiiAiphMDMdNvOw6lCl36GBQRfHVjE6c6YQiKo4MGijB4lZJiZ6cX9rpwhNmsgYxYSARRaRAISEoBmkUcRZCNh1hkxawIFJmEWKsMsysIiQgjMCBChZIyAqhRuFwkyEwvELC7FbIZpY3Ys4iokyipQUCKJGQ5n68wLZQYgNGw2plKvRLtys62iwD0YiS7jiqp5MFFZcqFXzXMiwTUeJHaR5uHTJ4lGllUwAAaISEIgYlYSi7unJWB20YJs0ipyeqWXqBDEpt1GRGVVZJUSdZJZFhGtNcuKK7JUiMhVNW0GRAEgsahcd7yrhEggWUkABTDiRAarlhFUmg7KypB5hDS6r/Tt29ftw4cxDmGEKg+7zhlMagGjQAsjoosg4Dh2dxMVRrKItW8+nKlKUonHMC9rKgvL8dyB2SlZZX8c23a3i0fdKcqNgJGoCLMgpZhAMOasEi2QkibL9KKAyJMp0rggIbEqrqAfCSsJFYR5RfYmKuCCwpQFhIKB85hckuWXC+G23n7YnwjQihAkqR6nNZFl7VGuVK/tdjwf28t2HMfS+jwmCvS2XOc9Js2aQJReOQ0AdGtzDCEW5NMcgGYMRswkBSlCG0ZUSLhsPa9ZCCIzJ8Mx9j8mCrC1hkWQ2UkiglRY1QGYOQl7W+7by+PrQ1nalkRUAQXmPoU6llSQR0Uywo0xKsrTiwMgKmdhMWPBRMrIZG0W8wnGRR9RghQBq8CncUFf7o/HKdK+//g9ocacFiFMj29v+5fHS/twfBnStJXsX7/e1y1RROrzD39jda7bfdk+LVv/YvvHtSNzaD7Ob1q9iapCFulr+/rDVwL++Hr5nsanRb98ectt4XBwk1vLDf70X/z+8/MPX7/9KEBCr+6cqc8dEzem/naW40zAqJJZiACJ1FiZ3IOwGSUShKEUcdcDfB4TAe6qWbHv+7LdQJWWhRdK0JH0/PJNuZ3FOKIBnLDBm8dbttZe78uc3/YqUZGEZ18kg6YlVO/agOqwE1wssyJXbW1pVYGCgDnDOonV6H0twNSMNGFw2Iny+48v04VWep7Pjg2Y5xGC/TydNoHwOfZlU5LASULXmOvyoFEUoCcgddU5bdEWYct6r8q3t+fvfve7X7/+GggFIkqojSnH2HPuuz+WWz/NHscXJI5kwLVyIiAEbXo3w/BsnaoKm5xuBYGNCKGwZh5IUrijNj8PIvDY17UXobY8jjchzhEK0Yqr0nY7j+f999uxPyhTVW7b9vXtidgBCIta7+gETcCyt6XsRAGSa21vrOxEM06DIiYJbiKRRtw8nJCnhYgUJGuPiUglvJjPKhTVS/tTQOt6P8/ZWvt4v5fZFf+ZZr13bZKOyHAcByI3bu4OicwCGFC53Za0g1nu20vMFOzcgqiQM5OqEosqsjK4gCMISjSJItAIEjMv6d6ibmWqBDYL4CoBmk8hgTImmLFHrsOtkhMBRRGIRTydMlkoCyGrqwo3GydyIniBXxiybVkRGgJAMQADIARedWKPQ7h7zohi5swwzwIkkRkDsxJyuF/bzUi30xEZmAoY3+03WQlmWQUqC+KF3xJCFBSI9y2vtgWB5zyZtWkfEdd87yp+LEuLiMgSbVAREZmQBEjFiKwKncwsAyxmJymI6YOpCfM0A4DGYhnwR05TRUaE22UdRu1NJQglIjJjztH7gpVNFDKIKpmHx7WQC/dFm6hmxsURA4Am7F4Wo4Ivi0NEzOl/HPba5bC6rkGkhExXAyIzE98t7lFWWQWIxVQABSJeiR6mIggGaczs9vi4fVeLS+Hp4QXMzKwA2UWQG2BFUYRdtkQRrMi+KLEOnz4DpHWVOecqzc+TC4jFzQJFeztscqVbIJXFdMAkiITC6+KKDcnHzoRpRtnuerd3URkwIFURMKAQEkAhChFmUkIhBLEg0ZWxJ0AIsHBIdItMmHMUgghVFnMDgPA6z7MyiAAhGIsUQdVjjvNsyEwy/MAGAU5aZ5zQ8Pqwi2p6AQBLYyYiL4GIeNj0KtJ+Yg50UgFnJGTmcTohrq9b+hk5j/Kqcrd1XSMcq6QQAVtTADiPkWAE2FobOc/Huzpw30drbdHbl1++qGp4DTy2bTvGYWB9bR4+j9GX/nwey7KNMy4YSdPmGZ6ZDtoEoArQPAqhoFjbAoyQhXABd1nFPUVYlv63f/O3fVsDaswTiea0T68f//x/+fefn1/76woA++NZmPf7HcLTdibZFAEVI7/83d9++vTpH778+I/+n/9938Rs71v3uev6wRChrW+/fgm75u60j4lZVjkzWkRbdOtZyl++fvvd7/9R+7f//f/0P/47tDp3U9oyAISoAfB482dvd1bG5MqwcMGyiNOmQY7pHtW0izaPGHOcZS+9dyJEjoQEfLw9aVmWJhMpSeusF9S7bk+LM83s9LdvQBQFtt0eX+ltfzaWbduEaUI5FCA1hBYBUYAg1AwyF21ulmCy6jkPUGR2oizxamDhSJzDGODeGjmRJ5ymwhsQQZ1jvy0ftm3BHF0ZK0OIiLzgtiye6FmQcHH+qiIqs3jYROR9jE37Mc7j+fjh9su/+df/LebXDETGEXEcT268bPev4/O3fX+9CROPMVhWTErkc0Rry9vbDnDcvvvASuHBLCU8bIoQE84LBIiYmCsv5/NNGNe+nmFp3kXjPGqYASjzbbsdYyekZVtsTDdb+wIZ7v729s09WluqMq5yKFb64AqoMj+FJdPqMowKJsQMu7o4FJ7hGMSChYQshTXhurWVNAWPOef0s3edcSoxYglCup/7g/HWWSLsiInA2ltCTS+CoiLVfhzPZWmFiHWlfnzGodA8BpVt/T5ntN5JZB8PAsxCzFp1VV7Kc5yHY91WGcMIaumClwyEAMqYaqYzcVESMCIy8QwP84WLAIHpynku623MKCoEGvPMnCwVVzWIG0KN84GUgD7nEzC3bXFjz0Sotm5M/RhnVbIqFEYUsCDIqhpplSjCqGzmUQ6YkUmE2jrTZbDvTH4pAv8rUeRKL19me0D0CEKqqjRvrUXY9Vy/7hQEyEhMtPWNmcc4kOA9qJxQCe7BAk1VhTLhPI+s2m6LRWUmCwuLErtXOCSCmdmcV341phNQTAt+DzwzJzHHVUTNJErzvA4EIuyOCMkEjBRMYXZ1l//rAhURM8vsFG6RlhXLsmSASifWcZq7J1QVXexJIlZdPS0psrIKIgwRIUEEPQHhMgQTYlEVIwpiYhZ6Y0oPImeBMWz/9oYQlZezR6/UcgUAls0TRZmomBBx2JDWlds14lMgpHSbwGU2Kg0jl0Ww0XMMM+utrdiFeMwpTaw8kGZherI0AMpxMlXavK0bTJgzqYqYMhwqK50RCxIv34YbItDlQgaIrIikgvaOeIQmVFXFXFWqrS/3glDV43heefHCtIr7spqNtEnMzAiEBUxEKr08MrwgHXxiJkAVXCDPQgABRIqI85geAaoBGVmozE2GxSxXJCw8xnQWYkLmp43IiZTSepqjijSNIzJzUTWz2If0Rgi9qw27Zu+9d2T207bldp7T0Ze+EZGIeNjXx9vWl4jsKuc5P3z4kB5MSCiI7h5F6DOAiVUYEbHGPBELiVglqiw8sgTqalpTVu9LJrAyUzOvdbmHX6UBnXDs5v/fP//zxxiiPT1GJCNUwQVUS7fb0o/9xLQ/+fD9ty/f/uTDd2H744vxRpjZ7zfehKk9bbgzcfeoVCqEY5zl8fLhBoQzjtvrHQD59voPf/1j5/av/tF/+5//41/2dhNcn34wUbI7Tl4r4vCJ7n7XTYjLAwncXW7bWcfImTWdKrEcK7gdMRZUuV4pojNCw93Oj/c7FZyPZwu6UY84MtArx7FL0/SaADMwA55YlibkvzV/ek1SAvKZFgDaBdOU23mesjSDeoxdmlQFRDhgMgpCRHVhRUHPJ6BAj5IgfT6ewN5aq14BpzkQl42Dyde2Ts9C/vY+YElGAUjKmhmHnQnNMre1j+PYlpslJtH6ev/pp18gkYGvDzcSXt+Vqq/hPM4o8izDgrYwwA6Ybsenl7tVff3xl4+//83ttn379q2IW2tRaZaJmFCW0aTtCSE6zRr1s861rzOhat5ujQCuNYMQnm5zwrp1jwIAGxMJChOlEoxJCDzLBcoyFDHcARKxClK1e2URQYIyqzQE2Bo9H6fwarMQ0GJyqxmHElQaXDEfRNHUGx77KBcAWnobNkQk03cbBKiqVgkMFo4ADdkzCXFd1+vSA1nu44JPnefZgaEy7eyCVCMm+mkgvN1XK4yIYx6q7fayZYzHsWcgM/Z1tRmZKdIsZlURSyZCogcwk6CsvERlzKdIK0IqAqh9H1AiLIDlNlkKCcoHFBJJ1RTSi9NMwlDA2j0DEvbxvKlk5uk7ES3UPH26E3C8zzavaBISYUQkFBFEBQNDpXnENBEhsit1gkQIgBVQgJgFlQXCEm5VdF+3SpzzLABEDAy63JUMVMAAn799671bxsvL634e+3Ei4svLy9vzK0cGI0MRCVBVhGWYg5m1Vgh55qhCBA3327ImJDOFW0UyC5Bk5IwiBqJGLMOeV3AJIC+6y1VPaqKVkB7nPJbX18ZynSGIyN3nH5/rrffzPImRiT19advzuSfhVa6tKqhM8MuVhKVcDFGEeGmmEBCh0i+uGME7YQQoAgEzySuIODzDo0vDROG1Kpk5KovQK9MmARJgpAuranueB5IQQWG+nY+mW7hzehMV7u6OXExkWKwwASSqaWfEeQ4ACCzP+CNELBgYkZtee31OSGxLagfI9ByI5E4IVW6+AwqAzjgAQ7TBBWq+OBIJRAIAEZ4RjbkS39XLgMg0Y0aal3s5A2clEERYRjUhVU23GA6EBMQsiv30pzAVYkRFAnM7zR/7W12drEIlzsqsJFZGwQKLmR4QGRZdpDMOqK5NRBJKVM/TWl/HGOOcWKUsF909PVAbIppNXTpW2pjuLiJKPDxIcF1vWNQF5ukiVAxz7pb+sr3anKtu58Neb5/sMDO73m+AeGkjENHj2gwKIyUzwLvQ2jPfm2w253REtijy8kQtcYfnl339/lOn5bmfwPHp42+/fn37m7/++6brMU53T4AZFXOyEDRJLxsno9y25Tl3ElxvW0OWdQumMRD5BQb/5jefjmNvq8CksAGEzEjgCXHbGhXtUYD07bnjss1VTsCXf/qn/6T7X/7Ff2KCoWYxw7K96PSxrvR421tf3jI1oXU191i7laVQBhxp73NFaUW029y2TQgBYkxbbhtyVRz99umRx7P5Vxo/f/17BBWE45htacSMOcCOhrz2VuURLjsQyFrAgEmZytWwKC2irvWk55EIANUgMYMBPIxUE4LMCHgBOsNL8RjDoLa1awbS+8xKG3sFiUw7KmMhyWmibSaKaFNGRLORGYDFTWw4t3bMY+3ysLFu67fH1z/87d/+q3/6z7fby/N8zjJZSBqnzUVlnAABTfoYByNWDESabq/9Psa0UdL7+nIvG0eGMklrCYVEhezpWchCxzSlUpGYp5/WdXXL5/P5smxZmJAJOMy4qxBElYhgClSxtkzrW38+36afVaR6rYhQBS0DKptqJJC0c/p5TlbRvq6sGHA+z/ESaY4Nsnzp3QtE4RK6IpaNgQ5tWczc9+f+/Pbb7/7xeZ5v56Os1nXV1nIMj+hXELGSmbFgjFNFhvtVz2dmbnp+NaJk7YDBWRenvPUlzU87mzAqz3FCpFJLxkh7WGIZixRBkozIKAigqEJuAXXOXVAqyoe/LFs5FFRldVlv2+vXr18hgRmIiqUdx0HKrRNAZhojIWHldaaKqChgKsRSOzOzkEnWfsaocml8kQTMRmuNL+6xBRGtffFMm3HJvyKCkJnZfRIBNy64SE8BABerluEdyJUATbkqC6I1jrRzP5Q4BOGqueB118sRoy9KStS11/rl20DEj59+O+d+zp0lmvIFu6qK1tr0rMSFpWu76mrMElHEEkUX2ep68wMUYqloVYVnVmRcAkAVfu9u/vEPukeYM3Nry7Js04wQESg8iGiagbJjhVsRBoFnNOUCvGpLL/cPFpfrwbLm1ckBgpyXodGRiYoy6roZVwlCXHE8KlDGoIAqQBBp7y+3MIorMTKdnBGnWUJdR1MiFiSvmZk+jQEBK9JJSaTlpMatMgSlMEVEVYl4oGXmYVO8FlZQBqLGPIxIpAgYsdzhwkAMBGZGqGLEtp/lbo0l0ClzW1ugh09SJolMA4zhF0xU8EqYR5KgiEwvYuam8zivWFMiDbcor6p0v2rHiCBEgYnIFTOmCYEqVNS0WU7DA8qVhUSPcUJCQiKi+dn7QlI2/bCTiLZly8zzmCywtI5UAIBRTOX7zsTMXJBhBlmZwNwroyEApBT7HL13LMwsZpliDplEFSEiiEiBFI5ZHr4/jo8vH4SyqkSFCBWxLHIEMW3Scpqfs7c29iepMBMjn3MgMiMQEXqCYGPJdGIc5lSlwo3VQRpLZjGFG4j2vq2PL5+F69PLPTPDT8xGlf/hL/48jvO+reWeTfdxjvBSKq6IQsqujQq+7Y9tbdjq58eP39eGVQDbtt11W/u2/PT57z58vKu18zEYkDIKcl0XAhw2brr5jCjPUfN83lZ9HI/Pn3/5+N3LP/rnf/rv/9d/v21b2plVmHrfXvf9bbm18PSrd1aybcsYc4wjCyEdw5lYmADQZty37yDgNFcVauzuMPK3f/Lbxy+P162Ttqcfadklx3kuy3Id0YT86vjV2FV0FZGzfxHqFQCT0YMQOguknyeWxW9uH2e4gzGl749OkFCZhQQIIFi9HBSBoWJnoEV1wQzECwJQhee4TplArEIAkHLBeiZRXTHCBMgqAEACCfbIWPsS0zLr69t4+fDpPObnL19/+9vfrutt7TDrPO2Zc2xtWRfyc966EPSk8vIsF+IxH731tAFBwjnCRUmkVebwiSIgmgFA0Psq0ugYrUIItgxZ1nOOpu3WeGZVIOsy7AQzFAQE8xM8eu8X9G/GbLcVStLAK/iiPQCNMRgVANyTVQjl1hdgCjNPbyQ37eOcXXpvguWteU0/nhMRu7JnQXFrjakxASD09nqpLKqibZo5zxnvbkqgCEPlqgBIwMx0ZnSflrEsm4qISAIwCxLXODIzSMMZkCundEnwMc7bchNCqwxK7ZIux/Hsa0uIc87WFkg4bSzrGj4znBsjESauL93HDHNCGHPKUFYdY5TZuqnNB1MR1fWoILzcbljvufchTaPwnHnva4Yj4RiTWl+WNQPOc2Tk5TaODEpHKFGqgEvjc8EYLt8iVqbFOysZgJmxsK7QaLxD+iDhugabh1xLaIfE1LYwa+ReVURSHgVEzFk5wqVTZDJRIbPI17cHcRQkVrkbEzDx5bElElU9n3vvPWZUhq490+ecDpSQmSFCxIAgEe9RYZGW6QXxx8cuXW1hxGvVna01v3ydc4K5AFTlsraHGTMD4e3lfiV1zzmk6XlORGSix/FoTcxsTi8EaSzULk8iIvOFRYzA66GSCZWVyPziPq+f1SVrJKKqDHThZhZITCoFgCI55wjvTQhZiISYG0JkmjNrW5c5J1SYmfZWWOd5LnQnpBnTwa4p+jxOryRBZurLyoVRuVd5BmdyLkhU5sTASI0vpFq0gASKBBLyAqZGBOWWmEBYQhGETFcNCgmpaVjOOQGgS0cGBHIzZEk3M7eMdV1JOLKOObS3qjQzqLAwCEDi8FQBZlBKiACvihLEpfeHmfLF+TiZBSOhoitT36oKoLTROOzSbpqNZAaEpPedHDYAwvTYupo5VDWhiNmI/RgKsgiN/Sj2xs3HBGEvyExoOqqQGZBYenoCwLbddz/D8vX1TojTAxHNx7Is5T7MVADAz3Gs69o3nvPgjszw3J/M3KQNm3oJ4CHDLmhjMqkUulfU9AwqQLrS7zTdtrawyA//8NevLytLHo9H06uldfzlv///Qe2VVbUzMMEJOEgEmHBaU86wtHj9uJ7ja0X82Z/9nwwJA9au53ku95eX28rlnXos8M12AFjbwp1T5Tqw7n4MAsk8PLQx+/xuaYPitb98+Oev97b9u3/3//7wsvV1O54nBKh7lxaEhIVJwtgwWwaTHtNoBgMIVGdgwOEhgxGr9/vjPGVbeFmT6jjjv/nN/3lV+i//4T/z0z/dtv14diaEQVgBJvrOlDO3CgAC4cYxE4q4Q85ZcTqKEJE0iBxf92XrBPT29nVttCw9KiUTmDALCRLdZ1gZrsmsRDVjQlpAAZAnMMDlekOCaxbkHjiLckICICyydNYoGF4zsxVGMY74sNye596WBSziTIvaz2nhtk9vvm6yNLFjNJHH8/Pbty+FAMIXX7ECmjRGjCqkAEjG62QJWXNRGRXnMWRZzPz59df7/Y4LEUCrgDp++fx5u38ojm/jG1XvvQOiZbWmTGjzWIR5EXfLdBAYNhsvFQUlUOQBLFiRXqlMlUjIVAJBTMzIjhVgVUUMLV8Q45IIn+OJwEIAxFF4OdIBeQy7ePi9eBW2/z9T//YjyZblZ2LrureZuUfk5ZyqrmqK1IgaSANhMIAgQP++AEEC9CBwQAkzgsgZDslmd9ftnMyMcDezvddNDxZV0EsiXjIQbu6+L2v91vfZsHkGIwITK6KEz67bPKegeMxFRZtGOhFS4RzxfP4YYyAxi3rUHPPee1UgyplOgCB6zpFYrW9VMOekzkgxYzJhX8ViAKBFiWohJkSkuXsTjnQCSvJjPCoSGa/e6o/9DajRxYkEcDu1NUabNpBbsUTgFYTLhEUbqswxVVVV5xmZBUWQeDz3TJDL22oRGX1Rs4HITdgzzUxbU5UZEwC7cESFR798yZGVFRmISIUXRgCvmR6isLy9vnjaMSYRkbAlzjBCAvzg6BIiqRLBiNTe3P0cjywEhAJfljV9LH05zz3DmLAKsqAIq7C1lkikrRw/aMZKDAQALFgZV/ohAyoLWTLnhSSuCIRESLx+WzoTZObwOYeJCCK3teU4zLxBIcFf2ZyFiHPM1tp5nk2aCF/5LOV2zo99mqjOMapSWVU5PBGzKpiaiAJEXfyqMA8jQCqoSs+LpEjgMWMkXCHhqsplIUWZ1q7KZEW6RQCEeUQsyzLndHdR4Q9pNiixICGUIFVF7xoRUU7X5yndCysSkKpRkBICMkICIUH41ZC8JogYqhIIsDy7ahVFhHmg4DmtCgK5vMABSpXARzAJC3tmeF7VWiHNyssnSMogFAgBl4+5Pp4tEAMiAAVAkR1x2xpljnESUWtLJM1RQh3CKnPMuN1vQY5NEMH/OsmNiKoCgO4TAK4u1YwyH6oKAJgYfEk4kBCBECOEEQp9uCy3SYVIImQJiEAqbobaqsq9xjgrtStHRIb7DMD0mFaDmJRlTv/x7df13osREB0Smhxh7l4VK/UCIMHr1BXmgkqIEYAICJQVPh2KsAiDuYCRfNpF57jgMB5Gwqzt/dhR2MZc2vb929sf//xnq6h5unuMIcIdGRIREaljFlZx78e+y6oJUK0trzdIchivLy8vN/7253/6+uVzIzyOs0cCwBrYQMYYNi4zum0s7uPr2pe1vT8e0+ZtuZlD68t/+3/8P//hl7d/+E//Mwq8vH55nsfSX4B5jrktCwvZPKEqkBGDgZmUsQASABgQq9xPZr4tL1llRWFBSwNoB+Wf/vTH9dNLxjj2E1RnFimnR2QBcRYWVApNoHOErAjPPAnbsqqLn2dMYkdBid4aO0CWMN3vnxP96S6ZIgIJ6Umk2nvNKQmYCsmZqMSAQhAR1xZgntl0sTDGFJXwYGaRGVVV5QUVZQ7TcSZTQFVq0xghRQJ8HIeA/Prr92XZPv/8k6v/+vzL23l+WvusWkuJWkQsqxYBFKDwj+97Gb68vCzL4pWP55su9/TRhAHyOd7bunVSpFq3BpEVI4rm87EKatOXdbEwpFp0iVE2T1FdlqUwlUW0+RxBh8+4v7x42mlxHKPRDYKzyue4tzbhbK1XUmUiMwC5JXwoXZkZImL4XGnbnzttCoHmvmxt3ZYxhnmSkofnMOXWpEGBsNhxAMR96dOOphJhfjpc9gtmImogCGU+rwHfsR+tqzuG27osQHyOc4Zn3ZC8uCKswrSv8wHb7XXajizXEKf78DQUIWAimtOI1M2gpEknFBVk9nGc2kXXdcxJRL238zyBSNflOL0yFdo5z2297+cBEL1rJY1zkEq7GHhVVaUi/nz01sZ8QgEgLstiZpiJmYBArMRQkBmDSCDLx6yqi0VofhBzVUYmXWYAD2ZVUZveO7v7VTu9bsLI3HuLYx/z6ZXSiT4mmKGgpJCRoEilV6F7ArMDSVVEMBMzehyI8Hj7DgBhDYlUVoKcY4rAFfgiwn3fl2Up4sfzQGFu3XJSgQqZTUVCRFbxguuIgJWVccWgCIoQvNLDoKgA3RKILByxfFaHD3bHBWjjpP3xJGFEuOyEIoJQmHWO3cU8EFmvGeLW2nUwjghARcpEj6hIN0vhSx/kAEnEDJxZl4pOpK1rf+xnbz0zxxgFyWaFQIjpBVVMlFAAIE1XXs3sQutcfE03Q2Fk8TmV6YMSr2Dh157qCdUYAsiRhAMww5nFyiGzEbmnkH5UPgAqkhiFabeDP4rT1XUpzHBHYuGeRRHRpQsia7pFQhEgqjJxVp1hCrSuNyIISIv4qEIQXvPZiJjuVKSkBFiECZrTs4pwJaQxIIqX9ZZZXJ0gtnXLICYN95lmZq+v96h8f39fWlcVO01VFbjKgCoqmTESLmGGuzFpVigzE6TburSyecxjXfuc83nurDLGSJ+FnOmZINJa31ibZ+zH0ddFVQuCiKJ8zjNFIPN2W2dBIabQfl6nOsRFhBnALTIRlGg/jvvtlRBtOn6wVwOKMqD3jnilyIMR3C0RiLmJEONxPMeE109rASTwjPy6ff63//2/ez6MW3ePZdmO4xBsCzIipSegIBUinWO27T7zQU2S+2PawiulzIHHu71un+dzSqtf3n+U8qfbXUhtPxdQ8Hj/5Q27ioISVPr+GGQpIMd7qkZQNL39t/+H/9PWXv7hP//Htx/ny+fPYPH2tgfSu08B4qI5rPft/fzVCoHbLI85iwUUHAmXYKzDHgDZeQUR0f7zT1+/P39J8onxPsY5TtW+Yp8jGSoywy8fBinpRx9HH/MLQ9IRc19UoMnzmE1TOIEdiBnXDMRkqELRQrMCiHRHVm59DYQKBDKsakDo5R4pkeS4YExAKcco1iy1wLYJEBzXKSrPBLeighZEFl7E2Nhz9hICfnw/t+116fpf/stf/lf/8r8qzG+//qU4tt7F4NyPuaVz/fp8/u7z7w47ZjpO5HYrHg97R68ibvK5kTKwAj0dFtnCac6hffEsIfY5OZxEdjO504z0CkYilJKJJAAoBZBwHg9SCEiFtqz9PC3Kl75ZRrg17YptQliGcCOB85jK7XJtF0ZTch/Hfry+vnp4b8vz+IbKiST6ihRu7jEL0tEW7h7uCIDFmMzsmU+bW28TitstAAwTF4ZIy6wotCSiyqoM97yAuxmIIK2vEzgDRfQOV9+OqgqFkuHMR7/3AGMqFQ/0MJRQ4R7nsDwX7atsFgjFxzn71nIYI455Xjnhc3+qKkJUnARWxW7numzj8DHzdXsZ53tHRJLCMpiOQC7Ojbgg95H5+PG9t0ZE4SZKbtZ4HeHSBIjcbeZQbsLsnlXekBMuaDU+jx2ZKhIAEpIJlbSSobgqES0MCdnCAFBEKx0ILdyBMXF6bfd7ZgJgbz3cMSMyCysDEJG4JwBrnbFfxqPMpKLeN2x9aev+/OGz2tosPamSOCJa6xGurXskIq6312v7EVWbc+kLoVzsrSaK070yKqAAAFQWwDrPQ4SAEqDMh2gX5iqORDfgIhVAJEGKgnHOZVtnelTqNVVMNOe8YsbSOwPO9Nsq021/7gl1Cf4QUbAKhXVLLyyIOVCSmdOjIpGlyFACgeZZ56yZEwjP8/xoURdGYkSQcvi87uKICFXpkZgQXgSZdM7BpMxaWYyEFNNma01WDQTq/WOrSwQHBHIKxBDMpghg4JIFyBLou2dXSasqTNQY83XrEpHn1S28v7+/L0tTaZ6RNaUpZaZVpoY7AFBhZmaMAkRWJEqs02ZeYUCAzFTpgASZ5zgYUFlUJYYXSRc54K89oICL4cpMYx7U+pgO6UT1PI/PXz+VV0NOcEykrG1ZIDNsil7/L9wCkFjXrGtKCsIrAy1cEBjJRkrTc9pZQwB2T2SsYChemviMdV2f52ite13rQIS5qoZ5IkYaEa3r+nJ7fTzeHGq6UbuFJ2YRt+GOwlw8jqmCVSRyCwRq+fQDEaMKEFSUufssIthzFHJmFcSs6ovafiyyQURr8oc//9OXn1+jHKtHVF/v78/x7/7D/2IXb6yVMh/nAIpjvC/LBgDpwOtakfeuEOB8+y9//ONPfy+6vUaWLuvbr9++fr7f1r6PqCbnUuvrK3CL4MfjADNzGwRUwctm4Nu27u+PzLy1Tdyh1nDeh//0L/6FvL7+4e3teH+ee7WwTfruztLCfNoQkcOs9S9xPgmKpJ3hTZfMZMnrvJUTPQVVz9Mb+f/282/o4P/h//VvOWNmsTREnOENBbXNScQ03Zk4pUOkp0vvC2C4B1VA1YpEKqK9cqbP86xta144M5nZzRgv+HhrQoi0H+dpkwWFmJih0MxVWpADJSFG46wKzMrKK8pBJKr7/rZ0QVZiUZJwdgPtzQqnTyKS3p8/DlmWwyYRadXx3D993lZpE4YCnY/9y8trLRUjvv3l2zyceAM/tVPhkGJiBiiSnolRgICesSyLeVbl7Xa7BAAs3SyWdXm9vxzHnu45prQelW/PByKuNz3Pg5GEICFVGgAfj/Pl5RMhRfnF+vWKCCtCIooP0j1nZmISVmZURQFm2bqu+74DwBhWnMJq7hesoPX1HA9dlruuz/c3AFARpSqMcR5EtMhCRDampV/LHCMjgi5kFpdg4KodUlEBREJmrsv9uT+pbdu22XQgiNwjA5kQyA0zgbW0gRkT9MgG6YxFBFwYJYzNrZhI+krY9ue+LIuKRMq6ru7eZSWErIhAIvE5LYCpAEBEipCIs0KYPCOhkIVZgS/ctAQUYrLIHKOL2hwR+XjuIHqcEzCrqvUP34vqhbRlBKj8KCqQfPgUMwwRhWU6WhpGXk6xK7rFgkgEwNfMQ7Fe9l8bExHDXblBpHmIkKgmw/SIHFcnlYABSfBC5SAWZtpxelaIImBcndrLzJGZVx8BL2Zk1WWPmB5MFNPCXEQI8bQ5bQIAi17auLheGOElqQVE5iIiKPIqAmoiqo1gXOt3ZgLCGAMLrjmZzGQkYr5+IXxELdJ9RnhVfbyCAmZ2K4IAZE8T0r4uEREFSAVQXgaRojjHRJYEx9KIAEARob8CvIiosBAZoNw9IlTkyma3pXvWsLmt94Q6z/MqtF5zVmYDCAkhI667ciWq9r40CS4wGx/yKyGOAshQZSK5wNGRycQiLYOJXogIMudpUMEQUEDgUAUeWHgxVC8E93WpVVXPCkgIICVEJAJ3ByDVFu5MSkS9r5hxwRe5t7R8nCPCqoixkAHIkQnQK2G4d9WK7L1b2v44WIWIhHiMURUshMyttfMYxzjWdSWSYSYijHrO/fpaMTUiFKLeeuVAooQswjMsR7TWtnWzMY/n+fXrV0HqKJgA7tdMhIi03jJzznmNsY0xLgVW45aZeRghuidUfn65P88j3V63rcDTa3/ugshNCQo+aubg7ud53u9bps/pzESI6VwQngDIngnC7mkOFtEaF043v98///lPv/zTP//x9eWL+R7m7+PJSkS1LM19ttai8Hgc12ZMRFnj73/320+vLxEOVZ7WunCjf/7TP33+/Nn8/P3rzwx4HrYtayzzL2+/QEJbOkDlNMWq5/7SBJpUlY3x+fOXUbUf7y+/+flf/fZf/e7f/93/+G/+ze//1b+0H9MqVkWUQMYUcXdkPY69zsMye5ON9EadiBJaRjFxFfa+HAks+vXzT4u0+8+/+/HbP7/9+mdU41ZX/wUAKL1BIV5CFMvwrq0pSUQRYHoxYlEWgibEOblVAEjjonrOMwNv29ZFPTIDIIykaVPL4GQiSPOIRMbhI5HXdVtbe+zPRLSKCodIyMICRALCdV0rbU73RAT0RA/MjGM4NQqLWX57ffn129vSephXOABkfiwcqm25k485fW79Dp9wW26HBQHN/dwWyYC+tH3fpzn3DkDDAkjoavAIZ1bv/fv3t61v9/vdZrw/djejSiiqKGIBssMmus4yBmq6QHFAWXhf7jYrIlg1ywEBiABzzr2pIoh7en4s2sIYYSxodgCQNPEMZgUAbFpZhdl7m8Pf3t506YRtnkNlgXLGQAIlHDGZOybU4WDQdWXkDKcqIvRpGUZE1y5RBcRQVcRGjH2h5zErr6nMg8iXzsCU4XNAJXO2cgCA8jjToRirRQ2uZF4SgqlFRCVhIrNmgohUlc9wDiV5ns/b60umX61lXUgsGCUJEWhcmWCkuPJ7BFCUUJeJEhBEEJCB2KOachajqkhriz6P/VrEAYQFsWDfH8yaCBkQ4QQXLhGvKVioyixLi6KmPSuYySsv/0fah/+AmYGb5xRpXVtaVmbNTDQEWFv3iBkOhHSNhKZDUMV1KwZCEuZLKZgVqoyIF4LgejLIHAkk10EQ3D0QM1N6a8CVF9Y7MaKIMpNFrqIx/NX0gIwMkpmElB6ATCQZIMjMmo5l5ujX5hpQhHTVnKNSRBKQkYCufnchQXpcOi8hpiZ43bzSAJCZjvPs25qYj/H8dH9B1umuAlJaVR6u1D3Hti3XFwQRAaGqzAwIwRMYIfNj6fS4TMlA4KdbJCJGZtSHlRay6uK+EhUW4KWmAFG9Lu7IEJVjjGtLa0xYVBEE4O6I13hCIaJXYLIQWwaiFDIRZMXLdquMqmiAUQBQAQklmB8RtzlnZgJiIWEVMQLAh72RFAAE5YqGKQoReEFBRYKIhLtVvH5eMctjElzh9SzkxFKVzDnHAZBr7xZFKBcHLTORGBAuHOn1uFQ7cxZyXJZXUEJxmx+f7YRZ4YkVDnxl+uvn3/7mj//8h9ty27Ztnpbmb+d573fPEChWLMzKCcFYiFnCrKrumZbp1Xvz9EVbVW2qxxx5zpWIVc/nE8qY9da6uzfCKHoeR2uNtV1Hlquy0rW9vz9vt/slODnH2XvPQmF5ezx7X0hgva0IMOPdbHz79s3Mnw8rsN66w1xkUQEo7F0qUpZVKgjQzaW1mHb/dIsIMGuq7haQxzjvrzdRsvA7KhEjle9nTOut2fTIVGawUOH59kxG6mzhxDTtcEA/cwub5741fX3Z9vcfC+W0CZB+hKoSggqsS8M80QuiBFNRYc4EyISqWu79MJt+yu0WWOP48enej+c7m+/fvo/n29qXrlpN5zHP5+zrIkBO6VkQwaIxTbAAkJA6ECIhQrZL7xyt5rwtWyUtJIlgYz/DPr1uSuwz3O3M9AxmVBIqtDJm7au454/3pzZHlKBCKKTCSxyaFZAVwQjTQqgp9eN0gGqyeOS960gnIB/uY//8+qkRw/Tv+9sv3365femkqNL+8usvL20VgGW5P3+8NVz+/M9/+PybT10iq2mtZzzHY4aDdA3L8tq2NTOBQERmxjknjtFaG2Okl0gbARfrBLGkqSyrP5+cEe5L6z6H+4RwpN6kp7OwQoUIWCWkX4mbqlEALA2vHYEhKsucBVprkQZVkYZMSOSeFkmIRDDzmYTcWLUdZ2TCdru5PaEi06OSCYRoALVlQ8/wSiziDnJNnFYVRyRmxXVzBUaApgshz0nC90Q4dyMmAB1nWhjQBemt1koRw8/bdj+HMzcAtGNmktxWQLMiZJluFTnGQP5Y2QVp0eUKDNs5VPW0CQAiZCPOfAqrYwIGEpLQOROoELmgChMRkema92iKbnmcThgqKwBEwpj5fIze++32MsbYn/ttW5ZlifiYI7r23avgeRE24FIIRWZllERaFUQ5I0lTRMyEKyiUkf22pvmcU4AJ8NaXqiJkuC5GGOewxOyiQlrpDFUAVQ5QjJgZ3KQKI1KEAeLKBSWUIIIgAri7mQmxqgKhX1HtCpHee6/4eAlEVAiqCmCZNd04CYWREFUFxd0rEeDauhISCNnMSOUiIRMRADIzJkREZQLUVZS4FvqqKk8HQKALqwGIVYJASFlUyNDXFuXAkJEWfpmMqyCKC4WkA5G7Y5KIMEpmFgArn3OW1bI2IhAkw+S/Xs0TCi7Tal8rMqKWtvo0IhDEYk6IRJzuhbSIXvm4j4s1E6ISIzBfkGoAQGBkqgqAQqSuHNNREMuBosAiKqOKmltCACozYtSlpcLCJgLEDO6td0QkhES6qqwRIUht2ypymgk3d68PkkZVlYU7YEBhk2EzM8NmV3UPZEZOEokwLFiW5dJwMbN7XGkmRASG8srMOS5Vc388HoisfR37UQnXFRARAdnNpZF7MggQEeOibbj5MT6/fD6ee0Tcbvf9PIVohiUEMPSuM2ZEXjtlk+754bqoSLdsAgQ8/BQks/m3pWDMgxDa1ubhhdgXnfMk4Z+/fn48Hs/3t9vt5TqmRFhnWbSleQUs98VrAla4v77ev/3TX4pqXV+fz2drvbft1j//u//x/6a8EIW5ZCFx3+fzPJ0RG1NGJQxGqSiSJq03er1tX7b2KSRsOkp2FtG2rrfjuWf5j/PRRef0H9/fH4+9td5E5nBEDIKB4IhU2LDPcGrtMC8ij5xvzxuIen29v+Yccx9yTcwDttaOcVqAn7vNaWGdpaoc3SMzk7Uxo8FJnQmr0Lgrqr/vv4D52H+sUl9++vx4PPa3fV1furYu6znHnAeJqC6FgUiIdHHkyrFZArNU2dKIKihvUtpyTfev/TbRn3aA1HN/e1m2ztJbC+ARDpAChVWoEj4AWJY+T3vbj9vthsBIyOiAJQD4IU4xdmjYERiS0x2QEMpnMKtICy/t7cf7G2+rHUOdVOjtxzeB30W4qtzawihfbi/JaXyO/ZkVNV0IC0mQKAqKlBpTV+k2nMhIsEt/e7y3bb3f7+/PB1Vlwevr677PAjDCEobIcXrzg0k+ba/H8SyMru1afCGLGQvZzAkwLN+P9/W2LK09n8/e1vM8QRGACkC1h53TQwEADBGHmRclYGviUGN4UyIu84lJ9+3zj/edaV23dc5plr236U8GBOS8ljOPyyR7zch/NOEiGREYkT7wth+VTDukreeYrS1VNecEpiJkXs75bNLWrdk8MRxRMnhO8zCvJBJdFwBIwhPGJnf3tAJETOG2dsMqqKs4cW0wEQ4Al+r4ttwAxhy+bktVeblHAGAAQAF/TCEFUtZFAy8MD2T69OmzEM/TImLd7gn29ctv5pxmnlnbdhehMQ6RBvnRdQNEIrmexrUBEyAzQpTHNBt6WRPyis/yNelx8QX29wciLtIvqRHgZZJpHuYZBUXEjIxFlYXXzlIOkAAGFFkhtSVIQV3d0poBlFUVkMIypykJABTCOYeIJFZTnYcVFyJGJSYkFNNFFLnKxZUZRdBQIjEDMCGiiJCRvGIcZ1Wty60Iq6oSSLgQCMnMmOm6bl7P9vowIEAiLE0BKAGHeXghU0QAmAqK8mmDmXXpnjHmYBZCYeJCmHYep2fS9ADAJggV13pEdKkjKCojDLNmebij6qVvUlWVvu97VwImGwdxMSDEx2AYCF0+amFGxPM8G2omZIT0XpXu7pEiSoERcYWC4dLlphNBKWXNqipzQAEQIokoEAYqEk74MEk6JGSQUNTH3zbGgL9W44G4tSaXahrKLQkTACKMigoCALwSo7KYmbMEqbRp70seh6dVlUBlQSO9LbdnPsMrwN39Ojgyc5QDwNJXd88E9ynECcBAzGxmojzGNLOm7WPXTMx0VZ37KUI2jiBqfRUR1T7dtvt6HIflIILrxDTneX3rywEIwwIRmZUEM6Cq3CKbRcGM2aWj8DnPc5y3bSkWA2siux0ESQjP/e2K0T2fz967KiNelDecx9TeHo8fFpN5Icqq4XbcbishiOg46/Pty49fxh//4Rc/xtKZpYYdhIZcY5y3bZvzJGB3RxjCvZgec4zpMcgHVZTqgkitL9++vc8zvn759LLdfnl/f57nsZ8oWlWPx+PL69d+WyznnvCEsIgNyJ+jQFXuxoDAn7eXlrIkN0N/TKggbCK82zErUnJ3EO0jykMzi5dbXJUqqNOtte4xzzkaN+5yHM8w+vm3/1VQ/vOf/gkXLuVf3x6QuG6fwwGALLJApC9ANSPSIQCIVAI9EoLEEh0yq8qrQDgAgX1YmnOv3Q+XkN60wM3PeRJ3JyJpWZlRK1wFwHSoq4dE6shAlQABFRmWkAwICVXkQb3dZoRPEF5IW2Yx89MGtcWrMgO39RlzW5qg3APiOLhSBI/H82V7Aavj+zEWb2sjmO4Ipe9vj+2m7/ufhdelr9Nqnvb60+vMMhudOiICETJONyKSpnH6+/v7GNZv2zECEQlxQZmntdYI6WV7OeYBkWPOZVlE5O3xro0Yxc2zrEtTFrNwSxVwT6Eiub4HhNwkQa+yJMLSIQFQZUaWgLgygEICppebPbEqC616VRE1MwfqpGpnjIkrNx9GBYsqAs1xZoWISJOE8IrCijIhZmIh9UzL/Zxnwuhdby962owqm4OVq2qMycgZYCFNPp3z0bYe5McxGpW7ExRpWHhkIGNCqiopx7SqePl0P+dxWTMREJiO40CGt+fjgj5GDHePa3y8aWt9zhOBiCszMo9wKBKAIBUseLy/q4ggLdqgYn8+e+/uzsphlu6pBNfQc/FlXovMAqwCRLzWMkACLGII99aasngNt2TGpASATIioSl9bIxIhrgBuAgER8dwfuvTwyCq+poKACi4s5ZUKhojL35oznFCz6pr/YZZLSGwR5n6xMCuSWFhVWps25nEyc1W5e+bH+YMAs8rMVPUS7BAxAlWEhfGHhxiv/ZkE08F8AF30SPtbI3bOua6rqkBmZTJzXVLbCGH8mJPmVlWE+LfKgccOTBFVgAQ858FIy9LnCDMHgiurtW1bgfkczJTubgEAxVUjC1JVymZhQhbRX0VDRSzNzJZlGcMys7eeWTZMm1ARESXiRd0UkUygomtvjQj2CMhII5TMqKJCyCizAVi9K2BEeEF5lpBGQV14rNawavoOFVWQFXnlMzKIyePiWLlnWDgmqmpVKbFnVdUxxrIspDSueVmzQrjM0NfUEGMiQiRDIUQKQyERtbxsytcfXUNJCxkxEspi8jWTaB9H54jAIkYSaWY251iWThMjDLFUFaToAskKnbsv2iICIF9eXq5jgHu2haP87Xgili56tdXdZiVwFRTCR0v7OqxiYl0faiTgRX3Mvq3MfCHGbrfVzcqcWssqUe2L7o/H1d1wm9rl9nL/8ePbnOdt2xAYCFkQIm/31cagQqn67dfPfV3en09tKwBvcv9//Jv/ftXlVDniPXNHnAkm7RrbG+u62DBRFNICePcdeeXO67o2XUgDoCoLS87jeFm10fZ8m/vwORNJzvOIgpdPn5atj9PadtvPPRKsia4veVpF/nju6/1mNr6d9vuff+vH8fbjGyN4QFZSXoEBrmTCVsDTTsgeiRHt6no41m4xCUiaqpJwABCR9FV1UVksYB9xeE0gZhkJ03NtK8SJTAk1zzOguigJu7sUBxI2cUHxtATKBOKVAAArCoB4MjjIEU5RX7YlwRkUuXskSw9HZhJpx/FsvXHhMPd5snKlFSZAItS19CHC1Rc9DRggsRfVDPPztCxEltaf59y2e0QcPu632zHseH//+5fl24/vv377y//6v/6XM2OYaQqzEFdrfO5vnm7hL18/VU4E4dLnPFVWLNzPg3u73+9X4bEvzd11W2Z4VQWEkry+3kckVGz9dmW5CWvtS5SbRSaQSKC9P59t7X1b3ZyAemvMzYs8k4jWdYHirssVSLG0GCbMiDrnVcoraRdhGN4eP1jkRTeBCnOoJEQEf3lZvv/4Uce2LHdCdUdGZdTSnCN4XcrNfUaeCAUC6ZAZkpSQgECXj61gTrdy99S2fv30mlCQEQ7HM6V1QLxoc3b4rTVEiJoiDFHmXgKq/Om++jiH23NMh4dqF5ZMdy8JuUYnE6tv6+O5v9w/7fvu7iytIDKdCLQpwARMImZW0W6emUBECJnpxAyCgsGgZicwrQ3WVdMrc47jWJfFbFxQKGG98MuMAggIhUDXYDsxX0EtRGbWCg93UkIqZaqKpfUjJ/OlwiUAIqlMgWEkOcszLyQ5Mik3HWP03onofBxWsSwLMkYlFiR8cGgqCQULE6iUOTMy0XN+WH57E9LKJKTr/l2VUSWE0np+3MAJsf6mOLySZdcdCP8q2ONrmyzCiL+NkLalp0dmRhUSupfgdYcPILxSYH8r0f/Ne8gs5ZaZRB+Yjw8cWCYiXExHEk0vhGKmqvIxudNtW6ejmR3nJMwI6wXE1IABgJhHOiAAZuuSmfRxHK9rc3VPQJgegKDSzJ0Qt/vtOA5VVmqjYtpZQG5ZNi/VBLAwYYZru8DD5XMgiIgEXpdCSECiloGe2YRZhaQ8K2KOi54tjEnJNGZckGsf19wtIzI3LMLttpqZNpnDIDzMHQuJDBIb4YyEQIa8EDcQyox4ETyvahiE1/ATCxCDIKGqzL08kZe+zYqLexbhiRmVEY5MPsaVEWltuQL84bN1IU4z0y5zGkUWpGUqVGEGZV+bZzzPkZl9vVGjc87WNfZz6YtgGaSQTDdpLaoKsAAyg4UTYfiwczCrEmuXw8ytgFNQLjciQ7WuqPrLX77dbi8Beb4/mYmVPQJVsvBPv/6ZiLZPL+cYQgWdiiUQIi7tIz/e3zOza+M7/Xh73m9ffIw//ON/no83qmnjkbBr02PMnFWZ02PTtSpVN2U5po0yVZXi1lJlQtHz+Vzv63nut+128cgI5fPt85/3P4poaPRbcdcfx5OIqLiqBNAqJ7rD7I0ZaxwPFlm2dtRDBfVTm9/MwdauFbY0TRsQqYxjTsysRGXKcAYkJCaGLoVw3SSBKdOB8aefPzPCH//xH/+7/91/8//85bsltqWf+wCEl/uW7gTXCi/Ly+pu+74TdkIUxywIjBSinEC0eGrr67BfClyWzWaNCNoWOLL1ZWYWYG8LSofp1BYLsIRjliUjSIQ3aQqQZMf5jkqIiIQkSMVUhAWsvYucw82TpDmgI6KQSCNg54LEpa2g+P7+tqJ8ud9TnUC/PX+0P3cQ6u1+HKmIlm6PQdKej++4BOH97bG/bJ+q8nwMlgWEH8dex05KLy8vSZiWMz3NqtJ9btt2PI5t24Y9N+1sCRYAcOuLTZ/lp5s0Ps6xbluEJdYZo/MqRHbOOUOXq8QnL68v3395sIi7XTYay7qqrZiCRMRwnic2KM/W++31hd4PKgorkV5lmTGOb+tNqjjMPWjb7hF27Oe23X3aeZ7uBjhFSIWvEVoiRpCM8nJGqvpg+hfAtohlRsQxTmVibVVYwG3p5zwhU7hnCGMnmeaHrPo8ByJD+dvbrzlt3V43edVGWXAcp/CCzE01I5hoPx9C2vTCLFz6Xdu2bcxnQRLBlUsCIig2szH92gI9KnwyKCNBIVNYBaSLUqVVOCCtC08bIoRUczzb0rFgjuN+e72KyNf+cTU+IzHzI4QcZiyoqmaW6O4pQlcHL66e65UBLlhbL8LxfPJyDRhIRBKQth4RYKEiCgBXCZ0qI+riVwMXCvGlhLO6ZkcgtamkXPvfeRwqco3kVlVCnWMkk7Jc6aGPza9IhBCJEP//BAxESFFJKExy5eoZr/EeuOgRRFSGrXcoS7zGiIWUMhOrWBDqI690PZaqEuKZH71MpAtrVYjI1EHk9LLTuy4iCZ4Jebsvx/n+eM5MF+29sYjO06CSURz8ciQhohJFVWS4u5BA1jlt6RsJmYXnR/7IM7SpjXnMIb35OFHFw6twWRdh3qcxq9kAn4iYFZoadjZdiMozEJAQltttmM9hpJhFLFrk055Zs5ATJEsbrT6BSAQVmVSYiJjmfVvPeVwBtPM813W5+jUF6SMu4CD39jx2VZWm+/7YmlQVEbCQCNuMq7B7zLksC2rhlfHCBIiCvN8WOw0gp537MWjtAMAqQmxmhdBU3b33ZZ5jzqksBIiM7hMwRYgRbYzbyx2SRKQ8pfHMaEuz/R1VI+gMExEgfO47ETHT8fjB0nTp+3n2tgWUEM45I/NKtyFiRAgRUEEVAxc2tEKWeQwiinRIh5Xu26fe1/M8o+KcBlRVBWAqvd+3zJwZVu4Wqv0wY1nOuSvitt1tzDkOt8jpa29N6Q//+R8e339x2yN3phRgLFBuBZAV95ftfI6uK3Gbc1ra/dP2tGHTpv0Yg8Klt7Y0WZbl5fb6ut4gUphiPynQM653cLoXU6kcYekTzLUgyqLDiClR48fj5evr9/e3T/3r+4+3//f/9G9f1zszVE5zu2+36RDhypeSS7IHFmGYFBVqgYvqOScjQ83n+9vy0lk58mj8smr7x//h/6NztBhzjtemw4e9712XppIAXpMBChxiMFBlyR7MQS/cepCmg+i7HTGjd42Rj/dfmdrL7VMRVYY+n9pfsqDAjvf3l9sn2380dyLwNJVmllc6scJ9Tj/i77fmlnNmSZskQRoB5NIjCbhypPl96Ufm8HDx9thfEuw8DHhWEDgoP5cKAOL7ya/FXzYViiJKBl7TZh4B9vLyYrPGIZ8//d3zeHcb65Yo33LOO/WX/vlO+P0vf7h9/Z2Ceor6Gj61tTlS++3b9+e6LnMM1Q1ZiHifJzUQkoUCIhZ9qbkK8PCnii9ZS1OrSoD0SM/A+e37n6lVjlhEC6IuZUUViGY4SpvzXBY1GwqorN38x36+fv6UiIk4DBpykzU8GkOCNRUYj4VZMPP8flv4R4zkbNKfY4zMRZYR56r0bjGnf/70KdOP/by/vpw5gCE5fMwVeJMXzIVclvz13gRnLqEMOD0S/d1nW3pixwlN7+h+X+5uNmDkxLU1yxrnKdgRsYvmjA2UjGm5u/v04ZUglVCttTNGOSKzeQFxpz5PO8dcb6/Pea7rQiDlrnJnoiowd0isthnBsFMittZseBMFSHBGaYS5P/Z10XVdx/FEwUAW7VANMrMKKipdkJg0+y0ijr2yWFkJhpllOmIuXWOewkslYpJnttZ6k3WV49yroquYnZkdAIOEFM135iTKykxKkXaMXalDKSRztZxAYkREAHZGa60i5jFv24aM+7631ogoI9YugBl5qqxzTmZVbed5FqoIs7T98cyQpnqe57ZpTges8CiI1jHCwx0REZiRwmNb/s7SgDXRqRIFYxgBrl7J4oUBSVBYGZlM6lbMmgGC0rVHGF5WJ0GLiawImT64qugyEhLrihkFqAYdebyPBbcQGgV5BVDL9YJ+OCC1JnLtKMuCRJnhLFgGXfnxGG3ZzvMU5YRwKO5UFVvTJdmGA1dEkCBCqwhhAQAEFM7DpwgD54hDuB3jjfA6HIUwe5W5t65UnFnoyMRcUDUZGHxIhJKmFQPNc0cnbTzdgWQ/Zu/b4/ClvUSdjFDmDPNVyGxflgYcJNs4jnXZ0ur5nOvaC7MqhAshiSlmMEJ6tdZsHKBMjU7zxs2BxKq35j7bwoGzCgtSm0SeMw5lYVy1kyUg0JyIXOXw0+evlu7lBTFzMqvnGPsJgozIAJpIoxSX0wCF7d2TGrHMMu46YwoKUkkmAzSg5/tz2VaVXlXvxykiqwrJ1REb3Aixrgk95Br7u3ZPGNpUUgXb919/fPr0mYnm/mAGABBsKZSJRAzhW+sWI9Y6Kgxkirp7Oq2l//DHf/7H8csz3lirrYpB9jzaoEV6eKbzuv40K+xZoKsuLzB8wTU4xiH8u6+Tjlm0ojI0G3P7+pUqx7m3/vjpt/0f/ukXr0Z6ixwNIccufty3Zsd5Ph9wkDZFoJvq/Lpum6IsK8l+2t//9Ptffvn28vLp7X2/3e5v5xBtBAmF9/WOxPl+JNR0HAAE2UXhjJs2aGKAI0oMPq3LZ5DbceI53cfWlwcvRTSPyaLBjLoccxQhlKSzOZN2x54F8rLcYDraBWArQggky3xdl3ATaVV1jr0QiYGYUCZcqwAVESx9PWqPiJeXL3POi3cf5u7eRD6/fC5PqEQopAaBWnhLVdRxHsDY2vKc8+3xFO0oy9gnJRbQcJwDSxqiArZILMHzHP/wD//pX/zmS7Iez0eXvt1fT0/u2xzn8HGM8+WnZZ/7GQOI9Haf48AmQm1mvD8fKAzMmOU+AqdwU9JhB5O0dWtdMwwwvEKxI1VEBGPrzCwxYYyDSBhLCR3hCGtrq/KEElFiNE8gZMJMQBURxMQ5csa4LWtmVqFHMaunM4JHbbfVbCaURTKrzRDSOez2ZYmIYTMiiDspucfphlWSUGOsiIsuxxza2GLeXjruOeYbFUb48dzhmv8xd4uE8956VUZYa60KzQcTeSIydW1WiYiVQEiVcLu/PN5+dJXtvs45z3mAKCISQ2TOORFIRRnpMXYAaMxrW4vLzDCrAJ0/KHUEZBEjErUd5tc16PHYAbJ3zXT3bKzIGm5MggVZDqAAwKTHfKpyVSFkU4FwhFqaElFReY6sZyQUCkMjIo+IzCpMBLpokheUrVKEW2uPx3NZtjmmapemHvusUQhzZGS7vEBCSzFczTYsxhT4wDuX5ZF5mRS4qiJNaeldwhwL8CqaRqiKqhCRZ4gIABCgaPOY112WwFX1qnqrNvrbSAx8tHJb7wVQAOEuIgBUBZcYmJmvy31lRjzdBy8C6ebGwL0pRE4bF+2rCSOWx4ioKm+tIwZmzTnTZ1UCkyx0DgsoUYGsyks+iAB5HMfLy8s89gJIhDEnArNqIgIEAlyVakS8MsNtISZWVaz0+LiX9L5cLiUigqyldSSYcyLCNf1MQnXZIoGUGwAJQRZmFFSmSCWKNCIgVsK4cu98SXgKsoJZMLWiIomACLEKvHLGVBAiiLgG5JBIMDnSwHiMA5m4L2ZWBed5rJ0rkgXNTJoA8uOxi0jvfR6jCt3tqrtEeqbj0kcYxTU0hl4F6UHwmKdIG1f2hbAtixCe546zmi6eZuZZk5nX9TbnPM3WbTuPI4p6W7N8H2MGDZvL0rNKRI79bG11NwQiAFFmZZthdlInFhLsEl6Vx3GGV2strq4mAQnP8cia2m7u7lkq4H7uBut6I8KIHGPc1u089zlnw4WZ3ZKAISELs/J2WzNzjLMJIVQRAoBPl7YocbrHHrf1Nr7NzPj06fPz+cSATy+vM+e//0//X91oW28/fnwz4LKJidhkJjghdh2V+3HOLAqmYaJEULPs55/Wx/yR6bLeDE5+eYWCHQIJQ/X9qG+//uW5z9a7qHTkDMPMhHg+ppLePv08ys4KO23EuC2vGSrF27aNYePNFr3/+L5rW47TCmpa3m/r3A8psDGKeMxrWWfPxDIVosbJER6kbYT9+uNUfemLMvEkT8336ZAZAF2UpYIxBQDQzMAhEqaHEGSC+GlaKKSqXFkGkOSO8Ovbu2S+rCsVnNMiozVpyp4+fBBJW/rj2IUbKaGU15hxEgsBl8PCbdH1tqynH2WGlFSMYQwX6LbWl/v3x+P9OK0AuKVTeVVxIKtuTSEyEwMRshirT3tH4m/fvu2P901vXz+/jDF+fP/T7efPx3G29dXx+Pb+joJp8fJym1Y/HicWYoFuch7H5y+39eXFC2bkst5Iuo1hYyoLJET5xAg4Ca/umSNhUz3yeBxnVXV+kbYhIlQCRxGPaVVAwgl0zJOpRWUavWx3LBg5z+cpxAjUScIT8NLQXiaemBGesHC5J7WWMYQEEFpblJf37z/6tiIWQEw/p/s55+3llRGYBTy6NCU8w5HaOUZbdWs9PJUbZkRBa0uETfNt2yqCGo7jxESmery/bdt2jgOKttun4ZOZe1/enw9uOs/jPPF5HIldE+0q53K7pneqMsCZ1SqPOboIVvmcZwQyJEJVQSQwZZgZNpZiYmnL9vK+DyHNdIBa+sKMcwTmJTtgjmAkbjpnpBcAXWY9IjYbma6N3AdjSW9VyUV5CY4YoYoEiMjDiQk/JAae7hFXDAWqYIzJrExayqdNRGtLi0zg5oDMGlFmBQDaCCAAg5goGErLASgFsXFDCayrct4t8nk87osC1OWXgHRARMSMyCghjgjPuiSAIiIilzDCzZklIi6NVVXdtvs1WUtC5zmuaC7iR+WQiAgKCiuhLKmQaB/jjaFJ0w/FshUXKC5IikARjgRCqr0QMa7hdBXFBnTxlj1BggCKGKkJoWdVZZlHMHcze57Ppak0qShBQRYbZ1QCZAQVRBPtvS/Lck5zd7jW7I/J7IJEyAzz9LCypXeooihVCmBEJJSsvDglwgoBz/fn0jszp1dWeOTSekJZFiRc1fgiZ2ZlAYBhU1ihKAIK6Yp+M6NcxVwsqiQqRALwaVNEmirLhsRFaH5l8hkLsircPwL2QC+vnwnw/f19znmJW5iLmZGAWZ/gkTkjVQmRQaSUhVpmPuYprU3IKgys8ziWZUnMY5xVxUoeGR5AOizbth5jal8Y6BxThFrv086ldUZqxDZ85abYelui0m2cc6ISqbjG0lYbhhWUhIQKrXUGALwMkgjHcVzx/oo0MwRaWhuJongcT3d/ff1MRIjl7q+fXs4xN13MDBGykkkukquqtqZhB2BApVt0XT1iP94paVtv63ar47jeVhUZYwLA29v3//gf/6dff3zv29pQ+cqJYxEwNx3Dz3Nwb7KsWZaZHp7JyNDu/fvj2xd5/d3vfmsWrDj9eHn5EiqZUMpyf52/vq+3W2P1OZVFS5AIiqIkoMLg7TTXRrhs2+3rl89xTo6IHVr1hTcrgN484xrjZMLjGJBXMF+/HSMq+7Jyb3YemdOhyofQNa/YAIWXrb/8xqjtx/E8B0a6BWQBUBWaz5jjWg8AkjGlSYYpQ1HJwp0LJYGQAcwrsUlX4ejkKcwVxsxQkAjHOAF7gQKqB3pUXwjKfvn1+88/31jS59HaghRzT6D2/PE4l6jyJkIEnDTLJub0sBGFVAwcRMWYHEjC3SNKtSrLAiujAIqFqWhjjN/8fD9PW/tynO9YiRQCRQU57Xy+2/n2+P7P27aN/b3JeuurzUwoZq2W7899UpNbL6Rw9xlNBBMoi4iyMtwiJpIXEhJmwphTBbgxSyNp6WjhWV6Yl0337bGjcOt9nLbeusraUe2YNgY00MZYgInAWAVEEj4jIiJEOCsuRXfrDEwc6TEZIPxsLHq7RWYkqjYiYtUknDEZECgBaUaec2cUSrhLn99NVbEQVZQ43RhwuN/uK0BNM6szMQCRIFWpALQ1y6or6kyUPtZFn8+31prXvH2+syCEE1BWjXGYhWoCEDKzEgD68AVaQUIWfDCHCACBSRjr2lwTo8oLE9ArG0tkEVIB7ftBkcJamX4MQsjzVGUAqqzX+6cxrSKBCB1FuSlZAiNhQXggI7gSCSKdNqESKZjZI7KcCEUEUQqhHNq6HPvIhNt6j4Bl2ZgtwgzEM7EIivm6j3aMiOkOmEReyIhYSRmJddXzAIJEFZAsipHut5fyJyJ5GFZIb1cMqrUG7kx07aNVFV4giFjMlAHM+DF2InIxtM0CET1Di66Zro9gC/N1M76KUuWFyK0x5Pvry1KMh52I1FsHBwFMVyw1C09syiTAVUR0jiMztVFEYqMoMIfIEuUcXjEBP5zySYhMQGQ21nVdextjQEIBn3NQU6xAxMS8BqmLEwB6W67+dzEwEQCaDZsR5iIkxJ2FCqCKECFL+wLXFzDrcmQIqXveti2mVYEQS9OYFVFR6X8lWF3d6zAvgqpSkcqKCsgCbiISYXNOJApIhrjQJkQIQMwoXJFjDmdtDsAqkMlCCEhY0nsBeHlEzBFYQERX6YiQs7IKw3NOh07CjIWQFRCFUB5EFBFjOi5CyMttYZJxxgy4eG3I5B7Luql0M+sN9nOuXZnZLda1Z+bzeKxb7ynjPLCohm3tlg7IVB4IrArJFTl9OjRlqfOcLdfKEpXW2r7vhMSENs/GnZuew8aZrd+YtCJ9mChcyfPzPAGgyQYA45yVkAhh2dcliS08M5XlOA6iEkqzyUgAwIiFCCLE/G0+5POGreORACBIo6q19h/+/X+4t+328/p8fyCinSayApeZK0jnBAAEGOdOEprUpFtWFjKKP+13/+o3MHMVvW33tq63dasAAgGkifnp66c4Z9l8vfX0fL69C+mMd2TKisxsHVrTc5+X/VZEqjIxv79/P47n+nL/8f62LFtXDcDWZB8P6m0SDaq1vezncYblboygKoyVkDGNSCGZEpXv0/FKFlUhOnSWy1bOUWQWkCwCBQtTZTLGCKvzgde5JhOuQ2USqHASRQEFctKcM3yyErMkQgBXkvDG1IBAuMwGAHz5/CnCx34KI9RsQv2FhV1Q3uIJWKxLBABBBqBwARSXuyUTEjLDf5cAAHYZSURBVEJlJigzCZ4Ouw3LAWkkSCiVAFljwHZ7Gc/Hf/pf/vDf/Tf/eyx/PH796acv53NvSPd7E+BNXtGHzIbBnAOzejGISlECIbe+rHXVJYEwXEiFsKrmHE0VCJQZIBOz8BqSSRa5RjvmPkRvrTVKPPbnl5d7YPUmHsVEm94kFRFjjpW1NXzkHp5XaiY8mAk+/DLASMqS6ZVlyZ2amyPidaSYdjB1rT7OwX1Z+3qcZ5S31hKrQBMBgR2gyhurFnaWUTMroyDMWfQqezLg2E0bfsAEKpv2MFdRy/IoUimEv6WcLLwvKlLvz/dlWcbp6bm23qVBphBpXxPq9LCYBFxU7+PJzCjEKpHT/aIIcXoKkgoRcAFFhae1JkBFBJGZ6YwkSheUsTJECao4wx28wmg+96c0lYsRAWlmEU4f06WQHw5Uvg76mSDElR9Qxr8NXSASM1Yyom7rmgXHeUxzVZkWZxQWEZES7ucQkaW1KEgrEqgq9xnJdD1NTPBEQMKsC8pWGIXgQYKFGR5IH4SQKszAay1GuuiMQUQAFVEf1r+qML8iVx9zKZWEdHEzrpRW/I3OWJUJQgjXxZOIUZ7nyUu7qowZwE3N3aOwwhMzQ1m7atlwt977rW3uziwBCEUOUpiY0JADUyIVqaoAgwmZaZhBOrNGxHmOrosuLY95TaRb2jXQwkyiivVx02JGgOvdIRFpXUZkE0oDABjHyUKNqSKxaaQPt4tTcUnTbMyX+zY8iCjjYzwpoKKA5MOPe2G/AKAqMpNLqkKYEBJwMiIqRSgREBSAf0wrFQhrW/nY30QEMImAAK9TjpmF2f2+XeBGQp5+NoVCEGTsLSIJOdIwiYiAJcOZiEUqLzAYxIzEYoatLxEJHO7z7f37fVmRwH0uyzKvHKy0jHEch0hbe5/zvMa1wwoAui6QEGYAkFnLuiEqFk33Yrk+gpTBiI2FLEQkWZglwt2dRCwCBQvREyDz1qU1BmQE2vcDC3pfM45EaMuWmYi8n8MT+QNdSq0tiHzpu5kZqIiKmQmhtUZF+34aWnhZJneVBrTk+XiygHtV1uvtBhb/+A//eLwdBEiBSFVgEYgFVJBhlNEZAQIpLaagdND0EO7PX95//6//tZ8w4Py7v/s7Rv3y8kV1OffRVPZ9P4ZhFlYQlccOxW3t5zkQtAjSo9IXbSgFVLcGleY1AbN6nzyru9WTxIQzwgBhmhXhdEuVxzwhj6xMAEbpvTFB2QSQKuSSClLpH4djCI/Ru1IV+EQqS6j067nd1ttVwbr+3RbJTGGWkiu4mjZnARAugFUZCNJIqjDrY1yhipi6R0XEHId7ruuKIMIcXizZm/QGkGPmyUwBI1gFwBNGhWc27IygiWhxnM/lfneV/TTAIqxpe51ZqLOq2JVy1VaI5sbF67L9+PWtE/z273/6wx+/3xbQ1s85rk/j+9svLInhf/rnP/3X//pT114xstzNkeDY7fnj+fPvf29zlEcg9fUmrSEUAKhgeCBKXnVPVmXCQgCQJqMKKgMSkbgcJnQq5S6FOe1+ex0eFYAFtp9YeF8WztSulnqWWVgUIHA5IqIIX7P/kC6AgAXXHEglIRPVnHZtxjNAVAvgx48fWSVKkYGCDj8ugAAzq7J7CYkXkkhFABagBFyFRUck5i4sDPXjxw8CXl87ECGQCj3HuxDM3aSqMymjR3TtMybzNV2DyAh/nbWNCPZpdc2/pIiwojUmEUT0SgsQUmXO6YGlQAycmYWZGe/v34uQWInIfTJyF63rmpIFkFCkQoV4zTshc+8dlSDrQ4cHyU1JJBOyOCtLAgWLkDMIG6C6DQS6UscRmQEiKNLMAor+yoUQqIKK3mT4YGSoYmIoL0Azm3NeFOtLlZgfE8BZiAlnk0WyIgyZeluGx5izYbvYVIB1zkEoxDJsNhVzh7iITqitYcG0E4GJKD2ramkdEee0ZVnO0yKCGSP8Kjv/jXFxXTj+Ood6jRrP1u/nnMDVt/U8pidEgmcRDuILsmaAAOgAWRVhVpkgxQSXIVSIL5tQo+skRp5ZkBmhxE2pqu3ncUlFs+oyBuasK/z8gaxyN7PrpvhB3YIaY4hURIwxACuqvJIzps9GjVXczY0ykxEvY30BQDkyDBsByciReZ4nqRRd2TMuiIDKcIS8MuFIeBwHMzSmSqvC88oTIAf6h9ARMxMyINyYk5lVe6Vfd7hxju32UplINcx7a8c4vUJEZviibYzRWgOAgGkxLQCxUAgJ6voZUJgrERmYec7T3YAQAVvr9iHdgPormup2uyGWfTRZqIli5eXPQISo7K0FxIlOTAeEJEK5iO5pwLiIzMMx7NYWQjoPAwVCjjxRIHwGIDfI8gDkhbBgxIgI6UtUZZmIXCXPi6PiWYyUQMt2V8YZM6sQyGaUUEQAX/GA7IuOMagARQppWRabcc3ov37ZxrcflL62tQovHvqf/vjHP/7zH47juL28cOP3+V43sX1yUe9aFmaTm/oMFWFEZXELLOOgLvybrz/t+/nT7/83TV+YuPyT6LqwK+s+fx3vsS5rQvWGZjbcsnACYN0hU6hDnRTJQYtomJVXlgPRzPOYR1G8PZ/SxGuMMM8qABR09w59rTowelMqSK+MmPt093Vd19au2hhQADp3wMpffvnL508vEuOx/9D7fXhSVutkkPP5HhFCDJgiMnNkpsGU9/m2kLz0jUkBiIRwmlRtK3OCWaEKNA6EBAYQYpjTEKt3JU6fllgF8P3728vr9jz2plQFp/nrp5djGCYTUpQCoBVh5pxjHict7TnmPp+AsiwbBmYaM1UOJFGWhqBJJVDgBIcf4/W2MMovv3w7j7/79HqfPjKDlj79BKxM9FpQPnktNsKxlEhu8jhPRv3559/+8ue/vPz05ctv/g6JDGJ6tN7TfZgjAwliYDpUVhMhkutkfa0xIqJNGdj3c0am27KsQgog1wZFkNpkWZZzPwpBmD1rpi19RaQMogBE0GsIIQwyCEuEn8d7wdUabJVChUu7M/OyMUCe80CxtbX9eVrVz59/Y3Zz9zknGjSWqjytAIDRipAEL99zIVRia01JfE5AWtraVRnYa86wMeZ624oppnVmcAvzra/neRZhX5fneWDWy+2VsmyMrq3iogqWMCaTCBHRDIu0QrGMRCghJJ55dmEBgkgCAOHWOMKyCjGZKyIzIwUyjIl6b2OMqrRA8wJZgUqgpOlzHlTABMKFeOlEIhOQpQoA0SAhARCj3KZTYGZgYiIwKyJEQEzrbfXyc+yX1ZUI5oze+11Xdw+zAmiaIpEQfUEzS8BKEhGSi92RRARMI52ujcLmPi0B+7IdZqJ8ESGrghWFJaE8goSrgFUr4uJYZoCXA0BFXRoJdz+O4/56Z6WIAAIiZiQzi/jY56AAr5W+oAivwGNh1yZIZDOPY1wFbhDCtChPIk/zczRCajLL29avi2N6VMWVn4rKzFykF9QwcwxWQUAi2o+diLCgiWJbw918sKASI9ExD/e4NC2kl2UzEdEtSRTKmi5JFmFRwFDapZiFF2R0BMNycCYk4Sq+SLEBCUzS1MxOG2vvVWUZWYBElz2X6WrxMiBm5LUmIhVjRkHvi1l4fhhwhfgjtCVKJJeQao4MH1XFxdS4tVaZczgxXMdBUqaEiLjybsx8oZsRYdsWvzZLEYDr91XFNQJXVQhEqh0Re2/78Tgf2UUrHOUyq8SFQBljqDYReT4PjBShpV9eFgDg6R4R2AQQI9PMlQkqChIQM2xtKthi+pwzEq6N//SjsQLmlbSoggSEKm3NIiISyzMTGIjAbHLjzDrniMIoz8xF2CoL6BhDUBCpiRwOkLls/bTHOQ8meb49WyuVvp+ztRbHsWzLfX093t/WZdvfH9IbZSIu//iP//j++P53v/v6PI4//fiL3NeHT0WURlhFiAos1M3P98fBreNGyLBJy4x/9ff/4rc/vcwv909fNeK4bS9CT6FEcUXu7fF6/zrnAcUJ9dgPRETWyNxWGDnDR9WQAAIUoemOXtu2isimy/7jOY+53u4/3r61Tty6uwkjYBIQlKmUzRRIRgpIoeKu1DRFJ6IQNIEZx/nYQ0+m8hzzwPncmQAISzlmWNJEZCQWTogmCpiFJU0sQkpqhkVNRqRKLmwFIg3DhJQao/Y9h5knXFYZ3LbXzDzOd7MJEKLcpQMv4UO6VBa3m6rsVoDahJouM2FmjXMUoCPlbTnBEPhluUNinM6Ey+01y91PY2BSdKAiZABJzJCNfA5Ceu7jT3/5/vnrUgXUZTf3ygjflnu/3ezX+RzQVem2jHP/9f37bXu5bS816ucvX6nLeD6tEkWKeJxRVSRYVfv+2F621tq+n+OMpTGRsEAcs62tqs79KaKqKor7+/jx/bmuN7eMLBbyytaAGVHx8dyDslpdBlufeWHxVZUAuBCyehOzURn9RgxlZwrxtFK5N71Nix9vf2kLimKYA9HL582cno8RxxDmBbh3VVVe2o/noxDmwYhYblFJdGHwGRGzTmFsjELkc45xiFBA9EVJaJ+DEMbwhYRIoKjrYpUiTSXnuWe6n+5jNlEAgEtqhVhQmYFVK9J+nMDBol65jzN6d8YFmEhinlXlMbILYAUGpkdCVSJTVQKWKGdGYi1d3VO6YlvGjKhMd2ZERLwYbRUJZRYkCpTlQNDckQBFpCDcpxQXEotEROZV686IYHJi6KzXa0AswMIyro0Ki4mogKnQp4/el8jMoMy6YGaFCUBAUkgFlQDCxIyQBQmFbfrQ3q4/EhmyymIiomVsSz+nUdUwY/eltdb+aq0nCHPPEiGSq8tLAHVZ21mVmS/Cl9l0D1VFZMiP/b/3bgEFQAUJ0JcNAIabqjIvFg7IRBhhVixQZg4iV1G3qgQJAIsoPfBqo1bNLEAh4TAbbsp13cauLt3VWbzosheVi4iWZZl02XjJhgWwezZGRBaRxPBIllYCUGwWQFhQAFFNroNEVhUVCzOphVflPnZtDJ4F4eHaGnc9bV4NZibN8iog4qIi4cghJFcDQrW7HwTRm8YZ2lpdQKgPoBcw0dJvlaGqH6Tutp7HFGmIhVrDhgBr06orhEJQPOepTeacJOLuFtHX5ZgTiUU0KogZqq7zjWifPiJi0UbAzDzOmRUEH3xsP08kasLTXYQQa855u637cSDm7eX1GOMqToo0KhDpUsSFGC5Cts8UIm1Awl0ba2YSwdo3oMLIdDDLrkvvbX9/PPy4fKYEVIhZblEAZDZJxLKEm2ci1HT3mFV129ZO7f39YR6ttSiPcCKQa0x6XRddLKMiAOC+rs9zvB8DqJWs641tHGvT5xl//NOfzI/n4zCz33z59GYzzsmACTCO89PyCQjnaYuusi0j6thNND7fmp/2+9+83pTuvX/59HKeZ8a5Ss95lEcS1NjdSUSEW8RMMEKxGP3WvPYCA/HGgsnnDqj9vrwsDdI8prPATW7b8pJIfXtNQGTG6TYnUXpaQBYCRWeqzjTcMhy1i0gBWbmHAwc0QMHHeFOE+6c77ud4PO/L8vAgbglVBcTSWVXVbaiy+YCsvnX2KdiIvYoCAgkRYqbbdFCgk7JU5jhKsvCc5oQtII/zSSlSRZQW7u5IHXFNcKnpYShbuJwjRShFx/s5z3NZBDm8cp8QoIILIiN1KvB5RVfCzlntvlXEPBbdABsaMjvyqZ1FMm28fpHn8ReL30hrb/uTpTGtkHkcuKxbyfrjzJ9uX2wfql+3Ty/z3L/9eP9028Y88oTbly9XMLV1GmMU1dpfZ+Y8pzm4Z4YoQifRFJ+1NSygICylZH7fj1tbqK3Slt0dVVHF3JFkjzjtKQ2Z9eHH1SV6f+7l2Noy5kTEioCspet5zq13d5/wAGiXBgMhbT5F63l+FxERPe0g5jltjP3T/evz8U5UM+l+v//l7TsL9ViO4+htAXgiMIhkTM+DWRsvgQHe3CMYKC8UQACd9zu/HXb8eLvf70IyK0eEmzXlMoLLvAS1aCubyKSLXkXdi2ZsHgBhkSMTW78cPg1Qic8zWsVNu4X/mE9SYCTixc0KonEVCRGWhJ0mJEB8zoMwQPkZZ6GokFBFzioZYcJc5RFDmBEUkKHhAFPpFg4xGAUirzaJgCZMQKoq7h0qrxjn0sV8YlUTvYjK15UyoOL8tbUmgp5hZhFBwpSwrv35HAFAhXPG0hgQEdnLKeG+3c7jQISqQmmRqLQicrGbe5MGSWNMZl6W9ThOVo1KViGEx3gKEjAxMCRVYaWD6O12iwgoR+ExxtYXsIgxdVsSkYiWRY9jbFvDC/ul5JGFzsyWEZnruhVhjUFEkNCI07MAuN0cCpWL5VnpFa03G7MrV2RjhMDMZR8x7awK7S0dPKMQs5QLyzKpUis9iaATWUJ6tAsw4p7ueLnqsDDcwii49/7j2/fbfQ3PJkWQEeUxGdsMu8IHV8OlShjRPOsDoJlIYWO8ri+2T2Yxs2LM9LjQKxkAGB4dBEO4ICD2MbftLszHfnkrcFggctoEvJIH6EFIzQJyHu4ug9e2fN5efjx3IViWlpnP/b01yQybp5ACwDFmExbliFiWZbpfviqLANbIhHIvH8/x5fULOs1zEFYlZlZEtYXGGKofCA4CFJKqWnqfFV4ujcmrBI+IybRt68PGY38sywKFOY0KhLQS5jg3QYiT+uqVHrAfo/elL83mOPf39b6eY3biHcoBl8ThSMvrON8iGFmHXYBcASSkSrrY2lhwdSgz0wCxKVuG2QHCx3GgAmIddjKhFuzHo7ebZUak9uZpziyrKNk5j+d+rMvLucN9/fLj+V/+r//3/8t6ewEmDJjPgRy3rhKF09Niz524WUTAKWu3aRUpuj15XX//+3H7aeqaGS9Flti32wHStvUcMabvio/zl0X0fPshEEoI4FBB6L8+fnm5fwnAb++/fvn6WxiKqNQFgM9pjeiX9/dvb29Z9P792W/rPHZppIVMaOlFSK1bZNgu1M8xGioCMOHDzxQMAOI68yQHRfXhxW2ez7VkTnqeZRDSMiKHTe101QlExCyqMLPGcQKhACTxpR0nBLkkMFfO8JyJKpkJQoDSqGegMhMJZKVPpGCBaY+3799v6+un1/54f7689ij48Xj/+tvf/frrr1JKwrT2JMAqtFgRgMCdmHkes6r67Rbm72ElSLiz9M4vgmsViZLncXHxEEBUy5xyNi5MWGXxEiLRxo/ngUWfX1/O8ZhDut7THTAaoRAf+04o0lS7LNpnurtLF0Q0M/MQBo+zL6veVsw6nrtnsPYCtnMsa7v/leZfCE5UFaKNm5q5DbuvKyn9eP/O6w0Qm6CnC2kikLIQBwEiZhVCJgRigFSVE7y4uQBWBUsKctQUoXbjmTbd7u12zOfry+eM7I1ZNAufp9OyIcHMBOKIWttWAIGkogQZEdNDhCsnAGZGFlxWlmFwfD95YRGJyLQkatSkLS+YZWYFqUhjTmL0yEWloM45iK4ACPV1KcIxhnTGyILivqLo29sbsyZBEghrzijI4aZIyYjIwBhYw02IaVkehy+tS6PMIPKMar3Z9Ofxfenbfu7rbcs5IgwAELgKbVYQSltqVnkREGEiJeLE+v8R9S8/ki1bfia2nma2t0dEPs65dVkkRTYbkqY9kQBBEwnQv65BCxAkAUILJER2s4q8Vfd1zsmMcPe9zdZLg52XSmTOEsiMCHfftpb9ft9XkS7UoWgeZz7Pto3OUpVC6DUhr+uCIuLzOK7aT5dBLICYUIRNBgPk85jSBqFgmhAR5OW2Kk8AYBYRjXyoKjMU4vN43rZPaz2LUaBVABKOMS4iVWZwkkcSUTG2NpjxB2wSS7tUUGY2prVmIogSMfsyZR6tmWVgERAkNh3XrfZa0fTS3vXMRKhL0kdEgoSASQLpiYGIhV4V0wEgpQQRMLwrE9T0JaQinOmepoN7e43IZQGkrI1s+TIlbqMlYlRRoi93TACorMz0zB+V5UwkAsCxb5nASiiADCQMBJkZkCQcEFEJlYWNmVXEzIhahF2SK4BSbhGX0im1MTF7GEBKU2Y+nwczb2P4YeHZRFUGoBdCErovr0AEYiEWIKr0AELg8MQkZG7aVRohIsBv79+J1aLyPBDRI8oSEQS4sARZSQn5AnYnQFQCIyKu9MPWPrbpqzL2227gM6wIakU6cusi9TweqsKqvfdYQYiYRQVmdsxTRK5QRQnZuQrBwgFBugSEEqsQWGUWIbaxV5z3+33cmqiSsFRQk18f3yuy9X7dwfuKEmhdYplNG9qGSlVZWust4hK6XGuIFBYELuK4vn/MLAiJDDjDtrEjQWIig4K+jM3d3XN0jMjjOLS145ityW1v4P42Ribcv/2i2rPs//U//X+3l5/a/vqXX35BEup6zncWJukJ0UezwyMSRzcPD9jePrtZVLj533/5sjy4j09vr/fH++32SqKobS6PKm7qz+fjPEbr23jZRB4fvx3rKMwZQTwiOSI+ffqSyyoBmZ7P9dvDCXD76cs6Vwmqym0b65w787EOw0DF9NpUtr7d7/eFFCsYeGUy47SjGDOTsX509grAfRTsoooESwi4962gAjCggiiAuMq8HKIqmBFbt6rKEJwJhGtFJgRDFSJoAdtyK4hjHbb6S4vSx2GI+jJu63SkzMCwQIYC3m63QnzMKU0f54Tirnr/+K6qj+fZtx1AHueT0vbWKrPMABsRHRAGhVhnLavovSvMZc9IMTQAImSvJcoUMUaz4wkQf/7Lr/fv/93Xrz+bmTCsw8bQl7HFmlTm9hR58ceHKLJU723NU1U9ivv48y9//ru//5ek4hHMbBaZpn3rCtPD5vlY7/TDIV9eM0MLKavW+cxMZiUV7f18PFETMxtLAKUFIXZuYY50VTc5HcgZkYnE4qqxsIhAgYXDfLovHJ/XPIAh8xAkFDlmBGIKuiUQF7AtcK15HIDpE0DUibg1IPTzUGmUVJmR4AXMTCyeMyuj3CtbUyJ0T/OJQMANWQsMgdxIiJnacRysERGdOdZCAMjaxwiKJrouziQUdaWu3+4PpHq9vTwejx1ZVGJZWQ4ZK7yPBgDztMxq19t+eiFIawSI61QgyGIgKaXgvMYJhYL6dr83HX3b1jy3rmGLwIVRpEOwB0CRm3PVaJ0yALLSKysxlVlUseSiEZ1rRnrTfs7pBsRAhJGzqtIyMrUNRFxnMBEzZ3FmEioiukVhVSYjpRsRYRVEZQGmeMDjuZB0uV9Uy64DIuexWidi8jVZUFXcw8hVqGtLPzIikbQ1c6erlIq45iLCLP94n6JaQHNOYRbEqmIUzIBkuMR7QBF5lTVZsKBqeUKpdMdc55lQ1z0lM1Q4QQrh1YJeczEzQgzVy5oMAELFjIRYXk1aph/ng6UXoVksOzphIVmGr1mEbkGJCkIdACABEX8IHuIqYJJc6Ic5Jwpm1bRVWAB5NfCQmIlAKAEqoyFjZnl4WLhzEwBQ6eClpJCwwjv1j8d731phzeki4hlEUokkjbAQMIsBMrJAibRJ5lprZalmERxmiMyEKJyZDFmFVUl8nYsRqPZtmKdD9Zfd1hUS7hDlqwR7QbpbUWHlikXUCnGGbzIoixP6PiLs/jyabn0MTn74I6KoAEgS8FyzqthJRLq2AvQM0gbMEZZUTfgKKKznU7QLMzGH+7mcEstC+QdeG3kH5Myc58QqJheBQIzyP/7pt7fPn3rvDp5waUnL/FCWrKxYCCyc7iZAgIAJ6JkIAizK7jV9nocNUSBlpMrIzICoTDM7AeCHobJUVVTd/VxLBI4jPr28VmKYbdvNPQH5v/zxtz/+8vEKvV5e3+ejcgEwnPPbeSLSbaO+9/l0c9e+iSpQG02+ffv1X/2L3zfpXdt5Lurr8/bpPO2nry/HacpitkhKC798/l16bHT7+H5fJ8t4i1gWB7VuGVh1a7c5Z2MVkSjPoYhlZWfaY573+WiisYIK2t4/znv4+jQ2MD8+3hkALAILSIi4kAIyIb1CAZAxvLBISZmoFnja+/NxHk8iMojnWuGprVVSRknTyLSsbYx9H8Sw1pIXpF13jxkFBTQTCuNpMHCYzQJ8efm8MnpvQnA8jRltGUFKQ0wmYbci5oBt2XNrjXIpERQ/71N661ubaz0ex21sZTkfax3ny8vb4Fr2oIimsswJsw8mCjIucFIX8aBKZsIBMoDj/niW2edPr1vb/vSXXz5/+p3yC9dTmbEWY37Mj4wnlgHE/iKIMM/5mOdFeYXW3s/ndntB0elhHpblcyHLYH487lEgIts+fJ6q5GtCOgv1fTNIK5cSIPEIRLiiGe+Pj7ftpbdWHhX1sr1NfyDidNt4vxDEtoJERuPwyARBSi5izSqQPtcdKcfeISiv5RqaND2Pxaxju3nAtr9EQb+9Mta5/IcP3FyHFqOIrjkpsIoRGQHLg4BVmYRlqJ3znI8qVNm4SUJZVEthiMwkYCoo8AKXjhhLWqmyslRFYs60gCokVplrYURC7H1DhDH6aacAuRtRbX3PFS3I3clyiCjqUD2mZZUCMUpKreW9b5AIZEDELMfxaAyA3Jscx4TGeGG0wiJchIkoAwhZhYEyyqAO4sICoOvByVCMwA6elKONkm7hiSaNbZ7KrMqZP4zr1y0skTj6D8p6UVZkIAAQqpJ4+u02juMQAALwACUBPph52Yc2vr//+vLyYmsN2dM35erKABV1iSIAAIR4rTXz7K1l1RkzshwCAwmqscLVVyZ+PD6YtAjcjAgZqMKCKgsLoYBF1COEOK4tcSUxpWVEIjgKtzYuEX1mCi6g4koGgkIF5mqNxqyDsKKiqogIi9IrKsNg2xQAz3UQJhYSAVBxbayQtQwiLwYYsagkhGcQETAKyEVAC4hrUCsvISiPbdsirYkWJFVWQVVWlooA0HUyysrRtojqXfe+P59PAojIcbs97vfX17fMgCIERkgRwYLb9haeZskoGRkAwmiXPimC+RJYEBb4QdJHBZN2jxzaKy2DimytRdyhEiAByX1ddZOrb61CnlZ54Vly6FgAXj9oZWFRQBi0Nw0zQdpQPo5jk9aRzo87j1cGZMCs3PeXYz4JRVSyYmUxwGHuGH0bkUnUYB61YuuDoCBcGM9wABSR9JChicFE85i9a983twMhsta+7+v5yEgRFZbt558s45inUSH/8EO7l2VcILC1TlVFKkLAoqqEKoJCqvSoyMYytG3azvOkxmtOEWQAyxTh67zVt26+IJKbTl+slNJ021O6zQWlVKTj9g9/+NN/+s//i75sJfn+vCODICfxy9vXO9zNDJo8w51DWjvPY/l8pWSin28vX7YxAL68volozNCfv6z78evzACDGmnYOHtrIzm8IyjoSV3/tz/kMDqhQFTsnE5/PqaRY4iuIeDT2ZeucVBARgPj0FYz3eaqgkoLlfJ5FBFhmlgSimkDEegEdzWdhLdHKVqsgce+9sswnZZp4dSi4cp3eWDpJAlGXrLQVbRtN2pzWtTXeBCKFABBQkYWxsEAiEtK33mYEI3BBWUKhCl2MGGasMihWukWGPeDlda/W1vrY22uueT4P7fq8P+YWiKIsGMCgt/3tTscihDLLVdc+8Hlg740o0wP1dtu2FkCHx+ml2jZIQYPBGwmDR2+9M3WRysyjeuPM03G9vuQG+vjnY/m7NBHqFuvt9ll1e65JTT+ORzg9H4YqY3tBLGZGILOp/aXMCvAq60JF56ulEed8PI819HYbt7BlviKMSJQF+2BmBgzkAojKcGRmgQtVGEQAGOmzDz5jIWQkAyKpuK/CIpzIGFFpDMCELCzCSpdUwH2tdeu3zFxWAIBUKkKIM1Y+Z/jCl1dVFhCzoKs8GgmUAGi2OIiABQMQqLwcEFkLpFB6u0614bY1DTSsErqEaxxQAWAJzBSAglSJY4y5jpfb7u7vH4+hDVgsU8cmpD+mk2URsfUOAM/nOcZoIoFQhWv5tERkCMIqZe6qSJVNKi0Rtv2Wjpg4tMeaTXSRVV2w50sMnyrQWC/QoYeJCBGL6lorIoRQhDKmEEVGRozWqTgq5zyrCpEQWHszC1sryinJHTKv1u8PpZIvu6LCWOU2mRkTWRvxj/xUE73t+9YaAzAV0DkGI2ZGqND1d7r2Yx6jb1XFjOfxyDRsnTEjyDLXtNu2WbgibNtmZgk1RBiuIK5EwqrITOXhEF5OLGbRh865qKBrJ+aqiggiyAQPryplQsiq8nAAJ+6IyEhpddokuj6aJcDMjIhV+lpOBPvYCylWqKgqrwnpxcIEkOUioiTuJtLAHaAYsfemSHLlhFEuxaEQuy8mOo8FqtoIUFjgSlz/6DEXQAAUcNM1JzO5RSX4dISyNSOcmQqLWRHV54HMiAiOVITFCZSRzJzkQlQUMRdSowJlJkBAIVQZUixmFrlECCkbCqBe1aCo3Lf2cX+qakWJclkE1KWndUhCCQhS4tBM36RFQiYgE0ZRAgvn8iHtcmwx0lxPFvJYJDLndMuLJ6pKYfbfDBkVaWttrbdtX8dpFgI4WpemBM0qz2VIBYTSGNOlQ+JKgKDsQ3Mui5Xl+7gBwPv9g1prbYwxsnKZxaWuQI2IRFBtx3wiFYBEEQEwUgHkjz8VEcrcW3s+7hGxKwO6Wyw3YBhjENHjfEhvKHAc5+j7VdLzzLFvYRGVg2We55dPP/2P//H//v23v1QrEngdxoHzucyM29ibHJnXu5gERQC8ukiLgFjE+DL0X/z97/bbbb+9fj/P99++3W63MFcmLEcpPz/U109bFx0l2y/f37dPbx+/TLPF2JQJBAaqn87UMhMqoYBWiocKzueExxravx/3tm8fEQr81nfncV8ftTVlenz75jmlJLMESFUj0iy0N4BWKUjELBZZmEOEMVfcCadZZNjeleHKmsJVfhjCTVgKKSlOwwvXkOmAiZmVQICV5suS++3lLZ82jw/p4/n8ngn764v5O3Fe5FdGbqx910zi5Ul5wZ4Qsr80x9rHy/k8LYxIEARJzuWH+YpqytI005EqRQBpZRGQwVpFPYEyOQps9VxpFiCi2BRetu3xcX9mHfe/UpHgfs6JPA/7xhuOl6FS5/M71q0pFMExj2/f3om1hHR0cMp1cUnIYxYAMZkZ8QbEWXE/phBwRmvtPBZyQeAubace3x5zTn4R5gLPhCCmgrQsUUmkX377zqC9szZN86wFmayRkOcqIGBSgDDPzo0xKwuJquh5BFRDFEwibssqL3KQErceaQi8wl9fPz2PX7XifN6bMl8aTl9mfk2p2gYhBARkCgqR1DIB5EQmYLqsd2WrnBaAIHLkKqCuHX6QEHjaoqJl1feBlUTNwRAh3aB4102Yvj+et+1W4VgowgziV+2DUIkT60jfWpexURObx6pgEu3bmo+X/RZREI6VFOt8PImoVNztfM7GrYn6OS+XOGFjvWYqr0wpQQEIX5O0j94IMI/jsdaDqfa3Gx4BXsx8nnMIE/NxfxeR0x0Atm13dyh4Pp/M3Hp7rEXcLqwSAVQlEapqJqrqWnPb+/G4V4GIAAalLk+hfR0mdHvcDyKyFa1XQYVDFQpzZphF69SHmq+11svL3ruiZ7ohQ5d+4Z0vXuPV621NGKU8bAUwB4Qj9m14VmYBJikVJCuRIBkB5FpLRK5WUiFdsWQRWR50JRYwo7JyApJHqbSrRL7WCs/MAoCIaD2ZqOpqqiAil2MSRxgzBmBV0cXTyyt05AAUEe7eMi+vLVS5WVJcvCcAuNjmBAiJGY5EWMgsVcVAwCooAAT1AxZ2wUfDXAWfz/vYt2M+WaXwOoShIkJhuZFoeFQ5ix5zSiVxUSVUKkJFXPN477hsFkJYcuPjOLoyFiTeEPE8Vxt9jH2eVy8WmrAtE1IiNvPMVNWqPB4frTWoggRhYvpBUK2cFi6te3rr45hnRo2xV9rQ9nw+x3j55f3b6HtmrmN1LCVetlrTgArzDnR5MALpaVOJCfD5XLL1q/XnlnO+79oxvPd+rJlQNNqsCCRRZekf9wcz3153s4iwGZ7Cqp0qDrMxhkUCMumI44xkhLwuIRrRMo8oZhVuUeWWtp6AIU0e5/N6cY7REHEeJ4oi8lpL+NJ2FxO5zU/jRZnm88GYaXNv8vHLX//pP//nn7+8rTyyZq5zgO7MqwDXLF8N08+pqp513j8aISNBy/Pj+e/+9b/rL/ux5u3zT789n6jsXAsv79w6nvcmwpjAsK9PK+B+zJe3r33cwn/Z5e1xf68ERQUgkRaVUQcRmedw3bXvuj0VP/eX7+dzp4aBbzo4qWYgceu3GfM4jogglShHkPQpqm7WkFXYbNmarQ1Vfh4P4IJNI+ZNxKStXIiFyjbntAO5lxcibluP84mpr2+fjzUzU3o0XAwelT+C+hesa1V9/3gnUWA5pwEQKQAkQ8uwDGOUroOCKRGjOA8VzczpwYye/v580BiKcNoUxZC6BHKgyExZBUThFunj5TVQ8vK3g82ZnXQwN30tIkFaZWNsBQZAa2YV/vrrt8fj/vp6M3kg1ti3PBI4mtz27ctffvnr3//dvzuOg2E9n7/dtpdtDA8Ir2KHqrCZeAXyL4ocetoKu2ZTVTrXQmDswyoSU4STQgf1sePgj3VWVWRs24CisPCIvumn19djGjAUFUARABKwABE/jqeyQoSQpmdxbNKJ4H1OFhXtTNvyWmsJMgJdmtG1vGvLKmZShPX8ICwmpK4sBZVUmWsqkOybeUyfHjiaivRzzeOYt20AFNIPQ2FVMmAh6G2bc0ZFoVfheQYVdW0AzMTIQuAJWJEJRumqY7T+y1/+9OXLl/PjGDQ4tKhlnEK8PMxCVbMqCZEa5Jxu5eW+UFCYpnvSCoaHTSWVoev5ZFbeNSKyPDMbwTwOn6uxIGJAeRZCQeb1ZIFEpTYdmCUdAggQRn+zdS/wdRpMq4B936MSUVjF7s4q+z7MohIRuI+OtqrinI/WAMEIqxA98nIVx6U3y5hziu4sCFCkkOXH8WBW5uZ2KKMOaq2ttaAgoi4kFEBevz3Q4mTmvsm0EwB6a2tNSjjnc/QXEVlriTAAmM3WWniFFVNrYyxfVI6I6csBCIiZM39cfEM6ACSBZSVUZjIwEZr7MuvaqwCRpSlEzHQiWRGZISLXmTwze+8iYmb38/n29goFGRMBiSSzCKHYQcTdyoOZE2pVEfP+Ax5yCtDVsgVCJaGrXlWFV2jcF7MkJHhGlhAmpBBb/OBzXw9yQuArLrCMi5Yd27aTlja0KPOjdXY/xuiZkZVIjJhIgYSiZemiDFCQKUhCmnURS+jHxqWAAHe9gWGGQwE0ZGQEYWpN2/357fa6u/u5DBOJJKO6bmEOnk31zJVuRIIFFemXdaawwqK8sEeWRzJJhh3HI6AAwCuzHLMYCyD/Fo/DikxMNwMAEQ1zO10bE6kQQ6TZDCsiet1vj7lyZgBeDUYAQOGKq5ZPy5CBvH70tsfQzCTG6YYAo8kx13N+CI8fwCZWRIQCzxRC/0FTp/zbu+wHtRi5te6Z6Q4AgiKqQYklfejFEhHkWtlIpaEUx/TzPF+3EZCv+/a//M9/+O233waSWUgRgFKpADBWuQOQuffWzxWRsI2Ra57nsRiEsBqvLIUmOgbDjBioO7bz8fH6si8/bAWR+KyzFvdxe9nW8/68//Jv//XvKOtXjnNNpCDICEhMxErMBDgxVy5L+piP72se8+xdMYBJTpsFxI0kM9wroyFpb5DABekhfjZ0FIZyJAoBxSROUUCChABIO6IMwykSiALSAQpxjd7CnAFFpTACDISRUD7zV8i0agvMqgIQiJOhHOdpQ9o1YkvD5dOjGProgykLXAB9+Q/Kn/ZZbhFIVAUVxNgoBcKq4IwVhWX50m9IgOVUoAjE+DAjzGVHQQrhkJ1rSZO1ZlUTHckaeTIhcYus5/LXt591HL89nj/9/e+f8Ee3Op9MKY33+ztivSnG83ts++0M//zppZbHvI/2VtQOiKZYQoEICJkJAKSy31o+/bHOfd9JBTKPLLeMSGoUrZY9B1NHTr+UNV5VF1iBhNa5IgKIx14Ra1mo6loLKTGgd0XZEjjcxt7RuZaXu2X2W/MI87MagABVAmVVoYCIQAAAYdZxfNxetuN4bttu6SR4P+7aUFkxsnN/P49t7EU85/QMSiLgpiMkPQALWCgyljmhsvZMskgUJOUmYnMJkTasau522kKmquiKYSe6lbCH/e6nnyHRUkj0GnhB5Jgm0lpr81xjDFtLVRUIkUj5+bwLQDJihGJPSoSCirRQFrC4Qs5wpRywXl728zm56WlnVLJIZq7wxk1J/YxK4pKCmMskm0ftWw9nYRKg7340kfuaQHiWr1n99bUg3QxRzCwTIk7EaptIFUO5WwQQswBdD46qHFu7pqIIQyLzmRYR0cdrVa21xhieBuXP4/DKTi2itClcKgXOy+3KnYhwjPH+/g6RCHI+z9s2mmgTnWbuLsJrrdbU5iIS7aMKz3N5GhEmhiBZOuKVpypPJ+AfCGUEJFRi9+ut/oMCxpiRXiBYQoDlhU2gCOgCbLk2vdTDF9clUb/dn0x1G72q3M18pZ37fjvPs8KZhFGIBOFCOVzzt7cmKnRNRYjI2svdzVT14lNcd5BJoNpb78dxeMJyE6gM2FTWWiiMCFUpStdC7jzPtaZ2dffEhIgIJypIzErCzHRuLcLvx7FtG3sSYxZdsLnMioILdvHy8rLO6e7n88ACChxj87ooaW3NPI8nU7fpgEgkUUUkEMWgBZVZ4NFUMxMgRQioIp0FWTAdmyhkNem2LiUljm1bmJDIXOd57vuoCihromeB+Rlc2iXLiciusaYQCrAgMwRxG1oRjX/cW40x8Nq0Z4poEgqgZRZo4z3M9/HKGDaXar1/3G99F6XlNtOQc+jlFqPLCEIXracSAQsvfRtkpsOPPHtVJWQek0hQkZHmnGYOAHtvETF0EIlbLrftZVN98cTnaS9vP7kfpBJI//jPf/r149gaNuxK+gDO4sBUDIFaCYLigSpbrWUrXrbN5tTG+8u2pv/88999+vr7WrSeZ9tHlxuhCvu33x5jfPrLn38xn71vb19ekMHcb2083PfW/vLHPw3RZXezJxN93M99e0ECt2DalsTzPH76fHu/x8Hx8vWzP5+U5TaHSGSdx0nkG4MhuGAci5EIkT1z3cdoJXTEAbD33iPyXKuQA/P06CrunOlmMT0UqQkppoVHBgtHuApZ5jGfsO3PteSDCiuLgHRUGXItj4jI0FsfnBjLRmbrTQkMTsUGRdIUAfw8kBJLSQchrMc9I1trbgbLXojP8xhtUAWkplFEbVJapdqtINckxBtprnhhJZRKF8LP+ga+HmBLFnAkQd2qOM/pjLzfbo/je9Z0kl/vf8SBlcjJTDuEYqJiE2SoOu3ipbFHeMSZz671+Fj9tsOFglDtreEVa/s2IfL19ramnWu5mw7QweGAep0KsbICkIirjFkZsmz9QMNrEmOm+3EC0uu2h60qHzpOW3F6KrbRqugwv22DssIXMz3PQGRAuGj9iIaM53kygocwKzjOY+39Bb2/6vb0BwCZw94+p3sf41mno64zI327tb6143kE1BhjPp9hxczFcIRdKhsiWedRDqo9kSKqoDF3d/PAqJWQiJW55prMFGGtM9z4/f0utVob9NKOx4mIo3U/7La9TPMIe9m3CCuf3IBJmHmZIWKnTkggwME2z6wni14jfuNGWQDFtJ/+yHzOpGc4VCug0bcEFyYOq/IzT5ea6xQEZBJFJqgKJBfGKjLXwV+BAJUszWIRg5JEWAIKkjRJjzBnAlzJLPdjqTYCrgBhmctaa2vZ0+e1yz3nKubWPz8f9y4KVIyCyJl0kZHcnmMoNmKyiHPrIwtFeiXPuVT683hmWSY0piZiwqxKRfO8t7GFF2GRMmLpIF9k4UwdkJiElbJW1N/MQu7MTFBVCVAAwFCQkRcGGfE8Z1Vt21YWWURI5vGjceuuY+PcbJ1CHQBV1WyaGSs3ZgusqvO0zBSi/daA6PF8Tygk2batPCJcu/i0+3P13oGpiOeK1kR0m3MivTMzKJ4xmw4SPeehLAXoUfPjse+7Rd3GqCqvgLLR1cOnX97GnDF7574N7hqFxcgEtqYwn+cpIiKNiFZ4o6pMhqDyggq7xFNVWIVQWChoBsecwrRxIyiWWhxP+1XolpXEvPft/f4gIETNckZsKgSrADwsMQICkXrf5rnWcpGmrSNQJmIwwuPigyImYkU5azuXmdk+tqbdwtdaQCXEp03PBCJp8rBJIgRYMxoIQpp5CSNyJhAosRrAudZ12lNRCIiy83mXwYWDsZb7XJkeZnEbG7MSAREEJiU0QreExCuavtw9Q1gBEUqgCoEqU0SE1eaKcG6CzFWByVe/3CIIso3b5cgKWwCERff3+xhDiM7jkdXbvrWoEfH9cexfP/35t2///t//+134eU5Efs45kz0Aom4XJshTQETHdORqXdWnKbXG+Prp5fPXN0RsuqP251rzfOybmLsoVW1z+f2cY99XRsRsyIyZma9ff366QVeovGV7Xx+N/K07b/6rhQ3usDyJu2bGvjXi+Ov7HxGyNQEBCsTk23g5/HHYWSW3/jLht8vr1dpWiURIQp52nx+I1febu8/5EBIiPQ0p+UxrL5vOYgRuNO0InpKwLFQUXcossjYEMJMKQwIA8EhHXGdEAZG2JiyYa4IkX2dAgMEiAoc/5zORCjIYpRiA4Pv9mUjUeXpCAksDALODKIFE2/AEiFpZhVKJFbnO5eVtdAYGJBGCEku7qKSqm6M/zzmaFAGrBqNid6/Wb2vG92+Pf/Nv/s3Hut9ut5oVFRlXhT8zTYS8vI/9OO97G6pyP+P4+P726St4RJbq8Ig44qoJCQlmggWFj6bUxnIvyAY4n0fvY2CzedxutxUOV0+pqioAoA89349MFxFpHZnuzztUbF1ZECyFWwXQzFruQE8wSFdVVGa7tuBVVTYPs7ntfd+anVMI0u22vXVt61heVSjh7B5VSKq9bY+Pw5NF+ttbP+08z3NsjYggcq1FhMhyOfuu5o8q17VpzTH664z1OL4jEQG54ZGEEnURhpClaUG87G8fH9+/f/+emaL4eH6DrNu2YVXhOca4Px8iTaWdxyTGto1zWZN8WkBRYZYAIiCi+WpCmTJGs3XO82wivffH41E8vYBzY8HXVzzPBxGdNsNyb6rcAunxeLZt7xuHLwQlRkQcTQiQOSOidT7LSDgrznXZ3+Dj4/H59eWS5lz1m9YaQQKULVcejIx5kYIrDYBFrvcZIzMi6dNmJowxGMqDibAiqhygUBqVRFFMS480h5yMEFGE4LEatuuJzqTChMgv2ysTf3s/VbUcmVoluYcoVVFBVFFEXHTwzCvkW02xwhCxPCtdaEu6ENyTmRkgqxDxoj3YeTRVREAEAIjwQgJIxvI4qwIQzRIgiegaVSGziSSAzVkRQJSG0w7tjUhs+XEcQxtiPT/u3JSbZgShxAoi+hvEuDwTSOJSmdShItfiusKrSrRfcM0iIqImbGuKELMO0QhDBEFhpjmP6VFJoh0RVUZVNVVRqsRK2LfX5/OJiE2381j6Q3ACUARFVSWiUDiEmRgBCNndr66H8HZ97cdxVNXr6+3aarTWCujxeCDSZe7T1nzNGUkeUbnvA5Hd53XydjsF4YeX6WJYhF9z6rZtSLTWAkJAvPDOJAJh7oaBomLpEUVAREBFKETMZqYoIpIQmQFYLCBaEQcBMlNrLTK2l5st9zTBBkqEXshuCRlNNwScy0S7Krt7hGm/ZeZxTt1beNzGmBnMnIiIXFkJoKokbOER3poEFDMXwlqLYwpTmmNCa+3xcd+2wQzT5pprf21Mca55xqFDbqr/6Q//9Xx+sBRkAmMayCUqdU/zIy15nOepEmN/AVs2z6FCSIjQRJl5zuP941cHbkyt69j08f5BBI/HkVmiMH0Jq1UIsooq8+iDVbr87uP7r36gcmMquvVUjeOjqSCAVmHmyPr2629bUb+93p8fz+cpXYY0Ipq+8roGdnt/PJQ3ZjJbBJyQZiFcp8Gt7W7+7S+/3F73rhzh0zKD8igWNjMhpoL5XJZBrZcAM3jYyqcQuRUZkImUn6Q9KteKZK5iAmg8kKzCE1frxAkNUYvtNBnBUMERkIkJiJHmq2772zHP0+K6xcEEIvq8fT4zhCkT1vIsSEAS8Zmq3N6+wJqoUqzFNMMLfO97FGZkEQr1QCeUqHg8HiJDes9ZRALV5rmuyrJbUdU2LjvHUxt++fr62/dfv/7+57lmOC7IMuOCn7/8/Ns8i0j6YEBqGpdZLCAI3f13X36a5zPOs/e+1qncN9G4n6MRVcUyeqkIy8pEuRxq53maT2HuvWemR6QZj6aEGdN9QSYWvWAT6kBw4eQmYhKe6ZUowhfqW5mEVbFyLUZqyKjMlUwkW3P3pKqol33LTLNZdRlI2StHG9NnRmLB0LbWQg/WS9yGRGTndDcFgSomGi9trvthB3OJRGW2zkRIfJtzKsp1nljr9MTRvli5dKkKJgo7YxVWRMS2b4hLRAjZMgISAqYt7XukA4aO5hFFdX3GcW9ZFQoBBMTPcvRwRgYgbFAaDiy+7NEaUdMB9Hx8G7q9fPrdXJVJa4WQAlEFpCdAQRZUZNk0tDo4OQC7NrMAgLftNSzcoqtKkzCHgogQka3rYQCRkdlEiSQzsUIIpW9//eVPYzTtP05aZqZCSJwVARO5Mh1SA4J5xLmYexs9PbIKsZBw37cKl6Y+g1gyMwOqcB1ra12lHWtesesEINaIqHJkRCDAK5eElUgMYQuyVJVVAxCqkAAz/1swqtISmBFQqKp6V0SvBEQQRmKaXmudGBkZCgSQ9bdffr2bI4CuM74wMgAy9nVM5gQiJa5MQlShH1jdrDH65U+8bmSYkeXFfF4pXw+D0stq8eOeuKKS0r2QUaQKKvk8POps28iMMZp5esFxPEWaNGXtc04qrKjWNgTICgBwA6ZuZoRM2DD4cmZVVaW6GRoAo1BLA88E5sxraXxdZgcAMA0oXbPcPSK4CBCEexEH0PQZBMUSEInATYHw+bhfHbMfLPPiAgAsZubGPi+wV0yfQ0dCIRHmdQ72BGitububVVVWErH2tuaSUhK8/hskaIGINd1Z8MrfAWQRZUKlVODH+5NIKjmKfhTnpCV72mTRTK9CBEBEUYqIdZ4kcjGoba2ICPOEWp7QyCw8goFxhfZGSufzuPLsInK9+INxH8PuZ1W1oSz4PO9jNAsn9pevn3/55299vMTKtdY//+Gf3r/9lbet7PCVZsGsslyLhFR03CtRwSLs/ACA296gImzVo/B3+PPPP4/bq/mp21bpK8IXezwbN4/zXA5Eyw7LeJzSdFTk169ff/t4dyxmev3yWcf2/m377dtfHWCe1lA6s5m1xEF6S9gd+bDW20wuasmKDEwhlUTqVbTSzDBQO2fihYLHLCIhEkpRLJDCWACIVQQoxBP8fD76aJiFwAwti3KBkfdGadMZXm/Nnz6neZBgOKkW4CXv7IwVCXb20SyipwhAubUuXcmOiSXCiMTwI8PbmIcDvJ/2fs6VwcCXEDlntNZiVVTmhT9jqYJwhGJAqSIzB269b8sXIL2+fjrvU3uDAoLAKiUsCEUsRcz0uRhbBogIVPzpn/70+//uX615ZNrz/j5aH50B65z52/u3t999zcwZ+fayV5oAHMfRGnlMN4iFXW++DKmpqpsh1v3juwIpkk2/jZcAmA+L08eXRlD8sq11QMYYPTwBM8uvSAIRXfi7cNA+juODhvY2jsdT2s6ifl64gWKFKLjiQ1lUiOYZ7so1lLEQK7BQSWOlIIFUpnvmtMUqvSmAr3USYkH0ocfplXEeE4B6axHRtaeXigJi+FWPKrjoeYiVGGGxpkcqbihSwbGmCjHAMT+wUlCiFngJ1VyGTLJh2IqIrbdzPt9e2v3j4+vby2/3U6Rd0GMRiYrCZOaoBKbw2lWPxzmU05NYH8ezKkiAqERozlO0922AlRIngpll2FAJcBbgsM9vO1Q7jwck9KYeC5mO48EoQgKZTJgAXGw2CzMTmcQjrkkiljFz45ZRj+OOBXptgI+1sECx9y5Vc37kDAQi3kRk2juSaWsFK2KpDmYuLIICyL/5warKmaByamMuJCALJ0AmOs/JKmstAWQWKAyHpmJzAQARFHjkYlZWTKsVKzOhuDKZA8oy4HINQYHSRkJzniWZEWt9iFxP6PpB164q96i4NufHuSqTSQEz3ICKMQuxt/58ntcGu6oyk5kJLp6PA1VTRRIshJSmQihXLqd3PZ53hNLGax2MQkxQARnmySqZgYjz+WTm0XpVZIEwMeLz+Rytt6aPx+N2e23Kl5nqcX+0PtqQTO6j3Z+21noeD1UdYweUcFx2mtloLQEyIcOvpPd5ztaaaquqfd/jOJZPHi0zmUoF1noO3RACqbISlSqzsIoiCSD7RbFm5sfxRMTeOwB4oup2zFlULL1+OIzK0+v6hl3LWaT0IGkXjjQBCuF64AEWN1nLFi1kzqoVjpCqKkLH86HETZSEl4dFJqdHsRIwmpsqq/Cc69qxYUkVlTGiQAGhKidjIieRUMDyXGtdBUURLvqhiP3hbnIXIY9k4cgCgHXalXtnZgCSxkAcZb03ZFprVcXzOLammbmWsUprY8HyZc+aex/nWkJs7iLCKr1Ga+35y2+v0h8fzy/bJzzqD//xv3wet8eayXlaJKM0iijPWoXa9jnP7dZ/+e2vm7SCPM5jiHYVgLLTwvPxeLx9/d1xHGNrvSsTqFCGIdZ5Pk+vRC6Mv3xQoTSG3+8vWx+gZOFzzpfX350Pz7xTJ/DzZe9l5hCthKgqPcsvyw4Bf/306dfjHseEirAgeamETij7dt4f2pBwURADX6J4raqo6Xa7DcsDo8qdinpr3IkxID3NxzYQ5Jx2ebLW8SBoVfbt/Qig1JwV4tjX4YDcblulJRRiNZYy68BDXykjxVQxpPitX21MQmyKLOhBNmkeDkRv26f7Ou/PM7H+7vPXmL7W2sd2HIdHidAFjq+Cl+0GkVC4801QBzSqBMB6LIhUVUvDNMLatx65lGDOJUIqyAjPjw9h2Iee5wlWabm3RoBVdZxPEcr07bav9DE2yPz+eIolqQyEZQtZhHoT9rWUOQErgCj3fcRcVvH6+vr+8TjnQpXC9vnr3zHzb7/+cTRV7UrillnG0jK9kIjZPM/DW2tS0mi0F308v4efWUCINkMu5EJTVUUzN2NWJTqAW+MSivmcpzOEEGTWtYqxlRXhUdq3L5+/zDmfj7ltbRsjPeY5920gpWg/7KGqxLTOp8WCgKjwSuHG1PKK7RAAUO+dgOc8mNUjypNZw10AQEigoLJ8NuXMBeVvr+1xHugbXez8BV8//Ys47NP4fawAjOuBFOmXNpGEotguQWlZFV6B26hU0Vfa5jzUK9MJYkNRlHk/EjdEKwih4qYkb9OeFEgg4VAVCbh1mfFYdoqOsYmQcpKbm7mnFWFCETEBpxcl7fuAyPu5uDVUFhFMveZFAAREbVuxnedRECLURysvt4kFkd4HHefH7XYbvbuXiIZXQXZpUGzLALm3jlRzHl6zsK5OZR97YrQmLBJe7klETAR1HYKKlSOsSkSkjVYA0zPsIkhoxCL2RK8KlZ2pm0UmAZD5ZKax3QA9wyIM8pKiEzBGRP5trEVkZIb60WvPmB4BACi9KqIIERMKqjADoJioCWZVVhEUFFVe5j65CuURhgDMiOAiUGVZOGf88AwRJ5C7D23uTpBIlFnzeO5jf9lvyxcJMbPZtOnXU/N225YHEbmnmbkvab1p//zl05rhcQWCsvcuTFWEkJ7OzCJCKtfS2N2O4xCCZISLzo1IiA2ZC9wThUUIGDIDoIpDROb5UNa54qoFM7PnSSJczdYdiQCDRa5zeW/KmM/nhNZ0G3NOqwIoICQouorPWGaGgtOMiFrTiFRVYg6kaae2BkAKTABSJMUkZHbaisuh5elCdF3WXOJYZlTiEs1ALKoIlgJIoJhrIiyS0UcXxeW2/PQEKiciVhVRs6vk3RE5M7Pgwq8CQEQKCWJZRoVfTKuIiLCIUkImQGQlrMLzcCLpo885Z1brNyKac4rC+/25bQO53z9+a20fgJztH/7wz3/+7QOwbmNzC7NkHQjomUH0OI1o4dWdHW3fRuVKz3U++n4jGSKaSVvfzOxxv3/+8i+rIgNsXWJsQuSIBVcu99Zk6GVNuQJAFqTczlUrZHv5KcRmOkGc69mUnOj7x/vPP//uHf0XuytYMVglgiA6AkZlpXkUQGTM3hnQiAvCAiuL0gKJUBpFXmYUz1leCf6cT/CAckB/2bfj8Qinvu22QgAajqJ2zLvVok73+bG93OQ0aU1Y2bOicowGIG4maYSDiqBw9Hbm4/m8g6LAzdwiklgTIAOpdEgHq/s5I+ylDQY8Pp7zPIkIGrEIMCRxVAjgOs/j+T7GAGTdm5kdp21ba9t2rmOlZVnBAnBCGFu/348Kut1eCbkcnufTy2/bi8X8459/+bf//b/rJOtczAhATLLt+3PNqvM8T2rQe8dISIjKRI6cF1SACL59fP/85WdEzogZJhHbfptzBnN1mee5b/qcC4jOb4dnkmgkrDAE0SEAiRcXlKUqde+MhI7zeSTmNnbEejweTcf7PFeeitc8HwDYWiNAsFhgUCxURMQlwo0BC5KI3RyRW++wfM5pcY2x8ngcJHztqyNiLcuiq5QZaVWV5k26malwlBMK/gDiuLs3UWlaUZmOZAVVaK1LE1qnjX6b55EZx/NEguWWpCrbmhdVmDLrcV8E/PiYVUWvSoSZqyoL6ooQI1ZFXPnbv6ncEgAtCzOA8HnO9Hm73UQFC8Os728sZG6FoMSP5ywkm+7YMZGgChzQsBajHcfztn/NWnOmIC03xALAJrosgIAAe9OylZm3bT/P89pUZyYLIhWSIBIArQkiI2C9f9xba9u2s0ohz/P4/OnNfVUgJjbuxBI+K85kRAJhjCg3EwGEpAIWLv/x6XmNccti3Pbn81lhxMhMYSvKPZC5I7MAzOWWQSjMdHXbmLk1ykoHB/hxvskEIhhjdz/jadporVMbAxARA2JVERVQBwBLp4wqSA9E6E1IkNmryt2JRFWjgDAJ4Pp3qwLxxwoXAQHgIhdkJACQyLJnEwSi4zxZkFAigpkISlTCAwEAkpBG16oIDyJSFkSccybD4/EoKLfYthERZnOtJU3hR5ZCRutXd+B4nnMakSCJNiGieTwJS0SEMNKP05B1zjltjjEK0kJE9hVRCRlcFkJjWgE0Si5IM8rIoCKgFQQCwJIeP4AYEJ45GIHyfP8Y+5YBkDEUIiJt9u21N8mK0+paLAOxE9GazFyIBZGVvfW1VmRkoS/PBGINuBzq8wj7Ml7TzdY6j6Nto7EUYbF6Wqw5WguLGSbcjuNoXS5nI0IRMhC6nwEGDKxaBQV2rmslgIBZVYkJCPP5LIRt21W7u5/niVLMIirMbFaZ4RkOIFv/9u3b6P1YR2PqXSudCeDH6ycTpGlDEgCA8mQ+pzOzR5Kotp1F3z+eue+e1MaW3P4f//E/fifsQsuNHjGMWqcV6U6yDePIvFJAtezM95PABeD1dvNpTftPf/e7Y85V920LJf726/effvoCIKqdSI5jUlFjOWZEPef6IP96G9tzqi9H7lB6218f338br5+3T5/+6Y//GCt40L7vQPjX+3P/+unP949/+PXPuTfq23Ecz4/vyI0BmDGagkguz4TIak2nGwAQMYFmgSe21qfFGLv7JOJlBUCN9DijDzYLW5ZPH31LiFUzEMwWkTRuLLeW2pvU8Y7nktdtRLhitk7UxvN8ZEZXoUa+4shDpVPHdJK2t94/HicSE1AWHstsLcEAB8Lmgik0yenylu4SERKHkpjF8kohUtKdKcN5JtLoSFpuyzDcTxDEc04v7ThQMpaZ2SpVrSRPcPdlvo2dWvMzlz1jTcCMiG17W2bTs6bJ2NdffuW1fn77/PHx8fnl5mtqa5Q1zc1msbwI9t4D8ng8iHX0DkXPZVn0MFuxdJDH3HZoqmuqsHpQQok2AIDC8zw9o22ckFVRRSusDN/e3iD9PO/C2FXXaSLSNq4K9zh8MQqJrPQi/Lzvz+fdI7oiwYWrRCJpOhxWQjzW0zxba4jZtB+P+7Y3oHQ7hAUv5kc9bq+f53oioaIQABMe5xo6onKt80K0ixBmHfOZEaQ3ljaELW3OyaJA7f74aJ10pCh9/zgQkDqtOIAkiZnpOCeTbq3N6dunV4ic9YGgHk5McpEczLS1aasqADLCCPha3BVmibTW0y1ceIy5zszUlx5+hFcEJAJyuXvvnVHMRZUACt3NJlI0EU+KyErMTOzKqNeNprtXAZTt277WTK/eu5lJUwDAyuIfxTPPQBCL3NurlzNp9BpjILJFMdPW3tbTPBYzS2tZ9nw8iUikIp+IqJ3QfdmRJUQkMgib1yWpzX0fZpblHkgQJMjlUAVEKAwInubll1A5M1EQgMysqlq/kiLXXsEiCgCJxT2IqLcfIh23DE+oSwoImZUIRASQ4eV+qnYRzogqnMePL2TNrKrlcQGciSivwR0umnghMCJAZlay6LkWAO598BWjAVLdrih4pl0XvX5GVQEgETH3zHg+n8yqTUgkoagpVGQmi+RcQFBZSMDKxIHEotc/CdeNMlZdD/u1lqAyF4IzizLOtZBIVVB4v316PJ9EQKR2nIAVcTIRUgUGNKACAY60JMiyYrguYiFAqS1LQk3gCveC1rZKOM5JrE2HV/hyYGSgqjqOQ0QQwN2uXFghZv2AQEUEYF5pLGYGgCxi5IhrLGa97Nkgcx5CrCoRnhVIiMQJgReEIZFKwlHlanyp+zPDRAoBeh/Pw4FUVNaMv11PXLfvhCgREZHC2rd2XSeHFyHebjfgK/4W///7eKxKj/LWpQ1d50SqDAtbImKWoo0QmViQHsdxNUE84vl8vry8cOvTFjORNsSKNSO8Sz+e73/6wz9trQ+t77/+lRBJCEWRKgEnMWwY4ehZGS/7TmWQQIAYJUzb3t1N21YVvXf3SAsonssr2S2O5wxzlVYaZvH17afGjYF++e2XMQYUk2735zsN7luv9Nu+U519YMGoyC9vTbn5ff58e7vX/Xk+bZ4kQkyZXEmrPCOXX5p7xawqQABlASQAutYd81zMfM5TOyBJZDkRb/pxfohge9vC18RY7F7LK8c2VJstL8yhXQtv0GCmvFymC/D1eHbZdg1RJsKJ7BBRwK0+7HHO+2j9aSdwaRvlcC7PKhJmlkhbNifmiXYsQ8SKGGMkpUcmtEBIAVCccW5NG3OVo7aC020JgeqYa7ZtfPr6dj/vRZgI5ZWFoqP11xVpZgjUtp2kv38cXWXcPpvPfd8z09yPZX0MC2fV19fXY67btq/zAM9N+DjOzkqAyJi+7u8f/XbT1qZl7yO8mBkKrIygdHTIORo9z/fn85mLR38FEKiMzOfxMdro21bn6Rat8e3tVl5zTurivmzObXSGOm1VORGn5zmPi5WfXNOnO4ztNs87UyqTu5lnk47Cc/rKyVwWJoOlgYVRRXoSh2hNW8TFct1xu8iY87g/3redFVFZsYqgLibuWiFMhVWRhUAITTVwHdPsQGIl4mM9sk7qK7NlxjRv25i2kIVYzYJVkIibIiJ0cs8FYbGUsSoyXVvPDAt3t96bCItSQVyfWVcNsaCY1JelhxCnZXphJhYGRgUBjcyIzB9e+iKrJagR1pU22gDgmOnrIl1QgSwPLESi3qWqLuvOykkMULXcrgdbb5JVynzaCciV0bRXga9YvmQgE2XmeZ5Q8vnzaxJBMkzvQwLieTyySrixbms9IZa2IU0AoEDMEBFJfsAF7/f32+vtOJ59G4/Hd0Z82YYfR1q2bQckJKm6n+dJKtu2ZeJaB1Hv44Iqx/lYEaGNiTByiUjYkQmA2nh///Z+PVDH2JdPIrquaQHoeoxlQqI1EoJWmczqngBMoCRxAZSk8RUXAqhMR0FAishLulwBmcBQxAmE06etM4klaYyemW6RcamlwH1t23aeCwnO89j320W3ripgWb4SCqBUFaqAyTLcrPfeVNw/3BNQ628m3esxttapWmutwiygqmLEzBQhVqnE8zwfz6dqfz5PEdmUPZ2vEg6Ep4UnaoszEhOKCgGYspCZibigYjkixvLr/p4Zp52n42i345lN2taGL7vEAwHT3fsYXmk+j+PYti28Nm5E2FoTJUS8CBWISCxEDBCMjMLTIszHaLCWh3UVaUwKURW1MkB0NJbyUunplUFMjQoqifDHDkBIIxCpm3OhTV+NUUQLIiKqSrgB0fFcqirSACDAAMDdVUZCAfzQcFXVaIJAv94/rq1DpqvewoxbI6goSg9CgkoPqwpmWWsV4dvnT0Tkvq6su6guO4EAkFfZH/7pn759+xa+ZoYICTbwgMhMXBZzrbaJSkaWsvh8IpjwlWBPiHQ/WWmMpm3/+PgIi9vtVl4WZmbP+/2qm1c6ExenxIZOnr69jJVPLhAsfRmNXx7P8zzuP3/5+kH+28cvp62XvsksO+6/3z7/cv5XO6PxeA4ikb98vHdtKi2BA0kagwV4RNyFERIvlhukM9Ga52i3oW1Out/vt9fRelsLPs7z9rJ//enTH/7wDwSZPrdtywhAZC7iQCCFVuaQ9fXT1/v7h+B++JxVMV41YCXmqmQUrmrqXuXlLPRpvEXknJMYf3n/S0JFpWN5ALkiqt56RbLlp30snwHVGN2BUXyZsow+Ps5na7h3yPkurY+9RVathZ4xsytVnmVtIxKCed5vL7utswANlgeObVvhUcHiyX5kEPA//uHP/9v/9f9m33pAYPpCn+fZs7XxNn/7669/+UW53e/RugQ5j1IYx+ky2vvjfN1e1vOAKKrsitPX/f7c972mBXpm2Dlft1cRcXb3udbj9voKJfcjql8+EDGbFfC8n2Zxu9248lwP6f1AiApQBqtG2oSOj/vb6wtSmeemI4QB+bT3123nSCx0ZtJWAV0EGk9c1TiRzIK0nefsXrr3p01FAKjjOJDkdnt5PpZq3F76uQ5sHCLr8byCrgDVpU0zZAKqjCrQ8xmgDMjaSQSr0qoIamvD1kSiLIhJQ14yMoMUCV3dfZM9l4PHa7+5r8Z0G+O0RU2V8X4c2zZmOsbCWAIiqracESNq6+N5HhAuzEXg54SGLZG5WcRL3w+IbASeVcVIy7wAxrYnVgDOiAKgCMa63XRlihBIRqWqhpdfCqrCOAoAScJrITSmzowGLirIzKmV6JFJsaZt2l7f9mM9pPFas289g+7P91y1NSUCN3PAsb841HKDOLXLPN1WVoDIKKAAr6prCm9dkNo5n2PvBb7ve7oXADdmSaSVSYwtCNptQEVmmCVTR9TMam1gRpY3kYokRtFmNj1DtUPCWuvTl8/u6ZZzeSGGGREWpkGSiKhUVaOehVGJxGuGQPcjPNACtQ0EWusgqaoETGJCwPTCQmRKBK9FhCSBOqpqranbIKLwOizcnZmjCouIWBqeayZkFw3O53yXbbeVFtlYouA8D1W9cJ4F4JHU2jQHIGVYdmqDtSZLH0Nj4WVTaK2TXPgLQES3vOik4ZgAY7u5BwD0PqrqNCCwvTFkmQfrlowWdj3OhcrX2mnHIkbwnF3HAcnEhQlQrWlhZubWQNgtY64JQ7nVdaDRRNYGKxuwJBHW5/HF3R/nHYkuml5GFBBAmBl4IjRExHJOYEdp4usQQO36tJOZITPcEJiBZFmkJyUS7b25za23uY4+bhULKnuTtUh0WHrVzGJV9fJlJzH0Jr6syq42FqCtNCoiJkb8+HjsLEyIxO4FWZCZHiw4Nr0ON62N53wwIBMkgOqICGGNqLnmUAIyHBCYnh9mhYhR8Xc/fWmjLFYnsLVol//0T/8h4YOpzFdxPte3OKNogzZIqS9jmyRAQuj+2l4ofWg9n48++sfxUAIe9PRvG6zX26c//vmDRguIfd9++eWOFCxh51mFIvL15y/Tjo/v759//iR6E9teYufq5wJ7mYFre+uDGfTn2saf//lP8+6I+tPvf/eH//qPf/zrX95eb+eatuY647U3Ilx+hgUic0SEsZaYUyZC5YIobW1fZkXWuz7OBzUk4kVV5tL2fKz/3f/p//z3f//lP/x//p//6T/8+29/+paFBcBNcMXz+GUgriykwTT+ej+Q+kXCE/e0wLQikfCsAKGoREJOgLCwGWa2lrebplXbxlwLIhrIMiCgQKqUc3nZIqExXgnl4/HLtm3C1PZxrpXpu+5p3kXPFRNMR288mFCEWDW5zCzcRXnoqFm5ws4kb103WJHniVhUsAkios3zeLYqfnw8gQqJmmyyt3msvffVt0y40rm992eec05pgEwe0drWWFQbKMZa78+njn7r0ru6L2We0wDQPD/O95fbjbvcthbgkXH7NLDw+Dh67513qKzwaxR8zIOIALkizUyUVcXs8KjMXGtZuIhErUxySySKKCSKRGBxqCZ92aTIQiMBXweTpBtDCeP912/7NgCq945ClpWZj8fHXtW2Ngsq0cz8eixhPs+zqsa2H+tk5qEdgEbfp52WRVhQlWG30c/zJGCVjsKZIUjP42htIJFn7L1dH4UXMnfOI9K0tY/ns6qYNZOvRC4jhaUQPe8P7SOzIBEZ7493JEqAihAiFLyyu2tNYr4Y/RVJ13KymBtLG/fnBxAjETEAQEBlAYRTYqWTsADmtPhb18Uvc3AmZO1jjyJbUEhYbCuoYwZU5b6POY2FVPV5f3gad9zH7f44mDoRIaQwmScJM4KZs7CfBwp13tLWuaZwq6rWBlZJ0wI/55mhzChCVRGVVYXMJLyiwhZKEY0I3/eX47wDYl1mrZVVF6PKMn00gSyPrHIUocAO+rK//PWvv7LUGNtap18XE7VEGCJPtyJ0yMiAhLywskQFBVwJQRsBl0QlGAAhJyKh6AXGAk8mKgAsqLqUM1WRCZ6ZWEiIGXGe6zINMSOWIEJmRERAYOJcfgV8Ci0CznNFROvy+vp6ZX/MfiCXKzIiyl03aaoALFgVuY75t6uE6ydKc05m3LYNgPIiWiZclwhX3Ey1ISIQAlLUJUm41ifYmiJdMPz8bx0At3SIpGAiIlprIdKc07PGGJmekQDYmpotIMwEQr1SUXClnQlba+f5NAtWjIiIcERCIQYkYqVKyogIEC7PukiqSCKAay0hCnNQ4cvERbLr/jgfvtaEgDgwKSqzwi3No8KJSBiRiC6RL1eVY5WQIOA6DBITgNGISZgj0yOYQce4ve7P40P74KrlLsSsUozmkVCXmaMKmJoyXW/DFPCCzEBkVV12WqyXlxfMBFHI1Vqbc/rySSu9tt6i6p/+4Q/vv/5WHlAZ6VWxPLg1bi0B1QGYJvod4xN0C19+EkJAzYRMwvYCsP/2PvvLtm/9/XGSyvv7930b43c/z3Ws82jKCLmW3W4/McHrNsjdnvMUgUgM6bvIvhfUp/3F1wlRRPry+nn01+9//utpz798/8Z99JeXb9/fR+9deiN8/hjogVEIiKrQkQrDyzm7qDT2CbYCEPa2r7Dn805Crbc1rW3b9cL+9Pmnz7/7/f/wf3hJHf+h/qfHt/dNad0PGD0C+ttI9+exPr99/vjLu2qTa8GyIiu8tQagYSsdoTkiJ9ScVkEijQors4x9AlRY1OVGZ8QytAzU0bV5mrudlU2q6UYqtubMhVT7bTThnOcYI6HqGrcNxjaYMavOw9rOhJwzRlMMQBDExFVMRYQdBTE5QxlZitNZFMu2rVXVrPj1l7+Osb3se5j7XNnb7XW/P454LmGIjOVZKFB1nudtGZF+fP/+9csXCB9j9Jf9t99+I6LKGqLTTPuOooHosf7bEqywwGpoa9TmcwLAdhvIsMIibWy3cPdYWxNmdDe3+eXLTyJs4dO8jU1EIHOlBTRAnrZWJnCGzaCCysZSSIWBEE10RpIoF7600UCQoOKiPWBmvn162ViLsBEJMwD0bTDzeZ4kCMABeV0DT18AfNoqiG3rV5ox3B/LmNkzHDiOs6r2PrbtVkBFSMw/phBfjKiqGQu5kIKRASCzns8nkZRX0waQkYFZjISUWSUqNs/WGrNc54NjPkHbbdstiJvacs+sBe6OhExMiLmMMq6eZUFZJiOJEAJhpZkxEhBGJANlZibcXsf5tNG6Nnja4cmiGwCEU0XNGRFXkP8qmISZbdt2LiIAcNp1c08GSILn885YaV4siODn2lgrAyq+vH16f//elKvgPD60jYxLMZQFBigIGOXhjpdFAAQRQDQykSGhai33EOE5J6Nmkqqq6vJDhatirfm2vWJReb20/Xkej2/31/023dzNbPXemxJkMkICKIIBVUEBEyFnu5qmCREVBYGIsWKTywxDCBDhiEJE4dCYBKkyhaUQrr29ezAWFZEwZGFiV85MRljnBCxiuUiuTXYAwAQzG2NcecDb7SYiV/Qv0xFxG+N+v7fWtt5BB1R5Lihwu0QgVJFEdAGKz/Nk7aqa6c/nMxNUFa4WBlFVEnJkQGZVEbfM8kwCuH624QlZyCwXAKVACFE4ChkxvIjIbF5truXR22aBNlfTXZWhAIoQKcJV6TIdEtEVNO+9V9W+j6ffM7Nx+/GAh1q+ony0G8p1EWtQtW2jqD4+Hl/2l+uvMZGyANCMnHP6ygsbJ4jXeIeI2vpcFQlIjKxBCG4RB3EBeOWVDGJCCSDtanPGvLfRY1lAicj0db4vESFGIlg+3SNJNhWPykpCxmSPYAIi8UQzryqSar3P81xzXgPMTTYACEsCaMhgsals2jArZ0Tll5cv/+U//uP7X75hlLbLp44MiCCe6W6SqITAFBDua7nNqkK8fkxBDXpf/fWJrbh/RB4fj23biEEJ7/c7ERHD/f4xxqjKn75+/nh/VD5b1cdxRKVnxg7ZGM5swjCha3Obazq0Rsr90+dc/HE+py8WaW2Mvi23Y56RWFdfm1iKC5AgYIU1mafZOkUapxJkZi4wh/r69mnOE4uatHT8+Hj/+vnLT+MzTAbY//f/x//Lz7/7t//v/9v/+Nf/8j/fpGmVDMll+77fP97fv32/wCDyPJ2Ete8fzwOTmQYJQabFYiVErqsCEuxR4fh+P9yhoNp4OeN8PqbwDoXKba4ogP3lNcIfz+8Wq7WGGDoGAQqjKHdlwC0iCUV7W+YXuj2zkkh6Y8am7fj2wcnKSszV8DimInbtKZJVHqeHeUVSfP/1v/7zP+u/+LvfE9HttpGMzCBZsezl1p/PuwgBJiKRFBUBQhV7wsv+SkVYMHpbx9GZj+fjWEcBCHEV2HJAvN/vt9eX7x/vVSlCTNB7//j4oGifXj8LiO5NVRPsue4XpPs4V9c2xkg3Feh7E8L393dtzSJJ+FyzZSqiClOhEJ9m1BWELeZa5y7NfRXFsmdnDltmPnSPgKbKSABwukVkG/0aKN0tvK77nuuUcMWP9313z/M8rwzFVRAswbADAMINoXpT81DtKzyTxn5jhPk82r4f5wkslnGed2UhAAdQZSJAIQerCBG5Fn1vt9c5TwIk0kq/Kvxw1e7CEnxaoqNqv207IjCiQZxhuBIAUEiYsaKRNOUsnG59NCC+9DsJhVlUcHGqirJrq6piiQT3RMbzXJm11lpmKxx4ECdARjAxuVsfvavMOVtrZmbzfPv8Mm25x3mu2227pmhpQhFzHmN0r7yqREIs2u2czrm1gYBZ+fr6+ng8rmxG70qI7usqO9lcQ1oBX3XbNshXMBIBzeOBldp7elxfVHkkIEBkZWuK0KZPdOLS0xehBNScs++b+0kYijCfj7HjhSBmZotMJGbBKgYq/BvYl7AKVajCCUuUmTkLjzXDTFrvQ/2YUMEFiMBEq4KJUCQjEYmTIkKIZGwRAVhxuhIzcxUtjywn4Mykkkq8OCdNeC0L99bEK0RktHbPtDkbsWovgMwf6fQmP6bM64WBolWAWQxIRMgMWQAYWYTIhcxCRInIzBGxbFWFNASAAhCRhhwRiQgAGZAR04IYCiozEUg7F174brTITHgeB4IzBQEts0uSgQWZoNqInIgorBAQ6zwPd9eNGaXzuNwIwAWQquLulSAiIn3avIjWl0R827Z5PkXEzSIhCokpIplZR6cCzwCuyCDQLANCFkakysvAhiqYxBnALBl0PicAdOlNBzYUkcdxLyhm1kwL25suSmRcy3tvEVVVtpYIKYt7QhUCZ9RleSvAqKKqAui9Z3ksY5D39/eXl5fn8WCmzPzp7ScViYht2zDo/v74x//8h/v3O0I9nw+jKKZEKF9rZhSiqgK+Ar1Sp6iSDkxAtdwSyB6ZsX73tt2y80T0xZlpPsb49fuvf/fzz/s+fD5++vLJ7Cr8x7/+X/3L9z//dj6NMMMMhAqcqBJNlCAR0vZ9FNOM0L6JCJ25b//mj//4X+acV48+zIW4iVisqowCiKBMBSqGINLeVFVIwIFS3B0gN5YyH8W9bR4RCKnw+fb6O9k/ffq7b3Z8n8e//Vf/Pf8P+X/9818hzg7ComHzeD++vn0+D2t9e94POYPtnPuLoI5AXple1YSX4zUXr6A0nHNFBBIxt6zIyzUKVBisgiq2TkIFy+f3D4BCBJXLMqfKhFnCFL48jBAzABqScFO+vewX7NtrHefCiW9jB5A5A5URKz3SVzb0onN5VQVVega4dHp71W3Q/6+nM9m1ZcvO8qhmEbHW2qfIe0lsJJCwZXdsZBo8AULiYUH0kWjQQG64bxANDCnZTmeeahcRMYtR0Jj75hOsNRWzGMU/vv9xT2dr51sPod5nxESzJPjyfKSfPt7q1vul1hFc25XLh0wJFd9erhWA9ZiFc60VsliEjgkGjoQkggqOwllEkgi4CZb77fPb66tHvB0vJVV3HXaNGKly5u319dXMb9vGiNfVsY396cMYbwDInD58+nwcxxzdQrMwuBs6gCdB4yAOQSQwh+jac0mJWVWX4lGYpqoBjDEkl5Sy+gwzBNhy8XBXjYCcM0G03kDinB4R4MCE1iYyjasJ55xzu04AKJLcnJHO86xlbzbDwMF1XqN5uANHuG/blljCzF0BfHnvAEAQDtM1rnZcF0a4ekqSUkEzQ2DmnPOwUSR5xJzzOEbvV5jf98ec09EhArNQAAlmygwwxnAPj9DhknMgAkRiwQicwQEOvmQ7rTVOohZEIiUj0HQviSXl6NeY4a6IIYkWOdl1drfee18eX2Jfvn9pbdRag+Ia3V2HjW27hQAqoDDocrAJANCmSQqCr1GdoQpjMDOSmCkiBoBZ5JxSYrMItZyKQ2gfwOjqHoqIVar6RIuEHIjEpKqASycUZpNERjePqIxzaMl53+uP1x9zdhEpknq/ksjQCA9G8AiHQCYkcHOghUMGDCeHQMjELIkAber5dqSUasnmYHPq8ESCEfRu9aNjjm3bkJmDVM3B3AwBQmPqRILlpS3E6h6hpp5TzjmHmrsxEgTMMbKUkvJxvgK4Anz58uXxuM85h87V0fBwZi4iGBDggOGmgeAGiGiqiAjuyO+GEw6EDuEKIRFAiOEG7gIYhLza3rCkZCAil/aFQ88sQMaMDmhjlFIAjZnO8xROTMnMPn/8oPPoXR1ZRBABkZhgFc8DfIWwwhhh/Ae2qa/JQQx3QF21ogU2ERGAcA/C8IBSSnJS1am6RoSJgQBNgwXUY/lbLERKhKtaqmxmAeamiJgYEIQBEKi3yxLUsm8bu/vVjjEGot2eHnV/zDl6a1sumRB0skOAF+Zc6mqHATghg2uoMaIQjDEdATEAYYwxYFCQZAGjxa/d60YZC4q7Tu3m3Xo3C9P49PTT1999+6fffsm5BkydWnJ6vi4OEqRSkiFAxOhdVUkoKQOJw3R3s5nSljISZp2X6QY2air1tl86blud1/mb3/zfn3/6/AeN3gKK9d4//frDty/G/Xg5fkjdxnVOvfK+1V//ytRb0wN5mCUpBmfO+Y9+/vnl6/dPj/tW8/X8ehyDktD6pkQGhh4IEGZOHosGuop/rujhYQGASN16zRsQILAIDx0QVGtVazr77FqpeJa/+st/Kzr+5q//x/nje8mCUcyVHKcC0qx7EeBdpz0f136/HW0mg9bOUhMgDp3qYUoMFYEMDAOvdroDEgVhoMuW+xyqLQOJIKnrNCl03zciMJ8Soa3XnAuDAxIxYS5lO2Yfo0033moAAPlWC2+pvY0IrGXXMUwE0cZoqRIVNNAJwwETJ0Qk4L3U8eN8/nZ8fkwgSZIm+P12R0Sm2a/LxupEaOtvwlC3sovoQNVwnXK71bqrXTVvoNZ0OrgDJS59NE6ZU0LH19fXXDZXUIuwOI9jv99KVUrCRQHtshHokrOFgfGnjz8PG2e77ltJwi/HW9A1+pRUzfR8u67zfLrvhElHB586ZhIKndMjzErZrGnKuR2t1NvsQyQVSWaGBBODwiiLUyB6IJp5YVZVg0gpIcNozd1rysMcwnOuC700bRKKuY0xAhCBJDEhremdPZUFLAg31f647b1fdd8ccFFwR+9zTkZwB1Ufocj0eNzO43CA2+M+2iyZ55ytNclsEAEytC/fUPBAhEVRiPU0vDvMsxGM2WreLKy3JoDM7GHH27l/uAuRrjwJXQAXhWqdCnNVV1kusYTmMKfOoSlvQTjU1LFwBnQdxzq3Yww1vN8fx9G3uiO347hIcLvV67okMSJd12Wh4YbCqlPNSt3b2S2cAcwspeQ2V6wzzXR62dKC1a2RXAZMmLa0LV93CExMCT2ITfEXOjHM2c0sAkvOLJiERyAQTNXAQBYAMkJIpBBv11lKMZvmE5jCUVK5dKQkKxZhScDs5hExbAiSYASShru5hVG8s5YKS2KhQHdngsTFPRgA3SAcfrEXnL3nsnEQIthAiyAycF/mEBEx5/RFkbBQmOAYpm4zZxHiMbTNg4RFKOcqOb29varqnHPfd0Q8z1MkrVu19w7hpRSzcHcijAAMyCmZh/ZGKaFQJgEPME9C7u88L0DnlBFDVSEil2QWrfeS370RBYUEffoYFgjuoermPdhSSossiQAQE8NrEgtYSR4iWjgjI6MHRJi/O1P7Gr/uo2MkDUdkQIwVnM7IfHN2CDKbGCCUwA3MDOK6WqnFENRs6SeEQBdP1czA9lKysKqaOqE7mDmEOSI6c5hbLCQKotuY53ICRcG97MTpPM8xXm97JZTZh465lYSMrsbIPjUgTDWt7jFAySIowBROgOiIDkHAS5w1tQux1GRj5ppeXn/UWse8WAjQkmREGL2pw9//7p/+z//7zdPjJgx9DgtCpHm2EKFMzEQaSDxKtBREFOgOABwRCH4xFWGedElq7j5bv6fy+vI2zuNpuyWWlx/P6IEWKaUgM8C34+JNPvzqs6Ty4+/+TpAsVNsgwNfXo5DUuo1p2ntmGWcTRr28ZOnXqe16uu3XdZHQ2Vsf0ziMAjzIA83dLABykWv00ToiZk7hNt0TJ8/5ZTQGwlwkp7rnTOyJ5k0u0senp3/87e8f93vr15/++V+U7fHf/9t/vfpVcw4dlxlsdbpxQjkO2+8fzvNldH97bfVGqtSPmbJHoAEEIpOEL07pcAJJKQJVdZiyZBIS4uNoJYK5PEohgt6uoNj33fREBKQYs4XpXnZTbdENDAlLQrWWiMJ9DueaU2IiCgcX6mHM4YUccdh0iECPAHNHBcJg8pKf+gVvLzOV2q1H4rwRANQpW/lcS3v+cf6z7XPN29RzjuYOo7N7qvePofj8/eXxVMzM+4U5B2IAtDZKrtMU3k0kKZCYmR2QeVrvQ0vex1BEdA4Ah3cfOx7TzjHLlst26/3yqYg8p9btMYfZXBOT9PLyUkquJU9viZkIL1Wj+IXT5EQkQqtrXXgHoms2Bpw6mXnf9rfjDMK9VJtTPTbm8zqlJqIlLqG87eP1qPUejl17mAF4LcSSI/C8XggCABw0AsBx2/fep44mmSUxsGtoASfiMOutjTEwQlKRlDbcRpiFOoQ5zDkiiAGHRhJxtxHGqQDCnKqquYiZIpObSUpjdHCczClnh1DTWvZ2dvRRck4ivXcMuN+fAFy7EhEHqI1IKZcc03vvC/tXcl4KrWHWxwkAj8djav/29TunVOs2ZnNr61EJQCQHR0B31zE7q27bdl3XGOP1eHt6ekLEZY+aE49lgYE4Wk8pmVmbs265j2tVleeYqRYRwcXUR0dEIphzugYiBkRrg1hyEp+TkdyBmfqcOQuFRSzFmK4zZT4dPW/7NO/DwoyKqA1OC14xVqBAkhzpeXRBckAIWLb2YeFmYOAGDkYEiYmYfN2/xO4K8L5Dwpc5NOtUVXNCME0ZHeFdsRQxZkNgwfceJy1yObqHEZGOiUg15UEOAIxhoCKEAb135lRrtdAIHGMc1ynClAR9nv1cvGiBtVti6GRmQEIQABVA9zCzyw4WopKMIkJHNyEiwHBDD4PlfRRIGmqAIMyIwIxZGAkYEJECrHcjXMPHKUudA6Za+Ky1zqnukIXaOUzHtj/I3AwCbGiYmbEnRFMzN+I1/pDMTM1FGIJ9+T9EAIBI9sA+J4S4L9txGtdAwZTT0OmMTee8ekopMYubqjs6BhoQAKjOMB1juIVEWnEAYxDh4mMAohBiSapDTZkFGRBouKHzdnvUugO4zk6EEQMAKHi5NJvZeE+mETF8aGIxHT4RAYLcdAYhE5sqsohIzjnMmg4PY8nTFADu933bNlOfQ2vdpuk//P1vu9rVW05USlEAV8uSHSLMMQA9EmMAD9OdyA26zggjdlXNIjjHp8fjU84gzoFF0G+lDx0xEhUimmOG49vRgWh+f065RuXP29OHTz9/+Ppi5tZP7XG8PH892q8/fsZ7Svc9WVxXZ4Tnb9/c/c/+9Z/872lfv3z/V//ij1c+/Q5jSTF9eKgAJEZAfN/hDqvLlljOeXVVzHmGq5u5dx+tD5+c9xsA5FLHtFOP/cPDzJvax/uHf/NX/84R/8t//k9cKqRMKXyOcPj+/I3GdFM4z84o+35zI8AMkcawrhoBDGxms3efutotjNJ7n3OuwSTVcV1XLjXXHREXTKDWrZQt1glg8AhmLimFq7sLipmLSEppjr7v9bZvc3ab6qFEME2DsJteNrnk4Lj62doJGMyYEDJCDeKuRTYd3o7+dPsYQbXeepsQBF58yl4+Wofz6KqKAdqHuwMhssypKRWmdJ2dgSPsug4PG2OklOId/KqqzpJfXl7AY6k/Sim9dx3WewcmMxURzglhSTZMRFBY3aZqrfXp8cHMiIQ5lVLQ8fF41FpF5FpGDrIERL6uxevqiDxm22t1DQJ2MzcDD0FancuXlxcDT0kWhrqUwsCJGcBba8wIAK+vr8gUQG3Mfb9zKpKrSH57ezt7u91uJCmllEpd6pJ2XWG+lX0FE6p6u29DZ9c5dJpNEco5R0TvHYAIBWHpvLiUYma11jamugfhUg+01vhdMovMKUsyMyYqpawc6L24FwYRiZmZw1HdV7k+EYPHanIXeR8VnW5nu1bX8xcscFvlvkXZjEAkyjmnkpAJESRhzrLvdYzmrix4nm97yRTeWttLzakS0bZtANB7F8mzt+M4hAjcMWD9dM657uU4jsWpjzApsnIeVVUbYwx3zywAoDqY2QI8QiSjwXFcqquMScLJEdZHX75v5nPpwlYQ1tooZat1z0yP+x0RReh2u43eU8nq/txa2ndmHl0jMEnBQJ9OLhjLFRh1mK+YD1HXyywQYO7qCx8BFA7n2d/vIApKMm1MU/XJzMCwVsfMRNJ7731NhC2sJr2vXRXsvUIbbilLkbQsuRb/ARG3bXMEAG+jA0XZ8narEWEQFkEihKLqqu6GOua7bxWRQSjYafNyNQKFCEFDn+TDpxEYY/PxNjswBcLr62trTRKFOVKIyJrwRgRinsPO8/35Z3mvW+ylImItqSSxOd0VKYjIQ9dt8IdVIMYYYy2Zmd1iAWEsFrF/UVEQAEopADSnrZ8oUnz629meHh+WCJmTLOnsqnITCQARiZmrKgJt200kMRABCLEwsiDzuwqdERbrRhLNOYapWYTGuProU9XHGOHAzA5kFgj0y7+ClFjDzJSRln0TeKw2fEQUSe/bco7e2+vrS++97jsiioir1VqX3GS22a+rSHl+fv7b//U/n56ePn38FQDMoTpmGDAzerDZAmVjwM3oU8NoMwVWkoK8c62YOXi2/vr6ehxHSbnm9Pb2yghPT/ehvbXGwGHw9taus5/nuNpwhNbjH3/75Tz6508/f/zwUym3Wu7C1Xp8+/3r968v3769jOE51S1viLTvt99/+yoinz59Oo7jPM91Bc1VamYABqYV643e+yrDhIGO5dILgYDMGdOtbgRAALdSE0JC+unDp58fn3NIqGWW43j7+PnTy3n97vn5n//xv/z3/+E/St6/ff0++kREwthq+v+ZncOwoMvT0AAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000257236.jpg'\n",
+ "# text = \"a bicycle behind the bench\"\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000000536.jpg'\n",
+ "# text = \"the girl with blonde hair\"\n",
+ "# text = \"two girls with talking on the phone\"\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000001153.jpg'\n",
+ "# text = \"the detached banana\"\n",
+ "\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002529.jpg'\n",
+ "# text = \"the red vehicule\"\n",
+ "\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002164.jpg'\n",
+ "# text = \"the snow on the mountain\"\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002153.jpg'\n",
+ "# text = \"the man standing on one leg\"\n",
+ "\n",
+ "# limitations\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000012946.jpg'\n",
+ "# text = \"the woman wearing blue\"\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000012706.jpg'\n",
+ "# text = \"the Tokyo Skytree\"\n",
+ "\n",
+ "\n",
+ "img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002434.jpg'\n",
+ "text = \"the family photo\"\n",
+ "\n",
+ "\n",
+ "image = Image.open(img_path)\n",
+ "image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "edfc638e-7624-411f-88da-9009c777a543",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Construct input sample & preprocess for GPU if cuda available\n",
+ "sample = construct_sample(image, text)\n",
+ "sample = utils.move_to_cuda(sample) if use_cuda else sample\n",
+ "sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample\n",
+ "\n",
+ "# Run eval step for refcoco\n",
+ "\n",
+ "with torch.no_grad():\n",
+ " results = inference_refcoco(task, generator, models, sample)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "99c89b2c-4eb7-4a12-ac71-c72290f11497",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAN7CAYAAAAEPVBVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9S3MsybKliX2qZu4eAWzsfJ1zbz262I/qMQec95QDjjjmP+Jv45icVFPYxSar6tzzyswNIMLdzFQ5UDUP5K3qqtMivEIRCiwFmTuxgYhwdzN9LF26VNzd+Vyf63N9rs/1uT7X5/pcn+tzfa7P9bk+1+f6XJ/r/8tL/3/9AT7X5/pcn+tzfa7P9bk+1+f6XJ/rc32uz/W5Ptf/f65P4Olzfa7P9bk+1+f6XJ/rc32uz/W5Ptfn+lyf63P9k6xP4Olzfa7P9bk+1+f6XJ/rc32uz/W5Ptfn+lyf63P9k6xP4Olzfa7P9bk+1+f6XJ/rc32uz/W5Ptfn+lyf63P9k6xP4Olzfa7P9bk+1+f6XJ/rc32uz/W5Ptfn+lyf63P9k6xP4Olzfa7P9bk+1+f6XJ/rc32uz/W5Ptfn+lyf63P9k6xP4Olzfa7P9bk+1+f6XJ/rc32uz/W5Ptfn+lyf63P9k6xP4Olzfa7P9bk+1+f6XJ/rc32uz/W5Ptfn+lyf63P9k6z6t/7g//n/9L8FcVgM14HrYBTBi1LKMyIrzgauMAA8vw5cdygHLp02DtyFol9RqRRdcR+4NXwYuLMuz4gUXm83HGfdKiKAwLDGGJ2lFopqIGfmtONgjEG7N5ZS2ZaNYYNhA1EFgb43GAatky9HEaVIOa9T14ID+3EwzNh7R+uCrhsdZbjw7dtOb8bz9h1VK5WFIXAA5bJS1oX3243eO999/YqK8PrXP1MUXp5XujcOv0F1KI7d4tqVFZVCLU+oFrRUWmv01lhLoYjQ3XDAasEwhnf2/eB+31mXC8uyUbXg5vz1H/6KauHH739CVHGBIc5wuL1D78K6VhBo7Y4IlAIijopTakGr4hjmxu04cAQtV9wFc6FKoaoytGMyaPcbjMHaHFFgUVBHxDia0wa4AKos6wUTZR+CU+JLCi6K2cDdaKMjOE8UxEHNkN7RPlhRFpStFFSg9wYiyFoxjO6DbVXWKuy3d6x3FhRxsA5aCut2YbjTzVnWhVKV49gBZ9s21nXh+eszLobT6e3OGAcvX76w1Hg+DhhC6533+41aVmrduN/v9N6QbUFLZduecYNxN3SAGgzrdDqtDgbO/ib4EARQEYoqtQp1EV6+Xlkvlbf7G7jz/PyVdV15eXph9IN+3KhVqSWeiQiM0WJjC0hRZBG6dY7RuB3vDOt8ffkR1cq+HwhC0QomuAkiinw4HzAQFbZtwUZjtHeKCEUFVUWA495wd1Rq/D5xpsztcc4WQQR675h7mAwVpBQcx9zx+TXi9+ZZXamMPuhjAIq7cLSBOdRljfdUcB+YdRBDMMQBd2gNbCD9oOCsCpJ79PX2zn4cbC/fIaXw7b7ThnM05fX1jT//+a+M4dhwzAxwnp6vXC8r//zvf2KpwqqO9QPrjVoKKhr7xB00LI85iAiqhWEen71ulFIRkTBOhP1qrVFrpdbKcd/pvfO0PVFKQQExAQMxB3dqXSilcLvdaK3RRufojb/88gt7O3i936jrxrJdeXn6jst6BQpLqfz93/0APrjdv4Wttca6LSzLwnx8S83PCOCGe0cVSgWRClJwL7jDwPOBgyqI8PjdtMK1bPFnjzPvbtRSqWUBEVwUUMyh9Y77YzeKG24DN2OpSlEQBrhjNlBVlqVgZowx4hm4Az3cExp/13du3+68/vzOn/79n/j2869crhulFA4ELYXtZaO7cXjD6YDx3/53/4qffvqe//pf/j3izv/0b/7vjOEIlcvTV65ffqA7dINx+4WC87u//z3rtnF9unK5Xvny8sK/+R//R/6nf/tvWdcLtVTW9YqIYt3yDkp8dpxSFFHBzHCf+1AoWuh9cBwNFQ3/uL5gFP7DP/yJ+/3g7e0edm9dKUUoFX7/03d8eb7ivYF7PBWvKNc82zDand7uuPXY809PIEIzi4daKsOMYYMqYbu6CY7AMs90i40ghb0ZbRgsihSQxRCcchjWGu12Z6uVy7Lw88+/8v5243/+f/+R2+3gQHEUU0VLpdSF7neMgy/PcL0o/82/+nsuy8pCwbswDliWhXVdY9s6TGu01HkWNWKI1nKvC2tdKVry/gtuYBGmIAgqknsa7scNwyhLzfdwRu+MdoQNM2OrS9iDfuBu2ICjNW73nT4afXQs7V8f0Prgz3/5xtEG+70jpVBqyb0PxWHRwu9//EpVAT84jhtv91+Jo+g0Bq7C7/+rf8l2feLp+bvY90OoWlm1hu0wYxw7NjpHO3ActDAwOmFD+hhpo5R+NKwP9vc7/ejc3+9o7kPJgG2wYK5Y3j9QhsEYTjs6vYcNB87z6QNsGKP1uE4R/uW/+q/44ccfYAWthecfX3i73fk3/49/i7sCK99//T1fX35gWTeWZeX3f//3mBv//g//jmFxXhFDxGjtYIzO89MXBOXt7Y0+7uz2V0otLEs9bdG6XFAttLtzfz/4d//Pf6AdRr8bqpWildHiHKrufPmy8T/8D/87vv/+Cz/99ELPPYUKqODiuDhGBENKRfMfLM+zhHm69QNzR5aKuXG0dn4u32/QGopgw/nrz984emdvYffKsuRGNxjxX2sN6537L+/0/eD99TUOgikuca7uHiF8D4OOlpL7XLCjY0fDsbRF8f2i8N333/Gv//t/zb3deb+/8evbr7zfb5Ra2daVf/1f/2/Y1pWiChjOOM9Ot/AUz1++oEUZPui9cb/fqLqw1QtFIwamOeEMBgqUUoi7FbGJqDB8YBg3brg4lzXiAhVFiNhmnuO1xN9ZGzM6wcQZDLQoIsrb/RZ7v4IWZb3UiM9E6X3QWqeWiN9tHOB2fi6zATiCI2qITBsrpxEqUnFzRuv01hi9s20LtRT2fY+9tVSGDd72O+vlwtOXF7oZwxys4Aavr6+MYYw8T60P9qOxHw2kAMrr7Ya5s64Xni8b/+L3P6GigLBovOdcZVki9t/fGNZpdoThEac3w4Yh6TMWgdt95z/88Y+wLOh2ReqK6EJYS+FSN4pWtvUafns0ahEWjShRbPD66ytFhH/+z/6OdV25Xq/c9zuvt1f86vjmVCLWZD8oCM/rJR7msIjN8ssdlvWKaGFURVTRqtzbzm2PvamloEVAnOPYcRsMayxVuWwLxSviyr7vjDG4XC6ICL13ug2O0ajLwrqt4I6b03vEF+t6QUXirKhQi3C/3zj2e/rgyuik/17SburpS+NnCvfbgblRV0WLUGuJY90doSBe6AeYOet1UAosS2WMzn1/p49Ot85SV1QLvRtmYANKWXi6fqG1ndv9nWUVahWcjC/GzJZrxK4I3ePr6/e/5+n5hR/+/p+zrBc6AqJQKyaCQ+SRqvS+M6yH3QNUFUxhxBlTLWCEjx1h958u17gn9ojzVJVSFHDcjdv9zhiD/ehs28bLywu9dfrRzn03/Yiq4g59RH4qGvlQH4Nh4ZPXy4rgjHFQS+W6bfR20Htjqy8U3Xh9e40zdFnOs2I2cBvn+0jGBmEDnDHsjBlUCyL6IU6IXKc1Q1SpdT19KIS9Nx+ksY7rUdIux2u5w/vbndEHL1++j3jwaGF71FF1VAy842ZEKOwM4pyYE/lzic/uwHEcWOZZQnzuWiprvXAcnWPvlFLPGAmE/8P/8X/Pf2n9zcCTpbGJ7C3Bg/SObg5i6Uht/mXcILVwUm64eCZVcXhiQyRA9SGZMLN4eHnx7kQQlD8nEkH4yJtHJqjMG6eKamV4QAJmloHvfGhhKBXJhPjx/uMYERSM8NdmGobBLRMI4X4b9O5UBl2FRZSOc/dBcaea837bab1T6h0VYe9OEdD7oHvnsAGLgzrj3vFhVCmIQC09gJ8i9DbiS6EIDLfYetVxHFc4jvgKu2sspYALxgIm3PaBiOEimMbj2YfT84ADcSgUqmhuH0fdkAHmA8doFve3KOdGjWek9AEdZ5ggrnEPPQJMMY8D7vKbu99ccVeMEkDWCQfmNnMyyje6pYMbjgyLTC6fJvk5bMQ+pDloYKBuTsRxmkFBfPDRjeJCL3YCT0ZDegBI4GipuAi830Ad1LDRMTPue6ePuH8OdItrRzbMS/65RhBlsX9bjx8eZqhDRWg+6DYY6piAaoA0bgkw4vEZVBgEEDcSiIlcQfL1FbRG+OXTTBAgQJ4e8vYMA/MwWKqc75M/wjxtj+XxahKGSgD3hwFknlHzALjkYeg/vsa5Jq7y4duaf6ETlDlP6odnXAI0HB73KraLxm8l8GIWAJISQJeZJagk586b1xqgBowMBiFe11SwDBQ9AwkbhpufgKDoB4eW+1YlgHCZ94sIBCLZkd/c33C0mk5Kzvvg/tv7BGHPAgAM8BgBSyAtnks4ONewYy6GJ/gW90wRLSzrwsAp7cA9Et792PO+V7warbW4F5lwUOLehdNL0AyPs5j31PNeznsqaVfnnflwrOPn8xolk5n56/7hXv5m73ju4LmJ583x3CEJyMz7Pv3GdPozUTt/d7qd81NGECQa75sxeF6b5e7M9xDDzUA8gfoIgtxy/+cVqEawpUocyHwvc6e1FqBhPn+I5GlZlgxS5z74cBdFUXl8LwKRCAzjPM3PHvtpPhln4ALLWjCv3I9I+vo4EA0g1zMJdD7eo0xuMzN08QRNAY9zM4MTz+R23uMAdRyknM/YM/iae7IMZxhnPIGPx3OUuB8iEgH4MPqwsHf52AOcIUKMmcC5s5SNtS4UWVBKOIG5v5y0nY89G7HE3Ga/3Zsft3XsydyjmkBvZI/x/8SfPQHPaSsdy/3v57kNULQncBhPSlUQF+TDI+Bxu/M1JF8jTpgDJW2YuWEusVPne1u+UAlbk5F2XnPYWZ+JgtgZO4kXtJQoCPgj1lPVcIOl/KP9VtDi1FrDzzIDbglQKG20ORlLxX1SVWqBYZ5AXl60gthvn8vI5H7bAgyex6Oo0juM0en94DjurJeVugjrVuKeaL6GRRGLLKyhAhnbqMQzUI9CgUphuH8AuSXtYtxrt4G5xdWK4zJwnLpUlmWl1AWRwhjho93TT4VnYgK85wOezzrtjLt8sHlyhsnzdxxQqRE/tkEfEcec+zPB6THCB6qHfUx8kW6D5iNs+SzUfIiHYxum7ZMZD8z97GjanMTS2LaFpSpmHU+gpaiy1MK6LqzrQika91jPo55JmORZ+eAqPGO2tKPn90XOs/Sw19NmCieSNf0IBcTzbMjDS8zXmY5CCBvnYfvIfeKZQ5wvO2/+3Jc2IjGb5009bPh5zmbM5GkT4v8zbc7C3Mc4Kf2iKmZOZ2Se42kq454IegIraf3zUuJ5WR8JrGWmIxrX7k6tEWOua6Uu9dxepN0ebnm+p12xtI3xTmaGfcirVGNXDxuRxFtHvUYRKIt6aWxw73HfRgn/Yi1jm3hd3JAa1z/cokjadvo4wAaeBVHOpF0ir/kQjcUlSxavPWwu82eMMwBImyqPzcU88Cd47nEeZOakJ6CQ9hBHfT5rP/fGNGXyYUOHD4z4pNaa4IOcvmkWkB6+R/P7nltUEghyRvrBeL4Zh+sH++D5PMYIG5B7x13Cf097ktcy3YsKaZ8/xCCnP/LzouY/Ef+EzRSZuV/u/zRtZ4iW13S+zDyPTtoFSfBjFikzmnZP8OMR7z7yfh5nfT4XidNlPndFxtjTsPzmEHPaIRM5z6P8BtCZuZLnZ/K8Z34+K5/x8IeYNnAMMtbL+IcZz3+M82Z8Mp/FLDI+DM6Jf/yjveXzYaf1LCUS/Il3zN+TM36dfj+fMY9YZ67TFss/vqdZfHCnjzjH0wY7/+vW3ww8HdWYaIAIKAEa+BDG6LgYg5EfrmSw4sCBcGDecBssy0LRwlIXxAU77NyVccOFfnTcB8tSQSJh96xWqQpLWWg9GE6TxSAZZGktlLpSlyuGMMw5jhtjZMXLw6GIC5USm8EtSjzm3PY75lCWDUM4bGFvzvtx0Dr0Iby+3undeX9egvGknd0b38Y7dVup28br+ztHa1z+8kotlcuyxkb59aDZwWE7XgxXp9/vuBmXxShSUQyVQtEaFe9uFJuBQ4JoRdBSWa8XWlPue6EUR3WwLpUiivgLNgY//+Et7q8KuhS0Ft680dzQo6QvV1Qk2AwZ0Js13JxmgZpu1ytaCotNYw9IQWXl262xN0dZqAKlxL54e7udFk3qEpQqLTiCdcWlIGWLIHeMqJgKFCSC3L1ho3Hrd3xAP4jqnBUWCsWVdQkwrIrhPui2s102vnx5pnVjdGPVDSlwe/sWgdreUB3UTTCBgXBrO230CLeK8l0n9t+fd+qirGtBSjiKb++OSmGpV9zhdu8s68bz1x84RmMcO5fLd2y18Mvrr/TR0OM9nkMGHlWEWz/YW6NKVD+2yxU3uO33CGqsoWVju1Tuo0E3jnYgKFsPo/q+C7UuLJeF0Q+OMTBViii1RtWzt4ZZOi0PV1WWK1WFDmADE2KPZVYlEkGbkIE6RFDmYN0Qt9/06o4RAadO9NvlDKBPAyfT4cfvWAKKVQvq8cwnG2GkY2qJjq6lBFuvZ6W0xvVpqSx7ONj9fcfdExw1zDu1FqTOhCjAJVfHVTExGiQ4MTjU6VVQLEC6PhjNOG4Da50aZQZcBFniOlWgoCx1pYqDB3NMkbzvdlbJjnaAajIv4iaUvCF9xD2cDpciIJW6LFGR0/heBKQtWARRJ0frCdlgGvu2XBQxoe/Osihf1+9Z7nca8Ha78frrL+y3g1pX1rqxLivrVljXynZR6rKxXp7Y7+/sbY9gTMPpi0gk/Gm5I/mMimpGfiCSBC9BSj6PDAYBliXBNyX32NwYM1GeCTS4jwy+I8iKgMYyIElAQx1VqKVkcBtBc7BLPIODYAI+nHX4lFpXjqXH+S5RGDEf+DBcA0hXXRg2cDuCpaPCtq1cL1d6G/gYKHGP6rKyLJVlUZq3AKyTLvPrr98Yw/jpd7+nlIqZsW0b33//Pbf3O70PbNiJ82ieY1VBi3Dfb8k+CUZIMDLifhcpmXB2xhgYN0QK3/94pfUV04Pb7c4vv/zMly8X1vrMYI+iArMaPwP0yBxUC149AI4uiDvUgku+jxm9tQTalOZRgFrXAN61aAYrTlVhW2swFfBgymK0dsdxihdqKVy/PHHcD97vO2+3nff7QcMZIlEkcGF0D4buCWjA1+1Hvnt55qLB1sLCVmgNW7PvwSBxPD6fKmMmWfahEptnSTX38GnpIsCTolFUk9hzAD4cH4N7D/awquJiAd5m8tVHsJ/2/R23KG6ICpdrgaPTHXxYfEbJQpE6XoCqDNEAHSzOe1HBFfYR9mApk0vitBZFjevLM8tyoZQNLQtIVGkHI+5R0JzjvLKi1ZFloY3O7e0NCkgt1FooH+7PMAcpLBelLs62XBKk96xQewDaKKKV0Y23/X7ixeuyUK8Lb+/vtNYzYRdUK43Ovmdl1oy39zulvvH83QvbdsG6gTnbumJ95+39GwVhtJ3vf3ri5buF3/3uyhjGn/4E973T7m9hJxyWGvHOsDsY1BIJtOuFUoI17CNikgmwRFLi9H6njWAoa2RvIA3Uefn6Pd9998L1+YWybtx2wT3sYi0LqhXIoJ1keDISNEmL5JzJfviR+KY4yfOIf5d6RcoTf377E/f7zn0Ea0i2JZ5RLbT3g9txY9VKzXi4j8EvLRjgJk5VWEpJQMo5GFHcSWBEpx0eAyeo2pdloWpBeqdW5acfv7JeVo7jlWYd84PrpXK9PPPlemVbF56uhVLkpAy6RVJWSqFqJbgbBTFBM57flkswnZkdDunfEMq6ZFIU53ImrT7Pq0ORJ5ywPUKc1QA8S4Ac6mdMZ71zltxkgiwjEmOJPTOLVurhq/f7PbhqogTDGpY1bLVIgNCtZQIqkmCRMbLMuizbCTB4+kpNFs5xHPS9Y8miCMJJYVufceD+3s6fhYKIU8qCmbDv0VkiGmy1WgptBFvuy/OVUivX52vs86L5SCIGGjhlli77gZkFg0egSKEdjdt+O9ll29MVAV5f33k7bny7v/FUlev6QqlRyGm3HRsD48BFOY7MScTRoZkvhI//+vxErYW77+zHndf7QNwQM6xdQRa81hMYw4MQMIt4nkBz9x7AnTQk41ZxQc0Y4uhSKFVPezbZwyJw3YJBZT1AZszPvTqT8Vor6oqno7Y+GXOcYE6AFX7GI30M1mXlenlijCxsSuR19/sOKKXUiOeXjWGd0Xv4UTwYKEniKKVQayX7BaBGXiG64MDt3uh9sO8jQN+y4hZdOzYijltLpWjYtaKwLnFPR7N5IZwHq4wEhTT9YWHbLlyv12TZV2yCgrrEWfJZvDVggvoJusx/3BEp1LrSEwyfYBYE+3Xfd2qtLMsSgNaM78wIUgGUkvekFHaLe1VrML8nEAyPa4jCdIAxRQENv1g0YBGt8V6jQ9ELy1pOKKhURV2oJYDbKCIpruUEefY9cpGXl0sapv6IL+Z98cf1l8IJxI0xEA0A1LKr4DcAqUT86ZZ5s0axc7tcEIKF2Uf4z5l2zTw8CDVB3EGEtW5RrBrGGJ12RGG01Br/1UIpNc5ZH4wxuN93lmVjvVyCfHEC4H/b+puBJ18mtS2Mt88KHRLgwbzdAlKyPpJJphNtWWaSNz0SPjxu3EzEkazSJEV/PsJZ6DWiSla00JxHRY/fIqp9OLf7Hol7vq/ZRFedlq0Ii0CVQkGTxQC1LNFit3e6C7tVWheOXnCPil4YMMPGwvCCu9JcaMPpx0Bs5+jOQNk7dCedQzBNmlUOi6TIxGhjTVR4Q71AL9FyJ0syOUDN0ay+kIElLrQ7mBUGF8wU8WhNUVGkG26KEcGt1qjite4cCo0AQcSFqvk7XsNgCsFEEgct8Rx1w1UZUk/89TDBuzN8wSWpxTjH6BHksBAwZcGlwgd2UzcSuNIE1tMoCahHdbIQaKurBtBVFbziXmMfOTSxoAtmFcNVKEvl+vQUlUyccT8YvWPmWfVZIlmWEqwiByTuEwlO3FvDGRx9RxqUQ8IBqLJVCRS7v0f46ZXF4kSNPhi9gWwsXhhWEtVXcGNYi4MOeAmQ0JxgRhRBSjwrlQjYl2tF10l/jqqsoEFlVUXqiqvRGZiUKPJrAdGkUUZQdrIURcAfyP6jojEdMFkM/IiUZwUjKyyezAGdrAYm+m7nXh99OhbCdjBR9GQZ5uuH4c+KRFYOJ5OD02mFgbWsxDyqb4NZtVKRCGw9WhTdB8MS0PD4bOfrEoBjWo8EMgJQcqJSLALruqJitL3RaAG4zapIXg8WlPPjvsOiXJao5kmpeeYtKy7xNR2n5OeY4ArzVS2rY56Jb80ScSYiJZk0sVUno0LSPs8q5UjbnHEAUDyCpctlO0FINxit4RRMlOMe7Va1riAD2ZPK/4AisgIdbUeedsgT07esrkXsL1n5Bynh8OZmm+BT3Ifffu9RyYJZxgvnGaBbXOdsm0vHmr9v82fEE0SZZzvd4gTC0vmPkUFQUqGDEROgvmZgjT6CU5FI9pl+aRCtQT3iCsvXm/fEsn1cBbwEWNOH0ZLBEZ8lAcgEzGwMpPq5v0Qe1dC4F8GGjZbGeAYjz4iqUrMtx0fHvccHFECMdav0XpAE6c06re/sh7Mt9azk4Z57yLPtpEdhST+eHc9zPKt6Uf2clXbDmAXmYQPrPVpAVBk9mBGihqrFDTSPFhgRhhv73nh7u3M/OnuP3SdSME+2kCWoLfB8eeayvvDy9B1P6zWYKDaBg6xQJktxFqkiceI8N7PK+GDyJaNBbJqiYM+KBuDjDjI4jp7MrIa5sSxlWhV8OOb9BC+GR/Jeq57BmjlnRbfWQrdoE/Jkm0y7wUyohlElCgsBgmsUc2QyZBUpS/pUi0LcuoUh8KxOSiR7WsJPhHUOEDiR5bAZywZqoJ5+MrzC42zOexaveVat8mcegfUjAZmY72TLTB7KxLFnlXi7XLA+6L3TWuft/c6+N6QUTKOl1Icxeuc47jxdn1mq8Py08uXLFgBR7ywLtO7YaAmWC6XG9btF5FASZES3sL3JTlY03sPg9r5zv93PGFhqMhqlR0QmzvX5wvPLM8t6RWs9E9nJahjDEqjMvSghZSCz2p5VZDIpnezNeUdnYUaSYXkG/GcMFT8wkqUrWti2K350WrcA0wxasmWkhN3vQHOjpe/xaVTxKCxbsL2rKmUNKYTeB4sEGF6XBCarslGp2UovAs+XC0utjN5w61EUhfTLkeyf7J0aMdiiheECI1vkmRd+mtdg5kyWU+6fmZxZtq9riSTcRshEmHmyVvTck2cXBw8GzwfvE0U6mXza5BtaAJ8q2TrDZDtz1tZUSia55YxNovhCgBb5zGeiiSfTKZO7CUKR7L/WJ9O2MNmLVaIlvY0RBanW6S1bY0SAGTc+bJwAReGy1kwuQ7pgJMAlxA+ICNYDHM3DnFZCWXRBijz8gRu3o9HMWS9XtK7hB44OdMSNKlHQI/02kmzNzBGHxDO8+2BYFKAZRt/vIbFhxrY+UWXDWuZPPfaqLxHjDU7oMOxiguaiAa47Ths9CwaSDFzOItWMLScQfrJf9MFifrS3Bzss/szpf88lk7kCM2Gy7lDjuXgCH5rIgOq0pQWRilADVNX09zhdB4KeoJ+IMjzAyVr10SZlk2QmlLLkcy2n/V9qOfM8kZDkCHBjsvHSJyRgIRlH2vSJCEaw8iKnyiLzzMNPICIYMhHDf2Af84hpSo2W+dizBEiYAIwn21K1ZCfT7FMSrPVsb46/c6JINwvgpczCpgQAesbIicRYdvpksY4oI5zMpMm0DL8fH7rOmrrP4tDj8U45h1oLUyrHLYgzk6k17XyQX+K9HjuWc39NlmTYpPg6S8s6bav81uDAmc/NPHd+uuhSiNzI85memAR+smDn32U1+PQxYpYm2D/s/wDg4PF+jyv5z6+/HXjaMsgdsYE0aWg8rjkDmnhVzwtyAmwZQzNoK5gqeLCVxMLpi2iwfbwgalENkXgIMm+iO1JDV0gStGKip8b5UI8+eN/fE+UVhmkARAh9ON9uByXBg0spXEtuaoRtVVob/OXXXzmGcLcAVYyFqk+orhRZglptG4NodWpeaK70vdPvB1IXRFfa0KhO1uiPHW40U5pp0KMxjrGG87Er6qFHETWelZXKQjmBp5Ltjkb0pd73Fgj5sqRxE3pL53E4glJ0o5ZC2VbasXNvd/YV2mwZQAL5loJTKURQ6yXueRTTk7EkklXXOBSjC3d3jEtUgYnE931/Y7jQEUQqRZcARUToHsDD3gPQqJL98oQjU5mxrgdYJYE+mwu9FJwVZ2WMqLoe/RZaL0kBL1JYrxdevvuOkq/31z/8kaP3TETgsl3zcEVLgVkE6HEQg0b/etwY1jjaPZwcYeRKqXy5ForCr7+8gReev/zAcsDeLbSP+s5gY7sUxlgQWah1xXxw9Lc4GWLoulBF2G93xnDYwuCVtVIWZb1W6gK1wgyDXLJVQhUrlXJ5wvzgsHsY0aJnkhsOJWXXMkEQ10z2J5XVTqMl50F+HOrIeeSDUYPRExXflvN3JpQ0KwaNI2OMmWnENcyGNxI0+ZjMB/3aEjyIj2CT1kkGEzopyAkmeJ6XZLuIxH42H4yR13cmPVk9zIDfz8sNg+4a32+tU6Tw5fkrozr9/s4hO+PInuYSIG985mh3ePv2Bk8bL9eXSJ6ZAEEkvg+w6QGyhNP37LWPczB1jAYKJXQBQvsjGApaSu7rDODORxVnMogbwRwQ0YlB4gTb5IXnZGpWXn99DV0DCft4e7sx+kpdKjpCx0HUoOhpy0sJzYZu43Q4Y4R+XGvRGlDKQqmFtZRM6IJObfbbhHTSuWf18tRgMs6qseojaAhtrWAdzSjn0a6RezP3sia7Id5Pf5PYqqYGVYt9OBi0NmhHB4JBWGqAEyoaVXEPX7XUkswnx7vjh2MaffohMyfUovn/49y7ta4BUB53jqNxv+8MC4jBzVlKxbO6LFtUICM3i+TPPNIISYZCpWAO+z4iCPIASrd1DeZmD8bf2ZOG8vS0YtYQtTwfB/c92K3r+hKJTkRRmB3Eya80Gt177lGlJ0DRfZyMrKiOZUXVxhnMK8FM68eOj0hCetrimj5DrEVS3INVYAJvbzt//fmN2944egcNBpVZS1YN4EF5+vHlB37/43d89/UL67qA7Jg1Rr8T+mPZwqcKI4JlLQk2DOMBkMxkMDZO9xZZLtEW55Z7B0G0g3Xeb2/RolqC6r5dnnBCj8w8K9aZhcfrGddL+Os+wFrn6NH6uKyVW9ujtVUeAaZIsAZHN45hSA2QzzWKMuiCK3Q6ppWyXNJWG3W9sF2eECpm2Tqgyrqmz5cEr8SCMQfBZhVlu2oAfd7TDo9s7Q4bKrNvAhAtZ5Fg+qoAFIIJyDBGsgJEooJfdLJpH0C8SOiTrNuVdjT2+8F9b9yPzg9vNxwYhA7VaD1imts78t33XC6VH3545ocfnnl9/YXWGtsmtOaMvkOJ9tKqlaUo3iwZvtGOHNoVO+/7gUgUJr07fTS+/fwL9/uOMAL8r6nlZQ2j4SK8fP/Cdz/+wHp9phRl3+8Rz6iEzeg92FYK2VgeSX4mFSebbEQKLZpV9gnYkfqXg9NPThkBzySPbIHyYax15bqtfNt/4djvSO65vUfhd1uWSFCHcbdBGyPogROU9dCrsTEYrVGeNpZt43h9x1pnebqiFZatxtdaKHVBa+o+inBNnZtv799ASJ2ngqaukY1O71EEWeqK1NAejfvVMosY6eNmKSySfogCqXyw7YFXxBlfklkcrOlooJeShVAilp4CEKHbF8U0mO0joRvIGSdEcYDxgamdrZnCQ6YCDxYwEr5Es7gWrJ7Q2qm1hE6SG0frUQwvS+i2ts66LixFaVkQCUaMJKtXqbWwlJWtbvT+Hnprt50+LJiGEqyU2D6WshMJGajzdF2CAakLLtHOGr4xGNQqymjB+JkJuJtTpHBdLsHCLHFm+zC+3XaGG9eX71EtjOGM48DH4OmysaiixD4eHxLcoWAiWDI+vo1OdadcNtwH72/viBnFjR+ffsdVnrnv38KWWMRYvs2cBEwSPC3R2qrrmoUm6KOztzu1BlsofDx4j5bJqZu4jxFaNtmhUyboIRKsIzPMerQDZvFrggYfJQQitg5gEgv2jI0ontsY2MgWZQmfTu650EetwSoUKDXinzEiZg0dwehOaL3RLJjrpcZ72ZiM1ChEncXB3MjbNbTWzEPDp7cbyAAZCZiG9uWMz0UELdDN2PvAACNAnj4CTFXLdkkJSRRme7fZGaae7flE3FtKYd0WZiuoaH7+6UfyM5Rl+fAMOO/FGMbTU3QTRN7h7PsBcGpDiwhlKScz0qcsyoiiqiofbEI83zjpARwLkKS3iLs1i7v4Y88loNn2A9VrnM0lCrz3+4Fml8NsK42bAbODxMkCfNEEe+arJ8tUHsB6KR9eQyOfmyj/BLgmqDnBqeFhD6dlE00mGNCS/dRaAs8SeAgiJ7Bo9vDzwy3ZUqTeZBzosG38Tet/lcZT5ATZSucL0eYRzI9AAQNJnlWkQNAVkY2ql0w+9HSkEK0T7o/+R5Czfa4fRxyypPuaRxjsib5F9T9upQU+kRXX8QgYPTQA+iBQWi+4XkALUteoZLU2db6jPcaMYwwGhXrZoCu9R6LFaFHddGefYtZV6RItRjLisxetaKkhsOrC7XbEz5aS2GXN++aEOpJjmoh0AUt69kin5i1EmF2DAmUy6D5oSdo1n/UW2FKYbPQI8mclR1CsWKQSdQ0Wwpj3MYGxYVFJmoYCYbte0HSAMp+hKqUqrmAppusutNHD6S4XhKBxC4HgezqEaQFrzZNE4aTJEo64pyGjhNPwEWylPkYGeX4GR24tqveEqOZl26JNkzgMw0eAPMUjCTcPyq9rVNh5OArBsd5CmN7bqW3jHgBjcj64HwOVllpJkqCmMd7fsXHHxo7xjfp+o6TmyrdfLJOLNe6bKrUIpUCVFa2x10UiqEBDfFwsQ5oEZYLtkdRuOoMDI8Tdo2oyIZVIKCd4GHokmdh7PhuJs+HOqaEUQYafZdb4u0JRwXxBJCuDCRbH8rQRmaDxoWqik5mQYeOseE3D7c5uA1Wh1Kg+qE8NN8++5aCdIhJ95NOw2kj3W9J2xD4/0X5NlJ/ZQpRsJDcKSXH/oFdVUaTU0BEgQOjeBu04sGGU1MWZLL3YM0rVymW7UrSkSHuwJGbyONfcK8DDSM+PelZi4++rF9SVYpFQ2GxtFD1bEWYVWMpkYiagZqFHJJD2UlizjbZZZ8G5lsLl6/e4wdvrjjePczaEtt/Q4owyWC+FqtnTJAOzG6qh3eEmeV8iWJkinSU1DNzS6fWRz3tW9z/4Fh9nNWXeswk6BiBgWSXzM2iu5N7EssKUSVzek9gfqQ9g40xYJFkf46zOpTYB4deY4ugSAp+YB+NlRLJbFmW9LBxHBLEjwaqxEHvGs4JtIN1g71DztTX2YB+RaNz2e9LKlaUUvjw/8fb6io2RQVKCiBKahaJZAUsR9ilKH14rnr91p+0h+iwurGVDVOgtqlp0KF54SnHX27cbi0TLs7UIppZacZkVsASoPIJYKVE9bnk2+2kR415FUhFg28jnqRm9PTQDInjzGQV7Vlm1RIt8h9YG97txew+gA1O8NXyEeLlnMaQUYa3Ktha2bYkqYvopCHsSlOGwV7PK7a4sNYLYbg+K+GwX/MjI84+H9dy4fp7by3phqQuTC2Q9kitxyRb2EkxAs/jgCPej53uWTHuzhTUZGaUUkizH1ApTLIDnE5D3TACE/YCaTBEbJYpPXllKMF/63uApucfZPhlt2BP/TzB+agtagEfbdqGNg6NFUDm6UZdozyiLYDrwnp9bJHyAGv2IOElzvIAQAPFW6xkHqUo8z1KQdZ7H4Dmbw972yDtKwUbDhvHrr28crUOBPhrH7aBI4ccffuDLl2fWdeH19Q1RpS4LtW68fAl29LfLa3wOjQ1kI+xlxLAlA+0A969rFInCn8Vz39YLPoRv/v5IDizahwfBLqrbSl0X7seOKrS2U4qwIGGPJXbJJKoGgBJgt8qszivdHu0YAbgnw9MiyJcRBS63wVpAlsLrO5EATCagQx8GPTRJzWLATm+dYsFuXFiZOkazJESCKFOgJVqPF8p6YXjn/f3G9Xph/brw048/cL1sfPn+a+o51bNQGR2cwRL3fB0g2aQhJdFbaFZqJp0hMN3pewBOVUK7LM5HMiFEAihJ1ky44sg7ikRCJRqaeJKxZpHY46pR4BSPQq6ZZ/E1400IVpxMsfXYk330k92Jh8bJ1PnhzFzSbWWSf3u75fVGgn6M0E9cyoLkedc8d2tdTl8FjlalW6dZ3q+q1DUAhNCbyRbM3EPHfed2v3Mc0WK3PV0Zw9mPaPN26/F8VbhuWwB7Lc6UawSAl60yeqe1xqISQLJn/Oh2al2GAHpH1ooUZajQujMsukW6RbxQS2UcIVWwj9Ax3dZI5odFt8dQi7btWmgeDFobgjC433+lANVXarJ7Xt87+/Ez7bjhNriuBRZl5ECeE7xQCUBbOEXcA0DzYPvIjKcfzPVp+3GoOluMgi0URVx7xJXM0CsZb2cbXryWZUdAyv3lL1RqqQgrNkoUgAG3AJxqmfFo2F63WTlzjqOHzx8ZoHfLuHdkbLzgrnH2PWIR0frBvocfCXDA6L1FZ0iJONGyw2RmQWdMAWeeajaStS4sy0JdnrlcrmzbFvqUtVJ6MnVRQl+tIDJ4gHGZLzkRZ2Mce7QSFi0ZDqT4NhFyzhhwriha9VO2ofc4i25TcyiYTL2Ps+hK8+xqmnnAb935h3A0sQV+w16Le23nHapLsFlbb+cLlVLRS0mW/8N+BxtLGD32fLQHz/vwsQB7vv1JbT1jJCagOffeJPV4cqMjP0hjyEhcpZ5dF9FZxvDzvefzMO+PHK8otdYAFPugZ6v7ZOeGVl9JjTJlP/Z8zsnO/M2N/F9efzvjiSm3m9pOJNwtUZWOSWgTcEph0tGhrMTkjzWrMvl3vseNgLNyLDlxJFr4SJFnqOsSyUBelSX9VrPSw4ebqCVobFN8VMLv0nui6hTQLXQNyhKTm1pjmFM8qs7dohfXEyQwIapeNqIq6wmOdEvwo+LFQ3QzK05TpX8enPveMhhKmmROYjvBAIh2MhdcJQ+vYKIREghRXZQJPAVbKjpioyt7Bm6rRkXT531gBsIdU8vgZglab7pW1ZyqYeOcwJNmlYtWtBaOfcdH6DctWil1Y6ROQYi4SE5zEJayRgBdA0BzU8RCjXsakVJSiC4+dlB3LSpfUwB70SWC9bHjOeXLaJgMSs0kXaNtw4jnsW0rtWZFwDo2GhCgTOCUwRibCaJJGsi50y30w0ZqMZBJa+ynMMrHYYgMhic7DAkhv96wseN2cGRv9mWNhOj97U5dVr774SesCKaO1diKT8vCUlLETaKdysToo8dkQS+n3oX5xNhHVKDp+KT7E/vEMlE372dlTjKZ1QQkiviZeOHJMCEdJxMkjMej2b4ZrxCvodO5zJ9Np2LA1HeCzDLPqqKdf8Y/AGQ+KJQ4vxpGUnJCSVDfJRH60IEyj88Ywp6cz0mSihu980ACPVGtSIczpjaS5+fQpAOnxoRoiDcSU6V6BmMBCMyqy+O8qQYAvi4bpaR4tHqykiIcIv89Q9SPrXZzfRSvZNo3HsLpDIs2TJU8n9myKFHFndctngCPZzXXgp69FoUxKG4sCVZdLl8ounC8/gNHtkLYcPoBWgypxrKt+QyimhXBUWVZt7AZTPubib08qNHRXhO2EzyB63/kWSYjDgJk+eAY4zJnwBf2T8SSSRZ2OLQXYs/h/iFAfEx+exCa5/2fgWMQywPwy/LnTDryd0Mo28EHqy5cykaXkW2Kg9H6ycCRBF3H8OixLiOql1lBFnnorOzHgYrQa+qc1MK2rvSjnUmTRbXlBPQQstqajKI4ybGzkgXc8/OIC4vGVBw79mAejtDvuK4b99uN99vOuFzwxaNtQUP7wsVxb3kuAA1GiJQKqlnl9Kxc++n3p7+ZUynl/HyPSvAJPOXz/8g0qmy0YTkxxdjv49xb1i2AisdjZJnA01JYsx3ZRgA0U8A/QK+YeKVlJh2zfWGCLh+BsUdQeO7S/POpU5f2SxCWurDKGi1JbqlJOd1aMMbcDkbPBBs5A9aSyUYiq1Fckwk8hZ1UlQSc4tWy6yKZcmHb2uF4CaBtjMLokTjWAj5Cg4szUVJq6tzY8CyuzNOY8ZgRLU/LGolt26N9I0GqCTS7KmMPpkTRAhq6ld7Dx2rujalPtNRkl9clfOwY0b6VSb4nKGx95D2KfWdAG4O3txutDepWQnj4frBsC08vzzxdryy1cnuPqV0//vg7lmVhWy+MbmzrFTyU8fAcRpKCDlVz8qIZRSKx6GOK20ciuC4rI5lCM1mIa+i4BjN1WRfqurC3HVFiMhICKlSBOgdAMFmwnCCGiVClIr+ZbOpnwh8AACF0bA6j43aEb6/hJyIPzZZjBxmO64hO1iEce6f3jlqwOIpXpnVURpaKZj8JRFtpsDEutfLt/Rv3287L1688v3zh+7/7HdfLxtNlS+Dz9HAn4SGea8bKknqAZ3tMVNWr5B7HUrOthfRFlZiwNwkQ08wTDFsRMM1nwWQ1SjJUJQpTnhZShKUkY8Kik0JnSA1n3jH1UIRpBz0BRjttQW89gIpFpxXj1MfLdu/7+x1R5fp0ZYyYPr2tlWUNJvLs9VdAM9lrrYE4WpSjRQF0y8JKWerjDJ/p8wQmDu73O601VCtLreA92n9tgPdTp2xbF9alYr2DDExHsJPXyn0cjH7gSwEqWE85jrAL1g3bg9lRXNAqNHGO4dioj2JIKSgBbo1dOLox1COe17DRXZyDBOBFOSzYQ70JZp3XtrOWynfXZ9BoKXy/D7z/Gm2zOIs8UTT2dpjQuY802CDykASIdqVkFs+YIoF2hQSssshZYlpl0eW8x8MC3PyYtEPaa43hIJ4Jf+wxOZk+0fwYzGChYiNAFhUJkEgejKl4XnoWLxzCpwdSHsACsx27gwboAWSbe4ZKmdPNoqpMe+LRnkyRs4XPE/x+QKh6+kXNAWEBWgkQGlTX61OATjmdT0tFxwMnkA/g1aOgml8ZB3RrHO2gekVqgN0B+pTpeJM8wRlDjDFoR8vYbuqiZnHeOEHC3scJgUnm/1oCkIzplo/8Zp6kbCg6n0fc01kl8NwJoZk2RLi3IJSUZHzXdTkj+hMzSiP4aMkk2VuP2H9M8XSZscj8/SxL5fd+W7D18+vxnnmnkjEl+tgPj1g2Yok5zGuCiSVZ1HVJALk/GIDiYc8DXFWWhSyg7jGNO9nov/mA/5n1NwNPNfYipnoaocHI9rkAT8QPnBC8UHeqWVSUSo2JbtkGF5YgAJQIqAUU6gSoNLfBHrexZMVkGIHIT3qfxzQS0QkMGMestNVIKIZPeGZgBOhz2S7MyVQx0TbGIlYtvP36Sms9JkBJYW/vHI0UNA2hzO6hKURZMZzb/R3UoFqOO95wF3o3alkj+S3zcMAUbI4pWbP3WZCRcFMJHaTY6KmtwQF0jI6IhTC5B9JZq1DXoOiR98gJPRfPHmQDjt5Ztsq6bcgpMp1gRRpLqZ4sppk8FnSNftU52UGWiqc2wOGdNjp1IScVRvDYZbI3oto7+sE04EFxhm1ZeYi3OuLjPKxaFpQUsMzqvviO8Y77AG+IlezjjdcrA7ZSeHl+5rKt1CJnABZBkAdoNUYGDoVlveAe4JSnMbwUpwu8HZE4LHVBRjhxN6Wb03Oceq0bJsbt/gsP9f9OdEATzJ17gCMyDPODX//yF4ZAF6MWoRbY1wiKrtsVgPexU1ZlfV5Qv7LVFfUBDEYL8E4Wi+CivWdCn+BOisZFEBZ7aingFuJxRYOuPft2l7R0mgmgZrvZSLt39vQ6D02XuuS506QoO8MyCPNpAmcFt2Yy2s+Ef+4VeSjTnaBL5IWOJzvgMXVyAhQR5Muy0NtgTN2lCRowmXN+tkjOP+OW1+1Z4c0gJV85WB0ewr4GRxv0GOcYxeaRQII+xAltxPvHuOXK0/WZ3nZ6uyMaEyWn+POyrsncC8BkXTcOGWdL1uwTx7LYZUmX95yEKDUdYgIqNqt7K3PSmTBiL6QTWJYUo9XBtgj65Uo/jLYbvXmwIVKr6P3tTm0B5pcl9kbvUHrQfhHDNcBSs5GtY51I4B6VEBL47L0lADj3lvzWgYrEec5nET8T41lVo8U47ku2XKRwtTMSNTb6cdAlgbHzdYIlVGoAhGZ2JvKzRoQIdS0z2z41K4zZw26gEYRK6saVEgCIjdm2GQnHsHvY8yWAuUi6I7kyA5ojS+xRzZblfb+H1oYtXK/PXK8X/vQP/4Bbpx8ZqqaoQLC+JvihyRiKwK6UNQLVEziGdVuD6dQDIPvu+UdweHu/8z7eeR9v0B07OurCqgvqCkOwI57VdXk6LfZM+EpZEC2hYedz0k8EXIyBW/gehdjTOCGuHAGPuXH0FsWXWs/PHNo7oQPY/eDt1mg9gAEsTvTL9oTb4PXtW0zs6Z1aF54vwR7udpxU/WE9QMoiTD2XYHGcVKs813MbPlivJ8iZtkYkkpIARVPncWbUprTWMR85IUoQyary6PQhtA5uETu4ROK7XYOGv9/uyZSrGWQTwPgAO0JLT7ojA9Sc4g9mdiTKsaesR5V3b4MxGqMNyiLoUtFR0FESNF24auoj7jEEoaLMjTOcnI4Z92gcDcG5bFuAXlqClSoxBGb0GLqgxHnjbE+IUdZTkUMzxitlAvXx2v3YkbIkQyX1H3uKMdcafqUbrXda77y+3qhL4zIusS+t0A5n+B1z5/1+g1p5NuV62Tlq7P/WOk/Xr4weY7EnP7zqxHeCOVt1tj6EJl4YMs1qsSIW7XgjiyKOMBC+fv3C08sTX7//ytPLFY2wj7LOdsToBgifGonCslyA6CawqUemCm40G6fmhvCBjWzOrD9qWTAVfvn2yt5aDIbRQt97aIt1w2rYkJ6ackfrWB8UL2jqc8bziiKSSCQyM0bDyYmCzt3Dhr38+JV/9q/+OT/88APbZYn2V5FMri3lDqD7iME4tURynG0ZnRyM0LLAUoS1LiGhYWFP11KTtRjpNT6Q1Cq1jPc1C7KZNwUQlFpzDmBOa7c4VyWYUKVmQcEetvQskk0QznJIRtFkedjM/7LlSYNRn4yEhyuLpHFkC3p+rCgAlIV6fQk5gCyOqipvv/6KubOuW6Q8dmf4YLihJVgI7jFBebbjretGUWFRpY2d27d3Xt9eud8PliW6Hd7fv0UhwBvBiRzJTKl8fXmh1sLb668gMYlR3KI40Xa8HYy0d94M70a79wCkR1zPpdaY2DiMe+/BgO2SZ0fp3Rm3A7rjI/7fBN6zeHX4kYyneE2a0ST3kYUvWK5PmAk/30gBfChjUFLPqBZl1IWmyvvRqEVYq+TwqnIWCFqL2EE1/LnyKFyKB2u+1mjJnH53XS/5PCWGPViA5G6WLVNpIoXwMfoolH3UY4x2UiIXVIl7rSXjgPAhrbeUjfHM+SIYcwvgvy41hMFTH9B80Hqw6uOchj8KfckZzf52aRb8FomYPY5kxsQYy7Jk7PmhkyGLpjYGLsY5zGbK7KSNXupKAPl8PAznnyP+mt0OUVxhahGrcr1czvh9ZLtj9kWF3iWT9Rtne5IK5vNQCYxgWyK2Pno784yShbeij6KXzA/lEzgMrd/eI0+oJQrgdYnhKb3dI1ZfChDtfW22OSczMETPA6yb1yASmlv0EAYvpTBZUDMA/siwjlw9dD9jcmx0iUzQaBbnQhcq9vC8t2S+Wdf1A4CZ4uuzoJ0s0Pl6vT80naLLptLH4NvbG9ZCCuH56Ylaa8hxuHMcez6DJVukWwCOEjHhBL7+S+tvBp6KOHPyxkwCT7oXlsLXA/GB2EiUPNBK8WATxSFP6pZkX+zcCfJ4CJo0eY3RVHP/x4NIqufMRc8YMSuUPfsMVSfaHIfLZxuGRGU5tzUztpCkSgZV1NBSw1xbC/FP0iF7SdIdIMZwOEbSUSUqZ6XEGF8+bBad44r58KEzEZ6jOyX7KKPlLKvykxMiIdJnEqAGKcA2x9NGIhJifUGXD1aVSLThzWremkCAWj/1GAJ4SjHDMoVjH0Lakm8gqRuUXOpIzj10PmKsswbxiUj/XAJBD5HxOBjyIQmtJVgsRTUSlrN1AERKarfUBCkXZt0ACbBCTlbHo6WjirIulaUmoyzJNlHtSUNKKP4XYJnGPmnbeBjkIjA1xIqW6AXGzhadqQ5UJV6x9x5JdXlMNYgSMSedG3e8G4cF3NcwRhF6EbQLQxV63L/b2Kk9qgBjdXxkkuFO0ply/0Syd+ozYXlveCTywuw4y5Q7qkJT+6hQTvDx8bMCM1A+z7ozR5ROkMjTkURBNm74dMiZsQULycmHMb11MhGirJM//sFTOednT5g2bU4eH40x9jYMm8yi+XXebj+pqDY/KP5oJ5zGTZLyLA/nOIszw1qCbvm6WSGb1+7mSbTxByhXCmPE2dC0X/OWzCqH9/hOiDKHc4hH+qBzJ1crEp/8jiTzzGYbhM+/XwJEntowk1nKZLLFflQR1iUmCIop1p0+GZoS7bTehNZGBAZFMsCMnF14XNcUWAxg8MNA44d3z3ZrzslBj8jk8bwfrkrSpuWeySTssXIn+IRDYp2VaCZDpERBYu4n5Qwyzt/K6vT0MTYy8EvAbJKqo3IfgWXJarmbJ0gwnU8EDO5O0vHSZj9YDVO0NPxcQTRAud7r2Vq3LvVMzK1lYYYpcPnYl1GJnOy+B+vXE/hVslWgKKPtmBlb3QChFaPpkcAFWfnPGD2Nrw8PhkZ5DJEQJlyn+Q6PZ/UInuKcPM5WJvFnFTjtrxmq2Yp5/uwELZRhsO+NnoCupB5ktAAqZQZiFu1BwWLIZ0CAep575RFsxmeeLEx/vPEJOj3Mz4cdOfds2lf9oMfjI9idU8i51tyz+cLus/CRjmgmMiIppjoyTsj38CwaTCeYDLXM1YKd4cH4lPnP/N2s6ncfIXVgEViL6/k1tRsnu8jGiMJSfmQnKqGRF0iei5GAUbTOPHQ1/WTQBbUmPod8vHFpB067AKd/idpiaH8VDc1O+ZAxzXs9Y7dpX0M3C8rS5y1jpE+PiYWhhVPrxr4f1OHnc79crux3Ti0bgXOi00jmrKo/mAaaFscku84CnKllCb87Mh5x5bJd+PL8zLatLMsSZ38yFc+28nkdD8bKLFa5ZOEh4+VTRyPvak0fJfmvuN2hS9J7tPtKWc5iirjnRM5kSaceykjG9ATV5vMUfZyDGdun4Ultr6ChXy9XLk9XXr6+8PX7r9kmmMnMjA/mPk8dHCXsppaMUfMfs5TRSMCoaMWTmaeTwUvGCHkIpl8WsnCcd1bgZFQxr0Mc84a7s8hynvGIZwxJiQefZ9BnASrPeLbMTUbujFFEg/EQYt7j/Axzg1t/6KtMHxRtlOXBNteaA1BmAXrapcmwGh/i9yyg2cjnxLm39qNx33daa4wxWLcNRNjn9LMEFkScWqNVZlmW0NZLMxdk5mCTYgEvBBtKQg9vGL0d2a4WhYYi0Q7rFgOV2hhx3Rn3Wze8DdTjbmYoTO+eeZMF498dl2TJ6MwpCGBDF9xhTwZ5M2exQfFxtuyObJ3sZtnl8eH5TztsWXCMYDLZl/nXs+gpswSZHQept3TGkB/isqkzJHluVCsT7YlnBw+/E4YmWMP5/TNOmv86Szt59uwMk0QXVMlhFAkUGUQ+GH7Z02bPNu7Jf5lu7Dwz4khqckVt0M8cMPw3Z/w4jfH0hD79jMS5kIzrJ3vRz3uZmcfjoJ5rhnI+8lzn/aipK+kuH1rr/BH3CJzTiPMMlvkM8MQRQt+1M33f/LxBfog3fpzH+WFm70PIc8TvBpkhmFEjY7uIy0oWHO3MA5CZg+uHHMFTv+phoyDt/Bnx+JlHTJwgxNltPr1/9PXYU8kBYDJv0/wyWbRn18SHNfesKg8SwWQzaTl/z3vnOFrYAQ8NrmVZopiVDOVzn5/2xdPW/rYV9T+3/mbgacmpHagy3OkZcAezIN68SPQwFw12T4ARDhIIJKNRrKEYtcbNWGqNDZ/tNGcAYSMokQL92JnOcOq+iESNPVtgo488A7cpAH0ce9C1pSM6E7IeY2EzII62uNm4BMvlCakhpKgOKwIWG/DwFuMtiVHvrQfqKCWQTV0KsixQFqyNE5mMHGwOTX845BCnG5TyRBWd3TPI8sGAJPdPUuhW8iEPizGSVRewoLvj0TesXuIweSDD6qTgnjH6QusV/EClZTAQxlVFY4pNBmq1XihloUOyyNYELywFM6N8YOLs7T3ar5YaDnNdUKksstK6IIfFBEGJSikO6qHMc6mV0YKRVdMgLBqJcIyjH1ldjHYmqPEce8fbCCE7T/qiyUlHh6DjiihrXVET7rwiGHUJo9RGoPbXrbK3g9Y7vTXaGBx7Q7SEMHqUgsOJqrCsl2gBGAGYubWYGqahG4VBO7JCkr3fo+0RtCxLBFPucU9csV3YHV7/+oaWwvP3L0hT2rfGe7thN2NbK7VKVkqd/f3ABjw9BeFOiIA57l8EFyIj9QwiP6hEZXEphfv9nT5GjAlVsiVRztZPOatDoW8zfE57E6TmJMYRwYghmXRxGsKZfIyzoviorH9suRFPRqUZ/n4w23HLEsyi7iFYfSS11ixaiNBC09AJqCkePOm3eLAr+mg8DDcEiyTukSXTJsKl2A9jikymA3zg1RGQnGKuGlVCzKlrCHVbN3rr3O/TDtVg3lVNIe5gZLo/Jpjd73dEQlS4ZYtUtAQKy1IeDjz1yIaD9aCzO8LwJZ75KPQRrYG1xtnZjxs2OirBWqhEklfLCkWpW2FxgSJ891PhaMbP92AOfHt3aoOlE7T7ZeV6vVIK9L5jXfDDKFLZrteTVB0AkzCsZwUtAyRPGm/96BgTctCHG5pVLTymIgbdd2AjmJ4hzBuBT7TePgCmmAbDCeK1HAEdlUg7KckiIdYvEhX6MTqt3x5fttM5qKlRYh56Sb170JGpIYZfCqUMRFsk/O50ucdkSlkpi7Csld49WJLZ0nR9vuA2UnjYuC3OZRPWxfn+6zNrVf7w7/9I7+Oc7GqZoLg5pZaTzYUL+x77xjrUUqONqY9sAwzh8dZagIseAdrTZQW/oHTacefnvzTkxx/Y1i0qgK5MQpADWhPI6sGSFY+2oDUFYI/7js5Wr32njweTsfWdmbppKcEMCgdC36PNfSlXINhDr6+v/OEP/55FF5Yl7DZm2dI4omVBK3ULRuxojdEbY7TwDerZ0j6D1dmeHOfIevj+ZUkmWxKYQvzeHiwH/7i3IhkNRmsAV81yspo7aPgFJPad41AjuaSWqBqHSGAwc253BHh+eqa3zn7fae2gHQdgFIclg+1CgJ/rdkH2zrG3B2s1W8eiwG9YP6JwskTBxo5BvT6z1Qs6HNrA20i9dKOIUoVzKlYtSyTwCVL0dmRsU7M1ybFkZxaLoky9XDMpDbZHzz0nGswtJ/QEZxVW8EkoYampVThC2ByPRFEJPShN/be6ltyHERO9vb3FvVnr2SKAgXXjj3/4Iz//5Vd8OF9eXviX/9W/ZFlWtmXhP/zhP/D667fUgYwhDfjg2A8QoywRV4kUqlXMhXsyO7flAl7Y1gZ+cL+9R1wynJcvL/z+x59Yl4rI4Nh3EKfUOG/bstD3g6MPntcri9bQ4RLJwTAShSgj2gzHoPkIZhNyTg/yETpbvY9g4/bB3pQ26vRybNvKIY2274xmWG/cbzf2+x6Cww7Rpp8tfCKISWizPfrOkrkzONqNUpR1q3z3u6/83T/7PT/93Q98/fKFv/zlj9joXC6XM5EdHvGyyEDFKBLgk0+Zh3UN1sA+mOzUulSqLhw9/IbtPYEmw8TPRFkyMXdA1/ChvU/pjTi/YxYF3IMeyMi03mZdDidiNdFytpR0jxhmLaHvNVqLGN2C3R6dHeF/Sg2xfE9W5wQYRD/4tRSfby3aaqewN/7Qrmwt7ORoc8onMdHQQibCPyTbT9crTshZREwm/HJ74+3bGx2FZQ1bY8a93eNCNWyXltgXl+vGsR8cgCUT1VNO4Nh3LuvK0/PG+2toqYmBDQ87Z4ArpQRo5HVDVLn9/Mr7vvPrbUdK4XJ95th37u83nq8XtnVl3UJg3TwY02tdGASzT0tFl8rhMXjo6DHcZ/RbsM4PS6alo34gdC5HZ7HC5htDws9aCYHyfRy0/tA79Vn88g082iTlbMdMH98HJznBQ0dottKSxe1lWVI6IcCFYHs8hgw8wEs//UW0bXqKmBtZbkZcz0JRdMl5tEViGDF1XaviskeXizq4cRzvDOt0D+ZJKYXWo+1+XZacpJYM7yMYwLXqeW4meBvs0ujWUVWu12vs4z4QXfCiHEcMubhcguEUcWfEoOu68fXr9+GTin6YiJYT4s6iw2xBzdiQGP4EgURrgSIW8XHvj8JLlvaFGHKxlshlezsSuC1cthVbDEYIzgR5YeCjh09fV3qLPA57nCHVYHQVAgyfw2uExikykh1LYzSc6KKid2aDxiyMBn4hwe7O+GwWGWdBdLYCmte0d5x76wFoTtBxAjdpqHhoxU518QD6ImcvEljHRAjHFHpPMGkCqGG/JGMYCVYzemIqE1DqrTFaZ10W1mXBc1r3sR+Rk5WHZEs8Qjm/zoLZ37D+do2nRMnkvACSIXCW5+LAMdknjzGRgYaNZEtEIhL6THnDp3X1AEfMxtkiE99OdDL3sybVdsKpJ6Y4E1p4OB6m08qqFZMlMCsNj0QlgiU9E2+YXaqJIXs81KBpSn5GgVTD94nsZ59zEgHO1yIxdZuOCrKSmVczGZofJjDlzeTEyWdFJMpyzJG0JLUXF1RKjFq2eX+StucwTEL0NtlWswVIMjCX+YbE66iWk2FTSlaoJ+sFEhGdveCTWQSUWWNOPaAS9OuawM1snxD3SUpK9lK8e+hZxHt9ZIGU2fubgAH+YAVUDVHDEzH2x0E+dWNO+C8r94mMi+T/y6yaZPVaYhqNTeMwcYAEXid4QT7VaAkMp/NAtxOiTtYbRIuOekzJKpIBuoU+DSInI8HawEp8UQpSSgI4cW6i3eJR/Z7b5tGKMfdNgFKP783r/3D23LPi8BDRm2WGR5f1CaUGCDl57lkpelx3/K4/HkUGfB+//+EMMlkIjx+W85fnBXB+FidpqELspyxhzQTzAWxklZQHo2G+TtZUwpFMREIjOZ1V48f7c1Znpv7LTEQ1213iLM4AM6qcU3RyVq/tPKe5f4yTtTg/whz77jLt0IPdE/fQmdNq4mdSF4XHV3yUU277ccaY1bWs1hUNwHStmBjsAa51C5qgWgh3jiGIVkoVeo+hD26eDmzeunkR877HVzy+LPl9AAF9Ptf/BDncE/g7mUJzw537Ka4hALz5OpygJgSw+OBgfHj+5x2dTNhHtTGSB9IUhDELFvxMZvgNW2FWIeNeW4KYU8Q6v4TsqZ/PMd6rj5ZTF7M9ajS2DND/mAnM3JeTOQXBFNATkMxrkWTe5TXYDIIkEo851t0y+Cw1pyIthW6DYZ02J1WOEaL2s0I7NQdd+Fj5nSAfqS2F/tYWmX/cuwE66RwLcz6LaZMygOstGBy9U5aSGgX+m0S4lDhzTjJ9MymcUxAnm3r6gThqE+yee0hO+3l+EpHffP1He5KMg5hA+mRVzftgyf6MslxgVP54gflnD9+leQbjLAS4Ono72wKmjYgCXvioknpIMo3qDBqSm3rGSJLaDWlHP1aSOW2XnD8/P9e8luk3YhCDIB9fx2alPFaR0COcFdGeQtgfrnx+ACbndr5XKTFpmPn5Pt7sZMf7GAG+TAb2PAsizPH0NkCTlXnsR+gyeeyJWmtMyVtX1rpSa7QjCPHMJgiAwIOJHyG/mmSCJ5Ri1OJcLpeTBaOqLFLZ1oVtW08dQc/4ykxi8qCHr7QOshZEazAjE/w5r4eIQwd5fix83RgZQ4xsx84YM4S3Q0B/gkiae6RoyWcV7CwL4UxOF+7Jp8/zbH4qO8bf5XkzGyxL4fp04XrduF4v1KTJPfgVyeqamiQTiSQGecQDDjFnC/R6kp4fx5HTEX+I+SMeDxmBjE089LD09Ovp632CUnpOMz0ZiBlb2Ek94Td2NZhYueunbY2Xz/Php19jsonzfmU5OPVK0358YNniWTg449Fszz/fgA+xfYBoRfT0F5NJrTq1t+IzHz1aJ/fegWix65YtNnmeGM6ylJzSWimlJkPZI8Y9bVJ8Xsm4f4xgc8V55wQskfArwydnX2j9oPcjikPuWD/AR8jolgBWVIMB6DbbaKNoYjOGGw9fn9y+jPvjko0A1YsOijpUDQmQtUTBP1vrppxCnD9OGY8Hq+2MiPkYEwcLJ/dy2sXZ/qoZk0WLcLY6+Qf2ffrheI6P+PphwznjgRmMz+KqICcLft7syXiKglkPYHUC95lHn2ZVPsY1EaPM4/3wsXMr5+AZT70q9ySrRmeJmZ26wB+HUmVEzYzzdXbAyOztkPh/5DeswzPx+BCHC3kf8mBJAiyz28LynJ6f3z9cxrlv82rybIfuHkxm6YyZVCRTLvmQc8+cJ9nh+Zl+8558iDt9dizEvZ/6d1OzaoqIz/vJh3j1H7N//GQGfwSn4sxr+Wg7JjgE2MQ65os88tjzyaQhnezJGLIluJcPtpGH3c8VPyOP1r306UVD//Fk/dkD/CpTI5MP8d+8Vp+5xX95/c3A03HfmaO5Y6OVR+Ayg3eZlOI8lCMmiRWFZi3AhvPQ1Oj9PenKBZ8ilzrpxgFmiEb1bLYPuNdT3NTnRed400WTAns0xJ0qyrJsGbj2dD6ZQHgahzqZBEkBTSemPhOGKJx4N0YzugndU4pRQtPAzWiH0yWZNrpEC0TGhSqVIsKqFWMwPAW+JCnjBGMpNlK0ipg4UoIeWSJfYBwBdoROQaXUjLZczopkBAaV/X5EglwVJKCD+xHI8lYaRUZMIRHJ6keBvjDHRsdEghJFIxG2GkKjewuB1wp8vV6Rly/09zesH3QJoc2QpWnYcUNwVg29mJIJoAnRWuiO95gapXlPVJ2qkbQqjxbDoOjPqmjcLidaL4oIL08XtrWePf5jZERqcc88E1H11MNK+rNboXfBqLgq5VIRd74soSvxdrudgYonGLXnyPsZNBQ0dY48RjVLjBZWqfEZ3KICJg7S0dRqqAQLrGXgdr1u0Tetitug7UcwKy4bW11Z15VjHBiw1gtLXVEvFA8Aa4LAPuRMuGZQH38uYJrJazA3fARrbeQe8wceF8CqyBn8zL5Oy1bW7jF+WMpHuctpee20A8bDIQqPMfbSe0BgpQSQSbRs2owN0lgrURUdblhONUJAqp4tleZOs44QmgqTAltT3yFYOCNH0npMdfRgogiclcxaK5VgMN2+vUc7X3fWuvHT9z+xT3HNsrCUghPMlG1ZQ6zxnNCnLKVSq3I/Ihk6A5YUqcy2b9w5p61MZkA7buloatqEkjYvpoqgSh+R5A5CQ4FSkCox2t1XxKIdQ0n9EovBCXHLBN0Ky6pUcdrdaT8ftG50c7QWtCzR+nQ0fqjPbFul9/d0RmFPezO8VKjLjBwoOcmt1ASyeuekN58taDNw/0BrtxTmPrdbanfpY2+PESPUt23j6folKsCW1SmPzz0D9ln1mczOqBbb2W4zZ4rVJaYGLZeF5b6wjs4U02/7Y+9XWai6McRipHu3mHC5hoZPGyOZvBuiC6DRNqJC13jv49jpfef+/o1ariAXzA56u/PjDz+hWvl3/+4/RKUsAYJaF7oN2ghtIjsMkllca44GL9kmQWiEDLcQu9SgoNto3McdY7A9bwxpNK/c33aOdvB2v9MMDlNqHVy3lbosbOtGH42Wff/uOS1FiaQ5W1HT/Ycga1WOdmPqGZRSWC8XXB4TV9w9mItSUC60Ybx/e2W/97DLGlNT2+iYNfbjHcX54buvgNNaVHQpnXUrfHneorIsHfee+kBkEhADMkr6X0vAYsYrQfTQB8j5YcX5DFvW+xxmIGhxLuujungct2Ci3G+4CMWXNHiPJF6TxbQskbSbH/Sxc9xf2fc7x33ner1ku37oKly20D4aDuuiXLaae76HFxYJoE6EyzoT7Q+acb3RW1SsfWRRp2gIxZ9A3MdqK3lOH+zEabcFsnVrnMUuIRhdt/st9JhGVPxJu+RY6AlZ8MrnRFIVZ60Ftx66maNHG6LkZOHbzn0/eN93lu0awE5dTo2JMTrvt1f6GNz3zsUubL7SDOoy+OGH7/j+hx9YSwzKtjF4uj7x93/399xvb7Rj536/IeJ89913GJ3b8csHwCCe+bZtrKvSjtB7+/Llhb/+9Wd++fkvXK4Xnp4ufH35wtP1wlKFqk7XB6g0XGnutANGE2Cl6IppY4zO/fUWCdsSmlY98AI6EqLwFik+DrSshJuDVspaKEdnINze3hDgermGRsm1sN927rcdDg+dOUvAb0n9zx4tWWEvHqmmudP2O+4Dxfju+Yn/7r/5b3n+cuVpXen7zvvobKXgKozjyKCsh8h46iP5FNoXGO1gWGgCrduF65evWf909r7T6SylUFUZh6FF2S4brgPXzr13+ug0d1yUy7Zkj03oTIYemSaToeZ0u0te55zKmAWh9Kci5QTJPraoBDgScR3EwKEoNDfcQgsoQirJolPJITWKrhGTjjEZ2gHexuGRLCxHQrmuGxD7qo/BcW8sy8Jl25jyBvd7CPuLh9bqum28vr/zl59/5e2tcd+hLpGwvn17z2S5YqOz7ze+/+6JL1++53p9YlkXjuMItsS6xPFXkoma4+Qb7Lux7yOJF8HYjWFBleNoHEdj70YfxuvtRh/Bbgv2YON63fjxhxdqti21vkfxTR2tlcv1Ep/BlPf7zvv7jZirpmxP34FWWraBrlvlfr/z+vbG89eV7brw3U8vPD9d+d3337OooH3HW+O+H6yqLBoiyUWFY79FS2BLIHpZz9bFSEYijjJzpFS0xJCP/bhzu91ZlxDPrjUE+fd959RxIuJgmXYyQeui0drZ+4GIsK5L2tMs3thsTSKmHH7Io40Rk5O1cr/faK1R12DnRmsrQOQWtawIFlI4djBGo9Q1PsSS+pbdI6atK603Rh/c2xEM1+USwtjLM92P0K71ho8drVkUn/m85P5brrjD6/sNWV+QCpfrhpYaMa4EMDxjuvCdI/ZvYgiQHQc2GEdPDaWFW7vTekstLD1z9WC8h+/62D6qGlpyFn2fVIXLttAs/FDocSk+4lkVXfL18ryr4Dby9TQkVjzafUeCkbVWug2OPtjqEi3Bor+R2JigjSAfXGr4x9lK2Hu2JfOQAJhxUEmmmOZU71r11GiKIiJM0Cxeb7blRffFfJ39uGehIPKfqtGuPrJFMAh8GXsteW8sSTQev3e5XGazceg2ubOmduv1eo3uk96iZV/DT47Rc7jKfyKA+k+svxl4msK9iY8+6GkCc7TsB+g1A39SNHQK+tn5c4+k/YH0TXFcn4iwzXw/kueTdUJWfLMn2Mlg9kSi7TQMQUvLg57PXXMCmz/ym/O1J0ulTOYLEbQoMfZ38WAAxO9rpC0T2Q3aTlS5Zzb5G7YSWZXy1FJIhs1MA7UgUiFZUZZU6yn4GGi2JksoRjZ+vOOeSTUW7xE6YhMFTQZZVrFnhSf0CzREAyUEgs9qsAmMYCoBMGICxYJEa1eP8aQCFBPUSwTYQPSIhpbXBFw1q6c1wZuq68kYcYkWSWGOHE4uWZ1GfWboUTVzZlIKxaI9aVnCec7KhJasKHskj48qWvTok89gxnEP7l5UYkxCIyHEpmGWfEO76tFyEdpnjwpIVCwfE4ymePKDKZZtGwhzrLNlZXOpYXTqEs/GbAqEG6o5sSUTvMmqUwnKdLAacm9lEi82dbAykcj9FiAICSpxAhxRsShn8DkLXZ7V8zk+2M/3DwabiuZzfsDqMiuLYQEYH6pEU5vk3MPTduh0LAEKPf7JA+TJxzPLyqmfZysh8XBQIXqWvfvz/OWb/waVj+q9lKlDFTZk+PhNVX8mZh/ZTPN6IyAJJy8SWjTxkALkMU+6toTTCHHxx3SU6YDm2Zy3QxLVnMHMo7rwMLKRzHmC15w6BrNNSFVPwt3MAGYCGVWSYPON0TA3al1wAtwzi3bRusSe9NRziSEG8yGG88MjuQ6nGvtpMsqmlX2wSH7LKJnXef6MP5zjBOrm/n08TT33GT6rk3Ev6mSEnI/u8WeRqHBqUoY12w2i6vdhbxtT8gNLtkzRipACyCMAt/lllvbUy2nXQyMwn1d+RhdLlllw0NxjH/d2sO9K742lCpdtZfQsMBRhWabFmJXDKQLMLOsyJ17mcc44Jf0k8d859VEIsfRlW5H7DWvR4oB2tEaC0D3YqB/9+nwGRXP64G/OBw/WRQlR6xiNHPe71EI3Szp4Mk08Jr/G5MjB/b1x3Ds+i5hZrRzirNeVIspyWaIFKCvBooNhB/t+41oqWgQfc4qb5rOTPEN5/5S8/49r8LnveFQiH/tWTtLOrHQWmRNCE4waIbi+1KwE+zirr0WzsstsQbS04SEkqyUmePkiSGqepAl7PNNkq2nhZHSoJpAkMIesnLY+K5pTA1JKMjAziJyMymk31PVk92U5M89Daj1NIDdv4BzlPSutGVxFy9O0Qcoj6RZ+Y+/mtor3DpBKXEJv0+3UoyoytcSSGSoREI/ZEomfmlFj9ATpoR077djRPLtLXU620nG7RcuNxHCSc7/Ne5cxkqSPBmVZF9wCaNy2haena2rmTLHbzv12Q5vSPRLOkklHALThv45jBxvUOZ7QZ0xd6R7g7jBP5nxsunkLkakvk1xND7biGP08m5hgbdBuLQabHI6MGL7y4NpP05m2IUSsCCHsKKaGDmQA1ltZw64aWYDNablVMrEj90ZNZjt0T7Zo2vgqFRFj0dA40iwwefpc+0CD0mypfgjQTRvzcH6j94wNJ0eGZARmUdwDrIHfapfNCb2SZ1pFoGjIMwiZiGbrlRizXUjlvJj4LNNv5VmZ7dDz2z6Tdsl7q5KAQ+RTWh6TU3uOhl9qDtY44zLOXCXKtoqZRFt9c5yC1o2ybogoxxHFDbHIFUrZqMvGslyCZYcmW+7RjhiaVCGWH9NQY/hJ1G3tjPWGRev7MeZX2HI0EvaShfxShW2trGuAj8MHpab3StPiPs6z9vEfELZ1Q0rFj5YxaKNW+PK88XRd2J4ql0thXUJKgrQpku3vJ+PGI4ZWWXCd7ZDy4YzPDo4HS+V8vDPPnAXEpT6YSR98Icijfdj1FLwu+vFnTsNyvsMjTg7bOn1K6DmtZ44qFFRDt3LuH2d2cMSE+XifGdda7t8EQM4cN2yYTMkXqdGFUqKoedYRzmucuU7uYw+tQk1tOMnBU2enSNr7biNszGxMkczBcnKfnMH69BkPdtccSjPP13wocTwnW/6BIwwfTP3IacnMiTjUeeihCam9m+yg80H/JntOGyFBJsmYeuZZEUeQzw6mxpMxc5pkPqaP/PDQf7NfpvxEySEI87mfLKZkPM7rfuQBj71zClPPnqLTUMyug9zrzj9iqEccG63F05Za7GsLNtzJ9o6DceIpMy+KGOaRZ53P0y3jDf6m9TcDT1om0JFjdCWCAICePck+R9JnYDHcY2yrlaAMJvMBIXQbssd6jicfbfZTRwLTU09mSZHTPvppoDTpaIhmdeZIZ20ZsA+WRKr3fad3p+2RJD3n5DDLtr6p2+R4aAqIs9Y41O7K0EhmrmsN3ZUOzRzLQW2eG14SANF8aAFrTFYYkJX/UqAs0cRnUhlSMJRSLiAFJwNrM4o6NQ9YcUesIlSWMrde9p4De9vpuzOWZ8ryGLvcRgRpXTt1WWKSUyvYgCEx2tUaIBV8fTjlrojFdCtRGPcbosqlrumJDqzlGGBTxBa6dVCDpQVQkqDZMCijo24s9UopC5ftK+5wHEeAajkCFgYuAxNYLimOOsBy3GxvidjWQtUQSi8K2zWCwDpZK+uCyoHQuL0+GG+qwmW9kJIXMZ8u92snxvIOnCZ7jJq9zMAIPI1xrRuIxhjrmVxaGOjh0Z+fMWBQ3dPVKIVFNqpEW6CN6G/uhO7G8yYsq3C51AxylaWGTkKtRl0yFhsRBNTqVF0Y1mi9sSw51cU9+5JbnqE5SUOiOtjnCG3FPCy01pkkaiaxPajbYzqJSIDVM6FO5v5sNfvYojeNZbBqLVoCThp4aHuphIBxxgghLqkktXui/Y9kWnroVRV3JFkuZ0tkVqlr6v/UWkOLbfRMShwshNjTRDEptjFCO5LpMbVYRoskev6cgfUYiawSSczUH1qvTyxLxfpAl4Wn6xO97xz9zv2+Y9apa45bXdZoR3l/P53tdACzfW6+51L0/KTBlJishRnghgaL4TAiWK9LTs7oHs5aiKlaHgzKYA3OeoZjPUSc9+NO7/D89EJrjo0b1p23b3eKXllKZRyDXgRvCTjJyMQ3QO/udmrlDJOPfv2kmmv+vUyj6OksydbCDGQmM206ztAri/G/c2KdoLFXsi3gaKGtc7nMIKGd5+BjC5Wqsq7X2DdjBjgD0dAb7AOOTvq32OtVK0udo5uD3Xq/De63wbIMLs8xucl8QbxiFIZJTGZL/LJr9ANdLiujO7d3cA+NpXfv9LZz3a5cLle+/+4rS134n/9ff6AsznJ5YepGlAy0xzjCrpQIWAbtBIOLLNSyYOGumeKXdVtC+L53qqxcCuj7O3bfuR+N5gLVGGIUy/HqsWmQEaxjEWH90HI60gCObtiAsgVr0z1EiVUjwK3LQj8eQrhmxqYVdWF/69zvjV/+/MptDw0xW4WhMf1ziPPT735gWyqrCsd+Z9z2CH5r5Xb/FbOddfvKsi7YuEfLim5JHZ8g+GOSrnsOImGOos6CVwIYIYIe+66mgDsawEMpC8qOMKdeOd7viDtfLxvDjXs74pmVmj4lmBeWgbO5h56LGOumCY6kjbQWWm0fKrqpk01NvR/Ls6Sip/j0CB52sj7knM5Tq6TvX9kuV0ScPvpjipCWZCakdoRmccUlwY1xnp1aF4oaew9di5HSCExwiGAEjxEtnTM2DeBdH0lFRqklz7bnYI26LFHBb5Kvb8m+1HP89+vrOyNjt1Km1ka0aG7bM4sKv/zyM6rCv/hn/4JtXblcnlmXC8/XL/z1T3/m/fXOy8uFuijt6LjEVB4pCUxrwUwYLQLqp6cn8GCyPD9f+f3vf0qfF5qd9/udo90QhbIp67ry9ev3YMJoIxn/8O3bL6g4P37/kiBICO2XurK3wdE7rY9sgQVcUu8r9TQS9D3and52jnbjaI2qazyzLrT3wa9/eo1YwZyyQ+2SWoVEjOISMV8CiOpxnq/LlVor27bgZtxvrzwvz8gB6MA4aA62VJaXp2BxHI2qytOyoDYQ62BCt4gPioQouxdYFkOWhZiCmC1rI1tZSuznZcv2EXnETjMZTrfBfoQ+4rpuCSApa13YygI9XletEMx9SX3SD4PeXRA8WcuOWSSGve1hB3QgatEmVuyR+xGFbvFT2RBPQMcZFJ2FoknLTp8ucsY/UgtlWUJPcgz240Bwni5PcaUz6RvJXgeUBazQzDl25353dLlw2SrLtiEi3PeOt0Y7DmopXJ6euDx95fL0Qoh6B3tpmKHJhLjdJ0gPPkInZ+8Rs7cWwJOUYGAcR4u92Qc9QZC6rRHLSbTOXtZCWZSyCO/3G/tx4+vXryFSnHXx1nZcFFLOo9Ylij1SePnyNe7Nt1852s5xe+d6vfLy0w8sT7BswpenwlbB7Ya5sqQmkrIFq28Yo0eKXOSSuMvM8uxkwrc+c84Zk8TDioE9Tl0K27ZyvVw+TLN92C331IMCEA0dQjMWXXIyWYDSZtncFYgkj5Y/5zhCc+p6uVJEWKrmJPBOKSu1LtFOKMLRc1po6vyMPovZFiLtboyxA0LRNSPJYNnhNfej5gCEYGK5O/ue2miqYQ9IdiqOicb+DjMR8GeprNuFWtdgEWecdj92EKEyp8kVKDmSRCQb3JIIMvoZL87uhDn12Gf1D894LRh8o0Xrde+dNkL/VzyKMS7BjDqOHakVLcsMpgPMZZ7XeFYJIZ35wJSdIUEuJ4A0azGEI7RIo+jYxpQD8ozPSwIzE+BR/vHSzC+O42BZFtZ1PX3fBDXHyKK7TSuX+cf5uSfwFB0LZpwDfFSFUmrK0YR/7SPZNhL7NQYfpaZd78Fi1CWAy1lon3bH/AOjPYqRlvlT+QgyZYGu5gTmv2X9zcBTsyUcwjJpXcbogbQpFdFATsMtJIpZhCE5CW2JA9ROutnCFMwNhDQf+BQgxlOM00OslfP+pfMfSXFL1smIv6uicYMkJjgVISYr+ByfbpgdeVWCWdCdLf6XnhWGMhHioSnw6NgQWopMiws6MhGexDThdEPnhi7J8NKokJgDtUQ7yCCS4aTettEiPM12xkgQK1ghJtMZSlSALAP6s8XJFdZgDB0+sHEEJZBIQs/+z+GEznrFS2Fk0keJUc+m+dldImHzYHCIC63HOPXDowpZJYEYnB69cpQqLFKQI++/FrpH9bxIPQ+/O3QPIFGrYBIA0xShPrVXJp1fonqqNcjUwYqKEb4uaVDKCloZ1Nxbj8oaekGKo6Vxaty4w0i9JULkDjFEB+IWiXS8eQBIbo8DrvmZ0uCpZUJsmnSJCExgjpl+VFpEFsyF5rOgJZS6RJWgFqjhuG0IZYQg4dGMo1+QIQxpmAZTwhiY/RrJ1XX27E+NDWd4yypysjqYVTg79WemAGwIZyew5DBMH1Nw9JG4g+CWExokQTmP9gqFMxE59cfE8WT9xK8kqwQPOrBwgn3ik8kxNXGSGcjcCpLjvMnkUX6jBSUjjMRIMbx55ydCP9lgTjIJJBI0quBFgzLq9qg81o50o7UjBARHGGA0qjAODG9hX+oKmqCZA55JRUm2jOrJoliW5cP95EMlIdl+gS4yx4mrRJsQlvCU5WfniOua44Mtp9+4pQh1gAW4oB9aCs8qXwngrlxXrEPb49zv3mO3aKGZsDfnvgeIUcoGRDLqEPtWZyFhBtqzMpQAp0jYLQJoTYUeRKIAEAwpohVb/uPKiWSyFfT0qL4Nc1qfQsZKXaJtwUZ8BpEcEXxSqcnRx6HDM6d9ZacFuFLLRq0LtbSTngwBUhzHQSmCldiXZVmyUFAQWTN5DObBMKdkuzASDB5JtuRkhl2uGzYaf/rTP/C7H3/ky9MFt87oR2gwLdnO5kFtDm1BMmgKhic43gLkXsvKkBDbLToBaItW1zx/wcIxii7naPciV2rxGEvfO9vSWEpUlZcKWMvgI5GPWQGMu52PXh9slNHp1s6ARDRAm54V8rNN3qc9h1v/hXs7GNyR0tjW2K92v6MjJrk+rQuXbcl7FHtqmOFH5/mpcrk+gayMXrjfI0Db1poFpBnEcbIMZoucp10JLHQGgpbHMvzm0JkoZMA/OrHNau4Tx/Uae7euMX0XTQ2RwvDCIBi0CEi2gPs859IjEdMCHgnvaD3uV45nN5J5qxLFnWl/ifYsARgZxOYeN29sMqhl4HLgFAYHjnDQMQkAa7ZLHiPOdFljMptpMh2yhVRFGT1alnsOnJECwwednucogHpFHqw4TxFmnZB/Vu9Tx2UWHkibYe6gwZS4EICFi2FyRMGw3oOp6gZaMJYshgjbegGuvL0GKNxGpb93/vzXP4ZWkwpS4fplpXNndKPUiKmOYajNVtA4+yN9tI0jc4EA8r58ufJ+e+f2fud+r7gkA1yFi12imGffmC2+k6m8LQtLLRwjWkUajthAjz3aMbL44cO4vd0ZY7Bn5DRDexWnHQetN263G2M4y7oiQLfB3Tt3cjBLHwzpWA32NgImwejpxNRCqbBsG0utfPnyTK2F0QbtOLj9elD7hqFRxGBQ6JQOT0+z0LMGIJ56Vni0exWFkhPlOoaLsCxbtNFaFFFsOFVzOmeZUXr67IdrBwld2CKTwZR7KQcOLKUgHq2lZNGIJYo5PRMptwGa8XeOSJqMq+EdU8PLI35CYIikDfOzGFXqmrqKJDNLTumI4T1jpgDnNUYfg0kUhqqGYLdHcStYEOETSklgTJSj3Wmtp95K5bpuHGPwl19+5f12Z+87SxEqyu39Fn77OAL4WCuXbeO7lxdqFW7vr1wuCyWHRCDB6p4TaqcurXgAripgUlHtmaSOAK1G+JeWrU9BAohYaFtCuqGWKDgXhOtyYSkLRTfcCkeLljYboZ8UwE/47G2Ntq9xdNrRef/2mr5bEpxaUe/QBnIY2MDoeb4Go3WO/U47Gv04eFqvrHXl5fk5tGkS5Khlcn6jECwJ4kS8HHIZ5LTCWham1mrL4Ra5wU92W5lyAJKs0Uncmxq8k6Qh0QZvhIj/LNLO2SohLRO2cVgMdxD1SUYM25h7K+va+f6ThSpZTEtDMxksOgexHFnQ9QCzkgEbYGsLWy7JVrXJjuYs3NVtQSSmvaOVumzUdaNuK808W+jjwHZrBDtXSB2VE4zxEXCN5qTjyU6MGDj2lGV3TMQrSRrAE1wMWyHWUCRbKkvGR7NrqJwADW4M34MgUWsWLmdxc5zFm7ADZKdQcuZdT8kFyKJtxh0zfhXJvOpkEoJM9iaP7oZalepykiP0Q06lqbnResu0d/4dj+efufqw2REymXMTL/WzWDqZYNE5JFQRGCGI7ylLVE7dsQez2y3jx8xzIzTPIhTK6LNNcLLvJ+MrcvV/FLb/L66/GXjax0LVmKLmFhMYZp//WqO/E09tDc0gv+YEPPcI6FUZ73smuDEVy5JJERtUyYw+k+MAiCQrlMp5ngJxb4MJ6KlWpoA0ClY8bh7BClIsgAWHMfazkunecvJVPL1B6nJICXqgSeikeEwKOrpjGgFl7cGg2fAMaGal3c7knmK4Ck01qdGC1ILU5byWAKScvR/JDDG0LKETQk5roQAWAsAYQ44IBE8mWiAIqoN9DFo3nq75PEa2MKaj9+6Qk4V6Im5FA/zqKaAYxicNmCtiyt7mdJBoVbvUqFiB0aWDGN+vF6oL9RZjKrVUmoKoU6WiUhjph7tFklZqUqMtAA3yEKcAQBpYz+1RMI0WvKhAOIXoHRbdQEpMUbMYA7+wRJW0XKJFoexMraeAi3sCT85SHS0GOd2gRkqMakzbMM/DqHJqUNUSrWb0AP+KVObEGEndLC3LtAyxNKpjo424blW2VSlVIlCqGow4lWC4+EHrzjEuiDlDDFNj2J3hDbOFul65XJ/pvWcFZiYksbfPIM4y7FfJAEROEGYaNLVkkphm72+0gRQ9ZZXxnN6hWUUys5ioJUrrjTkW1Od58KSsZ2JiqTXhWY0cREvaBGbCdOc9yzbLyUAoSz0BG89xv7ExHRmRXA8GIo8KOWQ7hpxzKxJ4Ck0gimIlRh80M9a1xvjxGrplrR1YsxShjIBAa4DkZtGmVsozolklcXBKMnxSqE+gtTkafjmdRni7B2D9AJ+CodWPPSoqSW1WNJlbgsoI0CVHjzcbyIj7WMuGeAgF4gXpGWyJpKbHgBpBU5W51+Jc7dYoulK10kyQA257VJaerheEwX68BdBeHpT0udMmFmizGlOyJdryTLlTynI6uwkMxL4aaY4fwFxJe235+0YIqUrPaqWW0AsiRZVxRBacnjpYAT6tNaZudutEDTnaZ6wBHsHtUldqbfS+M3rYBocTeBoxhIq6rAHgU1G9JKMtbG3vIUQcAHkCX9nzNDyq29frlddf7vz5H/7Ay9OVbfldPO8Wuk1z+tvAuSdzcbaVqCprCeDpyCrjetlCaJOW004KvTfwZE7gGTQrNaeVendUnliKcr99w71x3XZ8XbhcSly75XjdeTSZ0EGaszOgi9rRcdxCpyFbuuaY6xANt0ebL5NlCbf2V96PnZG6hpdLTKvrt2TOFuF5W7hcNvZj0DMDD7ZbR8vC9ekLsNCHcLvF3lmXAPlngBmg5hSUjv03J7oE+BTBXsmz2VpjDl0Ice8ovJn1rAQvDzp72aJqWlaccepcMOQE8GcRTXuAaQHedowDk4JLBe0ngDwyQQsNN4sCiAiz127aebIAxwjGtatEwWd0LtKpWgN4EqWnKPBOxCaTjeo2aBa0o62soIoV6OYcIybtqQSIMkZnDtb4x8BTFAErhZJt+o8k/qGFItkaG3GGRRZ42oyYfjUoS1TX4wQPDukMBqPew6ZnwjJM6aMwTIELIk+8vhpl6bRe2I+dP/zhP/B0XXh6WtEKz183fvn1Z8Y4WGskLnuDosFiCr+RyRIZr3gUs+oifHm5chzvtLZzfxfG2ANM1dAOamWw3xvdGkffsygpfP/dD7heOLqjJeAPN4P9iETbBvQAjN7f3nO8daRCVdIzWiTao3fayOLb8gQSDLmbd27SOexO78fJJuDMoaIA1xjBJFsr23cbT89PfPf1hVoK3/76K80P3o+DtcdUW+/RiVANymLxrEuhli1En5WMVx3RJWOzaHNpxOe4bBeGWRQNegBsclnTr8ensxHFXvUTx8zEulDzHEeCFYlsUYlnOAatN2ZXXNlq2p6ISdx6SCeUCThle5I73YJBSk3M3CT35QSeoLcDFWGtqcEkA59MjZxweOR7IcmsqTVei9D/LKKhFZs6l57sgzmIYykRD/fW2G87Ly/fsawb121j3O98+/Yr78fB0Q9kjYL/+/udtgcLRItwfbpyfb7ww0/fcX974/31V9b6lbUqS4kCZWsB2miC630YpWxodkGoDFR7FF3ae4AyHhMw+4hW0ZJF2FrgsoXeppKdH8CyXkELh6UdOVKPB2j74P39QGRBdOH56Yl1u9D2xtEbb79+A4XluhF6kStqBtajb3SkrRid/fbO7X7jl2/feL+98X678ePX73m+PGHye7Z1RbVG3rKtlAQYZswakZfT2x4x7zBKSS1Ni0nc7TjSj0wWZ+gC1Q9DD4YES1I13iBsQYawBFBm0jOzmHltaO1162ecbiMAMNHwr0ZqDCZYeRyNKd0Q7XgPNlMGw3jGwJq6ozGlLUIALcFI0lqwHsCsqAUB0oJxMwc5WRZF18uCeaEPAS3UdQuwett4f72HXrMKjuE9gKdCFBxj1HgWFtLfzmKiksDT8LP11bOVDSylKYLZGrlitL3qIbhIMB4z7zNXJONAnIzcnD4OQCh1jffVhdE6fRwsugYrOYsgcehnu7ykz4/C22SbSjKL56Q+gWQ8JSAFnOSI0YOEsS0E6SJ0Ckv2Y04d0ih2pNKX8Yidknk2i/5TK3ZGYRPUjMcf8YtFz2HGwTFJsOfEds9caLbgj8nbksAhRnekTkwmAc0EvXqfAzuyZXMCXD5jmb9t/c3AEwqm4fxD7DsqnG720GGYbSwxozaZRJnkDQ+ByRQKn5ObIgvJhxw7JTYAdiaY/gEZ9NTCITVZIqni7NGfIsg1+wBDxDIEwaQuGRjMFoEQ+Y5e7HzP7Fkv3VEJIMFw2oiWNmOwuzEcjhKj2pvE+62lMkXjYuMrdngEe7IABWSNaqA59IGOENtzVZ7WNa4haf1zGkj0jUalNOyLJpihWKlMpgRiSDFs3/Fh3I97JgfOUtLhhEo6PkoamLhxU0Raygysw6iKCmbB1pjsltbewStetxOlDgyjJGstEvj02QyRuAdeEH9M6xB6UpIbrh0pB7Wm4pXVYCQcGYSPlmBevGZdhMOCdVGWgivcxhsV5TJRbZEIfk1RHWiNdpTh/WQVfuhuAhOEqJpNfQBxp3fHUYos9BxlP0ZJmmIN0fe06C4jgYb1ZDzBFDuP8+Hp2IaFoS4SYyzNYHtaKGIcxy3AXfdsRxVq3VjqFbOOj85xvCPeeL/vDKLlsbVG753r0xO11lPHg6kvYI/D4hLnuKW+gGsYLhOZLhKZwWSx1CqwqAKEpcqKRdqnBI7mE5ZEiidTDOQ/omPqBJlH6s5Mmqh4tN5NsI+4R+7OfT9OwE7IqoCGk6Dmjk9GkMu0LEkZLhLj1C0qZqUI67IGCNUMpLAsinejeZhkUw8mQo2AzRyO1BhB4Ov3z6yXBakB/tzv7yx1YVuTPp4snWBKeF7fA1Q5ky+PikroryiHh1UK+xitCEXDkZs1PKsoKBgtQGkPSpQAe7/jTgRdBNPH3Wg5Ajp0pfR8hlGdNooaa4lWrv3oXNYvXNaVkgnP1GhLDDaYLlk1lQkUp/Mt2YY5g5iQQ9NHNUoCiIcpvmjMHnaZPgE/GXSPdp+KkIB6MulKyXa+j1VGU4xkveCEuH4kCeIRIMY0yYaPAx877jsuO8d4pY2oOKsorhW0hhhotnRGYuy45Jjk0jPI69HFh4ZdVgcPUchgguY0rBSS3fedP/7xjzw/v7DUDZeV1gOc6ib0IUgpJ0tnOv0Af9OY2RE2w3ow/7KFBielUxIQTGA/KOwrz09P1FK53d7p3VnKBi78+stfuWwXvly/hF92S3DyIZo6EzfzcVbwCopLxbtjEj4WVbwEeLOsF+Zkrl/fb/TW+PPP39j3hvlCLZXr5cLt1RjjzsvzSwhuS8G70Y+YivX89CVEbm879/vOz7/+wtP1Qq2Vy2WlaKEumkB5tBaFvciKvnMyLGUyADNQ82Qsl6JnJRMbmEerw9mWoRXNgtYEVSBjbTSLPuPcx1MrYrYvh5ZKfvUerRrZQtBG2oS6JIgfz9T6oLcoMNRCJlRZfCoBWneLQlBZSib5LXQuSuXWjthLdQ3dveG8vb+x3+7ndNVff/75kdhIxFmjd/oY9OMIyv3ZmZDaFunu5qQoZe47aAnYzw0Z03TmoIcZLCf7yYNldbRMLM3oHuzesUYSs64FN6PtLeyFpwZnLSylUbjR9jvf/vrO/+3/+n9hWRL8355C/PqpYnblT3+6c9vfKfUZkYVFt/DfUpmaFjGtC7ZlPttBs0Y73un9jd7fuL877Qj2m6gGjUwCHEcixpQ8H729spQ7v/58y/gqkgaVqHj33qLttXde3+7RspgsFMWy6JsMSA+/CPB8RJW99U5rjXuPwtSQwaKAzsmrjrV4FgWlUKnEtS+6cX8LAOyPf/gzxx57ZW+NP/zpj2HLxPn973/iy+VLMP86YUcnW9kGRouBDVoYacnJCn0fPQpvqakUI+nDP7UcYy8WvxVxfLIRRZPxP7+Xji6t2hgjzlAfZ6HCk8E3LBg6dQ2BtCjY9QQZgv3lmVjGlGaFrpHLlKn3KhS9EFDBFXyg44h9nu+FxURQ8gyQOEnEfA/pjZHvXSZbqupEu2i90z2kNobC7oPWdn794x+4t/ArpSw8XyvDYX/fUYFtq1y0JnIRzNmj3TA6ZRX2sdNvLabQjcHb/RZsuHtLtu4SQDeF1/dXjqNF+7Tb2animgmteZw3US51yST6g46lR85kFqzI9xZswtf7AS5cloJrZb3WDN40WKKtJQtqcFk2KIW6XRlD+fmXG5eys2rj5/doa273HRsjWvJ64/0ezK/hhfcheDf49Y1a7gE6rRs/lMpliettFuephKp0xCAC2xbXFMy/GDK0LCvbFvbb3TmO40y0JxAQ+1KzZcrT30jquWXIk+zFk1UzBZGSiT8ZoGhMDZciHP1ITbsozpWyUWtlXTZsdNoUyxbQ4o/Y2oFkWJEyMBEuHcG+asGgqjUpBB5giegjMQq7HbIzqpXL8kRdNhzN4l+yJhF0iZ/rFvnayHOsyV7i9MHBYpsXPEYWCCe4k/n70aKISxsUg2ohfTDZ3yYxHEjFwx6U2YkQ/rxnWz8S+XxUGcFpRDEQzDqtW2pWJZPSQSgJCk+/5FBHbNdkOYs8BtnM/GoOz8mgbD505rTCukQLYiklJsB+KLzOqdnRxplFp+H4ILEJmQ8w7pVEThVxsEWm6fPzWbTyZfyj59lMVMbic8fZDjkE0p+XUmLvp8bb1NjyzBUh72X6SHFh/f+w9y+7kmzdtib09TGGmbnPOSPWWv/1XEguSaZIJUhQo0CBaoon4Bl4EB6DciJRpohAQqIKiYQQRySp1Dlnn73/y1oRMed0NxuXTqH1YT7XPvuyjoTESen3rdjxr4gZ7uZmY/TRe+utt7ZsH773P/z6dwKeNOLVT5vlucninp2FWJkIcu+hiROHElOrZAJPsYmZaOHcfyoUpxuQn8DbY06bZBLLRMm83GYmYPKYQVTRq0Obn22mHgeO3vPxmXp4aT4AE7ieEpDEYmq4mBFZjKeeoFvSCIfHWMPkWnUd752gHmchzN0hDYkAKkkTM0Egnp3gjwcDQriQn6MilBKaOEkMHtfMtuF4bQxv1DjolLRkStnwGNPzoNClPpFl/bfbFBocpFIwLxEwiEN+MPoRo4Oh6RWhdBZ87tpuYrQIyHBLUXzPYDvBtBDxtoblFjRqSEP6Uprx50EfjeLyLMCJh5OcOnY8JRYmxVVoMZ7OWX05GsmRzjyohiclk4i+QjKMmXh2MDGXbOp5INclW2ILhY7TcFkzl7yIveFzHfoDNPXpIiAtDsyCwhtC4kmBmFOs2cToS4t+udZCb3JRrK1jtZKWwn4ctN64pifpYnwozD0KKp/BHh1EY4ghxYd7NmzQ6SHsyjxT42lLbJ8Ym0yRNM/xGVF8Z/CdwGnAEfFm82A5g9nQnsuz7T1LP9PhK/BaYt2tPRzhTieaiCOypSD+22M8T0WPW4rDXsCwDZkILJalgdYHiyU8GUdVZ8ln6zTNw0jMoD7UWcVkDbwsAiPclTwtOVNKorV0dvbnYaHDNXaOlnHsR8WXlFNo9Qg8k4aVnzHKjNANg5xW7emgnPtk1piF85VTPNx2bMaVqUlgcWj4bGxgDJI5JRMF7oH5EyUHbOHqos14HLc+nvM4z1kJs9rZ0Uo2netmjD8XU3R1HufAPCSJ9TOfoM/7RXSIRnR25r8hhM7NtP7S7AjN2KNIhROi+5zgiQfTwEeN6N7ovmtUVRElxjyUbKSURRUPDaWBGFTydJfVtITG64d7pPHb2DVxuBeWZaG1yuvrK5BYl47lQQ9aNs2oYWgxad+neQURR0FMZO/g7YNGgFhyFvfu8Qz8THCWVVoIOSXZlMd62+83Sowo2IzXE0Lxpr00HsCuR01iJHJoCI1ompgjR1CMnCVU5zZ4e79zv994u92ptVOWTDGjfBBz3baN56cnEtJXGGGfvK0b3uEwFSu3+y4tJ5yn61WAYU4wAXebQczO4sHjhpxALPOexto0NWuqZozw8dBFOLuBabLQ8ocb7GdN7BK6Ofc6sc7H1Lwbs2gf9NHCYalHA44PCXGA/B9YEsmm9tJgioKqQKliZUZMal0Fu5vG6bKpETU1pvZaeb/dhFUOZ3+/kXPm86fPeiYli/HQ+jlql5YUCTWPWBbnafTJSOfR+uG+zggROQ5nbAimtXd6R3pTIcbaJrAbPb0lZ4Y5x8mKlqBvzolkYg602rmPG//mX1een5/4zW9/A17IJl0ngq0246TYG3IjTshl2WNsWTpzRTV975g3ersz2oF3aeq0pkLBzFiKQP/96BLaX1bJIqQUDNaD97fbmf8KeBKjptbK/ThorXHfFeeXZYtSVU241ipumWGJHhqZFk5asynShpgV5xlmD8JTD9ZJzinApyR2EpnjfueoB9++vTFaZykLw51vb6+EaBS/+s0PpGIcpTJKJ51jxc5IjZ4al1UjhQzlPjU1MKOH02m3aGYZsGVydg4EngvgEsM9J4szcTLndMBbgJy4GGNjjBhz6+QSzdIisKtyqCZYw2zI+8nam2enRcHFJnkNGsq3swpd5a4RTxejDaO6h4SDmj/eKz0abilpzKVG/eM2aHmQU6H5EQV/jOMkOR9bAK1jOPe10nJnLAeY8W2/07pz3xxMurjtONhrk6mOJfIaLNi9kpfEe7rB2vEyuHHHcZpVujXeeBd70Colr2ybWDLuibf0xm4HLUX+uCh+pgythP7iEsyxJ8Mz1NQZOZHWTOuKmRosS7z2xuGDt6QpB1YkH2DLxNtopTGSsyMGOYtqPLtmqg9u48bIB8MEqo3euN1vAdILFN/9wIqawntyTQjcdjV6cqI5PA+nYHjKMXrWozZ8NLhyLoolKdFdI8/rGnme+Rk3Ti2uqNnOk/5km0goQmDSzI8fyfSDLxNjUz7zHYJpF9cQI+rzZ1Mu5LxQyiY2Wd8pM99K+axdJqB/Ju8p2EVIf3HqW6VsJxDxCObzNIwplDjjlnUTSMF08lawtzz3qda9AN8RznjEGLZjhLHLOd6m+z4Fux8aSTPXiOa/TwBM+eOI0m2cV6ncNxE16MkabjHdMSd4RkzUaDRN7puDZc0/wzOIPS9JIX3m1NFi5j3zecV57o/jLK5euZN+ZpzfTWOOSdMJ8e8n82mC7O5TPzLy5bl2fIJPrpQz6RyfpHY7C4qHGRSR6+YcE1RBPhgBbikvm/feI8ePJufEa3w6Es/EZv7S9y25KN/6Ba9fDDw9TZ0un4e/xyykEh0fsnA2DLeiYNAO2XrnSReDhA5vHS5K4o1HsWFJBZvb4H2/SSQ3FOBLzjHCEsCTybYaDD8OWqsSWTRYU1C5h4PlAGyCmdU7zRuHH5p1z3CKjQ3pVGlBD5rvHDR2agTWrm4uAai4gKKRiL/zs0BVxyvS8hF1XlIinulRJAyWliHE/tyc6iJlenRE5rVPaokluaV4NtqaaLVy7DcW6+TcWa4VG4N0VHXzq0MruFXkXJZZuAjFDAAgTeq+ae6/eg1qvWFDRqcZ/fgSQsk5wIXz0oD9vp+JfMnG5Vokxtsb+1Hpzbl+uuigXMKVyCRk13sVMJnlZmPA3iu0wYISfU8mWn+wxfIY5GVQClw2oxRY14PQLWQ0Z2/BmPLG8DeGN9JICqLLRg8acD8L+0CJxyxWF3LeWNZnVhRzWojPHncF8NEfQf9oQ2M5Fv51kYXbIiCx9kYqhfW6Qdfc+LYUlpL49HRhWRI2dNjVowtgXaDVnfstYVZIo5D9IiHj8Qy2kPPCsloIahptdN5u75rRRl3TtSyoKZZiz7Zw4JBgnnuK7FT7tiSBShbC7Iup6E2jRSETDCXS2Z2G2WXUYTEPPjMjucYtie7v6fbTJ1slM0HJc0Q0ksJlXcIpaxaIj4A9x2VS6Ml4jPONCN7Dx8lISFEgWbAF+30PRsOg9iNoxyFmbQWjc8R3622oX5UfIs9lyRLRtZhRDw2FMbROex+sqcRZrk6B9xGAuj5XRdoHCixGWRdGz6covvlk5zyAwtG6wN2kBKCO/nDMCOBcNuVxKLkDj+4YKWJS7wHGVEoaPD9nEo26H5jfoS20vXKMxL0USjHWqaJ6HrEn7qRXABFpTPAx/nzO+kdyc9TOIFgZhHpQXL/OuPEz0OCBomTMjbwEnTzWiphesyMV+gszuRuzex33eVnwRhT6B73vGI0lDa5Lopi6XhnjedV4+HEcAhJy4qk/sbJw9INEovYjEijp9OSQ3hLILQBr9Dspw1JW1mVj2y6MDu9vN263FmDHRWdjuZx7O8fh74SwZRdDzBEAOgLU2pY19G4mNTwHburUMcVJEyk72QfjtlPbzraKobDfv5Js49PTr1gXXW+PxD6XqWUlcOp+208ASyA9ZwI+RyrW7YLlzDDjaHrOl8sTy7ry9n6nVkjlymKdtVwwh/fXN0pK/Or7z3x+vvJ0WWlh/b4sBeu6124F8spSrlyWZ6bgvFhYzv1eEeiaBQYvyykc3puYIssSwuEOrVda3UPIWnbuYmXeab1x7AdLkjta64PR7x/Wlppf7Qhh8i47+dGbivqsmKtCM4bH+l26T7ljRetsqIP10I76kOOlUVgp0pfKiWWRK9sYb2dMDPWCGFFw1usTli58ux8cwNMc8w9A3HJi2RbWuvHjX/+ZdlSeL09clo1P15fzjLZUSNlZtyiyYlxpjohMPcWU03TsiH04MI/4HAXObAp27+doWioBjHfoNO7tdgJwFMWEYlLUzF7w3qh153pZ+PTpEyUtsjt//yPHfpCXlTES3376E0v+Nc+XH7huzroYR1Wj4fe/++9xtMp93wWYsTDFp89mpGUsuRjt7txvB8e9cns9qDswNoHMZliSi93XL9+UU6YFbwZ16roIWHNiFBfOcyQZYfzRzuJny3NsRICJ1i6MrvYPnlj8IlHiofGv8V6BxMIWa3KQRvSOIwRvqZw5am+Do77znjL9qLy+vcrCPRe2p2f++T/7Z2Jfvb5SFjGCf/u73/L0mwv/u//F/5k//PqnxxtH4Nd9mx36+LOICyfT9yxyA+C1YODPw0M/HefGxybEbNr8DEk/G2rB2fhwTsRnmfJZeLAbZ7F/QgYn8D7xrQkKxDXEJSebztMjrkXr+SNwcB53ZufnPdyrft6QOyUGHp0ZAW3uJ/vkHE31842Z5isn0/LD+82aSUXih2cT92iycnzM5mY4bDv/FhPjcX/m3tXzVc4bdUkU2NMwZQIyQDjpPYCNuTYMO7/PbJDMnxlxv2aN4q46JU3wwAM0iJpwfuZcN//p//a/z2/+Hy+0tJBHouGstrA+fRILq8vQY7TKGhMM2+XCUgpPl4s0qPad0ZWfHcdOrceZW5xdBDPU7IlnZWL+GKZc2TwALP8AAsW68ogHWp5hlLDS+qD2QRsBrIY7I45kBYqYmbN2aUPaZ2Q1fdwHxx5mCec+snA0NfbjPUAjSDlzuVxUp7QeZlSNZZFAutz/EvejsSXnZbuwbBeWbYNkNB+nA7CYfNLyVMMHyAUZNczaWPlQZwgsDSfClCa7OEgsHiwcXT1juOJ6ML/LdgEGpUjbbvQeZ4tz1IN6HCxLie82QZUYH+znhoj70Cm+MklRep/HWGjO0kZbTCPy6rGKNOJzrZ77JLhsUc8vMbI2hbm1bhOt5XP9ag/pXsx9aiTVZlmMWcnqcLJql+ngiAtUCwYxuJpOsXVmGPRouqYwJ9nrHvIlnEzP1qTrN0bn2O1kP8lR8aHPmobq0ku5CKCL/fu3DoK/9/WLgacSqOKYY0hJt+ZkNcwfPPeUfjaTzks5cV6H4LuJgj8PJYsldhYcPAKYzw7ZTMTsZ9F9Ut8fKCPMg8XpUeREcix/GXWDzp1gURSKpfKg348YOxJ2P057V2PaB55jfo8PPu/HRLlnx+/xK4qTSMps2CmwNoWYnYEHW8k+zLUbFgefxf1Ux2eOPaSoB9WF0fdVIT7UhfGkxXPeNy3SyfxKwbIy5g4M1DWSgMlKirr1/IVr848zwdDt1OEYtu3OrMQYaL7cJF/FZK7oNoYmT2QAiXRqpBAdIetDv2JNqm/nQbucbxX3xYICOe+9g1hNnAgzPtfDx0MhLoGsxBtRqEVQknPP8BlQFSDUye7nOrH0CAaaWRZrxNMIJtcgl41lieIogtCDHWZn8uJ9SKtKYUlrw2Szq3suQM3hsV/GeDyg2LxKCLV3kz3+auqZQDxnQuzSFVDnupkJ3gREHnauk6U1OSp+Iv1igHHmkHOPE4U5rqLE0s8CiWLDQB2V84Aa5/ueW+pMc+Yhw1n4+JiuNA+Wjpa+PRLGAHZ8TJQYegv7d2LszR57WR1Sm8z/OOT15zCTovFIsGPvTtaV+YNxYTNZjr/1maRGXLMP9+qhg/Uh0Dy2KiG/9YGBOD42Jh4A0HwDH+dVGRI2L9mDUab45OHyN5JYnMMSOZcT4Jtr/fFsH0nlmMmlfygWzB6X/rN75B8ucK6puY54jI6ef2unqO2Yz8kfmnYpab597mfimUc1fe6t+czATzZRwshRYCQLFmPoDbijwj2e4fCZDMfaiHWGWTCrPhzJ+iIqNlNmKSu9HtQ2Z/kz2+UyqxlOSlwUikELiVj2SLb1s7H/XaxaQwLqdj6Ydt5fO2+D9mvJ2oNjNHpPcpFpRs/TZGAIiE42w3A8n1kYPIpLDKaQ9CM3EDg7wWGim9ibn2B0Ith9XQ6sl2VhXQulJHpYfaeU1MnuwZDRLDDSukgnU8rdY8QmQJ9zvT+elVgawbiZ95MH4+lxo2aRMX/pfFaHfH5/JQI9irZz0c9nNc93XHnBOSo6z4fo8Hd9P4u1M4tW/XuBIiUVyD4lMWmTxRgXeRZwHgy9nEMk3E9QXTmXflbj4QUfcgVOqImSojEIAtyLZTzGUkbSd2kxiibWc4ixBguvz2uIK0tmygn6Yw8/7mvEDJv7WM3MgVjrakzE+3uO95W+SSkLJVidvVeO486WdFZIvLiSTcwoAThqClwuV0rf2I8RxV8+cyqbOSHj3L8ee1dnp4RskxWcjPuM7x5s2RiNSwHADY2HSAtD45XJOB0JBTw1vLXYK+kcGeuTFXeyisUqc59PO+FhiS7h4bkPTNfvI5oOehYpTz3SKSYsh1QzOO67NHy2lW1deX55lrCyS/twXQvt14Mvv7/xL/9bf+Kvfvtn/vL6y+vfq9eAr//BzuUPB89fFpZuYt+lglvSpESMOPsYMo9wSHnV+ULEuO5n3jK1bNRYUm7xyDMfjD9iXzHrjTMHm2eOxWbXpZ75XMwlp2wxpmlnHgOTIfQA7WZuLXa542k8QpMHEyjAv2Rzwihqi4ivpxh28nN0H5vZ7pm0Ka7FCIIFk/hhJPPhtvuDtaQv92BJx1155P6DGL9/1Df6mYhz5/s88p4+HvfZotC1AIrn+ftgE6vxmIOpqlzv4/TAx4u3Mx/U+cyHXE45T8mJ5FNU20JmMZ6zPyQeJlg+64GcHp/zwDPim57A7ohbrdrN4/vPPNXPggU1OEDfW1lEMFtHaGNFXhC5GjNvnqmZpfP6zob8KWcUGdAQiLeu5bxOPY+HnIDqTT2fx9n4yEL+odcvBp7S/R2I+UntiUBPg71AzCcmi4m20OIwYzXRsLJlWo2b0zpOipEtzmQMnLwIYCh5OTe46Hbq9vQuyrcPp1VZAS+5sKTEZZU9s/R1Kj41fSKxG6jrO7uCatuls3ifAOLej7lnuA1jJ7OPwd7BlsximTVlMRD2inUj9xILA2ofQpNtLo0+pxVJJVOsMDgQ5dGAriQfuHUJk44srYGc19MhA8C6wa7xo/p+MLpj7WFZmU2o91I2AWVBy3ZWSIu0rhZpbsTqps2EGA2azASJCUQF0JVS4iltUZTZuXV9cuCjUOzFIFXuXV1Lp7NtK5dLIVlntMZ931lK5vLpE2lZTuH6MZoS8+wsm0FPrEPjk2XN7EfD7oP9vuP7XVaEpWC9YEsmsT6ojClhm4EdDKts+ZVkiTaZIi7KrToVMeufo2hpnc6gDukAjHqINm9Z4sxDblO4bFfdjBaJs1sPQVQnDY35ScrGMWvUfnB7eyMPwWW/+/Wv+fR0JY2GNaOsV0ZLtLqL/l82VjYW2xSD6Vy2QVk718tBssZxz6KaZqNXaRpcw2a3lKDF1n4WT9u6kS1R3+6MPlhIMBLWQ6gQsbUSTmEhmbNS8GG0OkJUetJ6B2U6cETCOwLwkDtjdLVDuLLF7LDNJDqLJXnfd3U0ciKVhWRw1F3FwtgxYCFMC5qTSuiLxcYrgQK5RydmoAp8OGv20HaZQKquNedVnZo+SKmwuOJUOzp//Js/UWtleNNM/WXlfrtx3Heen5/YVt0XH41j7ywlc91W+ui8328BvzzEJz8CYmMMvHclMPEdEmLpOZNJGgdVd6yrMEqUGFExsm8Cd7yTo0C1wM1KLiSgHnc0zx76QqWcB6DYU8aStF9u1mKkpVFS42lLMO7st85armRbGEPaVT20b/oY5DX0h+LQnfpbs/vszERltmD8TIxU+Froojma91FiSAg396T4Ml2FMGLUDuhy/Ww9RO1NjElZj2dyXqi1S/sDJSrXZVNsbpXkxqfrE14r+9s739rguB203RkjkZcnlryxLN9jPthS5egHtVdghTCk0JmnIzUXuTmFuQu4UeVfpfEKg+NopFT4/N2v+PLTj7y939m2J9btyn/0H/8PKGXlr/7wJ/a98np7xVnJeUVAvLNuYtHt+wTMC2YFsw0rieyJ0Va8Z4EQ5pS8MpkmmEZEtouA8P12PxOy+77zL/7Fv+DT58/89ne/pYQrrWcPho7GaU/HplivtVbyumCpsD0/42hEx1JmvT6zrBu/+fTMH/70J/76p7/hxz/9yL7vlDmzeGvkZCxl4bvnJ7779ETO0uK6Pm0Md26hcfTj12/0IUHRfR8sqfP9dy9crwtHe1WHMVxxjEJvO00UFcCl/2Qab3JXc6TkzPPTNcY0nfvtXaKpKIl9eroyxuDt7Y1hhZ4yJRL64G6zo4Q5l4WBQIMR4NQcL6st0UemtiXWeItGghy+RhYTezDoVboKzYcaANl4XhaMNfRQBqPpJE55ESN4NIk9Z7heFp4uK0vokz0/vcTI3Ry5ldNaujjX6xM5YrV3p+5HgLfSAyqx/sCp3kIMW1vWhpoVS8q0mdTGSEKJhLXkaGFmmQD4mMYdHSnbSqhcTyhrdNoMWzK5qPuaLAVwVbg+/cCyLHhf2Wtl1IO3r4nWNjKbxqDXjPWV/dZJdsMH7F0uXU+fvmMpmW4dzNjyijrdB+uSKbkg6Z7G7XbTeVaUx3z33YWU3sA3brWKAUfHknF5fqKPwe04NOazLbRgp8yCJRcZ4iyI8T5Ca4OZJ4IEq1EHfxavKRlrLsHmbeyHtF/u9wOQU3RJGlddUqIU4zik9+SWpe3IZNPJ/GFbF+r9xu39m8ZlU+Lz0xNPz1dKMq6fnvnd737Dddu4XBb+8//s/8B/8R//v3l7uv+d9cJfXn95/f/1ZfD/+l/+V/xX/9m/5n/8v/5P+PVffc9v/8nv2dbCt6+vrMVYZRpLzol1kRHGGINjDNp+nD0GjdVHd5zQLnaNdSYTKyflhOWsmmEMxqhTblPxrsdFITOlshRqlXPuBKdK5LKkSipOSYP7+416HFyv12AGhV7suJ0NtlQ62zLwdFfbt8sxfjpMuhuWZJrSA5RZ1mcWBrXvIioUTetIQjjAmjTHrgTYrGUNSQkBV90bxRblrzEd0rvq7HXbojYcAdRz6qQteYpsczLmPJCoqRc49Z7E+JOouJo1cD/E1NmuF3Ip0ml2D6OxAAoprEtiKRcJYc/zNxxiWw/AKyVyUesqxXhusoc8iTkswygJcgZvYs0ne4weOkguJqV44DE7Gq85fuYBSHo0CMUU1yhZbVOiJ9bWGCxlYV02ifn7wAnTgTRZbF2M4BYGLAYjxWcXsaFyTH4dNYza3M51NLqmdUq4hLcmtn4pFi6W/XFva1Pe/PKiKj80io+9nlMrfwuD/Adfvxh40mhcChbKzzvwcIKF+vM5PxkdO0Z081IC7wKeolvqTMvH+Y9VnKh+TSdbwSerJ1C2ZOkEqiZbATjBlxRCaok5lxiUTHewFghlYowH9VuLI8X3UVTyYaGhoi8pxf2JhHqMHYZmx+z8zs8k2DAWZoQWbBwtVR4m8hqlGUPOd0KxE2NE53NEAJxFq5lqMx+yknXHRiLzQRtlIqQeYFCIek9xuYmcnlTjyb4gWDMzQURA1ixaDQvhMrENTspsfOb8eAI57aMH3VTsGbPHLO+SS+gmxD1nxLOy+H1o5GbSatFaGK0zjqpRu2743hkVOes1OCxTVmO7COSwEWNQBikVzFoUI+mxnuJzEka3fqLV57Pyx69TZJuPzm0PAFX0nBDVM/QpaXYtwtFsCHxbcmZJhWwC8jKFjFgaci/zoN9LyD6bGAke+4hhPBwgQrNhCnSfHQTtWBsCMPzsuFiAxumkTevhTcpkEohrfrKfpjbPg8Hyc6RbOmxzMz3W06T6nq8JqHjsnxR8qpRkKjGveV4SYnlZfIZozJzvOymvdl5fdHLcT12LWEQB5pxnFM0lUt8m+k/CmoLHo3EzAlyNgjtxaops6xquFGHtG46fvTVyKuQUDDgeY8knNfxse0GQyLX/I1aMcw3O3Tm5RGJmRmASYGgxpkawUkfsyXiWM1SKTzA/08//LbBKjiYCSo1lEROw1gMfF3CxwMyMxQoJj+cV18PjOZzrjmAqMOn8DiY3DSaDgBB/JFhnc33H8590/jHXVcSY89wwrQs1ER6Pe2o7zbV5/or36U0W6CnGPJe8kMjhZBril8PwbowaTMNw+ZQgqodQ9COxMCB9YPA97sIjooiNE/ugO4Rrz+XyxPX6zLZdNLYzY4qLrSHAbXa2yofDPu79bHlOsJcUZ9qM5hGnfqbVpfi+LAIkZWwglgmIMSItQo3mGWHpK7oFZ4ZmLlJxAIt9mhYE42eOYBzHwX6/c7/dGKG1peQlzrNcBJSEc8oEKj2e6XEc4TZ3PnqI0UOJq6c478cZv4e3c30aHxiarmfqH+4iCKh2tG99dCYz+Dzr5nNBbaWQPT672h474WRKukfDQPtl7oG5H3yOKApFhuGxlx9rJpPiPk8ts4gJ8R3AJMAedDeD0GZQNztHU+psF/n8nqYcDZMRgRvZp96F/jylfGrBTQal9vhsKsSV2oxOum7pyk1InTNmu6UQWI2RnzgHVFQN2hArScawMz98NBU81HdLUZPkOKTT4c3xIUbU/L0kFWL7/SCloqKqSJC97pU+EIPsQzf3wcyMhZGMlPPZqU5LZqNwC/Ft6zqLib094udkm63cZrrn9nN9fHgWsRbME561ic7CDZhjTDPPUlOnwWjB0ITWtJeXvElzydt59uY8Tmaumb6LnEjz+fl+d/r+iMkJ5QgabykspfDlt2/8q9/f+Jvf/sjXT+/85fWX17+XL4P6qTHK4Mf/5AvlsyT0i2dGq3QPnd3EGdMe5N3zFIgzZua988+Vi9g8T2bBw6N5fzKeI7mKMlC5dsqhB6ic/uc5jjQ4p/7fo3HyoR6JC5tTIVFpPs5j0VZOsMU9mD4oR+3DT8ey+TO9x8gmM1vhLCHmyGkpS7CHIg7Pksge/2YaS8zoZR/dm858f8bxYGX1R508w62eyXnLmZrQip/2GA8NBqx7TNOcdYkxx+rmvZ//W6E5P4rVSCEHYMGwBeX48z6LnRyjtfG7++R6P2oSJTNxPp35oBbCdPI+mVHxu2O4fdRRnjMPPDTwZsyfxZHe8fz1KPc+3AQ4NcyGd00N2RyDDTMYF6vWHekGxvKf63EyoTRWqAsc7rTeQ8ok8IMzg/plr18MPNWYBcxl1R8MEC3//I6xKZzR9HsxJT2jatTHktFrV9c6Ci28kcvCUkqIW6MuqjnZq+Y6DyWwY4wQVcuyEX3Uu8wOuWy6kU5UMrzLgpJeQ1TayVmJj7HAgDZm4mvY8nR2yQG6G1oTB8kSS4L9ECsHk6bBJZcTeJpg0zAle20u6axCUuLRsteWb1hj+Hs80MyIsQG1OxOjNhVTGUg5qNfaCNYbqR5RAM8xsE6K6qzH5vWRA+LquNWgY66Qobe43jrt5ws5LRLvjJG/dV3EQEka19tvu9hCLVNCIFfBVNTHYXaCB601VktsczyqyyHDLfGr3/6WXCQO773jPRgOY7DXA0bjGmh1bQc2VCjeX2/cv72Rh/PkheNrZR8H/jbEJtsqL59fuPzuO9KwQH4znhdyWsl5CB7WopTWTykUeTNzNAlc5tkd9BrhQ9oYAh47hlwQz8KL6PJykKyylCXYZ3EADGk7PV+feet37vWVp3Xl5frE4kDtbMsTJckxspoEFPe9U9udT5+eKWXjdttpvdGOHUah3qoEYNfMkja2dQl2oO61AWNIy6HvHbKRitwhSI6xSHMmRIZHdzEGPcXYopOTvm9tTTPYMcag2Bx7M0VgC7Hyx7x9OotYd04xPzEvVJCWZVMnJQlsbnGQpiEQTra10VUZs6Ngj18uIMrnCEewiVTAKamnqcut8ZxwxfBOrT3GOhrX7cKyFNIQt+jl5cr9Ztze39QBsC7ntyWxZFiy8esfvifnzJevP9J75/3tpkTGB9sKOS0q5qOoh0mBDfDZCfZdfJUAzaTLKvbcTChSULWyFNcYTXUqI4c+XiGsqRQ7cJa0IECn0n1QazvjqCjNU/RQ7IiSjFEb2XSw3t52jr3y3ecXIHG/V9ZhfP78pKSnh3bceAgz6qso7UiWWa2IQp4sDnHdc2dA02fnRXpKvVYxH71R1pVcsii/ZtzbLOz8pKRPjYBiq86fELPtrTNMDQtiDeSIYy3izLHvSo0WjRVdL89s5cpid9zUFqh3aKlz88qSjK2gs8Jli133RjsGZclnEjPPSB9gWQ4mOc2ETg5HdXTq0bjfbpS08OnTr/ndb3/P88sLZblQmzpKrTbmlHFKUMPRLPcS2hEzXRTbYYwRcTyfzLM5ftY/JCUn4B6j7U8vLyy18vpXX0nJ+P6737JeNmChdahe8WTkAAcBxUcDLE4uM1H+3Xm7HfhwctYo1PVy4e39zh/+8Gd++umLNGNSZl0yX96+MVpj7Y31+pnf/fZ7eqsc9c6SVwkpD+fojT//9IXaxC50h9ENozHGzv3+ipOxVKUHUgRC1XoPDaAlCJnGaBUD1rJpL0WRMJqccMQ0VOOESVkPPTY55wSI65xinaLIB8iM3NjkMCdQdIarlMWAlnOMc+zgrdO7nIZoYjclT0zHPfk4Vnrq9FED8FQSnyPRXlKRrtTe5bhoCWrDa6VYYrGEtdgPgzBraGJVdee77z4zurN/uzNB/ZwLl3VlUgyPQ51RI5PcKGlVbpEap3R+Ssi5Ilo4WcD3aAL3S8msxTAK3Q/pEKYMfbDXxn7s3I43ymVlycFgToku1I7R5ey7bS/s+863b68UpqlpuFB6xig8bc8kT/z0x5/o3+m6v//1d1yuT/x//ut/xXE0fvj1bzCTK+wUF4YQ6I7O3+Xlijvc90q2wvp84e2441+BtCidiKbQcdspi/H50xPdO3UcZC27YLBByk8YRutVTLEilq95odUWtuMqSJZgSToSNa61Yu0d6zsJ6UDd95ue1dOi020csUcROzJJm5CUSGVj21a+/+47da/b4M9//gnzN27v4W7YjLY3fvrTT3gffP/5hf/Lf/p/5//4P/+/BQP1L6+/vP79fvXL4P/5v/ov+dMffuR/9r/5H3H5mjj2g05nt06+rixbYdRDteeyRh61MgXEPwLKs9wHNbFTTpDkKjZqGEK4s64a2etTgHw4ySQIviwrpRT2fWrsKM6Wkuijsx93AUHR8FiLmOtij8b5A2AZK4mjKWdKxc4GGilHQ0Hv7RQGiVqhtUFZAlRIC+6d2/04p2XU+JiNFcOLcqdtfWJZLiRUm/rQqLyPgeVC1mCx4nPlzPd08yLvdwFHZpru8aZJklKKctfIkVIYDAy30FvM5AKQYBerfc1i8OZgqrUPLoOTEDHieaQA2KXJFq7wE4hPusA6mp6ux32fQtlj0HqVhlRLeP+gKTsbvhOoMWNYaFsF6FZMYM1eKznnkzUWs3AC7uSBRVlWeh/0Y6Kiuo8Jo48KHqPZZ52gvOuUDkgxFh5rbq86q3vvpLKwLDmYdp11ydIPzpnaGu+3b+RcWNcLeUn6lSVT0SswnNr0XrfbnZxiFDyloHD88tcvBp5GWWQrOpkwpvl9MQGimxtVxwhreQi8b95kCChtduw1rpHM57wMGA+2S3yQ2E0x1jO7UoPY0ATiFg8ifu9dyb13BNx4FrDhKmRFW9P4mkVCI22UYDTZA72GRqKxFj2I3ptG04aw0eoCkzz1U1jNU4ARFh3FFOwFc1oUR9PWUG5085Z5gBVatoYHmGTIcUqLMJnj1rHUYqERyOeczZ2BQy5pxJ+k5KSwXffxYCwlk9hkchVgmYcD2OKabaWrO72UdL7/RxZB/CFA2GfqD4T8hy5UMHuI3xOc+js2wS4smEnp7KRmVhgdrw2rTq6wop7+mhacQT8q3uQKdDd4LYnr0wuXp2u40Wk0pzvhPAJmA7zGs2xgHRuHPqtn6MFYcpcLWlL3t5sE8C20TzgTMYE0OWxn5eonRtFansgps/jG4oPVMwuZhYRUIgYpVRWCDiCbV0cIeg9b9eEliC4LWICVVkhpw1jwMfUvjBwAjXRwDM+QcqwBmkYN5z4NVoAaJ/FsJpisFrdGKICRTFNTOYdlsa4Tt5NkenaHP3QyZldfjESNlgj1j1nloKmKEWAfuiBOb5ohsySxV5IOoHN8S6vtXIZuH76bATxmvXVlYGGKIKeqgiVXJzkpiHvSSOFlW/U8ZyFqsC6FbSuRIARjJzn4tL2XDXmMoEf3RNdSijRBppufmSi5ulcTHGhAh1ERCzGfoP50idPBmoB5AE5Ljck8E8vQcEYI84pNlUlpIQeteAjxIqfCiBHKKU4o9zUAjWset0przvv7IYp5yaFRZydYfTqXYALb3bGuWfiBgPcHMmPnOnEzfGqTjNlFm+5XAfoa4c4hcFPinxZ6Z2JoMVk2luLP1fjAowMUop2phNmFKaWbAphiaI2IwCnAs/QQAk5qckzQYXaGmICMkIITjIWPc/J6RD2ML8qynZ0zx+jd+enHnzhaY9/ljrWWhUQKhpbG0AU8jIcAZlKSUpYS56PGOOcHCgzWvbfoks0uXClZXPL4CqM7xy42ruVGXrKAQZf23HRabL2fDGMzwgZY8WpJD30sc1kbtxqOXK7n2XpVQmqDVJxtK6zXhBU5WqWiEQbM5NbWkdW9oWxN21qjE6uxrol1VWf37C4ihsd06EyhmzBihM7jHnxkAuWwaheAEWK7XULaKcuK2xhaI8FmnGzLSG20j0W6ib0ox0rM6FLmjvUbDTofeG/4HBGc70ec8abmzcxRRp/dcGO6qCer5NTR49SeKln6TSVH4yr2UEziQYyljmhouTn2JJH3nHJ04uNS0uzScmZHHnmaDzWc+tnZjvhrMWLn4aAz16N/bE48ioXABeOcCv1JD/ekHmwgK7gnapXdde9jNvrP993vB94H+2UN4dkRlugXvvz4I6+vr7R9V3MiNBnHeGOaRDhi0M04OmqYZqA4VMMRcLku7PXAR4scbUi435w0tNazy80rMY0gdPac4C/EPvbzfNEeC9bnyZIKFrWhfdZ1XiSHxZxsg8IBNiBpzlfNgQPrxnV5Ji+Jy6cry7JKWD8XvBifX5xiG/X+J46j0vaOeaIU6LXy/vaNvd1pJfbdX15/ef37/jLwxRl50I5KO5zRNNLk1tj3weiJbZOOoIV+oQe7eOZkMHM4IM4GEMAgaYRgNUW89GAKtz5jZLDZm/IxMbpPCIk5IisGyopHY2GaoxgaT9Nciwfwn7CRSS4N3GmKYAFEKze0k0neR5z9aebhhPu2TLuUa8V3dEI2QHVyMhESsq2U/Pil8Wh9OpgaH4QxBjOvU7Pv4e6oj+iTHTyU6+csSYDHNICfGskPzdx5Zug8VT4X92Myw6LWSVHbi6Ed5mYByI3QMCKuSbhDj/f+oEkbzzWySX2nOKAs1tc87T/+diZ5qJ6aDN0QllCaGLW6n+8QOfDUiHU1+lEqOVPL0Fi2OO+ihe4JY4SeJ5p2YBp+6N3nd5/XJtOpaDrjkkoK/S99BXvomc6vFDV8KSLd5BR8cZuMqF/2+uWjduvGSIkejKdp59u8n+5dsUI0D4iSNnV7F+ZsquWpdaIxoimwqKxZj6GGXW+eBXDY+k1tEtmmTo0UBDwFeDORQLlJuXLCIfcjl4mNnPA84agL3ZE5/OgWdHkVnzqyG+Y7ySrXbYNUOI4m5k6AX60ncnL6IvHxwYCczxGHKf8Vy0mgVY+HjjSUUmRwRmahMAWymcWCi8pdEmdyRuqwVKaYGpMC/0FfBXNy4Rw5StlJWcmyNwUeM6H2BMulDCWoU+RqJZFc87vJnLIUMSemeG+OUSr0HWbh9gF61CYout8taWyzoOvqQfvLpchOukEpq4A371h3NhZGl5tMujvLAdcsJlVeFGR/+vaV5p3D4P1+p97e+O0//Wc8X591HePhADFCIBXCJcYdy0OARt+hNbyJrp9JMc4orYqSCt2k10LXKAZJulQpgLacDO9OF+WBlAvX8lnjBa77d/GVbWQ2TyzAwiDnOymFMLAdLGumd+g90Vpir4nuC4MssCtJ4wTbKPkF88xocc99RJfVzyLQ1jlKqm7qcOhRGPco4HEdI4slegS2EUG+etdKzinsofN5UA2bAfMRNz6i4OYP4Em212LIOXAQe9o7j9g4g7uA5npIY6tcNulLqW3Mh39wAk/MUZpzPAWSxUEayzQj96QxmrpFS2Z4CyDRoAxGalhxPj09cRw7++39/F6XbZH7SataJ0lJSo6OflkyuNwrexfrU8LMc6xpMAJQNjjdI/Tq0O/gDfca3bUpXA85RXJRo/+Wchz/J/lXh6MNkoVGTQ7dLdNsecmLRuXcJWztsgz3kSipMrKRUmVZ1hgRzvQGr293cq6s6xvbZePpRZ17TQGNMxanlMgmblY+x8QcTHEyel7gAjBLHLqpZFqbjArVUHLv07+XBkFmoGJydOnMpEXuKX7GoBIgvpxSU4Z9v9Nbo6Ei97ptAlZHo8NpWWwknT/uUXxnrrmcXbIcgKnAm7BgTqZE0z2EvaWzpbMvHIgIxm3EUwmJPzNaw3und6MenT//+Q8cx8Ht2FnXleenJ1oftKOFpkQOerxYgxOgX0vielnZ743jqCy5B8NrNoO0OVMS2290xfBlEWvVUmK40Vvn7fVgbdA9cX15Ii+LkrGRsEW6NL01radioamVJuGONedwu4kRu/c7x/2u/YIA3f2401oFa+RiPH/a2K4FcqesYihNYGF0uYcueSV5IrV7NFLguhnrJfF0FRhc63GCfDoPZyPjkZ5LEFpnMbN5EtlViXtBaE68vr2FpXVnWY1tW5iW1O4CpSIjpeQJunO6Gs4UMxe9bz3Zn6HtowWB94qPCsGsEv5e45mFtUNLATjKJjplNWBCupqSB5eVsIJPLHlhLZuMK3LSWFiyOBtChDqaHQ3Fget6ZWo7TJ3Kc8TwI8AzZmGg5LpF402g7yP2L4vYtGLixrjZBJQjz/vYlBIYCjlH+2sMhqdg48K6Sj+rHY16SOfKERgcVFaO+52apftZSma/75RcWJeNL1++0sZg266sy4rVA0+N7l+i6JrFyjiLidqU5qd8oXe0lq2zvWy8vd4YfadI8jSY7colzDqJESePWEfdDMYhltp6FdOzx3jo3M8TgHdX0y/u5RyLH8PE/IIASwfZEFszDTz0+rp3TR04fHpeua4r3//qEykXGMo4k60s+YmXa+fLn945Wmd/b3g3rteVuu/89Oc/cr//ZbzuL6//5r18DI7bnXIvmlahMhCb2HB++NVnStnCUh4c1Sg5z3F7AiiAqUXnpmZBr3McNrHmhVIytct59miz6Bew5KPTh1GqMzwpJ5358xCgXnLBWxIpIwwesm1qFlLUBO4xCWOqJ8Q4ftRajjP6foIw4PR+gCkuybDHWEo4YbqkRqbciJptS2jfriRbKbZJ6zJvLOVKKU/0AGVS6A+Rs0alj/1kRecixndvAxl96Su3yQTwuEdZTqXTqXFEvjLotA9zdGqezXpXOqjKwWYDMBoXSc1aM2O/qU6+rAvDCUBlRG0Oc2x9Ak/JpLGsMzi0gEmnrIrldN7pAB3Oehdioirq9Jic17935VfKBUcwyyzWj4DOWT/13ultsKZMsXQ29Nf0eG9PyiOjdXxm/zq25Dbs+CnbECtVoFJrZ8PcDLZte4zPBah1VI3UncYtZljObNv2AMpC1iBu4C/aj7+c8WQLhlH7ZK6Us8BWwaUDl5ECjQ3NmCTbREYwdXIWYOwmlGzM2fPJIOqn3bGF9seA6BadfXLRuySgI8Cmz0SoPx6i9WAghP5CzDJa6EaJ+mfMeXozZ7QWom2dlBPLtrJa4ckuHD1R+8NZRLouQf+OhR7P7MPCE4p9jgCZBfMmSfw37IV7FFhGwtLCsEJO5WxvacGLK2AejUc4C3+zQe+TdVYYFoklk0wWY2ATZGjqbJ6jB5FgexRHcnELlkyKTmasBbHYshyOchb7Le77Of8cAWW0wTCBe6M3LEn02bLLPj1ZaOFIK+Ix06znud/uWO+Mo+O1Uus7KTXKFUav7F36Ghjkl6DHHjskIfx//OlHXu8HFuvrx592eu9YIkRsM9OzLJHV5R1X8E5JWnMNg9DOEHvNIAl4wQjmT4pRmAjywwEJ5hpJ3x9UrO13rA9e1pWXy8bLdeOH71/YtkLnzpzXTqmwbRttGK2Dl0RLEqrtbjQXuLmPLCFhCjHVGusj9lsckB4aLCezKPLaPtKHw2POnye6xWZz5LSXUqwXA9N4aR2TMTODtp+xZ7INtDD8DE6GEoEe93zgZ8I9CRpij3SJswcAWpYFLJ1idpNGbDFaAZzAjZgZgIVQPQ9ARKM5KnKKZcp6URISdFp1VzKjdd7e3uiHs/SFY2/cbztPTxeulwvX64XLZaW3SsdOQWIQKF6PSi4a71L9MBhezqJidlTmaJjGOmODE9pUKZGWJZ5LEbHOXCCfu0R6oyM0zCjh9kQAEXg4e+FnIZPygpuseHWgWhR/YMMoJC6bwzg48ACIBu/vN5JlSllIKXF7f2eMLovtvLDmhTnaLhBCYEzCPnTZHh2tmBISLT2A6hFNA7kLxkLmoRlDaPWNrgLThp33T3/hlJTjPInvX2XgkGMt52Dg4CgmIWaWB5W4DRgkWogcl1Jwy9xq1dhfkcB+HwLsqDY5eqfeQTIjlUJaF438hfAwuM5OBNSqFFV3tLfB67dXbilxv2k08+XpiWRGO47ze1peSalQ28FwZ1lWMIEYvTXqsYsN44PRC3giW1EbpUn3pZSF3qSlU5YrlhKtDrodfHr5tTSUmrrB93sjL51cuor0XMjqwVFM435LkaB+q42ZF84ExywLJGiD+23npx+/hP7TAO8kG6yXwrpkrp+f2NaNtKTIMwa97dQ6mbDqG3oknvozaemsmwA5S5lU1jOxjM0QZzzBfnF6dBM9mF7Y7G56sCldDSRAbEl1q/FMbwr8ZmoM+BBAGdsyzkLt4ink2YMhbeYSrB6Duh+0Wql7xyt4y2hGftC7Byg62eApQPHOsi4slGCPCYAXUNRpvXO0SrFCzs6gMjhCnDu0MedeyZm05mjSuQCL6RyExgalh+KnmYhnsay8CVCbDkTSPtQoc44xhVwiXyxzHCKApxEaGQmWRQDz3qSLN+ohcLjNnK5hi8bB0yqGa/VdrLx7gHLZHnne6JDg8vJMTsbeKkdv5Gr4Tz9xbwfrtlCWwrbKmbPV1xDdln7Z0ZvOeCviB7rRg+3nVjS63o3b+41vrzvvb4NjH3hOKuxM33tUh1SwbGE446SyIXtxxbTWnBk8RlRlo4/H+vXQZguwrh2V437gDbwvwbRynq8LuSR6Ul5oJeO90XvF0yBb4vMP3/P8/MLLdRMg3iO6unGrN27vN4wmhmuwj0syLtvGD99/4nq58JfXX17/TXs5UEfntju391dyGSxl8Py0Ku92514PuIsVsy5LaNAtygnRWenupLRwukxP/brJeLaCk2itSt82/nxdVnp36tEnKsKaZS4wY3hvyguXojFfnwnF1C3Fqf3QZ0Y+WWsP8MSjFrSJcrCkfNalY46Oj8izc+bhDh1yBGPWHWqUTy2m2jvYBBdkmkFoBc1OXGsjmgVF8gcBjqdBaAxO9GWyYVWLWAk2V0oybJqNtCR92RFMUckpEPm+APVlXSg5c7/dJbIdkzOTYTWIqSfnZNqmHNMgs8YwMcYcnSGG2FDEWerOyYjGxN6yYkyH0IkSnay48WAx6ZlZTEEJjJKG7ZT5mLnCZNYb/WjxjAgyiuFdtZLyi4kp6A2k1vFg+2fTpELrU1RB9WrJWmdHrVELKCc0eAB9Y5z5CszyUOtlKSnwjQC4Ao8Y0Tybute/9PWLgSfQiF3r0jdY4oA15lypZHM8OdaC7hUjcnMWkfGYGcRFU04jRnai+NQYRNeXsaCjTyYFjwRnLjCb9IXoip3C3xBonlCaFA/dT2ZQtOmwD0K4jo9YxD6wtFCWTUldMtr7OJNWJU0BPJ1CYg9h2yBA68+wE9kcALMoRi5EZwcxEh8LAIAYCSAesptHd9sDuFNSPz9RJeIAm8TLSPrmZhtyTXEPWiGR8JgAPBvgAQeIlaIZ5mGmZPlMwfVsc4qRi/ls3MHis2agaWLIDJuJLXjW86u9qnBsDZ9uAqOfBbO7U4/JPqp4rfR+Y02QN2PcG723c9OVbYsAdODJad7Zv32DL69Mt6n7XdT3UjJLJOLnTQmgJPuGiiqfzH51W+e+mhTOkYLzHnpHychLwqOgUy8y3BIJXstwxn6Q3Lmsheu2cN0WPn164nIpfPnW6KNBCFiv6yoB+6771pOK4uFO73LSqwFC9TgMxlDnM5m6DQrBMSSXZ9eln9TJn0mpR9A+1+rEjQKElEODOjNjQKv9vCfj1F768A/nv0eH26TkjtDdmYyn2eHP83CxCOIeoof2GE/r7dElF8U0TXzi0ZUnMUyjDNpzE/gYMZ5gkVgYy7Jy9EGvGs0YkTCMNri93+lNIGJtYpE8Pz+xbRvrurIshfd3uYGt6xrfN0SJfZDKqv0YI0i5T8Bvgt0pmF7+4YCbPyJmaC4CBS0VUgmq8oiYkQRcNx9kHyTvJ5B+AoExkpNtuh5mfBgt9FKmDTgoBiQS25JoFcxDABPnfj8wjM+fP5Mtse87GFyOjbwlrEiY2B/YrM6GuQzscdieU0Rm5EW0XY/4PeaBOhMv5vVFlI7CTES2dIJRMb4fbM0AWLt0cxxiqi/u6Zk4BBiakhoAfYgBycnHwoO9WntnTcYaDKbuYkhZm4LSPvEWJjifcqG2QfUYm0RaD06MFjHXsS7l9n4Dd1oTaPl0UUfydtuZwv46+KdjjdxlwRld7L1a1W0UwKsOWynBjOhd7LK0alTb5VZYloX3tpPNeHr6jmM/uL+/qXt576xbZ9lc49lkCa9jJMQqK+FKOZM1XFR93QcBfb11jvvB27c3UkkBFgjg2baFbStsTxtLWaVFg4NLz6i1Sk7bOXr1UbDbELi7LDk0NxIJaVf00aIZ4nO5MRmIY7JIUg7AKSKVawzyzC3MsBgLFsCd6T2AZkuxpj3AuPmaWnIR71zjVaPF5h4aR6ih4dXrkNZsl34G7o9iAXVe1SCoQAuGWpIm1ND4pfs4WVky9Yi8J7QkLc/4rS87RcmXXDRybAGNxnk/gYfhOvsHFtKIWluj+ZlAD49Y7ob7CO0HC2brY992FxOgT1HzJEaxOdyOnd51po/eGSFS6aOfTbq0KBc7jkrzxv24U3JhWzbcgxEakgnr05VkcNze4rtA9cZ7vfP9d594sgvu0vdq9T2AJmM0qEcnlYzl6ZqU6ARINRFzL+z3nddvnX33iJcxOp3i3BlicOZwsaqts10XsffjCOxRtBnz/jktXIPmeZoDLOxtUI/GcT8QGLrQesUYfFoXUlGulVI6P0M6igPLmadPn/j08sJ1e+g5Sq8FvB8c+xspjdBTCQZEMrZl4dPLC+uy8o+9LBoCH/cCZ+T6u1/+t35u3g/swx9/+GmH88z6u//uH/qcv+vv//5r+/vf5W//+19eeP3Dr7/7Wv6+T/34d3/ff//S9/u7rmA+m4/3O3bvP/Cv/t0/89/+4b/103b+v5/9kRunDtvf/7lO7dJhen17Z10NvxrP+cqybXSv4fjsMZqsJofs7aX/2QngSTZO5+VN+ReNhOvvend6d/IqFksJMKmZGiiYUcpKCZ3NqcOjSP8Q8H780qv1BkiDbvSh/7bAiDxmvEPDT3rAsxZFJI+oqyYwNN2VCQAKDxmGaLiojOuhXedgIXMQRIX5TCbxIGfVQ6eJhRO4ykz8IidlNmql7UkS4N8neylAjhHuc6qvpsyOGOXSfZI8Sx86V8xNchkquM9pFmkIClSR2ZOuezoZgmQxFP9Vn9Rag2TiZ31HsLptfpcRzcS4H8MfDci5Q6S0ivIMCw3kqLfmZ5vp7OitSX4j6ptkkgTowymrJpFSAAY+XCYi/pAzybaIrdsOJlFi6jS21mm1qwE12UsgvUj3U2M2TS9G9zkscmqjTmkMC1xnjAe49+/y+sXAUxk5PqhjeerHhPZCqzrcVr3dTMhSXmIUIgoKGyxhIVurhH9LMHPSGKTRyWNwzRkvGQ+wa2ooDIRKFtMiTKAO6+inPkH30JxgatQEoIRjJdhFLeb5g85xHnrJsdRFV14XrGRGqfQAfHru9BQC1m54lxDkxhoVW4uKsMuVxWOxkXCT+0qXUhtmRs8Fn5oLToyzEOhjo8pGSeMKM3GO5dwjeFkpZyHbuxZPWgoSvNM96zEWqVElLaBPT1fWpQS6roAm1Xwhw8NSOOBlWpN2VQtE2T3j1ulAXiTcNrUavLdIaFVYLUs5i6uRJXh+hE382/sbKSfWVASGtIOj7rR+kCdYWQ/S6JSuUa9igxTJ6eenK9ftmc+fvyOVwtt+sNfGelv5+vbGH3/8ke4aRVvLE9kWcpZ2hbc5KhfFaFIxPjr42IjK8Ex8ySm0nZzRK/d2p/bGyGKN9DEoKVHSRrcucew4PIxBGoNyfGM147oZ9AFHhbRCWTjGHXqhrE5yo44OVfbkt+rcDocL+Jq5daH7e23kkWBdWOh4OU4q6F53gYfrKgS8afY55eg8D7lHqbMQ4EOwszA7AYIUgau2HmDgIKXMZdtU6PiQxXXK0BtjmA4fQxyvACAFCncstLumxajWNKxlMsqi0+tzXpt4D6g1dE9ivCCZkUOo8Bz5iETdmSA0oY8R/+2Q0sKES8eAWjUnnjyJtuzQdnWrNy5U7xy9k8vKD7/+Dc/XjWVZGD6CQaKu0nQwKqnQh5ibKRemm9d5UAf4oQOVKDbqubsfIMvKBH1IAqLraLTeA7BOGnlMxpIzuRSWRUK/I2gnhodQbox9+ggx7xwRUiu0RBzoR8MwtpLYU4MhF8aSV2x7uDA5cNkusiEGSk6UtUQCoFg/wf1kiYL09EgWGl0pzCSco2vY2eKwzWVRl+xDCTE6YmoM4s+BGC1ccsaDtCKhS8VGiXkHq6x3WuthhJCgcF7PTFBsWVmvz1h+EyM1XXSNXev76XKFpAS2ehTdJmC+dWlYeYB+3ZKAqZNVlkm0EzhxUzGrsJ5Y142tLOy3G71VssGlLPzT3/0GgNvtnbe3O19f3/GuUcF1XZTI9NAKNI2US2MRdR7JWiuBoq15w1Ihs+gMcQ/wo4emhJIUHztff/pKKoXlsjI69OrSEPBEq2ou5GCJSpwaDBkyYE5ZF+QitnK/H3z58iP7frCtK2NUem3kSOq+f3piWaUhgUvcfo6lbosENZWEGXVbaDmB5YhlgzoStYHZQs7rCWxMBiouZ7sRxgcpx5p3C6BHq9osTDKi4dPG1JRQ0rqsIdKc5pheh64O5Gxu1P2IYsKZnCt6fE4wiXMykndakjBrKpk+xE4ZcT7WEKZNIcztgdi6Z+oInccRoFQ0xAYCylJOElTNMs9IeQkmd8NsCfBL/27c7uxH1Tk/wrFyWSDO7xZ51QMc9xgzUYOuz/EJ0yjcdCp0UgCgHoB+mEaYwJiZoMh5Z7Dfb9TWJHpqMw9SwyqRyWlhvT7hZnx7/xN9dMomLbY+brqGBPnpSVp1JRo0Acwmc1pCI63mOruTmjJ77Wri2UK2zPP2QnMd089Pn8SgM+VUe+3nesA6ZXG+FOf+btjQaOL1stBb4+3rm2JWE3A1vPDldcf9Tl5DQsJm/RZF2WQ6RZxQ/ApWbJPOmZHZlitLWYNBNbBc9f2Txqgv6YL7ndF2/tk//x3ffffCd59fSAm+/PFPLDnz6fMnat857gfPT4NtfeJ6Me77wZ9+/EL3nR+//Jm8wm/9N78IOPiP/68/8D/5P/1O7sfdGUdVMZUucU4W+nCO0WlD55JGNJ3aDrZt4z/6j/5Dnq5Xvvv0meO+s99ulEUmN1+/fpNpzSLmibnAgm1ZeH975fb+zvPzVQLOMXK7rAu9D+77Hvs3MTVjZ3PYfI7hBpBdCvXYacchOYkkw4DJDpC2lqQn1iVzrzu1N0waIbQmofptETNjKYtYpT2YKu4hQxJ5pmvN57yQ8sIR7NtUNhyLcSM1ScboIRAs7bYp+H95uij/O+6YhQxGgMzz2blJ66V+YIyKAZJkqd47n56fKDlze3ujd7Fot23lu+8+8/7+ztvtnW3R6G4PxqMFW75E/O3NyXklWSHKPVqLzzTlobXVSao/3R6TCVD/8uOfgUHOxPMwLs9PrJftNO15vr7wVz/8kf/8f/q/p5b2965Jd7jVxtKh50S5Xnj5/koblS/fXslFI/DXp42yLJRVsi77cVPuaF2qDtnIi/bpsXdSyizryuwY9t6odQRryLB8kNI0iBmqMT/sc5GMJptRja9jr+CZy/bpAWp9KPTNEmUppDzCVV1tASfOna482crK1AZNrtHckgOMMgc6I9yyUxpMdpWjcyCQN40Mp0EbO25X1kuGJCJHi7iek+rb4ZLOWcqGjy7Nwvl+HkxZH0ydJbF6HrXAiLNgvkpZg1G9MCVlzDI5J+57xY5GKhtYp97eyVlGRdJOnLW9mlJYooaZVhuJMnVdCefaaUQVmqCNINOYnc8AtEdTAE/eNa1TtkKLeDcbliNyxB7PbNnWqDUhTeddjWqxLKpJRpUURkofmpJpYebBfQw1O4nsN6mGP+pBOwRCZhLDpLXl7mqkdOn3rsuVyV7rXZCYhVZTKavuzSlr0MlWKEX1meqsfu4nmVLEdJRlLPCgX/L6xcBT8iieprVwdI81Q8EJPKhbkc7gPscdzr9VTXB24wUSATFfav4Q4GwhvPagGYvNY2k+GJ3YE0N9fAp8RItPzNgkCD3MpNljE1RXZFa3Sh37HEmbW1DnjDOhng5uvcl9Tgo90+tAiPYYNdhJcY9M851MSMyyDgCTKNijr8D5XftkjzhYiuudhVcwnlThB7XQJ6Mg2FZRtI9IoGqXnlR2AXdreRTFzKJ0jiackJ3+rcczFnVQhVoPLRxPdo67TeRc9ZScyOZ3cAs02gnhtEr2zLLECEHv9FZp7TgpocXD7jyg8zme4aOxrJmnpwufv3+RPtS3b1iFqy3cDmOMgx6MtDxWXU9aA3gSlTGNAEoJl7cA2x7rZ7IYEuQs9heDk+BqUbgyi845MjSzSc7V2UYV0rwoEfY8daWGOipDz3nqSTEZG0003KmjMYY68hInjs66DTz1E3jqIbTiLI9dYQpXYjPZuQ6x2c2agvLxK/6hxpBiLYU+CDJKY/ggx/zvGAmzByJ+fvtgg8h2fIrZWdy7OBoshZBgzBj74/A5E6YAlywOsGQP2ulkWcxgyzmi8OE60OEq/bSZ7D3GPiyAjEHGW8NbFDxorVvWOE8uIbh7AnGPuJZM7BIL7bmz6+Mzks1lMQ8zOzsxj5s2W1ghEGMeOyBNHO/xoykYmxYaOzF697FbYVlDyt6IjTxO8HteVwoab/cpeJuZ2nr6fR4uovEaJkCq5JNObhPp/xDNTpcTmyzUEE9Ui0frNxLXbBOwtLOxIPrvBOciezaLziNMAwJAWj3xyfoznRM+gto85glhZ+gk2FG4x2jxY+RPFvJJzi3oTHA6LbRf5pngAerlD/FzuJ+aZePDNVl871M4Op5Bjo5eC0DOUmIpmafLBUsydOh98Pr2rsRtdHKIQdZIBtKHs3i+f+yQ2DtBFT/3jX4X66Gf9yVFDDn2SgEWVoEakVgxtO8VJdT9U2GsdpTRI3mK0bdgZ+33nd4aJSWO5oxW5QyZEtuyBNgRkPBMxofYHvbhHJFGVojto5HH7qF14HNkW0m0GLnBlY73nHmDmNYR23gwJR42x0Rx4I/9+sEpULhqBJ9HVaekbY6TASPynQ/HwWPPRBFGKpGbzOsd5z1QcPoQGwh23nnFkcR+aDva1IGYudjJkIugEOfTiJyu9R7ddP1didwlzVFZDPrMsT5kXDHCPdl4Pq/eFbEEdouN58PP2JXOuzHO+ziZ7hIt9bPrDRHvI9Ee9lgfJVscjMEkCFZuyiU0BzWaflbfUfQ1j2aiR7PSAzy0LF3SlAWiAaUsLOuKp6LrT2IdWEr0vuHeqPsdY+B9Jxk8PV1otbHfa+R90kvxlGj3W8gexBqIxxi4OiPiuUJnjLJPx98+2faJkjNrWShbxlKnBqPdLIuVyEKxwWLO55fv+dUP37Ou0np5f3tnXRZeXp7wIUdIOUtlel8pi/HTV40pH4caYL+spIDv/rDxH/4X3+NVZhztfuDdyemqQmlZaD7YW6eOQe2dGvlu65Wn5yf+h/wHfP70wq++/0HA09t7ANmJP/34I7U2tmiqMZy1FK7byrevX3h7/cbnTy8sS+G277jBdtlovfP2/o7lHA2hMCsKUQobasaUJDBnWRb22zt131mWEEj2FuOlWtepD9Zt4XJZeNtvHO3AioMNaj3IybisK0spbMvKcQxalZvpGE4p24dnra2e80IqK/c6aMNJyxNuiaNOtoyAp1Ybl21lXQr3+50+Ok8vT4BzP96RqL8a2xbnPBajosAeBf7U5kspcRx3eq388N1n1lJ4/fqVVg/qceN6vfCrX/3At9dXXl+/cb0sLCVRm+JcyksUwhu9O606OW+ktFC78tb5HXIqtNa4H3s0oEwFr0sXsbXGH/7634APSoFSjHVJPH//icvzhYL26Oen7/h0PJNHov4Da9Ldqb1jLhMNgfEr7aj0XlnM1NwLpiZGsJAqZjFinWKSJ82ado5vRTLhkhEZvYVeZziWnXqjH0Gnfxt4Ip5/b11AQFoilxYYdB4yhtirppE2j7y3h9aOxyTPyU6ZoY/IraLhp+sIFvb57nbm65OWPs8pNTXi/A39wzYnjM4zUaCSZYsUfNaWcwpqHpcjxtLszN1txuvJ/EfMqRSO2EQs1JnmMfo4lDcknTnZLPQv4zycDd7Ir6eGkbvF3836W6MtMxZPCPoMemfCyCOfj0aMJz9j+fwRZYLRnIyrt5gWYeqDkuZdfdQygUUkdaTjvug6++g/WyfTUTjlBJVzTJEAvKKyYjKhLfGzcbkRbzTfPyW5ShN51xjadyl9UA+zB0gqOQy50eqrf6xh/uHXv8Oo3XImmj6g1unwZSTbYp3HSEx+kDKlpfAQ/aqtovGXhiVCzHaw1/upnVSmLkJS0vaQVZQ4JfNBGbSYidSdTmAr0wHsw1IBnHEc4LDaEo9bttSj9SigEuQ7p+iXByWuObRBbgtlGJe80j3xvieJwQ7R+lIuSoCFodBHJ6/x3QOXOWd2JzN0BGRlot5rQZu+i/s5bbdumt/36AzpPphozQ50ogtgsvcmuvsmRxlLhi0mB7I2GPc7zQ/WVQjCGLJ535ZQvgdGa/QKA837lkUIOmnFRsP6AQfQ9N2l0xTjUeNGKi4HouGMPp8l2BjS6WgHYxjVenCDnEzD6JjLIeb5umhsrA2O98a3n75xScY1JS7XhadPG+U6GLbztf6RvVYOBnnb+f6HlXpP1MMo2UlWSe0gOVxyYrXMdSjg+ICbGdUMtpWGcb/d1U0P56ZsEkBPOXNBNsiv377AgC0vGhnondIS1AVSw9OI0Y9gtGWDLbFeC5d05ekC67qL4dUyeCTox8DrwPbBky1c1pXrMJajc4ni9Ah9rq13LqOB1VM7Ja0Khi3pENwuF6HxtaGuO0AIyqepczGiQIlDwqHF+NxaCmYe9qmal+99MBon28RMAMN+7Lg7k9SUYv9hMMItTnvTmKJ4D2GYEfDMWQYGkyC6PqGNYkEFbC6BwTmXPAuwjsbLlmVhDLHeSkTbqR3nzEJkiFBkmZE6qQ/qqOztwK2RivNUEr0dvH37Snp5Yi1XctpYMniM6uy3OzllGFvgaZl2KMGYemCjz8J6BB4t6q0ty4fC1IOlpbGGXIzRG7W2D4BLVVKRi5KVIUC9uoCYkogZbsVBsak703GMKHKY4FKwDGxV4tFtkNfC86fPGsVw49j7KXhZlsLLy2fKmlk3LYD7fqP1g8Hg+nSRbtAE84NZ5O4aG7U5ymlY0ahkxs9nPwG5E4iMg7pYGEwcXe2oEgAanAlTCsK6GJyxhoJGra55ptVd+6QPck5sl4X9/eDt9idu+5+5t69ctyeMxNvtjZwLize6N45xp2yFbc003tmrs9eEx35UomPkvnPb99DnSlzWjRQjirNwnmL0HkXB5bqQroW1qIPf9ztPLy/8s//uP8f+63/Jn/78hZSA5Nxu7wyHZdvktDYZxq2frBr6wHsV+xbDvaHOn35flqS14862Lupe5oHlLmA8DTKNfryx9xv3xbF24Xq5UlJhXZ4YY4R2QGKxxD52hjfS5aL7937j9e2dt2+vTKOM4/0b9/s7n3//K56fr1wui4C92fw02FvjvVUWU2yt+yFW1uhqUtQ70xn2qOA2+LSr8KeHw1g4TloachMofgLYPRxbPMbVPcCWmeN4xD+H0PWY9HQB1H0ctH6TS9JwcgASdbwp6St2snYsO5nJ/ITqWR3DsZMw1pKgV0Y/cBo2Ohk1r/qAXBYul2fwjvdOPQ5a6+Sk89vHZCyrpaDxx41lWTGTc5HZCrZSWRjmHClGUDNYKTK9aOpwHKM9gBgzrlZoXqU7FRoYeTRgcC2E3lmcXYCZfFp7vUXzJGzFu3K3kYIN2OG+S8+qLC+QnP19p7WD1g6MQlnEGG/DaK83BpBHoZBZzcTAz3G2JhM4UystRFxvh7QkU3k4G/70uvN+b9S9cr2s/JPf/krM0JHorXK/3diuzzxtVxbTs7hc1ygmCxOh/e77Qh9PvP/+iXo/lMOY8fL8mdHh/b0yPEThIyG97zstxrbHGIyjnmfdfj/Y7zv7fqe1na+vP1Lbzn5/x0ymHEteWJ8W1uTkdEg4HCenVfGkLYyeuLXG9ekTP/zmn/Dr3/9Tvvv+E7fbF263yn/5b/4kYCUtPF1Wnl++4+3bV+7vb5S8sZYsXY0qluY6Ks95sJ4OyX//q1c43j1G7jKtSpexunK7w9qjQbEfjP2g9R1n8Nvf/4ZPlxeeRoJb5afjj3z38sLvf/973t7eue8Hv375zHCnBltq740a2o7Lp098//JMjoJ4yxuWEtt1Va5vhbItLNsaY9VR0zjcb3eWnHj5/pMKrzqwsWLJ2K4XMZr3Gwas60ZrjffbnbRt2OXCll8orUM6gE4pu/KLkEi4Gfia8CWR1yXATuWfCTW0tm2ljU7tle1ibGYsmwCL4xihEzRjgnO5FLb1Slmlb9qH6qsfPn8XOZz2ZauVp+dnlnWVJfpw1lrVRDZnXRYu28r9LmOGbV3JOfP09IRxZV1+JfCmNp6vT3x6fua6bZScuN3fcJzLy5XhzrEfKkZzoTWN/v7w9EJKmW/fXgF4elq5786Xr43r9RPXpxfeXu/U2nl+/h6G8cPLEziUJXSWWuP5c+byNKsFyXSMUfnHVuUA7nRSWrlcf8t9P/hX//KV7UnnZ14WfMnc98K+w9cvr6TcKavyg5Iyy6pzvI0amE7kruPQviMxJNRHOatW5T3UKnMiHB9itVbGKTGAy5kOYmvEF8qhlakYYmxPF2S0ZWcsbvWgt4NlSZSktabA3uN9ygmMJLTmcoCtgzXyZWC4XPeik7o3TbWU7UouG9v2Pbk8c/R8AkLCR5xlU/y633adWV2AW8pOWhZyEf40HBoDi0bW1MEFOedN2YTaxMZJecW73NUCi6KUosZA3QXADtU9jTC0WKbroIkRmjJHVY5zxOTHuq7gHlMU/kFbFRj6s8uczkgpJhi6xtBMzB8fQYnwJA1ek6HQ6FUH22z+nPV9O0FGj0YCUW0f7a7miqfzWY2uMex10Yhdq3fA+e7TC87g/fbOYKeOG54HaRs0G7SRNKGCsSxPTBSkjUavlXXJJ0PUTCzEMQa3910/mxKWl0du4YP9dugcWBcYTq+VlDLXbdE564MeirC/5PWLgSeLxHgitvic61NBcBaK7tFB8EBeH4n42WE3HoFiVqwnsuvMEaWzDTBf50d7sI9msRGsjEATtXEfHzI7pyNAnRytefN8Is9TVynngsXM6AkLOqLhDSMNBRgs/d23eF6fnx/+QH0/fIkJitmHP52d2FNMbnbhkFJQdiHoCY9Oe1wbcW/nO57dEz9/n8/QosOfZh50cnBjyOdnoG4UfSlQsmCzEEjrSdI41wRnJ/ec4U3xbcfjfkw9L49xCO8CUrIJ/03nPYoRKQNPQpbFMgq7+ujk1lZF93dRJlvd1XUwV7fZoITeV/JO9jjQ3Vl6PzsdLTovWk8TqR+IxZbinj2YdbMEGQHIfmS3/Cw/c05mnwStRfNcSpINeImie8SIlE/OEQ82Dz7Rg9DtkJ5PAooFiwc5Jbh3pvj+7ErPZ+wu4OVhvioWHoFYf1DkidgduhNw6opBMFHcH3v6w2vEqFyaY3B8aBjEmMa5Ju3DP56tD6LjMSY8NKnG8/s81hk+n4afIWNuowf4HjCXWu2nSv6DRBDrPhneLRiCYpS5B8Po1B2y6MhLy0zUZ8W7KVQ9InZYXNYkGTx2vH8AS/7WtWjDnrFVwL422xSsVX4SsXX+e6ZxwKOTPtftKUo9Yzj2eCDnIx3n85nPcB7yvUUOM4GjuG49l0RZltBmqQHo+6NrZpNBF/FkzBhi6hMQe8OC0u2zCzc/Q7+nUxsQpsDVGT99gpS6E3O7PAgg8Z1P4Xl//N255OY/ECCYE4onyIlFa6LiFoDhGfMCoZh7c8lxXfo79xGAxSOePrQU7FwHc2/iIRQaLI3Zncols64rl+tF4ylj3tHHs9TXeKz1aSRxfscYc3K0Hk4hbptAZw8gRyPVy5pDAy8aMTYYrYrpOy4xNhDP0udlTNYTeJhq3G67QPxWkabTpOMnLpeN6/VyakLM+2HRdHL8HN13jyZTJHKaM4gu8uzgzv87z5nHz2mxeYCvfHjFGfMheJyMq0hg1fV2zoQArY+p5abvGwyn+F0dwDg/zy6y/r1GCvzBNIsnKJAsfjZp3FyhQI6rPuL9YmRD+rFi9cajOPfp2Zn8kEbp+h7fYp60M854gNNafjNqxXt/2DC6vkfISGky0TzYnj/fHuc9N33eiP8eroAWKzn2QZKm4lC+Mjve7tLdC4Iaky0271tKhuUkEfBhJ6A694eFDbqZxqu9D+6r3JhaG+ez6SO0wbwh58IaYOWCkU82Q1oyi0N3o9gz46Lx82TG0/UJH7Bug8lAH8G8e6pFo/J71QjiIeeg1gaLyShEnTo5Rg9CqxM1r3KGskhjM5spPkeOitkZK4crfl+uKlZb77zddl7f77ztB+twbnuNf5PYj87RxCbvMTIJsK5F+mlpMhF+wetscESOFzmgx745GyI9GBpdelYp9m1Ca3+EwH4OPbPj2LGshkofnXZ2+cFGR/ylJJ1M97PhIAfQGUvmOtN9D5nSaHKEW/aYlvBgSazSOQYD0FzGJ57CnatV5W3JYmQsNgXBqhsf9ybBptX40xz18xlLZ94bZ/yIMfzZZfY461PE5u5NY13JaHvkBbGXRqzpUx8Hoh4L8xLzaFKEUZRBj6TTx2Sn63qHDxj2kBXI+lWWlTkJQkysWEpi5biJsZqm+PRMkA9Saawb+rVCvyRKgW0VS/npaQEnBL6NVoOBYZz1zjFq7NN//KW4Z8GSVcG92iKpEDJ9jmu7TDqWBbEJTefkjEFzWudcRwEyzITPYm0xLNhRUTPxqPFm3TlzV5sPzWf+EvF7+Hk2zc/Vdwl203yfaLI5H/K7j3E3nuG5fWeS9LgqNa2G4lfKWfvDVQ2ZZXJZJDp+5hqx1mYufuZ+IxjjevvBOM+S2Gi6nvm583tFzqu3mfdpLubzAGIGcUspWLUCsnOw72dD6ZwmSBqTtR4H0lw/H3Kxjzn5GA9X5tNB9JFiYNip/TRz3THv52yAP75sfCUxeh9f/8M9MNO01/k0fv5Leqkzd9AvPYGZbygm6B8EAzm0xAaxN1IQQmTXFLcxwEjjMX1iwQBP9mFJz0kY5RrTUET4pHEKrfPhGf8jr1+u8VTKh0UeKdqZ2M5gN2+65kxrGyw5cblczoeacgTWoFV610zzdllptWlOMkZ+bLR5i5jYzSzoJyUu8zhsJ9NhxJzlTIqOVoP+PuZxJ9YQU3ZT7C3LiTWvDO98e/umwsvKpAZQu2N1kCJzywaeHfIsRoweStBKrmfSG2MenhSYrYj2Fmg2XUmeDiPdEynZQ/KABloE8aI7sqREG4O9d1nLx3iiIweyGdBOl6hYtOtSWJeV67WwLVP8fZBsxR16n5tai9XMSYsS7849nnLDMpTlkZCPURk01lUoak5FM7RbgTYYuQclfojNFGJ6mAXluLAuC82heexyd277nWRwWRKeYbksLGkh5wVI9Db4419/oQ99dqfz9ucvtN4ZbZBGYbXCRiK7sWAUh6fhJDqldvK2kstKzonDjG/twH2wph1jMEalJLiUjToq/dg1qz+cUhbcyxkh+1yf9NBuMD3bYVxG4joyn22juLM0eMkrny6LhK1H5/ADgDXmlHOCY2/cjgNbN0YAh87g1r6y5sTz5YVUStQ4c5xBXXlvnUHnOKLAccOGk312s+ceNpYlOklOJPz6edwl8BsJIBi1KSkppURiFxLl9jjo5t8ZUX2kx2HdQvx2KRPAVWyRWHzoufgEfqafYppxV0VPyaRh0TnQ15jMoiUXeq8cx11JoIGHpXqPkYQlvM4/Mp9q3bnfO8fh1Gq0Vui18/auTsHz9Xteri98en6Sq2KrlEXJSGsVp1PGFD7UWIhN3SsiPzEJvw6fiWEcviMO7T5IwJbE3SnJEEewcPg4iwIfovNjAmYyOZwwwc2phxgi3gQpLotYGzktYBnI0m5hMPo9ELYcjFaJlK9r4b0e7Eeltgc1fAzn7f1Gys9cL0+8375x3+8s60Iqy2kcsC2bnu8Y9NZprZ7JQN4WGVUsq9izBj46o+oz+ug6Dxy2ZYtRAGl2kHOwTx4MFiA6RXO96JWzHKR6J1hjg6XkEzD0Mbi/3WHA8/WF+/MdGry/3k5WiaVMrXJSebk+0Xql3Vs4Dhq5LxRfed6ewaHXFkydhSWtlFSC6SThzJyzhHrdQ5NJY3nvb6/0enBcVp4uG7/64Xva6Hz59o3lsvLf/u/8B/zV3/yRL19fKetKsXCgcaMe/UwjbQqUBtU2eYiQFmd4UwfRCrkUscgwvr19ZT/UQS7F+NWvvqO1KnZYvFdtB7ka8Bzn28zGHE+dYeoqG1d6M2o9+Ou/+jfc7+/sxw2jY3Renjcu2yf+2e9/z9PTlbe3N0Z3colR+mwkH9jIbJeVkgv1ftCHmEuGioIcSZ+K44WS1Q1taLSDSBAFBkeCmfXspa8CPcVYcoCEOZv0i6zrrJ6gKAMIlsDQd6tHDwckAQRiJM/mhYrBbIlaK73LqhqHYz/Oc34QxZ5JZ2QWoBqRiS5ukmnGGJU+7lhWXFiCfMNN53AZib1W7ve7WIZZBXsf0mKSnkUwBPpkTxprEWP5sI4n6XzhYlKe6HZSQjWS4lRaxZhtrZNIPF8W7u87ve5YoCFq1skYYWbjPguLSOpUMMD92ENnKtFHofmGeVKX2QsJOQgOn6KzYCWani7NwrIILB0O9zfpx6zrGtozG9nU/Nnvr9zaIeDo3vixfGNZCmXLJwh31He676yspJGp376Rl8zTywvbcuH5+RPTHnt5+URiYb+/aQw2iXn6/PKIS/d956gHlx8u0eDUuWteuL8f/PjjK+/bzvuyC3hqg6flSkuZrYCyWmlgXS+JUjZSXtnf7nIzPDTGerkup+Dy9Vp4fln5+vqVP3/9kX/1V/+at/c3vr7fuFwGX253fvz2Rq8HT9vKVgo/vX+j1sbtqCxL4bf/9Ld8/tVnbPmQgP8Dr5QzZd3otWv8x0qAr8qDe3sABcMGvhiSonBe9ze4J3ru5CWTS6Ja48v9jb/+8U/89NMXXj5/JuXM17d3HFguGw2R7wXYDWjSj3l+eQaDn768YclYt8x+27ndBq3KPXtbryTLjNqptfGl/ino+UZZMqlk/uYPf81RD379u19jGb7++I2UjMu6cLx/Yb/f+fzywmVb+fr+lT7E+h0O9+M4gaIWgPN1k4bSbEolBql26rHHmaypheGD40sFg229gBtHHZSysi5X7vWVfv/Ky9OLBKf9jnfndpPmU62VddnY1k1Oqe/vLJuY1L3ewUwjjNpC9Hqn3e4cQ+y6EUB/bTs5J9Z1xfEA4iqpd5ZV433f3t5Vk+VV9ctRQ1M28e3bT4zR2ZYVp/PTT38glcLT84VkB61943rdSGnluL/hY3C51gBfbuTiLNtgDON+g21dFbvbO6Pd+Fjq/30v90yrg1q/UZKTl8T1+RMvn5643d44joYnMWXpjVKeeLn+IEAuw7Hfqb1LNwvFQnckQp0LLKFbmYwj1viWckjDpCj006lbp/p0gk4TMFLJ6H0o34raYaAarg4NFFpVHTgb0x7rwnCWdInGlQD42jX9sq3Kifvo1KY8Kpd83p/edW48f/rE5XJlb1VGPgHqXy4r27ZQiiQZ9qOfI6uzITx79QKmhBP0o2JWA/jX+WYYa1mUu9U2t5vqQ7NT6JvhWE4s63I2U3StTskFcqbtHUuZz58/U4/K1y9fWZeNdd1UE3k4GadHqfDQpZnNK8LVDvZwSr2WDUcjjN07bSi+GnCaoLny09blpGo2zpFEj7/Teec0DpLlmECSk+iSxR4b7aPrIIBygZILywI5Ne67WM5v70Td/MBipCflLNtCzmIB9965HX8mpcy2bSTrgX50YRlRA5a0qoG1Flrv7EdDt/Yh6D4mOp8z7pXaNcJM4sxfpzvgL3n9YuCp91BJn25oE6GMsZUTRWTW4DE/mRRwNXMZgtt2YryBJE4nlkBcc6Dz9cH4ccA8usk/a7s8ZjkD4hW6fHbPeegzBS2wTWcVV1HuJiRwQHQYBzlpDEhi2YnimS0XbE3sNdM84V4fIOcJ+KoyFloopNtNdKtkD5thY9qCD1wKtCy5AGJTqPke3TznBOoSgUp+QGo9ipczYQ2o8mRdTeQy7ouZEvwcY3XDh8YEI9hZzHxPzpEtMSfrTY87wDT/AMvOGd9UZnc/XHSSSZx9dKZLGR4J9VBAK26yiQ9Az8YEHUYINZrG1UphvVwpKBltbXC/H+w3BdNCwZqx5Y3snWpyNHJziovmurqFF0wWi2w+tx69EDOKDYYPliHKZB+dMhp5tFM/p7s0qDjbyaF91fTdLMWeSJzjkDnAIIYEY5ek9T3F9+WeINFoSyvJBniNbm4il4VlWfEilH8cgzqceztIY+WJEp3pwZKkh0BvYjM4KodciXe2dAY6IegqVpmHH0L8Z6eiR5C2pAfuwfRJ00L8RLw99I8CDY+4MB3LBFjPTTNvnZ+oufb3/LcfWF8TTT/X3LT3PBGHDzHBz7Hd2Ynxx1+d7+VzEad5UBqWCrlspCSR2Nm5nRpHhMbW6P5hbrwJ8J2uWgZu6kRCME/scQE+vyNn6NQ9MgWr2Y2R1lnCrHwojGeHVteVI77pnjmT5TTHgjCkwWYPwUL/4GhodPENfAoNRrGc5eomV7hGrZXWnCkf8GCzzc5wdECCDTTJ8GdmHetvftefiTVKOVxxOlgKs8MXJ010WxHjw+20lk1warlwPtdZ4X5YF0bokJ0HkFb8dEVpPRLC8XgGAcJ6xCuzyWpUV2j0oUI3ZUoqZErs/7nnJe6dXPso5xyND5jdpikYWrK0tJZFwuq1VvZkcg5Mhr8JNL1cLxLFjn8fX+XxnoSjTJq6ANKFmQKynCMAk3nkErUeei45p2BC9XNslwBxelfC3JvTasNILAuPM0cnZmBdzr7f2Y87td3po5LStOJNLEth2xbF0tZDe0pJ4kl9j0x2eGe40bzRhgDQ3sXsBDuBPJkcxPecCwedXTkoI5ON60y2QeSfPpmdc+wxnXHXztyCR4I9R+YRgEsIT2uPlvjwNJuIeBQObg+nISwYGXHGn2f5+MC4Njs15DrtFKlNIYCai1ZUDzaUOpyh55Ahl0RZMutaZF2diU629lIyjZ8Foiw2eHSwtatHMFU8wKsRzMGM0yLO6idbDdvqPllcj8X5M+auz4/zMwdqwzlq5WiTdcfJRB5IwHh0jSwnSxTT/eu9k7ORi0CKPIG2MCMxoJxNFN2jNoaE8EcieYGRef12133qC6UkSklkOmkYlUquievLM26F+/2mJmYSE8BSFoPDhhoMSTpnEJ3qiHlLUd5U8sCshebZoN4H99vBt6/v3G+N+61x7O/UeldCD2ECIy54CSt0m13pBBbPOufMEqPPwwyncdvf6K5mz+vrK+/3m0xGHL58fZPYeq3CVVfj7f0usWofpGxcny6sW3nk/f/YSwGb0RRXZ2ydZ1z/8B7DwBNyD3Y0KkLX/9nQWDSdW9sZyUlrpvYDhvJznb8TcEdSEr3jMUKTjjsY1GhiW1N+797DoXpQ76DWTMEYtKZxWO8wfCF7Ca2+we24QTL2tgcg4bR+0EflqDeg0VtjuHPfD9wRIJAgDTFtxoBknRYSjtofThqD3EdovXUx/E3xwFGzb7JPxoBajxNUPupO7o19l8MuS4xQDeWyg0EfTWdt1YeOIUCrN7FlejMBX6PSuvbdmLqJCUglGPXBCAOSZ0aALHs0I1cLgLEPeTq7tEplbjD3wKZ94yGFMEFw0P0bg1LCXWwcwcJrjCYtUR/Ki/fjxlHvv2hN+ujRNNiRYPXDqX3fh0CWPCgGW9lIXEj2DKgZKCew6TQpRt6pecPDkEd55KxVFwzdW4+8gTAVSS5QauY0M7kVj23mQLqXZ/44y+6Qm5jaPJbt1MO02VC2qf8EZx4an3EKePsDeDrXy3gw0y0llmVhWZcQNM9RLqlWXJA7bWtxLkaDKkceKE3f0O7LkXnH/fJRQ4ZF+cmQHamOlyBR+BDL0KPGSvbQoJqp/wlHDJ06OQx9jDDP6IM29H45aoZea+TESc+Rx5tNsMXSw91uaiMKz3OsB8s2mMYxYK5nqUp4jlhhTB0rxWyLfNCwECOXtjE4+Qxk48zx+hCwlLLkQgbjTHdnLj01kSf7O0pmcnKwHns93I3DIGbWsh5YwXRCLjnYtFHrKVcWuFirGt9xI06QECQH8lFn8h96/WLg6The4399KCY9BLOnUOaHZBoIscJEXhJHPThqWHObyQkgFnvrXWKPTYt+iw6Y9XzejCn0lVIJ6rVeO/XxIMYs3DqWW2zagaozJIg8nL3tEYy7Oi5JYpM+csiZD5ZFxWU7DhILKWWW7QLbhZ++De6jQ1hMWtb3VQBRYCrJgqARHU0XlfXpWjSnXTujVwlYHpoXZd0oqXBZl2BnpnMWdIxQwO8fAkVs7NGb3ENMOyMvSwAEIxagkluAlAZYJ2+JclkBOdHszalH4/1+0xiYZelOJyNdkhDRSBTxh/27nAALS1IxuKwCP7w1URWz4Uen1/0UW0168GJwubGRhGXVrg09ImB4o2Str7QULGcWW1mak+vgdm/c3w/acYAPtqbv//31B47j4NZvDG8M76xjkN24eqF45ok1iqDQp6gVbw3MWRdJhNd2I4+Bty56exNjpAdtHnfqFKa2LHZZVyFfkuM5dn9X8Ckp0O1wvdiWDR+Vfd/PzkdZnpRwcyHbEd3TzGUrXJ+eubw8M3Kn9oP2rlno/vZOXi8UW/BwVtpKieRS7zFGO5OzHIXa0dSFn3syhVulxgrlhpWy9nStKgBzDmbcmIynJQpDJdoq8sQksQ/UfHUOHuDS7EA8RA4fnYcTK0imThyc14XDSGL45RARjLD02BfBloHQVnIgnpPq6AeYNoXlxwwR5UJOF+7vnd6M4e+ACuUcyXFvEgd9eirkYtxu6vQ9PT0pkTAdtrVXchKT7iHKF8jNWf5q5AosknAVoWM0brfX6N5v0YXnBJ5SihHJNIs0MAs6mEmTLYcwIDGOk5PMHnqrmMmRJanSZ7gOVzE+EjkX9r3R7wf7ced+38+RjlSyLFlzBkfsCuuUJZFsnCyKB4X4jOBB47YoIFVK1aPqXtgEjcbZXAhZaGpr+rNwXis5nLkYYp46H0YjPxx+Lu0EdZzjj0Y0NMzY1k3uU30/WQPex8lGkFi07OrzdAIM4LG3wcbKmlfWfGFJhX4PDUKIRGHR57uxbisY7Meh75IsEvTGumxctpUMtHXhxz/9gdYqX1+/Uo47Zb/x3fc/8Ktf/ZZlXSWgOVfQ2WCQ+HJJhazHyl7lUnS9XgKwjNELe/y614Ojdsr6RC6F45D24f2+n3t1BOjUFgH4728H22ZsV4vYoeLMRydlJTvffvoTt9sbtb3h3snZI6FJXC8rT5crx15pdbBtl+gdVcXCAQy50LV+4N45xp2jH7zfjsAz5ZxbSmYpmW1dKCkS9wlQWg66fGIKg9cu4Ko3NdE6EwUWg2cEoJTDRMTMpKk4s/hZYAzDWIEV9yQA2o1cLsyxHcU+AVJisAtwz1nFSSkS9OxN8WqMRm2VNtopIEtOkexXjIYljdjllE49zZ6V6/R+4AzygvTXLoWnl43ry0WARDLqHiDDUHJdLONVBeyyraScqEi3aszcI3RnunfKsmAp0fd6inN7c45jD3fDya5FI8oniEgAa4QYvJ5TrYOjdV7f36hd8WtgckU2AdJHCGc+XS9iR5bMGJ2j7mxpYdmuLEVsp/fbO/uhNZKsiC3tCW+DulfqUYP5lFnsQhqJP/71V9JiXL8XyHK9Ltih+zzeKpYT/2TVGr/tOzkXXl/f2bYrl+2JPe2klPn86ZMs0uuhOBYjRmawbcorGZXeOz/++a95f7vz0x++cOyN9/dKa0bvibe3nXq0iPWwbhsw6EOMPDN1tckDK+o2L7kI0H1eo/E1qOPGj1++MUi07vz5z3/iqJWX71/offCv/+pvTpDcm9GfjD/96SfqcfD8tLKshc/ff+L6tDAtVf7RVzCO+l459ioHN5x8WfUs7SyFBaw41DA5TGlwJOlApWBk7i7GrW/Glq+8fXul986ybGAW+0Jxqne5ZbZDY4w37mcjxdxQK0gmJzTlsLfbGzh8evkOc+O4i2lbe2epK3lbIbQev759jaZ1jSK2nc5d77dv3G9o3WK8fzlitCuTkjSc+gjeZNt1jkVMHr2R+qAcI56pY6vG1aapyP3eScnY1gu9N/b9BiYNu/e7Giavr686b58/MUGG5p08Gq3vii99MoTi7O9yU+s92BqAW8d6CtdeIy8FT04aamb03sVIzYUUrOR9r5H7lZPV07vW8DSZGqORUuHp+mud2X1Qq5oZdgEvhKvb4OXTNRgYAmGP/Z22L4xWsCwAvvrB+/7lHy14nUHrO9aMPl5JdsHWJwny743Xb1ozR4ZtKVy//0S278j8itEP+ti5XAolG/vxjo8GJva0e2OOtA3XGHEpqhmTbWKQHzUAHQvh8CwxdqQZNYcCZiNFciqzIT2degNl9gD1ElgKeZgs/WMB4uVDgyvyoQCoIEU98OEgC3BhjHCY7E16faZc7/L0xOXpmfVyCXdU5WP7rhHQ7MSkkgErORvrmpVreKfWu9ZBUc5PCH/X1pWPt6QR4iBrTMDDXblSGkOC+8GUn+SFGDRjulf30Ki9Xp7U9nA4jiPAV9XBT08v9N54f7+xrivretWoZGhJOM4abLq8ZNreuO23wDIKqchlUcSDuMGmWlu5mMXZl6LmmIBfnLeeiDktcGih99X7nYSTLwXDcRND3S2dYM/lcsVsYd/3ICmo0ZZzVs08HnIAxiDZYF3VhG99J+eFpWxYiGf3Q89bBAcxUVMyrmuJZ6Hn2l24Sx/O++0WgH9RPmUpNKig3se/NW3w971+ucaTHdERnf9kdlvsnJueuhdTRGs4tK6Cy5IsyM8w8OH6JgqY1GOnV226hGbaVRR6FAP9kfgBeA+2RHx+mjO8wUwYhtlyoq3qnB86qBCF8tykOMMP8CaRz6lHkWSHOnpQz4O9U4pQzTrmIlFXLU/01NWVSRhrPMl6vwFivqSkYNI8AjPSE+mIfYB5UCxF7ySZDoTzxumaVcYKRPH0mO/0KPrkkqIiYzIJ2lFphsTXXMlntyHxzUBsR5NgaU4ZyrRYdo1veeiMRFKZsz1YYsNpvZE8kXqSc4nLicmHs5RCssSwWZRGoEFuNJZN98BNxVjW3K6NQXLpcViROCy9gYli2mvQiw91gtKI0YZUSEPPZqr+72jjLkuheuPwrrl968FOggt6ln3IvSTVSlo2UaSzpl3r0QJQ4QSyMHWqGhp1nBbutkXXuRhjMY7kElYupsLDnUt05nu/07xipcKosQe2oEnKgagsQqtVeHd6O05QuDdndJPwrbtai6ZCDE+MbnjPwikmO29oPWosImn9xr8z9MxwHWoCpvJDwwNj0lbTZD+MCXx+YI7Yg1IckJOghTmGSQjnR7B7iIZrTalTkKlNwfrsU5wxQP8v2XRxCtekWGGcTKRgwBB7L5ah9BjUFe9n10dApCXHzRlUukvLwTw9WHkWygxDHVU53gUCcHawOnPc9wSf4uwSU8Pmo6KvsRZshPOen9T1yR4Ywa5wJtgzb2UTK2Kyz6LElvB/C6bFfEl0fuCkEq6Hvaozm2FZjHVLjGjHPH/+xLourFsmLwBdB12amF58J9ChHs/bLMYvJ/vEwwHF48HF2vX5wxYxEphsIwsksrUmEKOcH8qpLTBV7WNdTNIVKAnQPRFt/9jVBZ5OpXPd9C7wK6VMLgQDVNc7vJMSLGtRQlsrR90F6Jfp3qJYOLyRKerozafuigvTeSUFw7U3zQ/lUlgvF3Dn/X6n9E4ZstZ+ez/4+u2bANecg9ny0L8avXE/Kk+XC5dt0/j6EQ0YjGW9QO+0BqMlmoYwY2RY9sivr6+83+64B9hnKWJ3Z9+N0Xcl3Vz57C+4Q+06UzGjBTP09e2d2+1OzhfMOr0e5JTZlsK2PLOtT0z9ud7VGNjWHPetSw8vJ3prNCSam0th3QKwq4PpBtO7nMXqsWJoTGSyguVk01mWTMkLre0fHBBd4wYBYkKc8bEkf+Y4hJ/rSPFDalYempC9i6KfJyMttIsGak6lAPwMsXAmy/XBXn7sYYVTxfeU59liYJM1l84kFycYiRKC9qQzAarOkXantUwfG9kW1lWjmXSd+8VyADwa3+1jBPsy2A0+Qp8i7sMURXXByduy4KaCpZDwvGiMcOZIKCkeY3Dfj3lS6t5M9q8lLttC7oPmFu6JUzHOlBwbMiQxMO/6FWMguSQB4jnx9HRlWxeNl7vcsEYbHL2RGBqzMdmxjyBwbZdnPA3uR8OTUdaiAsiN7fJMWQotDGNqVfe+VRmX7DfOZ7a/V3Iy6vFOMmS8EDnXfj84DhVsrXa+/PSFY6+8f30XqNtgMvdFfjd635UVpoz7oPkOaaGsC93FRK3jwJOzXZ7JS4KtqRmcZNSTfGGMROmDdQlHxGPH3bguK9ftwvP1hSWLqbCUQsL59a9/zffff+Lzp8+kNGhVo9v/2MtRnu0JrHxgvgWrjhEaRclCymoK4mc+PX/i+emJdq/sHRn/ZI3R9v3OcT843l5prVHTO4/UQf+jJAnxejDeetNEw76L5SuwSPpZJauJPUzTB3/+9jeAmKe9K7fLXkitcG+VzmC7anSv1V3Vyp6iaehMht1lvYrN06NWodNo1KMyx/5zEaOy9crJPh2O90ZCBV19k35VXlawRO/aO+9vr2ecmOyPMd6UIwVQNAib92Vh787bXaNUPqKWMDW3zPjAxDWOWmm9c0FNiB7NdRrYbpRbmRK0kBbcBKLgJhasGfd94WQ7o7ylZDE93+46V5fyheGD1vrZpNqbWJy3tzs+nNf3C7V2vn59VVOoNp62T6xrUaMiQ9u/neYQ/+i6dJ3j5XJlu2xs1439OHh7qxxH0+jxuki8OueQ6Opn8370IYICYqXhPXKqGvEs41ScxvAMwdRVDGtnjoklmQ6FXoxTkQZUmJLkHECOfsZChwsLpTh3GWzEe03R8LKgM2HIOKU1TfEMB/oCbQ12vhiXmICrlGRY0D1jd+XAtbfgcYRr7ICcNywvQKaUxAUBrK0HUIIFgCaWzmyQlmXVSP+iPGgfezB0wlRmDbDJH6B2zqveb105dYR8EJamsbbmmakzRnmU9tBkfC2lsIAaGufslJ+MKI+ROR+dVKazc8OiHtXEUkzsNAndZxamBpslNf56b7MUPqUkklpa53UNDrJlSoynKe7prE7RFe1t1kfa85IcES7SuvG3p0WmK+1scmk0knMCadbcSm2mTtNky0dtNAJviCb2GINshZxL4DeTsTiJBIo9MsYR22o6QE5d73/s9YuBp5wrZhJEFqjhWA5AI/mJ+gmQqGcxKmV2Y1nWQEH1xR6onWhfWTAT7o1RBbhsOZKwPhO/QJXHpLtzFqtagJrTrN3wkULXKTZmiS7RGHBIkV0isvkULhy9UfvB8MoYuwq2oNOWkqiDE3RijNCI6ZrnjXkXs7AFZ85exo0umTGc434j50WbMS2Y5WA4SOxSqLkK43GOADbN0uakZHCuulmsok6qBwlCzyEK/bh9U5xSm0PAU/XBci1BXU/0pGQsk0hu4UhRaXnAyDytG1M4rw80i6w5KIF4yc5E9WhNs9A9U8egeVDwh5NKoNc8aIizwLEk0CANJceXy5Vkzu0u3QP3LmZXTnRv+Kgss1A/Kr017u/vAZJKMH6KceOcI3yOS5S7rNTu7I2Yqa9k1wDFhshyTZUotEYqogh7guTOnTlnqwcSuap0MLSisSLxTtuK7MYW6MnYU9eIyJI4YoMvpj119J1OIy0C17w3hi0MrydDsKyDEzb1Tm/7OXbSW3Tbo14w09iPpUXgRvdok8cCioBCkjwnGN5FtdU3K/G8FsCCShsie7Eep9heKgrYvfYTCPtQ+mM2x1kmeOxnFyPhIVTdWddpBKD3rrXGTLLsdtX1lBvWKaJpMyhOUe0HxDMLyxFjZW4aH+gxNpFyZrQh0Km3GHdJYvWZdNssOcOqkk43JRg52DrBanqMKM2yM56Fz//9OGTVEU+kxy06E7G06A9G6rQmV40lrdFV1AHv6SFGqi54pse9WYsE8XV+CngSO02sEk5VVZSk+FBB7GIhuOewEk9sPdOLkvJf/eozyyKdOpGeGpOJNYGnFDFwNI0JpABIUp4WiB8L7ge49HEdYjmcMoOa7GIRydWrYkthsQlkxZoOcGu+1Ml9dDnmeKZ1rSl17TRylFI5QaDWp95PgJZJM7MOsrjOxmJFekmtcxx3sJVr2GPPztMYTc57H3UQAmwQUCAwxeMZ5CS9wu1yoffO+30nt8YynG9vd/r48WQ65SJaeimT6uzUenC/37leNtZtpd4rjAlyZa75gtE5fOAN6jAsq5N7dCWr315fdT6jZ2cmAG2Mxr43WktgDaxHku20tktnLBV66Dt+e72x73een59JYzCqk21hWy5sq4Cn/bir49ccy7BkAX9Hb2QzlpJ533dpjlnSs70UeuvsvTLFb0er1Fapxxb3ROeH9y6XndopZQ3toj0YxC7SYCmxbsOmvPcYS53nWcS2s+aOWB8uar03FSVdoytLzsE+i/Omj5NtZzHqOCn/4wP4dDbtJ5g2WaCez0LT5mjfGU2VTNeqs0/5R1wijd7v9H6jtcToL1pb6wpuWNfIevKEWxJ41CSpQCZi8ojEMkTUVe1C6E9ljKWIDSNnOYmB3287rVdpdSTDhtZEG6F3E0DK8LBcz5nrZaG0wb0p76E92KxmUTb0AMjNdC/NA3xN55jo89MV3Lnddo0TYrQxOLocBFMOGw2LsQ03Lpdnqlfe6o+QE0uHJZiZ2/WFdV3C/aez701ATBFQk9JkAjlvWa5nx/1Gycbz8yVy4s63b2+8v915fb1Rj8ZxP+RsuLfznpQlk5dMWcTgeb9X3ackttXhu9h7SxLQWg+6q3jPT0ZZE77KXMSKmOspJXpVUbKtxmhO3XdyKjwtz/zw+Tt+8+vfcb+9cew3lpIpGX77m1/z/fef+fTymdbuvL7dNWbxj7wcZ9jQuZnj/B9AHUxtFUseIuDgLUbRSubz8yeerlfarTKOTr0fPF03Nkv0+059f+d4fT3HXzxGMHsb9Fp5ul65XC4xuuv0dqfTuN/viGGUBRK3yvV6Dd3DzLDBl29fMYynpyuj6YzRPJxxPw6Gw68WNSPafsPHYO9Doyk5BXPCWVLRiMsEnoacro+QsVDjQ2f+fn/FGSyLkX1Ab2Q2kq28v+/stXN9eiLlTI0R0uOolLKwbZdwz3ZqfWd4D13NxP14Y1kKV7tQ684RLq7gAp6B2g5Skm5TDubMe72xHwejNBYWxmg/GzcaY5BLsLc84560x7GzkJ5OrSXlYOF0rtcrOWfud11HySr4a6vS51tzAACD+3vTtK5vHHfny49VBkQ987vfvkindnsmr4m3tp8s/39kUcb0Uma7FLbLxnq58PrtlddvO9mlDViyWKg5cif36YqaGOGeRozbuTU1GOWnFiu/xn8Phk8xcuLfBGaQgqluUx5FMVdpjFjLNkRCMGH0AjItzg/3iH0zV1TdtESTrh5iGB1dOk5uunfDS+RlMI1BphvuuhVar8GwV/02TGupdbFUc1mxVOjxzEtJ3Hbp8uXSz3x+uNEGlMjflkU50czL6qH6PqH4uS4zJ3qQStKiezF10KRpmgLoC9ApfrcJvqUc0hBz1DxH0z9DnY5y48QdMDXqHmebGER1ClEhEgABAABJREFUjoNGcwSLhnR3Nk+4LZEb6Tx0V85wTnqZctYUpiYl6SxtfT+Bp6NpJHfJi/L5rDO9Vmc2/0VtsAAtOy2cAjXCMBvZklKYEwK96fstWzQjh8gxNjF/HyfANiWIeozcKvdW433JOfR81WjqgSk8zAZCsiUlvFXJNfT2/3vgaZm6S4gedzqyWA59BxULD5aBvlgyi6RbRWqblrthY329bFF4KjkerSoQ5hSFkijrSrGCURNb3HmM8ohepoKtxDk3xmBEcu/2mIXEH2LbYyTwxLEfEj1MB4Zm9bWMkm563+ke1ucFkpsOUneKpTnAcD6/2SmYImnm0cmPWdz9/ca2uEQCY0P+f1n71yVJkiQ7E/xYLqpm5h6RWVnVQDcGgx3s0u7g1+z7vwNoieYFZpZoADSm0ZWXCHc3U1UR4f1xWNS8AHRXDtF6UXRmZ0S4m6nJhfnwubRdz2bfPk70O2UnF2NdwpzwOIJRMcCyJItBlzjwU8vvqPiePjQ+ZJKGmH60roVzND3N7djZj0brh2K0QRHQKZ3g3EwhCP9xTo8SV9pI6u1E5glt+rZ9MJqMts+EkSYNP0MNmo9gDeyyeofOumZqSfRdE1xvFRt2AgnNjMvLjfpipCbNLVkX13V5VSPQGsexCbCY2OiitbO1B7t19q70m2aZUm+UPLhcNe3Y2uBoKn7SspJvr3wcjfv9DiWiRJtkcpfLJQ4ocMs4RVMR85hADb5t31hGwkolD3lbjVY4pGkk5cIxxGA5RuZwp5PZ285921i2HUrBykIB9kO+K+2AXpOMcF1gbw3X2fv9jqXE68sLFpRtYpKuqG2jRwzRBDyeDB3CmD4ubbcTxEqmRhqffh6SqLiPiGp1en9qjQnK6V/+spOOqovXZI4d329qtWdG1NlMEkUtkIqm3cI/J9soLrF4D/OSSXFfjUjBYPrAMc4JSXelnTz2Q2Z+Q41XaxtLDTPAKt8UreEenjgBbqbpP6S9l+PcnDI2GfIbCsWbKWfHya4CQrIzyNNbLRdIksMofQVG10lzmlZK30aMOyA1LCLg55k5a55S/JzoeVRkJZii2Tysa8SUHMN5eV1VjA8wEtdLImV/FkYxWRku89CcU6ybACUJfwOP4mxq39MEJfU59B4Q2vT8So6N4F96jvUhuZCMD+N59SeTE4i1xfM1xHPG7JwE5PgzxK2Sk8dnKBlPXSut3RVWEQY1W9tInsmWdYaNzrrK0HimoIl95By9sSSjXlZJEpPkWj0YTifKyLyXnHb6koEjMPX+Eaw+u3N9eeHl9SvHUHEgLxvHw7uh90FKxsvLFRh83N95HA951GWtx+2xBwNoFiYIyPcZqwtfvnw544b9lKyKrUMU2XVJ5OLc72+nhA20f+73g21r8Xln9v0IVsmF62Xh5eVKKtD6Fh5ROcBi8Cagm6FmRsyUTk9+ejttj3Z6KbR2sD0e/PD1C6+3F0rJiEmwn2edpCJZd8FvIfn2ztY2+f+ZWLYlQNFSJ4DtZ6qWzQZiTJB0noOS94wh4/mUJXXvo/PYHrSm5kpskhSTW7E0xHo7TrYzsYanofaI85bnXCuGW1OmauRUScDt+sL2ePDtt180vKklWNWFnCo1VzXEJnA9hTeRu4rq0fvJiiPeWzGjrJcw+c/s+84erLVE+JUMB2+kIcCtNzGOAXKwiUfrPLZNNeM8hGfR7IN9e0QPobPoeNzVPLR+JsidoNyI9J+oKQUWJo44D90j0CBpOLK3ne/ff9WEPUVN6M66XMl1YblqMHU/HopJT87ed769DdZV3iaXmwwT3r9/DwZzxb3x3j9Uyw7nsq7UUthM8uNjF/vt27c31Rddz2DfD2ZKbLlcYv+F52jvDBPLPy0C0354+YHhg9/ev4k5d7nSS+U+nPtxsD/uqr0S/Pg3P2CLQwHLYrvk8GG8v3/j/nEn2aCWREliYr/eLiwF2v7B27efeX//zuuXK9frlX/1P/wd67rw/e2N3g9aO+cl/+yXAmcGSl+MwbA5dN1nNWfGGOxRy04jZDMTQHY4aeiczSmTbSXnFffE0Zxvbw+2x4N9kxS4pCoQ4zh4/9DwbUTYSfoqJt/9Lh8gS0W18BisdT8DUNwH3779Ri6JH3/8qvpxF/COw32TVOq+qZEdbZwsqzn5J4CnX+3jPAsd9QySuwQwmwTyug/uH2+Ac72s8hYySHnBcmXvYpq8f9el0FqTt84xzcrLJIqTF7A0LQY8bAzA0/Tw66zrKjYmqj32bZeUPSEgq6583B/s287ry4NaqyRlc78OnRPLslCXhf3oYkSE7cJlXXVGxRBxpn2q/9Cz6OEDtS7BFG2HQBmTHQTuXNYbyQqjVfZt8O1bY11eebn8CDXTcuJ+NKw7398efHzsf3VN6ipoDC+4VfbW6R8PBk6tmUtZWEvlDz9+4bIUXm6VZAfvb/9AXRbKUrHwzzvaB/ggJYUIXC7Xs+ZMVrFUQq6VaIfu9Jzrc4CBgBwPskBKGZKfvv29C+TLaURtGX57s39GANpMxR2uICViyOmT3byuzGMVD3uM8EKsse7HgKN19uNNZIEarHI663ol1SV8nYz9aALk8iK5ZRM7r4Z3IIaCO7TT6H3QjhimJTtZ5C0836SeahwtwPQpSYOQfbmGGi4ZmOoM3e86UnRX5aih8jngDrQuXoMkjuEsF1Krusg3tfcWPYo91VtJvsePCIOp6xL3j7GPzr7d6f3ADK75Qs5GtYuGNN7DC8yiLp0AFvRW8K73X1JhDesFLIA1oK45QMxEayPk1hrmTCb/+LQnZ61rMZ2xkH8qP8nxw846Sixn+UC6Sd7omfNu1V6NHh3YWmPbdylQDCwZ12URwzjZGY52dA1jPRVO07q/8vX7U+2C+XAyRj7JU2ZRr6m6PYsE5p9JZ/HfI12OYOPkYPGMiLP1roVaSgp6nD/fjPlZoJwk7Ik8TVlMTDqyRcxpmJOdRqzzpA5t7pgNZ9MDLqWr4UlTECOwqvUDR5RyUmhV4zUk0R2YIpoADsH9bDwhio2UOFpjHE3+UiY2lYWMbjDY26GNkHMYGFrIPdQcEEwo0TKDZpAEoHQXqOcQlL9ZkOngknTRReAxThRV0iKZrSeXCn6mGaRgIemdzc/Uzs9jUg2HdywotRqM6nBSMo+rIcciWUqtsJno1Ntx8B7yDkkLr5SsOO4xwEaOH62f78mpy8o1V9g61gcCRZ0lr7R28PCNth/yaJlsjBgHt7igjy6Axi1Rc6ZUY1lDGlM63jrFE3m9Ui8v3Psbre8ndZjRMJwlHo+idEW77RYAqYEz2I4Nt8QOIdEw9uFYHxRbMVOkq+P0iJR2ZKx6tEY7xHxZig5pb/LW6LvjfTKV4lAO1lIf8WqKomnFhFKjLoZCsGdigjLXylzbJ748rR/nVgxTvjEBvWhe3eMQPC/ZTwfbJ9ApTTTdz5ccAEoYvobBvSU1x9Po1z99388XRfIkkPqUk6lCTmkeyFPmN6V/Olf8XM8EbVYTxNa6GnGfx0VneMZiuql0yX4CCRafteRg6QRs7fSzUM8qzxiYsmQ9Q03/5hk1qbUzljgnpbKlIemjosL1omViGethfjyTnh0mk2Oexa73//Su4bkWQm5pQfkmp5khIOlFqtF0iNJtcY7MBTGlhdPjS2zE5yU03LFP68qjmY8lx5TdOErNmmmK+DS+D+Aqq+BI01cQFQmfzeSTzaHB88v/q8XmaX7XYIoFhdnnGsxJssrw5omEh7j/jKMftHaIJh7+bs5zDQ1HAFmZSS6cxp1FaMvUfyJeZFDoz+tOxcd+NMmU3FmvL5IYtCa57S6wL4WnzhiDnAtLVVG175sMZX1gpgS3o8mPIriYZ2HqHgDecC7rBQPupaiXGpJRDn2QQD/ZbfuxK/RgueBIurQfncdDDTYmn5CSE/WysqxKsLVg3pWss3ZK0olIaEYKAERnj8W5NMY4pbjZqtJztweJr+fACgjWofy9QAyjYz849j2S86D1ncHAqprHkQR0q9ALNm4w8+bZyDynbEooJmtGKTsnCO39BJ32faesazCWJwuS8/3gfvoeiqU8x2wBDA87j15LuuunvGImgNa6yNvm6Ar4KNrPKZg0MhGPcAvn01qNNR5n5unNhvZSLpk8xLbSXa6hW7IpM4yhj4cXWIBYMzlQflWdvU3Ppfx8X/OO6UcwHOJOOUTZT+PJmJnA7lnXRiNAsGfHiAbfDLMawPoOaFCUTMmHI2osykpaIK96b8exa5CQoI3OsbWQxhrb3nFLfHxsgHO7ZvpoPLZ7gL8d4xUbKz0AyuOIhqep1pjy+D46pWjKnUpR6l9P8lUZUyopgCLXxHpZlKj0/VcGAgi6SUq2tcYWMt+UTJIx8/Muy6WQYwByHAePh7x9pkdULYnLWkjmtOPOtr3z2N7509/8yA8/fOHL1y+knPj1l190vtvkDP+1rwCe5uAtzTMXpu+au9OG9rFFwWhIBujnWsiSKVOwVBieaA3uj52P9wf744FhXJZIQD0aw6WkmAyd6hUSfNwfhGnNWUPUPMhJtbaPwbe3D7G96iopb+uMGHY+tkNDvv4RazgFe2tILmShpnCnt117eaZ4JbGv+wiFR06n0ffH+wcA+60rkTAZlgVq9MkMf2i5Tw+fFolkPsFfjPWlkoopxdcl7W3eg/UiudDtppq5N8lpt22TrGrIL+u6du73B/t+8NiCSeuSC9WSwovuYF06yzp4bEfUSZLYvb7eVAfFe+u9xT5MbFsEEQydr9dL0X3aD3p4KA1XLf3TH+SR1PadfZeXa8kLuZoGYtnOgeBja2x7+2/u+//emtRd7rgpoXxvh3q0kliXwqVWseuWTC3G6Dv7dsfSVZYC1gEpY5x+MpRqqbQuCa4hBnbJK2aJIyStKUkxMJjs/ummFT3rPA/dQ+odQTKWgm0VA7Sugjtl3eGn6mDIE1dgny7nnMXod5+eudEjp2ca9bbL2+/Yp9XCs4ZMJYU1gu7iPuRrlJMpAbHLq7ZYwmOyn2yqJWJPto5nJYor7d3CX0rPTmE9OnezTcgq5FsOFNnzuMt30wLYn1fxDII5/3eCT/q9cyAZiLlHXZFz+Fb6OPvkKL/1+j2sXObgF9VIx2mS39XDJMPI5KL60EcAYfHnpxzdPclbCdVZdU0spRIrUmsCzrpiuGqY/TiopcouZvZqAaKJuRUYwCwQYrg7pg1O15tKYT3gse7cdMcI4yBqc53DKUVQSqgFem9SN1im5hnmEuqEsELq53n3Vzci8H/F48mD8haUfX3IhWmq7D6peEkxu8Rh2Rutf9A04hPLsMQbtcb2kDGg6qmDWjpLkTdAGzF1D2RzICldtqzoPocRusLWlFoxD8tsjaXMpCUtxhFaxOGTnhu6VBLrmlmWJMMz78yMhYEmF8fo+NiFELvUm1YgdYOJLoZzvgCuHJNL7eT9IaliLpXlcuPry8K2d/28dpdXwrriKQzO1ftFwzPYHluAR4AZa5HxZt83PIXmJYzGQmFNLmo26KIR5qwkh5Ize09s3elZ8d6jFHkbZLFJWp4yKaAMPFnQ5J1RjN6dfSANf8qcmq6hzVNrla/CPr3BUtAgjcfjQe+iDvY+uO+HmFru3C4L13WhN2gMrCphpi5GLsZlUbF0WwsXMgUjH44fnW//8LMMAo+D3g58HMwUxkmN7EPTqJwrw2WCaGklp4WRCo0M9QWrWSDjGJRLI9eVvN748fULXxj8+R//gfvHOxm97+q7WEFt4KMweiFVQvpYI/ioUBOk4VzWypfbBT8O/Di4XF8oeYnJ8AhteCGXSs6Ss7ZW2R9J7Co37t+/kVLhpy8/cSkXtocKU1GadXldrl+FSodJYZ/pLua4HQI7wxg8FTFX+tGCqZhgJpZFsZXMnxflXB/xNU2yJ6MlfTqFnmCT/ttkZE551Yiq1vGT9v25KTYzlkvB3WTrFQ3icezc90dMTOwEp0Y0yymn8F+JKT/Sbg+HdijpQelJGazEZQ9OAWZIgNhHl7Xw8rKwXjJ1yZhpAja/zxqGiuby62m+RxP76UH555N5gjbBlon3VHKAj61p8psWUkksKbHvjd485KNEgy7ge7IPLSWKLVG0J9wLYReggseV1qg9cQCdUlQUtdDCJ6vxbAjCrxpai6mKXvs4PQnGEOjgXR5aCRU4fV5owLNrnG9//nf9H8MFti+if+dSVBD1MAh32Pe4LyZ1kxxniSax0wNrzKYeQk4R08FgxI0ovvf9QTJjqUqTXNYZgX3QhjMs7hTTurGstZLzApbpzdjQnegUWtOlfL1dwBLvH5uo+0kytJRgtPkcxMSdzA3MsBLeMqnAvoO9cblUfvzxR/6nf/tv+X/+z/8zf//3/5lffvmV//D3/5lt37mul1NaOnpn2zaKya/qsq4YCvfoowWIpmLq9BeK9enWsDR4fb1Ra+Fx3+jtoLfEcWhq2MdgmGsodDTG2we3ly/8+MMXHtvOx8eDt2/f+P72jtPIqXN/fMfWyu125eWaeHkJZkN3et9ozTnaQaKQ1wt4YqaPHb2Fz0DCuwCpkivJjMuycvfBfh8hd5QMJCWTl5DBdV11LY3Ofjy43+9crgulZojm4booNvk4DshZnnsBbs9zKlmJIi18v1Ll4/7g/ngT8FYqZhV3Y9skC3y5/ci+b2R7aOLYNdzAnaPvYWIfzKWcaHbEnlLNklI9zzIPhhvJSbkH8zVSSN1IVsh5Yb28CrzthvcF6xf6XjhKpjexX0opDHceD52bOeVIElas8xiDfdNEt9QpjYWcCutyCWBfzB/SZGiqKbKUqWvCalWww2HkFp8hUHI92SS1ZGpKHI8PegCsPpxLXhkZPKv+GmZsTRJzSsExHnvIVHLBxkq1F7EYydT1R5a6gC1Yeof8Z/po7L2LgVOdtDr54ozlwM0Ya/gXtbhTPu487o1SKu/fN0rOXC4LtRYuiwY4YoZceX154bK8UNIiSetwjl0BMu/HA4+U3tvLC8ulnCDatolh/ti+qX7MUK8v3F5eqJeVVDLvHx88ts7392AJlIOjt7AyGKRUWK5fyAn+/A+/cVke/PGnn6jXC7fr1wA/O7/8/MYvP/+iSbUlliKw/bG901pjOzZeXq783U9/w7/+v/0rXl9feXuI0bVHCur0Gf2rX6LRkV3nGzF03m0yYAdq3VHjNcQYX5ZKqgvkytbBSuH19pVyveDLhff2Z35+P/j//uefeXt/44fXH0gp8f4e0nkXS6D3wX50GQAT/kj7BXclZ2XLZCsRZZ5JyONl7C42jV3FqnexQY4+SPkFLPPrN91UYmJBNUm/GV0BOwaPLdgvRfeOHscICW8w05MYMZf6owBir/TN+fZosmYoqjvUJIvp/XhoI9b6lT52MUViIH3/ptqpDzHRh4kdPexKqZVaK/tHZvsQa6x3575lDdnoLMuF43LD+xd8OL/8eWO0Rj90f/3pj18CHB+83523Mei94l7I5YqZ8etDrKXHfpdaIkMpkZDb5Ac6utZf2ypKtFvovdL7QsmdUoySf6DWzPA36A8afyatjduPlfLllfQCy7rgvbPdP9ju9+d0859akkBncIzBfRdzaN93vqxXbsvC6+uV61KpVR6D396+UzJcqrCPXF2et2OwrAvJJNv04Xy8hY8lKxb+XDQZ6TOUTNkDVxpBuPjM+tfQzoMU8QSXjMS+O06j1JVkmRry7WMfCrypC3XRYP/9/Tf6sWNVLE4FfjijN3IuiOym4ezeBNr2YEett8rRGse+q+5Pift2h6Px45++slxWSi3hqYnS0VKASO4MFiCfzCXLidQb2B52Dx7yRaPURXfMvoENcqoaiqQUw16n709pbFTJpAS1RL3kHsypcZaSPVi7KUCYMYZqwpTYWyTTBZuptUMWM+si0NiEVfhw9iOkjylH3W5i++471y8vrEthe3TwwdEeApnG+FRja8g7lHlF6qr1CnV+O7w5W/TTJKdUfVbf3r6z7433j02MsTa4Xm4sy8pSV1KS/5yA451SMsuyhNzXRGoZnVz0DDzsTmRTQwCfOofrZcXmMx+D4xjUUrleFkY7RCahhyURmHf2+xtTWTJAKrAYI9X1Esz3v/71u4En6Z00trCz9A+DYfEoY0r3pMzF8AX4ZLZrs3nRvHUEVVWNpMU09inH+HxwuMQgIfYXw4o+GViiKYtxMWPHZ9yhnYtXIFcCG8wQVo+DQAh2/jQRJn7fA4X08EjRK5EpeqzNs6G05zRuNhQ8//85gcxJ0a1MjweL1wX00//o/Mn4RKxFoCfHdH4+JiXMSQ6XQjLyRH/n+34iwyNQ2DZi9j2ZISWdIM181fPz9Zi8kp/SlgB99ZYnSkB8NsGyIpJ35ucoI7Kh9KTQrA8k+dDUndBK6vCdRuwlReJDKlgWCDE8fJUQi2tGfU+9OPOgjxU06b9K+hM1NdkI2dEUPGT5/2RNXEtelEBRFkmVAnzxIWbduVoCWZ9TbO+f3nRM+nL8uWSKRR5BnVXKTqDZriJ/eujJX6kiXmTm9GCSSFct+1DKVpr7KoChmjWBmebUE02fSHfi/MhipSBwwlLsAD0VXaifdqNPWcbzk40ZDJNZon72OT0/2Yk+17U+Xea+iz2WHEJgH/VEXMSTdmHP7zfX01xjU+x6Ss9sAjvztc89MZ8tTH8xyTbEypysFYupUgrJwhnVGo09PCVe01MNf0bSGuBpnpnPr7lVPv/ifO3aPwNNhHzuAyskVKxPn6z5eM49Nz496zAfngCgzcSNUI4bU44ohlT69B5kqB5MqjgDkk3g0WNfBTvDAnQ0fT7TRH6uqfkS52T7L4pE1yuanykpYfGsxdiaCR1ijynemfO8ej6/WE/n632+jsmCsvDVeX4GkUIZwLihSatPgOrT/TM/l9noT3NcZ4RsSrT1+TlOOd3pRxivTVfF9A3S95ucLjHw9FRTKqTZWC4XfvzxD7y+fmFd11M2N8/yxJS0m3wCR7DGJoBhCQ590kzgOI3zjJ4MGmI9pEQwbTOKHX9+kOcEdQwFLqQnu7C3zr6LCdb7gaLkg2GMmL05z/NAr7n7ZONquQpoUeJND8AlTokwlH4yghjnkXumDA7XOm9z78Xa9aZI7CnpF1tX+6gECHf48dyLHmt23tvBEDP83Fe6w3YuE7ie6yo84wQ25vNe1x39uTgVC1BnpE+cN5aYYT4l/ON8TbGYzs9+nsHTGySlCWyAWZX0gwJkGEkTXzfVHUPsmnPP25zU+inH1muOcyN+xhjPBEwSUWzqvSR3mUpH82IpK4EvGLdqouWVN2vFuZbnPfncJ+k8LJPPc0yfQx9zGq2ac56T+swyKVVqXWlLo5aV3g1nPwFxPYJI5GNCIXH3x5rSPdDxtpNzDsBTbCZ5CnVwMR4kY3/eLZIuxlqJpqouhXWtdNfafmzBdtXkUuddspBUhAzmGOG3p1pvBJB0HA2WaPKSatdj66TRoBneDD/g2Br3bWN/NI69ky9rTPd1tp1M9eRcbitfvr5ye7mwXhYejy4w0Uyf1+zD/trXrEdj/0wW57yHfbYqsb6GnwfnuabP95ULWGZ44miDx9G5b43H1rldxQKmjfg70Lqi69uIs2XTYeO9xGdqeMpiELhQmzG07ryvuBvHFiw60/cSo23BounDxZoZ53DO5bMSlpktPGbzHKr1EeQogyQwLkUilJrbxOhib+5N9U+aZ0WKvejQd53nnrI8e1p8GOWZ6OqhLmneVUPNSX+qGvQ6tK73PFqNniYzUqUf9SyC297px6AfOjeOXVKm5Okp8R7qUHDVhn0oAGM7ZI4/6mSO6M8yBPwN0ildFhiYGd0j+MYwW87aLsZhkBopd1LRc07ZYk20U372174GFv5DiaPJT2dUiCoYxznazkxigwRLZXij910Ae3hcWfQikpx1Jrtc3rUhDT6LE11us0eagNOsCc+zPf59gpXP2o5PZ6VkocTZ4v6srwmFhEItoj50DU+0FNJ5F09f2jl4Omuzz88r9uUciNoEnYM5NT2H5bmXYMrlzOJ5TPBGi0q7NL7ffM2zOrXZh9ucg82nE+9/XsqfOZfxe2eR+fn/D4aYj/M5fyr9BQCeSir9pR4efifr93whT7b12cPbJzYVUWvOWsSR+ivOlfO2tqf0lADcSVGz6zCU5cy2cb9/aI+Oadejekn3u/rkMeQdN4bTTa9NLC6XevVznzZ7oHgmPl/zfE7R96QUib+j02cSerxeYoAwQjo+onYdWNQrYkP/nq/fDTyNQwuqnB/GlGtk1KiGPGI4bW/nh0GCJS803+mIrmUpQJZAeUuurMvKyGos9oeol6yq0qzoYbXeohiRCRgY7QgT1HDVn8VkSkWfCoN2ELpuTa2TXbA8gEUToT3oiZ7AcuhVtQEGkVJnQ547XYXCANKyUOKCwzM+ZoylnbTYSYdcF6GBtSht5fv72wkcrIuM9+RvM8jW6KPR2h7PSgs4IWPllLKonClRc+Hona01LC62mhWnHltCmyX2Vz8afdtZLl9Jyyrz1T6wmAbWBB35jTCaJlItNKFzgpMGuUNtQrE1kFHD1FyI9X5EQ2aKXvbw4cko9af3ztv3b4Cx3m66fDFonfv3D17yV5aSFZUcOsPWDn79eGfSULMbeRiXlrFj8Pjlzjh2xnaXT0LIclbL53PAtYHXImlIm9KFDLsLCNua0sh2N/K68tNPf6B1FT3t2DVVmIlA6xVjUONcrICXxKCw9SNMc3Uwr2klp4H1DY4O+86ajVoWsh9wdAqKQ315eeWxd3799oG3hPnCUl+4rFdyWnDg9eWV42j845//C1/7jXL5Qju03l6+fKHURYUKsB8CDnKpOmCPTjZNaEZT9PMgR6HdSCWAlqDMTyP8CaROX6bZrBJAr5o9+ReUAJNLLgFC2Mk4DN/N0xsrhWH4vu+MrAYmh9zV42YRYzEA4C6ZIbGeTi8fYkpYyun7oC8x88QMibhaD4ptejY+b+8f/PrbGx8fG72FXpvBsA6eBU4T1OagXgvkdyVhmmHjmTpncU6m4DD3MNt2U6M0OirGXNlwnsV0IC4Pd9i3fkanJy9k/KT/9n5EyTQnQpmJ3FqfMKpo1QJbn4UP5mGoL2BnOGdaioy1CylX9kPxuilJNpBnkTECzDoIH5lCazvNG8tS1aZbSJ2j0IZosCBYV/I/ICVqTSr2UVilAh8MyCzLlYTR0IQpZZmZPvadMfoJ+oh11eJSTVHz+Iz5YsowLQCQ1uflKhn0y8uLGCFDjULvxtHUmK2XRY3JIX+UpaaTLbg/OuaN66o90LOTaqFU+WHUUhQ167BeK30MPu5Bww8Zszlsu1I1L7WQ08rL7Uf+5m/+yP/yv/y/+fbtN/7X/8//yp//8Wfe3t4hZWoqHHdNKdXcJ0pedReigAhD/jY5K0FTYq/G9Al6ArMyiXz/eNBbo+SDMXYGD7AGyWPdKlZ3qZ1lvXIcG3/++R94+/7Ot29vjGGspbBtD4Z3rvXKdVlZyxXvxsf3Fj4IhZoSlo0l0s+cxn374Oc//yO3lyuvLzcuVeyx9uuvOjcOZ++D9+1N99me2B/OPTfK6pQaJp04eWu04+Dxfmcplcv1xtv9O/vbznKRz8J1fdXEb+9az91OcHlKWZPVkN/I+HbfDh6PD7btGyk33BaS32KwpDNI0qodfBdQ0QccEaMyBPxJXhn71AZLhRGQfw//oNY1Sk2ZoLnrTC25CmwyIy8XrEMf2pulLlyuX7m+fuHl9iPL9YqNhbHDdog6v9YqgPU4tJ8x8E7CWZcaayrTXVIxS0Vm+w0xY8NoOq0r2RIrib01tqNJIrofKBkocb18ZSYt5exQM3TDhrEuHaPw8SH2uoW09Ggyru8+SKWy1IXH6LTh7BFLfikruPH4eOg9JOP15WApldv6ypoXjr/5V9zv7/z27c+aDJfEcT/Y7u8s24ElYzsODbr6QkHpajqbjZIW+bpticcxeLx/x73hvVOtsVhj236m985l1V30yy+/YVa43X6k1sx1raxXqJcRUiv49k0sxFwuTABRjPDG/dfvHEeTdwbw4+tXjtb49vbGkmC9LszyzraJSRbMK/m4cHTnv7z9mZ9//pmff/kFknFZXnm9vpASHO17JPRt/PTHP/B3f/e3vH554Xq9oFS3fto8yEewY+n4jK/+k1+tO/c9JCyTiTkcjhaHdBjT5sTeG3s7OD46vhf86xdyLbwsC0tdSBh9bxzH4OPbg/u3jcKFJRmP72IHFso55Paoxde0QoLtoSTSUhbGcNV2WVHgqkafIEEqenOPh8c+q5Sh3WijhoJBvcj+2OgGI1uoNSzM4vu5T+W32eWtlXJ4g2ko1kNZsTcxO2owCTsHdEK+qjOslM7pqebGsfdgQcLRHd85pee5ivF0xPMvS8V33Vnv942jDcp6JefCbXkFjNYlgc29KqW5dSorS1mwcgEGb7/cycmoER5gNp1r4PG2M9zJS8atktMLpRh1SRzbxtaavOgiUbkPeLxPX6YR51mmLAvrpWAseHeOR6ZtK4yvjPaVY3/l6hGuEv6Tbx8H7/d2gg7/9Fdi8EL3K6OtHEdm341WF46U+fWX7yQ6/+e4kzO83hK360KtVz6+fWN4D2ZJ5sKVkjO5KgBk3x9hTF6wJMZ+2x8owThklxyqR8gC8D7hPDMwNFvSnquZfd/Ytwfr5UIpCxY+S5I1OrWAeWN/DHafJueRQG4VR+Ba743HdlBrZU1BFsFOnkSP1OHeYVgmlwsjbD7qeiWXC7kozc5dgGVvMrcvpXCY7rFllfzvaCMAeDFlUo0goOYch177db2QUmFdV8Y46MeHwEl3Sq4sNVPWKa9X3W/e6fvBx7YHlmOh7lCYEohVaK67V1LPznZsANSQup/9CRo69t4pRXjC/SHm3J/+9Ccw4+3jPbagUYuY46MltuEwJJ2UiiKG/S7G3wh1l75v4npdVDO9K5VSIFTUwHFwjZCsbvc7j8eD+/v3c4iZreOj0rueW61XUsq8vF50BbhkuIdHABKSCZtDthGDBp1d3Z9kF0I9NfdOSkZvB9/33wTK2WAtCjU79lD25IybfHdTVhryx97Y22B7b4HD/PWv3894Ikxeg00jBF8vjvNxTpB36mjiP8Qmm0lH+JORYK6Cs3XFK1oqWOpPM0+bkX0dzqlUwAgWkzX3Zzz4iZTHTcRELtOJOE62hUWDhTXwHGDNTJsZJ0L61F8OpZjE1P8sQlswOKw8kWp7+iudmId70No8vHFi2pdlmtYnQv6JzWE+h2bB5bBAtMf8OcEqGvOf8dx5sjxsIsGnCczzz5wIc3o+O7HJAn32J+vIJpLbpbdNAzwMBol4UJvT82DizAsRnmj7RFGnsjk63nhfMbFvnR7JImJNpYgP1pTQvVM8y2did1ITmMEQO0VpYfqeFp4CPt+LJXJamOwxq5VcFyx8uuY03EcOD6WuJqAN+t5oRyObIkh97EGxVFOZMHo8U/qTwXOmWww4OSjxeWvtyNStRoOufa/PM4WOfE7Jzo9QiGSg03omU9Y4vbk02dA61PE4m3+YLJ8nV8hOhD4WV2BKdoIVn9kA+poTiJnKEfTbz0OGONvmhOAzA8lnwUjs0aQ9qGGANs6TpTKnr9KAe+izZSY6TgDm04vj/O6fpiA2qQWn1lx/bHqduI8TZEknC0DTb4J94MNJWb5YHnLnp0/SnIZwAtHzNcmKTpv6abg9X2eKfTP/2/Q1A0Pn06lV/8RS0DvT3oLJg5oXyvR7sucqmGsunq/A8RrMGT2Q+T7O6ZzZ8+D1ybeILsR1TiQkQZgXpp6JmJliMtnze8crnRMXWSxNY8q/PLvnNTKYE/O5BgUaJuYE32JyE3sxPQHL6dmnLfdkQsmw/i/XZbJgtlnEEY8eE7r06fOId3G+GDuLYY+mgLgvgZO9Q0yXNDScU8z5HMPDZjKfXJK4Ppzv37/z66+/8fPPP/N4PBhjUEPaPoKhohoyvB2CeebzQ4uzYriAxZRM/kUMjemRF0tKMwGvnxt9TqaZHgsWIZ/m9ObgjTHu3B+PMJYWa7g1AQl5KTClctMcKoYkQfU9z5LuB5YG66WwLJKHi0Lf8e76ey7vv2N3GIlkCyktEcGcQ56v59n6iIlvePk5mtS7WK8plZPFIBbxXLthEDriGSU1sFNm7D7ISRJNs+f5oLokJojjCJ+YaF7tLClOz8wZ7CAzLUl+3Mb5+fu8NNC60AeSzjN9nuutD1pQ8C2mj7Ph7yN8H8/P0M/1O4/BGQkf3KVTHnyeKHOJg8BHS0rzdPSZzCn3mGmQweQY09gfYKZE+rSi0Fs/jWp15prJLXMynxKZkaLgDcZ5ypmn50X8/RIM/H4wjkNJRO0gkyiWqSYgI415tyS86bUXiva6N72PMLz/vNeF58f9oTw/2g4fbzvbvssjs8tnZdt2ZI4rb6RU5bPUA+hvffC477SjwzELNTvv2HYIANgPFfJ1rZhDTZMhfM7xkTtCWFBQ6MegIW+O7bHTjkZZqlLkjqHEXddw5vX6yg8//MDXr19ZlkI+GUDO/AnmGrDgLUDSv/YVK2taT0QE+jTWn4ESOre07tW4pzgenNYbOcJqNOgZZ0045aE27Fl+zPU8j7uQ9ZdI5pw3S0BN2FRJ+JP5maJQab1TslHSrMHU0No8qka0PZ/qZixsOXgqFyYr4VSCuH363KLZC5/JMQ40NmtRq+gHqWyRrHTWaZMVf+5/97MIGW3ep4nk6UwCcpzkSVz5mNAk1+0gnNwx5Ks26xa9X/VXUyoGxM9TzU7cpSn2P3E2zqGNJPh671hUBeNZD01j99496odn2qeCHYxaLuS0YNTYy5KPtdbiLJpn4T+/JrGMT0WLZVJawAogNp2Nxhg7pRi9L5LT7p1t39iPB19eX2Fd9LkCzSSRq7XET5eNgVgz8jnTeexx0j7vY/UXnPWQ+lPOGvxUDp2M4OkJFcqC8870J7s+xd4yzr7wc+38DHsRQ1tfKVrO2V/muPONZJWcxRytZWGyuuY9Kkb/tLcYGgrFuuzzvdkTGJLZtoJRnBgsxzCcSG3+y8+LkzmpYaA8h7RfxqfnxdO1YfZe892dRBk9fTufwKclE69zvg8BZPbp+4Xv4zk8jcvL/anMih6cqMvnmWAWapMRvlDx/eYnkYIVKSnfxvvbO9u+0Y6dqVgaQx6v7tNYPtJlrX/qdUbUJfpPp8ohPVUhZgJ4x9Dfa61hY9B9xBqYm/JZc3y+Z3i+RSbzWBVDjp5qulv99a/fDTylMKSttaqYOxptKGWh1BqUOvRh9A4WOmV0wBvTO0VvssSLzKExfHzcWZcLta6U5Ur2MH8bsFwWUj/CfyQKpWhkSllVAJVA8roax+5iQMmBXWY7c4I4WRApVVLqKkpRcTzG1E8qBSO8zSDMsfMCxzjw3fnt/Z1tH7zdOznfuKyXE7TKOUcy34iDmmBg7CgJsJDLQk7S6YJx3+8YzrJkeet0NQfTsDdZgqEI033rYAMrnTYCzCIW4iBkeNoE5dMmEIMjyduHg7WGdChVRsRCzqazWCEbLKmQ56U+BuwdI1GssG07237INyEbl9cXpSC4WFcpaIJasTvu2tQpJS6L/B7GrgsESyEVGez3B3kMvnWxPXoV9cuK0bqis1dbKBTao5O7s45MzsZlybjv+LgL4XfjaJLGpbKQydR00euoxvpy5fL6wsOdw52Po9NGI/XMOA6+3X8RhTkVHtud49hYUmW5GIcfjH4wtn76dQwzRtHkr41BCUBh3xtUuF4ibZBBbzuDRll0uL2Ex8m+bYxjkIClLuTloobSp6mzOEoj5IIqDDtrvXC5XChVE+utRcOU5QeiQiiTcpGPD4kcnj1ifdopyXwCDR40T0WrnqcQwayJez8Hw6nNy9L+EvCZoIDQ9mjIu/Zpj8Os1EswWEbIQLUeJsgswDLT4vypEX/bZrPXP1+2s7mP1xC+RqnoYp1FbElI/uADS4NSjMt1YTQ/p/ve99jL+WzoalEjdcq0sooYFYdiZc1CwqNA7CFdEF4+gYyQ+Z7AU533bhS3JqlnKsCBj3YybUoNunvIY4eP00TYp8FyTgEqzaKu6VdcZFghLfJpqOXOBKMSmRT7/AQHhp/FxfSvc6FpYheWVZr6/sARM0gj4Xw2sCmKcFBh0dogubGYmvjufVb0p3Fiaz3kpBJIJ1fzUWs51+txHGLNbQ9SStxuN8aIMy2YbZPxlIIq//XrF9rR+Hh/pwWAk1Lhst6CKXvw2LrM7q2E/GgwY4kFcilSu+RMP/T6StE/c0r01jjCAwBmoIPA75yLUtBaUwJrrWo5ojhIufLt+xv//t//e7bHxuN+5/X1K9fLVUbjljQFHAJOZfS9nqav07A1J3lXPPY7uSQu64XuXV6HRKx9AczEWJ6+E46AjpEYI5PTCimxPRr9gPvScG8cxxu9HbTjiAbEuL/fQ0r/SsvOcXfSIpNxMUYGntS89DBsde7US+Ff/fA3KpyH88vP38VAHLqjbRS8K46+5sJSV27XH3l9/QJJdPk+omjdGjUXXm6XoLEfuCdSWrisr9RauL+/Pz07VLHovLPEdmz07tQ6fRKrzr3mXC4rl5vO9dEHYzQ1Y5bovfH+/n6CtCUVSknhuhaA7Og0ZBa8t4N+bPRjF/MRw60GnNzOQtVHUSGakQ+SCxD5+LjzuD/Yw9OhIIN30oNUP2jdyfWq15FlKJ28M6UaogpGwWp2gkwncHSe9s5ICZ8SToexh7m9TPUwG1wvFywnPj7u8vkMA+JlWeTxZEm31xjc73c+3u9cLq8USxxz8h+s25Qyj97Zx6DvO92d9SYGpOKwVSCvZaWUzNjvHL1xD9b52Bu5Z17KVyV8HY1LvmDJwmdE3pKNg+/9V1KSX9YJqLsju0exhpflEoezs73vvP/y2zx9yfnATN4cKTmj3VkukjQd79/pfuft7Y19P9gfqzxAbErtBISXUk5vkvvbG70Pbi83ckq8LpeoUTvFEtn0+RticWcrvL9twXT44Gi7Is2TzvL3396AwfoKX77+yL/7d/8vbrcrX77cuH+8s28b0x43myHZuBiPljd8TAbxP/2VyVQWjgDPJlPHhq6CWovCX46N0XcYB9frF24vN5a1QHK+vX3jxQc//PQHDd/GUGz3Lv+6NVfJtzDkCZ/Cc0cNXnGxfGsNnzQGPfxUsAggOTa6R8KrGeZqbo/HRqpiFY+jiZ1uE1BVDdYPvZk0Ez2T4SULg005/AhFRVvL9bw7cwxcSQJwcnjO7O2DYc7IPerxKS+eoJDJX3ACMibG6OyeJ2j2uMuJfCnLsxfQ4uKSF6jG1g+dvS0+lxaAQxoUl7HDTNq0GCir8ZYEW/VPQ4l3g2W56rVlmWw/HpKZtjYEiHmhDwvFS4q+r4ZcDdrxOD2HSioh5VMimpF5vf3AdflC5spqmSuDt+2Dj+2ASyZdyu/EnSqesq7hXKmXJcI/Evv+jveOScuCk9kP4/u3zrfv33h7/5W/+7vMly+FyyKP3/u2sdTKD1++cuwb23anhXrg5baSkrHtBzjkrGS0fj47wNV75ahrc9TcoznmhZIvsg/pk11PnK+f1mEP756OgM1kpBQD0aF1m4phyaMvnsOCqYERFGvxz0QWEDGclC7U8srr7Q8sl5tUNki+2frB47Gx1oWSC/dtY+CUsmoQMtRXl1wFzJnxeHzQutiwZkpBrTVzu31hezx4PB54DO9GANwK/Cq8vr5GSvnBY9/p7dCrNuMIE/BcJsHg+asuCzlnjmDBz7r6KekTGJNz5nK70nvn519+wTCuLy/Rx8eAI+oxs6zESh/044DJtJqgYIBJM43wvm+66/sWVh1Z1+3g9KT8+fsHb2/f+I//x3/EvVOXHAm5mdHloWo0skGp2pNK544hSFKdMYktuURdXGTTc+w763rhcrky/EHfD+73ezCXcjA8pUazzPn6NOgP5qqP06sRBChL8V4o1cj1wudkwn/u63cDT3nqE6OQtYhJnZQsvRiJwFOOf6YwBvfnB+2B4k8fpUEOanmiU0meGXFiWhaSrNo+k1HEs6pKFUc2J82fJtZzKjdi2j69Tbp3hg1GnlHfTqfRvQtVt8rYdfhYCi0soNN7BMKpSUE2p+REL1AWOw9mRw2yJiCcyKm7JCe5CjgSQKrvm72Fz4iedffgL2RZV8ubTOa3SkcItpChNIEkhoynOUyY0puJ9MYEVZEEAvvSwK3Fp5HEyhmaYDsqZOpSqCWxmI6lEnLKXCqjSw6jzTtbX8Uq5plkwojncHJRGD4nh0ZNRWBXi4jkidgOsDYY1tjQ5ltui3x8EtQEORuLJ7I7tXZSiufITPyDVBY4ukC2IYjG0mAko3kTkk0ieSf1g7pILtT9kH+JL6IFHztO0vftgzosJsg9mB6SCDken11MkmYBHe9NH45hpqSI2QirmVdTvoeOmLLgvXF4o/ng8IF5JVlSJDOOpawDpghxtu5kZJ6pAszISc1yH0/AyAiPsBES2YlTd49CO5M9UVwTrB6gjWQhn274YJmc6L9Pmu0IoDad080J/Exte5/ytNCLW7wyGzKSnnHmhqbFsUB0eXRFHU6u1mmS7JN1lc5pOD6ZTDGhwwPYmv5E8pFoTYWOB7tLpspDE0PmlDvFvkrUYqSgGXvvMXmLKbmleBZ+khTmFPP5uoI9hgD7zwe8jM2dwRbPOUFCho1FgQWtCSwc9nyOSqwI6V8UtrgzTCddf44rGEgOOh+su0x7zS/zw8XH58lMTJIsPt/5TJLONkmUdMYNBsOUCudySmZOyeZXiMui2Zqfl0XzO7N5xZjQtNw+/U0gIueT1QDt9Hm4EZOpmAQHaK9Ja6ScJeKZOMWMlJG5+JDMNKo9aAfeGnXu3+OQvDmV01+QpjFfdjvBebEPJEX0FlNhh1JndLfkRzkVpjGIkpvS854JqYX8h1R8zunhjz/8wA9ff4yo2x5FzwSLXYEbARZLmu4xZQSs6vNw+WpogijAT34fkOqFbJ2878FA+OR7kGR0q2RVOA4VxB6AdklPvHpdV2ZKG0MsjhqXXApwQ1J5mfebwRiZo8P4UMRyQtM+NTA6P7UeUMMY518q8uAbKLUvsUCSWeZk9bSuxFgQWHxZV2ot0I9YzxOY7CRzsCyGM8rusLjl5F0xYi8UlpzxDKRCOG5FIzwj18FcXik9/F6WpIGIeQ0GwqGmPKdp+0AL5rEGZzABYXeZt1rW56AUrwdt7JKrunP0jdUupAK5KBW3dQEIy7qqcI372Uo5EyyZezSmn34C4POcj0RWiDqMs9guKTyKSsgk+twPWiBzr0tK28+BRcoaUPk0n/7kITlZ4IcNenLqqrupJg1lcsRXC6wxaoXsO94l9TsTmwaqf5JhqMb0ISk0hgYMbhRbMDLZBUZ4skjyURpoKZUvry+MMdj2HeiMoT2WUOqwGLM6W7f9gaMGUO8v0TdjHEnq3yzfHO2tHD6QmdE0ULrWhXLJ/O3f/i3uzuP+odSxx8aSL5S0yKfr0/hhHwdHm6EbTqmSf+YEP/34Qq2FP/zxCy+vN17qheLGcd+w7pSUwiIimH5xtxoJGyta6P/8V7wtMc7G02Nl3n29Gd4zqVfdQGZkMslTAMkLZbmwLmsoH0YMjBvbtivgAFeojuue63SOsxcZQfQxhJMFzyRYTu4Wpelk/alHGDj4HFQbx9Eltwxf2wEC5KOOlBdgw7rOpeSdTMe7GJeJTEpQUiE8AuJMszN1U8svAE7T/ZYjgbI3JcFN/1nQ9S1/GiR7jIZHYc0TTCbqGDvvWJjkMseaGv8S/lI95bhzlC45+tMIWhKvSKtE3nsnk8OCbYkh/6Y479A5at1JkarY5hDDdJaNyRrLWhdLAASyi1NtPYZAuFIrZVkCRFhItmhfd2drCg34VFr8d7/cI5Wz5XOohSWOLlAzWyGlVbYYydm2Tk9GL87whVJegIXRM9++3clmrLVi5LPucj90N9jko+oMtCQAtA8Yx4id5XGdqUc2hxFKEnlE+bnXPPZIXO/qo/qTuUxOmKlmxGDyrywb3abiQZ51efaE3oMRJYZnLhavaqjWNKNUoypDRff9OEhWNNiM/j5AAT6zbDGC+S6SR++TySlWWxuRCFhlzn5sg94MvFBKPYcyGpoW3IzHLslifGwnY7vjGlSOwBZM3lOTxeOmWm+ukDkwfPblhCpFvUyyzPVyBVTDEQMHH3rt3jVQL6mAyetoEil8Kk9C5TO9XaWeypTLi+ro0184rHv0UVJS5rqu8i9Mks2pj9CwzFij/B5n3TjtAObdLIuAqQzR3To+7Q5D+EQqmelLnKNejkMLSyKozAc0wiRsMoFBdWDKGtB0tI5LXU+G/1/7+v3AU8y7mHKeQixcgOelamaKiZ0f8CyUpo8FjmiAs0kRNd6T0b1qjEePxauLpR0D90S1K8M1rZ8LYFIO22gx2Qjc0XJcTMFA8EimS52eRIf0cXDQaN65lMxSEschX6OUZxpagGCmVANvg+xqpNaiBmJPKiyNEcyvTOtiRaRoOLtLhlZKpXdnHGIoDYdympzqtR+jM8wgLwIyHJxCtswSxa0Kd6fnOc1XLOXhg2EDDJYS0cVxaXRTwlOqKS7QHpeHnpNi5HVMZRLLZVHSA51kg5ICaEyZtg+294OUPQ64+drV6BZivOVOj40vyqjJt6XDGo2CHRspFuN5aR7ybbkPKFQu1zU+ayf7oFDJvZF6o/hBGp1kBwz5F1nOmvynRo+UO6G7A5KzjyBgp4L3Az8SP76uXC4LvX1np9GRjPKxbyHPSJSgWt63GRebcM/0ANj6KV+RdEPmvjqcp0zErOqwyGLGqCgSGLkf2uSXdWF04/CNrXW21im3K4XEfdtwH/K+AspSdHg0MUGKZfam9KnlJr+X0Y6/ABGKAa4mqMQUznvogikUT1QXKwuGWF18boLiGEuKDp+NggbnaiqWZYmpzCz4wiQ6pTC4U/MzL1sCdCyW44IQgFUWGRTu48DbwKPZzZMG3p9G8hkdmuuyxqUC+6HpnAXYJf8xMRhSKlip+KHY8ymBOkJSWYiku6zDeQxdEEvNMDYYndFaAGclAKLBZD6qEJlAsSZ6I9b47Oqmkapkxino4J3OOHE9peeafIPyoPksSqPwPqU+nWz+KT5V6ZA4eD8CoNHPGHEumyW61yjCKzN2lSFZBnHOzjvFEEvNJrjFCPmBImrdEyMH8D+ldrMYistOk1yBWXWRZGw2AxmBeI5p3UVhOD0SDLARl98JPEm2QFJipZnWY0p2eoCJzSRQYPOdiQjmDJdLpT0Gez90HrSDse9wNCpiPfjjoRSZy6KEztEgtO/ZjeJGGk52KGSsw9ijGLLEuizyNdk1VS1Znh+jTXmwiQHZO71p7VyWIpp1H5Q8sNX5F3/zL/iX/+Lv+E9//3/w/v4usN3D7D4MKi28AAfy/BBQCWYLRmL0oqj31pV+mlSsdR+U9ULKnfZI9JzIyelpsld1j08t/7Ef0eAEEJgLXac9r6+v4LA/drw7bT/opQg4yoSvwoPWD14vN50LbaHtB4/3D9aysNY1GvsiKf4A7w1zp1YlH6ZaSHXFygU/dFZnu2LmrHVRQdg2Jd8dB7Vqynm7XVlqCe8FFbU+ms5KU31Rszaf2NsBAKZBrmIk21BilKVE8ylhMLJpiKGmZGAh72v7AcOpSww9ILwxO8UqlFWNtQ9GU9y85FUqMFVoD6yK/SvgqbEd70p2XAv70TQ95oVSjbKYmNrtneGZ17g32nB5ZKSZjgfT/8ECdEi4ahFL2BgCkeYpEABnFq+YYoUayUltb7TWKSOw7j6wklhq5sBpx2TEygujLEWMDwYe52cbEcltWfVFMtaQtaTeSD6oNNZauV6MuhqlOu140NugbccZYqIqfCE6bpmjjkGpOtfbIUlWNTE/U9xtikaX3cNlrazryp/+9AP7cfDrt29gjRFguJN4bLrvbledo4/HB62V8LaSOWx/FEVqXwQo5B6s81yYVgrHtjFG5+vLjdeXF/7dv/2/046D//Qf/yPv3LFH55JeqfWFkZxhg7f9O80b+zjY+4OP7Z3bunBbKgmn5M7f/e0PfH39wv/4P/yPER7g7MfG9rhTamIphYPHybicd8gEnozP9/9//ytF/de8Y6OhtNgk1viAvrsGyeOCkam5UihkTyx14bJeuL18odZVcrpIP962g/v9QYsgIXKArMH0lQm1BuIlqS72pqYghSWHJEvRoJdyspU1aNExUIs8WR5715kTknLBixr4WH4yTehIphygQ29gnlgiBGIxpd26d4FUXamI7oO0Fp5eezpHM4qo712MsWlAbucW1XBXII0EL3O4mUPKqWHQp4EOzjjEcCWGGDUvGkTnROuDo4kRejQx7FKukAuYyzg82CqliAXSktGjd/AhoC7jXFKOGZ+T60pJMtRXvaJ90ZsSvXzAshYNfWei6+i4N/o4sLSwrAvLurJcr9RyoaQLbexsDd73g3s7zoHaP/Xl7hz7Abs9AbWsOtlH4jUv1LKQlgJ+8Pj4UANepI5QOuyN1gq//fKNBPzxD1/JU/47Dtx3DZrTE8z0YOMty0WpcX0XG948VB5ivzCc9uhhqxHBSSPQxqgfMGgR7OCItZ1zUuou+QSM5zixlCzAzzKtH7TeBHwmY7jqqn50UhbBYFroeFJfVFdYLiY/5NTpY8PSEPiUCGBFz3aCnLOurjVztM627Z+YRTrvfDQp7VNldOextaiHK6VcqbVyf7wzXOfz8MHHdg+fU7FycjFJhm3QhkA0ut7zUlYNZUj05H8BPJVpzRMA+6zThwV4nBK3L2IoHnF/tJA7G5GW7IPrdVUtezSddyVxtEPqoyDfzACgMdQ/rOstgPwOpqFmO8T8Tsib+YeXV/a28WjvAWZ2hu+MYWcv4aF7NVQT5CQ/W2fEeUbU+ZCKTq1TMueI4UQMk93V07rkq8RdP33IBPIDqaCApYtYyLkqaW9d9WRNbOaJ+/y1r98NPLWsVz3Tg+Iqolgs1uFC5oJBMFwyo+nrMSfmT8RxjkaFri+1ahrYZawNTl7UNOtw1VdOmWJZMhGXzAGcbEWTCOvz2dGbaOIz4lY7HEqqDJJM9YaRhnE8BiMdLJaoBXwXi2oElIUPAWE10Y9ox8MTwoLd1L3FYm4ClwakHO+b6SEx2+35fZ2jJ9qYJo7x++4CoAJ4UpStGAjDI1El2ATBC8HmvyU1haXIANDihmyj8WiDww+mp1AuktNJxucn/ywbEJ4Etcpk8vWyklMim7Nb42M3ykhUGruJSrs9XL4VS3x0yfHiUKEkJ9XBZhtmjbw4ea1c/vBKzTIPPbaDtjf2Js+EhjwTfvvl51Mes5TMWgorkCgq6EyAkofBWgrARxkaPdbFENiTjJ6NulZuX79S6kJZF7hdGUtlTX8gt877dx2SjU5zpZXMVLM5rWgx3rdUwTuj7eFf4SfIoglb0lTfYdsOjEFNhWoqMpIXrBvWOzaMPJw1Zb7ebny/32VwrOWiSGucbdtEfbRCqSu31xdKlbRJczVo+6b9F6hBUndF788LwW1KOvUMszp7hkkKozQxNZOTBp6nvwYCY5QCNvd6DkAkJk1denZ57auZKVEqpekTFN+jhywKM/z0P9G+2Xu4qKYAayzzOY7efcpsFdU69dnQgHb6mCxZcsjjGCQfZNd7rjlxtJ2P+weH7wJQawQGdP2MnAsDow81XEam1vC/y4HMjE5yKCnmpKNp2m4WxelzehXJufpsohFLMfkvS8H7TJloWPtk1Ero1YMSPxslfR9TukSA3tnku9SNuFgE5AmI01k+YmKC6TLvcZExBimH5wu6/KYWf7JZNEVR8T1QE2R5euTMn+khPxx4sDctJi29x9lsYCmT6qLTcUC2KtbNlASFp1MOX6T9aExN+mwq8lIJQ7qTbTligipqcxI7ywet6ZIuIV1IkQSWbIlf6QQdU57JYcEKcJ0HE1cTiVdJZEfvWFFktwVde4zpfTSHOGHqbImUBZK1duBhzi4JYUxPkwqTBZ3FWOcPP/3A9WXh7f4mkCKp6ejeIulpxhtbMFo0/KBr6GHDKZ5I8Xs5mqg1Z8mm1ibp17FDV4qdx3m3zH3bxdRLWd4Qw9V4jeGw6Nl/bHdqySw9Q+ukY/CSFy61crtdGWMhDaM35/HY1Rx5iuIbWvNgxWpqKnlU4nqT7Ki1B2NsmO3ADt64XGQYelkK+9b42D4UK23GWhfqUmjbLobbCImCRWJuifsQgQiapcaOm0CKBeMqFXk0WorERbEC3KGWJKAoao8JhBJ3R3dJb0VGndKHxAjmQUxzxHDIwZiLfa8sioaHyX7vGujIDmHhtSySqD0e5I9K753ltoYBbkgBopbYW0j0w6cNs2Crag/J50aG8JZygMtOjaZ9ySU+G8Qoqsb22Nn2B2RjyZm63gKAzZRVUtb3twf3jwfUIhZGDNTqokZ1azt7HxwRbjJIMok1kwzdkDn8ZeXL65Wj7Rz7A3cxHC+XCJLImT5CMRV3oQa8MdxwJ2eB+LnEZrZEb2q4ezBdj9HhOPj29saxb7x//4b7iKGs3v9sbLb2wFJifY1i3AYWkobb9SUYyTIo79vOSEPN1JChel0K62XhX/7t3/Jyu/HYd75/+8Z/+Pu/V+T1ywvHfrB9/Eq+VEiwHTLzt6Rz6csPP/D15cbXlxuXmqg18y/+9BPrutDGIQZ3TljRsAebFhWDz1TdWbOPk8v9z3/5cLzJU6imMPI2Yx9ieaSiBrUhtmj3IZZbcQFn/cC2B4PE9Zbw5vhhZC8saeXom3xGkz29YBGQqfsxKATDnooii0FKeCjNgbDHPaZ/iarJNEwbW6NkGRiXYDFMZnsQGZVHGDXIvL8tft5sHHtrYnL7TPA2RpY8xzmirvIYXpp+9hBry3OiB0P32dLpjmm9nf3V49jVQEvH+ySIEoMhBy/REIev5D4ODc6CtVGLmDPVHWwP2ZgYzMdouBG+PPNzDhZXVUqo5enjFaoROgy9vxx/t6S4N013tJlAm8d2cPQLdZRIjYaSpLLIo7HY4FbCA5VM2w72+0bbm3qhv/o12P0BDHIq1CIW0qUnlmG8XCo1G6MYPgrd5nBMSYi9Ob/8+kZKsNZErgpeUUjAGyUPyWPjvm7HofM0pIX7fRcocUCK84megnmvn1MXSSn72M46b1mWSNFDNWRXX9q6EjUJsOesxQzaXP+EeqarHk2m/ViScVhnWCJVsa7b0LpJKdOazrq+D3pVv1yyDMunX+4Mfegh0aYI7pr1hmp7sWCnz28p6lFHiXss+vER5ysx7HECDBoD93KSEWZycO+RRhysvtFHAG26h9ohDGGMrv4bwxCDasSdanOgPnoAU8H+dePjfo81E++jfgovap3hnaOn2X7H/gfLiUIVASHARSZwP/0/XbV8itd7HGJJPe4Ptu3OvstG5mhTtt+xS0j1c5YsMIZ/Kis6fdf6n8P+HJJc1S8qVuqyYjnTfLD3xtblX4oRUnqtH4HeOcJLMuvlRikVKwuYMBPCcqBkgcUBY3AWh7/j63cDTz0WsgzFhIiZGXlORZiG3OOcnh69ndpBn02gfaJ/mhqnnI1aMtvWNPGNSZ+X9Tzk5oNNKZOT0cbTVA2mrlIXSDKlZsjdWaZlPr1f4nsQ2v3kKvl6MJDWVWDBbtq0EIe3uwo2VLjLaCqaOwuZlGtRDrfwmIgm0GBJiZNkaSOaan33NkLja7OZFzDV/Qk8+UnVDgp6P3RRnglGRBNjJ6AgXyiBZgNF+I4+sAE1F6WOTZAmNn42AQMZoCu9j6xJ9nVZKDlRgW0kqE4aieSZ5HAM+NjvMZFBMpy4RKxATk5JgyM1sIOlFNZa+OnHH1jKwrpe2O4b22Pn7e0b274x2kH3zvv3kLmUiq8reU0sWayhlDPJBsM0RZleQAGL6Feks52HWwKWzPJ6I09z8XVh1ExdXkl98P7xFnROhS3vQ2BCxkI1N81fEVtl+CktFeErgRUifE2NDc6+H2SDPUvOWHLWIQpYb5oqDNHer+vKdhz6PKLaqWXBDd7vD0loLJFKYVlXUpFPiUIAYG+hf16Wk3kz+jS81cE6X7KmhURjMjQlCA8W77EWTXTdVGdTxBOwIBple1JrZ5z8iOJuRnhny+elDCpqdcOMAKg4gSf9VaeNPaYSAQRMOQjzuNNhbD44Rpc+u+QohPoJPJWkArIdKpSSa73npCnjtj/oUWhZsZBVCaA45QLn3pav2Lyk8KBMm0m2EIVYbNC/oPqO+bpPUP4vjhRy0GQlz+n0cZzaa00xovgzPwtmfcaE3xjMaZkDfZoWR7EaryQu9tloxPmCjNT1c55Sx3kHzItYEptyNuw+Ja2mdWTh/yS80/Xg8mRwxJQsJJruTq5JxsvjKYVJZqE3JlSHmgp3ekwAx/k8VEDneB8t2GD9LEQsWLnRPtC7BgIplQApM0bBbP4iJHFBa7Z0Pgr3oDanz3tIz/fog4wah1QETrjnU6Ksxi7ux5KxNO8X+XeVuupza+HTkOz0DbSsv/vl6431KKT/4JIGhsxkjEmjH9SkqHc7pbZo0uxyEip8Oq+6zpdC1n1TSwR7ROLXIAAU5Fs3wYaQpw6eprCji7w8cLa200lsvpD6IB/O5ZJIeZEcbwyOfcfb4HgcauJIwY51RlMBlZPWXGuNXAqXtbIdO9tx4H4gJt6BWadWDSSWmmiH0w5R9XNK1Fo06DqaWEuzJpmFcy7nPTslswo2OT9kAVXx51MwktLcF0NylJITjLk2xllDxG2r2+kTo2SedaMfWiP+PE+yx/Ry7sEeUuCSA/hXvLhjpKz35ybfs+2xCSi6LoFtBVycRnhTdYJWrdRhm+bgAmZ0ZPm5BpsPvINlvf+lLkyD8DhSOMbB1h5cykVT6KXqDBpOKpWyXDgO57E3dZjhs5NMsrk2GiN12tbBD9xVquYAjoYLeKhrZb1UbreF728PWnvIiNgyS1UKJShtqfXpFTjPnRSpoBoqpgy16myUQb3A7I4arTwG9MbH4660rvsHOSdqEaA84g4Z3tn6Tk6F2/UaQ5c4kJPJm82d/fGQWreJ5SyPTck3LuvKulz46ac/cr1eeH9/5+39nX/885/58cc/8PWHP7Dt79z3B5d6A4KBhu7WUgvXy42vX1758fWVl9vCuhT+8ONXcjIejztjdEquYhCYanZNzp0ptZzGyB5NjiDYv/I1wLtkzWLjZ4EWkWJKNpoB4R823KUqyqp822hwHKTSdJ66MPrsmZoqaRyM/jTCL67BFDhtnkljNrJhyYHLcsFC5pMEBqp80/2j0I0EKdjDTQPalEIiFw1mHJcxbD63KWEhTpm2JExWlPavnSebkcMFvc1AghhQT4ZEdzHWyTa9+ycOqBrONcSZ/lR7b7QuP5xn4IjHmaJfOQYo8+6StYBk5aVUyhIDEpxtf2gPHhreNJeao1TJEJnPeEi0b6i+lwy6M1Ui7k3SPdRX5QnMpTy7IY4xaH7QhggB87PMhhJ8R6fiXLIGREamHQoe6kdntL++Jh2ns0sWaC4Apho1GetIXC7y4DsSYtiOruHUIaZWH3B/3HHv/OmPP2hAliWzu388uF0L10tlFmitzYAT1QvHrtptDgdSKmFlwFlblZwY1jUQcZ0ZKS0skVQoQoJp4cU+nPXTGD2GwWFmbR6/F3Ua6i9LUn01wtPLTBYLPcCRRMHHQWuDLqtH1bipCHjydNbzPfx4fXgwkaKeF0rG9E8S2K962MwZKcOnen/eac9PapznQhj6oNAv1fd9hJcrz2GUmZ0MztE/sf7ib89qe5ysfxAwKvaVxfp04NjF6C8R6CQZ3Qh1yhM8eiLYWseYrDCeyXYjPqFZY8/n1qNntRP42fedfdtp7YgUwPCVyx6vN58S3DkEdlRv70c7a8Mn3vIcwpvrvWDItmV0jtHOz6ufOEjUQCRKLtS68OXLD1wuF1K94Bj3/UAD+KrXE0oFBsHS/R33A/8XgKeJy6bQA09n+nloJpKiGQ0oIdcKqdUImU1HEi7Jykp8x8FoD7Z2FzLLmLNUxiGT2BrG5WrIglrqASjE4SpNaaCkSDKWzRRpOGSqliJlYxy6FNd8oy6KSu9NRZjMwpw8ZJLoKYlmSpPcikBUEgEQQHJNxsbRSGWhlootzymoJipi7rRB+NqE7wxEUaXUE8zINYlGmDzYDs5H38neqWkRQf+SsJHImyjsVubmDmNARz4B8bz+omFHvV9KHvYrKoXdXECUi6Fl4aWxkFmTSY6YC4tlbvnC18tXvn88eL9v/Pz+wdgkeRvD2R/v1KVw/bKSVietzjVBJbM0Y7TE6yVzWQs//ZTp7WDfHsgUfCfnzlKN7ZBJd2+dUouaBluo6cJaF9ZcuGKkMTh2x6xRilhnYxwo7v5gvchb63FsuCeWZYEM+9ixNsAbdimsaU6EjfRSGd548zuPPri3zppWalqw3DDr+DFpzSpstzYTWiRBtGAfuSl5KOGUhPxVDk36cjZqrnGozFQ3XdjtcBg9TJYFAOECtV6vLzweG3/+9me+Z/hlSdxeXlgvUFaZ010uoo0OxLQpOdFNdrXzEJv+JaNrX7fjkKdFnmApkh34YDs2rMsvLaVMsixmVEzXRARRY9+7BypkYpM8ZeisSTT06deAOyUbtdQTINx7Ow2QPYDYZJlU1WwdQxNjjwGtGSw5RbP2TH7JWfTStj/EqAqQI3Xp0vuja0I7DN87fTvwpoLw2B4UgzVpmp1N3hwpoUvCOwsyhNaDEn08x/SI8fSU0kWhKrLUJYAwAxcgJH81A5PRch8fJ6qWk1My5/Oak3Ef7aTUzmeQXfehUkacA5kQzith+JNiPKse6bw5TRKVumWfLneiIET+MhCsCPnNuDmHHbSYLK35GvLfeDCuC66Fr517p3sK+WxIJj3kS8eumtZD3hfsE2bZ7k73Iy77p9xQb0VnvY9B6xtYsGyTbkfLEUvfC4lCqpNBlWgMfEgOU8oiqUFztl1eE+tFDfb2uOOzHEopAIHPTFatux5ySQ/ORO4pJFfxfmIQg8lEczL2RBDQ5+Dx9zsysfTR+cc//2fe37/xb/8f/4bLrVAvWazMvukpJaiLEmnGtuFdIOq8xc9K13QyWHhMvFwMH0Y73gQgHSrM0lw3BqnMoI5nISWvE+1hB0bJeHaOrPuyfrlhNnhvGz0P7ID0SBx+qCFzOPadMdQQEDVCPxrbfWff9zCoFsD105++UqpYH/d7wu0AHmzbr1zWlZQKrUnS0NoBfrDWMNBMia9fXlnXhWOXZLlEMp0Bc9I1pbvJxB54NnMx5EFrrI85ORRbbbjHZFcFaU1I2j7PpTZN26OAD4+3lJ5AV7ZF8gazqBEE6LTtkNlUSfRDiX3rcqWWxOvLj2z7xtv3dw2fKdS1UFZJAXPO4YsyOIYSkOSTQwywVHIWyyfrSR4d7QQzJB0Z0W0TbD9jC1DP46zrvaleKrBcNVg5z+OhifTeHrx93Pn29s79ONi983q5PMFWBNIty4rlcoJqOYklUS6ZZcn88OOVtWbq4lwv8nwrRQawQ1aA8rTs8nLTUHAEYN3wLhZEXVbJDmtWOmBvtC4giD6wkD/hzuN+px0HPYJPUko8Hg+lISV5KjkyT34cGyVXyrrgLUDTAM+/XF9IN6P+9BPvHx/845//keVy4cvXV/72X/0tP/zwlS9fv4AZjz//mdYaLy8v1FJox8HlWlivL7x8/UKuhT/0r3G3VJZaeb3duK6V67KQ0yCZc/SDNhwrsaazTPH7aBx9kxwnBfsrZIhipY7fDTxZnLlOND+tBVtAnl1Hbxy9cz92hQukgZUXylrJJWv/JA2C78fG9jj4eN/Z90M1bXdJd8NviPhZw8WgSp5OAG0sFczONCydxXN4IIBEgSSA55P1OBNsx9hlmxF7oqeuYWQi/FeDBWlx8Foi5U52x48WLfMEjADvYUfgse/Fnh8TyPYAZFygEina5mioPcB/+oAmlk2tFSwroC0XZrJ0MtWJamQbvR04nH0AVfeRNdN9eexMxrPZoTWTg93V9NxSsC3wxJJVQ3sTuyknyf9ynWxVeSaOcVDzQvIkO4ekQIjuna0/PY/q5cL6cuE4fmWEJM3MKTiLOVdgzQplkoT2YCaE/9U1mYzLa6G0RBsDcicVMd5x47F3Uk/4WnQHjoSF/9OYfWDI6u7bBjbY2oWlJNal4snkOXXfFF6w3ATWCJuTF2KsD8uFkmrIfWNNGniVkmdvj/NZl6IAmd6bWOj9iHXemCEAc7h+3utx784B6CVX9XJjkLvFvxs2ZMw9LOGliiU/jHV5Yb1WXm9fuK4vZFtIVA1kBvIwE9mNdb1QcqF7eP9MUCRq2xL+Q85k9Muf9zmpczyP8+/e9we+g3rsLCPyZNTlegJVtSZKuWDBKNo3DVbarj+bUmLJhgo9YvCrs8GGBig1Sw46QpEwGMHCSzLKB0hSAsy0aw07BIj6OOhmweof7K0pKKZUoPBMnuPEOsZkWI3BiFpEyhkxmkkKWxpdoOdyWbjcFm7rjUtdOB47be9cVz0b9xSsw6b+PycNzFsMkyDAUWfrh+601ghOK23f6L3z/ts3siVeb69c1gupvuAY8v7SfitVzyaXhRniJFxh0PaD0RrbY9Nr/x1fvx94GgFQWKSR8ASe5hR/rntiMJfcmJGOZ7JbLEDSLPY0fR1jJs1xeoJ4TEhkVk40rQGBhbHvBJ6e/xznz7ScKRb+Q6YFMwJJngbEkgkkfXgOHg2Aqc85r6hBovtkFukSiplvqDqeTKFik84dvg9jMM0tJ1tAzysuPIJlMPo5jZsXE7Ohn1PGmNjkFNKG4QF+qXlIHqwbVAjOyRUnlhmmcP9NAfGkCc/3dOoKxgh/B12iotclvBh76xwtzFg9Kr3uDJNut2QjZVHZqxmLQS8CYi5L4rIa6wKHjfAL2YEjLk0ifaMHU+I5VRJoIiQ+u5Gs01HzXNI4TVy1aIbSXzD8iHlVyHPGnMKh599DGz+E7qiBonHQORgyiSVRbKgpnnTvMeWWnJG+xFqZTv8jPJXO5oYJzExcXBek/mwPmqxAl5laooOG8J4oJDvoR+PYG9veqJdOCZ+ZCShgRGKHnYVkStPA255NV6y7MSbt9JyZicFkidEObKh4B8NK5tM3mHeJ/nkusflzdFDKikeHdg/QSUwpKCV2uAl/8mA1xkzhnBpPXyP99bkXjSkR8Gku6NPQfH4GPj3GA8QIKn93sZri80vnexiSLobH0WQlAcFumHt4Dm9O7sTZfBp8Ap6CQRQXs7kAX2YT7wSTTiwdQxOn+Xx02M/cq2BREB5QhkAEm/vX4/kEeHg2zZwTpfmV5tTJIzY6TVbGk0lKvLZZXDCZhWZPNiZPxtP0Nju3ocfrOnfcQLw7j8J9TrtkADvZCs8jKoA6dKZOP4+5SpmvYEouR9dZFwOQz/NqOwG3+JzivJ/8+llfY8TrmWtbjJb5+6e0wp0pyDr/F+zKCazqnrDz/rDzWQYYOA1D53ibuYl0hg3veG/cHx9xbkk6WJfM3hJbm95b6WSnuIntavYETJ5v0KN40z4qqeIGbe9w3lMq1ASYoguaZ8rLjHm2k/qoby9WnYc8o+DeOfpB6YM2nP04SLhMtlHBJY+T8PAyOMbgOFRoTwZSMlgvC6UWSk3kY4ZyNEbfSWmJOGwBnCOkqKXIy6hkMWGWutCP8P2bjD5ifVk6D695Pj6BurhbP93b6gYNMe8IiSQnGJrnoeGIDTWHvfMZuoX/jZqgM4nTQpp7MgDnuWwxWHcmSFdKjUSbyF5w1ATPJtOCmh/73twimEAdscXQI53nVpwb8ZHKIyfeU7z4yYSafkAW67iPLklVME5zzuFpE2dQgD/H0dkPhR4MYm3Zc0eTMsmdElIMd8QMNMglsyyFdZVsxpKTi1H7BC6MIz6jEn1ELSZJyXlKDcxk15BsxNkeEsOTKR0MNoK9McSAVoLh85xQ0lwLo9+IhYeYbk+/NQ0LLM6dy7pScuayKvVOJsSFy+XC6+sLX758oSz1nCJbSqzrqsGmGctSySVxe1kptXKJvV+rbAterjeWksLQ/wjQI5h/GUiz5Z/n7vQJnOs92Mtp7u/fN81+fsXfmUbGUZe3YOe0MPWPgkBS5rM+sbg3O603jmOnt34OcufZg1nYGYQEPdb0BHfmwNz/q9f1+W6etYLq/JCdz7ORkETG+ddt3jbz+9p5v+GqJ+bfm0oQ4jxQXeR6JBPNn+dK3HWJYPOdFY0xczXGrHeCTeFd55tP9UWEO/lZ43+6qz2AZn/+yAlQnb8fipVZIFnchRqFzjIvGrxP55RCdoYCqFw/+/SfZA5me/xZ4ryEWafNtZ2KEl73XSDbrItzUnpZJs5Wk9S9ncNF/qvP97/9mrVlKiZpRoqrLO7o7h7PM8uHzJMMp/v0EnoyxWc1qqEL8tM0MXFa17m21gQ2PXZnTc0J8Ksn6Ocd+6xeZAtgs+YKOonMwIOhNvq8fONZTmbPONe6hkKE56mdn50NPvWEz3to/vvoSiJOZaWWRawfk4sfcU96PFCtM4ETo2k4qYCOuCdi/Tn+Fz/oWdHF+w5WJRYBYDEsIJ5dcrEmn3L1CVsEoBSvvfcuYkvUpUqV07n2LGB1x8oOZA7idMb7xCQ+1WbO8850IrzofHAu6TmS/03m6FkqEN9remH19pfV6twfn36dTK24Q2pdpIixJN/PAV5jGHyeU2dJyckWm8yjAMZO0KnteEifR2+04+B+/yCnzLKslABRZwPu89yIE6/kLOVEnwM03YWtH7S2//+f8dQf0oPXtcbhPLTcbXqHeJhQhpKCQDt7XDhxYcwpfwm5Xq2KaD+a9NQpF3oRdVzR7f28WNRIEHphFXT7LmnCceznIZRNBaxo2ZqQKYrQTvmJ/EtiAyMPvZQkPhDzaT8vDvlrLCpkXbRRDMrQYV27c0mVP768nIfPY3twdCASlZJJAtXRZU7S+ycZe5dWduq4zyawQx4CW/KIdnZT0ykX/hTNn/745AXQ4whr0RREI5lzUey3Jw7f2H1QehiBm9IrUq6k0bEm7Xcbnfdvjb0kCs7Lyws//OsfOI7G+9s7+9hp7Dy2Dz7ud/at0UcijYznRB4LuTulCbwaPkh7hWFYFnPlzR7knLktVziA5vR942g73377P2nduX39SRTm/U7KRm4Zo+Ot0MbQZGK/Y97Zk6R1OUfD7x7m885lkTlme9zlIZWSEpGWyvFmjO2hSYQrsKrvD8wPSobLLVKOUmexTCVxexES//i4s+2JsbcAHXXwPU8qGKYG6HK7sBZYF8MTbOPAdzFXZgqFs9OHsQ9RaZPBOA5NYJeFNAo+Bvk4KEfH+qBjkEqkOxmIUBW1nYqBPejYl2V5gjNxWNRStcatMJvs3lUs53WVRI0SW0brBRNynyMG14P5AMJsngCEPQ9Cd/o4dIn5LNACIErlLAlPCEc8fF3Ww/A9mq6mOOKZ7mKMSPRSEzDcaD3HBbpQ6oVchiYjblzSqqavG217sL89+JJfWL8uvL29KQLcjWLO7QqXJVMTzEQzP83i5ePReyfnwnVZFf26K1peiRETJIsicVaTcGIBI2RMYz6P0Z8X4yxy2wF9yF/FElY0ca+LWAWtN3obAWKXE2DXpW5njZuzEiFnMZCSiZ11HGpkL+V8acN7TGvirAnpGWmmORpizsSUxebAQQCwsOtPhcds2MIDQ/46StpQZbSTs7TmvR8xXVFDPMgnyGMeTKV+4KHVxyTXA0kqp7m/XiH0fde95QFwzDbbBuSdcn1A+Y3OL5A/sNp0T4QURcBFZV7H3Vtc6g8sD9Kw8AWZxf8sCkzDkqSUo1lYQNROroey1kLJhg8NQLADS51KYtvuPB7fSV9/YF0KrW0sI/E3f/Mnlm/v/Py//70+u7qAN3pPtJ5wl4zZkmjgnxeejF5lNLrkBbNELgWsU8fBWgbXS+dj6+yH/G6GAYvOgbZvqnB9gqAessH5cRuLVfpIPO4Ns8pyvdHeNt7GOz/+8MK6lpNN9v6+zZqO1gSulZqpVjhaTDQrDA6+fX/XM9nfWS8/gGWGHwwfArBdjOOU5AW01CXOgljbNgv0Cfjo9WrP6lzKc+/E/p1ym+6uxmKiGiga+XyyrrNNE9hCO9pfyJgsqwY5+k7vXZ4gQeef32BvRwzQUlzuos73YxfAkDPH/mB32DfJBm+Xl9hciaM5fWt4Dt8UCsmKwN5oCMwMm6E4szGOjW8mH5TZALbRGL3FenZ6e5xNi8CCfLI2Xr/8QDKBKwBvb78Bicvli1h/B4y2sW936Cs2CvcPoml/eve5NxgCTRKDWjNlyfzxTz9RamapiXEc7NsGrqbJfTCa5C7q1dtZl6ZkeDEuVnAyj4eYBCkCE0hD3jLFeL3JiP/t7U7bd+g7SpK9UNbE9bKezUO6JHKpPPaNAaz1Su/O9rGRxoJFipAl4+XLC9d15U8//UhOWd5jlwKLPF3WdeHlZWVZDfNOSfC3f/tHvr5eSP1gWVZu1xduXy+sL4vMdYHL5aZzMz4z9aWdox0kU000fUQ7m0BwkiTt2akhc+yjqYEZwVrqPVQjs2X6578kGRSTTF6CGkzOQXSaiYRkmEDiSOSWsCYG+OvrC7kulOwc/c5vHz/z9viN9/1N7XWe4hmtk478NucweW9SCtRRVGe0RnKjUk9FRTaxICmq98b025vDNDhrk8muZd4anoNvwgkS5ZHCPymk41NKVYu8wkZnAgNjTDBMQMcxHFllyAbEkczLzcVmNqOM/OyfMTxrcDVa1/oy4zh27cUICTmNl8PEXcPwaA7Dc9DP96EGekA8A6UjuzvFKmaFQkXj9cT0E7lk3aX7dqf74HEfQnWSnlGK2sjNyeWCO3y/v4XlxWC5Xni9vVKXC8Mz2+H0w6kkrKy8fvmJdX3BSTzaztje+X7/4P1xZyRjelv+s18qZIIgEF52JEaSEqfmBcjc3zT0Kr7SjoNxb1AGVjqpJHJe+PGPX7mslXpdlf5XM07n6J1OwXPC1hdyXckk0nA8bQHY+JkSJ91BpBPPZ+9Orgt0gcQf77/xeHyfY9dz4GGAt8F2HKfv6qzj90MWKdlygAw56k8x5SVBU+10uVQ6xj6UNHocjcUKS1bNfFmvXC5XLFfdR0PPLeeFpWQGxn40WgtGalZtfrRIJCwl0hkbeMhVxxMsm35Is3e/rC/kXPn42IKxJSb/6M70gFW/AcfxEPM/QN62N1lrxNR4MppmkJG7GJ/ZTmdZaq0cR4vBSBiFL2sM7zK9N/ZjO2XgjAbDz2FCLQspiexhwdYWaC6m4WQ4qWfXULfUSG9Mg8f+wf3jnbf339i3h7x3E9wuV2qVocFoChNa1wspF32OrcnOoVZebteJBZMiDGh0WQx9vH3o34+DWiprqQGAgR0bduhuIBndGrYmrj++hgdv4re3b9j7G5dgtl2Wq04Ln5/HYGsHbTR2dp6M/3/+63cDT3Pg8VlzaZN9cE67AxH3J+LnHo1afGkaqCbH8TCq7Jw+HfiJpM9+9WxOTxbDROs5pwUyGo9W1Sa3Z5a+0evF65BHwDQ9nhVXsGDie3Z/MqcSSUysKLCnHCqb2E0VgV1r0qFuwD4QpZGYZhLzItehbBGhq0tmPrCJltoTEHAjxW+n5zc5W1HPqOEipjb/Xd6paJUyFU7xcwpq/BI+opmYj+KEZPXMRnf9fgDHPl/BZ8TWe8h/AgkNc7h2aNIxUhwuI5DKAX3rshC6TKZEjIL5lNYQkx1F1kvWIwNuxdhaQPti0owA7tTEWch0hoe8xZ0Q9MY0w+HQpH0Ah2ky21xreViJibkW0LnmeKLiucjbKZ0MrIic/CSjmVyIubamMflsYJ4JQqJcn1M8IxqXAFDPnUcUHGpWSjwrmR9Le/55an3GffrTGFqTrmA9TF5fjG9THNwT4RdraNLu/WwOiHWqH6RJtibi5+4/199/tRzjs+aMtZ+sHKVAPdffjJrG5uvTGrcxqenTN2m+5miAp4/J8wR4/v1J8w1AjtDNjzagaV3kybbxcP3JMzXsydYaKZ2AAcH6mYXluY9s1ut2AnJ/8XTcQ49t576OMiQSpOJzn2fUXAMnoBfDCSwkjs9L4QSw0/OT+PxRnM81sLB59pxn7/kiJ8AWkxvmNMo+rZNgORF/eeJM8TDmVPb8n82HNH+QigziTOGcOPWYAKVzvepbzjXJpzU5Pr/oeBNPdorF8xbrID4zj4t6SNLmdIY3uu8MDgbTvNyDeROvy+dz9k9vljgH9OtkUo05+dZLyuEJNH++n6Cc9lOf7Bbv57RueqbNYqaPzsfHB478FWqp5/fVn41iLX7osGkcHZ8dc2av8+Y8i9yDcZyiyMykVGPParjk8f2f55oW+5TBz89ME9+5bgTUen/+YmaDDAIhn+fSX95hFudgzuGtlOe5M+JcMMn9T7n9pwlvnH3kmJoG8M1kkdiz8dJZ+VzvWjM6S/scQs0zz2EmkM3a52R+Q/yM2PbjyQ/vwf5ITrA3gll2LpVn4daD6ZXnHeL9nLRP02MPr0uijkkmP52TgDZg/naUv/rkfU7w53Y9b/WzaH8eF0/2od5/MPsmw+scfk02uoWsMVI6HSUlhXxCninhq0Oi5hqDufPQ57ws45mWkLSta2FZC+tlJSeikfJPr+8cv5HCy1FHT3BTgjFhsVdqKeRhcIKEc98GkJYyNZvkK+PT2ZumtCEapxg5e9A6JnNq3hmT8YOLIVFqjjTaRNs666Xy448/nN+3lGDOmM6clI26Fl6/vlDLwmVZuV5XlstyApRLlZFvsuDsGJFwHAvB/bw0bJ4CsZgFGM+zYQQrbh7fsSaeH8c/+yXz4X6ezU/mD0xTVbF9w1PNoFjRrzC3rSkzwxV8NNrYdCZHgJG71tLzPgBMyXnzn2IXBZsxwkHO82XEs5j3//MI1nqJdXgaj8czPe/uydTRjtBYZJ6fPv+e1sOI/TOVFmYRyGRxFvLJMzKnk3XdJ7QWA5TPp6IbSu3Gnkwm4jyddcg85s6+SKAc/dP7mm96fl/kfTZrgpm6HJdIzBfi7w+pTnIYOOdZRMzaxznv8RF/z5gsktPE4dyTPnQmig9gpLyQykquK1YWPBU6GiLvbWdvR3yf3/cliZkY5LgCYvYuqWVCwICsLXSP+1Cf5D6CCZSpRR5t6yoQz53TQsMhBr86a9vQvSV8N9D9qG08hmQ6rvQOZEkTxITYswKB07k3bZaRsxfGEbP1mdLmwcDVt1FtY/78Rfydsz6ed9Wn/nj6BU3fo1nrqF6Jnj95cKwmS/D8Vs9lNX8R58Jz0Z114l98RhZsR3ve3XNI8ryjAtjl+XrddAecDL7YE3Ptzhpkuq95vMAJGhOKofM1OTDCA7G18PTivGefb8tiBjsTSTmL6bOU8edrn/XK9FId0TcLA+lMa4tZ86QJhs9/ft6rwXizqAlG1FyTze4+2JvCWrx1KWTmXe3QLDGSkgJTDCwUvhMBBK4AAx2FxijTM1TnQh8z7VKJif2sV//61+8GnmQppVPZzbTBlkwqmX3f8CF2QHKLRB29Oe8dD/QzpzCi9UTbd9wHD3YsdchiJek8y7Hp9ZB70Lqe9DFNS2QoVrTsx1wJwaeygqMY9RTygOPYVUrWldE6R9uYTvNTWUHODFPiwxjSk+eRKCOFxrqT64WcCi/VaGaUFnIXH2SMmuSjo8t8xS1zjDgEgkZrKeNdG9FiGlVSjUtGWmjvsyQ+RX3nhZHMVaxXxda661A1pvdC0OwxgVxu0Ix2aDqULiulQBoL7pI1TJ6+j46NQRnhyTUge+Fl/cq1XtjvB92H0NdkmpjRMFdKhndjsHA8Hnz7dbCuJcz7wmPqcEYbfP/2xnqtfPnhhX50Pt4/aMegN+d2uXFZ4Fr/AT82Pn570zTwhy9CancjF5mqWbdIEVNjUtcyiYuwH/R+hKQG9scdA9ZlJbUEj063TjfjI294SqR1ldnpmjgc/KR2Tt8b6fsT4BZyFjMsF5b1Sh9GHxaxpImjq2HIWRLD4/SwgGZdNP8pQauZXCovl5XsSUy3rYGFptsSJTx27h/vDO/88MML1y9XLreV9VpZ1nKmMVkUycsS/jTbxpT3GEpmmMUOPSaRZXk2U7mFWaEKmZLzs8jxwb7187LojfDI0dadyXcqZR2CuZUM9mAb5jDM9a7mbuztBIO1k2uYxQZ4OzpH20OQk1VpTfp9TD4sGeuyMsGwlMIrIfY6vTO6sw2xF2tesYg9+vj1O+9vH9RFjEn3ET5zKxmFEKwxlU5tZ4yuhhYN3gbwsW8q3JIFbTsgkQCsLL6vmsnZJOgyUi8Y+y/uKmeQRycHjd+zWJ9mYlcOH/SQk2XTmm1Dfm2WOCUJHmfyGXlq4RJgk30JvSqdxGM6LYp4CvCzPIuA8AKbRehSjVztCbp2ToNLP6/8p8RTBqlBNc/PUAX9mRk/7YwhqZWM+SV5xuX/YZYh1aD4q5iYEe3z4p3AUIoiZkYOhwL1HEgcXfHvrYshsB87e3uE95KSdHrfo5GMdJURPiM4yZS4dF1u5FIoeSGPgm8ydSc5dY2EpLrEvabJ1LH32KeJ948N+dI1FcPBCCjT1L539k0TuP/tf/vfWdeFv/u7f8NaF378+iOtu5IuRwoD6IybDL6NSbsXC4zAoVKY8+7HrrmIJcaAbTf6KKR8xRH7kaVgObFve9xlKqAtiVmUk7EfG63tlHIjWWVYZpgxRmE/4P29U7P2VO9Kl2xdTKxlWeJscUD7a9ZatdaQWC1MgMKyiuPr9YX1ehOdfHQuy6I0xhx70FScbU1y6inZmJJ4NRc9agqdLYZhqWoNxxnTJ3gNmnrmGrJjGcBjhmWts+HOcRwc2zGrC963B/04SOecS6bWuVRN2F2g4vBOM5lFu3W6d/kRRqmca2FZMsfWo34JOcAQ6NXddTelJL8Sz3iwVHs0lnEEnHtA4RgBikUNN1NZxwxAyZX92GKSq+e1rn9ZRhqcUt+9i42TLzqPuxlba3x//2CMwaVUbhdNbD+2D5kqZ50vo42zyH25Xbisla9/eFH0+lo4joNff/mNkjJLXrFTIqRm73pRvXREbPXBgzlkUSJhplxeTvDXslEviiXvrYccI3GUC8UbfcD0uRBILk+W1jpHMGxyroHQFFKG61WA27ZtatSZUsEpyer0sfPysvJv/s2/5P3jnY/7O2VxSAfD9Pwex0YuiX/9P/2d1s2AclnItbKMGk2IEtTu213vbVkF2JVEaxPMjpeX5xnbz2eWZ2pni/UbDDwxTnmC6X/la/jg6J1SdN6MEfqIMkGVJFuK7hQr5Fy45Ruv5cbX+koti4JjDEZv+Njo453BHU8PuqcAXS44WWdETlG3hJdhXgQ2jooN6Ec7nzu9MYYY5Z6NNiT57/Fgre9KoJuMLQsCT3T97k47mu7NVFHUhUFrOmsivF1G3RpCy1+tU4sSo8ZQPbUfc5guWwT56UQiXFczXXOeo0HVQOkvWnAZ1I9xsmbUuBc148M/NeNiZIz+WdITXjNRsw0yp5et80kii9Zq2+Xv0znZTKkWmRGvN5o7yTvNnX0EAIZqO4bAK5B8DW0hqREenfuHMUamH0ayhdvtlevtRrp8xS+v9Osrm8HmD749vvPt/k0so79g8f4TXw48IO2JWlZGy3y8N45to7fO1RqFTD1W5MkKpSystyvb4zf2+87Xlxdebit/+Ponakk87t9oe+Ped5Yq2e+6KgXs497wcedyWc96hyTQ60xanGnBbidIMIH7mDpCGrg5a5XRdYuwrG07mMb9pRbqsvLx/s7R2gmM15LFPjq2AKoGa5HfnyUpcPa7vBW96z5b1pXr7cLt9YVaVe/t+46lIaBvGL2pZ2p0lvDGm5pj4ZxGikG45dgd55BgnIqoyf5XXZKfQF4b1FJU56YAUYY86uRS0eiufsqKgBOA4yjPQVMMtC0A6BTfp4fvqo8AoywHCtUpWUmw3gejddoYqgXvD5ZayTW8suLOZILDlljqipQWftbSRHq24FxOQEkvRfe8eRcDNMs/ap73R1OqdVlWLuuVper+fELdUVWPxr590FyqqbKuZwqzu/PYDnyoLyBV8nrlknP41Wb2Y8c8kWvl6w8/sV6upBgIdnft/+Ec93dqKSy5MoazPfYI2ILt2DjacQ6yfs/X72c8lfLJ30OHbxnIXyjAkTwbmnFi5KLXYsEsmMXWbLR0GJ7GpyZJzSyegpOoJjQuxtlUTG3z0wcknSjmk/TzXFySPRx/+aaiQvrsgZKmZY3UBpweD+dEPTYAIXfBaQUVsaUyWpgoooYzR4GSomEzj2QlP/HSAIfmy5nv67lc5xwZRAvFTHKB5Mw4Vh+Dp0PDvKbyCcYJIQ68NABCfSbpfI/TPBj3iI30KGihMdi3g2SZUg+xKJLRjs722Dl2OfIbyLE/C1DrbWcUXTolJdaaqF7w7uyWKQV6e2jCZmE63DtbSJlLqqyLsSb5IaSQbY7jUEMfNGIQ1R2LREGzmH4tpHSJ5+DANLrkHAA2nBY675EhxyQWN46hX82dwwe15ADcCp4yWzCytqG/30yHzYiD+Eli5tS9K42RKGT1GoqJVWcBFvau3d87itc8nsDT43HXFClMicqS1WAxONrOY7MorC02nMdkPbTjDPrgLCJrxGH3kBjSI7HB7JxIPBlJn7dPOqcTKZkifE8glUD3P/19FwAy2Tkwn5OYT/K/+cQ6GHNnz1c6J+4wmR0yl5w8MIEsbnNdzJ8d731oUZVJBYqp0XFs7MeDx/6hOOkck6iJZsT36xNg6047+jlhmr4dM+XExzM9yT+9D9B/w55shuf0x86zzcJTZNLkxHgKlt45TZ0ySRmsjv5siHPOVDPmYTaL1OdXfJ/hitRlaK/oaIjPzkLSH34EQXnWX/VPQLfemSa+07vgyYTTev5LJsRp1BwTqTkF7kPJOdnSKU2YXgGfX7t/mqKPyY4K4O3TO+RMUiSYSDmDhUFrrJdx+uTUWPKOpQspX8E0bkmpRLtfAZk6nqDuZGq43rOFz0fyRPJCRilAmiCl5ySYAH9ywmtM9xMMiz0YDFw9L51bZpmSK6PDsUk+1NvgH/7hvzA8MWJQITNlMZ5SVkchuncwCIkWJp7hycSwdBbHksAIuJspK6N3UlfzWkwg4AkWzvCD8CdISWbW3RuWPRKaEocP3rY7tyVjS4qAWItBEkwvNn0P3ZWaugcQMnQuC4SOBYvYcO4aRGGcYHAfI+RWc4/FAjcxuMJeRudSmqzOzBgh8TQPFsmsU9K5x+XhNVlLhBwHYJzAk2TF8f/3cZoc55xjMOeflrf+3UPmN89ONbIB0kcNlbOCU/bHwejtnJbP/TmCVTXTfnLWPpScb8ReDwl3srPPmQl/E5k6WeP2fJ3zGSlBK/bS+XsplC/T+0mDylyNMYyjH2z9wX17Z28b3Y/T9NhpPOPoteZzcvKSuV4XrpdVDKWU6F1FMeELVnI9Gdcz1MKD9Zo8jHrP4s5OYCyd514kP42sSOlcmTIkRlGzPdTo5XSJc9U0FW/gTeDB5XqNc0YM48PkCzX69OtDKX+lsJQqQMNlOH7/eKMdG3ij5IVSEmSdY6lEjRYpR2IZDLwdsZyDcZiMETJfJYiN83NUA5bjWh8BLsxz7HkmR5mrtek62ydwn3jeM//012yQZgOkRC9FLWiwmoZJMZAKNS+UXMSQi2TndkSiXUlh9H4gOX7cZjFo0nqfDNw5LgthtpmY/kPnhtKbdWYND3PeT7WDxd/llJ9Z3O/huTS9aPxT3c5k0o0gTs39wtnsTH8YzAIoGvEzY5/58w6cN5ik2Bry5aiAJjMyet7oCOJsDT8hjBPocZ9MPIHzIz7gfrJXJM3RUeThzzY9meJmj95ATbO+Tx5I5jd08vZImjAmo8Vi3SDWoBlhjRpsmMFQvhwTdKglyTYBWbRY9CzDTdEcqUBdOPYH9/3B0cSyGPF6/+qXIyCvuViAI9horhrUAkAsJqBkrRULyZKh8J9LvXBdLyc7vu2T8TnTz6oMpnMm5xFsfj2RaZE4d6O+5pqKOjfAP5XtSro+WUzxJqZyYdZYs/4crvs1eToHt6MJHC2RuuluCgIaoWSYNUjUTwNOW4+SxXoSGG1RF9qnX0ny2VB6zN7gZE2dhb+K35SURP98L0RfEmy3WJsjkkefVkFa7SdjNfFkz8WDmyybZ10ZT8si1Q+CrQoqah15bzuakHIyisyMGSzCcDImsC5lEsj/6pOapfWODMejtvvkw3j29PPj9gngx2uch6132rHT2x6fcoSKhQVPjz072/MU+/G8u2ZtlxK99/i7SrEvqQr8y5XlcqOut/MEz7lS3fjyUkV2WF8oqZAOon6JBesyqm8oQc+dSECVRmAMj17wWQf8ta/f7/G01jg4CcSwY11E9DxSMH2EHh7744k8PtsOOelH3VeyUPmclRzWxk42pZHs46D3QV2mr8sEnjLTdHf6Upwu+kSU4ixGXf4vOYk6JvnG49mbRGOoxsRPUM2KQJm86HLkZCrHVNcHmUCVa6JlU5J1zth6pT0O2jg4HPburJZJSZcqQzTR2KF6RhBRq3MxBg3V/XzeHh/uAI5YubJOcMbYVASPQUaRi2ARi1yiiIw3HLRic6Oe4FMOrxSLP5Iice0Io3LnGI7vg++/fbA/Gr0bZa0s14XH/eD7t3fe39953D9I5SoNbnXcO+3YGEUyyHWpvF4z+XqBUdgfO8M7+/03rGRyXfHHwbEf7I877XBqubCUzPX6FR+NY/+AvQmNrgPLjVKvaraXG8NdqRPZsJKxfCOXLPM4dKi5d/b9kBncgN3gQGi1FyNfCuaFPgqPMXg0+XDtrfPycqGWC5SKW+L748FojX3EBZMm4KSiRvewiv7eRFscXQzwrvtPa2lV5Po0Oz6OXQBHGzzuO4/HASYm29Z27a1qmnZcK2kxBo2PxxuP/YMvX76IFpl1aLex64BKoncSa8wwSrmRLXHfNvrof6HP1rRS+8r/q0MlhawwneaFwSjxyE04a9SACDwosiYKM0m5MjABD7kHmIFNudEgpIwBbpFO+Z1ZYncXMzBiIUawD3Z0gSre2mE0UmtkV4oVbjTvtLZz3xpv9+98v/9GY5BWbcp52Y802PfwF8mJfXd87GAynyW5pBBVoPksmnUvBCBBPKOsfd7C44romwXyBBAQXklMskc0SpOZPdD5KxmsfCPGkFQi53xOjKcsp80/O88YIl2j908AbUyc5s2YwcjhLRfTrDhn9DMDbEtBzZ6FeAABGnaaWCFASiPUZVpE088KxKJwoG2bJCYl01uXAXVIbOZi8k+/pvwpnRIZVLyMcYK7z8WasVLFQnJXveHhRWCJki+k1DBbKOUH6iImInZQy4qAWcAiVjgZGY/34JJMNKDHoKMVSlqoXATkWML70DAi0n9KTlASdSkEWYbWNOU/Dt2ay3LBvTHaOyVX1vVGb41j31hHBzb+w3/8B0pZ+eOf/jU5UlX73hiRBJotSTJ4NjHxnHoLU+/4WalySoQZWBb4d78rPt53yZJTzlxqwZPS+CwZuZYwmOxK7cmZt/uun7tc1EQuhce+8e3jjR+/3KBeuAXolNPTMeXJjOvAEYlosymahSe0w+ndwBNjqIlYVk10U6zX7RHxyfN7pimzgtHk41iSzpdcahSfibEd8k0aWamj9cIEWVXc7SpqA0Aen9blaH6CP60Pmg89w/3Qz7FIVXVn27bnGtJhF41ZPwvW5pHsU4vq1DZYlsJlLbz91jh2+UR5B4vGQ0arAriWZWFZV4FOvSkgIhmkoen7vLEsvNawT6xTwgjZoxbXOZMssa4XwGitne8+xSHlEWk9XIdbXhfozsf7nY/9jV/ffmY0Jfjs+04fneWyihWTUpyBO7UW1rry9YcXbtcLE1DeH1prybXP1nplaw+O1sOc2KlF7ylnMe2tquk9m/I+k4z0oJNDPjTAKmVh73BEou6xH3S0Rmr9imTrShDq205vAlB/+NMfWNbKo+k95WNj2zaOY6ck1YJrrVzXC7fLVXXwJXO/v/Nf/s//RKmJWjO1XLlcsuoSF+PR3Tk49H1K4dgO+jG41BzvESwb5VLjQ51gQoQWJGJ4q9c6wQeLplK4pO5TH47HGVSz9meOSflf/5qgUwFL9LHT2mAfO5iR642coKbEWlbWemEpF0pZIGwwtvtDjJClsB9b+LkcTMmbmrMDDR0Lpx1HDGvK7EoVTkf2Ilk+UQ+4PAs96b46G8JZssX/xicp61xLJwhzvl1dzsPGaRou1spTBuYGRErwGC2ejYZNNtm3KcBwm+u2hH2DxTlwTGwaNzG05L4YEj4+N8TTs8w0gMpZg8VIatTgHnJxluJPf8ioFXyyQYvqukT4QobRsWHQtE72XYyaFMNoMXqit0lZ76OoDjqa+pvmm9QxLgD75bqwFkksLYvB15vuw8ONkSu2vnB/f+PX79947BtHPxRM4L+P8eQN/Bj0fuDJRZg31QUlX1korM2pKfPldmVvG++PDzLGUq98vX3hy+3KOPSc9vtBKYnr65W6ZNWHpUqSt1rUonusVztB/QnSzOFpitTSmmR4nbKkp9ky2+Mhf8DoGZdlsi33qAN1x9hopJKxnOj3He9iUNVaub1edF6Nwbbfae1gYcFM/YYYOgrC2sZBTk6tiRop4lJqxEDNdN9OD9tSipQNXYOWHqzhlMOL8/MQNmqzPOWHPPfaCLKJW4taS/ugnNyJwTQDP4GpuJcmWzqR436Y8idTAKvPnyR/JdCZPlmdpRQNNGJd9zEHq061zOVaT4nddblQS+HR1IO27dBwdc3nQHaCXBZM5BRD0T5a7PkJ/qsZHL2xPT5CjUJ4vnVya9SjkUsX9hAKlafNS1ZPNTzApcRj3zla5+3tHSzx5csfKXWhXq5cL1eu1xf8UApdqU4tg9vtRsmFtd501z2OYEW61pQZWzvoAz4e+yn7bb3TWjtl9SVSbn/P1+8GnizigM9mbChVYKKC2URrh0DgbCJyhqd0aoO7t0DzVWm7y2C6NQIpXllqoudxfi8ZhCp9Tv3ME9mc/y6dZzSnTvhTRLM7VLiKZaEp5UxvmL4eoqGPYDJ0juMIJFSSG0XLLniStMbNOIbTMUbNDBK9D+59sI0hj2wzrE/T3cnUmLX9lNnI1OzsMqfmHDEcBBw9WU+GkEjft2hY9T40f45pZaQw6WJWqyoJTJVOFSXaPKcvYGnOTzrdw/0e7TfrTsP45bfv1Fr52JXe4iXxfn/nvjV6y8AF9wwjM4Yovcc+GNWwkfHm9KN/Mn8PenwSXRHXpGBZwNsuODEagduaGF5oiyYR2ZSUZ8npJkNpP1QobO2IQ7IwaIzEeSiMFFMUdx0Mo1OuVy63/x9rf9YlSZJkaWIfMbOIqKqZe0RkZFV2TTcwZ4CDJ/z/PwO84AVTS+cS4W5mqiK80DxcYlGL6q6KnHPGsrxiczdTFeWF6NJdrhwp01KiWmGMJOIPha8vP+iyMOP28sr1clWccmvcj+8qvGO/5az1TiTjyTw5GBJNU9W1LJQMSyJA2X5O34brwDr2FuBtCQbZOAFcN8OTDh5Pxt4b5plLXoTIB/V1ONwfOzklSc+ICcCUl4Y08bHvIX1SFWrRnFlMByZIqoLVnwesB1vAYcrHxKZStTcvCft0yeBqq3QJJ/3eoIFkMywn2UAYApd9MBNB5nmg/a3PT0WyQGAM1rI893hM4SwA3d7UoNkacoygtjYOPHfSpkLNe9DugVYrxQrXnMhrYbteMOuSB8e7ar2TxlCDP5zeJNsQcyRDsQD7OCeh5ha+NeHRYM9J0AQfy6LLe6Yh1jb14HGZGSyLjOA1dBzUOnTmzAY7zcklEIy3GUML8qZLZuHDNz5pwLV2xaKZE0g/17gOsuf8Mlp7ovIP0EdSMZi1uZ2Nsb7mz9IiCshBrKc0/dL0LEaAd5MyHYNnWgsG6owqRHJQyRZKvA/59H1OVtK3eX4fd32O+7ErACJrbbZWw+9CjdTwkHrGRX+CA61y1KRo3+FkWyjZPzFQU+g1ZJptJqmePpxx7hPJsz3OfKh9GiElUlm5XG58//6d/agcbScl4/X1lbKIESqws5NzJES2g95DhoxhvcUzCWDWUrQueh3ykZJ+v6yJchgpe/waEWc/zoQWYtpm3WTTFLI1HC6paGVUFYKrmQwuL7A4jMdBXwSQrtuNlFKscYERR60CSKOp3IpSV5ZSTsmB0rHm5DmdqVclqwidRuJKWwpZSUzrnqmOakbH6BpWZUnhc17OGmb0yVbVz1qWVfs4gAHcqVOOh35fbVVssSnhK9PQPq7lAGcl89OUUh5eOrtyeFeMPlkWxBAsCTiNxm/E2hUrJ/zKeviv4Iq5643L9cK6LlyWLHPzFLHzcTYNjMZkV85m2E5QqjY1rVPKf6YP23mEa6XnwiDYdaaod++ZXjuP++CoBmmR2zdKkc1jkItklnXvGJktr7zebnz5cuP2cmFdCx8fHwq8GIqqv6yLzPgDUBu9USxByXEuhHeiDywa1JnmrbM2buBgmYrlPTS4IoYBtjOo9G44jcdDoIHA80ZKSNaC8bh/cBxJ0gPEirMxAh6ZwTjBSMqZ4Z2//eXPfP/+C//6r//Mzz//xM9//ElGs96wdYGUKIuGQK018Ya8SxpoCWfKHtPEHWL9HXHmKHlKEtqIFRf6LLnzmHXIvNF01pasAY05CiyOJuf3vnTvPy/9nLIADD/HFTSXd8pIjZ4bezvItZDHItnW5aoEsEUqiPu9c1Sjdck+JQUPoDrpPpM0M/5nsxYOZlFgMrNu8WC0TzbkCRq72MjFEpZWfAx6DUa2CYR5gk7PGl4JwDrE8/mzn6zFkoySwmi5j1AmSQapbzVwr9QxeaTau2ZAmHcT/zyBqCml89Hp7ek/KFbm7DkMCybgHMgQ9ZUVmRy3Q3H0jBGEgPm8grkePJ0JdMwBkxLEIK+zjYyu2bsSsJOF51WP/iVYPScLxillsGZnLUaJQJV+7IBTLitLySf4IfB7Mr51t962lbb1T6v3P1mUc35VJOFXqmkBy4xlwxMkHEbjft8Zo5HGzuvLldeXC2txvD+ofYfRSXSWnHm5XMhZ763Xg3ZIgu/ulFU/+2SCB9iE2Xme9/BzJNbR6M/68fQWih5wpiPnYC4yrVmQvM2A1KG3xuPjEQDNnVKKkmBzAZy9VnwcZBdba80b2WDxxJIKS1o401mHWHViAoXXacjepm2FuZHi84kVeG4qizO2JL3/CZ7IvNs5mmwTctb9rOej+nr4ZMYFIJvmHRdJmZ9h4pTOes/9ecbDJLzEkNMH3XVenmBqsIXcnV5b7FmxxbZlpValh48uWxal02rgjD33ZinBLLbAJvxZc44elkAuraoPhYq0WhVGdhys60USu7KxrBfKspFKUb8dTMwR9VtrVcPmkiM5w+i1x/fZyHnhdr1R1o31ciWlolppqB5aynpyPceAo1bJtFy1VDGde8MH+34HM5ZtDS/hxGdW9uy10u/vRD3bv+t3EY2lIbZT3D2tdwadLRWmoSrocvIAWGZFLTmCnxHheclIejCbNWAr5LTCksjRfJ8+I8A0tYz3GX+dTXEOel8AT0l0Ok0rpnk5OhvpuI0TtJkWaU5Sc9p6TPHUGKZcdHGTcFNRpRSNKDJLpg5jb51HHzz6oGL0pALglNcZmghOzQpNaP0QQ0QoqM2twjRityhQ9RrDtHt0SJC3aWsnTxch0iom1E4koMjLI2WGZVLS5yO4qp8XAnSGyUH/GAeMdNLtzKF+fyOlzLYfNHceQmY0fenSj4vCmhhdDIFaJRdLIzO6pCEEqJFtI0WjNYGwnBaWxRhL0/vZEjllrkWHaxurGmIa2XTAtV4xmkAul6dDctHlcZfBaDB2ugl0q+hf5CE/oC8//oG7w+FOPTptSESSTMBTLpllXbleb2zrhW/ff+Xx+OColdYqS4kI8wCTtJY6Y3i8TsJbJLGWQslQkoAcrWop+90lkXnsD0peuF7Xc1I/fF5e+mU5Q4K9N1Y2cpox43PS6Jq05iyN8NwbcThP5PwRnkRL0LVtGmnHf39GwD833kxqsEh0OG9R1wTqLA6ikZvNfajpyIGGyIsqqKL5E9sBpSzAvPhi/04ZagAbJ2XcktIOy78DnJui4Rli8Y1ew7hVH4qnTrcDL520fsJ+o8jaR2MMg5Ioy8J2vTBGJGieF4AYkEvon0cPhMnDZy3lk2EjoGXKkcKjLkz5Zvs/JT+lqPD1PtMxxPZ0H5QSU+4i4GnUdtJzCflZWQRaaqIqXyTmSZcC7AupZHTPUbDrAc8mVvao+bwHcly25yU4abkOQXdg9Pi+4fNwAk8hVYJoamfTKsjppDwLfAq/qbl2mJRonY9TvnTOlV0U7y0KiXk/+BA4NpNRAOJbxweus6e1xn6Ed1Eysf96DaAqsy5i3NbaMVNy3WxmWtDaj/0AN5bc8WWczbh9omcf7dBn1LsAs/CAsgBOJyDsw6k9UkzJpBxN9vd39qPR+oNcEj//w59YloumjBjunZSMUoy2H3jvpOtVIPE0tB79lGApL0zPaDL2HJPZ5GLk4uQ8BD6Z9uro8igzVMjQLep63Rk+nEtWsENvuv9SKqRSlJjUKmOv9K3Qk7HmhZQTNejl+74LhJlhFe6UpbAumiiPpohgUcp7YDj6zCZDWgl/wRKKtaECc5yMO12rOhdba3hJ5GJYKki192Q+QDCJgkXk3p7Frzve5T0hY9mutdRDepuMYvlZy8zpbbJodkckUrbnGg0GeR8pmJ92LlmLJOlpLi7gyTXwmeCqDzWvvUFLXEpmWwuXNevnmvzA5GOmc7SOkJYQ0+1omEAShN4aZVnJZYl9yen/N/31ZJJcYkPKh6cO6BUeH51awfN61mEpkipzLqpbjjslyTvq9fbCH/7wE6UIYHh//05vmugbxrYWzA2PxL3RG0veSAHIzIrKotif5y5RUuWsOsBN56qSpgae0ieG6UH3nT6UqvnY83l3Du+kpIjvCTxp8l9Pv0kb4wSdCpweLDknjuPgv//5z/zyy1/45//9/8+6FX7+h59U6FdYTelua9now6gxjOluLLlQSmIcYv+TI4HQtT+P44j9ZqxZXjD3+ztjDJaQpP4msOcETHQe51SeaMwnz6e/50u9mL5xSfJ4yxQc1eV9iGXTR6N7Y++HWKJ9Y1syL9eLBmgJ3DOPh1MrtJaewNOnAa3uyf4ceLsH+1Z1qSU1xrNxf94rT9Bp3tGtKcGbdcF7ZfRnM1XylJQY2DjPp3hiuh9tssJmEyeAP5uxwyl1tTTE8rKwORhaN8NB44DASrycP1MSJ11aev1iL/cmVkxZN8z8BOVAa1Qf4ZMRZoQHkHd6lcSHFD5TJX76rLniiammagIjh0EwW9OsLQd47zA9C0GAWvSDJ+snwOCUoKTBWmArkOlY74xjBwuwriTWpYglEyCfPlsnO2zbRl3nEPB3vhJicmedyS2GHEbBTSwoQzXd43En4eQEr7dX/viHF6lL+oPW3sE1aFyz8XLZmASCx35w1CPUOJCXlWlPM8GnOWSacrQ2vYNPSwz1CTkFu1TpEuoNHCbrOInSL5YZssxIOZG7avbW3k8m0uV6YVnlkWgJ3t/v9NZZk4IqrGyxbjNLLvpeAbCOoUGuhr2znomqvYdPXKhr0nnePkkhc6NNtqTqOJ1fhzd61OQTBJrPS3e0GMUJzr6R+Iwmk//0Rp4/7xOYjD1Bp5QSJS8xZDh4+tqpdzuCOTxqE4u+bNE7rcFW193cWzv3cMoTcxgngPVUk8RrmOfTGNFXAKMJeAr/wf2x01rlcrmxLCvXly/kspDLhhUNH+b70pBMfUdZCjmvGpibyctwr7x8+cq6XQJ4WlmuL/IwrV0KEhLLsgXwNGv9AxuyARKDCjz6jn1Xgu12u1G8xEBvgvFx/vnz73/v6+8Gnko0Ju4uWVlRfLf36UAwQsE9gaGg3SVN9tOUnsSGW5cwlB2oC1gWZDqu+MLuURgXC/MywyyKzdFUVNg46fEj6KO9TXaU4muH+ewkdUH7gBFoXXLKogU/QtrjVaZ+1/WK5cyyXKRBzoX6EL2zudOG8147DeMoRUazVSaTrbsmpiXhU9wc1BCxAzpKK6lYGmyLzGtngzUnuHpA/WzMMGMJwzI1/VMHHn5McWEVRtB2A/UtQp2zbrGYooQnT9G/qxy4N/p40Kl0G1QTKDKbwUm/dUvsvfNR+8mAKUkXvjxnBtbvIZG4C8AaC/UoPDwpzcVgjIOUJY/oDI7RKYuH2fXC6FmHCqZGZQz6OMDEEBlhATYBldGqinDvrNnIa9aF3BrHsdNapw+xo0aSOV3eFtbLyrZtmGUWSzQ7WByW15u+d+9BfZb2eymZUmJaFWDJepNfQ04u2ccwgRrdz89wLUZmcHx8MAqMYiTZRQlccPBtxVJmu13xAXut7EfVhMIzbonLukFMC3pt3OtOyQtfXo3NVpay0c6kmytmxv1xnBP/5yQ/QJs0fV/m9I0AweYUL1GjsJlgQVmWCfQzPU9SjnUW7EGi8BeT4rmmtc7DFDeo88R5sQ/HU1CuUyEXMQ+0FbTePltQpUi6cgtLz/FkdOglOCUoxb5UyBFwgwyl62gcdA5vPEbVNCNp44hVVhSXmx2WAHoPPfe1SDqhiFgXSw2j2IaNRK+GZ+noJc8bAjxQYegkPCda7eH9ovVcihgyI559LguWis6/Zk8Q6mRIOPuxnxKknBdJbf+dhCD7vApFT+69Ya6maUotaDJCzmnRBWR2Fr09AJx5tXgKaWCGYWGUKMtRSewshyl2CnBb6RnNWxgyE4VNSHXMz0vOTFHuk5lyFvfBNGhh/lvScoJRDE0MaXbKEdU721lQntOntOJAbTs5wbatwSyr1LbivrBcEjWCCwQw9WByjLNh6eOIYlE+CmMcjJHAdEd5sBnNoVY/sTnR0QOQZfoEDWqH7JLfjeF8vH8IqE3Gsojafrvdorn/wrot/C//yz+RcuHj3tkfO2/v7+S0UMoiQ/oBS0zs86K77jh6gItNIDZQwiPPk9gbnhJrNZbNKD2RPejyAWzOxmqC5Tmp6apRC3hcQIUi+de+xz01WEpiyZmlSMr28XgHg/ujRjqK2Hli183hkBi8uTgFWBYBeT3A7tb3s3CtdQfkzTHvzgmUyvdCbLnZdCtpzSnYybjzNEKy/pQdT0bSaIqIzzYBdWddFgZwdO2RUoqUQLPw9CHwe+jsYQSDytEgJhXs1N0DYTxcRvhfjU+1VE+MOni5vbIujY/3Pws43XcspUiwgWJgveLHoD8y1ReOTRT6tOSTsZZLBAfU8SxwiT0VWuCcV7a8yGsqDWrINDvxmuf14ZAsGheXgfyvf/2F948Hf/nzN5mS5swIU+PuFfqgNiMNuKQbJRtrMha7Uth43L9T+539eKe3ejY2xhoNT6LkwShQcj+ZTGpFdF60UeM+ySdz1HvFzFgXHZS+LTFk3RU00Du9f2eMg3W5hqR6gD1Z78focQ5E2qAlLttFe9y1z/OS2S4L67rAGLy9/cq//vf/ncd+589//hdGb1y/fGHZ1KhaTqRI0EolxyBUjfZctCkplCYVYFic5zEUMuN6fQnGk8CH41ClPiXPiUSOBgI4Ae++R5JRgG8nmypqwd/7SskEkHtXIME8LAcwZMwtdg1sl4Xr64VyLbAZuzWwjG0LR2v88tdf+X4/GGlj2MGwQe2SUc/wnDo9hgydKynFsNmpozLn8AIEg12aLdgidt5DEKBQHwpf9gRpFRAdzWtOl5D8u9j0/pTMJ5tSPj3SeW8UUsj8YDUNUjvzThPgtMd5lU0sJCMUD44A/zQ9XjRESzjFOCWxqUQKcqhOPst6TqsTF1zVm878FAbuKS26x8PzLTKe+ZyoqvNToIfNfibpOdURydBNgNCSNYAtSbV47+OUxU8Pz5KDDdUHyTcWGzAqPjpr0dq7bQsv68J1LXqvxw5t6BwMG5R2VNrx77x7/ydf7oPHcafUhif5ML1cFsw3zAvWKs0PHqOyZHh5KVyXhS/bhe3WGfyN4Tt4Zy2DnFSHlwKPj2/sx4PH/U5Zdb54C1aXr6qIkrwghwtwGInzrhpBjCg5ErFdw7pZ42RNqLVOTYDAul3k/fPpbCNl3V8YljIvL6+knFnWRYKSEWby2bhcLvTeSUNSyLzIvzJ7Zi0b67LJtsVNPRQpfOoc+TAPPI/AJgU4aQ9M+WDsKLPo2RU2oLtZRtRLWIvM2uuoO4vHsDSJ+a9UdIck0H0Pzy0BvEpwVYiR2D7YvA103HyWtblLYtdbo9Yag7dEC8k0cadMua2bGOfjfo/+RgFjozdSeA3mdaH3IRNv7+Rcgo0VJJlPSgbdD4l1XTgenaM26n5w7LvMy031VR+DNhxjAmVaN5dlPeWAAm7lAVdr5WhVPdoYLMvC9XJj2zYuF3lTHvsdQ2fjktcIQ9AA1IOI4jEoFgtU1iyPx0Nsr7GrfqeFV7NIA62dfiCxx58g/X/29XcDT+mc1MUBW7IW/hjRGHA+4PMQj2YhxYaRLvQ57QGUgpASxUosck0chveI9vtU0UTzMLoirtXo61Cc0cQ6cGVQeyYcmQ5MyW8Gz6VAAGIpfqam4wxnWRdSLpTYgDllmglU8dGVJOEqhWsUrZNxMIZuHEvauJ+j0vEhthUdktgJOQvRnzHan43VJq1uRsFboLM5LoRimlYb4zQgtiR9qqX5/vVXMbzQJRINtht6T64Y8ebRMCU1fBZslgSni/1wvee9+VNjuqo4HXLZxEwbUWbelTEqrTmVRE+6IMdokFTQ6qiNdEEDloxnNZYMlLgUDcnspt30mqTwMbqNp+FrAiuxkdKgo/fWvZ0XoKjcOnTLujLCJ6gULebL5arGprYYlkwqKHGpW7BJjLRKi1+Sy/Oru1JT4EwIyslIJuaNXoLWnnnSJe+ciEpeFult93rKSoI8coJBY2i9HcdBrQFyRfy5YuG7Jpt4HLR+ypdyaP5VwPIEHj7t3SeLRcVsd4/3L2DXogDu3U9gSWCQ1vxkJekYmN/M4vtPWvy5s3GXwbTgCw+5n4Vp90xYkVRyAiqW9Bl0QjISkgnt43jGUeylXEQZjgO+jUEbQ2yD+OWEhGQCHTHBx+SPJQsv7ZcUBcywTjddFtkkjwStyblGT7bNOQTSf/AhGU9vfu5N5hRlnpuJmKrHddo9JEhPP6PewzPJY7My2RFPycjzWAkwcHSUwzmYZsxavCGBsXSCOpY4i+UYQcTrVVEg1tP4dN4HY3NO0ZmTpSRfnvMVoilqfA0Xw6uUEnTezzT659+NoDnnAP6SGTOhSUNRPSNLMiudGv3zcI1zbQwPNYoizMuSlcaU7QRSiUmO7rMJvk2wSCCgxBE9GKSSTos90bWmiDVgnH56n03WiabglHKtBhZJcgCWKS75ZFlXNne2Tc3sy8sNLHPUO3vS1FxMu4i6tmkEqol9J5i3xJoxnd1hT0cuIe2OvZwyksoUQvuv7zmfhzEboDDn9E90dw/g05HZaQAwS14C8NRuOMJv6ahPv6DTeDWkNMwp/JRQ5fjHydYdPZJT5cMEkreYzbWjM03N1TS5n7WL/baGmWs3/IzUJMTScd17iTnx068pkU0japozAdS1111DDCXaqNCduwlUV1kU0QzoQ/dEjmjjyXYQo0OPYy3y6gCxsmqrMv2evmHEmh8w2sHIzmhV+zufJbEmvEmsZA9AEVezbvEZy0DXeJr7j2BqxjML9tZkz2j6pfTex8fBx/uDj/cdWzLlqrCaYRoaSFKo5nhNhRIgZjaZ/oqNuCvlTHbDOj+8qdEwNee648bJMtFdoAGHzjSZ7+N67bNuKjkjJCTFMdGjbmm47+AHOW9i/5X5EQkh6D6UzOVDxsgpsRQNzGy4pGPrwvWysW6Sejz2g3/57//MY7/z/v7GuhS+3K4KqEH+RzkJ8LScI1kqKe1pSimJui4W4ATWFSpQWMp61njdJ+vfn8doAFycn6/udt2lE9ibx+45lvrdr1kD9DaCURI/cITcuQWLIQkIL1uWVL7YeYJSMr1V3u8P9tpxCoOCU+ijMQan/ccIBkwSliS7g3kmxYCaELB173EPPffzb0y9Yz/o++rcteyRIhvyJwxXbOvZ45wPyqLumf8+PFV1VQYEZvOsmQI0+Q5NUEA/BywKsCmP11H5ZJgn5A87mYakyURRP6Izzs/7xc59Pc6/JjNIUk30uemd8z6bby5lqRlGnMsE2H6eAa7+JePnnD2bhgL4rDUcQpWRzlRF7cGcNHhkyGg/Z7H01pJZs0aZ3qtYwkPPMWHhE/f7Hk+nr2Y3JUKmpKFHJH5Sq5LEOTBLbFvhumW+3lZG2Rn+wFGjLt8qWNeEIU/jx8cHb29vvL7eyBcxZDCLPkxn+/QEPGvtCehNhsw5AI7POWqc06qDWTOYSA1D/e6Y4N7wE6zEUsitMuu20UfVfRI/c5pkK4V6MsSljilZv6aX1/DZ501l0MBTMAyZDPTPWh3CnkDrtM2ePQeoP0bsE/XJuSRGFUg9wW87veT83CtjDGqtslLIOXongV0CbHS2yQt6ngnzGUtO7sHc7L2fthKjyx7k2dtxgk8j6trpMTuaBnaJot4gT2/pGf5kAqfGCADZZulxnjU5KVhkxOC49657I/xfZ+2k8znHoDmGfWmuHQI0F2P5OA6O44CklNB1WVgXSVWbO30/NBQJn75iiRqM6alGfvbUk23WqG0XUBi+s4m5XwnZ7fTcmyXJs0b/z77+buDpsT/IpfD6cgvd80Ee8ncimguLZ1MumzaKgcVhMqvanETxfdQZMbwEbDKbpEwpX+JNAvEAZvy4d8NG5na7aCKOkLfH/SMosYXmSSZ2o+OjsS0qSq4vijwc0cT2R48n5qxhgumlMTJslxV3TU6P4YymYjKvBXa94teXF/Y2eP/2XU3mWM97fQTtfrtecIy3jzd9LGmwZDUMfdLki2KGq+bE9MKp3XSXKflEM1MAdG2M0M5vWEiSmLT+CT5ZlUFjAkFkx+mXsZcrKS9cB2QbFN/Jo1FqpLBYDn8dfQ7aXFqA/V0gwcXn8nGsSS4y4rOcRqewsNfBt7d30rrCsrCiGq+1u8w0bzIUvlwufNwf7K1y3S4UEsfHg14b+1E1hSpASXjJdNdlft0WimVWk3Hw3g7IiV5iw/ogrZFqk9To77uMKX254tcXeP1KrY29d/acZMD4cWcphS8vr2L2VaX3HXXnvt951B1f9Nq9qHDN64LVTq+dBSO3Rq1Cj7PlU2VpliBnWov0w8tCTom0XHXYj8pwIdnuMrXe43DuvZ1Vx0AGsn003u6/Ui5GXoHcScXxotSbnDvQ2cfBSFmAQ0zWiEKttqnP5iyOehzoKSf5UxR0q4ymZjXnkODGcDURpvTyOIldqzNi+vOYoxQxFTOa0DzZOYyIYw59e4tC+BgCDS2YDqQJbMBoOXTm+m85RQFGpL4lo5Qr2S+SXUUaXGuDb9/ujA6XfAkmkOi2Poa8myhc+kp5vDO+VYo38uikkRh03vcPHLhu8dlF408Su4fhdJoAUT/hFl2CVamUdiZ22skiGFGAlrgYDMIMNZ8NR1420oBr0vPMJPaI954hTqnrWdRjJ5XEel3C4N6UEtZd7C0zepqyo/683CZgE6D3BJ1mc5KSYqNHTHnkObKLIdnFMBHghIyXZ8FPmDkGmDUsmD2r1skYVdOW3lmLipYRkcPXLc6tpOnV0VsgCibAOXyfDKfGdWjupPDhyUlJWttyyPukV0Y/oD+4f/sbv/71b+zf3+mPgzXSu5wuuncWSN3na3cZcVsZjPygpc7DHWOn2IGXNYDahUxisiVamwyWFQuPCDFj/AxeKNnw5PSl0dw4dqXIbNuVH79+IaXE/+f/+/8TgFoKxRLLegHkUSWfQO1ZR0bzZnC5asrYR8Bl3jnaLpmYyay79cH92Lm3BwcHrRy0kM/VpgYlxVosBkeXbwQm77mutl4+ghnGtat5qDsjrQxb6O8H5Z55ff0q2nsO4GoEyDWeTfC6XFjKwvvbg9ob9/0pSzOTTL+1mNKHGqZ7wzypQIpq0sL3bETtkrJ4ejlM7X/99quaUzNGP6L4FkMm5wmk6oyj9zgzZWRqcR6nnFmWRXHMx0HtLVKYBKyti8zm63HIl+FxsJaVdV0ZXUV5m1JXJ84FGfwul+nBp2lnrZHuhBrQsi28fH0llcQ+Dr5sr2zrIl9Ecy6Xi7wBQ4LTIRhc45Q8Tq8s4XcC93PWXr8/HvTeudxeyEB9fwdznVNRgnbfZbj9qLQKnQNKp9xSrMVgaJ77ysWE9sQyYFkSL6+Fsna6v1OSTLSv69d4XfL/avVx1lxLHuQ1EIPJ5otmbzYCSigUyEKwx5LZmXjnh5PKQrls/NLeaLWS10S2gi+Gl0R5uercbEkDBzrrNNAfrrVfcki/Va+wQF0ro3QejzvHcfB2fNBHZ/ty4+V65Q8//kReV76/H/xYvrLlizxYPLGmGKze38mWWJJRqlEcWhegOiIRbiQCwExnI5NSPoNj3J1m85MKaXvI682NvX7QaxcDAzHSJOeq1H78frNgDqlJvkg/m6VmnW5OXTp1DPbRMTYyK2vppNVZL4WyZqrLV9TLSh2J+70xeial7TxTbOg1LyXR6s7jcYdtwVhgSuBM4G1Ha40lrCBSDxmsh2dZ1CDJJY/0TjveNNQMsFeMQLEfWj0YyfEStVHKpNEwbxS2kI92ATAnrCU/n947eQmvlCJvmUcXKOO5y1LBLAA2FeDZ1SyqeQ7gB/UuGfBD4+e8PiWy6nMaeMZc9gsalgq8H6kHq3uOUwbVZ1rviD21kCxzySsjOT11jtbYm87wnDLXi6LZbTitVt6/v1NzppSVnFfymijtwRg9vEoHuz+COZEpiywS6l6p9VCSZU7kPCgFLpteu+P4/qC/vfHz5crNjH/+85/pbx9PoO8/WpLJWC6F8khQHaMxeDCOD+jOj683ri8rf/r5jxo8FbF73tOvJOsk135IVhQA4sZ+yIf04/0R+2yhHcESjHvonQ/WbeXL11XgSR+kRUx+sQifXkAWczPJucVGdFdqYIo+ubuF/+Aqlv+orJcrW0JysGOoRyaxlE3DjB42NDlztIM2Kp5E6lhsg2G0R8dKIa0bljdK2cjLBcsLWxLJpLaG5UFZcjDuZXhtJMqiIlUG2Yll3QTw1MFRD1pvrKuCvrRsBZgMjOowPJFsCWBXaiqt7QDm6oARjLykvaKhS6Ie7WQsK4F4hQDapqz52HcAlssLaaTwziqUIs9WAUyyvFkDvzhGPQdIw1TZeiD5tVWsV1IocbxVRlby20wiTHGulDSHyAujDt6ON/bHnX1/sO8H9ahkpBAYXTL1tWwsZSOXhRSBODPFvY4ZthILxjxAXeNyubKsF27XF5ZlVaJrH1jtYdeA9jnOYS7mnU0bIIOkgBArGSfD/YFbpaQIEArmbUe2BqM3PEnZUUo+Zey/9/V3A0/++f+7B8Axkc5nM2UEooef7JR5QIKmE/OvuvjOeZkmCISfiE2YUBDkc36v7zUlIL/RnJsAG4IuN1+xpreTgZSEQpu0xhbA06QGzkZWE11OWn1vXfKipA/H0ISzJCe70/0sZePVPqcZs8zFYhJXArFuz8myx5MQq0gF8ZgT8ZQYZud3UhEaTCoXUn0iz3HphLhEF5VH0U1sHsKcDaMbmh4HJtAiLluXcPScPkvtyTgT/X5qgDHRGt312if6CYgOOaDVTkuDbj08JcJLxFLII3PIGnJckDqYRx8CCdtgJIMiw9oR1GVjmsZmllTUTJGVWKG8XhJFjBLslDxoEpbxVJ5NpBnd0mlAXgOBTzmdEo3eFeNaW5Px70kTyJAKbllm5gklyrnB9CqKz0ADI/mb+ZxqDUinYeZkyKCJWazLZPKemPtvMA1yjREeIaeEqsRaSDDpzWKldLprMjI90eYWGvhzUuGxegPwnYj/STMPdonU13MqNzddTPOfo7Z4D8918fy7uWPyObFU3C9nQszcHY4YQxbeOsxfs/XTAox9kDCP1Dmbu/FJF9cFIhP8XvWcU3gX2BBrYcqyskO2MJ3tFehY+B0MknwesGAyxpuYz9xDXjuZM785lycbLN7G+e9GnBxxVsZuHgRoEyxQi4dq0WgkYiIbbJZzI8avEcyHM0I6tM+nKEXfPD7feFpngRu//dPX86yz50dxvgutgeGNhCTHwxVmMKduMjRPfD4vDE2uTxP7uMSZZ9lMaJpkap/hEON8RXOYOM3P3Xs8G5gm5BZeRTlNA9WGIfmUj85QdRlr6jnpezJlnmfp8/VP9oH2x5hSO2tBsIpDNsXrdK37JzuMOBx4Fi9JKUFmUxamZ6azWbHyb+93Ok65XbC0sJZ0/l6HM69Ca1/Tuxx7QmxR/bc+JAT3kAD2AD/aeMb6+tzIcTf0kH0IPOzRsOgZDTyYwfHZpGD4uda0m1HboBtcx5S9uMz9p79TyIam75dZjuZtnNLSz4fBuZ8ChJysgskY1jN4fmbnmWRTRiQpv9nCNCs99+QsR+ZnPz1HLABw9zDcnmvZzs9y/tLPNM5b0v2sjdyf6+k3tQCffmv8XO1zTVd7m5Jm1TgWE4BZR0xQd77OlHTHTS+Kk9XkBGP4XM3nGaSEngBnAtuZ8qt/n2TjxL4dTq0KPOguAea0DZrvUvffZII+GTy5iA0jPEiR7/CJUTfkDwX67/NsTRP8+c0rmu87f2K7qNnL+RPwhM6djIU8O0vOW1aKi/OseybW2pivKZ/Pvcd7cb0Y8iq7iLQmPDnNOh/Hnf3x4GgVcLZlDXa/9q1qFTViJuRD7A5HQ0VkyB4kLk7bUJPfi6bswT5jVuWxJ0Z8fvMJnd5zsYdMd8BMj0OfEpMl/u+f7P/s6zwXg30+z+Tmne7jlAhpuDLONadHNocUamwdgunQgoEUA2J7TtejhD/3WPcw+/a5R4O9HbXx9C76fL7M5Km5VnTvRTKcTY/KYDgFg8eJqyEGeLNesPS8r0DN4mQc+zxE5pUbvzXFeXj2OPN9wVOWbvE5j3kmzdVNbPDzKHmeU4Oz7jk/3zT7Cn2mUkCOGEBEEztN5VMUsy5mNMF8MONk5F22RYyNATXB8ZCv1uS0J1LUG3NdzP0f1g2xBEf4VSm0YwKBuhfFsuyMVunHQTFYUwqGz++vSZBkcUqjMwLhpdAYLNlZF1i3TC4Ey6fTver3Ej2ipwhcCSlhc44a79QymtcJYAIn1U5K7WTO+Ly0YtE6WvMed8W5Pj7fZz4/3jgDRqwXnn1tKZnWd1l8zAtt7un457OnDQsF3ak6kPtoCoNICo44z4SoS2xuPSMmmTp83GanOZh9iOGxt4Ip5ZMVN5+rPq9Zb4xPr4/ZaUb9M91Upmes1n38vFjjI+7N6fM0H+98nh7325kyzmeWV9zHNntcnZM6I2PoY7IOcUd367AgYXicM9FTnv34c/8xX3v8Sw1Nop6av/pT8j8/uzOYLTbbrFOe72WeDv58NiZrkGVZwgNsrqu4E6ZVwmScmfqA+TPPLv88B+fn8enXWbY86xbgaVv9923Fvx94ulwX3J37/f1sDuYbmhQ8GyqU17LSWuOx76FV38L8cuD7gRks68pw57G/hWRlCYaMhT9J/NVUWMhjZ+HxqOz14FGh+RHRh5BXiUbmQWU2qC3RxhLNIYxRoploZAbXkk+J3ogIWQuD5d40dfUmxLmG/rgnIy3G4kZtBwvGT5dXanceh5IJBp0tNNd1f2dg3NZMLgvbdZFUriR2nFYF9mhBhUNKloyq3mcDPz9jTa1kzF10+NSBuZFtIa+RqJGicfAmmY/r8gGjrCulFOreGG3Hu7OWxNcfXmj7g/dvv2rxrgsU0YTb3gNsQqZjJUy7fTbDUUBEmW8Y2ZUqU1Ih+WDUQSudI8HbR4sGb6f0zHLvrCxct5VtWcjpBa/yIfl4d+oxuD+MtBSW5UY/BgctTLozpVxZUsKGjHizOakUlutKub6SKXz79Y39cfDwilmn1kwqG5Y29mPwt1/f8GXBwywxpc7++MBTos5DbVl4PO68vb/zfX9wjEa3TWyV7UZ35/vRta3SSlkdKw57xhGbSqZ6iZHV6priYhiPQT+cdLyBQ62i/K55oQadVr4RmdYHtVeOfiiJY0ky7KywPxo57dxer9IwBxAx0EFfq6YAlJg8GDz2CsMpeZVkyfI8XZgn6JRiTLD3aIea9zD0PJkxPs1qnwWdTdNjnjKcmXyXkLac9ExtOJOawlOoJDEF81oDLMgq8gYQkc3WDfcsfzUtVDD5RDmahjz2Q0aO6KW2Zoy2kMc03huMCtYThUin8M5mmetaWFcjLTIhbuNgHPKPSKEPre2u9bhdIhUqGrrhlCVHYZ05EynibpfhqYeMxKmtR6GmS7G7iW02m2NLZ5Pehxr146hnmQdaYymKAnksROpVh7FLKjxQLLeRuIu7Go2gzpARF42KqmhwYj1MyYrjUOXvZN7DrJwoTIzOwTA1UcP9Kddz5GljwbqKNWYBWk72Zo6GcZo41yMMg5MK3xoJdsuyhUHrgOrzxeq5DhcLKodBOrAsm9Z/ALvZEuSCrXC5rFyvG9fLhjHNtluAex7Gyo3WA4jJiTZ05pXlhVJmhtUGbPjI+Om5ZWdyy8i6p0gzFdOZeGAaajjP6eJw0pnQpPP9X/7yN0mQuu7TH7/+xGiNet8pKYffkh7nEsOg/ajRLbmikHOmugqgGgTgdV0ELPVOc3hU5747+wHr9SrTy7Uw+uDx/kHtjaMfonGHt5eZ0eoefoWK4F7SymgLvWbW9cZmF452pzEgLbgZ9/uDY3/w9v0b6ypPnG3b5DmWFswWpoFpGvnc/4xErz1A6ScYCk7Kmct6OcG8aSKaF62/PsSi88g1X9eFkpWuZYHKz0J49PiczFQP9INUlkie0hk446/7kPfaY3+cz3xdxNzr+11yqSQT95JW6lF5u9/FtvUpvXt6J7ZRGRE88/r6A9u68uu3Nz7uD9zlq6bhS+LX73e+/vDK9fbKe62814Pl9gNlWRlZQMlqi8IxjuNsHWbQxDyzB0ms8z5O8K8UAZ94w4HrdZHf3FHBdd61o9Fa55fvd/baeN8rbcT6NnnAHHtjHDU8dMK7zjJlvZJXKCusl8z1upDrSuuwP5QU+LjvwKCkSK4cAmMSSZKaMc7PV98bljIUErJkCIlPyXZaP/hw6tEwMt5hSVde1pVxeeFIg7f3hh+JViXL3rviGsZlI7UOYUot0FMeXz/88MMJPH18fOP+eOef//VfeHv7TspKTPpD+QHq4K//9hd++PqV7av82dZ1OxsFgRfGWjYpDnoPY1+ifk5YLsHIXGi9K632ZDMJGJvyqN40zV/XBSe+fzBub68vePdgBHWGq/betk1pjr/zJchmCo1hSgDfjyMaLbF5PUmWnpcVQ8nXy7JQcub+/f1cm4/7B9/ffiEvF1JZSGshtaEmf8j018eAUugYR+/Mtq0T+xabqnA1vhHo4Tjejmja5sCbYJTP22LQnNN0lwD9nQDwok/wYNqZK2mVITZkjUx3H4NlXSmXVWzw3sTIBpZtC+AwBkoYJSeF/fQuK5CoF6bPiyqAOOUmaz1eV22E+kCpbfJ6igFehIOMrKa5701WA2OI9ZLLRL1pTezcFDYmtT4oa+F2ufLz1x+5Xa98+fJKyWJw9j54/PwPfH//4Jdfv7PX8NOJ+1dBQLp7JgCmMbBz9MHRu5KzysqyXchljcFHp7bO/ft3Hr/8QkNr8+W2cL+uv2n0/2dfhrN5YxVixJoTl5zopUAfbJtCNO7HHa+d/fiIGsNY8sqSN1qw6h/vO/jgsU6w5SLPHZNH4d0PfDQsOS9lYaROuQfwZmKWmjdsKEjkdrmBO/vjod4u2EN9zGvDYvAU/r/BHBwBPpg9ww7msBMUOGGYmHmxTnEN4oPKh48Ao0wm1et2Bcuy7sgdcw2+3Iz1cmH4YO/TkxM8SWpd63G2CwOn1weYzmNPhnli741jdO5hZr/quzB8JtrLr7g1px76PddtjSJZ58q0UHCMPdjIks1lrrcbrTqP+4NUjLwU+jhoY7BdNt0Nwdi53S7RZ+1nXcAEYkM23WO4nlwqmdEH63YVM/pRw1pnP4GbJQsADNMKpSJ7Py1JmAORrKGQwiIGj6PTH7IaSFkegM0G7pXRnp6tDshUfw4HcoB6PUBxuKwrl+sGWWqPPlRXpfWKY9SuBOYxnNv1wpITtR6xjhKjDeoRVg04uScyhTrkj8u6QSmwrqQxWMaYpQ3cOYdWv/f193s8MTHqp9Z4pq7NTf8ZsXuWfilQ82B/xOua4NhnVBsLBDHQSZu+MR7P2aXTFgKrYz+WI3LWN0IoqQtT7Lz4XXPCHBtw6EPklL3HtGFO8SbaCCdy/FQzClRSrIyxRGN0TuDHIOVyekxlZBabixLNZpORzcRm6poMz82lYb6YF2erd04V5Qk0TY3nZzEnbJ4CyQwcYNLq5oc0p+vnp2TxXrUvfjOdmU1iiws6lnv4gzxBp1PrjZ+f/4maptkKEx2VMeKhi3apQ85ThfwQ4h7NuWPhneWKTU+DNDjN3c27CqTLkATJ4vVlwxiajsSnmXNh24xkK0ftfHx0IIXvT6KFv5aenQeRzOb5rDUW8qxcMlY1+Uw2QROZ9rbRSZZIQbAW4ybrQAsmixHrz+RplZOmp8NlxijwRmk5AlmIFKlgZ8RUs+SiQ771iOMeMTx+Tpqe8zM+eZVEFPRkbsyJe3zKfo4MnpOA598HiyCmgnNpPs8bPyd/U1+thCEVMhMan6yqdK6OKELG8xw5Y89NIJWHbO7JJTxnAmcB9pzwz/kFAVqczjwnuCzwSvHMIiSm4KQkFQe4Ls9P62CYpAxa3nomJXxZ5ucLOoD15/05aDVjei6cHlc2T0liHfncLJzRu+fZG+/ZYy/xBKX/vT+AQ0iNtc4c0ZD150KqF+cJ0crrDIh9Pj2feLLEtGZjOi084Zx+iIUwG0tN95nLiCfD1WKibjb//nmH2HxvwTaTLCTAoXgOFvrQlOI92/O169Wmc00EF097Jmg/wrX0vafXgp6Vn+8jvtFZ6Mxp3vw842R8flZmJ9AwmYxaMBmj6N+NFEy4dL4HYj0TUtJPp3RUnHqWKaRvc50nPWTdbS4vusv1wk8//kTdd978jV4lU/T4zGsUo31uWDgngx1jBIuAeWfH56kBkMIgSsoUW0X7j7t8Su08BiEzuVBgXg5mlkC37GLl5ZywsTCqYQFKeXhHOZrgLtt2JnSu28YanouWUkyN9fp1ppWnd116Nv5M2rs9P9f/sT/xpw+N2W/OsTFUeH+eqM9HJBYVYnH5UNx8MCMmk5QkT7y5Iv15sJ1ymRR3opGoqT1ZKsbpuZInsyr5b+TFMO/zdO6rk9mBBgiesmRBPkQjKuWUqHvcEnmyJf3cNDEEEAtBISYyNprG1TPeHAIw71MKIcZ7c8XGP/YHj1qpQ940HjTq3lT/5HWBYL0HSY1UErnIamACOSklkssDxz2FT1MQjvuIfR73XtRAOaVzrVvs089+PsxnNe9Ukwn4ZEKnsDu4XTYZHnsTsz2v7K1zDDUtbQySj08cD/DRKR6+Nu540+Cu5MztesF8CMjJRZLy2OuXbeV6vbIuqxoc2nk26cyMBvZzfR9n6fxXkxXWx4jmL1gAY1Zxn9dQnNM+YkDwZO16PNf5azJkf+9ruHyvBvK0kxm1R3KxPSNHQja0LJLM6Dyxc0+31qj7fnq3Tfn+vHv9rMjnwslhCj4/WqkECBaEmFKf2aBPFo7Fe5znr1hSzzt6njc9nls/7/EAAE5mrhieyZ/38ay3PSlReZidA+Hf0Igt6kk7d1a8L+2Z4U9m1PzZc127pdMzbSDQT59bOu8cN32eYf42OWdh8DFfSwQixX1piBFTj/DQdGdbV16/3Pj6euN2ubAt4f2WjJ7Fbnoc8sCRJ6w+EHMnjBOx1J7vzT71LBB/H4113K0avlTMZNDcwiReTPzfXZK6j0aXpxPBYE+q8yVTHXQ6j3owGOx7yKyWwpCiWkENwFHnfmoxHIhWwZ12HIxe+fJ6ZV0yKetef+wP2YpsMo8/FUmu/eEmAPncz7MutllfPWsp1X2TJTN4Jqady+isy2YdwxxikM86SHeE/oBlpc2mPGWNc42FCiYFMOsWdQEqcXBmgAogL7AAyOaaSFk90lQjpazeaCQ4FR2f1BRPlhLnOeVxLhCG+L95j8z9nsCk6Hgmcdv54BwN3g1TkMq/e57zDc+4NKJrmAE+YzjFpcg6mVs22erpZFDN1z9tbc4HGT3c8KEgstrCH/d5hlkwPtO8l+bpaxowz7Vg8X5nnTaCVZZy+HfFZdpbf96NcX6rto/uSYWJ9umYfYKdTP/WVEfOvmD6PDO/X7JQ8MzC5ff3IvyfAZ5C85tKiqZgkLOSvobG56Lbj6FCydAizhkPenO8S32gYSi7XjYmVXvK3nokco366eGbGvQxekjVTHF/gXz3fuhnWsF7pdeDNjLdM8MW3LIacQdrAxuD1ILp1NWUpZzIIa8wFqYEzXwEdT3AlqDd9d5gJC45XP6HzChH75FuguI7E3x5vajpz4parr2HR5NJ0z0Grep9q6EziqezqJzJU0fXwbxGhCljyJV+OCOnszEeBj1lugthjpfy/Dwj6WstSsprVRPKCC/EgL01alPqBkOpWBlIuZ0L3rOasbnJPFZmr47lTCqrNNtpkNeMlcTwoJivN0jw8Tjw/WC8vfP6+pXb7TUKMfl31dbYWxX4uVfq6Byjs4eG/utlodjKGs96JVF75f72Dr5gXni5feV2vbEsX3g8Dv77nz9wCnm9QC4yiQ+jN89qnNOSZHqZ5Hmz1wdpybwsX3iMjh+BW1qitUQfg6MJiEx5iZrXIS1K/3B9vhU1Q3Qx49YitqC7c/+04Usp5OS0Oqi1M46Om3F7uSndar1y1Mrffv0bmUxdFXVbsjyviqmgnZdbzrDkCzMRbfqjZMunQd/wKT16HqjFLIz4ZhFv599PQFkEnDhwg2YsaWqKaZt8FnBikqRmFE/RxFrsxae0qsd0R+3ywKmSGCQVrecBHAf3MPApmWC+vCH/Hu+SQWST6eow9ntl9EyvGUaOdnkBc+n6zUmpi3qdoM2LtiS8FBLyVdq2C+7w8bjHcKafABafWctMMEPPnzAuTgiAzpajAXLcEsPECh3tKVnukeAzGVStNTU0S4mieTCa5LC1tWBx6rK/XG8q5FISsByXGB4Fujs1YsqX+Lw/m0VPDycgWAITtIEeIEie0pMApSQvsDDZDKlLzgEYaUHMwlwFgIIiWhvh1zMbJf2ZZcnPxjdqs9YEMCRPZ+MiVoXFRR8TrDaoVWy7ZE3BFNFk1KGEVp/M3OFngirR8KlmDig/BiQCQ7KSzNqgddHVky84K2I8iU4+JT4zEpiYxiv+ev69iv8Rn1uh6NJvATaZgj1SSljOlGz88Y9/5IcfvvL/+n/+P/j+9sa//Ou/8m//8m/8+v0b1y9fyWthb2KnWBR9RNNSR6ANZ5NuwRDWGkqeuZRXksOaIKUFgu3LcLa8QPglTLP1mWHxslxxN1o1VOEXSiosl4VeD469sV03+f3dq/qeUtguK69ff8BCR/Tl9ca2rTERBd+HmHvNWbbMbb2yLBulFNZ1IWejDZ3lRzvAoeUmYCyaFU9Jz3+o3jDAcyHF/1qrUfc8WWrA6Q8FGnDk8N5rrTJMjJNl2c4Nbyicolb5aY2qukdyDQ1ExJQyrHU8TT9Mp/ZdBXFXg7MsmgqvYdI6huLYl9VIJsPwY8g0tZSVkReaFR4jQIjtgm1XHk2JaCnYVNf1Moe9ENT746i0IWbtljdutxcxPVs7vRwcnWP7x7tANBLLcuGyXqn3xjge/Pr9G+/7g3S5xlBpoR+Nej/44csXvry88vH+puedZX6/XhfWrbBeFp1r0bQkT6zBiKFHclAEjqgRjeZk1SBA5u4WSWaDKYEVGSVCUIrqGhkeL2zXF7obtUtes5rz+vJKskUM2WE0Et8+7hx//jP7xwcfHzulyOz+PIVrZaTBrT6gDhiVbSt8ud3Y/ut/gzH48uWF0Tp/+de/knPmdrnyxz/+zB//+DOX65W8FN4fCheJ1oqcSoCTwTQ2zoauByBLCgZj7RriWYrGqZ8yl2IKH2AEqykA2mHpbHoDG5V3VAA68179z766i70ygi2o6G3Dc1UjN5tmoCwbt+trHP+Su68p8/XrFxiDt19/hd758uWVv/76xtvHO3m54SaPT3dU10dj3aJZPMdZKRJx5318yuZi8GAguTbPixqxFY7eBIIloRP6LzoHJlMpIcXHaf5r9qx/su7Jkk8jD1rWndTiDFrWUFjUitkMhok6IZjqeSaAN6WqWoohp08lSGbkojo0pIx7H/HqxHYS2y3eY9bd00IarWG30s2cgrtCBsyNVK4wOu9vf6NkZ9sSP//wA//1v/2JL5eVrWQejwd9DBkhO6SUuO9Zqc9NdVkbYn6s14s8ZNixgsw4S46UbaMn6Jaev7CwkKjUtrOUzJeXG+P+zmiDNAOUfufL3Cm1sTT1pTkcCD11hjk7naM7398FJu+Pg1IWLpeCxuNOMRlL9JrFQqwflJy4XVeSaTD+/duv1P2Df/pv/2++fn3lsX+j1ge/fP+F19crr19/EtAcIIC50bvqrGW94q6ggkQmWwn54zhrsBRs59OCwF0G6xDgP2d9ETAjhnwHSymkrsGNVBRo6GqJtC2kdSMtC5SCp6JUxw7HOKR0uSwCJII6aGZnymtGtX5eQgofNiqWoITH5aSJLPkJjCckp8s5/EMdDdmin8gTmM0zYTYA56jnRoAmNksME+g9d1w65XeqB96+v2GWuV7ETC9LmIN7P4f7zVXzpawzdZ9sLow8Op7z6bO0lIWcMuuynCD07K1OD6b5eR2qQ8fo3D8evL990GqkHif1i+u6siyFUqK+1alFgtPLMaX8VM6MTq2d2hotAPrtukKWX9T7rjS6dV1DsZIphbOe7wE24c7ROtmMddUd3Wvl4/2Nj8eD5bLKg4oh83ETyJjGBOU9ZL1/H/L0dwNPOVz6c4AMTJR/pjvMh2vGo1YdeUukaiQtoom8qcH4jH7+tqk5vRWiCT7j3qMBmJRgCDaCJSz1QLKTCsCMaKtuNEDpSNJ+pyQ2Q4oLQb1XoLxReDl+GitLTrOcCT99CBHNWeZ8jAptak4FTPXRcetgJfyLtIFGH89IRhPK25MAqZ6nj0QglD6fwwSNggXmMI15ps+AUhPiMLJgFAzpki/Bjspm5C5kfjVND69LIZuLGopon8P8BAHoQykkQfnEwh8CBHgFZXn0FuBbxjxjLELLpwnaaOQqWdWSlMZHgDM2v3Wgrq1VSRz6EEhRjLKBp0HzXXi0OaMfdJcZ5OW6Yv1g9MZRHwHuNSVQxFRrjMHH/YPH3nRAAt++v7M6XNYlJh/Th0YT/pxk0tuHmlD3mJBESkyb0aBzn7g21YLAWhUsKnxnPG0npj9M+UKipGeSiaaPYJFApXwssej0egbeO7mr89+KJHKt7mr8gmUDAlVBdPQ5YILnpAA4pT9zwjn9rNx+m+TUez8R8ienUQ1Hmmwmg5J1rJQ8iz4lLk25lAOZKEYn4n5qwWXwN6kHKq4FUs2fKgaF9oMHFakPacoFEkiKJVC64UkNisXrnkDp4/jgcRzUvpPIpFTi8umSbZqzLQmKYlPJg5ZaXAVFgIobbQaPhSJ9dEKamATc9pBg8DykpyljQiDQ9BGybqc/zUjSPuni1GQ9qmZa6/O4iYsjUo7iCVtygV7EVNCCC+QWBdtvp/9PT4woelsN2UaKj8JPYGJW9U8Zg4devOBkBulkcqTpLefBKAjzyEQ6C6pnsS+5tA+dfclME6GhO+RksjgnY4Qk0GZ0BS88fTJmyUU0UB6SxpgUDY/GRXv9s9/ZnLgvZaGXwRGgzYif6+PZ9JHsN4zdNirWZ3OgwijNhmcoeKFFYzICdEpwph5aeFmcksehBiDn9fRHSa4Y45K1/kfd6fuD+niQLfHjjz/x9v3Ot+8fIZmajddkPBBDmjnY4WSYgWMm+nSxhUzDYjgz2tO/yYaGNxaSpXzefZzvW/N0o5skLClZtGuSCg2rorEPe+aPoPhxG04pimUnaU+e6z9ORVBCHC6J9ZSWzj1myBw3J51Pz0lqyB0Bt/FMo5uMjnk2xl7jM3Cc5l7Xz2iR1hS2PwAnnX8gJl0pBcNl3H9Op2NCHWu3zgmoO4THyQQsg7bIrHdKKaSQy6QkFqsaag9fwIRboXVnP5qo+iXz7dsb+3Hw448/sCwL63XKttSkpvjsJijAJxB33gHTY8IQo3K0yvF4kEzx4jMi/dh3HvcHOUlO5rkwSErbypJF5LyEh2On18a6qejetpV1LWey5XORPgcg67rEs1RwhKT7+uxy1FDnXZdiOOIC7lLJjKbPoqy6U8tSIBWqOWSjrBlfBqk7uegusArJjTQSqzdeXtJ5/5zT8ioT221duGBcmAMdYD+ox+D1srEuhdvlIk+pn51cJF+6vVwwG/RxKODCu2qH8EPRsHMycWIub1GvTu8fq7pzkgUDjTOcZvojJtOdMXo/P9e55s+U6k9/HQNqMAh/70v3XDprBwsfGTFZxHKav7PWzvv7na9fv3DZVoHFR6UdTTYQy4L7B4/H42y6pnrhTAs1ff5T7i+ZzJOBZ2hQBQo8mIyPJxsxanN3Zmuh4IUomDyRYvAzz5YRwNXJOnA/h6VKCjQxjIxPCWQj7oJgvMSdfIKHxF6fp3UYfecULKj5GpCEsEWDPeIucZuuggEQumogC3WH24Tf1KO0SINbUtgSWI5Agy5TY7Lqp9FIDLal8IcfX/jh9cLLpZBpCvvwOp8gk8Hio9Lrg2SwLkmDGRc44iZWSSmZsooZNRiMpL1HyVjJzwFL3K3YkLJ6SfSHnkFeshQIZyf3H38Vku4WkogSvYffGLS4D7srPGOw0EfhOFL4ezZaUj/Vm+5n75WjD/b6xrIktiXx8uXK+tMLnpzH8eD+2GntYD8qS104WmcklydW9IRL3NFHrScQ6MHwF2hQArAY7PsjGGAw/fpysme6O09SB2l6oYnTPv3JtMZ0lzY/4gwblMuV9bJRwiNIHAKBTA4RjtEjITuS5dAZ87mOn0OtWS7OQrUH8P18f5Ppqj53Argn2ymeNfiZQldKDhB9nGujN52v9Wi0NiWJqj5ykrSxR01ViurPs4/rcd37rC8T/YiaMIuNK9wimOddXnUTAmm10a3Tw7fYh8dgNawoXInixHvyodq9HpXjsevPndiHnY/LTunzgEhiHzFIbjmGZy5mWYNTojuwOKNVO2stDEb4CY/waBN8o7M/Zzh9uKKGqO1QcMmQN+NlW1gvG+uSI2ClCyAcs1wy1S38HfRD/s8wnmKilPFPmsWgtYX12piLpw6WZeF2uTAlMvMCm3S0MQaWEqUs0dR3JpykmMQJPBlLyf/D67E4KHMykjs5zQmEHOvNFk4y7mR3DDW0ojoGBbAbo0lPK5ApfwKdBk1IEDmv8q8oCZrovywx7egHnv1kIntslO5NzvImk0p3xR0rrSIYLbngAxXn8RKBkCxY6OzDvwrjiObJuw75MQJ5TFmyNI8YxzAHzCTWlAQ6gcZWbXBZV5ZSuK0rhvO4v5HIvL585XE8+Lh/CEybCV8ex0RKeo2TrjuaDLfrEfGaK4Ym2wMxCbofNN/J5uArrBnLGSsr4XGqwtF0oNRjP4GnlGQyuixK8jvGXQelGa3v+Ohcrgu31wv7207vlffHm4p+B1sKJS+atI3O9++K5y3rwl47f/nlV37ImfX1JVbqkC7XjOv1SkmZ3muwH7r09qMjc7nGsX/gs5GxRBHkxho7Ul5H+uUhqZmSpSnXyFlMjhx08+EDz6KBd3OaORXnUjSVar1jY+jgd+e2XmTaXncY8s9Kc5/2pvfeq8CGZTIPORuKlNV01LNhCsmZP5sOxZProNZlE/IAJojCs9DM8oFY8hJeTZpOe4/obYMp3DybGeu4N4YfAdqcJ88JCkyeiHCpp9HsiL3qwynLBARcTWnqhAHD80g06aI/7m88Hgd7e1DySkmJFubCPuTBVK5XWAple6Fbpfo9Hp9kn+ZgNSAxk99IH5KRKKXioNZOHtHoxyWXrESaRA6q6nxzUWGamFPEeTjqENgUhXQ/9N80TfVI7wpYwQJ0ktGUSq0kz7w+Bl47KcurZd7As5F+Tm2aaNM8fVLUsaDppHFKcEXlThBG/YY8ZJI9LyIPQEf/E5A4k0umP8WIxTHviGQqIHqXF4u7ne9ptAFpRPMUNOQ8gcoUa2xesFofY/QYXMyfNWN1TZR6dUfkVFiyPFZ6d2pM1kbcSb2HP1LEy58GqDi1HefzUKE2RGNHBa0NZ9QR96LujEwAT5+bwEiyHrVTysp1vTJGpfdKHmLklRJ787hz3BOP728stxs///Ef+eXXD9ZfP05z5vkZACc4p9mPCVQ6gWULIEeeTNllKuS1MapM2i389JKLLSEvv1i6wzmCgXK4iz2VN9312UJO3OitMlJVA4ixGNMLXqyR0pX+sy5M+ryfxqmAyVMMb4xeMd/IFo1nyKZhgvI6oXok8eSSIop9qA0LiUMK+dYY/jRsVqd5yiAMPx9kbz0KXDsnwAMlzT1TdgSSjGyMkTke96gz5l5rHEfl/W3ea0p5siy2gI6FZ7xASsayKuoac3LJlO5AjkJUDAu3Inb0Xrm9bCxL4i9/+ZsmouuF9JJYinylepPsxbGYIsc5BFG7PIvJyUY1PQBGqzzuHyxl4bZdwFUg7x8P3t/eWVIhbYUjZZrDfnS2ZeXl5YXUPViIlVYrt5skZtfbhaXofHrOIPXZz+CafFnVzDdJpb0kWq30eUaewNNE0SQxyEshl0KvGe+6Q+V1tOr1jUFZjG1LpHkXp0O1aRUgm1pmTYMfR2LJicUS/e706rw9HjhwWxauJG5WYs0b++NOrw/+6et/48vrC8uqs/XHl5dgV1xUY4xgmp9diKsycaity+svxWdkNn2laTEYo8sUu2T9ygZHb/TWWNISQwjVJpPZN5EVR4bJwlvDtsJjOt4nuPV7XxoWTbqvWDweEjOT3174ce175ddfvvOHH//Ay+0L92CyHNvOaJ3ruoE7b+/vdFT/dMIPMvbbHIakGND4kM2CD6PMsw6YgTxzsDG9JY3CbG7nWdnd6Z5xT2TyvJJD9qgllcykAOkzcCcaxzKDcQ71TCVrgHLaJaRg2wpnMZDvy0BDaSYDo8VgRIw/zaHDu8Ulp5t+dwOBsNGqqgEN8Ir+jCXCFIbkjAClE9ttg/i8PNjw2+WiGv7xwHsl0bleLvzpjz/whx9ufLkWjvt3et2jDhRoMxH40R8c+ztp2diWRf2Vu1hbNoCGr7IgsQzNm0D9nAQ4xT5NJWsZRY2YFsO2TP8u/5yyhh/t769INsusZIYbbTiVTp9rEp0ZPZj0g4z3pJQxC4/RNAIMEfjLqLS6s9+/cbuufH258I9/+q/88eefOPYP3u4PHh93Wq/sx0E5Co/jYCmFkXW2mmUBfw77/gE4KRszcfblRUmnBEv+4/79BMxKKVG3iqE+TfPbiDATWwKMkIx9jDAF7z1sbJRUpxFOYuML6+3KctlIS4keKmo7dK/1AJ5kpRFDKPK5L2Ya6um1HCvSIfr8ceoMZY+TThClf6p/5vE2VUBi96JwqT5ofbBtUhwcocrZ9xp3qxQqtXXW4uTkjKZ0y21ZgPB87mEj4xrIpfAslY8WLCdvUmz1nIpsX2SgBo6kv9OmJeqCy+XGum0ixSDvLh+DgmxTeu3U/WC/3+m14l0Jiuf54WA9lFfJcW/ya26BowToeKQW54HhWWtJg83o+4bjfjBGpvekPRe7wSHOO8RywwNQHVQ6jxoBGGNnWOf2cuF6uXDdpuS+nzY4TvhOh7rt7/n6+1PtRg/94QLDGRYJOA65FMxEP8NhKaJH71XyKJGcfAKfui9RYtn7+7vkF2VOSJ4Jc7P4DrsLLeEuhNPcGWlq0MG73kqwDYXWegcf5GGSYZhQzVyEeI/mtB6MkkFcrAJWdH4mrKQT7TQD6zBqMJqSJp01gZfEshVyg1Sd2jXFJfwGjmBETQ+HyWJQMxE/ux5aVMGcMEJrOZwzvt4mcip6ZcNRUomJqYQ8IWYRbwZ0FbJLyPWSQxlg3tnHPcCPaY4aE7Xe9X1wUpEUx+OAbtP7IkzQBYwBZoHkZ0oW44HscXEWbq+vfN1ubFnF8boqLWAclfMTHjpECvlp5DgGw0U5v99bHIjG9bJyWW84jTZ2lutCWlXY3PeD7+8PjtZpfaf2jNnB273T2mCvLp+Go/F4HNw/dkkVQ36DGcceRndhWJ0uG74/aLUJ0DJYHir401D0+basKkZz4vF40HplWMOLc3ndnsh+a/Sj0o/K4Z0t3SIGXo/hqDWmDfCoB4920NDntK2bvJ+S9sPRKmVNbGvBbNDaQWsGnnGbZYhHUyAwt6SZZjCfL5pWmZHTosPJYXTtxeEp1lN4MExju9pUSJjJWyuAREwH2+zd0ie6t3CbYBbaHDcMzHqAdDFJnPveJ+wq1L7VkP3GMREflyK/S/y9aQrinZgK6t+7O/vxzr5X9vYWxcsgWY0JTQVr5AXF/W5ZKH9499iIotpMYPCs9EwGz/MC1fNznsAa8w4jmWQgOdgKrRE6Bn1GPidN1uPsQZ3GCaxI5qJhlFiQz3bgeQHqPLVTMz4llvU4WEomUYJ5Jy8aMrAIgD9aP9k4SmzKsT7T6f0mKvEcKDzp42Po7DV7pm9xwoZa/9PPBSzovpxTLCAu7UQuAc4EgDJT6XSA6xZecoGSguo7qMPDlybkr72eYEGeGvoAZm2ekQE4lTXH+k/UQ+fD8GDb5SW8CMIjDAEpybtMcRdjuwhgWRaZlUJnjANcUeBuGYJFS0hC3GYjFvpEE9h+Lm+zkwmYMiej0VtnjM57q3gf/PLXv/FjLvz0pxe+fPnCD1++8vH+K/XYNXhIRl6eYDBzAqYfyVKWAF5iEolRSmLbZFbc+mCMPaSVwSyIoqnjAeQEszlnnW/e8TRI3uk0yXpalZS1DI7eZEbthZyNrYQEFwGFrTtLEUOylCXOAIvJYoDMzAnuYJpszr0kv5chM+O4fLMJ5G9hIjoN5ufEUlPATEnPWOc+apyV4cAO0RTaOT3VRHc+m5g0m4ZCrVVaVxT56E1DLwLIP2XMsyBUoyUWppE3DeJSNNWSYWvS/Hjc+bgf3Pc7j6Nz1CG5YsoyqF4WNfK9c8kaNqUhCeGSFsgezMoJcokzOQ/WE8iNwUpKAoyVPKgz6MvrKyVl1lyoR+MRd2QiIaW68zgODSb7gCLWeh+VUTUQ2baVf/jjH7hsG5dVU9WygHcB7prOEjHkAgBGj4l1gOKKGVddYukz8PRM4ppR3PK2mR5bBYvBw0vIQyw5tVfq2GUEbS7fJUuYryyLs6QUvzLfR+PRW0gejZfbxnZZMAtm3misOUFaGb1S64PLdtM5dwL/Ru9VzUzUPgp/ACWsxZkj+Fd7bkAqkzXzBF4l8cqhYhpkE1BfTOCx90ig9KfX3bxHT3YPT5bEHJLNM+k/+4qRUoA9g7ofwW6dwFZHhuiFl5cX/vDTH2it8f37d37+wx9Yl5WSN97fHvztL79Q98bL9ZX70Tma1kMfgxrIXLLE8MTISQzvEfVKnM/zubnH3opaYhB+qfNeYpx3eXf53pEznnPse7HpzMFSUcJwWRhpMCZ7yu0ccBczikHqnezOlgtLqB/Kqjt5KQL32nHQcXmhEb+KXMNq2xk+yFOVkZIMh3x6C1b6SOe5CwIbnwMWMf6mB9qaZCdAjs90iME/XCzqkiEjJlPv76w58U//6x/58nLhpx83Xm7GWhq2in3RWyg1XEzyulfa8Y63ewCCcMkWz1FDjpEHZYHrdWV45f1+57F/CNTJP5BLZr2sT+l0U1271zv3+sCKTJaPWp/g6X+2Jg09mxwMczzYusGijzuUkWOwaUwGeW0a+KzLEh6pTiqwLIW1O8uy8Q8//8Q//Zd/4MvtSirGt7985/Fx5+PtwbJk/vDzz1xvKzmvkr+mRBuoPz2aavJSYk0UJalH8JB3MffHaBGGkLSubDI9m3piCPuDsDE4vQ4ncO3YEItyspLzon2YL1curxexyQIYrF3rOS+L2Osp6fxbdD/mlDXwG84ankkzsdyAbFPuHLVKVUjSZFDNMIlTERF7dZJCbNbXcNbKOSWaaWiUUgmZcTCm0FBsWTLTS5YhMkI7ZIielxInVH4OJXsMJYfqbu96dtP2oR4yc59McPfJIBsh049hj7YAH/c7H/c7vyHrjsH7/sHojXbs7Med1g8GTb1PCllusLwTRN8/91YE4JidHm+t9hhqDAHPwN++fedeG5fLFbMUxKCBRXCRDz8HjykGvu8fb3ru2QJ4d97uH3z79VeWXAQOJ06vTHcxtJ1PybmW8GKfmrL//OvvB57i4pCWGqb5HFh4d+TQfwqIErunqeCNKb1FU61CV4Xg4/FgWVcuy4Wzops+CiE1+8zu9aE6YqCmfBoJzoWkyQqMHCjPCJp1LN5kRi6LDL17Y5iHWXWAVmdDbEHRjuLPklDiMbTZusOq16EeX3TtXLq0zt2YQ3kbnOCFz7LOYk4xotjtQaWLRui8xObanWytmPKMkPt1e8ZUerjWTTlBQtRwUSnFBssm9lNyVW2tNSwZl+sKGKNpsduQYaaZY1mLvc8F31X6iHCgBlA040QJ35o8kzPMsWKkUrjeLrxcXyhJU+6SRQVssTD0l5gelXTSkElqhrpXjvqY+5GvrxduLxdAxoPLukQEc6a5Md4egfI7re9A5rF3Wofa4zLriurd94ot8muZXXGtHetOcqesRbTvdtArSmtENH0faqyKZbaiZ1ASPOJ1uQ0sR1qUg9dGDer1aJqG+mWCBfrMW+86TJJzjCbmWDtII1O2TVMRM4YN6lBantK0ZPY6ejqTBrEYWrj8lyZb4zSEGwJpZkGmWGfDzx7rE9PALSKbC3j/5IETl0ay86DsIc/FwgMq/GUmgOwDnuYisdbSc1oyQSs+mTVLmvJk9kxAxyaok+LvwwA7Wch7phQQp9adWndavws4yNPi3AN4GuSsNbwsSZP38J+wnrA8wPIkbessSJCtiF4fD+tMyzif4nzN8obJSb9kCDobPo//U+NMAM0CYvK5Pgjz7jTRZbfz50ztvxFNVIBVmqJqkjrMxXghvn+AWhSwrqnPPLOTJSx7yHuCyjtBtVgWs9CYr2NOxgUYSSI0AozDRbefYP4sRudrn4CUntOTvaB3rgbBJnvQIxK9FPmguaZ7kzGqocITqLR45hOIzf58B5KlhB8hdoYajJAYEz5TyQp8uoSHe/g2G8uCvA8LpCTwUFvMMTaIaX38RCYiaiPFx6fXunwKAcDELCX5c0LOZCJ0jl1JZO9vb7z8+CPbKoPil5cXHm+/4rWRVjEdlpTVBAZb2ZsGSiqeVOztuzz4LO7MpchLKtmg+ph4H6eB8QRFXLdbylnGsiMmpj7ff9MAoe8sprWhhJUJWGUuZ2ubokAO/0BG3N+ZYRZMFTsLollYPCVD8fchqTxdVkzylmxZaXo+95uajXPiGhM88xFFcUxj+wQ+Y4/G+9S92GfJwUzo1Nn0nOj2kCusZZ0v89yf+mQtwK94rSZAhzHwtmtiOjopToyjHjyOB3vd1ZR3kwFqmgl0C6098NG4boUtLaShs6ykzAivR9Uh81OfX8FQt1nnqfkYgfh47Kvb9XrWFns/eNyfsqjF1OB5a5zhCyH16KPqTksKyvj65ZXrZYWuRKiUNLxoTRIUmOxuk8cT/vStsWBHIQ80+ULNNRFnoj1/KRSFMGXOkCQvuSyZgdjq+mvl6HecznY1SipkG3iGxQwbGRuZ/c05QtZhKbFd5FNlIQd1HyGJKfhotHqQ7CIQPKSiKi/V5HqsiWTzdI0pbLAPPNjCWtNn0RiXq/5RbCc1Hjnedw7z8B5ASopF+DnEYkpn5n0063qBT/O8/I+/omQLxo1SbvsnKw1JisXeu1wufPnyhWN/8Lg3Xq43LpcrrYrB/Pbtnd4G23rhaDuGGAZ9eAzFTKBoAoU4TOZPijP66Y84GRwzYEesKa0ZwxgBvuJiaspnUWBFj/W++Dw/FJo0Uope4Ql6uQ/trywuVY7B7JKzakODLWdyVtiQ+2BvTXYKSZLwoU4TN+P7x8EYXemZUS9gqtWOHsEy0Xjns96KfWwOAaKkqB+WpHN+2NBgcogRPlUoORmGPNB8PMjbyj/+4w/crguvr4XLZpTU8SVUHtHHMMRcavXOaDt4JflCorAVDTPr0aSEMHkEr2vhvj/Yj8eZMGYmMHVZFvISdwlq8ms/qP2huzDDeKimOXvH/2xVJgHoPmYvy8kS99Z56ixPnjYW9XStO1JQOktJpGysF6WkL3njh5++8Kd/+gedc7Vyv3/w9vbG/a1xu115uX1l3aJPTmrUhTsNaqRdl7DSWEtRTxDNrYI3BBgJjzYsx5mMfBV7H8FOfTJ3Psu/dQ7KtAOfSWgCUPOS2F4vLFclmXsSq04+qukc1plFcEd4l2nPDHDOgJ3aZf6vJM1ESVn3Yh8Bds8hx8mVZ/RPctWQwM/h3jxuZi0in+bJUJO6ScCHlsD0M1Xd6xFOEAl/Dj6zvaLenkzOWau76b6Xd1sQxFr4w4bCaNacuNNrP33ciPp233elh0dNfbnIV/fjcVftXQ+Oekg2TcfSiPtK4I+GyfxmEObuGkaa5MLT42pKbofrzHi/PzjGgFx01/gI/CBUS+Pp/LWGJcpjf4AhBhnaF4995/v7Oz9+/Uo+A9ECZxgzuAJIZTYJkZb5fzHwVCclbibARBE4PZF6H1G4wbHX89Iqy8a6XHSZxkQQ1AAky2zbBkZE+un0KssSMg09eMX7JUoulLIJ0Ywnkf0p+BkervXZyEtCJrBdY45AtzHFztfWud+72EZNdOBV7ssMR5GPHheXuwoKr5g3XooxSuaOaxruwc6YDU5Qt7MX+jCO7vjHQcpOLkpTkKxaxXOtFY8DxJ1IkFHBreY0DNsmm8vh6F0I48un9IwlYyHFchdrSN4Phebw3lvEvMMtNYpJI+0M3j5+DZptI/mgbEqOUGqvkNVhKSa6epaph8xxJJZSVFhF9dPbrjWSMrfLhZevV/74h698vd2gHTAGeUizKiqyEktaa7TaWMoXyrLx9Q9f6WNQjgsf9zvH/lf5U6wb//SnP/HD16+sRQVRbfLJ+PXXN+6Pnff7TkIX3nF80DuMsTA8cRyhJAwa4qhhsl2KEHBiOpZlcNdwdhq1GZ1Cqw9Ga2K/YPTaZTi5OiM5zQzbFspqlHTDgXZU+l55PPTDC4UlqLb7vVEfTZfppIu7JtXdgSX04a2yDrEwLBgGPRvdO/3YYcgg7own5VPB7SrOpreQxWiztWCPAIYK6RP3sEghmdOIpLj0mZBm5meBPFmWouoL5BLV/DnR75/AAvKn5gwLengKGV0iuZoGTk8crbvrJn+PPlowYOQP5XQ0/DpfPFAEVPcOWc2KnRepgIExDswKWJEmPA3yAPNEu3+nj41y2zQ5RoCBEeC0OfvQZTua3kuyAARGxVKjrI6ZALoJ8u3HoYs5ggnO4t90qSdEF8YGI0UTl2NtDj8NS3vdxYaIG2P6To3ZeJtAJTclKiUgD0UZj+T08L4acUG5d0jOcjmhOJwecer6GTEsDYAy/C6Cel4CvG1dZUXv49ksxq0QPDiWLEPKJQCr4cGESiMkvOOUaBGG3kTErUUBlizSeoKRYibgh4QAbyJFLZqmZDHRD0bMbPqLNl548AGeuFxfwApv953uTm1qhofL60/pWXpK7egw4OP9PUyuG2sppAzLIs+oOu+TrMFKMXn/xE02cUZARQV8Koh8YIskCCGtJ28byVeBxinzfjz49v1X/vxv/0yh8ac/fuHtL8ajV7a0YZao+y5wCI/7KsxJHfJWxG4JkKVZo45KHQeH7xzsZ0oekXY0GdC6mDoeviHmcN1uuFtIY8BrZ0EyJB8NeoumTfatRLmfc+Z6uZAzlOyseWPJC72JbXscnVabZHzRIFo2UpEHzvSRgKcnULYclHjnOBq1NoEPPIGflKZsVee+ZYHKPlmEn0DKcwCX1CB4crwNpjfMDGrovbIfcOwf1HoIzC6LwDIXKFuWhZeXF47aqS2ayHitov5PYXImZa0BR5LFZStsvuHpDc+wlpWyraSSNal/37luiwxD6yF5jmsC2ve4L+I5kYyyaHLbWkxIQ953Aj8paWoPjKZh45zQ7/eH9vW68PP1BSPz/e1vku4fTgG2pQCd/fEr3qJbxcEKFmwhxkEfnb1XJja4FIW/DNPZVruoKdvlC9PjjT7imemk6R5W05FGm8yxXORfk5MGGq5117phHXIdTK/CSxEIsh7vjNG49gWG7noCrLi+bqy3jZFX1veD6+NVAMBtoQNv4xGgfXhFeuf7/sajZ25fLyxkybpJWO9YctbNeNRDE+3RVPsmmdBb+ITV3s67OTHvDZ3H3cLzzFWT+hisOeFpwcPXY3oNWTSps6HAnWy6H3qAe2kR46e3Oik0v/MlxoQ84FzAxhiU6CSrD0oytnUBl2/N5bKxLgv3+4NaO8lWjr1R98a+N+6PxuNjZ6+d6/UL15R5u1cpnobO9cxMddO+MgCvIVmJ+yyjSsOi8eTZLLXTHUmWCyMNZIoKRzjWZVsCtBFwcISMLQULY7hThpPNWT2xJuNrSRScxZ3sndTh62VlKZkxqmLax6GaczE+7g/e7+/kZRF7zzqeoWyFYcbeB0cbPLqzWWIhcR96zd5m3aPhXREyz2SPmPtpm7Ka0rlqlf/nmgx5OnX2QwlyP/545Q8/fuF//d/+gUSn7t8gBQvYGvLfOxhjcByD42j048HXl4WX/+2/UsqFVDaW9cpw+Od//jeOurPbylYKS070JHP0dLkCcL2sbGshmQYt04NvDCjJuCwpam+nMMj8/pp04IieuAcwUvISIss5JByQVHO2sLIoZdWZZV91PyTJA5dS+PrlQk5OobGWxF//7d94+/aNx8ed+8cHOPy3f/pfeP3yyp/+9F9Uy1HDK7YrICWb9rhlXq46y+q+wwgWOsFWGv0EnyzJR3UCEyMktuYNQ72vm4VkLGwWUqLYBEk77/sug2xgScYliSlKTkEkWRQcYplcFJbhsweNNWaGbA6Gk9Z4NnkBM5ZVYSAlF9p+cOxBAiDAlZwp66LzvYVhdgSXubuYb0hBAgLojtb4CCP74YPxcdf5NXQaewy/hrsIH0nBIWIIy1c0mWSBj/s7KXok1YGJ43icfr6Y+tzeGsf9iPMknfhFiqFt71JKtH6c62yvB7U1iuvZ2yFm+H3/RquVuj84Hh/UdidgJEaWcfcxOj4q6djDLsfOYZU/NASyVGKNKmyKJOuAnAvNnVEbv7y9q5YbAvOWZTkB9+lRdv+I3ive1NgbrVVJ7PbKpVy5LDfW5QppY7BwNAv8IZFLIacFDyZWPdpz8Pc7X38/4ymQdl25nG8ihS/NZyPCHhpJWW2I/kZP+KwiAikxRC8cE4GNQ999hPyA0DuPALT1vXIuTLPiOa0dZKwbeJN+O/xTpvHiZGg5mkiMwKNGt3hJWpRE+p63+Z5UxugPNsybgHNMk8NzXhKUNgsQKKZwLSYgrSvpysKuakbNn9S0c3plpBxGYMRzjInNNGPTe5jeEvHHcX1zGzHNcwFi8ax9EK8hZAWRwlAWLeL9CJOzYCPMQ0WSyjAdmyisOlRmGpkuXqHtE+88kVYSJScuqw7wdY1ZbVekqU8xL2JSKX1AQJyl8FJx2Bj05lzWC9u2cr1ceLleeLlsuGsiOoYatv2o7EeLAkZU9cfeaM1Fc3VoQ6a20/S3t0EuMI0nHWckC7acCfzpzhgWQKMuQiOMH6PolZeYKe0vWFFW4mdGKklrndSdEgVLIimJzB0WlfvRl2idTyPoYLd1h+xzt8RkcXDKQuYs5GTHaGExJzgztWZODvSGp2zFeJqlEhfM8/uc5sIWquQ0zwECOPFzwi/sx+Nn2HwJmoj8T4Fx+/S/0Kyfzbiadvm6lU/NpX5DzCrP4nnqzHU+xZ4OSZcHy3Duu4BIYidr3SmZa9DbwchJuvg05GanYerZb+NTKtafbK1zgujBeNbejfpU046UYpIyd8BsgEMiMOY56CF1YY5BmJPveTKc+y4+G5vTWy1pnh5NSUbn82Nm7ucpx+xnEz7Ocz2azpHOgt7igPd4hjP0wJCZf/j8coqv7Pla55nqwXhKUWDZgMl+E9ulS15ls/EdQJiq25x6xbN2h3m6zV4izrEU9xBwrtPP1+P57GL9nJTvYPJOKjeErGrE97DnmtX+C/kRxsg9mnalseacBOKfezAAD+aCjBcQX1PuNp9/700T15JOuXZOcwCj9XL0yv1x5/37r6SUWRclWT5Ntx3v0zdMQ4P5xp/MvLiDkV/glGCcZO5gg0q6ov0ePWw8olifuMAee0ogx3ByQs1GGK0rFIOQm2lN2wTOg62hMynO3A6thrdAsIqeUqtgafqc9n4Cls57FiaTyvJcKzZLkvj98Vxsil4+A07zM39+XLNW8XgGE/SdTC6QkW/vTes5TdbgXJPB4OpRQ8zv7c/PIVlQ7ePCH7hoo+ExNifcVgTCifnc6aNjtuhMGZ3eVNSP3kM+NEJaFQVbGD/3Ewzn0/6Lp5Cyzu8hf7rpUzk+AWnreiGnwv3+6zmUmOlFkjfUsxbMObGUFEOE6fXXGdYwF+RmKUUQTdQi8SmkvDBMJveYk0aEg3gc0A5iKsY9Mfd0UgjKGJNZrs/QAuzzxBlLPazSLVFcA5nRG5N9nqK5urw0MVEWNTaq+VULG6rHlCInc1obHpYFYD5I7mJqhlGwHZLXeFe8vYVNgsXuFEg/U578ed9P3CHWz5S/ppByNCXtxD2uz3aGnniAT6f3t+usmqzhzz4m//nX8wyY4ySxruZunize2KMuhnEpReuudYwmpkF3RY8fVR4nXd/HQvYzqQGTuTLf+qzJOc+1ee7aecfAZD1NBkY/z8ERe5/4GQE/P/c7Wl69z6COGRJyHjIaeqAmq7iz+BADyuBiSgmtXSs6GZFEDc0Gj9HErvIcz0l7pGPMcII6hhLDLYKwA4hwm71EEusWj300y0CxTtK834di2LOlsxcb/SAl53r5wu1l5fay4uPQQMSgu6RL57M0rVf5A3a2dWNZb6RyIeWVZb0wHP62FrCGU8Tq9djH2AkwCbDIp1JsVoRE4EiO92xxBvrfAYY64gy2+Ny0/vO5Xs6aMT5no8XaT+S0xBBXC6wk9TRLLpQMS0qMdvDxduft23fuHx9kS6zLytcvX3j98sq2bQyXd5ub+olZkun1Byt8EH5h0SPOfekBjOlAe9bSZ02Fho5YBLjE7/TnA7DoSeOoC+ZygM5x/k9wTczuaTo/a83gMc6ry/SZnK8JY7LbS3jnqTaSxcf8suirihXcFJw067lYptFbPW9e1ddDKXo8mZRm4dcITNn8GKpJEn4CivM9qX7zAMGen7eGpCJe9MmSPJ7/LmIAouYAD6XGHLSNCVEArde4d/X7m+n+r/VBq5VjyuxGY2IGyeWR3b1jPXFEQFtCwNMZ7IRh6cmiV0q1PK0DuhAbNOSb7gIwu7uCtpJA2xHp2IbYagYCvvaDx/sDsScLyUQ0IEz3QxBFi8bhc58xEw7/nq+/G3haX1704Xb5hLTj4LK9sC1baPAVOziGR5JDYd02uhkfbcfpcVlrGY0uZtJyXUXFq3owKZqCmdCBQbks4ZUQzZcNyWVap+QVM5nFjT7Y90rqhezrXOWSiBmnBCO5JqxrKQJWmlaN90ZHXkL1mDKtLhTRh6YVDE2yU2IZFpKxheqDu3V2OsWd1g/aaLShmFMWx0ombyuTR9CCtnd0MYrW642UMpf1Qq2V+8eHokiJCQzj2awtiYHT33ea6xI6+nfaGLy8vFLmVNkSeVlFxz0q2/XK9Xbl9WJsZXDbrpjDpchfZbtc+Nu3v/Fvf/3vZ0TjjAHvrZLIXNerYqZd3jfZRc11lzGZG6I0mpMY0vfujePjzsMbFiDcuqiAKCdz4gBrpDzw1OnWGOMBnljTxvZl448//MBaCtu60OvO/v0XXl5eSXmTfM0SxQ5G67y/HYo7z4X3e6fVHuyLoksx/tfpvH2885oLW86MNsQQuSoxY9k2PWvCjM2MZB23HNH0nZ6kDX//OMhbFq05qZCfiVX7fafedx73neyidhfLLMYZwWurmEi5LHqejUC0jety1cFjiTF0MAxvjKPRslFJ9CowtTdd2R6x2WtW8yGvH615nw1veEzMqV1rx+zcdemY4a6piqRPUaCMRmtKNErBANBf/RPVm7MJG/OSc/DpB8WkST+L2pnAKF6xYxH7O7r01CM8D9Q06UJIKaPpdbBqPCS2pr1uFNrQYf/+7Rv7Xmk1McaCpRKMuyYPhpzPmOP9fgfvvD0uJBskKrkkcrFo0ix6QaeOQ0bJqTC9PUpR0dKr5EvbsjJG516PEwg7QSF30bxzFL+1qrFcitiiw6Ll0gVsuJoUj0s3zurZDKnvMixpCtWIormEUbLFpWMoLWVIFpKSTFmf+vf4bFY1mTNlZ57VCTW1Y3TMdVEtiyB51cyJnIP+PZuh4fR+4MOw8Ac4CwdCPjAGaUhCMwsIZ5x08hHA1lErrQ/WbTuLVkDPzzsl1pRAy6dcUay8HuzGHhLqccbhvr+/83F/UF3N9nq50JtT9warGticVkpWNqGkmKvOF9soFCZUkHBKGjIs7uFJ4dqLPhpMb6Fg6PQuAHfdrgIMjrtAnC7Pt9oUMe2j0+tOzok2Dmo72B/vXK83LpcL67bwwx++8u37O8OdZV05AbuQ1KbwMXzUerJZh3eO4529zsloJuUNT2I5T38BuhihS1ITP9CktXp4IGKn7HIm0E4p/gCZjLvzctnEVEOBEaPKIDUZvO8fmD34+uVnllx4xHnSmrw21HklUb095IvRSOy1ns80WSIvRXL6AJhBxZ5OoH7urz4qXlV0+nByGOI/vZiM43iw9x2C9TolN/V4nGfeTLeUh+ISRW9jKo9sdDEym8c5LOBBJb72YK2VkjPbpmTD+/1+yhn3Y+dxVKpXBYTnzsiDYZ3LVtiWCyWp7Wqj0vvgX//1n/lp/4Gff/oSoOQcyHG+tz40gCpFe30OAN1H+N0ZHvLQ0RzcWNaNfFGwyB6ssrfHBx/3D4wwxQ5g25ZCbzJS/tM//iO3lxslJUatHB8f5CVx+7rhQwa/uYgd2UZluDFSpKIi5pKAWMR2H9O/SE1RTpdoL4Ktjzi/AqV19pYscHnsjTBOBCuYF5ZRWDyxRppqThro9ckSKJkfLytXjF9qY++D++MDEBP8OA7e7h+8vly5XjbWRRLiez1ow7hGOiWjk7PS/HrOpGDQG36aZKshk/x1mAZIbYhxmiL7mKk88EGxSLzyCZrLYDbniS715/3cp6y0xvBCjX82DVVaPU7Wwn/6NXHbpJqieIphLaTR2ceBdcPrypLh5bYJeBmdsmwYiW9/++Dt7UEbmqQ/3t7JZeW2rngTCLWYZGs95Jy0QwnMvZ0SHMKS4qkQNA10IEzZVYeBGITnEGPK0IdDGyzRnGcgBaMCV1pWoMLnuaNwGscpjA71/gAfFO9sl42XdeNKo4zBdQnp/csLdXTe60HxwsamxMVp2GuJtFxoDm+pc0+D7I3q0QRmpTTXLqneBElSIuqqAaGoqPVxfkxjDNq+ky8r2ybj9j6MvCjk4I8/f+Xr1xuP/Q2zRlqdPg5qr6x5lRR7yQIDV2dJmSUV3LKGYNmxPGjtTu8yy9480+2KJTg+Do79YH8cjKg9FiusadF9iiF794WFjRFDZkZl9Mrb2zsf7zPw5T/+Gg7ve2I9BAXmVjhGpixqxj2HB1Aa2JAfoY0m7ydb8FbYq9QHfnmhlwJHxbxDO+j1TjveYagu+2//9/8bX7/+wD/9l3+ilEI7HgE+7Ewv02QCLUrs/V//9hcmQaJksVtPSfw5EAp7liqwR+9bNXoKCaXPui9wVwUVSIkhACZTtlcYg90NZ6O3hLGwbS+0Dq1zsiOFMYk14yOdARYlZXJZQ47NCWANl43JhPt6g6mFwUzDeE+MqjN4XRP7cfBxf7Bum+q3AO4/HjtqBaLWXBZqPWi9B6MoU0w9xRGhHqN7DPvAA9wZbozeeH/s5JS4bBeO4+D9+4OpupjuarUewh3Cf63g9HaoRgxSQif626xz64iepJ9D1SAMAPcmMsXj4xu1VvaPR4R9xQYN+soYzuOxk6gc/qCEVLF7BA7MmiGUR3vr52tZry+s1ytb+kpOhf0RzO9TsyfW8LY8Bxj1sePDuW4bgLzZauW4H5RloyyFdjg7nXVzikeW8HD22rA2SDZ7Rdj3/Qyh+r2vvz/VLjxhxkyoG1oY89dc7J+GR7SQxuhy1wPogSpPqHmijcJ8VZj+VrsOMZYMavw0KQyJDdNQNCbr0x9qkgKSNKvDFAVNIMMyc+WcUMw/PyeUosAJyWcodvY0IQxWRdLe16XkxHTDItHKRRVN4EmFRs4WseqCDZ+xtYEZB9o8ofAxH6Q9n3MPPF4THxUQixlbgiOAotv1xrIUCtKUX5ZFDVVr3K5Xrtcr2/pgyZ3rIrojt4suwKWoCNP5x4jifzaaGQv6bgo2kLS87mGsOhlY8edGLNTeBvv9ILVOianeaprmyBS0sC6rJpsBxB2tRTObKAPWpUThltmWzDGUYqPBmdIG2tFkBlddh2RQFDRgjgk5aCoKMRJQVWTz0adYcufnLdBUEzQiYTAhe/3595+aWfcgAqjZ6eEzZUEJXXJRQTMmm+GzL1DIK5CfSg/Wi3t6TgWiSQ2yAQUBWNmyDvQOZ4JL/JpTCw+g6WR2BGghZhMxRQmWQbQ/+g8BjFmOCaAK+TmBdoc0tP9noxfnOb8x2T5ZVs8Jgba3nl+K1zGJ8IEIB1jR4jf7Kf07p5ixj8LMSu8xQC8dNwKch09gThJbAT9iChITWRyay9trBHuH/IwrNx8yGQ9/h8k4mKDXs/I+/1+siWeq56ffcP71M1tLbINokuZng8c+E+imlxX6698UXtGuxDMWM/QzS8POn2MxPTxf9qxR5yXHszGNVxmApcCJ+efs03MYQ2arehkBzn1+JDw9m6Y9iVaYnUw/rcfns5r3y7wLnl4nz3/1/PJZVTOn9p+ThJ5M1ue6E3NgxoXHXpz77/MDVhXGeUD6PAuJAzPBCPevyZ6chzzBfghPF7FyY1oc58tkUc1pXlljsk5IurwHE6DT9iNAjIp74jgOTf7H4Dh2Pu4rrasQc/v0bObzjCLpiXvGczkPgjkVnO83jL1jLdp8T/Pzt8EMvzBXUzPQmSaQOZ0TyRGN8HysaiZCwmgWIHmcByMmqTEDFHgTn0MAO26f65FYyp//6v5kP8ezmM/EY8g1o6BPgHTulrmP/cmOcQ/G45Q6gIDBc9/yHJTxiZE4C9NzvXA2/h77Wq97No+f6pJPR4c+s+mNMaJhjjUbTCcPOfU8p+ekWYwZhQyknKO2i8/DdOalOO/OEuRc9rPZIfann89kmo8L1KhnilF37T8zJtc2gACFpazrymXdICKvU0zbA86NnyNLg8kyTTmfBYoYbx5/5bwnnywP1Sjn6TPXFQJ+tb4lE6j9OEEYH5LfpmBdyTvIz4WTQhbOUFjHOD17YK/trJlmjTQn2LjWXN0PKInbbfvt/ht+Mjvi5iLNakT0QJ0dzBpRayXN2vdUIXCyAZ9Mpbl+jVn3ag37CTzOz/S5ZgeTDfKbY/Y/+IoS4zl8mvX1eW/5yYI76wM+1e+eNLWPNfK8hfQ1urqG+c+J6BV8yqmnGD72GH7a95x32PksYj/afOWqf85/7HEuxbEh2P3k1p61ypS7q7mOs8Ymk6Kx4GdPkBhsS2JdFkjBZiyFPBIjD4wF802gSA4Woil982gDG/VkySUnfgXvzc+q7dMe+HyehYJk3pnmkqKbmFST4TbrjnWVTDdNTyF/PqXZe01AQaC56vQ+oI7w7fx0ZZclR98Q/dtZEwYVfEhGtoTRtrlFXZRQarCA6FYHrY5zuPb7X8YYheErKQu0dZTAi4Uy5FnFa6hkAjwYwRyNfsfc8e60vWoHdsnsSxKQVbLx5fWFLy83ctH5u++7jKXbwbqmADVCmhRmqmI6SeZmKZQvPn6zdy3uFP23+ZHOC/y5/0Cg75gXVYr7O3ZxSgvZpiStkGwJdcjz7JgyVgJILWXRuWHp+SvWpu7A2UfHn4uz0kyyxglMJZvgRzrXoACr82L5DYsYn6DWvL/tZF6fa/vzr1nIOucaI3CDPlrsYjG5e2/n89Jbd1oXCGkha/DeZfbe2qdvHUwlEj4aox3BFnQmyj3ifBtN6a/eD2gVWiXlIrnkrK3G/Ms4ayGxcyUZl91NrPPPzC10xvfRaK2xhP3LaBqmWY76ItQ2fe5FDIZqtwkWzfAVCyLBmUrtkudB+EKOEf/cn8W7a3j9fznwRCTJnKbAGK12fOznwxObBzqdOgbv93cul4XrtjDd0usu76TLuuE4931OB6N49czTwKtyNgG6BRQbPhxyHAretBmSDN8u6yp6cg9zyTLgjGovMnE9wudmFHwc4QElfXdatNLXQkinYkLZK2Zy0e+VOKCHzF5zh27s3VgxbkVTijSMsiyQMmldyCWzbQs9klp6lSmcCkQg6WDYW9d/J5gbXQa5Y8hImmTcXl5Z143X169cX268fHmlRlM6jZFfL5vS43I6hzKliCa6178xxoPSEmkk8pdXam18e39nKYl1W+h5poAUkifWNZE8URoyQ68egFrm8ETzcbLLjGfhcfTBx6Ny/PIgt8HXLy9s64K9KP3p9rpxXTdeXr5y9IOjVf76y6/c39+4Pyo24MVXfnh94eev/8iWjUuGy3VhDPlf1dr59tdvvN8rf/3rG7UNMhv3Y/Bod5ZlZVkXUtkYDh/HXRszGa/bF26vL2zXzLIa1lR09yEj8dbvuojyQomLXvHOmUaK6F1O+qm5YV1+FiUX9vrAGiwuf4+XP/xI3Q9FrQ4daGuR39ejNZoP3vY7HedgUNaVvG7MRKVlHvhlUDBey4V1W7leLyTbaBVGD2lCjxLN54FR48AJbQRB9U5GWXUctDld8SmRGgzkDWOnwXSLQtGl/fYR561xuWzRKKox0OHt+OA0Nm/BgCJkG0oAU+FxNr1D8k811p1W92hsLsGsmihnnEvRAOPQazCA7JmgVmwjmeNtodfK8dCeK9tGKvI3qY8PWtv5OHYSzm0rpNvG8tNXGct/DHowsJJF9ZzUAjBaKI1U6ObQWHcf1DO5ZMX7CArrZGTpz/QaEyYTC2ktYdyXszZvgj6qfOzivZY1nsGn2svjQt5aTkkAAQAASURBVGotWGZJ33Ndt+gKTNLO3liuGyUVFi9nlHActWTLlCQT0uEeAQsyhPYBNeLIl2XFsjz4WneOdgT9N7GsmjxPPpYSFeUHZ2Om6JRg+fQoQD7FqHsYH5+Jb8HAIwem5RRL5GCLMFxGoQCtCYhxTcBKzsFmehY4Z5z6svD4uPO461zIOUwr5zN1pVzhiVxyfG4J71OuEb4oMZ/1URhdAQX6GQPByQN5ik22mTqFU6oeIPm3jzcBHUmg9t5Nh3FreBL/td7fGb3K22jA+/vB3Y1vbhytUfvg9euPrJcLr6+visfuopmP1oMoFDLiJMAkJTV9c5pXwrchITbYiBMjmaRNZlWTabfTqD0hbsm9RxRydH0+SjxLw+tgWqokd+rHG5TEy9eNbc3crmtIVYySN1KSn0DvzrEfdO+kpVCWRd4ncN6bn+VA0xTVeRZ1sx8eYfrswXSQZ1wEiQSwmXMKgENy6dPHNu4ASHzc36hHZVkv5JxZtzWAhEjma0okJH7+bKTOAr9PSr/Suo5a6T5Y4jxmGpNlNRMZWNeNXDLfPu64DRpV7IdeGS2TjjtlgY2sqa8P1m2hZOPlupKXzN/+9heulxsvt9fYFxZeeJnr65WBc6+PE+9SipBB+FDJdwixStyYEtYBHO1gPx46zlNW0nGsDUkvOksqpGXhkjfWsnI8PjCHl+ur9oRSYmAketgG9ABTLrcNd6NVhx5AncsEtmQEXoS8w4qY9CUtWNLang3mcdyDrQm1Dr59r0odK2JFSJmiM/o4ZnOlfVKs6M02nfXrmvny5YWtDVp/177KhbQl1rJQMqThtPuBe+fRKpfLwk+v/wWz3zYA5mLOTqnLYiXSRpvA1pJOYHXKG9a86f6bEz937ZucqfUI6bc+h2na3wLwHKMHOPg5/ECv5egHPvpv2KL/2deIfTLNiGsLiUx/MNyVBpwT18sGDB77B5tdwzaDaDwTkEm2sC4bt1sPDzQNV3W3S3mw5kVb0mXgTiqnLYRZ0b6bsFmctX2M0//NRV86k3q9CwDlmGBZZy0LOWVKAE8lCfxUSItMk8Nyi5ae6aRjSJ1xWQrXbRM7ox/89OM/8vrlRXcpjpVE98G139j3B/t+170RDb5jHNX4/vHg8faNOv3JJhA+Yl1aADE2ZfGJKfidALQSEp20JBYK18sLow+Ox04pFmee6vfr5crt5cbtyyu9P3jc70oFpeB31d2LrWFIrkHWumx8PA6Ox4OtFHIWGDUwqmkI3Q4NS8DxcsHIPPYPYPB6e+H15VUDWoz66IxmJNvoNfG4O9+/H9z3AysbefH/cRH+D18J9xvYjWV7oY3B3qWQ0B34gNFY/aCQuGxK5Lxk4+PjG/f7G7fbjyzLhqMe9fE4WLLxsq1SkVx/5uWlcNkKf/ovf2TdVr7d3zn2g2+/fg/Ps8H1jz/yw+sL++Od3g72/QjQdyVlMYuWJbMuhX3v4XWp/bRt1/Awzmcf6SNmbGHXkUYkJuY1iAqNZAs5L6cRdcqrhnEdlrKxrV/J6RJ2yDnABg3Fa21iFpUNx8IjLwdynIPlLOl27z3uWzsBxXW5kC+Z/VDARMoLJ8vfYj2eYJZkxd61L1J5Sr9P/6Vs5LKGD+u8x+UHluK6DpJgDPVDMTGIoa2zt7uM0KkazLnAueHyf4JBb0X1WJU0fbROCcLF6Krh8suqe+f4CDA3pLA+aEyywsBGo7Q7tEbvB5ecueRCG6pv61B9Uodq1uKOlcKy6F486hFemDCmHHJdpegpq+qG93fcM0up+NDv2V42sdfD2L31udbgsm0kS9S6A+g+X8o5jEpWIq154eP9TkqJF+SzuT8eMeQa53Ds4+NDvrR/x9ffDTyNWdB10c5LJMON3kPjHNQ2nOoHJTnL6pR0kFzgAUAJbwMLeVvqYnMYho3wDIlbYw41Ty8MeE6WmdOS+PexkKcE4xzZexgpuiRPDI/pLCrkXDRnHzFNazP6dTI8AlhNarJzms2tySw2Xu7hSrdrNmgnyprIU089BqkhOZkLac4xvtO0UdI1GYJJvvdyy7hNaY0aptd1oeTM7fbCsqxcLy8s68qWE9doluaUIfUGXZTwyZbqKdGy5Eo+KscudLVY4aiV+/c7/aOSKywdbKTwDhqizzrYKNh4fgbzOaVokt38jEh3R8ltDMbh5GbcPxqjwXUVTbO3kGqVaPTMGBT6qOyHJDA0KGXhcRyktLCmRUasvXFU46iD9/vOfVdsNWYsEYVbAItGWJNxWGKteYBxy5KxpCZkgqQ5mxgvOrHUHCZRiD1PGqOYHtk1oSjL+vTJDTmaUHrpxscsbFyyvxGyAPmFWSQjjVhjHh4QJg1wINIezByZyyGzviWzbGskK+YwPwZPArRCTBeFZ2cODkAS1ee0M4YnPhlQsYcsvkeg/aeWNz7zxGQq6rOegIJH8SXquqnB62pE09y3+LmPYznpdeExWdDUJOclwJ5o1EOnfcbHfvrjkyzjIK+tbPSuFIg+xKSbHgLZwbrrEmxdJshRgF0uF5Z1obUDb1Wmk9MvhGA1cmI1kynNbG1ayBk90K+9Vl1mMeiY6SAJmX17IJg6V/rJ9JiSLGPIt4fJhAq55JwIuz67Mf+dhebfJEHSzC5HMo6a3uoh/UGpS5PZMGVCY5rFx9mZ06K+2Z4mrTI1n6/DghU4W7aYpKCHM4KpkF0/y+Mswaep/Wx1Y85thp2pTvNM9vM+MEuQOSc2I0DQeZacXAcPpt8YTM2+9pmmqDLSXDR9Xgt5zZQazCXLkm/MQ80m+vCc8oGikEsumtR26MdAdVxI2iAkMnB6y0AEK3ROhmLEYh8RI9+HgEJvVUWVzZQilywVxVpPts/1+oWv28Z2uZKLzmsPlmWyRF5lq2rx2TGIdRJTQVfzTkxcZ7qYzHil1pxTS/DTZ2NSzJOpIezueK/6DLMGNk5HkaiaOWtVztcyQj44yzajJMXY50ScRQEgIQnSmpaoHzR9/gwuafVJGpw8mC8+GTHxOYRkTBIAfSIW61kkDWd6OZ7sIx+YdxKdrRRJmkrGLAdwZVgqksD5AC9hhxIIeRwAkgOnSMXRFLG7QDkPRmFCr2XUgRWjFDVLM71o4CxljW9ZyJ5IwyFkoxb3SE96X70Lz8Hn5DRg4WTkJQr2ujPm2Xj+77whYumfm0znVMphUu7yI6Rz1IPj2FnWLRjdWRHVfXBdVi7bjWXdKHmlZ9VGeSk643Pcg6Y1I1Z8nJvz1aQZpDDOunG+xJmQJG+LkJxN8DHuo5xlqD+G6tjrRaytJRdKyecdGX1JNF7pZGk/kx013FlXTanXpVLb4Kj6DOW7Mm8pnSOKry4RWqAhhJKVnzW1zvgZNy7g0SwCOPAINxUglONsUioTwfLyJ/MQsVtA5slKccvPYQPz8vLzPYPOix6Mgd9ctP/RV1yCU5YS5U8AIWoQi2UykpKUkG+nZKfkef+4a4IeMffJoUR9n5isxvAom8vQVQtMJiGo7gMZ9w44jXSzWex1gXzEnad9kJHX48BDVrrE650qCe/6bwnVgwQApf5oBNCp11xCuj7ZQLeSKQvkPM50MnKcG/8HZX/XJEmSIwmCDEBE1cw9IjPrY3p27+lon+7+/1+5u+cj2qPdnanuqsyIcDNVFRHgHhgi5tk03ZVjSV5ZGeHuZqoqAgEYzAwAVjihuGqFquJqjtYHzuvAdXb2H5wm7W4VsEL+eYA5esZN5urJDltgK8DueqBfyeYWAu/MUw1qire3n7HfC8pGsHmk+sAHTbGLbbgin02tGd/zFFTGqL0WbFZSLsQ1oQNZ6CNzS6euqzXcjM15dfr1amYRHkD0QLQBDE7bjjEQY3pq6u8ab//DJQnBwB0DdzTfcPaOozXsYahDUbBDUVBASXxVrprwzil2bzv2nTGBwxUM8k7J69d7xVYEewXuN8YATq8Eno8n2kU/Ow7IomH36PQZdheY1YyhGyTBz54ew8Nj1bX0Q2OOOFI2GcHGO3Oz9JvNe9bHyDjDunAk6MQv5uS13lC3nebTaumzO3OhF2NWIPTlg2fu7IAa6xdwH0EFlhmf5xAykYBnk4WerXzmazVK5qQpK5v7Eu4EcIQxhPlvTlINXcIG5h6xchQyRoGcOYbRJX2c8/uGw522E6ORPY4VYz2bcgS9SjbVI83gk2ubuAObaqMl8NXoPbUMLwRscgdlejE6vPmKZUt7EwQOIZLf2z75cpFt1cbU1hBN01ncwYgbJADH441SY/dkjnbNfK3kiTnzVjLsoLFquS49aw/JZ0SGXizVS9CCiEU9n8fgfQkEtHeUPyLFxv8M8HRdGciIkN63d3x8/MDxfKBUep7cd37D0R6wIthuG0acHH85BHBFiQ0IQzxJWC2gASnMVlGADIJzXC+nYs2EcEWSlfhQSjEDEANgZKESI1CiINxwHCcCDq3CK9ccEd4V7gXwgf7jQh99SQYhC4jNkdmgxAaCj4s+TWcIugBNAyccZ3SM4IMX5+SXgpz+5yeTNDMepgF4CEYINMpKhute8P51h0uHo7HbFoG//vmv2Lcd7zu7wCp1Ic33fUOthcjw4HS3KzcjEduWFGfBLRosBh4/DvgAStnIePr+A1e/UBsp5iMEz4veH10LTAoEGyBZXAqfuQi7fnUju+F5nZm0g13qa0AuhQ7BaA1bHfj69gWqhutMJlUx9FAMGEZsGN7xPB39GngeHS6KXx4PwG7Y3gTPceE8G57PwHkO/OPHB1rj5BhTosX3u0E3RWucyNAG77elB87wwL4X7LeSQZXorwhg24YIoJ3cYCMaUCvoKJg0YROoc7JILRVfbm+gQryhxaBcUDy7ag3hnGoAsMjtfeDyQAglg80bGWNmMBf44NqpMPqYOSUFHsAxOoqRNSZ7xe3tDft9R90rtAgnXZaS4IAmRmSADoh3zMkMfuSo8JVUftJ0ZJJl61BjAG/ZITXltCFRyRGsjjP3rVYDRqAPhwWlA6N1drvrlt5hmRT4ZxPfF/sDMSe4cbLPPGy4xplOTzhlFoYAi9x5uMlm9BQ5DrR+ovuJ4ReK0AC0pNTRI4DzQlwX9p/u2LeKn376CiuK8/kDnLTWUQ15yCZjJxkVnKEkGBmswknb9fAsSgXfz0d2VwgYqHK6mcHgCVYimMSO6NCkssfo6KNDjSynYmkImJRayr14D1i8TKquQKUCUEQHE4qcTOhi6OeFFo2+XCqUu3InkO6tCYY6Dz9Vwf1ORps5Dy1O3ciiLBPtaUDPFBdLVozg5xsBiNK3xZtn4qhTHccCQgSSbE2RKRcYnw5tRUBfvkgYSybDPSyfpC6SAwDYHjRseZBLJmUAUFG3N2x33pPtraBFAToLNCglyzHSFJK7Z2FREcDtRtaLuCBaYBwDrgEIjb5FDdMcc57RqoLjOPE4Du49EWw3TpI5xmsMbm8NozXc1LKg2QCpqEqD4HGlX4Eq/stf/hf81//b/w2tNfTW8eu//Z3G5yIoG2PFcE7HitYRw1HSa+viE+PzSKC4tQtXeoNw9POdILAYPI3gY+6+XF/3SlazPybtWzKgdMCSvj/hydFhGuCoecX5OFOaBNzKDWUT1EI/l6I0sYUDOxRvsuXnHBj9Anzke7E4DeH5TgnDhnl5Gpbgy2AE0ZlgDMr7wK5veKSRe6BIZIe1Q+OEoeHr27ZAg8hiXoTNORmG5kGmtRuy2ljFOMFeRTVBce5xKNl1V6M3zIYKdWAcDXIrlL7QLZrJrgD77Q3aBTYqOXcjgEE27WSka7JJWwtUFQD07BhjAIXP53Zn7Prt2zcAgn37AkiCxZmzahaRnt3NYpqqi8ncdnCCU8fH8YHjOPG1bJmfbRjouPrAl+0d7z//CbfbF+x1SylDwG47AXVp8PSEnIbhhcgALOVvZvSE686YislmjIClXGdLk3BV+nyMBJ5VBdt2g7vjPE9sm+J+I7PFJBnCY6yc1ISMjtt9Z5GnBa13jNYSwBHc718QATweA8/niY/vP2CloG5lYdVMpC0Z2ILH0VFrwX3fMEZKJqqhWHqDiWQnWVbsJruT69hyAAMSJGUzmGsq4nUGuQBaDKFsgCDoIyOj5H6KFR8l/fSYM3CYz/DX7f3PXhOcjMGmliYzMKRABdgAVE3fLC3Y604WhZb0GXF8++03fHz7jus8MFong1wMUgRt0MT2GlfmA+kzImwgh2s2ugWl3hFCJqAk23A2VmbCY0uKCUB430TpweNh8DBsYSl3TCC+04AYtsE2gxTjpONxoQYZUZsBVYB7UWwmMAHe7zt+fr+jVkC04bbnsAEYwsia8/OGcTj2coei4tdvH/Bx4Mf3b/jxvHA14PLA4QF9q9B6R5cTLZxnfUji22TIqgbMArPFVYxswef3AwFHsyc01xpMIaXiv/yv/xVfv96x3StgwHU9Ef2CXwPbrWK3Dd1p8Kz7jYqASmkYxLFthblAoefh0QToAbmo4MDM70ZDnCdwHfj6859wv7+jDAMuQWHLmNYGzTEeF6R1lBiQ0RCjQ638O/uC//EroGj4CsQdrVc8zhMfj44vxXAvBbetYrPAJgFDx00FEQdiHLjvhu3LT1DdIFLw/vaOWne8378wR3zfEX7B+5l7NkHk7vj2j98w3LFvG+q24X6/Q6TgOOh9FEEWE9l3lcyzq6N1evTUYihF19T68zxpQzIcqgWlbunJNFAr70V0WpX03sAhIzt6nvVT4t6iQ8zw5esd++2O/X6DmuJqnbHSFHWvzPOaIoaj9yPBnw6RArUtcz/Htt1RJiMn4+lsevZw6Jjm7IJAS3CambukLxiKE9z1ADonYZK4yVjkCUaJUpIbOusRrPyIGAIwC3h3gbvBRzZ8Mzf0PjhhrnXUyimn/bwwesdoF15EC0dEAofZ9OTaPRlbT16/NxIeug8ybEsOBUDgePwgSDqJLyF5RHqCRAGUCkRwomGClGfGYytbTpBjzWQb/asHQCVaMHc3U0iMjLsELM/TUUvF/f5OVUV/mRvxTOGh5BGcwp013QjWNnEOlFFy3SrO50uGKFcDGsFIicC+DND/+esPA09tzK40A0HzCy4NKB1RFTBBl4GQQMPgZjgJ7Fh554JzwBsBp7rtABTdmfhDdekYY3oHIKnOyoA2+siJBtmJzYXMBcbERFLPasWS8oZlsmUlu9eTheAv1/o5scOqQSwpzUIz5fg0Pn4IePgIEz8RLLaKBaCWLAVReCg221JWUxBII0RSqNIglEn3iBwvnoWQFRZKM6mXwS5++zgQR8fTv6VE5J6diI4fhWbYc6LW9+8/mGQJctMNmsIVwynsFn3/9oEI4OsXI5Ubii6G0ArVjaxtqezqgV2IABF6mqmywCQq69gGAYqS1PuqCvGA58hgLDRe8dv3H9jPguY7bthh9zeUQmXR+9eA1Teg3DGuDv+4cL9XuBSI7bD6DgfHKn/7/oHnceHHD5ZMpd5gtqHUfRlqD+kIcVSzTKKzQEdgDOA8Om73G+pWOO4UNLMmm4FMmTYGTEbeg1igQ7YXV8dsSu5U6b9lGzsDoz3hCFwPFnNksQGhip6eJp4A0ZzIVqBcO6GYIEstOaVoRE4XcDz0RJHvLHJVmDAgKdiYk5Hm5BAg6Qcs/mzPfJgFPKcUpVdVFvWTYu/JwNAsGYEEgJ37y0TRG00T4dO0lH41JgyOljoqdnb15cWUL3aThV2dgTRNBKJP3wxdEipAX8yLSTcSLMaCZyfEEbjOxo5hJ+1WrSb4kCNVI6BSYOootsGskrXijp5MOBYsmp1jdttVCboIstuXk5sY2pL5Yzk4wYHpd6FWUbcd0bkWkFNA+siEWEm9ViFNnYwdWT4nfCTJzIjJzOOzNTr5ssb2xjg4kEVLejnk308fDIbTPIi8A4N7w71DxMmG0oyfCWDHfM4xMAa160ipCkHFfO/s2LtPflfShXVOQc2unn7mViSwrZmgRPDIkkw2UiLin8yjVZTsskxIpuxgEfQwZVT0VQJkMYqASF8O/tx1NTyPE1cnwFIqPV/IGuLvU82hF8G4Pg3SI+ZzjtXA8CEQBzTqSqQgOV2TM78IyJpBrWCMgY/vjPO3fc8pTjyLVBVlqwQJxwV1x1Zv2FNW93Z7g7eB83llx5XF9LZVTtl0xWgcuDCpeq5zPc3nIzANWOGUsr0HJlMMQaPjNECDma3ESwGC7Qkmu+c9mKzRmCwcz16q8NkOoJ0dJad1FbNlfu+joyGyu5tn/SwesxDs3ikDUeXUGZAZIQlgugQaOrAYdS/WK8CJgwh+7pqStpnDDslpc+IIcQxxaDFsAOa0nN651ku5QcSz+dWBIKhmKhgmCFf0diW4LlkMSHoiZXc1aMbN+BYL9IEItBSMwclw7RroV3oIhsJAc++97mTfaVkg7pRkDKH86bgOBDqgDUUqVAyPHFG91Sw6jI2Ddk2ja0FVFuFWkqEIX0XEHCLx8Tjw7fsH2cmbsdMPwfN5ACHYsgj78uUdpSgmKkNz15OxVkfmYLYaciOSoZcNiMjpPEV5XyNZcWRmvqZWzUlG9MJiI4WjuGOBzx6B0S4yAuf44Ygl66Yc7bWGPc83ZnO5Vpz7v+SQA9P0Z+LRzbWcscgH1/9xNEQI9o3eK/tW4DHQu6PWlFrlL5gsTRNb0tHeWp6bmjHudSYAyZoG84vREgSe9KU8dsmKSD9JBJk+I9Y57Q6YVAJu/+QlQuCl5/TE+TxU6LHYu0P2gm1/B6SidaDet6wJCqCO+naDPA+caa48hLkaIjBWjM8Ym/GIcqrXfkJe8wSl+OGSbTEfe+ZInkwSpH8lm0Ibc6Jks4GnJpA+TZpsT3hA3VGyYWJjrOmI/BOFSUEpG0rdUPYNUrhW6T0r8+NDSyHbsSiO80LvJ/7x7QcezxPP1nEMRwPQRDCKosXAaAcu4b6OVFjQwkBzXztsTp1DskoDqDmYoWwFpRbUfcOf/vwzvv70jn/5X37B7V4BHDAZLGQjYFqBqPBRAL3BqiNsR4ii7FynEg09eoIfnu9fABMIzTUhg0CulgKvhj74TF3BZzv9ERxkv46RUjWFxIbb7Se4nfi1H/g0MO0/fgVN2CfLzRmw0NJ3p3SgWcDuHD7kg4NSJGpKxlgvhjiufiEg2PYLaAPfH23dY4dDHWjOJlgpFQZgv+2opZINrYw9pW4AOKG1D3KyaOJ9pzIiYloorVyCjDYCE6LG2tTou8u8JhuOAaAyBpZSOKwjgWRa2vD6pz9gBCeI397feKb0BpHZuDRO+KZJLZsMUiCwLN1nTfsaRpPRGd07zyDJnAjIvIz/Fk2wZFp1RO4an76HkTF7rP1OAOq1pXvrWGzMwOv9g8CNR+BqByL4PCbTyP3CeT7RuyVow/O/XWd+nvSzDTZwRu8owrXA+wm0QXb4mqRr2axrgzlDpIegSL6n0/Op8l7Oj31djcbkLCIYyxe7n/fuOi8Agi0SE5nxXvg8NIRsLZnnjSIuWic05bTVMZhPI7dYZG7F1EKWtxifA7/X4Tjbyfw6wUWmc4ONsviEvcwD5Z+8/jjwFJ/KgXBcccK1AWWQ/WFk/TiCE208gNFxu72h2HviQxyNCsgCnmQs8joCROp5uIIFobKYYwHYecivCUnA9GJ4jfFzGmQrpzx4Ai8S069hJgdY3Xp6d3CrlELqcUt5gNIIA+wOOkZMYlkARqM8Pnj69qvmiEfQB6TqRgPgpLDpNB4MoXdGKUnTZTcKqYsHkqU0xuoECoD2PNHixMfHd5ga7rc3ghqjv87WpO19fDzgiDTi5IbdakUtBTAesP/48QFAoDs7dZdYTkAAEXRjp8rd0y9IE3jCCt4QoDlZKOY5TjO7KxNkYHI64KCHy0jAaNsKwgApG95AmYvuBW+hKPuFevuC0Tqu7Qc7eGKAbdByh4PTNb5/nPj4OPDxuKBW8fP9DrMNVm5QpeEtExAWz8tIFTl6sgPHMXB/U9S6ASMSHDsxR1aOGLi8QcfAFBCJAFL35fUTKp/09ARwYIb9bUeEc6rBaLiCwOZxEuAoVjOxymc3g4+QuipiieITNKrGjrePCyPRbQl6lZWtoG41k85XATyyCzoT0EVPFkHJKVMzuTUrJKaPAZECSR8cIDBmUEbBZCFO0KgkTTvapAGTHuuDGnHY9MdRtLNxb86qD6+QZcqDwAcHGlgGu462grisYv9lPkuUBZjLcibWk0LbWmOAT78pTYkOcg+Tkl7YIdSNB2ZnmnKNDjPBVm35ZsyJQNyZkcE8ARQQ3JrJ7QQoILMI4n2udcfVT/SRE/pM0xMGqLYnlXyK+UgVSqUaC6J572LSglN6aRMIDbJaPNA96E0kDlN9Tc9KED7yngVegPcco65CQFhTroIIiJWUS4KHszeEBSAlfY2A7j0T+zT49wQtU8sveSDymWIVZ2tF5MH7u7/Iax1O49bpTbTVjU0Jw/IwYZq5fozXn/TxueJGcLT5jJ2eB/J5dRzHxQFXaoBsKXt9xVnVZFxNgP93wFMyr+Z97TSjV9F1j3ObAsHJi7XssMr4Onrg48cDW614224gCJHAkxn2W4UKcDwJhmxa8OX9K/7lv/wLr+PquJ4XrqsDrjA17NsbgZQBeAv00zGHIMRgM0Fyehc7nwVWNtQ6cKvAZEP2lglHGn9bKZw4lmC+yJTfxYpBmokki/VPRq65tAOBfg2MZGly4ATBteEcc/zybJjrIpPRTtr8theoCVzIwJqgAiVZyAQ2wQtMpt0LeF1gYf57qkBfFHqn55mCQzKkLGB19Isy7jo9njoiOgSdbCARWOgnJg1/52QTcWxyx/RkKhlgyegGKfUqECs8E/tAuzp6c8TIHAeGohW17KhG1gzPbAUaJdruA30EzusJSIFaBQrBgqvRb+Pnn35J2wKOOGpXxzQcJbZMiRSCU5Om6NId6CPw8bjw7fsTKhX7xmJuDMfxPJOJfMP9fsP7+x1FsQI3ZSYE+dWwgPcyc5sF6GJJJybjfQ4PmVGxTLZvduXJypsIdFZQ4lg+OeFoveUZaSnv1IxV6Vwmud4iEiTM8wPsiEcC7KYv4IkFdKREfOXpbBLlfmCjUlCLoZrhOJ+cWgkyNlfCggU/UZ6de9GDfijLowxY8tcZvyME7WIThk2DFcgyz0MWWroYrrTX8OytbVNs9p++crvBB8/coprsWXpOkqlcUOsdQEXvgOgGq3fGIBso9xtkK7hyolPIpzNq+sGwcl4ycczhIQtNlleDRhWYIGMWtzrXygSe8kwQFgtAqQtsnT5Lr2tkoUXgk8lbSZUDhkCQwLsS1DMh+Gq1omyV+aKAEIgIQiLvESBGxvbzOnE8Gn799gOP88LROTHxCqCrwFVwescZA14rQpTyKrD5JcbmtmFAo+fzfA0FqQX0Zrwp9tuO29sd//Jf/4S//pc/4ec/vaFWwfdvB0HWkeeEUbEyukL0Bq1A6AZXWiEgBmIYpB3wIAPFMVLKJYB3srC6w4qi7gWtG1AUrpIesYpIf6oIeuzEmIMuOB10v31BlB3/9q2hLyD6P34FgD73Qvg6o1rjqHptQDPB++3GGD0aYwC2PKvmMChHaw0OYB87PHoCxIatKskHAMZJkMFyAvq+3zipTsm+ZHOO5+zzeSwmTimcngtkI1FSypTWLwQ+kfkd9wAlzrbOLc0aUsWwpsFrRkWZKzoWqDLXvRXD29sdP8YHzrOTRLFyDklgLPPv9LjUrFdmzB3J0GbIS25NpIwenwC0jINkAMtqoq7ntXK8BMbgv/s7j1j2Pa0lU3Z6q+E1rGOCalc/AQTqXgg8NjZKWzvQO8H8vVKO1tvJHMVt4RbXeeI6LxRlA/31PLL2N1tgqSeZBU6P6mqTkZ8gmlMZEhMLQK7DiCSzZKM/68BZx13pBSaZ/0my4CYQCeV0aabNrIs8BDIcDUIA3wNas07LWN6S3VRybarJC8jL33+1CyJsGInw7Blw9JgjEGk58il5/09ffxh4miwkUSAUGOqQaihlg9RAKOl7AFDvdyApdC4FPyb11UEqZwgeTskEC2hfY4vXASuC7X5nAh0OtYDdSIvuqxPvlIaIQLWvH9Ucfkwt4vTUmUgswSSaiTZ2OSVp4gDO64ExGrpf+TBrFn8pYXNHn8W8vOQjCoIipWzYNpA1NBQmOxkykw7YOwOw0qwSbeBqpEK3IKNDZjsdNGzlNOT0WaostCSp5eNquK4Tx/Gkv4/prL25QBHJoOCh+DwaPvzEd7lwwUmxFMX/7/HBDT2yKC0FNdkpDbLsE1Ql5XxM0nwGEgNQDJpMh97OlTBrNeheoecFGR33/Z3u+H1AqqDeb5Ctooti299w//KG8vYOD0cfpDna6BjtxPH8DYcD/+e/fsNvvz3w/DjxcQGnK2S7I0Tw/XHifiuotw3uDePqEPDwhyrGAMbVKPnpANkPHd0p5OlBE7tr9PRmqXAo+lCUWulBkUnuNbh9t4305aPl81Gl8Zsavv/KseR/+9e/o7eLkrmEnLUarBZc54kYA/eNyeM0Rg0iFaBOiiO9xyDboF+cGmJFEMZJQMD0g+AaetGQZSHWsxSfwW0Cv0g5aBueQEF2YfwFSWTml6PP+afI5KIdmZg7038TTl7xBDlEWUD2SA+wQHYZJQ2IM4iO6XHF9HqyfXg2ew6g43PRBOjGYGIw+gS9wCJahIe/GZ4/Dow2ckDCC5CY3XSBoNY3VBtoFzsTEtS679s7NDsYPgQ9QZiXx5GjXRcGL/J1cObBN6Bw0ey4sRNpYUAHJAwqE4EQ2JZgbXQCHXTD4L1M/epoLIAn+LS6KpIeOUHtemT8XMwbDYjZMqtUI6Wd/mGe3gED3tM8UT8dJMEOdm8nE9gJqBlZGaZkV7XoUB0vz47g2hJkRyWnuo1xIYg6g3LLnBqiCfTk2l1JCpBVBZMqsoewCn8qOjKJmcAC8IpRkUbrEFjhapv+Yyr8rG0OdhjAVu+43Qbi5L1UTcRPBH04hpOSPcywF8ssgEXkVg23veLtTtD5PA9ouUO1YNvJKIx+sOAQYN83bGkm7T7w/fsP9D7w8/s7trrhy/0NPnh+3G431FrRx8FpO4UA4JYA8r/+7W9oB5lOX//yC/Z9w4/ffrBH/8budATNzbfJ+kN6ITAFAcKXibyCUmiAo83dAwZ6EkYwoWFBqwB2Mu0kgARMVdPMNgstFnfJvMxOoYBr+3Jgd4WVHXXfsd929NbIngCL1jZGNm4K2nAc10UAptM3T0OB9Av0BY4TCPQJ0Mb0TJBXMS1z7YBrbzncyyJJvbq1uXaCzQxTw/vbnWsMlCN0Z8J920vuQcd58Jlp+sS1ZJD6J6ByVc8z+QPzT8vzFVrQvePqjt4Dowe8U648RiNwn89M4+X5IpoMuZxAS2Z4Qd22NIwt2NKVdZmd9xNjkElICVoKIJ2TpQC+/wQWeg+QgS/ojT5IgOA4uG5UK273N/z5z3/Gvm98rpJ+XSWLmXVkZcxKEJlxNpmTU04bL/BxeU4tsJp/3hMUtrqtIqYNJ3DXrgQ0eObs+04wI4Et/ixZ0y8Am+81vZ2msbqpspCC4P3thloqxpjMyQvefTVSFmifz3a44fHouN95z9R2FCmgObYsECngWBmee7IIkx0hzP9qyjY8pRo+PD0uhab+AuxbJQCdPoKiHIjD9Usgc4wsCnOaoHxKz/+zVzglr4Ig6AQCMxwKpbjVG6oUeHOULQuWtIIYHjjOC//9b/8X/vHbd7ixYdJGej4GCPYg/Qh1MsIIrCG79tP35ro4Gt1yUjNKGgZPuSvyOoNDSFQ4eQ2h3FdsEcBnQyubYJqy7eidYFlX3MzIlBQyAsu4OGzotuFWK4c7eOA4G8KYzd0qm18e4JCofuH5ceH4duL4cFxnJOA08HE29AjcvnxBbw2P80I3RRd6d4YWMpUhcDUCMp3TedU5HGQyFc0UX75Uxmrr+OWXr/iXf/kL/vLXn/HTz29o7YHzagn4plOj8Gy4RmBcbDCJWYJEyfZ1gKj8HdvbHYoNGoZv377jeD7xf/63vyHc8f7+BQpFvwYuH3AV1g+1oO4VdaswMzaFMDA04EVwhePZOz7OE8do9EvMht5/9qJB/w3qBf04gdHBkRQDEp37HIKzG0QFNzHUonjfdqieEGsYmCD+wHDgcX4QUHEOB9prQUmFxcy39/sbp/TVLaXp+mLXYTLyKi07tFBZg5IxOodQeafMS8nS575lqJvWAtPfSAS41S0ZewIfHPIVYHrSvecwEZ6/fTRsseN+5yCqfp0wVdzvd9YZc+DBpOQhY2OnzLLUmk1GHlayzsycCh0E48ekfAKsiyStcfKQG53smXalhBWe8miDO4e0fI67Hp7DDigNyw+5GlutXWjtghWeJ/e3DQjHef7gdMHjACJw25X5xRh4NM/YMIeNxOssCEGpGzajfHuCWrTuGDjaxX1VDL23jJ053MbJMPM+0huOLNI+fdPc0frBfMEs89nZnXAU2aBSMZIhdts3iE3Lhqw1Rodj4LooKbzf33h/u2N0QbsO5omVpAUrwoFFQtmzCJaVyfCG6Tu57zSSv67G8y89Fa/WuDYkCfMBGpNP9ss/ef3xqXaJSFL6wPRRTZNCSfRudK7uWurqaLcQNE9EOgSFmAvHlcOJyiEP8XzQS26WxQclNjR17IlQD0+JQqK6c3Qpx75mMcYMcX2tkaLKTtdKZuamFnYDRi48FmtlHWaB7BgOXv8c/ygz+chCzKzAexr45ghLT+2pO5ZP1TRma+2CD8cZB2JuXggkTQ0LlAhJkPFAOhyTeu8D/Wo4jwOIDahlBSV6FCmTi2Dp1zoR+284carjT29fYKI4Pg7SFwWoKtjniFWwUzDrvgA7vRHANFMLyVHN2eqS+MyeYAtAqkIdUHHUneOHrxhQA2yr0FrgKpxUtO8w3fjezu7nTQPn84EeJ9px4nGc+Hg2PI+Gqwd6KJCTXq7eUZxySE+AUn9XkE5KaMpfjBTEEbyeAU4um7Z5mrRGFyBUOLEwExAmLexCxwi03gncBafxSCja1XGeF47jJBIOwXSDk/zylAAgR43OZiVpkwxAZKu8aPsj/QrUBZFmtRGzW8AkTRNmEpmStCWQy6ubwAl+B6LMUZ0SXPVzPOocdc5Y8AoPLAayczJBLqfZsWXizuIy6aa5Fde/+St5mGaixPd4GYf7XIDha+LLlAJGGqSPmfzMGJDvbSmrGMMXePZKomX9mSrZOKOzC+WDcltKRQbCX9Ix0dc9WMWQBD2euEF4d4XJMv+YMZTUXl0MrUSFsubl4U3/JsYQDh7wFTtI++aPM2HOinkeiu5k9rBVvOREZFSyiog0ptbsWEUoYhrgx0hAn2zJALJoIxOHHX92eqpuZCgoktoMuKenXXZgJ8uOABmfQUTq241G1+Ez6eA5slbqLHgSgJL19+zGhc81m3+XjNHJ/ORn//QLIJlEY0nrRJjNuY/lEWBW6VHRSK1f4N583u4YShANZe40z3tBWWkpln5kAVj2zMUA9U/rL1Y3tOWBfh0H3B33+x37tmErJeVegm3nhM7+OJccVkVQK6c1Pj4eOJ8n2nnhl7/+gtte8ZHSvikzRzKYObJdMaVz7KhNwO8VI+Y/3BOOkmdUOONR745QzUJkPYh8DillzSRTXw+Zz/2FFPNch2ZXr6QPHhkdI9gBHXnGzyELbTBJjOD0c76trJwl8oG9xrZPPGc+DyQINVGLZB0zgLwAkM9Vt0zwiYArvYQqPBxnb1yPCaCbMTvzBJNpipv+duEvnGkBpHiRsZBvH5JFdq6yoMHw6kySUMyY4ZFiVhaavmRHltH+8/2X/CwGkbLWA8Fe5+TiIJV/MYDm38dkjkeynRTDJRuDAvf0jYGgLTmYYasb3t/fk2nLc08QyS5aeHPG+/So9MnIXZsvw8QcKx6frun36MhaxZpTwGKyywZa+zQJWGnq7LmQ1jOBI1YAfX2El7l67hEh4AFR1ErT8vvthghOwJrSPFPLZ/N6eQJ5Y5tnxPSuyevLMyqyUz4dtQWfvhJwM30xLifQOmU4yBzP8qyZg0zWtDpJgOET0CZIhcFcb//kNdnTAiywnucjn0MpJRmWCfiAslv4yDO64ePjA8f5TPA4lpqCxsiUEoplVBJbYPBiCIDX38akAiYHX8g6nUxGWWuLwLgYnwwNmvPZT/ZSLJUKIvMYGRy4YKA0z1RQRQj6OnPlabCtahkrR5psAyVyyiAY/zAGznbh4/lAuxS9E9jnfufU6LJVypRPclVckDF12pRwE9HfK2B57Jlpnktspm37BgibMW/3DX/6+Qu+vN1w39Jrq58olfmVZzx3KIHA7rCqyQTmLvMVxwEVNmjFKxCG4/wNPx4Xfvx4AhK4v3/hvu6dOZsmi10pM5/eZlyytLpwYd3Y3XH1V2N4sd/wny9OAyW70Snb05j5gOfzJBA7sskiotiKImQAMjBHTFCSzjH3EQ7vDQDzM08GtAq91FQrgeQ5AXTFDuYJ8/OzCUigOSbTK3iu9jFQStaXnwYezDNtNgkyiUeUPFMxyQ6N97XoAmYm+37aJtRKQGX0DvoT2pJNz/OZ7BrJXIF7vBTmYJgM8owjknULNSAzv46VU062+MzJXEZK8+f34RWT/l1zwX2eGUo1Sx4Yrwbja5rszDnrxiZZHxfGdaHl1MhaK4eBeWfu5Z7XkvV5RFpUvJhlBJ7WEQSPVBUkjjC9qDAyfmQe+jqsscCnyFzbp9eT5Lk7iTjOnzfFks9aYbO3j5EM5sjfAYzeMs8bmRf4yhVMaCWkwricaUEO0XjVSN4G42DK7iy9G7m1I0knfZ0HmX4A8pL//bPXHwaetpILfVaJIYApR/wNFjGRPlAj/WPI0lBsMlMg0FQLgk3Z9T2PA6qCfa94Pp+42oF935iUGE0DR45bdBii0CuhBbsN242UZm9BH4iLJoLeOHUmh7dwTzoLObHUvRcWG2S8gAeIKYBXkBiZ9HqQueEq6J4P+6LBqTiN4UwKdATQHefRcV2BR36A8+z06rjtnBCUiRgQOK8T7gNig913I61M8vHMlB0R8HayYDB2e/ownO2klhaUXvQEDh6PBwOb1hWkRBV2u+GrGu5wlJ5d20GK5l43VCsc5c7xGdA09JcRwOiI9iuqKW5Go9NSK65+oY+B8+OJEY7dSPHkiPWBs33g6y643Q1WyIzZimK/Vbz/wu7I7esd9lYRm0ArqcjHNyLUF2jwbbc7ehgwDL89/oF//P033kYRFjwBRAGaH/jx+JUbsbPjDqERZ4Cjk0ekqbsW2CZoceHZA6dTTlYLzdxK2dEvx3h2SFegANuNEy4QZF7YEPRr4Ph+YNt2Iss54epPX/6Mr28NMgauduJ5PnBdF+I4MNqJcR2c8lIZ1EQEte6LOTWak85byieqLjtzAq4Xh+M4D9zOHXXjhEJSJhk8r6sx4bvtax+PlodEJoRMlhkUxZhMzY3gSaG1ra5iKpv2LBKlcHqDD/p6BTAO7t+6uiApsRFP1mFOophZcyZPHQy+qgIxIxMGpAL7yIlXKVeZSfPIkaizcJnU4whHO544fOD7b7/h4+OJCF905zlFzAc95CifAVxolL3f7qimKRNikR094BIpmWJCiAjcthsBgGRxRji2jZNavE+wBSz6e0BAmjZB6Znk5jkbDvSLDLze116q+w2qihG811dKH6eUspSSB1qCKxmqWTqkP1Vh4dW6Y2R31nuHILDfeJh70o9VsBJKzcPltm+IIIjtIHPTiqIUTnQkiCX5MwRFSqkED5LdOpxSFVXDBk3Nen7YnKZGRV/SycVeSyQLLpMKszs8pxR6BO9zLkwSbniIz3UyEwBvlsnN54Kfk+KKVRrD6o4iHX6d3G9bTrGCU84oBZG+PF4kTcTJJrlaoDRB6yWTLIEUIAw4/WRArQGaugOjk7XTzhOjNch4siOuNxg6+vXASAZG7wLIwPP5gTEatkr/wD7oj3M8P/CXP/0Zf/r5F/xv/4//J96//oT/9//r/4Mf33/g2/ffuH9rnW2DBcREGvKLKiwUuxjCB47suG6mCOP4ZAWTlH7Rg4XpFB+Quya8kf9EyfXMqSmr6gOWJ0RvDaaKr1/fUW93hBmuCKCdKFvBvleMoG8MjvRHMuOUVgD1TilD946OFxOQU6ly/SobOTO9VX2tTcRMNFkElsiMJQEGFs08iS2ba+MCvHOKLfOtBO4Hr30CUT5mJ5UmrKhs0g04mhE0904ZofdBqU4UbCnFmDLQ3gPP46KvS9YZte7wMLSML401EgyyhqvO/euSVgVSMBw4LsMYiuPo+Jd/+TPe337GeV4EVDuLknEBxQx7xv3XhLWUMwBrNHdA0TtwHIE+DI7pCcTzx8zw009f8eXrF/zyy08EmsM5rVQlpadOmwOwMOnd0duV4F5iyniBcoxPjH9mRqly6+nZxuLFRw6RAVYx3p1TwKQUindKgWggjCwmxnayPyM9hWbRYbVCg1OJe6dPWimUo1+NhZYIvam+fH2DmGD4wPdvHzjPC4CiFBqbBwLHdQBVgc3gA7jy95X0eZMgS4pnXspvPM1ki8EKEpilTHPKrQAW7T0GyvRjsWkAzJ3vPtup+d+IlywxwZhtrxhXp7HxJ/nef/RSodfYnKBHaWkgehrRSiBagx8/IDtgt8C93nG7FZxNgBbYBagRQMuYUcgKGpHqhBCCSlk08pzJQlYEdSsIGK5xwhHoOQBHMtdfg7YCCLAB5PnZhjN+VBHQE8qzacDiDQDCB6wEtk1RVFGVnnACh46ABQ38N1WYA5sUvG13AB1nG8lEVPxI/0stJc8UoIXjirGmjbWgbO5+FPQsct/M8NcvX/F0x+GOqx0YIMglyuEjMSh/V6W331/+9BPe7juGswH6/fENZsBP7xve9w2/fPkCReB6HvRVHY4wBdQgpaB54GidNd+NQ3ZU0x8xAgH6nvVzpCTd8O0fv+Hx48Sv//gV53nA61dsu2H/68/o/cLH87d1dpgoNjXsdcNWK1p0nOPE9/bANS4cONGLA7WgPwPNfYEB/+wlLthPRTkLbrih9yd6d0r/vEFtwAwwOdjEC6oOHg+HqUPVU6Wg+PrXn1C2inrfED7QrhPVDJsV1GJrr4YLxjUQPQCf4AUbjyKB6zrhHihlh6lg3zgEhszrhtbOxRiPBAf6IAOvj77sG5TjXlELmwMcgpP7F4K39zuVOoPyRglFy6bIT+9f8f72BbXuGEPw/DhQ6vZpgrTmWYAVT0spmTOkyXcEUu2G1piDW2U8RTaJIKAkPNIKApK+Vg51Gnr362SNY/SMRNBMfeTwLDP6Ve0Zx6+L13kcHHpiZgtwK2bQ24bRL4yr4/GDeTJVGJ73/8DHx7dXA1kGIJxmCQ82JZz2QMUKzCrG82TXxzJmCusaAwhkeprnj4DmsB+0yHOX++i2a37+K5srxDQCkT6RAQS9MkUBzgkP3G/vtAJCzwYpmybDG/pgg6GUglqNDCpwcrSaYdsrtlvF7b5DK2NEy6bDl/cvWUMlWLUFwijl/X48qCJJ/s6sk9rRE/sIvO133MoOPBcE9U9ffxh4kk/dpsmcmNGboIiA6U4i91ncTp4Qa2X9JA2ZP8eDgjpUZDcHgHBkJELgrEDWFJgXU0RX2jxrW6LXTBRDI1kun9BGySNWmHh6tsnn75ndJbPZ6ed7uztcZP2q2RFEgFNe8ufJECGayVGY9BW4RqdgJgpGdLTRV+HjQVM6y/HkszMsSERbXp8d+fs1/QoiJ3uZ0Ytm+PSdoefS6ggkWklTTXl1F7PgKkJZTf3k/RKzIxC8B8nM48+boBZ2BGpJ5oYHrpQfqJU1LcQkC3UDtAhppQKECqwqyqaoW8F2q5SNKWUz8zlNCTe7IgXQAReDi2Jgguyfuh0K0g77mUyYqZEGoFN6kPcogDKLVDb+U+rI/5jJNq+Doid+Ccw16e7gcxikM0uyB0YfSyJh4ChVyizmfaFONpxGtTq7BXgVRaqKMEA9FvpsyXabneuQyUDx1f2YZvnIJHgedvJqPqxX5J58ZfMzIfv8mvsjQWZ8ZhQBU6w2VfgA9cQ02+aBMBbiPz0mFJ7dhfne/JapC9dkEzKgMW7IOgX5TKcsLT9wMlqmzDMCHFrQ+wIogGTD5NpZ15nsF1pBpCxsMvkC630xP0f+0UzGSWUH100uWoOiiqa+O5ZkYTKhMF6U/8UTXCAd7xUlKrJASe5bgc/14UjJ1vz7KR3K5Dqjyauz/emz53vyfmenSvDpfr6udf7QZP5odlXhk0Wj6zMiwQiSSJgg0Y/l1Y2P2RGIkc8w5U+BJWmbv0d/dyX5ueT1mXkfpn+PryXl2c0ko0WxDsbP6zvjOTvi0z47QcacRAJ5earM55+S/tfZku8dIVm48UuVTJKQ13nCC/BP647fS72FoxQ+Jxp3OjzSAFJTKjXA781iSQSgiTz5qXUzvH254e39Lb/u6P3C92+/cV0X+opgRsIEfxcjDSykRZJ6nuNzJ/+QI82TpYbJwH2tk8CLUZinSTLJ5prIuzj/O7/XzNJcnT/TR+fULlNEn+Ogk/KZSEQIeKZMD8f8fZEFxFq3kTKI/B7NfScxS5+MTfnxNCbrhjHotXPyTICCgwkY71VnbrPEzFhtxfk3K8bP78h7kzlbBHIwwmT0ASKvVUepwYBP7Z+sqLi+dH5Nc9J1e1+gSECQTHnmK+kxNv1MkGwmGshqSkLyc8dr3ayNlpfqETkF89UNnXvUTLHvO7a6wVIqQMlcfu8CgJHXPeWYrz0nv9+w6/nNgmPmLZ45G/D7WDb/73wWImUeuIBEdtLXh/4k983NLpMNkf85V0T+wWzS80c5Vr7Wgm3bUOoJvWyxw6cHyquTz3un7TXNbrIQbS2+BIjCl7+oKNfqSNavx8jPRS+5ub/5vdwjvu5D3p8EXshs8lzvsc73kXnqvM//+UtyX+Tv99eznc9QM99U4XpTDHCesS4GlDhtJhRkTbt85uvl6svzweftmftkGiHPP59DI3IBvM58ftPywFm5N+/5ZCRoZjw1v49nL7AVrEmuZEC+QD96okn6KSqq0c8UptCiEEv2jABSlAoJ8ILFKNkzGMopsA7eo6CRvkNxM9oQBCTNsD8XJ/RtMTPUUrCV+pocOA5OOZv1wVx/c0qw8/9PaxJkAxTuKQfi/QpJ5YsyV57DJMYgW9t7w/ePA9+/PfFxNPQe9LcqBVE45Gd8YtxNRiVrkzRp9oHuNCsf5D0x1qyc73MC95+tyAC6p6l5rsn06IroUOOfW/G0F3iB65I1kKRfkylZhbWQRWMSWTvxXpsqZeseGGe8ZNmSMV1XarPyqZWbzRjok6GMXEu6lD3/Xl788nZKG5ncbz46oJaS3dlEnGucd4WASslzKNe7s16TbFQO8fUjM6455j6a5/Gnz/K7PPP1cNapEVNwz30eqTB6xdTf/dg6P+Y1f2ZoBpJhlH/++Z0yGPLe51fMoSeRNfrg5GgRKjZeNS9zm/CZ1/G/Paftvc6I1/2f6wkxGceZCfirxpFkHI7ec5L364xUIGlUyQKVzMdjNngCVsC8EshGTeRnSIA8z4Mx0ndRbWEdJWMBpkoE/HdJBtprIALQgk3i85zDaTJvykmlcyiNOOCWdfqUWv2B1x/3eDpOLihTjnC3QgpofxWj1TiFzjRvqA+4DnpCZRFpdYPAcHUyfuxWVjfYdkPVCin0fDmuIx+YzqwGqkSUt31H1MBxHDgj8H7bIHlojpSfbXuFbZVeThlkA4E2BhQcF8lAOZZsrjUW7ffV4aMRtPtFWUEA0SMLEo6J3zVlJd5h6DAMhDR0GSjbDuQkghYdrX3DpHfanBqwc4lOSETnFhWgeaNvg3Ehllzkw+l9NDqN++7vb3g8P/B4fkfdd3AcAhfoyK6KiKaATFAm0NIvCARv95xio4GInuwVhgcPeplse8Vtq/jrn36CBWDZzfXR0aPBvWOvAo9JlWWSc7+94ZfbjogHAg1l32BKDb1Wge2K/cuGn//8E64Y6NFwng0jHPXG6Xo35cSjj/GEy0CLC/evP+HPWvDbt1/R2vUCNYXP4nF9w1YoS/GRJVMWSFLI8jj6wcC8v6HeC27vN1Td4D7w/P6grlYcdSv45aev2MsNtWyIPnKtsUt9PE5sdcOf//wnnK3juDoev33AY+D2vgFKc7jeOq6DNMVdKtxmAi2cjih8dLVMY0CDyIAqsN/ILtv3HQDw8SRCfp4H4PRKaJ2UUXpJkGEnAtRqKf1hF7X3kWO5bXlPRCaapRr3UG+rcJra7dYaC1JwvRSQFRExiPCLJF8wEEIE/sv7FzzPI7Xm3Ge3N7LJrtZ/V6RMr5NJw+bBlhK+PJFKmYfkLOCEo0mdz0JFIJWHsFaymoYDpQhqFUSL9LCa6arBqpC5d5xofeDL24ZaLd+/Q0aHaDD2VUOpBM3GcLRGJoFYdoLWQQc+uxGs5SOnSmSw9wh0MJGE0JfBEThOGiFuG2PeGNmpQaCdj/R5YtW471vei1eipGIIFESan/MQArTaC5RKvzAkQBA5LW44MAZjXslnXmtBLRVX65SktgsQ5VjXACgHUYwG2F5RVNH6hchkCJgGlXy2luyQrVh2qU6yZT39IrywMgnLJADpzQQgD10Fn2kbR7INDNVYII6xkAeOlG8XYEziNZNaeqe8WC4IgvJbLbiiwa+B49sPPL59hzm77AVMwl6lBRIQpMcVQI8dJAMm4BAF9hs9Hh6NHlmlEjjufmXjgcATCiVsJSpu95+ASLlljqYvteJWNvRx4boctyqQrcIMKc97QgV4/2nH9maQ6rjaB+pp+Jf/+ifsN8X//n/8f6EhuNlkkLFhEQF6f4GsKqQnSPiB8/iG47hwHg0aheyCtd5OWNlwu7+hueMc4xOATp8HUcps+mKeeibSQKlkkRWlqeW+K2674e2+obUn2nXAbAdg+Pb9B86z4fF8oJSKt/cbSuEkYmgKMqYEJifjCSQbQwp1AjrT5HxOYTmuH9nJpfxAkc2kMGgke2sCELmvfbBTXfY3PJ9PjNGx7WSpthB4H7hOShys3CDeIRhoV9L5Mx8dPQu1jEUmyWid+W8WAGKKslegBFAAb7z/HJhwYXSiA1UNRQMFA0VobSA5jHGsxJTP/Lw6sO+oG0ejn61DSyFL3DlprdgGYGQOwDXvCTyJTtRjIliOa5z4eH7HcT1wtYOGyqr48uUdt9uOv/7lT7jfbysujd7R2gsgEpU8qwzbtq0z3fK5sEiZBf6rkJlgAWUQwf0wAcWsZgrKkpFZrTChTAsAWm8Ip9/LLPJEDSaFBblnDJdpjs0zawThmu6DRVTuqUn6Fxe83XeUwslhb1/eyHIdjo8n2bdWBb0PMv4vSimK/YKt3jCbZEhfPClAgI3L7nneZkfQneA0Zd38/AMDQx1mRK8mK6D1HKZgLwNnT6A80tahZBODBU3Prz/S0TYAdXmzTQlLgGeyFcXtvuHPf/4JsiukBHo7cR4BxQ4dHeN4Au3CmxlaCGOvCYaQoTd8XuO0WEiP1IS2rjgQQbaWwND7iyU9q9vZFq+WAFFQgGhwVBHsYmjHgX4dqEq53M9vd5jSVwniQBmr2fLxONCujmpv9ENTMune9h3v+477vuHt55+xf9lw2oGhHc/SECaQtzeu2fOA3ip++vNX7LHDwnCdH1Q6nL+iiOLr/idc7vhoAzct6LbjIY7mgR/tRA+gnw37fsfXn/+C+7bjvt/weHzHv/74hr9/+zd0b9jed+yheDw6fv31A//H7W/48mXH/b7huho8Ou7lHVYLXBWhzuohCMaMxuL2zz//AlPF49sHwhva2fHjW8Nv/zjx669P/Pi4UDbKpnUv6FXw6B29N7ThqErrjd0U91JQsoH3vA4c7cDVn+lZmX44LUHJlAX5Nf5pwRvuaM8fwHNDsYBGx+bAeZ0Y44GtBDYz/Pz1nXnE8Uwb84LRGy6/8Jf/+hPub294tgM+LtRNse0Fb1+/Mgfu9MRSClYQLjROB0GoUObYzFW4ngDArFIun8AvMCBCVQi9VBkLrfAZOBw6JHP/x/IO2kwBLQQnPHAdJxlh+Z5bLejnhdE6xG4otqHmBPDWAFHD/b6nHUvHtm8QLZzAihlLWZ9MA20P2uBUq8TkdTYNJjhJJo27kyUUwNnPFZdjdEQ7YcWw328LKG6N+WMphWewUK798fGxnqnkUK7Jbp2KBwBoV8d1PBnTEfhyewci8Ns//o4xGicBI7BrwdUOekJljKAEHPDrglnBbb+R6eMN3i/4GNgLz/orpW2LLRTAfbthq1vWAPSniyAzXKvAasmJ3SP9qkhY0XDEuHjeJYPWTHH1juENVt5h1dHHAxGcnDjlgu6pMoDnxFt695XdmNdVQ903vL3d+b0O3IxycL14khokmXENj+PAx3ngx/cfuFrDaMyp7vd31g0jp5524BkNo9Dy5TP8/5+9/jDwZPrS3Gp2diYSDNB7xJKJpNkpcHFMEmSsB8PkVmK6tzOx69MNf/KpRdKALaclAPAxuzgvfkUs2jcLDSPveJkZS/oPzUQiQB+JzzdodU7CQb0tf/sETRHIDiRRTJ2JTnY0VHKa2ej5OxxaAAvBiAsjFEMS9ZzsLwFE0+MqkUJ2XSQ7eABN7EgLh1EC9GJmTbQzqcihUElaaNKKa518szS+/dSpM5WUohDUK9mFm4bAzSdrhtcjyVbSZCRNYIAmeAMeDY5ONDUPdN7c+b66lpuHQnx2/EgzFp1h9/ddQCTqq2rE0sRQ6ob7XXCdnR3B77+RNp9rSXJNBOa0Knl9DkymEw2YPSiV6b2hO8eBj/SdGLkUXYAw6qvVEh33sdBtAGRZiaN5x9kvHNeJPi4+p4P63+f5RB+diauzyziZMRMEyBm7iM4OmCvA8cAGykYUy+zR53PPSWw2WT6xkiEfg5TXLC4jxx+RITdNW3NrRk7/i+mRgNxnWHRmz8kWosa7uTTgWGyR9egT1BgjvVnGTMzx2lh5oC12FpBr9VPndf6+mKwDWetibuBZ6lqi+VOS4e6ciDWmHIvPnCSWwrXgBKKNQY3rXTilSI0gB1kRk/330jHPWDHluPoyU+Kz8EjG5ufPCawR6Z6sLQZNLqX8Jp0VV16kO1mSBno5zGdNNoGtA17SC4zcM1/PxIR920n+W8X0fMh4dY9IYU9WaWAVxowdZA/l7KRXt1nWKuZvnR0x9wQdkrkq8xpfXl8z3iLZdAoCRLOBOwEnRMqodLKPZtH+mjhF8AeLkaUyGbrcqALuC67xyY56sRol30fmSTPj/Fxj8zpnqwqUroz0GlrjhQPZVRsw7VBq2SAjuQUZ3/jLcmNIMniISLFxs/ao5dpMVkruHU3fHbPJnuGa787EtBTD/W1H93samxMgU7P0vSHgEiG5PniWcg6LAzJLNKIhgZyOqNwjPP1yAmJ8guXixVYTmUy0lPYE8qx4nUdmgmpAtVgMCEEHomSHmueRJMuL8is+e7hklxb/7nnzvk5fqYj5tPnvxR6RyZpILpIzp5nr82VATjCWfjP02YPSg81XvNS8BZS8zjHG82v65U3JryHlidnAi7w/q6tsZC/FTEjmukuZgydDISLHtpugVkUtCZC3kf4XeK0xd/RxwQbQQym/8Q1ISRaC47cDnHoUIxsOyhhJsoFgfpg5vOVqBwe0+AXIgEhdXhGlGPZ9g5nm9KNcD6tTPZ/MPDf62p8zlqzv09fP5CUxFszOuSpel5sd8uwe+zzcJMgeFmAa3UoKpiLjjwolIZHPm6HBMzd8+QOtXGX5cDHWza62FgJKZsoJRt5zX+H19Qk0G70vifVkCU1/tnku55QNDq3AzB+RoXR2wclecLxiRmAFYBaHkx2dbHV4Mn5S0r+YwvK6///0Rer4uh/rECcVLwEjexFW1GicHLRO72mY3Du9dQRkfSPIzp++Q/P0WR6vM8+ZgSUnuOks8FZmOpnUwT0NgA5GGa/A+sbyLLpZwWYFbyntGhJwDDT3SfdeOSoHeuT7r1wnwdP5ZQLPPwgVhL3yZDLkAbkAbx3tIgBfOTYKVQMRgn1uAXfU4Po1z1NKCweY5GCj6+o4r4GzDQxXjCjwKBhBa4OjO749ntDKpmxPkHqGcu4FMvevq+NqJ+bkx3HnXnr+OHE+Lzx+PPF8dDyfF+VsYAyEOyWkRdO/hs/TxMjIspRZFVsWExGUkKFnAxA8c3w0eKcJsuKfr0u2dq5kpAfgF+AXOKmSihEzArzhr3RsZFxVqfAuaC3QB0joC4UPRW+RtWF95e8jkgg+n70s38flN4uV/a76k7HkxWRenz/SkzZ4Jsu8jtnIy3zwU1TMOM7JvzMYimhO206mkxjmpFyIZm6Y+z4CMqW1n4b/LEZWDJikl2XludFm0y+59JFqIMmaA6BknNfLs0Ts5dW6nlbm0zHGqgl5Ta8rnLF8eY+65331NVwAyeKZPqCjM0fWzNljsSqZ14XoJ+agJ8uJ0m8DAE3vxIyNM8YuZUy8mGs+qEjyvAaeT/HyogLW2TFZ1zPfnNfpntJFY80giBwANGu9nJLn/L2mBDHFGX/nAKBSKr+sogcBZBM2osciHgxcveE4nzjPE/26KBl0rDOzt8FzxLk/Rxu5v2ez7p9uRQD/E8DTfb9jHuxqAlGHRwPQ16FZS8rlwC4t3FEAmAtGY8HNJDSn4Rlpx9foeLRjHUiSelaCqYZ9/4LhgSsuhFAbPSuS2a3und4L+3aDm2KYAwayLqoixGDbDR7AeeWDytHk3Aw8XEsit5/pjj4CGDxYQhWVpxJ9x4NFCBFR6slD6JWCqvjX7z/QRhqvJt2NUjdLhtOgMesAVOnRhMH73L2jeR5ulSyAaYrno7GolI7oDR0nigBlE8CYJNz2WzKfXiOfJ5V93zjql+ATr08ymT1GcGKd02jYMmBu9wotimc8oWNAO41S3QdOP3GFI8obIILRscaOu+cYR9uhsqP1gQZmB3soar1BtJBRIYvwncGFibYZR7aqdry/v+HnnyrUKqxu+D//+3/H1QOyUR452pUHFHC2C2ecqGWHaqFkJYBzXGje0aLhaAfkaSjHBi+cahcAnKxEmCaNNe/jcOqvvQ1UKzlxUTF84Nfnb3g8n3g8H0j/PoyzYbjj4zgxNdLCdml6cUwPG4OMjZ2S6Q0nIMhjBb1z7XP6D9AuQURBsQ1bGdhrXzI86qQVx/HANH5WU3DUfUHZClpngitRkRkSiDPKksVkNk2TZVUmwyLY6g6Mgd7PlcyJTjCEtHwXQfPA4zhxXRd6H6vQ7r1DI/Jg5yE9gWgmz4qWCe+W3lPurwNUhXIcH/MgYcC2WjGlV8MHWr9wXQeO48TZTlz9wtUuAILbvWCMwHldOWmoQmTA1CFgN2/bmNjEmQBA+idhGmVDl3lg6+wSm5ap3ABHl0/QGYvWSoNtHhpTTzpynP2clDsPakvfknaduN1u9KRhNMbV2up6jDFwXRdK3WGlsKOPLJQAFK2cQNYdUIUWUiHCnUatQXN8QWDbdpiCk+rGoGeYVBQ1WNkBTM8NJvRcXwJLaRiS+hsxu2NkJJYEbq1wH8GBkpOb+DMppwiWgfAJmM4FGYAKbCsTNpgs6hUv6KPCNSpCbyyA3gbT+eY6jwTpGItrKenVYanVH6gm2CunYKrq4oiRwTpBEB6259UwTHHr2/IiCFDHL8ECotZ3VOGwAQI6I6uR6cZD8CRi5CADoCWTSnMSmS9TcCyj/GKF8g25obUTz+cDz+uJehT8+u1f0caB//v/9r/h9l7w85++4Pk8cBwH6rZjs0w4wfXnIQloBwINANmWZkAxoHtDuMB2+twUA0IGWj9eXh+ZRLFkBEd7Y4AywGRWrkQyy/wK1CL4chPcikPGAY0LJh3qF5NjcWgCTkUDtQRUOuAdHgWAZeKV3OHMH6dxKxNVyi51Hk6gxEgEKeVJqelslCVQWW3jzwnY+Z9dxc6Ya1Zw9SlcLYy5RvbgeZKaPkbP6TzZrBOgbobi3PO9dfSro/t4TW1TSVaKcsCIIPV/lqBwrBgjYdjLjn0reHvfUW8FZTe0Hw9Eb1hTv0TR48Lj/A2hN2i/cLQNW8+GnbAI5zPqy5et1g1VK1YTY0V+muefzfHx/BXfPv5OKwFzlPqW3oQgO+DtjghHv15d7ykrm8k4JCf0Pc9VtE8JnCZIZLm/EFn0Cb9ndE5wK2o52ADZMOK4ax8ENSbAvt80AYM0YMv9HM4zVJUSz+EsDkZE4uez4RL5SBgLSuH5M7LBdF6DeUrZoCWg5rj6getqnD5H7SxMFVutbJCMgfN5QMLxpz/9hFJzUpKP9BPEPJwZ8yQAEU4lAlZxM7LL7gB6ynMj17Smh4uqItpIwIlfmnrwalxfz+vJWJlDKf7ZK3LwjyqlXd2zKYsGmECqAtUwtMDB/Prn2x31/QuOZ0OH4LwanueFx/EEzQ1qRkjBLgo34Ij+gt9zAED3jh6e05UV0S6I8zyxmadkAT5tKST34mxpGwDLZ3uDopQdP9/ecKsbvpQbwRYA52j49bxWY7LaDjOBX5x8PcG93i9E1GT8ph/L7oAJRsb5oWwUadmwl4JdCh7/9g3H+cS33/6O4/HE+8YpyUU4eVpNIW2Q1es3SBTskcNNtjdY2QA3PB+NU+oa81DYO0wE3RVw4JABPweOv39DV0c3RzFHKQw1JhyuEq7YzfHbv/0d//1vf8etvmGrO77an6Ci+G//+99xHAd+/HjiOgPPI+BRUUrB5SekA/fbz9g3gfYD3ski3OuGr+9vBKVr4dlSCtqPjnDg6/0L/QyPAzV4bvbjA+dxYHv/gk1/vx/+h2tSHN0+AKVHXvgFjAsmJ6w4tq1gq4J2PgFT3NO7+Lgatm1Hre94PATPs8EL/VWjb2guuI6O21Zxv+2J2wZaI4DsMRbwXiunhL1qV8b44T3X5IRYZn4Qy+phjIYxgNYvSMZSjQGJga0UlMz3CNtyV1Sz9Ci64Mp9XQp9w2A7tGxpA1Cx1Tv6cJytgY02JegbL7kf4z4nyg+ndcVWKrat4O2NKoyz5XT0yCE8mI1Rqi0AgT+OJYOmx+L2u2flIKjsHmgtVU/p51G2F2RxnCc99rxnzRErn1gqpgSQrou16nWxbr4Vw/CAN6e8V8nUj8j75QPig7nv1bDVDbVs9PkE5aaO1zM0oydf1QKMwGgD13nmsA/WPWKAxEAbPX0xJXO6zIVAgg9xv2xYxYAWSVY/AGHTMED1mDsnJhOUFLzdyWDjMSb0edKC/e0LttsbynbDGBd98Sq9GZ8fH2yQxsDj8YF//Pp3zAZXLYZNd5zKs6Qd+VyDAzOO48T7fWDfbgs8+yOvPww89dExDRl41JPRFDo7DIK2NtD8KfYsI4RGdAam7kFvm6xcqPOdoJPqkkqEGKCUm3ma0SJYfJbs7qjNIufM7cbJTBBOjlETXG1wUw0HEzZu/tFHdgqJqgsKvHGxasTqZEQQyQyhpvd3XS7kQS8K3W5QYafWj4bunmNcmbknXpU1p6e3jsCS8SChy+9CoSjKIkvDUYxJrwmT5rJXHpiQxQDQkhpfsUVxhAf15DJ9A7ioqybDIztGKryu86IvkjoSpGBBqUrT8hgBvQIFNDJ0Ac3UZHrm5NHuktfC+3xdLAYxCw0B9lqBKBiDQJUP0GBYOdpxdrAjHNd1MnmPDh8TyCI988vXnwA1nMfJTsMaTz89s2hK6T4gjc9r5ERBKxUQo9VOmuYXrYkF5CjloDm+qaFEIuPa6XvQU/ojCo/OYOODXaPrhI9OdDy/B/nMBUKAY+ZyMrsELZFwHqUs3hQK41STrojnxT3ZD6gqqu30YRi+OhY6O1RKGVDdUjY2HO4NvQ/2TUJWAa0lvTxmh0JneTg7HKs/gz5IyQ8f2cUT0loFi7G3bHpGh6vAti19kwBOj2NHORAIIZNlGpICgA/umWIEngZy30ztewC/91CJRVuNoF9Gax1X6zhbw9UaWu+oGxN+FlSv3+cBSPrYFCULEL2n1GnACkeqivGeTdBlAkGSneIAY1kRBYYkWJX8nJKG5KMtj48RwTkMRhaZLn+P9Gtj+5SAJWan58UG4/640DuLHTEnQJ0tsCl90gXoTl8FrnHoPKBjmYxLFuGYXXh3WIn1/IjN9MSBksWSzAvMTtZ8PPO5ZS+ZElLhJJD0E1hFUEwfD4cEHSsVkaApZR+an6E5fdzmdMPpW1dyuqUH5S8iaToZnoW3ZxffcyeS6dCuE2d7Irxh2xRmARVPbzLGS4ew45pkRzF5dbtUgQkgK7uIc53z5HuxhsjyeTFRI2PAnD4Z2amvtdJcOAbM2BWOZMstgGc2p0WgVlC3Dedx4u+t41bfUfQG7wLFhp9/+QtUv+N4/itlor2jsZZOnx+CzDEC59HSYJPG9XXb4N6S7cMCWJW8qN5bMmC4A1YQE6480SBYMMFWpF/RmCxCwMRQjBNcIjpUgVoKp6gMJo+jD1gpHONc6EmEKVGIF+PBY05VBEEmmWw+h2r6OGXBolO6K4TFmMAmSJPlLsdtvzqTszGFGEnuoI9bPl4Md1w9G1dOeX/vA3OSjeZ7+2CB0nuOJ861wYERuZUkJ3EhUNRQtsLkv8daP7q8h9i5HL3BMk8xCRRTeOc96S3goSjlDaobgAoPMntqrQSb+4U5Ee3loUEA1oNrOcVaTHBHx+PxwPN44monpj/IdR0YveH9/Q3FFFul1Ptq7eVRgWQnztMmMmbmUACdGo6YrKNsTcVk9WDiRev/C+TFisq/m1PVLAGl+ZeeOQrw6spDCPZ55IRFZKEP5g6zUJwg0Pw8nFrLookG3oPrH46tGnDfcF4bzIRsuVwf7pwoFTHj6EiZGpUA17gIrEVnrJvdCQgbG+4p3clOe64LS8n+mmoX87TMOJ2fIdL06YUrvW7oSuf/SXG/Xln0rPvy7/7JtINKaAGGBJ69wa8Tx9Hw4zxxDjZcRzZ5FFP2TpZhcjGXH+F89gSHZ5NB2KxyVizAElNw2xh9hCbDwXOIiWc9o2LY5hAdMRQHcDHOWTGUCOxWyAmM+Tl4vgLJcEzWAQ2AL0Qf6FdH7IowxbbfgGKw+saJ1dWxScUuFU9pKXvcgPQKBATtAusN3WAlJv+dA2DEk3GVNVPjmuyjkVitzCcdwJlTsc4egNE24cfzwsDAl/eKvRrs44IlCHUcDb/+9gO//uMDH98OjM1wFeD/iL8BEPzrv33H1RqnNzuBLdVC/70uBC69I/zV8HZ3dB84vScIl0NL8tx+5RaK6PTrHOjQTVBg8MLJsp8W6f94SQpQdodtHb2dADogF0wdVYHb3bDvhlJlNdwCybixjijKyWugPHcAeLbHYlypOO1LkjUoIBPuxY5JNY2+CABraMtq2PK6e+9ASo6X59JUBCEWO8eFbTRLQsMchjH6nMbG2q6k7cmcNBcYKJui1Ir7fsdW9/WZeK9YN1AiRtkXZd0dkxkTyEZ2RDY82UiYYH+pHKwBfzFaWxpnT4YQnxmnNk4Qf4YZj2QVZ1xdw3lyl/8+1vBE8JFS/kglh7zql/M6WatkzsChC/Q5m0oIijpoNeDunDuWa2cOJGhXz0a3kWWZ+XFP+57Q9JQdyfiacVoCUF5PG23lIiPff/EwZ5yGENcYAq18Hgiw/pZXg+RV/+S9dOR05pRhl40Nxu2GEMPZO4YopGw4B3Oxb4+Dss2UHF6D+VzvfTHRpkRdsrmBAPaNA1DebjdsZcPxfK7n/89efxh4ugb9KLRgBXEXh6uvbvM1APFXB0uyg9RBg0VVXfTKfnEyjTd2fSe9UkRxpu+LFgMk6BfiPBi8E4WUzQjGlJEjURs3XeocQwZpjUUwro7WO56XQ6Xgy5dfCH6lBCgiaP5ohtPpbcQCISV6CETQDI+Us5c/zBoHbBW636HaoWgYBx9cKZajVgs3RGOHJ4bDdRao5XVYTlNiYZfZVFGF3SZBLOPv+8YR5LzH3CGlGu9ZJlMf58lFqSWppAxQJori+J2pa9WCczR8fBw8WNXIKijKVSLA5R02AtIcVgvq7QYXdm0m8JTwWnra8F711jhpLwQRmoGdHb5ARW8CqzQ7nYl0KQxMPcc2nu2gn1KMZLk0aFHc3+746U9/gpYN/9fjbwQtozBkiaRPAbuh4SMDeC5DUdS6QdTWZ5OwVwc23VwkhEWRMAExCMI6VMmuCADltqEHddWuLGaOx4XreOLtdqNfhM6AwQ53SdmGzORVHOx2xCqnuF0MEEvmXeC8sH6ulopadsA9OxSzA6wphyFSvm0vRkzPdW91y3XpyVis/BzekpUi2QhNmRd0PefpieE+yIgTyUIsDy9ggViRAGzZbly/GUQRyNHPkUWs5j3K4GQFLoqaXWQEJx+NyNjhM8Gd6MbrMAcIjl194LgajuvC2S603nB/fyPS/3iuwtfDIc4pmAZgU8GmgugXkB47tWy4v93IlBsdfXDi5f3+RvbBBLHcc9pQRZCQAU9GYVQjQ/C6MA3MRycwXoRU85Kjd3uOrh+9Y9s27FtOJBwDw7lOppzsuq7lpeGD3nquAktwYBYbU3zLNeIY+ir84VnYIFJabHDoogYjz1C1XBOD+n4+QyZI0YXszjRlIVCGxQRFAjSmipbrNYKHOotBySLXAW/r6ZZi6U2j63N477iug90+GL0SRFGrZbeMa5ZJXTZA+pSgztG5gKBCYsN5HPj48QO1FNx2euWoJE3Apwwv+TpZX0iajUphV1Pk9/R1st8y8Yss0yMTQi2rcBr5ewlU8dmrgExDZLd+ysWVRa0muDNGLCDLDNhvd3z77RseHx/4ev8LdvuK3gRaKv785/8KRMG//u3fCIbEiZYFvWiFqeFednSQxXW1RmaPFVQzsnPTRylybVFK1pOZaWSrzTWFF4ux1C19IdZ2RW+djQ5wsFctwvUVLZljGx6Pg5/l7BgO2LZx8k4tQEx2EAPK9B9i8gj0huW3NRlPBpClOovQZIm+xjEHGYErGgjNNDO25AmHiIHIgom8VcbG4Zx2dvWOKedpo6P1xkAAAriRyNjoDf06l8RxGrXP5sOkzroDagW32w3nSWbMTAh1GosIEDHQ2gEdG9Q9ATzFGGywtIveU7V8SblFhbuhDyQdX3H2hvDJSE0pVq4/jZQx4JU/9DHw48d3PJ8fuK4T28Ypg8fzCRXB1y9vazpeu4CGZIknUMMGXW52lzxbelo8zNJ6gvHzeabXk5AVRgn2qyiRBS6xkIk+yJaco9pB0NYHgXvKCG2dnZEsVBH6qJWCV8H4+a3yc3jQH2M2RXwGCTCWbpuhVEMbHeVUPB6cAMyYDvTrBYyMPjBU0C76GZ394jUrpTVa6oor/dHgnc2uWQiKKPdsrdBSV5NFs9hDsOlFCevLmDrwuq4JHX2+p3/4JTN/mbkMEiTkuRAS9MvTQFfgo124RPB4XvjxfOJoDdfw5B0rQgvPNhCEHhFkKE48beGFlpJyLACPzQuetdMon9smgeVBw2Af9E3tHizkC7CXG951wwZB8QDawTNPdlQBbrahx0AbtGjQeHmPjXEReApBd8PZn7Arz4O2Qaxg376QebC9c6gWgF0qbrLB5ElmjpNNoLqRRXc0SFXovsPA4TjhB1woMwgRdFzZGDzJPo9BvxyljC9CcB0N3QFtgFTDJobfPk58+2gAfsa4K5qTdVrU8fHxxH//2z/w48cDj48DbS8oFvjHv5ER93g+k5VHU2spG3YNlII1yCFGB4ZCWL4Q0BgDR2/oEnATnG3APBUGgmTi0bB7xEDHBbspaik4MQg8/bPlKMB2c8geaHEA3qDRUItgL4K394J9L+tcMAVcUipbOkaJ2d6AyQ5g4HHSEL0IGb0mA9Mo+7ZVTp00TgnGbPApG4kjrUyY984YxYZY7w1121A3I3DoBKEjgjUtcvIyWCcWVYLOCcpf2eDwVOnUrWBOT2rh8A5sSpb8/e0dpe4YYzaWc/KxFXoexathdJ7B/Ns7gddS+DNj4DieBGB6J1O0GFWuM8cSwXleGD6SlSyL5cr6wnOvAquBBJJSpofSCxiT3GPAHIbz+XumdG02SGMA5/UE3Nl0joHRT06IDF9s0i0nJ7dsBoz8/Sq0PBniuEZDbx1FWZOE6vK7UlEUd/T8b5lFUFog8NTioDHk8++jLyyBQalmoTBjM6AoZLN61tiSjO6s4V++rfKS8geBwVJ3bNsd2+0N7o7n1VFsh24Vz+eF62z49ccD53ni4/E9m0uC50HJXaZw2PcdZob7vaxntO+V/nHbDVUL+vlA9P6Hjoc/bi5uGRWLro6ng5pIzEM/9YWktc+uKP0nRicDYhpna3lp8CHcoGSlxCoSXigt1uJUpRO/Ts1j6mHdr0+dK5AOPWQdMpam6CGaGwrZMaXRb3ig50xIrpdXEvnqXunamNOXY8oGQgwDGzylNyKUJEl/dYYRLyaQR6BIocF4eLKgJjOpAkrwjGuQnU5TSfmap75ZYPWeXUmOWPYAGRkUObBbJBXh4OGoZEJsnqnycGoz1WEDqMt0l4veB+U0IQQfKmhK1q/A9/5AGxe6NzxbR8sOKdlaAna6BUMCQ+f1lpSW0aPpsAs/fjzhIii3DfR2EbTrgsfAeT4QnqO8I5ldICj1PA5c14XjeuJsJ5PIyCCMgYiGEbKAdIjkGsAaBT9GeoUMgWlFrTsNmwX4+PjAGATOYpyIRjO6qgYbAfqK0OCutUAbgEMpE3AHRhpWhkFdYWP2ap2SGn1120Q5WWJkd9dMIckOCHD9meX9bBxlaQnkPn58wDRgGng+OfL4+Tyw7xVfvr4h4Hg8viettWRhx/VMaYmvfYhwDL/m8l4dAxZgTrbgxHlEADA5cJ1tgeyOg0kgF1MglicPk40JTE5GwEhpCaeT+QuMAsdhk0klK6HmITdIOVeFSEW44zxozG1GOcZ9K2s8cdk4kv3qZOp4SpXMKK/SAG6FBXY1QxHBbgUQxyX06bpGQx8DPUbS3oEzNeDT760UQ4+BfjZMM+JaOVnkSJZYS0ZZMbrHFNXFdGpXAn9WAOVamSwaFgmSWBGLApngTwHChWCx+OpiWbJUfczDej4WMgYcCaSHJys1S45VcJJa3KdPlk/6NIsJd2aVKnnIqpANkUWHiGDf3/L+6AKjTCuWTHN1evIvkwEXMj8PC84+acvpZbGXW0pi6KsQGPQji8DoDZTa8XfMriICKBaUp6nBhGvbDNh2g/cL59Gh6qhFcZ0N4R3H48FiVo3SWNO8H46qBWKKuu1QM1zXgAhjdC1v2OqW56FPLAOTAUBpDKnMVskCrNnR0pGeaul35WOQnRmBCerULQHj2VF0h0ChYbiOC48fH/jXf/1XWK00op7j1jPxn/eGnl7CeOfA7XZngdIcvVHGdLXBczITYLYJ0+x1rmFnN5Cj4BNrgSKiJHYzE1xZ0rUigm2ruL29c10hQRU1DCiaC47G5sWXtxugBcc5lp+WJyQ4+jTFvvPsM8YUVXowMa4ls8EZ93y8WEbzrJjA2mTwToaMzvUZZDlPTS29QlICK54A7ey4AqXqah7QyzKT0bz/kUBZuBN4EoUnSOBhWUR3aBkoe8d1Eohr14WrNVwXGQJmFaqK2+2GrRpqNZznk2bSskFNsRlNq8cQtFPQO1BsAGh4uw+gvvIwAdk5asK8JD5NhfXJ71D0Hvh4nLiuyfAheLNvG2op+Ouf/4L7/Ybj+cR5XjSJXQAAvxwTCJ4JXJ4RgWTtyGoqzPMoHb/Xs5KUg0dEAsECemEhDcAnYpTvktdQLD0MBwhiWUlG/Ms8emQ8bY0s5lrrYgLnbgQQWXBkXJ+GCt6XVJYTgY1NtCwQBQQV5ycbfeAKx/P5hFWDVn7u39mTqkKM7PaQBCwdBEnTzkGFZ1lrZAuS/RCr6RienqPFEvBjMRTuuK4cAKQF4WRdTdn2f/aaMr8+CMZFxnfzgEWQu+Qd5/nA9tMdt6933H+6wWrF9x9PNO8YIvyawLUpOhKDKNmcUEK9k32JCKhnTpNIlJWa/B7J8ygozRlklbC+6JAI7EpQahfBZoZbMVTkdOFkM9fKxm84gcpiBRpULQgcHYow7msdI8/vhuaC50kAEkPRhyE2w3sodNthm2Cvd/xy/xk2FNEU/dzQzw3FfoHXN7IiPSC2w6Wge8HlgWsEGhxNBi4JOuNJ1ijJgpMIhHTKL7EhxPDl/QsCA6M9cB0Dh/V1Hv9f/+0HSnnipy9fIRAcj19xXQ0fHw8AglLeILLBUdC9M8+uG9jEmzECCG+wHrApXS8bqgn6eLCBh4HbpqhfbpC9IqxAK0HV/iRLsV8dVw+4VAxrGNGBfQOKssj/xJL/j14ilGZbqrpGHxjXiVILbUeMknKmIRxgv78V/OnPP+E4G46LTTaoYH+70+fLaTtT6k6pLizJLQ4rE3jKqJC+onMggFXjPUsbkhEcGDVzuvjEClCdU9ZTtq7A6H2BqhPkkKQRmhWoGPeFaMa4zOW0JGM8maQxGy5j1VceYBOVNy6bDIJaN3rUOuXqAknWNFUPeVIiHHg+z7Qw2FdTUmUCYBMpZiOhtbbOgtmocX/ln7FiPl8thxa4B+YkSeapyaKeLKIxOLREAc+6D8EctnuHq7MRDJ7LXjP/PgmKRxI/rBS0CFz94hRylRVzp6WIi2AEqErJLzNZ6wlrR/DPPM8szLopmdXZk5wLMUHuDUUqiSku0MIhRvRPwxTLwB2wuqGUHY9ng0HwfvuCfdtTikfiwACxln/79h2Px4HffvuO3rPJ2GkjA2Gj2INJ0/uNEs26bwl8ksSymZH5ZAV/wVeuyT/w+uPAkwxASSXjmEunFA6kIjPT2ggiKQ2+2T1nAhyxyLHcJGVK8mQdoN49aXdzCWcy8GkBSppUTsAJmfqs8dWeRSAUcIO5ZlLNJDRCV0dI1aCFB1u7LspU+Cj52eLV4YrMWmcRYJBcgLyEEQZ3W8WEoNCTIhOOGRSEmgYCB6icqJZT4zwLa7MKyDRxZZdoU0PRWbQNXONEmEFtg4MJlYeTrpuJVQQjqYgtRJgNQllGYDZZI8EC2YSLkiwygoX0CSAtkA9PMaKj+4VrXGjjQhNOHBHngi2ZrGkpnKwiAzWReQMZL6NTPnE8T5StwruTORDUNPfRcB4PHuLblt2qClcCmMMvnNdrIgE92pngI9dRXhYmRq55SDWV3Kw0T4MzUStWUWtOCvMHRg+cB703rmfHvVRsVnAvW45I5zMfzolgIZp+X+xeCxgsRCWngbDIDA1gsikiMiGen59m6ozBPAA8IqfwvNhCXOOgr08RSGWH9LP0qpYKj4HrvFBqwbbv0FyCw/kFmdIrxxwB/yr4PwV9oWwPC5CSZAsg2SxJBw1SR1WnX1Osa0BKqaZdxGfZKg3yJmvo1d1YxWoa/ItOb6f0FsouJrsA3H9qgBi7PeU6oaeRZtsnMwyIpOBPJosGJ3NupdCrSYCaMY9TbBK8TbChbGRp9kYGViklQXSjp10/Kd+EwmyDqaCdJ6aHjwiSpMCu2Cxu++B0HjJ4kAyalNJkakhWieTPs+NvAUQBfEmLRkruMoY7skDRvM+zszTlT5HjohmfmADw+ZFhNJKBx3VYCtdo9LGaBHM4hIev56aTWThX1GA8JWDGDzY5WZMuQDAKM5vJeAhwcpPwM4mglg1T6ka2gZMlEcjigkX8BOimGeRLlkemCpxgQSmK8xpo/YRofBom4LjaCbNKZmmyVc+LnW5LRM8Ku3l9OLR1GvS+S3YQL3gmlshCOyI7nQkCwhMEyj0uya6g0ojSLMo6wCaPcjgDgv5cM4mZflb9ajiOJ3779TfYVtGu9gKekNtbsJ6dCJ8zoKhlQ6+OWjlZdSZUfQSKeBrcp3x7ypJFk82TzxmByE7dHI7wGpBgECF4QNPZirptEGEyOz2E0k4cbbyYWSKKPrhnJ8DjAC4fCJf0KsrEX3gOqkSeiVxnMxkf6fW15FcxY04auYsu4GMCTzHYBAtoxvpXfjD102qTtZTDHGKey7m444UhJCUEkwE4Fz/3ulKS0oHSHaN19EbpXu8jJ5AShAvQtqDWglLILCQ43PJ+U47pLuid8jpvjnMfsEK/SXpd8D5w0q2hbJWxJ17XhPysAUHvlGb2HlmUsIFSimLbKr5++YJaK67zwnXS849m28nYTiD2dd7w33k8rryDzb5c4wIgsoE5k3ghQ9N9vICnVZC8nvOcLDjfbT579j/IPOzBqaUwI9iQ51Xvc5rQxDvyt8ziD1gdffqzUE40CcGmSDPpWVzlgSryAuES+LyuCyUK9m1PsHK87lICbVh5KA3/GTIk1zz35GRZMIeUbHjlGgfZ8DObxuAzHp2gd6kVkLH8GP/ZKzJX5Je/rg3M2yR97Fo/cbM7bvcN+42+Po4c+iJY/NyRN2UCUZHd5JnTYURaWHDPMEfOGmJ7sduYAzP/6imX0Wy2SRauNOI1VCU4aNMyAgQvSp6P3TskFEUMjmR+ItkRlnsnnGchOroLzi7pP6c4RsAPRWzvKBWwrULfdpT3N0gPeA+MZujNYPqOYhXt+liFYIhiuKJ7oEegJ4OsS+RYhnhtmYz2zKsAFwfEsN92eO94nB/o3XGdNLQWAZ6Pg/fXb4gAfvvHtzWFct/ZnJ1+uz0BVSwZeA5bSfBgjAt0ADIqLjTzqBhwOKQoym2DlEK7AUuGv7NBfLWO5oCLwVXhpohaV4NrfGI2/kcvAdK3imuhhcO15aRjzaFMCRSQV4eyVXz90x3+G3C0RqBSBXXjROZ+UFEymWSQOSyD5As1hRg3/WTrUSFQkkXDeOq5D69G8KtUXs8arADWZSL0CF0NlgSBOV27Q5N1qwk6SlplTOCJAD6/Z+ZrfJ+UDwuvYTKNIm/cbHJNXz1ps0moa5/P7HSqGdrVIRuZU9M/medPrN4By5t872TBB14yxM+g0+d/r0mZ4zVI4OW4wRqCHnudDPKMj7SuHHAM+nwhABOE090tVJGk+AT42XBBMap2RvpZK4EmnkVzgfEc4pS6FAlm/F9mx/MjfvrZGcexzta8oHw2y9Rfy/xmTlqd7xyfmggpw1Mp8NGgCux1R7GNa0BIvKEskcMEfvz4wI/HMxuoVMQ8Hx+oe0HdCm2Qgt65dd9QaqFaSS0lnoqtKqopqt3xB44HAP8TwJNOUsQo7DY7NcbQAoxM7CO7yoRMIT2gyjGYZpP61rgJcuSr2gaTCtM9JRKK5zgwwrFZhYCFmGiB3u6Y2YIHPQLozO7cFM7paqpMPF0UbeQEBzAZWytrANFf4ECRHWEOMQbL6zjQe8fxePIoS58fsXl8Rm68lINJB6QBQfNvdYcOoMjOIr8hwQJJdkWgDI7oDtdMSHIsuNLLZJpsB0DJDFc24AGLQhPoPh0jaaIrKnicJz14QJZEVyDbH2mEanBvuHygsPrHx+M7u4JhaFBcwS7mGI6yVZgEUXY4fvgTEg6NzuTG7ihQ+mCNnFIoF4E9JXV1g9J4WMfyrAl39Nbx8f0D21YoKQnnWMl2IsYJ6Q0qgT0ndHEoNBOSqo5agIGGhhNeLjZKNUcPB+jR451SRSH1FACKZqfPFG/v73j78gW3txtKrXgenCaI9EYgUYHB4erU8759fcO277jaQdPY44GhZIaMq+H58eBo1brhSPkmc0H6W6kitWhZvGQhNDy7Al4TqJkGf0Fp5gxgkmNYkV0K7ziPC+W9oNoOb47rceLXv/0brAje9xuZcFNPLK9gfi83gkTO1FOLpdShJVAEwAtBsQCDO2ahycJhIvX0N7IFEDExzDAZyUgMQHqs3wUh24CeHLH0BrObPPKAoScPifuSwAzAg/u6yPSyUhiojBT363R8/9Hw628nzkMwRjpmAii2ZY0YpL6OgfM4MeTC9n5P6VGOic2CZvTJUnMa7c0pVEi5rwiupvl8JNktgUBLYDJeB1TScvMW4L5zbyIZls+T1H8mGA5EMryEZtiRBZsHNfZkbZAdFSI00O4NKFsWIARrBAUyCj20sjDRwS6KKgEoABlnsTwIBloe6ukrZzw+xAoCAz0cJXLqR/rVRXfek0FfspjyZTHs9cZOdiNg1C/PQrdChYlIn5K4SNPFSANID5gVmNXsBI8EiXj/yLJKaSIYI18mjoKgPhgDZEdw2klQhiqOMEXzQItAvd+yUM+UtDXUfUcpG6XF7ujDIY1eBGqMdfAB74F+HbhSOowInBd93GBJq85kTaEYx4BLYDdjeJgAoPQlq0KOzg3QP+TsA4iB5ifBUjNstxsQiu8/vuPHj+/49ttvECvw9OWDbZj6FFNOUbg699kIAi1mHCiw74Y+nmj9hG2CkI7emZDQ0JhDEiQUMpCGn84KW4Dn+DyOWWH1lvFf4EHJ6U9//YL7veBsLUHjghZM+KMY6v2Geqapd5DRtZcdHp2y1ZRk3eoNAqVXIwa23OMYvEeKkeA55dNIhoBAYK6YHjIEdgkezYmGkn448zR1LwhUxGTYyCwYMvnNZG6MgdEoCfQgCBCtpXEp2asSb0wwCzvp0ZGfFajVOchko2elXoEaApGCe7khiqAbi6ARFy5/4Nm+w0tFWOVZDcHzZGNB9QCEZqh9NPg40Qdj0dk3iFVsc/BAD7LakefRCPhgzOUEYcf37z/w47cHfnw/UUrF/fYLRnecRwAWqAYUqzBRXP0JkYH7Pa/FAJeT522WyDLPRWV8lwRBEH0VBJLrbgJ2jpHMl8ycZrMDgOTEQJYXC/5mEQVgMkYBQU0WZBGwyFUahffgNDXEq0HQWpv1wTrHjIcgxuXpC/LyriqJJpcQDDH88vYFbXNct55Fh8FT6hcYgDgevaHIQEGFieFW3ijHeV4phwaZBGbo6WvmZWeTWDiK+2oN5qBhcsviKYucybCzYqB7jqPD2dzT/VUUucIbTcP/2cs9EjjmuTmHhLTWUcVwV7Ib37++I3rDj3/7O2J0lFoxjge8PSHSYWVgv9Ew/OzPBI3AYpKwETJ7Z14QCZ0FIMH7z9NM19N2D3iWyaY5LEPpo1ci2W0oCTIbPWDGAaRX3yjMU+NySDjqOAj0iKBmkdiz8RayY4TjcQFQwU0omSmqaIPT09qPC14B2yu6Ncq7xoV+Hvj27b/h17//DaNRjjO0reaDO/P5oUAvQPgGxAbbyPi6kGqUUETv8N5pPi2CUnZIKPp3NsHUjflAp3ece+aWIvhv//ZIiKFC647bvcBHx8c1ALBBWaplLsv4yBjDWiOCvnVhgVEcH/oDRQLNP+CgZMu0wLzgvt/x/v6G1k/4cHw8v+M8nvj+7R8IH4APXCro2PP+DtDAfraW/+OqVxC4+YHiioIOmnwovqLiXXb8Ym80484V43pD8Q39AdzrG/a/vuPj+aSfWu8QA36631Gs4K1u2EvFve4wSa2JsI58tAshQdsUQbLl0iUpkt28JSxnhRFL6BeEDoyL58bt7Q5TW6bePSf3mlWujd5pp6IGSwDKauaZvS11koPrlr12AUzJ5G8NooMDdtReMuWgrcZs8pkBtUbWDwmMKKDBWFqmikiIBp3PK9k2wHW1zNFr/u70asvmBsxAlQrBKESgbDt67xy2IFNVYKgFiEKm03H1lMbx+dtWoVVQQgHntPI2nvAxEtxyhOS063bR7qYonk8OSBGlfUkpBcMHHlfjiV8qz5UI9KtBArjXHYvxHAEZHRKc/FaNE11bo/8V86FIsMhJq0k58Gw0tpGnkpVkrSpEBhANV06IlMKz+DxbNtCB1tk0+jb+wbw8B5UdZ8MGwV4K/ZvahR/fH3g+T/z292+4zgtyDRhieZvV+4ZSaHez72+oteKXtx0lB7RoBIfGgeedcNoLOLT5jyFPfxh4ksjEMmx9IQqACsIp3PqE8dh5VSTLYzEqsquL2WFICnUmrZRZGRSZKCSQJQnYFLFECSNZPul7keg+9fmvrlFkURoLj83udiaVyGSHh1cgsqOEycJwFisTIyCYwY6NgAwOiWAxn8imLAQyD8D8J1JTz3s5/5y/c32K3FgzmVn3Mx/mLN654WdC8HrU9AAhtXI46fwChfv8fmACUA4WwZI8vXNcvE+ak41E0sTRUWaAAYMJEW6CCZrMMXFe0aSu0ztm3nt9JXuL3YCXcVkm86a67jHc2VWO16QRAhyxvAmQ7BzPf8tCR+c6nFR8doE1m90CytLYnaQGvVait6ocP02vqFwr/kLeRxYVMCMlGAOuQFzILkN2MX3we4xmiTyMWfDMcapE6ZNimZ1kX8y4iabPA+AlPZjJ8uxuTAmW52eeYJmPlI9CsaV8cPpT5BHId1AWmtPQWEXZFXutTMwOR8y1DafkSFP2FXit5ET6ZbLKJgi44kPWb06gjmv39df8fHMTR3rCvEBYzd0xtc1zvccnOWIIqa9jBHpztGtKlOS1t/LnZXZ3EOsA+7Sr8nsofZyQvoTAMSm+kykZCyAz0zTEzqvKSYkCZEMjr819lluzNE8AD2vIgkLW71Ww48vOFeBBD7TRaY5oJQMmJLsYHRFp0iYOUlZngp4dvgAUL4bd3EDT8DCCcQWS3faQ3Bqy1uKcfjLjpsQEU7g+hqf3RQigwr1AiIqfKX+WTAGaXAs093esKD0XUEz2ZcqjyH6bgCrvOQu4ZNBlGco4+GLhwCebNtlc85HLi2mDBFIhL1P7yfRg4iWY3mIR831mZz9p7D4WsDrNJEWc9zXmnUaC8pETUBgL1mdPNuT63vwfehuMxTAmZV5hpeK6HhzJ/WyMt7c3aK2obwR/+Euy4zdl5cHrN+U9p+9UAaTTw8mB0empaNNcZZ6rKYnnpMTsIH4a/6vyWmueZxkUqLvR04KHFYpZgjfs1K3hIz593Gac4/mm81kUrh3PISSazJJcnJkt5zmQVEDLs3TG+9eXrHxhPdtPnhXLWGZ1KvFp/c14EEtO7CM5Pblfx3CMZAhpkKkrOf48koUhyjxIk4Ex14g6k/0ixsmqSs83yMyOBiUv4a9Q6kgQN2UllpJ073Bv6ENoKlqE0tFk5gGTsfa6lVyS3Nvnkf5bzdMcvhLQ9UEbhvQ8w+ez3pRAsQFjxdG5v/NMnM8FWJJlJLttMmG5dv3VLf7MlMVrT35+Pq9clefxHPAh/+7viAnLmgbHOBR57sy9Lvj0MVfe58kqDJvnfOaPiMwVBXvdoErpxhhAa/xGD0Mo94G7I3pK7ZWNsxgObwNRmSMxD5C5NIF5r+cZMAY71Fl4kjY482CeCWvJ5z0BMj9buUky6Nd+/49f8xzw3DoOnqlThBnKCseSeeutIxrHqMToOVHykxdasiIW03MFP75m9UFALW8BZr72Og9XE23m2kiAHSDjeMxKYearL+lOSBr8i7zeOyIZxQRndUGbM5tg86sNRx+gn5IDFgqdLNmejSsblDcFp1b1dqJdT7TzAeTZKpos5XxmSLY9Z+JkHZZnVXzKvSf7SAQIFRRMQCqdBVctIfRRGulJK4LzfEIA7LctgfGaDbgZb5DN/1w7TPqzBptZEQADxAIuAwP0kiQ7U+mfqpTrbGa5Zjt8dIzRCPAGAROCs8majYDg5QH3n70EHNBR5qEpfM4FihqKEooaxtxPspYKRW9AvVVs24bGTTp3CrZaUdKSgT5LgiJz+u1YrB1kzJi5xyu1FCDrJwDL22/WL7Pu4HYliWDmkTNcatZ7kefVsqiBsB6Z74PMoCdSkXtgbmdPZovmjl0xH1j51zwLXudCYHqmYcrVs/iWrOE9wWLPHI0Kk5mfzrU778Xn9/RcR/yArDl1AWKi03uZuewcMMCPlgceOJCDud30KpzrFOtstmz+8TweKDt9f61U+AWMcbJ+XNeduXhggf9ZSq51Onm565xZO2FC4Lku5i6ddb3PuD+YDwiwph0G1U8zb/KZbw0a0rc+0AO0ANmBEumLlz6x7bpwnk/8+PEdHx8PtDV1b071VJJmlbZEZoLbxrVfs5b1keddvOqxGd9ZpP/z8wH4n2E8xQ0ShiI7hnJKWLYS1zQ1yYOeU3CETup+wf1MA665CQW17tw5Yrxx1yMT/yDVPwL95ElKM0xKmNToI1Gkpl6VW8RDSAmq1JR69FeClK/WyIixBLlKzWR7xNr853nCvdMcWAV3o5wJTvorZSVz43DCj4YjpGDAEg0ky0fFcfUnu4Ml6c6jY04bcx3ouZkEKZkQRYezILfKezNA4MIdqS1i0hivKQIugA7Sf6EVJhWlbpip1Ey+rqtBpGPIAyGNI3PheNhBJDm9aDYxjOcFvzpwBaCC91qgQrbQa7lNDgo7xZx8QOPsYZRDSNkgpfL/Y2Azdsp//uUdt9uOP/3lF/z881e8f9nRxoUxLg6d6IrN7qmx3xAx0HM62dEufPv4wMdxIvoFg2OvlkWvwNtAOy/sFqiFYyZLoQ4/wlF0fnaBeUd/fqC44270LGoAHhcwzsDxuNY64oEJDLngRkPCOgQxCi5hAl6qY7+/WFWlJDthDNAvJ1k6kR1148hhD4G3LISvRrM6K2SqACiR0sh0ZhzD4UKvHM/i3RNwUjEU2/D+lZ4pwy9O/APSGLDCvQPB6Q4iNNkTCRR7yaPgBriibHcIDM9njlYWpljFtpw02FfI2XZ6iVQVdO94ns+UsFVKWyFoKfWCzqD62ZQu0z611EPnzQ9O14g00GsJNsEB0x2iQM2uQg8HBifITC8nSQnalJ71cTEegf4+07pNRSAFCHNc40AMRx9kFCEDshmLsxeQwIReMqhqgAcs0a6XVKfkG90qp+7NaY8AetDH5dlOhAMKdl3u+45pWt76BUTQUB7A8/hIQ88rJWAVIYPdwPSaMc3yrLc81BtEczx28GCjbCjQnV3V0RmnOZGRkmpLI22CCJLw9QsAQQDXkbLDSjp6LRURjpZyxJjZAQStHejCfTFBy3kvPPJAdSBcUZVrSnzKUHrGdPoDWFL4IYF2nUueLStBIqA1Qd9r+gJ0Mk332ztGd7Q2kl0xUMsbqikeD94TTgAzCApad5z9gXqvsE2xidBE1Q5oUdSNwE01RamOsgWuixM5a07ok2KrKz9fUwIoOWHFk02nCvoZTWB7ytgCOD4OJldouNzx0QduldNqdNsxoPj1H78hQvAmiiqA4caCJscRT4NshSAGAXtVhYyB6I1nXeTgA6G0gw+drDxP2RoWuJEAQgBjkCnHGlDQ4iTbeASKefqmEOYbnRJBlA3inSONGw2F4yLQIT0lAV0hbrDYoM7Oq59kaVIvrphgo2RhPgJkP2HAjYb1Uis4mWZVBFAjpTwGh4Fc46IcMziB0Uzy6dBPh+bF4D5JVrQIz6NxUXowclBGROBs9MnY7u/wwbPKT5pEz/gEJ9u3oKJsFW/3N4xoGONCu2hyuheD7jtayxxgV2y3O7b9BtsrZCss6iN4DtFoM3M3xu3WGh4/Au08cS8Ffh8oX9jN32tFIND6M83rk5ETwMfjieO48Ovff8PzOChxzUaXqkG3gq8/fcXb/YawjRlDVABTsi95LzeY5KRUBKYrrErP5qWuYmykBG10zbNggkJYHnZ7rWS8D8oeWjszlgHTZBcpucXgCbCkyz4A7VBtUCvYyoaqLwBxAgMvcSf3oAaHAhzPB0Ynu4deLpWsjrJaZ8mEE9zvN2wuiKPhPBse15F7akCMe304/aTOj47YeKaOBrQL3JvGAQQiulhGMiWfIEvzagOxFfrDlBsEzE3dB/pJNtK4YhndVkvJOKbkziFRsNVbsjL+ycsAVFCe0vtiImzvb9i2irLvcCgejxPv72/4+v4z7rcvEDX4+Suux8DzMXBejrMJWig6ZNLEk6HIfcqdxsJ4evuJx2r6SC4KU7KAs3bmHnd6N5mwJV2CoEENhXqgR4eOAR2Z60ZgXMKG7WReJ4jLIR9JFxoGD8M1aHNwIjBGw3l2fHm/4e2+4/52Q9kqVDYICtQFW++I4wP++ED78QO4Dqi3F4P3fkfrA9+fP7iOzQhKIjCb/Tz7E8wQnidRFNDC3NodHcly3hJ4142rLqeCTU8hFTKnRJDeYJR+itBseNUWYzAn6z7b0alVilWw72rYTXErFYKBq6dnlih+3m/4X79+xc/FcEtLkO4DvQjKVoH3N/5Z77SQaBc8WaYFQOmfirz/6JVxX1xQQZbbqAJxRTsHjuOkxcHO+spE6J31OPHz/Qvev/yCqBWtXzjPA6KC9y87mSpXQz8bPo4P1FKYixQ2iVyoQhErKQVPP0+pCZgJjvZqdZoZ9v2Gfp3MPVNOH1HgQ+FdgFBUtdVorGpwF/hQxndjTWmbwoIKhud54TwO+rmqo+4F+32HB2Ox1RyAYliSyikfm8j5GPSHbI25ZikcngIB+tUWkA/wzCcyJjNMrmmimjnkmFMYbQJIssCr3qlAEICMv06/tAUyxif/5U7w/bbtGN45Ab2fZGiDfMeCipBCwD79d2UYZFSMzvfX9N+STs9l1QHpHbgusHIV1JJ+qolt0SYHCZTzbJ1M0h6NYF5J+SIaBGQxcTpjw5ThOVijaOEE3fO6UG833OqWHqYcTBF4AZW324Z2nng8DzyfDzyPA9v9DVYruh8QNNwLB+n842+/4sfzie+PH/j1+3c8jwO//Pwz9rvh+2/fgQhshWfVtpXV9Cz3CtsqDjQoDNvbDd0Dj/OEusHE8XF2aFN8+fqVdiN/4PXHGU/zn+zUi6RXjSdxNZlH0+mK7BveVHbsE6FcSFCi7hHZicu/E5A6Ga/OhswDY3at/t0nYzeDXSjNTjW/jyt+YXA+f69goroTnUo3hRc6mh9g6mTzF3CBzo+RrTDuLUrEDIFQwCSoG84pZZK0fhF6U4VMbwNbvz+EyOPEm1UnQh00+hJgWjSHTAbMCyUe2YHhZ5dVyr1YFSAavX5PymokoGUixInYBul3xPNoQK6hWL2xBENmwchpB7xfGp+6yPkMV8dxsiWEdEfRwLYb6pYd0OnzM7vhkXUEGbsYnQXc83ni4+OJj+OZviWcBoGQT+biAyolR40aE1gPIFjA5u1g4VmTdg1JKWLk1B0W/J5fRBQVHQM9OkSoa+cUr9lpcgA9Q17mSxDS25FFdST7KPcEoYvgc4Xk2iNFl0sxq3aX9ftY4HHSBxOGWVjnpKlXC/TVEQADCgG6uZBf9xpAAkKcKjLtS+b+10+mAbMviJhMwNlJlNUN0FnO5nvOgK0i3LIJeHi2XmZz4NPqmTVHrrmJHAWLhwRUNWPElFNpFp1z0p5EOoMkUM2ifXZV8/rlE1E0Tah6gnPhaUYaLN7mda7wkz+o87NHQEZWRBHLtFuy2yyW90kp54TkYZzPiZfJSWoqkt1j/3TNs/MVGY8zCfT1AVZ6nk94+YaMCCgG5WCvh475AKah+PzxBSTIi/sm873zt0t2xT7rzT0cKiN/VF7PMZ8dUmfPJTVP8oxnzpg3kUKyDHQlKNOnJTwnfuraNr8/ImYQfJ1geVkvFmPMojO/FJPJJ3lkJFch8vwDmQPs4A16jFh6tWQMp9dBDibwBkRKKmVeJ7g+F9Yx19LihuZ6YEdd5/7PjiXvt2anjetCch9Pk2X9xJCRNP7++vVLmrdqym4zDkAwmbxz/U6w87PJZ6SMCdxen2L1+HS/5++ZXcjFncv7zX+LBraN5q6lGNmKshYdQR6QPeKNk2A0vVMk0tA82D/ULDhnwTOB3linY3Y/10eUGfqSlZlEEMy19mmlf/KlmNGdf9AQ6GBnMhkhi13NLaTJ3gql/073vnIeDux4nS0xmXI699lkQE/2X2Q+9DoPRvf0ppyxONcy5PVvzP7r7zfGzHOm3NbSaF/zSwRkH6Q0IR8mZW4OnMeF43miN3pHmpJ1MTqZDCqKUreUkkymUrKa5LX35ob1103OvyM4x+MugRCQ8fZ7I/JPez1iMZi4VbI5oVhFywxtOt8feV8juIeTpcuYrVjJwgr2rxgzf34ykOe5nltq/fmKS3kPWYAVELd0qNLnzJ1MV0qLYrENRgfc2CSVIMvERCmrGYAI81JHXq8AlCfTdNyD+QBVBesyPn3F+g8Bz6Rp3jvGHCBh//6O/49fqxs+P0dkHmRZNGkyQNgoMduAsCVnpmcyWZF0lli8gN/df80F7/m3kbUJz0+Zb732TCQFS5DsyZlrzPiHV+6CSSqC5Bmc7Nx881ljM2TP82g+ZEsZcoATiSmdbJ0S5d6cII0MABe0OAHKxeoZnLAHNi5jxk9n87nIy8zYAJRg83uuM67tyR5MewJxxuVF73Pm67n3Pz9VnuN8frrWMDLO+8oxJ7NmTgbPaQgZQ1kLUCkjsEi9SeZhCBbgeyXLqahAfUBGS+JEoEhgCJl+EWATTYQWFuEQdzbD/vmKxDzFFTybh7P5g3W2Zyt9pHG2AGuKrFD9IWYw2VCRflDznJNkMg5KVDmBfA7hSeamvFjdTAFfse4Vh7EWVcw6UDPfyHP/s8KFqgbnelMFnNczv3dWa4zZrGtCC8RqAuKFBAZVyJAlrpjrJDKHjBUvcg1pPlvNuJEf+/MpHysO4Hdn5/zeGQwF2egNvNiqn/a4Zz1rxTI+v+7b8n2eq3d1IIKCDCdjVUVArMGBWcGGppqGDLuIgEHTo4z7kPmG5ywY5m2Ul8ViOE2aacyrX0Fhssiw7gobU8yhfufrGZG1BGtL3vNYjDZgKrfmW2buP03Uo8OTJWnVQD9UR+8HHo/vCAjBuHamN1gHYmD4lfejrfMAAohSdSZpb+HBwTLigz57w3EcJy0lrMwsD7pVVN/+yGb848DTWjh5SCoGndBHh9YbTMqi5sLYZeRUtsgkhsFq+rX08ZKPzMVkhZ1EidkdSuJrFtpTcAFnFyYiUBNhC59GxlM7UtgxjZH7aRbigWK5sH0sxoSkhttTQxuZtI6VnUTKWjoEBg16O4lwU1guJhNOTnv7/7P2bz2SZMmWJvbJvqiauUdkZlVfppsEwRcS5Mz//xUEHwnwhQOCfJiZnu5Tpyoj3M1U90X4sGSreR5iTlUD7QlHZka4m6mp7r1FZMlaS2rDZmOcD/oU0OSvTIfpdnlkzRFFjaOFYEZa9XXqKDtxlou+CoABnki+XZt8jBHJW6T9QSIZXeNht23TtK8s/6Y5B2rOGvnbnd4nz88DZsdGo1rhVuXjYGOSfeA2aeWEHDKGMPQ8Hw/ONvn17RdNfYuCbZCYyRkM8Ip5ZvZOn4PH40ewgxLbzch1wOgM7zIkRwWHudHnQsmdv/148Je//YX//M9/4cfHBx5jPX//+UFOmV+/fYtCqLGVN77t35h9MM7J6DLiXYfmYPLL9+/8m3/z77nf7iSTp0lK8p4RU2NynE8+Hh/cv79zu914zAejT75ldRC9Gt4E5/XROPtDRoo5cc/yrJlJMsXzPJiEWabQRM4hqU82de62rVJT4lYy3ibzHNAHA2fb9wCXJsMnYza2krjdN7Z9o26Fsx18PuB7u1FclHYZolZ1j055gmRM/m0yvMJdSVGpiZorx9nooQFOiZia5Cz5LN6x2WHIdLLkfBWuaYq+ey83xuz087zKslR2Td+ICTU95CVfs/qVuK4iXKE4QS7BXvJLHjSmEtCzdd3z+53UBz7Emkg2qSa2xnD5Bbif0XFPrLHsHomCZUWu4zgxplh+vmp8h+HkXQW8BS34IhLA5cW2Csi9yjPhaKcOd6oAuVzJtZBz4fPxoI+Yhpkye6qaXOgukHu+JAi9a9RpTqJo55ANjr4SA1f2gkBUfNJav+JytUzhlcjMGWwoJM25ZKkGc3T68GsM+WLUzpWB6/QWYJMVZlsL5tR5knJmv70C0pgC8twKiUy93bSeXUlTu8biQq27DMBN5oojJgiWXGO4QXhXrOTDtIeWr8f6Wkl5Yrm8iDKvkenOeXS0jI1EZcuabvL87NERloGyJQszayUpz+OEc7DXCVsGryQKNSWOx4PPnz942xO3YuT0TrZMtB5o/byKPssWZsjaIS1kF72flND6zzkvajQeRvCW0dAzY8xELjFtpN6oZePzn//GcZ68/fKd9/d3/vv/4f/K0Rr/6z/9FwYarTzzqhmiAE8GwewYc+B0NRZ8aqqLT3XxptOeR3QQuyadpBxgcmKhkCWvxN6u/bpVScT+zZ/eebtvfP92oxRgquAa/RmryhjHB+fzII2AseeppHJqL+Xk8iIaHkCuKVE1Y3pnTR1bron6fNELdZgtEmQj5N/yOxuRuBoaZiJQQk2WPgZmT1J6kqhAltcjmZxuylamaxDF+42zHLTW+Pj8SWsaYzbH4OP4cQEmNc5nTSOzABztOlOfz0YuTqnpWisfHz94PBvTbmGO6mxt0Jr8KlOG2ZO65UPJui0Gj0uCvm0b39+/8X6/8du337jtG/dbYc7Gx+ffVPBVmL6RcHKpOMZf//I7Hx9P2uEYhfttExv582S/75Rb5na7c7u9sSTOpdQrr5th3u0x2KCv7rsJdBrjoJj2vjxnJIfoq4liaA+4mAuEWbF3NGloSeQDTC55Z7Xp8hfQAoc8pwACKwFCTpYOZU1UXgMwxljx6PVtmAbkeGKSsCK/lb3sweqF1ecR06WQbad3SM/BVjfy98LzePJ4HpynPEZrlQ9cOx3zyZY7tWS+3d/ZrVAs83w8GGOItYDT2wmlkEumlkzdKo/Hk/NsbDWABu8hQeYCyFbFm0MspOlRg+fjiE+Y49n961/TNRnPTCyHMVbTp2JWGMOAjf32K3W7k9Kd49RAhscBR8/k+o71xtmeIc2T35dqhgD2shqq+euTiHucoxkjPNzU0JliyKUswC463gFG+ZVz2wIB3Ci2cavGLWWqWcT6aH4EKFUXM25MOnDOOzNl9gKenJEGvT04zx8cDbINbHwGc2KwbZW3LVP8Ri4mkGqeWEby41N7pH38xEh8rzvdkeH2cGzCyWCYTKgXM8xXTTBlR5HMSNVIVTfq8/FJTpErmaRi7iGBCg+hGkwnTTlT7qTYl8lhveJjhqtFiUZATBUm4UODk0qXvQWHpgMXKvdt48+/fuN9v5HmZBwftPHgfr9TMhRrDGtk62KWMrjvidu209tDvmBpZ1uSsr/zlV0eY3XbacDZNYgk5aypjtn4OD+xknh/29i3yv39Gx3jrz8+ub1t1H3j9n7DmPIHctiL6rJBjzjj8hrNBj1YNCGLlCQ+BuMAeL5A9BR+oGNONaKTwK9E4hw9yu/JsqtxH/g5IkcKEMmNsz31zII0MXySSuVt21Wr1537t2/s9zf2tzvTYRxLceAXsBij4xkBsixwbNvrZSVxtphyZ7K4uCzgkoV0bV5ny5K66WfVvrOUSGs6aFvg6cpnZww4gG/v75KKPUN5gEC3ZWuBwziVi6TpbBjkKjzB4Dh11tUsRUAfMOPedj813bxULDm9P5W794MyJ+85BwM641P1YECNV/MOCEZlWkRvmjflJCgvuW3hxxXG+mOO8Fic1OVrWqoUHDOTa6ZsmeExhd0VsdrUGTRbo7fGHCe9PenHJ2aD1Av1dufhjf/X//v/ybbtvH//hTEmNTtvu/K058d/YfmxiWATHmMkSq1seafPTjsazynmaospho9Dfo5l29R8GoP/XTu53e//wE78rwCeNEJx4m0VhK6pKWGslnKYZkZXfi7AyFdvKdggawrJQsWvhFdJljqVCzsViRaI7m+895egf3Wtr23jQel+AVrXXojrSWklwCLtKslTx7hEVdVZBqERmKLwNfvi1WSD1fFYdG1WMGAKqb+8Z0oE+WB4rWQpSqGAjKNQldHzAteUtOtHxliMoDisrm4cTFsdCRm8LW9nT5AzlGx6ZjmRbRMd8Bp5a8QNZnllLBPH0XXPX4fZQu/DcT9nSpoy9fZllv669xYHJkNGc6VCMmf0g9bgefxkuyX6fBOrK2dS2QjiM0EgYvTB8zxxy9xu3/j1V2O7vXOMQeuNx/PEECIMGg3vY9DPU0xkR0b4aMrUdNEhUyqUbcNKwkp0+pMMyTUJaYjC2U527vIuQV4qMSpR+YvLe0eTFKILYTKgnxbm7C4zz5XMMpav0vJpGKHJlzfK6RMbAwuzUXWe5Nukw3uhBGvilDylJm/qqKtU1GFoL24VTAE/cf0MTZoLhZqmymTkheMmxRj+8sFBgUO448SSJieNMMQ1gnkYi+AyIl9dkKlrY4bxZ3T8pTeOblqw8zQWNgwHAxjRoa3D212fxSC6JlFmjs55PiWNcBnOpwgW89Jig/mU3Kt3Ruzn0W8x9nm953yRgpbEYqwR9/1ibWqL29V5ySHZ6VOJ7fIiaUe7Os+4MbMHy0NdDotALdrzSnanQPE5qbWEF1dcUwDla/StaIU5iiW9h1kJ9gB6FteZ7Ne/lwfY6rSAxRpYZwOvwL/MT3DW9KQ4oUOSZ9EViamDHms+WGB50cin4sVrbenPo+UT4FB0lpw/nPsXeQi/GHWvbvf6GV3XUiprv0WitHyUxsAQGDKiKVJKYds2etfrr+aJG3o2Pq6kcvXL5ZMhjFDj5NWUwcOLCYszdLHUuP7Nxfp9dcIkvZMB5fKzU6x0mD32zAjg88VcGX0w2lPd1VzY7nfq7fZiZLDAh8Hy9NNQENMU2lhLwzWNR3JMIt0KAHitiX/BxFGcG9ezyqx0Jv4umTrdpXLbNsm55mB2AYruk9Fb+H1JXjAaJAopV7Z8izHm9erCE8zEeANsXWOsKHk9qDkUjcdX9zRi2/KbzEl09zlHDHRw+lrra7+laOyck/2WyWWLuGjMHntu8T0tg4cMIgaz0E+WYe5ikq4d51OdfscZpjlmKSVNJEvGTInmJ+ccAWIabXTwxLbLBLSWSs0bNVfMm8zKbQkPQlYbxQxOSGWc58cD752t3nDrOJLwzGEx1kPg9xzGcXQBtiMYVcEQSUmegvf7nVozOcMcDU3K7bGXArDxBb16TCK0YJBbsMItBn0406bGVY+JJ5FS5xemvdli/S3Bjwy2PVl438gcdY5xTYlSQhvr0sVQWVc0Yw338fIou6YOxVl0nQmu3CxlNWBH7wF8xnmXFLOmDzHGkljlHiRqAgzMGUpxAVJBvZlz0JsA9jk0vSwlTTDDOn1KylpiDeUYuS4/Lbvu8+K+geLK1TQIaZbZH3365lRO0RYLJCQyf+9rxfoRjElCAundLyY1a3iNC1QaY9Km82yD59k52qBNKSeWPNIXsoRdjJGV28uL6ZULXy2fvKQ5HgxarvimesVe68VeUwCzyb+umMVgnxeb11Z8XXXNNEZ3RtPwA+wUm8vEXBDLeykqBGifzcnhP5rMVQs0x388aX/94PFPv9N/PplHAITrzEZ5UzejZdOcJBf4lNYzdsUEv/KouO7lk2cWbJpgWs+hvZtk35Htlcssz8yUlj/Yi3W2GNTEPijBrGPMOPmUu805SGSycTXp6C5/qyV1TRmrBSuyGpm4Jj9nTZoVS+QFppQCfaqhHRzUv7MmYa+JWuyqzUo0Jxw1cKerqWQl1noK1kpwh2Q1kKM5QnjbKndKOZP3FMqHdNWpOUcHjxlAbLrODK2nldvp532GtGxGo8MFQi3DtBL5i4ZUBKj0JU9eZxIsGwJdzwzm4lYCqjUNMeo9aj8LG4tVaPICotNScoxF6bNrOuQYI6aFrtxwfT6dQRZsa0NN0VX3CIiO9TfCC2qEvN90b92dHgMcJl8aCYEdaCsvHmzk9kZcbwCoLc65sLwgagxf8X1ZLvAltzWx8UdboLRyl2TG2SVDTKFSuBi8sdbb7OGvOK9buDyxBALLj0kNoBcusu7sHLKqsSzpoyN2o+KhPnOfkvT6kqW2BnNeMsZsxuyK7b0cpGSM89Tz64N8NEpv8pgjRY6pT5ndqA5lRoOqN/oYPJ6PMGlXA/vjGcBTDXLCmHy8/8JoX40j/re//nHgyYf0xP0kZSPXwu1+Y7vdYgHB8/m8ZEkGdHOSFdaIRQW1gJSiAliFx4tWHS75tnoZogmuUc4qXkIioyztlTSgQ3hEub029CpOcmyAkhPDFbBzTHchEv2adThr0tKgDbnXZxLJRvjtxNS0KLLXFkgIDWznENXWLPTPUDZNCLEhYMwcaUw9R0KvpNRM0yDmgNZ7yK80ehODswU134ekWEUTB1RqTUjCQlJKFwsgJfkcbVV+QyUnrN5gZn7//Xe8x5SDqeuQRnl7AU/e9XcxinQGldhnIttOzZu8Jnyg6WfE81TATQssaAdzdMq2kROc7UF6nvz+451Unff2jUmGUkkz65CtBmMyHh+M5nw8ntS68dtv3/jlT/+OweSf/vpXPj8/+fw85Ccy+uWtNHvjOCAF2woKKRXq/kb3DuMTyxt1v5G2BHUy+6nrrNC6M/2k9SeP88E7v5BrRRMikqZDTU36YiZK2uVZkbfwWlCAdJ8ch0zq9ttNIFRvUTQN6q5xyc954m7yW0DnZTajBtPELKYumZg/KjQNH53WT+xsOIXJd8hOp2GWNUbW5FtAUGa3TdPRzqe8RxJJdPemg3AkGFNwTV/OnnDRUbMJmLM0SHky5qHkO1gluAKIxs1KLrKMdscUupUjmxPTcEbynbHCq/MS8ldNjQNcjLmzv0aqbnFQW4C+5pPRDx6PH4x+YHR5sc0F8MgHbuWi3hqjndc50m8beVbJqExFiJlAJQ+J2ExiRvWzBxtldUJjItR09ptAyHZ1fhJjDD4eD1LWpM1uAjBSgmJLXCIPuTEG7TwoOVFLovdTZrFbIWeLDiNg6UXdZU1iDI+ZuYLf/sXHqrLox0tSIZ+buM4c9z8tEGsxhiLou1+eEERhnCJ5AY391ejhcp2RYw5N2UMBu5ZMzoVnGzq3h4epY5ZHVCmaYhbBemW5htgi+Jcu9QK1iOmpEF5k6SoMFwiXkhigevCSBvXWA2jaeT47fXTutztjwO8/PnBXUalHI9Cpj86WKyUnchaQNLs8SHpySt7Z33f5cU0LVqOTa/g+REKvqZQjnsW4iikgYtNg9gP3jjMu+QP9FHDWlYylXCTBSYXH4+B4nPiEVDfu37+z3+48wyNvmea2MejJ6BZAyio8kB/FAqlE1Y8i39ce+iLXXQBUFLZxUuj1WCz+kMQm423buO033m93ti3Tz5/MZOzvvwZopkQq58w8M/2ZuN9u1LTxtn1TbPIccssF4Oi6dD6JcWVxNQLNl6Qt1nHkhgQ7oqTV+DLa1PNdyG5rmmCZSr4AsfaE/jGpZSOVO4uN0ZvyHKOQrGBoWm9vxhxFDIF26prdyUmApwX4N9ao5wvEg1wK93rXYs/G052P1uhmjJx4PA9KKbzVd/b9xv32JlPQWvkxH9Agm3w1h8GYndbUqMkY45x06/x+/I1ajfv9N1JxsIb8CbNYoinJZ6obz4+T49GBmCSadHaUUnh/e+fbL9+474Wa1Y0GMSkMD5BqXkm+mUD6ZfjuljDbmF0TI2f8TOv9agZq72vkQELAU441577A9YRlncGwhSRhYjXJE85P8FV8JOZczU7TNDb0fo5/8a9IkS+u4kPm4Pik7jvgHDwVg2aP889oo0m6HX4vczR8GiXDGvIyirMFiLXyqDldU0txet9YbCs3aOa0qWKlJuUD23r9AKR9qOBXVNGf9VOejFrvGv+u4RFiNuJo0mGfnL0rL/2ys/+1L4szSAbRE+JckURXLCI883x09veE5402Ok+ffDw7Px4nH8fB6JByYZLxZctxFYlRuMe9XYDikr0tWKqUqrxnJTXp1dRa0nkdAQtY0DlQSGxkqkPFscEFeumlZZ2Bw+ymvP+QlC69zQB4AuS1JDmlyWy8d8U0i7PWzGBWeDjjP/3O83/5Cz/+5/+V83HIaycM6mdC4CsnLWVayjwNToDDyUPNwIEaHxaeOr7u12L2RLMxlYJNNURTiZ+/vPsirypbsOEDDE6JJVkeQz48uahRVLPMjJs3ATUI/LQpNmw2Jy9CwOnM5LSjMz1hdSPfKrkmnv2UB07RAb15xs5YyFUA9/YhT8zmjWnt767KlIz7vbI9xR7KybCqqXvuTpuNNBP5lhWfqxKlPjolqaha5/RxaC/mWnW/R2erlb1UloxqAExNBNfXDHZ9fjUWI+dKcQ1z9itGTTJuLxnYWGt72yJOVNmLoBxHaUDDce65YA7Px1N+yPuNFvs4Fcg1YUmeR8chqXgqIiKMPsKTKin2mYzm3Z12vlhR2jOTfjF+lPuahbJi20gYnlcjFY550vu4muylFOZ02jkvUKZW1d85VXDj7IobhPXJV9xbFhRChmy+gKOcEm1Cm5N2HIyxVE8CGZdETfYsnUXisGheyKal0c9D554VESwM+tE4ngf7vgts3Eo8XWjj5OinZOkBgC0wCFx+d0P+fyX8ElsgCVM3NBpuiVJ2ebiZMUnMtABkVy4yhjxse+M8T9yV09YgExxN9jOparpdf1ToE2+TfDxJvXG/ZUow7d2MQQbPWDc1PWZnnAfnefL7X/4iBuzQBMSfnw9yqdS6cXSpdd7qG7fbf2vGk8ugccktLBaD98kZga/kEllmeBeMybRAqr901c1iagr/Alx1eRbMCCYpDpQ2hWuPlYWZzO5WlxBfvgtrX6gwXoFhpb0pOs9MyflySFlWh9hdms+ERQc1UWJkfXIolsnFhRROp7HGJBaxrKYzLbrHhPWuSWIyesYx+vBr82hSxosdtMKahbfIWOizqSOASYqY0pTBtKFA4sTzUFAUk0W6dNYtiAW7EOSatdz7SYxHX6BXmLDNFJT2obHCOD+PgwTcqlgceWY4jN4mZW6X9jfF68/ZOY8nYuck9r2QrKqgjgKgN+fxaOyPxuejkSukvAUzIaBgwGqhjnF5gaRs3PcbqRQ+Pz4Z5eSX243WEu18hs9UotrGVnbMV6FdEY3c8ZSo5Y2cdnxKv51zYT4b7Rw8Pz9ozxMbk2qFt+2N4pl5OFTDslFNBveeKs3EHpBJZea1tB1MY2wdgVk+jZI2Id0ONhLJjT1tSqqxAHE7pZYYO6v1PoZYCD7alRAaHgeIWArn7Jxhkk/JNO8US+y1yjNlaNy3N38xHVJIOJLAgjmVRKYsnwJMlHWLIteRTngEU0Y5iwKKAKMFeEThH94wZoQ2PRKihMwXp1hKevYzfsYhCWjOWT4tnQ4JypaxTey+movuWdeaP88eBoW6rmL5ktzIrBF8irWRXB2raps6nNG9s0hEjSlmYSSJGs+tTtFwYqKegZUAz7MCYnKNpw0d9LLe6FMm1sUFCC4PnZKj4x/3RcF3yi0s/L58hmY9uipLHji/+rm4JGQzfDJmMOVKThcIL2Dr1e1Zh3E1AeQp0KIZxXk2SUcUTIOhNoMpktSBdtb0EMciW549gP8k6VAt+Srsemv0Nhhx7cszYnnefNX0R0gQhyWKDEwsiQuICZBkmR/jfoFlCw7xMRkDLK9DOAqAEkb23vVtHfKAPGiuNW42xWhCjZhpK8FM8hcaGpOdDPpcBV1meGGidZBWXIhcbbFcVmWRS3h6TQFtUxpUvf51j1ZxHfsWY7EWmM75bGLdpizvPjd+/Pzg4/PBx+8/r3N6tC42R87hA6qrsWiMzCUpSYmtKvnqR8cGPJ5PfErq7u7BTFsygRGeQIEALpAQp9aN+75z2zf2fQuwB0oqWOICGEuVJHoZOi/pX1rdvOyX5HAVVpoipT872nkl0NO4iiWz1z1f+UeKLnofLZpKkhwnIzrhk9YF1nnvEZLleVjLG4kS/jEegGyLGG9Awz0zxpPhJ6M/NTmuNckCouubgkH7ygReF7mGBXRO8AJelGdkydinTaZ1BpM2HrRRmfMUU88nKWVq3fj8UFMj37erwbTarb0PDj9pNHo3juepcdwMNTfyRjLJSH///cHz0XHP8ucJJlEfDSua8LSVzBaF3egCXNUM0vo1c4J79mL5rg69AgOeihg+fUTe84WBESCorc5vNCNVyEUfPAoRjZVfvodaowVN7ZoeDPWp8+TytFnghQKGVs+/qG7la+OMy/tNYI0Aw/Xv18+llMipKJ7ngj91H2pOAUBoqzQu3j657ECmT4c++Pn5YNtkxU9N1Cxmhjta85YghVR0XaetvFtAlm7vsrMQIWu4q1CbYrMZkkI6UjowBbb7+PsdbX3cJOb0NEEQBlYrVit520ml4CWHV1EYri/2/dQz96mi97rIiGu2mHUWTK6pPWpzXqbYmnBqUj4spkQUuyXLU+56nLMHcBki0IgJaQLIiyWC8rVfLaVYj1x0hZQKpfjFAF+5e7VMzWFMHE3ixfhLRXnDjx+fHI+TZ33y8fnAMfK+kWrh6C2Yp3pO55zy6qlVQLuH5YKoNyz2bbSY4oyLM3AuBhXUImlc8an1F0Oh7CqWDXziw0LP+GKViVmSxGALTzoxSCY+W3gUOTk7JQyLty0zIq6V4mzVuN936lYDFKtQsqbZMekej900eGkjcXLSvMu+rBibbdT6Gmzzv70mnT4GaWpNru/1NSLWlLQp/yVrqEQ7mXlSUsdPgQG3tAEu+wtLbOUuVlFMl8Ym5Wtxa1xqoDFnMNFCHYGxqHQjciqfMamStHp+pKJ8omxVe7udYJKFk5PAybGUA8oLtrpDEnBiLtBDgFZFHmrxTTQtp0WNlGBoXwKkHCy1sMBRbTAEtpvkvRYNtNW4kfdgp/Uuy5GU2W839sjLcNUdYhhrzU6TyqdPgSbTJ6VsXN5iubJbYYyuvw/5p4YhiImzckAPq4utbDFtTe/Z+7hYiNMQQSUaVAOdJ1q7IZmO7zFDoZUqpUa+PcGX/UIpAltdjMTLrzEwE3CIZkLyiST7avsIkKwRj0Y0X0X8cKIpkJOG5owpW4YYlNPPxHFqYNlW69VsKQEwW73hqXD0KW3uOciuOGSxtuaXWkaAfma0ho/Jx+8yIu+fD3xMGeNj5H0XRnE2NheOkdqMWu3vf/1XAU/JMjVHEIlgNsekHaKObe/v8iTBGXTOfjLdGTZeh38s3MJKuGLj2UqmVcgp4RU4cc7Qzn6h8aUctMfozph/oQGvzD5upEdSkGIa2MKkSq4KBMr8lRwhgZcMhDVVbCXiJUH2GCE9J7nHiPC8JESity42jJZzHBQjJCNLCmOwzGEvI+24bPlKhj49AkEIKTSlAteFmIt6GokNKQqtnMIk9AvTbE7OUywufDJDqtM7zKHJCDkXUr7R0OjXQYCApk7H42xkM97KrilClvGuhC7FFCtPLm36Dr3BeDZSaMG37Y1aKz9/nqKiJyVaxzF4PjvPo7FbYSvqimu7KmGwWhi9U0rWZEOD++3Gvt/4S620knnfd04IgExdq5oqm+34LOqazYK75GipZLbbTk47eCaZpgH6gNEm5/NJO06YTrHE23Ynz4Kfrql7NVEp8qRIFazRXB3kvCIG63ErAA+fnK1da2ssA9GpdGELQ2Dmy3DckhiGOako7YHiCxgK6WAyTU40eWW02Wiza8JFTrQWnYZlOLySPR+kma9AZ0n638XosLSmGKVVo0TRkqIYVMCcXxJ+C48S7fWQJoUHk1B7LtqupRwJTCZNGOFVhHnQTsWqIooOdYAHlhOl6FqTZQoCYGfWlMzWumifvpLUL88jffGcAXCZVKaiaSElWIcpvYIiweALzRhGEpDkS36oYKDxvuUCBywJcNDI+wjaDq0P7WsPVolLyJKSzquV/PmEZC9mT87aix6d62vK0xT4YKlcUs3pwTOJ912AohkXqOkLCTSiu/PyYpIsTpNEUiIKJ3W1fLn3stagR/cwAKk46H1MXTjRFQ3gaTrynJqAVYj776bzbBUSfAGQLtAsivuUwsuHFzh1AU0rrFyy7YgRkZip+F3PchWyATzRZfwaE2C6N/oUO2MdtesNR5zdNiW562OEVAs9Q89MKiOAJ1ZB5/6a7SB0QfvKipL+VVAMgS4LjNSZPq9YQTRLFmV6jMl5nDgh+Q3Q9+fnp0Cmo7PvG7/+9osS/Dn03jMHDPCKnbpP2jtbLhSDI1c8TX6eAlf2911rOCVGH+rmM/Ap2bU50Pqq26gV3vedfd8urwgzIweDYIwuWVktjLYmwekezDGY1oPxTEgA7ZKFyqNRkt3Rwy+Iov2+aoAoBi7gCQEa8hbrcS8GRJd2sdB6D1ZjPPdkxk6h5jfwouJMD4Q5z6vBNqdAgjEPgUHzoI/GaJJ4pbKFLeXrigiGsFAQrbtp6mgrU1TBTk4CHWzi1sW0G0/G2BmzYV3nbLZELZXWPpgTbrcanWExIjExHRkTmyezwHmcFE94mlixFU1JVvj4+Ts/fn+Ap/CgyzHZdEbXVezMrSRkYjphdpkJbzcUDVVcCSDX/R9zvs6UlElVHXH5hMwo/EOWWCLnagHTDCX6yne04z2tva/7ek1Bcq1sLEWDT6COpo5ySZKW9DhZSAkjbn79miHttryYi5MlZV81FrE0lsFvqSrEWvgGlpyU2yZoLZq6YaegEeuZs+ts8oczPJNKpVRNDyasI1rvQHjQrQboAmaTXwWjwliN+k+gX58CL7orLqy1DyMMrzXdUVLJv/dlfyjuncjbSyHVQqqyNWABvvOLwX40G+YYOsnTYiZ6DICKRsO1i3WvLGJOMguGip5X+/Ka2RabX16EFqblsyuOJ4smib8ArcsCwPWalpeMKACXaJBq4nYOe6UTyT4D9LGEp8RWVmz2a6vnrHrh4/PJ0+DTYJ7ymBWz3pifMgIX8DRpw7FqpLLBaHj3aIBZIGEr1wmeR6wtFvAxY6Jm3UhAiYEMPiUDTUasO+htXq9xSeWJAjX6katH7PHaPocabz7ZNi7gqZaEz2esayg1se9VtgEly8erZOaZ5H+qnaXJbsHsP7tY4FJ2yIdUrLa/vyrHHIy5vCRX4a/PMmasr5QjT1IeOc4TT2pAzdahTrZawSULtZywukOSJErlrIX8LXLfuD8Cvns0y4yUPSSuvMAYf8kqdYZImp+S0MO8qdFzBkhkBpbX+6yBERMjx31ZAKRdwBIs0OllGRLHggBpV/05ombPkSMtNzVj5Y+Rk0QOvxjci6HV2+BsDSpYSdxuN3LOnMeacq/zKlu+pJzP8xn+oLogAU+a5iz1ROb5fAQ7TPctV5lU9kjO1tRfJtQicslau3MczJBfz1VfBWvqNezJLqbRBTw5MUSmkj1d9dfsAo9T5Mi5AN5x7yzpd0qRowaoNcgBPBHP0OTtBNrbKZNylSSbJFP7knk8H2LXlahNZAJGa4N9E/tI7yhVEzljRRNEz+aa1tfVmBUwvypMrlhnbiQfkg7T+fz5k8/PB+M49TxqpVriXjeeZ+OxZIc5Yd1x+28MPP14/BAIkzRmfdt26eRRN3yC5EMWidzSW9sK5HEy+IyN9rpAFRVa3Ff6Fn4dThQ2trpKy3spOjcrSCSCNutKYpGEQrpQvXLJRQX9IYndlrfwlhgKLKDNOKamiJjomHN0JcGx9fZSSSkzc1WSkzZgMlMjJ2PbjMfvB8+zwb5hGR5HY/XfU3ScSYNpXF2QFGBVi+5dKiVoe9L7unN5VzmDRQO85I1T9627KIi2ulvOFXxV4CRamFp3tYPBMsyMj/SSJERRcLvvYjGlhLmzWXT4W/jezBRByKjvN7Y986c/3xnj5NvPjefjwefng6N/8uwowTfj27dfePv2jX/33/0feP/+nff3P1E3BZLhkqGVqvfq/YGVjV/e3+mj00cj06ip8P1eSHPn+bcC1ilTpptbVlF0zIcmiUwxMRbosNWd7fYbb/fCr+9vSjb7xA59qysqkKEkeQfP5vTxxLY7KU3KjM7bGMx28Pz8nd6P6JahaitLhdx6U6HtWcW8ZQVQD8o7hrUoipdet5jYOlPPXwdYdLV8gstHQBGoqKgdk89Hx8rB85y4ZSzLkPLn41QhNz3oz8a+ialz9BH6/OXvMF5U0ZjkdksZZ9Kb2H7JdsymGDlFP9vGDAmJXYCBqCqoQ4aRsoK3J6JQjSMzhfePpUiCV5EeQdU00cenNOZHaKKrbQLG6wY2OR+fjGmSlNk6XlFRMAXMaFLifCUDQb+2cqkDIACKYvXq7nkKL6roquaiwC52ZCJ5kQnumArqHXxqDcjzqPLt23cFO/wqiNStF2AxJ6TzwH1GB6nzHI1ouEaRIXbjYr1cbCdmJK6Slk4/McHicQJFgEgzGgUmCQiTklUY4s5ARYG8cV5sVHmByPcsmcXQp0iSwqipe8iQrch2PIDK3sfyXcdMsqU+BIru+ybqdazDGRNBgZBvByMBZ6vB+FyxwgMMWyCU2TX6W7Eo4kcEmP4lgfYlN8iZnCvNO907n/0nH+eD048wpx2kXKhlCxADxjgYc7IXdcLSBnlLbG8bc8KzdzaHTLmkaMuvSrEvkp7wPshCNXQfMTGBLIzbk5NMk/LGAoVFt1QB15qmJgVAX3JleQzWNRCDQbHMrez8PEWZ3rrG6OqykmTHZlRQfBxdzZBp7NmwrVKyQLYzPB6eZ9NUtOjCm8OUVo+CPL/uW+H9vvH+vqkATPH6QNmCSr4aSynxeTR+/PjJ8+wMT3x/+8a236j7nbhpFxgnacuMBC7katLIE1y82M0LFCWaGjCzkuz1M/hUs4TE4/MjDDxVlNZcAiDMpJFpmj5Cz4NtVyfx/ds7vTc+Pz/iucLzODgP0eJ7H6TtpgSfRCdjU0bMOWdGGKxbmqRs7Pfb5deXLAzERofZebtXak0c7UFKiftbpWxGnyeYfGQ8yXukVBcw2A8mxL5LL3AdyNtGLonR1Yi67TeI4vxoB60/+ad/+is/fnxSyx0jMdszGlqNrdz5/m3n+/vG+70yXGDg8dBebpHgjjki8UtX/uRDf5bi/OnLl+JCe5c9PAHIOrQRhIF8AVNzKHH07mjk22K/ZSZdYF60UEgJ8yLWn/R/OkPnCDDGr/xzyV3E6BWzaDGHsRXeLH6+KEb1MDhK16LjfJ5gTSO9ww/wZUGhPZTrpuZsKkAW42Fdb95I5aax8me7mrG1aOiIzJ+jAWqKB302nEndwjskLB/6HOQoLkdov8TmI7xAHbbMHBpxXlYe/698zVjX1A0rk9FkKH1W8DT458fv3PaNb293Rj/pjwfn48l5nGxm3Gvh+32XPKidQCZT5Z/DAsTU4FsFfTYBeCmac0TOayNAvKkGSMrK1ZhqbKTp1AA1NmRKnuZQ8zBlanY2g5pmNDSaTokOKZgHK+YuM+Y0SzQi1lmmXoFN2S7MYI8R8lKfTu8n5ETeMs0Gh/fwP4IzuSx+3HArlH1jFu0tnzlCXg52TI2mZg7OnAuY5isTQyzuGRLtEcxlMI249wTEGjflJa33Vy2HmvVtnBpEEx6HOf681MScjT5OtlQpW2G7b2w1qykyJtMbg5Pen5j9wq1uep7dNaZ9SjXRvXMch4BbN5onGom6vZPypJ2Q599fk2C4bTpvx1SuuJXLBoJqUIy63678q5aN77fvMdV7cj4ejOMg//ILORf27U4phdv9rhos8nF8soV/1BnS+ZQrfTZ6ky9jMqfcqvJ8lL+LHY/O1NHF+ovG8hRNmTQlbxtdAJ7jUr+QBRimfDV8ZPCvSZI5VW77Rq13StmpdafWO07BHVlpxH1aiZXZH6WtyicJpi4xNS4AJwiP4y+5jSkegu7n+RR4cTyfAl8DDFpDFGqVGbgG4iiX1bTIYD5PreERnns5VD/n0WFO5jQ1G8nAYA7NlJ82Ly/YlSEu+XSg2bAyTV8kEUhZsrGJ0T2FBXK61klsGsW1GR67sQ4k3UX+gqZzXkMWpKLqpzAFovE4zmimdTU7ZxkUKrVUPGc8GVvNjCS8Yw5Zt7TRyduGW+LsaoRixm27k0slzbvu29lJnlC5IImmh1VQKQIM9/CpdIejdY6mBlitmb1+i5UhVt3sg1vObPdMn4npifl40o72D+zF/wrgqQc6OcaglKBZBt1sETvn/Opg/y/WcYAr61H9yxHL6zCLH78WgX43XYfeYu8InZtR4KsrJYQl2A1mTOssSYxhAlcIsGRJ7KaSjIUes5gdUyhycvneXOa2BhVd07Sg61rIR2xiKevQt1MIbBINsoeBRoruq61OJR6Fha7ZYwLZ6khO4BorzmJqqJhIq1MavMFLXTjij6I1vzrZ61UgugnuF+rPovovksF6KpbIRWwbggGRInDPxTZ7PUbKVqi3ytu3N+YsWOqQnLOfnIempIjZkSjbnf32zvu3X7m/vQnMDDNmTIWD+vAaFayOacVOx2cTEyRN9proNctrxSRZS6bDto/G8EbzmAa17mMkZpadUuS1swzsGEpYcjzjxKKEGueIbnpX0rL6CSu5GUMd+mj4CLhKoeO9GrqBpIfZsxLWcOSaL3NuIwWNeTHX/A/P5Qq3/mWjqTynj0nrk96dXCVF85CMsBh2SfuS0JyvqULJ7QIbUjzgOGPVnXXnbONKsBfjJQVLqI1DIFngYemPlxfFpdbuXJKEACpW1zEwHZ0FAZquT58syTJ9ihEyhzwVssG27QIEpl/3Wnt6vXnI5JapdAC6gfUyC1c3zGKfJNA6MK575bZej5AGSn5oiN2HEwUFXFN44kYu6Yvu8bj2tceamR7g0JKtLXBk9BgOYFfnOpdgMcVnFLYczywmX4mNoY7OH85f88uHjEia9Hhs1fUKNP5qBsSkgFdnLja/rn9+8cyY8blmAP9cgPbQMUIu4bURgExO9jp8PA6y9b/hJWARB5ZH4NUhn0GZftF2ruezZCavBRgvHyDEkgllc3UPERNQrMGT6SNWqUBmyVF1j8cUrJFSwbLHt6jxs026D0YA3THI9w/J3HWd0TQQwCaPLj2fjC3GW4CyvalRsuQUKWkaoKa8jHgNATJrYk6O9T/QJKatSlbsAWoyZHRsSf4MBI9quAuhDY99yVCVbDK1f/ucnKNTU8j9SGpiIIndupYlv9qWx5UFlOCKgWtIB/Gs+hg8n6fk6Rhl2+QdkRV3V1h0W2s2WL4oD3BzZlpSvXX2eoALXGCBfBTjO9aL8ggBkq01CfBNey+RyP6KlyOS9kvOU/O1hsYU0LjkASNkZTnLw2JOfbYxPdg2SXvIr6OSGq/Xgv3GimVTE30cQgILpYrNMWfHc2J50bgpX5C9y4sFso6lte3WUIwRbJWcNnyqMGln5/FsPB5Pns8n6U1T7sYa/Z6cWhL3W2UrSYNaQu8m4GyxNly5UeSDi9F9PZ6UtOciVq280eIM8jhvcElQFcpe+2EVEUt26RYG7ilY6YuRtBKxFd/sJXVcYPac82KkrfxWZ1C6JnhqDce5GteqwQ9TnfJIaDVanjD21pmtBtKLsafXLeRSyW5hxSA2pc7TkK5Rw89SrBlNQlQsXnJ4j9yJYOdOd0rk2R5F5WQlfPaKG6sQNgFp61xeTKO//xXd/CQ4Yg6N/54Jhk2OcZCnYXaLvKkz28k8T5JLplSLCk6P5oYm6erdRzQ3Ljl/rKTlCXnlo19z09V0XcyS2K/mAVrxGpVuLt+cZCoec0jJX9lK7PV5nehBWJxaTyNMmWJv2fxyPWP9fwBCHoXcNA1zSZlhk3bFHDRowHTeYsozpqVQHxryGuNiFkt2XbTOVwy9GMr+eohhYK18I9bFl1xrNUWcLx5DyxvRxJ5Tc5JguAfDa00x9QFW5Amcsxj5Z7BzAhCdIWkuOXKmgZqcbkt7ohol1qhyM0mJsjnjOF/39++tyiSKlgb8pPCSVNPFi0GOhmgQHHIq7NtN09FnZ7QWk2+HvIE3+QPnlBlYaFvXeSLWv/nKWTNmg7XdJn5ds39Zw1fDzCduIivIAiYe2nX+r6bcK5dV2AzyhhMs0Fi7Jq9V2bCs74xHIz5dMfKV7CdbZ23UP6HsGXOdcwtcXSxNf9WO7tf5sar+1SzoYWtjIDlee4qoF+CZVDx21Rzraw1qeA3WUrLXRlMC/+V+LgbxsvkRWDVxW8DQqr2vA4KVTOh+qpZZeflYW2fVZl/sRKbPa6L8vPL9NZgq9uR1zr6ue66hDaba2vUhFa9X7W5ptcPCYzPFkKqhJtYcyodmsHddh3RKlZQ2ksvCxHvnUk+FYmHE83EzPEsNM50YxKVGf0qJUtRsNcB7Z44hCeVSqozIF8LC5R/5+oeBp+/f/iO4pjGApE6zN3y2GKNeFRzXBzEwqyQGbp1lOCzvG5MZMEh7GgV74EUxklkSITEcRItr5mEGBr1pWlfBQiOphSZvBgnmenQi+lqoWTCGKI6vaTtAuMhnadw9ZD22RhlP3aolJSmKAdNiQsXzlDFfvSnYB4W790HvkzGNbS+sxCFneXn0fjJmk9TLCqSqZCTil+RmapVYtih0LIyR0XsNJS55ZTe82DMjWBHOKjDV+UwJnjaEeu4CNZ6R+I3ZSKVQtrumTOTMyJEsJm2MszUyRtkKZhWjcKIE760kycJKptobt+3G2/1Xvr0/+Os//42Pj096l3xn239h279zu39ju1VymVh64jYZPBjjlLHvcAo3iETp/rbx6/Ym2Z1N9lvFfef97Q4TyQAsM5G3UZtGqhXbFAzNTABFrjx65+dx8PvHg/3tTQlfUccxl0Jrnc/HByVV9nIjm+NJo2FzmuSiBGhmJ982vv/5zxzHg+P5yXEc8iyJAHCrO0tmlIuosC18VmwqsarK1pn+8hJZOc0MlD6nLLbDrmKt5CKa/Jzc7u/UvUo7X7foOL+YP1azwLHe1X3zSTUZH/pC/5MS62LBVDRn+CnD/PqGe6L1OHBni4NJprlXNw+HVHTAxX4qNTPj4OohoVksFWOI6ZTzF1+XiyOow1S7QR4dVqjbRrPOMBl7u3d6Cv8ql3zg7JpGeLbzJT9FxrLvb3sUYZPeTs72VGfXoEWtndY1mAr24goUClhxjQF4r7NJ7BB5VpR0V7c2guhrLLdGi9+3O703+cIE+lVC5mNIwpHzFmwWUZB7n9S6hQ9D6KtLlcZ/vAy18+rMW1GS2BpLhZCSjE0XsDlMa6H3J8kUbHKaYoz4l8BnCwwE4nMt01lN6rBYxzFZM35nzHa9joV0ci7pkFXwwfPzkxGMp7pvbGULE/oXSyWp+lS3KAo1+Q0MpqsruwDmEWyfNS1FZtUJebZYJFVKRkp4UBkTs0FOk5qMLaerI17qXfe2a084kzoFIFczKmIJJR+08/HFQ2LgyLNA1OtVKIW+fyVbEzER5qAPdQdr1dnhSczHaxpXGO7Gxoi8fJJr5q3KvHeMwfE8BFhGTB1jsG0b//v/+L/jv8v/kZad/8f/7f/O//z/+f/yy6+/se07eVOCLgKKzHZHJMctGE6pRiJaKskGNsSs7KhgUDQpYjDmRK2J7dtGfdsobxfaKUDRv5gwW5G/REwwfZwHZirEU61YyTz7yeUD4ysRDabGAmCKwK0FEBvGXLkGevu96M9bm1fSeCWvqFNaLJFypeaqAnh543gQHKomLCVznu0nnINUogmXfMEphG8nqWYZ93swFaMoHnOQY4KohURseMeHcx5KRvscAbafHI9PjudBu0ChQakFi4lhY8Dbfeft/Rt/+S+/83icWIIaZ8WYkvSMMXk0NZLwyfe3Dafw8/NJH5Wt1gv2+fH7T/7y178xZqPuWYb6TDwP9r3y26/v/PLbN/705184xpOfPz5IdYtCWPehzXYl49NVR801vXfEOO282jGFmiSpTgFUOl1+N/MF3toqGPgC4Kxa1cMbLICKNcnoOAc9ZWwqmU9lAdlrkIXTPaRJXVYPKr4DfMwJz0WMooQqE3dGa8goPZPJkO1i6K+zc34BQR2nzxbyikS5bdz3Dds2Wh/87fcHrYe33HBm68KBm/NWM3t5j7gWscA9gB6BFWvQzlwDMS6P0cWE6QGgTnn8MBlN68yjqXOekjedvXGOv9/RXv5U2muT7geOs5lYjrfN2DejFOf9nvn+duPx42+05w8+/vYXfn4+OR+N4QFIBCKxdnIbsu5QMU+MXo/3jkZyiLOpuarx2fQns4cP0RgIa3D2aKzWZFeDs6akRmZSrdBjgMFihpSQSK2JXYAY2oS3iy9gSwxpi3VZSqJ45RjKn7wFmW+THK8XOOh8tIeK25wDw7L4nFpE0wdn07oonqhVTJejNdkkZILhlWQWPwlQQv66CSRlj6+cBUzMAJ7a6Fz+NC5GtEyixXh3l7VQCta8RTwN+EnxshRSTHVr0/HuPJYtS9nI9cZ++0YpN4yCj8Gcnd5O+uicvQssrRoy0rvjMen6/X7DJjx//Gd8/H35p1li32/UXblkTomcYbup6dwSIZULpUHWv8c8NfClFE3BA/ps0F357HDOx2qozcug/rmmewWQnl3Xncp+NZI8iAUtZNy9NUqpvL0XDfYxxYDpQOuQEsUGk0lF/mXy3Fry3mjmBDvo+TxJqVBdEr1t39nvO9ttY9qgz5PWD1Z8XA3xJUdOy08v6pCcFXP7eIa9xqAkqX9G07PStnslibI0EMCTgy33/nbDA4DqPfJGGzhNMTU5fZxSDfSoJVjTPRulZPZaGYdk98nmhb22s/P8fGo9b4UxFfPbPJlz0PoRMsATMc+WKY6ARiyRfFN8TzJ3b6NfcSFCDKM/WEEm4LkrFvQ+lM9jyoSiubG8pUAWFLMParYAuGUkLoZkVj46J/NojLMzk34Wc57eeZ4P/vN/+U+UGLYiKKdIlYCRb3dyrvRDRIkezPKJUUP+WvYblp1uAjGfx1MfzhNl2/nl/s79fmfOSSliZh7PT0Zr5KIphaNP3u43Ut45j3k14f7e1z8MPOW0hw67vVD2WBAWBeo1njOwWLd0bYgF8HowkhLlSweYYBjEIcFCXENruf5itSnj9eJEef0ZXEjnhcSaxcYkZGseid3KMl9op34m0P60GFiB3KaFZIruLf8PC8nPouav91s69JeXSLb8eqfEpQ83/3oVC1ZNQo8XwwCCQvgv7pETyKhHNvP6OwtAbjEm1nW8QGS99gyJ47KomJcMUMBfWqN5mdpYy4/LLJge0Qkyh2QM74yZJPdICkrJMrUInJT8Q4an+yaPphyaVbdB70/GOGnPT0Y7+Xx8wDTuwY7Q+xehvKYnW2qhzo26V8rZlLiGjtdTwqe8MFb16joFmcloPjnG4HGelPtNeuAEHvRmSaF6SJmi7Y9jml8bIE0g4GVo6sToMe+186pm9LzWSk2xRq51YsGmiO6ikpZXl9HimblHdwqLMZjpS/L95flHoU0kuR5raBlsX0iIrYOTq0m3JCjw2idrHztrD1kYHo+4BrErZEj8YtMIbL2quVdHzS918YIArvXviyG0mCGuq3gNNUCNfLPwT4Bl5npNBQkWjEwK/epUrHNLufe6kwJfzJeX1RcGUtykuRaQ7F+uTonhsTdDB++LqbTobdHBiM+iP47/14MIqZAYdyDW0DImjLIodPRLZst1zsy40GsaVHTVscU6fZ10QcB7PQviHttK00GT09Y9mLHmY6kEULXW2TIVJe4BfzhzY23FPZir4eMvsF8vk657qcmGi4Fa4iLnlzNs/eLqwq219Mc/v6Y+/Yv1tn7Wvt4H1jMIXwZeA+ezST6Qo22SY42w1qN+U+CvyRvsks5EES05etx9H9GQ+QIswpe18tqWr88Q3bEJ0+I+ri6af6V3rQQuCuz4vH3KVLTEe6aiqT21Vm7fbuRvN263WzycyfKWWc9snSXrec0rAXs9YyJhktQy9s1ik6BDzFNcvwnoUwK31liYA7uFt47OjDE1YWsZtU738NRaXfnoXope8YfnyZKmj7kOXFZegK+cI4rROb90Sf21UBHr2NaExz+csWs/BPBsmkgzZpdB4mtJ6mSIPS4phYow3Zp1tmlRrhjjvD7nRdRdk72+FIxrDPVaE/KXK1yd26mzLQWDQxO2NCxkAUqLAaXzU8Mpeu+0ZLSjX6nVeR4ch0AEGbLrOixNSobbbeO2V/Ytczw6vR0qSpcXp1n4eggM95W0R4fYQ/6vPRpumya/yq8Hsrlhq4P8Zf2zYttarCuifD0jWOeROuSCEVM0QL78zlpJZqwx5bpHii9qYo9XPCXia0gC14m6/rnivzbR9T5aI/0lF+TVNPDoxDovhlrvMoAuKdFToWZNTITXe89gh2pJ+/XZLO6FRpwTUv1Xfo7P8CxcYLA+32DQGdeY+7/7de2fxYxVzrCcT3MS4JMjDzempg1GA2aG7Ht5JC1w2aMBdZ3zsYYtfGWXvccrPuoJrGJvLYKvrJ7rHL/i+bXcv6yWlTeF9yB25UeviVhf6p7IMa8nbAuQmcHGD+Dhege96Trfustv65owF2dWXm8bZ5SuRSB/SgS7ZsRaDfbfqiWuTOa1IhdkduXG62yMO3vF2HWlxoshx+tYvXKHKYn/XCzEiBHL10qAhs5mS5WUN8q2y8/G0uterjzwOl8ip0nyMyy2zi7F6n9A/QkmIEEN0HI13ywjlrK9lDIrCCu+dEnZ0pJxxtqy1UCaMmJ+vY3OuVhrS4a4/lK5sq+CLti2+neL/ThcbJSRonkWa+jr3tYlvGqFlSPFquSVw/N6goaabyWzmj195SnhQ/Q6LwPcj3tva1jIxcObX9ZGxA+f13q71ofZH2oc5XFroFaPxpSaLXP2V+4Y4PV0gYp6xis3eWEPl8znAt+0bqKFqCEwrtcZPtTMifNNn2H9/jqLxC7za6+9clxnXOtj5QxRkXzZN7Fe58uPWuosvxRCqwZ47eXXubOGTGQzGZ2PjltHShj5a/vs+Oj03kglAKv1CgsP0eJU/RPNPW3xdOW66dq4sU/nKwZmFts1B2AuxczZ9NlSyVEHJratknMN38r/xoyn0deI7kSywv1+fyXPOUyJq6Y3PU6Zik9Qt3oaXZ7W+vNkbMGOylZgNh1WV/IVCyEkKxP9nkY3glEEaGDUVFWceYokZi0OdehrqfQeHR87xFbJA8KjRAtFyHJ3TcwaaZI3HZRjPoFJyoMxQ7Y1BZwROl6NcB/Y0EjjXCu3OmmbENUxLXLRhFuJg2dQcsiG+ilk21a3uDDH4HyeYigkTfBKOZGmEtMUXYfR/5goG1xG1Jko3tAh6rbMfye5OCSiIwZk6Z5L3gABSBZyo9vtBgafzw+GddLdo4/m9H7Q++B2f6OUysfjnzlbovinAJLpYAWskty5lUyxQikb/+Hf/3vu397Y9oylztkP/ss//U/85Z//E+144qNTZqbmHfsuRhop4R1m4zrI3r59Z39zfv88GSmT/vo7aisbdlbMCmOe2nxqT9OiKPLZSc9Pxo+/UX59Y7sZvTbO8+A5nxzzYNC1eLuCwoQwHAQvCUph/+03/OOTn8dJr5U+NnIq5OnQOz4mx+NTCURWsk9ybHYS45rSmLOCyBihqcdkdr1kl67gQQrJlU/aeUpLnIzj+eQ4nuz3gpnokRbFSh+N43zKALYUjdJczAMhWkpuPSbMzMa2bZQsr7Fp8DifYuJtheydZaQ3hl1G1ylLCpW3SIi7Ev3jcV4AjOUcpoKo2J12JRBjDmafAlyCoWTrgJwaR5pKQks4AK6SYj80jWMfJ60/eZwPTVS53ZmH4V2j0afPq3u7PK1wyRwEIufo3IVZp1XGHJytI+bjIJvotFstMnePTEza9wgCyRk26aOHXC4Cfc60pkR7KwJk1/CD0RqYkzedab1LSrjvN1bgP9pDI9GHZF63fU3/QAWcSxZ9BWT3FwBLTI7zEQMb9GfJiCmF4P28tPVXwpBupJyYwTteY2LxOHMss0xiZVodCUrciuU5oYTYNLljAUoGa/CBtMIdqOpeT33+r4APkRgzNUUup8zp/QvwdN0qFQW+2LJKgEbTs982xSHL5ZIjzGBJ3cgM2zjoolq3BQPKNNrdxY7MiW/5Ts2JdE6N3mYKEN8yW5pkVyfakeHlAinHcM4RRRZGriap1JKArkR/wOzQTovYLuBZWV0kXD4uxqHH9LNzNPkAuPzAfvnTb9y+vdNm58//5k/8x//T/5H/5X/8H2k/fyq+mjzX5nRJ+kAARpIR6TE655h4VrzuY4THivIDMdFULKVSMVxTAcdgfH7SUyO/JUqp5OW547p25ZaT6WJYLV8aT46nyef5oMzObdsunMmSlksiY16/JFSaqPb4PLAcHlJJEo2ViJ2jx/m4VtTra41n3vcdJpzP6PLOTs6ZbdtYye+aqPZ4Pmnt5PPzg1wK79+/s6YElfImSeR80mbj8fzA3Nm3nZSNsqkgxTs9ZAAjitzhSv4sJ5J1jMa+3zDLnF1GrZkbxXa2/As1FTIb58MZxyd7vrO/f+Ov8ydjTNyzqP1Day4lw4oScM96/o/nJ+1McB5iQs7Ox+MpT5a6YZZ4nh+Yw61k6m78+svO/V4oBWY7OR8f1NmDTV5Coj3JZaPe3i7wXDW81nNysOnhPfWmCcIDxlDHeprOM0tRlH/Z74vxNJoAbMk+uUCLS/4ShcOYJzOmNKeu313nthWjWgWM8zwvCayWqCb1+TjV5MpqsGGGNzGqHvOUTGHfIUmSYz40ga1H4VOK4nd/qis+G24FJ2OlqAOfVKRadnwMzvMImaVRk3xWe+8km9zcwSZjHDr3Tbl5KiETx2ScDwEyTVI01Zgmdq+LnTqHHIGGOWdyOnCAWO9/58uY+qzxnaZYYHcmuw12BrtNNnPa8cHf+oOPz995Hj+xolx3n4XWndkEDPfhF8NmPe/h6kDtpWpSZDDTMPnzpJSu4S0jJF18AapWobmAhj6DteETm4VpUk2sIRvguEUjKLyd2rOFf5iFSswgpvjNwH2oJjZy62Q62U1nEuDFxYqzkzmNx8M4xsRzppvKXYuicVuVYgAD+CSnSsqV03tMtTt5mYAL4B2jx6CY+Owz9t2yF4kqsEeT7gLuLBiKgG0CFFo/WQMdUgDBscnoTXmy+yQVo1TlhGdrnF2DlyQBSmzbG/f7b3z/9d9ze3sjlf2qYypFvq6nJokmDIYzkvMt3UiW+Otf/sJ5HtQtqX74O+CTcq7EthfqzVByMLCkOibnXcMaimqlPhpMBBTWO8kKeavUogmFJSVut8o4Ox+fP6ml6iwvmgL9HPLvqVtIlFZBnvTfarREcX8Ls+lx0mzwOU5FllouEC6FiqBf5v5Z8bZHmpkFomFOO9XE2W/y53NiCm8/SRnqluXPNVoMHUq69rAV8ZDr95hG6iG5wnVm181I3SQBnSdtekgjlbs42rMlJ/Jew4h7AUawpG/HcZCz8/a+01qjnQeW1vAZgc8pzHJTSmRHTLChvNlcaiB3Wer00bBsvH+/8Xw++Xx8RC40mfNQ3MgCnHIXBuCEzYBrPWCZTJGkc+pnpH04gRO3iqcUXmhglqPBFX64OVP3G7ebUTKYOc/jUJ05G8gKUes8l8jLJ8kXgDrJltlLZvbJOB6kqmfrwXY7H5/086BmkVe6vxh/UwbSYrlO5/n4XdM+fbLljbe6saVwwTq7Jl6HciIn5XBz6vP080FfIHLReXd0yerzXngrO3u9kb3AzPTnD87/1lK7maSNHzTazDyOB1utMU4ZmcGmERrBhYquDrIQYrcXg2LMJkYKaBzw1UGNJNBC304g6Rh5TWzST3Bh40YUV1zo5XQ9KGeSk5BNiy5XSh6G1aH2t9UV8atQyS5Nbu+LwcFlYC6KsgoeNzDvBAdFG2tqAl4t+aLx/zFev5D9K5YArzkOhtlAI1n14Mf0C8F14qAJZFb13SsI+FxckkA50zpotbncpwCPOamBDieUhCekGU1ZRVMuiZokcbPRYJzM3FR8rU6hTcyUXOBKaNtTRYCmlk8VRefAB9y2jW3fue1ZlOskydb5fHI8Ds5Ho58yyXYSZOc8pnTdJYwum1+g3OoKuInhRKmhdw2jdY9CEWJ6XIKUVeCMKUpq/uDj44OyJVof4SMgYKFUMYeGy1jSDY3GngdjnmRkwD59UG4bR3/SUdKFK2i4z7CTWOakJj2siyou5tukNRVgZU1KDDnaxfqIhMB4derXTjMSfTQVVn3A8Bdjw/VTWxKgYuM1rWx10FMAAtJXyycgB0JOyqwuvKgzwf7gxaqy6ESI0fH683kdByHKioDLWpcBfly+TvE5lzTOrxrDYXoAmsT6iIMsl3hGAqmP4+Q4lYzmIr8agSKxTVweJhY7Lll5+QZ9ZQ860e0SCH4ZEGPqnCwoxBfnSR44IyRJrQ9syP9KtcU1qyVo+ktK4F/Amkis52I+KJHwlSObejprOpNsyXzxJOKfV2fIIxu36IIs8gC+iu31Ga7jN2R/CpzOYg+9EhEPgMYupsCL7XmdzaYOy/VHvs5/PehVBF6MoOhory73CAq6+5IqxDkHrImAHotsEgbtXz7vei2cSzN/db3jGXsYq3p8fu219fvBsly/5n6dxwHxh29LYnSleGUrcS/FSJL2Xvs4tu7F6FvPdDGXPOSO9mq3sXwEVixcb+3O1elaHW7JIAjVVDAXYu95SJuOx8FRD56Pg/NxMB8n396+8W//7b/jP/+X/6yR7HEuEdc5FuPD1ppTBy9NsDFi8JpDNCrsWlfE+tOz6dM5++RxNnaTnCWZBXjkKPkR0Cs2kvZnLtFxs8lEXcu1cxdTxwIEXiCGjwiJq84eOpfwxDWUYazO8Dp/1r1cnj2ED4bO5hcXJsC+YFeuPboYR6Xc5IXimqA6V+iNzmf0F3X9syvZXcMW4vPIMiBAmdhn2RJj+UINl6R3OD7l/ZUt6dzfCjWXKxHW2WXMrklDhHRyIh/FK7exVTRIHu3T+ZgtwNw1Pjum7QSjw8zJJUtynmF652xP5R4pMVwy8pyvzE/d535cniuXD4r/kVUWu/t1fiT7Qpf0K75cp9iV89rFYNHfR17iX57f+r046jVqXFO8cpZP5/IhvcbEa0Oq5bbi7gz2igJPyHtX5qtnJ4bL2vywOvT2ReYBE00VE3C6zoiSkP9MPPNrDzA4ZyONTM5qgmQX6POVvXWxodf9jM+R4+YlX2dwfp2jlmUjEYCNZKjXzf4HvgKiU2oYkPrrWdVUqLmylboC/mVd0ceI7xRSZeUkFrXCCMWBZN1ZUn6m8veUXvHLYuDRuuVJTZ3ln5hSCmDsS6y3zJLNwysqxQtwxTgz5mLhrFxpPdwVdr+EQjcXgFhiv455+dPl8FRb99+H1s/EWKwluR2ocSJz+xr3ivAaVF0jZveMpz0iz9H/54sZv0xPlA+sfEvPeDH1FC9i+cYulDwjiKpYnNGixcZ7rjwj7oamu6UYFoNkTaYBGZIwyhcumQCGa8BMsGlKMvr0mHK2WBq6fsmlumxLAmD+V1ekKY7kkrGcmN4jf4kYE8XESlWxdYYstu+UjDuLsbS2s9gpK70RY9Bce1FDFPp1hgzv8Vz+RSxJMdggFTwlJjkYc5rivJp3q5G3gMfX373i3zqXiSW7JlZmov4Ib6uRtC8lH/ziXxcyb7vOoHntUcmFXznHH3xmV/3+Nc26joz0JU/xS5GgnHj5UkZqN5RjKd8LdljkD3rP1/ssRccMifo690tWU17PKF17W782dK/yYmn5pXJavtHL+PxLtvpaRyxdgsf7rX0hYHaMhiG1zTJ5T57AC8mXv5SmMpJf8WxGrFrXO0LWlzYjV/kJnkMywXV+bGUTi/rKUf2aurnYVXOq2VHiLGDMGCCRuJZg5B3TZeEzJixDyBFNsLOdynPCt0+T7AqeLOR1Aw0D+kemnv7XAE/1yRihkWwnz7998tv33/iev+tKXUHbHSU/CPDIGXIxJexpBX84Z39R682grEMRQkfDTOlKfC3JEHWMQWuNRXedK2izZG3qEvc5GdZxm2xZi20cT8ydWgqjDY5+4inrO7TIKUCAnBOjG3McVwBJ1fBlPsskJXkj5PkMU84N985oma0k3vad50fHhryolLCu4mVeoFPOKTZPj407wqeCWAyT3ue1TiwZW97CzyJkCXILj8XWIgnTYVJzCtS3sSa6WPsgz8aWt+iCTC1iJvv2zu19o9RKyok+O6030vkTGwe9HsyUKEnjOnPJ5PTQaN/hMDPPn1mT5Yqm3sw26J5xCr/+6Y337298+wbbbbDlk8/ng5+//43n7wfnD2d2mWJMy8yU+XTYt8S3bzvTUed0y+RiHE0F8eFOSwm73ehH5/HsatH1xBxK7LOrW2O2wZy0dtLbTz4/Psmb8Xl8Mkxd/MSkZOP+fpPM4PEMWrJxtJ+kY3Kcv5K3b/z5z/+Bcis8joPP/pPzxxNGgz4oQ9PKStWUh227y7T2OCNwWoyjVqe5pMSf//RnTTL7fMgstGgCimQS65kv4GXtncTZBq09mc+G7Z2bZfaUydMFJO2V8zw4z1OHe9bURoBabpFYqYCCL74+RYfbcZxatF7AlhwqklhgZVSGMZoOtN5n0JxLgFxTwdYA1LlYXglmCiiWjFo2smV6a2JsNRn0FzTVzkcExWTstx1Liefj5Oknf/v5g8fjyePsGiuaBmcfzO4UigrxAJ4sGaUkajFafzDaCRsCKV0FUc4V8zCRDPAHVxcFD2q9Q0qFrW48jwf9FJg6J/zpT3/SSNTHUyweA6o8VEAB4jyfzDG47Zqa9uwNCEbXEFieIqC2qSAxA7w5u1pfnkyeVxiGxsPrNhl71f6eDHwaPlX0qwhReM0pR/eoSxKcU9B1J33IqwCUlKxEOIWkVim94G4PkMtWAmCoMBqvYnLReD2AAIiiK6frfoCuPdnyipK3U7bFcJ0xJnkE4y4o8HHturdXdL+Akbk8WfqiRIfwzSbTNa7ec8KzhdeLA5oSU1Lo9jGcjE/j8dFpJbPv70oepqZrDZMfS0+Duolx0c9XsQMqPJbEqs/+gjYjmVNBVK9YfElFTK0KZkxhSTuzz/BQE6NXBNmMl0Ibk7/9019oj8Yvt3feb2/83N74d7/8G97+Lxv/9M//zPP3H7yH1wGDy+ummzPNZF6JkcbE+yQ3rc3UFbctFRWzU3HsMnI26D3xeQzGjyffPfOWKvdcyMi4Olmi7m+M4fhsZJNx635To8Jx3BrnHOqufgEp1hRQbwL7ekymoSshnOl1TsrF16CdurZNSXTOMsjso0VTwCllyUBCZh1SfUiK9cHAnNPJaSPvO9v+azwn5K0wxHgVU0UNiZz1/707mZ1a85fOsIqJXEPiNzqJwlbgmM7RJucxOJ6dfsrTbsuZkqAfn9ieue8CvywL2hh9CnQ8To0sT/Ky0/7NAXhYeLRGU2k6v7eT7FBJeN5IRcwB5TEP3JztLVNuBqVzjMbjh3w1y7ZxjAc+nC0rLqjRcSj2paqpjayCYu0pcbqTe8jlQ3Lnxjh7NDq5ckkVABETpgoaEiHZEhsd136MHYWKoXiO4Vt5jsHfjid7rXzf7yRUTy2mZN4qJGhRoLtLqlfMsDawMegjBt8EG76PSUZslVUgCtQflEBnZl9FaiPbJKfCcXbmcN4qzJKCMT/x3JjZ6Zb4nA/O3tmTUbBglIgVZAQwvLpzUYiMIcN2nY1SCmiCWaGbgKYWTPjmncGgdTG+rqkQf+frAgjmYIxJmYrnYxg+M2/1jbf6xvv2nWFiBFMKPRmP4+TxaDyeSSBn1jABsphdo/dovjqksF6I+MZWL/nYapD0AG9KlkdoH52alBOnMUiI3T0SpK1eK3ABvjPWosUeKYFxDAQGTQjmdobe5ZuUXcUdWtJuQ96q2TTNag4B4RhveSeVQrYNvGswy0DS/hESr5IwBs/HX6kl89tbpap+pKehyV3BPE3Zo9n7AjZySpRUQir+KtIlcVugoNicCpxcRbdgJwHPKcCbBU0d7WCMiZz9jBpDktQ70FlXU+G2FbYMOU1m6iSDkg9yOkg8wn+xAJ3kg8MH5pO9FPxsPD4/KWWjbjeSK/doR+M8Gt++vQu0/wM88P//ZWZse2XvO1Sj95OzKS9PbtxKwVLmnDKQVyPyxYCEqSZ8/aOFRkqwbUWFe+8Qvo01mHbH+RnVaUwqv0AnZbJ4wpLyPYozLdFNKg2zio8D945E/wM4VH/G0BMY8tOKwUqCP6NWTDKWPsdk2wqlGmVPlF2TcrHEPW+M7nz+PCU5TPpM7sF+8cXaMo7eLyBFMqwUQw0kpVe8WzYXrwaUpheHp3HEODPYbztjNI6joXlV6QKYcs5SEATg1VvkwvalTohyejQw7yQXEFm3TO+ZVjJpquE2TPV1nyekSdoF9M8u5rYPoy0gqo9rPckWJ2FT4H+ePaAh4RZWolHGoLeDdn6K6pgSPsUiu3NTzT8LfTZODskislQW7nCuqbllY5pxjkbdC9teqbtY9Y9/+qSdB3Qnz8z32zuDTLcsL18gVzHuej/x4bQ+yUK08D4YNGYxKXVC9jqb8vvzGHTXhL687eSt0r0zcA5vkIxURUrJdWcO5zlcTN0xaf6UOugf+PrHgad2KKj7ovVPWn/wbImaa0wiWx3K9Vt+de2uAnkhllGNeDAsdIAHyylQuHF13ZU89TDLXkZXKnhndK2jE6u3UWFiCYjugrs6s1h02rR4LGUsF+YSV642xwpmxCYrMu8bXsLkN7qMxbBblXSo1mDXGFtRQXLbN5JNzqb7gYVxXZGcbvqgysQiYrpF8acY36OLxuoyLvyK8NGxdElNVhBJUVytQq6U1UdY0zYS9fZO9snoq7srYGDbb6Jnj4amMMhg0Wzwy/smP4EY25tWhUcmmQ7WMdWxr0mmtDW6DOkuyYBb5tdf3rm/3RhH4xid0Z8c7cDPg+qTtyLACcUu0kykFobw0+i9cY6DSmWSGZ9N3bl+gg9uW7mYPlYTaRhzqKOUS2hcs5JCS416q2y3ypYbPj5fQWR1i7Jx23a2XCQrzYlt3yjZ8Nno7cHHx184z0aujbd7YfzyDT9OrA/qDD5SjK22VCUHqzpQUjYViT40Djsnfv3+zpyT9r7LCK6sZ7f6QQoK6lLE62L8Mu+4T/7dv/0zb+93Gfot/qSqfZIZJcmoWOZ3IXtdrJ4AdFIy/V4i9L9fzHJnj6KyX52MEV4d27ZfZs7qcCw2XOdyHPIIv1HQLS+r9fV1OqYFE0an54sKrulWEd1Wd8aV+N72G3NMns+n7mNrYfot08ar2HHRftWNUxcgp8Qck47M8lIebBTGIJgTBGVayecYjncP02+nZklRUtJkp2mLuaZuDEHVNjMl9SmFtjvOmdW1WoVVJJLLC4UkdprZmnayOq7qDKdYI8wAwzDMjTwXhn5V6zIYfx3QYsvEPTdb9FvDTfP9PF5LScDriSlx1YjoFPgzfGFb2QJRXvHg8kOZOrmvP3eCgbGkMiFRtFVszteUnfRS5hPd/DEGNu1llg+ve7fCz+suxHUGmOsW51nGR0wsC4+i0aekNYvqGvfo8vMwo7vAjWz5ematO6ShKVgmIBAXCP21g7ju33rsXz8vyLg0pcKS1Lnzh58PFJWUs6DVqVNfoFQYoZ6aSvb77z/4p3/6J7at0s6D4zzUvE45gEq9aC7yJmJMzhE0oglbLroFpXC2weyHdvZidgUQu9aZmi3q4s9OfOveWnoxndRY6nx8aDjDjHiS4h5r6cV0qTHJMUXWAoRMScl8b40ZMZovsqx1/Jh/YQF4geH0M/wf1jQgLCbEBuMQgagzCliBSQSIC5EpX+tek23AcpL3YRR3czZwNQpqUeI+emcMmT9bSQEgKNea3mAMjkMMSk0HCqZFeDdpzLnTe6P1UwlqLNNUxLyyDFaMc2iaFVUAo5tGRY+pA8Bc5qNuzjlncDKVJNtMem6RP4mxJrlPLhttNN2bOJeT6YzOKYYN2OveaI0tj0CuBsaYOotH5FLDFqN87dmIpQEYz+myHEBNk+VRZtcUY+WZdA+fFgGJHkxE5amZkmHbK8VydPpVgC+mO7binLxs1tnsU8XKYgomW82tiKFMWuvkjD5/7Oc13cmHYvPF5AUZms9JSRpxPcYkJ7jfivYQQ02z3sl5i32bru32OkAQG3Gqm1+G9malXk0hhZBg4wlfD7WzS8Y6Bc4x0tWg+Ne+5lCTaAa9OGWZTNe8UVKld6cPyefaHLTZOZ+DfkwgWEerEeAeJspcLIsgJrP8LdUweOULwNWE8MXijvXlaNJgG4MSwc5NuFzvg3w91mCVxIpLaFoykW/jqjUyKvjGyq9S+NrGGcUQI3/5NY45GIhVlyzRhgo7slhmlgrTB0dzUom5hFG3pBQg+DRw/f4cgxYAnxg8kQt6CnChBt8kBVtpxa7FdFtHtGw+VCp9iYyhIHEPcsYI5o9BzpvOHldO4TGBYk2rtWRsW2XfKz477Ry046TWwm27cd9u3LYbJYAjTf/UZxkuRniyxF52LGVNWw6G5/12p2TlxctL6l/9MhP4ZjnkxgYBiJglRtwLKUv0mWu98ev37wI5gOzObI0c92uGxNryYhUq1kyGah5geQD3Oa9zYYF5M0CYmZYaY6zMDTOxwXx2fI4w5k7a4zPDKGQrlKqTY3bDitaYX6njetaOWSGnBWjF2sA0qCBYeBNj5tfkxmxqXOTIw5bD21yficFeTfYlsWvWRLfrLHB9Tvd+3a/19zPYfWZZAxtMw6DUZF62OggfGLJ2yDlHrJzXvVrPd86Jt7DZOBdT98X8WVMYhexKXaCcMAkYDiBwnaMpYonPLsklOdjSL+VW9vBUG4M0nUqmoCZJNtmJzKi/5uzBKiSsFNKVd0ekEaMoJ6wW3DLdE/McGIPRwT2zlUJj8Hx8hv8eMldPhRz/zGjML7VAqbI2SEWWLecIw/GpQT1LnSGVEMze1TRFFis55+sUSeFjGhyWa53c6ka/gs+//vWPA0/nEUUMcQh1zv6JtUkq7+S6xfOPSQhr0XQVZfq7dBUgkf/BdXB7TG5LWkARODAj1Y3l0XFNX2BchxAeenYTldZyGCujQoAI5jogLTrIxMGTSbWCcXkdXUVu+MuklDV+miyDsqHFWIqol1vSwZhzpQ9N/tuqHtP9tpNsCIF0HU8lF/ZNrIjZJzU6m7KnSpRaoxDRNI42nLytCRHazOd5xj2VI77o4UK9Z/AWLRLlHDY1flWYzi/bnT0ZP39+MLv8C0qpvN/vdJ/SAE/9TtkzZOe3X3bMN7Z1/4K6SUo8zye9N46uJG0vmmyx5cRt06SW4RIi/+m372zbxs/HT+Zzwudg+AnzYMNJtTCTknmNkE7kU3l9HnCeJ8f5E887hcI4lQy2doAP3vZCz5m9OHlqkS+3/ZrF0nEaZ3dSPnn7Vnj/peDpxPuUYWsPOYmpaMtFayDFRMKxJn7Nk9YmP35X4VWq8/6W2fgFPw7og23ZE4ceuIch7BxOLgsEU9FTqlNy4v3tPa5zUnJmiwl4l6ww9o6ZpggyVSTVLVNr5vv3b9RaKdkCnA0U3wSsyEMiB4VdBXCJDkkbLTo9AQJPrqCxxpXPIbnpy8zSw0sN9v1GSrFPQyolr57wrYplqDqwaU/EeTXXHr2kVNoTkYNGQFUBkbPGbrsiixLQkJ3c73eZKuesyTxjBvshMVPsjaREpvceiV1QwgN4msMZ8yDlglEjAAbdGoL17Mym6SLn4+R2g7f7+5dzMLEm7Uw0CcXM2HJhdHmJzWB3brVcB/zXBHB5jCpQEod9ihu5TlquQmyZg8fRCJEW5bEABYFnSiBfYD0uX+QrpQ65pQDEGMu1ips/AE+SddlcQIJh0fHz6fH7dp1HkIJ1FNTjKLwi48KBZfS9vsZYxWfEn9ljPHBm4pdcB9fkFTNjMK57shiy6z69MpaV3gQo2cGKup1jQh9TxUSaNHexMGzFEXXyPRomkAQ8eboSjuSDc2iN1DIgW/gyyLPkAmmmErQFJK1bewFMoAlyyQJ4GizHLI+kNy1mSCTjc0LJkfxOJYrn0UhowqiZ7mvOKUA3JWGLSCj2f6ZuG/M4aUO0bZuw5y0m/dx4PE+OBf77hBhIsaSPQjwi2ZzBJJY9HNTwzcoL9JaPzY8fv9O+jF1eJtyRsovpNkZ0z0vkAvPqUPehDmnZcgwfWCyGlxwiBeuyeGWMzufjEXtDQE7KAh8D6mZJid2ds3dsGD40eMADvNReWqyQBTwplqk4PJmjY66iaqsVptNbU2I5dTaIQShGlmTdxESexBgqHFM0DyTl0Zpu7aCdleN4sIzgt9tNPkvVsJkUJ5EZPpYFPMUEszWB1XRZnHNIppwIIPP18SzMv1MYBee603zSLj8dFUUpYouZQSYkz+tQU0GmPai1PkcMOEjXbbyAJuLcyTlHDMi01jmPI6QbKaQSMZmYryCTB/iWdB4Pvxg8RYab3ItdnogeZ9AqbOMIpo/VEDV8qmDzNklx1imWplhDRh+D1g7clRNF4NBkJXd5wpnimWqUyexi3W1vO27GcXZyct7eNs42OM8eTDvYdgvLgVccyHFPLWJPiqZxdhVUm1Xt15ieyQUgAA0xyk4F3OQ5rsux+fcLixns5BGFaimFXApbuZGt0PqkNX0frXO0k/PR6cfEXHsymVg/c6rp0Be5OeVLWiV86gVGEufDalrPGWdR1BiELcS45Nsr7Ok1encNQAAMsTxXDM7uFwMmWUwmZgE54D5lCGwJp8W64JKwKbSlS0JZa5Uv4WiS/O0FSFiuDD/F6MfJBfLwmEArf6QZHk0p9u15totHY7l+EdOJybbY8JcZwBXw173T9ZWSL8aeL8jNue6vT4lp5FGVBRilFIX8ZI4TkoAnDVFN3G4b99vG83HQezAdMe7bjft+57bd9Tqe6N1prdOGaj9lT5nbdg+An0tq9O3+xrzdONqh/PDvfBlQUyWTtX91s6AULBcx2V2MnUVo2HLlz7/9GUbHe+NsB7OflE1MsRk6bivpajQKaOrUqmfFGZ6lrqEAtcRUQJznKQZQWfElhlLYHLHO+yX7KqazVg10ncE5S4K+atIlAxU2YqwD1BATv5RNjRmTtG8xYUef4elmAsMjhpacY9PlaBSkK5cYXUzBnIqe9bVGlhVOrBs3WjvDAyn2a+Sxc46I7UV7M6lOmzitKfaLZKKzZ533o3WRUKJpUJLsDdYwoT5O5coLQYuYMmYT23COyDlfeEVOmURFzFhdf7LwrewCWUrUQx7NGWOSpmLLbHqOxUqAVDE9MmXOcQp0Gj2kazo/roFqvvILNCoyZ1LZcDPaNPxszNHpATztdQfvtPNDyi6cVBO5GoUcZ+xqjDnkRCmbpsOWJA/fPsLTbdJOeWzL00s4yIjYt4guZashcxVrku5qCLqYjjkZs27Mf0D2Cv8VwNO9VqY7bSiZkadIp82TkW70FA9zQhqi4W0BRil5vLJ+rgPPEqnWi96OI6SwaGMvZlEfX7xUbPkQKPkuUUSVHJT6RWsIBFuz81TEprxH+pgj4KyugIqXCZom4jIbt1zZ929KJpBZtzF43wMJ7SeYcbvfro09hnEb8MhO68bbfWdM+Phs9KHx7vtWub9VHscnZ3uSsrrEOelgKPXOeTY+Ph7UbrSeVpS7irO3t7t+x3T4bLWGH09i3zaxNmJEda6ZMVTkrpDy621jy5n3t7s6CHnXePfbncfzyc/HJyNJolBuFU/OxyHq7L+7/8YYg+f5JG2FVBOt3wP80bPeyk1Syil2jQ4xSZyYB72dmD9hNs7jg1KM+5Z4yxm7F47HYDQnb5uSkWHkOij5k5wfJHtq6lRkS2bO+03doLHn6+CpSQh0V0XNvt2CsNDo4+RxFOpe2e47bcgE//cfB80n9Z7xkRhtUJK6099//cbb+xsNyTjTTadut1PjkGth2o2Zd/L9nTSdW5Xf1UoO+lgd2dCdZxVK08dLY40Cdym6d7lkzuPUVJsw889BlXYzzDNpFOpWKCVFgotM+jwArqsDa1cyja8ZEKsgmFeQycvnwpyFYqS89q8HW7DSW6d33SN3aEdnJIdN8oJEim7JhaC8isgotkccvTkKeLOkbezrvQlA1kkuCYUHCwZTMX6xVtrg8fHJ8XwGWJ2i2EhRKMY0lGB4rekTYNd/a8z7CIWCM1uPc8Qu6cFWFPzvNxljppmouei6Ahzabwo+14SqpuEHHqNRLS/KckyQNLsCwgqMkiE6l3fCl+c3IoAKkHpJQBTFXefxlRyLpWZJ64wU3h0sQDE+e4D8M8Bv9wQzYVlJLKFTXybjmKSSnsVwsPBmUJFOdL4jxfdgECzQFMel01Kh7/IWUaIdn8vFSsPFTFhfcw5aC6ZtnIUp4sBKmtf9Ag+Je5eoLabDjLH+PqSHbqSYLjXa5Dw7x9kFxpSdVDbKfqOdnXY2albxX2p4RWVnpqFmQdKa34P+vXxCStCziT2n+7RM3PmSjGhs91dksLeDNbEuhQy2jwBj/MVMHMv/pyv5WJ3k3377VVIpnN9//xufnz8428kYnZQTb29v6nh68Bn74Nk+dX5OD8knzNnk5/M4aE2egTkSECsCnnoLMG8BqIsFNeDMk+qDbk6qLlATFXACaAS411okEyhZxqquBoQngX3mg/N8YL5hXml+aH/kdcIsmWgnz2BHuUfnsq+VgbmzpxJTjzIL6zvCq81nyJDGCEBO8pWaCq1HQusqWS3Lt2iGaanj9P6kt/bqZKdBsoGZ/n7OSc4bOfz/mGHUniapBtt5Kmk8e+M4Bq2N65zop8ZM39/fue27xk17YQbbZhyNiQZiSDYdeyrohat5QHjpHENFz0grV4vaYEzCwU9Je818//YL+175PJTjyE9MC3nG8JPDR2DLHvt1deZnsLVUZIKJwYM64GtM+doP0YOQVYMZpahY7aOrlMo5jF8dD/mdDHS179zV5c9W5HXSG2vCkc615wXwzwD4JDePsfRACcNbS7Ge3TCTnQMODMPDS8tnhjDOH0OMgL3uJIMW0vHbvl9xRyDLZM87W4LzaEw39lRJ2WmpsQaClFLAM6NPnn7KRysY5tNE9Dt7h96ppuEXNiT17D3iiOmzfS1SbyUxkpNcXoXHeegs+QeHFqmYJHJrrWUfAtgsh7QvbZR6o82EdZgt0Q8YzZjdGNOu/Hw1DpIt1pv29gw0wpdXz9Vk4AIAR0iYZSMRQPAE68FMYzU5lEMmS2xhFl+Ssaby/cEfLD7lROyAJS0kwEYNyQg/qil2Vc7KzVJQqobJK6xJyCePW3fm0ZltwpA1QzFVHdldo+tx5jl19iWoXriZcSbVPClvdJIk0BSxOQlwTeZ/r9zhC/hrOZNLCWZGNBMhZH4603was8tsfPgkER5ZDPne5kH3wY/HD2pJbHvi7IPSNuCkpEm5Ve73ne9v39nKRjtlN1FriQZvZU+61tYbTKOSLy/bbMZMkvnNMTmOM5rw68T+31qTFs804VaVp5gkwW12Sa7coU9qzvz67Tvf397YS8WDvWYpMQ1qzrI8yAJaOuMCITVldWJdQCNTnoIZNXxrrfRgheZo0DDFStkCQDNH7MkJvgYllE17dQpQLHmT52JH9TjhC2sJbFxAZ0qakFnrjbrdcRK9qRG7zjhz03CbtLKlVWfr/3vTepjh2VW3jZF7mPlLOVIDpLIUsS+AopRSWLbky/rg+XxojYlii8dZbmaXFM+DSTTD8F+54JTvpwer+sqBdTDVWsjFKNNoZ6ONdp0fte6UmUlD4NTR5wXAyhlIta0hawn8xZjNlsilAllT16dAUQxKoFQlG7D8soLVO8Jncwjs6i6DfSxMxT2YyqZmhEUDeprRehdTtGRy3qhW8aZr++tffnK2znlMctTsw2Xp8Nk/cLOIDUhSDDzPA6dA2dDsocREwy1GksXD59kiYU7ct41926N5EIMDOljqlFyo+52akoZUmQCokXLk/X//6x8GnmrOAThFMeYTjU8XdTSZFpA76uCUgm0L9QzMxFZ3QcmMJRUzPmXcvCRxJWsq2wjm01wQ5EK2w+T0a3F2jaGPH2UtTl7ob1k+Mh76fkvXt0exkoJx0JvM2GqtayviriBdqhbkIzxO6raRUyVnya9mUO9LNur2C07mduu03nk8H+x74f5e2Q7jaJllzF3rWwBYNx6Pgz5OrMs/YxEgPbqx+14u476txkSF6C5+e3+j5MKYLYCnQmsnj0e+AID32409Zxm8Onyr92Bi7WzFYDZGdkaCfC+SmlhhL5U///KddjZ+fMa0vS2mf6BiBxOzyCfMU0WmzDVzJDlN1ElrTE5m/4BU2fMuOmwqpC6HkL3cMDKzocl76Yzvpm5OHFjJjD1MwNeRmRLUVCgpX74qt/0eGvTCGJnjnKSSyDXzODV155PFPrrhSdMUxd4yvt92fvn+jSYhFs2akhufIckT3OlkqkNxuO/y4+qubTxibeaMUOgLeIqD2GWomJMkfTmQ/lycMRK5BHW9agLhdEheKL4FC0STEuWTEwm/ZRZJZsnYFsi0cqqvFNkr0VMVTPT0g4rueBIVOhcBLdOm9lF0UaZpH6tLuXZQHAbxWquztNgW2RK+DIdV2qwfiecZ0rroWE5x0LU3F8U3mCPncUheN6XNT0l06gVce5wbS+qzGCYXI9MXm1Kv6WssO9JEt97Z0ibdf9HkklFayBV1H5MZtWh0vSbYBb03gAaMKzjnkEBKOiLPMi5/gWDXGHFXAkzSarnSYT1HgTzrXtj02HMeHSZNM1qojMe9JIYVWCqwpA1XMreehwCZKNVZ7DP3GYXOFzYpq1sczxCP63opkpaE0qSBVtfEYRl+B6bIajSsM/r1jACGANK0JiDG6nK/3tPsBWAt0GbFjhlJHxEjLL4hMYOG3vtkonM/lSLp0jnoAex7kiRCww2Ck7P8ZcxJSfLZJXNIIStbhufuQ+CdwXJpWHsx5Xx93tXRExDwxX8ihmZoWg7BEgjz6ZDsjOim3t9u6k7a5PE4ae3J8/mgj85/9x/+A9u20WK60WIbnOcZoO5iUABDhqDtHPQZYkdbgZ4LwBhRnAFB0dbf99PlKbMLdF5g2GJIgs6NuuTISQWsPJZUVHsyfGiaTUKy4TkasCQNCJCbI0xenYv5FKyWC9DAqCkpqao1ikYxgPwaUGG04WK0xc+mtGlQw7Wn16j0QNgI89SYxAPBpkoylr7OQ5/XOvE4z2aAIbnKS1EDHoaMdYfA/tVrnkOd6jXwRawQgdXH2Wi9i5mTdP9UdIwYDuIs+FW+OSqWZTQdyT3qkbuLGeOAZaNY5n6/k0sSA8cdPAXObAH2a1T4FUuCNTyDMbqkOjoTXpJ0MUu0h+faDyyZuRJ1R2bUS/6WjAABXRKxYL8Qr0nINmoWu3VaeFIsRFQjh2I/KZ6Ryus8Wusc5a8Xk4ow+V17esR9WM84zkD99WIvqCjQRFNdmzNk/xHep2KuQdl3nTPxGbGQihLeYO70USUBiozVTeDC6OMCYpZmzbsHk1/N2Is55FBD+j2TmnXm4XGynLr/3lfEqZVwDFWQAnxC4oSpaWU2lN8NYzbwYBEueaQ8XVZxtvKIJYaKc36uITqKpba+XewTxRjd6xBjyMvmArO4gNQ1QrzmxJZSmAHP8Pl6oW5rfY9o27mo0mJmzqhFYt32ob1C0kRlIwrsaOArr1fo7q1f5sEJCzsElbRlsc3blDTIjOKZYYmShsjIuVwxD5LO23XNczU4dGaMiFHuk5Lid0IK+qofoymX0hVT58ozoqUIU2heUnw6z0/cMnkW+kiaSMhgDeq5bVJ8lFw0HdL91WDzTE0W9ggCAML5FyyYGDYvhn9f0uN/4CvxsnMhJNhtnLQhE3B5+ICVwtvtzm3bKSnHflJ8T6ipe7Gmw+LFTT/l6CxiiDFTNCYv7FDErunhmZmWfK5pT5ZVw668kwl9xhCdGaFT4KYGbamhsizZPTx7rmQWQ0zKQg4pNJ6U07QZhCF9pi1vV42+QCex91buFWshieiwmnUnO1WWAAEAAElEQVTEGb3ukaTrXHXFssQgvZRQM5pLPlZz9wU8vWqSyNMmKI9SXjT6CFAortVhxBCnvOSiGf3cawXLvsbAWaCEXd/rPdcekDTOldPaC8QWc9IWrwUDcjSbCADfyPIEjddYeYYaeVM7OQngFVM5RUqtf3vILkew3oolSpLDV7JJd+fz81AzqSMlTtk5ovlydtWRt9stGtp6Hr13+TP6XNZO4aFtMrQ3o82Vd8Vaj0aw45xN8nkzTay0GkBqFjC+rAteOu9//esfBp56HwF95EsjnSlY2cEq7kVF7tQ4zDkzw8V4KBkWeqoJOULHiCS5Td1QH9IY5llUFFnIGJC8pa4RxnFQpehKZLMAOiZu/QpIKQLOjMS8ltASt4FZZrvd5eBdi1z/Hc4eG59KrkUd4Nbp56mk1xbrY4oabJDTHXxyns8r6O3vxoZxnv9JCOlNJpTf/lzo40Hrjf09cU/GcFEF9/3GGM6Pv/3gaA2nk4vkDiN0ta0fcTCpi/J2u3O/Vb69368DK6cRHbgeZ9CglMn9PTOGiomRBkeC+stNydwwztl5Pp6QjPc/v8tIPRk9ic73bZOm/bROTxMvSbJ/XIZjGF5OnA7+A7NM3naYYpuIzFKw1EjZeb8n5szUXRrfUiezn/TesC1Rt8Rtl4wwZx0IzTvtOWVWWHQ4Jy+RYiswQyMlKNkBaehTEUWwjx7jzhXwtxzmpgNSO0ln55fN6Cnx+fET7xNrXR4WNrB2w87K+30j5cpzDh38tQahwTRS9VapyPSzlljrZxQe5eX/sBKqXHT1KXxp9j0KbZ9RAJ46THKOsd4ad24pse07No08J9ipiURorPm2B9iawBmcrV2JxPJkspjoVqqCT63R5bnGiUZRbOkCT8ZUJ6b/5EVVLTp4ytR6lt5cVM5SEvf9TusnYw4yE5IzPInC3VUcyPemklNMvJnwPD+VHBUBviOS/FRCaucy6R3DeXxqml2uhY2dN3dJQpNB0QHrYSzdp4pyDQuIsmLqtUtKELpzzMiLfQPkWrltG798v7NvBQ8abUKTLL+93znbwXF2ehPFfE2Uy0tTyAIfg+l0MVucum9axWklruNKkleBaClfz2St5d4HrYePlqvgcydGaOt81bCH4EYndcT76DA6ZolaFwuMa40uQMtD0pwiAXv5DY3r3owZsjdfskWBwwlJHkeXCSrmmsxpAhdWwmNTycYc/ZKBCbwkEiuPJKaEFPBlyqwklus+YQJ3ztavzrUt75VrmIRkJDJ7FROmnw/GhO9vMi4d86e89iyrCzYECKgIHaSkyanJDJvhi5AzmUGekzScNCfOziTj3uM5Lsk3vABJLrDW8ZCM2cVIy3mxcWIqpoXvWkhjCYZIKRmrmZ/nKZC01GhSLDZoJ2clgP/9//B/5k9//hP/9Jd/5nkctI+nzpwpADORuXLhAPAIg+/7rTKmk9KgTaeNgzEF1Jw+oiwpAVvEBNxpjMM45+AsHTZnv2kdP88nxxEShFKu52yxBufoPM+n7v+ULLlkmeZryqQSwa3uYOh8MMlWSnJymO+m+BhadsE2Cy+m9mg8jpOjNYJHgxVJxdvUZ5mzkqnkmUm2Y7kyl89hH4zhPJ/tki/1VpjjdfYkE6uiphy+Lw2fhYHGmo85mFkgVQkZjlNYXmHbrgbD89lfIDzGvu34NP721x+E3oVcb9xvifN4QJfRsU2dBwKiJf/APcCAmHK04sYUS0iNLoN2Yu782z//iff3O7++35k++Tg0gpz5kn2mpAlckjig8yMXsc9DVtp75+W3JKZbzjEMweA16c8vsHtMNVTG7JF/gNuMqWfRp40CvlQx3KdroE0CmisjdQT6tnEisUkLeEN5ZTILY1tjf7+rEDs1Uj5HPtvnoOZCtXQVGcsCgvkqtFZB9xhi5dV8v4qlOSbtlAl68qohAe6kGUiJtBkyM0+JvRbaOeld102Co2T6SIzZ2beN+vYmgHh0TnMamqQnMPSk8KVxh/KBOZ3ZBUJJIqNp0OZ+tR3+3pf5xLxJ3h+FqSa0RbMjGx3n4zxpbdCbM5vjzUmUANSmijFX0Zhy/kNRikvWYqaiX8tieSlxsZnnMlP3FUNfuZ8YO9dVi5mfZNQsV4qQz6UswMInbUpSvJhLmGocfMiXy50yxOzNtUI26v6O4zymB8PMVCDOwe22YznT54A+me2kmvP9Xtl2MT0ZkhX1dqrYTZK85FyFM7jzY5yKr9E0mn0qqc3+peEYnqVJz2GgQRStyey4kuHyFnr5+ZAMc7HWg/ujfNvkz5bDqL4vpYsV7veNX77fqMnx0cTET2hQgk/6cXC/bfz26y+UTWdZf3aO9mTblEsnc8nIzkbNG3u90VwspWTan7f7nf12RBD9174ELCcGBck/ba8Ur5xTrD5z+NP9O7dS+eV2J+fE8Xzg/cBHjyYhtGCGFFdt8u3+Fs2FMKofXWvCNJiJyDecTmtPefCNdk1tVuNSnrQXocKVS5SyUbLOO8c1RMfWpFnFPPkBZmaX/J6Au1tvmNVgzVS9j4n1KTCXANJk5bEse1sMSRDIFSz+qNWZy+bFXuxzhxbWLwK7J8/jkBR/dY15neMjmMAlvAfnGNF0TczI82SgPi/2KlO2DDNIALkYzBExQ2f4tAX0hPeWmSTV0XjS2WEQ9zW2PWty3pJHtmeTH2uSd2SKBhA+2VISvuFqsoyuM85iCrmF0DBdIJnOw4QF48wYZDUoA9wyxJJMLo/X6U7rnVIS231j/HxyPk5Gk+dsLhukwnYruBnPs9F6ow0Z9ydz+vHJsMRtl99u2TJkOGaL2iEH+8q4/XKjtsEks3pxx9F4PP4SxuY5Yn9m33ZqlpeUd+fsJ6lWSs58+/bt7+7C9fUPA09/NBVcvZ94LBFjPfyUCOquTyMtl3z0V0Qnfb3cGhmOWSCSCy1d9NZAUS2F78uSAi1wd1Fs1yKyQKG/YJrxwmuEoEfHLufMzOFOH2nI+lw5C1UW/dTj/RfgJSAtpRrvUZg0xpC3QbblGQDnOAGNyc05c7sXnufgHE9y3amlSseJNpMjmd/yrlleO6JxhgG5LSmoUQps1di3fE3O8YAIk702vSWnLq8CB0/OSB4eQHbJK3owCEqtAp7MroQ6U0hmDJMEL5UcvlxcAZUAomSgOtFkhrizaeo7T1J2yqauZ+nqaKcimuKcUwarlkQZyk7a9JmsT3J0JlJyLK1kVAf36t6mNMnmYuIwVeS6OuLTUYPmQuGj4+wq4mp4MxzRsXYGiUy2CbNL520bJSdNEzBR/N0kW8um9VND1CnKdhS2xkWvXJrseEBRqK9ERrTdOV7sh+Vv5r1f+2P5HGj9x15yda1k9JxYbKNrX5nJx4IXp0WXEEW+aUTma4SyX/R+viR+q9hPZlguV1ZqqyV7/by6Y5fXTlwzRM/M9F+O6dxgdV8FNCyWyuuKPTr1vDTnU4dy613gmIn1kEvBl6HruufX557XfdItsviZ1eXwS5e+Tj13sVBylvSy5CTGR/xOTgtQjGMzpABrQsfLCHN1+cKINq3zR0nE0lYTHj/yZ0t/WC/694UGgI3r/lwMglg7fj1ouz7PCpOhZMRw6tWpioC87jeosPfFEo3zVCehftv1Yh7rN3aivi3HKowDzGF1stc2WImJJj8pAUspzt51Pxfs8nXvrLUdDAqP+3913qLTO6OQiBdYl3H9vv5jGUYL1KhZk7fE8LWQUL2Apwu0QF07vGGoUElM+Xf4FCsp1u2cIT1f1HqLmLgKa3/d+7m82a79efV/48xet2Gt4dc9tKR17z4CXCaYwdpTuSR2q/zpT7/x7//9v+Pj84PWzqDBO1CuuO/O5U+is0PvW0qC4ZQSiVY8t5guH2vLYn+HeW3cjoGmteZk4Po7yewGiy2X0stg3ufL2wmXp46v/Rad0dU95xLvBuss1vNLQLB2w5d7F54ufQ7a6GH8m3Fk4K1uZ6zZiMUe+1q5hc7fMadGwnfxhGRS+rVkjzWNsSb46nmtOL/GLq+8JHGdjwGQJQ/u1mq0Xc89GFBTNH+mk7ddIPF1rsb3uhcWibWtE8GIRO16vXgcrydpzn0v3PcSY8/XIvFIthfrxi4mu64xADRKvF/kCy6wzlDinCKP8D/s+lcsvBiNcz271x4a4em0nu7a89MH68RaEsjLwD0mMGoZfPmwEGDSgqPQe6a13ZyLXZ/sy35ZLAxdowfrCiOYp8ofk2kdLXZhIoZLxJ+lOGtVjK77I/ZEj3jvAXCNoXylxaSr2P24ORcvYplFhxxn2ohdEtOoXHm8Pla/9pyKp2sF/Z0vZfu6tvQlEY/vYNXNC0hccdzXhrpyFtajsD8yVyGYMNeff835VzHw2ucLZV4x6BUnud7rdS44q9NvIf1XIyCFfGau4oMr0EDIrBw8BUMhy1utqEHTR9M5lTwmaPFqrvuqkKS0kDQrGpERU+e1N9fFvj7gZRp+3Ye1e74wP1aek77+f+RGcU9W3LiKJAugyWNN2x9zxvVs1jW4iRWjHKnE/pp8faoWeyZh1FrCZ/Q6lF61XHyOq8lDnOOEPDKZrJT/QV+ZdX9zCjPpkmM6YWIVKe+3G1spIR1TA+zKDeKeK8fmqiFKzjFd9jVYYzGi1nxhN0kzmWPtyusTpxRNc0swZnDolFNdvk1L3RMNTJ/rNcTcs/iZ6ZeeSOdH5rJxyLnwlUEYvCZWhSCWaaz/Oa91kCxdjDxnRp0bzVKu7cjKabUX1MRb90o/98WvMtaLrZi2vrEvfwdfglV8OYSEUB6SwbaL/b0a5isPWLXwpYhYnzQYfNd640s+GVva0iuHJNZhVqJ/MQkXM/AVp+b1Gh5Tx219Hls1Trzpqi1W3Fh7x0OCl4hc+GWBAqo/FgN6RNxYiihbjMrWY++upm4SQG8WzHR9QPnnqnb1iDVqtpy01sPP1i5SRQ5lgaH7sj6/pSRW/+vE/Ve//mHgaS83BYrRRLvc1I04j0ZOJ6OIJZBT4pa2kAyo81CrySR6ehh9CgGeOGc7wIxt24JGrA3U+7zGdW/7diVAr4WooLFGM4bqhlpLUMS/TLNbNzY6uH0OSPJ9wZ0xGm2K+lqrutz3epM/wEPjK1MNirL7ZXpat5sOFVc3pgObJVKu7PedUjPdu5DnKQ3q+y9v8DF5nM52y9z2ynw6bcDneWiKWy2ibD8beU00Qwatb7OSDO7vu4pcc263xO2maTNzIONnd6Yt81mxGUrNV7CauzGz8ePxgTm817skZ/sdgI68OeacpKLFK2q+cRYot41v798Zo+GziwEB4UfhHH0dILpnamYGJbKGvMwGM7nG2OaMlY28oW5spDl/ffyEOSl5UEpif9+xEv46cVCloeNzq5tSKBfwNcZTSG+tFFMR9fnxlIH4dHLeeP9253yeHM+DvdzYM3z0T5o77293Rh8cpi7M++0GNB6ff+PX327c902eEu5M03ruiOFXy5QfhseERfRnngyrfgELc65ZEQJAl1Fei04dSCqZ0pfDMhLQxQbxCI4Tv6LAlZcEoDFijL2VHGO2CzkuQnvHGK4O4IxJGjM8UIwlq1qd8MS+vVNmw+xJqYlaUfd1TnlPLSGJO9Dl/XGM6HZ44INBA/blm6HJi/2YPMap/Mg1ktxwObNdJoST2ZpGLEc3fUznHI0+5TNCyuS60cOodQYtdoQfhwK2/lwJYkjjciKlESSSOFnHDCaOc9sT21aZ48lzDLa6OvQ3AI7HT7GIvAeAlS7MKNdyBak1lSpHR1WMnYk856CNFvcvhQS3hFyBCzwYIQGUskgg1preog4VV0LKXJKRVWhMLG3kEiyaK/NeCammgCxGUZ7lkmfIM6Xinr90qMU8E/NEzxeCjBNSs3IxvsSskzThEHOgNTBRfCcDvINnJJPWNYpBLR+UORqjjYtdkS9K9CtSmAVbDV1nisz1nKfS+FkuFsQcDe8Hpe4akfy3xng2+vOkj6mRvMnw1MQeW8DS6rq5pHk1y2NnDU9hAA1mmSq6XMmr0eJW+3XPR6A1Umy+vK3MpdtPRbIrS5JeqIALoCaYCYmgxwcrxJLOJnnUrO/Bv/nzb/z5z3/mP/6H/8Avv/zC/1Q3PjCOzyeTxPb2hs/OaGLS9T4oFlNeq6ax5eJqPpQKPeE983w+eLSGWwVbflbrwFMC204xFfaqEc3f3+9KjsKDp7XB/Z7Ytg2fcB6d4zwVo3O9Cpitbuzbjd6GTOUDdHweH1pvtWoNgnwWwuRfPsORpOdoSI04Oc3YbpW8VT6fOrseD0meBvLMyCnj6WSk82LqHP1g+qB1SXxbH5Syxc9v5GkxmMSZ56nOYheov71vlGLUbPjjoLUBMa2MJD+P7gNKYss75zHkF7eMy12frfWT2/3Ot2/f+Hg+eRwHeVR1QU+BYf2U6X5dAK05VrRRxzxVsEyV9oRUxMywKRPab1viXgvfbpnbZozzU2fEIeaBpoMu/48lG9YetVy0Hp1LajeGGgczuuPyAulwhtGx+VWYLF+5XBS3Wm8ykM5rmpjzPCUd3bcqAMZMuWc0SVJIeXxGQypBqQITfdQLxJ6+mD8qOkaLIrKvImfgXd/dJ54EwnqA0yknatFZ28dJSYWUM1vJqjXak+bO+YjD15UDZIzmneGD9+/vYPDPHz81MdgERmScuml79VP3bhyTYdBs4v2g5sUCXKzUqZxBTwbSpFteONFVkKbFcPg4ZeT7EMOhvERP/+rXtEkzTVuawH5/o9YN2zO2JfKtUO+V/duuHH5M2ug8z+NiLl9ZjI//H3v/tizJkmSJYUvVzNwjdmaeU5eeaVwEhAAvfOELhSKcD+AH8Rf4xE/hB/BnSIiABDgQgDPo7jqXzL0j3M1MlQ9L1Tyyprv6tAiEghGpKMnKPJl7x/ZwN1NTXbp0rQCVBeG5jtTTSDcxOov6AhuJa5D9yrOJ6xkgI4jNgBhTjQJcI1dyTJzHGYe1okFfWJUcrTMYZujdROhg/AiAQdodohW6V3ahm2KOjsMG+jgxxom9FJQqK7eRIhz/uwHnmMECnNBZ0GpZx7LDabxTgKmGxxx4jgkvG2op6Dah7tj2aOQXQ6Ik65yJUW8VAYpgLxtZS9KRVlUlplQkRqaHUdspk7LXtuWMER14CYaxop2C8xTsn95w3yrOj19xjBO3orCqaFtFaQL3gfMcGDawbYr99ha6OIZW2Uwus8Bt4Hl8BYTxozbAi+DsbP78hlUJwwMiwLbdUJpAm2CvO1wFH0WAafi8lQCqBziySBkO2UuwtQ3btkOgqMJRSJlABeu0Kls0zBjbnv0MUHlAQA1ExLhaguRSWdvVVmDd8TxOsmlLuHI6gGBtjgQ5kdgHG0i1FpwnWYY5IjXmQNGG7bZhv2/Y7hvdRkq4GZtHvJro55MOgaVSyLp3VBWo1CUNIMUwBs2daO7A3EtjxFti9L8EKJbGJGOEHlTULrctJipmAlEE2QDGd7MJGzH+Vnj+mMxgOO7xPD32kq11WACMYXi8P+h2m0LaMLQNC1CfBox+yXXkeO55HlHfHzwnSoHNgX4eQQoIMFgUc1SIO1qtPMuiigNsEWhyylW1wsAxferCMU9pQSQQpSuhqmJvG+9dEZgPPN9/5jRL4eitq2J/29D7xLfHgxMR7hy527cFzB5OVjJ1RieO84l634N1xXu2bZ8AF/zpH37B83ng5z/9jL01fH77tDCZlP4YnTIit/2O6ROnOV0ltUC3hrpvEXO/g6X/yddvBp6qFEw4alJ1gVgsuObOPZA0TbBhwrzAXKOL99IBicBlbjEykcuP7IGM5qvDsbQTEIVWzrTG43bHIhPgtXscSUsysxxBMUuAMwv5S6eCqH9kyDqIuAd6K4koOxdCdvZUFVUaSm3QUgGvsKkoeoeXxq4zKmxWABtquUF1A6RxPNA5bkRG08XwyoQri9VkxeT8ZlGPWeHIHkDbXSDddtjLSAHP1aQRkPZeC9R5iCPQWAf4uSRoyzHeUUuMUGnlaF0pACbMZYUOFYq5i9RAcInmimK1wKUkIKJRBFMTCUndLB5f6pgxQ63KWfbhEsKK6dbBe8HOMr9dQTReZWPdGgvKkYyjmEIoADtM3OgUTmZCoRLOUOpr3NOECY0hUHVcQo2vGhSaI5nK4ibXWqmRDCiDHRQR+I3anguhX1sLC2QV0jHNhc8516kASEtPD+eVuO+ZZHtmRi/vyH0RT20h/oFiL201dqWQnSxcyWm+EpVH0PiZBAw+hRBjUednTGdBJs+Xdg1/REHq7CQoErwQpIjg1VVgZ8HgoYkqgb5zLK1H4pYd1fwFcM0jDglRFm3Iv3OBgUW6G3Wrrm5QfAYznN3BcSmKBRelDpdoe7nDQYWOVZGdSF3soJeeV+iTJCinMed9gUYI1mYUUFeL6fotaEupWZFLKDR+GU8iacnxTSYCXPd5YFyWt/Pl7RfahUQOQtUoYmfcoQj/18KIbgmC9ZAbIb/G83qyq5OJzDUKlesxRe0BWevXYzF5XIeBaw1yxbrv4jyu++bB6Li6mUz8vTjZroUC83O8dP2DHSoQmHiwsXytf6757N7py9ZibPOXz5yfe92MZH/E35ld90YQnW+xeC4GN70cEONZ5jZXoYFBal8sN6Y4A3hPch87ns8nRBT9HMGwzLOAz7ZogYXRRHYHE9AeoR00gwKSAqUeYEWc6GutrlXkBMLIDBK6CSGEsM2+O/tedZ8El7Uv94JQg2uJkiSLIrRXMg9AdD0znsZ9TwBLMv6BMYJxLr/PAlwCWdDiBB1X55rMSVEWd6UKxNg4yb2cQsMJPC3BHA8YeO1FwGSwYIzHMKObm2epW0G3jmMMDIvvzZifIq7K5p7WMHawyTNRyQbOZ5H3YO0KT+aLxH2Ky1DeJ3VH2yq2vaFGQ+Q8zui0y7WuYw9qubr2eY0MAR7P6mKfeJ5nKbi+GJxg1i/gc/A8Pxw2o/J3xzrDYpQ8C6EMPQhmhef9LNlV5hf4yzmY62itGKfcxOvZl/En87N8DrzeOOujo80cymPswyMnCa0iyXXqFGrVQsa3ZUFDFopKiNiaBOtKIFOoJzfA2OAe45ETs5/QEg53CsAJ/PMuhIGHMyfjqDHjtcZZcrFFfcWNlzTin3wZgClXcexF4UUQENgCykVzz02OVFnUFRGfEDGCez2F+gNIAXNECXAA10rhHok9v1g26+oii3lhWEj+vPiZFvEnOCd8h4jbVSkhMmMdjdQIzO8Hi0NTjhPCyZrpc6AH8D2dwJU4ndHoIteQqy21cyVgvmQieOFnm3EOKzhelJMJySIzZOzI1RvNBsnTM2KypG6krEkFxtnrXq5TM/Nbvdaqi8Fc1pn/wpsBQIMBkRLCzOFsGw6H17PPBM0ifxB4jKy9Tr1cmp4e+X82Dn/DggQAoeRFbQSIRGU1aUQUuxY4KMC/atlYzR7nma1pG121Hx2TZ8iBFKSsAHN1RLFBIHutxD+7ZLPJrwmdLNdk4oeDuvsyEkpHTbzGMQmmjCgQDGzmTrbySX4NkMiErATpNQ7rOvNXnHMPt918tmT2f7c64t6ISWgkx3Z4+RoRxPlr6+xFnKseDNK1S1+ZvhmHXu6ZrP+PGGaLJ7VyrytOE3gRyRw+98NVy1xsSq7FrKFcrv0ocVCYCqA0bwFkmZW4YdWW64z3yDRKaClZ3gvP9HjVHvyZvN8qNMUaHs2RmBZxJXewVMbt2irjD90ygiXFdZ253cVyDAasx7N0hc1BSYTRlwbtDCkXiayOBhHAHCNc3OM8VCwsJVuZF0Dzz79+M/C0ycZk2wu6T4idEK1AVby1htIKzoOW8qjs3vf+wPQd5reVILmGs5mPoOFzI6mQmicIu3fIGjOag8yf0grc2d1Q0CZZh8UBFeATOA87QgQdjnARUYqmAjAtxDg4ZQV1oAlgJqCKNQsOwCB1AMXhM8VAAZ3cHBq2pmJA1R37die9Vio7ktPR9r9FU4XPE9YNX38akPIDPt+/QNQD4f3A9I73xwG4oOmddOq6rUTeRjCLdECg1C/QQgt2cdg8MWPxvO23AIUqHI4pFsio8UiQoH2K48sPnwO1d/gwzJOjIqJKXZDCUQMHUKjlv5gKKkE5lAzgYMYhFUXeCArUcEYD2HVaC1NR9BMt62cU47XGvL6hB3NlFoHoBt2/wNzxcXaIFSAG2YoUtFKhkCWgK1rQyoZtazj8Hac/0PvJ8RklaFV2Xu+YD6gK7vcCGwU2BK0QvT18wODoLgyQ/eQYgACPcaCMhrbTLeV5PAFR6leIg6KZcV9iRPPWEO/Xoa2ibo0gyZzokegOp2C4xCa3OcFUQ9Bjra8DLhzw4PzaMYHbvtPhML6GDCbHGOdKICzcjKixE+/10gmes695dbJElM9ehSN1IBPDMAnQCh2uCOaRQQgBatsJagrQx8RxTrS2odZGUVMRnJ2dNGoyhDC/8LDI5KnUDQKjDopPuHUmLIWz+hDB44OsmcfzgfMceP84IFJQa7uKUsncOeJM1RhJoW6AjwmXiWmCMQ7AZ+g9CPZaMcbE8Twwv53U3NortqpAiPnv2xtKKWgbDw0bJ9x4OM4YcaxC8HYBYgEuOUBdBge2agE8I6YABTIciDEjN1tdUH090EDqOfwlUQNQlElLATW6xohE32eIVxfA6O40tAfYM+IgDQBaFaERie+cfjzBtADuOc8VoHokBwmeIZKyKKdmp/4ahGL+cw6oAq1uUCuYytHJMQ0FtG52qcgBHS18vrMP2Jjo4XpWw2p9K9EJJ90F6TjDApM6SwgNKlFeW/XGuCcVY5w4zwdsnPychaMTurH5PobznmjWHYLadpSywyzetwBS3oCywf2Eu6GGCUKKICOZCBJW8Ahre8R7FsG+5d58UoPFgdvtjWvrHC/gA7up5/PE8/GE1g2tNtz2FuN/gEBRteE8DvzD3/89fv7pZ4gqPt4pWll059rsdKr7dL/jnIYxjXHUCQSaTfzy7SufR6nQsqGUjaC9NKimNhEBk0B5ASGLcZrhcQKGidujwTHx69evK3ZIqcg2l3m4eYKmCixQaNv+8e0b9q2htbIAqhyFSv0xsmuiWZBnFfJr2PjKYVDuTzK0bZywMaFRjNLUw6EYEOlw6cv5pd0awZ2ywxwYQ9DPifOY+DgOHEcPRqBjrxT2NROwcdDRJtCyea8EJuACHwPaFNu9YnbFPBVfP37F11+/sshzwLVA24ZPP3yBFkX3gbIXfL5/wuN5YoyBff8RbVPAPiIOnBBxuE52n83CtdjpdhS5WClAKx420YpPP37Cl0933D7dAXf89NNP0FJxf/sU+oOR6BfFfgvBa/O1DrjkZ0QBg+iAYEKVMd/Vg/r/WvCwYLbQSqrbFjpVZFzMbuzCF0XZhZo+Nb7PyF6tGxPoOQa2bWNuE0DvDIt1avolsMEYOqOo//rBXGHfWoy8kOmqIpgODKc+Fccuuc5N2fG+tYLj+YHjeOI8CbpsbaNuzFYwu+Hx6LjVO3Tb0ArZs++PXzBtot0q80il3to0oM+KYYqv3nFiUnsGoU1iA+P5wO2+437fkOBv26idOM8Km9Hs7Lx/HPOjNh1c4FOJdvil5fJaAP5TrwnBMwouFMVsFdIKHrNjdKA+PnhuwzCs4xhPnLPjtMH6QAiWDfNwHaSj7OJFBIu+D35eD/BJtUTsuQYCxTkmG7ua+UTE+iIsAWpRMFIxz5tOGGjTQnMaURi9zPG23WBwvI8TY048HwdKraitoRRajvdoIDJnN4zRMX1geHLADOccdFdEY04lBNmOeN+JCYjCVTALNY0Qchrn6CwuXWGNuph2stlwzpNDo1Gczjn4RCTHo3KsT4EECWJtJLPZjPUUby7/zWKsrJSyGmTDaLCTUFOaQm2VjGtKrdSI5Q3iwO3TG7a3e7B8NKzrWUvMs1PDqZM5P/q5Ftx0GipMTJhw2qRWgZ7UbfrnXkUVX378hB/qHaoNw+iaV5XOgaU0IJiEqdMDIcw5Js1vLDTjbm2DQmlic554f3/H/X7Hp0+fwtFV8DwGtcCCCaRiS4IiGZEJwlMDVFA3ADJRmkHBOvTsHWMYvtx+hGjF+68fAMjMVyFYrMI6CLXClZABmaQdxWzlN5lPJ1jlfw7aLXCRTS2NB38M6t5t2w0qgtvWyLDMXMWB58G9eLslo4b/7j32noDN2hAR4r44IwZZ6GcxxouUYIyxEcXPcgFpNaQuit4gaBjjHY7Y17Jh3zzqhInpJ4YdSCPhBPIJtjInXuOBtKJGfbvF7SCwOyVYuK1hKBvSvXPd7zvPQJwHauVU0fM8cfaBWQgUuZK1z76RQ0DChmMyJzRHE/JJ7ThQa8HbfUef1CdFyvwJa8m609BL7juO3mGP5/oMIjRVgBIQQ1x7axUmjqM/Ik4VfLy/hxblg+Ljyphx9BOwDvGBfd9RSqFRUwrCg+SPhKe6G2CDWooLlPzLr98MPHFMLT69C2QGTVUUagXVK0iu9QTXo/gtgdjnoua414wuSlX9jrHjljaMgr01mDv6HNGFjW57znGahXZDOmExwxQtLMjiWyRmWz0FygLhVGVhXjzGoRL1h2HOkxTsjZa7PVxxqKkTQIlMUOSPyYrNgSkGESZy1PK4QQSoQoc4Nx5wVUOgzCbECxSOVlo4DpD5VAu7IFy+hFP37YbaCj59+kSNp+JRtEgk5lgsgdzxvD8Uh3QlDVNqhdeyRFt9cMxqy24yLjCQ2hcAEi21XHws4GupkXAhAB5wzCIbLQJ2gxOJtuglmYdoZXQQ7GIqMCAAtVUGohChdhMUIUWRIr8UOEzGUxbJKghtAkFFJCOKFySf/5ZCxJ5Mp6q47Tdomfj4eGcBoNnRxILyzz5wHCfqRuCm1vQoCrE5eem0mS8tkPjRgAkUNRhSyuQGAIzvVwoR6R6zvRYuOQSv+TU2Y3Y+rqlEpx4O2LgsVd18AUDXtDw7NnEzVuHPjiw1VGR9gOgU2FVkxxER400AILHmLMZf1zevjkOtXCM8tNg9pktXdi0lmA5OkCHSR8/OcHROSgiNWoLZua9j90IErW1R4GTXVgKuALILc03J82+pLyaY2Qn21dPhiI5Tf6EqxQnv90oASHj/+jhgRnYLP1dSiZm4wIE5ZQEyiM+dOiirWxSjRAt8APM/g0dcsbVPUneBjXWyJJOxlh/Ys+xQpohqZX2w1MRboxixR9KBJLti7h6dekN21fKfkw1mIZAozrtLl7i4w8bPnddIRhM/X/LCVgKwGC7X87HQMUHJj6UBKMyXzh/W9wNkS2b8dGessDhjZmoAaScz1BQa5c3j6MACTxW1CTAd3SZkOqcRPMTEI+32MFCAF5jRYjgLtXN0AiFK4fo5fX22BENznwEXdTw/y4BDx9WJfN1vvP+yYh8kOrnCUdxSBKpA1Wh25i2Bo/cTxzHx9ukz9rrj93/4PcY0/Pzrv8U0w+1lHKD3jrNTezCfVe5zxnWeK3NYAFuM2xKd7/WJEgiMfdh9AFPw8XwCwj2sQkt4Uayzni4v0fl3Fkn9QdHnVkm/J+2eY7QljEQs8hZLzR9JZgvvcnaCqb1lq5ufz04LDSJyrVchU7YWwYRgumKOSxsHAvR5cuw3XFLPY+LxOHGeEesg6IU/wCwYVW5olROLSfsoGvtMBegTH/1EH4beHecQoOw0YwBBuLbdoYWuhB9f31H3DXVreB4D55iAdpgpnie1A8dUlAqUUtHtxPQOSx0unjRsDBnjTommy3NMlHOgPg7AHL9+HChlwmTDsNC2qhTZr4Nal6MT6FXJ/EJXXEk9yxzRHWOwWZOFSMRmGKLTrNiNTovHGaMT5hANkVmnWxKVBRxiNPVQT60ZsFEiFs8tmB6RC+W5xWKtYmCsc8UBdAP3mF1W2RZM74mLQePmsN7XpyXAuaGPEzbYXNNScCsVJgWoitME49lRK/PTx8nPc5oRaG88u80C1BwDY6S+YTL309Kb4HypJQoGxxwRJ4zr1QY7sCXcmM0E7x8HjSoOir4jXNrEc9T5L7/MFcMqx/qloM9ggxWyOPo5cB4nnh9PPB4PNotmpxtUMkxE2anM6YkA1jUfYORi1yNzigszQYp8NQAgyDobUt+EZ2rygchmp/smwT0pNYxO4gdGrqSFxkcSDJ3hmU/F6SEabDdZTI7WKGtQLLRji8An64n7fkMrBVobbACGSmcrUQwUiAHWOSJaklJReI3UX022E4N7hvdk0a0JCpeYashrlUyGlkwJgZAo+oMd6hG7U6ezaOj++URmjy9Z5KrPaIDQ4PAlpu02sL/dcf/0Cfe3z9hvd7T9hiwUjvMDY3TsbYe74RQKT/dgBEkAWyoeBS6vd1Xmf+ElguVYWusN1RzV+JmQ+TEIKgMUy/ZcTvxwbFpHrkaNUbITyeAq656aedSgjqI8Q7uxvuJQh0C0sMEbs/gF4bruhuIOAdmLVQkcpOMayy/KEtSi2LayEp/UYsq9n060Vx7MZgqiZi4KuLK5USCLGZW6VVxDsp5vAlPXczdk4xpRr5mN3JqROoarqxnJHO4UMgfQI5/XwkOdouyZA+bYFu9zqYXC7SObh8lWZMNuTVS4oNQNboP6jzNqx2AYUxdMCBBmfRI5qqQEAlEvOgaKQNsGqRWoob0Kgk8CjrkJgNWB1HpN0OS/KXNVlKxPy6rRWfPyfqsIHXJNUByx1xvJKfCQxOA10kCKkKvEGJzq5TA3DhoeHedY+x41Y0AuGd7f1mKMuDncJh6PBz7dG+63N3z+/Bm1Vvz6yy+A8Wwmk36g7Wwu98kcrt43aP1temu/GXgKqQkWECZknYTNap0VzTakQCNrb0WtO1Sp80CZEy4gF6FzmQi2vNAQ0YIbija0oihbxbSJX78dgTmV6PoGFdOc3R0R1MYNngV3ycPJgVJ36uNMg9nABAEr2iVyIRZioNQ08YlnP1FaxX7bcRwDz3CUkNig6tEVlYJWGxPhnh2Y0KBxgfgOlYpanBoJzmtuWnEOi25qRYVir4ruE1+fD2pj1Z3uYdOACBRvnz7htjf87vc/ADDM8VxFaIvOidmlj0WL2bKKFnJJ6WCGWoCwb8XJxfu23wJhdgBJd80NyuDJopaHdSkVtd2wbRWi1OYgG54OGQKjOHgWnXHwwXnSizs2EACTSGocjqach6vbjYs7wHK4YNNKBoo/MEcwMzJwC102HGT2kPRbV3eBn4MW4WSBsINoM5B0aWifBX1M/Hx8cC0Hi8Njs7sIns+DicPbjtIKbq2yQDMy0rJcESCEeh0inFd2i26TVxRUuLAr6iJ0MhJgq5XaRIPskxnsI1Fda57dLImxQLovKJSaH72vvQSwm++QYLu9PAMnMOQAemdQn7NzX2gqtbHwF6fjCw98p+C1VGQGM2cIeyNBBG7C6TyIt5LujNQiEQj3THQrUzw5m85mCUkAWZAXFbStYc6BHrouY1APIwEqUcH9fsfoE8fjvLq0q2gPAq0nfT8PaofYBTIK2LU1d5zhFqeVoFarii+f+Pvx8YDNiXGwIz5miQI7ARmEvg4wh8carVBlwiIePJQAyNktNIzzGZ8cMa1n6+Bl0c91pSqojTontVYKRGchpRL3hfteRdC0wbyg2ITZwOUeMmPmXIKtAqTOkIW+C2PIXOCUBEV4zea70Oo+tCuo5yWYxq4jqi4WHQv9oKQjGxWybOeJYGf3bDBuBZNKoHQPG+Oi+gvWvicep7jEdAmaTEsba66V0iwKOXafq2x4fHvgeBxwBbZbw+3oePaJx8cJcYUHiJ4xjZ1BByZdOicEzzmuw1Of6D5w2wq04B8fgZMFsa394+4RxydsdmxtI8giMfo70m3ye3q5O/cJtcfYxKnKIjwrNTfD8/jAx8c79tuO1j7jP//f/OeYBvw3/+3/G/3s+HS/BZAwokA8UCpZJUxoPZou1CDrA+iDen9bqVEURJMTgAWQACCo2o7DB8Zw4H1Gx5PJYW0cC3MYRsS/vdKhZZqhnwNff/3A/f6GHz5/Ru8PnP0JR4cIcI/xDpshAu4CMIzzPmfdJcLOkzts9EvPTKOT3ACtZOkpgKqh4bcJjl7QOzBOJ9AYDMqfvz7Q+8TjORZQ9DzZuW7Bcokpb5o4BHAeBrs5CYB9o2ORFMf0ged4x5jMxWptqNsXtLrRxtgm9tsOrXccj1/x7//uZ3z+4QvePhd8fT/xPDsgG8wLjudAlhBVGrat4WlAnzEGDxa4bGQ6xCaKT9QiaFXw67PjdMGzMw59/eUDtTYcs2LMGSBX5BkbAabjyTxlqywea61r7V8aCXy/Y9BVKFBwwB397AFqMsHeNxacBrqx8VeMawWzpJVwJLKD4NDs2LcN932HWec5OVf9HWs1xqwK9UlqqxgBpJdoDtnkojYz2BhkJddKZ6PIjVprmMPw8f5AgWBTxW3f0NoNH4+Js090O1BaBfY3qFTIVvB4nHg8nth3R60Fz6WL2FFrxadPDdnSen6c+HhQBHZOx3kG4D4pzn4IFiCSI8NFBlQUre3I0bpaGuq24Tg4NvR3P/2Mj48nm6SiuG03kKXgOMbr3frHX9MVpzc0UKOM1zVhjXvxVjse8sRX/RVfv33Dt2/vePYTp7MZwByLrDepDp+Rj6ourUAAi0lr6d4KAj3p1kQQAFfeHvUX/5mxhrqcGRZZKJbaFvBE0MEDxGJRy+kpgxtwokC9oKIi2tAEzYX5bRHFrW5s7I2Ot9sN+9ZwHA+YG3748pnn4jQML5xOEDZ4Zjh7eWdM2zfqupatXYwDZT7qoclkxFH4Z5CJJ9FUdWelEzLzWKzrEWwmifMCEpqWdMhLIJ6mGVuMfPCupfRINp/INBkoBXh72wExPI8nHucTAsfblx/ww48/4off/QH7vuN2f4vxNg/86YnbxlGUZ32i944+HiCw4SiV9ThZfw6Rhsu45C+8hJMMW7thv38C4sx/Ph7oR7oFCt5uN5gb+vmIz5z1YWgsKg2R3GLkrlRst3uY2MiScxGtqCKoumHaxDNYTczzmAM9H5zEaBUoqNiVY07DLKRGDHvh2O2W3yv8+/M4Ibc9GMYxIpeMtjlJFDHm+Mn4ndNj+iLObXBsW5yfXVOHU9kwGh7yBbGDctxcgKUXxkYwWbEAgQkAS4IEYpjjxHlSC1FE8Pl2A1xxfBAE01pCQ7KvvZ11RL5XrRXjBNntcR0aroAaeqZjsDnV2g3wDndFswZqzFLOpio1q7RSXw5OLawx55L0QGFu2oPEUu77JegdYPcsPIhP9yipC7wUoDRoJaOSTsaeuD1vh8ao3HRgRuPQHVsjw2z0cwFPBRW1VBzyxPCOrd0JcOrEjLpviEB7R60btrqRyuDAPAz9OPD+8QtcWddst406yBk/wUbS7XbDqKzzH+8f+Pr1V3z58q/x+z/+Hn/8/R+ovw3BcRw4DzbVxjTc7Q4pCnSBFeCtfUHZGn7L6zcDT4+DVPdtu8PnwDg74AIxhVqD2oYtuuPiFuioQYSCqBYjIhLFhQeQk5oYvBNMeMR4HJyDlu3pqMWFGcWV+SqYHaHsbobzONjl2RpSM4HdcQVKvWYgC1FJNYsRv5ioDvRWRWHT8O3bOyBA3XfaVU6jIDJSk2XCnOMpSQcXAZMQkLXCURgNQIyJlIVFeiuF1s1nx/u3B62pUQATjHMA4kEhZnAuyqItGkBYYroeaGq4GDiYRKkq2rYxWe8hMi4CF47QpRYJhGKje44fCWn3wyw6MIKyEZ1tKhcYJYrhISwOsAOjBVUau41KkWyZoUUlRGwBkE4qQIm16rDQqGg4xsA0RxlEt81Sv0Vpzu1Ak0YgxBI8mKG70gCjy1KJQj5oCgTmgrFHPZk9iuhch44xnhhz4n6jNtfP5xO1NpStRgUlsOGY3WHDUFWx3RqGCeYYpF3Xne54MwA7cCzM4IARQPIxQ1jVUTZ96Zo4zt6Z1L504VOPgo4RjpxPrvE8PAp6FY1OhgalPYAB8MCmmB6ZiA7BGS55RUuAXhSTV8Rog/PZsWBIZx4SVs0TXHEmNnENIkKbZAdsksGlpbGwjs4znCg+IJwrduqQ8DEX1HAcTGcv2rfaYmaxSAW0KubzxJmF40SMsdoFhHHB8XMFHfRytZBgAzmBmshQWfgHc8ycTpK1BKVWyQwbI0bQ6M7nzsNXK5OEc1LTYyaNuSC6+QSXXIPJ4xfgdnbuGc9Y4QZ3JitSgvWR4wOCa87aJvp5MYASyLEAvEeAfdytxpHGSPC3nSPQuhJ7iS4ZIFIpqlhKFCs8+MfoTOajitZsvokD6coZ+hu83yzU0np2xLqzYFFpzKGPc7BjVGiFXlBwhkPIHNG5j1Eo+NWB01izrhdzEhEXGEeF7pMQ2BkMOR8ETsoGN8WYAikb6l5wzg9MH+h2wJzaNg5QpLhQFF6C0ZkOh8WZuOcomhk7TiWAQQ3QiGDuCCZxWIb/2bpMZxYVWmfDlUDFJJDCc4sx3pUJ2rIcLoJaC1L4mhbDQFYbFBp27LdGTaLi+MMff49SG/7V3/4Nvv36FR8f3ziW3HbsO0cdZwK1cX0czWsoGxOn4s7kRxLUBjU73MFJUl9dQwHd0RyO00YwtSgiervvEetC/FMymU2mleLt02cUbRyFMA+GEi3W+zkiwX4LK3RAhIwYusbyXIMAhrC/bmBjxiS0UiYtr12wYePnnR2P84n+84GzK86ueH88cPaJut1gDvz8LYXIFdSsKxiDY6PJihAfURizQWWuMFQAIWI7HcfhUDW0rWA6QIIXxyZkhhB7Z8d8PJ/4Vg4cTwJ1z0PQ54Ffvg68Pw70MTEFAArPR/C6ZAzIaRjgaIitsRV2TjFJVKlTUBpQquOj/wpVRxUmr3byPv3plwNjOvr0xcLYKpmE/TygKvh031cuk6D3YjwqY+7z7NTjj0K4lIJxMrZvIZvg9jUKAY6ySFGM0THm5BiKAmN8QNw4ukz4BSoPnk0nz95SaDGegrx9CVtfGkTJXr1tbbGTM5apKo0hIspNYT9HS4ziPB5oqrjVEuY7IKDgho/+hKji53cy+scQjG4Y3bDtFIs2HCzmJ2N3rR+B2upiKB3nyTzCLUZ26KLWx4GPc+D+OJEGxyk/of4NIrRy58FYyYzrA7/8+kAfHItXUZzHXE20nqOgf+FlBhwHG7Nl0HQEbhhbRa8FzRX9OdA/DnyEAP7zPOP6PcBmHotTHB5MAbrzccQlRdDJFAa7yCFCl1O9ZFMEIzBW2eJOB86hzimGCUcfhiqKt23DKcCvNpCW7TWYHY/nByaAR7DRZymYIuhmZO4bx04EjmpsoG6oKKLY6g1+TjyOsa7n668Pnnl9YLpgoL7oPjGPl7B1tzEgqijG6DkhdH3WgnOS9TcnubxsfFN+QSNx5BpXsiWc0htwpsb8eQafLyynACYVweg0CXYdx66T6ZI8jCoc19RKcHT2gY/+wBgHFHQBfn8egL6j6k9oreG2fw3tOMPj4xt6P1Arz8dzcmTp4/GM8waUW4CR0ADF8TS8/+H5HXj8j73mmPj7v/sTHu8fQKmLCTTPDhuGP/7hR8je8Msvv8B84jie2LcNn94+sR6acZiZR4Nf0Ec0X5UgzeiUhNGXs3ycT5INggRA1gr/t992bK0Cs6OKQgYgA9DOM97MsW2NjCpzQCZurWCI4zEBwYwmMddXOmCyzlS8vW3Y75/w+fMXbLcbVAvo8TWBYJ6SdQOolcgz48wGwpCH5IIry+JLVdfEhL2CNvnpLP7sIUL9dsc4Q8YhsACPsTtTNgrIJCZ4djx5NkhJJtWEqGPbSwDNYVoBSmZoqdAhV+7qEkZbAvcgAogDMVSLmIIAKEVRlM1sA88uEUNpe2AJ+2WyA96LWneg0qH9tQY7psOlQmqFTupDqyIA7skjqyh/Zi0I4SFsErhEGGBYj0hlJEdoTXfWAJHBZuO27fjypaDVDa1umMeA9YlabvAqqNsJLw7ZACkS5jWTDRkncHfbN+BW8OXLFzw+HrjtG/7wx9/jyw9fAHGc54HH4wO9D9zajk2o4Vz3hloLzCbOM81B/lkIGMC/AHg6hqFCcW87zNNlgcCTWINazPWyLAByfl/YCZLUIQlL2SVWl8AJQNBJIjEOLRIWyvHgxkCtLYrroJgiDqhgQp1nR90AlW0FRsJKEuyC6ISrL+AmRwNT68bjuoYZno8n2t6w3Xd0p0NBKeFCJQSVkl54aWuxkBBEcQpngiSykuDcrFULXYOeHY/3B9wF++0TzIjE1qpRtJPNV1JDIMGbQLuJPodWTzz83vtCizEmOkbQMaOrFMLCKdBXRdCKwoST2yMAQM+xoEqdEFr15uYWJs7secCiiK+6x7OMgt5zTBHw8DsRDHKDqi6WVSsNre3wyfEmTK6o6ynSqlaMQq+QgmFhAf4yBuIwwCaKbqhSSb3EDIZ/rFsUiLcYXVO4d5hPjPmE2cRt35nM9gMCATY+W1lBzeHDgOrYSoPCcQIxCriD0CPgk92hGu5EXljYZDCb02h5LYFBODB60nDXo2Z3QIPCLbgYF9nhwyXmDKXrwnKFiJlscw+rXyWgCMGxRpu4dsqiSzI7M2MHVUv+WwxvRdHMBNgBJ3CV4x+95wiFwmPsVpNqGCNiTK6pTwBQmwMBiFKYFqFpE6KrAVgkpTtHTNPCnIwFCcE/X10WvAC0CdxegpkaRbJfgTN+HxaCwYJrTKwWlKqYzpGJPQAFAEs3A0qfR4vRk+wVeYCmVgKoNov16MHpFoweIuNpOBRggTrY9VXALZ3j+NlmFLHTaaVdVRfIbwHMzjGg0dHKmSsKWno4Z6aKBuDJcHXEsyhhxyuwSZ2fOccCwArNUmJtBMUFwfIDxbjJBCXFwJXXY27wwgNZC1mpcxAMKuEmBBWyXoLVYMbCREEwbjHagu5NMD7Lx+9ZRKlr1kePEUwKKJYiTPwNgDbUrcE/3jFtML6A+k1zToyTbLOSAd95T1spEGdCRxFWxk/RShOHxPgzVs4ZI5RxbbiAp1dQNNlVDurYuYc2TdiyR2iAxcjkmB173dC2tgp2z8x9AU98XvteUSqgxfHj737AfrvjD3/zO7gPfP3TP6BuO+77jm0jC+DZT2pTRek0A5jeYgyYNWDEyEg8p9nFEAFHIAkkXeBgn3FPhfdk2xrj4xjxddGw8ggdWrDfGhs0L+LiCVL1PqACtKoEKOLOu/CsTsFugqQj1p8s9MCMRZhqJfCnBOGf54nn44Fffv4FfWwYveHXb+84z452o9D6L+/U+yvbLWysSxRrHmtUFgvWVj0TIIo09HNgjtQccuwGTBc8T4FWCRaR0HkuGm6Pbwdghl9+ekfbGvb7DWcATueYGOYYGBAtuN0+I5kP1g1THV4nXOn462skTWJESNF6QTGHTsdxvmPOA/CBAmAvG5mA9mTeksUtBDdl4TrHiVoV/cuEugE+cJ4Hej8XmFnqBnPH8+gYLniioLWK1rbQAxm4729QURxHB0DAuLaKtm04+4E+Oj7dqbX38fEL4BNv94KqQFPEeT5wHGRQ3Xa6GPNnA+egnsycM2LOxAy9u7f7jqoFWzQNxhjYWsPWNnbszdBjXBRRLM3jwK0WvLUGcY6w7/cGFMHX5zcYBO0r3aKOg2eBu0bBWVAbuSvUCyRDnsiKYttuaLXh8TzZuGlkIzYB+px4PJ54HgMfj5MaIqKYyWo+B4oW7PudcW8KnifHac/B8/2ukQ+nG6AofgPhKVwpub7LMPRw2+pjYtSCHQWnHHjIVxxj4pxsMk9Paw/G4cSSKNCe52CcK4j8INaom4ASfxJxP74qgKdhY/1tgk4FwWwOyQcMgxXBvVR0n3jMzsbxnLi1DUUKzie1JE8n/mcl9pFh6QNZAG03F3gpsGD4bdrwPDqO54Gy0c3qcRxkxBwn8+v7Z8zIDdOAh1qeHNeC0QCJ2XM0WIoTUDDG2uFYuq5zZs6gME8dTY7q9MkJBo0awPLccUSdJtGYDkaTIdzGOfIkLwYxvNQEBAk8jd7x+HjgcXzgx8+foaXh49lh9oDaLyil0C3Q6Azbjw/MQcMWB7VQ+5h4HAefqwjO8cS0gW27Q6XCuuLxfqzz8p9ek4Y//ekXvP/yjh5THO4CDDJZv3y6o1bF++MjAJiJVgpue8XsFMXvI6ZsNk7t9DlibSr1aOfApopWwFoWQB/UqUr5GOrosJm8bxuv7RmZ13TIcOjgnzGYE9VaYqE69kpZljPGiC2vQYS6WYhRexXc6g332ye83T9BtxtEC9eGGYrxmea4lwVVy42EDEgQEMxRN9au37GQhHnosLn2FRORzC+CyWuG276jtYrD2agn+9SCMEDdIIm6sjY2rs/TA7SJ/WzMGVor6BiY4Z4MINhbHE/NsdzUwfOIlSIvwBN7cbxOSLj5Ra7sYXDgsozCWtth50FXWSbdZD6KAdIBFWitGMPQT4sJFDKP1A1SAINhgExgKcGIQsWmYXxpRnfkWlhzzQk3sutY/0czPO49gSdOW+n2hlY21NLwtA/02VHKBq/UyvTiYK+JNdOMKYMKgnxk9m64v33C8/5AK4offvyCt89vGM8zJBkOzDnx+e0NtTS0diMoWASnd1j3f3YPvr5+u7g4foCaoH8ophUoyF5wNxzjAS8D9zfSUPs42BGK7plMdtVRHX0+AQH2m6yOH3I0yXlzp9N+cJboiCecoxyFGwerIhdHypWQnirQtw3QCltFiGOOByKLo8NWH7ApOGfwdJyAUAIWDkNHhQU7wyfgp0EnD6jzeALuDL6ipJ8GC8GjEDnNVzEPAVF8x/eH3wgR2dmh0nHf437YB6oUbFtFKYaihn1XtCb4cg9dhnHEW5OpUtu27D7TLpXdYcH5ZMJb9c7CbRpa5QhgnyfHYuKePUYNiu3ERAOUtq8IQAkAho3YXARbYAMSYux7aBxVDVE4m9FtUUh1QB0+CAj00YNJQz2OWoBpB8aDIvWqyV5Q7Nqimz8COwZGAB9TBdCNzg9KxpWIoAoAMZic7Oa6YwT7rOxvHKsazk44YjRKgHJ/A9wwHx0mgv12h0glWOjshJ7DAekY/oZqjuPJIPnD/c7u9XlgzOy8cZ3NAIwooOlsNeV4STGo0qJ9YmKOD6gItq3RArv7OuRjsQUDRTCNoKpqW10ALWRnnLHmXADTcCyCQaxzv0nMc8d+cVBoW4SFhxXApWAKu2V2cGSpBxhXXAJArTAbwULhM7+VFmNqEzq5D9h55WgrwCRf3KBu7Ehj0I1JZHVGauhTiAXgMkL3Zc7Qbysoc4cOweMrBXdvP9zgekKlR0ccayQrtjVGPynk9/ZGDZuwAyeXm1pAOTUilfod3RznB7vQRajz87ZTdHF2allp3dHNYE92AhgnmMS3CmgVbDWVYxw+BmCADh4qtY8IamU9b3GDOEWGpQBnT7CVjNAStMFMu6dP9COMG6JrRDH1icd5UpettgAxFNY7E07RAOeB1eeyTM47wcIQ/y0t3BmCOTVABhHZOMGm9BJrP+6/AU0dNcbgioRzUWQK4gbVAFBOg/dgtQrZIFVK+BkExd/TEUQA43lxHBzraWEHy3jo8TxZWMN8qdkoDMWfaFrhW4UNofCrnqg68PlW0Ifh8XhHE8W2twA4koWY47CFFPtacbvt6CfPiyZ3NL+FTlPENZ8YJ280tWwGt3U808hvYpSNeggJGmkhrR7B8knbXl/WwlG4DHbiDUDqwmkkhHOOlRzbMIzjxPsvP0Ft4H/3v/2v8O9+uOHf/w//Ldii2LGXgqYFVSpsFuoQgpp4Kg3NW+hkODA7phmFTt3R7YTA0KKBVMAGFFl/DBnPSTfBz592SNnRXTm6axMtNPvGDN0NESDEQz0KLggFdC3c5KYXmAuek/uf9sSdI1Z+ApjACBHs6vABjBMQbRDdMKdgDsH//D9/oyj4Qf2qj28HseJ5hwnBtcdZMYZAngE4lB0mgiOKRFVHr4qpFY94vjUYYcMC4QW1wDR0+xATzO6Gb8+P2NWKOgV2BHAPsqHhQLdgWGvBNMVxhEiwCRx1sWUdjufxwRGCsrHzDHb0TT3YOLwkpTsImUnzQJkcyShoqLhGrI/TogDj3pyCpZ00YxRVy47hAryDoIE33uPZ8jjDMQgXD5kYQpHqggpYxSYbUJlzDTiGsSlRAsSbB7WUqlT0PtGH4Tyj8egEDreqsFlA0dkdpo5jVLLHDjY8MPc4mxFNkAjMcPQumCIwZXHgs8KHoj8V5o0NI6fxhRXuu2ENcwgO531TV3w4QYfT7zB3/PrgsxpGKQIRxWMIVBy3VhnbZhjFeLhBmgNDOPZsUcSgQjrw/hgYbuiz4tvD4TjRCkcFSwDQvXOM8zY4rm8OnGcPl0oAIvDjiWTUqzNLT0Hvv/QaZvgYA2UOGhqExMJ4DnQxnMc741WMO5NppjDbXizHOaJikS8QludaqkJVUA1HQ7PLNZL5FYEWCDBisqAoWWoeX0vnzIixwU6xYIP96f09QHRHFerVPSYgM5t3HDSjgLzGSJuSVI9s2gi+OV3SfhoG2BM236PgFdQDMVoczEUTYDqkvyM1MOtWyZyLhuFcxXflfztgHx2ODg2TledJJsg8Q4fVOcatIiinrUYUEA1pF/iIGyEXY2R4h8uEVD6nox9R6FKoXtPWSiKZAheJiKBaQ++OX74ewcTa8O4Fx9Px8fEzSim4t6/rubqNMLyheYzhCF2zk59Bg6kFwdFP9Dlw254oUmDnxNfPx2o8/FOv3g3/0//4gfZToZTKeeBxPPD26Y7bbcO7/X9QiuDbt19Qi+APv/uM+77hH/7h76DGRgonGSo+/fADSmuo2x0QD6c5ohk2T3Qf8JIDahbAncHHwJjH6v9ouIK2GPt6f8ZEyuffAX1COlmo83mibBzRrpWg9aYVJSRb1DnONjqlGabdINrQ9jfIdseQjQSBw1C2Sr0kZzLmoaV6TJIAShg2lRINPTWK4htr09WQ0Jy2IMDrCMAn6r1SFT6YazyOJ54HMDubVF4q4E7TGzPK9kTPBydZt9UpfjN71I/Z2DUKvKvqNfonPGv66JGwstaAVkh9g2pDD/kG6sM6hvXVFOJwoGMa92KtYZ5V7oFzO+5tx722YFZbaKAJR6QBqCk2BfadD1ecICGE9fP0gXIckCJo+8ZmfUhQuAv2bSf43d9hc2DMTi3MADE5CRNkkUmTom17g7aGeruFdIDAe7hR244yFLadrJ1Cr1mcjL2qbIaJKO6Vo944FJ/KZ3z64w+oe0y6tIZWBP/Jf/mvCcbWiJV+IgY+AKf51Jf9B3y6f/lnzwfgXwA8KUhrtXB0CwImAIuuMAtqUYQNbgBPHiLgAVoEOQet0jlnLLVCD+ApJ4aDmSO6hHJVWYxOs9XZvqj7CMZwWYeBBvqao3BVycgisotL5wH8OdmJdqdaDpN4iSQjiiNIjPqQIs+hlSj4YtEzzESHRgOvieQK2VEAu/9zkKkjcNRK5Hl0dtio3h+d6Qq0JtiaoCjWCJRE8llV4TLX50EG9XhmKbpt8fkVBcXrcoJKkePhwWByagFxPElfyRArYUihW1Gyi+CTAteS3lVO29g174vX5jMHJZ33SQWhw0WXNwIKiJ9DwbcsXBMc5DMSGFoAKPydzgEsiiQ0YtKBOG0ws1DHEnC+Rkik0qnOnzEKWFssFgYdc66BodQrMlPMAWitqK1iTo8560ic1ggNGCUhrMKjS8Q/GPMYlk1wHwT9CpbD0AU7RWcpLNrNwvMlRtHcgwKMq0sReGisD6LTEtFeNJlSSUS/ANMEHFMTYOTY1jRopoOSlGwJJoYvoEMsVCZcgtKN+Jn8TDPXMCwSJAtGlsCdrjDq1z6lWKHDp8MG2VsUbimAaQB0iKvJ0T/hurNE5fm5bRoQzmj20s0BXvQPHEhNBAPoXtQnxugcvVOBhoaZTQ9XF1Kauxn6oK5TUY4A1GB8LSH96DLZ5HMXcc6GO2KzYCE2qZvE5DBdMQwmGoR35I1aLDJ30niReiqGEGq+YBfAVtKdYvs5QqaxJleGH06KEkA/CwdZe8eyaxbrVREH9bqnjuLsLOX7UoCcRYFHcLQAimfc/1IliqDgBYUQMaNUMmCjm2YspuqilF9MIguhW5HcSexKaYqlKosKEtAIgrVKkOfwDpGGkjOFcrF2fFKwmXuH68CC9VZQ6V7kOU7GhsA6OOBM3tMy3D1iwRU7ZwQQj7Fw0fw+rOTI/GJ25R633M3ycrYK76kEujUH3eGOxztuW8Xf/P4LzsdXlADDBWMBp9AY8RhcdygUFi/C83KCI9HsRqajaTh8aoY9X7GMCViKFksw5GqcQbGecuvHvbn8ra5uq8S6yUI2O+SpTce1OWDe43omnwecGmueBSNvaO/89eu3E+8fB/qTY1AfX0+oVNR6g6vBdKIbi6LQq4fUYHG6M/6ZYQhgRXDmWHisyRE/T4FIBJkca+Y24Nh1Gk6ICdQv8ehaQ5sy7ugScw8Qkozxa4wcTjcqBceyLodKkMEhXDNpJlM8pBNiT2GSzV2EFpcsiHsAT9R9JNuJ8YGxiPox7sBBnX2oK8wqdUjicabWji3mPEAPZ94PheOY2UTCKkbW+EYUzulUmtpe7rz3pM2QHZPvbs7EzCzHjmJMtDAYKDxG0n1pi8xYL5gxCuWMo1xjzIvNKfxMowoyiirLOuhoEFGYVkxzPM8n0hwj2dcSekMaI9aINTzBEaluM5y2HE10jdqIk+lOFZ6CMSeGTQJPCtC2wnF2jnG62jr1euTWiLVyTjJkU3hZgXUP/tKLDb4YbRNqjwqwXIf7oJPtjBwkz2syneZiRZpjxUFlkpoZBzVZ0/AojBzgBE/dbUl4mOcpxymNBHCSYQ0FZsRGPiuDdQJmVQR7UTRosPQ81hTBVXgyO2W5wHl0AjyaAiLAE47ZJ87j5N7RguqMh0UEyc+FTfjovAY3NC0oERsJ4JPJ0lQil7XFKik7R7l6jNjNDJpyiShzSp/1lIAgLVzgPQ6xZM7kHgpTGHOLsfo8a8M0CpkgJeKGWDscMx1zYjhgUPSDGkMfjwMqgveazTXEmc1zBm6Y8oQH8ARRaNvhUExXPEfHOQduTXjmHB0f7/88GGrm+Pp1oP3KuvTjeOL9+Y4BQXfHYWycf/v2E7ZaIGJ4tIrn4yP8sxX7/UZXyKpo245PlWCzB4OXwyfOz4Ng9eZZF+uQI2ZxPhXm7Ck2fY4TpRTs+w71geLUQDUzyFzJwsukQzDtI4ZPG5Gv3kJWoC1CwXSOWalnbh03Ri+wP40fuCc18mrwmv2KyHGSrD8zj8f1OaM2l3jvdEzNccUiOf0SdUPoRYo4fPLc0sAYZlDvtSYr6/q5zAkin3LmB3BE0sr9IMF4ROSWUgpcDKYc40Ota+zPI98WTa1VRFyeUUeAmsuG0EAGJITtxbGmgRDufZ7AdiPA1EeBVDYmpwmJEwDcBCg770kd3D8WnVoNLCQAaqymbsFWGmrdsW23dS7UWjBnge0VUoGJaC7Nydjpjk0baiEACyg2YfN+GEG3tt9hcsBx0sW5AG/lDhpnhfxLSF5YmH2oKLay49Zu/+xeBP4lrnbtZ2gp2G9vmDbR+wgNmgkPJ5/jfMRa7ZAQ4RyTlORaNjpCGNkfNndEao2l8F6YUFP3zJnreNLn+VBNBMWTEupYVuKRXJVao9NHRhABQ2phsFcG1BonQvFFTxWtQWdDFOWAEQ2BueE4Rlirlzj8mKmJK2a/KKfpGMECysk2UIFpVHbwdWAd/cDj8aAbjwtq2enM4cHSqBP7fcN9b7jd2tLXmQB1UcwhoX+TqC8BKxannlbSjI7wGTo9rVEPxgweLAZt4WZQQ9NgjtDaysD5/UhLztBSWE0hWgEnuusu4d7FnzXmwDk7pAtkCEQ2JtitAWZ4PJngNAVUd2wtBL8dtLEVQYtRq9buSLrgEA519j54T8u2OjpFgKo1QAIANamUvF+mCZqF7LY4Rj/Rx0Bre8YulKK43XaYEQCyMQkMgjpINhReK4puMDO8fzzWfarthm1vZD5FopEWoaUo6kaHlOKFejeDOjKCEDKMQKhFeeA5E79a2e3Y9h1zGh79AQh1qjIKehSefZxrr5QaVuQBGI7QUGuxRgm4pB4KDx9XTUSVibBU6rgEqEfHIAILUshiyEqR+YiiNY2DAOjnYOLZKNQoNRLtALKnUxPJA7yDB+iYKIgVYDLXGVG5KwTn2XGcPYpPClpCHNutseBVwDrHq1QUXgCVHS2sf1UbaiGYJiZQ2eBqpPGDumCe3U5XDDDJE3OM54kiiqbsaM8n+H6yob/UbK4C1AqzguPs7GCFED7EMYSds4EBg8GOZ8SMST26KjRbm4I1DqM83cZJt4neB7ZtJwXXST0+Hh2iwP1e6aJ0v2MOw+N5orV6CSO6Q2uDO501WavJskk2jEiAe6ypSDhFANO15jwKw1eMdSECYCIywkYenroypKPz+ZHBV4Kp4glVLFTholmH2wHBPAClCG43Hn7UBBNargeQpWULnb0B94HRH6w//GJpfHx0PI8JN2on2GQhToHJAgeLaDdwpFYL3p+/Qobh+TFhU1H0RW9MUkyejRr3CaihtbJGvMzJAB2xxtq2x4hXi/WhmCGyLQEuV0nAOHcnQkciRPqjqIFzrBEAu+oSYp19cNRpnng8vuH/+z/9D3g+vuK/+C/+M7zdFH/zxzec3dDHN8A3OBpUQxw7NA1GVlzSYecAjgFRgxqZXCqCW6kYZjhDt0C9BHg8gv3q0bhQoBegGnCm22lDEFLRJGLuTO3CRh2KTlOHYenkKdhbJI+tUt/w2dd627aGWjYy5OAYwyFScGs3/PrtiX/46Wf8+tHx8Rw4O9kI50lx3nnfg5fZMO0JGyeFvlWXzXifeSZTr+k4TibxqmgxCpimBoyzkW9YOvMQ1FuNlzyrsvuplQ66Fi5g7jjJU7mcvRLaE1wFQ5xp5gkm02BhxPiqicNKjNgwgmNYB1c8otHAN3AYbPCcKWDxNQcLfs1GBRJTcna2naxViQQayz31ZXRQCJRprNvqCCDeVpde4UuiYYFBUSw7EmS9mhyRmLHgMwRFMBhTJZmnBEHPjtDgC7BOuV4Bji1l8wGWgG98LwYs2YsCal2C45NxcjJuoKJo6K1MhM5JR5GKVnQBnwDZ1am5ZzPBtAkV4FYE5xQCl3H/R7A+JgpcqOWlmKjKURaIxJS7B9vcUct1LxFjwgQU2DAx8QAbYu2tu/VPv1QUTdKe0dAnc98xORqstS4QLfFzCYB5hrTCEuQV3l0yXxSJ+RFMtyi0I0VhFcdrD4Z4j6aExV53oxYWm+KC1HMDonBFju4wzz6M46cJPKUsha9mIg01ct2JCExnTD9wjWkN59qYRDA4uvL8JhgkiOM3tH2SfWUEcaMBDydgnaBzXmspBUfvITcQhb/ybJEXiGDOaFbNZN4qqBtoV4Mu4tFznDCfcYZ7aLfyrmg8LwsjhibUs/TKvd8DeDEls2y64TifwJn3WBeIVSVB5crrM8d2v0MV2CrXxHAy+FvZoPcTuwxYp1j+HAE2rs/5j7/MgY9T0M6UcfiCT58/4fl84Nv7O9pewnHwhjkN//2//XvUIthrwf2muG8xYaAKKQ3bdsO/+k//M7y9fcbvfv9HlLZjaxt1gM3oUgYA8wxgKOpUUD+XejjMfc8wKDiPAyLMZZsWNCnQbYMjNIzHxEd/B6I+AKL2CQDQA1B69JNaUbcBr4ZdIgEWmvv4MIJbStdJYs0xrWCAzQGzvnLDOa+zie6KZI2OMcNRXVcuWEP/CmCOsO+6JnuOfhCQtBFgclkxgs7Uc511y1W5vMYbW4APkCYtjn2/wd3wfIbWl5OMQZMp3vUSQOC2NT6DliP0urSmELFonIOjirc7773zfszJ2lBUloh60Ro9QzbBqxQ2auAcxYx8WBX49PYZiJpnwtESKAOg5igi+OH2I2xMHI8Hgds50EpDlYLn4+C9jByv7A1SlRSfSZbkvm1otcBvN1B76ROO5wM//fT3HK4BpyX6AO63N5RaMdAh4Eilxh6XKpBSF+h1PA6YcYzW5sT5pM7atjUoNmpWlR2C/4XFxV0OimaVDew2d6S19tILCVo/LfsSxw+ULhgI7lkMKLKXAV+pUTz7ZEGkjG1Mbrtf4zLAd6EmkdrrXV6/5gVtBhYNNzt+Ig4RBkTEu6xiXUt09IULDP5nyOPiw8XPSdqqrUzPAzlFFD/idMWbHro00R1RZYeYAY4TIqrUeuE85UvnHvH28XPttQiER4BPNo+u+6FgIbTEBNNmMgsVdYo8G4W6s2uz7uVCn/L7JchAcY+d30N7Yx6KyEQzQDl9eUMHwSCulkhvJZw1QNaBB1Cn3zHMOMbgSPF5yfL0Et4Gv0+MByzygARCTyDWQML2A9daTgQ9AlYW0ddqYxre+0QtE36Pz7eew5W8ZrIicX9sztjg8U5yIfLZXVj3OP4sqkjXlbVPsubLgj3mrdea92QCkDHIz+HfrRv2o5MVYEjW0/VJr6ftCHYAgCUaretHrTUEu74n76XErIcIrqQ+1yoEad2aCeTKv6+VtwqxlYjlOp4TZ+/o4f4CAOZzgYf52TMOaLxHJlrZ7Q50CGs1CYP6SjY974JGx49gy5hR8DmZW+ZCB6hSCJR5MGRCv8OzY+JM7PNGJ98s3WzGTIcQxpXsjK01hrivub88ijoDPBlViOLEsLTBJDpE0ybUQsA9P34C6JL3OW6ehpYXCIxkMZX3O2P0evjrTTxipa/4Yde3xMKJRRRnASLGZoGaHVi+Ze4RWwsl108u1tTp81xHfs39ayRKBO7K6oTzZ8tKIiyS8QWkiqJVVv+uZekfpJ1vqwTTqXuhMQIlPMBDeyBjiwULM4Ix0sEumRye91f0ZU8k+BbMsQmOIeemAON8ssKymMdr8Z1rBjH+IhLrlzo2v/76C0Qdf/jDF5zngX2vMO/o4axHBiFZeTkOyEI7Rg7nAPREBtkIFcRcYmNLno/GByTOXVSErFcsNuNcgMyKITEyygfp64y4Ylt0ct3X3s/zgCB2FI+WBh1EIyzWoJSKMYHnk450j2PAsMFc0R089zX0JIwABJk38bMleLMvhFEEI4DPKQwy1j9GDHrJOSSBI4mvQ/73taU4zsYmXEbZ3L9zbYOMmZmD+dqroRBBBndsEgOLoWQu6XKKSobj6oXDnedn5lMRUOO8YQzK+E0+CLCoInEfxRWLJ+nXs8qXgh1kBdcI4lyUiEt5fngUXFh73NfoVNyABUTxcful++dCxDnjBRwmaUaRPxvAYkNb5Cy6ztg1ZhK5CM8bCSH3deuROW6+0/pfiulhHaVIJsnr/ch9zMYJ140mkLfOvPzShBsC1Iz17fE1DotCVBdwc516EWPyXApQJc+C3wI85XLNNZAse4PEteZkgVzTAvEZeauEMSXe4+WQievlsxDDuv6MmZQVjc/svlje2fb9DwOir2eTK/Y1pnKtR37uSAowsrrJxneeES6ZgcV6yOcZMXJZxEfeLOvjMf+a3IlIKfRkm70GgSxmPfexKjDlSmHWfeZn8ri56x7HnpkB2rLdliuGv5vzWmQlmblXo4aKPCRrEQjW+ZXpVCj4REy0de15TzyY3HRQpsbimna5okN8H/VuQmyTcIUj8sC14v7JNQkXTFOohaYtiyuQNEFTEXNZefb5HKhFMKqvSQnmiwpoR90mtl+/4RyA1hv2m+HmJU63kC+Ax/jldX0iPDQ8F2awfRbu4QGmS7jH5vqdwTqauZbKWgd8PsHs9IjYC2zK+xMtAEfkUldcBAKEzOe7csw8g4DFmH05XcwsgKfIO3HF0uVI7fze5VpNJHX93BUmJWq1qBH+fJeyNg1938jZKVkQa8mjQR3XIK+/VMnuE6DUiug+sCrOsxucMEqQXyXMWeIMIDnEKAOi1/mmWjkVBFtjilGlw1G4J+TSooUKUBXiEzOuQQBIOLDXWmEiGH2DyYg6pGSVxjM/2Gil6jIb4lAS9cDcFSZsgE4hq8lTGnDhA45SK0qtbAw4nWunAzY7EEQZOn9PjJFrVMPcpgHeopG7oSrdJb8/xf/p128GniZ+BVBJ83WjdgIoYFsqx2rcqXRfZWMQHaTv7XVH0Q0CUszMBH2waKox1lQCNXU3jHkCAJpSoHkYmVUjNFQuBf1rUb6641HEuyb5GZZaQJPBf9s5Y6+lADgx7fxupZsDx0Ha49v9HjRmwbevX/Hx8YFadmocoUJQ0eoNREZJyZMVWhFOVyGwmEVYUNPOyVn90aODXRhs9tsNohNSOqSQ/7BJBUJMG84xPW6Ouu4HNzrd/9zT2lKxtcZD3gkYFCiGnCxwcQKwVbgJgKJGKxuQnZYTP2O83CY3mJ0MNAbMyQ7J6HRC6CaodcOn+gNQBa3tgBN4LMrvPx48oVTJGqi1ws0xh6M1dpGTylhD42kcYbWcDDd1vN35NdmPq0pOGtdio3BwYE/7Rl2h92doKLXC7pXSNLUEO8nMcJ5PHGcPgUACjOlmte93tFrw009f8XF74v72hlYrtrYDOiEl4TG76mqjRlU/Dwga2vLO9qBcazw7sgRzhC0BHQ3xQIvDaTwPqCoZLLOjn4+gXjta2JHv+2VrzpxnrI4ZgSwKFOaOyoRhiSdHWmozHCkirPKg4n9lgZ9MLI9xvD6p9TbnDLvPHdt9w4bbAgN67yvVYi1BgXIt7LKZeejRkMWWdZuqoraK43niODp++eVnPB8nGWNCqjQPJLKSHDF/Hgc3kCNPhsfj4IE+cQX1MEGggHrQhOG8Di3Q6uv87AeFX5/nydvVDbdtx/2mgDfaooYzpZ2DCWcFPGzcU6Mogac+aS17PB4RDza0VrDfG8bs0eXnjahZCIuyaw6DQ2GDB6eooAhp5P08eRAXxRhjiQ6LUH9NVVBFEUP0C3QaoCBlH2P9bBFBKzvyHFyvTPjnS7CIuBdZEQtExDieFI5iKMEQirGfZJfB4IUJeo+R7FoJlNvoK4FwLZEM8J5ojBCMkSN+ErtMoigtNAWAYGtfoti3l2Ja1n6TYO5UEXz+9BmQApeKIxh27JIq/vb3f4tSFBDD1gq+fL4ox26G8zxQG9fxtI4sWQWATxo5THMA4RwoBXCllhwQxC4F0BYTeARoUYJFA+FojgQwwjV/7U15ifEEPQpKrTiOE3Oc+H/9d/8d9r3h668/AzJxf9u5Hs9O58YCzNkxzdE7nf5c2BkrdYOPA65PanJAoyAUAI3X3/n8BUohTXNqnSkuIfzp6MfAt68faE2xVQViBLU0jl/Pk4wxkwT601OMZy3yXomT9T4G5nkskIvdC+6R6YKPQI+KCT6egm9PoNsGlw1WNhgUz/OAgVT0OY0j6hGzzAaFo6Pyz3yeySgbENzjwOgch2h36hFa6LileOucMwqcLDDj4Ud0npF/pZoXwEJ71tXJQBbTLDeuhkxmJsUBdUf1q7zrc4R4qkFU0WqMtju1gaqWBfRlHJhzAkJmcW59Ad8b0UxzIQtsjhnvF8NSinVNGusyAWmCtIIap7+CIK+bQRpHIDyAlBmfFRCMHFcLlkut4XqWwNPgNRPUjALGPdYdXf9Oiap5sEbQAEQlYiAxAupS0bo+wGLalQbYylExIMAKOOATMwYizSfUKCvAsYUzxIfbQkiy7pMAwH1yRBA9CrBC1yQ1CzFgXk8CDxcgE0V8IDzd2P+v+6drZXg0LuMNLlgtF1QWrlkm/eWXO4AZQDpyINbD6TmAhQA7E1bJVqMEaF3i/kU0Xsva3HDYi1kComDFBZaWVxDCR9zS/DRsrpZ8w3iugLO5GUwNn4CNOMs87oOwVZEQnZuH9EA0ErL+UGoewsHPmmYqC3a8YkT+bB8EYoZkqx0U83cJ4xohgg9Z52delgpQ2wYFRwjzs1IS4UUQOsGHyH+Gdd6tUi8ZBuETGupxHk5wciPzoLkkUW7S1tnj4jh9xIivxeYJ0EMS7IhVFEGIRj4DxRXFS2h7buhE+zDTxW/bcY6B5+MbfHN4A7wbYECJjOefXZMiMN1Cq5TXad2g5Y7b7Q2GCRejC/EEnr2immBKxfF+QN/PqM8K9r1C+8Tjf/x7iP4E/e//HX734+/xxz/8Df7VH/+IHz5/JvveDMUtJkno8u0IsG4yT1f1pamkO/eiG0emWmsLXLKg/a4msyMY+IZSG0qpeBxPDDPU7Q11u2O7f6bOk25rrVuA1ZkfUDeRjLPsMc6IB9Y7m1ulRAgjkw9V1/slgLUMryRMOJ5HrCdFLQ2qBVsTuBoktZ7MIn+RqG1bALeGx/mkwcOc0FKw7Ruahj5VjJf2k4zi5/OEw1CT5VzqMhrSUtBUUSqZSrWSOX48OSHgwbKDO+5vb2RsRcSpG9nmxZlfjqGLMEAmPiBCGZZSnbpLurE+EEUNZ/bTBuNs3SksvgHmHYaOGu7XPk7mDxOAF+im0DEBTDyPJ2Y/Q8OO60K3DdvbzrNBiEQQWOR6ebx/4JwdH+8nno8T52molcZIEs30/e0NtVV8/PwLbHb0OMumZQNKQ0s2mczEEhK/IMZSUHVDqw2OCkPBb3n9CxhPjQieyZqd52FJG8ZpIw4URW1XoSugFoAHRza5Iohiq5ZcsFjOR1FbImFgeflvByJDiYX/gtquH7r2BA8tOoFJdIjze7Pj5Ato4MhVdqevr5tGxw33iaIUnldxzEFrTzrSrItk0r0OfqqQzCnXAeYO2MCYF5WWtstZt7FzRithjYImKNABGqjkMRLRIqi4kAs9B8oC2JZrwQt9d/U+XUNjBguki54jyEgLJpJncp/vlb0dAKEvoJk4IAtJj1E86t4sNy54FIvReYUhxZLhBAk418/VsDqEEk/OCSC5GEqM0aXLU1I/PUZkPMak3BGJoUGF4Aqp87yvvfc1fjan4Tw7wdNEuI33z4yzvhq5hhmd1qjDUZFCvv7n3Qzwud32jRapAGA8gKEJmPKZtNC0SQc2ADFyquuzpC6RrX/nZyeFPhzkYjfJy9ITIIrQYBJECpo58urBx0a8Bid8vd8aR5Ur0OTa5Vx0sCGTMSSkt3uMZL1mOpIlTRQc1w3T+NnBinQhvTpcMGot6CpkVGQXOBwvX8OCZHGyWCqx/1/zlejKkAlSrq6nc29K6Mwh70u8M8DCy9xh0XGRKlAN/ZL4Kjc6u81pUcik0OtVaCKYJNRuwGLira6X+Tp0F8gSxe8qVHABkxYxVqOIJYDH+z1j7/YQxlShUHwfAUJGpWKiy5E0Acs1whWf33MBCpAWuwveWOE4Fl7GcDAGxV8FvhkfNpiDK75I/ozsnMZ1xHpcAI7Hf+fSTVaDsFMWpwHgEvHOIbVEQh105RFzDm6Yk2OqrTlKqfj97z/BnE2T2ygYYwPHaRRvbxyF1sozbbu1tU6Og05wMApgI+6fBGprKWaCS1zY4+HnnmREJWifz2Odj365ULpxBHrt1pfuYnxFnKG2WLKqBaYUZTZz/MOffkEp7NA52Oy47jb3cinJLhBW127hSlNRSoW7og/DNKxumVmO9VQIKH47AxlTmQEEMD7IyaSuVY4DqDiSERfRLOLfdR/WXgPZfBzF4X6RKNCSjWMRQ+FsUjmtZ1bhvzTYzCFuS0pb/dImm4LVhSTLLlk9ocOVLC8GgCv2ajJG8XLtL88Tr62r+Js45skMvfZbfn3ad19MrmDGxDulnpcAIRQNFFBXsKli5PhoIJhpM48AXtcyBC3uTSkAfa3SqyP6PZMqcyzEmZ251cVSzJ/JouPiaa939pdQHNfxCib8+Ws5c70GeEdoeWQMexlFzfdzZ6f3u/UkL3+Os1RxXZfHqFYCTitP4f1LRg/AJqRAYiQ0fYCd+XE8V481wc8r6D4Yr4M7MlPH09N9MGMez3Pmickoio+S4WXlIUB2C8xzjfuL7KSsr8s9v/JG/8fv+X/wDAAk+wHycpdfnqEHYESy3Mt9znMWWCBYxnfm6usnvOQycv33yzUaAqSSZAf9h9eacxUa+0wDSMl/BTJuXTnLolBZcnSu9WEv35mr1b+7m9fnzPu51v1LU32tdR5mYaf+svbyd7/aGH/+dPy7+5lxJf7Nk/mGdV0rD4y1uqYB5OUd1/kV8eXPGeGv+0+AxZJbn9XgIemcP9lyvQIkISBGWp2N0RF1AxnjUTcAoFPyC8v6L7wyN51zBKgce25asFYEYyQzmnqxlIAlGDGmUFdMAB2OboPAUQHeywOt/Iq3/YamBVvRYMIuXu5av5kKwcmudr/YoIAs4OL1pcHcyWc6PVmbjPmlVkgvEWT4S0P64pr+eAVxGRw8tYqyERD6Ya8LSYW1M/Pj0Ap1udjx+bkQ549yVM7XCGrqUfHfRME6NnqcZNF6xFFf35MAscjFIVoTIJGvoyDA6tj/SsHw3A9h6h1r3YFgo1OknedBjkeKck2/jl8TVOMaEw2tauEz4r/XtUkJ3l1Ms1I3vo81GAhiSglJlGDz8346Z27VQ/DcAR2QPmkeIQWjngssdDPqB7rz2wrzxqzL3Bx726BQ3G9vEEiMVkeNGPfChdpfdF4CDalC78rino3Qkdu3HVoKtGxopWLfb6haUAOUZP5DB+jf8vrNwBPwBeaCsyssC6pCy9c5B+YckLB+3JEdMOdDw8bxBeNCoqYa6e6tlYjjnE8eZmvBLrv0FTQzWYzNinhgkUblywJN1RKbJHRqZCbdMxFXFmOcVZ6x6II9ow5RsnpGP3EeTzJI7oK9OkQM374+MExQJkW4UBrM6aLSTQnigIvuHBfZd/aBcXac58S06NQEgjoBYE60wo7dtldsGxe0mQPBJCgvHUg6zFUkgMZgzw6TqqK0DZgTw07ayprD6g4o5/DdjRbuFI9i8aMOiaJDnDoFmvkkctQltCwAOvsVR4nxvOYVDoENg7aKIg1jPsnoKQRVaosisLPzx3nlSCSmU6NGEnSLA06jPnBDHyemd9zrzsR7UjVAsJGF1Zn50TUkNCwAuDpqzUPSMCZF1d/f33E8j4WGH6MzeJUSoxVk8YxzUPTbNtxDT+bj44nbDZwBZt8Ma3xhHTaOWis+f/5M9tYcOMeJMU6UjaLFdYv90BC1CIEIzlPT0n4OBoPjOCBCy+8iYOEbekgtGATHcbBYjw4vCx9+zQSWHhaD1pXMXIGcQI1K8nFyFTsB16THBv2ZwNAJx4SWEBUWB0XpBH0S3CwgNVPAz1sy/YhCNNMggYe4uAODB+U4T2zbhtu+wwZdGve9BThRVnpFwCmCglMD42IL5SsOG6XIY1QQL7GESabMpGhHAhMaDYBgK3e4IjraFJG9bhQ3zRxcB/1k0uPWUNRQwtUQcl2bR+IrSQcHhSH7IOtzxh4WACgBpkCvODDZmTRh51GVqW/vJx+rFcYpKI7eMebEhopSFBZuirVQHJs3gQVO6qmUEky8BFbtysdF4g5m4S6RkAcungWeX08IYwSroDKxFFQgHcuc6wKhiWMzhEQj/quwOFHIAhPYGOZBw4ZH+S4hcBfa1YPMQDOnvXp0IW0OwAfO4wHDxNunis+fN/zX//Xf4jwnfvnlgxbsWvH+ODCG4fa2obaGt8/3uGW2AI7TToxBpxKB4xYONaopwsrOM3VUeK0WM1NZXikq3UgK3TVtTvL/PZkEPPOmOcc4xSO5wCrKkmVgRkalxGovdYOWhm/fvmI+D3z99u9wu234T/72j6GpQIBtJkgOx34LnZYZXTKn9txb5by/iFKUuxu+BaCV1t6l5rj+xDkeMAxomoPbhKpSE1A/4X7f2XxJEN0dWjgCQr2rBHbWdgbg6ONYZ4mCo68SLNjFBDDAUXBrGwyCMQGZ1BoqJqgT8BBsfctnYXR/NAU+4HggADoVMtmcAsFsrkWiLgozajK11tbYATGqHtEUyzCERdA1tr0Yr3qFlPxs+SoR74tcSXxV8khyzCW1fGqMrFc36v6Fzt4JC9dHoEyOMmEiPguBNodjaJgsxKWMYPKoE5hz0UVfetXkiVACV2phrHUZefiMe/xqkZK/00RLlpz8SNB03Qdf15CJczbmPM6BTKrznq7nAOYTHImIrr5haU0lbCJRMeb38PuimRFxvPu8lqJcIJ+KwpTx7hwdcEfTEPNtBKlHxkYPS28Buh1x/yJiqkMxMILXI5kXCYs2vJ7la2wm8rYAEBZDwZMFPKFmq1mohZ94GTyshymXpMNfeC0QJIq0pd0XrGlHhu9sBiR0k999re+EWhJAnjkaC0STCWS/Q65bsD6ww4xuVsm8gUswLBMMwQLlshmpYrx2BdlUfjGd8sGvMy/OYdXYJwIMoZZWqB4yhuSnkwR2AnDTC3B0FaAVpIIJZjRY43truXJ8XoYvNz+PPOH1+Xh+br1yP8Q9WiAn0n5ifROfgWBpteUDyaNEo0GaboVANIwz38oNL9+9KeJ2ReH7jKWqMUZ0xYz7doconXCnTcxnZwO9FjgaMHSBpLS8T17na17354vSMb3DJ9DPA1uruO0bjn6gj04HXBX0Thbnvn8i+3p2QO4QUeoau8FPQGSiFEGtju2mmP0bHt8eUAPm2fGv/+b3aHtDi/w2z+dslhRRjpQbSRu57otw8iMbCYhatpYClLLAyj4HhlEio9SGuu3QboBPmChMFKXQ6RtBUnBgjYWTQe3wkVM6voAJin1fZ4tGTVy9gQwl/Q7sNbOQJhC0tpFxvpcYUTTGWSiqOvNpFXAEONhnk9qVw8YapSylUBttPb4r/+RapJ6zakGdFwNXRVG3DTINOud6ru/v38JhnTXS/e3az/08MMdg/q+Ktm9rf0jkaQoyhUs8myYvq9oJICoKUsPaRVDrDtGCrVBb6+OkVmutrKmHnTEJ6SgbDSJaCNbvgxpaZx84Y40ipkd+/eUnDACHDWxFca/UIhVhvQ0B9k8t8JY3nOeJt7fPmHOgzw6K3xuGF/hwoOx0fb3f0EdHT1aee2juGj5tN7S24dZuuN/v+Js//hG1khn9+PjGe4gHzsi7/rnXvwB42oA86sQoUl0qSimYk+NBZC9RgDWWeRQDMTcvWAe0+4y8+SRKWQvXXCkxb8tRPUgi0xaHQ6z3oPZJ0Dk1Nymim1hk0bnnmAwYlgk4DxR2UhuT2liFElu0aF10MldHLezo8ucHpVfrdahbFI/wldjOKZDSmCgFvRFgoTW6URvGZLFTiGp7BLS4v2kdGweAlNBeyGwNKVpJi0z31GoCADq9jKAEn0Z2A8f67hxxkRvgtGpn0Rjsi0xYILgm8UmrLcHmMZdV3K8cOJMCIUnazOGDrjduLOhS7l810OKSyVMmRXy8FMzscBeoEJHWViGTzhBSY6ROnSe1ZjbA8QZJ0WyXcDNwTIkxBbcAfyZscLzvPCZGv1hfHiIlq+Cugmahj6IOFwKWZgVa6hLrIwU7ulCiF8vLDPDB8bL4+QRfWyRjk7bcscZeXxzFMLiP6JLEoYs4hDXuZzwC2tdnd5AC0eYEWrMwl0g0+U24WGHBPmHHO5CEBKLyghzrqGcSH8AMH/5KKnk90WFGSQ+ISBDpNsjkL7q3S7sHWANSEntWBbAYGHEyO56PE+/fPvD8OHCeA1XZGaqp1hlaPiIlHCcuZh3HLNjtNUShvoahubElP7S8JFZwzqpHMquiUTjNSBRpZz/mjBE7We+lbYfA0I2MgWLp6CjBDKGrFRTQqoByn42RN0oBrxFDGUvg7Nyogu6WsAC3LJyDDJAZIxksiG0kg8qDsce4QGHq6CZJMBTgkSzy8U5nmbBGT2J9plMh71mARQtk8lX85HgKgRUyv8xlrdWrieAcYVoIjC+mUn5l4ILrfjC+ct0MYzzPeKKrQOW9YlI32VHt/SWWG/DCULptgr05BE/wxj3g6HAvqGqgfMADbifGcJRasN12uBP4Ks8ncCjG6YBPFDWoAq2GAxk0useXeK8lwyuAhLOfmNXQatLDbX21GRO51dWL50HAnjP6ffAZrMJEWWzPaA5RgyAaJ33AjO4oc1aY0fBANBPSrNYQoGQanccoTrj71bBNbpXgXqkTKg2QQvafOE4niLEhWKLKMRuFYQr74mw4MUkGHDWWcWFleIGbq6OOGH8J0FooYssyMFiTcRPyrJvmOLrh7B3nOTCMDSQtJc6YMBl5cry8FkVxxt5MvBVManWjjoTPVxBCCVA5n21ZWat8t3azScHzILrAuYOYCaNqNuZeOsABjxTk42HOUCQdf3xRY5M5NBHhJM6DAl2uQovRECBLj3WzNKDAfC3Frl5PB8tEDVgdd8AAI0tZVDFedJhia8OUuigzYBbJbS+IhN4IPAWAKgjdjPh+NpIl7M/XVoC+FAmpA7b2wiuOwu3Jzy6AxogFWZIIhyUe4/RF5NqdriimSJkFB1JWkQWQcCQ6mfQ9mFeJjwMXLpJ5UDbxQ5oSKQiULRlDaH9aNiqSqSVY8yBxpmV+lnoniP0hcf5pkch15XJmEmQScTHdF6rwl1/P//2Jf/g/v1+k5pSCiPvHP8dbLVAjaos/e/8EFZOtcgEmV664JAlcLrZTnhfZaHrJLXHVzHEv8goI0KjEqHKsDfHr6vIDJNCx3FnX8xOKXb9OHsjFQMtLy+vwuM58dF5kPbbsBKYeXzKBPKQD1u2T/BlYoNR1fcFQjg8ssfavi1NAsli87n20aNm8wstedKz7VBYcd8ka5LNawERcYIK/iDNr5YqZMWR+KUCtT4gAfeVpttYu3c517e2iivGfDnj7y+vSYejjgToV8MGm1iSzs6nQ6GIiAHFfRIkZI7dktW7Bc5DISY157nR4gJWpV8gz7MpnuT4JDOWzz7wv8w5YvM80jnDKeNkvL+d63Os0qJg2IYPGL2tNOVb8LlqROmsE5SdsUKuoxPjrSs4i35hzopUGVcoyeJwhDqepjl/XwuYzz4nzZLM+M8OiOeCNNeaMydhXS4VPickVxHQOAx5NMzJvjImkyKNzNFshQBHcb3dMm3g+nwDSNIlNOIlxzdc9rqKolc5xPo35jwJQMsRUSuQEse6khLFYixyXY92L/S9ArSSA1GRA5RmDcIGDoO11PRM6v2/Xw3KeuqXe488DWhy1Gdq8hdwQSTLTIg/a2MSacS0K/W69uAP73lBbxX7f0cdEnz0me+aa5KpWYgsqpAB1i7zJBbXeACh+9+MfsLUNt23Htm3Y9xvZVspPOa2j1Ipar3P9L71+M/BEJzLeJwGLo6J0OxrR0UQLUdN4cOySUxW+Fi4qjZM+xxh6t5h/3cP5h5RvTKCPAw4PwaykdWOJR6bT1avwmYALWLTFRieTymaeIkwutF6jNUXLOs6T1FfXmEpFLYDU7GpkIuAs5rMZ5JEogrPtY1B0mHmRBMjEBTG7ow9nV9sV0jjjm4YARQ2tFpSyLbo8nVyAUilay8YrOwXmFDC2WGwl6ZVKJL1HIOvOmVHAsRVBbQ1aIiEatJZOpq9EQLsYIgTEWJQSlNEoeF/bG5LFulLrKemBHGdLZ6Fw0Vh6PkE1V6z351NwjOiSAYqqDbVtmCqwThfEgoIUuF2ULPDrOc/Kgijja59jdYlsOqw7znPgPAbO0zC6B/BEEJWdtgENimTbcjyU7WBamAbopMlM49iOxGKh5kJY37rR3QNM/srG53z2g7O1Jw+M2hL0YiRRpf7NTNANIWjMG8WAqpVBLgsWZ/2c+hE+R3TVOY7HTjqQ45shSHaxaTLRSavzP4sJjkhctaxnFhsTkBypM+TopgZQy6KAzyrp2JEmgSMEWGsuE0nNQloIJrjRnvnxceDbrwSeRp/AVlBLjig6ks6vyL1oAYZbjN1lEpTdSY+Zb8t87kruEAnl0jlCdAZ5n06A4CYMpw0c48Ret9BA4WF723fAJs7zAYnPV0tBcToqmTm26H6kmcA0RqdpFEBUuYR5Rw9q7KRegFfGkVKi+HYDNFzj0oFEC8YwzJF6XwTn3RWthsWzhpNTOk/F9RNXoFAskwBd89/fdeniEdoaislUlon+lQgA4oQt6AD3UoCkboCTUcGiPdgVkFUEm137BBDGLefvggLVKPI06OZCejPZWoMOYWNgUQLmDHBnQtRw3xW3DYA/AO/A/IC7YlqISVaB+wkzxRgGLTdstzsAgjalNUgp1N+YZFXUQoCFyzvHO8lCYKKVnXGyio6DXUEyFFhklhLd58zpF1CbLEQFoqO6XJ0i2WXDiC6SrfDnazghjtNhVtBHDSvvwQ78utarYOI4LJ1uWPhhjdpWbZAqqI1gY20T8ApzDWc4w2nhWiQ1HrdF/muYYhiweE9g9s7ntxWOnaxC8krwcydPzDiPeZ+poS88jzKJ12CNmGNMp27XceI4O0zoDNYK9TNKqxhj4PF4J5+1NhRXqAnznzmxV+ZDey2Yc+KYH2zQ4BoBttC/K571onxXfK4iBL7Wde6cOYFaBVuR5dK4miIx0lGiAAdyFJ+xlSYMvlgWBifor07vA7DTXSGrCCYYWcMta64Mi1osAhWPONyRSX3WkB7nQCkViHOGn10wtaAHfSvHdCPKwyWZVDwoEtJSTfBnxPr6DwXks6LTqJITokh2BKmfvlhYzEkCUEuAfMqK6UUK2asJhxiB4GmypjItnq+EByMWP985whZOwk1qgBGOaf0SK4asC1QAQSIO4z0BCjiSnOsi1ksKF7sCJjPqdovnznWtmjE1D7JrJJMul8FsCSC1iqAKVg6cqZTiikWrsvkLr+e/6Xj+m3/e4v6vr7++/v/1cnf08QBGgGXmmN0CmCHz29zQ9h0mZCWS/Uz7JTJpOE5PPWNH7w+IgRMbQNQvjqqAwjjK7D3UQvLQtDU2lxILCdKY8dycnhEw+YBXbp05Z0qOmJO9bEiJmATWZTWEOR1DIGX4jFGtAWjBtm2MJ/MCRlPOIaU+nidrdY3xMk5JaBhHZaxmzD1PNmZEsybiKeRO4GkO5hIuEmYtzBd4VpQwEJHQu7zkHSzryszfJBjMItj2DXPOaOhT9iTZmj5YK6U0Rbo30gF80gUypockgKcacjvWO88uFNbdyJqCGqMeIBgnJtjcr3UDJnPyMzSehk+IFrTbDVjnWYNoXVpfZKALav0UeRr1WEtRDO9kHk066xl85cHM7ybMEvRkPpbyDdu2QWtF3Xb0aTjHxOPxxHl2fHx8AGOg7Q2OCZcBUUHbwtQGilZ31Nrwh99dwFMpZEkDA+5keU8/ofWGtv22/fibgaezf2VBXNL+nDOvkfbERtohUjAGF9PZB5lMLXsFEyMO+tZIGx2D5OneT7CCrgucWHoek98tsCh0ooiQi1WRnUH3i7grQvRyKyCNWkmz733Q6czqQq2ZgJDqJgKc1uHTcJzs6Ao2zG6keHuGg22xfyAK1ErtYnOIUEg2EeRhfXVG4bY6aW787HM4qgG1Ki0Rt4r7/RaFu2F6jw0fIrGvjCfJjY0IGBQVhtRIWgn01MZxIhHAvOPskx/bmcQoZIm8fh/wYqxF474rQG0rFmYLhQYTQwRQpCIoTUmXHQdHwoIuSvCMmjPU5NG4zig8lQkcRZcRP3PiGE+OdtpAqfy6YeEMMwkcJgpLTIz3SYPtdnZEd3uiz4Hn80Tvg2N+UcCNzjXZWoP5JOI/J7rNJFyvAlGqYk7HT3/6BZ8+Dexbigon688j4SuojbPiKhz98xmoOjiCV4UdVCbAwZ4zamSVUng4AAzOkItsL+zin2eIpkKBEH0kwCRIR7SiRO1V2MGHZ8cQSNFJgkkaWi3XqGB+lnxx9GzCnOy+JCvFv0IkxBHnRNEGlRYlYegcibMgDhbSSsALg7lNu7r0vHNQVez7Z4w+8fjoGB2AV+z7Z7QSY7qumENXAU4a71zdcolxAgTTsNaLuSjcUuG8fnVXpAq1BabBleBT0lvn7KSLCwHWKcDcAGkNwxwTHSUKz0MmXA1JYBJ3bKLYtMKEQM2witkFp08ydWJcjrGmoAZzC56jTywyihaIUrDe3HDOgdSlyxn+LCb6mDiPgT4ILufetjHRWoXcowCLuy+w9H5mBzI2ZREQUIxEKPVdfMVjslbTJpfr3wHLopHFHMGoGc6VcoEDXGirq81JYrnG/SA8jCNR4lkyIobQVbNUOpqQ6ZZMmAGJ0aIxBma/iuc5Omx2bAWoreC+bdhrg58GnY5b4djZmB2lCqAabiNRonombtxHrTZs245TKoYZjseJoQqxC7ATEIifnoMVwd4UUrO3LxsbHxL/5MF4EsfEyVi5GgMAwH3pTmHutnEvHuNgMm00npAiYXkdZ6gI2o1274/j4H5sjQmSZ+c2O/iO2YMpGxMFGfVyrTGZovvkdgN6N5znAwOOqYyf6gWnEUxdEzDCjvezn5BW0IqiNOoMZiJqKMFkvsZvFrifI8CQtakl1uGKT4Ui6Kc5jjnx6+PA+5joItBtg9QNVhtcC4YqR8HudwI3pUKmYhsC8cri3w1zIvY2BU05/mhIbYlkoJyD4zeXZo4EQBO5hCr1Vhc44nGqKGR6MEYDZPIAiwOISxbyEu5O2+pw4EGNWMVD/zutjcIfyhacKnxvsDEwHnGuG9AkCrGg5NBBk4DUlGACSbajAoYJkNiLw0QxlUwBXqqtexCRJsqui+1YgqFjPqPBNnnGJePXsyEASDCqc9w1x00l9Ec8QF23BOMFpdGMRj3A3KIxUhJFi3kEQ3895OLTYRFiqwTzZEyIO3QatABFo1BAuPEWoEXDbAZgVzQnBDLjYox1CAXlHTGCG2d8dUB9xcZF1E2RN+gLuEUmgVlMH8T4yCL7B6hkwAuIyw9VRFa6uRyJ//r66+s/opcI0FrDthfu0TEx+olWw2jKGIss4jK5VYpSWpw5J+YcoEmVrk1vbpgn2VI+FMfjA8fzDT4/kaWZSXE20YRMHOaXdUljZK0kEVvdosnkVxM5QRaH4ewnIJTXQDQShg9ME9zuG/bbjtu+obZKxtY6D6LcnTTD8EYZFWJizMUyurFGkTi7OEbn7kv3VkRxHKzHto3i3WIpVcNR8d6ZxwiAWtL0K2pFG3Ax1oRK1ne6gya7scREUzL2kskz2JUB3KNhGznXmiDhWdIaJUzGHN+zh/PMEce2tWjC85NzmEGx7fdE+JAuhFo2iCiKP+HwEDTnqZWGFwFQELCCY2sbGxaInEspUl/qhujrUj4AwAxmr4CyRdsavY0a0CbGGwkE4pw8a6VgngOzD1ThhMXWtpgGuxzxKgS7K/a3N/Qx8SUARZIcHN3PmNQ4UfSGUoIMJCQ5FC247zeuVXWc/YHz+AbqXFUUjdHO3/D67a529mRnWilaBalcHDOLX+UFgEn5jHEjBam8yaSwoBpqqQSJgjUzZ0epStvlpK9Gkukxex25C4GlWJDXwrCF2CJyNY0FUJRz24gAk6FFFnhzATkqNVhGIYzaJ9FdLaGtgfU9ZGpFl0sUUipgwTLIWW54jJfM2BxMQJKKKlEQmU12zlHWHGitDTY7rTSNQA+qr8+IlVS/smquxJ//HwMZErpQhfdlTI6YLCZyiIy5xyhfAkHIgSpfwADfjss5W3EJAVq4ifF5EQn2zvndEl3EBOMWfbKUeM9MnuXl/iSLjWwXmz0YDbSvJOgi7JwG8Wom2BfAihuQpKjzZHf7HI6zG54PFp59jGWnOYMd1zaGyIkYz7AeYEVZhTWc6PL7+wf1lyyAjUQvJGnHYeUJLCCHWA7/QNBA1tqddtFbr/3Fn6mB9K/HIcricSZgdNH+BfMC84R/n9TtZDpJoBLr/TUBXo0xjYvRxvfJP1qMG0ayPBmgVVqAo3GfXBj2JCR63RazDgiQ2UPfS8HAHAWCBUIhed9EUeuO3p84j0nJM1fUssOEGkrudM68xNiNY2xBgc91Rfm3S3zfjYUYOzKxz4Rjm1ChZbEzaXjZetGBD8J5FHQeB/MSLgznoQ6yrQJLB0CWwpTCvSPhdCXsyKUTh1rSvaPYspc3iIKA2l3lAgWmxUjFy9x+ABc2qTtlgx0XKOPrDG2lsc3FMhPJ7lsM3rqHcC4Bfk8AyXM9x/p2YLEOAkiGJrzjuKzeZRWCfsEW8VV5ryOiSY4SlwsE8YlpF1tzzGyHUKgxzQGWCYYZtHDdMQaOiMsRS41sp9aAVgRbrailkK1kFGP2Gcyjat9xS3JZJ5inSpZqaxuKFEwXOpupY1SLZCyc7PLn+9V9FIDz93tDgloeBbVEDKKQdgDISjApbeMZwx2lRAHdY/0ZGaxFCtdujGhAJMwaFH0OlFJQK40hKMqa9z3O8wQQc+Qt9upVm/MMoPOtoJthoFNfDiBjGSUaNgSwcnxy2ESfZA1Sa4/nlM0Za+bP2GERI8jYzLWjK/4Bea7wulSpczYn3b6efaBPCndqKdCtwaXSPU8BQwE2JpEWuhXFg30JajvxDGaMLKVhgl1PwSv6m46ziNj2Uv2rLF1D0WCOSyAKCIDDfAEdukagr/MgtlnsM0U27CSQS6PpI0aJi3FHjb2Uo9cmAg8nFTOy0DyaVDCHiAW7CoBFPI2SwnH5DHquhSxoIm9bwIr7ihGBVPK5SozT5bEeOQaZSRcLm6xRXLo+3EFxnaGFI4j7H9+lvvKkWILR0Tao6QKeKHAri5WV35//n6tKX65Pgx/kk0CZvvxKRrlGw7Su9DVyhmhGZkMo1y/AnAYrxSFrFdWA4sFwin936kFyrfs6A4N+HcxHhO7KBTzx7VNHL+8lnwfZpYgzbR3cf3399fUf0YukiVormtJFlnq3V41B1rVlGI6NETpEmNG4iuaXSuTzhjnJaupOVq5NOtotFj9ibwlrJNa7ttiHqc+XgEyeV4rUUMxpH0WpYVzVIxIUZW8daTqDcMSrnJpRWbVZns8qQkfNiKevjKpldCLXiLZELishX0FiBb9mhlxJQ5pI5WeIOmbOOJeuhm9OI8yT+muUluBzMKQuHXMgDS1oVTavOLnkV77uHAvM76GbaYBpEOzbzuajcRqEY4OXRpoEuFhKhVl/YRhLaFGCmqnRA1dpweQiOYFrwEFqVTRY8l7HE237xjPxPJATPRQRT0fqWGu4RshF2PiotTBPj+dvqti2ncCTGVqtuG07uh7ocob2muDt7Y11DcgeO4ahBqOrjIbNDDbuEAHe7jc4HOc8MG2gjwOtfkKrbyvftsEc4r7f4rPRbK2fodOLgqINRf8XBp5UKIhay7bGiuZMS12eXt6fUJMY9XJO3EmKRbLyn8LFbCfVz33pA2SRHYkHLEQOdbFk0tIToBI9JJgj8HAfCGq3G4DBTQtngYAQ//LQmlCgUQ+bi0pZpD0f7PLu2w1FC4rQ1nP0E9u2o913PB4Hxph4PB5ERrfbKi7mcWJMOtaNOaOTziRfRWmzOw1pUyoKvL3d0Kri8+cbSg0LaXGc41uguhZFciE1EBPTCDDcbreVvHYlKl+KrULAQRFrj5lZunISSS4F6GcCdlk4pYHxBTTwN6dmlaXuAzuKiUJ4JDYOFs0SAabUiokBmZH8RFddVFnAgTTDFP6slXRWC52QVshWKEVD3Js6ITUlfCbQdIMUhRcPxHsPzZqObnSfsD5DmO0r3BzbfscYwONkNxqlwULPIAvYGJwES+wQr9PGbeMV7gWPjwkVYL812GQR02qg04hijpkphpNVNcMiuW37YhnR+t05XwyBhJOTLHAtn4Zcc9PGbudWG4YpziysIJiDn2DOWP9+IO1wASwRfcChhSw6R9KLOZNM8MID0Io9qNke537Jz0JWDouxHCGlywNPcQrvkVEzx8l7LR4HDtkepOwaPKzSB6fRUYRMsQWS2sTjeeDnX7/h/f0Dx3GiCA8bUxZp5zwJlIczHkrYSmd8iYKHLMTsmEys8klZQrGLnLo6UexoFiIvugoi2G4tAMAT0ykmXGq40QjBkedxQKDY933NnLkUFmpSaMuNchVeEJhpdL0cs0+oWLh9CN0rVKE1GEHwmAMHzGvsS42/H1GYT7gVbOUONRbLdO0Qsktqxa4xfx46C5zjtgzU3MNFV2ve48BO44aSgIIZ75dmGmaxmzIuc0RUIAu4Ihia4cJXcUqQIU6I1EDyHEcSSKzj5hd4M6eh9x5FI9lRbgafAxRrHHALVpj4gn9cgdY4u99E0VBwKxvOOXCMDvGCJgXjAKYYbp8+QUqlgPZQyAwwBo4fv9zx+e0OOZ74KAUf7+8QYSJcNNabBXAZLJAEoag3AJz9AILBxGCQYC3PEppI7DFyk80CQJ3uMv1JQG8rn7kPEghwQMQgxXCLkfbnxwdarfjd77+QITwMz48PfHt/x5e3z2iVgqVcE7SCr0jdMVvXT7zaULcdPh1tdpzzgOEjDBMcpb2hasU0Xo9MiXEow/n+wHx8QD/f4TcKqCYjjVJTZTUpNJN10Yg3EuCcAJbxk4F9BrDhAZ0KbtBJVmxBxV5uqPWOojc8OkezubYUb9ttdX2LKrQp3vYbBMB5PghIeo9YKTh7h8nBjqdk3BVqeTgTXwMfaUw6E6SIv8zR0HQts5lCrhr5TolONruWOT6MbOhE0u6gbqUJcMrEFEMXgjYhXACFRo4FjMEGz7BOAdvS4BqgJzim5k6GEMd/ExRP0DlhJybkFgBKQrTwyaYjbLG1LESKNc7EqobiQMO1l9id5WdVEWwxri9yFSsSIWqJZAfC4hrFEEAdHvdgcVKXR0WW2Y0gywAszZ7ZLEMfQb9obrJw7dyxgdnUalHMKoryUaRuqBfuFalkSo54U1Pmtx45LVnXFMflpOgF3nFEk1+3KcVlq9Gs4CkPJCSmtfJ8Lzybez8ZZ2sJ0NAinkykU54H23KByGum8WWc+q+vv77+I3qJCOrW0G4Nt9rg+4a3+w02OP6e7tGZ7c8gA8x5RJ3mgGiQUQOcVrqwllKwbRX3+4YvP/6AH3/8EW2PmmT4RdAQARQojdMPOVaW8hhzOWMn+M28yoR5IJR1FQ0yyPiksDpj5pwnejIsazYMJ8Y8AMkxsgJ3xZK7DwBJweb1GBOiNVjizH81GuYfzyMaWpNjZY2jZSnKzcZraD4Wfo59KxjnoCnOOBjfa5AbguVTvCxN1O4T042C5tEAMnecva+m0u12w7Zt6M8zmNiMW2cn6LTvO84+0M8eUxuCj+fzZXyQUw7wmNiSwmcrFaoEmZCNGp6uPBMElCMQRdtubBBkQxWV43aqL00iD1CJtVbb2Izatp1amj4BmZFrVj6KSQfeKgUCQz8fzGk1wUDFvt3ZXDNHKwV73XD7dIO+AYC/EAMEZaskYPTJiQqhcYqYUMNQBPsW4vETgOwQ/QyLCZZWw3QpUv8aB7gC4JDAxNYK/Lbj7e2Off9ts3b/Ao0n/e6XSli8poaLJIgkMUZxCVOm/sZFewcP28WUiUTx9ecBK5nMxSKRVL+q2zuyO+xYIEmWmDkmxNkEZGedZyiDiaRGUYjhmrET6aHxUvQCz9KundfB7rkIF5CCSPkSFreghI8Rl8XEMcpZGGaMmJHR0FrBtregeCO6+CwsBB4inSGS5hfbQNYtTZYRaX9ETcHk9eovrk5oJmL5vde9uwoS4lHZC/AgMwgSTTaTYHATcJKX+89OnubVI+Y/Itn2dUvS3jg717lpLZKvpIqvxBpBBxXqXJAuT+bZdIMb9bT6JOPunBPniGJ8WMwrA9p2iq5HIsku5NXl47UyoK2PBUEqfrozgPsMkCI6IWNMAq918Tqu943/N8RIyT/SPSTByb/vLHqi83m/sTreee3LbtWvZ/cqxGkv95mP9eX9cxEl8p6/4no80LNV4AmQzBQzHsArNgSCz38NViG/YWkrJejDA1NzsyPfNW22c047C6MJrO72mIY+BnqM0YkGyIWEreelI/Xd542EPZJ2RJeFDoRkaNq1C9azW4WUJCiAdaNyjahIWGYHQIULlEsW5PRJQFGv71+nWt7bvIFrPl4DkLELoIhlNzWfr6zrtARoRAApC6xJbSWbDhhHf4pY6tZGAVtJ1zVZezKfV4YJyeJLY4Ek4+QFIMr9muuPLJaX+7h2Qz6zl2fn2Ym/ouV33xKgwnf7Mv/u5Vl77Jt0+oTEZ0ptOnekxfpa/kKnQRfq6bRKMecaYEbKCYnzDMQMcNkLxLh6PCabEGcPASaJLmS9NArzI+Umez0AXzagA8FysjiXZjzrue7Pdfeufc73VaT7IJBsRKULklkIU8ZP1BJaORSZ/+HHz2ywHCe+fgNHSn3AY2wNEsC8OxfDKlqvMwIJbKlBdEJ0QHXwM7hBheP5Hs9v7Qgn82zOARsNPrkH8uwl4IgXHYnv75tk1Mi9lGLoPHSuewXuxUvMN/IJj3GmpF9FIlq0xphf5Cx6FQo2C5O7Oa4IISBrJhYvl2+ej9c6jWi0+uNrfCzj/topuGJafp48FCDI8X6CVbxmFwSAFfpcmKEhlHdEQkBZkNbVudnIHitB84/b6K/gEmJUNFlPQHqDphsprznG4ERf2EscF7hyqpdnEvGziJCtHE0hSRAk7kphQObnynMPvu47WC+uM8lev05AAHL9wlqAGaXyeuxKg9YrQScNNjKXZqyhZCVL6PUp4y1ZxLEeMov/Lk5mPhEagyWNOzJnu5hbHG83uhdLCugrhnZktsexjgCfJJwUA3BjSjyvZ5nrXyVGqa8tkwyH8oui/duC8UeDf/ouYP319dfX//peBrS/q9j+fWXEDlaOpM2Nj8XqdyegLi/xZlXcwBUvX2JE/oMWNtlro5hzNiXz+7JG9YiTvI4X/QMP3R6RSNsyH8zDmeeywUMTKa/H19dk4y/lGZBja0YSR7YYvv8svB7PGsZT4zPqFkHUnR7mRs5yOhr/ObILYI27Zx5KcI7j11dj4AUvEDJBv4u12Xh8Odfy3MsQpaqotcJ0LskG82jCZLyMr7dg5673zUZVjDWLJqZR1n1UxYrdgAJacT1NXlM6YF/3qC58IHNcTgNcZ39KzdAl3S/zBmBJByXxgUcA8YirtkmtWpIxtGC5S3Ka6JqKmTMF2wXqCq1B2BFiGgpZ8joh3cU/xwTIFMMcnFbLWlWAhcNogLB5zmqcb6X8NkjpX+Bqx1ENGw4pHnnmwBhngAvAOA1aFHf5RG2nbcMcBkwm31oE+32HAHh+vCMFwzkRR0bCMECkhOj1WJsjX3POYPWUpZ8BpBhZ3r5XW3QLBtbL4Qr+ec6JMXqIkVHDoDZ2mB/vX6FacN93bFtFa6TqHecD5h2QCUeHObWufBikA8/jgff3B45JJ7ujM3Bt275whjkHzvOJt/sNt61BiwNCRo6IU7xaDCoXYV11g0iDzUJqv024D8jzY9WsZgO0qb42F1OgEWmaBKOooZeBIRPLPjhejp7yMQBiZCB1oYwbuPcBBI1btaI0ZSQCx0jMJ3yecJ/BbGOgnaEnU5S2nP3Z1/MlAEfUFzZgnZpWIz5Hw30lcBbAk/cYL2s74IpvX3/F0Tvej8dK4J7HA0d/4rbdoFLRZcAh+BgnzBw9x7XhKGZQGNFlOEYn+y3ZQTlGBq9w46+tUg8FXnAeE3/6h5/xux8+4da+kOWmiucgVbdtNTZ2pWDweSBFBrd9Y4f86KuoduNIRmoytbZDtcA6BbirkjHBg5KaTGN0WoXH3kq2oLgtNkAJbaOVrEexAr1EpItSgI/JLWd8ee0CwOgcNgvQd6CGYF8cmp46EuCBPgdHVMcAVA1t03D9AyhpH+yeoIJ6jMj2x6AIf4yy0kUREBgGBk4/MTAwMFErQVeTGQU119b0YJaU9GBRPI6T43E+oeAoUSYjFh1gN455uIbXWABgGgc066gYgzCL/KTDYVAHWhZFbkAKAbqjhYiNOffkEueWLCh8WaKW1lZiwjK3xux/so8Mx0F2BRmAPNhbpWtH2zhP/zweBCeUY3X9dDS9YStcc3Sb7BBzbFagQ2EfA3N29BGWr4Wjp7luUr8E02F9Qqqyg28Uv5+hRj3nIFgWI7guBKVKUUiNmHEmkwcEsYZzBM0Fwzqmj1V8SXYCnIYMtRac54HeOz4+Hvz8YaGLaHycoxPQLzQLcHPM5bIdkVEBut1MtGqoVfD2uWHfG378gbFj9pMA9vRoEGw0rjDg+JiAGrwJY/lgjCzC0W53YCsK3zaclWeJjYnpA6dTT67WSlcXVdi4LILToTM3lQezRAoVlejOyv0xp+GYExKi301vUJQY1QbG5JhO8YoxB/pIi3MHyoCE5sEf//h7/Jv/4/8Bx3Hg519/wf/j/znxeP4E0w90P7DXPdZFh4suUJGuOcEERIFLjN5Pw5wfaNXwwxfBuxrIEjlZ5Bpdc1UoHL4VAj5uEyXWmjiB3KIx+txP6LbH6G2c4xEhkjlqKyO4pJ81dIJMOFY3VULmceI8n/j11w+8uWBz5ei9KkQ2rrvO7vCGhiETQydHNRc7lqObPOOPeHZk0RiAbgfsBWPMhHqJ7b8kqjMBVwsgS2LMwRnPKa7qMCHDkN8VsaRWLKpN0mUTDHWO6G3pzusRyYTxDhBswvGAN2aWYdceAE24KvqYMQbHMwjTUKVQmoBlEA4Q3JyTrNB0VcN06qrAsalCC3Ba2rKHwboNFJfV0hIgxgViPMEBGRc3OyuUbCpkTrlGNzHoOLqKNgkJSHbxBWRfI68zYkhq2wXGheJkCxUIWql0f4ocxs4OeMTu+N7cGxrP9+wd0wy2cV2oUeuxB3NRS0Fx5hwlig5BYc6jBX0ajkF9vjnpYNOUeRosWI4Q5klOW3oCWBXbTm3VcwRbUgVAOlsJSAuLEzlGWRZ7szh+/L/dsP/fFf/u//or3v9PJ/76+uvrf80vfVf8l/+Xv8Xbf3ODfiUD+3kcBLFtsqm0CXon8DP6CQco+6IcwZ0mQQyUJfovguUuxvidAYLn99k7bAq2ltMJcUJMC/dILNmH0grcBEcnSKJwnuUgAFRFQ87I8e39G+uF24bpk8z+JFEIJ2taU9SWoFWyowVwCnDTrQ0ErFsYIg3mmA1tATBChGKBQmQSh2lTBF2NnP20k4wivwTPm1Zo3VhTqKBt12iZueE8T4g5dDrZX0Wj/xxUCaeMgYpi325rvE6VNbBlcy2A8Vapa0QhdMW2NbiTWf3p7RNEhT9TKGWj6qjVVz00J7+3LqFJAlJaN4wxMWLkzZ3MJQUnKyCKVhpqUbRaaQIzbQGQz5Ouka0xh51zUiwcE6Wx9pjzAXFHqxrNTU4ozN6h1aGoK7eptUGl4NY2WB84nweNtgoCSGN9bDCK5ie7W7m+tp0AWD8O6gw7R0gJ1LELx3sE+Ow0f9GCogWtNjLGSsHx3FC0wabQlGsobHzvxv5PvX478OQTDoI+oi3OqQFIJHEe3BwDzj6g5lAXtFBUJwIcwmxw+HILuVorjlxYuoqy7AUlzW71hhLt5TpF7oSkoItrLExdwPESFxPEtXgEDPbp2CkLlVThnLzZ1fbxSGryPVYRlMyuSXcbj+KLv7jpRyeoJMIOeSkahIZkKgk0ggdVhVIH5+pEXvlSsEyysM2MKO5OdqfGZGBcDI2VmAXyvIZegm8gTlAN16wq728wL4SskOkjZqB1MQUsxshEjW53iMAwB0hV9HXv1jhAzMDmZ8tPMAmlv4zaXOBj/jx3YPaBsxtUaOH5PE6cveNxHAxiraDbiT4PVKt0NQsu/Bg8YLTYopuvhLUUznsbhZFLOC2SqZJsPwBI5zoeWtM4yjPGpLA+BMl+4Vf7AnbyOSYgEW1vZEa9LEMlv1rWI0zXntwCi5ovRNDzM3o8U34jr0PE15gH4uvNYj55vUck45JjUg7DALxAPBwf4iD2tOFxXV2dZA1oyS53XJ8Fg014wDhAAEoINiM6FCnajWBR5dtqsjSisJuT7h9kkPBn1cLuTcoHsVFAQIr7JdaQcmdBgZygvrrudt0/xIy98emtC8drR0vjXksEcD4cVWXbX64kPo/xaYPaHEJBRRNHj/KVFGxAc2wpnzWu/cDfuX8TuM0ZeB46Dm18LmMw9mqpHKUModq5xLZz3UmwoQyzXM4YK3ikHVQsRxKp0h2QhTAZUnmDeS5ckSSWR/5hfabXcd+Mz7kddMVkj7jG8anv33h1IT32mefzzH+8fk6up3hoC8ghoMgYJQBaUY7NKiGMHvdcl54RC/51LrgszRsbJ1QbvMS6FTpV2lDUKiA2/DK6mPEnmWrrfuSyiTMnn4cAeEkSsnDM8diiweL0AHUlTpI4k9gEYKFPYLvA/IS4oSr30b4ViFS89Q37XlBbCMOHcDnjPS9ncYji0unmlmstWGZx05PNIiBTWMQAjbMrd11o5/kE+uDYlRnWGHTubRbIY7FvkmVKYVcuomvE9mIWvWQSZDuKAxE7UMhwphtNXSwbnvHJPJXoKPL8IKPRopiwWL0TQLChgg2UI7P5Scme4nUhzvkc97yCPIKVKOsATM6TBxBjyYpxhwdQZEimG4GTFG6lAmE0/XCxj9deEYrA8qzi/nCpoBH3DEoTgRn3bNyG9mBs3jzRyXqK97ge3fWjIFwLzmIsJyJFEEUH1zzZ3bKON/zZL8k9k/cpvl6BNX7toUV4BY38P4kYdq2J/P7V3RZZGlcuF/ue7GuPkQth4yTyl/wl/z/2/mXHtizZDsSG2Zxzre3uJx55My+LlFSgqgjWrSKgtiSoL/2h1NGjox9QQ4+WfoBCFQhREFhAQST1AFm8eTMj4hz3vdd8mBpj2NwelMAKAmxUg544GRF+3Pfea605bZoNG2NYKDPL+GVz231B9yeZU8U+OWXpPtJ7S43fMLL0BfpjYvtETUkzI8N2BkABwhNzA5TJhsjufD4LN0MUsZYXWYYrMl8L2DdHe694+8cvsB8r3v/TO9bbJ1bIv//691//bfgK4PyvThz/r4b2/z5Q/oZ2DaxxuNfdn4MMpv63dv6bcVa1zzMi88wMqnCee4hxwguB4/QFXWrAibT+6RzS3v78uhmTiyLAJ1oqxQy2z1PP83Hp3FlTklx5WYmYAYFWz9sipqlYQStBKE2+A9LYO3MT6L/xVJ9k7Wn7R7AVNvhcrUiyGPNX538ah7vy9pg51085c9BCJ3MgqgYKDJO1IWynpXn/zYDaGp+lLGBKKeh9bO8rxlHlkgugjY8hh3Ul6ymbI2s+iwjbTXf90RmVE6t5jTJkhxqFCvI5DZCTi3kPXGeHO4d2hUBMy5IBanJnw9VSnWVqgHMYBcTgSxVQJHs4dA3Kw5LdC30sDqJxhC9YVLHilecszyeqvNr0WgtUAX2q9fjUtE8KYP/OGU/fsNZCXwOnHzj8FagDwMS4Js1BC3WPP3/9hR/ECn73F3+JL9//QSOdJ375+o6IhbOdcGMfalMF18SCGDHOzRMRu0Ba7B2zWJREBPE8kN0LWmvAogRqaaNO6VGSanecNAp/XBf9RfyAr7W78W5AtIZYQO8ZWDKZVGEFRz1uTCxKAwLo9yHkGExGBwPEXIH7N2o1ayMb4eXlhXrS6LACeDUc56T0ZdEvwI3mr+mPE3rE4UDzyqAw+XNM39jpMk3me3//GQbg5dSkteB0vdkH5YC2ELMD8dxsAw+k584mkYFBe6jQHXZH9YZWb/SGWRNzvGOtgfNGDWysgjECU9MKGSgqAgXzmjBztPa6faBWTIzZ0eVjcrSGaob+uLbFwJPmz2fw/vUdX7/d4fUDAcP740JfA+/zHeUoOFvDhQcuXKg4GNida+l+/4ZSC15ebpij0/BX2EDVyMiYXC+tNVgfWJNeF24Fw4YUGDTUv/qE2YE1Czsqvzhur5UG5ZXBoE9KM6umOLRW6AmyFuIaWE5ZATe6KMGa/sjDTl0aK/RP6wuIiRELowRmDcAX3AMxEzxZO8lkoUyQcC1m8FaAa14IUDKCHaCUiFd2U/q4gDDUeQPCNLky958jlm8PoCmDxqNNGnrHIONhTBQ7Yd5weOX+ev9AmKPdXjj9cF3w5kBzVO2rECX1OBrGtXB/fOB6fOB63OFeUc8qb5WJL68HEI6rPpkij95xjZ7MVpTDUSDmXFAbnz4pCa6mvCsWwZp5pf5eUz0Ne39YO9llKIY1B6edaQqXF97H+/2OmTEsyGQrXoF6w/KBAeAbHhgRuL28wMNQHmRtuWXH/wlk8gBQJ90pkaMny8J1BeATaCeaFVxXI4W6ZDdr4podV3/HtrWOClu8Fxmn3A1eDx1SQErvvCSLYGHGRB99Mw9MRtltsTMCGLwY/dxCB7TMGjP1gmBcHvA6/IyyGC8HYJR5BUKK3WBX3lJ6uwCneb+twAwIIJLPXCHjZwxJ7LKAXEDIm8jgwCJbLYGEoxluh8NtiC1EUP6ohWAJFg6NIR8JacSCz4716AgcgN/Qjhd6CrxOtFLw8QGMLv+1gBh+C7EG1tBxXp+TVn51xkPsEkiajEA5GswJYsxBSXE9Kmqt7OCu4Fhcc9ikT9793gWyGI6Xitoc7798xZodt9pQbSLmO4oFXm+G11vB261g5Pjf/gBADxmEpPMAE12lsFdnMgYPZAuE7Kcpj62BYpNnCHFn9Ekp9NUdow+MzvvyOADaGfJeQYVDYODeBywqgArTih6DQMFaSWWnnBYCeRW6sAx4xEC3BdwqfDWUdUMvwIWOox6c2Ff4Wo8YzE2ao8SCr4llGpAAFQFjAj7hFSjGBlIR+LiZNepgD1DeMQSck9tCaKjak7m8s/zlTxDHgHKenM5X2OZwgU1jiZnUaUDq5riMLMsTZEIeS4m7LXRATCDuv1tjDmFzCXQ6ca2Le+sowlQ4uejj8YCvwFEAm4B3ntEeabYNSkegQkf7mCCLmNojyMYxAznbBR5PH8L0NYzB2JxSylxzQuqBCBTNVqRvnsGqA3PhMdPZJAEgsoDMDF2WCKXwXFh6EmYVVZOMRv/QcyYj2B0YMh0+rKF6xarKR7GAFShwbHsCMbCKNzYyBg1+u4qTW207Ii7lBTUY/6tMhftYKH2iXkNn/LMgvNal3CiZgVmYTfQHrz392Zj5L8zRhSEaamFhxsl/9ADjQCDmD2sBUQiu/Z3/zd8C/neO//J/8c/w8Vd3/Puvf//136qvAP7yf/UHfP9//g42gOEq2YNM0iJ/pGt0xJy4yM0EGs+YiYX0x5woqq2eLG4HcGtty8Fh9Pg9jhPHeaI1ggUdX1WzKGYna2pJomxOxqzcq706juPA6oHZlaNboDXm5tdFosd1LYFQrBfh8hysDbfbidt5cio35Ln6K4+OhVKqGEAPuDectwNReLSucdFjdzKnGfKFPc8TafSd/ROmIkE5V3CwS/pXRiz0+UAfrDfzGKOPlOH28sLpguuxm6eFtB2Mj7tM1Qk6HcdBttacwn6CQyKcLNVaK75894beO75+/YpWDxzHgevquK6OUphvuzfEClqi1IJ2NHC4VwDOnNU0iKX3zjgPUK7sLm8mQ+ABc+DL2wvG6Pj69WfMVdBXw9FuqLXtZlhrlThBSvaCNjsVgVoBU40E/beHwxfrDKAChTVZX1S6pKdfcQCVE1lNkkZUMXWFdC6BYhPs2pln899gGqR2tFdYFMxR5L2pqdBmOFqFO9AfVBP08aDFxwS6PLt4bQ1WbjC/4bd8/XaPpzRBLYDVotydaECROewSCER8IDBGx+PjHd9++QkaZobqgJnjbBwZ2a+HCBOmUfJPCvbnDh8z9GxvCahSt50IKOmKOYIyVMQ4TF3Gp9dO78luWXCX9Kx3MpYWtZGurs/MEVYBZMefmy42EuisWTAm2ToEJDjJB6FJepLPZBfRjQVMawVfXiopdmmwmgmXGWAVZlwQ1POrlyhE+tkdVTKUTLIAIB1z4EmTT7+stWhUBnAcZCkJzomtlMUgDDnW2NTNpRZUybyeyRgXJxMWSj9MSDbk4UADOmbwvD6i3StoeB3Gj5vjp3tMTNDNBAHM6465Fh7XYBAPx9ePjvu1YJri0idHE7sfMBgZSINBpuNC2MKBxgOlUHpWIlBrw60emH1ygoG8dF5uN1Jda0EpLJCT3WDOxHotMrpqYZE4+oV1VBgaSqF8Zorl5lktqHB8FhXSzEIdlL3rcsVyLSSbA2uK1ESWRbKj1Frl/tNTfMpU4/mKQtj2X+lv0juNB6TAVn1GGstmB8dpHr+cPwJ1gy1BEa6afD0COrGBHppxk2VUjrrfAxE0oV3gFIUAKhLQCqx755jqKcnJpJTJ1ZUxgMa8FmjO780xgTVZBCkeIEGUOURppcwP6oyzMcCD+mgH2ZJenvdSB66pg75ZKOv5ux62J89Ry+7a0uo+aC3MOTiZymz7+HxmMe6GQ7BoKxDbgtUBGR0CZc0JBCzFtvv1QB8uSrjpgFtiWxGYyWbY00+v7qLSMlmJbAwI/NXULhPl2nxtMMRloAvQL2DqWZF0Ec/4yZ/QVkg/vaL1E9gCG93bZJKNHBShTbKSTQYmjOYmbxzDr5guEZpOIobjSmCRl0h/gArHiVI6ik/5NbTtmSVoQUCD6QrSwF3PKacXzgGbBUXScFLBKW06Dw4OGGNhTV4T98XENroUwymbJWF83tnd43Mhe3jN2J4sEYq1kBl/LiIkyzUE3DCBWwDGZKkPMaMiAh8fd/zTf/bPUVtFaw2zD7TSCBhhAZ98mSKxvNxXovaza0wQpQCowUR+rYLqDVFty/Rg+h09N8q7ikArw4g0fs0O4kJK8TM2Pr0MQ4xN2/k2sggHh36k7GHCcJmjz4UhcLMUMoYoLUjAn2vc898npe4TYg1mboIEiA2+kMQ/fdfRSpXsVLFRjE/P3zR6ctlO6qFr03UCpMxv3x+xhNb8fKG6B3z8TDgdh9P4s8hWYKyhtfQ01B7anAtFTRBgGScnAWSSZ5c5JK3ITcZeBu/9jhl63aW8IocPhHI0xlE9xhXP2INnHkkzd60My06s7X/P988pnIQYtRqMxua5HnZmab6Zofzs+ew0OCVMo/mW9kVwYEfG+uwc6+2nKZ5FAmJ8FjMP8/QrMWC5I5zs0qW1unQG5sRQAmlP1lTofSkWZ+MkSoEbUGtFMdvMBMg/ZnvdAQJpdf8NyPGRJCwTjBU3XctIBZjrwUbGDe2L6bD3gh/+92+4/cPGcxOUbSKfHSCmBIvusfpek/lZsnBNb7Es1uDP+5gDT9LUOSWL+S7PoURiNOollMEAhifT69M+RTKK8+yLfEfbTxAC3XaqZHmeKFf6bFPx+bVhT1lp5n3Po/T5Yvb5c0HRL8/d/LsnZSW9Z7aPXyoWPr2MPd/uV1+8f9hskvx8zwwx9vVsyc7zcvRPqTJMrGLeBMapXTKQWbQzzojdHE9/w8xzNxNQ949Lv/Aea3hOlfEyIFaH1gRAdnzmrpGJmR7S8f84gcuRogECGXyP9BQ2+QiYFeyzI2LHdUN5nmViwlftu2dsoDT/PBvO88B5HvCM8SNVO8+8PxaZVTw7XTlnguuOORbmWBh94rw1ycJMz7nu3MCS7a44wWnQB68lWfgAkh0LcJALaq67/F1oMhzEcodikVjNhl03AqHJwHiCTxE6Jxk/Tfc1lRFmZHlnHpIbbU7B+/Xc62vKW9RLU53ZBM6BT83p1UWDYoJgrTWakSvgJGvdDajFsVpBqzkdj2u6D15PKa79vSQhZG0bIbmlaiv+g2d4gWEJpZurA7ZwvpzKxzjoxyvVGVySjESGtA7KM7PQVsMBR9Pa0Nmj5ihzfB00yD3pO/cCaMCe+y4jSKhBV9IaRM92rYVVUkmjPbXy9bJeKzvHtB0PxMZzxhzKvDstTWzBSqBUUOL5G75+O/BU5ONSGtwdM1JW4qSbuePBzwA3dmzG48K3X37GmgO3lxPH0fDl9QWtFpxnwxwd18ekz0Ika4cXGQh57fCsS5pzbqNMXnIClxUeonPkKsmNqEJWxcaKwLjGXkylFJznSd3lGOizww04zxvBpCUDs83sMP4RI8KKbUlYl1n1BA27rPounB+Xer5GqZaDowlfX2744csbain49vVnSg01xcsCZNRYwbyooW2nziQBYk9rN06tMWciPyNgxtGGS5LFqeAGN8yuje/slhN4EjtF7DQouVuZ8GUh7A73AGyIUUZvjDE63OSphYqcPMXgcEgPTN+MCMP9Gk9vg8pJD2uSMj5jbKrpWguP9w9cV8fXX+4AKiwO9MdSQsrPyg5+QT1ImVw90HvgugbsuqNaxevLDbU4PUS4N3G7nThvN9zvDyHkFywMv3v7DrU64MB1Ocwooet98PoDWPOCW8F5vABYuB533G48AI7qOI+GxyAzxBMInIk6sxPuXrY0YdnYydjCk1UDmBhGoW5oPJOmT0ltVgCGlH18klqCHcwd0PJAUpY4p0DWBIqCnREvZNwBn2Q7XrnXpw7WXVDkP4E5cooEZaWuSUJzDiRf9Hg59+dgAVK4/ialihUFfTJgzvHAmhM+Aj4CZQUK4zaLQQNKAlDOLnbX9MwCw6EYtkBA5OoanzoXogRBAw6b5M5yx+v5shlHocBNbzj5umROuMCx6QE0K3wGA0i2WQm5zAhcyYK/90FQ04FYQ89nIKWmmTLsRFN7cnc15BOwFKPJ1Lswx8K3j3dEBI7jIFMrKEu6rgdqpf/AZ28ZGAgcuW8gOp86QY9n0eUCuektxmTBgqwjGjcS5Lk/JszYCStuOUSKh7uR/cGK1VC97A67qTjkwc3Yuya7UCqvkUn+r4Ze7DLhWXRNfZY5J6ehrgVPjGIxGS6VE1urF5TqKLXjOG5ohyYVroUZz8bCcw6CbwkgHLDKBHGMASsFdU70yYLr5XjF0SpuLw2lGvq1cPWOPqc+I1DrKal57H3Eu0EGamxpKlQkq6kB7G4kn51tqniaCjNgcJKKF3bBAhP9CgwLeimJ7fDzL7/gH/3jf4zvv/8ef/n73+N6dJz1xOqAxQSsIgA8ZjYqOLVtQgyJMGTTpBhBxIaauTtQaGz/MQh2hE2Ca6J581BSQ8uAEfy5CaCWigh6K/H5K7aFrg8CXTQVd6uVwYKxr44xBx6D3eOuGNMnGVrFmU+k5JVrdMFWoIqxYwuYPrBM4NenitKhZG9lLAEBUefU3VWAaRf3lMUGpmAsPETM2s8se19QPro8UCvHeUdGZU4TQMi3CaHP7WTaoDjO42TYmBfmGHj0LrC67Bs0Bs+fugiOmNb3dPphMblmd56+bNy/sWJL7rJ9wu2hc22mf5MAh210pY6ygRN9wmVQyt/j3pu78dbUqWcDjvD0r5mfwAOuyXWQBKHw38WgDwF0mW9G0IcqffSSFLkmi4acNhX9E8ChW8Fba+SaSyNhCQBm4a4O8zYo15SjqTN2gYX5coetT826Hekkg4Bt/yzHxNEqrBZUAXWPSYaxQwC8AemjmkDdlN2B5T0O2wxftZTYHNaTIejKmAA1l6gAKSiPij/8z3/czaASwQmEurdZnHqhNcfX8ZWNq5L56NzrIieb7kEQte5Cql8T1zVwlIZaCg4rUgPwFJiTo80z7x3IxgM4vcuwQX/oLEvvRUQoPjlxNSS7WCtwS+Sf3wwEegyCK/4sLFeaL+t+l5Jj3XN/JxsuX+55kmUMcahxa8q5AkJ0nmedl7bzbl7tfIKMen93PfOMBRFojWdz14Qw+vtw/+UKSPCpNLL89mc1AB4I5wRc99BkLIOpATkfuk/uWBaYmoIJBCpYxJ/1QDKKcsJtuimPIRlZPRF67rVWvL29KX4CCw0TzjgVgUPjrce4WA+G7mueCfvDY3sQbVBmaa26gUxtrpiJwDXF+oCGwWzVAHC2g3tr0lO3eKC1gpfXG15ebrjdbpjrIonhIvNn5+YRCE3vnHMB4rcaOB00AIw+0a+B0Tte3w7cbifmTEsDl9wdSFsWjcwEUFE0aCmg4Uu5coR9Wa0oKIjgrPnMFfrsXOryr6yF7GZOldbZ5dyfffTNJl5qvrZanvYrWqcJspVSYUWSr6CnU3oFV684NCl2rYXRqY44TnrnZmN+DoL6jBMVWGpnObaXLkEn3mM2Kfhc3IHjoCcopwgCCy4fL8YRi/QYNu7lCDQrghyWal4RBKxoKMtAH3d4cbx+ecVawByxgUKkVHk9c5N91geAcE0fx54cuObQdQCY8j5dlYxu4QIBMa8mEGD+/Ry4Znu9A5xcT3K+Y42JMRda4bmIVfgZFGdWAoG6VpaVXEGyqYQXxts+7ujzjrkegA94WaiHof62oXa/HXi6d9LjatTN8JnDMEfBcdzgXreesl8Xi7BVMPvA/f0r+uMDtTji+g7H0WBvN8CA82Agch2SWNgI7siugg4PuKn4m8+bm54xonKP9Ksxp0GtOj2MRQRzvFUayc3OMdUW6OOOuWhaHkZQBDCYVxQvKFZxPTrmmNLVBs3SnJ+QI6kBW4aylPAgcPUHxhi4rm9opeD28gXn0XA7Kl6OE0c9MPviWM/FztZaeexzgRHZyg1t+5ABmJRBOVwxwKNiqNDKxThEmVzZ3jfSvdk50kHPqoa5BQQsKX3kAZebz1Bqg0UW2jxQWntD8SndsdEgHUkD92fyHECtROQ5QUIdLQQe48L9unBdnR4oC7gevI4Rg4XnYKCoCbY4gw19tchEYGHCRPC13fBSC8pil/Dt9oKjVJzfy+i7+ja2a5VruA92go/zQK2UVbSjolbD+/sdhgflhbbQ7w8EKD1jLjMxXgrWvCFCZu/yyvFsjxoXpCVCj9jJaPoDhf59Th02AhR36ivKrKsTwTGm2hYFu1uVgcM+FUYJbO0kSWyfZF1xElrQsD+LHSXaa5B3UPwJACd1c0kSW4XAr5i7gAowaK1gt8QdsKBEEWGImcU0GQWRgTQ4L7FYQTkbHvcHfvn2M8Z1iV1EXh8lcIH0yhmDB78tHpzM34Y6MBw/8Ho0rq2x4NrnUIdgDBZX/f54dlcjNkOPSQOeBwkAW5TVVG/7ng+B1PR7gthKgREDWBMTF6qRHXdUQ/G1QZTW1D8KyLSfdFx6t4hFVxhn0sybhRXglSCOBSXJU6n4UvFOc+apQsY2C7Old0B/dlldsTOTWSyCoOOxWMD3O3JwQ21Vwwi4/9fitI9YRUxCdgiXuoQwYF28gz0pvgHeqwiyGHcC5XA/AE38fCaaBAPYMX16sngtSHngmmsz5xKEMBVdmUCNWFg+8NIcpZwACpYo8guURCXrJjXz2SVKVpmvQjZkYcw4bwdKbRrrS4lrOwoSnEJQ7rKJWMbOI/Mtkykz124WCTsE8G5haA0uMDEqlQylPtJ0H5irI9lOgQT+THFn7fUaK/DoHcDC+8fCrb3h5fwOX14XYla8f/2XuH9cuL2+sLgEhzXAVUZZAOrIGcsNNhrW2sDqGmyutOp4rAuYi1LKADUR2tX5PMfkufL124NeiW8VbixWV9CkvSDZGrq3W04nNlmo1ImFsQZG6EkawYsZgdkHpiQOvgp8uij2hloIjraiZHQFOoCuBBsGFmAGTCOjbdmzUw/JkZdlPmObKWm2+8RA+oQp9mWQiVy2+neCN1MyWBNbEDte8CMlO5rr/3pcahowDgyTdNWUzMJYXAYwQVPq5xRSxrFkOkUs+niCdgJ8rgSSlbqziFo8OyhzFIySYNSuinQsyl9uIQ+DnLwmzyF3LBdDVk2cBQOMRbN7EROXDqK6nehZIM18u7xBpnVPZm0AmKNvZlT+GG9RemcwpmKxcMwR1d4OMpBSxiBdSUpHOHGWJuspaXevwFoYq3PvhtaF+14b2/R1n99sAtZSE13QfQhYoel51VqIBEnBeJQ+WGTyjx1XeZ/EFN2gv87tAHKoTAQoAzEDBuOfTQIPReeEAwIhn6A5Gc5k0S0x8qhWSJuMAFT0kLkC2EqT90JQSxOUsRIgoTcif3UnD3i6xWCvNwBbNrTSqD8E0KmQC7EMMqaa9lIIVJVqfMuFPJmaAQEWyaLDs9aQfjjE+nCx7PzT58t7u6YkuSXXpJhbK8GkQHrfFlORHZpvmjkkgD2EQ5+/mJjUa9ETLJ6ThBO4C3mZmlPmuhAIDTrikjS0aqrP5gZqi2IGWY/JX1ZuYrmpuYaoPnGM3vlcSwUkic36Bs4hLGl4DRkap+RNQYBRLa+lsvlWrKh22Qn2Di7Fyj47KdqILNvIep+Dxb0ZG/FYWNaf61c7TCgEHv0OA1CMscAgxtOtIWzhmhd6v2Otudnfe/LxlqlpYqfitZnhPE7MsfB4MLctTrn5HQ/K8uGo9cSKwL1fmLEwYqLA+VqlsCFcG6zUHdMXnnEiv4byVw62Up0R+JVX394DWs9rjif70FjjDRAQm4MEkuZytg1jLdQXKpzPRz5IIUVPa2RK9nmphnf4Un1aWdOb1jfBeHoqzbEw+4CXQmnw4uciGLlwtCamzxIGUGjybsBDFgHneW4wiVh3YMzOeJnm4rbUdC4CHp/McFoEcZiauckOiHlQHx2IjlYIkAemYobyM61VNqaeZATaBzT9k20A7onGBl6pqrMYM67x4NCk2hhfg1ZIWJCx+TMuFW+74W6zwmR1EkEGLiIZhjQpzy20Pa0ZPeVhRUCvVPkwg2f2NS+U+e/YXPwxJ3wxmD6TebJ/ih0byEAMjEtmZFawxsC1HjywFQjn7cBZKWE6NLnJgH1ApUF4IqRA+jQ4trzu8yHtBi8a+dhVYlkgx9duPnSogDIHBhPWPi/EY2pUtNhGZmS1mONojXI8O9EvQ8SFpFOX0kApQOfCKsF7lGQSAPNxYYyOOe6oduBsBedRcTtvONqBozQCO4uI7qYn8gV5uASQR+hnmvlaZAZplxDkkDFbmggDtuUpAUmUXF0ezxGSon9KjkimGIi2iiWxImVbLsnFwhwDVd+r5YawwHVd2MwM6CDchwb291wsAyxONpsxcY2B++PCx+OB0blJPt45hSHXhaGieSZ2LKpCo7lDsjcLdq8CwEu9odYbvSfC8HqcOFrDD29vlNfUihkTIzhRZoyxg3JrDaU6breGOoqmvE0mp5NZ7BUX7/lgoT+ugTluWKsLCFtZ121WSSa7locz9D2GWZ1voaQvSJIxe9Lw8zi0UCGTII2ekdbHr5Ls55IEoATtX6Nwuw54s2QUTGAZ9isZaLir180SEWIHTa25Q+M+5+hKzjQwwH1LGbPPlr47MXjQtlqZVKTcNjRzx7kX+9Vx3e88eIDdYS9OqaPFko9Q34n3xhqmGAZeBJYWxHIMe4I9hkJ24+jydnpOZUywbk0yJZLyD72HLxUFWzKmfQjKkTmCNBM4R1hnKm4VxSv13Sv7zpzYZoCKHBVvqhyeiWZOzJq7s+IZFxP80bNP0GkhJ/FNNC9Y5nDjBBHZJSm156rJyb70FDakqfUc3LMfj77lfW1MjYxtBB20SmJVFQwD6Y9UCq8vBhP87lwn1bM4AcY10Wc8adBieawgWEOWhVJDLed28PmS6SOmk5gTlvtgF3Y6UmcgbHHNg/R2gh/PEeRkPPH+IYENPecZAtyDXWDX+daOpoTBtW4WSi2oEbA7K4u1JtmdQfCW919n4MpuPveHecnltruBeS1rBsJJp+8x0QeHHxQPeSflNBt7TpAxvm8apGYncs6J3h/oPy4c9RUvt4U1C9b6a1zXwu1F08Xwa4YZABbAcLgm67lVhE2um8nJJ340nc8LZh1rcb/ZlAw70Uf4Zr18fFyIufDS6HlTvMJWxxyB4qKVI1mBa4fWhYURHWlyPmKyY6mtu311xsQaiz6NMQCnZNxjoQl0jWKaBLMEyO8MDdnUYVHMZ5VrLW0JVEvyfilOM8bZXmfJUE2sIQcIbJ8QnSEJB7lynWys5ZtksZtNqC7/jdKYW00BDsmeDOUciCCjHQJsDGpgKI8QSupByWuBq1GRUs5AMlC64g4/M9cJwSdI6RRY8elzg0wYc2cnLe9VrnvTdDedPGsXuKQf5XjvLMWnwMbszD/PW32cfGxQ/rjGBg427me+QRUlqortZKIsFfFaRbvbz+2ZTEw2UiNUY5v8lLIwR14HdNbs1GzHmQRMDHgaGNtTYAoBE16aAJPJhiji09mj6Vor+S28KDaqFjKb2GqQeP7J/LlEAabOoGlkvsC2nGrF2Ca7lGaHgKccFBIC/BOmTDuMxQIMoOFwNmsW94fmdGzAB/mMdQNT0mdq+u5VEvmemgIIfGKFuZj1z3ToCfBTLrMWryNJxrkmLHO1zUD5VN9bglrPB0umv/4+Q3cyxGnWKrUDdv7HgUq/ztPE49zPKWsnAIo5yZWT5xtCzgncFSlJLZJDTfz6QxHMe+ZObqYJqgIgxWRyC+0briGl+NvaBPpvZO5uhtE7DKbmXDIC2Whg7hrwSuVGK9yXKdmmFwfXwLaFzLXrBbY+3ylgs7809dW96H6pESu2+xoGhM4sNfIKXOxdSeZCTaZYYoaA3ryAAEPHeRI06HPg0S/EmnitByyBHa0R8XH2/zIGtXoAMbDmAwYCyGssTYwzwAqOswErMOZDwNNioznoy8thGJW146dz+VfnhnKZCKDlvtP+TmNry3uLrDcJOK1EK9Tw9ozhsrw5CkkJkY20GYjCnDF2HE5m9oE1O/q8o9YGWCGBxAyl2m5QbBaTO4oXzDEwRsfZbjQQvwiGjsH8ru3p6MwJzDgkho38DveKdrS9RrIsY/MrmL9b7mcxvdSUy1ozmdUcHINdawOuGnGi3k6t2zzxNSnR6dPJpinzy6GuCJWPAp4s5HNI5nhrDWamGpvWAHCglZMg/MRu0nlLBhrfoxpZiCUWbBVgVp1j0GTTT7FsxzGdovGE89eigqG2SgaZmxqw8mie/47Nxc8XBrHiNPEFhm664xpfgeHofWKNIJUL1Bm24xXHeWBcnV3nK/CYHXd/sEB4OYh0VnYSsyNE7W2lCfjHHaU4bi8NR2FRO0YXE4dmX5l8+FnV3Zq4esfVB7C7LHzoX95eYBWo4Pjsvh40GvNKUGGRSVA8UColPtd1J5hWsY+Tx/hGrC8uIstGo7g9ZQyU3ZQG1O9/4OjdenBizGLwPeqJb+MdY03EJEJ+3m6AQAe+lVoxYXvEsllgWqCDhV6tBQECKCgcT9yqqH6T0rkxBmIW/rEuX5cscMh0uOaU1MR3gKTkYWGuCxETbk1JkaFPA6bB0ZBUdVjAShbJAS+kgCLYCfv67Y5YgQ+ZnH+MjsfoeO8PzCXjVbG/LBpsBXpnt7YVx2M+cO/vNPYthrdbQ6sFx/kKL47aGouGUtBaJcDpNFSdnayRa13Uj2PKlHmiNhqJp5leHpa9iw5ulAHU1nD/eHDUvLEYP29cv+2gVOzPf/4zjoOymdIOFJOBKSDacM4Win3QQ7WWq9NHCnp2pRcQFMewYSqghRkX5uzo/UIRPfWZsudzwD7sQp2jLIQyebRCWWcCIfEpad/yH0gKKCQiR7jWQlNhW0A5NMVhYRd7M5bAwEB4oODKLAUGRzsOpIcDUStj91uH4loDH9cd376+45dv75QRmWNOJm1+kOXycb9jJ//mMOehz7iSMawyWVMyUL2gFl7z7CwoboXxK4IJ7Xm7bbZT74HRx/NIX0ndJoNiScJDFg1lxGuAOmma3GGhASio9WD34hEIUG7golPPMXYXOo3bIRx96NDIpJEmunnOqXPtQITh/v6BAFDbjZ/ZTZ2nADTWdXWy0y48ZQzF05NGB3Ow81tURPZFRteCuvrGlG2Fw6OQh7QMawTm44GIKXCYQykKXnG0ArfOjAcTBhZUa02sHng8FsYASuM5cXhFsmyWir8iRuBO+iM7bqRVJ/CUfkk77Al0AIC+aHRdi+Hl5Q3ff/+Kt7cTXgL/6o//ClfvuA+CzEySebCn50aTfITm8gurS/JpHH9bSuFUPBiOlxtKm6LOF/S+WPiHoQ8ZuOs51XbuAgSxsDT2OWLtUbwu764+L+7f/oB54HwJJrIxsafUOIG7OSkjTzNQA8c2OyqO8wAi8HJMnPU79MvR2nf4/vs3LPxzfFyBdk14NaYQAYyhxCyA1DH2STPraAVjLFxzoS9ghOG0glYOfHcDXteBj+srJayTRT1HPivpqg2Gg2Piu+HxvhCNJtmU+4otovXMwCOA3LmXiqkhFEqWBVpGAA8ErgUZdFeyaf1AWEM3YFhgrs7zohRo1gccQFsJDDiGTEqvyeIk7y0lYALqBKb4ZLywpT0uVkJK5hgFYzcEVJ6rkKQ3YVkExMoiawsZg1SaFhVbQ2yEosonzaiPcjJviSzh5XUGelsGeEyYgBioMVbAQu4w5UKSOsWSTAAhj5d4MkCSmaMiiwxgNoNMJtkl5QbBYnvMxbgC7rH0I4GB/nLYpfIuaq41MeXPOVSYXYNAyNr7P0tydY8XbQoclFNu/yjlOC29hdQZh6QsIeA1u0hTi8pSPrmCscLBvGQZXM8qGxYEVNKfhD/HLjkL3rFS/lAoIxt9IxwUzRj6lAw4QS5Tt1uePpyIp/w7KPnLJq9DUiM4In1t5N0TAyxOhoAT0Pi+hDNfAHCAjBTaKojdZkaVidhB17goIz5eATOM1cmaXXPnWGk9gMJcZclzBmNp34nhbhCbKlsjVDe4c5pYZOGk9WyS03EyreSvWgPFyHqnku2pCEip0jLX3phYklsVS0BFeQmeIAv/wjj5MZ6NgQBZN7AqkEmMJuDTGiNbrjiBsBVa2/55GqTzvilndLhytpTEBdKe4vneXK8ubxwL26wwEdpRnb+/APpSBmW8n1nzKdGk1JKsYpuT58vgeet+8J6EguJKlrRrLXNQlFlBM5ovh5QxEFM1LHbziyxho8k2BBAs/mkCC63z+5u9BcY47m3m7XUS1JqjK/BPOAIFAUSH2UQp3G+Pi0yiHkugPE2zPbj2uV4JyrVgTG0eeHXHCwy3AG5zoVjRdOWcuJqsSzbcqlfWgSIKAMAwAq/FmXvVUjej9fHobM49LoTRH3jCNmv7ujput+9xnm+o9UTxxhwoEid6rmuzwHEInHQ2DdYY2veGJSa2Oaf2ZjGRjbumiW2pOAAEhINNmTEXxnWReeOVfwrBkwhQqgcd1Sg42uszplV5ybgARz3PBDOJbxUytYJxrBQ2CMlmFONd95y5tFh/kEzSK6oX9DFwXR21VRy18QwRw9fNtm2Ee6H0cQ5KTXU+uDnKcSh0yzNykXFlx4HZO8kZNWMciSRjrH2vc+wKJ8EH5qXma2u6sxINx0C/xj4faSx/YcyFj87zh3ZhbK736MBkXla84FYPHK2igAx890LM4VO24SJzLJm/I8kLkRCky5rH5Yk6YP6Al85GZrnB/cRv+frNwBM1fmRaMAnJThgQq4s2q0Xoz5+shS7vFgXTJjAvUsIuJimtOgoqzbwjIwfUtSBauCYL8PRd8aKFFDQe3QtTyLyBCUCyfhJfzmIMbmTFuLM7ExPVC7wUzHHtYpM1MDslfQx1jTIxYJExY255H1JSkPIIFfwOx+04VdwWJoT6w2DAQpFBk6ZmsRJt1B/uPywdG9lRXEmXLybWUmxJTAEkZxfPIebOzcNJjaTUwhBBD5E1FeDTjBLgaEhASSUEXEgmN/k7zckQ4D1bkn7RQyTMASscrTkXJYtz4d4Hxlr46Bceo+PjupjECCjk7aBsgYg+EW9MdsC98tC8HYbzcNxeKr0HapV8rKHJIPiUX8gdH5hLTLdFE+gZEzMGmoui6WnemAd0ovxMbtKDIpABXd0zMDFaseQXdWH0gbM1MbSeyHfWyLyveK59barsurnv/rf+rM0m+yy7DDAIq4eyX+PZYtPzS3nHc1dwjfAUQrLaGPud8rRIc3ll/XoFAowCOxz7HuwWwqfPBoT2aDJp5v47N7DDkXdVSZ7saHei/LguPK4LvQ99Dt9J5QoyjqbYfaX6p8/MfVFCnykTRQEBRYdT9WfyXY2V5VoE+o7miMXkAMlq1IYNvVTKaFJ2BmIFW1JiAfmAmA7VwgNgDnbRSrKuSAdIecBeJFnA6UCIfY9Mf2/qavPn8/nPmEy4y9SB+WnN6B1WzF8x83j7jHVAPG/XstAylt9RgAvA4lNR9pzklFKBmAT5yQKcACZmF2Mkngw+3UGyXAYNfYe8vEsYZnWyHkKmnwGEFa3Z5736LFH5/DyeG08xVWzYiKcfWasN53myC4eF0Rd6n6S767IKnuv7V3tjke69QP+S2bukiuzGhjlOyW9KrSh1suAOVmpDkrM9xXLLX0NyvPFkDToTz7ILoY4lPxyyzphE5iSxQBZN0HS5wBySKJlhKWEvtTLxd1K/RwfqQRaYWcUKw1j0WEMyoAUeaIvzGch/cRXR8bUXxNlgk6WyuIghL0Sn15WthUhw3TRJUsM3ZleX/jTYIshpKp3i0/OOz/EkI14mUaE9DNsEyzBJjmvhv5uaWtrIfI4EP2i6TIxtKR9QE32/XkZjg+0iZsfGmeb5QsEk9dnVIIBPdA1kpEkuRgm+d1l82aKlv/a5CV6jQASP7Fwr0XRIpvCpqIwsIMAkGwrOei0WzMxnXAWoBSd1YjMCngwNhirFJct9mblMsuGwZdUiupO5oLVin8CAz2dmnn/PfNF3ThhFt1MgWI4gf+5V32sg44LFU6Tz/GP7MZTgmsyYkb3OPLIB7tkFFhWuZx5ax/DEY7nuMnQU8Ht5hrhjSz8RKSvTs0LIi0pn7GaoyFeNiRvhSQsB47RHGDNHmme8w84RTMzUtcOi8r30dVrKCc21b2x//myebaDSdA4akN53Uyvi0IQhi4lseO514imVNZ0Xz/VikHdhnrU6s3ZmY7b/cBBDfNpCtu/R3hPgGZhjD9bONPL/TPJOowm86hBTTsOzMNmLuUr4PNgQ0at9Mpqn+LMg/X023VL7M20sDLY/Rz7nnQFmXF25hxKQVR4HxnW+Zl652NxqVj5Bsuf98x1VsPeFC2RZ2ssr759iIMPC3E0u0vjydeP54pE2KitDDPaAABiYILAeS641tD9omA+k7ZebcVBJMBfIWAFT7IB9eu1kqKvIDzCnWhOY9Ofi+hqImGwKBgevTDGYKftwsYDyVcV0D1k8WKAZ0NxwuKMCKCG+nX3yVIPtc7KWKoaq9kDo7Jixa8/iVZ69itk29u+Hmo8Bgh9LHqiUYzWd5+VXUuaMocl/T7L0XmwZHyPPMp1eloyWXJPYZ0LWpkyVeS0pTV1jwo0Am8vjsZjTh1lxGspvXFPkVsRmcv56b/NaM6fj8/Ydr30rofDMkQGeV3kNerkiVmxeO38GW4WT/00A6/nHZKsQkU+TLPZkra54+nilifnsWZN9YuDrc+W93PmJ8paUvf46CRgwxFPy7MomLbAwgTV27aB5M1y/YC5iYTArbGrIusdyr+2cOc/TUANdTZ59uDHOu86LbL6aV3Ag0YJ2BH7L128Gnsa9bxSwVjFDOg254Q1wQ6s3rGX4eCyMyU3SBxAfhlZuOA+HrY6IgZ9/+gr3wP1e0c4Dt5cbTZ6PU+bUDswOC+DL7YXrbwYT+8nJArVWjJgYK/B+PSTHcSQCbk6WRY6BfFzcvL98fc9bjUBl/eoNKC6JyCKTYlK+NXpH7w8+OMmBijuOVjHDsQSkYwGrL/QPycMCGJ337cuX73CUhrfbDa1yUhCw8LjegTXgDtxeZP6JS0e1AC1tAgB78adUgMUROJVPQbS5NNJsi8AbUJrheHnBpvzPyY26W5IOK4bmTQlxei8BRz0Y2IOdzttxsrN/XYg5MPpEPYjO11oRCPR5l+526pAH7tdA7xNfv76ThWCkt19zqOZtO+vj2GnD99+9obhj9hvO48CP3/8AYMFi4eUoaNVQ0HcCT3YIU4IIjmkeq3NaGkgVpM/Hg8dIn1l6K2Ew7Ekln4wiIoBYZPB5uWGOgtYe+PbLO9Zc+PpBttFRD/THxJoDX799wGtFfTFUK6gtEz+933gewEW+SFM+VVgsKI/iBDdn8ovZFVkwlHrs8GTAZqm4OiZE+jPRzGQtwCI9fUFMvmWQbwMATU1qGjWdkhmAtE5kANJ96mtxLG0wIRsfYoKVA8WBWoA+Ljz6nRNB3MBB4qGCKIAyWQxfU+biorSCFOSFwNf3X/D+8QAnquaBwOvsF9NbjscGwWUrOrwXSpEELxbe32k4fh5NVFxDTI5+XWMAc9FoEIYZnACH9QE3w605brUhUJ/X25kcPS4CLhOuA8vx8/sD1zU0SUTAQbDzVxTDctFT/ipWXqydiGfx0FoCgyHjQY5NB2IXwjGAai4aPXfVTfueyQjlJJaU30xsVQPT992wimFkkp1VIFtUaAgWCq3CSpFBJTuGbuyscvhZkHkSNMOFkrZYpIx8+2niXgKt0mD99nJgrIX7x4XrWhoZfCBQ8Zgc2b0+FuPMQZ+6Wm+AfLqmDEa9MGckI2dhJ7SA5AakJBs4Xtzd0ErD7Wz48nLg7csbjnrg8fHAXAO1NCAcZp0FhFe48c+YwJZ/G4FwrwXlKLjdTry83LhO3VDKDZBWf62JHkAHMDaga0BtcAuMawKDLJJijqM0jm6fOV3NMB+dicNZOOnM2OX9+Oi4vZyMDy43HFMyrGJuidnBc4jvPfskq6LTp+3L7cToA3/605/x+7/8A758/x2++/57fPt4R6nyUpqXzj5K/Eqtmg67VJRmfhoEddxRK6nfBYamCSrVK0YBWisYM9ADGItsjojO4qSwi9xVNA6xIYofgNFkV9bi8hWKDZq7cW/GWvA4EpkBAqjgmdU02GHAYNYAb/w92Pb3GouefWNNHMtwhGHYpCGtGKKzFoSzO5hcpWRPQqzPoWKBjR7DYQ1RCpEkFdFkqsVGrlcsFOU2viAgbMlqgOmwW0VOYeyjY8WFnDSZBqZj0O9rObaEgOm0zrwEg41m6FghsybuH9e0H3MWD30NTLAbnEVMUcJePBAmED2YU+WtL05j7CuHKhTsIpqySRYCayYTybeEOIETAphkiiTP3NwQxdEc8GXo43lWeV6iChJMyURs8pyoENj5BNJYoBr6IEu31PIEOfJMFZWLcxINa9J/xBZVArFYiBVzeWuEChV/SrOx5LMiKV9QzgSj74YF2OlX1RKoSFY6QeUEN9Kv5glwQee+i4lWYugeJvxCPtMSq84EQIUthE1ZIxTg6pKrMM+ewXV8iYm1pT6l7XtT5Ls1rs6PbhMeCzVTT4BsM0uzY6hAg/zg4tM1MEfLJgET3GS7LhXvXAkWAZ9TvlemM7DtM6+Eb/Yj92aCs6YULEQMT0lgPOv0T5lXAumJvGzAcyUrj1OwZhTaEaSMLYEnM01FVrAUcsd9a7vA7zN9DTtyWEGK2fvoAiUJmPdB0/ta6/79lBSWwppngOPQx6QBdK0Vh1YVNM2NHoMmWTQNsA00iPYleoHZbi6rmt8gd2LnQ9YUVAHUzWYxY/PN3NFIoUcFm4hxf8DDcS4yVI5yYICDOKLSR3Msae4SUMt8aXOaEig1vFae48vVCJsda3xgzIckXoDJ16eAHkn5GovJGwG4PlAQOCqJ2o7A61HxFz++4awGrI6lYVDTg3XVcWAM1mnmBe24CbQDhz9FoF8T7gW32/e7sUnm32IsKSHTcg7IgJtkUlXPp8Kt4ag3eGno976fXVGja6yxZZkRQL8unj/HgfQfShw3WatpEUBwy0Q4oAn4zk+Vw1DeGziPA8Wp8Jn63cS29vRRxcBqjhGcKE6wLxmf2HURl/HCiNi5a/JWS3GQ8ZTsoPTtpJ/wnvoGDiaZC3j/+oFSC15fXshOfgxUL2ilojQOV5orB2Lw7GFN4MqbTpg5md7BplopBbfjQH/ccY3OoT7HTViEAUXEFCzEHJgxcDtZgzweD9X2jCGj89wuXlGM0TmcjM4lZYGj8vmTUkswbqkJAdtNMISjTzH3rNA6Z3XM1aWYYGOvFkdMPRfEZjaZGWa/AARKKVhr4eM+MKajlhcqFhC4etBS4Td8/fapdks3TzKdPLhN6BxpWAWrFJxmKGMhHl2FoGO3sz6BGoHA1Qc3R+HBVqQlTh0ugWzPXYgc1ZsmjjyDpdnVz2yUDp+bIaZ8KsEQsld40hMdZkGrYiy48OcIucdjI5LUpgfHPWfXwXgXSm6HgKj0Jr1yJWBlWZTm6/HUM2haSKKnoAkv8ZSAFSaPzw5sovC6NyD7INaiYV7wnubJHrp+dvYMWDXhazwPzwS4XEkVW4c52nx7qWgMeChpi7UwBj006MMFXOq0zxk62QcefaLPhWsw8d6BLXiPSm0Ida5ZPDpeXg5Oe+gVR2u4nRXZa7qdFWd1+g3ExNJnSONlE4jEZ7d0sCQzA2BCuZS7GNKbgpRfgJKg9MoxBXHRikuFF8lBDJogJXbGAlkBc6H3jjkHKLvmeiXgp/fO9ZYJz+7SKlF2A0k8a0t7VsotodpJ3aTPr+N7vUPrA891o7Wa+8N3YqXPtbKrunfs/spxuEy9lIyJApsH0Oidr11cwAUPgUigU4VD3meIuRMInuSiTeRHz2uaOoT3ZMiUOyE7/aZ4oy6cPrjzpELM/H5e+7P7mamjia3Z0lPIsqOTHaC8dmgVYoPCpXIUKrtWKryqoYSKNMOmf4fYh0h2k5BrdmSf7I3ck7tDGEq9NwNAXjbx5EbtLpFCYvGUsDj38O5e2r4XiT+TbMhAFKBcZSeuAcbZyeKkhg7CXURhx8OUSNpe52v7UfB96a+1wjDFuhyDcbivibFMk1MZJ6dWyIwJDyMFV9rzmBqmIO1UxqBMGna9EvG8j3rm+0OBrNpSDaUwmZlXMnmy0FFhZ2mgGXt35OWnz8mW2mSyBhqAhvneg14oB0YtWIMFCVKCK4p+qMNJbVb2/HOrPpOsCIipyfNjTp5dyWLbHfpIfxXGLvPYoWEvahUPc048rgvv79/ww/gBbpxecxxVSZn82YIxMeNMKOTzvpiAqOc3Mzbluc2TRiCC+AX5Wrm3k8lEqQCLzScD4sn0SQYfO87PVwnJPXaRDvCsCdAwOWIXcRafnyjXSsTz1ih8b+CDsWptltOyLGJ4303rmJ3HfNlnTLYwAQLP92Ni/jnyas/bM+F2xYOM2dgApvZYBH79JSZxsgUiNjsnI73pXufH+5RJ8dPqDNrnpdbbUpMLukY2PwgiJXYWeV8j/+P5jPlfeZP5VfzJGEA+K+48JEuMz9h3PrT3dRDkhpnkUcwFHOCzznPD7Jl3QfmBAbAEB/jvBB81mTgyhkleG5lF5SmihbKNq57nURjEZn+eO/ua7fk8n/cIe5UzR7Q8KXOb7nfOtZ17gYDH5zWQ8T6Q/n+5VwPP8znPFnfF6MwXkpmFJyOC8lIxRDKuiTGTwx8crNBnz/icuf0zl0U8n//eWpb3Oe9o/GpJ5/PG80eQzJ9cv8kOchV0SdbYQSNriJ1nYP9A/u+z2dZ+/x0jbH/YnVNlTh75iQRkRTIhn3nVM+za/ki5BJ5XqXUQT+bJk7n06dwPe7Iqw7An4H7+vMZcm/tGn01eLUufM+OaZazNNY98tgGPyAi0wfml+MEaaj+ajCy8Bg0eyWcZwPZK88J3LXk+KGgQ0iPQtfdEvnjWZnl25haCPnDGXjE0924S4J7NuU+3+9N5qf1EZgJj+QqCUkaAGy4wyivacbIG1nnI503f3x1KPuXo69M92IweGMxUm2lzPteC2Jv49WfmM6Znr2+/hWdMTMP5fVju85Svkj/j+TN6aNmk2usw8+bP/2//2vf1f6YGuLlJvvnptbRun3sgn+nzT170s27THdgxUa+Z6z7v0D5W+Blss7+yRuJ6jlg7NwKwmcG7Eftpn2+GkgDNlNlt/6aMH2DDv4OHyedcc0eorPN+9b3nS8EUj5MJrVpmAWq6ABGDWf82ceI/16e1lFxPbpME5Qw7ZdAFZq5FoAmfnr/ts/AZE59fOTziuZ8yV////dn/f1+/GXiq+IIcrYppiC4mhFXAaAxW6gmvB37/9jvcHx1/8+dfqAksJ+bjwU5bv4CYKK0hMHHvD1xz4iE/pvvZJUlz/HAjWhig/8GYA14AK8bE3I3oHQJN0HpcNGKL9SzoU/7gJt18vzhFqt0wVwFs4np0rDXwWk+BQ8CaC49HB13hT8SitO7q7L6X80UL+6AfSrCI8KPicXVKuOpELY7v377Iu2ohYoqVEztJshVYF1HsQl433IDHeODx6Hh7/Q611Z1YmHGSR4lKkzsH3h8DjxF4vz4AC3z5/g1mznHViwGr1oZaGixegNXkA7PweNxhxqmctVFjGov+InMEYixgGOYc+Onnb3lkkUG0Ah/vP2HORX+moPeLW0EpN4yr47oWojlWMcAPwDgtz8xwnjTNe3k70fsdY1744btX3M4D373dCHbIQ4RTyGguF/EKgOsOsXAtsNDzyYkHpWEGu3JkDoYSIiBk1BoI1FrRzoq+5PcEMk7K4qHqfrLYlEbZlpJOc1hpSLhxzsDjPnG0gtYOXGPi2/2O86PghgPfffcFNFjkPR1jkHVUIE8x352BcVE3W44CR8DWxHE0lOJ4rDuAEEYj+i2eUqFSZCwHAhwrs539lTRKvlfT2N8htHzNSQOUMZRRG2ypI1np6ZJ0WdJbK4objkZm4S/jZ+rBoyDGxNUfWiekT7tZekOKFk/ZanFHvTX4dPnB0SC8GMfM2uJY3tfzBaR7+2ZXqA7A7eXEWgPf3r/CbcEqu/at0rMKCJTbC+V9YGe9VaL9R3FMScLeXl6J7o80Wqah31rjk1m1clc/uBebb8DBaAyA2xdHjUrDwTWxHpdkqBPhBQv0WJox4bMB7qiVQXw91vZqYIZGD7wVHHdcjQy5FfRv82Tb6LDIA7NVPt85Fx26MnFVmr4iNjW3NrI84BVz0h/FJU/Y5/vk9w5NKez9IbDGUM6TE1Xs4uEYlNaN2WlEHIajHGhHg60KwOnFNIHeF8KKjJkdtRnuj6GpnBNhwAyCmqM7PBZKhKbCDRyFU4GOs+gQ1dCGpUmkASanbqiNk0pW0FByyF+Inas3HGdBH0bDxkGw8GgnyR9horcPwKrOB+4pL2IdfXvH6hfWeODl5cZJrkbfhDRo/PLDF6BVfFsLj6/v+Hjc8d3L92je8Hi/A+rWxwpcYiiVKl+zGUpQDOsS976ULJVwfw/c35em2qnRgcACjeD77Ki1oZW2AZFy0KcPkzHgp1/+hG/vv+CXX/6ML19u+IsfvuDtLPjh9cAf/+avGb9bjgwnK2iBazQm5L0QeLx/cN12engVq3AjE2mODtP0SwNHBI9JI2xKm+sGekK+fcfbC81Cq6uD27UvFqccucFqZXEV6fdWEEYJZBZ4cy7QEN6BRaPVtYJNswCiAOa8n3Pn3/RAsiLvCm8Y8QBiYM5LfoEsemiGHFhTrI/Q4AEHen0gbIGU8Mz0Q8W/DEvlS1FQmF80eoJ4YBcTCT9fnaMhKbWo9BUDxHBUjj0FoKJhU1yVuGbhy7HVKvIM8EHAGAaE7BBKJfDEYQUTj+AURC8FxSjxrwJ8RgdixpZnFde0o8lBIFloWQGmkEJuU0M7KqLLy1OgYykFxYEYOWGIHeAJyJeicN/MQKs8N1AqJvRcIoC1UMUWOVSEmxuGAbOMJxig2jYk6xguX0I1IVwM0oWFFgcsyAYxA88dd9Tj2Xidip9LuepxHoi1cH08KLGrhWfU0tAu6PMGyMSF4XBORJopR0QAmtq1ErGIIRDBKQ9U7uvsMoFlKiRnHooKxqZCAMdZ5RXZNisvQCB6yBPQANgC7v0hcIegaAljbrUc48Gz8svrC4o7vs6fuB9D/CCB8AHmw4FAj2Rj8NwrhQU5zdB/XQHZtgZ4FsDhzFU2KBNDIMQTgFnKI7PyZXPbtoQSIeP1eEpRNgipz59QignkwX55w6E88bN5ewSbOAuxwR2DhmPoeuSMuQELW0t5qyYJWxq2K7jAJJHXXq0OVy43F7eCFSAmhym4U4YVlc3ScAIo0w+MGXh8+iyHsdFNptiCzYkawBG+BTXLuF5Day/Hsldno23LPYHdBM+Js3MOzBXoY+586u3LK+p54ChkeuVUZFuAzYlxfWC6YTqZG4xJXBt9DDiKBpM8yQf0nRyailgQy5R70z7F3OHlADwb1MyF+qWGkQMTBwLnZm/fKuskvxlidXz0XzD9FfX2IxYWrrUw4Vg2Mded+/JSLK9km3HgBZnSQ+e4e0NYwYyqxhT2NN5s9OR00HJwyMKCoXoF7ECrNw55WpLNLuYLZ21k/2oie3pj5ip2d7RWMEfg0kRv4tJqFFU+c1tPsKSWguJtA0qJA3prAmu4jvpi/ey1YM6BbVuSewe0x7DiOJqmSquZiVhYGp7lxSXdn09MjqIJkIOvKcGAGr4iepTG+Nu7QCtatxyF5Jf7tzuO40CrDRNiM3dNoZOH3+wTkIqADKD0TDPAK8IWRoCqFpCdF85G92TRI8CHbNhSHCY/V/qkis1beDam4iaUI10zEBM4b1QjfdwfvI+10FupAntioGJQrTx3jlaAxVobqg9hJLUcLWsAPu9a0teO5zGxS6ph5tLNzua99sqKwFgLfY7n6/+Gr9/OeNopTmpmJeUg5IgscmMNUUEnjkNR3TlBDnPAiyjXpH2QIlicnV8rCDh6Z4H0MII2tRIySKnImrE7kyvAoq8UJYjJxJAhZMpJ7EnxK1pE/unqsv+yFs1JSVllAelGpscaQg61q/KxGWRguJRUDVKrIxaL2kq/DS+pGaVhGRHb3esAeb3YXZoQ3fZoJgBIXeoM4DCyodhiBJlJFW5CiZEyiqmDjokjjayps69JbW+hwNYxZsfCpamF9NTgyEyyCq7+5CeHOl69y8DXhPZPTf0ZHVMWU6TEJ5hsOI+Dspkm4OnlwDwNc1bczoZWaaVK2ZGSChO6CvpzXRNo7psankUW7NnHfXbY1YEFDyEDdF9MchEmevv7XNbqivD+6VZLbkoq+opJo1qIZVZ4YK1Y8lb43LXP69eJ6q4COBOI2PuJryg6tRg+lNOVT0kRk8Kn6dDCTpMiNtiii1KyFAJhM814Jle5xwN8xGQy5r2DtPjsGvPjJrJuonlmUi6pXzy9G7zQ1DumukVba6xuzyK9PRNDmjFSyjEumuv1zmIxDyeuyYnS6P1Gwh7Zk8YPimxOuNg89M5JE0dOrUigztTam5rkuMbTHJJA29z3K0eNIwYCzuRA941TA/WTJo86B25esJZjTt9rz80wnW4T7DLorlQQtBljr5tkesYiBygZVDuWBRkoUKfD9nM3pF+af+r6cAIlkPrzNPZN89MwsXSUPO/fA3bitLvdYvlFTAwVPNtzIfdogFPVkrEKGoAzjGcnNJN5/tka/SD71MKARtAK2tHJFAxoMlwAC2Pvf54tXJcGE1gZAmkXigduZ8Pr6wn3wJwXxrgw+oNgJEDD9FDRpz3tyB4777fecFP39xoBBGoG6nkizLEEgL2+nJi9c+KPkR16HIVSqKt/6iqqOFoQy0mjA5auPztmBux2nti1a+rvPI1oxY7KsxQZI3X+LDZDgIl1XSgROGrBX/zwPRwDf/zjv8QcF2r95OkVi9M+UxLlDuReVmfZjB6E+ScNyel5EfQTXJTbpk4jkp2hRHssAiMzz0n5EbCjx32V8XZqr2dhwUlZIZWdCP3JdJW86SlZyT2QW555BQzqWDvBetB3LM8UUyxmV5XPJcevq0akTCa4TkoYKnJCYIg+LzZPYJvnZ0zdHOcg6GIweE35NK9/n1mhxugnprRrI24GltkT3MuTzmWKrYJ999eNEnBHII1YC2wX0snEyq6xLQcitk+K6zYWxRyATT7GahWTeZ5oV+VZLNyErIbP5C0LFTSKuUrcs5DfLGUVOulBxaJZjFEwIXeUHWug19++iE7Z0p6AapIdwXUu2pYCupf9hxJBeWjqDmvBEggqT+CYD2Tx9XZuzc/A16l8ph6IqIhkoysahq5rx0VNEDWLT0tAzSWaxm1AKqdHxWQBNjPWa9Kfuiq8b6F4HLQqYEETCH+y/zgBakJBe4NIlrFg50KSwiJ43Wbag0D6JG2j4d39MDzZGMiFq1gT+/khfZO2VYX+5IIybGYcBM5nTm5aJ8w5tXHjydSwfEFjThKSM29mr9bxk2jIPC3AQj3/mcucd/fJaHsyTrJW4nWSmBab+QKQ5ZvnGtdWyjeTtUVg071RyeecGhgeWK731FpwN537YooJRC4Cui2ZOO4bdNrpM3RfP92jz/+1MqfWd93Lcw142fskz7PMfyFQkdsmE4kE0nO4yDNWIHP+MMg9XjLpKdEOXy99yNbStEfltfwSQ49QLxAEnjYxYQ24DRyHodQF2GD+BiBkfo0oO6+i3L4h/Zc2iJg5WmG1PyUZC4FMXh1YVYDR0HN9snBN6p3WTrTjJMiwgO0BBp4He+qo7jv/yfvGHJP1Syi277WVe3CzllQL4Gl8v8lM/jwLcjARa1/6w2Fx3+69EVSHeBjWDuo6G8wQMZWbZPxjHHfFiIjMbqHpwcm20nPNtaqrSclnfuX5hwSQIzaYnT/3ZGrZ3o9rMqFaU2dtKCGMRYZtLdqTqR4Cfa/cYaqDsJ9hElCSYQhaZ7iz5pWZe6gBD8u1/szLI/B8NkzidhM8FmM6SlprxM5hoLXJWJ5DKtjU2eITPVcDJzWHzp/eSQwYvaNfF9Kr8bd8/WbgiaMsFWGcRQwks4KTcbAGJxc9+lcAhpdXU4Ds/Lt5oRQeZo9Hp1bzaNuw2dsJlIb7/YHVJ3zQR+m7Ly8qyOhcP1ZnF76ANEgz1EYfmDk6CDoVorJpjA3K8xaAaETzSy7a4KSrsMBjvAMInMcNZkBtIeTfyRYYwXuBQMn5rpjs8Azgui48Hh9bR/vyym53qcwrXCbm7hXptZEMHAQ1mlO0eQNwtBf4WXD/eOB+XTjPGxHqcjy19WACa6A/yGFN+TGn4xmGDkATSDQQ6w5ER70dcAdaW5ij43H/hnmpoOzMGcZFxNWCRrBj0tBudgXyNZGePe2k79C6qAuea8qHo+IshtIK5lxwN/z44xtKdVgFWqs4bgfcbwyE/eI0vn5pWzYFbmmWV2D0jqvfcdYD7gVV5uaUa6qgUdBKVmKOq3ati735xlPuVNQVhIIBiynsoIcCnC8FXhf+/NPAjI5HDxRvOM4DLrR4LPq00HjfMWayxJR+Fkiu5xjr4nMk2gCWM/JfsIrwQLVGv5eaHQt+5pAMJ8EYy44ClPwhY6uOC3WjlKUjPpmH8+AkwLjWUqHuAph4QGg7sYu9NVrA6kMgiLooSd9O8NcLZaBjCnygDwpgLObBIDkHjZlXT6DzjuvR8e3rg54oi3JLN+B6dIwx8N35JnkcwZnj5VDSvGBy4q3N4Mto+AzgaGQSVE/44HnYftw/uD/FymteZNw8sKUmg4l7njl9DCWYnOQWCE6xckNpFV4Kvpw3Xq+GH4w+N2C9xtgmzWbs+Pfe8fXrN3ghi6EdB0op+Pb+gaFuYXr1BELG0yxD6EVnuygSjIvqjMlT65rgBIHs3rsOSoGCxck0gW8wPT1hID+NwfOW+6t3OCafcQAcNuhwa0zm14JVghKuJLI/eNeTIbNEe4Y6QQQoBORegNeChhsBQygEK6mKECsMgTkHWq04Dk1KiWexMEeHGfByHKg10NrE99+/4A+//wFYA9fjG+73X/C46O8HM1hlUtjnZKEBk7cSEwK34DkGQ7UK23kU9+X9+kCY48fvboA75qRcuNY3OCYsBuIaWGvg7UvDGo4///VXFrj+Qp8HuBh4gRQDDRVb83Oiqn8PfR4C1SbZJf9uTXDMc1b0KizXRb1wA+glNicOA747D/z3/8P/Dr79xXf4J//k/4br/g3t4LQahKuYZdfdS6M5rD1lkJkreRVrpnwyji8VaTCMuNDXgw+9fIod4PH76Dxb6EGgKZUGxj2hGGNRdp1MwCgCed0RRbHGFs3ysTBtocdAj4kryLJ0TfYMCESDEGwBJn0G+lxY1RBe4IWeCz7XZtqtSfrKiOD5H5K3NSVzk1PCTpQNtqdcxuNTUWaOavarQoGsUhYPr+cL/w5leytm2VYFhkydOy0BbjwLw4VM7Vhw1nrsopgMuclpqgKeDOx0WiwcktogFjSUHK5JYViV/kzB33H9k8M/ct25DqiywQDBF8jWS9YG+StpEJRQyAya/y9gM2GypvBCUAThZN6KIcz+eXo8sunZ4tyvlwBUMm2eMnMoflWCYBGceCcJvnlBLacM/usGoyLBeBUHCQZZo8+cNzFIYsIjf/4TqIwC84MFwQpYodIAeg4LYiEHu8/0tWSeYDsNJuthPq5cWfQatEIT8LUwHw/QDkj5xRxcq4WxY+X3Y2GBTDtvWUxpgmYYEBcMA7HIDj+bGp99IKtmnpdqahvPLSTwwCpLDJ/8/FJdAMhJVXoiOzYyr+YP1YPrLLL4S7ArEshI+Qy33dMXTuyK3AQJPiGFLPomYr/mSqmU/leK8wcL7RHmCrEYBIIjePbulbxnEOtSA+TOTLgFPViUK5GB+QTGaiEIdN1pD1EPTjac8tyxYmjniVZPvM8HAgFvmv7o/HxrLOZQkLGAGJoOw83VYIylNUSQbBozf54/zwI9d+ZTXs+r7EOJgoyzWzEUSXVro//TGHPXmgaTIXQRm0Knnl64umMVCFgUTCWQMdlWMbnvHoM+NWaGVdgwmaDPbB/zk/eRPfcLJhxdC3XAI3CUiuqBMd5xNuDLm+M4BgLfUIrGzA81TnHyHJoXa5R2AOaYi42LcNDbDg6vJ2IFepdhdAwcR5UPKNUQ67ojxXYp1XOr8HLg9vKGl9cv+Oj0UT7qiZyIGpN2KJBPsQsYqaVgzYn7xx2lNrTzBXN2WsysBIiJQJD5zb1TvNCHT7FIK1a5h0CfCUxMlOIoR4XH3DYtgPbbMswoWIu1VeKmZBYBn4dj0KfQcNSKUgoedrFWUNPxaMkA0lk6J/rkWipqrF7XRQBFOUNaYsBt05qzNnz6Uj1rnD1deqhBOnjdCVqjBmox1HLsNb/AnHReHVar4miCTqbgwcWans0wAbvuKOWAoSomLrg8b1M3/NmyJ205kEN8ZgBLxB9rT6bg89dxCcDrg8BTj4my6PuXiGKrZPWfx7nvR++dGMTjgY93+jb/CtX7N3z9ZuCpX5R+1cqgUZwSo4W5kcclKqL1O7wU1KNhxiDq2SYM6o5FdgqBEEXMomBMAjisvRwjHJiO94tofyllo9XlqKQmz4ssqCifEFlS2VibJ4vh+XDEFUKszr+PxN8DtboCRd/AEAzy5jBYFKQ2nSNS+bprLVx9YKwHYJNFrjtut4raHIGBuRxrGWwG0kuJyWwjpd+MCdFSGhhQEnPAS8BjcBzuCnCSDHevlQKaJvIZMahQJkIjMzJAWm14PO7ovbNaM+Cnn38myOFMJOa4SK1egXkF5gRWN8Qy2Bygd1Gl1KRrtKpVIczqeAM4Tx4UtRbUWnC0ChMLYC2i/y9twgupiAZJMZS42Vw7mUtZFRsQC3Bu7m2K6gRL5pJxqSWTBGLhYE9asfJkSeQGymk40Mop6qSsRPoRkg0WTTVbKIXFz3lTkF0L7gHGDXbNY9juhsMq5nLsyVvpJYEAkzUAsD0ZDblmN4hUNuMslGDONZ5gie80CGMudXt1+IuxxD26sNYTMWfXYfHKs4PrfG9O3xEQpalnS6bvBgKlXKahd+aXMAysQZP8YmT7FDGOOO3Hgclifksm1lIBIfKX08z+enSa8ZqmrKgLtRanbbXzINCXFGJx+T0r3cgxqYOFUpXcqrJnEyvlFbGnXlwXp2+yuALgITbjUEHhO/lO402X7t8VQ0izZVE1Br2+lsz6QhQDF6MSziQosvvP1SDmjIATAMUp1zqOlOQxhGfsoycKabwEaxJg5CsamGzMyJKNT49mnPY8LCN0MPsu7jIpzqkgpH27gPTcByx89J/qiFoiMLAFXL1j+aTRvJk6QAZVVPt5cR9NdbG5fr0ulEo/CGy558BcA0clENEa1zFi8JkoQVOVA4OhlUPPjIy382CTozXH6GSSeSFAUlreg6VOuTr7YZhKrmt6vanDtnI9z4HSCuXhTgpz2BKYqWI/DIcDhwOP1THHBI4brADHW2Mcl6QcKDRx9hB4CUhMAhSdXX0w2auuDi7lyTDDrZ4gM7YwGZ2cqmd4jnTHNGABJUEpA+5f3/Gnv/4b/MXf+hGnhoG8P+4bGGAjpGAutuWXMxokA2HzTCwI8qTkbaMDNcMYyqpoZ9vT4Z6LiZ/vegzEMBQU1Fbh1HzSN6a4ngOZIAsaEx05EMFyIXDvWyjx54pO1nZEY+IGnmu71KTbsBJGvpaxClNBCzLFlpiF+jwwYLnhIcZk2DYDZN/YMoHU37vvwgLxiWEnmr+b0ftQOc11PZDed7GYd7rk4SR3BMimA9bsEGcYMMZjkZIxVrJdS56OjGWTI5b3eG0L+BrAWjgUL9bcGQ0HwQTgYs9ADJY1KR8+Kg1cQ7JPms+XHU+yFPeg3JK9nACmDPYVIePTOeZ6tAQkDEPgysTg9yZz0PTtM61H5DFhwAQlowR6MuYRICqmYmGq8FbDh0c0C38PdvazsbAkOa21yddIZzsC4/EgEAODLQ2MwWJ8UcGUURsJT6i5PiMLJTZDFnTWgLJ16MzdgU/rM6GNln6TQfvkEurij4H0eEobhhVTUknef04mZZx23fQAzf3FH2LDrw64L4z1lT6VRQ9IfjsFttd1gqLJU0upzgo2r6YnywL7vnAIUQKMT/+zObWuI9AR+nnFED14+1S0TcwtM0zAc2Fqj35i3CJRlHwmPBWgPaoFhWeFgfzEfE1bO+9LL0Aov+B0Nn+yN015rH7WAcm4Y7NzFsRiKk/1SS2V0IymY9Xmm/VwXXdcV0e3hWkTV/8g26mdGGNiPDq8ndvQOQtU7qHABkHBmJ3YcsaOnLdt6YUG7CExm1dbKmsWq59yGjbIImTWLPDRwBgGpwR8mbFxFYtg0jJOrgFZTpkT45OiBIhdk5R2CpidmIMF9oyUIqshw4crdlk2wBaAQXmdGmEA2UfmFa9vLzjOpjqRK4j2EoHjrGrhsUGzQgzvCLjkUEVV+FydDf81UIw5znqOT2btmyD/Vjsw9iAZt07rGCSeEZM+s/E0fY4IXNfFfK01AtHxieWeC1DAEh+3VEWS+ObrGDgUJ6cfjk+G47n+WU8zl57x3EOMq/6sC3O7GHZ9mioM5tqckD4H4xDkRVtcDTiwKbokuQuz7Vu0hzftoTwDtVS041BN+un+SPa7Mgjp+nnOKE4t7ctDygooJ421G7T56RfKvldUEM1tbbFhGsW3uctSNkJG2I4mU5ZBUBMt4xibH/JVXQuIseNi8VyTlN21WnDJc5NqsXziRjIAMm/4dc6VtcT9/uB+0wK73W44zxPn48Efj31F/8avfwvgSR4iJh8jO2C+4JhY48HR0eBhhP5As4ZSK0LIbW0DKPRoiTDcO4DFzpIlTX/I8WSRktsXdaxxLZTiOEz0tVLhx4l6VPSHAzrkd5ckHAEaoC6BKjBlYwABo5QFIERH54Oshcn64/H4VaFC8NeUtPNwKGZIkGHNiasPBb6J2ipaM5y3InraVFKr4Kwk0dUNUxOVDII1lWBMepH4ASuUOCYtjpOpXJ3Dqg7ChDnQDk5Selx3BrkV9MYoJ664MK8JO9jR+fPPf2LRtidmcVNhAuNa2uTURmO6ZEINawJrGFptqJUMMtjCHB+UFL0eaK3g7eXAeau4vRT0B0d9Zx5wtMEN54YRgXEFvJ5AOWBzKvbo/qAgpRClsXu8lBwWmVX2NcReE6MClEZipjkxUF5O0Yh3ROU9mupkGWUPDsOIugtOdyaPMcnq87JQ8ASeemdCWxsLwt67nhdTZrNGJkd8iq1izGXeAmAHLHZcBDxJ2jrH1HszeZuZYArocXfp5ScyfhFn4xqOWEKl+QkIGNAE9NnJFoACHb4I/Z668ZOJaSbS0Dol5Z7d8qPxEO79YqKv+qtkAWkFs0N7Qd19B3oAcwwm/gFN+zGM1TFWKIgLNFxkz7y+vuI4DlzzzsN1DihEMSgXTu2bg3HIYuE4TnqmVIKOc4xMmdAKAcZHv/aBaQEyiebU/cucSQWsJDnuTA6Po3AkL9vvXB8fDyaMleaPSy9ipulyIFOAshwF3SBL6zwPdjnz2YbhPLMYqQS9NUWF81PBv1speUhqs+6JqzutooLAaiY0T2NuNoR9Hzo59bFk0o6AwVG8bWxgjo5YE00d2IT0J01rlAQPTB2GxYvANSXqtnR4d442XuyqQKytUhxelqQmfHZrdazVYUYPiwSe1sh7qaR5gvHbHK0WPi8b8icjON6qY43ACMbSUg1lpZxg8rl5qOMLBkoEqjy9sksY0POaA7VXAiIvBajsLheQRcdiNwg8GfCYF+WdR4UVx/naMPrC9T5gyTSQdGx2sjwGuM5KLYg10Mdk8m0FK1h0P3qHm+M4XnjuhGHNjnkFTk3osyx2Bx9DmVq+xfHx9QN//Fd/xN/57/1tvHy54Xa7oR1kK5oReJqSywaYyBFbjSQ30LcoTTs22M6iEZ4SchbC7XYAYyJGJrKWjxHXfWAVsaNQ0KrDpdcsSW03JlZThTDWE/zexaMJCKiClfS51uqa+tV0GCYjQwWnQFCT5Dv3KpH9oPl+dh+N46K7ytlLU4WKadpjkkPUwKKPBYuXUDKeHmXRJ9wqSjlwO0/UWiSDX+rkEkBWd44NGc1PIS0CgAXWfMAjTzaFCjB0DMWMNdPuXQDqii1hyCnxBl7nAQ4CGEmgBNdQrICtKWlVgsQTpVWcx4kJAuV90BsLmd/h0H1l0cbJPoESsaXPfISqEAvZZpnGzwU1McTKiY5sVrgbakl2LzaTxopaUepQrUhAnpAKQW9O0up6RowDOgNLI6sEOWFJXeSYaLWS6eVO7EWvx+YGOKHLAIxPwLZkbzk9LptpZBGkZIlrjn6XC8ftAEAgPrCASB8XLgmRK+DAE3haKo3WIIA1n75fbEYseBat0yi7W8plwUYn+wr03kv5Mf3ouL/G/QOcUiylAfici1cClDP0rJ7gTe71BOZGKF8G9jWl0W/ZebRy8xiIxTg7YjDmBHPJoqLK3PY5N9fcxSPfmrkxmeQ8E/cXN5M+Jg2iU3r26YfAK3/6kIXArGQkkK2b1TbjRhiecssiEFcxJxlZLIhzCjSZoKU5Zh8kiBbG0TEn2wulAPK2e9zvGCOAo2Dawi/XV3rrvBjmGLgeHc0rUPnaoRudEjQW7Gs3/7MTNQ0662OHwsxh1mTzhamDo5XGGGXPhlmpnIbalfslkExrgAJoEiEANHSYgDcdHsyjtJZHn7BKL5zY5/5UQ/CFgN1g/tHXYLxbAaDhMwuU5CquG77O4Od0AbCfgacvBJ7IcGaT7OoPzBU4bm9wzynDhjl9S/WPQuZOArxX/9jNVyuG2ggmkPvA61+SpH5ChNjY/tfApz2kaNE2AJnL6Xoe1/WJqKH8DrHjXjwPvEx24aWobgrFjkXm0CcQN4GnUnL9sAaLMeXTtrb6ZGm/e8kmy5MVrQSVb53sYe28OSfSct7hT29LqTRipcdvEZZIzycAKHVgjok+O32gjoPs4U95/ecBT89BGooZlk+C+/ioDZmuM+7QbzTVBNxHDQhJRlegX2PT8fJoRtpMIIO1as/J1NdtaarlQj0asn9WCidiEpgzjGtscoCboTrjHgpz3lYKBj41mASEh7NOC3NNUDXZ12hPB9nxVFjp+Qh4up0nHudJssZvlNv9W3g8dRQrONoBN+r7Uo6T/gZno8Tp6gNuC9F5YBY3Gsk68HJ7U2LY0PvA+/uDHa16YC5uyvvopE0HuxoHDlSQjpfjCHEcmG7og4akEZMJsMv7IwrMSCl3l2+T/FOqldmIggABAABJREFUyTg3OFYYpg6tBRNdAGd70c3mg5vgOOJSTUmbgk8YAicyxSULaqJYg6Og1Bd4cYz+2AurOKddhca7h8Chee9w4+SgMJrmXf3xnKbivw7oSSm2GUJiyW6Z/YEB4H6/Y8yB+/VAKY5v79/w/vGB+8cHUCbCFh4PFrI+aQo351LXzpm3TI7ZjgBqaQQnfHCM+u3A7Ww4jgPHeeiQ44jv0ha9kNzQmhEIoD+fQMKFPh6UZB0v7H7p/jVv6CAouYIFUzsPboEFBuPOiXkRXDOOwHm7IUHCWAvXyjGxhdK9NbEujgI+zwMAtuyPcid6hHk7mHR1Jo9hFXIAhy2OyD4KmVG10JQ0YmLMYMdmGmJS/mTW8PXnhdknvvvyilIdrRloHj8zhsM0QTDmUEGvrDg9lRzoc2B9Kmi41mMnQwGCRnBonzB1ZiLICqSU9J7QSGpQOgRgB9pktMQTrSBAGCBN1hzWCuV3U6Z/86nlbpWvG50Hvy0HFp/vksab2ncnk86YFddSUWrDmB1jDYJQc+Lb+wcej4tBv5DNN/rA6B0+L+R48wCnIVoExlBWZFOjXwfaAh0xNkiiQ+i6tgQ2Fv3EpnF0uzVKHvqYQK2wWrEM6MYgDbfdTQnQs66WBsj029TJqM6OXXrbrcAuqEPPbzxIHa7qDMfqOsTZ8S9muGJgroVWT+SEjmVGM+UIRA3Q+8N3Z22KIr0EzBqMcQeujnNgJsiokctCHBAoGEEw9TyZRI1+IdbEHHMzjIYq1/SYcEuDZD4Gh9gXRl8aR7A4DmDOzoOyVBZ9S0gqGkLGn8mYOBs15v3xlcDJ7KgFeGmGdtCraXYaZJ5NlP/oyJ4I2ZGSLVkg5gVHw5fXN9RCplsfA2MFHmNRzmhMjMZIr7yKtWROWigB7iPYiFHSZKD8ysw4C7hWlAKUMhHjgbAC9wOclGM4/cDL8YJHuxATeNzvMBgBXgsM5DUYijXUo8AHC5rDmXjNoMn769Ew18TjfmEpaapOsJUOx9qXCBQjEDjGAvrU1B7fZ1fEwBwdf/7z32CsB/7u3/vvotbf4YfvfsD9fuH/8y//hNJOfPn+FX0uPAZZf6YbEUpoQ0/UDbr36vAtnn/3YMGbTI5mz6mS7OCzW4lgojRhNMNdjgMH99MylAnK2daExURZQwUdgfe1KLGA01SWBRHP74m+AeERlfGNtL39XBGdJ38smuu6I5xnKeaAgaPiCSpxnbuKWc0xwrJAKwUWE6tMft8mvNJ7L5l4mfQxBhUsLyheUcuB1g7UUvH+MbAmcLu9wvHZP8PF5B2woGSogmfeNS+4Bc7mO7wna2GGzpFiu2hLIGv0C+PRUao98zqdPBEL0wa7wA6M6Jg2cTvFapzAGhOP+wN1TRyD14VmuCpZ7mNSFnS7qVCPjhiUCRzWyPBCGjerD5yMzGV7VP3iXX9iGMbG31oT1XwPeTETExocWrDWQB8D1YDTIO8lx9XJ2m9gQ6u8vjCXW09hVWi9pj+ul4qAzqW4EP2O6oV/DuYy/foJWEDFTdkkeLbvzgO2oa+7OujRE+nZQyRsKS8YBAUO43oMk+9mLPkY2ma/zN7hZhwsojevYPyEzsgs3B1i/0cItAr0KUDZJS8LKQquydcFZVTVgAnms4hKSbp8W9AKLBY8FpqYTelf7F7EtFuyDmDDrZghNMosm9axDL4KB7UEmxLHyZiTsTsWVwT9QJUDINlqvFb6yYgZmdYi2YyF9pX8dxKs7RYQCTJ/DBOXvuEiRRbVGWLNgmvSAMDXJtq4BYpPzDDMAB6qMw50eCycafRf5VVolB/3sTh1fBkQA9UKvtxOns0OfH18wy/vX3F+9yNeztsG8P4wXwVIH7hfF36JdzRrqBMoaxDgmWxM9Zha2I6cVn0Z7ZLrQVlRAnkmcMoLEO5w1A2VjEWZpc13RQ6CNGRbsxgfSRAolY2keih/AWrcUYOSsTDDmPzdpSZXhKP3ARuG6sx9Y5GxNzubc+PBfT4HDS2WNZhxv3pkXfVk6TqhXjiUYyJgGOi4sMqB8nqDv9wQ7USX5+YoDeHAfQU8DMUPrAX0Hqit4TwaGxFj4v3+M+O0zbzFWOa40vNosfbS2AaQWJFgk8P9BV5OnmDzvkGO1o7NdqaJehHAE4qlijGAGPwT98c7aqFJ+xysI3qfykXYtCvOxhKJHVqLrlx2qvFmCygQky2eYAgk0cOnGGef2MciBCTYWmt6Q0GN7jSsZ3NwYcKgaeZiFJI9mzkIG1K8LyAOUAKlGRY63j9+lreYo0ruv2LuvJmkgQLJbwCtjwgaV4w1lacwp84JvhGQBYCCdDim+Y6jpvUeYoR75SRDNmBIPJhqniwzgX7i/ZLihDU72fCuoU1uqGbbC9lA7QPrjYWY4pnbhFfZa5hhBPOSPoVQ6JfTT5TlgF5QlKx9vZ/UQoHf/vWbgSe3KQSNycbKKUBzoTRSBmuRz8g1JHMz5KStRPdaox/PbRjcOh6PSf+SUndXvQcXtQ9HKQuYNFq1WZSQLLQRQAnMyYMnFg9tl0EbljobSkFMwA2pgRVhc3eP08SNJoG8fbU1pP4ykGcQC/YEnubqTGIld4Ho/aT0E6xwTT0KsCu1ZUCVU9CW5BLU9l4ERVpF4oZj0suhNsp7XN0XFnRCtG2QKKDW8tSkud47+hi43+8wNzz6hcfjgcfjgTB2xdjxyk1BPyeHoQR9OxCGGHxtLxxVb6WjloLjKDhvFedR8PJyQ6kNVgjywR4QSqQpOOr9OJHTuRZidPX+5XuhwCSohOss5IeUAcmSTUCEF3o29KWgdpYdNHbRCIYUYDChTtptlZ9MrCVKpmMNFafBIhmzMzFxB6YDK72OCqp/okwLnZ+LDARbFbYqohAAfdwnDBMvt8oDrhU4FtwHgZwIGNvRm8WVgEUIoMg4HUjfm6R0q6uTeIHFlisTuecxGWLpeSENuZTCtTc5OSKN6dxNTwS6dgXO4nqfpWKaYFJSLhF4jqL3UAGkHoXW0VLysBb3hykQB0yTmtiZMAMwWArS4+nCdXU1L0TjNWDExIgBXwyCUMcKAshI/Z9YazBIo+7OBYxm/VNyIwf9DEId4LUDPAAYpq0dXzaVVsVzen9FpHeRI6UtZFLIH0RJvx7kfpYE+ORtNQb4W4GYA2kmnmwDWYo/J9eBhWPk8wHAiY2cfrYWC93d/SO9gs82TD8bwPq1/DQpmASnFmYYzBu8VkSXp9DKAkUH6gKeMoMUdTCS7VH1SuQ5zZCfuUfnIekEnmIBlkemZZeNrLRSK9YaMv3uGPOBox04WkUtZJ/N2QkKH6LWDxlKhimBzH0bQAwU5zCDUqDpg2uz3fqKbWScptPFXYWspCYhotmKlOrr9T2rUMpwLOVCXddU4WJEVqcUupaGUSZjthG8hgWWUbIUEyhNnoga5exSyc3JTl87Ku4PgnJrcWjHedLHJf1RABZ0JubYmoEYLAqKHWILVswRmJMa/hUd948P9P4FL7cX3M4X3D/+Bep0vH6h6fpci4zJxVi0PQyRkpG8D9qnOvMhwDINRmv6/njID4NS2mTi0WScz2TG0omBLWG1oCQjDYL3WQFuGFLLC5PalEnCBSYpti5LwuLOJZg3JCMpsLzIt2XtFU9QNf1NxNO0xZgPgvtNyfcoICPIngyHpnVCO3z5UgUnwhJ4SpZxlTTM8F09GR/k+Vac8l5KLPk6r3InfjeyhF+aegr+ZNFwdxhBl1ggqZayxvcVuPeOEhzKUL2KRcOiIQyUDhfgYQT7v5zymBr0vbtP/kw1TiD0w9FB49zr4r15OU1nIZnKY03c6oHqhX4uQV+QAMHdpXWXxsAhj6z0NITW4QJQiAHroTIeBoBrBJYtPSsBTJWNlMcyTCNLyN1xSLIzJ/0rXbKSgKHqv+tRscDpjH0s9H7hQEWzwOE8h75hwBCowQmMZDZIVYB9TCgiJ/C0Nshac5hGGlYjC3axFywUuydZQclKiQWsSzm7AIOlc70833niyb5b2kvFWOwOxZGn6TfXic1ANVpwHSqE4AIMjUzgoameVvzp/QX6mw4TZlOckqqgLxgCMHXlk/UfamqsZaAxPAtXd2z5TlFzIxbP+Ka9DzMkJL7UwImc9EVqEcp6Tgk1neOC0zdLcbroPW6pDsKWo30qyBh3bL8e1xpUbCu+OM+vAbG89NMRZNfbooS9lMxjXNKtQFXtYUH5/q0WScMIFkYsvH7/htcffkRZzPG+E5FtwPHz+zesZJfCYJMKkRgXAoGBCQc9ipjbTYwI0Jm0KWPRUojYbGfTXoQA8S6WnmfiYi4296Js2p25WgQQU/6SzC3WBAIPLHS4kTl+LRbmIRN/eKXcai5EaQQ+lpgzc3DSWB/KffU5lQ+aVj3zpPSAA4pgbo2Okbye0x2XB6fBVpr4Uro3EaWyQbY0AU+DseZYaEdDKSfm+MCYAx/3d6wYOI8kJTDvGp98lfnMwbMqChAN0HxBswPmTXu9AzgoZS08w8ImnsM+uGmKAPsEV4s7xloY40Ixem0RpDKti6BVgLNGWLl3tOdyqi8lj2TJJas0pysn2JIG2hk4uA+gOiX2WslzLH83N1I2gTY7OBIw2SsQSTRB1otiRHODS8a4OG35aCfjtuI7NIEbCOXx/B2YauzMpRHIYUqwtNdIMNu2oinjZFgqcBKsonUIS69nTFJAgPjXvAYLxkvk68dWtmCJGascG+7KO+TrqhiL+HRdRXHOEthbYrvyWtOSJuNekgOQH1XPJWNdPrfnTf43f/1m4OlFVKoxNIa5npiT8pEKFrO9D0ltTrSjobWGviBwhQfF+8cD7mQ23EpDu91IkVwL19cP9HEH93BBMdKFv90/4Jfj/Tp2XfTRP1BrxetxopaC20kzzLECa12IMfbo9qPWbTgXCDyss7jY69/QrMHd0Y0MCh+kAn95edG4zrWpiI+godkarqTd8XgE3r9dyAk+50lj8m/f7mjNURu9CuqRZGfbD6mQzoBaeI+tFKLknxFRv2lUMj90NWr5x3jguhY+Ph4aB05D1WQ0zAVcd75lKUDgwFEP3PtX9HmRHYDJlidPcawwzKXE0hwvLw2lVBytcjzn7Qus8PVKdcmaHgi70EeadRIse3ulyfNcU9IWyrFsGUq9IYKMB4b2hpy+4LXBakNVYLl6V2ClZ8ohE3ND4Lp3zLHwMR8ERytNuL2epJ0agUQrZXdTHvJXYKGgMc3nDRZP74Ails+Tbf1kG5kXeFAO1krF68srxgSuyzj9cJCWOWLi/fEzll/4y9sXtKOitrITmE23lsSOlNDYySSswzQR8TCClDQkN8RSwZ9T4lxTM2A4G9f7pckDa2XxVLb3RL8IvHg54G5o9WBALIm2T6zB4Eo9ekETwNEfg/KVseDFcVQCBWsGvj0ugrrBANVaVXGgRD+AQ4bVlE5MjMFidQVBJHaqRJ+eA3123B9Mc0ohD/18OzHXxPtj4OV2arJl38Xp2Q68vDT6lo3O9eyUVMUK3B8DAd2z9C2ak47HSqgNlDDW89R2pUdNBBNnBnpRcEXnHYMdtat3tHawWHT6Sc0EUtWRp3E7k4vDG0cdK5R70c8sQy2Mp7WcWGvhcVGGFqKl1yKPC2cpCBT0vrCW4awZ5pmkjvHUeDfLIk0MpUjKtRKIPlColMH4+MByx1kKUNmxQyzEgwyjdPcAcsrZM1lIrx9bgShk2lzxACITf6MEWMfn0rTM2gi4jREAFtZDxq9W4TVw1oXzbDhbA9YFdrz5+Obq8iQIHLWhnU3gV8B8oBTg7fUVb19ueHu7ERx3mdn3LpP7RabbBkMKDA2tVBhOwCpgRYmwDicBKruQGEzUowRle4UFH+XNnDR0A+AHJw6dHyf6X9P8PSUFZgVWFuALXgfMF+p5wdSlCjiOWhBhGI+Boxw43879CKqAtloSgFz0ijJ2+kfQkBsLqGej99pR0aPj230iQO+9P/7yC+Ks+O53P+I+F8L+GfpceL/fAdAIlRMqA9fVmYTPxThQKducD06sc8eedtbSgBmO5Y6BxVH34RsU+fPXX9DHQJ9T3j+OMSkjLMaWxYg8VV1AyIE9PlpmzxxfLR9GOCYK1+VOorjPf53kMebm4AR6nwkQ2oAv738YRyzPYHEWQZnAEmBvKh7dAmcpsDlg14W388BrO/Dd2XBrBa83ejmNbfzAxoWjbgZffzthAfzw/fcwGMZ1MR63xsZT7/vzfnl7ZcNi/QHAgjsZHmZQx/XJ7gnI81HS6uKOx/VA7xdqYYPh9byhOtdynsUmf8C5eF7fjDKTs9y4sxdlQNfVca2Oaw2Us5HBAE7D/fi4EzSoAtq8ogTlof1B4MUrJ0NOOK5r4OPjsUHO41Y55U+FwXXdsaVnAuw57TRQGpkOHx/vYuOe+6yywmLtOE54rWjnCRpYry0/rl5Qy5PRQeNsoDWalD/GxdHxY7C4geO4nWR3/r2/i7kWfv72Drij5ICcCFyd7NdtdDsF9o+JnJbX2oFSCx6Pi7kfIyMuWUwMFSczJlqhX+KSgWIZQ0AnGctrTGwGriq7aSGmiQrxWLhm4JqBnz++Ub4rz0JH4LgVfP+7E6cFbkbWWHPD29kU7xau2fFf//wzlhUhgMwDrk4PmJ8+7iyArQMItBIwFNAjR0WgCtOmXAdLshAxmWBZnBp+FEMuz5Y0GQ4Aywn4RTU1sljoL1BCWuazQPYsPuURMwV0VTWgYMzRHPY8O1d8/jDsh+teIhvczjh2tpuiDsjm7xMvlfn+WRrcFjDuiAj0xT1mFptFt2ud0tgA+fgJkB/S/+Dv/338x//ZX+F//D/9n+Hv/tVfYajJeDPD4+OBv/6v/4h/+A//If4P/6f/I67rwbhxEZhZd54dP96+4C//8i/x9//qP8HjceH+uPBP/5//FH/66c94SCLa2gkAmEvG+GugFT77pSZ73GlhUhtlOj/++DtJeRfeXl9QW8XjQUCm6wx+PDqsFphRjjfmorqhOKJ3NnWOkw3V2jaoRIlWkK0CkRAMqEdFnQt1OPqSR7FADE+teBbdETTStgJ35iCPe4eBZ2zzg63yZOUsgmrfvb7BzPFxZ8Po4/191+QRBHu/ff2Fli5mqN7QjPYV8/G0rUjAmAM7KjzP+CnPnzVRywtut5sYNkVEEIJgYWzWcZrrMx+jpFlZYQKf1P3Tzw0ONzL2z1f5V6lGCfA+l8oBVyvrl0QpAhvggMlKovqefJ4DbI7j2Pd4g8kI5U/M04bu+VJz2AGYU8Vi0TeQZmY4Cgdo9Nkxr4ERXQoPNX0RygeXmoYF53mi1gPFi8zTx/7cuZ55j3zbVDAeK3vfVGj9TCm7CVaq8oQEoyylhLQqqbXi/SM0VCgUKirwmUADMRnn2iQHB2DhqH5DgmC9dzw+Lpy3A7UWFHmfLdXjKxbZ+bVxz8yJa4ytIuE0ejXTzfY9Kl42O52gH4cWvb684roeuF93NhgnrSDs3zXwlMDNWgMRZXeT4hPImEbcXvX32epUWsJiQAh+sV3ErwVgBWrRQoHQ2JSThQqlcWmXsNNZRkd1Q6CiyhVfxzRgaXSY0xieGuQlatn2NAKlIB5k3DAA8bhrMtDhxA8mp9kRn3PtzksWyVPyw1kXrDBxcy8setxkBJiHUkYBeepoJDKlJSrAYKIaSyOsLk8swwxORxgD6H2RPrqWRmOSoUQzQslrDBttDhpuqL0USCkLz0f5YRSgFuPkpULvlFIcx41m6Fm8uQNLnh3xCcHlf2ePJ7TpsL1ac4rBzJMaQlAjAC14mO5rfzy729s3Kbc8ZRprLr5BUWkvkGsBYqW4kN9PScHORFVQ6LuIZDQlE1oJQyY/+iqlUPst1kEpuqfLVfRxosUYBlhX1CBbiyh+viNbiKZuJxv08hqALnRPo0vkHbu45+vlaxkLVQMMSoySFpbPZT3BBWrqc68YkoXENScqpX43xx4r88Zac7NyoEItx6hCO3CZsfu6lxt9QiwSK+dh4ABWosH5GbXXcs9y/6ZRcGrgM6DzfpKybqil4iiNnXDoYACL4uckDq7V/N9ODrJDoiStSEe+Il0blJrkryjORX5W0gc2jZ6yndgJZ1KJn50cXhPScwtkCREkwN6rm9YcmgxkayfcLlYNXzewnMwPqHhxU9E0JdvVPk1PBcZVGQUbu4xjPZmFNPb8BIhpLXESlwmc1c+mEUz4c+1FWqLmk1SyYbaft+mEWwlARwI5DLI5Ocf2PUxmFvbERd5Te3batGfd8QSexGA7DgKR9dMkOJ41c/9+PsN8V269TyCf9s/uWu29yd9ZCxgzUBcQRZIA2O62hhm8FlQD2lExJv2doMM/QBlqRFIyeR+98PPOXFO65jk5jbLUsv3fLIuVZPciFIfiua8gQNuBMO7baVTnjQD6Wvh2v+P4+EA9ThwvL7BMcCLJkdrkYVuKD4HexcqmZ3NPQJ3yT+tWncP0EUkfuFxv7KByBS2szaDg+ktzfeUBRBhyQ+/1kua3sIzrAuLyj6JfRK5Hez5Py/jKa7RMcaAzFYzDSpf5z0+AVmYobDSbZLlARGcD4zjw5Tzw0gpeDvqQjckD06ySjYuCmME/RmP+Lwfj15SMulXHMMfIKbrF8XYrKMVgOADQRzLP0NJY5D6qpidJujyX9pkbXmrFmECThOL1bPLKK59iT4BeZ2QxtcXi6eV4kYz+wHV1fNw/8NEdj2FoLzcCX+4Yc+KXWIAH6kHvsKM2pnMr0Avzi3IcBJ7CcW/AYQTMEMD5Wjgt1wxrTXzclS+gIc8bqBteD4IPbXVwCEJTs2MpYBheXlmctJOFSO/PYSAEnsoGeMfFRKAUNtEeNRCrYM6q/BKafFtRbyeHVyx6stV2YoLMrbsDs47daGROtzALu9u1crhO8YIGWkfQLinwWMAMTmGewXtUNahjKheo/ikvtkk5R8Yvp4wpWyBzfirYtO/cqzzE1PhA4GgVLy8nblh4QeClAIcZvn+74awF57lwjYq5Llwr8MgzE2qarIXSCVKE8lErYmCHKSfKvI0F3GcT3E8Y0E7rqmL28DxTGavSfYnfNKqWxP7NKYKW75PHJCiWZSxhw6jANis8GZ224hkqAMTe8/ErZpAZa4zilDYBNLYnP4yc32qGoxRNCK3M73vPiIPizNGrsVF9Fgcwcc0Oj0CNwF/+7gf8J3/vP8Y/+E//Cv/RP/gHuKAz7vHALz/9hK9fv+E4G30ZC5nsq+ZaYC71djb8+PaKv/MXf4Gv7+/4+v6OL63irrwrwOZBINCtYBlZW54ST4EeRWd0MbI+j1LIWDLD2+3EeWu4+8IYjjsWhgFF9Q/zn4pSDOdxAMVxrYkwoyTLKaNdAEHTnCyszUlWmcqrZSrrobNPOfV6sm0imKNm/DPjcydDnrGjFrKUi6b/Zf/eTSx145m0FgFp5nTySEtGn1cBhw0IKWBy5WltmYYWICOYGrtMTzUUx6jGyP2RTSv3p9w066tstH7+YmP6qTZR4kkQxDh5OWu6ZOIu5a55j58J9KfXVa7EAVZ5+GlPPUvgved+9TIbPxBgrA2++IH3cwKe9g7iJj/zsPzZzCN1re4uTzS+T9buRTEtY296mz7/5Ob+9N/6mM97GLsuyktwg0RAscG+vEbL17LMabl+CgLp4r+rO/18sVQ5LLK/p/JskOUOpLh/V+B4KmBktxHxHCbwaR2khC4VVs9aKPOWgqH7s+/CXpD/zV+/GXiaiwd7v+i839rBBV98F4dzyZB10ezu/ds7rDkZKscBt4LrIigyR0jOMNGOG95ev6DVL/jyZeJ+DfQ+8NOf/ow1J0q9YWGirw64TDcvjlue8QF3IH564HYe+A9+/wccteLmFb7oQ5OTRkh2D2BQwlJb+kg4Qa4ZqHL1K2L7xDWw+kB/XLjmRZ+dwsX+eFxAaARiGM7zhvvjjmt0+OyIvjAXF09pFeYLQyyxudjJQTGMeQew8Hq88j1XblBDuxFZftwv3O8f+Pi4Y62gXDAcczmua+Fxv/C4LnU4mU2Wqi5WJqOt4Loee6Rk8wPnC42Bq7wJmszKWim4HZSwfHl5oUG6nvNjkQwc6DA/pAVVd94PmBW0+oq1HvjTT3/G2QpeNPWBbAMu0KFZ2rUeWBqpCZCxVcQGYEagbl4Eu7+dvglFiYdbBVmpoi/Pp1fRWByTnSburcojYmU4I9IbK6e/kYKJAFpOs4rAjIHrMVEaO1tjXZhr4bu373C0gY/3P5NeCqDVCtSGMTrWmrg/7oBd6PMX+DgAq9Lk1y1DI3gW8G2kSEPItS7e6XiGuFAHvHjD87sMOGPQXI9sbBUrJkqsQIzEg1s7YC0jYsi8TkmfF1gtBJGhYLfS/4DsvGUdIzpgQ+APD6haDiyn0eOahsc1dB/tGTnnJVouDwhOleBepSHlRH90TrRT0n2cjQUxKCm55oXjaLiVg2CIA7d2orrhpRUCUOBo9GXA+8c7+hjq7gLnQbZAXAtRABTH7WDH4Ouff2aCF0pwbydy6lTQ/Gx3MkdSVMP3/TU4Wj1YgA+BZhFYGidcigo643qLObeUlgcKO58raKDde8f1caEelV1mxJbbrVjo14VaC7y1nTw4OhI1MSOjbVlIKszVn7LW/NwdUMelYsyJByYGJuZiR5Pg1cX9MigVcRNFvJH6H2GIKf+o+QQioLKFUzcmz0YszE72IZMyFntTEwRh6cEm0AWf5A4AFhruHwv9vvB2HkzgF/fSCp5P51HgEfQfyALEF2pxvL0euJ2ST8pY+nrccb/fJbsEASBAoKrYEF5h6SeoBGijJ1ASa1k0Towx8fLdidoOVMnNuWoWgA5vBaUdwDdONkxPu/vHB2o98LsffkAfd1z9HY/HB5kn7YZiFTYq5jT0BzD6xOPe0etCLRPfvTVO6gsyHbLPyfKRwHbS5u2QbOhwDANWDHQ34LzhfQ68f/2Gf/ov/gX+/PjA3/rbfxuvPwDf/e5HzGksmgcNpkuawsZDXWD6bbyUG6ZNjHXxZ8A9ys6uOvZeMRHwOfC4Bvp1UTAb5PFFoew+LPAITrucV+DlBMwPdbBZ8EIxh6B8OlcZ+mJDaMTABPBYA/erkwW8lJyFuo1M8WBqdqzP9gE0Udss5xBDhPJQoZy7wZQRusLCcL1fiGJ4fbvR9+b6wMuXE3/x5Qe8eeCwhf7Lz1hYuMnEPcLF7siC2HA2nhfj558BA95uBxkT74MsFOUnPgtW/xPXVjWsOdCvO5esG9AOWK04rCgpHSpuaIY+ZsdZHW9uKMQsUT6+iS3MRPRsFXDKAubimYC7zviX79FKw8v5gtIfWB/fgDFQ1sDRDMUXIoqkrhccQIOjrInSL6yL7EOfSnyjg4X6Qo0HzN6xnHv+hJMhlb4t6w6Do/jBpDuAS2a3ZXB89XGn/GbMD7iK/lx3HpN78+LP2lgo7tzHyOKCB/RLYZ7zuL8jIvCSRx4gqWygOYDp+Pj2E2YEGtv7sH5nseEOW0NNNloi9PlAyjwKKiom+sc3jDFpPwLDrdwQZjgjMLAoSoqFHgGf8hLTmealaT1m1mI7jg1jcTnBkEs/zYXRJ3qpGH4CTUb3jeDCWYDX6vjuNNwAvMbAj0fBWzP8/jvD7XDcbgdGnPjxy4G/+fkr/vm//CMes+BaBdZeUbyh+EkJ/XWRGdAabC2araronSuZEfIfmwSKMOldU5xDFRCUlBYYTgHFDnpMzTlpbm8AXDYHriYYKQUEj5Qs5S6eRskMTMCFQAZKXVh8zzxMHWpUU5bZ5yXJk+E8GkpxVAHHJrRBA0txwGFjwsfAWykozVBfX3GNjj/9csFioZjhBQsnArdSCYI9HsCYaGPibBVf3l7wn/29/wj/k//h/wh/+P3vBXQU3B8f+Ef/l/8c//d//H/F//Z//b/EuD8QV0c7Cl5qQTu49h9Xx0up+A+/e8Xffjnwh5h4/PJnvP/Lf4H5139E+fkr/vC738FKw9UpE1xibHgxxORUNS+c7HqrPIFKcdjs+PbTHwlozInff6n4Uiq8DPTVEfMDX84Tv/sP/ja+ffvAzz/9gvO7v0B7ecEEvaBidIygt+eKiXH1DQoYid+SQBrZ+gvyNOzod01fL08W3KPT99dqhauJaC45fDngCHxcE8UWvvz+d/jxux/xt373l/j+7Qtu9cTqtHV4fHyAUtYXWAF6H8SxnflrHwtvLy94vb1iw18q9sPV9Mo/BsRkvZd1x2PQX2nBRQYJFD9QyknWakzZMxBcuR4PfPv4wHmeaI1AmXlOeePbFy+otwOlsAnX+wNzToL4nucCSKYoZMgWZzNjXiHAnpNEvQiINd9ToBELxUF5qgFm8kIbhczMOWGV+6OolmDD0FBayvQMfchr0AV+rbXPQzca2IfsPjbjyVRr9GvnwrlNH31gzgu9M8a8fXlBKRWtNfoGjsHwM3jwkbSiLNTynfk5W2sapvG0SzGPDdY8ro7H/UO1NM+hMRdeb0316kxcDsU5vAsPNvmrc0ItGWOB1iivHINkDKrjKgIFXfY4c2Rb0eAzmPOEIaw8LTjW0y/aty8asCQRHwK1eYYtLJmZj9Hx+LjDInCUSjZo5/P/b/r6zcATP3rm1WQhASzW08eDkt1n4r1k3BxFHXanfGntDr2CgskE0zgqu6rD4po0Qg9lk68NpIsmare9bBboBSEvGUpaeLPIdnhOxApXTSA0csr4DOpAA0A4GUIjJnp09HlhrE721UyElB5AC2ujyUCimeyqJ+0h7xETVN0rHm1MJMU0oHQP0jQb+gLs0sS8sXBd6uypoFzL6cqv6VQpuTJwrCxRZSH2oH8ApWRkxJxnhTtQnFS+VgicnK3KN4XdtWS8ZfHy7B/Zp+sVwwKuwMJkz8C8gX47KuaQCLmpSGGhmnjpswvN4J8a2xzfu2LR6NF4eLs69QC7OQlufX695yrOZDA71ywolxJA8UTZqQElKslTgNYa/x40m57YbLuSaww5clgE+FicrlYXTUqNmnRKUCfMaKyaY8CNlwmyjvIAciH8E0+2h+11lOnRplZmx14thOwC5O96FsmfMHFA45N1LfjVZ4F8EEyQBf0UAPldaI2ZpZQwmybPQgnJZtj9mGd38NkB4TNhV//T3rLnfV8moNGgqWgZrP0pkQyx/+YgnXVMjeFVoq+EpDr3RPFC4v9k8leE8lsEMBk9bOmaU9am7gD0forje4UhGSX6z+c9X3vvm/7eEwMUjYLkAYPmtCKMtG96PTGqJA12+affF+vQEcppFlJUBAMlzHsXB+95YkN6GO7pjWdYtWKF7evtXSvccr1pra21O3PsFtruYuVa5X8R6HUBx9vIVSt5afpcUfeIS1O0o8X7kIep6fq5bdkJ882jyVX39NzivWGnuBRHa6Rtu2QQiOde3yzf/OQZ27RXqMjXcIZPDrNcLktGuLbPhZCnRU6eMXUSyXpSdCoGr2Qr1VlwRUgqy6TIQZ+5WDSchhekxCuhDRMLbqYHo2ODFRkLcr+5WEXsgvI1VgL4GVmcku01F+6Pjo/HhQWuy3bcOI1Lhxrjk216eQS23FG34Zm0aa1lhzUTS8/PB+6pyM9NI8MMElwrYjyFfie7eFPs1oVkNyWTQa+RWzTyPXRW5zUkXSEDC+x5+5BglrKLBM8VX/c5ppvsHvsaLAy+8jlx4xoqqkDq0SdmoZQnh8WXjL1TL7wCOUa57ssQfBA0N18x1XU3ekXF4rkRfJ4eod+VfHAFMKYkauDAieAfWxM2J0d8a3fJop1xPmz7VEFyVUfs88cB+SUuTsDqA7YGqrwkivKGSfozaq5NECT3PLdCwGkANsl0cBCAp8yCY6otmwOF52ZNhqPNjHgoIOPAFru9rsW6LXfN9rnjsUC/G+6PoG592yGZ1qQFnrlD5HmLnS0ByvvEFqYB/hMMlh5ecV/PXHKpJz/BYDF1Nk76hah9UGIyt47MVZSofgLBxfnexQ3gPDMUnvPvUm69/bMmh0nMMEznWrQFeLgmdNJLaXROt15Ko2IB1zVgK1BLxQhg9kB/TDzeLwyjl2r42udnAhMJ4u8z+FdbUnFUnxdiPm9GB5TPQ55Y2q+Zc+S63OyR9cyfzJP1sje83iOUyjwZjzxzfedKXJPKV3cuSFC6yEtOp9oz7mH3/hBroejsLvqMDcHvrYUaQQnyXIg+JWOtOEFm4RIzbY5BtpgDt9uJH378Hu0gC/FPf/Mz/uZv/oR/9J//F/iv/st/gj/9qz+imePLcRDEnEspB2NPCaBMmtd7XzjC8VpPHNZQorCJar6HKZjuO6916Tnw3uZZ5AhgTYxr7TjSrwceH4bHx1c2nWKgWMPRCq7KvO71OHC7veLeL3QAP375gr44FqJPyuZSVrY+M86NaoQISqAjBrCG9uNzbeUTQ6S37P6/HeP1xOBWyFYqdbNEpiSCrbXdQFt5ZulQG3MAc6E1/m42LNdKf1yu0cxvGXM0nCYyO+Hr+We29U7inmcpwwpvQi11M1hyzef0zBm0BXDLuixrOzJkeE4+2dxZl7n2Yko/Q+cAvY15vbHY5sqctnhR3HzuLweZlgTE7NM1BZ4Fs14PyvPyueU9yv376eympcQUwysyzdwpwM5R9ucyuIbCCD/i2oaYTwLDdjm58wLGSzLmNBDBy75+WGBgqMH+rEsTtI78EPpaa+5p1yY1QYLgybgsuh9PH+1nTrSzX1mjpACDcfLJBsvfnTLF52dy5ORkkhf03oAkgLRcmoMTk9N+AFB+9Ru+/i2kdvwwFVXoct8AztK41daek5ay4FjSdbaXBheoAWPyEwh1vR+4Hg8m5jCUQkbN8cJkxJzeUY5CD6O5YOXQmiRg4d4AHOjjhmUDAw8uIBftzJIHwM+cQEUXm+BoJ13/JUsJTXWZq+OOD7zPb3uNc4S3tKSx0HvAl6OuirCBUoFSA6UuoAyEhyRzkjNoOo3te0vDvmuw0B6PqesEPu4P3O8d9f/L2r/12JY0WaLQMHP3OdeK2Dszv0tdVDS0+MWIB34Lb6AjcUA6PCDRvNBqaOhzurrr8l0y945Ya053N+NhmPlcCVLV1xLxKSt37YyINadf7DJs2LDWQtiYl/48e1Ra2cpXS0HbSbtOEOvxILLqAHYX3FpB1RvKtpOhUAS/+fFHUsWNKGpV4LZveL/fCDL4RO9P2BiRVBJdpQHUxTqqFXBxjAgw3TeUUvG+/x69P9HPT5x+Aui4324LWRUpqGWncOwMh600jBSrzaRixlQoDZBohAsQ3O4xUS8Es4/jBFIss7LNIKvSNFsZqgFJhcxRsQJfwWOpsqoGioxjicy3VqHaaGANaFpY7VVqWPTRgRglTXDAcTwGiuzY3t7ByyM4xifOcaDWaHWcXJOyyNYt2uKMDk4VAuofqHB8Mueee7TKGEQdZknHjnDLsQxLVbZO5lcf5wJ2mKp1qPPZJSY+EFFBaIIJVNluWZugB0OxiEOlcmKgKFxoUOfMQJBG0WAwjYQwvorSkF7kTeWUtG7wMSkQXRhU1FKpVeEDqhtKDfaBRMUTwOwn5ugYxwPjPDF6R21xXjOlG6Qot33jJI9aMc+O2U/sDpiQTu/mGMcBCJ9Ta4G2EhmV4/Gc0VIUdGZLx1+uACycyLbxbp7jXLGIinLKhPB85pAADDrive0BRtAGuzjmOIDp2KJ1q8Ro3loVvXeMSZZfiUCCsDtZECoWCSTBElkBjERFF4AYpAlEG9p2QykbnseBPmYIBwMdEeTaBGyG/lIJpxgj0S2nPV2uZlj07GuDKlAjSSM4wYCxlDu21pC6eoITAPccbnCZyHHatVJ7bPQTww174/TNlUy5QyuZnOP8hHtHa3fc9or72w37VrFVsgXZ9RIsjgTazEMDKEANCCQmK1k6cuF4EZdkSBpMFK3UOAORfgqZUloLarCaZgRE5gbdC5pvuL3tEAE+v3/DmCce37/TDpVgAFjF6DvZNd7IFhX6nV0axtkx+sBxdpgp9kYNRI+pKRwUwmAFo/8KEBqjM9gqYCLVGuwYOKfj89FRtxNndxgK7m8/AM8Tj8eEoEBrwzgmE9AoBFH3D5wMSY9HE5uCmdHaAwFBGo+JXatXNRLENXstkxoGzn10OG7QIpjngKdeDRzmg+BLVbJ8XlpzS4z0XvdQKaJtpcKgARReVjQ+dH15mCrq8mRC8xI/agSNqUFjWOwU1R3FAe+CKjvaGxmGf/jzN9iueKuC395uaApotGnANDucUWPQSXPaldo2ZvmhQVOFwzaq1vVMRrgQLYdntPvSf5pzwoZhizaD2Qd97AwBbAHKiEl9MXmvgHFUEYcMDqogYg9IpXbN7bZDAYzjICPi8bnAmNvWoG1jO6cPPEOnaauxzpGDScR+TE8IRM9n/McqaFpRbl/Qx4k+OkZ/wmzChMx2TlsG3DuTNhcUmRRs9RHA8WsAnyxGIwMFDLw54SsCeveXJM5ZPBNg9GTaML6dCXS6oxWyWUfoopQFuoaQbOanHkUfR+iOZCsN123MgeP5jBgAUI+BLJMsMI9k92XoPFBa3HuuxQypgSKpDeir8Dkn9aF6xGCcAMYpsv1UdJTQZrRo9Su0L7Pjl2/fMatAWkEzAYbg49sHigh++1PDdOCff3ngDz9/4h//6zfsb1+w3RvMO0w4XEPguO0cNjSypTza6BB3NLW3BBKC0R1nnwt4qgEGTD8o0GtM1mpo8dUokhewlZXi8yEuXhRFuD+5v4GJLbkA+jgytMmuC3QDgGgWJyNx1hntdCVAqEjWPMEF6qawtXUu7OFWCmoRbJhQM4yjowH4sVU8+wMf375h/wH4slfchFHNcNrZ8/MTjh1uN9zvO373V7+F3zaMOfB/+7/+O/z7//u/x//mf/W/xuPbN/xYN7y97fhp/4qjP9F7R2m82zYFxYD5cWLuJ+YvB34oX3D73Rv+9A8f+PxumGdla6Y3WLZz64TpQCsVpShOI0t6r8pWN5/BMJy47ztu+47vP/8R3382PJ7fADi+fPkCYENRRy2CVgt+ur3jp/ef8M9//gNON/ztv/lf4JwD/+UP/4CP48Do7ITQpjjPiSHOMyOCrXLyZZ8HqAfZWSyTQr2o8D8WUTA0GTv0UWNMuM3V7iehuQdtmCZ4Hh0fHw88jwd++ulHFFV8HA/ah4xFBHgcB46j47e/uaHVGwSVen0jMhopMBBEq4XMuOkS6jENJHxwKFdp+xJlX2BQAB6lsgX3OE6UUvD1/SvjEmc3wiqahDxLKRpafw2QitpaFF9D5mUmYJLDZAagEUlWgqbeT96N2sJJeoCIWC1iteW9TbDDoLWgCduHRdku6WBB+wVdQrhRkHQSwH20fM1fgR60q8/zwBgDbU+dKodMELxPB+60i9udOmGUXQBGiO2nDzU4dCMwdp7MmS6JET7rsNBNhK/ccUwWWocNglNJfAHQtg0lGJE+J7RyMqf1QV3doqgKaJXoIGFHCxQx6E0Xw9BFMZx3irGHot2oCWuhkWwIIDLWjfFzBQaLCUggvSk1livtaD/4vrWxO+Dj4wO9U0+3FMXW+Nw5oOFf+/pvYDwlnUyjsjiRTInVZx2Jk00ilBmsMcgraFpxBmiTKKDKhZ4mmNBqQasV7+MeImqGbhPW+6qaptiiLEofRZN/+faNrJ0C7Ds3TeQKth2BZCYAEfS4dLgz0FML9JTId1RBWL5lQKKOWlnp5ghJxMS0SPx9Umy6Ay4Ft1miHYjBY58TKcw2Tlaw5mDiasMD2CkYndUmCKuUWZXPz1EXoqlGxoxAl77O+3sIFhrR9W0n5TFZIUUF+64hYl5if7nbvQ94iNeRyslxogCrMy5MWpfQakwCILtACYBghr4UmRqOGN3rnMxQa4yHNF1BZqLcHmOwU2tCEeKuJaiACFElx0Jrc7KfZM99GrC4aOLJmJJgTiAcP5PXpHxQry5QemP/bLL5GARH9uEMAm0aWmmYY2COM1BgVn75+yjS/fH9E4KC8ZWJla6K3AxKrAazli9m7hRlBJNZjfEupHUvMvy1VlEm5R6+TMZxsg/zz8mIiv+KHB9aQtS+xmjoDHSRQAiymrh+lCBZ9GoSKCurOphfORrc4/exGBgAx0zjHhOmgl6cgX6i6peDYZBpY8DnJLgkOUZUCVIJIMGUQlRGtfAdLBOJOGv+EtyTmkrhvRzdXvW1woSXtiDSYi0j0nBiawKhRwUrmI2egTOECWIAAAQjokoYe0IBWAldjrwSV2LnCYAJVsAxLZkxsvYoqym5FyoKzzOCpNT6i7YSlz/PiLgyEZ+Iu9xBunQwzZQAtHnyJigs/aolRjBtouhYAC/Hu1+VH9WwxkLQyYIxNZ0JUk5XiZWkPwHYNohX8CeBu4nkdOW5M5+sfJUOEcPtreJ+b9g2RakMhMc8cZ7PaJEdq5U1AeoUby/QyxZY2JpyMWUIXvsC5bOCRmH3gVobzB19TopRtixCCLY9pnedE1ULjg9OG8IMKrw2jELtmnOytXG6BWAXFX0tKJtAa4X5xDk85WowB9coB0OUGm1lHtWteLdAodc5qlrgpeF4nvgmH/jzn34BwHeDa7QEUjA9AxwoW33bRkBYSo0kTtaVUVzsRO5n5/UIlgACiELsuwSbEcBiGGECFuC0xjO1uHfDX+zYild0nXeaeIdZsMgk2KgoWJw/iTuKLHUYkgAsoGC2+jWRND8p7QDjiPh/IyGthboeqXOHCGILFHvZcGuFTCUz+PBLCyMse7IEbI6o5vP3mrHyTJ2KXCVEQFnDFkfFWTI813wEuEcwWhrp+Fq5NzYCWJ+hAebQwvJIVl75Krk/EvZkEGjKKbBFFgOOreQAQmejRI3QNeKI8AnU54w4IN5Tw3+bJNvsWnMV6kXliG+BrJZlielXLOIAjgqHYJPCOPOMtumVPtA2kQEXPBVRQCty4qcZdXA0gMrUxoLIKjhIVKEvpcI4fDzUwXjw0DWlv6dviBmzESe7TzgKJAo/CDvtUQU2B7XjAFxzFiUgR1lFDbNf216AScs04DTjsIGIy5PBxH2RaC+LezlZBPBhK4Y9jK19PjqeRfC2V7Ra8ZlM2LajbDtu9zu0xoTQwcHo6g4o7QLFzWdU/GnAItzlvozxYqccNWJbspB43qb4iv3ofuMuvjKN435WREwS+1mkcAXFOdTYCTyRHBWsTWNnBAuGkRxHaPUr5m/akVjrS2+Sd2nOyZZBhI2jxwWMMhiRiixmRJOC9/2OW2vYSmFy6mycLuLYt4b32w2/+/FHNHc8/vBH/L//H/8R//jtO/67/+6/x3/6T/8TME7steB+v6O2huGp4ZUgq6PUhq023N6/oN5uGBB8e3zi5+8f+DhODKeeGbRQssCXxaHf82DYx6GvwYzrEY+KKqZbCNUzt8qzevQJPJ74pz/9Gcdz4PNx4J//8Ac8vj8wnAMrxtExbWAenS2GAPUMp1EbyuOcw6DBbKV9FGwtp5EHM1AEZeczj9QhjCI4ZjAwRYDW0ApW/JYMHANCz1SiOEV7xjwp2M1QDmZqutoFOagifB6CMStGO1sAi2I2AGy3tkAqMuLIehalLIYWsscTCDHzkFlp2LYNx3mswgzAPNAXwy9sdvycB0KiwQRahbdkRHvaXltM/bS5r3lCCXxA+GLx74jz4fDiYSsjl4uuCtryiH/NMXxeLdzuwSdJ3+PR4fNyz9Z1Y7EXEe+qvN7V688Z372kLpelNqOG0ky+4gsUFuuQsjbLAMR3qBIUKpE7loybXr4y32opHh9nco4Y4mQIjS2PHF7Cf1zT+wCDSpQblIZyWl/gHnNFX50pRXMwhIRWY4OKwnrk2pGqQFJjMKO26DSqFUUFn7XgIJCz2h7/ta+/HHiKYCL7Jc0GHQ4oYs2kcMBdMSc3UTxZLaw0bGXDeYx4OCfzqF2CfTapifN2+4raNojc0afj8Tzhx4F5HCEXEpR0M5SdrSdaKuac+OP3P2JrDbf9hq+l4m0XINqYvLBHkgLnCjFdCOdxPKn/kifdInETAdTZ7jdIhUxwZius3LpEYJPth0Km1jCHPCfMCvrbhgqg1YbZDec58Twnep84H2yjm93WOnNs8oYeE6h8DAbYluyykqaN7Ki8rM4DWlTxu9+RzUR2ARk89xurCzUSp5UBWBL7AbeJ5+MBt0GjnOuHEeBPEPxFiJKrYAyO7pQ4zBITc4ZxvDYv1AaKMTG63LY3uAvOI9pVpKzKt0Vb4wxwRcFAt+rGy626Atg5ObmFq0FrpTHByIMSKMHoKJFUDUvGAoLt0pC06xnrPGbqW0yUSuBUFZmys9p+GMZwbHXDOA3jOCIREEihQTjOE+MU/PLnn+FT8NvfGFCjSuBsMy31jlYL5gouCISSLUAPmD24OUXIESi299XeoUFX1RjZnL27lrphwAWWIAx2iO0yaBNomIWwOUw4ls3xC0AQAbxS3FJT30iuAAnhNIQGJNMDjmYNxxDsoFoqfDqsTwKFMfa2n6En5Axa5pw4jyMYRlxvzAltG1QrTAd/77S4w5UxYjAeYCG3F8Gde1Z0BUMFPglo+eT5LdvOox7UawJPPAEJins61Di7AlDXaQaLrQAIEUwuuvFeZWQTACTpz85qB6JNVQFItBEMtjZD6aCSyWk24T2GXw86QhVZwAfC0RKEYlttVp/mmGtfGAvMYDH1oNVWAB02SwDiPNt12QEm8wqCqR7g+EyQLwSsedaY8Ij3SMG4PssHF4VNCllPF9h0bqN7mBv+lDoBOAmGoblhTAQ4na25GQgi/nxg2IlaDbUA718b3u8b9luMa54dvR/4/PzAeR5LxyAxGAFtnbgyyI69LOG4tSizuFgDFbByXlJYk/e394FSOSj70U+0bcPt/b60CG73G8pdUFxwbA398xP96OiPjloqarlhVrJbjn5ijMkpR5FEUUMkJl6p4vPzA7P3fDScz9DlUmC/NeyioGgSIE4B4hKTW1a1UQRVGqQIHt+feDxOvL3/gZNttAF+4uPjifudtiClKRCDQkpj1VtKCwZunGdaCAiAboN3Za6QnSCpehRmfYFOEpT/NYgCwBxkWd1EUatgr7Q5MnPKagZfwWIVFjtYVU1h0QqXCkgFtCJHdlO/iz/L9mIJ1iD9WJkSgLZcbRVxL5hHR2Ab8bZA1iQqidHyiKSmasV9e8OXW0Pp3yHTYSdBCw1zQR/kUYiintm2bcu2864n4+tivdRyC5YgViKI0I1K4+ZGe9TKDaj8JptkEY1xhnwCf0wLGTMlWoEvv6ILgOrzhIAaEHw/Vs5txOS70cPOKdoWRZYA4ovucGOLOmPNSTaVLEiZ+xbgT7YYlBK6OVkEgMOto3fqldSm1KyUAgMZULUJ79ISDsc6+4w+aG95FiqgBRMc9jKnU5tEOJEIoYnFSY4xjQ2036sqLy8eVi47Om1yaE2yrrStJI5i+s5ksFIzlDT6aMFxxqMWmo4JnFkmyAkuRt+FhE0uojAounEIwmHAMGAgE0uybNHI3qsuoKwh2wUxnPdmTtgAnj44DROGIoa/+evf4142FGOsKLc3bHPiyw+f6HNgzI7Z2SZZamHbskQroxhMSkyyDV+WjK7zDBvMVrfSgoWU2wdDV64Emb+C6z/FYiDhRA8RcwZSBYxpNDo4VBIM5K6NiHXYXrOCnBdwKfPesFW8bATVxBfD2IxaUyy2xdFQFtH67OjTOKUKuXcg01kq3t8bBblrJXzqkwmrON5vO376+gV/9/vfYTfDL3//9/gf/g//R/y7f/8f8L/93/3v8cc//4y/+qvf4/Z2w5f3LwCcLWvOAR5kMxi+bBv22x3vv/kR7e0dpwj++O07/se//y/4+eOB0wXvjUyR4/nkXYy4p1aywcRz5HywbN3RJ1bL75gTfQ5OsSxAaKvgcQ48+id+/py00cPx/U/f0Cbw+7/+a9ze7zg/H1ynxxNwww5lseocBOid+8Z2KVsgiVSC5qP3sP0OFEG7bWQEHecCAzIeZEu+oGyc1JdxgCEHcUTxUzUUWwGpwWkU6kE6FNoKamH0c84R03LBViz3GOhg0OawqDI8AhCvcoeJ4OiOpixUiHDAkdbKCXYR7+fEvNQrut1uGIPahiXa2VplMaioRuGT2rtzdtQaTPuSZAINDT5DDt7Iaa9SoiyjlxxI3gB2M+gF0MTQMDFwsm6JarAWAolrcqdi28ic8mkY/cSzPzjMqRZolQAGhYyiPqOoUFYc5gH+W+QuHITj6546EvSRxQACMn/JggDjgzGCBRcu3gEgwLgsHGkpV2wS76/B9o9SEoCClASKByBQrpxGa9EqbmYY50lN0SzII1hSokh5ANFLKkCCzIOQKZozfcz1rKXUsCkl7Bvz9tt2Yxx1UjYFRWHC/T3PHgWoSn3D0E4tRfDtW0N9xv7+/xt4EuGCTusRnCYFEbjKhwh3F4GBG42yAI/PJ/o5CB5Ig1QahHGeKEVxaxs6KgYG+mNiPJ6YToDj1hRNd7RW8Xge+Hgc2CsDraotKKEAcRLFaY45KFDpfeB+45SXbc9knAHS8EG9E1X2UIvCQlzTA2FWGHQqiu5AMKMg0S7z7QN9TPSzQ1DR6g3p8mm+ySbpQ/D5GNDTUDtwHgOPxwmgRrBAQ6sljyUPA4GGaOMSkBoeYz958hVulYkmBPfbDa1tBJmK4sv7PbRLTgqVNUUpBtUHsmT7qp2ThsLhgFITgW6Wzkw1GBkYDFIdsK6QqXBrgG/LUcMP/p5gBLBHVQBQE2kOMChwCd1ItiUkJTWrADVOVQFFEUuhY5ljLK0tlbKqRMkqkDA6pdLo9t6DYsiLWAKhTS2pnAwFAJzYQjelaqiNNM0oDAMgE8mNTD5Xh+pEKQX7fkNOR1INRDpZJgU0EnZyv7WhVuH+RwBbcio7PAzKQFZcp5+Yp2OoXPcLTH5LbdC6k+7ZScXFS9DjOSI1UFM3kD2mMcEAZCpm0gKRi01iRhHjKK2rsN1tTkfvNFKqEg7JoroAJo4CQJIbaXnEkhzJSg0EwwY8RMUt2jZUFfu2Ya8bhg0K2kKwVYLMA8GmMo6ZhhieMXa0AEsbhxXTyvG8ZpyIIoruTvHL84h3iKpEUTpCdxxCrZQa525MClhKn3j0Hvoyss5s1kNyqkmCa+vcIKZFRLufQmGDmnRVYjpUOCqL/mkRxLpOZLN23WqATracYqmko5dw2nm+E3T0dL7jqmgYmEQSUGSqogUc3xtrYnMEU4cOb8zQLJsTyUJ0twBAAtgTBhP7XQDXqKKy7bIKP8mCqThntBKByYVUxTwHjm4odYOUwgBEDDZPPmvY7WTg5sRAtjKAAUcg6+YDWhylCt7eN+ybYt8dtU1AzuXXppHppMH4UK1kN8wEzVI8Xa8cJoA9ahroqq5Z6LAxkSdAMaNAX6LtZYOgtIYSa52BHBxBX2748uUdD3zi40/f4U2Bxs9hAs1caowOgs5l3V8zw+hkaw5XzEfnuk2y5TZVTCsYU2EzWrins+IsfGGbRhtRGqooat3gnSO9MYFSC37z429hs0Dlj8G8YPJ6zgmfgzpE9x1SdFWDhwOitCcuKXGOONtR3JCCbgOnDZyD9tk0A7fcj5xUJ5h9ouPEbd9WazWcwpvJKpVgEJIGjZhOS3C6iAVDVhbIuVDzAExTH0GEwp9Vol3KOEI7Wz+zdj2CFT5x6ZhEgzfMRgBQrMQ3ALsK3lSxDUM9B+qwmJD1UnmWCfHOgSmmyCmF83i8+GhZ/pn3iogVBfQJ6i7RZAXvkbBi7sF2KZpAGQUnid0LzBWlxGCDCDQNl51nEG+AB/sq9PpGtJy78u8n6wZYxVgJUBER6YvAQ4OlbVENnwaALWapvySKa0qV0OeIUWeulhzUIShSoaEnBI+iQTAjGfuTKV5rXTBlgmcOBPOaTryWjM8iae4d0xif3EIPs7XGZys8DwIJWYkLwIAj/C59PPXWAhMxQzJtBdR9gwtmgMQENQvWtXHWWqY7TueQiJH/OFI2EaFUyEQJvItFuJ/T844CXsj6Jc4RwJPGQ0dYbwGUwQ1DjggqLPwcCwIdA//8+BltfGB/fqBqwX1rmLNjf9tw1xtEFN8+PnD2jokCA3A8DVIK7tsbnrPjOJ8B7MtLoZtXVIWJp08WSR2OVhtEFGfYCgKIga86r8QMUA0S3RxxVui/delsJWNHncBpwCiM6cI+kMkb+U/00diL/12j1ON35lRdAW1NqwGy2oCBDDaRClWyjqoqFBtbpwbFxV0c1IhL4BGYpWJCcBpQUfDnx8B//3/6P+N/+L/8O/yXf/oTfv72ib+6/4gfti9AYxfG8HO9w7CTchlGcOKv/up3eNt2dAx8jgf+/PyGXiZuP97hn99wPh/Q/gHVGtqLfjXFBoBHnaCywE+ArTzcC3YN9GhjnRHvxBGFSEEO8aBvo+bZ5zxwfE78cn4GsBhTvOaMXA5hcWnnHYaOIyQaZl7wZesd7D45zwPZOl2iNTNbLSsItPdBm7u1jQN6lEDCORxSNmw3Rbu9o9aCfj55gqTCTDCM5zenbmbLGNtK08YwHp79RLXJQlAIsX0+Kfh9DoeroXQDtRb3mD53sVNaa2G7+HePxwMign3f1/dkDEetKZ7ZWg0lmPXuE3OcBJ4KM9Ma/kREMEdOsC7LB9A/k3GqogQgVWHeyeSaQRJQOhrbOG25d2qQauUUVHbSRFFUgK2x+PWqZZQVd4dwEIFwqESP1mAIW77zaw0TQwLx+bweot2y/mm1pZFmTN3KAqc4yTH8kLAAzQJjoeZyTMiLaAWrqyZseuZlljFIxNDH8Yy4PZxjxu0Qgm0SzFZQsmLaZJEj86rCPchpyOLlYvsKgXQF/UuftFml1CiIMR+k2D5BupRHqK1hQWmFxUTG1o452KrZSnS//AVf/43AU4hDK9FALQyAzZKax6/12U7dC3HgfJ44peP9yxfUyp5azInZHUU4NjcntvSDIIFXooCtbUBtuN1vgAPHs0dSp9GzLqG7BLhp9LB2NHGoTdxkg3iFtgA3EN+TmkJmNJaqmDnVJfsgw0tV3VZSA2GSPcd36lkcgwjiLb7HqYPAkeAnx+M+J7Q4dPD5Pz8P1CpL0Ewgqypdgt3CqnscyiCwsvrl4WABMoUYdN32O+73O1ogkftWQeH2iaKCrSmBDCcenzFpOmIe8gi4BdEqlv+k2LuTFRJ/i6n8BztEGhkBiHGhsACA6HhUKgSk1roJRow7pdxAXOgQqVvl3QgXqMFARo7BMIch72aJ6YR8aI9xpwQ1Wq3Yty1opxdSn6M3VwU+BbADteYlHPx30ag2hi6RI0b+Oqq0mC6m0EKmwZyDexfUUxVWIVUjsbOOFOPl5IKYtDeBtiHANweCgu3hoM5+suIwE3gijVbrFoZtw5wHKacUUbkCLdfoOWbrBCd21WjHSpQ9rq1nleZqxUKReEdd7SxzGmafy4pMC3ZV0NNXTxsbxVmNLxFYnAHSBGg95wgG21xipqJkQtVagBGtjyBbYAV74JbYYOvaCeoXtajgzDmZ3GtBdz5jE64FjBXocxLUEuWUqFJoIxyOc9A2tBhTPDtbCswnA2UzSI3zF0wXpPMK8DT/j4djB0iRFhGIK1sKp6NWniGoQGDR2pbE3gB0LBE7OtlkKNk0lOIBSrA3e/YePeEEKPNZLFrrknVGi5JNIMmWikAibOEYA1tjUj9mjgImTVylYXokIUH99QCrW6lr7+d0SGc/v6ii96CDTwInAosAp8LQ0WeHNp65urNF5jxfAgbFqkrm+wkQNtqZbIN73NRRmmC/VdxvFXUDSjU45/jFOkaLZQRiGu1W6fzdEnkOUA9gS08AJa+CmLpinQtyMANkegDbHEFeSg3AKM+IBz2egcrb/YZx9NBdqlAdgMREpBJjhS21SQTZRka2pGG4YLrijB59FUGDonrFNMWYQsZEsF4otBps0EkAQQWR7BUUBNXdCLS8v3/F52dH8gzcEPfXYJMgnlDJPZJVtlDWuIP0LhwFz/M9GRypcCJX3M9pAVxIiJ0ism1hQG7TMDDg20a7Z9GqbOmHyfr1IhCOKguWTKxZBpQRkPLXxuhhz2IVjfT6vrDR4qDQMrIlC+kd6d/Sd6dfBYEMthmm5hrQRLCropmhdAr6cj902RTAySBw/ptiZh7JgaNsusCeZXtWMchXsExmvkfuxbMmohjzgJtFa3wyFC/RYCkSrcZYv8/Cdsbrxe68fI4zXjLhOcsq8hrBHf8WsNWKiSJZTqqKUrnWUjg1yT0GdwARDwhEAlT0jAOC9SXsVyFJuq3igc1BbZ9IatjGTlZjxjYJUs3wbWz5l+VX85zznw7BwPZeUITxFwRwDQafc42uX+4B+NP2EFikrpFETJRJESUpLo0rzxgkWrgIdDtO588l6DRBkDF4+MiWIJcM9rB8VtEoO4jANeIRIRBAfmac9bRTYMLlIWhOs5m5AaJQFnb//IQOQXk+0UrFj293NBVse2PyXit12pxaqdOA45zQptjvN5wwzPm52HibviSAEqmcZFEnYlWhFq1MSc8HSDAxs/AhqR/44rMlB9Jf4Fy8OiI1i2hdln90udiXmWgCWH+3Aiv4uiMeraISu1qVE6rYXsi9YhuVQws1TKs71KlTJx4tSRGrpY+yQibeWYCHK74dA//lP/57/P1//s+47V+wbTf8+Fd/A2kNfz4fMLHolqA/6zaoD+kTrVT89MNX3LYN43HgmCe+nZ8Yatjed3hxDO84xxOqFUUIdJSwAWrJzky7fS2FVBbMWRxUzDXwJI2IBCDIWaT0kRWiPNlP68DZ0T8Hiiq+fP1KoDAKFwlIArT3BsMZEzoTkeeZFkCjM8Ad5xjICC3/bwLACsqSnIH01hri4MJpp30YEPqpte0sko9oNRYC2uywYHxmUagdzhhthk2TZPbPEwZAzdDKDSLULJrTMKZDJ8FmkRIdQnzOEYW8/XYLkJ8Tgs0MrUVsGPnQnIw1tm2jPTYy8lAcPQdChF5orULdxwATAbbDwhy2hqusEjNvSYmCbpEYIDBpnbjs8ALGe5MASlFqlW77hiIF5/OAR1sltRorQTkfBMThWDqlJdvkK9xp37lHBVebWPhuXK2DaRxGgCzU+GQRmDG7raE+cbMX8G0ImQfFWpPLv+XvD1CqJI3isu0pE6Fhb0Yf4dcigPS0KOwsK6LrZ0fENwS9wn7hsi8IKyLTMHsn06mV5YN4NoW5Yd61uA8pvzIW8FSjMErNTOpNM8Zb+dq6c//6118uLl4aHAo7OyAF6gXABpWGPp/84PhfiUUTB2rlIfK1uSemd+x1QynA+5eGMQe+f/8DdYi2AtgggyEYMLlWE47f/vAVv/nhJ/QYUf3nP39D7wMI9snb2zvpytZRtw1aK375dkD8ibY/UVrF29evTErUw0F7CD0yCAQEdSsrEOfFZfXHnMLefUwcJjCtaLcNRRsTsGRZlMrRkQa4TRxPAg91V8yZs2g2AI0VdAeixwvnHHFoSEsXjg/hZdUGLYJ939Bqw/3+FtS5htZ21BjnS58Y9DtTLEaAAdRdmvEZ/MpKuyCdJYASNProdR8eKDlD51g5TohwfAe8Ymt3QKIHuRTUbWeFzK5rr6UB5YWCXCXAy4GcwFc1JjA4L/AY1Jsak+cPWinQHiyTjC0UBbfbbZ3bs3ecc+A8GVBvtUU7WqSDmiNBCw2ZO0VO3Rg8KpPGIopaWKkz44QXM4M2OtXt9gboxPQNn58feJyduIsIXOpiBZkNfP/4E8zeUMoXBv1l5+9zYJyygvg5OalRg/J9a29AQySJUXWAQLxgDmDOJ5lbThCK1Fg6XepgRRLs2YJH0UDPNsuF4niA7fw5TlgI1h1PFProNJgVcJkYNnDOk+BDgEvpLDSq3AaDnTS0zdn2MSNY9N5RS8Htyw3Px4FhE8d54PF44BkU7m2rkbj+WinD18kiWy2TA4hCaoWUSqZWuwE64KKYDpyjAzCUvcF8Rr+9EZBJxyCcHCPg5I/DQbDSyIBxU6gFQ2n6SkYTDNYAdxigAOe42h+TDYopMXK+UVvFSVUe3pET3EqtaKWs9s8zHFTqldzfvyBpwuez4/RXcfm2gmqPNaJIOfeYvi2YNmAsViTu55wEV2sFZvTIB3vOIwxXRGJcNYrShtE/I1nv9AkB1hgs2nMIlBhCiNyZDNS2Ybu/43Pv+HiccGlwFMyDY8Ux66pqEYz0aD+UYJEpWoz4bU0h3oFQXNAoVBBocEbGwgR5gSWWSR9W1SiGW5NaD4KFEfJEgk3GrZjDSwJjBB4ZUPCeqQkwgc/vT7RWcf/yhuGG58cRI4cZYLOtgyDc+/tX2HC8fXlD7xMfjz9D6w5RjjLfquOwwRaZs0N1Y1U+tAv2bYdD8DTaWI3CwgimXY8BCHBQaBV+6Z+YQzogzxNSJgEkAbQUHM8O4EC7PdBPgh4SGVoRpU4VauQPNBx9Gmw6etQyiiqZjs6qHyCwUsloDRaJq8JLgYng2Xt8XzAftCFDrTEAjIFnGfAGVAmboDuKOrQGELRAxJgUJo5aDLU4Sg0tvABqZXnIvEPJWmX7gJmjG4eAWDJ7I5fJKTASPkCVOlA5wZYSJ84EIsxVk4J72VGNLCg2pmuSL4PxoxDZ2VILR9MNooKOykDwOVdFkiAubW8G0K/sgGU93eK8pt7fNflmzg7EoIkrSI+EPVofzSPoVLIB1XWtk3VEYkAf4xHMzwmIB5AiG5nwNeyQcaS5Scc4DX14CLOmGK1CPYaozGAVemoLhvi0Cx6/nPEebL9o28Z7boytWimMQ+A4+hl2gG2Tw6JgJooRQADQCB5p5z0tFaWQsZjsYyBa/0Oo1TVgnwALFY4RoGg2gQLUJ52DBSlxifabl4mpMwqhuEAkWUzarFjG/qyxy8FkNryAT0yAEWs5kQ1ACNAoGVEaRdyJc0ZxTgx1AtWokVOkIGtMAaMS3AP19KYUuBgOYWL1RQuGC375HsUcAW73iv2uOHGDV2rYqTuKMH6/f/kBvu2Q/YbPxxPnOeBeYt8ZiaZQeGsNY3SMMXGcHVC2VqooJ/IxWmUSWQuqBBg+guEZa5GlntQOA17AB6eD1PjO1Dtz+AJjU0dU4g4ZyH6Yo6NsBaXS1rP4xTPL2J/T6zIxVSF7aK83bLVSVsAMYiFnYIbbtuPHH77i43ngHBO/PCZOU/T9C76b4x//+U+QuuH+b/4txZul4JfpcBvoumFi4jzPaJ8hAGDd8Lbf8dZ2bLhhQ8O2NRzniX/8h3/G+w8/4MuPv8Ff/c0T7X7DL58cOjKMZ8yEZ0Im4xwVJ7iCkG+XK7Gd2ZYPCmjDQL3PtPHR4mpeAFEc0baa8cz2doeKoEfy20cwyyCQWoKFwrxg23b0OfBxPjB6x3kcHMoiBbrVmMRIHWFxTvTTTqabikIn4z4MlkD70XE8Tnx8f3JwTY3WPZt4fE7UUnFrja1utxvbn6Loe54sIi/dNvdosWXOq0Vx0zvO40SfnakiFN+/Pwi+bm/46be/w//83/4v0Vrj88wOceqOugOfz2fkghq5UuVaT7IJVYUsHwNbvjOaC2ZNTgktQmY5uxw4VAsB2mkJmZvQEvqVdFGA0MeYOLqhPw/Gk9E1odHewZiUOlSpnXYeJ1RK2MEY2hL5CMLOq2wBJjPn4aCVLJpX1EL8IQFAAskpV0KAlnpS2fZKK18L28lSHiGnmArKAvA8DF+pJSywRBtisFdLRY2Yf8Twpj6MnWI1i7oerYK+/HESUbLgaZISKLq6GPp5QkCNsoCd6SMS7JLMiIgXALS3RSoUdXVECCpZu53dMRoALHWgogB8npFv8b7VxqE3gwaI/s4tcA8Wl/6Sr/8GxhPBCyZF0W7gMcrZdCFsXL38KbJXlqCzUEyNiTMBHi0CmYYxTyKqwgkboJ0hXZnpERTO8dfbHcdB8Oe7fmJKCAoj2CoCAHMh3n0YbAx0M7TpuL3TUUEu2huflaEmnXAoM5BvCJdJsVt3nGOG9hINJind0cPrpJHXVUFl5XCOAS+AToA02lwoXVXAVC606StxB3gwcxx2Jij7dse2Vby93aKHd4t2j7J+hhTIq0+d2bJGSwpdaaLkgTSs9WA7UIitcnVWSxYPBLBYGKDOEGn/WXEWTgULpN9f2nBIPycVG0BQ5Gy1FtH48EOuIACr15YtE4nQJpodicIL6uqxXzZT4+jXcEV+wurxRSjPJIOEqEpULHg2LUK/rN54BiJBny3VAGFblku2rTEBy2S29wO9VorhaoEKQS8EEywVNBONJiKtUfUJiXencaUuBw2ogcwRVu8C/ZdJFloml6JXymy5j1F3k3yprBzay0uG8YG9IPoCUaxKo2FgYi7WhUpWsEokY3Eupy3qP3Jd3OAo0ebGFpwxB8d25vQLf905vudKoOI9ko1AHEXCYV1AFFRjKUK7S0ntXedDfAnWBiwDBxseJ7DWno8Tnx2TpVi5BlwTluDLkUHEZ1ChIK34yzODyQar9sG49MseZWVOS4lJOKDuAEKQV6KiFCCtmcEnXqrCmWgKFpsQWbEm2yn3nwBNggV0sCmay3OUEB/Zalk8z/co0avOdUpwjd/rYVuLx9QmUWptCfdpuqFFK0a25Y1JkHCMYCtCFzgtbqt9iNeQPkqzZVEUVGXMv0cEV7JAUVqePM/AqxvLIQ3RNI+k8GUrBV58h1swGJL5u1gcV+UqrhbGOdiuXipsUN+Ptiz9TgAUwipjaxtutxumPTCejxC+ZQXMwbYoggsselh4y2TdJTuZL+WhSciTZSSm8TUtToknIyZvm7HuYRFYCqd3aeHkPAsWEG3izLCJdih9GHjWzH2tM8nGHoFjxJMgU2KYXewMpU0c4dPSVmeUKx6sPOeZmSFkLcsOAhTCv3zA5QmEhZ3F5uAdkhW6yTrvaV9yhLXLJDC/kvW8r4JXA0fb92KbwPWXwLgsbAYThMKU1j2Eu5l8citWOEnw250TzbKVFWSeQwrEA6DFpVuTwfIynQGKx0kIW/Dr/1nYf1mMdt4YeVnB1+EEHBbBfdOwjfQzfG+XYKPNAKxRgEnooxSNs2aRogaAMW1NY0JUdYGYrDszFo2Ke9hRONtAZoAmbtS2y/OHZMsI1y4ZD27BIIoWCo/EJn2VWtoFDyKahj2gv0xfFpc/nd5KwHkFw26kj4+99WyrDCuVSVn+d7ycRm4ogb/VYpCxnKb/S/cdrW9pcyU9Gxb45XLtbu5f/rwFAEOiIO3MOj/hDzye14R6KiNOSUpFhxXhLxwxFkUEEv2AwxUzp4TF1S5tR9vv2LVgiOLoBnTGtBymMNfv5nRFAbnuLOLBsqU9Po+GmWwMkfA9ACSmUebdXRbr9e/8Wv2Xe20Bqkd6gyzg5Z9/tS+eWoipv0i/6mDRis97nQ9qyXEibCsVJh0Tupj+AIWGW6vQ3uHT0N3RXTCUBf3HeeB9a3h/vwORZ5xn6KFpC1vLZ1SQuePG1tQilU0rk0V9m46Pj0+0+x1vCBmLbYN/HnFHfMVb9CFRjIBfHTHJ8oOvFlEDi7fJMsyWZYLS19lyi9RAfMUpiLbXkfd32cjlUCIGJYubDM5I6me0DEcMBZUQIOeOp5ZPibiNKY9lM0KAf8kKIcDdzxmMo4JZHM0bpF2MYkCChTtfgCdb95T2IUfURyttFH8Bx7QBLRQKv7+94YcffsSYM8gW0WGSZ9eDsZxkJHlhi0v4kTDc5rj8NiRi8Mv/vXpBBBDhHvm2IuKwjFnjBgXj3ILRRabpXBIUubcW3RnJGIJL2G2g1oZMS2gGI/71yA2F/mhZL0+bqSu3up4+CsK4fHF2yuRkT4QtWe/xknfw1TmR2aN1NqeT0y7QzrM9VAOLCFJFxh4C5JCkTAJ8xZzhI5HFzSBHSOa7EjGbvOAHWHeMZ5D7k8U58RjQIQaWfzk4JZnsUMeICc3Zvk6Jn2hnluvcOiSIGLQfKzfMXMl8DS/6177+YuCJAsVBNvYKGw0nBKMbgAZBxRgHHyK0HYoCYzzhR8e231Brg0YVudvJ4tbJatnt9gZMjpxv9YbSCrZG6vHH58ErIQ3uHeaKCkWpFb/9zQ/ofeDbx3dewHGGgNCJYQ50h8qOWndujhXYKdRD2Suti3pMmZtQH9ywutFHToMVB0TRPw48n0/0Yy6NH1Kxw3ig4zxPHP3E7cZJEaVuEDf0c7IQdTIxb61xgsgc6E9ORttrQVGOIGZ11VErp7+Zk+Hw9Yd3bNuG9/d3AI4+KDD7eHwPxlMNIMujrzMqQsIKCqm5BSpkQXAajmPgCDSeiZx5iMyFofUI6qUA9fZymYdhzoJSJmmw0mFW0Y8bIIJ5GkpNjRyOaLZ+0lcX0iNb2aCFQpzLUcSdL0JxZ60FXoDWlLolRp0GzEldDxGizcaKYy0VW2sYCCqrO6vc0RYlEBrDPlZv79YI4t222wIiYI7ZmVTm6NtaG2YDpjp6JNalbujjxNknzmHoBmx1B0qhjhgcz/PEsBMin4AX7O0dWytoVdFKuwwHEMk6p8GwGuqQ2iCqOI8BmOB2u7NlsU+Icm9StJKi0XNVu/krY+8LW4FmTG9L3ZKtVLhYTIegHawCeBEA2YqUABYicI3pWEXRJkLMMXrV4RApaCWYaU6Gw5iG6RR2ZSVmYqqi28R4fKIfB85x4ugHnufJnzXH8ThJ2GqZrAUQKwqdTJjnYCIoUPTR8Tw7dGvQVqHWAZs4xgm4ociEbhX7fgfOaOOI/w3rTKii5eQjKdyNE5PUCkEcwwoQSibdKWBloZEmFlUFwPpYQaNoWW2ariEUGclTkQLZbzCb6LMHmBA0cC0olU5CSolz40GrZntbqQUtRD/HySpbHxMUoiysHjnb+abRBoqEvpxnossKSVJ4Q9AvRhBTZ2raxNGPmDYyoTvZRj4mfFqArxX7foOJo8GZFI+KLYIW2SfmHPh8fKKOidJPNBu4YeJzDswJaKeT3vcb3Azn8WQwpYCHLZaqC1wisNOCXSW47Ybb5mhNYvraG7bWoGVfbXYWv1DjvM6YGidCDYd5UofCV1JJTYm8PwQg8/4i2FXZFhpBizjcTz6fVLgKWiHIXaSghZ7HOA0eY8y3bcP/7N/+G/zjP/0DPs/vKM1RimGCgtzbvkELK082WcVsbUOpguPxxIiJeCqK82CCMiZQC/UXPFBxggXRHumOEb5KlYGUqODx+MT0gSETt/uO29sb3A33tx3HOfDzzz8T6HNFvZUAE66vZJuZAz4mzk6foCEC3KeHZhkrhxaME5PUOAIkmU5RHQVkjTLuBhTLaX2O/jwhhQzmgHxCSwjo3sl89BajiqP9jld2TSTKwHSlpJ6TZgt7oycnc3mAf3N0smfNg71bFuMpEQEH7d/wCbGJR584m2OIAkLdO8weLXxkZFchK2CE8RMAfnKcsmiDoqLpxuQvpUyy9QyOIQTGy8bpNa1dQqjnOIOpncBDgM1NMDsZZRJnfokgR/Aqlu3+ChtOnZUZLbKFI6H7pN1jVTUKUwHYD6c2VQ3dL8wCh2MKa7WOEu1kYAIHAUqjb4623xnFOghZzm6INlbGMTY7vn8/UNqGum0LYDoPMlnH3CBFsO38rDIt9kiBGUmy8K6M8HN8H65LKQLRgn5y8meyFrZtg82O6TPYHdTsEWGbihjIKmQYEUWzGNSRmbmsHAXZ0m3uqM7ZpN0JIAV9JuIWw0tmHx9QAGUiZxrgg08MDQgqkomaOVeANASFHHMVQrAYWK00Figj+RCbcWU0noGiuiLA9+d3VBF83d+jUNfwnI7v306yZbxAThYutvtP2L9+xW/+5u/w/fMT/u0XfP9MuKwhJ1kvFCZst6hwBHnboKo47WAcGTomHMRjOPsRYGa2hgn2JZIfYnyiC4ADojhkTOZnaDvOF00TDSgVFoBL2JlNFQYCxE3JtBqdQtKcZMf7oGDO5HMAY6BsOzZtHAi0bdhaw8fHJ/7pj3/AVoG3e4OJ4ewP2GRsUyZQXeBT4dKwNUHHxM/9QFm488YzNjjFe5TC4s7ZKeeKgt4nHvbEf/37/4r7vuO3P/2Ij2/f8Yd//if8/PEN//kf/it+/v7A8+joXuCqqPdbGgnkhNnBOe3wSFg9imFFNWLFZVQJkCAKfwaIW7Rq88zDDFMZi2v63NlZwOhsh9r2fQEFUyQkLhi/jHNwgvE0qLB4TxkBths6BW/4w1EM2lBRtVLeIRN8N5RW8HZ7w227EZTrhn4cYIS9YcMNioLnd4PIgc/vBwuShTmIVsXoM+xUnOdK0IktbvyophVtj88Wx+9/91vc7+/467/+N9jvbxSBjxemz3QUjVb81uJscfn6HBmaBCiiqzuE8ePEGE8WM2bhWlkIVhttRA6QsGBWWcSscwbjqV76pAUlKqOML0lS5Z1xcUosTGCcEf9oRQE7XbzzbBBuM3ZYBOvSJYp8zoFWme+OMZe/Lkr/ZqEfxrMExjYiwGozD+F0CHPD8JUCxmvw4DxnpYzTbnC/36JI7gsnUFU0UZiTDZlaYBAy2UsNQCuWJBBnMowKJxubZ0GmLmDOJ/1GFoaL7gS0JskFre5RuI9BQaxMAw6oJOOJLauOgn7y+263G1qhHZ1z4ngSQCYjjvFpqZVxlrJg0Ufn+VEECEt7XUol229kp8W//PWXt9ppCHQKX9B8hNUov+ovTKoWJXNiILFGa0OO/lsIJICsQCN6LqexVQfJQkGguMbFDBVxiZ73vZH1cpwKlYnnnFAZUHTAFWYZsGr8LoV1Joiu/qL7FF7CM7mwqPLEBA2zEPPKCAChLwBcVXdFigfjJRDAhUHzooKH11yiBY0C1KUqWi247VugmIatVbRGPQ6I47ZVirXJpVcUxzNaJgI9BmKt84uslOhCXcZq0bQz2IjgQlSiMnahqSbZnpDaNWyVcVzFU4uqSqLlFDJVuBQKt4uH046+ViSyDqyqxqps5hhgsBKGF2B4vYGvKrYFYosAyvhzGgj2wFXNut43vwjc8oynTs9cVcMIeOxab42Aw2KfLDStIl7JjjYG/sKatRurLGNMivJN4+SgrAxJsiUi6BTejuiOwapA51rFn0vJAIkMQ3n5b1l98/gzFnkc+FXpJk5nnlV5YQDwbvq1UIg7sM44K9cieRryPfhunm24DqhrTGiRFcCyKsLPU3/57X4h62RM8HdanJFcq8j6eZbiewQR1Bsgk++D9bqRNUSbFQUnr7uxGB8IZs6L8xZclZlMdC6wIVmE1zqJG1KdOk7pSjIiI1gJHTX0IqGWvHmy3otxfPxtMDnyey7WHytlJWnM8RyLMUYECSlGun4/JBLiXNIXo5DrvELwsDDxzSSMhP2fcYosmXVBlc57LmQVrOwfWS8PRpI4qEE3ITncYD37xSzgZuQG51kOP6RY95Tg+tUCyHY7XXRj3suJOc8QduU46mSCxqm6luBXX76WyCMgvc5jckKuNVs/Hz5ydjI6xJh4sxUrgJHQSDNQF20vG9rWUGoJtm7YNpdrJHIcWo92qdTLi05E7oZetm7ZznVWmQRla1cPRgVhAD5fvs1ikcZZqbXhPM+YHMmRzi0ER7OiiWid1jhLa9uStYmLnWrBzEqbd42Xz3MQVeT4srgj0wnPtjgraZ342NeZ5n7xz9kCl+d4iY9aHlF5uQnJJLZglsRtWGdTwpzmzbr+/HpOHVgsk7SVIogW8JTivRqkskKZKkPXUSINIEVOCQylfhX/+xpykGsVeleSgrDXweSRFrKSaAuxCk/rfeKuL1aXp37LCiJW62HGEOk+pvP7uC+OrBKnn3ANnyBkFAFYe399Bp/PQ7/EImli+4Be7IsXA5VsQAn2AHEZWSLnFq2wy+amzcr7LMGsguQ2M/7LtTPen8WoyueErM95DQspTpt2+GLXZAU9TV7++nBr670yJlmcqJdvFo9zGZqphGSSlXv5FRcJVgLvN39vJPvpw+XX8ZmBzMIMDkreUYsJpQGM8TmokarhT6fxzpQSLatFQmPRMGOdzJLzRX2pmaz71NB7iTByAIDFOYIlK477E80KsYexROvv/Fc6KPrqki7TsN77Jap5WS2eCdpiWd+x2lLzg+N5NFi2kPj81Z5JW85jJxGrTBSZBK3DzzHZH5hGvb/bVtEqoKG15RbKXg4wMkcwjdO3x77F9G2PaYp0yyzMctVtMWJRCN58Ph/UF3JCwZLrtRb0Za0iTlomZdmXAPCF/3bB6oR4iWRWe2mGD/T3stxtsqFeJ5Mt9gwuNotHV0veUXeLtr6443rZErOQHAhEebHylezLmT4ZDinOM6wEy4oKorM2mFG63n2Rpp02wsXW3YyBrYw3BevnPN8fvzbPKoIvb++4v33Bl/c3lLqR5Rd2JxYnhgZFK6fnicX6Tev+IJnAtJ/ZWsoCWW5n2CczzD5olyVjhPhNLznJ69drlrnulFx/n9kG4i6YUdSc2Dtjj8y/Z7aQCWMddjilF7HIaiRPGdbwjAycV+s913jO8HVpGCSZTgGiZ9ySAGcYBl1yAxo2HHGarhghpQXSFySzPpOxtD0Svi9b+Rjw0eFe/DJiEbxE9A2pHyqrrz+XXl5C0BdWWbS056Iv3yKgbY3CfsY5i5EWF+4atPJ6fvJsIPAddnJcDvFf/vqLgafb+4neJ475gBnQp6KGoLTqDlVl5VmMSKYxkNje3vH+dQvDNxdwsdcGoGAaRYApgkvDyUMxFvhcQixp9COmm12J1H1ruFdSQY9jwkfHwBPAJ2Cs6NhkVaZtFQLH+fkJkYleBu7vN9zfb2R2iGPgJLfADNOAZ58kUHUKDQ9XtL1ywkE/MEfH4/EBkwYpX6DF0Tag1AnVmJbkEx5lLVfBGANn78FOKdjuZCp9ed9x2zf87qcfYHPgeDxw31jtIDNloqgBfuDx7ReIVtTtjULiUS2kwOMraONwRPlzduRo34mTgn6yA2AlNQ9kaQWlaiRjE9N7XEYLm8mAaYZ2iaNCfYNA0TsNtt4BGoUK04opDVY3tlAd1OxR19A9KUuEewQFlW2XgsMn1BUbdphT8C7ZSHTkwDk4lSODnwRKxhjQ2rDVhu4nDaoNBj+qkBpaUnHN5+wY54ESZczhOcVKGFjOCRGe0e1WUFWA3jEmcB4Hpju2HdimYJ+KMQb6mKh1p6P0gmHA6QOjDo4OtxEId5LTGXydY7Bi3Fi9KFVx9kFGy86KVe8fqKXi/YcvOPuJx7ODopqyRPGTJeAsPmJ6TtlACNcD56BgcPdBoxd6YmlI3RDVemAJ1a7w62DFf4mzA61Eu9hw2Bh4PgeKNFQ0SLSG7ING99OeGD7RZWIrFIKHkikiDiDEW+EIqrShf5yBZwi8MJjNKXEx5xiYTHy3wgqvTFofd4JfHs7Ce8f3X56oVbFXTreU6ajOOqiGDhYJS+k5020SRFIJINs5XUIjWOJEKFYiM+CqhQa+VFYZej9jzwpGf8D9GjgwJNe0Ikc3HyFo/uXLF5SieD4PXPTyEKtvO7Ztx8fHd/TRGfQEAJx6Q2NO9EgEUCp7/J1aDEUEtZQI5qn7gkhmIYhpH8B5xDhrcG9cCvroOM8BE2rPlK3CRPDIzEnA4QTTwaHDQJkPAI6yC6AT3R4MOITto9MtKqaFVSSAgUQZkHqSXSBMZChAySCfzAPB1gpKUIBzCAD75h29f8dxPvHx+DPOk5M+goNMTSIjs8sXLf1KHiCvADTfxT1BybqAU7ZQsh0yA1W1gc8//Sla/hzFCmorEHnCVejjxHD6CYGiasN223F//0IGpgm2emcBRibgAyonJki7L85EbqsUMrfQfWkbkxQbne0Ow4KB6BDltMenO8wEzwGoGYoNVHE0cdzfd9zazhHIUiB1o9bU7R3n6YAfoccn2L0BzsEivBca2hlBgReBeMV0shOpNzACQEEAToIezNsR7YdbiVaqaQvsMAhcFQ+wOpi6eIaTLJ7KiqcKpxLZBFSpM6dSYBiQflJjpt0wjMMTSksAnsExxa2TeTFARaGgpUdQN8xX22QWzKYEcNOi0GbUaVBVFDdUd9yr4YdmePeO3QcwHgCSwUnafEGBlNCSdANAhvN0Bq9ar+lSWZWukYTUUmBwnM9PmBaU2w1LK6UWxmMZu8V5kelxBmL9VDgiHYLNGAFbMmQTFBME1u54dlZAPYsjSofioF5OCVNq4MhmAJxgWoCyKYZNDjMoigU8m2MMJsHH6EyKbFK0t1R44WefBydgZvEGQh3E8TiZdIvCQPtkhjh/tKVkNk3uZd0BVYzBwpq5oSl1Nfvk/dEeTKd4ziIF6oJ5OuYExgjgyh0knnGwAKCYpjzfdo0gz0RnKIGdEglLigLbdMzigCoE1LeSk366egGM00dr3gMpMYadLD+Lv4OWdU5mtFanH7cK+BSg1ZX9TuM4dg25g0MQ9+KJAsFbbcixxTW8Ms4OccMmjlYEt23SVlcyOp+TekOGglMdkIltPHE8C8qff2Y78gy4QChoDQdqlfCzA9MG5tFRCmJiMVnhMyaRWsT3mUzBgU0U4kCDXmfxBUMxtUCC5Wq1D1BAs80w9C9LiSFL7hBjUT5bkFuhnixUYRWQ4ksTRSvlMapcOoy0DQe2KrhtDuATfZ740/df8Pj8xJi/4LZ9xd/85kd83RveNsH3bwf6eUYBtEBDO7bmEBNUlMKk9nl8kjG37WQ+QjGto88nFNS5JAre8Lu/+x3cHf/x//n/gpuhfXnD737/e/z+97/HP/+XP+L7L5/45+8fOAOcMKMGbFFB08K2pDGX1tIGUiq9FDLokULRIxgUhqz4CkIrJ4olBkFDg8q+pFCSbe6F/uBxDLS2obaG2sgkoi6YYerEKIZnESCYM1AwtupRpBsEAnp/wopilrGYh3tV1AK0zaFtQvQTWjZsm8NdMY1rDhfeZTNIbdSX2ytgjHvEABm0yxBBH8mCL8CcsOOkBI1qnBNHKZyg93d/83e439/w5f0LJATXP/uBOQdKaBrXtoVdzul9ggVQIzE8NsEayLI6xhMCxt1jDtjsuG8bilbqMk/DcQzU2vD2/hbtmVdpTVtjgTyHlCCBtNAYNFtgn0ceWQrLukUAt4ExTmy3d05va2yL/Hg8CKqpQJuibJV33ScMZ7CMCaxvZQcZZ9TaGkcnk18dKbMhrcCnY4wzYnlZAHCt11Rgdw6hEMEaFAEBtvt2xXzuq5MhDlIAVXxemxYhbwkZhgBYAxuBTVjv9LVtINmsEIXE2sSOcW01Oo1Cf6q2tkgxWYybRl3Dfd8hyumWiM4MwIFJRqqpoDt9e7wkJzQKY5JhA8c82THwAjqhpD5VtuYD0hrK7YbxeFwg5L/y9RcDT15I+RoezJFEhzX/zXHV7kpKsk1SGMfA8ewc9y4hGgcNYMyjh55ghtRoNRG2JJxjrM8XZfKt+hLcXEIUUAFqU7y/3XAOQE6DzQ0+G32QG85xUuC7jFVF4PQdQ9wRKEKcWypUnALhqeUQzqL7QFLyLDN4UUhhdVKBYIQJplMUN0WG4RMijqrAtjW0uuG23VBrxX1vaK1AfELh2BqTFQlDsarUkIW8Uo8iDiMQjAGLM8LAd4RouSwzwUsG1bgcHpUbwVLrt9X9z6qJIBLPi/HBgCZQWU9WWuwHIX6YkPHhwmArk0FqVl2ILdyTVU7kOfNL5H+L9R8pqswkQgNkW2UVT4Q2tRe490XlotGuHp2wFYkWx+pmJRoknsSZxKq4EWTIlgMmn20rkM6x9lfVhgF6spfYf+ygb2Xr0x5VN3PSWrOAlGc7GRHQS5tpAYvCNZ+TdNtatyVamUZvTTTLSmcs+cX+ioQ89jCrD0Vzn6OlDBLfGs8Q95b9wnTe3MoAOJBcRqzqmNl86VXmWabzESRz0gyYw0kHjTnQRUo8e5zdUhbIUMMIk63ACpTY5WiXtk8ksi7URQCPSBRKOwjapL4OlvNM9ocsg/rCqpJfO3T2Uvty8+55rgSVfZC4YLv4yajYil8Cy5pMhP+vr6ttJv//2NcAnghi5MTOiVRk80ycYWsfPJxjsoM89nYNGQjmBPcvtcqCb/UrJiWfOf1BTirOaqTF2rHyFPcpn3XxyUgHtrDpSbHmVKaoZ2VvuZBObSVah/OAMa4I/5s8l4mqFffbxn2RgVoFtUi0HTvFaGfMbfJkigTVOk7pjLuEX7Udxq2RPCN5P3OHmMFkNcuElGR3MrBK9P9TMygrwVF9TLvknBiISDhra/j69Su+//KJ5+NEbWGxjDZnC0Fp6h8wuCoZ+IRBlSJw07WeBCJHaBOE3VQyO4JUzCqasAVihM+ZvcNrYTtjE5TaMNzx8XywGCVs32BVj4dwAXee1WLHCP2DEUwUauMBrsEUCVubDtqDFSF+rX/aNMZVE0M6pjVAQSHfiE9ywk+fKTAd1U9TaoQEu8M12S4BNsaV42ME+5DGNWxMtNjIpL/LabAx3MOy4IY0oRIs6bCDwcSRaVDjRFLxudhGy4bmVQubxvencZMrx7juYzDM2DZH4Fvd4aEl9zqhK88/mSUebCSA07NoC1RYpVdZNf2oLCfTy9ZH518nKy7brzwz+3TXjqVNMoaEnQ4maLQKptahQ9aUTs9pOlGpv5ihF4NopT/B0OaZCjsq1JXysFGpY+TTgWhL9bSNYCV5AZ1CIfdxcsBGTlBMYJ1dZh6FPItut2DD50vnvxIklGA/SO5p+Ohc22DdpFaT5c/bdRZS2zLSotWeyOQy/X9GEbYOpKzVy58PllSsQZVCboGDk+CUdm1ELIewVUt7zQFMR1VHEwnAUnG7v6G2gvu+cVDHICCQxRoXsBuhKPb7jv1tw3bfcD4M5xFaMXmJMhyBXIwoTYmAPDMAvKwYkgz9xaFna3HSGdZ19mWr+DtoLy1Bq6SORuJiwSzi9se0xZx+HE94MdSMHRfApeUXN2lEL6uAo+XNQdBl25iEiqy20tYqW5oK4+9hQDdnISli9R5af8PpJxnrxMTZ6AyYMdVblF0spQCYjDlL27HtBHDmjOFKoVPmExDnICeVhp8Htf5GMDCKaNznGCvvjuIcSlJjicc5ov2UuUHqSF7G1ldszuuiURBGbBQ/K2OmHIiRxWhI2B65pj7O0Isjy8SR7Vb87bwFEuC4FeqNaiF4ZuKYmIABtXJow37bsG2NcWvENUEjWTkSikSqEUx3lcV8yxzL444DCtEQxM6cJMxKqQS6NeNdpU2bofWZrBPhi4e/cCSLJdvpIS/svfDNLI5dTi7Bh2keZ/rV12AV/j3jxBfbm+tZgqEYozHI1JXQnlSsGJnuIG5yAG2Iabhw/l0JvysBCK0vzyPDe6P663wrn3cBuhEjpP/OSXhpjy2MwIrfM4YFY3uDo5j/Kr69uh+Ya0ucuVzPi6t7caJEaIfYPMWfTSA/ffji6wYQld9HcOrah+g/i0Osa7BTCowvdlSyrjwXjftOP827sD5bhDIgyI6z4L/GmTRjkUKyUyZMXQJjf8nXfxPwNApw2Akqxhd4BdAEHkh63VIsm5WjMSaO44A58Pb2jn0rHBcunLZF6pzlXYVWToKzmBx2PJ8QCPZ2WyJ6iaJGvAWPSWuijr1UvL/9hMdx4OePDaNXzKE4Po1TDAJ4ets19whjGvqYS8x8L++LJWJqQJsY44FpndW36Al2d2ytMYDZiBSKhoCkOGyeGDFVBAK0WwtjP1AA1Fbw09d3fHl/x1u7hQYHQws7nwQzGjVQzAfm7DGykBPS6rYjdZx0qdTT2FBoGtj3He6gJhCyDYoH/367oVTBL798kGGGCpWCWmOaweiAZFBA43EGT5UTfgj6mObkPosLkBeajawEmzoQ1VEB0JL15w4RMgLgHr3XwfgYAMxiAo9jzIMHfnC0Z6kVVTn2vBQyRI4YGc47yCkOhgmfnJhWlVMJaF8uUMpdFm2ewZ8t47uCV9V4TiZqsNBCgqOK4P5+w3l06mqB68fB5RpI92XMTBRzOI5z4HaL2vmgI46PC0PGCiOdBit3gKyk1QYD0+fzgdIU+/09DEEw7YxifglO8J3KAoTW3yPo9kvXytgD3nK6CC6KZhguBpysHqQjkhKGcV6GGdFSMDv1l1CCzRF9LPu+wwVozsr56BPPx8Tj48ToDpmKWkkJP44HRAW3fSMIXbLtxOGdQcEWoFK2XQrmcvZkQBpHgyogSu2P8zigiHMXyV7a2RKO5wpzrz9rojYLmEhANRMmwIMei7ItgedkVFpMq+T94d3nWYs2gkzOwgang6fxj/Qh850I3kR4f8cxyIJQWcUOitcaYAMoCokWNKTdiIklApA1IwT9WuMdkwDfM2hBOPKImZBDEzNgAAAbdp0zZ2WqamGVWFrY8wJzg82TDhmO7obhHBnb3aPqJLQxyXKRSDglJtcE0+lqhAC21vDj1zvbW+eBvQlum7Lw4IbjfKD3EYEcK9EajtjijmRVK6dNMiXkM+i611dSzXYcX8mRY1z3oRTUypHGtdYVoIg2iFJ7C0H9B4CiG+bsOI7v2LcNf/vXf4P/9Pyf8O3bd2y2Q9QxJ6t3b283zGlobeDxST3CWh1FWhwb6m3Boj0FCTooDHMVUEpo7TH4DZq2AibAww74GOjnJ6YK2n6D60Ddb3jMiX/89gu+vn/Fbb9hwGhnO7PKaQVZtNLikDJiNPJkVdWCcSYEJYcjRibXOGu8CXNYaLxkwIsrWO4dPidmY9V0u1UC5zLR7cB5nmSyeTAcpOI0wWGGrkrQSQRWK4AS07ry4nP/2NaSviPFtBUQio66BnNEcurrXKk9bRAowg0hU9TIRtY+oH1C5gBsBGgoK1Anc4f/lBIiqcGO/NVEmQCg2Y7icE3QW1byU1RRsK04itMFPXSReI0R9sN9Yp4EHmgTQpjUE9oOUe0ovKoI/YXExD+PvVOHVER7DhYr30glWncM8JgsKpgKQGOIDQRjdNgcGOdJwBK2AncCSRrtmk7QVgANxqgA6DN9D2M3C/2MHvIQfQClIibeUW+EtsPQzwFAOV11GJ79sc5dNntAHCl2jyiwJeg24NcIcABTeAagAQYk05jUPP46o+8Lfi04GFNWEnzZpcKhLeG/PMaNTzOYkqVFIDdb0wIccdr+lCqKMQfruKsq2UIBzE1RjGL4PB8YYy7WQsVGN+BK4HQCOxx7cdwK9VZ+81c/oTTauO/PJ75/foMb9SGlshjwcRwopeHH33zBly9f8MPvvuKXPxg+fvmGmb4n/ZlfYIWIor74syygKFUFkVPU3GUxXVSzHT0wiABAAUQhoVDZwwFTAuIaiR0MvNuhDeuYZC4EqLFshgRICAIfyTqWQmY6mxEcz+NYALtMfp9uN2z3d5S2IbVLHcDt7Q113zGl4HCBT+AxHcd0eG1wExzjxHS2KvI4CRKyTKHveQ767GIoCrQm0enRcbv9gPe3d2zbjvPsmIN+0OdAf054F/zw02/x9TeCfzw/cX5+ohvt8NYa+nHieRyY4dEVyZYEYIbHxxOp1VNbQWkNeXgNLNaPSV8/czpZ2+DS4ehYwwQietFI4Gojm1kiNzJne29qJ80xMIYtrR5uUUzCVIHUADeErNlSKgY6DB3dJiYMGxq0FHz5+hX3t7cFahDYiEJj6LgFDxrmEwpbYIcWwfl4YIwRE+aCKanUfCJZ3haLbGs7tUgDMBctGHPi2U/qyLaNNl8Anz1iB11AbK4TIqc5Yyq1jSRu5PCUZK+zM8edmo8iLC5pdOxk3JkT8JgfXPmlZi6wbHq0wcKQA0csitzsXikoUtDnxDnY2SNCVo8of9+0EG5HiqDHOwkntdXamCNOarRlfJuhlyDurVENSQXci3jOaRxwk+8gUfBe7dNwqFGKpbVgKEankSoT4RkTXj39p3v4bna8aGzBEMYgnDyrC1SE0necsfbuiGnHLxPs4qvPgajpkdWlDmkE0iYTderfSsgHmEfRLvzPHIi618p3NPxkqRVNhBM/VwZCl+Nm6GdfDGg3gU9B0YalUfKvfP3FwNMxDNMEdbuHoSaSPMeAj4khghroalrrVhq2umNrd1RwQsKcHGeOHFVfW6B7DvWr+uRwbipSFwAEJ3xEESg8rCYyGAl8aEO0dkdW82yf0EIhaRGHVCY65zkw0XEOAleigq/vd7TKUdXTOaL67INtTk5mlheyCp6xYyaTrcEBapBGrWhCsEOLYrvt3Gw3Coa3ivvthn3bUNwhGCupMRlx4BWYYznLHFF8GRIHMBdIFTHgMhhwUi5LqRAQFLOZQdSlJ6NuywiMqH6TBhwJe7j7WihqBouRj1GO0AiQqfZsGbUi0V4JNlhETytnvYTe+JcKrABUPdknTPpqoZMqmj3+A+66epOZsJcIaB1ATLpJMCWWbCHRCcRUgl4WBrFAV5ACtVVBFXAkqS9aIz9DI4Gb/YTbRC2OVoGtBkINBjB8tRItGLw7x3mgz4bhlSCnvwJ3imtMbyGowysAs5PrJpPJZASG55GsBVnv9+pz+O/kceiqFpeazJNgKma/dwCBCYLxHcIwR8Iq2ACPoCtYZAuYCSdHR0anzV7uAK4gtB9ggpmgWq2Fhj3AKJOkvJYA6a6guQSSn1oWtbJFbyIq37GmbCWYK/hTd1Yn4KiVrTJuHpWamLiYoArCsQRLj9RhLObZWOfXr2TDKZ6bFWaJ6WF0Sqn5IWx3iEA4qxqp7mrRNujOkbbuHAVNNpIEg0gCaAyWgF6gFAERLM+bRS8mPxEOp70CwSItAb4RyYJLsk4oAO5r/xHpyQvVN+4mAuBc+gARbDoQWj6RIIYjnU5NmHMCZI7y/FepEI2qbLSwXNMxo2ABp2ZuVVBMn0KUXsh+LcUB77yPbcPb3nDbKoFmAxATseYUIITXoRUuEYjCwVjH4LNHxTFaT16rhGlb5GrrceAFgHLUsqPUgvM8ooIM1Fqx7dE6sKq+VwLath06BGPUaAtTfP36Je4nzeW+cczx0Z8wp81uVeF7g0+D+QkJtrGD1aozp7I6qLGS2ZcYznHEDWdrlnmM1xWEuK7Bh6N3w+f3JwyCWm+o7Ya63WBlQ5eGc6Twf4G4QnxjAgYHwBapHkwnQQ2PQUY1W7mNA0LibnAKIwsx/lJVJqgcmhW0/MjeYpsCDkbonJDZCR5ksGxwjG4Yg8MzyHyZBJiitYvkQA/bnNb8YgIrAI076DM1GxbfcN2nrHTCgVKofTMnGcl9nOhzxIQiJy9jsSJCQ0KoidPtINCguuxzleCtZBXPlcADgoUoDo9BIj4JzHcfC0ydHglisPIsdOmQle2w/W5GrVEgbH4ktVGRhsTtTJBAaFt7BOHFL45olg3MHD4MAJ+nlBKszQFUhYeumURRSuBALbQbcQ6kNAJUInCJ4uaIgQ5r/agxmXpg7hzuQlalxN8Lpgl8kAkiiAEz5uuOarQhcwgH3zvPDkfBR7xqHrqsssRjswqPAA1FEEznsGkRm0SnY/jo9KiywAlVpT2eE1IrRCnMb+443TmoQ5wi4vqioRQ+oPhLQSBASo7FFgLO6eumQzrjeY12dbigaYPWZFk40DmYo8+OXYD7XvHj+x3vtw1f3++oRXEeD5xnx3MMHH0QkDaH+ERVikPfpUAMGN8/8dkNOhwfv3zg+/fvGJ1toKkpm9crdS8FZYGZyTYvtdKe5CTtBJZAMGK4XO1zoS+ViXcy9Bx+5STxmQQuUv6CAC/vQGGytvCxi3EzjGxIkyv5BoIJWmokqCyWmnVMVwxjscDFr+4MCHo3/PJ5YFOOnH90x7mARQ0to+hUiDNXwPNLkgd1iSAOV7JOzzmhwqEkRSsAwZ/+9OeYYFqhRhZTPzsen5/4cd/R9g1f3t8x4fjlj3+CimIvFQpH1Yx/mFBDBVIqxIFaQ1OpBIguwQByQy1kq9YA3MXYOupTGBtJlk7T9yabI94nQFVqH2VcFXYQHNoDDdApLlfwadNc05OwR5t/FIH1GBsfxLZSGlQLkjx16adxejuFpHPKOu9Z03jflyLW9XUx0RRkRasF+61WaG1AIQux2wi5hBExsGJNx+snBCy6eegrJ5ubNE4OFQGAs18AR+YAq0Ad8Vu2UrcslInAxsDoM3JLhY9x3UORtWbZFqYlGT22Ytrhg+ex0qZYFMTcESByWdjiYqQ61vNm4W5aFnxj/5xxOIvswKVX6+gnu0NKratwvDQkkzgUwuvZ/ZPvRE3NnOgaviLWRixyaNDAeuRxRUJaQSMPcgvgjnlxrZX7p5m3gUzMUpbd97RRkv6eMX6fI9x9FKfS5kiASk6mYYFil8ZBXm2DhVzHRdIouciAMD/QAMzgLIqwk4YdJkWEfiehiMkula2W1Yb4r339xcBTH7zErbGqOvoMg02KOBwcT4pophOglYa97rjVOxdwRnAGo1UpiMQCDFgiOcmkT0PLweAr4UhQBBK9lGFssqrPylNFa/eFpjYItE6YBKGyFczuOPpEH46iExCDKLCVH4EdkEBYj5OgE1tX2BfPCWecKMc2EBKpfVqMQGbVuGnFve1opeJ+v7NqDLbY3e63qJ4I5vHBIC4TKSVObkgMj9O/2F4XjsrzQrAHtdbQ2AJ7yy3WmcKvTDoE4OSeOdHPiTkBWNRSnQGQRUWQVyiAE+fFrTVmac+LVpktTpn4Q0hVdSTLhz8bktIMRo2XslUe+DFGBPdy6TchYJ24DLpOKrULxkz9LoDd94pWd34+PSovbuA5HmBYfjHg4gU3n7BpqJXB6TgpMszR9jTY+qt2u4haxZDNUzO0JmpxtAJsNRPJTIUEM7QdRHjGz36gzx3DOpZQMrMUSAnUw3ExdsIoT7smB6iwejKm4Twt0PGgsybwFIEuV4CgE4XUeZeaVGreAJxyMhLgshVYJvPp11PyFCIb4J3tGMi4Lix4ADYqZbF46DQmipI11/u5DL9qgba62CBABOUhVEsnH62jCLwmKhbEboSVaobRSJFi6pQ5zEfQ9YPm6mQB1toQRRmCHhJO3AJIEmoWmCPuRzxvtBSuCYixAAk8OaiDZpHsqV9Yxa/Ed1MgO5wPq26Aj7gvAdZJVC5KUFq51kw0OWVLqF8VAZAl6BT/0J6yXdWTpcBXjKLB1Wr72vIxhXY7gaf1qC/ClLwG12eVcN5L8B/KwoM7AWO/nPowiQmfCMCJwVpRh+oJkcnpfSI8awFgZpDHe0zwwXxink+gFtT6xmnL1tE2YN82vO0btkaGT6YrGfQ49AKeQPFIDdYGBSEHEDoIqx8/7pVmDW4BT74C0Yxoaq0opeI4TwADZsDtJtjvBTkAQ8IHMD5UtH2DKnAeNfrtFT/88I5aFD///B29T+xa0AX4+PwAtEB0C70owRETUzlhnms/zXAOTgKb5pRFywsFxzHYEttKw3TF6fWyJ6HDUSd1Dx8fT2jb0NoNbbuj7vcLeJrUeGmjgjXlGwyGgWA5oYcdN7RKxoQncOFZqb7YZek/yCgQmDpZfmBiQRvwUsAwwOdgC9846cPNIuEPXTrzYGMSeJphF0UMqSUZ3gQiHowKfhbvri6xdLIdqKeYVfM4EgBekmVkS7BTV3DOAJ0Ghs0lgMtig7+cMyZnvffQB6oM0MH7G0u0QOkZhbyRAFslayMBtz4HstVz5rSglsH9orjGLbnGgJNsw9HeIsDetl+BKgaEBtVE2zZAChPmWJLMt9IbMyahfU5m8QzwRFAJYkeCyUp6YfErgCcKQrFin2IHxAYybgwbVwttPxLAZLv7dIsCKKKYRSCOlXDeEUuARpgQmtkKvrWQdTLNyOiI45cxLxo1/bJd0QNI1TWRlIz0ZesdAQJdLJdwEFCpWC0Xg3ebsgbOuMgdJ8gYnUIfYAoybDPQFlDbIxMPI7A8XFCIVMRagIM5giHiwyCSmkScnMrcJNuXJoYN3PaK223DDz++46evb/jd734DFeA//Yf/iOPzwMcn2TguCtgA3FArGQgDoan47RPzcaJ/PvB4nPj8eKJHYCIJHGeilfqL8gJqps9LVpOQuSeZfyxgwkJvBauNdIuiCTLxTruz8hAHLIownmxYXUwxDtjwFQ8xZmNb05gGFeqbrmAACOCJ++vWMaVghkaVaGXLcuhdUqdu4tvHgVrYNvscnLA8VYMRF3ddEzzjn7OlG4jClhBIntNgw8hOKxWlMD7785//zM8sBTodwETvA4/PB376zW+wt4b39zecNtDPJ+3x9gZ1Ak8z1i8LU1JYUCw141wCIxJFVvecwJqxDBmumLFWRSKmDvMaRbiMbmkqI7YN4CmBYvo4DfYIi9v0zS9DcTxaMYUTwBzlag3rJ9xCD86FBcvCqdPJjo7aOvWVVLBVXfVYKbQDtWR7fRjCNNzwxdgRbWELJcB4ThiTEmykOcjA8hnaf6m545j9YDhWIhuPOGxOozFQxW27Q0QWs8aiZVdV1ucS/HA85gPisibWMUeP1uOImS06H1bMOCfPDDw00KiDdgEvoX8U3SsW9nMGcCS1ML40hF1MXyyBH8fvjYJxxsP+khinLIJK3kVDP0+u574j86tkhqZObavBPMoYGCBgKhpaqCmLkXJkYRNWssVnTUZ2LeE3pIRNDyaUcLp9LbpyiFA/ZAFIAIdi9pguqIwDCOA5+owOmaoRuvnqNOhhn0ofaFop26MF29Zw5pCN2MyawJ9fPsgjPvdgiGnVYJVVDNHw58RkYIANg7T2K7DuX/r6i4EnRNWySoGAvdl+Upvhy9sbqYUzq6HzolMPYOoMpy3BclFYVqeyklRCa2LORQW7+n6vq4mgcmvQ6FLJJPsNpZB2WbyhiGMUjrGX6RhGhszjOAEo2v51sXAQidhpDhsdz08Kaz/7hEvF/f4VzxzHCUZPZeeo5LoVVFfsXkmhH4a77mja8NPbV2y1cayuG45xLuFJG6wyTpmAjsXesuttF82ZzFJZFys1BVRZqeII4UyWEf2y7BufyVIQwEQBZYWcAA0D91aI+SMqaWOcEC8QUyzAI5ypCkK3BSt4CasOAQVlR4iMGwBotEUFpfp8HPDpKCfHgSPEB1srQOE7tkZa53lyTPvwHu9AQ866Z2oEMAAiICNA1KQBW/3ptRIV9pg+RwG4gqLAOA88jyc2b2wzKQWCEuuT2BFZIq7MOMhYmGwBQgAyxnay/bbjt79r+POfv3FEfKMIcLKrZu84cJLlcTbM2bDdmHz2fiDR8gzOU2NnCYsmKwzcZ9F2OeYrHb+Qfl/mMIw330EiAbJBFmKLcaItWm1SoD3MN7L8IAKkcCZFgmuMTQ/nbddldb/At1cGDAMzMgM1AldDx3GeeJwPPM4nhneOT0UArlGN1+mwPvF4dmy1oKpiixaZftLg9uMIp1bQtg23othQWMmPqsu0voxnrtqckZgEh5XTQiTeJaqOxoDVELonsa8CZ2UynVCMUZVY92npjAAJUJNtH7Rza1JGbKWWSMpC3wxurDAJWXkQtoRMEYzZryQ1rqRGi01OIDcwTn5pWAhQi60mmlfZ0+aEXkME4RJgUlaOk1kFYLW3pBWYnSpNM+jyIoUJXXSIqDvMegTlwbBzBjR5Ts0c3gGZAukAxCFjMn0qAsyBw07UMlG0Yt9Y/UW54bZV/PjDG7YqSL00j4p2jSSLlaOCOQznATIldMcSNwogplB3GQpWgXN9LisdgJ3IChgMZEwYLGxWtgU3tMY1LY1FjD46TCaKFOw3trGrzVjzCcSo3jkmxuyoWvB+v+F4MMAcRl/5m59+wnEOfDxO2i53NOV47dE7GQ8gWH5rFacY0Dlxkm6Q75bJ5xwG14KiDW4aoAVbf1Q3AAUf3x94/9rw029/wvsf/4imJQTOD3Q1mCvMKMKtGJiY6OhAGYBOZKu8RzKRRZ2ZLNzQJ1Hy4qlRFEHPnIMtWSpQv4BOuAVTUiAWYtgS1Wk4at1ZTXUKS4sqqkw8fWJ4xUCBgq3aEjogajx3FYk4McEbEA7IMIHOCjMlazYANg+oQ5BVXQRASh+aemJWCs6i+BRFW/oMiipMfxQE3lutwMbWG7iz1QeTzBQISrSIaG0ozgRJZ+jjiLM6miyBy7Rd53aNpiYYUoLFhKJwCQA8vOyMdhVIMAFRI/aO5AyKc/CW9MlEWIMlJeaYwmZ0x0ucF6A92ci0O+aOfjzDLtPnWzCVunuwFyRYlQLxBngBykahcXNMB85BofIxJ8rWGHPW1HU74E5Q2WOQi4Hxk4X/0cp22CERB2xKAWIFPIpWqMkGR/gEUH5eQsPQqUtlMIxgCaX+WoKTZJWH3ovW8DsRb612M+6jKpNfSIHhICDoBtMALsMuUZx/ruq2S8BQqd/hdumJhdTEmJNtp4qr3SzsO5mUA/ABheG9GG5bxW/vX/DT+x2/++EL3t9uuG0NH3/6Gc/jwD//8onj7Pg8HFIaynaDVmAvwLaxVeg8CKAd3w84Dk5Vc5rixlFi652yUP2a7Fj4DdZ1GMsDwPRkZExkh3wW59ck57gPVqKoiXNppQC+ajgEMQbj4JK2P4ssgJE/HAWK8AVCvVipjIMzREp8N9mbBoHUhk3fULYbpG5o2x3ilJ1wKdE+VGFe0WcwTvQNEkWS6eHCRGgfjUwdybsWn8kOcoViI6AymfhPVXx5/xHvb2/4fDxgzwPP8xfMMTAx8O35DeOPHRMDb/c3iAreteD393cmpP3J8e2qPP3BMgQiPnOggwBa1QskFG0ocLQSrPXJgvA8BhkqcIyTxXgWG4A9Wtqw4oYAuDXageGAjtiXmJA2PQYkBCLkAmBcfgf5vIiiTYFqQ638XW/3He9vb3i7fcH7/Q0//PADjrPjcRzovaNPw9uXLyygbrLsdMY0n8eJ2akrurU7pNYFmkoBtrID5hjmoSGcWoMRgxVdwCJjMw9gIux6ySJO/IwgujkCXHCjFEgyZlVjrRjpW4AJCXlvOztn+mQukFpKqhkTz/BPLBi7O3rvV2yIAE4i9vUYFLCXja40Zl8tqjgksgPB8BTvThMpFPx3kIWniv75AYFgq8w9+7zYutoYAy9Qc621Ri6VDGNHDbDVI+c2y8KMYjrlDCqw1ioFyFlope8L7jt/JtrX0x/0fgQgxWcvUdROYgcE5B6ED5VgKErxYKRfEDg8tGpVIZXnYZot9nHbN9rMxqD6HBPn4wF5PDHAdDHb9HuPTi3DMoyjRxtfVFDm5NCv5/P5/1NUG3NyonGy/P6Cr78YeEoAoiQi5xqGgVMdttYIBEyNNC6c2mQyTryJfZzZeMmWE1+6ANOx+qPpAK+NAQIJDURVg664WmJwbVhOqskxFcUUBoVWgQ/g7BNFqIJvCBo1QxbSqoVghzlbAUqp7DUdjqxwQEgHlAJsm6BJxV12+DnhOrHJhk0q7tsNW21otS3NncUwcvZipiBpAlprzLJ7Mp6RNLJM6jNgRVySMWccEv6OleTn/8LAkvaKEMQEFrVSolc1xNZMyupHz0u8ktWceR/gIh9jXbkFWvzqW0SBFqJ4EUzaDOry5MUrCEcJDyF5QWiTR69pmiSuO512Tgxjgi4vT0LAjGuOELG2oOG6pC4PJ92N0VdVEkrHx7YPnikmk7b2npRbW8HFazLKVs2Cn3/+BXOekMKJIqISQfCgsTVHHx3TBjTAm95fLm441OsuB3AUTD7+ZwdyottiXXCd8mfyV+HlGRc2ghxhbPBo5yPTK7QAzFLqAwSP8l3JnHrtU/agSq9Nj7aPPHvXU0UlCldVQJTMoTE6+jjQJ/UBMlmCBGXcmWQPmxidLa5SAA8Rx+kEBPt5Uli4lpj0ViFiYUwzaJWIqMOB4xLDTnNymRYFfCLFp1fgGHZqUQl4oi6wZgUwDDxookjbTWr0Ej/Uq9+cexasTkZVXFv1CDS4gaXRIq8fW5c0GUuh8wL8+j6u84QIjLg2KcjPVt0cWIv1fI6r+sizFI7VGLSl/phPeoHJ8SdQjcogcxwyMGZqGCQwzt87RwJPUVEzAgiMRsNW1GgDS40NIyu0FlaIt63htjdOAQWDIJF8D+E7ODWIzJQMtJgSk1ZmraRGq20hS2aOtM9rqdfv1gxceKjCjwUDcTEmEIE2T9i0QZDfweC7KoMz4Wkiu/cCBIoKSmtotfDOdY75LW2D2QG3Y9nsEs/HKTuAR29YrZVAYNhyibvK/Q7dkwQztGCsexzaQUrGyXGcuL873u5v2LcNtbDK7TYI6iBEN2OoxsTA6R0FZBWxxShYvJDwTQx4fK1tABHC5yf7jKxRt/zZVEKP1iRzgm8WFPkQO2Uy36JtusBUsIlgClDX1EeyF8hg4BkP+R3UtS1xt12v4pUH5yHtqjtMghmZLWbJSAyA2ByrPWyIogM4QR2lEUnFMtZRvKsiZNiGzycgwfsKpQ8sFom0R3HPHWoOVyf7OPd82Yy408Zn7pP7lSAEQj9odfL5ZUe43+HPI9HxXLm462bpQ3kuEa0DfMXwXRkzxJpENyQLCXNgWmYoWai4WrQRFWu3C7xZg1KcZ2XYiOlxjJNUPN6HrNjlodLH5t+sqUgSrHW7CoFCEgGi5Rsqay0hQjY4hK2myD9zW0e0mSdIgAAf0kfQ7kbLxWTBc0a8u/RUVovuZZPXvamyHsUkG/licm743tW0ZOSKZZGLiMmlORlYNO3o2lgDfEBg2CpwbwU/3m/46f0dv/36lYUsFTw+Hvj28YHP88TRDc/B892kohRBqRqJG2N3WLAiEMyhwqId25M0YsT4ynWIGMFDsyuhqGz55LQ3+lMBbW/uDacg5p4BJozJp11Jb55r3u94LpHQUGFhzZIl7Vloa/GMl+g5W2rie92v7o7r9JH5HZp/ENpa9bRHARK4wCyLegWubAmzOeLZIs6X695ZOCoPvHh6gJfJgJ8ZPypau2Hf7ng8TxgQ92/AhcXzaRPtl4J+nHj/8Qfsqvi67zh7x3GckOjQKGELAPqWOQjsDLd4G37lyV/FTHDCNe24AWKQ4sGalku3quYJjtg47QquwqtL3ukrrtBVSJUMr8JWeJxzrtOciMmQsSeinBrcdmxtw77tuO03OATnmMDZg4VYOFmvcv9H2BcCEAPn88S+39hFUpiGDyc4WGrB7APT+uUbM8SMQgvjT96HtAerKyPbfWN1lz1QCYoO8yJYTvyUyDkzbrdld4HQYQVwHv26o3Ll5sl0EihqqZQ7iMmT4ryTbr50n5KFWlq2VEcc7LL8SuZTC0vAdT8z4FoAdOglSsbunnmLwStPVvw1cnBKfsa0i70kwfbKz7Ro6yVB5mq3zjZcOJmpsvjufC6evutQ0US9+JiwsZlrs/sm8/n1piumTDwovzcr0xogEUkmc9n+ZKspwm2PidNO+sw5gWDO5X1LPTx4Zs5CcNKuKDjvznEcEAlpn3ymyIl6Ty3Tf/3rLwaeNA+FO5oWtNsdz+OJ0yzGgndUvATYSE0Wx9EP7LqzOrBRWG/FSg74OlykWNZC40omcoAq9L6c9NAqqfpu6EHb01rW4VcAxZ0tTHPg1jhSGy4Y0Q9r03GMR9DrBNtG/Y0/ffuFIt4laLe1UBuhCnQYtjhEAsdt21CqYN8rWmm41/tyDujG3kd1nDIDtXagCkyMiLDKamFgisDKJCdcgJXcZAuJQ2BoW2PweowAxjz6RxGHLYwwOBWKl0NXkKvgodwKqwvn6DQUvVOLqrR14OGAT1sJsfqFtgoQOnUaVbML9GL+wP5c0dgRD6ejhlobUBzOgiJq2+FueDyPJbw3nkzcPE9HUFrnnKAGW1ltUa2luPhxJYMRr5equDVFrTHR4+w00iES+/z8AKTg7fYFbd+hteI4uSarjc6zHzYNmmMKGSGDsRwdVLnhy5cbuk2cc+L29oZuHgsFjEmnxIonGwI+Px+ohayCbS/wyWDFCrUJzAEfCpmOGZN92NsMfqg7znNAZcfb7e1yrjMqwwlQRE93plIAE3URQZ908OfRY1+zlVJX+2X4mpeKRrCvvFP4ERrBnGJEy6ezgxXqFG3tg5+b95TVaRqrrezwcQLoGOZ4jgEvBbrvcHAU9ACrBVv2jYsw3XQLSq6Qjuoc0+vO9oCJgmNqjEK3GArAZAWxFhTWry/A7lyOCqJkwwBIMJKttp0tSRFg8+f8V2wwZvss0iDo2QweCYJKtIWKI8AVrKAUM8dGI2jFOWeCFQg6dtq7ViLQKymym6NygRHMvdTV4h6yFUbD4We1uxb+7LALXBkjwpxYG/W0Db4CkKwctVrRaiUDc1okghGIRxUyJzidkUxme2irDFrG2THHhI2JihItvgApwCUw7AIpN5S9oSorUes9oh2MGm0DfTzx5f0NP/74hnZjQD4eA707bHBNb7cNwzghiC0YcbHjcyGAql+0bM+AIkU06fs4TTjASSWwUqN14zwOiM44A8F+EQBDsN133G53UPttYoxOe+UEPW63Gw4XzJHgOvD29saRuh8HzAWOilaB285JsjYHxSITWJxk3yga7c1GDZQxGI+ynZ4MPnO2WEJTW46Bag36fj8/4fPEn7/9EW8/3PHTjzf85sc7fvPDDX/65ROP44TsAmiBNwL9ImSl2jiuQoNf/0AEWhqNhujCc7JlWRHrJQ0wQwkAhVeYtDSPQ9oDvCzdon0gAUWgG4G0OQbMBN0qhhFsMSglACJAySb1bOeQeRUfLhSGf1GjzVdmx/CBc6YfzxchgyWyLMANZWNyVkQwteBzzOBl0v9UBeWR3fDdTvpvUWTq0SRippY+z2EycEZrlQE0PgJs0SmvnuAMtSongt0yHaeRZcbW50iSxdiKF4wXLdkKqwvcSsc/PfCKYCEnvYQAOavoNiaHDkRrxabULxuTvvnZjUlzc0xhHNONwxKoI5FJIDVtXBQu9QKihMLwFysswBpUmBL+eY4BGyfOSdZRaXE+giVeNAIcLavIMOwEXOCmSxB2wtAz8VpsVVnFvTkNw048Qwzd3KBNgwQcCVSyzT3EnedcrXpbi/HzKqulhxYmkyfHmD32CTG8g1M0M6tnQdNAsXsmFro1gj+opL70iRa2vJbQtfGBAcFsBMuHAv0MNrw4anXstaEIsEfM+P35RGsNt2fHH//4D/jl+zf8+dvP6HNC37/Adt7rbsD3799Rq6I1MjCLCo7zDN2UBHEJDk6wxTPjipUjxz/UiglNGOU5Yy7V4pupr1kWfigw73CfyBYl17g/ZrDgZmr46soIBynxa5pASQWgGKBw/ZyOXXcUqSy2gEXT1HjKASBkugHD2T6YyaoGi0ww8fl8Am74dvtgdhDtcOMcgLYoaFQmw7XCRTDndefTDzmdFxnjKmQfAvDKv4cX6vQewPb1HT+83XE8Jmb/hr//h3/AcR54pLxBsCwQ/y6qeCvsFLj9zd/i2/fv+I9//z9ST0+O9bkTwUiP1r8JQzELje+Y5IkE97getSm8CFn50/A4PqhbKKmxCOo+CWKKM1myq21uNT5kNYMMqt5HwHBXQQHwVfCXtJnxXywYOt5PKCZUdmy14Mv7G97uO6o4vr7f8cPXL/inP/4B375/x21T7FvB16932Jj4+eiopeK27bBzYEhHqw21NQ5RMcPnJ4GdUioL5gucpzSBOfc3Rc/NOTmeuV/Y9bT5iPh9GKwPIEC4GtP6Mt7b9wYzahmn9IaoLtvkcByTzHQTI4tr3+Ha+TkBbEoMf1m178rpvVutZMtETCbA0lYdHQkARHdTwTF6tICzBW9/u19FNxvswIiPOvoJAdsXFQSgFIL37RZF3WAIeeTYwlZXwIFBW7fVtsTdJYb/PB5PiAD32w1JxjjPkyzbKHSVQrsSYQtBXzfYcMqWiGCMbEFm7M0cLEFQi64j5nC1ZVHphb1pZIRjcrJ5q7zryBh0MhelppWiCCUNxCJvBCjXkWBt2bBt5dI+c8Zy99vGxxr0DwaHtsY2xkioqyr1oR/UtNNSEx3E7X7Dlx++sjCAv+zrL59ql61s4VhZgCMowgM7V4sIHd3FbiDd/Kq6I/57HFG+rF3w03X9+ZkqgdCbQd2ADDizurO+osofbUSsaDhylGCJykZrihnI6wR7r12NQMK0RR2ESOhCkThfPKsRDBzulZMpmigqKLqlyl5I9rBz5GwQwLkW6lcAEhGoQq/41YHcvgvHudDeXyOK8vJvBpJ88+xTzvHBifRnDyj3b1UYNEe1RoLhwSzL1Y3qXwo1sz0og9cXNDaRxPVoCy9daK0bYnqYwiWa94SgZvb3Zg/vOnACWtao/vJn+N9S0BQZXCGrlXymoqRjqoZAqfJZmPizSqslaPRSIV6AFK/F1dror+sIw2KTRdIhykBDlZPs1Gmcaq2haxOeMp4792OOSZH76XSiKV1rFzKf+xuR0QJ2GXzRwCbbwjyTZYRRytwnpm5FgOtxztYEG1zME5erQuDxmesZECCoZEU7GVjXzYUAvj4DgOXvE7weX67fr38327EcY2TAxD57rkkKrUa1sRTqm6lcn41gCSkye6SRNbZnmDm81nVkEDcw1yWfy35lX/L5Xs80194cyFa5DINzneMNYtvzrugCdZe9Qvx3XH9eXxEkXxWSOOr5aX7ZSFm/L8B1rE2M+0CGQU5wfH0zkQSf4hkkbZBgTR5x/Op7rqeWOD/5DHqtbZx3rL/LOxS6UWEHs5rnlios0UIdUxh550IbIba2qKKVAhUGkbl/rTU66XSjzvaK0gpEotKcBfvoZc8K+KUddWkLpc8iCxa/YnzkLqd3S7uQNiIXOCtL4gRU0xQs8fVYN4szToaMrDUtKdBZqGng5tSMsLLOU+rPtNow1NCRFTYGdq4WWGtUPBGs0sI3Vc3PDc0ADXZoCE0vAnwEceaGox8Y84QWx9YUb/cN3759AHMA1vLDg7Gb/jjujztSKzAZlOn/VMrlA4Ju4XKdV0jooSD8ztoDjZspC3RVSLSMaQTK3NdhtMHD6adfJ475et+8t3E+4tI4qAHh6yYigsJYcE+m9mWXsM5vxAKSmisXKGzBOKJOCy3TDF/sTktYkRwCCexLwh878mL7+t8Vs+WICIWvbQGwWmZ5do2gRcZy4fde4zcWTfTSXlpsLlnVz9yndbah4Rdm2C36XzFfxAMLnzUTpWPtDkPYpkzNL7LSCOrnnnKAx2V9FcmMg+X70WYwIJf4fcHqlYtxYhHb8D6G9kz4nJnnrADFZPkJc4Ko6dcz/kXsTZ7RjPtKrNmK5RZwl3EuCxiMiVhsybVPe+Ev/imnvS2G/Fp8i7jyYn9I2CSJAqyKgjICjHkpMsC1UqfIbElbJQSjBQFCSMbDcT4BdDN89oFfnk/86eMTv3z7jkdnoW3PG6UEAjLRHdMw9PI1eLERa+OWD7hyB75bMpyCvSQEkGytU+ylL04NFp81CmuesZG/3puL8YYEav1iJEuc6Yw80h/k2c4BGuv+ZAxNQ5jfmU8S3Qe0gwRErvPSe8d8+Yzs0Fh0IU9h5vxs7rk74jyDd0Rirp3HRK2MI+MFxDnB7NZ21FKh4CCXPiYmwgYm2OucODs9W3xZtK4xAMau/oAVPvLO50lhzGhzhEas00YH+2qxShTQxtZli/bxxepD3HFH7GP8OTbCTaiVGHuHFX9YeOgcb5IPiXVnZdn2sO+Wv5TFl1oV+0bWsQin7tatYmsFrbFgUJSCywa2idZS0EpFjX9KaD7mdOzkm7C1iz46WevuCJJhdgskW0YYw7iSVSmscnjEg1mAvHLIAD5jLdZixRosKx+OQyJPAkCiROZjV+AYvza+N37HYvEvG5efEWsbe4a4h1hxna/vZUxCu2qLqcX8R1f7XLSWI+JUkE3p4Rtm5qzrN8arpY+SIFXoxURe/l4yrkZ8z8UQXZ1XK/+MYiTynr8w1dYrXR4qn8YzPre8zxnz5P4EoWPleILsnEi22qXdp9kBt5b8itroJ0UVsCtH4bbSDpheDMwE067jENGVrC1/eS6E9NGv87t/6esvn2rXP1BKwf12oxhmP1EqcK8N7gPnGJgS9C1y4nH2jtoa2tZgBThlwscB9QJtG0dLl4YxJx7ngTWuenCp9kr0sLUNZh3HcVCAc441NnMrjWlKGEDlYEz2CofuQIqZtgqUorjdK8wEYyo+Hw88Hk8MPzCnom0bmm/YtJDtcZ6Y6DA/8OPXN3x5u+HtTnYU3EMz6hMmA4/zF46crI2jvgsWjU1OHtK9NsAy4GJQ3FDASQu8TF03MrqsIyVptDJIsMHEZE62mKUoa9JWM9hzgG2N7jg6q21zGra6Qatyeh0M20aGxHkSXX0eB2miqarvzhHGZtSMwpX0S2sXIyTQZYsLOBJu84KFSEagk6MoT2ci9IzEUErDyORvWLRdkt2y3e+kI9aoIsMjAXD0efC5agi/DbJdpo/VQtLKG6v8le0yKm2J16o3FN8xD+d4ZpDBM+xYhiCBIn5uBAXmcCmopeLr+4+w6Xg+z0iKbqj1htYmxvMT5o5SNhQFqnBNxzxxHA6ViX6GqGOInM6R8WhURKWwNQBYwY8r9dCKOCSmRubkIUtNCNDRqLdrf4K+7BC4KrbakH3Z5obRo+FGECDrJTxHApVg226kjmqHWUc/OK0xtW4gQB8xelQVIgEQrKSTzzlCyBgo6KfjfACPj4nv3/tiwqRTsDkAp4Dp1iq+vL1jK4omguP5wepB4JP7jaywEho/lzMElte0qDIE0+YZjC8AsQYMoFQFGgLgpUrSWqLK5uCMcJ5JiXOJ3CsELTwFGzXGpfZOe5WWXIK1FOw494mh4WyNdquUaBE0Z9swyKLj1wUCJ2U54wdMnpmilyfpBuRI9wKJQDOTZU6vsAgsbWawy//VAO5MXujBE4CHhkKwqRxOhqYUuMsSUe4xObEHK8+LoZgCk62ahsFpN9lGAoH1AcekiDjIiqp70NyjSgwD1BV/97d/ja0JFM9w6BMuE+YDRz+5q7Zz/0OTzrsvEI+TSBhMOTwGMQwcxye0NJT2Hhg37x0goXEmq4BgmXtGUCNRMWJgQi0ZaOgdgoL+5wlQZwYxOhno4+TZaIK6OW5wfPvlFxyPB4EqZSXQXdCqYN83aGlw+wXjPJGTJW9KQeRjDAxzPJ6PmJRDPywqrPw5qPc7SJd3dMBjyl0ANypA2TcAAx/nN3x//ozvzz+h3Rx/+7e/wbef/4SPP3/Ch8DRgLrz/jeJAkK7qnWxjiYHBAofUbypO+/7GKvFJwENjQBM0eA2MfsA53axKlhKIaNVgM9J8K1UAnelVAZe7jhBMebnHDht4lko4KkFKMrkpKVuRmVq252sk/nSAuwd0frK+zrmwAA1UEQughPvFe9ODxkKjcg0W8qhrOC2BJqLAJUBnqcf0BLoRLRw+FVlvaT2fCV0SLAH8bw2IRri0Ij2t2iTjnyD06PcMc4e7A+youYYaLOgKDU6JHRcAroERofNHsl6sK7FI4YNrQqPQs+caZwCPIrJcmG4BGlXgRjfguk7E62pMBEWEEWjQMGksQeolHH8GLaSijT9ORHPw3bbpE7GOY8V86qzGu5ROOljAqJo+w1ShNXk6FuStlFvpM9IGKNNas8Q2+FGBuzIScwZxowr2ZnONeO7gCwBk2BdGway1S7PDllCZg5rZJegkO01Zuf6BIGhFYXHJAE1ag5tWshkE8WmZPToYIfB+Twhxom15oZqFDIvO9ZUTgsYlPw8waGKP3z7wH/4pz9iTuqO/vSb36PWgsf3b3CfqO3GM94KAJ47siIAtEiYQ9gfZsGwSQ2iiVbbKjhOM/SDTDQFmV+AYHgUlCdjUA3GrYeMgM8criCBsoWPRhIUB4AjpivrBTpNgKBZj4z0Sqg17Og8HRxkQrCFhLsEnFI/8BpTfhWIaASqkMVSWkXdKj6fD2CGhVNKiEjKf4TY/Pfe0Y26di7BnHPDOXswoQk2iCeDxVFA1pt6B2ygCfB13/Hbr1/xt3/91yi14J/+9DMMH3iOJyzil7N3jONEwwNzOn74+iNcFI/HA5/HCa8tXpXnM5shMv4EHA0GHwN9GoooqirqvqPWQh1Ndwwwoa17Q9kEvklIijzJpBJdHSsZt+iKg0F2Y7SlU6ntQSBVHeJzJeRkCTEfs0AbtKZNEwgYdxblvnz5suPHH8jwbbWgjwNF2AL9dhPAG2odqCLYyVYAfnhH0YqmzNdardhuN0ipwPOgoPo7NZJutzs+Hp/49v0bi9mimKfjlIF+cG5hiVZ3FqUaitQVPz4986Gcuk02YS26gB2bvNfH8zvzg9qoPdwK+iCz6Pb2hlJKxGkEmeEgK3GwUMPYuMSgBOAcfRWMDCR2DJ/MxYzxfK11Fa1UKlrbMEM4v2jFrgXvb2/cN6Wkz3keC2SkZnLDeRwwN2xbTMA+s6jBeJnPFgy7bGmVsr6H7eFjAUCPxwNmhq8//ggIcPbQFQaLmbf3d7Z0h5N0AbTGhLkxwmlIyAcgupPqAi1fda9aCNOXRubQGCd8GAbmFTNkQB9+3ObMvnGoCG63nbZXae+Ge3ZS0sSI8HyJQ2JgRB+e6cv6x0I3lbCNA3NggEzQjJWyFnV7JzsKMbTFfKKPA+f5hFR9QaX+5a+/vNVOAQmBZU53CUdgdqFsIVyYyZ0UUjEzeUyBcSAxSCbxr0JVmjoijhDFdhS7qsLLyERRLGppCSlG+4wiqYUZuDDJYwuf1sLxt3BoYX+lYcTmNCZViaS7Zh5JAxocNo2LaOBo2SmGqTG+1yZQyIoqqmtzCZREdT7fN6ujLywfkRgDGXpSGYjBU9Azgab4R16R2AvsijhzVVmzwuFBJc7aJYSgGCfEEj/NqnBWY2UZd/xqH/k9UQXXX+0snz2rE5GRydqrYGipwwarjBxpbzSoWqKdmVTzpLsuhogGsp8fli8vyukLIeCZYypnTMHzDCRQSDUvZCsJQrDZbaHYLhrBw1zINV8ggBT1xVqzEHA0vyjDrVbsW8PjQOilZO0hYELRZbR6HxjbRKkbVKhVlAYEcXbZ/vfSIea5r4gzxOe/FIjy+F9IdsLv/vJ3yXlK0GL9WdapWiBG6qxxwqKFHfTYC1lgF9bxuCofBKV4Xiw3bu1b7N3LpXUks4LPrMg7yVOWFY8YRhG0V+6dBnAm+fsjcZ32IpjuAS44ln1JlsLF+AmtIbxqNMW90te1wnrmrP4AL0suuRtx7iUcY2iorPWWF/AnALGc0CI2scY6B6BwBXXXFxlKseZIwAlX/zuyDhIrLfKSBeURF+SwPTLLCkqwb3ydh4sNwBGwpPtTA4t2XfQ6fxb6WxYTNyQ+INuGEugGrpYEiQ3n3aXYscd7w2MCjATA2Sq2vYY+HNgmLAwAWqOTd4uEyY2JZ4AfzEklKN8MQn+lkRf7Tdu3Fm7dMfc8A9e9Szuw9iavhVx7kB6dLdYU/12tewAUFJNVFZRisFpX0sU25tC7smwPlWhXF7StEoA2R7asQJKp4fHuCdmwFTzvHFQgUVyhIGYAm5f3AmLqkJlh9I6iive3NxZDJLgTrpCpgAushx93BYVVcEni5DliKR65AsksYAkimwgkfMSLgw+vkwBDrnCmF+7gaGphu0XqBmX7kkmwQ8Qv+ymeYUbGfwz0Uiw3TWOsraVvl/RV/ivbIO7sQ4Os+ALJzkUEGC92dMa+raNW6I+GX8cvGRzTLzeIX/37Oo8jDFEe01w95ohhmzVd9byMF5ItE/YGYRfx8ny5XnmXJOx3+H8LDYrpLDSU8Ak5Vn6xw0KP5dcLx8tz3Zpo3YkwME3XChE9mXk808mUWb75ZXVEymIFOcDEPeyQhlirWxQD8jSGnwrOEJPp5R+z8k0mBLijSL0v90VK4z1L//tKVZJgNuNlC+LvJe+xe/hLxdVY9lJxjvPFaY/0A3w/v36pvzAcJNc8YjZPFkbGBeH74cGUc4QYW7x7aPg4maxsP2T7CiUSfOlxedg/2lgDZKlpIpcihwzkGaN1yPaZSwZhsTCBX1X7Nf35yxnnIwcXJ2xdsmq42JKhAnfWoy0eBK94nkMpK++bRztU+CxIrnHGDfmEea/ynse9UmHrOsBELyFaCdavM3GHsyPDo+WKukUT4pyIPGximLOdjsYiCikrUbquE0Pn8M3JmLdgvBIQ8hCWp91PLU/GylCDS4EJWwxd+edz8hlQyuVDo9UoWUTJslTPE8424ywmpC1ZJ9MNYjMmE8cwCuPnw3MtX+PGHJSBy6T6y364Q9Z5IhOP58TXHqWBdEQ8ueJb2sRa2f6vwpR3L8Hs9YkinIpG0MND3D49GO1orYpto6Yrc8SIPUKce98qxqzoe4MgtAnjmV9O07J3y+6tmDVt4nWnssthuTZwX2cUCF/zNA61CDZfmIdcW8+4Ie9yrHd+1sopNFlj60fX98nLcybzPSdbp0/zuKupXVQk7wUAM8yzBwnDIn+LFfHcdl9/l4yttGNpatJcpDaYxH67XwXZ5VPXpae/Te24y+Zf7da0q7bifEeQAcL3q15nNZ9BY4hEBvRss6T9XsVmM5hc+VqJ9uoVFa34LJ0AsDQx03tlO9yrn4Cts5N5Wk7ETpb5DICulrLuaGrcSaxBCpL/JV9/MfC0ReXGQpNl3yo+Pz9xPJ9opfHSbDn1iAellrZYCzVH7ZWgu6dB9HUTUAp1VogqGkaf0e/NgEZLodOHLtFKzcQcbEGwMaAVQCvLw+flbdUhRbDfGs7e0ecDWhylsko5zQDbSPGeBnFBcc5dKcKe1MfHgSoC3yre3t444hKVgoS14xj8p9aYqLVvABzH4wkYhaw1Ln5RotT95FhcjuwV1G0LCntURdyBAbbunRNwwV5vEAl21wpA+DVHJnak5u8leqILKMbbWZEFDKUKtAhKU2BYMJ+Y7NZSULWgbQXuijNYIEVpaF35s5BI9D2YTu5YLSzrcMvqp7YxIUKtJzNDt8He4VoxBqfVbG0LsWAyzz4/vvFzSokRlBV99jCctL4StO+yFV7yfi6n9jw7fB641XcUaVDZIKViqxuTD3MCN2Yr+dPSMH3yvd3JCI3ssdYSySrf8/PzYwFzCjIv3u47WhP88p26Yf08oRKTH1AhGqKpj4nPxydEFff7xsqnBYIeHL4llBosIf6XZFNQZDin2hCYwKtlxRw5FTDvXvQfu8A1ADEBWWWGBYqY+TqbAAEAgPeZjK8YXT2TESUQNAh0GWLVFxAIQXMOuqdU3k0tFbWmRhAFwRN0Mk9m1+Ww5pw4QcBjygWYcvJaJLBhVzLYmfPE2Qf6yV76Vvdw+vn+FSmQXkIIcQR7zn2sdjfN3xsj60uyuGJPRCtWchbUaOrHegB2QNmyV7+kX14OeU7qjNz2G8YYOOzAtEERxnAITO5XhE4zIdfamDnqtnOCm0bbks0InkYEyhdTMtsGS0lNEbB6Y8DWdtTa4N2AaTiPk8FCtNWYUxeg7jeyIyanl7EdgMnFdOo5jRApNTeUqtH9xIpKVl4gAbQoW1EJvp0AHNp2CDi+d/qJz8cTt72ibBU//PCO9/sWU0AmZj9x2/X/Q9vfNUuSJNmB2FEzc4+4NzOrqnu+gMHsriyfKEIRPvCFL/z1FNl3LogFgV3iYwaD6c/qqsrMeyPCzUyVD+eoeVSTAIoiZGTfzqzMeyPczc304+jRo/j2m2/x4eMrXl5f0Y8qBueDVXv1wMOLNO6KJiBNARPSPTBgf7kCoP4Ry+IZlELnwgANG6gqWzFZMfkvMd6QYpjiCRiFht3veHl5RSk8W2TjbQSRtmTHBdq+oY5GQDEC148X9GPi7e0uEeOKy6WilBd8fbvh6PRta7w6FENNB2Kw3RwFUAA9DEAr2PZX+Ozo/aEx0A3zAY7hnsxeqnHk8XG/Y28b/vLXf4HX6yds9Q0lXoBZAa8UrI4BFFZXERtBtcaUuB/vAs4ZCJXGNQwxaqF1PIszTKZh9hTs0FbAHTUIOgwlyCYmaIyO2TmBBYO+FLYTQGnANDLuslXmZO4y2J5aO8qx6dkrkXahLmEOK46txsp6897cyQZyoeVFwTSrkGXtr+HAvQNlAnuVX2ucwPjonaw8mgKUMBTnT09tzWaAuRhiKjgNBcsmXSgI9GhGBlIYH6uDLGJ3xV8FEtanED8LdIYxguAxuuynLbHW0mj76VtddpRtjVutqPtOQBVlgULpl1Z59bkIoQLBNDK04ZzWmc2gmWAHyCBm+wvkuzpjmuXbmxZOSR2wxr57oY+dQV0NE3OKYBPjWca7Fa00rBHi4L2yRQbcT6B9mHq/DPann3s421ZXdiaIqNbT3/NFmKvVBjeCEZyMVFDmpK6WWH6ZXCabDlCB00xzFnFO2bIKxEQYJ+G5GQsD4VgTJUNTkybBBHbWidnlA8m1DxiGQLpt29AKi3vHuxj3W8YDU5qAHdkCsqAYPfvS6LPGpFJZRaH+ljsHs4Tiiwhscr7lCTmoLkabFp1x6MRUAdgqAwMyT7PNJw93wKTpVMQYl6gTux8QOBSXl+AZrqWgqhVntJRRkB6k9E7DjNptbvJ7bNkCOJiFNq4oTyCY1L0jwFwmdrJ5+tFB7Zehoonh4dlGR/ZfrRedI007K3V95rbxzJXC/R29a5pcwXw8cPvyBW8vL2i7ujNAfda6VdS2EyALQ9QNs2zwbcesDW9j4O4O23eEUxyb7JmJy76jlIoNAmx1RlA5GbwK7Cgw2VyB6TMY5/vAnANlOtsQsREMrE2SU8pJYEvyI80IJzBOafpNxrgapeYBFhEg0eiiMxTzye84wgfMOwLAZWNB2WOg1oZvPn7C7X7nBOsSuO4NUMx7v31R1wVnnaIWXDbGnlP+aqsTqIZtv6DVDZd9Q6tXbC3Wfj46OZ+tGIlkMZbJSJByYiKMU8kdAmuMemQEP+gTSoA6pyAb1CM0rd2AUrBdLrjuzJE5nZivNTFy+AIoAhTYHmJJskhFvc4iINsKGYMJwNciDUknQHP4mZtANnH0jtE7+qCG7IcPHwQaBW63d7w97rRNxWBtZ0wYGT+W5Q+Gc5plqzuBzXkOBxMypWIobRbM0B9kil92TvML5z4co6/OhUPTx1kM4oCYuqQQCBRVfebsjA96HyribmCXkKkzxXDZXiUp1DHHwNEfyxfOeQqHFytobac/qlWg2Tx9RyEVIqVzDCFml6M0siSn8nvMlJXwBVgVM5Rto281Ji7hjuO4AxHY7BxK0VpBKW35qq9vX9FHdmD811+/nPG0SikGuMaKD0ZgVivBj/yVjlT0ucndidYayk6BLJNwuDuDwqoAMWbWX4G2cUMlgwmlcmGtrN5Le7q+gFFkbZUteDj6JFOAIk+cmoQo2NsOXCtau+DoB+aceP9KIcMCUhxL2cUU4L10OO5HpzjetsMKAzA3VfRBbZ9a2K4VneKBbbJm28Ro4AEODOfPhDYRUUY6ILZd0NEnUltEa7cwmNNwcc3OQLxAwEEoKFP1qRb2DpsHXICBK2Yj+l75pXcLJ/NGiIt6sM9gyWPChy38kG9lqm5IaBVPFVZNFvLJmyliLLVChhecNNKcUEddBK7f1rLi6fDZ2RJnbF0YfrJEIoA5CrK338VSi2kCYjZEFDweHaU4NoluJygCac4Y8jlkTZnvkyNLs2LNlku2xGQLYrjDxwGziVp47WOrmFaVdKgiXujUJiiGPTEAmwrOXNUYB1OMuQxRaipw7zvmBMEEG7DCwAnGPZJov8e5B7RNFOjnzScrLCsphlpNIMZYP5MVgfvjHaScs51k35u+V0wWAYGpbcMpCRNFuhl5cKuSoukHxnxgjBvcHzDwMxlIzDOQsAKUDavqUJIvU2RP+Jinm8ALBagG1DYoDipAblVgpkYd6/mZtQVW5TQLOjWCThNOgErrNtiButrRikSGV9IEas3wvvP5mgC7FCK3k16rH3o8uhIyCD3LPuqktEZuXLaBOri+Re9XydCpGmWeE5JW25zZ0m3ipLrA6nHHaZ9T7Hz6XOsRQcYng7Jg8F6ZHGQVO/ddRFa12FqTZzxFRLEYCllRU7UXdf0bchql9ltrpHhXM+xXVglbAyffBOtwbE9sqKUBUTAH0I9JdqGC0OmBCBY8mFxNoKiao/2bLcY/Y8NFukIFucZkKIvnHD+PxRw9WQu2zuCc/SlAZOu0+8QYB/7wh+/hPnG97mzt/vW3THRKQdsqtr2hH5xUwjZlIDBpH8zQNlZQ3+8AumuqImBoqKViaxVTAIf4ZidIOBOQ5t1UDe7gumr6lIm1NDvG3fHlxzd89913+O7bX+H19QO2vYGT5CpgjWCbD7FiGRDO6di3phYxAddySD4JTnJKERc79es4nEDJYqEwJ0IWUdXYMdl6OYLB/srtYWzJnVMi9IZSyHqrAkBGdFb2wVYBMw0xMINFNi9gMftWhTkTHv2eSX9+9Plf1DMxvU8Ry4rJfyjoSzbYCayJ44sJZ8uAWL/Jgiq6llVQVfxd0k5o+EirTP8S8JkCVq0WMUUUMwS1STwm5lRC7ljP/2TqcD/zlik/YAsE0Pvlv4lp6GJvLgu5fBKLYzDAYnCPPn0ZijSoaD+HqlkMnZJNqnYFCxVVBFovjZJxFps0Ujpb/J7bb5Ltm9o01DuhQG1V8jydbWKLBa7zbj879wkbsd0La8KpmH2y5TFDW0hXYkqiAdkMQiEEHcQosZBfBwEcM7CtSNXotOXiXKQG8C52bc09lQFm+h8DkxTQdlsnEJDvt7WKZsY2/5gYnny/k90zwIEodM3JnuA9WagbIJ61kACUFCDW5TgB6FoKrDZ4ccUM2iwZV/KOtemL5AkKhicwmXt9IowAsmUXhq45w5JSuK9ZREvmRwhwVuEs6M9zGtjJtMwCML8nwoRf0Bczd6bdgSUjNlhs0n4hoKwWIQU0EcDhKsIoOCmGBZSVZIhNAiq1bGJYStfvCaxLgNwhYHX5NeCbjx/xV9/9Gv1x4P3tDffbDXMMXC8XAmeTbZcwoPeJ2zzw+z/+Cfu2UZNu2/DaDHUO2DjgflPniml9Tyu44qNQcTOnkNfG3Sq2x5idIGBtKEXXKzsVkuugHIOdDPyIRXLwOTURU1ywopwgMvEGim0nCLz8OqfjFARZNd5gFpRj2XZEAKMPfPnydcXXi6WtHI2tpLRpZgBPFD8jc1hyLRyz32AxYFuBRSebTTboZB8O5VFM3SNp6WZqS6LeVNpxDwJFlbTpxSzrgwyWfdvhALoLaDO2pQqXU3eFnf5EZ6JKy3jt+2ffbMrDFIcFGCvmiwCf4kVkLJsO4LR3jLPYimliZ/sgcWNvnIhZiopCUFFXz9MtGWwnwzVjS8jXpX3PvKW1xthdeTinlj/ZgPTJ+pBQkQlGIsLJhmdQnfIzJFUati2LxQbqrTZGGLFCB/RBgBBWqOFZDUX9cyVtdhUOUsrSSV0qYVq3WINXzrO9IJx1C5GumTvW1K3gzinhepZWK/Z9X6wwDlRqmHPgfr/jy5cv+PHHH/C77/+Ax/HAL3n9YuCpLoNKx9sfHd6J3ldUVDS0ICjEKigR/zkGtRqmA9uGvRilLdB0IAedEAIQs6Ipcdr2F36eVPlLjlwthgSn1pnDE21b7XpW2P/sY2JOU18syBoqhsv2gstOZ/3oB3rveL99xhwDMAbOpVxVLZ0Yk2NE497R5kBZPaikc7tNbHvjhDyd1Xl/AOHYggKnW90wfOLhZABMA7A3BZF8EdsGAprEYXQgcFDBSqBCBnnBPguufSloW+riJLAUsBKaQhPwGhiodCRyzG2J5FGzxFZw6ACLQqstiI5WVQSP1frFjd+AUqkdonArW3yY0HO6mDunWpgZdo4vRIy+DPKMgRQqrWb4tG9EXjunNc1p2C8vaHXjpAGaN95z59rBNo5zH2dbkcUFEYH32xunTV3L6gemaOZkJT7jGgXZa9JYGGBZoTqnvD0ekwndXjAeA312rlsJ7DtFcA8r8An07nRoBaKSPgNPZAVYGStZCZRVvcsEIYP6cPYO1zLQWucDL4D+DzaztYaaXznRIsoJCKW9p14Q768YhbuBiTE7ti1F9QnCPN7fmcuYYdt3tH1Tj/TJ/KiVwPH0s8XKalJCeXDrxgrBOO7o/YZ+vMHHDYZDD6xgjkEWVtKOW2Xw7gMept5k3u/QqPuJTELY324GbJsroYRQ/KFnOoHGliYyTHIaHQM5059Txg/+BDwZq4G0d4FSKvada8iIW05YlRbH0LSPTWyyuc6tyQbQoUzc7ncBZgpoCgSMZaDLjwk/6bRk1hQyGeUM5cnkfgnGElwHEGKHySkFefEAcmiEs6XaJieIqk3JYGpd0+FnX6xAKQ2aMGldeJygJBwUA6ddK1pPAChViekciCjnXtLKsTDRgVrEkCzY9oqXy0bgaQNKVTuGBQU8K0X/EQXjCDzuFPMfo2OMiTkZ5O/7jsc4cBwHA7tqqEbxZAwFM+7IUcUnkuBPySUDa4KjJeUtFjCR+k+lsuLc+4MTGVVVL7XAnRo5f//3/w7H44HvfvUJ3333HT5+ekWT7tW+bQjfcbu/cbJi3VGcrQMU1jeKrsPw+auAHOcEt2LU5SmXhvvhOFZVXkkKDGMccOckx9qkVeABn4EK+kVKAA30cUN/n/jxDz/h19/8Jf76L/45Pn78iMt1R41sFSB4YVMFGgOOOXEcmsbaCkqlTWT+65jjWBXSTFeS7VQT2DW2XrKVVGt6UFdmDAa8RzhsFpj7qlZiTNicqKLUbwK1WwA9KDRujUzlmcmBsSUmRYwNhiMmDp+qaEOsWT5we0qOFiC1/g7YFG9TY0VFK6Pe2QQFxWth0prNeB5OIAAB132HUJchoGgaE9dsP9YhZ5JRG6pVbO3yFJ9NzDnZ+iY7acFYrIAFhTFp2zAFGCjGsziThrXHI5NBAisntKRfwerynJYQwfoeqGgyNUHRJtADeLjjCOofIRkoOkszMvmPJXCag7cYA00AD8AMxdoquHg4W5PUKgWrZ/AeCVCZ1p2XVwU8HX2ihaFUCmP3PjgtSrozdG1KgiIW6NSsCrAViB1F7bJxMos9myK4xXM/kbXGLw8ji6O47qsoi2XLyZA5bsZylWkHhNpoCgyf5GsS0AsoWbJQndfYpRC03eZU5ylBQO/SKuMQ6fL1cfB5mCFKRVgl6Bu2gKLwQmB4MvZptcC9wv1p2EUAKZJvEajO72tWlu6YNhT9Rhg2I8Oad0oQamvU3LoF9d94r9K4Cw38KdJLEyhCAILvhwDWgJcgC8dBxp5bDgwKgcZB9wQB9lpvdzInSa6i5te0xUlHtr7QXh06B9wTW8v8iJ8VHrgPFqJQmJCyy9LJ0peZmeMBRMFeLyJ9BNzP6bFZOEykrzyBQWbAr7/7Dv/d3/4L/Nt/+2/xpx9+wO39DbMaXr/7Bt0n3o8HQgXQx9HRveNx+x32reGv/+avULcdH7eCbXTYcef5EOjCrSVbtqIRW1qZpUygGdpOEGjEwACnz9ZasG8NFtRxnT2LYCy2pOD5KgYAKCCzcY5OPVIViFAKHNKoye81TXIsPAs+VyMVSqssXnmjtt1+xb5fgACOR8fXLzfslwuuL1cUZLyYDVFknw+xhNz3BTjWloC9YYyJ29sN8B24NMAfQDxwDotRbJE6ZkVahRqKRaM3ATPsjSyc7ucaFfC8ZsHgfrsBAL797jveZX/o7LA7xkdgEZDzFdmuVVDrtqYQ84tMl6KzPj3SeCGn8OUrT4/VKkCnrGJS+srWyOYkCGvEBsbAOB6otWLfLtg0HbQ7n1RtJ6sq9fyei1SpbYvEIASsjNEx50CtL2Q9yW4fjy48I3Nfg/jiAqIJZJXK+JGRVu4xIDCVnxAIv1wuZOrP4FprOiMLs1zfx0NFk9rQGruNzkQ+/ZAAc4Fk2abIXBW0KVnFSZLHksdRtLcAQ5lS0O/P4HktqGvquZnhcr0yPnw8UGrFvm94ezvw9vaGH374AX/4w+/xD//4n/B+e8cvef1i4GkzjXkPwGpDvWxAPIDo8Mnx24f2/0R2HUq01Bpqu6K2Hdv2AaVWVfqBVsUgSCqyafqCeiWxKgOFgADOw+AR6sMU9bgYW6By8+EAYChxF/hzQY2CbbssY0AyvqPagLeJ+LChbw3H3WHR0XAT/ZftHjGHrqPgcb+htYaXl1dVUbjxj+POKnHqkcgcVRCQ8RjAwKJKu6p3rkNWm4nOXjJuZOW4hKTTiZqSkk0QIWSAARqfwNkfm2A4QPTVUOCdPuty2VCMIn0GioonMDBnh8+JrsRw1xjw6SAwVy880GHonTToWlU5UJWDpSsAFugQWKbqHIWCz8AVQQE8Ujj5a0rb6d4pWudJVzGizW6pnQXpKHEcabaklaiL+VKQNFzD9fK6WHJjOkyUx1Iqgc4OCoMmHOyAT6BdNmxtxxF35Oh3INBEta4h4LM1dPW8l9i5cyPZIGR8kOhA43V/eyeF+C+/hQpuMCO1HiBLrKrVlHubFFEGjC4GGkUl3VWlIUrFM1C59jmC9EzoyXSj980kulDk1IFaN1wuCV7QBSZAmULQE0MJBNMiFhUCu6xLTDoh9wkvZVWCYL4YaUOU7EfXIPHalBhMNLCS4NLsqZWjVmvZsVWyCB9vX+FzoBUmH5da6XzHxFCQbPuOBt5YZL+Uks4URc/hBTE7AzNAbX4MHGoEfHbYGByZXOlUomjij5VVRXbppJQQWGii9S7kAsjD5iFmKIB+HMjpHa1V7NcLsv21D4J4TSC8iXptciae0YIb4ngw6VE7Hqd2MXDOVjqZXIq5ejoj2p2i5JeAz1AbYqBtYvlJ2Ly1Irq1KNNFAq4BXS9ZNAgxU+WwW2oxBYFnhCoqRclHUQBnbD8mgOdMEm2HI9kGFdvGCaPFArWykjtnB1Cw7RvvURoMrQAPZ7sVWx8DHl8R0QEcKLajlIajE8jbCoW+ayPDa8wzbM5zkRW62hLoVXBlqvQFMI4O6iMyAWhNLT+UDMZcguvAfimYDnz/wx/R5wPffPOKT58+4NtPn1CboXnB9XpF7Q2jTzQzfPpwxewTow+U4mil4MPrFbU0zPFVoGxBoMGwo5ah9RdrUK2DNsHpseWgsHE3JEwQMdgiqKS+z45j3HF/fMH0r6jbGz68THz7EZiPO+CGbbvCAWxzx+GOmwe2jXbrulPAu5ULgZMtFqVf6ZCmdmGBHC5wg/dJwC4LUqWoBUhm+5oZTxC4ZMHREUUTT62iNYqb4r2jWcHVCi6lYDfDbmQuF/mxKUA1KhkdboH5GIvFCpABwuQM8slM1KwAplYkp+OEz46Ao8VAiQ0tAjWACrEiCqfnoRpc587MKdAffurmQSxxK0ofygqU0trHdFCVRRpFhUleC7YYWGgkdQA7qCvS5P+2aayCd0fdQywJJtr5rDwdMcSGC177zPMQqZjDYJtEDP6s6YyEbL+DLNEpf9bUet8hdhhMAfqqZ8O0ZjZDI6SHJiEnACQmrtbIzOBq3Utx7CbdsozbYGf7oDWNsG8NvYBMyApY3eA1QbbgWjojerI8+F7hnKTYJ/d3rQXmQE5gc39KCMSQSQkFn2xrXCyJ2qSBIn0UAG6DsaRYhWQ0SaskxOZwneQVRjFWyI4GAnLSVRFDB0778kEizVmMcp/owbYe1/SuCROjzekfFzsXLCgD2GEUeQYELvD5RcYKTl1q7qTUzNQ0z8BJD3Agh8esQozlGZ+IEjDcgZjonk2zc7G+iBaNJNMy5hY4ZAlwBuNpBahP0BYzjxI5QTr54wH4REHBtunk1UDYJJsrkl+qou8oq2hUghOyKwDzwPSKwwpaLZyGbVxb+KQ5K3m2iyY0JrOlEmgPQyvMK2Yyp3Gy4AsRRsaklYnsOwZ+ON7x4+OGL8cDZWuLpZf+Oa1NsYliTmnfQvY7g5iC2Tu7PUbAJgvSUcoaHjT9IBhbuG8g1pKVQsH3AuQESwOB7ipmGxAYFFqA0IVl5Ex6A7QvBCbdJ5lgc5x+xA2GpvH1EhwIAiaEFrhCJqa5gTHn3go+vL7gw+sL9ksO1go4BoZ3FjhrI3M3gAquX31RB00ElvZPgpRuzKEnY5/utCmX14J+DIJWpaLUHVu9otmOmIzrLwb4AIWrG4sy297YI6Gi5t7ITmrGmD2cemQB4H7vQOHzDPkjSplkYRQyFLa6O9w56bKAxbiYvtiCmwAmDh7SxEsBGpmP5knhJGG9hxAQtugqd9JgkAJJ8teCtnMwyRgDpXGCeEKNPdvokIDTCYTJLIOpTuaVsjFWsW+kz3A+CFlHCfVXkTgI8kC+p5HtuZO5VVtjMbN3tNI0Tb3CQs8mgCYZBtqo1HpWQVWXU8/pICzWPqbyPnUXADjGWODUFNMu3DHmYAGp5kCvzK2pIxwzEJUkk6005lruwNYQxcRQdfRwtEnfkAWU4zhgYCHqcTzw/fd/xG9++1v84z/+I77//g/48vULbl++oh8HfsnrFwNPjSkbAIovRykYIzBmrKlHjbaJZslsGcECsCpbd9R6QSkVc94B5CBTaQWQk8aDYDlKWubebAmM8SWjI+ZHtgdsW2WSG2ptQaDgADDR0NBQcC0NI3hgON53YNsmp0VcG3oJvI2DLWxxUEzUAh6dvb5i8fTjAMKxf/pEanEUHPPgQ9ZBYTGU1ZiwAi9VVHHqDVSxK9YIYiGW1O9R9Q2iqQp5NRCRNmCJ7fpiNvC9Yex5TbG4tWY6yR4sGCULaW38UhXf85AhWDEIAJvlBBNuyFI2avyYweYd7lMoKSSqx6xbb8OWskjwyxYNMha4IwNZmoxTqEfX8RAbCgo06TtE5VS85zPp9Ez2wtXGVJva+QxDB2PfLljC0UGAw9TG1DsT/20vCh6NrBJXe0/dUMZAoDPxxcnS4yUaohb04fDByksFGMTgDI4W88eB/njgMNM0niqwNUE0gjNWOcI6Zmp/iYljMqaRAvGxtBiYxHNNfE4Ka8vxLRQ8Kfmid5MWz/cqqgrO3lU95rMrhcAOAxpNMVMVjXRWO7WVspUkXOB9IUUVU+sqSrUzqXeIOTfIemto63kyPghYK2j7Th0yMzxubwg57lYN+76h94FH76u1tza10JkvlmBWE5TTipkz4f2AReDSNuRYbQ7t1jNygprpEAGyNlf1Pph1LIhPU898iFEUllnJsmgpUnsI9Nr2itIqtl2J8WTlsndWWZbIbYglOAeriyHLmkwxU9uQ2gyi5lOEktYV9p9JoL6D1WoxK8X6qxursfM+YKVwuMKcqhrRflN4muLfqfNi4PlhkukEiWQ/xNeieVoHg7bKYKjGz+TaEDzxICMzK2okXVG7As6+e9hOgMt0xo1tTiEdp9UnHzcgJgyDTFclOj4NteywUlFLJZjlN2TVcoENZmJZiOXkE1DFNavpZL052s7PrU2tFzaV7Aan9kRg2w1HB7788Bmwic9ffsC+F+CbTwTSK6e9WhT4cQfM8LJvOAIYj2Pt1+vOyUdfP1NjkEl2AUBtDFbs5UPzLDjvq5iE2L2IqXhWy73wulkh6zj6O6bfUMoNL5eJjy+G+3wgZuCyNYQVlFmBaTj6QGv0DVsNbBW4FLZ/ZbvjGNQ5MxRKMUVwQgtA3ZAIAYuVjDbZsGKOKE7WjuzUagVQwuUWCLEHS2kol4aSrGoAeym4mGG3gl0SAg7aVAfYDlcCXgjijmOqFTdbIlJLCbKnAgyWTSxqnHbACeQFmJQ2BGoyEcSKCflQfyrUUKfhtO9hDJRR1L4QJfN9ZO3djztBhjLRSsEmjaOqvZ7JfAQ0YoXth5DNnk5djhLcWyzCxgIEAiYxUrY8JaBJnmOmyGLcepxDIfR/eeSlw6DhNbQdbefQkMcg4JbFyF03udqksjocWG1B6nxQFZz/ls10QLJaBHqplRKhZAwsyvH5V6BUeGV80oNMp9YqnEIqyx5n0VShmAAsrt+ctBElYx9Vu3Mdlh+NUCyABUjxcNIuj8mE+nmSWZQTMKO9zXvUQttTe7Ui07CMI2P5dMajvA6LZ61QaZWFtKtAFp4LLHTplsyJ1eqdD7cad0YTczBbW4GcurjIr1zHBGuzDTD9qkuvJimkuXWdE8tYREkuy4GIgdEPxolVcZqpCUitf4x/eW7cQuy4dI6ZpGYjXabDsRhatKG+tN+y1ZspCgs9blzLBaDBMGfRPfC9N9NpjYB7xbSC0jK5VqqqM0i8SEw7J7NmxXSKaWpNIAbr+SZ5opitdafzrHiE48t44H0cuM2B7bIBtaxWtaLzzPM3lLfZYsLTjpClHl3MRV/QgTT0yMKKooRayxlmcNN6ONcntIf5lXkMtGeedJjSdNjityBb43PSc6IojpRC4DRxewIvUmqC4EI+Z57TWjmJ8bJfcL3s2LYqDTzGLnN2lARb5ymK3aziur8sdlBqhzmMxUDPePu0EVapkzQGEBhAaZyoWzZU2zC9iHlqOJxFWw7zMOyXs8W2mKkoTjkcTjsMAV/AozOGK1tdxfrWTqmY9CGUNZHuWkysVc94P9SS/qT7ZIWADGNAxq457djM2FngECuLX/u+o7SK8UiJlbr2qBnfr/tBpm5ku2GouMmhQZnH8bplf8XqF+FUeR/vrRVNwlWe7ZrUkeBzSiuEUi5ZYMBCBJOiQtygTunGglZVe+F8PGhvVeQ8bVpCnE+xb01f5IsFy1YH7kkXiJR2XIABWPCnED+VWJLhpMm1kxqfFkGd5FpxnCAAc5+guuWa2B4ksCCAcX8ABmxbxeM48Ls//gF//4//gP/tf/3fMPqBOQeO+50aer/g9YuBp9uRU0lCrRwEUVA36WUELpWo9pRIrCNw2TZc9gvGcPT7A66WgigSrZQz2LYLxOZGK2yPqEFRvT7S8KdRAQPGYmT8CDgY8FN0rEIaIBV1f1WCWxHTcL91rAlVotAVY6jVygHbHPXjC+Y0HIfh8Zi4Pw4YLrDygvsDsMMx+jva1tHKZ9R9Q71cUOsFH/bror8dk/ogrZCa3o9J/jMqAhWOwvULlnnMTS1AOV6yookBBGBVxEO6DNQvzSBXq6QiU700nCi+YzgrxBRYv5yBYQZoFos9wbWhENyp/UGWGhFyx/S+gkqHIyMaAia85qziOUKVoMC+XUijTEc89GRrw9Y2tcgw4Lr5DXM6GkgjL4WTGCYmjoOtcSw7lkUlzsNsBrStYN8KvE+M6Tj6wfa0B1ueWlNblcAgWCDAMZ23twErFW27ImnV7H9+Ai6MYNe+76saObyj9w4DGVz7vsGsYJts+/ARGhHacdmvuF43zGPg9j7x/e8+4+X1Bd/9+i+IVHcCReVpSlQCTnvbFATObPWHRSXbBQVuBc12JFvQSsCqRCwB9Qyz9S8igHLh85ihvWkrIemi1NPjnBTnVhrgwOwEHcvewP7zgjEHKIZHXa05sz2UQncJenpxTZZnO5AFr7dGaOyznutOsKGPB4Ur+x1boRD59A4rLtaj4eV1RxsFs7lEaKdat7DaeRBMwclSEXjnSbvl5KUUP0awHW4rYuckOOsnGJetQMBToqmKizXambpXhaVzUYJb4zhhRZzYto3PZ6M9fYjlNKeT6dVIczYzxCC4ynHxpnYTft3fbvAxYDWDAtD5NRMji3ppMZ0VrEpwnAchaBeRNOgijS4AhUnT5arhAOMORwh4YZAYgwG2OVuUFvPHDHW7om4aszuDmjMCRzEn9dH0q1CVi6PMA3i5flABOrBtBR9ernh93fHy2nC5OFpxIA7AJvY9sO8QgMzzyvG+DiscdjF7phMVtbIoEaUhgpVn6LrCA7f3u9aF9qm2ilrY/pAr2pPpiWRxLWwTtVzZRlFf4OH4+uUr9ssFrx9fFwAIFRo+fvwGZhW/+93vcXs/8Jvf/IBir/jmk6HYK/btgh8fv8f9PrSfgOkPDBCcdQvp4BW0Yvj44RXHMfH+ToDw0d/hXrCJCeoBhEYhXzaOmI/KuGSIou7RsdcrwbpBsOyyXVARuH294cuffsKffvM9vn39hP/x7/57/Nt/87/i7X4HjAWKrlb8Dxe1b3kg+gGfB2Zp0q+6sEpalJSDgqqhPQ6jjuPmBbvKrhTPZXW6tQsLDq6poBLrZtyi9hTBDpl0YFBofM6JWYCBgodl8/MQuyHp9ckcgMTJJ7YBRCjQNCxQc6znH0pIDRFlBbVVIVhybhDU3XIliat1LNuT51SCpD1rBhirlVMTDXuwYXxov1tkUw8BtQBbq1z6m6ktl2zHs/VG/hCMSTYURGkojZohDDATTOL1WKls+THiI1bONi5DZUuFCmep+zbdV/UcSsaxEmSBN2jSgQ9Y2dCsoCuZProJ0GBrP8xQkVDqoI33jpwGmkBTMq2y7WoEQ/8RFVWj6l3gdX4vf5oJaIDM3Zhk1SbCVEIKkQrms2jEhIv3d325wkpZcTOTNGqDzilZByVBqlecbKgcXwgg6tmeHYr7AEMY92tW79kzwwCxFLHWE6lTYlVAAXSX1gu1GPl+BDZUHJodc7DdiqpKLMLO7qtlfAb7CGwOtpJL+8TKWVxVaoVg9kTQWPE4C1umfEPix7Ove8iM0cQmKVYXADVVQZrgQXLpGq4sc3KDmjHPoB6KrWJJrqU/70OcbKYFjoKFlSwAFwBWm4BHnfsFQVFXdiZgugrBhjnpmy+XF5QwxDSkrENMtoL5wZubU4LpswKlaKoVP2NO6fghC82p1apbs7mAmCJbtMmmDZ+YxnbCx+y4jwe2Dxe82sSjd9oyZz5H4LoARW3bIbb6MeA/fsZ+ueCbb79BTDY49jFZyBUbfDg7FNq2q9B5gknUDJ7wqrOkvIPYn2N2DX2IBI3Upgkghi9bmRptELhqYn8ENmHrJ5CAwrh+vfIBq9AGdRh4CVyuOz687Pj48YLX1x3UkuNU3fTdpVKiwief3/3oGorDjoVaGkg0cPQhAfXRYeH49MpOnK8//YB2uWB/uVJHbd9g7Yptu1DyQpMieYIIlHpx2BbUuBQAs+eUeRjlZnygbRvatgFGXbb7cQCFcQCCcWjMwHE/aEtLXYVVCByamgpdrDJXkA1DAOhHHvCF+hT20/O8h3GwAQJ9ksRx3TYcR+ckTKeGV02tE6P/6C7fl4XuGnj0B2ycz6xCIOsg+EwSAfmU20ah8O5TgErRs2JB/hiU2qH4/g4TWO/ONvZWKwvX0ynQzhSHUzxn4BhiNdUrwg3jmBjBz65GrGLfmuLlDveBLimbgHOAlRm2tjGvSHtlRSL7ZICxLVcF35owOEHZpo4Yxhm+4idEYN+y4BuUUpid7b0RaO0FAeB4HCrQEXfYJMuCCOwvG273O/7Vv/6/43e//y3+5b/6V3j/+hVfv37Bh5cX7NuGrRVsz9jwf+X1i4GnKTr19FgME7ZLNYSxuS7FVMNOo82NV5X4c6pR0ajZrEQZxL5ILYREuEVFXAZEjjAfyIJ1JfBFJJN6BQzkswrVpGnDVZkzQQa930K2gUSJ6060mfFVCthRKDVV5vtBlPHxONAAbG1HK9SVSTgGuodsj6P2AYRSSvw6F3lRL58o17nUZgvAyV9pTi39ptYm+0xPQTcCQCOmqqkFpW6wIDiQATXfK1Y1zJQNpR1xjRNd0RACqT0UmYzrVcqp+5AbXh24qHBRwPPqAtlLSnaXLaQ5BTifhTITUc/2o3NqmikpPYGnRJe5cufkBRf7IZ87LNkegWyU8jmZNDeCNGFnIrG2z9P9rgqAqgAU8iWyH8F2nGzBUeGOrR6VkwbmDNxuHaXsqLYjxXWtFO4XVV5zD/H5ZGUScGdiw+sS3TJUfdZZMHuq1OkXdQSwAiIHWTNFh9rkpLOveWkCQJUFgUlmVaAHWxSppUbxxPPZcH1q1EXvz4psZDAQ0lMJabXlL7P1zEMtiihT30HgNB8MJ9Cp9cmT7VCWLQkEwQjLylaeN+le1VNXybgotElFDsun9mBCVstQae/ZsmMm8IbIjKjvfp5vk3NOZ1GUaOf5fZ4glxXNFLnPXC1bjagbki0aWfXTPSQyKkFGk43meeGN5oj6Z+5TPrti0CA3Gm5+hKrWef6QDzIr/5A9OZ9xKbz+MZj0tWXL85vLyfRcQaQCfD0QDyY0+17RGgsQtQK1BLx3GNjKl//mkwwTV7K7rKcShFxPM8BRVkU6A9hwsKBSTK1dDHzZDgjEz8YSl59V3JZ+iYBWU6I01RVZxfDknuSab9sF+z5RSoNP4P39gdut436beLk21NYQ0RDRVxWRrAxItFPjy417ZtsaIgxmpCVzCiUnshakYeWNZvuWK/ksYAsO2bM8B1N2stQKw8TsA/1x4P5+w3XbYd98g2IUduUQAKx4oJXkmrBdLdSGFaFdos8M7bVieR5k2bRPTRoZCT4hs9pSKL4MMEnR8ysFZG4l8JR7YDhZFGm7LZAralgQ/HmeVAcLGXFzoEQysrOinumva59ZmgaeDctEly1tOmnLlz6lQsumnMwLk91SvBWWJJ81UCQiAyKlv2Yaka3cW8+0IEEfgeBIgXxeEZklWAz2iIo++mK1Ytk3fdzzMfYzLnFkHGFr7bLtvTz9XJ6Z9JF5ryzOOlA2IM+kkshsxdGC0L4haAvF0MkvLr+d5yX/LvXNAkDREBg8JwDP3l721op0mXz5HdWI+WjDlr3M9nj6prLkJmC+fMBi/OucBLQu2jZ8ZudeOb//3COpCbNsl/8crNIjSwIAIEarGVhQw5NfebL/+czSfmZhpcbJiH0eGgJda94LYKfGDnKPxtLnys9Y2lpFccUUezECGc9zY4g9aEaWVzzvGe0v3Q31H+taqPRLxVIvLM9tMsMCyVt8Bp3ObWBrr609CsBc0iJ4OqfZ8hKK29LPpEXRvdTaxP6IPLbSbVKgCLX5PDPxMsaDIaKue+fm+3mEausezthVpWGs2Mc4TKhPtpCWrRBkDgEkT7d+xhuMFyMCj2MAheA5876N/sEMa2CIu2z1dj5PmLoKoDyknHGtrhdaC/qKkocN2a6W7b6p87tOTeRtG/CzjOPcSmErg0krfz5vBCgQ7qiVukJbK2jVlrW2p5+0tT46A7KT09kexQ4XrOuA7skiNNVb7fazSl+UsVzbGtrWVIzAYlFHBlhpyCuWP10rEYbU6wRMXQxPpiN9kuIgyIekmHWezQV+e9pu7d+nXHUqX8kum+eVROb4lrFuTlbO0FTrmSZDzzBt32J9Kkbw1fHBa6x2ivfDQcKEK1uOk9mT15OF4Rx0gSBI2Z73ljaJK+45b6WyeyD4s2xrFAiu9UmdqabuhASCTdeYeTyBJjKmIQ3a5TBzf8v2Lj+CM1/Nc786ICAOacbhYFGZIUTmvzpL6ylp3eJpDwM8sxHoo+N2f8dvf/9b/Pa3v8Fvf/cb+GBh4aoCOYvSP/eT/6XXLxcX3zYl3KxUPY4HWtvwsl0wJ5kZfQ40BK4vF7g7jscd9+MhcWEG6NY4tRmiJ3afaNFU/9MCTCYz1UFqWAZc6QBB4GGGYUg8y7aGCtLPWwP23fC4T/TjDvMrDA2XjayUCEoFzugYc2IeE61x2p6rdWq/vqBUagtZJfuAhquyHSiAR6fQ+ttbRz0CtbN/sm4Vl+vOXkrRxhPMASBxtobjeGCMgQ+vr6i14hACycOlxEbB0ALlswdUjrVL2yonna1jGhRERQBT1ds+OwTCYi+BatuKX1rNRHVw4lAfgKqrNPyBo7N9rgj9bdsFCdqxlYW6CoCtcZ21llVdrcbDqd5MaWfZiagj8Hjc8e6By/WKUgvujwNAwev1k9gu92X4rJmYBxKRzwR9hhDggjnvuHtqPRV8+EDx9FClqVSCAD6AULN/KRuKgcFAAKNTKwZWNDUksDHLxZx8Zo+bhKAVQO9t49jMUrHt7Mt9O+7oHhiT4zpfX68wPGn6mOFxc1RzHHe2Yu71lWLqY2JE1zOmVgx2tpVOP9An0AdZUNt2AaIiwjA66Zlz9KWBloAKdY6ck1+CGmTTHff7RC3A1gzXfce2NVKpfWA6WR+7xN7nEmkeqG1jFaTQSb2/3TRVDHIy2bJFJoyhwgswxsTb7Ybb/YbjuC/jn7TuDMamjHVWENgCeGDMgWtjJdGdVba325s0czq6Dwx3vFw/orUN467xzk5BT5PDgsagSx8fZoE52dtsEdRagbQ5bMcxD4IYSsohh1mLUTixtuVqOC49xL6gqHMppFNz+lrB/fZYrEIzai64c5ADWyObggdW/8zs7KkndUfBOh1ZLRV1K3i5XAEzHLMLfBkK+HG24c7TUa34VWAI2w7I8LE5cbt/XfuVlGlq2M0g8w3hTNysUhfKE2gNap5tpLqGkVnTcRYd6Ch32reZtP6C635FBPB2+woUYNurxuw2FHSMxx2XDy/YmuFPP/2IrRX89T/7a7y87Ng2w2MOHP3A2/sbHo8HBeEnMCaDrc3I3D1GF1hN5iA88DgeYCWZtoPtGeUpwAc8B5UT+QGs6X3OwK3WC6xU9M73//jhOzIunWd1Tf+xguv2AeXlFb/+ltf7/vbA73/7BfPxT/jv/vu/xa9//S2++fZvcH254fsf/gkOw/ayo01g24Hb+zvu9wf2WlE2Q9sJ+1uFQJmn9pbQs9OkuePgZD+0BDjIYC0oqJX78xFkPbxcuF/6OPC4v+P96xf8xXd/gf1XO/7nrQCYouXKLi8whwFn23Jkd4LgXQCU9mA5EzRXy/eUVkcCogbAvSMbCRP5yNY2ioLbCqhWCKjA2RWcUX9FLSFpb5xtBXUF2HSgJYA5OB2xRV3Ak60qUE6IK3AXO+IJNGh1A5Jx+JzR5X1HqE0YqBhkPqsSW6whgRMXeNtVhfbaUEFB1Hy+qVWxaf/2SSYQJu18K9KGUiGRE9sa2a+R46fJxGxbg79P6YTwmgvOdogxqOUxZUfKywVWCo7BsdYUa+cZ4VWRDUbwKzXeEr45FM2QVcQhDmRldoFWQKUuTi2KlwoQAqGctiii0bbInrne1QywSsZDDcYp9/vAbgXVycjzAPadgvwJ1vXjYLvCtoPQKVbilflCTiHnFiiccilws8/5NEnMwOlGzwD12Qa/gI9c65LgiyVGLWYb1vh0piOMV4YNCozr7xNWdGTRRZOTyXvkugiMen7l6tE+cSpmMUOblBvw3gELVC/5LtQkspMFe8m2bTXoOQbyMWYiO3mxiJYDinJCoWm9EhY1sqPU3pC6cBP6Xa00rTHOQCVvsTLrU+FFbVaSq7DAuvaEnNgRL8cejGe5RzW9OJ6KF9FgXtCawB0/EzyLZFnyNK70UaAlNVZ175ZJIUHlrkK3lDv1FCqAplboQClXxlfhsnuSqwjpn2Am/W7ZQzKKaDNbAy6Xise44Ycvjq/HO45x4O4HGWyR+5K6OgUUuUcAVi4ApJbbHfOHL/j222/wz//ub/Dpy2e8v7/h+z/8Hsf9jutFZ8ntBKj1RQwt1GYNxG7EVtsGeizF9z4FTuV+BnIKOKdWc21zeI6PCnhRAYO7OVtKmfMEhnLCJFCY8oddWmoIx94Ml63ST8y5BN0T91nkAPelx5qowAQQc2L6A9t+QWs7NgA1HLf7A4jAXiv2WnHdGoYD82DrbCnAy+WKy/WFRa9S0WpBn9IqqgW1AbbRkM7bYNEpoAm20rCSnZpiITYzXC5X2gUBHhbMEUqpq/2tdw3hga+1XabHeQ0MhUgyKYXDX6Y77sdjyZmYpgWzoMo9gOk4+g0AGVrNiopOOgdpQy3PJmApmaFpw8n+r2GLkZWs/5QE6ZP27nK9woM5BwkJE7UVTe4lS7BpMFbobM1BGZApnSPDydq6H8cC9bZWUbem88b/tmWzHffb+wLpTEBhleBcqNBdNgLIc57gcQLvLPKFuoH4PKb0U9f9qhA0hvSExWhfRfO2SrkI5zN6+/qV67dxb9VW4Y+Ox/2GY3Q8jgP/+t/8a3z//R/xv/yb/wXuju+++4aDzErB4/0dx/G+ila/5PWLgScD0Tsmg/HU13kybrQtFk1u1ZVUNqPvTIcnVkoa+EhqvIy+6z1C/echxyfIkOwTTsyCBVrN45Chna0ecAJxpipNInvz51+U40SqwecBq7VgvxgCDb2nUUxxaEa9BC4mxuPAnBV1ZiCk9gAgjw+NZjWUZsA4EdhVlEtwCnYyFBKlDdMaJ7i0MNN1OJ9fOX466y/c7Vn1p2hiTbqe1sWzSlsSKT7T0FCwVqqxcqxbezZGiaq7gsjUnUrDbMgKk637JkOLztp1mIYPVKtypOCa530nDTyzjuW59LXW5wn1FxK8qjTau8o42KedqLcpkED+nglY0i9ToynW+xJQTxSd13SOtpzLcGdYUxSQWYJoeu6jD/TeMY6BtlFEdAbU65vG34mDCVHn3vZ1FtObm1opV0ViRaqRGwqBswqZf38myzp3+Xwt00MZX/3IyUzJvuL8e1WSFOgVi+X4lwHW9Y1+YPSOOTtqZIAVegZ6JmufFSygRxU/sklUMRP4GHreJYro1Fkxm9LgycjH1l7IkdulZCCY+yuT9AQsC0rUtYfzDKWBh51770xMAsjKh1g/6+CsR3DuKSbHdIBsHVZCkaf+NIerMrMuJlmDFU/U/qcL0h8oMkwAM8UWeA75zDgtQ+dC11RktZMxgjjvfcWRK1HXvT8FmHkuMw0nACpwPtSqt34g3aStN2Bra8NWOc67VZAWDDFX5gBqw741AuqeukHJDhILxc7KMm0W2bA5yjkfzrKwek7ZPpPTTGknZbvTHvzMFukhZ8VNlaaqc7YYOJYilgW1kD172V/h03DzA49Hx+fPb7jfDozOQQ7bFmKDxOr5L2rBCUBJPa/dCie/VAdqDQ1EcmS7Q5Eey5x5TiA9lGwfCiBZo+ZAapcEhS2PfuDxuKEUx2WvnMJXAZM2kSkrj5BbyESs5h74s72SZyTPV9p4YDEu6AZ01p+OUpyH4mnPn2eS+0573lJTLyu8eifZy9MP8nnzfJgKJ2kf1TIVtpiQsfa4PV3ZeRV52ophMYDzK3mrNPlPZ7CIfSuvnrY5lj3H+tyTiazgFrbYTnxze9qWvMZ5Wp7TTCgW4dqEGLinnzCDfM1TxVqJD0HFJ1p3MqTXM8ViWZpWq+SfrCBFZ9c3K6ZJ22wZg4KbikQvctQcak2ynHYk1mOEmGJ/Hjvx08kgi6VNl34o91Fe02mj89pwMlFz24UtDZAsPpI58DSgYO3H9EXpU+20589713Jf8azY+veyvoHrh1UISjsdz+BmrnVwo53e/ekbkLHDGRulRhKBR1In6gK2ns7ln33lK9WXnq8l2Rf5lea3rKvSr2y3W+fT1jF/Zl/kB/Jbz3jGDEB2VuRjy+eiP8sNnS8GH/zZOG08tdXK+UEZi+TnqP0oGYF1UTlkV5avt6X982wlnvdFjqs//y3vPWSnkwZz2lFmVmc7z2I0rDdOf5q6mG2Bvn0eOMZBsIeHlPYjbzXOBHYV7hQVpI4QjJMRr9crLvsO+GRumGclWBTAU57Ge0rbZifzNeNvMRjTh7ssZci++fPDi9w9jf5q+YMzlnjemCwaKL5DJus6S864Lic0AmLSO+Qvcop4yOaphVWFwWSguwfGdMAmaqtLiiF072YENU1FdCz2Uu7h7JQ5Ac9zJ5/bkF0jWHYaz77KY7W41sLG5LLOx/PvWGBaLN+rQQS5bpa/2ToXuf/y67RP+e9iT4u9vroaBKovltLTdn/mlpkly1HvV858Mv3cMw8N65NPOP1MHc94O40p99+yDuusRMTTD2b+w/urYsAv3wUNtLJkzkqe5Wmvcfoc/7toUu+5Q58NkC4Y8juy51YA86e9/PSMfrbmppbJtNnaKKUwf5kC0RCpzV0x/YHHceDHn37C1/c3/OH3v8cPP/6A43HQXly2xa4q8gk8l3923f+F1y8GnuAc754Tx3pQi2PGhMVANUeJnKQQsHB0jEWLr8nKKWTSWM2t4YB1Hcamvt2OwITmX1DELThmG5UPzNVy8zgeQAAvL1cd4EIcqQMtWBHZaop9kTL5GBSShfc13eNSqbVyxIY5ybwxa/j44YVVwH3H73//R/zww0/UcghV7AM4ZsDHgXE/0FoVqySAuOC7l29QW0WfrI7e7ze8vLyiXSp2a7AW6E62GOmYhrZlO019amvXQZ6sQs5x0JkVTTkLLENZZNxHV2UYRDL3vbJPdA7M3jF94HrZVIGgkxrx4PNqSel1GqoQk7NWfPjwguzPHsPhGhUKcNKVAbBs3ZMRZlLFnvSt7UAxjmd3VjNrBbYGzBIYNgE/UKJgFk5MG/NNp4U6Ua2ymuYIzDl0zGjEG3tD4EdnT3O5PDEANU0NHZbOUy1Zs/sat2nAmibRGicU1Lbhfr/jOA74pGEnG4jOp9SCrW0YU3RlYzB+u99wPw7M+QAwsDWjhoLcOA8vjcrj9ga44/3rF1yvV7QPHxCT4pjbRs0PF5BTVV2ouKD7QG0Hz1OM1Rpj0jHYshqfAAxNDgja0vmMyUrTvm9IcTz3gcdxUDfDRL9FqD0FQEjksG10pEoWvDherjs/05nOVDFAwhNcJr0YGHi8fcZxu2Eeb8gQbFUJK5l11MkkrRwz4IOsvdJ27FtDNWDc3hCF+j+lVbxsOzYfGEHg4egPzOMAInQ9wBIxLdD1AAnilDQQ8hljToLKtVJQPgRGR6BMBvrUAFHw5wyRZjjbhXZqCV22+hTlEsjnpKWyGnWSTl1ARkKTkKiZYYD3UBKI8nXJTKDBnm/G2QmePKUBotxurUmbRk7NWCEag2KQxHKmnr2pDfmitaHA7aMfqnRVRBV75zhUfUpAi8FFtXTIBVOThkL6J9R6IXMkNahYkS8UVETgsldcLht+9atPuGwdmHd8/PCCjy874viCYzxgw9E2w4cLB1n048D9dsPbG5larTW4FcwB3OYDJRy1CZCfU8liAFZlCwsDWgsRRfi8ypwI41SyUg1rqEFwzZDs7pxwYjzvU9NXpgeAC9sFVb3vk7a2llegOT59+EsYvuDt6x239wfevvwB3337DfZtw69+/S3K3tAPMn+ps1WoXVIap56AWhteCQi8fLygHI5pA7fHxHGXcKlVvOwXVgdDOoI4gCgoaASQDBh+51pstH/TBuZ44Og3/PT+I/74Y8Hf/s03uF4ueHk1XF8rym5wcGiET8M4sJKCbdtRiq0K3UwNQzBYr7WueMoSBNC5zRZrIEXqxeQKh0uDis9T58kKUJJ9BLg0Q+rlSh9QN66bVURUxBR9PFuswao7MvYUqDYPV4vEBNw0gYz+OCeOJZySunoE4oG9NOxwvDjwEgUvDlxRsKWdtpD+ZwDO1sutkmE1XbBnxAL1MgHIiNBAUe5qBs77YGSFwqQohalnQJO02Fq44xQRJ+vgHDqCPVtNywIGQqFcU0LgzG/Qe4cryGa7+iZBek059cB1Y0t6pmAxCQyh7jCfyKlq1YBhgbApbUZoTR0VAwgsjSxExYBT64zYs9im+WeJ3AYz4FASujVqz8xJFtmcEyhkVltlrFRBLSvR4s5zbgBlJDSxSiCbWUWtO0phMvl4kAVwvUjbDlnIBbJCXlDWvn9OwmyB+3kjSuKgohqSvWuI0sTgndSwCrbCQAl/iWRPKdkJts4ltymLBkucOVszJVRsBgoRewCbAPhM/CLln8+rD+3XnnuzVoEPgDnQEJhS6DI03SXvCcu2JgimUCZ7Ol1f4Llr0oXsAk4WG8yMU21jrqJcnqMRP9dPY1vuCQsAyV5KsOFs71HtRJiWWvc0KAVGhkqrhbqGMQU+Yo2ZH4P5VRNLhgCe3nSMBaaZWeLkP1uPSDwnNKzegYmBHg+sYrVi8jAysVOSoxXg5brhu28+IMHO2/0Nb+/v2F4+ULuq7hgTeHTGTbUaLkYWGYqiCoUWYYbHGPjpyxdc9w0fPn1EzF/juN/w9vULJ2cOttQVxVbhUIGicMo5sgmQk0St0Q9bpd/t3fkzEMhTNjiA/sSerbap86HBfeJxvC1Wk7ziyidbqYhCHUAuJJ8tMXbavlbZxdDqhmoVx4O7u9UrWWFd+U4JbCIe7MnGqZWM6vnAcXvA/Y5vv/0W+76jFTJPGBdzn80B9INEANhAn47mOt9O3WE3A6ydMgwKXVujfSJ4VsTA5XuPydZwzi9i7M7hOyc7P1lRlsWGLhvkk/n0VgXwiI2Y/XICqeCOIQC0wlCe8gJEoM+MvynMjSZZC9ndOdiJADOUXa3V2uvTgSjG1mqRBSZqPjI4sPTxFtYIsVbN8Oj87Ja5UASoiWsYTo3LUthhUMuG8yU7JMPDAWBQrs+cNqGttJ1741S/+/22QKfVFtjILOLU50Db+Vl9Ss5mxep5sGJhYEhMpRKgXID75NkvyvdY0WKsvdUcFwJpCzq7UWrFLMwX5xhopeJSG74eB3788Sf83/7l/4zf/u63+O3vfoM5Bz68vizwnmSBA3treLm+oD8eq4D433r9cuBJN8xJa1iMDQBotWLiHAvK4NGZsEsgM8UWKZjnFO0VcJIopaJ0jtNEMpw0IjQ4NSDrw+nMVCwTwmvr8FLztzC5JC9PqvouJlCQmr0MuPSXSkWxWFToCI7dxpi47IZvP73gfh8YM2C20d9NqD3IF5V2joHjYfjy5SvpuWplazJEmeTM3JCwp0CaDmQOUuWomC8nZEwgksSQhiqWqC37xc/3waqslFIlRm6sFDpUgWAbFasjOWJcAUhkMK8gGC7WF8GsvC7T9JUMpLIAAyUGrLgwtJzQv60IXoFKCCZ7EkiukZUDrOCWZ1BJejmrPvDQnjJdi/ZN76rYgkx8xLqfcFUkje/plhVlY+nZzvuOyWHOpZqotFnZCk1CCArSOoX70hFv+wYUGj0zw/1OQb9ai1pQnxkhbO/ox0FQQIl602hOeNLiQyxq9h8TCADO6WNsBSpWFayczLsU6MvAhu0UYurAVrXE8nt9ygGbQFdX2wAdmuk5ZpUnmUnJoHD2MeoGTycCMBjFdMSYujeTw8vRuaoMBM8Eg+y6nllqFWXAlBoRnPCQHAg6zWKhtlkGdzXOs5Y2gPeReyrW2ayFSsvTyQbEqnySXgwPjcpdCCerHPrWZC/OFHq1kkUogS2snrJ6oE/VD29GfZYtJ3S5q10qNOI2kyfuV4I1dbV2uGfwzzNTjGwAPn6JdSZ4vYL3ov4X1XDSmyKDeIitkraabImsGqc4sFXuEUTyowjWmU8WKrTCQLLikm1mK5ECTGLGjn0HWgWTTXNU2WoLx/Ho8NHx4foBL9cdxUs+fdHhDUPJrstPmPxPJh+Z2KXxzISU9iHkA8tqowtVs/Oss/BjT0FCsoJz/zPpQfo+0K+hsoW0aiz7GAeHKjQGetvWEN7Rx4H39y/48nnHp28+oG0VHz58wuNRcTt+QisFZQNq3XC5BI4+1JrACtnWSAUfu2GMwMMIMLLqyJafagIsJPS7kCCj5soMqF8eWNVWIyh7fxx49AN9PLDtDftlw/ugAHrgQhubATHY0uYe6FmNrzpnUz46MrnScj5V7U6dIFVwZQfzTGVCmHphHNRR15kcJt6eJi0WyXwXjqBilT1jTUDyQckikt0x0I9YpkraJ2FIrUt5uJ/FksuRKYgj45uDMlYSp5+ezvZ/qzzT5jwrFqdqSSbWWYU8/YnAFV1XIOCWjD9u2GEa8609X4nygaWlFJE2ZodiFWUlh6YnmDxOgWCRIuUUew614QuC520rADfTM0rWo4VYBngCGPj3ASzR8jP5V/5geX8AwAmsg1GHJmkBbnHGgIK2RU5GtjYVTc11H0hmrKv9uVYJNifzeJ2btGF4Yg5oupOrZWP6KhCmdsj00GfpPfQ8kgHz/Er2Ohbw9LQ+y7Ka7gWL0RCAwKCMwnRqrTz9vWJESMfL008HQuziABvTCMqwaASjnQ/P9sV8L00jlP00rVvaCTezS78AAQAASURBVEV5/LP8LNtaAc+4NsVPPc+12CCWE3FNYD6YM1iIpQsgWfI4E+L8XEe6IzLTzfKs5BoCSycrFMvmRg/GQ053ttZ3Gf58VpL/mDOSRLyeUwSWzQJitbp7Mj49Wwt17wYAnHjJboyTlcLEP0T40Ok2V8xqubGfbI6ed6HPn54xExBWUNvO78jnnz8qICKlMiNzPbVH5nPPNr8oBcfjwBc4bpVDTY73N8zBdkxqPHKSdjzpGEE77lxJ7Vmf9OVRYTFh0HRerY0Wjj8rBlKyQjMmyk6DBJrFQ9ET1/cqblm2M2OSSMHryuFH24ZSG8Y80hApR7Glx5pM1KxbnvuHz8Es95l0n5ZfkW2shtJy45QnUXDt03J2GOS5z68889AZd/23VQHiWpLIeCeCrWMCYYtyzvT7IaiOhyNW/gzp2zmC08yV5xN78mXjydj1xfisOvvVNPn4Z8+cZ4nvl4UiLGAOzvif0xBpw7vacasYPKFJiXmWlxeWn+IfXc9Np96wFtB9opSAFU5SXh2TQUgUnvl3wGcnGSeetbtc75PxN6c9ntPl0ygU7YmAaIXyg5mDxrKPa+BAaDjAUzydNnuxaOP0Q1O2eYjUUkqhFMdMLc9s/wWsVMwx8eWnz/j+++/xu9//Hn/64U/4/Pkz44Jk7UbAJyeOFyvqAODwrj/3W/+l1/9XwJPJMVckMGBCQAtagyo5E73zYeyXff1ssnDmOOBuqNuF0/GqaIowwJo2DatFkjwGp7gOTFD/JZJUb/w30yQRhMGCSvsjNEVgI/gQ4eiDqu2spFMzZfU7Si/KsnfdmMTP/s4G3Q58fLniV5++xe/+8BNu9wGUF7gbbveJirkOFCzQHx39ceDL588o1fDxm4/YLzs+fvrESkzvOEZHH4PXUQr2JuV5ELw7eucIzbYtIAAKdlOTiY5fQWsCARrniBhIoTPqSlUmyQWozQWuARET78cBB6fFmQUnXwmkcyciGsYA4f1xQ7GK1jakZ01gwiUuUZIji9Pgyu4sgAg6XCiyB06UfavbAugyVq+No0bD6UI8DK1soigygBnqwa1an1Yqbrc7HvcDrZEmW7ZGxyxQII1PiSrzSkANZrDKQzRjIpzsrGIU6r1sOxkf/aE+6AkzRx2ODk5YTPDsw8fXFfh9/fqOH3/8CRU7UXskOyIUIwTCB+7v79hbo1h926gpoglk2evrBwiKlUBUhzXuhelgBBfU7EgtoZ+BnU/aHaEJUG27nGdRBtijg4L9nBy4FeplPLqo23gyXhkQKUhurWh63wOZOeZeXzXcacBwRB+w6UycW+PodLHq+GA4YUj1ZrTWsG1VExrmCtKsUlNtjEnWCgpiDsQ40DYClba1pS3gc5LBJhtQQkAENxoC0HS7jTOuBp1IFLEXCsfVQslatghEBqlKNDLK7QIfC5omO7LXvqLo2u0EZaem7ilh3krD0Q8yBTXNbhcA0J96A7h/C8bBZzeyPaWcFTATiBdRKLkmKoBPBobbtgGo8Mo1mmMgRUhqa6vdwqzhul3wmAO33lcimtOArMnC+slgC+fUhk3x+hK1V8JQrK4pgB4M4vrjADDxYd+xbYGKA9UmWgEsJmIYHm/v8NHxd3/7V2TbzSI2AkHGaoYjmSngvdcmLTSxL61oxlgAWa83TTL0mCxMPBUIiiZqsnXy2VtmosgKqNUA1foNHoM+pnLCzdFv2LGjVkhfoODt7Q1zOvaLYXrDy8sOHx23ecdPP/0RwAN/8dd/gW3/hL/89T/D17fP+OEffkBrrkrcjutlx08//UTdLXCv7fuGTWs2h+N+f5D9OgneQUA3K9kSAXVfJf0xBoaHmCEmfSSCw2NOvN/ueL+/43Zcsb/suH644o9/uCMQ2K/fZPiPkB5Pd06A60Hx1dftShs1aTMsfCVlZARKUyjoI31OxHQG6hRwQTIzlYPCdO9baax+B/++1oBHwdDkxIINiELAOiuGnpuUFqsqZQnoSINJfhTZC8MCMRB1AeNA4gqZoJ+z0gITY3Z41OUPTwMVa4pNWOGkX01RKgB1QmBAYdxUBeUmU0WZLn2zMTkbaiUwVE4ZFrpmcIyYsMiR24FqjgbDFkVFjcGdnS2QKrqEO1mwSrCLbnhmgjilrGQBFMUhyNgsBAZxamYTY/QcfBBks5hLowdioqbIMhPHGQltcdrTBJ/HFMDBf8vio/QcF1gzEajYmkDoOeFzyGcyXapbVQGLiex02btlC4uKQmTokOnKIN/FgCYbiE+v90BKTmSLQ9qVNXpd031XEpPmZclZCHKys2XHM8Eyh5dMuVnIzelTpRX4U4bPK9KuMoixzqQ0gUeyYSc8DCN8TSXMtq58TZ9iMPKdqcHFc7iSKcINfL85xSJVlgdToKeD6irIQANJNBnxnGIMlEimwTm9jYlrQ4J1MLKw3AJRwCmwAnMIuIpFxyrD0u/J5JBgy4BZYJYnME3gdbb39s57OSZ9dNko5myBpYmTU5RrAriFMYxHLDtn6/6p7WmKV5GsNJuwklNJta+NRQ1uD1fxSECEsgtO+jNOkctozxrafuU6+pRNsGVLjn4IYmXnAv2CCjgyBXMOpHD4rb/jy5cDczzgs6MaJ5V98/GVOrhWMTtjryomYVbiCniLzDcm+uioYN4CH4DLBhnwzPiGhO4LCkLnj3H+ADClFewqJE9YTBllgU4I9JFgFwH3aZWDo4xs+Mv1gsvlirbtuL2/MxfbaM/SpgU4iMR1dvh8CD6TUcOzlEBz2zeYTxzS6bPKYQlbkVSGFVxfrri+XPVIjBpKAcl06FNcwE+6rSqbEPxzrZXTD8V2T1ARweLwMQYe48DlesW+7wQXkEwdkHQYjMNz53Qnk5Ks1fTLEz5YIbBqGlpAn8zcmueWEzAnhtiHZ0xp2C8vsFIJmsyJ2R+yJxUlGioqvPBa7o87AOByufBMKgcIxXwFHOKFCA4si1j+jWChnslMUM3hUYCy8XmEIadKT7GumwCWMe5kZpcnPwCgmKadRmDktLz9ouUOxt6e0gqAjyyiVNkF2sYpGYP5DOg82e2UyiCuAaShSy3Ao3P/dyce0tqG0RkzlZ37I3M7oOHt7Qu+/9Mf8R/+/j/g7//xP+GffvMbvL99xevLC3MnJ+g0+8H3qxulYcZAT2bmL3j9cuCpNXgE7p1jh7sTpGlto6BcBHoi6D3QGjgOXE6c4CWr2DVMPZEFnLpFxznnWTEPriqQ8Y1BlTAGnEnM3uqebpGurHJy2KEJbjUciKFKhQKuuiNQMCIDnERGTWm3o1RWEqqROj/FyIgBXPcPMDi+3piITunF1IUSGwNRKIkCx6aOHjgeg0aqFXhwMsUKKgo3UvaCt6qEJp0OMsggJTcgMMoyr1eQq+CiWZEBp6GrMophrAxEfr9JMDkYfFhWViLXtMKiiHJNo0zNAlvrBlf7gsbLu6jYqdey9DTAauKppZHoLERT1ftpWnMGA73zas32M0iKinAeUBo8OvNW+BQJtgGtEcHmIpKqOqcSilKl1ZNytzI6AYri4kTMWA1i8OyuyYxCkavE4ZjYMLlMoKdoCmAtDa1uKGgIN/Qjtcza6pPNSsX9fsdlv2D0gWIF1+2Ku9NgJs09UthUSzuVUNfKwNfSKS/wkGCSEDduqACr6EagyB149ENnkOh6awz8st0KoDiu+8TwDqRhB8GXZDxCLIBkdlFXKZMeromrVWFvF7IUo+t3VyNirJYAM+5DskQObfNkDsQT5Ts4grwCVpyOpbI64ePUUkhWRGtVWaTOh05aWCAnLKbIta2R6UCu4qqQZj1ZCXxpBMFZIRHgU3eUWrBfLrQnM6sjTLpMmkSs8vAslWKAT8x+oBhw2TaxZSh8H8DPKg0JUoeCrMXCygB8Oaf6s6AaceoO8T4kwimWQOoREIShTawS2U2gjVVXoG5NQWxID2mgCACI2RFzoG1NjNdQlUwKEoVtn2RAMqFum6FYxb4Ztga0MrFvhter2ixVyZnDaTtUHfNwDO943Dse7wcFikPJBwLuqugH7UGpBWMFGDo/JVtPuDvIsjWdLbUZTcCc4EcACsC1jqoKktJdALXzhY+lA1cb0DYAhUWEKDcApGA3d9QtULZAaYGj3/H1LfDTDz/APfD6+gGX7QV7vQIeOO4T5SJ7ZBVR6jo7Jjvb4dhK4FKZyFQLDa4osGYLuIigfS1oeg/+PDrPTLOcuuOwqDgewO0xcHsMfPerv0SUF/z9P/17TDfsW8C8aPqbaXmUDOBsTdYukq8ymaqsRGuyIwBYIdhUTpAmE5Iq4LKoXaZaRQEFv2MmyK9fzAMX64ZTLR2IslgRWWmuphb0EEszBuoU604V11HTt6oKH5GECgSe3s8AF2AyS2DUQG9AzyKOAO4QQ4ADUEANs0x7S1GSyX2nGjn3W/rdadTEOFdVyUmklVjJULJHh9SeXBonnIzEYLlYI0gu3UHLuOr0KplTIdPVqnvKT+Q3EZStJXXd+B3ukxVrU3XXDMd0CvpuTVV0UziR9kpNf2YIMAEnlh6YUDKGUKGGDjPXz6AWNARmdLYd+ERpLIKU2pQE8QFGtrRlbBOAqeg3B3mfimjW9XGUvFOaohTkdFmCMGxxt2RPAGwTjBQh13AKy3s+42PBLnhmPayn7GKeZiuh9jwM6DHTZcJAhpoI3oBzylZV0hozOCNg+ALtmPAUDfygxDrtGBlJHiArN3SWIxQHxWKQuYTIo3B/JihJHCiAynZQDrfgABkzWwk82UEmBu8TKJd7HMnMpkuQs17WJduRoOdnJvaxEugiIAjKD8gQ07CgBNEWs0MgpnChzCnS504/29cjfOVC6VMinmJ3ZGGDTMfMe7BOMDsT4OxuoCaQdEPX+aP3Snbzsp/ICAzoi91ccUzgdky2tordVED7Hmao2i9TwHTEAHxbcVxBalgBholayLxuZUNEwa9/9S2u+w4SbgP9fWDGDbfjjsuFbUmhRM8xWTAQoaDCgOEYfrAbRUUbdjSwuOTDz2cOakENJyA1hmQJimxRFZPp6WyS/ZP2U3mqWOYYB9uQWsHLZWcRuxpyku1wR6uG1rYVF7r2vjvZhSVJBZN0GSuBY9wxveu/oTwGsOkY0zGGo267Wv1dbVgEg8jOLtg3smCnD5hzWMsRPIt7gtHO4mWtZbVjmXhGdYWGjlo55xZgXJ+dB9mS5j2HP2ScbIARbJjsB1/GnwVv6QUFh5aYWJh05842bG3KBObo4MieNuU7EUGwqqooVrkvupj0W9l4PROSRmhnwQwnw4uhZVFBIIuPaS64d/OsmZ2DsmjrA6gqLAd9DII+HgB89uXXWzLYVPjZ5LPKYm+pK6E0nocgMz3ZTLyuUMH3WLk9pylLTkfANO/tKZ7JmBNxXgvSvwIx1UFmRV0EzJWYUw18/fIZv/mn/4wfvv8j3r9+Rn/cMPqBuTeeR+UAxYyf6yzQzDmwNIZ/weuXA091Q/jE495V6aAct9UNPgaRObdF+Qqr2FAxPTBHoLIlExuYgNWcSOGs5AXKqZ+hoD1F5eja+ODScCc1uG0VxRpimL6nwX1QgyoradFp0GVkmu2IKBgzK9tY7YOIDjNnVRhgItInfISm7QHX7QXNDJ+//Igx5gJSsreb3j+NGuQsSe0/joG68cB7yBE7da9c/cZGhiG2OIMbBjA8pMmCWGm3GautMeQMpZlSClbEi8rgaF2hnJwpuS+FQn8oXHdnGFsUDDF4GMh2C6xrKWeQ7Ap0DU8Jb16bfiayJ1UtgTLyZHIm2GWwLEYIDOiDf8GJc4aloTDTYIfU/cEqjCjWpQba5gs84ghywCeBhGINERWIquBdveO2TKuykvx5Jo0eE8UzuGBbSinSOnIazgU8HSco1RRIhQPHdPJ39POnBhNwf9xxfVzRj47rfsW+7ehipVUjKj5k/JKu6uYwa2JaNSCK2qxc5yYDm2X+ZdTSIbNyPAanCdEQi3Wl1bHCZ7TVHQN9vS8BYa7ZmASYOMWCgsYYtBlQQpSVTdoLQ6s7mk1dM07AQ8kejWqy2yZ8OoZPVDEdckIipxRhTaYDCDqW4PRAH3O9XzW2ybW2M7moFcPlRFcUS5CMCa0ttlkG+VwjUWbXOYn1va59nzTs2lh5enm5cirW41i6bSYBQEAV7pH02ErgaU5s+87+8FqpF3I8VlC6knkHomQ7SaiisWCxVZXIivZzBSx77bnOsSaSZu/4CjqcUy4bOEUtEEs3BUYwLwBWV3wKVGIrcowBHwNla0rkM1GWMw9WDI9JjTXTZJbWDHsj8FTLxN42XC8b9lqZDnjAB8+vMjX4DPRjoN87jltXVRjwipWc5ePMbNlVzVdG8vO+9WVCs8KOFfTQYcjuZ6UZtH2h1u8cI8yAUMATKoO+DXCoumUPoAS2a+E+34LgUwOOfod7x08//QhYwadPv8K+TWz1gtE7+r2TCdfYopng+vIFFmgIbAYBT2yHCE1RNdBu9JmsRjL0DFVtko4YFSF710rDXg2GiePBqZj3Y+Kbb38N1FfM/u/IgHiRJ7Kz9YeCE+SiMODK9m5dqmERZ/PALZaDQINiwBxMiDPArNA+ruVkROP8uFUptiLQMKRHKJZNWU2E2VWGFIIHCMjN6XBps+TZixxbHGDSq72dUgO5b1KmwIOMVa/ArMCsgSFAwRNEKLYq1kVrlC3ORf3sKdRs+Xk8wKvoE7C1d5OhkIAEAQ/6fwcLUFN7n1egEobAp71UtQIxHqCbl02xXDNTO6oY2qbkQmlTyhGjsHXWDAvEZTx0Pn+Cg46YE3VjwjkjN0YCQQRCDYawYwF6bkrfl8l2tdNzV2f7w7KFcahFzFHbjto2wMi+lUU49YJSL8xj2RsWEhIKSr/O7oDQUJe2pQ7UGQ+RfcSkuZhJm+0EniI/88SXVFBU3Cu/qce+Wp29nFo5iFggzZDhs2CyWQrRErZNnol5MN9CeKA6wQoP/xnrNYLTCkvRlCZRLjzbYJUYIf2kn8l9WIFbgVfqoUHA/VTbFtmmjGXUU4YcCZ56SzVbm9K8gfEnD9h5BpU1a/9nG7who6FN9qCWbCVTEVXn1wDEapfJtWZcSp0hnPu2GMwTrKI/H2rN5JlJWQL/GfiE8xMXQ6coD8rYIn/GA0sugDhmnuUzfi0CyNb65BkLSIeHul7HZMGg+FBhhLFACkDn7ueoerUEhxEQDEOSumHBdriSg4s2lNLwV3/9V/j4+oreHxi94wu+4H7ccR8PlK1hM1/+2IPAc1OhpIW0sXxQW7AVaaYJdELAcSwbnZHOnJrS2h8AgJe2L0BcKZMAd7ECzRZwB2MBe6sVYwTGOLC1gst1w7ZxipynnuA01L0tOZBYSAd17DjhWH8lsB0l0McDHcDl5ZXxmVq5YlJfdoyJujfUrWAiMHwCPmgLCvXBtq2hH8FnIoZt18Rj6pXa6njJQmvuo9NjgFpwFmiFnUbDO1nN0rLhfus/YyXlO2RnjGX+q9i3lqKCYBa784jSJ43jwdxfQO86o1Zggx0kM84W4Kb7zUVm0TAEbipuL8wr2a0Ryx6u46/rdvliGlTGeJmu6qDQD2Vr7zrT6er8zGkx1TbN/D0KCKBHAk/byhPJogwlJwWtkSRxfwxMD2w1Pxur08D1s9TJfm6vjEypl1NY7Y58DBQVLwW1Nsw+MGZfTNHb7ZCMCpn3ox94+/oZv/vNP+HHH77H+9cvOI475qSEhbdGH2tATmyMyYnm7iTU/P8ceJoAhgcefVBEeb8grOAxJo5BqmzbLgy6psNRMZ30rdKIDk+nMJ07K2eL9QAJEXpO9WbQk6LH3DQVrV5hxpuMNV5BlX8JTBcBHxR34ySt1Z436SCIiLK6u7AYGYpq2hgxVg+pgYwgnwOj37DtG/ZLw7efXnD0hvf7jcnJhFqZBi7XnYl8kDJ9u91QW4MD2GZQmK82bNuG+/sX+OyYoJBlySlAUCVHLVPp2bLSItMmZ5CZcqAfFB5vddcan60iedx6Z1tkE4PjGShDClAurSR+Zld7z8uFQu7nhBGlK2bY911nWZXcdJbgJg0PXC4vazpEhJgTpWFrEpJT5TAisO8XVtLsnCCWE2fyfVlxpZaS6ZKGA/5wVHvBvl+lwQSYsSrRNrWalQQHA4YOREeKHbfF8ND31EKKeQq0BxH6CPbQUhaa4pERrlYqw1YZaE43bG3Dxw8fcL93vL/fgcogKRkrqcfVSsP7444/fP9HfPvpG3z78ZNAnCrh8oDVJ9pwKajlIsNUkDx6My7asgdaoFjPDKjtRTpKqjor2DDpf01MxGAFvJWmPVX0HJKfANAYZ3WfoN/PWwhYfZkemDHgDozHA8dx4Ovtjn50FtGrBJLlKIsSYvgJcJQiVsMazUwkoVQ6sGMOlHAG2CGZ01WBYNDSCu9hjGONaoeAjsw2xzEIGra2qMLZPlMWUKw1rSZczyha2YC9Nv0313S4Y87A/f62kukAwZ3UcaiqgOV49lITQAbCOPExk/PalER6eh4DypQDVTXGpPFjyT6cCtAFDFbTqHY6u4BTYJqPmaxJBwYbVZYYeVTDgOOt3zGCtqtVCir2MVa7CifKjSXWWbeGfd8ABMYcCyTe99QjY4KrLE9BbGCroUl1DvhBPzMN9+MO8wErjv1a8fp6xWXfcBwHp60dHYiKvb2yZWA6LGeHBdsOAmK2BsHbrW0gPGM4jq61JovQZYgCZ4L3lNfLZp5imrGQE0OxhtfXD9K5EANjOt7fbrjd79iuG0oraHu2IQ+0i+G7v/yIovbnx/1AH44fP7/Bo+FXv77DAHz7zXd4+/oFP73fAN9QS8Nlv6LVhsfbQ3uMlPcPrxeCGVvDT1/vuD06bvc725ltY2LivD4UpR0OjKhwVJjvILyzwaIDHrjf3vE2b/jpywMfP3X85V/+NfZt4tsPH3G/DzQfSIZuMptKcXWOaPW8wxBoAiR0bAhaiHXsGmBRdFYKqckodupDkiVM1pKFKwbQuHWhWiaAh/oWEzC1q6y2UGmFWDKhgWYC8GLAomAmKP0E1EBgDydr0qYWVZ+FsMAfHJIBnfO9bJyrO/2sSiv537aGahVtuhJBW3Y9lR7q2oOMe9wC1oA1pn3tQOoTUrxbSbECZOq+TZj8tqXt1a2lfvM6PbPA3FEkekO9LDEHlvbJycIIOMynguHGtZ7BNvafnR05+pmJiClRP5nJsbjpFbF06oxnumo4hjEwXwkNgDCOlw9Zx4Qkk9lHO1ZgZQPKDrcNYRuAgh7SmQFHkFMnh61ibdtYINDQDQtNNX5uw50OB1tVzww4BCYxectmvZD/ncqa1nuc2ZGwLrL6HXjSyUko96kkkQkjMvF0AeJkJO+1wTD5gBPETLMl8BatoDlBoLqzPerx0O6fmgoqYB+loF0ITrSyKaYQk2oBRAaKLhpciYyrYDwUay68XHcWdjLcT3+XALRApUgNPmBToWSIRYeS95+Zh62kOKKqCJ7oQVb0J6gryeKXZdIqkfASwUJPaJ0rW+uyKyGKcposZmAtMUfRr0I6AQA3Rj7EF0pWxOn3cQJGMI2nUYcDz4yL3YcFTFreTyTIoBYbtSw2K/BHx9cff8I3H17xcrniw4ePqLXimAciyIooMNSlmwl4dE6flpzDVaylGeoOUWw4APzhd7/Hj9sGqlgwvm2XDdcPV7a7i14Quh8uVxbGZY+9wgfzqWqeDQpqBfd13opyqGIFXiGtHgLeetD6HM1zLdlubE8sRke2elaQwXPZd1wvV+o8CVhJOaypwVFVbWSYg/Zb+r7JVvQCtaINioAXDlmBGfbrrmEtjwUcvbx8wPX1E16uH1HbBUdnt0nddxUvXPGbuiAEopDcwfvuPtGPgWHzBN1k80MdGfu+M5+bJwjnKjqW3CdtR4QT2EriCHgmwgiOzTGXn2mpxdo44TaJyaN3ERTkk6c0gxXrZutYxJkP1VLoaX3SX08ySwsCRaSEl8uFtu/eVewcKx/KGP3RHzyLhXIs+9ZI1HgS/247Y/Yx2V43XEB7qzrLiY+JEZd2Qtc75sCYk5bcTjmCZF96gEChJalEfqk42enav24k1VTdQ+o3ymUIIGcGFCI5rMm8arUbo8u8HWi1YNvb2t+1QvkGB1784ff/Gb/9zX/Cb//p7/H+uGEcd3zz4QJ8vCAnsR7jriR8iSaI3WiI+P9Dq10G2AuBbGwpYt8jgYBWNyDAHtDgyEcmPGVt9PSECxnGz/87oJGYOCvKZMwV5Mh0QMGENgqDAG1UYxWZBiBbg7LSrOuJE/TKSmBkbzTSrCqABA9IKYY5mDRuFigVuFwaSgnMwd7ZLgqwZ9WrmEZTS48iAkWoYR1t0WQzUM1ZpQ6sQAsBtuGIWppO5oSZsBKcpGrPqSlbRqF0bgo7sSmwjSdbs4rJKAgtTQS4yLlZtg4InKK2ExAjH6YcpWWCTfppAogZJEwf6uMP9gsn20CQbVkMLTpX10FdInWq8qx+ezE6oAS61GRqUNRzIhZVHupJT9bM0hkyV5sbQOHTQSYCAIvLGR9CvcI6C1T2xpl8KojJ6wGwqgMpQu4yoJdtx+hnQ0lYnMG/89mXQgP2/v6O675jvLwgVP0aYv21lmGk6zrrMjwn1HQeODv/SzGbaS0oDJhHFGrlo9PnvSWbYMrBI689TnZCsqu4bZL5kZTyglJpP+D83ikgu/eOow8FYVDwXWSYT6YTJ4eqUlsMtZp0RxRIP1+znCYFOF3MAKxnXxU4IJlpzkkctW20AUbaskc2sYB2IIGnbD17LoAqyzJYltTpSBU8st0qlvPO6TspdOsKKJe4dp4/E6qh60mKN4CnKpvnRn36OpMaXvs5bW9V3/SsqrSYSHOXFgi9K5+1ASmKmm0iUHvETCCs4BwmIQbQOqsCid2diXSt8NmX3TZjpYq3zOSE+vg8O1V9+LWS0k8nR0RsjAe8d1bsasW+N7RW8DgOgV7Uv6tlU3KFM/ET6IQoBAucDD2Omq2qPGEl9Yintoc428IyBzqPnK3v4e+pg1awNQaNOcwhmRDeJ6f3PAt1gvpFl9cd++PAdtnweHTMSX2m1u7oB9sArtcrjsedAY4YqJlcPPBYCU4xBqp7NMwwvN87Hp1TVccIQBo7ORLbZKpd4ISnFlpUmMj5gY4+gOMxcbsP3B8D23aBWeC6XxADKNLwM2YLvDdwH7aV/50TMLO914wgjMdZZDnZEFxrunkTSyNtsPySfk8my4JClPfnsAV5U36H2AbPZpTHexkZ+gMjsBW6jxW0pE3Kold+YH6tEcaAVQG2sFNTBr5aZbbCfyuuark9XZCOfAFwZuh2siRyU65kVe0GhfFJxnVp5QjShVYPCGOdfEjLI3VvHJRMsLCUQ2eiq3d6Dj/TG5FNIx0nVDaKqzgQkD8KMFF7uuZ8tzPWM1aBV6IoCCEyTpAfzM+152gJf/bnXJ98n1h7yxN1F+A1UYBoKE7dIDcsKSKzBlSJHz8BqWm7U4AeyAKgPT2/tBG+YuB8vvl31Z4vN5AiwVPrXdIOQUy2yBjZlmGiPhrfvyKfp6OgosoeBrCe47mdbPm2YoVSGSX1rggo5Yq6bD0MZxwuKYyMdRbHTLaX0yZ1ZqYSYj5QesYSbDkFzxT9pOe7aE2McUvhPkvgqSrOW5CPrajr3AeZiGTe8cRwjWRzQNISmYCANp3PSwdDU7ZyYEWutdtaIsVVz+/xzHSiDz2tVDIXLLcockqm6e9zZ9uyObQpIf+fCehT+IMEwIvRXjaQUdgfB/ByRascZjFmw63fmaRubf1crlcWv6FCZbYoEjgXSKBlff/6FaVWbPuGtjVsHzgFeb9eyMrKuB5YT+f5XiKYt+WglBxkgIxJEqDAGXeHfGiTTuRU4THtLte+rIEFS2bEeLBN+6HAxLpu2FSAzOTetNc9xFCX9icZSIA1iWTnczcyiqbPJSGR0iWtNT77RyhvKGhtx75dGDPUDcfoADTtVatlBZL6SFsGhWdl5SopTt0aQRiVzRTf6v7DnrpeqHlM4Ie7huwlMlItXGCOwOx0awmiGs+LI9lWhexDd32Pn+1aT7lr5gtTchPL9KSddAfmVFAm3+KMDfdCHdvHHGeVBIYnhXfKgADKjanPOj1tCvfAppb5NRBiOjspkNFJXpeBc4qcremR/kAxbXnKxYLxc1qtjA+QIYOo2CHwHEX+THlKMowSucqcFMb45ud2hDY14+0kaRTbULZNk36VM1Zdfz/w+acf8OWnH/D1y4/KMScuLy+oreH2eJDhLfsMybMUnC2qM05m23/r9YuBp550xZfLaivy4YjhYs3Y0s/IyoqPQa0jcxQl+JqZjd47N2QtQKFWVGsbrDa8Px4cT9z5mOMxlSQlg4Ljd4na70qcBPp4Vvuxkt/WOEpwHEHQaTlismXMAhMdAVbDYCmsaGq5KCiNzho10MdnoBds7cLe3vqC3idutwO9B/pwRHT03lcCt10rPIDb/Q2P44732xs+ffqEl+sLWTHbjg/XjUFev8FjYETHtAZHFTtqx+NBCmD2zFb1iE6f2LdKnZ6gUO6UOBkEBLK9jWPPmQCUhWbPcBRP8bUiv25KCGVo92SIFWQUmoKazhFrKJCopsQ0SynUSjBDHxPHHMDjjjoa9u2ynFkg0KdYJ2HwQjbPY97FVBM7KgK1NVwvbbVFHf2+6N9mFbXsMiEV03eMvmHMLsT5aQQoWAO3yjaewbb5xAyoAWCGrbI1zv1sv1DYu6oVl8vOKkCliC37qaV1JGNnUWAxUGtgvxZ8wGUJl9fCIKPfeLAbKORJGiNFXcfkhMWy0VGgKjlCJ1OwYzEAkuGVUGq2a65WtjTsKGqBS1HWwAx9fzi2qmco7aFjHOB4zosWKQESYDh1rfZd/d0SO388HmvFqmxFq+zLnj4wYuAAGYbI6XsuJ/OUTE2xekptqK2gbWqTBNcwwRszYLtcQDcxUOAwc1z2Sm2zyX5matDRoYxwjNH5GTZRSzKdWGEfcyxae8lgv0AJjoDmpsALqv7ACa6AQRPMpA0QOAYp2BBYEwmsAujkHgjUCngMpHjskMh92jZOteP3LZBU1fFaaXOmAOKcSGpeZevk8AH0g21oXRPXoEqdVYNPQ8xYwaub6yxmlags0dTZ70CQFVWL4brvmMVR0eCDopNjBk6gjQfNLNB9cOpp79j3Cz68XHG7HxjzwGXfsRWDSSiUzwjYtoL72x23r1/xq28+4OV6gVWyAHt/aDpappkG94qYmaoZRg/ACmrdEEwtUaLCouI4WNHeysY1GUzSB8Z6x1ClIu2JJxNV4rruceq/NSZhX358gxVW1qwAKA3b5YK61VWZgzEgvR83PdvAGGQlvd8OPO4d+/YA4o7Pnz/jw4crPn3zijke+HFrePv6FV8+/4Dvfv0tLpcd7bLDpqM/Oo45MO4HhhtHD28FLTbYg0xKKBi7dZ5bqwW9A30CMXbAGXxHFLgXBUcbbLuiYuDtdscfv/8T/uJXP6JYw8eXC8oMPG4PlJio7eSs+IjVVhGZoEOMnbQDkeeNANH0k8GXtkExmMYbV03MeWICIgWKAS8ELsYUO7VuBB2NVUsm8xMFU/uNuoAMCIn0+gTbbrYmu+ELgPJytgtm8AcF2is2oeNGgPb02iqureKlNVy8o4TDxwEDg94Ix9EPlErWQCZXVXEOpoCNOcVUfGI6ZVBthW1ppHXzfqUPQvaa7BBOdha1MB0T2eJhZ1JdCeKn1kOOiWfhi1W0676v70E4YhxAELgpejZ7ovcCnp0XvWw+C0Rktd1HJ4gg3aVSqwAJVfMRKHMHZlHRDUgA3gstM7U7mFiWhEHU/mqNBU6UDfdb4Hgc2C4vsHYB6hXTDV8+j9U69fLhFa8fPuHdb/DHgRcNBNk3Tmd8HA8mMM7nUncCQiw2ySolKAFTkojVAlTSHiieO+Zg/N2qfEyA0yhDQkZKfgQcJSCL822AAJo7fDiOY8JQwW5ul28UwCuwZ9rELI5DGJMBmg7KTgN3MfG015Phio2JUw4bIeCcg3F4QaNPHNGRMsacZl+w1wvyVa2oHTMhudSpseW/FsIhuKdV2dLCJIuCyAJUE1hVnpI4H4uOLHpaaWyzTJDcn2ySmZJMxcqyPzH5AI7ZZTcVqKmFfkuWX+TABNfz1XRjM4FXyjEFrrpA3yMZlKiKyVSQC7Gj8fTSII+Kc4pn+qyqHK20ihqBiw+87hu+/eYjSgkctzfcbu+4Px6MUaxiKtFdE7Bg1PEFlMgOPG53vm9tS+zdZH/mIPN52zbFII7X6xUf//Zv8fXLG75+/ipAAozrzFZ838fAtm3Y9ysCDzgGZmeUtKmFbGvnuHgyoWMBCnMKwLSkK2gtgoQJ6CyGcbJrMbWxlYprrYBvsJi4bldsdcPjccC9KIZtTBSEjsSgPtJ8SJ+z7twvlcyVvbAgNo6OYwQsBvoxUVvDN7/6gBkGn+9I3d+YhhIb4GRgplzK6KmAyrbIWtXFE0A1FYkP7sNq5/mvlbqIxPgNEsTE4/HOvRZGuRDliQGsPLxJ13ehTA5NuaXURykc3pQg4kTg1u/YKxliDgIgY1K77HK5AgB2kKgwPcBpciGx7oLL5SomFtvOHo8bWqFOZFWOulcyKrfgPbXa4LVgotFORTKxHLZxv7Qo2FAY03ugTCyZGEdnrB7gCWqN96wO8KVeE7xuDlQ7UBtz9DkZH2z7FbVU6uEHW1BlCNVNFWuoTdvVReJTeneQfAhWwSA1lhHOoSDZmYSU3ilo245aK0kw4Dq21OpC4Dju6J0F2ZcrxdN/+vGP+P6Pv8f/41//S3z58hMMA3txwAL98YbHPXCfYtXW1O0eqAXCYbiHYhyIvMf/xusXA08R6hutEneEUGbgRPVwom5JpdeRR1YohNHyAsPhwWpeJmCmPkFLPaAnIxHmpNXKqJ6BJ9RDn1Ua/ayfqPdiNgHw1JNIx/yzRsncWUQYwyXmVQoD3whMPxB4Etpy0p3bzg3Du5WgbMGJjrvGT9LW4fE4YFaw2xlIAk+VJujazhAWhjidSMQ65AEot7f15UgPpnsST1AEyZ+tn+X/q8UlVM08GWLPjAn83JlJD2NJiMCwLtGDgsmlIEU1PYKaDaHqs+XdZS0nVrA4VXmwfHggwb6YCzScjIZW1RoI4dJ52HJEqmclPPKeGYrYE+m+mCFKWXTG3E55wwYG26vXWe9UJCh3prhp2O0MvIyGtdRAmaFgL9aUFW1kVgJV7RvOvtwxO2YM3VtmL8DPastJKvR1aqAnuAL58961FBbSXJCQ3/pJcTnWxtKPRzJY+O/2dM9QkLuorWDFf8VUuTdhqroIQEv6O2J9VO7bVcnL53bmbnwe65by2WarRwa3tt5uMc9yyfJ3sz9bJ2ptkO6uT5u6Qv/5+cxR5ev+dF/siZ8ZHq/vp8bGuX+KFT5/OwO1XMtkADzv29RssZo0ZyiJs/VQMzCEcsy83qURV3i+z5fYJE5nE+t741zvp5LpMy0eaW4gP+A/Mw4MrGvBLFOm5aw3hwKFdc70/4v5lUFuBLZS2T4NtmCwHdHWZ2ZQe71caEvELMs++3DpByqgP59RSq/y3lfRMCAGVKi6qO9HnM9j7cmsILIVLoBlc/LPRcxPj6lJpoay1dWuTHHzZHow6EKwuGemimapqG0HrOt9HI8+8H67o1bDN99eWEW+bHj/esPtdsOH8UpNmaoUW8+A+mkcblFaQQsyGMIIzjuc1G9V1dPykF0p/ZhIX55niuyQ45i43R643w9sNbC1htYq7v4AdfVo6y11FeJpe6VWUPq3ZdRw7vWfF5DXng+dGXuyi5mgZpvFc9wcT9+1/Kke/snc0e9B7zt1PWe0oO/Snojc2Gt/aH/HmYTxTEk/cbIYVo3sEE60kjKLNmO+/3zazwyZslUO+LPjjHg6g8+v52uxp3X++Stwcr9zJbg/TdfFkILnYYL7ZBaGoFPnBOFoCFR5d167AzFRUishxE5BkQ08WcOhjRF6hsU0tOP5bhbl1H5++acjWW2WtmKasnx6aCAOvKxFCfkNV1t0CcDctM4G2MaBA1HQ3XA7VLKxwLUZDayY3zBbjGaTf7DnC11u7WeOjXesYsTaq6Hil5h16xnKf3ks/svTHv/Zyqz4+HnMe4iJsCQRFL3mKXKQrb2E/oP2diLUvu7Lry7WtA5aHoVn+54RQw47mZFqhEDqdKXWIXInpmFcp07rFLzKk7mX65fu0NfZ5F54OhtiJp0hh85xQDHhaZjS3uSa5WcthsyzNdHnVTx9LpAdc6eNWb41mTZPPjbibJnTM0iWGxNRsSD83OM/A1JXPJOx83keMm7XSUArBde24cPLKx7HA31wStWYk/3OEKFrXZ2eo5FZudiw4WKFzXW+zhs6fw+nDtFWG+pO3dPWNrj31VFja5ecn3d++nkP2Sb/rEuZXxwQ4itW9dz0sR7C2vNsl9czUIEuHVsBC6bZ6jTnVH3U1ntkLDdxMvDPnZi3IEaPFbHDFGOLkZJxWwKqPPrllJpQXLCOws/OQrJesBhZS8szY+4FxEPMQDvjlIhl9/IMnDmD1tuePy8//cl/5F6z89nn+hLkk+aVYbWh5Q8mCQQrB9SyGT0CWURqide9IB+XdIdSG9Ds3Ntmphg9n/mf+YmUdHjan8hWaJxbIhBk2UmYe72FmOW0e/nsUgA8tfzEgMKz7eeDyG6LqimHFvOME3CSeGxdb+6LWH/251tLRmcyz5Z7PFlRq/AhH/1+e8PXt6/4/Pkn3O83toiKeTac7LGYg0zYmsMV4lyrdTf4s0Dkv/z6xcDThjdwqtArp9r1QMWGVuqaGjKkV9PVWxkbAHOETfTeAU0dAwx23YDCimu1K4o1wNjrWYsD1dHksIo6OwhIBgoygAm2J1jBVjXJzEGmSGosBAgKPFFk4Y+1z5pVtNK0eAafOdJ8ItRgXsywtQLgDtiANVVR8AZ3x2EHbN/x8voB5d5h94Gjq1q+XQHj9LWwshJud+DHH78g4if8+tM3uF52QILItrFdZdsabHDCQe9vGN00Vl00eXc87g9S9dXvOXzC9h0FgTnZ31lACuXmwA7+nhJZPjnCc7NzMuASmDQKdvpQ6xUkLBaaXDYnvBElLi2rMBxXbceOOSce3rFfDJet4Xp9wWW/4jjYmjMkIGcwpDj06snVIfVJUWpJyJAwZw5Dh3mH+cTLlWvbB1v55nhgqxuu2wURHeENmVjmNLBE+jmKneenGbVugDzg3Gf9UOVfCW8thSw6KyjBoLu2hjk5HjbibBNM52EF2C+GGEB7TGB09HHH9EK2kozM9vLCIHxOHBjoxx31PmHvB67XHW2r6N4RDmztKkBvVxULamGTFlMpKEERIDLSaB4KDKhYSXQm6HMcp1OC2hhQMYIVf4qKiyE3bkAADZyANDBRd1tidoBxNO0AfFADAC3btoLJbTBtwVOQm08GSBYJ9b4QILMyAgDP1qMn+MiJHMVoG4obJ9cLIPEpXS4weMrpEKdmGlmRtW20Gx6oTQ6kKRA1CZrPgRrU7qLeB521wVC2jWBIqygzUP10omOk8DaZF3UjK6y1ioeurwicrdIn2LYd4U42ktMOJIOjqU03dT147ZNjfCdXMpk2lxxzO/oKkLTCixbMriJqEAUCY6j6lLZAzGWPkFgk1pmwAmxouFiBtwaHo88HPFjJ8TFx3O8rNF+tRxKHNGMVbtt3uE2d14rRAwUVeyv45vUT9q2i2Dtqdez7jr1UoAPmBZs1/MW3f4FvPr7i/ngjU1BBIabjeBy43Q9SDlpB4ICHYwaLCN13lNJQ9o0ags497chkkywZavlNPMFn/J9AMl+O2PQsNeo2HPfxBdnaV8uGvb2c43KHoxr3VqkFL5dXeGkIfzAgKTs+vr5g++e/xhi/xzE/46077vOG8p9/g1999wmfvvuIul/xl//sr/CP//CGr3/6gsuXijGv+PThI1otGJ2Prs4zM31pF2xu+ONPXzEeDzyOd6AWXF4v6O6s4LfUquA9Hv0Bh+OlbHyUHQg3eDR8/TLhxwN/+os3vFyvuL58xBiGP/3xDXsBLq0CvcPjoRZyQ+/cg6FA1wBYEb1CkdVWCqwVjkvWvqyggmG+csz3MTVwQk8jmTwQ5X8xQY2FAXe2GiIMdUE6sRKqoT71GxTMNsM2A+2YqIOHI+GoIuI0Bn1ogYJKxJJ5aY3FFz8OtLLjpbxgOxFcUGSaZ/ERmlxZWc326GjYlw4Hp/BKg64aEP7Ugnwmfx7p+Hlut2gwTX/M0DGGWrtqZSVVOesExDQ/16Z3GY5whDl8M7gXjFbEggBmGRzi4BOGiWIdDRMX6dqFO7U7S0WPDg+gOzAL7zeMxcM2C8wND02Xa/VChvF2QYRhBgAXCGqpIchz15XsUNumYLOKOchmHznh0HagTsAPjvgekxqlVZPb5sDntwfa5Yq//R/+d7BaMA34p9/+Bv/uP/w9fv3tJ3x4veDb113j1YNTLlFQfKDMHMThT4k1fcPSngEEWCWsQsAnHWNItyX1wrao2IOapQDw7nembU1tcLUwHvK+RGld7RBRjJqqYLx+63e2tzaQsYFJhhxyKhon8s64Y8bE7X7nAJX0scbdz2HBjdOmR0F06vkUdQ1EBA7pmXY70OdkzCoNk5xiCjvbaMP1lftZ/rurB3p4F0jYF7gXTnDNx8HYSrFEisH7pDbOmqKMHNIoVnYYxqD/bq1JkLco1+JELjMN0VC76LrkSTs2UwdFrcHNyGwqRAeUs4c8MREce2KrDYEhIZtQrKIE21SLG1ovJ4Ay00aSnZvPhQUUuSlVN7v0OrfK4RCvl1d8992v8c//2b/AP/32n/Dlyxtu9wOPfmC3F4LKahMKFVEqQF0u5QUFWUx0jHFHtkiHbF8rF5hVjGOiPya+/PCOfb/g40dHLRu++/bX+Omnz3g87jDFTZsVts63nWt+PBDlAKyjGrVGfaa+G38PNzKiwuHW4dZhtSNKYKpzIaajREGJIs2/UK7oJKgZi8EdgRETr5cN+95gcwKDml+zQDFZx/14x/XlitfLKzxow31MAUpd9tbJ2ukHRcuvF2keBY4H18vHAyUcL5eK6ZSquVw3XK4NMQeGC1g0W4BLaw2P/kCfHd7J7tkvr4rBU5lQRbpqoAZCsmgDs0veIqoIE4HoLtHovkgSRQB65CbNPB5gsWSesa497elaGuAsoN/f3hBj4JsPH9nhMagaemgoFgzISXRZ1Lq/35EIbAGoFZVC9MZJavvrC6ZPfP76BbVW7JeL8iCn/22GMhjr+lC8JvJJqQCny7tsqzQQAQ1M45CbRU/Yd5QC4hURnMznBsQGHwUdwLZtqNsGeIEPozYlgLJtC5QsLnsyOjVHd8byrVLyYT4oxbHrOea6pjfn0AwOieijY1XhZMPIiAMYnhkixkmguexAOL487rjfb/iPf/gtvv/D7/CnH38C5mQrtYTciw3MOjGOz4gIXLaNsXBlxxsnWzeUsqFgw4ng/ddfvxh4MrD9IDJPlN5AKUxqWckbPGACkGzRhVVtlqMQhgnRgaBUEj6JAJA2HWvDFwETC+mHLZqyOw1FlGTZ6P1V2WIFNNkoICKoapvlf2c1NJHEp6QiTigRP0NLhYQS3SQtsdbGqTQNqG5IxgeNvpLTouBIQAOi4DgGENwkrRn2yqQ4gLO6v5CiU09iiWvrfXkPQiKfDMMSlUxwV8+mJroNLAdcl/jSqaCfa5NvS3awtGgW1ZkezudQdUTOFRWtcCyrqxpQmVusStYqNID7irVlGvAq9HgkGpEVjXlW6tg+mcYR2isJqEykrgnfMp81zSzp31mZUyIJnEGBnvGf74EsBqSmgXe233BkZqjioGR9HtIsoPBgybGgGnNeUFYL1arwq8cWs2P0jnkcqC879tbQ1Xs8B0X+2sa9nuN5LS/uab9yPU/dIFZ1YjkJd2gKCZSPJiIeZyKY/xehhCc/I84zUey5uKY9TEClWF06F6F2rTEG5hhrzcjMkJ6CAqXVbmDrY5C3sSo4sirVUruAL+I0tp6jQUlVUtN/ZicMbM9j6wCrU+eHFgOg59YE3iTIYwXSL7M/L0HoHiQ2nb/rNXM0dJ5Ts7Ve68klA8+AovaHbHfOytai4T69zspm/n1elz/ZBY1bEZvT9X4lJp+BQKcsRj1TrbOyVn621/hnF4suK8Ns+0tqu64otRLAs9IPTh81g1p3XKOLqwQMOV62GLC1BgPbz/JnsrUmp2ykk1/tqggkNd1hiKgodWNQEZrMCU6HAXAyhMKB/097fQEFXNtYi57+6tyrNC8KroLMpzEZMLAqJk1ETxYX37O1J6Dc2FzTNmDfixKjgd5veDwqbrevKEax4G2r2Hf28/f7A355JTAhYGUrBu+O0QcGAsPtrO4uGmKmyNIpC1OfP0c3U0OCDKhaK9wqbFZMn+gjcLt3ABW1Zhs9/b2Hr0LD2u95jteCxblw65UVRWiNf14dTWZQWvG15hB4iLRlp503vWsxQ7NMThnkmWKcnHTF98mzlb73/93SPgOSBqykF3ntdn73YnNkW7GCYAIUea28durYJVie98Q/L98H+qSZgo4Ra4rNzLWQ5Y5lG//sDp728wJY5VdX8hHxZMt53w6Dl4JwibC6r3HYRUBANbKfI5NWVV6p4XWaTlNimLFcDe6/Ytkyee7RVckV6yP3FZnQoTa6snyYoYgJJ18NkFVgRtFiVYVLqagogDWEVUQ1tOsr/uZf/B1eP3zAh28/4tt//Cu8fPsdxnFHeEefZIG8tF16XAfWpNDFan1OJBSHwpYtzD3Ee1pOlH9nZxxn5zZ+enzJPCm5a5YPz88EQH9cQsK1plbTtW11vor85slKz4IcwXRNdFPsBZwMw8WYywtO05nx24qxz5jSzM6BGk9xZ5631Kl5nhYHnN0CS0uHqwCPp1hk7esETrH8pmCfxXRIgCkkJZG+OFRkzHsAsKafnqxiHac4bX/andRaoQ3SHk17pYLS6h3JABknK3QxOPJnn2yhS0o+QTTun7QeJvA74/i51g3B1tjeOx6PO4tKRn/dPAHz3GK5R3OfnXEFQ6OcVZlscep4hgclV2BIgeXc76VUTitrFO+mSPLQvtf7ViOwJl0ZKzmhW7GW/ERZD5mslFC2mCMYCuo6OwVkmeZfVDmfIl9Uy1yf34phaxX7tmHft7UXOZHsjOeS6eJuq2V+zoliHLSSecicjvCJTbp+yagmiOEqWpf1NE/sOc6YIwLJyjQ9y5KaS3pgbN88zwSCE59haTNdT1X2QJ+VTB0zECTNvEjdJ0Vs+9AzB0Ltk89scJNeE6faufS1Uvc1Y8DIPCtfkWfn6VfmKwDt/XKnPC0zYulRhs5k5mWmjqNzl+ZSJEsJaz/mlT9tKe3TNYMVyaRrKs5bqSJ5cN9HYPmhZFemjlYOkHq+t3MIRtr+jDNMcal8ltkCfp/N6ZPxzEP6s1A140ie+9zj/P1+f+Dr1zf86U8/4KfPX8g21Fnw6RgPym8gQvl7SIqPZ5Etd+cgFPuzOOK/9vrFwFOJVx6kQ1XdAEpxlDJh6uk3dJg5Wp0otaKUwKVVXFTVH6o8RbD/spjB2oYwVi/GQY2VbSuaTrA/UUfjfFClArNLQBjUf8xEP8oKYLZ2Ra2bAh3IU0/MuOuJCHiA4r4AKsZyGGdA8+chpoIg1UZtKyi2oZRXxNZBlLtjYOLxILMjxcH32uBBsc4mZsj7+xe8+Q2OVyLclw88xIPisFtOfZhBJF2HbCIwzaWnI0SXWRWAkFCcjIOqW7NQs0mkfrg5n6VxbVtpq6C8Dlq2qzAiJyur0gBlNT/mACexkh3Umto76o7WGlppOLxjjI5dByBbNRGiJgYwe+pXcSLC5XLhISkEmuA0+rNAo9OdTq2yVSEqAHOCky4RumDVqpSCOfRMXeCjycr4s1A1sMxOIcssg6iUHrLCxKR3Vla7Wn1ePrwi2z2mtB3evt4IIsWL9JF27A24toDVHbANX96+oo8O9wMrOZoD3g+M1tC3hsuvv8M3L6+494IxBn56e2fVw16ps1J3GNT6EHT4BtKfYQTxagZSTy1hxwC8KLgHq2XTXUDx8/6QaG2EJigQFMqWVSvp8LHW0WCw2tBqRWuVbRjhCNCoPR533B8PGfOGy345J6zri1NPqCfBAIdaSZz2Rh2tDMq2aqjFOBY2MonMQIP3f92uMDOMwapCtViC40WARymG1MaQ6SaDZau4bDv2uuFxv2MMtiCXYCuueXCyDOx0+pYOGkAta/3yawXw0udKFkiCWjmSO8FmgAyndKjuA8dxjhPOaZRpv5LgREfI+jq1wCq1MMxwBAEBx1ktXd0Gz7+DQH6xspii/NazpVV+SWeFgdH18oJZJzoGwqnfUOu+AECfAz99/YxtM7xcN2p/+cCvP36Ll5cLau1wH3h//xEv1w3XX/0K7gfujxvcH6iFWljTH+j9Lko3Ad3HEIW/ACOmzvkrYBX7/gEegceg3RmPga2R3dFUJDg0TQiWwYb2+YoTpDryFIivgN0yRkp2DVgxdcf9/hVtu2DfPwAo1J6yCo+CcUxYBV5e2IJw9DcM7zjGgf1y4JtvDe9vFBnvR8f7+4E/fr/hw/WCbz6+4vXlil99+y1ub294vx14bR+wtYY6afm3VvF4f8P7D294TEN3wB6OzSu2dsU04DYDiErNK5bYcNwOjB6wjcDT8IHaCvYLtQ16d0x/4H44/vTjG15fJl5fLtinY7uSHdV9YCLIomrbquQTfFYFWpXPODPWJ/+rdc2NHVhJ3eJOntE3z996MoEEXjPh3IxJ9rVWdNE2wgFMJwukGvatrWB0+sQxjqc2W/kzq7BIdun5afkylAW+YXYgUvw90McBrxXWKnwOREw0gZe1VjExnbaqngW7wJlr5Tkki24um11rJfg05+LWZAsPD6mMAzKxBVJfYipOihLUrtL6sQQtMdFkxkzAo8KjrtbxPt5hPlAiGHHUDV4rvDaEcTrRlJ3gNSnSi4JtXBkjFkOdDOa3lr6IEyenWvZ9zgWM20YNUI9J8MdPG2zGyZTMN32Bgq3t8OKARM+LUUuwl4pZrwA2tNeKb/7yb/B/+j//X/B3/8Pf4f/wf/zf4z/+wz/h3//Hf8D/9D/9X/Ef/sO/w5cff8DtHvju5ROqTcwSAsMcqtKuPZsDSk6G97m/18ALMXVNRSG3c1cFUqku8kAs31KC7RIZDIdalIt8cmsV0QzlsjF2U8GQ3VvGAC8LZUZgg4CAQH0xlUvhtGWrmsDsKramGQRWMOn5rJIdWLDAyKbJaHVNzT3XIc9SJpRZRAOwtAwZ47KllkxWno7WkonKnZ8FoPS9AFYsDGkn1laXDcoi4Zhkk3Cy4mmnRh+wKvBgPT5+9jn8AEzkNKmvKMkvsmEhVl4uWHn2I1l0082eyXjJjBQAqBUTvtpDhvQNCirt6xnKcNIvAlstsHC8v7+hVsZUj/5AqwUv1wtaq+jB1lmT76ulIoerZCGJ92LYWuOuTHtiAT/6KgRlexTZ3Bfs+47L5YK9bdgbp4vte8Pnz58RYyCmBkVBItk+UVtFKZtokUHhZ8SKZ2qVDzXD4RMDhhkV4TgFuW0ix2Ikm46AdqEGVQHoG2jfXq8bPrxe8c2nj/jm0yeyY+fE64crymF4v59t/xlHem1wTBwPTtHdLjsFxGvD/faG9/cbPn34gMu+Yd82eDi+vr/LDgbCKmBtgR/nnlLXgHIYjyxEFgFh/P4zRpfPcVqNUhkfduVOCYrnZEJq/lIvqMDhRlYXi/0UQd8abW8CNjMJUO7woXY3sfdbrThGx+wHiQqlLgH9aQlUaY9LbiAnguYglizIugenGmofl8op5vfOvK1tZMYdeQ1mIi4UsAUiFhsy5glk5xLTsyVaIz9UClpR0SY4QMyni/1bse0XPrPjAEAZDQ7fpZ4gAtKmJQsuBwqlbtOlbvBC8gEkDRRE/DCDjKZmJMKmfFFCv644Jxmvq3ivew4PoGMB7EUDhGqj//vpTz/iD3/8A/6f//4/4v72VbaDtupxewC9o2x8jnvdFqDukwXLORxzkNGJYqtd8Je8frnGk18USIeWdxJ0QVDMrChliYk+O0pMbA7USTJ8ZS8HmtTkZxdbwDmWvLaKrXAg/SZnZxLuM2ZRqvAwKDRQQDSrW5rTgSlhv2IbE6RS0EW5pkGRkpCqmAZjsJJ98/aso8RELZwVfPcCBCekZeAavBIYNpgX1Niwl4LtekVcgPfywJjUCvAA24asysES0Gi2w20As2AewO3tgX1ruL5sqCDQ1uOxgBEDE09EgfkEoDHSyRCpzxUqnSrLoLSiOwPtxFciEuXlqHbed97/U1KV1a1S4J5sKSbza5qJNAia2FDhAzEmJqPSJfrKPaXAWUg9XIm3AaUSeIILWc/EDaKYVgUUUdeByES/1KdJgZ7JsAmIgYLQPCCinM4M5vLvU4SPQdjP2T2JIBMUgMTurBSMMZcwaAp4b9sOhnNKdOqGvRkum+EYChp6AJMi8wYwGHQgMDD6xPv7HV8+fyWFXA7mIgDFojLoskS4zypVIt4IIKdClSohWd2Hz4mlQWESqlws6rKSaN59cqFULam5WULsIrVows5KfwCpFZPBimdJwJ5YdcBJ7YWAQI/VGpbFnlL4/FotukG2JmYViGNkZDMci720tDC0D3yq73yebZGrimdFuVgGfr4MOkDGpZWC0nDaoMUQzMBZrMFy6m+saROW620opfFc1WyHOG3dWQFP26sK6VNunSEl2XTP2kcum2bnnhdDgDb1BOZS/2T1oysh4khiUutz0gjBJJP1X0cirwIAE7yC015staLbgM/A6CFQTW2q+v7r5YUtkzUDbgMKxZ353Cc+vGwUiY8J+IDPjq0Vah+FYyrogJ5zeMFqxgpWgVUjBOKcnpL6d7YikLSdgRon9KHTLwthCIk4ciBFPnYxLzyTdH7GVBWzVk42ZRLkOPpNgRoDmdZ47hGhsdGcBFYrGbHbVjBHgVEpn61B3XB/f8degAS4W93gExjHVIsBKdj0ZYHjMTF64HEMPEYgnON7XTZ3dEdY5VRQJbCtEigpGhIQ4ZgB9ARrUDE9B2lMWBm4XF/g0JQw0zHN6qCXlVCdu5n3Fapu5vmcCgZLydqgrTOUbLDcgyWD2pmaEBkoi3UXZGtDrI4srDDYlA+tla1rltXj0wZttcEkKp7gRxpNF7PFV9Ke/tRVTbb1Xqwek7nnO7jexJjPajb4M5vauxnUCnAwrtH0U8Ygfaqt+2ZrkVlBFRZRAFXgGXOdezttoQxi0cWvwpNOveFc+7S7xdRyIbaNBcx2oFSE19WK1VGWz0LYmoSE5TcKChqnLiLBEr6aqu7wQBT6NEudId1E+kAWnQJZyClRoeARgBj0tQL/L8r+ree2bckOhFpE72PM+a299j55TqbTt7INVS6DqIJCIJ5AiDcQEhIqIfFjES88ICQeEKgoVZXLmWmn7XTmybNv6/LNOUbvETy0Fn3MnbjKp75zvr3W+i5zjtFH73Fp0aKFOfq+Aw70fuP47BnIcEQaBjgu3NuOfrvj9vE72P4BXw7gy5H4eiT+8f/wP8bf+wf/EP/5//P/hc8//oC/+u2P2Dzw8QMZEGduZKKB7f283q4dXanUFXdFadcIvLBik8i+pGuNL71ansmk3XeQ3VhMMk6ff2E4zQIfKOQcZqvQUnpPxSckB48tnhz7rQmjUBGrQNBkMrU6DuRvmdAyVoj0VeEn8AdYhpjKrku44u+lC5lQe3tKVNs4RanAfMjuwhe7nc9YRVOdFTK9fYnkZqSS7fpdJuGcVhacNulNwEes82q2YarN5ZdMq4vJFcXcX2fhSvwv3y24VcCOmzz8S0Je8dH6leQ5jcXiK7ZjClTSRFLF/QUMGSC9mrrYXDFOzMDxJAOXw5gaUsMCVtF9xTbXHS7syyofKOAJalsjmAiJH1cEc44n/ASezw0xDozWcRxPjJIDcGd7rvGamxJ2tyY2H89xc1obJvPlO2QblVNcjLWyZYqV4AsgbwWyrrWnTkTmQG+Gt/uN03I3treZs1gw5rhiy/XJnwnjgCFO6xZxojXc73dq+okNdArYoU9lTNDaBm879n3Htu+Y2dUSVvEfC2ks/AowqMK5Rg64CmSu+DMmRcwhsCkdC5T/BQMIFbcQfir2Yd1f84vcwcKA2HwAOwEUhzpki7QetX/nGGx0c8C9Y8sucERMQDHGDMqXtY8rT+XkZHZPFIkDAPWnIxDnsfzPVcDKZfPNwCEbsDXpEEk5HXc+o0yQVICa8Kzn6k0t7ry3SWNN31VFfRO4Lb9V09Yrpo1MeJJx2xT7pIaDWOsghO8kAKBiSXA/WeUQelsja3CdPeEjBQrW/TbvK/4fx8CYA59/+oTPP/6M8+sTcVI8P8dAjCd629DMqQUqwHHF+8rFXSz2HIlzJnyj/Mfv8/F7A0+RdxiAhoDZkFOZsJzooI5Tb2R4YBzwcGwzOTIyGlpSAZ0VPsc8RdWeiX1nnzoZUMp1weAUogwDNJI1sc+9k4L5GgAFk0kyB/piCox5YsaoHJqHqL0kR2CFC6bgLcvXFa3YJSDmyKjx0fVgHYYGiwako6ej+Ybb7Q5vHd2+4DhPfP36jvOceDwHQbZtY58oHOkHAo4cDTOAL+OJ/Ab45u0DunHU7RGXtooZpwBaNvioliUaYDpOASW6Byb89EAzjXpJ1fMeDLyLxjeL8aV/53oFqOp2JUwVuLLl4pdB3ta4SmMMxHREdlVefLXf1OHgKDkHwpd2DSfUGZ5PasU0d/W1TrHANCkhgppHcrRV4Q2NUY+QiP2sII4hRm8MjohNsQpXTkM7BL11XBFFVZgCMAnEA/C+EWZo9RzmcsZlqG+3mtDCqVl7uyF6w9wbzuOB43EgDgb8t7cb3AwjD0w3wAbOc+LLl3f88P1PeD4PfPftt+j7jrfbBxqgADK9ntICLZgsrIVeVYuWrOxWEBCD1GbXBLumtjhfhvQlEanUO1kttprylKE8O5QYaurKCsgIXFTvNSfm0IhiGVJORmOFS21owWr7Cr70GFoT8CQbUZN4LHwFo9pdC6AuGDsG72GO0ntgghomB+MCzZbtkYG3SnQlet8b7VvtKlUyAF+00+YEMKdAVvcS11eClWQwLN0ppCqxqcSkQlcF01a2EX8DfFKy2fxiV/GhY9Hje2PCVnSHSuDq+lOUdoikbgzQu6i8oed3HufrVrjOMaB9xdGtqXFNzR37bQPA5zS033KGMEIC8W9vH2F2Ava82iesxITZovvxm519/jkx40SMJ97uN9z3DQa+NjesGBgBGLp8A+HfhCtQoL9Y9w8mPlU5x7qjixZOIowcsYF2UK/KzVYtnKwKIwrwLc0Ox35/W/t5xsD5fLC1odP29W5k5YbAkUj0BmzNMDrb6AgkTCDJEj7PxNcvn3HrDTmT7NW2Yw7gOKYm+RmOJ4sg4zzxfB84j8T7lxOPY2B7+5bt4tI5G0fCekezNw6DGIHe2HpQmUWA1fVjVHrSMCf32dd3Tkv7+NEx0xFiCyx7Ck7FYzLTL9+MYAKNFEiGZd/DDF0tV8UQXPu79LXK/mZgmP3ijMSL9uP62ZfvAS+B83YFI3NeCaKrcj3GiXOOa4R0HSko56lEzSpQT2xYZHomTs0BTJzjwExnDCImyIypbjGypbetXdoVCORLkDcEvCw72cgiK3A0LNF2TVjKauHSnTuDYX7WuosNHGCyrzwWJeoKXL7SuN8dQETDK5BCKlsgpONBAgf9LqQvNYOs1S4dnWZNwNOGSKCVYKoltgTZ4CCzhnUPnbXaWtXOU+0dyX1pk9ORE4ClGkh7h7WG7UbNKG+c4udz8pyMBJKgqe839LcPuH/3K2B7ww+fJ376MvDz14H/8X/yP8cf/uY7fPrtO/75f/3P8M/+2Z/g1hP/6B/8GgnHOZvKNbEAsZ6cYtzsBAS2VBxGF361oJZdWetutqo0KyFU4sXuAxOLEGob5a9sYssdqr5vndOwZrMrQZ8hGyA9KJCVG5r8nEYmUMVTADXACPF7WUMx05wMe3dgM04781ChlH7RcU3jRZ0NAQdWbVPOAm/T3oZBNu2qEdDl+kqGaRNGrTr/babnbErQcxVY3AlAtNapHZcXUBcxeY8q6jZrmpQXKA0m5gt5+Y4q5umMeFO3gQvqfXGiBTw1a+IbCyBZ/8N65hEpTEWMFShXMVzAEyDwJcuzoRR/yiDyzKgYNxPH84ntdkPfbgC+SFcLv/CPmkXKfxuLHxXrVoxYk+Js5SrF3uEE5YjAcTyRoM5Wl3A3c6zQXm4L7GcBxjkJFMyzSii7N9q4rVYhJiap3coVHWbM2UaMtR6UV/CVExbAwjVh907EQAQLWx8+3LDfOratYduJ2DyOr5hBxtsaQqMYwvsOeCCHwCFg3deHtztwu+Hx/sA4Tzze35EA7t98w5giAn3bse9v2G93bPsdmGwvHBNr3/D1CoxKmLFQO5OnsavLBnrNOYdiH/pOC/yiPXsVF3RaCoyjnU+5igJLCOywxm+IQzatd8XPAsPGRHNOgDfZtvevX4BM3O4bJSNsQ4RiN8WmFlzPIa3Adb7dsW8dvnWcwRa+QzHu3nfkoP5t2mt7m6GCXj4LW/lxMaUJELEzwzfFQMfgVMWkjlFrjVMKva22yHW+vBhjBJ24njyLWw2eMvD5zECTPiwHiiSe42TtRkWmdGr1DsISanF3UKqDOy2CurDNOiSfvyQ3avphkW+6wKmIifNgW+2nH37Cz9//iOPLA8iJt+8+YuQTjzyxtYZ92/H18QU5Et7tJdlg4aP5htZ2vH85cJ4D+75xMu3v8fF7A09fivZtBXDoM6/AjSr5jqB/B7pjzHIu1InIpK6NKfg33xFomBNE0exlU0w+PCLGBZQEznHwJq3JKRbyyslydAAnH4Q7vB1In2y7gyGTgE/MRpR4JjglLbEZjVrkgPmEtaGeVI5ntWyrQhJC1yNPAANWoE0CcxyY05HzAcuJfaP+1YgTwETMAe83NN8YNBLPIAg0A+/5wF/PgW++uePDB7abta3hHJw48hgnKfXn1TLWWwOa45wv9GsZFRMghdJBkLBvnXTnfqLRdOoQQWnCeR6ILLE5hz+7AA+JzQJsNWwGyycAjr100aB5PjnBkOtPCKBt23JmMQPHMTjxrQV2VQQ0qBHIQUejKRvHODEH27X63lfLV2bi+XyiKm2tKoOh1iUlIjV5rbfOpEK0VIIWQturOCqnmnEJPFO4mXvenNXoojTOca6D6N44EUCGL2Ewa9i64+2+4cu7qh2NbRrnSD0zJsjpXeM1De9nIh8Df/CHb9jf3mBOA3mcB1rjaNmVSUkskaOt2eVOiuSJzQha6ub03hW1AzXKdYquXesKcAJKwiSUN/E8DhWuTdPZtN9ECkUk8ixQz9briCCNvu3oIwC1GE2VCVwAARN+/k5rFN7eN57RzOJAALftBjfgvnVYslJyCcv6omy72aLdb5sqLWJ8zZCtKeAqjKK9zqCxevtP6Ys1jWwuvSvNq6NwYkKVZ/59ak2rH7s1Vs1M2kcjYomB+0bhwjiVpmdhTlcGXayxVq+3bSsArCDB9HzXtKOoYJ5fT7z826t9ztd9MpjWvSRZE5GpVgxSfBPFHJukFFtjNdxcLagPYE6cJ5AIbDsDqNkD55HS0WCoPeaA2YQ3Tqpku4uBDHmC7vu2obuhq6XC5kQ3x6115Elav9RmSPGvbtF1T9KtMJ7F8yRQ5U6Av/em8ecFTryC0VpDAafwWtMEBI6+6o2sYF2/n+4IM5zPoYSSzMKtM6DtvWEcD8R8om2N+2FwUITnQEPH5hOuMzXeE+eRuO935HT8/OMDORoabmjNcX/7Dre3B2Z0/O6nr/S50/F4nvjxx8+Ab4Df0D7ccLsD2XbMBL4+3nEO0soNE9MHzjFF1+4w55yA5gHvTyzmnml0szs8Ono3wAJfvn7CGCf65mqDiaWzFoMt+EgyldPFolLwS1bSyqBXbJBWbYk8F2Py2Vdw5M11riQiagS+x7yAp5s3mGlMfQSeEZhGT+4xYfMUG9rE5uRhNAHD8zg4ptmKzSgnKrtQI46BEpjXqHYw6QsEOiYcA0eeOKbjGIApEDA55VRQwYq2wM9kkrX8mdhk1MLgD5W4vrAi5Mk1LgYWA3Tu0eaEjK+qumyGpZgzigdK1ykXhKhrw4t9KKiYsVEGh0iYQWymJODcEpSYU6uB2KR894GJB2C0p9YY0dwzMZCIRh8yjK3SJo9TrdwItvZlxaeZBCGU2FP02FlsgOExnlpr6twNOOAN+71jTGZnz/mOL59/wJ/9yT9F22840/Gnf/rP8Sd/+mf4O3/rW/z9v/Mb/O/+9/8r/O6v/jH+L29f8fOP3+Pnn36HAIE/tm9jFekaTjQAd1n3qJjNWNioNho5zJUgcjouVvGrimb18yFGjZ6UXjVROpqWF7N3JgEmjjgH4I5pjli9WdUClkCwkDdHMNkufCTBir12Qz1BtgJRUSvSF2uLUxCVyDa2xEPaYblYtYI7VNjKVxuse+PADh0xIXRm5at4cZ6BiwJwta+bACjU2QHjvpkE5aoV5pzUCjwUa0IMl9alMyt/W23tidJtrCI9r82rEOeKkwQeTL2+bgvl7JfGIwMgpG6TsYP2gu41VbyCO8baRcxR3FQEq8JhUgeTrKMTbmwjbn3A/MTj+cB8BN6fX9iytO0oPanMiZE1FRtklQJipFPPCRkLPIKxM8Nb5wCdBMfPA0CjiP3n9894u91xv91wf7uje8Pj/YnjPPH56xe4MU5ecWPw9FoobkkTaYC5zC+AQHVlsJ5gMO9a38BIFoQcYuOpi6UrprrtO47nxPuXd4zxRObg8IDvPuL98TM1WZNrvbozIBayGXVLI7CXGPNIPM4n5pcH/X1ncRwA9ioIiAH1/jjw7fYBHz58i9Z37vWYoLb5tde6dD6nmE5AsQvFvpEtgRVDsanYeizf4u5rHdUDp9/T3tEeSj3XOrdcq5fOGQ0OWNpjgIokk+BY6swl15fnZKoTqBj0stMJ6d9q3/rCoxg/jcCIAyGfkAInn8cheRBgwbWSR6li6xiM1QkoSy4h6zwwhvUC4Ayw5uggMaa1jlP5wrIhlVvU5GNAOQRWgdua4nbde2sszJ3nSaDLbBWkz+NgF0CTDmHkC3vZhTeIkSrco7XOmDSM52uCWABM/jBVcGZr+/vnL/jy+RM+//AjHj/9LP/j8OeAHxN+TEQDTq+UwfF+HNwikks5gtlZs8RoDbk7nqXD9Xt8/N7A08OzQijS/l9BKJ17ilXrwOvgEzvGohZOBRlsL7mQ8Gp9pxsQC0dB/SoayLnG5OQjtFwV5wSdV9uwJtqFsb0J7YRLZ4ngFVHzDAa+OQNoide8ndo4Qd0WYyJEhLyu3WBJLYaY1d5RVP9EzFNx6gFHoncANrEN9gePOVh1Mzrq5UlEH5wx8DzeCYZtDu+iF0aoWjhXm1AFBu5NAIM2vF1jwN0Bt0tgsBKmipVrnc0YtDNpYOAygyyp0KFmrsbNmqX3pak6aEzij/FEa85R3nV7AFLCKGTE7EzM0gjWjMHgKAHvNOBlcKp61FoTej9xSjR4u3XtLR7KMcaaPOdGyJPouIxJgWvGYKDAS1rjAkgYIBoquEu1VVxiccWHIYOKIMbExEz2v2Iz6aAU5ZOBioG96PteyQmdN6eHcP+kgCd4F7hnOGYA5wT6jrbdmCTkxIiTgaCp8mJqmQqBsAJnOJ1pwqNpCp6tc3V95ALQsnQ3XoCnpjXy1jltcQzABcBYPatcZwjr3hWsLAaV2mZa57k0RlMVTDMJMJANJYDJytA2ANV2yqRj62Tm3CX+eAYwJkhpFbWY7a2GGrvauib+Wah6ORdANuUAvZcgvDPxG2SpzBGAhNBJeWUbRQWGEHW2tK4qYFp8OufUqCXIH9xPVnsyEzjH+n2C/raeUensVbJLHaxUkKr118+vXnbZ2CWYnkD1jC9RTVTbLPfrSlIzleyq3mnGynPyHggWQK+jihq0XkkmoFtyktDeeF7nqZaAAp4EOqXanUGn626oyLU36nc5Ap4By0SHYfPGaXORSoo4qSwVmZSfKDtupmc/D/mcDdY6NSKqYF1AA66kx3JqqIv8UuRKwOBYIpFeOgWyFAksgeqpSQnmidYJOHXZ3DGooXS3NyQcFgyWHRQ+7tbgeQBxYg5gngbbNmQY3r+eMBzY+ld89+1H3L55Q9/e4D3w6esDGYnuN+pB/fgZ97ePuH/zQZo4bMGeM/Gc7zgnMIL72sUcJfO0xMuZeFjTVNI02QFHN2mLNAAI6XAFWjcyXEaqVbbhGJwumAKc+WS58wrA80rA82IVKd1bz2lO+lVt/MXimap4hhvG1BQzJYZdvmYgcWZgCNQYpoQ1Ag1sjV+OU3sdNUGSB3fFDTJyYFVe7SVqbYdV+1IVhgiw1efIgRGG7lcuXfdbrQhlWYtdAdHyvQRG7Trnl0nPa9+VT61St4DisiNePr8MBECbFK71rgJKJdq8pqrykvl6jVOfyRbINMaNU+/vyNXO3WV7Kmxd2pp20E66rhGGbQYcydcR4FTJzulJ7Q4xdWxN6uV+Wrm31qkAPRZoGK/NmOxpbRvMG3p3dFNcfx54Pr/gL//yX2GE4YdP7/iTP/0z/Mk/+1P8+L/936AZ8J/8T/8Jvn7+2/iz/+r/jX/5Lzb89fe/xcwDYSf61mRfqz2M+2FLsWpWongx0FYJUcDTTMA91TGockeW3dczq5piFnMKC3xU7Q0rTS8tqZgqrBpbOmCgLoqvODBbIs9iVygRCp1D7TmzOpeKzYPtlcweS9z5AjDryHD/xdpHLED5S3yK6w3E0l0C+jAQt7yYGUtcGBfrDalMYcU9xYE2JZ9ct5hkacDb0oIaoSm8xUJ16e+UZkxen7NYFH612jGUUWz2cn2nQOwLAIjVnq9g6pKIQBVNrVZ4rRfZn+BG1RtaRa9KvIsZyOlmxiJNY7HFW8B84jze8TieeJ5PjEhsO6UkaOMr3zCBV3yflE5qzmKAVLwo3di2iYmTSJNAu/P5nedA3zpudsO2b9j3HWNSmmPOKdt6sal4BlJ6pCZwXfu+epLgC6wIVNFAQzOqDTpCOru5mE5lWd0NbeuwYRjjRGpy6O224e3DDe9PvGgxATWJu9YDxiIvItF2TUicvNfH44G3+x1221FdI733tS8yqBsLc9zub8pPsHKPMesgJKqAXzazwFIrhk1e59x0nSVf0Xqx/PQaZpxfslpkNeRHAFS87G/e5pU7JBjzxpXE873zJe9ZvkXnQN8LnYHu0iFc9oDXce0zPk8olqZbb6uQm8npwFasZ8W0SWOwzkC1nHe10Fvt3yQoapmr9Rx1DV4aWA0YceUzsoG/YDpFsPDmVURLmVCeD7JMG85jYM6hwrEYf6DsCoGsvSgZbC01luJhuYrYFduSsSlfEXwOpSU5MUkqyGAb/Awc70+8f/mCx+cvOL6+YwPtvp0Tdk74UNHDy38QjA/5FhbQeNxmJAeKdMP5izzyv/3j9wae0A8aisHxuHsrhLfhPAM5mbQgWYVkC8qO7h29b9LbCYwnzcG+cxrXW9/Z9tZoCM8RCLupAq09/DIOt280lG1LmE8gDzCA40p4A0xMqQQrGGZBdoFxyo5xhqKCRCCDr9k7YDn4ehL4FNccBHIScIJRJbjI0dtPHZeNHQQJCnm5od12ZCYe54E+G3xveDwGzq8nTjxZrbrt6Ps1BjXCFyXuy9cHzICP337Aftvw4e0jAHCiUQZu3QsDEkCRZChFkFWxDEEwqEIlR8U6q0WmURkR1AyZMi5mBJ7Q0Tf2B3vbUClrSnQxrYv6H0AAMzsQjhkNwAb4DpSzKPs0WRFqrcP3jlvjGOaIwON4h5+G7dZpsESfJyvCgG7Y2oZEp2i6RpwDie1G0WK4M/BJrAAuxeLBnAQWwWCT96ype9sGc45dzsz19QBgvaGboYs993w+AVxVR1byO/YGWLL/NdXeNBT4l1AojONSv/32A96fg2i7mFPP51PZR8PQ1JEzHccY+PnTZ4yZ6J3VlP1+Q+aJ9+dn6jeZS9/mAslSyVgh81OUTChoh1eFowzqVOBUyYU+ltMAzBp6u6HtO9q+c7oEEuOkpoxZPfL4G46ISSqyYQy2M9True9CugzuGxNfaytRCJCx5GZL4K8ZE8GYief7ExmJMUoI18R6CUyrNizdjQBaBIE+kxZQAGrZ4thzhwPq++aggF3aThRIxEYH1XeJgEPBt0k0dKbAahebTIKDlQCE9qc50glUEuhRJchL+8zXtVf6NzNWUJE646V9U1WjmpQys7RyrkC4EtBZFP2YK4Epp7OCDv27AlcGdaF2o1zPBsCqOt5uN0hykTYjVTHegFsYogPng6AIIx+2Uc4JVtaxcdx6Am6BeQRt/Abctg17/4C3raGvyOJKgnbfJNBIxm1TAsQEj3RG6TLCbeocp84oK0l05sX60tbtBfICfdsBo12q/VafY7Dit0aZg4WP13HDOSfOx0GgxhsMZMay57/DkqD223bHAydwnvjVN9/hw/4tznfDl68PfPn0FWaODx++gdkNczb8/OnAl68nPn+deJ4NI3bMMfHT+zsiDd/8+o8R1vAOx/PguONPjyfOSV0nbB19q1YLseMEALsF2mZoDmwmgPokozU01pq2cWI0x5vd4d7wzTff4fl8Yo53ZDRMGFq7oXkCjfY71GaGsMs1LR+2TjQI4V7JNtvTaFvNWaGMCPgoXRFpWqTg3zSgbUhvOAZwgOyZaWwJDP1MQrovrqA4gu0cwT1DEFNAV53bxTjWOQqB9V6iqYBvDRaJeQxYN3xzf8OHe8fbbYNJHF80cO73YogbzyCFdDeCJPYCZUWsHdjE6i2AR3OLqIMhG3JlpYoj9O+MiZpeZmYItVVlFZyskksIlMRqz4q4GL6vbXeRiWNerfxuciedhSMrMD2pVXPg4GjnMGzoaGZLboCxDeO75mzDSbHIkElGqhgt9DhXAgOD2rcDR56YAbyfJ9IarN3RW8O23zECmMfETAKIH283eBj+2X/+X2Km43Ekvv7wCT07/ul/9l/ggyX+l//r/xl+9asP+D/+n/9T/Nmf/nM8zfDnf/6n+Kf/9D/Dr777Fh8/fECzXUkR9dGe+ctkC8bkeooxwMV6STIDq32HeiMF9ORKllLAj2uvpFh0Iyc8bY1yP4vFJGYgGgQWAtYBs0TzxGyJaInsBsyXYSuEodYeA/g7SEE6AqfTKfOAZKEncQGViYDNao25dFvME/3lnKd8NcGo0lsEK+BWzEQypxizBWHsTLGSXcBatT6VeDoLKCdpuSteMjdMVzFwY1w1Y4pxWDeLpWtSyWA32s0u5xLSgpk1GGj5CSZwOt31cko2UwV9guCmPYwFlPH51efIFKhnV0xXe6Hac+WT03hOJgJb2/Dtrz7idrvhw9sbnn/5l3h++hnuDVsxShKr66O5szCcYjhGnXNuTIddOi9ikGECZ6TinGIaMpfCnBhpeM6J7z/9vBhYfmv49d/6FWIG5jiwrjgF3FrHpad5FcqMeCEZgV1Zcgh+Gca9ATGON8ORtIS92SoEzgjklweaJX7zm9/gj//4j/B3/94fwzzx9f0LAtI5S7Cg0FgsOY5DHRYECmBX+/NtVx6YZPqMMVY3QrvdYe4YBTWkbH3bWCg5BqfCp14HuVq93p+PFd9t+w53TklPqLAqUNDV4jmnMd8ZgZETwERrDW9vbwqNa2Jyu/aZzhtlbC7wibG1NCMrv3oBpkwsK9Pr1gTITXjAl8+fCHJvOyadPhBcs73d0Lx0IEOsLrF4i3WlPKF16gXO5wk3YNuYm5V+WbH2Dcnis/bN0myttkAxxw4xp2toQYl389qbpBcEYOoInjGZo85Jm0cUGNU9peQVuW1ofcOcbLmTSpSKVYk8pzolqEzqRkkRd0eIRddTA71CrYmzYZwDp0gtBKNl60762+acLL/vG74/DxyfvuD9x5/w+PFndLJKcD6+0r/OExHAdDKT+dS4x2OKVNQaZhrmCGx9Z7yVVxvgv+vj9waeivUTecLRGFzKwFFoS4FLJoCNgV52ODY4NgQGzZN68XMm0FZICBqP6iXfUDKFAFHgsszmxQxIOdMAybuxin0p6mUCWOUeEBVVjUh2v/4eq1IPoYa05ytzxuVW5VgNL/5DlUi9Zhn8GieZEELvHEvooionGGARCzCxIrAediQT4MfzwH7f4a1hb0Q4m3JQBqQ0uBNcgIIKrgMKQBW/ii3rOuuDjAAacFMivLShlUiYv6zR+qzJdjQCFSADTNrYXtdgVsr7ly0jKCKhVJPaPmpaBh38jkuMFeDX+azU+qjAqyriEEK9fLPutxLh635TCTf3ThpbBIgHhHTgmkCC0DVfFSdbe7+0ncYyVAZIBLHepy5G/JysynWi94b9tuEYNEJtUeirsshnQF0gaiMcx4nejxdAQv27OVXwucbY1t5NRVTmao+MINCRVW27zrOBP4dkZZqhnJ5a7XGU8W5wJw01dXBGgbWmwLPOiNaDj/Oi40YBP2bUSYr1KLVNpaejc1vPtfYzbQWvcM5KPHLpvy3QRL8gc7DaDerG7MXP0l5UNQ2/FOxznkECWbk0oaxaHDLUk62qr8yX4dpL9VoymuvvleT/AuhYr21XhdmYSmViPdt18S9nbNkiBUJ1BvGyh69zWQ02srtm11q/mA39OhTOoTTblBXj9aPOwzoLuJiVvdPWDWfAUeN9oUAB8itIh1unD1rnNzQNadekHVzP6uWCORiieF2m5GPd4atJADJQGlC51sdXJS9wnf1Vg3bpoFVLR62Dkr9i3FSVj8/tej9ksApM7BSwqRBuqt7B9qhmbJFgGwDbDe/3O8ZIfIqvug/65fNkYAoknsckADYNYxrOCVDE/A3PGThm4jkpDvl+nKwCbzeU1g6kuwEUjZ8xUnOgeS77UAKcpRliBoEEufxCbxuGT/pUiiDJ7iRKnP2SHbK1E+uIFKVeDXdrs78Gu8UWKC0HmFjYei6XH3BAzI4LIqnfYVFt+bi8zskKWvX7fLkqqCixXAAZUFXi1ysGLrZsCapurS2tk2tviKlRPd9mwGoPKpCCxaPIl/eSvcl6rbXJXxLSZSRoQ6yMzWqlqJhMIF8G3yuxhFmXl9LZKx2rpXOTJaJasRh+8azq2hjU8j2u+AQYCPQ0dF1amrOVIuWfYNIusmVffd2CrddaoNPLVfMbYtdkUicSufQJO6pNJ5d57t6AAL789DNmOs5owAzctxt++v57/Pk//xf4N//638Ocv8Gv//DX+M0fv+Pv/oN/gJ+//AxvOzIdYyQ4CE57EKn2S7Iaa2XnWk9ddy0gXtfetG/LD0A+25Zdbtoj6dcPRAKtbKWeTY3LQaYKdWxVBFAa8KAcG9uDM+p3K7aoPZbKDfSlpnu1672Wr8lSvdLpy1emV52jK+6o96zSTjF/6mzW/axBN3ofq79rb682FcXdde3l+1yAGrMLtYUWo1BxMie9Xc/ruoZEscTwusereCPbUJJA5UeuUE32TYfKEmv3ri2A8nGpNlb+GYa6qetjxUt6VhWL1Vfcse937PuOvu1gcQwLwD+vQOK6z2VO9IxeHO5lX8t+l22qVlLlddZklwlIjZkY4wAs4f0DdSHvO8Z5cuJn8ULTkVm22xerPBbQza6c9mrr6zprz1rKvxfrkKxmXh1/duRUgaxhv+94+3AHDGJGvkRJRuCx4psVt64NyRijt47m41qXenbFoE1baQJjUUrScP0uG+tqW3MnUy7UUVAxyqucRcVopWFk2scOvwqEr/5puYcCLGujvZyw9bz1T7XGcl/VfseKR63WXy9FG03gkfqtYBsyDfXaq7+4lxWY5+W3FAtYVheF6Uy6umLK19gVGyY0ea38p19+qO4HRamoPX99v+JWLw/yEkdefp8+MypOXycP3DfV82d1v9q7LwxHEvc0zMiYh19KXtKjRrGhCHblPNl5lcui8N2DXRxIgznZmnMOHM8HzucT53mgdeZPYw4WnASHzSzWIBDJjha6Q6K7qRxzrWWsR/3v/Pi9gacPSS2aEZqwA0cP0eeiI7NzvLYBYQciDMfhHG8+sjqOsTuR3/E8cJ4nvsaBbe+4fdhhQVpYswb3WBM7Zk6yfo291dSOOhDnJP3XEhGDmPigllPfdm6MACqIZEvcQF/i6H7tyExSgdOB3MhUgYLKqZZABYNnhapmyGwwfGCV2DdUW8/V3sIk1LYbEKo43e/44G/4+hg4jimDFBhJtgaCwMf29obnOPD1h5/x9f2Bfdvwh3/wa+z7htttR8zA4/GULkEqGzBY39GVpKzgL1MbQxu/iXaqKsyYNQaTbRKGRgaTqcc+AYM0XVJU1XnKxhiOk/osPJwbbvc/RGbiODk2vfsdc37FnAfZHzBEcILFSKLue2+ovtHjSdaWpVBziQ3OOdnSVHRC+OqhTQk9D4CU+8nKkWWSVdVZjSkgZObEMR5MHjcBp5GYJhaXpp4d57H6eFcrWKotS9o/Y4wFQlkohFQ0zpY+x9bvpJaOgRlsFdz3ju224/l8Soidr+E4l9nqzdDbjdO73HEcD7gDb2+cgDfPd7gn9l3sQTOMxxMTsaoGx5SBKJ2FmAJQqetTBjiRpeqg/Ky0rOSg5AQaTBR00lttpiBg/qIZhwmYOXJveh7lgAzdN07DOibOY8q/sY01ksYvlYg0TWqr0eNlJOccmI0Ck/fe4Q2amkgx27qf5Q8FXldyN2PQKpVIajloYAnCm1PQ9zwfqNYf6tQcUCs9jMQzRLuqqxVgbn1Dt44az/z+5F663d9oKxpbxNgmJmfpthxS985BBHKBAYKLTeL4Y6jWVONZFKggrudVk4HatrFldExlaBeQHINTxFqrsB7rzxrvzDYats0hEmlqWdw3WLAC6BK0ZEVuCgicsBxkyhio42aG3hg4mTfE5KTTChCb72jbHc9HIOcDv/n2jvvu+OZjA+LE+fgZbb/htt+Rp+xo32EGnMm98fX9gTkD5zFhnVNi1th2TZjj9B7atCnG2FRQ2zcBjAXy55XkUXg0cd8aWqM2W3E7mhm2bcPMg6fYta7+BKtgfM7neaL3jtt+Q87E8fVE6xLjvRGEOI8vmOMd4/mO1nZ8fLthnMBww7cfNnhOPL7cdJ8HzucTP3/6jAKSx3MgRiKTdPE/+IM/RpjhGcDj0xd8//NnhDeEkZOW2isBw3nIfwaw7R3b5rjfHL0DW2PrpMVcYdpmN9y2G3Z3NDN8/fyVCd6HnT4lGjA7P5MM2XOULoN8Ry8J3Cs0qZi2KVvjtEYxJmZgzoB7VbsvG7cSRzDRDL2OqSpdrMNmjXpiYLDfvEtbr7PylxNxcjDEJhZh7ztiDjKfZOciY4HaSAXukZy4aQyKQyCS2QmLAR8nzDs8NsQxcM4TNwQ6XBNOxZybifN8An0Dth3ZtGmVx405ln90rVWWgapYV4LL7gWs0kawmixNMgXXFJ1OZDZETsw8pQtYorTGf6cBScaIxYRN5/AShcpzXAkfQNBije2WXQ5syHTMccpmURctjIMwWiQ2GFoCe/LPKkuufN1sMUzYHpO8LtPPJn0TJ8tNsrNMLFNIGN0MwzoF+b8caNvGkd0j6eNsylYe6NbRvOO73/wG+9/7gN/+xV/iX/3zf47/+//j/4O3bz7gP/lf/Ef4e3//j/F/+E//T/gn/9//CH/0q7+HP/mn/yX+4l/9OfwjsG1A63ekJZ75kN0bjBWqAGHOav6LQWYexnr4AtClv7WSRyQZAEPsTDeYUbx/atjKCMoI9NbgfUMXayMA5HmoBZosf6Y4DWEbvFMr8Xg+6QeUfVvzay8p6fROwd2CQubkeZyyoVM+8qpV5Eq+owCSDGkzXvdfqXCBXiG2e+Jqo2vVOr5axgV6iJk4meuzW0cxDk5ufmucwPiYJ2GxFzZXsaWynIb2q3lDnJR+GEqWK39wxS1pwSFKC7hNuCZ6Ufh5HdUyIQswIG7IZ1LxGZ9PwCKpcQdgu7+pHUbMZXOEJ9JTEzp96Uq5d2z7HR8/MlZ/PieAO7btO5wg3n0GY8TNd9pbdbw0E39yAVkQLm1iVDOuCpPYvEB6F//QbcfME8cM5JmYdip/SPh4YusNt50dFNMPjMnPOTsiOvqm2EyabUewCJiRaJMMnxrNQpuW6g8C2uZk5ovdnWDM4ODgDLaLc9reT5++4BgnJRdULxnBuHfMSX26Tnbb1jfMcyLGxHkMDvLZDb41TnZNw+12oKvIEMYY4svXr4A7trePCBjMd3jfse13WOPQgzwHt5ti9b3dF8gxZ8Bi4hwBjGC86JRsGDFxHgfj/Un2ztY79u3G/TapeUQ95cJz2EEyTg0dEnBcXTzABVjp15b8zCrRGyfGzRe2XuubCvrch/v9A86ceM4D3m+0IaRPkZ1f8XCWz2BOO6fsdxSZguBS1/epe6WBUSg2E6OzfbutttTq6DnHQT1Q2aPVippq95wDvXf6lyB4RIF/Q982AUhG8Hc65jhepjMaJxSawXpDIPDl8ZUs6l0a0zkQg/aidxcuJcajAXk+MS2kLZXYd8asdgQSB87jxJC+6e12p+zGPHhePWDe0fYNMxJf54HffvoB//J3/wY/PD7jy3wgbhusJU5cbc7ZHOGO5/PEmBMjmbch2TnQ09CSNqA/Ey3P1THz+3z83sCTC0hpQuBaHVmxiGCAqR2lBMc4NvCqNvGFGMUXZjyDg5bhF/slc7w4WGiTECUsSvksLQEZ8DRD9bllaU3Ji3F6HVClUx4EulMSddRGByHfycCX0BRb0jLURgYeDCLtAAlxfMVIk9DeNaoeuKqt0D14c+z3DceUWPVLiFyjal2JQ+p150ge0seBnLl6X02TgiTzB4BK+Swgil2Wl1Eh4FY1wIIoWXVnoUJVhFUHvhx9RaW0Gw2efQF3r7Uf/vSGClwMXQi+xJOtJoXIzS6EUGZCRoZbjFpFLjHvEl1j8sjrNBRwsiJZPXvdh+EXNGQ6dCWQSM53M4FuVqNoX1qWpPNjzdd6LlTeAY+Ximqtj/Y3shBhARyRQI5FoYSTushpJ8aKSopKH2QuXZo5fNVxnjhlgNsaXYMFEGI9tYvRIa4V3EsTYm3b/7+PdX8KKvjSodeuyM/0umpJSQBebCmriBirgm7V462fMV+VSOis/4IVUNdw/Qj33jpLVfHHsjUW2vNx2ZcV1Np1LajvlS1YZ/n6/iWoGVeFx+TUsoSWr2vgdcR63bV+tvKCX+pa1PXDFJwmloCqHPOqMdZDrIrKCk+v10tFqq8TSGiD1ul9ARehpOXl99d//XrGhhW4pZ61i1laQNra22Yo6/zKk7r2n18B4PpeapgA32eV1vNa/zkDZyaO5wlLx3sPeBJM2TfTWGzdoTHBmJVYFJfWEhkc205tGFr2BFBjgNc+q/2EqoSmkiD7RTaQyZaFmcEkLxkEwmyBtAXiZO0B6D7rnAZ9lqGvr5kAAExb1wMYNf6wZHBBhgC1J5oDMZOJ+7JxYnYVexD0S1H+RJoR9KO0+cVyzLLJeq/UWPHb5tic0wUbGByVxh81HG2NB0aysgljhc0NaFtXAqm1ojourhXHL2xAZp0m/XsxH1+YasvW1hnMZfdL/PX6tvTCXkCWukurfQerW18BYA2bWKiMbDyUBKyznBcDCIlVDV4X+XKtVzXTl4irQRXc+t7yZyyerBhm6cGkAGCd05fVS/mpAkOh51WJ4lqvLItCod1fnntbpx4VF639AW0uK9L5GpBiisNMNjBdLdZ/oxxaaxVKTkaxQ9cZdN0H45iZLHigbDPsZXfgunajaPzrUIAEVrLEdg3X8RMYt6xWqEU9FE4lbbEZAkP+wODNsO+OD99s+ObjBzweP+I4T3z6+bdoP254+9Udz+c7/oP/4B9gnBPffvsddk3Oqz1UezuWTtC1JmuzlL5O6ZQgFZ++uNh1EOy62eXcGQf72iNxrdvLfl5VGchuwfSn4mmw+Erbcn2++swXy16PQr5i7UDJPMjzmq+3Xx4oL3YQag+K8Vuo08Ug0H5c/rnOluIJ41TtZWtejUbtnPKpiZfv/zLm+MVeffFuyysuO68oazG8Xvf566ddcdFLHLViSt23geyGK0yq2KE00YCcfC0TkEz9Ke2X0jGzOqb8/Sv+43tPsVoprkx2Q2nnFHMyFh3nZZQ7VLyvFbGXVTGs1/hFWBfXupgRCDGnH64c8HkemNNgxhzi/nbH6A1nMzwfhjjr3NOPrDhGz10badlnX98WWeAFIHl5Qr+InauYX2yUtvWLTrl8gOy/7oUtrbRcxtYcQPslVOCvsfalI7s0uqobwkzFu4asvIZo/QtrvM61fFOBfHHFqisGhQoNkP2LoEZWu3RPC2gqjdGy7yGApaY1VzHrdeX42i9xsEjr1fGzhlJcBxOywPq+o6EtcKvOTdRGebEduZ5jxZxY8RYArKnT661sXbdrgM01jbjO0ostfdmnrx/Vysh8ms+7zlflrSZj11zM0FWQerkmLxYtfcsrTJP5wsqvtV52gzqJyKtbAIpl+HrSiVNO2VpbgvMelEbwpATP8Xji6+fP+Prli9qPsdiC1aWBpvg35sX8rPjUxQwvEnbFpGarJfj3+fj9NZ7mCYNh3yTYmIkswT1R3Xznpo0JiqnNCes79q3RuCHRNtY/hlHPwzqQe0O7N0YWc2LGEzMO3JxtFP1GtlFVU2ZOnEHWSAsCGr7tfLg6nOeZMPB7e+freNMY4jhRk2NkWVkxtQRU1euNmkSWG4GMSJgTGIpQJUQbAEaR5zmJYK8DsQItVsvYrnjidm9kVHjAW+LLlwNjUruktYb77YYYifEc8LZz6kGyevjDj1/QmuO744b9dse33/0Bx1nPATRDOgN+y8Tx/IIUGs5pYBwV21vjVABMGcdL9Ji4IJMSgm6xDqXLWFnr6NiAvGma0EnWDF6MqQCTrVOHx70j8wYDK5NmqkwW6JTJSqlRuwfbjvCJHJwI08XM2e47jjnxnCdOVZe6RMor0KFxami+gTjueDk8F+102TQnqNQa+9ePr+/ISOz7xv7n/YOqyYHzPIm4J6u63uikA7HWmNqqVwhW4oPNqY2FPLBvG/bbBzzOA8d54r5vQAS+/+EzkMCHb77l6Pn3A2gasysD+OnTZzwfGz68feDrbBsiyQJyUaQRFGFlomUENI3GykLVf78MJo0fLsMof5eTCUP1Dl9hEh1h0zQ0vpwrfpX43RgKmCcc11TFaipI0Pg27ROCvhNX2yeN7Zp54dLIgQQZe4MbQ8FjnkBMxPPg91tV1yvITnWl2BIX5kZRFUeaV9Utpf5XnCcrF/t+54j11lhBmic228nAFKjFAEIOTZWh17GqMKBtDa4RpxXse7VrVa85mABBFWPo32wFHYCYRwyuKhChU72SWGDGKW0n/myrRDPJ9mMgJobBim51FlNsKYkU1rsEfAkvz0H9oqvqA3CKFQAJ89c4aupTsbqTeWLmIOBkidYS6dxLUFUlZiJn4vkceMbE8f4JzQI/3hK3zfHthx37LWC7YdtvaDA8Hu8Y48RzUHOm3T7AJkH19+eJ9+OEbTusNeqjpeE8H9rrHNlNgmeIGaEUrfBAcC0MBvMENJFtnBPnZKtOVf0sWIn13sRgAzz4npkBT6Dljh4bWryh3PiuYP98HHBP9A87etvw8f5hjXfPQeBtPt8xnw80nJgYOB4Htr7j9vYBRdU/IjEdS6/qy9d3jKSuzCEh5Uoi962vPZ9JDSdzAlwf3zo+fnDkfAKYZDFk4HmecGvY+4beGpqX7gMTBkPi/cvPiNuOX/3qrqmdB3UDxbBzY4V+5crKlELMlAoSuzSvynKbs/pWtiQBiRJPaRVWAssR0MrKQC23AlOAUYyWxcxRYOqVWLKiXWOJ6zxaa7C+IcUgEsEJ59AI6CBU2NQW7qrGmgFbM3g0dAtsnXoS3Wl2uic6EjmHJpFSS+q27dy/+w2pa2cbHnXA4BTdrmA0BJK6V4LJYL4GS7hXSxZp/QuIT1x2RMBYR18+sCrNtKMCTSJgJ6jtmWTrmQPYCWuxoKJJlM5CW8WEc1BT45Ce0easxs9o8GlokSgVTfdOuQIxeVkAdGBCKnIAjEMCSsyfIteKLWdwb4AAi0mfr9U0v/m+YP0QS297o8jvcX7lmmLH2/4t/uAP/wB/8Os3/MGvv8OIzzAP/PTlL/Dph+/xf/u//il+/etf4V//8z/Bd99+wG9+9RG3+44P37yhbbQ1EyfCSnCdWkISJhAWxJYGmHFYBYW0CICUfrvOC5Or8h/0mBxMTI3DSoJaNr5XI9Mhnf9GVlnVQHZUyIdVmYMseEpmnAi1rEwrf1H4oy+tswjpCYYA1d4Xm4v12RRDsc50+SLDOGPFI2THaQBRTrXRF/AgIMp4sv3lnAGQzwucC7zRmlVckCk9xwuYWklo2XqQ5UK2rIxU2apMpKaaGRgj95J6KF9bGotzwpdUxIvGDK6YHUG9IcbM8rkCDEay4LztbYHTx3linoHWG+3UzhgJsxAA+q90DlGwpclEuzhn4ufPn5bNez+eeIwD/faBk7w6p+6+H5yAt+0bYg7mdiBoABXuea5135qyZ+6ANdjkWnHyJdeYk1e/wTEOnONYp+7Lz5+ADLzdN3z37bf47/+Df4Q5Bo7jid/+m0/4+cf3FWciahqdKT6rIk5g807W/UIsFMsIEKqWzlVoSb5mgpqHiQB2x/Z2w9vHb+BbR7jBG3VelzC3wBD3BjTuw5tsYjPqzP786RNK66kAs5DWk3UKV3vr6M1xN0PrO8E35Vx92yi9MhMoXSABBq1xQMlUPn6OAUygqV1r33fU1OZDk1hvtzta67jfmds8Hl/QvGFrl9D5kL12aaGhWkgrp0igtx3uDUNav3OeJA5sHZ4UB6+8RW6d95AAGv3px35f8WeVbmdWvvFS7E8AwXPTrKGJgTWlzVaM14pdt415J0Fh2ZLG6zmeTz7Hzm4EnucLCiq9Xvq6yaJeTGwu/eAgy3IcxBCsGFnNADRpTZWeFPe+NxUIFdOEhWybvQCotlo85xjSAjsQMTl9UnvYDdha5zMfA90dvTW87Tt673jGk3H/mPAJ7Bj4/P2P+O1f/RV+9y//NX74i7+Ej8DNGvLJwUowFQibYR4nxjHg1tHh1O0FSC4ywwHGMK2xG8mNTOCXKsN/68fvr/G08K2rIhcGBR1T3+OB4OLTkQYCRxRIcxn/k2km+9FlWCksFvDUJgeDKm9kuNVUNaRofy9sI2oIqfJeFRAdDtraQIkeVj+sV9KWRDVZwGFwRk0UGuoCUhYTSSdoVdvK+aeLtt/W17KS+E4aYHcDYuJ8vqNZ4r535FRlf5wCmIYQU9FkKxk2AM4qxnMMoJHuWZTlFbdrvZtaiMxTFERTglwCwqb/GwONCkbF6GIFJRfaOeOEWYdbgXEhZLoSVSy0tiYSwmhkUQJrplYKPZeU0c40gVUCQ/Kq6hj0fFAMOlUKq4IpA9uqEpHiBqSRmeWX4VpbQ/92jbzOrBDDYBKzrguYmog3NfmllQh1tVZg/Sj3qDZ7+xuI9xwUjtsawVsKuZG62d1Fgd1/oXtUrUsRV5vgGAcAjSLtSpr1HCKS7ZQCiVLCoyVqu651BXtYi/LKNgCkb2HqQ8e1CXk6tdYNC8VjRSVVHZhqna2A0NGsE1AIVRFWEhNrjUK9PXVWuVX47hxswGTYFVgXgMRJlwwOm+7PHJpwlnqP0qeoQEPwoKYwrQp9ATAQK03Vx1TCQpZJAcu1qXJVfYpKb2Y10metXWttVZWoaVQKdws+WrTgEqUuZl8JaCaqnU+5tM5d7W3UkzUXw+3ap9CzWAKYevOlLVOJfoGMUUEbn3wDHV4YhVtNbVXgkUUOnceXihK/K3sKX3o0C+Sq6xIwifAynzpUYlqZYSYHUHx9POGfGEvu3jjVDqGWOU5hiZO99jMMaV0jpzfAGnWbMzBEvxemiVdtwdDemmoR9aQWoIu1awb1xL+sH7jfYgzANIlQVSuTIGpmu5KbdMyjxk8bsFHfsCuQ8ezIYXj/MvF8PvH+9YnjDJwj8P7+jnEO7BsDxvv+DWokOLWpJ2p6bLXRULNEZ9fJpCJJMBbbEjkFJhFUbjDs3UGtVvlqjt/E1ggYO8tkBDRlSzlivXY3xzgjJ1oHTMCT+dqtwEuhBi/m6RcfL18vjRd3smCXllso2asiA7ASvWtTyWaBz6j4hbx/AsjUwRM3Wvedur5ITaPUkAqYYSLFohHbeiWYbTFbJ/jafe1vu0ArMxUx1OqtBB7yI959aa8UGF+r+3qOuOr2svKy2qISTf12JKvPYbFiljVBK14mckmjawYBj3hlcl2RxPLLPEhK8nLIxgKLOZZ4YX9eyV/I5s66YrFWYI6ohPAl76fdq/exKybAxT7hOfZla+vpu+KQTGO8ORinRQ5ZeKbnDlNc9gJWOTBy4uvjC/CT43me+Pr1E+Y88XZvcL/h7ea47xu+/+3v8PzyBcfXz/j6/oVtULUIin1DzBQrBp07gabM1U3JAkmuJFcHACUuLg+kbe1ASwJvqb2q36mfW+dBZyImXoRk+TMxyx+ajHvnfoHiEjQWYUOCzHrdircsyXhoVnGQa2cWW4Mx4BXR5WqpWxmHycG9fnW1+2jXpRK2F1e7fKgGr5YfnTO4lk1oDOSLkCqM6Swld+ZicqDWqi6k7If4G1UsMzBaeQHIl2aVzkEki5TFFqhEH7pfh70QtHUNpOIjoQEg9eyVNJuS61AuVmsSqT2GXL58c75HTcb++v7Atm243W7Y9xtut8lJVQmNuwegCdkhJrEZVARg7oCXZ8hzlCqwpMxOrHid91T2O5E5EDlEkDIO7BADJMJwnBPH88D71wfmTOU1fJ2QHkszKpJ1aCLxTFSv0vWevjpctDzLHlUyT/kO7mcOXe8cBNGcMjPnCeoIcb+VxlIJhseYyKnC4NonlJkwneE1tKGEqwUun+eA9x1vbx/UEkaZhxgTpT9YuW0xjTilLUGrXna53trWvl8+U/9Z7E8lYdu2Aclp6q1Rs7X3RIQKxvXaRoC7soGyuRXnuZcfuThlZemHQMKFxVTcOGOdj2X/VJgtvTg5jfUzawpkpCYtQudX7C0mOdwfdRaNBa7MXG1hGdJ3FqsyAZzngTlBMLc5dntp+1d+W9rNuWxb5Y9YsXMV6q8BT/+WkKb2YdF8le8MsY3SDZZdcSdBqnEqFzZhJKguIk7QjZEK9tTqp/XKAh4ncwdOEUwc50ErZpPxWDIHOcvOZCLcwMFsfC5e+YM5rk3HfPH3+fjvBDzV0paGgGdy5N7BxNykkXDbOCEmJo3s+xxo3dY0r0QBT9xTU7ojFhMeoYl4CbS5koKciTyn+lyB7XZHaxvOQ9Rnv6ECSp0P6uXEZN8t+HANyWlJlggHip4aS2eC9+DFTsGJnGp5Co59rza+yPIOSoTR1ftPmiSZQwfMQuvlwNZwHAOP9we2/QPuH+542zjd68effuQEs8c7+6/7GxCJ+YughK7u6/HAhOF+HAxqtXF5mLgR9r7JXPG+zbCCWsG0F92vlUGrZaQIphujAwbCEwZW6COAcQ64TQJ4RBhEy8cCPIDBjZy1Px0lKjhK0N8MFJpFmVdA4FGNyI3xAMRKCCHxRQWlMK00rdBgTtXiTJDa2huNt0DFJfxm7L9NADGNFWwxkxKs+FVf+1RwtbWGvneM47xajdZ7J3t7RR+lXgufS0zg8XyiKtczB8YpQbg5sTeHbRvePnyDMab67aUlEtRH6L2jdcP7+4PT4GZgC5AKq97onAQdVxuaApGralFB/YuxiFDAaC+JFplHZCJcxmSNWIUtIxRGYfsSea/qAGJSC05nonvXFB1OPxpjrimGNY40xZRZDCUYik00TgJP6MDWmoCKXGyvnIML3ZytSWKw1P4tHZionhCAvz8qwOQzLD/HatEGoAIM9XxbYOva6SWCU3bSLidQiXF1BBsMm5gngRTuwkmHBExpuOhIE1urYK+otrHe79Jp2LCqUSuRq2shgOovVQhWgwkoOC5mUUVhs0aRa20AUYwBuCo4SyvKNSWThxjppgmF8yXAuIoDvD4GTFNBTgUU1EHbaNxnBRZ0ukRGDJasQh5j4jge+PL+ju9//Bkf9h33bcN3336D3jsmOuYMPJ6HkqaGtB19bwgl7edJNsnjIJjcwSqaN65lBafUqZNmzAS6O6fuOEE4jtlOsTivRGaeB1praL2LJUL2kxsIfqU0ZwI4zsHn0gx522HYsDdNdsWGeRz4+vNP+Omnn/Hjjz/ieZwY86KOf/z4Eft+x7e/+g2+fHnid7/7Ge/HgfE8sb/d4X3Hu6bgTOBKcnuDhwNnrKAkM7G3jt4bPtx3sm8scN8Nm1qmwjga2sxw275BgYUxqDWyiWHMqT1XQWecD2Se6L38Z41p5nnHStBony6g/CXhuw7a9b1WiVrKnjCe0K7m2irxRXF7ldQlyC5ovniV+hbt5PJV1QogkC4iEM8n4iQj1RgU8bx2FT3ACafuNfyh2lOBTYF6Np0bACEQpWjypWUFd1YVt7ZGZbvKdlqM5fNXjlHJqgAY+gT+/CzRd0busrVsfWDR4Ooyg3w2YExC58VAq6ndJqABLhOFi6lTAHksE6lgWc86FWhnVupEsKpZQ/eN1iID08jYOKzyCNpsVoBZPJqZmFkRxDU9l/+WyqhdLY5JZ4CZkF4GEE7tpxDjK8wQx8HAe2eS2JrhmAd++Ol3+N0PPyDT4bbBreFX3+5wv+O+v+F4nvjrf/WX+L4Df7Eb4APZgWGXfG2Crf0GDldpYq3OrLgzkFYsGgFGAkdKm22C+2WuSl0VOVk1zzkwTaCS1sRbxQMqNM7KVQQfGKvzi2mgCLfiid532OacupUTY6r417eVgGkeEbomELIwEKstucDGBbBCeo7lL6ygmVxJHKdQ8fUrjsvl3xRrFcMC3JuVtMTk6PbWyQ6o2kcVLvdOX0/Gp/Z5vYDVGmC1UNNMqKX3ZbCAdINXMeJV96butbe2ksLLnhlqljs1pLDioDrjgcQxalqhv7SEQmd71Ltxj80Q+CQwIBO3fdeEV57nH3/6hF999yt8++0bPnxIwDZ8ejxxjIHnyeSz9U4bPieaGbp3WLqwndCzvYZ/BKjR262hpk0SPObPuDO+zgAiDwRONOtorWHbPgBJSYkxDZ8+P/H1yxd8+ulntNjRfUNCUwvj5Bs2Q1OPBiLJqvHyJwrAnH6drbYvYIy92IVecTzBwW3fYLcO3xzHODFj4sP9BndO3gUmxgiMQXmYOGONPHT9JxOIITvbrlyztSbpEM6LfX88cf+w49ff/Qq3tw/w1hkjnxPWu4AYXm9rLJ5FTk5Si8tPFhDSWlvAUGmSra+n2GdjwL3h7XbHeR54PN8FPDEPvj7IDCRJoS1gpYqatYabGESjDH6dEwMOtRve9+3qCIgp7eUXQKlp8jxMpK5c95SBNcSpcpQxOKVw35pYVxMpHacsKYXKLKOmol5MqtY72tYEPCXe378CBtyMHS9b2xlXzEBLh6Wjm2kyI22LedkpdVMkMYuwmk7NPUqbdIE1lZ97gaJ6XqURRW3QtticlonjncNk9r0D2XQJYgGr2yxE/23q5GkbGfiPx0P+n9P/wh2P5ydEDMDnsltnTDznxKWN90Y/2wiCNckX1T5AUPbh3wKt/Vs/fm/gqTtdQGsEK6grURULOugeQCII7EwNj04ocVBQvtFoe3M0S3QjMJ3HXMmZCJtgrhV4//JkQitHw77TQfBjMhLJHCBVjsvBeM1gW4ep0prJXkgy8oT2QlP59JZWtaHVi9+kUZkIP5E4ySBCMb2gOMowJ6l2NAoBYKAJ3R5PTmwwA269Y+83zHBETLSgEb/3O84ceD/egWDl072hvTU8H++YY+J+3wBLvL+/4zmfOPPA/e0N33z8yDG58wJwxpwAAs3mFVxWi2FusHRNqOHPL/+a16QFiELrllXkBvxBj20T1i5B6BgJtwFDruEaZhJ+DCbChdJm8nr4emCAXCjyQuIJMJgZSO0hTXOaA77Di0nHcStkBa1AOCTkqiRn1j0xgGld1a25Ug21bQU2TKQlWpVFZLQxOaK5AxflWnuVIuMEpzwlNDs5lnscbD/yjSJzaIkcupdsSHeET4RPmJSqQ2K73in8PIjiwod2aBq+fHkikyPr2ea3vbQTlmFPBay2KlRMaoCalOZKmIaSBLarGNy7pkCkHCsZAEgZ3RAIYgqupFlVToN2SIl8BT4ChzKd4oswqqhNJZ7JuLLEaTOJupkZ7rvExW0weJ0lZg/stzufSISqiEz0Ct00Y4BNvE16YwK2qq3EjcHp2q/EXViFMzI8LWkb0l9+Tky0aj90VWrogF70zJLCttWTn+V/CqjiA1sTh7zYZlGTzq6RyNvWFzjGI3slCRdzUYBRTfKo6oVo4CHQB15rgAWKQGcwXgQ48xzaF3W4yx6HDh3ftzdNvID2nInXZS5An3aYCSFbjC05wZNVcoJTbmS1eTfc+weCB/EREYFxHogYeIwTcxq+Pgzvx4D7xIyxEn09ZLY4bg0a/EG2RxjSJUg8GSx7MhEM5NrHHbfaxtwjUZPuEinR3hLvrQkzMSfcOpAbMtQyZSfcTyAHOO5p53lBtWoZHo+J5/FEawcSieP5pN8Ksmtu+xvu929g7vjw4Rtsm1rrvANtx4wv8O2A3xocG0YNh7Am+zo1STBxnhNHnEz4PbBtTGh+9eGO3jZsLRe84UoCzW+iXw+66KHEdARBw2jwICjHADvQu8EdmCez2807ZthK0BJJcFDnpZJOT7ZYV17p4J4vFvELJ4fMM9k994a2aa+nGia92lMDmargBotDYzJxnskKZphhwhbDhfv8ercKGeECggqUqsJatQjnwGsb7mu1X+oK8FRLHOkKiKB2X2poA0xBshtGBhCKc9oGs4qJiqnyklDZL5kWtBWVEAuEedGIsGks1kwmJaXzY80QIzDPJ2q4QBldgly5igczq3XfEAKyMk5kDkQMmHFQBsN7nrUMkCEGk4CpWOZumE4WmHXa0A4grGOsiqvB20afpaScVX+ySEcWk+pisEwT4w98rwSWrTADOpeBM7TmoC5cMkAPrW1Ti7Ap+eWbTSYkAo4yDDkDb3snc8KBwwIjWaQ0hRUKu9bOsqCuTwe1b6xaBYK+/JQvtKtCCAlILD/PFxPUo/0cZcU1ya1AEUPKtl3KgbFaFBX/VXKUQG6UTBjHiRyn2lANVH1NBMa6rmLqVFLP7i8lWXgtlZTQuIrX8gsQ07om3S2mbBSbT7tbMZ9wp2U/GE+ooCMWJu2Y7EAQtJoKbN/X9y820hxijNWxchUP5PtKmWndQ15SDsV2raKvtWr5AdtFQbZdporhqMvmezaXdAGR+5eCqUDG1HkH92xqVRf7QrIGDsZ6S/c0BDIOAnnbfoO3HdY2PM+Jz1/f8X4Oym3su1h12je49p3bVaRj7kC7GgySCNMNIDWhtYGAJ20OZTZSCHcxs3MmLAgKzDPwzImff37HeUyM2TB0HorRgi6kzgJhQ8U7pm8cPiE7bwbrhnp4VUhnB0mgWi+fk8+0W8PeGr7ZO/ZGOvQ4BwKJ9uENzR3jPFULZMzbfIM1Dsapchttc+nwGDyKTxloG8/xFKAyn0OTYCFAlOc3C1tH4jwObb4CS9liVyw4GNB7g3tD3zaUflPFgl1MNtodxtw8C7akJuacMDvLc1x3IrsfeYG7jgaY5HbKN6owsja0sykzRRQosOo1H2NMxpZR04CQYkYWWWHFCy+s20xH911HxHVfZBl7a1rPWLkt423FXOoiyJwSV9dpVj2nclBbjHfoaXLdSo+RgEXF0/XglM8AC5hbOraO9b2pWDuNrO05QmZa0caIBW6/ffMNWnPGdMZ8GmIvzkicI3CJpjPeG8bf//nTz/iXv/0r/Nd//i/ww88/4RknugfSJ8HWaSLXkFm1+47cOg61xpZEXkkSGXUJZINJjmEOce2a/7aP3x94UuKy+0VLVy5OE22Aq0CHMRk0yiTXGHjVLJDG6q4D6Jb8vZEi4djVlie0c4yTu6ZfdOoxiPJG8IhPtWJxg/H6uqpTtePm+dTB3BZFks61rcOYqtan2khQbB5L0bAD2xKtqyoH99pMB9DgTqM2CwXMwDwOwIG2bWi9Y98/4Ov7gedzwlUdvbc7PE484+CmxMB+b9j2hvfHgWM+sPs3AIDHYELy5fkJf2B/gLePdwrUZTldYMyDB8UJHhn0pyVsCvFFUZRfnAgCyIES5zVne4AeC9I4SQ+eMN9gviFGtWRxqk7f1k+jWrCsl56HxOXqR0z5RqvKTGJoQ7dm8hVNSHoKmWgKzICcApcq4NggY3oiRqfjCbFF1BbRejGdyqAy6DMEOmioCABU4E5DQi4b1qQW+WNVe1PmJ2DpzMWQeDyfQAIfv9kFFDBAngFO5TBWvdMNEK0z8BQ7AkgPTE3AsHBMATlfH0/ADB8/BtxVbVDiu3yK9ufVZoLqcIIXRbPxXDHhEb1fLaMuSnElmBXolW5QjfENB0oQ3q1fiR7EGgggTOBvzBX0LeBJhlrpLdiCK4cUrI7dth2lPxb6s7WGZo6+3dHdGf5mII4nQZNIaSU490klVCY2lN7RYehG4fAM9pgrnmEQ2XwFpSnixEiyXSqAdAk9FrWXbRIKYReYyoChS+slrJIAVjOQ16hr2o4JZFWEZNtMbWnAApsgoDjjEuum48YCGK/zONYecW9Lg8yW85Bx1/TFOvnFlDAVD1b7wsuERPNLGW61CMv7utowPDdUGwnbFglEj3PUVa+WC+rjNNzf3tDbxul3IwEbeB7vOM6veM4BRODLO0HvOQ6e395ouxqwvwGbcZIZCxegL3LqB+ZkW4DNufBSDgVzNLs0rIAKevg6feurdZHPQ0zBMGQU8ARkDMx4inXJtrvWOQU1FaZGGh7PicwTsIk5T/z40/dwGG59w/1+w9vbG+53jr/+zW/+CPvthr7fMRP4/Jh4fwLeP1PIOwdGFWBLONwZIg0ETgw856FnB2yW2Jrju2/vBJzHhWpIwQTuGzI7zNk2e57ScRv8GbfO6YbBc2gW1C4ythojOdESarHlbARDaDJaNcdVaFh5tDghchZzBW4V2DFwTZR4aHNOkFmTNAv8WXZF4EAScJ8vyWUwX7rYYUrqqsC5trS7NLLKByjYLkaUkG7GSloP7RTxqViwSVKFmAMY2zRjqh5TzFJeJ8yQMVj1Fdt0tdLUR2U8WX/we3X9pcvXTIyJNGAB14rRYKuIkKAGywKxpDtSwM4RB4rVUIMwplcCfoJ8WGqElu6SJdZ613q28ldi+UwlAZQwMA1UaQLtVOFtm1q9TqUE5a9NU6uSwKoA8AAQnioWJkrAvBZLMTgSZE2MGRjpiMbhxgCYMJrss/ZFjMGBAN7FWGKMcN8lu+CGIwYGGJ5UEoUESnC7NrMZsHtHc1/aipHg5MtTxT5zTvczgRmKfXLZeVv7N8xQLewEulU4q6AXIPCU1+vIOQGyxQ5OR04jY/d8corSZgRRbGNlnyxHAh4cQGP6fSveCa8Zrtcr0F3FyKQw/PqfwM4IAmOx9vS1d6yYfZeL0zcUDy+LUsASWASLS3uJ247tibdtBxSXzGAhvewSpwTqualFsta/Zustc6CzWJlPU0swoOlbsqpIIAd3L4fKKEBr3PsrH1r2KRc4XDueZ+26+YoTKkB1Uy6jhZN7R++O1nYyp33DcU58fX/gGbyn251FunMUE72mUZIiYC8aX9XKxt8kOFz9uau1c9PU4VFT6LiO7ljPuc4iJ2JOfM4nWazRwSxGQ64EaFgGDNSpqWJTaw0jGN/H1P5oFaeJKVTn3mkTDEzemwF7c2yt45v9Rua5mQpjIcaX/GlcNtO9C+CbUOc+hnZFqAW9gkqzXN0YaQ6fsSa0QkXLZR9XG1jinAdtRwT2vmHbdxVXeP4yQR2iTrb12kvaL125Id9HIFiSRFLtmXOuVpSXuBHr7wmsnC6homNJk+jcsVOBi9DUfjfmycxnteHJfuqZ8ixjaQnz8JQ9Vy6aV1xZZ7v7xrdeheWKZx2UCnm5NN2AiZ37msMwZr8Mcw2/GjkXExXlaZUPeyoOrxZ1VDwiEDoNFrb8uOuzunVmilUkc3yeZBRu3lFthDE5Ibp/8xFb63g6QX5TUdVAZvEZEzVApDUK3Q84jnHg50+f8Be/+2v82b/+V4jzQMZJPTILqPaKMWQr0rG7gzNvhlok+Tz5lkqMdE4TsoGFyP8eH79/qx370jiRsjbyLGO9MUB3CqA108McA6VJ5CA9K2cCs2h7iWwG2zt623Qj1/jGodYdVp+N+gag42pbk/hXMVquCXeQwGUqvFt0XlEHh0BQjkIWjFaOK9Q3nCdcFawIMk7cSPlLHci2qQ0nAUwhpHBENMzZwS4aAyywb6x8+dZJc/YO8wkKlivAzwH3wA2kWB7nwDECI54IUIz3HE+YGW63ndd1nni8P/HXf/3X+Pabj3i737FvNwZ4Z1XkBlv3NsMYB87zQMshx2Gs5Bf7KMsKTRg63BoTRCUgZsDWG8IChonmE26BmQ9EDLbmGVsfi3s1Rc9vxklg9ezbVtMW5JyLrQKsoGEeJ0IBK5knpBKOIUpx4kpwvS1Qyl2sqzi0p8qZnTTsGp1bXNjS0oAbPOhoKFBNpz3dcZocHrBG04Zak8aoemHCG0Xc56QezfN8yLi+AWk4T+7L285xsGkMrM/meH9/Yqah76xkPM4vvJbdcDwfiBm43/h8n+dX9A08IemIwXaIyylUDFngIpO91sTo1qSHg0skELkYUGqflbDnvjPhjKEWx6pyx4B3ttHVxwIo5OTKgFfTZ++dOyMmWg/4CCTOS9xQoFS1ejTRSDkCNjGnM7Gbk4wYM5znEyMpMskUVWOpV+UzxKSk6CC1FKC4g/urNycIEoHwYhvxWUGgUm8dz/HE8dSI3UZ9mwUwBbD6+/MCfUqviQEiX48080CkqlgVHldkCwZzyzbKIV7tDwyPy2mVoCuvo+PyA6lDxnUAGqvwFYRkCqS+rqIJVHInTde94Xg+eJa1l8Y8MYOMEfHF0ZtGaKvF9DgOBu/PKRp9xxwhIhrtp3dGDL5tq42kqNVzJuYAvv/0gOFAM4I1zRt8f8PeukSY2apNzSVVXltnYD6B8z1gx7Fa47ZOnMCt1k171LTyZjAfDKxN4GIJhiDXeh9z0EY0BdY6e5RBSpxiO5Gdq98N2qN9T/kWVQKjRtsHYAzMt9sb7vcb/ugPf41t69j3fRV+fvfjD3geJ/7qtz/gHIERHedMPM/EnGwhatvOlpsK786Bc5z4/HzH43hinAPffPiA277j7vR3t7YDCYnuCjyVOOzzOBARuL9R0H2A+oH9zumvTKhVWJAxnzEo0rzdZU82/PTzZzwfD/pBc1jTwAl1npaGAg0I19pL/2Rv15nOUAusbJJOedt3tdBVlphksiUwTfoYyq2HDZwxMBqDMfSa1gpUNZhAPNBAmx/nQE0VVChGpo6BuhsZsMmKOkSRL/6BgQxPz4k+A904A7aKGjWdx+R/pjPOOuaESSgaxuEKZBH/DWBZoJ8WEkuc3UvXIq9W6moflu8vBtXyqQYCQdoJDJWquk3Nwpjneg9UMqLYjYQGQzECU8l2rqvFYpwbNoieQXs7Y2EgVYzIApEg+6RCD1+0gpQHLvHpFHONAC+DfaU8qXU0h/edbXb95IybTFRZpN6T7N8Gn6l4t6/kZXOBUTWpMSZf96WFwsFQzzToo3dOlBrP50qC0xPTyPQwsfGq5StN9tg5jp3MNcfUe3JZuLJpIbsyyTKuYtoCrTQNWUXAXFmuvPRLDmHFPIqLgevmQNswzgMZE2MeauEF2/1jIDSldNhgG1TU0xoqcgClXXLIF2JUUdJkO7gJvZzc694RspPap69gFMHlwFE2rIlB3fg8DFlDRdnaU4VVu0BhiGXhBR0p9uN+Tl1XMTuAHTxr1TXRmwpOWkg3YyEgAkUcYsGW+3ZpxTS2MpVPmTFWm+46f0o4y1/UJD2CMJqSm3iJ4Ywtwbp+pNgN3bB1xqIfbjs+fnPH8/iAfg6MSATq9fW8HEjJTswYyhOUoGMZb8X1hhaQzpcE0Z3tX93eMGPimOeSwKhYaQyCL/f7G0yc27RU8YAMlc07uht2bNSRinbZbDCmNjPMdjEnQxKSZtAo+EYWy4z1HL0R2P/6/pnaiR8+4Ha/477vBNpj4Oeff0Zzpy/eNGAGjEmfx4Fxnrg1+p6+dbh1tDeydTGr3VC6UHNiNMdU58Lb2x33+x1939A0ybZgT+bWTbZcOrEBuG/YjJIEgcDzecBP03MOzDHg7i8trwAgVvjSV6K/uN3vlx8pF1CgIQiANffCjOQ2YrEGaYNsEUgSVQBsFHtXq3CCsY+rs2QBTzBgJmYwJu6+oeiMBXRRCsfYRpxsW02QDVavFOfEOXQf+VJQTd5P6w0F1FdcPiTH0p1+t/euojIQY+KYB7o1OBy3vum8ihAxJ3+vN8A31GJksKAKgPWygM6hkxWumPFKYSWvgctGuDNXGTmooVoLb9xzx2TUU4NL+FlFkcB5vOOH3/0VPv/8A8bxBfN4IuYJm7ZqZW4NW7shYuL964FsnUBZcvAGqotjTLKsOgssl4Zr4pxD+cW/++P3n2qnXVRAAWTUaJ/5AK5SgJBBoZPprGYZTBhLwkfiEufljZd47tIdwsTKPrWgZTgUA6zEQVgYgFAF6dp0oY1eCV2BwCvNkiG/QuYESoBb1ZdItcjoACaw6M6uIIiBla3KZSY3N8eGkzZb06wqCbdViQhYY6C2ga08mKqIzqnXILJpAkWmHNccga9f33Hbbti3fR18UprVJGA0/iOpvcVmgkR6JQu6VznBV4HhSkYLOi7xZHYAhNgJYrOIZiv7w79bJdEQPVcCb43rV5TG1/djmJ7SuzE6EhSjJDRtTaCKQgWTM4YeLR/rBKYCJWAlJtQSkg5PoS5FcMwXEVLI0CZHsVdVqe5PufulKSBw0t3ZvhEDnAwBORw+Q/emySUMU3rj5nYyV1UBCon9NfVrT8wcaH1Hc2Acp6ZvaP+LqlGU2USyQme1pkoGjE6+WieKjZqAqva21mhV+pR0p51i1uUKQqllYss2vGo2QF9bNUOdoRSIR7aF2iAFWFwtIvys3yH9NhHZVGAR7RMQpZZnnJMRi5PWuF90RhmwtVVtNMNqj3NvWGNtk4HTiKroaRafCVyaE97Ue11QQJZAQ1wxkPbs3xQgTCXTlwCzfhaXcKWt37+S5xSL4hevj4oBKhKwdQCYj4VacOL6eiUJwd9jtSyVJ9d78nnV/jtPJ7VTCd2r1hodAjjNBqq4JACbCkxOmCVSbWpZAJmZ0tMCh2ULZWeDqAPOYwBwbM05ba1Jb8UMYQ3mEzFOkMVUQZB6/jPk9Any1OhaDlzgpc+ibgs4T0tNAAI4kdRXlbP8Cu9ZrJxQIlKBhADImbEYhtWWrq3O6SHBKWgjXlobM5CaMLLfNvT9hvs3Hzg1rrFFNWfgy9d3fPnyFX/xF3+J8wyk3eBtg/cbipvZetnu62zGDJxPiUzORPeO23bDzRu6009U25rJb7PwkASeI2QjxSJwJ5ic8oxx7dPlu700bDrc2XKcUY6nkrtrT+tdwYSMa1tF1SYwhW9Re77WmHu8pxKe0l6ocqipGEVDQItoIEPTgizeum7U+agrwgKrq83Y9fvrV8pvhljCqtrUZKXa7RZkkFimBHhLJADLThaTQ5guRgTcAtUmdNkXX+v4UrBlHIAKbvHiAy89mtpz9VFtaVcrg645sWKk679qbpNNsPV9W7EcF9lQjMoCjZb+HQokKF9+RYCpYjqZX3V/ZemK9ZGLZVF2iaBtiI2i+4CYuUmwkeCTidMNsbhSBQfdPy67C0VsAF9EXnGdCwKGuPawnvdi4bzubP2Qu9GXRPnmtZXJKEbilC6Pi6nk7tor1XlgRcin/dU9FwhXk6dtfc3XvdTzCDro2kKran59hb9LgCp0v4xnp55f6Zi4QIIKKPTSMHAyYrWrQFdCojvhPWReRRtpZtZ+XnpGjGYFHtUZfll3reM1EGfW48US6a7vIxUrAwUyXU+gwOJiaFXD4doFYIEr19fSSh6AD7nBFP+/LKXs/zoa+ctYqbQmaQMq4X/ZUq/v9/L1FcNXlXjZovoBXK9VQWsrIIGFpubMK7be1FkQOARgV3G+jAtB58E4WueDrcX0B/Xsy0/UXnW9TsWTlkGTrLyGm4rPpTVOgZ2TRUsShuoscu90ONxkn1YU5Mh0dhIAq03oOnwqBkIs9dQ169pnpkAIdqj0zkng1htighPRnEARz2NngUyMpTEmnz2oHelusO6riFlt16n4YOqaW+e03U3kBH85g9pS69yWPARtpAaRgBMCxhxqmRvLxpf8QsVV7i4gWec6yaJvvSa5rQ23YkGsJ0ghjNB+pZ/Qaymoph3Q/nba1nXN2hyGEsn+G2c5EzmVe7T+EhkUKE2G3KxCqjUgEiPIqrUmVt2K34pzaMoRrvzt9aPuoYrEXrmxGRIDc8YalKBmde7CDGDSZrqYuKVHFcjV/ZFh3LRx+T95y2utnSu0QiO7nlkolgzk+lrZurrPYq+vgCQ4rOz9yyccz3fEPNjmGidiMpdZ9+QNMdlh5hlscVccVeD7VMyyOmjWItrLFOF/98fvDTzN54ApwFxIoRDkkQDAqnNm4gj2xp/gAaBTS/TZcN9vqIl4gFqWxsDj8UDvTeKCYrd0RZoKwKwbZk4MoXgnkvRGqxYAVs+8Ac02ZE6ySwwwYw8uMiXMCwCOtu3YbzeOg4xA9iHWUzmmAMu9EyWUWxsahfj1DjQm+RHA43HIzDaizG6wRhDp8TgQoq/t+x0f3r7Bp6+fcMbE7e1Of3Ac6GOi94ZTIxXv9w8wA75+/YqYAdfI1f1+wxgD53Hi00+f8fjywPz1wG3fsW+ku7Y05Eg8B1kNd99UuZ7o7Q72wzIgYbuVUeA3GxqIfHKCIUM1TEPpMxfJaOuuKpyS8KiwgtQ98w2WFLo8nk9EBG4ygM14qAqZpy4Af93LQGusvXc28vSGVSFpu1rYgoYp8qBTs0RHoLVAa/0KlhNobXINe8M4J8ZJwfymntlMYByTIogbVuVwBNHrAmi2jQn2nKxKUQw0gQ7YZDDz9vEGh2HMJwyOfWsCbQ5w9GYDJiuHb28J74nn8YTZRHeoPRK43x0RHa0nLCdinpjngefjQL/dCEgJkA2tRduuaUUzWKGmI2iISWNKkDSRpDVckbFdrY9sF1NilwSNeu+wvRH97h3HGIgxMJ6sgHexpXj2fI3BplE+MGPgHAfGPOk4lXmRiTVWsth6g1ng86eflrOG2tD23qSrQcMfOtspLaUCewyGyFOJN0ePM4ZKgo6zLSZmzNDYdIOl9s1UyOeG23bHtu3Uj/NfpsxZaVNVEta4aFcgyClEJfBXLUywAkUv3SpOF3O0LsdvWLp6inRXUr48qZwyAXm1aWgda6z6utYF/qrfPYAcE9WWUkDlCCar5zzUPqz2kd4otthNU1A6juOgAGmrxIHsScRAAbrdOxyNLbAJnM8D7ob7bS/3xkrcDJh1Coe2jc+jaO9GSvg4TmxbQ99vgFP8duixlnYZXkBRqN1xxMRItnmDFgUrFVoBNpkXMZjsHBnryxUTFsg6FXR3MXdewoK13nu/q8K0gaPJbxgx8TgOjOA17XsXGN0wLfFMIL4+MP78L3A+DjwfTw7LiMR9u8O94Tcf/wgZ1BhMOFu+FRg8JqdBvp8HGVggaLH3O3pL3LfAh+2OW9vQA/BZTBLHN/ub6P9jgb8fbhR+9ew64xwBfdu7EpHAeZ5sWZ1P9Ob423/7b2HvXWy4TmZ0GPb9Az5/fqfdCKVySrBT9lvLrWD0ZLlE1dVVKYej+c6AVMF2Z/oh7luiWuipscfvHKXDMJPMSFdSMAZmNoRa4A1YLNEONo5pcDNfvXTkan9XfIAukIDFpVQgSFBKdhSGzR333nBvhrdmbBubiRiD7TSqrt5udzg6PDcJbzui2jLqegrFkRmnUoCScExJSVVRLTjkQiL/FRMBQE2zmUFkJMcgW6aJKWqmgDlUTCLzDWImVMEOZatQLCNoLzWEYvZqFWzeV4Kceu0cywopHqPvtU5EyhvFtScCIwbmHPSPXoBTFeepSzjANsrTcslEMJHpGB54GqcED1Agd6bDNk7GHc8HcDZYC7gNhE/0xn2dcWJmgOO76eMiA49jEPzyRDaois6Ei607ie5qEW1ttZ6Naie3SsKbcgk96aDGmpsD81ztIunGvlb5EFdSWj6lcpJqwSngM9eT535hCb18wKUt2GxDC2A2iWqDjMY4uacdQR0vgWoEX0/5vZfinM5ljETMgcf7gTkDfds1hIhtVSQIlB/nFs817MQXIHZ9XAkmUGwfoCZCmcapR2hCqV02B+pQaLp2xDUaowTFHbWppnKuUMJZa4rFSChtZuFay1/ETETn/p4q8ppD4HxDTQlkDKv9lwQWGCdLf0cATm+9HjlOtbCxX98WOpWWa/2j/FcnU7d1wzkf+OHHv8YPP/4OP/z4A3zbYa1pUJKAxQkg1AItPw35PRh1gClDkFcbkzHhHjM4yRQawpHspviwb3g/DszzYIy52nuB8RjKNfnvYt67JXxM5KnWuDTcrS3ZgGm00Sb5ldr3nhogkcYhVoHVBtrT4ekcWJXA1wF06/j49hFvtzvuvXN4gU+c718p7H0G2f63hoiBiCl2z03Tt4Hn88lrCNCOzsH4TDEaXC3BBuz7jn3fsO87Ig3jnMs2Vj7qwda1vSvfVQEBThvhral7hTlTfcScOGasqcqbunUe78wJe3NMBB6PdwDKq9pGgKo0jty0kZ1xHYDbfsPWO57nuQYwLdaR/iymUk1Ar+EZBJIHgCefu11Fb2qAXYWkqrNYA2zf0XqB8oHn8x0zJp7PB/bbDd998w3O88Q5xtrz+7ajphHXB9ttJ98blCpZhYwEzudgPtg6tn7D1nbk4yTZw2ORXkYEjnOi7Ww7juqMSqgQ0pavrE6HhWusQg/zRq8Jgi/gfIkEPqam3oeeYy89zWICqtU5Aq1xsJhPYLwf+P6v/xqPL1/QAXZfbS693cA4KHHh1okXYGOMebyLOejYbw3whmFYQGfMWHvKzZGtYxmcf8fHf8epdgoKCsnU38t4BuwFxQ0+gPX7XHTS062wJI0lVzAkrm6WcVegsdB2gXjchUXnz/VQeY2q0BkrhHNOCV2bEpBCP+vCqh+UwVL10nKcbYmP1WLmZcgBlEB20++bXUwhMn20dQwonZdUhYs05KaAmWBKOddW+i1RlL3U9JZ6DqUooqTegHAG0GcOHM8TlkDDRraZXiNikqVUyXImLj2SyvovdBtZE+guRwwDSp8Da1QlSO3lFS2QYgUEeQUNr5/ra8o0ypgx2FclWoHWpaHC6l1VQWW7V2BUegiLcs7dUKEAXrUQOBrZ+dzqlmtvKHYpLbA1slhBWu23xY4yW+h4JX3V17v2+JhiGxGhJ3svFUgxzOqNExTdU47xCrpWkKQsOtVudj5PzEZFtWKrsMJ+7ZTS8qDodQMk9pd5Bd91XnNVhbiCq9KpdWGC6Ouc6emuymtpFVVt8BUdD1QiVJUWVTW13jMmW1kKXEIum8CJLXRgDChy7T+rKnlivTZMiebfMIZ836uqY9LmCjNpAtDsl6Cyjs/lNNSnXRwFq51WzqZuF692U/tPeh6mDffKVuD+vFqUsDRi6gcUTFega9XOmMuPEbSVLdL6/mKCoT5Z5b4qYSwGXOyB+t3IChhf9v46tJXguAKeDWasgr5eNROn0si6kp+qwIbsgyWvvdY0V2XlpR066wrqfzrjpuo7oOlgwDUgohx8ZVNXzXjtQZBVeS3+ZQuLxWpFGItad1tVw1Hf055ziXiWDgFgGFNn2jlRyyZwzsQ5A+ck8GSNLK4a+rDsz6BdP95PipzOQL5t6I0tqGhX9WtNuDEGByM45W1mClejfkUFs11DBBwS/Zw8yNRHtGX2gRrR/iJQWkzovCj7bGtlAmQO3G839N6oo6UAeds33AL4+fMXjDHQtg0vcedl963OlijmL2tKxhTP0KoOF3sYStx0oZmDNkJR5S90C1/slSUW2M5q8nXGdHLWGayjUHbn2h/Qdb2wIV9ODq+Hv05dLOncvZ4NPZvlI2VzS5evksq8vo0VMRsWA8J0LwATwERKlgBKEMWgkr9eu1V7v87hste69gLbi+VWfpinlwnnuqT1SsV85cWlkY1QBJCsZ7jMlZzCy8rBXpkptVdyrcPr61SrRyZ9fXmUEuMO7VfA0IwteVSKUTte8jy1imQykNMADAmNVwzRVuBf9q1uI3DZmOUU8rrust38vGKHKpCVFXX5Y3YXaB3WHi+Ipm7eX5bLtBevM1w+suIILRJ95fWDv1jfetiGYkvo72pzWW3IGoTB8yhwSxfjEmlu2p+1fwEKqsdiML9ASXWv9su1473Vc/kbG+L6CbWDVIyD6zzVumN5F1T0V6zGWqPrsWjt87p4s3yJefhZHgTLJ3AzxHo+SmEEKqBiKKNPJ9Cgzo1FuVTMRQR53cdiE2U9NuUH1vR+l915XaX1d8cqTp7jwBgnJQxuAhpMoMeaVKtYtM7x2vEphuZ1TykDkFY+4sVe6DzIoomhTj9bpbxVYCu65XpeZSOvG3mNT1b8t3KHXPGFSTKhbD/DjcuQWkoHylhI3/uGzRua0yevTqIkWGCr/fRijl7FzlTcoWtJtgmSZQiBLfbiU2wBxRHUIISuGzrrq71J4HwWOymu12uuQuLEup6Uj+Z7vJ4R2Xx78YfLsSRKi7UWvxjTy2zorK5OhubLl0C5c61DLfNaa61lWOrZyKaua7P1PsUAstobeV0/J7FmHRPGovMqPCOxSAoX+P1yEsoOr0QSy2bn8r3crdPGsk758nOMkzV0xl5f/3qzin4XZzHr82UTX1e1Puuy6kfTqhwgP+vGFu+KaSsWy0ScE+N54v3LO8Zxcg+VfMy4TBlQ/ojxa0BxgxjgVTtvy59oP1RsYMAVO/+7P35v4GnfO5OareGc1ZtL536oB7kq4dMls9cDDY4dDb0xqZjzgTBg7xzzt986mQ/zQN8d3onOkqGhKvK2yyAHque4bay+dYE086SoYTdR88SgOcaBDURuz7m6rfngBFIwWbl8NuNMpjHnyQfjwAoOQ1HFIVBrbx2BifkLn10MmI5q3CLFkgnrZg3N7rDc8bZ/xB6nxrgC3VjR3N+Aw5545oHj+WSAngQyXCBCjMS23fDN/Vs8nw+c54kvPz/w8CeOtx17d3z8sAEZiHGibw2bN0RrGA6Mc2KegXmWnos0RBoBinFS6yOCOkZuBrsRKZ5x0nWY0nPHCmamKnI09Dz4TNQc3W+A5yXau0AUIsxFVEgkxklEftveACRmPtWP6ksQthgJ3lRtjAr+KNgbwd56AJiz2hwbmqZOnQmcQaFRjkn3FTQHgnurasqigE8lnBiiIjv1Nra2r1ZE612idKwGTqj62RLWDC0LqU6gEVDbMAAb+HBznM3Q0FhpmQnXtK84g8DVAM4c+Ol3P8Ei8M2HG7p1NLGVIwMxGIRSJ7ghkiqphoacZABumwGemHnInJ1XBTZsGVYEsIk55kZ2yRwnEAN2ch0aGm59F5gkIyWnNZEYB1t8zDk9L32DNR6wcwy8Px7SflBlzVhRhZhfFFM70RorfQUNlP7LrECuUc+ib46hgMo7e9xnnmTxnJww1L3Vw14gbBjBgS69AlYaA3EO2p7NkKpUbY3OfGulbVDBpOwK1IK1HAeD4Oq7lwtBCWdaZ0XpOB5qSWPAblZhJYiJVEBSzrWRETiNOhqhHvht44hrgt4B5MA4Bs5z4MPbG9q+oYOV9tnoSGaqujqnqqgK/NjntqxcEaYDGwIb0qbA3K4z09Bbw+3+DTJIRc85kIOMT3fHHjvt9XEgxNiqfuimZGRKEP08+fpdI3m3NzJvjjnwfjw0kYUJ0X5j23E6BZtzlD6V4e32LcxYkaR+hgIcUFCW7bEsSvQmNyntnJiDYIczaCSAI99iG+BkAVbQVjnJlwdFmFtTe8KT63GOgef5xHEe2M+BvjXc3gjEzDFRcWXf3rC9/QrxfmAeAz9HwCfw8a6pOzFQgpWsfjoe7weex+AQa+cY9OYUjyxQ6953bNZhxkgkx0RYkF2UVdmT3xX75hw1bUqiqO8PsoIaMOYTcwy83Tve7ju+ebsDSHx6/xm2G/rtDbf7hnTHp68/46efP+Fv/fHfRtc481rjBcTYtdMY6NH3zdAZ72RQVacmciLHA4mJaIMBcE3ShIuByGA6E8hnAgPo2TDh4LRrAk/ZWBg4ccIADCXV3nkIMwwuFllDu4IJA5k5K7BTUCg2dRWPS4fKALblJbXKPMW6NE5rhSlg9cY2U/l+NAFvsCqPwkBfviq61YY8mPzEedKWdE2NlH1LADHJTqlEcDcKhZ9+JZ1QQM6J1LHs9CuYW/63bWL/6L6nglnqLoE2R79TiVvGhEOtrbofs6Zz7Qv0teCkxFA26L3BuuxRXuBSIBkDwNb0tGkQM0JBegQGEg/tq5rsatbY+VPtagjM8yC7oudimCUS84UwSezHVvsV29241mPZNt7bxMXOwyTzFDNgkdjA+91MunWeC7zFPBFxwFugZ7LFBEzkFIahngpUfONSkTHNZDBVCRXo/ZI11XXHGqsdSN8Bo+j5iIT7DnMOasnxRJxPkK+ZGI8nYgwKWPeOt29vMLUysQ1Z5yIN+80xR+AY+p5NJdGdupqKCXKKTG+4dElnZU5XsaParNz7+lplrAUqNwQT/ZjL/7sZOqTRhwKixMAvFl/9uTLF1JpyHzYGKwvwhNXEP7LN0ZomVL4WZ3Ry4rxattR+1lIyHd3hCbTG+CqrwAAyoZFA8w3uDffbB7Z5nyeLrGB8wOMrHz8G7rcd3/zmO4zzxPP9AXiibw3ffLijbxu+Ph44z4l4PgAzbK1xOh2STP3WwckSBuuMX44YjN8a4yhL174zwJVFab3zoP7s29u2pq+VFMpQcbbWHDDgmGJ0kN3Ub9S/pBbaRIzjJX83nbmrwLDAHah4J9LEqfH1LM4GPvYbvt3f8AdvH/DNfsOtN4T0DclwDBznEx4DA4HjHNRW8tK4JBu+O/dFnEBOxvGVw3bfYe4YJyfSbc0l30JCgdu+wJBez2w+5Y9j5Uxj0HZt+75yYoOcscCjiFgtfhGB43hqiXLZ3NY6bredRSrFJRGg7ZUdmSkNKbX8fv76jsyvmqzdsO8792NIn07rahBoAbt0wpDIbDjmGwrAafsmDWRmaZGcsixyM/fy6TiHkdFmiZS22L7fsSmGKCHvdfSTTKvH+zvIHt5WcStyIKahWQc11eqcvwJI8jtdw0Q6J8rl5ATy8zywxPGla01d4hd/9WKNa8hRvnwC132yhZnPbNsM3dXtk5SFmJZ4DrLTAKwp8mxLlc0eEz//7if8+Nsf8P1ffo/H1y/AMCFZQJ58v73tyOBzNfC9KugM+TyvwoaGenmzXxRVeWe+ruff9fH7azx5BT8XUAc5OHMGfTzcROZTDrUtBJlVb9WWF0vKVYUrMVEKXfpy+tw0+pThKsSupkzVrcOqwqHgS+jv+ik5OvcmdI/o8yyBNVUVoKo0CiVW4rhadwrtnYFUdckgQV5FvxdTpRBRvndv7UK8QQTcFTCeqMhZTJnmmNL1aF3JhdoZl2Bgb/B2CZbDL1DkHFNVCya6fZeRHgRASJerB1wutukQMAG/poBxTKdp31bQqD28jH09h8X0Sh4vvCQMBd+S/VKPxfE6YQu1Fkqq+ftMclzJvN5FgWdpWhWbqR54ucmXfQwVo8I0Ia2YUGo7egm8rpuCviaaqFpsVhXttQrNmIJnYbHhBIwBmhKgkDoFZIqckYvW2sT+WHD0qloUQl708TEpEDsnE84VxKRAkAIN4Gt9E8W0yRfrqqoT1FJZwaoW4W9W/bKWOPl+3sQhzgKrsvK7tZYFmFyh28uf9fpqx+NEQ3sJ+HjJrSXsdb2h11RyhmSPfoKMC07E0YMpa5BlsLihC1xaExdTQve/cBy+aPM14hlIJZhViU+sEds6C6xS+zonBtq2ZmQvxBIDhqqr3B2t2gSs4LUr0Lw2pa1buQLsqvhdLm39tM5ZawxIarhCAaAv0oXXx7pw+YDF/pMDNU6LA2KxOSPKETXZ/o0Bwhwocb4as13AWyWvrHjywZY+Wj03d1vVq2JrRdTekS/yRh+0gvlc58C1f/n6tTIm8VQ+p5yTG1UM3AWeuqpaSoLXerY66/YLG5ZiM1YFdi5gRPukBgG4M3LwJmaGgaLHwFU+N5htMNt5xNwROfX85SfraWv/IKuVQiLb7rCNfiTMVusto0sxhq2eqa2A31bgfwXql08uhoJ0CZQMlf+cY+LTp08AEu/vD4mhdqQ19M3ZJrk1jBzAhBgUxU153XtQYcOu85j5ch7ixT5WVdMudpDL98g2lc6XjijcEk1mwZPtsmnqWjJbNjeTzEhOL7qOeSV3FUxWrLGWzhTAe133C0P7FdCBWnWt/KCjPKgtpl5N5ktosvIy4WtHm55VPeNMZqeR1C4zkNVUILk2pkIRlAeE2KVNwqUy/stur49/q9HQq+QLAKTnSe0lW3a//HY9EFoT066+qvzFWlss2vpc/2bCH7qblD3OLCbbVS3P9T68IxaNOVWNuBuZwfXaq3puZesm5gROBKY5wh1s8c51cJdvy1wzZBBcb5fYc/ktXiPP1sWlFXsi4iWmKb/+miDZtY/sYpHxJV5YEsEL4ARf2VzFiE3s7NpvYZeuIWE8shlKpF+cJyDZrrG3ht/85o/wzb7h433DT99/j6+fPxFQNLawlfYo/aIvIGgzQ7SExRNj5st55s83U+qjNajYI+sJVmJiapG3X/pEs9p4l1k18DmUsDpZfpQeWG9gxbGoDV5FIrUfvsQv9bMrfq54BGWb5RMcYpVjFaQWGC1bQT+n51ahTj3zsr91ics4Qn8yhq1uBfpqe7FDWhPJRYQYLU15hDenbxhYtsPN1mRJRtTFerB1zq6Tv5zxZcNcXzdfZw6mGBpAiXubcooEW3cTBDv4bMUuWx0VwKzpWuyx4XOpU1M3qoVyMZWXy/C/GdqozRKOtnXctw33bUfz0qEVYOzcu5XjubFzp3faU2rdtmsPmqH3holEuGyTzjqvrcGso/cb3DeMEZjJ1uEuMOR1/yawmNamYr8nVgxTvuoFNVln4Hqt60dWnpCKe52F+cUy0gZk3qACPFRqk8GZKsJaqMNC7XTXGuQL6J21/CzC9oYxBwvMM8iAL9BmRbCyeyEfvy4cK8eqzT2nJmpXPo/r/uqaINv3Itu5NkIx4KvwWP4oeWBhKVuUl9nxxkFDcE3oFBvbLX+RI/Mq/21/k50oVmnpGEVg6aMpD7gkMy67VKzU0sLt3nDmxOdPP+PL5084jwfF2DX0onzZaxukVSyg4m9TyzT98gujNgFkg0MDS37xnH655/6bPn5v4CkUhwPqOyfjHgZWY6z+l2AAPTm5yKfBA0TK98bqMwLvj8/AAI4c2HvH/bYjZuA5D9ze7gRTNO74rIqGHnDbHe6Bi3NdFF0lHXL6vbWXRE5tCG7Yb3dkBNXmk8K1xaBSFAYzqMWBwrL+YmiK5hmDIzlzkobae+PXglPsWnMcQskBVuTutxtmcEwvcCDmidYlZPa8CODNDfvWEZp88NZ26kc9GfDYdqNBc/Y2wxqL7dZwPh7cYCOAlkjfsG2G+37H4+tnfH3/iu2mccRaWPMN5h2GXSuaK0kqXZ5tU/9pDKQ7PNrqZsk6geBGbL6hzBMU/JX8RFn8WS0rYFC+7U0o9RVFm4juMYqBMRgeO+/V3THHRKThftvkdOeq/Du2VZGDJdk1mRgn++R9XCNYU+tYQSAEenibupeJHKxGTUWv1LIhYAdAFW3QQTUmpZUcdO/UM3h8vZIzOWN0MuHync+/t5uqI2MFLxEnIjSNEIZt4+/MHDjniWMcnPaoNUvkxcIzjnttbWM1L/g1q+cMICFwILHcN78hOieM0/yQFP9LBtihiJ5sig44z87jPFbQDYOYAg5rpupW7ZDU6GznlBCxAG63Hb0ZHo8HSsTSDEurrfYUzSIdQsIxY+A4nmjdEbkhk/RYapm8TEjUBDZvbH2MOclKA7OUdMcmG0JGgcO8Y8xT7BIJ9HeKYFrRqaemWACYCrCbpiC69pV3Ak8NhiMmQmdVWxvwhna7r8ClKlV1Xng0ywlgJVdmDBYTsRz8ausDJwS23tCMjLHeuQbjpEYJpS6xnret1tsrUD1UCZvJr3lrCLHvQhMs+2D7kyUFODe/I3LA7AlvDd1D9jlxTtJKm/lKTELsD04tC4lSA62z4g5rwoS4BzMDvXf+7LYxANGaLQFXg3TobIHzgSQI5p1gvjs82LefswJDrrmrhc8LGMcL8MEHtTQUVpBWWi0RYiHWzCNcop99X4UZ666q+E1tunPZ1WaNk1bhMJ/giGbAkhNzLIJiqRBEGtSN6DtFUs0M08i8HTPwHCdiqCIeSUagO4snsngl/t9awjwxxsFW1FSBwitw8rVHu3VqcY0Tx3jiX/zZn9PEdce+3/B4PvHxV3+Atw8f8fFXHzBs4nm+45iOD/c3hmM2XrNGBoLyz8277DPXP6EW3UnBW1bo+Jw4EZIfZ7BwMZJtu6HEadM9d0+yODPRZZ+pL2fy9QRymOCTiRqoZEg2wgxRZ2ZCAKsKCW7S+AI8DzSB29Q8wbK1nADFqndCGpr5CurzeQWwxGu5BVfKCybQA3NQs5ItOhy37DHpgiVEXMkf8RWmlRVVM/4hm3MVbV6S3kIg01RMW8k2gfYCtA8xqsqTosBrOnJYFaKAxcyYAoY9mZiasYjJGEy2SYB+gQS08zxnxTRJaeOE2k1D/i39ar8bSIQZ24WbGrcVC/B5VpwCAZSBiBPPeeCRCd9uQNtQwwmoy3gVYYFEDxXqZi5bbE7mVQDULlNY28TMW7551uAWrIJHqFihIFdgqYo14DUWCF4F2KW/M1MJs+y0dBgdpmeT4LyyRFq//PRJlvwCx+GIeeLrz1/xzW9+hf/J/+A/xt//4z/EP/q7f4z/6r/4z/Gv/uWf46fvf8DzOPBFecO2b2i9o283zHNgnicaHDkTv3scOHLimSGdHqD1jcC5lb1X94MS5tJWWnCd+zIdv0zCGbt44SLazNR8TWzoSPNVJF6gk/Ie7l9qsVRbYHkCZt2ApctnviSrKQaWOdu1LBDJwlhdRxXMDBpEVDmBiROX0l9Nxlrl00zxtvuGYiKnGWbyM9LFyIWYY7bWkSCE4zg4Ufh2u2Pfb+j9gcf7O/Mlo8bd3pv06JoAqHX0xXmkRAFdgq+cybzBohJ4FNEJU6yXAAEhz9D04krRTRPFA8cp9cskK6W7Q2Iu1EfKQGRN1iRwwinq2vNDIOsMdQO1CrKUR7DI16zhtne4Jfr2Ab/65gP+4MMbNjOM49AAm8CmLhvvnZp3jXln3wzP54FxDk4mFKrh5ti3jlO5CoKMuhgAPKkJ1W94e/sOrb/h8aD+5MwTd/tA/6TnHQKOa5Khd0dXEWZr9LtxDlwyBbjyz5KIWPYhfxFbZkzkECv61uEeYtC8FO7T1n5KS7ROYOw4nshxIJTvzTn0flVAFxgV1eLIQo+1Dr/f8fX9K8Z5YBwnDAO3+xusKQZVDk+m4pUjryyl2LCqmhyHYocqCgJck4ilr3XhArb28dqcye81TW6r+49MPtfmOEeKZkiQt9+kTdecGlAhWRUk9t7JHhJ4o+ZY2TGu5WpzVjzatxL6nhfYawazxFReigW66uxFSpOq4b7dMY+Bv/o3f47f/fa3eL5/wTgPxBiA9CFzAjkSJxh/8xLoU1oDGYveCJZqSFDMCcumu2jYewcVNYsp9vt9/N7A07EsaMVIhpylGySAJ9ir2dGAdPT0KwGORJyBYaHKFwOxdNLbz1nBD28AxspDJNgip0DQQAM+ZYBJmUlRAoEWYiip5742PK9e9OvqgTQFRhE8AKaJQVl9zQtUVb0H0u/gwe29CZlVICUAylsJTquFI1m1yEic40BNK6uH5EH0xrdkYCWh72MeHKFo7KH3RiHtHBNnMDnstRYxmbw3h20NGcDIwDFOfH7/int0tG1HNIfvO7xXHFtgEQAjWLMqTVVxqXaXSd2OOUeFYcgwBopVhRGSSkFj7Zl1vLjm18jFouuJ/toKaAsFDwaz23LhhjIcRWFk4Fk0/uM8qJ+0UG4ebYNotMbWjEwGT0g+E0SFykLDlaTW86kARzcIjga16/rTxH6rj8vRAqbJfCnh6xIgLVaW0oTg71u7wZHot4aRE+Ynlmg6JqnLSgibcW+fY+A5NjyOA23b2OZjUKJQlX1DYohRUW2mfGYmOisTBwdcY+2rNasepQUY/zJBQ5ELgkZ5Dq6pyVFegC/XdOZ1xhm4DzyeTxzHqTZOR7OO1ju2vnOsbGfVecbEiIk5T3x9f1eQRvCiueE4KWJdQRyDZWeCHIaQUPcvqz4vn1aOtOm1GZylSZBXmgsq68DbxSpSir50wGrzMH4tJ48VONBGKLBVNWmBI1kJIXi29BKLmFKVnQJDSuhbX4sA3DYFxAIQpq3gmIwgCoqylTJwzoERU8FwiCreEBZMcrNAaL5ejW2FwMsVzILJPfUONOHGmCyf59RBKkaqKyBKBuRGV8Y2GSCtL+p+Qu0pAmeYfENtByj5BJ13VmBrlHAFztXzVD6kkg2slWSlsvQMmiuRXrahWjJfWEwvzJorc9dzFthU4qDFqAjZOr50LBNJmyLxZmlJzMylz+NJlnCkSeODo4ZZuXLtHZ4VBtcKaJxrXHooGbmAhGgN0wmYpoIoAwPp2tUhVm5LQ8vr3kI+AlCrtTmQBJM7Gpon/ZYBH95uBJ3uG/q2Yd9v+Lt//+/h13/4R/jyeIc3x1/+9e+QC1RPaSuVPV2HSfZkroqxgTaZRurSNVu+6SzAgHNcYY3U+kxGP5bINgQ4PQuyYjJhBv5WpZe8XyQDNgUEC5CpzOrCkbgvCIpD18n78eAzrKlOLjalW+3FCinFdnJD3zrCmsCFOpOv7MpisejPTFjOtY7p2rNdSWe7EuNlQ17en+1QEh4N+eNKDHV26Cppw2pUerE/6Nobq7jSiXOwWhzJdjj6H4JVC8CzYpMpsddrZZmcK5SAicHEZoAqYhBgWoW1omhXlRd/k5WCBdyXnYG57OFlaxenTX6E+19x5GQMlo0/b7IHJeRsmQLay3/rPibPGLQ/mitZr3HpYu6+ThJeYIsZctn/K1atx+hW/p+ghaHimIAn06BWws2AmKO5QMFfxAkQixtamzmV/AKbb/jH/+jfx9/5W7/GP/nv/fvYPfD49Bnz/QE7B+59QzfH3lQ9d/o9V6yA/cbkeTP85h/8fRznwL/67e/wfhz4/HyujgmPQBe7tbhFWPsH69PySoCqbHJNXpONsNqnWMBnUYtC8R+0j3UiFP4pPxA4P8GJalMblMLVej0Bh2GT7K7WrqO6Cq4X29Hd0O1is7D7w1CTqtxV+E2Tj40rfhDgy2KYwaxYH772beZLDKFnOUfg04+f8Ha/o3/4gK1teLu9IZ/v7K4w2iCreNekJpapLhe25qQZjjgZYy8gHFh9czq3Ifb61KYz5QMjAqbhRC4WT2ivWjHv9CJpNYWXJx6IhZVjFTPJ2nczDiLg3a5zCb3v4i6I+TFOwDJwznc8nx9xxqnzJ8DGbD1D6DzFGPKTBPuRlKBI99U14umYgy2/3nb0reHMWocO8xu22zfo/Y623aXdNCUvcQGN9M0srlLvj6BLTyAm85Cyj4ErTqnCR8WJxfyq4lfvzvz0HPDWcbF8E32jfuyQdENor1a3BYt6KqSLRBuKoevnaCk1MKjazqwYkIatddz2GyqPZKGE+b0bNcDSYrHFyHqq9uFA6dIu/1VWvlhtajdnYdDWa5R4ednswhly+SCowOnLXwMpKZqyQwCKhQVIVohC72YGV6Vmrb9d+asLiKwYJ2raepANasrzr44KvmcVNHnLlz92FYw/ff6ETz/9iJ8/fY+vjx+ReCLywIwTsAbvBF/TyhYZ3IplOlEna8U8WsjFZlxeVLlcVtcEfq+P3x94ileKmsGsIQb7kVtjImKUYsHepG2AhoHEgYk5CFgcEmbcbhuNsTMQeY7kKGcv5IymI4Liq6SP1cP3tTgaN6VEhFVmh5GVI4fMKS4JNKLZU/3tnLhAdNLCWMmYRZOrvXCNdxfOTTS0Adt2BRKlS9G8c5S4xmtWXGh6nXEcSBvgfCEFFbnDrVEPQcnHGIHn+4NVWgNa59jOfrsjbODxOOFpQCcNdM7BQ+UO2zssDON8IMbET18mRt6xv3WYd/T7Hc0HN2wFZXLkMweqwr4mosjUzuBUsDlegECTcVUSppgfJRR+hQNM2Pg+AmmqxY3uC952nMcDx3Oit3r/Li80AAt0sSLMroA/kmv9PB7w1rHf3vT8EgAT4KJM9maqFI3FWmMazIPnVjTyddWig8cyLu6a0GSG50H2Byct8XpYAZGrTKxWquMkCr71reJMVN91tXu63wEzbGgYMciAOAcmxtIdSkwGVJ379fl84HF2vD+f2G439JhY9gFXglyCk5UUl5HIUOVytQu5DH+qTSkUDKSqPvLwCrBq9PYcTNxb13QiAVBygfyeqpEX8PSO53ECcHTf0Lqh9Q377Y7720fs2wagY4wBnAfGAL58+QQDBUnf7g22Oc7jQGZi6zJprupldAVyjWwrt4o71jOoYB1OzRW3AqsT4TXxaa4kyZyTGKtShMzr7wCKpbe2v1VrbeKcdKSbgKdyVsI/FTzR/lDwP5UUhCjx9Sty6GrfNLv6+Hfb0L2vYOUxzlUjImutKlGgLtwcDLCyKki5+uPTA8JNC49luzDAKTd1fp2A/Byslc9ggMQiBHAeEp0tQNvBCkwGsFVLJwH7mCkGJrXpMgLneDIIbQaks/LnhEoiLoC/Hqo4Bbw6t1WzqyQ8JApa7aoQmBIIsm3FRtBjY1FDmgnwYuwVkFDBiR55kjFV05MqeQtomqsSiBCjKiLIAOgNNYGqrm8FYUSieIasywZtWO0zFZSs4FisN8NLy26u9sreG0LgExd9wFKsHLXEnzHXdbCSb+tehoCqYg+6NbUyMTjuuo7WHb/59W9wu214+3hfDMN/9I/+If69f/gP8bsff0Bk4Lff/w7nOWCYKBF6vKxn2ZyU789cx4R6NQglW9Xa6GylHlAiZhQlapqgmnMxH+AD4QMTDwQaK4LFJNZkyFbGAn61br6ATguUBrRHa8XlWwWyrOeUkidIUHBeoEMrUB7V0sCEvzkrsAbHrHMcCU6Weon2bDX1wPGizWAgkGxZHeVXVr4C6LruXGfhzMFrS8674ZMpwDR1NgrQv16wrM06FFZTBZuSIhX2ZCfKXfN1aZ0DlXArsTYC6+tQZsImmUoTrpiRgO2E9HSKmg+sdsKa0qRQfV0xNagENpnOK8qXNxD2etWeWpkzmQE5iH/ay7VoizQAiNQQBtfz0x6R/wTESugdVcVfLSuKxZpszzyCQIaKvq9AeC29Gwsu5aOEpK+92RSLvfonPXg9I6UXel6McAiMxTmpO2mBDx9u+B/9h/8E/97f/iP8R//4P8T3f/UX+Is//xOcX7/CjhNvbYP1HdjJnDoqWQ0ONthaQweB/b/9d/4ejjHx+PwVP0Xg8fkrSidUXHRUpMUklOcrgKt1Mq8iIJPeK1GKuhMlsVWMqYQwUbFc+W/tD6s9wjNEc6DkrHy24oM+i+/HOGBCCbArK0flUFa7iM/eSpZHUgFKwpuKEX2r89UISpU6swmuTxXpYTxvleCi+Fp5+RTtj3kO/PT1Z+C7xIfbG7a+4e3+hnNwIvlY2S5ZDhP0TR6JTfu6idXHPM1ehiOJabm0rAyBcZ0LMXDYsTBYdjJ2rJhB2l0lVI/Frp1IjAzlGGQC+upThHIuFi/gZDkzb1wuhdZFfbc0USzQnkGtqHl8wvvzI47xRBXjCnR6za1z+Xiy2CDG7ZxATEcG41BP5nQzgPvtjv12xzwOzBEANrjfsd+/Zbtd2wHlWvBAYqzYkCz+wKlYkC1/XLPjmJx4pm0SWXso116oj8Wmy1Q+2zDOgfM8sO2/RA82AU/nGChAhx0UTu3hOXG775J7KTZuDYAq+0k/ZstX2csZALbeYbhfMVNNdwDbnm9bRyb5+GRcG/MhqNgpn2MOICCN0rlifYi8sm278tNU3jxf5BGU/wjEvaIm7VVrBJ4iiZyUiZAfL6/iTuZTFWRWi+HaQ5fkiYctm5CFDCd4tunMVrF42Q7FEsGxrBeDc+Vuhp9/+hk/fP89fvj5r/Dp68+IfGDmiZmnGHY7RCUWEKYYQDqhI8VGbPaLwiptC1YBsxjTEfSriV/unf+mj98beKJfui6Cwrikmfd6cKlEQE8rJ0Vfn3Oyr9mB/UYqc1WfzoNjerfWOJJbo+YjJrad4mp7NlR7wJgnxuNE20RsqeR6Je59JUkpcCmSE/Y2V7tAHNd9OR8s+zIZ2C4GEHIFkQAUcA8GTzD1hwbO8wErY+4yDspWhhBVbxrh7nSfM1MjN7l52BZyAtMoAgrHtnd4Y7C1b2+6t4bnMTDGT4gInMfVksCpBQBkkF0Tfh5PjmFsxpHl9/2OkQ8AQ9RNrFag1voFSJjozvUFa4BNtnsZwOp6wtDYwgbQUCqAAxSe6VBPTQxb+jyKNmMKlEqh262ptaZp7GfifArcQCCH6B/kiKPvGzoMZn0ZkZhst7sSGPX0qjq2aQpLM1uBX+VnZE+Q6moGdLFDdOJWpaSCRtphOtuQ4F+o9ceUBC7hOaPAuruhWUMYA17zCg06LIDnHNJtOtbzaZ17Z5waWy60vG1M+t4fB/b9IPi2aSx7ThmyAsCoa8Y+dT0hJbZs03G0lCCnbnJGKii4WDnlOFwAIW0mDfnisxYbEEsdiWsEKFl23PY3GDoZj2pt8LZh3wnAjRl4fz7YCqY2l28/focxDrIHQeH4Ncms7XyfGMgwjEyUCN4YBFWmqj2OBLWyrQwGsBLSy7C6Gfq2ocSUXSKQC6iRdsVlmOkkyKSkZyD7itVPGFYLJDtCGvq2Y4olkmXoS8Pbkvj6qr7iqtR5fS1J45/UD1ysTQEemfzZjLzEIZstIHHXOcvBSppFisFKtk0gNZ2xAkvDcDJZ52QL6sgEJlNAC4IBKZHIStAIblfmQ7ruiSU0h5kMYLs3dO9MLuv+E+CMKaiCb9Q6Cu5ROr5rkjRtYq0B37PYWtXm2gTclYZDUoRIAVHq3NAvTGiyT1k2u4oSJqYUz1xNYASTWB1Aa9Xu4krYFaooH1xALxjQAokuMWVHaB/xNNG/MkmOl/NYwTE3L0FqZDFo+Cw9KVef7rDer2QE3LOnWiAo8Juw3jADiBOIZPK46V68uOyKA6x1YBw4x0RiwsfAX//19xRM/7RJr7Dh43e/grnj/ctXIBK3tqGl2vYV5KSCnxX9iYY5Z4jlCrGtjYFaphghEGNWJb3k+UMzfoJ2c4yJCQrDDrXNvwbEQMqPTGlXGBr6eu6EZi5fUBpMVsEAbAWFC2defqaKXoFwMtWYErMlM/9/rP1NkyVLkh2IHVUz93sjIjPfd72qaqCB5oAjJEdALrjgAjNCLsgVfzU3JIULiowIpImhDGWGALpRXVXvKzMj4l53M1MuzlFzjwKIfhRhdGe9/Ii497p96MfRo0dHwBeNgAcLDnuXjkkQhMmWoinubcTWxH2gjtubLInv2UYT8EXmbbEEaoG9t6NdHJhtJXyd47nmpud/DWAxMJN/JQKhYDtz5MLkwwYZEwMxmagJ3KWun5rP07qp5TBBSTHAS9Ed7xMz4WKkjqFpwEPBKGodSzZi3mN9TgNBrpxqp7cj0GFsgQSoIZIFSL6VpioGBHZlQkcbxz0CEGypjgl2cz0dVfvJOGIYBWtHBLbBFqLqvLcLKqdGxwAGPzOLdAI7THZe7WCQbw+1ghWJbbvQmyx+4cT+yLbGNNNd69picChOWdH2G/re8F/887/B77//Dv+H/+a/waUE7p9/RL+9oEbHF0+PWOIrMb6NRVMEXvcNbXS01vBwueJyuaAGR5FfFw7j+frLLwADfvjpZ4zRMJrsldvUXeP+5GnHxNZGUBeICSP3jjHdAKIdfgG6K3n+FAv2A2KTBZ8WHy4G35is0si67UzKlM3h2A5dfDWaCs7EBJ0CzF/Y+wizglJwsM0Vk45us8BhORDF+IqpI1hrDiIRWziOX5aDCJKMHxQIzwJ675Qdud9JKIgIDhnIszAo4u0AqL1Fm5wTOKdG2zx2gamX5QxVFiu8j87na/sNxQvzwiBDc2gw0VCszjifoMmInefVxagpKi7x8vE5q03fxLZ92R6ZBs+4F2QQmsWE1B3MBy9PD3j/4T2++e4bXB6uGEHN3F2dEu6m+B4wUGh831mkdANb2HGwZyCfse07wm7Y+8BtDPQwXB7fY70+ML63gdftVftMoKTWBfdbO7RK3XF9WAQ0GNqubpQgQE4A2lDLRZ0IO4ovqPVCfxaBtssRJWNOv6YjMUizNdA7ZUlMAN9aK+ODZI2H4hZ15tA28p6lYLyZifV3nI8WA9YbsBFMb61NX7Aoxky28e32yjil98lGDgGvc6L6LKgY0OIgxThzxKlzF9nZo7hIF7gLcA7p5Jo0b4fuJ32A8v5OACpZ8+l2ZFwO18iMirlr55mgrlWoy4r5A8apKITA1LIYwGgNTfEZAA7FsoKhgROUliFrsBbeyZfbMz4+f8QPv/yCl+fPuO0bSil4eP+IfTTsz5/IVuMppY0xgnldAzX66Co4aWHVOstPkmWAkD9SsQe/7uvXA08K5hVOaeMdUKKfFeJE47i5rPw2UUYBw0XidQNkFTQlEFYZmJdS0BuT+1KUKHgl6DQISI0YsKLq8PyAAxlEzL/S585gg/4gMEJtbtl6Yi6wK3R59TqirSFiUj9DRg/QnY1A7xv1JHw5GBX52QSwmZGG6Ap+XBV2BJDTrPros+rnpXIalRtiOJalwn3Bw0OB+45aPmMPOgISxwxZzQI6kVkloG3fsQF4eSkotuCyVIxgBW+yNArmJTAAKWSYlEkabQfs3MLIpRiRDh6i8wfGBPfYPmVepbEwOHlDzgw4ksOsPuTEBGp0kLmxp3sJVfGiE0J3w7qupPmHH0EEo1952LfVjgwGzKiRMYxVspngZLLaKc7uqJMSOtt68LaC7Sc9hmzf9EFm4NGqlA6ch8elQWEKvgFgIJkq6lmXMOfUhDKgN36O3LusOG1bw7Y3LHvDUnM8baa/Ck5UkXUJGQOGpNbLXcMidY2AkMaUYowjkaEnwtQCwqFnNpOrmaQcrWtJI0+nstR1tsJBAaR7mWL6Iwb2nRMfU8fter3ivknXBcwMIrU+BChm0DVGCqQeQvqR9FtaW7kXPlQyadKJ8HNTHJLGXTTjYtpzRTIZ1VimSwoks8qhM3m0jDAxGDw8sFrhGJqumUYgl/qtg2NCHIkt5Kc8KtWn50/gicGogr1GsL+GT+C0LgzgulqVIdApgzqlcXADp17ka4aqfUrQkfdsMiBtnt8MjglADQW1tL35dJk0eAAxp+dl3ZhMlohsh9b0qnzmTBbz1GnNEljRH5Ai4sCJ2aUfPsT7Twdd6znGUPuKnkm+gedG7WzhSmz7DJbPSXu2B0MJz9HCC2T5PBAKdKipxnX3JNxMhtNho3kGSjm1Os1bdzz31PxCSGPBgFIY4Guvk60VFhiFz+uliFWWK2vUz0iblICsU9Sy7bu0vli4aP0FpRjWO31/XRw//fQjrg8P2G53RB/Up4h8XX76jkyaeY7m3/czpZtM1THbUVRE0Bml9pRNNidOv8bgII4mzb6DfXt4ijl1NBj35J3M7wkTsH9m72b+iTdvd7T9nM+qih4hlswEqIOVaCSAZhRwzfPupdLv2+GfM+5OW+aOqXERQXZK2NA0IK4bEt6RXcIYRyHGNBBmqO0znzuz5dMpCyRomuyTdKV5r47rRF9yxGszGZTR5XrZXC+InRvzMlnmSygqcY+z+9b9OkTyjYVPiCkvcHIEq8fcE58gUhaXiFlavuoEx7ruuim24H2QfU1ARP+UvsYQBJZ7/pvLjBTAyZ7OBJt8bMZKm8AKQICQODsNBO58gBNy9YzI91VilluVYK4XtR8JqUmtoRCAmvF9fmXlP6fQVTeCYz0QPfDd19/in/7ur/A/+xf/AvvLJ/z3f/t3GPsGR+DxumL1J+wb49r1+sgCxlaxt4Zt3/D4+IDH6wOKAPEUsH56fMDL6w0Jlo7ekSLoeZcKbCZLHvysXfY75tAiyK/JwE5aMXRqbfp7XePJqDogp4wXbK4jvz/ZH8d+Z4vdtABGgEaWeq6oUpF5J873JAEuPqhyl7xDw46hsp6wbMaeTPzfAFpIllMwrnObDKLMNapYeIwNOtreZpw2heDVopitSWY2i+vHCBpZHhVu07Wd48Fk9FbjGd57w1IcS2UHTYg5RNc2Uba5WCNYLEiAokx6z2FcPFs51R7Vsz0qP6HOzwSOIQFoYxHWDVjXBQ8PFzy9e8KyLrNw3PsRA5CxRQvamrFdXfuduVzmismY62MAbWeBTQWFslQs6wIvpsIbNc8o5VJk6yf/UIBU1R4yn21tqJsgZS4A9wUYA8Mo71F8kTrNELMTlJaATfAFKkgHmKtigMAvAJiErmvB3jpjnBk3aK/NYaYW0MhzINuZZ3YcMRMDboJOvXfG1ZY6rDTyow+0tiOntC5WgcWPK+bHvtrp6s14UzGM5yWH4uLMy3TDR9oGT3kG05nToQZgNVv1xKw+6WfZ+VLN+CzDQOaT6l/QQJlU+zQkgGuG+dksbUIWSbTWZVmnHYpksAq/oEcP3LYbXm8v+Pz6ivv9jiZW/XpZ8fr8in3bgcjClvJDyEd6dk+QMBA4ZG1M/imL+Yf0wsE6+zVfvx54ygS4Vn7EUABrrJIhgFJYNe+TRmPoQskMpMLXIG29GwUd276xkl4uvJi9wUDkeGx3hBn6uCEgYTkFY4gO9EAR8r2Ihi4sCB00CuEU02SCx0NhYMDXR0NFhRWnI43cAFUUcxmVnJD+p2qFDBws0PcdVqitA3D8e7ZrVbGftrbPUbClFtTliWJso02aX11iAhMRQLt1GgxzvHz6jN4HarnC4fj2yw/YW8fLK1+jD4qyBTrYXjY4MnIUbJ3TmPot0AvQi2F9eILXwLbfpRPE0koRK8eQlV9HDlBVCoSi9iOuCQ9/FyBnIBunC0hwW3VIEyhMVDyZBAcLARC7pBSyhlpHrQprgwFYrawMi08xA4UYIX2ugXvX+HeUwzllYKgWqqXSOVcHR4NvQqPRKDIOw7UsMFO1Gqk34Yhip+SHCeS6Xpi0tYY2OKGhdRrtsqwaUWkKigRmq/oAOeBxovQ+LAWOBRgP+Pz8jE/Pn7GuC0opuNQKlAIbF6RI/tgCr/ttgnCXZdWUmqoj7GJjiZEU5aD4xw6GOxTtHp3TKK0I7bbCsfYwtkWNwL7vSizJ7CrFUbrP9wozVs/BwCGDAbKiBi7re6wVeLw2IF7x+flnmDmqg5TfbUNUtrG2dsPojVUxB0rprJAOp1MauW7UisPINiZW0KwcwFNEoO9HALjWgsvjA0qpZEtIrNKUQA44MAL31w1eCpZlVbV2px7BkoL4ENhAwCFZNtTNcJS68ixWesakDHdVYAHDyCg5kTDLf9OfBzAFESWCnmOnYYAV0pKHRLl3iUzWujAgCANal81he+VSCiwkeo6A2UL3EdLcWgi4HZOxBu4vnwEY6rJShHlxdDeMXqYjnyDBEEvIMvk79AoS7KW7MIkKBwBqecWWFVONjpcN9xDIMzruWwecbEDGOkwwxsnxHwCpz8RrAr5eJ9ht3ednRSSDQK1np7wlbb95RdLguwTlh0nAumfLF1tQ+wiMGtKxOFhCrMBwXUZQYN1hagEEBVFV1JD5YDU/q59IlofO9ujYO4FFr47FNRFKicQYnGjVtx0WwAIDZOeiSCdn3znRqooObpVaNM6kNIHJ0Bqb4RgwEnzefW+4XJJ1SRB9u+9MIG6Bf/s//Fv88Kcf8fnzK7a9SRfKodLePO9ktjOkKV4Fdr19b2Aw8S+OJoZzHzfet2VBHwwXWgCjScTanO0Qw1HtCbDApXa0YWhhtI/BybLJzAP0ebr0tuSFZpHpJEbPqzLEhjFkq0oRwIGSdpTDWqyyyLJWR9xJWwzLO2nzvIzRsfeOS3ExcPQPulP0Sw0xdkEUeciAbEupCp5tgm8NRyt6RSkQzMt9YH3HlfgfJimBT+A4W2Sg+LS5jIUypoBY5bTRCRZ4aH3Uis//l6YYBAAlCO95BzqsU+yeLzfEInZ4pNgpwYKmGKGZfkHckxDbJYCKwcDaq6b+dT1ZThctAh5kwyNjiYGsANDGad0iDUU5kuauynBnWw86AYZ15et7go6DfrVjUK8zAvTQZPzDAKyOEmA8raJYawr+g+yDPsGR4wSgy+7Jz3UMRXYzG0e2hbau+MAdVa3A/Tbw8vKKp8dHPF0e8L/9V/8Kv//Nd/i7//Hf4uXTj/jzH/+A6g1fvH9APFaM8Q63lxf0PmDrE1lr93Xu6VIXLLXg4w8/4f56w8vrn7HtHb+8bvi879iSBVQLQgL3bXAdW1O93tkazRbdgpo+FKCfDCasWYIJnbEeIV+fCsRKpEM+4AziyCQlTBfa4kg7Tud0sH70A2Zs0e5joLcmZQuCNaZsg0XOhogi9qOADYGeCTmwwCZh7jB9Cp270dRGDSQzwYys+i4mOk3l4Teid/jlgi+++obPFmyh3ntDMpt36frADDYCBS5wkAzgNgb1Zs1Q1guP2Ii5btSnoc+yESgLe5RivwOj8Y63hj0GSGtL3SqgBQdrhFcl37T9S8lClKnd3Qg0DiAUu+Z0r8lcDrKjJugg5xKgvMZSCf6ObQcKUGt2WtxwqQW+Uny9lBX7TlmHfW8sqFQTE0gTpYP2ZQTlSXgGrljWgsenC8/v4JCkgULGCnbs/RXmBdfHin0PvN4a9v0V7juWZaUNAtmOn19fUQpzJXNgWYsYkIZSL1p95lNLvcKMrGXzhR3n9QT+IFQMLyjrArhNxmAYGfLTVkoKZqmctu4gYIQwRA/sd/r66B1QF1PexN4pxdEaY6Wi1jw484yBQF0K/14lFMbhPlv9AUO4ybbR3jGmxsylJphcxXAdHTXIEGQ7P9tXlVnOaY5Z4GAba8bZ6ScIyqFzeEW2bRMP4PPJDXDtzZTIm2yKYbEqAJNxHVnaFKynviVIGAjHCMcww1KMxS2jhm5MkAnYdpJOrDj6MMnN3DFGw59++Af86Yc/Ydsr4E94eudo+4afP73ys3sR0zVQwC6xBM3MOXAoMFCXK8pSYZXx5y7Jjy5MZQRzcIgk9CZA+M98/WrgiYaSa++IQ+jKTrRq0ED1+Y8+E5GA2jZwFATo/JUEus0F5QhCJj8RAnxSrOv0nsmhzL7MowKdm69vVuuLPqT+NYOm/HMivdNkIqFLg4l51DGP9lzfwMkVqTVASKUECw1GwxnJDkrPqGlEcRjI0IXK1zFpooxOgKEY9Xaua1W//0BrA9hYtcIYSsyAagVhju48zDGYfPcWiMgxwWR/JbNpQJdK64TAwYxRJcxE8UukNnV8EvY+VjZBPNWnDDO4zPdEnI+qhARNyVUEOKVI7teAoy/edd5yU4/gPD8+z4UcM/JuTVLpqTDFQC1rXQQdM7BP0AvIEbhz54PvfbRmYJ4LOms6y6pA2oX2hxxhBqh8zn5cfCH0Szgua8HtRqjCoiBHSadxC5B1kgTu1gg4pLC9lwT1DElbzQr6NDa5W/POcZw8K298HrKG+IDDklmHo13PZGzN5naQfpu7nYvD93NRuIuqbSGEfzKomKUoWCTQcLS/MU+hUPygIdGb9qTADsx9ToAwGV8pFGKWS36wN5QT8dXStwQQTYDz4vz5gWPyjFgfPasidliEBKCLnt9KOWxD3jvLM6T1NJvJSp7pec7ehMGn7zFthhgQoQcIxEHPHzZBlXwbPzFJco8spKNhOBgtZlPbJpl2XGQl1rMHXS+VbWTHUdGRyxYAzHswS85y7qZKbh+DSL2eP7V/UpSyi4WTe+B6jqRMz+exrIAe9oDPedgMCtuH6MunYEP3LFOACQKcz3veRdm/oedLscU+NAVTdPRAMhCPrTu7ozz/mSgwGDj23ebpOp1t5H8JvORrmuWkoGQim2zOUGtYukhN0wPg3uZeJINv0iFS84SvqPtz+ryRYDaZEe7GIHSyUmhnX15e0frAvkkrRqwbS8aCxck0nc98rrmAcBNbQ9XRWRwP+eo3lTlQe2yOYuUvQ9Ur5yRG43Mq0KYdzHZiDRuYa57+CH8RY8gHqHWT9ibv7MlnHB+DzFsDUvsy9JQFx/mfrxvJZ5uOhPufU55Gl7/KiCWmbcBRLEbaxWyJzvPt85TJPp1YoMeXvTFBeZ+TmUrgKavix74hkkejV5kXQHZPtiH3LkMRuM2qbs+4Yeo6QPZPMMpfmM/8NXDEefMWzTcA3vLHMP/uTbQ4HyO5MZa7evr5cwTEV0lh5Xl2hqac4VTdjjj5TUhv7WRLcKztmekSp097MEsVs+gDz2dI25TfKyPwxr/kZ9HZnwxtN6AYvnx6j6/ef8D3336Hrz98wN//v/49Xj79jP32irIC9SonHYZYF7bH1jI14FBYtCnqmOgI3NuOz7dXbHvHbR/U20nW8GQViy0cR8s24+ZAtnMdvjIBANpem8+poxsSyj5uMOPteQP8OH9aOJN9mAz6iT6dv06WQevqOPYu765Z5lFxasHNM3/YF5y8PubfBb/XTz7ozSlQriZW9rDDRuV7plRArQJ21DqVQBPmuePrFmAWcI4CWPoAtkrS5qbMhs/b8MaGB+NMC71mBFJDNVkf5zN7nF2TL8Rs3T3l/2laENMGy4bMUOCwnzPFSUsk2swIArF1oc7f6IMF7cG2xFo5AXhknGFsOwIOH82wwABIvsUYw7oA3NHabPWCDcqVONmHxVjsaI3rvrecmH6Z05cJuNEuZxqXHTVQLMOiwphx5ZQ3meuQi9KnvYVl7JWt5DjWPz/r6TWKObqPuZ4AjsJC5DnxvziXh0/BaZ/PPjEjHKHe3PkTyx5Qnhyn18J0HfP9Dn+lQpBiVzOT+ieO9Tmd0cOdJsCstQFOYM3Jf59O6nl9plXWgXThEBR9x8l38T4EcOTWAmBNRxOKDY6ljLnOftpbtizueH5+xsvLC1rTsLXKoWStU0vb3YHejrtioG6T/PSMe6R1aZ5DKE5Pm5dN6+zHgv+jX78aePoiFdoLdVP2ISFms9m2M7RJox7BSn/haHOOIQbev39HvZQxED5wgeNijktx3Lcbbu2O6+MVtRSsXiTr0OBOdl1Eilvr8LmLPSXLY6x6OIr69sWDMtJIzchColkMIBzRALMF1Tj+nGtbjiBGB7PUAAqZW4GBvd95CAvp3vftE5SiwzUSWaNzaDRC1dKdzsBwgeNK5zwCI+4Qf4dtZusCtxVmKy6Lo1hH8YD7wGVl0nVdHc/PHR+3VwEOA+tyYZDQyECooi0WKxgDeHm5YZSFjJG8FHWFO1DXI8IcjaKZQ4GpSQcKtaJ4wVIWti1Gw7AdYR1WrjJcWfUFal1RLytutzv23kXxB7bRpBHW0dGxR7Z2ANjvpP72nclTzQoCACtwWw/NGdGS2YLpWB8W9DGw710AB0f+hqqiCZYJctMY+YQbA3DVtZzG+769IqcZprD57D+vaoOIhjE6tiH9ghhYnU7EQ82UeURB7a5SHa3d0XtDXcQ4W5f5erVALSgrPB7QGteTewKx9ADzFXVZsVwe0cfAx+eGZW1oo+Lp6QEWgdY3rlWluJ4ZtchwMiZ9vx0GxQvc2Xd/msWi9zaQ6J7tgoZ9kGXYHcjp0zReAUA0eQS8ghMhsInxc0fEBo+OpRoerxVPTyvevbui73eMHnj3eEFrTjTfAA/H4oblacXeCtt5d57V28sOG8ASjuqqCI1OQFZPETpn67pMkXgP59jfqChwdDG6Uidj0MigNPaNl7JOFoBXAmd9Y8JevGIoUN472/OSebeunCAYewbDMWPHJKtmZW7fkmWU+iJ1BoGj5Vlap8PunTT5WioupWDxlYmO0C9SsQuiLKjumojZkFM2j+QPEzR3s1mlnwnTsgAwtJOjCVUUMkgfjc61lMsEq8wday247ZzWOYKVpeVyoaM2hqrr5RF96+i7RiMHpmaZJSjnF1jvsL2zuus+xVc/ff4MIDglhZ+OFfFzUmUVIzpurzcUd1zXFQUFVh1b2zF6Y/BpxvxJcf4EaRSgWzFYOKqvChR3xUuG6ANNWk9wtvRmjst9Iaus1uVoa1QQ2FqCmGqnGn0yY10MjM7KDUao8iW9jvV6wd42tN5UESN1PRkq1N4IdAsl8LSD1XiWllLVplRFyAqYdcC72iEgqIYbH6H6s2Xl94LVF03xSk870KLN54etiFiY7PQhrjIr2r13bNtN1dWVWhNmuA+e1cgg1Mk62mxX8kBNIoeh7Ky63l9eZ5tQD0ePgh4VA47wFexdrPLNUBLB9ie4z8k0oTb/fZBpiAqYFxRU1MGR4GOjliLk6xmO8HxMpp2AsqJ/Wx4WoALPjUDcbeO00gQLWRCjHVvXC2LbsN/Ih+ljE4PKYEiwMZOcQuYjWEigX9PdTMYNpH9kQOTdylg4A1tIoD77hWBKJvzQbVKqAAHCzgfg63WR+gTSOMqUIxgDGCNQ1foN44Te1/sNANCcsUv1ZCka7jprXX9XxEhFj6yKokofqkD6HCH9uZFFDAAuAMuZ0IYZWrCKnGdJS0ENC4SSdwHWSuDd0hNiatTAQvisoWwdURxRCjYb2Jeh7zdchviD2SdI6jYwBtm9dYGvBSjiso+B+74jAbYmNmDvLEYuq9iIPfXKYib/nvIQaaCV4NhgElJKna240DHmnhQs6xWtD9w/7/j662/w1Vdf43/zL/9X+Ovf/g7fPj0gnj/ih//xv0fbnnGNDWVQC2cIBK11xVIqnl/v6K3h+fYR5bLgsj4iUNGHY4uODYEXBF5Hxw+vz7jvO9aHK+N7J4A/etfdJbsMEWhBXUIE82gPzNaaMXYYOqddm8GKBrQ42xYJupIRXKti9HaeZsh74AlsDJNNLmTN5BTsEZgBnoCZslC+Hb3BYqDOO2VHq6kAcPeFwAQq77Z8ZiQ0ZhRfzwJZGwNb7HkBySzxI3HubadWqqb+ehSycscgkx/Abb/D7I7+8gkpCWAGeC3YoqMD2MsxOayWglIWtUgBJQw1Qv2eUMFvoG8bOHHN2S5vznY+Mw4DCIqTc+LcKp8KYHpo3nU3oMPQtJ5HPKm1GScQDV3r32m/4QjlXhn4qa4yGdZsNWJhZphjYOBlv+FpueC7336H9199gUDB/fWGuN3w7v2XuCwr7vGK0QP3MeDhGLWgw9CtUG/NAG9i2t12RAHGmufiglIXROm4txs6Bi4PFZeHRX69wnBBLYFYszAzUJcL6rJif6HW0VIqSnWsS9WQlh1Vw3OiHUDQBBHERhnyY2nb5vly+SpfCXA3ICfLXq6MbbZtQ0RH38mir3XBGNyTbR+yibRuYQSVi6/oU6+WceWyXA471AOxb7PFFnugGe0ctW9dnQap0aTizxgYbEXBaHxvl6KPgUeyDMN6Xcnc23YWMgVEUquLcRCLl2PqF/nJ/7mJbXmcPN43MeR8JWjbpLVsALwsKKUyxh2hQSYFy/UJrTeM+40xU9/VsRWSGgkWxoKyKfSbwHVdsXgFnPqwy1oZnw9qul2uV7zcgFsP3G+veH3Z8Ie/+xH/8Ic/4cc//xHruuCyfgeLgnV5FBECGLdn+pqVufo2kokL2LJiWWj/Y5DNFoAmdsp25hlKAK2fOjT+ka9fDTy9+QrMvkNWVMpEynSl5UiJ8i5LRdtP6v+zxSfROkwxu3NFv3c55Lw8ohpORNxI/yPYlGg7v49jxl3vQYDp4Nokq0KOOtsH0tlKYHxmGll+mkRbGrgxe4floIyvn1pDgayr5YKkTo+dKnJ26IxotO3st0VWa9Q77A73UKtBMsVUEHIGh2PIipuzyh6YtFsYgaboDX04bEBtaMCkjBtmgmLmKMXkT7OSLsYMuM5JFU7134ikCjMQYLznkM8DmTQ0gsUXrR/XZmh6IZ1B/rwcerbjxVxKBcjQWcpEDqezxT9EsrHm4TwqmBSMxjy7+XeW7Tp4+/1HYK4X08/1MWaCny2fWQufLQk666zS49hDi6ONIUUglIjW7CM3AGqxObKFgwGSbBCyK6ir1kcKi7NCUsrprB0PcaxrPqnnOT5PJsT8PQNZn+87732yDTIvPN3lo/rHfZ10zU4n4vla4CQmlziqmYDdKNh172lrssdfoGNWpXQAuuji9bT+f0kEzXav1hvPqLkYF6xUsfqWTQqOoUSGxOAEQXTf4ji7WS0wXYOsZqQOEYKJWFa5R34bkulxrnZiJkGz0h3AUZG3aS9iGKgxpN/ncR0zCkGy6WRE35xthUa0cErUuolZFEEwwnH8nBLVUNVj2m6tCb9rPhkOlo+S6rwPOlUjCQTOQkF+52Q6BY4Dlvc4znt6Osj6XPPM6WuytU7GY+prvL3c3KzJGtHP4LATR3L+FwcLmGCgKfBNV52NE9NwvTmQONbxXCkM+tm0S1nFZZVTiasdLzCPJaTZlUyX83vqfQJqwxmnCu5chpjbmT8zWRKyfW55u3PJsmIt/yDmUgDIAQwMsKC2z/T7QLJu/nJpEnzJfeefFQaGfKHc2EjfGfm+x02anxGT63Laz79goyDm9uepEqTD79D5O1hjATdNqcWhmSRLcdrmY0151AnW5J3rNpB6XnZ65vmTlmfreBZ+HH7uN2zlv/hfmDyt6QydPpGKunhT5T2dvxmwaE2ZfPtcHJdPY/HVjrjMCfyHkr3JMDFHFukhZnYy071oZJCdXgtv1yLv/ohDm+h8dxOfNq3JmW3v+Trao3jz36zmHm93shjH/s010t9NxtjxUU/fDkCMNqSeo81qc56FkN/BoIgu39yP75HmRtqVSXYBmR1pv/7Ce0zfAcuqtBhCk7GFA0hPhD33KR9AoAIw4B5Y14LLWvDLz39Ge/6E2+tnoN+xVDG3Ry6owzn6BaPd0RqZjxhs5UNQj/S27XjdNtz2Hfe2Y+8NTW3yhyHw+TShuGbeVu1dnvFsdYf2OyzX8fB5+XX8XrfFDpbtdAFzFfVf+XJiX8oAbK708dqRduqwLPoHvaOKf2oTLTBARdtpm9980mSu5r230zrEER+cikL7j8hoAAEAAElEQVTzTqQdNr5rUUzNadyL5AZMZ4DnoShn6Gc3OH/L857Mu0gwaACnBGfe4/yc2XNAM2XzHp5WF+f4Ni+UZbF3Xta0DewMmb4r/fiMrHLJ7XQG+HO1skCyXKh5+/KZr7OsC5a6UAPpNN0VEBgiMDtCsX8ohtGdTqJBgyQpWmN+Z1XP7zBQXLqUhblQdqXIjpXiaM4WxdkuGgd7insdGJJ+KIWkizycE+SEIdmZOWX3zfmwLKhzbZLZ7nl/kgmdcdRkEevVzaf9P4wfC+2HJEnu1Ti9rc2OifycsGPP5/mY540eNXc270gWAdJNpX9Mhruf4r/pKecPZ17y9v1NNmOy43VmJ4s4zjEg3volKG8XUEqwHIemlBkyJ82tOJ//jFvyFCez67jz+b6JPygnccfr8w0fP37Cdt/R22DrvKtyCtr8aR5mDHG8LzJ2w3GfOBTrFAsg7dbcickqPRDP//zXrwae7tI9WYZjVx9wvk9dcjwgJ97EVLsfuCwrLk9P+PjzL7jdbrjdd/QeHMkdwLJQXPj1+YZSHUu5oEQBeuD5doPBcH18AsqCKOu09iZtp2JErde6YozA/b6j2IqlXLUsAWh6WFhF9lUmAdqssgdbk3IeruyHvd9YTZjBAaTdNBrYcU8tBWjTEwCKdEopKqdEgf21hciljnZOGaP4NrP2iM6JQDJoe7uhNRpIXwqrMgjc7i8KAA3hhrKuCO+wypagEcBtu8PN8XB9mO6wt06GTXN4NVwfH+EO3LYXgoLdQXG/gavGq+53Gt6+3xnwoCKiokdRK42JfeMAJFo9ASjDvg2KmSE1Q1jduVQm7K1vGL1j2xsuSwFqxbIURA1s9w2AJmrlUwQQfUxJjV5ozFprDHA6kALaFGTtKugYrDAZGtrvJs6+ZXUGhtbUHlBlSssy2RbJFoDaNRxCqO8SAbUiuqxCioE54a+qfWIYwZa9E2BxF5sMwH57paERHbLUFRYNY+ysGrQB8g1cE5Z8GvTeb9jbLo2VK/YFCFzloFgOKLp3FErkvi4JlMCooVQdoakzea75ZclIZh92OgUZzupkDmXnm6FMw304JJ6ttu1o+8C+DYzGqWpmgdE2jL4BYwOiAdGx1MLqV191ZyVwN1QRLwbEjuHUemnbjs+/fEIPh/kyE4SrM7AbCr5TtPx+vyOjn3QIl3WZ7Dg3x1I5RpNDBApZW84K0wAAd3BSq8NUPQ6BfXLh6GMgNCZ3NLL9PDBBN447h/q/yaRKQDWBcUuQP/j8LellAxhB4LoNE8B/tJwlfo5S4KAdZR+/H54v3XtQgBxmsNanFtmyLJN9AvAM5QhyjoIvsn8CBBUghvxTj6Gx4xnMZGbH6WB7I3jHvJPDzBPki84KLJSoU/CawvMVnE657zvSEYfsQdLbEUxSUwB/kXbcbMkYh3pHVgHfgCK6ASko2WNMOvp/9KUAzp3TifJ+NAXmQyOvyeYdgPUZVHipyEEdrIqpzVefkXtK8H5ZxKod/MwcagAONQ3qfWz7HfdNU+jsCOb99MF6o5js3sRK0T6GSb+olBnQZcDTdW7XRZU/rVfvfbK3Uvh12xrgwPXxOtl1943shyJW3VIW3cGcGHs6ZzEQQzFG2psY0tBjBZcTzpznNniHyEir8ll5ZzhVNMIFMnWEWqC7UdC5xaBeGQpcVfGZ8LmmvipJt6FJrAZgnilXEHwwFmcQmXFH4USlCk4s9ZJ1ev1PJgMKeDugmGswwUjbm4ntDB9xgP8KDt1PCTsAK5IwyOhdd36MbHEH3iTJhpkvBBKAMKzrVf6W7SBeNdExBmBkjEEaFU2TkdB59mpZJAxu1LNI61MM1+XC+Cf6AVsLSPC6zLs9gjqgVXHVGQS2CTwej8CPo9JZDK3ZObHBOTuXzTwKDDzXhgOMjrmfAe1XOQMBshzFNW6QNts0uYwC4A5fnP54bzO+aDe2dK64kqWjxPCSPY+WkxJnuoK+HxVnFoXK1IODErBkIY7eyEQYGxNnI3sHkRO+DAD1pXq7M1aIHfftE55fAp8+/QE/Xhr+H//mb9GeP+MxNqzFsIrpb7aggEWYatzP15c77sNg9oDeDM+fh+KagT/9+BEfP33Cx9dX7L3j3neeo5ItJ4XnPjC1YsapvZve4nBlrTfYCFzXhWCjWB45ZA1aZ9ZkxvTzs0A2cygBVTamXTcw/vQYKCMTXRYBuOvjsFs4JmjNuorskeOQCKG2nyNneeWpNd19QPGDBSANR4LchoKCLXaMQb1Nd5NOTjJcBqIfSSELXIblsqC6YWsN7y4rvnj3hP3+itc+gNbgASwrtXdf2854yAPRj5YlGO/v1PUJqNsECoeTXOATdB5IPcs4arHA9Ed+5MjzfmGe8rx7XJuliHurgUM9utzGAaqmH+lqLy+ppQng4eEdHq5XvP/wBETH8y8/omiw0+W64vHpAeN2w9junAbanXpQ7hiNA5QIpoZsKgs91/UKVGB//SQW5yv148oVjaVVOB5QrGApX6D6A6IXjBYYcUOpC5Zlxah8vba/ovcNATKfl9XJwN03vL4+4357hdl7arwKfE3tPnPMuCuL6ckgGjrvVWA/dSI3+uZCNpirH+Tw0QIkdg4GK079tch/Y7DF6WmtYVmoD0f8I7DvXLd1pc0eHnOPTH5/wSJfxQNC9h/IVBUIGAIgLAurApsIrBaRFehjZsG9ZytgIIvEpVRNamZhjMUQh80BR0Ci/CQqaKhX8C4mUAWdzN4aug3m7F44+XkE+nbj2ii2y9iSMUPKunDv3A9ZFYB6lK3xZxYxhRnvGkpZYTCsZcUf/v4f8Pd//3e4v2yovuLbr76HgXqKre/Y2jOWQt1PaOI0yWqGNjj8pRROVuUdVNvsGDMmQYJTaqlvbbB7ZbT//wNPCpUp0KmEIpFJGkxRKwEMrzLqMQ34ZGEo2abvJMUUGcykrdBBci16VsJDQqvmJfNE7J0IMCeis1WGWjg+Q62koSc2qAyT7+P5d3yPPvgzmYdlNerNf0UfTTMOADm+dl4GtepNaY4MO4WcRDq8YFhpCCHaTPQI2YrKXYFkXrQuUcjRJ2DiteL6cMW2NbTeMbrog1VUbjeJokpnCsbAP3Ysl6KWqwCM/addCH2tTXRrOVc3UN2TrAoy6zJAqQgh9nxIBfxegWzYkODL6EyUvSgwi6IEG7xg4IQGwFFKAgeByZBLIENnbAawOldHJfIcnKcBY4LZ03jNTT1QcZuGW+0LRiDv6MG3yahLNkmRMDIne6UpcgEKmRzk5eW/slKmwGlIKK9UvjcjVMDZb365XhGxY/eB6IUGqifjg1TIEU3tBAP32wsMHfHle5iRbg2Q3onTPTAk24Br5QK8ugLz/C55d+RkK+oT6IZNRo/S9qzmZc/7/HkdM2S70FALC/fC5yejgHT0jtFIV6UGwdDzQvThCje2WUUhW6AasFvgvhaOPq0+QeXdONQgA8ohdpkFDX0tZVYlihkp6kUOjJcQw3hbMyE86z2Yn4BAaSOk9lCKjsZJX2oCGpbB4JFU51plRYUMK1Vt8/cc/cbv0zOZF7bq6PVnb75pz7QvDEaH7JlPtmV13pFhNWMMHNpfUJGc9nEkkTDouEbmZKevDHwzcJjaPdMWZiUoz2LCdKHkytT8pPub69XzPMTplyjXqRmWSaN+xiBNMZ1lAKqIYT5IzPswt2D+b369eb/jWM+/RwhYi8GpcdrD6nx1AqXapMBM3Lm+oRYSO97QjMnqGEiBTSCD8HGMBgZb7uhW2HqQdiUmM9i0r5lgqVUemWza4ccFnkZoUG7o3PqRhB9g3QF2JtszRWxdoqtpF8gqJpDuFdpxicX2mPYkkYMYxiEhYgINPTsn7dFnmO5mTmlkez0duOLM6fuSPUVAni2qZIo2jIR/TowqJKAXOoBG247QBKa8J6nbNvfmtIeh59EFYeIf6C4Vu5JMKp0tVevn+cUQLjCOxCrSFtjkVdk828f9elPcBjmlwMGcpt+0+e+Y2jP84fMdsNOdyH1iYYU2qY9ACzJFDXlfZT8BtjmFqeDDIhntX8YNhJuZsCsI19sno4B5gFhhCcJZcCqya4oskr3DYB52PEO6o+zYTMYGWSBKqmDHv+caaB09t9Yz0eGnJkvAdD7O2z7YFieB6yG74cZBPVvbZkh6Djaz2IB8XbwFHD3sre2aPjxBfRcLdrCNGHSAYSGd+YRkD2Z+slePT09wKIRoP1xXfPnVB8AD9+0VL7dnjO0F7x5X1MphFDDasSxs7aCvaNtO8NwHxmAL933bse0bWgvACuqyYljDdnvh/VY7cMcBTmZn5Thtisu3T1bzKe84YhMSyBSN8qnlgA2GOcE5/ek4zk1ehxklBpO5Ou/dwXLM743zIUgmxXR66W0GkFpTen/a7jQ2ubeYGi/pdQYCPijon8dmTqm2jFMx/2zFp57SML5P68Dt1rAuhbErxIRKBz/yrEojMUwxQZl3RyKbMxYtyUyLUNkomTK59ske1WfL+CmP3vRxki05/TnvE/S8SHZVQMxGiPWpxUq2r3Yx453cc/MKLwsLemZYlhXLsmJdL1gqh27Upc4YrfUp6gID4+S+a8jEydBORqnORA95Fnd4FAQciy/wumApj6jlMtusRh8w6+ga4uQOttOro4MsGsUbKm6u60I703ZJKthJdLtP/5es/MOGz+N8+pKtybObDKeRPkBamYVdM2RxKm52ddUgWdj5TH36Nmh70i/zfjK+dOvIyeTcHzHukgEayTpKT3S6oxkbBBmGIwasOzyOzw1hCvNOZC4JOzoDjsAUAxIDF7kkGWPy1pjNoWL4Q8BUoOtMUWw/c9KMn6IzXnLIzGRspr1gbM0oYOhnMi5pmQdRt4RgYevY9g2fP3/Cx4+/4H57Rds3FWQamoaImdHujmj0a24stAWwQ2L0zjsWbcw1mnl3xsV5B8FBX2xZ9788SP9fv379VDtjwJaTyKZRUKW7WEFVNTAcGBhooymwG9hbx33bcd1ldhyqwFSMQRYO7VcAjQyQYtSa6F1Cs72jrBXLsiJXYLu9sFUnVEmIFT6IVJrAGyKHA1IcBkU7codF6ZDxbk3ONo7gZAZwTiPolaOMpdxztBCKzRE9wAoNWWBmBAZYWTmSylS0N9X1W99Fm2xEYgFqQ2SiODrue5uUZ4poOuqyYL1cUO73g8HRB+ooAupMFW0GiBEFz6+fgVvDcnGslwUEs5kstM5Rt6VWAgQgAGIl+z353xFjGgkGawxoeEBJ8at1RTZ0sM+3Y+yNxioZIqgMEIdj3wdGB9aF/dK1rjL4BExcDLcU77MRqFpjVMNZ6O7M/DNd7r1pGpicJSmmjnHcKCRVs+nilZIT4KQVYwUwhhzZ+rlIt6y1TaOGOb2weMEuI9j1LjXZByBrY/TB8x/Aw+UBMODeGnJ88Hq54ikc5jvK1rBvwOjA1jS9L3jfqN1Bt/jy/Anb/QW/+923cDfUSqBl25so1ZV3Iic9mkmk2eZaZRB1zoH7OJKaaZ/TJsjJjsZasi/JcMMRWehFyQbh3emjA4PPyyZZzvuItqNt+wFc39sEWGq9YLlUVOekPzLPOmAFbTfs90XPVNH3zl/EMvVBg8w2RfyrO65rZR+6GBRRHOtllbNeZwCBDFxC+hkh9kdNyUIcwLuxUtsTrFDY6IW95IdGAWZUO8CAb8yJd7ojp4rsbKsd5zPOPawOObQDGICxHWYatY0TbOaYWTExlwIMK8SCIbDUj+Ssj1MaOu+XK4g4HRQ9Facfhu7jOMBXE3gGSFMjnzQ4QVHna3Gy2orzvrXRxQRtbNPUuia4BeSIYEzwKSJQ1LJqxmllTclendVPrVQcbURHPSphhOPPDJTGm3/PzwE9WxG70iPb5PhQS9H5GXz23vp08H0G+sdamgmkz4BxRuxsd+99R4JQvGa8C1PjB3jD3IBSzWRBkMUWb4AMCmMLkEHq3jAwQQGy8BToGEqcUlg0bUYL2c+FGhF9jFmNjyBzoRQVRozB8T2nF2q9bVZQj+mk/DP9RO8H8ATklCOe11xT3ltCWy0ELZ5YnnvfsXVNDKNAzMxg6XeBfc/1IaOjlAoEbdOQplDovcfMpPIpMnHNZxto9xvCNGU2HMMLhpumtlFPqCrxgc54VxtwAgWYoa9Gh89AWv8WhHHTNmhRxQbKseWcApW2mx/TZsFsHjXY9AMWqWvD+G5PdmRUrnMEADHfdOaog8fEoA9NDlLY7jVb68Usk/ZkU3+PI19HcaCB9sB5JvPzlFqmeO/U3Am8iQmQPwMmCyVZyMGtX4wAR2o6YSbINv/XtJ5WqSNV7ABMIdna4scu9UEGaTcya5qYCMUqEAOv2zaZtO6V7Ym5Zyq6luoz7o/IglsWhhRTmkuvKTVJssVGwFOwJX1uakhzS2s8ksVpCWDy3vcOsTQD7z884nd/9T28Bp7vn/H59gm23bF+/ciYrTrZ6HvHbevYt4G2c6DN/bahxUDzwCiG3gwvLzd8fnlB64D7iutlAfyO2+ufMDBQloIGYEOfdqsl0xbHF/MT2p2pSRmgrivmH5EyL+ONKDcB6AYB+wEO4gggRcsPm6RfSiVKgsN+gOKphsjts0kZZzpygJIIqFXUZDvlrwfvplAUZNRAttbcbZgZRhsTJKbO44n1JmZNVVEt37f3DamHtI+O19sNtTi++OKD4lMxlvrAaCyCFxeTDWAMXmz63qNV52DP5DMUk7asfH8W7hoOJjSLmMZpdKEEW210WWjJ/xuRgKPA8SmFMIARGc4e8enRh8s1Rmr3crqs+wrzFWYLDB2XywMeHi54enrE5UL9qeWyol5X3O8b9v0O2IokMUQf2FqDF2gCN8HcIZRweHZJDHhVbDIqEBWlPqEuD7gu71HLitcgo6n3joE2CwIEw6WtqMnpTexGM8NSC5Za0FrDvlNTzovjcr2y4Jp6QXAspU4WzlQdAHP0I6a3KXVC8JuAQuy6g25YloKlLmidU6pDU0CXUmcBapqZQZ3T7JxQuCXmHP1yxm8WodxAU9BLYfeFiBacVmjMR7OKrAJe+vlsPxyDTP3iBUvqBM4iQpnrx8+YRXVgSgQgGf0DHmQD9c5CX5G/zU6Yoz2X60E9qQ4zsqP4unw2DpliMW+YhGu8zDiBQF0IIGKBAmbqyAG2nXGVF006HMC2bXh+ecYvP/+In378M14+f0SMgQ8PD9gb8PL6CpSAF0frFLcn6Qe4b1ynzVjo7YVsttiTQemoWveMfROkZhYe6qY4Gcp/5OvXazzVA1kzJX9c/AIMUdB01LKn0oZNpO7x4QlLXQlEmKM1VsWGpdkyBaU2x8NGSSaLg1PtFhqfpoACMSmkRIkNVQK3oQNp8+IrwQbfY8hLGFgVcjmutosuWjKQ42E6dI900EBDy7+moeQvZoIUXTsB8gOkCaZujhnIRFD7jQLUYoG1LtpUMi5KLaTZdzKRYNk64fCyIIL6KItfUZYVNi5o3jF2CtH1vsMwsF5U1RXNOmLg8/NnLHvF+y/eyb+SdfP4uMDDsW9NztZJtXQjYwnHY7g7oqufdca8qp6AqL0B1KcyOh3IOGQw5e64XC4y52TeHER4COxJ2i73YIyB3rq0r5zU1MFJEAwyDgps6wE7PLQAMSjgjom+MwiJWfk7dB/y72idZ/CpSITTQw4WxESKnQCqCfQBiDa7s20ywgGvczR2j1UBuk9j2K2iXBbYfkP0hmEd3QJjkve4c44Q68bQ2g2IQQouBi6XBb0H2rbBnQBVjgEfoyEGR9IjDL2TIefJegnRUg0o5ajl8+znn8ZExaMKAMiJPCMrYlojJGOk62wMVUQYIEF2preO0Yd0nApqqQSxt4aqtjp0sczk8KnNVHC9Pp6o9PyeIn2xpfK5LnXB6B1t27BYQVWQBnMsor6vxip6XdRuNMgcGlmzG5ziyVDmOK9DdCBq4cke5q22rCoGO38j64B2WliCLlo4YHREC4xkCYyMqaQLN5QwZBArhiHt4MCcWoXU5eILzHYNgWKzTUvsqqLWCbe3oMK0sbKpJiEyJsHAbC9S4OfuYoedbYcJ2OX949XSuoDMvbRtPoNbMS1E9ffqpPOn349g8mbHPrTWAHex/iC7xIeYiXrm6wCmnpzQh2RqZtqRAwYw8vVMxYDjuapa2aIwybYxNAzBsRSfBRqOX2d1jEytgdaHAnBW6j0cpnbipJ5bnhUwY54TIRU8klofausxBS5iHUXwvlsCUo4iMAlJ706gbDQB2ny9bPOa7MQ8ryPIZjPRygMYO2ZSNpnFWrJlXWD2AHMxeArfb7Fka8j4Igs8Yi4Bk+kU6XOh1rmQPQWmELTPxwqgJCBwCIj3AQmLZjWW2ZCzkoVijiiMKybLNxRTcLNxcKr51bV2tK8hv0UWFu8hi13VAmtxrMVxqQWrAeu8/1StzHsWwQAeMWDREclxMgJdpWRLwaGjlYDV/HMmYNGQrcqGDJ61NyNt9LHeiRiZG9m6JX1VijML6lJhL1s9sogDw6GTc6atQJnnEEPJ8/P4ZC0YGDwVne0EQS3fFAPROT2vd8ZGb3VMkpnL9zf4rMoDBC8yVggYvObr2lzfbPk5YhH5f4ghnAzXgdk2nVHtAG39xRwFLD7NoZt6wVr4M8WdCUdvcx/3fQMasAbbmZdF4vlmFDJ2w9525HRPqCMgBgtANrIgy/JmbyxcisjORF3nM1mNIU2SnDzredEDePn4jD/8v/+An/qgYPfHGx6KYfErVi9YjQNEvAZs3OF9h/eBUQ2XpytaDJS+k+G3LnA4alnwum24t4Y//PBnvNxuqLYijHFHF6t4yB6apYbmYXMB2rIhO+WeSXOdSemM4/J5smgKxSbj1NhlkO3Ivwm9h85AikhDyRgOVlSIVT+ZofINWS42A2xOB+UZHTqLGFn4MFhxde8SymqWtuBgqReAgw1U9MbIXKocryObkn47H8m9MF96uKIKuBiIozU0HFE15axrQAGA1Kac98FLpsw8/7UghsOaTZuRTNRjavEpDogjnob2whR8p21Na+Eu/V4QpKAEGOOjgdP0vsFcK5DwKTS0hYAYY6DC+LoFbq8bIhpeXzesa8Xl8oBSK/bWYAsFrukwnV0nA9jF6GOrtUBsFaS68lKT26OsRwf2bUoUlEUFpUjGv3S+ygKmOzZP3nmwSMZAmV/MFnzjoJplXU7fb6grhwKFiivRG/Op0zlhsWlMWQfzKu6vzdjLQkW1ya/1me9OX5Ts4X3P5BBp9GuhVEOoNfNgYxtKrQQ3JhjMs54+sAps8uITpCpWYNWmn8uuiTNrM5lI2YKXrOveu7oRMpI5x6WZ+/u0GqYYZykVVZJCcwKj3pOxdZmyMCl1kW1+7JxweC0zvtUxF1ClOJ8ObrIM61Ip6h9ZXOWblsKJW9vW8Pr6iufPn7Dfb4i2wa2rmLfD1PbHTqYOtwVuC7sGRsD3DofhUlcUr1isopmh+UBxDsLKO8XnBuNT3T2CeT4Lj7/m61cDT1ZUyRi6ICDwUaxMitoQMDNpwRmeBnC9PuByeUBrfV52gFTa4pATlTZOxqlFOkES6yaN2jQxSUGVDFp0jl5NrZw0CFm9pTC2TWMMBMJF/x4xgSZOP4NYFDJqEUB0xs0JPBlEYwafNYJBb4hoH0S9k60bCrbYAwwFCUwaEDuiH6j+WuqsalXntI3k6LgEzqvG0LtX9EZgrVqlw1g6inVs1tDHjtHvKDWwLAG0DSPupFyH4eXlBbVVPL1/BGlc1HJZ1xXbbUfbOsw63IC1iL1lyXpTMjsTxjEv4VAQOk7V03n5T4Eqw3DTs6gqcwoUwzIZKhONn5VsaYqUQW2YpVQMZ6V0GjYF8SOBR4GatS46mvye3juSuZUJdpaS4hzgZLKaFufEzjAlgvyYRxKYI+lDAvsdbAmjCC0doKsC38eigJ8OZR8NVip8WYDCoGDYzqpafr7IJGWwalpcVNyB+/0V7sDj4yoT2mYA5tI/6b1xn8AzQUSLzoegK6bxzD5tXjIBBugz4DXTdAoctNuOxmuBg5FGJ9dofCPYSxyakhdB3ZnOc80WCqB6YZVETBeHzfbROXGxM6i7LA9oo2PbO++u2gocrNRk8jBaw70NVGM4U5yBvQlMqgooSi1IkdqhpCnp+8ynDN2OMfYHEyf5MJggjTsTFgZcY1ae5n6CQe+SlZwQW6hneKuKIAw5GHaAtpDBgCpmkaEuJrCSrChkopeBGmLuDYEnHt4MFB0DbQzk/MdkUeVZJ7DBRMiQYM0R7LoAEw8/2gF0psohIqb1U+XLkpkRsqOn86P3L7VIiwszAc520bRFh+6QH0njKcCZyXF+BrMJyPDjHAFg/tgEVN7Yq0ziREXPhD4y8KXdqmoFHJ7YlZIN10ANkNGYX4GY06fOz5Z3MD/4XIeZ3YcAQTpUuiCtX6dtrYVVrkmlzrYGgZIBainlMxj4cvWUOCTolOuSujI5laYKqEggAACWuqAWRx93RLTZ6Vz9GE4xcaDI6WSYGgtktOgcIxBR+Gumf3yOXAkkqGEn4MkqwuT7/6KYMn9JsNUqJ8Ju49DpCt2fATu1mKaWS0xwM+MGt9N9E/C0uM9fqxkWwxGwRtp3HMWzkD1jFkeAQLyX9MP5/JzTlCc3z4kQj1kwOAokAARAnPY28BYslq+GgdOUxtGmN0LtBcWRGjRZVEzuJRS4Go6zkBudN/LcIsv4y8QSzs8yTh/PKHzcqTUX7WSXxRA9CfbAQDCxG4GmWSgbg5p92qcIzDj2L0NpA04JNCYQfST6soHGz1d15z0oVQELFj4FjiUDOteEdpsx7763mYChECgoxaefd2cFm4vq+sUE+9x2Kq+GaGMChGZMIMzeDt6IkeCeVkBFJyuG18+v+PP+A8bnZ2Db8f3TFZenKyoWVBSUGFiKYa2OdusY3tJdYVlWMuJuA1ErbL0AKKzc+x123/D6suH19Y5iywHy6Can7T+Kv8dtxykmZJuPi8nrOL5JfCEDJ2NO2YY8A5ivmIA1/Rre2HiYTWDA3eeQlFMWyjOqQNeSCTp0wWBiUbliUPrv1EerOhNVrA8fYNwBgswmCYhsiWNhu80CCYE57ni23B+LcNjpItB0WYp0bgXRuE2QZfqNfiJ+RUzyevot3hOfgJmpHf9gYOp/5ccP4DitEH9n887ZXEqtJgYCi2JlqB2RChenot20KybR74Fd03PXki28tFMKdTBGUIy571OUeV0ucC/YGzsEuvbMiqHvlDNpfcxPnZMhe9+RXT6IOGROoCLkvk+/ZsaYgEWdMc9TzbFjBslBxCyu512cP+/O+H30GVfWpQigom2qpQBGXbB9b+gjUMs688czCDgGZU6Kl9lFZFqozOft9L+Qb3LlTqOziNxbn4XttNezq8J8FgSH7pnXMuOECE31VXEgBwzlhLutb5SJWJZTnDem9MPBrLLZ4HDk7VlYOcWuYA41r/cs6vDny+lee1lgxdWhooKu4pGimDHnde2N568snFQebuyeKD6naHMJs6U/MJMBTxazNKhqAXbL8jSfxVPna8ftdsPL8zPadsfoO4En76AeNZlyY+8Ye0iT2zjpvHdYayhW8LgWFK8oKNjdsJchqREeuEkYgMowCbxZssqRdMR/9OvXA0/atGJK4DQ57kgGJHDpRJZZzRVSneN745j+lWFAaJHLUjjae+vAKgCqpQOhQGCFk4bYj7G4yyJAwkhN3TGQlG2PSrHj2HkAShUDS2NJw9TmN8hQcsOiEfNuMnVDVF2LWcUfSU2XirIVthoWvxCUGUqOu/pDTUCWO8qiMcDFNAJ+yHACKaxabFEFJTA2tlR1OZarcxRqjhEe7UZmhmc72IB3jit9WFY0M7y83Pk+Av1sOB6u72Fe8fzyGW0P/PTTZ1yuF3z51ZdMHjSFbgRIU3TnQdW+ZYGUxRECFBas3vEQBsw6gCZR5Y5jpHkaFD02AM2cOWjEcjhFycEu4fBS2J5ZlwV1p6BiFxCROhIADZXXKgCjE2V2wxADq+0MiGbf7tQaSpFJUDsIyUg4WmcQDPR4H2jt2k4dBLcuxwts7YZ7G1D5ja2LAlyQINcwtdIbq2BOI1XKAnjHGBtaD9FoG1rrpLeOkHAuaAB6A3rDvm0ykKz6/fLTD9juD/jiiweYqc0PZCGVpYr2OWZyzU1JwNjQw5REcK0oH3EAD6wwaIKjZWLNfWAvcwoip9NhxHu7b9j2nfe7VJS6opQqAI7vv64VS5Uwd2+4b5/RR7B33ShKv+0NvQ2OaIUfY+i9YnRSRm3QXl1GxQKH34YqzBCbpsKHobSuYC/9/kDfXhHdAWsSMudkyYGB0MSdDAJIX0pHlgGs3PQEBWLGdedgNgN9vh4BqWhjOvm5K0ouLDSkQBRfVxSY+lKc4Ru8V+qfb6YERtFcThk7g7TZstBlS8apP73rdi7LMvdkJsXgf5vo0tmaek4kz9WQpFUj71kcgCLFvysZkJkYZoDYdoEP2frj0z+lH0p7sCwLijvWWlEKAcQJOHa8qdDkPYBA82zVmonHySb95VdqSkWExHAPfRja/mQLZvVZwwtAoejLUpmwZ3tOnMFrnhvaDEfq4SWrhKK3R+UsrWuCA76uBAI6GRksjNqkfE/hbD0flOgjYvocrg2TotYGrAMoYvF4gvVH8F/XbItkItSkLTDbmsYAB3NM2p7akA1euNls1TDEYLV2DGAXmDXmPhAUcmNLraUPhBLITFIF1vFWGbpsbgyyszDYcrQsC7WwnG3Jow8UJwD67vERMYCXccO+c9xzGMd9VyWy3D/dPwNQjVszBQIh+xAM+IjqcB1HmWLjCbJl28hkbbmJkQSYzWYq7tWcHpTtzSoiIGZQfabyT92NmfbGpNLrtJ8POG2yMQk4tBmZrbtTl5DnkqwytsQERt+k0UEtmlIqKqsIIAPWCAZECAz1WdgiKCSgRABzUfW1tW22QdDfAXvb0LeOsqw830XQvB6zj3HY4cF1yNbAnDgXahtP6z3ZW6c1OZJk/peAAKRxJ+2fRdOrsjU5AhVMTq6XFWGO2512cu9ttsdWX3GpF3z15Ve4Xq749OkTWtsxxsZWdBdDzZlY76PDFxZSNhW27vcblrrg8fEJWZ7Ybzf01vDh8RFAYNuf1f7fZ8v34kVdtD7tGrVNqFPXesdogX0MYHf4WHDfHb98bvjX/+Z/QLWBFRs+PF3x1RfvkALAz5+f0cfAh/dfsEBYHd0pAP7y8oyfPr/gDz/+jM8vr3h+fiW731Umax3DDz2ZI9lhDBy6Gwn4D4PsOPem59k3sWfiYM/gfIx1C3Jnh+y+8ip9yb8ZMArPRjegRUMbG0rIvwiYKbpPForvsk8sNWos5kCR7gPh7O5oAQwM9LHBO44WIOcQgzdTcxW3khHiyAm3pvtuyj+OApOxzWcMPO83PF4v+N33389i86dPn/Hzjz/BlwVFLVkGTVdGMnsFuE5D5bKFHR1iKIeY1SocZQu5DbYUVdhcc0VM8785tZVxpdgURkB8jwZvmPkfbT+YI6LwzOlARzS24WaeKUYuCeODPaQ657XQtrx79wGXyxXPz6+oBXj3uBJgakH2hzvWqBg9gL3NvIEaoQsbV61jv9E+UZwd8D0wwjVkCjAP1AuwXoA2XjF6A5xg0KWQ7TcscL8PtYsGohytdhlZ8vNXFLCDCAC2bYdZRxj9/KLhX8u6AtZgTYCJHdOfoXin5HATM7HG4igUnvKrbdvxetvfYq3KAWp1vL88oUkSwVWQHqNjbB1N3TZd09rDHF3dUUODA9q2KyZmcO1ihFUDUqMxC2ZNLKHexwHQgd/nkYWpI84dAnETvJlVr5656xBYfwIUc7KhNJbZ8s67RTeVWolkZNZaWYiJIB4CoI2GHkGGYnS1pAsQK2p5ZrVPrduB1nb63V6w7XeMGLisC2oxXC6G+2vHtj3jl5//jH/4w3/Azz/9hOdPz2BhumDfGKP3Rv+aSB+L8Nq83lXDGyTejA6Uyi4P473hGqvTw4yAqYCybH88y0/8Y1+/vtVOi5xIYJqxacVjApTIkEg8fCR7J5OHTHCmAzcimb3t6J0q+K6KJ1sIoB5gBSMy/gYl0m7SQ0kuxwzXgHBEtntZBtoK6EyVVOkGAD6TBES2q6i3FDKGOHAiiMVBFk0lPdhp3FrfpaHAy2U1q2k2q9Ym1sPke8+q3FFrCyHIoQWuSaFVgjJGg1udVcYxGF47BpZSmGkwPiTFGw6govgKrysMN4zRcHvdxXB5W2k+2D0hhophrqBBVbEuJyDqKHAcBkhrJBqTJstAABNpT6OVSxCR0MeRSQ0ZEFPC6UKP3SWWdtJ4gUARm4kVDZIVQwxXQi2nc0pYQ0aJhTA/jOpIg4IZ6Mv1IWcjzVGnmUg4pxC1Th0dc6PwpsTZAXuzzmTPmSqmPLsM4isrGpoYQrwiFOTnTuh5MTBU/ailwmG4327wYkhB06O6EadLnUmTkuvZr2wzAUhy3rw8yX0/vdx0hLqc+e2ptQMkc8rURqiw45Q4pn5ShJgwbugy2CN23TcCnWM0tLZj3zuyZ7+3M5BgIgfQQRUY2+26zlIBPIIU3wB8UHC3ZEuMATEahqVoflVLbqRpUR4pqMy4EJMhEDO2PZYNb/8Oke00p4TGIK2J4yfzLkwblhTh/0TrGsGLvLdQICdgxAgquRUYUjMo7XMgkp0HqAJ76C8JjlHgC4zhtJHZPgTRi0X5z30/2Atvv6bg4unPBJIHlppMQb13Y7tBl1Amnz0lHo+fnzpLp3OXI3UT+DQApiEIh+ijpYPTmY//uGX9FGVlAu9qy5sJqtlxDnJHLdlKuddHi1Ixg9VM3GXziZjwdf0EDUybGvNzyEnmcTs+phPI9lJgpTCgSAemgGrqAukc5f2fflQ2gwldnrWDGZekjbdLdADMrNKTZSDCO/+UbDiMaVcZDx0ipXwPajaJRDynK2bhx7T2obvPSWEpJjzmYpjAmEzC09ckiMUVyXb7g+EQcpxmg2CJsdAyLGDRkaBnJBCf1F7llXk9E7o4boniGsRM3lz2tWSccbK3Fscpn5/vdByPPUmw9/T9eVT4w6dTcv5ZMmzexHGmVZn/pR+lPlL65QSWj7NLjbbjtYeC9FAFziTu7y4Q4BwT5t6c4qtsXYlBv5SaRImiztd1six777Aa8w4AgA02i5xbVzLWSAadct1TUVTmYC6XvmHe75PNgM7NNFc22ZweE+5T9T3ZhY7NpMAmsKB6xWW94LI+4sv3H/B4fcDYNtxBEW7ktug3yZApZQGsYOy72niAS6l4enqn9vDAp/sdfQzqEJq0TOPEtIi8u9KHCgpDI+MRsXmji0E6eLj3PYDW8A/PH1HQsMSG2xePGOi4LAtKcbxsN/TesVyv1J9yR2sd92h4eX3Fp+fP+PjpEz69vGJrZOoSaBiavGpZ4ZoMH63yTPwULR6+NiDLQ5s3gXr9OhFF9Xene3ECG9M+5cU47DAtfDJoWspGJPCENAEmTxDTLsy4z9LSQlO3eY4O9oPeK222zkrJ5EefmwXP467OoFlstozFTbEWZF/3vWGsKy6XK5bKSW4Ygf2+YS11Cu3HfBK97DyIyUrJ6zrmxUrxgWRiTz+rz3K04+J0yXJduTjJHYViGhhj9B7ZgmV4q9UjVp8ApmyANu2jru+xPKf4w+QnlmXBUqnXGmKQEyQZk1GUjHE/DTehuXHGzhbYtH85nCkGgI5j4rOzoccrlBuxAAokU9qEhxx5Qszlno5lPnsWvwAO8WJ8K62iCNmdBFIUE2pDD9DorJ9rM15IGYeq5ybIw+nrpVKKIbtXimLUWiuiN7SO2WWSwETX1Pvc3wEx+tVKFoOgVMZK58KrA7Od+RxLH50U51hOt++014ftn0ZkfjGesXnPs2k915baqydbMeUrTr4lxsQYDh9qOFhNKqoI5h5QgUmOlGvJvKTnILHeYTFUCAxQJmBIlrWj9TteX5/x6dNH3G437DuL5IylGDNlNcvenP1zLCBQFiw2m9iWc80yHqKjF6ngdK9nXPWX8cV/+uvXi4uPHQigLhkldh0Q9Ul6VvU1FpxRFNiOZ/j8+TPu9ztZH+YwI/vIS0GthmWpGI0H2n3FUqsKuUTuDEwOF6OYdigTrhUIGxodCfWQMuE0UWmrhLOXutCcjR0AW7vCnWJstahdiwdp21OAL2DOyW+jCwCJhEXopNkvwffMFgsvoZ7zIwxkNWpHrQVmFD8uhSObMXKarWkMeEVZLhJdz+s15lQmji7tMOwoheLRe+xADCyLWCFRsdSK7faA1gJtB5/FCu6vO4Y1FH+E+8DW7nh97vjTH3/B09MV798/Yl0JYt1vr2i9o1YZ9tyXAMI3dMvWBZPgGWBgRTuwC4w5ph3l8SylHkYugBG7JvINIe88GzlmNsYgWr7T2Q/rsIWihADYVhiBrTVYM/h+E93ZiNSqYgqQEmqDSYy5mFqipzJxHelq5SCDwZeMdIymAEa053IAdroOWCsnq+0S0TNd7OgxW+WKrRRHLwsQLmHuho4NXgseHxZWStHx9MU7jDD88Kefcb/v6BJu5iSpHV6kGRas9oxOAzf2hu11IyNAbYuwgn0DYEOMNQaRZpAGWpxauwJhnISSs24tq0c4DNjIFj3j64VYBRT3dxiqqkYFES8gSYtgaV1XouhG9kMbO0oREFRoZL/+9hHbvePTp4bW72h9x75TiG/L54qqPWwIjKPlw4CoRoHxABAD977DQOCpZKvvSlH7UhlAtE59kYcLBRyv6zK1TZrjzUSKRSNzRuOwg47DMdo09Kqoq30pRj+1EYE2w/KeXPTT+tAGVo88gUrImZO5YcahDRkshka0DiU/2b5lIKiSkxgBUATTNNo7Ar1Ri4Qj6ztyfDJ1JZjsdQX9HVArpIuq3mbLyVJrZnQZd6MabW4COF3MyixYjKAm2731UyArtyZgjDFT7q0CNcsAhBoL9/udyxbJphrzc5WM/hTAulW4NQA5ASZYrYKgdgVU+Vnm8yiJdiMTqQHIgkCChFkRclUYyAQiBd6XglIX3F433G73WXXPPTcrGb+QiWdA6h4MVaHObLJ5GyXETSp9QbYvViWSBKb5fzGOO5wUM9psQgkOg4+CZYJcgSI7MIsiBopEm8YHR2CXeLUb4fk2NoLpPHHIggBcU+2CzNYYZKRZFHiQ9k8fweC1JaBYqxKvOHRJsi3ytIyRjRo9qHPXyXoyCS6znSDQt57oD7UVPe9Pw8vLR8QAbrcbEIZ1KdgtsGWydQIkoHvRYqhdTkExlC9YYC0cGL2YoaoxJgPQmvd9cD/GiMmg4x1QoDczN2j9GPiGzTRRa6HgsPC/JQjYDcukhgUuWIqzUnMj2XaZ6OQp6SksOu+d6R4BiM7qqlFYdanzX5TINMTo2PuG0U2AvgoOlem1CTSvTvp+H2SPVDcsuc7uGM5CQsh2BQylLsroXGw8VsmZxgbnBw+KTm+jYwft2CgcaREJwAHzfmgFtNxK8gQSZMttveg9NV57TFsx1PLkSuI6nj9+RhuBy9OXKJcLLg8LvvziK/yzf/LP8e2XX+PbL79GNGoP/p//9Ee8fn5GbzegOAwrohYmQaXAS8XeE6Rx1PWC7778Br/97jv8L/6n/yVeP33Ey6df8G/+9l/jz59+wVgUn8QGBAV4HT7b9ly6N1kshsDBvFB7oxC/B0HTl+c7ou+I7RmLBx5Xwx/vN/zbj7/g++++wRfv3+Pn24Zt2/B3zzf6zdZx2zb88vKCj/c7Pm872+6qY+8dPfjL3FEuFa0PtP0OeBGgR09S9LFmK1xXgdjINsAIbLvY1mJ642QrDx0wnk8RmGeMNzCQfR0JRvXGuKKnM3MgmgbmVLVEQXIOYiYtRumMKIcf2w06j1kqp98akH1UrMrRPmJwyC/11o+kNkKpgdD5LCRYKvNAccaYYuyh013Kij4MP/30Cz58+IB3j1/g3fU9vni4k2W1A08PDwgDtrbP5DNGR4scAiJ/G2Sg89yA07TKAqfpFVhGVh+M+zROnwbnzzbjSvldsU7DjHYqhnT02Pp8FEVt5iewYxIi8syovZY+M7AsBmpXNry+3hGjM9a7XvD9t9/hck2pFybZHYyBR4M0m6iVu7U7rAyUBqCLFZPMmK68CD6nW5fCDp96qVjWAquMr9tg+9bYBzs61gUPDw+4Xq9sSxuMaRJ8YlteQa0Laq243Z/RGgEhLxVffPEEGIcksXArEKcoF9bnyjtpCGB0gWfsLkr5BjeDi/E0IlCtwOqYnTwp5r3td2AE7n3TyR6SnDkkJh7WK19nNOyt43bfyKhpxyAatn86Hh4ujAu2xjiOASlM3UgdgZR3GAJ9QwO4ondJmWDWVbKltSEyUKZETNgsatAVKnZRAWGyvuY5pU8n2aLienGM1tG2HW2/k6WdQHJ2fOnnhjpo3B297dg7iSIuv5YElaNgadJJ29BHw227YRkFdWm475/xev8JP/78R/yHP/x73G934hOD525dLmijoeEFdTWsy4Lb/RW3tvNeOGDlCnNHu+T0RqKkCd4DwPDsJOHfNQA9Gva+o4rpmZ0xv+br/wfgqc2LTQ9Kp36uaod4nWkgM+Hj3WWiqhoECMmod1xbMjc2E3j9zZlhNbU5pKKfYReFihUIpIEknqjP57BshUmnIWbDCSBV6hMM1BGI+W8GWLIZTowvQIbu9GxhQNLxPF0NwKRzIKRzQpYNKZjIwBRZrc2hwhm40ZlE6l1oepyXMtfHjm+bOgo+CNRByDen7BUwXUxaOW9mhGHbdiy1YFs3XFYKYGc7xaT3a43T+QUyEFZbD6BARcBdpEPEdKD/iROGeQDs7VpkhTXkrBGdDohbiHzlPk5nDjjO5uk9JpiUDKCAgJGjepaFYVavtKaw+cGPCxnKkEwJooAsPQY1q6QBkA80tXnofBPBnz+lfeqDF99RWUVGoFbK/VV3NAO6giuLlN/FbGd5i0QbWhtk85UC8wK3yqAnchHPFabcA7XxIEEm7YdYCQQATkkrYv6snU49mVlJH7F5ZvicZJ9Z0Thih/Rijl+mSvuyFLWuHklWvuSQvkFW0igsORcdQIgKC7Us20y4Wd2w+blhB5MlwjXwQJoReYZtGqhjycTwNDf4UEuE5eumpQJSnPMvhfhmfD+DxzptYSaIpPGnjZuH8fR5xvxQc2xuljlSvCQGAs4zKYM7FHGP04rRlhxJ5/ycf3mBZR8PW87XtHzrfL35c7qFs0qks+qFIHMlYyDMjnt6ep+5Bzhp/eneT6HkfN04ncVB4Or4jPbmP9N/nHrq0v7yWex4DtnAQ29EobI0HfqpopSBBF9sYAJn+ryllElgO96adzFBnTO4luucH/uY1sINTW0S3mnZsNNhZdHATn+TzxmYVTGd4/RLE2CwrO6SEZyfdx4lyyRYPjirz6cPHLn1aUcjbb3iBsUW6WtTSjgZnp507wmyymbj+OzzvUyRwLw7LBwlQ3HkBUPyF872DLkq1A8aSlbjIDeZ/CJinupjPU9n4PyKhgTiM/ZINhZODJu8M5h3/bxfp5U8/d3h+/JDHL7w9LNTn8hOvvi0kfm6acdle/L/ct9YCQaSoZvDO5LnxvjHT2cq7UrQDxqmX5kfwWI+X67h/L+0+YebIXNKYD3FgwVEKYjgWTUlCWr11IJEKDlAMt3kgHJfcdztGbecwLZhmvYr8GnSE0Prp4Q/wGetAjP7TqHoh8sVl+sDvvnyO3z15Vf4/e//Cb589x5fvnuP548f8bLvZPmNNtvrXCzg40IZzDlR+uHxEdfLA77/zff4/rvv8Jvf/AY/OTC2m3RKmLCJm3r6pRjoBCzP/RCQn74ntfvyDAxBJykNUWF85h34dG+wZcPnrWPbycTIgTCv9xt++fyMl9bw2hvWbPsvQGojhasVDUfxyM5O5XQToPNxNuljGppjH0/fjZyYmTeIMIPuxbTdh62aZ/wcewT9udtREDi+LF/xrcHmKaV9Tp+Z501nJZmR5x9Npns+6Iz3bf7km72b9zd/Np/dDClxYOaUK+gsECx1xXW94n6/q6B5tjKnxwrMszLtQp6CSA0zFToBQEyag8R9NgjnPY3TG6bvU3sfQhNVcbBgc831PmHnT5z+GTO2mXuWXSdGLzt6Q0THw1pxuay4Xq9YKoBo0xbMeFEtaJi+RXmdChx8nuNzAen7z2soFq4X2a1CgCag3DA7FE6xlWG2AqeESxb8qa+qvE53pDMRp++aj35AIDidl5nr4DhvuV+zc8TTX9ABOspsXc64qwx23lB3Tp8Zp7tnbxfCkCypvGeh1FLf9yYWiyPeS3wBPLfh1O6bh2OczxHfKW1HmFoIZ1yQZ+X0fcB8r7fsIPkuPxWazo72ZDeKnxiMuQqW8U/M+Dzma9txrU72PePYya7L8zwadcm2G+63F7y+vrCQYAdwdT6blncIHYE+7Qi7r1yfjevic+11t08mN8/PhNHjpKv4K79+NfDU9ld9yDJZJIe4drC/VrhOJrQDnM4TZlivjrJesN83xBjUiLLAYgDGQLvd4QNYfUG/01Eta2U1ufKCQmOYI4B9sCqyFADGaW/mZP7QUe7IXphqK7V8GquVEVUXCUgAhvo1GeAEsl/WNTlEa66znG0u6YTHrJSO0cUWYB9rXQtSZJavnS1C7EntfbDvOUwjs4HhbE9rrSFvL4VjHXeh0GPvqMVxvTwBJmaVsWJ7jPl22AK8++IJrQ9sGk0fI1BiQesFHz/+gjEG1ocVQGC/N/yyf8SnT7/gt99/g8sX7/D4cEVERx93IAxlFD13n/5BESUnDhornvzLk1CbLqerh2BOBZyXlRo6KIdGxMsrz11ZVl4Jp1jg2DvWdWXl3tVDe6d20mVZ57m1BHrUOucuOn3rNJ5eWG2GT/aIWVUrKPeuorANLzUxFNVEEFV3N9TLhWe+y1EZcF0uMK+w2NB6J2pvwFJZJajOelYClWZAvRJciddBUcqtwfqgaKcR3V+MbIJ2f2WwVwpMjLJaV3h1bPeN9ODicCy43zrWy4LHy4PE6hbctl26F6xu1yXbFgBggM30I6NwmiwqDSOMgVp9s7a8F0Xl+RGkJy/Lckoquxw3FQHu+yt6b1iDgoioC2wBxzsp6BydNHa+jmNdOvoItBZYFtKTb9uOMXYspak/nm158MJ21Rho6AgLXFa2IdruiN7R2w4fwf7xTnfmhbZnqRQT9MLzd9835JD6bl1tn0XTSAiYlMoWpxI2AebDUGMacTKpmaykjgPvh9gofSE4p8paa21OFcvx2glaFAeg88tq59FaNhlPA9NexWgYIequDek3xRRCTYbgWitaO5ItgDbOYCK/8X5loOypQwL5ztn+Ct35I9DJtg4bO9mmy4XrVwra6Gi9U6NtDCzFDyA+sp0PrDBKML8uBHqLhjPc7/sEGs9eceaGARzUcmDS9d1gNjAnGhnm788ADAyTFj9tG5gwWesz2SkKcvd9CLjVy3q2XXNcel2pxTRGaNw8A2svjjWFZj1HWzOICPDeDVB7Je9ZJsht7zCxfeYaDPBOwOAT4AUiJ65GEItegNAodSCfpepZxUySDxxBlnNEzBZjS02tynUrZjwPotG7F9z3O4F5F+gdFabpk4YKA5mvDrYycfz4rgCIleI+AfAMuDAZWTCC23tPTQbenWCpD20Enl8aMOhPw8mKpJg/yLIwiULDYJX6Hpv2p5qhKPEskXbSZlCbwP4RRgoUPXHb8vZkeJ570nVfhqQAPA+y5QE+JQ5+tFIcZzomRspfYrRaka6gIIjTFU1+jwq9+j7qcmRwPvQZyrIoIXPlImSHcbCB1mIwGW3ZlmCAWeEgFKXqXQlXV97G+lWorYa/YIbmQN9ZkHNj8gMxNFtny9myVDKBB7U0+Ew+14bKIdRkcS42wg1N8VWxRfWOoE2XnbMAhmvNrYrhX8i0MkPrZAivGfRr7dptTyl7fP3t1/jqw3vsjYyo5f1X+Pq73+J/97//P2JdVxQDnj9/xvPnz/jTv/sJf/qHP+DT7RkbGj588Z6s/FrmUIK9G1o3vH//BZ7evcd/9S//1/jyy6/w17//J3i8rvjwcEHsd/z4h7+Do6Nax1Kp/dhbR7eGQGeFPAKdHT/IScBsM9L0QtnBioECY9ErgIf3nA7cd4GPPjh5sxb86fOGf/i0oW3cw5vkMHwE9h14CWAvBaM49mqwMmCXihIDnJTdcWuvMBRqfBUVFWSnx2xpjzdx5LxVBqzLwoQ422UkON3HOfGST1WRmtLsrpYuuWsB6GvJwrru82Bi7muZeXLX3R/l+DwTQJX/c6OFW+xI42izC1J7i0yJgaYkdLS8qNKJdX4/LFBtUVjakQzo+bqyjZkcMt5zXB5WOAKvrxvePXYABU8PT8CXgT//+c+43W/Y7puMBx+OaVM61YQbD404D76nT2a8ZA6WBeZktIXu3RDDi88tO6ZPjdxPA4AxQYO6sDulN2roxp5FULb2uVUBJQanKju88jPdxx2ZyZVScVkr1sWwLBQXdwx8++23+O67r/DFh3cYfcPryw3VC1ar2FpDG00sX+WGBRRxNuaRXowC5J1MYsdChuW+owV9kQ9QXNoWmF9wvXwArGDbB3PH3jCCgDP3c8z3GiBI2NqA+wqzlfvpBaU+ALZyQEUEPn78NP3Guq5Y1xWtNbVwKY4Z/G+t1GV06aGaOWzh/a9p5+Xne2dMUtzR2o7oHZfrCi8Fl6cLtm3Dzz/9zLNSizoX0pcF7vfXCaBUL3j/eNVlIvGB8W4nK/lOv8iuAAOczLMAZy1ZEHBi/kJ2UdvHzEc983zpJhC6COw5ZGG28vmUOeF075A2NRjLyIHneV+XC8yA1jeMPnBvbbbPXxbmpGXlgISPzy9kidVCMHwIRHfaAfgxrTSL0ixaUJsJxk6WHEx2vTyyK6V1vL684ocffsDPP/+Izx9/QgnHujqWygLAL88/IyQX0NrA3oPMvhjo+waE4XJ5YiTR29Sx8vVCnapxWBCcwPsxAj6AGpatWpMd/Gu+fr3Gk2VFUME6iqJsO22IEEIkOjlAhg5BFfeCtvHfkspfUgisJ2NBEzs805lTlSoDOv05TBRacyZHSPs49CuDOiZbOQlnjpCcx6irFz8TI1V7cT5sB75i52UxTE0bWKMBsgEvNMbsEgjkaE/6zazAcCRrVtyEMaHIufVomGwUzyBx6OCSXt5FqYNzPcwDo+9iTZEFVlZHNMAHRbV3RtRkty9+oOdmqHPaQ8O2bXh5ecXDlag8A9WY1a+5BvN/CUgCDMr4Fbn8FGAF3lSL5mvIiea60GirYp4/YxRfY8zztqLOYCDZUTIcurwITNE5n1XKtHWZOHJ9I1jDO1gCPC9DDpCfO8fNC1wxApwI9YQrWB8uyXRjyx2nngUsuoD/kDZUB8WiQTq9k2oaJsNompiA4HvMBEOUbomWW6gq3wj4uUm4XI6qViZ3XdM1AAJZWcXOiZCwoQAyT3wyobgemDYgYcXcTP1OVZnem84Zq/up4yH4AsCgzhLANsHqKFVxfQkF8C6DxzaKpXes65CIeCDA8aywTe2AAlC8k7Yq4UtOjSTw1XYmLq7n92XBUgrWsszkLA2tT5aYWinHmBVnHoEjwJuC2SMZXoeleBsSn4yHztO8OwJkDA50VT/NAS9AzZYbprZ5fhnoHQzKNFQhZz0mQJRva7PNJh1q3rXkNrGKy/G+wwbmpDY7KmOeiW8YbASTGJOYtuxDik6/0XNThWS2sKVtC07yCv2+C0jJveDK9XkeDr0y2u1JBNBZy+qPaSw4TjZrjONZpzZUgmIAUsAV9h/v4Xkd8/ljtlxB9ub4jLO9r7Cdis7c5plhgYHCod04GCLfxErhlBkxWxNYsfPncJsszAFobfXZB2bFjHF87sOpwpdPl9Ut+aiZcCDXlMEMrWyC9K6zyMC0tYbJND0x/s73I21BTxutNSTizaDXgxVcE0M5wLOd38+zz5/LFkQuwpi21VRdJWN0SBMQ6EGWS1OPZ/L8UgfkSNdiAjmTy6D2u9BZtcixGJjF2dyfDH4PFnbGRckFBiv0Lhszf1ZrnkDg6YxnpT50p2cCMe9IJre6O2c/nec7wVKnhtb5HhkwQdaIrL7refK85//qeYeok7RFKiapEp5Hzz255DZ9wHxN83lvIs+tgWdBWndpE6YmV5pOnNZYf+mifCdjLmkWeT0NCdIVeLXZEnEwR/7i+3DsZ7LPU8R5vq4RWOWgDgDuqFZxeXiHh6Xi/fWC3337Db7+4gs0AW0vUfCwrEowBhoC99ZwHw2f7q/45fUZYzF4rLCFcUveFQM0Qcrw7uk9vvr6W/z+d3+F9+8/4PrwiGLAvu3Y7xv2bUNgCLiW77NAmIZc6OFaVq5HxnA6T2orph3hCtVJU9D9XWRHzBHu6MbG4hGGUMF4F5iIsdN71RWmmGgYMHvOtZ60N5B0xVGRz51/y7dOW8XPnOwCAyZwOM9bHGcBmKVRRjaySYYQA4p2gVYvZoFBUDhZ6dLLowZdFn11ppAM7GRL8tMWJXEZP6WNdguxZdNWxLShps+efs5zPfSZ8w7pRhzPaMy/5gAZPbl5gQV1bHsfuN9ZIB0A74R7qoiQWWQCv3X5U78v4acjlsh7lKyfvOfM3xK4G/IBafMyY4D+nJ92atpp99k2dup4yWFSp5t7xFN5Z0fuMLTNE4RkIY3sfjJB+vQJAGO+3rjn7sCm4SVyqJq4RjmPjL+SgT8Bm6mxo3jYC0YUjHCMITbY4GdNcezBfnPFmUmE4KMtww+iwghYZ3ePOziJNQK+FyTPy4zdMZ6dNgJrJ//7FKCSBTQmY/DQzGQ8R82gZLeNN36N3R0C4Ka0yRFbARlfc+AEW++X+Ro2f3cwvnOfZ0ttnhFLO8HvoD4U2xwnh3j+cNCvCVfwwpy2lILsghrqAGLhC0igZWYter8Zy4IxphZmDgPJ2NO66/0UW0QCYgEm7DGfI1t0o2U3B/0ih87we2pd5s/2Huh7x+11w/PzC+73O3pvLP6b8Sxbh3lDMlZzj3CEl8x3UloXPGuFIztPsVnM6m36gdDQAcqmdH3LkQ3+Y1+/GnhyT7RdBgjlGLlJ0zrHceoY0Cgp+FrrBdUrbq8vADpKAaobVq8YvaO1Tq2iUnGpK9FBVZ1nV9WAeguHNsyxXh7gHmj7DcAAxoCPAUSf1FcPotFtbzArWOp65DGDDKQ+ApCehgFKwg8KMS+YzQ2ZBt4MaykY1tBxB0qwJ1kBohdu137XBC/ntAj3SiS+B3Y5GBQegvVS0VpD2zYeUCskSIdhHw0YwGW5IKxgb1XeVQanAH3f0Aapo+6Oh4crYg9479i3F7zcX7Auj3Bf8PS0YoyB295QiuNyuaKLkfX58zNeX57xV7//DdZlQbTCvtrWdOgySGPCABSkaF3xi87LmLpNCEt8Rs4yHSPPk+dUMwU0YwTcK0YM7GMnyLJWjG2ImcIXSKZS6zsDQFQ504a+szKyLAtKKbhenlDAcbUADS8nElb2EGNgaPofKZWOWsm0CYCaPOhY1YI4ZIR6Tji0gt4aemsAVtRaUXwh/NkJfKB32BhAYb/+6APVL3AriMqE4OHhgj527J00eVbseMdq4QSmWrle1+sV6B1j37HvO1rbsaysMG33OyKoLVYqg9y97djbjuvjA+qyYJd6+LJU7svYZ7UoxV0TcHJbZBArdzwSAFISF4F9sOK97RurIFcX7/2gIcM6zAeWi2F0QymBugbqlaxFLzTGJZNQOJaywq3hXXds28D93tGD47RtewGioZu03ip4ngpgvXASVyez4X7b4QY8PFBL7mG9YK0Va12w7xv1oYzVkXpZYaUApZLNOLro0XyPMGCoN31vOzwcPugwvCS74bCK/+mvc0BIxo7DYbucUk12AKnUgS6duoBZF6aixN4EZvZCDRWYtJ3smKxZDqDCFZWfQ/j8vMWoU5GgeC0Ukuw7gZIUQmYQ2TkNxAxWyzwLfdedrHVqfnEQQHBSkTtKXchaaI0sAnfsrWPb20xMQxSMow2WbdLJAuEYYOgu8p7s+0atQOnVnF0ix+EeLZXk38WswHq+r74/gisvUzsT+hgsXBwsHlXN/cT0VJtMrSv9UOPzbztZu9veUGrFuq4zKNwbCwC5Z1UtSzE6DoK2bKgAgTbG1FfKuxMBiemf/i/4ucmSAWZ8FodmFg27spsEZMagKDECniCjdP8wDNvesO07rFS2gOdYaPBz720jQ8gLelcbEQ67aaJZkaFSCRyovS0nxTLNaZyqBxfln2wJGH35bEnR7jlAnZ9Cw9AH2RJtz6ENGlmtAHkMJV5WNOWyoHV5C2lPAgPeGspoKBmXaclGmS55pjrT+kn82cH3IOhU4XWZZba0Gpas2hMjqbij1ixuKJDEGdgdug9v8vgJzDFpLTPYnUKocx9wei3dSXMUq4yVEWhqY06WZuuh5Lao5dNoMz00Y5msowDQAtMOuIpN1Hs7PmtqjLgqzx5DDIAhtc9je4dAHtpaglOLMQEb7XgyV/aagu3FC6oBdWWQvYlqZeHqLh9kPNkpXc17EPL7JOZgWKAsC7w42ssr+gispeDhsuK7L7/Ed198iX/6m+/wu2+/wTdffEAPx9YG/p//9u8wygV//tOPZDJZ4N7uuO83/OHzz/gPn37EeLqgPlZE1RrtYy5UvzfsHfjtd7/FP/1nf4P/6n/+L7FeLvj5x5+w317w+dPP+OXnX/D500eM0VAqWSAEnsTSz+mCADC62I0EfzmdMBB7n5Fwju9bH64oteJlu7FgsEA2w9HgaDCEVSA47dkA7Lfg5MF+R7GC5frEoN46mY+9TZCvGIGD0QEvhrpUtC7GiAAmilnLgCkfyAm9yWKaE9ASJABmIeBNYYCBJO1Mo22rxdLYQzw/LCoolPDZultKRSkF97Fhj4ENULNFFidpk1sIqAKmzaihglhPrSJqJzVXTGVpj23G20Wf2wQ6jDHmVNA8rFlUCEDtmUUssnklwQKtAWi43zf8/MtH7NuGvXe0YuhVd9PIoCrmWEqRfhFtcdevKUmi//Nh0ujNIgF9SQsyVLvYsmMI0BNFugDIYt5hlY72sNYb440uxvOgHEFJ+wXdYSjRSNvsjFmhXK73gR079uKgElSDIbDvr9j2V7R2h4n13VvH2HY8Pj6iLpyUTdFmMlAW3f2Bgd526RCR1ZSgRts7UIrOyopaV4wo2PeCunM/W+M6LcuCgYHWdyya8D4G2YJ1oWdZlsy3yI7unULmbhX1koLo1F3qvcGKoyx15ko5BTW7FMYIUTSy7fA4v733dCAyPSn6r0m0ZtKbBLZGnS/mH8wR97aJrc/iWSkF6MC9vaLYOpnszLnUGpYFYGPuMURyYVimO6hBYGM03tu9U29tawSVauHzyLeEAVYdHobFgKUsWJeV+WkfaHtHjA5UFhFKUV+nCoEGsQydhcYxBvadulwOTECxtzYF0s8khx5t+mXXek67pMLTvqmLCASzS2E+YD5QK+ND4iUNL893/PzzM/70px/x/PyMPnZUJzaSGsJ13ciQ2wc43EtxVgBuLGwVphfoyDte0TunER85m8+YYIyB0QaKcZJjV+F1KesBZP4jX78eeLJ1GnmHLnEkEHM2DXRR5gtqcSYkY0fvoXYlKJASQHMJ9L1h7zfRWw0lAQz6F256HGDS/AcDWmeFmGNTiRoOcEqQR0EZjlquZFJZA8W7WUEp68oWN2giXAO6nFL1ghRdI1tGFVjXaGrkZzM6mnCMqJOqtq6cNOJxNCUzHj6qyjBVhbUeiEB0Q9sMfdTTFk60RkwOAKUx6Qy2mTDepONZjGO625Dj69TEWK4XPBgp8tttR2u3GXSwsqcWHRQULLPt5v7SgMaEIYITvpK5lTpfnmhuDIo8qt+MQyc4fWXosmWTAcVbD/HYvqd7Z1JKhf/IpZoOKUdcui8wVFZyRqCodSA2Bg4rKkbxgzU1BradbRqhKmuLYLsVZDiKczKcGHlhgb3v6I3tBrU4qi+zT7h3tS+URIJFuTUgxq4kM6vAShhHUNA0QFFnFGx6xpCom6uy0JAG6qg+Xx8fUNaViesI7A3AIDDRDZwaEw4MwOqCMMPzyyvgjqd3j0xol2wpCpRCAxRzuraE9PugocoqDYx/1l2zCAJuCvps7hMTqPXCUbJ72zGrbkante07Wz87GVnb3kiZHWrhdcPeBnYMXBYa5bbd0XtHsx0NHS040bG6ozKTk3g5ZiLChLUBjZ/JzLBeLxBnk3ZBI2qbANXiZJlwqlrhVCQzMpligXUGxUUtF3vfkNScANCz8jqyNTO4F5BGB44qMg80hRRni4OA2aFRt0WTUQ69ADL3IugskWcnMtRkywOssKrtDIDEO2MLSKT4poK1/Ne8w9LACrFU3AD0NutQADDGrph8HGCN/tw7k/lZ+wzRtLNoUBLQYLBG29hhRlDZMbCcSWOquhWNmzX2NOjwpX5EVsoAWKAupKBPFoaON/MnhTtdoJBVJflKyAwCNTDJazlZEwi1OSQ/Ij2fqtXBYCdbzdL+W3873rnrsliyAtkHPG3cZJaOBH6gu0Ewaq0U6eyd37fCsaNh9P0ENBhQTa11AvzkfloYRjAQS4CMj8vzHc30va4zATFuxxxrbx38jH2ggqzEZIdGqus7IZVhapuzqorvUIFkwJGDJhSsj7NuAPcjxezZWsDPnoBFtjcjOKjbi4usNQRcdRZvuIwJ3yIVJ4FBgVMvAmOYpO0S1R9i0aSqzW4dsAazhm42gSUuheIhY9HIjdNlI2JqjI39hh7SyQjGCRGdgxU0mGMMTiJ0T2o+g9gYtAHF7GAA6e7P6q9sUYh5BAOGU+euN7El3eCV4uZ5XraWwF2RaUqgY2AEBYHNCECbq6Vdept9ZHtqnRX+o43vuIOZIALJ3OIeFPlkvj8TS3be81yEA9Uo+O96T0xxYcWfBgxUDHOMMvTSuqulwEaDp00Ltn2xTZI2cJFO5ACwW0cX+G5m83sCBbVUrMsjg/rB9tK9swVjcceH9YoPj4/46+9+iy8eH/DFesWjF6wAuoqEHx4fsIXj0w8/YX18wLsvP2CPHaMDz683/PzyGcDOAsCywgaLrm0f2LeO9foOH9ZHfPPd7/DNt9+j1gWuZADLFXh4j30s+OVzx22vaHEF7ALzgJXGYtVQS/o0Y2QiR9icPmUnBM9thdUFsAXciQWzldcyJfBZITcb6HETS6LRBy8VJtgigpICdQA2fAK4jCnk+8IpTSHQlqzkmIB7jDyjHJ4whcQRCDCJJqvkiFOK2PUJlQDJnAALImZAOTHpNMihI6fXxYx12Obc2QpaMz5KprEOZTC6LmqJLQKRumxcWH4+tjE2NAzrU6POwqC+LmQDYLJBaR6zAMDla6NrDTEBrKkRozsxY5AS2NodP3/6ab4eJhhEUAkl0KPhtW3MFUoOTnIyJILtrsR6yHgLHLIsVT4q5Ne6BSIk6J/PaGlfLGuT3JkEjQHG1zGAUVQMIr1g6w3FA4srlzFjPDECVcObpiGEqTBY4GURa4Ms8od1xeNlxWVZdP4V11vHa7vBw9Gws+3WxSwC7bijiDAAXOpKkGmpsEFwcihfStZgcUMtoDeKgb1v9OvlogKdIQbbeaF2ZqSviZRQGAIFBtApGWN95TN6Fm8GohnGFogdQDdUVMAMxRak8+IglEKQv3Ogz6HrqP0Jgr8EdIx+3Jhr8Pjx5/dOYf5aHPAFDvp7DEzmvNuKQEUPm7pZEVnUVmzUF/rSQbYYh6VA/oK8wywZ9gSsFkkPiHhBpijm2XY41rLyecQUK0JfklU9kJIh9Itk/MV8HYZDITvH2GUMYO9gfJNtwZlnaJHDCbpmjGM6l9lG21UEGxG6Z05ZDEkXIPP0YdhuDbfnGz7/8hljH1jLiloIXPe2ab0X4grR2f7nVR0ph2/sIRtr/MyOgi0GtqHRMka5GRYteU9cE+6jDZQojBfCMd39P/L1q4Gngqt+dyQqiYfMTc0pSggUr6jrFfvOUaqtMZlgQqtgvATKdWC3hrbf0IVW11gQYeyDBdkQBDR2UaRN9EtH76Qo93BkW0CgYkRBVdJY8IhqFd129BjYGx2P+8KpQt6w3e/orcMKk8OClYlSYyJvtbAq6QWt76y2qDWpQ8HgWNH2ht4AKwvMF0QUGUpNLNABLoAydJsXKQO1kcLh6t8mWEWU3YratSonchlH7fHCwIDuWMoCVAeajnsfsFKwXlbUZcV1DPzwxz9i22/IumwtF1Z+wgSWMRHEGHh9bugb8O7pelw6BXME2lKkMoC28/dKLt1dCRunrowMNmEyIhVeVow20Lcm4CawXgoDAARyzHZWYt057a74ArPKNs0eugBAbBTSXmsFChAlcO8c03vfd+Y2xacj7mIRLIWVi24M0FO8dm87z3BvqPWKuqzobUcfpCgnu5H6XQzkvBhG7Ii20SHDsFwYqEeCTggIJaGuEwIDqvp1nuSQUzdViBCBx3fvMIbhdieT6fnzTck1J+sEKpq+1xdWPz5/foa54b6/w7JyYoYXwDxQjcau7QEKqVTETt2GUk06UQoIkG1LrjYhzKTVZ6BGUHldFrTe8HJ7RakF67Jo+gmBp/u28yw1YL/vWLwAzQAn/XhvnIxR1ysMwOv9JnSso8WOfWy41CuWsmBR0LbkdLrC6Tx76xzN1thqU9zxeH2AGdC2TVWFgtE6trZjKWWKwLo5WyCHqqKhCmGn4V/8woSxsZIEA4YNarQNTv2cMbjC22qanAiNhgdbrLxUFDHtPCB6985nEb3dAERkoEywtm2aGpkjeUJ3xYUuwKi5EQY0zGS6A2jZDgZgRSETJvYZGCGoBcJA3cTsGqhFoHzfpwMwr6CegQoMO5OWZVkU5DJg6XKArnVAUNcgEqAzA3qfmlm0Q5C+Gjit03hXXHvOM6eBDen5jFVyQLPkRJU6AkkFwB0oUeC+0iH3piBnkEWqYjFfMun3IbF5lZcjxEglQyRbgtj2baraAWgEnkqhhtyY7bL1aAcUgpgtHVBiHgIlYwgytYp1fYDB8Pp6h42BFRUI6rZB9sMqgbVdbQURbe4nK9M8k/SHoqFrvXo7ThoUwKLzXHsGtUFmDlrHUjmhr8eOHk0sULBNCIZhCzg9cAF85bDt8YoRHQuFoJAJG9ssUwnJJvAEGGpZtEx2gLU92xB9Bqi8D/S9zE0VrBtbe7oNNJblJ3ACk9acKpMj+9A9IceObgO7dbjtKE50bcCQ9cE+CM4UXwGvMK9M4EawQgGg3TeysAQ62SDw1IITTVlyYBW+uqvFDmQtNFcCe2Ir6WOy1pm5rk3aFfMdgl/73lDccV1WxRgOL0yk99jZPgBOJmW1Pf0kpalrXVEK95DB6ybfpzZYr0dx7gQ4JYzI+8ri4tH+g8lCZgGHFeVSObkJAp/ME7bV2VPAboM2gBpdVCIapc/39OpYLgu8BWxv8B7wzrPL1KHCw7AqKd4daMYC0aUSvC9WGfcOR60XPDx8wL4HtnvH/f4RW9/x7v07PKwLvnp8wjfvP+BvfvtXuLrhwYFH52TIYpRg+PLxAc/bwN//6Qe8++orfP31N3iNO0YLPL++4ufPn7BeC5al4LKw0Nti4LbveNk6fvvhA7766lv85je/x3ff/Q61Us+oVrIGi1XsY8FPnwZetwVtXAF/ZAu9N2DkFCmxUmSPpS4GyXpNOwaQhVbqVVIKBqHhQMYzCOodA6BmakfvsknReRzXIh27xmS5D5RO8C9bNFO3rVZW1Nt+ND+R6Xpiu2rCdoxAXRastcyWxy2y1US2TVN1D7afWpwS5DZTEYB2kzmNAAC1fpsN+GK5MATQ+1AsV3kWQ50akZ7fNfm1THkRgCzpgVDLrQEFmry5U+7AAmTjONwu9HMqFhDYcuVJyslCcWRTgccZe0euU0yOqaiZDpSKW7/h5eMz1rKgegWCcW2XlAWcn2nb7liXBcuyypYWLBDwtG+0sVYZt1oVKw2omoTICmFMkJ4LEQxPEuCAcqKe+QgZq8UcGDs0RxcRHLLTYuB13FGs42IDNQtGQ8XwoUnqVCRlQckXlMouCCb3gbCBx8uKx8sFD+sFdw02HxgY1rE3FjBLPWIOgHkq0/UF0Xb0e4PXC5ayoq4LcwQxvsdI4EnnoXB/RwB7u1NOwq4E5AIYvcBRT8CZfJVySertDcAPGRbvC9wcXhYVKTqiAX0biBbAoA9lexcnw7be1BpXCOAM7kPJeN54n5NhJ/gBAeqF9aGpeFbQI3Dv1EwFcmImsN83jDGku5Ye07FHMveC32+EamAO9ATGgt0nzml85j6nPcJSV7qrmFJmvrYY1yJrHjZY1KtlQR8d+96or1QqzGkH2JocPKrI2HHIg2VxR+e36N55Rd+pPXypVW1x/HBVe+Y2hI0oFlYXkIEsfSAEPFEjupaCSynY24bROlm1TrAfo2G77Xh5vuHzz5/RtyGwk/Zx2zL+kuyMSu3F2A1E9rA0FoN3qatAaFFwi4Z7aOIpHNdY2HEEiGRiQOOQr+IrivQyY670f/7r12s8JWbX1SM+NyWDeWR8yIXrDbfbC4bKngz0eVltxrAD961JryXpo44eAzYa1rrCjVRbipbuKJWoXeoC9CwrWKFDMpexY/KSfZFUgN9AsdYCWEfrN6K3MWDW4YXG1p3xYTFX0JzP2VXJxqwS87X5vl6LfBG3GUPOCDY/B3u2C0Y/V+dL5oxaGy2oLkI2qBORpuFOQ8QkJFDKoX8QNpjsmMAoCBhDCHEvuD48wovhftv1c4E2GraXXUDiocjw+YUTxZZLRS0Vy8MDIjr2scsZdwavkBYOSLksKFgvi8bDZsIHOjYY9m2HWxcqDlgVIAg6zDlsNoKjPGVlUrtpHxx/zqq76IpaAxc6D+VySSk1MWF69HneJvV022HW0HZWOryMmciYc98iDlH4qWcWyUaKDIkZwEyAjXugJoGj8ivEGeloIR0dnVdSkHXOChBNotZ9R+/Avt3QG9tW+4Boyzyf+0aQYHEKVFO0r0scWAoFomjX6rq7aVQHJ1LbQqpu66iXlXRinc3shYe1CQSkNI2pQl+8YESCJgWGFaM1dIGzYwCIou8NGC7ojUm4GScqmgf2neDHelkwekXbugIxarv1jUxGApLJeDJEJ3C6XirWi+veGzXOBmC1opnh+b5pE1W9DLI3PAJ7sMJXbCoawSxtWk52IivCKmmsnBypRF9tZRDTZGhSHSnhRJnVUaRgIcMLPoMh0Ps2ARYTONPbkKPlGSLAK3r1DAuIiKYWhXZYR092Wxaix8EIY0IPAVgCewGxGUzilKTfG8AqmQCTvANeFOTN5Fj6BrqLxMnEQLHDvmKewbRcCi88732Ios8WPldbiMGkr8HgJcXLM7EwBUGHiDtZlbWqecfi+KVVshICifNgJxgkujFIe44TUCTYhqCj7GcRQ6TN6jvX0XWG3blWhmSwmPrsZfvgYgETEKdrGXh5fcEYgdcXMQrE7kQpqCurrW00CjQPsbnkZ+HZVk4tkh4MZi1EAzdDuB4bQBQyIcbI6mLMAJAsB7ZZ9SwwxHKIEu+syrqxwp0uO6B2HHcMnY0InQcfpzOQvz/Yffxmw6HxoHldqX8jIc4wAjE9GS+edHODSkYUfQ2eNVY9eSg9jGxHGETjQgAoHbA9UGgqkcLeE2jRuTedlRiD2g3yEY7A7EwSaF9rhY8OjwoLgtI2bXKnqQ3M58uvnNimBUW2IyQGEAkaaE8NzP3ynvcO9B1sjTEDYoXPKrqpLYAvtxQWjjhJ1+d7uNrUPYoArvS/p/OG9BHpITNIzRMG+RO9mV58dGoDlUrAgGwNVsaBINMYauFHVpnHjEWTCelO+1YcWKpjNTCZVtI+wmDh8FExjME7R5U724/2AVSys80WbFvg55efsSwPWNZHfPjyn2B5uOBf/PU/wxfv3+Gvv/sWpXeMX37BXdOHlmVFWR/QQGbH5asV/d5h92d8/PwZP//tfwdbC2x1/Obbf4plfQ8UxgKfPv6EfW+4PXeMwXac73/7Pf7mr/8Zfv9Pv8P3v/+Ab78viQGh7YZ+L/jn/5PfA/G/xP/t//J/wt//+x/x/t1ALLSDfUhQXPZ270Drsg1mYgIL8AQ3NkrB7m0KrTdvaos59njuXXZEkFqMReA8wHa44hUt9skan7suVgUMZCKkWRYAekxaznha9sAoBBxjzFbnZeHQnNaSfnk8L5BtbP9xspR3LJkBQ9o1mXQOSQeECkhkzGQCpDM930cXUncimsTxZacoJh68u17IAIGjhD5bBBJuhQq8obNNoOxgf2UBk7GOFk6gNbsThmJVA1vPDL0HlrLicl3R7hxxr8ox2y0RuLcNEYXdI86hDyEhc3hVHMBn70g+eZWGWBAcG4axkzWNaEhALgc9pf7YWZOQuSVbWx02W+5NgCD6gMMk6GyoBrg6Y4riahco4iULPa5CNt7YaFjger3i4eEBtRb0UbCsBW0cjFUYB2ywA4CsaVo5+g4vBXWpiGhoPRDBIsm6Vuwt0FtgvV7w7t07LCtlHNqQtIds+d7V3rzQS7TBZzylfZqER59elwqvFbfbK3of2LZNeSSlDy7XK4r0jAwsAqZI/ywPlOPP5pyEXiqD0QRFqtO+e3E4ic+SqcFsQbusF4xC4BIxOOjByGSspWRrCAC1KBrQO5lJy7JwMnlAsgSO3pXl1jLP+xig5EtI8kHMLK8cfLLUKrIL84RQIEP8AtRFcbWoDnYMuVid7HLamWcrVj9rXJna+9JCtC7ATYbXFAe03udzmhh1e7QZM7nOT59t64oP2g4L6fqCeUc3YJhhqRRwbw243Xf8u3/3d/jjH/+M59sdQy2eVQWkrWX3BG1FUVttb3EqwhF48pFAH+OWMHZzLKVqcJU6whR/O4Lt/kGma+sbelAm6awX+Z/7+tXAU8TBEBkADvHYA3hKoVteEKJ/fBZ9mESJLVTVjKl3wUhBLJpgZXwazWJTt8OKMWlxJkI5NUX1W6jMD0RX5VPGYZwFvh0A+2JJ5x+qojDgMGkhoAB12Ezqg+NWFMPlAjOxc5MeiheEp8AppmN0iZICCpQC89L7aa/SKYZOejryqVFict7TVzpSRNXUViD+3gzsIh3+IPIJOI2eB/UZesforPhu+66t0moaOMlrFOyN+jZrXfj9fTvORMa2zoC2dR0KsHpUwmCiEZLWaLiNV9JsswrjmFTkrM4olkYCjSlwSYdJZ1DURuTGvuJcmymyC8y+4KlpEZnI5+sMTWwzgSvMNQhEpp5MKAg5mBMz3p9Jd7w5G38Zi+SZiBmcmHqGeZJyhPkYJ0YHjpdj0quzO3LihZLjWfa2qYlRo6olsM97Nj/K1A+p+iyz1w7mZP3s+1BgKJF1aaik9pNNPjRwCBlyv8xDzC1eJrMF0Qf6ns5D5wM4tU0W/XJOMCnAtt8BBM8s2FabgU4X6g7tLauZ4HsrSanFUcrCuwngfr+DFY0FA8B9P0aQIgDXZ3OQ+urgJMGDXcM7Td8igy27MlfXlXCKRp09J2Ss8KnnHR+G6BKpTBsqm5K6XmRxCUjSPchgJZ0Z+pjtYBlQub2tQpysy2FvEkA1ncE3tg1yrDiAgTzrEUj9payr5t0qnqBXZsEmIVZM1mq+epFTm205p4A9nXyCQyEB/d4Hk8BScDrRx+dO2x94cyfzGfIRqwoLYxYwcj1C+3wkyGk7DDbvQCY6VfoFFMQeWn+wAlkIn40gBVz9BAKAs1Uhbb/NtU7fYjBNh+XfD+3Bvu1ofeB2v/MTlkKB/iIGXa1oe5eugNbGTJpd+oWjeT3FFPXxcIyxxixmcJgDgad5ZwyqKoZI7y5dBQ0DGWLhFZ0T4YN8XCUQGRhqvUNiPBQQz6A/CzU+zwZfI1sY5BoijvhE/zf0WRmLOFKQNtQ+NvS6ETbbQyzSb+nDgf/WWdeCVLwE7AhUBQiAJTAD2crUj8lx1xGHL4JhTqQbaprR3kBBaSaVfmRjM+6hvADfa567DCoib8+8yfAE3gZB2dSAo6/J+qyS3iHzbq4Ewt/6YtjcexjP97C0Xwe7mXvF1hD+VYLhgRmzId5gAAYQuAfEYPPjmudHPNy5/slyx+eepB5OxlHFnWmxgZNHQyBjGDinlW9QygKrFfd7Q+9kUgQctVTsY+Dz6x1P5QHLesXTV9/i3Zcf8Pu/+S/x9Rdf4m9+/1vsz5/wd//d36Ltd7ZnlhV7vVDEG0C9Viy1wZc7Xl5u+OnTz3j64glP9R2++fo7vP/wFVp0bNsd2+sd0e4wBJZKJtrXX3+F73/7Pb76+j0+fPGAp3fsAFg+ZdxQ8M23X8Ljr/Gv/9sVY2xo/QazOtmh2aVGsAcE4DIJ8QstkB2mcbhsAfgewxh/p57hEd/8Beho0hIJFq+JNVC7JRu4589DsYHz3AnKh8v25V3pc8rwAT4N6aJZJSuw6E2PmI13L2JMxtRssTsllPlFoEYsjzgMVzJrDwZEnAocf5l8Hb6MrJTTedU9JrPSNaQD8+7naQaO3CAhqIDNGHEuX9oFqcZTFJ1fLMrbcXey8DMCZa14uD7iub1gbG229eTwCOKAh+QIQXratGmPz/5XeUYuh2Vb9BEEyyLRaBoIjp1XLl0We2WO8gNjS/20MPJq5G84QtpbJB44HPrwUCY0/3uwimO22C+VkzHJ/mFhajQy8NM4uVfZtmOPyBTxGael4HLayFJIqIg+UGvF5XrlJDlnm1UPiGEnwKjodXoIKLI3NpcDRZSXFBZpuZdDQ334+6VW1KXS5rnijOwMSvtrGduwWG9i087PI0a6h+IfP7xJtKE7qW6lUjHcUFvR9L0m3WOfYHBO7K31YN/k8KehnI/6Si65j7zHmWcJPBVYSJAV8zX4szr/bAia/jhzSqCTVT2oGTlEROC6NSBb4jPO1nqRCHCKP+g8CdgFjumZJ5C6KKbves5iGVXN6IrTmZlU85l0XjOWN0Da0AV7dOz7jp9++gkfP33GtjfqrqnV1Yw5UgwNQAF93hhqVxbwlHeVgLTiATtimaqCmJkRF9DaFzBPZ5GJpA0bgaVyj3/N169nPA0JDwdnrjI3pzFOLYbUFRiywKXmaEb2PTNPqcg+5d4Nt9tAkp1Tb6jtDd06hWGLY3lYEduO/fbKS2oDdVnhpaJJ96b4Mo1RLRWLr0AMbPeGlsZIlT54SGdm05jKQuMRFNR1B2waji6dGBqvrLDjZLRSXwGDPeYl2U09cN/vAACvdJZ1YWV4wKShhOmkTy5mLrsrAC1msu9EujN6H3E4lmNMrKJFBcCmFkgGnURyS10BA66PPFQ///wLf6xQbyY1rtK5tAA+v9xRt457pxD8kmKinfodMApFGxxeHwF3tLaSRoyKvd+xjU4xVXNIWgebZKsc7E13jPneiZntW6QtoWHUGHnGHbq+CqIy6Q7oUBqwi1lykRAgzwcAGFqjWFukQxQjy42XzqVFBY0QLSW1CEj1BQK7wKvRSZeM6ChVY05lNPdOI7u1HRSopjg4dU/4cGR3UB8pdc0O4ehsfegobvjN91/jft/www+/4I0YOKDPLZ0i0Uu3+4Y///FPePf+CU/vn5A6BU3Jw0zU+3Gm+KxsoWpbw9bugIBaeMCL2o6Kz77nPhgmxOYcMz14ht0qWrvhft80MpbgQaCgjIq1PuDh8iVQ9PppPI3GlPpiNHQYjgJqLAVI34UBIzaKQe4NrTXctw0PjwuWS8GtkfK/XNjfnfpSfXTUSnZkyTY7p5NZ1gXFDA/aQ15zgUkpYOrZJlTESJNzCwERzjvLAqRPp511QZMeVylFYJOo6E69uKEWBQZcvAOQLVt8ZaVvcfRR4U1tLiMmMyGBh6x0Mng7THtAifcJ8Ki1SlzcqHkWOSGONOWA9NGm7TmYmhEUuszAFuDr1lrFtJeIY05q0fTGFKvM+4tptZItRbvL6t8iJy5WE2gAInvcmK7qvDRVmQTIxrliTD3A4aFWJNrQiM4A1Iy2YQSiA7UWioB3sdl6ZzJaV+R0oxicONLFdvMOeASqWpO6kK/0JY462XFpw9J/k8V4JAtQEBMCoMcYczQV6eL8fevUTmxdlG4/Ko0jaK8YjPKcJ3hxZm1OSGoCzT0buYAYsGGowbtfyyodF0ILPUBhWqTeQCZa/Dym4Cuc77dJkySnbCbbaiaiUGCeAJzuA4O20ETfoE5TBFAZPJVK+9CDEajtyaJ1xG6w7qi+wiqfc4SjR8ECAh0F9TjHISBkGMrg+0+wNowth5anUVCQ9mwGkPP3AUTnBNoGtM1QraNYyAuUeaYtB7iEGENDtseBVRM3U+MoP1OInTrGCYxKdqnZ6TNX3RsBp1H1Pl17lVVamzEPWW/ZtkOtDp5LUyzDCVJmSqgRFAoHqOF3KtJMkAi0NfOMD82CGDn9kEyfIxnNdv7T3hj0atSjSgZGbkSyUopX1NDU2cZ2u+gbK8BGmWYYNJhE/mCpGFgQURHxgMvTE7763Tf4+rvf4pvf/B7f/fVf492XX+H94xOWUvBLd0RxPP3VfwHrG6zdUC9XxLpSWD8GsAD2EPgNnvDbYlivji+/+xpfffs1nj7IZ712bFvDH//hJ9xvG55fXmCoMFvw1Rcf8OHdO3z3/Te4Pq34+dML2tZwu98pJBUF33z7Lb775iv8q//6v8bvf/cb/Lf/9/8rfv7pJzw9viM74KKWEANKX9Ciq2UCCF/ZQip2PpkPDShswTAYhmuoQrYfyRdkLHD0PgciGfKDvn90xatIn6p7qUQpDOoM4Odj/MOYnMMj9gwR83ogI0lz3osu0eMxjuJeF9DgiqmOL5M/EvO0YzIwzuAU9VDTSpaDpYOp5KJXO14736b3jr5TK9TcUJaFWj/G+H0Pth9BYv4wME9Afo6BMe5TryVbg5v82rCYcW1e+zfbAAMEAo1Gxva6LHi4PuLDhy8xumE0w94bcx6HwCr6SeZxLAy2XbGYA4hAE8uiO2A2YN4PErEAsKI7uaTfjkyGmbeEhUSoHbZKlqAPjN7w2vYppQAl2CUIIpXijCv6Dhsc3lPXlfFGlz32BDhJMlhKRYyGvfM82RjY9zvu/x/W/m3JkuTIEsWWqpm774jIzCqggB6wb9OcOTNNCvlAOQ/nhU8kv3p+4PCRHOFNhDNCIefSQDdQVai8ROztbmbKh7XU3BM9PF0twoAEMityx97u5mZ6Wbp06eOOt+zWKQHrtJeqM8OCPiG1ZUM6QTC+Z9kMOfyFcgSM/ZvOxLIteH73jCiLGKQGK4Z1uSHC2NI8Asdjn0UIF+NzKY4+BmUntN19dFgnuAVUAaqGZSFjJUW9uQ9lY+VERwKAzrhljM4C1ty6oZwyMAqUT7JsWiwQmiFRFftY7zB1DPQ+cNzv8G2Fr8vckb1RzmFZKKnT+ph2d993AVHMnXaRASRDO30HAJ0hSSwoZxy949EHbXzZ8GgcYpLMHWqMBuDU4eUkQ7KV2Kos5qs6qIDA6Ak8JUnAUBbmA0s9AVR2QoFDUKiXo7RAtBiTPpXOesTAvt/Re8NaCxYHbCGbc6lO+Y/7A+YV67pR8mXf8eMfP+P7H37Ax0+f8Pr2hqN1Yh7LgpBmJms0A3FoqBk4xG0/Gk5cQHuhEUDK1vygwj+BtR4sDgwCY9RNG3j0hjoGqg+URYUbn4f9n/z62cBTtstOgxZZ+R5fOYb8ooFWAqzKVxpnxtEuo4NZKZ5bXVayBw3LfH+hE3SDtKbX3mw+UVMA6xjtREfZtnSJZpEVDDuLv0q8MkDOhD9ZAWfUc1nciYeYJEp44ykEnZV0G2yDuNYFLm+Bc5KDXo8z0EsWgsOQ7XMnRJUGJf9+YTjkW1j8o89MYKIuC6uUQmxyNCgcEyzM390PtRpWx4LC9kEDrFyMsmVikP2jdEbJcmMFnM7K5jSbIRYdgBgUcMzrzyQ5K9pQVdRPt56JWXx9g8BllQJqRbRzPfkoba4F+7yTJWVKGBTsRu4PrbecX7ZandW0c6vE3Jb5Wadg7pmEJJJg0xCIz6NfE4o914FrZHBsG4XjluoCdybnRFT063lkInK/33F72uZW09shlICeNelQcE/jPhMFVf1I79a3cNgwqBVKnzn7ti8V92wHEwjnl39zgaQEGGRwIrRGgZyg6eYIDwwjlXgYp6YBQSm1867PQ2Ans8PVl937ycg8mUZnshiwSYt1TbiI4H3RV51tNeczxrRJEbmHQEMPVQjB805Cp1gBidrP1kQ7bwGhKlV8ZXqQLAk3ORJWlkyH6coEiry2i5E793acH53PbrIEMPcKcj+pGpQma0yQ2GZ1cVJ38xbyPd1me9r5pE7a+9UW53rmvcp9S/OtzL0zbWDkf5+fmqmtXT7rukPGBAjkVQTejhmg2Pk7wT04q4/zc5INdzJso+iUxwmmsdUMOmE642LeIC525k++rgyCXJSQLc3nadqr3LeqrHc7/VcubIJPQ211uoeYZ/yyf2Ug7Lqn5d+i8w6SExWyn0jGkloC+Ra5l2PuN6Q90/4+x0+fYGVajnNZrjT30/pPzQWIwRNMBlxM2/n6NClQ8DrAIFM/y/o1K8kOGAVjbSJdMe9lMhZzF84DFuelXfc3/vSW43y2CTq62Ntpf0a+xYWvNP3LyepynK1mXJKso158ZJzrNs9X5PpxH+b6JZuVzGz9Tt4fy7zzd2E+AZ4BZ4FP18C9mZekdXP5CFy+MvnJlq0ki00iVO6CMX0n8gzpmi4ueu6LfOWMD+S/mcxJXNyGqssmj6eEAeekJi8brFQs9QWlrFjXb3F7/oAP3/0Gv/g1v7/97l/g5Ztv2ZIdgXvb4SioL+9g/UAZK7wuiFJRwElOvgJLAF4H1rXg+f2KX/zqW3z73S/wzS9u2J4qXr907HvH++dvsR8HXl/fAAFP61Kx1oLb04ZaHY89cDSB4T2ADtRqWMuCX//Zr7HfP+P/+u+pfzJ6n4W0c1+65iqoQJH2yhi35FRPy/OjZ0IXmwESuC8N8ivyqhFQD+uMI4baTPh4zrhj+mz5yyQcnmf/BGH4D18XOM5nbyeja+59gwUHLcT1iOLie8zO+4uLD5on8eJhFPhchYct973ZjLHmtV3OFm22vk3xguKA67CW0Jrm/WbLeaQBN/4s7+lirk4bjus9zGOneztjYNdwhcS3TwZWxje6ILFGE9SjT0pwLxd2zE+0WVTiv5bLKyL3hVhHaqrD7JpVsEE7KVtg8g4jBKbrWpAt7px+mK1+gZMQgUiWvXxCSCpFmrRmwH7syLYVisFzovdXocBkjtj8OWOAwNSUHGP645jPm8UaSqhpLxsLRxFGgZHOwUEZm34VIAHUVDKypjNPzTjq7LJJ3UNe39zzOoVzb1/sX3pSnXI9V9neYHkqZD9neISTOBAqOuumkcNpZjQWUAx8srh43jDvo6tY5rCv3OksWJxBKlLwHMhiBs+Ke54hnfv8nzqu0malJMtcM8s1w9eflVdxuvQZ82Wok6Yn97Xn85J/ur4FgTKRRGKo/VNauWKHDVPXin7Wxbx8e3vF6+sXvN7fsO97PkBknsOlUb6TxtPtPNPJ2lKhJ20EruubeyJCoPW42GgWDwDojMkqWsap//TXzwae3t4eRMfXBQna9NbQxkHR6lqxrCsCwNvBVhYpoQAgC2J09n1HFPRBIUjLQMhTQBqIaAgAR+sYsSM+f0KpFR++/Yb1tAjsfWBvY1bWc8FaGxTjLGRWcQUbAkMyDaEJP0LKraD6gqNLOFcCdG0nvbodDWYUCHVwk/VIrQZu/LUucBD1Q/DA5vhgahXpAA/gOKjB0pGjvH1iZnOC0QwEThOuAj6NZgxEt7nRMvkvBriqdgz8SQcdg5uRIFzDpCrC8O7lBa1t+PTpEyKAZVlxHA2P/QEH7zkjwfujww8Kud9Ww+JOVL0a9scdR294vhHZPg624R39LWvkGIWAxb0P+HC8PL+HhaHvB0lc4QQkukbUqhpj5iiV2l1NPbnZ4pkGDgEg+4E19ciLEeSILn2aEOARGI90p9nzXahbEEE9DjBoiwiOCO2h0dsLUKumkhRQ7ycdjQFiOJVaZ9LXBaSGDvzii5hQ62kYEuRTQNXbgeKObV2RAOv+eJC6CofZgMWBdQG++/UH/PGPH/H5y0dN+6tYnm4AbGo95eS2+/0BwPC03SbrKKUpl1LVkrqLTdGwLBtqLTgOVisXVTaX1eXQs6I4cLRkN7GVo6OA4JUpMD0QsSPigX1/xeN+x2obKZ4tcBwVx3GgWiWDYpBCCi9wA7xW1BW4LSvub3e8jlP9lNrMhtY5SWNdX9BHYGus4ACOdeHZTIAzekMtFe+/ecHjfsf97TN26fEsy6JqEZluu+LNMTD3Xo6AHwK7E7S4TpRJZ+SqCo5O5sUYGaQYhSI75YRzElomoO4Gr9mCB+mPjQmIQQybx/2Qlk9D8TrbWYGzagvtvwR8LTqOngGrTfDXdJ3DKNpoOmhJOU4VqZZJgRiIixcyWAJiYDCQHkHKtasi1I5dk9d4j7Uuf0JhzqDWRewMVlTAnvfIwACXahQATOetNgHSxBBxFhdKYWCYwtX3/RVmhrJwahbv80BH50jeYhpOaGdQ3hgQjHE6457g8xCrYllQClAHR9QyQJLmWROLUWuek1R4EwlpKDjLtQeQbdL7IJMpW3a8cIOVRUEoKFrbj3Het7SsiA0OtAkQZrCSf2aATxbRjGfAeyjrwjSiJSPY6Mu7GDY9AevcfhkE0hdC1ckZqhl33ohDwZym5Qa0B0xMlwxUbUYVBp6dAwOlVixe0PGQAHrq9JEZu0qDKsKlQeXUXBgUmR4d0gp0YJiqvpp0gzMhhckXX+ymMXshi0PnZGo5AJNanyA38g4iJmuu9w6PgeIhNXdjEB8D1SuST5S+L9l1qTw3A3v4nJSToGIG3jmhhscyJDjP12TX0qThK7ZgO4QSmwAs2rRtM0guXNdDzIAZnAMK9GfTDQNXMyYjl0QKMMV/DMIZzBQBnY7Wu/bIYHykdRw6M4CmVyInH6UepsAGAOgC5t0oiGwUDvcARjX00fA4PjPeKAv21tGOwLa+x+32Hn/7v/zv8eGbX+E3f/HfwesNoz4BdQXKhrrexGjowOj49PkjlgL88v0Na3nCUzWQvTbwZ7/6JZ6ebri9W1Gr4Ukaz+aGuvCbjIeG435g9MA3758QeEb7xTcTZNjWimUpqBossS7PiP5A659xPO7Y3+7o+x1jf+AXv3iPD+/+Fv+Xf/8XMAPeXj+RFbaQqUg9rmyN8jTdpx1VXFvMsKAKBAm2uiPm5GT+KoHKIdQnTRu3GhNsSm1Id6k4MMYU/oXRLvYe1KspBqv0W6mXyWuJi29VLIzMB/j7h5Jcd8aTSyHwZv2YezRhq3IVt59JWjKqLuDWNAI6Y9rCmReYJfyitYnBYRlWEZW/kGwNs8xb+gSSsj5g8jdeZCvAGKzLBowxMLTeBzq6KdaZfug8d5lEGMgUCXCiF6fqDbzeK+rHj3jsD4QNHL2hdTLb8rxfzyrgcF/IOHJ9lsbXwzPij2nDctaJuyvPyS4PQ/EUyj6YjPeDFk2tnjQFnCRbOjX2ssDBTpTUeutwMa1gA8UH3BmtYACjdZgVlLqhIEEp7ptvPnyD59uC3/zmN3h+XvHjj9+jLIX6oMuG56dnvL7d0Y6G47Hz9grzo6pW+Xakbwt1SbCDI22tlQXb+kSdnkFwug2gDYN5QXiTD5bdA1DWBUtd0FtHbw0YHX1IOHvbcHt6Qjt2PB5vZF5FYAQ1oqoDqe+17wfu9weWZUHxwvasEahlVSwlwEDaaVBhOJCt3ipWuZOhPj0L2xtZoBk49juSKQsMtl8V2vYxDslDEIQcgyz6TdOvI4J7PgzH3uAeYpIXLHWd13Acx2zXY/qn86B2uWIOTrE9FMNX5eCDLWIwMbAdxRfea3QSVayr9ZyTKmmyztiPk4E70PKcEuzKczbjHsvYwzASuA+9X8r+RMO2cspvTrk8JYy0wubMe5YF1Rzx2PHb3/0dfve73+E//+f/BLfA021BOx543N+wLSuKOw5jHNhaMp45SCdg8KXCljoHEkVrAiB1/+jUJS0Fx2jI4WDFGMuNMbD3HSmDRI1mx74/0iH/k1//DHFxrmaKNM9obMbIZ1XvFLwEUhdF9f75UBRWwyzVdBWwhqqKM9qTgJco5HxPJ3gUQ+0KEKobem8a5UQQxRRkNceAcxpMkNUzAsjedt2P6b9DFe7J5mKeizOYs7x8gkY4HVeum3LWr4OytOEAEr2f6OqEeWO+nrY6rs0ruhitIwDRlDBvIoG3/A3lFjykfA8H0fyn201Os3B0I/gci7mehyU4i9ECvVAob6mGnBLCFsqzWj4RUm0Mc2rLpaBigM81E0TLZ549yNO0XdH4XN+TAWC6uawOZLB7XgNfZBA6HkPTuiQK6yBbIJ+vnbWZuDyzq95S+iy/7MucmuQKKhJBvu6d+T4TVc+zEl/tj6wA9H7qDyUSnlPyQsnjUh3rWnG7bQJ3aRxnsmM5LpTU6NY62tGUEOR1qk1JIBm1ME6+gSEZTjqWal1IsdgAqy/coKqeC0jL0fC9NxzHjn1/zEQmg5qRrTyjg3R7UTsx1P6agAT3DfTthQlQmZPHdDLVS82JgUwGvSig1sjwWh3rUvD8vALoaGqLBRIETyTw4ghyrwGw2eYV817yGq5nLhOtZGPmHud5ZKJoRuACI0h5zX0OTOp58aL2rXPEOPSExmQnnp4vT9F53vNJnZtxtgDJ8U37YlkDu66pfbUO+Q6zvQE2NXYiNzHOqtGsdv2Jb0r7bfLaBNmyKHE69LmsMikTeNYbqk76NZifQNSffPERKDD22fw0rReQZygBZwUXnnvi68rb0F5hMOVnC5CpCiv9mNnSdj3riLmu86mdN4fLIz39ZzKL5rPKBVHVTrY4VzKHYbDIRV2u4gXVUyML877OD71+ZaXQpx/hnkZekJ5LertT5yATIHbKyU7H+XlhqqmcLk0rkX/jZ7j5V5c1n1mkjY8pbn3aUYKWrovmaGq1p1nMNs/cV5j7m4Yp7Vvu+DCCJ90CUxJelSIz6LMYaGSLMG3neWpyAmye0qnvZDMqOm8AaWtYyiIlPmOb62PSdWo9J9MuY7RcrbRTafOhoCiuj/98XYoWZ+BzemFWOxN0SxZuXnfGehcPfYKrce7Lr7dZ/nu2rmi4hie7PuZ+uvwf7400aH6aX+zG5VW555IZSWI3JzfVwbO91Co9koJSFoxV48wjsK0r3r08489+/WsMr3hthigLUFb4YnDv2BbuitU2LAV4eVdxWxwvWwUzmoGXDzfctg3LU9VI9TwvKtA+mCSMDrQdlC+Q3/DimkpnWDfHUg2tBfoReNw79j2YyJSBZS0YB9B7gy8bvC7Y1g3rsuHL+Kj3jMlMmL47BEhqSmF2GZjlOU52JplRgGJrQHbu/Drr3xdGgqlgMveFfubSa4FJbzMmozcF/P80lso4Kfe6m6LyBIriyoA9z/XX3RnXPZWHgHvqzEX02jybX7HJz/11nr/8eVze89SS5YuHaqaa8CegIOOJGIFIrcpgrEkt1TE9xUgbmvc4b0TnT8yUeSmgdEFAt5AsQ3kTLxJydpBNlDYm1wQGKL4805UQI3voOc9SM7J3fNZV0p6eFyRmyGnzu2L70Y4Zz5tR0qGMbKHNx3KNY3LR5Tdkl3KvuApAGYLlBooITuAuBNpLrYh4EOTrBPSKEbRz04zAvF8D3LMtGpPsk7YoJ9yOEQRgiiRJBpldbpA+Wk7/zrPGqbzJXDmNWDoavjJF76HzyYCDWU8Wvv9RO2nKFvhpy7/KPefHKCb0LEhBzz5PwpkPIbuHMt4LMkk57OdrO52tgBM+CCA7jPjZf3K9IRA7r9O+jhlTIiSZbPm6/B3mKifDUXJGgGHqXuX9XGMArp20qXLNhTsAX69rpK89L26yEcfMkxRhan0i4tIYEGd8rK8RwDCb+4d6Sh1vb2+4398QQ0UgRZUWAxZdcRnZVAl1DHTpcwJDBZ6M5bLO5LKzwvD5GrXcn7ELr8Nl8Ifer1uoIP3/Z8ZT0ZjxbVkRot0RwaRTHp0bHUZ6O5HsBJYMcCe7pZB5NIZqcGUDkfiOGIaBjt650UthJbw1knztOCScehI15cPOjggAEDulLBWlFLSWLXNAQcG2bjJwoT7URs0dGMbBDb1UCRmLGkn6qSFGop9nJZOoEFkMY8SMY/PrqwAw+P70MdkaIWOtjZcV0+Ji3kY6Z0yAhAZJ/0ugJkcUC0wbaSyQ+kA4A+Bw6mIMsr7+7LtfobWG+/0OGwPtvmNdVtS6cJTt0ATBAHoLNHTccainecFWB8IL2nio8ot5AKew3BJA0cjxEUTwvaAuC9AVQBQJ8OrUjsHD0XDM++29oY8mwIvIrJujmvqIzdDHoKbSJbg2/TwiNFHPGWjCwETzkuhLe4mGzidqWbxgju12aovlXqQQdGMFT3ok9EyWp/8MYGYgcwY3ka8B91gfDcfrHbdtw21bcVtXjFrw6csrq+R+wN2x1IL3L88ovuCHH37E589fsKvF7bY9U7MrKlpveDzueP3yhj/++BPev3/Buq4AWP049jPCqqVQLD9YqSg+ZloRAFobqrx0avfUIiE6Rw8a28f9mLaDFNE3fPr0ET/99Ef0HqyYlYLogT4aWj/Qxx3eqb/QxwFY4Lbc2AIKVkke909kYOGQcOI55cYeNIgRnIS41AVv9zva48CtbvDquEus/Pllw/PTDd/98ht8/uyolRM2Rxd91Ow0sOI3QMKLXCeexa6509UTcEsDMM5JKkkniorUBTBR278OhM/E7egNpbjOYeWo+i+hSZ40fDyShmytcwUW2T4bEWL9aV8ZE69J8VUg6oX3tRrXkSaY+nauPQ8lJA5XlSnbUrQ2cOggT7Amg878YqEzddMUiOv+c2re9XyQTZGaGrk+Q5WV840ZTArQTRQSMR1vVwUvd7AB8Ag6b/hMoLh3eJYf9zfmZYfGypaNLZ3lbAu3QlYLq1odx85R9Zs+wwJsewmQGSthZ0MoQAz6RgWNIUA32w+SCZE6AaeNAKIlEKAgtNMm1lJR3TFQkMLU2ZZY4UABFnOUSg2IXJuW4vRzP17LHNm+IOZTdQXZMmraF1xdWvDeyM4rMoEVog+oIhkjW0dAtlz6x/OJIiAGoEF+X0EUTogwwLHpo2uirZIpxsniNlsOHqhwaWvU4RjHoMggMvW60OKNwseMdTP06ujWcOCAY8GSLKJgu4dfePecrHStDqvdI3jmUkNtWQqebiswdqA3ZLEggZx8drQVZAfUknboega0KgrC4a52Bf0sWW6ez6jpv+3ifM6kMYNRhjcDOT6WYYuBbF9gjAMcvHK5nhmDX1kkoXYVJsOqA+iMBll4SLyDrPVM1Is2ylQfTHN5Ic9x4QqGswafjJtZj46h0fOpNaM9CbJ9qxXcnmXPrODp6Rts2wt++7sfqVUSA7e14q/+6jd4Ozr+7g8/YLk51qcFsANuA7/67llMpGe4BRYHnm8LPrzbMFuEjHutN9rXtwcLYY99p4Zp64i+AKOg2hMAw3HsKNVwe7dh2RzrWnDbAssy8IffN7x+6fjhD3dEAM9PL9jWJywfXvCTAT897jT3B3Bb3uFpe4cfxh9AapzKg+MAUAELtIMTuZqq2staZ7xbjTz4bA/N4LR6egJMwiINIz9jBHC0YEtRVaJunXqYo6MUah1R9yXwaF8IBN4WMeuyFTKT83NPdfnrUsgqMg1tQHAiIk2kSVs1wzKb+fuZGA9kCyC/tJ8n+KrXhc1td1rImFs/C4Im1ovPoS1M5ooHYGQZtEbW0dEOTlm1yuLukEWi4Ao9rBe1mNMP9wi0PoDRENXPOPPyhxtDV78UMjy7MFTw9kItvFIN5gvqWvBob9KgIiCyPx7KITgxjARVAvlHpI+5Ak+D+yt9blDY3IMskDIHTeh8O89uwDnMqHccxw4DtTdrLViWOpnt4TabQICAjSEg+VKcUF6KoZxuWUCN3BOx72Owrc3IJCqFcax4zNQcOgLNG2ol0BvQECc0AtSaPocw5ZoZYQAtGsYAWge8Utok4GgjUJcNixfsUcTwg1hGnPi2bSuO4+CUNTHcrRZgAHUUjGj48voRVd0hVRPj7p178Nj3SQooYv7kVOt15cq1Jqa24hFEFpc1aVWtuBxoRD3CiDGn5JX0s2JA10UUkxgoxXHbFp4pDLkZo/C9GcwYa+/HySDP68w4g8+o4/HYJ8hkTnDUyynmDgxq9MXAaDmMo83t10eyDzmBHWVBXRYsZUNxFt1b65OdmDm3O7DUIvsB7K3N55EyQrR5DnhhZ5Tyv9DaHI25K1P31KM6z0oAmoAYjEeMHQR9AB2GvQ/0aBhj4PX1FT/99CO+fP6EtQCGAYw7PA4s1nnWhwHtTrt8q2Sv92NCQs0OBDoKiuJaYhHrtiLMUM0w4mA7XezUTMszY0G/vxD36Rh4oKHFwGFNg0X+6a+fDTwtVbSxoeADFIFbY5EukIRVITujanJWR08WEIGAPuPVNEwK0nGypbJ8ybG/gX1vKBWoen+AYq9ujtBYw1oUfl0o/a6Nzs04sO/cOGVZVP0q6BfgzMHAx10iuW4wLzqXeXF2MXD6iT7mrLiegEKi+jMoNQXFZrgKcmW4nU6cK4YTMLr8CeQI7BP3N0GoqRlF4IAXcV0Tg4xG58KXUohk4mRB9dYw2oDZCofTYAhNPQ7+27Yu6DdqrpgQYTrwwElRVJ1o8MB5rkesDFajKm5UhQfZ1hNobec911xb0yQanMm6DGePMRO4Hp1C5W4Svo65z6DfzYrnWVPP9VJfst4/tcqyQpGVlGwZNwUyyV4avavQk8FGJi3JPmGCY9YRoIhdnhvSxfUkjQF0OlAGSQXrsmAEnxnMLq06oUkcVcUMfu4QwysdBgJoB4FesyKDGKKYcjJDggEE+frsfT+12BIYxDyfHh3w1AYJhMafuxVeY2eVp9iC6oXJuo7/sjC4oBYYAaCyZLW7sf0FBkRncl0zefF5bTGAWhko9b4DHqheUaqhDiW9CNR1YRLgZKPs7U5qsAe1q+aBFnDhvMd8fpRUup7bdHQKjS/OO1mHU1MnQUwFw6yeyVREPkd+9rJUnYGW2La02EwA9AmknhUVMZ9s5gRnaqqEh+DQgF+YHkXnL6f3ZAVqAuLIXnhkeptxK//M83UJXmCBnMhiuScG9RQoFN2/umbaqzwIMQMY6IlY5Mfw51kNTXbQ2eM/zvOms4QA20H8pB4jNOLXLpU7BOnZbnDd06L2jcUpPpkMgTHGJYlRAGYCoWxM+nUyRch0Idh2MgizwsREKGnjoYNRJNBNmxEzALLMKCLvZ7DNvITYVqHCiAKogGyako8AfOgaLhuF+gj0IdSr0nqrXTMn1J0bS/5E9sb8vIfUK/Gi6UJxVknzI2WMcXWiZMJoT4xTl4Kv5b3ytT7BkYZAR2OyoyTYVPBKlhLPYEMHR34fY6DFwHAmQF309AHZfBIs9exyRzHZJiX+rPDxeaa/CPl4myyI9N/5eyRvaZ9baGiEfJhu2P2MH/IZTcaPzt48KwJtQ0s0FBdg+hYCk8gzo3XnlGBTNZT+e4JEYFIPGzDL5zA/eJ5N6j0YApX37Sd8hfPV8vHybpZMr9N/5grz0Rp80TM0DUqIgh4qqKX2zFeAvQDJwUJB2lhOUwqJv6dt0/a0QAKTvNBFCUPBfgyMvgPBFq2trljqIlYj8Py0YlmrQCDHugC//LBgWSuWmuBiYEnhWMXuXZNhvTiiGGopGAtQl4reBtphcHDKa04e9Afj2HXtsHI5YwCHP3S2uboZ1mVBrYF1Kbiv1IJ6Xl/gG/AXf/5XsDD89rf/BX00Tn3qA8fRNGDSNZwC81yfe4/nBRBwHBR9NgQ6/GSmySr03tl+BtkOxfNDeMQYLOSOIQZMxATBc/8lqzJBp2Q8nLswmb5iOBgZ4n2MiwbPabuafAqlMgSRR/KY+hlLcWVnLMPNq+jYIDAjT34yplLv5RoD8L5t5jrjdJz6bTeKUqcvVccdI6zp/wxU/YUidH3yxe8wHlDMdbWZ05/qJ9PZ8l9a67QNOFuzU4uz6H6L9m8pKrDLbsH6qdko5lhq2+QkTIAT0RyceuZm8BKnL8f08LKbjNVGJjoBFtI7wQ2uOwG52bySdsNSZ05M8vl8pYeUfgUhMKUh+oGyFbatLgVLLQirGAMSHm/oR4P7NtlgPlgAp185MGUXggWcXOOiGM6dQ6e29TZFrMfQhN7IHVRnrMSz0PS7WZgKNIEYy0Kx6NaHWJOF/j6Mk/jURj06wbM+aENHcB39UjwLZFymnCPGBILy2ueAqkhihMgY2bmAa8GKa+wzh+Fun61m6bci308+1IwDdi5U3mxbzal91zzewLxxjMw5Behok7gZAZs+UKqYlNpvrXeE+8nck40jWfnswkK+f7KFcpK4E3co8j+pwZbtibR5WcSifen94Ba3fKZFv6eDOAgkm7NoNMDMIuUlXt/e8OnTJ/z0xx/x+dNPiNHgFhQ2sUDYUFZm4BA42UoLtGgIc0R1WDVYgXxvIBotU1chdOQZCTLnMdimP/dKMDZOezw0cXa4TxLMP/X184EnjZ3u41D1g1PN1irFfMtgUUHBGGitwXzIyGTrDR9cGzRUA+tJuwdE1U1AwcBJVmSj9L6jLANjVZ+/Ubnf3fF4pXbNsizoYBAOVSvZ+kSHn8yLdV2xrhtKdSzheD3e0PeGqAWhKQAu1DcUCCeNMEGVqyFnRdLmf/Pw2Qk+5KGxDAzVEsUTygAaqpDkciJ1DzAPtfTAAAWqMeSY/WwJTHvt+pxUuo/e5iF3e4aD4JIZsNYVsOzF5rSox2PHcXQ8Py2cUOhEr4/9QGsdr3vDbd3wcnvGdqsoxdA6ZrJqRh0jAMAYGK1hYKDajYnT4BrRoWbSn4FKwxisesCAp2VTsiVaagYAeRgGMKiSAxhV+I/RsS0r6lLFshpKZER7VTXdtWaZQPc0hB6zvc0vDgEYkxKZgr56dAxugpW8NKLZ6kPA9Qys5kh5UfmJJpf53EeERA2B0QZcEw+ebrcZ1PcR2PdDlWSOdd+2Fay32wQI950THBdVZ/a904AYzzAwcG+sKlQ/p2D00dHajmVZwEkqEv9GgRurDGN09DbQXdTOyZTa52sRxBkKFlTfgIVg2n484ADWddUUsaDGVAsstxuWtaK1Bx0n8kwW1OIYtVySOSA8sKxO5t7+IJBkK5YFAo5pYLfbRocWO9o48Hr/gqMfGDZI99fTMgeNtGksq4JS9yFGVO6/Ptfqah9KKdzj5oimJJylYQVEKfcoxxbZUz+YZNwWtNZxf3vAWocfbepuQAAgdbpoSzIJz0BbHyHnxysFwF54sEqo2rMYALSxM6HJBGCMlPvHJIPHNe8dM2Fhy81J8c0Xka3Gl3IfGWIo9I9MOB0Z3AAnNVoWk/ckZiQBwKIxsedkVYIkbBG5usDIdhLdRf5jVcA/dA3cXwuvvzGIWTVS1lHEDOqa9Ddg6f+ytdYZoHRlJsVsBkNskei0K7refJxeGERHC9rK6Po5Cx5tUHcuQUVmJgqWwKSzHQerzsPFUDvPho1s4RozELKhvSe7aLJp1C5kdXWyCiLBNq0TLjl/tojNAyFGmtCHIlZpjKwQyu7DBCJdW10w34dBkM7G5d/H5cXmtOMxDrTRpp3Oqir3QaDp+jscHYERjrt0srobWqHOUXYbc3hBzJbGmcBdmIJs+x0zmExwKeSDzDJ5jJkosjVtSBdFrzYy+0ajBiMLNpryBulpaQ8n4DdB6q8CfoE+k66f16y4RaJdVjgUZAKLTgZBlABaICeHRgzJHHB6qV1o9KHnHBHobdAeeSCniX11+C7Prig5BwLFxRqXrfAJiIFMwkVaPQEUY3CLQTDikEbPtU1oaJpsp4ImDNLrSz8xmDi00eWnWXgIFEgQBYEldzfe3hp1YUbButzwvD7jVjfGtaXgw/tn1FqxLhXffbvg3VPBh29W1IVs9Xz+EUDvBvcB+AAGp9oty03ZfJb7HMdBXal12VC84HGnb72/sRC63BgXtd5V9GHBqDcVdorj6XbDugRuW+DxdMPbuuLD+w/Yyoa//Tf/C7w8PeP//O//T2hHR9/JDD9ao70zp2bbpR0RPQsqBKoOHRLatSYfTDsK6fUEAkdrjKUMesgbk9VkhQxO6BIeCCCwa/Jd2uoQMGy4gO9zS9n8ewxNRFac3jPvku3ug3ay9yE7PCSWLjuFmHZ67m8ob9H25W3UGWNanGVcxMCUAxm09S47VYpPnwZx9gJQksvQcamcFNsH23DZvZsgX4IqAlssr4mARYJOmVADQQ0pmycDSZM1FW2nNxgD+9GxrSvjGHO4Az0a+tgBxdlLVQ5U8sJDWkqgPq4SUsaP8h9mAp7Y6u0wbHUjGOd8zurpnICSQcVEGKKUfBw8r02tRSJ3TTt/MTEG4wh5Io2MuZB6Wo4saFDEuqH3A73tqMsLttuCdVukY0yW0oiGx+OB/XFgXQvqwuIzi6Y7AgXW2fngXtFGx96abKLh/cZcx0fHstxwu71gWVaYOY4mvSZqfbC1TjcYMXAc7CYoJWOcgWN/8Iw/PxGEenBC4lpPaGAdC3rveOyc7Pz29oZSF3hZqDE8BlYBJxHt9CUmpk1ji2HrICem0H66Ohd6vwjFCxRMMMndL614KjiZGiEtMC4+ZOicX+Pl/OYETcUjbvCL1uCc5hv8lNFTfiPfbyg2NOy9obeGdXthASzE8joauhtKbzgHu9C3Jsg14/HeMGwoX1cOW9SOLcxjNOZfY7QLZ1g+rxTlsocASGnI1oq+74jWkQSb1gb3dGVxbMAQzg3/6fMn/PDjD/j97/8eXz7+BLQHvDoWq+C84a64JIBOPUSsA8MGGg7AK6yu8BrwOl0ymoY8WOsTyEbKD/UFZUD61fI3GCgoSNbWGAXDC8aJdv+TXz8beIqxXw44A0gyC8b8aY4YrF65wco5EaoK+QwL2DAMNBQPmGvMuPSLzGcYire3u4IyBjOlVCy1YlnWWUnJVoKivrTjOKj/lOylcgqPzyDXgBgd+/5AtoiUYqQFCvU5+q7DwWDKJXrGqntn+19RIlw0gniMOULbhF4XjaYkih7o0ZD4dpGRz+C18uaRI5BdCdEZxdG4E/9I/SS5yIgZcKbRZ+tTMLAUyOXSE1jrhmIrdgnBWxhqWfDy/A7r0vC0PeOnj5/x9vpg0tADQ9T6Zbkhxo7RG15f3/CDAd98S/DJC4NGODV7juOVgatRXG3EwFJX9ZMyCJ2aUhPYIQjFfSw6fz/Ut09a5Qna6EAYZoAO0+wFNxz9kNAdHW0pRJkJkgeO/SEKqtowamFSGAxDHaReQvvnaijNmB67DLaBwXy5PLKJ6AsUyPH2gMmw9TNZgbH9EJjMDC9lsnqOg05iXRcUtVOxoppC+hXH0dCORqcjJxFDrAMjO2p/HBh94P72DktZ4EGEn5N8z4pgKKmphdXXGA7SoW0CAmw1TCZkmlwmD7UWMbQq9jhwROeo2tcvMFV9avEzMQJIBa6AV7Kg2Cq707npLHed+WQMpEYMEHIaATuIdPVjhxXHujgEt6BW0USbQtfgc6ll0VjioZbKQsAV3Kt9UB+LFN8zYSorE/TjOOY5zHOvci0SXJqtAkrWA8nSy2qxAtMIhCYUDQWxA3aOdwb1D7zkVK4ynX+PnORJI1KU0KX2UQFgfYjRoUpN62qRGLouHbU4W+BS0Y6C3nG2XVkhdhGnJkdRgNp6n9XKBG1IIfOZXFwZqWnn+C0GQ0DtgdOEMwhO+5lmULRlCmHELIgYyGyyoE3gsiiVcNqKQxNGyCy0Sdk3MzKdYHyEfl6ZXYXNFeIzzo55ot0wGW4jKJ6azLGv0AnRQK0QdGDLZMCqsRjQZiPVPHvLUgkWjMKwYwbkmKBAZIu50/9AAFuMwEjtAjvvgb8qe4UMwMTeKeXcz2KNZJVwXptBgFOy3s73j3F+Bt2W9KUEniFo9yGgJtsgMiHJ7I+gHXW1XMHQYsFiTE9AiG16IUZbcUeX/04mtYfBeuBIWykfSb0uSgO4kqwMMKM3lJGVRfq0AvlpteXGTOvO6noWpqaGQ2ZUApxZkOAZSXuQOmHZupvvmmDaGF3uz85EfcS8d2R6YIwJJlsSGYvpdwwsCNoAB5MMJQnM3VyMT4hF5HPyKBNh1hXI3kndGCbtgVlXD25xaorJt2r72wWkAegnw4FuJ4NLznUG1jXBYCWekxEDYIAi/kyQWHDLV7kDq9OHlTCMUbgAvaOH47Ab2uB0uOfbC57ePeEv/+yv8O2HX+Bf/vV/h5dvv8UAfcO6OJbiWIvjthi2DViyE3fEZK4ZqOPE50SfWVyxCDCTMUNRC2WXfQKWxZnI6x7NAmUxrKWiVrrcfryi7R21GEoJHMcD+33Hj3/4hP3LAx4bfvrxFWP/hN/+19/jD3//I6ovGGVj2xcGEFWAbAKMNttsqMWZtg0z2ZQhBHQOZoyU1jCpTTLSXW3NkC/trYsFXGgXe352YCkuxoamU6pwdP4POl9na1My0N0dw8YsCJ8pVn5p06HPuCNFviGUKc+ZpSuSv4iv3oYBemhPZmyYh+pkTmHaN5dEg2WRuQ+9PUFWDzvBbvnFUyOQaz0GP/v0ta7EUzqWCJRaUE0wagR8ZIGVCW7GEjBDFUuGCTJb+UMJflfrb4JDo2HKf5yFt2TmVLY8ar+ag8/BDNHI/Gp6vwEKTQ+csXSICZztqKXS3jDnGTopzLGqXRhVYWSO5AoFpv3mF9vrQjnosCDTc3H0Tn/CIjMLAOaB+9sdANnP2Fae1SLgukkEXTaMBWZTu5uxICqjlWp+bB0uKEvlIK5lweA0JLhAdfPTrif3lu9zdmzw+mg1yLLF9B8uwK542uk+/WuKeqf/PY5d+al6PkzRncx8kvLyLOfeHzAVAvSAnWuQNb0+svBKY8E0XBZfQ9w4BV2tbSqIKXTVOaKe1zQ2GIhx3jNbb4uKx2pdG5TmKOZYStX76X1KnXERASmgFE49jHHQbAXJCzz7Wo9S0EfH3inWXkpBBfWN2GZYlFNxXzL/57TQ1EPNIpJ7QcR2WX9iCNUcXhZwJqzj6SZWnuR8yJrme3/69Ak//fQToK4B98JYPqjvRKkX2T0nK7Jn9wIGYMw3HSWDMZCVpdg32MY5gqxtA1uoYQYfCdhKSiN9wvQLoXbon/f1zwSeEslW2DXGpD8CSr7NBKjQAGYfpKkEdEg3pIyT6pXGJmmGqSuw73cYDNtto8Cwsce41gXRWTUaIzcjUeLeVDFBAFaT9oMzNJa4XgR7YHU/tS7wejrfrqk4vDMlXaostiPHbdOJMqDEZLOwb1mJh/691gVUzm8zyE/V+67AnUJnrJZARz1ZVlffOQ/KJWnlz1mRdgWaVlX5dhNCfLY+bnVDLQufoSiQxR3LrWJbA20bOPaOfhDsYkBLMfBlXdGdjuh+3xGjY7tRA2V7IluAsVxH33cmEwWiZ5PVQ8PB++QzvLK1tCcuSdwYDXahxGc1iVtPVMZxAk9wBu69NRxjzD5oL0YAUQh2awfXvDA59VLOxCnazAlZWbyylRQtY5BtFmXeQxEika/NZIL7WpWgzCAzWVYyniAZ81C7tJI5eutorWFdVra2Bivy1QEsFPZ+e7uTYtpZ7ZjaPs4kYYzAMQ601rA/DhxrQ73sYQBI8bwYnALiZUFE6uCQvURHlsCpnL2dyUzu71ocS3W0g4DtcTzwuN+xPIlWW5jQpyYQz2JBXV293ud+z/dNUMVmC5PCUIOALNfvDfR+oBZqJBFHOe0LWemZ3Lj0C/iebq4JaAzwPBzoDMrcAb8wf4sYXseRbL0AK4UCiYLVGFyuNjLASjQDIFtm2ioxBHX2mUqL2TMgw0+G58l40FlpGUwrVzeBR8Z9VQJIgWfB96SHi048ARFA7DVes5tGKXRWaNzFjvSCrIBT6N1Q6glldAChs9MHgVZT8sL4xWegP5lNCcyJspVkD+Zo5xjw+WvZ/gW9r31dDXUzmCY7TsFxVXcsBnoP0rAFTPAsFybLRVMag1pPpbCCea6r7tSCrA9koMxkJYOeGA0xZoPVzLp1RBV8MvlgTq8/B6ZTD9kiC1XmAohGHzJBJyV9MfoMCPOgJjA6xgB659orUMqvEUxWLh+oRLiQbTRbNPWCyKr6/E8ux8zibCaruSqeKaFaMWz2p5/nmVSOTkDOMvU+33e2pcRASpwcPS4JqpIZZhSTWW2D12MKsHuwJUghLJI945HFAgJQDHD7uc/yf+mf06Yn+HRJFud49HllmPcbYPU9WxvYOgvJAGCubRYnTMATRT8zmdQVzc3EcxJiYvCnuecu/65FZMzUBDoleKCwP+yr1m0ChvyGgd3yALrO4df2LebvZcHSDRRmF0ssGd9FGIGrzSDZbohMXsToFLPCTJPIdAaTQT404W6PXc7jbPGgNqNjNSpcPBqZbjG45oet2HvH42h4eXnB7eVb/PVf/xv85le/wW9+81dYnp6wKw5ZlgWbG9biWKthWQy1sC2p9zME5zE/p2POqbs+URwkjZFJESbAXosWxhnbjU4tnmVV0W4AvX3BaE2aqIHeDjzeXvHT9z+goqKg4uNPn/H26RW//4fv8eMPH1FQWXQy6mxGKcBIIVmdr3yeyb4UmzN9/WyrDgJPfNxd+z9fiPknJ1ENoAtE6mL7WbbsByAR51Jc05/4/lMHEJwInTYpdN7G3J/pFNIv2OXnY/7bV+cViqd1nfOc5Mty29uZRcwzJ2N3yh1MDtQZsxjmZyR7frYTZV1qfp70GdUyPK/zYjLicqZKJWOO3UADU4hbLbQFQ21uQ4AQy6kRmOysqK7CK9nrPEf8JqCRn51Dgeyr53tKKug793w+G8tyFmN0Ak/9wmDzi33XK00FKTFjU6plBKduDQ3qONfWzrVhb/W0jRx65F+tM5ygtattld1NjF1gwL7vKNWxLSsM0jsy+oXeG7LNOOP6bIej5lDIr58+O/U8vRR4ofZwGTxfOXU5pRRmcQoD0Q0jC0CIk2mvfecCoUYPwJYz//C8f/1mZOscdxmnYxvKbZ1dGRlGMTY844Hcesmb67LHDszYNZ9DT9a09veJvVqShZnqBNS2dhY0GVrQb6REyxh5rz09+jw/lnFX7tfeNWWtCJvQhFS3uRccQGQeaAFEw1fttbLDbtTKDADj6KipJ6X2uGy1o6w3728ENAwKShByLbiHl2UVY4wTCsfoqNtNnRFcl1Ko97WPASvUsYpjR28dX758wefPnxEqfBV3FIuLVIKGUyQCL0bbELFF3pzfmXcGkFqtEYxPEUHJG02Ydehgy76zOJ7Akw5+4jdXQOJ/4uufMdVODCIlByPsrNDx0jBEL8xWMxc1miJVHFfd+q6Dywrf0bTZBzRph4EoLKaafGp5mBV0tZ4kIpAsnyJP7XMhGPyPcVBYK4YMaN4DgBgX2iZRvwyiYF1ASEFEoy6Upku5KhZFwsFdm/44jtmmkGwAHnAefFLXNYYwDZ/5Cd7pDCdgkWmhVlMCq9OUgAGtglGciGS6hmVJhz+UbMgwmuOxH9ij435/AxBYbwQXsk0KAdxuTwAK/vjjJxxHx7Y9wdw5Pn1Z8PT8goiGo3X84YcfsXx2/PXf/Dl1EI5DQS/BgFoJGvK2COxN4dGRiU0m+pmQBcqyggKSDUBXGw17XoeCxVpXwJyilRFzYgGcY8R98KGO3rHHQIFhlbDutixIhnV0jgElqUwjb7my3K+dbCS24/AZt0E6eRwHckR7Bg7XdoiMdszOJCWxyxnixAyDFJCwljQw0ORQa1lIHQ6b1YXWOswXPG0r9qcdYwS+vN353OUklqWKrtwz5cPjseO+7Hh+ekEtVYBYQ1M1hMBXhfsCtpsbHBUUm3wjC3GpmFGFQLUho9b7wUS7k+l0HK/o7RUjXrVDK0YnqNkfDUtJUdACREE7uFaGBbCBGMnkE2X9EtdlG0qpFV5WfFO+lSMfWNcNy7YRAMXA40EG1VY3ntdB/Z6yFJR44LBjVhTWStr10d4EyDUEKr9ZesRSFyDIKjF0WOQoXyWUGEicpHe1zajClZUb6lLI9CUl3A5VhLMllUkHnUSCmymEmoFTgdeCMkytU4GszrGaTeDKg2yEBEMDBF5aO1hFXTbuB3c8Hgf2o6MUzfEaBA4Wo4Nvx/3EIA7qwrRjR7IQRpC2bqXgVm6XjLaf+9dARpuS5zOgEytgDAKUuAD6ln4ppm1nIsL1K14uwO/XTjHB36bnYfA5DMMQiM42RotITWWMRm2EspKJ50FWb7gx20QAVmERqIDAGyb1UydlZj00UAQZBtBjsqwwLzNYIZbPyraKrnYKgo4Sd43AsmiteuP36GTrps8yPmv3gOJOABqYUBxhBDq7/BVan0BVVcJUzAiQNvlPVbzSXrizvbdlkgm2uCeVPP0jBJ6Zik95kA39XB8KZqGYxEb9AjCA7XNQHLEpcXo4q3x7pyXO/dyGfAZcSa6KKeOsHLszDmFIwQKZeZ3J1BgD7TjPpFlVW1lqlQloNrFdMmMLracZ28GG2L9mcD91Ksxdrf1MbFo7AARSXjin8YaSE4R0/pD5lOEcbMBCScZS0GcxGFUMcdlngroxBhnjUIsN29VOthZjTw4moT3NFgolEvLd5i7pUgJ+faQeypjPMRMBV6HoBOTGPCe1FNhSOLACbHGuBpiXeU6YkOr9Ahpuweq2u2GpReFiyCcw5ugYGAf3QzsCOwKfjoZf/eZf4H/9r//n+Lf/+t/gX/7lX+Ff/Ys/w4fnJ1h9Rnfgc2mom+Pp/YrnYnipjroApWZynbooCmyRjAeQta3tTW0sMgsntjBF2kGfpxiCySGAqgA/RdId+PBhw7ZVrOtNLZrAl08N7bHi7//r7/EP//Uf8P/+D/8v/PD77/HDH/4ej/t92qS2P8g+QWNC4UxuRwA9yEo52h2lAOumoRLJdgJgId0dMXF5lk4mKnT9AYN1QVpOSYcQCGmmhHvElPRoB1nZvTX0gdlaCQPqssDdsfcsDpMVbmWZ9j6TpU5NjvQMhDkmWJSTccUOkKYOn1dq3HGTsSih8zULE7SH02QrN0tQPcO+bCENJaYDySigNmaEAG7ZO55E8rOTdXw9Fy0BaqferRttPhlMupbBQhIX+iwK0M5Vntfj4PU65USOveH+eOCxs9tjUbHWwNa7TM6n/qd8V1ERx0V9OfaH/PBAWRfY4mztGWDxBQSjWJBw+RCCC7ChIpUAT4EAmeTW6Ud4rpj25brxWTO+GvNJ5HmP/UBdF7x7/wI3YD92PI47ervj5cOv8e0v35FRpCj+q32gDpu0uSzEcl93tb2aU0unR8d+7DxDYAvesqywYmqBe6CpuABzbNsNEYb765s+s7LNWqyXGB3nxG76F3brBIobxtGo9TQCKCwUs4Bb9VzKjInMnTHkQXveWoO7Y9s27WGjBqq6IBDA3g7FBQkehXyDMQaIkdyOGWd55TAFCw5RIOil/M5Olic/0nCNz8YYZHMmyEYsZLLUaVtBwAmYYHmti/ADzOIa83Tm8QjaGchuZgGZ6W4WfYEYD7JaSwX6QDsaWICvcOOgha724yptr21ZUVzF4G2FL5XC9GPoWRm8LACK9hPjv+ILilX08UAMqC03BdJ5th/3B+5vr/j9P/wef/+73+Hzp8+IfuCb2yJSJAkhBMESXGbOv+/sZPC6ivHnGD0QvQm4NbWPUpx+9IG+NzE55VsB9ENnv7gIAxWeniPETJ1dHv/0188HnixNcCbRZ7VvVnQvjiaZTgM0IvChZLtPEMZAYcos/LuVi3sQGGGWb0wHNQKIDl/Y+hZK0GVzTyBGFfCek80iW01UbYgLHGBgiiSjRgeiyrVjtu5FBqfmXx2WHJfIBKdMSnIm4XkdiTrzfcvlehUbppOeSUpWbbnuBJeSXplO5qtMRQeHyVgmXJfCNF8bLjptmz3hS1R9ngAsGdh1XWXMz+fSgwhqWaqmgHW8PR7YG1trauS2OteIzoq09taFMmc1M68LdiZZYs6UUid6HeIBhibMRT7EjFfzsxCnrzYCfKOpijsGhp3aTu6mAGdo73YkSmC5j5DPZVwq4Ca2dijY1GSkiNlGlXB/GlA+Rjsv2E6je95D/nPM55ZA4skktBkQEWwMGVKX5sQy2TpcN7u+8QQWW+toB5NCCGgZY0gLxOckrTlCVusJtU4ZMKfLn88vg1IGaCMCbZB91dqBEZQBTuSdRcIxKZzJ7gIcpxi+n+caULInm6Czk0lLjk0v28qJlV2TR7zAnXvq4CfLaTDgK3BUK+hOrRLovqfuCLmQIN2X3znKOJfFLBPwDCwHKEpEZgnPZs8UFUgGX7JNksKRAUYuKxL+BJJtmmfmWqlNMIprpOB3zO0011ue9rQaMwk05BSwqq1qSvS7dJPMXFNL0+bHV6xX2tFgImOD02ekK1GMdH4m/FBiBQV1dmp15U6ys9LtswqTwfOZdRpyzQIIUduR/ucMuv/ETAIgqBLcOEokgGzBGKrod9nwGLQN1TVMw0nfv7aruZ5/AZBZrkUGNTpX86zzjERwjTAgbaKYz38G+zg/I20LwTdHd9Jcc3BAjLNiXWYDE6a9yapiZik2CzXJpFESqTa9cbGZpx0xJKuP3652A0PLrEsthjHBpKw8XyEG+r35bOZzssu3K9FOuXYDgWe16YPgTM3Ay4yAvUC/kXtfa0Efd4krMOtY6tLUubas7dvpny9VY1iy2y42PW8iDb7WEvLZWYiIGH+yd3JoAVsCA4w7mHyeYEWkywu+X5mfJVvwJ/v71JZJhq4JHLseiTOyyxZ+3lIW/AQRWcYl2sNDvzeZGTp/MT/q3H25CCATLMX0M4HP53+9A1Oi5NI4SZF2WALwtB0jCIbPLa3t9NXkoTyTAaR+RQp323AO7MCKYhvef/ML/MVf/w3+5l/9a/yrv/kb/MW3T3heKt52YI+OhkHg6dnxXB3Pi59Xnlsnb1wJcIAx8VdgX2QcYLjuoHnGFZfqJYDuaX6Glm3bOEnpdltofxDoR8XttqL3Ax8//oTf/va/4u9/+zs8Xj8jRsdaFz2ygRSPNxVvTaCji1JlYrSExJBTCsJinqbpT8gmD7aMgXsoy6dTby7Sv178pt7L1XI2OmPX29MTJDyK4zgEDuW5YszOkIj2OLVhcm/13Oe5wPOMyArlgbLrM4n5zHTF8+x2saQ9OyCKLGzG2f/Ix8xdfz7byCJQ2vfT1l1ZkpFEhct7pn3GZFMLgIlBQKCca5zPZYYpWoPsLEmHQp/A55pDlgw6e9p4iV3xvNLP9YwjvgIO2O7Dtp4Bj6K1ikTv55oir2La0XxECbjq0cjXmxvZqkhgL3Ml2fNc58h4id9ZFx0xWDKs2dop4fDesK4Vt9uGbOU9I+z/xvMUSzc/m3IsceZvCOkJA947AXBN3gagmJxMQ5taf1Bh2ylgbpKJSRJCgtGeMVcTiOMzBuuFMgGl8oVzSIhpwEbELEClzc127flIILjOTzFxsmjYpKXgdbKz/rS5KmO3LC6RpEKghkQLzLM59+B/A62YPuRP33nuNVziWBqfbDW8MrtSbiHi+j56XtrH6QvT/zFG12GJUzcqpmE/P4MxKTtTUmqC8ij8BtTWCIOLkZZxNPc94xoWHLQXVBSzmac1PB47vnz+gi+fv3AC5ki/Mmbra7ID8zZpRwG4w1CBPBPCTHj2DF59dmYl4WGaQS3z1IYuvP8pPQQwDsOZxvycr58NPJVk2mS7VnFpwyQi7aISA1fqHIy9/4gAOlC7c9G6qKQgcm8l5ii+IoMJXxBhOA6H2Q1LeYI6BEQHLBhD2HdQi2erN7R+4CFxYTiI4M7+Q6Gf2pSsuEtIFAEvZM/04OGvpShwbqTI9Ya6rFxkc5C1b0ApWDZS6droMOv87EWBXmQftKm1hA8ZDVgQgA24qIdLqUr2pMOiwC5MU2YiHbXDbBE4Mij2vjj2B9ku+33AvWJbn0kvHBleG/o42GevKO0wUjTNHY+x48v9jcjmreKbX3+D1hpev9xxb3e8/vEUqvY1YF5w3AOP0fC7P/weT7cNv/z2W45rbAQf7vvAmuM8B4WIU6SulBVuBfCKMRwIw9HuGKNhWYXU20YjgENU3jP4PA4ahlIoNL+sjtZ33B9v8MKKQ1Fbio1kBvLZH1KhNAQZKGazfew4kolG473czuNyjJ0TAZFB83ngM8YpJmFGCT2SXcGElsDV+T00TjOUoIzjdP7FUueJe3LvPD9eCq9tMbQ+8Pb5E8wMzy9P+OV3v8Tz/Y7vf/xIRhbY+va0rOhtYLSBx/0O9IF3757xhA1PTytGVLQhAwn2OLOFtOlsNmqbbTzT/djl3ApSGJ1gcqD4TcDTgcdjx0+fDhyjwpdnLNuK4o4vr5+Bbljrhm274fn5nQSaY1Yn6KwMt0rGXGuVrbb94Bhn5/QgQwAjhx0UeKUe1ugNx9snVLWKVT03Lp+hOgXJ97cHailYyjLZR6FR68soqJHqF6LsRhP767Nc6KBGR5EQYmvTHpZKQUkrBMJbJ7MutTHMDeFkgjZk8pQJHhPSosmaNGOnlWcLAltm70ebe5B7C4iDgK2HJkrCEKPj6B2l8sxXsDpsoM7D40FtLFffhyNQjcCCyLdncAsCr7112AJ4CSxrAbywOtvHbKVEONa6otSKLmCesTxvNIE7Kdghx2/01OAoAgJUyR0Qi9Md+569/l209g3Z1ru3A0c/kBPHhoICVuwDrQe8FlitCJDuHKo+PXqDG3B72rgepZB1UVxFjYFxNMQYKIP6YLdlQfJIOD2qAzUQPkQedsAr89Ip5AwUlAkaTh8KTmwbPSbjwAKwTmO2LAVRC+qyoB0HHvc7zIGKnCgaGNa0Qw1tNDyOB9wLSq0CayrIzRsTRB/RwGKMI8IxzBHSEHCQOVUr5t5jcM9rDTsmxXyMgy2JAs0HWPhI1jergQScHazWstJO1uBxUGdhNZ0ho7ClNaiRaKG80jAskXgX98YBR+sD+94UanWUZZNoO9lHtZsYG0o2TPvLAhYd2cdooLZOiGlVZJvCClJcG0qwE9AZGBJmlx3zSj2Gzipy6HMIwnYkLG4GWE2gTL6/xGR5jgM8r2JXZ9GuhahsSi5tMok6KAY80NHRB9sz2WpZEFgZeZkBNmbiQdakoUW57ElTDJEBr9zfnHqrf5jyCUAJTe9yVlaXyqlMPcGIa6onNmPxmLoson4IBB6QDrKSECYSyrlRoiCiYBfI2u4d1Qu2yhHaWFaMtwPjGFjC8HR7wf/wP/xvEbdn/FA2/Plf/A3+9m//N/jw/oZt4SCMuHW8/4bDU/af2DZ3fGy4bwbcHNvqZEgLIxzSvYlMXoJn3mBiAMZsEzxr/xBD9CxwYfqArGUThOtHgy0Gq4aXl5XAgYAVAHh+ecJvfvMbvH3ZcX9r+H/83/7vuD/u2LaFZQUx8KqtmQni7fGGcRxAp27fd7/4VkNlXvD29ooff/gei/wNJS0Cq/wHh3AUFF/IIOsdLjCwqE1fpFW5Lkrnpu6QV0cMFsqyHeUv//Iv8b/7P/zvcbttuN02/I//x/8R/+E//D/xtt/VSZDvlfDCKWlQlCDOyVL5NCKBhcxTtKcDWMqKDK6pZZPcJefWhp0tyRnDe2rInk+xKY1dVWzqEvV3qxPkzw6EWov2hTPpCw5gcdQp9Gvz/8gwXRbIbgBhB3prFP/PZBpshk0SUQRtBQbFnn0YYI6n7QVH6/j8+Y7q3AvfvH+GueG3v/07tPub8gtgAabdSwsQgwy4KY7v9J2xSsfNjDIHWAhqjlMLbJYAZP7oKwj2DWk2NRAU2GHSmXQyyTFwDFlGMU5ciT+kfwOjz+8R2F5exMboiOJ4fXvMlthx7GiPV7x/WvHt+xuivwFheN7EYG4PFTADy1pncbaPlF3gJHXyOxdk6s9238CCjsUDL7cnbE/PeHp6h2MALUzECcfxoDj7CcCTybTUBcf+0GARAR1D+cGQELTzmZa6AcPRBgeBuRm2cu79o3FIUMrhpH5bz1brbDkb2TjJThKDoR8EnpZ1RSL4nJZ3UIe1Frhy/xCo2hWHAmSADhBsmFqBMCy+MT8Im7n1uq6otczzXSRofhyHtLFWrbDDCn1tSb00p7TK29sbnp5ueP/ygi9vX7AfOxnaZii1IkkUPQLt6PN6sghSpD+7t44WA1ZARtJjhyt2gNPe3o8d7o512WaR8/F6RwB4fn7GVld83jXMojdOHV+oERjusJGgtuxgUGPYBlDBHPuHtwc+fv8Tvv/9H/Dj9z9gXVdYBN5aR/SGtj/UdkfGV3Gg7W/wCGx+E/DmOEZwAFDeb1lQ4Ci9wprkF6KgjA2OCrcySTXkAwcOkX3G3qc0x6Y1+bltdsA/q9UuARRMhDAT7okU4usPnigivu5DTGOjt1UV6/LDC13cYGIWTJm2SX3PD+E2TBaSjLiul97YL5U7bXzTIUa2Z/Aa0nknbXPEiZwnuJBCt2NkEkNDehUyH0EvS5AEc7PnYbRczxFf/ZsJuZ2MgMta5ucHgFmNvKw5Edzzz4nSXkPGrF7SdRDBzKqrATn5K+bFGOpa+YZvdz4vJfviyTMoF2fx7b7TXr/vU58o9V2Gsd7txuQqWzPP69K6Itk1uFSgzn2Yf+bEBLN+bjbdafZ5hzGZclXxvkL3hcj/43c+Ez/uiaFKpfYN8hrPasVZIeYbJTh2ovtA9gPb5X/Iy7AEapWQaf1PZ2Rzfw/pj3GwGW+KselgL7o7AZeQ2HbX3STQpfc9+40P9FaV+JF5mEs42XeBidbzvWR5UxfIsvJmk7K6lIo+Bva2o2lkcwT3il1X26C2WpChgJgCmxczcdqf+Po8Ik5GSILK+Z18JZtH77qXzvNmJuduF1FwAGMGWnq/ZJyNrKORBZHsoKyiZBso7IThLffEZB/g4qyBrMaaLszC5grkGclncbUI532FWoeA60afFiIwA30omEt2ULIHKfiv6xlqGU0e9cVGnZVZQzIAQ0ng3LfQWtipc4TrU82LV1Dv2utmpx3NWx1aJx6z0LM6mas51S4s33jmYPN68iyxEnzZW3l9SuK1k2nXwhG9XZIOm63QGUKd1WyxPRQAm1pS6LMcIyt1eabTPuRez5udW1SLPSu7p/+cZlEOmeCNwQcrprhcowGz8DJ0vobEFpIx5Jf7ncwEPRzTGQWSZRBks00jjXntswsn7xMm9ofNCjaQNiP0KWqRNwWmIb0tvS6vt0cqdcTl4c4Dc4kFyGA0AJo/N6uHEQBKTOLpV/7len1zF+U5FTSiavfcyRHXl1x/47IHY67VKRvgk8133Ztfv4HObgRS4D/y7DlgYnGlWDDvxOe9pK/K8jGZhdk+FEhdlPPgiGmaz07slbOSetr/tIHTFP03gk5DnJGGJRswrU8+szjdsF3fP9eLwUZqgaZPng5Ky5Zalrz3ggAnDo0uvZxc91JgtcALgUsDWxB/8e0vUT98g/cvH/Ddr36D9+/eYVnEAGRvJVvpnBpMCVT2EThah6FgFFfShzQM57rpMbDwxDOUzIZ5jHPnXc7O/6+vq00/N2DIVtKCLcuCbdvw9HRjHODQ2gUMDbAEIwlIymzo4wNLCSyL4bbdUDHQnp4IFo7GZG8MyU1oi12CMO5nJVRz787IEil0mxaK7CFDOwQAm2HbNvzqV7/CdtuwbRtuT08wPydtXhOdrzSa5s+vsePFFuonnp973Y/G3z/Ny4zw6Cctd/bXnJgzwuMdWvYRZ/yd/kmvz/AhmBxM33faFu3v0xBhRkQCmOCnDTr3nKb/xvVeczN+FbhLpwa0DdrHizuKVZS6oC49nT1SFoOgHWMTv57FvF4AyQo5gdNkJGWuJUZa5F7Eac9PJz5XNu1CpCGZ50mxTOYQ16cxz5D2g+fvhCYH8l2G2CyLOgXIeImv8gSlnyfrNtu+o0+fj+t+MUfxyhhl8Lu4dIlSb0j3YVAHCHIZbT5XFuuuzLj8OmMEpspqKdTZHT0FuKe3RPK+HJigUwDZd4zU0kxfxXVQt8SMYXLVlCMO3S/8XK/cv5F6p+OyF/j19RAsgiwzV5qmLOaff3rvZ/eJPm8+f5P94z0wbhBwouvw8JPhFMlq17/Nad78TibROSk62d3n9Y3s7FAHRFy+r7EfFEdPNjnynvlZrrMxRp/SM67c4XjseP3yBfv+QGuHinLBvBp2ttDBp74w4wIK/oeZCnzJciJhyCS6byPlJWavAIXTIdKNbG3M/339LBiTXvzzz/j62cBTygUArIx3JScRgd6aHGmdC2l52dFONDWAMRqTOe2yOf3JHCXA/utBocKi3mMDb2z0xsl2pXDziL7idorAIQIFFRtumlDVYagwOGoK8QZ1lY52zKp+sqI+v35EH41MmeEYTYn0YEUge0gxwOkGZmz7c4fXZarK7/vOKorQ51o1ivto1Io0Cknn4Te9j5vDqzHZ2XVoerBSOjVIgDRaHKiXgS03d44j7SMBBkV2I2aP5giCB7f6DJgO6eB1IwLbtsnYG7xWBowLJwY8vd/EPBM1tw+syztEHfj08TPeSsO2fMHT04oP75/ZRjUaWt8xbOD56UmUcTKKSg2YDbg3jHFQdG2lIWr9jY4cJ13UwmG9kOZsjrUuiBHqRR5oMLQGjKNwRDUe2NYV1R0ppIbpNHXYdDgBzAS03gpGDOz7DgrXN2pYuIl5cibuEFNh7g8QtEAM5EcaqgRUmfz1keyHFJqnIQ4b6Gr3SlCph1oUzNAkgJ3jz0mCO8eRujtuG1Hod++ecBwN+8G9MZkn0NntHY/XHY6Kb75ZEQaUEqACRkPrZNktlUEfnL3gpexAIbOv98Y+7k4nfBwN7gVPT8947Ds+fnrD4/6Gt7c3kEW4at+AEw7hWH1BtI6Pf/yJovjVUTaKj49h6Agcx65KOAO8HGAA0MDyuVUmYmKRdHSYLVh8QVeoO4J6EUEhEFWy8r75O22QkUAJ2oLFdP9gNaYdbaLKMRPH80+AgZVfdF5GnIbaMyULIJr0RroB4VhUcRlqW+voEoB2YA4w4GblBI+rAzjzL1NGQ7FJOmgKjjrCnexCqPIjvaW6bAj9dx+DE780faQHW+dcyQZ1Vuhgl1qx3Qw5uQ0jJ7Y4FndgLYCYMzE6DoGeBDFyFPfZesSWuYY2AkDD0eVjIJ0Wd5jxmeMi+Ay15hgMR476Nqd+18rzT5Yry8uutrmtVoQXhBcCn+lsY2BvBwM6GKJ39MdjatEVBZNeVtqg8UD0gfv+Npko7mRSdTH5QuweK8scJ94VAOVgiiy+/CnglBPUQlVhG4GmtpQizbptWbDfHzj2HXPC6bIiAmiPO5IyHlATzQgmnkvqvPGZerajJfAYHb3vanviNh8tlZBzoAdgoC1LXYlsn2nSZBnKydiewACM2oWslEYP9ENadAZOU/XAAUymqkIGJKMkWzoQPFmLcRRxsYLmAS8drQeOMRCH2h0GgGFoQbuQ7XkD8jHGKWxF+gkxGMynEDIFTR9ie9rXIFSEpJ8u6WluUTNs6w03d6xlRS2FLeVI8fJ8cQaRQwlXmT6hVEM1aki2Qf8JGEyMrD7pSJjJ9Ti4jpbaNXMfAVDywEQqx88bDNQJYf58SfqAWRyYYIP+JetRZpNbjhRjLWoPZf7JtRmNyWhdOD2SMjpMWosvqHXFozVAhRUYWbXZep8Tj724dOIUYhv1LNrQwJtSgcWBCvjCeHPcG6IEXr59wXd/8T/DX/yv/nu0Drw9GuOzoyPiBlgF9dIG1gXSbwmMsePty47X5sAwfPPtOyxrwfZUlaCI1SNG5tH6KW+wruezicDR+7QrGcBnOzfxDgb/VjhNDwOIBjzu1PepZUHEwNEOIAwWBcu64P2HFzy9bNieKo7HZ2AcuJUHDA1j3Bl7lY7np4KXl1W2Eaj+is2f8GfffAf78C3++ld/ju9/+gN++Pg9ivZC33f0PrReGthTF/i6YBwdh1jtAaCZJjprXcY42TNb3eDmuD+oUbltG7bbjdozVvDYO/ZjYG+DMcngNN+AYT/EdBrMD0opFO9VjoJ5BZeELsEPGNk4iR7kGQ0Tg04xYrgSTJnE1PZQ0lgSkACw5GAhvWegqROiXZJTPt/uYsYXnkN2o5HVN2EZo9/oRmQhpTwAm3ZorQm0Dv2WJpzZWXRnYu2wsiF5UV47tueBFh1/+PEHLOuKulQ8vbzg+d07fPn8E2UVpF1I9SyC5kvVc+1t5imBa46CKTGSBXZTvlYXApejN/k97odk8wxA8TCBnAQLqG9a5vPIs5LFPdeUNQewFvpyHwPRAodRzwjD0XqHPSg1Yua43Z7x/PRCoBq8nlIrlnVDH03aqBVmBevKjhQcBy9qYMaNBkoKvHt+QYzA/eNnSOkOHoy/S11R60ItuhF4fXvDQKCsHBqE6ngcB+5vr5LNOCc6EkVKJjq35xCAkKCFPXaUUnC73VhwEmg3YuDp6QnLsmA/DvTecTx2DDeM3Btm057vur9yGRqWYI2N3OOCMeu09DPWba1RpN0L3BflewP74wGzwG1dGbsaGZ6cSJ3tfzbjLwBziimL5QeL7CuL7NUJY3T5DS8Ve2s4Pn0mq3mCUQGT/AyMzFGyyBl3rav6ASZTl3u5JBMSgVpXlKVifzyQ2numa86CO3FOQwxyyNeloA+bw4d6dOTk5KohAKM5eu+4v77C3LBtYi9F4OOP3+O3f/efcH/9jNGPiXUMBGqp8O0JrbHjYDhLbk2afYuRed96lw4eQWX3Modd+GAOMcCzWQonYhYAfd8RoyGnrDcc7JDYKjtnjh3H/YFmwLbUkxH6T3z9MxhPEkBMaDaRZxe6GUAk2jaABEEmf9QuARjkQBlVisbOh1WghEbAE8BN4yYwRh89JsAVpPBbpWNIls/8lrg2gmCFOQ1dD3b7qVRg2RcsmqZ5MifyU1ghqKXKKagqq0pcihrSsao6HuDGcI6tBHBBDU/h3aIAPRHWFDjNagiAE4nXFUEIcSjoP0fDjhmwT/QxEeARcBtT+BqhCX9m6BIaHIgJCJ6jGPn81m0BR6wqEe39olvI/xF8DHz+8gVjdNy2DYiCpT6RHh9g8icQLPcGQJAQNuCF/cBZwUmtH249JfYpDHbGvZhMBrVOuCUjignOGESJHYBV0YHL6bZGCwXjWgclu/xIh3nBJcXipdv5PBIlz+s4+Sq6Pjt/x2Ygn69RmMFMWaOWTRPD0uvquWvdZrX0wm4YOZnGQLruwravveVo+gAghspg0NJaRz9ouGBJ45U4pfZyBvPHoddEh4byAuDzyiPnDrgFxmjobcfb2yv2/cEWAmnBQMwBL4V6EMGqWq2VOjfqdxzZlqRrj6yM5HoOtR/pZyPyGWY/s53magobco1aH4B1ibDHtEv5sOifGOVliyvySM6L0PPHqR03BLKn0AerUQPXzeCTs0mTHwFOzgNQBMT0OPf8dJ5gwJv2ZKi/OR20XOdMaGQIzg2YIXic24p2nHsqP4/jX0l+L85AvdjZQp3VJSageSZV3URWAQNwJrJuYo9m4J073wCkzbp4CJ6I/JlhVm0z6L7syWT3JBuNAYv09XTH+S5Z/Up7dabROG3NXIf8p7SjenapnxUXrTMJ1BaTiHXajEvgn5W11DBLxqo5pK9ieRnIqq/PvXY+MDNJn2qNLZMg43XnFChO40uGXsw9zuBClbBc67x3E5tPVepcZQdgHoiSq+4z4A8BSyexX0uXMcJksGWLCauVJ0Sv9Q6eY+ov+9y6BCJCdu2snsrFpptHIEdJa60DamEGYnANOCVIjC9Xa1QRgHEF++bz1pkZ5+doF/Da7NxBc8/PH/BVbjanwuU+T2Am893J0L2ELkjCRCak+eHTh8j2ZQCsc8j2yNOzaGvAq4JpLyK/nBVX7kHGOOdN5vud7/XVEbV58dNvpVD4meCfADv91Wl/JkCfCWZhzHWeTDGwlCSTpbGKRXnqgRL4LYojfarxMY6LGct1oZ7BwA9eHXDa2Mex42hs0UUnILPdHOtasGwU5E3QZLtVZKdo9MrhixYqrrKA0A/FL3p4xQNeOFF0yD62lporvJPUrZuM+YtJnPZcQcTc0y1Hcw8cnvt3gFOZVIyqlXFOAeYUQ8MEvEsxmFWuc9iM53vrOOzA2+sbqi+ozrHy67KgHZKeGGyNqsvKGKt1DHMcEWgIdIuTbYmMf2Iek3SqVggS12WZ7XafPn3Cf/yP/xEBRwvgH/7wPe73XUXTMvMES+Zk2oG0I9M4XPfo6U1m10WchZuMm7md/YJH8Sx4mCZ7Xr7t6mGY1/BR5ueq5VmM/7ATeDotbPrUmHZ1DhnJgoVcwOnPxU4NI2nNGEPQD7HgfRZCk8WV95keWMU2gQUVWXAJ+UOtZ0/DZBM8Stj56qXzWF8ukZ9j/WI/uWegc/611wAw+R8y8CN/K3eLX+xxPqDIsEBJPT88ZfsDbPNF+uFBEfO1VCyLY1s31Loi4jGf95DNCJjajgD00LRcR8KZQx0KhjH3dbGCcIIhPVgQQKkI+fxp90FgxxVMTbZ0XPNlTFAz2y/PqEa+UmAgCq93ROBoDadWVDLLKEfgBhYRL4XR6Vj0xfwuZvySfne26unv89dzR8kv0Tdd/FFCAQJ18u8Ua1eLnoqR5wAwnNeUvsouDKs4Y/7WGAvXRXmqAM+Me8wwNYpY6GNs4p45C4sj5llI4uoWl68J+kwaTt5nmbGd1sIwwahQnJFxaFVHVGuNeYULZEMIIMsp9YEYHfvjwHgMfP78CZ8/f4IZC7y5LIhzvdNezfXAjNLn+XKzyVBlPDl0nvkzCpUHYCdYl8+4unE65ThzgOLOSdHKdXPy38/5+mcATxsCrIRngGGTpaEdpX7nJt0cxGDCUmRxJv1UzOphsMax5XQ8FYv6+xnoalM7ieTRDvUI9zlcsWCFoSKC+i9H68BQtVYoezsaogEcZc9ecgIxbE3woF6BAbCywl0K7Wn4DDAMLHXFuizIsbMneMSAow32tbr6bomkb5dDepDFBA4EbcFqd63UOGrBDW2d8BE1F2JuLiigsBnQDcTYkSaZyaeSAhkqhKq7OvyUxiR7LGLAYoFFYH+wh9PcUVdqIYz9QXRZTvvdhycc+4Eff/ijWB9dukpFkwoDt+cNYwz8wx9+wMvTM27LC56fnvD89Iy2v2H0h6amActa9Rw0wnV01FpQaqF+kwNH59Fp/QEa1yogyAAciKHRsBGpZUuGWACLFw5IMyAFrNvjQSHubdE4VVbKHYY9OnqLKb527G88kMuCUh1lWVgxV2A04uQ7pVoABpPIMkcQM3TOr7gG6zid54jOKpymHviavesSY+4xA3ROPmLAHgJR06v3g0i314JSndMKLYDHHZw+JH0WA6INTuB4HCh2YL8/ACNrwwpH9ZIRyDPTRqDtd8ACpQ6Ydbh39ReLwh2QHtRAb3fc71/w8eOPeLs/ECGBalp5wAwlDOhAfwz45nh5fsYwVpOPwck2dWUlfCjiK4ULNxTJxjg12jipxmbQmMkuAJQ1EfmGMQLHQd2cUg6cfo5Bl1OhkWs9BLhdQgErflKLADkwCuG340BW6iZnQRPCzOtMImZgGQlM0agvfkPYwKPtPPcmHZBLG+Jt2wAAXz59BiJZBgwOqoTlZ8ydoBC0bhFftbPyMuhAhjSt3JnoxeBESgAnI1BBcybCU33EHAH1hYslY5FAoWlv5EhmzKmgZ2t1ycVEwhspmD5ZURWzZTTCOH1OYEWV/hREM+YzU6BjfFw9moAVfhLjYptFg2yfGYAmhgXfXIG/K5BL1tlIJtZK/aFaKs+ZWr7TDyDPegDI6iIqzAM+DEMCvzOimHYlAz39eIiVM5DUJ1IegVlxG8HJVLVyigoCeHvc0TNQcoetRUw3AYFBPwloal5A9sewaChO8YAvocfkarcgsN3mdMWARcm0YYJPDEbP9t4EVjJMGT3bOgRElIw3aY+PEZBQA2ohIzCcSfIY0MjwCneN2R58zvveBRIYejf0PtBGYBhQnjeemcY4xU1ae10B2QRqCcZFBqtT6NXUucLrnoEaFOoAcBRUjjPjO13aIs1wBugiCY6e7YqXDFM6lkN5gRmkCxbTtiVAnsEvwfV8JDyLq1rNal0mCDCTOe3RUjgg5Zysm+npBTRNplP0mTb+aRt39WT1JZjElUko2ACEEkFXe7h6J5CMO3rOigiyJS0CtTyd59LA69JS8XhQ2Lcj2BPngNcABtkyoQo4yg2+LohCLZmPnz7j9vkLjr3h6Hcc7RO+efqAb39xw9NLxVJN9wu8f7/pnA3EqBg9cDx2JT4DvQfub2p3WaCJvpx6VyqAw8WqYoywlECpjrpUaZ2cdqsUJQbzf1CxZaA3xzgcb2879v1AE7vqti5YF0ddK+qyYF0X+OI8t4Xr1s0xwnE0w2Jsr0pb0LohggWZdgyM/Q942p7x4eUbOMgO+fHtj3h7u2ME4F7x/O49/UHreDsOvO0Psngd8IWbdux2grpQgTZof0spqLXiGc9oR8PHjx/xd3/3X/Hv/t2/wzGARwu8vn7G4/HAuw9PtG2+MOlJX4dMQrNgg6ktlPvFXVC8xZT/6KlJlmfXMTW2MlKTSASBgwBaOsP5QbnH/QK8qJ8u9erCAResqoBjtNNOxuXcuxuL1sUxShZCGYsPC8TUAAv4CLYrQQxtpx9KvdKhe4xIFZo2Y7COgUN3Q9dEXRlOFez6lqaYrotxTQGL3dRpS+gsTVaCfInu5VApAlyO0mZZHJcgJBcUyqqVRo45qZIvU/I/qFmTUDVcAy4EPi2afNkVX6yVrXS9UxsnRsPL0xPePW149/QOt/UJj8eutSDQRGZ5Ml1ZlC2+zJgqW/cCgWLZRgus64YIw6MbMBy+3GB1Q/iCYWX6cQB4uj0hu2TYvtBZsNDE0ohAKVX2kUzeuTaRYCN10gyGjgM9Bh6vbyju2FR8tgD6cQBjoCyVzMla5H8G4OlH+HUcB3rrWJaNz/wCNnE9xjwjk80PIEXqUwOXHQiZhw61GCtncxab2cky0DqZ9rOIIYCPnysiwQUwCxA8jz7weDywLAuenp7Ylrbf0bXvshtkEdPskJA7DJx66uQtmhm8LgyrWlNMV06ph2GwI6ibGoG6LafzgQE59c2d+YtyWzfH07piPw483h7wUlFqoA2dyR4iY/BzRt/x5e0LPn75hN//w+/ww/d/QCkFT89POPYdOcX7Cqxla/nUAEWq2GECRbUmeaKjxUHwz4VZOGg7Rydg2nmyijt8qbQ9TazLIbbVssw4YCl12rV/6utnA0/mCzAoipv2xS1mJY4gOv9yfrhoa7OaK+aPDbJJYOhDegdewd58n4cKSt6r5zhNVS2ioyrxK6oYZdtWas0MgKCCl+mIcmJWSJClFFPfcCCkm4NhoMDumf5kD2xrD7h6Hs8eVOAYTYlXzICTBmtgP4hER3QdVAFqQkbpEAOYmhk0elp0uGWtUYyGtOiDbVypK8QELqtyCkL/G8h8rlVyMfL9llJ0doyV1OOAYWBxKueHKYBCwbvnBcfh2MvBZGI+c01ngmPbnlDKgvvjoc8OrJWaQ0OBcAZYDHxZVSBlFBiHAsvBoNO1JpngFlW7AiHghY46DUYxGmKy4zCrx9aZmsboGGJFFCtKBg1ec00g6jop8C0UqBiDj1IrHDlWE1NXwWASDTSVqe1khHgaFRnWpMFmSBl26ukEg+oY42L0x2zzYL5Jh0tNsEB0ngsrBVE50csXJy25MsEfogMDJfMlHPsBtzuO46GquNgCg9Udd1D4egAWB1tFthUYTuPUBWQo+SzGxODxeGDf7zjazs913lMLwIScJ5AYChD2fec6ucELRA9X+Cez0nvDrPe4T7sw2Y/a12qvn+fDYsCGYasLolRsou9mS1Fkspg90MaecO5XMQqDuhYu0cNJ4UVQLFuJNQWvy/nZuuKzT/5MJSLZEzrpIRH6k+KA+a85JTMZXin4k1Oi2I7ONiICqBcnLbuaekjQeY/L+6cDdeO6ouSVQsFr2uDL7+hvI9iOx/XicyslWyALmothJsH6SLtMFE7vY5iAe5zsIFgKj4KFAwUugZisE95X2sV5MwqUuD4FFCtPHaPUBrxqX5iFKmJxsbknoxU2piMPUNuOk4BiPtfibAkymNpKAy3X3YPsobl+p+DnhRPC61U1KtUa+PlsKeC62Ff3OcRiLGoDbI1CqO1gGzJK5d7WGnAiSYYntDsui1RBpk4JYAlwmmHIZw0gaQUxAiWX3ExMJNof2n4GJi4tGdhQcUnMH2QCGgQYuQVxajV4VqIAGDoKg2iJ5HqpOLojOqdYeQAjDC0M9wj0YDw/AAxzdJGiZGHVkjOQ3OHAeV7TV8UMcnISUUGXT5+TFy3bDU7+XrZbMu9NCn8yQwJRgOGY06RCoGfkudZa5P6eR36Cp9zXPZOAMJ0pyREgi1ZnEhXLUGxBQOsaz6RN+LpluNO2m9iZ2rc5eTZv1i72Y3Q9W91D9NzP3G0OnwB1qfTvrQ3A5M8SiLK0O0oyBAoWCa+bpx5hnidDKTc+gaqijVgXVgPhjm6OPgpaGOALyvKEl/e/xNPzO/SxY1kM324veHlZsW1OTScHepM9yAmfOnMwYFkXtYq4ntW0imoNw2wDI2CbeXnMM4CQrbkkf25n4pXxDu9b4OwYKJUTHYvRn5XKtkCuVyfzwV1MgA0xHAUD3tn6bAb0ozNWCUOJFQBDBjND37lHEYbn7R3evbzH2B0Vr2zthOE4aIeXsqJ3w45Odj0CRZqeqLf0YpPHdgIIHPTC8ecVzy/vtN9O8W4vFcsaCEsglvalX8Jo7vc8xVo/Z+yTgJAFi7uZpcy8BXmOMwehHMDEmy3ths1YJH3uNMMCwgMhNjL/Le3M1HhLUTtn3tJxskMUvfOshsBocAAGgdUQU9OAwQI5zxSvjSLtQE7nzcJ41zlnbOEIHAhTS5pJhqA37Pf7uTd1W+mTYkD9FcnOyAAbFyPAdZr/bgASPFaZ6shWLf2erKJcrsSiE/hTjjPAVnsD4AkuzmfBfZVs68gzmM8RgXY/YF6wLpXi4K3BYuHQFLVWlmFzIiOVMg6YLYyp9TltHHk4uSba5/xAV1vtgQjHy9M3WG/PMKywWICoGE3ZnM59Tzh+gjiDQED6apjEmznxVI+CP3d164RiGeDCQBYAJ+2qNCJsxWaba9XAnmR5z5wsxDoSIFwuIFi+VzKVOCmcNzQuBREC53XuHVfj9bZpYl4n8EHfJ5YnymzN7105emT8yevPM3RSFhkfuGLNoZs3p1+JMLWXqQ07LjF6KfIzeZXgUKBcrYg89Dxhbhhu0FQVQMSALNoZWGyA2K0+29bp2wxkPtEkKQaAqeU0Oxm4Fo+24+PnT/jy+kqQvxPobccBiqqnz42Zv/iMU3j9PXaEAV4B844xgDakl6ki+IAJfNQzs8quKEsCTLI4DWvZ2CVzNAAFtSw4+o7WGyUf8PO+fjbw5L6wdSYNmgHeRR3V8+eYVSVBkQnsmWjBhOLaEKsHpL5bgWFBaPpFil4GOtyAumUCNxTsSLi6umJRJr0BKIkNbvPKMZYEGTRFBDqU6pMd0alv0kNtc5zyMdTe5ZZVsoOBUT/OoKxUABTlcwtUE+sANvuVNfRLLJCYCZDZGXRPEXGDAnuaZDdT2wFgfsqHQuyguSGQ1NdxeWJilsiNzbVRRcgywdRzWUqdiQN7mh/Ug/IETgJLdSweiBcCT49iuD8aHjvBkQx8DYbt9oxihrf7Hb3zsPzimyfUZWGrXuCryh4RVxfd8hoIV11nfsWkEKcw4FAb1LqsSgIbvNjUAmP7oBa4n4kig/FAFCVxTtR4UiaxovWG4/UgVbg3lHVFXVYCX+YY+0GjmTorphQxnN5FzAw66DOYMbGE4tKKwNtrStdMWVBDKQsnaKkXeQIIel5enBXuMXh9K/VkOgy+OCttVe0ics5ZmXMzgj0AWnugmsOrkrQRqDVR+E7m4eBkjNv2jN4Gz69G0qbHXzbupde3VzweFMQji8gVYHW2XZqTpcIIHmMM7PsdJqZVXRZYFfAZIURe0yEMyPHtDps+aAaXsAtgRYAawbakZVkuYAypr0z67Ewi5cT4XMhGCQHQ0HjcHNce/Tx3WY2e5todl6aks/UEQI4jZbLIRB3B6k2afAYSijUUQGbwaDqXyJ50g4Bl6ooluyDbGvN+J/CULYzSacLFZ1nuj9Qbidw78vczqeWZHPr3CcRJ+4hsThYWmLA1oJHhl/dbSkap5OMxhMyfiXmVP9f1pW5dRJvEs5GV6yzfIgE0TJtbvOr+uv4UI2MANicz8ml0sbMygCaAQv9TS1Ebg6qeacugKZSiRA8wqTt6R1cbIjqBp4GBKZ4ME+PxbD5wEMSlsHKfdqtoo5uVuedj7n/6hWKa1ojG83ns0okDtfES5FLi63RSPGf67FV/+ghUoyYOx/5irjFtElixA+2daWBFQ7KBuW7FxJIsY6YasywyQZSzOYJJFlt3wg2wignBBUHlUhy2VA4vGOBESDBY7GF4G9IwC+2Bokm0xvYosuZVidfqw8CWXiUx1D9U4Qc+mT3RgnbPTm2ETBilZw2pe5x2yXh942j8fBiGB1oTuDMGRur7RWT2Bp0yFjSyjyjO9tJkGDrSl9ZzHQWY9s7zW7nZWTkOzMlyI8XCQf+Um4psAgFOZ94ziV8Z22Ubd4Z9w4yBMGJqgnlg7rds33GdmUMiu3Ul6GTV0UN7AIYwl4ZmJmKGLFqEJ+AAlLpRH9TA9oCc9lV46gcMvRmZPbahLE94J+BpjB3bsuL9h3d4ei64bc62/4wjZF/8Ah4UsVNOwIhsS+r6DGnkDWyrM4nNczUTzkwgBFT6yQzyS+QDPctsnxllAL2jLATXvFbFYVUJF0G7ozVATPZhK2IY6jjE7HNEG9T/6g4bRe2MBUthIaz3HYOEWLzcXvDu5R0erwMlVtTtCa0P/MP3PwJO7bLeA6s1ZF9CdXVG1EX7i0WoYkZf1zuO+47WDmybgKdnTrw6egMGW4ZqLZJgYIP/kLgzMgeVL5oiwMCcZJu+zgC1Mw2hHmQLXZ+DIxmaZK91xXEwsB9F/8k/6X/ZSk7fm0WLnAQMnD7cQ+1v2aLjfG0fAnMvXilk6NIGtT6kU8m9XAQ2uJXZYjc7MTqBrGzPD7X8dLBAmW7SvWK7PXGvRsdoBx5Hw7Ys3Ita1mG59zWlM1xApwt40kG8hrJmc51YweJZD5DpceYuirlVVM1YfUL4es/0DIgxbSmfm6VF4nNL05mkNLGy3vYuRsxK8KcdMNxQDAKdgCrwFZZn54BvBb6e7LdH49Sy1GiLnEg9mGOaGx77AYyCl6dfYd2eYViAWIBemXPGkJ4bxAwK7VHpd6qgkv4kNUwZZmgNjG1gOezKtfA5/dhkT2o9mShH25mbNsDcsKyrHit1gPoEXUw5CubAormX5XfcXblcgv6nXtIYgeJF4BRLOuYsdqwbp7I97o1ASMvfI9vW3WbLXbaBkXXM19VadYYmDA+A8gHmNv2YqXsqwufEc8in996RbX65V9N+cA1MrH+TNACfa5RCG9DYKcRJ7J2dVsGum2os2iV/P4suMThVei0no1h1LRJ6ANTtiX6+A4+246fPH/H59RWvb3e2wkWgC3iilAJ/lkztkmbKGXu99h1WsktmaEIjW6SfnlaUUtE6fX87yAzDUjHQ0S0nExqqisBrqWi9YX90mBcUrHj0jv1QPD9P///0188HniodxbKqklbAB299giw0LIYCmwEWWwrKRKFNJYKBs5oI/ZyUfVaIEANoO9uiwLafdVVfcZxE9FBQ1dpDYBJbv+DppDAjpXZ0JRwOGE34UDWvLq7knrRTB9lWpYCV20EKN+nuRJ9TJ4PUU0d1qcE76ZChaigymdBFM8gYU1smPBPSAlpfiSFZlebIoFChQ+yxpAbHPHT55idNPSb9fgYxmSwCCGc7RcvJLoh5EO/HQHu7c+R9rSiLxNvuDbDA8/qMe+w40BhIqqUyYDg6xcnNQpTGwN4r1r7g6cmxLNkbTnaEmWG5GMY0Lpw2ANS6qEKkMcL9YGfJCN2bBMMjABxKfu9ZlsGsTGYfq/MguTMhKCX1H059MC8yFGqF9IXU2pCuzNEa3JNZBqQgKNNOtZ4aK/0xWKEj/Zl9fxN8BGCzSpNZv2Ahd4SL2jgGBpr2C2T0s+JKf1W3BbZU9Bg4OkX9Bgae1hVLcfT9wN0f+LIrUY+AqEyaOnjgOBpK3fDu+RltdNFR2c7Zx2OelbAKjJ10YSVMMYKU1cLW2dY7Pn3+jNe3N+Rkm5y0ATFFiPRz+y5LASr7iKmHEYCS6GQ78muI5MNkP0XZZ0xySaoMg4BtHg8t8dsrgbavEkVzLEWgaB8cF21nf/e1557goQYgmHMkLXC210j4MXrHUAvKnOakfZ6JIk9q/p2GO6tPBdqTiFmdCQEi98cbAKCudeoCRPBMlTgDurzxUII5ZGNd1wXZJz7b097HGIlpzeerUi6BBV35vH5TshhifQjMOnaFyrHPFr8h21SzlVo6YZn08ysDWdZySz5iC53xIbYOJnCdAc4QE3RyBeSYzRJgmvkDOACAVWXzwYRdotAeKqy4bJYJ6Je40Ig4k8/ZTkedt8fUzOMh9bpMUJqBmk0gM7SfrzhDMl1jyA+5WDeqTEUEqOdp53MzPXf13R8Hk0sLivVydLGs7+iqmhms67mG2hYG/fhsdQ8xO3uCqGTFztoAI1z5VQbPBIsPBtmdLbxWARdAQDsPWBFVPZM/jYAenbT71hvmXJPcdSbbMX9/RYsdj37gfnDMO30wsPsJXtQcvqCt1YLBbmv06yMZS1bEVsyWSENOd5m6WMH3QGH1nwUBCSl3PofFqlqrdd4jXzNQR7DVYVkJvIIxgJWKMQ700ZETkE7tH9r/0IIYAu6Lilhi2pUM6XI0PfdkBFDUIdLVCp3vRwAdl2LPXGkJYXdMplNEFoDnWpgYrvnvGZvk2aEv5Pm7zKjBKCw0dsUlu4qHvQkULSYAOm2Ozs+Q4L+0Zkj8M51T2aOhAksAy7LwTIWjNwJBRzeOZC8LUDZYYUHp3bsVzy8L3r9b2KKHs+UwdfUmn+3MkdHHeQ4jAo9HCkkb3BcsC6+/tY79zv1SykLQinPGCQjYee4AsWb0fCEfFINnIwKwEri9LIhY4KUyHuocgX6/P/Dp0yf88MMf8OMPf8CPP36PugTMBjoaz7tiiWxrYZ877ehjMN7zSvv6dHvG/d7w+vkHFL/hw4cnNHOgdyxPO8wM67bRFrjhfn/FcexAIyvEx2nvCQJngbpgWIX5QDvo98cFDSpesC4AjG2yLZjYdsVylkDsIJBcIii27Y6izoUT1mFuEYhpVGZyLzCIdox+3E0tQyoyJKhu0+hyPelj+zwfrB9PZESfAzH0xOaDIaf0jdH47ItnREiW+KB3zOLpbNPXdwr299bZQpyT0FyFuWKMgYxAQ1UcC3DPuhlsdFgbsN5xW25Y6ob9cUfrD/RGKY+1msApXifVPelnE64udZ1gcIJIybJqo/O+FPjmPMNhNtuCVL1SaykkYK8cRzERsriUfjIdudZ9MsvAtQiEBoA43t9e4G4Ybed3HHh52fDdr75FGwfeHq9YK4vfb/c3MjtUdCzlHLgiwQPsjQLTAxymY9LFbDHwer8jhuPDh8rYXICUOWCDtqOkJMJg7NXFTNyWG23loEYwuztcRTcWx30pE5jMdZv72QIehlXP43gcMlecpLnUgvu+Ixrts+XZz6KrBkGwIHsWXRKkAcSk7ARouL3Jps3c5tz2p/cmwBg49gdCeUqAQHm2aG8bdeQ+v37B6AMuhpwXRzsa9mNX/EeAKn0LQBC2t4HHvuusZCwd3OOKC3PaN7uv8o6Y3xPHEAPcBs6peAUlCsH5SI64wYLg3FJXMr9Eqmhx6lQ1xfodBzJps0pCRSRQJ/9txTGOjs+fv+CnP37Ej9//gP3+BkAxe9qbYEEhOrV5s7jtS4W549h3tDGwx0Fg2iiI30P71wJdwx6OoB7WMRocjgMFWVR24/22B1ttl7ppjSpGFPTuuD8GHvvAX/zlX+D29ISf8/XPaLWLKVCZ7UtnGtEuQYuopLgCTydrIbVGZrKtZMvdEY3tFyN7ZFrHMMOyDDljB+dbzU/ieQvRJr0QGfYT4GLcYtNhA5PBrUPbgWhwW1A8cMRQS1Vq9MjoORHwU1MhMS1tGDuDxDR0PIq61rnBMam9kShviCo4kxdVhE2MCrUR0hcnqng6zhn9hNY0fbbyQ1J881oyNGPLw+ghcIbGppqp1a4BhWtZ1EPcjx1ww/K8oLfBSTFZ1ZgaOwcTZWPSTOolKYJ7e8LRT7ZJisaffcX5HmwVoq/NVkyBl6GEIy73PX9Xc8vsIPo6Tvp08YUHc+4HAYa28kCOUB95oCihzdYEKxQcseKTFkoWTChIOQP/zMHZrjMwosOizqDDA9NgpqhoBkYJGmYiQXYKlJzaTNiyjOTp5C3Yw2wFfX8wCGkE4Z63JxRbcFs5Ne6hwCmdVSRAEoZ2dMQWWOoG62JygcnjiH326XML0VmGqLUICoynbg+D7weOXZM/TFVq9s+RxRCqeCrJICAdZDMJ2IaCVN6wACA7p9bhWhGegpkCVJzAExLDAJOD4yA4GqrkuFdVmn1WWtjeYbBqTJoFCKaQYIo1JlV1BraWTImzdSYTtXSuEXmdeYDz72Oef+VbCsjG2Yc9HMMCRyN4ttxu/PTWdW5YxT6rhVfqebKdyLTwi1EK2Y7TVsbcz1AbJ/KekebnBJ64D1XJdSjAj5NGrSl3cEN4qE/fZAeyhU3vbnpgF0BdWA8k+TbXcPaym9pWJy0aE+TLZQ7Z8fQkaYOQLDXZG+G/Z0xiau2DA07WaqhokK0wVuw8T0OBttbdXS02AhIOTS5L2nrqQiTwxD3F4Jn1Bu2EWUkXAJWt5xN4ynVl0JhDIBAxdRR6O/jE0hdmQjtbBfl6XodYoQH6Fj4JJFiZO0lvxH+DKyzX+YyO0Q+Yk2rPqZ1Z4c+bdiRbxnQ9U8emk/EE0e/5eMXyCcOIgsBClu4AWiMDMeOUZo5hnSwBpw7Y3FYjpympxUMVTiagEtqe8crlpGaipO2az5EMMtMU00ImbQJ9kS0IDIBlpVSJDZC5x3Y9tiBk9JDnQPZBPirP4JQg0BlJbbfMz3KaMOQrTH4ZQ1oxmbfMxOXiT+V78u5PvUndt15+Wr95ADAHzSjQzjN01cFi61KK8efEUe5NG0AJMiCTEQj4DHsyGRpDhR/TvnQ7mROQbVCBweAwTVVm/GnIQTImFuu2VWxbwbapVdTG3OPuFdOZJIVFPoe4vP4+ghOMAjqPRTIAtIWtdYweqGIxFBPDuBMgiFwy6FmFEkTdT54LE0i1iP0FW4AA+gGMNnAcB+73N3z5/BlfvnzC6+tnPL8sYF2kw2OwndZwanKZrMAIHP1Qm0ZBdRYIH/c3fPl8x/P7D1jXGwFNa6jLBhjBmhoL1uhox86hNcnGG659n8b1zA/YVmXTLnRo7RR7FTHBXAXCnKqN+Qhkt0YWiQrjiNP4z/g3/5cxpMoTp8+MM3/w9BGyCVcNnKtVADABiSkAncCYwKKMS1JegWeSBZO8uqHkkq1bCeBrB/q8wnmdCRry7Az0kfp8shruLKDIN5jJV8EuZkX5Vu9YbxVP24rj8Ub9QvntU1eNlZuRe1ann/Yy/YYKNQOzhWq26Sv5Cktev52+Vn7GBSylvmWur+mcEV3MeEqPwM4niwvYlUx7d8O2rmDBf0dEQ0THti14efeEsIGjH9jWBTZM/nsQFLcBK0OdM2PawZFAoxbc3OY9760BoaKjGPxnOJMM9cyVtXP6EIGhyg4GUB3mJWt+M6bjZzFOZYFw/uvcv6Zn1nvuS8YBXipGPPi7gy1nCbqeEhEsoJslMyf3OgSKDTT9bu7J/Df60BDwM+Yzyj+7WsayPfyqDViqi4hw2tb0XYwbOnxk+yz9QbYNmopMJAYwF8nLpobU6Re8JGP1vK8x94tpP+nsxaBfzxhMfp57lyetOFlCWTROmRIYwdAIcJodEpzjsx8RKk4p7tXPHo8d97c3fPn0Ccexw8QYS0b8AM/66A3HcZBd5hVDMVaLjhYdPX0dshw4kDrD4j+iRRMbsqkTSRGyGQD6qNYOrjdEEjGSFvoAegN6Bz58+CU+fPiAn/P1s4GnT69/1AOcUa4SUgZ6hlBbBciGCDC4zfG9M4ChhoZL6yFkFHM6JAuLHWGBxTeYAYecyuKkKhcr8LKwWqN946KnZ9BlDtL/DaSEOTB6R4p8kULcYN5hA6i6pvBdDwc6iOzl7K6g0NiIYeEYDaSTusYRjjGRyz5IIc44nb20bOvxWtkG1gZp224yOBonGYD5QCkd3frUzhkAlEfDIyslQyyUM0BMcIzBGftP0+FMY20UoR5dDceDoqO+rNTAeXrHjR6GEqR8Vqz0T/uCxSp+8f6G5+2Bx3HHpy+f8GgPbBt1lawExnD0g4d9Hwd+/PgT3t7e8Os/+zXWZUUcHHEd+45SnPpEdu4HwLBUwDwQxqo5A2SfRofBjhhsdgesY31u4PS9Ju0j4GV9j6UyQBsDuN9pnMjAyjHVDaZgc4CT4GCgnpMYJ4MWZJ6LNCLs5KIwaK0UZO7R2S9sGUBz7UsNBdB6ZkEEm18bIBAobWJqPCVo0TW+FgDpsKjYx8DwjuN4oB0HbgurqdYUULQBrwu2b7/Fl9cHvrw90IbYAWMgouD773/A4/Eet+0dLCcLwgEbWMqGKBRQNBj2x4F2NDyOB55uT7jdnnAcB787g94xuI5dCb2hcOSp6P8RwJpVoq5KbO+k5i8FVogAMEkeGoUq8T6dk+jBMcUSRK4LnxXHapMplq1Ly3JDgWMfpP/yNRTch1p4o9AuJcPJtQ+BwgAuVBFyOo48sAG2N9FRnWL5Y5QTADGbZ1I1zDNQwgVsqunMU0cK87NqrWTVNf6ulTITPxtMllOvIGGibLFKpk4XiNDH2erloi5jHBegRgliJqbIn8dXDlW7m8GHZXtSAju8KRcbzi/TMruSccOiQF8MzQQTZ6Aw5jSOYgrCx5gjfU0IT6ExQC1MDE3Ocz4n2JkzTiCACX6RbTCQFWlKGgFVrHTNdLqcoIUc2mDydVrvMANqgQ0Fj0q6+zimjTaj3k2EzQIBAOQ0sLy+1hqfD5bZwu7s8D4TJpuPjOBSH1OkuHWC+AkyZIrF31OVTDYMuSNdfsNY5BnBiVPFuL4wVY0x2E4ikMYzfTJWBjjlsUh20RTQCZCYiUiFW8EBJjTVErBqYEtOzHbvXS1L7tLyG8aR7e1OEfFmoBhNssp4LbS5LrxeiVkAa2HCey+LQMICWEEYr+k6TTMLKy1OQMbqSKwKBmAxB4IgikegGLUfoSKPISixhcDYWU1O+vzoHV5j7rkx2NrubqgqpBEgUcEo18IOJeYEVwJk3FFTSOKxQuyW9QlmhiNUyZ1FvAuYkns4Ndh6FuAWTOaIa239QpFEqPWA/qGKcWELJzkNtWQ8Bpk2BZAUguNRFLvdpKmomDAaLnp6XNtaeQ5GdJ5BaRparXl18EoGelE8ZRNEd6CuKLcNn3fAGnB/A4YHjr5joOH2bCgV2B+dA0VqQU4mshLn+QlMtm4Y8HjsOI6O1y9K6JxDUm5PK8xPrRIvgdvNqfnWqJFZ6jl+XpuXQz3MZjHyXGUCW/vepq7UFKpXgQowjDawvz7w+Y8/4Yff/z1eP/8R+/0TXp5fUGDY4gG0A/F2x5NVvCsrfvmLJ7x/esKHd0+oxfDp/hP2o+HL2wPL1vGCz/hy/4wvH7/gp08/Idzx/pe/gtWC56eKx/7Aj3/8QYk1sKwFy/oOnz5/QTsaymAriC9FsWfHMYa0QcpXoEwOBTkGgevR98m7KzoXHWQvtNZQzLGUQjkIM1hvHLTS/Ku1NQEU8z8yh4I8cgRskG0O8ByRXJ/gWSfQG8nGTqs53RcOnSuXzh+NBH1UZ2YHH6nJxs/MQgNwkB2GALwB0RFqRa+uVkWBL6FzjCho6Bg+gIV+ga1BvO4hewjJpBTLmITgxX5/5ALg/cs7/PKX36GWgrf7K17fPqP3huN4ICxQtsL8KNgSPEzrAztngwiICQO7o8MAV1eCiU0m/5P7m3EGn9SMJfK9ZiAiYN0LEq0KdRfAVIj1bD8yWC/A4DRuhyNeHyjF8LQtuLeKKMDL84YP37zDu2/f4+n5hvvxho6O8bSgj4F9NKwlQXs+481pa/pI+6ei+OBUzBSBHgP4cvyEWAd+8eE7tN7xtn+E+4KyLDCMucGSoRQB7F92WC3wRSPre0PKu5SqISvIoo/05sywCIBPLaoRyQAbM07be5f0F2Oj/dFQiuN2W7CUim17QjsaJ6/BkJPeEMDb2xsFutUBYsECV2sN1TlF0ZXnpuZtfo4nIoYQicDmGh7tjflVLWjHHa3d4YX6wrXKuYJdSS++IcHIHLbEM0FQKgDUZUFV58W+P5hTQHmBBn0kk7X3PmPLIc3G7UbG2XEc00zk+S9tUBNWulBFYmZ1WXG0A30E7q1hxI7by42TU19uwBjox057dojQAMNSV7ZUVsV+Yps5DF8+fsJ/+f/8Z3x5/YjeXym5YsZupSzsVUfxFQFDC4LfFkCvHMphgy3g/EgHCsX3YdBeZwxjFVgW+qTH4w2rP6PaTXGvqUVgoBV2jEUwnioAnm43PN9u+Lf/6l/j13/2a/ycr58NPHX1K2d8yodNNss1mKYBSYQ0RMmP+Zr8M93piGk3aMQF1BAwotMY6KKbihU0hSfp9Xkm+TDTeM1rnNdlE6V0uMAFGenLL5iNWbM9SwL6/4lQJ+37qzAeyVqZlexM/YQkZ5XOkNsOk/2UFRmD0fGY4RRUT5aJfvsroYW83XE+n2m181p4JTbsBDAyTDMllTHOZMAk1J35ciY5WuukzS91nUno6/0V3n3qKWAaalH+I7Cr+tUaqasTiQ1W3Klbe7KzDFmxisv9nTpgyT6ZiHgMVtbVEodxkqyn58hkOQBEJrk2DWlYXlfMlp3EHubSzkw8kzWtdsxPO/vWv4oo88u4qKHryU2hBQ+YNIvyM/iCxC+u5wsDU6Su556TE+aUAybo1Ti1oKyGfW8obuid9+iqPh3HgWM/0A8mBp4sjjRa2uWAafqS9qfjTJgUCFKzJLRn/Dw3eTYulXgAk9LbxsCaUZwS2D4aEAPVaA1CmgLFy2QNJrMjgx7tfu4bOT5LI+OYeyOd+LDz7MG5HwEGNjNpuZ7bmfZj7kN3U0VO2+0UOJgOcrKdTPsIQFxBgbxGcD/mD/PWmFdk5TUugJDsoHsSI5AJ0txy2sQ2bIJG5zljNSWUbNMW4tRvRK5p2vivzM9Xdu9rS8/7Ic2cgKBJfyKFkM86bpk2IZ+f5QeV9DFZ0dY+z3s4H/tcC8Tlvef5h4KMyFgbqXN3WnIokL2+V4IzmLHwvL/595hgxTTT07nlHZ1ew/SzM/RWsp7Xc31Al7XPQPNieogZGibg2cc5IpsMPr04Wzwub5wMy1w7PtdsKdC96l6GLi0r7KmBZWojTF21QEygLO3z+TSYVHOSn9hMYhSGQPihQpUZWOm3078SjHXe0yDztAtgy3vgI0j/qfeQn0stEkdOQEomTfr12aR5+s9sfYys9LNZeNoH2RWL8zPtspryKJl3gQUW+Ym5yJfnedlb6RMdigmk+J7MEd6nbPWMDQJmC/X5up6H8Vlbrs0ltrH58abquYB3y/1RZqWUdlPrkQYiTv90LeDOhRBzfExGikTtTTbRxnxGs7oeuRbnPeX1RDpk+R5LSuT5S5ht65fFdJMkwqBfX2+O9baiLgW1FizLORFUN3i5mcszyTOu/+zSckqWYSnZPoLzd027XwU2JkoByoRR7yXP45+GDdmKO3Ue58r8iR+IwGjsAGg7/Xnbd2B0Razc5SUa3AJ1qXipK75Zbvjl+2d8+/yMbz5sqMXw9PbAY9+xGidRrQY8ObAZEIOgmY8dJTgh2ArwJVLrLu97niQyeBxIbbq8L4op82HmUAnG9iGWLuU84GK+2mX3hmkbkBWVzKhoNoGZ6yOYX9Mu21fXctlBf/J3O39ClEF+4eJ4rjZZ9jLdSibaof19vZy4fkSyaYxWZtpAA889DNYx44d5Iu0S56bzmp+d+0WMzDzrM5nLgi59dK0Vy7Kg9xVv97Rcsh/C0BDxFfEPBnQN3cjpqrSxp74dIktkZ3xsnouVl3M9Z5ezrH+fWjxaq5Exgsl+X5IPG4UMZYHyUPtyDuxg4YMFkZymvR9imzGIRhavplSCYlaC/Mwg3VnM7nY+11oKRahlr73Y6QNMbjhjYN2Qe5lxsGo/yrWkMWR81ojTL+X+mKZ2xgqKZWfQAABs14sxkEN7JtsXaU08QxXlyQqXcerLcetoDWYukr9vEhrPNz0PxLzeRGj1jMfIrgbT9en9vsbc9bsn0JS2dcbW08f5BKXmnWXufrHFWUAakp74x63mONc3t1UkySAvX/bFkyXtbJuMmNqJagmajmjmKmHsrjFjXGxn0ew4DjzuD9xf39B7FizPdWEOO3gepEMRAQxdbJQi05STB8/nlinvfKZiZnkxFnHFdLukLwS/oYrsn6xJLWz3fXm+4f3L839jDf/x188GnlLQdBoaBYE2iLKSsp+VdJubsAcoJJT0Ml4+Fi/oMLTReLNz0hd7vd0G4BUDwN44TtPawLYSLQ6zuegGUw8yhb4xgGjj7KtVQDoar29P9pUqsbCCdgygB4r62VtqOoxTJ4EvNRRbFGiLwggFn65xwTGoHxGstJkZvBZgGKyRhTNaR7RBYcdxYFinEKJTjpSthgyqiyVFPUB0nRXS09jY3JDA6XMygDoDKQWw7mjd56SVNMIDkNC0oSyOE0BriGCiMBBoscOjAKiopaKWDfelI8aG1+MVAx1DrYoJvgQajs4phn/48RO2dce7d+/IbBJTqB8PrLVgKS4Gy0DfHwgzdHftwhWz3S67xobGuCuoWuqT9AsaijNIblExDpfoJ585tRdWzHGzYjaMIBvMgnR2j4ISZNf5AHyE6MBqkXGwhUwH21GAWEhhlwCjwdDb+ZrTyJ3gJIxCe2aYo1RTRJBf3IOkkKauSMexN3Q4GhxPy4L1+Ya+v6HvHCluMLx/eYc+Bh5Hw9g60Ac+Hg2jNSxLouwdbg0WDcUqlrLi2BvHUCtjyqBxWMDLiucPN4w+8PntznaiuqK9HdiPgX0PRDietxdV3QDNVUUNhsGrU2iwxQPHQU2X+rTg5gXDue9/+vgRiIHvvvkWowfuj1fc1huen56wP3ZptHQARo039W5zrw5sZcW6LNw3SmpHDLXnslUhJ1RplRX4yZrDEO0MlqdQYzLPgi2jXqi3lEEKzJj0jRDSfopQ+4zGvg7eAAiwpgWNEZS7C7VXJEWYiu94uz/gMKxF7SLmGMExuNlvP/TeVsUQaCX8EwABAABJREFU1STCHtTdcLjsaDJHdZ9CaCl94xOYTvnJ2S7gZHgex/0MKOWZMnArJYGbZKUGTAHhORr3ZJjEUKlZ4CWyslkyIOeI2lUVttTCoy/RDetXIWHIa5CSEXTEcVWYUmKmv2vi09Q2cKCNjsdxzKCf7QU22+hgrCI3tWxqIWFGtlomArgEWNO0azOwPWcBLOBlod5RYyXLQZtygiXUGSO4RJHL++N+SUq4hDlAYLs94awpK2hUwpE6amZkBPbGvcvpRmrtUeDR+wMp5l4CWExBToREhRkskym18kIOscrU/sFhHCnuTiJ4aw2tdzyOne0JxVEWtkMVDQG533f0AbTOYNLNRRqNOYnLJiKpvZ82d2QhBpwaBAqB9rRPEOsiuCfYFjAyl1FxhIeqoQNtJ30erPY6zoTF0/eDwATEAHUEblvBVgpK1YR7JSDRY7ZbsNWGWljcxwmkJ2gjgV8YBz0MxTRwVHNUrKhY0A+2X3eQ5euaVFrcZ4sYWYAyQTOJA7AlUFlmi0kGn6Txn0UhzBOECRDiYLJXSyEL0nQzjeATQhpwBk1jM5hVBvgqFPK4i70cBRx7TSCCsgahuJ57vjVOYE0IcZFvDtj0k7AFdan4q7/8S3z45a/xl//yz/Hdv/gWzy8L0A1j514ZRwALNTImJB6MVcvC+DZ0lqMHvvnmGaUUbLeMXSmkzdcZAD5zM4JerXV8/vgGFvsKlnXFuuSkKT0bFXN679j3B2pdsG43xgEwtIPyBuuyoveOP/7hE+6fH/jyxy8YbwfqcHzYnvHduw9YzTjkYd/x4d0z/u3f/g2+vb3gu5d3ePGCzQw27ohx4LkcaO0J363fwGxF8Wf8wm/4l+9f8Hp0HH3grZFdXrcVvS748+UXeH3c8eXtDT98fsXntwe2ZcNSVnzavwhAUAGiLPB2oHQiKRFA33cE1CEAiEkaiA7cthV1qdgbxXGPRt98q09wgU4A43j2phu6gv+UAgKA1FwM+elsjUtd0YzFMlbGbPsGfGrWpHTIwAi+F4crG0xMp2sRhW3ObCHFgKYH54lR8pi/MTP/TFwzNODZMdnvsEJdM6N0wexGyXwgeN9n6s97OJRcUuzYxFbv2B8HXh8P/PT5MycIbjd8/t0rW9CeF2qOGlmfHNiQMgM2rweIGXMaXCxNSqQgBnrLvOAEAWbEEZf/nrevnDHFrDMnicYYuHNoEwTcVjhZ6TAUMalHJzDpywYr1JR79IEvbw+8Pe6473eMQWa8D7JaRmso7tjKiud6w1ZvOO6DzzD9eh8oXrAtC6eTwvB4DLT9QPUVpS74s2++w/b0jDp49p+2CnN+73tTyxTbqG63DRiBhgeH7gTt3gBQN+o19fbACLa5FbXwJggwhy3xKeBo8lteAA1DicF/f3l+QTHD/X5HbrneGo77wTDLDGWhbzk09MJO00+JjEH2lBnXqTj1jfvo6LELu1PLHQz7QW2n+kRwYn8cs8DUhphTVyHzOEXAKXPSse+72POcVu8GlKVImuUij4PUEHaUQlwhpTQY9ySIP9CQhRmC1sdxzFg14yRB27C1Al7Qjsa47EFtaXZaGG63FTgCpRtMk2pHkLG2rBVAwboG2tGlWfUAwvDu5R2KVzQEPr+94j/9l/+M73/8EUcni87LNsHHddlw4MCnT5/VHn6jvw6DLysBzLmAJyv5pEXwzNbq8KAcjDBULL5geXpCRUGNMgdWRFREGI4eWtOFOQ86rFJvNPoDfX/Dz/n6+RpPOPslE0Y1jVYmHU/02CBmQmZSEX6aga5hRjgK3qJT+LW3Uzk+X3s2pdB67r3DR0FR64AjNzYD0Emh0+f57N9X8FRCFbX0QjL2Ms6stirZS9qCAtBs+TAwqD3FjkEQApiVhORL5e0msjiV7BNphKaz5bYYQ78nQ85yPA+BkFlOCGHvO9FvebJMaNKM29mukW850VkzRBQ9L7X1qEw5x0fjDEIHMznMFooCUgd76lI41nVDwPB2POh4ChPjCXiBhy5gTBx64HZ7gtWCpS6IkZMA7ew8C7AqaI5R60xip2Ac7GIblDKGIQa3tasnhb26pGZHOjPjqFIKdg9VH8mry+QqtcBMAIRFJmETI1Ayc6nkOK9hNP48XeCsy+Ve1R7IKliKk3N6oRHgiTFblcgMzOd77r18th5sNTJlmtmTnHspQUA3ajXc1hX38sDwPitAbX9gPwrub58Bf8JyW+BWUHxBz+BsAmEMepl7kr7aO5/N/XHg8TjUly4Bd0XSBpvifKEby2puBkwElX320FtO7tCqTy20gZlwpq5cavbkKlkyI1NLIUJ96TgrXilcP3IYwPmVQVCCyO4nSy+TghTxzhbXfFJK7TGrVHrmvA21V8xSyldP9Pwz2WIGWOo0eLK1Qi1OmFpDeeNTH4ERybRvY/6bEvTL/77+bEwbBvd5jxFxUdkLhH39eq7Xn+xPnME8tHZ9qAo4n7muD3FZRyCBe8sKV2Beb7I3M2P+ejpRnjMF6TTMFxeUjCudxQQMzfjCyN5+zHaaua7aq/O+8r5177MKqOsghfqic6iFyOCm2GXtkKxdXejUbcLpYKY/Op/XabXPNeY3kBXv6wQ9IHWV5LsG1Ip9rnsygxmUiXkrakzo79zD+vQg64i+MwSmGGyol0VMBkNRq4XiCr3FQCbauV9MQU8Ci9wbfbB4kHTvnIaawIjpOSQrTpv/3Jd27vcEW+xcCt1iMpxOVhdfYn+y7y/n93y0KthQs+OMI/JIshWMtiRbOPU7oVHaMIxo8xPPT1NcIH9teUb0fK3ov8LnOrhxwqHHuR+vfKfIM6ZEEcBXsQpfyDPB29ZO/WoPJgtA/533m8AmyFbhJNf/L2P/1ivLkqSJYZ+Zu0dmrrX3uVZ1dXfNcC49Q2EAChAEiZA0GEp64pP0qN8qgAChV0qiQAkkJRLTPX2Z6bqdOufsvddamRHhbqaHz8wjdvVw+qyqdfYtV2aEh7tdPvvsM5nnJ9+TW9HoM1PPSCK+iWmS3C8p8h66GxEvSLS8Yu5zQVLg5lh2yNwGwwYGBLfnJ7z/4j2e3z1huSzYt52As+c15P0Iclrp4fvjVyFjAgvmgI1zBZ0tYzb9RY1zVlvYnwTrT1X6+d5O8Nemj2RxMm3f2W24AzYc62PDvnZ4d7TS8O72DIVibANDGWM0XXBtT3j/9B7vb894//wOV3c0d/geFr5d0dHR7QEVQ1PHl5eC53bDYx/Yh+N158QwVCY7+7Xh7dLwclmwbwPbY8PaO2eISpuAE52Wc2iR6rxH27PYOcLcUYz/0EVhjCPmk+1aQEkIOE5rd/gV+AGNAkwhffqjc1RFn0lAihvliIQPHy7Tjk/vntyk470iZggXfpifuGaKgifg7nOvpv90pI925MbOlGPGdkDEtQC1yvTke+k7jrWYVMs4nsnXCfln4YX2MbDtOydmSUxWm2BGmvFYv0npzQ14nBVPG3AyrJnvIHxzRHPHj8bPyHwu52d6MLVmCjmf7/kMRGHLua8mozTPUqxnEcVlYUFyqZX+yIxRmSiGS8hZkVwhTh2fWmKPuEM9igsZd8CRuoGlCqoWtHZBrRdMOQ/nPc/YXJjnsvjKkmNtLSYW+rEX4ZBMisIGk/gQTZqRe8MxxeM1hfBLCX+Vzw2Yk/Mmw92pWxl5uGbLokgU/0KkXWRqidqpiJoaUdk6etimJF8ce2RGj346F5/504xNjq/UUqKOM78BzGLx/NH53oxHJus6/o6/Sb/JYlvqKaYOZ74ZuweiZZFIFdQjR4XPJyCIGCFsuapALNciWuJUJpM4YxOSdMNvicDFse0dj3XFp9cXPPaVjDNNHciwO3Hu5uCTPDOS7dkyfer0iUj7FLiKA1moZl0t8tqQ/VFLn65RzM4VSwhunlC0WrAsbG/8TALvP/D1k4EnICc1BSCjwewQZ5+iKh6PjZtyMNls9UoF/nnTwD4GbIQgVQf65hBnHWpZFkhTIECRPRNzFXR3bOuG4cCATqezVKr+Xy4t9qxH4FBQ2xW1NiQVSD2q0Rupa6TkFYgaBnY4BqwTwBoAwKLJ1EMQM7grWmMyHrs4yEnGsYSZvAgPrYPJ+rptAdYMJCWwCPtl9xAT9d4x5EiUpWgkPorRd4wx0C4NVRXLlRO4Ho+3eXrt1PaY14YIKv/gHMNQ6XAGDUYtPEzdjNP7bJ/K/5l8WHGgCNplQV87Ho8Hml7Q9IIv3r2Di+LDyyfsfaDWBWYD+75BpaKFjzIAHz69QERxvT7h6XbFu6d3sLFjN8CNlbQgNaBvnPBXrg1QibHJHY5Bdlg0rJpz35gp+k79r6J1GmdLwVblPshnc19Z7TDraAtYgS4xGSQojOIU4YNoMP907qkeo1BHIYW+agU6Qlw0wqIWemRh6EtpnNbkK4bxCqsSMS/BUlEAZjLFA1U9tL4OsT4ASLZFsYJmCvQx2S6l5P07sjatIrgtF1zrFf7oWAzwworDy+MH7PsLBDu+GX+Ep+dnnuF2wwaOgF23ewQQFzKoto7WGlpreHt9w/rY8cMPL9i2PQA1hUqLwGqgeKYAwY5c99i+yfRQQCoMih7A0vXpXdgQGrZL4zr2faD3gd4Ny9KgKtg2To4otUAUqMslElNM9sKFI3ImdbhAsI0N+2MLkT6diS8QQaR5TCGpZFIZBendHRpTH7NSQiZBiFGGYyTw4HNsqiICI81kL9NARLtbOpcCrRfSwUuYYeFnwR2XhcL1xYMhNGwyaTQmbPbxYGWnx0s8gHlVsmdA0XIGBedUhuGNloYigqEhnhgijBl82+nnGHSnc52bFIjpPR4tKXsfWJTnwmXEmo4ZiCh47SVsvcaDMBOIGJk00Fm5Ptu3nEhWy2U+ux5CnBnseQxnNglGi9EGlrS5ZtzDRqFqZJwdH1T0HKRwb6VqlwV7p8R0tFJ4L3uwZzNJVxS2h9RDr28E9d1P+08UaJfCKmMIE5sPVvgFEdxkTCsoraGvK7Z9Rzcyb1u7cEpTjmh2mZ9pARbl+OC8x6oNOVggtYWyV4yV+Yh4FNPG5mQeAqFkFOlok7nnpUK8Ua+xKNmxbuGbgR73Tn0U7tN9Gxjese9AH3mOeRZrbWjtgt53DlToTIRbtABr7EfvA8kS0sIBB3sk6kwsIltJlkH8mXp6Y7YHODhnh/EDmUCs/EVyF7GlGUckFy2c1BdZkiqFmmOWAnrfZxDmZujWcbleUGrFtj3gbsh5EKIJiM6DNotgJcDNS7sQnIvhCzY2LLVAWgVmYMxpewPHhNBaKiiCT03Lfd/JYhw5tZRnR1IL7pQsz+l/0W5J1jeTIXab8PoY0xxxwNzfgQH4CMBDU3Mugbk9qr4FQPoLFmU4WppDZbwooIpSngCtwOAE17pQw4sCg2RArPuK1TZ8+fVX+KM//gW+/fnXqJeCH374gKU2PF2uaLVS4wnxPJ36PpfKIuwYDo9pVk/PC/SJjGV3x+gE120IereobrMFvTbGVU9PN6iQ5VRUgr0QaWYCrTmq3QFRxeVynXFZFsYY//Bn9m3Hpw+v8NWADnz19CXan/xD/N+74tP3n3B7brhdKn7x9c/w1dNX+PrdH+HL6xVfPt2gfYf0DgyHoOH51rDiDR9ffg8tO663gi+eL3j3/ITuBcMFq9EXfrqvcC0o1ytWCO4ACv4cY+/4t7//EffdUL/6Y+jSUC4LyIvcUCqn2NoYBJQfbxS5TSYLIkEODRlxQIZBuqFF0bTK58y9aavTq0oCQ4ePzU0nsV/dMQvA2bapw3A6avSpPiYQcIj0IuCxyHMMM9eBKIo4UuRfIz5oMRJ+DxaIWfTP2TGcQTVs2NmXnnu3RRgjiaPoEuysnPCcdxznVowNA3J+r8FnSOQJUivWPvDp7Y73z++gpeL69B6yP3DvyVYDhz2oQIZADVGIYrKN2I9ueUbDRoXXW9pyXD8ydk+AO3+eG3viBBYFDQWsfP5sRQ7AOX+1oK9eFg7ckehkGPsDqAKUiqflgts3X+PbL7/E1++/oKfqHVetMBcIKBVhwyDNgQbc6g3Xcg0tn2hFcmfnSlzr2DpGN1wWxVIb2vIOpd1guJAlNsIPBetSisF22lh7PNDagnfv3sO2DbZuE9BBirxXDYAgbJB1ljcku0QcBakz9QQI/VUfjLtYnDe8vT0iF2AeO/aOsQ/s645lWaBLma7Qdsasl6UhWcB937F3xv61VvpAF+x9Y8wYCIS4I4W+S9HIQ44CQHavlJjeJ65z78xCWvgJ1YbrLZk/EvpNnPYNkPyAGdNwYv1luaCWEi3QCbUGH1kdcEXKuSxLgxadw18C+oNbR+8kWizmqHUgjUeSFMw6REroReWgoi1ycuPZCL3jLGAUSAj9c62GGT69veKHTx/wq+9+hw9vr7AiaO2CphWP0FsjyUextCt9w85W6NLYRj6nEcPRJX10knMUa8SQ5UK9xBy21wLvKNHC6gMQr4ApAzPzGEYhQfihPXm+PeH53TOut4bl8tOQp58MPDn0ZPMycY/dk4kSjkrsZxV0UcRuisoGN0ACB1WBpgOKDYgRrnyuBe4cFUpueAF04Xe2BdRCgKYG2j8cjo5uOyv9xgBW0jAa2yUUoRHjGowVLodrVFjAZLCEE3IZR88pSy6snDg3kAMcvQmknAHXLX6TqKYWjYoFHcZRS8iWkxS7Zpk9eD2YukZI3I8IqciYgaAE2p6VIbMem7qG8yb5fBjFwXB6Rlkt4XvqEWjP6otPzRMGJjG6WRQmXFPA8Pz0HGBax3DBQJk6HxZ4UqmEIT+9fsAYK56vlXctp8p4tLmk0BsK9w3FdkN8FBbafHRaWloYdR4WMz3aJ2IXYyZMTILH2IBoX3CQLp2kFJmK9xL/FowMQeg0CGyjSHaQ7eAlAhBNFk6MnQ02TfZQGzpFDMFnRr0lPrds2+LROSp9rO7I6bl5/JZGvdaCbVvR+462ZPWUYZENigXWaPmEJxBCAWJzx7K8RykFjgoi43F9oCgmNZ0KPquMk25DoW6JPe0U9eYiGs9uAE+zfxiZLHOdar0QuFsKtLZ5jw6gKCtSqgQFpHgcdQaJNUbEqgjBucgfxRmo2jA4RrRgGHQ5ibm6x4TOuA9lIn0Wc4djakdkxdX9dMjnu2X1LgPDSKAQFZ+TrZQYCX9UT44kItkULn0GoRlNe7SRHbME4jNnr4xEgFlg0NhTl2lVBB6OOsJ6mVucdi5E9shw8glqEGRLFl3e91EHFShqIcjuua4Ak3kokzR3jqaOimO2EmWbWuo0keQXHkR9bnOCeryG4j777Q1kyPlsKeb1j3zE816CyQHAZY8ANlcfAc4ZWoACWgBTikUDsZ8gIS/ICtmI6l+2AMzARinA6a44inIEQ3M4AVk6hqyg8kMOMGvaK0+9udhbWbWMdc5KWhFO8ClKoLCVijXAJ0RCm/RzLRotXKeKYOzAbB/1qOSZxMjsrAALGMBHBuAABoyTt2rl3hMCOxRXj6mgyjMxXGHBUjhY0sEwkhwKILn90AeT227KpYv3Y+I1MLaV+1sVUoOCn00gliWvbDGL16hiBFvDE7iboCqfuQEBXh1VeY+9qKUCbhBnrJDswdwnPMcsRI0MYGEUIw1GrBfB5XrFAkOxnT5JArgYHTLjqtxA9OXRSRD/IZvWzCZrMC6CsZb51HBI9qBGIp4EtkiDKHSe4K/1o901KrcCnXoqkvfkGeslq49/TgsRFzPtaLbYSAYycsRIMl1bxlwRJyIYSC6T2SRR/PTQFTimhwokYIBSFnC6bsRbhes+HPjiq29Rb8/4k1/+MX7+i2+hjcsrtiALHyGgMFmDUxsmLUY880yizLnuaascgEZ4lhPvuG2DvRXs4dbqjCndOdlNI1HQ2A8zUpvMAl6TCAux3Rxvbw88Xjf0DsAUxRVPT1/g1i74F//iP8Hl0vDb3/w7bNsbfvfjDxi+49vvvoB99TXeXa+4aEFdCF6IFTRlDPLuq3fwYdj9DR0C88rWTQYGEDMsvvGa+gqVgqoV337xhG38Artf8Omx48UrfAhZId6x24oSbM5sN21aoR42KNZ4qMbzUAIdTntfhWBqtwOIOCwn7cPUJRPMV1g8wzxD5w4IMgXSvmr8m883z1NuILhy+B6dG3jq3SU3fiIlwY7ywBE8wHgjgC35fFEi1kqmc7zvFMDNKYAEaOyzsxPnZ7JGBJxALMiJwBqAfK1L2CKCPyaOx75it4HSKpZacbmy6NVf11yhybMBeP728KliOtnEvG6fk68Zc/iMoY5hHJoPLJZY4lzhhEOFX4r80iQ/P9qj5tMrOHQxff5PMp+MCcXbWKE6oGr0CUXRR8fWgUrjBo1ikDg1iB7rGvmfwJL14Ow66QaC4M5BWN0NnWUxdFa+MPqO7szfJQpdybAuhXGage3La9/4zAIICJUArg5bH5AE6JGhIY5vjbiPRdhg+yPy3RjqM6eRx5qylddmp8mhzczBLhBEbkAfWQv3aykaQ3ViWExcBTsa/LCLw2dhq/edaxskAIjGcwjSBjCLughfkTFcsqzmwCU0yvLgYPowQTtYkDYOPcFwXvM862xRjf2cvgcSbLDBmNs84lM5bczjty7UZRveYd5h6BAlGzPZYwhmLrtiaJMSpAYYf769vuH15RX31we2+4axG4bv0GLTV4/OYmkpdQJZEZQeuUeeI81TJfPf1B3FHSVYTSPYh0QdIk+IwuSB7OTbRh6qgu6DBQMBUBTdB0G7n/D104GnMKbsRc6DkAc7qlNhPFK/hKKcwQ6J4GUKAQspaa0VLFVwLQMGTsJCqWCrUYM4JaKkKEpdgHKDtCsdvDikBbVtYf+qDFYRN18xxgM1E2VQqwcWPb9SIXJDtmiFyQF0jTSKwUENQy0+QrgL4Gi5gWwZ4AMfbCTLgzKdp88Ej4BC6IUYTskE11NDx4iJf1ZYw1EFhTQDeBXA1aEltESc4T8ZMURdeyDBqjWq3cscf+heJgAmEAIJcQBV0sClyCuD2RrP3gdppq0pzAuGA33fAQi+fP8evXd8//33gCuqpLYOEx1zTjsBOn78+B3WdcGXzwVLveBarrx/Ty0kxdO7J4gA+/6CvW/Y+4NaNUWj3QlI8l/VFsenwQb3TSZ9pVbKuqRMvXQ4OoY9aCCiRxuufImQTZdfI7VBIuDVyn091p3BfeDm6sLKDCToyoJ9W+E+GNwXuu4hAyadOhlu8NEhphEYUOgQyv5lOoIIciPZyDOYgrilFtwWjcr/QFlYVRcMuHeYrewJrxeCX85x0WvfsW4GSMEXX3xz6O1IwcDAcOqrjWDLqDa+ppDt6C7wKojZxXA1WKwtxEKDIAwzIgoXh/gOgZO9qA2XywWlVZSlkaWY3hRAKxWpozKr4zFKVJV74dIa12eP9rwTA3dY57j1mBS4tMupKoDpBLSkpydjk+BtVrMyPQOOCE9mckwHmbpBR4KApFgjW2pqsFnKcbYnC+YIMh2OocGEDAageIDRLtOmZeA2WzFFSdtTJuswoMhC+4IQwR0bAYUIhEUAL/nZlcCakIYsSl0GjvqW8Ns17C+vkxaUwUYyizyDRKdDld0+a4ssUcVzA7ReENyRw8F9FkrxL1WARevBBIBTXy3cZg665HIdSTDiKuHU1jN3mHY+h5qsIbbfWB8orbCy2Ahrbb1DXFBReP9RwaOegWFqxOV1QlGDOeJGzUN3J6AqEuOcfSajAxaVTTI2GB9lMBRDHyyMUkx/EmEgTuCpQwC0AIBFK2yhrX+537HtOx57Z4BpDLZdJQKfKMogREE9/LY73HOOVCTfAGCkr+sSoHyPFhkLTad6gYF6Pv2xw4ejZYsNyB7pwATq4xZOBQ7+bAaeBsfWDfswDCeIkKPkHNRZ6/2Bp3bBrbWYQqmA7Xz/nZVpUbab1VaAAJ72nVoxnD7JYDMLGabcW1ojcYrgxt2g2jhhKgR+FGW2/8IjQcxzJdQUmYUyKMSAvjqsKa7LExbvKBwOCLigjw4bHH2dgLWnD5C0Qx5+IdZirNRgme318fw8YWsyrTI4z/UXcAhFEYK5OVLaMjlwnlk4463wcrwTP91zWCSfRckMyuMEjohLwq5GwAMI5tjzkuKUcWI5ta9QMgFKI5V2km6PlX9okK8kAi3GZ8vyDpCCPqjZmJo/uzt++cd/gm9/8af4p3/2j/HVz75FCRmyghtEqZkzwKw+gbFWKkQc5nvE9XH/hmnvMubXuJfSqYmXOIoWoKijxOTUIoLLUtnu7ztCToX6R9k2eVpH4NAzYzwCdFesw/G771+xve3YBlBMUdDw/t07vLsu+N/9b/4z/LM/+zP8l//F/xW//vW/xV/8zb/GD69XXGKS4M+/+Qat1Yg7OL1tKY6yVHw1vsb99QUfP/wemym2UbFv1LuxnYM/Ft1hNrCNDi0LtFzxi6/f4f0X3wLyJX7/8YE//+1H9H3Ax8CwDfv+BkTbTJGCCsFVF+woeAyODJTQeX0oADeynYLpWgr1Psd2Kt4mCzOT8WwlynwMQALqs2067F9V6krlfzwL5qcWyxz+YFGI65nkZnKp9Mmav50XgkiEowAwPLtI4/U6QQYDwTVEgePcUimRqLOQEJY77ze0dI4zGfcxPHSX4tgVxjpP1yvcBasbujNGen28oZuhtoqn6xVPT08Ye8P+9gYEs5IACRDij9BgrQahMDa6zDZohWDf18kal3TSsbct7QUw93ps9XkvyKIvjpZVAKgT9EcUdfmzZ9YHY4QYOmQDj/2OVh0X1kigTbENdrxcK8HqstQZG+5joD/eoJVsknrhpE6XghF5RjdBH4LVBN0NxZnGb9Hlgn3DEEUPmyIAliiWllohMYV7t46x3dkdUTSizhx34VFwY7nB0jZl3BN7q4jCTLC9rcyzS0VrC1ptYAurB9s+gXXGOFO+LL+pmYNSSURojYCoDwLjSz10T7v1GanNYxDXYyOL9RVaHI/7HVM3UalpXFRnGyY3RQQGIc7mgpNcDYKwUicZZBI8HEAp0zd5SKnU6MrKPdFDE5YFzyyq4igqQ9KBT+3EwgTn2J/wWZRM8sduI8CnwfZ2VSzLAhiwv+7R1ZGTUiMfircYY+Djhw/4+OEj3j694fG6oj86SjNOug7yx9o5bS+BJ6iTJKEs+CWzGwBjvdMzNaZfaO7QwX8jMOaoQEzuDg3jIL8AONkYPlyrgn03bH3De3F4VWw+8Bg7fsrXT59q50nZPDZJ3ylia0IhtmshYwjuqFpwqaQtDutRiYu2Bee0LVbkyBMiZZmiZruzjUXQ4RC0JZL9IgAGxtih0f61maMLsO1pfARQj5apAKWCeaIWI1tN2K/bSoyd7lNfKo156gONfUTylA9TMHY6fClRgQuKuNZoR5xI7aGZlNVAywAymFQCoO8b4I5SFgCGx/ZAxuVl4XWqCHt1AfRheOsPuHeMgahiaugEMeO2Yz+DzCACew4FtECiytv3DhGgjAXuhr7vMYa5YYwe2h/Er1P4WqrOwHBYxxjOUfUlhLRV0S4VGtQ8OlKn7s/e4YPgT/ECdMHbpwdwFSxPC0oh6PK43znqMkcqtwJFha9gAhlGUULIFRDsY41DZ4AotBZY5x6F0YjXJQLfqAbVWtOPs4Iqgj5Ia7V06rGGPecnAwyC4JBWOHArWlAGOp99YZuAGTBshUWbF0dIAxBBbaTLW4ohI9gfYnDhASZYUUL34kh+ZiUhnvLeB+4W11iFgI/SnLjLZAltu6GooYjj/RfvUFrDDx/f0Idjsx22G7Z1hS4Fz/f30FpCUF9QlE6aOk5vEBVcWsXYd3y6P/Dhx494PB5wKLQuSBFWgpMH0AEFLLLc2ii0CEnmQWcL7n5M7+k2Iohj1YIVlgg0sz1xnttsczsCrZyMVkNMGJ6Be7g5VdTaUEudDBaLJ50AElmCiH1zsJgkGIIJFnFrMBCWU8I5g6XUl0IGyLFPRk6yFPSILbU0+DDuqQxeo32OPeTpWCMhFoEowSWzcVQrfDCwLqzgUO2M/1ZL9ssfVfRkHNE+85ZNyCxTEeqhuWPvPe4kQQNEFV6mIPcewooSNFCbQY/CIliRI3rgkqRWhdABBlYJByuCCEDCzcIW89ymzUvtwUwGPRiaWgphQKMjdwGGRJLrgxVhMw7HMAasLjhAhaysO2D7AGRMUHJZbrGGmYTrAabAj1YfyT2FE6vs5GjtWMe8B+R/nXbHImmpQiCh1ho2keiwqCMLF0WVAcq60Z/E2dn3/fS8Q5g3GB3kiwQwFofI8irCMSUjgYkPGcepv9B3sig92t24DnasXyRuLo7eSUcno1MjSfcZ904tNcvgW7DvZECXWqFhm0SErS2+Az6gAfSzcKSxzyNGEJmVckXo8jhbBdQE3Vls8qyZAfDRw5Z73H+JCmgLwFmY4E0wKBhtnclS1Zi4VWq0xW20K2NgHx2+PgKQ8LBN1PQQYLIFPCwHgFngoomJdNOd/lxT/yzPezR3ZBFNIwYpmc7wa7hFa6FNoKYoWSa92ykO9dNZpOWTAgJEUVBEnMkMXHMPiPPsl3Kw1iwYg8hrjOsSJZB0APnBtBXAvDO5lsp9V0qAzXxwDmDbeiTaBWR6d8o8DMMv/vhP8U/++f8M3/7iZ3h6/w5WCkHNwTPQR7RFi6HWiD33KHYmmznWQiR4wUIQEgg2TAf2nS07VSkuqwVoLXxWuICDKUX9zNR0UwH23mdSlfFAoBjoq2AMwevWsXXHNho6gC6D7aoQ3Pcdjo4vv/0aT19c8K/6/wHfffcbfP3fPOPThx/wl//m13j8uOLld5/wj//0F/jFN1/healoRQOhWLC8+xpWL7iKYt0c3316xNAAwe12hfvAy8sdwwe6DIxqQHM0dTxVx3/8j/8IL4+ODx+/x9vjDntseF4KLl9+Ge3SBX1j2/y2D3jfYPvKuFErvCzQdoEP+lEWlQJQFefAiShsB7k+WNfpkeX4b4C7ZKo5PjO9cohie/hUybOWvjRPYNhehU8AVaInNhl2k6kEngUnlQvix1VlLOoRK5VgkrgHeJLnzRlXTFYwCHjN6/cJR/MMFg4nsMECi0espIJo6+N6uzPH8QCWr5cLW6WVtmm1gdH71KYUS+ZRaAuBeZM4NTnNKDxehcLEVVMWgcURt8w7RuRIcQgQiFg4Ws/Y2z1SGv65pY8ym08jVxlAgAQePs4xRGjflfkghD5aa0G9FFyennB7focqbKFc950xpiZLF9ClYBFBt51lmJgIl3EJNNYcLDwXUdyeLrjebqiXBi0FI+pbmkxRG9i3gY4orFa+Lp9VGneRjI/oe4dl7MZW9RZ+20WA3mER54oqarQ1piarmYXvKbBBW6hO8GKpDdoUBZT8ED2Y9zuNJrZBGe5hhlrKBD4me+c4avTxOApy7gchpcfPEJRUpF7TcI8W1MLY7DTIJf1ZC1kLFu4mGW5+5Z4xZ0tgnhezDneNojbijGdbXuh5YtCWR/6u0a0j4ZOoy1amn3N4kDtOYKhgglMEJyX8kmPFQAGHiogBMgjwA6S9jOF4vLxgfX3F6BvcOwAWx9ANy1KRWto8R3360OyKoQTEwSJEdG4l018cwdz1mdumpKoZbaZI6GSroC5swa8g0WPdKB/QliuWyw0iwPXyBDfFb3/7PT5+eMVP+frJwFOaGZnBxaGF4THBpynRNhtE+5ZSsA3DFkrybJE6nIDD4RLi0SB4IioM1izbyAggUFQ3rsR2WDzOfQQAID7RRZEDdNKZlEb7mMmkV5aqGE5NHInqAhN7jR5aUsnMhZXhkvdHtJJU3zhcM5myIzcFWBWN4N3jwJRTEs1DEqwG8Pd73+c4xiWCdyZvgTi7Y992JHRO0CxUJjQTw1zlWGcnZZATFTQyOef0AQMTa2MyKdponMxinWODjoM+mOXqMTr66FguCzKWdChBFQc80N3uhr0PyL6HAyXwJEOw3TdUqbCrEXhqinHv2MeGfRS4VlzLhW0AsWZupG5maxoA7H0HQNFGlcKK4RhwcPSvQ7FoicpHHIBa595MVp9FQG2edMtMxADESFtES6PWzxHw4eNo08qqve0Yxlav6hXLtYXWUwnHq8fpV481pEGiQF58RO7PkSwEn5/dx6BGGDjNEaoc5+p0ZlKcIEaPs1gct6cr6rLgbRh87di3jr3veHl9xe35GY+1Y4GgSZ3tRbWSNt37g/oq5Yb9sZEi+vqKx+MRmjYVOWXFTBmQ2OEEs3beagvaOBMTiypg30M1QQBDBJTweaYzMZcAwTPxkgi4R6AQEuUgno1j0MCsAghtA6euKXxb2YfuYPAumBWQPL+09XIAJnnYJaaGWLZbIEAAJnUJyuSzy307AYBpaw3qCpEKqOUngzFuQU4WJM17TAfqwuR5GPUyqvDKzKJNthAGZvsGg7VMAkewN7ijjvYRmiUiYZK6RrP9jntJJniDCJYO4KlrR1ZlZxogDDacdIK5Jhm5MOmM381WqQTUD5aouc+CiM/3iM+ROB9+7AvRYGkwsmRwAxZAPPdPPCtYJNCIPZRfzs/gGnNsuqqg1iXOfNjdqEZOKjTSp+XeOewWz8ihE/G5cG38PipjySBj9ZhJbikltLNYRZY0CwECcAqmz73LOGbMLMpUIOrzLg18TY4DJijkwQiNjZH7O85BkRKt8AW2cUqpxlK4IJKBEUE1wWEzwzbIlKitRNJ2gGzJBvQ8ywlk2IC4oHCEHUpU9YZRZwreUfkDkHw+pWSMRqBKmTQKuI7iOLT/DGzhUkRF02dyyK0xYN6pH6LRFg+2G3BvavyIxz4xaA0WnYYehhKQZZt1h+87EO0Gnm1Z8bzmZK9Y9Fz3HJIQy8xn2Y0sraJMpDNBTtBJjjOa4CivmfujG9kLmcCXwlZ6mbbb5zNK+y4ANMCeXGOED4ylm1p3mXTrvBjMpD7vq4RfT7swRkRwAT4xIUqdjdD/0WgbytYoE7L7xKClgXFjsKRd8PU33+KX/+Af4Muvv0S9LrjvMQ1ZGAeNMULrcuB6K6jC1gJVMgokncpMfkfIFHAi3zDE0ByuVVFFbYK6CJYoOO2rz/UUAJOck1hGgARjeAZWEVsyJnxsim0VvKyGbRi6U7fThJOphghWG7B94Osv3+N6+QLXa8WPP/we9/tH/PW/+Qv86//uf8T2suLx4RWLKJbSIO+fcb00tEY9ynp7j0UrLga8/vgJ98crbhfBUiveXRbABvbQaEotSRSgqkHU8PXPvsTaHf/tYpB1xbY/8HR5xjfv37GF0hSv9sA6NryYwfqA7Gzd67JDLoJSL2xbCnA3LSQQPtYMCBaDQ5CDSdKqHZyh2DZp1/Js5/sdWM8E/DLxl7TNsU8B5hlsRcaRvxCDnK/Jve0pOeBH+++8BosWaE3mvM/zMa8udaJgE9RNhlEm2NxHMUVSAE/dJTmAp7F3DKRWnsN6n+2rrVE3j3EDW2es90jMI+n1jNay4MRF8xP71Z0FstTmKllMSqZYMKg1ncQEco8YK9cuYxK26LMAasjrCPDbj/gsO0BYbEdo5AWYYpGol4LaFiyXK+U8xgaMgX1w+qvXyKugnHReC/q2s4As2b7nLH4XmQTl7EZZrg2XW4MuOdU6kn5gtuX3QWBzCdCpSAk/lsq0fH9uyIjJIra0YJ/VWqPwFtqd5jHcoEy9PpL2aNNK7NG1B+s6CqulcELeUpfJ4s69N4JplHpz1O1KcXwCwC4zLKBfwyQ0837hyJbWHE4jYIF8DhAJgKmUggZATPGIKZdiTrCwtrlvM2bOc3b+YtHU5uknIzvtdcTzUdTKgSYDR5sEW7mP36c+LzVry2yXU/SZkzsQIKTOayIAR1B2J4sjaI205wFpsNXYDNvbG7bHnZrEITs0olX2ghaYQcS2g9MQS60zHtByrGfahcwrkpylKsHJpF2pOOcgfL7JJi6lApXgE8xh+4BKQSkLlqVhWVrEl4Iff/jItsyf8PWTgScth4VzH/BOCvtSC4qxz1viYYxtC62HXIC0xDwwGaAAfNi7A5tJCJErWqmoVbEZ23MoPmooQOhBERRxG9AAs2oo0ueEmBQe1VLQewj9Dk5CKdLgYnDpGL6h2wPwQso8wlAES8rAymNcfHiQQBezvUd4uHoGiOmYEjmGY8cxDjuDx0lRLzUCewJI794tHCk9dmIS1iNoPSarIIwi6YYBsDmBIopvW1T6CLiYOfY9xBwF6L6zxaNyZ+79zutRjtV8G4ZWK1q9RsHB2eoIJ6XWecjaoqheAWwUeouE6/ZU0c1w31es2wNvjzsrK6D4vELxxe09O9s7sL7t+GH8iKf3N9yerkAjLfdtf0UZGhva0S4tWiM6n5cg6NWAFYtg2QEMuA+USpFGIr49gmDAOllmXN9gRQRYSXF752Q6zcQk6uPO0MZ2ahhRvJp7OZNxnwLyNPLX2wJ3x+P+iD3KKuhAiM3bgJwdL4AxdrbpDKPGkZ5GLHuwOyI7YBGPTqpqg6tM1JtOLsZOi5HiH9lBh2G3HSYDKANycZQiWHDFhoHfff8jvvn6K9SywG2Dw7B3svEujefNumFbd9zvKxwFpV6RFcO9s6pfUDCGoPdM1Mu0B3tUDDA2lKq4oGKHwobicllQtKJoJH8waFG0ZaHY/kYW2XCD7axAVS3Isb4JJisqNQ4k9VDofEpt06ljAmKhr5CMoszUss1KAjiRAg/asoVmj6bOFTLgPILLDCgRNqr3fbYnaYJnIkdwC6FwvQk8BIzZzRh6J5IrQrpvYFGfMctqqygq2B5vPP+dye7lUpgYGUBdEY5sdVEM2+fe9dN+dCfTUiKIsQRzwpZprF4CJjniuwRYT+ArGEEzqOR9nFscZiA9Q87jGhDrlxFOupa/+xVvFCxECrJLABtH4OxgIqyIl4oGxTjYPnYk+bzHeA+JKWo+gn3kgPIMW6I20X7LgKXGZ++f3dMMTiaAnAFZVpUd5j3ONv/BxVEa21IkBDT3AJPzdhMITDABAK7XC5NCOarxM7QURAscDTvbpnlWMzixmNyZQIXGc00WoTuwrjvuYyWb2S2KSWRwIs5FnoV4W4zu6DBY7H9zthDs3SLQq9GaQYFvheLWGn88wQw42+DDrNDesbVuaQuqKhkcsSZFnfs+gIVjwmGe9SN4zGdBPScP5Q7BfLWzgiyqtNmxL+fZiEa31CNa+44B4FaihUEwE7OiTKog3KPJcBU5rqwIpq1ABM68ttxUmINXMvTN7xGx0dEgkTYkAbPwga7RksGioY2Bbh2TwZEFnym7cLB/CM7lIVZky08WYxj0npJ60GaXGTTLAaK5870sExvHwT1Jkfwa39GSTk0DnrdR4Fqg5RoFgRUqDa0JVBe4KLZ1YGDH7h0egFHvA9u2R2yZZ5Ux8MGwzl3AFFFSX8bps19f3mAmEHDaD1s8qXHIzwC+/37D6JzuebsVfPn1EkDkwLYxYdw7i3xt4ZnTUrCthrcXw+NRsG+KtVNnRmQBpxTdg5EPPL97xpfPF2zrB3x6fYND8P79F/jf/6v/DD/8i3+Bf/YPfonXH37Ap999h5//7I/x/PwlUCt2F3y4E2hbaoWWL/H+26/x9PyA/WyjyLYP7PdXDHO023uUiLFdK9wr3j58wuv2e9w/fcQQwT/5xQXjj77F5XbB9ekJX3z1NcY6MLaBH37/Ax5vD/zZN/8Ruhg+2I6XbcWvPn7A6674tAFvfURhNBgH0dYR8u/xHIKWJwReqO9IBvznu/7wNdmyzDbZONkeuzN/iyxsRCanhyXPabGpg3ZMEz1YBgn08rNG5BAOzq+hKpnAYX0LeYPUIjwYtyVskiKZFOHLLLWOsqDGYUlZXdM4MunLaq0EgAfB7VLIFiULNgYq1EY7YyyKl5yQFq1zcEUfkRRHi1RdFrbpBNFgvT/QJSdtKVo5hrpYEh6LTqayB8aSGoOt1hl8pJRA35hDnIEpINuAg33b6HfG2OE+IEp2lSG1+zziOibWtTEOdB0o2eKlGVpwGJVtO7pR+qC/vTHfiH2musC8s0tHA6QozinqUdDEiGt1Qw02icVNZAvZ3gdUkqlEFnaPWIz4k6Bom5HCAJBDCM6+/rGtEFEsdeGuMo12fQpos9jOn2uVrKV937HtHW8bu5PcHS3EtqWkbUYIi29A39Ax0GqF1oJ965+xoFVqgHItu+VmUQMhYSJaIk8Itj64p9wHUre3LZfpS0p+xyCsZOKN1H1C2mrm1a1UdsuIzqFeW6ePDplTpLQJoNh3gnGtheB6DPTa151rVirb0YSFAfcjlmE+fIBVHvmVGOUdHA65MocY4L4061iCXfh4/YiXjx/x/e9+jR9//1t8+vh7iDguV6DvDhuGdX9E3MbJ63aOM2Ivce+VWBOHdwYD1KTM4uMRdwqAa13gADbv6EZfXxeyTNdh8H0DxfaBPSQu9uGQIAds5KljX20Wa/++r58MPM2DnhCa+6SZqocAjPHv3QZ8CNHh+F+ydkg858+lj3CwZ5i5qM4kSLzH34WJ9+C/O8frIpIBBVCjRJRBNZPrRP9GVFj5/kXCUZHvxiBUDmqhxCH36Jd0QVTqggKeyTuSP6lkfkX1nX8nx+/B6pfEmxO7opPjB5KBlNdeKvVKSjhTc0vpwbnJeR2YAJmEkyQ10Ob7Sjg1shRO3+BkuOx75dAEJudurBbU2iJZP66NBi5aZACkYCyivccGjXptoYHRKSTZbY2d5NMRL6WRndIHRjc8bEVZCspCfSNVxb5tUSUhqKfJ+onnpPGe8KDBhy5N+NxZOdyToh7X7hYAZSRElgloPnP4ZEVxRHWuczzP0LGZzZlyOMw06knBrUFJTZG+bBtinsfnMUUXj36U+W8MYLOiQ4PHalfqweR9CxBOInuWo3gevb9I5PPYm1EJInDhQBGUxp33WFeCtp4MI7ZWQhWlEZwbnYy3PkYkXKlphLk6Gr+660zyMhCcI0JtQAYTXGX5MBxYAhXhbiPhsZG7kg6KtFpSvDPAyoc1k11w3cg88QnOeYBzmCBTgIzT8pxF+05JaVRCbbauhd2hwYhziiNhm4b0MM7uISSLTFTz7zH1yWarMA6bka/MPUnQP9ZymhUJrYNkkzmpwkFtFiQwSS0V2iCPvRarK8kGynWLhHA6vayghKBkVHTzfOTEk3h0sw0n7+u4P+BoFsjdk787vrLKbZJn7fjKIkBqC+TfZvaYucTcS/P5YO5TkaMqPe1MvnvsoWn7Z2iKEDcOmxHJgE6brse+wOfXPJlIc2/wEyX3UDbly4kxpgjKNT/dEqTIRQ5Qwv1Yr1ILxB2zA1/mKny+ss5kQiCocqxbCvUjAKgU0I5mEz7z4WS1pvGVrHoeTWKzUjxPb1R25bh982hp0/PZ0YP2riWCH2okpA3MZy0uU0i8VLYEsSo3AjDlS3leBgNzsEDjmYDmc0Awj/IVInOJjz2U8cZ5t/oMgMVlAocjAKyMA2i7I2AMdrNavksG8kCKuouksPCxf2Bn64RpR45fT9f7B/tvvkc8w9P2YVw2InYKxsO0eye7fAS+yYSK/4hNxvC8ttxr6SunzQt2ccZejpl8HDs0jvw8fwECuQCus7oroYN22PGw80bGa60KrTUCdKMuYDntR+cABq0HS4ThZLIUz995ZcmGJ9gxOtl9WlqwDmVq2YxBwPV+tyjG0H6/GxzCMLpQU3HEMkrcu/B15sC+O/ou6LsQFPZkwMUQEyFbbVkark9X7NsHJiMuqKXhj372MzwvDfb2iu9/9Wv82oB3z+9wWS4RE1FbTUA/tCyF0xZvFboMSFTk+7bBh6EuV3YH6GCCD4FtG/a3N/Sxw1XxxY0TWt+/f4/L7Qnv3r/Ddt+w3Xf4peExOq7PV7gKvhLDh8cd+9hR3gbWdSA4/kjQN+1/TpYCDDnIRgIgdhzgNE5PbMZhItR4kTgHYWdlGiTgQHXzaX9uNR0HAKwZK51srwcgxe0dnjXYkQQyfRZUOBzFCRSk0YzYcMYJkHluxPwP7DHPTLIk8zuJM9MuiEAsbXIA7CGd4SP8tGvIFJzsc/ry0zmeLDAtLNy4B1OP9tmFIHu2CSVzBGFL5MTAhgR54BQjzbUOXTPzMYGQ8zPNvK1EjMgYinYIad9x5BGtsbNDZnyXnS4+9w2cMZJZjoGSkArh2VRFdAgSMKFmWfx92umMR8OAsZAgQUqIPWTOboRytpa5vhZEg2DV4bDZzGvzNXzCSU4wTcIEMnFARowqXIvs0gHom/aRGoFGTWQ/5cXJdo/PhQEV9TNzOLWWMnIKu8nnGp04yngWqsDg2iZ5wv08/Ibxqsf9Tosb58DST/1BHAgcxZzcaxYAnQVb/yiAHj7tYKfzeXlIdmRc/Xd8qMyDcNiLE/DinsQVn8QArp0j49uciLuvK9b7Hfe3Vzzud/R9RV0KamvRFmmp1MDzcr7Zv3tU4voTjDz2WoZJLsAx/VpJCPJkiwosCkGjcxrgFGr3wz92IaM4Oxfg+yFL8fd8/WTgCYMVr1oLFAyeagltCCHVHzPZYJD36f4JQwVdFZd6gS4Fj9c3DDMs1xsNauUErYGCS3vCZbmix80WMRR1qFYygO4v6I+CrVR89cUXuF1vdEJC1pAEFLn3jse60VAVUndnj7Lk02Ow0JYCrbeIYyhwK6DKPg1sDbV/waUSLR4BZL3dH9xAKVArAg2BRoqhOqd9ueGx7lARXC8XZNDU00EVGt8hrD6OsU+6W1IG940BRSvtSFBNkAP/2FYa4sYWmlOztnlCOUEgSMqOKh0SDK+yFPgIoUYtkJiWk44CiI0qnDLGoj77PbUCfV/J3AGDzdv1iq0b1m64XhSQC/pmsB50Sle20Yii6YLH9sDL/QWbG9Yx8M2373G5LKSSmmHfVsCJbhcVtBaTDZ0jhN2DkSWOYffQfajTpWTiPfY1zirppdflQvHdsc2+ZWtMsnPSXlMyDOo87Y7H2Bmclj7poe4h+jdYNUJoQWhjwLvoAgAocexoA8IBhGbCUX1GDvSaLSHpNopGUD1bEo4pbZLOBxbjWwMEGHvke47rckFbFjw9LbjeDKs47uuK73/8wPaaGHu6jh3dOH2vKgV0S12QYoSPdcXLKyueEAPViHwyPMqCcHYdpThkcZht1ARbnliJ6LSCZWlwN+zrhufrl/jiy/dsdfAEdGmsh1PQbowdfQy0ANp6OAkd+2FYB5NhVaU+mpEp1mPke/MKsnN6OEU+y9bqqUIf7K0txZ0zMBDU7E2PHVYLE4+sRA0buF0uWJYFj/XOVoRO+9Mak54xdqQgrw0++yWos2SMUCu8uqA691YGfnNvCFtGu1HUUKPVdIQe0BRVHCFmbxHISCET1ByOLcJt3qN16ushWHsA181HDo6mfYlwjdcpZPW4A96DXRKTIW30SCIzmTsSwtGTOh02umD69qzoiVskwvwzdb9yyh2/WrBs9z10JGxEQn+0KM9nygkLqJoBO4ElUaf9tQApIAEiCaQWgiLDoFpwWUIzDASBgSgaBHDvTpaYBog+v+IcjminlQgOqNFVDl0hsHLqyPNFlqTZHloOMTgjwb5BsEsqMLqhD47LNgjbxB0Yoe10CteZBEE4lSj+RRH07/yfsBjgynUcEbR456hlEYnXV1D7KooF7jDN1mXnYAvbkLvIFNR2SqCsMynfdoeG7kaRgtLqDIzOkzNTeF1qgVTFUqnfeG0FVRWXUicbbyTQz746DN8xbMfeg0UaenjmZKkxLo0A0Rkgak1mS06q22P/KVyiqBEMCy0cSV0rW5SLOmxl2/UQZSuINUCMrelC7UMVFsUy+QlZi2A/hD+LNm6dz5J7tLQaySwDylpZ9WVslIDM6cs98moaFc02fBvwYejjAZWCJcZuS4AfohrMJgk2cNgNSyCRSXytZINR05MMKk5VtCMhyUsRtoksyxJ7ZYQ9YHzloD+DRzs5FLACIAqVUtBUKR4vws0loaNlht2A5fmGd+/e4atvvsGXX32FD9sDtnd88bN3gAj2zus2E/rHa5tvp8G8tRRGRhYECsZQDAPWO4snbXkHUUetxsRXBKMrxlB8/Nixroa3t4UxQwXMBHvfY3pqY/LlHZebQYth2w3oBVgb1ruQ7XQfGPuOy6UBpWDdHtAx8HxpWFTwVCuergWtOK6tQfsF694xto7vfvsdbF/x1eUZX/3yH+Cf/vxn8O0OHxvtiw18envBtq/4/etHXJYF79894+l6w9PlhufbDbU+HTalb5xwtG14fX3Fp4+fYGuHrB3b6x2ugvc//xbX6w3fvP8WtTVc6hU/9gcery94JwPvroqvnq8oraFfrvjxfkczwb/1D1g//YBLK+i14K1zGiVBUkeVsHf7Dm0FRRsGYqKxkrln+BycBUCGIQCLFqfP8tcEWuLv5s/LLMnQHjv1aIc7rFsMiAnR7QBU3GPUurBYMUDGe0o5zHw1YpwC5jNZJNRgamdciJm4OlJ9LxFKDi/itGKPMzVBtwDQS8QPlDxSeDAXZ9t+37F26qNdQhNnDOrwqR9gk0phS990I8ciFlF2hJwKMSYGBCMsmAi0H2HXJuMxWp/CKpy+gT9U7tIDBQMBOOZqxB87VLMDBLQVPoCx4+v3P8M/+6f/GO+fnjG2jv2xhfbV8VmiAq0Cic6KElRSFzKU1m1jTlcK9pmY8zqeLguulwV926BiWNo1ulo8WLYDdVkghRMpyUZm7lVbaACZTImGEdIeUpTrHWmsSjKmBjUPs60cMm9F7Chs9b7DRsfWV3ov43PNgnVDvh/FPoyTuADIlJFQCGptWBqZ6qMP3K43QATrSsZz76EH5Y4SnUf7Fnl9LbOgZOYxDKmg1YZ120IOhOu/XK9wd4q/h4ZYnuO6VLQWDD4AVQgw9d5nJwE1nP/upLXP2PoR69dSMSTiShHqHJfosmiN09r3wWEzI89M7C1h7FfboXs1BmYMbOYYG/MO1IamC+oiQOdAmw/fv+H77z/ix99/wv1lxaVeWTS4Noi9QXzFGCvMnTrBYEdE+iQSFDr2XSDj0GydenMBjMOMk5qV7cgwp54uHA9Qz3oAPBPd2GKfe8kADE6Cv/eBXitGbVhaQ6kVY9vwd1f63//101vtwjgmn2F+B5onEu0BAmgtU9PGk/9+svjnWifFx4SHzACyIsitnogkom5F6wHrPVokZFaEU+BOJgeqIBXP2DuNGZDNiSBBadGkVbpHkIAQN8d0QJksEcUmIJP0vVo1dzPvTw6UGJI0fv6eVfOAErJaET8TviUSgWTw4ACajgXkL+7RQpRBUBjMzFwg+X8mBkXnNZIxZhHIHghswlNHhehwAilqPUuLfmzIo8c8mHA2GCCC02paLaAeqE30fyRAJjJR6L4b1kfHvhlapXOjIAINWVaHqWsSCWskp4e3kulkMe+Ht+7JsQyNMhU5WHUZgOcuDU0PhMKyIvdk6FyJZ0x5uv+5W6kZAiGzCWzfQtzrwXBJLguDd9KomQyYUIowNTrcj6vL58R34j9kNTgr1rMiOP/r80ywiEJGYC0NtbClz80yHQYnlXT0sYcIuCLhLxrWgcf6QFaLRoAYGo4gKd6ICtI5UBL0WKdjlAZfH33UUP5ewAkUToYS7y2rMoD/wf/CmtDoAtGP7nN9s83wfJb8/I3JITp9x5mK1edeG6Grluua603mHKcf6vGc5PSB8X5HBSU/Me1BpP9i8/PnPc9tngy4uCaK4XCdRQhexE1RewIwi3ajSDY5atWOa0IyfiQYhhHA5ZrMCkp+OuYeRlRCsoqZ1zadvsfeO2552vcpmAvMqmVeZ1a05PSphqPV72iFzL0/Nx1S9DIPhB+vPPrd88+f/SrzPo7cQ3AcrPApovNMphC3pM0VmWuVNz1dwty74T8dx+fkGyajy/24WIStlMODCjABnnyaEr8/1gPz9fMm43NmBSz2b+7DwzYddlXmdeaejHzntG7cd0yw5trEfbDqKNFpomSAxF7OKXY+UhMiKsoRUxw7zuP+43+S8UckVYXtasdgkdMjiNdmFdKCTezn954n1ueqEZzhv0340M83frSqcd/RIfB9La43wL15rXm2Y+/PEMJny0m2252f4ZEYnc/fYRPOrWr57/nDc2/nubLT6z57sjjiHkm2xWkZM4aITXt8ROyb87aP9ZtX7cea5vV6CJ9mPHDY42SnnT152JEMzhzIOCQZIflgtGSsxVivj4FFyMauraK0CluBHtXe1JzRwsEfJUXFTyaGF5LxG+Zn8SykZghicIij1GQI8GcJMBFIGsFUQiQxULaBVj2q4lcN9gY8JvUObLugc5gcXUS++aDkRStsLW1NoQVwsFWqtYoNgI2Bx+sLfN+g+wM6dhTv2PcH+vYGdwJPMh7AWGHbGwZ22CYYQqh1rwJ4m5V8lMrnINRE7cGWqlpiyq2goaChoJhCTeEdUGe7bo+WFDGHumDRiiYVMsgALOZosRfLPJ9HzJmsp8n8PO99nPyVA39gFCbP1ubfxC7KDe7n/R1n83weFHOKrieIP23vAVQhrvMAmfL1OPkWgjPHtSfAlOef5+LwAH/oI45f0xVq2AT1ULxyRjm1ZOGM91yyhRyO62VBLRQHH2Ngf6xI1lX6DQrYH9c104K4n8nsxxGnnAzTKSYCTsf2WI7T8xQBkbJxsITOGld6WussMosYtQtnHhXDSsBnUFVRhWSDHod0xjNy2DJ6QZ3PIWV7NVozJxt4OADGr1UrmjaMnfd5ZGf879RMPq1NTjA8Sszxc0T7uVclW7tSnD0KBenIP4tkkt10LPT0x/F3I4ztjKWiqKDik9lesoc/c+KMH0Wi0+d8FjH3iZ2MuU/AKLmI8RMRK9E2RvQtZG2RSOPTrwC0XfN9JIqIFuzBGZd8fv5TO0oQca383dfm+qsf/ojdgsmcyo2ZP2PHPpyLywOQAF1KAWQsd+yVI+r0uO912/B4bNh7xzCbU7V5XwaJLi3uy6zMMp5C7Hl2JcRaxH6xtF3mk70Y74ScadVDX/TcgooQ2JSj1yoXieeROjBsF60cVmY+zqvxH/z6ycDTLRaiRETiwkrjsDRwjh0DooLL0w3eO/rrjlKB1sgfH95RLznqkBMX3t7eSI23AqABaIdGgUTga0bGyeXKtqwxgH3Ayo5tJeJ4vbHCWJpAveAS+glwKvaLAq0QEX17eUUPDY74oKNNauHB3jZWyy/tAi1KxgfIJiKl1zBClK+ATJYZA4T4c4IMEEFZFhSlPo2Ef/HOXm6NwyfRDDvG4USLKlrJYPIw4hOcD0SSkwxogBTp0Gi6RYBag81jKchLhF1BgGjsA+IFRReKVw9DKRUFBfvoUzQwD222hNk+YBsBrGQgAIb17RPHihor4qUuGLKj+wihOsPL/gJFwaU+wUXx9PwFtr7jw493lLJgfRi+/uIZVQUjpmNpiOC1WjEGDREsKq1KrRqKraXgNL9JUXUi1GE4HSEeH1Mbxr7BjEwUc8PYWYGE2zRyRQonXtSGMQJcMk5PSmO+aIHoEsYHGA9qAIzwDSxssKWtOCCSGlK5foArnaSB7AoRhYwYKesMJn1w17kwmbMO1KWhNLbVsPUMQFGUeqW4+DaADuxjYFnoZJosGEXw7vIVNu147W8BWnQ81je8vgHLl9+QVdM3sg0E2EbHy+sbECK7rGg46vtrMDwOQNB8wMY+wTsfn2i0jYyY3hWXZcHz8xOqKPZ1xe2JDMOXBxkel8uFezW0VKDUiBNzjj+Hp9THTIqZZNL2c+piVjedI43DuSbghTjD3hOUptNbWol+8pj8ZIPTSIQtxXCKpwMeSW9jpUMce99iDzlO2taRuBCYraVQdNEZFBGgPa6TLDpDifHBZqzo9jFCRDRZIBZ7vcyEr7UlgMzQKAitJ8YZAQrKiOCzwcyxRauIe1RwpQDINqr4ymjYMdflcqMugG93slQ/fULRgtvligTUzFjx1RI6LRkYiyCHSKTY9qQLB7We+UXQoiUBygjyk3kxhbojiBNEKwWFLVm0IFukBPjvPuZrBGznKtogoQ8gYc+ZZFAAuWjF3rkX+s7wvV6CBaa04ATIMhDy07pFQDbPR3x2JiTJrsjR7cogs5QyRXr6vmO3GGkOhBadYXQweGwVOrg31nUlS6qx+tb30BnB4a/IfgVF6QWoShZeD+0PICbwBDDskglyJC6prRP7BoMFnNQO4dQ3iYq0YQ5zALDuG9/LMgk/WDQjQKUMoooEaylK9xQ3B4o4WuX0xlpYFWSLGMI/8zyQ9Tew2o7VO5xSpvGMAnCcaMoJbHVnG5xzlLy2QvFtT23DYHZBYvpTSg0YkzoIaiHLTt1CM8hA4z0gyXgqYbASUJjnjIUQtwiEhTpWALDv4e+HJbGQ+1lkTsW7lAZA0TvvyYz3WyY93sl0ChsCrbgulwkEzRzcbCZCM82RGUrFmea/j9Twm4lXrjEZx1oKJ7eZxRS6wdHQ3JYh5g2y7QA+dzFA6/S37g61KDtkIqKK5dIAoSh43zveHg8s79+hLA31WlFvBfaqGN1wv5N1tlzBeC/08Sz0e5KJIYLJ4hwMnSJoj2etg2foUgmAVoDaUYJtZ2zXg0nco81z35+hha1ttbL1rqhBC3C5NtQGPB4dex/44fs32GiwvqB5RVXBtq0M+vuGosB1aWgFWBZAdGDA0C4NrSreXn7EGCs+fvcr9Mcb/P4Ce7zC3z6iPz7B9jtq5ZyA2/MVFxu42EdcRsO1G8b+CZ9egMenC0ppaNdniATjax/YHh2vj4G31VDrBe/fVbhRa6b6BWWr2D7skArIIijlCV9++YTf//YHfPzxE4ArrjfBtb7D69vA7373ES+vd2AfKFViwi4inoqWJxFAgbIoXAzDNki5MK4Khhwy11bMOFri5wTyWRf0WTNlngskOIC5lxMY0ADDhiWrknphtTakTAHt+uDkShzxvMVUK+jhC6jXVGYrTE6llSh0cPhJgvPUdCzKvW4WLEHNQSwavkrJTh1kyQGKp+dnDDN8fHuDwnHTGjo8jn/2D/8R3r97j7e3N7y8vODPv/sBIop2q0itQ5ooh9CQcMoZEqQPGCjzhgTeo2OD/jFykWl9D3CeOQ4Hk7CYUGKSOuOh4UcXAMmcMu1XN7aB3q7c89mWpxbgogK2rnj5/gfUP/kTfHF9wqdtw24+9fO0VpInLLo6AvwlsEDbXK2ijALsAns4+n2gLA2lXXCV97iWd9jXDhFFTbBBBN0NHQQmDAgdMqA2Dh3qkdOIS/jbQqat0HeaGTjYlWBysTFbxABQ1kWMP1sKmtaIzwzZc9ku1G98rA/GaduO0iqWy4UDnlSxrdTpbDE4ZewbujPe8MiBMNj91O9r7AmKni/LhZqgew8AydC0AuVz9rcqgMJ8a11XXC4XXC4XPB4PDDNs2wZO6KsYnWSWo8h/41CquP8cVLLvG/RyYcdL+POauk3749htoa0F+GyHVlGs9weKKi4t4qGpy7oxT6jUaqO4OFlbU/DcDPu+z5hRRIDG+KK5onr0u4xoaxyGPjo+vHzEjy8f8OgrBgaWS4H7wPq2oo8VALEUxpZknJPZxWv38OXmHYCEPqegW7Zohp9E5BIAhgb0mXEGaHeaFEg3INj6jBECULxwWrnFZHrYhilN4P0won/P108GnthWEgm7Jz0bJwOTGCD1dDocVsLASIzetWTyxFjnorheFsZdIT7hnlOheHjSeImmQLJPFkhJBlKghoAH+JKxfQT3qQvkAmSVyRk8d+P0khwhmRgmKfk4EM406lGodBBFTWZTYvNn2qME9c/hR18zMog7qvGJ02fLw5ym5OfQLjYWUYdjr2Ro6xbl5/luSEQ1r39WNZ3X+xnrRgsTt7i/Wa1J9lX83p0IytGGlBstErqk/mGgQNBKQXEOcL8sROcNG7xnCw0NsUiBaCUYZIJt7Sii2K4DXohCC1hRTKZBdHciJ321usR6SrQoHkg5HX1UCNKBeCDoHtpRwnvUCC4kkvwpIwEK5sIzAD6AjZxMw5/k3pIAGgKvm/lDxu1ucfA92hZmIpdBCBJED6BZko193JOwhjCDFmCy8qi5w6si7KbzIrKXmlWbgirAbVGIb3jIBrOO0Xf0vmHdCkwMrtnCZ2w3jWjOo6ULQPRpsxV1jB0SbbnuHWZsZ9QUMkGAP6aYuiFgYrzvHUtPsCF27ojU0YMFVmtUD6O6TVojd2Ock9RHOp+FZBslqOGOcDxlOpD84v4/tUllqpzZWFREgJxSF/Wq07k+PieT2Exy+VzgbN/wBMJiI8mMVQjmOnyKV2YSTpFnCjTnHqMpiWDbU1cm7U6egbALSGblAY6IIpIuCZtOICe1MDR3eSaZqauhOczglMAr99wwmxRmlRJn2Of5yQ09E1xP9gDtRJnMA4IrEm1DPpljAfKwv2ImwLmvErXKcc4lrr+ErkCMZSAAJHluAvzwPLd5Lk92NS1p2teZ1GAycTJgPSgmh81MX5VfaXePxEfnCzKxn60OwahL/zatjCQ7MvaaEHifb4DjM3NyWvqSY5c7iwQ+5rQXgcykJ4P+A3jCfI6pOZHHiK/DsUOVjBGLmOcApXLfRJATe8iMgSmCscybNriw0KVF0EBNqqpkPGV7MpHevO/cB5igzLFmcYciE8zMBPOzZ5NrlYY52IHzGecNi0x/DAA5kWrqLuHY5/RVg1Po9PC5M7qKhfzchmSMc9xert28H0k7lCBemVoNhw859D4QfsyBAD4BlTKT3MNy5ftlgJR7jT/PAkt+QE5BJiCb8dAwBrbzGaROZgTyDgJP0dDEe5utLpiGgqW1QwvRneLT3IcdEOUgoSIxbAUBFtt8fu6CbR8wGEpMnKv1mJibNikfpwjt9b4N7PvAvhkLngVQqdAinEo8DLZ1jEEAbtsdvTvaotDaUGpB74L1LarI2ZqvfGZmwKcXtqnvu3E8fKe+ofXjqToEiOSqKtBaRSsOrYZaU9PK4F2AqjB1PLY32H7HIgO1GGQBtDMJQt9hw9GVbaG2vqH3iofRSg449uWCUhcsPkLH6gkQRblccemOp26w8YDbjoyQfbADQqvCVdAt2kZKQXt6h6Ub7i5Y1x0fP3zE7z9+wofXV9zXjbxAUUALBnbGINF2KhE3Te6iOCSY1BIxipyMUcYQR6tDWEPDZ8/8c3Ze7rV8afxb+hnVGHVvs4AwTXjY1vTJ58neNv/tiNo1rjFjQJk+9WQ/JBnP+R++T7JUYqT0jNstGQ/IsyhzSlmRI37UCKq3twdWrbi1BX69BQCdrb08NxzQFSs946EwneG7MyadPnjeZfp4O1rLI6+YvsPTfoY+nzntUtrWNEhRsDqoovjsy2wQnNIWVA/G/E2pYeVmqFogxWdMm4WvzL/kHMeNiCGEA6kwJM4kBdar3uDWYL3MWIn4Yl4zY3aJ/DHPcE7tzLXxPpPNGUd9XhTJb8Yeaac5FTR9i82CmuXzU517Kp9L+vLZUjlBfaDvfT5TheKyXFBLZWE8/Um+OP1RfJP55IBz2BVET7E54jwoSSwhoyDAZPyM05nLIWKe063sOCOn48j7x5EreZ6voORRBoBx/gh9KV4v1yIZgrkWRywPSrioUorCj+I1wT5AQAanip5Y9VzvIg6FwbtH3OVkiKLj5e0jPr1+wLbf0fsKwc6OHuvIISjJSjs6GfAZEzmlJI5p258/i/mMxoGpxEbhc0B2AZ321izo+BFDOwu1aW/GEKiMYCz/weH7n/j6ycDTRRmA9NDGONPZuvMCetxX78GQqRVDHIq8KK6UiqBVorlN32NdB+6veyStFnogxgkvMPSxoxRFWZbZ01sK9QvGYKA7uoVeBJ0AYixxJvJ87xBiNIVoRdGGfe1Y1wcutxYTeiLIi6GPySDgZqXGSQrjtdZmSJ7Pad879t5xey5oTdFDf6i2wopwOJ/MP0VT24U94qolmB1+HDA/Ng5pfCdfI6ExYydgT9Pp8bpGjC4tZdZakIKcCYiV5QI3oK/RO1aEdx+CYQ6HhYaM20AtFaVcw6jlwTVUSYFLbq5a2FTQDdDnhosp1nrnSNfSKUi7BfVVChxsobu/7Rib4VIXLE3RagaXA3BFLVH5GI7WLhBVXJYrzB2PbUcfpNbnOPEU5eN0OOfkuUF9HwgDTQNgQppjEYVcs7eewNcYR48zaYknw6cB4EXyIlKm8TZXTgcBjftuBlCHEO6kvrBFJiqnSb+O88WDLojoC8gWUYkWvdAOMCdLr0Qyzul3g8YkSsbZ92yDWgMmDvWCJhXttqDJA/eXBzYb1L563MlWhMEL2966dWxjg/lAaQXbtqPvA7UuFPG1nZXd/QEFK/xuG8xWSKFul0SFb38Y4JwMIqIw0KjDO2oBzMpkSfVtj/1NfZuqDUEBQIlJIJP9Fj3xRcoRaJGOGNUAhHBuVM20oNY6qyAea2/u0JyVm99BQ/UQb2xRGcn2NrN+JMsAEtDMpGs+W0SQO8jESzvQpHC6FDdAkAd4lpPxN3yQsVM4mn7EZDN1hN2L9NARU8/OCWrul2w3DkggqGEqgtaY+PSBqCiRIaNIEdus2iL2YoFUTu1ge2MJUgL37z46WpFoA2EVb13X+ZzoANPIcY/2SBBpPxPIonPnNBGPVms62tGzsh1nT/RzzwwCzTYMSzBQawJP5qzmBX3ZArwVZEtNTi3lSqYe1wx2gqXBqaqnYDWevcOD1XL4TZm/HhX2TC6Oxa0ToEs8YcTeaqWRHeKOaTJEASlI0VEGhkL9h3jJEMrhe+xB2kV+Xvp1c4+Ry1l4OK6RyZJFHHDsZQzapL53Jjo1glrnOwwgaPxlsoOTUWIBPGlNbTWuaSm5Twa1ITSTsgGzHVULWmu4SMElfo6AqM39lA1yIgqpLERl+x4ymMvXaE6sxPTtwNGCwYA9YoQofMykV+apOO3lCNYGYLHQfLyhDOfUA9v3HahpQ3gmS0TONo59dwaeeA0WuE2CTpj2QgLgEwnGLFKTLKq8sTbZMJMBegqwMkEq4UtsJrtJ459xDMLmwqhXEjYVApR6IXO6xs907t997ChOvRlW8xUiTJL6sLlfMAbUyUTgKPBIDE/AJrFlm6K0tVwgCux9JaN3uaDWgiXYW4/Hg7pyxvt3dzzuG2pni91loX5JfqXI94hqn0VV++31gZdPD7y8rHh+f8HltuDrr79EqRXb2LDvA58+rug70FcASmDx6599ieXS8Hg41gfw3UpQjSxoRamK0YE+HL/5zSv3vgJAgY8lklywoCsGbZyKel0W1CK4XZgIFN3Qbg2XSwUGtU7lVmEvwKf7B2jf8HStWCoLwBsKdgBvr2/o+4b7g2u6rw90CHapGNJh2lGvN5S2oO1fobYnPL/7U9R6w+36BdryjOvtPe7377Hvn0IvdeDle7Ii2q1hd8U2ot2pNdx+9gvg+Qt8993v8Xh74MPvf8CHl0/42++/g2mFlYWAYmno9obVxsSUaV1DAF9HFBH38K842uvkAHQ8EtdzYTJlE1RSZiBkAMTnmbTz4Q4XI1pYTIGdWo8Pe6nIZNcOtlDa+Ijl+wlMpp332YUhEf/kYA7BUfAWt+hg4NnsJz0bl2zl4jTaAkURtpqKC9a9Ax5TZQfvVwYgA/jxt7/H+ukV//yf/3Pc6oKv373Htu/Y9mynYREJSl00R9qtFFCw6A4J2xQMVlqejIUjpp/ymZ8nrYIomLpH4QJADcBmnOygBuPJoyXOTq3T7hgxXfl2W6iju+8stF44hc/2DUut8FKx7pwq2HufAZNEi0q2UFnnBbe68MO7wnfF2BUVT7i0r2DbBV0bCjgIo+/cRxKZvdYyi2dbgi1aZyxkNjC2ztxNFc0JnLd2an2KWG+GpQFeXq4XCDhlljVBAix9UKs1W1WJWZEMAJVp1wIWi/d1PO5vEAiWShb/u2dOCfXRwdFT4eMzpiEVmvEpJNZthOauYovpcSXOSBHBHgweGwOoFa01OBzrHoyUYKM1Leggo8hsYATokFGegBPQi5R0c4BjgiIZF+3dJwNanDp9PJJCrVAA+74zBqmHJm+tFVoa9s5ie99tAqhFK1QYjwgD4VOibigIdvy2RweSUmcSK7774Vf47e9/jdf7j7DRUdUhzgkTfVDrlmBcTJwFUE/SOflVSmi3xkd/3ikef7lH11bR2Z6eGTyJCD4LZebJyIy41CWwgBHgk2HbdowuOApmf//XTwae9q3nPozrD7htVg3pOA100B5Xa27Yh6eFDvFugW0RGA5AjTozcFaGxIlIlxCLlWRVR7LKUfQD3TvV2MOh0FIlKnhULWwG5myJ0ZjslKhqshBYXc1ElEagD7bVdXNU5ZQcDYNRhEyCEQmk5mjQMPI6GSoO7+yHHGLzQavTIJsa7ylHSfazLgqr+DkOXGudyeTxiI9xrg5Hjc2UbVsSQmulVohRAHHtd3QbQGWFrVBYYCZSVMGnY2BLDDgeNGLgBKJS/JwCTh6UP0RVO5yDRIumZUsB399Eqf/ZuG7b2AEFlkuLsdLA48H2t9vtBkhseBHct052ihlMKeLqsSYDTBwtkd8IPNLpJzjnsVdVQRH40CjKJE/DMDIRobAvl1QhNabYBPVkhCdgwJLvyyRqCEEbRj5RKYoxpQksskWCQrrAmUkWwf+8dgQDiJUrvqcCykRveIfvx7hZvh/YypeVDFc+L2EQkMFWU8Cr4EKRFAZ7XjAGsG4d0jrRMnOM7rAhEFxQtAJlENyyGCkPh2TbDACVhqWxomNDEIOFJ9NOCsG8bd+wLBVLvSG3jEbvdZQk+VzibCOmTqQpIsjk8HIEgFlJzzHMJTcXQEAwvs9ARyZyadb7YDuTqkJahdeoqsM56Y9/QLp0iSpcCjVSUFdmMMaBBQ62KQbjKsdZSYhY96CRg5UiqMKlEJwL9mFVshi4R6MFNmztnMhhfMa11jiTFm1NBIgEBe49OhIsgluuXi0aml8+2xGSPIOIecxs7s3DKEWCXRK07dMeM2jgSNijyyf5OQnAyARz0obRpiDWNxN+iwBGkcYpJxjSJB7AD+MrglfDY/2DJjxZHfOCksWk1D47QRGpBzNfI3nfcZbds5AY9x8Vxbk34rUBtrECn++Xd5xJLsFRiwqVBJA+W36dwRaEbIsEUkb3k2j7SSTfLOX3juBECQxl1sOBGNkGIdECHgHm/N0RzsTji5/p6EYfXSRVmakd1yPhcwlNAY9n6MBSG5K5kZeSwY0I24+CyILROd+q1YJaFEsRNCD8XrA+4QGQ6AEaKdnEFntaS4WE5hOr7BQE1qSgA0gWcniPqEp7iKwT7ExmdCYN6sfa0CZVFA+gJ5nZ8Y7qJXRH/kBLAQE4I1pZ4rNVKiraUfhDssN1gpozzMxkbf4N7W8OwjgqpAkOgi0UKWprpz1wOhdJycz9cw42zzYzWcLDxkyIeWZB+4RgbhoAdfS4Jk9KsAaQjQyGkzoctgjOpBNCzYl5Dse8GIdj2zY8Nsfb3bA8v8fT0zuIljmJlT9IYdVtHYmsshVQFfs+TuBfPGstuFxvMC+QQvFcd8XbG8HPfSh6NzxWx74Ztvsx4dnljtY63BXDoo3EOICmj4pSEKK4hvt9hZvj6foOgMB2QMVR60CNuK4ubI2r0YY2Roc2R71USFV4pf0Udbz7+j36fkfXC0bf8ftPD3xReZY8fIwo/fEeRbmndzcsdcHtesNuO3bvuG87tm3H6/ojpNzR+w23W8fl63fotuO+33HvK7Z9w+PtE8bYMEyBvuPTh18B2mDlyqT9UfDx5QVvjwd+9fF73B8PfHh9xTZ2lKcFLgUuFV4B1wG0GCiSPRbOve1CXVfrIzp1BUBBDsdwZCkhwJj837TDyMg8bEj6NZ/n6NDSwTw7EkU9AVt+0/hzCEF6opnHE4BPgN8QIHycUFUCWaVARjKG+D+LQ3do9MQ7pz8SmQm7hSn1tLHDcK0FiKIPHHi8rRCABXdlB8mIGP3l7RXbvuHTywv9U+RVA3n/x69aNVj/uUp5fj7viIDw/hwy7cH0n58l0PHzyUQJprKNANiytQdpDhRmEho2YKwlFe4hR2BcqbV3+KA25/V6wzfffINaC7ZtQ7KsPIZKsQVLQPYcjdpArH0O9dESZxigKPiC0i4xgIdnW1pDyPrCYwBPePypEaUeQwpMIKfzpxdFN8Zq+9jZnp05HY70O/cgta14/qd/FjlEtgOA9O5TPlTBz7w2ttNpFrLGwFIapAr2lDYwJ2sninIWvlohkEbn3AdlFEaPlq+IxUoMbhLhUB7KreQeSMCkUTf2cackjVLiJlvuWq1oywV935FyLcIkhjlRFNyLHizxvNYEgDTzUhxaqBCZkwvFwRZZM+zbxvxOyNCEsAhJQFdR1NFqRXaPCBADMfK6EgWJ56QlWvFCxkYbXl8+4MPHD/j48QVvbw+oNmIJIDGCTMU4Xx2YDy7zUjkYuedjeZw7m8Utyq8YCz5ASLX47LzKia0igqES9XU6eRc5N5REbM3/ZA32uJC//+unA0/7YSjySyYlPdeC1M4xQuldM4ANYy6sDAgA27cAOhTigiKVRnkMqMdEu7Iw6BWJQzUYtCpb97p1GJR5NITAlGRQdAKejEG7j2B/RCU1gYG8F8FB85ZI6sewySaqy4XjmePfDIrhITYXiZJH0E3amvCgB1hmAnQQ4S0xJSzplS4xCUkEY2qwhDEFg1wBoK3MZC+pwGSYhriXG6A1PiPNTwmDViLxcowHsG8GWRy1AEiqaiBHbAWLz4h2FQ0NKcbBhmF7EE48dG4MMK5pqUkFjopsEUhou3CfK4bE86oV1gf62LDUgsYxLxAHHvcVbg2lfc2kwQy9r7ivKxLSdiezmM4s9ktcM409whAzOBc4S/xhbOh0CXwMN2psCY2WBmsiampIZ1Rnz3XusZgEET/fbaCiTorsbCmQoDQWsvLEATdFinZlS0K2gHk4UpzSkqTv5vQUBh4ObWOK+lfVmaiISLARBGeNIyaAAQCIYGmA9wCeaoWNBQ6Odl73Dtl63Ldj7A4fCpULAVhSbWL/j0hOyrSFRQukAjaCtZb7WwCEgDxZFisulwXL5QYfG6cYSk5PS0N+JCJkBRq8BEiYTieqLkn5JjhVpubBEegw2XRzAtnzXGXCyq8+yCarhdNaAMwKTWqoJGufGMkxxtUc87kmYDRG0sl5zWQeYgIXnkZfcnqeBPBSYBFQwRn8qCuKdrI5AYhSy6rbNhkZ6kCOq50AgAdArtQ5sWA7ADKvX0TIEMHBbjl/TWDfPWyGhjMPjTVh/RM+5lkZ1mfApHKw5s9fZx0AvnecN2RwWQBhE5giIrss3uW0Qcsq5cFCUhF4TG2cLd3x3FxxUPZjx9HupZhjMj/zuo7rDHm+EFOPoDiScNdTYp/Jksg855k4HbAOphO3CDxHJkpSsNQ62aseoKZAUErDdP3e4SOmzzk4bQWICa/O1t5c37SZec3CoOmg3edsUEy9NNrwSHiMdj6ZhsOOvYUABB2C7p3aAhnk+7H+rS0QIMAHm9/DB5kg2bbvjt12iABLqWiVGohz6qgnwJi2RaO1HFGhLxgRvBcpEB3RYhn2RHwCbbk2Pm1vMBRVUAqwh/Yact/Ec8jKIBCTn6KlQ80gGQCCgXIBJ68qKp+8R1U8g2IAUIsdHoMgZJk+J3UVEgjNpCa3kM/7iD0W1+PAZFRgviKHeUiEPIbeyfAuJUHfvDdMsDa/5AT85RGayWgkIpjXEf4ZMsEnMqWYJGuRQ5ogn4RHO7JY0tpm8uaTtZm/p090GLZ9YF0N9/vAV6J4fn5P+zjGqShN37Wt4cNcsCyCWhX7Rr9QwscYaHeX6wIpDW25YN3o9+93nvVugjEE60Yw6/EgC9gM2PcHat3RLgtByVow9oF17dg7wdFhHWYdr6/U0FjqQlmCtWNZDO3qBKBV0C4U028AEB0DDkVdKrQJTAkuay14/uod9v2BUS642xvuL3foteD9u0bgJvRsxAVjGyhF8fTuCU/XG7784gusfcej73h893usjxUfPr4C0gA8w03w9dfjM+Bp7Tt++PQJW1+xLA02Ch6PO8pyxeX2BTZz7MPwcr/jvm741afv8Xp/4MOnTyi14On9jYA6CqdswSBNoKZAMG2S46NS2Z7iNou6x/7JOAqzGHy0FEn+H7MojHjO/Anu5dyHmfJIALKxhzJWhBxg9/xc9+NaLFvY2Zaa55RnmHG6aIVOnbfjrM1zD35OFtzTnkiJLocZsaZNNmphlQJtF7gZHuMNAuCpNBbagGBJAm9vb7ir4OPLJ+Y1UdCwYzVpa0RC/yim4k0WWXaZ5LXz5whG4TPgacaCCRCGzShTtynjFZt6SMnUSDtG4CnycmS7amjhRIK97p02WAuutxu++uorlFqx9w29U+NxqdfIGyK3ymuEHMzWEhqyElPdAowqS0VpC7Q25oamaOVCf1IAoMPR5x6VMJKKcgBRoL/VqjAtGNsGHz0mMQ+02QJ8hLAlui2G8bpHTwrZ4Y8yZ6QcqQfbL1ratFDDWFmUWLcNfd9xvd3YnTBiMui+h9TCwQgvJ1IDP8NhoKaeKqfRajCfs1PIC+G3vm0R1vJ51dKwriv1lWuh8Hto9m0xQTDjOA8wNYXK8+yWiO9zcAhb52V2PpVSGKmzDSSAqBgmZtTVrcsFBsPb9oZSk71fg2XPNDelC1pljK8SzKeRE+Vlnnky9QOoNGGxygSqFa+vd/zw/Y/49OkV9/uD3Rh+xFRuAjinHJon45IsuBpgn52csOOIXBI0yMKvgIBTcUHxbB8U9Mjrsx7PxhqedZMZnhJniJhkMj8N0QXl0Vr470kS/j1fPxl4mrfjWaUk5dDcUZcFUG5OAx2AxGbkCPEOkQqBYvR4uGBrzBhODrrzwJWiUGNgto6NdL1GJH7bH0idm8f+wABQlBTcGvo+3TuY8BZOyjDDpZHqnSO04YjeSoPWisvliS1YRlq2Q7BuKzIB472PQHMfM6oqyw1A9NsXgTZOM5AWG7QbltoAL/PB54Sy1BjhOUq9I4OArSjsnexT54IGQrFbp36Aj5mEqWqIiwtgEeAPgcmRlHBL6IRPnt99iSd/P6cEDONBYR8uHS3BPoePPtFh9RNYJwCi+qtB2S9S53N0EEziyx2XRVEFeKhg3x39tYfGT4zNbjUYctucnni/r7ivCvw7x/V2xRdfvscwhVGlDiKcsiJuXPtILtJxcIoITYExEiaqLYXrPsfSCbRUlMLAzdywr2wzRKOR68MAULOgLReCKSWoNUWInxinOI7hcKWw4DS4bjNQ0qNPIwAw7s3z+vIrq0YBMEEgQbnUaBlLiu2Zcg6pNJho4bsNHN8bRpswGyhizc9e1xXDHO+eKtrOM/Xhccf9bcfHT29Yu2FZGisae8XYHX0jNZfS+7EvVAFERUIOwOMQjCYzir6RTnG3nY5KFuRkBQlNErbLCXv0QW2Xz40dQiMpwAOETksEJlWpBdWddN4+DBQcpDNprcXfH2NYJdbpHGQykGGiqhL2bgwyc+QYT0rgcoRz8mk+08ElSzCDUw+NpGRmkqkiFOKkq2BCF/uqu096u/agt7pGax5BGdGCUi/wYuhBuddCKnq1gt59Cv+aAQpW5qwTwN73LQKRs4hvOMNwb6qVPpK9BHTI6kjmqgXbSgEsyyVaQOMcGKs+DHgjcO0x6TCArMPfIAoAgp61Z80gPdbVDTLYOz9iukYGAakbIBFYqQj2oM/btmM2WiXIHMcyA/xkeQIIuxwpiWBWYRNEnWwnJACUoLTBNNuijhQ8J7RFKQ2TKRY2MxMkgkpcl23baK9wJD1whJ8la6FqhS6KbRuw4dhWUtZbYfs7cLRMHFUxsndKpb1KEWUHAlDm/QiEQqGRpFFXMNlkgtLqZE44QPBfGHYPCPrM8oSJQNyEQ5B95A5qf7QYDw537PsDQIgn14Ln2xL4g6OM1DDhs64xkAHBKOAz08QrADh1GvaBnNWbHIgJ/sV92x/sx2w5rdnSXgSIdhK686Sjz6ySwtTMkmjnVVFQ0KSRSV0cAuo5sLxJeybu1BDJz4bBpccZdMxx6khtOkvkOxJgBYJFu/cIxIN/fwDJ+Rv6U0WA8cK0yO3EdEjGx9lF5e9z4xqm3TtaRyz+nPs75Qlmk2MGFHChr05eHSTa3Jz7iGB8m7Y5WZzZiotItrmWhb566xidekzrI4DLVnG5CLQ6yq0hi1JjDLy+bhhDcVk0ij+C5cJqdOJ1Zo5ao6hQCnoH9k4gTd1QC/BuucHHFWOP8+2C9a7oXdBHlMNKR1PgWReMoTBT7F3Qu8Kc7RC1Uo6gVeByUTzdwlyp8RoE2O9raNcApQqWRbF7R9/YUiUuWNqCd19/jf/lv/qX+PVf/hv81/+3/wIFBe/aFVetWJ7e4fJ0Aazj9e0FgKO1BagN62jYXNBRcHv6Flq/wBifsO+Gjx8+wgbw7vk99mGADHzx9dfQ9nOUH5/xdn/D9z/+Fo91w/cvH6F1Qbu+Yts7tr7jZd2wDYO+e8b1ecHjwrhnU2D3gW10jGDqkq3ARIkFZk3cFOrUAKyuUBPsYWMlDm/a6GPj6lGoQI/naoymTgUaBMBDPx4JMTBfb5Y6oXzG7mS4wg+AimeJezXtKoKtOs8JEHs/ba6dDyrShEiATfm6IaDNsDgP0T4lynhYVdFBxnVfNwgE9fYEG4ZP28qWxyjIDBXo5YJSBI/RIT6wwbDB8PCBohUlGOpu+Uwce0hbLBGXuh9RaRZt+r7BM68KnwPPFJiADodRGPqO8M02TQtzkpPGYw6qQDyn8E+UPaStWZbn2BwGiKHGmmxj4N3yjNvTBb/93W+x7Ru+ulCDrF4bet+xbSvEqCGb2n8jGFTayNYdjKQxIChLxeXpinprKKWih36rFMDBYTMMcbg/mc8SNFfjPihSZtu/VmFHgYbNDIBj9B4i4AKAzzcLrZfbBRyKwmfwWFf0QU2iZWlYWsO2r7AxsN1XdjssMWAjGKQpTZK+Kr+KkuGV27JbDNpCxikhOSA62eO5t7cYMrK0Ribpts1/zxy1NQ4U2tcNu+yojeze67JEPniP2PEk/RPFtQLBEIFKj3zHIm2KGEtkaszOIS6ghpWNgWtrLASUBhXD0i48QwmKqrK7YQyyrhJYinUBmOfUkGrJic4lgOd122BmqK3BfOB+f8UP3/8e3333Wzzubxi943q5wkbH+rbNY69REBA7dI59RCwcNoN9wqAYezhNmfbKuTtDh6CaoBowYhiUtsoYzQ3dDY8x0JXDVjOmG9EmOkIwbO7ZU8FrjP1zFOw/8PXTgaeI8Kcmgzt6KOVrY3XTYhyuxMOllorCD65htL14JKpBATOJdTsYQAAr48lWMWePalYkdhvsRZHGwCWieVbYeGgyaZkU+6C5I4KoRERrbbFpMrkF3Ld4eCeqbvTJkrWj4EsJZiDYCvNBhUhxDc0KH9w0JRKUfFzJ4jAkEyiq6Mb2vtSjSAqmxUStNOgeSXB+PhAJkwMwBtoUD8w7ZwbclitUBfu6BgvFQjjzHFECiKAuq74ZNOaHTaceQffUkwh0WLMFRkgFVxX0fjyLrFYUDcDCyNrJsa1b3wAHPnyiGOXt3fPULpEwlMgwPBdQIhFABOJ5tT4v+why+QcGuRoycBaC2MNDVPtox0oRSI2pASUU3o7WG8yAxQTgSFeuF3dABjPJWvF5ruAe7LlI6SSqti6nC4/DHnv6sxgqmDtpZLMC735MdxJgBm98XQjeIYRFTbC0xkhWGz5tG/pY8XisEWjQsdtgy5x3ou/Z1sL3y0pjViMIQiZLJ3vC8zkQkBl0xjMhCWaYMFlRoXCwQw6x7GTCSwhlxl7NwQP5zEu0J/VoPbIxIGrUjBGZrDQzgxadQNkMNj2fK5+TegSI7gG0H8yoCUwIqJ+lMqsqmDbppMF0AnUYsHrcSyQ0ooBnakZQxYZNltAYwZDI84lT33YypSwGQ0SwJ5JtSASdRJytxRAAO9wFPdsVMKICm2PJk7NzAF04bc9c85yC6WYB+BwaQ4Af64tw6lmdQQIION7QD4DHEAG188NVymRmap4ly5a4MyODd1cCCB4lzpXus+JM+xFgoc+jOY8Xg3wG+pFR8N/FT2fRgSlyegKdPJlOeb7Pt5jGOZmtivMXL0tDn8AmEJKildnSwbVm0J3V93jKGJ3+bGmk0p/jgxE2YyRIEp+pEdQki5edTslkTdDpbFITGOdYrEOP6LDE+Y04My4yGUmZjWWFPEcZpxCojwFIBM+14LpQ483NoHPM6+laJjIRditx4Pj2cdgzyGxaO87q+dvnWyHZBdSbtPDRyZ7A6eHmB8U7569gdVvBlknGtAUexQGJ1pmcapXFNg+7g6jYJihz2H3acaFRCvIFowxA51mH+nyO3HOZ2OVrj2JMwkI+wSShQO1nMcDpvkPTKp95+sXPW25mI+PfOaOY7yqfHyWA7FVSGk+vPwCsXBCPNafmj4Qd9WhD8fADvFeNNs5aj3M5+op9peh2nV3ObDuWyQbjjlZFSEwwFsm2QHPq0j29b1yOIYgBwvh+79h3xgACQMuAQCFasW+Cfc81Cx/OnAe1kLl0WcjGymdfQ4/Ts3gVQze0ANjZQu5Bx720Ky63G375T/4J9u2BXYB1GN62Ha0JpC64tAtEDCPYBhJFvu4Fw3mPbXmC6MClDbhtuL/c8Sh33B9voZkmaJcrLk9PuPUBKwv6j9/hMQZeHg9I6WhuWLcN67bhZd+xO/D8/CW7AXqPdsPObwTwlG3zSDspGfjFMyXAPAeSTJ56gMR+7MXP9PVO7bF5zvPXWUxw+WyvZixlhigklclbzb3Nz9EJPCX7c270LFic4tFztwafm58+8fBI2SI4rxNk+YaBCRfF/CPjquGRc0EJKErH/rgHyyHSBhFIpc/nFNgzuMJzJhrAk3swWIMtncJbcVEZkwVqFGx3haZUgcTzmHY1i5QM8NJzFNU5SIUzuXTeu4SRSEC4zIybe6JWrpv7BihZgijKyXhVUZdG3dK+cQiWCLRVwKM9zZlcVSUgk7E0fVnoBkX8oFVQl4LSyD4b6ZZmfMMzPTM+P2xkmjBKfEQsJCxKTAAkbJ35YEu3Z944Fz26eRjz9T7Qx86ikjuKFtRW0cdO0LB3Ghdj27nE+2nutbi+BJ+OgkHcS+wBNwuAvCI7NKZ2Z3ylxMLlcmHreXREnU7dBK7u9ztjnBJs7mjPy+Jwvo4gzIhrzkIXNbKym4Vtoh5FibAdyRb0IBX0AbQlCs+UrSil8ucix5AozOYwkOnT5DwZNvKNU7wswutMuY5SC8w5XfJ+f8Xrywv6tsHHQCsFww3rOfhI+yEGdRaGBZhtf1PvTUhWATDJDqK598LvFk2yF/OdYHpxixvGGNj6jlGoQllrMM2RIS1jGKrxImw9z6AlUP4Tvn4y8OTtBjPD3jeoBmWyD4gZVBdASAcjck2QyQHUtuDyXPB43bBvnVPOhCKKPGicDGL7gPYI/LQwmFPOD7QOmBdYaTNYbPoMr1d4ZQ/47lGBzTnlvgKFCaZgD6vaI4IywAt8nBLMMFLb1iMoXrjUo0Z1JQLXGeQhSv2KJgU2DOvrSsEupUAp7QuNb41WGxUE02VAKkLrp4ZeB4390hr76yFTL2jIgBaD1NDJcoP7wPAdkE6h6GQjhJFY9wdUKLrtbkCPAAfRWgOO1baolDAYP5T8pZBimAS/bGOyiNBEBDJSQyaMpQl7ctcVIojkPqo6sdGXwl7hr78s2PaBl9fX5PfNZIotmYKiDQbDphsZLR9kJiS36xVLWXC5sPrZ+wqHQZNKKYbhjh3GShhkUoo7uH42dpgYqoQwnBQ0vcAV6L7SUBSFNB7idV2x7xsKHOqdgp0qFAtEsBAKjVHurXQsRRn8j+5AURRpBLWc1RPAYCGQ7M5pI61ksOJwY5KcYtG9UER4WzdgqcClQRopmBaT5ba+85yFkbdTK5AqGSfXdgHc8DIe8KKALmhOWua3147bQ/Dp5Qe83gfk+UuK6GGBjI7i6zwHWirZZjE5cjj7n3d3IHWKIvMbGmwU5IhgAVDhKOgObGZYiqKKcv+ZHYGkZ/Vc0BpFotcHqwmKAjEJCjsFiDVE/0QZRC0LAZluBFkIOpBxlxM4S0mfJUcAZeHoImlpMSZ1hA5PzrlP/QhWx4UC3XufjqqUiut1ma2c27Zj7z2ANkG7XQHnpBSSH3g4XYKppj5ptjnCnaGRHBUHTSYNILjwtUOjfWaHSMOlAftgG8k2AAE1BFQK9EI25wQN7AhuLSqQyA40CHLBZqVXyXBVoaCqB0hXhIkaSgEnJwI2W0aTYeannD2C2wCeSqkTvSD9H/ARIvDZAh0RtEq2U+i0GbHZ0Jzg/SgVBscOTPBBIGjiuKTg/UimnkElNYciMPd89ulw+azYSskgIWPNpLg7SiQcEkAnNery1tPBOwAtwQINAB6QaJ+ljwGYTJhToF7BPduHoRsDqtEd3XLqYkyDLRIC7gOa8ELcQh3cTdazHZSg+QBQ68LWu8EWcxvB0huYa10woGPM67LRATNUB7V47ODr1MrqJ4eWcB/XUlgMIspHH+Ns81UBLsVRpMO2O9/FLYJPA0nNgoqcbBMMqBkE06d2o6bQAFDKAuoa8br66NBK4XYt1LTrtsHNsXYGlq1UqHT6Et8jUQoNJa3I/jGCoQMKoIijwA5ASAw27hAfADYCQrEHyRpkEFmjRb55QxbT8oBoUviVE0d76CRK7OcM/AVAXQ7x2nyfZFjkO0LLtMHDDbuMI9eNoD3bMiwqyV14NsZJ8zFBHPMQJ8fpyw0+tnnelqrUtBH6qD4GGWVOptowY3uLagi4KgSN2hdQ6mSFxt1wgQ76fnMFTGBrQR9AqQ2iFwy/4fvvDH/7Nyte9x0GoD0taE1wu1WMvQJjQdWKtgguS0VRB4QtLLUUDHWY9MnsuxZS6/qN67qNMte/d8H2AH79736D7377Pf77/+7/i9fXN/yn/+m/xLc/+wq/+NkX2HfFp49CHSMAzR2iA8Vj/Dx2tFrwxbscEEOdHAtbqK5Y9oZagOemqKUAHZBRUUywrxzksna2DD7//Fv86fhn+N/+H/9z/PbP/zX+/L/9/+CPv7zi6+eGL58vqFVhAQ5ozPE2BcZ2x9ju9GMieH+puALQ4ZHAGyAFkIIP33/E+P4DegvNkOcbcYmto9QF7faMfR3ANuD3jtENv/840G3gbQ2AqSxQK2iDOmkOoI7QvOtspRojE3rGEUONjFbxSPKPBJ2FULa+JpCbmpm1UnyeezebeD7/6hai0xHPkzxoYNPP0fjjjpmEScpOwD+LASgUzDO0hVacx2Fhe7zEmcuiLk8pW88rpLXpgnNIirQAJjDSfc/iGgsUEkMyohBZC67P74BBtmVbFhRZcH95BUzw7dd/BFHB231HHw8AWwBYIe0R+Z6IYAk2cUFBCod7J6sphZGLRl6UoWAWCGecYRwao+xUEHho4HnCClAfqBZ5gDOfvGjjK+zQgTROnuIURRje7g9cLxVffvUFrl8+4/r1E7Y68Km/QW4LalU8umFR4IvbEwoWiLENDg7s+4a977OYKNVge8fb9oa63HB9fof2rNCbAZcNrgZ7PGhjOyKgTACHKakWweV6BQCs64Zss3ZTVE/dv0DVAOT07XYNMKIITAnGlUuFesH66BAYSiXr6nor2PYd6w5sY8DXPQYBUeIkfSQMwO787sw5XX0K3yPkaagzzOcSNXXc17cAihpEC9p1SZcx9ZOSsbj1aOFvC2x0jH2d7dxZAKmV062TgJDsIRVh3rcsWNct/APjhktryCJT9yjExMEpjZWFfQRpQTkdr/fOPaSKS7mgxbmEOEpLPSj67QrFaiTb1Hpi9Zlj7D1ifqUvVMee073NYN6xjzcsdcHz9RmPtzvub294e3vF+niF9TusP7A/6Jhr+GCztPYAWzI5KVGULLUBY4tr7KecopzTnrM4LBXgkCRDV8EQQK5gzl1I6BlgXn4B7fWIQkdKHGQBLZ+rCQuYpgUCxW5H0ffv+/rJwJOJBiLO6h5UOZUrlyXbgP4gBhcQsBAgkLZ4OFkxkwxYMV8zMVdhQtiN5s1xBDuGAgMdnAu1ljLxl5hCJQqoZWvHqdIBzKSGv+JUmctXREU39QwStMgI3YEcVV9AsKu7kdE0QX9+dt4RfWNWNeI/kWw5mIQERMkDGHoj05D6wa7IDk3Mf8U8JMm/IOKah4NTzJiYxEjLWWo+M3WOZy5zDeaC8SZORQ0KfSa4clyJRfJdEhFFvv9Bm20twMnqlDjqHtdyMEhmfzUoUvrYVqL2WtCqoRSbPzM1KwK9ZSUigpTYU3Gj87UHAylW0KmdIBBqHgT4kC0KRRUjry8Wi0FGPLPZWvV5fSoW57Syxz47wCkaPEcK3R3VWz6GDFN63KZHcrtHvksnDDnG4444g0WFAX9Wsz/7/NjvUo/zLfSTbSm4ouH1NSav9Z0ATimAx2wsT6qzBhNFTzsB8/rzY9NE5H7Nk5vBhzsBHgkBdh+hw3JqKcyzBMmWnqx4RoXej0q6n1ZO5p7CwQ6LfaElKiVOJzNBEDnfw7FPZgulZdJ22IvPTpEcFcysuhCcznPE531UKeJ9YnJLmqRJXZcEEYApOBQO2nHaM3O/5ZrI/M5KqAQb0Y2MnBKH86yv4nn+5fSWf/c28ZkGU7LV5qcfzyLPdzJnLc7M5DHke/upyie5R2O/JsB2qm4iNaliz58r2nLafI7IuuUAQPIa4CwWZ9XxOKdpG4/3o4YX252y+pdbJe0y8jqEyfm0r2kUcezHtClpxmKTnxY7/ZLO88LXMNHORJ4glGHvHb1HocS5ROeWMT8+KNaf76dCf2aGz9lnudZCTUJxn7pOU0dLWUFDPNvh+fkJ6Z0rnJjPJ8GUkkWPfNbHYwkx5QAv4SzezH8NqyIH2zn3ZJ7dvIec+khbF4moSkweTT0IngU/MXiQNibOD19l08c7JCjoh63B+X6jeqq5lDBQ4TOmzMTf5+tzTXKPZrU5/QoDzHh1xgqn/fKZ75nb51yxjvd2ZzFpXi2Bxoxc0qTJ6TUW62Thd80RYP8pxsqv3HN5Dubn5j8fCfnxNNOGxbmL77RfNpK5mecmd9bBoDCP2CQYoqUWxhCPB7777ke06+9Qn27UIVm4P3shM7fWQvmE0/MY4zi89EdzS5F14dR2HA70zgSkr463lxUffrjj3/31r/Hb33yHv/zLv8Lj/sD//D95Q+/PUYDgOux7x/2+sygSk6BKVufhkNTNCeajuYdMAsJnBUtAsgINUAQ1zvQcUlTQrs/4o1/+R3j8+BG/ur7DBuB1c1yvSmAlxrKztZ9xlejOFv5C1kYrFSg+20h7HyiN7Srr2yvu64q1OTYM3LeBtRuG83kNp8g/B8GwYLHtlDTo/fDxBIYOLpEg9HFsMEaK53ywVpkUzZ/HEXGd4xDMuPbYsBmLn0/PuQtgMiXiHJzjODl92nz/+Vs/fE/6wGSkzlxNTmcszzwPyulqcIjs5c/gaAdPJ5pUwRlh5fUe1sngE+jnfu5RoDni7xJC55flgr33uWbHuTutbf7u1GL8mf1Drv3xLPLnpz3yw28XTeDJ5nsKGI+zWCLB5WTex/auMmN+FmyVdsxTe7igXRrataFe2MLWrbPboRT0PiCSXS1k2sz95c5C34T7TrG6CmoLfTTNZxSAwAw3dO6TjHUNmGBURhFjWrJzLhRxVWwEAqjxL5HH5H5PNubJfc59zzwyuoJCEuUIVf4gbvz8tye/89npOOWOadlxXNv59ZEbWwTMqXdK/5n3cvz+YHghVuqIATUAf3HaxLPHy/xSVYLAEjG1CIc4AUgyBGK/6clWeFwXTrY//bVPEkb442Aad8u4KvLN7F5ATEu2JIVQyqDbwH19YN0e2LaV9x0VvMkmPx4azk9i6oKKz/2QxynDneO1QE6r9jiwI+OrcvzMycHOtUumpODQduOe5Np4Mg0jhjIt8M+i/f/pr58MPG17BgECWrcU53ZWlYysErhh7HskT2UGxRUGrUBtPJSPvsYCGlQLllubGzcnuEltGGZ4vd/hKiGsrYACe7Tt1TCUo3cefiNKR30KvrbvPUCho7XGRcmiSkpntJNAG1JBy83Rd2ozCRzLwipYisMhENlaFWKK0QVVFU25sSg2HWPONYJ4BSAGKWAbVx40AbCwIv/YH4AA7UaUVgDqlviY9MR9f8yNPAO3cOjuHXDBUolE+ugY3jFsiwkWBbpwLepyTD0bY2A1Mniqpl5CHgaHCZHq6hpBj81nOJJlEBuPhiHNQYzztM6qqNAZSBFUqXh+/4x97bi/rfNeukW/vSYVixoKZjvgnUKbG8eiqypqLcEScxSLEfPW5/Q4kYNtxvXb6HSVJUbbDSOC/8uFhmqQBwEH21Owc7Kd15j05dHb60DfQj9DGYSKk+KvIhiR6IxIzviZgr4b94J4sDIAXQoshPzMDKN31FbRTuOdJ31aK0QMlwv1i/b7Ci0Nc/IBJAQLKV0LLaiS2gSp02ZYd766lQV9DLw9yFaDKgoarq3i3VPHVjcG3w5UpaZGqQsZP2bo+x3mjsvlQmdQ9ljvMVtQZxuidWTLoYii1iuN7TDYPjCko16uuLaK+7rCbcDCoVs9ckE3Q4dj8wSlIjCpNJqkzQ7sNiY7IxYR8JgKVNusjKzrI1rlgqkHm2t1AI3BRiTNI1p2gVZb6B1x2mLvA5frgtIKWiUIvfcNwMDojznFafQOeDDnwm47HJvt0+eQJZHXDriS1v+Zg4+WzG5BxT4B/gwi0t7wXDskZY0m8JrTPDXfM85M0ss1QpBMT/M96duiSUwkpqMow75IlBBABSQrd0HvznFl0cIsCJ2totBCsMYS9EAEcnzSAEhFVwVqtrxO8NfmvXPamuXiRgDpsGgZGBYstQR0RGISiIVeVQh8i1C7sCi8sDIZkQxDyRFrFPR894grBfBtpc2M4QWz7cOPoDoDvxl6CiBacG0N5kJG6chJiXzfWiq8sIo+jCLHj/uKt/tjMkkvlwt1FUJnIVvBSQWXuK8GilZW2Bgw32gRhUCLSt5T6AUAGLbDYuQvhTErLPTH9tBHGhqtSKUiK9jzHrNlIwJlbQUwowBzYXttrQpFxeVS2dqUr42HKQiWtChaDb/voTlXNCqbuX9lJroojX5bKoKwBHOCYGUEWy2yhtSTa0L9hgZWj7f+AAqD4JR4yRYR0ePZ56OVEsmSDmhxiHBaUUNHEQ2KvsBdsaatjMCxR7IqEHiI9fcsIBUWDEyiQm9MbcRPbORYA5ejbDWcrODcky6HvzY4ZRIyT5xBKG3CHr70mNeWvol+MXX/MkXLr2wVdx55tlKZxTPEBL050lxmzOOD+o8OwOxBv1EWtLbgAtocLQJOiXd03+GRRLpWvP/6ipe33+PX/+Pv8Jd/+9e4PX+B//z//H/CH//yT3G5NjgGfvj0Ec/vGr752dNMkl4+cXT2HlOG+tghhdpRGtMW7xuwdsf337+g7waRivWx4fvf/Ij/4X/4/+H/8V/9V3i8vmG9P/Dy6XtcLg3/8n/9EV/c3uP+o6N3x/a246//6m/xV3/9t3h+9w7X6xX/8B/+KeptwYDjMRz+2iEyIDoY11SFCcFyZ0ADa6yEv9236cdKW1ALMPaBbTf88COr7//x/+J/ha+++Tm++dkv8Bf/7/8G//Yv/wKlFLy/XfDtF0+UqAA1xUwcrQmaVFQwnpUV8PGGDx9+A1029OWGL7+54atvf4a//fgRf/O77/Df/9W/wce3Vzx98cwWLXeU2tGujn0AnaQnMhG3nUK/0V6LlJuICWkEAaiXN2K4RDLwkbZfmGx5+koE2QRHwuNphyBkHHq0MntAwJkI5r4/feebTl28tOEnhCVbWnOPz/3vURqaMRrteIvR6Mzl/LgdnL4jGOD0Nk69YvteFukFxzCiKAj4IINZ8/00UmfHNjqaKG7CgMq0AoNTtQVks7x++oTr7Ypf/NHP0X4s+P0Pv0PRBctSyOKxnKidwA7tVCayjMVKMDLivqPtkGPtR1xYMoEihhaJib0GGdT0HH2DVKAoWbKMbipcKkYw27wAPYb7tEvhhEjbwk+taKXhm6/f4asvnvDF8w3bekffO3WfRPDx4ycOnxLhIKkQo/boMDHLHAxs/zdBLRe0esGl3dDqBbUsMBOYsXjNFGnwHILsGhVljmM2pyKPZIoafUFtFYhc00dM3I78rCxkeDI9Y/tXCYmb1mJSeXNse8fb2xtEmJdKaAFS51TQLhSaH3tHzhvxEns+pkcCh7RE94F9S61kQ6sExrOla4yNcZWF5l74tCrUo7KId0fveH15oybYZO9Tv3KEbqoKC8HHF8GTbh06FKggU1a5vvf1DkHsmyZYtDFGE5li++7RZu2ATH08+rXhO6x3bJZxWLDVi2D4wOgDBla+loXPsYJsrMdq2A3YhgWrr8wCFsYOVcVSvuTgpNsNL7/5Nf7mt7/Cb7//Hb7/8D3MgCINkpRX6Umn5FqazzxrNRIN+noa0kQa1NGlAWI1PdZtJj6Sxb9TG2PgqN0GCwFOLdCqC2MAB/eoADWGmw0b8ZkSUiUKrUfR7u/7+umMp6w+heE7j85MsbwMBgebD4+WMIsAKBg4zGkj+HREwB5GHhG8nZJUtq5wA+dCsOWG05KI0pEulmscPJgTGCMQDdpyGLlgYpKqVzU2S0CGUeabaOppPTPJy8DXbBwigFlts5xSd0p2EryMZNH+wGFJ3NtZtEwyCYqWmCoFnzE3TusUtp7PwhOtBJ9bGD9Si0P8GnpypnFtmihmrIMcLBRH4GaZeHouy7yBI5GZukdZzUwkVWGZ2Eby1Fpjdb3sQA+h4BiDW2o74cxCvneszBhsFUwGRyZGiCUtWRXwvEQ/9HYiWcy9wDVLpz2QArHxVCaK7CKkac79cKZyy6Qzs/gedNhMRCKyP4KXzw9p/ikR/WQKHD3vXAM99VALYj090/AUBgz23qwenZhA7rN+AMhku9RAuEPQI/YYE4lLu0CheKwbCCCME4iDmQQLEv6JFEVyr/IM+6yjY/4wr5lrxrG5HaMrAV4r85WqClcHYHwO8U4uwhbbuIgETDwMsgcFNKdL+OlMnCsGJwxgBlMZYJp9ttOPZMqPio3P05DMCO5xpGaYR9CYhwcH4JDJITW9QsdHj6A2lCvmh7szgU5WSAaTBKM1dA/iLI+40dzzmnva5tn0/PfJsDzucQJvpyoyP+34eS5yRMrIGmYmq2BVJG2BZEJK8CuPgUx7pNMm5frHB89nkFOxeL5lHvNprPLqPevX8ZzSSZ/Wh4CExu394ecebDnzg9l5hNZHJSlBeACzTSIDgGwriEWJ/XbspqxEpxHIbelO8NjTrsx7z1175hBxLebUo3gKjOvlsOVzIx8VRe5NQN3nVLq8zlznTBolwAbuy2i3SFBYkmUbbDaQ2k5Shvx7PjvudBbKaD/MBlnVWlDB9k8ynmQmYGcQNEWnBSyoZBR95In8HAMD/B4U/ZxtMpkXcf+c0nkwlU8GCxAPvRk+rwlWzn1jx3OMuMjixk2CCWaD7O1McM3mC/OjNBnekZjNyajxvpbPMva8AyfrKgEGH9Xz4R42+XgOkyGZK384IQgUWvywl3NPHr96xlhxxRGSQHDYYy7ZCQiQ4/wg1iOhME8dndg/EvHIESslMMc/Dxi08HkqCMDkXjM3mAwYNrDAU+HCaXGiA7UBt1vF7VYhwqSSUSrXuu8Dwwz7PYY6DAmgLPVJH6iNwOioFUPY4t0dbPcecgjxGrDvHeu6Yt3YMv+b3/yWBS7f0Yfh5W3Dn/+bv8Gf/8Xf4J/+2Z/h5z//OS1D2E5zx7Y5So0WCBzPExBIjdYbBKBn0xuSwemCbThGN2w713gdguX2Hj/75T/E97/+Hd5e7rj3B+x1w/PthlZptubZRYEI0waBU8dpOJ6e32OoYh+G+7bj0/2OD28PfHh74N4dmyl088lCUAB97SElAYyc7CXscignkJv3zpbm1BKaOpWOgw2bR/Vkayxa9CeKg8Ou5z7z8G1HKDAPQZjAU7QStnD6vT/4InvzJEwuFJ0+HVTaKw+NlD94i2Qyn5mmM67IUPbsbxCxxdQ9mzcVANVx+fRBjqJyep+cMmrTV+YnDne83d9gcLxr7zBX1Y1ASlxjyfVONl6sp4B7hy3pc0mRy5FgRvrcTDlmfHTKG2hXZNob4QhaIOKH1JdK8kJqRXEJ4r2CmTq59TEMJnUEBCc2tg2IcbIe7WIUnUoWJDlUyoaDEiEFRdmmRY3MAO6lRSND5genbfPZM87nlHYuYrnp2qMoGZ1Hw30WVm0gcuEERxE2c8x7lvnsjpwC4NkxEHTg5MtsNZPpN9PP5PWc4yn6aZ97yazPeOL85bH/jzNK3VUVCZZYStQwns8ukzy7tSqLalEEpf/kO5ZC5vLIa5PD13M/yIzhIDPCYzxdytxnR5eOxl5kTDPXK2JfEaFOrBtG7FktoacMIEW8060bjvjPQR+xbR33+wP3+4rHY4vYTmGDcho9tI7H6RkOJGvqYMtN25a7aK5Z/DFjsZTD0XN8zfdJ4flhZAiKnuPLP3yWEbefCTPHP332x//Q108Gnrof6b+BTlqASTGGA7W0SLSoV9JQmDx2m4LN1hlMXK7UHbGusB6K6OFkS6mQInhYD8cxUFRwWcrUpYBvsLHHhi5ErAFgsEprMYVApQBO4dxSbicWysC2b7NNoC7UqNm3EcEiH1JdYrLPoMnKkbhp0B2Gvm/Rx+pwdZiSKdWtk86WDxzUH8kD1bOqExsm2RXxtAGPKVui2LYHeu9YFqL9NZg82upxMELcawJuUe0WYI7DFKVYcJcCmIYYnKCAE6pQaDgT6CGxK9vYAGiIrtmAh1DgNEan4JRIuQdizUNbKqvFUAr73d/ugCiu1ycAim01rH3Htncsy4JSGpZF4QY8YhKHJhtCJPRLOtQLmi6QSlaYo0OkQLWyogubRr5URsZDShjuOhOZbHnwvocdiKAXTPzpFOtM9nO/woGS4CgoEgsbUFBbCGJsiwuDKJ6Q5XFQD/YB9wNH2Mb4WKcAnoYw4mxHkQzXSYWnAGmjcwzgg9MmFEs9TcAL6mdWlh9vK9yBojWCD2OVTIAUDX/3/J4sCfuA3nf07Q6qaTHRKzVazlwAxBQdGYcRBI4ECyFAHgmViqIiWGq9Y3cDRsd2W6DRyqlVsVwXGCz0fsJxKpOEsizxCA+GUgY9CTwttUGlYOt9Bq7m0ZKQTjaS7j6MbbrxbBgohpg8DtZYVhYF0a7lwdqJ82J7R7dxABbB+MnE1sHnptFGBNAWOhxSQidoWICNHBObyNhsz0TGTlyTWmqwT2hHLCpqM4ADq20UO4wgOdxYnnMHZitHdwq7ags2WQLnSR+GE8V3Ci2fwZlkmeYeH56JVCaH2QoLxEKE0LIHeB805dA+yAmCqoKcfpU6Aynizfv1+S0K5DS+EuCFgrolSZqXTFB444AFFRxHgDwy2HdADdDZnpcgnlH3EEBLcDjfE6BNknOCgPyHwwbIAXIfIAOZTvlnVU4wtai2ezx7gioebKiC1pbQmnK2y6S+BLh++Zk9RD+zvVeMTE+EQKn78WxG53ALjcTGfZ9tBnxmOwaVjOgTcQABmXWc233jFYCSws2ghuxcoKFowVIqmgqWFi1EIxMrm6ZFhEBsiQluSHAxo6/QR4MZ1r3jvg889o51GLxSHHYgxXeNGhuaw04EqbDJXTTIdjSDOm2+QOdaJ+1eY80MB+0+d/5921CKYFwaijP7dnNYBN8ibOEnhlbZQiI6waTh4a0s/ArzDhxUd5kdmBoMA7KvD9+hqsH01EgwDnCIdpnnxGyg932C8RMIRpmJagYcnOKaqcnxLwmW5t/GrKq41vhkJxtjTICBn6IqwSwB454JuPMM7HuHy849pAqpC9c9YtZRHhCp/MTiaBfHn/zyPX7xJ3+MX/5HX+Obnz/j48sLWwX1iuEV6654+bTi/rZiexBEcnBYjsiC19c3/OY33+F6XXC7XfDlL9/h+sUCWaKy/6jQ4nh6d8G3336Nf/SP/hF+9e/+Gt/bitfXgsfa8f/8r/9fuN1ukNLQx4639Y5//ed/hX/9F3+F/8v/n7U/27UtybLEsDHNbK29zzm3c/dwj/CIyMyIqMzKyrYalFSAUCgKkh4oQoAexV/jo/SkHyhCoAiQoqiExCIqi1VMZqfMjMgI791vd7q9lzVTD2NMW/t6gZX+oBM4ca/fs8/ea9kym82YY475f/pPcf3kGeDSDAPt2/3jhsMVcL2W6U95nhOWw4KUDDVcxKC48ehD6wbcnRpaHahbwek08PBwixdPnuKnf/CPYemI59/7Ef74v/4vcfv1l1iWBdfHBddHm4koGRuHuZ+vn7zA4fgUv2YH3J7P+OTtHe7f3OLLhw2/+PwrfPbNW4zDUyzrE5xrhXcgeeLglq0i6mllZRJdckJmLy3PUmO1vbWYVMUkmcln2MqE2YWBKIsy/tkap09ZTJ5Ntu+3+XWpoYTQ5QZsL4CE77QQNZbfD9tjttvUJmZCR/jPaboxweyhGCguw1gwXFJRp8TADvbqIGRp/oT/jKI+GKMH6utghDLcJxib9G/mmFORTcXNh1rhnfF8MZ63ZoD3ji9ffoWr4xHlYOjtjIwB9A393BTfstvAzNAG8yqyusFcQfptEccmXR9tLRCETdMDYMI/5v3F4JScOCW9OTA612AWwNxRR4Mof4gWIcomiFkq24VB0GzUinY+w2sl5a43mA8cD4vAwzYZccOZ8pdFA1icWq3nU2M42w0ZC9ZyBfOC3oBTregAlpsrqKxFHccBdb6Md569xTY2AC5VXfcJuMUgHGQCMI/nE5bEFkj3TT5fhe4EGKhf1MdQzOpQoAC4aygNGWJ9dDzWDYfDgWwpl+7q4P6K+bcIoMj4DNzVpjgIhJsZtu0MGBADHVKC2NXqglF7XzKDXV/z/rLtp3ZdZ1wTZyvljGVZcK4bzueKrVfqC8kv3xwOwBhom+IVA0GaQWaXay+aGfe+nkXKZepL9t5QhWks+QrJONVt9I7e6rQUy8pizHZ+AJxi7Sll5PWAxficBzg4atu4x9tg0TgrrzifG+7uHvH61S1ev7rH29ePWLWfz1tF946tn5nr7HATwtTx/PJzIhcOSYOcd9KHwWCDQ7l6Vf5YgCLtryEG38PjGUPdSMuy4nC8BruYJFUDB6efsygwxkDtVZ+TVbCNHOK7fX1n4CkVn8iyq7JpQhxmZ0MusAQsKxM06mUzMLLkyAaUUrjRMnioBzCyYSyGrXKMt2tEbVKL0JIWJGSkBvhgq1fuPMTj3DCyYzkcCLCMrh70RVHP/hBab0hjYFloXEopzJeMCCoqJotjPzg21eM5HlyoZ9K0BKeQmTEqU+LTp2MLdPESNDRn0hTXFx4vyblHwERgxwT2LAQ2Up73gwH02nbnJEe8h/iRlHLTrOsyxT99UKej95iKx8QzLyuNTd+rvW4FiDVyY2uC2aTY79F/AF+YjhODI1ZzTmhOhxzUxnVZFeBmlLzicHD4KIA3BU0UO4YDOa070KnbZWHZ8fD4CPeO6xuKPddKCmvtQsUNcDXSlZQQGh27E/EoSQMQw9EwBUsvajIXCRSfnR47zLPa5TITrg6M5jNQd2d4Q/8XAQtvZPZGR6XIJJRsiaKmsby679rUUpjfZQMlGfWcKR7PwI0j1nMKOiukDxHtILaD/gLeopKaotUMnJyTLeHquKA14IyG2hn0R0IxK/CNDrOkoj0RAI0j6KA708X0LPeqUzIyIvvY0DrZjJ4MHRvBgzwxFcQkqLDM0QLrY8yKxs5ksdlzz5hCAApYuepOMULLGTFPRauLeGCuxC3J1BIoCAZgRKwEkQyJkxy1vj5DLu6deBbB8nHZArMsoCQE2DEDfxOT5pL6H9UkRW2YbFBF9fFkIqG1xOq32XzJxQbbWTCmMx0UhSC3J9kud1XS4/Iu11m/H681mqupY8VnwSBhaApgmmdlr8jt52fQNs5rjMoyE1jTuYoqeBgJ5afzzJKMqN06GUdKHuQrxuDkwHnWM1vKbTB5jr0Rzwu2MzBc1iKSA2CvvEYv1kwnLmy1x4ppHXc+cXwEAdLRGUiGnZmf6wLHxAIFWCBIUcl36hFENYv7TSFN3IOeR9L9sNLLHcsVV1pnYkl6vB6zwkefoqQQrF5CPgsmTQbH/GyChEPBKANmM8NSMr9zRmEBEZNJNNdN/5uAGu+Tj1tAx+DTKtmm3kPWd0mZ7T160kl7Zcxiuk+SWp/abqA96wMrDIstKi4Ey9Dn+lpowLkBanEgzGZIaeU47OWIrClTcVLn7lV1e7LMTIlTH4hpNvvcJyWqhn3/WQbBatv3t8cSBmvdpv1GnCHf/3smXmJ4kTTIRWFxiQmqDtFM2GMSocw7gqnORDPWiQtN3yfzBd4vBwfw2kKUdgwHh8UAjMAxbYN3Jp5kFjTJKagQqMSOUwK5X86nitvbB7x6+RaWj7K7CYtaWO7vO85npyj5WgjW93iWwP35Eb/45Jc4n844n8/4yW/9Gj746D18+IMnWA8L8o2ht4ycrvBrP/0+bp4aPv/kI7z8+g1+9cnnuLu7x5uHe7y8e0TTRNYBhy1HfP9HP8b7H36I5y+eAybmVWf705ITsg94HViWhEVFJrIpDOhsX4pzHZpkm6YxNTd0cNQ6Btf2zjZkcyxXN/jeD3+I7//kN3C4OeB1vcNDP+H5KCiZ4tF1VGDUWYA4lgKUjMPTp3hICedXb3Cujzjdn3H7eMa5dVTpYo686ixhnpNwxuPSfgPACGaTOhq0pxN2wD8nMfQkMm9QYnzR5pyd+yt8F/f+u5p+AEHs6Q8G7a2HkYYxzjAgde7zKTUR0aGSv3i9SYaEvnFMPx4x3OzBDSa13OLl1NJwDkN/n10mvrNX9gKk3jiKZbJpZIvanIAG11qkvdCy2wTjOoyBDIOnxJZrTfJOKePq+ga1VU5FwxDTdMxriHg5fLW7I02mSli4FIN6w8S8E89wDaNjBLKYjCWyJyQ3LBreNLzJZgztp8a9kJIADOUQlnFcj7g6XuHJ9RMc18NFd05DTHbOFkURtfh3ivi31rGocJlsj+8wKG4PJA3KyIjJ7OaO3jpSchYxYHMXRgxOPcYu86l4VIMyHMwzhwXTavdRXDabfwbo5KC0B9cvwL4ZpdEOD59gYbSWpmWBp4Ta+8yNRuQmssdJ/uXyuUUcGDHXZGPP55kkTq2tO6J7w2cM3Xqf9sS1Dkmso4jRa61TYHyyDuVcamOs28fOAouCaqwp8ynFuw4RSTzcCGJqHIB5PaGNCTHxE9gOly2zLXyQze0DGNXhVjEwkArZ2aUMmHHvw4GRyIA9n8/odcCbAd04HCc5zAZSBmwITxAbOk0fzWeY9t4WwNUBM4g7xMCiLPviar80l6D7MKTqsNaRjazLYykYw7Bp/Xx0pDSQknIyH5MVNZRbW6/IIvzEBNEmO/Fdvr4z8JQXIV+dodNQMmMOFhg9IS0h+CZRwiTEWppGBuD6ahEIEckog0GUhFo3bPUEPxAdXOxAo5JkzCsFFJnE83uMhp4HynLFTTYGUs4ohdXe0X1WmWutQv2oT7WWFbUDo3a0xqpKjDAPjaKUImjqGAK+llKQU1JvavTgMltw72hdJlibgBHVHtBZik0DcMwHA4cslpA5Aw223PG1Ja9A1hQB8LD3weuehxHYg3KzKUrZx0BJCeuyom4VW2/sT4bx6Kt1oOSCdT1yLXrDtDHMCtGbwy2j2YJuCT0pgZv9SkFqBNoYcmKdPdPJUCs38JLY1ni1HsHKZ8FSMq6OBeYNyRrubk+olYYmp4Tr9Tjv23XIiFUM3N3eobcVz59/CLOMVs8cC1nPEvxi25aBQoop2jE8YYykYF63CnAAG1edjnRgBsLEqEwrB3RNoStmYAW40Ah0ou6XLcqpkBVQe5sAAJORvWVpCCBYljKrCxwr3Of1bRuZesuyTH0r9jpnOShDAw1erRumGJ/ewcVuSEuGeUKZVqDB0JEFfpkPIt0wlLwAJeEGK2o1uFeMc8U4b6JoOpBYEe6d4OJ6dVASPVQF7LzWlMjMwO60BkjdTsmRMtsJej9hqxvWAwHt5nWCaKHLE04kvjxAxE5+gedIU/bWrIgPI9GhLg7bNSwbLKfJ/ImkP8AnR7QyAma7U4aTfTCFUDX5qXAStSbfDW4udzlAOTZLBJt0foXK7wFoPDmLXnqeCQZ7SrptTzypIzQUVEYwjJ0RkIzg/4xjfXbJReUpQYCDqYYjLa5wbPw9MNFPJgZWXKvNxCeFZwcY3AmAoOkj+DHkRxzhE8a8LkY2O5jUo13O2H7mYwd59vA+viFc3yK/5k9cr2aWzP2talwSiyJyaRiQS1FwLIBYYX0ESZAtd11rVMpNid+77WhxDXtSzthdFzivUusR+9qoM1B7wwIGFn3sawWwCtnqQK0svpS8wgoXv7WGMTQFDXuyMnxcAGL81KhwxlEacE3d0/6Rhti8B9lGTl10iQMDVljgsZSnj3O9V/OO7g2js9qzlFXttvRxZV2xlow1J4qJm0tbMVoltFsF9puSnAhqYyJN86hiJiZSyVByQunAkjJ6Iis0WSSbSmEFGIsjj25MFJpTH6vXjpSPOJbDxfnkAzW1RNgMdiPahQaBO3I5UrtvvUEeDWZngSdd0LRzoAtcKgSsf3rnBGAr9GvQPmxibQa7OoogsEKbg7QnmAIII5AKOxj7gczEC/Y1CO6QFUcdOOrGqG197AA5dabUYrYjwBjBFVPiblpjRL9RnM9IWGWveFbGDrIOJnJRVAsmW+8NcE4gNNkkK3GUVCDqAw4KXz88nODfvMFnn32D1he8/8H3kNeC9bqgbgNv3zYx2AxXTxbkJePx3Kd2y+3pFn/2V3+OT3/1BT751ef4p//kn+CnP/kN/PP/7e/i6c1KgW5PuL7J+PjHz3B9/RN8+dmGl19t+Iu//Dk+/+IL/Of/t3+JV69e4vHxjFIWHI5XeP7eC/zsh7+Oj3/8a/jgow9hlrDVhu3xhCUnPHtyRabhuWEtBdd5YVzmrB2O4Tjdn2EpIS9FoGzCeassxIHPp3bnhOja0bYNp4d7vP/0Bi/ee463b38XX3/2HH/63/+38O0RrR9wVTKeHhb0dkZvG1LRyPb8BCUvOLy4RnbHQ2t4+7Dh9cMZbx4e8dgGzgkYYgXwPHT61ay4ePR3WOkBJgYLkzFtEomRk5cMBk+0JUNtKuZpcp7C0HeXNIXvNm6kQUF2mds5hdZ3cDYMM5PbPd8ZERTEdWKWDBh7uNO3WjCYFWXPzFyH0MLb8uuSRTz0vkimtqqwIdEhMSZul1Pap7WGu9TlJ+UAWfc22a/o9Oe6nNk4mRK1fnojc9QS9X86pURKLnjy9Bnu7m4ZgyLaIFX4LCrUBuhrZC9C+kTuZOHZ/nhmjhTMDdpRTQbre5t7TgBSRkZBRsFiBPbIDR+IPAyWpFPJXIz5ILUB18M1nl4/wYtnz3F9vNJO6cCoXEvjJDf+coMPdrjUreKsqWVLIQOHxUYCW70x1izlgGwEqZMRyuqtAjkjl6MYpNQGHWOolcqBTlF3S8xFovsnIQFDvjonsbwvYhoaVkSXkDhtBAkwBGDZzGnNEkar6GNgPTBfqHXDMEM5cKLjuXWUzH0V0+i02TGSqZU5YpX4UhcQVFicvjk+V+2QmoDe5loWxjQStS+WEWX+JRjaRkDjdDoxTlQMDxEI3IGtUiCuN05PLCVrkXyy6XIqjKEaJ696MIXFGI3CmoPAvSEaXgyWCjW/LGFJK7IVjMTiYOu0X94bHBscGw55QckZqwEtO7YxpERBELdubDO2avDGSYwdFZYGp5sP6s95d8nRmLpkIvKRP4emQXMyA9BJRsieONU3GdwKPGUsJv/XBwtFoyOXJKLQSmZgV2FsVORckAs71fjMNtoCkSmyOxYAh5xh0cVS6///gSeV+hgcGRkJlz+j+FuFW5pTERhsQwdKRgqkJz48nlTBTch5wZIPaKNia2f4lpHdASUDRWJuaCHgTGPKB+KscKg14nyuWK1gPSQme70jSUBsWXVI/KzWBTI6ymIBsisAZfILhKCXWELKKwgWJGoRiQ5qyZGK3sQGLKnfM9Nx1ta0maVMkXYBX7s4tO4Dbaswo8AXcxk+bHcq5McXR1VTSL3kIkM26Ih0OH046tiYCK8rvA8MVCakQwYbGlFfOopGbIYY3tTFcTFsjGM/oxo+9JyZ0CSYLXJoQ4bB4SPDR4b5QsHRVhCTEQOhHwoulrLCsOD02CQIG6kwnfK2bXS2mYCcD8f93R1OJ8PhYFiWjJK5NymkzkQXqs5CLKkxInSlk0hlgXsFvHOahpnYb5GOQfRvnQVVBYLhRbCAz3+ObgemfhIMyK6E3Pt0vNHyRUO9O5QxBve/gpYxxpwQmNQPfQk8NacYdVa7Q/dOwCfG2dvQWTIl1XSKbMVTFCOx/ZLLTI7JwnO0tgu/p2RY1wMcGbUbauuaBrLMYIWsvINowkBKDa1X7RPAE9H8kDbJShwxBsy4PqxBJQEKCkrcZtLrsj38kx7ZYKpimPScBISYxgiPoI4SCGTPfIDAAoUVAPC5ac0jyFTbV6TROzirijx47mUYOe5Z1a15zREziAqcPNo4+UMGChl5lKnzlNVmSSaOs7KpNkQu246+ucYcp3DSSjJbExieGIynnLT+e7ta2yicbpdaaK5zo3ZzD8PVbAJtropmorqh9rkr+fTJkGHg7jr7BK3XdYnDQFs0doo5Cqt96q7S7/PCbAy4KlVRKY0KNBl1fQaBAeOQfh9MIcEXAo/4OwTzLJIOC+YFtQRMyS/gk5bEH0twNA0xDy8YhtCkmSwGy2jwubCyQ+kyDZH3dAXuPtDGxgR027CkzqqbPj/nMn+XQExh0AexXmQC+QJNp3WxayyRjYyY0haJH+2BR7W6N6CPea95WZnYNYb+W2PG4y5GVQaiTXe0Mf0R2Yyi3I/EIo05VgXWaThKylhLxpIMxfgcZxKqfc1EIdq1FDYmg2ttu0Cq2jbal5wnUMeER35azjeqxtkcw1hAmf7LCXrFIaWNUGI1ugpJu925bCOe2mgqVfsgBNMAVB84j4Y+KlLfENPx4v66zk/tHIyyZjLEmwRMk1Hzjtco5pBBATSTIyaiYpIqIZ+2SHYsmNZMhpX096aK7ohtgzh6ESN1rzq2GhRhsqHQiO+L+CDuhYUVtdNOwD6eCcXEB0znJCA4hAQGW2oG5KMTLK16HpnsVsVXw51TcrUeULyQSsahZNzdvcbbu1v8+f/0b/Hq1df45//iP8LhUMg+ckNPRcCF/IcD61LweDrjl7/8BJ988gt88/VnOD3eoeSBv/yz/wG//Os/wV/8xX+HF++9wB/+o3+K97/3HD/9rR+g9YLTucBzxpMPjvh76w/wg58+Rbr6P+Lh/hHbuQJIsFzYtpETPvr+x1jWI07nR7Rtw6uvvsLV8YCr9QdY14x1LXzOJAzSn1T6lN4cjo5ayZpwAzxGXmswQU9i+faBVjvqqaKfN7wpjusXH+DjqyMSKh5ef4Nv/uZP0bZH1PuNLMSlAJbhGbiXXdgeT/jm/gF3beC2VbzZTngcDc0cXhKQDXX6dRXRnAXB4Wx1IkOBDzzOryu+z4i2UMPe/hG8njw3yHAyS4IJGoMrdqI8+U+iUM79xUSVtiv0+TyMZtgA37nvcS2hZUbQmsVQ/TYutbmG/mSLMsRC3K39O1+KA1goUlIJFdqMH246a0gslIWW2+jyLGPHt0JPB2ACzISacShk97geiczywQKtRbEDwNdv3mCMgXOtHOy0HGIR0LTWxcEznReCdhYdIC7bIT8r9m2AZfTLY8a+uahlySOG6IrBTAOsWHRhlNERwBPkx7t3YCSUXFiQBZicowCjwEaevr9tZ2ynhz2WzgLwswMg89lAnxTFjlIKDBl+zEiJrYU5F8XdjDGiABzr6Oq+0ANBWgrSMObUzuLlcVmY5G/7VvBEdlj1DusD2Vm4nDquA/t3DpBHAzbE/CIoxf2QssGS086Njh6bMHEIR+8hRi+9vrSTMAhiRy6qiCkBhrwTLMDC3Xk7T3xoKQvzSqhbKiZrpoUAnopDDm1JHzg1FsyXdeWaLytC/sQDD9C5y9GZkdgS1zvZPTklDhUaxB3MCGghQ36T0h4O2p2lsIC11U3/lgXeauBT35CtANnQNklBaGVzTnDP9MON/TVNzO9EiicSMrbtjPvXt3jz6iXevPoG3jeUDHh0m2SbFmG2yicWphmP2Fxn1560+byKbArjBAbkjFUNacp5cMCphxVFr40Nfcp/llzYetgb970lgXnK7WRrSorWfz7PjH3i59/19Z2Bp9AWYFK5J8gARAVnoEAQZppnBaFh9R3D6FBO24kC1yNhWRw5FwlqNVhvFEzODTllTp1y0vJTymy1m/RBJqNQtafVjrIMHUoFjEjzEACOMbaZbECaOS5nlbQJWUQYGNI22IXqoNcySeeEHbVHZf4OgRgZc+wtBUyGgZg+Ffk+5KzSkHjl1pBLpqAaXOwkusyuv0frhQ/AMnUAotrL+w0aOwUyOcUnwxMFTjNIgZUnI6PGHWMRG2o6pegdZmA/HGi1kqU2GTuACZmfGY7HAWJQPLrBnNWA0XV4dJBGUOAtszXJmGymxPaFy2pQrRW2lEkVdTNOb7KBt28LDocFT58cpXfE4JY2ShWVmUzsObUlTigIaqUIAFpP7TFEEh0HIu5TAAWC3u1C2PNkAs2EDkwiI1Ik1vEuHTYSYSY7PgUbA2AxRFUBc41SynD1KA8FPB5GXmfQwYgj5djrfI6jd7aMRuLuhpyK+rsHTCBcbVV05qzPLijFUIpjqDWSFIGMEBI3Z8U1B6MiAkslQmSF6O/Z2TrrY15fgE/BLhkumxvVSvBc8jGwGpBNxjimxCjxd9vF2mONLMX+oDMLQDEydcV4F89kzOcV1FtgLt1+LVGR1Z519AmKXEaZ/Dltx85+cgEHZGn5MEBgBoUXMQPRsKn83I5482hZIFspIUq4g3QDst0k6Gi676S1oraObKIcHKKVcTcXNO398ue2R7oeLTdi1MhvTMAnJ50b7ulcsmjpDdFikcE9EyB6EDTaZGJwLWcBxHDh9uwiuKfDJ7ofotD7e+SACQPY0oVHAqsTx2AxpXl+GdhHlf6ivc4udIH0xrZn6wKvv20VTAnyu3sjcoPhZORtvVGfzBwqvSDYdaZ7JgBTEMC4EKB5zlyZ3Zifa5OJFZ8/pO0Qe8PByTnwsWsCZmkLBluwBQSk5E2APxmjY+7NaLu2YbNy6g4sif4lWULJGYd1RYYjw8XWUgKje+Dbp3nOCi7aAIHZytB75X0kxikMsATGKWoy7/DJqMBkfNKeKzEQ6y6mj3rOAgYHZiQyH7EC8Ng+F0Ey9F7dyS+t0lkw33Uk4l6a9mPrjhBqIcgM6dBcxGA08mzjV+tRtCLM/R2Xo/0XYqrREjgPAZg8seWe02uyRWFJSa8YaMEGd9B3DGUPAwxwO+Lc+jzvHmdMl9Zkl61rWqISi37hJ00btEkvhG0oWWw47IlRokArGeFDezHP2KuAujPnuzs8nCt++cu/wdbOAP45SmIskp3TFN3zTODdmbT56Pjqq8/w9ddf4PbNK7TasWbDl5//LR7vbvHnf7biybMXSPYBfuNnP8SPfuN9sCgBrMeCw03Bxy9eoPszHK8/wnZ2tK0SUByG7XzGedvw/MX7KGXFw8NbnB/v8fLl13hyfY364ftYlhWlLDAYtVZ0iAYEJjWBS2NIZ81RjgdYLqi1TbbxQCfLt3WgNWynDSl1fPTBMzx98QyH5Hj9xSf4/K/+J2znE+r5LZ7c3KCUa01aBGpnIfnuoeL1wyMeesd9a7ivG87uaAlK9MjCJhg55qaMSWEujcCpk9QvCykCLqJ26GQ5Tb8utlNM3B6wvXAETtb22LNK8vf9rg+x2JOyiTMa0/4L32b7Oefxsmnr4zMQZ1MAcsQGoVs2yyC+n4F3TYW9w+5gazxmmzkUi8BA5oUFY2pnUito4fuGXTKLBouL69TfjXfvTeHFjA14ht/e388YbDgILmntyCKJBJTsnAj/h2x3DMSZ38pVGA4qCVarexQ3OMRHLEswbyIMpMEzICPfrQOm+MdcBTJDKguZLop73BMwyPIPbeLRK2o9UdvIMDsgzRjvs00q761LzsJdShnLmjHQkc5DGoo7E9+WhbIeJTSCh2waJEmT1L2SZjdDyQVuA0jhc4Ch9vA+O2bEdZnA03yIe3uydthOHCgTiCVLlQQGDrAx2ciE0VkIjjQyBguVkmMDcc1aDMvZfXawqgCgoUmqZcCTifXPMzoQewFIlmchYsYePjjZOsCjsoBDpkQiSGm2Xps2dxK4HPHKGGQ+zfPrDpdvCZkdFtOdExwTBBLSv22bcmwVLXNKGK0RoCkkZIzeaUfNVCiizx1IQBc43mLvRm5CRuH97S3ub29xd/tW7CJokramac8ipAq7yoFjwIz7xTmSz2Osz3Y9QLkrAPiYZz+lNMkLnsB2We9oQ2xq4znLKaG2inOrsPWIIq02Pnue8wSb7PnIB1IUB77D13fXeOpEt1asABxJlXIYOBHOTRPGWElfl4Kb6ysgdyA3tEYBK5MIaVsKNt9wd3+HcnrE+vCAbRNFcAygd1Tb4ChYc2ESPeioeh/o7DDDuq5IqQilTlivr4BkeHx4EFupw+qA54T1wEr/Vh/FFCkSv81oldTqkokMesdO4dZDixY5b2x58MoAtWQDsmEpCU0VYisKhkANoVx44NYlif4a1MOdNu6iwpash2oQTbVhCmX20GtaYdJo6m3gLJHXnJeZqEQAvByv4DDcPTzw/Y9HKZ+xl9OdPZ8YHQ0M1NZUkEwgo4KBtFAk8LxRPD7njA5WPEJMmboiZCR5YuDfBxH2pRyxFK516JXADIelYDjFXSNBu7nOKDmjN04uNK/IeeCwZrh3nE73WJaslgjuqbu7e2xnjiC9Oh7w5MkNttZRW8cStPMLwLQPR2sPWMuithD1qivr86nVtQfl0bcs7gVyCs2eDh8UtTdPpAWHQQzgTD1hWUKfs83BY/QoqykAW2O6sxoYrKmqtkroimrv8Fo5Ir0keEkU3kfDkheK8h3pLBr61DsZjXTq83ZCbx035RrJsphQ1I8xBbM5FeRCxknvg/oQY+Dh8Sxxd4I+hhUpLQQPlUzWbSMLISeBUxV9UJw4rybgsum+j+ito9cNY6O45bo+Rc4LAWpXtQIEurSwF6AogcikygAEiFYHAuZ3j55lUlS7EuKhQLOUZU7O4PsBMXkxF8AlirpHq7h4HqLqW7CHfAaATAJ3ejwsWnkMeRF4aMZRsqNjOz0CZlhWterARJdX4gkgMiI1LJJhON+bzEOyQiEAfm9XcR9InikI77y+0MnpCmiyxlfHQLwZdRorkmbGVlsH2G7H1lDL8VxViZTdij3LJI6gatP5YusMEPwIAytFvcuGGoFEcSkEVjhbqsU08gDGXEG96e0GVF/IYqFGMsuzvKhSmSERer2v5V3DztGn/lMGaf/NpXkXyfpcI7VH9IvgMUC2SGJnm4fsSYRIHqtkYgKAZ0xtoGxzUgAMzJtujZoQUDKGZCrqOJlKZpOtGs+CG1OBotpAdy22mOCzwDwjiZbuKmowWOb9UVCWI+wDOo9Kc0x+YxLJdhfPqtANsksPmWf2yXGZAV5OCWtKkWKQ2WMDy0oNPwLQYYe5Y+po0eUImAmgGGI1MniPR2QpIY0EK5l6CqKewwDF/QgBWNOarmrPLlTYhycgCZQaqWFGzo7JkmHSa4of1PruAzY628CSo/mJDGSclYxkVAVzA0q2zNR2l8lwKEaQ3/YpTsnT3mqn39/B8LHv0ThnRhAwKdbwFFAoAcosTSzpy/NZFII7QzbkvG1MhLIGbiRq57RB5nsk5txuE6bn84jAWom7s0f4go1lIGjKpxbi+KZ7Ghpc4X0DRuKadvr41oIRm+SPFngbaI8blqNh6QXX61OsxfDpz7/A15/f4b/64I/wox//CP/0n/4+fDHUFXjsCVs3bN3QN8fp8S1efv01/uLf/Y/45quvkesJv/7Rh/j+Rx/hePjHBGUXsg0dR2wPJ/zln3yOUgqFiY2Mph//7BpPni34tR8eUCvw+mXo+yW8ftXQzg3eKnotOBwPGL3i1ds7PD5uePLkJZ49v8a5dxyWBWspOK6sNd++fo1WK86PZzyeTnjz9i3e3t3i7e0dzp2A03K4Rl4WPHvvORISrAFPr67w/tOngCkGyk/4LP0KHVdodoSnDbYccEaGdcebl29x6h3DCrbW8cVXr3F7OuGLt29w6h2PvQN5gS0ZFdLosgzkhGU9sIgoFgiL8wMYA2teEPgKTRSHD7XmE/xpYe8FbI8LwaALLwEHtdkmcCT/q5rpTKzDf1u0exnjSQ4qmfwqxskqLhF4hQATHf0w8FHMUPKXxQoGyFpPoJRIkjU1ANkxWVFRwBp1QM0cBMSni9gL5aHjYxcxyWXulxCxCdvfeML3e0BKaJnFqNY6WmYMEJoz8a5RrIn8w5IBXYXvtCABAsqdMh2Z7MIRYJGK64tFwZjtaVG4pa+Uxx3rjOuAncEI54TAnDCBT58FHdnZ6G7wfNEOKn+6ASkn3NzcoJSF0iq54HA46t66Ylgl9Iq7BwjIdK/wPvCY7mGWUVuCe8LxyTXWqxW20Pa03nFY19mSx01An7RtDSkTqDocj0g5Y6sbIF/vKrCEr0qSzwitxpLZTjxq47kxkPUdpP3hHOAF6injnViEvn3AkTWkqisOyqWwpmahmYUI1lAVo6ecZhwYe57spYG0FgB7UZ8FsIycyWqqtWNIZ07EZVSvsAwcjgtz4d5hJQMpz303mekXcR7ZOyF+Tja0ATgcVpjirCgcqSNPMePAw8NdPA7kknF1vU5gdqiwnIzvVxItyRgVozN3SQtQDoYFA7nrngB4l3yELTBjO97BBmNPTUHvo+H1/Ut8+qtf4bNP/xaff/ULrGtCWQzryoN+vj+RXVUbu6JKUXzFnASJA50C4A0bFu31YxIgxNDufJ+SE4YNSeQQuG9OJvLWI8s1tmvXgVRWXB+ukDVMq7fQI2OBLMNgPZiX8uWTcfV3f333VrsR9dU0keoIHXIi1b9FO5oZDBlLOQC58eCLExyIq5UMb3kiuUBVEJNmEO4zaVHwocxlMJrHxASU6CIxcWdVkEkPKaXBUiBNkZU6IuxRJXH1muu5sR0ikjTLGrFIM95ANgi1IVRFcMzKxGXrFMEKfScGdAkMbHk49kTgkmqfJpDoM7iclX4EYMFnEvcbE/vigLoctSW2TLTemeRG25na4Qx0qBbIsKW9kmhyVKaJXm7TYRZ9VkYEuJhVd1OCZOYY4GjIBRnJFoR+kAnIIU1TBkuAzLowQasyJETAHaWASLUSMybNBgwCn3BgO1eUsjAJJG4lrR+b9H4+Go3ldB7mPJ+F1i6SebHfCBCRPTFJ11E5CqbOcHCK4j7NKxhK0ToQhoKxuGGMmAS0V89oPOJPBQwejCo+mKH++61WBrVLFlthoGRMEMI92C5AGtIkuwAhLu95VptsmiJ9h6h93As0Ktqxs8LE9kjcy1vVNAtLascIba4GDknn2YTYPCFGCaj10pLaadSK4UkBS5wY7W8EKLwnowPxXHwPlMY7vznP1bioYoVu1F6L3M+bAVOXKJ4Pj5gMk9m8pvnc7N1AcMZ8F0liMGRMvz90LuFZe9VmNXGeV16N1tDDbNGGah3CRvPX4jDv7CrKZ2jf6RnGGNtkDN4D0Lq8h2AOzvfTTokxvC7bNAGSy9/dlyB2uSqiCpLn22r9RgSW8cNIoH2eIxcaZxbvGB8S93axk43+x2PtJ9PQ1LqhVqfQMwAUEBuAmLITlaUxNQTiBMyJlZMpsd/tZLXFa2Pd5jViXzNXENldID3vOyj2cX+RgPB3bH8+2Fs89ud6+STjtUltkNCUKNkYkPUG2YMULWgBog9d19A+8sD4aMBTgCLGq3Tt08g0zQeSDwaAybCIGdmTTf93uVF4PkIQdT9EvO8oStGKw2zed+gsxVrNA2E2z8R+tviZJrAy/t3CzyBo/SZWDjWZSLackbp+L1K+uG760xhOaOZAom8EOsyGYgmfOgmuPYkJNhpgoR0lRtPc60k7xy7uxfdzoLjJdIwCDLPIwuHvfMce4tTWIfMW7YwuW94UswWDjKevj6Gg4B2roT/3e7EJ0MnfhF8WwG1ZTLNp1RwI5h4UO7E3A971HJ1tEfukTOMENTABS20gtY6yrMhLwenhDU4PDT//q79ly/Mf/jbsUBinicXZNmCrA7dv7vHm1Vu8/vobPLy9RfaBJ8cFH773FC/e/xDXN0+QDwV9OD779C0wBl5/fauitKMPZkHXT96D9yOePXsPa8m4PjKBhSWc1oy1BBuCgs4pZzgS2gAeThXIj/A0sBQW/57fHFCS4c2b16jnMx7vT7h/eMDXL1/izdu3eHP7FrcPD9hqw5Nn7+Hq6hq2JJS8II2Ew7qA2k88t4/ngQ0db25PeHt7wsO5wRrlCdAdfetkN20VXcDTV6/f4GHbcHc+o8FRzRhD5oQhLRuHRo6XBZz663DPE1DyuUsubJQF23lGXIzb9WoPsP3CXDBMFWMl3gYR58ZrpuW9+KjwNbzPGXtfxN0enxb/FsyqiT7FyTUl8ntnw4ykLM2poJdXMeOhy6+BGVdQMiE+xibxeecSYuYNwerw6RMjj9rXKfzlMDasdQwBGabR9Pv7QmzA6Y5NftddOZtN0DhanXhturNpshWXhO02269OcdW+BjtY7fKHHBYQW0QLG3Y8/hRBAIn2M3KKlMjeORwP1BlWITdlTohkrBox5Nxt+pPx/3CIjDBQW0LKK5bDglyKNHUUE8d1xfNLRiZPrFnkPmmXApithSMYeooQLNqhd93eoS03FLRPdvJFfJHEWItW9QCeYn9YxHh6/xSdCWGfdcZYiNp9vx4swq/MeEtxGxS7h1YyFOPFlDzM58+/R5zRY9+my8+6/Lr4N8fcfy4mbhYw5tgZ7bFXAROAqO6DxNawnJPsg2vy4s66jLA+tCUNYg7lBLk82AiW2ACdXgY8w7Agg8WsYgtIqGloW8X93S0eHu9x3h5QygqUMruuKOYfwaMpvmWMFfki44J34+uMKKDza6Y67mJLBpjp6MaiajUxqnVGs9ii5pxGndMy2VrQ+Rwz14vY2uY+fZfp/x/++s7A076hRbnymIrAUeewPIPy4QDSgvXqCSxtQNrUp+tY1hXFDM+84Lh2LDggwVAsRekDWwO6RBzhCedTF8V93YEhVfG6k2tqdSCXgquro9aB7W1DdHCYWq80ntbBEYMYHS4B8rxklMID8Xj/CFjCsqxY0orD4YBt21BrZRXZgaubJwCA7XSGiZ49OuBNgsUJIAX0ch0Hune0LkM62DYRLWBmhrIWdHec1WsK4whEs4Te2fK0tcqNqR7iQInGxabLhe2Ap3pCskTWT2ycTA50Emi4LEp8RZtM0kuAUSvLAeRMYXi13XI3GJ1/E4jRR8OwDpRFwePu3D2R0hfU/XVdADgaquh7Q2yDhHXlXkpOcOVUzzBLWI8LUiOIV+sZ2zawLgtSLqjbCW04Hqyh1RPaKWE5rCjLinYOwe2OlIDj1YHP3ADLXXtUhr/J4jDOZ3fZALw7LA0G/tFSqYMW0xp6I+acTCKsoZUzg/o9sEgQhdQCACU4FQBNMHkiXwrn0S6YT5OdYBkFK9w5CY4F/AiGXFOmmFVlGFLJuL6+ns6Kk8VCO6ooIef0mzY6upPSvqwHpDJQmwGnM87nSpH7rrG1RoaUDwe2M8ZwbJt6/X0gZ8OyLCi2s44IWGXkBCxFYz+T4epwxPFw5KRLd3gDLEloP4IZV5DgKXAQtoiMGDOtQCTvLK6he25NCbc7ypKQi4AJiwlwNp2SX4BWSSNEG7rsYjg2UroTGHx0sS4cPluUetduuAATzcRAQGE/fqEtqBub/c1JuYYlhFh3aAjFVBc9aJ1/MYoUBASlO5dlbkPqLEA4DtvcDMBSgrGY0XoXNZrBaAQrXdfejVT/PihCmDrYRpuALuHRImeYUwhHAi42xRikTfe2wQ1YlxUZTFhGa/DelLBMGEEBptJO79j6nmzPR6RQfo7tna8wlKR23xEJ65j2k6F3B6ewcfR6gqNLfNRQFcy7HLpPdqB5JqCith6myVw/UwW8jwgAedYvhb5t9jDITBCPgG8MhhTDAM5WOu5T4OLh884Tx1cTsNjDZ04ThAIcpk/RJp2cD9I565lgFJzDHcxk92Of086dz5uo+bH+Ys1ZxvCBWger3mY4rAsAFXaco6zNyNI6HjhY4qAEwY0Fo7rVeQZHVMUFFgUDNCZeXTz4CdabNCqKBgX00RVaZYxm6M3Rt4FeHSVfCXgLm+kwFLAxC7TPYve1CZaI6ZMzWCUe3LPuZFGZgLt4LfYAOJmhlExW0YgzGoEbWdPUbiR7Ji+cXFaVoKMsSihtJpS2B0b8yBwbaR4JBHuAbbZQ3BYxW/hvVcYvEuCwgzGEhL5R59KBlOg7BoY00PSzZHBN2bJo+YRRSH9AMQuwJA6PGOGjtMda55QgDkvou8YIADrkoAyHnppT963xHlImeIx2QjJOZUt+hm8dSIZsK15cF5zOFf/qj/4LfP3538Pv/NZPcfPBCzz5/vu474aHAby533B3d8Kf/fGf4OWXX+Cbz78BesfT9Qa5A6e39+jPPwTSiifX1/Tb319wf3eHT3/xF/jyyy/xy1/8Cre3b/D4+ICPf+0jvP+9F/gX/5t/ge//4Af47d/5B3BkbNVR3r/B85ujdHIS7u8qYCt+8+//vhi6jr/59Ff4mz/6C7x+/TUeHu7we7/1U7x4co16+waP9w/45G8/xcP9A169foPDzRUO11f4xd/+Em9v7/DjH/0E3//Bx/jdP/g9HI4H9K2iZMPD+Z7tlMPxP/zxH+PV11/hr/7k3+D+7Uu8/fJvcHMwfPB8JVNnOL5+uMdjq7BS4GPg/vaeAOxK5uIhk69I88Cz2Bur/8erJ4xV3WXnO+7fvEE9nznC3l1DjAAbLHanJc394j0YbWE7VbR6twqwt37FP0VlXvY56eUuu/GunttuC+YZgEPjsAC1pYT8yBQBNhMramgQBtiJAGObp7HdRS0V1CqDwCkf4HCXPBnIMuqydyrSJ51l2XTAJnuY09Mw7zHDVNSJ1nbFMmaKBxzj4cRk030WW8jkcGx9QykZ77//PmCM186nDafTmQDRGFjXAywl1B5iy8yUKSFhsFTQzx022MaTYEDK0wdHEXYMFvWSD703782GUZu2D/iagTyYV9nOSWZhkuBpSRnZMlrb1FEyUAx49nTFe+/f4OMff4TTwxu8evM1DouErDPZtFDLprnBuwGVfqnAqLdpkFwMC6uHUvDs+VMcr69RloWsd7AI3cOnGMWty1JwU46YE7Ub0Fuf7f45J2x9w93phFwK8rrAW0cewPHqyMJob2zXzGTnn84b1nXFsmSMWuFOzcwsbaYAsnqnPmQMl4Fz36XAyJyRayoLu1Y0DRquljTtc3l6xUNJbWFRJBzzmS7LIqHvBbVuaK1OcGpdD4iia/eK8/Y447Mh4XXihhyQwNguSAoZp/MZW93IWE4SfBdYOEZn3Byxe2JRvyyL1njha+oZw4HaBrVuO4kxZsBhPcDAQS1jULScU9evUPI10lg4rMQaOjbKINQ23ayPrr1HVu66OFptuH3zDb/fvkYyx7NnT9HbGafTCV6Uh6/rLKR2aW7ZAJ9TMLlE0hjh7AfjExND2YyxJa1QsDqZA1bv6JYxkFBBEHfkzPwr02okT7CWgBo2lXY4e+RQmEX1IBmZmaY+Xtit/8DXdwee5rLaTtlUDNCdAMHstTS8W5VzCS5bnlWuJRVOj1qPM+hOalmD8cC2KlbSGMov00RthQtcGNO99Epw2OIJECSIpFRIYtwTBYFJyQutC8hhcZF3RhEc88AAs/aBMRQ0IpIrrZbjHcM4dQfoRRCsgQilXK8niutxGfocBlmcKgS1ULBaTPugmwsgBFEFvgg+/eJPJUiT8ZBjK2hyWx9qc3G0oAwvQpSt67riGg3BkAkUezgnKrCi6kr4NakvqhCxjr5PEYAAxZzYuugLq6HJqhaUn5VyQpLeQ7xXVMThCaMD51MFseBMHRm1yM3IREczwotAtfcWDq1I7CVu7Inqzvtz7gEDpoGcff8y2Ig96UbwC0aKLNL8PD76XUMovqPPPa4lNKAiqLHZ40tgwjSJjq03OxU8ridWIBK7rv7zXcNoB1Rc/dS4uB6zhFTInEuJgRaTrQGgIcbYMluWt9H+pBAe21vD0cPTFK6G78k4GR99p8l7/HxnE1ye1dABgoKQvR0nTbsTuVuspStZs7m2ZHfE86BTjtpPBJ+xmGJ/2gW4aCbdCaftmi+PfRL/JccY93BxvaZzFIAFP/NSs8VmKwurK/PtxVwckyV2aacwPzPtxtu4rsH0muNHEdZeCXPa+7enTdN9MueNC8Aers9/4rq9+2eCpb19wmIt4u82YarYuPtFXTzDd74uXj7XNr4ExvGZRs885FvEuFAENmL0rDaASR/K0REaYaEFNdupZMu5dwn0EGDaCw9kj1nsXIHtuk4SqPQ6Btuzvz9YVDRXU1fB59G6OOAKAoOdEr/n8dk6r5NHrDcJVg5AloXDJ8sgWZq+JES+hzSUYm/FM0tRco/7urB7+yApn/ewlExRTwEWHKk8BC7tTEDEo33nXjH3/twmGPMZBINQt7WfL4eSI621ztnlBEhnyjb3/LjYe/MujPjOCK9ve/GI13DBfosjp32T8qJ5F6RXJU0ASibB5eEXeiN8/wDpw/tcXse0e2GD9Oww18GIEoejnWd5bht8axvtPwP99VDLZTCh9zMYjLZdh8Tne2qTWlyf4o3Y8wZQfywSdsznnSJuiucexc553cF+EkXNNTsv/Eji72A00c0cPgR89QZYxmEhG/zl+RHnxwc8nh+x9hsgGbat42HrOLUN53bCyzcv8erNS5xO98hwrOsBD/e3+Nob1mfPkdYVT54cUHKC9w3b4x2++fwzvPnmJR7evML58Q71fMKrrxLq6RF/+ad/jjcvX6HkjOPVDa6uXyDlBYfDigEmrpxYteDJsydshxob8quE5g2v377BN19/ievieHZ9RN5O2E5nvPz6K5zOG+7vH4jNaWJ0q1V6PAOH9YjjekAdgy0lRpbt8IGvXn6DLz7/HJ99/TXO92+wnSu6J5RFg7wduKuOU3PYYHtQm/svbJWSVWA+ccGvYKLCdpnhCY4mn2TT16fwC+9sUlzEAZh7KvyeTgOmDlm8PuwB4rxPqzDf3HDBFtFhuginw7VPtmVEiOliF16+K4DoTCeYpjOYLDRl4/eDmby/b5rvizDSmM70W+sR78Nzwha+iJCSxTxL3Z/+FwM/DBfxkO+5wrxlD1aWNN4S26j7VqetDMtsLn0YE/NEQF3EM7OI52E7VOi4+My9UDreeXbJiuJsJdGmTphpHPa9Be2j/ffZbj4yp9OWwuR8sj0trlX50Nwfl7aKfuWSRbMDG0BeClLedbk4mMW0N01POZheUIxOpjFfw/vtAdqlxGEIOe82VHkqhqtDMqkoNzlp87nt5t3n96V/JiNMPxqDsd1FfsFLv2AdhR+N8xif5pefrv1guPAjPvMZj2uITaD99U73wGS3XtxQPMrhOuP6diC0RWfeB/3bpW+Ml4+58RAnjJqE8Ykq/vvlezAGDx1dszJJtj4MrmJ8rEKsuQs0Hb0C4FTa1ject3ucTvd4fLjH6B1rWXGiVgkZTebyU8yfJ3ss3jtiz/B3saZpB5emWZx71WZsG888LM5ueSKGS2LsXzAMw3UrPpgdA/qkeVq0T995fv+Br+8MPI0ctPZIjhSIDCeaCcOTqxu1rCSkZeEEDa/wcUJJVO1vm9hC6Qhkw5ObK5xPJzzc3WFdV5RlYc+nA6e3D2wlao19u4kix1vdyJpQtZEtD6yKtVNHXgrKYZ0bPRsD6bpJdLFroRPYo9odaRFGpXG/x6OqoA2o54p63rCsC1ZNHhhjYDtzAlQfCSktyDgC1mB5BYxiXV1q9e4VvYM6V04aN6ueErB0TIp42zbS+couCifWLgwFyZwjKKUR01tHaxU5rTKKtN2bGBMxkcF7GM0EK3xtPI+UNPlgcBz3dj4Rwc+FGk4pYb2hvtc2xV5JS0zJOFkDTsTQB7pXmHFEZkoD2aT3VB2HhRXOVveKheWMsixovaJuHeuScViPOJSMWitqO6G1im07I2cy0HKWlonaUNblqGRmRW8ddw8bGVHrhhfvv4f1cEQJUUKv1B1yimP2tB+jklmV2Po+9YNTCE1j7HdNHLLVoKQDc43NoGl9PoXylnVBHw319AhSQw3LepiTAxwujaadIQOw97tuGw6Hw9SAAsAeelWWsmVkZPYYpzSva0iTKMmQBvg53LHkPCnnjoHWGswqBXmtIEF6YcORygHUPlCQVQxlTbi6zkhbh6UOyxVujvO2IUa3ZyPDsFVOWsi5cHQ6iqpUA6M7zmfqsbGliJna/cMjtq3iai1cdzeYJyRfZgDpI/gb/IrkPqeysz/0XBAB6ETlk1oFO6dEIVNU1jJH3s6kycKvYjo9GkWEczIYPHUEeEK7xMgkwQHPcAxsZ46SxkL2YJY+mbuC0GAiIeFQbhDU9T3ph2yOfOhg4JQlyAv4LrZpu+1QiQSztTUREI3WrcczE5LYx0Nra4CE/KlrNOBog9UdN02m0n7LTgBnRBC/Z9qYU2ziy4IFlQAbqj4zaunRu4UdZJ0j6WFAMjEJ2aISbVAsQGCvlMb79a74ag8ow4Ge61kcfAK2ZHVUjDawrKwWWyYq2gdHEW+dzL6YHpd1Lky+MVvGUhYC7aEDBVU/xfxlqKsYbDj9zuyGMBQUJFC80vWYqR/RUMqCksrOgPSLyq9o2ikX5DXDOv301ukL1nxg29EFgJQ1TSsYMVmV9LKUeXZa23bG77hgbcZRcsz9HJXSnXYdiBqmTVgWAk7XxwU5Ger5DBiwHgpGB+ro1P5KkDYS2MqPiwDYXa0KmDpmoWERdtLbmAEcJ6EWpN5hzZFHQh4GH3m3IDNDTXBLZFIAaNb3IFV5TgZQOheBuiVMGpJxyk/GMrUMm4NtH417by1PsCYg9TOyNxSli4bEOGYbbNHKPF9sa2R7UrZCrfHIZGAz2WLQ69NnBYuVLXMXQLbaayKiDN7U1FW5aJtJmbputTfqlxxXjm0uYbuijQNTmyk6Yqddlu2JNhYgMTMfg4G8YQK+y0pGVwKZngNs/Rnz6jnpjxnYUGDcmWAOAGDlNVGZnwCpRJPzesU24m0DOvD06gZX6xH3d/c4rBmb32Pk51iuC96+vcWvXt7CU8Op3+OXX/4lXn7xBd68/RTHnLHYDT7//DW++eYVfu/hDX70k5/g6vCHuDoc8M3nv8Cnv/wE//1/+0c4rgXPn17hg+89RV5e4JvXd3jzxVf4v/5f/s+wkvHxj3+Kv/dbv4P/6H/9v8ePfv1H+NGvfYw6aHPW5QqlGJ6/cE7ayhVYHnAab/D5l7/Ey1cv8dnP/xxoG37w5AaHXHBcrmC54MnNNZZDQU6O954/w/XVFd5/8Qwvnj7Fi+sXWNeMx7GRaSyB27pV/OKTX+Dnf/M3eHP3GqNtKOWAOhx3rxuWnLGUhLMd0MsCbxXmhsO6zswm2v9dxZJlPXL4TVqQbMUYSa0cBSk1+Mhkd9aOtJJluCg1SZZ3xmKA+30vzs2Ch4CPlGkbsoDe1CNh2sHoQJMmE0r2OTkLCjGBzNMO4ATw411QgrTRSiKAMmQ3TfkAtY3GO9pSMMpTZEvTn+ULcDzpM+KEjNZl4woAtmcB2Ic1GVlQl+IDWXFBMtbwS754P9Xme2twM6TFyUo8ruhbQzvH0KVgmQ4sOVGzczuhLCuurq7R8IiHbUMWy3VomnmRTUjLEc0Hqgd7PQMt7AST5pLIlBu9c2JwBoA+GWR8LPzddc1wL8w9RQUOcXGa7IvCa8owpjRkMqWEh9Mt+nCshxWpVJxOt7A08OTp09CLgMVkxAAW9VByLmhelb/xKR1vngApozSgrAXLWuDJsPUGpIIlZXEgHG4LgIQ+VCzujiUBJRuKCh7nWtF9oIJ57uHpDcfZLwv8fIa3jn7a6KOUa+V1xWhqrzMSI4qYhaGrSUIw1zMnw/XVYd//6sQYvQNTyF+aSFBbnBEuS+paKYWTPn3sUjMmFtQI357JFq/SpWyaVglIO9MMvZOZNVoHMpBXQ6sNtbWd7TdDQJ6JfaItQbd1XdER7XwH5NjgAlrCLbbB1jViFNiHNVnB0HNJacWSDa2SIddqhAGLhnwt6I3vU3tnW6o0EXtICoCfm4zIlA/gvD2yzRgrztsJL28/x9cvP8MXn/4Kx/UK1+tTeDPUsaGDU21TMvTecH64R0ZGMWqQWjbU0eHeqcNqmaWxXFDWPJ9zPLsuaZosckCWzcsGWGLcenKge8e5d20J5kpj0F/z73sMbxZC8xC7n888ptK2tseFf9fXd59qZ53pqceEpmBJKMgRwg109F7RrOG8OQwbAFoCSwwe4YasaUQD7DFGSRjZ0BMmntbN2S+uzd0TFdg7DN4bmneM5Cg5Ix0y6fDWkF1n6bLiiZjM42ob4AFLEWwZ0dYuim/OEPq9o4WmDZUsgl9Vl7UOPfq9jYkh6eZ7njoTTCcKrhRoHq4pDBJo7NjpsUy0MZFFTAeBGTQOxmF06hnvtGTNPmHQuM7eeIGIXVThlCkeaUk6GX4xXWRIh8s62QrDkWbvL59ZUPMi6Y4qBOfrVTiozYQwzGBgmIwgIHWUJGBohpQd2fk8OK1G9NwIus0uAl9eTxoxxh6orcONAVWWcHwygkExwtINqpNjsj+Ys/LQdbGruwxbSrEuAUrQUZtz/YY+nwWNaMdz9RcPlFzmoaWfENMIQMnLnkCbesCTIxcQcUfCJZPBkNjyEQyLYPZ4AJXxWvFHIsE3cKoUDLMMlZQQmNiKujc3Gij4QLZlnnFHY2kyDbjVCY7OihLoQGqtSFZwdTxiXY/U3zImtVutGKOjDQIf3AuFjEkwgAuxXrYlalKWMdGn6HEAChDTUlok7qitzb1ED6aFgQT3NI48pSiKu9od1dcd2lvsW6LN07kXloc5tUs/m9MmzaY4n4keS+cNgWbYg0aP9b884wo8pT00AP7dL6pHojrvbc6yzRBdXVVLuD7LY/IUJniXjJVMT/tI41m9cCX1oviGPSUYRHBtr88WzIpH4HPS1Qv7wPhA1xjnonNtWFsIkUR/p4LCxB4IkeKhhCMeQ0Q/uxjlfjyTmI7BhpGlinfmfprtb2LUgtNQXTfjYBClY6kACGLHjXlNNowFDb9MyiELvQtMxyUDF5V22NTLaH2IRLVfL7QP+uhkbcj+MWDw2doBc/rCNMS2jP1BgUsGKS7Wj3y66miQ3+F29n0v+rdYmLG4qv3bvAMZAdKK9G+MZHJiK8haCpalYCkCZYfQQsfFwI2oQO5JVrQIROIYx8YtYoY4JYALxIC6yaxf7GkT8yvOpVhQ8H0AwKwy5wu22URSaA/cO7qzzXRqfgHSCtMzNyak2faJuQZWQOvgZJmQQg5x4pQSO9WNfoY4r01mawKvVaqCiLiLF0mNxhhUasGqCocAQ2iChRaJaXfuCzp33IwrMLUsOGVvYGDKK0SclWiTMXyKuQM2QSgmSUzymHz3yTgPVgT9YVRaL1hQAJNS+eUxA2vtTcURfQwF2TE9V/Gl9uvoDXU7K8apaGOgDaDWR7x9+w3+3Z/8O/zo4Q44XuHNyzs8vn3E4/ke9/d3uH99i+3+EQmG3jtub28BDDx9coP3X7zA9977ACUltG3DN19+hbevXmNNxuQ9i+mbMkrJWNeCFzdPObGqVnz52Wf4f//R/wM//eKnePnyp/johz/EzdNnbOFwSga4O3pzXF3d4Ec//BH+8B/+I7z//vfw1S9/jsfbt8D9LdA6eh0CoM/oYLK01Q3dB66fXuPm2TUGqgY4OAwJIyWYDxYQjC1gSZTMnBdAhd2u/VS9ozmn3iYnZ8ngQSyjnVQxL+xBlr0crQlwZPvtCJHxnHCWr2rOYtlixoEESXIBg3bqkn3bvcqPARyBPhATinPY8GDRhH2UXX1HN3U6eN9BIAvbJmmFpNcLzbn0TxekWRj02RFym87ScLB3hnt093BjAteunCD0JIMpOuBBrNVn4iImucgvAJh8aHejhqXZbDtKfsHQDpsr3zEQxQz6iZIZY9VWYQb0VlAScH1c0CqfHQtrY57V5IwEiAvT7gVo72J39FFlo7HbvpnJ8IstgiA4xIuD5w5okl3Ycui5B5NlaC3yfNYsYByPB6zrInAm/JjysGjXlUQAXaOASMjPCdBprcGykv6yoKwrRhQxk0CBnOGWOJEU0V7vu8vc3ZrY0SDbRDaQYHklg0zC37MTBYakfG0phQC9d1xYXMVF8u8CFgJwisJrMAEJGhA89Lme+z5z5T20s2J0Oc93xAa9d4I42oNjTkW/6JCaZyV8Dq+vV4cPMtuyhr30xt/v4+LcApIgYexF3zPgY0MDmECq82KeO8QAG0mazDfLsfqAYg2PAURqC48p8ZctoRELOjqGDbgNeOps/3QDIHF4B0peBagaWgXevt1wf19RK5BTQ0ob4B3JhlplB6rA2GEJs2NC9iM61ANVzisLyB0NFLEZSqKHniHtZtgexhAGR4OPijboEyxzVdjZxP3RnSSAIBl5+PGIraWNxdyZEhVJ++m7fH1n4CkbaWPApVAZb6ZkarIYGnw46vaAURPQ75ELKAgtC97FIlkLTW4dHT05cFzQUxgNiridbaDZwGl0YAxWJMDwrlXqRi0uJtJ6UNJAHYnUGnIi7bOI71HbCQbguK4IPaKpo5MqBgxb3eAOHA5xyHbtBXhnzy2S6IlDGgb0tq216alap6B2Xqbn0sGhEbV4aoiqP2ZFIIEHundubiQZYMds+QtGaeuReO9TmY7rgVW9GvRQBoU5h/h0MBJoPGGckJYzNa0GABsUg+6RPHjC2M5AAkqSrsy8rz3s79OoJgAZjoVG3hlEMnEKYcQIgtmD3DXlICvQADS11QaWIgeJJkbHvsmHguNWuxJzHpruQK8VtXc8Pt4DPnBzfYQloNeN2UiRXghUInOTwLocoLvGTdKEDXAEe6C8a1lhbmiNrJlSCupwnKvCdgOWwmttjRWl47rugYs7equzbeV4eAJ34PHxUaBT4VSLtGqlDbnwxmslNF9KgqPIWZruAUo4aTZCJ4X+h84j1m3iTUmi6GnFBHiSAeiovgFDrZ2jo7VHTvXKjpEqBrYZ3B1XMsYwDHXrOJ1OeHL9DM+fPkfWtD3Ygu7A1jbUuuG0nWYQWFJCXlYg0XlXNwwkrAu1nbpaphiLCGyQk5tMsWTodcP5fFKSWyajpHlDSoktDVFJSeJ9jYamfm9oj9seZYKMnoao3DGZCacTrcDhHBOWsiCnTL0SH1jXK9kNjiuvvYsVliL3VnfWwIDEL0WlZYuUtBPsXSDATC2RvWOgsZ1zDKRAeXUzA2JouqG4pkJawroeBDS0eSZ9BhEKCLMJdJFm19hZXUNtxkC0HHE/m8Zi0erxWromk8aUybqxnTKXpGk4Glcb1GtGZ3L8DJq7sCEbmIKnrDIGjZxBQEoJS2YA2HtX4BFUZsyW8BFArzlS6rQz0TCvKtK5VYICmcB+MpMeha51AKMBI2VOBZTmQdjgnMHPsj38cT1pgyrohfpq7bQx0Mv2rm4OhvZSx7JyKk7JtPu9bwgQ2VNHtwjSfU4wbO0s20/GCe2PtIlygL2YQQ8wdlucE/ogy82YWoQRQ4AuZgH+0A4bJEwKJgKHteD6cMC6FJSccT7fobcqJhgwNkMIZ0Lsv0D6ZsAayaIFOMLgxy+LJNpxSYxiuKDHwaQxZY3Ptti/AEIziqZTfyoYD5sTgBVMiV1FHgMJA9E9PAR0Dm8qAiXkSImGI7vjfL4HzHFQm/mYaOZAWQx5LRiazta2DZYLyuFGjeMgCDoaRWrh0ofhamQDllwUNIx3CmIAOQMcTc59MFvxHGohEBgL7Mlv9SkQvVWH9UHdSZ4mrnXiSG6CVAx4c6xVJHGDcVkpjKQpE6NKtirrozMxt8CzB/dVSrqG4Wh1g6WCZXUErWQ4bTeZcpkTV42ppCVq3PVa0bfKCWuW4GJ0P57e4v6zt/j0X77Cb//eP0TtCx6q47E6Pv30C7x+8wZvPn2F8+MDDragbY/4+vY13n/vPfzajz/Gb/30Z/iNn/4mRu+4e3OLX/zVz3H/9hbPr69QlgVLXuEpocOwHlaUkvHRey/Q3fHy4YRPfvHX+G/+6/87fvt3fxe//Xu/h//df/x/wG/+/X+Ax4cBt4z1esHojtO54sn1C3z00Yf4B7/7B+ju+LM//rf48tPP8Cf/6o9w++oVXn72OVrdUNsZeCywXLCNDVYMz7/3DC8+eo46HtFrwbm5gIkFCSwAHpeM6zXjoThGMizLOu3E8Io+Kk59Qx0dyyoh9E6AIQNiCdpkHJPO2lEKE8W2nbjfoATHB1oC+pJx2poKNwMlJdyY0QZmQztVMd32/Tq8o4+N+UcuAreoHWgO8UYZjzuULKuIMSazdk9Fw6AkAMXVOGjO60RnQToADVlkg11o5RhlByDGqI61PArZCPLpKZFFDCXqpk4RmVOMzOSThH5HM5+fzaJWlHVF3IEDvdEv5cKjI21ASwnrSkCkKIawEZOqqINLYkBDHQ29V8AdeTliwHHeTjy75liy4b3nV3j75hbnXtU6ZjBnNwecoNtimZMBu+II+d0xOrzGsCm1VgflVzaZHobWxVubsZtbh5eBkcQkNsaIORXFBhEPMh1OEsjJJeHpkye4kQYbongSiZQSa855Y6G1jyE9S5PVZX52Pm9IGSjHGyyHKxyOV9gaUDcCfikVLMsKmFg09IaM47Ls2gTDIZawTWCROq4ExW+OV2RPbx29O7WNhmMtC1IyHNdFGkWVz1DxqsVeHh3eRBhIiRQ4ycLAElIG33ergGWkvEgrKGQ7mBsaxCAzFfIymerdg+EYMQSNdlfslU0sD1Npy+WbHEAj0aOeB3LOWJaCXFYOJPAz3Ae2vk/Um/lxShz+kGj763ZCTMtjK2uanxcApUVe4GL0+MWQDoGMffBwW2au1fuZBIXRkQvZfNyEju4bxpQSGbA0gG7wnjiBuDtubp4h5YKH0wnb+RFffHHCy1cV52qAwJ9kDdk4tb2PjlNtTENTxhjR/YAZIziAtFDzrlwX9NFR2wl1NGrxqjtiWQ7U+crguQhiiRlqP6H3M2o/ARhY12u4G07nPjtSzt6wtUpgM2VEwm99oOSMtayKcTq6bRiosLyDxn/X13dnPPWzkiIKqqZUyBcZcShNCRvFxmngWZ2gaCcPWdC+WTlg0GcSgyRTpKHWIdrvhtYGE2wJDg+TAct0bs0H0Cu2WjV2UoGhq5LeB/KyaLNSzLqLSTTAcdoxRn3qEQCYvclQVmNAjJtmUG07FAnQ0I22g1WJAft6pMj2tnW1fHRAo72bd3hnm6I7MNSqk4s0NpjzoHvDmJ/D68mBiEoct5TC+x0dvVV4SqTFuc9iz2hMFFkRITK8FDqobbBvu1eKBh6WTFHxqIqaM2kBx0umnGhAlAxsnYwVvTlZOD72PuZhGM6EKc0eWgNSZpsQXOyVgRaCAQITRs9IOKKkBYdlhaOgVUdvPJg5s/2wJyb8y5LRk9hpev/WOs7nM+mmCJYbL6GPgTYaFomnj1YxqQ3x7AEIeVBVQHoTNuZ/OxxtsFoBGzOwyc72t1IIYFCHYhdwJd7Fa5oaYAqOHAAS1ZuijcR7JHlKxixNGjqR+khpoatWJRoC1syUXNKbD4McH68h56QuCLEuckJ27UnRZ7daKX7XBkZLMFu0nI62cb8wGDCUsiKVMpMJS6BexBg4b48SDw/URXpwKWFdmZyGllQsVujVxD2yTV/VFVVaiMw7zwBYsUu299kDjlrZElhbAzXeGUSXpHHxGFo3wo7ayNoHwSjSBUBcGndE/TcqXWMyEQZrnDkCjIh7Va0IixPTOVxrUfYKVW2VbTfROyKbymmeY28f9UahUWnu0GwRLIuErl8krcE+4p7WWsf+17UgmDBiGCbfzwXj4TgLFpZq0uazDIXNNh7stpNiH7Tlw5G7gCCEpgMQc6VnXdQZAJEhlObegLMytXeux36BigxJ9GDui54CYaAuFgm5y6xakmRD9lPJiwKvqJYxoLR4EAaCNAlwjjLYe/VlGzyuxwji8rMdSPFOXc68YZgjLcZKqFo3OtJsr/Cxscqks022YGJ7lja6FQYNTaOvmSopv3KXlh+DzFQosNpqV6IZwJ8gd9vtOYLNgNjI3OvR+goA6A0OR1lM54rJUjwTyi7wmfTOd4P0Jyb4JHvrqgR7MHf0rMl40H9bsMeium4Q1kOwOjFYhskOZQjQEyCZHNG4GdYzmN3FWbXvbci/Z5jaWYupbp5iGwjwFbuBLam8VkuyGzomORuKxVQaV3wjUCgxeV4XJcr9zJHlYtVxio/8q56qIXxoRQjJugsWFHXCxXhw7Xv3Ca0jCkjYlxhR5c5QW6NEnkIrZrbGGPUgOUhCU3YCqEvcwzz2lArgPh5zzU02NCl55F7i66PlMdguqbBdgGBinzIFyNISU1LkDiAnicN39MFCkuWC0LMzA45XGXUAD+db/OoXf4H/539VYeUKyAd8881rPD6cMM53yF4B67AMlOOK5x9+gI9/8ht48t4zpDXjb3/+CV5+8w2+ub3FdjohG8eo18cHtDOfb20EV27vHgBLGOsVLF/hcP0Cy+EZcrmBe0Fvhu18Rh+O1+Zq/3H0ZPB6UNHA8MOPP8aLp0/w/pMb3L99i09++Qu8ef0Kn332Kb5+9TVevvqG2lHlgBfvfYT33vsI7gXDBTIOFoRbr+j1hLv7W9zd36L3DRNEHg29bwglySVTo7UHaOFqqy8ZhsGpgUWyG/IhvTvGqKjtzCdunCLbB0GQJSWZebWKOOCNRt87GfbFYpfQDwWTI5nBVHCMU5yUqDGEDWSI+6iD+4HDfSI34aTddKGBE4Mkpo6e9ku8Jsn20p8rVpQ76q78x13AUxSAgDQk+r0HAdM3BBOFlytWyrunUzYUk62fJQXRdcbnVMdgqfSuon8UvwHLHLewJO7R0RulMZYk0Gto+l6XjQG6hJvdDIVVVQSDkgLNyulM8RA86gYIYjSfidrD1dNjiq3N2FqdLKGEJrAGFPBBkpoeLOtgJBF4BwxZKzRgo8N8YLGEJWWsKWPNBYeyoreKKjkQJGA0XYdwktCA7BhiazksFWQD9hb/DDgH8ERbYFQfeu+qRXJ/5STh69pg64pcVsY7cBUIDCkmR5cEa42F9sZC3ZTUWJXLliQ73zA6B7G49sDxSHHs7XxinJF3rUTLao/U3ihJMQ4ASwUpryzCKh6cHU3a/O5q028NvbXZ/XM8HpVL8blmqDCqVizAZ/3Te0wTFGts2XMXF7HFEmAe4uI6T31c6NEq5raEpRwxBgFBB4C876MuAkVrHE61LAckA7Ygz3S+B890nLOI8ZX7Km4YQUxw10Acx3IoADJtKcSTt8KuJmMh20aHtzPO96/Q6wOWNcMyJ/g2pRS1M2+LSao+t4XNfNWknRY6nb6JMdUrFjiyObpy6IJOnz7TFVNO5iSRWEFOlFJBYwxgQYIB9/JS2KFB3cmICZgHkJyhYQjOokPRWf8uX98deBpVSDz7aEte2JZkCkCdaLmZY1n54Iest8lomBmWJQsE8rn5gDQV5FvtOJ/O1LOoA20MbG2D5Qxfsmi8PgGOPkjb3RoXf8lFP7KJ/q3Se8gam9lHtKAlGpOyYFQijphGfxeR5mkJwElVU/A1spd00GPsTk+H93AgONM7JymNERNVTFo7upaIs1PCstJ4NtAgspC7fyaFb9nW0npj1Ttl1M62pd5JG1zU1hOAQW+dgUDOov071iWpqipNh9qQMkGr1A0dYxqh1s6iRlNji6i4rntsRIcdqnTxB8MrHYcTkAkWBSmYqjpnjQh1HtTQHwE4bdA9I+GAkhzH1XGuA+dNejdOnSskh200HmUR6p4dOWXkREbSHkDYDFhgFNduvaLkDMuZwB1hZzHY9r0QiRtmIBNJJ4OMOhhMW2KwFu2SQEEuBwBA7a7P7IgxqaF9wRZAeWojSJVM1GuHWmS69nOe1Woy8mKX6E9nMhutDBcxjt4rHF/sc7VjpgTvMZWFnx3T+TjlgQ60tYHW+AwMq8h+Tt0wAGmlISsLxHIyMauAsrDCtNVHbNs2f26uqkVOWJeFkxgVkMD3oAvTyPHgiDxD+r7L9phjWQpaawy6EoPKAA2qpoD01ucamqkFr2uxJEoYid1+DgUcusNQ5hkxVUDmq2brUuxnBYw5EjufgHYk4jmp1tf5bEwJBpkDYiBoQhqfZUJe2MxK5keDe4MlVsW827wXEzATjJaGMYEbA2ZbKACEcD4imVcPuf5zT9AjsIeYX27zvAwfmvRie4LsCtId05ECbK/AIE+S+1T7OlpLxwwJ+CUNm3jvOAAXeDE1xJz2gH4n/E8kLg1BDffB1gSoPTKrKu1qKSwawMAzp0qpYwJbirnlDyocA8PatDu1h/6Vyz8mgaz72nTdw0CHJ0daFu5NZ0KWfaC3sJEuvcC5pQFj1d8jkZ+jrvdJUPFIh8CUReuSC1lMXbYywFe/qByGuG5ogYDHH+EbPVq13HfmqNEGl2TShBpqS/SZxAX5YBYE+CHv/BnP3eIzwx46oZoAlCMhMQs9Ox5jwTv7Q5ItCuDJEtvA4t7mvnCgQMBkb5y0lcn2NHMCR5FYQfsKYLXZ6JuiRhWC1zxr1EzIZgI4A0gLViNvdskFYzjOjRNLMYDDYWX7gMDEKKVlgIwCDCRn4uZImBqEspezqDHjl1i6OJ/fWvBEHwCzKR8wteckT4BElnEk2+6ObnnqcoTLHc5i2vRF2BmRZI+4bId8bOjozBZGYyHDOGGzD0dtbDE0xRId1PeAsVoOcNJm844m/bCkz4MZDlcFqA3t7R0+++UdfvHzv8HN0/dxvHqK+7tHtDZwfX1EppgIfdhxxbPvvY8f/OTXcfPiGdKS8OlXn+Pzz77Ay7s7eBu4yQvjgK2yKu0dHQTtzo8bclnw9MMnsOUKx+v3sB6eYVmeAFjQO3U6a2uodUMuGcfDilEKvJJIlLLhB9//CPb9j/CbP/ktPD484K//5i/x6aefoK9HvKkn3H7xK1wfFhzSAc+efw8vnn9I8FHxE+MuJmfb9oj7hzvc39+i9Tpby9wrRj+RGZUWlLwgmeP+/DiTU6QEz4t02YCykO2XdE5H34DRUc8PMKPOT+sExVMpKEbgKSaZpmHUaIMDiQBlth3AjMgqRrbDfWr/5LyyZdtjX8UGD1++x6MBeUbeoMMID5t28WfEW1HEktHia2Su4mwFaFERzTm77QzgfZYwpg3V1GGodRA70BaJ/5B/nEfUoI4Tgr1ch7HbTbG/LrUig/3gRmaSu2Mbg5O989525LVigttNjcz6vWyGVKSHOQZqazxvZZnPI9iyCmfnud58T+4D1Ai/nRJtYkl7QZWmyWesHO9F3RsATmoXSRDcHeb8LgE8ZYFPpWAbHVW2D8lYrBuOpezJsyWog5n2JEszqo0EMkUFOnT6lpQWtqsF8ATaewPZzL0NauemBOSFoK07ykIhrtDMKoVs6QYSC/poiAE/kXflzGJ6b5X5gA/ElM/DYYUBqNuJ7xutdYrjbeoSSQMIjPUsLUhlRXzFVOY9xpIY9yAZpG0b1mVBKRnH4xFmRmZcOA4TywlsW4sYPuLWyEWzJvS1OdEbs1ixLAt2nVNcaA7R5rAtfWUR+7TNvZLSvp/cO5py3+PxQJvQovNnXxPWIZjLRYHLksFKnFeB4ANkaZsjH4s+JIvR6Chroe6nPgPeOGzi4RVGe8C6hn6knqE72iBgkhTr7UEu46F3ujnEWOzbBsNARkfWLzWQ4V4wgoylPykxkzz0fjOyLegYOFfuVWrM0iLlVGDSoGZLqoA6sQ85sW8gpYFo3E3Txv7dX98ZeFrTlRIVZwUv2rVgREpT0B0Hej+zKpV4WNclY4S2BBgwPz5ULWqWeHLD+dyw6c/eBmJKDISwDwPqaKi9kW6mtgfkJOE81whnGprsu/YOKd1h7IqCIANQMEa0oAEBy84KRyyl++yTNlEGM6L6yQPZvNOANYjhkVE3orDbVqUfFWR5kWQHgRNLca+k0XcfsyrIQ6pRhkG8ID8F61Lo3BrHOl4Kv7bWpneKsdZx36F0v9UTKJT+yHVbF/kMtr+11hARI8VO1V5mxhaxKYrRkW3ANKLZ5GZ5PaxuJSW83MyJSQEw2ymoG7IStAotG9VC18WAJeHKMu4fTujtkewHhxJisluSGTq62vE45tL7wGEpwEoQMGVDBkGmcjjgtD2yNbLzuvPC/dEEOqQkUT21q40BjEbPn02slJxnwpVTtJ6yHTUC9qZAZ2tT8ZLVelGzyXjSuZDBGb2jFMzqoZup5zgCGFflgfpLKUA9BVjRAtR7gAkEV1gFoZPhPgMSCOw+nE4XARiBnMPxAJjh/vEBW+3YtobRyRyJ6lZrYsjp30bn5x2PRxwOK5aVlZqUgYFH9NFQFgcsoyxXGL2jnslMKqWQgt8alkLRu9ZIzV4ORdRaCtaPMSiEfwE2ow7ZHo51NexAXSTJY+zTAt2ZVOaS1VorGzBAoFjMKZ8tLSZNqgCbdmvB4Cmeu+us0j+R8j9mOx7ZBNiBGQWWewDHfWgRqHmAZ4Wtxe6syAQdNg0kLDAPPSzp/QuNM8uwXBBwJJl3dM7wCwHTCLhneA+BCAyIGYRAiae01RCB4Q5KsaJM+xO0bJipBWmhaKLW0luIs6cZECaxWGuw/Vz9+2DLZfdGYfgJ/IkJdRHIBkAZAUwEhWy3pug2CzoZQGHLaUps/+3suYc7StqDMviexgA6KnC45t7uDJSOaBMrJVPTRdR1bQ/ZDb6pQ4lDtDOXmACVqMOVHV4d1rVWl18X90sQjcwXMkcYEDMJp31pCtLICGEywSymAN4xLHTs1OppDjaNAR5hRuz/RC2jUjLbmL2ztSMZrtY8NdSYTJGGNKa/dWS1hkSNZQKUSuj+58IZ5VnSL0EgTIQePPTWXMlBh6Ghj4Q2QmdpwAVMjCEAKwZGuN7OgWVJGMPmtFf+Cl8QTC7hTnOOocUTkg0dgKq9Kohkm0kzx8ELYFSLex5iQCcFyIDiINM5M7Vt+tQGC6WSXV8sgLwAoML/64z6xR6K9g8AMewCPmbrkxVo0hLfM0BMBJifBJBT5Exniu1lEUtHMXJeh0AYeFTIuecD9DMJvVD3Ru9pkFaFTQbkACj5kCkU7w61yQgqF2jlanfFYvDk6Mb4rIGx43tPnwJIGJZheYUlx/HZDRyGWjtq63hze49n7z3Hz37zt/GTv/fb+I2f/DZe397iV19/g3/7l3+OL7/8Gm8f75GR0MxwXApunlzhmAnOpHVFygXreoXD4YgPPvwh2z484b3338N7772PH37/B3j+9AluropAoUqAqDtQK+5evsbj6RF12/DivfdwOB5wvFpQ1oIf//TX8cHHH+HXf+s38Y8+/Wf4/LMvcH48AWPg/Q8+gqUFd28fuMG94XhYkK9WvHz5Gq+++QrnjUyJw2EFp901JHNOBKNRn2zbdTnAgekfTz5wfjzh8fSIbTujt4rrwxFrKXh6uEJOCU+vbqjrWJvawQdM52rNAFLGwRaYJxTPbM9CxOsscNMPKjFMLMK6k3HHjobQoo1WH8apKe2JXE8JjjHb1UKLRhFCmBLuGwtUOeyegPsuXbhLDZ8cyWjXHlUEEGC9hffFxbcYlRMw4r3yVEeqKOYiBAApZjCd49mAQWfD+5VdG8PR422LBItV1AjWUBsD1gHRK2lXlLy23lDWFccjn+VSCm7vbnE+bzhvlCcpy7LH8YodaFIumdd8DtnCFpGBMU+yA64CTU8uiQ5EEoY0CqzZ9LGmnI4DTxIMZHrnxFY96rENLG744OopnuQDTq+pzVYmNmdqcRx42O7gGMiFrNbj9RGPjxvOp8ritQ0cjs+QlyscD89QyjVqpe2LQSt7j7BigEStrHwoWNMTti4JIIBRy3jCi6OhbUCB4cl6nIhdU749fGhQDis1a5GQ+TDU7YzqA3f30tCbraQBsgwUgN0os7iiQvdgq/5Wg5ShInT4NXdqtSrn9lwkU0LNyT6agN7oHFL80RuCIb+WQpJBsAWN529rJ7H4o5MB2u2+s+jAHLgUAU4qpPQ+kFKf3Rn0DTzQAbTlnNkl4uz6Gc54c8beBkAsSxZ88ozPUqK4ug/GynlhHt6xSFaIOEXXIIXhJmF2R8ksgby5/wKv3n6O17ff4O7+AY/bA0o5SE5ET34YzBOuDjeAO/rWyBDVsKoEMOYzE5jryKaCtgUIr0m4biRRWMJAXNe+HwkiDVCgPAbCEMIaA2inDTFlNx5JTD22kiUJkRjb2i7yP7ziu359Z+Ap2cK8JkX7yP4zTlBhSwx8kIYW9EEjOstggMZlOFCr2EUJbNfpHa011FbRGnskTS1Y8eXA7EkuUfK0QHCBGIUZ1G0aeDFBxl6tTeoBDSPJ8xlB2E60fwd8isBIQRvvjlXJqFib1DfJYkhKvimm3Zsq1BC6Gu1R2JkWCrOVUJFZoqyNhw08qGGEoYPlUu73eej5NSm1AGCigsJJYVYA2Dt/l0wsB8DJdZGYB9gCEJiwZCgpkybf2WoQwsaBVdAfBiVSjKkwrpYm+DEptAoUI2siyymMJp9hygXJMnJZUDfqTLVAYUcIyAVgwOo0DDPAycmQ+76fAjDMqSCnCrNQ9B8oi8a3xlQ76VwoO+B+COoFcTUG2/B5v8kMI6meJQM+EKyuaLWQJhBITYXHM5PumPZsyinCJ4FK0Nrwz95DSHcHOPbgW/HlmD/QfsuTgltrALKqtHSy3rIVJQWR2FFAsXWKnCpfQFSNuQ+hMImfn2BYlkJQUKNsLUPtYFXgNBPW5gBQZ1K170EmcL0P7ePEaZHaX9R1U8IBjXlvfW+7fec74V1wOSpcqhJ6wjQPCqDsYt05uWzmcvF/Ea1e2MSd9XP5gzD6w8duoxQIB3Fm36N53xM6D5HYxTWT6RFgAoMe2jfBIjMBxfTKHGVs88oisUSUUQEBT3EG9R1bWQtgLtuplb8EeoSnILadJRPYMMjC0XO0lNCzBFRDRFQPgJXli1G5ke3IfkXwP8dV63MvQacZx+h5z29EchEuW6G9zgbtgZ5V5/koKe/vBb9Ym/gYx17BZbpB+6jnWwLgudh3oR00116AX4CZ0jGwTBo2Zy8qyN1NAH+PG1T/xmCzqa3H8jJ9XvhFS/KxCpqjZBGtbQHw8f95bnZ9o90EzT0vlhVyTnQAAQAASURBVG+SHVzygpITliLgChftj/KTIaMVgqVd+2kH4uL/9wc53yVA0jhrBjGKuEH4FvKJWuMxvyFmEYdMBMWev7OzQ+NMcgJjaKtFgKdHpD23z4zz/Tr10RPI9TizBXPYh13cY9gi7VPzuHf5lHiGc9Gxr4F+5Bf7iPaednPu1Pke9s6qzvW8fGNEu5KHRjQUquzPIZJyM1ji2aHA876tx/4p0/ZMrZU4A1oOalmItRZXEj4NcsFq3Qv7Ey8kIKXrs1jVeB7xu2RtkaGlYhIIYhyXFSbmcxtJOp0LgCwx5YHTqeKZLfjgez/Ae+99hGfP38cXr17hm7ev8c3bN3h9f4eRjO9zWLFcHXHz9Aa5FORSsFxdIS8rnjx5gePxCt/74PtY1yOur57gsB5wOBxwdTyKNcQY4eTsBqjnDbUOnM8dt2/f4vHxEaM6rp/cwN+/Rlkzbp4+w5Nnz/HhDz7G+x/8AD/84S3evP4G2/mE66srmBm28wbzgWRdbSIF9493ePX6G2zbGQMDay4whBwE1M4Wi8uHQqZyguWsQtGG5gndE7Y2UM8dS6HO2+ic6raUBb0ZBhrTImc7lw0TMKTEyROs72zZuVcn05h7iJow+4GlLZtBD/cYdtZN+JPEEFQTVWOHxHnc9+x+0HbQnh/HWD25XZwW+ToTGDStAfdv7HmevTDg+73tzGdMi2SAcoUwD/F5Nv1knMVpG1J61/eBifkw2nKX3QcM3sVShIAcOVeDT627aKdNmj59WBfcPxI8InMHOC4sTmqQ8oyvEDGKznXcvckOEXwKf+Zze3m8EWg/ee987Ziv3XOVaSFSmeABnxr95tVyxJIK2nkjI2Y3W5SXGHthEInsybIU2LnNWEPZN1l/5YiUVvQhXlokPzDFWpNfKp+RsBzyJEnE89nj+blwSMYuFvrmaA1VoREO1rNMBW76zm0M9N5Qt03DAmLXEbAaY4iIMQABCfF5cGeBeuxlE4gdbvEUx9D5KVOyIPxzkErCb0U8PQvBEOlCxjzO7nC/mHw3T9CMY3aGk2ILETDinoCdyWcXyy/Hx2KIpynGPuVyhiuvtvn+Lj1O951RF8d1yEebiispZQxwOMZAAD+yHcrp2Abb8XC6xf3pFg+ne5y3E/qoYON6mfs7dmouC+NkU8O972eQ16yzchlPWTxjn29V1BFmg2DYmE/qMsy3GTdTnigBg+2MSInvEcufxJrLNhnMM/wz6bh+S+LlP/T1nYGn27uV9OJVljoNQCwhl5E9P1IEHGr9oAZQQxtndD/DndVG94TejzArKPmIsnTkZWPfZdsQY4yHprKVvGAAqOcNqSRcH6+nnkJvDRiOfJWx2IK1HIRsulq+bC52F4Uv58wEe2scYYlACG3qbkQ7nhl2AczCCn0E4b1RhwO+03eT0FhYATxjNIELG09EThmHdMBxvUatDb11nO7Y8rOuK9kLmc44OZPIXFIcVXS1hGQZVgxnb/16QFWFng6GgnpwzLapUzvz0Dqob+MDx8MRKRfcPH02A+XWOur5TLZBKfAkUEn9tttwtDawneus2poqSV4JqszKui1wI3nYNbI0+tBr2/WpUjyrSAw72SQlyVi5tEiSYT2uuMENHh4fMbYztm3DwMDVFUf6bk20sJKRZZDcOupwbNsJwELWjQ+0doKljCfHF6T/Q+1jBnSQ/YIwEjK6fP4Ui+6tYBjbs6JnOHq9EwqdqgKVulUG1EYh5WUp2LYKb2My9djexPUZAoG8RnuodgH5zhMw6OEsrROgS1mVdNHWDXsQ7/vfmcfzmh3AzJwSpA9CzQMfjq06gI7TeWDbgNaKKvOVoF4AeZYwVKVIRrbjs2c3fB7gOHjvA45KwExMsfO5UfokHzE6cD5tWBYyJs7SPYAl9O54PJ/mWqWSBPzxbC8L2VBViXNrTd8Dx4PaLmOKC0LzJ02/P6QLk1KZlQUAIItcgLEMdk6c6jQ1LNrueMfYASKzaG1hBZagIKugWcBKaA0wXr4AficoxGe2ZGqWzUTRB8YwbNtl+ss9NFpnE84Q4ws0hKM6ug32g0NJvlNTY8nL3HuUt9jD77i3FMAx8A6oB0RFOUk/igFdBEiT4ZIMtgBWTNE/9zMB28vn0WerBL8EiCD8odxnJjA9K6Zy/sEukeecDFp3l2aQIS9sf3WTX/IdlGNPUcEYbNFufa+Asc99TAYHg0ub545xT5prYpakz4MJOPJPBoIh5MnWL9bhh+7BTX9X4SaVhJLiXkCNB2GTrXWMfkbvnFgFy2TDQZNSPfahWF8lozunzbb6yMq4xGB7sQmMBfsvp/1ZwxUfCqgZ3dHRxfgsuL6iiDLJENQFiEJBaPpEydHEICJpaaiQonh8fmZ8bqRjNFbRusKqZrwmzwBzgiUqhQbjl37LtbZ7wOSIQJNbAGYYiYBIlYBmx8CaFqxpQWxjtq44x73P5JyfOQX6hyqQyKpGqmg2XIK2DoCVyEOhnAFbFhNKWdSiyEB362SiGOjvDREcK7kUwBqBuCWVgrOCxm8jxIi9EQ2Wuv5YA4ghGcU12YbZ3DIGz3thEJuAfV0n2MvrsWBJzUfq4Y5Y0IqkcjAhitcPD+aYWGTOa8saVUxtFZMOlKQZBvdLiLMOM1VkwAQcEnnGQMMDegNadTQkNE+4e9uwVUetbK0pNzc4vv8BPvrxb2C5foK7xxM8ZRxvbvAP/8k/Rq0Nz56+h+vjFT588T5urq7w7EbAU84oC2Ou9XjN+z1t8E79sNPjA86Pt/jrP/8MdXvE55//AqfTA7Z6xuPDCV9+8RKnU8PjfcVpO6G2iuuba1xdX+P3/vAf4nsf/QC///v/C1w9OeDJiwOu1xXXH38PH33vOVqtePnVS7Ta8ORpgY+G1h/xcL7D67ef40//7H/EL/76r/CrTz7Bw8M9PnzxnPqbPfNsN2ioAmZLZUrckw93amss1/i93/vH+Ef/+B/h5voah3XF/e0t7t6+xf/rv/wv8PD2FnevKpay4Ga9Qk0bWql4FOscGh++pgMcjC94jDQlVPtyGAQyUpeU7HfadU/UdHPDbImzAChb3+Og0claln1pkYwbpq8IthH1TwIYYjIx+HaMf0xAjoHtuRc+KtLuDlcdgb5i8jsEYLn8FBBMS1eLdchxpIkTTLvpacaXPApE8j2zkEqdKZvfASPY6KgbdXvbkEREKfN6qZsKfQY7Ex57R3v9Gu89f4ZyPOD49BnS1RXuP/8SW62A7FQkqQ6fshDJwk7r+em6TWsN5R4A1yIgO2EHbHs36uIMviHcEjax4QYYP6dccHLHGQ3FBzIcT549xfL0Bu3ZFdrTK4xnNzhvG7bTCaVQ9qQ1ypRAjPdc6J/auQFOndJyOCClgseNuksvyjVKOQJYwYBmwexm0WTuAaJ6FNAuSPkw231Ds2f0JrAgTRDM+2A3igoGnhW/jN23MFfMSOCaL+sRyTvYJplwWFfurdYExgpAG0Osqwm5AOCAnXVOcRWoDGpL7kAvYBcViKLidfjQyzOKlHE4FuakY2BrHV4rJz0nTvvsgzqxMFOXAM9/FM5rbTNnBwh4jB4gWlP8SkLEelzQe8Pj+XECRDkV5LxiVe5atz7zppxCjoZ7vqckJhTvf0ASNfD5O8M3kQqGjqoYk8EuHgl1Y76B62u0nvHzL+7w+edv8MXdLRKAq5sDbDSgvUXqnZMfF/raWgdabXi8PyuOymQquqP1ARvAskpOSLbAR6SMBK8chvPGeCNZEQCuJCkb6oCmvpNYkfLKQKdzL8R8SIDsOofN84uUMMyw6YQOAYpuwMhh6f7ur+8MPI2YDWcAaazj3yvWcroT+0aDIUEQZqjXlboR4oMigjJuYgY4bg5PbEGLmkDSTWJqWuwBk415gTpUUE85ZrA6k0Hfw9WIeCJ58ySmDf8VU1RbBwAeCRomahvizHxMSoIsHj4DJe+R6Isum7J6KaHQ2ybaH7TSnU3zrSpjeJ34jmW0SNpMVQxe62Q1aOPqzmDQpLbeMVauCZFktmT5fLnR4StJYaWdnxcVcsMls0NtYBbof5CYtfHdZBR1Xd96FoiE0QMYiP5iJ9CpkdU5A+tacNrk6MVyCd81WTp6Hpxs1GYfesqGQ1mUTDqWNbPVo1OoNhhJkAFEMOEsIRk5B0SkSZFkn02aa6xyKu8qxCmhBCcu7J2vaDNQMB6J3vTHe6XDPVbU3llBQAldJuslqkmzdBavutg+YyZH+1vt7IEdWPCkgH84ahuobR+t7ZfvuZ8qABTOzZnMFgrORlqz79nY0mwF5Dp3JdAmW5AEXrCdRFWQ5MgQE3CeATkmc6QRrx2i8fr+eGaQxwXe2WoRWI4dfNDtjIt1J9vEAMsK5+zi/fb3dexVvZ3RsH/mrPjvlgAzPfO9BSW2wgwRIvgMG+qAfIj2nd7b/Z0tEjYkpn9NVg122v987cW/zreI9XPM+3EZxMudOJNGhAP71oYX42cKymtvRx4aq+gK0mdLTzjXC5DALvf4t+zcJb3YLtqIpp0xsjhhLCaM/Tffvd6odNOoyo7t+8niwoEJNsUdM/FWIDW45kx8tDec9l8WZt7TrAhP/yO9AH0eSW26jhGf73P/UvbBhTYG1Rpzwtl+BjEZQHWogje05kqkLs1EpGFx83sbhM1HEInYZctx2KJvA3986GLy4qKSf7ld4q7Dn3mclLS/yFX/m88ozsn+jo5dD2xuIb/8lAugRtvl8mXh4/eWlmDH+Tzn0/HsBhX75tTvMJTD9I9xMSOx4KQ2t2wJZgw4p82AIVp72eYLreu7t7NrEvq7H2/Yn/+3F9n3n837nrZ1FyQffgEKIvDyONMuZCje5N/3VOGX/73lj3OuczsDa/MdGPM9kXcw3rMEgsEe51q2RL5h2gHtkfDpBLSy7v1dG+IXa5EPK9Y14zo/Rc4rro/P8dH3P8bzF+/j6uoaZhmH4xE33vDxxz+AD+DpzVMcD0e8//w9rMuKq/WAOL3QRL3z6cRhHbf3aLXifN7weHeLh/tb3N+9xOnxHp9/8bc4nx7QWsXj4wlfffkK27njdBrsDugD63HF4eqAJ0+f4O72FjdXz/DsxVN87/wCV9c3OF7fYFF71Ho4ItmGNdNupNZQtwc8nh7x9u0bvHz1EqctZBvEbuxgq4liN09pl9oINnJrSLlgKQs+/PBD/M7v/A6ePnmC4+GIt29e4/XLl/jTf/2vYR24294gWcZhPQCNQsU5ZxqTYfO5Y/qZfW/vbFUdGbC9jlD6Zfyyn9ndD8X76gPGxUOO177rMnHpz+f+czEcxv5Wmn2x2/1v7+35D37xj9/+sguLtuuexe+EL40CMSCzesEWmjbVd9ZgdHLE9zzjAmS7TCZSJhgXhb6IdQRsuDta7zi3jtO2IZWCpWTYUoBOPV5LoL4NcCHHQv8bnvnd3mm7+DMsyZjPetoO2bwO7PIeIIg8wLccyXbJkrFHLlYK0rogHVbYumDkjG5GnakAHeB83xT+NRiVe4Ey5wJLbLGiSY62ut2PMZbY9+qsQ4lx1FOfLOtg5Pm8vf2h7ns9iizBblHsIPs4mb3g87PBWCbE+wUP0xaGXAtsLwhcrL4ZlMa8G4dclB73bzF/GXPbBJwm8ORQgTIjwuU5rCqRJdjN39F2ZFu41lHr8a3LjMWc128ggGzOITwOAioJFPAOv8liplhNF+1au6uP9d3PeuAFdkHvjtg3/IxZ2BDfO5ice8idwPTD44aHc2UxNraMD8A1zdcpYcDnwjxpFm5T5NwX58FNT5Vx05h3grkHp+LOtJe7HXHo3AiMn5Yoth8MYdx8YjVlxouwC//rmDZi2EU89nd8fWfg6Xj1jDSvMtDaI05SzIcZBehM430TcHW9YF0T1qsMS02BQYGljPOZ4tdcEy7bANtuGjordyVNgevo28ZwLA74NuA1KH/AkhKSZ9RTx6gbRmUv6XGlgTB3iZbtIx6HszVpWQsjFwllmTMpi/YdS4nTUwSGxGjoFEnp1FcAYqJPVHETEuAJp42i7IdlZX9syhi94+HuFiUXLKngeHXYqwEe07aaxBgzvCeURS0nowPdqXOVyfKCY7abAZgJa5fYX06cNrKUgl7bHJ/tg+iqd4cv8aQp+HYoZQIF2yaRbHfq5qwrMoDsYjTkBARNUfolhhVxnH0E2BQVZ/WLZhqwaI+qleLrQ6NVzaJdPmE0h6OhSYPp+lBw2oCtxijLjm3b4NCBkobIIRUsS8Lp8R7dO27v7tHGEU+fPaWm0NapJWAFHY1smU5mUk4rWViJ1MqSV2Qjjdd7wkBHbxEUx3juYERlGLSXnNMArXBFhkYIbzUEormuOS+aTOiqSiSs6zrPCi6MbSQfSRpKvVb0uoklx4UzI83UO/WNhhNCjAlAli+YKkZdHDdOMoAq5pYWlFRwPndsdeD2bsO2VWzVgJSRFk27A/WWfHQUDOSScX1zRM6ZIt6MImESe18OVwQC6x22zRFTKlIynLeGulXk7NSIuT6ilIKrQg2BEZmH1jsXwxQIzmS58UwIJFOL2Rgaa9z2tUMyTd2Mvw8BeOGkFbIO55QmCY+HlldSQLYLTF84T+xOI3xdsAZL2D953sko1rWGxlqIXOeUUXJGqw3nXnm9tr+2Bk0PhqWovdlou4KKWyzAHq5XQkxmJDsNEOCOdwPy4KR3nXGLe50T4QIc6aTqmyEY224ZZmq1sAEsZIt4H2gbQWp2pGl/25Cd4LkIccrdO+5/j+k3SbYzxClLhO9idHHfMd9LyHDnmOMxgFEVLBr1AAca4Gz3JKvUOGLYAetBc3dOW+o2Mak0GbM7bbCLWdclrjGczEy7aPVmmBi0eAYTMKC4qs+WMMAqMMvmYriazVYiGLV+PA14B8fIR5I9+Lohke029kdLplimCC6wi+CKfRQBP/M4BdS65mmPFAwVaT+UnHAojiXt1PaOxpM0C0EAWxnYemQGbNuZ72n0mwwYeR2hNxABOQNdTHsISC/KlRDANZAjUjmBy6PAkTEa7XbbZL+XkPgdeyIhhMYU8DX5zCgOzMA+2lrNZ8tiMragRDxggNoQHTmTIZXLgROpQfisqHI65msNBWEb9gRxOJWqgkkb2iKXbfaJxk17/xJGnQKR3Bs+D5VaWQRautgjULqTEictKVlna44SGuiMDRo5sjS7El7MtiNO+QmTJVaHigKXrFOX3b4Mhmnux753AIGjLiY6n8OQyHEwtJZllf7GBXwxf58AUC5HPsPMpGBZjSzckrGNjIaCX/97v4v3Pvg+fvqzP8D11VNcH5/isK54en2tJzbw/MUzdDQcF8adr776Wue/4+7VS/zq7R1ev3qD29s7vH79Gg8PD/j5X/8V6nnDcRhqPePx4Y7snXaGgbqNx8My9QKHA6051vWID54+Qe1H9JGwHFa4Dfzxv/pv0PoJ//m//M/wg49/Hb//B/8Mv/6T38Sv/8bP8MMf/wzPnr+Hjz78CHBH297CR4WPI3o74auvNnzz6hU+/exzZGQcrm7QkdH7wHYaSAko+UjKU8nw84bRB9ZOu9ke73H95Bo/+PD7+Id/8DP8J//J/wpRZnLvuHt7i9uvPsUv/+Zv8W/+P/8dDkvCe0+v8c3bDY+3Jzx7fsXR43dn9NpRT/dMihLZMWME61Pvadwr3aGhDdyCRb4yU9MfbesTTOLAUQsvQlZ3nGkjC2BgSBsMAVMjiqsGaPgLLq5lWsrISjltEqxH0gLFfpYv0nm7fH8ILpAXhjO6RI/zhZgMq8I7oAGdNhN/nmOxhWMytGOyw0tmZ0EoEDbpLVousEQWTKtn1N5RG232yGwJXsqBrZ/J8ebuAV9/8xq/9rPfwNMXz3D14j3g8RFvXt8iwXGdM4u4ypcMBk+Rv8hfoChGA/bCkYKlRD/e5lTFPsOqssTUZVeoxOEFQ21f1QeSa63kSzlAasXN8xc4HBcOrOod50aWwpIMeVmR4Ngeq3weNZ9GTPyyC9BO6MGAzbgtIYqJfPa1NsA6bq4Yhzfnej883CFrRP1O1JCA8+h7SxdMNheBEsJgKIW6XDnOQ78Y6IAMR0YpqzSeTNTdjpxXlFV7XAAigClYnaM91MSSc4ehqOPDlRNXmCa4wYaU8QNoGvN9qVXmKKVgSZnn101sbGCQeo+t7cNHArTxwTicIaZaCdVN4YNM6BCzpwad4e3dGxB4Zv7Ye0cpCw7r1QRle2O+izFm26ZLOy++ZlwBne05GVZt8SniCRbGQwsM7ugb+YTJgPV4xFVe8Fg3bO2M+/s7nLcTbp5dw9uG3s9Io8K8ktHeB8ZQzrhcEWdZMpALvCzzWHijFu9QXBqyHcEOizh+/xn9Ztgpg8NMcgKyn8GSJ7bBvqSUgd43aXpR7zTnTAynKI8cZP11l8adMYq5QJT/g1/fnfHkFaFlBSVqNg1GADBkNhE9zhSahu/B66zCOyx1XWOCo2EKJidqrGDsG4EBv6EEkh7RCCDK9OA1ZS48W42YAARQNEAkPkTuAFXEB9sDc/QwylnwIfD9PMRi3SdoBaHR8mCqPMhFKNkjoEBHkBR4ckKStCKmURVrwocqnkTKswyOD4d3HUAls0PXs/dRXzhJXCDF2iQAA/8w2DmRviicFVKCpnQC9P4QreVCYwYCrHb01S+qXz5RcgskPpbIhDjHZcU6uU99KQv9DPOZ2PRRdUc2ryclj2VHzsaqi+0BwJyEpYSeIuGi4g+xaxQAsHVEhxKaSai9EBpIARB0NGCKU0KsvkjeY7m1V8YA0hAizoOT0/QhE/gLtL/3zgrkrOrLEAjYgFPYNvqogV2kmPpDvCE3ifR5SLqKOab86LJyHDl9TkHXphOJ9xtjzGcRfekUW+bzjqQqEj9SnXnOSslYloX04kSB1N47oKppb0Gp5rMbM4jKKIkTsAg8BV3eEJX3EOQloyOSWeN19NhhDDwMLu25qMCw8sOecNGKZTtyFtX28i3iS1W22Avsd9/bSWbNlXkaApu+nOTIM7i/d7BT5CHmCYbeL2cBEwZq4SQwHB0NOS9Ts4KaED73hfs+lCBgBgbL/O9Ls31xOfOz5y3jgulgDKB3sWJc0HsvFko3HsllrJ2LkUjK9IhGr8s0ANOoT5vm+7/bvjY7wyjWKn7z0uk5kFQ9v7jRqZ2jZ8fqjr2rixXnZpaabO738NpSMprnb56GyK5hmOO/tIbvsF3n+9BesYLpU5YkPpvVTdYd+XtRVb2wpcEq8kFGU2h6zevFBBligmBU7nvvaCN0jzTsIZZdb2FaR7K0gpEQ/mfsOm05YSkZKfXZpsotFyhxtLlFIG8TbIjvuRO1FW1uB59jyi+26MXvgesNIms+94nigABqkeRTdzu876d0sa47aMQKIv+16H1StMRg1ufntWuIogr44ZujHXP3NZif44GVXJxJn7prKbFNbBj9AhTohcA2rzEpyZP91rGJ47qnr7stujwt9J/BcPBpv+IpxiCFWOtgXplHy6jzd+P8RyI81zb+S7GbgD0yy33fq/OBRlHEd52Zi41p8+I80Dgo1KQ2jDk8i7k6LjZ0BOGhTzLixOu6Kq9pjqE24KZc4dnhKZ4dn+CwXgFt4Lw94PTmLXqvaK3i1B9Q+4aMgdE63rx8ScmC7rh/OOHN23vc3t7h4f6Eh4d7nM8nvPn6S3jrQDlg9IqxPcK8cUpRcmQzHGKoyAAsJ1yt9KfJBpCpmVgKk6BVY8m35ni4v8Mnv/oFzuczXr38Gq9fvcF773+I7334AxzWA44rsBTD1ZNrnB+f4u7F+7i5usGyrKFXO8/4GMHIzowmlLTGpMo+gL6d4X3FcV1wXFccD6uSk4GUCtpxQyqGXBzr6liyI6cOFucILESMHBcQZ28yZMIeW7Ricc+nXGYyyZJvbDgnADvinO22YoKxsdH1gcEmCdu0s/kvD4pfbLa5G+eXizEfzMhZJJwv2BnG03NcXPK3j0JgM5INmi4xog6AQIuBLJK423hpUq4WCimBNyfscRNBuT0uSMgKdVV+CwAicr+U0Ifaf5KS0rzbTw+/EfYp7lZ+O/KDy5+FNMHUqrlo2YNMi8GQfGczR6FnwCRNMdhiZdRCzA5WW/rAYgkLEmx0LEhYLWMhN4bPxhQjImLe6H7IyCnLHhvW5YiyrGTz54y8cJALLq5916/jgsYTt7TvFYv70t8vO3S4TRy7/m+s28Vuc7wbj3mw2eRhYm9aCCkCKetMt9g7+3vTlLpa2XyOXIz9abE55B9ylk6xX7SrX7ye8cXeHZEkeB3PLCQkwiNexlHBqs354jSHX595URxF5evGPuCUKJz97r1F3KetZTZl0IZfxkyYeUHcs/nFc9JBTNDEzGjpB7XymJIYLBseb+9wd/sGD3cvcX54A/QNNhpi8qbNMxLSEgMYBHxL2eVrmPdgno8pxTJtj/LUOEtuincULwRewQdCxhlAPCWB2ALYcspYHSF3yk41c5ipkhfpSlMzfjyPuZW+ZS//Z76+M/DU6huYJZTB6m/BQWgk0HGGo8MyVc5P/QTzFThkll97B9RqFZOCQitpeBXixxsoZeGGkgYDutF5wag5Y7HoBGTO2wk9DdiRC3l9vEYpFDSdCV/iLJ6YaEHwhKMoY/daWVCyKWHSYlrCkhfWHURLG4OT4gxEE4lMFxprY79qUzuXpYJVqOwYBNdaq8gpY12zQCj+u0XSbEYhZhmdNigy7gCQOa0AXBa4U8MmxlLSQUR4p2q5D9RtQzcKnUdL3mFZkLPv6zk6NbwKR1uO3oHe+acOA9Sm0bHT10k73autJQfwpKh3uES8c8gqQBaTaK9CdwYlnPRjllC9oXvH6XzWQRQLZyTYWJD8gJwHDscMtwNa73g8bzJWZdIIa+3YKhHwnFYMN/ROPZ5kwLpk5OSAN/KUkiEnTRuwAndHqx3dOyoqSuooeSELJWtUqSsQEiAxRsPwhmUprFYaReJT2emk3CdOHa2UcTqd4X7G9fEw90vOBaUsMwqpPjjpQOsdz5MVEzIF3aQV0jfug4jzi8HGRfCjZwczrMsBZsDj9sj2o5ymrtkAqwStc2+P5rNKzeB/r7avy4qlGJZMdt3xeIOSF5SyYtsqTo9nPvrmeNjOaL0h5wPK6Ki1oZSEUlbcXB1xdVixFCAlx7adZVITUio4HA4cRFA3tZeS+h+tk7TVvD5q8pAZU+zbVOMILhpSyViWAnRH69i/wtPnqHAOtF6lq5Wm3hKjVPVMp4IQ3K99Q/f9DTMi8bYdjFN1Z4Z5Tsd4WOWgnetgaaD7hto3lJK0dxw2fLKweD8bhjup1cbpb1AAm/R8DTGxhtee4ljqWnZ9KsCNrDbkYLdJqwcMqIQp7UtmwfwxeNtHOKecsJQDtl5pU8RimVQPPZ0YDh9RsE8Ry3iFPk8Bz96CFal0tCDJlk+2hEtvwMliQgKGWE1iqQwbYiQ6fDSeVy/ApDcHkb0oyLELoFHnO6p3MzDgczgsrCzXrV4Av1EllSPX+GbX4AUrTAAcYpygI3kEVfRnOQMjAS11bKNh8/OEM6ghpKBk+leyw6oGenSBCgSd9Fq1AqZglekoJN/XnuXqBkPCuqxY1wWHZQHGaWfAOjeViaVFsF6sUOfEodiGsf8ZSmH6GieNSS2F7wY2YQvt4n8BInjYgQBDrMBTBoEnVV97xNcJUZMiq08hnWxG89CtixiErZlNsgMzaVOA7+BNsWOcpyY59yIBmzbbKwxkauxpJNcuNFjyUVNkg+A+GMSnrGm8Hs9JWoPQ3p3oHdcnmA67mLpYprCJBc1QXQ8ggW35rcXUINNa2UwwpuT+7CPY4xNOpRM7QDZmRgHaQ3JDcdyn2DM1swzmgxo4sff0mdH+HWfHdDd9VLhzHDnfOOzolGpmDJcMXhuGkZGQ3NEUdyF1DCtAGrhuC576Acezw0+P+PTzL3F7+xZffvkZTqcHPJ4ecHv3Eo+P93j9zRdo2wleK9roeNgqztvAw5ni2XDDYS1ioRuWUnBzPLAV6OYJlpywFk4yTAayttzw8HBGKQuePHuKh8dHvL27Rc5EEmw5A8nx8cfvYwzgVBseHh/wp3/6b/D4rx9xOp3xs5/9Lj788If4X/6zf47vf/R9/P3f+i28//4z/OgH38PT6yOe3TzFn/3bP8Gvfv63uL+9m6z4ofgu5YJUCmo9obYzrsqKtRRcLRlb7Tjf3+H6SN99EKt3nq+VE/sez2+wtbe4OnZkazT6fgJGjITPiEIsa0UJI3aXY57jBNecF57tg2L9McaFnVLClQuQxa7zKBr5vg1NieLFfmbiG4By+GteRhQCR+guGvZuK73n6NKeEQAcCWQOG669tgPOKny4mJuzyBW8X35nXBxQvYyWZeBghTqKtr+el7MXg6nXsoNiBhWx1VGSHSjD4J5xKIsAT9qpnDLPam8oecVhOaDVgbvbRwCGXBYc1sNcG8MukQBALWACXuYFhl2m3UjTkbKFyJISW6QpBl6GofRB9geAQ4n8imzAcWLcva4AFZccOJ2BxzOODbgqPP+LFxzKEZYIO3UBD+tKplNXbNZax7KwTfVcK4Y3PHnvA6zHJzgeV+RlxXI8Uier7cMKYhhSr5ya29kOgXVdJ6BLrMqk+rn7c4cE23vHuh45RS6SJ7Vd009Fm2EiSCdfMNR6z3jPOFgkQq3MCazBak0XBcLRB1rraMrHSxbAFELl3hTrDP0e99ToY2fDh4B45r7azvJDRg2qaMH34TifN+XA+5TuKN51+fwiRnSATtEJkpKhNV6zYUFOhuN6pYJrRjKKuDMXhfIDZ0s2TEVbnuteG7oEzs0MaUkRtimOD98SNiKjOOMoG+wM6sY1qKOjGIdKfv31J/jqy8/w1Wd/gfu7t/DTAwJbiBg7r5ygbo+czt3bCSllXB+P6E5d0IAtUs6zYEk7o3tIJXYPMJKKxDQQ3faYwb3Dm0893pQWAIZNeeRSMsZoqL1iWYwaiYpjU9oAGHqlzm5tYksaCUHZ8gX49Hd/fWfgCV4BT5NmuOQC904kuTC48EzD5t5REhiEJjDwGJ3iiQ8bWu+4vl6YoEDV52SwJaMY8NDPnC4QOhV6WCVzqpZzL9CAS5CNQFJD287wnoAuw5ciYA9gZ0c9S1nIOumk8G1jCPhQAB6ItceB6ALIoCJMsEMwk5qo8jBoBYI71AU89c6GhnQByLZeGQw7zVCxsh9EkwVR1ScqiKEqH8GcK4CH9iWDYExjZSnBhqPkzHY5ADnxs8cgWMFYMxKvRhCisJVxtlYo0OPBlRCvSdQTZBiZkr34lelidT0eXvVi0LIPitrGeFQfrNSw9z9MbYTp/P1SEijqRxrneYuRww0OMZcS88ZSAiSgQ7m7u0XJ6rKAtJvMYGlh0AyXWDRmAmlChIeSDYMheooioOBDUlum6MvR+tfOe5IVOl7JOCadbWpBnVSQ7J0BWbgli6ogg58QwucZ4N6G9iJBPW0GSBwuMXGeOi76rK1V7BPguO9IdW5qLQTqdsb5VDF6hcFxdVj15JjID2hEeEq4urrCUgpyWmCWlVQmjXHlFj0/nkl/Fd14KZldNqOhtQ01AQYCket61O/xjtiOuD+3LBCMI08Hoj3NXWwnAPChvumgoQaAJ6BwqC1pNMQYZIhizQpYMCliF0ZN8WIPgwEXMKZ+gsGRIxENU4oAsRS5BlgbEWywXvgwtRcCECcb0q0jJve4A2ZdQQIF5YdzFHtC0sh1vZ0ZW7Tc50dwm8iORjQ+7Zr2k2NvG8ReHeO9BEjxzk1ypWUzeugTpb3KFUHGfm4sVkfB8QUTweRclaVyj/ICwxaleQE+zw/CDiLOqx6ihjAUJS85A0OVoknFjvauLoM62ZvKsT3toJM+Ophw8Q8eyYyq+TZXXX/Gwg0CMdE+F/7l0v64myqMCthFTzXp+hkb7hGTYBi8a0LfXOYAgyDqusRf9QgizDLZuwmojAsb52o6SFEsMpQC5DRgapMIhIrH9ltV25TnvprbT37ELnalwye7KoSDed87JT6SyTTts9Y2bGOOcepGIdZckMtAGY51WdjWYcDOuiFcF880xLtJoNWZcQZxSGyZgO9nGsNnmx26AKzBAHYYkAfPsLdK4DJHEAxQpWZM2xA5QUnGrk6PczEvAggGVJpy7YwzxWTYT0Q8C1XfvxUgxu9GPBNi6PNzxh5o2mVwoXufSaUsXQJ2AWjbn2EfYzLfqL2HCahemCmdZUOMAY97CSHinemt2EvjvMM3ujuGguMRUggu/q8bYBTtx1hoE2FkYYr5jVSwdUcdhv/vX/wJPv/sE/z1X/0l+gBevn6L0+mE2/u3lAYYHdvpHr2dUR/vAR9YcrSvZBzXBc+eKHkcHBARiTR9d+Ueky/dNseSYwS9vEyr6KOhv+WwDChhMxhGk638/7H2Lz2WJM2SICaqZu4nIjOr6vvuo7uHJDgYAsQQ5Iob8vdyTYA/gBuSmyG4IUhgAL5mht0z/bh9H9+jKjMjjruZKhciau5Rt7unGmAUsjIzMs457uZm+hAVFW1D9jawd8Pvf/yCHz9/QUwDzgN//Lt/g//y//Z/wT//8iP+2//vf4W//qu/wN/9L/5zzMlBO3/+wx9wvL0LtOFnZrJgkAYca9hPo12IAAd2B5ADvQO/+90XvLzuOnIBM8a1cw78+U8/49sv3/G6vwIx2MoShoYNOQ3DAMtOnyV7R+C8eIUV2BYTpnYufa7FtV9NA3EWvQe3LS8fdpng22HQ+pVJvx8Tvp3yEVS8dbWF1v4tMWbYOpFYot511Qwlr6RS9sMCSAdKJRYAW/yhn82KheWp9UYjB3IashVbw9bnuM7jvDEoYbae68hcvsAi4KtdNlAMxTFrj5Yvc9q1mYhjIOdYQwZS69/cKwFAMUpa6yvEKZsbYrgVozHqeUfF0kB1I1SUZa0JMGxY3SkqnLvTprA1LPHpyxd8+rRj5ImRjq7Jyp62WPCh6aZFha1zPceJx/bA1hsOnQeoeND3Bm8UECfpMrU3Hat8low3x5hovWHfHmwVQywmf8zqdDG1lZHtEkYWShUobt6SNlT7KoQqUXqAviOUH6RdRc6RLFq5G20fUjIT9FcJFla601cxRih2WbHVa4rcRATQ5ANdAzVqb7DVj+2iVAlImLpBVrHIYhUYoLVojR0JbG3nPuQ95NVpY5BsDYspM5oK/GQOdYGJKAF7mGKlVGxfZ5Br7dZIIrHEXS5hMbJ0/ZmBfdupWdt0f3EuxrM3ES+c+/397Ynv397w/u3E+T6vqbdRmZOtvCKW9pSJXZ5owhHWBOAaRASVWoIdFpYqsLsBptZikQbOJGDkuLG+JD6fJWvApP0WG4pIEqAdANhZZga3Dd2SkkiK1zyZtxdw/1u+/iOAp4GEI6ajtx29Ncw5MWNi2w2tG4ZdDInNgZd9A6Ijx47393fM8cT3b0+MMfD6+AxvrOQ3p1bRZobZgPF+MPEdEyWcWuO3kUG0TQ6miS8Xc2CewPHOMfHRHPtjh0sBPhMYmlTH1gC2AsWcmDlwnkQc903tACANLaZ8SG1EG4gqx1pUVsOgasSqHgMFUIUCo5OaQvNEWnxgPlDTacJBo9mhByqwyFCiqKqMANSaUVayKjC3L4pqGy9xqNXKCNbsvmE30lDnIOAxgwF4y4FIrklrnDDQgjRTGieqpXtrsN7INjEloVW9RK6kD1wJVOh4Uf+BRd+DAtNxBZlsc3RsYuPM8VSCu2oD6L2jNfaun2Pi27fvOIOMFDOCFugA3C7gaU4FQX/CY2/48mmHoaM50LYN1qgBMyMwzueK2F20WjqAidXRFWdFQGRMmcONVEp3tgWWZtM4S3jEl2FvTi2zOYe6BQRwgOKec4y1TwgsXKyAf5ymzatlZrHQJIzom6IdjWaVllEmGUXWHFvpiAl4mnOwfdYSz/d3vL29Y44TrTV8emV1a4whFhYnEHbv+PzpC7ZtgwtApf2myPvqZ//2jXTNyRaibWvaxyfGCVCtawPQ8fnzJ7g7ns83IEEGYCZp9dJ0QALpLmCsnBmBnxnsCRdOof0GVTkCbPWVsH4MMTm4vlUtxzproKt3KOiuBKgAbT5Fxq8K8ooWrKCVbCFtrVZCkJc+AAGGhMlJloZUREovD0gMZPoCnquC4+4LSGd7FsPyVLCXi7Jy2YkL9IJapHjvC2uOYo6mgJFqxRQwAlWSzNZZWElkMee0pmlkb7q1D0lBYuUTWoNYwFMW0AFRelMJsp5HBZAVqc/JauicsvfFeklbmgkpp962lA/iY4/p9LEo9oYtG154YNHibwQPXXMBXlD1lkbBFivqDuxmEU543gQI1kkup1WAXT2T0smArvGip1OQsnKeCq4IOEtlJPN6livZCNSUwjobbZ0dBfTJJJPgk5IABR7eDFsHWmerPewEfF4HDQWKKLFQi1gx9Pgsq/qrM6d9SYbtFaxe63w1ql1DC2zZA96qgDNNDspksmKtoW8dWwL7YwfOiWOlsDwbZAUUUF9BqpLGzNV1briAJ0i3L5PwkUrKH1hipqSWmVwAand32Smqn4ndnNyTZoat8QyP2oBO+4DJREkn40OSrDe5HcT7Prr/Vfun8vDK7eWHKxCtQgvPRVyvF6BUI6Zr/xazuvZ4aErtCBVtdHYDEDXmdjXGg+MujTSBXihg63YrrMvRj6B1Bdhc/ingiWAbXxaBpfmUMGBuKKOaSIw4UYJw399PvD8H/vCHPyASOCenP77VdFoA27bh8XhgC07Qet0puPz66TNghkcy2Xx5+UR/N+ICFMB48f3JGUEGinTPMRB9Q28N4VyncxyYMfH85WQb+96XLZtDWjP7qNwKj97xux9+h337gq19xr/4b/8b/OHf/kv86//uv0HC8fr6E/7pP/ln+Jt/+b/G50+f8OXTZ/z93/wtnt++Y9s4Svv7U4y7Tub3+3Fi74ZH6/CZsJjiJAWQJ/bN8Jd/+SM+f3kBFP/weQ2MceIP//An/PLn7/jh8RnzeMPx/oRNR7Od058D8NyAFHMC9bjHAidIlHSdfSXEhWREqlDHmKIVSAna6lhn51e2BvJblXgpEauitutCZKr57E2gjBLqcpvrvKx3r/OE9Ywv8EnAvgElSmcJDgwXM2XFeLbmRGg/J9JCFGYWXmfilpwqZpSvdBXlio1En6SioOxSzAmfgZaJ1CS0roT9fJ7UtNzI/l3A00jEcSLGgObKrg6V5kqao6aUphiZl6/jo3PZGruYGTytkIOnr9Z2CohR5A6TBoEBBJQeCU8CsxEHYInPPzzw5ccXnHmip6M7p5N72prSeg6BHNJlJSN2IMaAIdVCLvud1CbaHh1wxxknptqszKsFWnsBYv6cJx7Gaa8sDLMo7WY4z7GY2wZX14WDxTbDMmhlXfXMIZYrkkSo3gTWioRQbDoYGUTnOdA2rAFEsFzPBVEEEE71S52JWIAS862IifOcGIMs2JeXBu9NOQ8HY7g7vG/MeQwYQ6Cw9njV/kyszlYxNjhdnkx+xWMxr2KIfGdJcngnMWTmWHu+CvlVpCt27qqsiVEeda2m4rWmlLkbujNvKdkSdiYI9OrM8bI1TEvpCjNe89ako8Zn/vb9HV9/fsP3ryfO58SPnwiiz7wNPJLdonMHXIwxm1NM89LNClh/MG42EPDNe5yl2EfYw5yD/mIeYkL3CyvIRvAJ+vlqSKsHA9mDvJhsBZTue4dbrli77JFFrL34W75+M/BkbefGXO1HT5Scmc3qkRwwBCdoRIOdAbMOtB3IiZwD55Pdd7t/RvfONg1j20gYN9Kbk+J1zhOZhtZ2GAxjMkFcmVQFbFYJv60AqSuTGMeJCsN96cGo5SJPrHG9ja1nRL2VeKQCVkjrCUPtCKTSTtGQ397fYNbYzgXWQCISz/OEnbaCxXRn68S2oe37ov9OawhzjjW0hpkNof7piAu9RdrFpnKiyq4DeQcomt+QUTOEaLNb25Bj4hhvSFBvZEwir23bkQ48TzKdrDV43+CtY8QTOWwFctWrW1XENIO1vvqHL8ZTCd+xba8pwWEvLp0kDwKfEJ0pnVD3roOnAxMDNep76wQ/5xTTZt8IDLnhROA8n+idrR8wCgY/5wEbQMtkNSQnHA+0Lw/EDDzfn8DBKrZtL4Coy9oMC8knIywvpkN3HbyqyFZQUVmpazoRuLfM4FvHDAZjcySAA5BWipoeVr/tjIFiuZVNKGp4s9rLE6jkzYC+NTF4EmMO0YZpGNg64qQjb2xrfT9PBrw52BbZG1pv+OmnH/H+PvH+9h3n8x3jPLB3VWLjQM6JeZwUrnTDy/7A47Gj9106Sqy0EFgtwf4NrTW8vuxoZnh/f2OF0ekc5xw4M5BzrGrg8WSw3VpHJUqXgeQPeWVMpf9UpZzr+OHW1E0AZqXWG0FwBR2o5K/SOSUi5aC7NMVKRytzrEsq/ZoS53XtgQJQioq99FCMwosZldwqgbNEnEO3aSidIVYMTQmnqoBW+9mAbNjahq09kEOg51Ci1QUAuHG/OrRv5WAg5kLR3rM8C6pEqXWfsqO3/BY8I/Vz1PPCZY9El4qBxUS9GFM6YxUwV3AlpmAmKFNQDxSGBoLeqkUx2Fp+j6BI730lxAz+Tc7VkKo/tSYgoECQNDTbOMFT/4UVfZ7X5nXDuIJL/Y170ag9V84bACIMQ7TniZDj5pvMBRazCGMCUxMV6NbPcnXmmAoY+Xq/iQq5U48CSt5XO1Ila7MarnhmGkz2yRHBQRiti44brLo3BXTNLwaUi4bubaJvjv1B9pd7Ima16rJNo9c0neR6XTwcE8PYEDi116diqVz4bwFcdf8QiwYAWWeVMCb31mrhhNymAA+ffAcGZRyGkkoaU6BgVS9ZcccqmEwrhgEDPwJdIrwKIJsmsNQY9BaLlmtMYMIx4Ui8bh2vzbC1Yjuo1d2bPIDk6wCcxymGRoOLXVjnpq171R4681oz+YkCi2MlxPwvgKXFpCNI+5eJVLA7xf7YrFLvxIVSyRyIBW52Aa8hsC9CbCKBqEvQONkK3Fpj8pj5gfEEA1vGSyx22xajkW3muhdnAjyVPKfOlVlDDYrBZIJuzdEMYkPESroTLlYjhWQraexbw2tzJpWAQGDDX24/as01rts7HCe8Wi4NsEaQ3jIx44m3twM+kxo78vJnSjLdL9vmzVZyOuaUPieBk2aG3QuonLU5L4bOZNPOlgk7A+d4R7SJ07/hh8eGl7/4S7yfbMOe6Xj79gf8n/+L/xM+v37GT19+xB//8A9w5BrrvqyrfJmBU7MARzfHZqy7zRPo/YGX18/46S/+kqAb9B4qugCOnCeO53f88etXeE54TCDZdvccEzMNHpt83URppzCOrFY5UEjasFpEOgxFIW9Ge9UE3FTLjqUvELmsafn41R4bfA4hts6ywXkriCooWfGBXcyTNS2rGKiVbxjorwVEl19cDFitL1RA4YRtsZygYj4UGybPaEGnKWQ7JdgcrZhed9YUY7YM+Wg3xbN8jUnqww3YekNDW/FL733dn6ESVzEX52RSq4Q1eAsC/JKJXoHvytnmHNzwWwH2Oo8rmCDLtOwUzX0xTcsyQkxK5SSLipzXPYHr4p74/GXHly8PbJ7AeOLb96/E6+Dwxwt637DJjM6TfuF4HnA0vH56BZB4e/sOJGO/3unrjucbfNvh2ws2b/BomGECVQjenDNASQbu63EcMJBpXUzX7YUtT2vIyLwV+FRA3vqG0ipOAybmWo8xGN+/7A94cwyxxTjB27HZxvPrtnLO1pt8voqHKpJmOsyYG4bYOLBbK5wpBtXDK8YTGgd1FQkizmPFhU0hdMUdjM/qTHFvnMfAcTKO3rCtzo7laIDV3lfaf1U4pwyFYougJIgpz8FN6ykROI5YZ9QjCZiFwcC8xN2QUwDR4FPp3uHK+zIob5PyJ95ssa6bOzYYxvs7znPg7ft3vL+/4cxJUo4R1NvAjiJePy8nxNZK9cqyHZ+dRenFlFccagTdNtvY6RUT3kFQzOVJHASbB59zb/2KMbvAxSh8gzFNCHBvjV1X7gaPE1PMWnNX63ciMRb+EcZYabNLCum/7+s/Anja1ofn1AhUVYrVS8SJZhZs50qHjaQyv29ANmSY+r4NzR7o1le1rLnLjyY6cT9UG0mJjFOJXzRBuwwVq89VtQ0YamGrUsoF7U0MjBRDaVK3wSAwxQ0YQoDNgJSoo3pKQxXzooLWZJVjnOhNmixCi9+fx0JJYUDfiY4jnSwH0RZjTtWMEvANTBY0fl5JXFUAU4E7c2hVdN1WYOBKIrpfYtEGo1F0fn8MUrUrUJwKur11UvPmyQDNG8Gk3mF+Aq6KfzKZTrsYEUioVxrLQfOk50q+Ui0GpfNhMGq3SAeKb6NakLH/tECSzADCV+UEzdGsI2zAMtFrgptXMjBY/TSwMuWTk9VmYgOD3hyT7DYZ9zE5UTEs8MALWncF9XLuBlT1tKwFKwHFOiojzWdWv6eE6Fa4b6y4IE3TvTT9w/EBMb5PS8t6eyWgqy/bsICnChS9t6sdzxNj8j2mEPTunKxE3S0COW/nKRp2rMDq8djw+vKK9/evOJ5PjJNVra0T0YcYfHMc2LYNvRHI2rddBtx51pPgV1QVCQwIt945GGMxPcjQqYlI1DbbMb0tptj+4OjFiMp9THvuamHytS9vFPh6JMXKAe1KtbgxUJoCkgKWoQCGwRaDGF8BaLEUQtU5njU5C8MVyBod15WlLXxDFySqte6hhCJLyDMqyoBd50xMvjnP6/Ax+0B9KNd/xyk2Y0asz6ykn9fpMGcCE0r4zW4BuilAzVu7XiWo1wa8rbKtfywNjO6k1rdsK3GwxgJGjW6utAYVjBuAuVb+ShD0GVXZql6FOS+2SbVNMemh82xKDsjsr3pzBU8qTAQpyAxHycWPqn6u9cJl19YXfYB9WFdul5XYVxUqxIazWt6y3RxFzaonmZneVQWcY537Cv+rZbzW/dp/tnxpgd5TjDNTubzAPuj8NCtgXLZH/ljiH1cLg84JP4N2xjzRWqrVrp4dN3hAbVKA9pDe81df1SJJgCIWgLTaO+WKXT5QBwR1uU1npxie1TpRgOBVtZxIc7hPsZKrWBYrGVTHgs7jBUFlSoXCKvC9iXkWOArSz+krtE+9oTTBmhkcLFA4Elvr2BrQLOHSFGP7la+n2lWFfH+O1V5i8kMzBDy7ikDaq3Oq1ViA3j0QtNv/gdsWWuDTlWRX23fE1J7SYJdlVBXMywdVwpfIxUALMwHaJkJKJZg60caYq5Lsm3FEItZzWuPHi+mlf896XX224oxS7SrmRCIFBEr7gldZ0QaKoQJ0pO1MojM0sVcFHl2/t4ZPn78IcOAvRwPyADARQ1Odlm4JW//P48CWLpDkAp7SbAG9CdcAnEYGi+wFYAQA3LCtIkaoDRUwzT5DECRoCU4NnRNhB4YDL4/P+PR44GXsGDPw/Xji+9t3/Kv/7l/g08tn/PTld9i3TlFbw0qKLa5DWJ0AlrzOZoYYJ2ImWt/Q9wf2l1e4dwECfDgzJuZg29I4njh++YrNDa9dwzzA+OScSfFnxf5MtE7unwRGBmMm04S/YsLZhOddL4lxBQnuNV5VltIKUCtXZdeJWICqLztc482FsMJBHU1X3HftXdo/mRHG1LIDqTtZbfHLz16e9M5OL/PrsEvTBXnb+xUMQC4/CT4BYkMnFiX/5ry8ijnr4fLMmZjbqwUPhiF72qQdC2DlfabzgSTToclWm/wvc6ULHAb4TBKKCzwpTFiVIjF4UbIqK+6yFedVdsDvWR36Fdsk6HO9KcKplkhLPB4bHo8N3QHEwPP7V3bZ9A3onUV2q0l4tH1jnNi7Y39smCPxfL7Dt47uTUOHyELs7tgf2lutIU/G3GtIUF21mLHzHCu3KNtV7YceBkxc62bJIlOwxcvbBQhGxXxpC5w3PNDdCX7ZVUxcciXu0soLNPXV1NZOKBcrNpsAfeTHQpGJtYVMoF3+p0n6hZql2h8VY64zd8Wri9HG3UFtofOJx9yRiq9zxUd1POVXa23FMl4kAOQqSri3qjav84M0DJ2LVnG3LAHzR7LoauhTTqgI2Gmd5V9mTkl4CCgu/ahknHQcJ473N/46nrJZqXg/0QFMG8vfVXzHKYmyJ8qXV+xjl+C6KcZo0rHKGWwd9VTrvugLAbKbzC4heAviD94Qw1Y8jgQiNX3YuRZdEg1IxtpuTv3kTLjWIcTgSoQmqt9aAP4DX78ZeGpdC73moBka2IZzjjc6CB9ozfDy6RX98YKJjjgH4jhwnG+YceKnnz4hI3CcvwD2wA8//Q6ZXPCvv3zFt29v+D5PnAZsrw/Mmfj+fCcK2x6oQJuAUtUjaYQTiWNOwDf4pJCreQKdif1cbSTcLHMwuLDuos4C5g+aPfP1K9b+fYXhgZjvZBgQqObBgeH9ONFaXy1qftlHJlIJlLj1OAPjHBjn0L0YhdqSAmNmpI6uvkwQlJpKYmK+M7BtOzUM4Ihl7JTozEHht/NUmyINx77tcN8BOI6T1aTxfOcma0wYjhyYfmCrfk+IVQLD87wcStsUeMkBjMlxpK238tWqyNMIwa7hssc51vcLPCxHPESZLqvTtw0WibRAgFNlCtirKXd/8dMPOD694uXlQTQ2p5xpQ9PaGhyIiefxDjPDH//8y6pinONkcdQ7kDs+fXqlYTFWD57P50osZwFpEracJ0Xe900U08mqsSMBiQEbR7RhIBDNYe0hWq1hnE8mDTKibVU2fSUBpmC3dGlcz4SUyyAiAwOyyawbIhsmDCOn3Cpgc8Im6fGA4eXlE8wc8+QEQfeG+Rb4489/xi/fvuPt/QmzxLY1QODxc85Vcdi2DZ8+fULfOMM4BWKk2gL73rUrNzKa3p6IMTDnRNs3xHC8vbPFoe+fse1drXrAtMTX4x09On7/+kksqLmSpAloD+iYgZGd1TlYCWbSsZtp2MHFXDIUa5DPlYUeOaimPvS4xEkLDKeL6Ei4GHxX0tjkCGa131R/OnIBUxVIISSeCz4jbwDSELMAxiTTAUrm05DBNT3nbdqZKjw5OyIcic5qSZtYUU5iCVQCqsa6g6eKVZaZiRGcFtRaX2ewgPb6O1trKokEAWSBBqj2KgEg1toCxrVIar+hcXVAbQJ8s8wTMQBr+6KGpxlSrScDAgfNMS1oo/W+rsDQVG0fEUCYcKpKPhKIxDloY0wUcwLwttpgSDPmWlVgyni9WqqDQa5uKwGEJ8KcFVekmDUVaF2i761aMANA4143temS9g+EzmgDq5NDvftw6jMgQU1DgQNbb3jdHzgnRaHNCwRhELeApzAAqvApwe/G/dDF+JsZ8JbYd7Aqnmo/SOCHly88Py7oVHZf0Q6ZTppyVGy3JR4KkCkKUunHbWBCTomSV1ZVvyrZUFJdXwW2Wcr8RQIeYtQFThWXvDcCnm5K0mKpYs/LzdxCY0EUef2qwLuuiQWpBswOVorFbkvBl8YAfYjJ1szggyLjwC6uZQBxYpwTe9/RbcM5D4yYmDt96MhUIis9E7WVWibgt/aQAv4gIC+b2j5qPBG1d7KKcbJHxSxFMZZQAa/j0RxpjfpYrrbNYmpXUrA1gXMC+WTjCgAkeKRcRVXrKuLMOdeES74Z9/fNKgAGjDDEYFwBBwGe2gOtYWs7jmNgHBPhIbuGlXQn1KINJjSowp9AoDEDsAnEcxUmM3iuzHfeuzbJ+xtbviNCQJEvbcDaSNWynLXekZiWAuCqIKnkU/cNC5zjigd5PvSsBp9la43FmZgI74qnBETNr+v5JjPaZbvez2+w4euZbXvDD/0TXl7+B6jhL5acMjfzJG7hB/e0nysmdjG8nufEMwIv2wPWOv7JT/8E7398x//2f/O/w//r//5f4b/9r/4Nfvrd7/D66RP+zb/9N/iHv/97/Iv/+m/w9U+/IN6e2Jrh7eE45oljBo6T2q/p0sjrHTMTb/PERGKITchajDznAsJYNDBcGpLnpP7s0hasyV7wBZ7WJK6LBVpeX6+RtmmCcScwad8gFj+ASGdRNAHCigbvxrNUbCuBGum29tAqVBQik/TR6fSJMxmmFNgJCJAwwBoHW8AJEMWIKx4pwGnkYrRChYi2Xe24FbMmAIoTixko8KeLNTvLHs9ATdk8xwBOwL58xvbpBbYZxnngD3/4BySAvlMQP0KfLZuRALJpb89qx3XU1PB6Ls3VvaL4coZYGFtb7d5zCbiLxW7X8IJWOZkAkBz0d9vLCzAnnv1tTaQbmdQGzoG0xA9ffie9OE1Gb2RVHXNg3x/wviOtI+AkQsyJnhBDaYIyJRNzcn/urw2ZjnEOnHOyXRU7p0eOAl5ULFAh0hotXytbD+DxeMDMEccBM3DoVQTOGejuaHtDWOLICe+sesV5IgM4DsYc3R9i4S3zz5a4JDjO2AmgXigLShAYAiTivIqEDsAakHEufT3AMJQbcpJ0gYOMPQpA8ca/H5Og8kwHfEffHekdYewKAYDzOJZPrs3bOuO0cxyrdTQi8Xx+0w85XOxys6HXES/oXWvdBSoHVBDnPjBg+UNbk90m3GUrlrlmCybHpDAH7mho2fD+9R1//tOf8Oe//Xt8+/t/wF/tG6IbNg+mtAPw0eHTkIo/vXWkA4ci8RODoFfvBQvDbAPScZyXjiHFvTd4smA+TupFU8bI4JvifLjyF6O9AjBsIjwx5jW8CZHIM9AeDW0DbN9h8i9uYA4e1P9NFeo/bZ0sqt+GOQH4j9F4WhaLf1m6MwX6LAPt8N7hrWj+dZFMFF5edlQ7Cyyw7x0zDUNG9tCUnVQCXK1NVqGg3YPE6pG+quEAFpDljM5YibBCYavdaHkAVS9VGavWGKuGMaG1ZnJejoyu69NHClDCJBBXtNJbLQUqDQJpZH5FXiLJ64ACUHLrol8X9b3uuqpd7H1NtOwg3ng9JwqIXRXGyOQI0ojVyrFE8MxXpRSt1jxFjac45IdnrpafegIZYAWjgqf1jwKRYh1VXOwNGbKo5L4uvYCzCvavw2VUA7y6pYotkYlUH/C+sbVmzInjHGwDAwNYE/XbrNBd0rCfxwkz40QzVUFT41jcctFboaTIWumq5D1LWY9IJ0JtGgX/XABChTdpSnbFpsNJBsvVusMrr3H2SPVgW+kB1dYT+yP1vgEyt9alqeUBK10CikKrPfpQe47XJkrDOSaO9xPzZFsP22GxqLkVBLn70kv7MKodgdJJWckvGEyNWQnsXMHgDLEVvLHy0Pg8EingYNV4riN1+z1/9b3bTrr2EnguslpDcP26nmHtz9v7/GpvX+wkfYoChiX4Q98Mg9o611VdV7ZkD7Oqr6n9o2edgjiyPsZwb7lbSXi1W2mPI9Wff/ssiVTgMlbQ/rv9jBLB2muJq8JaNrJuTmG54j0F0Ld1rrfTCghoUxXNbtNGrx2Jj0/DwfG0Lspv8RQglmTKh/C0ccKRXU/f6gJo18ugkFZcn6tnWazSep63KtsF1Fy7qV6Z9T+7JyxYLIx7VbomHBYzxO6XqM8yS7UY3PYsiplxW/usgIrBbt2epRg2Sk5nTiBsXdm6Hr3gDqQUiOs3QBTLdnGVzTiB1TS5sbVEa1filJPe0m4ndLFCtEcXSyhrTcRyku7UneFZ2+POcquvy/9gve/9J/ha7qOlCyhG9Dqz9bo6VnX2a//AbtvErj/e4ozrR11x0AU8m+xyCohZ3xVr2tYsPSDhotjrmlVDCE02jCrMmK17KDZA7RIYtIfLd/JfLLD29UJHtQEsr7Yc6EfujCYH7Xu4Y3pN0ZSuXFWF9bOJS/NtpvRYTDEIrvN+xVq19y9PVQ9v5mAwL/Y41IYQcd1BrOeca68BrOCywoyrNUOrFEG2DJ+9y4SWPbH1znX2+e++wIz6mrdJnakJTwSeqnoOaf7c/UVWV/iaoNV0BiBgEQLphlhmZioqQWBm3qv3F6ugNEUpOF7f97WPCQLoz/qeOdvpt72twhYnZ10apYzRZWtgKO/Lk37qWVES4bG94P088K/++b/E59cv+PGH3+H3f/WX+PT5M/7Vv/qX+OMf/4hvX99wPDk0CJbwGRjyc+U7WHVXG5DAzVDSuI6kfq82t6tF09ZGJuOW9152e9m7ZQ35+8zrO+tOTZp5uNvOK76oP6+lCsUBinlgtIn8Qa6doZ7J9XoCerkunWYolcOkcCDu4erkq/ZaE+g4I1ar8MVihM4F2WITtHdeNhe6PgOZlGWTZYuro2LOi920rlvJJ0AW1fbYQFkIsaSCPjOXL3eRm3Q/ikFMBZubZ9JjvDnJZZPZAmaa4osCb0v4Sutadq9iFtc6LQ1NzyWbAac4NSJUpMEqCu37/uG61jV4k5+lLeReSxYzKIYIs2vHWIGNYq+OJEOs5S1K05+9pZ7r5S+v6cL3vOPyivVzgK3CoVf1GjemZr1ibc7QGjt9dvn+5SJjfaalrVy+8rG1t4pNb1WoqV3tlx29nZryi+UToagB8i8mm38xxm7rL3uvI7EIc7aKGASVro6Q5WmgSWXSTRQjPcrn1X6+IjkDcA1turonrk3Gq6o4HkYmKJJtg2/fn3j//o7j/Yld0hkw+cKQX05f71cspbrbSLLNGT1o7qGxsDzr40MFcPaPy8dR+B03ltuSxFEskykYzvjuYdRzc/1M6YAGSIpwGsRF84laJ+Ey3R2bU2Too4X893/9ZuBpqHWClU+QMt4NaIaXxytgD3x//zPo1DoiXcJbAVjg8bLh9XVDt89AJp7vT+z7C758/oIZwHkGvu9v+N6fOJ9TDpdY4stOFfZAq/2DZptEs9RalEQd985ezQ4h580IZiWpfGaGz6+f6Cz3bQUVRZdPU/g8NCXKSGnr8Iue3zbAutpTZJhFeauR6jW2tQyAeQOtD1HH8wDMNvSdDBlOdZOBVy/mPC9yYm+8nnOeolaegDvauIChJkPbVRltRg2Fps/NkZge1DPosQy7W6MuT3fsn15wjBPvYuBEnNhEQSwn38QYS+ka1X4zGB79Qfp8b6wUlLBzBGwaR1TqvO1sTIfHzTHIiRCd5UECgBCjZN/YS4ys9pRAxqlgHOAoXjr6cRxqT3Al5oa9P4AO9vdm4vl+4vOnz/jpx9+vyPv9eUobh4Lfx3mietB769j2q8f5OA4Aucak8u9MuFIMhW3j8zlOHfC9q/ru0hIwUWRZ8TQzwNnqM1SxzxRJwKHKthKR1tD2Rq2eGXiOE+MYHxx5JTyutpqhMbH79kD3jvd3jvD88fMXxJj4/vM3zHMAI7D7hvborAxF4vv5LjB54vHY8PnLF3z+/AmfP3/C83xSyFuV36YplPcrAaCAhsMDns+T0wzNEQHaDD37x2ND66oimuHbt+/so26VLFCsEk2UUXBdIhLnpF5Vbw298zOT2wbpdKDHeSq5MoGP+wIz65pLlDoDVytkOUUFY1Wxt6XhcDO+2jdN2jCXXkNVH8lmuZI+gydp6M1VCVTysQCbtKV3srSYFpADwMSC+PBfXQ+u+6rfja3GMFMwahKB9/UzXlXLD+1SN2cp7Zl1uPW9Yq4YLudXNtyVYPAWRFF3iWRaAzyQJmUcsdRarwTcOb72nHK+QKWlxRIorpLfEu4peksYg5S+UTOrtEhmDrKK1CZ2xbTU0Vrpu2jcHJWdC9isxDvGxfpYFOuudEfP8TzPD/uIS8WiC8cM1x2JBeKOve1sLYxAL9CnEmdNJt3EwsxIPI9BNocqzeasaoWAXm+NBRBPMnUBtiUnQfiIA8dzwm3AEfjy+RPZiDW9rhCANJBofiU/xdDJuU4+kJO6ddp3M87FACFboJ6Vzl3FjYkrcbudvwsQ3fgZSs5T523rV4iTSS2fGI2VxuhqGyLcwJhDO0YtBOvI120GA7M5JtxONGNLXHNOnzM3tL7zPEzGDC0SLTS5yDnUg3R2Plt3w+OxySYd9GtIjHEiUQw+A0qYFyalqArya/8KuMuQlkoCNth+stoPq1goWyKwqHUCPa0LmCnf7Ne5ncEEdqqwd0zpJOm9GPNIwNgZok5Y1ZuQFhiYKroxvjMY9ZusKTElC9EBpNCrxT4DC5O0FbS61irFAdAcvm/UKtNZ5Nnh9U39PVcWX0CMawKd9k2GGC3VRpcf2K5XO+T1Zcvu8auErxOM6RLQtDhbTBsWQKiDylTNV1IxFpub9nekWj00IdK2zha+cSKT7cLNCx4KgYoFvDjGVEwDAOaUwrB6MNKiU4HHBDRwQifZJtT1GTjnQOCJfdvQuuPt+QuQhteXT+gGfHpp+Bf/9f8b/83/5/+5EsM5J9wd//Sv/xkenz4hDiZ0jFIamm3Y24ZmnExdRcHgv2JrnS1kej8y0rgHQwzssgfZyGibqWcgvSUGqGp1RpW0uBdCheILpAeZvzFuGAhjvgVw5yXWa9f2Y2IrNKVEsxm/GaqN2MDPNCTGihUuKEE8rgVGllh0Rq62ZRN720NgqwYncQKwIXs1EbJjY8TEHLzW5UPbxaDMTNjkszrHoJaYQHD126AAfDJkJ8Z54jw2/PDlM/a+y54H3s8T8E5mluLytpFt+fb+nedonHo/yZ0oADLUVFYV04xTIDm52OHQNEdPzTiQQHXfCPLHKTse+PTywMve8eXHH/H6+RPe3w842IZVZzjENJ8xkSPw5z9RT/TLpx/xPA788v0bgIb98YJtf6BvD3z54Ufsr5/x+uNf4piJn799X22m276h59WqmKfY9Ub9OOvSPLSaQmfX/qmYXptwFB5khkMx/duT69UnuD+K8QjmKwlgb7QnGxMPFRfG2iO1WRlXc1+zyA7tVV7Q0BTLl5cX2tx3sjHnnMyx5VurcIU0gXeGbe8Yc+A4Tl1DSUC49NqwgDuANqa1LqDkio2i3h8kG9SgoCnZHVd3kTnwMMWbqwBDX8i4jzHHyyt98ygxbzcJpQ88Hg/FuQLw6xmCsf96VnWWoZjHqK0UaXg+gT//+Q1/93d/xh//9Iafvw58ejy4zud36uIWO7wHsIkpJhbxUVOGDcAYmOMg80r5YpojW9L2dUfrgG+GiCfzTfBstsl8ufQCz+NgHNoaByiD9jddZzMNGU3T6xJpHRlGEiSAXWewt47UGUyByi2cdmgsdOu/9+s3A0/32LiqVKsatR42W3zOwRGIbRMV32y1EJWBadKimXNiTra9haiea7Sn2sOaUXgcUYcMKIJbCXgiZZDRRJMsmj8DYIB9las6utBwHbaiheNDbIui4xHfkQCvOkzK4VV64F5O5r7+vr5XDhNKkkuPwmAwL9S1Hnyh5oa1vKqMFIOA7Tix7qec15Vk2u0axGIQy8lrGkRyWtGyHXlLuK+3RCVyCahqwr9H8AcWe0mTbUiJZaTgCpYl5bO+qhLORa97K/db668kI3hIyAzhrwpJLblmVQXmpDtH7xfaC/1bJJQAdFjGqi7PmbcJQzQsJUxZwYLrPQxQdacqAKyU0DAmiJDLsItVkmDb1aoi1K0no3mDdM4WCs5Dx0mKqubeDqLpGdUTd1xVX44gznXhXNorqKFBuleJGVDPOQkQGu9/nATeIuXk9JYAJ9203rHtm4QK7farnF2uJOiq3ijQwY25A1XWb3uQjoUDDcohl1OsvbYejKzS2vdWu72slJgNeatdZqJGtWIlbo5i42VetmGdh3uim7fPq89MJTs341trrwXBYr/VHi82yL/re+sY3P5uFUhfP772y/pjaA0KuKq38fW61D3KvDBAVNXlzgy5pold53PV6tYFyhdkvQ8Kb0O1FwL8xgVWYIFOJVbCFs0LrLo2UrGQsmYd3dY917Xrsaz7DZT4+q/WFykWLRZLj+AHg4df7xNb9u9KTPJ6TLctaAq07fqzWC/1nnZ/fqg9c99J1/pdn1T7+3am7bqjNamOqPRHs02ng6WJ466A9Xqe0FklK7TatTS5DoHMuQDBbWvYt4Y1UbUYY2hLj+R6QpUtXjpZt5O7vMgHaNT89qy0JzUWGfjVG3y8U+0T3tRVT1byl9fLFgAtIkUJUpNhaijttfKlay/f/nx9bq5zeblM7RMxSw3FdEt1yNjNSwuIlv5KICVi7xh6HZnb9nHvoXxjMWLt5u+BJYJecURer/Taqx++7PL5oG+u+GPZXOdeqo6ceT8ryZ/VLM3aXgssWI+Mb44lrLUeYV5bXfHCHUtf9xAfdotitkRNGOZtM665BXHXz99s+rWG+GBnCmQy8J5rrPus4qtenCkAI+al5Va2YgXM19lWA9yH619fWVwryE5fGkn3nVIsNYPdWgL5Bi6QJYvRGtezr3VKPePlptRaiazOxCrQFEviekyMf2Sn0cjgkk6iNdrml33DcZyY59DUazGjW5e/9bUnvNY/DWxGq/2nSYa4QFe7b9dMrIlVyyZctuDjGWEszQdmWIy2+3Hx6z3oxxJV2ZcVWr+v87Y+QQksrmJgAUz3uBNZZ/DmicywBMn17rl8qK/WFUogKY5JPhu4wcQAXIVlu5jUsa77uvraeSY7V3GJFevlbhNWQoDbvq5r4z6ZY+I8TskEEEAu0G/9LGRD6n1X/HsBtUu7p85lkB3oaz/U5XAfl9g4TTV92upMwP1SycZ/PB7Y94cckC3dqvU4bv59Sp+Jn8fulIpD1tS3Jka+UVtvRggUJlR6+efLDrjE0IvJaGD87dp7ZQJra1XhvdoRp9/3FNdUiQeK/VUAe7FlPmiOCky+wE+CBtwDN/t5Y6RXYWfppN12qn04kLididt3bnFNrcOyO3o+H9w3lA8tCvK1P+rssDgh8OvGBAYAb2z5ZjeG7ut2L9eVXYXCev+LVa/v5hXJ0Pfp73nt6et++WyJEySe58Db88A5Q8CN4pLAYnFyvXmdaRDwxLZ6M6Df4rsPTOdlv5lPIo3dTLru1J5YCI38We3hNEgQPDWvzBavvXw4DZa6Jyp2LebUrUur+NqL1R72cQv8B77+o4Ang64n2IXoaPCk+C8p8mTv/PGPv+D18wu1njagb4k5Tsw5cUiTpG8USPr5558xRuB4Trx9+47zOPB8f+IcA9tGamPzTbQz0W+RZPN4I7snS/PJgGCVams7EqQP7/tnmBv2TWNe1b4gvG5VuzOBM4EEWTOZgRGcPBYj6WSbGAmgiJiZ4bE90Jph22y1y11sAbblnYMjM2vC73RWpg0NzYia2oPR8JynDtegYaFaItKB7dFJOT+bKq/JXtDWqDcAV3DGTcxDLFYEEt52tG3D/niwre79Dec4cb6/wyIQTfRTuxBqC0iXi5MK0judX0Bh5uSo4AT24GQFalqFwEFbRoHBfl6OD6JwunEsuhhsBBJTegXsvyX1zwHpjTgYo3npWlQSsDU0e6C1hu/fTry/jRWIv79xqsSjdRqm1vB+BP74p1/w6eUV27aBUw6A8zlW60oa9VosOPL4+/s75pzY906NqK1jSC+L6zLx2B7orS+B36LQP7ZOAxqBMQ7kHPj02NF7R49qtSDwFWPCuhhkGRgKOmASfI3EmCe27NjRkUbGX8S4gmcEmoBZjpDdYM2v0CkoYPz1l1/QvOGxv+Dt7cAvv3yDHhfavgPm0n1xfP70iQLkn17IbELCnFWbbXOByidinHh/fkPzDb0TSNq2hjcjG9IaA4lN1PIC+6qi0bwtVuO+b8gIzPMgq85ttfpxUAD3AV1CKDlKgY+2gvQS3D4PVjRbc6H5WCxGoBySRGmL6nwTs7wzVSrRrYChvraqapU9yI9Oj9+Tk6lWipBT8yhchaKBDlJeb0HYDZ5ef6qYYOaQQC8dVvMdKzvOJB8hC/gWFTFYUYPxXE61sV5i3sUgsuUXKpPJTOqYActhcSCE6OfBe3NN93jZdzR3nEHx+ZD2VFXpyaMn42lMVfVLxBpM4Hu/mCmhBCwqcKGJUhVakJ8CnUrES6eMQR4LAYHLQQNsG1rtcvYBO1+pRzns1ujXMrhmDseMk/taU3YullogZ2g4QAnLai/YPVjivp4hsWdvq8WtxPuZODZUFQpi3xX4P8dg4LLvqGq3l0j3IAupNaUoXm2WtLPA1LCBjs+fOEjgPMlUPJ4Bt4bmj8oZYWI6VaCVdTYttF/UvlStFnE7D8ooSriZwV4VWbRsS3y13qvpxCuTyOucAoq5p9qsHIhJvzlJ6kSUBJJ1teQ1BGg7xgi1+/ADXcJQVhVAh5gmV3IWE9S1UIGZvo4aCVvnNDBTUDxjkCnRbE1ybH0D3JBx0vZ6VywyMIN6R1eSrfudpuujtmTfEtROCU3wkwyAsZ0eSqxqf/0qj4AwFjKvInBOAjBpKcDJMPKa1llpxZo0WUCXWloSvB4zAhpr+iBstc9DTA5qLN6SFLsYiARQwXgIYrVkULdQjK1Akz7TCnt0LYrLrNpASr8E+rxYPuicU/Feau/YNSGtEmXzxT6keLwh7PYzxoSzEnBu+VyJuQvkRFb7otbGpCt6tzSKT0u3zcxwJkBCBc9KS+lNznOtFZRY0qZxaMGSjEhNvgJbKlrb0M049TjA9nkkYpBVurWOwMBMYOCEp+PzD6+Ub4jEbg0/fP4RvXGy6jnGYvHPCPz89h3jiJXENeegIk4Fp6231oCcOM83eDPsbVM71gUIhkaif2jj5V0saxmy00eQIXcVUq/Cj5WdWbo3er3sbrXr0crUmPkqfUyZqiBbBEkxejMcp4ZdLH2p8tlYIHX9ihzrZ6A94mLHNOnkDHUXzOREwjhL/6VxOESjoDSS09KYYGjgjBXzgWfNksNlPrTugtEz9NndmwCuWBpPOsa8PneYdby9P3GcJ9rG4uOXn35HltAv30CpkitpPuVLGQPyjF8FRtkwgTehHDGK2e8msXxgawIBmBKhbdtKqFnoZZmbQCCJCT/++CN+99NPnAxHB4UxTozzQNvYcnrGUNwO5Ew8n6dYMcy32Hrb4e0BTr50vL0fOOOjzXDDAsLINpPGoFg56Vee1lq/tOMyOUhEulTnDByT0xXdnaL7xuIoXOypZmTBpiHFaIsM9DiX7XE3bL3JklPvl75ATCErXTreK6BJ4xErHvn+/Tv3hvPMsuND+zkvaHOVegUMxe0cZSZtTwpcQjGeLiCInRQ1ZEUx642VBwd8Nkx1XLzsL+hiTZkZNq/hWScb2b1JVSRXq+dx8n5L1y0BeO9o28YBSrM0DwloRiZykOGFVhSTC6gJTFRL6ZGJ5wz8/P6OP33/jmckhjmewbwrR8p2qhCIiTQWv5+RJJzOxNYcfdvRjHYnbEN6p+6VNWQMzBF4P57waRhpMOdU3LbvcEuMk50jc5y0JS8vnG4+2BVzxsD++go3xzlIrqFWXENvO21xOuZQN5bOGJ7s8HHYyh08Gyx85Ta/5eu3T7VbSLcovDCMOTDGUT9BhpMZxmRQOibZQUsCSAcQwGp5MATGCJznxDmCbTfOyU0U1XMZv4shUbo4TDa4kYg6O3yccAfGbCsQRHCBUmySoiIDQJoWXc7s6rdmMFk0/CuwtMq2VnXBEjKMRcWtwFkOJiskzEtw1R0m6v9IibltANbhFetCAU5ELqZOcwNa6VRJDyEJAl69osDVF8zKCtugSJ87zgG3SUFtUSchyrE3E716YpwDJlFBrJxVhzZwVcVw0ZBrbDmTjkv4t1gR9OWVgPEImoCBQgCrX3xoMgMKBCgRxaCjgoJhU0BtRoByOkGX7o6tsxKTqSQj2Wuu8FFjnhOwhta3lfRlDgkUDgZ77WIj0ZEzYM9MjKVNduX2xVwL0Im6puTUtIkyuABWNRVFIfUSP82lBfWx2msKxq9qhxSqdA2+Wg4BLLFTDAbUxPa4V3pnEGDJ6sbPb1/x/e2dLToSh6w91Rv12zgGu6IRwz1JHuNETStyh/SzNJUhyDJjG6cSRZMjyLudseV0Vwk3iqZwVbwqPaq+egIcVyIVqrgW+LReqEoZlDgter8AE69gRgFsTeu6MjTZj9Q5E1jBLX2rvennKzEr/Yy8DsJ6u3t1bGVNS/fn9oMffsX6rtV3FnOSNvSuX8Rrrr0nSq/9iuWjPRTgeqwxvncbCGC11+G6j7U6NydUz7M0ntgWrXaE4LOPINuOmFGT/WCi5ktnRAsuxw0UgH2/eywggn/+1TOwGwOrrjdrHVm5MgXvnGZVkOJtrTOv+15bylAs2lzZ7sdnV8ykulpWZI1AzW3dkL9iZFWCtAQz+XkXi6ralGTnc2JE6aMIiKuK17X7MKP+vbTytP5RttPkbxwvjx2PB0E1Jts8ivQxTaLHeu5RTCHeS8a1FqZhD5VJmzXR1GudinW4nphgTiUgqfvUk6ncHSk9wqqilq4ZNxGfu/OAtqakzVk2Gcg6LvJPebEv9dnrGWbZ3zpfte/qu0aWquzCOhcVO+Wd9ZLLWSzBZFeSOjkthoAEn88MPcsKfBXwwuxiDyeWby5bdzHZrn1Qe7YOAZnEEgEHbVjUHtGGrWfKnzH59buqF1acsGIYfa9gwMU40phrs2IX5Cr+8RIpZF0+8mLHlXXSHisfiIEaTiAS3vKU9cwu5uPNzq3nnKvQnmUTcbOVN89b18gks+x0PWe73SMIxMkelFuoJXKr6Xv6nKVRUnGyXet4mTfZEcYmi7pj1/tXG3cJL+eH/asnlgPVmgkNVqA9jtXixIK8cTIpcrGh78legGyfvjXqWs3J7gUNzanJlqXTaqRmI5PiwteG43pPB6Y5cmuYAJ4ZTG6b4h2FfkANeyg9GO7pGhlOkftATVteTIHbviCoWe3jVwyzTJGVPeNuY+W//uFirYifx3AU1/182BhYUYt++fosWTL5Oj5f/7DfrpjOLVTUuM6wmQC8TOofcSFoz7xi2VRieF1Wnf/Lpl1+uva+iTAaMUEdHvrvitdzMgFuk5MYowqjbivOT1zFOHZE3OKe+tJyfVghAaxtxS3qMohLcydmrBgUhjVxjT9zdZTcgnLGr2ig5oYhoWnOcOY6ypd4ThtiToyYMG/o28YcwRvejoNt+XkbPAOegZpZSBNfrHtbumTrM3CLk9bz5N7uhlXwZC58SSJcDG/57TrLC0AiWFdsmxJLn0gyNMHYvcDaymULpPVWE8pkcTOReQHtvwYuq4BXzKEZHDDkay+Jg7fio+urGJD3b9e025XDGgTWKcdT8XjmRfKoSLi1YgumXifw9rYPI4qw4bdPZdFEh43EjExpQdEez+Wk6HdGDpg5+k5A6JxPfH//il++/hlnnAibODNhOZWjEcSBzq0I6as1WPJ3OFNP0u0iEmUsX8GzxCLT6iSS/ebAtykpHF+AccKQ0mzMdMVKxWrS/tevcvitdaAlet9I8Bic4s0uswAilgblMha/4eu3A081KcgmqkL+/ds73t7e0DX96PPjC2CJcTxxDqGLzeBRRr6qbYnn+6EEz3EeE89j4DgnjpFobUfrxtF9kXh7fwcdS8B9Q+9dkwsS8yCCe0qzIiWyxXHPPGw5XdTxtpKCqqkjAxmOORggbzur0tBz2Zqq38CNOMQH1Z30YJ+snD/nQQ2gRv0pc4qCkQLL8Y7V38u3IZNqnCeAieYU6VsOO4EaQz11sF9edt6XbUgLzPHk2qSjpcTZVsBZLVBNbVQnp8OcARwUfD/nibTE9rIBCtpaa+iPhm/fv+L5/g4oEXlsOwGLrOtLJFy0+gqAFcAoiZ9TTlkBUJqvyGtj4XUZDKt2lwLJInCoz3h3ssK2RuQbUyKfMZAxATfsL68M4N0wJymIW+9EjRWoIpyORMLjaUCbwHEmvG3Y91eEjOvzGXI6J9vK/DJS29bR0RBJkez3Q0wZp/l2A9KTIpUCn7a9Ic1wjnMF5yYnOuZEYAInJ0S8fH7QSFpbIIkpKCli5TUWvALrq7K2eSnbcP90I7AyTlVgXMwIJ304AeRIvB3v+Nu/+wP7nmdofGxXaATsj32xjMoJVoBW7uP9+QZ34PX1Fa0bPtmDYuXnxHFMjJNso7lAISxtK9f1NGerZG+OGCerom0yWV0plwFFMr0BCuYFCCoIBdZ7rwpnuFp5FRgHd2I50FzsE/vw+5WE2oqQamLOpaNSlVLarNWanNKDk3Eu8GK16NU7KwNOsSIu50/bszKM2+kRkgggV4tDbw+N0lUwIMd0CULWSl6Of4W7CqbIAihwB2stKnis9VjgG2IFYqkMrSjvNYqb1RHTECiO2Z6L8QQmLlGAoN7HU1T0uNbYrs9fCQzAfvpKBNdPJDiZiJ56gWEA99ScSiYEMBsZV/VZq00iQqKxdnUurr2lBIY7iX4ChqK8D1XZOhjUbcUoNVN7eeA4jjWtk/ZOjC5v4PQyrGCsdpK3rnbhwEgVcib15YYCGHi/7AN4XmNOtQmxep8x+J6DTM/9hePV963h06cHXh4bnm/fcY5BcEkBLdmMG4tNIXr5TLXL6Cq1j1tztK3pHEy4U4fC9Zxz/XgqblR72gKKQR+vgI3nL+GNE7FEuZIdBqrNLxup+ObGgSYG9NORI3HMSuywEgHqpuC2z/lvNaUyM7F10/SeuhisBGAFZ3rlwuiX/lhbNpssOvrpNON5iIlTrf1TAGg1ulfrtd2CRawcoc6OWAoOFvIAXLwtAXa69mrxL1vJdgCe4aFrNKOzpli4nmr59DIg6hWxsllWZ+eWkAN8juvsXYBs2cxKsLaaECvfcLFF9aVlD2kU2Wrhs/UDqwVFP7/AJ+2xELDGR819E+bsEgWWDfyobSfAe42utgXqVYKJej/9MXWfyoXAlJYaOCOYwM9zkvFtdcbV/g55OQUsjHcHYjFPafs5q0OsvEoEBACsCV+zILQnFptH3QM5CBp1Y+yckwW3x6NjxsRxPuG9tEZ4vzPIYPq0PzhF7nxivJ843w/FwC6baHBpC2Xj8JL38STLXS3uCcN0sr3CN8w5McZA90Y2Qz0/CTa3OgP1C0yAzzw12TDh/YF7q97yT0HtHWLiH/dUGQNT14M6ZhU/6ielFE8wgXcYcy42Bx+/f/xzJkpzpEDBJRQsRiQ/uvat2BTl1+7aYtpra6oixGqURksBUJGxulhr7zEhNckbsLhbQuoF3JeV8kZtx3mq3aor1kmQWTcnvn37DndGOjMD1ttaz2pFvYCnvuKRD+epYjddqNs12bmZ87kFgAgOH1DuRR0iA1pbk+/mYHt4tcYt0kItf6NWTe+OY06MOdne7A4M2keSHRzNGt7nwPsx4M78YH88EN7w9edfGFu2rlY7MkwycrXUbWCcWU+u0SAzMgyuTT3g7twnrWRi6LgJRHWy1Kptqv4859RYe+p60jax2Dil/xtuaL2jW8eAYeZJ9nlyOlzC0DRZMDLYPVOs2Lj8XbHf5pzoXZOnFb88n09EJPb9gcigfqo3dOl8IcsWONiqi5UH1tDVK28FSry9WFFAAs65kaXxNM8h4ImHu67r9fWhHJoAIMwXESJaLL/RzbH1XXI/3C9XxzcZoIz7rtbUEfTN3hmHPOeBvnU8Xl6Q58D7+Io/ff17/N0f/wbP8YZpg1wCTEyr8ovY5oilJzryarWLZJywNZIoyi2OOcDpdHz+j7YBpJWvOCfEpDqeJ/fmtoG1Me6bcEN6kynq63mwiNxgmtNnKtRv+4bWHA+x5s6kL+6NefQcg/4Sxi7TX6OK/56v3y4uPk7eZJ5oAmTa5njkA1tnMjqjUFfHmIlv399wDMNxcLRyM8cRJ6mMbxRhbm44z4m354lzCniQsWUF1eBqXzD0tRFnEqjgvjJ09eKy5/bEcfJ1FB8rVHyA4FXeqlW1udUmhwPIW3+7tgp7dHlwaoz1EjKtYEmtFYtOGBxJbmCVKGVsqhfXVDVZ7JmseKEhHZwypsAmBgP52ZP6PBVsrCSQ6+Z5CwR1sK2BbVb1nzlGcmx369KCmCl2TgInk2WHY993zBrRaLgcgcnJpLhdxgA4iy1UTrQ0vpRkAzJm0OTXFAON5gZE3CHGzEXrLHbUeZywXAMmSc2uJxVS6Z8AMtBbg2VHQ8P39yfOOVRhIrPhWiau2TkmnhKcNgDbvhOIGGCC4bYmrLFYaWoZvYxyRqg1CyDFfS5HAWMgE/NC25uTuZaTzr+ZkWFUxl4tMityMrYXwYBWxmqyNXRVX4MUesvEpoSnNyfz0CYpykYwM+YkAg5gTBpAKLjcNjEbi/4M4HX7hN47Ho+dgrTuCuSCYLF1eARQWhAJOUCCrmyYxLo/Oj4mqBVkWVVc1+lidDbniVWZn2LLhGM2TtyrwlcFl1DCUZWTD87OgLb1D0kjK44lHM+vqX7xqYSflOlbpV7/0bEC1S5SDLy1N2WQU9FfPc4CmuOiKKBaUZvzPMSYKOZTnZ2ic1MM90rqMhPNd1V86KQoTspExKzBWwkTX69Zv7Tuaan2vhoprdp2gT48lbpOavnwFhUQN70ub4nYDUywcoYoEDexJYNab87AeeoaDBy5q2qnNjnf15NMB7Up1flea25QBVdp98oiuJ6+ztXFDviQYy6/wOojlPQUM+FqY6qFK/YQg3u+F6eUdtsWGyJR06s1vUTtFBAAsY582fPaE60tUIRTfmrbsC3sTODQtKiZQLY6GOU362Zc7JskEFhprEm/rRke2y6wGxgjcbaE+Y6+bWIIA/MkE+ft+dTzcJHHqDmTWToWAmScLTGZZE0VCKKlRlrpSZTywOVDSrOBhQwFCGI5mbGFfoEuq+2G55fV2ykAgWOAIebundYfenaLJaBC0eVT53Wt4CjoYgRfEKcAboFqTHBp38dkiziDe4PLHlSbuFnjxE+9z9qqVtVfMoFKly+DCYdValMAbbHctHeIURnq2BHLld2zAr+vNmLTzy4GxdLLiAUScELcxaJDUusEFzSFqoS2MnouYDZu1WNAga+iLldJYcZq0yh7FRHiJhbgo7aWZf/q+kCqvZIWgv65QLHIst9Y75NWDGu9XhtwMRPqe9oL9ylPi+GpogFg13XLJxeo2sUwKmYSR2ErzsyEzbjpTRbj9vKGoWfqxmst4KNAdq8St8Vqy0byPMV65h1svVFhwTm0JSPQWkezmgyXyJNlu807waA50fYN1gznOTBO4OcxOVxjyDE7UJNGWSwzzCA4QXCaAu6mKvmoYoN1Jke8ysW+mamkupjUKdQGH22IesTIRFztZddDWzFArQPqbPF9uEj6e9kzKH7OYl/S/rgKDhBounyq3W0B9yDPsNfW+eB/ueW1F1ZvfXlSAgiJS3vo/lUatHqxCu/XOVtk16xMgQxPz8v+VevSMYcKt1iFbu8N1lwtbYkzqK3TXGLCSLy8vlDI2oDneeD95z/BeycIFHz/6t0lqzaohaq94Qu05VpV/FxMZ9rrmvqq+FCF7uKb8b1z+dGMxNY3PB4v2PcdvW2UfpiBZrJPSVB7RFDAXsQF5msN52T8561j39miSpvBOOrl5ZWgtRm2vrG9dB6Uoyi/ESk2/0F/GSyA1POF2Xr2FU1OaaF5a7dQtOLl2xCJioNAEkUNG2mKUaa2ekzK0yATY7DNnIUcIIOxdltx/FSclKsA37rWV9fSel9sqDHOZfdadz7zCUwJkSNThQsTE6ktW8wCaKDYUO4EM1gQ4HkvDSwCa7n+LTOwpgAr5kJUPsoOlPM4KVheBeEEu4wAxR+x7Fl12OipyF4x3p4jWKSpTgQUcBrX9cSJ9/ev+NMf/x6//PkP+PbLH5V/VVeFI1QcjmlAdtkxdVjIOWxdLENrzO3iYr1VEHIvVFeBy5z3yTZ4x77L7RixEw7hYQGznHyMUFiovargn0SbBCx0NhNPTW0NSOImCQanfibt2s+/5es/CnjKnMg4sHUn66g73Hf0/oCb43mIXmuOORPfvz+xnYnjAF4fL9i6YRwUHTyeJwxERI+TjJERuaqydNwAPgBPRa41HpBMjUd0tIaVIM04cY5CzZl4IRiUuSf6ot2baKMExTIMmAeThlbJSwW2Bm7pSqJwUU5rA5RAImRgs5KDO20vloGsDdVEebRMxkpOWKU5g7MZiRh0DrmrOitzc5/4YnmlhDQUNVqzNmgFPPSEkcGpP0bGSYo+SNofnXfrG85QkmAMSHtrFCebl3NsxoRiVU74CBdTZ+3HzFX9rOpQOWFXkAhUnmTXQQEdyxjnCta3puQ8xfiJSUcwGShsnXpfEwzmx3EAvtWF3Qy4gKc5cRwntl6Mmw2RpKdWkSaCFYZmpB23mppkV1Dslsq/xHCRY9FVInJSvcYr+QCOOaQV4WuxigVRQW+BHmX4Q2fFKlBqAFu2OcUBMdE7y97dN5izel4jMocqUZlkhA1RV9EM3tlHfp4T81TVGcBnsZ0e+7bO0BicNtGNCatrtOaqlkTqrDc0mwI9r6pDeq79W+wgF3NsibZC4Ffl9wL5IjlRYYPzuq1WellmrOplXN+vRLPWGXIyaxSrnMqoyZKTtqM1TqirBA7QM6jDl4x9CULbaqFZx9Kuz68/pwUmNN0FBgQD0W4di14b92CDgcJK1JQcQYl3k37KmLQ1QwG6N4HAruB5JZJXog27QmI3sk7nHB8qw3k/417MMT1QRbq+gD7Qoa1An0FK6RoYQCDVK0jXDpAzU00Aq1VyXotM8F72zUgpXkWLvMVsVm0zSpizCiS3STK/cpi3tIQfB1MynhDBTf9WbI1KvnOxr+rvFVC3Tj2KOaUzwEemqnCdl+t6eN9qzSrQxl2Jm55ztZQhMMCK2RHU4SFLt0Ej/wDkYpUVG0FcBCaNJpDaG3r3xThhRRAYJ9DbfrW5T2o9zgiMOD5MuqlCw9Jn0L4pBu7abyEwT+eW8VVq7VdJZwEI1TZH0Kmm0F1T1HK1Zn/YADwjMGQOFGenAlnc9oBdm3Z9fuWjqX+z6wbXnhJMgyswbTCTjqDWnfIDgQ5WdKmpFTq3sarkufbf1eLMj/RVCb5818V+LAbfAimy9j0DVde5j0j9XokuX3+zmtrrVs0HqCSnBgAEqiRQr0mghq/YxUxNgagsVtHvknkJAR1XS80SUdeih/xTZKyrq31Dm+tqpTL5X65JxY/Xwun+xNSGJ0Ism9Bra91nZfHLDxeLE+u6arVq8ILVGmVZevtwvYv0J/tYoIaB+63pfgABT6HiotXlmwhtVpjuAtCo23U1ypjONve7wAUBQWV0yD5qii9OtgMucCAJLBj1XzJDLYBkX4Za6VqnjzrGgciJ8+CIeKrEuGLassNMNKds3aGpgwRoCNpHHGztn0zSUi1Z1B5kQlyxZk2YWsCT5U3rie/rNWJu2Af/s6LN9Tzr1No6P3fQx4s5GfXM6jPvOdZVdFnvtv6tTgjPGd1jXjHB7cxeNZBrTxLQKvBVINjlfHQexCBxaYUxAFk+0Gqf6DPZwst7KXbjiIkzpnyMiUVD3S4zR9vIehtzSD+7rf39eHng5YXT9OzdkX8m+3DbGiBtW3EelUOWhmedu2uH6zYILS0We50zWVqrPKwETJQzJkGWEMjbe8e+79i2Ha13zPFGH2Fk2wIX6LC1fiXQxr3til/dG5nHq22M+drj8cL8LIGtU/tw2sDEXLYcWRMjFRaIvsIpx3W/arVfU9KZf5piVxb1rrgRBtlELMdkRgYg3NDW3uO/RbDtPiMQQ4V5CLRLoIpoiJRQPK95DOYk295R7W30Qb5i0jGoX7ntO9vXe0OgBgpxv7pAPVexPaKpu6XiydKTKj+PBTwV67y0r3KxFWOdmRwq/KQ0SzORY3CS2wbl3tApbyigasU2UUBo2QH+qUDMOUPkEBqHOuW54jYgYuB4vuGXn/+Ab7/8CW9ff8bn18/KMWwxs3LKCMhSIoNdL8k5tdZtmZHKk02s0HrWeQUIaw1aTWoMFlX2IhMEwd9zDLRu2Jo+P6G2ajJes4xanTaJn4d6+eYk8AQBT1XIWPHa8tu/7es3A09MABpae1lIY/VvFojB9huNoBXN+jw5uv14+w63q9XMsCMD+PZ2iClGFLuEYDOBOVihmaMM7MDWCHj1zrssFLyC19VuZxOtB3qfmGJJsQUnkRBAoSo6+yClo2MbDB2+OSImjuMNaAmPK3AKlPaUEicFghbn5Y2UMI/zSSNpp4xGQ2nfZNAIv37a4A043t8QI9B6XS+rqRYMBsybHPPAoVaU6QJvUpyEVOUEBJrocFSZQ8IU4OZyrjz83R2xglhVWk6OJqXwpMYMSyCeBZNC9tuaPhLzFr6uQF3BmtriruoeD2WTs3PX1ayK8xUf1ARCaw3NiO43Y/g7hoxYu4DBFf7vHf54IDDxPHa8Pels4hhMnAZZcK3t+Pb9G87zidfXHb019O1B8KFUbUGH4N4pGDwGcFysibreEZyOsSpp8gTHwZbRzbuSgIl5To5eXdToyb7593JKpqq72n6SwnGoACYTOQd809npQJpjax0IQ5wnYg7S5s3R987gb1zCiOW43453HOfACPKSUi01MKBtZPv03vRrW62EvVNg3aUjVaSU3gtEntKK6eg9EdOQSSG/4dSa6L2vBYwZGHnizb7jbI0i/LecZFFHs6b5CUyYBvjNpMmhmujA1FWDWpkYlDPHzFXtraCxHOW+P9aI4Mzlrqn/Q6+5QAy/7fsKUdOTZ20FuV4/sOzEasUDlp1LNETsuNohrqQ86zwkVisakxpWX+dU0u6dmnIWt/dmwLCSnwJgwX+zEmTT+tFQ+cUK0/usBGwBL/SWFGevFtDLmjARJ4Br+rzIwftX6x3s0hyaCjKKIWSccEB2pEGMqrIv1ZdeAQG/H7EK1rdbkp2KMlCJX39VAcPEXgWqKliBQllNBR0zxVixZX2KBXH/CqH3l2aBEqLI5fhbtd4pMDqOk21ve1+fMwcDJXWt4/vbG4W+pTN4ptoqwUCaSZ/atuKyVwSaOJ0o50mdFrXWtNbQvWOimJyGodjDAJzjQGk3pfJ0eLIC1k1rVGuxaFlr35h3+flEzqpsVzKK1Z7Ac8YRwQTmYt1LVCKiCnT3jpgHAgkHB0LMqHHdvOE7CFxMzYCSHbW6w7QzLmozE8+kZmBrLLzBNgBs5a4kkImxqqzo9EMOlIZrgT8jAgcSRxyoFlyKt4qpZgU1LFPHrTIHhbS12RepMm62TOfBpeFgpW1ZjKZi2OQks3qtvT7nZgLWWbfrrBfQugq/VudwcYWWL6hx1kXNy/TVLcxf/EAzwPoF30F+qcD5emyW0Bh1XU8Um1P7RIVPmJg/tTaVwFol7/ylZUP1ORmumNYBtVvJmqsFpoA/xg6q5suWXsMV1MJXCSPK0pCZ5wBivvPfKgHwZEI2BybGapHjG9ZZBjwIXhJAYBzuVo9QYOEtUUOQ/Q1vyGKcAUBzvH56YVITx2I8OiYaErtGfcfSpAw8esO+iek2J1oBjIj1vpksXrpYQda5bpuxpel3n34giDGe2MzQzeFfXmFpeB+JMwJf33mOJ1gQPCVwTpBRfuxMQC1DtfYFxIZY1JZV4b8YIsX3rW1uSvBWRrdQRmPMouEpPICUfijgg63rBJav1qBcZ+I6SJWo8vy4mJ0ZFXPr/Nb3rFj2EHMUao0FMm9TxlRELzufrriztGuCjJzKEldBSK8lJz8AJxg5gwNtQodkaVLeil5MP5M6s274+ds3HGPgr/76r/DqwJcvn+jDzycnI8/J2AwGtFixPHMcAYkoW1MHkj4nl12pM9tg2ZYN2vYNgHOQkm5zzMA4Dsw5BHQNZImJe2J/kE1S8QELEmoHVNvRwInIqwCbbccPP/4OP/z4O9qMc6K3jecWWtcAtraho+E82CWyq7B/MbuqKIkLPC6nKvA7MoEZyDg/FBGg/AcgcLckLwDFHyqIBmVEHi/F+GPuNcZESk+YuXAg8iT4r4LYGAPbRumclA4cB/fw+ZjsrIuRtdmGnmLNDdqiiMDj9fXKx3V0porrFTejwFAxeVmgqAIf4/UmQ10vIQuIz+rx2NDc8T6/I5FoWycLfXAQTW+ue9nQNz7n1hpmGEaeSBBcS5QvoM32zvbAkNxLaKiHW4cLdDze3wEL/Pj6I4BAvA8cP7/j29//Gft0/P71B0j/gIxB1BoAxwi0hEC4uPwggL13xQHVyRCwJAjqnYMWzhhiEmqghjtC3RjnZIxXa9izrZEzzTo6Orwbom2SSpEEhAHRKu48ZEcSR0xKJcWAA3jdGdMgNJSiOZowBl+t8v/9X/9R4uLuIIMCwQOqgK7M+L1ynEogIOc7VOV97LzY7g0xE8dx6lAxSCoWEPsdAzlxIY/FCEFfVbKStjRV831N3mAV1FsKiALMb5QEYDkpOgId7GI3uRxoXBXrS3i8gqiqZdg/Wu4KNEIia7AgQNMLMTVN3Aq0xj7KpwJrD8OaLKTN59DnFvobgwazlcHm/QQ4d6Po4/yHua5vGUpUgEkD7opkK84xMPCOmOj7puSeyHK1I9RzrqCVFjCXk9WHXyuyok0laULqa/KLl/PM1I/lMjrahAudr9HByKqAxqJRrkQDnBa0GDpmOMY7Imy9hoh3Q02HSkz0XQHvZNtVVMUwCwAUhTYmfDrS/YaIy0CqNaaqNwkg5oSbX9OjUpRzTbUyRf6JmkbAtoqidJc2TwSnRK2zp/YGTliBHBSDlud5IJN6Ta119LYhp8Au7YEa8XnOgTEHJiS4n8CaXKB7pLA4fy+G3BLwFOiQdUxwJRH0qwXwMtkoECQVPBerB0ooxjlI/fcuB4VVjcA6efpe4kpSru2y9ETYkiBAIK59XFt3VafXbuMZd7XIkip9e/8VWNbrDKyiVaCgILOYOQX0fjAUv1oovc09ubsPGFgAW318BYSRalviddd1dlRrjqYdqV3hw22sSquSq/sF3gLWsj317dsi4GOlHyuo4x7l93z99G3dUDTja9XJuJzrWWRei1OT5aCgBGKO/uptf7W8drM1dn3/XiDQOqzEen1KXu8BqKp+Xc9dO6I+9wI25Bu1NwxY91Q+xs2EfV53zxZKX2wK/n75m9K+ql9A4jiG2Ip+ExUvVsrli6NeZx+3HTLJaugullsTYKlkevm7eq6QjkYK2EtcSyuGcKu71losB6GY0xxrNPva07U+svOmXSnAMVdFeN63HzJxtXuzfwAyjrczmx9eAwHHBZBmARJ6buv51B7MYpOQRd1bQ6areKUCTt2HWDhXm6mBrLOJElYvDaVZYFqGppL5/Wo/fGU9q4zlLxa4Im1L/tBVQAIKU7Hbe1w2ZgkOV4yzPLot31qEkbWWebHwLmNQcZI2md321vrQ+30ZCihfT+hXN70A8XXuBZirOp91DWtfVSySqKJP4h+/+XX0r8JbXZLB131XnHbfxS5wuCrljoo722XjlLDb7XPLxwBZHI0VQ7l+wI0xV7GUqOlU1l43o/dthsVCrf16vxFDHXboM4pRUJVwAp2bd8oszNIlK8CIwwUAYjtkTQS6CmFn1P3zM+7c9cs/ERRsVWwF0Jvh0+suBvpEF/D0aDscju/v1HodeLI1VUswstgu4PoAC7RcWyABiCVT12Nr3yUgq4h1fZBPucWSAG69ayimkBXYlXW2LgHuagm9s2YTvJbLp9z+rNjD5ItXTFMxwO1nq0hRfgzG2Pj6lHpGKtroO63Wo8jIkO7ozb3Pel4yzZ6use4Vl9iyKQt2WvldxQ6O4zjXSWnNsW8bzvNgl0xMoMSs4Svmr0KAad9fZ6XA61xxZNmmi5FqqFBlacuCa2MGxgU11c8NKFbpFBPJIf2kK55h4T6oNQiQFCBAE+6w1rHvL9gfL3gb9Bu2GPY6+cFzBjecC9C52ujqZC7Q6UMsa3UhfJ4fnr+tLdnaFcutPSHeV/mCnJyb1pvS+9CQiFkaULX+QCqPp29Xh0XXlRptX8Tl39feNNqYGoSzhkFJGqT10hcmcwhR9pzAXgGKWc/VrmdR2oh+t712MYuDj1iTqH1d15rSq2JHTb2+pgXzxoXNrnuupGn5t9u9FmC9zmOdtylWX9uRMfF8HhjvJ46v7/AJvLQN53guJnMa0GWvPQj8uf7O6iX3A/uGGnpN6k1bkjxXKYrXRt5ixVI608lnza6MKpOTcdzAXwzlr2p4qMBrTiB9pKQ9TPsQAEIDtrwrZmAsc5UU6+n8uyKXf/z1m4Gn1nlAxpggGjQXek+NJ65MJnCOUwEDNA69w/wK4mMCb98PjHPi+/cn5gzMGfj06Qser6+iIYLMizkxD05eO88T2B+wmPjy6RWPrZcFgTUJ5Y0TmQPIAd8p2M2RhWD10wDKXrD1J87AHBPhpHb2TYKP40DEYKDZqKsz1PNLvTS7NGJAI9c0/WOh0esh3+hrGCthIRqfeD55SCJCwa0m1sVEjKFR4oUCxwIAQxT9Jj0kKwaHGDRDcvhnaAymN/T9gb13PN9OHOcTvZNGucrnRVefWG2BlrXpWc2htFVq62uiw8gyqdemiQRmkWzZUtO26lPJddCXzkryNRk3zQO7TcHICo5xW8NEdTmXBs9D/bEEyCZmvmHbHN43HOOEW+IcHTEc04iKe2toG8cx2+ZASxzxriBhwNUqFmLLQcyncxLpfXl5RUbiPFlVWLpVadjag4auz3XoTJuigxWpMo6GWAkRRBmeHggPbPsG947nSST+VEWk7R2RE8e3r9SPcBNA69h6p+jwZDvccbwjzJDu2B4PbK3jTz9/w/M48Xa+c3x4DBgc3RxjUOz4dz/8Do/HCz69PjjZY9dY8WKmREjsfa6kFcGAlhpPpJMi6FJa62hBLQEG0g71mVbIx/eM4CTCCiAaWyBdwpPb1kXvLcFCGbZtAxQ0hN7HKyxe4ALPXW9qs3Vf9GKzuAUuWOekgBqDqmUJygRn4q7pBO2BqXa3LhYjv+zD76bAvCrqFchEIQWQvWltOdVQYFY98VfLEFCTQ0OOswh7tlhHAqz+nawknk2eHWpbrRTMLifP3xjVzhJrywpIyYwz3BMi09KXH1BFV+ORebynWJdDwSRoL8ulmQmMZVWs2jcSoQEWPG+uySetEeRp7gJSFb0ZWNFB6pzQtlCDR/YZgLWNNoURGo7ns+Jx7gOntkO2jis5vNouygVfgcETgVgioiuRMAAjkVP+C1dbxMuLxk93RwzaWu8XCDlm4O15EEg2iowPBTEkqtH6unHSi6/7JRMi5+D17A2fXh/YesOu6bSYtKxtVSSrGllV+ARWBdXACVFAsoYOq+k6YhBcE4YcrbNAMmfttWqBG3IDTCgZj4pRWFW8tjG+iGtvzmHIAQy11qxJV9b5PAJsEVmgVgFMkJ1ifFHJuZuJQVHAaSx/ZRFIMUbHpEy4PJpsvtjb2thrrXRyCPYTbJp2O8+YsImlxzILyFKxg7GoibVZgqh8nGvsdLnxEuGqzNbK1gDejWd7XOD7PQit8eCpIDbd1LKpdglbpcZlR3H7Xcfpul8IJMAUwFeAPvfoYp7eQVidC6bsZGVkinEMW7H6nFfQCz2zBQoo2SmBbsgeUZdQSZqAsZTe0Iv0swYGhZpzohUtKsQahqFF4haZwMVCMzE7XGCDqyXEzSl4nSF5iEqUS6ZADMiWYiioXVHOphhwSwLBHBAb3pGrs5QxYqP/FvsmQb96CcIxgUXmYluZQ1XrxN5oozj5LhhPg8C/6aFaTHgmuti0cxn1K8FjK7wmkJnj0Rx7a9gT6NuO/voKDyZirjkE29Zx2sBoTzznxNsYyGbA9sBEyTToHG5kynoUWBtADRbBQMzEmmiNiyVUQE8lu8ufFYOzQC7g9ktnSAyO8r+z1sUBb9RMoZZoccBy7Wm72xyd8b3iCr+StjlDOm8JC1+sqBpkwAKkfP7kWaDYfKJa3z1uabtYWdMEGMhWLBCzqdUmpfly819kl94iFiuwg8860/A8yKb5t3/ztzCwzWqeJ8bzHfv+QHs8ME5qm9ZyX3VaFditIIUy1td6FRPvwrhtscDe3t6RIFvL3bCJ+d8a8Fd/8Tv8J//JX+Pzpxdsm+M4aBkaLmHu5/OJ4xx42V/RWsMumz3nxDkH3s/A49OOR99pSwYdSabhfJ7gpLua0Amcx4k5Jl73B3preNkfyAw8n4fYM2LuRsXzFwMtBWCb9BdvuDHZxABlKgQ8ZQAYlz8r1kBMxT/2ALLg39JMki+RBErZP9pSWqF5BnIeFA/fdhyDHRZbtdHFwHEeOM8TLy+v2PqOtm2ITBzneeV1An3cHd5txd1DA6NQp8OmYgDGwqvtGsB4ntp4l3QOvBosU6ykqe6VoIj6S4c7i3Qs3J045xR7z8s8rc6N4zxxjoFtayjNOdO5bmYq/gOwIbDFsCm+jSOJY/x84Je//44//Js/4/1Pb4i3odc6Y5ucsDjhc6JjouUBx4SlJIwygDS2IQKANYKAc8J6A5qRMQawPRopWZOSCUppJjrcNmrtmmmYiULsmIiT9tMyr6J/cKjFy+cdI4BntdM2oIgATaCex8n9O04EHAOO7tL8KnDvN3z9ZuBpVZOyeM7XobjQQKASu9vOQlXtFb9zA4ZiIv0SR3eBHEAZmwSEmjN7mHwYxj74QuebGywkjpxVkZNI2a3p1QBVSMqc3kGNXJvy0pqBqkC4KLpZ1Y0r4KpxxXV/K0lVq9JCKw2Aql2mm130QyH35dwLqafTLwRai2UKxFJ9t3Y98kBIfFV/z4SlK7jt7HGWwF4Ju3FGba41WoHQgoYvh837BR1PPWNd13LXhZRW8IsEwiiat4LcW1WwPj6vyjE/zSpnRQUFEYabBCiqKnD9TsPEj2aln3THYuvowwzSSfHKGfV9OuhAtXSElsFWEuPyhlegrAG4qUrJWonrmXrtgnVWsOj8V0XhOlNc7qqWqea02Hpakwr2ajyKmF83l7X2TuBKZkIVzXTDMQeOca4peVEMO721u2PfOvats6XSb/ddd2nFDCpbASxNjWTiERa4RJRVTSqdjBumsZZC+6pGMtvttnjbdSYKFMkrzLtrdEgfiIkhVuBUP3sPDP9ddrNec9dWuNs5HYt1PtZPBDPnBbbY/T3vNqlghmKX+HUu9OzLjt5SuY+/DCuR0c2g3uKq5Ni63puFvq7IeA0rGMT1WjJJ6s5un7He3641rPWquyy7sT7015XelL1YuxpViV673VTtLNGncnJ2W+91rfyUD/sDqhxVLL6emX14jh+ZA5ctvJ5n7feyTQzgYl16tcrdN9LFhrxYW3Hbe4Gq1lZilbqWEl7NzOt6ldx90L9J2tNFALN7vet6BsX+yvWMCb42XG20leCw4iqwSrax2L9WtjJvf7/Z6fszLN2wYsgsP2a8Bs/AxFTh5GLr1HvVM7hrQNzFs/nedc7rnPh6ja0nfp3fte641RDLT32wbR+ihLVXijVZPul29LVu9/e53rfS0asd52a19FwqXKnPvNula1fVZ1+XdWnH3M9S3bctI2v267W7jFO564xrdbI0RkpHxz6uyyJgVIC3/Hd+WJOKHbLup26rRE0XOHc7x7WvQowECsx8+Fpxxocv+5i43Ww8z4DhekK8ttuuEdgMIIpBzs8wgTUkVd1YcnWrspHVJly3WvIUbImpYQSKGcvWJcSQlh0QY3atVdaZAmpSZk1wtboHW2b5Yrrd9tlanbvNQ7Wsl7/nNZINESBTT5tixTUU6C+2alpZh6wLRYEjoX9prXNwgfdVkIY+o85QM9PAONquNKOWJS6WYH0tvVLZxyjbVCzATLDH9bZLl3+89kRtAZ7B6xsr9A2KFvNRyAbFZTuu43nZlAUM6W8fmMUGFrpQTOi61nJtep8UcJj3zaX1zXrOeT9ml/5Xtcab3juvPeL6B267u8+8RSXyb1U0LlD9Yo9cljNBVszxPGDG1qSYIakpMQQVQ0OfSTZp3bepuwMffPF6MLjZ5ixQ4PKpuK+18jh3w/7Y8fryQBXJCQTcnnfmzWww96y3dcmcFOuotHrWlN1a94RkAmhT6n05KVK6Ucn7M+W35VsdbNEddR23tuJ6bGsF5PtXWFE5VMTFyq91q6FXUTZdOVVeoue/jlVrD3mRB7JsZQGYLC55smgNYLWqzwzUsKa1mpkq4AIrJkISjBaY2bwkeWQnMlEcmuXJCm8ACyB11a1iotte+dixUN+ba+hZWWBLPV+rPO7+mvxHv9vtGut+Vg4blHp5vp14+37g+9d3jFNT4pTXjay2XwGfBlAHMZB5okBxWwnOBVbffdiaYK4Yqdh0FWrkTHHfkv4tryjzsjOxbINjfRw8Ex6BloGG+NB5BqQmLSbZi6nhbLezk3pWiY/74N/39dvFxY8nYFV1hFpmypiRFVKTS7ymw8j+xbiEqFwMmm3fsbXEZhs1Xc6kQNYI0YINj0458cMmYAHrQPOA4US3ia0Fns8nEon98RnTE+cxVdjZMI+Jcb5he9ngvWHvHZmJ4+2J8AbbmjbDNULQxZ9pzs/cCqSYAy1lmuNErmlGEMPDYV2TQUAVfHeXADdWb26kBN4w0Dc64EExKzy2B429ENLEgCGxdb7enNPoIgPn8URVPKx1+FZVd6HCAKvkmRjvByINY7Lv+fQT6RN9c1ZWAsgklc5bQ986+rbhGIcmn52YM7HvncyxTJhz3D2FHn0xO1wJ6jxvJUkFo8ecgJvEj009qoaOTR5X7WRZVGm1WyggYmvmoQAQ2PeNQuDbjktT5QqgSTHlyM19o27JvnMyy/v7dxgaXh8vBKKMP5sGbOloaPCmUxmJicHeYUUZ2/ZAc0dzVi3OwfaT5/uJho6eG7yrMjNkuItNllM6IZwYYmY4xbQpSiqZbBTrHSFh+fOETbJCshl82wEDwoHNHC9LdJYT4BJYonm+b4jk+wxohO44YTHxp2+/SFS9IzMwzwNAQ7OGLy+veGwv+OHzZ2zbjnAa87fjyecDx9a5Z3IMsqueB1hB5lPsjdoB7+/vOA5O1khw37YyhhWw5T2NIdW97mFrEpJdNOnkxLdMVj/N2NILkzYHDS8FJ7GYMl2J9XMSvT/Fuqqwq3rnFz0XWCN9MwZmOtLjAhCVzLR27T1qx0wYKFRfju4e/PMuUlG7w0x2SIxHbwcZn3EiwjCmLTpx6x3moIpM4haQs++gWtT4mWo8kBO3BYQsl30lURWXW6pCFyv4WCyK9drr9aQ136b4zQsQMRj8DgxWkKMgtvRMcgXLF9DxATMzg9u2wiVvfU1wQebNMV/34cAHZkIFMa4gVgeOzxhkts0ba4nvoesWyGQr+Ca7AABysKW6OTUnqENxBQ6pwK2SimIr1Xl1I9uyWDK1FmytoNZT6xv2x86pMUFa+5gTvW8wCzwP0u+bxqFbo7+jHVDlWoH7qiLDsG8d3YGXlwe2XvucASWvq+MMtuG6s72o11jiIlEwmwF5r0oiqxoiXZ8xCgRJQEyf1sRjmOfHKEvvweTlavcFDCEm7xQFnessFkuSFWioCjgZLDFOpdCs2FIwnzoPzV8oZl/BeSVFhsU6vAe1ZGIC3joemwDNzNLshKm1vTnI9MaE2YTZAIxtEPBdCMM9SeU9e028ywroaCIYWfDng0EYKkm44q3LvjBBi/VsKpHYNpfQOfflyNBYFLtAJyGz7hwYMkYd2tKJ4XNMI1OGMSD9L2uIV9aUAg4SVfDS4pZ9dbvOStYkKWDbZMetAae044J7rM7ox7v9x8H69acCZa5kq2wTjK0hSAMGWT/baqWC2JuGc5x84Umx2X17oILcSs9GjRzPGyghMOHMiYEa827wxmseB+M8S8O+bfBtA4xtL8VYNDThc/SdmQFviW6Q1iVgGiJgsi8hPSLkLSmT0O4c3Odb6/rswOaGbgbDqcST+pdpQ0nmqQEVAtJylXLQOvfJMyaz99bWXsVMGDq2zz9h3x7YHi+wpP16Pp84joHddnRr8DScOfGGDU93PFvD23jH1/c3Cl5Hiu3sZKnIRsekFk0x+0PdDd7U/r724w3S0CFfIvHa4rVPDNSlmQdWVb+3DksggnlH5URujKGpvbetdunUGpU8RO2/OakBVG2Dcwyyr3tDge9FUstJpngO+sUqVsIvkW0LX8k7MgGxN91qIBMTfcY21dWhwqrXWbi+1qS55F6bM+C94/F40O+MwTjFHE3abOc5EXHieH6jkPHWOTlTGqMpnSM3apBGhPRTi+mk9c+CCG5/TjJbmhEc7p0xWt82JKj7kznxPJ4wMLd5fX3g06cXPN+/I4fjdd8FLDG2GWOgtQ5vG/bWUQNh3Bv6/gI/Bo75jv3xwOP1BXBbWkYJx/bYUYM7WNTiEB9v0tcL4HhnDHceB8+Z7DoS2Jyg3PF8smjUyND33lYXUGjLtn1bwu8AJzLHDIwR6EFAjdIYAPVXDOch35qaXp0DlqEYo6+4FeAjaN6x9VbWUS2kZA6aCYB1PrsMAmojAuf7u2IiTkGnNuWx9k1rfFanOjXen+8wM3z58hkJV8xOx1PdFrVnlwTCDOJprvjcG2LQ1hLgE9AFUxv0RGDiFLtqe7xgc7+GX4k1OKTj6C0xg5MHWxNxoM4SrlEaMOasaLz/4zR8+/aOv/3bP+Dv/u0f8Hd/+wdsm6G3HdgIKkWxwIzPdsPAxInIEzPeMWfA/AXm2wpW2UzAVTgh7cIiw8g+OcChMDGQE/Cg1JC54+35pL3sA94cj31f3URsowl8eXxCd8eY1HI+v/8CGPBoid42dHQMxQNdOMj7+UTzhpeXh2IFA4KA7DnOD/HHf+jrNwNP98rZh/+MgVhqo1IPIJYR9LwcvuX1mooHGMgb+mYrMDfnAW1GgdDqa80pZDTkfM0XCjoh6jq0cat1SZFpTopzsUVO/Y+l3ZAMhDPBljErlJNV43LcDH4rWbwxEdxXJHNRF4XuppxvXK+J4MFwBc6RE5V/1nuUxg7csMZ4auOwKqqx7yYUfQausdMAQ5SJVX1VABRgixaMtOScqv0m4MkGAZNuRVN1MSUCLE9A9lmVDoxaPyHB5mqHoK4MVfEr5qnKbvW8xrqmtbWoFalDCoMqfnYdRj3Tq8IB6dsUSlzAFumlLCyqagdD3xzb7Hg8NibnqoYMtWJZAu/PE32WMKApoQGK1XZVArzsJY0g56OvJHlxPnTvSv+5Z1VB9OJBqQIKBTxGtdvb+2CxA9eSFEgQUH2QbS2VhKzPNCbIVpZba8dhECExVpczcTi6rqth3x54fX1Za1ofXKKBMdl+G2pHaN6A3rWZh9aiCQTkHmILjatwx0DVDaqEXEAHA1wTwEfBPY7OtnXGFP8usKJGkF8Vba2pFfW3wBiO6C0ne8tUsJLj9TtWVele3weqykRvkVkj3PWq2gcyeJnXvr1alapyXe+2dgkiJ9Jq5GkxeJQshaoL0upaBSetD69HwZwVgGPLYdX0t9qrV7JWjNYV0t7+4xpY7amCZDLWHs06lLUQaz2u/6wYMNrzpYFx3US9x61lSmFx5nW2UP9S52A5livZjAxgFig117kwD6xq73qcttaI63e7Dbta+GyxG8uurgeoT07ta727Di8fzXUfsVo7dNX3yL8yIOBiROiJzGBAd5xjAa0wF8hRLTWQHtR1E0rR6LeCQyO2vaO7psOiQDAGPWWfeapYZSwuZ42fN2mbeHO5uNRP5Lr1y47rOd98/zUVjuPdrdbvDqCo1a+eXf2Tt2vyDD/LVQyz9R7VBmpewST1MsZMJJpAgM7QMmsPtWtPac9A7YKwsi3aZ0agwupHeGVA1qQ6Pctic6X8blVgr0Oj6iQTg2Ib8Du8x9UwVsZFMRXswwm5beXbhjJeKywRcH5uq7iljmw9GNo7ek2BXHbT+rqdxUz9O8qm2Mfq981PApoaZyBgKztQW+Ja04pJ8jLD8julOcF/0rkrS654bgW/yyZeyxaK9+pMly2hT5L2jhnc2gKya63L5y02qHxeMSUMN7uucJltLfzdYdTv1MXUM2Oio9tUEQxe7SaMY1tjcW61WMMwbSIspOdxPZtUrLm2Xt28NlvZeTI0VLjJSzeM7LKESUvN9FwtVagVGLEAeW0Gw8UYS2GMMr9wM7y8fMHn18/4/Zcf+ZzmxPt54P04sLUH3Ds+7S84jgN/P08cz3ccz684DZgN+P1f/jU+/fAF4yTw8e2PvyDGQPd9nW2TDSbrHfBkQXbqXtYRtfU/lA228jl+6WHpH1Ct92wDB9gTi4t4ud4vBQ7Y9f21h68rKBu7AOcFAHBPFUBDdkXTKheDtXyiihR1IVGTshUrfPiPr64WpjvSJPdUB3rtkQWapuJCs5tdvkCL1bnQqCKztR1bM+ydmlHjHAJ0agq3izCme5T/tw8xwD1ixocz2FcRL1ZXRm+u6WQsYhooSVLdDQkRGyyRMbjGcEBj6BVhL76aI6V709C3HY/HC5pa77PW/JZfVtzmhmvAAC7mOOp5K16wxNVPkQSYVseGE0jUSSo3o+dU9p1aRa7v5RQrEbb2AGt9stfOElyaYaZkYG57PLI6a67BFSvPRRWv2DpcEhbeN2DJNdh1/VbszWsC3jmGOiqSQH7t94oTnDPhM+RD5Exb+Sjj3qf+XLXPKpKt+xVLB/LjNQUcBrUdGwkSSPrnvPxSxTmVe9fpoimWjA10TzpbEcCRA8d44uvbV3w7vuE9ngAa8/Y8gRzAPAnC1V43Fk4iHYFN684hJVdcWx++Mrv67iJlVLzIOEq+WPhAtSuWbY7BSezd242APxW7B1lY3vWehpaOJjwgzdFrErGT/bT3B+bkREd2PolI8v934MkVYHqXw6JzNqNCPBHpQ0eJG3nERLeG3jaYDFcv5f1ZzBaKtLXNVsUwO8Gnve1oo+H9OBDPA+N58nUWGDBMa8C2IRF4zoGIgRNP0Xg3Kdo3nE+25+3bJ2z9gU+fvmCMgbe3N0QQeQT0vk+qt+/7i55zY8U0J7wzAeb9JfJgw9eUITGbKxAeo6i62sxJBJiidSsKQ2DDDAmuicock1PDz8ne5WaOOAdqso+b4fPLZxj4vjMmxjk52aw3tUIBx3EQ/GumColh5EDMga350pUiCGpANmzZYdFgw9HQ0eDIPHlfQzWsmt7XO0KB3zhPBtoPjnzetg3ROLmnHFrp02iYHWYZqxrzbkCRu3vjgS9h+DWWfqOx8ATSJdB+zgVueWMvMjx4SEJIucCz19cd2+54nj/gOE68vZ/URxmXBXo/Tnhz/PTDT6yyO2DGKVJuHb11NN/h7hjnCcsgwygCHgFrEt2VMStnNujtYI2tgic4FaY0zWCNIvmQEF1xB4y6Gi0dFgbX1LJWfroCfzOKCEZ9puA2M/S+1TGmw0rgOQbOOWF9R0dDvAcwqe3UzbGZ4cunL/jpxx9wzHMpt3DK1gPnmHg7T+6zMfDl5QWPbcfuDYZAzDdU28tzBkYM+ABsCNQEgOS4ZO8A5hT6X73LBB4e+4buTjZGciJUAdCVhTbr1P2pINKK6s/z0nrDpkokkpM0lZ6j+t+ZRPB6kW0lODBH7zttBKrynrekhyyXGe1y2OAeNGdbcCVDMyV6iYtWWxgjmY6XzZjJgK1vToFWOIziZezDT022cINr5C3MkOErkbwCW/DZVVCavJvqza6Wraj2SKHBDS4gGld2dQs6Cb5cwwtQbcMfvkoQWgmb8/mEhj3M6kN3OreYpcdh6L1Lk0V2tKZFKllzU3uvvG9mtbXU5wbOFZSJ+ZMc+70A5AUOFth0FS1ouxnUtL0SPOcY4RgU4DXAupietTez/KVpm1wBO+ps3tohFkuk9nO76YVRQATUlnCcY+A4Tnz9Tk22vj0AONpGvm4E7cAsNiuuihU0WTTmiddPL/jhywt1AOSbIib6tiONumTcPhPdDZ0iSbLZLHyMJNtt6x0RnGDLlby3QtTzJYtjTCYBzSmmLX6UAr2QBsa8WpWMw0RO+Rjo2W2bIwf1UGCc/EmGstGvixXWWsf24BoV8/f5TAAParjtDzItBtmCH6j080AGtZfqc1dLNr0sz1SCE2dhSN+RCIx5oAWDOLIWSqUmgTwFIOiMRikmGkzt4Zy+mzhjqOjEdeWEUF8BuF2nD3cgu4oqdRYSBwDDSBZUfNtoa2Iix1jnjoSVjozE+3GQWdg1YTMLyODEQFpEYRo3wKk1aaNhY4Ig9uQxhpiKZWICsaoHSrQ8kUY7z2KlL4DwGBwcU6Vha5xaVvpQUX6hbJ4SkrJtKNamdSQqMTLk5DmPYGLU9n1Ng516L++dnyVW03meYLsMB4y4GyiFahxDDVDmQbRtFlLX42Dh0R395RLirXDJxbJ6+IbWGl5fP9Nmgvc3InHkEyNOxuR2TVg7xQRAVAhyK7KqeDtM8dgci1VC0BCIwVipig1mHZYNDQ1tmiafinkNMvhi0s/u4Jkuhm4EmXWOht//+M/wF7/7C/xn/8P/EQpE/DYHvkcg+w5rHf/JP/mnePv+HX/zfzjx/MPf4eu//jNGB+Kx4X/2v/pf4n/6P//P8Q9/+Hv8+Y9/xH/xv/8/Yh4nXvcHpzlbV3yqQSoG2HhFpmFO5SYe3Ps3IIixL+PgZobuu2JOwDDZBWETbnPdL/pCFiW0TD9JMMNluFa9edn/xVrQ8IVxkF22qRsjhkR7ra1ODBjjeZfgMFGIugEVbgYT5n2nXd00JZgsEFpWd+YGs1o4/bK8WdIbKOCJ90c/5LdpanGBCrqj50kWyOO1o2PDly7gqQH/8PVnfH9/xw+ffsTWNhzB9p05yLJuxcrNilZD95u45Fts3e+2b3j0HecxVu7i7tgfHeeYmGMq1h9onujKfdypL5YZeI6EpaPbht53uPflW6axJWrGYH7SN7y8fsYPP/4e3l9g3phv4HrGCE1GK2Y7v4nVbu8GdDIAq5jDszxhM3Bqrffe2Skj1hH1dXmWfRAUusAQ6RS645gsQKVozFv39ay59ynYk96XIof5Y7XdkfX/hGMCNjWh3NfeitJxGwlrjq4hGX3f6gjx83mzKGDOvGPbdxzHE+f7czHcXzTxboEkIpk4yPSKIAs0gRX/UdOOmseXnISKX6tdlOchcqLB4S2x7TvWcJ0IPMdTsW5wqpuL+QWgCDNzXpIxXdN9TeBib4xFIjkN7vj+HV+Pr/ibn/8t/uH5B/yCb5jW8DBHm094nMD5nRhFL6CvYc4NkRsCr4CDxQMzuHASUzEXEpJl2zF97xCIHpCgenPKmFhgPCdiJvbthdcNYgbn80B/7Hi8vJDUEA1xviNyojvbQh/7F/rCcCDp+9y7QEHG/q/bKxnZ/YEDE884KahmjhD+8Vu+fvtUO78JjOq/EkCusYOmEXzWAAtbY285Kvjq8wSwdCQqQTdATJA6tIkYZFPMeaol7OQ9Gqm0Y5xrUhOMTKLFMIkSO84VuHBDDSbKSpA4srEzoRTAEUZB55oIFTNwDo28xWoKwjSxDpT8sMJT1ROuWyJ1OIwZF67+SQq9YTGMZsaNqaHw3VwtLIz4RigYFT0xYmJmakKe8kMlLyOu6jBbCgXw4Ep0KmBklSZXYhYh1pARGHEH5kkB2MWs4sPl8zRpJcEUlLKyzglwrETQdzhbVmCgTgCYTBe1sNYtTewnKKFU1cZYtSi6KgMN1zVwRPeclyGyxqTgHAcwjRPr0vDy+kCm4evX95VDVBWjtQZEwzko1mpJA9hauxllUfOreqxkuNmm0cpMoMZM0Gcn+2ONe78c6zgHRg7snQZysRWo6qypimQUeCPFfKBG+JaovWPmxJgcOVx9vplYbSkYbPwK3aehBL2B2TbMNJx+onqTW2Pw4s3JNJNWU+lhTQXf7saAXAH8eSZbDGHIYHJKIKhh39lW6kv4FgsYSYGfl07LldoBWIEg/83WHjSJzx/HCRgZVxRVrgypgufa9YHIgdSvmv21gBS7Pl8HeJ2fSkz4thX4XUGSV5InO8dJi7euZ1VUUe+TDC6qipLrbk1gFZ3/nLRvpmo6jxEXpJglMStgEzX56iC72e1iwlzriAqUlv3wygGvpDZvlw+CKfzddT0u4CKQN32xy95fdoipedmJCs7rvouNVz+fKO2e6+HL1lb1/sb4qIqwe6+YXGzFAt6K7cCUycB++4oPK3GrwLCCD9wqebxgfPy3sqW1hsv3ms5LXvcLW3vTvWvdc/1b/YqTn8fAP2FoiAmMMTGOxDwNnhuaJWJgaaxANp7TN8lwRaYqdrQZjqA9ASulrTHwQ/AdZnCYhfpHFrPQDIth2BoDTHEyCBDETRtHh3bZ9IRa2Xk/LsrrSiySSVku4I4rMWU3PW21rtQZC51XvoktcLX2PBM8gmUMzBkMW3NYb5jnyZYojQ+PStT13hVUX88Fyz4v+0WPK3/O/ZbrdbLha+x82SxTIUXEGAG6LvDMrUTZi40iCMDbupwq2lUrf2tqqfH75ebam2uPigmcskG1fLb2C3+24KpW4Pqy1QumJ2e0tu46j9fyVJyUuOKMJtHM5F+5NaQr2ATqrbawSMZHqpSHznPZIazKN65iYF3KOg/8/Kh7sjrPWHabtlr7pjumAc8YXF8nxIIAJ7oppiCDN2RxeK0JaPx3aa0VqEg7G4kbG8yKrwGEEkmxyA2XDSl9kuMca90iNb0oDSGhY6QhBm3pHOIoaJFrjax8FS7xeCRWMSIWG0uF1IoTXGe99lReLR/FUYTO5giCgmZs1ffmHCmewB9//hkzgce2rxj225h4mxP99RPatuH59o7n+xu+fv+Kt+MNRxwACPr91V//Nf7H/+l/ytALif31gedgwkXWGc/5nGOxHdx4kmuYRHlsLC9kK24tDbpQhOR3HyB9qesZFfBwa7vWk2XryhW9eCP7f97aylyi4vV+rl6puUTQuc552wv1tXwNoHORCEvGPbrcan9NJa33AT4mI1720lDYqLE9Op26PZOyGnRzTQz10sYptmSuyWLHcaBtG3748Ue8PjZ8ft0x/s4xjPHsMQfQH2J7fZwCiLVadt3warKpXIl7fYwC5mU7IpAnJQkSE499w2N/4POnT/j8+opdhIGpgsYcBDXof9kGPrVvzjgBd+zpSHR42xEJnGOit4Bnkx22lWQbcLVR3uLGRErUOnBOnl/rDTUgpZhJTe9XXT2RFGLPkJ92X2tSxeb1mW7wIL2w9GprX+ScCyCJoGRFTbr12eHg5LuyCXzO5MWZ7q9iyTIUjAN8+YOPYXLe4hmQOalJ3tu2cxBOADWlrXoD05h3hvK8BMguhwFGn8ciswHWlyvONfyAf69z2LxfhcrBwsZqQw0WG71xoJR7u8kaUF4nNFSlCqG8M/nyERzOZC5yyMT7ceCXb19xjoH9saF3tlEjqU+H3hEIDLAdFKkCFYxtr3CwGutriIdpSkh1LDk42bPs+GULahjBJKupdRZOGuoTeA0MNFAaoobEtm8wMF8FHKdiFDTufQJk/HlOfAdad7Zev0+cY+IYA4+XV8r2hP0jW/Xv+/rNwJP7jQYmIxVzcCJciLIlW0xjyqChqlAVnNWD7K02EMOGiCmtHfZoslrJQDvmiYgD1GRweIOU9Z8wW66U1yBad87gWGkz0XipCs+PfypuTPU8MygIAPDBapsl3JNq8gDOohnegrhhFFVLm4tG/dHwgKiHpQ50AFHTZ9qiJXsyaR9xIa0JLAS9uSCvBDLZL3pUfzZiOR+dnnUN8xYsuoJXBmsgewqpTX4lVCNOGBw+TcEQUV+Y43hnX7vvSvxqOZKH1JrhEjXT6E6v9i8q5/tt6sxKUkKVZovlJBP00bMWMjhhoHUll6tKDx5aNLjvAIBxBtxT405ZUT/fnxgz8God1jpeX18xh6ZUZIE1XB/YDhh1myw4PaD1jtZfVMzSM0oQRFNU5sbpDZYJm9SEom4THQwbcfm8C/gb58A8J7Yvm9rrNJGvDHEEAa9OzZaakhAInOegToMB5whO4Nh2Tp8QsDonk5x5hrQ2KtMgq8mbY/YNloYh+rh1oPWGfd/h3dXqU4aA9z7HQOh5eDZYGuYxMAf1QtoC51h1gzVsj4Y+xAastjtl6jkhMUSyEixuOd76lYv5xoCRTgRpeH87kJb48sMPMKNgOk/DrZpsrHSENNrWtB61h5o51oC2UCUljdl15prQZ+6kU9c+kA2beWkYcGrVFODL96wrZ/Ulb+VQsNKFy5EzsHcB6AE44FnVD6iyBhSbKuaSERTodCU4u6o+bDO6wGXaMVtJ+qIf40NYjjVyfl3b1XK2sJhJJmV9se0LsstY8eRlpcqmXWwrLNCqgk+CynlrD7hchun99fP1ngZ4u9xaxlyV2QqMLBS01HbW+8wsgDwFAqjNZe2fC0QBfqVpdQuAFBbq9R2rvU0JYk15azeGl0UlOQIHB8HQbhsc1DY8joHn+4kxEnM6GiicepzHB1tudMJM5FFBFytfFgPNDXtzgm5zoPWN7KbpAsvJaG3bfgEUAp9qFPG1bnbr4jJYXMAj4prYgwQsyWpqBS5UEAslOHmJt9KtaA9MwSCzeJxqzV0+1tczWU+AFR2C8hEYY8IFpLvs6QTZrsgBwAR25dI3qfNUflNvvD6rJr5cDDnD7e61L8hQuXQZXMWrlRryFe5irpTeJATE8xQ6qB9ChpF0hGZcrTkFinixEgsEvcUrpRcUAtEnW+Nbta/Ar32se2wuFt0kG0tun79S/iQBZaXrWdfQF9psZpCXfAJ1xKrSHNKtdOml5GrJlI3EpV9TrZlAsU0L5Mf6VQCN3mytc1wBqvYXlm0rALCXVtE8F1txlhabmXSRmiJOabCAIGFL08QwLJw8IhY4SqBU9lXJSyYIthYIsJLxlA4s0dA8xwrtyo+rSWLt+xgMpUaxt2Erwa3lBNSNUOihWiOFO8MyLzZuVtvhdR5C2illfav5i+PaE+NgAbo1Q9s2uG9ci5n4+z/9Ed/en5hjYszA+3Hi+znwNgOffvgB2+OBv8W/wTif+PPXP+P7+zcc8US3HXvf8Nf/9J/gP/uf/Gd4O98wxonHpxfGHGcs4G6Miec4sXnnXtM+I0X+aj80+eoF6No1924iNH78SvGWLUoaQBfTKWtP6ZkiE+d5SBuRBcPNG3X55sAF1V3Ak0ETa8Ggp2w2Yt5ir1pxrLPAqa4CYRpgzajXZGqTLNMCtU/rTMqo0NPIVtRzbk4GYcxJZmFMAT/V4sRcsIpOEbnizff3dzxaw48//Ygff/iM3//4A97mwNs48f3n7xhj4KW/yDbbB4DiQ1vdCvh078Zn1Bo1c49xTSisoTsjyEYDAo/HAz/88IofvnzBl0/sDGFXwjsT9DlhYnkA9MdzDJzjxPfjO8waEjtab+h7RyQ1WK0TQPdOAOzO7nAxUBmzX98/lQOcc3Di2iYGT2uLnND8yncSiRhiuGZi3zfqTk4+zw+TNFfxNeBGEMmaIwekn1XsSLbmD0nUwAzeTunYcjp6kSOuFk8+l2sYkPJ+MVCLQXSDQGifZIQNWOSP1hq2vuF9vpMcktcZLECnJv5R37ShtY5qBVzMfhhKU5PmqRjQF7ZQ7X2Vd8xZ7ZfyterUam1bEwQ5fXpC86lFYJEf0rUBjIHGkIZsN4yZeI6Jt+PAn3/5Bcc48Xhs6A1onpiSLsG2I3IyJ4mEhd7DpBlnDXMqL7ZO6R4nwytzLp9wL8il4hAWoBLzJGP55WXDtokxl0BDuwoKLowhmWe/7g8y9hXjHedFtslsFyAbE9/e3pFIPF52MseOJ07Z8R+x4dV3khxuO+I/9PWbgSfZH4nsVrLS1CYiFko3wIi+GyiAbGhw27D1Dd0bpmi8cwUVEzXaG1Y9nQzotsYxhq8PCjkjE9u2Y98banpCa371S8PXgwGgcE0j171rYQLH+dQCiZlRgQIME20hz+7A7o6BhokOWFvMLQPQlFS5d7bEWGkQXNWEtPlhHWfGaq2aci4xJQYs0cS+bWSSzbmcWWn7NHNVN6o18bresI6JtkaEu+cyYJm2nqG5SbshZPx4GC/nzCQpFfx6o5Ps3hdd3YztUkVtry1X4pOBqnJC1fViW4QSOSUvCWBO0v1VRbJ1bwrKYKu1jkF5lUJ4wFrfV7U4cuI4DnjjWk0bCExs24bWyXwyVfm35viLn37CcQwcxxA7QmuRjuMgrZPiiQPNTgpp98YKmsl4ZuAcJ5rEIRsS3sT4mrFEdncZtnkOlNfZvGPbNyCNNOHGYNrV20vNCVZlzhw4cQMOVumDAa8nKf8DOloJMlpMI8gLqRdTcQrYOt4OjjhVfudm6NuGx+sLnSyAGvF6joE0hzcOnr3Gs1+B/BmGYQmIjbiKzKZKvwPjmDjnde7rclelAhSSdTMc09EBtE6dC5OzjElwu3lVjZSwu6Ghs4W3+bIvc7DnugCgWuP16QpG0YouzQCMQSpbAdya+savpJrjk8noI+OBjpxVDz5DX46G53WOgTTtEUJ1yDn4s3K4WyMFfubkdbEfb7ES6Lwa3JIOTqcivDaAmJXSAEkFETw+xTry67XmcPWy8+ia7EhTDKgELCdq0hWT6WLnyD5AxopR5d0gK42/qsUJ0G/ANeWIfqHsVtHBofW1qhC3NWP0yne16UftqWLPgAk2KdtsVyPzIIEKtJN/try0D1YLlKsgEHVL1zOeAk6raj4HE02zbfXyZ5bvcpix8s37m2vfeJcg6Vr5q5WjEsSYE2OQjcpnr6TCN/pmjTuODECFBYsDyMCjNVhv2F46WuOUyoyBGQMNBIvDaGNDoFnrTQCs3WlyYvEJJFByMKUVCOOetFo/2fx6SItFHJXEMZmZYhtYk6xzgRm4GIMphhjfp8A9u1r2BGJ+SFiMOpAlri5yP18rMLa1DYCtqmpVnwGVSGRjlXqu96FAtKOl2sqS700Aha03KW2xAklmksGY42I91bO8GGLFMJKNMb5vyD5OUBuwNZdP1M8YEALRzG7XmlfF28ywPTZk0p8ovGABxR1xcrrpqYC+tx0jqYkVC3TShNTbM5ZnLgu0bGpdQ0HqvGdNJ1MVtvhIoeuuQlhaF7BtK+lKMYEDZaPFCLRJH4hif1+fWqwN5Vz6vq1rrL0CJ2tkzokxTzTjWSHoxmmxDY5eBIQG2fcSpLc18anYZSxmFnCTF1iKAnENbl1MW1MhLZeeKc8f5/nBVEE3fs6y1PK9OQ0Zhpiue9Xf6ZiuJJ8IWBnktSY1hakGEPB9VahJ6XPpw9a511U02SDTGTfri4F+SsMmxhvGmXi+s31j64bXBvR07G2ixRNxHIjjCTvescXED48HogUyvuH/8V/+X/E8/4yfv/6Cn3/+Ge9v3zDGgRf7TPubDe6vaL6h+874L99kYyvmrAEsWKykYnFWAtucvMxWe8hWpgCIYV3M4Kn4jyAKbU/zRqbqbW25R5kPwfTZkcufnWNwN7emomSxlxi7A4n0UoHTtapV01L/ZpBtsAUNeu1tAeNWtkHFcDLPqL+T6qJwB21a1muL4VTvSQ2kcQ7kZFuje8OjbxjHiX/+z/85fvfjj3j/q79ABvAXP/0e8UwcecADSAucNckLVUBkG9zazAAsyZifqOJMoCefxMJ2CvTzAjPY+bM1wDCQebL9OgPPd3Y3NO/yUfoFw9kPwIBP7csqbnrbsL98wfZ4RdsegDcBjWy5ZQeNundkYFLMuCYQve8bz80RQGcb3ceJfAL79MxKv1EeahU02FkU6zUEEhULCyA6x4RFUuBc52vMiXGcuqfEy+sDfdtwnvT9Y/L9+97haocuYKwYpJtYw8xNwCFRyX1deUZN/rZerVkbSp91xUZzYoyBuW0CiBizj3iimE5W+aexgI8qOsVEsyYSBpd7nASrugqNBYRe5duKa3MxqHpRxlR8mDMloq64u5Uv5juoGQlLxuJk7NYFHH57+46ff/kZ//CHv8M83rnn1AE2zqe6vZh3PbYXArrnECg2AQ+4B6bWOA3SUVLYnGC+D571+95PaDKiG5olEI7WAsCJ+gl2z3OfzAycZ6DJ+43zOyx5L3MGvr8d2PYXfPrSEMk42doG6xs+v7yi9YYvP/6AajN/vLzg5eUVv//9X+D19RP+5m/+Bu/Pd/yWr98MPGXlEcX4uDFoamIDE4jEiIEwTXXBBrONCKO7HGroEKlip4pwC1/sAkMqN3JsGw1QTKK/nDKSK6CDVbUYq1pT4XsFuq0XEkzaGKwABogKnYADFPwKCamxJWCmEEC6oyv5Kcp4VTyBFchVtHw5HgUH62+iVioxhVpKUjTAqiAa8mpzqkAFwPowb4s5QWdoVyubdQZTMhQ5Gb05P46gBtjeF4tCG1dQksCajoUbEq7XOBwljE5grJp5bKWDIcqHrWA6AdPrtTY1zY2ccyXJhWfEFbQW/buCeOjv5fgyAUywnYvoF6YxaGx9g8NxvlNry42G8fOnV7g9MWfCpvJ1PbxxTgXBjmGB0dg7jFVgr2AjQJ0w41hKoYTuV2pcDJFIVt95GzTwde0Ueg9Vv8VEy1z3PAVwpKhm3AK10ZxTcsww89pjPB5q1xTwFBMAlPxK/HGcU8+vQARnD7crwRcyXpUXa0waKTh5pRgJ6r4UIOemygx0tLW1pgxvgVJ1LljtW1aHjkltZFHsHNHSS48orYBwrHaZmnyx9cbJNJP7LCPQtbdc97RG+eKqutva6bH+5qbKpC66WGvlhOvaPcsmrX9a9qhL04CtcfXWt2Sz7kdMhNR+W1dk1VpyNzC2CBlIBoYE/+s6xHa6nWcmdn6do2pNqiz/V19V7YLlAngyuSZV9fWqwii9Xy0ztRXrWlGJGHTtVXkWe9AYRDPp+sg0qUS0gEwysvLGsIDOBxYfgUERA/7V5rqCE2VLU2elqoh6tpUsGrDYJVfqiAW0sYJZcJGBFHEFCVH36WgtgUlR4DUpzJKMNxMLDKBPki1K8LlRN0XOJa8HTnBOIsVKVmmjA6jJqK2hN8fLvqELeDrOxPN5XhXxZUrE1hJz2dc+T1xPTdem4BRVDBBN3MTWg4oeZa9gV7J07V+tryUZI7ha+7Sh6DwbVtJYwWGx3G4P/9pX0B5Jto1jPVPIZnAfNbVw4Fdi1+ua79sE1/uY0cZYYa11f2pXaMV0yEoYFBwjUaELi3ggvpiVvNQ1KP3QtStS4rNwrJbX25ujdCIr0eD+VfuGzmv5G5fI+QLjZA+ikipv2LxTA6ykcBMab4/FgLr8Mq79C8UkFrfzxoeWOktXm2Sd3at6bWKUrP1Re/MWa1QcUG18VvvgA6PzOuu+dm2dqlpV4J65JljcKXHvvLVq1KAWOG0F7omO6e50XwVm8OdNgHVeLDGtW/kc2ooEAqvVphjrpU1EUrCr/aXEY/W/CVytyZC/1xouML+uS5dcC6ufZ2tjxdNcm2Jfj7wG4qzYVc91q8ELG89bgcLrHGYi5xMxgPPcxP7YsYmR1TFgMTGfb8jjCRsnWgZee8fhB4448K//5T/H2/EVvnWcx8HJzjE1WIyFcBaiHM0ecDhGfkViwKwvu77s1tojN1tBb7n4dNfeqzUphlMxwLQOIXYQklNGS9R67QksEMGsugKSosegXpqbUfy3TF5tE7Vqh4D4+jvcJDot26W9G7IFnrbO2K/b2gokNvDaY3I4TtU+yJatM2GrVW/pamZSb3dMWCPAuLWOcRz4+1/+iDkGtu7YX17w6eUTtu1njHPIRjEuLx++RKDlJ9JMcYDr56Wdq4mQZnfg6dJjFKwmFqeBU5Wn8rzQJD5NHDMOzymdYhYuA751RALPaaBG0QvatlNIWz69CmZVNF2bpGJhgc4VdycRz/Uzi8EiW+QCnip2zZxrbWpflv+tEgZScVPkIs7HTIJzDxVVpMNlrqKyAX3r2B/7YmIRNPfVql2SDS7WjWW1qwPhbHcfc3ClK97LijcVlggQq9y7vipOq6iQIPBdF6gKPrnODOVnABYenaX7tReZp/eufa4zbVUs41suG1vXUqzd0mqtM7yKqIrRoWJY2fOy6UUGgJHl9/37d3z9+gtaDmw+gTh1X4PvLR2prW2YcOQM1MTo6lOIInKVuQbxh8qNWCvW4SxkWnujMYgRCZjXnVCXQojM0TrmkESPpD3GwfO4dfr7t+NE9h0v7ghhHl062S+vD+z7jp9+/zvA2In24w8/4qeffoe//Iu/xOvrJ4wAvn79it/y9ds1nsQeakZtm3J8Bl+9qsRK2Ffp1ig4OoE5IPVzwHKDIXHOJ4pqROobex3pnKvvVEmCG7w37C8PIY+g0a0eV3f1USeTWX4U9Xico4MzKZTlTQKQes2MgWMOdLGNqiVljpMUzHNc/aUTK/imLVGQCBrhsxBpA9Y0kzpQzPbZIwwJB6ove+8bKGLOn51zqsIs7axkG6IbYJuMXi9wqSEsMQTi5QxMOaZiPrVmyzmKryYHlYp2DM0UaBUFNBkcRiSepypGXQKz2vAOtmtYjf4dIRqrsUUrAyPZBpKZHEnrjQ4OCpwNMCUUvH9aUVdgugkwaZ2Cqr1tGOfJdjrtwNYJmL0fT4QF+gvve8YkzXSx6Qwvj1dkJNvU3PH6iUwWa4E//fkb3s4D3R6AOeY50HvD/vIFe/M1btgTON/fKS7cCZBumylBOJBwhDVYZ9UoBzMTV3WltTLASeHbbWPfegTGk2i1dQphb+ZsGXTHMbHETynOR2c5Z8AaJ9C9v7/jPN7x+vKC1ppQdYNvhvMc+P72DnUp4pjUhTqfpB83Io9k3BlwzhNtk6C+GA3FxmGSy57nlXL0ADww4wBAwfDQe47zieN8wwhgeAoSICBMiODExEBI3NDVRmfGVlckMDQ21ixgTbom/Ab2bZNtcN6vGyIG3t6eqCg/02EgiM2WmoCZpvMo+Iqk2Kf//1j7m2bJkiQ7EDuqZve6vxeRmVXV1d1A4xsEyAU5Oy64Jv80RbggKdyRFAoIckYwMkCzpwH0d1XlR0S85/eaqXJxjtr1qKGgEyJ8VZEZGfGe+3UzNTXVo0eP2gkD/TnQELMrwd/UAnFdgErB0LcCZut/atPyC5SurjbXc6cu+Ur0K3kFgHGotilR0SW0L9suvwwlX5Ww9r6htU5WlUCi5wqhtbaS3KG/bwKrq016XbxXhrT82SzmU4mhF4Da+krEZiEuFZBYnQ+uF7RSAOAmfwoWBBiRpZDK+fQzuX7mcrRYf77SoAXOMUvlM6aSVPqXkKi1Xz/Ozy/wphKxeotEIoIMEdts6RoqqkfaAMyx3W9sdzmBqvxHAhmJx3nAhwKv5CjfYsRMy6+AhFmCmZg4z4lPPz0wR2BMjnI38zW+1px2MXOoGHPCnDb+cpcwv/ThdvX+OyaTvn3Htu2s2koc0uoeO2pfaqoSYHYxGBMp9iEwQLFOaw0jOIyj2ra+TvxjgfeKn7lXxRw4Ri3p8iuVWLsCr1g6hE+A/trGi/GUCTI5ZZ8jgXEMtgmPE4It8HgcANjqtr5k/ynW5tKWUmLbdyVLMzFmtQ6zkNO72B/mC6CPoE1uDIKwoWGDoUvzAWIChIuGD6idF8iW+ixM1hp8tYGV7bqKFDkJhvJlr4DercE22td5Xp+prGyoFSNggERhM0ERX30XU7/ASEoYTJ0t18+txlPtK1bCpYQGCgLXmaOd9ap8l45EtfctEHWtyNKtjNBZtqnzJB+hwPsCSOvfTzliQoWRXLEO85ZEzokegfQl7QyCT3YlJtV66tfHqOlJI9huPBVXmReMUa23KO6MzNowB/fOIpYdFbOr9CsymNQFwAKVhfSfDCXPvzLQLMZ9Xp5WoDkZ5IGMY9lobYdZCRLze9pGzzekscUpRiEfr9dPrfKsNhmOLI8YyHnybHPsLjA+YeZn/DR/4J3YXPbhsEnAasOGHAF7+4LNgO9ud7znhi/nDX/7H77HX//Z98CmO2sYunXM8S7pBwfCOKwxTkQCu6z3nAdGUherQKrWukAvxmUpLSobWPdPTTx7vrkyWRdgPfgCaKy7kkauUQlyJ3j/oT3d1ZP7sW+cyBeTd/wpxsyE0g0Q8MtMPRcW6O2aUkb7v0DKK4Yogf8ygvKLtAsXoGr1UykbssUVuc7qjKfuBkeiAd2B5jjWOTTk3tC/+4C3lvjPP/wWr+MVt9uONwwcLXC8fwLMsb/sjNf8YsuMONWiyMe/9SIcgGDyBGPh5piDPoAxMGNsh6GlAblh2+7ovqN7R8YJREjTpsHbBogh+3iciKCodncAW8MIYJ5sD9n2G7b9jm2/g+3RfmkluQAZE8MfySneyq+ACU9nsULnuFKu5XeQ6LrDSkPu2s/AmHMV1dhSXlBF+Xnx9/0qiLZtg8FwnIekA6qImRjjJNjQGtCbdjiBkvYA8BgTZ2hCeet4ezy490zXESj2Hjs8isBBH04W0uM40FvDbdtlQ4aXDx8A+feMwJf3dwQGc7bW2Uoun7Y107lTrDkDMw/EKDYP78feHH3bAQPmmCpoM45cxRAjCFmnY87A++OBaoWlNlajDtcTKk+fywR1DfbqDQ1svfz8+TP+83/8j/i7v/4rYB7oPfFycw6qiol5Sj82DQiRJSYn2c1kin8GYJ5LZihjYMDEoibGMFIRc17HkYVZAocjE+N4YI4D99vOdvFBIkTfPmAEh4S0tmF/fcUf//qP8O0338KD919zanB9+PY77PcXvHz8BlPkoJeXO8k+e0ffNnzz3bfcq77BQR2/b7/5FredOfNPP/6En/P1XwE82TI2fnhu47US2ihAzBqOAS2dmkDA4kmsclUJGZxcujlGp4ACSPTu7mi967LOFUmsigLwVYWF/du87BeiWcUKVwDt3LyRA9UMVkhpOeIU6OSwpWuEeg1RYAtpvWjn15p9HWToZ2SI17OK5aPT+9wHW4wajoq1VZleAoh6t2bGntJQmGhQ5RpYtPKqFuv3tXXXE8qyqzqsWijFZTkZDLgooPXKS5NJgeJCvFOnS69mIDt91rPg60QdT0lkebLas68LNhU8XOEA2yM4cWSRwNZbiy+ZpVkB1LXujYJp263BnMLTM2t6VaAqzlfSzHePSaHCbNyD1kxPMtkyANIgC1xgkHvZqYEB3qqCOe3L60IKfvYSC6+gN2AL6E1pm+T6oFUhus5H7WUktRkiJun3IUc9WOnKwAK4Ski9wFOYLTuoio27qZOu/gwXsFI76nVGK2GZFKS1KzGxp/VZZBzpc1UAtS7a+pRfJb8VNGO91vJQyUuonqsqlnzrKEuGQ5OVDLLLp7O8/BLby2CaViLGZ1qtQQEHVQWVrXgB1BX0PWsBYe0/7Ovfp0yU/qqMP59Ox9fPp7+m/RdVek59Fv2lVU3w6cTH+lE+w3qu8ll5vauSlKvSr4qQzgmQRYxbI9avV+Tv1+s++Rsrn4T86rsv3ZjyD/UcqfaH+uxxfc96lbx+/mvnoXcq2uL1xXNVwV1pgOhnEisALCZiaXIwaRU9XAKcDO2bWEy51noRmWrB9bzLvvXMM+fy1WdMHOe5Eh01eiwGTNM5Z/tfABaVz2HbCDo1sROb1aqprbQKLsabyiy/+swO+oQ0TZD5vR3Vh1+Vu2alOxhPO1J2mrLtXD96AUZP5+4ptKjjVT9bz8VrsQLyp0o/np+fxZYaZQ/d58XEUigoDTqowni98cWWCVwpvOus15sY7eX5UK/78VqjGlqAYvcZJQIK5FxnbPnv636t35fNVxRm+ozLqOtfiaeVv57BrIC7WOsDxQcErVP7rO+NRIRmLvnTHiF/b98gG7j8VP2zgN3lD58fKXmvmPzC9cjyo6k9qOWovdey13sU5Gz1Dc9+xK4kej0LslQFlouoUzpnwBMsMAHwzHU+68kyfs9Plb+BLRv+6pn1XNfpKR9cIBofxjKZDBR+9vSmjK3kP9R+FdNWKFxusCbUZYFPtV5Lu6uA2Vlm8bSOvB+Xr/WLmROXhT5Z1hWfhwyPVwMBquLSVXyfeSImcCaWD3dSomGn4p/2wpBxDrFAO1o4WnS8f37DI07kRmbOvasMmnUncw/4XkxGGCLZWs/rXoeuxGs/kIbSsvtqb612Cwu0qSS9Lk2DrVbFQDFj1yld/9ZHX8+EBRte+mpRtgEg7ZLvKNuGnrjYeajzu3ZSl4xYz8+2mrmW6bLT3/uekt+47qnyy5d/IjhZOlf1cfVsW8fMwNs44KMjm2YgGtvgq3DPtcq1MmxTm1h5Ta1rxYrPSyqfWsMG8llfxnx12JiZJqjPBQKvVn/QTmZMeKszLY+fqaJgtcZVg6GJlMgD/nwmLnmRy1/U0Cer2OL3b9Cn9eeP8r4NnffrDlOcUdqW61zXprliReUEVn4FK6ZE5eJG3aXnO+q5+4aAhmFvHXC1h0dcJOuv7jYdgYrh9RoRgbAnzasE2r6zaKb1fQ6EC1+oD2f1Nk9nkTnIcweC9mYxmdRumsosn+zmimFFwphTA85MH+n5+/6nX+WnvTNeOkbgHANfPn3C+9sXUDcJPHOKcSonqUW6VCgEVkMdSimykglMXP6UP0d/c92qZafr9ktqQaWGF6RwgPKFZhpwst2w7zd8+90v8Os/+DW6gOmtsdD03a9+je12w/76IrH3ifv9pimvG1pveP3wAb1v2LcbJ2mOxMePH7H3HR8+vKrA9Pd//WzgaVsxRfV3lnNPMn1SlxuUeE0yi/Kc7NuGY8CwbRsvG4m41qSwtrmoc6FWIY67dAO8qTKmCzCyQsyqaAJbGb2EjNnHy8RyDAISrVNMrqCBiMAxDxzjAesJeEfPF5Am7zISBu2t9dWqU5fss5Gug6I/J43TViUyoi2PHwM4xkBR8l2i2ryvePCbG/beVkBomnBTgcCZE0iHx7YOH4s0gjyy2AsEssacOMYD3frqT13Uc7M1mQI5lj+Yotebc5R7iSd3p5jgeR4ai01h8XSO8DYA3UoDZ1MAEmhat1AFp0TfinCo4S/Ms0tvYxC9JoDgmBjorePldscYJ1ktxxsv4aQtuDc0ATUb7jC4JlpgJUj7jSDaiAfa7vhw2/H9JwOOicABt4aP33zUJTBxTgAHW606OsXv3NA70DpH3rONjuODcwSDVxNgmcDjGHA37LcNVAGhIPU8TrTW0HrHvd1pmyuIEmXWHFPV86K4048ZYA3jDIy3N5gDt31H5uB0FQUNjy9f4G3Dx48f8HgMvB8D55eB43HAgvv1+vKCfd/x7bcfse0d9/uOGhxwjok5Qxe6iSIOaSpBFXgyabqzUjFjgKK2QHZCu9X6SD2NRDYwYAnZr20C+RQ1mgOa9DCMa9ZFOG5wzDg54SdOVo22nY5/sF3inAf2jaOgTW2cLjYIwaMAxySfomXSj03dEi4hMs+D4F0EKAwqoXwztmmtC8HQrAMZmDMX7bsYbe9jrMT5ot3rsuq6CCsjL+41xN5sHec4CEyXdlfflluek3pQdUGNMSTuyDPRt41BwRwVKV2sCVWWquLIaWoK6uST6nlba0BrmLIB0/MbxK6DA9joC42ByJAu3DOwU1eKo8am1+1aKwlUBLH0H5Ar2Kkq1BW/2Doz14/yz1YFtxKSAJAmUeVadp7XEQdiTvTbrnug2KSXAKslE8TFeo4EbAJ+8hmzRMoJwqeTqYLk6GEzx95voAj9udi7AVaV3w5WK91Y3UWT6LQZMhvTxs3hafCtWoBSrN2O1tkuu/eOTSCCg/oWyEROBXcJBj9hMHSmQBKGtwC8qb10khFFAddKEhRuZ3D0fDZkzmuiqZIG77qPkuojkTXi2ylKX8lwYu3bVamn7ZXWnxnIClnfT/82YmLkxFZtLoy8Mc+JKiM0JVPkHBt8MtFnxRNkr8oOYgKRhhimJF9AmlrwydT2VRQo4NnEBoXiC869cFamJ/USmxv61tAyJJx+BcWljRWZuvs4pdHMsG/OyYGhsxKpyb2xtH9cZ7R7X0epgHBbLV3P4rz891TCa/1KtMImWTUriq/nlHByrwQXV1HuKbEFIF1NgMUfnVJ3bH4V2iqBcqhyHl+DMozpdLad8U4rJhAI0iIohlzt3ZXYcgFMsRx9O8EZBt2pGITyeWxha+bYW1/vXXMlQzphU7qdC6AwsoHIBODet4qngKVtktYYGfZNsR9t9zxOeCY6mKB2GArBL5bBjJq8mKtumRLdKhAOSlSfmablKwu8JWARAM6vihzrng4mMsiUPh1lViI5eMPNYP2Jra5sdFTLWQ4CEQ3SJqH2K/dCidFIULlnCggwNDGehhPQmCaGzXlizgBm4KU13DZHOO8ViDnfwFYW1LAGscYYQohl1gvc1yAhAdc5J0YOmbXSQU1Fzaf7o4SGp7Tz1u3lVQjsWEC27kwOlTEUqESZAgIKXbqp58EzNUZpSULMlUbRaTGCIgNR8ucGMlpr2HUGep1BnhL5PNr4VUAp0IJ75XGNMynAo0Cl5R9QSfcTUBksLszUDlabJYASaa+0+IgBDCNry4H9hRIXvTu1cMbJLCOBiKF708Qm5dq35A1ufYdhYM4TsB3eDNN4t7TWtJ+B/bbhm29fsd8a3AOPty+UWNhfATT6uSQxovcB84kJxnzH48QZwDGAe0xYp27gcZxI3xDmeJxkd/VtB5C0CZ3DXoMrgjIQ5zvb0vp+03ClbQFMNitvLpCR9tNddrp0BbH8+jWd8AJpyt22zu6Qty9vQOYqHre2YZ4Dx/sDW+vom9rgzbDvG0qzJybb6JZAt3XmsGbSFJZ4tyYyUkNOg8GeHqu547btqKEG4zwxzwGLRCrfdxi+ef2Icz7w5RgqZE7MI6hXLP3oLI0iKz6toUTVa8DCqUtMo4J4X/kVB9KO6dea8+z0bqgAaGkOPp0Fg9qaoYE8k7+2nW3C8/0zjrcDn373Ax6fvlC/eh749OUNFOI3YL/RP2aTIPc7ApwGy2l3orAOyrMYAiHbGs1EujAM1ICPk2fdHe7AbVN30hy433b4bcccJ8Z5qn2Vk/uQZLPdX+749R/+Gv/qf/6/wD/7J/8cH26v2LcN3338DjDDY7DIFGaFtOCcJxKBl9cXmBNLmXPgMac6nChdMtqGx/tnHMdn/Jyvn894Mjq4iMDVBf3kgp9KNM1dYzm55cReamNVnSiGQW1+Xr8KJQy1gajUV14PK6pRJaBa/J6/qvK0khHwUq/4aQE6hqXrAQWQK0oBkLimOlTvLgQw2VMdaIXJ9TmFHD9Ty1Xr5E/ExcAqdoypwjTX6z29jleFVi1365KppSnEGaui2ZqvQJqJjcACVVau66gw91yOjJ+Fyag7HdAaJf/096ueaHydqnpmaR/UckBsFAezXVGZmbM9V3hwMV++sj/a04yB5u2rVoM5Q8Ewn26WiroTnHhKYVaVvJg5lUTNDLTeqNovZxf6fhOjwx04Z8DHXIh0gHsxk9WXkCBswtZUwWbSJFtTEE3vewUB3Juq+JQ9K5RJTnpLm0gPlBZJ2eNiXgBKPA0BUmqX79WFFfqsq8dYAaPDn/TTysT5+Tm9wlYveE3zWkFuVsVcbwWxGjHXcwJG4XkJgmN9jgrgqJFjatGqEe6Q/croATEqkBeziatVaaVecyUf1+5fv57XxFDUe7NYZz2qBWZVxuqziRXyVLx69lfrVJZuxLWaApzqMz/9+bLOa5+u173+/HlU7ldMJ1Q99koivhZ0fk7E9FrQZ/g9Dm/Wm9e6LNYRtE51oVdFXeth5UXKH1zrbFUBtueqlsYpZz5lTtehX0ljrWhVd9U2e1HSr8+9fK1+rhiHaxdWmwX9HG26NL0EEsmP1fQWAmWJqh2rwZiV9gKlrrIjiFgQTHNMAE8FhiwfyUeogQtp/bIbZUUZnOAzIe0Hr3k2vjpqrnMhxo4GbXhjWzHp23UX0rbz2SjWkld7QJ2QOpNY/mpVtcs7Za0hH6GSG9edvBKaBL4WK9abWLFhpiqixVi57pKyhlUd/cpWLmspyvkStkfFC8XOrddl0HoxvGyd55p4WZdPUfyv01kgLNcqQslRreNCO0o3rbSV9IwK5ZbmihiuF2m6gl6ZVV4Mz+V8Mp9Ln09rtDZHx8yuWAeod37yB76eCal9r/P05LsyVUxAxWb6mXbtzTqi6xxWCz9f05+ep87rYkwrDiztDysbnIqz6gPl056u971YBeuz1G4tt2ELxDP9vmywKszLv5Sdyp/Jw7El76sXfoqBUrFEsaOfYqe1OPIfqPi24uRqAa6zsX4iV6xzPV3tXV7LUe+v2EkXgx5U/naxfJ8fSeuUv//npUeXOqOy96wBCYpnjC2VZde2ADI+26w7075mM66iQsUKioNX7JkE0U8VX8MM4RqC87Q6lzd/9ka6d8rX27XOkQW86E6oO+frW/eyGToxHam64J9cz5OtY90XtR/1er935yOXNAmyPIjrc+sTPPXKF2Cf2q7SYyobLP/YcGUga2p1fYTl3/S/Om9llvpcz8y6lUP8ns0wdrj8CeyK90zPWPcAXXmsdc2AihyVY+UCr+pX2b/j8hmeYKxo1xrUmUwdK5oz39zl5Oec6B247U0aq1P5TnxlQUCxS+rnFbcstmGiWrRdv8LqKWKtlxnzF4CxcrH8Kz6pQmK1oV7GVjt93W9XNpkXcLLuU6zfr0ujNqf8jkCikCmFClcl8t1drXXxFA/o98UCbuYX8KT7pjkBklB2x8mX/IwckBVi8oL5UmIV/i0N3Rq86S4uHwOsP3MrNmpeNmAkbqwbvQqysuNMrFrGdceWi7limfXPyvtU1PC2DIidK6kCMK7XqvN5dTBUfOt4vD/w/uUNj/eHpos3gvO69whaKQ+SqatkR6DVcnV1GAw9CYampt5bUsC+eOMV85U/es7Xbb2TYkoTU88vVlvMia13fPPxG3z88AGvHz7g3u/Y+ob7yys/9MGJriM4mRQesMFzQmJKTY/k80wJpT/cML3hPL5gnG/4OV//Fa12Yj4cp3RpbutCbXLsKQ0G/h0rft2BtlMjJgJAiTC7HJAzVOGoUVtIKszw/n6gaOdFY9VtiqLBLwe6GEo8yOecaHJINUnAG9kBNq/AuLWGW7uRidUaEmRHmV+sHLcNaDe4MaDyAqcwLuNOcBy1DuJM9So39tuapge4dxkfhRqr/aGZUPtMnNU6EoOMjnksXYcu+qOJXpxDBuaOmQNzBh6Pg9U6EEy533cirw0YOXHERLUK1XqXMDCdYIkD02nvt1f01vD585u0FdoKlEMXabV/+eolpr3MKUFSgNRtNDI7dFoSZGAs9+pVQcbyJGZAs46YnEjYO/ey6Rne3/mcfWMDynG8iyhj6Laj274c2EzSMb2YRK3h7f0dn798we3ljvuHV/z06R3nOfHl7R2Ao/mGTdWE8Tbw+X1g36kRtgXTx/GAAp9NzsEoIh6J15edQKz0c4Yutuf2jNRUk0f8ADOgdx7Nwg9SNm7tAhCHtE4yEu433PpOKmgzHIMot6l3uHXHmIHPb284jonzYBU2YrI/vje83nZqoZwH9XvmkL5DYN9uaHvHpp7t85zIORHzZGWvWhiNQST3ta+E0Lyhd8fUBAlrJywCgY1BmO9yoh1zDlW/jGdkJ4vAGy9HtpDRpp4vSrYE1TkzWAM1VhYQUwGQPwWMEvA2h1lD24qtMFdyXddFiRx5l4YUCOBych5wPDTtsTFQI2soEZO3pIGBMKwYRdp7faZndKgYBRnJVmDraH1DHg+MYmkAGEIxUj36AEf4TjFB2TYp7YkoNhTkU2mqa/IlyFAwODIqSBJQY4mlAVJBvwlmVjJZkGXqn1cInjCMpyD4qXHDElK7F8PtunF4T/AiNekMlV6buYsF+qQLpZ9LVZq9RtNbsS34fvxWvmcT6EN2Ep81ZBMNtD+OxTXAOwwdLXgX9JZkoOVc6zIOaopt7gAOYJ58DmvYbOdBHnJuEwqwxC4LTraMGcjjhpTuDrUIBA4lEHNgzol9J/tw4CCTct/JGO0rBMPMQabemAzutgs6C2MVM7xa0qGAIgAHnKOB1moF8krOFfB0AS1N1TkDNdlinRuQMlFJp4K4Zo2R59CIYSVF7hdTmLbFYsasgNWuBAWOJxbywMREZCnzcJf71hXQ0WZ669jaxOmAFTjfYjHzCrt6Ovoym9JrMUQ4Apx8yvZk3aNiaHIdGcApyKHuTQZmcBqcbbRJFvmTU3SVlFU7Qj1EqHpehIeALX27ZpywWnhUpJhDmgjHZee0zJT/2+XDI0J6PIl02sMUEyTEiNv6C3UnxmOxhd0SuUBNIFAsEKB0YGbwme77vsTv6z1rTUxx3HkeTBg3xmfncZJJ0jnSmXUfBgILAFVLQhqW36skMmSL/A9gJJOlpsSHPoElqbCLbVcAaTFXLOqZywyY8dJUWZy42nPHE56Ruq+ZANQ47hVTBWUI+P2ajphs//O6l74CtLMyoevryqyAqCmBF9Rj8pnlE6/iPxdwZgETuvtQen8AGTpkMycM5l1FNSUMlkuzq++mOI4s7RkAGs9aKPmdk3dpT8bCtENfBay6h8MMx5xcu02TE1FtvPx4gUo+AYAdAZzW6BJB5lnMGEhLnNGegAv+XS+RS2jBtTaR9AOlB2jBwovpMzM+pTFUwlibkXGNbTfZe23JnCWK3Vbc0atQWHuryafOSua1v06DZvLqC2QxAXUzEjOBTTpV2m3tbPl6l67e12CtNbEyh2QEFjBSUJ/yAuUxVZSnP5o8kgmY2uN26eg9zqmfMeTJ+LR7B3RfIjiRPLmhC2xf9hAUlHbph7q5Zj8ZcgNS2mBhhgkKht/2hjgmMB542QPffOjoPpDxQOZ4+tBcnxlBtigGYIHb7cbYeib8DHx+nGh9w36/Yb+9YLt9wBlkhh6DvmfrnQCCUIGYE2E1JET3YTLe7G1n/FJgmgmEycSYlStVUp/Y9hv226aOhVians8SEKWBWiy/DuZft/2GmBNvb29o2XHbb7jvt9WpEpqqBgCntFvnGGi9Yd9v7L5wxzkGIk7cO8W2j0G945iDUjqdeUsBXAYg1MmzidXpMLT7Hc0l/RCJUzpNlTtura/4oLUO6w337QVmjvdxyGZLjqZRImQGsE9Y411T0WZBR4xXeM5Jjqx4z9GMk+7pm0LDhyZ822iDOt88e9KxNcUm2YHh+Lu/+g3+5q//Bj/87ie8Pw70dsMRoHi37pKhqyVOscLVCRIYZD2boQen4u6xwbJhC06qTTTMnBg2ME/mYVsn4WJzxdcndSodhpxkPvfOz+BtA9wRYjEe7w98uL3gn/7JP8KvvvsFXu93xMk87u39oTu6M6YeE/1GVvbW636VTMt4Q7Xoz+OB4/0N5xs7Ej59+mu8v/3/GXh6DihgAZ8lHpocY2u8eKpqvNo2wEvBXIG9/r6ougW5L5zdCr1m5QKAWlp0kYt9EnGxUKr9YWkMPaGioUsJZnp2JRFWvdMKDAeft/dKSmXMwYsoZqxgtLQW+LPchNJgImOnKsJCiVe1oa6GQowZtkU9MwrdJNsi5ISiLlMF9qZkCGqno/8iE4xjNEmf5AVFgfQEKebdKBBfAae5AiwFHfZ78LGlnKcuunVPPv1a+gpmqswX2CSOlteVVmr5z6BhogmMi1qzVdXlaNoSfa8gbc6J9/f3ta6tbfC69I3AJ9l5U1UzLBR8Jr+nVYuS7HPbdrS+w3zD1icQjtNSgAEF9ePpkkxd66l2mxlY2joV5AycSExNcjQ5tURgKEibi71VlWc4hfLgpPoTXOIat+bwdHQnuGVZU0I4tasVOPt0VutyssbPwAeeGiHKX9vGQQCm86iQHcjUaOHGikcGUm04FwTPc73EbTNXItCdTK1ZU3JS01KsJmHmSkhSF48ZW1HcHK18Rp2bpB3VaNSid0PBaD25PQWnS0MLTKiYjJeGWrUmNfkojY2VT6j2GU5+ukQNKS45V0JCRktDsTmXXpbayqBnBYAmdlBvGqBQiR8uVkE9L7tNaTsrz/Cm1htfPkyH8EpEtA5NfrlC+0XpVmLEJa22twqIfC0Bj+D17Jzqoo1IPhfdX4EismFbuZzAuVzPVM/3rMMRVbVZz1oVJvqRlUDj2fditSTYer36/GrfsEqqip1bdnaF389ME16ouQBpIpcm8LToqRwzW0C52yZhTzIjW9+upAYAWSMsVsRQS8cTG4wro5HImZhnIibAEetPmkmTwKfp7AANfaPviIF1Br1JXDe5+m5NRQdV11y+LLV+GsBh5ih9k6YJgFCVKwTWP+9ruYH683UWdUbNXQzAxSnQOtv6N99C9ibbiaeEvCrChmfWQtkAfxYGVOs9zfJi+9GmamJQRZPFTNX9JPS1kt9KGLGeozZJd3jZlDWkNYKUVm6jEjVjccjBZE9sY0/5PbPVMuWtw4yMZnijNmJ9HJ0Bl4Ga4WrtXF9XMsrwkOtW2iLsgLPqPIQBmozIrwCrswMUXl4TUXXOCoQ160xeBcBf0zXlSxYgXcywrA2vF9OeXueuwLCv9fT45pZkK9MPpVjCvn4+FJeVPdKnENyvfV5kzYVWlRHbalV2vb5pj697RXEqjG148suwqh/RMV3sALBlR4DMnJrGJJ2d1np5tnXPVvK3JPzq/gBjF2QiNML8ane8vOjTB1zmmcWGMO6rKW7W8QBCrPrQ2spmzTlhCnmxV0OUY1fLzeWTn+Xm67UvvjHEkMoshmytJYH3nNIxiWpiBIbeswZoQL8PJIuRehey6eyKuXVQ0qiXslqSvHGN10WmY1y2ts7U9dz1WRRJa6PJhCzuRQ1XoJnFsneT/X51Nk2sm8jVsrQsPGrATu0f7dcrR6kYJK9zSLAQisON7I1qI72ipGXDdYlX3lI2XeusQ3e12Mkn1Z1cZ5L3RoH5Wq3l+C+DTH1/03Aa5gNdcYPOuW8oXbsVm9XVWiAfcH0mM8okgGeRrLzg2sLVvq02bmtA23DbOUnPbVt6psuHW9mtuguc56OkON4eA4GGj998h5eXj3CjPAtBCgHq0tGdMVE7FZFqx2c3BIdlGYc1CeygJASLVCVIsNoK05V7XQywpTH4FPOUMRPswWIcWn1/Jod6yZdmcJofwCJkBOOx+rNt21BMn2IDUsg7gQIAwQRu63yPRarI5BRG5TXIZAtp5aDBVqycum+VcywdYig+NB46nhN+lqnzsSbelSbrUx/1cyyBsi/jWq5igqmNfgWRlxyQwdnyqVPjq40B1+taUgKmiArGnRjnifM8dB8wHvN0gtVex6LyodJddpBNy46w7hye1bJjiwbLvgqC0XQerHGoVxTbDGSQGXMpxESOE44O80RzapuNSCA58GVzx4f7HR/uL/j48oKX2w23bSMQlobjPGE20PuGMQbO44HjoCTKmAQWI0+MceKnTz+Q1WYEGUlS4Jn46XdvOI4DP+frZwNPc9avFMghxLouPfd1MHgJsrqDcqhXgV+JP40lpANT3tsAiaVaxQ+keZXd0P2stpMmh15gy7OjDYDVVKdjGpM7l/CVDJVDPAcF6PqHF07IM8CkBxATGNKV4eVytVMBWMEm30fg0ywghQiwOveBZ3E90bPJToIm2mA5h0XNbg3TLyeDBOZZbK7qH2e7FSu6qmjOk47n/YFqbdu2htYc7/PEyBQSA1LrFrLG9/BggLxqJgU8BQOcfA5AFaShiakzSlhSbDNjMByjOtVVgXJDJ8iMQKHPY9nJtm1o3tCNuiatO8agNtH99oJt2zgetXEqhlnH7d5wjhPvj3dqTChoSzC4djinVCTZUa13vHhH63eYdxxHwnDi8Q4x3DhxMaTZQwCQn4tTB+W6ekPf7+gQ+8OknTFYVd9vG6vec2Bm4Ix50Xh1OZq9KHHpyJwYcSyW0LZt1Jjqd2oXYCh5r5GoCqIiMQenLXmYKuMbEBROzTkwT7Igck7cPtyxbxtgTxUmBS57I4L+eD8wYyBqLHEUyEtguLcGzMGEhwcN251nMixU7U8K2rWO3hQQ0GUIFGowNAEmTORXMJIyYaf+RglH0h9dQSMDVit0EJhPyZ4NAXJjJSJdLIiaPFdJSspKvWkfUH6P7KKcc1FwX+6vChbr/ALNTcGGLzDJzYDG9S1/RRG/Gq36dUvMGrZq7PEmuNnlO/U9Y16X7IolDTDX2XGMQX8yJ3VCcrkRfqZE1qxKtkOukLoCS1X1lcCENHwQV8BtaZiVHmg/KkipZ7Jy6OtL7Ei1KNYUTsBEj094hmjWV4JZ4e+a0SkNtPoLkqJMLa4C6Io1Uj9cpqfxwaHAF8g1LcW8I80wqjVZWmMz6/7A0gOJOPlEnTpHMa8LmMkFNc8uf2Lr8xgMOckSHUdgzETDRmkzJMY88RgHtbo6KfNowG3fYJUUO31jtblXO3WzUv2riZrb1T7rTr0qjZSuG9zF7ItGUCfU+nSxTeq5mbAXYFn3xwJfrFq660cULKYCOTi20jUDhUi/HO8roSzmMxPj9pShJxkxzTnIJPBVi0QEdSJKAy2ChYF6/5m8BwI1aMLWPsD0OBbA0g9TduX0+3CB1E4djtU+4jynW7MF4IUbsoE3glMMmRM3GdDe+gbhU+t5MkOfS/vRlEw3MRxAvxNVzDKDtU2+n1pHc07NL7G1jlOtLVFBrEOgk+NMw0gVaaD2h8WKFmsy1T7KbgMKBoOVXCT3ZAm8VL/Hk98oVI/3sPzRavdeOwBLFR6gVgGXD/TyMYlRwOCyK+k+oQBmna5MWPjTDtf/qjyEldwBGk29GAtKaitffWKsmCXgxfQ2oJnaY8+VXJnOvfeGbbt0g4YKPqm2epPmJllmcWmaJeOnaxy7WB90sjwJBepX0gXFtwJyajBA/Qj9JnCEzgLI2GtmS/eolyizGX1D4+Q1ni+OCV+JY4E/dW/J//KLwH0l2M1vBALmvADDoI+L1Ssi8KleExC7woExyLTSmaxWZchmqPzAJL91hyXwqHUUYruKLIsVt15B96EYu86JTakELjFhNbQBtdTPrGDeRdezY3UwQPcRC8H6XIobm5giaGT1COtHFBoD+qvFJpNrXasTpvNy/YXBFmkpkEu76vrMTwAYNOY9qA9Zf1H3L01Pmp5Zdicr8qfn0O/MHPveGa/gujOHWG/eO+PlUcN9OKjBKsh7Aqdrj7vsqHKStAB8A+DSjTUwddrRtle83r/Btx9/ga1twNTUSKAuKpSI+cyBrnvkGNTB/fHHd2y3V/zJP/kHuL18hFlHJrWET02VpWawoZ2HAEWIjkcmFyyw3ziFOzoBzOaumJFSNd6eCivVArfavXimmdNBZ/86Z6VlFXZFEM2N95UZ9vuOjMBPP/2EiMDj/R37vmPfmRdWvp0A7vc7MhPHcYiBRpZ0WXUV8JinlUYgY+g5B7ZOoOM8T2QmeiPou207zuPA+eDrVq5ULY8Vj6Yl9eAiObVQl+E4yVmao3TNUlPquY8EoHwBwRVjBEwKCIyLa+J9UzzK5ySru7e+mFnDL93DArs4+EDNdUaJkWaGjMDx4PTw5tTzczSM6ZIL0colAevIqS6btvKA3hgn3LCho6PHDmQHkjqsA+zYCgNujTZ4HOwAu9ku4OrGaeFz8o7pbemtvb+/IwG8bDv2tuGX33yLX37zDX718Rt88/KCD/cbEh0zEr/93Y8AgPstMI4Tx9s7fvr0wOcvD7GRB87zgeN44De//VtkBmoeogE4z5N7OeezM/gvfv38Vjvf0Sxx82050XBekNR94bj2yMRxTlVVrmrHep1ytJqIVZtsUFUyQ21pzsotTUGBVtWZExVGVOVrCjhhAmur9Y6emlVKPAdqQtrXxAgjzXaOJG1tocDqxY5q08FCbMekkyHrSkwUvxhFWcEunloH5GDdYiV9S7hQivCrn9UVlDQ6oYzEzErEadwLZFOyyyRQiWjR5b0z/nNWm2JQDK6JCm5GwXBO+CveCG+DZgkMJtsm5grFZpl4l6AqQyZ+Bmo2GMS5RlVw2EJFxoqbERRJSEchVcFoKG1YmK2e3Gkc6VnJBJrDfUNGgyhbiKl5crEB2eF2Y0LEvjtVb6igdQwm3VPJaAIcNaoDf+sNo3cGY2oRGeOgBlI2HO/vGG643bg/rXdYJMb7A6b2md07cnMc5zvOETjHwQRxI1izebV3uqqo+uAmRgK4P74YThDoyOYGCt6CSaUDsIs1s/U7WiP4lGEQwxkxGXQ379h6aJRmQ++GOQasqd0sk8lwToE/pqSWl88a09qajhazP7NAc0U9sj9MAWPueH8cOI9DorgEkiDmWKEnbkz8I04gKWIHh0outKtVcZOwY2nYls5A0WzZu+5qOeQlVGLvKQYDWwJSHV+mz6fnGaqQoClknSsPZQxpGtFsTEwgFofa/qritlwgZwIoF1NbGFRtKRBewWuNx3Uny2o+DvnFrirElbDVcAC+j1++MSZbPoFCQFBtA6uNGRCQWQAgKotH9b4Xc+ur4PbJsVdbcjE9TFMevfy7FSNClSvzFdQzkQd84/pVsE4Rdazk02CL3UIGiV5NDDlMgWkLThB4iZrIFhXLIwvc0Oc2tVrNOdFbZ5DROxIGnKJPN4KFY2mkJYWzKzAU+Ms25lpjrruZw/oo6oR8EW1vzMAZA8fT6OQocCF4pvbO8d+9d5Soxm2ndoLZDWaJvVdinKpCiY2sbIkEBg5LOM4TW9/QmkZ2pGGoXbOmx8Yk02rOsVrrZPIrKaq1dmfiTG02OirebbTHOi+pf8xZIJzYhkY7qzaF5zbkxVg0vmoED7wtJrQSO4hxao1+K4WQyB9UcDqTYsgMCx0ZHV8xH5JBcAHjxCJ0pmTHMyYZrl5zWvXZDVjT3Yyt3xG5dDGaO1nHznuOUncFPFOs19aZIeuyEuQsxu0y4osh5pB+oEC8soPIi71AjOKZmaK1yMBQYWfo1KhOJbYz4BrbjWSwz4unkAbFdQIsmhumT7YYW71/rnCsKvksRgR9snwzEtpDAk+ZUEJF3xSmIp0eYTEy7PJ/Dr4voooSPOPN2gLnPV0sfa9PLHZYubkLnqrmuyVwW3ef152cAgfIpG7yI4Ba+8PWZ6Bp1AAHtaQj1/lK+eLFBHNIYBooLaylC5licyqmLBmBxYJNgg4Lz89ioxn6/vJk1xVVK4bLIKaQZPxQjJ6elPGaq/AjUCafYxEBMHHF3C59uuDCwzZe0hn6fAkWpwBEDQ55Gm5RKbe3js0B5ZSMa8upWIpZn4u5yTM3cOlg6law2lMaA2s3FFOHmcARLBvNSLTGs92r+zj0mnHtR6q9lIxsV+FazIRkXlHganNBnzobpoJ08a1op3yzahEsn/pV/KKYqXzo9VUOF8tX0waevqWOr4oyNcp++S2sMIDPU6yeUH5Q761X796RbghTCSO5VxMJU+svmXxAym5NrLZiDtFP0ShqeAPaJlSBU6itFVO1LUAsR6grQyyo9KUV11tboUvmxHnU9OsCMnTeveF2+4DWXzBOoG98FgJ+dc859m3nsq7PreltabK5UPHZKZtSYJ0Vs+36BRT8DTEuLv0kk2wJ8Xu1siFRIzkLxKiVe7w/kEjc+w53x8ePHzHnXIDFV4QGPdLbl/dlDG4uIoOYOkNyMw8CbG1rYlWysDFlz6522rr/PJN5jRna3mWrUBhw+Wl2Eij/Voxp1d2ir77ZKhYXT8qc52fqbi1DJmGBZ2hpUJryS90tlL1gcSwQmM7J3sU+5RvUfavOkTFhNhhHngdyTvz00/f48afv8fnLj5gxsO0NjsTNNCBjgkBMTNjgUKlbvy32uyFgwfuexdcDyAGSCdjp4o1xPVvvBbyLPGAhRj82wNnhM0Zw73tD74pJghIXe2vIceLLTz/ib/7yL/DjDz/iMRPnTPz0+W3FenEOjMeBOQ1zAp8/f1ZezHz5OA6u60qAuE6M5Z/YRX/P13+FuHinxlBV2yNhMZHGwMHdgIPA0zmUpKCop5WsVNCE1U5VgrzmdiGuwWTXu5Kvqvwv4Om6jGIyCMhezh+AX+9zRaaqjqMCM1UJ5GLXlJHxhCQbViBMppLimUhtNFvY3MGRgy5Wk5yGrurLsen9VsUiA9XBnihdBVOrg3OcbHdYaxgxmNgpKO3pZJnVmc1aFas/IJ3XDLvauZo7jpNJv++mcbUEZJq5GMz8lGaqkRtgI5Geq53QvamveRkHKrBg8iLTMoNbJey6hCYddbOrdQ9KrvhSCghrsXXhTDuvANc6mm9AlkBlvQyTzAgDsq3KPXSpEMgim+1QA25dqpYEEjPB9rfmuPVGll+oSjmm0maJjDuw9R1uJANnJM7jAW8bugPbvsF7x/H+BWOcGBhom+NluynxKMFgQ03DkeUtwMs0odG9YariN9SilLMmgDRU22b58N5vSDjGFBVyCpAJAJrosbWOcJPtOlsTDTBTG2IkAwULPoMAtWIWwkytInUq1W5UwFONhI+kJpc1vM3AfJyciBBs5cuKPvUaBJ5o8xGsrGcYp0AUOIei81uZEJ8hGMzwEbkeKgZdLbsKbMo3zayC1YrUJAyPFXWlPQt757IrVLICYFXEBUQwaCCoVv4LCnLX3ZoFQqSeS99suarcZHYFxpjS8alxNnytdSaNP8LATZO4FBQ875WtpOzycRXYqDRMj6T1KRBAmMg688uf6exBlS22FPG5Q0mRVfD9BGAs31yVpc5FIStPP1OgUwFe6hG82DBXkgjmSRdIsh5Y80+WXy/nchVGEhBLleBZ6x0m9iacbRxsf52s9knTowWu9g6BhJX4l2BnSoPPei7/XUAVZmCO4FS2GCsELwAkcsIM2DsnlPRNNmbAvhXwxAmCvREIyjpLyUDPn5galSiNMdbUm6pEzhhqe9T5iEngaZyLBVn+aVW7s+5U2izPot6/bLwCudoTcLIfJ6LYartNpFp6nqveOmYr8ZKfrxbzehyB4AVaxNTNkNfkprorZ7KAU63gyI4aa8xEOxRM2Uray95MPmBmwNBlG6GTw4Q3KtJY11ugF/BkZKE0a2gmvSQlBWRhFdPoSlJQZ6cin1rPp7t/crMFnFxgBFAJZd2UWHsYSb3BM4Gp4l3AcZlPYprwpae4nIe6opZc9795IyARrACHV1qRy4eU+TwLwvdWU2ILeKp0jMk7QDZLOJZtxPVSa1+eojv4erq1GygdErpv3iP2VIzUh3t+TPlItavjAkVdiSWKoQTyCvsSXidIPgvBnBNoZczcBW/V9gb9dP297tdizxttaoFPQT/VoWfiIqwC5rXqV2EPT4mCmaHt+/WZc1Jn0yCQRi3OMpZQ50LkNSDBvYqwjIVjFXz5TAlXe7LDQGB3atgIWq0BQSYYfcZEXJ0FXjEIVsHNNZV2KP7oxgm2HH0lz5lTwBNPtxt5eWkShBDTkkUhrteIVFxUcfsGYCKTLI5ArK0rOYNEAU0C2pV7ZELSI7XuQHfDHEzs2NrIZNINwJz6Pj5v2kSB5aJ/XD6xQIZyelY5xmWjz1+5/lHxEq7FfDpE5UPY8n8BrXUaLCtfyytfq7tfpuVgZ0qY1zWMJU8RKiqJ9YInMJhrKXbK8k/lZ03ML8Y7aQQAKcPjyJTGXcXCMBZhs4qL3JM1ZAncrzGGcqsGeF5Fbjfs2w3WbhiDR7ZYSCFasRnbo658Q50bENN+qshQbZ8VGVfBbK1d7WG9Alaxrs4ozDClNeo6JxSPzq++z7S35/HAmBPn60ds24aXlxec54nzPJffqoJZxXWP9wdYzO/wzpbgdR+BE2pjsj1wXwy363WmbHpGDffgfdFUbW3bxiKzmOUVz9Za1B4VIaBiqXqn1h0WE+OgrEiUH3Bnt0OUHrHiXOTy/TTgXAVc4AKeyPZlTD3VAlhf3qXnGATUq4hQh2WeA58//4RPn3/E2+MTgGQXChL7YnbVxNkJnwOOhn1NCSTAzmKTBjJI+9qMoOicgd073DdsKnANp1akRYXM8q1txxnHmvxeBUpOeeWfEXgaePv8CceY8P47/PQ+cM6Jt2PiPE+8f/qywKet39B9xw8//IDjOLDv7DLpfVccWTHIZf+Vw/6cr58NPD1GMRyK7FuBpXPyThrCmypsomd2je/Oa7QyhbANZkTO5wyCECAQkq2EMpOj0QGccyzQaQVjlcTYgjUAJCIHPNmyw8AmYdYQRhRxGZe7dG1MOi40hDNOGIDbbdN9nvy7nALYHBDbYBNoVP3bRdzPpIMg64Cf5dSYytZrpHuj1k1OAXiJ3K8kelX6Q59N6GmzTQGRhKWVYE6JU6fEWQ0AOkGCx+DoXBOibl2VCUCHSoLIAFtHdLFb63BQnBNzzTRAnkK3vSHSkCPlwCkhHODz04GNVRm2rdORiD4+qs/dFF09OVTkwsL5VT2+cLiQohKA3rSmvd8RmXh/O0mV7htmDuScq4qwNSYscwxRHu+sRmagtUpsGIS1jxvOY+DHHz+je8P+2lGTHRdItTFxcyVw8zwQfiB8Q+KO3tn/XAGvh8GzL00JVrmxqqGhtqhEJT8TaRPdG0Y+aIcSefZ1UR0ESk7AnELGJcB9v71iBlHtMSeO48QYB8Z4MPEBMEYC3fDx9Q43wxg1kloJEho2cDxqJedHUFh1Q+dzonRwmExVIFgMO/bfG2Ad6QRPmHTxEk/pPbkDMNoXKa6OGPQdGBwbfoxB59oIQPam8aRWMAiDDFZsOxCmQDphnlcQYEUlvyqWcwQigHFwf2PbUMLTIS/jEvlbIX4eMBiprnCxroLtuzUcryp8KplS+0haHgqKWFCXXet7q/qBBvTuiDyRceisAvveASQyOJwBxvGpiJRAfcMxD9pzq/cCej4DAayYwgycplGBlP5aAW9pUdWgB9s6M4OidHUsVmbPG8PAYAtnTQ0LTBUTBCgiFvgdUwmNM3BMUCcIkyO5dYEAuJJ8t7zaF3TOtq1aaxiYjDk1Ir3Yl2wZB9hWQrYWuHa7I7YNozWOGI6EbzyvM062PnfqocScTIzTljbgHCEQhM9Z7USZCaJUwfOWTM/OOfF+ngw+vFJngg9yWmhmZDypZYfaioEuJk3Hxc6QJWGAYEQDK5BVxZwaePBye0HfGEwUiLZtHWnAmCcIVLLyjWBCWmyTTJBBCsBTOmMqcqA/MQq98udKcLF8vG8O9GLYJM5kcMzEXVoKxiR3VutS/exORlbd5611pMViFXkmmqrCgUflaBp+4hxvP6eAfYOJyj7H1QJUEUUFwqksvNrXmrKtqIp2BkYlpQtkElRkxoLWHMgbGXLbvmFDIB4HZp4484BVq7FtcDjCCwTGAiGZxDyBJQVkmOx4ivViZA5tvcNV4KqJNCeYbEXj1MQBsp4o3E8fUUxvsl0gX0ymdtHB3ILvI984RlQIynvDO0YUkMGW4jEP+RsyQ1pny+I0xkgwQ9s6IjmKnTo/BoCFqnD+VyumHVhg80rUzRbje7WrAbwv1fJXd2/5NRQmZ7n00ehPxdgR1axAyNB7z6dkxbBwb362G9fdot4zGBO6gHwzFTOSFbkwMsvB36bYs1NA6FhYwQW8MXKYCKMuyGlK1tHUvaqkwDRJEMA4p+KQAqwCGRQR7q6kXhXu7hKUbucCuwjGd0JIyVYpZLXQFIjMoumYLCKPOYkNea1j1/4DgQcmBuAEd7a20X/lqYOYioMCW9vQvaNlMal4hmc4rvlXpIgNPJAYMD+UH1DzaWIgvDOWqUTaB++xWezFQEdid56ZmYmWlJoIDd3IOVZLJDVmbflZWz6Bz8NWpbaYmfQR9sSuY2RbbVaVM5X2VrXlTrhyIMh+VFLJ0spTDC2gyIzFHFMhe0HXpW+mTooxx5JzgLmYRoRspxhzs4AcXFq9quthA3MOinUHhTncsSvXgxMwzRj0ibaOnwCEiRHsNLAKYRI45sn29FHAXqBhwlvA2gGgtGwSDQO3W8cvv93x8duG/ZYcsuEBN4Iap7oxSq6RgZhikTExAzhOw+YdL693vL7c8bK94IDjQBX5CQ6aGfataa0nSRltZ/yu/UKmGLJQzhgrrkcWi9Kk2Uk/HpE4z6EJ09SPdO13wHsSAAEAAElEQVQnAYkpALSGcJBtFUjcbndscWk4FdOp97606AjAY9m+0eEtbbpQXlNeza1h279mBIdy/5o6F2CBAvosAPAYFH03dxxzYlQOKpDLynubIdyBLeCdrxOYyODP32+7wscB2ETihLWNrGxjvGmh42tqdUPlArjiCN1RtjFO24yyJ2MEqouiSCZkOPGsNne0ra844O3zZ7y9fcHnz5/x9uVN/lBlAR/A9tDAlInbBtzScBvUZL1VYSANQ/qQUeehYn+cKrIkTjFdWeB0eCdLL8dApOERk8/3ckMEO0TeW8DywNnIsvr29VeLYPPT+QX//j/9Ke6vr9j2G45Ju3o8eP84DDkm5nGiI+DbxG0b6J54eSX4++XtB5TkSMW1W2PB6XE8NHTi7//6+eLiQZDHl4hkOUCspK7IwkW5M/W91L2ewEIeOQWoKqhKFyt5zHKQMvZqobCq7puQS9FTF7Ks/1U+nkwySbM1RE0eMQDpmCEgzXgpwa4eVFEnYFbVOiVXBlALJ69AxkoHgEBQpb48rHFVFJC8nJRA1TPDSG0Oq9PCMk99DOhC8gRqgs5YSK/o11V90e7UOicgJJpOttpSKnip6rQtp1Qf8qLvxtTlr9M8a0/FBFhrCiUmcur13gajs4fBUlod+QQGoN4ytb6m6tFVKTWXtXh9qgpoCV6Uk0MExjnRNtJwbT4JEqrKlGXPTuHCCuhMwWddsG3rrHrbRHPDthnOUW02TAJmMLgcM9jWNAepppHooy0HaHZpZlR0uthpqO+pT5XXJZXXJLLEILBqsnm/KrBIYE71Y9tFl+0bW2nImCmEfy6wjDbMX10MjzHmeh4+ozDtlDZJln4ZAAG8tHGCBV7Tzpb5Jq7bjBUs8xLSxNc279yDFN2/NGEASFOq2AZMsLz0fXx9Wy2WTPL6fJlzBUumR1l0N/0q2wjpu0RkmStWJVDtLHgGPZBisCmpEE33q/3FU/KiYH3iEqFtuiEvBtVTE4QJmJ+cRFhgfQEnI059oCstsQoQV+uebPzp3D3FGCuBrf+o82B5fXfq8/K8KYJRYraAqgRIuxUIAVZe+D5iMFguPYwSji4bWmtriZocWAltGVbpT0DPs/yEgviCcKYRvLXG5OAiWeZah7VBTnA+naO8h6p6910tdjGWdoredZlbseByTqTzTrmYVXpeVVfrMwVMTCdOGcVinl0JMYFRR+8NXX381WriKPFPu5KXp828OBo6g6rgmZHRVW3Wy8aai82Z670rYV/bKhtJ+Q366aua+zwYJGqt5eDrqXBtMRIEKs8FBreVWOlfq/1w7a8XI0uMTxN7APHVCqRVRbRiCYHOeQESiSo81Srwp1MZYS5AG0++nHuSZqg2KeR1K+kdddevq3HFQjDd4yDdP4zVZZZPmkCealkpH0PGBs3Wlm3ls40Bq/UukBp0wYVmS9lcz5cAppGRGLAVRNa5Z8s+1jpxOcT2zIAtDRhxLhJkQetxJJ2rmEh3d0pfSvZQYvgreVGsQI2yxFnfWzYli67W7zXWGwJXn89y3Tl6RsgGyq6xbJm+qC6MaiOsVtfL4XC3yrafz3/Fm7b8mti16Uy0I9daOaCWSMiX4IqpXfaTuGLfuOzy8tVlb9UG7qtNMLSvC5Asb1Afo15LgKIZGyyRQ6x4iYpnwJ0xb9rQHVKsBccaLFTPs5iBUJ7AKz0NK1ZlHKvYEiDLMScAgUMGNCWu52BLFgGZYPHQO1rmuuXqTHCSMC5mV3k0k0akgbFLJsJivdfyAK18Qhk6/UoHxJRK2TNZNvQ9YgZGLBmL6v2Oum9l99e+u9ZI+/0UsJQtrDbUy+x5RtMuwein518eT2GJrQ3n65afybX/FFo2l1wKHSy0PfSjVuyFBJIdDIslWCZYvjGf72++CM/kpROWZmqxu/wzKoa1yyprOUwIbrV4zhyrnSdjwjBZcLJqvQ9YDngHXl5fsd8crRusYkq9B1k5ttYKULyhkCmD8WvCBfywuDlCh+spH4FAH0RgBEWc3R3pdVblZwt4ev6MCpLYumoa2HPlizMmXAXZ0jEKaZkyHjUV/1z7RKCTkjfF1mFHTslhVPvaKurpczRNrJtxKC6aTwbEZ2rSsRx5deewtfrS4qx7s5jIcwZjc7B195yTDGur2/XyBIkLNBWvkwOAAFDLS7HTOte0Z1ehgURZg826J64hFGWx5RpMGqbmDRj8vCsyqTaEkhxQft/8SSd2TjyOBx7HA8d56kUh3zgBn4CfyBjozom6FSsTotI64ek8mYrOildq+cNIS3BeFno9W5NY1x3SmyY8NxZzMzCdRYJ+29VSPnHMgePTjzhyYDtvyKTUw/lOf3frNxYh5omcjmwGt0C6SBmZiHyQDIErD/ZGnawZX9b0wL/v62cDTzVZ+ZKf1LQuxOVQU1TzmcgcGCBy2GGrTcg2Bry9kUmwNYdlIqrCYRLlc45zJHqriVLu6wJdV09eCZSZoW+smMyIpcXhqkrUxLvetieARUGJ9DkchNsfj4HmzjGbIJsgpokdzOSgdFUqGRtj6pB3ORgFbsmksRKkMScZUI26BgT0A6Hxoc3YL9ot0KHxj71T6b5tNLZWoyk1Nn3feHDMcGq0YkyyUm77jrrORpJRcU4mBq5Ycao9kp+rYdc+uTvOx0lq4KmWHX1fXYBKJWFp2ASu1Bh0sq05JWrEFFtorkDKrKp4BFqaGythcrJsuwRu3rGqumB1oirh8zyfAiuykFpnNc7M0KLqNyWID+wSt884l6D5CskbeAPHBHri5RseUoCgzGOesJ3rg84k7Aypqm4bKyeZGO9v8OOB+21D6xu6bUgEJ/K5wRodv7emCVyA9asPmx+GjtUQ2JraMIHlwKk9NUTvJfpvVgk82VtjTHz58gXnGBjjVMVqQ+/UUnr5QGaWt67Af+cF5Q05JsY8MY+T+9o3pBtav2nyV0diCHhjyEGmYmKOd2QC235DWsMpTW+Ofu/UF5EYaytONsaagrH3nXpp6MhgfzFH03ZEUKx+nifyLCfNKR0m4JK5KKsWaK5LlWAeLLF1JgojWRGDs4/dGys3mUAznuU5SttJIO9QcoZE02VWYNMYJ/e3RIhhFzVZlcjmhkRVImm5WfpImtA5R7UHdN1vrBbDGpo4ld4aEASOZwTOh/yKlxgFbcx0nuincQmOPgFNSFsacgWL68no81dXh04vS05YBgkxGtMw8kGips5vJVdV5YWJFZQJc2nO9QRr0mSAlmZH4howMcRyrOS5EhNkokv4voCq1ho8qWNWNP769xRg9zgPBgUbJ9OxZYm+YdsApEkAG4DtnPgyyNJFa7jdeI44Tj1wxAW6unFsb6XMjyB1/lyiygen5ChbsARuLze00paLpE6APLOvVjJDNYohE6GJrDGOVX03a3yuxlbnOR+qaLMFOtEwJtnEfKWOIU22ruEUSGkS3Tccx4HzOLFvG+1LiUmMq0VnDmpHleByFOOp1j6qgQrXZwJ/dvOGTFbfLVWE0U82q2EHfKiivpvVudKUHdOdkJCgPhSIO4CmpIJBYHPDGA8EDNtt5yVu5wLjI4w+32j/U/64AB+yfRNzDGh+0Wpd7GlVx1qnp0RIe2Mb6uPxhkRgB0erZ9+AYIlzZorlksuOIP0NZBX2eG5LML9apCqPImgemHESjALok5Lx1vqeApWT++kFaEs+NBEwikqgdOW6X+csJzBOJgNQ6z+T5ooKoHuIYDg1ygA0x4yJ4xyrWOUSEx+pXDhT+yVfa5ftlAxAiZwylwtcDuZKOgjMVnKDpy/FHXlNahKio58u/6d2vQJAHV99WQLWaSunBrrMpB1tjYMA1rtlEtAuhN4grTJuHEeOzwU4RQEKK2kjA8Y9KGKbF4szYko4/0qOC6Q0xRhMQAnkwMk6ar2h7Q7EIJNNtQTGROQAwcme4/15ElgDONkJwL7tbBWXpuF8P5n49Ca9JiiO1iOD7JXhiWbAGQOBgCXPKZI6aPf9hnh0zAHcsWGzLmAn8T4OGBy3tqP5jt4cYzwwxoHt5jDf8FAXBsKZk8xzPUeBKVvjPTPmGz2hWvrObGstCQAncui+exr/6M4WS0iX6iTGwj3UXVkMtApUiyUuE6jt5z4i1UUy1eZm8kFXQYlA6NV2XQz3YiMVu4XPPnFpK2GdcdOQlm3f4ZN5UhXXGkVHGa+sMwTYJnHwDEllJNvi5TvqPWNOjBliejkacvl3IOhunD7DI7DpWLGuLLJAkg1dLLpmhhGOGWTBwwz7fgNy4jg/IbNj7x9w2z/ifvsG5/iCOU4W9ECfUkUBrt2GOU7kmLDW0HvHh9t3aNsN5xmIMPS+w4+xhO0jE/22K2cay3d4st9FKTmGaS+6gIdm0vxhYGrGnBgJ3G87JScECD3nMrWfx6k4eU0qxsoT5hgEq2pCrXahGTts9tttaTL1LnbKO1/v1NSy8zyp99o6oCJESb6cyr/D5RPFxLbmCgUv7c0pvDLEBs5B/coJTvx1b5jqRBrngHtH73dUabMrtjgeXxSvT7Tm2Pcdx3ng/f2B8zxh7njZXrG1DfvthojE5+ML5mSRvTnzqjnJT22dG1I5zqqF1zFGogYWVRscfQWvlL03WG/48cfv8Xd/+7f4/nd/h08//haYHNyVzZAgc3LOEMhJ3IAWR6iFcgkbHIbNTP4l0Teu7TkI1I2KmxvQR6IlYMkcbOu6z5qKSnhnscBIDowA4BsmHO/n+zo/vW/Y+objmHg8vuB2e12Mw8zEkBA8BvPh9/cHjvNAxMSnz5+0frwPZ5wojxXpZNzdN6SKAH/f188GnlZXT1Z7W1VuLzr4hYiHApyJpdkjx7PaMrJdO6/Xee7thIKjNY5bQcGVDGEd0vVjBlbQCpTIYsSoOqpvq15/AOuCX1UxK+S+3G1Vr58YSFW5XGyR589/BTiVAKWcB1IVSQUgVtPcrIoOiWe8loHO4lmIrZMrskwFqL/f312fO/Tz67KDrWCOIJgWzS7wLCsJXWj6MxMB63NWQFkodO09hRRN0yYYkFa8d1Wq6gbkv6Yu56pfmZLx6y1tfb5iSbCSlGrnqOT36XtNAIOqLFfVlYi+u0TgEOu1uDdcTwhkIEHHkFP9zAgyI/Sr9EBWEPlkCZx4F+jBqXxtcVwvVLisDLlWHkvjwbAuEWhdWOwvxFzJgmAC0+en3bFyU4y01J9TcFhMJ1UM6o1LI8twRUFTGkGmY0u9ASZwMDrYITZV9e83kIEwTqDac0MgRInPL2+RBWpUiipbSiWeRtAiYGzpREJyQot+nAArJGbILgvTxWJqE6oJfPylKpL64MjKK+YjCHCXZr2M9KpQChR8qkwsOEN2d+1VJb0mP1M+QZmVkjUd9otdkZUQ2VWVB3/EUXoFes8sNorrQ9PGSgOBFiENsDq09ayrDMT9fq6KLkbIk0v2ej57+ujPv7FKeMDgBdyAGoW+/tKeCgiWiymRX723qqF6znrP5+8xs8WevG6S8rmqYKUtcN2ynpX7U9KWps9Z4DxFLwvcuaqDpmev/vowMgybNbZBVSCTQIm0ly9GlrZQaYrk00RGLKA5tTecmsUAGQDZklaTk3gGawofWiPFfIai99p3oMbJmne1wGpCUHnjLHAvF4vzuupzBS1MACSOqxa1ym/5yFybOsHlb7iuxXwrX/RsWHXLXuej3lu3lO74r++356+IAn/LPq67LdXXsexmrS90JhI1iq30EMjIpL3E8317GY9A5zL5i7FdmhsLzl2svhrmIZNWe30xDDz0nE/nrV65blfGEBdb67q39b2y+dL4qjjjGsry9L1rHa9DLz4RE1P5X76B2LdIvj8rM2u/MtgCzSm30Fo+3YQrBtHKKOkkw6BMQb6w7v5rCdZ+rf8EY6Plf+oDrG6ryxbq/Z9+/KuvAuqelvyyt6StX+BDTdgsO3h+oPq5r93s9dAmX4BVsS97qZ/V5U5bK39Sb1B3e71fQmvVlt+9/qnXhC97tPWQ/NCRCY9aK0MxJ3KxuvyKCbNYAq5A9QJ+1y5Xe23UeSnw9Sm21j0aUwUgC8AvIIX3HX0Ti68NFgQ6xJ8tDG8VO4FAxAmzicyGGSdmHMAk22mGAIHqfltxPmh/+Wxr5bMvJhnqDnra7t8zzvV7W+ted9dlCV+xXezahxWb63KqNagTXHnQdYJzbXExPunfnu6Pr77ySrP0jM/+HbpHS6S6OEnLv+Hr17z+nO9bE0gBpUP1PisAs2VHdTPUc1X5um6jarVbfs2qk+Q6k885CUyFuAD9TTpZcb6h9x1zPJBgO2b5QujdLuD+6vqAJ3zjEI/WNsaDX+317z8LP3C1Yq/JrwaBhL46VC6flv8THaN6YdpNFe3rHrvig+d7bz0Drrux9nHteb185YpPrceJav3TXtQ1kFe+uSwo8vm6Vs7/++j7FScxTKruiBo2dS1gPv1eL6jfp4ohZRtkGBkgpII/wGEdJAWg1mjFm9B+cL+nPntNNoU6rZ51D1duueK864giS4uQZ/PxeMfbl884jwfmHOs+J+ZReAN0HV37YMhSuEOTHfvT6WplG+D9besXW7Qdts5UDYRw5CrQrD2IwhK4H+/nA01FA3fqoZWulfkJ94Y18Tn4GRhyX+eFbCbKoFu7dInrq0girbcF8v59Xz8beOrr2Fy6PNN0CWUdZ10LDrglul2VvjYN06+WtBgDkRNzPNhGDiN9vznGZBXM+k6aptXLsoo5IRqmcWIBRyZiBb/nOZcYN8fXN6QU192c1dXgqMYAq6tt04Qx0b23GllvG5p3tLavwz+Od7UsxEqM3UEmlVOAedaByGqrkGFAelgoCj1H2obxs1vmqtqyzY9VrZoYNPJEJDAKUEjSzJ8FCPlW9oTgXifdva8qMyDRuoRaF+n8Ih3IJnG9wFRFHTowjeoURIaTIWmHSTgVTPbPg5/XWW2GKx8yAyafqRis1QBAkfemHmReaq311cu8LlCpq/VNn08siLrnCxA9HoeYIaKj6mYu2mNdimSSNVWbsZhj2bhO8wg8xokvnx/YbnfcP9yUPAa+vJ+KdS/RyFvvsLZhBhlWMx7ozfH6elPL3n5VcTovpzEHqwauC0jBGwMK7pHruJZ73HwDHNg8wNE3bB+NAXh7hVvHGI6Yhtv+AZnveD/OVQlJsPp6nA/McIwcSj3InrPmdLDnybZFOCd8GfXcWNEcOM6BcQ6MgyzIm3qiMyhg/PKy4TEOvB/vOOZkdaYzAZ4xAEy0jSAhqdRNQqKsejWNCGWyaxALX0F88MJXxXrjAEBghqq2tO1hTcKUjpcPO9ICX778QBvGxLbdsG/UgyJ7u5gAbZ2zittDAGQBlh0JNEffNp2TwelGfdPlq72MwHkOBXZQ332DywZC1N4jD9rpU7sWx6RP+iJ3gSqJU9MBSfppIGe3rfNbp5xBTInRsw2otCgqKKM7oo2t/5Y/Nxi8N2mUlKBpKqh7jjirUZABQ9s6AGeAyGh++aUqOFC7JpUIKOQX23LGO/UHnAyoqBA8E/AO6zt7OoIVNAJenfYqvTq2y6oAUgUJVytH3wDR20cGziT7ypGYJ1szpxhtEZz+eb+/4P1dNG3j/JrMwWAmqHs3BwW0xznw/njHeQ74/RVwx+MRl2in0W9WRdKbo2timpuzSmicZIisiXr0W1sjO2+/vwBIVQgrGFOLiMZZ37ZX+v+2YeGm8lkRAxkTnz9/whgDoekwmdRc8s2wtx1733C8PzDOU/phXHPqzfFZGnz97JpgW9PEql0heDZlcDBj+0cq+Lfy02ULKqzU+PTMIZtVdQ98r9YI8BqMv1frL0HvJFOitOSagfIMgZG8z8c80NDgbcdqJamWW50TJBnJ0GhlB2Bi88Chs0X/3TLZ3mWJnoZuhm5AN8YyjgLMHGHXFC+nINW6tfQBYdYQceJxjNU+EUoAXYyYZgaLQMbJ2CYrweC6MCnS2iUTEICT9swMm5VGJM/mmQ8xMCpzB1xttDPJJllTPet+kj8GdNah2K3iHGWa3oFpxWY0gqT5ND4e61uvBEnty17BdsOVUIk023etTdSkwAJW12pigYTVe09OBmCTDI1GrbtMQ54Dc6Yq2ECxjFy6PSyM8L282xUHQ1Pt9KyLpSmhVjRNj4wBc2r42ZywCJzjJINJPzN0pmNlcLW2GhiBhNtY+YB7I3O5QKHlF5LJ1FBBNAEDWUkcaZ5wTSCr53aA7AbvyHgA8QCciflt27hnJ6cYzjOx9Q23bZeg9gmIrRpGseIvjwNuwOYANgN6xziNIuv+CvcN99s3yAk8fpjofqL7CQcZbcXu3jtwzgM/vv+G8Xc3PB4T5xnw9xufd78jALw/HvCeuH1gEta3DeMRmGfioWXzdgMicRwTvTXcmhOYM7KvHK6Jk8lcpRLqTE3EzRWn+AIXFUtOdjrQ9Eys6su6K2lOK53cSmLrFABXiyWkXzaXH1igV+pXFXNTbVF2DRIqiZBTrUKrRTv5uiyKtzWND5lkIDfdo06f5TYg7FA5HJ6QKibOZIaZUCkRGMwATWB1GViGsX0O5TPpX7hCU4BvwNoNzTrX0gD3GyJPRDQAnGS9bx/w8vItckwc03in5cS0g90224biTmZQ4/RxvCHR8PFXhtZ2fPeLX6G1He/vzEW7fFNkLjkLlwYnNQaVlzoB+CMoufH6uiMTeIg5ksmYoTWj81qgkLSznBp3VWQ4NMms7KbysBKnZ9dNW3pgMLATKXNJahRTNRT/RSTzjWJQuaP3G7WCz4m9b9h6x3kMiYdjgUk1hATyK6uFr+xPQOhSqIuS4bgAp8pNN0mZsDuB3/B4HMiYeNnJKns83pjDG9l/t22/9MhAH/XTTz8x/5Mkgd82nGPiHFN5VTJDtdKfDAxpSLn7WoPjeEdkoG9t2fgcE8fxBuRAxobvv/8N/u7v/hrj+ALHiY8v7GKZ88RMqIblKB28VJ5roI5W91JK5v96gZuDJAUbzqFgg9q+04C733AzpwRKBO3GHdi4diMCoS6xOR1nBo4xkRn46acfsW0dH14/4OUWeLkB7++MR7e3A80bWX1mYpY7tr7BbYPZhpu6zI7xuIhGBjTsyKXbyK6ab/ZXTpz/GV8/G3j6CjaXg7kqKZdBAWJQlgNuHEsda2RhEpWb3JbSZ3BmYnT0WdT5C0RZINvThQjkhSg/ocGpC6BGp6/KjBB0Ai9XgQzI9Qw1TY0i6mwFcr3W9Swshy7U2a9nzSzU2K7XAwRCYaHidVAXom0UcuNlpvG1PMNP9cZUIvtkulYslGtNoFTQfm9tKuHl5Vi01ieE0sBDs0CtC3FfkLhhgU15fWDdPkKPn/tx9bk9SMnLfHpLHUisoDZWsAe9b9OzEqHW3lvVTfzS58iqCxdjptZWQbCoiPW5maDkVx9d1ymTGUtY5wWx9Q3Rgd4nx2frQn52phyhy69Q8AyxFIpunKHdMaAEYkOTGbi8VSfHupDolVf9fP0dBIqUDTBwke5YBdQAxnnifBoX6s0JspkjQGc+q+KDesAJa2zFOkUbNbGYyAbhCHib7G8vULReZahlNFUpaGdgTCDCl09gkqWfMNXajEGHw1bFPfMasdr7xiRylkZZBVX1GqqWVGZd61+tPwnkDJwjAYs1uS7MVnJaVchVPF/ns/Z2ZdAryAq1eKyijJXg8nwKIpUAOr+Jopv8FfIPxcip9/LyMWJxEhW9Kjs087JtanZZZwIRGJc94rk3v84y/dgCx+vPnI7x0u16cr1KPMuXoNYvQZaYsUdjMSkMaCuJJ3OsqUBgsCXO27Yn545EhKlN0eGz80RX0Ky2bvckiN4kgOuJyMZzXWxN7xe1vSj/8k29kvFeexn6fJNi4t7QnMBTM6KZEUBvHVvfWRhpbMVuraFNin7vk4lrbwyOz/OE9zvOMdDvHwB37PtjrXvdOxUk3vbbCoQu4KlxVLVAm6rWtUYwrW/S+ZoDa1JqMvBg/z3ZJYCxVTsJxroKCSadjH1/4b7PIS2DA3McOI4HASglHs2vvUfSh824xETXfSNzYVCp6niCbGh53TK7UI5jJYJmWPfBAuJXUsPvnSsgr4mTddaw7O/SpJONuukOZOK+7jAUu6v8qXwwqtqb6/xT3+hp9PMKrFP274vkc90xBNXXyGH5rHXH6mK8+ATXh+WzXGekBgE8R2TxdMcXCML/J0qH4/8Xm8iUgnnS3/O0MYImuC422PJt0k0DWU6BK6Z5jg+5HldFvbzmirkylZPSN5AVQKuou75s4fmmXqFDXv/h8u2VuD0/Ct1drZtdK6q4Ctrf9eTlH7/6M4N7bWj5TsV9uppTMRrv8SsufjLZsgKgpjIh1xlZn7EAMcWZrSlCiqlW2auAdu2kEnYLFhScA1iaXcW4aik0qEgnMs+K67TBuf7iyUb0mdnS6rBtwwSZYNUJMc1gndNob7cXvN5fMU5OrqwiE8T++wAd9pyYnhie6MaCZ8aOREO2OxCUTLB8B/ILzhhMGMUkHm0Hthu++eZbFOroZ2A7E+YvMO9otxfADB/nxIwHjvEDk6UjkbOAjQRT5QI+OpOw1io8wdWsHWutyV7BFX+hWk0rPqajrGR8xceyUxpHsZnLYC8R8Iq9L/vVhshoVvj09D1ZGiu5Nn7FvM2rAPP0MssAn2xJz5dWOUx+HZrWKVo/Y2VMl193AlGl80f/k9cBhgAX2QEykJN/X1yaZhfr6tJeG2SxoOK9E7CB3hLbZnh56TCfOI8vYJuW7gnJrVwFTPD9QFDRnAm9e0NrG/bbHUjDOCfQCE4MSZjUWSkdrIgn7eA6U9rnqaC/mD/PvvdZTxcoFtHvrelXr6kVfsrpCjx5zvFqc0OxSIH/K0fFdefE0km09Xo1lTmQKgqazoFyrXh+RtrI4ljP2mcXKKlilGnAgYpPK7+nc1s2OmfQZ9xqEjvjnnFysl5r2yKGmvkqUmRysnxpT1lzDhmxzkKM7iNOylo46LLjlYcjle+okGeJbSeYMuaJcZ4Y5zUgAyqO1yTDRFPngm4Ehy4risDPyWIxl9jFarIVr1Wc5tblB2JpYJK8woZUA4tTM9Vel5oi2spPUeDccod5JwifHCZQul/29NkjiY2gCgzpK94EcJF4pGnX3DntfQbGwUE7vQ/0n4ko/Wzg6Wt6+zoNWCa3jJfVxnVx9s4ezDE1mlDUteDlt3VW8LuSMDqp4KVMigxaLw+bK6iosOvSZMjLeQNo3dGFxvqT13ym9ZeIZV0gzSE5FWrQjDHw+fNn9L5ht9v6jNfFXp9b7kOOPCPgTi2MpsP9OI/q3mO1o/MpZhZNnVPYkIHj8Y5mWGLDgGLwTJzCaIh4E6XkxQU81UdhhtVbnzNW4GitEjgleRXAWFUxuEKrlWmJ5VyB75D42gJ1dPgASJ8GOG1esVFM+FCN13yd+rrIOXWH9GsEkCM5fjNTPbnAPOdyDqV7UAnaZZtFLb/aSDLYNlPicDXJt7RTli2bKuqZq5qy7xu6G9rLhu4Dll3aUtqPmQv1v2235cgjgDPJxmvqoW9uK+Gj8RFnnYNsg0pgM7scfYm3cUKfSay0PhMARHYh9h1pJwLvPEtoCHAa2pfHZxznxGNQQ2Hbd45xdqgyMmFTkxNggJhc1hq8A8dJWmbbaIvnnBiReJyqODVqpnXfF0gyjim9o4A76e4M7jvatmHrDY/znZXedbkSONmco7g9G+Kk8+fUD8dtv2POxFtWcyXFtb0VOykxp4SkJr6imJo5jpO98PONvuQavuo4pmFmoHdedjMZ6FcQlA4sMT2TuKXO2TkmWktsdXk5mVw5T1AGXZVvAFAg0HpHRa2l/2QK2FaOiUFR7K0DMzQFrjRRNpDBoF5rp5bTvjveHxQ+rGrUolRbQ7oMTwAzWYsmz2iAUw9tnL8PPLGC69VCs4D2VE/9Da3fMc9zAedujr7dBa7NilNQQec86bPvtydmV1JvrsCjBsAiGRyaK3i+7heIyWQAZosFKDsM2ZyMuBiA7MA1fa7amfdFayer4ETAuka7TyWGo0BmMp623rEF++Bv+04wGlcQWCNtx5g4zokxWDls2x3mLqbT1ddvdtHgy5dx6AXBVreG1varelnC9Uqy2V4+8X48EDkwYyhRnWJXtiug8b6qvAwYOemzu+PbD6+cwhkTx+OB3/72N/jNb/4Wf/G7P8e+d+xbR/MOa8A5TlUqDWPwvffbjv2+o8SUZxQbOoosDhOTx83xdBVcTDYz3u1PoEwEA35b0SLZg+Mk86f3jkAKJOfPFK08cqrFkZoVvRc7OhmohuME77i+9cUKWHf5ei6s10MY5hzovmnt+ZehpISqWlXwSiVVA3MeiHBkNJhimjnnagng8Iml3oZik8sDKbUVG2fFSrIZTcIsltPMtaJrJHdK3+tKEpXYRaKDDK0ubbXEQNhE+IGZVORBY4w2ORsMNXFugGcDyVbMZr5sNXWXoovdrCSsWiGyEjjXBOBIFjVwAYMZ4mVleWv5o1oaM5gn9TBRxLpFhVPiY8vYmFBdxbyKjZZDX+0TUAwCpLv0qS7h2iq+Rco3W+mEQLGU2E92JXITKb9ExknBE9DeVaqdOh/7fqN/Og+t51gxJu1zAhLRbsb2TTiFcbsxkSEzUPqWSd0SFgSuHBkAaujNajteySjbMc5jYL9v6Pc7Hm/vBNO7gJXNsbUdH16+wccP3+C7b34hFlSgyQc1NGzbjg/f/QLnOPHl7Q2f54Ev80T/8AHWO378dOAxAp8ebHu9tRvi/UfE59/i7dNvcYw33O8v8NYR/or7h2/wj//lv8KMgffjjZ83DIkXmG348PKCrTXctjt++P5v8R/+/b/B+f4THm8/4tZ2bK3DcSP4rsmarTW0btLuE2gRJahPjSIXiJJatyy/BMOhPTK/BjiYO9CrTQaaMA35SsWShgX40OaZeNbEurpn6E8CnHItpgKkLxXjK1ACxm6S5r6Y0mu/Q4Lra5y8klIjuznd0EKMuepYUMzPgUaTCbc0sSpOgJ7JoGmZQaCeflnst2CizUkZnA6bOttdBZUq9lccAgBjPnBEsFPADDMfcCTuL4lvPjb86ld3uL/jp09/g9vesd0MM8/FhDavCbqJ8+SQlm3rGNkQaOj9hn2748OHj3g8Tnz+/Bm3lxv2veP98cAYEz2wQJFiKgPgAlVOqDig9mNEDVe5gB8Xe2ytqTpIipnubpyK6XVOua7AlY9X/pMqAiDICo1IjOPk1FDFM90v0KpylSnWdbHvW+8sTLth5lzPbemL8VTgm4WtfdrVInYOrYUGDHWw/XHCZUtYrC0XkDUH17M3xzESeU60jx29NeQGnGPgy5cv2G833G8v2LYNrTW8vb9zIqMKzG3bV2zYmgHd0XWnvL89uFcHNaP6fWMutXK2yp0NY5zEIOaJfev4+PEV729veH97w3G84zgecNcE1DhQk/U8yUCtQihj+QQatdIeDyg+S7Czh6xaJPNAS01o966OFE4bPSNx5uBEe511gwOxYSRwZGBGQ5jDbxt6a9Tey8CeL+iNd1ci6LNbw7ZtiFHujTHzlI9xv68hVDOmusZY1DyDLMvb7YbjoBb2+5cHzuPE8bgGVP19Xz9/qt2FaQpQSLWMXZpG5lX+IbE6ZyLeDzyOSeAgDCYaL0wjC9dBIh21+mNL82gFSVVhEugUdl3TyBLiTT0rUVCHgImYy3mlGYYXdR/rws+cCnzoAI/jgWfRUubkgSue8ScnojHC5loXoucm5BOlxcEfXCg00fAJyGnPQbBlMXbwdfscClJ5SnA48lprkk/g20pegede8/UctSCRet0CpJqc0+Xsq6d0DhphzeIslLoCvYjEVOIc6qxJAWIzpZuSVzBWgTnbLFS1zIRFoNWba8pCr2kNToBgPq3TahNU4EjAjZd8ChSjY32qJEdc/bGrdMmExLX2HnzOTpI3ukmkcUwGua1IyqbqiVZSo6RZdQDOx0S4wXcGriZ7nwNYouWTgb93ph1Re5WuoL6Sba5ZppgsCVa5TNpUqt/NCMwBPI5DlwErGa4JjokkfV6JI5BrRHUqkbJIcOT4hjNcLRVkGHkrm65a71jWVVVgtsgR7KjvnhMSlydAaK3L8bJNoW0bWzGjbIegMtlQFHK3poQqCTSwrY+foXu7qrxJpzpjaE0I3UCinzNL0wmw8IXyD586FldyUz38BFUKCAdq4lsE0GZVN0l7zQj0bYe3hvM42e6T0LndFquH46aZoKVsD2DzKdsON1CbpyvxCEDntO9ej0LWXWvwHvAA9n1ngn8O2nrr64x7kipuYsP5tq1KUUSwTc10oRvPTY2mhYAecwbIc06YxOnntiEj0Zyfb9t2XnhxLGDSdM76fgcA3Ha2bZ3nAJLTI020X28nQRu13lEIWu01ZW9ydJvi8pAQfBUesF+aBS6xz2I8ZVagQrCWATAZi0xKgIEpv0zfy+r+hr6xFXzCxJYDGlR1S8cY7EyFdYDYIQvz6uifs+6rWAH7usPUunGME8gTMx4rqIqybQGdJN0QaK5a8Ey2dJ/npDdJpeuqvhkcnkxKzuMEYuI8poL+RHPHL//gD/Hy8opvv/0WP/zuN/jpxx8oNJpJSnVLzEldkDbVghuqiCaZh5kEmbxSk2RRoabWhPxZTUOpu9bUygLkArLycvIoDTX3pjbp0vLg35fYado1FMDUE0JduoHznJiRHMMMv9isUMIJkPkGwFy2ktD7KnEUbbLs6/mrao9L2zKKZq+AFwz8CYQAz3qEqH9f6MqydrbYYfnbAk/Y9iYbqHNaAGqUcL5Yr/QsDJiR6JEL2LEAsnEdmpPtl3LqtDvaVurehpF5m1mxoMNcmhfQ2q8W+oSBbB/EpadWgDbMKn9b92CWDlwCNcAGpdnnT0l/xUyXh9ZG6N5U8Qco1vbX32OKNdWErJiu4lqs+7IYUqXvlWCRg1O+yiMVAL0pIXUC4BFL48lbyT/YWvfWis3JyXG32w0ww0iJkmvTsyU8GpO/7rr/u84I1ZDcqnUTvI9cvggVd/PzuZ7PrDF2K/tb1sq/2/qmxLQTNPexxKdb32B9A3rHhOExJvbthtt9Q+sEniwc++2OX/zyj3CcA759RhwPjPPAh1/+GvvLK371JzekGd7GhMGxWcPbD7/B59/+Nf7qL/4Ux++ARxpyJN7GO375+h3+8B//S/RtB9wxRtCv2g1mHd/cO/bW8LK94qcffosPtw1/9Rd/ir/4H//71Zba3WDeGNsl45kIx5iyM7W1WcZy4lagU0KAgQq0Ky8wMQSANseKNacYJiGR8nrPAm1KI8U8FxhTdfMLDP363ru4gpUu2dWe7FVMNo46j2LF0wbML6ZRuVeSzVUEXi3bdTddibonGXYtaX8zKx6+2mopqZGL+QS1HrNQqOdPAiz25PeeM5ayU4CsFsDRNgJoc7wjcsJwAhjYNsO+cTgScrLdU2L98KuQUR2rqXxtaEjGtu/YdrGEwTjjcRwYOTXpbmPxHuwmoB6RWDYiTzBXZfxUGkMXOwzrc361nwWEf/XB1Rb+1NWRKhY13Y9znOu8lh15d1gYCysCpty4diV83TrBpcc744rWO2ogDu9GPkhrjcCa7nMHBH7JCIP7TcagkUSQ9ezMc8OrjUtsM31w1xov/eQZLCT3jXjBSLX/gu2/oIzEOAPjTMwAAg3e+bqzktanOHpN33Ted60Kjbo/VjxrQHfKLrw9huJ00xkNPB4PfPr0Cd9//z1+9/3vEDFhDoLcSayj2gZLb0yK4Cr8VDwgv+ts1zewK6sIIGuIhKXkCK7z0PT9iYbVMZNchymWcw5XjEVgd+jMTxXDjyDw1FojG0wszZI1eMSJmF/IcIpQEZMyBJS3YMdJJFlOmRO9GWzv9FcFsP49Xz8beJo1FlCLMvNqr6nxjimdAphJM2FgPI6lMt+8Ye+bKtTnV/TNCFHEVT0KAHCKlAOALWdKYAIV9MjW5hjLWYWcVznRGsUZkRKEtVUpLUYDBJxUkDtGVU5NBxKYZ1xjIgtUUtDs5mgaLU/0dF6UVhQziAFzBc1Rib1a26bEjhcYFxVUVgBa7U7GQM59VQUCOqQx1uVTa0s/UUFgLdKVIAC4gCxVZKotsgALXjiXk6OmEV+s6WEzDUOBWWzlLLHayQoabNnhcHQrXYpKpOpDCxTUzW5m2NqGoqWNCFhNxpMuAf0NUejSkOluGDgRqlAsbZlK2qJwrfo7rrfrKrdQtQp8xs00ke+c6Htf1Su2cAlKcYJO3TsP5mSfdnOjHkIF8MEzZAr4auDFvV/nrNZ//U6OW5GB1pM/2ByqiNEhzUmn83g8OO5146Q6uBNkRa7K0vsbQdeGavkD98sCW9vRfMOpuGpzor+tJ6qtB2Bgti4jb+Q3aBLhJWgMnCcdlm8QGNhZnRmBLl2KKXZktZ6wxUDBjxt8I3g1xS6zpH0ZLuCukrsZZLDNTPoTZ+ILA6bcnwlkCnNW2y05FWO14vDvK0hBna/rKDFpeKqEAYH0xLbfse87zFhxOcTm8dKDax2JExTBrGmPhHMDQZFV3+AN8ATG+WAgZUx0tu1iCzFndthMtM1xu7+yavT2oI12JpGCHeDZ4U5mV3u5MbEyMrC8b4uZ1RU0rGit/LGCmtJSCU9sQfCztxe42FURE3F+IcDXeC7b8ueOfSNL5vPnz/JB/QKK27GmhbbW8Pr6iszEcRyL/VMB3aZq5nHwkixGZPOGOTi90jQVxlIskJOJmvcbQe/kRJEZiX2/k1KcD9q5cVcIvHDc8hikhg8BH10zzjKZuMzJyTjNG+bjHRnzqZ2L+lYjg21z7RpTHgr655xkFD1OtNaZYClxPUesYIBgDbjGTh8Z4US0k4k/TwUnBW1to7ZUAo8vD4zjwGd/gxun+H3z8SP+5B/9Y7KALfHf/3f/L3z69AnjoP3dbzeUFkeaYwt5oxm6FunQ6Tu9UnF9prFsqfz8GCcMyYqZWu6hNVr3iOk+0D3aWtcknyZ/ynYF3pcCFi2WrhMnJCQruQKeOMyVa9/7pmC1LIr6UrDFoSUIVa2cmYgx8dyyXf76GWCCWvMQDN5NvpsTzqaSV6zXWe18KJaT7iwBR+bUminxz2em01gJsKQGvBhkc03QKU0YB4eANBhaTHiy8MOckHvbfJO9VSMSc28WvatNTu2wCqKZfzcFsywyuPa0N+0jqPOZUUl6MSZ4bkGXD1fcxCz4igkqbsl8Kg4ogbsYKGs7VoJRSUdY2Qv/zBeApSJJih1tvvayYi292wLGHAA6fd3UeSuwpvUNkB+cp4H6ZFwDV19CM5dSQSq1AtiSmbjdXgADHnPC5pPeDwDTZNXWCVS4l8Uo8YHYeERLmcTqM0yUeLitYoQGG16tmVVUTl/xsnUmTH3nCO/z7Q2ZKSb1BvSGacD7OfDy8i1eXr9BbzvMGmIY7i+v+MUf/AM8jgH0Txhv7zjeH/j2V/8EH777BX75R3+Itm3SjzX4BL7/27/E3/7nP8ePXz7jh89vOMYbxpz47ecTt185/vif/Wt8+PgLvHz4Dsdxcsy5s+jyiz2wt4YP2zd4++kH/NG3v8D/24C/+89/Bp8DlhPNNrgB01ioXFOT02TsExMTnpQXcCSiBgOBLaPUcZF9Oc/rEGt/lgUVbVJ+gb6BgLt7dTiUvYn1i1y+sELCy95zgU6KAOgrTGCm14CTq0UqE8hualtyZBA0KvCjANgVi2S19tMemehW0klr4wh3f2rFJ/AdLpafXwz1qvZXjuLVkgVwLUK5gtVkvet7AWDbWPBtnTHS5/cDGSfcBoCBrRv2veG2dxyPg+yVuIT6M6k7RpBc8hehopezWEeW4ZUnnMcDcSR+8d2vcLvd8TipHzyOU3vnKwf21hRn04/McV5smiwPyp2qz1YMolE5oktqOtWCZoznqx2bfpnFkXHOBZCUZXB6HMWe6zO7d4FIfJ2adPzl7Y1P4UYj7I7z7cR4HNjFLFq5YIbsqslHCIhNY2eK4gnGyYxHOHzl8lp8VuZ9ENjmLVeutAmQmQ9ON4byXbcNho4MTrufEVCyJx3RGijGnMQE8pCdx24K6jKquBycEGer/Z4TiGGJL4835oHKw+eceH9/x08//YTffv9b/PZ3v8W2F9OczxeRzHOnJGXUPcN4Y8hOTCAXYxauGc9nxUyMwbHONe99smlZbNZgj6yYADqTXPMcBoSvAvU5yHrtlog5EOOgeL47Xu418EpFKxXH3uZDsRc7SCImjvEOGLDt3OfjfHBv3dZ0dOrqXoOz/ktfPx94Ap3D5jVFQ/RAFjpXj30dKtKwAWsdzYHufbFpIhkPmxNUaGboFZyaRLaQ6/EyJ8Ud54DSWCAYkFWgU9VFd1auGRCw8pxglal1VaFKKBAEWCLVbmKGZmRgnMcJ746XO0VZ50wcJ8f/7tsmZ8ODbmoDYeKQOgQDgbmQczpKxT4ZEqtkC4H3HYDheD/gAG7bBkfCk6J6npdILGWgWGWOTNJ6xWA5J1uJtq3BHex/Th0IGWZHQueLdXc5ZPJkgslBkE5ZB3n3HYu9peAXxoNXjpv7pJqIXRo5lRiRIijMZLXwqSpjVcCsOmNiawR25uClcap1yNEX8p7KtlxO3tFFX9VhNoMZ2UDFqCJAYXDfAYNozJVIiGZTxL2RiyGDCeytY/v4EQngy9uDAnaPAwlg23bFx6TVzhGrF5q4n+HtfVxi+510x5p6lNKiOceB0qlIC6AVO4f9xsXiSgFyADT5YYPnjjkZCB0nnQ774VnRYJCkiTJItE5a5jEAzKAmhEDZcwbGmLC+o287Hm8HcgZ6qwlpht47tn5bicDV8kghxjHLXgLeOiumbaqVjyDQtlGkrjspz/vtjmkDwwYvm6rElnWoarjtHZtvq4WSSR1w6xuDGDH5Eo5Nn9ibKkjSuXkrcc3ma0+O48CcA/f7C5o3AmBQEimgttk1raS+5D4WIBM6Q9Y2JBr2O0fU34KgAquyBbzcsO9MKGGgVk8EIN2cyNK4crizklFTBs2lLfYkemLtBR6B3l/RW0ff3lnh72p3Alj9MQMaQQDbuhgBRrsjWgt411k2DI0Kd/Dzt361sGTpbPkOQ0dgZ9X4TIErYk25YRwFSrCC02TvzX8JLNCfNt77B9x2vvecic9fjrXO1/hhPsdU4puue8Mbe9Z7l4dz8vKSXsYMsE4fMm2rmhFBvUxk25HusN3YPuUO5ETOE9Y3tuQh4B7UjkpbgQHg6JtjM/brm/YPCoLIPJqInPAYsuOn+zYLhAAMjm+9Cywv0AK4V3GhFcjKQQcw4MZLETYYzFeroqh7TExJkcFt368zk4FxHvj8OPB/+zf/T/zRr/8A//yf/1P80T/+p3j99lv8t//tv8XvfvsbbGNyBLRsg3cgxEomwDLL/1cFXGKUxXYCyPpwM+x9F9iQl03xcoWn2tJRTMe6tBpGJvI88TgnxpxovcHNdb9IvwNqTQSDSDdqRbRuQBjSNrh39HYjm3ZOZDop9F5pHQ0nBCQp2qD92tfAxpwFdFWgbYud1cR2NruSjGI2JVz7Xew6MZfUxhBilS3qN/ieZctIIOcTM13ud2kmFUtr/bJlL7CaDsX7fQ6IXZyYFpg2ylwwgqLmS1S8kTHj5mIjT8Z2bmi2reQUek9UwL+Y4Fw3tsSV704xU23pYcBzFd5SduLSACkBdcFcKGagnOMqgFVRskZ6e6vCIpO0kdIigVjQVgm1KtAm8FnsgGpfmXq/1srH0g5DAE9MFj3JFmprsiz1S8bVv1/FXcVBBASgONc14lzaO7MKmldsiax7gGe8FIOYGHPHE2yvEmccpelSmpFt2bxA2Ajs/QW/+O47nPPEOQdsJmwa7v7CHRyODMOZibSJ6Sd8fsH751xn6f08se03fP/2jjkSj/cTn47A5zPw+b1he/0e+5/+Bbw5fN9wHgc+/fZHjPEJ5/Ejfvi7HzHegN5e0Az45u44vwT+T/+H/wtu929xf/0VjvPAOA8ck+Ls7e1B9m/b4DHQxht+95s/w3lMvN6AvTvO4x3nZCMkfSvB+Vb3qpliS/piQ5LNgJKIUOzTQAYR+mWj0JUAoFjrxT5i6x7zkKaEk66gzgrf4xJSZpKYii1zxtIJ6pzfQ+YZsFhOUAKcaasbok4dWf+MdyN4blMFXevXhEr+S3ajJLi0KgEW7MgEtAVgTTB/INvPFoBfBWKrpa2IxAwlsJt6v9Lwu/hghpmOMA5gSUxYipGagb3d8O2H72DT8emHLxrcsOns5PKZhov5OObAHATTzJrOJvDl7TNmAPfXO45x4hwnR8un9gFsK1KkjqIijkGl+r6R6dgESIVYZYaKG9kO63Cc85REAEGstvW1JvM8MWOqzdcEbJMaWTrGy86iiCCMJV9e7jjPE5++vMkvB87Bgm0rNp2VT7u4omYVi5p8rOJKFb69kUU7p9hsAYx5cK+ieHG2XHk+FQrMDPu26+9IzmithFZYgGbRkKwzaw0jJo63d5zjxHx/yjMUc81Tn0WfoeJD+rZUfhmyYdm3bHvOATO2xL69v8kOTHEEn/s42Rb8008/LWactaa/exMzaVX9kAm10/HMcPgMz6sVU3gGIoY+NTEOA+/XVd6wRr8Q1FvMmQiM5ePNHc0Se0/s3pDmGKEhN1NRu7NXLUsjJgq7UceNKzZK3R0CfksLmEVax+ZdfomtoxFTwFkRiYDIsbCAv+/r52s8aQkh44MFMG39OQ9zVXIvi2aA0eTIXQGWmAogVa2QwGKDXO7H1nqUjkG9v1dlLZXs0apXoMnKot4vK7HRhDQrxNVQl0a1+bXWYcm2HEtD3zqTebGdxgjUREEmPUltHKtfWis5zWLZ+FMAW3+/+nTBz56Th3bbmwRf9Tmi2AFN+cI1GS8iVtLHSv1E0+fLuLR2CGYGrDlauhgPVXiu9cISTk1phFTPMSooBKQjwMUvYee6zIrVdFVIE6UpVRT1FNugLAUVZKEuJYIzrnalmKlkgIgwUDRNJVDrEmxCqW05SVt7ghWEA9AUIF8Bppkz2kaiOnRKxDdZKCcjR9MPj4OT3GIM6pLsFaiJCZhPB7AqYCNYBUoA1rBtV8BYbK/IyQqQmEUsrCsRNzH9qn2zVVAhemt2JU6BOZkApYJ6Z0MycsRKiMig6NRQM1by3I0i3jaAyaps23bgfSARK2HwJEC17zfknHKiZR9tJT21Ct6cGiperVxDwFNNkiwWyQ2IE8hBPRlVBzKBMwp0SQ0taFfbywQ8DTdpgqGqe3XMzarjAd52RAIneFm23tF7Q986Ij8jYdj2u3qlVdUCBJ4KuC7bqrMLig/WpW06P3BHGHusK/GfMxDvQ76sXWLSCi78PGX35/J/FL7scIt1iSFzJUyoYNUMZqF2jQ+LPcRLSOsAJnNs8dB+tKvFVuV4AU9tBWkzwAKtzp6pamgqRnA8/A1uG+Zg8D3mZJKKGgnr7B0fbIWuM9/c8Xq78W5IiltHDOzbDX1rYlkMnGOoOtWw6PoCj1dIK+Cpnt/ahkLCS0upRHFdQvtkkLkAYBN21IHmy714a/SLAKyx5cQzEKZ+/zRWkGGAlVCpdHVgcLVPeLUb5GCRZbYLqJBDuDgbDm8d+/6CMQb1opQwWBczyIHMwDHa8qs1ZQ5jUiOrFeOJVd44CWQEJu63O7beOWl2TuQXToH6T3/5l7Du+JP5j/Dxu+/wzS++xf/wp/8eYb/FqbYflyYJBDzRbck2MyXsWcGOmHEKDh2GaoNyI0OmgN4rKC4/TpbjEgoXGBExMYLsznMmtVOsEhWChQWPBbAKD80bWsPSnuM5EUtVrFsubL1eOTdxkLMmO153v1KQ1TJRrGsXY7BigatlWncPUsGQGDSrgIN1dxV4QyAeV1K4DGctCiplxVOChaxnvV4vknvA1+LPpoJQtlxVqxuLWzOAEWJXP7XblSDtGgOfBGLNbRWFFjuvku8CdRbtXZVg+bJUXOZrjZ9jBSy7KYFfS6gNukSJK9YqD3ON1l77g2vNrEDU4Gfj3tA3IEMgmZgjSiDJKHO1J/MZqh2vNHeqYBKZ8gmc9FnFjoxEjFz7Vom4mYqAaes5Cdw/TXg1JVzSfrRCOKptUXZhVjEY17bOYubT56+42xpqkEMKiJzJic0fXj7i/f0NGG/UFInEJmCRwzQaMAVKGnA4iyfjJAjx+XhH6+/I3pHTEGfibToe05H9C9o7gXhzw/56w/uXd/zmL/8G1g54P/D+diBOTl40b7hvN+Ro+LP/8B/R94+43X/CeT5wngfez88Y44Hx2wdyBLoD983xqw87xvkDeDUb+sZJeGMO1FCcknGo1tw6q3VMgFSxN0RiYmxmDhHVat+geA1PP1u2bmtP6TcdKxd5eh/oPCHFwCqGv1oAqaNZOj8Xm3G9iPKflQ8uMPvSnZRHI/BU3xeXTa6c5ul/z5+FzMfrAquukciSILEF4D+3DxuKOPDkX5cXxVdAWX0RwCVzPjFw6/TvDQ3dN9y3OxADx/vJNs92icYXqAIzSKtcbUS8T5uBbWpuOM4TZg3bvmEmu3diBkaeMCco0td5ky0E75dIFXrA1tnyQLQpWz+z8iKB5ia5k+71xMontMfmjnmOp9zzuhsvP5/rtbetc1rvGIoTbMUOqJ/RXXS1skOg+nXv2WW865nlRdZ9GNelvPaRYBa+7qwpEFJ2rSYWrGKYJuFt3ZZ0RIzK0cnaZeFO+UzWVHMIWIdICS4fWsfgkuKpOzlErCgbPwZlHfrWUENIMoYm2x14e3vDiKv4kwgBZSK5KK8qgHbVhmprQmcUtrqZAjXluvaEpBLAFlbBM3XlzfUdUJ5PXUYFX2NizEATyc57MYNCrr+SIuWHmVdhCip+ZEDqXNU5jGYmPxLCFYZ0ihvZugCWTvPP+PrZwFMDsMZdgpeZG2mpq+cerFCVK9kawRLzTihvLtIp9naN0/Sixzh08DaEAaNG3ejfKafDnlBtTNLRdjmD1jYGqOdYVTZTYrf1ffU808lPtR24LhIZBxSom2Ocp8RJyVq6txtpiuaqGiUBg8kWAtkPmvpOm5DjYkDMSSAj5DSaOaM5JMEgiGyg8GVRGnVgAtR3GCWCs3qKgdaZlPdGFhkZJ8wWyf2AWFQNPgEPW+hqSPw8qr0IZJjNOTF7g/dGJD4D53yAk9voKLJatMw0bpaBfSa3vTunMoUx7Ti1bpz0AF30uRyo4ap2cJ+1XsCi1lXLHJ1GUZT4eaMcYqi/OyciixXBhKWpYum+CyAh2LiCDuZScG+47Te1a0oTJAZuLxt8c0AJ8HZ7QczEcUgMXDRnViaZLL+8vHCvZCPnDGzbht479l6O5uReljC8MWibc6qyXAERWUyZANqEB0Go294A29DPhjk32O60XxCUuPnLurBeX16w9Q3W3+nsReHtveOYEy/nwO32gm3bcb/fkXNiW1TswXOn5C/FQvLWxMYDHmc8VYca++MBWCbOyclevamVY3tdCcl2C+w73TKSySS31tGQmrDF6SOlf5WjWjEKvK6QauWhzCOReDs4haR1ti1Za6ruG7zv2EX3jUocgpUi94bNne1E4Pdz77uSKwazmwsUAdc+IvH+5XFdUDC2zwmYOMfEeIzFAHX5DGuy4wyxCAlUwXNdXKfOwKpq8yaCGXDmSV/oat+CKOGlq5WJaTyXM5REZtBT9JvAvQ3daRf7zoqJ1+h3AELyWDmMky1rjZpGbMHQndCb6P1GUcNJ4GmFKQk4TnhzvPQbV2nFownr1IPabxsiAsfjATOgWS4weAxezKWdskQ/zbH3ThYQM2NAWhu7xr+qloMdZAkG1LoHR06yGc3FEuovqioabmqNrYD8PBlIpAnYbRtqos04dE0WNmUU3O3YMeVrK7EmC8yW8dZn6b1JE6Aq1ImUptUGXN0ccwITCLW1ZekLLTRDAW9OjkcO4DgllHnb8WH/Jf71Lz/ip59+wP/+//x/xH/z3/wv8a/+Z/8S/+Bf/HO01xf8xX/8c8zjwMeXG+Bs2ajgacpXVnGlQGmHwbph2zZUq8kxWSVb4uP+1cnlWRGYNMVMngIv3DUpBnMNIklzsWT6un8Z8xKMP+cEQJHxLRw2yeABgGMcAu2fB0/wnlkxW1Rhoy3gFipOVHztqeqtWKTNGWyzdaRo8uSieNuoDxbUOoJ+FpaY0kZBzsU2comzz5xk7QTXKypJSU0pUvzHBIl6XIo32Q6fwAmBSDBKUpT1JXCyrkjh8OaA73qXQDNO/WpiEWYytmMbGUVyizDkja2nNLEUOzdXez3gS/+j6TqfM6h5p/aXYgjwXImbrbui2ixru7gGzwmQfFR9+qdkyuC0GzMl4YZEV0KKZWMlyFwtshCoZltb5566L46b/HqXNlakoyb39b1zwpuKdhyEkbhvd8Q5MB7vXMcxF/vsfJwCTCsxu4pn3PvG2CYoAF+n5soBA0WPTYBC0hlAHHKtBjhZwnX2WMswFtWQ8Bi4t8S3LxvuG3C8bPjN9z9gvE0cx4mE4/7hG3z8+C3+5E/+KXrbsfkNf/DLX+Pjh2/w44+fMObE/WXH7bbjl7/+JVtjzwncXmG3F/zxP/vHeP32Gzwmbef2sSNG4P2nd/zlf/xz/I//4X/Av/m//z/w53/6Z4hBAO6P//Bf4Be//gf4X/2v/zfwfgfaDZ8+fY8vn3/AT59/xBgD393+kK3i+Akf7jv++Fff4U///b/Fv/vv/q94vP01vrz/gH17wd4D43hXMsz99HYl2NUSk1k8J9LfAkA4bT7ls4cKgeGhn3HF/gM10KGL+dicjIFevmxMgVX0G2EhCQ6efejeJ2jD+4DtULQX74y7x5hAliSI/GV3uBdOmTgG23EiLpCnEBl35zRdnbtim8q05AtZZCXDlDFZ3dszJ1rMlXWbxnuPgcrz11dm6v7XhHPpQNaERd6v9MUNhq6cgq/zwN4dv/z4DV7vDW9fvsfLvuG+d/KbI7D1xtZasNiHVuAcW8R6Bl7ahu32gg8fvsHt/orsvMfGeaK54357QZcuZ9QdoHuIQ4FUNLbKPwyi6MMT6NbUzk3NpNCEvDSslsKuLo9mLpB8Yt87NrDdLWfgdmO8MsdQV49h33f0vuHLlzfMOfF4POCNQ40YM5SIOXC73+HueHt/R2SsnKSE31trsB2I1liI0tAKoAoqvFiY9RWxoiJuAio0IzGAlv/Vnputgv7b2wPmlO1g4dXRbUNPDnaCGd4fD8ycam1jsbm0jKcuuZfbjtKEHOPE8f6OdPrc0Jk8JwvIt9tN7XUNc1DG4BRQud+YDxzHO6VTunMK3XHid9//gL/4q7/Cp58+4TgOFvINCO+rzb+AJkoFaUpy+Q+I3e2V5UuLVyesO5mTlodic0egw9ExUwN7JMXjXqCjhE4yQI3Lc0lPNN2ZnifcnHGoJeYkBglLnOc7qhtmkWMSGnwgYfEoTVlJqVigNcO+39C8oRswjgNzDDwPcfv7vn4+8GT1koVoKdwphLX+LgvhV2CwENmrwkJQVZdjXl7I8npo01s8V+yQFzZexl7/q85oJvZ0KiVuybHTZF0VEZoVNb6Qe4mRyrniOlBjqic/AVgxHfRActI1wp0iboYaU136UE8fYK0RP0M5wPpZL3LMcipR/gtATeNj7pTrAnJ9bieUuwweVf3miV/koGqFKLYYEmRnKIHCqlAIzc7gxbE0DnSh1ucyXCwcXY41/vR6H1V2tf/1OQD2lrK92J+qJSkQa1nD+ty1z4W2X1/67zSoIYUBwfKGovsCCNO6eNHJsVoE3ZaBkRLfGAgEIXCuu1qNtp26IEx2i6LopNQ3MrDGqSBWBxyrqp9kawikYo4pQXvv+g7noVcCutoHzECh0ESJlWaBcrpAYIb9tmNm4JhicjQCAG7UNGlNgGIENrum5G0eSCMLyLtj2zuBn6yd29RoQgtMTPS2o/WGU6h6QyHpPGPuFzgSSliqgpurCkL2izcyXEpbp7y6m8O6WlekUZBJuyfLSdVf1BnLleiXU0mNiF1iwu4rTqAukSn441oykNf6iUrL1iFdtmIdBURP9mKXGGBz2Xr9YsLklwaDqqfyjAxyLWHSpHGo0u2VQBmTn6pY65XTXJVTg1udjJoGdiVq3joKmK2zmUqqyGLSW7hYVo1r7dC+qh15VCO/ABqHwRpBIEig3YuB3AmOuwJJVP5Vz58AZnBK4maLJTKDbQXV1rfvO+acar0lkNU3PmOJS7atL7CgXtua9ruCAY2V9V6sK8hf8GcI0pcV6UnVCmlrJ7H0HbKYaF1tUQY0T7SWC5FIz1VtNKsLvqrfbA+rO3C1UAKAqnpWP1fmnAXOxkoWLh+pH5U/hcTYF/AE+jL6mEBpIQRSQu4bbrc7fvz8E37zww/49PaGIyZuHz7g4y9+gfjP/4ktkZXIi6FZ1PEA99lQNH5InsIIJAefjazMq+3HdQdVwd1MP1dBlm69Aq4uBpT8NHQfW0UGGjShz/t1pThU0VNCWRoRWcwirlPSMaEou9WabWvvtMZpumJUUZdZ8x/6MLUv62pT251dVlViq3MxiWmXU1ZqxhaHxd7R86+7MBNC2bnTz2zrBGo8AveI71OJieuhA9cvvqyatlKtb9pfAAtYjUiUplbFLCsW0TEP6F63altcR0m/D6CKapl0u7683hML7LJj031YDfgVja5oUTFOffGxqdC09jjrNa8oa72HYj5b/2lic6kwCND/lX+V36yore6Evm1ou1oW6h4N2mYkgNEJAqgNE7LJdX70Z/yxai+pz13gdy02F7SYKBWzVo2Xvr7WtVbsis/KgAk0soh864xxamWyquhmMJCt/OHDdwSe2o5vv/slvv3mOyQ4IfrjNy+43Xd8++03yAiMY6C9fkR7/YA//MNf4uMvvsUjE2iG+zfsPMBh8Dzx42/+Bq93sZAHi92v9w/41S9+iX/9r/4lvG8Id/z04ys+f/6IH378Duc58Uff/UPsvaH7j3i9bfj1L36Bt7e/xX/88+9wPH6LMYF9456FEYxzK0bBk+lUDG3FIhRT0HxZC0NPW+1Fz0yn1Dm5vPfFkLjYT8tCUYf3uZ1flw+qJ9t4SS+/wtZc/r70wi9G5BXTFFh6aXnpW5R8EGh7ettlWbn8MWNvqLCYVxhiyu1QxXzdv/Id61a7HKPytefPenVHXH6Tdt5ku16xl4qA99uGrUvAHxcDGih/rfjY8vLNWS/vnFS77WSfN1+gRuVDlBeoM16FbixwOvM6T+x20d/rvJKYXJ0fZUdkwKxCd5EIdFexM6DsQ3eXYpjSjSpNpRUb1OuWrhRwaf1pb2ogVaKYdlj3InD5t9//Khe6JprLEywGKy5GW3UZlO8sq177q89gT8wgwDR8xkRbSrZvIdGaiQhQRbQiwVBez4yAPGPUCWRJAmkXKwd8smMrtvh8Ktgs4sX1xBGJ8zzJeFLnTd1d9JBP5wNkP5KNKiMTa7IVW3U9RxE/Eq4yN7VeASQFxEk0Efkkl6dZthl5dT2tW9fq3k1YTjICraFIMhCjtZ6/7g8shpOt96t4CCDrt2yMAJriHLEwfy/E+S9+/WzgaW9yP/OUk0nYHLAY7GiAL8oWdEB635BxIucARsJm8kIuZ5gMf8wd3q/tOI8TIynSZdDBMefkJLUErQGeUc+lYAYDlobNd0IPmdj7nbS9dG0U8dqIib6JAVUlTRBUuG8bRkx8/vKjnm9jEGsN4+Sz1jjsJZY6k6MaGxM56lRwA2PWmFMm4WzX0Zh3ieG+vrwgTUKrRmBjjsAAgRI6byZ0Q+yxFoBvDVujbtVMw3h/VxJDcdSXbScQBk5fijGAk30G274z6Z4DkWT0tG1D7xtZEBAAkJxKSPNmC1FrT7eyPHkKwOqyhzgDaIbMIcZTyhkZ0tl3PnKie0e/7cA4kWPgMcge28WSWRWZjJUQppzunOdXCUUzY+8x5mLjtH6j4+08ZGeyz9lNzA9QBDGNjHEX0z5y4Ke3dwBY0+4AgNJ3ifuHF2Qa3h4D6cB231n9bB3bxuqnHbos5BDoSDWWfdtWSxdbFNg6Rp2AmlRFZzinglAneDSCrTUxkyXqx0TbguOfzQCwQmBIZJso11QtAo9x4nGeGEGto7SOmYlxDOpXbDvOceL9fMPNOZXo/f0dBlufbW83nDkw4kRmQ0zHl7c3VsJupQ0GjDhxnA9sjWyz1UZnnCY3p0lkPHG7SS/NePkexxsT4t50YUtwPANuOwyNoE8C8+BI7258jdalN3fdbrjdb7wmFDRGgaZI+EaQGqKA319eGKyUQOUsGr2o1tbw8vEVicRwoLvhft/prGNgjgMZE/dXakY1J0vtPDi1x6zjpW94feUEJHeXaPrAOQLeG273O9fRDcfxwBgD/UYQvEugNmKsAKZbQ4ezGh2BmwSpT7Dqsm03hNpEG0Tc3Ric1FSdmlLJ0bc8M60Tatz6zvU71PrcOhpMwBfXcsQ7DJxShwpWwbTFu0CBIHjmDiXR9BFH5BWkPQXGbFGbvJwx4H3Dfr+p3WrgmA/axUbQYFaECSAGBWJbK6CTPuvz4w3uwLY1jJw4NEAhkNhtJ5wWaj9BX2BrJKtBc9IPpE2YJbad5/acJzIPnOebPr8haqS82FbbAixZvaN2hnyY9nUeFCed51zETl7wiY20KwnxJxJjgVytUU/oEdDUz0p66hzofFlV5yZSuNxjsnoVMLQPL/j1P/qH+N2Xz/i3/+7f4Ve//BZ/8Cf/EP3P/hQnEsMd3Qz71hHjRAwBre6krCMRZ16agWLCjJDmhDQXbhvbmoYSlMxYlP8ICuCPav0OMWU1BTYysd12bL3h8U7R+V1CogOlI2hoHmgRTCxd9oZE33hXPR7nqti2RgC+tIBQxSwQaCfDmndySBzWG3XSegNaJPW1gKdiyRXkj1EFBiVJZleRXNfqaVUPVYC8kbWArcEGfRFmBcA8JK2S4gQRJpCpTd0eMmIGpvad9900IDGZ1E1qCU6A69/J/BxhSjIBy0CzQFe/6nEOjAgccyI7geiZxI8wHmWw/IwKlEfp1EQgFcTOWQUxtkj03hkW5wWYZLV2yob5qwJuVtaol5KoQtNiPOWs+FqBeEO6UgYhnda2VUyt4Qj1biF9iGfgrUTme6eANsJYV3qKR746uGkrbuF0X91jENO/KZBHID0wDhbOXNqKa5T9VNbcCnxQu1UW9MvvNZDBk886Tmm42QuQTKoMzntNDJaYZCjOkwydD7c7Ptzv+Ob1Bfg0cJzvGF8+4/z8BfvtG8A3zMMQR4Ml29/OARyPwHEbOA5q5OAL8OntC/7mt3+FcZx4vL3DX17h91f82V/9J+yvr+ivd/S948O3H/Hh5QP++Fd/hM8/fcb750/YG/CLD3d8f/wAB/DrP2j4l//iFf/b/90foe2OYSfG8Q3GCfztXxoeXwx//OvE6wvw6z8i1ed8GEb8Of4/f/Zr/PTpL/H2PXC7kd203TdkDIzzgIETAy+AmPda2UsVp2CGDIoqx8wl0sK7tFiXG6UiLMVYvNpuM4K6aTmegCLdWQKBqgujEsT6FoJZyW8soFytOWFBJmEvDTQOfsBMpDORfO4qaM3R+42DWCbv04zEoSmZYcl4yiplrMnjhkwmtZwsXkAwsKmdKeo8GfDSqGc7ojgzcbEqFBufozoi6kz2VajrbtgWwGL4/OULNnS83n6JDy83fHjd0ZAY5wPbRvHmmFzjYw7AOM13TmCcACQX8PrxG9xfPiAicZwDJ06uqTfkqZzJ2SJ72+5IGB6PB1ln5rDe4c0YT8+xgDMLUrwKOgNUrHIH1Mkgr6qWOuY2c068P95Rk+bqZ+aUfEqJu6uARl0kv6QsjHvEdlJOo+xbxzknHu/nkhx4f3CqnbfGaeIRGOPEPCeZuq3a99cViAmywwc9KAyG285Y//F+VD2LdlUVRjomeW2uRoN816475HjDh5dX7H3D2+MLYrIF1t2wv2wYY+DxeCx0Y+sbmV1qz3u8vcmfEUy+3W5rCJE57533x2d2Gmwv62y3TvmZEtdGgSvNkdHISp7UpGuNrxvBVtWRWPGiO4cBpV6nBL7ZzdPgzrxgjgNm1IxrGDAL+DxALWIBp7ghwKmhsCE/7rJJFkfGyWIhJQh4n97vN/TWQP3oCeQBBGP7OA88HoeGDt2w328AHOc4Ecl8svJSFiwn2eZwalshORAMRjUU5CqY+GyobpOf8/XzxcV1wabQY1pWY9uPaGMV2BaauoIFqPfYKwOxlYgkGFym+pRZZbEryTeg+vgr4CzGiZldLVilDxA8IVV1LIYPUjpBYKWQiafaVxY6f8Uq5RRrUBgr2vImonKbKmxe+U0SImBgwkp0AqjKEQqn0Sfn7REr6S1+fImSuzumTUycfB+GJ4Cp/UBBeGocCbWiGpZIaYqRkkqXzKgpEoX9XWhtCevW3pJpEmrriqfKWa5AmVodZWgXOozUpAuA4JthVWifq/EUThfFNiUimw1fc8844tdaJcSkLiN9JcdXpZ/J2yirM2OTtfkSQIRAgxnVlyxadADHDGpkdWoxlAFLL3DJaACGmY1te9lk63r9Jq0Y0jx4cUmQDSWEqirn/5e3f1uSJFmSBDEWUTXziMiqc+nbDHZ7iIYWwA8A+Ho8gbBvoH0AdkEgAgiXmenpndnpPZeqyswId1MVwQOzqFlkZtWp3lnAu/NkZYS7uZleREVYWFgmWPrnJmZb2go6zjIV0fjdkYNUSpLRLmsR5xgvXYrlGOUa68qqlGEt1pxr7zD5obXtEhGEwyaZWw7D1m8wow5Us4b0Du8Moqsla98YILa+LeAp05HNS5JGwnQEXkLsRN62Ubum83vNExYU22fLZAKWdLqwtFlMGUYqLWt7NYdvJYp3CQRwZnzoVGnNZ/CwdVs0apdGADTmpFpXdp8Mh6aMvDrUci+6AY3fHYFVr+6tIwPwOG2hGcEuq1JKmBia/VLqwXnx0qZZwWxT/HFhZninkxQC6MTsapXRKUPnbc197e+lNRGGKtE4dWx06Jjs3VpjWGNbgsFco2RvJbSOZSsWS0geCnVmElVC66sD2zpSyKIwUbwpuIZsjumF+XM+yPC2dXaUXTJXokK/4/oHzAhwZGuASr4gbQqWAHGt0HkoT8WA0LmxGJB+7l3N6XkScu34epam0/KkoDfvaNuF5aQXcQTTfuGBVh2HKjvaWpdDM1aMD2WbV+dNAVKnveaa9sVsVQcdThvXfEx0c7zcnmCRuL++ov3+d7htHU9tQ3hXJ0e6SpkK4OssWA6rn4GvWWElXAsCC+x8Wo6JSqrKNlcHN6vxlccBc2xNc5XO0l9b/DtmR7Xua7Ajz3K65ctA5/DCMS78kdpbusBiEVzXqIJKpJ2sYuTSu+JXFOhQYYhhBn2Q5ZNUDswS01z5sHOvR56ddJBnNnlxIQXilskCUES0tR26/qOYNGRpV+5WyaHKBquoaGatGbGzjH4K5zcUzCbgDGxTdiGKOVPMEC2PysDjwuzLcoNwjk+dUZVlnxW/iHVQycUZqYqO+rRdrluzd+6uuFy3fFYkM8TI8gETKzTP8967O/d/FLtF60jZc5O9SiVVIb/Hl9xGfR/vbR6Dn4vk3KotN4KgRlaJnYCj+hxkN9dpVs+iLHWqs3JI44nugsSwhV6U3U/Ql+azaG2rpIOMYJatjAg8BIZbJrsOJpO4MR54/fhxJZP224aRA3/+8U84xsCHeAIs8DhecdzveP34GbndgH7D08eP6M/PePr+A/q+4enDE55uT/jhn/4J/+Hf/Rv89//xH/Hx848YOLjGLHF/e8Xrp094/ekzbi8N7cY92ORPZCR+/OkTHgfw9OEFMROvHwd++PEHvL5+Yjdq98Xs49lIvb8FKpnmUkNS4wYTPyFySXFk+U61yLJ2Js+K8qEcdZ5jre/MikRORpKMP8+JPJkOZeRDoGbZQ0UdMggqSb3EOmthX+1arnTkadLq2bm5tQ9Dvjfe+Z1+AVZDi3poDbm5fAWuf2Nd2cVP+GJvrvN6Xo4C+UmLko7VNfCsogG2fWMSd7sBcyBjsOQ26/vJkgKMJiwqgSSFqO2Gtj0J2M7TFlkN9+VaX+y1YxxooKRMiqnE6oaKV87YJ6aIFlYxc7Fx9d4Agi6IvsLeryNjSbu1LikRzsmYTKpVyUzKxi1Wm4ndNClOzred/ptKPghYIFfckFbsymIhC4wKAdypxIDi9gX+p2J6p5B+BoXwDbZkYtj9T8jBskPFqQSuvKZaxyfAqrWf7OBL4kEDK0ZS5AyVPRpQrDcrJpt8qHUqlD1M+mUcFkfMxP3tjvvbg0mtmUsfyhTvc/yK1X3KzmT51ooxK8wno3rK+6sSuomqdgGgigVWPTgqwYHzD7BwBwMNWMrmhdfcOiKZRD8mMINrPSqpCKCqLZBQ2WwC6TijUz5BeapUUyi2Ws1PxV6xxvQvvX418PQmY9mq3h0A+obmhVjnoudlBqYMUYDG+/nlhr1veFzQ1qxpb021+qxh7NbRGnA3Ww5MBkWzQgLDt9uG3s5ueB2NhmnI0TSc1MdJ1tUjpoITdjvy1hFwDIl3uwPbzoXy+vYRMOD2Up1uQvcN6UdQH8IBdIEgA4nNyA6LfHBxK9PsvWsXO5BCrUE2gTm9wqG23dMeZL20hjHuuMcDHRvcOvb2RF2qvmHOgcfbnWKk6eitw23HI5w1oXUkDW1qN6Y3I4HdgUZdi0jmfgkoOOCBiAdgA94C8EKqnEynTo2OY+YKIlVYhansxTHJmvG985EtKKK5AB+gVUcPGHp0bMeGCNUzwxTYSnCvg+J+xwCiwaZjTrZjfvqww93werxi5sQBOhStd8A2AB1jhlj8FNc97jymPQ9Ux6GfPj1wf9zx9PwixgANiPl+Hp6rXI9/H0Nda7J0nTYa/EGgxK3jUC39/vTCsYk7RiaBrq7EdXOkV6lPYB4HDbI7btuG/ekJ958GHsfErclZDwZBmwNHd0xr7LSlWmJYtWGlgWvesO0dEYO6UxsAJNrBw2rf2gI8mzV1dSP9f84E0nD77dMqERtz4vEY2J4+YN931JHRnj+8sx3MxnT01nEcg93yNLZooEBzf4MbWJ5YGkfR4Jm43V5AOvWTSvYa7o8H3u4P3J5u6NuGo3Sb9h0ZgfvrG5p39P1GEC8oXl5CnEB1+OOhF8o+Uei77JwtVgXSlDXacBwHxqBCilmg+wOwxNNGuzYj0Lcd/XaDdSfb0RrCHOgdBmdb8Skmi8DK0qRrYnj29gTkSZsnlnWDN+DxdsfMAFs2sGQspCMR/oTZN3h7hmfqXslSixk4HofmeRObFGRdAqRywwCwsw8KrJPdDDMcyohbaTFgyHmSxwSIG0SR3YjA4zhUo98XoPaYA4FAU5gY0sVzdfo6RamBKIHjnEBL2MuO6YZXC4Q6P2KXVklXcDYFqMIkXN8x1GihlSOi7pYwQ8sJxAYEnbPbdoOb4XE/QIB26LhmnX6mtJdSpahGJwUwmN/kj9RRnNjBI6DENWPRv4H9tmPfdhzHwUzfGKJQM4u5bTfaYQ/c1XkR6nb4fOuY88DHxyd4M7StYUbiiIDvnInHK1mwDf0SXwhkRQIZdEQcZFIlgPuBlzT05+/xOO6Yrw88R8N3dsNfby+49YE87nQ/nA04cgBoDEjuj0FnRoC0uyPnJKM3OOfsQmmLKcX1Rrop2ay0pZEpgX5j9i0S7hPbtmHfb5jHRIzA3p+4ltQxdhx3wB2+7ajS1fvxitfHAbQbmjuO+eB9SgcpAkhX6sSk82V1muoc1CqHdRSmVQImyy+Gw3KwacWUGZkM4mFscPAWp6uW7kAzPBCYFhi2EXgKsZvR2HF81J20pddQXu0KcCIVO+jMt0Zn0gxPnWyBGwp0Aib7UOGOg+zSfUcgcMTQmTp4TsLVwc1wKMUT3QTe65wvY2WmkgOD6W/UuLiji/Ud81gaJoyxBLgMieGKLYIMZYCB7cYS94eyvRETLR3dHavX1Ao6K9DmcCTIKJgZGEYNE+rTJNogExXWMZOBaQWwkTwTdtvQ0tABnS0TzSeaK1iDIVjHLxBR9OkxgW5i89NvnjHx+fFKP9IaciTXygGx2eiiH0mBYPqRsj1irXlUkBACoGmv0gPZBAAoRIgCnqBmEpUwgKN0MLe+CRAeMCQeBtwdeLXEj/c7/vTjJ+o9NgfmHRYDrSfGp8R//+/+nwhrCG/4Tz/8D9hvN/zxhz8h5sDf/cvfUXv0/obXT6/48U9/xv0ReDwSfvsObbvh+7/+PXxvQJ8Y847X15/w6dNP+PGnP6O7gI5th6fhH/7h3wNp+D//1/93/P5vPuBv/+V3OCb1GP/j//AJP36849//p38PWOJf/Zf/BeY48PHPf8L/7b/7b/H/+jf/D8TxitvzDYGJx5zUDWpAxk7maRPjNlTEkkn2Pr0vjAi8HVJ0MeormdfZAJaOm0n7ydHRZG9tdbpjGQ3PtYKoCtjxYMjXJND/iAGAAW2KLT4rYI8JUwkS5Qh2MpbmpM8kBjjxE7FlVCo6UuyjUJmRO0ouwGwqcT/pPx9AJs/A7lR1ad4LLsLQeHk2Mfo6zIF5sMP21vq6H7KGBWiByQFzjXNCosUOgNUqSHbQm26IY4pRwhjkuw/f4cN3v8HTy29x3N8w7nccQc3bwgZe0JHpmGFo6Ji24Q7DREO//Rbby/fscuuAzUsnZXPpnlGv8DjeZOuo4/f5bWDbd9zyhsfjgTEnPtx2eG94Owam/OcZAQ/D3ruSslgBf9nsMBOQboxdFltSY946rFU8NDHswATXfKoSokqpx6Af8RgH2tbp2x4HLGJpLBf4yG58As0M8A2KtRNvcTBZAzYTeN4/cC4Ovgcxkb5x7hq17RJAmGOY4X4MHMcDTzfqAj3GA5ZA2zcRVybcOnqjfMUxE+mdZ0ZyTY07BdZ9e1n+8ZgEfuP1gLnj6ek72JiY9zvexsSnx2fcbjuZYH1TGXkIbDkWuGdWjab4f914gvTs+PT5I/7pP/wBf/hPf8Kf//ADeqdcSEuu01sv1lEu8koqdmjqZjePB71QNwF8Ex2B7oE576qGmoJCNu0/zYMBPRs8/RT/F3ZCgk55c9XgiKQPb51n3XQcAXx6S5g9wbcPmNZWcsMskPFAMQ4nNkRLtBxwJWES9BXoJlZ5H1C589mAbNTP/P9JV7v6XyQzz6baP/kTYkiQcnq+m5m6OQNHHqh2nDPEtbGERyBk4JhZrsHMxTIxO7vJzamyBAscEvUSQxxNgUv3hurIRkeW9OoAcESsu2PToTOjwNaMbCtqjpXFrIkOGFarUiGOleVtrYu1ICOZdKDOl7IXOugTViufR9nkfzdsLCeTps5mBhNyOaT14RJfI5vBKxlwotVWGVcGzamvQpkFk0PUnOh/rwykyukKHMw877myZkGm0awSD3dtgMtzGkGTOjQLZjwzanLaaj3pVFvlcr3zuRaarRKnRVVnAMfSFLI+zEmPhtbDiInWOlozvL0dGGPCbQfQYCYHDnTKvW3Y9yeYt0XhbIoopjIERXutLFOiSmJUJuDUTRrSLmE5WcfT0ws323ZTJlLllo0HbWh9FePtRJAhxhQFRK1taJuhbzdRtUVarUxUy0Xhrjr0LvHkOqC33jAnSzIrsVfdxXqvjjnKzmkdlwVgQN0FvCmkF1ARUXmKPNdZMVggcCfp8I85cGs36l9NOiTdSckt3ZvCMa5GltuFpQAGiYyDBwCXVCLGQQDKS1DxDDqqzONcpQLRndmEvGThysDzuqb1QiCK3TvbKa+g9dglqB/K7LD7jCOxrdLCGX757tp3mjMU48dlzHQvpQmWWMKMrXe6It4WDZv+Gm3dWaJva79VZ00PGWzomR0UygdWTJ16j1tb9+YCPAvMXJ2prO7b1CnjFFZ0CcHv78peiH33TiFfEwDTZPdN+wMCBLl2+zrYuUMKUGX9urW25rqXvWon+8GNNsrDlKkS+FJ8ATn71SEK6bDsWJnGBINHnWeLnVtpLNJD0Nqu9VZB9snaSK3RxbbK8xkglmrZNlhpBJaYOE/5DDon3jqBfBDXiDT0tqtGX+tZCQna7iob4llXrMuzk9jJnlkdWc3h3tE7SMcOsoYJ0ApIfrxxLoJ7pXXnEJrBlQVcbCOU3RAyUxnpigzANcV1Lifrmsmbc+1zs7y0IGeWk8zDOrO41tw2nVuufZswI3ssUuwnSQQUw8qKnbv4AxW2Q6umykfk96gksJiVWTZEZ3Fpg3gmrDu7oIlCs3SOsBwdxZ3aUykmrI51ZTlQKMpylZa3JetS+7/K5bOSR+AZaTw3oLmqQJPneCIX+FtrVM7tytRXyZvhRN5iBWtcf7W+SnMFi71ZHUIN9G0alP1WMESzWwdJImOC+lL6WR0ymgO5eLIM4qIrho/MRZjgbrXLetOY6EfV3ZfnWLBja8Z65vUdmSqpI9jjYBAPTSfHzgTmsCQbyTV8CGhj4D1xjIeYI2pnr9bXVqWIXHEc6zhZHouBIqTTtb9KW4eis3peyAaVMLnW+pxJAfzmSooa28ujhGwN7h1zGj59vuPtPvA4AmEN1oFMZs8jyLg8Xj/D2g70Hfn2wCOCAsEx8eOPn+EAjrdXzMFSptYduwG2Oawl3t4+AXfgiDeM+cD9TmbS7vvSXmKDBcfx+hH/9B//Ef/H/8P/Hi/fdXz3O3bxmnPih58G3t4m/vTjHwEA/+b3v0NG4PH6hj/+0z8h7q8wTAKv4F6IWehw2cjy79eCRqp0vLRgrPQNLddZWRy+EJPAqqjBfAG9WHPI67Za8/WqdYTa6+cOq46afrUBPGmW3ouvLct9Glzc671pRrYMbJUXLxYdsPy+BbVb7fFTM9bKdostg2XLtOdiAlUJ0J1xmpFTidX055JwcGPZfXAlr2GvvZiGHImR1dlww/0AngZ94ta3VcUyAWYQIN/94j+yIpIF+2g7mjuBmc4ENXUQBUa4aw8Wq0enmJ3xwTFoX4/B0m1zNirKkSu5xLLh4rQp9imqHexi80xAuGOzjfeMWgK5dIwqvu+9w3Ky4yFyMXzpc5P9mwLvY2hPw1Cl971TD9OSaysO7XkzlSOza9oEwX2udUpG9Bbyh1NjjdOvBIXxaf9ZSbC5oTk7XuLqgzHQXusNwGqCUP76VQctpSXo5rBmOOLymYjLmVo+/3ltlxD8jKH3XHbd9RzWD2YMvL59xpwHJPGptc+Z9HBUZ8ZQfMoyc4N4NDBsnIvV+IhnKat5ulxOHUCt/G0HIzO/+O9Mmg+x2Ma8sLbc0LJpG1JOqDxcXl+xWiPphnahcJT6ftqJIwgIe+TyD9Xb+WTramef/rhs00XS5Jdevxp4KhpVrKCCwBMXDh+890vj4gItFGyMOTBGSvQYUsjJhbQhKSrcrL2jdQFJbMuoqZQTMhjM5hz3Bx3lQUN86xv2pjIhlaG5+3KOZiTejjeyRaZayFsXIMAMHzAR46DOQ2xrsaUcL23rCx2SziUZFUVDb3RsQyMSWGyNcsZCtdsLxNIG2drOjPBh2JK1oWRcsROFeaDvNzobvaPK2arzxBL6lqvFsrvzbxgdD0acDeZcCDUGEfpTJUo4ATMA6soQrGn3UtkvJ7KMPFkjTQDgEHpOX7euU0R2B+bEiAPbtq0/3jpeX19F6zvbuqPWh4IzmMrxfIMhYNNwjIH78cDtacNuho8f73h7e+C2A73teH56BkCqprcNfdvx4r70v2AgQyQC+XigOj646s0nfQo8SX+H2t1cA2MCx8gFIty+eznBtky0dmMt7dbxOO4Yg4g4QIOKcjaMgWdaxwiH9ydsHthvz0sUUDseDnW1qmBGc7D1fTn9C5RitIHWjDhA53iW5kzNyTomGZfwp+oYRqBJWkzg/NbzFbW3CRyrzlJzThxz4HE88LI/o1vH8bgDYEc8ayY9sKrvR8U7elQdclo3m0r3EEuCD4/7AxSL3OmY5VzPVMb4LAsr7RcBz2JGLTt3eZ81dk8ah8pgjYxLc8jBArtHOdauiRGIbBongoWPx4Pni8DBdhnzpgC1QIvWGtvh5lgOcAEx27bj2lq7gL2VKVFEdsYlYreYMqaaJ2ItpmyoYZ3YCkwJAp16dACQh1REsgmA65IZSXbCmOUAqQ7fHfuts0vMEK8rE7ed7Llj3DliZuVtE+Tys+VtE7B0zLJTtpyKvVPIPz2UB9F9S2R8gTly9ApcMON6M8XyCCcYFAwdMqnrZ2IdVK28la1Mdkjj8uH49X7ZQ2bLWUjQVp4AfGU5iwp/tjquUj2eqV3dMmMFQvvthr41vH1+IMbE46A+yNZflt23elBlxFpjBhzBMzdiClwucfXTARvSjaC9q7r+O2IC4xg42oHeO+3Xq8YhKdS9tSZGDNBrTZYzKrtUiR7kWe5V4wXjvM4xFngBlfNM6SIx11KABhChblEdGEeBok22p3O9x+UUtx1uzNCNTDaVre9ftkILsUCnWkMAkC6W9w4g0VCsX+aaSQ5NfVeymxSLMeCb1jUGx0agGjLXumVllZ+OXQV1cfkjn2t5gbKQBBnP+Uzg1IhZ5QYKngECU+ZVL4kmjaPqT8dSjQql5ffobGEJlsBRAJDORCywCmhN5cJqFV7XWMYpEk1uaO92mYNEYlAXESH2EbU9E6Yz4ASY0FwgCxRkm/ycEyg/Uw6JinUKUCzdput4Vmv0qBId75oK2bBZa6QCzLOs5hA7PlYQS42SOgPmZOCdCoCpQlFBYggMuXTmFGsmqu4f0APRTrgVyK5EZIrhpCQhrgAB+J0RiXEksgn0l47XUd1BjT59bzvmBH748yd8+nTH/QiePb2tMtjHCMR8YDyAfgtsTx2PtzvsOPDpfjCr/4ePQAQebx+xbx0vTzueNlY7wDeEOX56/YjH8cCnTz+RmZ0PPD8/4/uX7zDGHTEPPO8bEI4//fkH/PDH/4D/7r/9rxF2B9obMg7tw2ewLLHOfwZe7ht++/1v8Pvf/A6tN/TqcAZqC9F2lm/PBPks8OO0VOhKevpmZzxU/oR2ySO1W8R8YsWI1mydv+8C69PiRAFPxrgmTUTc5L5kUtlQXfKg4HFOsqKay9/rArJ18nD/cw8GgnZR5WDrVecwFKwr8VRxnetnofXL9XoJ4CE/JYK2wZv0lsj2ywhgPlDIi1tqDatSzGlvdZyjul9nAnEYMBzbC4P5tzvwfDPstxe07caTz4CBAHIAyS5c9Hs4ckccGOEY0dCfN/Rbx37b0LeOx8HkxrbvYCfShmlDQGygYINmZJCbOewgO/k4Dia7GudhBsFHd2dFQG3DCcSIZZAqJqbkgHw/b2jVLAO5SuDIjuHPuzvjpHR4TIykve7qpu3uZIvOQIyJ4/Hg/JmY2kbtJIC+53EM3B+DPpH0oswN4axKmAHy9qxzjroB8+C1YkI9Htf9wQzhbErTmmGX/vExRDjRXjsP9XIUyOaaAv3Lj7qCUgCw3bim5jh9hqnYNZXwKdtXp7+3xrLgg1UAlYwtu7jE8nUjYxz4/PkjxnyQ+MLaQ4F3BOu5dVQGnwBGqss9E1rbdoOBXeArwVHkhbDEbK6qojNp7WnyK5QILaYkgHxMjJh4HAd/3mTbzKg5FWTmwQATgQPuQOvSH3bFKbRpsQ5RseWCWI1HosuOrBEpH07/y6SeOqVCoPKveP2zgKf64swQ/Vu4nNDIUAA2JUwXVXd/yWSFxEQjhwLai1MnoMkbBxFH1X/S0Y9jYrNTwJvlaKpNF5Qy8gCmhkaO3UwnVbMRQe7qENW3jt4ppnUMipIaqS0S/7Yl+4ClxQAFi6425Zo00yGfEK2+2GGlEVLUNg2n5crO1EFQxqJZo1OgGtVypAnwcB7oTJFWHTIwTQ5IqI63ykna+lIFTJEqhUykWl1XeSIqMLVz8wVSop9yrCbnflPntBXomcTK6/7CMI5qx3lxduvKcpCbNzq5URlTaTDlWCVAt1uXU94WE2cqKEUjc2tMQxrFk0fcGeS+Bt7e3pDYsN923J4+kD0hraxiMNUf81xZWXdmxrfdL1RlQ2VnsNY926g3lR0aDPtGxBpmXOuVnQQDhuqW18KR2dfhaI2MM59s/eqNlN9phmgGOKT94ec4rvnhFzBgkXMxVScsVg8DEwIGWHN+slC4RhQa2BlkVPy4yDLqMnF2pczVBKCuQYM0KepYocvmuPmNejZmyDeWpzRXmKVg3CIva0XPpUB2BFa5HzPPc7Xyha67bTdmYY+x1ujKWttl7HhCgi1HTyHOBeiICZBBFhLp9FzrfSPocLx9BgVgnbZp3/E4Bu7HsbRMeiNAG8IlFrHX5OTydOGhHaIDm9pZt9PUN60j4o5nxyMD186td2yto1tfQUe1o0+lQVvrKzNUTJwCFGdFZ/oMMzXlQOkudjlftR88V+a23zodAqHyWWUylrBG22lR5QUHIgrwopNTVN4FYEPz49JMgOHUMOEENu8qbwid0ZzPranV7Zg6uIEidi2NriaNtmQHugJlMmMBtX1XuW/bdFax9HoxR4ALk8O0hueFicbxmb4OOc0ZpOty6gJ41xgEz8mZgDXH04cNYx4Yg2UZU8Lu3hvL25LrJ+akw0vROBQDjgLkJgYqedJMFNQ9864SgLsAO0bwmnfZ3BkY6j7ojZld5IQ3JpX65nidU/Zb6wIagwWwMPixZkCS6exdmkwaIoOYROZifjiogVAi93YBhGIxWkbOZfMAI1PYEnAlgirgu1jKpeFkHMfSkVyJM9S5vWZtnZeWwKaxKPtpVkzjKnoAMljKNodjtOBZXg9qAoeCPkxlFZeyghzdbhwDIBfQUK9RLG6T3bTTvhT9qbArn9r3yBXkpbTzjoBsbI0DHVdDO0sJZJMjzrOBe8hWQsu0MTwaqpNiyicjQw7LZkD73XsJaCcN0cEW2A2nHarrzEm3eerBTvex1oLYCvKfyGOPM/iTbgmSvqmLZWFhMGfWvzRNCsN1jS0z/4nS4jTjuqv/pktYWeCyC1PgAPUzXNpySMAXtabArlDZka21mfW0UR1uofWdCzBaCSZzWDFLClQQYwRrvFjatXX6NkwWDD2nykKs/EIlHsAkSvmOujzSHNvzDdvtBR9+9zd4evkez9/9VnqXhh9/+gFjDLy0nYneHJjzgfF4Peeg32De8Dd//XskEm9vnzHGgePxinE8MO53PI4Dcww8dWDrHb//+79HJHAf/xov3z/jr/72dyi10te3wBgTef+Ecdzx5z//GffHGz5/+gl779g8sfdEb4n7/Q0RE/0KPIN21nSe1CkbsMv4134XQFN+gfam7zssk9cNsueW1qY+6wuE5zk8tcXdBGDnyXbzRjtq0stxo8CFKXEBkAUBSAsxned6zePSUCymQiVJ5LMVkzJPR71AOT6CGimVvwxdV2uh2ekfU3dR+wcKoswwB4WSGw94jUcqWUZ7ajonyrU8QQfDSOqnmm9wNPTesD/d8Jvf/RVePnwAWsOMYHmZM76EAJwpb8kauzCPmNh6ou/UAm3bBsdOWQQZc1cFi3uxYkXByADmwJS9AQQODe775+cnVmRMrkiW5IOJsfI5vc48XntkiPWlrsMou3Y5hwSMxJyYSVAnax6MgEUOgqUshU58//IdIhPH40BvKrnTnN/f7rKHvM7etiVSXnpVdN/YTMfTEAfLoi2TDZJaR6p7OGUdKMdC/4LAmhsQc+CYlPlI6dkVoBLgPSyfS81BFmBaey3Oc8/r+JQP9TgO+Q8hMMaXb9NUph9T31vxUXD9VdYiNRa129/ePuOHP/8Rr58/4pgPbM5GBMwCxmLDQfaXQCXZWA7Fzou9fsYdI/i7R5D151vFf2RQId6fl1H6fzibrFSTKAJJ6oiVshuLKVvXoA9ScQaB4lPvz4x+H5OhBTYZS8Lcl+8246C/ZuA5qfujH5U4WeK//PrVwJMtdUVtsJhYrSHLscjKQs9zYUGlYTrMKDIdmDmInKvL05ynW0ekmcuR5XM0YscI9A51t+NghUPV7RUQgIsAosLhPHi7apGLvVIdxXpjV63awLBT42U5yrKdmcZps1N0Fn4+d1zMBZ/mzICn1WahIZ8xMeXEGNhFx3T9yIlZHYIM5yJTe/YCnqprGxcH3rE8msARE6siAR6AxlrimYkhymFvotq7HEwFgyexjoFDBRBuLhYCdK5wzDd1Y3qT7tckFUhMAYIqMFuGrsrC6vDkt9miWI4hYOwGzcu5ZCPYIcrVtWkGAG/Yb0+wA4h5Jy08J7btCb1v2PYXuDnmULC+DtFyKMpIFEADbN7PoFLj6CfvcqHtaA2tEQTpTUAlKPzH9YllnEy41LkWpW20MRC2Mda4zVAHElG5Syj9DAIAz0SL8wASF1EghvEZ683mMIFqfOwLi+mS+dJRd4JJ9X0GlJ4bfWe5Mc2Wsc9MHAczYmOeYvmtN1hnwEyOV+kS6DYz5aQtuXak1dMwUB7qadlbx2OwbKF3Zp/QyXTYto3sjBjL6BfIVGhB5TBrXrpzT1zdSrO2RgIq3yOgAPRtgxvwwCvK9/PWcNufEPGG++PBI9WB1sh+aC5vXWvfIRp8ngdqqMU8nLoerZ1O3mIdFPiiA8ZAkLJvGzXyQL2QyozCWILBrGtbB+csLbhWB/Hp5Oo0QgndWzthE5YJXlhSI5EzsW0drfvSP3n9/BkE0XIBQnNKz0DgVLvsr2pDW/yPehW7qy0w4ywBcpUwRIW95mjm2NpGp71ARK1BM2X1AbIYIBZt2eV5IC6BZBPIuW/bWWJsk8ATBEAsNgkdNui/vZ1ZN9GxLmuLmS6f52FtjaVqITApwO/fnzfYkUijrtqcE3u7weA88zRmEYYxcu11EjFyMX7cGrWE3FbAU/OpTQFTt63IAjg0Fyk6+4xlI6PKGUDfp3UDBJytcv9iwOj7XGtZK4djrDWeE1orBJ68GTBMiRDu261Yl8l1NKPAhsTIgRKMNjhKpt5QJXx5SXJpP51x1nKcLmZQMZ1dgrICdaA9jZOGLyADChDrmSMnLKUjB/pNVmehJqsYENeAAzA14LBVilr3W10fuR1KM/J0JGttFhpSDKuph6ukFuUPyF55CHgfKuM062CJKTXMxINSYM5RLl+z+Mt1ZixgM/i+1PhUt8zF9lAAEaL1Z046hHOo3FP+nM5qspjmGictzcvZlcvHAqBujSq5KAD0dMu55sv+ZqLKYTi+WD5YldXytgnU8DwwCXirE57mLuXPEMQ5gXIg9F6u+ZZcy1OdqorinwaBs7meL2IqyCkPtx4eWGLg8mVW/UEGCmRFLX2IoSOhYGSs8793amYG6gg4WWpZfzTWSYca/XbD0/cf8Lf/8l/g5fvf4Lvf/hWK0/D0wzOO44EX29HdcevA6+tH/PCnf8KMgYiJ1ne01vFXf/3XaK3heLxhjAOvnz/hpz/9ET98/gTMiWMM3DJxax1/+3d/R83DfsNf/93f4l//r/4rhDMR/ecfPuF+v2N++iPurx/xD//wb/Hx4w/4p//0j8gcMEzsLdF74P76QM6Btt/W3s81Ty4/hck8k0F4pxumElAmjk2qi2Lwyd5lApMZAu7p2sOXWYmaGwPiYoDq974Yjpz38kwqEoHZKsPheS2gyoqR6fIN9SVWT1a6l2dydIUv9YwX+18frX3JPZMCiOt7Lte4/IkMeLKTbeW2i6HttRfLbgJgeSKWDxvRxBzpcAuWau4bPnz/PW7PrAKZkM+pmCm9AONQsskVg05YS7SNne68NwA7ivXH+9U9NFVoZFmOBEsFGRjWmqkOY094Ylw4UrFw0THlq4GgmKGaRSiBilpviRKv4OhrrDWu1VhpAgQ0XHEjmOyrLrC9d7w8v+Dt/obXtwNdSbrSL7vf72udtdax9bY6/w7SZxj7JtZZGmOun3c1CRrzzqTUUHffbV/xkjvj+Xk8CL4KUY3B2LnKVi+LjQz2yx4o5mclgwh4aolGAlOMM80v9+J5jdYY+7ODG/36LPC8bJnO0iplnQg8Hm/46eMPeHt7xZwDm1c8xOqgU6S8cIGyzSdphljFWTEEzW1EdaSb7ABsZEQueZNaa/KnZnAtTZVvrsZDVdHlzorFAp9QnhmvxYTWZNIrDBcUdDGnUIxlc8C7tIjk0yZ1CSsKZnVknQisHnunuPMLr38G8CSHa01SZZYh41MAFGApkeJOarlfFvPnzx8pgBuTzry3hQq3UOcsM7Ro2NRy0Cwx4sAcd25MI70+jGyeZh1tb5hz4vV4A5yuEVvQkkWAlCjpOkBpiA6BVbPQwCwXiQa1gA9ADKEsjRctJMOiukItKVmmtj4GQAdJANMvTnVnYIeDZYtpA2GGe1BIFxsXwcxAsw0Ox9YrC6qAGSyJ6CpNMYDMn0zWvpphoO712pEq2K1Di9iECPNQjYvjm2teqWnjuKmjwpxDwbNr3RvGQcApB7N229YXcFKHagMR9bb1tXYMBE8qmBljLCOzSsQExAyJ73p3NN+1MYDqdncchjkcGZv0mvoCR2FdjpKfK8ESE+MMbmBAOrsyQIflmkqFA2Ik1IFdJXfuyiXERGXd942Zv5TDwvUvB9bIFjA5risHZWc0VOUFvTfRZ2lVag0y6GGHmTJGWm543A+tw/JOdegLRNGUA0hSLmEqv6n9XuUV5WjRPTK911BaZhT6E1wuo0mWyrbd6Px4wxyi/jd2qNuevgMs0W43XjcD1s7yI4AARhoz4pgBPAbb1/aN1PaYMBnIyAEzUVZ7x/5Um3DlVUSvPzPXC6ZzU1B4sg4C2v9iSaKJoo5koOSGdtuQwWK/aYkDE7Y5bnhGZdznCGbcVlAMfq8TpDQAx/HAGAMff/oIc8N3f/U7Zpq9EJ8q1a3Dj45ugvZrZXFErZXLi71YW9BBCBN1emKrg16Acfd5+nzG7GjV35cG2JgHzCCwj/cwRmCOLL8I1ll+swlUKTo5APTbTQGaduAlyGdgV9Yn4Lm9++5NRxYZSwVcKFSsMbKCrBi0dzlBBYguMDbBgxW0g+7MoLa8rYM2K2AHRUhZTtvEjqo9dY7flODpVZuAbEbQTi2bgXU/YVGXWeNkx7EAv4jETz9N9O073J5+C+Qb9RKlq/Tywja9j7fPCGdTiN55JjA7FsrYnn8YeNZ90IMru3TIyXOBae5GYUtBDjMny9TGwBEH3BJbY5nycXAvbd1gUwzgVCC+QqtEoT/MwvF6dZYwKGfpHkEpA7J9cZ+BxzEWq6x08vrWgX7GLRkD8AZvzgTFZNJrxECEOkJdypZrn3jb5OjTxpWGJDOktGVlGS0nGWTJN7VCM+SUqUaW664nkAa2GDCusWWZZKdKFkCOMZkAsc6hOmvXmgaARl8hVHBPXSOxvhQQ1tmfyrZW4jeNzLUAcCymGp+9+wYVbkpM1DCMJZKHSm0WeAnIP2NYzIy/2E31bAoYHLhkpIvFVaBflWyIXYECdbmOXH+4N2UHLv764N1CCNFpr4txmNfRLtRM5Tyz1o6BgFuFW3zOBINvsramymEM1aGzCYyf4D6bCdJYkqwxTylbmaE7GZnHfKzSEpY+k8FW/gTsTAqFkrGZYgW42ndnMgtrEEu6VqDSshWAwRVkSFw4gbRYCVBkYtsUnIjpYWBDkB9/oixA7y5blni9v3Ikt45PnxP/8I//b6R3pHf0foO3DWOy5OkWTMM2Y7v7++unBUBXadk//cd/RGsN3314wZwH3l4/4f76GffHK2BA3xs+vf6At8cn3J5veH7+gN/87m/wePsB/+Hf/Ru8fPeCp+dn7PGA2cCP+QlHfMLEK0a84og3NiVq1Jc8Dooqtw420kGKxcmxaNpjqIBuOdBcCxUEQtaReBXPvq51S3aAqTkCVI4nMGTZCltreyrhAKMPV53JyGbUeZLy+UC24JSURVOSZ4qBwoYS7ZJoZIIo62CLZHBq0GLgc1aVAsWfDcU2rfPeXRUArFmW7ZQNzaDIf2sqVU0KIYEBZ607RcNYIlipVLfWesJUHpfSo6F0xK3dcDzueMwDt33H1jvun9/Q7Wye8fz8DGDAUg2JwGf11si2H0zazzGoCzoncnL/zgDubwe80yZsraG1vjgE5XP03mlzDavEeFepfSBVBv9Y760zvoCBqnApoALgNUbMNR8LbJK9G/Kn3PQ/7tJCBe4HwZ/Nu7rJJY45kK+fmbh2FxONmqpmkDammOiy61VSCDE/OxwzAve3AxYDCMYZ3WUfLDGmA9bRupLPTpmSOVlS3tww7vzsTcC2mmYDHSh5l6m4b4FOxv12BaFKOuc4HvodE2G/+fDdKlWc6wzkv4NtWanFa+zOzRh2rvOxALAxHiyx+/EjfvzxT/jxxz9izjc83RyWD5EAEumB2Q4USyjzgQhn8wgkZsVI0veqzs4ExrhhPCfLg8cUm6tKDh1hbDqkh0Y+htiPOtfdtc4G0hPw6qhuq2qMVRxQlRKHu4VAawHZVWGgHAeKVDNzwqbRF4PsQ2/CSIQf+JmozzLiv+L1zyi1O1+F59nVKFdYnsJzjVnzEr8tBlE55WvfaGNZnpk9j6KRVrYSS8yLVEygXFnrJzVvGb86BEztJQtsVjb/yvCgcddFrYKC1H9fggTgDELEEijCGqyMh61so0m/4hwXHgixrpeVbNX/KMuFU98mm4LukKNjQInNWla2z94bMDOw7jTelU5xkFfj3eXEV6iYJwLB+6gIEhD7qT7HDPzUhreVD6oxKiaCckTl8EZeHxYAATOkjIIBK1sHggJroxpvZv33zLOWuZ2ivBXEzpmqhzewW8JOtNg4BhBgYDgfmQ6drXvMy3Mjz6B9BTR6CpbJ+AJWNXxY4KUCN7gL0FCHOKHlNeyuz7jmvoap/pnGmu7WGsZkN6FyYPl3vlsHAeIFhw4tKyArKxNcTgTKC9B4CHVHefI197Ugaq5qFg0WBappZKK4RAWMdbixc+Cch9ayftdZ/orWRdmOFRBDQVWqi1q2DiBgHjwwW1OJIVBivLWOq0SwukmWawcokNUzXRsamBbEMml52a9WW8iwGAmWLD3sDQhDxEEmIZLg5i4dtzwN8hLZ1Vib81A2NxyDa+KYd5UIUQS/yiKREBBFxqUZGWR0IqvjBbjPzZZ+Udt2OrkqX3T+Q2vAsVhQBoG3+S6zVDfcFawUt6F5W05o6cOtCEK6L17ilReacesbRfmz9vr706rJ+VfcuJwCrlfZeS3PqH2c59guppzuhfuLgOycg2uv5qMya6lgrPUVgGXp0lUUYNRPIZ/rPGmAXCL+xSpxu8y5QIKGxiCekfhac6u8CARX3RyZbQUcGIF4PGDY0PsNoxmiNYrsW8LbptK86pjGEovWmloN136vEa6FwoErs1eBytJC0z4JzW3WyhdreSViZLtJCa89JJtdS1KfQ+a551B2MIGc3I/aWzQPvM8zcyp7IHYGGSKno5Q42RkrWCsb611rvjKV1zVX53TtdVv7a/k6l3fRbWs6305WE7RuGCwoeKtzWuuiht3TxBbVOGkSEko6AGu8/cvblP01l/1FsSHsQq0XiGPFiOB3EUDidScfFmS3QeWRJ9BKP47fHsHERDqW60ugSzZb/hmTN0rTJE5QZD2FfCbYYq2XrS2mIGpdoEoDcB44F17VmQzSW2ACoPT0AoNWieD1/Mvr53LZCh5BExmyuWVo5FssqYm1V+q8IcBjKZBfY7NAvHRYsknIJkFqglEJqBNw5kQJtkv6GGSaYe0/Pg+4h8QGqTQngU/TSNS4xhoHu9icarxhIPDN0j+OgXsQ3LQCHqjnOST466Lr0NYpSZmTHZg/BkYkHhPYtie0vjEGMGqqeYYYkQPzuKMZgeMhlsacg75UDmQMvH7+hDEONYphMPV23DHmwP3+Ee6JMb7D22eyzsfxPebjA0YOCgO/fsTr/TPGfGDmEEDIpNuYlTwtn6bGeC4/sICicwMuK0FG6GWfrpWrwD20d1dMYOeaX+tW/1EyAhahz5w7hfEA9xltq1KRYrPqsOO5IxtZrM9iTZ42v9avzrjlO5cdPVk2SyJj2cVaP2cSuKpelt1eNtAXI5Nmn+ukuqJzK+ayxeUxYv1d31zJEu5tN/odx30g5oHeGuORcWAerFxBMoGTEl9mpYbAlEtpeTGu18Muf1eJo8mS3saM+zJBFctYM1go8YEqvbd1/2ucz0Wjn0PngsbKKjmg9RNRZpcgcYEvOIHns0rjXJVM8E/01vUTjt1QlZ9VfBmJ7LpPffcCq7P0ejTvpjNGcwzZR/MqLb0uZNe5fVZjROLU6hJjh765n0lNOXAUvD+Zl7/0MpxgvGVSOqer8ZGB/vByIM/xXwxAld5bxmX8fa1xJEtw397eViluc8rYREyY9DrTyOwOlcZS16uSIUoQG/2pyBChoKOOVvOkrAip3mKom2QxTttRc319llpMlMw5fTMOr2RPtKcrUm/6s4Yda5pPqRaT1lOSqY2w0wba5SiutVf7Qn7Pr3n9auBpHuWMy1KFNp6dpRgppy+DwUi3DWMEjmMyWDTA0XHbOl5ubCfpaVKYnxDfAACd2o/HXcaUk9RfbixBiyDwgSi8SKJiRO+5BWL9H9yVFeCgtEZX7KisNoK17u4UYEOgbzpcQfq0NZWniMKIDLDnkYmmTcT3JM5yk5IaXVk3IDy4Ec3WQqnqsfCqy9Tm6E1sOFuIevOzBpST37lhAWZVATkIytyY3m8BTF9OXrWWjilaoZ/jTCPVVhvs2uBT2hAjyHjY900ZTWlNmeG2k90y1Bo5Y9K52Br1N6I2voSDIxcrp9gBvTVESPtHOjKRB2JynBPMTLCmWAYrKfAdmRj3N9yPQR2Wg4fW7fmJrInOytv7eIO7Ye/lJBum/nZTDXQdCgXq+YlUL70SHcJVdpgKPMiM2GDeRKtU9hPA1vpyfqueeuVV4wAgwE5zSOH6hq2z7IqaiafmznLinQ5qaVOYAW3jvey3DTOqBlvHQlEKvJzV06FYIJJM1gKrlLUzHUhIOo2pdQQAkach99aw9Z0mI1KwOnDkxEhDCEF/LM04u2hF8TrHUGehO9edbzuwbcC24ZiBe0y0wcO6709cf7qXXECNqcRiwiR06aOVF7DutxwM0wFiyrxF0ga0bUPpwA3Vqm+3Gw/CcWBm4tM9sd9ueHp+Yk29aYwKAc9EzknnXrpQ7g60Hf04MHVgbPszu4f1KgluGIc6feiZmqjOu9NJOsaBvm1ovS324dPTEwBjhkj7jJtFOkSmjkxgLfy7jJPWNADMbLAExpCLmO28nsScSxy/fhflPgq8MQMiNlg0vL6+ISLwdHs6ATmDyjipiWMK+O6zsr3qHBgB7x3NKVpO0EvhskDQOSZLlJxj11oDXPphnQ4HNekSro5G5XwBAXRlTzXG1jtyBsZxrCx2ykNoG4G70gmrccuk9pG5o4Et4A9p11yTBfXe+lmTGBWZXmxqcDweeDzuePnuBRk3zBgYY+BPf/oDs15zojfD0/MzMgYe84G3+yvGGOh9owZgo+0q8Prqx3jnfuva333n2R4zWc/fElsni9UatQW8d7RGgHGOA6FzIGHKdiZKIPMicYWioru5Ahxm6B/jgKFE93l3U6X7Xu6KPhMyRAHHMRjw7jvFrGfpPjwOeAtscIyEypd45oacVtL46X2coG4lvXgmXMse1ktnAqyCAu0TPSGBEJ43KEZy59iVg7pKAPPiJCPlG8kRbBefs8BwKzFX6DuDGViL9R4mscD3pbGNMgyzFeOJzFVrKss1qMEEC2cSZHSMDNwVuHGP54rRSo/FoVKbgJzogZLi5RovFvVpT+r3xRK0kA/ghvSJ2MSyq0Aosfye1sSGTya2HGCHXne8zYeAEPoQ6amSPUdFSsUBZdfioKxBAJlqhDMnAwRj9v7MEmKNOhOYTHKRacY/qICKn4LgHQVDwAwC0PPxhgVwc1mzxLmR8cRSUoENOqM7qhkANXUqc10BGOR31tmNUNniMq7c9XPITkcx8Ku5jyNzIAMYaSidrHr4ZiSJHscBxMTLMwG68AORA3PcYWnYYMjjjnH46haMoKj68eBnYw6gbbDWEceBGcHSnQx8+uFP1Oq5PxgpdXbDCkvqumbgjz/9AfnjH/H/+Xf/AGSDoSswDMzxoHbKy4a+NXx4fkLmxL6xAc1xHOwc1m+YWi9vjwfHTXbl1BY6k0cnc17SAc0FwMZi4K6A39RxeyjRnrEA51GgaCiJ3UzzV1YES1N0TLWzF4gexusYyJprlRBKUDOXh6z2L30eVlyQYhLViUzPE6nA8sxM6CWQClXiye6y1Ng9jZI5S3SGuqZZGBoCvfGcOeZE6fUVAcGN/j9jMjHNjMExFjiVFxIWweQ57ny28QrPgQ+3jg97h88Bj44NG8YMdUuWTyPmvWOjbXs44gGM18D2V0/48PIbfP/he+xPH/D5lfqNrrLfGAcOm1jMd+0jSwOmfP+tYT4m7scd1Txq11562lkJ0aU3uZI4Ou/TkpINAFjBRoA3E0hPdFeJtdV8KzE4aZePI1CVKkzo7Vi6klNj3bd1JjzGQBwHPqgKaRr9EL/dMOfAcUyxjs6Ock/PO6wZnl+eFzh3st+0puZjjVvMwOfXj+i9Y7/dsIl9/aY48X5/hRnwtO1wuCp2OrbOplAzJo7jeOeDXgFP6ieplA5ANcu5v70xydf5c9fvAFtj0sCYOo5LEy39KfKAeSLmxE8//YiPH3/E6+snWLKBUcaBzKEmJkp+lW2teMkZU1WfqPsRZ7xkDkMXpuDwzYDWCPAgdO4YfNKuJg5stqFZQ983IJPdE4Ox++kBaMeqIosaTYF43JmcC1aAdW+ghFGKkZliJAciDwJ4rYN1G6OIiuiNJZremlhz1cSILGfYKaP0a16/vtSuDK6ytQRWZKxkca1gOkE/pnrVAAhQQDXTxuCewKJqN5GiU/IQBwyH8amLEdCaKYCXoS9nSLBOLA63LQdjZXNRCLdR3HahdQR/UouljNw7IralHtNOp6uCFOi9CZTwd9HJORIEmJYjaycwVXXkIYN/zdwCQojfIfH8cyGi8N8AlmhqIenIpcPDmK5Q/xX7Ll+OBxDpgiu7WsbOlsu7MvUufYIumn5lsq+euVsxeQvkMFQmuO6dxvAb2WfDV4fg2R5SRhnn/J6lgNS5Oo6BOebS80icGez6irrfazhx5lyKzKhnsvq5XLDL7S5kuWbbgGL6oL4zL90fYSvbmCAC3gWMcozlsC4NFjqWJUi+xAGsrmOX+VqQEhb7SrRUayoBNGVZLS+AGp2ICvShQ5dLRM+S57ydz7k8D8DOoBlaDuWgWbOVUabQtejBBgawkNMNMVNQWUG+qSjNtWbNaQBt/WGpnTsD4VpbEABXzkDOQcfIlY3TvqjsscFWhqnshkF7MFRqZ+efKuHIYiRJdDDmRKBhwGkTFSif3IVQ5yU9eKpUSK1V+/6svbcpuOlgZ6SGyp4sXT3pXVGPjMKdhg43lpBx0LqmrmvpOMwDjrZAkZynEPJX7qcyo+UId5zZS04ITuZT6YQ4Q65Ni3IxW80IjLVGcGAGepcegH7PsqgJj9OpKsHH1qjJFMHSOO/9zHwpTOgCgcegI9Sdz9laWzZyKnu83XaB6l+WWpNC7iag2B3WGktixrFKneqg3TYyno7jQCUdauyWyLhtyDSWd4B7YTnhBTwVmBKDjmZnqWXrGx73O97eNpiClpCD9vb6EW+vEz/9+Anb1vCSN4zxQMwHPn/+jDEGtm3H1hu2fqttuezZmnc792LFITStV8ToXB357t/8u7ry1VhCZ5zV7MiwVEB3ni8n+GZ22q86Vk53xgBrsoldZ2YVnXCvRpjK5+nMs4Sbgqsj63y/8BTq/PGyevj6bxM3qc67OsfsvLery8W38PQny8iWL0QuTzltdhndXJ+tNX8avXP8KmApu8zPywmtg2YdBDh1vlKZWD13oLT1TD7OOcfFeK4mBIGQg5lnGQ5O/6CexcDxXvdemhU1n3Fdc2KnCQar/evFvFAJSayTWZ9T8F7M3nMFnokTjzpjr77FdX7Pz9SdL30K+S3r6pnLQV+XqfkoB6rWQD232Fu2/GO/+Ei+5hE1VuUTLdtRs8r3VCB8fn2NFv/IfF5G6br/Ttu4PIZaI5d1V5/L638TwUexAPn9tSNDultA5tlsCBrTdbV5ULg8Bt+XQ75PwjCX79wsVulOlf2W+1hzx4Ccj3XEgZjA/ZgEVWbDHAdlGibtcLcNMTqeep2WE6vQNIEqPyv/Js/AQNPF0ah7WR0OizmD8hvt3bjRlyv/oRJY2n9Z777Y1Tz/TXtRk11753J9gTC0RxwPDfcZ1zh0luF8vjVv5/fwrpZK1LsV9K2XXe5lHQ1ll2p16JZnJgYIkDRrcFtWCmGnLawvpl96LmSW2mk0ZeuqtJlpYlY9sHSSf5qXZmaemmVe9rOBrBKDZUP3HVvbsfXb2l+aXZW8X/bl1f+0YtVOGM7OzpEhnd3ao9QNXdUwtZ9qOa/55Q9O1j3n5Rq/YNmF6+ycq6juG4azvFGJEXZyi9XUpbQRifQLNEhKZYyoBMGZ1pj1TPmFFUklkxFrblpzTASOsjs1Z0iViDokn8WkloElZuZS6Chf5P1qvP67tkRVE6yYN/MyFnxjnTUh8H2Vl11ZVfr7lMHg2Xu/v7ED6ZgSwz99hmrSBckdGIgvkGXn63wofyFlo7NO6pR9MZ5zxedZgLDmuxipi9xQcV2NxZdjcq4EzeO53k5s+WoPsI7FxQqUnbACrJP7L51ndsqXKGZ0xUqz9umveP1q4GnruyZWi3eKyQJfbkFT5TJNmQPZsPmO3Rte3z7jOB7Ybx0O0+JjHX9iIjv1UcIC92Qns3HjZtyaDrFFR55YIkdiZAQasgF4IqGsOnAsA52pznUAZrCr2EaaZmtttXKH0Pup55gZS7k9gJORqeMrE8CswBUod7I7yzEixzpwzIHWawxD+huTE2oGtw3kfHQCbG8KrqwthkMUJd8rr6qytwgd7Gof6oYnJ2OpOQG7GGP5IqF60KHFN9SquktTwB3IoPGZkxpNjwfZMtOTCKhqvKuMwYJi4CszCqxsUEyDNWYBamMvVFvc4tIzuQYfRN2T2cJM1egymG99h3nj5jLDh5cPuD8G/vDH/xFjkGLaOwXJGZAkMLjZi66MPHNMxdwo7k5RNVdHuKoEsIJEDPvOoHmq7nnbbjJIBV3pjxk2rbXb7YYxDzwer9j6hr13pLRYxtQhue8UWbQD6B3oHdk7whtiI1PHtxsWWyKSWcwKiFdpk4CStsEs5QBA88YDZdtvAAyP+2MZYx6W0qOA4X48EJGixtcmKKNP1Gh/fkJrXdnaYEdC6Q2EApb9ZUNrHY8H2RD7jRmarUpyjdnYGLGo9R9eXnRPiSMDn+MQw8ux+xP8acPtdiPTYTJ7cRyDAtO9ozUyY46HIefEJv2hcDEdBArDynW2FRCac88d46yPLxBqKmSyJEPOt50HkQfuEXj9eIfbg+CHNIpWa/PE0shLdalgALSjPz0rq7MBQSZfzoY5GjLb2idco5318tkRQZtrcYONDfFgl7PDyC6dUwy0tpH54sm2wb1RCyCZgS1NgsXG0T4pu1KOlJcgdAJbT2wdTDBkyhYVmOLYxZ6EsZtoa9Tkiwgcb7RLEHXfVzb1UkJ8YXgBQAkUV1YOIL2+ueP56Xll4qrd9Pl5zsNDopBLmykY9Liz01NvvkSjz9InrkF2/rW19whmrvNbY3J6iafTxPGq0mI/eepfva77kB5IYHWKlYNpZrjfH/i//l9u+Lf/9t/j//Tf/De47Tf81W9/h+P+inG8UVNxHNi2jpeXZ/yv/5f/mt00t6bxmws8q8A7nM8ZYp0FSC+fc2ImmZtj0harqz0iGNZhAZ7VNOAswy6H/Qx6q+zXFYzZeh9F32lnIgJhgUw6dN43WAKb7eeYKDM8Bv/9eJABPQbPqMcxKTqLxGOw9XQpJkBzedYNVMvqS5a1n4OjU5EaDGiCny+wU7Fhkw5WapMkgEeQCVS2rjvFkM9qU7YxtsjVCan0Glprsqe+fMcqeZ/1/QLlWgOxj0jZxIvTXA6w1i3qz2If8J4nEo8YGACmnPgGoBITLX2V2NFrOd3d0poqACaLjVzNRtaeds4tyMI2M/DmBdjLP05AGlt0jruv4SJzYgHPtnyTqXPoCpAh6CuF9lYFnO61TuUrzeqE6Wv/z7P2l9neVonKupVEjFTQKP1LrxM0QR0wdmX0YspF4FHlyVbs8sua1LqJqfuzYmOYgkMD/V1qJ2kBIpOdiEzlfMX4IlNM368VMcZgOZscnG3bBIAzGfl4eyMroW+AAn5eE/RRkGLwOp62DWHUB6kyu8+vn8iGAUvBbhvLx5t3xByIuONp9xNETuDtzqD+tr9g5GCWH4G0YhSQ+WPN8f3LEzANeZDVwmQBy8DH+IzMgRg/Agg0r05OQDWKqCC+b2RmH8cgi+1ghGywVUWQWpfWeO43K3a4gtwFwAhsyiQbXOalaQwKnFibDZAvNVfYRyktcgmRzo5lCOlK0V+QPgkgIfEQA6PKB9cZUwEnaMsiDHMc9Yvl8553j3UGG8Co0uq9iZxDu960+uxSTWsYBhyYuOfEAwNPzdGa9CEzcQP1OA9MdBjYQ6KSPudrFXc47XgDsGUgMWA5sTXH0274zW9e8Py047Z1IAZiOD7dJ8Yx8PR0I+vZyTieR2Dz7/C773+H37z8Nb67/RbjEYi4Y2svBLBa0+4IhF0KzTNx6xtghsfxQGsNe9vpu48BB+2ZPb9g6xuqhc6IEKMyT7ugEr65jBzf6w0sGx0TvW2A2OyZlbqU/+hKypY+kmKkseIWJmZ770uc2xRL38cBj7YSZq+vr5iTuon7vqH3DSEf7nhwvbGbor9jdYeaeTQD+ua4Pd34XUpkzuMNjg7Lhn2jjxwbWVHjfmDGxNtxrGRXXbf8z2Iq1f3X+QIYHg9qopZP59LAdWkfVVw8I6gvZYbvPnzAnBMfP76qiqTx/I3a3/yWOQb+/Ic/4uMPP+J4PGDdl34fzxEAAXVDFdHiCOTjgVCy32+Mh1rnuivd2JFJNC8ZS6cBE9U0g1VgWzo8DC2UmLFcZ18BEeVWdrOVhI8Vd2sPtyJbSDOzATHJnnRQx/JkasaZOLEBdyZZWWYfQHZ02buSKZowuPDL+dXu/fnXrwaemoLvhKmzwXnQl/Eq8CWqXr7qDnGiibV2QmqdVRtMHzNVn69N3ujNRwMgo2qiMJsQoMVSESIdkTDpG7HThLMzOC5CjbWEr1mGDFIn3QhKlL5ElvObyxlFIdPKGZR80QUgrxHhAsH5+1W3jVRwu367Fj3PiArsNWohPZk6R5xzkecIoFDWhbhDukUl3JDzwsQipX415JTjn0FnNIWI1/ef5WQKJtw0xiZ6Nh9wSvyur3bsBqthDmUxy7m9GGEe0CnwZYhefw5IaUllluimSlCsrRLKOU7KvJtj35qEAatG1ddzVp68spiJcvAb0qThEgQN55yo8sBTEJXGb7mr0n8hM55lkqlxaX0Ty8ZXGZvB0HxDc4IiaQ5PlorCDFvb0TwAUNiwtQb3MsY0Ws13VFw6AeRWgNKZjeuegDmanCqLk9lSSJr5zrmqFt9y1F0tTQ1GwxixSh9bsxX4uCvQsl17R47pAg06PJVFNpUtWePKE0NhpMECOMwQwzAHM+enzgSQycD3SGW13XEMY10/qLdyloUW5Zz2Y3piHoYMX3syZoF01SVTe7/2pNGtokif11kDbx3eOnYuJpTWQbFV0nwBIy625NZVorcABSztu3IcTHaK4ueOhlOQcq2/CoJqn3UxvRrByMjE1jf01vH29oSIiX2/wYzlG+6Ovm3LLvd9JwhU+017sqj0q7YfwClonAKFbG0eSm4ZafCJVUJQLJ7eWH8P2ZHWfDlT40EmWoGmSw+qvqPmBtQLK9sRooOXrS2nY7+IiVfQWWANO0ryYOczVUlRlZxgZU4XaOJltXPhJpWdfM/SwXpdcKf1Kqcl/FwD11fZw2++ihK4Mk3MLiKB73/7W3z33Q/wRgeHnTyBRIOLRcezEciCzI38m8XuzVx2tMQmw7k/tcjPwBCXrKrGPs1VTtjEHrOTuaL3FMNFB4zGqPE+lCiCkb00g91+ZgbZgGgLbMGo5Nd55lcGcYxqPZzLFmvm+CcTpQfHu9Kko35WZy4/sc5Hk633SmWJZWUXjsiXc2f1Dco841w71Xrdym6ohALA8ldyxpldjGQ5nYHMbqGElFCqezP5K0AlcrIyq1n+WTF71kqA1bjgdGDECUGJs17Xt6+17bBMtDz1I/hmjl0FbgWeFGt++WJLO0VlAeBHh4C7a6fj8p++3Gh0+m3FvGu1paGZ2KDrnaaSo7NjW2hbYbF5aon6mpvat2UJ132gxjrX+q5UU2YF5U3j/t7PqsxyNR0Bp2ztrSZfYzHELmwDAzVKMnh2XvFrTq26ma1A1VDloyrOw1BpvDUDwUowCZrsDhwOViU40PrJiqi1Un5mjesmf6/WnWUCYxLEVut1YVmUd5BfGJJqIMgrXa889c+qUQ8ZMlxPy+s38DPlx8sXoqNM2+hpiHSocwrOCQTMWOoaKiczaf4U03XNlJEdTR/muiI594YCAPkZYnrOJA6wEiqtFbBerImLrcnaM9xvLIEDx1H+iqtUdgWVCgInBdq0Z1Re5hAYr4i+mOvQ2nfaIX5/rBhnsW40pNSMqpKqeuVpUGtIgfPcdsYlrEAxsb5lr5JrocT3uVzLBp86ZjWWxZ5aQHVe7sECfXOWpTvXxszAMQcex6FkVsMQ6O3aW8dMoAHeG/p2w+32AkgWo6bRXd2k56RWZiWglk8CcR/Elg5WLzRvaNYwj4lHADfv69lNZ+KSs4ASB1EaQHwuVgX5KlEvZg2fWbxSDUR1N8/ST8qUFqehqoumZATKR3WYQjCVMgocRVBMvxpEXONLQ8k62JJJqY7l9AOrQ6iai2wN1XGWbKpYZ09p0bZe0jTSZAzK6GSyMZW7Y2kZr5W2Nv5pp8tWr9iH+zKTHXijrikDYVAV1dqD8uHKfARBxM+fX3F/PNZ+Z+IY51jPlNSPwZskWrwpW8lsTu3P8oFqf0P2jcfRBfNAJbyYRO12+gULT5G5WPtHdqhsyNWHrP2kHSkoQJY0y46eIBaXRpWDVgWXfGOUpt1yP9aMXP2MX/P61cBTrzax7ghMjAgFpVgHZ5PhmZPtFhMDM8A23FfabCbGMWAWaA0gzdsQLtaTBqA0XKeFtCYGmgO9OTydskUSzkllJGIS+R1TNfBqg92MrcYz2bmlRjq1QEdpHPSq/lcWXm0X2XmPB5pXqQ4quKLhds3EEnGEobx+KlGw0wW3mpgiAOAsxRmHlp52QJUtRQmgma3Muku8t5gPbnQirGjoABCDnwcuIp9yfHOX4yzoL+Qs1KY15ixhYJmWO263p/W8iukXAISYSAs8jjsPrCc6OKb7tFTWNcks4EZm8L3vO5kZQUHIGWNR95fmCajbgQTcNmxtg7WNTtMcmJF4fX3D45hAAPu24XZ7prBylxGvBrSaVwouSIDQEr5tzHoZdWTmg8ZwjEkdk0atldY6Ykh4WHfqjSDBmMC2b2j7huM4MGfgN08vyiyw89Pj7Q0Gx+Y3bG1frAtkoolN0fedIIIPMctqroBNi6C3Jx4iyTKotKZs6uksbzLSVw2qkL5CZTTQnnHN6hfI2Htn+1VzWGPHjJVdED30MbGuC3ftES6j1lha2zvr2yf47xB1N7O6gFGniSUdDIBnRSFWa41ry+HYvCt7a+xgOAGoBn+FCM6mxgfonJoBGdyPCy9JX2ycAkPcWX/NoMrAcjeHbwWcANvthrbt2G83eGuYcXCPZ6BvG55ePgh8AWADZpNrosAMM3VGo15OqMtnxVRlO1p2zde5/7dtQ3PHoU4yvRfr0Bfw0tyU7WW5Qu/S4Sg74r6CnE1lby6diAY/y2/AOWiVodWBWfprBCprrfFYqvNrHUClUXINyu39e6pE+Vuv0x0/g7+13upQLSbNu+8+bd358+uhvArqFqBY4URdLU8aypqX630XmFP//XOY0fvvP59sCc+v58E7B/9kTWk9V2wn4XV3g7eOv/nbv8PHj294+fAbZi1notmGtjU8gSy/Md4EshW9RUyZleCorq2X9RblmDTA9UfruphPWYxnl3aBETAiBZ2O5UgVSxUQYOJMCGwt0XaW626ISNwPtqYeM8hwkrObmdR9WV4OA3F6VMBjzLMtveHCntOzJS5BOFgC5ytnT4dLWhyotXf1ykwgG9SC/DJH7wGRXDuCSQagW6I5nd7eTE4+V1ykL3HPLv8C8wKkx6TGojFQo29RgSMgCsi7MriYEgwPvq9v1yBIgTYUw+TpdyUAtoAA0E0JtVx2yeXjePCeexZpincSCJizIDfFqEswrCRoQuZNaVOagp1DumPzoK8So0oMfK3aBe5rnJnAJwAT9XOqpqPbCbCn9hOZV/KHkCwD13lXzrm5xNLd13pd66zsyqJi1E/aegdkrxyGzTcFm02dA2PxiAnmJnI1OFARWELM4n45J0PXbPK5usBfyCfS5JW9WKBTo51WgObOz93vn3kO3Xaeb71jjgdmkO1jCdx2nv3b5isYM/mJ3emDA0zybTeyPh5jMDE9AzMfnPGkL9d08I6DufGQLcskww/mmJLZcH9CBDDmxPRAtgKhKYTOs4ps5DEfbEgUIONs1v5zorjqJiju2AKwWnd4M8z5hsyJzANpieb06yy6Gmg4mzkBi5E2a78nVqlJgfNcS9LBSjL5endsvWGJ0s/Be0/e0wrhdJa6GUaCredr5htBvWHqpCVfKXICj0HwQKugSzuymxNANEcK7Bja7yWKnasxycnCWVZFiR73L7QLI1Y5ca25tvW1zxm4TlhjuVl1ms1ZrBxUoES5ha4yuDwDXsg2VBKULHAu+MCEW+D2vGF/6piYTEjOxOv9jo+fX7H1J7TecB8DlCigptTrfaJvHTdv2G7f4cP3v8MhuYNYY8O1dzzuaHtH6x29aS1sXEvHBLKY/RHoreG2PaG3DZ8/vzKJf3tm3KCmIcXWA3R+ZgJjnM6V7E3zBqjaL0o7CwKB9ZohLSvZnBRw+HJ7EjhEUOxxv0sjtGOz0gNLgpUCfuMgQ3Ozhm7UnD2niIDZ043sKETikK/QxDKak2tyDDLm9/3GhgHHQZs2B+akTXrab2i99DopZH0cB+5j4vE4pIdKuw8xsk6IA8tRc5Webdu2jt4CnlLPPsYhMJbAEBS7btupZbqkGrRG5zFwf7vjz3/+AZ8/fV7+AkDfJ2ciDmICnvR9vNEv710YifFMj2li+Tq7Kcp3OH1gVrpEiZUTLYUbk8c37+y8OOfSQqw9CE0jP0dSCTkTlzSMGqHlAgIcxbYo/eByLOv8I0BVyXCeZd141jaN/ypZhGAtksDfTdMvvX418LQU4mVaOA+5jjr6nvzX1Xn2lqSlegARmJPlbhnHmakR06nYNkqc0PEqRxinGjtApNHTgMmwxM1FbWcJSNt8IcVjTEwEtr7D3LG56GgAEVV9LyAmAS3kOYqpAwdyRLshViTGhydIxGA1U0VKdlFwyOAXrg5ukLAlUF2S1A+LoJabKJdk8bh0ZFoFdwLc7H0ogVoNiTxLxYz3xPefSCxwYbKJ8UD7p2BR8wotbuosrfMWBiwRccwpw0fgg0GOLbSXYoISrVvDagBULmOGvjVk+MoeXIEnCwbte3eBWc7xhp4tIB0jstzmDLy93rFDXWScJV3VdpvUqwo3SygueUA1gSfuokdrTSvAzcQCmkKlBq1vZzBgjscAYDvaZhiT4+0GRDhiltCvw6wD2Zbxqzsao2j8DZENvhrwlqEBIjqDgwCwbei3G2JOPMbEMQ5mTkWtX93szU4QGPzhmETEV9ZOGZDIiemcuxFyiF0gBpitrSpEOmBcjbvEoqlPJIOPcqjEaigQVPvdq9OcnRkOrkVb4rozB5o7bipbg2FpCr3HNS557gTqMK9FX+YpqzxS+lCLlbbgB2aW6RwZM5feYP2kMNsl21MsL2992QRDAFaAHU42ohfjqZgJ1bKUY2kat1x70+SQKHAvELaybwrIFjhtQAZbqVa5x9JKqUMUAlO9MuL13ZcxSvDweeeMln2P9R4gFzvj3eGjc2Lp8fk593X6nkCO1sQXCE6BTe8uXCC5VQezLz8nBwS5rv/uGlklFn4JGN/f97lkip1ja61XZtgq0H9/y5dn/Gow1mfefV0BAlfw4jJPZ6q3AHv+poL6GYnHwQYd2+2FIpjzUPll4Pb0AbfbxuRGVGeqxqqmzHf3a1V25GXoy643rCYOFcDXQOHMBkaQWWhdrkwxoI1Bq4VK4kascYQxGz0OAtAzgWNMHHPIfyB9nhnmM8AqHopFAnGCUxDTplhZiWumT0cxOL+BS6Yfrv/3NS6ZWNnoLFB4Jb/8DJR0tlS5C0AAayZLjcPIvkw3+i8VYGSSSKVnaiiwhyszrRaNX87eM0CsrLBiJnZ9LTo+1PEXJzu8Gf2oqfvNagRiBusU1F6C1BKluWp1VEa8Oe+7a17pelyCaOR6hrMULmEgcFIsK7LdyKKm7SnGTgWdpkQmA9Xz/CgvRNnoVAMU+RwVtMLsHDenPARLNysLLi/Klleo7wB9IQkS0r892XEuZgcJaPTAVlCXnN/uG9wamjc85oGcTGgu1tRlD5WuI8eaepX0zUBdGuPZYic0vsakRqO+u9YtDGScpAkwPucaRv9sjVMBsCprmgG2y9bBxUYYGzz7CTjMKsc7tNdD6+5k1xXrcGaVy9R5QyDMkNLCgYTWDWYBOP0WOGCeFL43F6ClTo4w2GUt2FoL/GOta6hCpW9kIVcMQ0Zuk59R3cCCTC1P9O7LR64VHSBwUmHaLABQb8vgmdxctiFt2a2ztFm7WGWlUWOjIN9r/pddOBvOsOkegeuc0A46E+IVKFoabDCJDCNOmrKzvN3akbpvkNnQmuMYJW1RnRJP/3GtkcUcJxOzKYkxQwwOYyKrOdAFLtpln5AVder/TTFJQr6QFwtU84cApvF5Qmzkvm/YbztuLzc4gPvjQf7sti3mydP+AsAwD4ZNMxPPtyd897vfo2/seP0of3nbl49cSXGScqlHlCpZyjp7tcl679i3Hc06LEl44FrzlRwua6eAaAEdZbcZBuVyiIp4YIbFNird3jqbjuM4G6e0+oz8dzGdujfGjUlF0MXwpSUmM1kA67ZtmBkqw5xcD/IN5/FY+8uQ6g4dqmRoUDi+7j29KZmtcUqCvo/JdVayLmaG1jtuOufaHAtLGGPI5Mvmys6XGHj5ost/CeIB7Ip+Ji5Me2ocxzqb61XanyX98OnTZ3z6+Alvb2+YM3C7PaF7srw7Dlg4ZlXpBP2HgVTzA5MeUkXmjF0BQwxWh1iz5ZdWwqFUWCN5n9B+vPR1XVUNtWBmnPYUUJJnam0Asr2puONk2zV734GdG5rfQh9rav/R3hrUwdocJl/bQ8t4rUXI9r9ztn/29eu72s25wCYk1ZPeu+u2DoKmSQk5sd4DdgTMJgcrlW0zHdhFV1dCqVDhHDTSx+OBrhIKz4Sp3t0T1UJmlUMknJo4tx3H44FxHBgPsgNY7gIZharvLq+S33mWnEwN+MWhVubWlfIrdgeMRphG2S+UcgJPJWQIoaXVy7BCno5yJs6sIzWneCDF2nwKXoETeDLRIxUkld5PbU4Ay9Aw+0VAwHRI+GqjrrktS+cMWEJznnmW93grVhiIlucUYwpiR7A8bAZBM2baZDCD26lWfIALlp3bJBQc6lqgQBu0WQK0AOZW2xpnMaThqRbu5hgj8Ha8Aq2z08MOlQTq9E1ex9zZZhfMIGR14ICAoarpNzFFwO+qbmLHQc2O1ulgGhyPGbiPidu+o7cNc3CZNoMcwA3whtY2FBAYyhis25sybCDQhkvZVUHAM8RAmDwwt9sHvL6+4jEDn16ZObjtXK/bRZem5rN1lpEV7R4r2KJmiA0ysNzFQIKcUxfwAVJMQ0F56D377Tv0bUNvN80Pg9Z6XmbfeIDv+4bWHPu+YelOFXtHMW3fytFnGdTT08nYKOrvyWIqOEEsiPK+ZR3qEON7+fnSXypqM2DIUj9XsGc+z3p5QDphJqeA13Rdc8zLgZcnxPAenCg78x5s0I3pA2KpoRg/9Xv87IuByPkGW8/+M+9d79FdLX2AOgjrliq4/pqVswLI5YidoMD6ppqrbOe1Cu3P8zrrxxcH5su7rvfzXLeVnTlLEdeIv7+ugkmatGtwXM+yPnaOX4kyAzjBe+AMQL++z5NZ9cuH8Lkfr2sy3/1eo8cQp84V7Ysa70BgZOJ+TOx9w7Y9YxzAGJOlIel4un3Avm84Dpau9c6gr7e26PBN31VuD1/MgPHsYYYyxEhkjKnxFvuGwRWQ2dYYUO+L14KSBGMk5si1xwECVG9vh45Kx2MMPMYAPFiOsfZ4Ab1ncscnYPI56rBNhJi4rLSpigURshA4yxsgp3EBvloQqTLYURvBCJI3dT5tTtZFRq03sbCzGAkUU54GNuOQt0abQhYDFvDMwWiyCRXcEzzxtV/oPvg6qtPOtVysrgSzrBTX51n1SDIbmpVNYfktm7UIJNg6zBvykSe2WygjcgXADYZuYnJpP1cnvZNLWIeZsqlZyVUmUqbYDQk663Ifz4AzGZi4AZFMWlXgW2UCJ7DEBglzxirB3LZt+VI1tiz1yBWY1FJPlXwuUMtOm1QqpqvbofywWt+RAu3l5LP0hfaoGRnS3TumUasMBYrUSlVA5d6WI/8FfocSCXXrfJaQ5VKixupzQklPO2yykQLNlUCF0ZeZM1bTCBg7LZkCwilmZdOzNvOTDTFOBntGYD4eZbTIfryMkamceYwh+1IyCZ06eqiETOXbuX7cgp0KTSzBnQyl12PQ5yybmzrXXR2o3an5lE5NG6OnWSAQ17CDbAOCIQ1OPR2N44yB2R4SrXYCw/IlMoFHTAacOhsQiarCKzvt2rfFbD0GtfIyptjVAJuAkGVZPqkbg7yYc3Wd5tDSx1Z/EYGDvHYzasZtrZ9xZOi6iLNjtp3LyVvD2a6dz+dOZtoBgfZzrnPIFWMV89GcQfWsEkWNTVRcZWToNDfYccCC3UVhKYl3gMnjCzA6q8gXSh4WaKykQUukyurSEn3v2J52PD3fMI4Db58eCAPaxoYsaY6nlxcgDR+PVwwlvvvtCb/5/V+j7TeMSAJWmXjeN9Sp681waztGDMYIwcTDnJVQqUQ8NTxv+zNiJGKmYuBiesnGQ0xaJTddcdlKjqTYf9rPLhDJ0hbbqpIvFd8dx3HqFJc/IVudk4L/m6qVLBRzKhFxRqgAvOkZNny+v+EYjyXb0Rvt8Xjcl79tRh3MYiGa7zC4yqRNZxybv3DfkVmHCBxVauvnPbduaGLmt9FWJcTU+mvd3wEmmbmemV2Cc/28SvyqMod2WCXGx6MOGRT4Xdek1t3Ap0+f8fHTJ7y+vmEGgSf1IQVGw7SJ5k1+V2BqfU7kAp5oX502SKYj1RVejhaqkioz0VfCexkRloVmiExxsgYZD6tE2SDmcC4grM4vmME7fdHmJzDNDscuZngoHpeNyVSJsORQvGKbTr8wKsmHdb5E2Y44/f+/9PrVwNM47gwCFZCYJ3I+Vu2mmWMEN2HbWBY1j4PGLzu8GTbbRN1MTC3itgtsmIPnfgKbbzAzvM0HmjV89/JM2nIa8hjAMbC3jm4uAwnqtygjlOhI7HCToPOe0ldy5EiMeKish8YcLsOdztKDNJhkQVMU5029nAJE+wxJVpWpFK42sumAsAEgRAWv71Lwg8rcEoibJgAEoQOFtPP7YxCpvW1aLA24k1r5su+ISDwOtVqNid4dvYwTzsxf6su5wdgliQfFXK06U7Xya9EWqDhDh2vKKTG0ti2n3HUwuFhCUE3+fdwB0MmjN37JYqAWLccxx2C7aTO0rKyAMtZR71L506ICV9AQyGSZ1b5DtPKh5+Gm3RxwTBjGisndO7QolKVn543miTHe+J7tJtCsKUjbVuBUgo/7zgzJ24MsgtYbfN/x4bmJbWRnhr6Rdr87ndF9Y6vf1hp2gZNmdJy2bSMDYIzVuvx2e1pla0CVZDh63+Bbgz1tJ4BoNAr7tvO+5MBRM6kAE/2NfFc7z/G/BLk4WSqtXanYdUQrJFEgtG03lQY1vaMCJ8NyJwqJ9wKVpClUb6/vtjPQ5rwBrWXhD8tYL5Cj9Btwgg7rPdXfVMgGdcywWrdX1lzfdIENlCF0ZSwCYpPZORR53ve2BP3O+0Tdy0IqztH7kh2TtTkW5dzOZ/2GXV/vr39ffmCXm/sKVym/HXn+U3urEit4917+5Gzimpff8RuYscM5H5fD9MRmLsjSeotp6uwyNj/zsvU/AvZcAvEGXL83yyrnut26r4KbrriW2TkD70ds3SJ/u+xOTX4FG1++ft0h/Gte9Ww1mwABdvdE7x23247vfvt7GBzZHJ4bNiQwD7BM9UGgd/uOQU9LRFLAFCqF4B37yVqwXHT9yMly5Mbs5NPtGXEMHG/PMAu2gp6JmBA7MmEPjuTxEECWE0zJOeZBdoor8PBoiPDl3Fuj/dxsypkDbTqSID0E5NeIyCaY7F/Zl7ZVxyGyFDxKr1FOquyBJdCKPlpOoa7XErBJro452Su77WJmScQUpYkEROPZ5Qi4qEyVvZxuOMzwsFRzAtmkiLV6A+WM01rOSEUN2pdK1JlhPcsJkyfSeE+mBFnJjNjk2YUhDb7kYp4AZgfCHRMswb7PO23ZfoOno88Nja4StlAfrMlyG14tyUZATYe4IWKTdIEPNZcBZpDFUUbBVTwqGp1qD2HLBm86k9Y6FTazNHcYCLkD4cwT90YR4LJvZdPoDrkEyAk+sKmCgFDZk6xEhPY79H3Vrrq6RWUEAy1czrFejQ0acpK9B6g5gtDWaezfjMkgNXTd5hKUvZRYu4KuZVf1LAoRNHZcy11gCxQUsBRCrO5KDqhcfyUEc6ISbMJN4b7DALw+gvs2Bro1dGsq0UkmQCMR82L/XBUEblyzS6dKUvtWwdGhPZOLiVXoI8FD7lWKBnfkg/t1ww1s906WlUuLlHuOYzWNNiummB3NxHhisDWgYDjXSjoFmA0UUp6JvLOteGQBZBJyB5QgZwmlKU7QjSCBJfJsntLEOTQtXMuZdSZq52YSbLKEOYHZ6n5rwOoWuRK1+mQDYGIOjXmn7c7zjCsdsSz7pM2QQ91VoX1lDGhHBOah2G61mJdYvfQwC1SDkaGZul5qv5YNtUFN2D3I5DBFUTOHzgQDDlWwhMNyA1Si3ZI2fjeKuDdzPCTzsvdnJlPRMR6JP/3xJ4zjwKePn6CZAsuqHDnf0NuGl5fvFEzv+O53f4UPHz5gjAM//fQjrG9wdzyOu/ZZsepd7NYufdoT7CP26ejbrrjWcDzuYiF1tK2hq/xwKAHiZmdFhebkOI4zketMbkIA1OP+UPkagYNDTKbH4w5zY1Od3hHlM2WxDsvnSdicBK62BpuMd0gAAdlzZvDNEQ144KAGZbMTlPGmMi5KrUyk7MlxcaB4NltJK2QvS7s8Li1zVcawGULWtaDzOAkoWmeVSA4GFQVekxXHfctxQeHBcFfbD8XbxSor3x653FtJS/Dnc0w1SzOkO477Gx5vbyrVGxj3A02Mp4DrTBNxhgt9zW+VbpP9z0ZoptJb3k/CcAAZ8Az6aAaYbGQUK7CZbJz80sbSz7JxsFxaobWHHWIpyU8ACBK5JVomPJlk8ME4JMdQ0qkArJRGmnScDUo0kMhhCdr+BErLCwbsqhY57JQo+EuvXw08sUsHCO4YmQljEsEnmBCIoIHa+s6HqV4rwWC3uUtkPRFTjIamY1MCwUjVt6PBk3Wnz9sTs3ylqxOB3VmLaomT6mrSDkBHqLOdI7A36TmoK08cQ0bYAS8nzOi0KXNpqgedU2VfEuA1LTQrTSe9ishuxvpgy+AfBc7FkKhXod8sE5miCCpItsTMifvxwLbf2Jlr6+z4decYbY108eORq/6z+7bITYyp5axpY66UIt1ZIsK673pb1C6GLVHwRV3vNEbMFlXAbIvGByuqXi5ateswpq/ji0ZfhtW4uGhc4rJo5RRUSJxGPYRLHCuRN6BKnVqTQK6dda1Ei+XWZtVKm5hfGivjWLkcz5xDrsMOmEoDXMwj2esIzmtvGxI8IFp3tFvHfrvh6flp2eSxmGIED7d+o35S3wk8dT9BFlBj6Ha7YSqjQePv+PDhBdu+a50x69xaw9PTEzs6KihsrWGXaPTeu9avLaCHf+ikmxtp0F/s9xO8uBqSM+x9v5ZrIut1ZhG+ep/eeIV1cPn5OjC/+Oz7e6h7qsDg6vS+f+8SzIStdVFvel/aVX9SB5mta/BQFIihYNdWJvgsw6mD7ZqVyXqmiPWzdwGEnfdxphGuANh70OFbr/r6cw6sfro+U9blOkSrXOLd0Nu7z337C7+eO4Oi9Hc/vfz+Mpens33ub06B/cznv35d3+pmP//myzO9u73rZ+o/De8ctmUJay1/dWPXC/7iiP3s66uywm+t+fUM7+drBaUuqvrTMzNoTltrjaWgNikwGnNK+8MAKxHugeqaCviy+etrEspY8hcVhJT9aq0jc4qmTsdpKlvHbF4QkEp128kA0vVeZrktgRwFdnY6vVCJsE9tc+YUVylUObKy7VWaVlvIIdvW7eKM86laspTPFyidFfqVcef5KTuQacK1DJaGlnTGElMZ9JLjlDmqJg01ZguYYkY0LFc3WTs/pfvBhd2rEtlCwMpR1zyQKRTrSrWFzuSDnFp9dq2sS/kOIBaEG6IT8KAY7FD5MegbZYNHoEXyvEicJXruLCNc02IrOVdLt1g0YXriOLO4UeBT5irNqkxu5YFh/i54VnqErb5RST+jmLQ2TWt0hqaYrxxpBTIFZgrwCPlClUgzMRbW9qv5THAm1cM+kz5TgXhW7KHCfqRbEypZcj+1dqqbYc0MwQ3JFETZ6wKe5Ngt85Qng89Oi28GsYQEDmQBDaFj6GQ8ld0le6MONDF0QLmIAP3m0litcq1iE5vqVVMlmcvVrMMwz7mq58mMBSLzm3KVS7NjlsDhSJYYqjySNkYsfTjyODhn7QRkmMDkbgtA4MBZ0opkuVvkvJTo8U9W6YrRjpjKNmdybwJGOTrTvgBLakwLscrI6jUVGDcz6vKJTU+QP784mwTeRCppimXt6rBzrcFaj6mOhVpuYAxWIBydk6y9dLnOMvEFjGk/WK2rUElgVFlZAVkCc1Iat3m6HbRbsxygZWe4p5TYx7mEqwGUJVaFBlkW8s8t4ZhoMOwg065Lt2hkontHbwbLhpjA66c3jDHw+voQSNu04hzAgX0zfPjwPbbthqen7/H84Tvs+463x4HjMfAk2YQZZAk1JQ9LO81KIgIV9zL2YGMZWakkS3CMgf2p069fnX/VIXFpLaxlImZhSsbiMh/J83POoeQP9dHmHHh7u2O/sczQ2nlvVdJW209fDreGrtLPrPNZ/+3NxX6jHmOIALEOFIgN2/ryGcqWFMt8lT4v/0kJHANWSlAOWArUIAuWzLG696zv1pinzeUbFrh8ltPXdiW+UMnvIl2VES7frvZK2f/6U/a5KieOxwPH46CdmGJdSf8rxTwtaQqTneEZbeucWxsA9SzGKibU/BAfaLq5KHsge2llHZN4QhpZpqwWkFSQFWEgF0uyaT0Wi84vIJ+bqTeK9v0sG8gxD1WyTPmQZ3WRGg/k2SQPa9/z/poby5O/mYD9+vWrgScGrlXnzTbl7sDhYlGY4RgPnoJNNE2bEhW7rwXKIDxhlcGDskWb672BDSEtJt7eeEzEOHD//BmbM5i+d+Aw4DGnsiZ0wirDmwgE6w0oMJzqPgCyNiho17X5JsbgAuuF9IqphISet+GYUFvMBHLCB6l81HsLJO7KitSBK9BBG92aY/NtHU21sMoCR1X6BJ2k5g0djh4G3JmZOw4CgB8n2TvUNaKRba2AnWANrUriTKUDEQHEgYiBvu/wtlEYL8/2ldu2UVTv/lhOxr7v7zQ23t7eeKMTalffluGpv0vLZebUPXjFNmwnvhw56eZEkiovLaEKThc40IHERMzH0iAgldbQd97O57efMGdg73JWM+GNopExG8t8pJVw6iRgjRUCmMdcDKXsgRiB+/0VUIcosUUJpMGw354REfjx0yf8/b/6V/jf/W//N/jbf/E3+Lt/8TfLG4w6CFzzoYCi1tnXwSdQ2RAiyNziRYmvdy+2mcs44Dz0q8Pk0kHw8xwxHQaLHSQGVWkxvH81/V33UfdoZ/bti/vPy7/fsXy06s//vTzz5SB5zwC6/PySdS4QiMsk3xn75UhDRlVOWGVlU2W+bbUgFvC5/MFcX3uCUtv6bqBKPs/A6t3zn091HrbFFM3LfOsLz/FpK3iw9byaP3zji9a3nMHLl3fw/j3v//3tK+Y3Pv3lp37pHVev6gsP6xeu+D/L68uL0cP9pdv9mQ/+5ef8//frZKIWh0v2FoExHpjzgbS5yq4CBzIPjOMNcdzxfHsGtUGHvDIyQJuxvDgmqHFi5fzTmYDAgMX2a7LFnvrT5IxOPEbgeFQRRSLGVQwTmEndEjqOFQTRcg39LFytw0NrOp0UbtNFEOyYqgOoVpibM/ivzlHJUp+ebQVIKrJDV0kDwpYjSQMNlacsUgop+k4R4MwqNx+YuMs2x3Jqm9i45sxY+zyke2K6xzPAC8FocpfXVnHQoYxkoA+AfpLRXtP1qDIDP4PdsldLM6oVGQXHG5kls0oujM8SAIY7Un8qYeAG7Dvnh+2dwcbLYSrj4ndF2S1XkKexTASmnNDSenyMocBLhWtW558DSUeaDBGWC6El0FlyMcdYR4Ep0D8ytJZy2cwUE9U1NrW+5oKizkDcGllNcFe5Fbie5rFYwaVrMUao5HJBFIB8kQqax+B3hM67KpmZrtKj0szixgJcOqFg2AEk5hyIMIzjjN+KXf443nTmVcMJMvgmEtOU7Q6WkG29/E/u3XSCR6tTsDFgzyCjWicmJ9rEeIIhuxisMZE5kHGos+LJZDbJElhpnqQApaS+ABOD5+4jK4LaMbMC1gJcADzdxEI4tPYTmKMDOTHHfMd4MKMK+mEn4DHmQTuYKnWSLMcxJexdjVXmRJHn2zL35ZucoJ4ZpK1U8y7bBspgVBdNJs+nQOvaIAroBMDsKBacrRKbMe6g784yS45/IoMi7ZEgMGCl1cZrd5RHwrl2+aPzKGCBSW80AlTwCoqNYa4VNAestqeJVcLTUlpTVp/R+Ew22xn1OdhKIsakTTvK58nEXKCD2Jhx0C532qk5xQZDorqTrS7k8j2PKK08slwiJrbN0a3htt3QvePzp1fZzGRAboHmG2COP//wCb294bY/4fe/f8Hf//1/iZmGx0zsbUdvRv3f1sj+d8e278veh2KSYvsPleV55/3d7we2DtjOhIyrjPWYE0gKh1cnuOOY63AJsb4c0sVVA6Dj8WA5sxm6NdgmsFbaSGiO29OOtjWgGXzrbA4gRkyRTkJzagkcCMzxQJXhHgIWYcbzdQ6NOUv0p9hwADD3cTLctF/pt+p5vakLbUrDOTGz7H2dedIn1boxAPfqfIwL4AsRAnCCkUjKeNRqo1tSsHXtXQBZa606iLLkrnaugfbIVK9azL/mjv50Q8TEMRJ//OMf8Ic//o94e31DxsDW2NjFkUuHjB0/G0yMNgJBkiiBIXSWcw1NJgM3jt/MSnC0ZT/HZOnudAgLCIKaLXEfEzECpSvkYADK5i9kApZ92KUpyC8PMVKJcbR0tJ6LsbdXEqSzmuuRA2GJrTVEqkyw9vjG2DXAg7ZYywbqdmOQAPM/e6ndioZkRezy97lQ6DhETjkDymRErs9dOxZw3rV8CrGFaOIKaKtWOUR7880wHUij4vqh7IDJKFeHhgxbCEFlAN/rj2gBvssgMCi8BpXlGNZzrpxGAhZcHHUMUwvjZEKdec5cwWzlJ8+I1VC7YjnIOkS6ObON5JTLZ+B3jQx4Fs32rBc+r10EJ5MOBbBYRAnp7rnGh3O3gAf9rECM6+FTnz99ZQVC5dR8sfCIz2IFM2e4cc2OcZyvLUGxkHSs+6isN9lk9Z1kuVmC6v/JEihhCVgeq/5Uhhvl8MtYEbzJJehJ35gU9TmmnB0GaBnnfblRy+rz58/ITPzV736Pv/nrv8bf/Yu/fb/GE7jWE695+iry5r2VpMg5pSd0cIb15f5RbyxLx+G6ji4YgF3+/jq0/ksGQ/DGVyCZvfv73dXWun5/bfv6ob8xFOe+XV+vny2Q5bKf1+8Xg+BkEpzfQGd0xfDnN31jPN6/Sk+Mz3p9Vy7Aav0ka19cns2sfvHFs9o3/tJYv7tL+2qMv/y+6z199R58Ob5cN199Mr9+37sb/LkRsq/+4/yV/aXR/bnrfftO6vVNiOzdoOf54Nzqv/z6i7dnv+ZNv+r1rbn8tYc27P2slTKKWaoMizQiE1gEW7HussUAGZ5pShIhz59f7EyVT55gKM8Kdpxj+2NqKiTGTDyGOqGIUYXMUxsPPP/miQSdYK982gCU6a0Mrp43AZdxvuq51X1deype7aPFyRQh8YcAiWWq1bpK6Orp0lH6jue1jLpAGm2CU2JPVtbRrluA16+HrrNiWWvDxVbrFLXajwBU9j5XqU5pvQGVrTbph9QpGsgzOKgbl28zpWUTF7sVpbNiKin74oldABZZTWKlF0iw1t31Y7VazkLcyxPhxB++ONh48i99KL5jcX3Oa5TPkbUQbflUta8jcwX9bifQMWtfZZ0QRnaZne5KQvOo51N/FQaEYGj0vhxdDKLlP+nuA/KHdH1g6YSt89vquStACpX7kbkdl2dnebjp8wYy1etZxXhSCRAljFKd0OR3KPqpluKrtE5/atx57wKqNE6V86rda9r7BGR4f6WH5lrTEXVvF4ZvzWsNYBajpzb9aYOm/P6o/VVjmiq/C7VxBztEVtlpVVdVA4FaXxFTYK7sqwLu1SzJzo17ZR5z34itZOdaw4pxOE+ziJQao1zv0crVmlrhU/lkso05+JzFqDHn2iTDgH88INYX1vU8SxWWVrUE5K/6XjwCub4ydNqv4KQM02WX1vrP01e/rvnlfy37XWvyjA2AigMhs0v7OlccJEaR9ALrCbKmouzkxcWrVg2opDSKBdiWwPSc0ou7HqHmgKnrMGKBw09Pz3h7DOTxAEoSwnw9R12/4hyg2F32hR9YoMhpAyoWqzkgk1JC+zjHrpg2ZLT0Bc4A515gSa/BvKEE4WtovFXSAWvdIMSTUdK/klWOU0dqrda63uWspe17v4ZgYNwDQ7GY6lC2AorerYHT5tEonPbGEmdJ/xpbWeRiEJVtjBonv9wvNxETFuc4vffJKvGkLRayQX5hRdf19Kc3jnNMJtBe317x9vqKECPIe4lq1/oHCjw7/aLL8faFf8bPXuyunsWVfOEV5umfGhNTtRoDczFytQrXXCrsuezXUzYBeD/W9fym88YgJq03TAR8li0sDWdHmTDX/GQd+hebWCy7/Goufv7160vtdOPDqA1R5V0nwgyU+GOIcmkdcLX4XQavshx1UJaRNpDCCeDxdscBw28/PKM1KdRLbGH2wKOzNnGGnKlmeN6egQTimLDosMGkGSloAhfgcoyoEzHG28oEbI2tU2/7BjdjFlnO39llpTQA9ChBw17gj5kMiBmyyfDE2ZkvzPAYQQMRBuYRtzUWEayZ3bzD0OD9xszIYxJZbo7b0/dIJF6PN9KO82QFVU1olEETMOgNZLVoZ3iiyu/RO3UKxnFwUTbqSu37LuG4xBwDadQvat7Qbvs6OFsZ1YWgx1q8a+1oSbYMWHzNiViBxGKTQd22mLXmAV8OEgU6qYFAZ+fWnmHGrnlI473HwQPHDO6daLtEL7kJtWmM7eLNgJGJMGbUzR0v+40i5Xjg7XHg06c7VODG1dQaPrx0zDjw45/+jMfbG7778AH7xmxJOXsnpfNiuL7eYZpD+WLaQyWgB6NhpBE1GY16b5L67Vi1/dXpaNmB+oddDp3lTMgBsW/e2LuXVaRY0dY6gC7v0aWvhvgbV3p/X/jW+75xsGjxlBDj+th7PBvVIr2OhQS7VwCuenro3stqc4xX218A1LmRA/vlLRidqPfgh4DcAGDFynv/NOd/XX/3LSjO8DMD9yte6wm+eOW7d9g33sef/KXv/dbvy3m9Ptu3Jv+X7+uXv+Nbr7+wZsuLvT7qz67JX7qH02LZl4vtV75+3ZH87dfSW8bXt04NN9rniAPHfODWaAef4gU2NrglugG3ra3EypgOhC19vrIrpKwnMAcsQyXIajE9HnjLwJ/+/Cd8/OkjPn98RaGV9/uB++OBrRVDija3NTKA5mR32SNLE9ERNuGdzQWQhuOVGobU9gsYAi2UbZwsPmHzqVzO7GInL2etqkiMBC+I3RNk28YI2VJ12xQToLeGtImwsUpNpiVgzLYTGCvgK6Q70sS4hrQfIOHlwHyQWbBrAtON79HzuRla26nT5yqbQWAGaf5DXX27CzW0Rj0mkHFBR99l1qWh0nX2qLwxA8jGk3NgLMBpggLCzLSb3ls6XEA3BiDj/kDCcFQ6zcjENjMM03oUUwZgsD6ycn4JC+ratH3n7wuAqVKrmBhz0JdpHQ7DfSaQBko3lnPNLxurVKzz/OtZ2IWYYsUwlp5MJg417ogQRFtnqNkphAyusS2LNZDYtw1b75gHE1qlnwGBcqVllqnEMlLrjf6eQSU7qQWZWrUVvHpDIjDnvU5i1CB76zB3jIPvr1KsmIN7Sk0+mqlzHqgRGgkcAoxONlwuIfcmn4qlP1xvrqqFYio/jqHyUbIUnm4dOR1zAiMnZgyUZmM2EFheDXs4x1Psn8Qpzt5MFQLynzguTlJysGT1cVBra8QDBNADfXQ0jBVAZenhNOmwll4N1uNC7a8RMRSgzlq+MFNr8EqgowLR6hLFxO4dExs6mgEBih3b5NylOyaoZ0ftU5Ycv0sQLrZtLqag8EOsZG9pn7YJqPsYdbuwSpZbMhHf/RJ8BvXyUl3y3CjujAKsGpaW5ygtWaTsl5qpiD2CKhcE2NApAvWDEtCuc4fJaiAvq7WaDZGNyHszBdVNfmloftF4/3MyzrAuWRVpGLk79X5XGMukxjTIh2/o1tEb0HrHfntG3zaMyVggkkCNeUffn9D6juekIP8xEscAAg3HPPDp7YHtqaNvjikgdc7JTo2XtQBvaFtDkSRut2fOr0r/jnEsP7HOiG2nTnGMKT/RCLw2YNs7Wt9wHA9VDCj1LlCTTWkYzO/SdQ2B15/f3lii5QYYtYUsqYU3ImRfJ0ovrEC+poV/BasW8KiYswxpk+9c2oAwNpB63B8EUNIpE9I35EyMkbDG86y0aam1K+mbC+jF+MaXXT8tHi1wva/K6VqRI2bQ5ritKpuhLnRjHIyfLZewd6UdxiBpJRvj+L0L8tDemWPCsiOz4XG/4+3zK/70hz/ihz//gAKMHXb5HtlvkQ9mdal3wwzDMQF0Acilt+TqhHnM9SzeGqBqJYKoU34U9+hjDiAOIKiXSJIcIcxWGQ2wDJ6k1JAesEn8nDppJ1BaCabSgGZVWTmWlgDU7IX2TmWlgyWeaLUY9L3oIpOEQKiA78DPJce/fP1q4MkqkJPRnAowyLTRwS0BsMq8rMyDnZmvollf4xQ6UKLjmWOKYh5TgXQSNmqdJV9pbM87wYVm5upIcwZNFoWinmhsazwCzabKLOmgLCRgMWsuwZdVyVNetoq9j62qyH6Ba5yABHgo5bnPV7Ig6Rh4IbrGkj0DwborilzCTakFlsjV2a8C/8yzxjWzKkTPoJk2RZkXP8uk6lVghAWzYtflw0A9ERpPF1W0AIbzz+Xn33ylnGSs9zG7gDMTcK6aNcbXMiyYDr2M5ShV+1WWGWgs6J0K0AMiqf9Q42WyH9qSWic6tGuJ6nsJ/pD67HK6dS5IeDzOm133fQJNtRevGdavX7beU/8uwEoPvTb1GrN6p+4dUSOX633fmoIvv/f6rL/udV73S8bTF1N1/uyLWzm3z9ffezqD79+Jr/6r2HLXi9s5/nhvE2oc13XkSLzXeKovr79PpyvfL3Zd+WIP8svjtJ6nMuAnSIzLPH/xg3VvX47Jz83RaezPgfvynb94HHzx5q9H/FdcKb9+7vWri+Nxru+/dIeX+f65pWn59fr56lm+cV2tjy/v5YsR/5kv/Uu/++XX+7V0vda37qHeUeDwucfMEu/vw1a2lU4PmUoRdEDbdooTG2Qq8rp2sNgkZ0bbFMh9DZjPMVcXGACraQS1Nei0hxyaFABAnYrLWWtYDubU4Wnt/CK2lQ+VHQBV+03oxrV3tTdM+/0ynBm2oOHEyVKoXcvPnKVfEjTStckSKHHfpRvhxpKMTS3lxbxNgf8pp7Q+aHnacA7rVTvIEAK/5tK4NGQ6IoEZdBJRrC3Q7xlJpoXVUOmPO4c+MzFHaU+UE2k4ktc7BD4dqO50vsqXQqyb9MYPDzrCB7BKRKb20JjFlNEzGjWBpu4vEtJ6MvQsR52PYsqGpxkek2ulaT69MuuT65xVA0nmO4oFBmFRKlTLC9MmrZBHZEr4Vc9W6SuXRhMsVvlz+TOhoC3UuSiUEEszmJgjgVQ3SH53Caun/qdaeZ9V4LmOn1SAgfVe7X35jWZiOK3J5fciTwZ59Z40cP0VznoxB2Q/Xc8qY0BtMCz2ewyuzcWqM5QAN6VAHDEAxBDTnA9cjPiwAkyLuVbMgFqc5WNyppZPm4nVYm05esZuVCpZUcpR+4TyCKUxZ6AfmlByGxAzSidwyVcU+3PtIPDfxNzJhtI4l002yRM4TppoyOdcBqcCeC+bYGLLp5hdp+9XJyPLqk5LX9Ilp9XnmBmkNWqLd8D7z1hrqdYqbetkJQDUYRop3aHqRprr8pfFIRt4/mKdlan/Vklu1nwpMUGWpzx14/kEU2VEJps0aJiqeUztPJrC4gCZSjTPZy92oCEvLoXs52WB16pezD/9e6Y4OMY4MWESRHfcnp/R9h3HnCzSbhvSHFEgqGlfGRY47RRCRSVjMsUGhZ7XrzHBtb5FMUVbu/8EMTKAeWAqucGSvbzY4OocqoZAKtPTFuEYZgrYq8S/GDxxMoLf7bXL2V8jujyICyJac8b/5h4yTvl6VTk2QUJwX6w5LxBT9ktn+dUmnD6wo+K9AMHVxeyw87vqwU3Xr26LU8DT6VKoSkbngmUxehQJJEsnazVFnCWpzR2PxwOvb284Buem7nuMscpzxXao5brOG4Od96H1V/omtW59PZRXmmj5VyRk5Cr7paYk55PsbAKvPLXKgohPqPVANrnsbcSyPQAEyBmmGcIMs6z2hSVZq6MkAdIoT7LINfV/WktLN1DJr/fx2i+/fjXw1LcnGphkvfoYB7beiHAWjbdzwz7ux9qE3hq8U28AkJ4PbK3LygQZgM0amjmOPJAx8XhlltWbw9oNLy/PGAjWq9qBganuIY70TYdNgQ2DFEav3g/VNp3oOSYzr3ULkTxDqhX6hLKTDoQ5RtYCchn1M3igwCWRybyAT3CDdWbmbBhssoV0Zbya70QmjUaqdwciqK/EY5yi4lvHMQfR27c3GndnV5bWO5CnYsTKvOm/DcCUKFkEa8mbEy3GjOX4Z9Thq0PXU5oJDDIyEzbBjMPWVl0pRSdrDg1m7BbHVo95ofYCheiWaOp7U3gaJF+W7qSnO91SYnz6XTm7xxiwbNhvL8gJvL0FNwMaxjS8HcDNDR0u1gtnbxWA2OmYCVQHLPF4PIB03G7PeDyKRcYucuNIZDq2zg5ubd9grS0n9ww2Ejhdh3fg0zXoO7vL1DlRgWQZOCzQrw6Wyp4tVuAc63NXDauLP4HrD05Np19mcHwNglxOhve/uX7qmz+tf1+B8Z8DFk6gpr6PC5pONksgzGTAL2MM4HTm9Y1m4Jq8GO1RrVrbyc7LK+BEc6e9fK7HEzS4Omy2DscTbLyMwQV8+p/y+s/57M9eE1gH8vmT/5zXt+7v/VjV2n7/u597rvzi7/ff9S1A86uPLhf1W2/4mTX8M8NQ/nH9/svp+NY6tsvey6/24cUx+PZXApA9rySBs+17Jhk3QPlCLD3YN7KH8rgjjwc+v75ivr3hr37/WzTvDDhmqjzAYCmnN0Gdn6TOnQFLu28cpcXBVujNGuacOI6B+51dgLZtg3tjt7u4Uw+m2L5Jf2BqDTPgolN/3Jn1HXnAYdh2lXiNIC8i2SWymaGnmBJls5UlNzPMhnelZExKJY5R+9UxjOU9h4vdiuqoxiBiMv1P9sbMJbqdgPR4DN4b+rbj6fkD8hHIe2A87qLliwVSx4oCwBI2zkyENZa3YUPCcEwa+BhT2VRmZuGOI24IAI8h2+KOI9hiOcd5XnB5BNwTT/NQFn5K91KMMzPcjw0jE28uPQmYNDMdGICt9u0sL/AE7MFg7jWjaCJL3+EYQ+to8gzceLYmXONLs+kwtIP2734wYKEvRh/ibUyMye5kgkXhCLaIEbtnHgc1IKd0UboE8Z0aXoz5Of9RJWML8CytsViBlFtfTB8XYJuR7KKk4HeMAdPcQIFomgSEI3CXLgfxGWN2u4ISXNMetoK51H3SlpTW2BlfU0O14+3xwJiT/p1ZYbkwlUEAQHVpG0Hfr/d9sVzOSIBnFgW4Q0BxoFlIc+YBbx1dLO2EkV2QIAMOwOOooIjXtITYY5Dz67C2CqJWWaElwZA6lT3VqEegW3XyAiAwKfE23xAWQJ8SIJ8qsyUro3vHbduWWHVmwpoYhkEQscLZNGDYkJ4R2T0NLNNxGU52pSwWnsCGzjImVh7InhyBCXX+c0fbuCd5Pf7JmchJTbGUDooZNcsyAvOYJwAgQGbbaHND+jyY4xwvN5wBhVhOK0znaoikUPrMN+2cKWCgA157TKB0upLaDXWkUKC4GBVYydkq1ykgCyiGVFOwmxdyAVd2b0zwZhZASJkPd8MI2f/GPdd8Q/lrORkvjFn0VH5n6SUVsAMzVmFEoifjm9djAm2g38Q+CtaReOuM4ZI2v203/PX/4r/A88sLfnq7I6xje/keAcMBAcQJuBgxA9R97bcb5gDGUNXKSjazSYenwn/trZNoy9Nlv3Wd0RwvR+B+v+P+SjttBnxQUijGIYH0Vzxtz3i+fVj7oxhP3RmbjmOi94bnpxsOabUlg1TFVyyjxgWMaooKkDInWfs5EcdBFo67yvuqgiQYY/tJOnA1F9law2MOAWnSH2ob7dIcgPOsK198LjBda2Cn3vFMsl7nfGDbt1XpAiscygRS0Tc7Ho/VcS4BbNuG1hq1AbU7rOzptiGzrwYJj7cHDEDvLpmAQN86np+e8Q///h/xhz/+geeanPgxJl7vr0Axy7z8V+7bxyCQr75TejbqXqVyN+K74QYK2F+IXereyUDbNS4dQFMJ5wBZuDwP2yq5rXEzY6loIInLQIkh+QXOA5jxkhu6GaY7mYGSHIhJkIpVRmLcKXHZwhAD6CA7a/PqFOsYc+AxxTZT161fG6L8eo2nCriyOrGxbrEoo3WYZkIoPqmsISelUL9CxVxoblakVs6CqbNFaxhJx6bZOSE1YeXJc5M5SnW9wkBZbqH0J1AUCIygw2Cl4h6TkxjOmmur7KnDJCA3DcvIVtaWy49oaQDvdB0AGpvqgjajEHu7LFxmPw3qjnKhixZ9H8oUXis8F56gIK7u9d0vLkNFOrjrEKnvy2UEDAq+7QQkMvVOc0gHUKyyEypyfXfiBDFMpXa1CcXF4Zha3Q/vzBWIFJBnbmorSWHVEiu1dZXKmulvqy4QDUCTU+XYto2iqM42uGNMkOlvKLmxZq7MVImfG2qGrk4iDGfnBtBB8tbQ0vi9JebqHVZlF+9HHwVKME3Ln78PvlNBdK2PK3BheL+otAZwyRygxk+Y+gKGfj6cfQ9i1Hu/thpXpsX5s7q/Wi9fB91/GSTJy/Xrv6+f+zKq54+4F5zOq53zVMApAYn3Y1vfU6OiNhHMFq2xro/EWiPr4Qro1DWz5uv9rb0Dna5li98CGv/ya93tX3yd1z/v53pvP3f92lXnSvn29/2cNtL6cb7717fe8cX95uXXiWWz/9mv/KUH/Muf/gopsm/81zfekj/3rm/djP3iP3Fdqj83zlmL1C7zdGaAm8rEM5l0mUdl0Bp622FbylayuQKTXAagydbXPmlfPIK63GGgSowLZDUFJ72zlL03X86xA4CytC7bV9m7xaoRSCufEpU1pxZDItvZabYqzdArqUQQzksduMAsbUIuxwlYUGgYJi0rnuMBK7Y8R1PZBo5LAUQm0W2+aTWcCJbsjQS6s132o0SPvzhTSxyX7k39XuoN5dNYsizuGKjzwsUHOJKsrjEUEMMxAxhRWoGnRWLJBZaNnKFxt2IoGUsxwPKdAkxmUpvLpUSu5kuLwWOpzmZlW4HFIjsyT5Ct0B/9rjpylbDyGHSEiK3R2V1Zc/kvDFDiPGsNTJhV5zQzdmwDFiBYui78LmVu/UwkAGuJ4Myt53KWy7JTg08B4kWvolgdBAx49p6l6rX2zrVUWW7XQVBKPAxkLv7Q2u90epftTkivRt/gdW/2bucDcyVdQs/2GPdz/Vl1GyoAgznuXl33LMlUE1s/BB66GSzO87RMO/dnpV75vJZimAVEbatk2Zlkseq8BqASrgucE+DD7tJ6OFU3sCLV9diNgIb7uQbsLBFxgTMh8eXUZWLtjhBjyRT815HFsYqqSCzJkGIszTP7L6dRoLCpazOZPFaZQUCaWjWvZwBMICwXMFGqPwyqy9cXSwrvfYVTM8nWnFQIgRo7rUmDbKLT5s5Qw54IACyzdjDuyrIZWDd52TOMB5qtByKQ1Njtmxu5yvAUC4ot2Zdpuu6pWuBavavc2pbvVNoRVnvo4puVz8WuawlsO9q+4fb8jG3veAS7n/nWkWAzg945zvfHg3HAJCTR9xtmNmSyzDMS2PtOrahL2WYEMA5JusT7fVl7tWRUlk1wI5tOTJypWHhO3p+pFTJ9dcYGlMogM6t1w/Mz/dP74wE4AZJaEyagvGuvElDhFC0OpG6REGFKtiMJ5AqIbK4yy9KQyJRuIUuwqJulsmTFru5d577Y006plgLtASxQZQGZ2lORLNeHnuMs8TYgFAeKTOHueJt36rOZWD4rDqRNcDXqAio+A8tOtUeQedop7Z20E1DNug9pjc0IPI4Db3eynh6Ph96jePLI1fCgJGqQhn45ajxXBCImJdlJbuUvqRue2+ln4NTMq9MC+vzUNT0nPFNAp1hWkUscHo1nAVX5Kz6Jtc7qHHNzZGsokXieZcC0c30tZalJmYNUc7QygWXblj2/7Ot/ji/+zwOekqKaobpibsY6qLEy0ETMiFQfMVmvqNs9gyR1WPEGUnunJgC47czc3F8/EuSC0ZhJ0AuV2cgCsAxzUoTPYafRk3BWdfiaeSi7OhEIeHPVrE/M2QG41OMN3ne05ti3m7K2c1HzxC9U9sYBawtJLvp7tVhOAWqkc4rxFb5OjoxyvKhjVJnIAnSCXsEC7L6M8jntfp51a1p1qALSahILKF0lAilaMsdv207givRxGrmmjG0COEqxW/Nk5Xi5qLM6nBOxutnVBsdlwxeNPKHgQvXoLvpuzEDMBzCBvm0aXz+dwWQ2Ac7P9daBcHx8e8B9w8vzd5hhaI26AIeQ8TQaSAMWvXUdqjJYZD2ptDFknFpTy1Kwi2DftL47rAl4ahvgjXX5mjnqXZVDJlNSAdcyUerskJBhbe/AF3YgCuDifNT0h2rpowz3KaTGsf7CELwr9frqZb/w868/U47Efx4LR4HAF4f5exF2O99b5aRyf70cukwGhsujr8OI16+sHYEmX9vIcY5X4jTYq+xU1+FrXp73EnjA1KURopWfT8dSp3qmXzNO53u4za80fOBb83D+/Hr9r7/ry09e3/ELVXI/vyyubzFUaPEzF/jWxWUo/ycvn/zZK1+/+Z97zXWofut6sr1p337PL++vn7ner3sjnYbL+XlGK0BvO1rbAThiThxzopuhoWHbn9kZp21IBXAAQH0j4ARWgTO77pd/m5goE0wqVDc1MmdvG53R5k62ZxzKllUChdo4AcCcWeFywoHke2HrVrwpcwYG7w22hNEhxej5kKPWytWGwCM6VQbA/AEgkU1db2GYaRjhCDcwhwjAGIzDgBI+jwzdgDQacAk6ZiKdQE33DbfbhsfBbryH2kJXAF5+R0iA3bJKnQiAVSCRMzAf0tyRXbLk2R8JPCbZTB1qjqDOrKdQdOIx2R1rCWnL3+CZV8Fh9fvFSgjOCFgkfPLv0ogZBtH62fEmLfWZYovl6vSHTDhrA0nPVykfSyKAxTYCVKZCRpuzCoI+iDvGfIBiuwQRB6AygyFbDLj8xtUPScybBJbQfUPJAWgkFITbsu/VLj4V7NeYGQwbx0GBGlDJy3LisWQXCNQU6FSAQAUZ5/4mHnnaqxN3LzCrknZ83ziOldx0MWy0VPU5ginF1gLo473d38h8jonmwNYN+75hu3RD2/sN5gw2EMlkq9Z898bAr5jBpb9az62bZDAklqRKFzJVCbDuiaATNPfU/hG7h4Isy7/NDJh3aczR00Nr8h5l91DdF5XsM1tlf1V82wpQPad+sZyLj0WZHVtsUUAJby+QLWGY5Tgv3aECnUy+8Mi5EsJsWSVmjlt1Kz/nv77DTq5SzX+V1qy4Tb6Hl0muBQSBNxxalEyWNfFYVLaRXkl2JayDXZpnnF2vm4DMVTr4xWlG2/qeXQGcOjMUKp+KI6TdBEj2pMZWyfOLDhpQ5yPZ5qWn2VTpYpc9wccuH4HAViAwwDJM3zf05yc8f/89WjN8/vwDem+47Ts7lB8DTzcA5iqfGrg/Bp7DcHv+gGMkNfi0b/t2o27Q6yttEAwxgfs8UASLeenaVXIbIbZRGajmjIfmPAAk5uTee4yDTCFT51g/mYsjyLv11rBtO56fO14/v+LTx8+YQebXy/MTwSL3y7oC5uNAFWPy3FB8BkNvYmJlkMGbEywAYpf21HtTmmxknlGPz72t+L7KJXvb1xpZTFHFjTlZjlxsm2ZWJFCE61zhElisqdZ0oATgjWuuxOKP8WAHd31Xsd+at8WC7aqcqXkpPbJaQIwSuLeagckKneemOAONlTRjxgKdPn3+jNe3VzQQy2j9CW9z4ChQ0tnx141d3wg+Ki7NOtMK4FYHWvDsYvVWo77UnKvz7KYzry0QyuWzlLZdYtO8PorBqwx52MlSW+tCyT33HQu78QZ4X4m+0Nk8Yqy956DZ9zmBOYp8eMb7F1ux8mz5tQ35S69fLy4+DxqZSaquOQO6YyS6KFpZWR13RA7cH29IFIqnDIXpobO2Cg++KfBqCoI2GHwjkLQ1F2p6gPnCCRdNmeLWzsMLkJPe4b6BwpIT2bjox3gwy2Wkau/bjsQDcyaFs5sjJ5270MSOyazBmGMFrAXu8gdAiEHhIOUNmauTTM1LIOWwn6V/EUKnCxV2HlBj4+EWxf+Esr4Qy0YBBkC6e91HtXrnJ2x9f5hL4IztqsMbKdIzKH4JrAOhQCcO5Xsj1/x0kEinDOlkXci/dUhGOYYTJTJ7Debpq5X451joszmpyUPGZE6SB71pdcQALATaEqQ64gHAse1NTs8EPODdJKp5wBxo3UA2rwnwZMc6N7+AgUmastV7gDF4iOxPO/rW0ZrhmAQ72E6XB5d7oxjbFMupNqSYCKVrUWuHQ9uWY6H/F1BRoy6TsEClcmgoKIxysvWqg/Hn4t/rdX7Ny+q0+OV34ZchgC9f53vP8oi4BOL5BVhTLCZBTqKHr9FJMHh8ty9tDQKHKYDsiDA8HkPU/GJgJPa943bbVybndDDUHnxeUP/1FTx07br3UkAhn0LAU2nh4d1+qve8r5//8r+/HPufH+c193WDl78NFRp965r1o+vnv/wdfubTlcHPr37z9UXyi3//2tfPv9d+xbr756zOn/umd1pIv3DrvwQmfTlu15uq4f/2fQoMWbQAzaXj1NpInQ+949Y3xPGGOA4ccyDnwDYa6fG3JwCJ4/EGtqgOlQ7ITctEuIKiLsBoHszQWpWZn9qJEVMOnqFYFes58zwLdSid2VplN8upgoKQEOZTrJdi5YT2SYIi2RyovjLOFp3vFkBHp07NKrSPlt6OaOZrbPUMjKPUja8SESj2dlcwZ0AY5n3ibnekaYwtlZBL2Xk+V2gcmgIGlqWrLMiA5p3Bj+cqk0p1IhzSxHrMAa/8tUprqgtTPcMEgadikl8DygiFV1khPKRxGECxq5UhLtbHAzVGBcnHCrRqAzRR+OmvTTiUIc9Ec2a4K+CvJhmmjCyBOFNKmk/Se9n9itxrT7CkaAmTy/KfGl2aX2XxKW6drEpFwp2dFumjErConVQVrIuxX76Wn2yx2nEzpDcUJ3xQdr8Oh5XM0NorUKfEyXkPXPJeZ1TZ1+R4ttaAmIgAHm9vAAz7VkFf4uXDB/z2N7/B43FgHhPbfoO5434cnGdToioGmw64YTwojPvy/ILWG3L7Le6PB44//0BgdAba7Rn77YbwV8Rx4P724HoxJTJjcqenkxFXg2gAPBEWyw+vEjvOnlhwKQNXCT1jucaYgeYThoZCbXKk3CdfwWkky7EeI6hV4iZwlL7ytJPJZ04wuVlHicyXP1Blv645q3sJy3V+lw2yix1D1lpg0F0VAJGQPy7WBk5AEFlltIprZOhFDlyATNlfa1wTi6Ft5fUQ0Kg1WsumtO0KvMzSR1uHXrFJYiXGvEF2WpUWUfsszyBaHb1KR7V0nRz6QP1JwJpdErcs1SHemBgzMIK+OAQuQtegxAcAY1mll30qoFNaEsVkdVNjjGZ0m13dva3h9vQkkLazvKidAPPvfvcbNO/49NNH3LYbWRzBtVNCzfMxkE7gwIzNpiIm5hgsQWoNw4rhVNE4/w1ncrq1hio8CQG6Ka0/B8vc5wBgHVvfqGcGYHW1M67myAZvNzw9sZEDNZ5koxZYjlWG2PSlqWTKEDvXzAB3Jtl15jQQtK1mA9B6GkqIGCCtPT5TrpgTGHNw3RiBGtg4ZWdEjphqFKFNTuApQrZjGU3FXmA8b8ZYqhongAmK1rXndC/lE0yU7p6jOsMt1pPsbUZgxlwxLPcOy/VD5xjBrwKvAj99/IgffvgBQ2XvJP1R7qT3htx3tOQYuGxEFf+HReXFYCmBepFOmu77MROWrNYYQd8rqirLz3HEmhVoRpTQAZN8xRRtF7JIJXfqrG5OoG5vm+zmIb+tGO4GNvjAYkWNRXAIbAls6EWOAnpHmuOIIhklwhO+m4BZxqO/Npn6q4GnouFlThSNN6ayKw1iW3Co3A1zDhzHGxdQ6wsZszVQHNyihFZWwkAKt8FgjYa69wtlMEkBswx4BpqRpbKa+BoBBPcNcx5EeRMwSxwxkAhYI5Nn23aMGfBjyBFudOTzpMJ5sH3rMaaYXBeQRf8bC6Fs6+BKHZTroACNQEpPxgyLInl9/jAgmktHVXS6ZEtOrCwvv4P0UW2uApBQFPQzK5jlGDkoplerKUta9aSP17qvmLeCX4McpXL8EifCnPUt7yOnXBRfbT59x+rUpkMuxqTBaQxKWiOAF1NdB6wCd/b0qTKmEqwLHAD+v+z9a5ckSZIchoqqmXtEZj26e3pmdoFdcoEleHEO//8/4SEOQeISwF3uPHv6UVWZEeFupno/iKqZR1b1Y7ALYLEzPpNd+YjwcDc3U1MVFRUtWGrlwhK+hjq30TpSiar3YKcg6KGR3Bwbdy4LVRq1boa+7YAA61pHRx9m+iyQbqDWBRLAU7ccBxmbOwBkh4E7RhPS8ZwieXN9YL5Ojt/HzJP7koKEYr4HPviB4+PQ/OA3vXjdP84x1j/SaMa/wxmXsem8vM7RXNzn70lhxXDmxnUPJ4wZLOvA5XmPGvHUAOl4fHxA1RWlKqsnxyjymU1nTwb6f8wAZAZs3l+UEXgGGoc/HjKhx0s8fvfynuf3wKef7Sfem44zMK79o1Pfne7jeTBe82JDmeDCi0u4++NHr35xqgkb/dBsnQDcyxN/74L56PPDv/wJr83P/PRc/2NW1fdcyff+JSz1x58Z4ArCCbJPXkSyHqm3tLUbwdXOri6tBxtkWQA4Wt/hnU4hNW5C+y72SgngXTVBDn6l/RkAalD6WJmTjsuczclI5MDRySulhMYTky8juDms29FGGVGW4VlREk6ykPFsFoFN2nHhKHYkc9FxLGWSsQ5oe90xKes+HegBho0gucb+yIx/3zu2aBKemjaj0+aouxpeyciEZ/e4HiyeZKChZBdaGaU+LYDB3To1roaXwA60k+bu6CBIYDiyTngb7ABrA6LRuMSSYEuMeYcMdk9euSGy8cG85YgeRZ7zwQEIp1w8EkMyz5NlzYjgftBCYl6EezTO5fkn4bMja4zMeP5ahq+XD1ciAegtWPlAMOqCSXawAYPrOoYwbLHwjvPF5tMzSABvXNs4fK4NHOcyfdYER3Pt5HjT95ApN+HBmtX0lTraxi6PS0ghCByndcHnn3+Gpw9PuF6uePXqEWVZGDiAwIL1Hft2QYakN9Bff3g4k0V+PkMuF+iHC7zTryrLiuV0xq1R26UxVYkuDFzp88TKEYRgLeLL51pHyigcLTy1wnLfV9CX7b2jWYs41SfZcuwl0YUYGKDtDqCLQKLMl4HdZOR1ZLIpO4QdfMUMnIwLIQNXCRCLYvIdoy35eDY+rgNCKEHjh1zTrkY2YljLMKfwYCgct9K8jmSrJ+MLUgjKmM+xi8Aw9/Ocf6NKSgRZ9TASdMdrDUBFNTV6IhwQgffogpi+o2fFQwBYrsMtSPuR7CpY2NMgBuTEj4o5xgXGRGytC9mKmmU+G8fMCBrm/xLL5sf0sIcAQL0tLcqoNRiNHQYXMoVyMhJzZIWEecfrV69YvnW54Hq5wns8y5jLKiA4GF0XWTpeZlfzQpYNk4QReyXbBBilabVWpLx4Xksm8VXqAPW0FpYDSzLB0nbQfpmzmmJZI6GDKMqL8eLp416TaYcUIckO4DnXyEbuNskdEESX1vQ/A4gFxr7B95YAK4MVGROO5XOG3sGESU4fp43xu7XvB78AB58zWGGaNjG63loPIEagHt3k03iHYRgNSpx2ZFm4fotoJJT7LPtXxPqOkSwFEnGpKsvo8rMvz894enqKvSNikDABpRR4LSiduIOmrQ1QiXtMlthx3jsIPEklgWEP0Xzp9Gky6TeEyIF7gDw+3EHfw6P81byFbVviuWCOTbyTEoiMp80EFpIy4wH4nCPQyY5kZ86GggW5LxOEoR5mC0KNwUa5pFiUBN7ZgR8+/ohSOy7mZTmhqGApgm27ou03WG+D0SFFUWqUHVmImbqD7QtldHEg04TaOCyaVGQw32wDHFgXthpmJBhKUUJ6cw0nb5UzAMWOrDdWsCY8vheHRgvpikqDGsDFtu3RopmU/1IcUsiKuN1oGNvOTJd1ipUX0WDfALCGZLNwi94m8JSGLcSsu2cteD7sGC9gMC+aM8vVLbJ3RcdCY5vjWAgApFbADLb3sQEigKHcF5pFiWNmGQC4tyFSx0wWAbIs08qMzAxAMvgXqHEDJW0Tw9gIsiQpACJxFAczjX0GKrlBeWxsQ6tjqcOBbE49iB6BUtJ3u2cGbGpRcax4LgFgpUX98gqIwWxn5qELRqeWyCoQQCjQFEtzDYPtXKTdyLQDsCyFmQ842u2KW9+wLq9QKmns3QxVK9CBy4cr2q3FWGQr0XzocvjKRxIPFGWMN59Trjofi5m/S4BqZpnSqU19CU6HDAryvT7O91OPYwnCx+/9iRbmU+c9nkMUoz41/jhKmY4AnWBsQmzjGUbOaF+enzfse8eHDxfOndbRwvm+Xp5wuzyj9YLuinYLUVzL+xA8Pj7izevXOD+esJwWVlio4NWrR5xOBW/enoaR12gdy7U+nemhW5NOB+bamWBhhGqCEaRMh/R+TD+Nj7z85Q89B59/lxcnHNf5fef99Cn+YYd8z8b0x9zTT/+s7z1PGiH4j7/2n8DBLDJza45kSswgRDyCfWfJ19V3SN9Q1dFXMnJ1caB0XPdnCBzddkActQqAHvtgBMWhh3TbdnRrSAFbs4bb7Yq2K7bbDXvbB7jDzH90HUtzJBLBRnw/xG5TY9DQEJ1p0sHJcpII6FiexjsdpKzKvaoD8CjPSTswRH0RdsSXsCOpFQHUYCX0BDhi3aoIx8oja3pYLyVLvGLQbTfcvOFqPUpYJAIP3leKRufRLUSAyW9HWSdjyZ1d6CQD+9TdEfo8pQpEnY66OBMcuX+mKxIhSoeMBMfQkTCKiXombRyD9cNqCx//SjTxSIZyBjEaNo6gAt94LDe5m6+Isg9VlJqzgyXhe2tDKybBfJZKAMtCNvix+1yJEqfOup0R2GRTFkeUbTlLtBTUHYsQACIGRR++V5baeeptjODC0+0Z5sAC8MzujCozgTiCrRd74gBZoyFL6uCQOWTBlIlXD+DPMDpogQFeKYpaCtZlgbvhdr2h1orXr1/j4fyA07KirRvcOk4PK5b1hFev36IuC06nFbfrBe/ffY3edvS2Yw2mx8OrV1Ct2Fxgu+H9t+/x2Ref46/+6hdD4+yrr3+L58szllMdgRQQiycSKak9VYJZ5MNPtcF6F7+399lZqUagLEI2RjIsOJEPe37YvrFLRstxCwZlN6f/EAybBGMcZPkTtAyZhgRTgi1hoDZOd2ARhESVoLgCXsZuMODEYH1JaBTZIcjTAKtLrokWui2JWGYMKxilUh7oTLpuo2N0AKquoQU3RiI0WuCjfDBBcoejSGj+RBykkLHOJFGWWL/uPZISO8TZLEcifpDCpgItrEGCi3pYG6wocXYOh0NWpV1GllBPZmI+Q8ZIjhqAta4PvIY9gt0QyKecIe1pNn2ZHbsdMHZbPC8V53WBNENHC6FlPu+1LljWlaCiO6zvsC64PG84Pzxg3zcG8YgSJaTea4AaTlDFAkC3zphpPa/QUtE6y5+4z9CPbK1h23csS0WpinVdafP2YMLVgm4sMczHQXKCo0gA1j75wr1zTyiaGoqMkbbbBQD3MBfq9hUPcKn1YEbzXvphH87mQ91qgN0xrs7nrGUZ66y1SEw5ZxLldML3VQwpEjMKfZsb1rrQnpYySmD5moiv4zqObpaqjr0PHoLzxrK9qpV2IvYhkhhYeZTi7ly/jn67xTrjQtNC3zsrbRjfzXEZiTzwPNfrFdfrFbfbLbSdyJBN9tTWG6zvcLSIPRytbWNeSvj3I2mQbNneCDDtxvVeV5ggNKVZoroW+kM9nkPJZhmdexS1KTUAIVZ1NMnywyXQ50xuJIhNMX3VQnaYOFwFzY14jUf8HhNx4OtRkU1GWMPmSQUSqPFZdLVh6ymUHtfmoZPthwf8A8cfATxlVop1rEUERQq7tHiDu0Vrx9kKVFXg0zeaQXFOEmCizspyuSxVyzrbKZodD1mSfUODG8Q8JJ0X0SZ35BdysueCCUAFmLoNI2kWD5Tfx3UYaOiTaTWCJzo9tFeBVsY10WnNgDMAnUQxU70TQLZtTed9NJH1rPDU4YB5vWOQiwABAABJREFUOEAaqm2Sjjo+DttieWGUPh7+wk0zs9gTXPA0DqBBQhjVefYD0hS7vI8fj0E3H7TE2B872MUWDkcfQft4mJJMrXmvGRQA4Y/kppyeYV5HajKYMWtxvN7cIV5E8QO8yZpp0REweGiIIbK0JdhPHBvS0nVhViSlM4sUwIDtuqG3mZVNDSbEMxyL/FNx/hhA/8RrMsw8PuUDm+ZT4//i1AmQ/PDxKXDg5Xvk7m/8+Ps3/ZDWjRxnFiPEYejHqce/Oe5xD/F91jh3c1h3PD/dcNsavv32Cb31aPd+w+36hKf33+H56R26r3BXWIt1HRurSsH1uWG7djy8esRyWiDq0KLoTfDwsOB04gZoBqxrgS76yXvM6xw3IfNpjDG633/vXvPxCY+v+74xlRc/+eH3L+fMp97jd/+MWSiffvVHp3r5ScePx8dz45Mn+ugl8vKyfvgY6Oyn/nb/AdPWfbRKfson/YOOo0bEH3MkzXwM19xIx5dEswSzjgLqAqkiSrfIWDDb41n1AYqmrhlGgBaBZOjFcD/jv71n8OfD7vCCcAAvJPZZCZNNB6WE7qNKCbZ07OphzoEDk2rcnd9rkOV+gZyfclfCPLRSJHec3C8OjOy8XshgHEmMcb4SkCNuxHsSfrTF+AzR3mDHsN1xcmLSQudn+djnXYAagTsTVz50gnAYP0/HMLL7NoKr2RTlbs4KQz4ympK9kAFylqYBo+V8jIxHafG86thPQb0miT0uNuTDnUn4Pz5t+WG8BBlcYMxdM0ORMvYAIPUxpj+Q7e3H54Q/ll7S/c9pJHJdYZQOjLEEhvD6PG1MujtdRHLl5i6cPgR/nkz38ZfDuQ/XkcALsq3OfJ9EmXherOR7pgsCwIPJEOWZZrj0Z0AVS63jq9ZCcd/Cbr2n0xnLesLDwwM7F283tP2GPYBW6x3LQmZ2b7OkaV0WvH79Kjont/BRQogcZIPkM52lVzLWN12xYJaNAG+OzbRbGaBNYGew2e/s4UuP8fgnjm+CzCxtmX7QBKBy3mIkL9NW5PPy4UwcZoCDC+Kw14rke+Yek4yiVMM4cFZ4ypALoWbUnF9j3MZYhh8Xr0kw6+6WIdNxjHNOs8/vJZkdudolWrZLiTWRCfFkDgb7RgLQpwEcbCWJ/EEay7urjOtnyR4QOiCxKoINlPNBJElOB9OS2rgCV8pl+MEpSpAin1lWEAwZA3NUVSyhnQMjCEemDKtvailzSVofAHdW6WQWY4IhOXeMDBHvw08gg6VBsKKoBBAQ3KaDzWqthQC0RGUEYHuf45Bz4aNnN/c95K992kQXAWLNzLh2MmQITnAvSrBM4GMNcJ/JDua518tYtzxdGXM69YpEZ3nbyNFixrTuoavXDVamBhhERvJmNHwQGf6kD1Z07A0Wa+dQtpc6cVqYvO/eD+vah78BBLgV969Fx1iN8cyLRdrm+4Mdejfs+4bW9lwKtPPeKTMUuta546R4PIQAYDZRmaV9GPgrUQ3qBM/S61gnJexq2LIsy+vIphG56hS521tIwTgKGd4KeHRYLZlQKWRR9R67ZFaWGUFxS9wj13OYF3dAO9eyxaYpIHNZ3IddnM8gfIW0yx+N7qePnww8LeWRMyRo+90b2L75AXu7wL2TTqlRntSZITUUtu1dVmY/Q0OphIFQKUGLBbbN0Nse7RFZnygCtJ0lcqN07QBKMaHkwWpBLCaJB0Mjve0bpBnMqSW0aKXj1jtUC04ngmlw0tgdglKIwqoCxYDqiqUKShC04MC2U7QaLYxemQLYuTiTKsm6Wx9aDnRgw4ksnNAa9FrNWlBEOVsn3VljsYoDvkUXHMmNyCKrOf1DjZrLUgLcMkcyfyArRHRoPCU4AgSqHed19AGkAEnTVaR+Udv7aEvJEkXeSzPqgtRah/PQdrbeLLWMzcURFGxjDXLqIMjCjMG+k2peyhoTnUimOajLJYr9xg4It+uGUgzlIRh4UlBLgQuZd9aCHgqg24ZSWG45dGktUHzbAQhO9QGsZ+5o0cZ3UYWtirWsqGUBukNMcK4n2Gb43a9+i1/88nNAbJgMSLLqkO74AWiJDWA4uOEgZQDmDncZ4/XyGLXhsaPFu4Z9TVbUnTP4ifU9nOiDh/69ANlH7/ovOYbreXBCfQRX9xc6r8W643oB3r97h2+++QZPT8+4XjdsN9qlpycynjyyFL1dcHl+h8vlA968/RzrekLREyCC7cIuiKWc0fcLLh926PIeKIrbRs2UV28eUWvB+UFxOlU8vj7hL//y5/jFz7/Auio01EHZmjq6XgRzVodH9+LZfWrYjn/OQT/ogX3/WMsnvs/Ah79z+NDHGWPuL976D3mU/+DjUzPyj3+vx39/6GyTe/gP+czDp985jP+VB9GP36Q7aDDfAelYFgagiypLxNyx3Rrcb7huV0BWaPlilEwzi0YWqIqiN2rEZFlfqezy6n1DM365AlIU58cTzBqDCutwa5EcYBvqIkJ2kIBZUBFq5hk7pfROfT0piirlYLlsBEXDauUYRxAkso6gj6X89APc2N3N4ehZMm9R7uBsD+1R+uQOoHMdWInAwfpwZiEyMrvhVMBfgFRaKlBKNCdxnEXHdizw6L7Fy29tR+8WZRaClnuBsqy+Ie55lNjQoWPpZIWbY9t2+gcF2NHQwXbKAoHWzL0CCNAiQbgE2T26vZWQLMAoC3EE9yx6KAgWOcMh0Wq+QuTE82egkoGap4OKcKyTTdFDnJn6JQlHlJVwgKGjdfoOPcriNLomdrEZBPVO0fbUxMoWuxkUmEGi2XOEw2BrvmnrxvMUkGFvEkGVAjF+MHb9dbt+tOxU01qEhfGco9FNSBWlgM/bCCxp8eGnjAxxoT7lEO2WOc/yE2pVsrnoFITtDmkJcaxLwauHM774/DOYN3SLBip7x3fvnlHqjtvVUIrgzZsv0fYrervh6ek99n3HcjqhloK3teLt44pXp0rtNwEeH1aInrH+7d/gervid7/9HRkAnYFjkUpmvwrnjlPjEu4DgNTQbNEhDiKsiHCgyIoiwFoKem/s2oVIOgvna5aNsHtaxuah5DUAiUg0Wx8ltRZsEkvWyE4b1koDFFiCAbCspyjxsqjU6INwne3evXskquc+MXbiAAJq6LkyIc1+nxQWFrhWmgzlGxaNlvEh9dEl16agriscCF0ZgydQAYIrZIeGTUmAG8EWxASzLbpPlQBsBkNzn+zBsVVFJ68EJPrO7mlSCjw6liGYHQNdSlmQUcbFUh9VQRM2azJ0BsDbhioFVSuWtaBKwWVjUwkVDdB8ln6IVhQoSpS6JcBQirJyw4HeGqUR9g2ihodlxdvHVzhVgkGCBbVUrKcTS4BEo+MqcHl6hjvw6u1rnF+dQ+OXlTl7t9Baoh2jFg7QN4K6p1NlInN37NsNvTeUlYz4fe8DsBfxaHDNfc1KaMeiHbZs7tl+0DOqWrCeaCN798lEE8FS18ESHviosDLCley4ooLeGllcAWC/Ws8QETKSabDQHNTk7azuOS0nAMDttg+/RcMP2FtD6x3rQhHv5oxlFl3Iohv7uKOUFUUzjpFRurbvO6yzU1wNjawEjK9X2th1ZUMUkRpi4dRaSmAGAhxcaCQUbRHHLnUdAD3cZ8k8stFEhx5+J5zAECiZpN3w9OEDPnx4j6enJ3z7zdd49+3XKEqGc1Xex+12oZCOOPZG4NMFgAqWlcDY3hplXZqhridoWaBrQUGBQQAtqMsJrTW0jfI/iWMUEfQW62pVGBxXMLHV4Vh1RS01ZAQc7mQyXfaIKaXAlOBQXVdoKehB5HnqO3WT14rU8hvAcWq+OQHoWgXWBa0DuhDPGMPfNwiov5zGLbzPKLtW7L1NduyPHD+d8RRoRgKHidYx+Zh5PmWdqXnUcx+yjVGL2i0sC703JKY2QahKlB4yFvXQagACsXOeD1l3TlcmkUF235nBdiL9Gb9lHbQHIkzxNmcNbYn3ebosPkrZ0tk9MoFkfCUAkFku3l8ulkQy04kdOEN+EGLtjtJERAkFxx2emV8b4wDMEjfem4/zjCt+EcMHpEBkHDz3DFdjBz4AIyOBBwwwbWZ+shRv2J25IR4+03HwA/M+B6rhg3KaegpT1Pxw1TFfRMqslU50NxHu7nBXWBfAWeZhUgFlN6eeDjgcEEsFg6Aog6jtLKc/3GbM4nAyB0X3AJDUWiECXK/XECM/Hi8Xo4/3/Xj8++MB8ox953MZn+TT4fgEbvWjn3KHl/jxlf/AIHvMKZ4ynaj8YwJmOZPcHJfLDdvW8eH9jvfvP+Cbb9/j8nylSOre0Zvh6ek5yjEas6++o1kPiquFw9MjKA1AEHsEXhukK6C5aTtKYRbldlWczgt663g4fcCiFa/fnrGe6kE498Uo5tqSvGEZN56YY4zCC9DC+V4fP714QH4YvzhvBpmelmqeT+awzuNgL168fPzu5Ud++vCP/jvOmd+8/NyXH/SD5/+h43gy/8TvPv2OH4amfuQTf2AR/dDf/qGg1MhS5s+fuguZoAXx7JgXAuqG5B6YG1nae8kzOlKed2bZ514Hz9KJYAYHtXx0lKMnEvM63ivy8UeaD2Ah4YKR2Qu0ZOpC5eRMXyH22rxlBNgQJ8xpHV5HzP3Duw63jfxTHEen6VMMTh++Q+67PFmPDmmeT2Wc5rC+ckhibNJfEUS2MAbIJbL6cQ0MVTCyvjpOhCFGPj9pUugTViJZgNnmLN3xkbHuc5+LSxgdqpwdWDXnhudrjvc3x2gkkoItfafbN16Ao+ka4zee2/iLjwc5EzJzTjskygxlXMVkyh38N5lPPv822W/zi/4QzySHzVLipXLUJj081sOjuLtsro/5kszv5/2K3I/LPDtfyed/FI9H6KKVoSeT+iTr6UQ/2x1PTx/oY+8N59OC5fUDEAyXbbvhdrtiPS3MkBuf7ePDmWMWc1jheFhWFDgWlVzScakSIHWsUXhUA2D4cnPPcmSx/6hHCAmKkfy8e0j39m082Hjiw/ZgjpffPdv5WBxz72TpVJTt5mtirubPfgDOBgNkuuWH53vYtA9rBjiU3MQzPfyTV4RhCY9rMj6vm0UpaDKFosxVbOgeSerkpA+bNtsdo2ZPdLgaYzycAOhd8nKc47hmnHtIzP1kbI033P1LG8bOpZnMPnweouwyYomxL8UaO+Rcx17DZ3LwA+O5iHuUSAvqsqIugrXWEAbnZ9RSsNSC01rHItW49pSiWJcFdaksB8+yy4wbZV7HYKYeFnSyTifgh2GfLDac7Jo8mgbEepYcFIRe3CBZyuG5zvfw+TMefunjvCxXG5Gx3s/5Y2LAI/Mwy1an/Tn+nLv/Md5OVDbn9cEKjnU0n3t0VY1Y1dO5j39HQsnyuUyWFE3AgSAR12XZbWTMlPQY5tVPFqaO5zi7k895N64lt5e45m3bcblcKB+wb5xTwQTUcb9zHxqjI8EiEoy1zLEPdjkODNEcY8+y1VTNDP8n9rvd2Omug6BTc0eRkFfI5TiCJtoMGQ3ap2NDpjrldhSKMtGS4UMMPnAOzWGEMQrXw5wIMCqNhnGJueHJQpv8rB87fjLw1PcWD5CbTe+OvVsYqgKRgr2lMQUcBYbT2OhFT0CpzDoCkErGT4MNdPy0PuJUz+wM1gwbNqLTeb8xoK3t7MxRJBwlgSmJaCIF0CXApD50hBDDD4QuUNoeFYgX3G439N5Rl6QCH6d3KB90PlwLD1rDaahlCabOgm47uu+hwk+dJgEzJJx8RCa7kxrXgcgQgW180+E2hZlCXVHCMYBTJNTg6NYG2huVahj2Lo8cs2As8XW8nn2/YbOOpU7djWlPKJKYlzPEwJHq+rEQIwtZi6AurKft0a1CysLPRk5K1vOrlMGy6uG0NJuld1IUpSwwSzG7cMksmWIV7syWqlM8rpQFpazsZuGKthe4Faxa0UpFR0VzJdoP2qdSWfJ36TdkFxJNkUlhi9oOGu3bvgUbS9n+Eg4vAq8CKxzTx+UVdK14//yE67aP8gYMZ5cO0AwXpxvFiZE54Xvn64fAoj/u+GNP9I/2wR8d6QgB4DNDlpnScOfqI6hMF/Zy2/B//4f/H969f8Lvfvs1emfHFGbUFbZv6K3h3bdfwbxB1bAsC04PZ5zWB5zkAdaBzQy2X2Lz4YKx/Tk2584O6ip4OJ1J27Ub+i64XRdsy4r9veG73z/j/6l/j7/9X/8KX/z8LX75l19gWSiK7+5ozQ6jlwFYAsXl8HMGOukkzICTvz5s87l/Dyc8ndB0hkOTBRLFxzq98RQczavK6RjfO5DVwncO9zy+fy6ke5U1BxlDyPe97xPxxT/W8VNOe9hK/gc7Yv6MbDfdWM4EZp/gHb03ZiKjrI2ClApRoyOm6WGkIzrnowWDJARP4EUhToHebB9chN3MPFwjoFPT4vSI1O27XC647S3k2xzoFl4Au9GpAYsBFTqickdoC/SZeJnBJJ9YsXQfD06gxR7j0RWpkzmsJaRwg9UFMGNIgnQAJCWTNjY/0+l+S+gs5oxpQ5CWWeClltjHDdeWZYnB2ghH361HFQo9Rim58NpB0yREa9XB7HhjZtqB4itcBPvO8pDmG4oXLFJRl3XIE9Dm7EGh5xUbGItmwlckOvWCbB9AQmCVAVpRQD18Luf9qCrOdYX1wq6eKR+AGRDxuc6OSFChwLLQFnJeOtluHtqeqmBzX56jBqtCfc5q3kEbQVA6xDn/e1CXNQVwC+ChQwajHSr5fGN+9z75jvACCBNS7sDedogAy7IMv05S2CYdoTxo6rhPpUyAcS6TiR/2N2fwGHvnHqPZC4lHNl7pvWPv1PKsdQ2NGwG04Pz6NcvkyooOxa0ZHh7e4OHhNd5/eMblcsXf/af/iN47zg8nfPH5W/zPf/0vcb1+wPXyAb/61f+Lp6cn/O3f/muczw/4sFNvdTkt2PeGbbsCF5ZTvHo4YxXFYyQAW/hvCP8Nh3u7dY/1NTabCCzJ7ishcOvuuNw2dAPM9+EbZ/CXbu8Ay0OPkx3+6GuO/Lvl56ctY9lXkRLzLZhtCWRIsDidfnQmdLPbXDZISKhvrPpYOx7Xk1tthrITxIxZFeBJVkRk0GaNgEOVOoC8LIva9xtfYwRQ2MTAAbfQgzMslVpb3VMvZwbPFmxAdfqs5kfdMgGk0Eb2SV6iRlQHQEZMjz0hhnKwWhRA8zYDWgeQ4bJ4NLBoLMcVYDmt3GuKktG6N1SnOLdysWJZg91jbQAlJdaLdR/PAjL9lWId57pgfbXiF7/4HG8/e00WjRv26zNkrXj7+AanU8HjY2VTou64bTtaMwpnl4LHV6+wnk7YrEGaQMzgzuqNejqx+UPS3yL2sA4C9YtCCwXgW2/ctoTBbttYpbOupwEKu7UAVqIBkBNAZIc0lsk2FrNgv1xjaAmcZDWQYEVr1G1cFtqVUnPuM4nam5OxuIS9NcPT7TLK1cigalARrGvaFGDbqIuUbKHe2oGJJhFLshw+nXUJcKT3NpNOmsvKYN2x7Tsg7IgrWrCedAzn3kK4X2qAjpyzCol9vMNaY8fXYDzutsf61rAHlQxRTYLLQVw79oiqZLuJhBZTTxkgAUB7Yo2Eg1IXPH14wm9/+zu8f/ce1+cLSnHUEjqE4lgLGV60QRyHFnZr9wYXoNdoFN+Bhg41h4UesQcxh83RnZpcXuAgI0pYe49mHc/bE+2KLjBP0XeDqyH66qJGnq0Y9RYLBHuj/pWD7EAvATS1nfpOuhOhkgLzsOEW860QaJO4NoGguaB3IFNd2a0Trlw3vTMGEYegBxv3k8HDJ4+f3tUu8mUStbGKQPqCWgvxSStOsVDNkqzcXKb+jkoqoHPj6t6Q1G+L9pom3NCaHyZ+UP1dEZ14A+EbO4LRGCaIMia4DJYQlJOBmwZBMwpBz849KbadNfeAjHaryXYpJSjRoPPSLVokhqFWyZaVM3uVALFChx7R+FsKiEdAgRALS+NAevNh84l9eMZykT3l2YYjzU2Nv+KixQRNx3tnDSiBqBjOOEfOAsSGy2T2REzNATGCAQ5nSUaiYfHFNpcHNDudSpmjMOrp04vO+Lr7Qach3dxg4E2XZPwXQdd0TwyWmYRadT6E+DyAhlPr7NajojPTV3TQK7MDioFOjEY2JksoUjTO7cAEO17XTzjymn4q6PTR6/7x0Kr/4tP+mOZTzi9mRzK8lOH0019XGAx/+MN3ePpwwTffvsfT0wXX64beGEiosiOlhEDlUhV9lE0YrLU5jcI37judqOKKzKaaNVhvqOFYpeheT+ckdVaMYoFbM3z11dfY9ivODxUPj2ecz2vce2YND4XeBwf1fk3JIROZTkWsNEm76WwClYvtMNshmVXJWZZZ8xz/ObYAfnQaHv98V0b2I+/xl7/IGw278n1r4B9vpv60+/vvdfwUTafve02y/nJdjCAtXp5sYSaAmFFxR9ggMkI1gvTRjeejDMWBxzuCQIIoLGHh69Oxzg+nqfahH5GdTjUDMMTMzzkfizEz33TMMPjKeT3h486fj5TZ2JjcHaakvqduEcIvOQZ//G1oNMqkmg99n+xmNO4HsUdO1u+cv4xGRZ0usyhWM3SN1szBWLIIHA0JUMT5A4CwCK48B1wmnDhWk0zQBTKftwUbcma0x8Y4fQI/nukY2HPipBxBji+FswmMT83GtFkegTdVLvk85X6+3pkbXstgIUVGLK+X7bUnyzMD9mOCfNrIDHg9tv0AlZSSDZosg2CtezCU8rxjrONnjsNs9+6Yv8v78JibM+tvOIzwGFMpGsGXIgVbk4EfqjX0t5xyB6mL5rEGZTzUCIlKsDVSA8ez/AvIjn23G9m+qr9Hsoaut4Zt26NzJTswPz1f8Lvf/wH7fsG+XXC5Nmy74dvvPmC9bPDONUyQoDGZG6OwXxmU9hYJyJBhmALzxyP1ldJCxRpBMhdsrKHUDxpGJvY3i+RS+qfThyN4S0FpG0y9ZHO8qITFFJSK54CpuTTsg+GwOHjhyTCaRJT0rembiGCIgaewPFelx5zyYY9wmGsA5xjFzBHd2+Z6kNj7xxrIdQ4AkqK9lB/g+E69INpHj3UWiYYoY+PYtxDQz3nMMWM3M4oBi05mK+9p2lDk+fN+NEoJbbJeBCmIb+NZwg/JtbDDCSSLCzUGqdgNIOQILO0LY5sSsUONxgLlYcGbN2/xxRdf4LPPHvHweMbtdmHpHliCuiwFtQiovRJsJmsBpGTJ8oplWbnOQiv2zs45RvLQYYNdmDPa3ICe9gHQWoHe77TYuGfO/aLGWBz1oDCn3v1yyhekoYm5l6zTOfePTFDE3jt/X7TC1eFRVpVGNffuEuXh1AyOznHKEuUkcgiSKcZPTfucdjkbByTLJzV5IYd9PX3XmIcUupcQLg+7EfeWzL2sTpLD/pR7liA1jsfjmutOZDwHqExfxHEQ2RfK9hx8H5Y4Nmzbxnmi7JLH5NohxackpPiewGj6LodKpnDhk0FL/liQTzzL1ukbed5G6grHvBWNfbPQfko3kPFCLSpxdgwlAJb4ACVwmC/08QUAtcTvhq5WzrVk+wIDn4gxJ5jILoiSAHDgEkXKjI9DYoEaVwQAf6K2+B8jLs7VpKUA0ULPM8AJB6lHx5HWuWiLkgPmsYEYGEBJDEie171h9zZKX6Ag5VzI7mnGjJqKQoqwPaEQShiOicrQbYLtgDuWumKpK6qeoFJwu9y4MMPF5GIi+ldrCfYFJ0cJB2xvffhSuUGlw5OBZu9Uqe8t9QpCOAyK7hLZL4JUbE3MzacE+Dbo+Z4dQWR4wFI00FoAJuhtJyukaij+TxAqgZwY1Qg+2AlGJDqQxN9LUW6muJ8s2UlIdJLmpnObAyHDKGdpRGZwbq2NGuoUvZTgLPYttR/ugywRjc4OdNKR7eosOoYAFGAtadETtEynLd47bLGheUe3Dc0aOgpOTo2xdWVL161zIhYtrCnuBhQJRhYZXhbOblkqmgEmja/RSpaWCVAbigrO6wkoSqqkBfCkaTh1jOO8btz97r608J/3kYAcwEedTivLd8oQJFRRwBr+w3/4O3zzzTt8+80H9GbYd0Pbd7Rtp2OjgnXlZvH4cELvBc+XHd479uuOfe9ozVCrQhVom8XGzuybiqC1Ha3dILIiOx1CmIUAwC5UwfTY2oZmO/7Tf3qHZVWs54LPv3iLX/7Fzwabb3jEYWtSyPW4lu4D6xnIjQ0/a5OGRWeQNTY4eRkG5DZ4L4ycY378N14+/h0AqeDlSX/8eb443f336aIfzv/n44867vPw/M0w2pEAKaWi6EJBSm+RDTQICqouKOBr2k6WKCycRoRjiMzgy3CcuZf3wfgUYSaz1opsu2xOEKG1NsTIBY61jKIwpDd+FDelxk4Z/hp1Nua+4H4EbceZ4m8+viT0WDLT5OGnDPBeM0DrdOAkOoi5EFAQAQEpQEqUXHUnJiU+20NrGQuOJBdDqQtEqZFDRkXqG7XwHTYmKYoS0A4nP1Jtsf6T5QgcO+nRL5gOpIoMhpY7y3AsGNB3YxQDPj2BjLEtvpcZ5Gd4JAATcApKKCWLXaaIKg4yC+GoerZaH77GAVM4JHfG9SToBAwnfDrOwxMfz/p4BxnwpG5lrdSaSLa9QKGagATnnll/YWMjA50BeGT3HYLslmuxD80xnMUJadktlmN2okt2PcwinqaAq4aPR6Ih11LrPRhBPu4BDhStk+EUQZmZo+03uAOn0xm9Ax8+POP9+yf86le/Rbcd5h2lnmJ+MpG6745vvv2AP3z1DRCAKxlxir/7+6+goli1opvhcrsO/+NUC5aqIaQMnM9ndAf23SBVUHt0ZwrwD56BqIQOFKYEgQNuHS2BHuS6yWcLHLXcMqtY0ic1zODRyG5PaQyMGRLrATNIHE1pYs4OqzmEtNPXxigRyYZCL4FU57KYum85h0B2nhlDNw8BXxjhxvT78j4tEtIdxkFIwDJ8j4Bl4pozsQ00Y/C699R9slH+I/EMNNbPqRYUrbhut6GxxqTDBDOyxXy3GwBDqT7mKA5XTLDLkgYQIBCZGRq4jpuHgHZBQyO7olPYui4xaL1j7Czx/PZ2RXImWa1RYL4zRokdqNaKUgSnE7vDvf3sDf76r/8a/+bf/BuIGoCO3/zm17hcnrFvN9QKPD6yK5v3WwT97ALa9g6AAvwPDw/sCLmeyDTqXHcyGiA4NYrgaNKC2bqwfMyMukVmqKG9tJ5OI+ZNxqJ3dq4spaAou1JC+Flz/wN68wxxAmw9uGOGICVEx/IiAGyUqB0mOEQkWFGzodHj4yNEBLfrlXNUNWwsy3Nrrdj3HeIenVgxmLrDLoPMruJlyIh8nBijfElWuQApOTLtdzNqB5VCZqp1C/AH48tiD0zGtFkPdnAQCuTY8bPH2sy6myxqE5SaRBDG5G3fUIuGlu8COHC7XAFP4kuss7bjer1ABFiXiseHSpu5XwkIuZFVVgt2N7TmnMEiU1MuZV+CwdxTM1kNy0r2Vt8bRnVR7LOOFjaLZe/LEmatEHQydAi2iP23IIYU1NBk0xTUD1unJLiH9iz3y1E66i1OTqkRTjiF1DOytI7CmQTjdqOulYqgdNqZRSqKKtai2Pcbbhvv0/zIPPvx4ycDT2lMh/hnIJMWqBgEY/Kpsh59KQtbCvaNfYgjgCLSH+CB0wnpvQ8AqxTWybaDw8I6ShsOYU46XhzF9DQAq947+r4RAewUNQRYegAB1rVyYPcGb4bWo+2zJCCF4TRJjcmv4byNjc0H8GndghZHMCMXuoyQi9Q0YkkOKEEfT/AtbwNJ005F+3tkFsp2zxSvjGyGCoseLEolfHYrknQwDyj0PB8nWbZkvQsIPwpoZTiIDlLpvTtpuFHSw+yfQus0BgS9dhY5ig7miea9ed67wyQAuixj9EPA5fkASK8czHfh885s8swyArUKFlN4Y/CgYlDlGHk3bNsGVcV6ZktKN26cJkZgUoDmzGassVHJdYvyBRvUeTODpmCusL1ob30Y1cy6vlhNdz/lPPrTicon+JIzFeGA9RS/E8FXX32L9++e8Yffv8P7D0/YbtRxul1biId3AqQKNN/RxcczDnV5wBq/eofqSnKrRtACsiDbvgNw1FIhUJgB261BNLXqHB1Pw7FOlEaVzuJvfvM7XK4XfP75G6ynJdp5A+Y9nNp7DacEvP3ltJjDE84AP8dHyUjMJaICw7mewWbSeuVAnpKxniXfezgOpm58N8xEZDBxeM3LjEa+9hjkzrO9mOdxYz+F/fPn49PHgBiOAz++JALwimxpDijcg+U6SqQEopWixbEn08QWJKMTwIs5i2AKh0MZ1G4LWjzB+rigtOkRVGZYoymqK7mP9nELqbWRejUJig1tksNsmrccRcw+y2TutH5yqUoGpA4Xlg+wksLhLshqCKI9Fk6gxp7HeH6wtjoCSLAQKkfo3CSoYsNR772OJzaD43DSdSzjuY9JMqFjnYyyFq5tjdIw6xiMLKOBmkLIGVdnmXo8S32x5twjUBQghYYZk4deZwQ3TAo4k3LEHDhvxtM4gFwRvOW+J5ARwOa8K6UMs5TzeCZdJggnEIodxxy06KY4SrCUjv+4jmPSLZI5HjNrrJfw7xLE6ha/SkBBgGYernncT5yClnWO73yowi+dIBzCPzJ3SJR9qpZg2JYRrMKivL+wYUxvyXiXAQZXqZEdL+Pe4NzeFAtUV6gwWolcGoAK8QLxgkAJUPREyYY7X7Dz2ko0YfGOLa5BBCi2kLFXARPF3jX+5uP5etz/BIUk5izIahnOjQ/fOcFUEXbdNPfQOeP6OcrKAXxNSZbaIehOUgSHTJiozeKAmFIzFOV7B2vLDnvbvWvMVepG8X6TYFBEbBMAWfr/s7IiQMgAa/N3ZGPE5cR8or2IDx3JSR9rMP0MLwrWkBJcPnAr4q0eZfUe7KWOoqERFJ+rQq+YZY3BErQKh0FLCMFjljyaRYwVcVCusMSFGdf4GE8+3qyACfaYIwTcaSxFBbVyrtQTxae3yzXkTpI5BpxWdmv82edv8XA+4Zd/8Quc1gUPD2e8evUI9Suuz1ds+w23ywfst1t4PYVgqYQNiSTHvm3Ytg6tFNKuywlal4iVWOaM0ChMCfbe2pgUZo7btmVUwb1VZGitMdmSpWlkNR6lCsw6rtdtzlFI7MUKaAmTQca6OQWqj8wg98mm2neKgLNZEyhzE+uJLJ0yurSTvRMJTE/tqXiSsYay2+i27WPOixYs6zpsTDZvGnt6zs2iyGY6PWJfDTA1NZ7gnnLEw+ZIdLRd1h5liHIo13Pux0LdrRqlfKmfxX0q44YEq3l6Df+49+hIGkkFAuD8ft9IRrEo2S21oLWG5+dnfPfdt/j2269xu13Q2obeo9w7qih638FuwcqSxG5kuwX4k4tWHYBS81GSPWYOtwa4oEjuI9GfTjBle0AJH7I4MwlnKKVBA1iDM06RAP+zKRe7LBLUFi1jzogITrrSl+rTb8rtlkPLQTSP685XFYLNNTwr6awg6Q2cv7IAvUO6odQgx3g2V/vx448EnsKBi3KyRHAl+axxqBLtraUi2xCik/qZ3Ud00lOYKbI+xJ2LlmDc0FgdnbOkH97tTYgSKueDo37SDY20KFSP7i8HUUbA2UUvQISlnmIC83xpQVQTJJOR0U0h0eHEBNungzpANepRlU80nJdEeR3wYC6MnTM+EmHewomhoxylKgIQPAsGReF7mVCyuLYWQGAYQomOcirDMUeOW1JIrR0cxsOkiUU7f2Rm3T3ISJbd7mYtvohCazibiYL3jiIKl4JoUDpd8TRQHti2agjP+qGUIDbmmAdsD/nCwc3gJIxUEbCUd1GCmhbAkzCo6MYa51orViwxKBN8SrHX3htQK9Z1QQttip6Zi7iKzCKxrMuxWWeHkhy6XNw/Gmv/CQXjDoyAAGm4EeMfzrAqvvr9d/jdb7/BV1+9w/V6g0ol8HTZI/hxNgNwsguADqlpGWx8jliD9AYp1O+oUSJr5mjOTanWgmUNCrYLti06EEmFoeNmO88pHetywlIXiJwAOH7zm9/j+XLBv/7bv0EpBeu6DEaCRkvazEgNOjDDzrs1N+eMjGHyg1fsyCA+aGK5+4YdoblLMU/cB0kx2sffpLMtL6hTd4D3uLaXG8r9fJXDKWiuZbzGP3r1n48/5vAX30zgbgZ03LLSztOp5Sv0ACwEihJ7gtg9KMrkBsKBILAynnvG7dxS0XqjFqMZNaAK2c2W2khGYGkCzPxMj70mxWfhEbtHu2RHTct6wD05l4a7gONc8xGIzSrz+VoZ9T2Ai+UnEwxx501lWX18LmEHB6SAlRIhuBkAXTKezNvQDTqyeTLrW+vOfdkzWZfraCAEtGERlc5AT8bzHMG8KBwlgl0+BA/gyZ26eJDpSBLckvFc54yZJRCWLDGdjI9sFZ7nIPM0dSUIpEB0rmwfcM8Rpx7PjLEP/bpkzOUcQD63I4iaoIRSk3MEw+EHJfpArZNkYc25JMOucqbQd5IRHLD0PgLPBNYkSgzBBF5H4PaZKfPDHJtmDVHNxfsh9Xb8wVuMhXMOCkqUQ3kwwzxcTDJOLHyPBJ5KdiQOPS52N6P3lPesSnauUDALZi38JZbsaYKcsBF85j5BBNWgdQmNmAXb7YpmNwCFyc0ejOBSwa6PZOQnYMTjAOZxkTHQVBmArMbgWXR2Jv4dYLilb0ufKwW056/Yqa2KBGB8x4Mb83tcyqHcQyQ+Kh+YByCT3yP3SRkfmHPT3WBCEM7jc/nSw242QEICxsk+6i3uW2ciW8LHJXsmY5l8/1i1wWaKjmWVDRtIaiTzLpNHitACQtxj1OKrJAjFeajS4QhxJwn41NhFlPMyfGvL2MSmoyHDGkGAwS5Pa9wHrhglxsO7J9iJALFEC2qgB+fTgt47rk87EiyuRVGig9zD+YRf/uJzfPb2Lf4///Z/oSC4Cva24Xa74vr8Dh+ennG9fEBrDafTApEOeEM6PPTFO/adwNMSDPZlXVFqpRyIRJlRgn/Bst9bRzIquztaa0FqiHWY5XfCbtepQ6sqqCWS5GGzzB1tCzBpXcYe7MFcn90sJd6zj5KuBNmTxHC7ca9dl9gf4/xuhnKiaLqDnVMTeBLwedVoviSQIWOiojAFXyvJSFIs9USShE0CCJK9E/FWKYoWXSkt4tu1rjG/gszQuV6yVJFzmve7rCtjptCI5u1HYij+JyWIDj3X3PSVcy26YEj/ACSAeM47ZLKF17K3jdOyGxCJsuv1ivfv3+O7777Fdwk89R29Aa5cC9TqYpf0BvC+HINB5qWE7nHGqbEGzOnTZEwjrMgYDcMy8wQCTmRehn5mgG8qhiIsJ6XZaWF/FYCiAVAXaEgYSeh6DoxAgKVWXrvP5Bv1PtPfiWswUJtWglWsgkULSrDOrO+8F+swLdzvrEPMUFCJr8j0HX7s+CNK7ZL+28MJlWAOeNAf0/EKqrIYervBjAFhUQqUltBbshY0ZxHAlVkbTUeRbZBFqKOw1BOoA9WnI6e5gVgEdjGEZhQGezihoMYD7xDsSLG0fV/Q+w73DQNAcMBtJ6CjwJ6MCU0zS4cFkZlxALf9yofiLaqKJfOFZGS4Qz1CAdVY9ECmdDzKC5KiVkEaXm7qDrJuWopiQ0Zm2XpH947NOrKm02GATrqzagaluAtmxUnjNvfxHMoyN9EE2qbGAwLhZn120SUcWAxg0DxuSzSMXWze+X7vM2JI9F0inHBHiXI7HdFyOLeeIqJB5YtSCZEU4QOKGLM+UQvfnbpgvTt629FbR2sbtCjW0wNqUTw8nlEKaaQ1DEgJkCDZaUsh4u97R3HBqS7wxnGvhbpga2XN+JJiqrtFOekhEr+Luj9mwAA0vH8yTJB8/rFW0lcBEJua4Xrd8etf/xZ////+hiKVSt2xsjjKa8NaKk7LQgDKHc/PLKdrLUBBUXjv6NuGKoq1LIDd0OwKy7KSukDVsK4WNoyOO7PJFS6C1hiKNuW652s2tFZxPr2ClwWQgqf3z/g//vf/E19++QX+9t/8DbMAtYwS1GM2MynFd9omQLAPfejLhUkbWRFu6wTcIlGPaD0QdiyBiBhmAHNK+fzy+Otxvn1qrsZL72blR7+IXzvuz/e9j/5PZI7/Vzo8o9l08h1IZswAE9yjBT0p1UWTKh/ARQYZQDjCUcYSQTSzvsEkDU0ID02IbgYN+5jOYJZ29NbQ9532bwBO8xCf72FAliXdHgkqgZRw5EPHSH0mfkbQY0KnMMBnIEruAiiJVF4EwAp1oTBv1qnkPpRAmmUZWgACOtdGnq5FxhlGkMKswr3ATUMvI8urgVpOEGF2uhvgzca8J0ArGAbv8GDnes2AL+t8wqETDyb8tBsJrGXXm7us8CjZnWgJ4yILWQILYKMEWyNo+MbmJXy2HSIGx36wK5mRpdzpKG96YRiS7Zs2jUBKDf2rKPvpBmCnLVNMcIdnHpef4xIzaABNbOTA+Z+f0WyPgCgTRIg9t0y29AAggmnbGiAR9I27iQxuIAcECJK1NkuXVBXeyNivAcpp6EKy/M7RQr8GCPggAzEJhlCGLmMvOIBmcPR2A+OZA4MLV8CvWMqZbEWEtqkfgMYEEIIhT80oQ7dg+YZWmfcCxY5aegCrDmtPQ6s1wzt3QXcyxCjqzq7BDCo9WttzgXmAXOlzjjV1mJJSOKb5vCz9vQDFNcYHMW+PgDRtjMY+FZBy6jwlRcdiJHIt5IL2dFhn+V7qzVhUXygRyQFk0b2dHbfhtEWDrIVYn6pzDfpkX1QloEjwb87lCYAmCEFfQLWQWZG6cW3jGAcQvBAdZYmfEUyvC1l1uU2YJdiKydSJ8YKG474HQCRAqZXsqGC37n2fdlV4/bVUFFH6Rp2dsxyOUskQLWrwWuC1ohbGAwRDBG9evcJSF/zLX/4CWZ62LgXrUrEuBaUI1rWg9w2//c2vRqc6N2o2vX/3Dk/PF9RacXo44+G8ohTF5elDxCa0SXBFrStOcDy8eoPHx9codYVIQesZ22FIi+T/9m2DaMHpdAYLokPz9gA4paj13vaxx4x4qPNZ5SStNQAnrbFeUi5BsW2pQcW5QNCgMMHfOwwt9l07NPdQ+pPx5TFfu4AyLGZDgLtIgKHD8sz9WktBFcHtFnN+bD6p4RNl3o7RpbvWOvyBPXxUi7lrQDQeKTBx7H3neBVWEpmDrK3U1hhLkZUzZh29G/YoU88EQ3q2Fqw/yCTzW+/ooKYVAfxg/NQ6fCPvjQBQmPu6LCz5Axk+e9+x7/xSAZaiY8xhDSLAuq4hWG8Dn+jGa75tV8YHIEOsLvS1alVIJ4BIsCkqaWJdjv3MMzzP6i6OiTmbpcBnHIrGihx3gYkEoYPsuTGW5pCQJsqS54AgR6WRgIgxK8QEzSxssUGLoFRFbzva1qBDVmGDiWHrho4C3260mwXBGhSgHWLeHzn+CHHx2HLTQTpkyTJLlXRublAebBoLY8nuHUUkROZiYsWi1UMGYMy52DQ1hCRTlHK8V2LzcYenDlIE8KVUKEo4rgbxBkdjBqFT9wgh1sfNsQFOZk4uqGNJjPlhJEIUtPegZWL0bsMEskizC3czkNlwDsc2iVnqBiCp4EAOhcAbnf2cSESvpwFpvZH6r9NhQzyXqbOQm5mEgZThNJklg+wedEqdBCB1HvjsiaJqlLgVZgVzL0dGpTSSJogMVmpR6HCp75zsFEkbWiMDdhrwRMyMeK/HPUc3QBB80KgW9izJswD3gqnWbQqzpxHVdMoGHRXYGzfStS7U4fLoSqIFGoLwJej+VRWTYu1E1M3HPR6Po2P5feBT/u2f23F/T373LeOAXLeCbSeN9/279/jmm29xPj8SFASdxaKO86p4dV6Azrm13RRmAtsT1Vd23tx2lGVFWRTdtihHjU28gg6m8rw+FLxzEyBTyQC4Bp3VadPcGnpdI3hQbLcdv/vNV3AH/sVf/SXODyvqEnpV5lO/I63EAKPKHArnaw9Now7rKoBlZNenGdQf18jYzJwBtITX73Eyvxv7GQi8PHIlj7/L4YUf/RGfBp3k5Y///Ob1f7vDP35OjoOVTKCEc6jHHpeAYNpaj7nxEVtg+Cjcu6K4a+wFgyljBjvsDcNRMot91aIcy+ceFBcrmPF+bhpjH8hNX8PO+/QDJMvW43M1J2CSGrmpD9DFD5+nYdNfmJwxhXOdp9M3Lyg/XwDneKY2j8cLM+BMJjQTTYJsokIBbB2aLYKXay2egR++jztk4kIgrpjPdu6euT/qgQUOJIjmY3w9nvGxrXPu+7n381xRZglEqd/sNOsgAJWNHybITI0sT5FuvDxeztlkd8zkC9nDuS8nwJDXb0yefcpuePpA9OGya5YIxp4/gy2Eb5UUpftrAgTZ+n1wuY7AaTy8udZinYXgurvBJYCnEiyheIMhfZGexLociTEW+biGPZfJRptNblJry2M9C4RtliNgNfTSIUYwYProggGoicC80ff06GoVc92MDF/VEHcGQYcxdnFPzdk5LSr/uCbdWdoXvvEY40QM5TiWmHPxMB75PD3KgxDaqKMlugMIgNyP75EDazJ8at48xykTWxkbzJl6iCFyio2pMcfeRSY4Dky/eJgr2qHhaseYcl308VqR6LKYtIY4EniYVUkB2xnCLy0xbyy0btm0qKhgKazCyDgCfuhALcFi2vkc3GVUfGh0+BQlG8QTdHWCU6VUeDAienQh5/qMRIQoqlbaRXh020vgJPRjnWNQwkfPeXxeT3g4n/H27Ru4M5l9Whesa0VRPpvebnAYPnx4h1oU+4kVKuKO7XbFvt1wPi3sWryyYqHtG+1HAUQqIKHTWwXreoqOc8loj7FOM5MzyhGC5ZF0zwkrmciPsrcQ8bcAIqh1iyCi+9hjBTIY7zxHdJqNc3aLDshpX0aJlNKeIG1MLqXJNhvoa77GmNzPxElRGdrAOfenX3u/N+cezvNRK48VX4zdpsh4zu8ZK+XA+WGvkYhxaXdiLsbYmtkkYYCf272Pvx2ZT/P0AeYd1iZdhnx9+NJaguCieVPoJtMOAEOihmuPrDjqu7aw2RJAVVINp+A8eta4Iyqc2A21O1jNIxVaJToKc/92n4zB4y7Gn+kRpJwAMLHgZG0xLcS4fxcdI8N3xjzVkkEUE9qebgw70zHho2FfYgyTJQXaFgDIzsdSALQO7xtttHI+uht6gKHiHao1hPrjpkwm0P8jxx/BeJrDZUh2U7Yqjg0wdQqKhpEyVCmoeoLtFrQzcpALKPKspaB5h/WOtie4wYfbnTTFuhIhLr4AzlpCdRlAFwQoxixD61GzmgiiOLrcyEjqbA16a+E4qmJZKupSScp2xxYsHQ/OrnoIonUbiu5JXeyRDSiSDmwaHh+LIo1uAk+DqfVi4+MkDEcOdFgMofUk+Q4PAExiQRWcz5mh64HCBt0QgqUCIgWK0N9QLoQctOxeh4NRQ2wuiWyrllHLvDc6Wt1jg1c+Z9dYeM3g0sBsEUCQAKHLRMRXkuOHTDhLCKgXVC1DL8vSWyh0QGpshhxHallZ3wg1RbvuVchwq7LQWRCBdZYPZGkjqaUNzdlFJimypWrUpTs82n4veiabqa5o7Rbj4IArSllQyoLt1qDFsS4nuBPVn22b8wijrscgYhrWT4FQ/5wPd4wMcK6lFAgEFG3fcLk84/nyHtfbB3zx+Rssy4J9u1Kb7XYDqqBgwbJWFKnobcX15rhsF1Kg4fDe0LGF5mp4BuHQN2t4/vabmO+CuhSsa8W6rKi1YtsbunUsFYAWyPnMvbvTHrDjBDeCuhBQd3O8+/Yd/t3//n/iX/7VX+Kv/+avMFyFcBIyoGDmEwy6DpR9ZBcKAapk2UEGJxyfiNQBRxYNDRuySGx4wEGAIh3tg6+fpxzOC39NsVOe32fMMN7ziejy7k+fChN/2lb05+P7Dz6/yZqZo03b2uHRFVY1yplMYVbw9O4D2n5FfVgBAZalQoQNQLjL2Uefoy8cxXQGgbm/1VKw1AoLPYq+sz32Ulb0vs8EVTiAQ8/BEVIuBAekLEDYYGoR7BjOfq6LHvtEOIKWWosHNWtvRtZJzkANxoV7lDHxq3ewjXVHRHeR3fdpg92jRECzWyB9GhcGG44E8AiCFSQ7Ity4vcX6iueGCBYQ5QAwHHqmYiyqdAliLUsquFiu93SgbQTQA08yOuIJxNA55r5rw0+K60uGl/P71jqZW0rmuJuN+SFgN1924fZxT+7hCTp9kWQS8XGwWYMMP/RQMvED2xyDtMiwu4EM9Qhe8oI9HGrls2dDGkMPv0SNWkXTiqWdi9I2YalISYoHCtwFW2c2vm/XCSLItGcCUPhaYn54xiWzU3M4AAFvca6nd5aXn2uIz6HH2yzKtFjaqSpsimK8Lz66SBDKfD/ZEYqtXfjRLdhCKDyf1FwesM67iDQKykJfm7IA3Aw0xGp7rF1dF842Ozw0d7h3tE5WUrLwvAd4CIsks1MjRpeBs7SdCb307WJHji/aopTKKrm2KBiUs24E4IAEmwJwmfOSf5I4j484SOb0H2Vv+YAJ8IRFjZK26XPLDPQiOUrQIM6lcy92ob+e4COMWjgSgbFqmRtw+IJHoJNAf8VuHZt3wDWeDQvqNEpyCixOI1CwA3g5MaCugRpa5zh3Tx06wDWSUxmEJotcKJK9tw53pSB83H3RhaDZSPLO6odsLqCq4d4SjWw9rt2iB2YJMEMLHh9eh8j3a7gblrqjBjt8XQiYWF/h3mD7DVvbcX1+JrDfO9aHM95+/hnO55VsqsI48LSe4yklSQGDuLCeVpzOZ5wezijLieVRoM3PZHfOKy11JBI5Z0rshQZV/s2sTTAmg3ykbaE/OxZ9glHdqXd824MlqKGDXDAE5oMMcLlcmEiJMnZ2AeQJd2f3tVI1KlajgZc46kKAhFiAw5wsXYtrL6VGh9rUZgK0hnyKg+w9y6ZQit5vTJrWJUKxEgCi4LSuKKXgtm3Yo+Sw7Q3W4vvW6beWGiXAHKRSQnDdHfttG2ZFIpY8n9bJLBvJBUO73aAl4sDwR4pR+22JGMK7Ad1hYoNoUEs2ObODjVOUUvH09Iz/+B//M37/1Vd4enrCaU2trHZHWGj7ToZujy5vzNYAEKwnAi+ugNZIZgfZosZr1JW+zLCjKYnAyi44IJ3+Qyn8mw+RQe4Pre0DiJdC2Cb1Z7lOhdUPZP2MuUm7ws6PGqBcb/QpErSDcU6JAt7JGJbesMKhoU+VjonXFc0dWzcsIjiVStvkOqb8Tzl+OvCUMUzuyjGOKZ7Hl4yQBVmcNtMJmJFO7Ib8e3Zyy9KBmTVJjYPUIFGkIK9QqHHo/5CSbx6Ue5kABa/PQrwzRUAdMgxOAlg+Mg25OQ76ZH5JAkS5WRx2NX/xla8cWZ/Is2R2dbjyE/Rxn+M3RiQnuedrxpsC5QW4dc8sQz6spCz6MQuFw/VJhi/0po48nRznecjdc/bDzzyRHxw8J0gEj8Ajp0x08Zg3MedUuucCZLthROZI0qkP3IaIbrgtQc9WBxBBUI67ZumiJL11uIg5QuFI3YOFmRHIxzvq+5W17BlUECDj9SSol2NgxsxDbirH4yXo9Kd6fDQu8d9t3/D09CFAZG6oy8JgmlOaTki3nV0XtAzHfLQSHc55UoInw48/Zz0/UIvCi6aGZ1yMh83JzBDLOSCKHt02JcqBBuvSDG1r+PD+Cc/PV2zXHXWpI9uQp03nGPA5F5y/O+aRcuaMZZZrJALyZGscM8p0kOd9eH5o2GbI0Y54nO/FM0i7EDZvfHp64IdDDu+bGbnvecB/Pv6BxwiBDj8f/50OdMoHxgTlX8fv8l1+Z4vGfEzT7se5GCwV5J5/yAI7IshIpqsczpifBMwSboz14rGOcnYjStzJ9OE1ZCv0sQ4Sb7JYBelXxA4W2xkgk7FzvI9xXRa+wXFSZ22Q83s7DrHPteKMFD767JFEiM9PHZ+5ln2cP9fquK8417hXP+yLnit4XoAfr/zoqOSzHn+avxv7/uG+3Hwk3lKzI/+ee/PMaM9yL557JrM8DMcA8OAIChtGV70IVo++z9BxFMHQ80Duw+ln8aIMBH0GQ218Tuy7SHb4fKTZmvu4ciT/K/n+eIY5/sOWHZ7dWDe5UYSWyNHQHZ7ffD/Gunmx2sZ95Xod7xOy2XoAlDoeaIyPB0NMMNh2owwPgIlCZIKbk0kQ51Affi4nY+wjKlPmp8y1MKa5pC0Yw8dxOw5ufKaKjiQ0HIMdFQs3fGI/PP+8DJnjn5/jGGtrMkji+YmPobm/rrmcs5Yg98CxDwPDrxwzQ+c+5gDsWLqYnxM/Tf/eIxEr4ffpeP520Ne625gFwx8eTMBRdnmo/Mi1iIJRkukIXaZkCfLTstTSPIFn/s1iMDKJJaD5I8tj6s3kGj6SA3M95LyzSBzwNwdbH2t/2A5MQXN3Jn6zxHfbNmRVDKE0Z4mYYABlZItjiGa7sxTw9HAi6JSGTJhEztXTM2iPgdZSWEIYHeyixmj4OnPKymCmm/kAB+7vbX4la8iNYAcw2UBjDsocI3eC1dNXjf06mElpN3vvH82xdNcG88f52HTEKR5zfM6xtKHdyG4TIfBs5qOLbJHKtWTTF8yGAXkFg3XpPuQgAOrPqSqbKx1s8NFGJbgO4DDHeephT31eq6qyRD27yeY6zzhSogLHbLCZE4T1KBkDAsTrfXSQhNHW9GCHqVLM/XK5RLfCDkil/eszQs9Kn4z19OhECTC6sRYEw9THsxKRwT4aU+wwrmOBxVoT5sFYkZE+vjtgEcP73B+GHc+x5skPUzlG+sjSdjKjyP3NfWmWYmZSw4xNC0aHbp/7uGiNMelICLyP/UEOjsUPH38E4ynKrE5rbFjMxphHdkE81NstWmPyQbStYe8dJWjMJYx6azsHvO80dwqslQBBVWYMWl/nQogHZc4sDEyDjp+zV6BmkH0n3W1VmG1w2+GlQcXYbcodIpHlMYE1QQNGV7jmhfMgDJQrZ5WgQGWBSp2dZJB7Fsu8BD1AMmWtf8Eow3LNWnQbbsvYanJh94boVgoTQVcAKtCyhObFFGgkbZSorBaWFtYqU/w9KNc2NKIiaxKso0ULaz4ljFOzkZXuPUo1ojY9NRxSO8qFjhIM8GBuUDY+MmtuQN/HBsmWrXWAfXdeYRzmhuaknxqC7i0CE2afmtK47W7hYBnLNkUhSUvUCkQuWcCOMKLUA9NSUeuC5fzAbEOLVqUwapNsySiQYew2M2y+A3tn3ferV2iyYZeGp7bBrOHh/Bq6VGBdoF2hWNHFcble8fh4Qqn1kLG+d3v/ZA/hhjdMZoBFGRj97re/w7//v/6/uN5ueHj9gIdXZ5yWBesKXC+G61PDbfsAa08jE9c6DeZpXbBYxd4dqDT0ve24XHZswdxb6wq4wrGE+a2wDuw3wHtHKT6yE7WSZUmKcMVSHsLQejAwHNCNTgXItLL9hPffPOPX5ff44su3eHzzgIe6jm4gc2PGXRmtSjhels4Ns0Yly/Fyx8lA0oM56gitPIQjPvYYblZB+df4+bBzxYYlw0HPqTnDLdo3AT5mQN0/0j8f/9WO+9FlyZcx2ymxxxRFrQXNDeY79v2Gfd+xLAXr8oClCLSwdIJgzWQzpQ6MRbmahjNchTbdtUNq6PqZoXmWTgNrof6B7RuZqwXwo6C+RxQhzPCmI07dG2NnlEMUmOQ8Pcw1uUN/JLQPfIJCAHUHVEa5QuvJiMnAllnOVZTi3DBs+85AQFmau9Q1BPpjZzdhl9JuI/Dofad+T12YAW3ZjIKiqXQcZ8AvoMTACCO0RIKDa7JIehA+nGscbxf561yF6SjOYAzweB7hnKqgqh5K/wKkCjaESD0EdJxPrfU7p1HCFqk6YDv2vQV7W+BOHQ7S7AUsFz4w0PPinQHZS0AqyyJyn9UMmTIxFM9Lk8XvmHMV9I0QQCeKjsRk7ic1y1ti1EdjnKBleevokqxt2rluHQpgVR2lKhk89nTck9Zl0TXVGhItKZoeUHDVIpgX0H/qydIDRnZ/aJbdoWT0pZeF3UlvjQF6rRyMI0BoQjaLBYgUmsRkfgEQsRHo9dAa9MiumEZlRMUoFzLQH0z9LC3hr9XKrr2tQ2sJyYHUj4mdIte5JVPOR7nJlGqYczgHVwKIyioHnlvIjneHBsCmqpAW5bzhQ47S2wy8gxkVvEgAAgsWDllchyArvjRBPxy21+GZH9ZlMBNGUjTXc1YzqExNnfi31gp3i+fCK2sR9M+IlJ9cQjAYCF/aHXtz9GA0iQhOhQzIHkm0fe9RBSnooZ+TovQSEYkFW4pNXBYABa1HuWVrUFGcdEXvQqaTM5md8bEFe7B1AhvFA0w3j3Uf4BKA7RYMGzOUUrAsy2CGtQ601vGb33wFEaC1G7LR07ouWNYFb948YF0XWN8hcDysBbUqzqe3WCqZMue3JyyPC7bLBb3vaPuGCsWr5RxMGcXlSl+PDV4UdSmo6xLgVMG+25g/2fktdWoeHh65hpqNSSKhWzvYv0ZbtSwnmHVs223YtnVZsYSMB4QMGoBjK47Yo0Jrq7OCoi7cw9cU3TZq7xUtKDU0sq63KHHi/rJvG0pVyFJHCaW3nbFftLcURCdxGh0yBAMkGxpjkZRfq6JbsLK8wyOOyx3H4dj20OJr+9hncyzWaKihMaY33GDWcblsWOqCWhbq4oqEvjLtg7oAnWAbxeJPUFXcbhzT8/kMOG16VuFc2gXbtuO8UN+LYqgh4q2KuixozbHvO9Z1gZaCvjf01nHbWJK5ric8X2/YewMUKEt0orb0h4Ds8ApL4A3wGuBl7i9iUxsu9Vw9dv7YFwfzL6oV5IB0p1+RACo6bWq1aSdDvY6VYR4sJRHUytJWFWpS7d1Honw9nxjP7x3WGq63C6oufBY4oYYguIPabInpNDPc9o71fMZ5XXC9bRTjR4WUivPDKxiofdtbx6U1qNGOSs+M4I8fP13jKTbZydiJDSZRW1FkSjzRz6yZHDxWYIi5mZMWz4DmkDkY5n9wVzDrTzGiozSuI1qKTU01swe5YFiahwyscsOjSwgyhfILgCf5FUiNhZwTLHzWUYeuUmbQ7LEJB6CVOxmJbpNSC2HWIsvheH+ITS1eIh70/wgocZyE+V04x4PqHREnspPJMWzE4fvYUiWps2Tx5DlVZyeZj4Gn+zpROkGD25YTBQnKzec1f/CDg/nRHMuB9rnxZZaQDlFs2unABlV4dPGKa7HD++kYFNLKuyGkB0O3xKfYnRuozC/D+aCDQKG9/DwP7SqKo7LItIBig6SQC/becblccDpVLB8tsXyC857/VFhPd+yKvOVD9rz3jtttx/Plhst1Q6kLzsI2sRsaMxEmUF0Ap6AxgVgbAaZGBge2D6Nu1tC9cc15lgdPgDHnDjyyVzBqe8kUu/fOgMP6NvRRYlthGQmC+dHJero8XfBteYeyUHlsWSqDmrCPlpsNcLB7+SuPNcDfJ4NkOMFpvyTtHkIwlK3Wszto+rZHnbIM5I7PYViLzKxhshvmw4ulmWbMx6/nqb5n0/nTmN3/9Y607z7QwcPhGDY32U0ZbKsCtne4NagUlATAJZ3pWXYF94MDJIdzYzjbSKAjHXIIBWvd6dhChg4S3A9sT66x0QE0PoP2lPN4wrH3Gfy832Eu7rLONv54x96I4BsADXS8RhBJEBW4MeGEu1DYkQyryURMFkxwbCOLORJPmmE2hv8znw33+VzrHue7u6Cx4R3ub9ANQr8l2hS75ifl9U0bkj/Prjn5ADHOf7/XBKs32Sbj1Tp+HntVBCfporFLIobP9uKu40ScZ6nxYYf749AYjvsBp7G/MCIy/pHQaDqywz2uIXVRkpE2iej8bAlQXtWHL3P3CcLsrjrZVOxYJMPPGe5nrLEcwhR5TwBGh4GMMU3mjhBMQHw/xFgRzIfj2Mm0vXluFxA0RJS1RQYgO2NNJpUcptNx7aWPF8nPsBFFsuQ7/OVk7Fhwo6LsbMx1mSGTxLWMzPoLz5S+25x7OVXH8znM/Vxb8oJZ9Kl9Y+xVsQbzt5PL5Ye/MeHr451z/oWnDHWnkHnckzuC7YIxb5M9dLhFDDZeJmGBCEJ5Ty5pRyx0nHjlybxG6Naly2uHsvoUxc+PTL1ZS82eSbgLXx6MKwIA4+2HVMewoxIxyhye7gQoTBAJ67h2k8GIy/+JszRLfNoYCcSO1ygDyDZuB2ysIOmz81r3aFyx3a4EBNywtR16E7S+Y1lq7FfA/rBiXSrkkeD2aS2AFDhYblQgEGN5uce6ICjAtaZBGqjLEqLS0YHMbLLvwjCNJEc89xFDHlm/CTaEPom+KNGW+N3s/Bf2cpw410HsX7FePeaXRkJH4rMy3jqy/ACf5Xu57SdGZhyD+87JsQcZIqnP82jJzGRclCB3uHHBkn7m2L/mPgKb4BWJBXqnKVdLRUMbySc36uCZ6PA5VAkaDUDvGB/EYWaQF787jg3cIcHMnIkLn+fH3GscGF1Vt23H7XbD5XoN0XAF2c85Xy0K2j1CAwECnLfwbQaG4OCefdh73Cdwn/vP8K8PvoBn2Xwkr9JQJvOWmAs/P21vjlIZ+09Mi9ivmJchOKWecTpiH815RJIH4DDJJ18gqFhqls1qlLiGG2WOrVDnyrXA0NHMcS4Lkz1JffoJx08Gnvb9EkH5gsRWwicZATvb6VkgrHwopSgRtT10nKKW3tAhokNwj0LVXDzdCNe4h1p7n/RNj0XHDg1y9NnI5qkrRDmMigSGAMBioAGRQC2RtErAjSaZVW2BaqsAvUxdCo/ayBab8aLQ2OJVYjDDmFkMQeJLdQnnrWrcZAiTj/tz9BYLxgEUgQsBsensYkzaCR4xo5NIN2u603hkiQ85WYICZBcbEWpTKZBZsKKK07Kg9Y4964M9BUDDAKoC4cD1cKpdkDpsHNFYQ8PWZsACCrqXskwjnl7cQODBzVMAFxsBRFNQLHpneRQ1ERZUKRAN0XjX2ADpQUphGVatFVszoG8oDxZZBD4HC8PIDB2z4ls3bpp7h6pjPbMmG6roAuzm2AN8qNYB67jGhuqiuFyv+Prrr/HweML54YThxsfq/xPBmb73GE6VO6hNQ3Dkcr3h97//Dt98+4Tna8fD67eodcGHpycykaBAB5b6BtY2WL+F7hNtioji8eEEuKFdU0h8R0hggh0RHYiSuRRfBAySgHPnhl7PSwiaKx281tD7hlt/N+b9+rCw5bEvgC0oyxneDU/vP+DyfMPXf/gOH54+4O0Xr/FwfsBSKqTSWdn3Rj2eorGG5S4Yi9AAJuFAxhaVteXZIcNB0Om5Ac2AmwFa+e4VQBXBWQpITEwRfh9zMVnVaV4mV4Nf6aji8Pvveag/8Mc/H//wIzfcCCIOAEK3TnFg9KDUA4sUaFnw3fM32G8X2HmF4AQRBtkUgKVt753inh6Zw2S2GWgfmS1s4zWkkJOpslaFiaIFtb01ZtOp76cZQQMw7O12YFkV1LXASwCnIVAth3k9RDIzmOXVoQczazrMit0bmnWE8gWz+hlMCNcZmSiCtSj36iZUpwyHWcxgSTkWgwvBiGQ1kHGTWUsG7bVWAmrj6qJMBkyu9d45NnHfOq4n7soPdzaYIdyPmdSJ1MYAn+MChUHt1LlCBNsGRGlLpGwm+GXHuRP7bwb9okgGw5xvfL9KhZZTaMzYAGRqndn8tOf5Vu7RgNTZ1ciyfGYAhzxPBiKNNTIBiCEc+QBnCkud8+oyIBFVaAmR0wCe+kYmQdpvPWgrSgR3KdNKFh47jqk7Sk+9pdGfOAK9OcQyUuJ6UACIJKhOXy0hOWo3CcIIj2DdPeex3dlYzy1KGLwACPaMR9d4PvOyLCh1ge0b4H0+UQey3KpAAaksi/HJtxeZZS1m9MtrqdBSsLcttE3mXCuuqMFsyaw+DusySzpmsMr9zNwG46+3Kf4tILMmy9UziPbhr8fom4WcBJk+3Q9Mx+g6xbjOgUOJ/egYXbl/zsA2AR4MdlbtEWQPZMxjrlWkuPMIZtM+WXymOpKNuAfSUCNoLOFjtr7Hs2Qyk3IUOoLKPGj9KnY3dmWGoCNBW3aKlnj8mS+VABrO60p9pNjbezf0YJWOtWQMVi3XSSdboyD0d8djjG6ho0ybWlEJpE2NLA8tQSbn95YPtzBOMnZac2t4WNjhbm8N5h3XjZo9u3fcbjfcbjcyhQqDpqKKz9884uF8xpeff4bP3n6G9fQI7EAvjqU+oCyArCeIs8lSQcaFfC7LWgFd8PjqNR4fX6GuK1p3tHaBqKLUegCeYg8o3IUogC0xXXyAPxK2AuA+ysYShloqllrJKKmVrMgc9Fj0Ob3Mqd+UTY1Sp9ZCMxgAE0c19IZ6Z1WRFo4nDkCNA9adjMSYE+tyYiwOwJ3jvTdDR497KGG7gW3bYm4aRDoUbaxtauAq2t7HZ6bfQXaPDx3g7Ahuwe7RdUVpOlii1nbsls0iDuBRd+x7ahMf1xm15vbbNl8bA1hVgVrD7DjWMr93ZwmdiOB0OsEBbL3F3iJ4/eYNttuGP/zhG3z77jv8/quvsMVcJPBk2PvGeS60dSQCEsTezZhIDlZj8WUYbYJUkVTGZN4qQQXu3OZjLMfiLxn+hhfh3GezSizXJUXnMzFxLyGjoZGZ77/dNgiARUOeRApEF5TlBHiBueC2RffX9PS1YllOeP34CmZ7dPxzgnS9wdDx4XnHsi54eP0aeyM76s3rz/H68TW8/VcAnpaaKPIMUniXNGC50bg5rIXTkShEKDGms8HNS+4jHQgFtYxolkBjMs4Myni4zoeUG44gwCphja7DIujssfkBEIk6TqCWBaPu1vhQNcr7SgimU7Neon1lGB4EAyIC1qI00G5sw87W5umlOIZL4aSqiiQ6n9mF2GgtHa1ESAspkCXbX/toUZ1izJIAV1K4h3NrhwAwQ0cdE5VGgobxWBIAPxqzzJqHmydy97d0ZntkZGfJg2BkRqcPGvYinSsi+9PBTecqQgzPQDgi2SwDkQi+PTf/AvEaITjBMPfYvBWcQyI0ejHpXByt7cNgMrSPwXIfRoGGmQCBlNmJomWA5j5ovYliZwZMVLHvDU/Pz9EdbyyTMR4vkfljCcI/t+NTWYx0WHm7ZBBu2w3vvnuP3/zmt7hebljXM0ph+9vegdYc0hszXJ3B8r5R+E6iwwpcYFs4WGApKQpbyzdrGMYnAtreY5MMAUeFYrBoXULzidm9RYGl8Pl2Z1EdlEL6ggqY4fJ8hZSKup6H8/389IxuDV9//S1ab/j8izcMXIfeTQSI6chPYzecvslzyCwm8Gyk7T/dbti64f3W0R1oEJxXxbooXi0L1qAnQ4DizI541PPjAA5HqPvRvmH5tA46GshLPP6MsEn3v4o//POb1/8tj7sldLC13/PqeE8E97Ev8Nfzby871SQ4c/f0DnYpv0op0a2NzuceZfUM/AEY2Z+zJAFAslX77DwnpUK1oOdtEOlC1xGVI7m0g5UY2cGeuUgPLrGEgHZk/IHIfB+C4VFCCKAqmNRZK4VQB5V+ZiIz06tjKHL/S40V7uEm3J+TbSVCgVqOW+xUMXY2okVgCsuQyUMTIMPH4f9zRYYtKHNsAEQrev5OgsELD6ZmKQhOL1qnrzC7afm8V2EyKTs5Tc2Y+ewVQNEF7OhqMwCVuYcn0JYJMe6FMwOe9j71O90xhHNTWzHtHQGwg3M4sm5zj8x9tNQydFW6xbwWikVLKeH3RImnA1Mr0+ZY5/26o97t2D7ubVjGzDDHCTPBlkCCJvCTRMJ49syWB6Mm7zd5ftFwJp+lIfy9mEO5FJNpi/ARs9BtqRXFyR5J31JcIV6gqChSJhOx5nVFmaCT/QcT9NZDG6UdkpeY8z30v2bWHINZm80EyOzin6jDaFHiOfe6cN8hPcbWfbSh77kOMJkSFNS1IYicLfVS8ynL1xP0HesVESAjyqSGzchpFZ8kcyUOdgKy01xWcCRiKONzIwDB9PbDtsa5ssQ1wo8Yg6gYGeBaPPnRBSvPFutSZsXF0fRLgKl53h6xQMZHNPkMwiTS4xOlCxsZc+slSM977uE7k1FeDh6C5JWP6pdIGmh8DnjNeU1mWY7sUSnQR7lSjqOWAl0qbYKzDMvADnJPlysAxmEP2wNOjytePT5iqQWn7BLX6amoMKdvJhCp0LJiPT1iWc9oe2OCI9Z6753dqVP/VSYDOMslS2VMdwR7umdH4vmVz7416gVlWXKpOmOLAPxy7bDkOJliDg8yAuXCsiSbX8maGyXudeF5DGOeWFgU3ntY0H5kvUWDhPBhuW9wHmaJH7xBA3CiH8yy8Ix5jutu3EPGh2bBaEMkCoB1qWPPGush/IIem/+yLGjxPjeWcB2fkapSkBwYjLCiTHa5e3R7lDGfWu9sbFB0NNzKa621Ytt2PF8veL484+n5CdZvcGuQQvHwfD6WwvyYa5fak1E2HM9zyGSUEMf3Djd2FCZuyftuyKEI+2+H/UNzXwr2EyI5gIxL05dKNq4OCY4EpjXiVVaYpc1iUxTvioaKrSdO08NnUpT6AHPgunWYCtAcCtqNh1crHl8BZeV86GJ4eHzAz37xc2xbw/W645c//wu8fvUWT++f0fekmP/w8ZOBp3WpaXfTnxtBUG+hKdQcOdoCwBSoxQENKtNANWMxmMCaU4ldAXQlCKMVAlIvBY6lHC8zTLl0pJCwu6OD9cpLXalV0fZoJz0d6b2x/WUpisw0cjOnPpBqBXCjIbMUS81JGMoPIZioKijZYrBFAVs6CRGuZfbSwTFSVYIuCe4wnmOAawLxEk5aIQOsVKB3WOucpA6clpXX1PZAYzu8G1wM5g2G2Kg1ttJhHOnklVJRdIF1tkXkwSDb4KOTEdIxVGoombNmFgFuJbiXvUyGsxmq/LzeGPuj0UHo2qTfIkT2Jzk1VzqftAb7yQb4BKgrFAvgC8TKqPH34CCXwyYPBHUyav33fYP0Tk0sVSyBnLsrM3IC1seGyCDrpwtaN7bODOdMdYGEblU+a4BGYdt3vP/wAdu23+mQvDwEMsC/vNbvDyj/2x6fBIw+ujT55E9zU/r0uTN0oAOr6NZxeXrGN19/jf/8n/8OWs94OL+GVBZG7h3Yd0e/7VAYTtKx7w3btmOtBaUsI8HUb3S8qi8EDVeFbzfsbR/xm4BGv+/souMUtYFqpcOgAkSJrXd21lkXYFkV64Oio6G54bpZZFJOsN7x9OEJy+mMN+sjgwIXfHj3hHfv3+HtZ29xu2148+YRZSnIDk45d9wNqb+WY2RZDBSiTY6Cxn0B324Nl9bw62/f47Lv+O56HVmZzx9WvDkvaA+v8LgsOEeAVyHIDFwGbokmZRiUm9gIFHEU2ZxzwoFZFZMO+Ms5809jKv93O16uoFHI+HKYPrFQPgajA2BABmZAqEHeDbODzls6/D2Bp8PVsJMZs4JHZ5L7n7NDVQItCA2pKOmptQbwxL2it4aiivOyQhyj+4vnfAjakrkN5xISbbaXMkpZBFyHKSxLB9ti/s17dDiaTwAL4lAofQiQlQqQvQRBlEr4+FJROt8Aqqwwc1y3EFyNcyo8rikYWIJBv0ckpDg+UeKaDmYEyVqDAZ77h/t0rA+2kc92gkGT+TIBp/R1ECUcCZ5LPv/gHtz7SBi21cMbgRo0stw9mjakb5q6NJLFw54BGFe9amgYSXAwAjTJJLSMMkwbAINGhx5EMMrzYABbKsyoU8zXI2DgdTHoifHwZFwHU0fn+wk8xR7sdPhb7yiy0r6WZOLXXEFwC1BlzCzEtfcxNyFk++Ucy4B+rJOENySBWgY9KkptIp4A6QlGZAE4GUDdstw7Az8MUNQCmEofugQjK0XfLeqYRBN4UqyVwNpt3+L9AvWCgoUBhE8wqFZWAey4jfvzkA3wTmbwSJ7KwfJbNOaQuW9zfcX9H/+W/ps5rEW/WsUAYnuAQNYPzPlmyNJSiauARaCtApQyQBqV6WuPoDl80nt2ZHTmxEFnKsZ9pDolLaqE7y3BWpMDq4sPR/J7578jtsuVGvedz3z4vwd/VNK3QAa08fxTAzaFjYUlRLOkaPqYeZ1Z0gWALI3w58NqI0sxuU9o2IP0iyV0ixzb3kbHqwQSeujJ9KSAqiGfQB55zw6wFKjQX8tgnVpUsX4idmydHSszRjFgsI+WdUVd6nguLsDeHe8+PONy3fDuwwe8uX6GxzevAKvsbHdeocHMJcvK0JrDukDXilJPeHh4g9PpNbZ9R491lADGEgBFPo/WueeUwvFY64JuBKzsAHTkc0ndISB1imjD1oWaRlybEgyhtPeHeEloJbJ7WsaYpbCjWnZWM6JpY/6f1nXIhygKiRPGVIMFoMNYC3CQ4cI9lvpSfSerJ6cXgadG4EkLlqpzzQSIUrJbIxAX7sOHoOxFx3a70c4sy+hgl8AUO36TEAIHsDugivPphE0V27bBukW1DW+g7TuWGMtkZ3MMsrqKQFMyuahTROZzsjdbb0AkmJdlgcgFT89PeP/0Hu8/vIOKsQtnEaTWrIUv4x7LR4bFYJxhXFfSCYJJXVC1YlkqWt/RscN9Jxs99vF97OsYlMXBmE17ms6Q5qc543tzakYnSCvKLvB0vIe/UnSFZkwLQTNhFUdp2B1oGxj7e8dSqUG8PLxF64br5QN2EbTNsJaKtVR89tkrPJxXfPH5I0oVdNnx5rO3+J/+1d9g2zqut4a/+OVf4c3rz/HrX/0Ot+vsVPhDx08GnradtzKIqkJHMWuaRRiY5aDSeHjoObEeHbWMrgHSw7CBtaJdCBy4AEtQzDwCsy7hDHmnMS4lBBUbuhFHrCdS5RquMDX0pfM13Qdlv4ZDSFZVbpB0aq3vcG/ofoOjB6qdOkA5IUhBllJh0UqWXqDGRKDOWTcfma6cuFo5envfWfQW9zaoeGCLd05yOtQSmZ1cZLDIGksUJKQBVdK5OVGnmCdCU4YtN0Pk0ohgFw+gKybu0KhpGbBEVwFNZz5dd2rmZIa3sP/vWFCmARiFjwz32PdSo0Qi85p6Oh7G5NAK2+lwiUiIzBkpJxbihiAy76Z8VxjDPVpdQxYaDgf2zvJIi413lRPpoSXYHykComSuiAjbXxq1nLzzfqEVp2VFOxe4NGwbg4ilspRvic0H7uj7jsvTE8XuMB0tibkyB/NTqNQ/HfDpeHzqSj+h7nF4NTM8x1ePEop4Db9XbBvwuz98wLfvb2hWKFzZN7Ttgm6G1i7otqP7HgEJ2YZL0LIt+v+6ADuc7LdKUK/tG/YuMJxZ5qoKlwXWHZtvKA6siiGwuiizQkuhAyKl41QVX75+hdNpxavHB5TzgnKq8PMruFa8e264XHf87rdfY98Nz08fUJYT6unMc+mK7brjerki6coqyW4KxsM4bIyPjqyKBGsicuTp1HaHmqG640Fn1vB1rXiUgrMIVgALgOqpaHd4Yk47NRhVDrQIAsnwpF0vEVRVyBB9lgMYwIYbn5ohfz7m4SPIfblmjhT2/Pnl92RiTt2WlKucXooCpQC9M0PZDL4blrpAYShlAVCxbRR+rfWM3ju2vQ07tJSUec6rdQrTj4obTkAR4HQ6o+8Nt/1DBIhMwghCUwyIspnQYOjABkSHoSVK6ykCThIHkw9UQGRZPLfB+DdL90ABc2AmdVwIGnX4YBf1SEJomaAHIqPrETiyTAB4OGTou5EhxGx9BE8e+4QHKhbghEpBkRLBVYS9IsMu+nimwYIK/US4Q53OstbCNW4SpTlzXW2OOK9DNIPTdDR9lCU5ANOwgZmxD73DiGTIgJEIHZNho/QxRJjfTI0rByB9wKTDNlj6ZXy6oyRQtY+gmoGYDuDtnlEU7cYDOAE4p5KRXEJNnOwtgnxm94CQBwDA567oh3WzO0uLpBCY6JFV3u2GTCIeO9eONRnAgEPQspviWAdAD2ZHftLI6XquaUNBpaC0ZhFSnPiw3+/d0Q2hqaFDm0Ndg8mNuLbcE8J/lYTd+AzgBJOaUaQ/GRNbSy0TgbijOEFZjUiKvjhF43fbgoEVQFMkLqnFknMo1vDRTzYyKhIQayGD4aEi3e/sGH9nsZaTkdE9gyuf6EuWQOZwRaLSEGBxlGsmyCvuUebuofNI/7WoRmkLn02TkhYyAvwYdEcEcJmUjfUHMi4Qr0+A07xynWapEELPqMf6UkHhDgl3xgndWCZUl8mMH0B7MPUyMdkjHoAGU6h39oyiEB/HPwEnlKE7k7IqbAykAXpJgEycK4n67OYQaxBvGCC3S8QbGDEAE3MBskdTH4tnJcYywRJXIiLYhULmOwjyUd8qAJzFUV1QKu2NKYX5NeIEd8CEzkmHxf4VSf91YTnoSlHk07qiu+By3fD1d9/h9Fzhn73GuhQ8nFa4GW6tYe+Uwni1nnB+fEBdCkoh8QDA0EBiQsWh0mMaCkQXjolFqbSxcYxCGBMZ9xg4cLteAABrLZQ5sc5uewHiAWwyxOdRqf8EAuRmHehh+0OUuaZAdyFoMjfjKNE0x7qsjAdR+NzUooSrQZRJd7N97OGiwHpSdGMJGSuCSzCowuY6QTPxhV6FV7gV9J5av7EarBOUWhag0Vb01oaodzKK7JBoyb2gFI6RIPzFtMHdKG3hilJPg/nTnXHuaaXY+L6FZqslyUOi9DfOIQKXAniB6gnuwL43QMDqFQhEHc+XG54uV1wuF/RuqMsJWQXtvqP3xnhew1ZIbrkZwQUcpIikxA5XQ60azR5YWgprmQMLwXaggXswK2h4L8mCFimRAOIAuUYFgzusCEyjeYkItr3BWoPddsb4JfmIguoGaR1ZjWNl5bWeTliWBcuyho/h+OLN53hYz/jszc943taiKcCK83nF+bTizZtXOJ0WPKwLk4WFz+Tzt5+xlLcbHh/foC4nvDud2PjlJxw/GXhqh0oViI/ac3q/DIpKPQpzc5uURmodClk8uqwBhnCh9r6NDYbgkyDrG5MR0IUbf0cEQUW5SXqHGeuna10JPPUGE4drBlBAdpXVEhtDAjNxELzt3MR9Qwp+QZSNS+J/yPpMeNAVYzOIThIULWUXFJGcnOEsFTqFPUTaR3YBMwhtAbyZtDDrmfHF3HQjkzvco/CDB8VZNK8QMyjh/VLnwWDSI0/KLBzHILbmbqM230FnpYRAKEBjZpGZApgNlaJ3QQDAEgSEoRiiq6Ex4VEOMej+dqA/R2hcYsy9sSQwICYi2eGCJQ2VzhjLsSACqQXdHVs4eojgnVlJdiZUYU2zZQAg6VBktkvCeaGTXxZgWVYsXdBd0dqO3oFaFEtR1FF+0tH3jtv1Crcecyuz8wyg/BBczDn4cUD6T+X4PlMS/mhOjfn7MaeAl/cUiZIRkrgp9t3x7XcXfHje0CEB8nbctkuMM6mwQGRCIvQoKuyoZTNwb7LzOS8VrRnpoyZwVGghC4otfjua9wjIMDJ9pQiqAkthFkTR8LAu+Pz1isfTK7x5/RbnN29xev0a9WdfAOuK337zLT58eMa+d7x//4z3H76BQYBSUJYTVCr2bcd2Y4eipJLPsQ17JECmegQYDmMGkSIEjxJ4UqdtqAI8FEWpirpUPJaCsyhWCNjHhgL4Wfkc8eWIrIYgIjA69mXAJ3C4FmTTBgAHEd24zu9TFR/zIe7y5UT5Uzjyln38B/cr6tOA06fOk8EvW1Mf3hqBBoRi3eax53ZH1QpdPBh2GiXfgmVdQu+CTkh2NJ2lTBnmSgjrR9Qf62+pDAZuEZSzbXIEdJHKTWee5eVznym1wpzaitxzg2WItMMBRmTqPOxliTJuL8eWvtQfGdxdRSQUDKOMTAVFwY5YrQ0fILV8inA8uzFIboUOVcvsRWop5ZoRgj4a3b0gNqvBJL987LsJpkQ8zPvpwXguB6azl6wsB+BMROU+HICWJEjiDERY4SWDyZEipzwI1OV7ksEC9XF5CFBZgVkqG894AjSx0l0YJMZAcEwMml3VRjCXLODY/5PlDY2/F5TCMkc7dMLR6NKIIc5rGOK9wZjJeZWlQ0cQKPk6yfz08GX6TnZfDeAvmXJ+sFvZyKGltENkkRPoyKUpoH8HyNAbdXdUYdl+2umhCROgpjvQjGKsHg85OWUe+oIWcyP9Az5VroNMXbF0QgBTstTFsfVgpIeGEqcftcWKZPmfjXNCgGbBmPcOKQQFPPVBkYAm/SCHzzllBElHU4AsG+m857EOw6ed0hKjsHAADhg+EcZf0p/I5cTY7wWTKoLAkoFn2KX0Gske41io5DPh6yTLncDnxTLMqAzI8twsWRMfwBM6tezyejXvyWJfE+ozKSpaNDbZe4/EUyZ+k8MZ5aSqI2kznpwKnwPItE6Fx9xrh75Y+PnJUh52IS9QoozE4t5c0AMsKDCI2HTGsjw55g7nYIyBhr3L5zYWjEaCQSM+QxakUTMPRuBTwm6H8+FKW6qxRiwDmEiud6MEgorAsMBFUeqCuq6opxMMjtve4E/P2GrBw7kCOOHV4xkdwG4du1HvstSK9XSKyo1hvGmDsnJFaMPoxyhqUbgL16nZgYCgtLfGxA0c7CwXZWDNgmlTC2qAsnDHtt8AESwrS35Vgday1AqcuwkClRKadcfr5UNJbTzRBZIgLEDQIZrn1BLlUMGyyXW41ArbO7o1qHEOWyTAktGbYyMBVpqxUU1Wh+e643XqKOdLNtQSzKYSya/W++jkzjWpI7GSsXk7gAqllEjC5CzinNLKErvegiXFzAM/K+p8U8eMfiwZaG479t5QK2ZZJ1iNcrvt2G43WDd2O1eC82SYJYswGIFj/4uxOPg2HmMt6vBgZHYDmYdOyRYIO9HTlSgx95YRwPfONbn0GiXFsU5E4jlafKZCFj77/bajNVbgaKmopxK5QQLElLFVQAu0rrQztaCcz1gfHtjjUhQ/+9kv8PrhAT//7AvUWkZ5Yq3L0Cd+/foRy7LEewSnuqJAsUjobweRxCBYa0ELVvWPHT8ZeCrLy3K32EbMIU4nr0oZtiz3Fa0CrTrqvJ+vH2DdY3HikII/ZtA529veh8MgKljKws0taijhnRlNYRtIBzd3xKZXIqgc1Fmp/LC4RnO7c7aZGaKgIDu6heBmrv9w3rNEZXToMYNX0sZ7bEZk1AgWVJrrneO1akGR2S4WiI1UhB0dEEKrW4dtV26aUJQYbonN2sNxIotDwtsIx9xaBLjhDLDVVUwUgiEtXkOAjY5HxMph/LkAAMMSFOZDMpAbcuH23q0P0cRE7Uc95thPJ0CXJZda4+EHMChA6Ag4LhdmE7KzHgXk2M1ioMbhEWZ7znS6lKk6rKG8n844DVOypXLTsygjkOFkCLLU0IfB0uIQ7PB+Rd9u4VALbL8xKx4ZDjfDvl3w/HwaqH+tUcIyhAYx5mEmNbIcJjWy/sc55jPOn4814Mc/pgOK4Ug6nq9XfPf+Pf7uV3+P67Zj94a1nrCsFU9PG66XZxR3rAAezw+kUt9uyA5Z6Si3UFbMluG990GnhvO5SNsgnc5mAfCz169QpGAtBW4d23XH+nhGXVb8/IvPcF4LxDec1wW//NmXqI8PWN9+hvXtWyyvX0PPZ6BUfPlwxmfN8MUv/gLv3z3h13//G7z75h2+/fo7WBds6PjuO0frG7795j1evX7Aq7cPAHDQ35mjlf9qBAAMxjm/V5AH+eV5QVsrPj/XyFynLQtHE4JzUVQRnCSKaDKSAoaW2vGzmUCLUtsoUzZn9kUD0HVVLFkmmBPVcX+iPx8/cBzH6acvdA0wZujyedp8G7/fe0NL7aZSUE4C2R3oBq10Nk7riQ6gRRibDq4bS9HjGhXM7HoEpwSAo7FDUOtbb6ErE0K14QdwW1fu0+5oozy5DNuQWETvjeUNSttXSgE1JVJvYQatXYKJEI61WUPyIujQ1dD7mTa3ZHcypfbkbkZAAkBRgkdLiW5HAVpwPyxk11qJz8jxxlgXvZFt6VGWkiV2VCT/9KIuAcqoZJAcfpAMtUEkG2dFCsT6mCoee0yuZQ2GTY21aAEK8ePTuTqUlMGhL6cQXWYMToogAlNesyLbvaf9jjk5bEAyng8diCISyHKILJezAEFSr4hZ344E19J3Sx+T4r1ZChV6oiDDLXVIJIJtVQq+m7WslUCW6pEFhwHsELCIvUp8sA7QM7Cf45UaJymVIhngjzEF9nbD7sDiZD6FWxXAQvqbHCONOZZ7Zw/QBpnNR4AtcCCF9CXGp0QA7B233dDcMIQJh+6PhN/XEFwgzC5JfID0lxPQSEBbQO3MnOgTPOQz7AxMI+ALhHf4hhJMkeHhJIgd95rJSdqXMFOJkcS+nS6hY5a7aLKY4FO6IHxVOEt2hx6OpHw6QbvdHBbappDwIQcT0yBqgNCO3CLeKOsCdzYN6QH99EgiV0TiCLxmXZYonzR022HW0HSB64rl/AiBoxkBfA0mn4oDPQL7AF4kyoybBYNFFaaFNynRubAbxACVZKp1jMZAwVrc+h5Axwq3jm47JDS8ymCe8TPLSvabONfi3vsQvHZQ7mQBIDDUIaoRFkYce/peEShnd0co5xz1JINg0AgittCA0VoZl4lApIzug+YgY13InutC3coa1klqZRv5gGI/fHiP3ja8fbVG8qOjt45t79CiWE8rHNTA6iDT8lyW6bsUQ4/4Ed6xhF4xLAJ5yX3CoQsT3+u68h52WqkGJjGbG9AbOhyn0wkqBYs8AAimp5YAOgzaAzSEQ7LoYhp5dggDYHtD7xT81hEzOpJJmS6cmcPUxngWyAC/FQVVgTPFDSHdxn7RthvBqdzTW6ftR4kKoYJtp81MTb6eelqlAsJ11zJmb4373FJITlHON++O27bBeidjCohKF8VRsoRsMB+AT5ZW16H9mHuLo2bpX2/o4WdAFVpmUzIDfZwSTS7oMnXcrs+4XZ+wX59QThWlFohtcN8p4D4STUlE4OQsJUB5DWAMgT/YHlIwGtIdFaacZ1YWSAEePeOgLP0NAFgdpXSCoIhKLxGUskBlxXXfsPcO28mgvFlHWQp+9vMvcT6f8fjmNa63Ddu+47MvvsT5/Ii6rCh1xcOrL1BqRV1XPJzPeHx8xMN6wroseFxOqKoozkYhD28ekYm8lMts24Z9u6KCmlK6GDYzvLvuTM41G0zjX//+K9y2G37K8ZOBJ9HhFsGHXzU9qsB3iLjG4hgCfOn/iJOR1DtUV8ws3PDpxrkSNBkTDZmRoJOXgMnRGRwMJ14xJr16/pxulsu8PgnWlh8WNNKpSnQTmW2cDlueYzhXCGr8yFhhZGq4aUeNJlIlwMNxoZOhYXy1Rbc462DHwIGaIFE9z3ansSFnpmNS3DEwAQpppuNI52cI5sWFZvUhNHrPHZ5vCUfWD6M4sioR1LulkxaXmR5COIY+h3Og8Wn8py8hcY6sp47fytSgyLp1ov5z/Gf9O58Wqc+hJWIzDsg8Y1qxnC9H4Al+dKI95qiHQWZZoMb1u7cQ5yStU8HAqLU2wJc7nZaXh0j6uIeR+O9/3AkI4tNXdnc3ntDIvOfxTPIFx7P5rPu+3m748PxM4yrK9aVE/FtrAcAQ8DAHlY98bk5MePJ/VbNszMfGm44vLH+W0IOrUS6jdBgH7ZU1+qeVXRPP64Lz4yPK60fUt48orx+gjyegLhBVnMqK1YHT+RHr+UyBRXdcn55xM6Bbw20D9Cq4PF9Ql4JX/ngYk7G4MMoRDxHeuH5EosQFJxWsKjgt60fPgkT6ZDsF0ynGLOe05zrGnRkdAYHF6z1YniYsVxW/nwl++O+fj3/c41NaaSNgHsHxDNJy74FHLHp4TQaICbInuCH5d6HWoRzWcJHjmj7YWU8Kvo+AfL4qpX/Hu0agf9TDi9PEeRjQstPW8YLv51UUUpPV4hbMkyMbYA6UDJs9xy+XVYdHxVzcyzBJ4QNoBOoewVOwZZGAQQKyPcLbuJmxJaaA9thr0lfm7wk8RKlZrrgj+2aYAx33lWyDoY8BibKY+PcAdmTkPtc3d9bhzKc78WLPOdpvzw0fMu/L5iuHfsH4hCMbIj5g7M85B+iLiAkDlgSecjLkOeO8qbllNoj1YxySLWFRijb27Qh2xznv7jEFAg6fl+NhFuhmzKYx9zHmb25n6XMdRoM+lgGW7NQ8vc9xzIcydsRglWSrarcM2Oc8zrk19tX4OTXWms3uWDIC+ZwvCdT4GNoee0AmbMZ54yly4mkwvvnzsTwxNVD4FX7n4fbmjHjxneR94G5dHvoBsFo4gGJDjp+MZZchCD/Vx89IolKc3yTv3WHRiiCZ9Ej9MHGIZpdbMhTMyYYsWoMZFaVQELj0mDc270oEUhVJ9jTvEDe4sAtyqZXn7Vt0ptbhS2ZVwrCZwQyjbivLhjzL5RQQc0x/TMa1SPybQPbYx0UIwmXZGnSMI8KelZTicM7CoWuXCx6AikGBEBePZZP23o/3EeeSjHv4vCyeV3ZCzLwIX08gyIc/n2fjSQIGv/sqQ7eKa3nbd9QytaMGAGlsIFQXNpJyj/dDQribN2Ngp7BkNVafpVy8LwsrPkkKWsLK9tAZss5ui2CZJLujxVyzuboylmEME88vbexhzcjBflq3WaI2YhOMcPB45D1JsFHyhe4ErVhOFntVLJ7WCTKwUQV9PY9YMXVI048Y5VthyzNRABzitvjgJIsA036mDlQCT3koUiYm1lqurRwPOc75+TXiQqFfyo6LPnADyedu7Mo55rp1tO2G3jaWJRr9CPeGO5rXKHXEsG2ZDM5fqXrMDov1bdzbMzkRXenVMcbfEFVMuLelcpwEYRAldNnMCdaWUvCgBcu64ouffYnz4wNev3mN6+2G623Hz778Bc6PjzitZ5S64tWbL6lnvC4Enh4e8ep0xmlZRgVE324oteDx1Ss079j6xoRHb9j2DW3b2dVUFLp09Ga4Pl+x7ZRqSODp3ft3uO37xxPzE8dPBp5237jhBbPAzVEr6XM1qNElGAht28ZeS3S9I8Mfh/EJaDouIfImdAjN2QIwW+E6MHQLXMnu0ZpdrBBCWQ7sRHtTLJqLnJPNkpYuNkoRDIbmIUImBRisGAHbmAOichA1m11xNB2WKsMKdwEufae4KgzFqIiQprd3lrexLp0beTqJadw0sp5FBSU2KQ09hN7J8GipveS8n2Zt6CpUpfBr8UoqcDqj4ZCF3QAEqB0ozhngADbvzEggbF5Vik2aQXqj4UpHGDKc0NQYQGgyuQXlsNMwlUKEfDdDUWZ7Enjbdzprfad+xxIZYy1yaMATnC9L7wQAnFmR0CewyM5WrTRYauFcCZZCppttbSC5tQjKsjDQAcVxazoGmKUqvXWCi3AsesKqFevKAHxZgnJuBEbcFEtd8Pj4gEUF7bbx/QE8ABMEEUnnae4eGqV6/5SOl+DTjx0zmJXDz7gLCLnIeEbvjg/vn/Du/Xs8bRdAC5bzCU0NZjfc+oat3XC7XLGI4gSO07IsEU9kPje6agkpv+6kOEtuTqpwr6hiKGD2pAhQoyZ+KQKvCxwLAMPtdsWHD+/g+4qfvX7Auq44ffkW9e0b1J9/iWaOmxvW3qPbZLgVVfHm81c4v/nX+PJf/Bx/+a//Cv/+//i/8Jtf/wa3ptjbFb/++1/jdv0Cn3/+Gee5KLID5wzZwY1LjyyI/E/Yy3gqGbh6vsjjvTJc7cEgnZEjM6wQDa25dKSBRcm67M4saO8WjKrMinOTyRIGgBt+lnT8+fjHPxL8g8R8yQAxj4gRmTAIdzlYa/BgzPUO7z1mmGNvO+fciJD5+9T2cnfsjQ7msjJJpKrYbje0bUPfd1iC6yIoSyXLMILh1B70yE1DFLWSPYSO6HjlsJ3toq1YlK1xVlGTVUMAl0mSTIZ04XXPZEO8Zu8jK0s7KxOUdnA9LSs0AkVRBne3yOAmkxkySxuyc05v91F1hgpsR2+j7J5OKIYTHukvgiHdqIko3JMEgLeAUpwBs+FAv3cJn4E+Tcs1CLCDDXyIqLtFUNJHZIcss9cIFNS46/SDI81km8Mki4CCLzIiGwWLcwLogQWDJkp8QPuSIA2BscGzYdc/AObhQFsC//MaWMZJ5xvwzGcF6EFfwzyCwdCTtO4UTe0pZjpgImR3PY0knC5lBMMY543PilIy3+kjWs8uagcmuRckkIF4RjENpksSPq2F75HuSwZNgvQtMZKGe9/RnRljFUUtC1ieUcgKN6duiTg0NbxgAQr68KFzjpcI27Js1V3G3pS2WSr/1QQ+D0DSCPs9FXz42aYdwpbTFF0ukayNRDK3cx33xrl59Gd4PVozKIwSLICivmCwnmwwBmx8HUtuObY8ayaIDYIep45yNPcoBXWeXASwG+CCFkEgICiOWcbmBqAFiLPHfkpJjgUJcSHWRYe3+E5KyGIAViusCIBbNK4BtChO5wXuhtuVEDl9a4WLsnGKKpqG7S4K9wazG2OsbuhQWBcsUhkDS4MKcEqb01mKazDAK1yUGi4JHIlDa8dSFqy6hAC3Q3ujD1EqrAO3Z0fuDN0Mro6lLijFcaoF8IYWWquODi2Vmkkb4yKJPaMM8+nB0HHGSposPczSRj2RAaSVvoZTo4yyCZPE4OpYzKjFKdQ6ks2xqHFnaRtgDd99+w1jH1VUXVFfPeCzzz7H5599EZ8h1FgLtpubcz/0AqkKN+qFSQg3L6cFBsPu3NP2vYfwueByvYU7Rbs/dApRCRoa9dccEvtGsjNjz7Mj+4/xCCBDpNwBWGvoe0cPG3E6U+uotcb5HmwflpFxr+uk0KHKAjjQ9kYfzjpqrai1Rnk4S/8gjicL++kxbzVZwzNB1HuCziBIl6B1xPcOhC7foYBJ2QyqR6wKsHti7x01KkF677Hnl2EsSwGfQTimvW9MTkW3QGt9lLUXV0hZIMZIuxZ2CLzdLlhPKx7Or3C9bWg7YzyI43p9xod33+Hr3/8Glw/fosoGtx1tB7xRoL/EvtkNBHwbpYUoQk8/eu+hc5wYQKlkPg62qNJHMkE3lqlBdQDtIizPzpi8hB1meR/36N4Mzag1VXTBv/23/xu+/PJL/PKXf4G6rCw/rQvW0wotbKZRolvw6fTAZjF6YizbO2opqKXiVCoW1dAhbhAYWuv45tsNt33D83bBfruh7Rue33/AftvgOwG5fmsUgL/teLpe8f75gnI6QWrF03YLFtuPHz8ZePIx2SKY1GM2cWazBqIKBFqHeBATJU3ARSLIT4etCOnSud+zljY2eslrwCGIshERZ6YnIfkR6/pEXH1sIZkNYSDHTTrYDiB4MSxfbuKREBPJ+0AIoRE9dg/gTDyodvHhx+sbY8lgTeN3pPhHvSgQDmtqM+T4eoAgGCylBPcyJj0kxsYIJ0KbDkZ2fkM4miLKzTqonYxvZP4+AbkAFEZWDHEhgc7PbI6OvzNzUAFE2Y55CBkSqYZPNhl1d+L9mJkTnsfHOXPs4Ah9gdTjQvjZidrneGjQJG1O30O6gNkQn050fkY6PwDFcXMNRJZJY27wfX73+zzH/TU7ah0PdM7j4bke5uw/geOTejP5q+Pi+i85BOHkO263Ddu2A5BgOGcAE/Nd+btmRvG77CIiCEo4xzkfaR8PnnO4FIqCSgSryGc01mPMp9i8Ednytu/YBNi3gtu14P1332EV4Pz4wM2u1LHLHsL2KAkueHh1BuD47Is3eH5+wvPlAnfDhw8fcDqtaK2hoqDUCGHvstwYwe0cYUcK674Yyk8NLwhQ5Rk+Mgzj34zFXp4nNX8AYDaIcMg/pUn6P+KRA/7i+DF9J3jOExzKd457qoy9znoPfY3D781nuhkRHAgikENk7G0EhQgnSGxmGkeyxH0wMwaQniCL6kwU5VxJweqcZTnB4fH5sXfoYcZnBhCxP3ju3n635sb4Iex+nHdmrOe1OwSDQRyfHiMxLittdZZ49X4oJeSbkAKwMlztKIUh3nK/F9/5IfyQ6cZIUjWA9B2AUW4+tOsySIm9Lp8Tz+9zSMPPkRzr9NCn4f74ovJ3nl6cHX4/Xzf8p+MekO/JX+c4h63go8+ehI5kj/CMEvuxYNTae87v4/W+/Eq/Qsc5X9q3nEPJwBinejFr8hkJJlck9ZfGV+qTefJUDmeR5KqH/X7B0Lv/8Lzv8DmQ6yPS6geNtix+o/8XK1SmpwQ4y5mECcrxxNMHPo7YYc+Y14pp28dlxjN3H6OXYyBCrS1ejtzdqyfjb6xVDCAsf9bDvd/VHkquvuEwTnfI84pfPN079+m4Ox7m4OFaNCDAJOAfTA/EBMcOtlUW2gQj44vlzTyTSlQIeI9nQ4C5eYOjwlEhZYFKoYiwI0pahSVzcdsGjTmrgCuaYWi4kMWmkdDkdbF0LbrFRRXYbhXuFB9Ohk/ziqHhFvsFr7wCskB0Qfcor4xkWUFoBQlBfykKQ4Ohh+h2AtF2kPijX+BF4UrblUByGc8uZ+RkmPewaWwgkBUfc+VRskUGyzTX+DGxZhACAQc/0cEkwfW2Rxc5at7UumJdTljXcwBP7NJGsDb4JgFqq7GhEC9dZtk1cl1rIMmRmLacezL2PDXq60wW0GSqYKzQXFdzrQFz/x46ZhHfpC1FANOqhQLseV3IfReg4Phch2P8JBlvMjpuCqap0twvxxo82PwRwwgytM6lO1eY5FYwbGl+73fn4D14lM6nzzu88PBRssxsZgkwrivn0p29GE+B5zf1URHD8vWZ6HF0XK4UFr/dbuht56xKuxn+rSImO2Ssefo7CocxieLj7ofvMkikSB/l4AR4Fqnyx+yjOO3v/eEmoYHIksJSKz5/+wW+/Nkv8PMvf4llWaClQgubW5WlRodXkjdKlvl5gQnjJ3RDazeI7GgALk9P6I2EjGaG5/2Gbd/wdLugtx3WOq7Pz2j7Dt8bwfC9wbuhd8PT9Yqn6zMqOtQqK1Z+yI89HD8ZeEqApiyTFpdBdm+pB8IZJFGXvUR9MuBozmBS44FS2d0BTxFbYKmVGd2dC+q0rEBQMM3ZZrFZQ29tZGCWygzMUhfAosY00Ct2A8lq7wk9dYxCs3AYs7TLUcsSKCxoUGod7aGTjpkubU2DG8BT60bNqRTJRC4uoCB1fpiRs9ZRol3qHoAd2wkDAI1MLezOIxAKjwOwypmam1UKowJO6r/3Yfip7SZYFDS4Si0mi9I7QQhuQrBZmHIRlKpYShhrZ+ZcPLoCgp1UuJgUYuxDVGVFgk7uUZ7H6mIAHeYFvV9h5lhXhWvBogs34UIWFNXYwzyX1F2KxWtEvltneaCP9loOFBpeNmhwtH1DtqA3K/Be0Lc9BANpMXob0owIQjOqzjmNMKaiivV0AgRoraHvO/q+QWXlesiSlgwGbDrf6bslYyGNAhBgFw5Bwj+DIzcn4OgUHt3G6Rhbd+x7x3ffvsPTh2ecTmfs7tj6TtviCi8Fsi7AjZmSb5+esdSCx4czn00NPTZ37MESsH0f2WMtzIKI7AD22Ax7dJTJFtW0J2HRUMHM3e36DG8K3J4gXxn+7v/5v/H6yy/xi//5b/Dl//w/4fN/8S9gKuhKKi0Ni9GBMsfDWvHq4Qvo//a/4q/+6i/w7/7dv8e7d+/xq1/9Brdtw7/623+Fh4cTHl4zk3V0zllCOl2V4b5nLHAY1SEiCUTwAs7FBBmOu9qhSQCPGfApIrsVM7IEeF6KxioJR88x1sgIZ5KZ9RM3nT/d434tzJ/1e98BAFNXMNzvdALDKS1KQVMVCller1e8Ws84LSfc8D7mOVlIGSjU1DUSwb6zy07rO9wMtRbUoHObX9GvDa3vaAH8rqWyi1Db0bYoJ2k99vyK3R1dMHQdvfkMaANo0LQFdYEV6iNBZCQSLIIqc1AjinVIsQbC1Rygy9zPI7HI8jkgupJaaEyF1ovz9577jRRkeXdrDds2NeSyPLC3mcwopWBBicxwDVFSoO18RndBsihbwccve/cI5MES9RZsWHhgD5IKpbxnwWix7CDDZO97MKHnOhxhWGxe2VHHxfk5aUMgKFE4k2UwyXWRw28VNW8AAEsiPVpoSbDRM6HkOb8OiSCVHqBNhSPL4gH3Q/kQNILNKItED/2cuFrJspd88IgEFyClRhDkIyIaAEuYuWT+pN+VZDAAI0gY4Kwu8MjSuwazSoMxF8mI7PSLmGc57nzMOvwAz78LPSCP9w45P9WYFnVAnzlhzCRKC1kStkZpGIHTCfKIAKuuWLQeGAlp2y38kdQ+O1qgYJ5k9j32gGRhsBNgzKulRgwdIxsxu8RcpO5TizIqG0G6xQXmereMcs2ijGjOVzcf5m8G7VwHcldPlICBIJOTFiya8TwjOZxrwAWofoI7G8J4hHvFCdhVKyjigFPJaC0V3YHrlaVrpRQg9EuXUwNKx6XdWNZcFuwQPG/PEHmE6Gu8Xd6i6opvnt5h3xuWvqOq4rw+jJ28NbKE3CpMBLcWbQEkmA7B3ihesKKiQtEqfc1rqzEfIybKUNbBzr2ejDA+TwoPn6AWYv7OJi0n31FgeIjGEvLQcVoXPJxP7CTcbjDcYN5wa0+cdyvCSy5ArZBSaU06UJzleKeox7WkVDpQFwbH286Sx1pPvN7Qm5K0b+ZYhawNiaTXqS7URkKBu7LTadiFIKlClxXmjm/fXbEsC85nxWenBefzGzw+vMXrh7cwWbE3w357h1oF+mqBgd1axRSyA6cSPr6xkykFzslyKbqEoLYd7F2IgRfFWpfQRyLDiOAcA39WO2B0Yy9LVKO4DzmOIhnr0PJltYiUwmDejOBCraM51bLwM/e9jS56BB6A3ghunk6Ftqt1lh1qieofQ9+oa1ZBJhCrcNKU2ohTAGElCYDR8CPsnssURN/C/44JitaNPmRNHSRgXVZ49YFeLWWBG7WlLJmcymdvGdsJgb1FVy7yatFZEShRXsr/cwyXUlDWFe4FzRRSHrEUwXpasO9X/OY3v8fvf/8Vnp+fsW03MpykYq3xzMzRdwCiqFgAb9jsCkXBIhUtfDY3fleEHXqlFAAd3fvw5GthSFuNu0RX7rCsr4q0V+4jnraMTFXvgLM5Hr744jO8ffsW/+pf/Gv8xV/+JV69fo1SK07radhzzlN2HBRVfHj/hNYaml3JjmwNz88XPL1/QtsJKm23Db13XNuGy+2K33z1e2xtx3XbogPeMpJAEizJotGQpRbs2oEV6GWHqWFZWWL8U46fDDxlt5nMwGWdJxAsFnABYTiGAMLZk6Bawn3EQ1pzETQ6CUVYexnZJSAWEgRb68OQaUz4dABGpjGotUULnYTWxuIZWX8J5yQAI8vrBEaGNAMoAcYmmQEWkPtibJ4Btkn86yaAsjPNdLR9fsFH+0R+AGedAswojU5X/H1WF+cYszRb53vhoGzwdL48dt6c0IAfhBlJKaYjVdCh0ACchiZTXlaWqzqvzR1D5JOaF9EZQqaGTA5N+LJ0wkO0k/Xk7Pvi4eSgBrqciD+9a749WmSWGu+JrkChGx4ZmPFwkGLr6Yjks89MTl4rAwkdTLtkliU8mJkKOJ3buw49TudHy4J9Yxli0UJ678pWpK0ZZO/QvY3M/5h3nzy+7/f/dA85fpfjnxmgsTZfvnqCTgBry/e2Y29Eydn23VGUtkFVsNcFrg1SdgAEslXYgn1EmEEdLhCYGNx2Opp9Mpts7JdkVzRjkFrMg6+QjrVRiDCvMxz0oorTuWKtFf16xe3dBzyv32L57DPoGfAon1GNWnNYUI2B08MZbwX4l3/9L/Hm3Qf8+le/gwP4wx++xudfvMXD6/O0ZQiHXHRSlo9jOIbV75+DfPyakflMK3AY+5mhOj6nj0+V3wqSGTMDrrtZe8jc/fn4nuOwb9yP3jF8ffGWY9Zv0DPmOks6vHVDb53NOFxwXk9cD4206N4Np9OKkmKcHs04xJm1hkegmHtM7D8BfrToHMnLCIBm39HaHlimokSwoKJogzIlx60ptq0Q1AYBkdxnGZtGAij29XmfnM/30ytsvaeuhIw9PDUWc0Hxd4hAVqnJ0YPpCPoM7kxG9M7Aidt0BsJ83whoUcKxJXDdogxe83kOVjiTXyw98Rj3LGlrMTY2/BNxZvRTWgJx3c36YJEYwBJBzDWcXg4g08+INXlc9yUG00dAL8jOcYirSM2RvFfuydEj7DCeEtcGP+q2zC/EuVL/i1sq99HBGh/vSrb54QwyfT2WbMYenM89wBCNTkkDaeSozUkHjAYOdLsms2C4ZQDEyTZqMp95niL3j/TLkjeQgA5zX+QTsBuoj5uXrBs82m4nwMQEIscDMc6IeZpMoJzjaR7SP0UCUTm3cGAWRfJLjMyzTKQi1kY+2Rznj9iWOZUkffvOVuHS060bzyH3hhSa9/Cpxhhi+tkMFKcvPGoOgtmXJi7LQfnJ4f/64GqMcczf0aYkQ4aAjOdYxpAnIAOJHGzOswhiuWxLYPvUfWvR7ayowqzCXSHlDIFgRwktRQfwCLFXuO2PcDlBljO0GrvbCVvWJ7hoJbTphICsLKFFWleYOLuogdc4VJuiYU/1TjC06ng++bAWXQHoFMmP+Kmez0PzSr1D4HglhgXAqwLquFzeoRIfx9YMW7sRtA2ZDwebEYkomd7J8MoyzZjuOdZik60qaSQStJaczsZ5Yh1qjhrd4hLAVRGsQnC/QJmYNqVMhjLhq7kHwrD3HRBF6QUfnhpaf8I3X79H0Ue8evM5RBQPyxllWXFaFjToYH45opwMYOnUcaZ1gDphdtBem5IjcMA6NT2zLDzLIFUYoAMJfBuk9zGDx3LLfSX21t7YzEVrQbHCrWc0kBpW4P/P3r/1TJIkWYLYEVFVM/fvi4iMvFRV32Z6pmebc9sBSZBYEHwg+LYEn/k3+UgCBAgQBLkLPiwGy9ndmcH09GW6q7ZuWZmREd/F3UxVhA9HRM2/yKyq7MFeuodrVZHfzd3cTE1VVOTIkSMxTpRLIFs/m27crBf3eZ0HaHY8MI2mSJZxYOzDmN8TbACm6zH3J1YASTBsQpMsSBozmo5S5kSEBWAiJPenuJbJ1CwE5UcA5x776oE/sNFAVht7gFwOYTJi7tGxPwVYvQ/D1geksKPu8/Mzeh+otc0ERTa7YLWYoxXqva3tNDu+jZAaqrLG2l5iPylw7wGIarC7kp3GuVGXxoseAdQbZlOALODWoGwQtKP/cF7PuDvf47ze4dTOWMoJIoK+UTMrNWUBoBZCOt+8e4+977j0Db0PbNuG63XD9XpF35nIH71P+Z6t70DnWlxUISGDML0fpQVlWWywwZ3rgmt7QAIU/T7H9+9qNwWCUkvCJlih4RxICYppZDhtH2TPaKV3Mtj9gR0Q2KfAxzVQTmobjDGg2lC0oUVN7XVnfXHmO0TY7YDVAwxCPanHtWHbN+wbFeCzva9OLyEYSjebcepUcE6kk0BWEEqwGOKzc8sEAlSBo+PI5kEiU8OUJlJ0mx8VQqois2WmCKKmNI0Aon8E5oaRfm8Gt8eh0zNi5xU6y3rcGkRYsT7cANvhg+DTwMLHH1k877lIDmq3DIdE8gxAtOKmdpWGsaHYw8c1R1xcjuhKUgqaFrhUmALbRrYaNdioA5VVffk8LAy0tDAMblzIYpHZpihn/o7jFbUOYaNZDlfgzmyBDWaBRMvUgaiq03hCuOhtcOCWuoTTS4fN3KGloWnDw8N7bNeO89qwtorWToAD10uPcsvQvgJCY8hvgphw/mI93Rr729//bT+OrMm3j+u+43nbcO07hjlOy0oWWymRJVP0hwtQDFroIZwbO5dctwtQSJOvQTctWqFjwDo3tt4JeqMAw1iv7UKH4doN6o7F2Q2q5fxzR4OiSkFxOn9taTidFrz97A3MgP58wcMvfoXt4YpP/1CwfvIG3hqkFNR1BUCb1J2G+fz6jFdv7vD6k7d4fHjG8/W/wL7t+It/95f4g/G7+MGPPkeW9uQM0LIg87q3h4ejPMcX4ZDgmEcvgqsXD+P2PMd/Xz6v29mZf3/Jbro9Cadt8iYyYPufjt96CPBSHfS3jZtPG5FsA+BwWPu2Y7/s2J83FBW8unuN/nzBfrlg35jdev16wbrSSRpj4Hq90FTWG4p+BIgSWhPdDHvv2PadbAUANtgS/vn5GdfLlRT+oliija67swxN88qPYNdBVmktlRpPPl/AEgogOs5lmQMd0SIlRIB5GEZurwd4oME0RoAE6ZsAM3HCYFQxese+D2aWXbDUygz0bujjlhmTXNgoe58i4wWGgq3v2GeCwVFH6NDkUkhBhyypC2fN07/IT5FIebgcKm8i2GLsNssR4V5aaiN4lg68H8EBgAh8BjJSyeSf1rAqcU2C8Fky2xpB//QdACT/iAAH3+9G3yRzaJY0E5lwyeEKpLc0L4+53gNkyrHgvyyrT5fHRWZJu3lo0AAQp19XoytgsoEm2xjHh9o4fq9SorNgAAF2hJEGwX7jX00tlhicDIgL9AA74joLKtQFw6IjUs5fSTiyzJGxLK/KYdMcbZlJkARoLBhxJToCUztpzAA3WxSqHECYOasOxD1Alpu5kYY72HS3m8wUJg9AzJR+2sAGxwBkYMxykljrHnc3SwWTWaSTUZlF300D2MEIbSUyHEPhFJCUYwgf2FMvLQLodKGQ18CZVEPfkXs9A6nZgCgDurkmAQ1QLv3znNcINWwfiiEOkx2tVDSt2DtBsHL+ISAVT9s4pDX8DLczHq4rije0Lz7HUhUPH96hywiX1KEYZHIUB8DW6FUbVCtO53u4NnRdYiEGAxAGqYwVliYRZ5FpI9GpC6JY795AS8P2vEEcaHVBaQ31dMJlu+D5esG5sYPvp6eGUyl4sxTslwd8+bO/gG/P8MsjPny44unyHutaWJHRVjKfrjtKESyywKXCvfApRyeuCSgaoAE8iQrQA2RPpYNY3NTXcmA4gScH2Spap1/TNLudKfV8XNC0YW1MTGai3sxw2R3DK1AaHp8uGP0Z59PPcHk0/L2/d8bpfIdP7l6jtIa79Yyr7GTIdZYz9b7DYWhlmeCKcBJiHx3DDMuyoBTCYLwHDV9zZ3K7sLvi6B2bkA10Pp/h7rhcLpHIGZPddKw5rlAybge2bceyNNTW0ITayZqMyrSqkThvpUxiARMgAz36TxSU+R43rrIR3YqzKKcWVg2MMW6sNqbGIYDQnpNIqh4JUnZoZMzbClVHd98JKaZddZlgV95DdpzOhZmNXSHKzrBF0LcLGaYJwkUFTDKbJOzccMN1u8JF0KJsFvNv6b0WPF0uFKJfzoBWfPPNB5QCLOsdVNnRcHTGnfuVtqKdC1ppaPXMNSvs/DjMsZSViTZtgHAfMetAsA7T6osYSiHD/P7VGdapj+Q9Kra0QmMeTY8lMIsmJEK8fvUJPnn1KV6fXuN+fYW1nTHGwPsP77FtG56enrBvV/SdkiVmjq++/BLblXpN133Dw8NT+EjBMAvdTMQ8FRFUBZZaIWXFtu3Y9j5Nbbs7QQR47hc+T+vowXYdezDS/fBpftvx1wCeKhxEbRGDqhqU6ci69U6qtIyBImQouBmulys8wIm1MsDctp1UUQmnKAS0me1wuBGlAwRbtOgLG4QiBVDKlpbCTW0YN8XROQBJXxTIoWOew5jlXDgE1KY2QTr5mXkIICprf6ESjha3VwLHRJgdIVyY3rBj6jHkhqnApMTlBtN3Zj+llbi02DKjvGBetiPALpn/SFNHTPVkWaUHwoA9BUPFk3l0OM89hyWYPUlf9H4IhmpJ8bdwJANZz2xzfmZcOuAHXT6pl+IMHhSCURgYDNtovEdkrRBMD5Gjash7BBhjGkL6uBLjy/sTYKLRZjKzfJlFyH/7vkOdWbhSCkpdJqI+3T4/YgVxh1puEkFpFWWry8JJaRDsfaBoRVtIy51aVxbGL67F4+QT4Y9H9XHS8X/s42OB8N90HK95GUC/BNYwb9bd8f7hAz58eMS+77BhIUhaULSh0o3HnTa4Nrg9Qwy4i6xgqRQsNg+68r7jtKzQVqC7wZQCmUkx9RBZTmZdBqyRs4EaO+a1UnBeV7RW0RrQasGrT9/gdFpx9+kriFSoVOhyhrYVUmizZKFX27M2PzK4FZxEA3QcTucVf/zHf4Snp2d8/fU7XPcNP/3pz/Hq1T3u7oOO/2IIj/l+BGkBOtzaND/el9nzQ0uF/719ihNIOlCmeaik5k+cdDr7sb7l5ppuxpQ28Hbj+TaY8h8KoPrvdUSA9u2F/l3jFG850IAI3jD3qnm+CGTHMGzXHbUoequTnUrGU0fvI/SKOHFUNX20+Vyy2x2d0Igj0mEMFl4yQBPc6GOgqMDs0I8YYiFCevxzDyaP5PsjsA9GlgTNvpYl9swATqLlHJtpZMx82NHUIhs+QrA1xyQglHDwVVluwgynQYVMIjPHbix52DvvW0PnUSSYFz5XHciYYsOIEVG4hu5NgUysKR+6+5jMLsa1Nv8mYLKOTF4/9ou5N8icMgmcJUjNSZIMXUdPiojTF8jnlPPLDdj2AYkuXxMo8gzOaX+zoQtZaZREYIl7DzNkDGcEE5R5OaPZUvqIThyZGDo65fl8nzn9uDlWuBm/WW583MccWae9sRAmz5K72+uZ4zaz7TK1Uiw0Ld0VI/zAIfQfb/MlEdPF9wRaqlAyomQW3mdcApjAXaf/kkWEOXsEmEGXxTzQSJpmGSjXebLAGJiSiBHzwQSmAosSpLxfDUCMZbQVJoMMXn35GiB8duF+MUEaxjyz3DobqxxiwgSCYKGLknMUiWDlTiA3ayb8OUiIlvsxt+P5UGyDgOwQP54bjjmPYG9J+n7xXCaWkc8CGfASxDQ5WOcI9haZVp3fC9n0AmU5JBSoJfSCGtQrxAtGr9hRcT7/Pu4/+QL/+B/+x7BW8FwM3Qq6V6x6RpUFtp5ZwrxdIGJoC8tYKXEe+jNW6Ac61zBLsxSWbMbUKoVTvkNkSrbRNBJwGhwa6KlBVNA3ikVXZQesdVkn22GtTADftaiTGDvK+Yov2hfQcYX2Z7i+xtBXePzmxxjbI14vr1C1h46LAPv86FnyxMqI5LgoRCuKCveiwX2nBBCZsaKWfK59Jp197HAbgJL5xAKSgqILigsq2PBoD7KBiEBrA6Co7R4iBXuvsM7OW//2T/4Cf/HnP8af/elf4nQ6482nn+H+1Sv88Ec/wnK+w+n+DnVZAC3oT2S6Ooz36YYiFGN2YwlVLYJaNeJSh2qWWe8UXFdFaxoyMrlmyLxvS4bafjCiIunNBAIlayb7T0juyCisjwFRC9BcYP0oc05WbX5WqcEejGROrvlh47Br0QUzdahGJMYlGKQSYMq0rbmWpx3ms7fYM8mEI9CkOChJPkJjKubvtIYBvokqpHLtsTkJK57YZZRJrJKEi7QXYQ96aApJCWapAOaDySO3KI2mjEYrAsDw4f17XJ+fcXe+h9lOttpIQL7gqIBRjO7w0HbDCBPnZCjV6GidZAVVic86KpDcd46TcDjs+QIY0AZizRdUYaf23JVTE5HlwYxZmaS/4qc//zmenq/QUrH3Hd+8+wb7vmO7XknaidJNM8d2odD33jtL7rYdpVaUhV0kw5ByHoet6VuHlmgCs+/A3kMvS7BfngGJcmwbuO5bCK4XwATqEhjP9wtkv3+pXdSq98jMs/NHoM6R+uqjA2YsYVHqB21bx7btUGlQLVhOBJ4eHt/DxVCbTlSb4IkFMkxWBBx8v3LxZpjDLIdPpfntwi5i22VDLQVrrTdbIeYOdUs/PBx5ZsXgntUBkTVyaOgZVUT9P2RumhLtxRUZ7AVwkk5IBKG5Q2bWtKpiic4UZgMYnCyoLxe2T+cA03m3iRRxi1XhmJRYmLfBZNIYE6MWINhf7MphotRtAGjscfAsLLSUkmUlKqxvdQ+2kMFtTCdjlir6R+MIAM5OfhkkFA1NjhEI7WAmUiRbqyZ1mouZ2J/NmO1wQWNMMpiKGmNPeicSdGIZpxlFo9UFqBWlCJkyuHWijqCehj0tdWx0hTW9pbTA6ig017tBGlDbgqi8ohMaBkvkpQE/nKW/2cdvusbvBqVuQbUEmo5gi/91fHh8wLv3H7DvPcpUGPY0FDQh8HSSBtOGjaQ2nBt1OFQK9t6x7zuu2xXbvuPV6YxWG6RGNkUMe9/Rg5FwhC9yBK6xJmQYWmm4ayvuT3dkhjRDbQWv3r7Fel5x/uQera04rXcYULgUjKIYZqixSAepckiwuwg3D3dDKRWnWvBH/+AP8f79A56en7HvO372s1/gd3/vd3H36tUsj2ZlSACqMof1GGG/+TnmPsc7R1fmWsn4L38hH5/wFnySoyQhgWWeRJBiwcdT5ufK7Wr8tRmPb8+h3wZo/m1YG3/tw4HvGotvvSyjqblebn6f2JUz2cHf087tW4cXQV8b2aouM4s6xghHjOdSzTbS4XAibTjBKkugyNhWWSFRThc07ACoxr6hq6CbzEzuKCTBjijJH1NNOwGDvGZmm21QmDUZy+J09FIX6HaKAj7ZTNzPClT10CCaQM0xdqmRpVqja8+gPbbBbLez21O/0YHScM6o7TQ5ZgCor9IjYwkBVCVKdJP9wk+ewJsZkPtaJEpyYy81HHIzyMj7vXUMMwAnSEKdjaMsJafTiDbGk5Wjqa+Jo/wjuqty89G4Jn7Cwd2Jj5XsmkQwJJkywhNOpzVF2zHHh19fiozePMQAn1ILKttg06+gnc5yCfpqIcY8mUPHqiB+c+jc3JYs8zJvjCCA2Xp7+hZyM7ZHJ08OTa6J2CfcA+ZjYrGIE2wCL1ipeIzbkr9MYuX60uk34gUTXgzQgkOvc64RMtlEokwt5oSrETCzgujtBTgicRfdsRRwtTmNcg4X4MY5nZaF11IOF9IABkMR/IS3OX06JnNl3lvurpNlZh6sLrn5nx6lnOB9ZmDNxC5LORJvz1F8Idr78djOX8dnpU8ePqDJzmeY+5c7HNR8HOgQMdaYQbD1DUCFlBNqLTgvDdYLxq4Yo2L3Ffen38WrL/4I/4v/3f8JuFvwUA1XGK5uOK/3aHXB8xZLBICoo1SOJrxTKFgrfNccZLgBQS7g2CswlECowWfQrjvg3dEvA24UId9T97R1QA3DaAcUjL9OpaJvHft1x1paJE4Zdzw+fUAxw9s3QEVHxRWPF8fTBvzq3de4XC94rfcoMlBxJeBoDqhPYJVl0hLlngH7SUUpilaViQUzgqpQ3iwEpcjU1s3D+w4TRSlO7Z+Y162FBisE6AMdNsuoqldoqWjLKcbRqes3HH/+V3+Fxw8PWFrD6XTC3/07f4hPP/0U1z96wue/8yP8cP191FNFWVf4/kxLEpNPzBiEl4K9BxClQKugzIZnB8YB9wE4pTxaozxIkiayIUtr9UjquE8QSEWjCyw7zQoYbzkOdqcLkyTigqUscHNsyVqJxIEAqFWhqavoQA97KpKdYWMXC3Ywm2I5zKNJkrxM2L9MgN34ZDfOpYX+XUF54Q8WYVWJRTc1Df2vwxYzZiV7TyLGG7BhAUISji4hr3E0k4iywGHYLdlboQ8p4QeN1DIW9B5z6P4MOIGny/MF59Mdtu0Z162zygkHQ4yEWL7X+YThCuIdqChSgvFErUQ2hFAacZTQXwtfyw1aw9ZdrlAoqrRg3hakhiQ00i8SXy3vxXDtG563K372i1/i/YdHdonfdnz91VdHct2zxJNjUmsAgZ0Jou79KGMNxm/u/aw8M/T9ijKU5Z17Z+ldsKH2vvHRFUHvHZfnJ6zrinYqBJ1NZoLn+xzfG3iyTmejloXblAzs+449SrfgjqUUqBY0YkK4bFcIKM6sSmrp1ncYgGVZ4AJoudFjiM2pVIpU7WYQR7xf0RoRZotso/nAqCm8SmX3u3pizWFkbZHZHADBC0Y2Kc/sicTCg3uk2wRjCKAHfTmhKp9vBJ0MISjHUExf3osgDG7mYR1w6kvsO/U3zAZGsKX2cJyHp9A35mKeTCzh5q4xaVXq9CUNDkQWmaAcjg03KJEZgG+OqXQPc5ARLIm4HE5iTLZckO5JPyc4FReIIiWolIjM+G3WKyTeO+9vKYUtMJy0wH5b9+wOosF0iscUXD80mfI+SjiRWTYp0ZbT8hrAzIGLoy2F5Rw+4L6jRt197ywjcbPZijLpozPjPPkGEhmODDi4MamSYus2YD5QS8O6Uvzv+fkZ6/3CLCtGutM4bvdWFPQ/rGOGfnL7M4/eB7Z9x7ZdI7hT7NuO6/MV59MJ59OK07qgCmDPzyw5GNHKE/ts3V5soLrh6d075uuHwcbAdr1SGL5WrGuFFMW+X2Fjx3W7QNzYKlhJ264xL1+/usf9q1d49cO3WO5WnD9/g1oLWlOU2qDLCSIEnpT9Z5GIkSZNHIju0OGcaNb504k4nVf8/X/w9/D09IT337zH8/WKX339Dm9e3aO1xjkK50k8dTN4Zp22JwI4BH0rbYW8HOmYtTcP5aP5dvjjMx4N9/Hlc8v/+EG1Tr21F1pEH5/4e25E//930M7x+HXjl3sXRYozo2FysH/GcHz48IjHx8tkDqsWmO8YvWNZFtQi6KPjer1i7zu0UG+g2wCsx/qzWX2T1yTA7Joy9h3XfWBtC8tWSoW2FjojUf4cdB9HlJgHA7VMrafIUo7rFGiVysx8XVZqQSLYJ/bSfhRhoit2h5l5s9HBLtJ8g2akLTmuuW4Y+JiFkxjlQBZnZGYzOhYh9lLJnTt3Na6TKQCtSq2RAJ7YRCPKEZzMpASfJNddgHBMs0n4In7zvxBZDWe7gMkaV58lC5M5a4PPXARtXSMQjGBgMDhyz+ssGPlwJcup5JhpsVnfnkPCkBkGTA3JQPK4gxSIP2bvkfFUw/Ecw0bMMrgXX0G9i5RSECBLTyTmQvplKZ0w/bCPjtlxzaeiT8RIY74XQAS72ayBQcswQ3FH80yCKETIjOPC8MmcV0/mRhhAP5hxc/oFiJNJ1BGB8tSJKkeg1zTnFp/bMH6uKlCXRj8u7YFbCLymwLtGMph2QlQYdOS4xb8MSDivgJTG8mDk9lTnjs+RWCEAUJzJzQRzkiFn03bl2+ifuTtLq+SW/YfQGA0zJnN107tKyQMkg4PnUglQeZaYy4sEDSIQzWdh+RwQTDG9n/poCCblvLuQ+0B0WlPHDCDNgcu1sywPivO6oELwq5//KS77E/7kX/5zvP6d38Wnf/zH6AbAHFtX7PvA4wUYLiiLEjTYKFq9D64nR8fYGaipVIIE24C6YEFJK4ARpSyl8ElXIVgztn0mJ/be6T8TOUALgWkmxDsejQEkdsOuIfistJeXjf34RPjago7l00/xA/0jPOxf4uHdguf+DmIdTZkQUB9cB51t2GeoEHYlbYGaT9kSrmv6Mx5JLHGZPnRKU1jYXdeU9ECAGx2wKO1rlUCFRXwhjCG2KxPUNihifVoX/P4frOj7jsvTI/Ztx5/82z+DqOBf/Mv/Cp//4Af44e/9Hn7v7/19fP7DH+KLH36O890Jr+9WuA08vX+P4YZuCq1G4XnsuOwde78E4MHVUKvCvOP50lErpR9SB3nbniOe0Ng72MCijwEt0eFPoxrEspyX88YsmaCOsce+UWlvYEAthYLjY4cZJT7MPZgnh30ptQBG1hTjRMO+PfM51UJguy0Ybrj0Ho0HKKw+9ZojYULw7GCczSTSSBvL52oJbqdNV5m6ivOcivAVZMZBHn6yRCyJ2D8sbYIIu4wLsG2XYAUFausDLoraCmSwOqvVsPP2jHH9gHe/+Ck+vPsK4/kZCsO5LrChcBuRmCAxZAzD0/MVrgIpNXybIMkoGUpwR491J1FmCZC9TZYWhfFbUagb1KiDXUtFFuR1Y+leR+xxlZ9TpUKsQobBFLiMK3788x9TUxiRDOo2bbXEnmIxX8pCvwBN4JHMdwC7XadnmYmoGga1FjaK2TaCTNQs476xB0mkLiuaFry+f3U0N8kPn4zm3358b+ApgGrWsUqgpxY3H6J1EuikFoEPbnYsZyrBaFHSIB3QpcwI7RAcjABLCxBCXuKCFjTGotxQzanDQ6aLB6OkxEZT4TImlTo364jS6EzOjS8yMQqoyRxsR2xq8X4eLwMoj19JbHLhpd28Nt6XQZ7kc5G5eG2kBhSdwAS/LK6TG4gcp5ofmpm7ZIvl+KWz4wST9GOYI8oOw4EYM9s4MTkGEBPRDjK4H44a4FGGZkcmO5YRgPmZ6Ry4Zeb6EJQrjTpLDHQMQ5JGfUMbjZvOjMgU4IzsDx2QMH4TIEonKJ6tYJ6rFJaFDgy4H04OkWJ2GcwgRUrqdGRQcIxfMqwmfTQ3Wz9o6SJE6rNee71fkHTz24V5Czr9Bwc+yU1w8B33FlM9AlFuRmMM7NcdrVaYRUeT1rC0yqxDUJ6Hs/sWwvkvcIwrOyY2KOu0n59RlobWCmpRlKUBtqMbjanYAEK4PkstqwqdlvMZbz77DOvrO5RPzmQzwCG1QtoCEQop5twzw9yIb0JU/v/FvUfWuRW8/fQTqCqenp4xxsDT8zNO60rtN8kgw2f2P/8bW/mLcPX4zQFXzGWftuPWjrm/ONd3AR/yHd952tCPzgXgpWTRfwfHf2iA7BzdG9sE3K774xncJBTn6+djwktb4e64Xjds+44sW5+i46Gvp0ox8R5ZUgkNAclSKTvEqJGsDGTgyIC9O/UhLBwBZiqjbYsj2K/IympkeQzgkcGNkNWYAZ8sCOG+opVOeGod3M7GXAIsxwajZotMZIIYMS7pnNJW57rJVXkEpn7z9yPUPsqEUi5wapclk8Oz+8/BYknR2VnmF3c7bkEWeVn8msBTarubYwKKcqPUK4JZ0jVugvURAHCWTFUt4WAfzJ1kl2VJB2n8x1iOm8mZdiNyoWSdxZQ0GExuki8QCAxTyAsazCVggql5rZ6Z9o/sCFKENvyLW1uX8zxEtnMdzMTTzXluMW8GPjkJD/8v92mN+7+d66mRJ9EYoozQDQLmjIAkcOjAjQ4X14+8ADwy8EpfyXwgIR1e6NHxOJ+LBDBrUS5qNhhgCjsMz7IkJwNblAFnEc4itX4AnBJsNyCdr3hfMspu2Fdg7vSQDcy5esw9DTBJoOw0C3th6x28/xxSjWAU7jiKb2OO5TpNV3z6bDc+cnyv4V9pPBtLxrsf9u/YGhPAPOZC+vYq2QkuSmZeHCwJEo3S2sK5Q1+c8QuEM7pGpHR9+Bqmil/89K8w2oK3/+AfweP5W2cy7LKxBK4EmHIZBJ2uQya40ncy9grRLuybobrgFEFlNo1wj+7XQoAD5uwiHmsohYKlM4Hup3qUNZkB3aDDULoDajAVeABPIxgKm2ZnZ4Oez7grn+LVZ5/BcMXjL99BxsASpdYVRubTDXslh/22WRP1dz32khuoODeW9NZjH0ppXQEZX2krFYfOmsSaOVg9wqR9fJY7K1dkUdS2YKkLYI7HUvH09ISf/+JXuG7PeP75A75+/w3effiAzR3P1yvO9wuWpih1ZdijBsiAoQNKG+ywYHBRhddsBHtIgMGKn1IyqRH21wbLPSPw57ZowVaaAxI242UJ1PSy5IiDXjaBUtRa4Rgxfmlz08eQeX0S6zSRwn2wLKvqkUDHOPYsSLItb3w8y+6eNm3XtAPG90jaqlsfNLfQsFGHSHskMQNgu/2sXOFpV/J9ydbJvZl7Q46NRUOoOv2C1miTxuWKsT/j+viA7ekJ3jsTRrUQsMvxEg2/ZmD4BRIkD8T+GUruoe3mMBw2NZ957t9JxKjBVhWvB9uM1okkGmRJZXRJV4HUgmKgxrQCwzveP34ADFhKi4RFi1Lq8CcJGHAs4zxzLxJBT0ZUjP3oOxyO0pbYE6Jb5rDQLFN2anQyouIhMpGVDL6oVpku6vd02f8aXe0qzA2X5wtUgVIVa11xXlaQamiw3lnvq4LaCur5RDq9WWQ7BLU1CASPfeNDUkQHh3C6oqWpdcPlyk4K9dRIQTMArlBUVHUMFD4yA2nnEHYEcEALgzjqT/RwBznBRwhUw0doQSlMA431DndgHzsfkA2YKEzj300aR2xAnR0wijYsbUWKJTLDFOtOFK0WZEqMAbejlIrSiIYTTIsFOMX5AEcybLgwOEkC8Q8UW8AxT30mCzAqRTT3sc/FkI6CzcVR+LeJtssctxR797GzjhNRQ1YK61PjPkcYJDELgPFwfDPT5g6Wpwlr22GZnQ6BxVJYKhU2awQbTONeiGoHmKRH+1EKWtLR3/dgYnW2c3aNJe0y6Z6jMxVXVVBrwVIL21yqRPkCAowCvO/QoliXlXRF26FSUaSiFoVVx96vUKlo6wJ3w75vkCtv8ZtvvsFXX32F8+sVpZbD8cL3XJ1/y44XlFzPPSSN4st7f3P/Gt6BX/3y62jnTvCpLA0mwGV0WL/CesfmO7ptsH1jfbFd0WrFuixorvAojRFzaAe7zUSQWgHcrQ2n+zssDdh6RVWyNF+vC0UtO3WjALJJrAiWz95iffsal0YgsUYpKEp2lDoC1xrv7fsW90oQXGoFQpssGwlYZo0cuHt1xh/e/R18+auv8fW7D+i9Y10X/OiLz9Eia51h6rcwH5+he/5443nTKf0Wu+5FSC8v/mWprKeycjqR4vMsMoPCl2fFtxz6/+n4zuMmKPrtL4ps5+FeBTuhT7arhGP28PiIy/WC9e4MmOG6p6ZTh/cdsM6EVFHUaNbQO1nDo7MsXksNEMBDpDL4Kw52YUFkp2NO1rWhjAXP2xMEjlILulNTQAOUKWHfS61wADs6unfsvZNCrwUj9kPrAyI2y/lqC9YGnBndYDJyZAiK1MzuC5lfmRBIAAkzqOZ473vHGBv2jc0HLIDjDLZrqzAcdgsQlNCu2EN/YwTLt7WGGk7fzAS7I4EqF4dXOmqUr4og2pygVYjlatdgjQFQIbMo1lTJ7Fc6/KMzwaaFzAURCJjFHqkTGQGNmEcJsKJEMme2n1fwMzUtwmEZBoDZzjY0dQyG4fHZTjmEzG4LuJdTKySzr7dy1nIDFhz8PY/MMNyn8HOCeKUWaigZmUQwn9oXxyq5DcAkCd3xMz93lv9EVzBVas6gW+hcePhy1I4RAGuwFdx72O4BEZZVlihPKdFeHCZHgC0xfsL9wkqwVtSCkR1JQifb14N9LQb0znsopUCXFNOnT9cLL1GSFWUFXQTdgJMKmgiKthSp4Gsy8PMMBhKMPQJYzRIPrmzAPcjvDo/nX6pGUrfGM62AdKAG0AW/CfwRLAkG+5Ds2KRB9wI8ahMn40kIKHE9xz+L4AYOdbupJXD0BMpjPpX0iYPpzikrmGLhUPTR4m/bZOhBKiAVFnbCByfP0hh4XfszpDjq4rCxYZijLAVFDW+lYMc3+K//P/85Pv3pezyf/yH8dAc732N7vKDvG/TNPbwWXB8u2G3gqXeyJtpCAEIU+0b2dkGnfQ9mU18dzQWLC9pVUEZBs9AC2kNvywqKEhhYWwOqoy4LxJU2wgVrWQiU6EArQFsFS6GeyxjPgABtuYO7oe8DMCUA3FYIzvjD/9k/xPXxB/jn/++f4LI9QrFjFcOqZEfpGEDh/WQzJFcBPEr/bMB6x1IKlqXBnNpaUth1vO/GipJKdtkwMJkRDPKMDTwZdLH6yeb0mJOh+xSvtREC2/uOq19mmfgf/+N/glevXuH/+OYTfP3uK/xX/+r/i6fnJzw9PuFf/1f/Av/iv/gv8K/+y9/HZ198hv/t//4/wdu3b/DZF5/BDNj3MaVTemjolMr9tywLGfjbDi0Fp9Md2Ssbk9ulKF6/uYc78PT8TJ+tspTJA/zpUYaY2mxwRHkl1xOxA64VgGuK643xUVYddRsoIbpO+3Sz5iPyFQG0sfLoaaMGkPjhZzoDe8a4YPdoSf/DHUc3ugPYIvCV+6JhRMcQjzK/EkBUn6X+htoa4MDW95kEKrWSqRkdYidIZzZtdx5MXoUNNUFpZNtYgmajk/rmA00rigLvHr/C5cM7NBiaAC2AI3RnqbOTdWg+oIXkj9Ia6rLi/OoVrjvFtn1RoDJ+Bzz0fAEVh/UdblfUUlG1oNUyk0sOQS8LDMAW9ldVILWiBuHChexTUYFWQdWKNcAlSWDSgSoa5dqBj7SGnhpPMUbbuMK64eH5PTIJUGtDbWtgMgGSQYDG5z3M4MY5WJcV9bxALheM3lGWaJyUCSlhomR4n4xmgq7f7/jewNOLI2KN2Xpc6EwxTRiTWGSWFxEcP1wcTqr4LgIqC1DmxRE/ToFo+i6R+SpQ3JSl5c6Pie9EolK4oHK0PImsROENwKHWn8ycyGwiM2429SZ4jqMONrNMGsDZFL10myLD01+KB+QZlc+4L16gBIWmpRMgqdx0MsPRC2f54Dvw5J6i1bO8DglwI0P+zENlYJOXJ+IvvuaDJsgZY2GRNS2ZktAZ7LoHAfv2GbrjEHKPexFqNrhHCUYGviDanBtM3kCKpr8I1tyjrlbmeT3Pb0eg7Df/PZAQ/lM9mFUKBJgVQQwyn2Qz+OZ7o8QuLzuc+WjhcCzIoNPu+4Ztu07K7K87/mazO379dd8kKF68+jvvJGn6ERSs64LTaY3Ahp1DSq3s2KQy9WHMWXriQi2W4SPon0ERptVHq6GrVARdHVsl87IqszpNBbsKQaUIaotqgNTsGlSKIKVRtEbXmBT2FP7BY+OfNgexpj0cBH+53jk+x5xO+wKQFVeWgtqovbBtO8xZo67l6Eny8RN4Oca5vm4yZPEiuX1JOOX5h7TGcvv3eW5/ee6JoMe13F6Q3P7i+87hW/2Aj+/sOHFmOY/zxj2++Jjv/sxjvF88qe++nLyW33Cef7/DPzrptz/h9v7lN7zugAdyNh1zow8LR2iawCPNEg8s9VmICd8yUB1RWIkpFBzz5CX3ND8RN3vXwfBUFfg4wIdjn47SONw8y9yXY9Y6PnIwhfbY3QLTlHkfEyIRmRlF2uTMwMc1Jisib1q45zEJlhl0fv68b5VgY3BMpkHPv8c+lyVdE/xDZLfn/dzswTiYkLl3H3PxmHi3W32WvZGdTLbK7USZZ7u5LgsGqOdGHPeQDVbmPn8zowT5WT5fkx8z2Y03QV/OBolSK/4mxGRvZiVdghx/zUcOxFxI+CnBphcSPDFjYrc9Hul8FHGmm8z/PHJezjHKaXD4A4efcbvKwkaIsDFMjoMbKFJNkEydLeCT8eQ3AxYuGoM2wQQTPVncieJKBCnqk2UOy+t0ZBfmG6FJSlLks07bHfPCOVxz7NP/PO46Pney/m/u2tNf9dgfkEtrDkuCpsl78vjHZ/vyud4WQYocKyhPlvtNti8nk2yurJs9i+eRtF1hL1QmpjXtVSZD5tzL65jrP4DYYCKUm1UgECZ853oKtnHaCz0YiSoGEWMHzGF4/+EbPHz9Fb7+5Zeobz9FLQvB/u6wzkQ3BY6PoFzV56CJc91MsW1IkCk8TWuADiHCPOckSx7Vo3kJeG9NjsY4AofYmOcoAjAmNGS5IWDBcAjNnJDd4J8Ed+sdFt+x1AVDK7uPS3agNoiMiDW49l3IVMpSZQcIRCkTCQQCQCZFPo8szc79piAuODSOPABzuTlnggtRZVNiD0jrmyvbQ88wExC1Vfzwd3+E86szvnn+Bu+/+Qbv3n2Fvl9xefyAL3/xc1wuD/jJT34fW9/wyWefHrPX04/IkrAsncu1oBBhVU/3MUvRAAkZjo9sVdqxtBUf+VO3NnqmHl/ESjH3xY+qmTlAObf9cBTDjqc/xbVJzWJEXHt0qD+ipwn4Sf58SMB8C+THjT2N8crrBDDt0txvM27E4aMce1QmQoOjmKCXzis7/LoE1aPkX+L1XFcGdoZ0jH5B3y8kUXiHSrDsZnWxz3HMIiM+05vqotA6lgBYBeGDyGEniwhqlE9XlND+s5vY+JZVegzkxAmcWMowomGqPn2nTGrNuNQ8dKaoKzVw2H1zEkKGd8AD54CigrIKuEkSHU8ufhellmlP3DH9R0zwMQgx+VwkfLgXs/fXH9+/1M5Jdbs/nRlYjx3eiT4njby1FaT+X6AGmAwOJGTWn277IxzZovE4t40DQCoSmg7nE9wcl+0ZCsGi1JuotVL02QW2dQw3FLE5CVUMxQcsBPissmOElgY3Q78aheAKJ/R+K3AXDAUDyxTWtVKsbNvIiCkKWLSbHiMWC+s7e79EB6EUNHYsy8qODilofAMqdZAhtnXAXLC0FVB29RMJaM0VcGM7URF4J2rcxx4BssxFs5sD5mithV5GodEWAaQw65IOsz5AsJNdBaA2bghEnFlTLKVAC7W2zAzXbQCqKFhicgbyrw0+SPeUpUZvHGZ9J1DtggHWffcRC6lwObEDkcEl2VGOElpL7hpzjytKi0amzVNiK2qHAXGWepbl6MKnzjHcLjv6MNTTGVroSLh3XC47llKxlJoSFmS/3VAp2SKZxlzDGIyxsyObVy7cQvrhaT3BbGDbrrhen3G9PsMGxd8Sv5rZB9VpQN1tGnF8z8X73/+Ru9l3Hd9xjfmrubDjy9y4EbXfwNu391gWRb1je/OvHj/g3F7hszdvMfpA72Q/QAukLhB32HaN+RwO095RfaCK482rFUsteH13wnbdIPLEbEAFVhlo44qtXzDGhnNr3AyuV+o7tYLzueDt/YLXd4rzahj9ir5dsbbXEQSPY0fyCJZSECkmTqnLR6PHTiQcE35lN5J0cvmnT95+gvPdHX7y05/imw+POL96xt3Z8en9ifPRPQKZLDc5Qj9ioWE5J8AZIFkU02Sgih7RQGFmvsNQwlnTWT9hB3aW5a35LONb8yjSSRYbEf5fNxm+PU9u5pR8x2v84w/86G+RCgDTD+Vbr/kbc/hHP0j+8gjcbzf94288MozisUcZXUPs91hi7u1YcDXF4+URqtQjsSKwpjBXYChKoZPfwUC6+zaZQ+4OH6lT5DcOu2C4TgBLwqGDANt+xXW/YLMNRQuqVAbNaNgH6dlLQBK2M1Msg91m2+nMfcDApJD7FBO1onNNksyTmizTJZ1jU0IPBeYRyB1BtxaGvSnuOjvfINhREqwKEZS6RtZ9wmBIxgSDDX5i6nHQ+csnF4wP57tcFC79CIbTQccNE4PbMbj3HaKvCaYEgRyQCrhMxnOp6fyGfLkH4OeO3q9gkK6xOgaqVLKTQyBUfZ9aUw5ER0EGxq2xtNm8MyOKlBzw2VGNAFh0Ywrfi8HVAoiiSpkYh4QHL9H1h893ogy0UlpQSuojOrbrNQYrg5VwZKdzHN2ERHDZrsgMgE8gMYLPEqKtU3OC9zJClH1dVuydJZ/ZJbipQt2xWIdmsOW0NQk+kP1kqFSahQiBC3cEI17Qs5SpCMeyP6Gok6E/dpg57mqDoqARBcZ+JWDL6m8yH/axk+FnDHTWdQHcI/ESAKos2OGzvM8DVO19R1VFWxpG39FHZ1mQR1csYRfK2ZAgpjdNRIkmOg7fyf6n1pWigawjqmtwzCfrKHyZcb0gwT2GJ9wnXRzb6FBR3J1WwI0Ze3Adjr6T4Z5yHTd2UYVlH2IS4u/RzfGmdTob1yhqgt0zGHoPd0PpDWKC4gUpwr6jw9AJmKhgd3ZSk8qqAgzBihWLKnqvMAFe6R0Wadi1wx9+ir/4l/83fPEf/SP86PP/GK8+e4WmJ3z5zdfou+Gzz76AS8Pjrti74bpfIMGcvlsXNKWGS5APibkA0S2UTIJRg/UGQRlAMUEzQXFF9YK+7Rh9QMozVByr8Vlftie0UnF3OjPw3A3P1wt630MjxyEX2p9+3SH9CulPaPsTmu24O1WUcYc/PP8uPuwVD+9+jHUR3J1X7NsF2/WCpSiqHutrd8NQR5cBXQqWdYEOxlhjp/1eTidWEUjMVafGT/do3iQOXWlHnj88kbGyrtiK4DmBM3OMjWLbb+4/gUAwNnbIXmuFViYTk53+L/6b/xJ393d4/YPXePv2Lf7T/8N/ir5dsV2f8Kf/5l/hpz/5S/w//7P/HH/6Zz/Bl4/v8Qd/5w/x6v6HeH1/h9d3J3TjnBdpKJUNJyzKyUUr6unEfcXJZtx3R10KHAWXK+3DGDWAF8a5UlL7uMD2G5FwYec8Gw4fbAjhTvvMJk+E+k9txdgHtssOuKMEAx7q6PuF66ayEqC2hrHvGNcrdOUau6sNpnU2yfDeD0H40KrN0tTSauybA7O8L+zhbI0bQEYtBWaDHdJUoyN6JGZCL6gEcaEYgV0LAkN2+tOI892B5+dnZIMUVZusK+591P2qNTrJjX6A50QdMHzHsI7n7R2err/C0/MvsV2foPrE0kJzsJtdmRU9Hg0tFIreBY+Pz5DCTvQV9JVLq/FaBFhkqNpwt5zQtKKqwveIy68Ev6pG5ZUPlCqoFbhmI4LokleKYLeOh/6EsijqynOx8UQUL5sGfuwoo6DaPmVniiZQOAB13J/PE8BTZXlZA0F41QDUdeP+pgOtVpzKim3r2L/esF0vGH2gVrLUbI8mXT2wjyg/dFFs3V40C/hNx/cGnrJUBMDMVCX5WW+CqAwyLbKh6TN6oGeKRI1vgw8PYawIKlIzKgK7fC1RPMZwqaNwxCYGIs+RdSEXLT6Xf8vNcsLDhmOixgbKOnvAo1TO6gCiq4d4lMGpA8JyLcF0T3GIZJKlQXzJJmoIYC5mSIYUMjNDJTdbvXGxkxKYTKQoK8vSuZkB1ACg4mQiOd1uAwo68aypHqRUO2Z4k3X1zN7Go0vqciwwAY4OLpLdQxDZ38icIut804ekw2wTfGEWampEKTMII0Cn1AexmcWmTz41lYIVZqEhMrU8JDvW8Cu7HQlByhk/p+HK55AgkERmxedrJMY37+WgPCLKU5jll0QAYt5l6d+277hcr6GLkuDLEUwfmQ5/8Xc5XvI34vhWxgb46Bo/Bg7yPg8I4eOjlIp1XfDFF19AasPXD090rPsegWScJcZbVNCWBhmCEVmMBPQYHBhF7+5O2GvB4/0JfRhGN8A6vCsKDG0C/AJXQZWc+1y/tSiWRnrubN+cN5wB+UegSl7ni3u+uWmZP/sEnLKe3wGUoliWhvP5zGA/KNTmKzKj+/Lzjnl0ZELjnvyGMTgzLLnOdZ5Hbs/mBKuIY9yulTx/ZqvlxXmnxst3PeCb683ju+ZRviqH76MlEXfq3/H6I9v98ef/DVs+AL7PNR2Mpu9eWoLsEvXxKKa+y0wGx2tu9Y8AYoPDBveGG/s8kyKWvzvQgTlX43wWwf6Y2my3Wg/JrIk9QDCFfR3Ayy5Xt/d9MwpugKd47ExHzs/PGQHH1IOa2TuEFgxwzJ9w6CdoHEMqc9K9fALz/BHAplh4sqT4nkimRZZxzIDiKJNLx1fy2U1mRdj4+CwPcCT33NtyWfpBMhMi6Ttk/pP3GXoi2TY+fAd1jXKt3PPi60djnmNxq62YpT/8u81PTAfbI3OS+pQmFhh0jHFkbeF+zCVYPIcx5x1F2REaeR/vKeHD5X4oPt/vLvDQWWFLbiTEecxZJAvseF78YCYBBY4ybUfcb8gkkGGEaVt8aqQ4HArLsjk5OkMacGDvebtIAIaMv8iVxtw6mGGlhkbWmEVLL+a8O1mNAMeKYJcEEzV8ulzHHmVOcNiQCVLhI9ubSyt1VZy1cvR3Qg/JU18zxnauNT/miEo2lPGYhzlXUksEoKA2f0d/NjtC2hx3QQiq56POOZL7ZKK7YX+Q/q0THHXR8IH52MwS6Nzi/gTiBeKH5EX6FbnPs1Ih9J2c+iXdFOJKcX+p0GVHg+DUBjZ7xPPXP8H161e4fvUW7fwWWs/A4weIO/RUYaLQfaAMR93ps9oAbF1hSh0XdzYbEiEzacxSIt7qQAS74RdhjNC7EfS9o4+O6h1kd1gkPp/Iom7LjC+u1wt67xQwFkf38LV2R8FAww7fH2D9GZdtoPgVS3XcrxXy6g6tAstCXUwRYC2VwvhCe9Ksw+BYTytqVSxNocMgZlhGgwOop2WOuYMlT80dCwj+OXRqnjWtqKXibj1jKRWtspO0CDCUpcWqESvYxuYuqjFiNwkBH7juV/zVT36M677hs88+R1sWrGvF7/3+7+G0Vvz5j/8KdV3w1dNlSmQIHG/uz0yyw3luz5XggJQZg83OoWOE3S6xlnifFGqWGX9mWZgg5qDPaXlz5D3E683QneWSqkdynZIqRxVOxopT2y8TkunLzX30SGTOfS39gmmQE8hIdo/GvfjRgOKFE3Z8doIhWRZ4xGsH+zm199J5kViX2bFvllyGqznGmM08qIGGGLgDh6CtNoqsx5q+XDc8Xzbs0WXR/MaPCgedHQoF5vtMvAAKN40maNGWzLLSSqZZ5VCldtdAHzrNm022IUu3DQNmwBi51p1sQ3MME3Q3suY6IGVAigPqkWLVY5xmNQbm85UYGwKU3DAs4+rcT9L3cO4e1ncmDfqgDFFhKWzfjQkQN4il7xmJsnn/uWcZ9n7bBOI3H99f46nxhi02x6J8DCII5XjB3vtES8Wd2dagp8U0Q4uP7L3PTYRIH1uT98Gubw6gtJjATdjur3cYFMMJZNBSeyS2uJmJ1nCgYyOkt836SYtNzljP7wMz69lqDRFVovDP1x0mPSihSuV35wShLhTrUgEctaXekXS/KVppY268rEm1iQSneFuNbj6Z5Wl6UE3N+X4Rj3aOR8CQRwazk/qdwWhwuGsrEcxu07CYbHAZIFhHcbmcxJM0Hyp/7K3j4bAJmmU2yyYVkQwl6noIPLrR0WiUolN0bzgz4GwVSYR7WRY6V+EAuTm2cHqK1BeBCrvNAOoEdsYYKJUMLCk16qKVZUylUEBxOFQ7pIRBs44+dqgWFK3QQl0rst2iWxKAZWkTeEoKfIn53Bbqlmxb0kLDoOTCFODp6RnffPOeIvmSgCuCfkuHKYGVw3D/7Tg+BtEAzOdkubFNRzxfK/O/2ipqq/hn//E/wy++/BV+9otfwdzx/PABtVS00pABHJRZktOrV9j3K/C0wTuZhUinei2oS8GPPvkEbgNlv+LDwxN+9dU38I3Cj60BrQgz8gJIY2fDAkCM2gBLLbi/O2NphayEZChOWjUwN/lp9IGXzy/uPbJQHmsHwNHmNDatYaSL16L4wQ++wLZ3fPPNN7jYwP7qFUp0P5oE6BungYMu0zE3YzcdhaA4oIXXN/p+bFYQwEnSr4Kjbj8cfJWEv48Q1diiDwkZHE0NDr2BdN7/+ofcfL2J3G6+9W+9YroA31o2v/USbl/wP/iS++sMkLz8XjK9gRtAh8+njxGB6fGadAzp1Di8kSl63cjy05vEjwXLd8TeUEP8kgFelr+RsdoH99l929H3wW5Hithzec0l6Oe5RnrcA/enLJ4+qPQOwEuwP72T8eM2A9zsFvOiZNmA2+49uSeLMMiHIdiq1PRTpKlI5zbWDQJcMo9gNdZbOLrWuVf1m7+lo929Y78BUhBqJzMRdcNem23i469qPgO2BC5KaJu40nndnXuo1sNNc0/bEX6AB/tJO534ms5oCWAj9jPzg4o/ERKNDlIS10L/hXvgPu+LU49A4BFsINpQC+ADKgRyJr7hfOYiCb71eI4j9mpFYfNiOv1CjRsguvHGlGJWNu0bGUrmwOhXun+tUu+vNWQ3P84Nw9h7BDv5TCvcd5hGB6MpFQD0vpORjSgdpZOB1F6RsOeAwJWaRwpFl+gIJwZ4MtsTQREALdilmRQUshNc0DcGpPWuYVjHuO6AjMB/w48D/aJ96zF3jgK26obCiZ67w3zeHmCORUMBLmE55m+gfTV0r2xY+E4C650lGhF0ihaYC3owaDWeuc+5ThCMPrFEAG4z4Zb+DZM7/Pss6fEd7CgV+j43Bl+DXTHGwOhszW7u0FZiTWVr+mT6ZTc/oG88b113luh1g6BBUAM8MEijbfO4vgyO+3CMsWGMZ2w7oEOwrveodWXn47Li7VnxoV/wq5/8Au/lA+p4j/H6C5zXV3BTzrXr15wLG7VkVyl4frhge7pCSsOmikUKbBieHh859zPpLGyCAjP07QpY6t9xTZgMdIwQRnbY0wMQHUvhhjE2ViH0Ha02tFrR+8bYrPL+Pzw9oLjgXk64OzW8uVtxuXwDvz5hXw1NDae24fy24fPPfkBAc2yw0wqzO5wr2R2qjLXG2KBFsJwWZEmfBMhoSr/4MoJFB41upo2AoWowlAQfHh4AAJ++/Wz68W4UPV6TTdI5r7enR+z7jj6eUCX2IokmNDsZieuJHVz/X//Zf4Y/+Dt/B59++gU+f/sJvvjsE/yjf/xPUOQfo55O+Iu//Ev8n/8v/1d89dWv8G//7N+ij7+L3/u9HzDm8AO0sZ0swVrrBM/HYJXD3ncMGzgpO7EnW7WWCpOO3rk+Rx/wiFuKJrPWp50DhMw+6+EnDka4nVpzZaW2kpTQG6wV120jKykAp7YuU/bD4EANNiYoW+FwlNaOvQWIWCVBK8x4RST3PkQsQ0YUbfqxH3mQTVor8/Vkge0Yo8fPwZqFTv8igaYEoq7XK8wdrS5ASXB2x7Zd2Km3NvSdlUUjJG1KsiVFISMQAKce09ffPOOrd4+4dsc+FL5XAnSx/zAxsGO4Y++xr5WCLBGgmliN3Ibjct0IeCuroNqyYNiOPnZWNZihFjaAWJaVrMbrFn5WaCZGs6Phgv0aTShC965LMs4cUgukYsbY9HMUpRzahQkm1dpQKxsqAY6tkzlrW8dMDBjYdTYIFpd+wTDDtlOfU5ESBseGbm5kimqUyteQPzKHDWpi7dk59Xsc3xt4ylpB4Ng0bIwoKas3k5IghAvQ00mRQyDu6AATiCtviwsNUc89nUtutkUUpoYR3fQsNjxM8bUjqE80HirwEawrGCRa7EqATOIOifaSiVTGDUCKYl0XgkGV8oYZ3HmAI0exRIaW2cLY58LVYPlMhFcCSHKfrC06ZgxGhzGDrFWQrjkzRHS2mLhNQC2v4EAzSUkuU8WpdwJsVSnoPcSmmGqRyomUwbFlFo517llSkPOP9bAjXhOZRXNICSZQzJNE+Ee2zBEKcPbBogkDmIlzRR82hepzbBVlahY4QsQtghCKaloguoox6CS4Mij2fmSaVehcDqOQ84jsJ3060jo9nt9LaukBBuUY8zUJHrC7i8RcD703XLYrHIJ1jTLAMIgj64YdLxblxAg5Mb7vMvwbfUwbYAdbad6x3GIJR6vdqorX93f44z/6+/j63Tv89Ge/wNCCXRWnWlEkRe/YCjhFtEXoAC9RAtAcqObQQdrpp6/vsdSCUhSXja3gDTuN5c4M/ZIaC2aobmgqUHd4AFoSD45r7gjqYzHPOXp7n7cwSkoqzbGRl0865dxy7tfCUqr785mvV49zeATPMgOg1F062Ca0rZyheYTtSe04aIBlx1XKnO83V5ZzNdYBWRd6c/HJufK53m45VC9H4jtnyu1HcReQY8wmwHcDos9MVp7howH/dZ/2G7XT5Ns//neJRd2yJW9W/s19fNcnyovXHr9jPnvcvMNBQGPbd2z7jt47iipGD9vjwQr1g+GSe1GWaOWZCCrEtWZmtxvGoBg4S1Aq9TecwaiGGCoTN0oB8Mj8uhksKSVpF+ZzzSQL70uF2W6Bg2XskRWdQZjGnBw5JebZKNJ5I2YdmGx23s37zT10sk/m8AaoEYGnTj3ILElj4VqOeoo8w3M/i5JgOZhcRV9OrXT4iL/nefice2iRmIf6YmSUgRKgGYgQx2eqAiixH4XvAgCzkVmWcgTjCOYTADi8rpu5lwAADuBQAjfJBMp8edw622wrZoMhSTW6Y26nuTDbI3FzAG3J6rLeYSLhRx7+4ItVEdPH7KbJCoAaQIoGs31EORmBdIIJHuWlvKfIksNh3iHBjs8BmWWnJe2Qz3vSaF7B8Q440QERo6YLDB4ahhqI5VFi0m7mJudjN8WAYF3JArnusaqLhvYZ51kJX9jh2OI1OpO48aQjKcbzRzAIAih7AK1mxk5IqsHIAEYIapdggKVvF/E/JEr8ADKLjZePIiHqHaz1yTqU4LsrAcrkgRkswxh4yGFAMBkc6W8BBMtKiEZnO/XsXgsPTURh0goqsG2DgWBXLSX8ek6vroCboi1RnbGcoF5RvEWCBtBVIFXQK2OLPcq3tAmKNzQAbSiqK1o5s9FAZQOADc+4g+CLM3Aa36C++zHs+oi+3GHvgIvi+cMZw4Gny0bWTGnQAZyNpW/DnDIgDtTrhmR/lRKJ3FgL/XJhnCX0fUtTDBkY6JDKUpen7QNLLKMr7kkckAHHhoaC5hUDVzjYJc/hWOoHqAteYcFJCs7eYPIEqxeUENfXeuWzQY95tQMazb3aDhTHwA64QXWgSKHgt2U8xGesjYy0JjpZsEWZYDQzWDeokLF01yhZ0KKKY+zXCLQJ0hQUqgmUgjeff459i0Tk3vHw+B6tnVGXExCi+KoVGuSDx6cH/Omf/Qm++exTPD58jh9+/ile35/x6vVrfPbF5/jkkzeAsuSYZVo7Rfctl7AjW8xb7FVck4xlWiuoHqwTcfSd5cPcUlmpQvsZrK+08SDok+dXoYA8wjejtpnHOnNc+z5t13BeYLcQ8DYKVLcAOba+02eOuEmJXM7kzJFMkcAAk2Uavvro8ZVMu1LqZC/x/8c+K+nHxU3NhH1mE+YelE4dbbANR+870HQCTeyUmhI6WRhD+zjMCMJKdJWlY4xkZdMvj0ZlZni6DDxeOvbhGBCUSGxDDGY9RLIHoAZRxslMPDMJ5KHTJrVMLSdRASq7P3gmkSJegDp7GCjZeWpA1WSueawBA6LsWoSgfFE2l2jaoIW2rSiTHBiYmrcqhIdYek89zGxuNYZiE47h1vdIBFC+pqgg+5eMLM2OTndSasxxmftO7l27EUQu0fxhVqfB52ZfXviuv/n43sBTt+ucmBIsmW4DI/QbSils/SoCVXbA60ZqbZaLZX2n8O5493POsHxGhWV6cECsczOsNRZ20Ls4BVgaFgicWSzMWb51UIZDdCCcQsVaqUnEFrMjULtgqhSJDgXn6aAa/NhkYyMPYvd0tY7OLxILLYCnGw2sCYQF08VHgHhKr26kwZBsexwMIOR1HsYgS8Usso7ubNNeS0WAuPC4nloInjEL5TFJqI/hCcg4g8vJJUhfJixJAY5SjHiPDJslelN7JjK7vYfzyIcdwE7Ev0E/7zvpgjrowZoBtUQ9qwDijm27EBScAquOpVW0VllKZRxXSXoiwlkx50KNz9RIr+bY9dFRnMDZUMWIcrwUCaWQJZ2xmem0yGrGjpA112ZsyeqiuHOb9Mk+bG4mB/B0ePJJ2vubfHxPAPtbAX489ojtDmfZ46QWulylVry+v8M/+0f/EH/653+Of/fnf47cBOXuLp5zD8qozs2bGpSKxRyLAA2CZg7ZN7S14fNP7vHq/oT713f46t17vPvmA7ZtMCMR2iRrPZOZOToWd5xKgZpR2yKFdMBnDkiAtsf9+Udf45ZvRy9ee7A+b18jYU/HYLlOrYUi6a/u+ZoS5t8YlEIpVii3kdm8Hg0h23Bw6CoA8LkxW3alzPDQ6fy8eHTOdTfb40aW/oDZ0uE4vtJaUVPu4xE45sd3zSV+8JDbOXO8aAbJkjPi9l3H72aZEr49D7+7TPTXL7qP//Lr3v/bMju/+TUH+Oe36CQ+vvb4nTBzO5CaKRHUg47lddtxve7Yto5aCmod0wZZlH97rj0YEGCNezq7SYU/1m3W8e+9Y+s797XWGJU69+RSKuAMkFtR7LYHe4Jt4V0zkCafV1WgJPDSyXL+ZYhAa7CXoozKRgcCLIg07QTLjrkQjlop3MuHzXmZXbcSdOM+Sv3EWNUHayzHJ4LpCcRKhM5HXdJRXep0HC30bzJIVMjEidLiUfvJp04b1xVFZ7v3b4GT1E/0SBQB3gICsaDXR4n3IR0ASEU4hGOeKP/+wlyI36xQnb7cDB5i/xPz410xFunol1qgWiNAiOfjaVdkzk+BYzwHoyUTWRIlmE5nOJl5BN6PZNexGXPOunV2nots/lJugg0bAeCFY6+hXFdvgbBgyQd7hmwM5ASIsZGpC5MaVZDCICXWC9dMAEU+MJxaeXQNhO3JRbGUyEgN6nSp6WTG70YNsHZ3grvj4f17VAVOS5n+rUYHPZcQqd62eF4RpCQzLYMDEcB7eKzUWEvfgwOwQGvBdtkxhmHvZIaj1BAotul/1yJwVZRgiF/2fZ6nSLC+w5/pEZHP+RXJIRECfBZpYgnbc5QBG2zskcWvyPbyyVqvhe26s5OYgOX5WgvK0uDCrljqTsZBqziv6yzV642A5tLYobnpGfAK7w37cHZ9PLGLYC0DAwMbNhQ4pBQsWrCWBSsqFmkoaBAv6B5MK3uGFsWyVLh9BXx1hbcvsSn1w9yBvRWMYXh4fkYt1Dw6n+6wLid8eP9AVtZ6hopijQDZ+oZWK5a2oCmD3H65BBuzMz441WA87WinFWWpGPt7+LahNUVVwd1SARlA2dBEsIpiCIGnNbqA3dsHFANee0FRRfOCrhtG7dj9AvdBwCj0d4YbBsYMjmUReB0Y/RFwQ4NApaK6MO7ZsgYAqKVCpGDRKGWUQW1Areh9h+2GqtQMK23lGhdlF+PrBXVpaG2d3BMUQS2K3/3hF9ivVzw/vsc37z/g/ft3uLs33NUCrZVaf1pZDlwED08f8N/86/8aP/z8c3zz9Q/h9kcQ/SFeffIGP3DDZ198hn10ODqG7djHhtEdYxx+A6s5MIEnMwHEoAXR8a5GhYdjDy26UmQyPVst0yGiThLifAR3eu+oxYDq03ZlpzcR7l3XfYMgNC6HwdCxhzYYfEARWrg2sA3qE9dSoTUSNdEIxGeJNffnIjqBJwLsFrIP7JKromg3bo2Hr3gkBSJh40AyLGswdnP/ZjxLUAqhkdf7wLaxc+rtkcl/jUoTLYxbh/W5H+WmfDRMAe2/VFCo2/H43PHwtGMz2vVaG20QdlZaYScNCAZkHF8k4n5H8pJVFgI46ZuE1hPLqMPniDI3pbQ0DNEluPD0KkcDK60F0MqYxkGQVBW1airQQMC9ZIR2NGCza7fUCgkdaLPBLvJINlKAjrHXL21hxiZgkr3zPR18dhrsNz6jm70DIFvNHIVQChJzYDyGm4TZ9wtov7/GU+Eu7cbB7aCQ3CgAaxodS13oaAYftEmFh3aOBeUyO3FkllLJXYMZhcuK6sEGCicQEXi1uiCjIYvBk2A9lcxeWdbbOx0JLYezaOyI1QmDwjAghcEvN0yBazohpJJf9v0Q9AynpDsYlEYJ1VIrqcgWiHLAMQqd9GSIMgPHdPEUEXARdI8gAukkZllMoU8XtMjbCJc1vuFYh/PpI7NxMSlGgZlgv5I5tF2MncNKpVMywRwGfwNZ3hcoL+cX0WqhcYAbJBBSd4EWIsRpGHldgtH5dCnqb+jdw2kEBdoh2EaB78DD8xM7kBUNmqBjv26wMWZdcS0KGwP79Rn7GKj7jt0IPOlimC2mIUxnmcM771drwXBhwCMVUgpKbUSE940glbHNpxYlyAeg1RIg1NHJLDMoKWj38PQMc6C2E2o9QcvCgN8HSm0oIRo3OzbdLEzuPfH8Isym+OT3XZX//R4z8OVP3/M9N8CB269hqngAxgBsoLjjvDT8/o9+iP/N//p/hV/88kv88qtfQSEw6xNz5LoV1LKiwtBgWPYdzQbulobzuqJH+cFyd0eQWQTL/Yr7T+7w/PSE/XrFN796B9sGtO8MmlvBuSoWcVjfsF+fsRh1AtjBMotmkukjR0z0rQHIG70Fa45xud2Q89mLYNK5AXBuObUgEEY9waY5D7Ns5vaDYyNAdOCDa5Q8Ywb4xOE9Qk6flRsOJgkElVYonAi4z2d2TIWbQG0yoQ6e1XcNyMu5dHwvN+/U75hiZItkSBvBIAheQPKJ/A97fB868Xe/5jct7Ft44ONz8c+5N8wpBp+lFhA697UollKxdbI7NFB0OiIdaWfYDGMEU4RzqYSdIuYoqG2BQYAx0N1gnYG/mxPs2ne0cFJ7p6hxv9FdOzr3yLwRh0fz29ivxQ8FGWEJ9QCzvmRPaLD7bv/F/QdKlskgi0B4itYCkX3keUaIaTNh4YAXnj+D4ZvxJRs5S414hTndD41AAVMySs5flP5MDRzM6YpszaSFjmofEj5MCH8XOuFjyLwn93K8VzBt5hihExOMFjiD8gxmJjCpiExtrLPKtWoxN+nQyrxIR/hROBx8ycTeZH0F6yJbZZnARgQa4a+pTKIRllYAi/uLC8siRAVCu4P2MOefhs+w+2CXIBVIaXBRMqeACWiaJbBIu1pFIAFgmQUAOYJ1odyD69KQKNLoO5Kp5OLYjSBrkfS9gGw9nes3QTRRUI5hHN2Uxkb5fjV2uqqyzLmfHdWGkk2/XTmh1tNbqA6gdIy+Y+s7mgPFBYX4HpZo5NK0ANmpKcDMttAHvjz3YFAwyC61wAZBaKmAVEE9NTbhHZz3RRQVihWVPp93SmcoRY7dCAioKlpraMKCtXSqs7wil7OBfp7Wgs06uo+5Fy4l/SBWS4y+Y20r1rZgv3aM7ii6oEhheUp8Rh8d+76z5EQLpDLV0U4rRAXLusQ8KdOXE7/jGPmVc19OgFfAGxaPsuLKxKO3SDqvtFUaTOsmCh0ONWCRRkAMdC99GAEGPcEtGCBl5yZWGudKIezy6ZJVBFe0MlD9Cfd3BpwB+CPINCtcV5qSD89TxgJL7qEEgVQ79rFj6xc06yij4Pdf017Y6FABzo3rqHgDbMBtxy4d5gPnpUSCu0EdOEvhPCjKtWwVwwoD7RostpAo6GG7j0SqwaUD6Ix6nI0HqhTUpgSexKmpMxwFJZpHsaRHB8d2aZVglimUuREswVzUujA2NEeZQAlpa0+PDxAAP/rRj3A+3wFQdBdsfUOrC1QU+7jA3HG+W2Dm+Ob9O/jo2J4vqKXi8ekZv/r6K7z/8A1GH1iXFZ999jnevv0Ud/ev0XfH6HGvzn3WLZLXIliXiuv1iq1vSF25ZV1RSkGruV85gUA3KApUC67XjjEMWnh/EokUaW0mEPPIRkSayc9wFwaRESZsEL6i0m5v+8Yy69iTuhvGvnFNda7bGo23Sgmf0wZGJ6ithXag1DKbz9wm7USi6Q6AZTmFxAlBMoJIWUY3MDXXbg5Rzikzh0a5WgnJlxYgSO89WDk776/IZFZrXI+WgLWjlA/uKHVFKQ2PjxseH694+PCMx8cLtn2HumGtGk7kgCcFKBxwanGRaGBG36YWNjNoJeA+CemA8JfdgeIEVOgNOKqx3L1HmdsIT1eEpJnspgkHvHcy65RSPOIFHmWcGBKafBYAPOeKdfpajFdDfSlOGQUlM8Ho5ujbDtsGarClGFvZrNpxY8Jw2FQxm4cPVmrVqKeKbfuIDRKf+J7u+PcGnqIocKJ6DopKugLdnDSsvMgIrEopNwFbGs9whEpk8Vwj++GoNQIwHG0xA+EARFE1lOQRQuHwo+wJ4YiMEaATWVGkaKVjRWFMCyaAg4CFFJ0bZ1KdOVEcu5FeWJNqDT+YQyGuWlj6OfVV4NShSkFRj8kGEZYrAPCkeotQZMwTeLoR+gZBvMwQunNfO8CQo3SPqHOY5NwYjFHl2IHeHftGnljVCowxnVKAek0EtwI5tT6d5tp4/SNqV7HvNHxCkFDUsXcyx1h3qnArMzDsnXWz9D0V8RjRvaCPgct2RakF69JQjWr/l+cNo3ecTicy6ZRg2TYMaoZ9SLSLjEBe2d1AXCAj2G7dsCgCEY6FGJu5aIFHrXUP3RGNLn5mSTNkCcGk5CPuWZhFM825wLp2LQ2QrIcOcDWAs1t9hQQb8vspgIsjRvubf9xuQLG+IkCM+AcMoHCU186AB5Mya1EOutaCz95+gvN6gorg+fqMy+WC3scUNLbQGKvaWBpXDLUPVB9YasOyNK5qEei6oCwVdV1QFsVyanh6WHC9XLE/XrDjCtkvKCI4tQVLYbYao6MnGBlXe1uMwnKRWyjt14yN007N/lfuE3yhPcAMVrKuPc19UW58NngNWdo87bqHXkaMb16Mz1ckBymYhJ7BNAM0G6ze0QSzEEyJ4+poq9L2InnmceG3m0tOdv+uEfmunUhwO3cgmLZe8O2X58fN6+ImdLMeXwI2c459tJCOp/ny+3+v49djRL/hLd/j024AmuN4ebUCQerI2TG7AEhkkBVVFF14HolyKDJmZd50Cn6OaKIBZDIoyp4RGgJmcC3M+hq7+8Aw2ZwVChNHd48ynuQTIafRy/sKJ2gCiECspxsH3ZPpezz16Ri+GPfIngboZE52iFno7gBZM4YsJRxjRNl0/PF2rKcPcCSAEHvLfH4v1hpL08kUBjzm5fBkj8Tvpj2UuR/07lG+kftJjS47R9nqXN9Ge4nIGLMFutNGBOO5RODi4ZxqgI059oIEfzC90tTYgN0MQWpThl9FIzFiDGOmzUwsH7Db8XwTdErgaWpxas49mfYz22NniU2WjEkwjandI2HzowZOZso1biMSlx6s6ymuqkjK8whgVdxnIouonU3pgloImnTvERhGu3Q59rUX46jC1vCwWd4FIFh3gMmIzHWkuT2F+NkN2CC4DPoHp3UBpEPkmZ0GfQ/7LmiZpCjsFdyyvjFK4QaAWuOeLxblbCxLqaWgd4cPh1bqfxWt1PEYwdoGUKSgFMF1e0bvO1otTAQ2+rJVmQxZ1xNVkiTKX4W6ru4+G7N0i+Tm0nC1jh56mSKCu3WJ6dcn8HS3nnFaTtieojsbGooWnNYzNThLxbZvuFyvQImykvAdykJmyfnuxGdgzkqGYWglwLg9NQsXCAogyxRrNh1wHZBWgllIW1XqEmnjwrL7PlC1RskLY5MxBopUnOoC7wLfgSEdJo5aqUvqGnN1gtWDnSUBtBNLH/ctwIxKRsp6WrHvhn3vM9apNTooWpTAuKHsHTJ2VDdUK7i7ryi14PpMMfXTwiT+IgV9H9j3gQ20j3cVnLtCrcclgKfCuiDACiyBJ2b1IUuDQ2HQ0MBy7NdrsGBq2AxqxpLVoSi1gb11DXuIpWsC25Dw1bO7ZbIDwLkNstg95ENop1iye5sm2K4X1Frx5s0biCieL1d8eLrg4fkK9QGHogc43ZYa5XiP1Ay+dry6f40xHL/48hf48PjAOLRU3J/vcVrPKGWJgD+iQqfGr43B0jCwSmMXAh8j5GdaI5Bda7JxMpnAu1fw9b0PVCGLMVmOJbqk35aZ0Z9L8OfwrKiFqCFvQXuswbbqdiSVgjt/U853s0drgItGryK7YDatKDe2sBS72X/DLtHso5b2ooMdO+DFfnUDOk2/LPwCF67F1FHOv2dpXg+NRTKcyBizETp2GZsVXkTeU3paRRV9N1wvO/9dt2CrBsM5gCdosHsSgInxTamCPlLChXYXSvApdgPuww6oFRSvKEL/vEQVVt/5tKwezViykiZdGotu8mIGaMQCuedTejG4KnKMs2Wx/2DJeqBB7sQ+BLnePBIoZKNTokjmOECOsk8LQJW4w+GzTmZeJIa43mP+ABFY4Hsf31/jaWxh9AgeSKmx8Sr2jWVrEhv9vu+kGyONjALRuNvE40oZZmVpFgCoRag/At2N7XcMAKrQUkPrKGnmgA0GbrWEE9lZrnYIcXs4Y06aYWy2qdVE9lE8FDeYku7cbRBNLmX+s54LNxQqooTtsmX2c53AhJlELT0nSQ/HS8KoDI825gJ0T4yUt7DtoCESD0RYgBHaGjEXitbw2gvBk21HL45Sjm4t25WG4iKXEG4n4r1dBnz4ZJ+5k/6d1EuP0CbLBcUIbl2i1rxYMIyqsiZWHNu2sV2x9nCuFogQ1LMUUBs8dytBx+RtoYNZre3amTRSQbbtftyukF2w9J3PsmhkSx2mIXJuBBSv24XzzbiRNi0YJpCOqAZw2NOV9Ma2coN5fQKbadKIZHtpKOuAVYTNWERRakXVBpWKp+2KrRtOp3sABbWdIVLxfDWCetbx4cMjlmWhCDYOZlNm8oDDEIvUv+Ggk3z09Tcdue78WwDAPFsEd1BaXhXH2gpqOeOP/v4f4osffIF//W/+Db788le4YguAhY5SKQ06Nni/QIyCe69ev8HrT17hzQ/fop4XLG/vwO6ThtOiWF6d8PrzTzG6YV1XPH94wPsf/wQKx1oVp7uKu/sFOCvQAENn9tCC3ae395827ON7k+PvR7hMZztLCSQV2I6DtdoMyNM5gbPdrKiE1kdgYZNNEkFkijveaDC5cc4m6jBxmggYW+E50w4SoKDzbZ6iwmwEMAN0COvDb4Anbjge16T4/hP4JZhiE6igI6GJL3gG+I4sHkQ4Yv++a+XXMtX+ukee5K8JQH2/cx9ZzcBq+HWCRtw3KcZMEF1VkVKYinBgbEyn2UaHlShljjL0nK2ckwxE4MLOR0LRe49Qizp9sW8pcP/qHq0V6OhwD+2PoPEnE0cSMA3KorFOJRjMitRQ4k1x3aQYcgJPZFDI8bznmGT5Oj9bJFgucaosv6SDx3l8u7aOR3j8QBH1XGu8zlkmH5/pk+0b5T+SqyPBjqMUUDR1Kg7h7RIMI2a3QdaBUtNlsx27eZSbC0Qr+Kn0r0bs0cOi2UVkqqPAjWvZuHcp4hxx8SKOkgmYBP5yLafD6B4i9YcGVoLXIgwexoiOm2YAyGayzvOIS+hPAAmJljjPiCAthepp8DhS7h1uEuL2h64ExbGp/9IKx8tDw2TYgEuwD8KJJ4OMzDskSxRAbSUEWYFkLbhx3rLqRXE6LTAf0G2nr6g4mBr5RIOpzgQVGWRaK9rKa1UATVeoFKg2QBogd9jMcO0dpd5B6wl3y8K1ZdRIGzYA7IA+o4ihqKM4O5QtYQ+ToUSfuMN8R5eOIcYmEnCcTkx6ndY2wbfLtmG7bqjLQv/ZOFdbPXOEx8BpWXB/PuHDh3d4fn7C+byEDhDth+17znAUyBTwhQDNGxPNSj3NbezQWvl5naW3ezwrllAB4m0mPsQFuwPSKqpWtMJOriPA5OFG3Z/7ezI2wnd2eDAywo7YiJIt/vNKYd8RwVrJ0kyhLeyj5wYG61xltoc/5gqyhiOVrmyQMIz30uG4WPjZtmHVhvNpwcawHWsdXNsrff197AQCa8W+7Ri94/68oEalhDvQ94EqjrVs8AL4GsloH+yoF5ZKVbGuJ4zRMPoyt4xkQZSFAOvs1uvA3XJCOd8RiHDDUAMEON2f4CKwzBQOjz1EJrPIBssse8iAqDZcd8oVjIeOvu1Yziu0OMw2uAHbAOdwCbaTUEOL6z/2BSHr0JNYLpjaSUw0R8BsA2PfZ0m1YAe0B5tJsO8beifA6SL44nd+hPHLL/G4XfC8fYBvwOnVa6hSxL0VxSevX6FIQ9GKP/+LH+NP/+yv8HR9xrAOLYLr1fBv/+Qv8LOffYm/+sufotWGWhq++Pxz3J3PjGZrwSdvXqPVgiYFuyiqsCGRKhs6iQI2rtRAbDWLZMg0sYOFWUuWOx/ldh6tDmplIh8eJeI9pWHoA6oWEgiI7oLlZdvczyRA/wTlE8RkCWua/XRiYr9LVzKApaxmSbIEE6WF5AdTElCgsIGZyGr1FLiJYMceY6szKe3DMWzjmAwydkspXMPGksHs3KaqGJ3xYiZqRQWXyxXujk/WE+d/pQj9GIPVM0UDk+ioRbC0gvvzCh8b9v4MiMOVc7s7MHoCTgWJRFswivboQLdW+lO70Wu1nc9l3OyhQGyv4S9XYxXMddsgQXahP8L4F6LwjZpd0jIBNcK5yCRQ+r03PhNhFUzHT7IgELhuFDKvzqTN6XSi1E83wILVFB3pqlbG4m4YY8e2XSG1cTzpuk1Qa4RdUHdUAaoTwCoOHMnD3358b+ApS68cOcE5sIjAnHlOfnB2tTI7xMQz2OJ7kjWQjuB01SJ7FF/T8LtzMwhI0tML58WERZZIhulRux8bCyO+EOQSBM0sP9LDmQ3KWjgaIx1XJb2XukTZcSRKxuJ62OklUNDQO3CPOw5dGsv7imyNGwXMLJgR093yw4Z4AE90lMKBjsvO8wsKRjf0LkDGGkFHHx2zPjVbxALRpnVEMCB8Xttg5wOTG7qeZCcSjvm1G2CO6pjMLhivsxuzIBblVUU5JpqbpggD2QiKMm63mS0zbjKOEGKjs2ggjXQfEmBcBCjxiNNvZhvhYwxVEMFqPusAuobPcUVV1Eq6sUakl+PNc2TpyeBmrMw6ppNv5gEAUpeAQVuIUpuj7wPbdugj3AKHHx+/UQT5f/Tj5bW9ZDgdQWYeLwgbv+5wn+uTvmHowDTFq/t7tGXFm9ev8fT8jOvzjoEewfexXshqDrtRKrQ2tLs71PMCPZ/AybmzA2dTNK/wDrz65BFFBZevTlDjJtXWirpWeCvw6Joz9eFu7FNcPAIDuQGRbpGIA5zhb2429hdfc4PPENkPJ8DT1b/lg9yQr+X4xuXFL+bCcDCoSjFPQ9KTb0+S6z1AqmmJAuxJECQCDkcGszf3MW3tbzs+nhhh0z56L8Hw3Cfy/MeHEHiLe//olPMpvPhDggv//mvsW1d+ULG+/dffOv+/fd0fPz6kgxYfcowDQpvQCYZO9kGk66LUZBoxZ+LFY0JkAJ4fz/uIuT2BgPxMQZZV3OogOsCkU5RawQNmyHkUAf5k7njY2wBfE0bkLcUZQ+vK4npfDGQEj7M8FWlvgvHkx/7rc9ziDC/sUlzPvLubsUU6dfnJ/u3n6Jj3n7+YlkHyUm/sxPQ/kEtt+iL5giIJG8Va8ChCi8AxRyHHheASP09vP9gT5LLwlY51LLGHS25AqdWY435jVOZcuTk1BFEOecP9DLvoWaoXPhtffyT7oMlnDKAz58cU7z6eM6895qSwHMcTZFWyzkcMp2s49q3EdVMjk1pLwRcKhFri+3KT8LEAoIoCRQXLUqPEglo0KgXDlbqCXrnnBGimRdlUpQpZMRCoWCRPTlCJDkhSYViBbuhSUNodtN5hObEMpzgd+33f4dgAEdTiaMWhtkHcgqcjqFZiaAWGDndF14qhRztr0ZVlVqflYPoXia69LPnntht6HwDcKu7PZ3zy+hVEDW2pWNeKooJhO/3Uxq/Wc95ggsqzaYZW6myKh7ZOOTTcYj1JSg1E7FBKgXdj2ZqyEDGB1D1ACDEjEFEKZEyuXG5uSJA+y1+pwxpfBZg1IXBAKAsBo7BFWgOPdakRY4jpDG7hEn46/bqBQz9OEMAQCkQ9fEigaEepwLIE22pjEreFVtsujtbIVIOUqU87kwZpQoxrNn1yBwG0ZaGEhlVgiq9LjG0hoFOE71UYaq1YWkX1AvOB62B5aasLTASbSIwJV7hKJpkclNcckBHllqWgR7dvDId3h3iIuiNBa59zg8CTIEszpSQR4dBb9XyOYAxZg0047dCLf6Gfo/TPe2dpte8dpTYspxXLuqC2hm27RDdSyriw86KitoUGxBUPT094frqio0MEuL8/wwbw7uv3eH664unximVZsLQGccH26hU1w1rD3WmBOBlbiFi3xb6oweDKNlSZLEu/BciKiEi0i1BnNmw5jpfNeAN+JK89kgl8Occxy7ghmADR7T7Cz2RZJ5M7HluBRzKC3yfAMZ/JvJ6bJxHPVELzIF+SZcka4vgq6dke12ShW+zGahE70hvB5g3ZFhG0sAe5GeX+DwGfu02PZIJsagG0CRNZY2wsQXbqCJpLdPXjUJMBSfDIYy/hfRIM9Ny9Iukzu7kBGIEJDEt//cjjzHGLfTLIyUysWox5iYYQ2TXXqb/mxnUjE2uYCMoxNwpJM1LkWCAxf1yC2QaFK5MkBiNpJ7d9Tz/62H+zcy2pMCXuP5bLzdrWsL+CYC6m7fqtvi+P719q5xH0lwIpUWedjnGot1s6RVFGZ5lVdcCjmCu7paVuC/UQBCqNNcQe2VBIXF7QwMCFaeYYxtcHo5D/YlNaQseAm0Lqwxgghlro6BUgxLnSWR/o+05RuQIghLLYuYf1+G4C6wbbgdYauzco27dufY97qOyKYXroUyH1WkgVLFJCe2BgdlbZPbKrNBEjA67bwCuis6NLGjtwEDkqvD7EZiNjGn43dguYPCYvqNWj9teyuQF2pYnMTpKITJuMLMkRoCxE6IMaz9o5PgCtCpQxbZPD4utOtloleGcAni4PGKHhISooa4kWo1cuDneUemKtfeWYjgupm6VplIjc8PrMoVKwnpltLGgYw9D3Hp33BMuy0iHyASmFjpgQKiZKDtYKC8XxiTQXlpX0jhoOKrOtOwoUTQXPPZyY4qDWmWFpirUtnOs3W2Z2pOFyugEZkEbg+PvftuO4F5nfZ+nEx3o3LBcJJ2WMmbnJCK1Fd7d/9k/+Kf74H/wx/tW//Nd49+4dfvKTn0bb54K6DSwd0ZVR8eX7J1xV8dn9H6G8WmHnMNhiVLofg7C9A2//4Pfw6vkZrRbYfoXvF5zWBctphZzuIcsKrDrbmsMB8XoY9nkjSD/6xa++PS4+s0+Z6TLj8y7Rocpsn+KzpVSIOrww05yFtyXKG+TmvHSYAUhkwsxR1KEVoOJwIRbhhuvlEv63k1qPgrbU0DXjs2tOniqB2oMtlU5hlnnNuxXOawWm6ODLI3++5eHm+0eA6rkj04b129g9upHqDd2de2UYf9EX5z2As4+fxr//2nrxTH/Nafw7/+z49jX8hhP82j8lwOIYBmy7oZuhFo5GrSuKVvSdOghXWGizFLKRR0dt1HJZojX8PkJ7JZht5oa97zPDBTB7aWMAw7BfNzxfn3Fe2W3l8fEJ2/WCpgqzjm3foNN2Wuzrsb92ClN6P8bBNJIDko50MJgDdNISpYMlS5dfCnEDmE47SnQ4dXYqjaxDgA+pmSeo1cPOMJCiPIWF/qSkz85zmH/nI0m8XCCRvWfK7eVxlHB56CUm2GMBIIzO9xQp4XArtrFj6x2iJ4hW+L5xP48W6W4dk/vgVJPw1IQKYXX3EHX3Ah8d6BR4ZjLojkD0ZG0NpA6HhobQCNFZexFfsAS9yI5RBEur0dGQmWELFqc4BVGLpIoTRYQdhrU1au4tSzxvMANriGfE0FuVwq/IoH50mO04Lw2tKHqn9lRpBaVWnO7OMCcr3kZ0kVUCRSOAthrM5fIChAy9lSzdMYMK0OpnvB6tMFS4F2wdGEaNPDrzR4nDMQfJ+qn1NUv1BsjGtTO2PnAuHVY+gZdXKGWFloJWFqAollZgdoFt38D7A6w/sLGOG1pbaKudc2D4Ri0xc7RW0EqBGYEo2gPH1nOekNG/rOvBDAoQ+Hp9QqsL3rx6jc8+/RQ//MEP8Lu/+zswM1wuT9Sa2p7JMNvpH2+XKy7XKzv4hvi8liwzjWAYYBmTd+puuaJY5dreCSb0mNOEWEOoPoEkLbGt2DHWIUWxp15VlB0qlxr6RqH4IhVtLZBlZSGMO8ye+aT6ldqeukKkQyT8bwgaOPfvT2fAFaOz1MU6kHWU2cOy1jLBYhiT3cM7LtsgQARg6AbRitbekDm/lLBHhvVEYE9EozFBZVnjsmCY46F3ZFbVoixqXRtbxYf+zRjJjEGUZymRGAHFiUUoVD86bL9OMDH9A3umfMFanMBqL4A0gj2hJ+tLhSlgjfFTE0PRilVXDBV0d5RrxxDH0AoXihN77iO1RnkeAekWLM+l8FnvPaQ8qsOqAlXR1eEu8DNZdLsNlFLx6v4Oow+MbYeWGl3hatiLFuCto1tBB3C+e4s/+INX+Kv/9sf48PAB/brB1NCc5Zu1nLAPx3VzQM6opzPuTitKVbRCQfAf/9UvAJDZY77DseMHn3+Bu/MdTkvDsiz4weef4dNPP8Ef/f0/xLo2rKcFrZUXjC0kuNyjY7lWrMsJrbE6xhy4bjuGOyTJBVU458QmUzdL5E6nEwAhcSD2qn0LQfLaQo+X/mNdFmrl7TvGGFFmJigF2Pfofhfrjl0FA8sQ2tbcEEe0KKddDpLJIJNoROUMY042sKINr7DeWQkTOlC0q9QmoraQRDntQmbkthEwqpWsa0Q3RCFbkPfQJyt6rdRS27crOrYDWCzc4wZ2vH//K3z55c/x9Vc/w8P7d7hvCe6xqopNoKi52CPGLvXEe3elnRBaChWhZrNhakKLJsEEgeawc2g3w9ajgz0I8Kge3V+5V4PszHiS3ItDMw8DblHYG/qINh1x2oL1fIZUhTTFNjr20aNBB6AhY0ivjwBax8DuO212FSZHELqYI7vbOffoWsi4AgkoyUDdjb4cxkCForlgcUGNr0cy6Tcf3xt4Ovq2xOKwdKwAZIYyyj5YKnXk/l5cSkBigV8ev5YMSBOwkeNZIrIOQJSk+dxIs+V5KKLSCGdmEFmgwdcko+ZW2yGzjUkftkRU6ZnFbR3t30VYXqhTU4ELNbNq3JAwQaNEaMegiJe4BqqL0C0WjJ0IqsuYWp+899ughU58z6yxxxhbiTHADFyTRV9uAhbAkdB31rMSEExXNqic8TCkJIp9hJmBR9GofjS/RIUZo0k3y7NmBxhHluNo8XgEoZ9VwmGdZRqGUiSyGvG5NanzgfQr20OKCHwQfGiFwF6Rgh6Z3Qz4tRSUUrB1zo0+RlBFOcnk9j5naiJuMpPQ8T+IxLPkPRgI7klQ7NlCtCA1nWxYCJze0CU/AmP+ph2/6fq+37UHsyLmEHDcd7JFuOcd64iv8cQgcFpX1Frx2WefQlXw1dfvcL1uuFxZDuGlRGmx4XkfKNc9mBfBANFwZKFgxwJ+bjkJIAXnt59i9A22X7hZVYWeztD1BF/YwSttERkJL62ZCA4WAQcmRwhpJ7/naMeIxUnTrurtX28++QWecSgemAi6AFswGi8bRUifNjrse3SmEDPW7otSODI07iCCCgKstSpqEbYHLvydTNt9WO8cl28H6R/fvHz0e5+/ths7lDYoXxU815syMv4xAYJj5HKOxQv8u6+Cv/MXckEv96ePdqZfBwZ91xrwj35w/+iX8uLLd5w0J8G3/yaZcMCkpxMTEmR5Nx8CX0BgpBx7VPxPkhIUGTc3n5c5S9Fi4k0T6GTKZflGBppmkY3P98S6k7yOuQY+3ixo1G9BzUMD4wY8nGnim6V1M7x5VhVSwGdK8cWIy3EuD9bs9AoysZO+wrGOb28BcX0yR4bny5lyTLnYe2ExnuGxyLH3lmBg1MwSxiCLU9C6CgGFWplMElD/xcFxtdjPSwntDYsdOuZtMgFKYXnCUF6HCAgYSZTuhg+Sra41Wo+PoZGQcjrWJbLyBRgqGBYisEqOv7vAo9OhQINBBOQq7mCnNQUDkrVFiU3obLkh2C4sFxZRtFrDFgy4VWBUrEtFVYqLGwxtaSHeu1BfQ3wKIJukXAKfaa0NKV6es3ECTxKJgE5R5ix7ES0wFDgKfUYBWgjxSgEc7GKs4Q917GT8x9xRYRlYMcFSG7Su2Msb7OU1Ni0wUbTlDiLAkA0qFbWeUIuhLkAdBcV3rErQTJ0eWoGDQVOBVAJe2bLenGUqz9cLM9dOv1ZCkgB2gPIFkYSNMp7RA3wNuYG9O4XuTSdzgSz2DjKOD7D1UEQ7jK5HIlhdUIOJqMEecqnIcp3JPwz2wixEEJk27+V6TiZ6imYc63eu4rxJ8blfHHeezDtEKapGcuNoCsRcf4jcCwWy6ffptCgl2RVEUEM/zwMYIntm72xMZHE/2VlRQVaFZxUHkp0S3aoEM/UuDrTQP5v2JmyRKHWcVEuAXk52g4ClklnOqkx0DzcmdkOWZIAgc997AAAa4O0I1o6wS6kboAY1wFSxuWNUhdcG74rhbN5TnI15OoDhBLFnWXHIqKQSMNvC55ZF/aoB+iG70Q8cG0thSwEsdGKrO4o5NFBzgPUAAQAASURBVBo7tdpoK9yAIbDdIUq9z6WuaOXKzknmkGKhQ5VaNkZWo5A5WWqB25X2j6gjHEZNMgw8PT1h9IFLLWiVDL/ed7y6v8P57oT7uxOZ800DHIv7BIAA9lk+LNRei7352ju1+maFTwQXUQXA+XGUDs/1EfsSmz1wV8NN/JosJhUJzZ6IEycjOsGQiCfn+WPj99voLw1nvN/SB5JZCk/cWI6y5mS+Rmyd8XH6bErUnjF7JzDWGru6uY6wC4cbwPsIf0enq/zCdyBxP5g6buj7hm17Rt+vGGOH1xbvOVgrcz35xxw7Goq8fn5+6iEnG+zwQT2B/VsNaWCKn6cVknht+qrcv+nQGIK84YxzMxkGiec5fSaZ/tbhGR96wjU+c+oUhyQR44SDLZd+SmIkEns+CeoWrJPDns6huZmMYsez+L7ldt8beCplBRCOz3BY325y3zQwqTSfZVJFlYwEB9hhieS0W/eQ8VXqKBzaAjJfCVBsK3JoUSsirVCULrJ8fb/y91Vg3dG3LTReQisJjsvliYGnawg/sntF0Yq1AbUYLiFmZlFC5kYxvT4cqg2tNFStEFC4DA5UacckMl7PCDrh6GOizhCBRjc1c4oQqhY8XylK190ABUoL8bCceDMYEXYRgcONW2XTFUnTHeHs5XZuEaWkTkaKYrrQmRWtsH0LFgMCAQ5xyFYiSGWgyqluHK8SFMQbXz8dascB+iHIiGnnLG7mzf0dVAXPlyeIOJY26EQuK/reuXFHWZsHM2S9W2A2sPUrn2kF7s4L1roAHQcIJ4pWG4YDYz2hR/efZVmgteLhekXfDZs7TuuKta4so0NSEH0am0TFJxoI1naXUtlCWQzj+cr5cdmwnu7wydt7ahVICWAMuF47rteO07nittXof4jHy4BcIfKS2ZXgkwqReWbZfGZjUv9KwMy51oJ/+I/+AZ6enjHE8MtffYU/+fM/h9QFp9MZ0jkJ3z1ecDHH82VHOS1YJFpgS2Vb7aKTbosFKHeON+dPAGMnn317xnZ5RLl/jXI6wU93QGkQI+SRwPuL25tAwccAQ/5O5u9fiF7fPPuphZNzDpjMFdXojpO1twIwXorPEwCVm+wG+lddgF89Or55Mvz5X32Fr98/4ye/eA8zwev7e24MfZ+O+947xXcrs1F1UZyWgi9en/DZ6xN+59N7fH6v+OQsOBVFneWuxxCMANq/sy3ddx63QUtovEGwwdCh2PxIOjQ4ChwnEHxivk8mNfv2uN1TfuPhB0bzrUO+9dJv/Xz7uxsXBelEyItXA8f9pkPnx8/y8Wu/+5jJGKMG4GWjz7HvgKNCJALzcKJqqRH0NAwzLNJQpWJsBEOsx54zRjAzdeom1sqgo9QC3QHYwKkqVl1xCmHLLO+jlFjFEkwW3gZbOh/XLuG0ZJtGTEZQsujI2khK+zGuJUF6i2SNHWuFZQ783gYDq6mfZ0dCiY4xgxrx+DxHiGlynxIc4J0DAejkHDkAhXT6VaKMJLvWurPsBSDb0Emf19h3M3ColRogdwnhaYB10tCD0bE0agBtT7Qfd6cW55HZ+ENiUmTOj6CP4nQ+z6B12zfs+xb6co671qZGm5lT2LYUtNpir1IMj9KBmJGWvoco3NkVa1kXBmkhsGoWLZ1RJvAkETht3mNNsBNbSYDQWELPAIT+VH4WRaAxdToFjsqqAjw9V5gNlBasaynILoKtNnbs3UMTC34AHKIooaNI76XwGaHHmKbHQqa2yJjhQ98Jnb1+9QmW9YQ3b99w7o4OYEDc8P7hZ7hcPuDdh4FhFcv9G5rDPnD3+jVOn32Gb+rv4KF8ih8/XPEwgPbqM/i44vrlv8GrAvzo/BY/vH+LH90D63hEGVeMa6eYLnaIDJSyBWB0JByWZYGIYBsXbNsFX375S+oRjU7QCkLmwQ27+G49o2hFMcfz+yf87KlHqY7i3TfvsO07qrLk6txaJFvPIMOvI2pnp9XymGMSgUwykKgHq0fAKQpZKlUaNCULDFu/8LlFkmNtAWqOI7B2BwaU+j5a4FJgbuh9g4dujoXGmCt94mzl7lLpjRoAEBhohfPeBysaMpgWoS5KKxVXU2wmYSOpeQQB1uXoAiYJlkcyeL8W9M1h/hBIcMFyWnF3f4LWJdipYdNmAxuFlg7VgaaKRQsaVwI7SbkzhkBWYpTwRSnq3PsThg1sRm2cRTkGQxXDOh62PTp+OsqywkXxYI6+DTy9f8JSG87LGdfLxs/pJ5QqeLg8oPvAXmjpNhe0ZUVbT9iWE7oB+yY094OlfLs/wbYOs44K6sA0E1QI+qlQP00RjBd2G7Ux4Frgorg8c1wfHx5RteDVKXzIYSgYAfqRlfPF528gqui+k7VxGbi7P+FuXfH6/BlkNDw9PcJ9QM7PgCjMqM/6eO3Y0DBQcWoLvDmeP7yHjQ3LmQyvVhdoOXOMtx3X/YLHR1J3P7x/j5///Bf4+c9/gbu7Fa9enXA6L2hLxem0oLaKu/s30MLzuEkAlCnhEbqfoWO0LKeJsuScOJ/vsSwrTqcTRBT7dgHg0WSAx9IKlqWid+obuXSWQYYETClkYXkpbNazE0QUUZxPZ1AiJK2dT//SIwYNgwjENac+lDuw1IaqBbVwH24t1puHNfWB2jgW+XsJMLLWhc8DbOjU94HTumJZG3ph0zH4iMQZUFVQpU0x8ayc2PY99nFeU3wHh2HfnnB9fsDoF9jYYL0E2YB7VxHAhZ1AXQgpJfqdYEyBoAZxYZhhd0MP9jGBIkEtCaXIdCy1EKxaTwtgjBH5BzKdARDg9GDQBqjFEkOZ5eUJeA8MuLPiCFLRrUAG/fisWFAnI7O2YLiKBEmowwoJHbvR55+wv9Fuq2hUA1HD+LJvbIJQdIJzVTWwBIJHFUBzoHqyGr/f8dcotZPwGQUKg3ug/jfoVyKah3xuAFNCR4Q+h0/HWwJtnEdS5OOhp3J9OoMjU7AClEATMxSgFlD4NGziGZ9jkBKfUcJZDWE0CbX+EeiJpFinZvAQiGzSFL0Ayja/AkffOjfakvdKh2d2DEiQLmpCc05O7aGoMzYRDGUQyEmf/QHDG4rV5E6xRca7RLBNdgZhEtTcUMWnQKBwxUY3o/zc1MeBp6wvWWrDSWVU5EYbouwIh0JGAIqZtcBsK0lqqUx2Vf4MUHRymEUtM3C3xMaJNRBx1qQ3p6DtQEV2DbCYU00FpgWijYEDLBzcLOdkTbrGnNLDftBBD0MFkcjyUjCw1AJJNpvGfUTrQMuMgcZ8AYOVAY+M6QCECHWpXIzmg2i6FFwvV2gBrpcLtm3D6VQj7jzABuAAJX5dR66/0ceBrfya68/7PH6X+hDADXgQAWOGd5LjBDLhlqXhix98zhbbP6McvEuI8g9guzzBseGrL3+F7jt+8MmPABOYCiDU7fCA5TXoftJqoP0dUhbUeoKuK9AqTBqAghINUmfZ0A1wkCj/wfLLL7yHzMHmweyU5iBMp/t2LsCDzQkgu2QRfHVkC3EIQabhjq+/ecLTdcfPv3mGoWDogncPhvdPjv/2l1e8fxr41XsGXns7EczzMPsuuGyCfRi0R+eYZ8PSBJcOPFwNz9uOr0+O++a4rwNLAd6+XrG2gvtzDfNPK5Kb/7fnwBwBTFThFmgJe7cD2N3xZKnh5liFDWtr+D4eu4vEPmB5rjkHvwsMuvn4/Eg/fjd/LbegEF5oT/lHXz++K8n78o9e/dEb5mOeb47vXgzXkel397kfiqSYLufQthmuW8f1umHbd4zB/c6N85tCzwpoDXYB9QBFbD4KhM1VrfBZypYZRLJCEAkljg8DTLIgJErXYrCM57N0evN2oq7ePJ1qIDstRhpl/gzV2ENH8CoOH0FFgRItpwNEkhj7otSD4L56pLdmplVYPpMA3tHUQeYzm77Ii8fn0w7RWsmNy+OHTxTsAxGhnYfDR4cWthVH2MDa6pE9BXUPESX9vXeMPrC0FUUVNco11iX1MvKZlGDVJkMYEaAXlnin9yJ0XC0CiQUWJNDKEvzCALvWMtdTsaDlx9TlGkiB+UiYRbaWY5OMMiB5w3R1wvdKe+dAlgsycSqTNT4z7JF15HMKZnu4MGS981r4E32nyc4DAKfYrQR4VFLnaC61mIcS6+6GHVAqbRk05s+NLVsqO9Z+8uoN1tMJd+c79H3H45Wdd8fYoF6w1jPOa4GZhn9KWrt7w8AJV6x4lhVf/NEX+OJuxfnTe8A6nn6+wB8+oH/5Ja5+xdNlg9sVzTaMPdZPZRnU2FnmX0WDTUEAUYR+b++GUirXk/l8HopgQArZ+jWYif3asfuA+ZXgoggeHp+w9w4mGhXbsjCYKYXlI5Zl7BoVXmGvw8fn5JBpqUtIDuQaz9Jq+px0+EtpYPH3bQMLsoRybVkJxmIAiTO/6UIAUnMv8mn/BBQrN2EilZUHilqo45X7tAOhGRlz0IERzRTshoKrmhosLFWy9JcD+FUoeuf0shEecCWL7OlyQdFgFyk7342NwWgtDd12bPsTXAsphgHEeDzLp+cLaC4a2VaqFKt2aoLBDUK1fDw/PEUSNcADYUfo4Y42GNdsHbA+0LOLiO0UrUaFjViT3mKtEdTnuK2ALyhLg0pBawvc2TxIKvDq/ClSAP9cVqyloez0yddWIxbsBFyqUicHHWUp0Kqzw92+U8KkQCdAvla2tN+2KNcK6RLoBVk2XOMcS1ux1g2j7DDvUHTYAK77jmEFpayoukK04vna8Xzd0Z8uEB9Y6gKA9hXKpHttFdIaXt03VFV2YA6tsn3veP/+Az48OEQd62lFaxXn+2fUuuC03pGp3H3u4Wbc/aTI1DyTm7jUTXE+32FZFpxPp2CmAq0WvLrnzzU6UEopPJ8dFS7pW+YhQJRVS8THQO/8aj0Ad2Vsmd9nDOtxPrKKJADm+DtYuikuM7HM0q1DRB3A7NyWzk5qLtLsMvZOYCuF5pNBYwFmw0OrOdZtJiHnvh77iAnfu/cd23aJvST9Rn6uCKJCaszx4n2MF4C5hQ/O4mrymQ7ZCQsmVHQ3zaRYkeQghV8RCduIazxAe3akS4Zx3hGjbssKLYmyerCsdlnvoZWwD7tfS9i0hiL83BJdadnlVCClQRsxgUvfQ7w9QxeWKocRZ+kkFE0rmi7Qouz0PRncwdOc2ITEM/KDEf5bjr8G8MQHW3Q28uZNluOhZ01gYj4+Wx6WebFjH8F44EtzWQgkOkcxi+ru2Cw5Tx4Cf3yDqtIx8kLiZiCQ2RKQgnUxTdyiQwxL4hSCpa4IzhzHethE35sidI+SR1Sx91gMyvKvoO9gv2wQCNYGOAaG79GumZ+pcrAkzGhwzNMJBYnTrrBSYTJw3QMGis2cWdS4n2E3gBZruRF14gjHekRHAAedC23cdBEMJfpYGpoIHTNfq9wAZBi67SgOQApUGaRUpZPvg90Km6a7r7PFrYZw5AhKX2ttZsX7MGy9oxWi1vfnhehxVYzRcbk+Q91QjQ4ECrVp4EGXF8FSCqCAlYKBjm49aOedYnKuaAgKoTGzTmc95utNkF9UcVpPWNcVpTVgDLZ1rYWbQNbqD4OCVP0S2fCRellRJyAyIIUZulKAMa4odNnw8PCAy+UJDw8PeP3mHq9f3/EZ/G0EmH7TcQM+AfiWtlM2CfAoxb3FxYmpBiMpREFvQQNEwL0sDX/3D38fWID1xyu0F1gvMKkYKnjeB56vO/7yL/4SX1w+wxd/8ANIA9wErg2QBQC7SgxUrveFxagdhnJ2tLC+7DrJaysSrKO4quO/8QIJp01ur5lfZf734/H6KBgC5oYtoMCqQ7AbN4FQH01WPlCAHQVPu+Ff//Qr/OzLB/zzf/1TWDlDlk/w+GB4fgbebxWbKTac0JaGfv8aSwFaoQMxzPDYN2z7gAp1OLbLFVUFXz4o7hfDm/WKFRcssuF13XDfgH/09z7F29cr/s7vvEIthqKp1XR7XzfU7Y+HIMftxXwR7GZ4MsP7QYDd3HEWYFXBWuhs5Pw5ppzffE1Y/eajfs3338l28hunaIKK3/3+7z4+/rQMY77P67/9twMHoZMDBQoU2ezi6XnD8/OGD48XPD1dmbUURxeKHTNIq5E5Y61/3zpUEyTjWLVaUVsjoDnI9gVGNMWj1owgkgljkMkTAaUUUtdtBGBljn0fsL6/AFTlZg3lUA+3F2K9EDIbIIYxHBoJm4ifoj03M7zuDgtbDACtFFQVDGPjvBFOXAapvA47qOxAlKr5zWPIyDMCX3ccQucJcYRraBKManaUKlpCk0rxyWuWUJkN1KpoS53xcakNqgVNCBw/9QEpFaWt6FvH2DrWRvHpPu4AcP+lAGZHwYDKwLKsZPeE+dkuDNLI8OBYW6kYUWYGOPz6AIHjdLdSq7BHZzxVZOkdlP5KjzvlI2N79eEc2wQGxhyvKC1E6HTBpnsuK4WuPZipYxgqhGWbSkDfU/A0GCfRtxMZIxRFCKgKqCsFuIXjKTSMAoF7oRMO6m8hfZJgoyUYyanA6wMIqq5LCyBFsYWmEcDTn+/OWE93+NEXP2L5dyt4fHjAh+evcXl+wvPlCfevGk7rCUUKS9W2Z7KAUGC+YPN7fPAT3mHF//w/+af44u9/jre/w7n34af/S/zsT/4M//X//f+Bh+dHyOPXeO3PWL0DY4VAsdwVDHNcL88oKFhQWVrnnfILcLINhA1Phgz4MGphumNpLQBG+kQNijGAy+WKy3XH82VngtDZsWmYY9+vUAjulhWtVJyWBdqAsgQAUZDa8ShRUjkDsNA7kQhgVBRbZ1fG3i3FZCCDgeLSVkgDu1J7lKsESFqU8gkiCPCagNEIhiaibJxdppkMTJZpwZlzDPQvet+wLAtaPQWgQ1aGw0KImiCAhw4rO175tDPsHOgY/YoxOnq/omlDrSuaFlQpGHvIYXTu61oa9tHx4f1zzCnBm1ev0WrF49Mj4MDd6YR93/D0+AFVFHupsLYSTB8Dow+8e/8B5gJpjfGJAw+Pz3i+XHEvwKKKV28/gQt4XhXooqhLRT0tuO5kOrQzIFqxd0DMoQbse8fFDGtdsdSFOlcGKGiD1Km3tKznGMuC9XQPPa9Y5Q3cCz48XbCcGz7//TeAdJhs+PTuU7xa72GXHd7ZqVHcUPpG0KYqBtg85v71PdbTgvP9iYLoy4p9H3h8fML93T3evH6DN/cV51Xx1a++xuPjE/7yxz/G8+UZbXnCsix49eoO18sF1+cL7pYzfN2BvWOMHcOBfet4fLhClnss6yuU5Q5WFvzyV1/ien2Gbg841YJXn77FMMO20d66DNzfvcK6rPjhZ1/gtJ7w6u419m3DN+++wuPje7z75hs8PX3Atl+wnBfU2nB39xbLcsLrV+yovG1jljdbavYFcWEYSzNba+g70Du1aVttuLs7Y2kNb1+/xv39CfKjL3A+r1jaXZRmU9fW99C5w0GAGGNM0Glp62SFjuHYLtt0VVQFWjOpUUInFBTi9pALEVBrDMf+ONwRyxWIKpW+76FRZtPH3fdOeyQgyG1HYkCVJdZjWFQ/hK5UtIO10IkUd2htoTEY+5AkPBWCDAmUueN6fWZlDTwE85MdhBf+iYOsu2EWun2KpaxBlAE1xsTQi2CEFilvOMXxQwvKCNBrdJAVABLVHLVk8ibKXsWwgx0fmQt2gmYuTMgNJmpMHJCG0laUsuD+1acQLXgKpteAYymN5Z9mEX0GhmA7kwa1YK0LBgx1u+C6b7x2cz6zkWClo3dHBSt7lnYKth9j5OFRPhiYAMxDQzYh/O93/DWApwgeY8RVGLQNy81HJppZ8m+ZPbVOSjwibEimVBy5GTIJZVGPGn5FbASiOjN17o5igNiIjKVPracEmzwYUAKguUIDzaPgdma1bMq2lOgwIF7mudzJdOp9wxh7ZF8NcCKNXdh/kXpBiJpwj3bOWQpwiLRBFIJ6JNWdQQVbEQrLGMRRvQPKumoKHDupw7fBvTizOyGC5OoojSUSVSuNejiIDgSbS5FtmOnkGdQoMlu0YhVFO7EmtbiiaOWzHUSEKcgtoa1DJ7LU1IhghqsGGq42IEqAschAUZtorG0si3RnJ5BzOMsqqX1EBJ2sOs4Qv4aBbgiGFLMw5sYslBu672AHi2CHqGB4RfcC0ysARS8dgGLzHWo6a3Qdzha7DiZSIVikhiZBZOZtHMF/oOcsTxF4TXZfIukHZfV6ueLyfCGSnNpkH7Gd+Na/hUDUd1ia7xIT55FG/gAH/OYfIw19+Qc4fDBYXErDZ28+xT/9j/4pvv7qG/zy519BOjfQsjQUF1yfr3j/1Xv8+E/+He4/+xSf/u7vTfaGxHOjfWBmHe6Takp0nNmoEldpnvoOBS8u+vaab4zZ7SOcjKiPoYfM/DqiXISZ5mm458bogITegESGvwBRMwR1R/MKdMW7h4G6Ou5bwaoFtbJF7Q5FL8IuO/aMVQruS6FIY9+xumMoYOMKg+O6ALUU3C/M6vWuGH7Gs6942DqqOq5/JbhbnvEnf/VLfPF2xT/4u5/i3BTnKM/lYXMt5dOekFHcvMXOnNDenQkaFGsZGAGQN3CTWsVQxbGjIJr30gEWnTpbUVk9ZxnH8Kg6z0T6tx9JsFpuhANucUTuavHOydaTFyc6mDSHcU+WxqzsTwqVHMCX33zOx2iY5Htd4EOjtGtH1YK1Kq6PFf1S0S8dY98hugUnPdgOnRl5+EA3QK3EtYSYtFZq5hiwbTvLwt0P5pp1uO3QwgYLWx9YsMCdYql9H9GZK5sEZOa2MrEU+7/kOMbwalE6saEDI8KsdmYic1N2AN0GimgkqpKZkOXrbFWtJcvVjvGUGuOWDAiwTM1Gx+iRIMp1poLJfrlhQgmYhWKG8iUCaeFwuYHt40vF/emMVgvWENndRjCEQ/ATQmr9sB2oNcRCBx1lByhrEboihoOB1QdLgq8bXBWilb6M+hRub6EhWCy1GoPhGwCuxwMQANuFlAwfFEE3jW42IPDoAEpdSGKzcJx3gzpLy3SwLLeIIpnpCHBoAOgocQ2CFveRJdFs3sasuUd57pjXTId+eLJA2aKcDjRB1eJkbR2lnhqOb2a+45nLgIBlUTLnVDDMoRjKMXdlDd8FBjVHDb3NIQItFVIqdjhs3/9/5P3Zr2xblt6H/Wa31opm96e5bfZZvcSiybJoyZCtB9sPAgTI/48N+J/hC18MGJYBQbZslw2RIFXJYlY2dTNvf+7pdxvNambnhzHniji3kqxbgB8oVmSee87eO3bEijW7Mb7xfd/g5Zu3AqD4iX7fc3dzI/4vOZL0kjaJr09tgEO26GYBtiXi2PV7bnvP3e6adjB0zRnWWdoPDOvxlCe//wPGLxW3X27LfA+YHDEqkLMYYjvbYLLBZFtMdmv79VxiZjF5VjpjbBDZTZK27FYbwlSAqjyilGLRioQsRE/rHNo4TNOJx1UUdkFrG5bdgvPTM+4fbnjY3BLjRAiRthP5YixAnVF1LRbOV4YpFejcyBhPSZJLXwq0BiVyuSzgj1KwtI2McVaMY2Q3+dk8OWf53OMwUX1mXGNpu5aYvHgLFcsEnxrAkIyShjoxMkyZKYzUneHQRUv8ZaxpxBzcONI4EP2EEawfo4WFZ0yLboSYZAp422iRuehGADbdOEJKbHabWb5amaHXwx3V+k1rjZBQhbHknKNtpNipFLQrkXqt37sSkLpbyBurymAztE1XgKGGlDP9vkchZ/mibVm0DdvdjmmaGGImo7HNiq5teHy2ZuFaVm2HzgadS+dEEnSZrCGaXNamYvOwY/OwIwWDyobvf/x9FosF2WiM1TQrS4iB0U9YvcCotqgzEzHsGPs9b5+9YBxH9v2O5XrFyfqc733/Y84vTrGlILjZPjCO0nDIFrPzYRiIY2T38MBut2d7d8u+73m4f+Ds7IzHV2ecLFrM5QX7m2v2IWJCLtusJXtNGDVaXYJ7yocf/z7nT9/n5dtbNpsHPv/Vv2SKI2N0aB1wi4mcRyITSQWSskzRw6gIPmKt4/zxU9aPHnGZwswSbqyRBkRpgTEW13b4EOinUdSXWgm4mpPkCjkxzkbTimnyDIOXopzO7PY7dsB2+4A1mpcvv+Hk9ITHj6549Ogx5+cXOCPnUOxTAX2kKGKtExA8CRCdU5ibUTTmwKijMNGMlqY3vjKWUi2i1vPvKGIvZ5Su+VDJnau3HIXdq/KhwJjLmS+spURWQRriOAixMjULXpBNkdlLji/qO9nDa0ymVGEhUgBrIKSA957NbsPD9oEpBELO+KJmUdaWMzIVoo8q6pfSGEzQpnJ+1+52skbJRZyVRWYueJGZY5dwxMjKOTPmow6a1MIKZHQVoIuFRs6kEIviSECqSK5qfLLOJJUYfY/SthRltLCWNZgcBcxMSUhAikKikOK6NLQwLGyDU8XOJ2d8GoV1VbVisTQuI5PHiagVLou6KZQYQoT1gkPocr90ysez5N/5+M7Ak9At86xf0soUkKdQ6JFJo5RQS2uVtrboI0lwOXswyIvKX0pcVKrmtZrOVVZUlXc560Tv7kMBm2qeWqRgIMFUobHJkCpsEr1kTRRikirYvMyVBHFaK6qZYm0lG4Kg5SkHOTl0Lnp2VaqqQiu0WtNaN9sBSeBY6c2mABYHargMOtQpq1G0xpSASeqNmDwHjd+WsaiSEcnCleBJOzGPdUYqTKpIHzKqtAAtpo5aFa1rpQEqGi0so4WxBZGNOO0wRuMp7VedyJUikIonlTYK5bRQpLOS6mTK5OBRSVqjGpWKMaUkF9lP4g1Sqp5N0cemVDePAvJkDgw7n4ptSKExGlVYKXk2YY9SYgJV0FBTA1lpYZuBUKikPnlMtlINzTUAiWXjLFVBO8cJsmVkGdMKPKHVPBdmY97CX6zGcDlnxnFiHMb5tY8ZP8dj+u/T47tcz7cBpu/+GQ7IeE1Nc1mbFUieBwUqnI6zhrP1KT/9wU/5VH3J87e3Qp/OiYVzODTT4NnmLS++eMbjAFfvfViMLAUcRilC4QnLeGZZJxTkuMxR2S7KWkeAxMMHLZdFudb5EKQkOszJNhWQ+NZ9qwGGeM/o+euaqGcEtE2UVqsFuK5yZJGYJgGeouFhF1kC61NDqxXKSuUlaEVuQADtgSZZlrmTAN2PLEtL0ilPxJxomwZjxdcjJen24ZMjxNrYIHM/DNg84sZv+OGHp1xdnaDXjlWr5vtaBy9Tcr4CvKgqH+TAJBEiMSyyolOZlYFY2pnrDDpnbJG0Flt5mvr75eyZac2Htz7846jQUYfk+BiqT6vFjsNQHpDGeShzLmIfCTzqy3PE8KKOYglOZkDlMHUOjKpvP/I8M+bXkE1Ik1Ug64ApzNwcDHHUhDESfUBpL/PDavIYYSqeDzmWjrDlOmYWkDzdp5GY/EylT1kJooIE0tpKxW+MHmVkUwwhEbxUr4UtEwvlXwzrSWpm6zLPBzljlVYl0ZJ1fQhl5H7lui5ypW/ned5DYUilQAgSmFtlS8OLes8zytQBTlT6ekriHxijL9XbAna9g0jWfayEikoOAHUYmllyJrGKQmOwxrFcLHDW4qwwiosjywyOKQ3DMAkAVoobKktgn0NCKSveDwUsksA7izFNiOQpkLUVRnBEkuspQErYeialWML5g3lvjatAguppTAc5ukpHQbt0rckg3okUpnZImFF8mjTCkJCkosgdcixyEbkG8fI1RBS2dsWNWYgovtzygqNnLcyvCJQmsoQsHZJsOUu1kvcWCUBZiaqwWDjMk7pvJ50L4Ci7ha0gYi5dgrIVZhyKZIuhcQ7olGinQ1yijEE7h88i2Rhvbogh8fCwYRpHdtst1mnpZNU4MSqOQUA01aG1xbmWbBsShv3Ycz9t2OxuWfYtp/YMFoZmYVmOa65+8CGvbu95CC9YKrDK0qodSonBs1ZZYrts0dFBHkunMinARTLKGFrVylFhilUFUoQw2uBTJAUBYJw1tAuJgVwINF2Day2rkxOsa1EUKZVxnKxPePrkKV9/CUP/QO8TMXhUI3K7EGTMtC2sA10TMgqwmMGJ3M5H8CnRp8jCOqy1+OiJMTAR0FqzUB2SmhqmKbLbjiwXmrYxArjFzLgX4MkojcPSdC1TpBhMy9oNsZUsQFEUGJHoo3gCKVWUFPLcphHPJ+mo3OKahRhnJ+k8aIxCulxJNz/nDN2iocpKrS4z0o0yH61hP05sbrcobTGmKX5S0G+3xBA5WS6w1krIahW6NZjW0nRNYUpAs+5oupb15RW2bXHLtbA+bMPJ6oTVcoVenKGMm4sA035AZ4VTlnXbctJ23N/d0O/3XD9siVmxPnvM2cman37/Pc5WK67OzkhjIoXEOO2FG36qwSqyE1nWOEy8evGa1y9eM+wnSIo/+7Pf4+LyjMXpigpi9oNnu5uYgsUHUxjVmXG8ZnN/x+72LVMY6Ps965NTTtcXfPzh93n63hMwiclPPHv+Bdoo+jCKgTqZcRyZ/MB+u2W/2wkAtd9zf3dH1zhaazhZrVgvl3zZOHRM6JAxAaZsyN6QvCO7M0hPefLen/KDP/xDTt5uuLm94YtPX+H7O6bkaczEokVAyhhIKpKUeKflBMM0sD495fTyEaZr0F1D6xphaxUmmd6KV1kyMMWJ3bRH6cJGLi5yClm/+3EkFnCo7weU2svayZn9fiAEzzQOMo/DxMXFBf1+j9aWrl2wOjnBWMd+ELdMckZhaFxLDIGQ5NxLxLlAZ01lDwrrL+coYIbRjN4TYpT1XM/JIpuv3Wgr+7xakcSi/dY1uKBKZ49sJuYIR5XzeSwF+dppLlXYCZWKz26SApcCUhJpeMGxCkBdjPOVSB1DGBingX2/Zbvb4ivbUpdrzpYcAyFVK3BdGlplKfSAAE/GSIc+hEijSzFHpG8Kn4SBW5VMGUXWxT6nnKmxMM+M6JLnnEcewtwSAU0melFcKSuS8dnf0JbzUSVGP2JMwDQNxiisFU4nOUEU3CIrPQ8Z5Rq0EvWOto6kXYm3Ev0kgJMw2wK6EE1UVoRJUBJrJUarftwawbYsiESwSiG/4+O7A0/lU2ili4wtz3rSVCouNVCvyfxsaq3MQRM6X1yZsPrgCaVy6d6RShBRZpboCSMxTEIJK5KcavyskBa/Qq8LpCxMBZ3LgKjDdZEhmaJnrQmJzoSYpDJUqPWKiFYZazUNhoglZekuE6qHhaBLQEIZh3HFDDtm0c3HWCjCYpoqmv80Bza5ZklKNp/GSkDn2paskrQTrtVK1GHxl/ss3dly8dqgtLbVdIXOT5KqZvCyOHUxWZVFXimP8pJOuHMSGAQJJJJSEhmWe1UBAmEJqdmMMiapGqmccVK7phrogXhZJSiVa00syYg1IkEYQ6HvocT7SR9ASNu0ZBRRC407aDGAS6nan2YxPFOSpMpoZJKKZb7JnDJFmij3LRKGAZ9gtB3W6ENHvZr4K5E3ooVaKklISZaymFbqXJDwWQ4iN6eaBSplZpZZ9ayQOSqzoTKf/n3vcPf//8cREDN35DmwH6oHSGWP1MqktIhXPDlZET94H20tNy/fsrl7oL+/Zzcm7rc9i0GkL9q8oe0+ZfX4EcurC6TBwbHUT0kRXBXqbP1Jgnld6gozlBbk5BlwqC9RYOCSOhfwhQPIcHhuBSoq+FJuQa4V1+Mrk//FFBmngFB5PY3pMNqREalz24nx5KLpaJ3FaTBOApvdbsMQogDDxtA2CzCRiYgfB6apL353ijD1oikfFLpZYE2DT9LlKmIISqMWDmMVrnOY3GKnzL3S/OyLiR9+YMidplV6NgIusDiKAzsi5bpnMgcmpf0BztZAxVJ6z8idVRlT9np5bTX7VGmVjmdTGaMDqEUdB3kZSp2iNKkoY6cOoEKu45SP8Kr8rbEsgcf8ZWG3Vky6Fh9yLvPqqAr4bRDybz7kpzLn88HDZz43rFTZbcK4Ee16Ya8lRWPPMQYaa8hxIseJECbxGYyRZLUwAyu7LicZ8zgJ27N8FvHtMWXPTCRC2dsk6AMwppGAR5tyFieI9T4K6J7SUeEpy3mVEHAgpERImZmdXOWkWZfrSlhrcdbOJNPZC6+MkbG1YJGKOXQiFhBXzXv9AUjQxmBK8wx0KlXDchbn2jZazedG2XTKe7wzAWSkSjW3sQ2ta7Glo6l0DVI416IUBB/RSeT8KUlsVNzRihS8xkZyn6pEwmpdxP4ICLLoBPRJCVVaUutU2d7FMyJlQk74VBCfY9C1yM4rqBejSJns3IEVQhIKPkm+p7N0frOuzsUafwmLFKVprCMRib6XdvPWUcqS6FCCZwR0tIuG6rcYEYa4ciIH9TX5KUtQk0rIo1BZl4RfPpMqFBSLISVhyuhSXBDgqczVnFEz4CRnssLIPlnmYSYXM/6Mskm8U5xDO4e2hjhOIv1UFmXh5NSilOPp+2ey12Tx5bLaEoIRULJUlAk7Yi+ErXY0nAXDs3/+17z9zTeMbyfa9ZJsW/avbnj7i0/Jr+5YacPCtbQ64Yc9U0xMjBgNjclkH4jjIFYIukUlN8dcKWa2m7HMJU2Kjhw1Q9YYVRIkDTl4Yk74lMlKo21LyoZpgvgwoHRAIUBM17UMw8Tm4YGHuzv8BEZ1GNeQfAANq8UZKdf7qUkYvFbFkFoY6E3TCaBoBQxcaM1CGzptiM1AypH2fA1aM/ZeIjFtOTnNrGJm0bQ4a2mMsIFsAVJzTBgtgPfc2KbstVktQRm0NcIuW3Zi6aHLHqvEYqH6j6Kk2DP1nv3DSNNYGmt5dHFK1zbEJP4z0zhI+GCgOqc+f/aMu9trbq5vGcaB3k9MIfDQDyhtMK6hdtYlSqI29CMwcnd7izIK05oS7yeaxmKt4eT0gaZpObnf0rQd69Mz3n//A378kx/w3vvvcXl5xWfP77nbDFy/viWnzLJb0hS52maYuN/e0+96xmHk2fPXeB+4vPL4q0s+ev8R2+01n376DW9evuHu5p7FosU6y+KsQ1mIKokhu2u4u77n7uaOZ8++Ybfbst1OXF5e8sFHH/HwsOHnv/wl/eDp9xNXjx5zenqKNQGlAilu6Ps9Xzx7weZhy9vXN7y+vuaLL7/m7Zs3XFycM00D/bDj888+wVrNxeUpTdPQNR2h35GmkdVqhVKaZbMiB3hQW66v7/jn//J/5PRkxXq1ZD+NrE7XDH0vdh8ejF3z4UcfcDso3uxu+OKrLxmV5U/+0Q/40Y8/4utf/ANuXz9nc/1zchtZaY0JkGMgpT3RRZ4+/SGn61POT69oV0tOHl2RG0tqxaMI4MQ2uKxxvcQd2UreM2VP1Y4LoF5jjMyUCqtDabz3TNPEOAVC6Yrtveflixfsthtev3jG7c0tz58944vPv+Tq6oo/+pP/iEePHrM6ERnnNMk+MI29xB0aog/kGOVc1QK21CWTksRc3k/EFA/A1FGBJqdIDKHk/gln7NwtVM7Eg5ojhIifJpqmEjCE9FA74oZC6EgEMUA3lOZSafa7ygWUC1FsbXTJY1HSQfE4cEupWuaI3LXfDky9J06RQnuBageRkaJmghbRDHsvHme1w6e25h0Wvc4wc59KPmzUYa8RAKqeX+WsPxzr5JTknls73wNjJS/1UxAyTIzCGnSFzYiwDGMQBZEQe6TAp0o1LIVQYlnpyqqNdJedC1cIa8uoUtmJRwFvUhK3IFYjQUesqtGJYrvb4YPHZAHva3Mhp20Jikph/NgI7zs8vrvUjpoMFoigon45zQGJNoVKV4LMd02U8/xZayQkqZWeF18h630r+ZKNvWoJKa8rwWyBu5RIxXK5kTKvCmBVfi6/mmcDrwwz3Xv+WTFRleQhl4NFobPGWiNMqQS1Y0s1FVY6C4qtjz5dKO91LImr76v0zNSS65BBqxRMVzp6qJRm8kf19ciqfr5yzRT9rlKz3M0UIIUi+0vxIO+qrS7rWqldf2aj+LK4qtyQLPeJGamdw+6jqqcsOJWkE9n8GcuFih5dCV6qDiMs7V4zIQlxEi3PUUXWlHMGXTegWMDMQgnMxc+lJHloZilLTeRFShUFgMxCx9QUNVCK5BjJMYCS7oLqcGNl5h3fgzopcwWnZBP9dhJZk6OagByzgA7ARX7n+/++sZ2+6+Pvet3vAGz5nR+USX60an/HS+eSvDtnOT9ZM+VMGKVbS/AiFQs9qJgYBs9+s+fu7TV6uaA9PwF96OpUd+paoQDZk3Wqq7TM0lkqdgQ8vbNDMR80UDGVOg+PPmxlclXwoe6Jx0/MB7jq+PPHjPjslDVRdmBhglrpbmO1xSqpSEhCkkhhJI0elTTaOoxtUEAg4cOIj6MkHUoR4yDrIZTVHb1UmaIhFWaCtkpYlU0pFahTRiIv7wOn55lHXpEsNFr+KEoB4J0hT/XWcWD0lECslCBKc/VSNChjkea7Knt6kRuqo4n07v50/KaK2iBhZsaWi6h/y4ur41/hMELHI56PX/id3zm046Xsc+U3vwUsz6Osjl7mnZ2kvusR0FIuSFEqWTpjbBQ5TRZ2qFatSL61IikBBeqHTcfncdkEU47ypwJHVMRMZpgITgU4UNkgoFA9wwzCuhNgdpYOxhLRUc/pwx+5GBFJprq15sP5S1boVNdEAR9UZeUevaaCWpiqHWJTKYJlrYrnwuEsqEWz2fhTS9yh9cGfsL5O/vbw1mv71k6vyjVIMF07mMq8zGUCGS33L1dJ/9HkqkasKFWkYkdvXP6ttJrjEa0UzloIEZWExZZTLCxyZgPxGhulGASs0cKSVAjIM081JfVUjQHljgqLtQhg5vWiVaZ6yKd02JtlLypNPhAWmgD71etH4giFNA/RWjoeV6Bo3usKU04i9DI+EjXP8/5Q1pSkY/6qnsG5JHIloRNmdok1UnG8mBnn1RSbmdGqKWOhEZDPmpmlJmBYnGNG12gxDl4siEkYdCaXzn5Fvp+0KhKRCYKFvKcJHYuo2H5zy/5mx+3Z+zTrNaFdMFzfcv/8lsW+Z1nvl4JQZCZRCaPGaPE28iHQOCsMKI0UQ7SBJAVaKAVfNChhKWYorb0FOFRGS3xlHM4psrKgDDEKKjOPM7pIa/diXq4bjJU4OMUBpaHrVqQMgw9SZFVGZKFKWE5JKWy3RCmNTSLhs9bQoWlRRCONPlZnl2SjudN7UBrdtBglsqXGOpw2LFyD1ZrOOFSG5EtHzFQLerL/KqXQ9gRtHK5taLqWk7NTiVl1OctVxjqRjoIUNH2c2NzveRvvOFmvWC0XfPT+E9bLJeM44L3n/v5O1iBpzlFe6jdMk6Lfe/b9yHbYE1IqySSgiqlsAquMSOkQCfA4jBLDRoOPAR88TedwjWXK0DQjY8i0Tcs0Bs7WZ8JoMgLI+PGG3Wbg7mYLCcxFC40ArH0/0fcbwjiKJ9Fmgx8njDY0VrHve3YPO96+uuHrL57x+tUbzs/OabuW9fkSZRRJi1xzsViwfdix3ex4+eotd/d3nKyvuL0byCy5vr7hX//sN/TDRL+f+N73djx5coWzA1p5NHvGaeL+4Y7tZsfD5p79fuL+fovWmtubG/FN63d89ttP6DpH/Pg9Fl3LarFk7HviNNHahqZt6ZqOGKTAP4wjtw937HZbVqsFC+MwbUPWpQNp1jhjWa3PeIh7Rr/h9vYG3Z7wD+3HnJy0nK0uGbs9d1GRowAVpqZ7PqKIrJuOi/UJ7z99iu067HpJbDShNfjgiSnSNR2tMjSmFMaMLrtIMxe9CkF0PlkihRhgbLF4CfTDhPcRrU1R30TaxrF9uGPoB66vb5gmz939HY+ePME1ThiLxuBLvBhjnD2MhU0bATuv7xncV/X4EY/FWphRcwFD2IGx5EhyRpdzbD7jS1Rc4rrKopb3UeUMkWMwFka0xIjSLKs25zKle+5crCcVc26J+yo4+05sVXG7AsD7yRN9JIU8556HRFaAX51VdauR4lWqCoh8sG2o8Uc5y2bydTmXc7mJVWZYrTyO0sfy/cP15eKVpIosuZ4v5TcPRSOY2VD1fVCHM5hc9TjyI1PM4yszqVqIqJpbF+Bb5RpzgRQZc5mLcm7NsVIZMJX0HI9oVbrAU3y3a878d8gHvzPwlELR3dtSPUJoxTFmYi4tx60TE0gtPxtDEHNNXVqGwjzwud6p8jOLQhmRZIl5V2YaRzH/Q4Jpa93RRK5aa1vAlDLoUa7TaiPJWs6lKxl1SEnm4BkhcsBcTMEjWRVTVFMQWmOxaGK2pBAhiQxOqwxGqmWSWAV86EtioGg6OfSryXYKMkHEW0MVELlQgPPBl0qCMy0V6nDgpVcILuVSqTmm79UFUlz5xRdKFbaVhtlionAykmh/lVG0jVDuJE4q5p/Gip7eWbTR+BRmqqFMGlXkbvpQvQxCB49KHcY6Z1Io2uKUsFmqJrEE362GaiCuS3wYyybQFxpkEwXpTakwnRRyP4yAnzpXpkgmBPEZQOujClYmE6hyFVvQbdU4urbhpJMWpoJeC8KsbGEolXbbugTLOWcxYVcHaZ11jqq9yWIcNm+G4ziSUmQYekY/zhv87+xm9vfwMQf8Ws1jOCexVaHDASjVhQnXp4mudXzv0RWPTk4ZfeD6ptDIX77A73fsXr9m3GzZfLKTTjwhcPHeB7jVWipIhX0hlIKyM2XpnmZyuZZ6aNRDbv73AYaQrVofpaXq6Of1gDys10MSXJuZMgNKef4dihRGWgd33ergIYcq5qxyHAc9EZWHGIjjxLjtMSmic6Ihom2GHLAZVgaCH9k+bFEWtKNIjzI5DrJ3eshZ4zcbshETVpWjdMkIUkXfDtLxqFGJUSumxvHpa9ikwKMucuoy37+0LJ2is8Usvsqo6wcGeV8y6AmVwepWyBYhz0FCXW+qVspiABRJaWql+QAM1Ht7xHap/zgeHpj3LT13EH0XRK7nqQDQ1e44HY3+u+u2st3y/Exqzkxlz1SG7TuU5G8vf1X/IzdrVoFaLQDrJKvGGMX5eYfWGesAEsFnuacZ8ujJ0yQJuzb46NEBRj8Uf4IgZ06RcVprZAPOihi0/J1KF9VUgKskLb1TyocOqkrN9Hs5Q4P4oShK9fcIdFJyK6Qdr8aIzXT52PLckBWqyKxTzAQVZt8CTfWOsGijcK6TYHwU9oY0tqig6CHoroBbjJFQDERjKly8o+BYrl9AnOplOccp5VzTRf9fgzZkeeHHxKiCeGrMvtfl/C0Bocj/hJVR2ynnee7k2dQ1lutxuuwrpdor3ZBkrKv+zzhX/DHL2Z+isIuydL7CHM6YXRglxijJTdd2VD8tpSxKaRZFYmeU3JcpDqA02IyxTsBtZcr5WGMwqQM3QEDkeqbsiou2E7CkJGTjOAjDtEhClTVgHVlrGidMzjxL3iXumHJCZwFAwxRL4jKilMYVMF0psVUwgArChCHKPMY4RF5qD6lMYV627hACZ6VITirpfT9grJZ4NwVJOLQkkeJvqRnHgwE5eRL5aLDkVJMzhYmZ1mY6k1DWcWaX3Owsw73hm//Ll2Tr0KdrTNzhhgd0voV8w0PesmUCY8AoLJbcKDpnSHEgqEBnFzTNgqZzKGVwriMD49gTY2TynuViyaJb4qwpxUjxitKM84ZTwWTnFhjbghZfJGMdzjrWq5V4F2lI00j2Iyl6Uo74sZezoG3FzylGsjZka1mcntEsFsRilyCqUDEezqkU/YYehl7UDDkymATWcPHBx5w/esRP/uiPUNmiomHqe8I0kfuB5AP7+3ui94RhJHjp7rnf7dn3A03X4ZqWD773Q87OLvjp7/8EaxWZwMPmgbv7W2KSvWC/70kp0XULUsr040hvJmKa2O4C47jl937yPR49uuTZ18+4vb3mz//8zxmGkRACVU1we/OW3W5HkzU6L+iUQTWay2XLcrnk9OyM/b5n6EcWjUiyVssFOSUeHu6YwsR+6gWsyom9Hxl9JD1MwMiLL98QfWDae5aLv+C/Of1/cXp2xWp9xm7whAiL9oS26bi6uqJbOlZnDQ+7Wx6215yfn9C1jmH3mqHf8fzLv+Dk5JTdw1fsdgO31w+8ennD3e2W8/NL2q5jdbrCNZbFyQIfPLv9Xoq0WvP6/prdbs+/+Nf/hsVyxdutfLbrzY7dds/mYQvas9u9wagNRnkaQ0nSFTqNOJcJccc47LjeNIwMLLsFZmk5vTzBj3s+/fRXnJ+seHR5hsodSrWQLa1b8pPvP2G727K93+I7zzlnPOwfeP3mLRfnZzSNY2ohactitSBj2Axv2A+eaRj4/JNf8tmnn3P74jnr1Zp+v0eZgfe/9z1M2qDSG04WazpnaLKjNS1Xy5arVcf33r/C58T15l68fpQjhVDkZgqUlQYdOTONseRQQkIQvzDJQ0UqC0kJK7dpOslhrSVnmWPr9YLlcskf/9Efk0LgT//kP+LNm1d8/tlv+eQ3n/DVV1/yi1/+FW+uX7M4WXFyciJAZjkLC+SDdgZVGDMZRV/yEmcEaF/odpb3ifUIWNsCCh+kk6PYJJVueknO/1zUOfV0yiWXlP2xghgSw41+KqomAV6cKbLuWCxOzMEWJsaI1ommM7PlTo5JfAVjKbgVgLt1bfFos2QP/WZg3Hl8H+nahbxeToXaJcCTQ5f9w5emKcJCEi9jUSWFwsBOSeJuFNIJHbneGnvGUgCj+CTOWXeJSW2xlMm1ZSxiYVCQLlE7NcKS9qEQWRQYLcxb5SzKiuSUFMXmoCprQGyFSp5QY16jZK0a4+a93hQsJJZufk7bGjpjTMSoAjgiLFOTKaQiyElkmrkY4ysy1mgwtcHYd3t8d6ldrdAdeVaorAsKWBOKWXQpqVpB/o7i6G+F94dBq1XCyso5/FpBELNUDyn45xz8z+BCqfYd0lVq9aNebw3W5A7m+fWOH7nChOrw8nVQaqSpy22oL3Zot1yofkcys7nrX3kb8f5R4lWsvs2sqdTLPP8RKSEzuJSOLo/6Sedk5gjIqB8r13tRk6j51+bbospYzTRBlIAz831TB1SzficzO9ukAgIeTZYZOMhz0nZI38ullqSqYNdKkOdIRhW/grpR60QJ/I/Hts6lw32aN7Myvu/c+ApqUO5zYT+JrI+ZTXNQLR9/7Hnw5r9nAWRBn+v8SwXOV0rN/mChmNl++/Ft5tN/cN3u/pZHXcPHUM7hh+We58Pz6m/lXEz1lEEZS1tcfodFh4qecdvx4CfyOBJ3Pfvtnvs3NyxPL7HNgjqDDkuh7jTq8DbvbgtwNIeLs8k8T2Zw4fiDZUlkvs12OV5/9Z3rFqW+/VyZSCIRUnW9pZkdkTNMKQowHCNJR7KPJeE/+LiQk0iMkhzYKUiCXDX1KecaLUiHqVTpuwZTqM46KlQUUCoHOXSiEUAkZUPvFTdb8VPwTea0TUyt4rTLGA2udDyta0U+vTBtVGXi1EQ+z7dnToznffBoYPLf9reqe2Ud6+N1fOBQwGG6qaNvHPhsmXcnhPqbf+XDz6rQsvo41TGW6VUPtnfHWqk6w45f7DDjkPiOENJ81hqjaRppH61NqbgV2RmpgEocAj85anLBwfIMVlRj0PrOsyy+DEauer85ba9yyQoSVK+K43Pg+Pn17ucyg2v1Tv4j50nde+vqPJYylmst9yKlJJ+/nE+zFPfojr37u/loD2c2fJ8/I0dHMAcgs/7K8ese5laxCFAIMFdaRWuVSxvmd/c3YYnXpizM+0Wdd5LYF4YSNaaobK/jw1oAqEyWCSE0aarPoEyVLGw1RWmUUdZcnY+qMKS1BKKzP9kMiNdY5DAiiXp9dgapionkPJ6Hka43qux/6TCqRZuEMsI0PfjbMb+3gM5ifF6l2MJ/TIWdWst9VToo90SXea5rJbdWbk1xgdZW+NI5ybWrXCQNlCRLERFjZGEpCOBtChvGmVIsyAIS2pKgVBaPjFVDSkYarmSHyyuU7dBuhVVLFmqJVo5h0tzvBdDVKdFozXK1YmkDCws6N5AnTNOCMWirsAYWXSK2I5NrWTQrWtvJvVCaplkAmsVyJXM+wXK1YrVcHtZj9uQcSHFbCoJ13iuMbdHGoU2HMU7Ah7blZHVSzPwnlB8hTKTkSTHQ77elGAAqJQyabCzZOE5Pzjk5OycqRUiJu40AYs44UgqkMBG8JyoBXFOGMIncRXmJ+RfLU2GRBcU4TPh4YMyq0sUp5oSPgWEa6csfn8Vwf5gmFqUxUEiJaerZbjfc3d6IHYVS7Lc7YkyEUfxMfEhMw0jwA35KDGSub94AkddvXvD69WtevPyGcZzEA63Mu36/x/sJ26xKJz6HMtLmvGk6Vqs1RjuaZiKHgILShTLTLVrUlAlpxCgjne0ovqVlg9KqdMeMnt2mZ//wirubnqa9JQiiz2o50DYtYz/QLi2rbcN+uGc33BPDjkXX4IcNfurZb68hDbx9/QzvM34KhNATY8/kxYuonRRKNeSgiX7CDzuMcxjraBpDSg1+SsQUmPxEIrNerwk+smGD9wN9n1k2I9qIDFNrTessqmtIecU4BSYfcU5hTKZpHQrH1eMn9LsNt2EC3RCSgN5GGXzKAoSU890ZkUs2GvbDjpQyU/AknQlIAxVTO6RFuZa2hf24x08j1y+fs++WtMsWZRLKWYLXeA9NY9Guo1ENrWkIMTD5ER9GQgFoxMah5BRKFSZl5OD/mmZvwJocqbIZp6JsqfuoeBeamYlb40OtFLZt0U3LatGhVCb4kVevX2KMYbfdcNdY/DgQl11hDTGfZ3J8yB6v1XHsKoCwYAtlD0UsEOqhl8mlkdIhXpvLrZXNQ8ldclEnfftRvlcLPaYQQow2hbF8KMbXvKpaqtSi/SFgPjpr5schV40h4idPihGSFBi1FsnaXHTMck9JuRBr5D5Vf6qqiq2SXN7BJeo7lrO54BZZVebTcbp4wDUkHD+KJFItVcrP01xcOrzHrPIvLKh6zsv754Ij1HtclWiHs7uy2CWXhQPuUq5jroRmoHRNLt6duuzNeg4eKtkkzkd8VXC9kz/9LY/vDDw1ti3jKoe9kOM0RqXZ5AtVaPBakYsXD6qgqzWpzrMAThKCrKWFc4wl2AfVSncIY0rQkxD6vhGpVYxREicgK3ECqZXNmCNCINdUwKMGB9LNLgkqnSNTLAvcaPEJMppoKjglnzNkoTvH2oUniYeGrkbZORFjoMr9xIPDEKIYtSldKiJGQm5yBGNQ1lG7cxzav0oFWZdA39ZgDcpGdqD/6SJzS9SWyMWHKEtHOpVKMFXnoqqUQjWPVcqR4IMEHpX3qQ8rK0zhbyxuod9HtNHicVQqkRoFRpcudAcJkUY8knRjxTGfYuKO+Ncgt3pebClHYgwyFzTEOIE2LJslOSd8NbBHgv0cEyqLr1QMNcRnTrJEB6zmLgCqoNchCNKbU+liExPaqcLIEsZYNcqUzgISaNYQO8LR5lqr5oGcPbGVzzWOE+O4Z9/3DNVcfJ6P767Qv38+T8ePUoE++loq/OWrmhTGDFnR5UaKFsVsD5N5en6CySf84OKSmCJ9HLl99ZpvfvMpt2/e8NWnX5JoePpR4uzJI4yzJQGp43DIyrJCOuPkjEmFVcPhUJo39Lna8e0rZz6gZrlT1XjBvKbro+6IFdA8AB4lBTdSpTAwt8rNGDyZN/uRt7ueod+jYga7LPsgpClLGSlN4lHQ71E5S/dMLa/txd0XlUqL9ZTJ0TAFjzOGhkCaJmIM2NChlCF7SQ5VpzDG0XWOISr2m8ztzuCU4stbz7JJ/OCp5mxp+PjC4sg0WVozKyJGD0AmqQVkg/b2cEPKrU1BgI9cWtdLZ82jeSOrUwI2xEuuur/Vl5K2CVIRKgSUmXFSXkb862vAUPcjXUJBfUS7PoIU5i+Pps+73yxf6YMU7Z3f+3cs+WMRYcVHpjGw3U2kLHv92XlD4yynZwuGXctrE8gpCiMuTqgchCWjDU2jaRqDtiLNSVmRguyh9VJSjKVrTDHvNFpYAWEkZ49S4j8AGmczOUT8MJT7rGmddNCZwkRI4RDUFrA0HhVXagXRVH+sygg0klgYK50YjUHOyVp1zIk0FSp+SWhDBpSWTna6jk/ZqUsAmUCYldZiUKCOGHhIbKaMLtVcqF5XqXTZqd4dMakSyyk609CZRpgfPpBboCSaSonfZD0HUyHdGtegtCKEMkuzwhpL27biVZVjqXRn/DRATjjjqqARZRtwDlXYzVOJ/uouFZOAV8ro4n2VmPxY4quDPFeRCXlCaXMEhuUCWgJRKptGOxKJEYWmQeNwukErI4B3ioQwkLMYNlvb4JqOGMUT6mGzh5xpuhZjLYuTJUnJqu1DZAgBQgaVaLQ0RdFZWHraWomXsviM5Zxwq9I4RUsVPgXxqHC6EflxVgVUVwxeGONt1xWATnw3Yo7FSiFzsl5gtKIftsSsGVkSU8AlP88/ZxXGQNc04tGh9BxTSsxnIInMLqYGpQ3d6QLnOlbtIzKGlC0TDVN26NxCFuaBdM01tM5ysmi4uui4vGgxxqNVQhtHSpnN/QY/9gybG4gBUmAYJybvedjcEYKnbRa4puX84gmnJ2c8efyUprU0jeX125dsdg8Mfc8w7nnx4jNC8KgIk/cM4yjASYis1mecnJzxx//Jn3B+fsnJ6py3b6/59JPPMGmJTVFMeHNifPENw3bLyxcvpGNaP6KMRRnH5cVTrk6uGKeJ/dDz188+YfKerm0kbk4T/cMD/WaDyRIDvbm9Z/CRB/81Tz54DVww+ZF9v+fZV19we/2WJ5dnrBYdHzy5IoXAmxfP2W623F7fShSdYVvApK/evma9XvOr3/6S6D2b+zvevnnLq5ev+PCDj7g4vyBMnhgC+36HtZaLy3NGv2ezv2W/3zH0e379q39FTIHtbkvf97x4/gJjLMvlWmLIGFl0C2lXvzRY26BUI6bRfqTTJ9jlkiePH9O1LT/7i3/FzfUbrsI5zklDAlzApp5Fd4LrTmm2K/oxkaJ47Xz4e49l7oXE27e3fP3sJSkbQvYM2RFi4tWLZ2JC7fe4RrE6cSxXltXa8NVXW3Ka+PDRBY3VqLQn9BMvv/w1j5+8xx/8+IecrQ3XN47GtjhjubpY0DhH11lSUkyrapehMe9foJxj8gqtHZeXV7im4z/+kz/hi88+5xc//zk5bvHDPU/f/4DT9QLlxZKlXTqsExP1fhjoxwFjF2jbsFo/pmlWXFx+wG7f88VXX7Pve7b7LcSelEZutjs2+543r16RYqBRBmUtpjF4vyKlwP1+y/Aw4XNl9Y5YE1gsEo+XDRePl2w2E30/EYfPSHtLrz8mGMWGHWHcMm4H3nvUEFZLuuUSbRyfPX+Be/uGa9+zWp9y9fgpVlmc6YoJM+T9yBQ9uciYjXGyS+csnowxlsKA/Ez8eqXj6uSneW8hS1OnGOR3+l2UrsOLjsePH/PhB+/h/UhKgZevXvDy+Y5xew+LlsV6RYiJfpjEe6+wY5UqexjQWE2MkaEfiFqhrKFpGhrnyl6ZJA/MuXSuLKBQqkUB5FwpUnNjtDCmymfQWjqDx1KUFzax5KXGNKUpl2WcJsYwFXlz6UCbEsMwoJTCNY5MOgC9WnLqinglJB4BOYv3uz0PDxuClyKCNAaAGEpzjxRxBSegIBrWWDk3rSGqjCdJ7KCZWX4lDJ1BT0ouZ4oVDtXjsSaH9d6UOCNlMfEGkX6HKK/jmrYAQ/L5xPtJ8BQfIzF42m6BoIMCLmmt6rEmaqeUmcTuqfg26oNFR2GvpaxElaY0IdXimi7AYpjjJj9N+GkkZ0TJlkrDD22FuezjXNiS7F9L44rvmMf+3czFazBcEkFB6fRsC5FSqM+eA9eiaWOWmGihP89B37eu84AIFpS1II1ZZUIW6CIVHT+qUOeA2i2pvP38YimXdr2qthU+XGH1O6pfU56bFcW/RwHH1Uv54DoVfwjqTTfz5Ku6SKOkSliRw1SYYjLoea4SH3IUuYkCxknF1yhLXegpVzyywml1DMofdfRvKjuj/FJFvIuOVh1VR6n+FtXHaYZbDyiqrkKS8j3p1CiLMFGqsjOCLvdIaJZSTTeqtkWe4bUyOIeKvKYaCJd7XNDjlLMYzxaWxcHlVYkWNed5kat6j4vptySSqtzD2lFR7kXVElfAQzA3Wcyp3JtcxnK+V5U1wDESLmsipoTWBwPheksOrLF5j5wff1+YTb/zUadZ+fId4O2osjA/+XDGzOSi6ilWEX+FwjiDLi2z12dnXL33VOZjzjxst+QXL2lWS9rlAt0cOjvU95k9ZMrbpjlZroCSmveyA/vz3W3s+N/f/gzvognp6PmyL3wbkpI9MsxrXhVfI69gyrAdpStFlTUZKsODEtwnVI4im4oC0isUKUgCFnwmBtChrJXCoIgkVPLooEvVKAqFWGmiT7I2ihcdRUqRosZniCrDmBkjtPewGzM6J5Y2c+Kg1QqnNUZLgi5dh/S7a0whYJ0SsKgSnyqaUXlF0qlKWC++AML+aJ+31P3lcCiUHWD+72EuHvPgDuu8xBfoeeIdWDbHLMzj8f322XaoYh2+eTzWuYCT+Vu/K1WkchIVg+zohWU+jplpSoeKaulMpzTF76ZUDDOF2VL2vLKJ5SM/ouOLn6XsZCgtelP0xCSJqhwpwkmtzDAjG2VhPxQmZz12Klsqy1o9rPV398bDV+WzpyKtLs8Xhg7zXU9l65/Xz/zUOv/z/LuxyrfmIRQQguP1Po/j0WRTB2+1eeRmL8Fcikc1YJMuYrFUv4VVI/uFxAAJFVXxk5H7L6CbSNVjruu4MIlSNdeve4wqRZHKAmK+VqVNOZPiPJSZUkG1TsyNlYCOzglwH3ySbme2IR9azMlY6ITWitZZ8WNKE0Y3aO2wpkUpA96TSTgahPeURKJvGypJTpUue7bI9m3jhH2iMi5kOqkqolAsXSet6XMGncmmMDcR4DmTy71TstNljUpigu90g0FANFdsEsYgcjLXOpmzCijSg1CMzNtWqu7tYomyDW75mEQkpkAmAEkkdkrilZySWC4gwbvI7qDRHbZpOL94H9e26IVGK4dVa7nXMaO8JEdp2pBTwhhhJQ2jxjQNyazp2o5HV+fkPJBS4O52S5giNhtykZz5cWTsdwxhYopeujb5icGNNO2CdnFCu1iA1vTTxLbf8eL1Kx4e7rHOlM57hslP3D9siDESU2SYAlOM9NM92yHwxdcvOL3vWSzuefPqDX/9ySesrGHpDMvOCWDXD/TDwP39PdGHomIZ8Snz8vkLnHH4FBnGkTcvXuNDYL1eyjavM2GSZDZmAXid7Ug5osaRcTfx8usXZATE3d1v2T1sucmRcdFycbpAK3BdQxs7FtNSmBMp0w8DISbGaUT3hoeHB6wxLFcrFtsdXdMy7vfcxUTrnJw5Qfa47X1m8j19v2Xfb+n7PZvhAR8mtFUkIsuTBdY6TlaV3WRYr1a0TStyGW3EqydLV+OT0zXdsuOjj9/n6ZPH7Pf3vHx1wthv0QpOz1bk5AhjwrgVtlnSNRofpHRijeW9x49pbUPnWhbLl+z6QEyalDUnF0/QruH161eM48A4bYEAymONNCNQMUAM9JsNwSg0ERUy+7hlY+657t7ycHtPv90xqh5rDItGE5uGHF3ZczPaWJSxGFOAhhhBebzfok1C6QVP3zuj6/4Y0h7FxOmiwyrF7es7iUMm6TIWFUQ/kbwHhPlye/sW1+xZrE9oFo4/+KMfsB97trsdz776ips3PaQRQ8aMg8QmwYMGHbQAqkg8b5TBtA3KGFzboNHYZLCmAd0RpwAxE5N00d0nj25bnrz/HilOxOEK/APXuy1rBcoBMREI3NzfE1CcXlxiU4crQEJKSaTGCg7tVSrAwexVVGPK+Ww5yrnm8uacI5RO6oUB5L2XZgfOsFh0nJ+d8fLlNwzDnv1uS79esVot5HxWByayxLOlacNRUG2MmVPFEBMQJG9OEgPkck7VnOadOLUyuVRtCFZtMZgBkVj+TinPvnwpRWKWXTYWMEjpyiqtN0L2WaVM2WvT7GFcI7n6MdKshJJ8TGSwYOzBiDymYjFAJqZYwJJ0FHsqopyiRCXedOndUB+yFDerH5MqMUdV0eiaS8/xRzGfoqi3UioMXbl3eR4TPbO6UsqFkCEsaYxIAK0RQKrGMPMFHd2uGrDKOAkb9hDRiU8XULrCc7CxOM5zjUZbMzO4RB6YRQlFRhV5Xi4ndM4S9/wuHtrvevwdgKeq8asBXwYlNy9rCQR99JCzVDG1wjaNBItQvI0EpBH/CNFYppRFl18S+KREIpCTJItJAVbcNWKc5kTBaE3WME0BUqbRAtLUwVI1OUiZ5EOZNHJjhS0lYNY8biWAHVMkAc6VVrLKCaCgxaQ6p8KnOjIlAyP8L61noMuWsvkYQwG8BHRzthFmQYzF00HPiYAqvW5yKiwmc/DGStXDIRcmWUoFmKmxZzEPm5OnsiDy4cPlyrpQhUZJBmvnODshetYquxENspjMKhREMQpuZ6JHLgteFa2rJB4pRaKfZgTcGXHBt/kwd2ZZGiWhUmL4aXPx9DINSmmGUbT/IdakrLBUjJLuPoBsAboAZHJQy5oW+9RckHdlTPGpES+UGJNU5pUujCZhv0nL0SpJKfdGi/GoJNmIp0jOJK1JOglVWFmaYvCRonhDWevm7oy5JHtVk1wTkr+Pj38bUPM7n6MOX+cyT3XOWKGpkFUqbIGMtQ0ohcVx8egRjy6vePXeE968fcOnv/hrfvvZ5yzXKy6uLjl7dCUVhVCZIbLHiYJFFkWYJIiZ2Yeq7IU1AVLvXuO7J/K/5XOVA+l47A80YsXBVNdCDqQk3nEZDVb21gHYJHi9idzsRJaiVcZpYTuFKJW1ED05T5hsGCdf/FkM0Y+MccR7YXHowpxs2g6lhemSfCTECRDQNhU6xDQEkby0Vg4bLQmgioZoAl5F+ghqhOtNprORZ6vMo1PNB1eGi86wbg1L3UqXOlcObPvuGOcsneN1kWFJ4lghH4/Khpyd7FvAmBNTzmwpLWBRtMX42ZQJVIEJuemZWCVdBZNW8cBYS3M6Lae5qQhUhZty9fc7AlKOMZwaIBx963hyV1xGviyS4wqaUEGnAnopcI2lQzM9RCafuLtLjGNkmiIheLzfy9y1Fqcy2sI0TCJvcQ0hwjiFst8KkzihBXSogShSkTzUHyZiHPC+L91uJgBimsiIn1O1SYsxMI5BmEN1v5zvd57vlCp35R2JX451SObnxZhKAUMCZVO6i9a7GlIVyx9o5Ll2BirrTAJcYSTIGq9s0yodmFfgUXHiYF6tlSLr0nJ5/hi1QBQJqTB0ycTk0Mkyel/8KIRdpI3B+yBJSY5l/5d4JWdIIeL9QQKQUiCT0Kawg3Wl6Esbep8mlDLzuYLSNK74ZOgwG9NqI+9tmg6nFaac6V3bMPnAsNlj3ZJmuSZnLSy4WZqgcdZyfrJiCp7dsMOaFmMcWrcoTGF6Q7OQVvNWDFzK/ZH7uFx2GK2JMRQAoUroERaytkWCqDlbrHHa0KKJOTIwCfvQKExjUEYx+ImYEsPoEQ/NDoXBUFgatqEp7KeQ9kAEJb4rPibadsVisWY/TEw+MPo9kFisHevTCz7+4Z/I2s+BYdgzTgMxSCvz69evGPqe+9s7qdyj6ceB/b7nar1k1Z3zZ3/6n3N6fs79dM84erb3Hu8n8V3a3DIOG3a3zwnjjrYZiT7z9pWiXSzor6746Ok/4vGjH7HdJvY7z29/+Rv67cCHTz4kx8D+YcfNzStevPiK6DLJZu7urqWDFZquW7IdPE/GgdX6lNdv3/Dm7Ws++eSX3N5d8+Mf/4jFYkHOlrtN4Nd//bl0e+ta6Z6U4fXbN4QEbx+gbUWy8+rVS37961/ywaML3r86473LS06WCzqtmIaB519/g1aK09MzNtsdt/f37LdbfvWLv8I2LTElvvzqJSjN5eU5betYLBu6RUPbtkyjJ2XF5cUjQoAY7wk7zy/+5V9ycrLm7OKU4W7LuNnz8v6GpjFcnC85Wa+4fHrJqT/l7OocP3qR2OTEdrsn58w0eTbbDY+vHvEnf/gHvLq45HS54puvvuLV89d878MPWSw6bGeYppGbl18zThP90LMf9uynPdebt0xp4uMffsSqW3P55Jy2aTldn3KyPOVsfcbJek3TNtxtbgkxsliekDOMg8c1Hd1izT/5J/+QP/uf/0N+9JPv8dVXz/jv/tv/K9PU84Mff4Ahge9JUZOSpmnOsHZB05xgbcN6fcZyuebpkw/55DefEnJbpJKa/+w//c+4urrkl7/8N+z3Wya/Y7u959XLZ2webnh4uGapNSjLw5s35Jw4Pz3HJ0W/79m82fPiq9cMITBFUYRoY5iGLV3Xsuha6TLatLSLBe1iiQkerTR+fChyxz3tuETZkT/4o5/yj//x/462kQ5bv/zZb3j1zRtevfwZ425D2u1lszeKMUyMccJ2C9CGr16+QRmLZ8dPfu9H/Jf/1f+GmCNjGPmn//S/5bdfP8OGURqgbB7QKdJoOT1TThKTG02jG0zbsro4xTYOt3DEKTHdeZzrcM0CpgETM7pZEZLjfjewXp3wZ//Ff0rTNjhj+ef/zz/nL/6Hf4E5DwwLxWmnMSnx1esXXIWJq0dPaNsFCyzbYcCPI6vFAusMvfcFgK/WJci5oO3sFxhr0l8KnFYXqa7Wwhyt4EWGGD0pwD56wmRIoWHZdXzwwXv8+q//is3mnrdvX+Maw/nlmfj72Ep4oNh/JJJxJWeT2LPtOgFqg8cPEznnGUQSoH3GZebPUePXnKUbGxTChhJPodqxLhfvxEoSmRm9fhLQCU1IMufk+K1RkRaGsNIo7QjRM06BxjlhixYvgzn3LOGXJhNSEF9do3CNISRPTAEfh4KfyPk1jB6biuWKlgBkSomoIQiJlaglJlekmSk2ldiQLGonl6UhhNN6FrJVtnQ1GwdVFD2xdMBVkJPcn2xLnCedQH0I0jTIGKyTubDoFjhnyX4qhcWS/aYkUn2la61WmGNKo6jFdUhKQOqIFN1CiTeskvi69BGVDqFti20swQvTrj6XwvyyysyeVoFC7qmF8u/w+M7A0zQV021lqHwaVcCUyEGnCMwMPK10QRklyCvsXEhikKs4mFYJjiZBdyyyslyd3bW8aK7m2QgSeQBuKH4qzJX+nMIhSNRVOyGLI1egd4YHy/NQGOVKEC72mLmgD6aijknQVkFlDxrYeWHV1VkCRq2NGJhCYXvVdzsoLWuEXmGjGcKVqz0kIcd3qgAXlXmlOBjgShBdQLh3Etw4o5QoNXcAkkTvYIimCturGrWmwizS5XWKlRKkA4gUU60K5sJE0XPwrXImBdHZ125GzJ+0zJqcyCEVZFmhZiZbnpMX8VuoxuHq4IcRK6Zc6I6zP4ieUd6YpLosFXKhKAJFtilyphgjMcf5XthY7rrSZf6FOZHQWaNzplMWrxIheqxWdMqikyoJk/jzVDPbctv/BvOpfv/v1UN9+59zlsohuSxfVcYHFWEvcjOVi6eaKf5DmZCkmr5V0inRKoVarzlHcfr4lqwdz776hrvrO34YoVm0NCfLkrjmg+wNJBAwpbtTpc5WwCCpAztQ/w5ggYNXzOH1eGfw51twNPiVrSSVKnlhrWrbdUNSstEPGfqYediN7Acvh4WStZYLlRsVUUaSd5GnWECTi4ljYx3kiJrpz5HRB2EmKFeMt2350InJ78lJE5METq1taTW4jHgdlLVavXfQCqxhUplXY+buJvDNZuS805w4zUVraC0s2ogzmU5njNXY1mFqdyofICVM08p1OTEQtmKhLDLrLEWKmBKRWr2izI3DfKqgFhwAnkmVXbMAL0rnuaAQkXMlyS+UhJy5Va0+nrmqDnCFVcpGpw7f+fb8/xvyu7rLK0pQJXMjIxJLFDincFYTLPgpMk2BaYp4n4iRYiTZYMp+nRk5bvFrTDWGTlCYtSmVKlzB9CQerdT4YqpJLsFXmZ9lzgQvc08bN79HylFksbX7zLdQ5gMcJ59Pgp0j6SM1uD1mOBUZGKUKi5qluJTW9cddBeczsEYrqXhTlANwrjeXAPvAIpYuvZRzojKnatedY++KlGOpcAfImZAmOROcBJVGK5q2oVss8CXgt9ZijKVtFoj8v6z5JAUxY5QATzlR2yebwhJPRT4fciyJiZEObNrgXCvXVFi8MYnhs2uaUk3OEOWetE1LLJ0/227JcrEmZS3rYRQpgsoRaxTrVUsKgWnqyUmXwkmDUpZ2IWaumOL5NU9oVTrxyN6gspiOi9xSQEAfA+vTE1brU5arNdY40hgKixksiZWKDOPAvu9RPoNWTDHgQ+Rhs8UYw8mJpXEa1xowEFVkNzyQQ2C/25EzNE58WfqxR+sHOZPzgQUbYqJpF1w9yjx5BP3Qc3t/w8PDLfvdhpOTDmvg9s0t/X7H9fXrmTkYCsg3bQeu3Q1Xv/2Y1fqUF7evmcZAvwtYq2gaza7fMUwDd29v8MOOzgpDyO9h2G+4vr6h6RqmmNnu9uz3PT/7V3+JH0fCHw8sOkfXZaLzjHpC4cjJsVxe0nWRcRLp5MPDBjBo3bLf92KeHQ1aNbx+/UZkN9Yw9L10p9ORlEYoe/6iWxCikiYUp4rf+/0fs1o5Utqigmff75imJcEZhhiJ08TZeolWmsWiExm3NXSrBbazPH7vMdY5tDME7yEnFp3l/HQpDGWraax4PFlagoGzk1N8SIw+8eGT9/jpT3/MmydPuH+45ZsXXxDihDOSwPb7Hu8D4yD+SG3T8PTp+1xdRgJivN61Defn5zx+/IjL8xN++pOP+Vf/wvLl55+zPm2xRjGOIyH2DOOGyU9MfkAbWC46sn0ERvMHP/1TTk5PWa5XpBAY+n0x601MvifmseApmlwYYDlk9sOeu+stn/71F6zaNfu7HpMMBIhjon8Y0Cqiwr74xSWi3WO0YzALtGkY+yv61SmNa4kpcHV1xYsXr7i5uePNzTe4ReAf/tlPMUYT/MTrVy/5xc81t28X3Lx10go9J7bLC3JMLLoTYohszZakYEiKaDU4BymQgNcPd9idoS1+ZlpprGuxrsF2S7SxDL6X+NsthRHpvuTFyzfc3N5xeXHGernk5z/7Na9evOFXn36KH3qWJqCUeK3FFIg5iLcMiofdRFaGn/tfcv36HmtWdKsli9WSt2/uicGTvABPjZPDN9XmJbkwVFJmKi3qL7A0usFiiCqC9sQwsJ96rDacrM8ZB4OfMtuHEdqBaee5Ol/y459ccf38e1y/uKV//TXPH645++kVTafZ5wd2454vvvkSnwLL9QqfPZjExERAEZWogIy2fJthnLPm4GmsMPnAOira/2LrIz/PBdyozbNMUatopbHaFs8kzRg8YwhIlwstZ7WuDR0EOPAxQUolf5Ru7THGwoI1pamL7Oa+EEGo10YNZfN8bfV7MRWGlS5EiyLZS1WVokRGVqWFJGEzSspc/ISULqBO5pjqfijkSxwr8ILgC4rCskqR0U/s9lvuN/f0w44pjGKbkGOxGajG6cVKofqdqpJtH8J/ag5XP2MqFdFcG38UkKxabUOe/VjTUdKSc2lkpkA5S1JKCnzF5sdZC4WFrTPzuKQkuT1ZQCySxErSbM2QUyR6L0wxffDL9TEVL+o458Czh1gWM/uQDmW7Am0KuqCkiZNGgMoQQokXkbxcaGRFaZSKdLGgK98xj/07Ak8a66okQh8mXUVrC6iRS2Aozb1lE81RArocJcgKQdoj6pxRWgujBGH2xMrqccIsUMU9P4fC+MkiDctKSeBVL6FM1iqjUmUiqyKBqyjRcQJSF5Iw+g7aV40WyVYGlTWmTGzsAQJKvsjoklDcY0hSYSwUNXKVIh4SCtIxnRIJ9ssM1epQaa0XVmvusxmpOlh+olTRudbnz0408t8amFMC6lwTdiX0Al0XG3MwLwlq2RCzIKgpSmBduVSpUC7RwoKQanWR1lECx2Icp8v8iMHP1enDRlLmULl+oVqKJ4lKGVQqM0g+mWxaZmYLqeKxM0XptKTLwSVmqcWDq1yzAPKZ2sGlgleVeaZUJqQorA4j429y8a4qG1IiYBAfK501NmeythgiY/A4reiwkMD7UMZHC9U0HMzFD13xil757wnopI4OqMOjJJHfoo1+G5yrcp50BD1FDa4a32XZdwYyvcq8VZMcfMpyul5zsTrl4uaBpAyf//WntNpw1i45vbpgebouqH3p+ERJBqH4jAC+bP7lEmv8UNdrJSzV1DeXD/HOx6h7Tf1TP7OqjA3Zv1JlJpbDRxiaBpQlKV+Ap8w2Zm63A9t+xJhirpsEeIrlsFU6C2CvMspaiHLgGWtmPwIVg+jIU2SaBrTRdHqFUY345hSwoZ8GYsgo1WJo6awS2Vwq4HOOhWVZQCcNqnVMMfGm9/S9Z7ftOW8sJ87w3sqwbhQXK09rEydtoO0c69MFrUm0JjLtB6KPdKeXWKdZWYUr7M6kpBlBiJkQU5FiZ7DlbNTqiLtCMYtU5fCNRED4DoqInuVphZ9YWFdq3rdyShgFDdJxrHBWjsZdUeWSOtfA6WjA59Ev80Z9e6IfNgI5rirbtQBPWmGdtHMPQdHvJ6bRMw2RaUyEoHBOZAQmJ+l6ovJcUkApbDEcDam2AVfF2ylS+bXVIDQmAS1r046ZNVyAyByTdLkrwWIN/kIMxBSoNlqVzXW01c/gj6z9us6qBP13AE/5AALVRg25BqraUIEx5tcu91AXo9dagKnvO+MkAqJmKKCIsHbzbHYuMY5W5RpmmjsleB2LiXsmhBFjKSa54qO2WLWcnZ3ig4A/zjWYYrystYDAKcn6altH29jCeKrnRekkmCGlA0PWWIuxBuPEd8i55gCmlSW4Wq1YLJfs+j2TD4Sp+HM58UfKSdG0C7puLSd3hv1+SwieHAe0znStQqeI8hPjGCQO1A3aWB49eYyxlsEPsnf42ikNYkiSQN/3ZC9S3QpMTyEwjp7Lxwsurh7z+Mn7tN2CV89fMk2TrDOgU4pxumG7fShFMghJWs2/eXuPayzWdWhj0c6USCmw62+Y9ntu3uwhadarC/w0sdne4WNPiAO2dShjePV2wzglYM1HH2r+8MeZtzdbPvv8a96+fcH93TU/+tGHrFYtb9++pd9vePXqawFXVZZ4z1i2+4kQNc3qkrZd8enXX0viOyZOTxc8enQqsW2K3L65Ztrv6PRhxT/sRp6/eWCzH3j24pZ97+n7kZ//m59BDnTrxOMnZ/zgh0+JzcRkPQbZh9frM7TWPGzv8d5ze/fAdjtye7vH2ka6PGWLMQtevXxBjJ5u0YJONK0qMbWfizir5YoQNNuHLYuu4yc//gHb985YrQPPPvuK518+w/tTQmgI+x5i5OL0BK0NpmloFi3L0zVRA9bw4Q8+YH2y5vSkZb/b8ubVS9aLhqeXa9m/yaRSSMijlVjtrGPykd1u5IcffMw/+dM/4/b+LZvtPf/Dv0rcPdzibAMJtpudgH/TxHqxpu0WXJ4/xtiG7T6VxDRzeXHJ06ePefzojKePz5iGB0LY4Ywix8Dd3YAPO4ZJ7qP3E81ixaJbsjLnNN2K//iP/wlXV4+4eHTFw8MtX3z2Cf3+nv3uln4cUD7h9AqDIY4FePKwvd/y5s0dv1p9gt9lzs9PJb+YIPaJ3e0erQIqb0lxJMeJSVUGhAXV0Cyfslxfou2CEOHp08d8/fXXvHjxDd+8+pz2JPBf/tf/e64uL4gePv/N5/hhx5v1ipNGpGAa6De9MPJp6f2It2/ElH3co51BNxoVAzF5Xt7elk6ZkrvFEBFrEQPGik9N8VnErgghs91N/OrXv+U3v/2MH3zvezx+9Ji//NkvePP6Lc+ePSMGz6o1KCJkjxEOhhg/p4xzAoT/5q+/4fTia7553vPkvff48OPv8er5LSFMpGlApUDbSvEklg5nOaki98xMo7AjnbIsdIumFJMM7Po9u/2W1cl7rFbn3MQtaZp4uBuIZmC4Hzj58SX/4B885u3zH3H9PPGXX3/F3Ys3/PEff0i7btjuN2z7PduvPkU7zaMnjyTmsTCoqaxtYb9qnSFVIEE8cXI+FNBNOf+rLC2nXPaXSpoQID8ZAQecEYPwyha1xkrOpQ1D8AzRi/l+kQNnpeXatEWj2O/3pJRoVFMKM0G6xYWItY7GtVTOt/eK6okIvMN0muPYkl/HWKT+WqGMdKybJj83OkGBdQI8TV4jUn7J+6wRf2StzQwK5VzVIkJ6cU7POZnkwNIlUylFYw0hRfpp5GG34fbumm2/ZZwGrAOlMtrIJPApQpaOcrqyy/KsA3rn8xlt5zw5lO7qtXWv+FcnYghzziCNRzgUpksMFEp+YawV1lmKWOMEUHMStAYvhBlbIkspTKViZSRjYIwVsMpZgp+Y4oiiqo4KHlSIG0Y6c8lrKUXWSdQQxb+rxjK5xLuognOUzqxTCIRJOrYqCjhVr5cDHhNSfKfh2t/2+DtI7Yq5VukEUb1tcqztADNWl6pgkgmbcpIqtRUj37m6l6VVpNbq0GmAwjbJUdrsKop5ZZ7phiEe6OhGi4zKVhf4lMWDQwl+J1pSATZizoXtItGm0jUUPrAnxBxNuiUaxKSywoA5ZQlIg4BaNWBOousT8IskM1pVM3T5/TRPxjwXBHOWoEwZqZ7rJIBJ7YZnSiBdKXoC54gnQSpgiy5l9znNfYc1USZSPgTc9X8HGWIqYI/8rq2GmdqQoiwkZawExwXZCzHKJmqLCagpLaJjkkWc8xEbQC5Jaw6tL2cz5gLmlHkkG1+cK82kjLFl/Iqxaiq0kpzLAiyjBwofZEFayTQOm3oqLDYUzPNWEPmASDr9NAmDzbn5fqhqSGsOwJVcq2bSpR2llqR0UuCNIjeWaGAfJowSE7Z6J/a7/Wx2mY+G6tDV7gCKfmfI+D+UR8lE545MCgrsO6/RGe0pX8wVgCzeaaoYC+fCwBMph2b0iT6O9K7lxBjM2SWrqNn//Dc87Hb88i9/xcnFKU9ur7l87zGPPnw6AxUpVKZhARZqJvutIfobI5bf/cc7P1O/43k1E89yMMqnLwAvtVuYJSlDQuOxeBL7mNlNEw93N+w3PS2qzH9IMYrfhktlvlM8znM5ACM5TOQ0yUGaSyMEIkqNaGXRKmC0wepMzl7GIo9AZtE0tA10ppiFjx4TNTZpokZ08U72jTSJjt8GxSI7jFUstMGi2O8ioU+kqHCNYqMNcfJMt3ucSTid2HlPSInlTrHsGv7w6Yq1NVzYIqdVSoA6lWlQWKBRMn8aNDYr2jzvOkQNEcWgDBOJ2xyZMuzLfq+SnGNGVTZuATyStHLvjOLUaRblfClXMUuX6/xRBXgSwKUOvDr677uPg//c35weKWe8j1IlK+eBbTTdspXKlnVo7VDaSUFBaWLIxBAAaTxR5VcheuGD5kj1fpBzpnRLTOJdLIWGcobrIosrbJVcsimlAsZktM4oLaypmBNZRWGOlcqHKiLoWBioMatSdUxzQFSbUqRUPIpifud+cHwPaxWRGmRB2RLmfaGy0Q5y83I/y79FQifXZ02hiMdcztQ0bzmqyNlqNXG2a1BKAI+sJGjPSVqf54l+6WlbxapbcXp2yfsffIigcHruhNXaDlBEFVGzrD5LLKzkno3TUO6RBONt22KNxbmGphWz7mEchXUzRRRgtWaaJnb7ns3dgHH3ElCnzDBQvN4S69WaDz/4mBAStzf3bLY7hmFkterQGrbbG/zUs93c4DQsrWaaAn4K+JBAaT7cf4+m68ga9vs9r968ZtF1LJdLGusw2nB/fYsffUkiMilG9sPA7WbDrh95++aay6vXNE3L86+/YRonaYDgHGfLFQ+bB27v7tiPPT54bCMNPra7LVorpvt71idrLq+uZubA7n7HOEzstwOg8F7kENooxADcoJJFKcNqtcI1geubO97cKH72V/8fhnHk4eGBt7fPub25xtiBxaKh7x8IYSJjoHSdss5hG4fyW2IO3G7f0oU9p1cNfZ948+Ka3dTT7CZ8gBDBNo6VOUEFSZicW2AWCbe85PzyklXj+JM//H1Oz85476rj4eGWqX9gd5eYtqcwwYIVux1sxoHFErRR7PYDqMx6fcKiW3J2esGTR094/OgJ/fDAOO749Sc/o++3tI0r500BnDTk3JCxOHdOzpbr2zsuLs/5/tNzusUj/hf/6Kf8xb/41/x88QvOV0taa0nLHg2cnaxRRjzFklJErZlSIJFolhZlM++9/5h+tyQOOxqj0WkScErB4AcSip/86Pc5O73gw+99n74fefbVS6xq+e0nv0SZTCaybBpC1zI8PJBSEDlkFLnqtBl4MI7f/71zLs4uWJ86vI/c3Lzl+fOX/LN/9jlnZ2suz0/59S9/wfNvXrHf3xP8yDTuSDmSDCgcVrW4psM2LY+fPmW1WvPm5Rfc3Txn+fyEoR94+/YNwU94P+FagzGOXRTZ47JbIkzFjLEty9UJd/dbfvPbz1mfrDFGc3b+hPX6AmcVWkesXpHjSA4j+/2Gfhi4e3jAB1BtoOnueXXvOT+/4unT97l4vOb9/oovf/sNr7++4Wr1mNVywc3NNa9evOSXf/VXrFYLTtYrLi4vWS+X4qGWMnGK9OPA+vaU24c7Xl+/YXG6pFt12M6ScuTzLz5lGgeoCpXSyMgoQwyJGDM+yX7QLU4JMbFtdkwPb/nLf/GSrz/5NevVmt12wE+BRkdolHTgLYCnMcIOzbZUKpzBast7F6fkrPnis1/x9vUznn/1GVFNKOVpjZzPMRZZWBaA0fuIDwlfSADONUzDiFGKq+UlUU0ku8FbaeqQomecdtg2sVSaj542BDb86//+v+H1bx/z/Fc/5vath/uJR6sFy0dX3Lx4xf7OsDw1Jd5K3L++4df51zx9/33OLs4xpinhf5iLGrlYtdiihHFObDhiUfJwFKcIiJbwUfREtjCVG+sKm2vCOUfbNFjripm9RWWNxaCjYtj0GOuQXLXm46WAXwCrxop3knhGadyqQ2tFzOIXSc4sFsKm9d4XiZZ064Nqk6IwTqAEIeVI7FHPtZQk5pTCqMJ7X470alVRSSJqZgSrUvjKoy+FGdkrjZFYhpRFgqa0ILsISBfHKA0Ahl7Oz3wAwuDACFbVY1kjzSbioVu0c64UtQBlyImZUW9ikqKiYQYN65kqsWjxTqIUlJBsphbMsjpI4jQKVcgdqjDabQkxYok9dPFuRCnp7h6ThEY6Y7UY/qPFp9E6N+f71bQ8phpQGJSS+ywsmkIsQYlfNoJjiDWOyNpVtoTGS8OyknyHSUgoIskHXfJuZQ640Hd5fHfgqcjaKpOEgsCl0nGo0uvmG16Dbqrju1SnaxAoVHEBJlRJ+GvL5NrOMJZANhS2TizRZi7UvSScNAF/ciGUqWJIrbIgy1oXJlW5pmIkpkqyko4miFKgk6DIanZMZ5YK5pSLuq4AJwVYUNqWdKBW3aq/EgUwYg6UKaBYiuJLBBSARCayrp0AKB2m5AYVuYSa31sZCcAEST4kNLX+Tv4dwJMq7RGVKomGVFBVFjqhRmGUwucsXXfqc1VN94WMl7X8oco2kEmocpE+URKJcp9lXmepksz6CGaEVK64eKkcZVw6I5pS1PysOrdkkxAkXL5X/K5QFSUg18VdEgcJ55nRcgEAhUaoqNX1cglKfJ1UnTu6oGh6fnmyUgSliEqB1UQlnl6NcXMFQ6EZx5FhGIrmF9FbHydVh3f9D/5xaGs+o2/vshEqkMxhZtTnyXdk1aT5dwo8pAs4GPIsp5wi3E0BlJOGBIs17QlMEfa7gedfP2f98IAnYBrLo/cfz/uJAL/M4MG3vZxmxoo6ury6wstnrFZN//Z7wRHwlOfW57Pf09x1zxZWDsSsicAUM6OP9LstUz+xUl0BFA4SqeNucPKjdAgMUiCmcQajql2iUrFs7xFNxKhEKv0oVRYPv8ZmGgdOKywZfETFjI61SYECHLns4Rnp0KmzwRpNo8U1znsBpYwFkzVDgMF77rc7rM4YndnkwERmSc9piHxw2aIUrAs9usrclAJbxl2XdsEuK0wGVwij9VYnBR7FiGKbE33O3B+B3g0GqzU2z1NBgr0QWaFpjLQ2bw6TgW9x2+ZhV0kM2Y/3uuP5zPEc/13IZAW9YpoDkoxDW7CNxTXuwOrVlsp2TeXMEtCktCuOpbpYxrdiqXX3zUUHHeMBCBWvh8J1LYwkaXFcupkqSuAi7aNjCehqmFA/o4BvRs4cRKZWGUxJSeI838fDwnhnL6j7ssj9y7rnQH8/3NejfeZvbDcHS4DaUrqalgvFP74zKvVcRlWWcZ7jH61MkeCp0k0wkHNk8hHrwNqWrltxenqBtg1aGx7ut/jJo6RFL6kAg41z0lo+hNlfzk9RJOxaY61IKJ3rWHQL2q7DOosPD8QwFZNmUFYzDZHdfU82Q2GMy2m07xMhJMZxJEXFxx9ZwtCz3W65fnvDbrvjyXuPaJxhu3lgv9/w6uXXtEZzumjEp8pH9qN0u3Grlm65wDQtD5sNXz97xsl6zdnZGevliqZpuNk9MA3jbLtASmx3e25vb4lRZFL9fsK5lmdffo0fR3SGRdsxnp+z2+142G7YbDeM08BiuUAbxTSNKJXx+y1xGHDUs0Ox2wamMTIMfWEXSzKxWHSoaMjKkLJ4V3aLBcZ6Un7Dfrjlm5efQmF/jdOWfthwe5fZ7x05F+N8Y6UAZyy2acW0eBCZ5ej3KAsnV2coE8h6JObM4BWT18SoOW8b2lYRxgGtDN3ihDYrFivFYrWidYYfff8jPvr4Q4bdW16/es5vP/05Y6/wwwgh09Cxj4E4JYLL6CJtNFazWCxYLpasVyseP37E9z/+iBh7pmnP3f3XbB7Ei1KA54g14m8Zo9yX5fIRCkujM6dna05bx6NHF3z0/adsX99z+81NkW1lghaw8+LJlZi2qwzGkK1h9CM+BulGnSNnJyucUSwWLTpGUphIRpGsYvB7Eor12YIn71/yp//4D9jvBlbLlhdfv+Xrz75mfbqgaS1WQ2MMD9s9PnjGSRg8ISTGLKBPjonGOppmxeQ919dwfXPLr3/5C9arJacnJ9zfXbPbbbi5fon3A9YlrFWsVmKeb5XDWIcxlrPTE05O11xfvyXFhHUd3gd2m/0cl2eEhTiOAwpo7HJey0Zb2rajH0ZG/5btbo9rHMvlKRrwfkCrRGNbcmzJZmK3Gxn9yMNmYJgi2YJ2Aw8DZK1574P3WZ0suLw649NffsPL/Q1/+S8/oWksL198ze3dNV9//SXf+/5HrE/PWJyccHZ+ztJZNJlx39MPI9katIF9v+Xk5ITlyZLF2YqsMjd3b9nvLH4UGWPjnJyN2uCHieijdNJS4ucWU8Tiubl+y4vnz7l785quaVks1jjXsFgtQWu8KpLgnFFGoW31GwLlRI51erKm34188/Urdps7Hm6vObs6YXXSYWxhlQSJIVAUH7fIVDzzFosFzjli9ERvccaiiTibsUbkailFUhgxztAZxaMzmVdffPJr7l9ecvfNLSfrU1bLNSedpTldsnu4xfdwupQ5n7Ki3+54MT1ntT5ltT7DNkY6plUiRD2aahyrpJgg5uxpBp1yrmddVe7E2cNHGel0l3JiClMBowScMFqsYWpHd50UfgzkJJ1mc2EvKwfouV0U1mgSiSlGjNM0rZubDaQoZ6Frioy7+BFFf4hXFBJ3i6cQpJBmkEVCaX3w9C3naYzxUIyrf6nCfNbFQoeayyqZJzEebAIK8GGLPG2+Gi0SsWEcGKcRH6T5hcQMag4PcsEKqvG6FMyYiQC6xCu62AqlI/KJnovEFCub4jUVkQYYuhTDULM1ADMuoouRt/yyruFEaTIC1eqj/BrSmCuXgmMtoqWi3ql5r9JGziTrZrCQWYVQrXfEj1uVBFjVXLm+nyreTloJmQcBxYy2ZJOwSpOTmOrnTFE6yXWaml8f5fZ/2+M7A0/L5ZqcE94HMXAj48NECAHXubk6LINbKWqmoLMelZRMKmclCyjXWDu3zD4ZuUzwLGiitMjVc+DrXEPjmlkWEIt56hxyKxlMg6DK2lSPpUzMUnXMurpSURzsE9KJWcE4oWIunVuKOdecLEMuiymjizGtJpdAuLrFi2ltnnW6ElCXRDBE8X4wDZ1rcNaJ1jsr6VCEAHSiwRSan3UahWw4IUxSAZ+KdlhVuuZBGpCqmrMGyMUcLZcORPJ/uV8pRvHG8B4q5bPocU3OqJyEIUGWaqNSDOWT26wKgpzLGEFOAgLGMAmDzJRJb5qSGJl3UFmlKAyqjNFCQYwpocTJe2bYoWReifGtwei6iSiREMmMk0VcJAkxifdE7VanCltJl83AaI01opVWSkkLUcXsLSZmyhzAL61LFyDDME2EsskqwNmWnBTBexrXYa3FWukqMQwT282OYRhwztJZJ3PoKMH6+/B4x0i9dpKAGUCYt8IC0uZUWHrlVBbAtDD+lBZj6pTRKZIqoycHVIZWO3ql8Si+uhkZ+h1/dLbidL1mcXZBGCK721uGaWKz3/CwuefN9Wt++ge/x5P335OqwJzVQpwTzwoSzx/kKMnNv3soj/CEKmNKZS+IPszedbp0fjJtI2v6kCITcmYgEpTsOw+7HfcPO8btnjQk2u4UnWHyPUY5Fk3LxJ6YPKPvxQDfDFJpax05is9e4sBEICdpY69BEYg+0U9j2b8U2We0MtI5qVvhmhUKhY+J4DPBR9yipTFWApCUiKN4RrWLliFO7KaJphHJ9uqswxkRZCubUWbi8WrBT793gcsBkyN3jaI3MGhotEI3mmTA64hDvHecVhhlJJk/Gqtj6xmVKc0V5CzolWKXM2/8xI7MTa7zT9MpQ6NE0qeA5GWc9tuey8ayNAtalWXOlbFNFShBihamgFiC1efDpC7j+bevlTlPl6qyj/iQmTwYZwuBM6F1JEZfzMUnctbYWJSOppFpnAKZiVSNdxRoJVTvmIJ4FBHLdWmsawrI5IWxHSHnSEyeYnaFa/TB3DpnIJBVBB3lkETNzSNy3ZuL6ThokY0lea3qa6YK0FRl1BKEyuuIBD+Ve1ghoQP7uDLGsqrXU0CtWEsaGXIp9hQkue41qRRvjJFgU6q0cu8FxJb1UQsec6UzF+9AZQGL0g3GGJxd07gly8U5/T7z6afPqYyn+/sN3gc660oRyJZzyDL2PcPQCyCcojQGQNibTdNxen6Bsy3OdrjWYazhYbNhGkeG/Y6cc0mmJPA3TYt1jn7a40NgtxV5hbOKOI38OvnChPPc3d3T93uIdzhnGIYtwQ+YNBIS3IVhDoP6aU+MiW9ePqddLDi7uKQfRpIybPYD/TBxcTayXC5EPugssVTU26ahbRsBPYwjBI+xCtcZFidLlNX0ux3EiYf9Fh8nlIGLR2doc07bSMFSQE+Fc46uW3JycsZ+GBnHiSdPHoGyfP7ZF0zTxOhlb21Wp5hloMuBrMWwfrleoDRcvreibTqePvmAR48e89FH3+PTTz/l2bNvuHnzmmkcWC07kTRbkdhZ56r1G4/ff0JC8fjRY5bLFU8+fJ9xHPj+R+8z9Hv2+w2uvcQ1a1yKmJTRUdbQYtWQgsb3Io1RyrBsWhat5j//X//PuHv4PuP/7QXT5Lnb3qFzx8XlFf/on/yE9z/6gJgG0In16ZLtdsdf/I8/Z78buH77gu3DNb/95Bd8/+MPOVktGO4Hhs1Inwas0ayXS3RjaXQnBrER9jdvCD6yu7nl4dU3/NPf/IqTkzVPnz5hs9mz2e65v7tlHHqSkv39q5uXdMsFZ48vqRXlh7s79vsd/XaHzvDDDz4ihcCb168Zths219eY0yV6teDl3S37ceQXv/qEDz/4kNPLc5bdkpOTBT+/fsGf/3//Hygte9fJyQJjFPt+Q0yBECYoCaDIQSP//f/9v6NpF3zwgx+D0jx7/ozN5oGXb16g3srcqcVnu3B0SycFEA26qZ5xCeUiynq2+2tC2hEmkTffvv2KEDIhKBbrNcuTU6x1uLZls92SYmC98nS24+z0hHHyNO0eYxq0cfL6KokHKqCyJkwT+9sNzmkaZ8lpgc6Jk7VmERPRNMQEw27H/ZsbnnffcLa64OkffECXVtzd3vLi669onOXR1QVWwXb7wH4Y+eTTz5h84PLigbOuwSpg7IUtbBPKBUyb2Q73bKZ7nrTvsVgu+OM/+SP2+z2/+etfo3OmNZbWOVrr0GcdkNnvEiEKQ1spOFmueXy+4EcfvcfFxRXr1QlTGPDB8/b6Bh89wQZc07BaX8ygRIrlzItyXuScWCw7fv/3f0LXLlgtV3i/I4Se+5trop84X68wShOzSIAW7Yquk/i9+rE2iwZtFA+bOxqnuXz0mHxzx2a3J4SeFCbOVhcYZ7FPA/uTTJM1Pt7Rv/o5bE8IyzUqe5o2kPKIVpD6Hd2i5eTijE0/cP9wwzcvnrOfAt/7/o9YLpdY3aK1wplOitbFNiUG8ESCikyTMHZMY2egspIFnDOFaF8AndKl1hXVSQxJci5MYapbFs2aZXfCshUPrkSJf4rqSCsx+FZK4YwlEtA6SzMLI95LIXqJcZWiH3sAgo8zK0gVGr22Io9LMQgDpnofUYDAaZTcqmlm8EcKo6UBhgLXNCQQv8RxROmAtg2gaJuunLuxACMaZYxoAVIkZYUrbKsQPOPQc39/S9/vRaGjNVo7aW6R4gzsWQrrOudiU6GFbIJCx4TOCmcbQmlkYQsQ5IopeMxKmimmCClJzIXIrudGadUbS1mMEgN3XXIXIbJUptXBvN0UFrhBGFcGpHCpjfh6qQrJFQsIpUGL5DUiFgqpFDsxYJ2ZzxRlpNOmntnhSZjioVrpiIWMBqbRE8YJP/jSmEXG1GjxBI1hohJvtBZGlMzZ4+Lpv/3xnYEncdivMicJ5lKKpBzItVRfA+qCQAszQdgJpqCIh1JoCQ5rJRXmBG2uZZaJWpM1oySwslZunrB6joqdUNhGc0Yr16TS7OdwuC8FVa5JbrlsipG2Qky+qqeShKbq4HV29Khm5SIbyPPny8BBQnHYUMi6mG8f/hwe1ctC7p2p94zqoaVLElD8SKoUIIsUrLJE5JYVkKmYFCudD8wMpebgTd5QJqEqn9/qClAdwJGqlKs+OzHrd9hHquRZZObrQ0k1W0C8MvY1Aau52OxfZQrGlOexOMDZZVbkioMfBmKWq+XDU7MYo0gOpAvTqCQ0FcSozJKKKKMK5bxsHGKYXtHoo9+pc/xoE5a7eTQxMgJ66kzw4j8QQiztUN1htI/ZNce/fDwj1MHb49uPg4znf4KPw1I5RnKOpkfZGwqYfFi+s5NJSR7rOi5boSoHS8js94G7+4HNduLH6yWqtWKK2XYMOaGnRMBjr2/BKh4/fsRqvcI2bZHfVqbF8cW+O0L1yr89RkfY1GFvK0yk5AOpAE+UIEOZImuFozkuj0TGI84vERgGT7+fSFMgS1EZlZN02MoNoGfWZd1MUgHlpGVtLpj4ETszH95X1WutFPECHmiMSLuMyLpqVSXmykIrSWEWdqlKIhS2OeNyxuWEVQqrwVmptJNAm0xrIiet4emZw6aIyYG21eytYpsChoxDqOp19ess54x09Xh3Ar2zVavD19UKKGWFB6acmcpsqn8iqiqvxEPKZ/oxsSAzBan0i/j5aHhzeXHgAC7lo2e8+/dhLz4AKO8CVIdHLntqCCIVn7e7o+UvgVQq5tB1jy+y+PTu/FR1ViUBHNXR285bdD42n6wAaxnjWvAolZ66Vo+3o2ooKmruulbVAVT9HWtenlTBJKl+yplZzvLjuGCuHqt3xlym/OHcqp/p8OHrZDjc7wp41fVXF0M1OZ2Zw7WCWBjRYhArvy/1CgFARfRp8T4xTj0U+fd20xNCJLgSSCtJIIzSjEPPNA6EMJBSICFgl0+Zpo24doG3CWsTxgube7fb4SdPPwNPAh4qpXDaCLvAeybvmaaBnBNGWYLv2e3uqE1bot+RwsC410RryGmC5HGmeIzl0mFPaayzKFN8J3IuLDaDNi05BbwPTCHgYmDZdhilCAiIuGhbVIYYAjFrEpqua2i7lsVKkrMpjGKobsFqi7aKrnNYZ2isnNGmgJLGuJKULolRwO/lco11HecXV4zTBEqzWHZ0qxUxe0KWjoyZRNMZtFEYu6RpWhaLhtOTFU8eX7DbPiZFAcCHvudkvRAgtPghKaOlmUVKNEqYVMuuY9E2rLqWxmgeXZzxYCBMOxadGM2bJI12VJR4x3aQvIbkhI6ZFPvdlvtbw9njhq6zWGdmCaVVCqcc55cn/OBHHxBTj1KJ9dkJN9e3/Jt/rSEnpnFg2O/JKbLqHNOwpt8PjP1EDHucMTgMKimcbkjFb2zY7Rgnz7TfM44jm4cNd23L5u29FPm0Zbfd0Q97ko5gFPs8sQgr1KqT5FNrNpsN282Gze0dKmUuuhUqZ8ZBOgE+bDZYnbAqsdvv2Q49b7c3TJPns88/5/zkjKUTqeHd/Q0+TKQcgEc0jWMY9oURUln/WubeFNhu9hLPtR3aWm5v39IPPTGOM5vDtRZrDV2zlHNIJWFvampaB0qYnMO4J6WATpocI34YCSHjg5LEOXjp6BwNMYzEEIRFpSGGjhS9NP0o8Wctak5lv/HTRBgHKSS1ltw6SfRT8VRRGmMNPiTSfmTq9zzc3XK6POF0teb8bE2OE29fviUFS9s8ZrHoODlZ00892+2G+/t7ifeXC6wGpl4kNUs7dxQLwRNSZBpHmsbx6OKKrmlYLRakENApYbXCWYO14o0qbLPMVNiajTPotkWvDZeXl5ysTxm8dIjc7R7QXtgwXas5XUlnvpQzpfZFjHVfVRhjWXZrum7Berliv5tEPRBGgh/JsQFjMaVrtXGNMDyL2bLSiLG9kc5pDkfbtjSNw1pDmMSrUOWIUYZlq1BJc9oZ+tGznUYIiuSFDac0YOQsS8GTky3dvwVo2O/3GPfAsB9xpsG2Zi4woKQpVvXblfyCuUAzqySO4hhdmimFWP2EI2R1kI5FsW3JqeYQSgBQ6zBW5MT19b/9kGOz5nYlF8pp/lPzzphiiZcOefqc0ZacSvLwXBphHPKSlNLcoe/4kWtcqpTYoBRcIdWmJ1ref2ZCccgN63l7iDkkBkk5EWJgHCdp5pFTiRUVtWugsIzUUf53iEWqBK6qd0rqiJItTgArJU18yLmAeTJnbRZDAaPMjF9UIEv+J53g5lxR5dnEm5wl71aUhjCQEUmfEHIkuCi2qeSa7xfMQYgwqvhAFruYghtUFvAcqyHDKpi7JnNwk5SiaYlzYiL6aqtwVFyvOfMcsYnlkaYCT9/t8Z2Bp/2uLywVjzYKbaVNoRb1FYmIrvQuP8kGZwsluYAOCkV1vBadZZ7/HXJAWzE/rZrXFCMJCiNFqNEqZKIfRGNfBhOjZ0Px7AuhL2tcUiijpBsLeQ6wxdMhlcSioIulAtq2TiZbNlBaj6egIApjKKe6ECNU/WUS4+ygDtPMGF0M0+oGEUhkgqpBkxjipZgk2EChjUOkggc0MxYaX/WaEBGpRpVNSylEHxoy2pZgTMuw+mJ4lkAo90raFMckVFNBKg2oLFUjEj5njDE0jZ0NPY2SSV2pAxWMypXxFKSmrEBMjAHtSkVJS8IbY4aymeRqWFsMbnMO1C5ASktXgBRDIZsI+IOVRBhfNauyyA9t3hXWmTKfYqEYRqRJZCIGRYoK03WgDFlbkcZVe6oom41KioKnk0JGaSNVVmWxWIKP+ClI0NZYvFf4lNj3A9o0NM0aAgzbPd2iwTpNv9/jnJakwrdA963VVcHJ77ps/0N4FMDt8M8CZxaaSgE6BSg4JHoKaFQmqMSkPI3RpYuLrJuusDymkNm83PCzn33OsINxUPzhcsXZe2v05SNUzNzfv8AkODOOm7stN29v2d7ecXF1zj/8T/6XXDx+RHvSCqhR5us7h3j1W7NVSlw/UZxBTRWlXXiOsj/t91sxBNzvS1ybabsO1zY4Z9BOqqGQMRgSAoxNJAYSgZYxKV49u+bl8xv8psdGjVlIUD6FnphMofXKUlmYBqU1mYkUA96P6BDpSnc7yIQCUERvSgDnyFbYnN4nvM8Yt8C4Drc4wTQdYwkUQgjSHKLVBAZUQKQcRqEMxBTo90MJShVt29B0jpQjU0g441g6+KNTOFnBo67AHUrzgTIkFEORCy0IuKxYJgHP6n4kB6h45VXMIZUhMkeefjYJhbjT0olkqVtyzvQ5MyrLoC19kvmz0AI63+0g9qDvLNtOcaMj7lTTtQZb2KWLLL4EOU0CbhtD1tWDTC5IQH5JkATIET+jYwBmLpqUDqTGWFJGKoDBE7Inh4ROGWEOWbrFinbZoRYSBAUv6yjmSAqBHANEj84Wkx2mwmvJoFKar6cCSDH1BZDwBwCnnDuxGFNOA6SsEe5+hizVRaMoxpnHMm8x4FQhUgFcYXwrspbzRwzDZc7LlpDL/p/xQTrapXKmGmMFiAtRWAk1WMuFAp4qs6t2BZJzWUxE7SH48xKwxyiyfK1NaQssnmcpR/F2rAEy9fPICWhUgzMdzkrL8BADOsM4RJSauHvYY4xFGzfLf7VupGkUWQy4/U4qtz6If5M2KCtcPl8Yi3EaSDqimjXZTiS7ox+9NLBIpRjmxMy2GqUaq1A6FNAl0+VM0wFZYU2ma+DsNIthsI+4bPCNYxgeSFPm9GyFNpa8PiEpQ9AObcR/w7YdxjasTi7QpsHHhr73oB/w054wbWk6jXGay4srOteShxGVk8Bxpxc0H30frAPjWFyeoRvH2aMV+3HPzf0NBs1CN3RNx6JpyUHacmslSatpZQxCiCy6E87WV5iXN8ADV5dPOTu/4n/1X/xvUcbw+vYtox/YjhvuH665v39LZiLnwLDdEP3E0I9Y60jTiB+2TP0WnQ2PT075yT/+mNY1xDgxDHu+/vpz9v2eh819sUDIJOVIaL58/QaAV199Rds4ll3LcH3D3TcvyBcjen3H6aNHmLbhZvNAPwy8fXaNTtBg6XRLa1r+z//sz9lvd3z4/acYZ3hz+5oxePajZ7sduL3d8/QHF/zkj9/n8ZNHOOd48ew1L5+94YvffkOYEpaGYT8w9Dv+35//OZMfWbYtSiXC+CDJlVYsl0tOT05xtkVry4sXrxiGkcY2tK7h40cfs9/vefnFS1KxWWhOWtxiycMkHeB2bx5o7jc87D1t07BsO25evWZ7f8e436OBV9nhjNhRYCzN5RlY8Sm5OL3gZH3Otbrj/n7D//H/8H/iZLXmhx9/D50tT997wt3DHft+z24c2E8D2909OWecc1TgyWhDu2qZitn455/9lXjHNPLeTx6dzQmrNuJTen5xgrGa3fZBpHtjT+khS0oRHxRvNhsUivcffUxrOp4++Yj9ruf67Q3jboMfN2wfDMYqxjiSc+Zl/0bW51RAajSpqCVc48RLtCg+nNbgPanfCevYKTDi0RhSQGnNujlHq4iJW7Z3e/rtazo3sFxMXJ4ZFm7N7c3XoDVuGblaLTm/+hHPvv6Kr7684f7tM/abN9ydnaOsYTMMGK1Ztx0xeEIyRO+JPnL//C1hueNHV+9xvmjJH/+U6+s3fPHFZ5j1AqcVKUkya50UkDoaUpI1qZ2wv0IBJU8uTjlRJwx+T9/v6De3dMZwqsC1DmscoYAni+UpWRk2gxdbASJmEWGVOe0s56Eh9Jr9NjKOt9B2fPDkY5RtyaZDuRZtHb7kGYu2E2BoGjGNxdmGk9Wa955E3ry54eFhx+b2Bm0di5M1xjWsuxNWLTw6M2AU2WjGSUBL5yyGTD/upRufUWRrOTs5Zdz17LcvWKgl56fn/PT7H9I0FpWk+UrIvuRkmZwEiEilDpKqs0LxByZJMVJpLXLqEAjDiFGaZbsgRI+fJrb7HQ+7PfthYgwJ1za0S4kpcxaTdVQSpqiGrEoOGzOTH6VQ2zhhDA7iQUjWM9CkbWExWSUSrii5eYx+bioSiydjBcQOmfChNlZgD5y14itVgJtpymjjZikdgJ/GGWgzxrBYdIUl5UnZS3yEdAqMUeKWoDI7H3joB/ajZ5oSrrU4o1FxKE0ryhUpQ7a5xBdBGLlFiYKSAlMcBwCEeyXnqrYOZbQws3LCak0yCqcM2hq0tYRYu5iLEkoluUcpeolfipRQPIxFumNr/qcykcRUgDg0OCf7SnEjAAxkTQ7VE9pKV+8yNqRcxqxYLmhQqtjKhFRiIIPTjTS/KhQojQCFwzCQfZCCsdFkLYWnTCaZLCCYNkXBFSQ/Q3zDjut7/67HdwaeqldHRTuUVrN8rr5bfVPxGpGVJB3lijfUXOWVR67/rVXO8reATFkSPioSJ39LdMkBchWEpiCQsrmLnEwAruoJRPl9papHTEEzS23j2CMKjhBZ8ixdy+VaValQ1251szFyvValgSTXk4oEINcKSiarVILbcu3l9ygtpatAQW6kPE/8OnIxJatIc/kMFYwsn0kXppPh0CmQiuQWRhNVcauA0tb0qLZ9eNFyLVXqqCjYYXmKRiP/n91FSkJ4gO1roD6/2jGCWr+unReoiVi9P3JdpDoH6nyoCG6tEKgZiDt++6zrPadobQtbr0hGUkroFDGlq1OVJdbr0PMLFWCzeJFR5zUw+0iVw6ISAHNp8RpTbbtdfFTeuQdHFY7vvGz/p/k4rK268tW3PvLRLFHf+vbR13NDAHQJ6CQJV6Uy4KfA2+sHbm/u6W93+EmTvSaFRMqaxWrN2Pf/P/L+7Mmy7ErvxH57OsO914eIyBFAAcUC2SKLpe6X1mQm6UGmR/3BkqzVJpNRJnVLZNOsq1iNqkIBBWQiM2Py4Q5n2JMe1trnegKgKvVCU5MOC0RGuIf7uefus/da3/oGsvNAIm/AuOV0FDnKt7/7lmVNvPr8FaEL9BqRbl+ABAKaXUGNP3bxDfCuauCNslHat7FW9PFOE0hkP5Fnc/NWUzYjIAydIjHgx+OzTur0uWvSrqYTqoARVoDBqD5dge5tv5RrL0WeCc0aENNk9FeVaVMII6Eb1TjTERWIS7mo71vdtq1ci9KKZZ8s6gFonFUGpCRmUDPdmAjWcDda9p2ha/iMylErEEQgi0fS5Nx2z833Fsj2TsiN1HegTZHaOpHpojeVwVgSklSXMJtBPVRWvZ/TWiEaeiMAwrJUlhWWVBmcTqQw25W8/P/rVWox+b3rfrlK2otu1/3iy4zBKzvMO9kPBdixpFw377htGlVfvt4X/1UFJJR9PCsV/Hq2bUCRprQZoyk7WcypJQRFpne1aqGsz7AxTgvF8uLCt1euf9RKE+V61+t5a1uxvbGq2j55vWPy3+3818ke16Pq+jqgcfS21FDbyuDtNm3/sb0T7floZ/V2TnL9dy9qHakX5Gv0KdL7kkhJGEah66XZrgJgeRu0WBfg1Aarz6R60rhALgulJooN5JoY1pmuHzgcDmoMqqazEYaxxxpHiJ2wZ6w8X95dJ51W0bd9HqDKIK8PHbeHG0pK5JjYDTtKykwXYZGMO/l+mELGEhHZinWebhxxvqPvBowNWN/TdXtubj+h5JmcLtQyUYlYLCXm7e3POSEppGpUX2G+XDDR03WB0N/y+rN7nHH0JpDXTF4S56dH1rjinbDcc5TmaV5WYqqUbDmej1zmiY+PD8QCP+PnjH3g9Zs7piXAeeV4ypynJ7yVwUbnAwnD08OZhURKhXlemC4LnesJNpA/zezGHZ23rPPKdJk4n888PT4pq8JQbEfBcj4eRWIyz3QhcHc4cDoeifPKfDpJeEHX4/qey/HEZZ54ehSgbRc6XH+g906AssuR9+8dLjjmtMqeagw5CQPrm6+/4W//h78jLYm+7/nFX/2C3339HR/fvsdZz+3+HmsKwUNJC3E+U5qUWtl7OYtp8DzPlA6ca2vZEFPCGgGKrLMMw0AykA2b30srtauybZd5wlUoNuBQKY9zmCpr1jrLsBsgWqLJatorVburhjH02Gw4TSdctTw+PjF0I2O/FyDZokPSqnuU+rTUqt4xFVsdxoH1UGuiYui7kdB1DLvdxkDPVUB5a6SBHPuAd5VaLKYWbaSULWDFuFkm4Ya+C5IAFqwOViMuebUA0DpW5B6giVwSYy8Ne/WIrNe02lzCPbrgMbbI63IyOPcmKOAOFctu7OVsxJDzwjQfwUpAR+jlzLwsJ4a+Z3/YKVvQUGvSjJ8kDBebtcmWgCjndCgUHMELUyfGSKiBcdgx9CPeSdNKNSIb9E76DQyt8M3q0eS7sEml5Th3GxsnWo83Hm8DwQaCC0iYhbBmZBQgQ3Mh0WRSXnA1Y6wRL6LUk2MidJ7Qt4S9ijUSbOG132zeOLXIsGK6TFCrSIG7js7PLDFCLnQ7kQ92fSdsolLI6JBc1599MXtsjbrte7z31CryqulyIljL6XTHMA6M+1G9kPVVlbod983XtOrBYo0R9k7NOlgQNk87k42yPds3KPrc1VrkdXsv/k80JpkyqtqZ8LI+rXIdxloFlEorG/UcvZ6Vm+qgNVlaU7SeSM6+sh2l0IKymtJHDgHnvKhQvBeGTi3btbTD9couZvs5LSCl6hkt7ESjNYx8+5wzy7qQkrK0tkES1/qKBhloN6hS/lKLnnl6VqkPZSkaTIF4I19xi2t9tVWfepbXLKzWIhchP8+KfLduEqkKply/qy7W+r3vXRQLkT1bjYy33vflfSvanzcWFy/qlW0au9Vdrc5iew28fA1cmW/XhMFrJb1dn7ky0Ox2Rf/4xw8GnmLNim6Lv4R10qEYJaDI65TL8mooVmIhBE/wYo5bKyQaZe8Kcgh1Wn2SYDNN61ygVjkYG9vAVKHy2dIoq7KgG6PK2WsjXyuUlF88BFI0k0X+oX2SSBGy3Ozr1LwBPZGkZmtyyApia5QFJMwsocrJw+Dk+2ZZjrElQhlNDjIym2/G37JOBJgLen1VIXBnrBQIGY1rLDjrdbJsNjCkFdhO14NDACrnHKUWYpZ0wJLQ4hTQhyrrQqxGDbZfAImSwoDEHNUK1WOsFQq/Skmc73CqYbUgvhRVKMLXND1Z0GKCa7cUOrM9ONrwaoFjrSHTFr9eTpZFZhuIaSwtqa4pFe1Gw78+PxFpLNvXRsTQMFZko63ymo1zBO/xWPByf73TXHbElDWvETEFtAq8WmwRgG/wvRRx5xm7H7FjTzFi2pdKIqUk/lUvNtm8aZDtH4Ay/8l9XHHK7b+FQWt0AiR/mSksZcUbmQ6nkkg1C7PQWGYDH84n/q//7X/Hhw8L8d2K954QPCZmSI4vvviCoQv88q9HcllYtJi76T2np0ceHt/z8Pyv2O33/Pl//hfc3t/z+U+/ZDcO3N7stusrNSHAaNY9CFDZCbq35CLactUp423FB0tndwi4ZOiGkdD3G1hiapai0nnl7AlHxVnDkuExRr767mu++fYtg40MxuBqloaOEVtlKpT1QBZTTTCxbAVrNYbsnJqMS7NVSsEGNcaPqvoADFIY3t5+Qj/uCX6kAPMsiVoxRozVpjTIWo45Y6h03gswHcQPwAUPTnzozqcjJS/cdInB93z2+gtlo4o022KxNWJqJtNLagjqCaVX1iSA319LCmwY2bMbNFCq7EHS9hd6DK+8J1S5rzkVTmuiePFvWjPkCE/Hgk+G3Xig1MT5tHC0ma4adjeOoVNGaK1AplaRQ28f6mxetgKlrW/zEjX5g4+q54s1hnEUM1JrOk6XxLImYnRMl8zltDBfxEdxK2a0eVEant6Swvn8hLPgbdmAk1bobCylLOknPnSktLLMC2kV9o8k6IksIueqjDKH9441LqyrsFeNaTJw2EqSDThSb4NS8So1s95RKURNoqFkpb7b7XwrOW/m+NfrVNq8FmhFmU5OQWIxODUvhg4Zqp4benZIQmmlpLSl3rTiS7Nr2UpwewWujEnATMpFXd8lQSemQrUReynszYFhF0hrJOUkz7oPjP2ezgfub3Z0wbMbOjl/nGWaz6S00o+yJ8yaMNv1e5acmNNC5S05H/n8Rz9iN+5o0zhrinqKWGWbt6QgafqMsVAdznqGbiTGRIwrQ98RvCMtCylGnh4fRbZbZCI8r6u8dmvwfY9xjphl0R4OI198+SP+y//yfy4AqTP8w69+ydvvvuWv/pt/zcPDR8YhUEtmnU+SnBM88ypGwGsV78+f/8t/wZc//hH/+//D/44+dJDgb/7qF/zlf/eXfP3r3/D222/Y7QPGwZwm1nXh8fkJg8eajpKF1fz8N7/EuYGw93z54y/4+T/7Kbvc4TrHr375HX/3i3/D3c0t+3HPz//JvwQ8v/rb9xzPTzzP74XBHasiLJY/+fFPub+7589+9jOohd/+5lccT898+PCOfuwZx4HqO6p1nE4n1nXleDxijeFmtyN4xxAC02UGPnDz8YgPHc/TwrzOvP34O/quo9zcs/+sY9x33H96h+stT+cn8pTwnaPvej65u4cIl49n/h//l/8n//b//m/4X/wv/0sONzv+z//H/5N4iC2VN29es//5z9n1lu4wYHLPpV9xTnx4aui1B5EWf14WsjF4Uzm8umFMhbfv3rPGhLt4DvsD/+RH/5Qlr6xp5bfffMXz8zPj3aDx6EGatfMZjCWMO17f3vHqcODp6SMxRfJgYdfz+U9+zDxNdB8/cjqeuZwvxFXSq96M95id5dObT7Y9MqaVJc7CfvCFZTpRa2E39mpngCTa5YVSpT4LvSUMgVplrX366Rt2ux2vXr3m48cPvHv3lsfHZ+bpzO3e0h12fPpqTy4Dz89FZHE5QvFQHf3+gDPijZgTHG6FOXZzOzAvF6YlEXxP3/UM/Yi1jrRGnDEMfsA5hwue59OJ0+XMuOsJnWcceqiVy/OR4Aduxz0pr6SySnKWQ/cBSS0cjMjXtIMBm3j74Xfc39/jBs/Nm5FpXvj17/6eTz/5hM9/8s85PI4c7nt5nlm5u3V0vWecPFQZwORiSNmx290yDD0xSk3z7vGBLnTc395zEyO3d59sPkT7w2vGcaSkKEByqXjv1Q9Y9vrLPLPGlbhmnK042xFcwds93vd0/kAIQUzA54VSMsuUyLUyzRdwDj8O5HXmtJ7JwdJbw3C4oxv2lCjpbmHsWGNhvpzoTaV3Alwb61gukg5KycQceXp75M0nr/n8y89YLyukyrcfP7KkRNiJlcvdqz2X84WHh2dSlYCrYTcSvCct0g85H8gl8/D4QLffM1iwTpjrz8cPzNMz1czc3t7yp3/2Twi+o+sHkVrnrLWiUWNwGVAbI61KyolpnfBFDMgbuaEfOrx1BB/w1tH5wD/8w8rTx3e4mtn3nmEY6Lpe2Kwpsy4roe/ouv7qybsV2VYkYjhqjeS0btK4BoY5VdsIMCOp5tSsfrxVvEo3KaB8jXNOzxwvjPjm3Wskmc9a2c9SzrCs5JxY47wlphcEX/DKdF8W8bBc1+Uqs+41PGwVFpmxVvwKnx5Z1hlrLTElUq24IvhApQ2TEqlESeqrLVXQiqS8adG0RskZHAKS1qyJfhYFrSKNC2NKpSbxX0654JyA73FNUgOPrZ9k89a0KqFrCdbbJMwYqV+zsKM84ucF4kFnjCqDSlEvKwHHGrgoCie5T5UXqYLObcPznPXacxSbHGOxVfyuYy2bf14phWwa4FWvAzkjtg/WiSpKcIcfBj39YOCpvRBJBysKnChCSGP+6Jc6BV+0UGnTvgautRJwmx6qeFHof5laPcYUbFFRV1Yq2At2kFP9Z90SaWQzFD8ckRnU0vA5BaOM1QmJ6Eg3ptKLZvfq19TgkgxWbnBD/doDVBrbiob4Xaf8zZe63Ztm/t1Gf5Ui4IVhmziU2gp0q8W02xg8VhsUr4V0i1xvf6/YN6YWyMKWkLQ+QWAbIolRLaYWHTQATL+PFcqUsLn0vgh/i43RQxbkliJGm86+QDs3ZPt6Q9vPo1qZRpn2zWpbWmzyvYKatFs2UzQjoEJrHlsDYxWpv07JswJBbaJeNKtLP48ChRUqasBmUMaJmvjp1L+0G1/ka41xGytFK3DdYK2CorIhGQVQc8k4L9PnnDIpJ16mDLY1056f5ocif2++9/vv//d/LB8vsab2/9dpivmjXyz6bNFi19TQHrmRqRS+evue371/5OHhSJotr7qBVCIlTkynE8fnHfvBMe4C1TkicFpX8RzoPDZ0dNVQMyzTym/+7rfsbx6Zl8h+P3J/d4vvxBvCB6MeAp4Wd/7SEwxtvmubUJQXG7P+Xg2aiFi3A749P8UU9XSqJCBWw7QWznPmPEWWJbL3nt5I0VBr85fRfUDiL8QDSffMonT/aERWW60R+r/KhgsJgxHgokAtUmA575Rx48gpkiukVcCtlBLOKbheRSZUcsIYSEX3Mu9o6R7rulJrYZpmSp45Pc/cdgmD7GemKpBXjEiKa8Uq00fub5voNJaRrJdG+Ho5kamg/kVmG1pUIBiJ/ZYAcWWIxQpzkYPdGUo01AhutdgkhUAqhUuGk8t0NfPJMFBDc6LX06ZRM2uDKxS0aBO8hse0faCt/pcjxjbNrG3fup6vGzNOL7uZeW///DrmEnp1TnTeEVTK7qzIvWX40PauNt2S6zCo4Txse2NRanXlJagkF1WUYSd7Nt/73HbhygJGTy/TJG2i46YZqG5fr4Vsg+tEcls3Bm+pDZPeRhg60a06oNA91pot8eb7TFv1NyoydJGBgkj4yUlN1YXv/HJPbmantho1M1efBiNgaK4JkysxWXLpwGQkLbISgmXoO7747DUhBIki1gJ2XhYoUvDVWphnOfdWwYsppRCBWD1r9sTi8N2efnfDOHSkHHl8eEdZ42Z3YI0Rvw8nKV3WOELYYSicNgpxpR97wjCwLJElFZ6OZ0oqdC6wLCun81Gkh7VswNMcDdU4wvDMelm4P9xye3vD3e0Nj++feHz3zIcPz5yez7x5cwfAHCt1idQ8i2wzQ8xy3v7dX/6S9998YBxGdvuR3bjnN7/6B7767dd8+PDA6XghdDcEnDABqoa8FJGFOtthvcfYRCorf/3X/45vv/sdjw/vqTUxzc+8/e178rmyEnFpYb5c8K5jPwZq7ZiyxQSLHQJkGS7lIiyJ5+ejvlcC1njnBZhbVsZuwPc9wYrPUEmyj/ZdR3AO7/w29Xfa6O37Ee8s682OWgrT9MzlsuNy2eED7G8G5nQi5qz+MoWcFrpgefP6DlMyplQ+vH3LdOx58+qOsQ88P53pO1jXZ24Od7x6tSPnPV1XOB5Pklis+4UEsEid5ejAikeMDRXXOUrOXJYLYQjSLeigRdZzocRVGChG63Jr8LVQ15Wu6/CuY11G7Go4zjOxZN4/fCTNC+fTmXVeKClTouwDxSUZUGp9mmtRP5SifrJlY3tI29B8HaUONU4ZxEHk5dY4DXrp8a7Du0DfDezGvfhfxUTvO3rX4XRfGnyPCZ0MMIuD6ghuxBq/Me2dz3R95XDT4ULB+sJut6fvBwWeLKWTZq9znYDxzrIzBdc7+qFTaZFsZPubnQAKIci8JIPrHMa3ngsBE9TbpZ0TTQ68pIzD4ocdAcvzZWZaIw9PR0qFu9s71uUiJtDrTCmRUJKcTlVYI7ZmclpYliLmyRUuzwLsmK5jMTDc3xHjyrKuXOZFbDsUCAjeYzDM02Xrk9aYSDkznS545xnCiCdQ9+JHl7NYjsxz0XS2wLDfU6jMWf0j16zeuVXZ1WDwOGcpKRFT4sPHD3KEZ0vXj3RdgKIMtdqMnJMMACvEZeWs4PB+N7KbB8y6EuNCrYnduCN0lt1+YFpW8hrV0kPut6ESk56fCJAQ48zgLT44XBVHztP5mWoKD48fGXY7DvYW9KwR0sSLvjInPWeshr20k0rrHoOy1CUt2Bphgc/LwvH4DKaKd5UCR8I+qnLma83Qnispm81G6K1itKVs1Naj6Lm89SZabdXWK8rQ3Ck41JjiLxlV7WuqDtAADdO5nu9GJUjSZymYod/DqgpIGGduG/xLGmAGrTNLrSzzxDJfiOtMTkqAqFklxfrzsnSExYgdSzZFQS7ImkpnlH2d9ezPSsyQYaKy8VwD49QYv2ptrwwu2aekXjCu4QPa59asOETDJaR2qQYNzlDpmhF5nVNVhPjKX+uXZn3T0uZBhoBGiREbKHMFXsAY2VOreDOB2V5vzZJeTclkU8hO5mnF1K2Hbkwp6pUBKG/rFW/5IR8/GHgy3l4nhFUKWtMWSuuldEf0weviEwQxKqW6wgY6GL1xm9e4QZkhkWhlru1r+f4iRmV4xhKsmnIrlQ/YfmYskbhNLwGrUhpjxUNISZwZNtlLk8hFFLRB3yyyoJVeaOK1Ztm7KsJMQjwnDGpAZsrWO5TWF1thH1WV8wgdM2O9sns0MSfp6zWtgTRtcYhPiQG8a1RJ3SBoYEnZeh+xxqiaRidfKoew2Rov5V9pSoI0jcbY7SFpi7qtV8eGyKmHhkgErKnIviObqNk2re2J0gKiyiGOxxivepwiqQbO6T1JurlXIGz+YBhDdfJ9YkkbkOlo5uv6bJWEoeJKpkkDi7x4aYqNIW1sO7lmY8EFR9eHbfNtTINmllxKJXRiYlr1hlqNnHQ4SknC+kBorkILXulMj/OOfBG0/irVaxv31SSwTQzaJv6fzMfLneofwdYqgDU4AiYW6pLFR9s7qjEsceWvfvH3fPPukXffPXJwN/xo/wlP5/c8T888f/hI7z1v/vmnVHrwnrXCaZowFoYh0Pc7ht6Sppl4ifzVr/4doe/57psP3NwceP3mFfvDjt1+ZH870g2ecRzp+o7h05FGcW2vxVhPba1zBec0wcIp0KMU31SzNL3GQnFtJkMyol1fq2XOhuc583hKPB9XLpfI5/2ODkcpC6YG3T8KlLQBT65WPBCMoxjDivgKrOq3g3GYEDDZkDjrgaKy0CR+bSF4aZSd4zIvxJSJixg4ppKpIRGs1S3CyV7Z3i/nhMGAMCyXaWZdZ05HYTy5+MRoD1Arjoo1SQ7ZdAUhrEv6HAc9ULfYQYw2UY0NgxM2T22bXW0hw/Ks1lrpnMdimExmKpmaFliAi8Ulj/OevIKJ0M0eGws1R9ZSiBlsjJQp8eVtII/ixWX0l3wUZZe0wIc/XOAv8KHvPQftNKtULWyqGv/KwmopnZRKTdA0/6VUWhyxlIiZlFZqTBxud/Sdp++CDgqKmpUnSpZzt304g8gWSsRg6DrPNMk5VZLsvyIrqBtoJR5NzV+wFZGNYn+9Jxq+i1XBLEUs2uVMrXofrwXwlR2tgO6WpNpunQ4BEP9Go6zhzdtJzz7jjDDC8vVGFz1vUsqaRuc3Tw27GpHjNFuqjekkRX9MkZd+h3AtwnJe5LrWzFg6IGFswbpC13v2h4Gf/9M/ITjP46N44Jyej0yXM/N8YegHnAusaVW+VS/FuBfj7+Q9U/TM2eOGe3a3r/n001dcLke+/vZbLqcTx6cHbcgh+A5nHD55vO043HxCqZZpKfRjx+4wcnPf4fobpvSB42Xim+8+UDPc7e65nE88fnzPskyscdmAp9OUyAWq8dzd3/H47i0/+fFP+NlP/5Tf/Por3n33nq++esc0TfQ3d1hjmRZYpoXL8wmHw1UxTI4x8Vf/9m/BGf7tv/4r7l/d8eOf/YjnxyceP37k9PhIXBYOh4PICQk4UzFWosLXnBk7R9cPdHFmmlb+1b/6v+Gs48df/EQi4E1lXSbyapnWSJkqp4+PDOPAm/uRfshMdSCEnrG/wVaPKY75uDBPMx8/fJSJcjUEJ/KjFFfitPL6deDm5oDvenIumydgF8K291cNS+lcR/A9h2Ek15VhnHl+fuJ3v/sdQ2fpO8Pt7R37mz2X+IRdM84DNbPMR8a+5+7HnzIfzyyXmbdffYUPjn/2z35GLplf//rXlJKYp/f0w4EvvrwndJHjs+f5+b1Ig1ygVGmeha3a0bHDOEPYiatJ2AWWOfN0fiKMnmIzhUSuC8ZmnC3k9YIxhiF0ks5oHL4W8jLR73bsDwdyWrGT4bcPb6WGW1ZqytR5pUWJ50UY4YlVhndWVBMpZ/AV45VdUITdbIzbVAtUCR4K3mK8lQTDccCHQOf3OOuFIeJ6vO0Z+wN3h0K6LLhsOPQHdl0vQ8sKh24nbKRdL3VusVhk6Oi9o5KZ5mesr/h+xzR5pqljHG7pupGu68WXFl4MiaXj6Pad+KaK7IDL8Rkw7G/vdbALNjtc8XRDwAXHNE2UUhiGnZi/L5FqClhhgdaSucSEw9HtbymuI3184jgtfPW77xi85dNPP+fy/FHkludnkqn0Q0DGtLJH51pY5shlsRA6cjW8//iE9x2573Hes//iMx4fHpg+rqTTCVcrtzcHuq5jN4hX1PPTk8izcxVg3ljSHPE28NlnX2IGQ7A9KSXisjJrGuWrV6/Z7fe8evU5GLgslXmZOU8n2X+dZcmJWiqHQ4dzsFQxwH94+J3If8cDt3f3jGNPWgo56kAlZ0oU9rTDsE4TH99F+n7H3d0tc1nppol3zx/JzmJ2Pf3gcd2B+nhmjYWc5FezPcna/8rQM8Ka2e09Q+8hS+z80/PKtJxxnePu/hU2OLpuIHjxX6oFrJHaP8ZVap2X8kTtS00bruhMPeYs65HK6Xzm3YcPAIzjIB5UzqoROXQKwjbJIeXas8tBWMlF2PvOqGl1LlsdK/8tbBnph7SudJLi5pwk1jYVh+JVNKm3s1YAGf2ZJck4NctxLi28LRvBwzoFfzA4hSgKBWcqzuiz7B2X+UjKkW4QeeTp+MT5/My6nIlpIpeVKicxLQY9xyR9L5FMllRH8a4heSFeWC91bKzy+WIq2WT9MqeSUXkxSff1Nngjs0kHnTKQir5wp2yhBvx5Z2iJx61Pt176e1sN3lo6ZwnO4pwEnMnUr27kkGoqDXoC8bu23m2EDBkUyvstNrlVFVwV13yynZi7b4zvkkmmkGX2olht2QaSIvkrovrXRdnIFj8UefrBwFPz6chArYlakuhdqcoCadPZRt1XVLdkmpF0o/iZWpVWWDFOteamipFmTbLYjcMUAZucFXqYRGYjD4/VG66HeWPViPxN3gijCHxr7pa0YC30QYtFZ9QsXPG8WijWA1LYb31BLRjb3OL1zjawoxZSXgXcsm4rdsVmSVAbwXFapLPK7ErGZLCN5WSuE2uRBFYsTRvdgDOj9zNrLS+AUdPZOmsoOkEVk7JrkysA4ZU1JHhTYwHo/dgqdX19Rb7m6r9h5N/QfrYuOk0WKbqBVVSfbgWaqSp2LbVQchRU1hhFscWovhZBYtvrcS2VwshjmbMAR50P4gvw4n62S77CXU1rJ9I9nERwCq1U2GglaXuU5R4750g6YRG2mRGPFwzOdyQsU0w6SW8yDpF4VAv9LsgEN63YUoUlmaQhsrr5NrZTa8he/vn7DAL5uVcAj23i/kOkeP//yo76x6/9993Arn8vd0KKVKdTn+KKPhvw4fHM4+nC+48Xpkvmi5tXdLXDk3AUXIXjw4PQvf/8NeMu8ObTVwRveUwR13mqhXWNxFQIRqK67+7uxcx4zpzTifk44bzQiLtR0oaGXY8Pnt1Bfh/Gntu7W+7v79nd7Oj6ro0ypKvXVyrmx7JZmLZvCVojUxQjwP1SMxFDdob3Hz/w228fOD8/EacJ2+2wVAFOjBREwn5SFguGNUeyAdP14hFtJLo2prj5LWWk0PB1xNMRGMUE0UMXdoRu1IlVITjZl1H6tNUYZasm6ln3NGuseNAVyHPc9ul1WVlXkTCXXFlzz2ny/Oq3Z17ddnz2iVcAvG6FVlKpskGYhTmLHDeaLGc3tiHuyA4uXpgGYS20vaQxElM1pApPyfKYKo8XwyUqGyxCWivzXBFLJIGUplxxxeCzYV0rc02kJMWjTJn0OtocvmongeUah1q3Nf37a1yrCmWrKrm0iAdKTIVSHLU63XotzlW8Gltbo8BNUQmvDkDaj2l7TW4edSoTFRDd4T3bWS1FbxHwsYFLJen6knMtZZ321iZrVKmX05fcUuj0HLp+Xy20lMJVtOJq0FRjHnkr6VFFhzJSU1w99Tb2a/t+ClIZ/bv6gqFttlrk9+65dcKg1JTAgqQxtrPNeofTIitvlDORahd5FOR8RAEnTc8tJLwJOBegWnLKggFXyzyt1Hzml3/7a02yW4nLwnQ5kqIk2j3kBxla2ZFqHLmI1LYAYTfQ7XeYNNHbzG///q/59ivP4dBTSuL8/CAA0eUIOujQt4ZgegyO9+/fYWzAhR39ODAvO07HtzgPp+MD6zJzfj7ibWDodhRb8XvPagyFTLEJYyq+t+JUZQyZhbfvvub5+QO/+tXfMF9W1mWlcMJ3iXn+gHeO0EHNhtRbvPE44wgVcg180b2mUPAusq7PvPsuQ64MwRA7i8lwfv5IWjpef3pPHyzVJOZ55VQnbEmkdcIHx2gHPjGf4K3n9u6e3ncMXcfl/Mzp/ETKM2tMrDEShsDdqxs4Fso3izCu3coXn3/Gm1ef8e7bj0znmRwjJRt2uwHvDaUszCYz54WaV0qcENy10tlCKpFlmjTVym1+p6fpiFkv7O0dxlWc7/Chp+9GkZmsUSKuraOukbpEGquxFCNDiprAGrohsL/ZMQwdu5sDa1wJY888FY7nZz48PLH77j3TdGFdC8N4g3UD1rW6Sox9re9w3uuznrHO8er+lmXpMSXhbGWZTszLxLJcuNvvuN0PrHGGWpX9Jd5bKSWWeWVZI+6DJ2VhfA/WU3JhOU8itY2JLnQEH+h2gVLNxtLPuais08ve4grOdlIX17r5nshzbPCdZ9d1+L7Hhw7fD1jnCXbEoHtJMTw8PGOBoduz291iqsWZnpq97EfFiDTJBcZwJ8bDWWLbqXVj81TrqdXqniyXsaZMKrNIY7We77qOV/evlCEdeD4fuUxnLs9Hco4MCkxeHo/C7s1NTVIxJ6OtgTB1c5nJuTCvUSQzmtZmnCN+eMK6wO3tPTvX8cnta9K68vHdR+4Pe7rbA97toHPM5ydyFqP6YbB8+ukdqRTWkng8ncQMfqhgHJ11WAPz8cRut+Pm1StWH5itYZ4Xcop0fcAHz5tPPxFz8hS5nC9cTkeJb3eOUi3FZJ6eHsT6oIc1rTydHoRluUYIjpXCn939U7q+5/H0TKXw8LjIfmwNNVbIlWgMprPc7e+J/UpcI0tMPD09M+4f6YYd3gZMtaSayCSsFTZO8CLnX+JC8yZ8dXfP4eaGS5rJOXO5TIS+Z9ztWZYsLK8lknMRjyLEM1SOLwPFUpNhuUTIE32QYK20ZgyG+XQiOMtp7BmHPaUfRYplLM1z05kWOiKgQOc6GYQY6bvgJZnBEquhxsQlrkxxpduN7PcyBPXeKSjBNgSSnlX9jJTN7J3n6q7icNXqv9GvNxAbm3mrVBqQWolpJSaj8ne23mnrd5RN7J0T9kwRNVKrBdEAKxQbaGyo9noTUc9vpz2yGptTNwBKbG+qMEBzoqaVYCu7wROXRQZr233LknaehCnlTPNBbjWL2SaC4n0ldWytKFPIQDHqJyem89VU8veGh1J3lFaTKbkgonWi0bFoLXL9Fl1LGhimWIYwt6GkqB2tkFeEWIH2tMpI1zex1VlW+43U0gK1tgK7Jb0734mfWBIboyUubOQR0Ubg1D6gdWY5J1IppBQ3tunV9PzFIvlHPn4w8HQlvAvdUFLpuAIVNNzLfA9hK0blcOKy1TANTNGJoUERSE2RQcAHwTp09mnZUs8aYtiuqOifS2l6zCI+RVbSmax15LhSahEX/go+CPPJaDEnlG8tghWkadpS5czIctLeURBLs4FRORcMDmPlIW4vsvX/DXgCOTBrKXrItIdU/kGDGZxtmE7ZNKBtwcYir6Wo9s2q9FFt+DapATo9xhiZDJrrwqxU9U9VQqNpW40UkbXhTEitLRGZ5gp2KUJWtbPZkq1KFrDLIIaIxgjjQXYWsiKt4gEiskdUm6ots64vARQEi5Gfl7MUQyF4bC00+LeWLOju9tFQM/l8Sw6w1gvwpKw9SfwDsqzjJolqzh5gWJuHiQsiLUoZ5xTpZ2sTwUIYPKzil9Em8zm77b66Jgn8R4CnWjMvBKLba/pPwfvpKlF78VpN+z+9J8Vgir5PXv28jOHxeOHtw4nHp5m0FD7Z3UKCukQpVKvh/PwMJmNNpRsCr17fUUvm/PyMDbIhrylSl0ToR7x33BwGqIayFpbLIn43SXyRbDAYZxjHTvzFAvR9x+39gS9/9CX8VIqJFgmOSn7ac2UQwMDqekhNGmusPoNWEy4gWknN/Pj4yDfffMPleCItq7JAobzYT2tNlNpYpsoSLIZgRNIiTJpCLpFqBJQpuuo9A17ylajG4rwlhIEQBpoM0lvxk8NVEgWqMiurHGLVGpwPG72YXJUtWnXiLdr6xvJLpeeyBL7+ZiZnw+s3A94oiGGaN+BCoegdMazFslJYjMqbMbiCHs2y97YiyLb9oN1wDCVBLPC8GJ6j4TgbYrUUnEjsUmGdKjmBqZ6KJGD6IkDWGmEuhbwBT4ZNhvu907du77Ws55fg0/fB2KsUuw1Q2M6XGNVbAEtVyaCzMlFzxujkSc8jkOmh/uz2c0oV5mkpRU11Zb1Y67b3tp2jegAJuKRM38aABZGaiQyuhUlcmcOCIpnte1aTryabKDCuxZXCRDRISx4TYRGLR34zt0Q8T/TftzNOvBjVA2MDtq57R6OdG72e+uLNMHquGSPNQQOyLMImMNXK9LNAWtPVXwqZ5JdqBMVVqXnNundVOauasWpKYgRvMKyLgCO/+fXXym6UxKK4Xqh1pRI5n46sMdINdxjjxWusiFfj/vbAbb7DWkPv4Nuvf8WyzIRQCcFxexjIMZLmi8iXciEtK7UUQhipxXA8F0IYONx+Qr+OrHHP8/Ej0yzNsKlVgJp+JOZEtZWwE0ZkTZVsZQ91fa9goKHUhY8PE/M0M10u7IY9XeiAiPOwLk8QOvbjATpL6hzOajKtE6pY2BlSyUzxQoorjx9O7IYdh92e1Ruqh8vpmbR4fvTla/EasaOkmK4ztURKzHh/wIeOXb/Du47D4Zah67nZ3UhyHfB8krM6pkgpmcPNLTEvEpGOhRB5fXfLn/70J9hieX545u13bykGhuEG7yCnjpxnlqVSy0pJM6ZIbdA5aW7m5Swm0j7gfAfeM80LBYPddcIQ8kH8brpB2PgpQ8pgM3VN1JgxDsAKOFM1BdpJ43h7f8tuP9LvBlgMYeiZ1pnzPPP4fGT48FGWfK30wx7fZWGQ6p5tXMCFgWVNCijL83Bzs6fvPPPpGWcqy3xhXS7EZeb+/o6h77jMJ0oW2U9KmamIn888zSzHEykX+nHAWktvPNlklmneanbnJW0u9B1gucyzTORzloS60MkZwNW/1TaAufllGkvoB/Y3N/TDSDcMGN8JM6H21ALzPBPXlfPlzG4YOex2YlheDAaVZSF+rXGp1MHR+T01L+S6qCQ3cz7LtfeDgMKVto8V1lSodaHGFd3u2NXKm16AsHHc8byKyfyHpyPruvDFp59gDTyfztScMSltJY8AXpVx2GGMY11XUi4sccWGgO8KoQs4D2U5YnHc7+/ovOf14ZanpyfeffyO3nhudzdY2xO855jPrIuArtie/f5AKgWfVp6OIn8MxomvnNal6/nC6AO70HF2js5ajnFlXmb2647dOHJ/f0+KkePTI/M8s64L3hdc8QKcmszx+Ew3BF4fDhQTOc3PLEtiXbMkHFrDsN9xOBzY7ffMy0xck7KwDawVEqRg8QQOr+/IJXGeLsTnI8fTA7vjkWH3xGE8SFpeTVQkDdMa6WdSTsQUcWbFYLi/vwdr+fbjO+Z5YpoXrA90/Ug/zAyrZ10Xakm4EGhqHhCpojQPlnVOlFTw+xGsJUeRly+XM8FZLsOg+qXKbrfH+aDkiaqm4nJWOyfAUytdstaMm4OLmv7HmJhjYo6R/d2B8eaga6I1kS8HXa3n0JARxP9T2EUS1iPBVGYD1AoQ8ypSx1ajsPHJZf98MUAKKvOzVXr+UosMMI2lIIBJq/u2uqfIi7TGCEFBtEjSQxFl/1QfLPTfUyu+92plElWgk6Ekao44Wxl6R46FnISZL/7HWtck6Rutl3S2a5/xooJQIobFypC0De5MobQkN+fU/H2bSyF4kCFrB1dNG7eZTZpYinw/650QRsqi72/DJaR+S8ZsHsuSei+KCGu0ZldFwXYv0QGcvj+SRocAfM2iQv27nIKjsSzinZui4A+yurE1b8zxquCeeCQn1hxlTW2SQXOt/37Axw8GnhIRhxhVmuJVlylMF6OLpndemyZHKZBiUqmFBSdx01ZcpzWlSRPmkCfKmkYrE/OxlrQkngeNxaK1nR46KZftwZXprdHv7YRaj7CUGoXP2kq1Kg8oLTXA4rqAN5aclGqoIEupWShzXmOfi2Fdo1DrjMhlBOhSOi6N6q/Uu2YatpmuWVw1ZJ2C1ywIKsZshqhOJxzNz6htIHJdGuneujptzijX5rFJIp2aoGOsPhhlQ3BdkeUltbE0B9KEiGdRalHSRaLRZaE3v5Fm6uoEMASySUr/LbphRfn+VG0g9NGzDVyqylrLxCSodC7rZgi7IfNFwEzvO/XJyqS4sK6zgnuGvu+xVrwYKgJ2WmOxzrGmlRST0J+dSA0Mhs4YYZPklZIWcpzJJctadJIiEnTSkFIUoMx6BcRkkt82yKJFVMqJeZ05eMfgPV7ZONM0MzsxmyzphRH1y81Cr/0lS+4Hf3y/l/0f3ccfv/z64vMNzX3xqQbsKpj61Tfv+ObtE5aeMRhuQmAtK8c0SdE77FmXSH06s1wS/jDy5edfUiP86hf/gOstval4C663JKRpI69yBdZTbMF04unkuTIdPBZSIU4zxc6k48T53TO//cU/CONp6Nnf3dKPA5998QXd0LPb7wX8NgXrFeAZep0ORlKtPFPJxlKc5+G48LvniV/+zW/41d/+hlt/wN8eSBGolVCcTosmctKkICvruFpDsYbVyAErrXqhp2KygLhGpVKddyJ9peCCpwsj3c2OsBslnTFF8jyTYmQ6HbHOamyvh+IVlxAmq60VU1ZqrqQpylRyXlnywloSYd/R9SOff/GGffC8PVamsnApkc8/Gfn8zUgwAtZ76yhYkrJZi68qQmpsUKE2W6x65UG0mzsQ05qY1oUlVZZY+O9/+8TjkvhgLWYYGN+8oubMsqzY2mGqh5ghVmICUy2d7TY+E4jkKuVKkmRfXcdN+m31UFYEqb6YRDSY/Y+ByVpc5gypQEzy/df1+qxA3diWlqLeTQI4Sn1oVW9fhWlXnTCncsUYAcOzpvWIwTgKmgXxDAySuCZ7kRYq1uOsyIhrhRZtmlMB9UrywROCFnKZjX3UYnar0SRQK8UaVxyL9odajcgKEanGBmLpFK6aJtbTWyxmb3JgV5RdYrZ0t67rqEiUdVFwV4r8ijMOHJSgE791leFJKdsAxjgBHZNBgTu5nuo8tggoZZ3HWSNAbi3EVYCrlC0xVuY5qryimXsXTqcnASSrxCsHZ7G22xh5fU5gg9QmyNlmY8H7Si0J4wS4GbqArZm4TlLIZoN3HeOuIy2RtEbWHCgp04UBYx27MVCQYpcMNcKuM/Rhx/H4IIW8kdN+LR9FQuWgD57c9zR2+RovUA0+DHgXCMOOm8ONLg1JrHx8OJNSxjDQecvr+xvOpwvLdCFl2Qvy2pgD8ss7y9AN3N3e4K0Vf5L9QG8r59OKJVPjDDh6CslkesREdqsFi8fgcTVI+IndEYLj5sbQ9QfW5QPLZeH48EhZVzrrSMvK65tbcsos05l/+PXf8/j4xOW8kGLGDSq1ClVMn23PpVrympjLBWLCZ2ErjKNlHAbevDqwrpFpXnG9x/mO0Y5Ua/UsMdzevQJrePz4Hu8szoAtBVcKr/Y70tjhB2G9rQmc6/F+RKwYCpHCaZ5IT1KHf/7ll3RDx+lyxHciA1bKHfubXmpMbyi5sK6JUmV2PfY9YJinibWqhMrAbS8G2MvzM7UWQoU6r8RciNPKGlcej0dA1gLGMh4OjBoC0xg8aZHo7uDElFnk2IYprvz4yy+5ubllXhamy4W//+XfS9iyLXzyyRu++PKzzSPm7XffsczzVc6NIZXKeVpwYWQwQZJXsXx4/x3rsjLPM9579rsdmMySZqZl4jJfgCyhFiWTU+R8OVGqoQuj9Dmm8v7DO6bpwrII2+ju7g2hG9jtbyjLM9NyFl9ZCsVKvT0tK+eY8e+f2O0SN8Xz8Xnh4WnhNGVyqvh+Txc8WE+cJ6bnBx0WGAW2IFVl2Iee4MF2gw5IoVSLqY51SdScefwg0tH7+1dYYJ0nckp89buv2O8GkSjllVgT0VR8znw4nbVvAhfEYyklsVMZBglBWePKdDrx4e13UAqvX72WIZ01PD09sy4Lv/36d9zs9/zZz3/Od99+Q44zyzoT44Tz0hvOaaLEgWr37G8O/Omf/Rnv3j3w7v0DD0/PPDyd+B/+5u948/o1969fM4yjNuoi5+6qxxXD8+mBlFeOTxdccHz5xU853Jzw3Q6wPH54JB8yfS92F8ZZ6T0RVUMxwoo9zzOnaYFuIPQdr19/wvl84Xe/+QrDQuhmTLXc7Pe46ljXJMnHFYZ+T6kyxDbFYfESFIghL4AzjN2AsZb5fGGdZ54eP/Dmk0+5f/Wa3fAndF0vHndV1CHooGBZIwtR/NacxTgpMNYlYqz0q7UUHUwm1pzIyOvKNYuZdG4AkZxbJV+BiHG3wyq4KYnbGYvHm7CBSs10O2ktsfV9OjylCuHC0fyXNejDXIc8Wanb1ahUv+iIqX2NESBJ2PXCOmzDqVrl9VajbKicpOVVCVtOiRxF4l5TZjqeWS6T+HGVRKkJbywuBHJMWp0ZvLECqGp/J4CVEEFAg62ksZdKw7TxZcUaGW02rKqig1Gdy0nJZLd/UxFwq4AoaooErFkrKbE5Z3LKhCIWBUaDt0qFajWas1WxSsCRek3qXzmb3bXu1kGQpFJDNl7JHWpvY3Wfq4WYxGYnzlE8CY1mexuDLRqqojVabgPAJP6Gne/lmfK2la0qN/xhjegPl9ohZsxbnCOa5NNYMIhpYpvK1FKpSZoq6zRFhitrantDDcoGatHb6vJvrAAZle3hkVQ7BLDRH9tc+qFNQ5t7/ebbr8V1FaqlFeSqyQQMFpQGba0T47gNJP4+oGWtRpsrKNSQQKUktVZ0W6QNH5Zps4I+eAVGGrqN/pv278wmJWgbwHYt2mS3F3s1e9dXqWwmacjVAE27c1FEKFNLUVyjJuYYAWvaDasKFuWCehIJuKblIU34JIZ/ZZv4FFN1MldfIOQvrL1feHu1z0KTeAgY2Ey7oWyySZqniTG0WHqRfuibrhlY27pqd99YSpVionivm6K8586gMoQCmmDy/Xur1N4i17chuuY6yW+b5DWGvG6mgGLop5trEWprSXnz8wJe0F+N3KcGqGyreXv4/vDj95Gp/5jAp5cUkT94Te1ZvwJ0lcrlPHM6TVAFJPXGkGhgq8X7jnlaqETWJTMMsN8d6PuRnCrJVVLW2FJnxJ+gCjBqQBtfwMlkCGMlRbJ9rhbqmuRnxsJ0msn1gdAHfBe4ff2Kcb/D1MCwG1nv2/otYkYZHLevLF0P6p3LWgupQsLxfFl49+HIx/dHnj8e+XL3iqHzlCW+MDYs4mEkWIBESlu7NdG5TcCqgCe+3Wtlw2CEerylkjmL6zw+SBpdWheNtI2kuLIuMz54us7ryWO2Z1KFIdSS1F9hIS0r62UmksimMPhRQLmbGzpjuDyfwGb8k3g4pKoJnaZu+yK1KAVaDdPrdd9q0otaZFKXdNJUKjynwvMceb4kzlPmb7498bQkln1gVyz7TyTyu6gHkDC15JcGmgpoYyrYoiEIuj+WNh0QlszmSfSSuSc783V9/5GHVXY9PeiryOyE9YT4BNQXj8f2shXcMtezapPaVjbWaZukGiOMqXYJlapsSwXLGhBFRSk8uidbZQiVFxeg+2yVwYJvRVd77vRVGQWeZP9VDyXktZntfL++tlqFhdzOnvZ9mjlz81tqLK+2F4P8fKvFsbMWZ6Xxzs1nsrKdSG1/bn4IWSVBa0ryd87iZVolTZ5RSr5BPq/09mZeTrF6dookSiShkFKhC602UdZfWqilYnEY77GdDE+Mg1ADNltyW0fWQNH9Ri0GGtgavKMWT1p1aWKEReOcFNLZUGwl672wzuFCR87iFWNqghLpvAEbmC5G3/ZCJZHLgjHSkAhA5sS/BdWrI6CgM4hkqvN0fSClCznNGCPDO5Daq+s8a7AyACyZXAUwqlXWoYCGni4EDrv95ieRgoccWHQ6T5akIG9kH/NW9mFJjY0Ia76lG64idTORroMQerogEqK0Rla3sE4LJWf24ygSojhzOh+JSZnkWPphxHiRDFUHtrfYzmKDIZtELIjXiyn4IHXs2I1MswCHLjhscITQUa2V0ZwzhK6jC2HzZrFaE5uSGYKn4HCDo1TpQ5zvCaFXVmsmxkyKmTqJv+r+IPtq6Lz6xUi9VGul12CMrgvKPDCkDClda5uSJMW5xAil4o14CeUYt6+Jy0qOibhGYkxMlxljHYMV2VXoOpwPWOc00TcLy6DV/frsRGUSdUPH7mZP6IPaNEi9H9NK6Byv7u+lP6Dy+PhATKtKumVfLUiyXc5VJ/uyD03ThXm6MM8LwzBwOOxEGlOygl+ZmBO5GmpK5BRZY2RZFy6XmdA7fHDiNXQ5s6aMc55hjRjXCZPeOgoyiBCAW/bbNSaqiRzPM8UEfJ9YYmZNMswoRfsU5+mHEWpmcXYbfFez7fBScdsGucs5WLKMDiTvR+7XZZ7AgnOWvuvY7/c8Pz9xPp9x3jDYjmIkUCRjWEvhskaCFzWBCz3DANNlJpdK5wMVSebKOXM5TwxDzziM9MNIHxPPp0dKrjw+PuOdZ//jH7HfPzOMAykvrDGpZKyS80oqhpQzwffcDgcuc+J4WXk+LSzzxLt3H6gY7l7dMRrL/avX5JSIMTEYj8cxxwt5zixrpLOW1/tbjPXMa+J0OnM+T3Q+AJW9H7eUNiqUrNocY8RXOFaWdaVayzCM5CyHTM6Spha8+OT1PVgTOT1fQD1yTIVExmCx1cp+lSEnOWN8J2yUFCNlzeRzpO87+r4jK0sd9YkSWwA5b7OSOrBWGOYgpKqqAz1jBGTS5yflpAqXuiEg26mqfWOT8VVEtWGN0dAjGVTSmDvtrCuNIaXnr7oGmFasVDn7hDVsrzXHVpmoukf70a3iMbqKVY7XwBqr9VVTgTQGspzbKj9t7bZReVq9SvTSupLWKLY+WYZhFoMQROQ9t9qbO1UVFGNUunsFkXJu9VxT0mjdQvNcVhmhNG+CCWy1DihajXbbOvyDln5diypxrKXIRkCn19UMuhsDnHZfafszW73brrDJGvUKACPhbloPSf+sUkWt7UxF7lO51ll28wFjwwmMFk21oWHtNFRfL+Pc9h4JQ/6HNaE/GHjqd50kyuS4NeumiN+Kq3IDSopSbBXZ/INKD1oKD1RSkjviux1YqK7iaiFUQd9qqZgkb1hnxZC2mXFdoaRW5jdRkhRw1lic99RqqEU9NxwkTWzKmgJCFoCidzJRrNWRYtb0kA7nLd4LyJGVoZJiIWWZcJeqWkvXA7KRWQKBjpobqCVvmFMz8JbOI2+MpEiV7b2Ue+KMoxiILwyoW7fR0n686v2EgaWyOFPEc0KLsvbgtvv0/a0ARB2jC0q/LutGVWzZNpsGYCZXsbWo8TebtlSaJJVbKPPKd14OmBj1c1GnMxXjAtYqV6QqoANbMqGAlvpgtodMG+dkFYUuBdtZ9v1O5ZKVVCR+1QZ5mJ0LrDFxms945+g7R7BgTSWui2yUVk0/kSSPdb5guiAGs0bQcd+8SpzH2iKMOSNIcE5yn9s9sjiCDYzdTgxFFZ221nFzc8c4Djw/HRnGAWpjGZjtnbE63doaqT9Alv5T/mjPgoCdJlRKkrQTG2R/udkfuN0n3r9/y5QLbvBY69nf3sISyWsinx1xrvzmV4/cv8p0454uHLBWzAlzMbL+rXjYGFOxQTzLal5oCRfOim9BM5g/n85QYOgGnPeEbmRZImlaOV8y5TxxmQrOPfK7374DYynWk0plLSJXqwb+Z/+r/4If/+Rzfv7zH2GGjljh43Hi11+952/+/hv++u++Zno7cci39IslmExZJwpC2RVJUlLDVmF9OO+xww6cIzW0IVc6DKOXSVApFa8Dg5zFyLbfH8B3FB9YgbRmSjRQHJ3b4UJHCvKuxMmpT8lA1ztcsGQmSkmkdRbgKUUBi1kYxwHX7/jyT37MeDiAgTUvGJ7w3cAnn7xiN0icerHiLWSKFN1dCZJr4FoJYKQBI7FWkXRl68gY5uo4Z3i/Gv7hfeI37xf+9V//jm/fn+jHV+xvdvzFf/Ypd7vAoauY6onJs2TDUtoJbzZcI70AOtualFQ/SWIFBNTB6L6qkrANVf0jYJO5Aj5tqYu0KxOLBESUavFuICfEU0pBJEmMMVzOzyzTCecgKAumMWNrKcLq1TNJ2JqeEjoNibiKnKv6AWwpNlWlg6ZifcF5w5onknoM1irgWjXKNK2WWq4y4qSU+KpsL2udSOCtp6GjxQjLtLTzrkgDt+a0mVdK+pORgIZalCpuhKWgoK806+Il4a0TJpAV5m/zNrdWwx+yMlRrZAPWHLi+I0ckSh2gaJFfwbogi0A7gFoN1lW8KeD09DTyWp0LOBugisREhhcSF181AGPc6TCDineVrqsypS0Zo0mxTWaYayWVQq6RqHR5a0ashfFmZCg9XS9hHH7oxKy5FKpx4GS/tDYTU4IUKfMFYyzeBTrrGD0E3bvyLrL4lTXKpD/ngq8CKo5VPHOWvJBrZuj3VCS5kgxlFrPxVCEXkbB1uw6XHbFMzGvm+fgd67pgw0QfDAHouh3WOuZpgQqdH+hCj6lS01lvMGamEgmhlzM/FTByr7rgeHV70KlsxfsgHilhACPeIpZInE7sDzfcHG5JP/qS+/1OQ3IgnU/YzvH5Fz8ipqzsN3HZ7Icd1nlO54mlJKbThPOGvnf0tzs+2X9OXGZqTiyymzMMQeUlBd95bm9vwAlIEatURsY6TCkcPz5gcuJPvvicvCykdWVdz5S8EPogZ8quE+sIr5MJOh6ePnA8HylZmsLzdMJQ+fhehgO7PlBz5Pz8yLrKfrzuBoZh5Msvf0r1lpo70nnicjwyTwvrGnnzySvG0PG733xFjipVx+KNSJRSzpzOF2JK7G8O+L7jzac/EoAbNtB23O8Z+gHvPSVnfvPb37KmidPxGeesAB0GrLfCnqVKQiyZzz//hMv5zIf37ykpMgaZ3Fcq/eBZk2fNizLigSpJrvN8wpjKLu1lv6mRSmKJF4wrzHEvLJjg8LuO3si9qlnsL7CGYbejGng6fuTG3OC6HbubPbaznC9nSi0c1wdKiNy4HcPB80n/mofHB6bLhDOybg+jgDYPD0+sS6Zmg62W+9s74nRmmTPvv/uWcej5/LNP6HY7BvuaZV3F5HteWWPGGwUdmgSptckW2RPXhdoZ6OHj8sC5XtjNO5xz3H56z1oTz5cLuA7cwKef3pFz5uuvv2ZdDd89Xnj96hVffPI5d2/ELPr9+48sy0oXBiqG3T6zxshpnnDDjv14z5ef3fDmduVvT3/DPE387S9+x8fXF3q7Y10WduMt87xgWMSGxFk6I3XGb3/7ntu7V/zoyzf82c+/4M//5YH/5r/9f/HVV1/zy1//lu/efWAcdvR9h/e9sGBzYrWZbDJh11ND5XgW/0rrAzc3d+zGA1999TWX5wvz6USaJnoraW+hD9SCGIQLdYYOT9cJEFbXVby/xj1/9mc/53g88/b9I7c3A+EwMARHZ3vynUTYxyL+rbux3/orNBlszhGsYY1RZHOdBJuktHI6PgKJ/e2OOU74bqf3R4DM4bAj50TOIocT3zv5WX3XEgQNeU7M0zPn4yPHpw/86PNXDN6xG0fGnRjRlyp7pfgKGZyT83le1q3+ME6A/pohxqvHbdf3m1eRXIecm2tKOgy7giHie2UkNEDrpapfg2pxrPeYIKBFk9pSCqEos6iigJtKaGvrA0WeZtSW5RpmIve8FjENvxwvLNNKzRZqwOJFCpgztg7CdsIh1hCL9qUGEzzOSX2XqaxZhsJdH7T+u/ZiVhVKzjXLDItFhi7iP9vAcLZhX1HAyZW6+W7ZWrEFapRkvq6TVM2kXsY+CDvWq9xShq9W/EoV4KqmKniUtI4RwNlgpXYGLF78k6N+fWN5YcTfy8G489RcSNYzTzPH52dubnqG/Y7L5UJKWeszw6CWGwYr4QCX2EpI+hA2Vuo/9vGDgafrlPZadLcfcf29TX215K7QDIMqUhhuf6czcYUI5XtUnV3oSpfIwg0uUaTjCqw0valMaBUGbYidIqmt7qdem/yrQTbbgq/KXbXfYxHpN6gKcen3aECaUOn0v4wT4IisrCizIbnt5zREtSpkLA0Kcmi+WN/1xX1uRTwvr9dsd4yN/fXic7//tpnv/Vnvn5qKV0W6axXz+CaJ2yCr7Zq0CTOCcrdL2m6z2dosfava92lNVb2i8doJlJq5Ci7bz9Lrs42uaK4XYRoIqYbnCs/ahuQ2sOrF/Wua7raZylqUJshSN5+TWssWOS/ftkBpSLzZvLbk+l5KZdqau94QoahmCk5BJrkv8zyzLMvGbLq+6Jcw9vc++eJ9b+/DP/7xPUbV/wg+vo+S120y9Ue+8nu/m9rgZ4mt7oeOWjO5JJYCwUhzKAQl1UKbyjStdH2k34vBow8dxorHXK7CgrNV0X6rzbPMkwScRUFyvMiiatJtoioQrHLf7YCtrGvCmIxRr5g5Q8aQcKwlkmrh2+8+Yn3g9Zt73Fh4wvLx48TXv33P++8eOX08EVJl9IFQK04BF0OTajbGo0ZTKi1GWE/2uk5fAPlF90pTZX2nxjJxkixUrU6eSpZ9qtQtKME1Jo2ir+bFI47KO2IUJkHJSVifzhC6QDf29F2g845lXrA1sR9hvzPc7AK91+nh7739otQ1VPXVsfpaimkA0XWql2sWMLEasNLgVKtJHUbA/77vCd5qtyxFhbA9pSiquVKyJFmVLUkEdCb0Yj3WbS2y/Wlb4C//1LbR6x9oz2rdCEVNnixvmZwnReVy7esb66mBTNvczTSzTz3UdP3K95FrbfvqViRu08XWyNXt3K7trDWa21dbUdWuXyd8Ve5dLdc98vrMKohVjYJTbNPVl1+1+QYqrX870+z1vrbTSM7j6xnd6o7mm2aVIcuL+yIMkOs6EfatSgcM33tutint9sxowffynd/Ozqt/lVVD86Lvi6QLeQz1mjGgtY1U7+1XFZa3kXXWPCXFSFnkDNa37y8He/ACiEW7yn3L+mxXofMHb6i5bL5ftVb9nCV0jhAsTi0IjKkE76lVkhuloRDpO7YlcTlStZALPgRhqGcLjU3lxay9VqjW0Klvi61VDfDF5LfvJGGzGkPoJCa71g6qSAWdFWaVLBuDcQqiewdVErgobJ4k3ge8HqPOBqxxWCtDyJwyuUAuC93aiw+jkeGdMIEKMa444/FVhgp9P+regTRKIMyYnOV9qWrzUK8sgVyF5ZJzAVfx1qvxqyP0Tq9BAixyrZLGZAw5JiwFryBZiYlYZQiSa8F5R/GWECxdH8jFkFNhnlfO5wudG4SF0w1gKiUtVFMEOIzKKouJUhKLWTdpljFqkpwrcU0ss3jveRfoe0lILaUSYxSGgPOSZpojKavhvvM4H+j6gUJlXldySpRYGMcd1lpdAwI0xei2WsraJgVCfM6WGWsHDJWh60jrKnKgFJmmiz6PVdgjKh2EQnOeMAg4bTB46/Be2V0hSKNYJSXNOks3dDjv8H0nVh5ZVQxIyjJV/GtSlvez6wa1bpBQjiUmYkrEHDHW0Y894ew3xpJBALhSxd8wp5W0zoQu0Hcd49BDiazzrEPdhLMwDL3UCzZt7LKX+yMvtiirrZKpbAyyhDAMl7jQm4FhNxKGnm7oqcYQc+FmkOFn1/ekklhWkUumkvA4vAHvLSVLcEVFmJU5J/VElZp77Ad6F9iNAyUn4rowTxPny4laVqw1eGVS+eBVMmbluVrlvC4VhmHg7v6eV69fczpf+PjwntO5cjofKXVkP47kLJ5s1VuyMeBEPeKCVyCjCMAzDAx9z9B15BQFAI+JYg2m93pW1K2nEFWIykEV7LHWcnM4iBRJz8SSpd7xxjGOvbz3lwtgXxhpX6X9jV0kAIk2fbowxHx/5nQ6YZzncOvxHqzr2qmi6hjLllZO0e9x/b2WTM2ZmoVV7p2j8wJ4G1ALED0xS938g7Y+TdeNrDNhBstJof2SEyaveVETNN/J79fs5o/U69cifvt/BZHavW+JtduG+mKhN+JGe6vatzfWaDDWlY0lliyFmJKAJOr0/bJ2arWHnKYaEIKGlFgrKZpGqvykDPeyEQOURW5QOR6g91jIUW0YdP16qReqQhatlipb/wwyaJL78qKWQMAh6X/tVmsIu0qvpV1TWy1tv9muVdez3lsp35Vkov4gVzKQ7sNVrHmsbao2sUTYrqE9L9qv2saCx261IkXO/B/y8YOBpzifsdYy+CCLtVopzGulagx4cD0GiQ+UyOEsLhRbDVqFnQ2UYtu7qwVsq4ANlPqC8qWfQtgGQrkrmyHq1a4cKJKyJAqwKqZl1ohvoNHFYgwUQWXTC2jW6AYSghyMMS4U9TQRFo3HGtk8K6LVFLEHOFskstV6SVuqrQk0BO/BVvIqHkyp9SDyD0V2oEV/bkKLRk3X/69klcaxSdhKacI3ffBAadoGTIs3VAmjvW6EJefNPNbhSBqNuS16rk2NFMeyKRljMKEBRGabaFd9k6S3qpQoRoC5JC0A6iaNqXUVE2TkYM8lyj1yQTy4rLCgSsnCSHJO/K5aQ2fAWNHFpkX9mExlGPZYZ3ViXIirpM8dejFllI3Y03xWrHWEcYctkF3B+R5jxMwvuH6Tw5UsqXhDCDKRsI41S8GBFgWtkyixsKaF83Si2Ayu0PcV7wLzspJK4d37D3RaWDSJY9tYm59X63n+Y/74gzPq9z/ze33697+ikhHmRueC0mXh7vUNCxX/S2ErzRUpklMkF/EJOdzsqFhO04IJM2+++IxuOHB7/4q0nFnWE6kkXI30TqQYrmQptPTSWkOZc5YpKajJJCxlhVQkRco4GDr6Kr4Z59OJUiqHcScpZceJMI7s715xupw5LxP//b/7Nb/45de8/XAh7G54tLd8/c13/L//9b8RGUvoeD2O7PceOz1i8gJhoZTEtCxgA7h+awayUXNHZXxs+3VtXjXCrizC1RcQzWSyL9dQCAMlR8gRXzK2FPI6y6TKC9MwZdlnqI60VnKqFLuSc+Tp+YmcZEre9yO7uxvu7m/Z7/e4mkiXI6cPD9yMlT//iwNv7kb+5JNeAK4CBpFdF2OggCtRNpMk5prJZEkYMmEz3jXFYGrBp5kba9kPgS9+1PNffLnjX7wyvHuc+MvfriRjeIXFr5bzU2JKlTVWoikkKut5paxA2ksT5gU4Gz3CALDhhbE32xnXpBGyP2WoTvHk9nC3N+QPF3mt0pymXMkZcI5SLMsK65qZ55Wx75SZ2VTesl+XkhUkSqxxZl1OeF2/3lSSLSzLsoVXNMCq7XcNC2kvpQE0BXmPYymkUvWXnsNalFgtvmNM2szrmWUMRn2vSlZZSMnEmkm1UF0VBpsxDbHUSR4tyIuqPoTFCsPU6o2qrag3bCAhJQvIaOTUEDlK3c4zYw3JSDNZcwMo9WzU59haAVJ0Y5YhgsqStoEZUtzlmjEq8fZGjFq9k3TbaT5R6XG+YIyArH3Xa30hIMa0XvCuXgcpplJIFJPxvQZjBE8plSF5vOvwYRSZPLDrR0w1nD88kWIklYngPbtBmq+u67icTsQYGYYbrDNif2BfTG2pxHVijYV+7wjFM6eID467uw6jxaurDoelXFZyduxvdngflMns8KEjNvlVCuRk2HkrtRiS4DN04r/j7vaSsAksayZX2N3cgpH1npbE6XjaLA7C6Njv90QmYlo55wWLpTMC7rh+YBgH8UyJHSkZHh4e5Hpi1MftwsPpiH/3HVFlw9ZKzXW+JOrFkI5P7A833L96wzAEnPO8//jIZZp5ej7inOPzzz8l58T5/MzlfGS6PNOFDucs5/Ukay4ldsOOn3z5Y4Z+x2684fHpmeP5zHffvSPGyE//9Gd470gXkcLNeWWdZpZpxjphYj1ezhQqN6/uubm74yc/e8N0WXl+OvPV1+95//Edf/qTP+P1q3v+4s//gi44zqcH3r79ll/84t+xzpF1WXDeYU0gTZnJT6T4HX0/cntzz3ROHB8nUpJa8PZwx83tgZwyz8cjv/nVrwFD5yqxJlLN3Lx+zdAP3N6/wocATozBH58fOF9OHE/P/NN/Yhi6jrHzBGd4fX/LbujoPBIKQ1bwJhOXC5SE15p47HvImelww+l44i//8t8pSFxZ0kKtVWR5ppLWVaRDPnA6PhDXRHz9ht1ux6tX99LgGpjmmW/ffsOr129wQ0fYj/Q3e/L7zDrPxHnBWkPXeUpK5HXlcpmp1fPpF1/Q9SO5/o7T+czD81tKTQxPJ27vbrm92TNNZ3IWAK9kYSE4Y/C9xZuFND9yf/OG+/sbevOKyznwD7/6FXE68bTvuT3s+OzNPSXB+TRJTxGc7sVlS/CyahRcDDI0MVabcZRtbzg+XTC3njdvDty/NpjQ8+7tdzweH/jyp18wDD2fpFecL0fevf8W+zRj3IXee4LzaNAnuUjypyueLkeGcqGPgW7x7G5v8aHnT35yz/Fkeff2W7BHHp+/oguGvoObW8vucKN+NUa0onhqHrE2sMxnarmnD4Y//xf/jJ/85Av+6//6v+JyOfLN299ysz/w6ZtXTJeJ4/MzoetxIdD3Hh8Cd93dtteO/cBu3/P67haXC2/ffsvlcmY5X6ipY+xFtWMK6vGkkjPvmZZZavi6sNvt+NmP/gTrDY/Pz9SaOE1nbncDfR84HG7F1+wf3gOG4PbUJPIu348E3wlTGQ1VoVKzhCUNPpCXyHFeKfUrxv0DP//PBvYHL9YJpTJfjgKaBq9DmiIKklJJqwBjK5W8LiqFtXTOc3+44fX9PSUVlmllWla1mQiklIkx0fUDLgRlKF1rESkBi3g5W0e1Dm+VVbdElfQV9YosGxNJBk7q56xD9it4Ib1XG8A4xU7E7LuyxlVxA7edQ8ZKUmpOkZZGX4owfVq5lEtL5ZO9O2ZhqE7zyjQvzOsi12WUSOIcOiuWMztnzjFS1DrHBof1jmgruRqWHKW2UsLCVscYg8lCk2jDiBQ1NMe04dUVEGr2B0UHf9mtG9gdldk6BE9wjqUmKJVksw5nPdkZEhVbRMFg1QPaGg1Oa56RtoFqgPFIEq6wtrN15FpYY8Y6ERqK55kR4KsWmp2I6xx9HTiUQtc5DA5nO6qTtSv1nZylxVaMc3Teb4ynOa4bS+8f+/jBwJPoAtt08QoAoUiqiAqVIodBZvHKFGjTyCro2hXiQ2JVEZ2qbSieftoa+XctqrG+/J84mvMC55NvWdv/sQGxpZTt6w3gjEcmwFkYP7JilMlTyOrr83Lq2uR+7ZtKravNWhUpmiTzlRdXCS91ovUlgt12drNdqlIMm6nrS0aNdBjW2E3uVjc/o2sj3x7eTc+rf9+Q7wZENUbXlVmlzQttQqzf78Wk3pgroltNY64hcanWysTXVNDo7AYmtinS95k90oA1jXQtV9S3iYhLNVKwShdPJW3XLtYrRiMsDRkH1arO/Rp16XQD5AU7DuOoRnwTmoTBlIrNVYzercFk5WFZoRTGlCV50KvhfZve6jMvi6rKL1+pVox7S61sc7laucwzS3MJ/vd+KMD270dnfvDH/ze97X9oNtQfvRZBVn/vr+r3fn/ZnG8eObQpRt1knGteWNMimJVQYSg5MacVZzoMYVuCTR5qvcUFh+s9tThqdljC1Xem1k0yVWlPpiZplqrKfoP3Yr6as9D9na5ZdM1SUbhMZKHi1VHBZmqZMSbhjAA2S418880DbpiZuoXL8zODN/QeBlfpapK1mpImkymjxYkkdTufFblv0yoLOGNVLigTn1yUxaXPigXZz3NiWRdhBDqHKbJP2loEeEqr+LPktHkRWbtQ8SI7o2C8NOzGWEmH6QaG3Y7dzS3dIBP6uKxQMj5dGIzj9eGe2yFIhKsyRlVjsDGCGjMEnLLLaKTajQIsTEbxT2n+Vr2RONsf3fQcrOV58kxF/FRKrawgkkJgC7IwdlszMrfQ6VOWyY5pU5+XxcYf+3gxstvOt9omVYo21wbg1yvjqbYvVoaQFnAxZmXoVjHfzHULw2gpdFSRim6DFatATEl6BuppsT2XakxpxOPAYFSm1tJIpfBEga42odSZpfpE6c9v7Cl9WXZ7vVeGVXtdbRuqymCQZ6zqgFKeb9O8GPVWbiyAknWP3u6SFFJF2IptzRjaf5etbqnb310/6u/fj3bWt/KmvYPKHCsYXSsK0LnmKSGvIaaMi5V1MaQ4knNhw8qMVzDMCXCikcjWGnxRiVYvQFlVs2LrjQy/rJjAmWq3+qTrBvGzSkkCAoJ47fjghN0RLF0Qz5829RS6sa43bepb/dKGWBIQ4yhWnykDRllSLohvy7qKdC/lRfzyUiZHZeFtckupjY6nk7IgnExYnSNYL81GFgnL8+kCxeCVUVqppEWYSWvRafWasNawpoLvAh0e1zu87SiIrPg4rcR1xSCx9jeHG1q4SkqJHCMxLzRmYKmGuFq8jzK8cgHvrTKLJuKSMJ0luE6lZwFTLHlVFmS1UKSmKUVCAaY5UU3C+swSC8taiLHqL5GI9qEnrjAvF0oS9qmAogarUY4xFuY5cjpNrFFGkZiAM70AUW5ivqyU4FjmlXWJxCUKYOiUBWHk/c4FpstCyZbOr1AMw7DncrkQY+R0nijA6TJzmReWnEU+5gy26+icwXSB6pwA0ClvtfEwjKzrCtUwTReeHx+xpeCdJS0zJa6YkkH9qaTOQmVIUn864xjU0PxwOFBKYVlWfHDSPGlAQiPPWz2/Oi9eg9aIpMgYSQezwDAOwpI7QS6JdV0w1kh6m5WzwnmLt5auCxTryFW8Ia116ulX6fuBlAshiNnzsqwsy8K6LDKYHzqomZzB+0AbQDgLzhUMkVoWxiHgzJ7dOKpJsjwztRis9QTfC0O3Nm/V9ppQf1hl2DQ/XGXKYqVGNs4TQgAjYSjjONJ1HTEurMuEM4VXt3s6Vzk/9zJoK+LV5qwECkmClv5sHM5VSgmEzmBMohZJ+7u9GQi+ME0D3luMEQBT2w1hOtkAxpKqsCjaazFUpunCw8NHQtfz6tU9P/3pn3A+HxmHUaTklwspJQm22obeSZibRvbzJcmApbOe4B3393ecjgrGKygSlyhJsGqO3aRjmKzm6kI4WBbDZTpTaub2ds/5fGG6TMJar+BdoNYqyZa1kPK0qXSyDh+lJtF9r1hqEXCg1RBgiPMK1XJ6eoJS2e12GGMJVt2CC8rqtxthwBQ9z5r6ZmvhGoulMdvRoA2n1yu+gzIAavx9bcsw1z5GWT8VSCWJ7yWtp2UDZK5JZq0+0f5MaxlhYLP1zlV7eGqzD6jXe8RLQomuC9sUKnY7T9u/r1Ugp0aQqFlq2mmZxfAerfHbML/9T0oA2XPc1dpE+jP9OmtpKiXpxy2Yov9eXpvcbtmfi74GUwsYqT0bKaEoNlJqoQVvVaTOxxRcMEJKoTRbKOl7reAnSuxr1krynBtH0bqzWTo0jzupseRaUmN0GbYhcmnXpef4VZUkNZzTlD/fd2Jh4sTw3ep7LniP9AK5lG0tG7UcIb8ANP6Rjx8MPEkGmlTEEsect9SZQlZpW9LK0JJRd58my8DgsNs0kNpYO0IBjjnhnMNrvKMxqsdEFlYraiviwYJHgSTzokk36m9S5XBDJnUpaRHkxZfFByc0xXIt5r0XOndM4k1UsiB7V+NVfXu2Zkj8qkqtMrk1CesX2jJvB0NFwRWcNJ9NbggYU7aHR4oVdd53SAFv5JG3VaVnVpKOhC5ft6KzbWSSIlCvNGT1tpImUfypvAtyj0uRDkouZKOwk8pGpSylXq8V6EK3Ueyq0v6C6wl9TyZSaiblWV+7Pki06wQR91x/We+hVPHRQoEe67UQaRNpadiLNoLWeWTGbMnIg2qLUOtrdpScSapTrk4TAvXBw1jwPRhHKoE1Z6YoMqdSCoOX5s9kRbqHjlwrl4vEwvaDFFqlFlAU2HqVImVhg/gRjJf9LbdGSMGyx+cj9+ezMibNdl9bc9M29pfNKb//3/+xfPyR/eklxPSHn7muIaqlGfaXKh5Jj+cnPh4fN4N75yoxrVymC7twYPAWQ1J5RwJXCIMljJZu54GOWnp8dbiSIU7UmhDGDdRWfIIC05VGpTyMPZTM8fEj1lU6F7Zrq9rsYoRlOcULWIMfwNiJtC6YAp2FpQRSrPzir39DsY5wf8B5w08/O+BLwZdCXifKVEjzRM2J4ArFGeh6MpaoJoWmCrBuimEwyhDDS/FtEkuOLCluRoHBCeC2zHJNx+cH+v2BXRcgRkhZ0ktKYZ1lsjunKM+gkQbU+cqySNpQP0icsO8GAZ5ubzns99zd32NSxuTM84f35OXCvX3mldvxs09uCNZS1iynhbHUpJRnr8CCS4DSoq387KLAjMRngydijdmMUWs1xAJrrby+35HuDcOYeVgr/3CpTLXyHCBhSNlAddiifgKhqAzRSMGdKylWqreS1GqcNkKybrfEF9Bn/BrI8QdLWosoU6tKtlBAUOnsBRrVueikMaVMXpVplzLTNImxsCJVtSbEoiDjHRKPV4ru24WUFnBWZVM66NAD1Dm51poFYLLescZCiiIpSUUMnZ2xpPxybYspfQtRqFrUZq6sXZHYoUacBnAqARWZWY46wfTaIDuUmVepuWJM0ZmE0QmfnunN/0FTWWvOKilowSFyu62BVCUhtyXcOTXrNeh+opHJpYiPnxinAlWYC1Sr8gcBWzVvkaKpesZmRXgFrFvmCyUvlLwy9j3Bd5CdSEL6gHcO+oz3jn4IKg3yGFfAVlwn17/kghiWO/FryIa6TXAFSLm7u5ezb13wzqiJtCT7HbqdMNoUKBTwW05WkRzIoCSbqmzwQujEt+R0miE4Su8J3hCsxY0Oazy+c+SUeHj4Tli8VuQvlkDNElFfidQqKTo5Z+b5QvCevu+52R/Y73bs9wes87x/PHI8X/i7X/49u/0NP/vpz2VCTuHx6YnL5ULXSfMZp5WWMtj3A7tDgM7jhpG1FOa48t2HJ+Iaud3vGXc7fvIn/4TmLfJ1SpznC6fLkVIioXOUbJlnR8XT9Res6wjBcnw88vDwCMbicYx+J6zmkFnqBVZZsMZ7AjLUxEZKdnx8ujCshpg7jqeVy5RZoiEny3TJ2AqvXt9xPj7z9O4ttlZ89bIHAPvhhmIMc85cLpFvvv2A73f0/Z6hv+UwVD68O/P4YeazV98y9IEYn3l4eOByPjMMI7vdfkuUqoj86+n5QuczZBkKfPLmC75N33KZHvjqm+9w3vJ8emJdVy5rxHuD7R37w57d7Y51XmVdXiasdeJR4h2ffPIpUDmfjzw9PnI+PjO9fs3QBfIiKoKaF2ULFowTsKdkTYquBe8M+90Nu3FHcIGnp2c+PDxw0/X0XY/PIqlPccFWCFYkRrthYBzlkfVO5HXWCePh9v4WnMEfH8klcbo8U02m1A7rIASHH6U2vjnsKMmQOghdhw+dSCjrxOFmT+g9T6ePpJQ4nk/yftdMP3QM9zd4L6z9m5uDDByni1YwhVovzFPm/vY17u6G4+OT7OFrZl0ScS0407Hb3dL1YgVQWtNvxSumMZdzzuJn5rzsd0Z86iqGmDI2dKRSCF3HXddzOR8xNfP44R3r0PHn/5M/Y572pNMZa+U+jl3HMHYMgzAz11VSfYduR0qZYR/EjsIk0nqkZscXn99Ryg2FCyVHnJW9PKWCtXJ91o+AZ5kElOn7ZnNReHh4z9t37/mL/+l/zheffcH/5n/7v+ZyOfPt119xuZz58OE947DjsD/IPlIK67pQa6brKrVklsuF1XekaeLTTz7lyy8+Z5qO1Jr58OEDtVaR4PUd+/2IqYWcpffMNeN6j8VwfHpkWS94C8Ow40c//pTf/vYtHx/OkGdmZ7B2BDLd4FjXhWk64W0g2I41ChvPBmWjFPmV1+bJ6OR+OMdynpnPC7/zX3Fzd8vd4YZh6DkMA7lYUjKaky7sfZMboVfYtZmk4IzZ/JSEfaJhCD5I7dXv8C7jrPTZMcrv4ofn1ftQlDw4ScWjZPKig0MbFExB/3ylRlsn+3Fu0zKkrkmrBBE457QOVqCjwpI0EMeJYqipXErNBAVSrRd7g1ZLNcla0cFD86vCQEmJWDKPxyfO01nsFErWc1kA6sF6nWEKMNR1PbFkUd2UKkbk3glDzHlqkZqkkPFqv2JQYAiDEBgM2VUlr1TFSK5Se/FllLPPmIJ34uG4zolhGOjHnnVdiaVgXJDay0m9t9aCR8Cg0s75FmRgJSEyofUIhlzVaL1kAZ5eSOsKULwwSY2zVAW7ilI4KlWJFfJed05JG9Zga8FlqUtqLRJ4FCPruioLSyTg1llsdZuf5j/28cMZTwrJtcUt6Gkz8PbiIdImkQaZondeQYMiekEQaVdVhokRJLBQKY7NyMzaFh2bN4mCMUK3k9mUJoNVQSSNMSp6a6u0gnqWoDrjWq1OT0WbbzAYF3Cu4GpTUl4ZR97LpKkNoxvDZ/N5AqzCzZK8JGDMlfomzcSaM1b9EawAnfJ6sGIKmRuWfPXdkOGuPFSytBRpzVkRVVmQ11F/m/bWDeWVDUB7nzbtohmyGWmkFSEFZW9VVEIor6PrPLZ5w+h9NbBRJk210uDmSIoTuSaMlTSZlipoN48naMkEwnqTCE2R8iiL6wXqbPXG5yKaZtskDtVtLASrjUMqCVOSTgOg7zud/MtEsTbWkxEQjgqkREmZkpLcC0X6C1nZaEIVpVwN0nO1wurapsOGUpumXyf/RtaFIUvGZhHvL4NlnYTOLWBsW1zbW7KBUFcPkSsA8we408u/+GEg8/f/ub7vbYK0fav/AEwo8/sX3/aN7XW3OcQfA6O0UbbyHlhj8NVQliLySzXorSkLnd9BMZFUJ3ISltLl+YgzluWyUJPhZn/HJVfyNMuEXtmEBnvdSOuVxSdGf3KN2ViWLP5HyXmctSRTNhmO1efZB7C1kssskjFN0Cyp4l1H1wVcEimTH+WFd26SiUZCpHC5YiK4Ai70VN+x1JVsCtG0uYU8Qy0BSDacqNr8loAjbJbQgclNmqwTqqDyp5IhZ0wsmGwxBWLO4iuR5YCxVGFieiv7RM4EK/4aQRMvej9gvciDOhOoC6QlUmJkXVZKiphRqMPyqFeMvTJc2hZHVaaT6eTAx35/jRiwLZFO/dtarposMYG7I4a1wBwzy1oxq8NkMAls0XSTUqjZSMJMeXGyFJk8LjFTbMFRCbbi/fe24u18qFW8vq7P8vZi5LJMk1HomjKwBS8kK9tHhaKyO4MneNRDqRKMJ6eqLAArnjJGjOIFFHEyqFDPMleRybY1mFJwiIfPNqxQTylbtyoLW4VVZ60UT425ItcPzWfp6pnEBqptDMMqgIyATjp4aOdOlRKomOt7ue0GVSa8ss8ruEUTMqIydQNZ5BO2aqKbMoMNVXwqDGCq+gxVXTmNOc3mUWaNnNO1SmFnMFCMvnNO31nxiTPkzftPjpR2JiAsqG2/kFNQRncOEMm+syPWgPc9xlRKLsQiUsVSVyqZoqzoauXfeN9RFXjPKZJSZk1HuXaZMIkZtIU1yjNuDQxjT/CeMHTy1kSI88LHj490XS/pVL6H4LhMMzllAblqYYmFshjSOdN3ni4YdkMvEqDcixF7GsVDxBhCv2Mc94h/kKOmmZITp/OZQsJQyNkwT4iU48Wg4HyOXC6RUkXGehh3eE3VJIsfZFFgzFoj77eVtKFlPnM6OSoJqhdfnqDkLpspLEzzcfMXMjbhPQRnKcbK79aBCVhbmC8nkTGVjDOVITh5b+LM08e30lzFlZoinTWYEikpb/tAY/6tccF7T84Lrqv0xrFbA3GtrPMJ0sJHVuI8yxujz4W0BiK7FFGagtHrmdEZuqGnHwM17wGpdT5++AbvIeUL83wm9BYbCtWupBgljt6LAWxRRlCMkva234/s9iNLnJlnqeWWNFNN5eb+Bq8+TmEM2M6Sl0KsUT12DG7w4jHTO/aHgdevbliXiZIi1hWcR6TxxZESL5g5mpZpJHig89JK1ZJxznJ3e0MumWmZ2Y0DwzBs+4qwpqRuE0mm3b5vCEGb3kWGL52h7D2fvNprP1HoXWXwMO4HKIW4SPKxC2Jo7zoZUntvwSSKKeyGAR8sn3zyCeu6cJkmduNA3490ncc7C7s9taSNWLgfe1oqlKmFFFemSaR0PvT02TDlmZwMp9OqDAdN2NZ1IOtJ/Bytgvy1KksqS5IXVMy6Sg/iHHFNnE8XhmHHMO54fXfPYRx5+903HC+RD48L1jhef/pjYlxZlonzJXOeJsahbv5MtVaOz8+6sNsI0OieaQnDHu8993efyj05P7MuC8u8cHO7p+sOWNdTqmVZj+RcWJese6xnXhLLmnn37h3WOg77Pd44/mFaOD4def/2LV98/hm3X3yC8Z5qHR8/fse6RgUyBbhYl5m0rPQhEKyn85672xsup6Mwn9aVaCCPYhrt7XV4XYucQUM/gIE1RnwoGOM47A988hrW+UTJK3PMWFvZ7W4IvpO6JQugL/2ohGxgDM4IdBRjwXsrzFYv8j6nzLDzfCZR+O3vvubm9pbPP/9MrUas9MulYryuyYR66TnqAsuyKPtEpM6hl0GfVT+2kitlXrW2tgoc1a0VFCvdBguVDZhBe0PZa7cSWP8ub/sURfyoqvb1W6iVNjO5XG1JSi1XVh5yJrd2tdX/WZmFLSiiGZg3sMsiPVipRUgsVM7LwjTPYmmSpZ52TisJSQvBlEVfgPS23gaqqWQDxlWMVWJLhrHq6Kw0T6x6vQFOQ72UtNGsZKQflqRMmZAZvAVnDSnLOeeMoViL8UaZeiveSi0VirDYQhVmYDUOX630NgoqBu2DxX9Wf6i0x9Ifm6tFkVNbGVckIKSuGRckkKX5wVqtZ5xRl2Wtoaz1G+PMWVm/wQXpcUKPN5Kw20CRICtr84X9IR//P0jtPNT6ooGRYtdYC5qw1lRrLbHDey9aw5K2xnrVwrXLWRoJC9VVPQiFsWisFM5rjlgQyqhgnFKUb2wiYZMYoGWUbSBHAe8M3ko8L0CMQsPLuejD6194QYhBG0YnB+pn1O5vzhVhWihbB3CmGbrKAq3FYtRMUurAzKqU0GEQPNTGCkrnS6nJ37IU3mq+Iez9NkG0soiyPLRNb+o0opHSNgNegHFcETMFcgQXLFtjUND3rOg8RRMQchWKprOOvhvk3hdpdpZ51uuS7ysPQKbETJovpBzpx7AZowHYqhHT+r7XKp5VWzx3QRhsVWA/u6Hq+m6mpCh+gGqutEMrGzDWktaVWgse8dcYhpEYI0uehY3RJHeYKxvMSKGPhOJmAAEAAElEQVRYct6m9lLsJZksKfAkROdIU8JW0+QhMmWoGputeCDeiOW8rUWAJ2SaIsDTRJwnZZupjELN70yT6bahwctnrxVav/+J9tcKZrav+WOytpeA0mYw/x8AZHr5879vkt/eyCaba8vV0wDgBj99H3wSNkPVDd/hdKKUSXPSdRY1plRSJSsyEUlJfGbOz09YYDotkA13h3vqErnYo4yURMV9bQJq29U2sZ0AmtrCzjkJs9IFNb0WJmeuK97qRMnpuTdPUMETSCWTYmLY3dB3AWczORt2QQrjwSdSNVySJUZDTOCLxVWL60aKNZxWRzKZKMRaHEIbd+izYiqVFaGne9m/AeMMvTOUVdap1eQN0zmhBOckfx+L6OuzJ60CyJTsERmIFB0ErwBAVpaFVfmQZ9gfROrhR6iOPBWWKRKXmXVZgITxsm/mXKm24lx7/2GTXikx2NkexRpkK1M29LaAKiqxhaLvoUFp0MYSa2UqcF4T01Jh9ZhUMauAEs7K+UBWXwGl0JtqIBtJlouF6gV48q4SvFxhBk1yRVm4V0mo/HLyWnS/scYra0WmZddHWBgRKVbSqgB3FqAqeE/W5tvhKUXOAuesSpZa8qkkr5ai0rkiP6P3YrBakgxErBOGXK6SroKeMe3gcyS8LTgrjJ5arrHNpnKln5dCw53aIGWjIhuRCYgMVIykjTZiFWFiFNsEJSqK1vOs+R+K10LbOeQHOWulDkgVU6T46RR4Ev8ni+mcDh9knuAySo+HrAOEBp5JGSOykFbsycswYMIGKLYnv2iqYN3YXCorU9iz7XTWeHndOIwJGBPwdtxkdjlHlvVCLguprMQ0kfPKKm86oR/pwsh+p/fOOpk6LonpfKLkRB+8ngV6nmkjYai8tvdYt8P1QWTxVNL5woe3H7i7fcUYbui7Az4MTJcncloptSflzDTP4u+VMkNX6XtDeDXgTUd1AjzVtFdZgsHv79kfXmODxzgL00ReF6apklmxRsy+15Q3bzTjKtZVTqeVy7RSi8O7npv9nnE3Mu5G4iIDm/P5TEoVryxCF7x4fMxnMJk1Tgz9HmssXSeFv3WJUmam+VFi473Dmkjwlc4bcnZiKG1EolhKZZ6OWFPJccVRGDpPXRfKOvHw7pstsIS00jlLKSs5FTGqVaZjLYWyZmLwpDzjgmXoPSkF4lxYT0/ECml+Uh/BKwOxVnnOIhJ7H7FQM+tScZ1jb/f0o3i9USLrMvHh/Vf67xasg360GFsoZiHmhRwzQxDTdVHNCjBmLOz3I4fDjiXNfPvukXm5QAddF7i7v8cpG8/1ARMM2WRSTRDABIsfROIUguVwGDD1jsePkek842zFe8PQqSQ9yvkQNDXLWIt14iW2rML6LyUTfGC/vxV27Tyx240Mw0DXdVhrN8YDVFKOLMsiclRn6Qf5muP5CLmKp6ALmHrDsogUcXCVMRhJUMSwrmFj+VtlB3jvcNayrlJb9IPH2h7Mp8zzzOPjI/3QM46jyEeteGHVItcsqWcDpRT12cnEdeVSL5ukjt6zzIWU4Pg847tA6Nq1JKBJrBfkuJX9RRpIOQtzLtf9yjr63Y5ljTyfz9y/es3gA2/uX2G955tv3nKZJt49LBz2Oz77/Gc8Pz9xefcdl/OReZ4Yx0LXBV6/uifnzHdvn3DWMnS9nFmqVDDA3atP2e099/efM00XzqeVeY48PUTGscf7Ox3iVpb5iTUulLLoCW+5XGbmaeXtt9/hjOOzf/4Zve+ZLjPPT0+8++4bXt/vubvtCbsbbNdzPn8gRgktEfVKZlkTcV7prMdVQxc84e6Wp4/vmSnEdcHaSs49xrVnHlFdKCgyDAO1ShhMl7MCT7cEu+e77xLnS2JaE95bbg63xLCQUmGeZ+Y4i0dZU4RUoynrAmRhoXMe4z3Gy1qhFk7TifM6kb+2vJnfcPP6nq6zdD6IGoNM33UyeHHKmvKeUivzsohdiJPnqRsGfNdhXKBEAaRzWUTpElQZsmEDMhyytmlKWo17lYptA2qtgxvzujGJsIUmY2/nnZAHlMxQskqqrbCQqNoats75atANFvnWL1PrXkj7MJsXMUBw0issiwDA87ySUiH4XnpIo0xKTSyUYZBVr2ZHteLLZazch+ab7Cpal7H10CJBh+r0lyJ33l1LzxzLRpSoRsIUzCa/k4rZ2qoJfbJmvTLIfJRaNuDBOKktisEVs+1JoUrP3YxtX9pMiDT+RftfpffuihO/0FgIFkK1JGVhWSd1shAlFBg3wvhC32/vPMUYuvZ3IZONE0BMnz1vDLZCZ394Vt0P/soa3PUPpWJypSoQUNv+/1I+hHhN1Fq0iJQX29JaqtOqQ5lOzlU1BM8y/aBuk9WmAS3NdFsnJRgjMrcCsYq/gnNiYmecQgaawvC916KGoZSicgBpBoyp+AaAvaCzSmEpSKB1ZouORA1CY5TrKsbiiiTQCCKqwFTV+N9ayDFpwRloGK6YqFbtd68Nd9EGxVir4GJVeaM8mGLMFjaDWEmxtdoEKFCG+lMZS9cN8vprAyuNFLJGgZxaMeJyIo1qimhFjdwi8VXofEeL6UwxawSmSB3koWoT3wasSaPijOi7i/p6Gfd9MEIaNW389M9G0deNGbZRPkGmm0a182xGv7msAj4QoSRqtfjQCxOiWg03EI3tYDq6PsgE1xRSiQQnDcYaxesgBIPzBu+NSu0qzgeMdcJcKSgTQKSQLe3Q+Q5ve5ztZa3GC+ucOD6fGPc7hv2wNTKbXKgV4+31mz8OJP3B8/k9kOQKNP37/u0/9vn/UB/bE16v1/OHeNjv/UU7GMoVqZ/niYs2H84JsyOmzDol9d1zUqwZWJeJy9ny9P4jznle7e4op5nJPYsst4rB38aWKFXkTUZQ/ZdTl0olIX4RfpRJyBSj7Fel4Mm4WvDeyxrQ99RgKEZM/qZl4bKs+G7cknNMFe+xbCyFIGC1FwZWqoZUkwQ11CRNSwPFTMGagHWWYDrxy/AKBtu0SYO9qwRnWVMkkZgR77G+SKqQcZWuZsgrqYg/QK5R2KZW9oVSJb0orxeRCvWdpsQJMEWF5bLKMLuXJrpaOM2Z6RKh9gQXsKMjh553U+Kmel4NgYIyVI0y0EoUObJpSR/qe0QbN0HR/WRpAKzyYymFtRrWYvjmlHicM+8+Ji4RcigSo2ubDFqYqDmC+AvAsq4YYxitNChG5U3e1BeJmXVbpX/0kdqea8PvL/ArACzMJvHJqVIwADEVzpe00fS9l3POFH0YdFqXkgLmzgJeGtgyaSChTDSMC9SSSTrUEQ8BYSLlvFKrFMfy9pXtVVlnCZ1niYuwGPR5LaWI5j9lkRI4r/53ZWNJ5yqxGak0EJD2zsh7ZK7m/UGHKc37r5Yia/cF4t58NCWLXYGvLEOT5OR+uIqw+DTLIniHM5LWZEoiIr5VUvM2OX2leYi1tDIZdMiZLhNsR7UifRdXR/HScnqNBsjZQHFY1+P8QAg9KRcu0yQglIGq0vS8VmJcmeaLeMz4nv3dAe8dS0obzd67wNAdOBwO3N7f68AMHj6+Z7pc+PDuO+K6SvCFrjfxlMrMS8LYlfx4hgqX04npfNHzRkzG9/uRYXcgVbjMC28/PBCz7BfWwOAk7YqSyWtkBeKykFNiVZDfYFgvM5M70Q89PgTSIh4rcc0yvDMiQRHGt2VdCqVexEDcd+x3AuYbW/nbX/+C3W7P/nDg+fmZaZ6FdZSLDqOKeAY5GEMQ94UYsWHFWc+uc0QK0+XC8zKzno50QVLF1nUhpaigpSTWVSLZiHTMWa8dRuVwsIxjh7MzKSXm+CTgqJH7ZztZsxYahUAHlerSVCMlTbK/GEMIwhSpq5wtxiWCdfS+E7nG/4e5P3mSZMvSO7HfnVTVBh9ieO9lvsysATUABKQ5CMmmdItQuOr/livuescFKVw0QaFIA4JqFGvI8U0xubuZqeoduTjnqllkJipzAQHKMuNFhLuHu5na1XvP+c43GCDOUCrDfgTniMZSGqypYW0BIrv9jmADy/mD3PutMATHmy9+REMazjUlUoqMowQkSBy3ZdgPtGoE3C4LTy8fOV2eWJYXGhHrK9NuZJpGHu73eg+CDRJcsXv7hZzDOjcPmhznvcOHQBgH7l49sjvu2N/fMQwB7wQg3w2vhBGck7ItxbS2NYN1AbBiv1Dh0i6U0hjChHcD1njGYYdzlpyTSm8qOVVSyqBuH2lNGGuIqQAGW1dSSlxehNGXSyHcDSKbVLuNZY7kUsi5MIwD+/2el5cz6xrp1hIvzwsywBSp87KsTOOeu/2DKiAqp/lCXCPv33/CWsP9w72cEUaHCbkR1wWDZZruGK2nHuX+6RKXZsR8udZC0t9zjjgrMlqj66QV8Vxpmy+N7EJriiIHroXL6UQp4muzOxx4uL/HOc+3337Dfr9nHD3n+cyaIy+XM6fTCzY8EqaBt199IXsahflyEYNvHwhhEGC1wbuP75kuZ+4f7ljmmZeXE6eXEy8vL7y6nMjHAw+v7rHOcnkIzEvldIk63LUYEwih8fT0HTG94J0ktE2j5bALhGA5n1/4x3/8R778+mfcv3qDd4EhjGrk3rDWMwyWYAO1wcv5wsPdPUMYuH94JIwXzqdP5LJyOj0xTBO7/V5kg06SJWngvMjKCI4YM7/55lse7l7z+OqRp5cPLGnh6emDGIVPb8B4docjDQmMkNS2XleL4qW1JhYu1uBiJLeKq+qPRsP5AWMtl/mC/eT4xS9/xePDa16/fqv7jCWmrLMgAahNjqSayK2QamYtkSWtLGkhl4SrXhIXEXNx5x3WW3KUIdBu2qunoEgO5/mC8QYXhs1Qu3sr2w4SaWHjnLKnuJktYbWP1PO4IUyqpixVKkml7J011AkBXoNJbhPcb/vv/udee209SxPA7HK5cDmfWZaZdV1IOTIOwlg0zWFxFCsM3qqgtk/iQE1tYv1AB7JknxVVV9PQjCD7Qi00b2nOSp3QukWAMIUCDhM6BUbAOwyEcZQLFSqlJmK5Sbu1QWwAssiuceqlaD3WOByG3IqotJqQWEwTkGlwcg+WkjDIoOe2r6ulkBZhxNVcaK4IgaWIv16rgjTUKgmag5c9PDi/SQS7bqm/DzmLR+h+vyenSE6SYlpq3qwa/pjHHw88aaUjhbNilY2tYbx9GJ08V6WjWczGUJLVqr2CvjGdEi7ocxeqGmkUmwJPdOBB/p3RA16YQKqzNGKC17/vtpC7jMToxFI/XluHCIXFI5u5FbJDaRugI+i1E2RQwR0w2CKu+K2joaZrsAEU8NJrJak43ZfCYGvVBXQ1wDWdm0tRyn67NiwGbS2VgpgLzjoGLxGctdYbZPi2TJcC3moyXzfH1n1xQ5KtGqu3KgW0mOKprKI/lyZ2ym6zBxFwMecsyLft742R+xKR0Rm9BptZd9UUJXMrCJUFsDG39CH6dcDm62u66fBaE6Ncg5ov6o0kwF/Rgxhp/LGYDuwZmaKH4GSq5eR1y5pVWWiRKsZbkac4e6WBfpbeYNie92agq1JUa8QPQ9ZAI6fCMstUa2LHZtLbVJN78/I2EOqWLXTtUW9/0/fsd4Gn/ujr7vd97r/Go21odaNtK9bcvPj+hbd/MUDdgNNaG51QElV3LOsMgjdq5FsxTVMZtaPNOZKi5/z8wn7ac9zfMYWR0Y+0NCurTX9ZaEXlNkYSEZsC6ALwiqzOIMzMUtpm6ir3mLD8Opulp19UUAmoJaVESpm99+DUoLJVHJVqHNU1mjIdOtZQa2cC6r5V5aAX8EnA+WA93nqCRgZnoS5iqoAEzhi9/pVs5PCdakFyRRquVaiZWiFXQ2pJ2S7qx9Nk4phSJARk6ublnpLk5Upak0Qf2yJNmWssqXCJmWkIoDINMwZOueFL48G4TX3ujHpBqERWMw2xzWjAwEZ3ErX6trTbVljUUplzZcmGH54zHy6Zl3MlVoP1ymUzeu9WSQiqRfktTaXZyui1TWjMFg1b6PtdX8U6Idse2+YAShHaPt+/djuv6PuLeAhVZefkXFnWhHMy7XZO/ZF0E+8/rRQ5A4TB48DUbWiCeisZ47pFoez/rQNPIrmjNZq/Esyb7j1WAQpapeka0RchDUjtgLHKZpq8rqb3etNhRlUZqyi6rwWkkny7oFrv9CvwQxOGZts2xeuWYPq+UJuaabZNnk4RfyuPoVqHRXwZqtYFnzM/zfYeSUFW6QbvInFBhlp901EvjG4Ftb2vVa6DeHp4rPXiS5IipeqgRocmORdiisS4MpoR4wO78Y5xGhlylgTMrK/BBnbTgcf7R3bTSAie0QdOL8+8fPpEzYXYjwnDNp1OqeBcloFMbZxfZlJvpvX8cl6k9eNuVPmJBL40ZKAjzgNyzUrOZGMoReRbtYMsTbw94jzjMNgiwytJ8KtCJsXSO5ZaZW2XGrEWhmlUeVQh5oXvP3zPfjlwjDMp9qhsHYTp3ldKJuAZRpFjmlqxajo/eGEsnlMkl8ry8sI4DMK8MQoc9UanCLMgk8Rry4FBUMthGDDGEaPFRDifF5quBx+ESWC04e9JwGhSUDdARhN8qw5ZrTFELwvc2ooLjnEMiqUaIis1W8IoDAnnHKnIM7ROxh3DYJnCQAiG6AV8DoPn1et7JOnUwNKoLTFNA855GcQ0I6mnuVFKIpXI+fLCspyJcQFTcc4wjoFxDGKYjdaYTtb1NO7x3rOuSe992Q878G29Z9ztZKi3G3GawumDZ388CAh06bV+1camMdgBjBE2eq+ZcpE60Ijc1XvxQ8tZvO1KFj+hnDtj7CZtSneUtSZSTMQ5bX2Ba+JtuKZILcJySTmRkvjTtB0s68rpdJaf3Sw5nWkKBEtzWqEaBj9u+0FJlbhkTi8XnHNMg0jRQvCbeiBGOUMPe4e1jiozYXXZkI055UrKiWWdxY+oiDm2Qdgvzhhhc9QKTgZbVaVKea2ywJ0lxoWUC4+vXjFOO3a7HblUvvvuB3LOnOeZJa3kWlhTFIC3ZBqV/eGAs4bDcS+sMjVl98brmdk4nU/EFBl3A2uMxChJinFdSHElpwVvj4Tg2I9yPi2L9IDWa51sPcvyzLKe+P4wMQ4jQ7CMY2AInhgj796953D/mt3hHmct3gXWrY/R/XaQ+ntdI+0oyptptwcD5/NHas0sa8F6C22iS/BNu6oAjJEKKMbC+fLMYf8g+/EQ8N6xLOv2/nhvxQcsxi0pbhsCo0wqNWPOVdaXpHnqGWSQvcsYYkqc5wsfPnzEuYHD8X4DA7L2THoakmsmV/XOq4VcMrllijIla5PwF2s9QcFMUVg0WoVhGjQJPG3ekc54wuB1kHY9Y03/oVzBdrFzgB7OJem2vU+99q59cC7XQIAnY2+Aq5ta+xZ86n//rG+ha43YaotaGylG4hrJOcl1yEmtcjydVdG0dhAwpYmPJbp49B62HYdonQnd8AYGJ3Jug6FYs6mspARQYBu7qaua1jSdsxWcA9doQZKwKWbrX5RQL9eltQ2Q8UZ9hvWCyiBM9kurFkO2r6NShCG19VS9X5cEwapWAmIhob/U9gYDNUlSIsYLFoMSirR5Ns2ock32aWHYO1oVX8SsfmnCxv7PDDzFIiZzgv2YDaSR5DmzfQxdLB3ccU7MNEvrIEDXdd663iPFRBZfkZYLFXtN0rBsKOQGdpaqUhtZCJ0KV9Q0vJUqDBjEPFdMv+y2mEEOeHFkb3jV/tcq03xjhOLXNbxVD5laE1kd7XMTXbAd3AaQ5ZrISSRXzhgx3rJmK/arLVtR27XSPfLZ9r7EiX67lUx1UNyV9m+1UXFefYNKVn233JrNCGBSa8UNdrs5pSMr273WwQ5JgLsW+K2Vrci2W2OgF76J4fdymWUtbBoXxGTOGZKa2eoSoLYOdBit6WXaB00lDEKNljWwCS02jW9pWV8vWiTbjfG1eS2pt5PxvsNXgJih9wUjPXalSwBLyuQKsci1cc6DsxjjBJAEQm9IBEGj5JWs0zLrBQRMWNn8TKW6hts5cjXEIsWzL8J6kTSdypxWvv/+B5qFu8d7adCamrvd9KiymnpT9Qce/ZS4YT1tAOdvTRP+OYBO/N7XdAWirr/k0em/22drb6oaXiTRxJhZ1iSHDW3bCMdx3GLArR8pFZYaaTHz3a9+wWF/oH3xBYOHn/30K56eHPNl4PSiRszNCKMhOGm+raP29Eo95I2T+3dOUWTIzuGMx6lssJlGLgJSDpOk9MQocbGtgnGBwYuRfVFKtjEOph2tQa5VgLW84PXIDiZgvOVIoNTGmuoWS19KJrEw7j0uSKFaiyPPgVgal6ysJRvxGJwdeNjfYVrl5fsfgJlBmYpusNL8tka0SpVu4qtQ4gXfDBOOyUsSUXAWR+V0OrHEyKdlxoSR3asvMXaHcQcaK7td5a//4p43ryf+xZ/t2E2W/QTGGk624BGwAPXsMqCszKqFVWOthnMxPK8rc0wUZRsepp2m9FmWufH0qfD3v3zPP/zyEyeOJDvy1Z+8IuxEviuGvpCLoSRDWeX3ppTywQYAcqx4DdRwxhIcBGuQcJIO1dRtD7su8w7mowBKX8fCCjLdTwg5v3KVkIiCASuTLPESaswxaTFi9MyyMiVHpeTWsTov6UTG00yg2UosDZMbMUrwgg+TDARMFXZoaRgv5UCuV3A+lUosmTVFYk6g3lCmCSpmqwEcTn0t4lo3MDTp/txlDMX0M7efHKarDuVvRmju1hisUryrAqK1Vkm1sh0sq+QqDekwBJWaCPuBZpjCKHsq6m9VwCsjSzA5Q2zCqjAqHW9o0cV1Sy1NJehWAlQy8h7K8CbTzTJkX1XQoXXwQWSO87Jq0ZY5HI8E47gszwpqarKukT1rXQ2XcyQnYd9Z6zju7ogx8uH7jzx9eOZXv/gVrx7uORz2jFPAWct+v8PQWJbLdqZ6RC6+RJmyPjzusN4x7Q54F+QaLJFf/eIXfP/9O8IwYPwou21eCVS8B0FABTxq6jfmnHpcOYPfSzJXWiJ5XXiJK6enj2AgVjGSReu8vNHIxOi9Zcv+IIlbu0Og1MJ5Xqgt4gI0k1jTRUEnqR2s0+SxUpjPCwaDVxDdIIwAR+VuP1GGQFtXaDIw9N4TvCfnvPmEiOekJNxe4sowDuz2OzmBuv8ZwoB1wRGmgPeB/WGH94EQPHldKaUwDpPcz02AWfHj8/hhIFaZmuciTPnpuMM02IdAcJ5dCAz91zIRc2I1jWoN4yShKI82kJP42dRxwhjPm7d33B09zx8zzkHKM7kk5ngGa9gdxDRQzLxl78hVGELn+cynpycxti6JUguvv3jFtBsZ9+KV0u0JWmuscyGnhThKo52ygJPeial6LknPx0yMC6Uk7BQYnaVZR8qZlx/escwiozrs9uzGHXnN1FJ4fp6VTdQBfCvs12ZxTpLN7u+/JIQdy1JZlhd+/vNfCvt/COz3I+M0cD6fyBrXToNL602U3aTJJhvynEkxsqbIx/cfiTmScuJwPGKdSFqtFdar+M1IqqR16gtaCs9Pn/hlTux3E4N3nJ9OLMtMjZKcWyMc7+758dc/4XS+MM8LL+czpRbuH1/hvGONC945dtMokeve8fHje87nM99+t5BKFWYrlRhFwucwWw9WigCbVs+KwTm935DGPC/MlzPjOKmcTJIeSyn8+tvfMIbAbrfj7v4eaw2XeSbFlV/84h8Zx4FSItZUdnuPMYWcxVqj1kpdZnIdSHmH8/DFl49Mo8GaxOXyiV/+/BPz5QfGaQCE+SjDYdlarLPsRktMhdYyy/IEbcfjw2u8N6T4V5xPJz788InWfs77Hz5xf39gCCPu8EDOicv5rP1M38kb7z9+wrkX9rsdw3igFFEnOCzrJVPzSQzcw8DoBIyOKasUW+SMzsHT83vWeGF3GPnJ8WtKiSzLzPv3Hxgnz+Pjkf1hx2438Onpmctl1kGj+PpijJozG5Y1ETAEYxjHCescyxp1EONYW+T9uw9iaZDhzevXHA+HbcAtx1IfdldyjlzmE8+nTwyD5+7+jjAOIsVDGDYlgisem7zIgRUEajTtFWEc9+qZ6CRpXgGz1hpWJa3d2xdzHRBdZfXaa5a69R8YYUf15DWHgCtV6yRrnQ4PrqBaZzeB9t9BTLe9c/p8xP9T5IwybFsWYTOO44i14D3UGnk5nXR4oP6VFaImiVYvg/5mLS2I9C4ZMVSpVoYbTf2XWpG61HmLc00CUYp4Wo1OKnKHl/41VqREbPhgJVgqdw/HJOEmBWoTaXdqclaEaZJ+wexESeMGSWA0lmk3EYCYCzlnbIFiMiVluf+tFdykifSylCLDEKwGaxu8t5S8cn5ZKGooPgwBY4WdW3ImxYwzFme9DJVyZzHBGhe99jJ4erdeFCdojEGCUkpc6TLIP/T44xlPXTyokYzXeOsufIA+5u/oMUqTt7rwBEWEa2t9fdibv4jRbdsMyW9fTC9Sr0ZldvPToMmUvU/DGh2d7FNlo4DLzU1sutnk9WamtW0S2I25TTdCa10Pq82D6QiufKDfrHSSmungwRVFbooCdxYE/Yzt10Ynz/3XFTiQg/MK83UQrW1T834d5JLcAoL9/TFKneyvoDOa+oZdbzAAeX/7e9pBi1rbTVPVr60w0KoiJx28MRsg0vT/OqE33cQJ+ptxbdiu8FHVxsBt19DcLCF9z/r6aLffUg7l6xvTf4K5rqLWwUTRQtMUCEXRd4Oa23PzXqgWWtBNNlhEzYGtARUSim+Kmp2aavCtkkvmMl+UndPfl+vlvIVcDLfXqz/n9vmNcPP4bR+l/xT76Z8XANVfH1wvxufA02cvdqO09D3IbNMMCTjY6HgbY6kD40596ZKRJIt1vmCBy2XHGALDGBiGQM5q8Neu/l2dKt9dnj57TvrcRftuADUn1pAEmoIRzQjNuInvlEiVhY1oehqa3g+SQDEqe1RA1tpKX/YC4AKd2t19bMSWyJBboxhDMRaDozZLKl5BDSvNt0flVUXmOU3AdEPTCUei1YTCu/p1VYCnWqh5pRlHsBIB3LXhtRRinFnXlTWesWRCnrEOLI79BNMQ+OrtwNs3A29eDQzB4FrGwba7btHAtdEUXLnZtSitSWFdxEuvFrkPS5EkOmPEGymlxjJnzqfIqS4kW3md73HV4RGg2RYjyEhRhlA1dD1YtxfX4fy2nsSoWL2H9MldDbZv9r++/1y3Hfm938rb1189FMQfAWkUEQAiFynas/rjWG+3fUt/KE2vSz8O2s3He8/fGcPths1aafQE11auJ3RDZWdVEus2XyeddEqKrNwfPY2vv08y71BWMHKmXseinxcotpcTel/34cTV3f92H+vy+M7w0+MHtuFFT8aVKWl3bTNbw+b0934s9vt4O2VMP9eu5xZGWHX9umzPQ9/YK/jUDeXl2mYt4Ky1m9dhVjl5vRmMCCO6EGOkFQNoAt5QxRdpWakKZFMycZ25uztgLdSSN4Cgn+cgDM1Sm4IByJp1Xg2fPSmuIpkrjXVdCWPWBkQGUFij6brKQaziXyd3hYKmTvzQErpur9URqSaaaXgf9P2Q62id7mFGjKe9B+cNiOewykCVvd46W1rM462xBO+oGZI26d677c7q92UI4mkVhqDDnf61YplQa8Vro26tJZdKwRCGgWGYqFXkmL3msM4JSO0DYRgYp/0GZDljqSWrHEz2XBqYInINa213eJP9yTR5HwAfBrxzG3vKh4AvAwUwLV0n/kYktjkVckoirbQi7XD6Ooy5Nm9WvVIxhpTKVhu3Zsg5EVMWdkpMrDHRC1Yf5PWFMOj3vLL/U6zEWJXdIedpA3LOlFqIaQErUsmUM7kkSpUkKmvEr2RZhVVzusw4GxjCtAUFlLyKFC4rUG8kJKEZr8Nf2f9yFjZnrbDMqyZbGmod5P3SfbQPIUsucv2sU0KRoRTxWOyJoLUUai7C0otRk9OqstjkvnVW6xNzXeM5R+aLmuW3YWMh9aF8yZlWZP0567ZQHLlVu++psm7Nzfffyozrz5P9WOoMs52JklTYtvOGjYVpbGdvFlJKxLjirHiZjeNALpn5MmP3sNuJp+s07Ti9rMSceX5+YjdNTKPHO7MBvq3KfkC/5wvEuBKcZ7/fkaOY1q/zmXVZmU6enAfGSQAYZzVuvhWxSLFicVurmPZnZfWO48Tj42tKqnzMT1xOZ2pt7HeDyKedpTXZJ2Ug1YNhDEkB3uPdkWARv6Us77MKkglhVIsWuU9MESlRt4RxwVJbYl0rx+OeYRg4HA9gGp8+nbBJegLrRKbmeiqrEiH63t4ZOqVWnDKEpYa1W0Fg1fM2rYllXjifThz3e6ZhEF8zY2Wg3M9wPV/6UKPLprdeUEvh2iri/aenlb3+u1r7nqmqgE2xIb0sXNVE/Xz8TKFA77/k+/S9pzUdqtnes6kvce0ZjWx9VVUaf39Ot/1JZ1JaY6imS/g6Q0r6tpQiKaXt671zxIqSKrQXaP20FhA7N71JrBYP1uq9eD3rjYFipM8TgMdtr74zBKySWyTORuurmz4SjNRzVgYbXQqLDhurmmRgAxhPM45m3SbZbkYYpM4YTFd3CUtDyBdWTMv7da056+vWa1Tk3HKIqXgq3aMTckaBJ/2+peq1LpQs3ljeixVPihJ84YP0LKVUVEiB81496cq2Dv7Q448GnoYbAESucC/p+gqXzqfJ3SWLoIm5bzBWmg5jqCnRPYc64a4rECRmskkiVavEkvTnyCYcenVpGkuSg856afJQRlJW7yPn3CYPbEammK3IQpWvMRiv4Edf1CrFEVbWFcDpkhjjLKZ7BPXFty1SizceiUgq+KZXRV9b94ORgwByazIpNxZvBi1wu4SlQZNJj1MjuTUmoVbqxiPSGqvysn6DalEWRnzrwJ3ZpIG9EBWTXUkusWrEa9218e2JLKUUSpMC0BojlHO4YTNpE+HsZvrWmsRhSgEmDUQpiVySosQVF0RHXbJEzFulUMtbIR4Eznscon0VZFsLK+fU0R81P/eUIrGZWxJekWOl1d4MGCn0W2PcDxgbcN4TcyWVSE2GtSWCH8W4sUI2EklrrGiQ+/tgDfgibDBLVV2wIVSIOXFeLng8zgQGJ8aUEi9rIC6U+czz+/e8erwHoKj80hYnB4KudV2Y6FtyC3P8k49bVl9nHP5zfHwmb7lp5D7/1R+dgyDrxFqPca3/jVIa4/6O3V0mnnq6RqHlSGUGk6ktE8yAxTH6oIBt4nJ54uc//8TxeMfDw72Y5YWBWiDHpsVj91DS8AFFIKQR8sgcoGkjKxbfqCmgsQY0IpYGy5IwBsIwyl6UsxyIFVnb2pg7MzDYH8lBZhPOLlizIFazDVu0yDSDHDKDoXkDgyUVx1IcOR9xbSDYI61ZllYxweLuHK+/OPLqiyP/+Lf/gR9++JYfnt5jW+VxN+GsI5mGs2pUaxrBVEl1yUnGlLnCGgl+5LgfmKxjZ0bOlwtrXPl0/o5YFpoHnERoe5fZuZn/9n/zZ/yv/uorHobG4BqDTVhlETVjqXh8E/ZLzpq+6QLFGnKTcjc6uXcClTfjyJtBWDcGi7cSBT0GS5kaX4+OP314y//pr17xP/0vv+JX777n5d3C5bTjT37yJ+RiubzI9XRWEjsq4Jumr+Uku6cTw0eKtN3BGbq/7RUrVfBRz7e+p8qav67odvO7oUOlsj7O58y8GHK1OAZqNZqMJU396XSBVpiCJ6dIzOJUGHaTDH0Qz8PUCllhAOsdLniMl+TYWhq5RHJeaSSMKYRxlLNhLduZuwFNsDWzFisG6x2IU3ZyMwUp6b2CN1LgWNebn7ZdBAHWhDpuaJtsGQWNrDPiR2P81ThTC9q+v489jjnG7UwOIeCN2yTiwUiC5GglnanliqsG3xyjDXiqeKHQFVxyRhovARcGaZqrnlF9egtgS8OWKvWBsmYNvUCVfS0lkadYb/CDI+WITbI+vLPs99Korssq17xVnj+9U48g8UR0P/gNr+tn6W9O76W5qXmrW67neKMl8SF03lOzpPXEkoShrXKB3CrWeXbTgWEYcM6xLBdKLQyj0e22URxkD0albm5MoqaMUvuNfmLNiRhPhCEwToOY3HrHWmYBzLXBMVaScoLudcJIB6PDAGPg4WFHziMx7kXaaMX8ehjCduc09RZ7fH2HURuBPrCSAZCwhEopjMtCrZlaMnZ0hHFg302jk6QdTbsdrVqGePUq2kDCLOzUvRVmnTULwzhy3D/SWcV3u0ectZxOZ3IuImPLhfm8ClPKW/wwYIOXuqo0Wu1p0APWDQzjnloLl6XwfFpZ1oXipXZdX6ICx1aAl1RYn1aCdTRl6UNmGDwQmHZ77l9/ycvLiZfTmU9PZ+Z5EX/CCvMs4E1cEvv9kS+//EIT6hwxL1wuCevF//Lu/p7Tywsf330nnp6lcDjecTje8dWXP6KWwt/8zX8gppVUooDArpGWlZSTrG0j6We0whIr81I4nxNTqOTJ8PWXP2I37fj1L38jRs3LujVoucrArrZMK5Fvvv0l4zjx8HCP8yIDk6FMhBYwTdI/LZIKRWukqoC2Ez+vNc5gG2tcOD4cmcLIq8cHlnXh+aVCSTx/es/d/T13xyPGnIWlTKNRyG3RIbSYjpdWydngbGYcLN6N1LIjpczHD+9ZlgvPLx87Xs95mcmlcFqepTTUQaQ1oljIJQmIYYXBjJMaSIBsqTtd8JRcSCVKr4MhJx1OYXAuME56DznH6fxCTJHXb79iHAM/+vFXXM5nvv/mO9ZqWF1gHybuxwNlXljmM7/5+S85Hg/863/1V0zeMxjDvFyY5wvBXp9Py5Xvf/Mdd/cP/MWf/yWWQForP6yZy3ohnBNrNhwJhBB4vD9QcmZZ575VytpshuWcKNEy7xLTtOfP/+xHBHfk+TmRy4mXlx+4v/e0tsN6sfg4PgxST6WCM1ILxFVCVe4eJNDh7fLA6eWJ7797xxA8mJFhOHB/9FQjQ0LHRKGRG3JvWi99Wavs9o5pGvjqx19wOu04XZ5oprHEhRAkyGIYLfs6cHo5a+LsgDVOGCGliOzYSp2ysOJcYdpNYt4fRpFkx0S6rDzlD4w42pL46c9+yjiMvJzO4BqDHwh+ILiB4ALBBUoqxCUSS8J4zzBNKOakOEllGEe88xtQ3E28rb2yro2aWFe1kSia5CIqD3kUOlFD1tpWx2yMJVFxBO31jDHY4ii1ssa4cRr+U4/bmuO2n2lNAEHvDDEKQPfu3TvevfuBl5cnZf9OlJogCcgEDdukT/PDRAVik14TazHOg3PCwEVCVACt7aTe93iCNRsnpBM0vA6ZXGtio+GMelhZijMUGud4oZmKw9F6sq0TCX5OjVoNrU1UrKQQN0kRlr5zqyJFqtug90G07nGrIQMF8dGzhvN8kXrNBxweEwyxRua0bt61zy+nTT5tMFdSi7EiWW9iTyGAY8N5y+F44G7w/Hj/E5wVCX4IAvzud9Mf3W/+0cCT1clj39R0VXz+Rdozb0wR/WDrTChUdKCr1CBMJ4PB1g5AGpqptM3STBafaUYlKH0i2ieZV4CoDwiuHlCft7BC+FGU2XQWFqpVrnw2Vag3P3v7zuj3/Px/lX5ni4O9teJG3+eerYkEQI4seSKtVdHzd8C7V75cGxSjvEZD9z7iujn0iWy/nhsSenPTVj2sTGdbme3rDP3GkovXRKeyodEWc0su2V5/v56dcSBP0cikRguF7cLTZw8WpxK5jhTL82s3a+r6swSM0r8YfX8V6JIYRwEArZStG+C54YA3EsBtibbOZOrrRVkw21SV7X2+ykGVAXDTQBoETDP6fikpTyiKxui6lwZCTNwyxnWj3Qa1ktaVrAi9vMTOwLveOP9JRtLN1P+zR7v9kuu//W3z8H8+bKd289ttG66/+lq++a/8SSGqBtWo+Z0x7A5HDsfC8+WkUl1oeCkcjBXApsjN5p2lKkWo1CLeD+vC5RI2nzDnvCY6yj1kNjlrU3aFSGE26m9rOBtoemhvTMMbkFoYn1dNOFYm1f0w65u+rDtNwUI8zBwytaCJ5Ad9OoKJmw04lvABmcAEJ9P93W7EusCrN54wWHYHx+OrPa9eH/DpC17fwTe/+IY4r8SaBfQJYhBeW58TSeNpc4aSMbXJgdwKtiUokZoWsqbVde1/qwVTC57Mw27gqy/u+NGrgdcHy04gOmzR/cjJ/Vn7bdD67W83cC6qLr7oRMg7ITqbJnIbY0Q6Zy0EK0llblRfksHzs692+FD4+ZzJLVKWSG1+YzFpPSFSNYWOZGfTd0MWnjBAuZ45n91//S03/M5tKltjr9j6fsN2hom5bSYXQ64OdLIPwrDyzpOrSByiRkTnLBIeY41M7rdwCwmKoE/p9bz6jNnaiSLGbMORLcSj34u6xwt4qkVgNSp51ddl2/V8av0n6XlyExywLdrt1SuIox8xN0dtB6H6qbT5ErR28/3a9R8Y9YUwVR122EDhzauQ/lrM5q9YP/te+ryaREQI4CV7RevnhOnPWYdvNwXGLYDegbLulVibeLaIhH+kdmMr04Tto+ejsVXXl772Jimwzjv6YMz0761NkVXQyQ9OS4l6TSLzUnQ77zSoQ6j2Yi5r8A3CIMyd1iQpMUwC+DQFnmyAWkTuMAwBb7Wh6Ow/b/GDJ4xh++W9o+VM1SbGIM/RGhnmAMqWu66J1hBjb9soVgxxnbMMQeLqm17LpNYPnREoNlOfnx0YBY+AZtT43gWs9/LLGlqK1NbEvLc5GgO5iGVCZzfHKObOmO69VqlZhphOB2EpFlLLzBe5N4cgqWo+iKxljZlcIzYVoppi1yoDrFykkao4Ys6kNTLPkWWNuGkAZ8VDyBjAsxDJcSYnSYy2GsBgrYAAl3llbGDDRMqNmKq4WFRDyiKtKTqcFqmg+lQpW6KhzJPSxKerCLO0e8/l0tS4vorEzjrGYaRLf0xrmNqHqk5YRDGRo3p7WvVrapaSK3GJpJQZfNmay41x3usje/34ssyUUtjvd0DjcHcgxYVlvojMPEW8k+EnMYstR83KHgjbPhKTsPHGJPK2aZwwGNZllqY8ZjHlrVVlmo4lZmU1KNO0y3MqlOopFXywSOByU/A9k/PC5WKwmnpda6S2yrKcAVVqyB0gno9ZJJ/OSygK216k+WNGa28rJ1Pjes3oTGq9dtZanDcb66nULPK2aRRpf2u0WskpsRtGxnFkGkdqTpS0kNZEjBkJX3L4XhvpOZZs2Ri6VtdPGAKHuztOlxNLXKjNKEtN+CFD8BQLMNA3fe/le7TqcW5QSR44Kyys+/tHLksh5aLnqA42VG60Da2t2+r6poMYY+B4dwQKz0/jlihqlRkr7ECtIVDJmOlMxy5nzMLqCp5pHFWqGLlcLux2IyEImy2EwDCOFNeEYdWaBq6gkiglSahMdezVYj/bWlPvTMPlcsFZI1LCerWAMcp+WqMA0s5JaIOwAK92MrflR7fAge5fWLfjWFhabWM59T5a/H762tz423oufd5HXNk41/O5p51iZE+RgUHdetFNu0c/V+vvfM/+3JuuU+y11wUB+Ium0ven1G0xJPhK6kqjXmJyiSudndx7wqoqnGaknm9GnvsmK6zXnsXo14qisIEOTYxzIt8zVs58hPGqrpM0xO9LGN3ynaX/vJJD0Jola+3Vah+ma0Xa9x7YfEevJZOCwerJ5CwShlIMsURiXqU/sUaAfAPDMCqOYvVe8nij94Iyab2X++V4J759h8MO56Rmt7p+xmFQ2foffvzRwFNQzxhjnYIA+quCyIzMlnzRDUkl9aBdoxFbIyjdr+l6dKbTqlF5CVTraa1eI8jrVfbkdGNptkpjYJyWnpVqDeLu7iTnsKqBW1PZhnaCbhjpBV2PVK5NnN6N6h9LrvTcSaHo6oVohaJSq6LT0FSLACFNDdqsE0PqJklQpVZiER1vUfyBZrFaYDYtllqWasDZrVZXFLJLTpQVtrWkbDdRLYKSbpNjY8RAFD0ANfq5Vkk/EWp2IGvyYC7XRCQxRbVXkENBmy4PKE08SHJrUqz05hn1KkIKigpgZROQhkmona3LDLJsQDLxlB/VpYNNTeKtIjtV02c6TdrhBUjAUFLdNlpj0EhTbTxqn7QL66SUprRTaWgHPUCbHj7W2i2Fyak5naxBeb7a5oqpPRXjZO17Yyloyl0xMn2JK5mMNwHnvPjO1Mp8OrPOy+bD1Kfr0Jvs3+5Wf/fxu1/RPmuKbicGtyBl/9ytmd/t1/+XedwwJz97tb1B1ue5/an7oek0v4lBb2qV4A3Gen709deY3Su+/fC35LRKmojxEA54JwBFu6y0Jok1csZpkbdG5vPMfFnZHyZG3VjbbiSuM7VkSZrX9EbvHcEZYmwaVe9wxjAOA934H26KRDT6uFaRTiig4Z3D+7AV8pK8Z6GJcR+lihQDlZW1SsuJVrNKni3GDTgsI44lJfK8EgIM3vFq59kdJt786IG7hwP/4q9/xHFveX1vmCyMBvL//i1zzPxf/2//d37+i2/5+d9+i7OB3ZuDAE+56XMwDEvBpoRrGdsaAfAtY9KZfKmUNnM+J5ZYcMGDNazzC6ZmDm3hr7/+Ef/n//7f8DBlDnaF5KCAVT+PFqTAEy8BkR0YJwd/KZXUGi8p0azFhZHRGvYDWCPyikARwnNSIn0VcM/vLNNODvRXr3/KnDP/47/9e354Xjh/eKLZHX58UENF8A1J8Or3lJUCzFsxNM8ZTJXZVRdffoaB6L81239/d0V3OVj/WD9LY8zM68oSDaU6chNjY2skBn7wnss5sZbE5TKzLDPnyyw+EXrdRHKw0mrEuow1jWaKmppmlQYWfABvxPi61kbMi+yXqQOBVs9uTXfxA3Gexbi2KDM0aQNg5fxwxqqBthRdojzVYqgUZY46+kvfJPtIHYHpYCPbn7NKV7q8rt9bWUEcmbIJaJVKlhRG5zaJf6mNmivOeq0dZJDlVfIi59o1nhysAqsNu7G6FFLamjkj9ylG2RaaKqj+Nn07LTVRWyKXSMqW0/lCjEm9KyxryjjXGCYrRqApMx0C1vjNrFbMjiEES62WWj3WBnkOyhortYj30TTqta4YNTYfxh3WeTUEL5zXC5WCGyWpzhvD4TAxTSP7Io25G6SQxjaSaay2XpN2TMA2iy0iXVnOK94NPPrX+ODwg8cPwlRzST2SrAzkhmBV0iTpdLVUvJXXm7IMbnyT87tYyzSOTLuJYfQ4b1njTM2JdZ0FxHByXheVVhWVTNHadv0w4uW0G3eEcRBmn5VzfcliXL5+OmNsIEyWlCLLctnsF+bLiVoy006AibhG8pAJLohPyzjx/t1HzqcL65pwzvPTn/6MYRfY7S3PLy88fXhHjmdKTlKfWoO1QdeupxKYJsPLeeX56Znnl2fWtPL46hW73cjbL78SH6zdgXfvPvDrX31DXGbWJTKMoigoRUy1z5cfmHY7Hla4zDPnS6IUjzGG8/xMLZUpSAOxmyZCGMQoPCeVYgjiv8RCapFqzqwx0WwgI/Xu6bKCuZBLYwiet6/fcj6/kNdZd7eGDwPNB/KSyGumtRHvArvhjhwa3p1Y58yn+MRgAqfdxHw5k3ImpohxTmo5JzIssQ+tvLw8yyBhGpimiZ/97Cd8+viBX//6xLxcSHHmiy/esBtHLh8/EXMhposoABwC2ljDvC6c10Y1hmmaePvqNXmXoTTO5xNPp0+sYZWAjiHgB8fL80mY8Ebq6eC8+PJhiKlhTOD+9SPGwMenCDYRxkpj4bLMYrjuJqzLGArnyxkwjNNuA+EbSfcNGWR3D1gTLM02iq1YU8lU3Ch7WlxWWina5OqBYoXRYY0lWAnJKHklpgVjDff3R7lPrFV23sLj3QN3hzvWh9eMfuD9++9Ia+HD+09MY2C/C+yGicELgCuJa3EDnsIwMKcLw2HkJ69+hhksYRp5+fSRmDIG2bum0WNMgMNu26f6iZqypVRIsWFdIeXG8fjAv/iLv+T9h4mXl/eEYcRYAcF6aJHzDj8GkTMaSw9OX2PEWsOPf/xTLg8PatQuskrvBxoGazxYh/dGGK4kchG2o58C4xR4eXmmlMabN19xODpePTzy6ekjv/rVr3nz9hW73Y4QJrwf2e3vyLny3W8+YoD9dMTkQmoCI9acKQ1sdexKk14yr3SLGjmzCh/ev+P56RO1Vu7u7vjxz34mXnzGsq6RH969I5fKbn/EhRHjwmYWLkCfHKQilRdPp0Yj5UhrlRC8nlXa0+Yq3kLOYnEyXE26/m4H2rrEegVza3zeAapSGnVJKgNVYBTFA0wPZ9Ju1vReu1tlsJ3zHTxsOqEtpmyDegHbuvRTLBZaKVjjGMLIsqgvocqCBz8IZT4lqbWtpfTwoODVAabL+DLBwOhk4EbqPaYR/2AMqyq40Gs5jgOpSF+QiniijsNOBntALJmUFkwRKam3A944EUoZDcEyIsszDjKGnBZKSgzDiDGOkmUoZY2YP7eSN3WREGoaS14oreJsVjsEx7quLMuyhdOM48A4DHz1xWupixJbWuR+t2MaJ/GXGgKHw0Hur0FAKBlmS9J7XBeRbsd168P/0OOPBp62JlkRwls/ns1bpTe7fQG6q+9PX7KiYxWvBINB2fiK5CnibfvRdbPMFYAS9xz5kG1XFLIpktWNvDc+kn5cKHPqpK/+Fv1WkYkY22S5L2hZhUFvEE2z0u+pwYyCQJs+Jb06wNCLbm0zrXP6s7TJUhi+WaO+UPJ3A2C5TlmrotBFfhmnwMHN9RGfBTa0s0dcf7ZRqEmm1alAq3L/CWvj2jPRurfNdTMR4LVRraC4MYuRYVOWj3ibtW2SZJpM2CwFqhXWgROEu2tJ5Xmb7QCnXzn9ubXIRtK1+z0Zr2jClDNGAIhyRfGNGsRjVNrYumZXnuMmZdvooxZc0M1NkWQtugxNr6Fo821HtvU97e90q3Idmkojq3rGiMwv6LoRLwLXBAhLMWnan1HGQO3EGr0uXP9yew/w+z7+W191AyTdAk63QNQ/n0c/pn7r1d08xd9+tX0SYxTYbcj6Ndbgg+Pt2wdKihwpxFy4xCgMqFLxo8WESlpnLPB4f8QAb17dcb7MnE5nLEXMc00ThqV3GCvAdevGiVRKkxt/S/faumV5kn1aXumadYQdZ5xOrVAUtU+x9PCTF6gS71UPJwHcamsClJeGb04MbHW9e2SPMlYACj84/uWffMHrN488vLln2o+8vfdMg+XowVZJfwpWWFH/8qc/ZW9Gvv+Hd5I+lQsYT7Oi/3cYbPO46nFNZKZGfR5yWoWl2hIlyTTG1gGaZWiBUA2+zkw2czdagnFoLyrP3+s5sREVlXnTd6UG67qSa5UvxRCsyqiMFOemVUxNwgZTb60+AKGzkxp46xi94c9/9Jr7Y+HvvzUstXKuWQr9pu9zUZat6cWQ6f/f3mfZk7oEwt4Avx2w73/qJ6JOITdU5bq+O95q1DDcWNmUO1NHiggZaAxjwHkYgpdUnTFgNV4cZMqFabpu5ZdzdmPzQRP/OR229HPNYLFGGEOGPjUUM16r0z/TvcuqPHnn9FTbKGqSENv/3F9qbVIgyZDT6vO6YXrSp4tNyVndC6IDIOZ6//VJrZPI5+5vYavZAM/UqnqHSMNdFeCSOxKVzxtQGwAhPPcFqHKtBrbvp7W/i5pC1pyYiDZhLzaQa2kawji4vu9Ga6CcC20EjMX5sNUEPe3WGoMddEBhJWXOYBgG9R/RIQhNErKcd5QUJTY5Roy1jGFQ3zg1S9oqBU3RRZrskhOxg5A07GDxk3qgtEpVkWYpVaQnAOrzVHKEZhjdDirEnOm0zZoLuVUOGt9tbUCayZXcCuuScVbYmCVXcmqsaVay16BnpXpxGE+MGYwM7XxxzEsmpcT5FHHOcne/F0m7D5IOmDIvT0/EGHFO1kWj4owlx0xrFu8nstZJL88LKUa8cziV4DcDA5V5PkvsfSsK8klNKdPhSlqjTI+rxLG3WoVBorXXMIw8PD7gh0AukedPn7jEiHW3a78Rc8QluyWLYYQZ46tIYtZ1ZT6fKFkm0yWuWCpelq/eM3JP1yZhAMYFljWSlDF5uSysq54nzrObRrxzmgbYKHWllEStWUJWrAxNKZVSA9YZDndHrL3IvlQry7Lw7TffMHhPXhdykv1X/P8K3atI0p0tNWUqFj86dtOOV4+vaCnTShZfMx3sWNMIoTP3Sj/19b+WMKhPkkrYrfWEMLKbDsR1ZllW4prw1qspsCMMg8hqvMM1I9HxWvdO455xGAl+xBnPfjpQUuHsLlg8VDEANtZwPNwri0IHjs4yODlzpzEw+CCeYgZevX7Fui48PT1vzfNuNzHt94zq4zetwtwbxklr30rOAylHhnHAe0fK4rMYgnootqbAijbuxrKfdugsTXb8ZrHOEdwooGy9ekkGLwndzjZ2k+eLL96wLAvzLOl5pWQOh4Omyc1YK6wI5x1owrPBbbJj4z22iQUIDta00EzFOjkfxsmTdyOteA77iWEIW6ACxlBz1t1GgCfn9xgrUqqUEs8vTzjv2O0nHttbpt2OUlcE7K96to3QDCV39mPdzr7WpF94eVlJsTKOR9Z1JcUF2V4qten+uZ9kr209uEPWXLeWMVROpxdocDjcUUrlcLjHu0mAMu0Vq/ZtLgjbtCBBVDKklz7I6tB+XmcZeqsnkvQ8cjyJH2Dm49NHlriyf7jncKyMx72QBJww+itC/DC2s79k+N1rUwP0EIVbVlLv/K7l620/3fuFzgpz21eU2gkTesptDEC1bjEbU2NjwXUQqQcp9f0Ucx2A97OwS7YkKVOKJqPGZdtQpyRSjuQcqSXTB1Mbq6p7RW87SO9REYAKZUHRM+u0V9JazipeIKnAslydsTK0asKWyJRt2NFspeaixAgZ1paG2FIYQ3NewA3EH69L5lq7+lD2erCZa53TB3ipiNVHzvJsnfXiVekdEsRV6YzVMI0EA37wsiac5e7uiHOOcRgI3jMOgeADrx8esThqrAQfmIa9sGB9wKv8ur8fNWZizMR5Vm9ESGlV4Cn+5weeSqfglYLEmkqTjdLKMDdAUS/4FdTpkbVysdR8TQ395IaWC16q0su8AlrbNxSakFAFO7qpi0cXc22i1bPeqy9sU/BBii7Ltdj1tksG+m3Xb1A66qX+SA5jhyuLqCZaaUrf7mGJ4K2h5yL2RqNylQFZawmEjSm1pcxZC9ZRi9LnjZWbcFt9TQCiVKi5aTOkNyNX2qNM5uQmqbVRklCWjbPbV4nWV2JErTOUajZj06bX9wo+XZlCvdCSjUyYJpd1lgl4GORGtE1ZRAIC1dbISUz6CmAGJ54O8o03PNv6sB2c/fX0mNHN/0nXi7FIYZezFIneU0va3gW10tkm6LUVckkbW8A4uU5C1Ydc2vY5WSG6YTUF9zBbzKS/keHo5aHL8EqV4qeDTgWvzYHF+RHnAqVZWpGNqOXGuqTNAA6q/lnBCXu7/fwekOmfxp22DfzqmfJPf90/l8f2TD/X6f6eL5SjwhokgQO7gXZhsPz0T95iW+PBwemy8u7jmdPzzHxeGffSQM/zBe8MX7x9xW4auDvs+Obbb/n5L2ZSKZScIUjDShBjeGsKNWk0LlUPQCkcbGfFodfVQquF0nTa09jSk8RYlK3IFMnLNdnMGGUdGrDmglOtvvENbCMvUBMMKsWrucvLLKNx7G1gNwR2+8B//69/xp/++ddMO7oNHiC7aa7iE2K8YzCO/8Nf/yt++vAV/9//5//MJSdIwuJoVqYlzjp8HTC14ulduACosURKnkmrggrWYfIrLJ6pToytEcqZnVm5HwwlWWpGQAoDDFLElnotQIruR12NNGsK0HTc4Y1ltF3qJKbktmZIi6A64x3NOpFbtQo1bXRkYxyDc/w3/+JrnubCx8sHPsyV93PEEqRBzYWWCtYG9eiyN7utrNFeyMik0PA5VfrmoQBEB2Y20AnFPW7Wf7//pZBu1IacGVWkPfgBbz3TfsK5CUpjuYzs9jteTl4m2aZhgsMaMTA2KjbzClJZleHVmrdf6Nc6pV0WfS7OCDMjOEmoowmLxjizsYDk6JBXIYBFkX3Y3rz8XvClTLUiN3fmKnO4fmXbmLy1aogDTb0/DbnImV5aEV8f9fdbU6IbfI6DgHAxZ/HhMh3MU0ldVUm5hWbl3LMqA++Su9aaTsslaVaVLh0xxDZwRoq/BHo4gSHfTGivk1pjhWkbyeyR2sL5LqPJmwRhHBzD4DbLgf1+0PNAms1cenns2O8lCW45n0kpMus+Mo3j9rWlVgXAxOMJ5PsejwdSWmltpVXxX3KTI+wDNcnEOEaZjs/pmoQrcdWFy7ySS+X++IgzjrIKUOmNpeVKq4VpHLGjw9kRyMQ4k9LK+XxiP0083t+TkyGujedPJ+Ka8W4vDW21GO9xu5FcGzEXxtrwIfDyshBj5OVpZppGXr/es9/vubs7clkuzMvMp/cfuJwuMj3e3lNdZdUzDkdSEknrh3cXUkq8efUaH0aGacRXjw+Ol5cnnp4+8XA8ir+UFtVOmWbrvNBSpayZHJPUJzGCl9pvv5v4yc9+yuGwx7RCWVeW80mZ+nLzt1aZ40IzjWGRVD/jJKIdI94/OSf8JwGyWszE+YJtmWCE8VupOljM5FpZUqLaiJ9XMfxvlufnE6fTC1999RXTNHK3322G5DkL8FM0pcz6AMZJhLvxlBoIw8jx/k4m49UIoyKe+funvyM4x5tX99L8NQHfSu5eT0ZB00ZeIxZH8AF/DOzGPfPLC8v5zLJeuFwyh2nS1EJHbo0lJ4zxwkhB6rtx3OF8kL3IepwdGIY9d3ePvF8j5/PC5SK+UqOay09t0hSrbuDrt0HN4XhkDAND2Emi9F5Yn6dwwZsBWz22Ctj15nFPA9YU6VXgNA5M46CDAMcwyBr58e5HXC4XLstMZ54f747c3T/0k42YEmCEedMkXap7i4XgsdayJkmLGpTpIlI99YdUSfvd8UjwnjVJaIl1A03r+J7EvN9LQ3m5XICKd43DfuRP/vQnfP/9D7y8PBPjSkyR+/sHrDHkHGk0dnsJMWimiYzQQSwy0BNvSt2nqFzWE6UNIhm2hd0uYOsOUxuPD0ecNWLcrodezJWU1F7FOB5eHXRgG1njwhxnHh8fuX/8gv3dT2kYvv3218zziRgXnLNM04FWmyQ+xkRKWfvExmGaKBbO5xPWwjg9kvOJXBNrFCZYigIAvgqT+AuqXXSwwvypRRgmFfj4/gPGOL788iu8HzidzhgD69IYBk1xz5lSDH6S9zWprMl4Sysa9OAd1nleLicAAS1DYL/fa88joHmule9/+B7nPfv7O3KrvPnqCwFRZbFRdf93Gp4gyosb/ybTmcFy/guwJcP2LVlXp3ObGEH3zm5N46wCn9pbd2+h1tCQkybBDcZqLdGJH3b7d+ITKb8XJRdsdi3tSl5oTQArISxIhSRssCuAFlNkXWdiXMhZvEhBesRWi4ahXM9y6Y8L7QZzoDOFuvQbqWdkSCOqqVI7RGTwiIxzICAkKMEjSi4yrDFZBrVqmWFbFbantbRxgOblecrmuNVOznQTdZQ4o9e55o2hmYrUFzEWDIbBV4YQCGEUFp9KMY0xTPu9BJNMV6/lV68fefv2DXf7A7txYnAy1B7dKK9zLQx+5DAe6FyXDpLOy0zKiWVeiWnlfHnZaracI6XKQOiP7Sv/aOAJO8jFKEYWUtcotiuC21Hanq4BChYoc4QbVDErdCkMKGE+FRS1EydysnaUXhFgq8Vvl/FtFLxeGfU/q5meFcgYU1W7VvUJ9i+vfSqsqSBGUoIkWUgbCUVIrSZIWGcI1irqW1ULL2k/FqGpR3EplQXllJWghbipYFGPGXrDqn/Wm7UgyKVVSpw1TswElS5Ik9jt1gS7c9bindvMWns85eC8srvEg6kgh59zjqz6UzqI1Zt9y8aY2jw19LXL/mDZDXv1h5DklpKExtkUTzOIh4VBmQgNjfGUAlX0s30lcAVh9ObXJaEXrFeMV9+RHkYgyHXdgADqzWSYtvmDVAqmKuvNBNXrD4i+15LUVyXGCM4SpkGa/0Fi1IvuxAa5dv1at9ZgzcL8soGhGg5+pBbR8ZqMeANVeX1DcHis+LZkBWN1ktDTF+AWFNqgwGuD1qSD/m1IqQt7QN6/3rB0Bty6rpqQNHzGiupm5P+lH4b+JvbevL/W29fe/3tt6LtnSvfskEvUePf9N3w4zbz64g2HaeBHxx1rPPD4eMfP//E3zM9PiMit4UJjN3q++tEDd4cdjw93HO8H7h/3/Me/+0e++/4dk7/H2iBsTdcYxwGXIjhPiSspRYYgBrW9+JP/iHzHVIOtVkFioInsuNai24EAg8ZavJUJSNHG2igLCqVKZxPFbyKJxMk0T7UDNEc0HoxI/QwO4wzFFJJZ8ENlGBEtd4VoDNkYViynbDgthnEoBNcYD5bdo+eLLx95ejqzrIsyGR3VNpodwMuwQL0muSZbXU3yXRBgu5kVWiY4oQOfnjMfPlz45ruP3B127KYRunlvVQPs6jvigdEt9OPHE8sSRXPuB/bDJDp6vd6OqhN1Q7NOzwbZ/6rVyaHzmx+RzCEM3sDOWf7iZ0fungsvv5xJuZBiIyBMyNoE7K9V90fdTyRyVpJ5uj/b77uD+sc6SFV/H6C87W/ym9C1ISxJpNm5KtBlJZVoTVhXsLYxek9KUQIPrMxrrDWMzomnSe0nrgBFUphnvcTqcYOlVGEbaNQHtnZGhoeSqVk8bJZlVdlyEzZEa9gOFJsKFNnvrRTNg/M6oAjU0lhGkZPY7qtnDBUdWJgGrWE0Uq/q/m3VQwAadSwq3c+yBzpHaY3QSq+SaEZAVavnf5cUS1GmEnK996wW2qZ7KOgeL0O0cj3z+ntmZG+tQE/6arVz8zr9/Xr+FD3vROIu/zYXAYXmeaaOA3eHPdRCzUYDDeR7W1N5yRdA7i3ojYKwaZ+fpFlpGthRs3zN5WW9DlK0vsjKFDNebAimXbj6veRMzpnh5SLeTmHC4klLZo2G55eVcRw5Ho48PO7Z7XZ8fHriMs98+vAkgyANHwk60KNVzqcztWRyK+SSeXl5oZRMTgV/nHj75kfi2VsaP0+/5KWcpLExWlMaKHlVHwmPoULL2y/5u8ghWit6a0pdOISB3W6n50U3ppVaKabEy8sL3ovp7/39PSllYQYtK+75iVol1ce1ynE3EZyGDDRhMRSVWlXXCM7i/LD5+QyjGMy/+/4bTi9PXM4vxBiZ5zMlrgzW6FkPVfUVRu+n03wSlp1Okr23ahzeiMuZOJ94eve9DAVzIWBxzQh4eROOY50lxsgPP7wTZrD1TJMwTfaHHYN31BZpWba0UjOQmXYe64OS6xs5Zh3eTjjT2IVAHUfarpHWlZozu92AM1DiiqFymEaYAq3txIuuFfwQBHy1Az44aCK5HfYjeZ1ZFvDBYTzs9qN4gzkxFbcx45zHh0D3YhmmvawJYzEecBU/GHb7kcfHIyFU7u52TNPIFGSv2emguVQjDZ91avDrCFaa5bhGrLUc7+4oNOa4Mk0jwzgQxkH8mdznSdsC7sv+3oeGL8+zrEnnNS1wpKs5lhXsJdMdbHMWHz7v1N+q5u2IKLVSjaEWaejWqIC79xpMUnRoZTg/n8EYljXSMHg/YjoTcI2sMQqzz3tSWoFGyauCBIHgG8dDoOSF50/vCRbGYeRwOFBK5vnpiVIzuUSOx70muwnz/PzyIjJqJ7VkKok1FOIqtb/zEyGIVcWHd8/KlrswTgJmDuOO41GMs9eU+PT0kdYMs8q0SpU0rWk/4MOEsYEfPvzA8/MnclwYBmXk7Q988cVbTqcT5/OF+XIm58TLOdKopHRhGDwP45Fh53gM9zw/XXh5ObEuGWMs091OPK52AtyV2vCDpGGWIJYkfS+bLycM8OMffb0lBgq7yODGoHuunNvPp7Oc48YpgCLKh2Il1c9Yo75kFq/9s9UzpLW2fez7775ljSsPj4/M57NYSNQi6aRJ6lJDV+FIXSSpjF3FUa9MchQ06iwVYyRYJ8vQoiNQTdn9pWin3domrezlbU9XNir1LEUZywo0GaNMchohBD0mIn2uc2WZXGujRtvA/u613AfqxlwB82WeWZeFVgrGKhu/2zQYtYHRM7CUiMFig5dk5w5jmH50NXpSr0dUTrVUetOZjaMYIwxNdEDqLM4ONANLiZKMjKGqXU3VNiWVRDOGEJyC5t0DMVOM3DtxjlJLOcEBMhXvRT6KDp4e7x8EF0ACv467Ce+9MFiHAR88x7s7vPcMIQjwZC273cR+v6NmYecKfQhKiiJHTJWSCmmOzDGxxMQao1gdIJjDeb7IoGu5bLhLa1n7lttB4j/9+OOBJzdsErnWOsNG6GK5ik+QFFmy+DAqhUPNShWYKsibWjpKZbTJUEM8YUjJaiwqInW2y1NksXfNc7u9gTaWRJXVpEwE4bpp4X3zvWlaLyuY4a347GidLxIqXfyddqjKwW0yrPx89W4xiqgqdV6BGA8KHsk/6bQ+a7s/hLzG7fjSybjEizplaokfRWfZAAouyb/rFPwOyPVNo0sjRWrQMBR6NGUzKm5Q2uMt9bsZmS7TPhc81iYT0zGM246T1eyzbWAeCm5JhLFpGVoR/4sKHVwQHFIK9N4UGEW+r2/r9g7IN27tKmukH/oKQm4Ihn5WNx6xjJI1aKqRZDonGt1aDTnJ65RYzoxxSeQOzkpiYpNrjW58zmhqkUrzWtJUJu8JzWB8UKNRuWAC3snBEgaPp0+Fr2CWtf153z5+dyP+nU/dPDpk8/vMxEspzPPMoLGs/eP/9UzGb5Cz/sRNd1HRD/fP376nXCclZktzlHv/6ekDH59OfPX1K457zxev9uRqeHiET+/e8w1ZmVENH2DaOV6/OfJ4f+DNqwcOx5Hj/YFffvMta4yEvSRqVSN08TBZAZ3QCdmapOFyFkzZXow8bauAo1WGpyGneJ3CgLAzjcUaobIanHjDVG3CKZhiaC2TQSZoqSqA6mjI5DYaTb4yZjMErDZRTMb4ivM68WyNaC0LlicsH4rhQzLcmcqOyte7geHoePXqSC2Fy/KRWg21eioa8eoazbMBGhjlp1iouVAzBCtTqtqSvAY30WpjvmSenma+/+FJNOKHCcUYSLVAMwwowGrUKL02nk8LL89nXr+6J9jA6AeaNawNxFRZNvMGMlVqMtFrCm6jE2IamwwKhMkyOcNPf7TDhoW///aJS2qk6HBOEr7WlJT1aYUhY5rKt6zuA5WrtO5z9KmfTa1dl3pTgIxtr+33a9v2du89w2DwvpJrg9y2759yJq4RNIWu7SZJ6jJNgTCZnAUjXlQ9IMPQfeqkae6DCj1UaUUTYhWUsU2ZNdVCtbRitkmyeP+BcJOvsLDVNduaeEQYZxgnh3OeadzRqmEaNAmv2W1nzzWK7K+fPbkD7dJ4u+CU9da2SWguPZjBbPOkmjI1V+YUKbWq0WtnKqvHk9MCWYc+/RzstcAmtDNGpLT9TPstTFy2dq0L+tmjQJmco3ZjExsEXE6pqKeRNFLiO6Im4yXrmVDJTaRGhUbOyya1sNYSQqCURslNfIZykoFUn2bXdg2tsIYutVvXlVIKbgw476hlAvUCS1q8Xy4rNMf93R5rPSla1hnOzxlznPDHHQ/HL3j9+jXO/sCzf+bbX//AMi/shgFnrXpsyo9e55lWMwkBns6XCz0K3NnA/d0rvPU4HO++/cRyEXZyvz9olVQS4LXu6o2Qgk8I+73WrECzXL9Wqt5DwzYcKqVszNOcM+fzmePB4QbP/nAkp8zT0wt1LbiLxEiXnLCtshuGbegoJtViwtyN9lsbteYVZt4QPLU0nj6858V94vnTRxlWeUvNkbAlAAuoIMNX8Qmb15nBeQYfpGlqAlK1VsmxkNaVp09PeOcZw4jzg5h7N43IdmZbvyllnk8zIQyEMChDToMmDNR4ptdW3dt0HAfG3ci8JlKumKrhBE1koINzlDDQJliKGPjf7fcYGpeXj1hn2I+DgMXOsMSFmCPjTkCQ1IJ6xIpf2DgGLsFKue67DFTBKe/EDsEmfPDCANNadpj2GOPkHnINTMF5o2DBHu8ru8PIEALTbpL628n7IgQjK0wpBZ6qeoQu80Lwnul+R6qFw+WowFMgjHImNB00SIqiLFeJc499LsH5IuExfhiU1TEAwuRPybDMdesHchaJULH9Wsu9bq0VWwmgNWE65FxlkDyEDXhyPmCcY84LpVTmRYBnPyR8GBh3AkbN80xOIk+V+6dR8oL3nuPuSHCV/S5Q0sr5ZeG43+EM7KaJlCIfPvxATCvregGaMBqHEWsM87ySYiQMIvNNOZG8sJh208QYBvFOqomnjx9JCsQejkfG6cDhMHB/98C8RuYYuZxeNMlQQY7WuCyO8zwxtIbzlU/Pn/jw4T05zeymkfuHI4fDnsdXDwjrJbHMUrvHtFBqIsUTuzZy1ybC6Jj2gU9Pz5wuL8y6/7xeV/Hw9AchHJQqqXHBU5G9mCb7w7JcGMeJt2/ecrlcJNGyFGqteA2CsB4WXSPGOFHHKKBTcqbomW/NFXRyt8WvysacF7bShw/vySXz6dNHlnkW9mWT15tTEg85ZQttRJCbMr+TEmwHUNu1Z7BWzutasgxNNtWUSA9LaTfnH1rf6DnXlRq6L3bArP9oa1GlD7hRYIdssp6Ttz3LFbyQT11Z8Lf2IcagKYGJdemBNsr46TJLA8aJFUdp/ewVCbrzXtVurR+TG+NeamyjOiDEb8lIQl7T8ymr/LXfq845cinikVeFrW5DQBKthSmXa8Y6h3dBSSWOWMSzteEoVNZ4AWUV5ipG+u5wwA5O8ApruD/e4ZT8MA4yvNrvJnbTxG6/ZxgGXr16xRCCkE9M9y+W2vX56RPzfJFXqGdLLcLyrKVyToWX88J5Xjmp596gTOrz5SLAcly34qiHHwzDlaH9hx5/NPDUCKL5b0VfhGj3DQay0Neck5tmcGIO3pTJ0rylp+qUnGXhuiCNlw3CDEFYAJIKp4wnnWzHIgvJGU2IqUWLY3BBaIIW1H9Ivr9xjpZlQm8SosukHxYdqKnCKjCZqk2kVVKdtyDYqRcpmQJopokpoELBwmCqcvPmmum0RBvk+3TQrHWue1NTMOuhGUmhut5z21tplVXWShNqpnooGNOLdqMAj6cpo8U7YUcNg2xuYkpaCGGU9ywIo2vNM8lXsrK9aB2IUOVEE5+PLukTRo5RA2SLU5phRXSwtMpggzSRsVCamJSJUXAQBllNBCtMgT7t6Uy5WiUd7nqrQ0cHcxZj1S2xyhpMa9ScVXvqxQywdVmBbrpYbQTU6wkpPEtK2Fxp1dNNnK2RIsgaTymwLBmbGrt9kKatQk/OsMZjcULjVd8smSr0TbxwKmee5jNhOogc0QWatZyWRCExpUEozWvCeYfzdgPIzG/duH8sGem3N+f+sXVdmeeZ77//nvv7e+7u7rYG7r8m+NRf1ufJGOb2M9cP3aBUwortza+wNJwx/PVf/Blfr4lXr1+xGxyWjDeWKVj+6s+/4stXBzpcHUgMwfH6zYFhCBQjIQPVWlKDWAHrMXbAZJkPpSKy2HE3EcIdx2OiFjErb0YOoaZrAawA3lm4EKaBGwacoJgii9BEky1xw1zlkWotRBsNuRTmedHGqjG6gLcesVJqEEQuYEOglsSaVnKs5Azf/eoH9s7x9sdfQPC8y4kT8M7Cc608tUrMsK+Qnlcun8785ul7LusFvzM4VzEhksmUZGg+gy3ayHUmq0pljVynUs3mh4ARM1S8xZodv/j2He//x/8H/9v/5q/5yz//CT/9+pXEydehEyVkn6fwmx++5Zfff09wO8I08vphx34cMEY09IOmWgre3Kf9o9DTdU0XDLZVbIsbACAAJ6Qs9PT7EGmHxv/6J4/85nvDP5xlz5OdTtdjEanyNs3s8eje6l5zBUpv97Duj/B7138DNg6U2YCPaRQG224WlnAujRgbl1n8WcZRIrpLKVwuL+QUWdczOc1ydjaDKWCzgWKpRYpDh8XjRDqi/Xv313NGmJ0ty2sJdkJOQkclYqh4NzCOmZ7gaicvr68UAT2tYZz2TNNIrKuc0SpnsfI2EZwkFtbtKDRkHQK1fsY6HfjI06chzh/GIixRZdBaZxmnSQo47ygpiyT9dCKmKKytzjhqQtazer5ZBSRRKWKrhlq7U5O8H6V7QXHlMzUDpXtZIUCft2YrNDdXkSLnM6i/gvU0VyimknMjRWF8gOHl+Yy3juB35LiQUtYJsQ7hjGUc7xS8EGm6M14aCKFwYIxhr4lcrU8erdmatg8f3zPPM/iqXpDCiB38hKniD7I8J9anE+Yy4d1AeklQ4ME+4GtguVRyBKplP+yxB8NP3n7JMs8UlWnFdSEEJ4a1roGtGBLOVPaHkZIz82Xh+eWJf/iHfxS5ZTOs8YIPkPO6eXaCRFTXeGE1kTANOO8Zx4L3kFIFFj58/Ian58C33w8sayTGtJ2ZwuhrZIqCBYZmM6lWiok05ygs5JaI5YwtFXdp2uxUUAaRs1LLJBKYRhjke3tvqUQu64lhNzIdJs4fXijK8rHWEbxWO7kQmgDECTUTrpXmLH4Y5X3FEHwgOM9uEqbo08eVkiuD94zec5x2YtDvHCZVTKnspx3NGs4lsebC+UVAvhACx+Mdd8d7xingnOV8foZWuNsHxtHzcH+klEROkTCNuOCZokiB3rx6A8bh/YQ1jpISo/eMdwPPORNbwyGJXW9/+hMMlVoj1htsMOzrJEEDcgqyDzu2dDOTyTUxToHHV/eslxdqTky7UVg5teCD5+7Vo9aPVfdvYQaXIlYOOSfevXtHCJ7dOFCreGLVKl5iH16kphqHkSGM3O3v8c7j3ch8mZnXyKJBL847SnF8/JRZ1pVcE08vC/VZpaPOkrMAQ4fjHeM4cnd3R9a68t2nj1zmC0PY4VzAFhnyjcOoiYAVmiVHs6VBBWuptTCfz7SaqHkhBPFw64l6vUZLSdLopt2eXAoxZZxNWOd6RyLM3gbn04zzmVykL7JWGbOx4kzB0EhLIQTPQGUXAvdff8X7dx95eT4xvzyT54VpNwl4VjJksSFoWXy5DsMeP3jemyqpqlXk2nbcs8bIy8dnjrvCNFYO44QbA/gXWq4YdsTV8OH9ibu71xwO9xyXlWYs5+UHUslYF8ROpcK8LHz3w/cc7hPjdGA6Tjyaez59jKQS+eUvf05JiS9evwEqh8Oe8+WFlGC0gYYXNqJpfPz0zH4/cbw78OrtW/Z3D/z6V9+yLCsfn95zmV+I6aL1vtl6HYykiOZ0otXGukBVQ3BjHLvdToMzDPM6k3MSFqkLPB7uBJhQ6XLrRUCrEKsmoQlTaK0NryAQpWBqZQjC8Cs5Mj898zf/7t+prM5xtxv56Y++5OEwMXpDyZHUGnGd9dzQQboywvsgHcxnAFSpTQcdwvIWk3azFTdVZerafWpf289Dt6lgWq3UmuiM/m5mvS5iPj2ViUajrEmsHILiBb/Vl8gxLWzT2yFCipFSCs/Pzzw/PUs6ZWvsD3uoAsL1p12ygI69PnOugQ2YwQnBxGgwVTHCdJfCEYMyeI2wiLISOmITry6n5JqCeGWizMUmlFXpl61+/14ZekdrmXUVyXpRhZIB/HFP8I7H13dMw8Dj/b1cx1KxTiTFD69eM+12vHn7pfT9Te63Qdec3d4Pg6/Q1sR5lgGDMYaUIzFFnl+emJeZ4CUN8/nTC63BOOwoqRLXhFE+1Lyu0oMsi+xDToA0Z4VluKXYGTkHuuT2Dz3+eMYTDlUdainobppCQUys6VZdgjOVplNAa+lWsbVPWQxbHCg6Te6FfW8QDMIA+tw4rG2T3K6VNNZIvGmf8iqVsRtz28+K22ujIM/z5utNxTSH7dPQjuCqT0YHaNiudfeNqgpOq3RPwadOgzV0tFdlDwrodERXnos0O1ubotV36yeJouS0G7M0I6yJLnNpVq+FERREQBu53uIdI6l2uSSKbyJnu0E2zPbfDn/p37fOqvF5M3X9F71h7p4RzTa9fnqFqkDvvSD+HOVu21+bgkcb5r+ZFrrt56AFtaOvk/61nzd6G8Fh+xHqW2WEMit7qBQzVn3LrmCg/uMOJHD1omo3P2+7tsYgx1Ol1MRSFmgCzvbM8lQKvhhKFQPHkqWQuL7h/Ymb7UO/AwyZ2y9vn11F+PzrRQ8ciTGSUlJa9+eP/1Iyu9/3c7Z3efuUrmyV5babT5ptrQl639eu0X3j9cM9+1IZdyPBGiyZnpL1+LDnuB+l0KcxOGEUTr7H6MrXdW+NYZo2ynDTwyhVkVk65wl2xPhCjCdKifIWU2mbz8/VDLzvL31qjpHDpNV0cx30/lY2YtXLUK0Uq6lm+io0TuXJuo9ar/dV0N25VJUdwdPTmfcfnrn/4g3NOWKF1cBCI+n3T7WxlkZ+jpyfLpzXmVhWxjAJ4G4LpWVdi01YT0aAmLK9i9f/Vazo4/sep1Rmay0v88L7D2e+ePPIcTfx9vWeadJobdD9o1Ji5un5me++/44vv/gx0zQxDo5xcLSWoIkDw3XN6H2vjIlOmqQ3sU1YsJucuK+t1hgoHILhq/uRy0tlsoXYrnJCg1GPQvmmfSu0pt9r/auuK1UX/Pbu9l9Gf675rc9sd6wRbxDvIXinceWNbCREoU/WSpHmK+dMSitFzTX77nT1+TbbD9li7xX2l1hi/Zx+pm/LwrTVd1TXtLWSJqscVYwR6lszAvR7axiGwG43YrKykrpZd6s3GzHb1tob/IYWnVoTbB4HDXpIhoGNJSq2Ed381aqJsNwb3lqKsZvEu+8y3bTc6D1pTNuAJts+e2rynnwGePe7zWwvo/U1wM0T1j/LUd3vCCnUjK4XAbn610JMGbwleLsxcJ27nqfWGrwy8JymoHktOmmNkjKmIelqWvTJ+jTqh1UZfCD5RDWRfgEldlzfU6MptKmyhkR1hprk+g1GQgKSMt7WNUox3GAKI6ZU1pwxxWzMRUNFgOiq0gcYBkfSa5di5Onpic7nzjltjDl03+y1UquFnCrOS0S998Km8UGatGW5yB7dLDEXcqmEMGhDpQNPvU2t0xrGVE3NlOfZf7VWpCnu8ik1hnMqHbXdL9s6vRdFJldbJoQdPgQWZyWNVJnRQSdSrTZJWu41JGDUW02MzS3OOI2rtwRjsU0+R6v6/ltG57cpe12SeNGFQHUGt4pMu2rjJn5Dkvw2jh5r4fQir9M6Txg8u/1ELZ6UHE6NZK0mV1u3Q+TUwrRLqRDUF8RbbayEwsg0TUAlxooNBh+kpqqtsqYow8jgKLXJmq+NkoXlPgyetBhlE8mbVaqkWocgzDVbS6+0KWuilJ6YLSbnrQ6MwVFyISXxO7EGVpO16SrsJzjudGBtrYD2F5Fk1VqZDntac8xLYV0jMa6knMTbLCcBnlJnJEk92g6Hjcl8OZ95ennm4T4wDF5Yl8YSgsXVRq5XmwivScbOaBR8kyTtHCNGq46cEq3UDRwoKdGqowYZ/pRUpGQtjWI7e1NQ/loqhkJJMtW3VgIXailYqyENNYucKyXGMHA87Dm/nJmdI6dEzZIGWZusZ2GPiuIkp4ShEqwhWEO25nomWk9siRQz0SWs8RzGnaxhH3C+YUyhVpjVL85YxzCMTFmH97TeJkkvWRJlyfhxh3FBDMrbjsspkGLkfDpxOp24nE+EMDAMgSEEYvAY4wXoaIFSEms843MllcowTYzjnve7T+QicvJSMiEIKzh4L355pdKMehKpd1TJWc7+dWEYdkzjSAgCOKesLLUk7OhpGIkxkWPBtu4vrD1tg0alFk25oIJTGKSKlYDtZ1KTNfLx/Xum3cTd/ZFxCDze3zGNg9jA1EoxQtD4LDXW3rQWN31n/7sAbGIfUxH2dPe3bHpoi/XKTad4LV3lWtwAVdtjq5UEQOqBKfIzPxvVbefaZ/WCfpP+HLP6sMZ1ZY3rpv4JPghbK8XtX3WiSmcja2IIdNIFQh7pr8Houaxlqx6mViWfcn0ybTvTa+sXodJb+2410LlAtdcgahguXnpSgzlNkQ+DrOm7aWSvCZviYNAoGqL0xRdfsT8ceHz1RhhPrX9fQ9WkxhhXapEautXKfLpsTLA1rizrzOn8whIXrJMa4ePHJ8CymxIlC/AU/EhwA7lk2WuL3JdBB2ZW5fVWWc4yMLbbevpDjz8eeEpgsHg3UGksNckmag3GSdrQFBy2NfKyauEtm6YLXsCOWslGijJbLRVYNdZRHDBEcuJ6bG8F2xqtCeopC73QKFRN43FGTBhrzBgMOzthqoM1CJWxVkkPMEBJYAzeieGYC4NICaqlrPr9gtxYzqoGW2mukqamtLksN05wox4Yq/xbZBpvdRov0iy5YZY5yvRy2MtEtMrzxRgmI5Ho4sVgkPirBiQF7swGsEjD2hioG0hiWxMHeys0vpglPciOIxiIttCINAolFKovpGapWWLmrTGMg9cGQo3xskzVa60kXXSdXpmzxLY6H+jQsiTkNdwghZaxwjxLTc3Vxz0gfkxrEYbINApLymZprMmyyTYao5rPdrOsUrKaQ0Kx8jVrWdAUTW2g1PyuGgEoW92SHqpea6/pJqld5Zry9YbR7gnWcwx7mS5Xr7eUTNzWkqkBMoihvjOiFTaW5C05V845MreVbC9kNwhlPIu5vbWGgiUvC2WeaedZCoYghnXQ04PQrLTPb+Nrf1R/63eksdZmfDNoLoV3797RWuPrr7/W4vDKrPmv/9BDRls0uGn1+qf0Lw1lgxkEcdfP9OSxr/YDtUGPwLaE/m1og6X5DhI3rgD3NW1qNw5M48R//9/97/irf/mX/L/+7b/jw6dPuHBHNZaUGkMdmIY7SeKJGW8d1iWsvWBNZVDWnsOSUiabrNMKu+1XMUaMb/hxlNelPiW1lE3Ka/RwXlvBeMvd41GbF5H01tZoRvaPwxBoFHKOInHajeTWyK3xP/3db/j3337kvw33PLy+5/6rA5NtPJpEPVjqbsfHdy+8PF34m3///+Pj+w/EOAMF64qyLhrVOFoTealtMLogzVtaUIIT2TvxrQsTzXlSXKFVDnu5h0tZ8AMMw47/8B//hr/5X/5nmvkf+PM/+ylf/+gV3jnmavjhwzN/+/e/5NfffMNvvv2Wx+OXHN/u9JCvtGq39VJboZYs8lnbV8RN0aASEedGLZA6UNsYnMBmpe7Y+8affAGshfVT4ruPhk/PkEcJJbBTkma9WZEO1wbN6n5jaRiK7kFOF7H4y8lZde1829ZUQMfF9Nl2sMUkMJXDoTGM4D2cnWE+dbl2wnuHcztKarRqN6mRAEYNTMF6xGOgAkXjeYvQt51tWC+NR0rCYmpGgShjxHumGVyxJCOZZpaGx+DctDFJpTlQRmmtpNL49Hyhp0CmNakkRNio/Zeo31WgZjTBMEuD6PwkMvvSSFViiYU966iZjS1oyJyfF3m/zfU9t8Cu2W09VN3nKw1vBcizRjwZgyk028heTEgpjdpEptgMYv66DbtkzQVrt7VUaczIv5FdTAYXRj25nFGpYpVdoU8KnfHERb6vO1hSy5T1LN4LNEbjpbGPBWthKsJyci6QS2Kpl80YeqkztRTm85MCcU4GP7luMo0UF2zNws5FmMb4SkL8fYxNDIcBazzZrhSTCY8TtTbmyyJ75Nz4u7/9wN/9xyo+NK2KRLw1yBHbGvvgKVUSb3ATzQ54Lwwd48HZRNolTK3yfPVadb876wSYmJcZYzyD38v6jpYwHJnqhBsczVSWsRJT5JQuBOeYhon9XhZCaoXSVFYBDLsBdGo++oExiAzLYthNO8ZhlJOhZFxaJAUtDCLntsJsNAaVacAQnN47K+M4MI0jBmka210gJwdFZabTXtiRwVON3GdLupBrJpWINZZ9OOBcYPATOVVSVD/A1nj96ktqLcSyCNs3SFqg9xZX77DV8PT+I/Np5t3Hj6TWsLtRWDPjyOQ8noVgRA55uB8oVdbckizny4r3njActrMzeDl8c0mUlshpIZdGipVTk7Mpt0L1lfN6gbXxYf2Ed06SkoIkJkkj7shrJuXEOj+J1PF0xmIJNmy1SJwXYsp88/0HGoYlCpNnnJ54eHjg7ZtXPD89czmf+fDho6bgVZxTueRl5vTxicu8sCxJ3j9rWbqvjLtwGQstWQ7TxHG/8O7bX/Lxw3tRBljD6/ZG5XeWT88vfPPdO6bdxDAOvP+YKbUxTJIM9em8cNiPLOmkzH5YLmcuTy/YFtjtEq8fXzGoJLLJNsz94wPH44FxDBhjOL18ZF1m3r8LXC4nPn1IFAsrRQ4Td23+pY+xwsg2njAErfsMpjZhHCF7391x6DMwchUft2AMLXh66JGve4xtnFLGFjjYwO7uDc0d+fj+iSVmkTkGz5dvHzmfn0lr5uXpwvPTCzEl7h7uePvqDe2hCdOuVQoFPzh2DwfxoIsnfHaMbuJPf/oVa4z88le/kSCA84lvfthjB8ubL77gq4d7TvOFy/nMus4CILYigGzw+BwxlwtvDndwPHL0A/PlzDe/+TWXl2f+5t//O/7sT/+cn/3sT/A//loi7Y0Y8M/lxBIjH59PXC4z73/9kT/96se8uX/kz76C8/HC3/3iV6S1Yk3hsAvcTQeKSRSbRGpFw5meIiZ7+3xZsGbE7kdSNrRmGcbXBF+Jz9/ga+DN4cDFnGhzZE4zKS6YoXtyyll4SbM088XKPtUGDtOe0Q+UlmgJak5Cpq8ZPzgKjVevXnHc73nz+Ibj/kizUE3FjcKQTa2Qc4XUa6BGKwokpaoyvyCMnlyo1oiZtVXGZ6/OtXCpoIMoQ1o1wdIKQtj7iuC9gEwlCUvYNMxgcb4Rm3hh2bsABVquogZArVuqkFsa4nHZh81bDVctrTkZhMwrYtFokRRx6Q8EcMrAiHUjSeXrsYgfYl1fRFIZgvbqlooQXIzVIdiW4mfAynMcMPhmaCq160xM5716QxfCIEOEHBdMq+y6x53RszOt/MnXP+XHP/6aYX/ADyPjtMN7z36aGHzgfhg5jBN30455LaRcVbpnKa2RcmVWgL2Uwvl04nI+c345kdbIEESOe/nwJGB8zvggSbnVRJoppBQVsNtDM6yLmtG7ID1Ejuz2O6yzPD8/U2rCFukDTIG2ikek8AkbtuXbpu2ffPzxwFPXfxgtuhThk8mUNnT6Q1vVKpw+6W1Kv+tFeP+enb3Up56yrG0LNGXztNaZD7r4++S6dhyxfy/5Gtsr+Na2YVdPRpPFCZ191R+3yTqdYWOUqWN600uffhv1Qe0qUJEIdsO2TYPK9ec3ZSsZfZ79d+03NHFJp9D0Se3N62p63X/7mtKn8a1/yfa6OhOH7fWKp0PTSeR1dItOFXTC0G6vatteP62DHFdGhuknWzNX0YjGgPf8aZlki5xtI23R8YbOPjO3qArd9N8qin5rtt0680qb4s5y6kyo/ntvhj6LN4dOVZDmXQypaMaoTEKeXffB6s9JAG3ZZJzvGYDy/KV5Qr/H9ePWOYyTFyEDEsk5rFVTX1KipIytvRXuz1L+pJdHr/jn/kf6wc8ft9fP9OmAfNBayzRNhBD4Tz3+awBR5uaafway3byW/tYbXf/berl9NJFibvvTZz9D/3GPsNYY1f7ZPknq8pSH+yPWB96+eRBA1e4oFdZc8DYwerfJaoKtIueo6jmi31bkcyr9bDqx0+2x6D61TaL6ewWdQiEsgSYeG85ahjBse0bJRRkHsv/Z7TVfxy1Op5NzaqRz4tsfTszZUILBeYMNfWLTiOeV5TTz8vzC+XTGGfHhcCo5/p0LbXR1mtZvJdnA2nVjkyhbnajpflKrrEPvA6fzmXWJfPfumWn/xOHuIB9fK+8+Xfj2h2c+frowXxLzeWU+z5THO5q/PqdtWvg7q+q6luz21ab/i+vKU5qLJBYaRtc4TIZX94bnU+WlJX3PdIpjUM8VKUycRb3Z2nb23Hx3+bBBAZbfd7MqowM+G/DJem3q2wRDsKQBpkkGEyX3yZoGSni/7aPXF3hdeH0fECPsbTfX59UhmXpzdZTt1frd2T3H2J6z7VfXKOMQq5NSKYK8giIikREWnsJUcu+oQbkQSuV7bGe1rmUni0cZVU7l6fI54/QMNDJ5vpVS94vYU7DK9VVsr7Kzq7qLo7XKSFGqWKtyH6F1QN9aeh3Sr29/37oxaT87220yp94XnX2FspOl2YWG+CXKlFSfw+2/rdBK2QY7sUXWtognjjWktG7msMKAFq+nmpTGr8Vw29Ypt09Yr6PWCer7ZI3BD1aGWl7eL/GhStScheXZKtM06h7QsBYxaW4NqhgNG3c1W3fG0lzFK/NTDOy79FH3ESfAURg81nqCF1m7MxIB76xaC5jGMEw0DD4kgjIgul7VOkc1SMoOiJ9HAzbgaRCzXhreWZqzMgTLBmom+MA4TjLosAarwFNVT0/vDLW6jVVkuiVCbdqEQEELGGdQTaZITq3F2wFbLa6InHew3Y9U7Cma3i9CjJP7rKLvWa24ClRJGaYYLmtkXqP6kxqMVfm1dcJgck5rUq2pUVZEbixLFh9A3xiGIN40GoSxrpFcKstasCYQ/IRMTTOjl3ruXLIM3JZF9iO6ZEfCIJy3pCxJTDFdVCojQxvxrREbg5yrhDuUldYglYp1FYxjXVbmeWFZVtZVTLJTTPSCUtK7tKar3Y5CDsam7OPWxCpimRdsrdiaWdeZkoRh5HBISldjjZJYuC4LjSpG0rFQKsTSPV0MuSS8VxlkCLQqFhOtFEpK5BhVPWEV/6+UHMllwGY5P1JOpJw3D7KmbJ+61ccqHTe9y+oFTq8hbmv+69m4Bes0HQzoe9oA47wM7JABbcqVmDJrzBo+sMe6MyAMQucawQ+M447D4Y7L5YXLPDMvkWGMHB/28h6uMujP7SoPzFVSSEst5JrZBc9gDYf7o9gbnF64LDMfPn3i8HBPGAcxSg5hM0EH8UG1ptFKJGOY9h7nPcfjEWsN07SD2nh5OTHPs0S7N02Ltlz7MSsy7a6qQUGHw+6AMxI1H5P6JQWvoQ1NJWeOhgAQco71W7KIQXTN0Ny1ljd9h5M91jlPCIGYV4zVoUjtkqx+VBisSr+ahVAHbPO4ftD0nknfu5Iz1ljxbw2DyrGvXSJ6bvR7o+/HW0nSz4HONEL8jJo16kXXz+Yrq7un0F2/Rz/n2tWo/HZl9vuSdt1HEVBfXnevK3sNe+35es+4fSvMtjemlDUVUtIQ5SXcvubtjehXTGsiGVqWKte6mes5JAdp1fu19cajn/jSMRh+67n1H6T1hapqep/o9V6orYpljPM8HI989fYtw/4odizDiLWOaRglac5Ygnr4OdvIRhjutTVizqRSuKxRfaAyl/OF+XLhcrqQUyL4DLWyxqx7biI0Vak58QcSP2rwrTcRWuH0uhGoVQzRU5ZgGWtF0dDUM8Gox7Mk8CVVnv3hxx8NPEksqrz13etJ2PoGU4Q+KEsAfbO0Mcii8E5xIZWMDwPG6CbfizXT8BbWtJCy6PG9GRjsBAZST3pAvHSsFRmC0PYSVCke5SEXIbe6Mf3dKD4QpgbxQ4oLFImQcc4K62cAsOSa5c7qprLqI6IzB1nAvco3VabYXhqYVmVTc06m0FvyWYPgNLHl5uG2Q6lQaKysGBrBu43OW1Vb2r0Prgu/30xmuzNrK0I/aD2RR3ZGo/RNY3oOlduaHhqY0sg16eYq5nPUitODsN+PUngZbLC0JkZqol0Hr8/Za7rBteEpNOMwCjz1A9MY81nBfG3g9KX1rvEWINtetlHKsrtuSu3qHXL7sOqHUBVgksagM9jsln6ENTK9p0eNG/WIQOmRmZiiUKSD12a/a48tXoEN5zzjuKc1gx2PWCcHWW2NWoTufDpdOJ9n5nnBHnd4oKc0qg0Zv9v03+7zfUu7klR/+9HZao+Pjxvw1BPsPtdR/+7P+S/x2BhO9irx6Y/eQF5Bqf88PxF6/yHrrhfkg9JWa808HEbuDhP/w//lv+O8JH75zQ+sS+TyctYUJqPsH6h4Siu8nBwpF9ZVNvke5xtTxLBKeMLtazFmA8MF8AoYF7A9itYLc2VsUQ6hYcS7QPCe0+nCukRsjOotI+bZ0zip70Ni2otp52kupNz4t/+ff8AFz/HtPfvjjtdvHvDe4YPj3fc/cHp+5t37j8Rl4WH3lWjqi7AaxO+tUClYK/R6qgB4U4/FcFX2sFYpc6Ql2JlRkotmeb2mjbgw4Nmx2+9wY+L//e+/4d//4yf+j2kiDAPvPz7z8cNHfvWL72nrhRYbP//bX3J5/8QXxyPjq0AYpMFIRRJ5vPdsvgX6cPq+blH0N8XQdc3fwlDyePUq8NdT4LQ+8el8Yc0Hcg74cSeSJwvOVAaX2Ul4E0YNMp0duG0GFLWgGavgFaBeXhvsZNxn256sSYtrkMtKrTBNE85XTIAfvn/h228/MU0HhjBy2B0J3mlKijJRjfhDNG0QS0nUXChBpe8M2/klscb9qL4Wpz1BpifWylfL76UVmTDqcMk6OYdFjiKRuuMgzUOp2uh4h9P2zjSZzPeitnuci3xPqdvWYV3QAtHi1CuqM3YGb7EKzrVWqCURl5UUE+t69WsxRs66VoWKXrhiOhbEnxBRQBmjDJnr5qPrxYrn0lZlShNXijAShPWjg6zSkSiJNK9WbhBhQsn9nyKUsmLqTM4T+/3AsJu4OxyIy4mVldaSNO81U4GXszDaUl1Yc2HOqZ/e4ivi3GYa270CqU2BBg1nscrCthr84aRCcNbTvCWumZIT0yTn5TR6baoGYoqUtUniU/A8P4tB8P4w4qyhJjHNnRT8aVTM6DDebYzkEBzWCVvSecvoA643NEbWYWwF4xyvv7qTRsJ4Bu9kSrtWWkkwBDCOx8e3pJwYpp34i3nHGhdiirx6+5awG5nnmaKJtdaITC1oitl6uVDiyv6wF+80BmpylArjNHE4HLT5MmDFVLbRtPBf8cFy2AeWZeblZd6SgrwLNOtYmkggU1F/uSqAmuy7I96MmLqDVrGlsMxnnj9dqDgq6gFqLbEksVJoEuBTS8E5Q3CO02lmvqy8vJwopXL/5g3eecljrJDmxu5+ZDzcKXOvUuaFUizWDayxcXnWtMGc+NGPvuLVqwdhVOTKd999ZJ5XPj2f+eqrH/Nv/vVfqkyxCDBnDL/4+c85n068f/8eMMSYRTroPcYHzDDxPEdOpzPff/cN1hpevXrFNA7sdkc9R2GOL1zOK0XXtfOegAwrPj098e7du21fdy6oRPtaR1r1QLPeM2w1jtRKxsj6qDnx8eNHnppI97wxTJPce95LKxRj5OndBy5RZKlPHz+xrAt+3IP1PD//QMNwOO7x3vLtb+Cw23HcHzge7nn79pH5/EKeV7791a8IQ+B4d0fMmSUufBvkOfb7rxRJhKo5Czs0Ib6fztJUeuqtvNZcrgPm64BY+wIrJu1VNmdSWnW9dn0ozMuZlDLHwxFvPS0LaJ/rSk2NuBTevvmSh/sHnp9O4iM4nyll4PWbRx5fveLtl6/5+c//geefnzifZgyWH3/5E3bThLHihZNqEW+Yy4VaG7nC85LwBeyxMU57/vJf/Ru+/e47Pj6fef/phe8/PJExvHn7mmYd425PqonWquzzVeRVa34i58pgvmY3HHn9+AXH5ZFcHE8fPvLNr37N/tsfJLHQV9mjg4DqkUyu4tO03zvu96/x1rDOC29evcZgeL688PLyzA/vvmVuKy8Uxv3IsBu7noBapKdyRgYJhkLKJ06nwm5/JAwTpazSo3pDyQiIFizHL99QT558tnw6vbDGuDGTuh1DKY1YEueYicUwDpnDcCA4jx0GHEbSsSucnk6a0i1eccN0kF4Lth7HWUlSzbWwG0d88JscvxbpEUuLVPUWNN5gnbCqOjBJE88nTVKgyp213YMCIFVJXjRiYt3Bo15/bUn0XZZWKzqj1LPKgBOv5VKUiOI17U1lg85Zip4VT+cLn14umDBgkZCaWit5q6nk/QFkvWMkCdcaoj43MfcXbGMIQRVK8jxTK1rTaTNqLLkPAbQ3tEX+be2ukK2SUiEnmMaAcwLmt9qoS2YcRo5vXvEXP/kZ/+pf/BV+mDDOs2qCtbOOmjLxfObl+cLHdeW0XFjSypIE2I21kkvl5bKQc2GNkmTZ9OWKB2YShuvDnfhtrlFqHPVipUEYBgyGEhOmGYJx2xnjXcW4xsvTB2JMnOaZZiyH4z1gaVnY1c57AZpboZK26/2HHn808FRqlgbCi9zC9WLqt6lVBmWLGG1QBAF0WAEgtHjrjWfTxLtqCoaKszLJNGQkzQFq9xgB9Zywwgow0K33nbv6dvRCsLMAcs3YUvW5aINPE7DBNqpV1LUjfrpou+uS2RbfbTMsm6FMKgRZt16QeaNaTom1l8tiu1xOAQsUkd2QXaR5MwZqNz41akLZynaZrbEyjdakpg5WVy3oMWUDo61OiPtaEDKSHHgWPvd4aoLnVqXPm5trsbVpTZ57U+aaNVZ9utp2GNZt4TV9vr2wLAriKbMKs4Ef8oNum0E1Ru3P6zNmQy8qKh1zM9t7pGDcxnK6ot99bUicqEwLjLuCS/JQnwf0uZruKyUN0mAcgh+2K0Kvn1dIQw7yIki8swnbZOO0BpkCG0NR3XHVZsGg8ofW5L01vUHqZUa73i/m9uPc/M7vBZN60kBvwv9LeTr99qOzsP6Tj762tklH+52X+Icgsn/ylW2fvJkU6j7Q0xHFnE9kOPvR4Z0hvr4jxUTcD2JVc7OvFgTtf7lEob4uIl1a1oWcVlJeti2ybECsTBq6B0Dd2KFIilltEDOmVQYy1Vhqlrjl7D3r0qe9sidtsh7n9AAvdMmy9wIC5ywTnHlZpTBUnwqROMzkWLE14FvDtrA12QIGFAXYoTNESm0qcRRZba0Sb251k24WlTM3nC00I2l71jbd4y2+BVKstBb5zS8/EIaBFDPpVPDV4eyIC4a6FC6fznz7i2+Jp5kf//RLjLOyD2733+d7Sa2/P9r1M1CIDnq77UPewX5q7Hdw2Bnms7xWC2pwmYTbWjPeBXaTrJFtDsAVoLl+UH61XljdflW7aSS0+LFWPGykKNQwDgO7nWd/CBwOk0jRrfj1lZL7qpbmgz7skHNQpPA9GKF7AF73YOuMTq/6MzPqwdBfiXKkzM1rMrr/0qdmbQP6fBD5tfhE9H/bWYZaHG1bvrm9OrKWStVpfFXgSZmKpr+v0OmwckxK+qQNBdcaJsv3KVVfe5/cKsOqGZQ9cvPzjeWGryrPWn3mjB6U3StRknf1rJYXQfeSw0oXLWwqSx/2mJv6QgZlVusDR6tS53S/HwG5uH6fvkasGE8bJ5P+vneNQfb32OS9cYPXmqBtzWlPtBEZgcGPYgxqvJX1XSRGuVB1YFZ0X5RET98MQ7VMo2caB1o7UPIgoI0xpHVVco/FemGDtCBS9JJkPfaodWst3knqXJ8tWf2DMw3jLH4Kus8kjG8Y1yhIrHNdhUFNE4N1WRcC+tfWJHkMWZ8heDXXlUGbx1BzZU0LJUkaXklJ9thyPZPjIibnxmviqJd0Ih88hkZrnpQq67JqwEJQVpXs66WIf4xpjZYTJRZSzUxDECBitxNjV9Up5zWxLCuny4Uw7hnGHfv7B/ww8uHpAyUuzOdZpdYiobyUwmVNrKmQnQPnSAgDvuaMs44wDOz3R169ecvgvTbOjnVZWOYzXYpcmqRNliJJZJWGkIiEOQXiAXY+nbl/uON4/yDXuTUO056aK9NwlmGXSps8wkhYlpVVBzGlGmozrKmSy8q89r0Lnk9nZRjJfemD1LxJwewU1y39Ky4LrTXGcZQzLEWup5PexVoDrspiWgzC1ltmbKs4ZR9YIMckBshGYtKfnp625k48Tgq+f0utj1uTVLmShaFWcsHiaZN44xjvoGZqhhRnSi20GsVns1paH4r04Y5KipwX+dU2U2wCiPf9XbyWtJG9OeckNMB040Xti7S+sUiS8yAG80MQvzDxfK2QlaEoLYrIe6eBkifW5RMpw7IuhOHAq9ev+PjpA4fjHaVUzpcL5/NFAQqRI+buOQsM48QwiNRdVAAe4zw+jOx2B+4fX3E6nTifz2J+vibC4HEewhC01+gp4ZbBDQQdeFUqxoIbPIf7A2tcCFMAZ0g1qxBemSvbEWs0UMPijZeAA2O3azztBnIZGEaLobCsJ9xgCW1UFhk6pLzyhI0VT7IlrmAduVaGMGGcEXNpo2mliLWJGwJD28FypmbptWy7rembntWahlaURdb+/+z92ZskWZLlh/3kLqq2uHtEZGZlVVdV92AGDZIgXvjCJz6Tfzr5AR/wQg5mBsMBBr3Uklm5RLi7Lap3ET6IXDWLyKyq7J4mZ0DA6ouKSF/MVK/eReTIkXM6c0wY28m1mJqi0VrPXk4n8jzzbp48FnDWudiePNbEvYGDcvtYxfJj0wlTPyNBojuqOeDUWiV0sVZ+1U3OBMw1V7Dx/Shv1lshZEttdHQw2B/TKLNRNd0zmzODmW1jYnGpauO6XAwY9fbf0uvm0IsO4Sa/j0Ga8JtKgyk+PhzcgdqYbPi4WZE4fiyzjHrMgHNJ7PeDiAWRToULHhJItzM9hnjTDauV19dX5r0SYuJ8XZ1MY/tUuVwp60JZrlyWhbWY42PrHRUxZ9xloQ1iinoIpx4LitIlsPSzXXcaxmzVpAaworSoYti0scCMkV1hjGVd7b+DFTXNSc3kbohh23cCkd5HXPLnXz8ZeCrl6uK7O0NbxUSSux/+9wlyisYdHEmyNMghk0NibSsdJSYX9aXSe6X2lRAT05SIYtX2ZmfsFlzb040Eya4jgQfAVlFTNTqagUs2e5TAWjrUsbpsEgRRE9eKts6sYthJuEW4C3DKNslG+5JNcqU7M8aEgkMM5Cn5FOwULa4xYErvISWGALU6GFe12PoIJnbZQ92qvqaOD6VVam+o0+GS07JNF8Hup422nt5Q7gTL0mC44EG8eKuRbv262kdAbNTALdD3JzqCc9AteW6r6aqklAlhbMTYATyE36MtxCGePQBGGCCIzRfV+4RwbD7eADLg8DG9/Ho73el9dria60zYgB2RMRfGJtbughGjPWs34DGGcAPVtPm9FLri7C1xPbDAFJM5H4a2ATltA0caqo3aVq7L1Q6BKsTc7PdCJE2JqEotZoXdanHmABvAFpCbKO4dWHKPuowmmBv05W/xCfQSQmC/329J4X373X9MthPcQLJPv3Z/jSM5vDuPf8Ib80cRqgHfjcPQ9hXdQOwgQism1LzLe/Y58uZXn9vv3LNmPKFt2PS8VChVOZ+t+vByeqG3ldZW1paoGtxmtbMshWVd+f79M+u6cr1evTe8czqdWMvKcrkQeuchWKuM9u76bckdzTrH46O1nWBtRTlmtAtFGqIJ1cw8RbII4vT367ry8nridDrTSqeVzhdv3nKc9+z6A10qFEFoxlAJlS4rIXUkONCrxtqwLSTQXQMkB5jE25pzYJchBgUx/QxiAiqdlSzJD9vC9VL5V//d/8icZ372+WcIjTfhyC7umUOnnr/n9fk9//L6/+TtZ0+8ffy/sH84EPd5mzPABqSBtdjAjfn0qdNj7x0JzZNe1wLqwhSVKSmfPQVe3mVer6YxELdE4xW0E7UxpwfePM1M2ZlDbVzLrRXuBpxasYQxNTcQsm1r07EQOzvF9oBWlNfzlXmX+Oxne9AHgkxcToVlaazrheV63tZSTNFBG28/642cEkQhJwMiY4iE4AzY4CLtwYoWwa+r+J7bt5Z0C2DDthY9SKGP3lFE7Pybgrits+nsbIngWIMDJBx7lwdKJu7sgq3SvRXBjowamifAynATG/syYkWYpBNIIFZrr6q9IGq6hypKl+6V2bhdl40927P5iEA6nt3oyBhJYDP2X5dmRRUHxTaFcrntyhbTGrAdXPR5c8DrE70LrV1Ms4IKwQpVorckV9X2m5QT8/5oejLIxqYeoOuZhRAjjw9PFptp34DJ7bgNDQmQ56HNaG10tTbqulKLnX22LRYbz2RglenGzBwOe56edoCSpoyqcj2bzlRfK/NuYrff0YMVtsqyeCuUPewYI3nKzMe9a3KpCVHHgOzMrr5oo/WVvl7QEGgSuZRXrteV9TKjJKZ4ALGze1muLKczh+OR/WFvVterCV6PPUBbp63mBHl6fiFj7OxLO29j0WqjXBdKPbGulXl/YNrtSPOemDKPT28MRO3C5Xzmm2++5fh45PHp6KLCgZevv2ZZirkdCYRWOV8vPL++cNjt2M8T8cufI7sdqAFh19crL68nvvn+PZ//7MDTwxO/+s/+BY9v3vKv/s2/orz/jg+//9paBWPker7w+uGVmiMtRw5Pj8ScOHdFy0o/Lex3e46HRz7/4kv+s//8r3n75o21JKZ/xYfvvue3f/s/s9m+d291K8rlWiAaQJzynkkT89Qpa+P3v/0979685a/+4q9Yy0IpKy9v3pFjpi8rl+uFD88frI1OzMWq1sblcmFZV0TMDfn1XLhcX/j+w3uiOOvfY6HkRbJpSsy7SpgytRTWdTUmlQS+/+5bWmt88cUXiMDlcqaUyrKsWzKZPfm+ugNWWVdEO0mN6ZRDMCeq3k2jBivS1Vp5fn4mTJm431NL3QDTmBLTLo8wltoay/XE5XwmSqAsjcfjA3/x+VsTtl4X6CtlaagXt1rrtKYbA9+SfSsO5TzxsH/wxLoa+NzVW86Ew/7oBieZ2qqxS6LH2NGKwFJHGcPEI+jd2DApsJsPBuo5yDbcMa+LrW8T7rfk8unpwDRFvvv+D1zWhe+fv+P4tOeXv/415+uV1/OF333197x/eebdH/7AYX8w9rFAQS3eEeXx8YnD/mBacb2bu2+eiGnHw8Nbfv3rf8bvfvdbLpfrBlTOu4kYE3v2JmReF4uzBY4PO/IuU3qgtEIPnThF3n35ji6d9y/fEw+ZGoz1ShKU5kYNGQ1KDkKSRJZMDhOJzHUxnd6Hpx0hV16uE+v5wsvLB8KUmA5Hoktn1Gvf9N7srI/UWlnLwnUtpJz52Re/IOXJQCcqixYTXw6JfNzxcMh8+/qBvlxdNsbO/pFK55RIyQC72jprM5H43bwzBn0d+omurxQCv//qK07XCw9vnpjneYtpUzSJAsXNpWr7KCYajKXezIwC36+HeVWcXOtWoRdzjRy/n6OBKcGB6LquBBGmAKMpv3s+Hr2NtPWb1I0ILow5CAauhepugZO1Im1nqwntN1orvLy85/2HbyltsVbHcoFeodtaDwzwzPJuwbzaRALiRgoppaGZQG+2B3V3pY0xbGDpAJetNmwdWngePtKVYQChzfaVoMaME2eezXlinkz4/vX0yt/95u95fHxLyjMf3j+zroXLZfHidKeUlVJWi6Vq53w2t9J5b51gay9WVEzZ9E71JpsQ054uwnt3NtxNO+q6UuqVKVoH+PVyRVt3AxHAXYOhUfRC42qMfTEzD4mYNihmTCZJ6Rk0JdMFI38S7f3x109vtfMKYkLs1mRAl6Pt6ePgf5tU3hpmtHGzGzcWDDfUU3DB1NFiZiu6uYh3uH0U4BV2Fz5raosk6giiyoY2DlSyOdgzKqYpJifAB4s1u25shiDjqzdoVrCqf9/6GbdaroM4tmBqbTewRjohDpBZab2iHfpwSht9tIxefjWnDMG1i6x61Lp92ujRt4q0t/1tiPF9UmWJ0FDhV9R7j+1Oxh1Zv7duicQm8BmEwSUYVpqbYBzWv68dpAfExZ4MI5Nbe5yPzoYXOPg1xnMAJN11HmTQwsacEWG4peitFD/ezKrRsoHZG2tE/KlaMG7j0psDhdu8dPq8tyQEMQlgs9W21iVkuMOYJWhI0YMEAyNBKMVonXglwCRFOikJ0xSZ54QkQYK75AQ1zfhudp/FAYZWy+09pG9PaEx4GUCKjmxk3MVA4sZX7qoYHih9ygK5f90fOv/RXncA0+1Lt//YrvGf7gPv3s2qSowV6BM0BCFJNHR/sCA+2kvFf/ymUTIHIWfIh0ibM4/zgws+N5pCU2O5WUuYUlvjfH6i1Mq6mulC753z+UItJgRqQKhZLdfVXXxa53K+UNZi1TCF68nEwFsxAKtHWMWA/N7t0KiuQWfW7DPztKOvxnJI2qnrmZ99/shuSswxsSwXvvn2d1zXzro0uiZ6zHTZ2WiFREiJ3eFI1xVpL6RgDKd6LbTSOdVGaI19ttax5AEFWomSySGTdr4fxkAInWV97y1UjeKBuuSAxMy5Vjhf+Jvf/I63n73hF3/5F390XtzP7R8HN9kKI6ZNKGxbIfCwm3n3GPntV4VrrySq7c8xklTJXUnJhL+HzpM6Smzb6baKb2DntmI/gmEYGkI62rXETp8BRl4v1c6VEGkNdtNElMh+36lFuUy6uWupH2ISxjUEZy85yxNn52zAVEVpPjdv+8PY94PIZvvetdG0MWjpW6B4p+dhlDtzbWvKJrqtw20QB/mNWujHv7uYbUytyGA6qeuxyV2coArravbINToyNehBKuQ0EQjudqb0OBjOY+8ea1oRb2HpGNO3CcZ+7uPZ6XY+j9ZAle6OrWpW0L4JbAWdj865Ufzy9xoaGAqlNUJvVCpFC1VN8FOSbC5GkxfX5hliUqZJnctoLYjGJLKkIGWQENnvTeuiuVRAt0ZuQOl+bqYs27mpakyflIKBIsGSvuTSCr2xtRbUunK5dGfNmfYRIsScCTFBNEHj69o4L1fTsYrGuIghWqLebX9oZ90qw+Isv4d3b0lTIkw7a3urjetaqUuhlwnaxOPbdwZan87UWg24N7shyrLafFpAcuRnX04Iwd7ncuH9t+9ppdLWyi9//gueHp+MZVEKX3/7DW0tUFdqbayt0utKXYO51AVvHQuB61o4n8+cL2emeUK78PTmLYfjAUU4nU78/qvfArDbz0wxc5h2RDHm0Pl0phYzVNHeaUWpLYBMdA2UZnMz5Znd4ch0vbDUau1YKaFBmI8H5t2ETJl8mInOhKA2arXEopxPfP/1V/x9Cry+ecs8zZxfPlCuF+i2IwS5FV1qXblchTxnJAjTZHMnJ9MxPJ2f+fu/+59Zrycvuja+//471mVluZzQVtklIdLRulJ6pYogrZAwCYnaOtfrhfPlzOl8snaNEIytj6IxWaGkVdbWqA4I1lpcH0y4LIt99vvvATUnp1H5H3vKeeNJ2J7mawrvRqh6E01ufva3am1vTBkdrlEunVF6pRbLOawYZvH9NCdPMOGyvNDalYd9MJHgKZFSYneYLQ6n2/4SILpQsBkK2V4Xgjl0hqCIJAZc0Jrtu1OefE8HCRni0d39upnmRKGvloPMKVvbUVncTc5YKeNMNEAimXPqaEsOEQlKayt5jkiYeHjasywr58sLH56/5w/ffE1MkV/+6peUvjI9z8zznmmaraUIb0NLkdwzSYReiuukC31ZWavyUgwwf/v0yHJ+Q7leOMzmSNzWxYxK1FiDKZiHrbWYRUKL6NqoqnzoL0zzjndvf8b0ywNPj+/odaW1Qqln1qVYHB+whN1lM7p2E13vhdiTtyYrcSd0EvP+DWimrnYGnq7PTOruoskgjI2tppakmhacsX2vy8LUlbdvHrlcr7z8/j2hCqrJOmNi4Gl/JKlwuV5Nf6nZWRqD7TmtLq7XFow916GUCyj0asXveZdRz5c/fHjP6fzKu6cnHo5HDsdHA3YdLNHePV+MH+UNqp4BDpBKXE/MC1DNSRwjehFnBt0ziruf3wZL2PkdtiKMbvEy3Let27k6nKllrE8ge9ElyohJ3BBMTP80aGNKsJtc64p+c1w2ZoeRKSSyiQjezf2RU/XWttxqdMbEnA3k8oKLpEyXiqgBVxErdhkEMggpDIlWUjSmqGqzeZWMqRiD6S+uy8LlfCGnE+tSCRK5XAxgui7GaqrNHCvFdQJDEFhBa6epu1wP3EX8DFWhexdSq9X3wkCrcG2Fsq7UZaVFJQkGiMFWlIt3EsBZEpHZsQnhuD8QYkbSgaogRQ1Anme410LchLL+9OsnA09BrSKaxBIpQ9dsghoQLA7acAc63ECW1i3BsiBZ2JAD1EQjk7lJjKAGhFaMbhvGzfiG33rzh2w9zLbZsWnxCCboZZus+s85YCViwc3AY4fNTrfANbjJL4xc1A9EMfeppm0L4HRUtYNVr1up/pkGnkVX+rdAsFmLTQfxqoX4zFEX+cppqOi7fpXbRKreqvZjZLsOPNmDakd1h6ha0O7iuK6zhD0HGYGw51tjwY8FGYL/jbBZqN7NJRGjYYcuSPONRWXTyxl4XdXKbXfrDjJ5hXbcpSc70keupm7vLN7CYUywLfofyV006nDzortqwwmeH807Cd6y14yFYPPHx4LhlOgtld0dqGS0SChdVwJ2aA9rasTEREu5uHaEi3g6iybHYMDTbrJkT9TBJzFRXFU7FNeF5WIBKKrbvPEwHx+iuwNibJafLGy9fTuEm6j4pyyP/1SYTj943d3jj9E0x5z6KZcsn/xrY4B99LZ9+5nR+qR3h2MIws0zz9mJG+hpc73fjbkIzCYSwz4JQkY0365FjF1yY6O5NXL3vvvWNz2uZTG6LUBV4aXPVgV0YdXL5crLh2culwvXZWUthbZcjdFXrKpCDDRpmE6M7x1xMiAhBPI0cdw/oKXRl8rr+29py4Uvv/gL3r458vZxx/PLBy7LV9QXpZwaTSeazjTJBiKkvVkWv32LsiDte6KY5sH6/Eq9XlmXD4Teye4mGNzVzyqws/WQ5wwh0WIwqvryvbcECEPFZs5CkInzeqGcL/zN3/+GS1n58le/sHPhDlz9Y3//8GWBvv3MFgFhu1nguJv47GliCu8JG/BkQVnUziSQE1hX2a0ljVFQ2T7G9yEd4Rfb/nRrdxtA0ABD/GfV7LWXy8JybZQS2e0n9vuJ3c4ihLIKORnD1Y4yU4hhaBJgWnzDNXacV4q3fGpDtW523tFtu6MXAkJwVnKz32/abJ/zNaF6v7e4FhLGjG3KFh/gzFFGscpFzqU7gOMAlq2zZMDTti7NzMJiUxvfpZv7zIpV57RXpmQ6aClOxBC5XMxGuLVbK+2tn3BQ4c0lqvtn9MGyCl7dZcBUBtp0B48URYe+2dib/JxW1Ja4KqYTed/K7YG5KqVFQutUrVQtlL5Y4SFxYwLNpku925t4d4pKxFrfBhtsmoxpM822r6fsupBNnHZs4LVqp/rzj9GF31cXxa2FHAN5nwgkbwnwvTG6Y60otSys64U0ZWMu7cxtMKbkiUtkWVYulwvv379wuVzYPU6kKRqbpFWurSCtcFkXY6Y3Y4KFEAiHI7uY2Ocd9GTtXS8nnr+/cJh3zHnmzdOXxClxufwtpTZeTycigYlkLkfryqIViYF374ytulwLzx9O/OY3vyfHxJQmDo/v+Nkvf8XL6wuvpxMf/v631HVh6sUYMq3RSrJCa1+RYBoqEiLLujjwdOFwPKIKT2/e8Nnnn6EKHz584Dd//3dW5d/vmWKGaU91vbXT6eysAY+feqB0A56aRmoHQiTmzLw/kHd70/coK107U8rMjzvyfkecJ0I2I5NJItTGulZaqZTTK99/9XvWy4mXd5+xm/eU04Wymji89QOYXloMUMpqxeG4IyVrh7RESmitcD4v/N3fnvj93/8Nw0a7NSv0pmjnyy6ZNpGuzfR0ujENklh823vnej1zuZw5X07EmAzo9MTX9kaotSBl5VyMhbAlzai1X6maVqvH/HiBsHmx9nq9UmtlmvbmLjjlTcuzVmsjmZLN4zr2oGaFRqaMSqCJWFFEhNILvWEutWLFSVuT2WLHVrksL5zPnbdHE2HfH94xzdkBSaVhLrWSAtN+R4iR61q2vVd7p5ZKDEJOxiaJIg6KGDjQVVlLNcfCw5HrsrCuK/NhT4iRuhSCBB52xvxbLhdjtqZgLVPhJnkwTZMxen3ft/zb2iB3uwN5mnh82hNOnT/84VveP2e+/sPXPDw88stf/YrzciHmzG5/IKdkbo8o0qsLoge0Ntq6krAYqS8rjcLSFw6HPe8+e8t6udDWhd3ORP/rsgCQ8pDqsMS2qxA1EVqgL4VaO+fTM8ej8utfPbHfHzj+9ZE/fP07/vD17/nu+wuXtVDblRjF2WpWiO9FaWuHEqAaIzJI4Ck+gUR2hycgU1aoFNryQhcz6EnzRJRAbV7crx2JBuSZsQws1wXt8Iuf/YycI//+by5GKmiR3W4mzZmn/YF9mvjD8gdqq0i1szzHSC1WcEyTaYLRqulUrZYPaVOmNDPvM+oFnT988w2lFN4ej7x7+45//s8fyIh1R/leK9H26hGyKEOyxIwpTFvMiQs68lDPn3zuBO8sieOMADaDD9zIQ73kJuMsvOsY2PJq2Ay13EEUX+PZWZcDeNLg4JPHktKrA0+BVjqV7mwlA5XVYxaJwx39HneQrbun1WaM7+hnt5i+3AbQeqt1Q5B+wxVG/GhmpnegHt0EwSVQVuug2YBeCWhXM0vIZ2JI1PpC7wrNCnZrtVbBpVbybmI6zGYIJOGWP2qxbDdGa3FHXVYnGLANXFdzrCNkWlfWWqir/5FOCsrshh3d5S+MHaweq2VUEq1bcv7m7VtCmqiaKE2hNMI0keY9VUBFmPfztpf8uddPBp4e5p1dUGlGDXSAJ2L9+9uUUWt3w5Fv3N2rS0CDuY2AorUiYgJXhtg1rteFdS3sdw/EmOn9bsIMUEO9aujxrM1f35xVrGLAqAqq25SLCcF5/JvEFkprzXqiuxCDC201C3qDVy2FwbDp6KieJrue7hNQ1ejXWoaWSyf0sFWSQAjB7FOHQ4UlBYJ0oVcHSGQkwKMKop60iKH+wTD/LX2xsiWjp3bT/xF1/aa+bQSMDfwO4AC9Bc19YDueHNx+czuoWjPh9UnMUlFL86AWUrZDfPT66vAXF0fbt6yrO0gzFjBedR1C3RaEWmW43xxZNKDa6Z4EDqE5o7rhu994v+7su2goMyAOomm0ZKh1zxu8d9qetY1rdIS5OktlwWiUOUdnIhSiBGKemKcZa+0TqrNSDE+zjae0SgvmfNJ2RrscLgPXi7UoBHFr+HuR/HuyjSddjMLDj+TT40t/TDj8nv10D0L9p/AS2YoOfAQfjaXyj7zMbUzu/nub7xg70D7HgySHBmzM7e9WjOKcs4N69Qaqhxh9T1q3Q0s9sTZGomwXMeCJ4Bt7EGuFjUHp2Xqjp2kygNYDgUcVa8mpk1P0G6V84ZRfZ0ldrELSm4MWMfLalEuztonRQlFL48OHV7s2vTqDpaJhoeXCZ4+Bn3028+tfvqX1B/7y1w/85qvv+Xf//iv+7qtXvn5/4fj55+TDA/und+R54uHxSErKNP8lD3vlcQfL+cp6Wfif//X/wOXllX45W4V+P5ljU11dn0kJWAKRZUGzsMuJIYQqYizKMPbz3AkxUEqntb4lPv1uXo9XuGNQ/ui8kHALHPxcCdHngsKcO8edss+ROTnjpguqEykGDvtbkaD73nkzjrgBSSK4G81tAtoM8/0m3E9t+72xhZelsCwr62J9jb3B5XzmO31m3kXyJBz3mRQDKYn9iab5FYDaoBXfB6PrLXhFUtSo7wJeobK9dQxjd/Czw7Ynb22EfiM3Bm7cqr61G2u0NKV2Z0UzmFi+FiwqtWKDGifHWAQWPLfqwyXWMo2E7czPKRK21YeL4JsTWO+FFpV5ssLALiWPH/q27o2cZoDXOC/oXrBTNrHxu6e4tR/KBiHdV3Jv7YB2hnr1+KOCAXeIo7X6gbntVVWWUglrYVoL2RkPUToSlHk3Y3Gc2Smfz2esOTJRirEgYzwjIs58MKbcOB8HK8UHm5jTVpG0XKBvYxAxwdnz5ZXeO6fz66YNOJiaG53/YklCqZ1pmnnz9jNag9fzyun1xPOHZ7QrKez58stfsjvsaL1wuVx4PV03xm8Y4L8ElMjzhyvncyedrA24nCrXU6csgR4niDt2uzfsHkzn7OX5mcupeOFwgJMgraNN+fDNBzOzCRFtwn73aK1VTfnuu/eIRI5v37B/eOTNZ5+xnE/U1+8JOTLtgxOyGmmaCCGx1sVbroxp8PjmSOkLv//Db6ms7I8HTq+v1vpXrwQJlLpucgbDxn5ZLqyrsD+ak1EIyZidWXg9P3O6Xvjw+kyeZ96/fuCyXGi9mPHIFNAo9IS1By0Lx4cj8zzx5u2RXirfPj/bGoumKVbXM9/94WrrtdSBrtJRzpcLiLHgai/U68I0G2A5T8lE43eZWoVaqgsVNFJKxBjozQqnvS2ggmja5rx4y0mKxu5hCgSUDxSmpDweZ9eHiXauKqTsjAs//JUAAW9BVTaDBmdNCIE02Wd2UStKqjDtHrAzetpiP8sLoKdIq8Hav4MVaxjsB4DgLbSEjSkvwUQ4erjt79pd7wYYzptd4NsPz5yXld3DI5JnQt4TojDHYIzGGKx4rZCTrdVp8mKVF5x7dw0yOjEYi3Fdjf16vS7MVS0XUCVLppxNl6yWSs6Z/PCEICzRWt01BLOqb90K4qpcn20/SXFnsUWtdDX9GJWL3XcKhGyOoufrhb/7zW/47LPP+awpT4/vOOweWV5fWS4r33z9ByQK02FHzhN5mrleFla3dw9BuJbV8rKqvL5G3r//A60Wa0WuC7VjLYrAvJs9XvMW5a7EqwHcradN52qVwjdffcPhcKC+WXn/7Xu+/+6Zb7955nI58+bpgSgZykRrjeW80KvSiwEZ4udLo/P6eiGlyG7/gGiiV+V0fs/pcgIxYesMboBhrJcYAkgEiaxLp1aTVOgNLpcrdPj1L37F88sHvv3mazh2QoM5TuymmXasLtFwotWOOuNdfE6JA/osBsCklDgej1TpPF/P3rkTOMw7mHZcPrzC2jnkA4+Pb/jyy18RCURRPyfa1l2+bZrBW7cxgMr05DxH2ogfYdOMHMdarcXFqK0VXraz5wZWdY8L9C6nHjE48FEHSt/kTuy8HLGIqsUMXRvX05XX5xfOLyfOr2cu18UMElqxDoHiLtPq3SYMZrqtafENRcDJMIZR1GbahpspjZ/pwdvRS2lMc3b2eQPFGWKgwa61tEaKmOssppc6CjOKAd8SA0srtPMLtZiuUxRjrJoOnuXvS6+sSzcAOohppzEcFqG3Si0mup+niTxl1svibCnL82O2XFuj0HKmCeymyJSCG7WZeVGMgZSNpdXV2pNbM02xECPz7tHm/9qtGDaDhuR7/phKnvP8hNdPBp52OdO7stZm/OvWNq0TyxVkK2i2fmtdGW1GKmL9gj7ZWndAKGar9IlRapfLQk57RNIWrG5sH8OXbFIHcT0Lf3nAF4MFpwmhNnMCGUhqlIE+OtrZmw8W3l4TLTnyCoNFMfbG6pbhVtG0CWQ0OzscdTuAze3vlkbYZA9iqvoxhLHGjGUlgjZD89VbJIYumo7f9kQ1irvkbIvWkyVAhlaRKCrNv+uMjZG8e5C3Ib+M8fWFrbfPtd/zDcKTj+ZVgRyM7tu6BXi9YyqkYqLvOCAG3PokldsmNxIXMZS5O93YKrX9tnGhmwaASGCzy2WAeffACtCGda5uY2duPtZCic+hkXMEGb84xmBcl1MGq82TXlyLRTJdzX1kPBOzug+UYpwrHcERkdYKtTQLLl3AU3W00Rj4pO2uvW60jPh/bgDReF9n0G2AFD+OyXyqn/Tpv++ZRf9xQShPRlW3f95/7x8NOt3dH9tbDIaJf6wnyx+vhbHGb2/TnUAiAWieuNtFI+JuYs4oEHQDobcwV7F5Nyo8YaxXe5cQb1wMN9b5BIzgFszfoY7jXsw13fTMzLEq8N268rwWzqeFda0s18r1upL7atWhxarCrSlhFnoKPB0STw+Zz9/tiTnw5S/esDscuCyd95fOty8L+4cD+6cnHr78jDxNzPuZaYocj4l3R+XdA6zXlfWy8t0fvkZRzovR5kOeIRSGeDuqiJrZfRSvWGdjnzS9rQNxkH6Mtfoe7LqWPzp/xxz/MR2xAXZbtDA+w/Z4ceA6RWWajK2VgwUDFhxFs5bO0cU6fS2OhJfx3r77uwC8+mTaPlb9XPwElLyf7921R6zt0oChUgtrOXOoiXkXOMyR0VUn45y8u8feTcdQxtrScR2+IY/fCfJRQnfbPX/8JXe7z8CS8PVk56obZ6CbppONQR8EQNeUwsbdb15xySjBWMdi+7fWdrcXjku3gFC7mpW9G3CEbMFxDsG1CPo2NsC95u6NRaVbk7Y9D+EGOI0/2+obzyo4hnaba/fFgtvo3fbz+zNXxZhEpXVSa5TaCClsGl8GFE3EoLS6OiPQeIAi4kloxcT/b897XcumR2Nagiu4cPm82/ka6tt1RokWV4ROFGFZF1qtlLIQotl0j4JO642ujerPK8RM18AbsbaTZa1cLiun04U5zUzTxPH4luPjkWU9o2oaJ0qltmbFNHGQnsByrawFpFgi0q9QVqV3oTd3hwwTKe14fBBjoIQZuhnTbAFwDyidy+lKyo1pt0e7ME87q/g2a5WLMbF/erTAet6hrdAuQ+8m2xiXZizYOBzIAnOaSTky7yeWdeFyOtNp5A95c3dsvUKI9ne/W+MjLqWzI3nMJKbVkwLLsrIsZ7778J6myqqrtbGIs8HNWpMezZGpl85hb7ovu2miBWPUSDeQAzqtFZaLaRdKtxbz3XwEVWpdiDmRY3KGUt3ajkxzRply8ljJkznthGSGKykGm3eL/U4YrklghY1WbQ/Ckp3WIUknR0uACMHYRXToxqZAZJNRUN/PQhh0RN2SHe3BWEd5tHg1037VYaoSUcn2Ph7Th60ltpsos7NpbP/q45DgJjjh17AJpbVbjOnizvj1CQZEnK4LtSvXUpm9bTKmRJ5M+FqCmD6RNmsfDGYcMPTbyrqwruZCpr3jgjKsxeQ81rUhUklxdcZYZF1MuLxuoEUwxqNEB8/sM1tr5GT9xJfLlRQS02FP7aZnaBo7essfAy52Lqy18P75A3ma2e2OHHdHjrvM169n1qXy4cMzMUWeUiYEZRJrJVxWY2iEICzr1cCPapvl62tnnhJTNsfx1pXiwFOKnjR77DwEve24MqBDm8Uzr8+vaLMk/XK6cD0vnF8XLteVp2Mi9IxWd/JbA71CqxZHGInXgJF1KagKDw8TZKi7wvn6YsBDbSAVJBASTCn7dFFvvcogxjQxke1AWc1d7M3TW8pqxjAlFVrM7PY7UkwcpyNRE6/tbC2ArZnbdrSLE4TixcYmnYxydGOIWgpZApFojqESzByhdp6//0CUjHxxA71NN7dtR9M2x7e4BZOJaK5xLKA6ziRuTDZGF5Ex9wcb+T6vU+0bA0wdxAEd/UR3x+L4mVsMMUL4+7+Nbdypq+1ny3VlWVZKsQLLkKxofQgLbB9jN6tjbRu7Czrq0j6D7KDcdYp0HfjVBnKCC6lX77SS0VkjGzg6nFAluYtv9Kbe7l+Pkaqdsl6p1faQKc12DqrHFeIxYHHt6eBaUnLX0t+7OT0uF0IwELuttg/kKRMipJFbSaQne9/9PDFNiRCtw2M3H0xGYor0XqktQalQG9O0sz0m7XwoV0RMa7o7UGbkHJwY8U8MPI36Jq0RgOw0bonO9LCjw35Wwg208ADNAtCbS02edw48RdAKrTOnHXJI7CYTc6wjhIvBY2a3MkY3MGJwrUbQJ0COE7u843I90darOzAZKIVg9HLV2zhFoXkfqB8rjIasONwigvlFNaAnAzBKVwcyoi/SbEyfNhInQbt9L5DtHbtVnlvv5tIRoglya0OaYOdg9Ki43w5bt7BOm1j3iLJkW/QDbDLJA70RgfBFoWVLgEJMd9pKitZ+e8q+uYzkX1w4bmyCPmSO9tumEUJHxJIkMJvtMW5bZTl58tjHhuXOXs0XcIxuJWvW2WbTbTT3HCcGS61rR7r334pYtZZwa63rbQMBRwsL9ugJTkvVEai6i1IgWm1cxe5BrXIuvmG2NXBpVumb4mQU866USwHE6PEEdvmwiduvy4mmhd10NKvOeEB7gX6iF6VcLRi0Y6978OSocXd6k8VZvp7tP2546x3AMjZV+VhI/Eajvv3sp+DTf+yX6yF/DJb/COj0DwfJRug6QCTboaIHkYNWfEtpg3XcqjJcoNLsAokqKJ0edGtHxTXaWnOx3Ww3YgdScLBzAAx2zXY44Yf/QAQGq9OuxDQdlDTWZ+/gc32cxN0rLjlG04wYUi698yYljikh+9nGtVt7wvrP3nkSGTxhB/WW2OPDZALGUQa6zy8/f+Lt//l/x7/461/zzfPCup/pOTG9eUCDcLlaa0A5Xzl/Xal/16jdkt126vQSeLkU6I3X1zOxN6JWkh9cU5xIIZDdoEJpBhSPg1qFGlYEOJ+fmXeZL/7LX/Lu7R706nvNHUvlkzk9XH/uGVA2d5SPf/I2T0BICeYJDtOOQxLOzUkVHTR0aKZTNSUhxkQQgyO7I5WjyraBHf72QweKkbiotUeOPXW8gsBxP9GqovrB6e5ne95hJrSALsL5w5lSziznV9artf4mCcRpIk8VwQTIe2/IlOyPA+vaHfDsroGnXvmTwJSTj5VdfOsmTF6b3GHftq+aHTMOvjmAEyw4GsYLBkz5XfoeFYO3lMldcYph1uCJn4gDvu22p4uQHOSNNGtJE4jBbberol04TImubixyB7wZI8n2WGmRoNaG0rAb62Im5kU7xUHSrjg134NHP2urGj1+nG/Wg2tMrVvrNKMGZ+eubwVd3AF1VVoUtCQIE8LkFWI4v1rFtKwgMjHFR/LuwHR8ML0Gd5GSIDw9vUNcQyilxG438/LygdeXF75//y3L9QI9+rOzaHq0qOsInkWZpxlS3th4YWwrWKVdQzaGmULrwro2vvnmg7nsXAutwZyPdiJXWF8rWSoPxydkErImgsxM2U1SBJ+LQg6ZEDN53tv6iJU1VaakBF5Zy5n/97/975GYCERqqfRmIuFzxlzGWmO/O0DAXCG1IqmzS5nD27dcz2cu5xPnD99z/vAdf/j67zGA/IpoYycuZN87UhvSlHI9USWyPz6QgiA0chLitCcvxjhEK3VZqdrsmWSLIs/1bOBejKYP1rtXyQPreiXlyuHtjmmX2R0eeX29cDpdOJ2v9LJCs/1vPsxMc+bx6YFaO2spHOYdaTb9qJwm097Imc/+8i9YliuvL88EZxsc573ttc4AH20giQN5ykzzzLvhTuWx33o2LbUvPv+cy+XMh/fvmfc75v3EaNXb79w1F1so2lw6QOF3v/ktz6cXyroQU+bh8Yk8R+IX73h+feH3375S1k7tyjTvCVPaCgo93hJWA2ScVR+cRaam+WKtU4WtTSYkkpg+bNXCSrXjzHWScojeutdMrkIw0CcIzfWfrLWoe6zqSW8d8bZHyeJ7CBk85Dd9NKjaqUT+8O0ra0u8+0LY55nd/ECpZrwQk7WVWatiZzmboUcmc7l0Xi8rz6dXlnUlz9N2JgaJTNNbzteV999/YM6TuV26PMfr5UTKK2H+ACHQAqyXlaWsrMuFXgu7GIkCWYQqleX8TO0GrKSciDlBWOiqnC6v1FKZphmRhEjk+fnE5fI7Pn/zOftpx4fvX21NnQqHx5k3777k8c0Tb9+943e//Q2Nb7lcL9RWqdg+vTtE24O6olSWtm5A9DwnA4HW1cfcC08xI31CdDbjJDrX9UrVxsv7bynLiV6u9Fp5c3jgPJ1gEZYPlRahXYRpnvnFm5+xrFcu5xMhGHhfm4lZB9e3k7YyJzi8e0TUnAjPpxOX1yuPbybyFN1NTqmlGwibYJdn5jSwHeH8emHKE09vH2nvzFH4fDrz8nqBmpjzxNvHzyi7wnffP1tLVLduoJCMySpezFGBEE3uYCl9cCIIITH5n4Bwel2pQXl5/4q0yO/T79gfDuyPBxADfrprCKUpowK1rTa3A3a/rXmHTUCjmVGMGKj6OYd4C1lKW/ErTHkrLOp9TObMJ3Qwinyhhwgxb+3g3TPw2i0uTZvrsIJ3sPQWKSu8Plde3hdrgRYlkBBphFg2IuMAoEIfEZa19QVnvXc6UazdNwbXdooWp5ey2CHYDVMIczZn0xCQyc727PeuigM0yUTtgwGHgmEfIsFAwCCQAsXbueNkzoqtGAYQkheR1MkJtRF0JqTINO9AldPri+29c2aaM/OcSDEQovB43KMoOectp7B4yzUAMaOSmKy4IjGSp4Npss07Ltczp5f3dE0OLk6ggevFnqU2KzKVXu0eemM+HJjmzHI6u17nn3/9ZOBpQ/N8zo3EyxDEEUirzz7Tz9GBkPoNW+IkPg/vhMi9oiYSSZFNM2fob9xXsG/35XTYEQiPc0HxoNXBIE9gbIFaO9rtvTxJtJQSQVy/ydkQ4Eix3YIXa03zAD4Cdm6iZQMlGPcaHDG2g8Pe3g7moNF77JOTPpwFIfi9d2MvjQqlqvWjyg+TrPvXtuD1FlSKA1i37+kG1I2b0YFc+nKVu4h9C6RH0jGewrjl4NcsnfEOG9NK7z/IWU6DAaIDM3GmkdwQZ/sN9SD5Juj+UZ7ou6WMMHlE+dxQdN0+xD7whtvoJqB363uWTWheGK1UfUO07XOtSq59wEUw2FLBhRBt8zUEO0gihISJfzRQoTelrtWppPcAknzy9zYKN4TGb3v8W8aI3wEzf2x+jO/9x2A4/ZjQ8+2b3J4RA2j78Z/9adf/6f1/Mt/8M8X16gZ4awCBONnS2SDIyCm5UZPl7v023jIORXEDk37s3r0l5zYp/WduwATYPjH+S7Y15F+5Y4AMkMPWFday4+BO2N4uwWEI08TbW2xv4BbqemsX2k/JWuTSxPGx8p7OKhAfkwmcqrI0c9+op0J/XSFUulb204Tu91wOe6PS12J0XrE/VnSYvHfdxqC1ftOWw8VWY9qSdRGYp0zOifvne69h9sOx/pHXQOnv5sTYpkAsaIlmDx/9fAsKKu4UNPRRtlY5uZtXun3EbaP6+Nl/9FJuuhs+J8SD73mtzqzyueHtw0FMMJRREfdAb7sR30s3R9F+YzkNht+N+WW/e2OI3YZItiTLLlTv5uOtjMndXJS7sf14fAFnKHuhhAG29e0nR/J4G5jxfR/HIXKqo6J50w3czkxt0N2RRoT6yVyQu/8fmm1DmTIxRPhxTSczUhFku8qxnhQT8zRAary53ft2fzctgNsavrsCu1xFq102HgOo21k3E0+gFrPDFnc6mucjIU7GlCrGFpx3D4QQ6U3JOTHvZkrtlLUT4wkJDnTraGvs23NSvweLPTx+G+CpPxdRUDFgImzP3MDWdTUX2ObuPTllE8pVWC8LMUSmGKlrs4KRisdD6iC3f06/MZrNmjqgLaBZ6LXRW+H0+oJKJLiDjtzN1REIxmCW9MXlIAKQQmA3zWgtlGtgXVaKu9+pDAY+xMnmUsBkqeP2CNWJ7nZtEoSYA61VUoz0aqztGAws7WqxQ4yyicD6CnQRYqX3YnMq2geFGLkuV6xsaJPCjx9jX6bAPGVCsORsH2Zm2TFN2ZIdn3vzfg/B2GtSC1KrF8wic8oeR60MJmLKiZwTOZmw/Fqqxfutm5N1TJRoGqwpJVLODJfi6GBQEIHe0WoDJh5bm+yGOHvAwO3H/Y5aFqbA1p4iNCu43gkZ39bJ2DM+fg3msd6vP5+1VoA0vbkhuRGGbpMaG9XYCUrUu/LFXWt09xjakwYUNlbk+FnhvrDnTtOY3/LpciXmC6/nC8TEfFDWYszVSW08WzUQrNVCwhhY67WxXhrXS+WyFCYNhKiklM2dNO/oVbwlxs6nKSVihN4DpSqn80KcEmGeqCrULpSqtNKhmLNf9BZF1UrtnVKHzQ6bll3z4m1KCdzQYFlX1rWzzwdoBviO3NDaD+0ZpjwRUyZEa0HsnhNoEMtjPFZXNzmwJ+oi6Aql+NcGrfcm6GJ7h4yCgDlFr0G4pESOE/vdjsNuT187Za30aiLqU5rZz3ubswiwAoV1dac6AO3UdWWaTedsN+847B+4nC6mOzyKDON49w1U+52YtedbrTZ66IQQmeeZh6c3LEthrQYqmjxMhAQpJKqY6ce2L+MtZug2L1WNURVEiH4GBfl4LaiqyXlcr7y8vIAIecpIjhvbfuRyn579t53qthLvz3xryfOzHPFQ+JZ7IOAij7e4zN98vPNN69e6fboGzwkdoPdcToeEga8viKiz82rptAJpSnZebQYpbStqjGRO0Y/2i61IhuENUayACx7aS/+Y3CJAhIAXgEdh5k5iYQiIi+8/4tvJeHRb+ubn3F0AZmxLxQB88TSDG+Oa3okpw9CrFEWidVCl0RosWCuvyI1wQEM85haX64lpmLglZ34FVCNopPdAbUAPvkcaSKhtPHu2da7N2oLxtszuWrU/5fWTgaeXIYbofYH3ImRjOpn6fTAxNJ+UI5iIwQamB6uIaDWwp0h3nR31oMhFyiWiWrdD34TDx/TxBEpuSYqPsj3kZoKSRiZJhO6gT4SuVi1qOGigtshbMTroFCYkCH21oKX3aPcgSkUpuI6TOM1MgjEoRlw85pJXSkQtSVDbRTzIEu/ptKmf00wiWyIjRmEWPwIalsiNynSTT/V7RmAr7t7nfbyoJW0SNiryTa8Ds12tbDhNrz6K42BwsTXLxXTErKgqV+q2+YYYXYxUt1YwVbx9DtOG6IbYSxvsLKuo2eT3dqaxMam7eDhTwQt01rcqQs7zdv/yEetNcAExks9NA5bYtBoEIcQBBliSXilISK4DYefFuppgxLSb/Joqw8Zbe6csZTsCe7VerBgS42BcloXnDyfWxfQkrLVEqLVDNfrpci28/+6Z5bxislXBk9otQt2S2PunvD0I33zsMsL2vXth5U0PzV+ffu//v18f35+xJ8wnhjvAeROvH2PrCERtNsYxRhRzGg1izCLz0DBmhaoxFMUPMfV1O9zDXGDN2S4OYggb23BQ9rU3PzyE6Y6lpuOg9BW+4aMjbQ+j9c9/vnWCDA0ku99SrHqUs+1TVl3yFmFf4zGNkH3x5HE26nJZeZojh3nH8u2FtjZisD7zwwqcCq9fv6e8XOkvFx6eMsd94q//q39GSsLz868p68rldHYr9URpVuW+lEppnfNVKaVyen29JYk5s8+Zt48PTCnz1W//nhCUkB+QeADZu/Co/mCepztxyG1cfL4H7+0PYTANrXKtemMeiViib4iAkiRZYDgpKTToK5GZHIyZYq14tkemNB6Q738dwsBQRrC2ATl8tI8rzc4LCXz2+YHdPvHtdy/UGkH2oBHRgPRG0M7hEKlFefPwyHK+bFWtEfjHGJnyTA+JlGRjNG17he8wY6VYkuhJt5hmVG/NnL/WlWVZLIABQhuBkv3PQBtPWtRcg9yv464l3pilWaKtEU8Ou2v3KVhiuP20z+zeTYvDf0fG4Yq1hyVvKUKVXjsNiDIBJp7cvbI+2jY/TjKF0KM9o2DudjZVylbQap50CoHKqEgaMGm6Ll5+CHexiO8Io9BlQq038wwhmqbU0lGptOtKj3GjLlps5bMmWOu8mVkcOe5mJOxQgefnF0qrrOvZQCEJ6Bpo7cpyPdHqQoow54QUe9opW/tK9ecsFuhY4tWq6VI4WiJ3hcXelNbNxS4Fq+pC2PQ4UkqkFMj7wPp8ol4Xvvr7v7VKvSN2rRcHYpSyLOZ851pe7VIJKXFUcyc85J1dQxaW9WQtFdLQoOPEJ+eONEvcwXSNhEwgsJssuc8RDruJzz/7nG+1sb6+oBIIIfL287fElHhdLoSgPOys3b+WzqSC9kCMsyeUFidMySrQYUro2ln6ym7aESPsDhMSlOtyIcTA4bCjrJXlYsYRvavpmgZhKcvW+hhDJM0zdf2W999/6w5tyvF4tFa4ObObZ54OO5OTkMRTfsM+HTbtrUtdkNbZH48sEghlpa8LvazMKZFDZDdbfJt3k8dlBvhEScx5JsdMvZjWzDSbKcVyKbRiwEdXYSnNhW2FpVhstV6vBIQ5JRcyrlxXpVRlvV6JITDHmcPhwF/84ufsYqScz3z7/gP1dEFjMNFnsc+odSS1wQSRJbFcjM0iQ58FS5ZjiChDWNgFfYPnB+paNc5Azph6vwTcprxxrVdbZ773hJAt1i6VnCZSzjRv981D/6UBIsSQ7/awccYIrXd+99VXfPv9d5yuJ7742Rf8+i//knVdfc772nZQi9pJRHYyU7VSemVZOrVa3BESpJCZ0oHPv/gFvdn1Xa9nyrLws599Sc4T9e/+huty5Zvvntkfj3xxeCIfDzw8CK/vv+d6OXF5/p61N7IcTFQ4JaQXeu9clxVdsXUkkKaI5Mg0C+tSeX0+04wQg9bGftrzeNyR5yPn5ZWlLPzrf/Ov+PIXv6D2zul8ATFB7a6JogXtlXV9Bczy3hvqSM42GkDWeCYxWreI7ctnkCu9m2bOnE32o6yw1EJdXvjlL3/FL37xC477A6fXF/7lv/x/sVyupOkNB4kcj5HPd+/Y7X/B9XpmWa589903XC8XXl9fWMrK++uFt2/f8Ob4F3zx7jM+e/OO9fxKWS4ubh2Qam3NaY7UUlguJwdvI8E7IEIVM3ypK7vdzC8ff8npcmb55mvq60oOkTdv3xBC5OHhQFwC9bTe4kcLErbYUtsQn27M08R+tzcZDxpLWUFh/zAbI7QtvLyaw+gXy+eoNJ7evmE376mKt0cvdraFwQCCIGnLHQWhNsdLXAczb2ALQDdXSE8et7zCAV+6yaUMqRy1BcKge5SmXJd1oDikZJp3obu2oxe3gotco0JdK8v5ilYlaPCcHZbWfO+5Xd3QltLxxRCIoTOJibjPMdleHgNN21bUDjHysHM95RBMK7V2ggakCTkYdFLXuu13IsIUgjmn6pC7wWNxofWrX4MJmE8pUZermbE0iztDt7/nGFGJBrz1BpgLbgjC43FCRIwJ6edYb4Z7zNkYqMuyOvBuz5E4M6VEmiZi9/bNi7XOr+0VCYGYLyzlyvmyWKt8ylT/GfonOWewtuUoVnzRVc0dM/0Ti4tXHe4UwdHXfuvHBBgIpqpXzwbAYLoO1p4C6Ki2fYyMWdVKbhXFrYzoSSNWJRro4wAzDRi96XPQ1XvimwM/o3XJWCo+BTzB6AMDZTjf2NfsWAND3vGFE241UbwD1gJXBpYK6kGuRafCRrvXGwNoACbIqKrcMXnwyiGjuj5+/lOgwKGIUSHa4l0nFzroMhIzS3DvQAiV7dBTvQuXxxjpgD30I6KNdRXIRi4SERNWw9Ba22v879uDder+x/fwCRi+occ3lHy0R93q4+P7ox1qGwkHxdAxXwaTxXRZPn3dg5Vy998D0xl9vR+njDAQ/4F4d0ekg7P/RmVcpJkWTAruOGCopG3yRgW/nK/U0gyYCqM9VTbWCXf3/NGNbmDJdlH+D/3h7/zI6z9V0OlPMVXuwbJ/GraWJ6twK5Rym3eDuDHW1y1NNytF9erMNjMdsLL888bo0O1a5ZP/t+d1a7HbYI+RrfvVyKZbrXfvcHvMH68qCfLxvYz3GPsC3A4Pr3Ld4IdPwTr7k/wtr88nnl9Xwtkqo2VdqJdCWhsTQpgn9kmYI7x73DHPicMk7q5zIMRAzInS74En5bKYeOP5fMRkhk1ofJczj4eDVXOD6ds8vXlkv9/x6Tz/iCWpf5wRp9s938C7T8fRjhFFKXfVPQUtoMUKJXd8mPE8Pn6Hjx4SbO9yd65xH8CN37TTJYZETIE8ub5dj1tBRrprJWnzlmSbdyllB7y2mXMD6bc49u4a5fYzbIH9ADxxNtWt0BG8wIIDRj8c4XtG8piGwsfbzbgQfjjl/Hruv6Sf/ofcVsq2d8tweevb89U+0kBbT717G6evKxErHhnw6KMlBkp1j0X4EZaFjq33FmvjJYNt/d5Wrm/VvvbEwTwTt/dn6BVDq+Vaot2aBbMtto0BqNpZ18b1cuH88sEJscr1cqG2xhIulqBI3MZkuVxYlyt1XeitGLg2njXmaKc+C0dldehaBe7njCc9+vEju2e1hBDJebKES/0A7Q1xUa1eFQnWGizibkV5yAoYEtBjQtzdOEZzwjNyRKelYuBhDmg07TUD8KO565buQtXG9LO/ExsbDhDt5JQ5HI5oF0opzPOBlBM9JUQqKS+EroSs0I2tHsOMN3shIZCytT7FmJlSYU6FlK1gOKVk+3Uvpp+RErEpGoTmrdwjVhCnTDaXUeituHmCJ5vBWvRSiEwxkYKvfSx50lZpmKBu106rK9IDbV3RUjadMotZTHx+qasVgP08rbUiWs2FuEMLjevlSm3N14mY82Izd7lS1NuJ3VnJ2/qv57MBUSmhrdJL5XpZaVWRbjIbZa3UVOm1kSTysDtw3S0sy5WCt/+YtoVV2BEkZqfjqeuJdvMuHge0WGy1rbnR0usTdXi1jF0jbP/G1r7c9jtbz3Kr642dRm/6b+htbVvcftP4ULrHnMZ8srbBzuV64nSeeXn9sMWuW4t1t2s1qQso0jb2Q5JoLpcq5g/QFFq/WaWP1CYAORGmiWm/p6K0y5lWKnWt7PY7drsdNZ/o60KJyYMeu1G9PzO2WGiD0bb0QkS9DQmkg9JoWiDMBGCaIr00lsuV6/XC5Xwip8j09EitidYrS71Sy8Lr1dqkR+s76qLqyqatM/Z4y1tMfkToBKko6TaG2Fmq2ihVKXWl1JVpn5Fw5Pi4h9C4rhfOl8Tp8oyGA2kS1mrMx9ad/ZdMq6u1SAhmqBRiIuXE4bBnXQ5WMGkV7ZkYrFUzSXADKM/thqFHdUH7Vjfnu91+4uHpyPp6obfOdbmQU+J42BGicl2TMW57uzHrRzzT++3RFaFHa31q3moJMJFMaqWBmJgVp/PM6+lA3k1ICubcKt4+Lpan9hHeKu4Pbn960434dx9+6v25cVfkux2Unnd6Prat2TGhXFdyY0n5v7e4BWUkn2NNa+uUdWW5XgmYi3gKAaTflVFHvnuLbAcnZGOve+siY47pLffrHjsYROG5rMdYQ5JmGF9L9V9stt4Dt/WxRex6Sw/GGAXpaOibfrK5ozvDP9iZbz3+489w1AtW8BG7hz60p23JUHsnqLlmGwvRHHurjrJgHVOKZV2tIOZIfEiF0sz5LnYD2Mb5seU4WLG+68BZXNqmqbPzfxjT/tjrJwNPK9YGId6ErcVZOL2TpoyEYFUBGxFs7QXoQuhWNU4xsHYHrDYA0oX5ogm0WcLfqd3ZTmJBSPAAeLMz7s2rdH07HOjQqzrFZQhAR2P2CK5rBAklSHNRuYZqMyq7QKrV6KI0zFjdVOwH9UZQ6wUHqhozJ7uooARDcGurBrap0ZhFcEtqoUcXrnYV/SGGdovoOq2v/rBNDyDF6BXDIZTqa1idHRT8Pr16KdhB32vbWBmqndbrlkTkHon9BvQM7S1LUoInADa5fIfxlSZotNZAQkfdGaRp3xwTrEpsz048iIySMFGZti3y+6QiBnHtHb3bvKBU01Cap9226dVaaa0Ro/XUBxx4dOZUzvn2vtF0tGq1AG2ADWHTMrBD654JoN3E4lux8brrnTOAUsx+GFyPJ0TyZBWD2pWUOjl3jo9HYpxZLg2o2/OL0ayfv/vme66nqwnTj2u5p/DeJ7Dbpj2ew93gfVJxuDHCfhysuQF3gX8aEOf/+69PGSw/4Te4z2rvE6Zgi2f7KQmjTa37IRk2F4zaK4J4pbOBrjCESl17YASr2qwqE0P2005x0hFbuWfcg3+6fX7cEtz7c3tcYAjuHMaN3fRp6559bQDUuh3BKMQcbwmz+EHW7c/Y94ZoqqXAwQNNyMHB8Vr57b/7DX/7m/f09GAV3vLC427Pr959wZvDkbdf7Gi8IrHwF+8OHI47VJ9s+oYRBChjFRYP27t7wJrWnbmUpWT73mgO1PorBGXKo+e/eTL/43P4fo4Mjaf7du0tBfHg/W4YTVuuVZqaaDCYbtuyvEBSdsEc+Ub5YTxWwZos5LYcLYAY4IuMeN+irO2yfd8K3gJlO5SdKfNs9OiyRqYc2c1mmU5vXM5nrpdXrucLtTT2+wOtFFpZ0aHl5Z9jmqIG8AX5mAUZo7lygm4CoMYwtjFLIZJTpuZuQt9+7o/29bE3dm8J2NYGd4wqZQMkhmbSXRy7tcELyX90nAOjxHMLgIy11tmCCITWvFUz2D0VN4QYOmy1N4La3N90H8Ra6toAKkPYnqNEiyeGoKmRlYdo+m2+uMmVh8Y2p5o78Ui4tSQMXYs5z4gEynK1hK9dkZyYCMwhM8eZ07VSSqOnTozCYbejlMrLhxOX1wsfvvmK2oqZo6SECixliJ0aK7fXtl3jqDhPU3Z7+EDvlbWcHVAU0yEiGECnxubqHx05Y0fxgs5ohWjm9rPb7Xh62tOuC/VypdcVrYXjQ0JSYC0GTu33B18PQ6MxuCSmkHY7VIS1N3bTxLvHR5brwvVijmJ1mujHjiTYz3c6WkVhbez3e6ZpprZq8UxMpnvzckJ7Zblc2M87Dr/4Fd988x2n84XD8R15N3GIgc6V2r6ymCVkRJPNxxpBA0EnwNhG9jMJ2SWiTkhckdCYJhDpTCRiEPZBWIMQg9Ak0oOwYA6Q4iYt68Wccst64XIuoAbixRRJIZNi5DDNxBBoV2sNQgIf+uoC276/YRXxXi4GXrRKb4XWKotU1g7L5QoKu3mmt27MgQZalBz3xJA5vS70ruyPViwgqOuiriy1s1ZlXVeL/VOErlzOZ1CLi9paqMtCr2aesssTEgLn04JWeDmciEH4i8++dBvvwDcvHzivxWJ0hF4WgiQi0Vto3G2r4WvX1pWqGoMoiFunR6LIBt7muz3DirK3ODeEhAZj0/e7mLN5LJwlmzZM736MuyYTameyJ/c4KN90pWtlijMxCA+PO1SVtZx4flHk95WHx0f2xyM5GFtBywC6hl+gx6cCj7s9IQaWZTEmc6m065Xn776zgzkHlr5QpLJEJUyB42dvkNfId99+w3pduHz4wJt5xy+e3sL5TCiFdHykt4KdwKZv1NVbx5Nlz1VNAL+L76MKkpTdIRnjqUCcFFKlsRBFeHic4dz57vnK5fzC8/vv+Gd/9Vf8/MsvuV5eKGXl5fSB0+mF1+++QoGY05ZHlrZY1hWteyC4qUathRCVmCaCrAQphDijEqnNgIoUkzni1cLz63vCt/DzX/yMp8+O/OXpL/n+u2/5V//6v+fl8j09Ljw9veHd28+5XlbWtdLdif3hYQdMPNRMCJHz5cRhf2ROmZ9/8SUPhyO//+q3lOvCnDIxZZ4OD8SYSCmzLCu1NlKarF3wdLVumesZlYm4Fz7/2Rv2h8zf/fu/5fXDC99+/xX7eeav/uqvuFwvdF24XC6cL2cDsLwNV0Ro1QpwkWBtw2WhTYkwJXAN3egUpbJ232sjncJaFkqvPJW3zIeDrbU8eQyb6B3W0pm46duiarnTJnsz0ibPh9R4842bHA6qmzYuqi5TsTVIoqPVDzX25XQDK7aW+WFS5bFUCIJop62F08sL77/7jikoT/tMti2I6sXA7rHCcHhVcT1mRm6s5LUayz94i1+/5Ra11o+6g3Tj5YXNFVRjMrZw1609LnQvEjtBaHBr4mi0CA6AdesIEmkbGWSaZ1LOPBwc2CzN9C8VQrbWcYkRFVhDofXOuiwQAiFlj/eEdS13pAWzWUOV0leuV9MLpJvp2uvrq2kiHh4hGDPcfk2pFGOnJ2ulztkLKmLOg6sWY4cnoVWTj0nxFlf/uddPBp5uya8FqEFuCiXbBPFIeutN7N6f6Kyb1tWCYVWGvUz3wE5GpSCGOwTeg2H1sEeHu40BT+qVOfvJ2w0bFXdUZL2CKiYcjvrm7knB1s7ikyT04Gi+aT8ECc4MssEy6qHVWEYXZRgzrXVib+DgBDoOqgZqwX1XZ4FxT8915HAM5qAO68hfvXXGwREDPryN0SP4pp0otmGkkG6AkYK00cIYHUNSoNpi8kh76E+oMzAsaRksrTGGPg08mTFtFkNZbzjIAOhu/29V8+69s3FLxGptW2A7AMUR1vu2hojbzI4sTWHTORHXyEK2iWjIsiPWopY4qh3pQ39qAAUfvS9K8J4YCdUXovftpujPq/qz7JuwuXhyVNri8zcisRFSp5Yzdb1SiwEUtU5WsVJYW+O6LpRlpS8rnQgxDCB9G4OtgjYS1SCersMtwx13Pob7x4GZ+1a7j173P/5TcKhP3/4fiF39YxhXA1D7h/3ux+CTL8kN1bnDdm4HHOCcPsCqDOC9134IbdPtrmq4fcZH2fQ9oqE/Mk4/ci9+feOd77iU/it6txTuf/+Tf6slQNtcH5891slAlsZ6G+jL9ubN7zFue/7D0563l5X3J6uKvLw8E1pneXiizuJ155WNSYbPVR3v71VnByq2pqKB+QY7ndWLFiEMNgbu7ON7NrY//WNem8aZPw/3e/Exuo06GshpZZ4K2fUHam/MubHfNWI8MmbLYKYOJuLtPHJUa2xysr37R89qA4fDeD9XCRNh3hkQc72s1JAoVY12rkqMgZwjOZvAsYz9wJ+x3mnSxWQi2g6fYMDdYGHqdq7a3j+YwAM46saqMGqGV+h8HQQ7U3S7f/t929PHKXB3Gvj5MkYhqD9zi5FpG+vVAacwdF8UerMC0uAfqIGOprtg1eGhz7atDRG6BIjmbtUYoJdS1XQhVIpT1sMG0A6oKcRBJx8V8UhTd/L5dF2HsZZ022OQwZb2xLVbO0R3jZzteQnWXlMXNDoTyN2Aa3dNn91ECJUYjL0VuwWB2pVsdCZiNuH4Fm/ss6FLNM/ZnZIMHozRGTXJRMfpMOdMwO55A/sDfi2mQRPSZM/FnXprg2ma2e8n6gjyc0EbTPsdMQeyGjgwTRbEa49bldfOagg50xHqqmhQru0KAabdTNMrGiHmQEjClGe7r23+eutGXSnVinmqxdugzIH3ui6kOJGiCfBPqqytUq5KoSOhknaTu8dNJJmIkjgvV+q6gusVoTaeIQSWdaWuCxoLGpoJwaNoWQlACYVam1WXQ6CL6Y51taJa751azC36sixmDU63mFIF3Eill2Ixh1rmp4L1f3foVEQsfhEZ79vMhQ+Lr1sdcZ1Nino156peHTKNkRANhEzR4kktC2XtXJeFppXWC7ULzROc1rutf4V1tTbdGAO9KHVV1/OKtCGMTaOVwun1mXme2B925Jw57Pek0ytRV5IzjLu3eQYXcG5lRbqxGqRb/rDlICFtoujq68+n88bWF2/VEfXpfF+ZH3mKb1LRgSlx4xy1w9QAfNxNTWyParhjGyaMoSjdC7xR8EStU5crLx+UacrsD3ui67Moxu4azPmuq4cNQponUkqs9WqmOrWDNJZrgBIgCqUWaqt8//vf8ppnBKjrQgpKoFLLmdYXOoX9cedtoCeTfRjtQOp7vWWliOdGOCiNnxomxA64AHurBW2VkhKaInma2PXOw3FC+sr7b7/mzcOBXUrGKmqVcm1ohf10sJb6OdNqpbd6a5+NJozcdbR/BWLKpDR5zF8QMUfIaYqWgUmkqrLUzjRZ9l/KSozCw8MDrTV2hwMiVhwuvbH2gmbb40NPiEKKFuvHOPn8EyQGSJ3D4444Bz6cDpRabK+YJ+KUCSEhMRE7EBo5TRbtuL6i5ohIpK+NOcxMx8zz8YmwKuvpQqWyXgu9Kru8Qyv0Ate6sJbCbp9cs9GuU7qfbQrEjtZKyiZ9giiigTR52U4TTRsv52fm04GehMcopGk2x0qCz21rfuxi43mLW72gOZgvflaPBWNYhXqsOWJry1PtKNQtJxu5pGIAL6pE+tbWjf+2yLD5slhk7PUxKFEroReiuOyDmpHKJN00sqQzFIEtHhiyMR6f9eYFRZ9wg6U2Ql+Prwbw1LW5hjHGpvXzuqObKYrFdmZU1T2uVO+0UUNkaL5nDDMtRQgxQRDClAkpQ4pWiGw+Dh02RrBaEbh1N7txskWr7WaC0CzuCy5nYBql9r/urcW43IzemYsZot89pgPc4dRiPtfMFpwlraiY7Id2Mbwi2JlO+Glx+U8HnsQ3SbVNKYrAsCr2CTSqEAzQyQEWCUPLQbfeXHyCGEpp7KWUAilaG5K1Oljg3nWgj/U2iX1idB9UHQ1vwfKXGILr+4yAyU6gobcg4DpV3lbh1LSgkbjR+4JZDWMPOCNkoHQ7YsjYYY5rWpROxDRWjJpodrU2/bIzYgSRtLm+qQAuFtl8YUqMdDUWEc7ssnaTAK5JJQLq1LbexwI2sGzy6nErNl70ZkJkKfvYNfAJJMH7WGUEquLaEuMY8AUp1lIHt0BWBHOqaGYdaq0KcasaI9ihHixgMF2rtCXDnX6bFwISGjeR5BHgOWPsjuEz+v5jSKazYZmtg5h28OvY4DawcuTUBu2MbkjD8ixMMeq+ItEa622zjKSUjAHQC0MFNgU7kEz/orHWMyFGcpqR1Ai5c335QFkqEg6EMLGuM3SbA7k2TpcLy/VqFeIwA5E0SK4iDkz6XPXq/QiGtoRn5LX+pR9duj/CCNmSin84BvQf7fWPaxG8Jb2WG4/3uL3XPSvsriENGNACdhAhNn/DfUJtc0cGGjWS3g3QHR9l//j4DvT2Fbn9tWFAm96Xbt8bzI+PEt77dxUPSmzx2VV+9Pjvf9a+YSyXsL2nFQ4qeHvJ+K3PfvZES8L5b7/iup55/+F76J3Tu3ccamXVBWh37Q3GCByTdACoBsx30h0BGk/OceYJG6h7PzayjcutJevPz4l7FqBu55Qfstsg3j8Aq/ZNeWE/n8ET27VWdnPleFiZckc1Abd2Iu5BJ0kWoHX7DJGxv38MxJjw92CyDblLfwXYH8zxpbYFpCHS7Iyhk3NCe2aeswfgHachGcGy9S1YTMmc6exaG5ttthoQNazEbe46cE/cfqb3ZlVhn3pDRFO88q8j8qFbu/sd8BJc08+OZ93GIGCFHlDD87EgpmFnkWkARkuQ3J1LVZE0oKfuQbMDVHLTVeh3rC7jwM/ezlTxDn2LAxQKJiSaQ97mS9eKisUkAWiriXjnmKB2iv6QCbzlsiNoxUwLomsvBYGyXIzh7ByK6NBJl05pK31V0jQRYrb7VmWphSTC43EGAp0F1MR+l6vZk6dootXTYXL2wDDDkO082R9mJAhrWSFEcjfx3HmeqWuht8bD/kgaLrb+eyEFZIqbGGkI2RjgIW64aoqZ/bSjxMi1C23pdCK74wN5FyGuSOhIKlbUaskYLc52t4RkonZhUdPQO61ndtOe/e5AlVe0KDFHQozM054okLTRpdMksNTKsqysq9Kabq5Y87yjqmmdzDMQA2k3MafIZV2p1wvnZSXtAm8PM5IypJmcdkwx8/ztmfPpQr2WrcDIlljZ2qmx0kwF2Nbc6gCJs8ArnZYDPVm7LArlfKW1ynm9cF0LHy4Xhj2WSUeoack0Ra9Kj+6HHQyUpCTX6TR2yjRZYrNcz+aI1Ko5CadkyVAANeMmarE2Yu0QUiBNEykkUgi0LMbPXs7GzP7ue2prxrCTBBJZa6N2pbn6mgHltsf0Cr1aq1gUITXbK5JWKisf3n/Hw+OR/SEzTYkjR+bvv2NRZTekI5IXQaO5Fw4N1oQgrtcpwcDikCZGZli0mVaU4i0mbhjkLMRAI0kiy2jlUQOltlNAbuwo2R6nF2Rxtr+JvxsjqI8oeXv1viIIk+udaFPK9cL59YWH4wF5+0SMphmKx/GmGWkC+t27PPI+MU0zr8uLzaF1pfWAhJtGVGvm5Pj7b78HhM8++wwRyNHOinUtlHaisfDwdOT4eOSrb75ibRUoVhBSLPnd2KuWG4l/zYoKbYs/ey9UaZRlQXtnyhmYOTweCVH4rBx4fT3x9e+/YZ8TUjsSMiCWzHbhaf9ETpH9bqZXe76jwDBna6MzJ2GLB2LOpDyhOtPV1yHCPO+MtYJQ1MxONCYkNpb1gmrnzdM7cp45Pr2htkrplsOtWgiz+B4fEA3kPlv7Y4OBAIQJJHce9gcOHHh//sB1WU3sfZ5JuxlxkeZIIHRlSgZcJWfTqwRaV+qlc9gf2B/2XB5P5Br53fvfsJbK9bSACPvpiLSE1MT1srJcVnbTwfZf0kBtPGdUNHSCNBOgz3jdT8iTuRAKxsR6fT0RdplVK0yJmU7YzcQh+yLWjNW8CGOSOQrBiCGbzo8X6PUulol6F8viTPbtOOyu2SW34pAqVTuhd5ITSCQFb+PqW+CsWiwTFzPMySpkKqktZGn02BA17vwcLDaCTumKeV0OUQTrtAldfV8ohG4AqgQjDIzzzm7Jc0kdDPnBDDb9qTIAmI395XG0OsA9nGcEdPKil3brbtFbt0TICYmBOM+mjZ2TpZhtvK/hIKqmG9fVXAWbQiMavtG6O+F2FwHHcYjgobQ9z1ZW6vmKHHbIlM29Vkf+gj1nbwRSZ0W1FqwDyOO02lYH4NhidSWBJHTxOOwnvP4BjCc2dXVLhG+pDXSfSOMRWKAdxCwUtTYTzJZbQBOiBe0DGBjOYeCMp24DphgQNQ54cURjaClJHEGtPeXgleYGViV3YKYrLH21IEErQU1vweJgV/oPQlOnHHajNN6cDnQDXEyo2io6Y5J1cODDwKA2ak06gj9DX9OoELvavG2w/W7R3vpbBe8D9clMEHqzlq3iiLdRoa1qsno/b3SapIp622Ih6g3RBUHFBPusgrbltraBDisV8WTAdTHUqXhBR0uFT1rvrzVtEnv/sUepv0cfCbQYSIWChGjsh7u+5VF5DyPN9u8FZzgYGO39q71i7zZ+B58Hg8nGJgw/dgFr5xOnVhrIZrypxLWutKbsD5Cii/GGYNWmXqm9knPyqnenlmboNSaAaFossgVeQRI5WWVYJFobQx+MD0OU1+XK5Xxm/ziZS87VRG1jMirncBIyIEO2RG5LujdQYzDixnS9JQ4/WMdyR4tlTIsf/tz/sl8/ct9/7is6/roHn+xfRtv1/1Y20Obj9/kh2u9yTX8aHrl7K/3oi7J93A+vVm7P/v4bG/hx/47jBPz4OzcWlGzA2vYzA5RS9/UKwpdfPnF83DFNkecPr0x6ZU6ZKV8QmWhNeXo6sj/sSDl9dAAHF6+0j7O5+gN9uu2afnCnt+tB7y78z4NOn75urLm47TeWmI9Ao5Em2Ef46//iM9blDYrtlb13UujMqfPmzWELULhnoblmgn50G84S8kD6IwBVhOGeac+u+/QyzYiHw4G6XliX9/SWoVvCHKNYwN8m6lJYLou1u/RxTllLUlndNak5W6wHJIz2QwuqmnbvvrQ9fVQpSyubm63tcYMrzibgqYyqoLVKtub7ykdrZFtYG6ja3cWo9xs7eoRZgh9BDnjh1yXBCllNjSEcgjkGVQJdKnir7Bh3xVvxvS1KVa14os4Z9UNKOkg0fY8RJIcAoRs7Wru16nUFCVZ5Tpro7uoi0ffewXgKDjy5DIC6GKViejlduyV2zijomM5H0kZSs1hOIVKrJ6PrAjEiuz05JnIITFMixbi1BXSPLyRFmjbWasLIOeVtnpdaUOC4m/08N/OEnBLrspptep5MCHqeDfRaFy+iGcO6aqW11eMFiz1iShTg3D/Qa6fXzhqu9Kmi0x6ZzInLkopAb9YtulxXytp8bJUqly2BxJP7yJkk7xFZCNL5/PgZed6R8gyts55OLJcrp5fLBmOrWLJRm4Oaq7e6t871ciXGwPW6uFj5WKHQNHL+trGbd+R9oqZihjRrh+oOVc3AARGIacR/uFZHZTOakLH+BSSSsZist8ECFXZxomjgVE7QIYcJ9YQ7SSKHtD3vJNFiIhcoV3FJ/xio3WLERW2/rsFEaa0l0OZm8yIfHgcm37vEW0B7g+tqLV3n05m6Vq7nC6UUTpez3YZrqYDQpNMDXhyzZCjg+kvBLMutRbWztm4mC7lb8l07rIXpuiApcjgeeXp6BIGX11dq63QXAQ+shqVHcYMi15xRNWONIEbKpTsrtZqb4cZisD3DMGLbl7p0qjQrrYoDU77/WYqpW6uM19QtR5DB6tUtB0DUW3a3DZyoQ7ohotopFZr1pfD84UzXr/nFLxLHY7Ait9rusLm+YayI0gqhR6bdjLhw7zRNfP7F58w5s5t3Pu9cFwxMEB6xtnVnbb15+5bD/q0xFnrn8fEJEK7nC4C1DYqfrVgC2z1G7r5P1OrJf8wENfeuCs6KiLQqXK/Gvoxp5nAMxDwz7/emQeWFgBY6IQYedu8YXQQhm019dJ1d7W1EtIQQCdnO30qlitLC0PsVPzuceWeBhku5VE7XC9dS2M2N2ipffvEzWjPHs91+Zp529GD78TBmMMkSYw2qdjqNdhWWFVQWunauJVB6MmdBUeS0GHGh3YojozRSS2EUIkZIcH55JobI+fyMauXp3YONjRZjsLRK3gn5sGeRPZobS7mylMUArREXui6WOLtQrxMZA1WDuN5PCOQsNLFy0+vlxKoNcuKwPDDt90wCOU92pjqYXrpYpwymowRQa8GKhvJRPj50A8caGuf4CIIsX+tE19zbwk4PNTu2j1D7WAXb+TTqOy0Ys+daCs+XKx+uV66tGbu2V7Q3ai/UXllaoXmhT9X0rJCPC7DGhrRPih4zVDcQSHnI1ogXqHQDeHOAKNHFw3WLbYZW6xbTqrjmoOlLjvux9RZ8jXbqWlARshgxZOTuplvQbb93yYPq53zzPPwW64h3lxmzV7vHSDjGIYIka5/XmEzqoneGukztBqIX1yVMMZhsSFcXXLe902JDa//fOWElej6u2oi98UMt6h9//YOAJ2AT/RYHIIIYCLGJGIIlywIS+ta/i3RrD/OAdKNYbxpEMNQX7Gt+KCoezNqENE2oQYHFc6RR/ZYNrOrd+0KjaR603llcl6qqiXb2jrdqmZ6I6Q3Y0yjmX+NCf3YKZQmeWzpC2LEgfggaBptw6slg90NJfXyMDm0gTHcXK7aDbIzrSPw8GXJhRUbbDM0OmoFoxnmDlmup9NbJId6AG9wSFUVa8EBE6CRrQaDfJasuXutBxrYBbNco27OHu2cirv+FED0w2ZbkUKVTO7TRWxvTR1pEtmuhgyU3knhPDDdnwBEQdDugwZIDwcXX/BnYB4zK85gb4+KDb56j79jByopZyja77uAibr11dyXqLi6aWZbFDvtu95GyLcTejB2nDQ/8bJkZKGUJnuXi3itbVq7Llb1Y4rO0asCTa9kEcQrfLZIFGe1BY179cJ3+Q7SbfoCj/LnXfyBG9f9rXakfZ0r9yDVsP3fXRswIyMa35QaScn8vvjYYAMmP//+PX+Afu6w/BrB8mtD/kfHcfu12jfcg1k0zy7/gIPnH92VJswR49+bIw6M54Tw/zCyv3xpTFXN36T2y3+94eno0O1fB1iOyVZLusa/71rYfgqG3e/r0+f2p6fPT5tbtvq3t29bQ0PsLSZiS8MtfPmIMk9t7bkKv97Quuf3jni5u/60WQGBglwD31sibTs3Yq8Z+JaZ7t9/tOKWVVq+YTbCai0tM5BjpMdJqoywr63UhiDDl5GeNBQy9W/DSpaOabbcLw+SDmz4etymjqiYwbAe67e3h5rY4NBC6gzh+RFpSjD+/cZvbHnx7b3w/N40kNao+2Fh5gaerAVmjqChhtKN4K34YZ6IHrOOMlNu99O4MPNGtpdM/ku0i1M4viyssgJSmLi57AyS7jlZRIUZBu7fR460I4+gJ2Fm2tY+LC3cLzV23ordFDVezdV2sQBKw6wk+U3qj1pVIQmTnjo+J437PPE3bWNRupa6KBai5Vfa7A7t5D73RW+f9yzNdO/v9ztlktz/XkKipYo6OgYeHB9OfVHMtaqouZN/97Os+FoE8T7TWuF6vnvALVQo9NTQ1SBDyZLFItbGsrXG+Fk6vC0tx9kws1vaQM51O7Ss0cy/az4F5SnyWjoT5SIiZrqZbcrnA84fF2D0xEifX0fRCZ+2KtkpdFp9IysVBlTRZ+2FICXrk+gKxBLrsaMl1QIslRb02Zx8Wf24+fiNQb910hkYyJngkM/Y+i3Ga061zMHtsc74Vk0gQm0RRTFQ8SjQdJJd8UDdb6XQkNgiRIfRqpB6lB0teRjssYuvSiujR10a/JWNiRYFltRbq88XG5vXllVorpRRCjKS80SlM/FiV7vFs0+bSBtb2N5jkXTuldZpATubwXJoSauW0Fg45c5jN7a61xnfv37OUaro22hGpIN527W0uNudtrZlIr3oLSqd2Y2al4Imf5xWbhKc6sCMW+8loj1YHmzymVR3ENj+/RhJ9FxUL6sYx3DYcVUYRHAkOJAyJDeH0emVZG2+ePrN20Rg90r21v9veaoBs6s3E7FOmB5j3e57eveO43/N4eGTTCPHguPn8CHG25ITAtJvJeULECqi7/cFcui4W26TsYI0D/Qb8+BnZfCyaeOBqGlwOq/gtmw17Wb0wHSfmmJl3e/I8e7uTdYF0B7v3h0daXbleTqQUyVHI7ua9rtdNn0eiEKZEa41aG2uAKq5b5+eFZXBqa8fj7No7RRckFJxzzZvHJxvb1klzIqfM2m2PvY9VVDzJV2MrlmrZTevmKFdqoPW4tT4pqzkklnJ7Fg5A1epdJ83annIUBwvbJmJ9eNgDeIG707Qx5cR8yOyXiaITHz4YICsuPC1BzHG2V6QagSCVACEi2aegqukZc2s7vaxXllZJ80zrjXflC899XX9W/Fx3DVBRmKY9CrTN9Va2uRLiOBOj70u3GG4sik/jutEFMCLm7oWa3gZP6hYtqI4WQKG2xrqsnNaF07o6oK3eIWWtxbU3Sm90wYFxhW4MQsAAOjtZfVzcZRpovTkLOnjKdSvwD13LkIyYsTXzqbGagwSb4xvPy+IEZBTZbKmOFm3AdZG90BcCqSsl2foSB5StaGj6ya3fnDPxIlOQ2z7nE9L0pLvrtWq3zqjuBZEYb8AToGLkmq6NwmrgPt7up1CbAdEbY1Sw73uoEtRjvt7N7fFP5Tl3r58MPKlra9yFpluLk/Tu6cmNmWN0vL49wOQBzlAv6Q4ydAR1lk3pUIvr/oRhaa30UkHUAgSvEgYC2tsmdDao7cagimYj6GyZps56iZZApTDex8TMWwctdtnNj4EekwfM1tYQpMPo920WLJpNuRDHIhKv+vbm+IaYhoRCLQtIvFUXgtCoFui6zoVnP+DbevAk1+aToM2tu3UcVZFk5QQ/Ywwh7kNonGDV127Przu3R0I0hxUMXVdGK0rYGEGiniBhOkm3Kg8mkK4doSJjfBjJrF1/EGeB6dhowhaINRe/26qDDnJ1mrenKCFald1630GqMiiDOVuA2f1wqNWYbE2rayf37Wd9INkc6kYvsXjE0O7yRvUksanpJ2RPxP2eCJlSlabFdW3N4UYwZkEI0QVBZ/YZztczZSlmVxsCIdy0pzQ0CJ3z5ZXvvvuGw8+fiFNgXRc7RFywf2M64QFXw5OSG5iwVRz+t9effn06RD+6R/4YIHX/o/IjP/snxv7P7sOf/O4PwKI/9v76J7736dfuwbA//nPCrYWtD0AzDPalkgjECD9/d+SLx5lfvJ1ptVLXhbZ02tp5fPPA/mHnVFy9CVHK3Sfe3+Pd/P7o1uQH8Nrt26r/QeDl+FUZyeD4upqgaXMDDBPhNk02cyRLt2tqVs0P0c637m0COiCzkdQFti7GwRz98aLQ3QDpjXEXIhyPE3/5688pxUSnJzFHoOulcr1cSDGSczZL9ijsdhlqh2rtFoInE90YmXZddm+jWjUSSnN7U2Oy5MkquK2Tgun7GJvHqqdd1auExjARCWbp7eM3ilFdP674oUYVFwe9tjkxEnbX+qrdAknxXC545bX0lRESdi/ojGNUgjKE7MUTwQFMAZvG29C3snY9A4PWdvE8XcjZrJ1ZO9Ks+mhBcAUxbaTemgMFXtxxHYvWx1zY8n5v9Tfh3BgxoW+FsqxeJfXzNpirnenEGNNj3k3kGFBp1Na5VrierqBqZwuwuM32tVViTsz7HefX9/T+vVVVe2e3nwhBeL4uJk5aCyklppxZ10qrnTyZyGmaD3SUSzXx5utlpXviNZgneJK0XkyrqLVCSAb8rPVK7ZX3H94zXRfevPmC3pXLyVjFrSrnV+V8Cnzx81/x+PYt/4f/03/JtN9xWpuBOpr58P13fP/t1/z27/6eD+/f8zd/+8w8XfjFF58RVFnXwMvSeX+5stvP7HLk13/1V7x5+4bj8UhvjW++/or333/H3/3NvyfFQArCfj+x20WPBywcaK1z+XCFRciaOfUz9E6vFW0NbQW6sfcJIKFbzOXghypUbnobtu0NkxuXjOjOlFZFkiWmrY640UCjHsygIqd5S1JqbwSx2LX1Tqu+L8VKE7E2uuAS2CIG5DYHaLUbU0T7lmSV4i0TyZg8Idl6u6wX1l4NxJFOi4AYIFZkiIyzdRGIdBvDaGupbJbmnSjG5ElewDuvxg7Muwmt0E5nirNTHo5HDvsd52XhdL7wcl7tzBGcN8XGsNB4K3B3GqVeHTgZa2iAJIGmC6rqczYMQQ6Gg6Ni5HfHCjZQ3QDsEfv5atZxno39XSy2VHWpDmNn5mjMtfPV9Nwkzgyn4utSqJcTX3/9DdfLlZ999o4pJWaXbRg7R+ud0grSIm/fvSPmzLEUUOH55czp9cq34YPnCEIrq7N8rhAjh6c3rLXzerla7C7K5++eOBxmQszMhweWr14odaWdr8SYyDmbQVAbhWZjgQiQ00TKEzkd6PUKrfPu6XNynng4PhBioLcVESXG5sBENcBMIeZscX60vGat1Qom1dqfV/Fqrf+eqrXNWSfJC27oR82JniLlfEZrY2rW3jbFaB0UOVG66feRXHNGXgBMdHskycl0D4m2hl/rs9U8agC9dYIQHDhsNxClemvTUk2PK0XXQ1J1I6hgZ4xic04wtzI6SftNEiTbedQG2Bmh1c5yXWml0S6VPGWenh55fn6h1oXLpRFTZH/YG2C326PdpVkumesiLLEQY+R4ONCJlKKIJHa7PSNRe/nwLefTB3IyDaxffPkLUprIebfVX5daaV0p3fLJHq04WHxOWLHeNrucBhuxjeXBKPB/FDOJbm13Adk0hLsau+5mkOPkkuB5X8qU68KHy2n7MyUhhImlLkZeTtEfWWYUGAywsSRva8sfMZqf1wTbBxOJoErMg5jgILPvk2aQpVRdWetq4FPwjpwYPa5Qgouzq22J1GqfE9RZgylvkYF4DCwdtPaNhbixSUYXVTBnOpMc8NhQOyphi0sFsTgNQYOxaps0ZwA6eKaNa6mmaZhsHKIYvpF7J0pgCiMVFuaYTBUgOjjo+nWmMeXxcXVQrd0RRv7M6x+g8XQL9Dd+kQfInUGP122x+lTz4TBe0SYMi3gw6oMq1lI0Nv0g98m0/5Q4g8lRRCsM3dHn1H9SdUBi5k7R+0YjDSImgiWGPIpnBFaxldE2bG8nAw+9S3wCHhRjNFSPLoJ60OsHlbG1Pk4k1HF35dakptuFG8rpb2IbnzjwMpLBrkYhVz8lXTdjbBLbePnbdFzcEIEYfcwdjCI4Hd3dM5UtIPmIaYAfqnfVeBt+3dwMBt2Yj36rb/ehowKkYzAMbTW22HCkMmTWM14DiQbmsm0S48o8gAhxG9uhEzdojnrXkjmGRbfr8usdZYC75zvuf2MeqNoBhEWmgmFSzQU5BUEG0u92xFFN7DaFDISN0Xef+t8SIaWUhev1bEKNTpO8H8uNlSJjiKxyPu7v/vXnNJBuS/iemfHx66foKP0vxQnvh/fyCZox5s/99/l0VD95hx/cu/zo1z9+6z82pvITvvvHrmaDOP7Ib368jj95U354abL9PVoT7rZDP7hto0tThBx53CdarSzLheupcD0XpjmbWPEngNPG/PDta9Nd+ugy7hA+5YeA1J94/WPnpP2a+rPy3cYBk20UOgxdr3GN46y5I47f38XtyW4aQPDpk/7o+d3/2Cf3klLg6WnPcl25XFbfYwQtVqkKwVqI7Qy2lhT1hM138U9mmjKC6I+uaVT/x94S7tzk5JPZJli1zFvklWDt9x44io5nPsbMEmAbZ3WirSJDJH67/2CZoBiAU+9EZ3tIvq767Zl1ZYhw25S5rceN6yrc/fuOzK/jfj0R6NVBgrBVv0d3kYgNzwC6BlPo/nM+ajO4PUwfrFuMwN11WptMo9ZKrI3kVe/xbMSr/nYPxmqRZvqNvTam2QLz0o0hcV0LqUNI3fRdlkJZV9Q1NGMMlLJS3dwi50ybzJmu1VFmE4obqJSu7mJmc633RtxN7rJkwWxZvN2vWvVXuxhLuJuotmqgHKzItq7ufluVUswd6+H4hi8+/zn/4j//a3bHA998OKM9EnXm8fjEcb/n5cOF0+vK+XxlXSqfPVZzL+v2x3W26UCaJubDgcc3T7TaeHn5QHxNW0upAYcCRANZPezqTamlU2OjrNVs61vztjTTORmx6GBJjskrHlP0AT760gpjnYm3XI7ilnZ6DxtjTXUw+WyujMJZ8PV002CzOWOi8pYE9BHfjXhphJ6jBXC4+YrJIYx5Z3/bxA7BKvPFAcyqzRJkAaIV8CxeNFbd2B2HSLe4C5Xdg7fhbDucxfm123wOWMuurJUlrUwBHo574pQ5HA50hddL8VTifk2NWGgAT7bmmztgKw4W+d/I0Nex8ReP++1Yul+pHjd7CLoRiP1nLXJU353kVisZf9/FEOrrXMENCExDyOI3A9xr65wvV0IIvHl4sFafaOfHsKcHA7Or63TlyaQcam1cThfLB3p3x+jgwFPj5XqGGGkps9bK8+lsukatgjTWeuDt8Y0Vn9X217Us5NzdPdfGY9vt1TpPUsrkPDFNM612aqjs5j273Y7D4WhC+1dbJ6aJ2mx+450l/XauqMLaKr2YO3XHiyOtbHt7VzXgQzFwUq28bQCUuhB3pRYhIrSQDDyoneq/QzKPe+9CZBpnT+teyO7ESQgJ1qXYvlTs3lPwNtUYaFXM4XWMxzgnW7Osrt9aztTPTJstPt9FiGJsv6BmPtVxtlwYbr5qc0ChB2eFVmOHhRBI0QCs1gpDFgCBmCK9RmiBXmz8SR2SMVfE11oQcVc0+93rslDLam1/KOXpCdkpyQHCwXK3o1q3uGTsU4P5q1urld4WwHb4ecx39xXU8z8wV1C4+5mRhA6EQbd1LDHQ6SxlZa2F0qyVnDDW7Mi5TSdTvLVT24jVYEvlProq36gFe96+zegn/wuud9Zq25hwnX7LNbd4x/YaMz6weKf15h9hxjndWYnijESLrWyDbbUxnHRHQWSghbaX3XatISOjYufuFqPJbSyd2uNEH/tZY3ZVc7UPYgGOWptlxP409fnq76txPGcrIvYRH+sQOldCr9yBP3/y9dOBJxclDHcb0thhDVYyBouKoDE5Tb4TeiB0YRILjpdajQZZV1SUmGWrVq7dKNhpMgu/0IPx5cLsh0YwWlgzgTrVgJC3B7hNF/X+akf5YjImT0w2MboDFPZ8ous+GM2+u6I9MoJ4F1ElbEBJyKbTlNwlLqTJJlxvtsHE6NT8bo4NqkbldjDLmGumaB8GV9c3RdPR8gWxCReKBUEDwZBAyglRpSxXbykUoBOC0nWxiSqmUZQmEyFba0VaR1qlx2BUxF7tfkPYKJT60WYzNlBb2CO5EQmgccTUOE/NGXm26XW1YC54pcgOI6dUqpjMtzXIuzq/zZneq22a0dFcMc2lpkopqx1Q1dwbEKWLLdboFXFVo1v3XonZWyi6CZbbPhYhuAUlYoy3OgJzm2vGpFJCUlJKPu5WiWq9Gz3VdWuEIdwOpZqweZ4mpt0BJbsQHHTXDUsYRXRtwmU5cTo909eF0BuH/c42Ls+2xgGDyJYMfZqYdp8vfzz3vk94/3EJ+v+qX/IJSDC+/A8CO/4x4/6nfucf+70ffw12ipexCclaOEq/HWrjVa4LqLpocuR4eMN+Vvqb7szDRnC68sfC/paA3IX7/uH37QL/YffxU+/11m/vCchdwJ1CQlG6mnV2ynYGqPe7jyLGYOCMoGIDGfDc0hm4McjWco0nvhug7ckOMs6cwWa1w7zVQo7Cz3/2htY6pY7NRLm+Xnh9juTJgL7aK9IDrUVLYHwf0SjkKZJTYLefLHCW6mdUdSHjgDZr17LAyoJtKzBYVbqV1VmmatXlFK09qHvC3k1jJcio0XjbmzvZtj7o6bdixtBXsfE2LRQF99SwynJEN7aHCqRRoEE30VETFfa56oyHIJCzFxLM95zR3qmjXxsHD9XEqHNKpCTbXNRuQrbzlGgqFNd1RIQeEppwt14HHiyy3uaJtRaMoppixVezNxYJTMm0lNalgGvzPJRGrs7u0M5yvRIDdE2EHok9spv2zIeJ3f5ISpk4z9TWeD69sqwLz+cTtTRjkHsx4+V0JYiYSYZNfroKpSq1YslVgarKy7nQBc5LpxWl9kAIE3GCL37+Cx4ejkwSqGvlm998xXJduNQzVMumYlO0m6h16ZXr6QQE+lppa2e5FvoiRA38F//8P+M//9//Nf/V//Gf0YDf/zf/lmVZaW3hn/+Lv+D/+n/7r/hv/+sv+J/+x7/lv/l//N95fX6m1VdCSEwp8XA4EN79zACI0vg3//Zfo/8TzLO5fLVSjHGeBY0WRJvsQtvAQ4lCD4Gwt2d61dUckwJmPa+NNFnSXNqKqGBCv1YsSlFIMbK2ZjFQtOSh1GJubGsnp0QOkTjZeittNe0QTDqh0xGJxmgOisZOmE2gu1wHEBTooVFDJasQCqjHHGkOVtG+nklROEyRtl6p65VpNxGTsVIAZLLCaW0rIdjaqO3Ksp44n6/e1mNthCEm1zkZOqwwtDy2tpE6KvQmTJ2CGRCFuz1ckrG4tZsz5LU1qCfW84kpJ47HPb/+i1/yer7w4fnkY7N66mQFU1FxsNuSKI9OrVAsLp+gWLthCASNWFx8E58YFxr8TItexC0MMWErXt8nUcF3iqHdIyM2V8Cd7gbDvqmaNlw0AKwEA1vX1tgdZw7TA+f1ynW9cpgz5XBgevcWWqdcroSU2E2ZdblyXS4c93vKNNOraZR98/U3VBeP3x8P7HZ79vsDMWaOD29s3++Vxznx5bsvuV4Xrtcr59cz37x/If7cukeYFrQvrOczyERMwtPTW46HB3LeEUMkeo6Sc2bKE8fDgQ8fPvDhw3s7A0Lg+LBHgPPpA7WuXM6Lj9Fgsgj1+WSF+minm3QTExetDH3Y3ort067X1LrQEFYvREgIrNpopTHFmSgz1NX0emUyzd1i+VImsKyVpoWQjOkZ0pa+s5zPXC4vHA47pjkhvVvnSrPcxoTxI1OaqFKpoVFKoauJqYvAcdrbWdkGsKDEYLdYHVwxppN/rifrXTuNBt6Z0qWb1lwwRuxhOtLXlb4sPOz2THmm/vwvOJ8u/OHbb03/69RoQamb1pWdM8bMzkxh5s3edDab2pnd3R0VhR2mFVVeVi71wof0zP4Bwtsj024izzNyMDJG7WaoZLqEFe2FIJYfxoEgOLBx0zC2867WsoFn2UXjl6sRTGozN9kcTNh95JsabA11lLUXUohMIbO2wvn8QmuFGEC1WueJtwmmFMz4q5Rhn2Lr3PXerKPHgNqktzhB6LS2Urvpfa3FI9Q7SR+zfbI8NmDC7YoiI4WdcgABAABJREFUeUBk3WWZDKa2fcTuKXn8HDFgtxUTTEcCOWWSJHYuRl+6gbFrr1vb/gA1QzS2VoyuT+pad8VbPEfsIw5oKtBkdcaTSTfEZIxq1YZK2/awIBbniXZYKqEYoBmy79lJfEytLXcpZSv0WNcaqJYt/v1zr58MPG0btliCMioeWyDH7TOHWKhH3wyNCENIDQxisGe8kqwOdIxBRhwZHAnBhujJp2UJ9P6PenIztJYcTbYBdvRyq/TaH2MW2VWMYHS7XZEtSTD0Eq+WwbC/vqVLW0/FKPButOsh4jiq5MO/KGwje5d0DfRUdROHNOtE3VrFAnagboOuN6BoBL3j/oYm1rguQ8u8hc3vfKRN2w8MphI3ds2We25opz+1MO4bO7DVFogykjxPQAfhiHEPhjDbnBjzxEQxTWvq9r7dF3PTdltVnrtt4zd+fFz6SHCtv2JrvbBsb1wXFjyqBX3bM1ULQqRv77LN9fHs759/+GQdjGpcBzaLSbEN3EQLuwlhlpV1XQxYrM0cg5wWMnLTUa2zW5bb2v40T//R1w9/6Kewmv7kO25gwn+aINYfvz9l02CDH2l5+ngl3t+dLYE/fr9/ekx/wjj90R+RH3zbPuvuKz+C13yk3/RnJspPmQ8D874x8u5owgQLuEJwQeqR3H/6Jj/2xrd/fDoEf+q69LYa/oNf9x8ztr27mq+bASja5TYPtm1Xb/v7WKTba7zLxwv2x65Z/cPHXnvbv9mCKmPZ6NaOrDVTSrbvRQf2dVyTbtv4GFsZtFZc94n+EeNiu3QZbE7ffjbAflzpKPBwWxNjvnXu/vvGDL1/vtvsHYyCG86Dm7JsGOjtbLdwYmiz6PYZdj4O8UvZWrvvPgcLCEdsIXefb/H+7f7C3S2hY/t1AVIMlNERJ6jT3u8m0C0+GV+XrSI6/ozCTvC2wM7QSbDvNbc9TvmOM6L+M/6smkAPAjFZQp8mYlDmPTSEfrkwLD9CSgh3GjY+MJ/uKebqa6NTa9uey7i9rgrNtL9qNStrS7pc72aMgbN+jfRo7Z2jZce5epbA+zAulyuX15NpMMVIlkhz84E5RR6Pew77iXlKaCu0ekX7CgFiTKQEKQu9KK1WLstCWxuXy5lBJtHeb/eKjX/zlqrx3BVFQ6dLMwOawWhzhhLO6vHe2+0AGXEXgodkyhCl9NzSANxgpnXB49OqDQlKcEmJ2iopRAdMI1PO5JwIorRqzKeUI9qFkITcE0mTX5YlJF07LQZyEuYpjl4D9nMkpWi6bcDQwgElRfzPcFqzyvaYuLqNm257w9ivPt7wxnpnA3UQ36twwXU1kCoEJUaxJEsbS1nJJZOnmd3c2c8zay3G7NLb5ym6nUGmqzLWtIFPY6mZtsvgKd1d5ogPtzU7Yit1vTlriRnMqe13xpmgY477+/a7PW5jxTszzkWNEaP8SFCMKWcxYOud8/lMAOrjA0Gt0B2Cl/K7tXa2daU7MyKM+2qVVosl2clEm1OKZgoArNVA5jlnAsIUI5fXK+t1oawrKUfmOaE9chYDJWpdARMPzjmakHiInnthSXe0pHt3mE0TrBcDYn1DsSlzA/Bco3grOox8THXF7N5tNRorw9uV3eHUWE43aRF/sLamgzN7g5ju4h1rxEgKzrJS66YTQJrF397zMTqIiFtKoLd7xfJFc6Zs0Iol5qJEZ5gozlAbk0K9yI5aAg/u+YgBakNI0VvJb1n1jfEzxlkF16NqaOzspgm6klOm1nYrbojpcVk+6SBUE2gRdZF9xnnVb2dwcrC1rZUiC6fXM5DI04UQMilNt46UESNgc290OgW5O5+2xX63VmDL24dTJPc/LbaT6HAJHd+5i1m1m2GICakX1nXxdi8nafhhL9zaim8H7dijBtw4dgMDZzx88FhmtMr7z92FbeqgHUDy5zaKaiMW2s7AcROCzR0fE5uTo5tmjILHcjJ+356jzfn7kYKhJSXc8pfxHoOBxnj+I15CKVq9DVnpMmR+bvvXYLQzRmasMXWQ3eMpHUjFIM/Qrf7JIA7dnwl//vWTgafQTTjKyBX2sUlksANts+ke7FZz0LAKScJgO9whrFBbJSZD8HJO1N5YXRQ7xeCVZGEtV1CYpzwctu1AGxbLOpasMGwPW/cpLDaAdtI1j9wqtwDYaJEWGbhluILQtgfrTVM2f7uyOpg2TWGroCjWp2/JV9wYPbW5AGsDNBAlYpaIVmFJ0RlQeqNl314eYHYlZ3Od0WqLI6hVy6NmO9Ay6Eb5s0kU5Hb9gUiSbIedzXJUIZgnhVVoRTywdhcL37BdMsCELeVGG2+lbp9JiuYYNCJ3scbl4W60BQrqAuQSNl2BkUCV5uJ+YvaxMZq+l4iyLlfbFLotoNbVtJRiwLvcbgCC2EK6TxwjAenmNKJjToyI1yv9eBIWUyI4BVld2BERY4nF6MCUBamm1RHo1Q4zRDbtpaF9cikr53Vhf3wgxohi81A7NK0sq3I6nfjw4QOXl1fW45H9wYKI1k3oNYhVLUZb6f2mM4I7dZbZ/fz546+7wfpf1csPsrtDaQtKf9Lr05/8waL9E7/3Rz7ln+QR/JQ3+fjA/5M/OcAJD5xu9rLQq6GwU54tmBADA2p1FzDBHDHip9d0OzC7tjvG5LimP3Zdn8zVf6Ipe8/gUh1MGAc2miWCdt6Mo3k40wgikRinDQCo1RgPeR6ivX7VwTUFttKCsvUEfzw0H92+6Yvc1nmOdg3NGTsh2L4nCNN0IEzK7nEm75IznrwK1ZReTBMINZW+qJ3WLZkr5bIBT7KhSgL42YR32LhYZU8JnRIURVuj1mIUa7eRlhhtWxXMMrjD4OoLpncgPTiYaBp8MoIWLHhvHW5qgaOr3fVZkM3VhRBd+8XENbsEhEjUxmb7rCPJwyqDtVkQHsWC7iimswdMIRFGMuNABdhnJ9/TW7MguNdq7IpQqauaa+BYI26fjgNEvbnLiwhhFMC8wKL+p8kwG8EABQ0slxVUeXrzQAyJedpZ8I879UiHXqktkMSCwr5WQkw8vvsczZkP1wvRqWeHXSYFYT1fTBfTMmZGwhc8YRtaXjFE6rW4JAGjI51lubKWlVpXppSYxPCV2BraTCdCQkaiMxCCgStaYTl1Ugzspj1pghyUer1wXVb+u//6v+Xf/dv/gfkIbz/7gs8On7GmhdNLQC7C89evfPf7b/j2d7/j+fs/cHr9QPv5EZn2TPtMDxXKld7P1HodD4+T62VMORHx5z5AVg+QO7rFD00aJVSUiPZCnvekaWI5dXqpIzq6WTqP9WuBhum1tE5z4EkipF0idiW2yCTRDVAspmzXRk+RXZ0or5Xz6wuHB5h30/+HvT9bliRJsgSxwyyianYXd48tl8rqBd0zXUPTjY1AIDyA8NMgAhGAx34BzSMwmAJRV/VUYror9wgPX+41M1URYcbDYRYz9/TIjKyqqZ5BhyZ5hvu9tqjKwsJ8+PBhvHrxgFevXmCtAmDgVAdUgfu7lXtHBXUsqF6w7QPDHHU5kCXQFiyr4uGxYrQ7jLbhbl2wFEW77GTfCAHEywUodUE9VGz7HUTZydB8kLXhZMPNMdMSlQf8HdnrQCY+bxOY7lyvI84NVg8M+NhxWBfcPRwxRse5Nbx+8xbnywV/9tM/w/FwwJ/95Md4Op/wu7ffzBrK3slqLKGVeljJDh9RemdgySUsMvLmqJp6q0aNlTDFDLAs/ACCTGQlUCjZXNBDVsOBqUfqgxUCUsA4aAyWu9Uyk6V7O8HccLg7hk0fqOooBRjjhNOT4VgXaBH8+le/xN3hiBfHezzc34cANqs61qgA8NMZboYXrz7HQRT7y0ds+4bT+cwuW9bwcKh4eLzDF1/9CH0M/A//4T9MJs6rFy9xf7zHm2/e49vTt7g8P+Pu/oCffPUFzqcTLk/v0FrH+3dn3N0dcTgcsCwUM7+cTwQH9w3H4xHdPoeq4OHlHd7+5h3ePz3jeTujasX94YhlOaAuQjD5+RmtdYxhWI4HxnU2GLuNC4P/UjD5bCWYgC06nYeDr2AM6XCsSh9lLaGWsZTZ5Aru8JEd5YSd7gIogDlsvxDUXSuWsuDh4QXWtaLUgrOdWZmyhj5PCCrve0PrF/Sx4XDHbr2qBCm2jZUl9O3jGB8BdoZ4cxkWDJEdUgvqYWVc5ox73RxVlrBFkQiygdEbBf6f3qPqGQ93jzguC56f3mPbNpwvFxocDBQoCgSrEmTcLme0tuNdLajrgppdTMHkYDZEgAPn0zPZX09n3L94iefzBV/+6Cd45V+irEeyYkeUl40N8AHYYLOBQoSMoDKZynvvPO8KGwKI6mQ8seNa+BwK1FrhbaCdNxIqShA20oiwDIagUyvYLyc8P32L1s6ARHwEhwrZq621WamTnptHF1BKEgSYKk5GavgX3TuTOoHG1IVlli4SjR8GrHdqrtUDm3cpxcT3vUdc7fNZ07dNHMwHF+iysMqIAGQAj4M+WtcaMW3oT0NnfJJl0cPIi1XojOOvOlR8dcLlrDwwnPplupcFFVUXLIXNK0qUABKnwWTOAYpSVmg5INwVEl3EUetChq4h/BEy4WbX6u+HO31/4GmJx5q6QckCwtXZTgfFEQhY/GFtuEGsk4IKnx03UojQO1uwqkhk3UChULAcQiTZJAYJ0VdOSKjVB9hUCgfAoLOwWPL0QByMqtd7RIhagyhoiqMx2zXP1Mh2JxoeHUYSNfQoLTAu1NFHJL3SpGLS4nwgShSU515mpnENhmZWwAI80gpVQ3GZDjsL+hWuZTqxORMzUw3SLzEANaXjJXnI8uY1BKqKXBd6YsbBUwtHgrcmjnnvA0RGYTrnWqL8xMKxUy3h9GVWIn22a8a8lkwL8o+lUwAPp14nm+k6B9c5dbtxCCHR2S7vWWbGPms6ky4OJMOqxCHFUkNmQpVAVLmqDEyDNhF4rh7SaK8kbgdv2ZAlfxaCt2mNorNNgLME6gyjUeBVCg0H98g1U8DAnVEKD9ZkZ12D5N/f+dd/fxqM/s8LgJJcd5/+5R+5vqdV/fhj5dMf/A8PAWbe4w8846feFZmYW0aXOfeeynVdc18lc8Tjvbg2eAA/41b3hnf1qTvlNT9b5Pd+43799wSKPvqMvx/r7hqAkootuE3MXTtrlnhuvf4MADwcrpIjf7PHbm5r4mu3P5QP/5Ijlt/98bjMDJhcmRvZ4bUuFVoVe2vIbp3Z4OT2s+JJp1OuWbL2wZke5X6OsHEWWhw2RUGvTNQcvyiltrD7PFznk12BlrSl8V3BqOD/R2fS4JazjJmfn/pVGCFoHvexFLa38Ag24Qki5BkRn68KZOb+ZkxHsJXYES8ZrEwYzWYbpQLi2LVDLEom+SEohRob3eiYl7h3LRL3mj1oIoERs0D/Z+H5DVxBELMI1DrGCKmA8JV4JA6kQtWwAhnA0/M7FD3BwLPqsj3jvJ0x+obRNzKEmgHKUkq3pNg7IHTTDSx7UQGstwkioPBZqgp8YddKN3aQEussjXE65jnVqXthSrUIQUgWlEJpgSidBwzHuwOFccfA0/sn/Hf/7V/i8eVneHj8GWwMXM7PePftb/GL//hz/Pyvf45vfvs11lKBu/so1WCZmikga0W/GC6j4XC4w1oqsrfvulb6Y+Yhn8Aw1sqIcgsGSmQnk1VwXFesWj4sXchEppJFth4ODBRUogzOIXVBdggToYCxmqMMg45g1Qh91BUGkwYbF7A7l2ApBcdlwd26MpCvHCsFgad1TZedZTkKxSKKYlE+JUBdjywrKoB6nfdMe6Cx7ca0SWaGtrepvTLZ3LNk9KrNlvpDFMs2ZInx1bfjGWHu9O1vMvwaZbU8gwleG8is21snUNk6Sq24v7+DwbCeV+yN3Z/Semk0yYmcAXdE/Dd3fTJX0kfX0MUrojM48zCsln58MJREovNT3LhzWUCEZbWCYAZm0J0BW9gSdjGUqQnmNwlvCXBcstEPAOsD796+g5vj/v4+hOwHxdlVYH1H34B9v2CYo6wFxTQKDQbQHdvpPcQH6sKyyGaGsXWMtyecN8f5yK7eEMG27VARvHzxiEO9w49/9FO8e/8e+/4a22XH+/fvYcNRSuUcOZPrfXQYqOFUa8H5csbWNrL0F8VyPECcTUaqL1jtEMxCyl4AClEmaulDMA5JTbCMPKhvS8sUhVAzL5Kl3sMrJotOJGI4AMpzyy2S3CIMj5OVIA5rjilkrtfKE6hGgodVFdQKCvF9KGCARZCeccLsHOkpSs9ZZSl5tqoHPHQXd7uFRnSuC4BJiQQ+hy4YlWPmAJbDAhHBeqhsbnRhmZpqjfNWo0sem0dBCksNIfBIqNM+pOPBvb4sTAq1ccG2K06nirvnA+pacafO5kkCaJSreJ7tLhAvM+kdETmB6Di/GaKx7JTgz1W7kGFMsIxEkN3WHXYljLhDjSMgxnL/FomP3lkWT3yA+60Tdb4ZVcakqs5xSb8GwJA8iamNaGYTeCLxRW/mhCwfCM+AASZRGF973upcJ05jNG0R7SWia59M3STREs1ZKC/D5mNcSyppi5LhbVMGKKWCZggs1z8Z2mb4m2zwBLrGsOljuQHi7OBI1RoNGxkSQkFM8ZwO5FmQ7DmHOgXJFQT5vm/c8b2Bp7vpsIKZuhujP8ltN19KUcIyKVgbGvbR0dHh6jOrSlp5lBmhoAodKgBYqgPiKEswRZKSJ4D7fhXpQnRHkwKtimGKNniAcB6u7xNRIq2ITiJwuPcZ4Jt3wIFaqQ9gWYTniK5BGhTD+bEI4g0NTneMraMUHnJJr2t7lEEYoLJgWQu6j2jXLDCR0PdwGrgs0ZOKogcsRaAzYy60jSIwWbgQPAw6QnsFEpQ5MJOKgoLo8gCh6r1eD2qNxdbNmUFym5kD7rkAkiBYyoIhA3t31tBb0AOTyQC2BiUzqGBRxRrdHQC2v8zENNt/rxx7EbQQQsy5rjUi2yLhPN6UtWVmOWqXVesMGGjcDKn3lR0UWK7M+0XU/Kqu0LKw7W+nLgtEcTiugAoDuizXizhtdNYRk5znIWCYQQy7a7iwnK4PtvcMihc0utKgsV24oMD2jn7Z0WsLEUAA6mxhHsbEQl/KR5QtZHcEYldkqH0Qmv8hKxAB4H9OVwzHp+C57/3mP/n6H3uMPwVffd97FaSg9CwjDWfdhodJvNKpJTGXG6Fb6I2Gmg1mtSWyMfkVCQAgz8fvGpMbUOdmlm7BpX/I0cyMUQZOKpJ5DP4eBQSd+EPVq11B0PtLlQ9uKoM3DZYvneUAReTTQFkmOCZQczN/t69PVm+C3aoFUoDD8YCyLDhtG+guBPhkcwTn2SxgMF0lespmq1/36SxVrZzPYbA2sJ039NamU8nGDjygPJlFoMM/hgEWmer0fnCTDCKE8vtP6wSeVgFEC8oS2lHDQlsC2KNL124Gc0VlN/oI7B0lxoclITpzGRDAl4IpjCr85h7JoD4GahGgFrINzEMgn4zs6o5LY3lQOrkoikUEKIJ+JlhUQTZIqQVDgL5HabWAwJawMx2JIxWATBo8ALTWMMxwOC5YamUCC0DVAgPIHiKHhDofo+Dd2zc8Q5RZ8w6yD2sJdoYNXAaXtRoZP4aWjwCzDusKQUXVgr6dwH04UJaKdTmwnKWwq8+ihkUcgoG+P8NHh6Mxi75UDCiaF6AcAV1QsEC1YjkcUMoCXVgyojrw8rMDHl8oXn/zGu/fvsf/5f/8f0VdFvzzf/GvWXI2HO+f3+Dt+29Ql4JSFY+Pj6gvX2C0hk06lvuOUQTl/oD9PfB+u+DVi8/xcLyHPNI2rUuFjcFSvkhD27rSP4jsuhQ6+HcQ3B/v8OLxEZfTGdvlQp8pg9JYn/VwwMOrVxGEV3R0ygDEXhqIrP5SyJjuA7Y1jL1RNsEBHA9wPaNv38D6wKFUPKwrXt3f4+X9A14+PGCtwcZ8uEOyBd2ZpUZonh3Wa7cjUcXh/oBhHfvYAKmQouiNfgicgWbve3RfFLTW0C879m2HDZtA4R5sDbcxwRz6XWQ9sHwwNLJu7NToFMxnp8fra1KlXyLoPG9naHVoBc5bIwNr23AU4OXLF9Cl4N32DHnesG9bNFVQdpdCgTWJcpIxS0hyrooQUGSEGVpwGnoyAMQcqenqdk2Ga4DNPbQK085rHBjTLy1kolswW+FRGhX+dxGZ7B6LDoKigBqtYHF2/VuUr/vNL3+F7YsN969eotiAWsdRWD7XLmeMfYNXdnOux4puBXoCZHR4M7z7+jd4XxRv3r0B6oJe77D1jqevTzisBFK3M0tZn5/OGFvHly+/wv3DK/z0L/4cf/uLv8Wbb5/w9P4Z798/43h8y9JNsPws29HjG2BdVxwOK95dLtiHQQs7Yd6/fATcsJ0MuhYsxwX2xtGMJXkwQ10Q7NIAziBhc3voBtHvUAeEuyiqbQpUHFvf0KzDhAyz43qAiKJjsDxIuNZHGziuR6gWslbcoJ3tt0ZL0oKzY2mtKCvL2M/tHKwZRS0rAWxnFYcNm13AHY7hHnV6CUT1qKXVuRZGZyyh6wEdjn10iBTKiSC0kcMmUaRcoVUhUWad2r7HhyNqKXh4scJkg70/Q7TS/zDAhmBvBnHBcn8HqOL5vKN0x1ErjseC47ogCRsD7JJ5/3hAHx1v3r2DXTYYzpDS0eyMHy3/BFoeI0nCrZXnuHjhOW9hT7CHPlKU993IkIzekBCuCIkLANB7oytQJUA0CTtmwBgQcyyepI4OazsulzMu2wmXdsaClbZ4KTADtnbtqFcC4CmV5eZM8sgEbpqkP+WUhwhWl4iEdin3NDUkqTk9Amwcw7AsR8bEI31bspUVJfQpr35uitH3NoJtVlALO+N6xIfDdpgUVFsBARZJTemS0B12C41Nu/qGs5xXw5cPTCb9viqhTwyN+HHw/QqyAN2xtxHjQkLMUrnvYW1+EixVnAMkNsax4o7VDWXEPH9P5OlPKLWLukgUZFtYuF91AG6c2wDjYrHSkM9OF4WwXL7U4gDItJIbAQwAcGG2prfIYlgcGg4oKh1wp2AZDECIlNG3HQGJGVzYSSCd3WGZOQ3RNTgzU5LBRfzXZU7OrDU1RPblWvcJSbINaWdLiM+JRCmGMDMqltCEoY09fHJ2BhoASgJlOm7EVxsGCkwaXCzKuQJ55yBNvFmjtKDIh3opjkGhcakQhKAd6MRLBF6p3ZURowRIJAG/CW4BNp+IrQSd0lSpv6HJlsgMD9dKB0sZFEGLnRx+dhNia1zeNcXZMyjogBi0eOyvYMVFfX8eApalc2CtP2vog+qpNQcCM2VtITZXCjT+DABuWZvPOvl8RnN2ukHEmUU19gP3gQYAhaAhmvFny0Iqr2pB78m+CqNSBGMItq3Djc5/bwYZgBeBqUH2ganWm0EfMqt3I8gXe+nq/90Gr39kc+fv/xRsRa4v/58afPVxcP97mki/96+P3//RD/7AuPx9GDefeufHX/W9Pv0Tc377O/n0b27efJ3JbAmfNfkKmXtRNN2HiSgg5VZdZLbzTqbSFVrA3OtXLbSbJ/uOMfy9ToGT/fN3BQF//8pOPil4Pb/Sb+8Pcc/j9geT1n07uGmfE/CY2aub930MEub/0jHjh+fPglEAnaYrNU4SXOrdYANR5kBnTAuDFMgy35tahUzSRNlb0KMl/4v4fAPlNKVglIrsuDniHLdgQKUuxvXRHCmMd8viFRWU+SKdc2hR1y1u8/v5tAwMitjUY5FEsoz2MBmkwx1Fgs0SbZ2zFD8dJ0fMsRmkpAhrJVA4rqwMBvV8jhLzSH5piVJSwn4pJdA6p7MU6ucIhagAZ3c1BJ7XO8vFS2SeWzCrp0aNBtu2j1myqrAQzi1IsWMPyjvp+I7Dqpyv6DqD3mYXpFIriq7A6IA5KtY4L1imrxqMFhcUXSBSYYzeUdZ1lkuMCIzc4hlqwaIF9w8PIHOgQ4qgrCs2M2xmkIXrr2TySjeytqsy6SSGvZ/R9o67R8PxfsHDF18SOFlOAMgiunsBLA+fQZRAzuPdXWgDNZ7To3PuS8XL4xH68gUe7+9wd7ybmeWiDBorZLJIPHQdXT2SpMlOLxG8GpZ6wPKwQkyx64aTnQB3HA8HHNYDlnqYfiL1MHz6i2SKGHawk14xB6IxQIsS2EsbuGwNRRcUGfQtm2PfBs7PF3Z9CnZadjlSDXZ0iH/Tbw5fPMp0n08njNGxtX36dB66MJSZNOxjJ7BrvJe9DWytY++DfpMUlEL2iU2hS4JOFn8nYP4hq8nDorEzF+8pyxlTI4/DragaLCSjhh204M37dzhuKz777BWWWvHjL77CN/4Wp3cb4wFROCrgFIsgw3CBIQJ/J1tIgmnvSnuSPqJZaJGlbdBrqaVLpJmNTDqWYTO2uJ5XVz+UTJAos4qAz+Y8UO/FPe0RgfxaCkHV+LxaywSt9r7j/dN7HGvBcSmQKANrbadIvwwcDwd8+eMf4/nde4gZzu/eYbts+PzhSxyOR+B4B4PibGxudhDFAkF1YL1/hNzfowi1nx5ffYn7hzt8/uUrbG3g7btnvH96j/P5hJ/9+c/w8PCA7NydeSlzw2E9YD0ccNo39DHw8sVnOB6O+OLzV2htx7fbM7I737quGHdHnM8nDMs0vkSTA0cfDamvk4ScW+Zdsi0QAGgRBUplKbkN7PtOexfJEjaU8jmf0BBThqEuFcyiB+gEgsiuLBWHAool7O9yTdYbABX68eV69gzvk3E8RkfpnckgDQa5hxckZCFVANUdpSwoZZkxNLsFG0ZvcS4VHI6GB1wbQ7x8+SVUBMfjW+y7QuUt4CyDlTg/S+qzFca+wzt6H9jeN3R7gKhgiUZbbdt4vpYFDsHhcARc0LaB0/szzN7h8cWZtmmxAG4BqEOLw7yj9RFniU4GtQRA2caYGlHZgTzroyT9ntiDFskruKBHV03LpEucQRmawhElczXmjJ1BSYKOBKGEzxoVRYyzg40Wi8ySkSQS8aHAAwgzM843kvkk85z0sDnm6UkVEPF2wAp8lOkPekoPWa6FSMANhyuTHiIcT6kOUQOi/J920qHm8/wtHnzPrOyJENpvbD8k2d6YNpe3LOjhLxbJRBTvs+X7nOQMajcNjIkjCJmaYQJFgJUHKQSOKmSzDklA949ff4K4OJ1TdY0NjtiAuZyydGp6j3yYygxgb0QLpejV0HsweyCxaJSOj8Xn1ACeugUF7DqgCjq4gjqdZlhwoinWAYJOBpOENLhYJl1zZOEfMxAKbkqHRM0iM/8MxizQXsD7uJZ3CWabSoDA0LIsmJS0yO5qIYwvcU/NdmTbZrPBsrUESG4iGdOO7hsMnd+h7KDB3plRShczwExC4B/pxQNBIQzwTYMe7SMyPeEIpOPvGTRkPOhTTI7tsoMoBUQ960Ri4CLoIIvMxOY8m904/Eoqn2QQBRoxc8VwHgBFeX/mzAJDHGvOXjhfmdEi4MIx9ln+SVR+uM/gaa5jydAGkd1iIMAOKAz2JNDjrW0otWA93GH0jr3tyDbatVSWJ3qwD3JhgnpRPujwLktFKQRHPdJyfAbW8w4Dtr1PZtZodIZhiiKGvndIVf4pROI16uJzXyZ2kHvwU+DTH78Sofge7/l7gC3/Ka4PAYwEL/LfHz+v//6oxSB/N1Pnk9/6ic/+Q9fNfH74xd/7/fM5b772Q4jj41v6/ftLi5BBG1+WwDsPyg/WiUcWO1O6nqAI4gCkbXa3CeDMOcjff8f1MdB0Czj9fUvsrp/BeUpn9wPBuLA313fx0BPRT94TcE1cfPA9oOH8oPzwg2eLPzdq99QNiP9G8D5vV24cIRe0zi6Zy3JAic5Rogov7Ep0BXLyA5hrZeYqvzpdDMAHS6gLFC4VXQdGiONapxbT6KHpCCQr/aPnJu0fCawkoyxf4VHS5lGy4+FJxOsTeJrj4HRuUmdWJIG/AK2CeZdnUg9tiLyxHGbPww1kMCsUfbR5X+zi45BILqXWA7PUQqfPLLLfxu5fQn+hjdCHHEyeLOsSJWGG3Tpa63i4f4RqnTomCVrVUmGdzCkRp8MdQUkVdofyZETH+SniOK5lzsEwi2CooFbFYalY64p22WDDcNADfY7So2QztC0cKGVF0YVBPRSoPKtVdTKK2ZW2o0Y3ubtlialvQFHouqD2Bu07dKmQysBNoNj2HaIDWmvIKzq6P+PSTvjs1QscDivW40u4O07nU2hkAnfHOxzuHmHW4Bh4WO9RoGTn+GBXtkJR5hfHO6xwPD7c47Aer3vRwY6NIqhFsdToRieW1ffRr0ThvqC3hsvlgvu7OxzWA6w7BBWXSwMEOBzusa4rajlwjbpF6RV9TzEAl47eGy5tgwr1pQoK1BX7uaM1w/Nlw946iixQ6YAJRncGf0+XCMQYIKbPUErBGAOt9elXSDY/iAB+GNlG27ZjPqBleQT3Xrc2AaM2OvbW0cYIHTUA6RupT30zz3IZ86vNBwHentjURJb4PWMGIrQbacOqsByoIBK8yiDy7ft3uCwLHl88YlkWfPXFl9jPHV/jNSAFLguGs9nOyP1TK8FVZ0coh6NWjteI75utzeMmWQ5HmytzmRAks2T9ByBwaz9CqIL6aRl2IBgvIDcBHqUrMwlBIMKcDPZ1WWDB+q+V5UrdB/bR8P7pCbi/w7IeIWuFHhZACe51ceih4kc/+TEOy4J2vmB7fkLrO+6O93h8fAkrFc2Bdtp5PijHepGC+/s7rEt2qVvx8PILPL64x2eff44+HKfzhl/9+pcwd/zsz/8cX3zxeawRgs4WpZPresDhcKAWmBlevPwMS12wLgecTs94922SCBTrYYW54bydI5ZyJoZBv703dnqeAt2Cea6k1p6EYXZQ+LxoxdbI2NuHMQm8MBk/2qBfr4y3XB0DLHXUlfpoBpYVT98EAi8VUATYKziySwO8EeiAFqzrAXXJkjVnd1AFNETyS+nBPLnOe9EVYNSHCsHiTBAty0JNIiPgBnO0nSLtSykoi6KukaQWxYvHl3AHjsdXuFwcRe4xrLOLLHg2ag1QSBk7DXS0NnA5d0Ad67qg6BFFJc4fw+FAFs7xcERrA/u54fnpjMtm+OLLE9blgOo8j9aVzCcvwOgdbRikAqoLySVQ6Biz83dWvDBmCoIEg2omrIBJ/Mh5aBYVUGNAIFgX6jvn2oOTUbjUCi0FiPg50qWYh2HGt371uyQYyx7AkwTw7cm8Q5/gtMCB0Jbkv5JnHq/1ZOWVsL0OdgYmsCVhEyYTFfG9DpYNFpZgi8RaLLw/lsFHfOosZbPoYqyRCJaUpomkW/c+x0ZVZ3UOcY1Yiy4wo4xRMQKgGvFi0au/jvCrOgwDPdZfwm9h2kWpc0UojQk6d/SI+7/P9b2BJ4tNauFsjUFNg6TNOYDmbaKYIoDWcCBDhb6qBN03OqwAARJwYkfQJ7t1uAkejoQbtnYGBFApdBhC4yY7o/CDgktkbAm44NpZYcbUktXdQJbcpVcrbkAfECH62QaBnVkXvmhks1g+5e5YF7ZANHAB2GhBGx0BbhlRYQDLeiSTK9g8wyk8KgJ0pMB4MowAhKPe3GB9h0Ut6BqGEcrMzSLz8QN5BFrfkfpXbBXMIKP5BoxAcBFZGYRIsGLWr6a7bjZYI0uXjAGNC3WqhJTErNOFkZnTOkXAr0Ens4vwK0OsVArslaKBVDMLygxAZNtUg+SzMuCLOnkGweGEBwvIh881JUVIxRbncwsP9dQeKcHb6jYgHu3D2x6MjUi5uEBNod0BqehGbZIA2ONsCRDRI7sQbCMNnbJaBLCOsXdc+hkiJeqCfQYt6MD53HB63tGbA8assUT7m+yESHr8FfiYmvm9QRC6KME8y0smIvX9DMF/vlcGw37z/9/9qv/xr1vg4x/ic/hZvwdAfcc7XK7rbDrbzjLm67FLm8pScwIZ16+6GiRnjBw/vgXiAoiJbNScgWS2/KMAm5ml53FKhlcAz/Fj9wwzQHsyj15MHbnrPcdn3rCiPhhH4NNTen14TPYQPwoAWbBXRyZ/znx5b4bLecebN+/w/HSmY1x5pPfR0LczFrFwMBrqUIy7iiRKBFF23icTwR5l0oLqCxkSI76rJVAhWNcDzBytdQZOe5uWhn5R2HufZDfo1GMMpwzUa8y29QlXQUb4Bvx/luxEe/ewsQJn8iWCQTMKJtflSGDePlzlGWRzDO2DqSjhB1y2DbPDX9rgzKIWI/MpyibHMKgUrMvK5JU7pERCK4CaS9ChHALUFaqV7DFRNCcbpZRC1o0aDB197NjOzzgXYMEDvFYsGewim1qsYLevAS0U5T08HuECPI77dFuhqFAUHFdmsxe5ZxAsDRDj/Zqh28C63KOWFVCWb++DNHuHwUdH2Y3rSwTHuzscl4pjJajJLq30t47LEccDsBxqtG6mHqRih2jB4bAAqIAdULziUBc83CuWxVGX8A9KjVJzQEqJwI7YyaLsHGVYQt9rp++giIQQk37ddxRLXS+Ctmwewvnog8/ukc30YDG4AfvmuFwM2+UEwQnn5xPavuNyblEac8GTn/C79rvwbajLqJrd4p1NdGzg0rmmqPmpEFP0TmZ/R8GwApcKlwpDRR+CbR94/3TG1gfM2/RtRRVLPWBEV0EmHxV1Ifg0PMC4tsfeZhJ0qWukwyzWDQBjO3Du0cJyGt/hxgSn4yoEfBv0aQTa6UenX5X8TALs3O+mwVosJc4LyxUFFwZ5x3JALQvOlw0XN9zdUWrj2zevcX93jy8//wov7h/ws5/8FN++O+HptGEfiuECCf97eMQnEgzz0CJ0eDS6oFYLcC1rdQhSFy79XTJ2QaAnzqiML2wC4zz7hl9tW7ZuNzi1vpBuZFhWreHDAsMFe48SLDesdZ0aYnvb8O3X38C/eIV6LPinP/sxfvzTH1E3VQjk3B2O+OqrH+NYDyiuTG4eVnz51Z/js5df4kf/5Gc4Ptzj85/+GFDBUIuEp6Dt9Dv31qO86i26AN++e4fuwGdffoX7xwf0vuNwKLhsJ1pkc4zesK4rHh9ezPLSsT2jtQve/oZNoFwUrTVsz8+4XDY8P5+CXBBEhQBWjcI5BLSUcUAtZVp8BvSY+kXDWVZONhHjlvX+Ls657FTHeEBC8gjxHhHB8e4YP1MCfL3zfBPqhLkDSwh9tThrtvMFMhR1ZHOsgu1yifiPtlGyymEClz6raVrvIQVS5/ntRkbrclhQ1wXP59MU4/bwmUopOCwrpAPogru7A5bDgnWlrfnNb3+H7bIB44CCNUgFnaCJ8Ey1/ar1pKHbM9rA5XxGBSDLikMls0uCQKFaUUVhdYVDMbrjV7/8DV6/focvf/Ql7u6OWD57eWV0Rzn8EEV3x7bvjK9KJVjdG7dXlNuWknLZDmO3gsnhJdM89qkCWhWeItvrgtEbnp+e8P7dE57ePWM7bejbQO89MHXGhrWUDBGZHBs+k17pkyZxoZYFs1td5xmnnp2DqfmLUjA8yuEBmJDp7HC0Tm2jZTnA0w9yDfkYxq8WCS36ZHJ1hDDCtgoTQJEAIZOqQ5xJiiT6lPAlZxOTsLHJhIJ7kEJSNU6i6UMSIsg8W7VggeIAYHGHtw7zgVoY5xdEWZ9FsgNs7ELQENN3g1O4vPUOG4OgpyQZCN/r+hOApxizeRDZFKNCAEfs9Jxgz01dtBPFmxswHHbPwYzPD3J5ZE9Cs2e6nzIzzZbhQS6om4dN4EnjKMxDf0YTAaBNCiCI1pk1Ah/ZRWiMmckUoYFnxu/agjrR7dSOIEvH4nUEO7pTIK6oI3WkfAxSpefYkkklN6VSXGhk7bhZOAjUtsjMsQprWfPQz7CIYmVJjYvsN6JDRmR+JKSDUmpxOgSBHSPnCROmyk9nwBnAUN6bBFVytB0sXUynFCHAFtTKdFLiAM+9BDDTVAop69dWtCUOrx5vTjQ3mFuBrfBXSZumsZFgRFHHyyJrzgPOPARWrWM422SXhSg6SV8aTCyBOwOIpAKrYgbhCFabBz1TAuwr6bSYoY8GEcNSDhxL5xjacLTGzgisQxeueVXSf0VIlYxEt5tf2QXGdtBKvIoZ+Zs5+r3/BkKe2/jjSz750/+crtvx+oe4/i7j6R/9/dP38sdKzmb28KPP+uNPmLv95nWxn3Taz+sn0JmbBuvTHzdBlxvg6YNT7Oa1/+jX9Vk+BMY+9aobICnflRiR3z6XzVfzlemVXg/lTwNrH4z6vK6srHiV0ZlyUDNg3xvOpwu2vUVpFc+0MQy9UzcDodk3JMoQ5iGMSbISyFUoc4TjKkAyJljS5/NMKUWg4ugtTo0xIhnAEmTqQUQwFomi5FzRB6QPwWTjVTsv+AVwzzJ2h3uHmaFqnaXWQoPIMy98DAsk7Tq+dIg+EFmPIDKnS4RsZHeOVww6Uhci04DsaCqQdBT9CnQMy+6wRlDEfQI6kCv7LO36gASNnRqBM9APH6K3HW2r6OvK891CewJMghVdZmV8KZQJuLs7ACpYk7HsAh8MVkstEBTUAJ6Gb8z+LnGGjIF1vUMtK0QJc9ku05dRMCCSWmHuqMuCuiwolV2UzJzlSaOjaolOvIpSFTvIgi7C0gs6sRWqB6xrg9vAsgzUynJJiEBWCpDrEmWN4LpknGc8E10BY9KJvhMDbBWN4HCElxj6IQgGXwQSfVwbe7AxSviZw+JMHhid3cW2y4bRqRsjApRtR28Np+cnpNCqLiHEnn4v6Jwn8GRmEFOoKcyoUYRK5g6fUSLwiG5z2062UDTSGW5k8AxlqV0fsEHEYhnccwNMfCZzoniAMLWEj0eWkLtDUScYS986IJQblv78ffpvyMTbbcvvsFthSDz84Vn5oIAU+mOpEuLIVtyGlQgD2jbgo2M9MJA9nc/UC3THcVnx6uVLPJ8b4Jdg9gkqrrotacVKlJlaAAjZZyaTCukHevqysUo8/oX5+qudphnkvs40eyZNRoKugtDxjHV048dnuRWYu6a2rBGwNASrUoFuA+30jMP9AZfWUO+PePjiMxyOdywJb0AtFet6xPGu4f7hBe4eX+Ky7zjev8Td/St89aM/w2dffo7/xX/9X6IsCizUER3d8O7tGedTw3m74HQ5483pPcWanxloLusBx7sDVICn96+xbRs07FJrDappewG4wXuD7RvOTzs7c2Xzh9Gxnc94fnoKIKIQhLFgqQowIkGTiWcpZa6zOQFZxugOOKVC4CynrAsBHVis00z8hr6SIVgyCJkTCBoor7INsqJGJK2d2CtgQBuNwO55RzFFtYVNEbTicrmg94a973A4NErb2KWN8UYfnNt9Z/fIEXqHVYU6Qq2hHhaUpeLt6Qlb24MBxj1SS8VxPQAb4Gfg8eU9jscFGg2H3r59H3aLCSl2dQUQlAGKRTuAEo0cArQwNhDodUEVxXEhCB/BDgCf8e6IqqZ3b99Dny84RnfG8fIBZHwzLpOic/x75+4uyxLsZbnaPYRXGdU4KZJNAe2b0juA44jIQkWwZQC2beefy46+U+Ow+4AJpVo0SiG5NMNuhWwKcQW7miSh/MqIpiAwn34VMYo49yX0qyZzKkvbuIehjjUrkNL+pZyBJMEjGEouU1Zg2ggDUMLGJwswsAtaDkbnmpU8knjJh75qpkdVprWJ8j6SL9LPIUsVKO7UGXZq0AmyfDg6C3v6QQjduxv/M+4/CTi9N2pfCqb+9fe5vjfwFEQq0tJFoAdAyoCXADSMaD9EUEAHZduuooTrQjoekdkQ9Rb/QKenewO8YViHO3DezoyXK52Xho1MkxKaDu4UbxSErATrvAdGiJgzUyDR5lS0TKPJYkaPkpISmVxFKUEnnGDJCL+/ENAZA3VZABE0NQwYLr6H0Ug57grrEoBMoLDhQCTdVDNIcaAEDdq7Q0SxLofpKGW2gF30HD4opGYwtmJWQXZj8xYLSQSQGk6eRBYuEE1Pel3UIo8BH449Ol5Arm0wR2SoQsYCG9hFANrJrMJMms+j2wrvx6XwUBnhuIpNHadLJ5usVrb57L0h9ORYCgBFDWdfrcNdIP0Q51HS452UTNBYsfMRS0dsNIgqacxxjmUNsoL3Vxc62DMyMYBo3IJaF27Y+DM/J1F6cYKHTnaVSBTDGCANdOpQ8eJOUdHw/jm6Qm0DRSvujw/ULK50oN6dN1y8YFdqtDgcz+dg+S0Vdamo6wLjQgjKrGCtFEgdNkjLjPLXGVgC18gS+DD4/yjGnv+8xRH+M8Si/qFgp/+03/53+5xpK24v/dQr4/V/4Gvkk+/7EET5+O3/OEyn7/r2/Fn5g6/45CfN+w6n5VMf+x0fdv2xIsF5ACghFs2sHUgpD0euhjPx299+ja9/9xrPz2e0veEQ59vYGnwIgBWX7QmCjlcvH3FYK2plM4rRNjrP0OmwQJnkoERmQdGKqmRvinegd+iyRNvj0FBUOi5VU3OPl7mjjXC+BynbtFeSuuRwB1qW4mgwJopOgIjBn0LqEmXQZBSVQgd5ibLnogrfT/DWcLk8QVVwWNkFiLkklmKNAZjQMTceghABlgxgSf9Cnma3gBWBAZZZLLJC5Yhmgm6CGmyZPVguyTYRv3ZJTVhxDIIC690KBXii2oBvGyocy7IA5uh7i0i2oOhxsrvb1vD8/ITPPn+Fh8d7lOo8tgrPsoUOF0QUoS0OHxL6OszU9yjzL+uRLCoIejfsbcMYZ2KkQe3VWlCFXfiGAhbfZWDmX9yxbxvL4s0xmmAIuzc1c/RgPJkRODmsA6WcUPUpglFDH5UOrpNhttQ7mA+0cca+N2z7GYelopSC7cL31coSnm3fCNrJgAi58+endj3/nAkeilKXWYaaxuu8XdDHmMwDKSXCAkPrF4y+o1Z2u7SlQxy4OFlBeliQPbHMgnkTCUIBA4qlkhU+pEFrJE8HSxbdO5oNvNue0HqD6RldBprvWOwMHRWH4xo6UvQ7qjZ2yKoA/69itwscA0uh/70ej3QtQ5d1aCRE1QIQBlkHALRGidLY4HUD0BD0FMD7TIZOOYxYXyxViyASjhKCIVlOYh5lLa7UXgKQHfCGM3gtqthGRx/PKCLQuqLjDjDF+WKoOrCfzlh1xU8+/wyXC8ur+qlhHw4r3LXqZDSp0bZALJKGBggToIaIRfQKCgXpn7INEPS47zFsgiEJrFmU7pYI5j1KDD1KzVOzifFygpjx3Mq5EwUkGgRoccgMiBWlrtSMGwOv377Hu+cNd8cv8OY3O168+gKlLgQxRCD1dwRA9gv2vaAvn+OXbcfrpzd4+tUv8dnlDP/iRzgej7i7v6d4cXf8/L//Fb75+mvs7YLL+Yx//zd/hbZvkKzSGI2gcSlw2wEjUAKwP6WNgb/a/h3WA0vtvLVIPHPMni8nlFJw93DE6XzC0/u3KFGa1kMkG0Eq8EuP9w3GGyU1B9k2Pg1wdlyspWCpSwg3Oy4hhE9gS7FUlq6dz2cC3KVQukSUGojOqhSHw1wYD0hF2zeM1rEuscfHmQF7gBSMuwrMBK1T3Pnu8Q4lpFP2fcfT03vUWrGs62TYnM8XSrk4GS8vX7wMn9rxtF3QR8duBGB1WeAGbKdzACMFS1EspeDy7Vuuz2CwSImsTi1zHWuAE9okNGRZxipOEPb+jj7Ntl8gbtguFXj5kjF5dOE8n1rs70pZDy14/e4ddhvQlysefUN9eYfDslLQ3Rh/FwiKI1iHICPYDNavQt8IIGj0BJlKnrYQd5TYSzbjFsflsqVbgN46rDlGo6aVWQV8DaYwgMpKnXeDcVAxoAhZeZlMq2WJipAVjoIhhbrENRJBmmXLgEUZmQ36XBihByYaxIhIEPSBZ9uQQJOEHRjOUvxmodE1oqZrkKBRNMgQ8Eho0deioY1SO+pazLO8uKIF83REpYGUEkw/nYBtH2TaibNZwkFCeqEUDBi6D5xB+aGxMK5FJBOqEgcZPfTwwF8qWFppZui9kWW5Vh4/pVLPT1i59X2vP4HxFGwZsB6X2TunhlIwfYjG6Q21LTKHHhk4Vn2GeY62eJgkXQA2ETXS50doLKQrwCvwLaSDmD9MQowD0a0kPH7RuK/r8ZBGgEgzkBF75FI/yJpO+n2gsBLaTENGZD5opSyYOiyFEyCFBTOKD5hT8tby1sFStqTzJpGZ9GyJ5y4c95vAKMsUzYV2KcReay0zK07nIL4+fsBbimAjWlynOJkUibHQAOAiTy3ACAQW8dmZOco5ZlZJAhjSOb45w+55PxwvvRlb84zOOG4zPR4OvHoENoEyXj8z0eH8//yiubwCMAoGUUQ10/mIr8tNnuCbyHUzs521zxJCINBqOA08bu7XCXKxXLCgFoNK5ya2+GyUMHDXLGS3CIjiGWwOlk/JMsuDMxyuQh4l0ffbMiG9ebYM4G5WG2K9/uFLPlij//92ffrZ/lM+8J/+3d8N1Hz3Z/1Jc/pHxujjz5IP/vJdwM7tv+S7fvXh6/7BF6LE5/7+z+X3X/Yd746//7F7+8gkfXj5hy+6+Vl2B3XvicHMV1rorZyeT3h+PmFE+bomqzEyjqplMhM0bVrY8FsTKR/cwU1WmzcykwF5LniUTycYT58guMlhz+EeGgvXLF8eAvyRzKRAHIuY3ijyOKHhylFK252BiYFMPIIkCEbBgJlg/ci1YUYwsqpx/qXdv/oQuS54byky+vHvskSe7Ct++mTXIJ3/KP/wYEPnM1h0LopGG+kYI2YmO/uMEYKpuJ7HDhDgGIjMql7PsXCQPM7nFOZ1J3iZXZaYPOwsne02n2tvLN9igAhodPUrVigq3kNQfjh29GgkooAb9ZYgGFAmCB049xHAExM94oCqw8cemlbBgnfAe8yj8cyxykC4DcO2dQYhR6BWx+W8wcyxrlxnvVGNwryzFL5QbP+6DjE1NhRRRlGu/tG2satQayzbQA1mRwHG6OjWULzANf2O8HlijCXKcGQucb/uIZEoTclgl8/nRvHtlI0Y1jGcTVQQz2JeOG7CuAKW6za4OuljgmM75Q1Cl8sV1GoLVoFLNJPJG52RtfA+hoUYM5k4iNdOJhhSUDe7RF33pKclkdxnXM3XjtDpc0i4Hjr/zEZFFDlhCd1gork36lTdHQrqesDhsOL+/g7vOrV8Jmid/p+QLZ+CzJ86h673KvNfH1pB2kaRm3fe+u/5qjnXt96n3/w3XpRfIze8Ks+E9809CUIuQdD7wL6d8fqbNyhyQO8Vy3rAiIR+cyJmWc7sJni+bNi6Q775Bue94/HVL3A4HHF3dw8Le/If/+Mv8e0336C1Dft+wdtv36K1nVUKo8NGx7JQEqKkxPC2QeBYSkHfG87PJxwOnAtJ8WTQVj5fTqi1wDBwvpxwPp+gjYLOrJLBBJhGa5OVi1i3EyvO0s4EnrYNtVQsyxKi4ghgx7BUArO1VrTWcDqdQgS8RlQlE3gyZOQXJASp2HeyGdcalQxOzamiGb8AbmSO9tFgcGhb2CEUHfu+47LtKJ0i/cuyTBBqAfflUhfc39/HkjBoa9DeGQmr4HB3DzhwKgt669i3Pcq1WXGhTtMgAKos6b3M2CbXnwf7iJrD1yBANXSNzTA6wfMxOnoAdAbqA04JlzhyBga6d5z3C3QrOF3OkfhZKOtyG3clkyeroZDhlOJ2B/ptDBXnJNlRNn2Ja7x9FetnAosyJYxpND4/bJSz/DW3HJnUN87D9F2CpWXBXgLrM5mQkLm3Lc2VZYwJxu6SZcO8v0yqlcLznOW1aRn8xvbiOokiN0m6mLtkeSH1PK+ji/BV6JP4LCvWiW8AVx2Gqy+Stun2bHJndc9w4xke1VyUmgmfTAR5g2StObKRTLgZIVvkVx9KfCbqvs/1vYGnNjoPwZrClgiRw4HWiexlbaTWQhG4spDJkhnGwfaYDpkLKwW8ZE4mNR8AbkoTQY/SrrKssD6YQREe7m4SG4mHbCkrShEsi0zhzDxoauFmHAB80MmiiHgIoIHZKQiwLgvLpHpjDecIRlCtcI2s7GC25EU5YNjA3hrFsUuZ2RSUq67FldQbmG8IFJoTVKI2hs7aZCD/HUFDCD5CQGG7+OQxduy7BVOpQmXhewLIa63NjbLUFUtdOAidGiIeFFMubrKozIEhFOaWyAxvI4AYBHvIY5NohXmLEo1YHFJir+uNQwVIUOMhQFY2uJOVVpcKiVa5LTpRuAnz7zW0SSoNTA/K7VTRdw/Rv7CBI5yeYUSsA/EeYcx2Y1vTIssUrPUwEsNIW/WLASbQew0tg2DKieDah3nhWDV2pFgKy11KqXC7oPdBIckBlJXZmbZntgxg2cqC59MZb9894fB4j1JJp4ZIBABhYML69H3ACvkp7o597yhiGGpsO418DweaBiOKJdNY/XD9cP1w/SNf/tF/gQ9hnyvE9IF4uYfDKmyv/fz+hPPzGb/99e/w9TffUmug0ubDeMKuhwWyFjTdYT1K1O2mKcYMkNIQyYxFQ7wCAwzGpQClss1uj3a8Y5CZvG0XQKJtsQfAYWMibRWg7ZXskEgf6Uqwp22dflOc16rX8v5h1DNaCou+n5+eANBPOB5WPNzfoRSDHCt8MLO+eycAZMl2EcCYyV5IQUgcDM06BIiW4bwJsw6zjlIWiLC1NnEvw24D236BasUiC8lqEIwoJVi0sKlFkSm0ym49cRYh2Tn0eYqS5ZxlW9vWse2Gl585qpFJpJHUMa3Q5R7vzw1P+xssK9tvPzyyA9XT6QxBQSkLky1QnM8n9N6xVJ7jbew8w8r5ygQYAhgDkHQwM8k4dTU9hJY6mTB3Cxu79NagpWI9HNHc0dwxsmAggdBgiWxnMhyKKjwEYIuGcLtw0vsezrxW7K1hbztsW1i616ghedmipL0QbCRAxO7mPsJpDrmEdTnSx2kNBdTD2PfGLoSFzT+W9QDHQLMLSmVTkKqG3gM5MIeFUvWyLBHsREDhA4tmwpWB1rIuXEfe0TqiXTf3czfFcLCsv2Qr8exCyWDZUDBQAVkBKSxNMkFzBPhZJtA4UOBCYV5xsuiuZSUMiEZoglkofNc1WX0W4HY2n0FIaDjg8QwyMAxoje5sqZjNCPbO9TK7oEY5FvU/mSV3oQ0boeVydGqeiAlGb+w6pmTKOTqqCFwd6hu+/vY1Hh8eMHzg1WcPePz8Jdrf/gpvn0745ttnuANlWaFasBzu0PqG1naUtaKqomXw6qkh5LDorudDJnhOsxfdtxSTGZeYkyp9qMloDd9NAyyCanT8vCniy/eDdnEYNcJEBFqDYREJb/MB1YK7uzucns+4XE74+c//PX71q1/gv/iL/woPjy8gumLfG16//haPDw/44vPP0fcNvTW8M+rL/PfbX2EMx//d/m+zxI66cAs8BI08SpM+++wFWmt4/fo1WKJMP51xQ4f7QNtPEDgZpGkHAnhPgNIiOO9joNaKh4d7bPuO8/lCJFhkBqXLcge4Y9t2tN5CN4neaTbuWcoyWbg2WDrKJG4hMKqOlFIUbMhSQFE2fyiDelDnM/1vdnpl8GCQELkvkLJghF12CEpR3N0dQ8RfJlCz6AFVD1zHcPSxo42Btl8gInjx8iVG7+i94/HxES9fvcJf/MVf4MWLFxOgXpYF+7bj+fTMLtrBEC6l4M9+9jMULXh+/x6/+93X+P/85V/id7/7LX7961/jeLgjcHX3EKzdwfPWCOyOZvAq8Hod43VZI6616VJYgHhWDI6By/kJvVUALL8uQAhVG9QMqgWPjwccbcX56R3a5YwKx+PDI+SrH+PucId6vJvC3L532DDsTrHywyHO/Cx9tExA5d5xYBbfRplpZ3dzSDQJAfWYujsulwvO8ccAMrWkhY0l67pEzMyO9QRDs68qvAKmQI8ETuuUi1GeM7VI9MZx7PuZO1gwcYoxxpSCUU1damqMUVplsAy2LMjywSIeQFvneZRaVpo+FqW53RV984ApqJtd14XA7jCYCgaANkJDLrryQqOfvQvY7NYBKWQOG+e+OTU4ve+hRQcM6zAYtPLZqb9FW6Rku0B8QG3Ad9o9VYrvHw93AT6xq2OzzpgaXDspY/DHru/f1U4iqL9B/hPUyU2UTvMwi8OUrzd30jYd8GDszPubmZxrnXUJ1hCzLAy4xYUd3NzgrjdC4als4zwMnVS4zLzc8EDmTX+gA3TDbOKvw/sNY0r9iKujDAFSBSnRxFAzwgjnqYiCxYQ3WY3MAt8wiOYHfjRZaTAskVKP74LPjg8WQJuWa/Yos7ChlIlkIkmwpVws7sdnFjLn9XpDWat1ZW4lWGGeOkvzzmMMMZHh1OzyjG8ysIqOPO7A1MaaIEgywySXxNU2CanvI+ZNLGmKmLMQDzmdhDmXN51c5gzOx5SZJZ/WLz/AmUUaIUA6s+WSKDDmmM2pC6qlB4o80dn5hRlQBnMpDuwU2acobQjYgnsIItRsd2Wdr5C5kCDUtOWuAeZi/slvTuzbcbvP/jDw9AMs9cP1w/UPe30/0tYfeZGTLbRdLnh+ekbbd4zWg4lC/cHs5ioe+V6h80aR4Ou3aBqF+dkf3gcTCmzmQdvkbCriPP96J+tKgjYvrlGukVoKqY8oM4DzSUcmDZw/D6clEj6pu3iLx2loLBxWCnGIsptYUce6VpSVWjDzHLh57xSXRpyNghDrlWl351Przfj7zV9SgwmCZBqoRhIpzgrecgRl00G6kk/z426zp57IF8CgP2y3Gc/q3gfaYDlWiWAYpUC1spNNHzBhHIbzDjPgcg49qMK14A60vQV4F6UEDgKKkfkc5mTjukwpgNn4XNN3GVNY3c0hZgzgwHMMwnIby2cMP0ej1FtdJ9CnxrFCvI5C8BIscYcbyz5cCNKpGkRGzAWDjCxx4qzz95PJFwvAhax68xY4Ad8PCESpx5Wt1bMDooL6FxgjcJi4Jw+hfxBEyoe55pdtrjMBAIsKAVKVZymWQaDKuc61t6wrXIAW5X78ekNXm2zmWzl8ujg+75t/k9hfPrPpCvqS1F0d8YevHjd+B0tmPZ5XyXC78SUgheVi0Up+eO4rhD6NX5tS+O0GTODmtqqBfryAiUuLdeCgvms2dED4UQOOrTecthPWUlBqwd2hovUFb8UosDuZiWXaGwSj0uZzfOAFzu/gGMZg5P7zlMK4jrnITSlxusDTjU8nP3/nH33T7fNPQ4DU3sux4q5r8GLQVTCw49INz5e38DKg5YB9bzid38J9h6DBogOYD5Z77o2yDudLD0aRhTA3k9aiwqBSBQVMvp+enqgXWwUsmLH4L/XmBA5VC9Dslslq81FyTMwG9n1Hi/sQp52nKDP3vYN5YRuCYRI+cNgAB7LRz7Tb0RmTTXY4SbdMYy4BCxZZjbjkWj2S3bhdRuj9xlwaxegPuuJwILB9vDugFAJFHj55lQVFltAEGmiNWk+9bwAM2SX99vx5fPGIzz77DC5sqHU6naZ+VLJrWmvoreH5/Xssy4LDuuDliwf89Cc/Qts3vP72W77fDN2puwhNJgyA1P6JLeDRXKi7s0QW3KccF5t7Fk4bNoDQRypkZooAkdyxQSBHChl4Yh3b6YRFFfvljEUVti7I7pAZ7iQYP5mZqXdsCdVcIxK3MfdR6kLPODDXUycrrrXG5I3nuRTEE2CqiaS+UJ7TjlhLIGmDmk03e3riBRlTIc5l2lGUK/N7ip9/GM4hlfA9mFcmqdHEgy679mZBT6xIsl7BcmQxJaPWM2xkZZgjmd0e7KQbP0Ko7ZVJIvjcQdfYFD79DIvxTU1nSu+ENJDluCUb/To2SexIgFylRPWOxdiVSFJEufM/NPBUF+rJ9E6UEYHeiVaslY5c76zbZdv5gmURdHPWJhrZIrUcacQDQInkI0IKCQBwXCqKKrqFqvwAom0JMGpkeriQdGbLFsyTBhLnXzhaoKG0KEnghgTF4XI7xAJh1e3NJOJ6X1dAhLtiBVCgOIBCdVBm74qWcHpsLtQe6v4WgqMqqbcUSLTn4rbQuBI6tU6DW5RZnRFUw9E6tBQcjgsUFUUMtZSg6od4uUpka0t6QwBSCL0ArkQyAQCNBiHKABB11xZRSrbGdTOokbGVFMMiEkJ6Y4IuLp3OhQTFXK/PSwbVtfQjZoSgiMsUhwMkNEkcl3aZzjkpi+mwX4OLnCy+zML48uiaWuXh31aUufgkHGctQS+POlkPPRXVtAgaVF+f32lhSMu6zrVCZ0znWKqylpasPIMKhRh7dIg0B7oz1+RCrYjz3pBdrmolzfhwWFCKzoCFEgICmdv46kDNsYmTUG5WtHzHCr8Ju364frh+uP4TXbdO9QelfJG1fPP6Db7+3TfYThdY69guF+zbht7YlQo+ZoONEs7NsAYdbEVBGxgB43f5CaooyxHdG9rYcNk6nk/sTAYI2s5OMuvhOJMZoxvGblhqRS0FpS4zuWPGTjAwOsXrQuatKR2ry7YBCqwvFjhC9LpkR5UFIsDd3YqigjFeQMSxKJDdt9rpCX3bQw+c2WuCXxLsXET2mSKkoorsxNa73Tw4raNKinLy2Rw9jn2HqGFZFaNTyyJBf8zMazh7g+8F6GiReZLRLZlZbsBQY9AdTt8wggen7QIToBwPbFdeV9RSUfQO2/mJTFczYDe8ebez1MJqPP/Avl2w7xtKlJGsh+ggVVN0VqljMUYEdjx7mdAwzAYsQaOXcGipMyIsWQOgNULKKKcBAIlyiyWJz7iyzcUzSZgRKwG7EhQ3qQ0OtsquKxtoaOGZX4vhVjx8BAhYhZ8u4pNlrkpwdNvPUC2odSWAJQPLylOzh24LWVbUuYCRwZztq804v2s9wM1wPp343OWq6yHR6CNbfIwLNYFGdImjS8VyBnbzdTyHjsmLVy9CuJhNRvowbHvHMKAuDbU6pFKnlOLpmAFB+uGAYMQ6diAAP8p4i1CbdZazuGPfW+AdoWlVEYxJwJrBO8tazAVSFmhRrEvFPjraaOQRCIBCHZUPvIsI7sR1JsEAhyQYaaEhJywnHAm8SDTnFmGjl0VgRfHcdjxtT/iyAA/1EZ+/POC4AG++icYsDritcK8QLaiq6MaOSyPBM1xbpyfoJMFQHOOqP2QOtGGozr2C64jOoJ0sM586KkhhYssYIoq6ZEYXAYxj2kOyKBK8YaVGtx3nfkFdKu4fVmzbjt02fP30S6ztgFoP6G3g/ekJ374z/PIXA0upqKWitgr1gsOBHSxt6+ELEzgYo6OuC9k2hc/w9ptfc+03w7JWHI8rEFppud/gPQAyJzuvKqwP9BEAlQAl9HFWXeCOKazN/c8unPugNk2PvSRCHdVSr6qKOTbLsoZIfGGZVVknCDW0w6TflHk5zBSjd1a6FJ2sFD9UjEoQidOzhX9e0cbA1htevvgRHl+8xIuXL7GsC8qyotYFDy8eWT1SKgXIu+F8OVGMfT9j287YG8/d8/mZmI0K+mhofceLFw/48qvPMVzw9t07/Lu//ndoraH1jru7OxwOB3z99de4nM/4+d/8DR7v7/G//Df/Go/3R/xv/zf/K6zrindPT3jz7j1OlwusVVQ33K93jDuiokNRovzKoccFKIrzhRq6h2VFVaUuGSSSUYQeem8EhXqF1krbWBVYKy7bjn1rqIcDy/Ur9YpPb76BtAue14riI3T3BjWKKu1hC00wsii5+QjS9cn2WxfG6mPscAAdwZYsClXq5vWNCbWt7bicLjidTtg2NhYg6MQeueIEp0zARh2BidAMsakHpIIEBjJJBUmvKPxbvj7dgEF7UWq5AYdJ1tAkxYQxKKqJG8M1uqRH3J85tL5vuErChEbzMJgpFhzITo4qp1vSDbGBhiZRhaSYd+7hlWQBfUoaaMa/EiHyuHZZLimqDjJds3Ne76kdlSSbtJk6SzZFs4qmMqmSnSFvpH+q9Q9kBf7Q9f01nkwIgoCt6ifjNFA8RrkFCM0nBFpMgPmKtAbzEhn6InWjgqLvTmfB4bA2ONmZMRlRAVmizbOBQnLhaBJFpeA3GSMeBifaMU+8MW4m7yEXhbB0LsEgBBAjkX2Z7K2YHY9ucd0G165eqdKJ7fLjox2jM9MksSF5HjJDUzyyvVfIcvplcG6q7BQE514qmp1g6KgS7rjBlSMjlyV9M8MDnyKY1KQAINGuuqZ+AYIaGI87M+iCtWSbR6ASJIdpHuyZTZb5HBaAYIrJp7Yns+4ewusSGbnoIBCbXaIObkpAuUct/BXt5cxHGYNQOD0F0gkUDZgrRW0TuEl0fngmn6BYCHiOhBgHRDokxO8wDUrca2x4iRLIzJCoFHZyCQBvWEcfwOGAaVQQWdTLvuH983uctwsubUPrA6VkzTWBVQfbP2v/UFclOyGNMbBUha4lGHHRTcmvey8NJSEoTwR1ztHH1/djaPxw/XD9cH2f6wrwXLO1s8Qj/v1delHpkI8x0HeWJ1xOZzKeQrMBHoC52wxyFcwqDhtRvp6AOe/jFqO+NQPZZa37joEOlI6yGtYjsK4MMvZLh4hT6yOyj2MsaP2AErR1LVkyHg6NIZjLFPucbdbh2HZGqMsddUz66Ki1UDMkSveWlUkmWTgetbDMa983lFLR6zrPfA2NDuuhT2AGRC5yJkNijOg80eljYB680HkAB4cpzi6Hs6TLrp0CPWxtcYGVwmRSDxo+OBYoyu4/bpiZNvXIIvKf9CPoc/TR0EZ0VxVhww5soCN0gdQ9utYISvGpuSTiUDEsa59sIZFkcQBA5Rk7KyJ9ghrwASjLghiflzjj2nXtqIX/E+ulMMg1NCDWAuJ5epw568LnHW1gsuEiOKdGmXFwATo7cU5NbZZAMELSno41ZL4FmVw0ZpnZ0dZjTJNHfHXXsyFO6g/lrhjIrmf0pdiNzeLMZAn+kAz6eA8E6MgY6pGlHojAK+9P/UarNKAJJVOit4G976G7gZmhHs7OQ5I6L/ArruOI0h+upQRZEWMiuaIioapFgOn5+szhUQycYLBy47B5gWR5KHBtfJ6GIpgX4VbS9qSYcMx9JJZLao0hkMvAM9LXTjATuWLCve6D/s+lA2QVdlz2DXVZ2CRBBZ+/esDpvOPpfNO906gBl12lr/cp13uVa4dNfj0fRAu1uix+1vuIPeOzVGiu+UBiHR/6SuJz5QZ4fX1Gz9K8aYOv54IIUFBxp3eUlhj034YbcGGgisVRTPGgdzAdMB1cFx1w7zCnnylQsLM8g00CB8GgkDEBtVEadaqroBZDrWQ5ITp3ihhMRhBQHO4a+qweLNoQX0Z0V3Y2VkjBeY6d3fj1uZZSBccganMPJZjq3ggmRYXF7IzmYEJfggmI1DmNznUSSXWLHR1i0AnSSABjwxRaFtzfrXjx+BlevPwM6/HA7qZC4P902iClo9QK68Ykgw24Ury/1IKvvvoRTs9P+LbvM3Y9n05wN/ziF/8Rre34yU9/BrihtR2XbcNl32fCY1kYb0j49D//+d/g4fEBP/7Jj3H/eI9/8S//Bf79z3+Oc9toH2xgKSwdk37DYCpcX9RDIhgBR4j6K81pNHcwN6BTXNpMcNk2LG5Y1pV20CJhRcN8w1QDFhV4b3j/7eugrDkeH1/gcDhCoimXCNmVfVwrTNigy2Ysm+Wq4kzbewKbBsCUSQgpszkWAFwul1meWQo7iKafY5o7LtCEqQHMBEeuNdqw8IFEY42nXeO9p81KP4LHI+M+Npmg70AGcRgykWn3LF6b8R3gN93z6GOUyqQPO6zLjOlvY/RhFk0ojNpLBr4+48cwIOpcr6yIj3H0sK24GWuQLJKEkbR/cEDGNa5Mq2gAhtCGIYA2cVBOJ3wbFUXNBJ0D1UtgRH/8+t7AUx8pLK1ZnojZWg8caEjW84amUO/UfEpU0BE6RvzMbKlMOj8HOoEnwGGRzdDoNOLDgi5aOPGWgBH1J8Sj+4Q59qgtp8EkSqVgJmjqhcbAU+TsWjfprhh9BEiSh6xEuWDqHRB4MgD7oAi6lGs9s8uVGue4qv7PCc/l7tFhDqHfhKt7xDFiGR3li/I9DoSYWYoAQnPJeNAL8+HiOwXhjHHeenSHS+eJwBM3l4P1+C4eWVp+ZQU3+p1Wvs8FRT06dihMynQaO/Jg4jw3HzSQKnFwRRdEAEDOJdk/WTPOR4gyjZtnIqtaoyzAJohio4XQYEGpbCO9b9SeMtaspcc6jb2NoN5LQRGw7akkDb6DYUOb4y6ht5W0W7Ncfwvc2OmnKNM4EqhcGw19OO6K3Bg6GqzTdkJ/O/B0fsZ5u2BvHdXJjipVINF1YjAVhzE4Tg4PhqFhjIbjYcFSbxy56IRYPohlwxX360++C2C6FQG8efWnX/zD9cP1w/U9rrTp/uFPPwKgPv5ZihS3Mah1cDrj9PwcLKdGRogD1lOHkfteIOjN4KNH2XkGPf7JrZzgCu3ywD7OGDBI7ViOhjsAD3fMsF/O1EW6O6YmRjooDkMPxm+cY8EIWLTMUvQM6vORW6MDVmuFmWHfqbO4ruu0czkei66zdOQiZzztO/ZSMQ43AWw4b5vtPCdItSHzVhAdS/nqJe5Di4B6RhJ+xJVBwtKwSHDF14zhQA89QHdoWRCIG3onA1yAqV1CoCuSeEWudthZApAl5Br6MnvfgeYsvwGDtuEbxdWLoUgkOaAT4LuCAUAtHX4YMGss+RKy1Ng7HNPhVWR3VuouiRsMezjimcqy+RzXxdLosJYsCaCPoeWaBb10QjjLYYUb0EdDan+UBNisM6iTOvWOPMr+DJGADseawFM6/Py+WU4wDG6dXZlmpgoRiAhSJMEjC0/9m9AiEbKXWzRZAdJX8wk8JRe+SZ7gWYav0fCNAKcbOzQLottu3Apz4T5Li0wHhhku285SEo/+war8TpPojARUQzCvw+dVDSCBS86REhMcmmSEJOugFIo8JxLWQ6ja3IARYs7qUBPowi7ffexQ82hsIhOQUSlz72oRwAx9+lEJ3pINpEEr8vjm1HvKoPGqeZJjRN9r7xx1NAHLPBvO2wW1KH705RcoesCPvniF989nbPsbBGkC5gN7b9fEpZYP7AyTwDF/aQYjwC21cj2Lhl81gtGegWsCJ3MD3KBXfv0TSW4S5eO7QyIh/y1xL+nnA4JFCu7KPYPWbqjG+8FJYOqQA1C14KgHdkRGx9gbu0LrBpMsrVPUuobmbt5kwbZfAtBfA/DlebEsC4FTaWC3PsYULkb/URBgqMKHTHtPQD+EiuEoI8u+ApgVzh0ZaSmwXK/xjWQZbbJiuQ5tJp9pVDiVkTSNmM6igkSCzVTXGpUe1IBTJ7tDIdguDXDqS1HrzXD3cI/Hx8/w2asf4eVnnwVTxbG3DW0MPF+e+ZxLRQ/gaT1ULLXg/u4eKo67w4K3b17j+d0btLaj7R1PT+/x/ukd/vqv/wpv377Bl19+SeBp33C+nPH+fJ5aYC8eHrDWBbZ3XM5n/OVf/iU+/+JzHO+PePHiEf/miy/x+t23+Prbr3HZz4ALlqpkVYa+cAl7CQlNY9hk1bZuMFWIDzKflB01k60mAvjFcXDD/cNDlBiTmVRUZqMJRMOCtS6w3vDt179F2y7o24ZFHKtSA5LVLiPs641PE4kQJGkiglVxJshdlGXaw+ASmr5SIHVy4XA6nXC5nNHaDgN9iKMGwBIaSAOG5Bx1D6ttxCUkmhcAJeRKKm1Qscl0yn1Zq86zFMFgzMqVfJFnl0G5nnUTYMcVxHIPtums8FKSEqQAXiewls+ZdqGPBgSDyC3ngF0as/hNgqGpzvJ8mM3vQXQ4TuY2APpecV5Z3i+R2BlDJ9GmwdARVVSik6msY/C8COBzDSxAHSAl60Pf9ruu7w080WDcHHyg5s+woDdL0PdVUJY1DnOdnTzSJquw3AhqATxFZzhCesFwYb13OXDQGoICa8yyioQzQJgPxYDmQgS1DwzhAtSkXMZBaCEUPp35QBwDtMzlE/MW6GJmzpyuS9UydXmGO0Y4P5IbO75rQGAhBuceguaicUBGV4UA5FI6ySKrl0LQ3AYEODCiCwyI/muWcsU4uNh0jlO3qfUb5BdEW5MdxXrUQGghZCMqR344HagEypJCr0J6egmmVAndJnGLeeXmTwE/Fw0GFDNypojuMASlUniU9XzpKER5XtK1JZln3MwW4JTOTil0fpg1qQFSkYXWGrvJWbl6495bzDJHs4LzoRLMumHorcFhuHuoOKyV5R3GUs26UMzVGjerRAF5j9IJKNCt4bI7mu1wMejCckQTg0jHsMLgTpxZT2Hd+LadKKQKoJsBZqjBohpx0JY49EUEJdqMsxwvy/p4SGiR695DOMU36xvTFfxD160R+QF0+uH64fqHvT69pz4WFuffMbXhgGA0SZJZDUU8NJA8mDssuTPrUX5XAI+OcDACKxEIIxJIInRWRtDLvVuwMzq0GJYVOBwFy6K4v3uIoDsBFJnARMcS+oQRYgyWMS21EiQDopx5RGAECJh9X2uUhmAHfLAl+WDZtGoJz4NnhlknqAYKhqukZo0jWShWCKRlCAmRaHNtkwlclhJOKKLcxiGaCTXeX3BeYFnOFYwAqE/mE0IwnAcpz9mU5MtxTpHx4anFtND5iO6yZh4+QrSEN4EbS1fIhmUJCrWHdOrlsEmIo+1n6rWE7Veh5gcFoKP0EVnqc+0sR/CKBXEGgRgH46ojyHEqpbK0wx1taj6VCXZ4nJMpNm3Okbvs5wgcua5Hd4woRbcoy9i3PdbJAupNSYAjDi/hi2k48xZtnesCM2rRJIUrZM2vwFo0g2mdeiYlykUldW9EyCyCoGiNwHdM5kYfvL9amdVfbsvq0xc0ZuzdYj/oeuN7RehfKWK7tR092XICaF1RvGAZbP0+xgBJAgTtXMLnNJ8i1KUwmDcbTEq5AFbDN+SKFevofcfoDbqUD7R2uMbBDliMWZhlN4NCI3gc0RgogSfKOKTGVSZXWWpnATyTucJ/09+1XCfh73nspw5gyA6XPTZJ+qeCzQT7MJzNcCiOQ63oA9jawOn5jKVUvHi4g2rBu+cNl73jdHmGC5sIWWT+u43wjwqu34xrsvzGpsIIUFiwzetCjTu4h7IDmT45r9zswbITieYNV41aneLkwdwL4eVk44tIaMBIiPoDHuVgcNAeSwj/urCrlw/6506/cS8NHdG4wAwqA8WAgzvEohlAJJE7Gjtx94yhyDS0vk1Dl0ySW4LAvKHoyuzOvQiQeSIW5aaIKosic2zNaaNzPjJ+5N5hoyh2+AyNWmCyzK6NMBiwK4TiynE2sjten3bOQSYPEHbD6OOaEsjKvXIZHeg7ZL/gm7dvcO4N6/0xkgqMiyRKTFxCRzcrXxAMQlU8vHgErOHly5e4nJ9xhmFrhjE6fvHLv8X7p3f4Z//sn+Hu/h7/+t/81/jm9bf4//7ib6dWHO2Foy4Vi604PtzDAPzy17/GT37yU/zsqy/xT//Jz+A28Fd//Vc4nU6Q+zViR4KgJkr75AIxdmebnkUAft11NupyIyu6Brvr+bzh0jracBzv7vDw+ALLuuLuUHHaNrTesfcd6oJ6WCYG0PYNT09v8XB/BxHgRZTW12CdDQQr1iM+KwoDY5hG7RyYOrK5BXDDUsa4MijhGL2FFhVwPC5IkXfq6HG/acwLdSZ3nskha0NGcIxbCVH/KnNfGIzC4Ugtyk7gWCRA5DFjavcAQkO8Oxs/xbJm/J0IuvBcXesdskNfKTV/ASZzsopGoek/wOCjkY1dBc3I0IUM2tNk6WYp6uB40veQK6COlCrATGrS7+FYj9T8q7lYYn+GzW6WPg4Yj4d0D0lHrOwauDZUyMKq73N9f+BJoytEOEw82IO6F4CJ1DBGdZngiER7xnReUvRNhYj6tazNQ3860x8KXQJNNC6M3m1S9U0cHi1puzt6rHIxMpVQwvGKxQw3DO8U1ESgximsHYZV8j6RLKuJl10F0wEa3xt4KBlRMg2eBZ1X58RMxk4irwE8iQiGRLeJD0CB/Bv/bh7CeAk8adSn5v9LuDguAWjJnK8RwnuadGm+LDYdGUt54CQvawJPjmhf7cyiACjuM/BBHIIamYgBxCYLqCOV/ZJNhmvuaB7oHkeRB4KfmTAHUpdgFswmfBKbRICbsgl+jsWYswNEiexgjGUc8KR70/FUUGiNN8aDw8VR65HBklLwMymXSWl3ECiDYIrjSiHFdbTBjS3sHhB5GkQSh08RQCDE0cbObEtvQHSCGCFaaGlEkQ5j1DiXdIyio6HQwIgmJZQjli2Ur37ELaD0Xdf3ec0P1w/XD9ff5woJzoRTrj+/DYj8Jsh1nzaIpmfK8mIpSSX32cUmy4+SZm6RzR7G8xdZngCE20XmB8uGo7MoBkQdpQJ1BQ6r4LgcCFI1drnzoPKXwgxYWCtkwwkCCmQlSzhSBMfieKDSAzV2dKBJJ/MmAir6Q06AJIZlGAAbkZWPM8+puZQaViVFwItNoWGLzGBqPtW1zPHkEDD4yH87MMv957kTDlqWpHuKVCMPF2AKC94kv7oNlkwCNw6wXOcYzOpDEKKsBNjMCICIrAyKPJJPxpukblCH7RszqouGv8KEijlQpX7ASJnZUc+uueFEQ6c+T64NcUCqQqUiBaHH6FefAyADfIBBQpxTOSqtBwMIBRZ6mwQpdDqHvdt8DSDRfCOApxvBaMBh0dnY436GMVhIhzv3EBAJUWdn5uinxrM6yibmvyETfLUI0CzAHc4sg5ZSydqwOMzNojGIBbPOyXTK+8xlpUom9gjgKcsIqSVDvZthHdbDN5Lwo4I5HtQPVCHQaGApHoEdjW7dLMsjc6+j7R1tb9DB+Wj9qsOlRVHXq+h7D1mCmj7nsDn+hmCwB9ObOJPk0r36qUigAx8w/qfgvPN3mRI1aYA2+FTfZZfpbgS1zAxYgaVWdAN6N1wuO6wajsc7AIr74wF9GPb2jLqsBBCSbT9CLDgy/zaBsvAtbXrxBGriWVInju7VQPIGMmS4ciGzPMxDF5Qd/lSy5NSn3faIC3L8ZdITg+2T9jkGr0biPJslpWTFcCabTQeaDrQEntyhbiznAZ/TnGVzLhZ8kBH+fIITA31ckIBgRQLbOn3w6Qv6HB3ArhUeZd4jn0WisoDlRdc15LH3BGlbWBLJSNiDvXPlgNzGliyPzrDmej/DqBCGIjOZnnNiUUWR65BECUfzDhkN2htwesJlNLzSV1gOK8HGOBcgtF881zCBFDhj2ru7I0a7x+PDA8QH+n7BGGQevX79NU6nZ3zz9e/wox//GP/8X/4XWNYVr9+9RW/U4I1VAC2FJaTHIyDAm7fv8OVXX+Hu/ogfffUlRm/4H37+73GyBvgOoIA1xorhyqo3i5JuLXGmpL8QdspjWYUNUakQAbbWgdaxN8OjC9bjA9ZjwXI4kt3i1ABTkymVAiFz1c+O8+kZtRY8PDyiakSYEjEg6INoqXG0cM93j30WdiDj0yI62W3XLng8Z8YYwc6ryG6ZEZTx7AOJJ3AD9ROjeirHWIRlnax7B0radAKwHJdC2xneiwch4oOo1cFz0xNpuoJ8PD8kfJrr3qnlEONBAMsz3lWHlGBTyUBqPJPB24PlJPxR+oOWCbQracDcAgOIkuzcQBkPIuy08VmLkHU1P3eiRXyza0gUuAdZ4ia+Tsa3ca6GR2l7fP8/OPBUCh2WFo4mEdekkd+CAj4NJeKhAVDDyR3D95iQCL8TPICEUDhb3IsIztvGPGVha9RyXMgycocGyOXxuS3KCdaDzoFyJPWSlCK2DSTlH7GAeCAK6lJCHI30QpnOBRHFEa13KVIZoJTQUbSgiV7aPp2dEoCFFgUmY4V0wuEO9B5D5tMhvC6lacIjLMmj3YGgV7sYXAqBlcK6/BEGPsdGChlkKvw7NKlwjhqZVo1FU8BsxYj7Y6yiRKotj5vIDkJhscj6YFZNw9iRzM+2z65XbSwevOFkT4dXpn6Bx1hogHIASzpHo/HQcPRTF0Tk2vr5ctkCfGHmFRpGzx11WaB1CWOBKXpYRFG14FAXJNg5OsEiDeBTrMKtwjqF2IsW+KjoriF4D9aNxziIMrNmkQUjEKWoS4XDcNrOEClY1jt4oJylFqzrgr7tuDyfsJ0vsG7Y9h2iisuFYpNlXeiI1EKq7jAgsrJt36d+yno4YAH1U8Qlsgzcb7daMh93Bfnh+uH64frHviJA/uBfvGYjBoDnqJDOvqxkYR4OFTZ2dtgZLURNWwTMA6wQpxisaIEuhQB4nLdaoqucIoJmm3eQzGWoo7UN236JTOlAkQHVgTEugNE+Z8Du3jG6wT3Lv3jeMHlpaD2cOM/gt7AUSQEfHUPIXB4oQFmjHkeBhY7eyEDOeoybwCuguqDvA9bG1FMQS4CFI6th1Q2gdoU76kIGFfqYXWMmkC8SQuqcn9ZbJMmCYVoUo7IpRNUKjey6gyViUEFdlzmvvUdnuQ/OsZtOWRm6CxlKsOxU2PH27VscjytevHqc95fe4ugE79go3LBW49wLtYFggHeWa21NkA1B5pfFWTd6uOGBthVlM5nRG0pRrEthd6bnmxbpEiy6GC9VxVIrSrlHst0OpvPcBRBOb+YxE5hkIHxcyw3446DwJRNHezI9IsDkuWvoY4fDmKRMdopWiBSMvsce8gAcHW00uDe2bNeC/XIGLMqCEMFcNGfhOCpGCC/5NjC847Jt8ACEyIQoGM0Iuo3wgSPQEjiGNfSxM1kqhvPljG4DdUnRW66r3iy0VJeZqD2dOlQHSy/ic2uUoA5rGN7RO5+veAlW+uSfoHVD70Bx2oGtNSavhEyEmoA0PALijlWZjBvEOdggaHRsvSHLOq+qWfT7NLqAtQjIJNhpOkEmQPogy70UgiC+w9WoPxeVAW7070o9sLNZKYAyOH0+dWyXDgzg7rDiePeAu7s7/PN/9k/wu29e43Q5MdFrbYqMJ4CgNZhsIyslHCbcjwkUeSLaMXfJy3JcdWunbIhk5UTaa2quQmgF4A7KffkEamn6WBHgEZyOBMYmc1Fv7kGm5hDM4GMHVKEHDeDJ0BcKJtMnZCXAEEDHmAx4dq7k2WAYLJVUiaoBAawCaZdR4LgmtS1sLW1ewbqsjIdsYN82xhvLGmy6PMHCokXcUSV1jJgsGNax7dssZyTQTEkWF8WV9zGLiubf3WjNC2gCB2jvh3UCU1kJLI7ed7g51uMBEOCyv8dQYBRBXxWbKvZ2ho6Chy+POB4WArEO7DuLem0IDqWiiGLfL/AxsFmFLwUXMVQB/sU//XO8eXOPb5aCN+/e4Pn8jBSl/m/+m/8HfvpnP8NnX36FF4+P+D/87/73ePvmHd6/f5rag8/PT4AKfvbnP8N6OODV56/w+HCPfbvgJz/+Cp+/eoE33/wGv/3Nr/HLX/8CEMHji5foNrD3AdEFKhWqVDqpSwANI4B8iSkJIJIAKCs/KFVGzSuYoF0azrjQFglQdcH94R6AwxoFpQ/Lwm5z2wVvX3+D/XTC43oHvX/EclwZNx4WbL3hvO8zVpbK86KPLConKNaH4VBXLEuFgh28hzaMPvD+3Vs8vX+Db17/DufLM0ZvoAYUYKPB3LAo168Mmyw/EecxFY0wyirhE3HPDwSwlAj5FQOGBJipsZgc1AnrvSFL9pI1iwCVaRsKG3mF7bYY/2VdAQGaEzBrrZHwMEv3DI5rJQ4DywCpIUz4BODj4lF6B6CSn0ysOsChJRjNoTsZKMNMEJgBozhUwTMVhi6cDwsEzcXRlQmG9Lk0CRzV4cNhhetD7ArGJ3Pt+1zfG3gSZGlcAEYOIBHqOUE2B3160X49oCQcN56qNqHCCU5J0r25GDzEyam5TSaP3zrJN3Yu8fTUUoCAE2LXexbJTjeRyYgD4qq5IXk+IDUTMipIR2p+jgT3SHhvDjrweRUBmUdOR5P3ERnAWAHXLm8FBSF4OM++2zAkDoisG0XCUFfGEkSBEGWPfRQHo3/0OXOkApUNyiCu+k/EaIiqSlhzD+jJEOhy/K87HeXikrfAIQsHNjOeScebUDwEs40lcD2YJQ/lWHXOcMGEe+3a8trnbrIQeiOzSea05VgghOQQz4A5NrF2Y0lOkdgoEXWLrOsAXLKjDOvcp8pkrBnWlWfAGKMsmGWYDPA6sgUoM0xyPRD6wNhbdNNRtsmVYJspoB4pF+Aq3ugEPEfvGCIYBbBa4bXeTvdcxx5r96MQ96N/588+dX0qRP7h+uH64fq7XLcM24+vqfH04U+RwafMszPL1ccNS7JHABNgisaXSbA00zbJlSWpyYQB5nmetsJmgibOUQRbJjJmiKTJtHthy0X9ettAZCD5+3kWpNcSdtE8GBiSTTqYDSd4wPvLPGZm6q5lWNliOO/j6shJnit5bx7DAoIz8+C9OeOvItnX5/DwV1JkVAsbg4g4xhVFYgAaZ1X6FGQfBLN7NuG4nhkTiAxHdrgB3bHve7A4rmOZr0ufK5MLGpqLGosrPwsejAzwd5LPntFazj1ycSnXFgxFWGLXB7PPPFLlhtVCB9nDJxQtMyusIaLeo4wJcRZOFrGNCACy45Lc7ImQIhYFoiU3E33zkdBGQx7xGcjNks8emfPQFWJMEsKti6KooO2UX1gKwVIyzAb6FLElm9lDa8OcjBtuBwkdnYJoJhlJeEeK04rw/a136o644bI3zIYnGhztYPRzQMvc/z20NHa2sOW4YcDBJJm5hWC9o4ASCB66XyqFgX4CG67o0b5ehQlTeMyyA93YBCnLnVLdKOe2D4suxjdrN+wHQmYimQmZ/TcBv+dKbY9SjQAsQYDPza8le8HgRvpnYCK0GYUc9nVAlSyfZal4fDzg+XzCulRsg2BGriWRtH25onz+N33EIPrdGFvOnydgNDnq1/02N+I04jf6avAbUWP/wIj7zf8lkE1wNAPLTDfLtG9ZpjZLlw1Iofq07R7EgJQ8tbB/gmQNpv4Nf8t9XjClOZBxWNrdtE3xPDFIGmx8hL9sZvAaOjTTIN+YwdgEU6HVPcqD+own0z7emjd3PgOPOUXq6M2KmCtNA45sxkPx5NSByv2xCAP/IWwC5aXAZGCgsQx8KIY3DHTU5ERKzk+sX4Biz6PRjghLwKoK7o9HbOuKdYlurqqopaLbwO++/hqlLnj37h0++/xzfPXVVzMhsO87CRMXlvgtxwOOd0e8eEn2UNs3HNYVx3UJ5tOOX/zqb5lc4YhgOIG7bAjiuJI95ohKlrDFMwGT7Xp9PRMmfetQbQAUZQ19Zg1Qf3QmTbTwu8yxbxtgju18YQfDWqBVZtXKZNe6z3M+7wN+Xdu5fzSWtMfret+x7xu27cKuvT6mO2Phk0xmU4hsJ/NVw5BJVn8Iph2a+moesTB0vg8f/DfsWI5ZYBEZx+VjefoUnvEdzQbP1BKfpfNM9nRCJncy5WyuwDZnlLY2y8Xh4a6kdbm1XWGHaZJip3s+czICr75Tj1U0AouZskIf2C0PBrbP33lWm310jQ9N3R+8vjfwtF2+5V+kXFlOqb8TD5lUUx9pQpRiaLXGYelB4TZIBM8WIqTigKvFwuwQCA66cMBGCE22HdKpd4RsZRsLSmWBimDxcnVAIBAvQZO3oI1TxFOlYKmVegtmaOQrwmPikxoKJECRqLsj+EGQaEcI4991Xa/Of1BM994wxsC279cNCBpkD10AoIeuURY75BFwo5OlnCoNAIVHSCz+VJoPZ6wGpY9tE4HeB6AS5WBxgIjROQlHY4TPTI3I+M6yQkqBhiPkWjAcOHVHKYJaKnw5AFVB3TOKj1k40e6IdtMcf3YgBFRrjF6dz8p1Y2GMuHGyZIRgGEsN6w3wxM9S6mQAk6o60ikbHS6c7xG6FBotoCnmSuMPVzq/Skbb3eEOUMHlsmMMwVo7aq2o6wE2Qui7kKU2euikCAXymm0oUskoS+YfqP+0LAc4ZLYVNzOMS8Pl/RNOb99ju3tEP59RaN+YDbCBrtwgboMU/si6X/uHDngXotPrjR0CqP0Bj+BUcrtyBMPoq34fc3ETUf1w/XD9cP1J1wRakOBOWHqhLfrO9ykAODAM2/MJb1+/xun9O7TLGQ93K8QNvW9ofYNURo89GboGULdkQLrDUHAcIaoZbBOdiSDAoq1uCTCeclAVFXdoY0PvwHYSyBDcLXcs99UI4txRC4GYtN8jypUoOyFIDT7mOxIQkShPOcQDL8iWtXScggUrLOEQAFEnDQmG8raxI9gQh9ew5RmcKaIc7eoozdbmOSOd41xLZvrLVX8wpkalAupYAmhzaIi7GkvuQmfHAPQPkjnp6AbjJ7rvIvQtCBqQCSAoU3cSKDMJtO2OugiAI9jOdkHvO3ofWBfyW9p+BshF5jkbej6ARym6otYDRAoZT3N98bU54hqt0RE+VJfUDVkguqDWA1tUKzA6WTgsSTJctgE7N5ht9FtEUcKhfnp6hoCMXLKjZJZQILQmBBuQTv1wCueXCi0Lzjv1RjroIy6HCvOBfTsFE2PBZbug7Q2ff7ZgWRSvvz2jderLEBwt9OvMoLJBBGgbGfj3hyNZNZfz7IqWa4R6iWRzOTDLJffM5gNYy0qB9uwYFgBMtuSeCx8VutxHhy6yK8Yg03zfBkqpFLcNTZkRtsHLgXO1VBiAiznMg3kfWhZpY5ikY8CvsmIpAqkVEGGmPX1bFTQNDalgAQwtGAEqSgRHCwDvnSV+paCUMjtWWwaY2RTAdu4LCo3RXxnjmhSFz8QvUn9JHCNw1TYaAIPZAtHKoNqAbtTWhALvnhtOl45S3uH+4Q4//tE97u+O+OKLV3jz9gnt6ZnjJoruEUaaBhhhcz60KgrqBGJT3HqMgarcq6I+s/oZ+Xns5wkWUwRryndk0Jp7nrbrKo3A9ycsIPP3VyA44w36bS3kIWohu36/bChrRa2VAtoFQGV0Qtm5SEjAsbcBKSyT9tDp2hvXfJUl9ugCVQkmpAWDKALoEAw2JwNuFwpt905wraDAmoemH2MnLZjg/xgpLu5h5zguIh2Q7NbtEDWW+CATHTG2Ybrdwk5Hby5NVDfjFrMbVgefoRn3vvQGEYXLkeeQK2wU7NuM1fH669c4PT3j8eEe67Li8fERrQ+0vmHfBd0ERVjmeqyKtSo11FrHZTvj22++xuvf/hbnvsPGwPFwgMGxD8Obpyf823/7b/EX/+ov8H/6P36BAsFxoTadi+OLLz+D+cB5P2H4hjdvv4GyQhKPjw84HA74L//Vf4Wf/PRn+A+//CXePj3hzfMZpVQsK2OK4Ya+nwAAy2BlSgkQM2MGnmcKqE4dsuIKN8f5dEbDju3dGY+vXuLh0fGiPmIpFXtj/KKic31VUeh6wL41bJeGX/zqV7i7u8PLLz7H4XjE42eveA7mvhqYQFTf+yylEy2olezafd9gjZqOCsHoHefLE/b9BFijSDqAyWwNECX1bwk8CSrWG6AkmiIMrhUxXJNthJCi0kqBHnZqXEFQ0Wg6IErhs2ADJpO2jxGntSB/m+8dzvLYfWuAODpo75Z1jQZYBWYdPZp/CDDjytQVbr1BVjIKPUCtTmot2WueACJL+Vj1RJ09BMDl9mGyrgfetY09iA0kbdTAUKhXx8RQjXXkoQ06svw1ZGdw2yRlIvh//PrewJPZziygAhJ0fQ5EoPOB4qYTO1FXz0wUPkQX6RUjATmBh6B0Thtp2Y7I0ICWmiTs6yRIfGbR0F8KDSgikDchuNOZMQF8hENarr8nBdEnU0fsmhGZmQanI8xSQmYExTXqX4nSQmTqOX0w+TegUx4stK3O1+ekSTisHs95haAiexDAk2Wb02Qj5cQHfTJdXr9hUhmutcuxePJKJwixWW+vXFfZaYLZPyWDDT71ovLddB75nrw7h8eB6FETmgv2BrS8pjpvAjMJMNDmIYNYCzevvrnbOLyZfp3LKbWSsiVlAmODMQCdbU1213WtAhKZHQSgmhmia2ti4NpeloDZDQvQU28l70fmCKsU+CBV3vYOax3WBqwOlsLEZ2dr7g5El4qksNf59BQDNYw+CPYtBan2xgBo8go/MWY53reznXP+4b+nJ/DBe/606/c/8x/v+rve8/9cr+8z1v9zHZP/lOvo73LJJ/4GIDycP/IuZyB+Pp2wbxe0nYKwqd9GJo3M8mqfAQ5dr+EsrchM2PVMoycWFvGju/P5h84QHbQso7u1KIyPCY4nE8a8T3uYn0fm801Wdt5+/Dsc7pD5DE3HYFTd3Bbtp85zZHboAmaSaDqP/CGu2jMBAHIgotQmOnCFCzcJUBN4yt9dE1J5jn88l7dPO2dR8mHzl34FtyDx+R/aZgriAq07tn3gdNrQ+kAfdu3qBGaAe29AaC2W1BsynqsUJRaoUhh9BpVuwcZV9MiEq7A7GSKJOPY9Su47eu9oY0DibGHZWjBVLJkMBGWy81kRdk97Pl0ACNYeTr8q9YxszEAiB10gLG1oHVoGSjVsrRF4Ci3FNVhIbWsoxTA6sG8drQ2czw29Ky7bQI/EUHaGtEgKZm+g3kbgmB3mA1vnPdkYM+Gonv6qh+NPjbKeKV6JtvfSIdExcLAPEByYhW/X+c0EY/pcEenghoUd/sP00PJnWuZaN2Cyl7gNMsXn8ZmxqyXtQbCrBMikpeXPBehCIKl7ep5kEKTIMqIUyoMBMLW34nfJJkl/NlmIPsIblavTlkx0EZ/PHa4u/WwLUd/OxgQDiqE3zQzMsfeO2tjgSIvi8f4el63hsjfs3aMCIRLJdrUH142qc9zg+MBHT78ubYeEbz7L8fJRcg+751fNAHtO3fWTpo+eg8B/5ud/6MemrRkRCTvKzXu55+RGAyoZIxJ7+4N7m2/LZ6Ud5PzmFCZAcWObJf1QBEjKhgO85xTJzrHJ6pawoh4d78w+uh3eN5/peg55sF1Tk4gBjsz5+HDuwp4HK3O4hbbZtSFB+vmW29SV/rfJPAMQe2A/XyBmeHF/hyLAWgvPnKVS09kESyEgUJXVO23bMNqOy/N7tG0DABRVGEIOxKnfNNzw7Ztv8ebNG7x79w6jG2qtOMoB1RZ42B7TNhPuGnsi2ZsPj48QVbx89QWaC85v3wTrVGJskz3mkJGSJSGzMmPv6+HkebbmvjPAMNDcWUHRO/reIm7MjvAC5Dkr0eFUyUQ9tw2mgno5YwiwtPuYo7BpGUclQBRAmIDsmdt4GZ7JEoTOYZwRc0/yNVMWzq9ApchVqXKuriiLxozLdMbwKuyQlzESt+hUdLvZkzROGSPnzzQ0AlOb+DYwlYi9cu/kkp56ijcsojkvcrU5GVenXpyIxlqOZFWcUakneL0vn3bF41xNZrqIBGnwOn7JeNeYJ4Ggxq5fstIHIw1z+F63XiLH/6pZ98ev7y8ujgsgBaziYStXtlkF2J6XDq9mxjD+5wPYR58O5FLW6GIAOAzFOj1N69MZEwRtUhY4sg6aRnUtB+ih4tJ2UqADTFk0Oo10fo6m4ZEon/OB0dmdpJtBCzOx2Sa2R6cbt+tBmAeRIYRYwwtInYcy+LyLr0ABTAOQEqAFzROCiSKKMEs7NXaE36dLUBo9nfmbjDMKCkjnlgBgKFK6cdHotXOgRheMRJMpOWvzwBLIzHBuraGbYQUX7qI1FhaoHwXNG5jsLZmUcOo+NDWIs5GlC2n+sAGBompm9v0aBFkHMKBWAWg4z0CCMbkzKY7NcarrQkrpTDmlLOWAD27SrLzsnUGUK2aJXIoz2hjoY3CswaxgHj1aCpZygAudpsvWABHc399jWfJeWRNb1gOWZQ3nLYXkFfVQ6Ui36FyCgr037PvAvg20lrRtbvpSFhwOB1yeT2htw9gGxrmjnS+ooih3x5hTwPvAbgbsNFBLBEqoC2opuFsW9NHwfL6EsbZYTwu7FUqsqQh+bkG9P4Q5fDqw/4NR8g/XD9cP1yevj1xnT7bTH36XhFPow3B+fsbXv/sN3rz+BqfnZ6hUjN6plVkFZVF4Yees3tvsxhVeSuz1pHazLsjcZ8vcvMsKdg8aOoCxY/iFZQTHI+4OK9a6gA2AHA5q2+ki2PcLtssFeqhAKWjeAPepN4fBoMa9XINxz6RE2PfObi6rSNxqnuXga53glpaCtRTADH0I2qAODhk7HwJPPCdlOns8dwXdDeqCYz1ClTqJbmMKSzsYrIhQv4UASzCLo1ylZHeYKD1kCZ/MDGN8PW1tlBRxPmYrW6hWlHVl4GV6FfaMmrLTaeB8OeHd+ws7o9UFL1884O7uCPULxAc8BIJnQsd8OtbU5XSUpTPzDwpmUzdIAFG0YRS8ZqUTJGQK0ANIVEGzhm4D6/EArRUuBMCen5+hojiuR47PsMke0YU+3PnEzmVFV1DhtRB0SOAUVxDVrGO4o7uh1hVLXRluOEs73AeWGnyyQU3GKhekZuRrewb0gtavnWYpFk0foQeYISKpI4u27Qw9Uu8HBbUu7OI3RqwjaomM0G9c1ii1rCWY+/RLgBtQdAILOnUmuQ+AUmq8g/o0y0KR4VLXKJllnQAA+n9FYUUxzNHN0SO8WgsDIHfqNw3rFN4fFCIWFIzO7TQi0WnlQDZdN+6NSh/JbWAfjX640Zepy4ECxvF9wx37GLO8SUrBGiU5Gm28AYQGD9CswXqHBDsgg9giS2CNkRAs9GHNBX3vQB8Yo5GRoBXuC6wq1kqx4vPegbLj6XxCqQU/+9lPUdcD6nrEr3/7Dc7nC5bDPdd8iHe7YuZbBZgyGOn78iJAYWYoAVhqlOLMPp/JNmBkG8FY6IDO5DturEAExwFcaZR2ekg23AIziMAwaxuG9AAKqCOzVjKfxtZRrKAsihL3wHmjzygIUrwBGKBmnBvDSo2KDQEg7ABeWHmHKAwBRFCXNUAu7um+X+dDTCfQ444pPOxRvjN8oI2OMToyytWIVwqW0HjqkwWlGmw45xwoKiaaFgE/ddfiuQDsjZ3xWt/5DluCgCZQXYO8QKJCAQP3MRwiJA34oI142jb0w4p/+bM/w+PDA149PMDc0caAmkJMsC6s2GinM9q24fXr3+Fyesa7b79BXRa8fHzENjqadTydn2FjYDkeYMPwzdff4D8e/gP+u//2/42f/ezP8eMf/wSf3x8gVfF0fotuDQ/9ABsdo28osqDIguPdHZZlxXq4x+H+Bf7Vv/5f4/HXv8G3/6//J1loI8CZYKCIsHuniOAQ3Tez0QO0TOBkhM7SqgvtY1HYoPD63jbUraC3HUUVL18+sIRQFN0GLnvDcjigHlaoFKgZ3u8bnvuOS3HctQt8rTgcj7i/vw/tXcV22WBjoPSEWgkKNhlT76hW2rm1VrQWnQhHg1lj/OhXJqqUIKa0Bnh2qSefhGDtiFJJ0DZBUMvKGH1wT2v0spPAASDAuiboHxD+uMrP9BGs8OiGuiwVqoq1VIxI/KdPV0olW0j4XkugOIgfNhIRFKwLda0RhJcBRAf4MlmmtIFA2xuGkXW4LIwjU6h/9jUJNXySuGhcNBizCXgtWOCmwU6m3h9Av6t4wVEch1KhpWAfPI8ytqy1Mi5HdD91w1LXGymcP3x9f40nqXROs9tJiGkSaClhqONDayDzN37FPISdRkgKPWqRAXMKgJfKNvBXRftgnMDDWIU+gAQtXiTqlgMlBydYQE2crJvkpSglyHfhFNiwoLMGgOMSThECseYnaq50DsQ07hNlDFFB+lEewFc+M0ugNN/ucegqS6CGWWR4geSlZPbTJVt4KswzZ8YbKVKmH42bWyG6ycAmN4sl1Aqi4yPgKIhhxMHJttA8MogIG+l1fuVdiTqKCCm6MQ+J6lL3g14rHdt9jr1GUW6WYHh0VkJQZhNtnmK6DkgWqyMPdToOaWBVC4ODqFXm2GcwE8i8KbwbulPHQeP5I6QId5BZviF8dnchyAhFN9Z/HyRR66ujkfoa7uOKKMPYhjZMRy0CqQVV+Z27sXZaNERnXVGlQiuitIBZhl4bSlDqO4ynbGGXFSmBTgPobQOGojnvQyI4w/BrZjeySLcItXyEHeUSuHWTJqsRH183SPdtVu92jL7j+p8Cs2bS378TPPuun/9hhOD3n+2PIArf8b0fjt+Ve+ifeO0fvj71/Z+6x+RG3r7q7zBPH62f77qDT1+fuK8/kDz5EMD5u66rj+/uj33GH369f/CaD0fwWl79YTByqy348Vfclr9SkNqwHhe8fPUKY98hAFojA0SUr2mdGhaiFZAorYUATi3GogVFFxTxEN+mNlRqhqTOQZ7b6uyeVZTOfOss3XAnk0XmbTMhAQHqwoPBhc49s3lX3qtKyVCaZ5uxK4p7tqXgLSvxkHBOeQ5ZlreEvR2jEyRC6oSkRU/Wl0/kSVQC5AGDvShhlNCS5DjHeooyneSrOACf4sd8aJUyBb0t2N7DrzpH1FixyMfzWQqys6BP/UrGVQ4NDSMYi0lU6TewaV0Io5vAu8Gs43zeMIZHKaVBnBpAWSbJP8Hq6Z3j3NgJjrpg2bWQZ++IYM2N46dD5lnicIJMAogo+jDAGh3z9AOlIFKGZMNI6lkG6y6ZLEgh8msyLjULgzIPAbseFwyItytbGKA4rGdG1+eeQsSnmSWfrxECJSJGH1Wc1UOgf5Fa0QkkapQNAiE+7VcwKWUdtcRuj9J1s2QRpR8Xq3AKiQXrCguYpGWytaFxfbjHmAHDO2BkKHpsBAfQvUGGQlrces4x2FQmNZLgjm7cu4pr2VYUYcJLAk8EktxYNsmkOX1qLVFqupNdZqXCiwNL5XtFYIWldVoXQBWjRkuWoDtaVB6IA6iD9VeRY1ZXqFEQX2NNmYUCUQIzmvoqwU5wkPXtjhrlvOfW4Ao8n884rgfc369Y1yMe7waOy3u0rcNdo3wrFofLnG925U5Ghk8zLDe2Ov6FzOp7+Obsyn1NJrg7RgqST9817KPn2ncmntO44Va35cpJ95kA9mkT5ebDRrBKiUtTkH6A85pcjQzG3Bw+wzGJaIbj4J7aqQbrZOlJBMLpxdotSifJwaetFL3GO9wv8dWebCfMctDUC/RkjXgyMvM84B63CSAkYeCWzVLmOZJCxlxuys5pKriyCaMDOhCMGYkYTaJcy5mMCQ1gBSCjYzs/oaphXcnqdRH0zeC74UzRYHjbYb1jv5xhraGIAM4mPygSAvQKFwsGpECk4nTe8ctf/QbmTG7fP96jLBWny/toikHwYPSdrCynTI2WAi0LWh94/e07PJ8uEF0i5mIFRInuoMkGEhFkg8QhHoAEbWAuzqkI5fSpLBISe9+hu2JdFkAKBpgUEAlyRS3BorwyXUueubuhS8fp/RkwxXG9g9QgXASCSH0gmaL+S2ghj9GhlU2+DFznl8uFIvZjQOzK+RMEOQ9hx3A9PXjuaLiR0WHSK9QU8JVMtFist9VGw4yJrDgTMkXnsfbFBapkD0tJ2RjajjF4xnqUD0P4WkSTBXOwW6ggYuSo2MpKpgC7NeYky9fNGcOpC7yxdLR4RK8avoKlz5Zr4Gq7ktlVMk6/MU2KEr6FzPiZsWUysgTVCbpW6Kzkop3H9XuCLbXc2qk/cn3/rnZ6oPEwCkeOTnprLQskkOmtkSlSKztcmBnUKIKMRBRsh8MhNWBsbbDR0XxHWQ4oxxV920npDMeQIEfBUtawiY5lKVAUbKOzvvXGQJbIqLpThBEB0tTl2r0BHp3mhItPtAZlOQ6DYPEIrlRBhIN5bacY66XSyCG0JcQdNTwaBTAUaELEE8NQpWKRhYZmGAqM2IKSelxUASnwUjGc6GePLESNw2XVhRmQAF+GZzZG5yZkC1xlo2qPjRqZSMGAyKBekShQCKBYGxCPDNTgBiklumBUAhirHmHOjGlRAmWtB4oeAUQbrKuGssV2KRXdnGKXo8EdWPQQmLPM+0NudovPEjpwRRC15wNaF9Rao5XwFeUtpsja5mHOrLZ1tG5QqRAovF1dXJFrgMeAIGqFIYAYLvsFDuBRXmIehKFFZWCHEBd+4Aj5rKUIEBnw47JCtOCpKFw6TmODo7AVcniah3KECtHv7XJBO12wSEGpFQOGbXR2NVgKynFlXXdhmeP56RldACwLM+FLndRYC5FNrzrLHq+O1M36/YOASYJP+ZqbYPgToNP3vv6uuMnf+7Kbv6cJ/buAFt/3+r4P8al7mJFF/POmxCff9R3j7jfPKZ/42x++x7/HeHzX4/6Bj/zjb/nUK8LBRxzYf4frlt6c2Tfgui0+/m7+fKaC41y+vUu/ee81iLi95us/+dC3+ykd9aRIO7AYXnz2iKp/jrUUHA9HfPvta4LjlUHKad+hWrGuR8B7gBJkH1ctWErFuhzYats6Rm/oUUJsoIg0INTaA1DDzbMiuOw7ttbgtmOthkM5TKate3R8qYL1sEZXVEOW04tkF9hM/EhomiiATmfNdyQSwN/T+SoqaK2hd5bUMNaucAzs/YI2RuTXAYTKghBtuNL5JQLYQhtfoGF/oyFE7zBVwLKc/Zo9tZh8H5E9NUy9FkVHZTQKNUEPsGBRdt8VdHRnR6w824cMYIDdv9yxCOEoGQ3SediXJTquFfA8D1AHYLJs9IZ3fUDkxLbW7uysF4yL9FlsdLh3ZoyjlANxltIdC8AJAKRSU0dWZoG9TPDRjcnBuq5YlgWXvrObbVD9D+sxmAwFAM/QLHRIS1TWOkEoVcdSMcGn0RN0IwiZoOAIEW23fW6MJRjjyFIdDwZEJGPEgW4dwwXLusBF0DpLlQYIOhkQa8lwiC65PoxrpLKjnA9D8x1RY88ztByZGVZMHRqesx7Bj2KJnc/CAIdXwxCWsVW/Q8E9ICeYNJxxgsGh0cVuABh2QfEBw8o5WQ5wcVzamQDnvqBKJVMh9tEYTBdmJdsGoLhgDaY8VGG6wKUAlU6p1cZ7dgaw4gbVCjNhAhgCOJk2Vp1+xLqgQdBj/MzJ1nMBGnYUOGok/EaP/WQCHApUBmSr0OEoZ0F1w+odqAu8AAMbQWTZ4KCWJ7GKCukcwN4Geuc6dBWcTydcWsGyKF4+vsDd8RH36z3qyxVvv3lCvzieIGRrjZt9LVfgCR6MpohPJEAUFZ+u0dXdj9eJo5Qr8GRhH3r4pxJMfNVgM40IijUDxiXijGCZwWeJTZ3n0LV0ShN4cd53HwYjB4CgvDkUB8hNMgARtCYTE5Aoi8zjxqPrFvWZIMbYpBbUegXEutt8Fsa1WQIEZBTrUfZJyWsmmIclMLAAsiLVnacP3VskRjTxwGuCpqwQCFrrU6aiKFkfWVY3BaUhEC0o6zrZJBHOT1/Ys4M4aCOr1mAGDnYwc8cigBrw7vVvsZ+PML+we+TxiMvbC7a3FzyfntDbjuNaqdLS2InsuK7Ye8PldEK9P6KsC7wo3Au8V4ixi+n79xf8u7/+G/zmd6/x6tUrvHzxAuuyoDWuea1ky/XOctHz3tAG9ZD2Qe3gvbF7bSlkolFbrHCN2K14fIAwwnWSFTt5Frpfq1mu7CPq4p62M5o1PL54AGRFk8HGHRplarrCoSxj7h0+DGtd6T9slAR4s72Bfy54OL6EHMKfYflFFEgJZFnIx3Rg23dc9h2l3qEURR8d+9jx/v07PD89wVqHwLHItRLJwaQClQbnso7/FsAqipNtVcoRggIZK8+11A4Gny2ZYmYgMBZ+jYhASwgECWhDBShLIfAEcO+3LcpsHFILwcJKNqkVoS4WWJLdHGATlWSIkpEXHERUVRxKwcBAt8aOpAO4XLZgYVJfcslSymH01LK0Gj7Dh+zmS6IL2HU1BqmWdYaD4s5kgCiWQnsNHbTfhmAfIsDdqPTh6cyzrmjcw/eLeb4/48lWLpayQGAoaoArbFz1fGqh02PjWg+YtGBJAKFwgIcHdp3ZxVLgLhjD6WSJwgLNTVZPC2qay0AH24Z2i04FkdlhvWMKWnuwVz66XECqN9/DWlWi1C1K/iCBIAphY1KlachtIBxaTAPtTmurmnW+UeQWGZtFCoZQbwGDxqDqAl24iJj5zJPOgp7HsQjfdoZbcWxyiaUQ33xRUL0R2Tv1qQEARWgDGJ1yBGCTn2M22TAZ9lp4dw5M/Q6LjLN4CGP6QOsD2VEGkdHENHKcVzPWV8vQmNN4TfyvFJ0HbnZukBBCzY488NjowESP5roLCjwpkQN9OFzpbCSdcH5nZoaDtTQMkzFVdQVivmU4xt5QF2bTLDPt0qMkkV6FejLtQFxzjHCIdTanLaBGQhGBj4FLO6M662m30xmXZcHlfGLnmGOZGS1xMgrHYAZyaGTAI7N02XcsPgAxtF0gbqgHhciKeqD4rFO9FpnvYwCXEch37vqPNw5Su+r3ttT3MDi3r/Hv+l7/I7f0D3rdlj8lCHWrSXO9pz/lM/+0N6Sj+fvvybniPz74F2IyP3F/VzDtg/+X698/dcd/7yvR30+uA/8D3yMf/DzveZJV4o3XKUnAMEtZ8vm+exznO29/p3YzGqnJIfPfH/43v0bzg5DabRlcfAooy/maeFOWb/Fw4X8d1wNu3ic/J/X0IIDKAlVDXQyHwwPu7jq2y47eHOiANYN0h1Z2oS+ha9CjjMGMJTojBKezzC6BlVQUmdqAoFM64sxTELxal5WZ0KLMpsbnDzfoCGd3zpIAci3j4zEU5fgeuy9vJ+ZwqUwOZavtMTB9AikMy0YGYlogFOhDiRKNqePsN+siMopkeMU9m0dJ1UfMnLhvj0U3k05SIGpk4uLm3mOiVRm4kPHzoQ1Q1WDdsOzBdUBLJa3eoxuM2VzzGoGYSTbFoOOupVzZLuEEFkQr6ShXHyNkClLfTwqqOBwKK/QcsrPfxHgg4VCnPoqhOl1WrQqzAu8jstDpjBfUWNiTweXMDkspoTkqAdwkC5v354jzPYLazBZP0es4BKRk1jrZDwkYcIBmECsKJEMmmRaxflPHxpHRrU0/zh1RgS6TkUFAigOjYNkHm8dQogEO9NZjhukXit5onhl/voV99qDRJUPa0AmoSkXdFxgGBB1eCmRhSeEARXzFB9TJkr6rB5ageSHIlqAHgKuuVHaE5LPqIMBqALqQ1Q0lM2ZgwQCwOeh/o8B3LkYliQmH+giooInBto7+bmNwihHsdsAkGsQY0OHYfcBFYaKo65FJR2NJ6wJDccfdQpszrEJLsNFk55wP/UCTpnqnhERVevXusN4jAUzAY7/suOiG83rCUlY8Ho/46rPPsJaK7c07+DDULGUpbLJjY9BQgnNkc995ND4KZlCeM7iuY6TdTNtiBniJ/cy1IgAbEjjYdAdcfiJsGT8s9FHDDy8RgBIlGOH3BZcjz27NYBvTxjqCSgiHYkCXBVqZLO6t4XI+0yZ2QKqgKKbfZ8XnvWZCP0tUuCeAaZRGlBN3ihHnOrr1MqZgs1ATbZjO8wVx9iU/gF26kg2ZXbuujMepJZt7x0kk4LmZtjdtbACGFs/BwGV6FiXOn5raOmACXUpol7lNVsrbd894Pm84bQ1aK+qyYlwGxsVwuZxhveOyxB705JBRc3eYYGwd0rlffFiwldlkC+botuPd+7f4//H2dz2WbEmWGLbM9nY/JzJv3o/6aHZ3TXNmOF+kQIkAIUICJEjgo36rHvQsQSDBBwHCCBIgcgQN2dPTPd3VVd11PzMzIs5x33ub6WGZbffIm/fW7eZQURU3MyPO8eO+P2ybLVu27H6/4Zuvv5n6gjMGDimTZgN7MDfJTKN9z8YGo7VYY5gx1LTtpwQXsalY5wLG35rzxJgkv0QFsiirP0ZDe/cdSilYHq64CLBEoG9Rxi0e9tKPTvNFCa7s+4by9Ij6zTd4/eYTXF+/ipJMx96TFcRPHyM6cxobYUnsqd4Hbrcbtm2b+3MIwi/o2IUsu1ITVKGPNUbsQ8uzpNAGiWI22j3pg519ZMIAOX5x9ocmIpMmTHBoSCGOJH5Yvh7ISjB3nUQVi7MvCSFQ+kHqUepmMn0PAXjvw4FOFhqdybBHE7At8/6mmxM7aEQJqbzEmo9YHiAGECDGkXpNvEFmIgsQSA8fOeyVuqKnDcoS27pMf/j3ff10jSePXI4vQYMP1MvC2RCgaojNBfAkzsxIj44DKoBGdw12vImTHw4tlQPWHQdyl+yjoGUi9X1AoWXhYccg+qhVhBqBgbz1GPTp6Hsi4zWMJBFKEcUYN2YRwK5906y6T0DBBw2fJnaRE2o9kPmgo7uH483MJjWSDmZW1UoNBA99K2QMEgYXg46syAnJNdLFkWVpaUjBjGEwrgCQfiqCRTGFyrr7cQ+x7hQ8xKkLgbkwX7rP8RqVqBnNBU6m0+gEjJaFWQXR7M6DKO8DMTGjUyS52BN0U51MIGYjYouGERgBPInT8ME7pjhcofPT2xavpUFg1lmmcOyHGlt0YhyITDoJhYoqK1QUve/Q7hh7x1JXXC4XbNuGvTeYDrjymUUdko46z1jYCN2V7OQHZmWZdRPSxrc+M9rb/Y77umC7P6MugnVfJ03Tgx5rgzoSI+qL6bhQu8q9QsXRhAO+tspgyB+g5zkPRh+d68Np+P5+l3zVR79esD1+Isqdi+7wGT76yT/wrpd/+5E7/7FP/eGvs5qwfPy1ByvmY7//4et//PU/4d5l/icNWDgYLz9xgkr+8j5fwCH+8icvCfwf3N8PPP/v//IwlS/f7+4vn0U++F3svu/dM3CsQz/m/GMg2kc/M68oMv+dn5fiwvzZ4WgcDKrDGclrzHMANkul6Of90Gr0CDzShoVjnR2M4lnczmBnOto+zwCKuFaWOlfHennAw3Vgu2zY1wHvDm8OBOtSDagWdteDDRtA2TBm1xGJHzstgSk0HnOYNpSOpmDRgqUuWBZ2OyWAEOXqCAFZBHVdAETp3hl4gutcbkwkyBH4gZlhC9s/grUJBGiTwsUtWrZnwihsfGUMMUHE7+8Dnj2ZRc+yl3Q9D+Dp+C6TgaXz3DqvoyzpSpbWPL9Pa4/Xot0VKXReNXyZ2ZEHsQ0ORgFTRFw37LxT4lF83mApyargvQzLUjY97ksq2VYBPPlIfRqOv4Jl/RZlW3DyplO/B3FWOJhkyjPsrINJ8JFBgGrheKW7Ff6fRWDozm5AcedTKH0uEncmnESPQDLGfCagIBGMYvqE+TwZaFk849yXjnm/h4NzJL4ysMtKg9mwRlmWNIznaNv32GiFYsMl/Ml8Xgf6LKNSFB/QAGwgDbUoSzWt0t+pO9fiQ8VwwTBBGQMyDOqEk5blYbKauKfoE8EBcepQslCK9wWPwMKM2i1K1lXa0m4rOhx3d5jQB5FtQJrDF1YkfPqz15BSsIuh70/YvnmC+Ab4zlILBwwLfZ++wuBobkB1YHHUN4LysGC9G6oJlpVMomt1dAfuJhAdkDBcLg4dmjRDqBuqdBQBtFD0fHhoiA3uMwPYWUs23OozLp8G8PTZp7jUBb9994jWBy7LEtvf4R7dEeMUnN1+U15A0ltIH1ZYRgTuDc935t53SlOkJluaGg2R6Xk0C5Dixt3JZLHo9lVqxYx5zIHRMWFxTSCcZYMDmLoxvJkAccQglWLJy1rgd4PdRzA84lsEyPsqedTTL6Xu07ENJTcNnI116FjPvXOUKfENklZXJDRZDZnIyL2Yx64Wls2ZW+jXZCnecfalTlxYCRj6kZyfViDMYWy8eZ6eXIrsWlg1yornfUb5kNPnG+54+/6Ze//xmTa3LCBNUjHaDjfDGto9SzQAYoVInPPbANBhPcryFuoXLeuF3QC3hsenbXYGdBNcLw9QrUB03ey9R0lwni0gAK65f43aZwIokUSkb/LCl2KYNkvSHEFuCFAhYPM5vqpMQFiAW7dHjsXnv/w5UDUS4KFN5CAAEvNDFpqyesMdW+vA0xP9gRDlKhH7twCXtJAAoaEX504QSsC1P7rhdr+zI7zkEenYraONxk6YIriGlhXj6OhebxL3x6crTtC7RHKkCXWbk9XkAJNYExvgmZ3PObvShg/OEvRg0UZyKM8SReiKsTZ9lsztCfRotlgrwS6WiflO7csBfkYQQjKZwAQTP2tK8uClnyogISeBsnwec7InJ9Tm+e4wKJmI86gEimSXiPJeMmlz8nQtfXEVYFnZ8fYnfP1k4El1pWGJOluCAkTbUwiawnCG3naICA9YrxH4stXfUOr6sB2rhdNdIFKR6vMqLKnbBinSVTSEtg4HX8Ko5WabYLZKiK316QQc4uRECNUosF2UTBIfIRqGcPCUoBOXebT7NVL0iwi8niY5Wxf3hjF2iLDFaVI4k+ZaQWAAWb5n4diIkhILm9lHIE0w4vCRY6FIbPhE7jUAjzi4YQluBdMpDmsGGY4S41a1QFExKZeN4JeZsdxBgUTSc3AdrJW/jxZZ1Ti0XVF0AcBnh7BbDCcq60UDqZ0ZQNDZNUEDmUUKdt0RdXZ1y5efKM1J7651mc56btYSugPdmHUrS+hAjflCYPTpBAA8lFQK14JVSBoDFKyVxnKpF5RCerQuFbUKmm2st1U69RpIsHUylCr544QORZld8T3AIraJvlxXoFmIPnKenrcbUAFdC6QWYClYlbppolw3I0Q6s4tQ2zfAB6oOiHWYFizFgX3FrjzkSzoXKJgKjRJVuZPIcQreI2jB6Wf0HULvwuO5foAB9fEvP/0pP/bCn3Cd/zHvj6+PXsJ/7Jc/8OW//yV/j6/vgSk/9un+8h8U6tWPvPD0XPK9X/7Ip/z418sM5Pfv/eOfmWYs3SIgkw7zxVk/8uI+Xwa9P3BHpw88ORMzko2wN7NiL9YUz7f0lbOvwfnWZYIp+j1gK53vPIBmFfjJacjDm287g10+g3ORk84JQNveO1In0LrB2kDVBYsuWKTAu2F7vDERVFYMpyiMxGBLdEDhsaRB0Yz7jPvWEONNNpP1LM9GaD6l1otiaGg9oEymzmmUeP72EJvoOfZ0fXg88J5kUGi5BQhhmSWcr2TcQ/CDc1UNk9GRiQz3SKAEyDAZOrUgmToaiQZzELBJ5z6zmRG8uBuqRIAST6RFJ9iRZ1WNZIYHE7qPYy9JrDl2qBP06LblfmT804fx8GcSF1EquDO8Dt8h16oFeJTafUfM4UccAobmWT5kkYFP8DrH2MxhEWmKUCsl88EtNLSgweSaQONcRSHgG8DXCAZUrm8L0e2cjyjPAxBs5PBbgHCuYyTMp0CyBDhWgAliuoYwrSHWIte3e8AFjtD/iqRdPl/4CzlumaQje4b6JBkcDwFDiADZssNUvVziPhGsuVjTfggtjxKem4LMFeswu8O8oRMBwtYBM4H5K4x7w/717+CXK3C9YFku7CJZWHLXdIXDYE6pChfHqkrdEGPQ+hjjXJti3wWPj4KOFQMrTCtcCtZPVuhlhX7+C9RlwfKwQHSFlAsuplhcsLcbxnbD9m//DNY29GK4/uyP8cX/6n+NT38uePNF+BIiuCyKKoo3fkUVxVoUWBfYZcVv3j7i6/c3/PZf/ks8fv0V7qMxCbqs0EH9rj46Bnr4/gsWjY6Do6MAWAAMNGy2IZVBPZDBZakwLWiiuPUOeXzEslxwWS+4XMhw+uKTN1huNzzfbpz/hWy867qQPWKGdSUQ06NT6KolSu3oOw47wFHJek7NcqY0dY5SuUrF8tjKEp0o7wt3ygeZJiJ66C8NMlC7O8QGYB1VouQvfDdPYeLwyT3ZBeYR7xhcDaYCrwJdF1w/eR2HnMNHg/uARnlVMoC0yLRTEnucjIo8w+IRo7SnaEEtBXvvZAFqnNnhD2rEhQg300+lqT6POiETJBI4h4XFXN9Sed3pxQj19F4ke2JPW3e8POMx49I8gE0SBEsbE0i4lgk2a5AnqNmmsOyEB8DLAlGHlwVj7vs4B4QlxAiWWs6NYMCtY99sJs+WymZO5eFCNp8ucBfsOytOtK4wMQyxLMRB1NKhjx3w6F6q0c1dOE4jQIqcj7ne8ptDyOGIUlKCLQ53Vg6ZSiSrDLpSi/Zvv/oSDw8P+NWvfhU2SXlummFdFtRSYUa/YlgL4N9w3xpu2yNMOvrY8eazz7FEuTZiWRHsXECNQiOBwRy1YEqrtBCPhxCAtiKgFjOfwcJgDx+xp9lVVTU1qAVaBVIASqQ4elBWHBYVMTKZ2DXOGJOMVZ1rwJgMA0CpIBHKoBRh6Wsk+SAEN2uYCjYYFZJrhHGvS2G5XUAEbjy3jEd+6DDzd7UsKEpgn43F6BWVGiWjvceYR9wMTKBMa4AVZjhtSy72wNV5dttkYTZ3lFGhKEwmRXUWl5nNGDv5YvEC9N9bQXN8/R3ExY8sbS6aCYsnKBSeJ4VFZbYeEADoaWTI4MnsDJ0nDX0JgN1+CDqkGnvWJk90PT8bPqlf/KDM4tKJSJvJWucjWOA74p4DFR2Brtc1smzBxEpqtzsdIAkHh685AhqA7BM3oUCnk/6ZAQlDf4pzz0cIJ4hr5gi20pgerzv+8SKoEZnzwsymhfHn6/kEwezhyCOzZQXywmHM7EKW0OWnTYt8mvtuFkjqoT1B8JBdN+jUjrk2BAlQyJyqvL4DQTemE1yinpZnomKInbGPMN5578c4cinGOvFBVFnZqSENfgZvuVYgClU6IkWSdpswllD3S2uwt5SbO7KguSZo3HjgZJBJc5ciirlPMpvD7SoCaC0ze5cio6037L1ibxvUC1QW2Fj44HFIT+DJ6aD3MVA1dKbMAC2wPboB3lcgs9AQOAZbHpcCWcoMRD/8+ng8fwTXFlnszLj/0Fcu9+N6Z7z8h78++vF5zRev+GmWLjPaL19+ZPi+fxl/+cNwVn7oDg8B6Y/dj3zv9T/woT/45S8+Ul6+3T/2IseLz3zx8T90P/4DP//he/3pbLePH0o5l2e3M20O1/j5dj+8vx+7399zL34ePMGMNl/8/Vjv57s9zo78mZxeFxmotG3HZeKdMv/tpwA97f73B+nIIOV+R9jAozW8zna+yRKqy7HnM3Dh5fNeT8+igoP6FOdLMn3m+RS/Dfaohz3L1uwfzu9Z2JuelSOZm4KD4K5h57PdVGbGjwDhOK9zHiz2LQEOn7ZF8sUej+SYXVji5vl5gxp5PnxeX2KkExKzKPOgZnokgSTn3Y6SEQFbxosEwAAc6weYyZsYczM/mGE4rOHJi5j/4zQw2SCSZTG5Jg0+wLMp140cnzlLSHAAWhNjTdA2xpAyMLybEgknvoUMJ4kDNEffPRNBNpN9+XqHUZ0AafOPGTwz+ejTn8LN03JMkMqCga3TFMuUDbC0DzjuLTHrknM2bfZxCKX/g2C55DmKOJdNgqke904S5FGQwu549cVz5ArieuFIWtxXnjuzLD/BOQE2W2EogF7Q+g33+xP9paXCyoqqFSLstrthgacuJ09xQELRUwscil3IoFBUuFbYeoHpA79lBbRCP3uF8nBF+cM/hl1X2JsrVC/Q+oBXUrCKojw/oj+9x+OvfwfvAhNDffMLfPZP/2f42a8qvvijSr0XEby6CFZR/EyuWLXgdV3glxV+vcD+6kv0332D3/4P/xr741v0jay4mygWMaw+0NHR0AM4LrM0xGepFHVYyFFK8XqW/BdVWGEssZsB24Z727G3hqUUrJcFn1yvsGF4fnyMMlBAK2UoRjQtOFq3B0A/XRquZzJFWaGRJUrclLnowhYEk2H+LPYa7WUuQZ+fWZCM9mQTxJ4yCilLMF6ynCoZRhT/VQDZQc9DYSPZEfS1RZV6WM7SyOEdid6lbmpWAaRrdDq1TtvybFuUpaKlwEefbFi+6vhT8tppsbI5UJ4/AFw8xJODpZj7JWwANAExxJkQulz5KQKC5Ha+X5n7NpNC+f5sROWSSWzqD3Jfx8ILhmc+l/hhdWn/2TkWIKuEMVjaZpveQAqdAx1ZYpxxECswCpZ1RdEK80KpD0S3zVKoWihsHMLpjG5uCTDIDCsO88YRmmOR921ph/M8nQxjp25crBvLBEmA54x7HE9Pz+yiFkkDzRgz/P9aC1pPexulymIYvWNvDffbA5Z1wcPrV6hLmeQED19P5IgxHeA+iP045veYY0qlHLIMY/WfbC8TNakDyLkAD3fN37Ii6nDO5MVa0RlfH2eYhy+TjSfcjhg1sYjcvyMmxzLccM5Fdtal7xQTF9OVr83dl6ATk4HhywnP6yynFFVIlIanHUgpgNzQycI+/My0dwcz3eDBBLVjHF2hztgYAKqUODcVLtGUJtYLtZwLPoDif/Trp5faSUfqKA0ztN4ghTXwzpMe5o2DsJAST0Vo3osuFerRvdYcLsxwmgZzSst017JLjIVBhgdFLAZBRLJiC+dnPeqCBWTfkCa2EOJDqr5by9bSPr1VqtU79p3lWstSw4KE43ZaDpqiqvHTMdhZplbSS3vfWUanFaw65OQMdVTNK4UT6j3+9IPWL6Qspl7FOYOoTuaQCsU/3dgG2QNpFwHqCwZadHWBT8YWAFhn20+NbG0paxgbLmp2nzhAKS70qPdM+h0yY+5ToLEUtuwsUY/uYazTYIgACJ0vTVpeIPXDSLGXqsFpPGW+Q7CxVtLbY0q5qUf0RHaWsz1crkj5bw3DsAgz3mPs8VwDpQhWLdzYotjhGE5BVgEz1+oDl11QvGPxDq0KLYr7tsNsYHl1AUQxmsdau0BSF8Ar3BXd5WiPqQXlsqJ34L4/o5aCWgse+w12B/5ABqoMbGOHSsUyAO0bdE9KrcKdjAa2FXaspcJHx9PThk8eHrDWgrUIrqpY2o7Sg6nnzNxZKbBSUPEKuKzAukSgmSwOmYbscLAPByvX1o+Liv80A/T/z69T7uzv8WW//yU/8Kn/U7zvo7+VOCAljy37gXd85N0/+nF/92c4s4B+v/j8hAWR7u8ZMAHSucA8HEUdgmwxm2stHYSXa+/j9/ESXHr5deyDvKN86YQFQiMp98YLYP0EKtByZ4IiWbQIRzqDYp0O4YcsrsyvwAaKOJYqADr62ND7TnHpcKfaaLz2UgIMQZRzDGRdeJbqHEhwHqQhRMvQHALBWirEWNp7NKXgWywYyxalbR4lfJrOt4cDJ+yMJx4OV8T1NsiALhHUWJxfFcmo1ghWbM7SiEz9EpnYMeLzDcz6DUORykzwsjB42DmIWgIAALUoFcI27z7dX7Kgi6IuJUC9Q5PymIjwT9wnYQzCEuuRYzE6wRwHg30JzSN1stCUwut08gRQhxi1a9zZuMXNQ5aA2hoCsOxKqJ/Yh02Kv0TmG5IJKAEiu8nSdQ4S90wEhLO0BdHZih1u6OCmcxMBmNChZRAUTrYbrPF+XemI82YKJp/fgbqU03vSY+JCTBDt2Gfx5ymZRgZBJHVO29fCr2H2V4GyzMCOpe8ASxN8BlIYcW6pRvNisuMRpU1QgA2ZI1Oe4UGUUPiRS5vjls/jEeyaEJQsPQNfBrQDiiJXiK+4N8HmBfeHX0A/+Qxv/sW/QF0WvC4F29ffYvv6G+zvvsH9doPZxqCgGjXOrj9DJldvT+/QthvkQYBasa0VcrmifPGH+JN/+k/wX/yX/3ssny5Y3lR82R1PDoz6gFEWPL16jV6BdnF0LehagWKAOj4zR9k7+p/9L7DdNnx93/H5H3yGP/nn/wDtKvj2CnwzgLsBn3XDxQVf1pUlNr2jXCrqw4rtP/wVxts7in2N5d/+Afp//X+H3TcMXbnLy8BuHXffseiCIoqtct56K4ANaN/YeKeGtpEDtHgDm+0oKOhFUSG4AKi3J3QRfPHmDa7rBX/yqz/C7XaHj4a9N2zR2MaCdQSV2f2rlgvg4feFWTSnHdUAG6LidiYKE4xisFq5h0oukEj3Wu51sh2HGxsIlNQ1dbTGkso192dRLIVAeZ6JPbCuet4HwRpi4r6gPw9IVTxcH9DQ0aLSpJuhlAu0rNBO1pPuDq2C5ZKd1zDtfA05B4+Y6XwmmSp6EViUPmMG2pEScJkafWljRuo1RcLY8vxUsBNcLRFrAZmEmD5o1CF50EKYYM7gW+L1MSgMwai7g4wLeN2BQeBINM4fQIzMfQPLrouy5LF7npFj2tT0Hj1kXPaId0UPdk7RSOwLQSsdGic8bXQplclmGxh9oySMMU7jMCpIdE2UKCo2lOB1yRLk7IoedloAoC4QAA2Ko8NhHAJpW2tUs8SykiAGmBTIcPgeLFPkmFK/aLsP/M2v/xavX73CL3/2M6zLgvVaMXpH2+9hh4FlYdMrs4ZLVVzXFT7ueHz3NS5rgfXXeP3mU2gpwfY07GGX18uVnbvhePf2W7x/+x7Pz9R4GmDDrlKpm+Zu0MHzadvufJxg+4gTXBwYsOwiWXoAuSRbSLCGuIyCHZTJjOjmfs5oaeUZYBKQSeqkhezNAOBFALDjn4mgR4MTj3N7rZfooE4fy+QANV0cLoJWlF1XFSyB1sokAzrPKwkBHhEsJfQp1WZSTKLsW5V6mGvu2TzHXAArseZJHBnhNwuOx54euGkQbng9GWNqH5cAKFh27STe/MSw7ycDTxkWEKTjYGvkB5PmNTzZJOH0uuUbkDXwNhKTPRD8+R2Osccnvvy8GBVJDD0GWMK5nyBU0uy5oZLmGrANnyQWmsjZoCaN/YOARHIBknor7hPtzZel0LdmcM90zYG25ySeJyWDmBdG/YPgMMEn/nXejswnQZQExDX0GFdSctMlktO9xNN6AnXH/SV673PZHQHfnBw50OF8J+TI6iKNXQ66yPcfK//+ERzgJAHCf+f4xXWmY30OniKDPD8uFoPMdTehoHiWKOn0NM4Sl/Pp1AHUD1Nn21/AoBhBu88SB0G2bA0oDYIS4m85S3pkSuI9GU4N0GFwBcUER2NnFDc0N1RjV4EyxmQ5iTBoEwgpwuJHdt+jDEKAzMCojWlY6WAPel2m8LFALNMB6fTHNMV+nPPwEfAJEPgHluZDkGHabsH3Xvt3AqdO++1/1NeH7//IdX/oI+QHfv7TXvH73w0c45f03u+9+3SZlz+LwyNpHx88l3xgfGYm8nSh7wFEf8exltPN+dyR5+t9bAzyXuVYLLl/5PQQH1s6knb5tLbS/PzeB8mg9/idf/T+ZL49WSIJYLy42vkH9Hzmqzzm53gcf3GfMj/Ccb7XF3cT9snc0EdHaw1tjGiiwO8xOhAl5C5+dP/xzJ0dbNaDl3XYWIDZNDkNpYBn7Phw6BI4e3nLcESlV5w3aQmP58m5dDrVJ5WJORjIAy9tKH9PzQTQeXQgxcKRczLPXX5TAuo8ivzMTNCEBeMni8+Pn4GGHvd8wFbAwZo537LMLPSxYE5zjcimKrUfOOYfMKNUj9Ivn3n2o4V0BCMaQdAc9vSL5DgnZ7os/BdHOIi5CD0ZA2DXYbDL1rxeTJPIMdc5FhoBooazlll4Pkbalg/W8gmInud4rgOcfRM5lkA+pedgn3ZJZmaR9KqBD83Xsd9sPlaam8OHsPAfjzUByWpFidenjxBQcZ796efgDIoFS8VzrYWdVQWBiRXDFQMFvb5CffgM1z/6h1heP+Dhkwfcf/cV7p99idu3n6E9P6H1O1wMslR2tn248rmHYfztb9HHtxBb4CEkLhCMsgIPn2D5xS+wfrHwG4oGxaiv0LWirCtQHL4MNgpQRa8NVgaqFKzDcbkWlOeGt98+Qr94BfzyNdpacF8UzwbcDCh7x+ZAi06Oz21HvVYs10rtqfWK63/0J/DS8f6/+1Pg7XtYH1E2K3Pd5oqlj6SwLBeKICxLzBwJ+sjc/+y8phgi2PvAbdvw6uEBpVRc1gvEV7x+uEA3x/68cTmoIIHFPGs1ZERoMydRc9okro0fciBkfptPPgMSMHX43Ef4gW/aZ5trMB0+T9bNyXTOtRpv92D7ByIL77TjVStZ+JJr3ebFj3tMWy14odkkk+s5/xTgkD3J2p1kC1nusyQMpB6MEKg+XSsTCqdhCzt8shqnc3EyOvKB01Sd/j21WyNIOjS7zmf2B/5R2IBAE0FWFV5o8apkYiltc8q49PkkBgug6xhDarvK8TF+9iEi2eKOlJjh1c9Fh8BL7sv5LMn1kEQLR+od5j5JE2dyrMec/2MtxbmPWNp2JIyS1axhg7fbhkUK2r6jqkIXnVGz5vk5i2F9nr9mA9YcbbujqmI8PMS6qUg/Kd+d09L2hm3fqXc1DN/3JXMaPUTcj+qLPIPT7/KYncPNOfGNJe2AzzMpm8DQHuXayzWffx7rz+cTyGRPnn+HjLPdw59i0uLw+2KNxrfFN4/lPHeOT/GDrza/M8kx/S4572/MOFVjjSWwaKeNl7YghymxC67V9Gl8FpnxWTw0qr4fC/7Y108GnvKDKUTJARlgdg/hEJqxbeVSKoZTvT43X60rVBXdWI94aMOk46fIjms5G0wyCDLLnWLRApm1prkBNZBMM6dCvCvROmiKQ0DCqFA9Kz97JPkODse6MkNHfcbUVxgAKIIosHn4TPFPsN2n6EKxUIvtLYDW0K6KQs7eW2QJTgbG0wXW01inoQ1YQNIZjMXrfN1ojWwVFZTK7h/mRjp2CrNCUKVgWVZm6geficEJIRmyso6lSYPL340eDv4gul+W2fSVL3QNkBFwY4tROu7coGlkJ6oYm8PCqRMAUoBaJOa5s8UyHFIrpAiWKnEgcPsN67NlNuebbCuBokia3mMzi7PrUgmqrkpkSAeZZ0MMHQNdPET2lOBPXVAerlhXwfVSsdSKWgpeLQoMtg7lml9pRE3Agl8BKmt56/KAxQtk39HNsN9uUF1Qrxf4AJoPPLcbhgw8tTu8F3hXFFcsXuax83B54DrzyKJYlK34iNp+wNQx1ND6joqBV84syLCdYxSTawL4FbDSoVdm6hCH2AFA5IH7Q2yfdLx/2teL4AM/3Uj9e/s6f6R85GcvXnv+xREw/fjXTx+L3//14bU+vNHv37hMN+jvMLb/3p5pHnP81wl4+f1ksQgB0vPM3Xv66CNm1elYAA7z9v17lQ/eNH8m88/UKju5hqCDe36Ww1UNT5PPdAIpjq/DWUGcR3jhuDjqBOw9gttyXD9uN4GSvCuzdHYV993w/vEZX3/3Hm+/e4v3tw2PW8N379/hu/fv8Lw9oS4LHhZBC7AafYNYRzVFMUV2SnIkLA6kXkLeR8lyoTEAO8oHyDxlS3ON81QTKMlsm7KlfEE47+7siOTICCCe2ICpYSERszCzxt+PGAUDonuLSIvLcUwzOCilwOK8cI+GDaGzpFnKYm1S99PrlugDxg4uDmo5OsKN4QzYaSw8AQpBicSOuYf2CZlSUEHdFYhON2RFDJbHoMCLRmMWzDJpdWbINZhLHs8lg2st2xQT4NHJMshS+ggZ5yq0EFhNYIn6io7iPCdHalAJM/yL1tk9r3cysBXUoKzLEj5DgxkBlVor2RpR6jN9w8Izv2hBa9R/aW1DMmQBh1unfyVy3l2xN+lvUCuH3XbNBDaLy6h7wtVh8azUBlE3iFcUZHcxoNRl7uthBhsdjsqETa5qb4A7u/eFP8tuiUJ2edglN0x9D1SZz5Ts96HU0PRBh+fgP+YZuUL0AfDXwFLhKBiX13j4/Of4x//5f4Gf/epT/OqffcpmPMPw3W3guTu+uzs6gOV1wbICD68d/tjg3+z41//n/xt+/S//Fdpf/Qb2/Aj0t/B94F6e8Zd/+Vs8/lf/L8gvPwF+8QnsP/gV8OZTfPJFgS4F+83hBfCLYixAvwzsckPXDZflAVgrPvtHXwBv72i/+xrffdPQ2obxi89gP/sU96VgqODbOmBmeO7My3sVFO0o6Li8XrA+XPGP/w//Jda3/0v8t23B9qd/juf/63+Dy2hYyoq1KC61ou03mDVUu3A9O2UAykMJ9ozNBjMJDvVOv6eXilIWSFmw7Q19a1BXbNcNf/Dpa1wq8Cf/wef45u13+O7t35JxoGWCKzaCFb9cAYQwL4xlpvPISNArGZhcr5qC3I7JZhq9QUAmup5Yb6JsX+MAEM0Feg9jA3axU++IDuZoqBCXaA5BkyiIQE8dpfi0X6I19g9t49uvvsHl4YIvvvgs5Bsa3j+9w77v1I5L1p+QPSnC/TvLmT3P1wiccz1PxiDPE7rzPNNGBNk0jBlzRSzjh19yAM6YQHnGfuecjMU8m2Uck+WBNn0KcyZ6SwBEtSq6eYi2RwymjG9S6lXgWERwKYrAx5JzjP2+kcHioF0vCq0aVRY8O/oeuokRQwaxKwAbsqcSyC/CTnV7a/nhqLWilooeB01WvLTWGdsVNgtAyJec/YwJn8V6a2PwvBOdVSA9YtlsFOHOVgf8VsZLgbVpWWZMLQZUKKjzV8LGgkJrDoz7wHO/4XftS3z++acoXwDrsuCysgzYfWDfdgDAJRuNmUVJnOD5u7fYnm4YzXG5XvHJp59T92hdYKOjt536d+54fP8OT+/foW8bvHes0TDBW6eeWWg5wp0xtwAeepNwYDYI8AbYgHfOJ0qFAlhmFzkmZMh2ChZU6l6BZ3f3zthOAK1LMKsCsOssRVc4pIQ0S0yYzfacvJ7dt9BDqiiVzOwhB3BpSNyHdzbJDXCwZDN8GVBzem8jSiAbFl1RqxznTqBaYziQTKco0dU4/yx1Dc1mjIm0dXqQVVyAx95A7cyUidFYomyWIi5QS2P5+79+MvA0BjcNB0norGYmNSxFwDysXT5l7CQcDlLUiTzSGGAalRz8iYRz2c6Jmzjci10Y1P2T00wNDJnzPXUf4HOxnFz903/TTThYXAzj2J0AEi1Os4Y13xcHCiwMSECFFps+6WhH0OPzGQSYrz+zAWj86ZjnryXe7xaLUQRqTqquABAGOUDqbpBa6u6zrWQZkaFwCsK71JnR8fm5x9hOwy3Z+SdG0I7cBe8vnTgCfwjnnHpRx7OyhekxcDni52xnzmYiw3mo9dHhMcYq1HjK1phFiDRn0GZhiEQR1/IJBrIqNJhwCRSpzAOKNHo6HqrUHzPbAS8o6hDrcOuoyMwsndzoeTLdf7hOob+ZeTcDRuiDSJnZbfHo/tiBYR1mJ4cHBnOyGcZgAJM17T7YXtbtcMrbGKi9wZaYW5QwziEe75iBi0dZITsY+YtaeeSy9CO7cuybl/P1cWszo/9Y0x//+Q99na/44Stzv34vC/K9L//IX+X3fvwJMpk/eckY+vi7gPNz/v2+XmYNPv6E/sFrz8BJsh+OB/ggvJsgNz6Yvh+YY//eX/ByduIi/uHP/bTDP3LdD94vyGz3+RO4o/z09/y3IEzZ6TMzyzM/jQuYr491n9OY7KYJsr4YaHnxg3OIPNkO8vK152NJTv+ZP/b4TI8OnQ64jwmGpNDqfNJBplJvnW2F7w1P79/j8d1bfP27L/H+7Tvcnp7x/HzD7X5Haw0iBhVDEWMdPgZUaYur8juBJwmNtjlenuVJ5z3j6SvPh0gGFRtcTJLtnO05b44ZfBx6Tzo/c2JQ+d8oBzA5RN3nlOcUOc/n1O17+aLjsGewci5x5ElODcL8cEexDCYRZ1dH1qhlKfEU/04auWRZeZYEfn/VHOswSsT8hcfwcnXN38nxvly3OSfAnJsct/QL0rfJzjeZLDMYM8BpC+iO4ABP4zPdp25YBo0H6+rElpPTPrARybRwrE97KZ8rk8N++nfaF4FEiYzP5cZfHQyJHKOXIxejd7LFmZ1XINqbJ7Ao8RzygR9Ill1GuD51sA5jOMc617+/tMMzcHZEKWL6xTEPDrgnl5pX1lPWWrI0ot/Rn9/hu7/4K4zbZ4D9HPb6FcbrV7g9rGivC/rPyP5pa4FXoF4GcB2Q68DDf/of4fMqsD/9Jfy7d+jf/gV677i3jv7dW7z7sz+HfPkJ8Nlr1H9aUP9goLwqqGWBWTnKQXcD7gPQDUU6hjVsbni3P+H+7Xu0f/Vr9KKwN6/gv2qwPxKMT6+wa0G5CkQL28UDcMY2MRdhIGQBlgsun34Be/0NblbgIwI2EYgpgxY7mGa5VnJvKGHI0ASK9R+sdemxuIWlt2JkTDRR+GiQKrheCl5dF7x+WLH1gfsYEGFL89OJwnVzWmrHnx7/nyt6+sfnvTzt0NykJ66Nc3f6ac+ffwecEqbx9CIOS7BKnGdIxkyCeS0Fg0KLgNzNYF0x9g1VC9bLFe3+zIYQg9CELjWa64Sty2eN50yNvGmLYp9N+QwLhmzef/w9f65+Gq0EzsWDkX8MHNlRmPpoKukTvDzfuWV9ar4RFI4zxpzJ15HXC7srTEx7XIBrxoKYYJBBG580CPVMtARDRACd3c0jaZNgtcoHmjthCOajCcXXzdEz0RW2KQ15zrbDJ1PLkuAw9XpONjwBFdMXvqI7O9bmWhWZBp/J+ShtVk92U364IePP9A3zbBFwvqlL6PBuMLCpSd879vuOTBGoxmedjkTGcOyU6g701jCGY1tvcHNc1lfQxaNJmc3x5lAbmZGtw8ZgQgYWQNYxvgKwMdRcZ7EF8+x3mc8dgANxCj/eH4b8OAPmvrVZQok4v1hurahS5jjKXKUevVq4QLNvi6bOUpznGueLIDUkwTkCJnkwGxTkuTyH1f04V3PP+XHO5LdmifeJWKixMCfGIXw+k4FMWU+nLip0LJJ+AySqJAs8XjLBsezm/jIZ+8NfPxl42loMbLFAvCui518ghux4oyKoHpQ/CaFvcYxxZ7YxOoMsNTIZfYMZMxyze0uOcdJlADoXpRxGxpkl7dFxp9bQMxqAwKZTlqBLXvFwUDE7KqTTxyCeug9mOUFU41MMaGrNh4FM5bdSC3wAPdpESlFmP7oBS2Q8VMM4xqbWpNvTiJ8DABqMAQgDB0VmwmNRuHDclU7E8IEW7RPd6ai4ULnf3DD2jqoUAyzCLiRaK1SXmeHMsjuP8kg5ZXOKHNpQDmB0sgwUMjO1NKKp+u/zUKZNjhreQhFcHg7HnBx+XJTNQKZDCVUMG3i63cjUMqCWym4K4PVqLXF4MlNz36M98VqBOOh7p5aDyMLsiJbIGjiw8P7YFtmx2w6H4VIXiDj65pACXPQBfdvQ9oZlvaLqIb42wmk2LXTKnQCT+QjRf4e3RodLFBgFUJslgH3fAGvofYdbQy3CLIsCbh19v6FBgRKdLwAYkqnQ0M2wuUF2ds75fCkwXTBFe/s9aNgGqwVeC2AbYIJKKDlYa5FHT3BUBBR0/JC28pE6yZ/0NVf63/kd+a+f/s4PP+cnWsX5ynOIeGYSfew6P/3aP+nL539e/tD9Ix8VbuqM4sIxTHv3vfv84AJ+/tn4yHt+39dHrvl7/33+cQKtJzvtCHDoZdZoumqZwXmxDvXjH5P22g9HNodKQugSwLRZ37/rDAMSXjkLfh/vPX+ZHz9L1pN3lsO0RqbLfdvQWsP9fkdvHaN3DCMYdb/d0XvH7ekZ7x+f8OvffoXb83s8Pb7D87t32O53wB02Or579xat7VgUWNWx6EDxgaEDdaXo+MNSsFSBGrPxnkK6gunAJNCUQUTmbeecIEDu0SHR5SQdD8Mx9DIsWDLjxRLU0FiYlHCTuCaFSOmvnfV9PKaeHo1gQMyw7/3IusV5KcGegrFDaN85V5fLBQkLFI1OTp7JAjJ22qBz26MD3lDFUhfUWo8ApnfeqwDw6GSL09CcHL8sxz6cWgfATquZUFHJjOrZ1mZAloBXJniCMR0ZSg+/Q0WD9cOGE5kqyz/FCzUxIngcPdjk6bgqgEEBWzcG+zKTDxEMDs5bKcrrGDsrJsvJgXk/x96LrKgqMkqY+yNLp7JMZ/odTgc/AoLJrI8FlGLdmc5MdkcNzRdFAEYWbIh0yMMPdE+SuyN4YZGMiuScezDf6LuSCcESjxLdkLMBTq5nGwcwNyI5N6JDLZStw9nCW6jhJTuGVMhayH683fD867f4b/+P/yfIqy/gP/8T+D//J/B//k/w+j/7DJdfPeCzP1xRLwV9VKg5HsZA+VRRP1e8+Yf/W3yB/w3K//sd8Nfv8O6//q/w9Nvf4C//1X+H/s2v8f5f/TngFwguePO/e4f1X/wjfPYH/wyX9TWeUdGHYGsO7A24b5BnBe6K5985bs+Gv/7yL9C+/hK3/8e/hK0L7LPPgP/knwD/8Q31H/8c5eev8Mk//QTL64ovHtgZLME3G4eGyv15R3tq+OTNL6Fv3uFxXGHNqFkWLn/pCjUCWALAh2OIo6GjouKCBd0ZuNZYI1XIWMcYTGT3TuDJgSYbtu4YbwSLVrx5/QDRV/jj7Wf45u07bN+9hcrCzD4Q54sdtlyC7R3AJOa+8rBlwNQiy/eDPmZJND7Z/jC4Der6GNPrZ8mII/dxnO0e8RMER0LGwe53RuDfEswQwRJXaG0DnGzF3gaevm34+c9+jl989gWw3aC94Zv379B9wNcHVK246DrlORDPkvIdvfVpP0QErgNSKqwC0jub2aTdi/uRkAhJ+8bkt0XYNcgkqgXZyZlJl+j2CacGrMi0lZAsDXPocBRn9y6AxAVzMsdEBFaiDE6AbGOfSQ3VStAhmb8u0KCZSDSguKQJ02BwFoXJCCH6ICEYux9WL/FsIbSshWwsKUB0LLt5P5IXQCSyKeNxmm6O/ZJjRnatWnocAgyJNRELNEFIHGPDxEnqgoUdjnK+AuoYFzPGcolIBJEhlMpiTdPmlvhb28gWRh9M3F+Adt/xXh7Rx8C6LpSJjfNLAMB8xqduTJq3bYP7DuuKdd1QvKA+XHERJ4NWFctCRpK4w/vA/nyDjYHLqyvMqFWWWlgAw5trIXjcRo4bgqEWpXcu0OEIym74Hyfowy0APY4FzbzDMWDe0W0/dr43QAWv6wqFBoByKlmzJNGEVyyKJZhY1tk0IIFzJr8sqnboe5QQ8dYYQ4JOeRbaXEP5lbGgBuCePkitjEOfgyWaADn9Ofr4QwwuBkvVPCeRQQToqBjR3R1QdKUvkmchjISPGqBTfv97B57KSSshNW6YYQshbMRi8SiDwskJU4ENTkwJhynJzkzKOciEOhwnDuAaSDwPgRKUcBdSsAVJuweFvWPUk73CdUCgaGa68f0AQ3AIALqGp6wKRQpjkpIfSp0BWAW1WpyGxs7jg+lwpQNHR1FCBFTDkT7cKuSGRWhEpYvl8+X8rQM+HyYCsgB26G+xg0Lit0UUdV24SIrSAfJOG+o6s+wq1AVBMBjNQkRMdKrxH7pOJwbaiamlIlEfGaise3S3i0wkNBCT7B4Sm9Wjy8QgQ0hS6FowA6TL5UoDbphZmnA3CQdGmYTHdVmHHk5vIqOnW7YwNB46T1yTNNJ9eDi1oQ01DDJoeCXKEDiAMQ35rAAGOlQr6rqgSxwkfQBiWBauY3MGJhqHrhsPLzXA9jvGvsDand1GVKBqMDXYWMjaigXRB0FR9x1YlB1pBsFRbzvstJbQo020ObRQVC4pwekeHeWvx5ym4zBr7Oc6kPn7H//6IUv0wxbqx4zXXG5+wBTff7l/8OeHP/+hO5puwIe/eHFj7h//1J/69bEx+74At790RH/0M0/Iifv5hr//2T/yux//+Ye//+nPf5yT5/d8YJC/95LjmZjZzMDz5ay/+O8PXuZsm/l3sxQ55aVJzydw3jvL1Noe5VnRPIJMRDoHeV6MTse3VpYfW4DvrfcXAbfD0W4N1o1lSGPgdr+ht4b7tpEpEWXQZobb8zNa67g/P2PbG94932Fjj++GZA4XFXz65jVsXNBawVKZ2W+tYbSOKtzlixaKmwrCmQkgaSJnca5kaWCMu7tMHSCHBNtH5pmUDUDI3nK4GM85nAKm86yHKHmWpUzmlCTXIUbLEee2zU2v6UCVeE+IbHsAR9ZJiRfPM+LERPsAISTrhufJtGbu8x7Iqj0Cktmh1m06fnI6E3nW+awoyeM/nyezx+mfLqWGg1iR2itZCoL5WbzlIim8m3vbz0samfmXeL6ZvAEBj3RgD/J1nK0ZYoSovMipS+m8voUQMAMWAo08M7Jb4AgfjeUspP5PE/eCdJWBIMjAzU+wnB5H/teR2fPzWo39L5jrM4W/JRgYM+qMg54xn8QopXC6zqtavjyBtDzbHJj9bfOzYkzoWzoS9PbQciIQG2/PyU6QOhjkVQwXJXt6A9CHoz13XD6/4It/8se4/os/wPU/+Rn8Z1d4qdj+9o7NBvbnO7Q52k3SQcPDMnAtA6+/XVB7x8Mf/AGGDfhf/Bmft3UshUxH/+5vcP/TDb/9v3yL8vqC3QvcBNYA79w70hTogvZeYbvh9vwV5P6EN8uOy5sFn/zhA3Dt8Nt3ePcXb7H9RrB//Rr9YYF9ckUmYs2crMThLBf98m+h797j+b/9U7S//RLlwrI4s43jOAY0ks+5Bko0njFDlFEhQp5IjDmwhBC0G8s8rI0o8SYAOHrDthWoOOqyokjBp598ir0NPD7fsZmj9Y6ylEhwdqQ2LG+jxL+zSc1xJgt07nlO+cHwnfoqc00fPhSBhXOCD+ED0hAxlX/yYNQZUeLMAuP7GVZE+XbU2Fg04Sk17L0WvH79Cr/4+c9Qq+Lz50+x/7sbnu/PZN9jQAL9cxwsrtTsYTOkWHMZA2mUBeb958awD5ORh5/Do4VxVWwayLRJ80NxWODjfWR5nWxrvCaFojF9owDPNXV0BOIHo63Gfp5po5lkP2Kwcgj7YTIZLGYlS6eCMXnYa64ZMZmx37QQItMkHQkVnoOMYeKZz0OTTxMVGzyjeV8lAG1Ppp4xdkYwfCGIEmEgPeRslcAwKCXHZa5Lfg1YMFqywxlEj/MfQp05JWNubwDUURaWjq/rClGKtpt7xMls/uBxxlNIXwDvGB14enyH1Rr0UrAuC3RZIBFX9X1H3/fwNRRLrejdWcYasZynWxhC62To2HzmYjpB5BJAskT87eeUmvtknLuwg9vhN8oBxtHhmj4BJzJ8kwRH03fKCcz5FHZDzbJ8CU0xiYSPQQEnWJa+FteRznvJc5DxW8SNSvDUXUKeJo/HuHc77bFpgw4alIii6grAUYNiRaDy0PXkZ5HJW+I5bRhcCkwPrvDZJ/l9Xz8ZeKox2CY2DVMydgjAHs5iH6xVPbqrycwI1WA8RXkxljjE3dnKNvFCbr71yCpodDBCIOMOUhhbBCTZFlPDKS4guyOydJNIFYsiWwrSCPCQdD9NSFGWSEU951m1PTsadXoncLDuOnXHJH5Of8bioOKmXkql34D5UUh1kBR6m99+lAvQtucYx2LIzxKBSCHVNhw/c8da2GGjropCt4tZ9d4J2A3N1RfsJq6cPjLzzjusa5l6T6cjAdNR9ACCRGO8AIkSsN7Tq4xFf3iZoT8h8+dj9Gk0EyhK+t7Dw6v5yT4I2Gg4+H1EEDhY2F2WOg+xdATTeyF6HJsqxjK2O6o7DIIyQu/LaGR8gFn8xgwP4x7DGUDw6IrY3bEWQa1LrGsAewe0Y13ZsWLMTp4DvQ9YHyhuUAPG/Y6xFth+ZcdIFUgd0LrCRoXBUcoCh7BG3AfMdyxlwUWu7NZgBt/ucBsYPR3fEc8q4ccUGg4p0xiJnhiGyIBguuexfV4CT3//rx9mTP04luU/8aP95d/lYz9/eT/f+03suWlVf/S+fuROfi849/3X5H4/am2SBfHSMQNOzMn0WI6b//7Xi3H42Dz+PedWcALEP/jVEf1/721HAPeR98bBeL7vaSE9Hasz18ZxBvBmKeLpcWZSVxUglow+HNtOJs12b7jdNux7w/PjE9q+Y9vuzKyODhWgijCwGQP7vsPMcFmvgAi6U/j7+Xbj/ev0P/D89hF9b+i9o/eO5+dn9N6wtx0zpArw6enpCb113G83SCmo64rLpeB6KRDr1LELIOD1689oS/YFS1Vc14o9mJlUk4kB88N9YSzBrN78qWIGR4CEFgDoc6uggMkTzbJmwSwJtKkD1LEuK6SU2bEuB52d4vKMooOqNbRchJoreeYRUA/mb5wBZdryw3ZQaLnDesPoA9lGokrlmaZxhhxu5rwfVcEkRPvxKxVqLdVSju6dCQZF9x5EwJmdYy0cbQuQB6Dza0AEXLRB9JtktkdelsoOS6MRNLAsXTlvAo2d4jOpNjdK+DDTTOhhnwU8t8IjnjtbowOeg4nv2blONMrzcqQs/IBBpm4pqKXAo2Sy1sN9zPJRitwfYqdaD+aSuYXuCGULZml8BpQnO3E6WWfSYzIX8xkgJ6eanRc5L1E6FMlABjs6gbK0ImwJzZEcYecTnEtGJf0eneuFQx5JQ0lm/OH3ZdxqZ+ApIssiDhFDVYepoDuwDce+GV49POAf/mf/GD//n/8Rfv6f/hJvN+Bpc/ybP/8Ot8cn7N/8LfwG4NsFfe9o24bP1g2vl4bll38MvTzg4Q//CL0W+P/3DSAO9Tttxlrw/PVf4f7bv8J3/58ygxwxwdKUYIdYOmRsSALDqA2XteCzn3+Cn/2s4D/8R5/Alw6/f4V/8+uv8NXtGd99+gpjXbC9+RSiFSILhitsCHzfgX3H07/915Bvv4H9+q+A0VCuK9QHxngGdgf2gYsrmUwU3GGQZoCPg/kNifYtUQ63CoEngzAQynJTFYzR0bvjfmfQuK5XFC344tPPsbeB9483jOdntN5QL1dAFW3fGPyVBUCBW2jL4QDbcydy3TrG6AF0A0wuvyxLRfhWqVObDLl5bsVh5mNMwCm/4YxDeLYGlOA4EgRh31Q16SYBVAnKWlC1oGrFp5++wX/wB3+ALz7/DPftht999VtYb+gJ/qpN/0JL6BmFscgufhCZHfTEDWKDnTpFTq7RUf41fd+54/wYE2DKOqhnzEYvfDIp55/sPmjmQM/EJ5h0Fqr0HXxbfmf1A0ExrmsBsMTeziZQGUPN+wX99jjY+JpBjSRIlFuFv+LwqfkmCe34Ie6MuHZVCc2usMc4AAotMu+FoxemN89MT50mcL24oiq7j/JHVL8Ts2DMxLltBNg1bZXMO8QRxUXSGkfcK0riBder0nZBw4dhpYzA0XoDtZE76kUgxfCJrEwERQUSz3myvUpZQteKdJNhHd06Ht/tuNqO5WFFxQO01mDGGdp2R9s3gs2lsPrEDD0SSxBB5EuQ7CURxcguhAGe8Dwna1WF+lkOQUec26ANt2EBkvmxn0DQKc9qCd9DVA8MEgfg7AifKuOj0D5CxNElOkUKqB+IkbJE+SyCEpDM9Fb0fB7HXqos86OGs0KKRKyXMR5mPK9hVER0gmuTbFJIrKkvYnsCT10GOixyObkPuJ7MHN4GTO0AwXCcgz/l66d3tfNoWRiIVx9AcMZPm+UQAVfucJT437oULDXBB8d93wAApWrQ3JL1kwFgZh4ktMBJZaQobEysAAjnWJWPMmzPBN/cvzOI44NM/aXMJBx6Rjp3vyMOFgtRce+keIIHE30JNo/ejQZkrZV02tGx1AWlaPipPGjcWRpBqZ8TeyTZJNGl7OQ2xs1ogEAcd9qiRFMPFb0RmUkxovqiOgWwDSRlaRpDA2ZZHQIZjfsp4UyHXOsMNCzqqVPgV1Rmtma4weK9DIiy52F0YAvtJ4saZQnvOgGjLHsc8W8SloQtpVWYQQNBRw1j4AEQjTHCwJWDxivAiOBKzCgEmkKPnmK2YSRsgBrFLFe4RuvIOgpgiiGAWkWVBVYKAGPNtmemyDHo+0KKotuOMRo6Fgwomjc0a7jdHlnuYAVaLiwViUxKVbbHxL7B7gXjfocXityrcyZ2c3TZMJZLlCIOiDhKMVg32ONAKYJSAKnsP6zrwuyP+zSiQAFGQZUFXi6zpPJweBzwg2nIgIDrt7WGMQzb1rAsC169OgDBvzcy83f4cuR+ATDv+qe988e/Mgv58Ve/BHt+6Otjr/n7jQkdox5XOJ88kfkU/cg9yfFfOd/ND91Dgj6nV/jLa/6Ug+RwNj+89vF7nz86HEqEc+rGstc9upjs+05WUJQBk72ZbpnMQB+xt9lW3sKOMBg4/2kjy5AzZMiuSEDrZM225sFUcrSN4NB2v9G2WIsDJbpcGgdGBNg27oe6sPRs+MCwga1RxLVUjfsaUL8BnoKiZCqKGNYKLKWg1sJ7HYaCFWMUfPKKOhxLrQA6IA2lGqwcDg/GFudixxjAvu2R+fagbWcZU5RCz6gmJxkHIxS06eZ0MK0PjE5hS4nyI7OBTkSFDT+EzKsCnl8lbO0Ix3PO2SxlCSfMScdPR5rndYR25iHyKUjqf3abmUwbpw5fLQIsCxnRjc5XKbT1PkXB4ypux1oSgci5bMMm+GHD0DCw1AgkEtxJIXbPNaDh2CGAKoejoAzjfAWTzsx4nsZ9oGokpej75PnnwjNERePMCzK100Etqszwpo5lPEdarlJOe28GLZG8OjGX0znWCGBzMYwRtUro4VCG5knMadpf+ke0mvfW4t7L9N0y9O6j06fJOQ5HFZ5Bq0wGeS0vQTODT6aDhPOcAWcpdWZeYwHjALDp0/mINW18r0SS05xwq3GwT2FDXOdUwjJSNyeCxbl2E+CT+KxY57mNCjr9YQgghu4diwwU2eCN4sGCK0tMVsPYHvHdf//n2N4/4tu/+BZfffUtnh6f8O7f/TX60xP8u6/hzTFaBaQCuuDJnnD3O25rRa1sLtPaBnn/Fsv2jHU847LfcDHFCgcqsPkD3CvEHoAibMUN2giDwESAZQOU5UO1KC7W8LA7Pnl/xXV9wGV5wOfrwK1UfLnf8Xx/xu++/ga6XPDw6ReodUWtF7THt+iPj/jNb/8dbt99DW3vEZoUADrMGlah7RPEPo1AzZXaL2tdwYLIEGdW2gaYoO3UZFNdZpwA4Vmg1uB94P17Q9s6annAsgjW6wWvLm/wiy8cUt+i3G542nZ029Hnns5kHRn7Zh3ZLZbdqA55iWQCZUxhMCxlmeeDIwNEvm+tK5swxH5Nnuf6mmLDVYP1RdNHcDN1fQpFpIGCUhcs9YKlrihasfWGYYa18ryopaBIwVoq1tev8Nx3gvSi+OyTz6AO7O2Za1ULkwfOFvUSzIu8f4gEkEobLFHfk26Yz+8U/D/O2pTwMGSiPF/sBE7GoCxGOSX+ZEYl044AhjEAr2Qy5QePsCMSQT1OLCgLFrGKhLZTfsBBnTqoDnFzwV4s4WamTm3xklVpGBJNpZxdrqskOUAnwEgzGUBP/JkVG/lkRZNVG2eO9Rmz0u5H06qqAQTJZJ82aspw/SgYI0WSWGJHlxCRZqdthE2LMRWuPgltppS5MTSu/0lT9/gcRak1JHUU5gP3/Y6yKVwM274AlwXXVyulAu4bSjmDgAaRKL9Nv8+B3gpuj++gzoS+FWrSPr5/h6fH9yy9k2gmlkmWGFPuO6DdjlI4cybuEvtZ9JBh4RgPGCjYn3GzAwESEeRRrXFWnO0+h8RTIifWNRtRUHpoaudqgQuZS3Duf5nJn/DmC+e2hFh/j3UcSAA9f1Gu69hg2ReyNwLZre1IQDdj7ilIXio/u28cvxrVM1KoIJZaZh7bgR8AhK5jUTKtEzcbOxOFooQjSyTnSmoXu3O+8dO+/g7AUwtfTSdAEJKO01kLDBkdB1VLICiuKIUZyLbtGDbQ9g5VwVJXvktoaenTH0FGOgD0oWLaYhOlE8W/h8OafgcypDqcASTKPUXADbOuNQ+KpKFHbfcwgzgzQCwpjEywCNwU3YWU4sJDus0SNYnWyWmEw3EO4VPrPp0hhCZC3vh58gi+aZ5FWe2HNMiTLSU6yz8Q465xvdFCEF0BqYWOU2QoJUcq3xcOZhFMFo9GRsI7X8OsDsE2dp6ITC8QCz8+PzZDTgrnMDZ8OrAvAkLMsaKBzq4xMlH0MQZQNcTROZc9gtBaozSycC1wcwUt+FQyOGmmJuGoeIhdUjxwieuLlaBvJn2VRsyFAZxFiUn4uUwPVSWjrHXqm6FgYGCgo7U7RnfAqU+l5TINRwlwz3uDtR2270BlEFhEYVoYTAq1RpiJHwSmqsCj1KQsPKiwMxOXVGyBM6ABDzF3hUqFlKMLwxGv+Py7hKPFVWkBDDS8e/eEh1cPeHh4mCv1fJGXGlHzxD8ZlB//0byl0w9l/ucnXiP/48cPfP7iI+9PtPr0zxeX+N7nyYc/ePnbH//1R76OG/Xc3Y7DCRDgMHA+H/BDBtRB7zzf8EcGC8BLxhDwvWfyD9/p3/vjsG8npkLu9fxnrKl8Xf7MnbHIGI77fcO27Xh+fsK27di2HX2wLGueCV4O4Ck0y5J91DtBILKQBlrr8+eHjl2I/wqdsL1TkHZ0sj/GADVsjB25zCzYRawiVgO0sRSklIL71giUh+NrCM0J6yi1oC4FrRHIerjeUYsFS8bh3mlLC7AuGuwXkmrcSpSTEzheRdHGwN46pBimFE8ARASe6Gh3G4AH4yTLQ7JjW2S5D/aHz2z5ZJkKSzaaRQnb6DMYyTNsBPDkOJg/0ceHznSugQjMfK6WDNrCAUvmSq6+3GyhE5LxAMAuPrSVHL/j3wAqtREwPBxPjeyczbMPTgBeT9dEnlHBHJjAkztkGKnkc9+lPTueJdxoBhJFIQ7UQOm6gSyscTAeLD7zAOJOeyTGXiKr6iCyY7kto4ScIrZRBpmOZvgvenIePJJekzWdlGw+CZ9AjrGnn2UxZ4n25Lmux7kd9ieZ270TpJiAWAIyEsGfBLsp7iGF/RNQn+o58fvpT1o6446E2SWZ1VLD8wnGXg7e/JIpmp46KRLwygyKISDwlGGLzOk4MxMQtkNivDRoIOnpnA+UY20RZDUZtAmyxycO+GCQIyhQXQk8tRuefv03eH63Qf/6EV/+9V/j6btvIb/+NeT5CfruOyZ+pKCsr1Cvb7Bt7zH2Z9zsESID8uoKrAX6aUWxDatvWIah2sCqXBurORwrVJk87TpQAKxw9PC/7XqDlwH2YBNUu6PuivXpG7yxN3jjhl+uBb4q/ubthnf3HeO7d5D1ik+k4HK54uHBsT0/Yn/8Dl999yWev/sKpTgBrXHP0ZplwBaJPEE0fQk/sWjBgKNbO8oYEf7gGOGLrsh0bXZP7saE3u1m8O7YXnUAFZdLwbpc8eYTwb0PdAfeP7M5g0cQ6Vm26mCVgw1KOSDAExF2Ww4fF55n9eDnRze7bMqTdkNEUJc6teMA2riiitfXB9TCkqMMNNkpjN2WXWjj6GOuqHXFZX3AUq+oZcG72xP6GPj01WsCDk4fcSkV5bLiuTWUWPevrg9A77jn/Qq7uI1c4waI+ouVPX1c+Islf/bPMv4b8dTp7xv8rEQy35jafqzHSHdGkCYkg2hW2gVLyQm+WVzDYldJlEcl+MPrx77N5KmDlSt5D8GG5f3J9K9SYyfZkBIPnzGax/ocALLaI+c3gW044OJQV2QZcpIuDhZSlIRRlwQtZEVUZbLfSlGoVhjYgW9kJ7PeWTlUA5ARREwXi2fa/fyUnMAs/YvyMRW4hHQMDAM9zPfLuBBxLhF4Akbv6KOTra2O1jeUCrxarvRb9mRGhy5znOmchLCNDvS+Y7vdsJSCy1KBwi6At9sN2/0ecRH30jypcoHEGugtElxR5cL4nutmQZbGhc23GTHHitNZsof4jIkHxOcV8SktMFJ3LUHyIDOIlhhLsLueBFjoDkMPgMdDk8lTKSme7QB48rtPmxEVRB4luO5TL25vwcCPeYHmvSuZUpbyNTr3liC0406JXGQRklkAZAZ1sr09xrSYko0W16kqATxp2EZDkfKTY56fDDy1N8s09qRkLzOYyNabFG12aLSz1yiC7SJow9g6Pif++gAH0JB0uJUPbg5kLX5cpwrgPtD3pwOYYCiNunKzP93e8f6cehtLvcTiMjpodoiluQ1SoidNzOjsCdD6DY7IYIOldvAFcLYVbubwFkJbS0URwSUEwKlfrRAsDBxGLC8/2hQzExvOuKdx5gaCciHFuTG/zeggsUQsDr8QU0eAQeIeCHfoKgGkjbph9J2H0BKsMAAWmhxFafQtWEHpoHFLRlA66BSsy/F7Oqg7MjLQMMqLpJHo4TwwQ2HOICgd2eDTcDcXBitVFT3EdZntIa0PAuzG+23mqCMceCO9db3UcBSIUGebSM98hjCytGGoagGs1cj4nen3NJKGAnfFer1guGG736D7jrrdUJYKXRS+LAAq2tgBFdTLMkGqroJGXXPADZcra6OXhyuwG/YtaKxGsbaiBKuadWy7oZSB5+c7BcYLgC6kZS4XlML9JKqoF7Y83bYdZQwsreNNv6DUFR2CvS14cnY3WpdCRnUp6GLoariUCi0XOBY49GAknEo52LJzoC4LzAz/7jd/i3ePj/jtb/8Gn775BP/gj/4QDw8EoC7rgloKlmVh8WKM7RHwG1TZfjPbWEdPX2TNtZufwEbaj6yAPR9iDALOkEgGKxmtRqAzPx+z22NcZq4tkTTogLJfb4C4SVk9cumxxDJMwQugJ7sRKmIHAUAErojyFjtu7/gKTYA8lzVej8OhjpcFKn2EPNORiL0mwBQKtnHQng+drrQrPhkeIhLlyyxtmrYnAHIzMgT3vWN0x7b3AD4q9tbw/HxD7zt6a+idwLoPZqC31gi2IzMzzlLg0WBjJ0V4EEjINtbMGPKpto0i225jOkEM/sp0Lk9GdK4FVcGyrGQubXeUQoe/d9oRDcA1macc9AF4QymOWhzLQt3BtRDUKOGoooeejxs+qafAHR6176BAqhqkDmzbzpKOEjX5qpF5G0gYfBt3NN/Yznn0WA9RPgzDY3gHHpqF7o6lcvZHe2awlK1QnCU9AiFAbukMe9hqIRvXU5eIPye7g8LnTq8XYx+4bTuudUEpBetywbIu2GxDlpEnaKPiZNB4lGh5QgrH3JB1SacnYnq+IuZzhDNVkk07jCUJGg4io0ECbPt+rGljW+tjjXPFmeYJj4lLMMA6mMW11hd7ZIzgExdMf6NbjjvtYykHJ3lkSb+GiohnEoOZw3UtcegeHXzhLAWbHfqgzBiqRiIEAXjgBHqEmbH4j6ftkCOZNhJkKlHHkskogwrLSEb4bH3YCQxKQCZal7u93G+iocFDtxkI2UB3AJd0oyfmlGGozsTZgYhp3Hfau4pgQXXa6KIy16ml7Y4V5AGOjNYy3kcWkKTmY1H6lD0E4c9RMu2FRUlcnhMRLPNXXKOlMHvODyXrodYISOjU9+h2FLuQdm5wDRgQ9HKWJsKBVDEd4acuy44CwLbfwn/3Hb759ncwLBhY0PoTzHfUtUEeDLgaiisuUFTZUNUxLk8Y4zb3GfQGUccyDMU7lnKHBiP0PsiystLgkqWVHLMSIBjv1OB32hHVHe6G577jN9sN3z6+w3/+L/4Z/uSPf8Huu+74R5++QXPg5/c3+PK7t/hX/8P/E7UuWNcr+r5jtIaOJ5SLYa2x73pBdcHFBOKO5g4pF0AMbWwRxHCN9NzvTnAEwFHuUrjmtMQaD/9Gi8Bg2N2xe4d3wzfvvsPDeMUyv1Xx6atX6GXH+kqwPgCtt9AKdbTRYg8tWMsr1FK5r1xQ1gUQoAWb005durPss2pljHSSGsmgbwTY07YW7Fbq5V7riloqLsuFYs3rgn3cMUbDPsjokPBNRjIh1DGEHepGIev+3f2J1RfBeLDhaF9/g7YPvL6uWIqiLgWvPnmFsT+S5YuOUigDkr6ajWggEKU+rB4g6IHRgo3I7VVKqm9lMpw29iiMPU5mDzF/KkIMdAwUF1QQVBMBeuuwjMmUbKZeDcOBTYE9gKEpzu5AdcYdNYBtSnoUmCtcCwaAluQJkPlRRIFCZop1as+hsNvjberb1ljrA4XpYsqWiKCGlaNgPP1+c669EqzVijVApQ0QoKxAduDmudxxbzRRWheOoEQSzAStC0QcI+Kp7gHyL4UOyZSCMbjUOG01AAaEjlZ6X4BFAr6F9u5SqffaDWxQ1BtQDNCCRcl0EjNUKbhipU/XLUDUB7S7Ydx3PF0FY2gk4RS1vOFZa9P0TnYgwTBDGw27dzzjEU0czQ1vXr9G1QKDo7vh7eN7rq9SaAuWivve0PeOulwgWlAuJF3sjfOrS8ZxbPoAKH8mCB/zHFvb/DtwJD1mqGoCG4AM2swlSCeQAldgS4dege7EB2yw+1/qK9XwR10JtLtTs3hdL0yMeqau8rRyLBDY6PDeIFrp74bEj/UB8YEqx1qC8Jyk/IrDokx4rIohGu6HYQyWfCc/GObYNjLt1tDJnoS3GC8Twc//8JeAKp63G8+GokjSRMUDExQlGVe//+snA09Wgnps4RhE1tKjzAF+FH/N+tKYYYdhBBV2eJZv6TRSJapP4TzQsxwKQideMzCM94pkPilqNp2OyNS/cwbRmiFZHAhxlk2HU+d1uKggaRhptI5yFkEGx0CULcBRgv6oyK5gh/MFV7iFk4LUfohnieGj7zhX/fnmIoA8cwZymqMoUTL4PrGVZhCdaGo6UpgZz3RkfT53PJv7cRv5qZ5xjM869vDTQh/EAJfTGB3j7DbzmAwAEM91WpiOE/gUwm8HH4mvn6CBhcNmRJ1FPTpSAFpIAbVOOjadcD+eQzDX6Sx1gE1PPgOSLMFwpPMeqLGzlHC4z7tmZsZhzm4uriXWsyOKM2OOnEBX4X1CjQcCUuDOkU/N8paBvQ/0NhDF4Rja0bVDhZkPCF1YcwKAfXSWlIyOrtRwGK2juWBbBAvYLSa1tBxOJHtmwDMQzKwyIig13Lc79m1HvVwwzPD2/SPevX+Pt4+PgABPz89kMPaO62XFUhd88uoVSq1YznPtGRSe1no6lZgLN34rL18Dj0myY23kRTEnL/6T19DTlWJ9Q2YWK6/+khyUKzLZefkRgvNOPP/8WGDHPj6zII49xX+kjZrBWYxJihenOOH5Oi/H43ie/FEGM7lpfMQ+iRLWWcrqBOEBzFrv3I8sV6WeQT6fdXbmtEHgabt39GHYthHMS8XeGp6eb+htR9s39MZAZ/R4T2vTCiACnt43jLHDA3iyCLCHs8OWhjadKgg8tQaEo++I7h/lAPVzDhOwnKwEPARDb8OyLCBjL4CndBjyvKoFLIPbJ3OEuxioxbOqnGNXuNPN2OZ30ugRXXoEfHE0SSilw6PjT2ZLc/IOUJbASe97tA+OIHV0OAwuUa7hwFRZRRjj0GvIbkJ4cf2XoCO3Sdi2KEObyxfHGuQyDHZzODx8qwQb9Ajpj62XZ4nNs/q0W198yTzk8oTILZL3maD1+T3x37zHAMyY6DiVqMtxHUSZSgZBkjZiMlYw1wwkjYO/GAuZ56MHA46Jg/Qnch7lNO753JqZbSE7Yp4h87kO+zU7/gXrKMsJplWc5Q9zdpmhnJ9JHyS8EEzKWHze5BWczlSJ1H7urbPNPaybTP/MofPeWfYBpID2QbQPq+UOAu5nW5U+BWbiIOfNU5w3z04Fx2AypBDCt5jZY7YJJvteXszlMSrHtPKDp2sgpxfMqTzei9MI5PxMFsa03R+uG47+9E/nbKR/wIJ+AmzsQrUYtYbseUfvgt4VXju0GMpKgEUKoaHVCNNVOIpssNIicAEQbdgXaygYKEIAG+4IKWgkQzuBEEWdY87UtzEBDIPCYD6YVLCOe2/Y2gatoJA3DK+uF5gq+go8PTlub79C0Yq2rLPkSryjqqNoZvwV1YUdsuZaYGLGJPfSnPFwiw9f4mBJhn8eE0q9I9o2C2B2ABBz3FuD7g17b1jrimUpWNeKZgte+wV9FHRYlEkbJNjg17pirRfI4PpfLiscwNY3+oUWzBNN4PNcDsoEei1lrrG97Wi9s+Ih9p3GuiMLjt2ma12jNBdsQgM7MRYj2eQWurPh25qhdaoeaYzr6IbbbcfttmH0FZel4tNLhdbCjm2QGKRgx4QY9CwZO4MWsX8pHj0m8DQ7UMths/NUOmwi5zMtTKaGfcZdjOuS4ZjnYjYP8CjvG2HCklWb3mvGIcnKtdB1S/0nl3hv7MuSsYjr6TMxn3WEG6YqGC45RIDkPHNXE6xkHASnh0obrIxpUJAl4hJ+QWpaeQDbI94vJU6x0AFMphR3tkWJcJwrmYg5DrHwLU5xTJonnE4R8VnC6cLOkR42qbuTx2AOCCtFKMzBs8EiKdhtkElXCnob6MPQmqMUh6ihVFY4cS348ef0uQTuSsas08fZ2o6yF1zWFahRnVFLdDoEO8862TsGJsdkibN/xnEybVuymEbaNuU8D895nl7pdN1TR+5sehCAdiwxWhwReIl5yr2YYxhJvjznOOVRIZW7IQAALQU9fKtw3eduoS8XCS3J5I3PqhyN552VWrG70h5wKCTyPYwP+J0a3XFWOgjSclXRhtb0oQXo/Pv11QNlZITMT40srLhhUUWFUtP7bKd/5OunM56eezxkgQjb7FkIsO2ddZUhRYa1LECySiThGta8Ay0muvLgkArxgiIL3Du6j9DkMEgoY/WThZHIhqXP4GKACtYrGRmtd+zjjqfHJzyUilVrUMAkmENEREUFZWXGxeBBqQ3ACQqzrI89BlJjYqTywEghNXdulFIp4a1BeQNkqsEfZXexcMRTngqe2cBkQo1wch10AERgvsOdmgnpRKtWXNYH5J4uQiOcXRt0EIipBSD1/6iFlaoopURNucA6F+BoLUQEx2lrRoeRPnJ55pY9Aob4WwI0re/xc7B8Ufma874WBBg5mK2XkcFaQS2noCd0sxzRFXE4A1FEFqqEox3OdO8710oJ50SYERAHyx7gaAGaGRBUWWZcKCxXASnY+05DXxSyLNDrFUOBBlAIVhzLdQUA3PYGhLNh3WB7RykrRApsCEZXGC4YGNiHYZUFi1yQQUuJLkffvXvEfd/x6uGKpSjWKnBrsC6wrijVUZZgp43otGENXhW2rrg5QVjFDdeyY9iC67rg1bLAfaDZhnp9wHq5kN5pIwvlUWRFunj35xvevn3CX/36L/HVV19SXwDAHrXln3/+Od68fo1lecDf/O2X+Oqrr1gWqIr/+J//c3z66Rv88hc/R63UrgEiyzU6S4kqdRC8N6gbqo6ZSQIOUAACar3A4MY1MDLiOwVvSXfOxT+8T4c6D1nVinQb6AgcnQnPJR7wBI08BBEjoBMgu7Bm3JJ/57jVXPEzSE3QZu8bZref+IzeG/Y9mCP5enO0tofNYMthGxYCj4LRmbVgOZkj9d+2RqH6fW+0H+aTifH09IjeGUBQ/6FS4Hr0CTLs2xa6SAHYCZBtsfvYMYy6daqKdaWtfbo9QYtgvaxIVgMfxdH2AYdgXR+4VqP81Z3t2H0MPKwXiu37M4bR+RBV1IV0QXfHZXGsteC6XrnP7rfpzCyl4rIs0z5LAA73baPD6RuKAg9XZtjgOzRKp/a+TYFTUcWCBYBDNUU6nYwsN9hOz8Rn+u4IcHt4LWeAZNjAbd9iPWro/RXcnzlnl+sFAqCaoLWObbvFmjOsy4K1kJnlZsA2oOrMlMZKS8dcBhkdJYJfVWG77WA5wWkvswSAxjuo50r9o2FGi64SdfvHohang9VXhVnH897x0C8oFaTFwzHGToChRyCByCKOPkvXMgtmAaoy+LAjYPKD0bMsh6YBECCXAz54Dk3XWlimL8pynCIdXQxNMINOJrymB4mZxpuPmImYoyNqTiMbRRh0grOHA52aXbWUQ6dBjqAsNT5KIRNpirNLYbbWUlhbsK4VvWOKeI8xQs8iNIk8dCZFULEgdY4oK2vIJAn1Ag9/uYc/Qyc07JlRb5Fipgf8KYgA5mRPJXymEqUaZDl54BJp33yWEk34KIFDO8ZhZgrdOdbpM8W1dQIhvE7JoCmC8xJAjof94Ks8ztvsFhxBmiNAeCfrMAcFdJIYH2eregZY9FGOKM2Q6w2gLkadZRXptxwc2FhPI/y7VQAlg4qgo8BN4WOFs4oMpg0Gg8odwA5dO17hgs8wMLDAvKKFtk8tjZDRSG3TJ4hXqFfANsD3YK0LS0KQvhHBLSsCLxrAiQBto4+6cN+s2YcbHW3s2H0AgZMsBYANGO5QAAsKbrev8btvfoPRGmCOz/SXQCl4fLrj/Tff4t3XX6NCseqCRQUVjp/tO4Y7HsF5vkhFUcciNoOzqLBDMYqFyxxnxNlRJ6ASTdiOuU37AcCj9DpB/270Mfvd0b0B5T0+efMan+mC1gEzxfX6CeddaMOGkV2kC9lg6gJvAlgkNAQolYm4fRQspWKtC1QKRMheB6KkCgyOR8QmT0/PuN2itM8cJdlw7QnLsuKTTwZubUHdKroNDDdWiYijVtoELQWjGYbtgOxwAfp9wLrFkhXImlp2ilUqyqXCR8PWN7zzBlXH+OQK6wtwL2Q+jRGxCNkzkGRFgsw9LZC1hhaiQUK7xgf3smuUagqQaec8E3KCPDXyBAAUJeItdrvnZ2ktUDmJLEdlgFZFiwA6U4QsBZIorYoSpxMT3j2BNYRGHWMlMrLynCCARGydY2iI4yIYFFIAl8EGWNmwIV6XGlwOmedIHw41Ra+Vz60KTPZtsrKY2NYRYuA9fa+w6UUmsMSmE5E4d0TsffjIJ0PHMmQXjNZQVHFZCsX2W0dVllDVlRI3e/g4YxjcFSsu9A9EorRq4LouUAju+2OsY8PD5QqtD9jGjt46Hp9v6OZ4pQXVAZedpXYnsCZNZevJ4AtyRAG2dsPebhh9x2Vd8PnPPsX1uuD5+RHbtuPt0yNqreyeVwpQC4Y65yMaWNVaYW7YO+VYUAu6Clmg8UzdyvQ9kiSieU5MPdvwURJ8BeABNkaBEUvlVPGwXKknDKcUzZ0+rKhiuVxRSpzlDpQhkYLgvO5GHpvBaXdB1hsQfoQApsQ4BB1ktAPrstBv2gcJGEXQ2o7eG7K4V1K70GhNVVnBVQVYKpuELJHYKcr1t64VWhV1Sf0mxcW4t169XgO8ezXlC3iEOtZgD469nUCsH//6ycBTntNaZIpmEaWnQyVFkFxYdwmtpDBiPqbzQzaUY7qAnhsLgYoGinJ4QXG+HyDQ3GenF2ghuFE8O9XwdDqAjhNLAOkIJwJ5ZFAPtDgD0UTxfd6DRE2uZVeDvDdPvSgeJvk4MwUwHadgWM1HPD5j6p7M4DgMzQwd/PhMCaTJgKPsKJlnHAMHS5dmFiFRXZOZZZLTdScDAwG7CeZcZYDgfmQq5vim4yrH+OaBk0aHGQ0cccAHGc/JYJD8E3POMtOYHSoQiz5u+lgPtMpISrzM8UpekcYzxPh6LGycN0ywFnzkMochuh6ITkODI5wLcEBDfE3gKKhSIFrQR1DPsuY3MzKQqVWTNck2yDJpe6eWlZPcW8Rg0cZWvAOq7EQDw7CG6nWCXn0AuzdoGWgCFHfs9zu0VJSFrTOTVIick8ha2TDsW8Pbt4/48qtv8d3b93j/eCN4w4lAKRXreoFqRakrBNSjeX56hg/Du3ePEAjWZcFlXfHq9QMRdk12XmQKpqHHXNOZreCaOtYRM5u5d441hlxB+V4kW+O0FP1YpwyWwwGww4GYNsEyuMygjUB5+l8QnwFd3kLuGdbv8znGIIA+jJn8bd8xBoGnfE9rO7b7jasoMnzuju1+5zPogiz9mcBTgApbAEUlwKmtdYxOXaPcX9nF4un5KTqp0RFZag3tIzrI7kALIMssWJzKg5cgRmNJgRgKClong6r3DWqCoswQEyhj5jVLECaj0o7xh3dINo52AXyH+IBKZ77Y5wpBWr48UIse7MzAT2aZ1GEXQjMvg1SJckOLqyXYkDPvHkmJOXD8jNE5JyPmx5LhCWTnk0wSHAybmKPOhIiAzqzTmAHuGK3FvVJzycc4rVULh3QAw4Iqfyp9ynUyM2vHmcJfHxoTiHGM1O38GZBnygf76MPzKsDWqeUXDIhhPbqvJOMmAoG0I/O6h2XPo+F4dd57/jli3WUb9eMMOhgQvP48V/kOzM63sWYOmC2v/8EtzWPD5zPb+bHzHuO9x3Od9vwxlIehiQyiKtc7QTPa6HMQyhbbBNfPXQIPH+h0zbivM6s4Tyt7Ydf4a5+/9/kcx0ycE0WYUhk8686/pQcgwMt355pyx0vmXsxUzkm8Rtxf2Hde+GBdH8vl5VqRuMZIITM/DYecX33c7XkP2kFhjj/y9yE0PP2WCIznGj78IY97J9A37wrnC79goAX9QE7n13lscvxcQOkBACMp20aRbDKUyDUCyEaooA3QABldco0bnCmw8H/OfO14rtN5ajHm3PQMKAVZPeBRltKjszTvmH7+CCKLY4yGd+/f42+//BJqDMUMLGV6+7zj9vY9NFiUFuCeIYroBZAMrmSKXkyf/9h7s04BWSIqSK1QvBhbLbHmomFCMldyHiB6CFFD0M1x3xvKtqPe7ti2HXtrkeFHlOXGvnZkZSz3X9TpsyNU3H2UArO7If1IFSZKzzaLa5nM9N4aeoBO0/YZ0LtBhI01LOaelgPo6ahZeLQShKNwSlwc3plA1NBzoc5dPk2UVoNH4ki2kTKx4FqOsxEOPw0y/dLD7gAyfyaRFEhA/xynOI6xnPbXcTAW5/YIu5ID7XHdw7k62QqFYsDkNLbCGDRjjLzHjMloS/i7IqEPmUfxtKeHJfMI+M9MrPm7jFeipD2vr0h/lnt7Glfk+YtpwPioM6IC4JFszXiFP+bekvkqghV02omlxW/nWXE8DwHyUwx+Mph57h7qY9OtgHp0l40xzPM9GcUW3Ug9/j6cJZEuUZ7aC5bRAQWq19M+xCn55WA5N5ntmRROX7X3HUWcsjAPV3zy5g20POO+bRE38dDLpCzMZiMtkTxDx1xbhtNZA5m6XLMqSGSedUcMARx3G+M6balMUqzGC9KXSzkfBOCrUCbvYk7NAgxOLar4NsFkdpVT0v28BhEscv7miKP40QdTOc82CrsDasleyrcI1oXAU02ZHR57qMGCLEuZ563GOrKQukj5jslMd2ACDuZHwub3fP1k4GlFtmgMB7aNyFRRCwci2G/3cPBjlWuh6PHo0aaTmZCZ7Qo02n0wfxeOPuDz2vzyoFzG4aNRsoaDergsrG8VAcQU6I6qFPkTU8CA1pkJEmV6JXOEIiATwRxaVqQpAVhLzYBjAFInrRZw+J0ToCWog1YgpVIQcfTJYAjPMTZXaijkwcuV5zhogGMQMdWi1IwSIcPGWfdclbXmKZo2+coRaJXYGGOw412pC4YP9KAFa1X4UESLjgjUfS5mJQyMGnYsM9bdIhDzETX26eqEYyzMxgCAWkHuweySEKELD8xwFARs56jBNrIInGx4OMQE0l4tF6RbZcHmyKDMO+tQNbwXdZ1GNAMzDcb/kkhwjHVHIApiZNaIMTMhCrN0z5gZePf8HvXhgrqukYElwAB3WOtsGVoFq64o68K2vFrw1CIQdwXMYC0ChwXwbvA+4KqoQo0sdOD53TOWWmDLAlwVxRa2OS4SdEmHXQTuA63fcX14wOIFY2+w1vGsgl4Ey8MVvSpwe8bD69f47Iuf0YAjKHKLUOsqgsun+x2//qvf4be//Rv8xZ//O2ghg2/fd2QL7GVdcFkvkFeK6+UNPv20w6zi3373b/D27SN++5vf4btv3+Nvfvs7vHnzCf7kT36F168f8ObT12EffTqEpS5zPo4DNAxyOKHpO0qh4c2jMX6Kaajzv0J68ISqg3fewUzXdttOmi786N4I2rSWQtVkC91vG4Y5Wqd9cBvsuhbsIRHq3plR1FqLYl1W7G1ndzEn03K77wRxsiulsyvF/fY8g6lsk367PxOg8su0o/l8+bU1AlavXl8gYuhji2w+mUDZuhZwbH2fpXW1KKQszKJo0Pch0BLZ0tIni4TgCyC6QkRwuVwhotg36tVdH96QEdU6ltVRV8d2u6G3hsvFIotC0GrbnpHt2lWY5xmN+yu7OtfIvGAPfYyiIeLv2G87IEfZAsvlBmxEOV5vL6m+kp0rCSa21tH6mAdmWZZZegzgOFBBto4bW0bDT0kCA9JBhNPJsMGgzsZp3TpXqaKQndIR+nK0JffnpxlUsUOToSxkBvro6M2mXaHjbPAQPM+ucp57GD4zYR7PMYZNgMNAu1dDDNdG0PsHGWnRBo0OeTDkLEQkRcguqFrQ0THM0ceO1hFaecIxij2XoCu7w3owADD3Ian6CCCfjpVJlgDU6kwAAQAASURBVIASdGRwYBgjQEjQZro77RRwAL954w6YdZjt83cTSMpNcwYDJAKM1FCCHIGgpzOXpdmYQRY8G5UECJl/j8FK7SqIsAx8OFw6WswHAKzLCrWBW6M+4lJXAAVeF4xu6CfNicTFvWPKJGWQNozBroYIcBpJBqt+BJHAkRiTGf8cIJIcwQ2f+7iOJxjlCSrF71LgP8czNJVmfIXDJUmHn6y8CDIEUVYXv40EWAI/8CzBwAzOEboTGuwySaTCKHQ/cKyJLCubIvfgGoMNoIS/kaUjZmS6uAFSIGWd+m1VFmoSojCAGGfVmnjaCO7VGYSL6ExUAdElLpgYI4CYFmXufaEfhN7imckyKQIELwJlfmA8NxzQBmCDoU/dDgHgQv2ZRdmUxbTAlJo4I9ZOVZYZK+4zuO0+sFnHKAVWFaPT3R2Nfvilruh9x9PtCf/Dv/1z/OVf/TV+9vAaD8sF1bg+7gO4t45PjACHjYFmDbsPPFxX7p/2yPN7uU4WY0inMUEjguYLHANFGi2G7Sw9k4XQW+zZIsB1pRC37W3uB8kzJOgqI3wIqGA3oD/dcNt2vH33Hn3sMO/QhQlDY8RPRgUKTCoWVBRU6t2IwIzJmhHBd+sNrXTUuk8B5N7JJFbQ5++thW+s2O4b2raj1jXOWM71MOdzjIHlesUyHLpUSC2w6NjtQU4rFvHKSLAf0E7/f1moQdWtzVKmpbJ0jzo3ioEdUwPVEeuEZTl0zUOkHQDqAodPbRwIyLqqBYtcKZNiPMd6b2SKhuaRp66I5z5GMGwRJUPcL6zbP2zQBGAQNioTycp5Z/mhR1JckU2M8l0SFqdOsAMQF1RlmWQKqXcjbzS1Ch2CPpNVmPbzKFcHRAxSfOZyitCeuDFeMMgR/4afxzHT0xmks4SQIEHIBoTodoKukgRrEVTlvJoG5GzRSdSdmp5yjJ+FxpjWk20X+vlkZw1463OsNMoSKyqusiJlSlLWQyN5AukIWSwMdNzaLeyy4rnfsaEDq+CKC9ZrStUoaq0oJbS7bADK6ql6Ydm2DMcABfxHu6N5xyev3+ByWfGP/6N/hG+//RZv373DMMe2N4golmXFYyMY9ebyEKzngr23kHdQQAp2C9az85xpJ9IMhdIPyJ6AgMx5txh7KwehZBSW7Jl1qAG+UVPJzbBINEsrFS4Fw+indmN3274bllpRLhnLYoLze+imLdHZdeqXxVlAvzKczBaNZJwacax3N9QiqIVJrOvDiqqCi2TSGnQgoFjrBbUuZMNDwr+KzRb6cdvesLcOBOj4/HiDOXDf9gnkFVFUUTaNEEXf+v8EjKfQ5+AJmT/jZGaQN2KzEPkDVihMaMAzb+ShCzAzXRLXhiE0so5MkgQlcTqZ4d0YprODwZKnZB9pmK2SGRI4tUMYjXKjpX+YUa3HpLhEPWYKLfP58mDI7BKvcsb00+Bh7v5cPDQoCk2GSXTvAFLYlRRHTmVmDkoYE2Xddxashklly9nsIIM5H0mht8x6BLIuYD0tjX6F4gCF6BwKUsk/zXcaxaS6EXVFxrLzGTO8t/h9MkE8N0xGPuE4If8ZAETcOZ2sdGBjYZsfGdPMiCeqr0ETPLDj/O/JkfXDiB+ddOaKPtHrj3uGZAGDA5LZNgGcgouKC2rR+bwawWAFmUXqRiq4yQTzFhGMoJ1XOKpGpyyEJ5HGgR8TICggrijKzMHoA/AdpmxPrYoAF+hQj7Zje3rC4o5iDhOFDcG2b8Ao6BC0e8P96Y7Lww7dOrQZpAF08Aa++/Yd3r59xN/85V/j/btHSNDWuxvu24ZhA6UW9Naijabgsjxg2zb0vTG433Z8/fU3uKwXvHp1xe2+wQF88cXnhxNUKnpsu+4STgt1g4ZlRsWntowdaA0FKVuf+8vDLmTmmvMS8xd6Ffne4XQu9/s2g3i+36MUrUeHtAzAs6QNZMTE2mWXMjrGmZFztxCxLrheL9hbozbWUiF6gDXW4xAEWD7qO6+BDNyBUtjtjDach4UkUzFspofgUHY5nECBRICHMXWbgOjIWcCMrGe3shHrlJ11mEEjODZ6m/tTnUD4840B0oishkp0kEFH64JugmzckPp1I8B+lRB87EYzarHfkOiAzLGEG8wUchJf9gD5qDETa0J1BoTWDUNpt5Bm3X2uqXRnR3xGbz1sxTlcpi3xwbVxZuUmMMNxHpFoEIzO+1Mt8zrJmDMj3T739gx0vR8AR7CIxBhUWYBeR0kRQgerHZZLGFgiNQDDwfaTkDiB/BLO6+FcjQgSxhgMIKS8AFtY+hQJjQRmnFZ+AoNABOwnixpjnQzTOaYnu2tc+pON4cL1QrJAZPz8KMFL52va7MQa4rUxWxNEngyw+bvT1OYJmxlNwWRx0sE+ZYDzg15ciefgETvkPjzGKX/Hs9TnNfkYNploAqFdz3EKP4plNDKD8Tlz0d75XCo4O+LGxk+SQoJOMe0n9ujBXUL4VCZZMMbfJJfmdEge9tTyQRD3m+xwP001o8fDTIXfwmXF8U9t0NnUA3P9Ic9qkRc/m8L4hmCbn6fl8L/m18xcy/F0Me/JMDNPpgSOccFx746TD3digHANaa6SeKPAQxZiukwz03y6euhF0rcRuNVY0yldIdAoqSmI5FJmyHXh2BoLg3hmBIslxz0AV4nSeXew3LDkPnI0HygeAEM8bHdD8xFnqIawvdCvDPDaRSHLiu6C2zbwJA29OTTKu0wLujlKVJszSUW/tiHnid2bhuWaShYXmUnUYOG6IGYRupRgQlLmuU4Zii2Yo55+gnsApAo2o2CyT0SxhrCvSCRQW0h/COYaPfLcEZx7DkHaluxGSlue5arpWydDJddrrmCN0htVxWVdo7lEAhmsGLk+XKASXejWhclN5b4uscenZgzSfh37y4vGJosFHWwTlpUqpakjQCVri0GwwyHF0K1jxNr2IuHa+NR1OvZ+2BgnC9fgKJNh+NJ+pE4dNRAPs+IvfH874o20hS/iguORYFwXVTCTQXoaDwFzjIfO40u7ID69A8w3J6iVsUJeSw9GzIjzNa2vZCXNMSSnWEEZ34dxSNshJ3t3nJKcXz1dKP3ZiY+ETTz0zGh7ixKIZbMpD2Yc19RqHDuN2ouUZCgyN+fsbltrgJpqKF6gASQj7buHsYAwbtSwpU5QpZY6fR834Ha7w4bhslDvVS/sxs2GHtFYKICy0fiE6iErEEk4H4a27cjOkOt6weeff47b7Y6n59v0SbTo3Et5YNrgfTOOsvBxjjia3Vmz6zxOTQFyVhzJtR9xtllWMYmiC0XblzAWs0rLHCi8vp3svTjFxQGhkH34UJn4CirqUaUUjcHSO8wkWmwVXrlWqBQsUcaZICirCZmwuF5pZ+pcWsRdqH9cYV5ADTT69/ks4iyrZ/UEUCqTbtaDEGKxVxPbAGUCIOyJ+DI9/sNffwfgyWIgMAdLpEC1MNgVslRsGMTYj+nqApOKHt0nYGSISHhpIh5Zd4JaBelUc4vbCPpmZr4EyC4npOsKPDrwUJiWxqbG4MECSQUHqy4csEmHC+NAbQBuStXIhAdbSERhLuhjMCMsQhaA+AwOPvzyBIlEya6CM5vtFGS0vNbg37nyFdAFZFtFK8boUKMOQGoY19jkLY1nLvOksPPwFoT+CATiBcP5b/EFjgVQRn9kJTIbw/rT7EqXB7FjhLCvaDqRegj55udatCWPQ8PkyJ5zO4eGyCkz4eQ9wjEglfMSTaQx0tAXHvb30IwCGCypFKrveyhO+bHgNZhO1KA4cr/M8EW17jTy8WcAgwwSPYwTO+AtIlFL3FAAXE7CedbuiN2I4obSO7mLg9G3KLBKBYriIgNDBi5qKNqh6Kwprx5GAxjNqCkwAFnIngGAtnc0o6NVKlCr4rKwE4y6od9v6PcbHpYF12WBacEQwe15x9CCV6i4jx2jvcOb+gr1+in0jUEWh9jAvm34zX//Z/jqq2/wb/7sL1DXC9ZXr/F0u+G+b3i6PaOPgeWyQkvB4+Mj3n73Hu/fPuJ6ueK6XrDf7rjf7virv/xrlFLwxRdfoNaK3/zmb/GrP/5j9A58+umnePXwkOcf+lC07nj33ND7wLZH62If2PeNXcn2LbS+yCp6fHykUa11AhMjnKDUEMEgUDjaFgdArAWnBhjXZoI2BN6SSozTdeZeBrPfSykBTg30RoZFKWRp3O43LEvBq1cUtW6t4ZM3V1wuC8vszDH2DOJrgEx0BkXotKsCnHJmELm3qOGipeI4adhUYd/4mqKZlRGoMjvV+50Z1LXOzmB0OlgPPkZmvYBXlytUdT7btm1xoMls7/78/IzeO5ZlQdGCh8sFyRLaN0PrjofLhV2Aokxvzw4o9UINm9Yp0uUl4xpAWYrtCRJaOrzpsApZXyKzjKG1xvr5RTD2Qf05PQPVBCSGkRGwrhes64oUzW87dbRKWeZ7gMxSR+SfYq7OhMnoBIoJ3sX6jW44Dw+vZ1dRwAKYzMCCdsWjor9bn7/jcc2ufdaopeSe9HYGxjY69p2gJlmVLKtFdAZKcIBrjGtcVVGWipRWZGAL9O6zzHKpCzS0mlIXSRAUePfoPEigsRRFrRp6AARNCVgeZ146YQoGMHNUnee2gWCHizCoQsa3nHsRR4l9Z/CjZPKFZofPrDkQWUlQC2XAZhlFAi/nrwwYNOy9RXAuEcDbCfDIs90jAZUUnhP2gok1CteORCJDSojaDqcDLxJaackaEKxLZN8DJICwS5VGkH3cs0AqjiRP3IAUJcOXiEOsOp+uX4Ii6UTn+uZQZmY9HVw5fQeoEoFYOBXhnGcwy/ck/BL8Mv5PIvjLzi2pB6HRdQqF9xv7OO+bU3rIEZ+ZWI5gjset6/GLuK8A5xkxTo2SOTwh+ZD3kKUtwJQkDydacIpCaEsl/cTjVfn+HGkXhxWHq0fHPoEO3k+JciQBUPsIEJlAQS815qfAvdBvG4BYZxILjjuUTCRcGDgNh9gONcOowCjByo5yleJgiW7O05LjQjvRfWeXqs77tAF0IRvYbQAo0A6ICRMOohgu8FKg19fo94Z97xBvWKTD4py4PFy4JldFloerMol7742JArlA4NhtQCwYaFICOaDf281iDrMtcIF5B7zPwL/7AIxdrIR3fGzyEeDK1OHR0BhcyW4QgXvHaB3LSi3RuacnK8WDQZedR0skr0skVOKbyBFmF8r4zZGC4D5YyzrBkGWlhsu794/YW0cprMpYXy2ouuBSr1NMfrOG7gPlRJbJtQQRmGokGwxSF2T3i9z7ZBhHR7coZTIbwM7Ooa9eP/B8WVjW3eLcoFSAxPkZ8VOUDDD8i8QKGhSKNaoI2MI9NmkgVgdwxHNUY9xS61LgoS0YCWNIAGP5wKnfhljf0VMz92hcX33mAsiC0gnVzK+MRaawMrhHDtkMn59dpMyy3KEjEiE4AKfInnPtnGxE6B8fh1/EtFHClpzJowRcIoFz+oozkucDZuxCJnHGyAQN3VgtNODYx4C5o3QjE6VWxleDa5cVIExqpczCulSCQQVAB9Blxn8EvQSj74AAuiwsCVdBj6R0va7sHrxxTdzePmJdV1RZ8PrVK1zWB4zmMNAPLbpEUnXgvt2hYlhkRNIe0EG7cG9PEFFcHl7herngj/7oV/jdl1/i2+/eYW9scvPZF59iWReMrcGsowdbr6KS6bQP6OXCyqdYDZXZV66Z/AZwgosCWE0he54pI0D0HXFKaYgNjB4m46jKyqYBTABgdsLztUww1M0xvANuUI8udnB4b5inYvhUPWLUEklBCR/wk1evZ5n+ulbUpcD6DveBda1huxmbwDrlNlrD8AXea+DuZElJbFtqvBW0rWPbQf0m1EPPOqqkpB4M3GEdw4+u0z/l6+/EeIKHg4gQ/QTRQutEvDR+XoP2RgqYUAgR4TgZHcoXLJOTM8TMBTe5WYIpXABk5MSDxxVLLBRvI2psed0CZreHpcGQoE1jlhLAdCKirhKZ4gCnpog5QYFSCCQkJTu78qXlS5PvGIeTNMcu5ySyl+HAjRHgSxzQUkJoPWXahcZeAAbJyaZJ0EQQbR6F7SY9yvsC2BvpVHl0ZjClgLeEEw4nXdcp3jezRgjjHBuUHQXo0p7ziIL0S/VELEla7AkQktgw0IzAkF5lEKqmMTezaOtNh1W9hOOKedBoUG7JDDIMhAAt8IJy6n4ENvmBFq/J309H3ehAwtMgCWqJoEMFFDxfoCbwxocVOKrnXMUKGDRALuwuxzbMNFJFjRRyu8F6x47sICKwZUWBYi10Ir+7vcdzu+HWnuJgZtcACvZxTT/ec21S+6aqYnOu2UXpYD+UikUKvvnmO5SyYF0e8PDuGdevv8Plq29QP3mNHY7bfcOf/emf4fHpGd9++xZaK8q64nm/YW9bZFYEjguD3rriqd9xe3yHh+sV18sFz89vYbZFht6wbTfsTYFN4b/5DZ5uz6R4Fnbdc3NIucBdsXdmoSO5AoCaEhbaCJlpHGNgbxv3spYoHfIjWNPDGcEYbEc6t2lSVMkJoOYEgSd4B6xjMjtnPT/m5wLcQ1oK6qJho4DrhdT8ZbUAkzpEBkoxiO8YrYctS0Ogs2REhV09LJhlB5MSEFRSdceADJbehtfJTQCnphPo8KQFKiVruhvcR+hNhbaMH9pW2T3LAbRGMWz69AbrIz4vnUkeUiVAX7jgfmvTZRtRqrTvDUMHkmGTTNQE2Udn0CDuWAr3zd55ndRSKdPDy/MggyIJID92sxlaayyTGz7tw8xCkV5D1lWWdJICBQVTRGQUslwSCNtjHDc/geszsHZ2Mkr9P3aXCadhdOx7Q7boLSUc/95gbcCDndZHaBxodOAJptOOI3vbMiOphWBO0OeZaQTg2aHPDiBANNarQ53lXiPbRAtL62qp4QQXqFYAFb3vUZ6nyAYi7mxG0To139a1znIxgGUZkgdFAhqxR/PLT//FPLMEKdLM81rh6vBwRYaPeR44DoYI1wLPhGQwT8F6cTIASzjjAWLmvTic8w4Bw/QTqwIymR/pjKZAOFkNneXcJ72wI0jBy3LNAGHP9ojniKJZzEfcVw9TQIcuhkgUpQjtgRzgz1knyePkzfK+XOojTrI8+/38nngRyccSqyzOapyz68f8ng5lwGWus3OJyAhu1UCUW/LEi9NWJjtJTuPBIhx+H8mhzDWH5kf8O8vDDAp2dYzOtgC1KyAzAalKBnh6KAYBYi0xfxZJMghOcmnBHCUw5RGkzdc6kxNi9HM1WSS5rt0mk+y4YATcFizmDKgwi5u4/lyBEQmswVTbbHDhyiSuAwOVLE3xuAcApvBeUcpAEcEWjJyhtHnmE4qjb2cMokqsOYWgLJe5pyTiztwHJbp4FhqaWM/hP4qhVMOIJkGycn1uJXRc3WYXsEwa7IUZdu8jAi1qnWQnaQGTfHS+4n5qgP22gwxYJpjFMaUgchpS00ty2TrTt4DPEs0R9arFFUWEQTkQAFm8d/hc8kVZFs61YiHwbwhFGUg51FzMPTqTIVZx2BI9zmQz2upSK7swl8LOhIWC5FopRdGsMSZxRSaqc00xBgAQbFA2FQhWTqj+ECxmwgjqkJKOsWMtFO1eX73CpVb84S9+DhHHvm/49ptvcH+6HyxwINbpwSRxIeggCEDVCHaaRGfmvNWB8GvTrsWeEYk9bgEy0fdg8By+Rp4T7mckiftBDAtYs+Fx/h46tenUx39ETo4gDrAr/aewtyLBNklAP569xlkqSmaiw497Q9jmc1WMx3kghQDcNAdk9pVsUgOe+UdSk/FR3mqy1JC/j2S/FoJk+bm55voweDB/apxF2UUt9USTapGRG2DQECiyYJ5rAidBDigq6JHUlXKZ7GA3jqPEPvLBE8Bj3EXoq923G9lpEbfkflJhEwY4UMsC8R77P503hKWMwW47tCz4+R/8ErouQK348quv8d3bt9haQx82/Ub+n35BCbZWxp0HaM15rCrIRFSyzVP3amoEzsghnjtOtly5AxQFpw5W2JzJVM/JQsTOiiHKs9AcOthMqYYW06Lk/nn4VCVtRC2wqIjSAJ4e1itqrbheH2LNB7MLgh7Jwi0aT/nM0iBKQQvUNRi3XKR57lOv1Gbps2CJ7wpN7b9TmSln3qJyy+f6/SlfPxl4ml8BLJC+xsXhnUZPw/ldAlxhvV8csqIHBTmofElJPNBfm8F/+ifT+YJCpM5MMNLAxm21nhACKb51WZDdV9JY1BSXi6BLLIxPBhgBOKgguiXwffRpFaNFdiE6vkh0+oLngeUTnEr0fjqqjgC/KinEUpAidSnvzyxPCRp+lDyk0xsHbwGdi7SvSTksougQNigLRyVLjYkZctENU2Ak6p8sA24VenuBAEuwHSQ66QVYyMWlB4AIgbtGRiIvFbBUGEL6CUF3PG3ImWnKTFQ4Zsyy0BERPm7oL8lc9Bkg2DQY6Q4eCz+K2ZA5WSDaovo8PqLGO9zg/KygYiKYeGSoBPDkYDeBWB2l6HGoejLYGATlBVUFpQiKOlQGxDd2d7MOQ+F6KOxsV8oCg2G/31EEeLwr1lJwqRXrWlFU42QfADaUoni4LlhLwbWWKAMLjRoRvLm8YgeGZqi6YF1eYXn3hPr1d3j47i3qq1d4ag237Y6//Hd/hR6dC6EAiuDebtj7jnpdUWpF0Q4vFerURLrd7rher7hcLmiN5WS1MrO8t43BlTmen5/x1ddfobXOsrZtY1305RPqMugFzPrXQ2z3VJIaK4XzJtyDydCx6SwJpJYI9oR7fIxJ2VVpEBkTUMUUWKVgu/seoKPPdVlKlK96n05uLRcsyxqabY7LlYDgZawwG2h9Qy2x70dDb8yEeAAh1KEYkX0HD27bZzdPi4N40SuBt97i1Ay8CRlFIDpZCNeNe2jB1WBhsRxwdL592gYjwF5EJ/Ogh11H1KWb5R4IO2NkY0AIUrsD29am6Yhzn901IFiXKwShF+I0LGQNDWRL2CICUcfeOkF/MNOIUphhVSBLGnqsAQ36dGpQsTzS8FLMNexL2shxZGBh+fyMSIqWYGu2CSqxFK6TaSap3RN2JPWHSiXmonQI+F7H/X4PuxBdwUpBazv23mZwNXzM6+X51INptlRmwNtOxpRHIrtodMcJiruD7EhzQ62YdplmPJgXoQPiETRIBFwEpxjwwDlHvTtqzWetcO/o5tEqeRD4LnrYbT2cpBxnovx2ctAxF4aHbc5MLiTYSipI13GW2AEvSwnTnruF0x1U+RNA6cpzCIhgaGowISvb494E/ORgOsS6RZx3FuvGkJ/FMsi4EvJADYgJech63H8CUmmzMomVZeQZUAwcHV35umDqQEGQ8LBp+UdW1p9HxfPRci1N5E/mW/Mz6aa8tKUW+yVjoOn942BXkWlOJu4cUweGkBXC3jy8ixJzrMGCOPyfONuR92DzZwkWnYrcj+WUa0cwX4nEKOIeNdie9EVinWXQF//OMxqOWY56JKSO8fDReQ4F+OpBfqQFz46L+UzJzPBjIibaGfdpPschyyCmYNcIYMJ6nEl9siwNgmEy2QzTG50DU1CcL89eRrMiIM8aHG6pxnv5HkFZVl5rDOh8IW+9OlWySiRoug+YKdzos2rhOTOcTH5RCqULIumWvibogzWtBKJ6TiRLv0kw4sCppPAux6qEHg27GYcXF+4yE1sHeOoj8Qnu3Kn/BYTgqXMfBwCaCYGD1RwDEElcRHxTyoKBgdGjjMRjkCKYng6sD7gdTJ0aa21qsAZzqLWGRehL0mcv85yQQAVbb1CLhEZ4sLP8vO9IbUBVdtHWwsZOI864ZGEVJbNQletQAKy1YikFbx5e49X1in/wR38MALjdnjD2jr/xv2EiyjwYDTKBvNyDAJ+riMLQuGc9OAbRSGWCTn7440kVkGCOQHXaKj2xFGdol1szvl0JtKwIUAGSh95pHk6hTMRwxxlwyIHwZwlY5SUOw8Zj7QCZVUqAEam1E3Y+SpQm8AQEs0aPTnepwxXzMo8id3gmPj01GSnJMsuJQzyeyUzeIxMV9BHJ5h5QMJlUpYTt5fuH0fKxm5/kBMZ+4wRleXzaCebjYn49AKUo6eopLt47IAS6MKLDd85z2Ol93+jPAbisK9a6wC+Xub4cIHvaPRK+HMckTsTdYbSG67Lgs599gXJZoeuKW294f3tm9zrvuK7XeZarUEi/eCbxIjER6zFtaSkZAyQzMgGHGKKwKPmDTBAmySDPXEtbGTpB4iO9mTh347xRoCMqLwbLnc1BNlYkoR1kv2lRLNcFy7Lier3EKKYuteK6slveul4iPsjEvMEt/DmnPpPXyrNHnXY5bJi4RLIYE3OxYWHHPHxfgk6k8RSe5Wn2JPeCoRsTz2f26O/7+snAk3G9MnMvh7PJrFGUeJRQexJmaT1qL8WdLe8Law459cxu0QGjmF3W1QIcKFUa0mzpKUovwJwle2kgVYBlrUjtjzIPhgUKP8q/jFpH3ujc1nQExAEhVWx0UumyZaeBDmnVAheSMrVUlFIPJsbM+B3BhAZgkSJ9GcjpFHsqcF3gysDczaHWABkwpwh4LTVcCgOig8kRMMQMm0UROJlBwwd2T3SSi7V4YiFRVOAHq8Ky7lkLHfapnyEnZzhyiDMgn8VydDCjdjj9MHfHEJYumQ+UIhSGjUyYkRMZrSYFkIIuNArdyTqgnZQQKjTs2Qq+LkFrl6ir9zhkEcBXPFkcSO5He2WHQHQcDrXz82bG1xEbjsZ/6BoMC4JmhopuCliWJAKO1HApcSCQ7ZSBCGAM7mG4vlop8FcUBsVwRbPQOVJSQHthxk8tsjolKE21RDcSZgzpiPDehwKbN/R2Z2B5WbDtO9fUhSyVsq5QqbhpgeqA9Bvuv/01GgRyvXJsXr/C4hZ6K3R5P3l9BeSCUjXACgO8wfuOAuDhaihlA6yjBGBUtAHS2WpdlG3PQ09hWQR1KZBP3nCOBp9FxiNbfC4r502Olt8JNheh89Gi5XgpNfQdLJgEHsAhRahTT0cdBLs1UNWY73lYqRBYMur+eGhGwYAWuj4qLOcjMEc7MwLMuG83ZPhpNjD6FtGuTYovJISmIXAb2DdqKJkPApA2CGIKy5jgnFfQHcfoFkFqBoyZLaTTs/uGLHvrxcgIY8ru6KJjGQgXlkVogRuZqW0PLaZgVdW6wIZhu220bTFORdi6dWbrACAyZSqKNqiTZX2DCucI8DgcOUe1KGrE2C4sd1NPzS2KMQavYmoYMLMCwBtkJGgWpWWRqYGTCj469/i6UihTxTD6hvvzwLbvZJAVtqZveocNlnXSZOTZw0PV3LnPnGKkPPcUxQxF8xwCZifTmJ+egvON3QRtRDtsOKyF7cGIAGKJp6XTMNzRO6+jIrGmffrh2UJ+kQtBWFAXYepyxTmtRdA2Ar2zpHBnlnTbxwT8287MYV147rBjomHfNzq2tRB0LvUU5PMc6UE1LwG8H4kezGQOVONcRJLQAjxLZpLH2S/MHkIIbrJ2G8kQJkgaYqgJiuYxKOdSPiSdKcqiGHBSgPY4qad+Sdz3kW0+fJuZpArfRPQARvI6AJ2648mZzKpagABGtQhWqRge7LzYy7VGUk5ZXu8QSOcgZacbjYy1qAZIavPAmkCTHFzkvK0MqjzHxI69mmf/fIIJTsUZn0+S51o2RVFhs5ZwPg/KcrKYFNnyG3HPZ4c/x0jiBukHB2gkFOZO+9uTFYXIykqZjEANMIhlsHSekx05EM8ctzbC4VewHTbnNZhRcUHB0b49NULpjx+9pRKUmIBxjpcEEz263ngEyjxnBoK3gl4Kuiq6FJgoEn7O8lWFwtRh6rgjgF8bgFXU0AbsINmnKODLgJcBGzsZLxlAJ6BjvH8bggx51biWutJ/tj4iQNeMbbBHfW4VCxUIZeLzTlAOsoReEIByBVQDTE+5jIIaArsmZJZCAL+yoy5s0LdRCfsdAggeXZ0EkCpQa5S+GA3oLcoMAWsU2a3ZKAbhMyGBSJtJnG5jAhMzOPMKuE4Asxbu1xIiwktdaKc6G4MABlG2Ree2DSTAEQlZjYQQr2+5t8up0qNUBuqF3YjXBzZkmqB4fJWaIXfanDrZvnW58MVcbFzzFdAKlEZtT61MyC3Lhc83EAyWgqWuqKXi4fUrXK9XrG9eYd92vP2bZzw+3rFvA7WUKXpu7ugtANqZnFeI8zPWWqBweKP9bKOHD60Rr4WdyWRDGhYBJFvESE5D/g8w5YtYNp3JmdAUjFK2ZOd52LLURQIcI0B+iz1o4UN4len3ef7MM14r0x5lAi/Px+HC8qSwKyPPLg9gp5w6McYZwtcYOotYocG4DRQKkJQ38Ul8yAQpQZ8GoAPGEM/CbnsfEAGWiHtZAXH4HO4CrMuMfTiOOqUB+FIBdD3FlgRGS1hBajX7BOgrlmPyQqNYIBCLJiXukGqAguL2cAzbsbUB94Zl/QzL5Yq6MiF8u+2nxBAXaSkVtSj9XLODhayKve/45u03gBa8+eIz/Oz5l+gKfP3lV9jvO5oGaM2IO9hLHOZrWVCXOhNemk5UxgBz3nAwrWOxJqkFANQcPgxr+LleuAaaHz6HE2VCN8o4DNDG1ZAnqbUQq8CCxYHqwKefvMJlXQ5GmWRCDyhRUieW+qux5o1x0O4NrXc832/zvCZ4lOQV0GcSg0SZrY0OkwFAA0hE6OrJ9BMswDuFYlhjKV12qxOy0lvfIyk8IiHoqMtZtuLHv/5OjKcEJDzAorxTTruGEQhl/5hQzENfiQieZxMJYGkg5IEOhzMjQudWzGfmLO9kUlfB7m6KI+Mo4WCWENlG0uQ86s89GDN5j9N5GhHcIECEyAhKQVVS5ewMyIxg6cSCPblx89nzO0vYJpQv4WhBZ4DjiAPFiZ27HsAdIn80d4YfNPsMAtNJG3E9LWShmdM4FaVjP2fnfBpEtiGZQZzH0I1JMYtkMsUVJA7dzD57ngGOeS8Ge5FRm0AQnAwvod5HOtHDIys674dI8xgDLgpVsslMTupNac+PqAITLcj5jLnx+Td+2+nvwBFUCAggASUcYQ2ANMZ9OvoxFsHusgCMPA88N5QAispSsQJ4ADOB3RU66DD0pA8vEmspCKSq0FogVVkGkA5fZhZV4mDnnpBSUdcCM2UXqhrrzBloB/8f8I7vnm/Y+sAyPkVdFrxaVwgKxf4ccB8oSyWdO7snmcONeiWigqUqgA73EdkFBYTtoS2YJao1PpeMAxWgXLhvrd2j9GlHLQWXmky1bIVKEXWy8BJgGihlYClG58IdLRzNEQFklQoTA4SBscwsSh43Eud/ZtsjmzOF9o5SEBGgFgBRejHGEfG6C1pjxkYjOLaR6tncz5oBbaaUHCE+zdb0ZGwZEOKL1jvXo9d4lgIfjtHG3F9HN08ynVrPkrtYB8JOnyKC0SLAHwT/tcqxfuM2k5lk/z/a/q5XkmXJDsSWmXtE5t5Vdc69t7vZ7BY/MYMZDihIGOhRP0Fv+gN60D/UzxAgCKMHcQYYDskhOOyP+3nOqdqZEe5meljLPPI0RuzLh9kXdatO1d6ZGRHu5mbL1lpW3dRGFg+N3PlevnV+fE1Ge2mgMYTq8I0Qa9H4/Msg/mcmwrhkASVbqxJzSs5tAKYO5NUIiJRc6JpuWWDLnGS9jHGKubNpp+Uy7R7nwddXBurObvF5HmRStgJRrjUx51Rnp0668h+h10HGFRer6RLB8wNzyNA70EJrS9t4ZvCAlwfi6qploMzsqfwheIZkXGrp6pATrIKGEcxDLFFA50DiPCfGoBm6GYGLMQLH80BJoinZq5isUi6mGivcs1Zm5UrqV8KW5Cspm+d7CwAu0Ixb7RV2KKCwgI5EyQ0qmHsly5ilwMA16cVetvBVtS0lq9alGYuutFid4NfziynHS/QXsPCaO2U1LFBhw372b9d761oW04SFBddkLubc+uz6FC76rq3igAUR80x1THXNhiLR5Ms5UCeXir2XzLly7MqzVIegWkm1B1a28gI8XWfglcdVT597qjY+UHYAr+nE+gS2VsrKV8gyrQ9n131dxaQ+S1QOUc8euAa25M/YGHUrVib0ki7Wv8fLp8y1YGzlD7z0Yglc2Zwt2jX+zipWBhJBmUox0aHbVOtced40YJoMal/WT1trSp10SwwLnB4CzxJWTRHgmsbeAvCQsiBrSDEt9Ope6P8aCtrWWqhnvWK3SaYpfyM1Uykh0QuOAJrjMko2wNgomi/MCTdKeNkMlWepgQbYUgWQ9OUE9UG2jpmudbH1E7D9YrxrmeTJtYHyJrESeNaat/XgCwhfOyDoadXmde1hsvCg1IEMF4i1mHyYbjT4p+Gw6ZmmYjBWgzbjZeGtxyq2qV37iQBRwzwv2ZU5YI1AAyJRE/pMi7sVo9XZgEwMNnTV8INd8u5t62JABfbWsHlH72RY7VtH3zq8N+Rh+HiceB6c5NvEJit5bgpkoXVGiZqMUqtGLkbY4OdJ5kOKfi/g0EucNqxzp7ZgtdF0AhG8rTVq1aTQ9ypXIKD+832DimfK/Qv8HdBa/1nteUW1ykbs5VwIpGolNolrUiZzkVg1DqWx7QKw9EpR7Kh6vaLSIleoW+fmAr9f1oz2fW3k2uMZlKs0AXdlBwAUMz/WmoO9NkmqZuN7uOn5rOXKn2vAYoMqFeH717NkJl6XosmUsRr6rmcXY0iKxnq0ngUMiJyXNFVTxM14Lbk+c2qt8Oc/nh/Yb3fc3+54//yGL8cX/PjDjzgHReb0421aB1lOPgThS72U9ZqVgQKll0mgXAOuvLbunGl9pIZIgXZYy8al1rTeIjIUn5gv+d5graH1hmaOmzl6MkK+vd1x23dUHVsM35mJVjkXABPhB4kXhQdZlM/K5XSIWYrxCABreFFeTSvtubLPyWxrD9X9NxAkY+6qmAQCqzMGnoeAJ61zTvrL/22AJ3NH6zysZzDJdm+wxsJyTH7kFJrbtw1zDIxzIHHS42CeKHkYN8c1HL2Ms0sGNsfBAiCagpHLIFIyv0nkjjtJHeegifYcmuzTpH1dARDwvVfmAZjovVnGkJXNqPgxaSuhTkCDihvgONQRBz1VtkJYqjuqjcgURdP37AqwpyUO0fZ5oPB9M08axU5pzc3R+wa3nYEwEo/nBwBHazsPmMHpQG6O3kRa90qaBqmYjRpTS6KWkVnanWX6mmKtcfwvkwb4FbGrEOMdLcrrS8IXgbTA9ImZsnbPCcyxglco+k1jenOMsSiYnADCg9OaYYwDZqTYmroBnqadz/s1k+NqTSZu5dPlDbDZhHko0XjdGAbJdhzWZFgOF4PKOeIXAJpjjMCMD3zqDVtngJsmg7hIdcNoHNy7offO6x8DP308WVRaoN0avn+/KXExTGsCoZQg7SogQgdfBHXS5uvY32RifD6eSHkA+dbQ7zcMb5juaLedna4uydMEM9bsKnSSYAqALU60QWq9ZcowLwAjWBEtceSBkr4BPEhb79g65WAxE3RGrePbcJ6T8cFKRthxHAfGGLDnA94a3nZHs0TvAJKT4EaQvuldEzNk/D+OB7twINPn/JkEigd/6Bmn7StpqklG5yAw1WUOf55iJlksn4Ey3B6TDKDeGyISXx+HznIXO4oHZ2Ti+fhAZmLv7Nrctg05qIWfc+DMRG8p4I9+AVMU2eN4Enyac/noHM8nANJtzQ2nDXaJMfB8fmCME/vthuYNMXfaFp0B847Wdg5jwAtz6uDvza79ehwnPuYHVlWvkurx7UBzx6e3+5pouBkPzPMgeMTDUB01o6wm4sQAD8BtM8Q5EBP4+vWhc4Mgs6Xhx5++4Xgc+PT+xqkqPrhmshLQifM8cM6TY6sN2G9vAk5URBgBrTnJoGrNCVqPEx8f7ACdx7nyOI7lohkrJVQHzB1bv3G9RMPF4GAxcIyDcTJUdzZ1guPEjFOyZO7J4qJ17/Spw1gJXE1LfD54bpn8HtKAcT7x7fmBGsTgKoJce/zrxwOICY/n8lfYWkMvAFnJ6IzA8aRPVxNbtrnjcTwwY2LvO0x7kr5pE713bL2jDNDP54GIiefjgQSHfrROhqJ3Q79vTJ7cVGxjFemb69xwxxEC6pRchl2tKNOj8OBZ4fImakreCtuofDxQxShgkKeOVTIv3y+BGw4QxEtHU0G4W5OHFOWbZm01N8aQrWxlmlbTXpPZpQVSzSaUJP/F29GyQE8BEUrqr+LCrvMmq5BhKb73ayJZ5MSYhwYoMJ6PDBU7+nyRhWWwwVc5huqMSjQLDMyYldoAKocu0IwgV9SHfgWflHzX/p5TpqEdVz4k8NFlOEyfMz4BAjAXKztF8c8ZP6vHX9PT8mkp7y/um7/7VcAJE/FWXe16RQNlR9WEQcrkHVUN8DN4SWy8boVuoMEz0YLAu7XG7y/vOK2LVBFY96okNhVDTU9hJda1WHRvPG3BMSqTaLStgi4aFXjpLKaaZA4N7NpPD1hP+A3I1jHc0fcdnsC2ro0TiyIc3TY027ChkaV9sCkS+AogcdtSk+8cX88HHvNgalV7LxI2nmjWOOikAWgD3TaYdUwLzAAeZ2rfdSA7PDoGbghseNrG3PTjG1I+pLAJsxOwA4kTlk8gJ0yeTj8lmycNhrhtGLcdb/uOW+v0VxKjnjIXHuNzTk0tDVp6kD/FtdEFvSWLuo8xcGsdrXOiHkwkRMh42RNmk4xEd/QdgDsZYgD3XzJWl8JiMXrfsMB5xqdrKYw5yeKvydViR25dE8dsIJxLdtv2xVwwM+WdZASf8+TAHRXrfePnGRE8/5+Ap8OjYWSDecPH40TEif10bG8B//zA8/HAT8eTdgshuaRhAX1t4z5rGy+CE/sG5jhxTO6iGAqDikuXaVYpPgqCAbwToCsrDcZxsHmjpkevRrfMsi1YhLfOKa0jdfStuyrgTvHW3IAG3keT/QDymja3AvVFVigwJYwTq0/5OBbIDZuKucY1nOV19BpEgND0tGKkN00OvMT1C7YR0FINauX/yabinFTf0KTMkEYWEyesKRexRGZNjjcMJ0NP/V201laDC8pdJwpwJqh822j4n5py/HGe2HLy+BMI/O384B7aO+CUqVWZTGuMRNqGTMOMXWuUnxXY8Lsfn/j68Xv86Z847rcbYF2mconQwKVULmMb66s5fj51bzwf+BgHHo9v+HTf8fkf/yW2reOHH37Ev/m3/xbIxJ/+6k8xZ+Cp/BlmeIQ8YQUCQbLIoSZuySQXRaLQI1QNj/U761ytpUiRImiJ4NbYtewbLVHM8fblM7Z9x/3zO1rr2NrG+qB3elKPiW0ji/ybWObL+SaYS2U6xvNAjImSk59icfq24fk88PH4kF1JQ/nLjSBjkpYjXJdzNubLG9nwlMrT565AYzbOAzNOnAnZWGDFoLZ1klq61Bau63bWNj8/2f//f/3xwFNFz2LZAy8eC6Jqqc1UWtqFh/m1uaaStfIL4evlevhkctTr6c+6KaFADxRLQQl/KiAAKEpV1uIpGo695gBEBjOvA3YlF/lyrSCQU+kEfaaIZjKgCftQQVXvU8lOBUP+/YWxLlTXcLF11k4WP7aytPV5KlCKWaPOgieDzQV0u5L4CuTqyKnzL7Uv5stnvT6jKcjxO2mERwp4fQubMbNSKTED9NFRoTXXhq1nMZPmtfWX1WlAYtFAUzeEI6/rnip1tr7uRy5arT5TBVKvhNLqG/Uz9fzy+iHk9Rq2Lv0qGEC6bHVWF6gm1DxW/zReXi9lbp9iZhH8q/HoNf5z23cl2JCE0yUpBKDJi9Q+M/Fl17FkjSx+LAHfNqLYAOWWDagx5WSiuTxLtPbsutZE0Jg8AQc9jopiZDqozVJjtBPlrfJ3v8qsmskkgz2N6HSoS6ZRMtOie7LIdKCJ1i79+AwmZjM0KTNjrakxy84WKq5qw157uwxmS4obk53CcNcEPDEKMpFDksKc7OR27VukzKYB65eXECfpGcrcsbpcNdEhAgg0pPclbcsEEAW2MoGpNGyNYw4CUTEZK1MoRiQT/0TRm8WSmgPITRfMZ0LQop6P4ktNjUwxHV86XNSGT3jnvncx9ipJGzHFKp1iICZNutVphmKEQcUzyptK2Z2231Qyi+DeJEjFw24GaOiqyZ6ugz2SLKHIwADZVT6nQHTS0eMl9qxfWochUGTaYDyUSWxFHcYcgudZEr/UL0zJS3gvZgTUT0GZszM74Os07clKlFKgy1H/bSCANidiNBUruc6jGRPHeaLYTr1R0uHqqh7HwU5bjrWmHFBelXr2osXj5R7DQYavrS40CjgwR281CbEkJlzXU3EhUzVExUQHpy0Z40HdA6vvAda5+XcZbGV47YqlroiUxvjDXOJ6DYevdVSJVMVlXruvvcNrcnqZiF0CnclIxfIExGNhTNSnM1t9eJ2z+uxVwNhrrsGvn0XA6nKijrXrfFmfzshCiCiPiNS5u7IBraUXBphkumwAWTVq9Zo6G43PtTr1dU4SDNMzz+tz2UpMXk5B5UiXXO/lYvL1ey6Z2UrGryX1mi6tO3G9yWtW8PoW9nd+4rqXoefFv2OT5DK+d0qnIdbius9iLim3q7+rfRov7+VLb6GIUHTN16/EOr+4Wq7isEyFV9G4Fs/1ebzebbGgrthbq8rFQF+Mdau7IPAOBhaelKxVv43rMy/G/Drbq3Nd+55yfuYBtAwINexi3bsqnkOTqmL5Xr5Ce5WKlaSxKScYYzAP1sAVWAeC5rTTGgtSvzMfuW3wTEr9bQJ+wPwE/ITZAbOBZmxCWNADcWsNz6yBM4YTbKC4Vb2g6yiWYO31JYklOF1PMfJiykUjrLdqA7w830iUsfPrtmBO7Ss2mFMq2Vy+Wpny47m8KVPPjC/Uln+Um2NoimloAqYr7hWeXUqJtS90XM7g801NsJ4C2kPrHfr4Let9E+fUv88AziDT6XHg2/OJY5yUK1uqUcAYVEMHy/bk2lvMta7K4iX39KbaptZ8tWWw9s1aV5VvKda79vh1DdxDDU5ppXK3VzRvxdDa8y+vXWLdn/m52fVcV6B6OU/qXq84h6o2pdpRI6XOLHs5FUx7vtZlxTY21a5cBXZ5Ts0sVYivz18sKxPwFFbOQan/1rnkxenWc2BCdsURXWsdERnF1c7VUKn9k/ZSm656Cmy0GrDAep0npn12XanO/UwsaN0c50xEDjw1xbH3phokxUbGWgPdKCGcujdeJ2mGmrmBbevYesOXL58AA/a9c2hN1nOpdciYyQmVBgsxgRIcqKnkpWqGv3t0rVNVn6/iROheGQD/2ZnI+9F6Q28Nb2937Lcdt31Hc2fDcE3Gph0NUnWliBdzLZKX3FZNk9o3U8BTuC2vvfKsRq2TnBwwI5IOayFed6qxwfdONaoTpQhDxMIZXnMaLlt5Xi+Q2ZBOQ/1Xsuff9/XHA09FTBL1HwBMndU6pOdQAq1QeWTAtw7fO4ugSUM2Q6JtpK6iJ8YZyOOJMRjMunct8r4SlJxEgSvhnmGIbDhPBsi+kcmBvi3acx35OQ92FUE9u791ecUM3EBGxQaa1qUTXJhawMsbY0IdK75nZOA4WdD71tEMqxMIGOZ5UOtdmu2ixynJh+ueljFsJFJmfdZOHk7eOEklDHOkujlApsP9HQnSSBEGG4D3jq0bbjsBgCHD4nOcXBFXpETz2jTstKXQN281DJYMtpBp2KKep+GMU4d/Lc61Khcw4tsGTyeanYkxT+zGMexouJBd/iB/1msULw//KmDYVW+SykwWGW7yqXGM82DQEpPHTMW8FE/cxDwcFk1d25rsk/IAKT8HMulykCLZWwftJQOwgQSn/AGB1tmxgsw16V8T6PaE7YYIx2gcl0zWT8P9fsdxnnh8PNQcSpw51rWXDw8QmDkQk/4yt/2O5huOk0xAa2SF9e0OwwDyWMEi5okM4HF8wODY9zd47+h752tGUFbUHciHnu0G5KWWrnvPIycBD5TWvzdOMjyenDo3xsS27TLFzJdrAM7jQDSNkh4nMCdaUto07Q0DwFPjXRlzBTbNU+uJm8SbupYBjHPQeFTZ2H6/rckhCXDixUkvpWJbbUYPitR0GJfvUCTHCWOQpREyITYzrtWReHw96U11dzJ0ZHaZoCkzFNzHOfHt+VxgeG8dvTVSgjNWJ61vHeYNfdvJPgjAnfujve0oNtyMifMYZIU5kNngtsHR2cP2JunbueSEsBvM9nV/9r6tGGOGJQeMCL5fb/CNDKIciYmBj/OBHAPzOEAeoGkqUTImuqNvN8yEZJcc/jAG/apK71103ee3b2itY99uaNuGN+d0n8jEx7cPGAL324aIgWM84LeO7XZHzoGRgZ8+HgAM9/5OSzuvBgX3TMTEOA6yaLIrBlxm2SvlCwNCfhQQcDgnPj4+UKad243MniEQ6ayuj50Ct+ZKkrvW3I+//wOmvMcCBO5ap0HkMU7MCLw5C52pDnGAZrIfzwfPh0jc73e03nAe3KPncWJrDd+90VCy7x3btmNrMgnHxUrZwUkxy98jge34ioyB27bzTDEmfc0NY5w4z3P5t1UbZoxPpMOPJ9ffPNE72c70PktgnKsTbfWzOlu8ddLR46BflRJrEzDQDfAg+3akCu4ulox3pdsOtIbEJGBlNAUGErQlS5xBL7PWOn20Yoq6m3jGyc/5+kvJs6tzaHYuUKPOaK4RscksEasJoSNU55I1Q0cBttVkwpWsqZHWesNbfwOeT8R5Mt5HIBXvYxmzih3tBi+2qwrfV3RHvQEBeEBWtBZNIlX4mApPUyFyFUE69QRWchqOJkUusI1vlAWUFP5RwbV+CxUO1Rx4+beUDPQq5q5EGrgKCt4u/snUnKuf6daV2MoPxRxeVK0cglgASDZC6UNNj8PlfRJD1zuxGddXkT9LKktwP+kXJylYiAUAjVY/xWgJxTsyCmJJS2GONtmUKxAovKQ6V85B0BNoG811cwwWAzeuxc0aEBtmGp7eMM0we1+Atk2Dn46cTpsCUZRoKsygkDOQ54DNAZ9P6u/CkI9Buc78CUDAfMA2ADdD9ES21L02FoEO7HfmIgMHjgEcA/CY9Hh5TITY1N42+J0+ngMNc2uI7Yb25U/R3z7h/Z//E/T3N7x/fkPrjnZ32BawLXH/ZNh2xy9++cbhJCp8t97wN//qv8d/+H/9v/Hbf/tv8MPf/i0+CTjfkcicYgNQ0lLYSK1pxFckBo4RYr1x2EiDMfdphpvX8BHmYtybhhiSNDfDGQJhth3uDZvvKAb+Wofyg5p5LtlTKCcwd9jW0PqOrW34/ssvsLUNv/n1b/H8eOL3v/sBvTV8ebuj7DKOx4EEZfSZKUN0+k566/C+k4HaNnzkE5FB2WYyxtCrTIC/6WesofmGMx1/+O1P+OnrD/j3f/MfcTw/EB0YPuAgIxgZ6LcC4TmRdhwHtm3Dvu84pmOsyeOJ2pFTRb/Vegxbe5xet2zIhs7eKiKaWHmtyAaTIAENIDo27Ag7ka8+rZJM5gzFugSUm4t3jLNYKb7ze+KSkEYB+1lhj7G8imhXvoQY6E67it5Yh4mUTHxSjcfFxApJhMF/s4glAQyBQbGacvKk7DtLWO/IoOOSqxYmyAfCM0kwosDMZf+hhoOHVCo6k9oKC4xzqRzXQNUJGzqUWPre4EEf2dtmMAs8Hw8y1Ex1fkxstpFVramMxxD4JXWCtUYfXruGaDyOAfMT71vX8BDm2TW8JSJgjZYw5+Qwmvr3mzlGcKDRCeIF/+DPfoU/+wd/im8//oAf//Ajfv+b38Nbw35/Z9xdjDJQZQHgrTXGwVOs4VaEFVsTzgW9szI2rDkQkcChqW7dGWE+2zuqYcRaBdjfdtxvN/zql9/jvt8wPj6AMbCdU/s38TyebCp25tJDZ8QZzFE260s6bZMEk3MO5lNBP7+MEyMCaCX/pOrBzXAcp5hOd55Hk89gysajB9Q0CJwnQdXeNhEcAG8NLrYZz7wQyLexAdldvprgUDMAj+P8XyUn/K99/fHA0wvAYFBg4adSs0760kxYb9ff18YzcPwxxYJy3E9YofBJDXSZ1Fra6hC6IMUmYCKyMN5ETShDip2xWFPqcqVAn4WSy8w8DDENw8QmgXjpyZRoKFUYkwaw3WX8qUPLLTFsqi+pEFNoMRKzkGjnYj7V/bBCJ1/omOJwrIQLknoxeWEQIWoJGc0VWq3uwOrM8jnFJLBlSa8rBkwTnmLLb4YbjluNMjgCC+yYxQJp0pW7qoujx4VsRODnasMTNHj1fHBRV1dATuj+KUECUBT710R0bXpR6rs6fiEKcK7EWkBXbX7Y1dEKsWJSoIVdyXMY9Uim+1Esp9WJTdKCy5dD4LiCTNGH9dSyuB8F2BQrh/eq6MtyOwDmhM1gcqUmfSO5iXJP05rKq+MfZfgYcb1u1mfQIRzXdaQ67KFJgpc227RGolYbCgdN+chU04yJlDNQg8+VrBYgumSxaeqqUd7iAmCY1BZYycIvI5F5IjHpARRATTlhx0+FT2J9Nhhk9EifhcxEnPKeCSyAJwaTytQzMO/a+1OHI9ZnoVdSalqVYkgwVQG4phYzZpIRY+rwnuegIqdhsbH4vQaXQDujJrYpWYjAGXMVKGnAEUW+BsJYoLAZXbuA8SHyZb/BZMgPkB3GvT4V2+j1FLAWML8KwpmSRUWsrozc4EizxYAli6h5HigIImUoXDGtmGKhXlwVXTNqOqD86sD7DnWeQiD/GoUOSqbPSanjzENFdCM4NwZBPuEFlJNqylyecE+E8yyh71mgJn8iVbSnynl3tNGu+6hu/6HncZ5M2MfIxRTMk4niOcj4GvKYKFPmYpAhA80Zc8Z07XWycSJSY6UnZjI5HKktBZ5PI3N1rnU4iPYci53X1MGaY6DfKEHe900SOcXUuAZrEFyKQiXAaR6OTQB5UwwsGVbLOm5yNU04KhtIa/Jpc43RVeqb2t+WmGa43C+sLkN9FV/FgIFeNt0M3X2d3aGVWE3i1kwNHqgZ0bBmkyaQVjGRzR/1bhgDXjq9BCLK8yKrArjYagD8Z10TxY1qc9daSK59K3m/YpbH0m3gxTkHCU2qU8Jcu5lyffq1QaAG5cyGZSVj/C5OQQ3J4dTcKVBJwMt1pTxfck1KFAfBqqVUn2rtapTRdrWY7KUbv86/Wlt1QNT76QCttp4JYLo6UPWD4Bp5+e9aX/jZd1bc119mZUG2gFUkex62AoK686i8RDlfXOwj1nh8gese8DP8jHGhX6HcwSufSr6KL9gdixVan/Hy5tQr6T4iIZYoP6DqzfWz9mI8nkjmiJWYVO6ShgHHCAJPcfLaNtiK4cIcKT1rDk4h0pNNIPcEopH1nxuAhjj5QdxO3sMe2N46bp93fPv6Bzwe3xDPb4gYdQHKCwSw2oZslPZ4b/iT/+If4e3TO3713RegbxjbDad1HLYh+ydkewPevwdub/C/+HO02463tzu8G9rmQE8qb+6Ad8Pbd3f05tiTBfPNHT/97vfoX/4E2P4WaT9g5AEDY6xX3v/CXlznt/685ErIiyEO4ND54a1Y4gSfyDJk0cx88vX3phiv/MuCjZDXnEE5gSmWthv9lPq2ofUdrW14u7+htSbWaUriH3iOduUUYlacYnoXMBtGueZWyVp1cfNl275Q/MjQABnknrAx0JSTPZ8fACjV3beNDYYGcIhvMVuyFi89Cb1y3TpjeYY1gTiVwwMFxChSVb5tABdvcW90lqr5XxPI6qyScygQnMBYKpiKE6kDpxpJF+NIUbIsM/ScqvFAoCYEwHONo95zxaPalqZaRPG+9nJF/rUesPY7YzZfgD3/yxIilR9XPFr1R7pUOmwKkGX1cr2lGkkxhSoeJfhME1RbgDUt19Fc67cjFrkCMFgeqKmCtJsJ0Ot4YohZaNbJq0yxmC0Rja8DxX7X+dRNYI9q8DE1RdKdzeXDsN83dDgnwekJazkinHVQvNx+vDxSegwFcg7sY8Baxy9/+StsfcO3rx/siQljgDyfFrsUVccYqlan3QxAtlk9q7biOep7jGDLqgfrEFkLS78LW5jTMI7EmYFxkrnXfKMNw5iY0Xk9aciw5eA8p7hrFmjO/TLmwIxjeYuF1CfnYI5dYDPXVvkR12cfunEJYMA9F0uLk3aLWctnRFuSZBOhdRTr91ytk1gHaMgS5YyQvdGrj+t/+uuPB54WkMUPuyhro4yIlUyZXVKiyTlcYwxs26apdwSCjimPjOlEoNNx7+zkQgyUx/GBRMI7mVX7vuOc7F5Y0hCVxaPB54W01XQTJhNrx2oUiGGcjpnAHEwywoFs7PBAYzcfRpnFOR+49Q3vu9T25kz6wcJs5sTIUwGiaxYYMDoXQCr5PQY7YR0pwOECxEIympIqwannD1TiTc0+RyAyIZ0yQdz7mx6PgtoMjeFMMhmsa/T7ZFHZqAMdGDyETJ2CpkMtQgkuJ6kZaHIeAh4ygwP23IDNMeKkJ5BzWa6pOIoYZg1NG8n1vNitN2mYIemEpkXogNvlvTR03+6dtOIQE2HMCchrpredRfM8kRZw7wQMTvEKQSZAs0beklgu5s7umssws1ABJdPbTi8mgNTC8hKJOVbil1MjkL1r+zKAnollaFwMohYJS45NxwwaiyfgYciTRYV83tjB8SpU1E2Y1SHSgZuxAmgd9L2RSUMDP/rjsHC8JvTlnIgzljHzbZfJOwgghOUCXHCofFGycc4TsERsDb137NudBapzPVqaPN3AbqGATcCQ04GgEfljnMgE9hgq6Mn26X0jKJyVNALnmDAL7H5DjMDx7YEaJ9x84ySuBydwzTnResOnz581zZCjm7duME3QO54PIBJbsQ8BFTLs1Lj7kvWdkkH1zTDmxPEx4FtD2xyZGnueLLA6dhbdEbCtoW9dU80mddkAtttOls/5ZGKhzhB6w7dClpXw9TKqruQGiW2nZ8fj8Q3nCHqymcPahjGB8znQt0sSmAkcEzxE52Bhv3WQXXngOHh9ZQ54PA7e27yhjJBXUQjuezYxg9OUkgePZQ0hYJw45pOrftswcuIxDp5/xwP3fcfeO87zG2KeMNBXKjQp9GMM7GdD9kapm5g/MxLHQQPU2yYz+Jg4nk+Mc+DtvpNFdzyUjHPiXAxIjmxw22HWSADIwOPjyQk99xunt7WGx3Pwczwf3G8gCNF6l0yt4zwOjPNEjV3ufuNUx9Z5r/PEOQIPAZ/ujqc8IbZtQ00BirxAIAPoiRiTJpbeyPqKgePxgfu+4/3thvf7neepjrXNyQY9nw/MOTDHB4r5ue8GWFvjgwn86lH2yT6bE6hSqKP8JA0YDRYJnxO+BWAnCqKYLSqNQzMWxA4mWK5mwb0R8D4r0YFhc8etGZPfCBS0+RSgvXfjx5lsNjR3xqIZlLQa0LsjYyJjYLfEvbFTOKbOcLAjeWbiG3TINON6mEGJbXJoQRbwYxc2xXjgZNAoid2gIRrJjnxLB9SVbf1G81Al+vP8EBucfheBiZ6OmQ1v7Y5pCcxD/mVJ89uYgHXAOvaeaC1Z/EtyyhgfzJnCCXh6wT+gzyEunIhEjQKLGD2m5Mw67uX5BpRP0SVHfNn3Kg6yKoD1VRMegZYNBQLZOvz5y1QkVpujtUr4Lw5QK6++vO6/KdYw/6f0iu/KOH16vQ/vi1G/K2CnvEBZbLiuj+w1nkdThWfJhGKSbdT7HUgOkWjwZYFnZuicMIEpicNQowNmy0MydB+qKOW+MGhODu+KJ9IDZ/l+bgRTO28MMgNPa3iY44idvi3HA1sPfPlkBJO7oTvQPBV7drT+CW5kwsCdZ4N3ZNuA7Tug3ZDtE8w7+v0TshuOu+MXv/oOf/bnf4J/9//57/A3/+Zf44d/9z9ifv0BcIIhoUlWmAD6F9j+mYX22x3/h//7/w3/+L/+5/g//7f/FUZv+KuYeDTgw7FAuw8zHAD+wNOBDSowHa+C65HyX3TDZobv0rBn4j0SP/7uR/T/71/D338L+Fec5x8Q8cT9DDQENiSm0S+1GT1RJ+R56pzIZSV3TTZoODl0wOZENMcmptmaKuY1wIOgck8nI8c6oV2xfw3KI3pX4RcqfBP7tmPbNnz+/Bm9b7jd7hrQ0PD29gbA8NvN8fRExIFI4KcnJ7q6UbJj7jjBwu7MENN4B8zRLWGY8KDnmSfX0EvKRcY2eJ9H0rfvGCcMiTa5hu99p/H73tHUYMikWsKJurB5pXMSKNCZY+GdBljIpIy+jUT5G67UQUqXbjXpT4bcGMgYiByM9632aIqtVSAOPXFqvHvVGd4ZdNKheu0E1vUTysJQi98gv8mduXSw0VN1mEuu6QBuApljEqic2QCBca2mFVbN6U7wXixMQ2h6O3AkB8/sRuB2RmDMEzMnfN9I0nBOPG7o8GysicELrwY2BE41o7dTgA29kROWAU9gT65W+FyS0InAxEESQjruThBsKOBaPnhy7zs8DD6AMx8YdiKCctDud50BgcQJ9CeiDcwG2Jnw6Vx/5tj7Xfsjcc7AcybubwRcf3o88fF84n5rwG3Dre8IOEZ2PQNNp0xggoF36izKTOZszn2cRyB/+AnbvuOf/fN/im/fHvj6OPDj12/4/e9/RO8Et1iDAtveXhquIGMnucfdXcCU8vitGFhlNzGUG3Z0jWmIQSsPLoGyBuCZch5UEP3whwNbI7mmeYe9fabX5/EBsx3WTaxw2lkUTgAAA4GtNewd+On8hsf5gW2BvrS9+PjpK/Z9w9unz2T2ZcqP1DDlKnbOJ/dTDHQz7BtZ+u6OLk9E69zTc3KyduuuuqpjjEPDdYaAJqlFjEOVjnPgcRw454D1vpqzf9/Xf5a5eCF7JU9YnjNGBLiMwGq83gj5XAAEidiaYCGs1yJYl7KNoKyiglUlKdVlYyFFTxZ3dqBI0iBKR+Dk0uAWUl/I4jL0KwrPosAYIh2TEI9YQiz6jjk5+naMJeFj98EUqEzyIwiEkjmcKfYtFHWdAwugaDLii2IzVTBF0whPLqJmRYdXIW/gvffLe6CokAyuhcIrTTNgjW33hGdDjgHNWtU1tEueKK2n8XS5vBTEiGEnIkRzZaH56jWTyEV9rRHx3kxj7VN+KMb2v5Gt1IxeIxPUu7sAujLgzCgzOPF3LIXGX65OddYuk8Fi0ICHl3kZyJu042AHTJ/Lhf4OATLeBtj1tnoBALdlWs/O9WW+tnZIkr5PH4OsR6bWqxgNOlxrMbSOxVArlF6UPa0hq2ZvNZ9Wl6aefwA8iCzJfkpS5V2d+zEmxqmRmnOsgjhT0xoV+O1aSOu9Wvk3iQUDxYBnftSnhbmm2WXoABfTyFk8lLFhdZYThfAnECHDRHoxjRnonZ3dLubA49tX7qGmMcqT1OFIFW4C+ZBJ+aX+O+bA8QweGauAUgxzegCdc+I8Tuz3G7pvpKEqFq0GmuCfGKIqt5LX8F+L2ZeRwDkQkTjPQRAra8mThj/mvAqW0nhndexYCZ/xwWSj1rfxGU7Qj4NDGggSDCXVMILH50mZIjJxHJQdbb7KVIxxyrhf8UQdIZNEZI6UnxTv0TURjAfyWo+Ars3BzhoLQ07mS+B5VglKs/JJoflsDeP4QMZAB7v+j3xwwto58ZgPPD5OHcjAcZZX0IBbYB48C0oOkxk4nmLHTspJ5jhBhiqB6PMMjiF2MuIsHV1sg3Gmpk/Wmjc0SX3cVVgHAJklmzma9yU5RhDIPR/fUE2OS7fP6YtW3lPyDxvllWeGEGhaYFLGlPUVmVwxBnLOq9Oa19k2aw3p7xgDZUIqwDxR/lc1/ZBnZeosA5i4Q8+PU5ZM5sY7aqBGrYLWNp1hvtielR+UEXXrnUV48Ds4KEPfaQ5viQ2TQw30vzVfhTdb1zCRLsNmB/qmc3wyYSd6pQJfZ5+3RoaVmlCUO3Ajl4feKYA8G89xglD58/uocJFqyCQgnopyjEzkGLAZ6I2+a03TqJB1HRf7gSOva4ImC+BIjX8PU6ysGJ/LE6vuGfPxy+Cb4S7XD1XDvwaCUEqnfVvsJChvWZ3fF6YCLs5QXk907f1ceVX9W50V+DtMoouBUu9j17fqTMqfv/7La7p+5Xq967PxW/jnMDLvPHF17Y3yD6+fVA5F33l7eUHtocyVNxLQDMSMVZBU15f7PldewUlZJpsURrnXyZ2UFMkqoNaNis8L7LtAuRmOGgDS0rHBcO47tk+f8E//j/8C3/3yE/7yH32H2YHhSaDbHTdjU+3NWWy9Ncotmpc3VMNsN0zrGNgR1nBuG7IBsQXe3t7x6f0zHj/9Bh8fD3z7m99gPici/gC3QPeJgGFi07OZGNMwnxN/8+9/jezv+MXnP8PcO35jiccceIxjDUg5Nsd0w6ln7gdZy/NxUKodwCMpu8U40TLxJQ3tHOhfv+Fv/4d/g9/+T/8Tzt//Fm0c6DbRPQGn5cGZMuSuvb/2BNcEjGeIwdAk7177HDSrhnxUyKbUaktwEpx3yrfDMQ456VV+CfY4jvPyCqwhBXMwBnz96QmzE25P9G1H7xt+/OGBjMBPP37geAbu908rT9ZWWFO+ut/g0PAX41RT1gTViI6i0oIsj1KflASLa4wEFRNYYxh6j9u+YY7EiBPlL0fGtktKnsjxwuxb/1/xh3mSlQpGeYBfm1UxTzfVjGeZQIF0AGGrHDNcdeEVeUq2XyxW5UTKT/MlD0s9//Jko0WD4kWmvMwSc+h54aoZSnIbUQxo1gTNbMUTy6kzQbEgcd0zpD4Xd3dbu9vFzgSs0SahaXhOVs4dBcYb3He0bcfzOJTricW6bXgJ77w+83XfALJroRwFoGGNg41hxEBiclhByvw9QOWR7skxA2cEZpuU/mWuvIRxvFOBM8Fpa3WmGlAypxom0XQOzjkR54ETiR9++BFv9x339j1BO+884xMAeHZ664zlMtcvPyyu7VwYhI2J82Ae++d//qfYfvc7fP3xD3Af3DO9K8dXbsy7i9b6WidTDcyaPr3pSc/KrwB4Nlg2ne3KqVwTmM3QuzxXxTOOAM7B5mfjAsfzeDKnDg0zMg2kmpOSTwNVHSAYeg5apjyfE8cZwO6SAwMZjuY7gIZ5MsexMMW7Io0AWyvmc8fmTpAcXOvM3/k8a6jJnAEfwVoftC/IjCu+QQ2vSQ9ksvq5iXOA7Ng/4us/A3i6kKyIoIy2sQDnQr+ApzIJJn2UrJ0pOigXsKO3ej0BFTkRk0UZKV9ODe3aTkHUTcBTawReUBI2BR6FF274iEueBkOGa7IBF4jJg6aYjJHApsDR1UUuOcf0ccl6ispuAkIaF/QQ5WzoLdKwaKMFtS3Rkzaxu+NMw4RhDBZ0LTes3Nsu0IM0yxQxihugtOQzBz2hlCxRFjdQsixOYhgXcDFOUgHohAhrCcqlyoqvDpEiqvO+mssHKllcmpfUkMExpB8+z5OeJP22ilYqNVKTDQHHpnsY0p47KXspCnXGCvYRQ4k2KZFrKCIIWkV1d7VaaCrMMobU9FxJIzLRpjpfgx1/MjZY6Eyx+LwNbVDtdue9aK3BO4PPEfQmWitVh1AmWWBuKekZiwAkA3yuzcBb3Fwd81F0fiXAWTIVrO4sz0pjIaV1O0AbhzkLmGW3wrVuIuhNcR70+3KkNNodpIfyNWlIV/cQWIwerS0WzdwXM04cmFh04CpmAAEm/YUuTECkjF1r9OkcSgBn0DPGHGMGxoS6j/R5iAj88NOP6K3j0/tnMiCq66hEZhWLGTgPMmwciXkeOM/ArnvCjFTPHom+Ncxz4PF4oPWO1jvOcWJID23OyV6oJE7TVvruVMMqyY1KxzIwzgCexxpVb9pnOZ/qQKrK0uzrnwFPBVicLNbv+w7XLptJpsecBe7ZAhUZI67ukSu+PR4fQCb8duMBMwJjHBiDvlWt+Sr53fgZzpNM1efzWCOai2Z8nrz+WfJIcoIV2Ri4xnEuXzvvDfvbO8ZMPJ9PzBN4GpCDPhJ36wiBSRGJGBPP44nnGUjbEDWxywCa7Q0ADyazShjcDZiDYIgVE+pBpuPeMcfAeQw4tuUn5KAEbc6J46CU73qKxoLDm7xcEsdxLHTb0eDNsWmSyDkemGPip5++wlvD/f1tARgh0LzAgQLnYQTm923jtKPzxL51+S8RSD1BwApBtk5J/BCMUfRJwiqgK/bV9LH1zAYZgWMcACAZmAkS4Rc7W3EBBK1ey4Egbb6SlvfbBndOTQEI/GauXoL2DDtgdo51pkJJVVNs3CV32MUvqOvIpOE8kRf+uasY2reGCAPOLqCXu2NJppW4urPzHMFCg0UDmS9AYpzMN2xLxnad+cVyqiKCj07eldrrMxmr6H12cu/cuEe2Rp+LVJxf+cKLVQC9NljgcLDApCRmBkLgJwv3stdULFdh+uqLAa2RVWwVKNLIOHEVNsXArn7ZmjKrs8sEnqxjTL8XoJc6v+us+5knlNZM/VwN/FhQUsmuUceEaS1jPRfTJicwxYKpbjkzDMXzwo5MrAoD0LCeh6OtxhLBB1vrtgoJqvaumJuK38VSjlkswMYGm3JUXgsuRnfdG0g0uq6JAIQJmK3cJ5KDM8IU+pUHziQr09FhuaFPZosfn3fc/vRX+G/+r/8X/MN/9hf4F//tP8WJwLcY64y/g7Kr75G4A/geZOjdVmYGPEGA5WOSjf17S6QFWjtpYDI2/OZvf4ff/f7Eb/71f8DzpwN5/ABkoCMw0TAg9hAmMAwjTvyHf/0f8Ydvhqf9KeK246fN8fz4hsdPPwLnCcQEPnVgc+zeOEzi28T59YmP3/yAYwLnAB5Jicz57SfYnPicBnw8MP72tzh/+jXGH/4j2rcf0M4P7PtE84DNQU9ATRxLqTCcxGYV6PL/mmIztMZIowKQXnG5ZLkrf0w+s81u6G0nc28C4+Re3rZNrHfDnCGT8PJAFGs6gDHokTMH/Ulv9zfstxuOg0yCx+MBA/B+/8J80bmSBihvCSR2sbbyYNPA01CTI081h7akTA0sHeidl8kaRg3zbAKHnCz6YcyxbvuOAxPjlKIhqzBuqukEHAAoY30suZvJi4fMV3jCvHybiAjxyArtx41ZbEzFMRbc5uVWp+aRzrQFpijmETSq54pCFBfIBKdNyCwA2GhPkABOAUZzsMCeM1YtxuvlqPjIKQNnSsxr2vXK75OxexE7URIlfUMmvweJhol1oIJedamkv7UumeJrHKJKqPcdve94PE82SFJqoq2r9izg8wKdUuCMoeRThpbJ/zaqX8ZJ5kpXHj4TKI/gOZn3PSfZMy05aOQGss9Y3Tc021kXj1QOgnX2Vl7CgVacxk3v01MenBO/nweOtxt+8ekz2uasJ9UAMdNkNt9Z25VcfeU8ueqiOYiYPZ9PtO74y7/4MzQP/PV//Pcwk0qiO5mqXkxb1hQ3TfMFgG+PB45zsh6CYdeJy0pH0/nSYUG2Ytm78HOcrF2bch2Q9ReTex/JgTuUdH7jPs6kUT6Yt59S78AM3ilvG8kc/zkDjwKeICsC1dPe6d80z3IwVqNQDVEzYGusHQk6NWyNuUVE4tQ0O0qzA8d5oACTxVjUPRpLRpcqhTWBNgw1hjOWZ8Df//VHA09WZn3m7Dgj5Ceh03N9mKuL2pqK+UZnLsqhhI6jL5TUzOG985CcNGV1Nzw+viIUBA2GzMbx1hiw7PD0dZ0c/0ljsuqdmi5vCpUb4LSf8+WqillSLK1p8uFhmoa9EyXcO81EW3lRAajJGRM8xMk68sXmSADdBAIJgeUQKaHn6tAcU8bhJsTUNfkJTKpnmGi1qa40hJYFi1RQdwtLuAOt874ep8CgKSDE6P3izbGjI4MyMz6EumpTkXsVJHUtETwctq1hzoFjTDRNUxyDRct23/kcGumwx+NA7xyRySRNsq0gUu+QkaR+dfAwZAwPgmNQAmsmMAf6dCrYBY5UN6W1SrBzdWFdhc6QPCJjLs8adsILkWaqDRjO85Ch7w0zSM3OmfQgWQfRyoJXIaFUW8CP4ZwHE6KVzQtIlEH3PDROHoZOGBe1FF6NjEMH3iw5pOkQSwDWYbYjYiyT4yxWoLjXxagDgGXsCMJQSCbdQOoQpcwFBqA1HOf5ss+wChxWp/4z8Mm9eAu2mFdTXjmt8bULNLq0hY3DVk5KjaYQ/xnG0aMrgAOPx7EOfTMmeefBwj8FDN7eGsoIsZKS4SdXjZgn5VM0IzBiwr3h4/nEx3HgnKf8zJLJZXDU6RhXgRsjgMmhCpXUUv/vq/tp6aT8Ku86IwA3DWWQv01kNRp1u8m0sca1NDU+c47E+fyGOQ/R8A3HYLfjcbIjn6L9elGSg/KtzMTxfMIUI2pNfftGgGhr9PTIUWIWMmDmBJ7HQORBw0ElLJGB58H9sd9uZFQmkCrcihXBQp5J8hwDeQ6cKcZOTHgmTgTcDL2ThTNHwEJTbNrGeKgDMLUnznEAYCer2KTjPGGoGFSxi8+w9w6zvgzvHx9P1cUERI/B4Qc9S4478fH4Bhqlt6vAFsNmSGpntzu21rFtTf4Yn1EJJn0ODNvthr5tmDHW2cg9pEIWibfbBsvE/bahe8M4nzAAb7cbYk4cjw+8v73htm/Y5A1SQNasEd8GjpCX/9iZkzLnBEYOFpp7gfHM2dmgzAsQydSZAAF7QE7IwF2mmu7I3JAJSjURyBiMd+5cA6aphTCcDxZMzTtmDJxzYOtqPo2Tic556Px1fs9xoDcCW9ve0Jvju++/o8dVdyZbngJWDDYbZtg6k5n8ahJmJIsMsaK8BkIc3PuUjjusi50mfzIowfvZQVi/R8Iafm4Efx4spFCss6xOG8/laoBEgNN81EE0yO+lUba8phFOxEwWTMiL1Rby7lMjxBSz65yu/YAkK3mupkzx1Yodletn6iLLayhXo5EvRjlcMMlUs9DXnvj5/amOLVlzPEtf+6AFLC0/P+WGXt4mAp9KSVdn/f/ql/3dX4YU2F+UIoKvDvcudqC65sAq4jKq8CWD21vKa8tQkyqjQOcGMoxtqJFBOwJYaBqqAM507Snmo/l3PnJtWkvKh8hk63C/4ekdR3Zk+w5zvuPX//YPOOcd4/Ov8NUNvzfgiIEzHT0onbxNgpT3mPAZ8PNEfjyRH0/M3z8QHwPnDw/MM/AhqogjMI6B83Hir//9/4Lf/82vcfzuK/wYeBOYkY8BeHAvBhteDzTMGPjxv/sf8PW//w/46f/5PwO+Y9gdc4SkKJToebcFqnDAyAfyPJHPDxSzfcuBnoF96qyKiZwT43gC+QHLD2x5YPOJZgfcJs9HDRogzsi9G/NipZlyHFduyJxJ328C5oKs9ZnVIAA6HLs1nM8DGInWaCruasBBTI8py4zIS3rn7sgw2RWQIU2myIZxJmYcWtMd7pxM/HySyduc8qkzOAgpi6WcCRynKhZHugNdjWcEHs8BRHLSMcS2CDUSQZngtnWgg5YHWaB4sp5CovemZgV9MFNxp4yTm85LYqtikkbKKyYAiGk8n1znlvJWdYSYwmlPcMpqMZBKsM0hCykAkgCKagEx3DON+kwiigIrij1YrXFNQCwZtyVcHl9YRTdW/szrtQViA2V+nkjlAWYbvG1Xrq9zjY0Z5vmm14FUJgyxuRQl5YQYytG478E+WsU45fxmjokDc/6IiSeszTUR2zfWMdUA8CJRwMXEFWhj+nyY2KpxXmSLCAAbYA3ebkgY5mDTf3gA7YZmhF0yJWNPego1hywqAPNYPqkhnyYoF+kGBAWvmIN23c1Z84w58XhM/Pb3X3F/v+O7X3ynMxBLRVUgGlLDUAywngTBBSwe88T5PGEtsG2cIvf9d+/43//L/xK//c1v8dvf/Bbdp4bR6KybwVrJ67ggqy8jsBWzXxJKV41KXk0BqPxYrXGS23meyp9iMauaqG0ktASOeVQZhWoyhySVj+c3nOcguGUG62xyjlIMJGOLq5G39qgZ9qZmeHkFAGi3G72ZatDSHFIZJeIMPDFwngSrD6l1WtswY+LbBxUWvQnUXSdV4niqIVexoCYcO71YWzptDF5qzP/U138G46mQNhYBZsCaimZV85tA7qsz6s3h3RFnUZgZ3GfzVeCaAkCIYeTSMk4hz80kjYpkgUMFKGKNKDNRvBQETAmmkWfUTHstG5lFicXq4NPJVSjyQCpkT1PKumHrRg2s9OlMxmQQHtxYASaaNNRmMCH5KImGZoUcFZgVD1DgDv8iTUbauu+hTNry9cHmSh7xei2onJmHYOLS6F+kFBUX8KuQxJWwA8LRf3aPoA6lQBCw05FuQJZ+nv4rZZo3zoFjHOwKe1udR8mP0TQKdpkB1/1ZVVHt9EQqUpgop6iuLtgleJVHcJwmE4vVva97nXrOhd6u5JaFKyVeG8wIrhHdJTtqmdRnJcNYySPq41ZHOAm4mDEJSXU5rwKWScyYk91VXZdY0KTF/p2xrcUqqwQpU6wFK6DVBVgXC61Ap5dCwOwCWYvaa7ymKdMtgwoN0VRhF+LNIlxA7Xpvgk6mJHyZeerepMz2zhHIzuBMjKuKFwHLAQwZGxKkJhMr8lwFe4LglKvg5JpV13FcjL6b9jRZTfyawaKCzBF64wSAcwwlhobjPAlOqiZioaduSVCS1XUNIanpOCWZ2gSqp61kdFMMgtZGajJnq4RS4BCiDpAq/G0lGDGZHhoSz+eBcT7pSdSch3skHofMiMPQO6eNnKc8xiRxOM9D+Zdh6xv23nEcA+OcGE3JenBRq2ZDpOE4J8454J2Ha+/c78/jQN862taXX8LU1MIuqm+xdKZJKz7mYpJqoitGEgyr0eIxGMSa+fLEkJpKUhkCda8MF9MarwkxKBNI7RyeKQ0FEJOJRsbRzJ/vD8bVwBwnxhxK0Mrbr+SUE3McyH0DzLFpcuC+UepAOQ3v+/vbHdvtRjATubrIOTXpUWdccwJNvTnGuaGZ4fOnT4gx8O2njWOEt06DVxNgpBhfgZ/bicDnfBkgEMpwvdV4WqhbnGud168r8csVgqWQhDcl0eFLtpBZDDuWzzPodGjB+388TyAJpI458BxPGdk22DnolfR48vUM/J7jA62zifKeO263Du9f0Hd621hWM0Fdc0kZ1ulokMQ8XpgtAmachRuvO9b5yjjPc4wm0zJHryRYkSpxJWAVkyJC3XJT3IaYMbYkKP5yHsFSeQYBdSa4Tr82NGQaGQQWF7tmXceEZVtMWj16/X6BTKpYF8BULCmeHevwenkNxVOrstDWvSxQp9bL1ZaqF7z+sIz8F9KS13MBn1m6Ci8DrnqfoNO633GBtFcKrHO2rhfXz0LnvqVkAXrdYpfXs8xYQvf1bNg7fSk8LeHLcF+yXpSMRmvAroYflDcyD1UsUe5WosGss+BKRpRL+HUlbrDWEdgxsgN2Q86OP/zVDzjthvOXv8cPreE3reHbMDymwcJhAdhgjtnmgI0TeDyQP3wFfviK+KufkD88EL/+ijymuvGAReJ4PvD49hWIr/R8+fpAmxObc2BIjAA64H2i5UTLhoDhzMRP/+GvMM+GHz/+F1juQH4Gm9QNZfXQoftoJzIHJr6CbeATNwvcPNHnE8XqmOCU32nJAZN7ot0SfQM9U5jFo+xEUjVHFYDsFUmOr0rRtWozCQGUmIDPk/KpJXHVitrMMHMgR2LfHGjGadxVi2jdcO9r3UCxFEYAbpLB662jdY5RjzHEXHEBEiBobUHvrxg45gmXx1NkssA/Ty2ZxsE+0cjUMnBIxgx4TmQa2alpaNHYwFHlawJesy5e9wy4jMPdEwiNVs9ay7xhDhdYVTc+132k5+VE5rnikXvyDMfF7LnW/3XuqMBQLJ16ZnzApRTIxJIfZu1bhYpZ+ZXiz8zEFHASq+64ph5n1bOlENG0t/qimEayPmtLTnvFNPsZk3IBWFnFML/Rq8hTkLFsinFV4FWTAlfHwIGJwQE8NgEPuHJOq1GlAZ6vBWSp5gyjRYC7A07dSstY1ywaJ5KOxbDGBlIMthOGJ1leHogQaz0H180c2ODY1pRgngfIIoIbkwQIhAPP1yEm9X67w1vDeU6cI/DT1wfSG74ot3dvKON3MurYADGpMNz5/B2cuvcYT4x54jwNsI57dNzvOz6//zliHPjxD7+jF6LOUZYjxQHNlfM35QOuJkQ9F60+1LT1SMg3liqnfLHrydWwsOv5OnOzWYOETPXEDAJP3nCenCxMqZ3BgsDTOQequ95AMkWXr647P/Nt2/nsZixKcG87p9GJ+HFO5ThzKoebeB5UcxzyKOyd+e/jcZCRt23Kn1cKQRKL5JNmwHROdPdmqKZJ2UD8MV9/NPA0BovEvTd46xyJrOAx50vSbqQ8R04i1zNhRtYGmqHhkpGF0GJvnPgQ0zHxxDEEjvQ3XN08UdLBgny+yIgShvMsiUSgW8OuotIAFW6Q3wEniGVWuav9o0OjtwZYYsgMd9s7i3B12iMCZWoN1MQmatUTBu8N3ivxuwpOeX0tyjlenpFZ131gsc5r4evzW0gF9hWsgXM8QZZFhzf61CQmjnGSugcepiYGl7eG3joiJp7HQckJXPKSC0h4lZW9Jt+ZYkMpaMGqCySgou0sMCfIApmgDtV2FuInkM0We211X5MFd0TwMH05+KFyu2QbEYHjvEAC0oavDkwllmMM1CSspiJ8aIY5u4qOvWt6iOU6YLZ9Q0uIHWHIpLnoPAda6/jy/gkxJn78ww/49OUzpSTB8OQCQXtjpytiwmTO52BHxTVdMBOSRDbEOHXIMIBvtw1ljppBi7ipQAjrSAfOOTWmPGHe0Lc7jnPi8fHTSvgpmZL+X91ad44QzsFJcbMAE5lstxIQAziD8qMqyPd9hzfDc2oK2Hlo395QRsblvzbGk8BWAu4N+35TcqakwoIMOGsy05v0czKDgWb9Yw7eU3UoDdCaTDSbmDkwZuB8khliLbH5JaM7xoOj4Me5cvoh36UucPrUWiiJsJkJLD3hnVR6drlTgAknYZ5z4rTBikkAhZnBTkpI5xnakw1/eP60gK0CS0uuOjOWh5K54zzoS1US0Zy2kpLmQG+GOTi+ej6eSAS+PQ/GMu9gV8Y5ptUMJbm67WJXKXEiY47r/xzAHPrMZro3ZKCWBAjZFrUbZhgqKLZ9470+PtbBl+cTGYO+FO5YkxKPsYyd62Cu34dGXJf/TCbvuSNwnD9x0l0oKTUW5RkmEMTgG5OW1jcgG84RaM3w5btfMJKUvHAe2LYbunf88u0N5h3bbUdm4jkIypkD3t5gBvzJn39m/rAKHBkQWxdrMrA1JnnLqHGVtCpIZtA3bOv4ODm+lkkwz9Ilm5v8tXdK7RA3xnAj1fvT55uSrwRyyHR9rPUEmIQZjGUjhmRzVUxIsGVcQ8/HU9fEJIaTWwVKzdB707A20eh/pZg6MHB8+wYyDGiS3xagJSQhEx9GI8rjefCM3TrOCDxHYNsTW9tgJyd85kOFg02MGDhmIDCQduLt3LDtDT89HrjvG/7yz/4M3Rx9T2QORJwo4HvlfOY0Oa/OHMikG0HGrpujbRxZPMcU+2guZo5IqSikyJUvbHAguwopmW2KHcO6JtUlT9T0sus0A3ybTIYjgBmSRgMsja/imckLJYZuoXyl2EaSeqjpB5jCi4ogxfJLvlbAWQFPKoyymF3Xz9aBTnBF+I+AgKtku4Agvlq+/F6IkIqol9df1yeAKEw7vrPp4JLvzEmwcITG0JtpImbiSK7yWcBd/ZqJWcXFxPJA48WU/Eb7ZioGvwDTnBg0MeMQ04kS3JhGawDJiXg5/PzbLpYzSuYstnUa0pjUT4RaMaZufqPM3IyebwD2xms94sCYiTMO5H6nZ9h4In/71/j3/49/B+8b/NMXjG3DuW+St05E3kHDpjuL0WAlafMA4gTmuZiobKQE8vxgkThPZDf47mg24JjY+gF3DgBxN7RP39FXMAccJxoGp9qa44sPIBviOza7OjoCjX5SSWXEvjeYJebzwbPs/okxqTc0cMDK+e0r8jzRMbEhcMsTxYRxG3A74WrEccBKoAl4DTHLmzfcYNiNzQQ2kvk9W2+YmXjO5wI6TM2NWseBih0Gy4ljDtjgORVJD7dITgiLpNl221yxg3lAxMTxUUAM8+W93yiPPwMfzwPPY0gNYiDxOXAeD5gleme+Oc4Tt31Db40SYxCQn5l4ZiLOxMhgYuBiuzRDS1of9EZFSG9lit6w3zoHW4hkftvfkDkwJOFbYNJMNOdZOseT0qcXAzeJR1mk+iX/PeeJZo4vn94JytRw7gK0IV9BNSJrvLvQNLK4IO8Y8OwJATRkQk9E78hmnDqerBDETdLZV7JLF7CHBZTV9PRUnlsgcIIAIyqmVkNLspN0R6rRmCAmUmepge81QWIABPLnpcflzbZW6NIFoolB0pZvSDGvQvfVsXcamYcOtudUnQrC2d3o1TUROJyDrUIWIQAn3e0InVkNwzdQcs2GXm6svUaceGbiI3nf6cfLyau9s4keoAfrOQwtGzwdNVm7SB4hiSHN6MkubqA/ZbMdzRpwuyES+MO3J6YDbz857rc7bvv95bAUo/BgHI0MMu43gt5Aw237hG1jTDsfid99fMP9fsP3X77DL7/7R9j+2S/wu9//Hh8fH5oMCcVn4MeDJv5mA90b2u2N9i7gpHHWz5ArT3k/lrsj/WgNwH6XXY9RYpo4FlhDdjBJMRGJx4N5Uc5EbxtVD57ot86GoINAMgAP46TS5thbx+YNn94/sVlXR5uY3HNOPI4Tz+OEf3wwt9FEuo/nk/lE4lJqJAHummRsfQAxkOMB9AbsiTENY5gGkJhihnQ+SifoEUq/bcbNK9/5+77+aOCpchcC1izY6g5fpriVpxUtLaFciT8DTopB8kPDiGBynHRJdRpGSTUKqTdj8ZwieWsDE7jigw8Ucl70WUONpC8fBCzQg5vFUglb8u/8JZtKdYPNC9HE6gAELpMv1AG3iikBWkuCdW2k9d94Tdbq36obhvKYUzGf+m522S6Zhu6tp4olmmLTT4TAU/PaPBfgEjXWXWukusSLYITrOgSf8e+sPsPFZIG6DoyZjb2QqPvHg7fc/i+tN+/3z+5LkvqMvDrtlVCvzowQ4fI8es3o616WdLNkIxHBMZ+J1fVuBVpZdatjPYMC0VwbVPUXX6dhyQfnLNaGrsUApGiatVEBWGoaoYC6Mm7mfqk1z6RMLwbBhOBUpbrn+hLrK4wdnSNisQ5nTcvTAUCmG/fNFSQIbtIT7KIzp8mDpPV1P2skPIuAWMbLZWY5kpMZbQbWIxa9+BQ7aibppa00wy/FQJnOjyD4ZXmyc+v0jhjzhGVf4AnMaP5pgPllyFusinquFWQpsZmadMilNobYZa3DwWLGBRikcducY2AM+qVZsmBJgABtGpMxSTUNnCgSAhOmJm2exyB4uRnO48TjPCg5eV178pIZk6Bmay4WzsVUQYGaBnU47YpxU/Ke40TC0Do7MK97oTUWOZGVpGlvyEjXLDTVJatxhVbPcpJVlMrGy6iSGvtK3LlWZgyxQQGXR4HlJINRwHBksFNVbFgIOFZcNHUQAVJ9q6D0KRnOisECbTeC3t4oESALiEVVcyZz97e7mD8TcHYOt23jdJJth7eO7XZjXBgEbiKDjDY39FtTR0d0/kkmzOZde0edOhBIpEQ4130KPeO+cZz2ME4fqvW694bybIpxIqaTZWBM2nMBk5zkVtGZe1pMI6TiyHWupDY2GRh19DCSFzOA5qcXb4WjoBWL8yXq6Lc6N2v89DjJUIhgl6xvu64ZKwFvxq7l8zgB530i8MRCYbQJPxM2E3kqlhs9cI6Ait2JaIYteI+OfcOffv890Dd0N0mtZdRfALhAI6vOJPjnML5vB89Ob03j2HOBI0Auj6rV8dP5UMdO5TI0JdX3w4TrkFHzcsBhyZIVwl1Fm1fCZHWOaX9lNdF0Lqxzv+Jnve417xIqsqrQu8xe9SPr80DnU6r4gpjBPz9ra0HxR19ZdRdru16tWL7VLqvmRQE0dd/W2bfu63W+FVEgf3aNEFv88ipaspoKWC9rFCsfu2o+e/n8V/zMlWsxrlz7oDxsivkY63lEvbzyGlPTcyVOup8Vuy6/oLqaxbBQsbt8P+tzZLn7pBhwiZwDMRPP351i3u7I3pH7DgenUlrekejIeONnCwA5YXECNmE+ES0pB+ycPOrHV2QOIE44Gmzb6OkCdtjNwMmlBnjfCJyUv6MAUXNaUBgS0wYMjpYHpjVwMhrPx3YXY8TZoNne5H3VLn8ayw7TpExPUB4FkBkLSeWymmncY/bSzC3bD/K+q5Eq5rfx33kOXsNRyCoXIwKveaTr2cfKVeesQpXn4Iwp4KUv5uKYBJ5ikKXIARRNHoU8n8dJtsEUY3dTrjZDLKEAIihZyynOxbpPXEkTQ82YCTdCECEJmrhcVIkoTlH9UfLWa61uTnYFAR9Onybro26RlA1XyPnZVgN85WdkK/Kat61VKYfFqK3fZ+1TFbDFVFPYcJChxIY4Y5InmSY0e06SYaLqIp1n61yr8GWrVqqiJFZZUU1OX9dURAJRm7AWplOtAiuAsWI59zCsbEnywvf1Hnh9XV3Lz0KV/ZwBVv8eirUJCHh3mCY9zywnTV9xOsF9GlbeocqTFXwHqqpzRNXgMsmG6X5aAXjrBup8wmKcwav+u9YES/wKti/PA1MxjHVVz/IaTMn9ks3tMXAcz8UYX0ETXCPlh0nCh1P5xKBOdQ0SU7nwPCeGJ2Ia9u0N333Z8HgOqi0eHzovm+6T2OCy/7DW5MkDLCquPk8xgGvFATonzBbrUlXTdYZHiuF6nWszZx1ikmHbAoPoQwVM04T79KUW27yhO5VXzQ1QTjzmoMpgTpzzxDEOWFIN0p3m6c/n49pbTm9iru9coHzaRBrZdWQjDzZcYCg2E8o2AFoLAocrD+Bj+99EateQARwHi7Lm6haYr0OzWEI+TGyDA5YbNu/YvKNZw09fv2KMIFumAWgN4wwc5wcf4rbj+fiGkFzDlYSHyQhNT3rJKApua9zkTfrrY/CwmDGAJKK/9xufQFOQmIAJANicrKNaxMWUMAXtYVhmn5S8OTsRzdBq1wdR4DaNhoVFuVL+WImsMIuVRMXgzzdpK7NdD2/OE+PgqEK4LybBzfe1KS6mNpMCM6LxrbGjfh4nQhRN0gM7RlaH4zWIYlGQASL4RStOkKZnFohnVKxcWVMzIqw1sQUCBFxrpTdHjMApmROflSh6beMUor6RehjnCloVgp+lH20d5g3e2kpCQplm37mcT7GbAGrdzzlXUGPRTbO1KsLL+6gmfCU45nwOUrZdpriAihXnpBNOjakEmZ0JTIflRHlOM17KHFKSxOfzENOGadK2bei9kp+g3EwF/EBwIqA74B1phpGUrf34fAIz0HOgAej7tvwKzhjIHLAp767JDsQxG0e2j4n9thHw0P2aAo7GoNHett0oNwDwGIPTm1xMmv0dERMfx8EkL0SpFgsNYAKcNjDiqdWswgMpzyjKvwIJjFQy2nGeJ8Y55PXWse03IIFvHw8Y8jIMjsDWO1mK8mMa41Rxc1Uec06MmNjbhmaOzBMZifPxIINl33AcJx7HQTq6G7aT92uMld2iecfWb3h8fOD5eOLtRu8ZLpvEx4NT2Z6PJ263Hfe3O8ag90JMsp6KGSODBI6rV+qyW+eobRX/o1Bcc5znwJnUspeMLnTPA6UJF0uvEq5g8TA04c6cjMfzODEnzSSnKLSaD7Y6O+fjgTp8rTe0ZmTRKEkGAr2pEJiDGnQz7HcCredxIqbh85cvSxJZctVKVmmu6eyCJZ/p7bbj8+cvOM4nnseTLAYD9vs7YA3nALbthu+//ArP84mP5wfKpHjvjWfRZBJ/2zSRh2iVEijGuhqFbkYw+Y6ugRgn2k4gsHcmd2MMlF9OE7un3rMATnOeUQV6l38ajEy7PIGQIey+77AExvFkYZ2UIzJPl99InAKeSLn2AqJyoohJ3kpCyS78tu/orcOaLXN8Ft30pCrZiQHY9o3xGQ7UZE4xZaUqUA7Gw8sM6zMYAsfzG8/X89Qepd/JECibkctIdULsADeM6TjOCTzJGHQSIOmrkFxbHDffcEbHyMS3c8J94H0zvN2AP/lu4P3e8OXTHTNPnDHQjc2BLGAkKbF/u9/IjDwHHnFiDBbrkY5+3+Gxoc0hcLQKHCWQJja3jDiNYQruDVvv8AaOXhZwHXNwP2i9mBKxzKQBvzPBbGiY3XGOQNiBOYFzqBBL+ldk5GKwpU09N4FrSBSFuhjKLP3o5sIUmKAcAlejRHkTWccsEl9sS5gcL2bhlWeV+q3A4IJuYjXFroqLdYG/gPmXrIG5T02RxdX8qcZlcL1GsGjZvS95WlRx28pttN57cdSwGoomxnelw2IrUQbHdVjn2MsVAGZofV9ShqnpmMtgX7FkzgnXhKMM4+cN0TucjSQrBqCQ0MhWlbg+eqKNQJphdpfhdaxc7p5PeJz4mAciE59+ucHRsKdhYuC0J27tHZvfBT8lwpl/J+kdQMm/HMx5PWH9hCHRntrQN1PBfiKeE3EEB36ILeit4bY7xuGYH0DridYnPCd8Gu6NDbVnAyIO5PEBGBm82yT7NUci3bBtNzZ5H1qXg59tGvhct8Rxkvlz72J8jyda0rtqzlODPSbB4iHwoBuCOCFONcbOJOMTTruE3jakGbbdxS5P9C6/yVRjbhyqC7SnxC4gHkQlwfN8aA2Q1byNjpIai2+CTc0ICxZvx/MhsD7R9x3bvmEE2XfHB5m2+06wJg1om2FrHR0Jt4G+7bBGSVXIPoDTMAHrAr7V/I4sHzvagjSQ9eI5Mc8HcpQqo6HjBmsdt89flvx92xt6N3z9+gPO44nn48A4E+eRYivNyx5Fccezg2yIG3pveH/7JDBksjiOief5pM/nvBq9M9hYSOXgDYyt1slqnmKMnFX3dXpFhe5zQRyVOZO74KoPXnxq1Gwfc8JkmM6m2hW7um9w26DRULQoaIm9A9Y3WO9wmwIU+Lq0tCCjjGtoLqsXQFLsyv3xcwB7la4CCWFcK5GgPMo4yZaEto60DZmOqRquQX5VSJxGBtjpJVUHPIHN2hpi0P3GWJGNE1R9J2Crjk92NgG3MNCvK2F7B4c5lJTLef+swyYZ7GM+kDHw2TfWKI3nPZvghDPf39+xtR0fj5N/36Ug6mTSfv36FffbG/Z9B1Rjh/LgWWcDSBrY905D/UwsexaxusmcTfz4hx/x/ukdv/juF9j3Oz6eT/wP//p/xOPxwTXbO94/3zHnwBhkSwfIwMOc6F6sYRfAI+sNMxICYPj6fEAHtnIj4QAwnOeJOabwEcO27TBzDiPK1XZlruWcNnjb+TxmMXgb3w9uyMHJ2D/9+CNZTg/aVnwcT5Ix3Fed2+BkOhqZt0fwnG+tQbTtpfAZcSCTlhczBp7zgWkNmGx/8BnInkJnNYFunl8LbNWU3vM8Vp7x93390cCTK0nJWR3+WMyQV5CyqHfEQ6SbBNkDBNpknlxpr6sLlYUlFk5TqFylGLHQceDS/144ZKFv9T2lRQ4hlypGHXo/q/OfeHUlTiq+Cw2unCp0Dwgeib2jTZEVgEz9hazC8rWXZtfFoYpLvn9dyxRQVQalC7nICWQxWZT2if1SOtDQw6dUh3fYvS3deqSSSmZY3ES6dtiVhL2CzvZyT5mo8r9mzBdvjfrScxHCE2XgUj9nLmDn6jJMgXENkM9GTRLA9boumnwxY5a80q9uZNb9reT2StTrHldXWsopDCXEC6A1Q3k/VRK69R2tddzvdySYiHZn8EUVFFgI3Cpq6z2RUGfm5dnXPQeTHS/PjNWdyZf1EdceMDJLAiYKO4vphHEMsQqdksZNPXcXIAtJPGfEKq5C3ZOpwtMFIJ2De6ZDDCdQJpcAYkwCM8ZpP3OIWRQEIggeqcMXfKBzxnpudcPnWktYBygsOB71DMqlZsDbRCSnyx2ajhVmi01SK3Ce9MsZnPnOQk//doqO6qkustWaYhKThwCEVPxK4wEZnAYIxR9kwEWbrWecSkxf4wGUQExdnK1nH2ttVUfdBBTGDNREj9oLJV+uuu9iK2EBpu6iO9feKhNb1noCoZUoNjJIZ2trUp1tjmyJ3TYVe8Zu8snufOsuw2rHmTVnp+MVeMqY2N2xN8YcM8fz4wBgeHt7R0mwr+gs749OsL95RyYwxsC+d+xvDdk60iklMHf4dgPM0Sc48WU30IiZAIol5RQEnnidW7e1j0wU1Yq70ASkq3sJsL4PSR8vdtoyk/UX5omuyYpeU3RZI3pfLBwaF3MduIrdLuAqoi1wX/zHF2ChoXyL2CUkKLEYYkgABfYTWPTeF8Du3uAtlyTQxLKoc3Z1MZPXsmjlKykKgbkXiw5WRQ6qocv9kaHhEmKICAROKNHRfZFaDyU3sFBX3gFoqqJhU/PFwAEiG9lzFrjfN9z3DYkdEQ0RjsiGTK153bvrTKr1r9PB6nxS3qCOZUtfew5idi6mTrCbXBSarM2l12OxqPNRIaeV/4MQm7oXa+0APztoa2/rZMf1Djq3amnVPdU3vF4nYNrvii1mhXkIdHnN0+xn7//zF3r5fLpIqyCH13/Kl2+vfy9AS2vsZ7mP1rhdP20/+xC8x7n2ZH0cZR+6NkfxPl7Pfl1j1jteD5zN6+sMtvp73Z/6MK7P7xDLHgaNQEZ5RP2cLeXIvDLZOv+LKY6Xz1yZFM85MQTqlhFlhgPYOjAtMYw5X0agYcIt0RtbAz25d6NsBtxWEdBsAmkrd6a5fbEA9dkFJDte8p9MytZUeDkq79aVjYk2Ezcwbi0pDgAPaA9BzBS+boi9xZHcLEZ6STWmrj+BHNpLoK1ByV0gIKT8uAKVs6gVufJPk6RbbI3K+o2EYVP+NJIA4vI5m2vDrzyXIbH2a0lflTeWjKrYHlZ5mmjBSY87E/PKoNi4drQAXwGL3lR8T+XFbqs+AbDAYRgwbMLSMB0ID/k68QFkMwIu1fxeS5oNG9lawkEPUyDRckOLhuexSSKs4hn6/KobxpBvo9jydb0RUC6v/FU0IwNvegwyb0YEZgIzDMep5XX10ugLGQK0WAi95NQrfHI9uMHSxOLNtcUyTHG/9rdAZVSEqvVli81la/NB4Bk9TX8GgpvOSAfslR1kqT3He7wsDZAr/rLRVpL6DpghcugOxrXWKofQxaxIYi5SQK4jukZyAZTphqrGVB2Al73uKX9NsS+jc8dPgzwyHb7L0qMYzAnAGva+Y8aJyAEgRLqv+6B4VwqNHJT+O7iGPJgrJmv7YoqV5tK9IWEIJ9j2fn/D57cb/vyXX/Ddd9/h8+cveH77wDiYz8AvxjzTlHrfqYYAn2fGNXEtgx5pc3RE7GLf3fH+/o4A8BznyomQ1WRjsyNrgoqVfM7r5l/M8SVX415Qe4Y5j19MsJ+dtTp+3CVRFcJsAoUuFROw2MP5UvedgyCk2FJ5lpqD67GApKygKnuL61gKMQJd2TcdqVlXseabQe9sNt8G1lQ7xeZVt6uGKb9J05peraslL/1Pf/3RwFMTm+Ic7LTHTPhmgKQBRALl6QGOX2zbhq1t2GxHDhaZe79TL+ikm++9YYpnPYPoeDoL39YBWOCcvEHxUlh370Ikhw4DmX9Fgh5EG7KnQAcearHpoc7XI8eBdMxRXXkAcOz7nSh5yl0eCWscrx1TRnQal5iDnfBt2xGQoWR1nHoDKamt0g9KEUILMkmlSwO+HU8kAJf/UITGCc1JfT9cRmXsRlUwnaIsprTvVTj13hHhSDswIjEOdiuKWXUlqgJT1peu1/DzXdQI9pzz4KEcIJDYfW2Yvd9ATwZNlphzJZLe6JszJw+r50EmUtf75CCFOOojgH5LmRw76zJUg5K4MXMlNVABkUmz5xqDnkGmHI2+iUwjE48Pate31tjZ64Y5TjIMOhO9737xK9zvb/jFL3+FH374ir/+m9+oe9YodbLaQvLKUpI5J31DmJS9MPRY8WHbbigpzpC2/DKNu5gOq0A0HjzfHgdN3toNaY5t3xEJSlfmwDkPmlmKbWdm2O83Th7bbpwUNwdGsjc3VCQeh8BTo+HycQbuwYlNj+eJY5zo+wYg8eOPX2EGfPrkQA7M8yB1fE5s2yYm1wbAMMaJmPxsvXVdYx3w1Lz3viFBeR4nB7IrNgZQdAgz0dCNPmfdNUFDXZgYjo8PMjw4FbPh05c37ovzVAIFxHZyn3r1zAkKHMcTbdvw9v5pjVgegwns5V0j75HJriivUfHievTw1rDfWbyMSW+7Zg1DPiFz0n+p9b6S6yFWxX6/M8ZA6bOJXWodZokBAmtjMFaaAdu2MTmVKf627esegh8Jn+7vYswxfmw7vR62bWN2nob32zu6N+xGEOzxfGDfN7y93Vehd8rkfbuxO9tExnVQCrZ1xlL6TNGs1ZqvjntrhrYZnsdXnOeDXjvucN+1Dp/gCGdQ+nFruL99QdvYLYuIBcA8nr8D0GhS3TStLtkta/tNdSelx6d8yTKu82Pfd5jMnKswtNOW7BCzwAmgoQsrIch2nienkLXG56iv6ggxAKRibWNRJxTYzXHbb+yId54fFhxv3BTLKfe5Cq5KEqoQKQZL5wEJ72QUdk0bHeOAW8e+dYzziZkE6/Il3iR4ho+pMcKNpqdL2hSGefLsS8eSMlhnDC3G1PE4MCIw4rm6zdD5jq0ST3bfzkhYcFJWN8bc+9bQ3RB5ck3dvjA5LfDEjUxbAH/5p7/Cfeuw88nz45lQ1guOphvr/CJbRQlwJCyAbg252To/rudGnhD9ECnyKQBnGOWzQ4BzQF1KrwQcqKSLebmjbxvj+zwRyb2ZlcO+xJcxxF6YyXhXPiBZ56Uzv1Ant+QlyKso+9na03qzSvJDwCOrYFSJs6bRvXbbCqy5oBsUcGp2BbqsQhDV+U+8/tQyA2e3azEAatqgJ5lQE4ky5w0XmzlBVg4IbBSLNUEGkVtb47VN/ocj5kq4zQzpTJRZM+o6CxjESxGpmFbALz+LZHCZMlIl475rVHYo6fayiQCLRG9co/SBqopYZeQCG1Mg7VSzUc8iE3g+se0N+5cdHzPxGCd9Qwew3+T/Ke8eNAP2DX6748MMJwJtBDyA29DkRiVQ6fU5ZRAeAdNAjNNOxoGvlNR4JicgzRNv94bu6owP4Px2otuOL+0dEU/EoYxYa87M8RYdkYYjaFD8eClG5hgwS9wtOYk6eaa1tmMeE+OcaMtDlmPUY5wEKaYjJAUZGZw6LYuHs0Oy644I5iIA8+62+2LFIzhZqlnHvW/AgBro5VvGtdE7R79P07j2iAVL5eSm633Tmq4JcII8dKa01iQBDnz9+sHXbQ3uHd53NsEi1nCQc3bFBCksemL5eKjQ/+mh6d5bp7enT/5b52StaYY+au1yfwzQEHoOYNO+fHz7wDxP9NtOj5rnt8Xs6L1j38uvcMPXrwe+fvvA88FiqbWbzr9xSch9kp0armXfMRP4Ok8ckxYDdS0fBzCCrGtzoG/02ztehr+EsTS+2tmygBD6bqgmBuD9Jc7o3K8mxmoKvkzZMgA373odSecN2Iyj57dGX9cxxAAUa8/aC4PfTPGpKV7RS4n5KCdb1lT1KUb13t8AAHM+uPchgFJgWuUego5hMDTfMYxqh4CmnFYscdaTkay54Q5slGV1k5/cyWZkzpNn8TvPm3OcaDeCbLdPn2hu/RE4j8THx8Db/gm/ePsH+PHjD/h2/ITZaU8QRlZ/35wxJE4knsh84Pa2oW8bvcXMuK7SEFMDBtAwNAGy7zd0M5w50G8b/uQv/wH+0Z//Bf5P/82/xDjJPvp3/9O/xe8fv9XyNzRJg1eTfnK4zjEO3N4+kbE4nmLakKAQ48THxxPAA999/wu8v9/xT/7RP8SPX7/hf/y3/zPG8UTMU01PRwz6UedQPmtszG7eYUFvtVLX2I1sOmgoN8u+hIUtH6TuO88WEVUY7em71Lyh+4actG4QPxFjcNEeJ0GfUyD7jMBxPDDHKdWY4d47TGfhhOKYatvemEe2Ao7yQAA4U9BmCFDPRMpQn7Y0HAowk/uSKaxpynxSlQD6gxaTGlZgq35v/WV263/66z/D46mSK0ONu80k6uZgcsJOX93sXJs+5HRvxolKQJk5JsaQNCG5zVRNonSOBeJBBVyBGpUEVccGq9sFnj0piYL7GnupXhO/HSb2FVNN189ZsY6SKPaQ9iyFNlNFrmAmBKusxuuaI2myRjqgOhoqYlyfo4OLlsbTYjmIXeGiUfIBO4vryQRmisHV1lh7Q8mA0hQYBH7VJDIzFX8VxN1w3S0FNV6R7nW9dt1grH8Xjv5SpCSLLCWcIbPUsZJZTe2IhCehY+WYeDUZTb0f17QttkgBbSl2zzknTbXrQUL0XGABWnNw6ThKj0yZEJDYdwIdQ2bKlr6ma5GS2GGe6K3j/e2O+9sdb/cbzuPE+9sNcGCMA2P0tR9g6hgwZVZHrFEGMeueFJOKZ0VkkjYug9CmUfWGB4uNF8aAeYM1x/Nx4jinMEtpgtPwPAOeJzzOtSfm1DOEw9vEHEykzjGWaXREonnDOGuiizyKRgAYMD/oeTQDiZP7dvCAOY4DiIk5il3WtF+dE+sQmGcxLrSrDev7vbHwKK01qd5XIWQVa9wWs6mSvIyB2sgZpME2N6A3JqYGjPMgu2sQtOqdEojMxFPTYUzdNfeawqcBBnGx3lY3T10OTp/hf5+Txshlck1PKgOaS7Yls+jGw4idZRoTt1YdhGKIALf7XckyAYfugeYN+7avwyHU3XHn/SO7keuptU7gab6MPoXhtt3IWHX6GJ3B9VZST0tbUuNdgNh+7+iNMtDQWmTkS06zMB7QpuKW/XgmljBHajpHIHU2cPjBOAfcG263N6SKsIi6B9wcre8IC071EvuzJh0S00iZsnLdlBp9+UaoyPbGeLe1HXOekmZuMJPM1dT4Fnhhm6boCZDnc633EXvWKZkx534taWt5hRkaWmNj5OcxtTrgQAweaiyuDTm59MvMPoKAEKXY8l54YbSWF1h33r/ng7Tv3pv28EDvTEah5xJxonwIeXaGOmolh8NiKjkIilParn1guSRSAOC9o6Xh7f2TYrAv35aBiWmBtm/q5BMgy3D09T8yYO6bozWABuGA7RwHPgNrEiGnRybebjds7og4V/GwvHYSzCPMrsZFCuhIjjiO2gNiO8+a0iJWhRx79Oera27aX/WeiEROSb+sbtEFuvDsJIjPOMNzpmRjbLYk0gOb6L4UyjK/IK9VN9ugs0/eNpIVhA7RyNf3LCkrdL+VYNbZVEVyoSYVf9JYBBVuovtnQKnrtLeuIq7ez9Z/++roXq9bZdXLukExh4z+fMZTU7eVr+UmNhzWs3StlzJUD9DuoMFRXmav7DBewJWXrb9e3WV1hfUvxeJz5SshqSY9GNWVzgu4S+2XuiFlzH4xqep1azpYrtVVz4FGrVnUHLJ/Z8JGoBc4K3aJDX2GbrCZaOO8WJKD+S+C3nNF3zPMxXhDsQIM7KKb9o8kwWQGBfObTJSnYQJrhH00+azmi9RK3oU0bpfU1ghkESyb6JagfId+hBmOkCUyksqbphy1evIRhyS7ZF5wumMoWy2/rSDoERBT4eWR1irNYnq67hEkwyX4VWqD+pn0BIJ+TjCuOoOJiWQL2AWYx7XyX0qeNaZ9AdAT1EC5IuyamFnj4CvfrafFz8+/O4lOIp1SqUjG2GbAHmK6tYJpagKs/EGzJu4CCVHSnEB/wjktr7X1XgQTJmY0nGOijVOpWNVMZIeTybtW7nV222R+1l0XQ+ZIxY1kki8/ziYwKaUQea2NXqbfKfLyOSTKp+mVHYTX2KutXYxIvPx/nRPdrpyLMYVNbzLUCryC6iTlhOulLtXHFSO5J/tiuBZD/WJWu2JR+bsBXblTsv5xYIav+woxkgpQC3MCP131neITJgdiDCPzOyv2gHJhg8PfPyE7EG+pPIMgsxlwtjtBxu865vFAxgT6G+x+w2Z33LcBtEHgSblkz8acVLV6xmCzszc0Yw6W1rk73dHajt5vcN/QrOPL999h3zeMDNzebvjH/+wf4x/9w7/Av/iv/2v85je/wa9//WtkBJ7PB24a8MScpnxeVafB4N51OLAxaCbWISi7tXDEETi+HYjT8NbfYG8N379/wXEcHCBk3DfTyjfQL/mefjUA3QnYTMSqO/em+q6ebxawwxqQ8cJX7cDz2BQ/QYLAVCyrOjqBOQbWFF7tbtbsV9M+tAbpFZtLvsdVxPeKpaQhErvygDrDde5y6nroz5qMLiIPYrlWsd5QHlwNFfUGF77BGP/Hff1nAE8CWbqvZCRj4DwTe5dXRwXhl8OdifJJ1L81lFvOPAdyJo6pQIzJRN+FSIvqr54loJvE5D+IMOaVzJevgIFdRQRfz+UMv4KImLG1QBo4brRovZh8Kn3rdOYP0e4dQDIxhOlhV7esuuYxKYUKTimZKsgqhWXSokLACuVm3jEzUZm+pxD0NE5WSE2eCtKJzZK6Y3ABd/kjGasuauEj8TzIiijN8/IdeEkXCTj8nCK4wKe6Jy9fBk7X0qlGuiCwZJfH86Tx9SRbZH+7Y04ZX4eChlwaQt2QNS8nL9LeOYYmXrDrcb/fCIocB7uRkxOlujyXkIZ5EAg9z5UrrXv8fB7UYIuBdByDG7obfLJztd072saDbt82fPf9Z7zd3/DpnSbFz+OJr98eeDw+ltH4ttFH62DLGmZEtVvbV2foIW3zGOqQbDKtTvqi0UCY75vjA9zovh6Gtw2tb/j2ceA4qZtPNFhPRAh4wonNT5RB4RwsiI+Th577k4zFAsEy0Z9DnXElK8FiaQ7ew3NgAc7j5GeZg4XN49uD1zAntt6xdXpQWHKMcAb9g2rVlFHleZAddb87Wjd1+lcdxGTayLLYusMd8llKbJ3TxEZN44Mh54FAw7Y17Gg4Txagx/HQ5K+Jbd8JoAQn+3x8PMUYod7/vt8Ao9TrnGRetVayN96/1jkZ8fl8oq9JiYdAQ8aArkK5NcdxyOxva/C9Ye8bwVkVY7xOBnsoZt5ud75uVVuNie227Yqnl5Hi/b4r0SyaMWia3bZK3bk3Uz4+MKCZTCgpPTMXxRyG+SSYd7vd2DlUAZPzSpbTuxJCXkMDkJPxxoOHvXWCMn1jTBunDvjWcZwDj8cD75/vuN13fPv27fJPSmBOGty3/c49Ll86PkcyxpoTkNg3J1PkHHCE2GME6evAZVeow1rHEYnMifv+xlHWKBBygDTwjq0zHpHR4liqjINAz3meZPtsKk6RnPw4A7f9/sJu5IS4OSbO57kShuPgXp8H4dZerJSRZDJ4sTgTXz8Osp8EPYUBx3Es/zMmLYxBj2/fmBg2VyM8cbt13PYNt7edPm4xEMnEP0vSpIA/wTP9UDeLuRQZytYMrZmYvFl9IZq7N+B+/0QPv15nreERB0ZOtH3jdEeXHBINt7bjrd3pPWKJfVOXOmiCOX0n22DSPLS1DQpBjOkZOMKZFCWZ1SaPsBnJIg1Q4czzyUOeGDr2AqKnz1znm72s6/VexkyXVHYB9ctLJRiBrEz8X7zVMjHDlqQIqTOvdVQTKzv7wbM12GR32zT1DDYQmLKzNHhjS45NMHa5FxiaouXHFR8IAoXuQV5ntxpOlQdBr7G+xbnv08DPrsupvhmul1q5QOV7TOLVgkvwfimpIMB/5WeVr69mX2LlH4BYNDr+XE0ApsQl32Dzke/dKT0iEQA1nXgVpevPNR5b+aFk5fVdjMflkaWzSGBqydTr3nkBnVHyAgh01XvVfYOhNBqRsYrlYsoU7zaDudAxgTgT9gzcd+bLkcnu+MMEwlMe0/KJLjC+bBhgdy3wyeI/TwJKKD+cRLaOMDKlkBOWB3ry3gSpfnhWTgfmdG1vytNO2TV07I3TN7lFEoc8fJ4xEGA42xDoagSZJWYOrVvKr2J2KiK27aVoIbtgjg+xVKfyAhlkO58OmxHMdzBK8pI63wTwBtZTN4AN3DOWvLvZBSJpg6wGYXmAOQRYKR7ws9oCeFur5nXWMllF47aR+d1aUzOhppGSqedGkI/vXcCTk8WXAXQyMk5jc/rWyRDu+v6KyRFsdPCc72JUnqjAaQ5YN07P2oyeUeYatc4mB8zQgowLePnpMh5lyusy60mwmR1Z3nHM0feyNwgW1OVzmjA1AFzyaao8PIfGyKvw1v2bknmhso20dV+bdZ7pdoG3S+ZWieRLfKq9bAnsgjVreAstI7S9k+y2xXZt9M6kl9Zrk8Pg8uBt5XVVjfzgu6bALQJPAqx0RjRz1SYFQhjOwWa7g8CSwclarIl67rBbA5qacKo3Ivn54My54J1garuhtRtuv/iM6IazA2k7gI2xIQIf3064AX/yZ2+ccJkJ+A3Yb7jf3nGbAMD89ngOZPA+9Qw0DNSk+W27Yd8btkbwcYrxvqNhv73j/v4F1jZY6/gn/+yf4suXzwCAT5/e8S/+xX+Ff/wXf4H/9l/+S/yrf/Wv8Hx8w5wHvv70A/qX76iYEnt4TjFOk4b6mzeCaQE03NBKnmwBtB02Cb5+PT7Q2olf/uk/wKftE376/gPfPr7h93/4nRoNtnywqMxJeqJFoAdJNegdY05MATIZrEUAMndXw0fAtjuVUUXq4BpOxEgdB6GJqaH1a3Cw+T/OcR21rjXaOvKlISqIQrkPmy+mfM4kZaqcEbLFKEldgaHmJhZTCtthrIGxMcBCkDXqRNKDOHGBfWq8moA3Vu6On23A/8TXHw08zRgrAambldI9t9bQW9M48ER5GVRHsG+AyTB5sXB0CDPRm4g50BrHh0IPqlg0tpgQLDi72fLsQFErVawV8tiUHCxUo74/2QXV9sZmbUlvYFgdCAv+e/dNjZJU94pJrJneKw0dNBwbOoRRnTfVe4n6gLbuYVudGGpeawJfZiJOySzC4diukYaJxVwK+Qks3wEibigWAVBMM147zZ+ZLNFoWvTxKWaauPtNqLmJXskLyDpBuClmJX0qNuDy7wicpwy/qyt4iLFU2gB56wBkRyQM53kIHOtLx8+mqKG6CnAeeEXtRmPh5isJ517hePAdBmCcCbjMiXcW72X6e397Y2E9ypckcMOG3Tfc33cab7shQdM0WOLtfsfz8UTEwLdvP8Gs4XYbPJzRATS4JY48eKCfBFlK3lMdkZhW9QMLlkYj/MzQNRH4PMeJj48P7Deabr+/veF+d/zw4xPHGXh+/QCLDIKQM6/7E7NkRdXG5u9WiZgB0sRwak0Cx8ex7jvZiAVcgj+fmpQIwG1FINGLE7OMvV9ATC1ArpcF9yfmaUCYrHYCx5ABuV2MhDgN6TVyF5oqpr0t1tbmDd0cx+N40TmT3t7cMcNX4X+73VbymKLWbtuGL58/qyB0PI4nxpxoktWSIcMkZ87El89ip7VGTfsamW4AJHPpXZK4E7dtw9Y7mU9eHcEkMF5dSiVWXWbbNS0pYsBEg6d8Mjgtz4Dbjb8fz+fSVfMM0CGDUAeWhYsZBwAAHAFfcYhyJHCYQnK/eHUHqV3WuoG6gE62Wyb3LBrue18a+YQ6oM77f9fndEt0d9z6DS132Njx1jnaOQCBDZOMr8mJZf3Ocydi4u2NYPzWK+GkNOK20azZ0JCTycir1wXUudnaxrG53mFpZMTNieeTEwe3PVdR/xwEikvHPs5TB7b2bS+xEVbT4ccffpQB5E8AgK1tpI+fJf9iDI4InI8nqeuSqXdreLvfcL+Roj1j4q/+5m9wnAcnJaZYCJmgubf4H0qExpPPoxmbAvvmsMmRx73znJqD+7J1PqtxjnVILUaWuaQEPA9KujQyKHNJeo0gy5vJ0NqG1gycfZGwJqN2dKI+FkBS1tyck0/NCJBwLLrLQJXFTwwWp56A24a2GF6poj7RJMHNuAaAEFzvyxy7lel/MMcgsDk1GZNsDbgTqJdEysyWh6VD/hKRnHyD6qoX6AjYJAOkW1ugMiV2YhumoWVXF52M0KEzqrcG88Tp4DSZGOz4W2NBl04ZFj/JAsaQBIOLpWwVD7G4RdAdkeeUrXwgVYExfwFSzSKyOsVq0TkfNnE1/YBXTfFl6F3RXd4VwEtc4f3RTUP50JW3GDG11L9dKQbzO34WEiWUMAtAgSTootVSVuAO6yxMArEkgFMJixdIVTvRTDJbJerAarIFDl6TYQFgqLtf90SsVJi/FH+6Tqs4nNe9UM5cb1WsiVBxHUr+Q7kxGjDSYTPpVWicWuoGtJhiDrNA6jwYKTH2x3oGLMb1vNxlyKu1bYa9cR1mlL9c0OOxin0YvHGAzYRGTgJKBhxjckDF5hvP+iD4090qrdCPhCasAa58NM04KtwC7gMNofQiF7uiJRZYOy0woYmoRokI4YzJ3oQ69g5fn77cLMpvhoUqMB4TWzOyNFznRl2x5JQzi5loOtovtkDNMFOHmjFZiysrvxew8IrYssfZADXf+40eO5hc1+5NDCqspmTvnKr6/Xffc18I2UoxNbkEnYbOissNnU0JY3MjYmD6xMlABbML/PYAauDHUI71PMienWLjD+2L+vdVk63q+GJfULoIxIiVx3vb4d6xd1C+LeBjPBRrJjdMWC4AqXsVUDWBsKijWNP6LMQGUTwphlBmorkrr26AsZhnHFDd0VptV1x8X7HYGvMv651gcQSmgcQIr3NGBbekVIz9dsXaBHOtBM3PQAC96doqQkPDlaZ+vnIJB/OvOxynU146nNMuzXl+3jaCVQOG9AZ4I7vINiRuSN/wrSWyO/Jth/U3WHvHPAZyTEwwjnzcbjj7Dnz3wJnA1zTcNETHnwOIQAON+W3rMAw4nkibgE20bZNMU2dqcB/17Yb9/oa3T1/wqz//c3z3q1/hz/78H+Lt7Z3DxlrHW39Ht4bIAwlO4OybYb91DuFww3kcPI8qRwGbhsVM4ppwNW1Y41nIN2yy+RIzMT4OeG/4B7/4BX7aNzy/fsOYA+NJC4Oe9ISGMZ6yls2FUTSxNk9h+iFJ6zlObQMhCubyUwzxlplnABdu4i47FH1+stAcZgE3Tehb4x+rZWKAk809JSHpOlcdkHRvYkQSODY1qxTdSILl3r0YVfyEobxdAX41ZlSFKYYO5j6mPAB1ZqeaH3XW1+v8p7/+sxhPyh14M6263xxd3VvDqcSYiY6YOU2jvjUC8NRUiH27KbhzOXE8OfXTnPhHyj+kreTqgwCnojSvqnhJ94CS/rk6lfr8AZTErKUxKQTd37uCCWCY3hYdjvrdXvNjADjWtDZQouKZa7HVyNB1+MRFx7+Ap/azoJ2wxW4xEE2NUdpyByBwBQKZlMgtX6uS1pkrab6mHq2x7NXtDXnojEnmmhlR2CQ4VrI/+R7qgIWSJ9MZGipkRVE1brZieM1TNGIlZ69MtsrCCIgY9ibAY5zwltjU4Vv+NKt1qGftYMEPdlDcmfDHmPJv4T1tkmfMOYHGNbhtnBrw8fEVAHC/vyFm4DifAkITDQ1b2/Hp/RNumvgGBM7BZPR+29GaATnxfJ6SxbDg8XZX4CBb6xwD57PYTOqM69CZYNHc5HFj5gRtItC2jtYM+3Z5qrUtsAG43+5w3/D12wCOwPPjCbOG+52yvypH3LXfClTE5U3SpGWHAEaO7eSzGkJdm6Qccwx4d3WuQgG4VpQMm1EdH3bZuB5LdnQVhRVCy/uDwVtGjBksnk2JlLraqfGmpdUPEFDa977WiYOFV5wnp5Z0svu2xvjkqWIHBB/71oEgg+34eGDfd3z6/JkdI3P0xweO80RvG9wb3t7eYCaJIKOH2EKO/dbQOuWCmZwmAqPJM9ljIXCBXnb1/BGJOMdaE4kqDnmv6GuWOM/HKqjplzYEiDn2XVLg88SrjwF38lzFoVWhmKSPs4s8VhGkNB0jeMBjMHFL9wUUMiluK0ZSPpmIJLPntu84z0OgM4v4ttPou/fqqhBUtb4TeJobbu0G84bpklvPuZgoW2vom+MY3wCb2BuFfr2Z7l+IDdbhINsuBoEn5rYp1l95dXW0LllOcNLfOAeej4ekuoUENzw+vuE4nkpcAsdBX67bdtMRoJgOYL+/wVvD128feDye+Ou//hsgCXTNMXEe6nwkyC5M4PHTVyAT3Rx733Dfdnz+/Amf3t/QesPMxK9//Vt8PD4I+ERihLyFGg1AywA2E0hSE+FI7N2RO6fI7i0QNxoWq05H3+iFNaeK/iLBJhNZmEAVLyPnQED+KotdwcED5gRZvQGtG8wHzHmv0xxjPslYkBdGQxNgnYh5YI6TxaIbtp1rK+aptepwdc4x6V8Yxs+1bY7MqeSsgHADHQnYmW+ti41MY/KEUxo/Q/6Ifk02RR0zpKgjaaBswQLYVAgTzOHPFCiZI2Gdn2tJqqY6izKfrmlmSV0FMgUyGyd0dgMaAiapMrOLWKBPldVs3tG/rxgYXk2pdgHYdVabgkIxdTKZyXjFf9pn8GfsigWVCwiWXOd/gSqri6vPV5/OqgAMLF+tlYwWy/JVGghgGZSmajQBaQCWIaotelauPDSnzGVbW/tikCT/kmxfiBbxowusg7EBKYyKMn1QXlqgqrnBTaeqQBTo35KHIKX0pRG0XGcdJV16/1pfvPkqWhfkxP+PiYwnz77uYuey+HIBTy2BLaLmbhHoSVAmg6Tnnl2SxKYzjWbELERM+UCvsiJNTiz80Imx2Pgm9iwnQwfMAmYdhsbcMhLdmeyacqhuuka/Chw2i8gWFFoCM8k3MIQtKOmW2bgrHptvgE9MO1GTHCHZgvvURMwp1lEXfqrzNK61ubWOqbyt72LKJwXiVQCaQHju28o/+XnmUlYUc22JUF72QhVltc4qrhQIqKaSGXxjkymMeUXrLuboxYZ37fE3sZtjnGIgl9WAmAfW8AGSFLdsjNnGicun9thITgk3+Z6WtNT079UgPY4HznEuv87ygJnab2gv7ApUfsfXot8uFS5sQHEaqzsoTXLD85iIMMTheg2TWbjxApzM3Wp2cv0JOHZhmmkLjLKXPcw1xOfTWnmzGTD4OvU2TbmEG1Z+XLB9E8vRWpOkVBP0zFB4WD0Xa5XbXsBThMJdbXK7Xptgtr4XrF+ybF6gWlbX01tD3zoODJw2NDF1wjyAxubpFAgX2sG3bUfzHSc2nNbx8KSi477DtzfY7TPGx8A8eU0G4LF3zNiAzyfm+cTH8YHuDXdsaM8Gj4kAJ6pn21CHhmHCbNDfqXfs240NaKkF3t7esL+94f75E/7xP/5L/MU/+Sf48otf4XZ7w813WADnTw80AU+Q9LZ3Tp7snXVlAU+EZxrS2gJrgMGzWTVU845quIxzYGLQlxVszm254VfffcHmjt/23+JjUEHDfqOaMAlZbdAP01yWC0aPKYsgmTS5fs/nUzn/BhIQqiXkGIWVNNlrQBNPTQB/MgbWWc7v5n3IPNVAFdbiDhi9oMlm5GdoadiSeyfH5I5xw6lzZUKL/mWfVnypBLKGN1nZEMS1JwqnMMlpTdw8095ZxuwZL9fx93/90cDTbQ8d+ECzhs0IdsRIPJ8fOHU4E7UvQzC5rz8DkH6w3z/xYied6WcOBps3wNpEQB4qABHgdFhcdNmVS6D2byro8FCzEA13JUcQKigpBgTOcYWpCJPvDE9ivqSKC2uxGjhtJlo60U8A4R3DAk8brFlcP4/EZoHmiV2TBkLI/DiIHFKry6TGvJPG14y6XX8oKdOhpasnDAIlEruArskOTQzMcSDGKVYEwQcWitBgPMOIhjENZ07AL6Q/NXmst44xmVgv9pPyPmhDpfOejyB9sKcYnAk03xjQG4+Ncw6M4HU0sVCqUD5Ey57O0asZBIHCaERscCaYYIBo7th6p2xtDpznE8jEvu3yY5HW3APuidYDMzsCLiokVkI+B0dJWh94e7vh/e2OX/3qe3z+/I5Pn99UMMuH7Dzg3tD3jl98/wm3m+OHH7/heZ5InDALfgZv2HrDOQ3HdNzfN1gmPr29o7nheDwoz0TqYGmi8gPPkxKT97cNzTlNbM7AL//klyyMW8eYlOLc325IM/z4QTnZt/MbmiU2S8q/jPuBecKV9Mw5ydhS4GmSKd7tE4GUjYlEdxczbsKNFOE5HkhMAh4mppKKe4AaczQlGpr693yefP3b25KYbga0aPj0+Qta77Dkgfr+JsBopxQgzEQhdhmO8lCn+fRdB7kWXib+7M9+RQC3Ezh+nqcK4waX303OE4jA7XaHgebnInKhdxpuf/n0iYF2yQgIPpwnQZ993wV4tlU4HOcTiZQMrKHfOmbw+S0PgQw69qk7vQkEN2hqDE0ckOY4BbwGKpk6RJcH4ASNnqcKiE1guqa0IcH7h2JpGCZo4t86u8htv4sdwLm7ZolPnzV9bpric0gy2uSH4TielGJ9/90nxr+SAWMAzeC3bcWMMQfZINU9TrJjbtudYHdMjPlBAF1dfRhZmo/ziTGAfhiQBzQjB5GJx+Agha9fP1RgN7h1ODrcOjINz48nYob2LZN6Vxz+9PkT+rZhngeO88Rf/c1vOIr2BFrf0PsNx/PAPAf3tBmeT8Ylb47n8cRP337E+6dPeH//hD/7h294e7/hb3//I75+feKvfv2Am+PttrHJEBdo1ySBMX/j2YPE80g8P75hhmFM4Ptffo9t3/D2+QuydXx9fPCwryreDGEDsLk8RSJPOAjKzTjw47cD3t/h/Q12nNiywYicYIyTXecly31JFNSdpSE1mRIQMLDB0NMhxT1p/2Y4nEWsASzkwtBtovkJsxPZA24nQrJi2Ab3G3xv2G4NMcuP0FYxzmm4wMyTQJTT78upHSX7GsDWfAHZaNwfNyfVf5Yc1wUkmGFmk1+dOoclQZoDZc5d8mhKaUyFpZiMBpg1/vtgg8fcMEYuGTUB/RsIts4L7ND/XB1DRxc4NVchCyOkYCr0q4BtSrbLo4YmfwLnBdSXkWlNGcxYeimBzCbgBjjnuRhoomLQk65k9aahG2BOFAaMVkWmXVPJUEvS1biQVwQAa07QvTc1jfj+M6pgryalklwD9tu24grz3SRY3TZ1iJUsI9Db9VkJNrBhGTB05Rc5CwTwVfgV0AMQ2KridjSCGl1+PLwu7Q7FOWjtHHmoAtX0XgsBbRfI1OtzWT19+e+YAMqZbMgmfTspObphVnd7rSVNSlZ1PexAgiOzN7AYQlPjzAgO9JI8qfFanWlkAYwJm8xFNpOfSbBMMQDWeW3pp0BWSms2qMliuXJ0jAFLw46kjVJnk2acpxqThjYJEPi86zMJuPdcgECqeVhT7Kw1ZA4ECGK4iqAEkINMrTY7GU8CC7s7PGVjUffPxI71jr517NjEvHQ8vj1xnvLDc8ftfuN+g5p3DYvBkjmY24fkbgbai2yNwLsLDMlQcUz/xWLITEntWtv0cwSNe5ClwbzJ+Lqm/D3FgBt8Nh7cjBTbcW2XP6CfBHrTyET+8ukXgCUCA+d4YsxDnocmlidwxsCYA8dqcDkSbB6UUmDKmsE3x0J41i+usxDKl8n45T3Qeg2ZAWADH+OJGeBQCuM9i9B8JsVjNtVY6MOSuRlCeSDVFXOUHFIAZeLKf/wqlFks0/rgdvd1H80gY3LFdqkRahovWmNo7Wwim8zwoVjtGbRNaA3Tb0jQm42y1YnuGwxN3pHA1kvWzwFZz5wo1qAxoQN0gsqaEonE9ATsCes0uV4S4OTwjrwBQ3s34x0Zd+xv9Aidk/VT/8VfYPY7xvYJ4/4J8+0z4k+/B/wNeP4IO54Yv/stWpz47v4FZn+AHX+FezTc5ob7OdHGhtwd4cBDoMOGN/i+w/d3bEaiwr3v6E1Sxpj4w48/4fttxy/eP+Hzp+/wi0+/wPv2GVvbcdveyULyhNkNhju6v+Nt/4wcjvMx4XdaV6QQCm/AmPRmouLAWbtnwjr3Q0yug71vAA4EDtjGmPeH56/howG3X8Fvjn/+X/zv8Ovf/Ab/4X/5wNevP+HxfODTp8/om+qPMBynGNXyU4VhTffOYHtjQn5wyRVltq2m8wJ8EPTS9Jf9kxwEZtU8HAnLEPuIZ1zWXsVB2bxxDYSSsFJcUSEymD9kIianeKYBre0r/nNP0t4BCeaPCUTsPIcy4EXW0Z7mZRtsflynmDm2vol4wTyDhOiKEX//1x8/1c5TaCALPi+JiQExB9F2Icyt8WZASSGnEblMgNVbmWNRjGGgMZ1VSlAPrOyylLzp0F7MH/AGVRisnxJ+xEWD61eBJ6munFbQywKBKHxAfcNlZGjyMVFXyxLoXBiDbFdpLgV0CeVoq9tRDKVEjb3kO+Q6DIpOki7JSrIo5IcnQMS2VSXECdhEqmsTcWLGIKPryjgFzClnDbKlpgqfVz8u4mb1zUkjU6vgfn2l2UpqvPZRCMGVL09IiljXERk62LJyYHbhkjk0LLiBCln0i+6cmYgxYL3DNia+9NxgsrLtbKuYwBZ33Vn5OLA5cnXfSJ2mDKRtwO3e8enzHZ8+v+H90x1vbze4O+ZBqQuC3Vp3SpxgNxznAfPEMUQP7lz3W2dbJmW47nB8/nxHM8fDGGwaUuPs+yrgTEH77Z2dgypY7rijeiYfj4FITm0je4NoPnKtXt5vJcDsNCoeCPg8ciAFCHPU62XO3BuT8+6czDeSYEpvBTLEer7u0AQ9Mgi8kYUGJQGZwDGGwKSdcQGGFuwK3N7v2LaOHCeD8EaAYL9vmFBvU2/0dnsnq3AmDB3mvEetGSdUjIFPn8gWQesYEfj68WDxs29oAp/Oj6+IOfH+9gYzJyg+Jo7HQeCpb6S3S2JBueFBY/+kefPtRm8It4ahLmEYvecI9Bm25pyvlTJOxSW/SckNmpOlZiq2uS+0NiFqv7ogmbE6bEVlnTJY3zuBwU1+QSGGUmrfcsOWeSATajfHTD5fygVtTU+KI1bh543eVmUcXkDs1l3gEt9vzrnMTusQTk2FY5ObtOcyh485MYem+WVe3jfuOOfA43igN609D7hR0hgReDyfeDwP/P6HHxnLpgvsbnBnlvHx9RuLn3GgNcd+60xt5R12u9+QM/A8Tvzw0zc8j4GPj4ned/TtjnEMxJh4v7Ob9nxy0mQY8PHxDb//4Q/47gRmdnx3BNpu+HgGPh4TXz+mzkYZricTqJaiR5TXBRTX5olxnOjHidZPfCHdCN46nPo1nn1eJ5vu5zrAgMUEMDIlzvHEiA2R9DULgWaAulNgYaHaVF8CWtchA3nxiNZ+1QJcrVY4CMvVqrlNC88yBBQFBwnExAAL2YDLOJwSkRAzgVsgV/LNmM0GDot4cT2SyZ47M55cNG8QfI46x3Axg2Cr8JpW91BgRhW1OiMWAAMWl4JGUMUMt6UYzE5Pu5hTxYvpXuveWj0mu8AjRmcBN9VkU8AwsbiSKAExEBdIUuf5VTixQ36dk9WZW/fk9cf0B4JSXJtQY6K6o1e+pG7+auHj+npNuFIHTAEKyikKgPZGVnI6FiMBq2zMtdYYE/nONW2MYJGYASU9sOKCK++r69QpWZ4qVwHKfxGWJAFEgU66FMOyiCiwqL7f1nddvyeTYBaqoPTFIxYLjpiUZDiOuptQGoIa1sA6mffezRDexAiz9d5ezb8CyfQsio3IHE6/dP0uo66K4+Ulk1l3iSBBExOMkFisq2QsNsxai5jw9NVsmVZ+W2yoWIqBIPuIzAHME+6SjrMZDo+mtTnXOfcqIS02Fu95NV8mluxXjyADwDR6Cq61aGufG/j5C3BdzwMgI1q1RUxKyLyapQqGLAdy7U0+K/n8pNjD7ldToxklcgIoa8Bx2+wCdEZNo+YQpqZYZBqMY1IZtDqjnR6GmbQEyFVoYuX2NBHnMBQcSfZd4+CN/f3OBMAn7EjkMZbbSHnccYr4oKSfSKCAq2uTF0xcjbirnX/FiVjMCe0Fz5ULc9BSomRzvob3qBaapSURUOeUZXJJ+PVcy2/NUqedakKIEejllSnGSoKx2p1DURLInGqA8wwuZzBkcnqdOVRpAx6K9c6cNRM+K082NYw3NjAq7qlpYmgEpMHJ0KbVPJP+oZBlQYlcTYxYVK5kCbMpUJnv1Z3fG9E5ZbYnPQKRyPmGwDvQduTmSDuQvf//KPuXLkmSJEsT+4iZRURVzdw9HpmRVV1VU+huzALAOQMcABussMXfwL/Cj8EOK2CFgx4M5tXvqq7KzIjwcDczVRURZiYsLrGoRR+cqYBFeXm6u5mqiggzMdGley9hpw+QT7T8TF+e6Jdn0vMPpOUDafsF7lfaL28Cse2E2UbKM6UZqUH2ieJAMlrSsICEUVw+pjlNZJcsfUqTGtYhS63dcTPKNDGVmbnMAn+tHFOaxZ4SuSRZ+Dm60eqosVNgGU7OHgxnNfpTyjSv8ToRMVzMYe2rCqlGUa4BLOaJrV2Yp4UPHy/c1hPLeeL12lnryslPYkCa+q/7QSkPZp2N+GlxHo02hs6/kSkIkPFjvY7A1RkNgX78yhFq6I1htzPW8YBXj9/jng7f3Uc8BwFPA7QSJIaDqi61bhVfgvXPUIZFLEQqpAMbifwr50BhejCeXDmWJk0qIA3x8XgOv+XrtwNPUcTLR6iyd6Fw3tWRUxBW4libEvVaqzSb54l1b+ytSrbkHIWAiRKAIy8J945Vdcjl3zXkagrS3mPUaX0AN4AWbkpMpxnfd9q2SiqV7EgIeySXg7qZQfrYnA+Kbu3yimGK5CPpQJGJLurQHkmM01OwjlJio4x09kgISAIWdtRB8PnxcIbXQC4KjpfzQm1FBsLe6C7WQKM/aJ09pIx9Pbop6oZ3LHVGEzNZgHlErve+o6oHEAE/DtgpxSa7x5kTgBE8RjSHM3zbm+SVS46OQaP6ruQ7Z7w5+75jJTNfztRe2Vpja22AsjhGDkBCB6IO7149OspCfM/zgvfOy5dfKFNhmRNmlZx2yjySvBu45B45ZU6nhX2vrGvV3+VICDGePiyRpKv7dF4Wnp+f+fjxA8s8k62wXuVpYFmId5ljGth+Z93ubPvO5enM5flCl/6DnM9EekVpndLlVSE/EUn1zmd54kzRCbOU2GpjbzJN1iEkEHFbV4ji6mAmhPcIveJ1p69XsMT5/CRPnJD0PQocE6soGamow/LRFsZ0lRK+Q2lSx2AYrpcyH4XE+byI5WPf6tD3GgejjSya03JiOS0h7SN05kar2nvzcj4OkiHz2PaN3jtzChq+PcbP703rRaN3M3OegzGVaN257/Wog5bTmRz3pwYToDmkNFGmzOkUxXfdmMoMGYFAQ5KT4Ol5kT66XnEfY5Jl5tebAJ7TlMA79XZjvPsoLOeizpWM/2UMaa3DXrE5CZjTZiNFNzOhZDjnHGPnxXzE9BycTppH4ZCPLt97EB53ylSUeOWsSYW1cVrOzPOsAQ69w6yOxj48mIDBFvKYhLTddSjuIXnMObNuzu2+0vZK3xvF1Jl7+fIj7upQ9h4MlFw0Sjdk0PMsb6zbJpbdz59/Zls3bre7jFAtse9iUHUbevmGm0wR3St443fffeL56cTz8wV3+POfXvj6+sY//OnPYiGWWdc7LQyz7dv1Fv52jalklj6x143aNqxknrzTd2dbN+63O615eHk5Xjc01agxlTnOoNDk9wZLgucLl/PCMmX29cqNRqZRCljSlMp1v0py1T08CIwcvlHmKrLP86xxuXVn2lfKnvjy+oWyFr6+fuG+rdy3u86I+Rjjp7WHsw/vClPZuNYqGeblwvL0zPL8zOl5oUxZ8ofe5JnjBkcS9B5siC3dBKIWCwlNl4RCTBodJb0JvPDS4/wswwse6jDy7pDkQZeSk04nNIa8YDYBWc86I38KwOquArQq8c6ImGvuhyn+84ePuDlb3aitsVUVxrY/wLmWAtAI6UJKBpOSZmrDmtOa3itP2h/VO1vfue63MBo1yqRYMAqdjDx9am/KTgngqfdofMhbS/HBCXXbIcMfHoNWqhoOxXSbJg7gK+V0SPrGXpdsddIU4OYccrpIUId35ph6CcHwNY/Yr0m7em/lVDtineM2oMZoZDhrteN9GQVvLJIKh+wRU/HtqKk1QIgxbW/tOku9Rj4RxZuMqUPuokuJybMq0B4JsTzO+mjklQB8Alxr+4a3MbVReVc2xZcU0gsZREc6HgXowSLLRMyRp9YcGNvI/fS7nuecVcBKlqszlfCKarssCB5c+wAmjwLTHhIlU67pMfF4yk0s9pyFFfhoWgUDxh1zTYRToiDWxHhW79m5zTt1FXut1igmMHbSo6GDmklglK71Ndkk0MNGneTs0bmvVdPpsHoM6ynTpBK7WBROne6N6pVEY8q7mi4pvJTiGXpIxsc5NCbElkl+S1Pk+w0Vmq0pj8xJDEGcGBYUJsCRg2hSX5PRPE6PRrffg913EehVt8ppVr7yzekbzIzzs+T0P33+Ub4vrnOy1340D0swvTsyBV+mWTYEI4fKYXfhXSxECCqSRcwbMysLySeyBpXTwztJ07s0FVCSRo1SH81S4yFBdYe9Vdb7xr7L1sE31WIp5cM+YLDBBja37yu1V27rRq2dbRtTkBUjWxfzu2SpClrsx4Mlh8UglREbwvYCFcPeHobrbnaMcIfENGcpI1BTcl033ZtQQRDrt/d+TKC2PnwES3hR5kcTPBiYU9x/nd9a061X2S7E6x7+QGXWGX905AwrYw/qHreBDreGZXmtZi9MfWZNkuLek1hzi51wbyTuAV4udNkiUcpGT52b3TFLTOmMtwT7FPS2zE4MDkHnxjJPkkxtDctiELWeFFdtEhse1yTrVQ1wS0+sFPaU6f1MrxPrZcLLRO4fqWnhlp74/bff8xd/8wN/8d0zn54WPpye2a9X/h9/+g+8/rjz9sc75ws8//4P1M8/89q+4sscg1RWeqvUfYtJn7JSOJXCGEZS5pmSM7XvnJeZ7374PefLhblMtFq5vr2RbBZg2q4CB3ul1srtvlF7J5US5IJCi5qAlOm9yT86SCIeZ2vv78gZriFEvVbavh8ATLLopps8U1++fKbMM/vTztPHM//V//p/wb/+d/+Wf/jHf+S+7azbRi5F4P4iRlwb3nTuDxl9MHmtaICAB8vN+pgQTrCUCKYTarJHcR59DxoxRKwGKzTA4RICho6HAgSpCIZv74C8gqVHbzj7IW29RBzvbcMw5iz/4ex+5CsarvIglsScdqllksDB7CKfeN9jE/VQ7exHPyrFuU/IFX/L128GngjTP40Ujj/GyNWj+xN38zEFAN1463QL48dI4FJ0aA7roIFKx/82hgwgfh8Iv1vQrh+ys3HAi/ljeCDVjO7kr27GIxq7gScltJKvGZ702UdH9zC1ZHRVg4FlcEBfURC0seKOUM/IV7UIDI5Mi3itpIMWl1FeCf+pTqK7TCEJ+aDe/+hbcnTm7JEsHb58ifB6sgOcI3Sqnt6hnRZ3eFQeQ8ue/dDti7KqQ1gnv/KfnMLVv/fYT0ogMBVcqcinhS56qMVDG+bi06LR5j5kR5bwos1NAEWX81kg5nanlMxpniAmJ0ihMz7n6JpkTqcz+64izELXHhkj5/MJM6O1SsmZ07JwPi8siwJnMqPtSjzypHv2WJfHk1T3POkZgbpf2hdiZ+S418mkoTXCWFDaj3g9mWY2eqxVC18EPQYVgrH+40EbApimkricFyBxOs3kNKaqJYZWGSxMsMWWycnIU/j8BHPKjgUTTJaUmcqJ4R+2nBbmuQRgBDUC0GBQuUu6djqdqLXSu5OTgnFrhlmhBAhxdK4s0VS9UrLS8ozWf06Znsa90tD14fskV7YHc0ZxJADpWOIeBUtKmtKQU2JMdxpTQ+ihaUZJXcmJ6uocPjp677pmUYQfjMURl+JDCJiN7q+N65O3U6zsIwaNRHsAT0Y6DlMb4WmE3NbiD49C68G80Gu2kEWBzOy3bRX7B01Rk1xSnYxtr6HUCeq/+9FJnCYVV7V6rA/p4+veaPtO25uMwc2431boATwNID8rmcp5MMbExFq3nett5cvXV9Z1Y11XpjyRU1GxHMxKd3mjSeIlr5/eK0/nMyVPnE46F9a1s22dujtZg16oW4sOu8c1CPxJSbTvWiWr3Pf9MLX2YOvJg4j42XFuNSw5rW8CUaK7JepxZyrS6nuv9L7Tu0D5kjXdTWskEBrG+fF4xhYd7RSd11zysU+JJH8UeDaUN3GWDAAguWQvwMGw6U2vnYups5wz6ipmnMqIklqOATW8B55cp26UyfJ9+RWLxo9kY0Sw8bPHxfk4y7UGxkQzGMNCEt5Hb9BDxWRHzKMqubA+QFJ1do3o2iWnNZ2jHZ31JPmWPD6ZPZK9QYgZ+zURrxpU97HXTbF7GKk7OkztYCBGVhI+DozEzqPrfLw7Rw4wJu4qLo3TIyJPAFGDjZoSMTHsV6/E8XLwOK9tPJLH/X8wxB7P5chB3I+H5OYY+QAtHp/KxoGjtcSIhXYwLY7ION6fx+fyuA+hqNO5GQ/gfd92AC+HH9K4zPH59IKMkDmKjMEE4DiuDPrj58d6JFgX+GALxWQy84NZd/CJRj4WTY/kLkPveEVjNHIEXKUDlRnMjAGwulgIx3riV6DheLUB8o7rFWPKGZP6Rpx2Qu5lAvEsAJvj1DN7PBAbP088Tz8aSz2mLA+W0/tzwywfjNiDNWIWU6edYcc0fN/GPR7PYXiQWRLA6SGBNFowHaWSUA7UI8+LWBjgeQSax4NmHJP2UB4cZ/JjL71/fPrzsaPpkU95qCVGNTH8vroHMIUzzYVSCk/PT1iC6/bKXne2OCO2tslOwCspJJge/qQHk9Le+1mGQmMUx71H3RLXlPJx0T3W7pj/0+ORDp8jjENeOvJzj+/pzdlDcl67PFXHTVEjqEdzDUkoWw9vmh5sY01i7YeB8TuD9SFpCwsDItd6vIW9YwWOTToCa5xf9i4ODwbfWHeHf1aPdTjWcOwZewAJKepKszG+YEgFx756B+we69owz8E6HuqXyOFtsChjNfnxY/GZ30USh8FOPrzzbPQaJpwcDD5igE14aDIgD4H5tel6MkFa6I8FLNNyDuApDUDBNbU9WdiZjPtpxpaMZpl7n0jlTCqf2DFWEvn5G2xZ4HkBS7R7plOwNPHd04n/8ndP/M23J75/mnm6GOub8Y+//8if987L33+lNme3xIZRXcqHjknqGUBFMsezhT9a1Bcmm4KcNaxKZuOzFB3hGTSaWTorIs+KdByD4auVNGlEhIvB2CRYbIyGN78+W9+FB0c/Nw6tw84m1llrFXZYtxvn84X5dOHydOb54zPb51/UnA0wXiqUxxn0OC8f59+x1uOMHN8zjqjY+ox6jyO6x74fL9hRw+1g/KnRjRN70JTjvL/uWBNjbcRprR1t77mJHLG0hzZX1mWPs92OuKX1NvLAHKontwfgZb/64PHaj1P1N339ZuCp1jswaM/9kHrg4JwgFcJJib3v5JSZTgvVV9btTu1C7VKJ0cpxWGlMpwrsMdEplcIoR/VvMdmnQa2wV+fQ/ZYxpaFTm/wLSjKm0wkiYRyJz0huUo4MGeimUcYy4u6ScoEMb+nUmKRnEPRCi4IS9mQhd4rOfd/U8XMOU+EjzTXpPAe7REFP17ttd7w3krUw2TbcZKR23e7s+6YNFAHQkqZy6EAYDyGRJtPvgJkL9MEYdHDoeHYmh+qxUAd1e9ybkZpFIY33gwINOgzKWYwYumMBKi7niVQKzx+fSUWd7OadtW2kKcs0O4io922lOzx9+EDJhVJmodp7ZS4TU5oO0+RvPn7EzLi9/qDNkJ2pGPOkke0agqigUPeGWWaeT7Ta2bY6mJzBYhEyb0DdB2HXKGViLpNo7n6oASiLJgxdrzIgziWT++g8aTw5NsU6W2nN2bcuOveUkbW6JkgZBsuCWWd3P8zPm0voVorMz7d9xzAZ5aUEqRwBLadOmpxPH5748HTm9999F49B+t1pyuQwxR7TnZKpk9a8UqbC+ekcXfF6JH7rpoly83ImxUSLbdu5r5u+h5FwOXPSKN4cEwj3rte1qajT1Fs8FOO2V1KqTLG/O5B6gMFTADRJB8W63cO3okDO2tcegEQLiWIkDvP8YBT0uLZcwgwzuuGpQ8maWkkYmB7AUwqDxAB755wlfzQZIyfLek+M8+mkmDSCq5nYPUleLzDkm49YaWZMtbGX6DG7JpMcniX2bupmd7Z1l4l8FhDbXV271/UL6gaX4wAcnh0fPnwgJeP15asAqu7cbje+fv3K0+nEaZq5vr1Ra2Wa1GmqLQjhQ2rXnXmR4frvfvc7Sinc18TteudPf/oT67pyv6/x7DuX5SxJX+2RTIThesrs3dl753w+sSwzP/zFD+SS+eXLF15eX/i7//h34ZF1ClC2HmDklEO7jkY3e4N9T9RqvL5Wels5nRQH1s1wX/jw4XdMKbHkwtvblbeXNy6XizypMEiJUnR2rPerzDlbo28Vn2ucC6InK9F9/JpyIVvi9eufaU2TD0dihBllMWq/sV+vnD9MzCc4nxQfvvkktuW+yVcrjSLPEsXFgFyKpB3aJRNmZ+ZpYpoLTx+fmeZCy53besc/E5LiAIRKenjvRbQ+LWeA8CFLzHPG8kLzzL5HMdK0fnOecJQEeu9h1OrHOlY8LEfi0YmOX5wFiYf5qlmOseQBHfeHpFrF0xxnS0h0akxsacP/EQaSsFt4qV1vKDy4hgu0ylIKOUnaSoLX7UqeEvNlkm/YcsKrQZWnCSgGHx3KUQR0MYM2XyVJT2hf+K6zqlc2dlZrAaSi6W4mj7dkiUt4ndiUFf+iSUW2o3MvMLax7dsRE3IOv7QS8qMEmHzYistMte87re/g2geDQTo8lI7k7qgER9LIO3uTWBsBhPSDy+RKHu0xE+xd9syYVviov/wotFTsxvuMit9szJxSoetO7TVyDzsUKyX14/MZTiqPUDlA+AE01bjGNIrwGrmTP2RgAwdKg3V0JLwm343ux+tNeRStCe9ik8SBFv4ZYNmC8eRi8vXHzuJ4Za3RHBXrkFLpNmnv5JAEexitaiR8AsbodyOZphWloKWnNHEk0TZS+pgklQIMin3XYuS9fiaaXTY+Wz8AAd59elI7YlpOIZEvkvbkvIhpt7dg4ljM5UVsXZwlFbp12qz1M+SYkm1IGhJZpQyv1S6lJMmmRrElw1zDSgwo6T1wwyjoEbuH0QiJ9Zt6I6WQtLiHFGnkvINT1hGorrXePYCnAKdP+YSRNLCmi02798ptv1MuE9Nl4ru/+I7ltPDhd8/sbee23nh5eeXHH3/ifruy3u+QFnKSQXkPlj9WKGXS826dUVAK3IrarIUUyzKp6Nk5xrar0VVjaInk/B2vdejtNMK9i/Xlw/PN5eHSqxpCZV4oy4llWUhubMEkWu93RT3f6W1VI6ft9N5iIhwxqh5aj3rIO7kUptNC82AnDvbWOyKBENHYiAb4mFIw0b2zdk2wnVKRBecYwBMKADBsVnyqrlxULEc1zvOk8zJbxlwNxxGnPHK8WOGR20LfaqhHok1h8ay8s9ddMuCsZo88TGNgbxcw1F2v2btibSeRfcJtOUgOa87UlEgseDe+3NW0aizk7KTcwSewhHWD1uj3KkZYsEK9Oz01PDW27Br8UbS+v673iOdO2gvpnsPGwVhxmk2k6YmWJ+6cyefvmH/3N6wN9p746//Nv+T5h2+5f5q4v9754//tf8CYuJye+D/81Uf+z//bb/jby5nvpxly43Vb+Kv/0/+O/9d/+3f8X/7Hf8OX2vnlF6PfVrw1btaZcydf7+TamKtYYI5hXYMNni4X5mXidDpLEtikiNj2DtZIudGqbuBpOXE+X9i2HeuNmcx8mlkuZ6bzmWk5keeFPBWBv12cV3ycYjoveoCoA7Ds0RRKRY0uDh9BTZ3r5pI8p4T3xl4rty9XtvqMp87Hb5+5fDyx/vcr25eV6/oGZpzL+ZjQ2QM8myblO2v1WENDfCfYOR9kFzQh2IAht2xdlhRJqpYH/m4037HuTC5bBjO9dmsV8qSNUTNDyXIU7Rbm8obWHSbW7GCDRUP9yLlcsshshSl8zY4zdABPwBjKM5tAVUxy9872iHc+zmTVNCUUD7/l6zcDT9LAc9Db4h05vEeSjoBhUtU7+EGpfVBEhTxHouABLqnUjl8GUYD0HhTpIzAaw49GnYaY3JEGW0rB84FKBvBkYxkG28ACkzx+ewArA6Yah8fR/zpQyHTQyPU90XW1YSIcwWxU9f64cGkkI1M0qfT1gHWcm+mzDtPejorVnEwGaikdDzv6BgEeBc4ZFH91Au34e01ii4TvSJh0bUcCZYNnNvpqj4Rr0AJHdyeNFzIghao5F3IpPF0ulFkgVPPG2nbSJBPGKWtq4X1bcUd04CwqttgVu4CoJNkQ7jxfziquwt8mZ9EQS7HomvTjGlrtmGVKnmnNKaWPHO0IUiakSt1KRg4tnXqOpEc2IdEFJjFNs9bEoFAePgwPAHPc2jS0CW0wUYj7eNQKAdbG2or7566u5rBnzUkHaI9Wk8X91msIMFmWE45kjfKMyozpDFqf+jwqMopA4z4+7ZC9gbkCzkgMNOUlpAQRSD26O8T9SqkowBskz1g3ihX5HZiSqyEpTFGo5OhW+LhPUUAZA9TNYequh+auLprYX3ZIlsRE0GcZPktDJj8MYS2X8AyBkjK5zPSmOJGiaPZuR/IucEBsAI/nBRydyRadmxZTIy3Dvm/03mSC6E6r+7G2Wmu0vQUYGB1nd7YAOVpTV3Lfa3Qpnd6uer4p0Xrnvt30etkiue/HFKdSJkrOrOtO2yvrfWVbV+73HWpnSyvrutJaZ5kj2d205pqZEkt31q1Spszz00em2bnfNm63jetV5tvbuh9rat8rPXVKALQHBbkLQHXsMFkWe0nfU1tj3TcWG8xAySiOaDP0H1gkws7wY+jhEXiYGDZJNfZ9UyI/RniaH6aLw/ijRoHgOCQ1DcY5VUpitsLlcjomfdLHnhGz5nRe6F1+Apbku+QKr9SqokC+hDHVw6so0g2adSXP6UGfvpxmSoBaFol9r429CnBYa8KKMdWJ+7ax18pg/uvc1HNokVC08O6qId9qMQa4B0rQXFMVj2LV4sRwP7xkjo00jiVgjMz26BQf0c3UYR7+FJK3dkl4qlidyaGGP4VHbF437fUhA3MnGGejdjHMdA+3XedktU6vFW87901n/jBszWulzJmneuJ0mnnK58OHSiauzqFxGzHYTMzPEvnKu86zzmytGz9K7IQd3IiHL8JgLr3PGgZT7SjMRkwrkb8EONF7C0zEo7ttjDqulERt9jgg3n0NFsyR44xfBw0hmDM8gKHxUY6X88dfjBxnsI4i4RnZhL4p0pce7OUR1wRIRaKq5ONgAiUfeUc8V7ODNT08drLF/YizA3iw0+KzWeQ5Ywre+2t5f/IqjUrH3wUvXefuWIzH85IkUK4EFhPzdOa6BcvABaIrMwuwyAerwg7Jw8Hmend/Lby2evy01s87+CrWR4oHPvyklFPmQRaJnwmfknHd456aceAAkUOPs/Wx1rW+k8VQnCMH1gdIQ+Y/Pk+249w/pFnhR8hgDuRx5x9g4cgtxcJx5USu+5VGnDiWaoCzcU3HnvzVpuHdGrNgoGrCWe/hIxSp1Viy4yH4u2snzvMx9luFkCT6+lnlVHttIfdKvLy9sXfZREw5kedJsd41Bfl+uzEmuTLUFLHnDzaNP67BXNk/sV/HjAGFBnmZthr7KhgxQcUkRePFXUBo8uGXOxIS7amx47MZ5Whwj7Xp7HXTKu67zsCueEuHJJ2aCk3TPpPMTffvMT37scQFQMVzTIbFIAYxhENqyyNOaR9qgFIfb2wjPyaibA9LEYGGQ17KcbmDIUfUfnbImAa3cEASIGDpPctk5Dgt9kAKj5xxr0cu7Yi1dChm4IglvTXcCp3C5gvVM60tuGXqaSIcC0QaSHV4RpP7Cl7p85VkRi+L3rMdECkt5m+6x+S1NpiHBc+FniY2g4axlw/0vJDOn+hlpj09kT58h33/O5KLUfXhb77jm7/8lvpcuH698effPzOnwnffPfHNtyc+nGdOJTElMVNbzvzw3TPfffeB6fkTdb+zt1XNPxuMLIHWhM8iFo1LS1T0PT09wHjLD+DBUhYw25xt22khB5+mwpgKN7xuSymUSUB866EcSHa4eYuk8WsM4jgT/rMYQlIMxlBNFc2IsfJGNGutcl/vlGlimRc+ffMJy4n2+TOtCaAaeUPKWZNy26MOVEhRPpTIxx4ffnsHhjA8I23E85FL9PDEMnr4EmsgQ0emKoOvFYHU4kWOWCMMJeB87a+RUxxrO/z0UuAP3TErDCb8+NK+fWQ/I2Ho8EhAx/eNA56RA6TY6//Zc/if+PrNwJNyW8kQdAfTARoMvWPrSobvLTocVSM8yzTFIe9BCwVNuYvD1HL4m6h6HIyTVo0xUvA4ZOm4VUouoTXXA9/7TncVA4brsIoxs8SBPyQx4+a8l9YMqppGesMj1o+iXxHGsdgLzu7adJ5DZ/xuys6gCnuM8qSGHC13hixxjCp10+Qe4iHXtkVA0iKepsJyPpPLFGugs93v0ahOYXQYByIhFfMxXTAKCVdVNRLCgdMeRUaEcoEgujcpnseg4k3zos+3RSfXBJBYMfKk4PH9t99xvpxZLmcVnt4O1tH5LO+Z+3qnu3O5aJJWa00FZa3HJhussuEPQDtrfPqcEU+waZpiFegiOvxgeAlgUZMwUPIYRV2j+MlBEQUVTXXfSHkSeDMpsPWuRPTydGLbNq7Xe3hsvAd01EVNKUaxFhOItlVJTVIOP4mgSh4Jkg58TRYyyaC6k/ISjIJJDICQSmV7yFOaV1IyPn464+7c748CUetGiQY+DoTwKXHY7juDljfZREpG3ZRA9MnU4UTP15IOhcHYAGPb9kgCZkE0rmBs7pzygpVRsDrTnGOdpQAmc3Tx/PAH8X0nAcu0kHNmKtLzH2wITzJYjATLU6KnQg5z4vt6Y6u7DsaQD+WUmadZ4F9tLNPClEs8v8ppmo91NzIQddALAvtiu7uz12AwuJ7R7X6X8XPKvL69sO8byzzhvfH65QtmiMFTNfnq228/8XQ5iwWCvBn2fef19YX7uvF21cFXysTXry9seyVPmuJHky/LHkMDWt95ejqznGZ6h3mawqdo5ac//xRbMnGtb9B2vCsm7OcZ98TtpgmT+1gnimJYgvPpiWWZeXl55Xq78fJyi25rY1lm5lKordJqZTqdFbu71nprOynPzEX3Ydsbe93w6PDXXlnrxjTPlLlI8hZ+RDjsTVRzMR87264pSjkF5yZ8QYiEel1vvL58oZ/OzFkSjjQlKlUmiFnd1HW7YUkSuGmZmMqET5mW4PkyB3j/Dff7xtevX+N9nJz068Onb8m5sK47xOdrdHavrOvKtm1Y6rjv1FqptTEXHe5t0xTEKeeDgfr9755ZTgt1q7TauF/vXN9ufHn9RUBWazxfPzDPswBVd3XqI/EetOrWKh56f+AoqvQsGq1VprfCNGVO88w8L2iQgHOgfH0weUdS9kgbcorirO1RhKT42WBgDmC4w32tKgYaIWpK0Ffo4T3iY8CGWMAC40r4RSJJoQ2QB1YfxZmmltZ9U9LaYhiCG71Wlqnw7cdnvv/+G56Xb+I9Oq3fweV3oJxI3h8pJXzKuDVSs4fMFR29YroAg1LeK26jGYaAJ3M86Rx1WkzeHHIDgwCXxz3UeS2Ase6NWrWOU5I3jLqNkjQsc6HVykY0nBhpyqOhx4jt8T6RLjC4Hyq03+EQ76GPd5jSO8zt3ffoutLIdcpI0VUotQBjs3GMrc4BPJWcGcbiHn0DmcdDqvLhKUVy7SlnJfXbFkltgFscpbNMhj0MrAcbKz6L5GfRrjSCead/ry3RLWEhVfLUI8lX8ZCRzDN3jZdv3th7lS9S38EKfT5RXGQh48FSxIx9EDxGeh45nrAZ3clE4b3E6/A9g6PrrsJ9NIiM3svxPIc5s5bWAxjMwbZMIY33uAeHlG6ATkfchDI9JHdHHpx1jtcWA1OQv1ApE6mpON9vW/xMhVGnB4BXciGl8nheB1DRlYu2xySk0dUf620UpQNSU/4ZHaMYdqDmmfZhTpJ51PB8jCXwKG/GsggwI1mKm+w8dIQZ7/IT1PrT8JGtbuwvTrnd2b1zvpz4Z3/1l5zOZz58eqa1zh/+ULle37jdrvzpj//I29vb0XS3Mdq81dhB6QBo8zD09XF2NfkKdcdrF5Nhj2lxqMC2aIKJdSMflqIFfpSg4wb0wTRLsKRCsUTtVQ0bU7PitoqRllwlrNh4AshynsnI8yucIo7PeTBK4v76aEKO+4qrsM+JrercK7OmUe7Df9Y52OVt1GQBUKXhIZGG2XZlmLCU2BuyxvGH3K/HXrJMq4ne02PPH5LsyFe9B7AruWDvPRozTjnu8ay72f1Ym7VrXzWUZ5MFRre6QZKX0rU/sfvCWz/Ry4L/8ANMC+l0wVgxv1PvK23bmG43rK+0pz+RDE7lSUfvbvS60veVYiuJSop8fds7OU+clg/0PNPTzFty1gQ8/YAtF/jm93A6wfffkJ4+Ur79HVYqU+n85f/+r/mLf/aJ6Zz55Zcb//YfPvMhJ/7n3z/zh7/+xHy50NrOve1MXWfbX/3FN/zjy87zX/wL/MuP1F/+HlBjtpn8/C7TpOatUEv2kriHr1xKTksd80aJ/Wtx3kzTwvn0RGvO68uV+/3OvCx8/PgR0POfpiLz8WlmWRZ6d7ZtIz8/M5XCVqUWKcEaMkTTOOIlA8y0Y+0R6qmUDF+b/KPS+yaAyBy1Vr5+/cq3337H6XLmb//2f8Z9Xen/4//Ay+srP33+hZwzy7LIcmRZuL/e5Bcae4k0a92lKYB+yY2hoWFfOmvMjClIMpY8cpTG6DX51LAuoA9LNLMAZDlqYhI6C981ajumqfFMpDQjCAxKQNOYppznaPgeViHv6sUW+YUHCCybikTOiXpgJA/j8iPnGWcPspx5CM3/6a/fDDwlNPbTA43M4UmRkjSw7lGDk5in+UhjxSJJh351/H0aHZGRM+FY6mBZ+kR7eDIQCH+ysdiNEtKpFCNHU6vxGPpx0qcInHbcj7FYB1NIfzXQPiV2D539+G5RNxMENU0Lx+PAd/rQQR+MGI7RuikSghIJUhoJoClo9tZoLindMQ0nLIm0SFxyiAbyaJJu+tFRMk0cITNYVv7uwg5WjiMWwXs6/dis4/rjnuveBCX2XZKgzoZDMDxw0WJLLnF79ExySTw9ncFkjN56o0ah01tjijGrFjcrmYgLmXR0xUsSq8dbjXvdaW5Ya7FBAlxLRabENK21kIFBoLtJxVAfCXo8Z4t1pQ5rocw5Dh7wPOjeBXfndtvZtsp9rbF2xwDxd1pjtTK1RnMmJYEb6hAEvBlrbUyoSpFFu8V0FNfrKLiqG9K9yiS1RNDxRAl0vRFG0HN0AVokaynRirpDYzxzLnM87whgBinJ0+py+RgdBAFl8zQxJp8oRo3AbpQsqd1UZq2lNrpSMre3kSyDJJeuMfFaY8aUJ+aSjoECe0vgkmr0imSJKQfYpdfZtjUKWCUzHs9lMDuOpNbEREk06iZGUV/36BzCtu305lxD7lqbCuMePiQC9dSJf/74TC6Z+/1O7c66d663O798+SJZXy7qhrmKMe+d/X4jmzHnQturzL2r8za/8fThiVIKHdc0tZcbe63c9yYz8to1mCYKcwGpFsa5DbOJaSrse6e1lX1vIasswCYQxPVMvSrbH+OENT1OUqM24l10XUYXXSNjnZw7OXcsh3TEgKT+HCZQf6s3cD86WIqbld5S+H+oEzuVwuV0Zt92llmTIusuQ+fBEgMokwDYZZlpTaOYtaTkO1YmU+xKxscPT8yzPBySGU4lZx3WOSYSTqeJnIwyfdJgg22l1sq67yy75Buvr6KT//L5JdhnD3+OFtTksncmg6cPn7SPO9T7jbeXWxzQxu16Z9/kH9W75L0tpvbZaCyghHffd1HVuwDI1+sb6/1ObQ1Hz641eXFtdUyAizjVFS96EpvOux/RuUYLTudYPwwonazJk3X4hPioVvX947AacTAi/WDWHOee2RGXe9U53on7URutOXUbrJZx1iOGYYc1gMUp6ZB0345mRorOmQzSO/e+4WFkXOtObTL8rK0xF4EBfZc0br7dOF1nrm9X5ln+WkNWPs5fHz5pnrDeZNwcZ3+LqYryUgm/t+EjGIMNUhZAVOPMLVlsmRpeEK1rSlXKiWHMZ0Aymeb27vSc4n6PiTsWEq0+8knJO8Ofj+7RJT2QjuPLknKLFDnCYdE31sm77xUAMDzygCRJWZikBFtIOYmH5HJI7pULRElnOqMOeYsFmtIeyb8aba6/64qHzSCPD9RdPkgm+V61OIqP8wUYTPRhwhLATgrWE27HIPloqZGsRJPQgjHcIYktWS1YlT6kEEqWxwCEjPwoc7yv8rk9CJM6z9X9z0cDa6TaOsz7UcwkNCVQ11ICUOnHw/PISy1e2t3xpHyimXEws1x7IcW0wSG98TSApcHUtlG/q5nrgyH/YKyMZm3Kj88+1AEPdmiwcaMrLmNunfUpdJEWAxaa91jX5V3Bf0BQOkuOqXEjxwAP9raNZ+4CzAYzSlLSYDF4jDlD03e9bSSDeZLcs1uAbaqF4pbFvYklZIamMXJsSXk0wWHYHY+P1uDrl1eubzfAWM4nPr19Yp5nluXEcrpwOp15eX1lb5379SoGLvKnnEvIXzwKxfBXEvttVBEW79eO+yXzYAtWmQHtqB16SOxkfI0unAEKh49aCjG0N3oNlQmKC+O+6z2HZ2M/wMNhu5EeKzkAz2MXUEoS20qTiY5400THinxRE0dLTOO2OmJo0STXDEzyYh1G5JgaeVuoYfTQwpc0iXVUg2jXw2/NDrKbvn+sZwysjdxU8aV5Y1hXHc/aRpRSzrjtG63Jg5SjMa3r7BF/etyhRqZ36K1yPy/s80em/+JfwvMn2g9/iU2ThlPUCnXH3t7I9zvTy0+wv9HahCWYTx+x5rB36v2Vtr6R2hv0jXW76tlcZlqeWcszvUy0acHPM2We8Mvv8fkMTx+waYZyofXM7WXl+7984psfzpyfZ/oM/8kaX0sn/14DWb6UzI8J/sEaNRmrJZ4Mttr57/7uxr/+uxdeP79xX290W8mTgJpUPRhHLc7tXcyWXDQFMCnO973Rc9QLhyRUjdrr7c6Hj98wLyfO52cul2cpNdxZ6oneOz//+CP/8Pd/z7/91/+aum08nS+Keb1J7YOFn28cDfuwZO9RTynutlqPfa01lzQ8zGF43+ZoDCUTs6r2znbbwN8oy8JSFi6nZ3o1rsvOIMa03bm3PXw0S5y5ipPeH3vdiJrTLIbUP5QvHgxSG/uy+wGaY3ZMOHcEvg6Wqifl3pocD4OZrH/uSBmiCfE9JiaL2OO8N2c0TPlLYNgpjZjcwrP7EcsjZCk6vGMNY8MzuByYz1A7+OOH/smv3ww8FTsdneeUMyVNMd6bkEI8MPlpWhhdmdFkHUnLuIAUOP4xnWWAIsnlEWOin41DwiLwWtaBXPKgeLdgOm1AFIHmYkaMU4eRnI2HMA6poFX2kbR70OeUiI17KKPC8LaIbobuemPkKMdEGfxXn5nRVcrl8XPxML03atsDeFIhGc3k8KZwjY1lJHmS2njcwSNH9EiiQv6QY6HbcfnGoHTKzyEdHTLiunXoeeSkkay6NhaRwProfOcEXUVVKlmB0WPyXjZKAE8pJRqNbd9Zt1XMkdqkR0+J2sSsGVIeK6Zpha3r4Eqh0e0RYjr0XUVQ600TLXJhW3d668zzRM5GSTFdMLU48II15cPMWGvIkYwnZRlMtyZZEFkHvjHRauPtemffBT5N00TRqKt45jU276CwC/02e3QFx+DNGhNMLBZkSkH9TVCyDLKHtEYTDaNwTUaaAlh0+QRBp/oWI+916FdvwZ4pMvB1WHeAxLwsR2JDFD/j6+kij5jr7U5Omcv5SdO2mj5Di4CHabKSJqcsAjx7ksly27XRzYONlJhPJ1qHdavstbHXxrycKGXS4e5O3/UMWpfp5b7vTJMKwBwJzfW+BvgyElWxZu7ryvnpoql7scbX+w7uZDb63thvG22t1G0/6oCUtIf28JypMe3toD+b81elsJxmvr6JhfR63/ny9YU//flHTbIpE6f5RMmFXvWeqXeKJU5lom6Vuu7cXm6UlPj9H2A5LVAS93Xj68ubpmM5GmhAjZO1QNHEL4YspDfKZJQpcb2+0urKvnXmKRiBlthXTa8oqR3TKkpIJVtT8lkjzj0OO+3ZXEzAcZI8tZQub40BVKQYCyFHQu51VUZfRywO/XfdA9TMlJSYcyFdMvteOS9iSe37zlSKJqA03bd5KpSSuZwXWu9MtdD2RquNaU4y7PZGJvHp4zOXOjPNxraurPe7zLSRnDfnzNPzmXmZ+fbbT9zXO5+/fOHLl6+s17vYVKlQbzt12/npx6+klDifz3GQZ/Ymhk3eO2T47sMnUkrcbitvtzsvX9+YguF5fb3hSO46gDQVD/ItsabuUTdj3TY8aerWXiuvb2/s205t8n3JuUhyWRv3dVNDJQomTU2ThGYASyVYm97awApUOI6Em/gctam4HgfC+JwD4BhslXFojJM8mJpm+t4ha9VPJ1qHfdf0rG0Nvy9i6ANAFwtgWyUxm5LRm6SFefh0hIRiJP/X/gbWSUk+ObVX7uvK3ipPJzEvW93ZW6OYsyyF19czl6eJJWWB33HiHQHVCImKwMAUJ/reh/+BwClLSd6Jy6LkMpWjAVPjM+Zs1OrB5hNDjphaNe7rYJ3MUzCeeg5/BY2jFggwzmIlyHPK0aR75FNDRvb+MDeXz+HweojcNJ5n5A3jc8TgAHkFEnR7pRijOjXnIUHJo82k9xtyF0uERs4ObGi8R4oFbwjcVy4VAJCh9whQCNMktoY/gKeRoQQik4K07CgumoslIabCMGYY+U8K5okhcrz2mcW19ndrQAyqTKZownYUnClPuLnk/t5Y26Z9lk2UEiF9h52C7l/c41HIA8kT2TM+8kMrOI3OGoCQmqrvZUniniZ6yIWdHtcYny1AfGJnHf4eHoBKNDKbq6gZIMJ49nk0AtMAgvRa/QAQ4u8s4enhBiZVvX5eRQZReHZSCr+18F1VSu0P6V9IFYfnmPKbQEP6KE7tgOQG8NS7SZob1Yz37QCebMrMU9EzDlzKe0jScIaVx2goyzOlv9v+TsklYtjD77G7bsbr5xe6d663leW08Ppy4+Onj/zuhx/4+PGZ5+cLP/78M/dt53q9Bgu1HuDy4cc22E3tKDMiZowYLvBex7yebD26chxxfrBWUxR5Q6pj4zkO5DyJtV19Dw9Z+TbJ/kT70pu8aeg1Ps8jlgxotBMG8Em/JxOQ7gyly3h8/isZZjIPRrG+IW1qtJ+WcsjMxb4LJqyHI1fTNEpibaQsP1sI1kS8h0UKkkZscWeaYm+OGsfSEX86kvCPwTg9bFcG23JYJbTtTvdM748pvIzC2ZQbNje6ZXqa2Hc1iq6XE+30Dd/8L/8r0u9/YPvD36j+SeAr9HunfP2KX9/IP/17/P6F+2vCMiwfv8dag20jv/7M/vYF3zK93tRs6QKnsJlqF9oy004L86ePTJcL7fJ7vCz4XMAKli+0Ctv1zj//F9/zL/7695w+FNrk/Ecqr6WT/3Chr87n1fhjdv7OKj1nVhSH71vjX/27r/x3//4rX396pdkbLHcm68w5jcACXdNPO5tqkAyWS0wwD6n93AUA9ffA0w63G45xOl94enrm6fKBeVG9uFT5jv34pz/yd//h3/M//vf/Hfu28ny5qK5vVY10OAD0lATMjvihfDbOzWgiyRYvU3LSvQqgJJsxjXiNYy4p/3pd2dbKt787s5TC8+kDtMT1tGu99Biy0zbVNlZIRsgytf9bmPnLT0oemNkNG2ze3pWn0WE0pPyRj6doDo0hZ3Xs95Rw25F3pS5YcSC9CzIxSa/bO+Bp5Hocd0o5ZpL0lJieO85y6wwOBQNDeceyfDB0o85NRR5XIR0eEtWHAPJ/+us3A0/L9KSOrq/gUDcY81wOBDouse39+N+jyB6/9ZEUEVvd1B3IWBw4SuqERwUqji7O0OElY7MpSGVDDTm6c2KYNCw64n50NcfEmIPLE6wh87EQUBAzyCUfCdDwbWq9gnVa50igeixAPWNtaDcXQ8CjYACNfY0FmJFUSKbMmVolLZBWUofp+4lAFpzHVjsexXhYiAfNfxjwGaMnp/8bmYGu+0i2DPZIWHp0p4cPES4aYinlV8WLQJtVjIJz0ZSo+6b70iofPz5zOp9YnifyybjXNyCmbhGdmK7DJ8X99NqwpIkIHiaKKUAYUKHcaJBcWmHCGyc+e06FlCfmUw7zNyUm23XVwZeLEhr3Y8MMFpzXMICtmlKFJfZaqW1o0mHKKqpq7UBmmSUNHE1cM5imAUJxBIUaBqO1a77KMTkuEvk2kg9LMGj1wwg1TQw2VZzvTNMkFlLT6y4hTbHoVEJnXiYu5wu16nm0Lv3v6XTGSdRaSSnLaDoO271W3k9e6Q5eBd603th7I5ckCnSsq1bF5FnXO71BqwLf3BvbJtPeqYQZsxW8Q20yvbzdN87nC8ty4uO3nyhT4XrrbNvK1y9fDjBpaL4HtbMPULkkem2sb2H2nif6n38GEr//w19yPp+ZpifWdeU//f3f0zaBCx5jVks6kRjALSqEemPbVwEw2ai+0VPj9e0rtS8036ht5fX1M9u2MRWZqZdiJFNXtm4r3p3cLWR4M5Nl8mTs+8a6a6KYpTAY3Su3bY8pl0kgVXemAPXebncljeuq6Tr7ztxmTizkLGCx7p31vrHMBbzH9MgO7FguYiWaAKO17WCQ5iT/j5I1NrpWprmED9VGSs6yaL8+P+cw1UzU8Fia8yxQu2uSUTF5TZ3mM71lvIla7wbX68q6NRmxU/gv/uqfs22bGGT7Rtt35mkml8T5NDPPEx8/fnMkgq8vr7y+vtJq5bbvvL29ar/NGm6xbqvYkH0/ukeJGfdC3ycxg/bGfq/c31auLzdevrzRa2KeVorPygHsCcNoNcBq6+xN58HtXqm+cV93kiWub3fu1436VkmnTF6i4+UOfRj6xpliYgVtCl9Y0kQ+zPn0UaOV6+64Z6bpzFHyh5dYtuFTEsBsG6bdD6ZYVH3R5AiPwSQAIRliXIU8Mk0p5OYGnvE0CQDwx/k8gA+NOx+vK1ZSjjeRJ0EUtsSUH2/c97skxlUFuZb2oMcHy6veGYd/Dw+mUmS+rEvpTKZ9kktM47PCPImdOMU12Kkw58THp4WnTxPTJ8NTZe+VKau7mSgM7EO3SnKPZIZNcxhs9gDYd0ZjPPWOmYZUJJMJreNiUETRZmjqYclx87umPnowgEqZlbg5B6DoXQ2D1oLZ0BriDMQZkHSfSyqySvbOg3Usxo6aQoXk6Xj0yl8iEU2Rw6A1OdaCBWYxLHktgPfuRKEfHWFkvjoOA0sy6G5HDnuIWlAnNgT6YZtQbKBGIR8yBGoPVk23w2wYH3lLOtayI9lmr49hKDIXPj75qJwfXpnjcwUWd3i8DJQICwBrnNH6H3aAxIp3LUD1Ux8ui5LwVhvpdD9AFoucTkCZBTtAn1Dd78F0f3gH9pD8dVyTqhhyc4bxFYMt0In4odb4uHKtqT6ahNrrJRuppzgpQ9Ift8lssBXaI/3AKcm4XE5isPSmvIMH6zfFSL1SipqCKdG9YbWGXNA1QMdRE5IERSDDkouYxu3h59ZDAk+JbD4kWd09wA4NH5BrQTw913tMPZFKCiZVsOaSmmrR6H/4VlpIaC3Me3HqkZsNZpf8SEsqkvWZYSflhMu0YN348uMv3F5vvHx95dvvPvHx4wdeX17Z15W67wHkFxJqmrSQz5EVn1YbTGDVH8332GMjfjycich+FIqSH3dSgXnKYnEn2LYArIZqYlSUDnkWVNmiFrORaqZxbuxY0touUz5YlQIJBazqfj68AQ980xEbj1CNeMLzFNYedjDnB4tuspNA9GlmDKoYFh97beGHKWB4aZPqD9N8xJHr6nDIh3x1BKoxlRA6qbeDxTkID+0dv8yP/zXuclCgksfz6EDB8nScD95D+pkLbpnuE52JbgtbnVjXmcv/6r9g+tu/Zfk//g39d594NWPJzscF3n7svPyjw274nnFbcHuCy7/AzbmRsX7H6gt7zdRqFJ8jnFUsJ/L59zgTq0+kb75n+v73zM8nyjJz31KYqAtsm0ui3Sv+svL1jy/8/ceZT99/S34q1F6o3bn5LF/L08z/h4X7LfPPcuIbM5afX7n99Mb/9f/+X/PjH79QTlXSwPaFKRVOSUNMkiVyb1jb8H6je8K9Qr6QgyE05UkN+RigIcZmIeeJaZq531d+/PEnfvjhL0ipcP/xxrre+fOf/8Tr15/58R//A3/+85/485//SLEUOUAAlfuupukuL9J50dk6lGSgGBZb/KAAN0xMbDe6Z/K0aMp1F0w9GWSrmOVQWCTur3csZf7w3e/59PSJXo2X1xf+/PNP4fEktmeKprmJXIuZfGQDhjrqvZGXjmmnS57l0VoK1hrWY9f2B36xm2An6yLRSGq80XsNJqkx5wkLJZFZChsFscDGRGu3YIP5cWKrsZxnxpTU4Re41S2aXVIVTGWit6r3jG8audwAllrUfrX6eAwMLvBv+frtjKc8h2FqPz6kTNs6E0Xsp/gaErGo9yENmAQewUAnobo6CjI9DveH9KUexacC4Tg6R5YR4x0tulCMN4mOyojPQQ09DgOPDRXfa0jK4T5u7WNCjUNQ0PTvkiBxvP6Ihx6A1/gaScZ4VK4LE6jh6myNUZSOJpeNXrIRQb37UYh54xGAjQOBHCbrwyzWo1jQh/Bf/85ISLRxqg/Np3wV3McnNxU4eBxII5w7xXKwb6Bb08HeO3nJLJeZsmTSBHvbdHC1Ts45gKxRhugzyUtDRVJDnec8ZfKUqRFwhvdULim8dkKrjoA+N03MS91Zu5hP27ZrUl3S5rfDxfaRmfbmtA51lyG5NY0+rc0Px37zrqSieRhfTwyj48EYyjmmxtV+rD0PdkltjeY9/DzGQe/R+U6MPJ30oA9POR+JQaTeCuxlppl8zHJWx7zWLVhsnZSMeV5ofaXVRgDw5CJflHVV0WdppLHRAWqSyBHPiu7c72swZBozMzalQyO9NTFR1nUX02EfssfO/X6j1p1pWjAzebS54Z653zeubzeeLjun08p0OrO4sW2N273y8y+vbNvObb2Hz0MSGOudXNQ0LcXY1423z19Z5hOn04X7rVKr8/T0HTmdmOeJVjd+/vkrbdvDoFiI5FIgp/nwMiil0HpjXVdyMaY5sfuGW+O+3rAsP7nmO/f7qxLOLBloSUTMCFPx7iTPoiJ7MIFSZvPwFYsELWUZVdc4LDEZpNfWQ56RBOT1hm9XdVtaI3ejNQFyOQtorXtnLkpAS5HZ5+DRWpzMzgC1JYvNJVFmsL3i7JQCUzHMdh2gpVOaMy8Wuu0MuwDZMhWBkHH/ljIzTwtPlw/03Wi7sbed2rU+WCtlWsil8Onjt9xuNxVmVUzPtGRK1r6apoXTSQyyKU+0vXK/3VjXNQDJO45zvswIjKnY6MaF9MxDLtdrw7OAgF7lt7avlXXdyXanlh4TNjNzjrXaVYQ2nNYVa7bacKvhD+Lse6Ntnb47Xjgk0UfMBoZTsrwyROeO0oy6i01W8kzNPbwMNcHyOC8HEGCDFdDj3xQv35vYuj/w7GiA/wp4wpVg9NaVadk7M2KXX9poGBHxScDTUb0/ipTjhO1R/6ubVwyqO/Sq57qPgSIEkKoGgCMfnaObHkU8RV39HsyrKTxeSkkh3c2U7LSeFSOTCud5SpyfCvNTIp8MmjqTxTTlVgllpEld927kqiWVqPUF6DXCOHiY65qkIckSlWAfRSFLnJEpIY8jHSYhsQmZcfbIO7Qyci5M5eGAIKmknqW+ZcAqKbwNLVIefZ7xc5bseM3D+H3Q5uMZ2gBCjwVBsFEEUGGQTePT1XTQJQw2BdGs0/kn+buSk2CDOw9j7sdKjMQ2HROzEjG8Is642h/YynvgKcVnOfIB9E3uXR5NR/5kOsM5jlnGIvUjd1KB3EdhHjlmt0fOMV5f9yNyQ0VJEp0SuaZkidDSuz3JAOr6kW8lBtjx2JMEKKI3lSluMoFNQ9rd4/mOf/O4x0cSb8FCtMddJvbMsLawsT/zMGUuD+BpcFki53xsc4Ha52Dj7cdwavGzMBfR0U2Aj8XZ3xGAZ+MzRy4X7BPJq5PO1NSO6yEavh6vO868MUxFAGYfvVGG1cDIy81TSF7lnypwMR0AH++BJ2SDkFI6irlkka+3TncBLSVnpjIdw2R80h2Yspp719stmiQ3BvNivd9pdUy0O4QlKuzHnknxPGLvMO5rDBUAExhIDMIgjJtjfWotStWQSwp5JQHC+iGrzY/wrGtIidxHhh4LMMV+sphhmTTluuR0sC7lG5Zwm+je6D2FfGnUSjDkeGaDNVceYGsw4oakrSQBTlMeklY7WK+tVTx8u8zUXDaHiiE/XjvWNf7weBubakxVxnYcSf4xC4VK7K33GyWQZu3zduwL7b9dDJqUjgKuQ2zaUWuqtuhMtD6zt4WP3/2O89/8Jfm//Jb9+yfaW4XknM7OvXX2zx0rDtmoVnBbyPMFx9l9DTD1Su0aJJG8RHg84ZZJ5ZlmBW8Zzt+Qv/1LymkiTwlrN9i1/gZb2DcnXSu3rxufP99h7czNZJTeMnsvNMuk6cQ/MPG2ZX6ajE/m+C8b1z+98d/8239g/fpGKg2vO327kWyh2KQpl26kHsQD3wXQuWN2IhXTFMQ8yevZ0pG7lzxp4m3OrNvKly9feXl5JefCly+/cH174+//09/x+cc/8h//zX/Dut64r3e+ef7AaTnJbged0d4brYqU8BhsFucZwfA24+FzJ4sPgT4B5Cd5QttglZrh2SgdLBiZ+6opx99//IZlqvxyeWFbN3oNQGf4UaaEHQNUQl46GMGoNoxdeMQ5WQ2osWymxmh3NYslk1XsbSr0sagZSpKPXOuVwvByjj0xJkGaGqbQIx9MB9F7nJ+CFCThJvaLWcTmHvkIyrcUPwcpJc65d9Y73XmAakfs5ZAU/pav3ww8Xbfw2olRsFgKeZfHFIiERVG+15WRox1USQuaXBxEPUqjkTgnBGDIgFxIoAU6nnKJ5F1FRd8bm+/0MF4G4kYGZb839tqPIEoaCVwkLs6RAAxT7mValCDVVQ9gAEr+kCKUpMlbU9F73sP8q727T8Pou/jo4oSPRN0ZM3K8d5kqxyZN5GBnPYJorZ261mB4jauXQab0z9HFigzKA/D4VfiNRTwkUBylw0jS+tGRHAahNQTWB+CHH4s154RZZ11vIf+Bebagv1awDazysL0Uvb2kiTkHUu1ijrn7Ae7VWtVtoYNJ3nBM0Rhd/lJCGuKkKVMK7K2x3m/YMKXHqA73bafdNnp7Rdq9zpjIR0xTaK0FwGasb2HmHpKifRfwMijvMip0vDqhPzgKzX3XJLOcRenMyciemB1qf0ylG8UC4bMzp8yST0GthLorQbojwE6yPDHZUtrI6X6MIzekuW5tjyS60/xK7Z85ny/My4mh2Xx5ubLvlc+fvyhBzIX1vrGuW8jmEuumYrGUib3ufH35qutOiecPT5wuZ77//nvKVPjjH//Euq68vlxFteyj6xvFEIC/0Tusq+jiczkJ6GvOW31hfbvx4Xyhn8/crldu6537yx0wzvlCa5W+txgt3jk9TaQO+9tVfz6JTl7HFLlk3K5veO98+eUX1lUT3cSQmfHW8dYpy5mcJqj7ERe8qdudcoashqubs95vYI2n5zMJuL5+IeXCeblQW2W9a52bGfM8SdNNEnX/9qpYYRkrzjQl+WRkmJbE3DPLSXKrWjcuy8I8L0cxIyCi488xaWc66SDoAJlkOYz6J5ZZieCnT99S68a+3wGxjIbnllsVJf6UmeeJ8+USPkSVfd1kfnx7o92N++3OXht19SO2dc/giXV1Vq/s6yrA6NOZPJ358PFbXl+uXG9XfvrlZ663GzlPUVhO9B5TfI7juGMxkW9bV+63lWmewAVQz2Xm559+4aeffqJ2yT1zFotir5XB8hObZx8nCft9Byp7hedn46/++hOtZcy+spw+8PHjJJlvLqyvAn7SSV3PIedtB324y7PFnbZXUpn4+HTBauP+9KTP0CryNBtVIFhSLFb5pPi/t66x2n3Ce9Z4bDqn08K+bdxvVxV4ZjHuPLxZFKXxlMhlNCG0DtyRkaWrIBlsJksy0NVZutP7jrvYjimNeKUY0nt7NA4jmRhFhrti5Eh0PRomNgqvLqbxnBvp5AJ0ozGQshiPkoFqj6VkTFPWvUqEB4j9aox6Tomn6aLYVndKkW9TNOYpU2APudF7ZdvvKtAIsDrrbPQGbVciWIJBMVYeRNIUMba1ABIHEEBhKlOwPTK27TTawQzO2aIjPHO737nd73HfjBSJZcny09tWAdUtZDhD0OjW2fuudRJ+gc5Engrz6czeEyTJLzGiQB/AUzqejY8OTKwTi1g4vgR0INk2LrkYRh/ednWAmkhefjQlUjxrnWXybmoPOMfHLh5v1I/8ZJSLU9a92JAf1149ci95YuRu5ChObLxtKZEDhM+Xe8go4nPHt6nbPJ5oO4rPB1CGkvqkPTi8vLw1skPxMT/ZjjxDeaiTyXST9KenTBu+lri65e6kHmmzqcfdyQIUUosiPC4jhalrXN9xPgbAm0aMzMoz+/tFyvskfmR1cc4isGXYWBzfdaz1iLGmPCHhwUYQMGRYyGg8bBkCkIwcpUVObUmxTYCHft6jqC8l/J9yAB4DRAIBJjlTpgAfIsnfTcCChwy57opLYjgCPvyCHO9rIEqNkgSYNOuaEDfQzJj+1mp4RDYnpTA3FxLLMs9Ed1dSuL0xmo+jMOuRG8/JsDJxXmaBKpNRzNluV+iVko3fffeNctitk81Yr6/hQ8Yx5GbJE5iK8u7Otu+xFkDDCxrbqoE6U461MCJUhzInpnnSNeGcTf66yzIHyGkx+ONRQ2xVzI+9PcDakkwDPZLAtnmaFZNj7aZgjtUabDA6x/RO9Dxa1T48GhTE40wxiGnvtF2DHE7LoijQEiWpqTSqsB2xvqiqwaYs1mJrj8JYy8SwHmh596NRnrKYHB3JviwrL8+mBn8a0cg8WHrQdxEkNOAJDe7BmId/X8p4E5AFyvt632je2YpRu7O7sZ8+YpcfWP72bzn/y3/O29NEW5xvpompNup9o7680X58Jb1U7FqxGIbSyk2gQmuU7JyWE+ltxnzC9l3ToH2ik7ndG8wL6fItNn/E7Yl122GT56OUGE+0lrmtTvIT5ZtnrusH7v/pwpd/A/mtMn/vsHb4eYZzgb86czupNqr3zp/3zo//76/c/tNXbqnQC/DLT9BfMHe27Ya3K897I9VGccdcU+ZThXzrWKp42unzTstwXbd368OiOQqteUjTEv/x3/17cs6Sq1YND/F2g/0Lp2Xh0/O39L1S16vUAEQRHrUnhmpHcw208rDMcGdMkNPAs/n4Ua9jarTyl31bVZ2aCAMjv5FsWTnh5x9/JE+Fv/nrf8bHTx+YThM/f/4if1evh6RwYBvFMvOUo1n/qMHtyMmwFlZ+AAEAAElEQVTklyYMWAlKcifw7kgdtb9SLqrvAtDKCbzPJNegmmyZeVoE6O93Ulc07M3kBzsYX9FcSekRfzudvSnf7z0GbKHhO13sD0D+pMmgzBospQN6MCUHMULxbpnDMsWdd+nIP/n1m4GnIZHDIqwlgwCeDuqGpWi9pQNkeLRaBgIYSUCE2tFRPeRFDATTGYp+C3092DsZnrSlfsjcHov+QBoDxBlTUSxxAAeM74mPOMzHRP3kCLQDVbXxWe04xw4Z5aO70eHQ+Otn23FdPMzCIDwcPLonSmAGRwH3kKMJKBko7nGnwqBsfLaROMAjKVRCOdhigf6PS48PbXBQ4odHxRhHP77/SAqJR44fINHoXozkJCXjsc7tONzUPS64yRk/UosjtTq6GcfX6CeZQKdI8AZ9cIwV701Ts5Q3GL1ptPi2V/ZdDAdahdZFkbQU95FfPXeNIa94EoK9tz0Ci4DJZTnHdfdjvY77/hg9qz933hmOxn0YpmuDiii2hf5rEXwELLh8h1pn3fajEDpkrNFy9laVqLZdK8dgq41brfRegPkI1Pu2sq4br29vuuaUuF3v3G8rp/OZnAu3+0p3WJaFbd/48uVFQa8oONfaeH5+RhP0Vm63Gy8vL7gnSFOAyo81SKzv+20jpYLPKTrxMm6md7GRwoS775W2ywvH0rgfHYZx+a+uO0zne5c5OANQFBBRe9dEtQFtx4Mwz6LhhrkzKNFQh9cGlh57WXuB4S0SXd+cRLdt4bFj8czVCTGNQgZ16tP4exVWbj18u7R3pikfD75kDUsYW7VEstVLopTM+bzEIR6eC+86PXsUzyUmaNVasfB7S5HoMmJGrPd5mvBS6NMU914AFA732yZPqCYgV7TzOFgChK9Vz6PGaFl1mGDvlXXbuK135vLoKPYO2ypWXi6JlGOcbxsAqoo1TUwUI6M27eGGCuwxsr2FHMDs3WeKHTdkKK12eoNshWyZYYgrmrQABWjvLFMGC+ERh0ZXafwynCnLNFWMnSj8hxTnCK6PzzPgjsG27b3Su6SCRpe0c8RTU5GdBj0l/CmObvcoJj1kRoNaMT6rAgSjiO7eI8Fo7/zRYIy2dvqjoBif74jBFmecDhNRxSN62bg6nWzZuo7peayXJPP9FM0oDK+S4y+LzJzNZBqfi8zmh5dVSZnneYkCUea0pRhTUXc9B/DUbZex6r0dr6cTAhid8/54AuAP9nP8nULKw3NmxOeHj1yOpEvea2l4/IxCyIY5sn7cnHdnQ4r12OmGPJTGuWwciSD4wQhSQW+i/Sc1eBjnVATWB4tRceNgaP//ACvMxrE/rjjei8jBIg6PH30sp2A2BJCUQs+U/rPV/e5kC6lfFI3jhhDSPYYRwiOfCtw4wNYx3djRmOcWfhHGEL2NXGI8t+O5jrPzKFDiM3h6rF+JHyKca1CLDMMfHdzjOkx56WCB+PjZ+O+9HG3c7+Gpob3R45c67SpMIjY9gko0GXXt4+8eMYPYl5FbjQcTCYt8rUYa+6BMjxzyyEvf59UmJl22MUHycU3Hfj5ioSSUR+pu72KMPVhxw5dzyJfeNb4hZIDyFxtJ5Lt1HABnT/IoHJ6LRjCIIh5jOsOVVxqExCVb+F0m5UTJori0duzLcd9tClaPu9g3lo+1wGDhFQEwpcQ5n7NYXznOmaY5sDlpkiwO1cMzclhp2KMBpwE+j/wpxTkhFXbkiSbm4GTjWcVqzAEYJaO5AHLZMBhLDHQaAzDqYF8kAblgR1Ni5OA5AKCSC8XKseaU+0tKPKS8R1wKmTD2qBkszl+ONRPqjdHXNkjBUhrXbz3Fdhjgg6YpHnHWx/o+dgijqHpwRmLNjLV3BKzYBOn4yMdXsqhV4uwcwkbrHmtJZAOLeMYRY5XPH7gXkpL7NMN8oZ+eaKfzuFuciqRW9d4ke7tv+FqhNp3jJBo664+9ZkEiGKGiwUShkbg31ap5WshlJqVCqxve6zFkKbnWfN9dPkvTTGuF/W60r05ZOmnWv3PPeMl05MdIhbd7Zb3t/PzLyvp11fltHfYNCw9CqnIHquRg1qPB5RqAZM3oe2dfd3bfID8i4vBLzFmDUmo9KCa8fP2Ku7Ou6yH1KrlyKY1kmga91xrTIEe+EWdc1BeaAj/Wir2rgWNZxNI4/i0Own6QSXo8d3v3Y/5Y2y4Fg6XE6bRQe+PTp09cb3f4Agfb0R85h4zE9YzN/NjjY++kYymqphhs1uSh1PJHBM2xG8b/Nx+nVIpzLVjC1o9YnkgHjjDyGHycufZY2zwM90VSiVP9/RnAuLVR0w1W6NiN9njNYUfQYn0Mqspv+frNwJMtBffOXuODd+LwSdx7hQ5TkSYmn06Ixt7CuFmmot46a1VRPydJUSwXLZBuR4jw8DrCJyQ9iS6WeRCiY8TtcaGBdmKUYDBNubCHTnEEl0EHTD1rAbRh1DqKB/nSFENeLMQD6qr4Rje1tmFKrMSyJ7GbmleNTMwPDUaLYkYs/kyZl9gdLh53H0nQKDAs5tM5NiWwCWcUS4YFCyS3B39ATJt8vMbQQ7duR1Iwir4ALylWo0tTjiSlR3DMOMXlSZFylk+Od9JB648OdSnUurJudy5/+Au+/fCRp0VgBq5Drswn5EtR2PtNlMEig7xtXx8piwG50MJ3q6Gi18JMfQtqX3WOoows7em27tTauL5trOvOy5crt9ud15dXIc1uBx20pELJhQ/Pz/IsW+/ULoP3vW40r8wnTaLYto1pmpmmQZEcwKNCl7smcilONPa2s912BvMuR2dloMQ5TQogSQniujprrRonnye6w09//iqg6OUtwlei1UrdG+dloeTCvq6afLLv5GScTwvXfefrtvL9941Pn3Y+fvxEzpkff/yJ+/3O5y+/HGzDVjXa+3LZmaaJvSnBeXuTHG9KpyMHvl1X1vvOx0/fhEQi0Sr88uWVaT7z8ZtPbNvKdpcBsHvn8vSEATuN1J3cgrJPjol/hvcVKcAqGhCwUyua5jXkqNG93G5vmHVSEvC0A/vW2NbK5fzMaTnz9FQ4n2dIxu1uXK+Ffavc1xulzORpYreNvW9U1+dM3kjJOD+VKPArJRlmE5fTE6fTQqZwnp/427/+l2x75X7fScmZJj/2zpDP1r0yLzPffPcN01SYp/k4pNb9zvZ24+X+FYBPny5KeNx4+frC29fPLHkSUFLmwNx3GTn6zjefvuHjx+/46edfeHu78vPnH9m3ynrfKDnz6cMHajW2bQw/6LjvdNqxz1JJXJ6cYs/M88w8Tfz08oUvv7yo6+NGrWH0mWZSmbH5xL6urNsectBESme6w5cvN1pNTNNX3q6vvG1vrG2V5j4k0K02IDEv87uEtYrV5nsUtRlN51PCcj6fOV/OnJ9PohkHu897Z1+lO59nsWAnmwIoc07lRE6Fkk/MzGwvK/3WOdmJt+3G+nqHlkO6KQmCJtg1bvd7SIJzsGwmeVFVpwCTmQCEtnOvrwLQioz1HXXNwOJ6DaxojLyovNH5/krKBfgA1ki2YrYBm6oc5LVBN9btjrtTioAqbyujOO1NMX6Ypo7Gwh4AU06SpNZauT5dSTnxMT9pyqR40kCPPlFm3/dgwAlMOp1OmhBkCJyIxELy1EhDejQRUtN5YZEkJpinhVJOlDyJfk8kh76TE5SiIi4l8MUD2FPBn2yViej08JPLpgHl3qvsmver2JjLiaiWI7+o0LMAGRdbyLIo6WqWPJgz3XQmY0ZJs47jLsDy4XeAPAxcQxWg07s8XrZWaRE/cio4idZEQ+8BqkzTJO+mZNS60fvwJcxHsm420T1T20PK1pqH/9eQ46qQz1MwRjqSpxzsjwEIPSb2EYDir6SRWeunbcODph/AxPBGSlGAlpIG3xbNRh3QwqOR5wEulQACzNPIrdlbdKInyY9H8j25pHW9OdkzqafwnpY/jUBggUO9y0qAVDi8JVzFbnK9X+o51k8PHzIjUehm9KSM8p2KUrGGiexal3lIu5Lg2HurkY9NQyl2WA3I6cxpSUavSvYjdbGGUUmTgGFvAgYrE0M6ZKlTcseLppZ2V47Z264mzpC4uksaYolk4QnUYqx4yHKViE1oypBez5OmBbdeMetYnkk0jCG1c/aYCBXliVZPgK1jchk+ZP4ju9Z75wN+hMNYm5E/22MdRoNQk2qd2iJ/RNc0lQImw/BsmZxy5CZ6FXfJyyXpKwInuoYPJVOdkcM7jThPemvUWuXDkrPWpBkkPcdt1UCD5Xk+PCRv95V924/mYZ5CqjiUCl3y4NY606zx4lPRM0pVJteTPUqoUiaNIF9XAOai+mXOkxopdcUk5maOSaxzUU1Skuw2LHywvO0CrFwNwWQDVIyGcDZSnhgGxTnOZhlfRWM6aQdnMqln9lXxK5dZBWWw53owUlMq4UgRDVVXA0o5YYl9O2RukHuG3jmlRTdgTxE7Cn3t3GuFLEbbqXyiZ+fHnz9TeyOVdJD1zMTKYwzbsfpOpjlAAnsX0/Ih+RpeXh5nmrxutCsTag6WGJqQfI+aZKI3BIpETptswsk0L3SbKeePeJpp6QRP38HT7/mxFtJPjd//lFl64vKpcn/d+PO/u7L+sZHeCv6649fKx3QhT3DfDaeS0072Dl5JdSdtG/PamBvM8weqJf64QVoy56cz83niNBuftzvX+wulreF55pLRbRNpclKeaPVG3yr+R6O/zbz8pxnvhl1n+pZ5W+B8gukMX/79L+w/fqX++TPp9hX8M9Ze4VYpGJOdma1SrHLhRulO3yvWOxNnUjdyTbx92fn8+WeWKTHlxPP5A2aJt+urALL8GAMxBgiUpNw/B6ixlJllSjyfM701vn75zGleNEhg36K5rGnv0zLTTeN/WsjTcpqwlJnChmWtjeZQ604qsyxYvMtyIc6vec4U0+Cb1sTW02ZRjuDunM4n8lRobWeeC3/4ww+sdeO6XhmzPFMNtUnbSEng2gDv00A+Y6rvXivWDfMS4FMlJSmJvFfMG+5i8uc0zkcBWdXlMdyagEbPnT7JB3jKGqpULFNTDW9OnZ1Ddr2TDyCYkNOllElhcaBKNpp/QRSRNYIfDUEjUWs0uixFriT/xlSK/tCVrwzc45/6+v+D8bTFAdOOwDcQ6dEJ7zp1IhcMnb7yaAWIKEYGwjaAEoejA9DHv8dB6YcwDL0HnZ7iMB4vEUu8G4xOYFdWF1TqfrxW98Ew+s+uL17j4OEEGDUm1I13cWAfVOHexL45xviok9EQM0bAYywE9Hn6O5aSTMBG6hKAhkdX2uFwxhqAx3EfOH6mH3XHQxoXF/BrxNXgoHqHZ0VSrD8Oe+uPv0s9klX8GJGcg6XR40AUvV2Cy2wTmUnJBdMBoWFaH63vwRAYiOl7hHWgx0owHn3YB2rc23t2mJ6PJHkwuqG1Vuou+U7dVag28fBDkhmZpMsfiUCaB8trjCI3VDjkYEd43O9htHYkWuMcHH/X46keHfJ0HJjyB4vn3McVg3vAjJ7ozbneNu73jdu9Hqhz3Z22a4pIyxpd3jvUPejbdNYOtSW23bndG+eLEO3b/c59jZHt8WEF7qp72PqjG92aDO5z7G35IjjJW4w2LyrKPAqfWKvDk+2gasc8W4ukeYB0buOZJuQooeKVpElNPjzMcnQUUqzbsUriXpZkpFkH2WkpLHOi5E4Ob4lslSm8j7xBCskAYzKEjWTcydmYlyKJ5DB5NYHU7hxG68YEnUPalUf3GaLIeDDd1JxNwfYLsOUudlJnG+cxoyNdWwvGjfZAbUq8dt/V4c2Fc62AJEj7trKtK/tWlTjniW2t0YEMvwlXjNLETz0jeqdMkiGX7NgEre065EN8Ig85V2e4J6zLV2wknViYz5o6ni0mTLp5TJuJ2E8/npcd91wxyXul9SGn0b3TZIydTrQRrepADNPfMcjC7H3ciGvFQlrhsYer2G91p/d6AC2SOdTIaUWFF5enQQyDUOKuRdea1nJtlVwTpE7tlTomQsHByPLwtunhJ6dkQiFHMVZry50oNGSsXUqT3wWDgTEKWV1oDjPx9q6dlJLYdVOAuBbxsPmgZxs+aNRT0aS2iH8edL8Uz+WoGY3Dt26cImb2jqUbvBVT8TeOsT5wthEbY3+nX52jA+6Jz2cyM7YePN/wYbFBRTR10waA7wHmjGzBevBFe4AuDhbDFOLDKEFC/iqPwcvvz357nNERY0aW4CaAwzpHbBtsDa2dwRFI4RWlFxkfX2OSYyJZxEg/wKwHJeFgGfi7uBEGxcN/4bg+f/hsPTg37zaD+3F/xs7g3XeOh+q/+i9yjjSYMzbuzPEfUYCKIXekOQw56XhpG+uFx/tovY8i1RA5Lga52OPztlj7ajEl8Cn2IXQyAhGVzLvvkoCN7jEjTxnXIG6SgKseg2YezS2Tc4n2/fBKsgHedeqYwGbvzuh4Zkpv41xxNcYGG6cnnQZt5GEBpioH0no0a2jFC6hU7vxYP7q3Bzcs3kM5wsGUcXuX9ySw/MgvB0tyPEN/5KXx+LAuwP1B038XAB4HbTzX+D3+uduxCeNxxGhuF2DpwDCr116PtewZd1lzpJSYoigVkJTJlhTdfbyrZJJm4WFkPXLndpyzuAcDP642ZVKxkBSbpkhbwtKkhiXyl9O03ETJxhRLKw2fpZANtmBVuInFI8luWGjEeHbPYoekwdwB5iK2FE0xO4f/lXyq9Kxa07lZcoGkwTEpWLnWNVVu9AYSYvtPYT/x2LPjPukeKA+3KG7Tce+1Q9XQ4FBPaL1ZN2L0XdzP8ffHNjpAbsU05bg9WEPjPDnWIjCYd71rku5e42+CFShGbXqcO0dMVt7T/aGCUBiPP0e+3M3wkBsPcF2puR0/5IzPbXqv4+LGWuGwLTimmdsj/iUK7onaAgTLEyRNzvR7hevOtDrzCv0K9Q22F6PfM6nPDCPz7E72BtuO0cjFoXUBRGHAOvzXCMaz9UZqK6nesfUNv05w/YLdX/H9rhyx38ALyU+Yr2ggw4zvBT85vi40j/jSCtwTeMZnp89O+w9/ov70C/bzj9jtFXv5CtcbqW5kunJrCyZOf5xBHLdvNAVcVgchhd6rPI96eKv1+phCnfOIzgJEvWuwhtQA2jyHvVY2rKhJ3bvhe5A7jpV6RLfHGhrst2hK9CYvapKrf2sWQ0NGaH9Iqw++plvUt4S02PHeyDlxmU58fHri208febtd2faN0ezzcUrYqC3j83TtQU+SHZrFtHknmmAca1/1JkdOYLGXBCBH3WiOprMneovKw0d9HYBzqKL8/QOz9M7/arzriO3xusFmdI/9BZEXE4qBIUNRDPDj9yDVRO0y7Ah+y9dvBp62/TMjWZNp2BzTKzrm0gzum06klEeXVprjfe+kqUjrWIhAjkyxqPQElUS1FkaeOsAqa5x6IflxJZA9OfceKFvXolmK0M1cHXrCvGBZHfT4KWqTj0xnUrcsvIEGNY+kCVzeHds0SSsGfGpBBGhybU1FpAmNPc1TXNtEayrsckmkdwvJmjZrDa+EZEYbtvU9DuG4b9u6xTuOqUCdEsVLPZK5x0HUXAa7ozOXowAcy0e+AKNQVBFarIh+He9Q9wqR3OYkGQRNxUxb5UA5l2fA2TeovXHvldPlxPk8M/ULeT9R+oWcirrlSeVGaytt38jTpGtEm7REBdO8Er0zuelXSNN8sLy6O/u2qxCzmMDhQoctJaqFKfC+s68r97c36M45Zzaq7nnS6PhWd7zC9VYpJTPPs5I3S7hV2DvLvFDKxPkspF6d6kRO0zFecxR8rT02o1kKfxB142rV/nBXcjhmNDpRnKZMzjPzVFi3nX3f+PHnK7f7incoubAsE01HAlubqD3TPNiBeaK6c187nhfSdGGtBa6V81On9Movr69s26qnnJOYW8VIHTwVqqvThSNPJetYbjK8rpVUnFzgvl9hc/a2hdzpRO+JdbsiFD3YHYC3u4JWHjTbqufYldwlM8llDDx3KDvlRKDm/SjBh12JV3kl9J4pKfF80nSL00myHHBO88aUGtu+kb3yfK7UyahzYdvlbRN2pJSsQ2hKmWnKPD+fOJ3OXC5nhnn8tu2s286Xlxe8Q05n1tW5vTaWZWaaZ/ou6dx2vwPOssyKW1ulUDRRKnKaba3ct5W3+/UI1L+SUEZi1ZKx3m+03rj7Si6J5bZhZJap8PWXn/j69YX1KjNjULfo7ZdrsBDlr+Y09iZ2VwvAfV0rljfu60bOMHen1iv7/oojdoqV8Ddho48JcS55Wd13gVf2Xu6x42lnmhMpnfjyi+PstHbHU1Z326HX21Fdt3Zjq1swqMDbRqoTWz8x0Wg5sfkv3PefOJLFiL/zfGJIoZxOdWnNs9kxXVBMosq2vwWL8YblnTI7XlZa2tjXDUPsG8VMGdFCp1dF/W1Vk+XlemWbN+ZiXPcrm4dHGIU9pGyEh43SMI2S7s3x6pQkw9vskCjM0wkKfHj6RLEb7GIEt5hdbQ7n5RSFUqK2yj0OdQswysw4zYvATZex/Lbf9TM54YuSgm+/+cjT04UEeOvU2shZ3f3em8DEpMK9FKUD9Z1YX2bZWd5XvZEsgPowCN9bJZGYKEpImtNT9PX3Ne6JCqSSkWdQKuF71JimIu+pTWzLkjLkQiomRkcq1DjrrauAmcukdVPfJe8D6A8WSEpG88Z1v/O+uTCKMXX3tIb2YNM28yMBbh4jpOO+D1lbbYrzVmZy14Sl2qB1j+ZIB/ZYT+Hz6I1WNZlm+C1amSLniAI6aZJVTsZ9MjGtkgrtvTYV740AApGfj+uMdQyv+6NoQ42Jo4ETv/U9AOQAKHrIoXKKibjv8IgB5CpWbXS/6/675BsDrDIkKXQTK2vI8b07PUV+2GG6yy9q8sKenD01mkGzzoYmSS1A8kzuC+YN+kpNGi1NinhqlRRsVbo+XyJjNtz+NS66ukD1Tmc1nUITCSfjJO7eaR7MqcjRPGV80gIwl9EqZNrhOTXYfp3ORPULU4YpAdYCtFAnfM4TyTNTX3BLGs0eiXpuYWbrwbbxAFnfNSrc5QXZGM23OdYlMvFOD7C6tqqi/uhThvSbwf5LsXd0DzBo9p71pgcv+bBYdt10b80M5iwwNp4r3TnPMyUnatVUUeXZzhaNBLyzLFNI0/wAp2SyK/BGPttigzULJUUC98YWzJtSUkimLTzZGts6fOtionCDkifm08KQNUvClyhloffG6jcS8jNJyQUG2M6cd5bzWf6BTU2m3qoYQXNhiRJp2CMsedZ9tJDStpg+hXE5ZaZp4paUQ0wnDQ+S19pE98LtdmdbpTTIKbPMJxIp9omTehWbp0OmaGDJ2NbRE2kmINSP6W4m1vpgVpgxhSRQz0s1cc6TgN+mDZ6zvKM81WPPjqJ0SPaaxpbqrHA1sqZ5ouR4rr2FXNbAJ7wT+RZsu5N70RTd+07vjZwWzDqVLQprnQ9C+dXAspAWpmCXualx2R1aAEMDRci5KK575NVdMLPyAAEbajLF+uvQ7lHXkCJHC9COxImZvRVeXzb6ZYaLpu+1dWP6/Mq8fOHD9TumZeKnL5m3XwrXf5gpN2MCSjqTpsa0/hn2O/3LzxhOPl1o+8p2fcPC+3RrjX3XMBs3BDrdVvIvE+36M9dfCn6/kreV/e0Lve1slshl4fL8Hd0mqi80JrpP9F9+D/OF7S1kW+FVljN4r9x9Z//p7+lvn5m3z6R6g5efSa1TmlHMmLKRvJLYqL3SemcKuWwLcCF1A6RIIEFPUiokK+QlpPJ1NM5hmQpzKZKReed2u4qRFYD5Dmok5wWbCp6zJN69099iCqw3cffSpBol4nd3x8I+zGp+B+5VrBkn8wBDtcbHlE7rDe9DEaVn//zxmTzl8MGs+L4ylzMfPjxR+Au+eX7m3//bf83nz3fWyPvcumJWkjLKawWrqgWnC5aLwGWHuYsRv639kA5Kdm1xXQQD93EWW3NKhpZE8sCNdkt0k2LMMdVRrmbdaPT2kNFb0fd2caP0b20X2BkxNpeiiqGrAVwP30D51ZWUqetoXrd3OZdqyr2KFfogjPzTX78ZeBpsD305RPfB43DKWdTHMb2rd3WDRzKk7kASRWPQIxlBObopg6J2kHdC6+8JEhp1GR24gwcdQI5NM4MxJIQzqbt4dJAYMDvH1LCBzxAI4PHS6qhpOlkNtDIF0q/PUTC6taCrBVo+UPU0HBIsfHk4rkkF9fA+UoLgro3kEe1zznhIQJI4s5KgYUcHVjCNEM2B3I7OgzThD4o4Y7RiMHEs5GduFtKP6HS4RRKXA0XV/bA44Ft0JCzNJJM59zyfOZ3PzMuZUmYxaFrHSzznMNtIJcxfU8IjUTqAgKDxJsRQEh4eG2hcwjvENu6y1kIP5koyLmdNxcouOC2R2Gql9sp5Pkl3vG2MLm4pmXlZ9AyzcXk+0VqjlPAFIGiFzaNgVlI2fABSMk2CixU0EH5NXPFIVINy+p66w/slIeD2uq7c7vdDxmkWXRa0HhuxJi06MSolx5M/urc5T0zzQolR9cO8c+ilDwaeHQpl/R2uCXiGDK1zpkyF+ZSZ5sRympmmzOm84BhPz6exSRmTqrCJMaoTh1wkLUyuKRdTmbiczizzwnI6ySunrVrzYbhaeHQOhv5/MOxImYzTtgplolhmOs2HlPe2y8uqtsa+N/bdua8NjZnODGPO3lRo3u4bddpF/SVxmhcB55a5vn1lXe9cr/LGSklGy5b0eSQVa4fJoLvT1h1qxypMViinMabYxTy738XTtIf/w5gqqaJWiezY12kYD49n5ol5WjgtjbreGHRSQ4kFloO62TATi8eIsandj+7SAE29OykVSp7JXqI7VfCUaCkm7NmoEDoE4FLygpkYcr032i4fHJmiK2lWXjiSPgs5zYifScDcaMiXSWslJnSqa13C46CJLRt04dp0HWZdTCLTiPoa58HoIVgw2MqUWE4Fuzq130m9YCTyFGCfb/E8N6wskgm4Et1pkhxhmjPTUliWzJOf+Gb9QItJIznzzjciOuOWKWnWRMy9MSakEZ5frQZfxgpTWTifnG3bMHbGxKCn5ws5p5Bp7ZSbpjHKw4tILkYHbbCL7VEgBt2q1katjfNJz6xMGsUrFs7j+x6MKOJcjzPxEd2C/akYmF2xI2U/mn1mIT80p78b4R5HeUg7FDONwTTQu+SsbqMKCZnnenTfj/sb/lZDnp2Clu4us1k1OqLDn8RWsFxQh7NzjBob4aRIspGG2XavDJnR+275kAHpf/dH9xI1xdTcQWwFsyNPcI9iLSZY2qCKWXjW8I7t2BseQwH0PHQ+Go4lnRYyDB1JyzugATRqPSgK+qh+sALSEakjQUeJggUr01IiDDPfXWesMe/xKUImHrGJOOsio9FeQu85zO6xKBQxbIlF0PW+2TLVhp9KQbbejYTH67oGqZgKoh5Vd3PFmEowaoKlgjWGOYvlwUjtNCygpkcO0T2YgJaOnLCGCazNHyPvMSwJaE39FIX+PfKzYRZrAVYHSycANMWVjHnBmcQQ8DERuT/iXryPimSO/O1gcMQeHEeEfiY8Tn2wWpIAGe/BEtJnavH7AIpG/m35wWY7GqP2YA85SR5PQJeTt2QZUei7aVCHofwwp6I9bALlVLga1QVoHtMN7cGuTx4T8KakveiE1NSjO58xW+QBUwoj20lkWurBoNIwFBVOrmmo03zENcb+qmrIljIzlcw8L7EWnGwXvDeZ6CYjtcjxNgQ85emoFaaQDQ8mZyqyHukxoRJveE54VgOaKOIAAY99NPMQeI1y8LaFcqMTGe8csQgxjo8Nrn/v8Wxra+xNsj1w9ur0HrHVQJPf7MjhFRSq1mLkGDX8EhXdGUk1ToyoP+JSFO8e0kOtavZ9o/dGSdOxFt11Ru+tsdUqHrXLj1SxSb/scVkM4GiwW49jJzaEZa01c+g9h2zWIpT3d9cYkTtYlj1i4Gga9Kh7ZEQdTJLwsElR8xiOm8bU45VeN3K+k7iT1hd4vfD13/xEep55qTvr64794x27NezaaNcbfV3Z9q8Cnj7/o5qRpzNtv1PvX8n1Sq43bL+R2q7hFnSs7bjvrJ/R6MLJaOuK1x1uVzGiUpG87r7RbaLbCWzG0oTXlV5meNU5ZkvUxKIdYuaUt5+x9YXZr2TfQ6IZYGyvWGsY8nsyFBdSTtDlfZRQzBVvcw6mswW4jpoQ3h/PpRl73VTfRoxg5Ia9qbbPOUhCna1V0uFD5Iefr4UcvLvH1EdZGeiRC2C3Inl1MQ0HmUoJkBncxe4bUr85D9/P6Xj9ZV7IRTELIKeJeZpZ5oVPHzPn8xN//3f/QcN3ms7ZMs36PFlDdMSItYAmVNebCyBycvjKJgaHelRhHqqQoXYS8BRNB5M/3zjfBglt5G7DWgfvDO8y+ckNz610yJ5GAxc0WTsFFqMAEMi2j8MmBn9ZD9UDajpnVe4p/PgODGQM1vgNX78ZeCpBZ2htXGyMEO6SggxgagBPo+wZ1PscVNURsKk9KOuE7CeSpxSHUWhZVVSrwEjT9O7haGFaUyKel0XdutblK2PjPj7ALw/qWsrvgQAh3oM+Niiljjyq9m0TPXiadHhnTV7KpQhYMxj5guQWdkzzAQ5PrBSysxT3IqfH9zliFPWqgFxyoVEDDVd3v2FHQqJP16M4HckfUZDJkFigSHTOYoEf0jkGddZIcXjXPkCxoo3TH0DPOID3JkOznE9il6XCcn7m+eNHTudnpuWk7jR+eGSpy2FMZQ7NubHtQoeHwW4ZfloISPQeCfb4DK41dQSjY+dpoRvqZH38+KyN8+13Yh1Y1mHf5Y+UU2a/32i18vb2Ri6Z+TSTiwLZAJM0dWHohTv3uxDdfd8p0xQSmRIHZXv3eQA0irK1oCFbim7MuwE0JtCvEx5g3flye+P6dmNrkjaVnAVyBF+vRXDJIzE3BDLgEImidyhl4Xx+Zl7OKtjyrM5EFKPCQSMIhptYcCkoAd5aglwyZco8fzhxusw8PU3yCMvSyG97Z9sq9/sazzBG9RpsW0yoWy5KdGrncrrw/PTM8/MHTqcTna4JFXd52UxmAZBBJ7qOAUC1/g6s6Y16W/EyU0h8uFw4nWf+/Oc/8Xa98scff6Q7zPOZddt5fbuxzCeW5URKM9lMSdpeefn6oskrWyN54jyfKfNMyomvX77w+ia2mM62G7lMzNOC09mDzfEeCN/XlR1jY+VczkwfC5tvtNZ4fX3jdrsxX066t/OiqTC1HsXiHrOtp6B3Z/QsvCfwAhROpyegsN07m28jsEGvwTxwLId0LH6lmB45isKs8Tq0pmlk83SBFt540yx6cAqPlu7qiPaOo5HA03TCMOquyXjbujJNAjsNjU8eBJTWJXFI03QkmNNUDn8JzEkUSviopUgGcprJaWHvd4Et8fl3H6buMvueU+a+7uzrJs+QFEbUxZhmw6ZCSyfS185er0rcSJxO4xpWWq/sbaVMxjSfwvepsoRfyHKeOJ0mnp4X8mKkyfny5RdeX1dyImKu/EuWSZO6prJQt8p234nWEj0Xcp6o+6BXT8xTpjwvXK9XVu6Ukpmmwh9++IFpmnDEvju9vXG9Xnl7ez38R1pTM8BryGcQ00j+AJIorttOmXY+ZZnMOpoI1+r9SBJhJILjDOwMeGeEtvFstFx7sFEVJ8SkqkyTnqN5p1MDTHrIISwmp+61hbn4YOepCSDgc6J3dYIVTY0yLZLnuA6ubd3ie2dJtryTJnWv6REW41wutnCI6AbQazqr85yxriLOu4eJsMCk0Rmt1SPPqcd5OAaRWFD8YzBa/G6Mkcet14NBmZIrt4nzKicxYNpWad3ZO5S8vJMWNcyGqet4LpJCH/s5Pq1yBhn0eHsvjzCGSbWABA6PGEzMGRs5SACARKe0HQeaS4qSlqOY95AQjIl8OXK0RpeHlyVm9Dg2XzSw5YyeQ2tiAvlETZ3dOt5nzBOFSvYu+UZ3xiTGlMOpqBurzzQ6NYrXMgXkFc/VXKCA2GYydm4RI9/ngeeTGiFtAH8ZPJ9Iyx9wCt4LqbyR042ynrBm3OpPQGeyE/QdeA1gTs2NbgKyh3+T+Yz7KRhYARLY49kEghQgbyzTo787QLJ38G8wiZp3KoRZuLHtW3SgI8eM9QkawEJ3sdtTIs3piJEJIi8PLDHF1MlgzLfDY+zRbGup0WvT2sGYinylahNrI2ejI5aiJLVJYDyGtchDXVN9T9N0gBsbUDtgw4c0vJpKOWJSyVrbJYkplqfwJ7V85GQtmKMtZPvbVYyseVo00XW5RFXSyeG/RhgDFy/UWhVJTf6zOWmS1LKcyTlzv284kGd99tY0nWuvK200V6eZ1MdkYiApd17XzrZ16o78Ug22aA5l1CD0PGsC8D6k38TZZwwpawW22lnDm6/3DlmeLnVMK9z9Ead4xPXe5RczFtVYJzmnmESmemX4dT5QIK2Hre1MvTG1engDLpPHuR1xoIkBs9ZdYEmMsR+yIuzRJD9qMEySPHPVf+pQBcAUgF+HFsn0kIWPzzum4yUdGoxZlAdqG407BULlv/KKEntTZv8p9mgnW6b7jm83Sn6jTCf69TOeMj/+PxO9ZG5+g3WHlxt2W7HrnXr9TFvfZM/QKv3LnzF39ukUa+UOVsnWSP1OpuJVjMrUKu2euL7+jFklJw3e8dZJVYzLqSxgmWo/0tOMlwuUhVRm+ud/0DW+7TIuL3OAdwmbCjYXSr9S2DhNGyU1TktIH3ujrTv1+ha5iZOTvBizabDTum3yOZuiHrczh8w86v9a64F0DqYyvdHTzhR178jlat3J84SNwTgxPee9vC+ZlFKaJKfXPM3y3e0BdEg9nBjDyNzFBpLFwFhnyoeEwxki0xl9UWw7avyUqHmPVa+a4HK68OnTQp5m/tV//a+4r5XqGjx1ms+Hr1xvWbwZF+BfqyaLKsYaPfyK/VeDQ0IuGwDQHvFn7IpkWVLFaA65g8X+HbWnSDOhzHIP5qzIBLWqKWylDA2hloQrJhFN/TE58nHyqCLftnfMRDNynmOPDfleWGwko9V3++2f+PrNwJNb0GOD4t19BAcOF/qcc6DQgWvb46F2Ikh03b0A4FRYubxmjokQHh0ZjNZh3Xes9pgaJerYeJgKtJqMlCCS3uHpEoyskBLk9EgUvbt+1lymmAcONRDgEgydh+EWUbQPfadyiAiUEQBH5yBlsWaKC+DJkai7O0nyU43DNqPVHsm8QLCpyBugxkKQTDA8YMIUbFxjShwSOuKgsKzpLTIbi/5wJOhxV+Jbja1tGInWKyDwYHj/DG32NE0MHwQlpaIYWgKyKPWeOp6cskyQYPcq1kEY4LqZJpi1HkVGgaA/HhKT6OpITqd3yyaUuDG6eSOWaR05MGWxCQ7gtxGsg0yqULrGtyaDfCr0nphmJVeWxzjIjeSF7kL/NdnZgmkRXWcX4ForR+d7MJ4GyJRGlu/vt+84vnukPPobAYXS1S5LofeJDx8umuY1AF52rYkpksV4fXdEEx7A7jQxzTPPH585P50ps+QoT89P5JK53a5HIpPzJKabB9vpiBXxydyZy8T5cmZeJsqU1cFqG1+/vrGtlettxdxYpsK+b9zuN06zzDX7LrB3d60tXFLOdd2Y542cM9t6Z983fvnxZ/a9ykcnQNPeZBaaxl2L9aHmXj9AwNvtxuk8UUri68srLy+v3K6rAJR8lqeIQUlOTp263tib7lcCzouM/rf7xr7utNqZZxVOBK001J541ghZYX1iX+QxzS7MLvsARqtAtdpk7t0jBhHsle5BKbeh1Q49dc4R94Jp5/pTKUXAtSfaLjC8V9FlxzRKAZRVsjUUp73twVAZo8gFRLlrr5tlpnliOZ+4va70WnHTAeWTiWIe8hA8ZFA42/2uENgqGbicTlFD7ez1xrq/kdaRcOrAam0/1u0RW6PzUzcZZ7eqZ9uagI1lOUXHOthzlkhpFBvpmFA1zwtTmXUmjD0XPgSYkUrm6fmZ7373fbiKOSQVXR8+PSuOR2Ln3fCQzTliau11w++N2uUdJ+mqM5Ui6W7vLNOJZV749ptvcIdtG0DgYMc5bZux1PnRfwaM/a4Ryb026i5PqpwTW858/frGvIhleLvf+emnLzGhcowZV5ffIiE/gnPE0R6F19vbjd46z5cz81weZ9fohHoYmjsMzX6ccuEfoibF8LyTBA28jXg8vOs6DzblaILofJqnmWTGZKYEqUfB448pK3kaa390xHVetd5Z7509GIC4sUuJzlZH4MqUMlPyROsqwlOWx12xGcdDNjdMshXPe4CYc86k4uwl/If6I1lskTP0d76ZTngUhfmEjQLP/Eiqx7mmsedVhR0aFEEA7c77RkpM+ZkEmLaeWPf9UfxFA0pnQn88bhlrhgnoQ143GjJa3EGN4sFsG+fOaBRq4SDQy0f+pDxAbW/lT6XLQ6xH7DJPZC9Uc1acPYoEiYMTe5lplmi2Y1ZYpqcD+NrcWSGaapD8THEoK6TipLywtk0joIkJc1mDL9Rs7eythql4x3rBWh7ZOVv4RXoZ5uRJ08B6h3ZiSjPX25Xa4b4oJylbo3bYOsx9Y/JVEt7m2LQzTYXp0wd637h7pe87vu6k0iKvX0judC9qGLQmoMwrMqGFWgU2qOPvwRDUvY8eC4PL3PrIL6JpONi/Prz20oFhjQB7AAuPxEPWCRa5azDElW9Fl3rYVpgzFTVfUgBjzcU+ExcgvHiamO1lWeIcS1ojcxEw1huHFkBvSbEczCXl8jTl0NkTuacH4BBnoEUJJNZbPnL0974iRszyMfDQrCYz+eh0WObCAG9yzmIbueJB0IqigWycn890M7b1BZKTJq31bMZWrxEHBJ+kDcYApVobde/Utco7sQUAE2bFarKJobTv0FpSExdNsNM9CuY+TYzseIYWTA4z7Sc3Te/bW2dvPeLVyPJVH5kNrrN+ZrCmOjXy/3bEHlzNcO9jHUazOkgFlkZdJDV57ccyYwsrCaxhKaY+OtSuAnprVZYevZCTpOzGiI171C1+oOf6z4/jrKVxCj8MwxuxZ6IpPc6P3kftZSOQvQOaIxaO+xk5qWMxTMKl4LCG2Uq3REoztil227Zjt6/U240+f8D//nd4KnjeSN4obcfud/r1Rt9eZDURw0We1y/yLlzVdFm6k62TrWP9hvlOKWKeFRMTq7rpvNorJZ7gMHlW09ipriaE5arWdN8OskAumn5bfFZTL89gu3wQbRPw1W5Yq6TtDt4wF/CV2UmMYREVWqMiZnuP/HH3hveMe37nAabp1lIn+AEymslvbSqF0yR57jwJqDlfTtjUIW84HoOHtF6Hn+80muEuBlGrLQgqMs3GYCkzljIlTQcQFavgsCUw+nFuJIMSIIxjB1AzFkmOvdFcHpHrvjFfLlyenvj+9z/ww8tX/vFPf6TWyt4IAoHLAiWVw/6DYKAfdQFiX/a4PgZj0luAUTH5MpIvkRMc73so9IPcM+Thrtfx8O2TR6b4vTnO9DyuY19l9J8fyo/aPdi26cjHjDFEQpumdeW3Oe5V7ZHLury3vA2rIp0lIfv6J79+u7k446ASljw6MZ7skIhpVOegZ3vQ6xMpZ5oP1/h+HAS6i+N8DAaTDxIaESA6+6bpCNliRcXoZSH6VYstOnUpFr3GlishGTTr9790gA0D3CFfIlB2ohsrBpbeR8aA3vrjs2udhpyuy93dOIAuS34EzBwR3L2FGaEfv3uNQ8AUGIehbM4paPhKXFrvYobE57dDCKrrHa7ytQXrbJiYvU9kAiGNfIYU01J6SNaa5wPIsugCWJ6DcTSC/Bj/PaRfLnp2dvKsDb1uCmCpjClbUGOKwLxcJCesSKrTtl89m8MfhTj4ggKrQAImN1mGEfgwbwMdMs0k/5LsRYfS8BQjjzHZkvfVXuXXtQfS7Cb5iKHkuj+KKD3Ccdg/3g8EZqY0gtdjgfhx6r2DoBzE9CDuoWQ9vU9cLgvblrit21EEpVTIeRQ3Y73F8o5ifDktnJ+euFzOmspQJNlYTme6S+qlgiNRykSZZlolZCSD8VePfTgK/zJlUjZq26h14+X1K9taWdfGlGeWZWG/N7bbneIOJeNVYEfzPcC4SdrmTZO2aq2s1zvr/c7XX77qMElJXft5olcddGq8+q+Apwjf1NpYt00Fe2tc3268vl5Z7zs5F/pJ9yibkU1j3+/bTtv74RN0mma9zm2jVU3dlImvEm68yzw4Qc9Kylt4ihAMRsk0xxTOHGwTyfBab/KuYCRXwYIIaWPJhSlPR31QojglDrO9C5zJDOBJ1Nm6S5vu3rCUA0xoUahXFQhuEW9bJOwRK2hBmxUYVqbCNM+8caf2ju9djaOUBdIc1bbHYebH1J4BBJ/mib1XtrZR20qt9/B3EGA/5LKK086ynDUxL7w+autAO0Cn1lQIzPPM/b6SUhdYmh7AU0pJ7I7aJSu1EWc8zNLlu+NJSdvpcuajf+JeN8kU+kbKmQ+fPqg7hnG73Xl7uQWFOxiiSVTx1o11a+GLJMlhzolWtU7mUjgvC99++w21Nr5+fWFbN8GBvSr2VQEvbX1RXlLVrZY5/XhPNWverjdqa5wvZ+73ja9fXgVgtf1IqmyOhCni6zFtzJwWCfX9dqf3xu12x31mXh7M5JHs9zqSo1Hkcvzex3uNs8BT/GX8fMQledyIuSwWmM4HS6YJhGaSQHTFvkOeGhIbsmLoMaggJLuagNhwN03b9MReiXvVI78wUp9wTno+fQA1WrNDLhaNPpU27o+4ng26mi6NJkDXirxbomlynPORC4H+7F2FqQ35WTzD/u6ztybQBSR9xJ1URtdTpaC5WFFijxplMrZoqg2WjKUH+yWwYIFnDp4fjSGP/xcKk8MrL1qdDN6zx0MeQywszr/xr2JVe8S5TPLw5oykWJ5PapI1lw9FS4meMzUAgH0S8FSrJKd9fianTs47ezMNxcgVNyf5idKMSxWIkxdjXeFaNwYcOtl8gIL0LuYeHUNMKvcsUARNRmtmeJZvnXtm887WndQXal942Ta21tnKjDExNdg73Jpzqs5SO9dtpfXO+WKcXBMi91S49hu+ge+dycShKGkGV35gPbH1GPCAQPqcFe/syFk9GEYDhNSaEAMtvDQIlt3ILGKvuqdHfmFamUO6NyR2h0wl0hKPfNGSMnmGesAe7JaE1r3kRx4sNaP4gIVH46+TTzlk8vIBLNMsD8xWCexS+aLHlGSMFBYcXnvAIpLjx5ELpoJRjT+0v0Ol4AY9Z+gqgqJGezD2DkBd6zhPE8fIdQtPzq5cve67hlB0Td++PH/A3Nk2nYHKIWUcv69qBiYTi8S2KE6bzq26O3WVNDMHy715P3yRxFIbLNV4Rt6Ys6A4oi7IHnL7d43f5GqA5wAZW1JuUQfoAgKq4uwANWdHU2tIKv0B6+t3H8/bdeb1sQb7wRgbxX2MgZHfWihS9h7AU2rYkBui9V1bZ+sVuh1KH4/cWBLFqtyzBxM0tLlHMQ0yNDsOt1GIK1cYMfgxHv4BdEB+d75xpNzjjNR6iHgZuZanFufBiicBrNZ2fN3o252Wv1K/vtA50e07SAXmhmWnTE3M/esV/Aa+QVaOeelXrPfIcTShUzVup/crsCvdSmqQOVo3NVjES16Y0sSUZBGwd53VuzWSNXKqVDwGi2nDTTnkrHWn2MSSOcBtUsOt0duK9w3fX4F6SOuKg9kEnqMeaNTINXvEiN0r3pMUSeELJrn5gzGjxoXWXS7yPlvmhalMnE8z01R4fn6i2srVfjmendRTWUC/GafTSTGkORb+SSksHYhG4zQv5JyZy3KoTYYE9oETjNCgPGMATweDGOjBUCaaUoNNuO07lhKn85lP337z/2Xt734kSZItT+wn+mHmHhGZlVV1+37NzA5ml8sHLgES/P9f+MynJQhiQXJ3MZyZne7bXV2VmRHhbmaqKnw4oubRd4G5TWCjb97MyoxwNzdTFRU5cs4Rfvr5b/jDn36h+UEbavZo/8AcGiG0M/KGCeZOkN+SLCg82OlDLLt5jWoKal0OC/Zjd2EKAf5PoZ6CZgzpwYMhrWFVgaCIWNGb5I44Hv6SPUDrEr5wjMjdpk6eyRIfAXy6BqohQG42cWeebHzAdf6Fr78aeNralJEpmM2DDKDFxLsJykyAoptQf/MHBGmxSGe3YnY/a4lJF8Pp213U96RD42kpZ2Hq0SmsJiOulsNToh8QfTHdmMdhOh/TpAdPuZlOOS26yW6aiHlrLVDPocR8wJw+kaPTW6zgdLwf2gflAyjn6rj4zPqCFfbRQPZkTARTZnZ5397eAiQadO80n6bgeuCWxErKydUJ0hJlTlcaE3GNwzblJHq86dDtY8i/xDiZCEQRaUkFf5pAB+C2K7HsAvNSEr9iuDwUhiXy8gPLFUiHOhbZ8TRi/LFDn4XupEj6mbzo4NVtSjNQoENpBCiX52LrYnOZFbGsCG+sD4BPAnw0BQy0zsbUGMea6EPJwNGPcy0fMeluBqLWDo7eGWMnZ4E7x9FUPExAMYJtlAHMUs3jgHVCYo3AjxOh9qzt545ZZjGDbLTjxrHveP9AtY5g4OMIuUSKxApJz9oO6YC88/wpUZaFbfvGvu/80x//F9EltepwT0oMD41wdkzJVICPw4c+MzfagM9fnnhi5e19Y9tv/PLHb7Q+yLbieVBp1LTyw0vV4RX7GnfaJpO9rEY97rBddnIp3PaNbd+49053F1shZ5qVcGv1kI91mZ77OBPWlJyWOj3B5k7qg1EqaVlZhna4PHOcJRWB8EdX0VQSvYlhU/KKOiEd+R80juNGH1mdmaVy3266L5H8QCIvK7UmASy7hzF/dFeyka+JdMnYJUE/GO1gsONs8qVIyDvE2pnkWwJrh5bPBKL7wJZKvVTojb5Le59tcBw3eSysVbGiHzq4SzrXZskaW91oMDpt2zhKZt/eebkuPD9f+M//6ZU//elPQT4MD4+myZ1D9TjTFDYT/nRZsevpeuX5ZaGWTk7OmjO/+90nSp2ecollucZhqUMTC1YMsB9KPq/XlVIL60Wd9uM41BG7PnPsA0Pjwi0lrteVWhc+fXrWedvg9fWN++2u9zDI5UJvif/4n/4kYKQW3u433m47I4lmf9s7JTv9c2J9uvLTlx/5859/5dv3ndu+s9+PAN+N/WgYTo/4YAFc4IN9OzQK2N9o2+DLZ3lGbVvn7X3j12+vwYhJGkvsTlnV0BC7T6ad85m1tj/8NXycptQ5RTwE1mWhlMJxHLQRYOkE41zFQEo55MACoG73jYGTyxrPrzCp2tN7ZoL3j+md42T1ptGhQZnck5NSrXNjyYXWO7ftRike3go7ZrDd5OPmRxNdO2VqmFbue6P3gdvx6Or7TIwf54MhJqq7sR3yS9mOjcv1wufPz+xpZx2FWp1anFrjpB9qYjzucYoi1c5BIj1Gl6/ZOFzyZoYaWmKvKLeZQwDMdU4Nn8VbJG5xBrS+oUEiR9zPKWVR8eDD6UEdmKxOB7ztGsMwDhINo2ExbXEWJmOIUfDxS8VeFPNjhNeTB4MkPnf4KqkDGybjw8EbPpwyBFZrr4cXkIHZODuaxDRfT8E+GZzsk2aZZgu7J7Yjs3umewJ+AqvygXPH3iGnQUmFfbmwlxX7vsHROVxr67cUhdJ+4OUTPL9ojfjgMhqlD9Z+iMG8Vlo/2PtONaemjteVkQu38sKREu+2YqlS0zOHm67x8olcV8rfPbGUyvLDZ0ZdOK5XLp8qn39eKSJS838oB0vb+e//b/8zb19v/KdfD9w3miWWyzu1vpM4yN7xfWNEc0Cl/h3yIOV2cob6IWmngFlIJQq2WGcjhvWMD6DSnOY280R80PoewG3kCQG+z7paMdgj59GEz701gXEjpBMBVuSUmFyTMQbWp/wJ0qH1W0zrT7iNQLLU5WlXU4lCS9LbcTglGAzjGCGT6cqds7z7ju0I78dMQrFqHzoDhymWtb4LGJ7MY4NjHAwf3NvG9IGZ4Ohk8vcx8AF5rDA0XCRZku9LeFo9JMsdzNjbr4wxuN0ROFfEuk52xF5BuYIZlpXftTAZHqMzTBJPnUP2IBpaEojemvJxOAdOTO86bcxQPsS+ssluC1DtiAK29fFoDkfcl2oiADsM753m4L1FTp0DTELAPcqh5/rqY7B/8A+cTOceDeBuhMeTcubknXZseG90WjTDLZpLwQBh0GYBOyQvPOZURX/4wcirdTLGgw3Cg70ZYVufNXLsI7wfUzz7VD4Aly6GVA7PyB7Ap4X8fLK8NFhhFTupGiRNb3aQkTWFmkucdw2zG7DjfjAsywdzDGzsjGNj9DupFK1DU+x2/4blwWUJVnyz+fGpuTP9aUF1LzglDfKABah0WUKP+EwevmkpCeDqN9JQo3Mp4WHauhrjvmK2MmzjOA62fRd7LvwvASzVqCc2xn7D31+pl2dKvXA7BLjn5UouV56uP3McG2/vXympUFJhvWiYUm8HZvD0/ETNibUWSjJqTlyXlUstrEXDM8bYSamxXO4YnTqqKnSTdFeSL+VMl8tVsWM/KFX+ZxoyMCjrJVRWGgZzbwcpJUotlEXWB9NvMRB9/DxvLX5X8NSEzpCjBqtuMNjbzvH+ysv+mcMP6mXl8vLE/dh5u91Zn19UW39Y+4T35mOypNZ4n1SsFI2qJHCfQUwbDRAKvcaU+2OT1K6GijDmAKJTqMqClDDJy/KrBFIhYay1SvI9Gq3JWP8I/zuLHKUUkU6249AAGovMPe6hPlaQa0qimKsp3x/TRv9K3OmvB54iNutNT9SYgHmMj/4J82/F1A06V5iYRTvusQB8BGuD0O8xTzbmSOWUtdGyPX6yBMqY4obsgfqZzaU0O7jqPglTiukLcIJP8/c0kcZgE/U+BVE6iFsflDwNRy3+T/ehR3dck3Rm10BJqAU6O8aDvsfMJyKxeEy/E7gknXk81DgA5v8GHsglf/H3jyc+r9qY3cpzRUTHZHbVzTgBthQmkaLLPUwUdT91WMgwdhbqLsquHTiNlJ2UXUjirNHhpF7irs5wmNDPhBWHKZCJ45BEgGk2TnbP2YU/QbJH17ZPnyWb+JMFANdiQypJ0Eaca0LJQh/9waAIdtk0fh0x2WiaIZaST+DwvN74Xv9A6/C4EBEI5rPgQVOfbT2fgOHsOgnsmpNiHAtATmspLI8Ea/mjOyQ9uQwmnYbZ4Ggb237ndnvjOA5qXSBgWRWjKntA9FDDgl4tOuuREvdt56ldcNeUpWMbbNH5W6pywX5IOllKYTQBZmnuqjDVHUjrPKafRnQKW4BOGrIiCW13yVTl7ahio4VsNsU+LYTUJUG3GCiWwpMhz4RJ3mIlqLsTUDQCbNXqjGc4n0Oj9xQyuOjsn93lERn9AGSiPtdPm0He5mGXIbtukJBCdY+8Y6kEEDkLRCCAGXViHe+zcFTXM8W+9KF1qEEOXeymYE91PwL4qjrI4mByk6R3WgSrW97joNG0QCXlJZqOD8PRM1bYlBSKSTvv67IUak74aFhWIbWuhaenC/shcLaGd1NJS0wayhxH4zg61nTYptDIK7/qbNsWcrvwBYwiX1s7UWvh6elJzLAG9/udCfjrWUtSs73esJLJS+W2HWxbF+XAoO0ORcwgPFGXKym/0pF8e4/kxjDKJuC2H4fWEdGpN72/dzi2xp4abZe8Z3SxW/bjIJcaieKZGWsPp3SOr55xqsVktMlgHWGKmXOMLsdJWf5IxyEa9BxEP08zj6RHHkuaCnO0Tm49jt8zUDJz++F+AowTgNIo32BmRiNF5s/+YFr4A6zy4ezHgfucIRId0r09gKckyd5aNUHnvjV6kym3uSafuUviMONjWFmC7bgb99Y42sH7/Y3n0UhLYqSD7oVPpVLSg2ruI8XZ5efZPbddiiLahjqFWWRDHibdPRiQnGcYkUEkElPyNg+nKLH+ImbMvGCuZbL8lFqTT03K2lMe99i7pm/mYOjOaXxKjs/bHcePf/ijx7ONc84/AFqRc6X04Yf9w7VGw0vrYg7DSOEhHg2x8F45eTEudttARWYzRejmhd0LW1o5bKFcfoa0cqSG944fG9mcJQ+O+kxbn0jHHRuNzqG4Xozmjb3fyDWTn7JkwKNT2k2MtJgmlpeCN+i+B0g65KVRKsf1ypEKN1tJ6YLnTzQ5STHWF6xeeHr5ibJcSV9+wNaF44cry+9WPv9XV7xWyIW/uTYu+076PbTyjfbtT5hrYlTvidy74sAw6TyG4jMMPOk8ttQiNs0COzxvTiAJZmFBNPXUNI/8wse5zjz24BgjwIlg280oMLd1mvHbFQdQLovFJKSzUy32LiNyzMhxMtNXbaaPpulfM/+P3N5nH80Jv7dBOzrBHT6HeUCTjMkKrQ+2vUGNucrBQBi9Kcvt+nztaKGXj7Vvkhl1H2KqR1PW47DyaMqJTQM5eoH7cZAt0esIuY2d+0C1ntPf9rhH+UzPZrw7n4/5WQN5sFmnV14f/8yyI2LFtBOZNZFiOGEtEnHJlVG7i3FhM047p7pksnvazKuiIaufH8FY0jAFD6lcb4prnolGtsfrEEbzRJ4tAG6eayq7o/Eee3xE/WJjBJsrchoHGYufaUuUcvEq3mf2gY/+vypLzjA29B82Y8z8/+f3+/kDs8k+ZVKzHuiMuJecMfm8sAnCIx+9FOuJBBYkGoFUkEankiNXk1ecmgFxny2xjyU+20bqO+53Mk+YZZrFBFM2MLHbx7k39clzSNFT1M8yhh/kDzzjwiDZiGaU8k81aGKIwQDzRhotJHICHdVU9gBQimwC2p1MCUlb2KcEYDhZ/t4Psg81aV3svGSFnBYu6yfMKu/vd3IqsuO4rNRa2PZ3AJ6uF2otXGqhlsRSEtelspbCkhXrjv3AzEmlk13kCaLyK7nI1iaAwVKq1vJpaRLnzjjk5VcKFiD4iLpqTu/OluMMI4A7Zw4+ggfA+ReH4lw5sc+dQT8ezcBSC8u6njXMFBWOuU9nShCfJ/2vMI/AOkJlYp5Ud3t/1HrnZSimz3UzL80/xKKTYZQmcUT/NhVgs3g+FVA+xMaFM0aePl1YMMaUu08Wk3aArmvwqI1IYpX7iGbFx9zkX/j66z2ejpCTND87eAx1RJdURU+byHJWHy+7S4o3HyRKiMEhJskcLgZPGh4oqgyfzaGlxMylGANrIckiwT3GI0ZRZscW3e4YH/jh4U5TZSthxh37upQUXcsHUyVN1lOg5bkWyXG2g2ynYloeTQE+nSCII+Ov4bjJTX5+Tw/8RYaeQtxLmBumkIyVUmS4/KgHmOlszjn8NObCE4tpnElijNl2dZrEZtJn782DP63XM5sUXtF4HWdJmemIn5PAvjkhRJOp1MVOyal14GmOo1cHEz/wfpBKja52wGT9EEuslEBQxUaZBvEpGbkucR9nWm+hw49N64iyGwlDCtnHsK6DrStAKJCqA+dpMCz8YIBtvzN6p9b4nObkkrhmmWOqjurnFABpcAVG9ZikJflKAg/TcLMwvyTMGPVCE+RMoXedY+PHMCx7MNaMjxDW7Xbn/f3Ob799Zz8OluXCRHq7i/HQI4HzoGBP+abALG3mbXvn7S3z/v7Gtm24C0R9e/tGrQvXywupqPu+70dMUtPksVw+aIa9YGRKvlDLMyVtlJy4Xn5Ut94XdRLvDtWxiugxDnNSWw3a/bZtrMlYC1zWyvPTyu1tkFojV+3vFqPd+9i5rCvLujDM5AdpAUIGg673xppW6qWSayWVSqkruTZe394ZXbThxWKUqQnwuFQBbN++fdOhYTuWnFwHnY3b/p1UX8i2MMYhDXc7wIxLvqjj1zptb4wWHWl31qoxzvu2MbpGyV7Xhf7DZwwxrXxobc3R49Nkue07a1k0NScUrOYqCtKi6WulOHUx1ksilSvrJfPnX9XB9CF9fKKz1MLT00IaKzaW0GMP6Npj1+sz16crP376mevyQvKFv/ubf+R5+cz376+03ik1UZbK8w8vHL1xbzslZ7Il7t/faPtBv2u6yWjG7W1n335h52Dn4Dg6fRhHU1K07Xeulwuff37mcrnydH3m1z//qvdrg+MQ6+vYO9u2M3rnOO7UulDLQgvfp31TJ3K7H/TPzs8//45hkiDvxyGw6vCTam1m1GXFj0G/NfZ+sHdN5Rnu6qylzOtvO97uXNZ3vr3eebtt3Frj8MFSlzDI1ed/vlz1HPddksnWuZRnUo1O08i8frvJg8AWUlrJ6cL0lCjFApTVCF+RlzvOofMmJ0oZwZj6jrPw9PyF9ZL4/OWJ79+/c7vf2NvAqTorMNZFY7GnCXsqNaQponTPokIdN8lVukdx0v0saPp5TPuZOBlOsgB/RldsKwQ4pulFMn+t7MfG7fbOFrFxBBjiQ159l+Up9scgZ8W02/1OH4PL00Vn6zGBE3nUWYL7fec4Ou+b5KANsZRu+yv56yvLn//Ep0vieTX+63/3r/jh87Pil8Nxi0YIivkpOSN8CwR0CZDuKOEyd0nmcSyYfZZgXWrENROQWqM4bX1aIEU+AW0cpMSHs0Zs7WSJuggQ224TmFIxKj80ZW7XpbJ6wRnsrYvZ4s6x7YIBw28T4szHwhNG7GKf1V+cp8Nn42NEQaxUoAYzI9oPUagIeMsjco8UWJbH+eUPaeYYilMtZw6TbG5PK0d54ct/+3/k+g//FU//u/8TfvnEf/inP9OODbZX1kvi6XNlL1eOcmGwk2zwj09PZDduv955+/orf/yP/xN1MeolkdpB6o0v3slt5/vv/wPJnOfPV9r9le31F26/fWf//o4tz7Be2T5/oS1X+svPeLnSlx9JaeWSV4YtDCvs5Zk9FbZlJT8Xnv7+wo//zWf+3f/lb/g98Isbv2VnuXf6/7DA51ds/QNrHnx6dm7/8/+d1//pv+ft7SvpeOfHpbKmFP6BB8fYGOz0tuFpkK0SqkssNQEpTYynD2LJM4nPRc/rXJvz+dmDvS3ZxmSoBdwRVf1sw07+iAABNZuGJVrku0bn6I3eFIeVX2iSYfFCsyS5OZFPBwv42+u7chQezJj92Llve5gAl1NSvG03ksXQkaFzcq07tdZzutT7XQzjUjVI5Nh30pLJS2H6JZLG+V59cDY5pmxGE8kCsAsp/PVyERsiVXoTaz3HtNG1qgw6unxW16c1LCAaOWvQxr5rCMXM2maemnnI1rxlvGvioqO8SpcxxHL4YFfxtr3rPrYea0FMMW/tfPX5NVPgGDzJcDU+ZDysz9yjCbFtaqpNWTAYPSX60BQrsfzl08JIJ0vCR6e3mCpJAJ6GaikT4BT6AvlnuZMZAtAyZzNixvvkAVLOdRG1oof8U2ADql1wZh8D45QUjsn6PZt+utuWIJtjKSRAUVhL6aEWm3kKcMzj54l6i4jBYgEefdAPASKWBhCTTQ/RqVP4fFpy5ZI50U1srjEaw3f68Z3VnKfFubUbx37Hq8vf8bjLKmAR064zSHUhWz3vV9sFSj/liiq6TTliMiwPsMbWN/rwc1J0RkOMfOicWS6JvathV9oFyIx1oeN8vX+VBKsOrk8rS61sXefg0XYyaiRfyhNP1yvXlxeW6xOvd2fvzj408frzlx9xH/z0448sxVgrXC4rtWTtDXPWWuI8FJs3MU67i1IyOUEtV93/JO+4xZ7OXKHEcBaLoVdOos9aOuUYulTotWNFk5jTnKCeR0zLlATw8EM5NZCrwPVxKLaW0NBM+xLDySU80UIu3YLhd2+NasZaCj//9BN9DD5/fqGNRomBZ/djlzTUnZpiX0Y93Y/+OOOjt3NaLKAGY7EJYWkPMLQnx+EPq42QwHWEa4j5PMFKYR4pzoGRxErd+y7gaTzYVz1qEQHAQcxArNARDe3WBbrXKtZqajpLWj9EBForgaNpGM8YeP7LuPVf+vqrgSeiIDqR6sCPmBcf3+M2D1CY4+A5v3Ui+RPLi5v84fsm0AI8WC7wAK5ci2SEcV8qAndSvH4fYuzMMY+6qNmnCyBqSAv/F2Qg/Ssfr3guhJmoTeRy3tzJIDj/+/GBzp/MroNdQcbOZDCEJyfrweEMoCnHqHWFUKa/xvk6cIIsf6Gqmx/ocdfitV20sJmYhGusx3NQBys9ftTVAWZMecGUzsQ1zmtJkvOUkBA80Lf5xD8sntm2+PA1/QfkxxHX/AHVndf34fE/1tKZhE1jtEDW/PE0J5CmH5p/N7tZsSInAD6fD9Ng9vHfhKeP6Kvzv+f6mt4y43FtzLX14NU9FjsQ3gnqwiu4Hq2zH01a7TA1d9cxmpkC0kghH9z68z1HADK9N3pTAtnDMBmP1RbdwIlsemSi09sF5nPwuB/+4brjZ4cOvJQKDLGt8vC/WIdTa04kDn4yi2Ca+zmd4e3ReYpNMMbUKU/WgAKPiqnwLBqNj95ZILaWvAXEUsthwN+Hn7GqDbGm/sJHxubEqhHmsGeAOl/7XD+elGZ2j9eY3zHB6Mfam/ub2G+1VGo9/nJrWJhGJgHHcwLi3CapgBVDPmDjvG5LnKwXm/4vObEuC0/XK/QVRoXtTusNMT399OIY3dnujcSN0Y2cFsxqFKmc676UyrXm8LAx7t/fQpMuAPzYOy0NUkts42Dz/YyaY6SQFrcwz1TinUs+45YSJzuZsWPvks1sm8ycF+2DKe9w91PqOuPDLIJa6+GNEWsofPJO1u0MA/Ez8irSxMV+jNOrYzwCj+6xhZfU2eme8Vudqg9kanBiyIVhMVmrZHnJPbpUYZ5uJo+rmKIzH7olMR+PtgWLVGeemGgycRXbDa0ZR/srfp/xUFs7mBXBZFCioHPg3NqxftWK/Xjixa8TCY3z24DJxHE/O5FMViACo9SwiNcbdvoljW60w8nZSalzP8L7cT+0Z9ojJs2z5r4PjjZ43/sJPA0f7ANSH7TNKdGQOA6nhW+wOQ+wKPb7w+jzwYCylOPWTB89+9BFj3M8q1PpbpFbaB/mbGdXVYwQzoLijCAfzr0cAFPPKaSTNlOgM9Z4AH6aWjbO3OvMi+YfHcUO5l/Y+RpxCp1/Pn9F/sSZ+9jpAWXn/+JdzgNHSfD8+4+kKodoLgp0G5YZeaH+8DNPf/uvWP7+HxhPL5RlxdsO/ZX6lLl+qZBWRqqspVES1HTBdmeM72qovX7D88CLQzuCBR9/frlpH9Qshk16o+dGy4BdwFZauuD1ifLpJ1K5YvUzFqPHbWiiofx2dDZ4a/j9nTSuLGumhLH07XB2M9pyxa+QvxyUCpdPhfbr77k//Ui/faf393PtzEb3OZUucjcZO0e8MIEYY+bDMwZ8SONOZs7MLPzcwn/xfT5z17lObD7dmTnM79LvfYKeMSgjEVL7EQbnGG7hJ+KKA8f0AonYIsAlfH0mC980ybn1zhFejwT75gjvvtSOmXxwuBhi0WNnazLU95AWH2OQI+forrzMstav1t1kgs6lbyEV1uc/GYwEO8u7wO8+8FBRzJz8nOwc500bumOSpwm4T5MJEcyJM693NRMV8x5SVmXx4/SpGsFq0lmj4hPQQIvh+OERXx910Hz6fa6C4Sf7a64BMc9mDNbiUL6egAdzX796eP6EPNenLUQ/c+FzZaWZE47zPhKvY2ZhO6K86Ywy83yxD2t1PiJ7RJi5Rs8v0/qeE+vm5w6Em8k4n7nbjImT2TPj0Xz9M3U9C73HBSl+jSAemM5YfygYIrAxTe51L9WAOeOgO/Lz3M+zKgUDbALDxcTMnO5awwbJRLaYBumT9KDv02k14q8tlnJOyjemWXbmQXaoqZzDr5p3WSxQ6MXmbaWmRE2F9VJYSsG69nBv4ktfs7ECz8B6fWK5XqEkjg57b1hOXFbVPeswaoUlGsklF0YYX9c8/XhFCNF08Vgnwcrx5EwrgWmhM9lCEwxOMaGzz4X0AZa3lEI98yAWzLuYgoDRvZ9xByCVdEbD84SLs/4jU9QIj2VcDN9QX4nJ2llL5Wm9stYlJnr6+RzmcuMsseJ109yPj7pwru7JRp7fmx+GjHEuzBeOWjnOiWEw5Zd+rqD5/naWwSNFfDjPhmA6ecSGj3FmFtnh291dnl9/kTyHgoPxOFX0UOzx66/4+quBpxIAi6axeSCzUUyim9kt0p2IW2cAOg9gf3C1h6ak5LWCaTwv8YzbHCEZI+vLLMh02zEGvR200anrsxYimqTwdnunLguXspz3YE5Aa0GpHUd4z0yKXwRxzKMIdTyMKRmHuolND7kjf4yEBUdXKHtyoyBgw0phKh6NjPv08fjw5eBHHELmEWwzOWWenp7pvbO3XUhiH6RScUv0MMHOMcb2aCExHA8KcccjmdQN6L2LZZWR3jtn2m1ntOjAGSFJ0P0dfahACrM1i65CrqIOFtZ47cSlfubl+oVqF2xIr/oxQRYTYDDGxkhCqElGSkUyqFisj7WtP80ufEoCaXp4HkWqFshxCmPOx0hfXEmy/AvyqcHHMimLMgrOMUSf3Np+FgqSIiS2fYuAJcPRpSw4xrEZ2CLT96Ar43rvFGtdyUh0mdE+nLLdPguxZELSj05eMqlUXrfG99tOKldKko9G6437tgmJL5IYpZLk7ROSwGSaetbawXi9cVyfacuFdu+03fEjkX3l8/NLBNkMI0kn7Cqmwl6NXCwKb8Abbb/T9p2+H/S90/bB++uGD3h5+QRhPEgfDJtT6LQPx1Cyo+IsKVkEhjf62DnaO0d7w3yjkFmK4V3JXu2dsm24N3D5Igyc99tNrCMfjOOIA0H74/X1la9fv/F+eycl4/n5iebwer9TykLOFX99x2NMcEqJulwYvfF+f+XTDy+8fHompxLPLZNzic4UtD3kDFYk02zjPLgIL6BrkvyiXjJflmeeWehJycbPX37i6XLl9e2N6Td2uVykYY91U6xIunto33XT+NqRnb0fvN5f9fe9U5aFq8ESHc+lVJ6fn/ny4xdGz/Se+NOf/sztdqM7jNHZb41+bPTtK8f+K8fuXC9P1FLZ3iXVvLcbKRvf3+/88ONnfvd3P9H7QW8Hr9/fePv2xiU/gRvfvsqLqa4Xtu5skShZEvAyfPD29soYcN/l7dX6wXHs6q6MBIqaOIPed3qD3qDZZFiW6OxmfAyO7eDYOr25JIkDjqOxbfeTap6iEzbM495kmTN2I6Px3OwdawNvSijMFT9LSrQswGutAp7u240WQIqYqorTtRT27c4YjaVWgULBaDMfrCXz+eWZ2+3Gtu/hm6GJjDllni4XDMjZgRnXlYy8377TfWG9/CPjdvD6/ittNOoFvB8c7eDp6YWUMu/fb7ibhiwkw4qFD0InW9PUJ0wS6lwiVolzRVaktjHinIRk5cx4PfwyBGBBN+luimh8jKYx8d0dz1DWyuvXN95vOzmtenZhCv5+i4JzgOWOGRz9YPjBt+074BTXCPi2N5IV7TcKwzO3LhPVw4fYYdeX6ER5eCkarV05tis7KRqEOs8xD2ncOAuSMr0RwpC6j8QYid50PlnKTFPy4LAH80cSm1wSZc1Mad0c4T3OhFfFxxiuWQQZ1mWl5Ew17eP7fo8zL5LrKWFzDx2xRWoSxYYZwxW/cbTmLeF+zL84s+CPKaDk2QI480xCo2hMkXuAGlAwwTXUXGgH45B/ScplNnYFGqdEygvmSXEnLfT8zOVv/y2f/t1/x/e/+8J+Xch/f8VLZ7zsXF4SP/9c+NN+cGudf3xaeCHx9f/1ndc/bfyHr2+0w/C//df07Y39/kodC3nAt7pSFiP97Rf6/s4//fqf6beddruQ8zPlU+ZmndYT9E+U9IUf//F/zygLdwq+d3zr2H0nHQe312+arHW9ML7ubP/5j2z1v2b/7z5Tnxc+XRb+8Med26+N271DLqz/9l/xfLnw85cfKLlCfuL1//F/5Th2ymoUG/T7m8andxPQlQrdG801aRRGsMpUVyfLpCzTV8MokRNNe4rpnZgtlnzkesnszJUsEo05zdOiWLWz+FbhNXBux6acLiVqLjj1tCyYfkZuWTJQ1yQr+h7ylhxpvLONsIdwsU+WujKSkaomH7ZhYjMlsJiyvHsnZxMbCmfjADQx9jbuuMMa/iU9JYGZFLFTuopZM41Ml3Rk7jVjUMDE1gZj7xqu0G43Ab1d7MuM5N/JMj7ukX8GyPJ+Z9BpHCFldPb7Oz46L8/PGMbtdgtgolLzyppXtvshaSCbGmpFgw22tinnzUhKan42m2q9gjv3+67eZcsq0EOWdO5pQxWXE+BSDB5xjfTzhtirXXF1XatUEMU4xqHpVLN5kvWZetd40EQ+VSw2FOcnzFVKfRSxw2Pcvc6xmivFplGGnTlwi/XnwVIxywz7CKhFnixIh1l6xyM4PWXkgBCMvgG0g8aQNNgSHgCBu+whlLfNRrb+HYvPFZ/UcQ78ZHYMxOqqTBuWNWqUhWwrS37GrTFokDaGbQwPYMgc9wPnhlOBhZwahcFS5T90ySuGfI4HjluLs6hBqRBtZQFu8kBbcuHYBse9U66aQF2fr1HUJzHJOiqwh3Gpz6yXK7fWAgBuDHPuxaEYviw8rxc+XZ4Yx4ABy/KsHMb0/jWavbl36rpSauVLukLKeD4YNJor/x5jsFSkdjHVWlE2k9I4n29ywXaXeqHWJeTSYjqOsH8oWfWHG5LrxhmY4jw8WngtRh24741cVMtdlws5Je63G2M42TUt9lILhw+O5mzhUzX9knzWYKbYKqacrkvUBTGbHOfYndadcd853u7s3954yhV//sQPT5+4v2/hNRYgVjKwkKcGgJ8IRrpp6NUEJWJIepA7ZKOSzChlDTA4WESjhWdYJmexwDREIyS33qVsMsHG56TslD/kaZAG9KPRtl1xxIxlEQt0tB1Soi4LTqKQRV7oPfZYNMfcKF2b3K3L8ykZxPOwYJX9NV9/NfCUTONRo18H8TDDF+0Ek53ZUTyjy4SXgYlST6QxRadAdC2LLmWKoJoIwOlDe/Y0vI73aX0i0AlSxtKCWREz47yGAC/OawnUPQ5u5sEcCTbIj0jrU+MV48MxkWmL156ghbpHuoyJ6s/uuu5fXM8Jjfrp13B2kUIn6RbdmckKcGnXzfLZ0fBAmE+A6exwcN7jc7zlbBiM+AEXeppOJH3+47wWfS7j0f09EX0sxlWKrVFSpZaLigTPs+UQHh8qeBPyGzl13vO5nBcc7IR5byabaaJRZoGqi0HBed/CtDe8g6ackeiOtWDbeDxzgC3YMkcbwZJhXg2tKYF7f98UXNcCCH2fuvVk+cGmcD8pzSfvLT6/xeeb8CMByvr5vdFdjusdPUyBwywvxXvMCT5C8nMYRbZ4vmKw+JC8dckLS1lYy8qdXbnDsDjALQ7k6FjbiLU9Lzr22BjST6cJvkAphiY0NWqRSWK2sGqchen0ASFoyPjZ4ettp3YZ8U+gVgdYpzWxjUpuTEbg6INjQEL03ZQn609FVskyJ2ZoX5WcWevCZV3YtwBJU0w28dl97qSiCX1znU9g8+n6zOXyJHkjkuIudaF353KJ/Z0yliVBnYUsAab3Q8B2TomcMmsA5vuhaXndHn4vksMKrV+XhU8vLxEXjOO+i5Z7sr1k3n/sDfcb+9HOdXe/Hxr1WyvJBt4byxL6bUvkkuijnSCPXq9j3XTwRwOgtRZ+aOEpFFLf4xj0sWMmc/2jbRpV7wc2PSj0lBVjjHNfjN6VKMRmmBTd1iVfPDvrseYtDhGLJLHWQik5zhZtkEdXasZKdWvzB4+H+b/JksP8TEznL03kItbqCNlVJydYSuLpUunHLXy7ZP5ZixK8NH3VhC4H60jnlczdPdaBcVkW9vudvm0BknZRwgmfOBPlOZphAjOHfARJj06xQOZGqUU+A0cUD0ln1Rh2MlgVOh/6/gnqA+H5Mf0CdabEwccJepzwv1Iwsd/SKeUl3sbmno8YPGN0zjL2tJAAnyBc0lrR553PyuPe6oXn8PWaKj6cXgtik2asrJAK11hxez+wDMsq/7OcnJdiPNUUHVgNQUl2njRggznVRQnEZIU9GNqWMinNhld4aPijaaY0ZLqfDGafcZ5pUohMxoWYEI87HOWVj/PvU6xfPgBPRg7quoegYpCCzeuW8bgnxBVY5EgpzlA97nECR2ehZ/O6HinIBDTOk+nsAE/PQwKsUmPQTO86TIVXT0pglcwnSipkT6TuvP/ylfSffs/2cqGNxLaELUBObDnxNRltzSwLbDlDN76+d26vjfYu5ocZcB9wOzT5dxh774yceL480XHuzof7ZfJwGxopjS+4L3RbGGlhpKIJVa3h+wbbjh+77sFhmB+0brz/8eCX//c3jr//gfHTyv6nxvbnA991JvqnJ/qycC8Zvz6zfPkb0vUFygW3FmehgF5zmWZPtlwkBzz8AmcaZGfzeeYS8SgfoAiRS6CFq5zswTSRJ2E8bnQOPHrpk70X59bMG0MQoxwzWMJnnjxib6QzNIyQPc3+8T7Cp9GVM08z/hE5v0a9f4grwfZxYErmtKd07ffwS/QWvw8nNcmxWzvkQ+TxWQnfoR79fjcs9fD/1v7b+xG5xllABDum476TeHgTzTw6pcTwztG3Mz5bxFzlnyav0iG5UnNkvG8Dz0raPXIcN5e0kvClVBSQt0+alcz8ilzYCLVIDHyIZeNxls6hMB7PQc86z9Q+YsCsZ/wEEz0mKKvghjmefe57gfDpvHeKEXFZ/kEKNF/9TBuDlBAx6FR5MMfUJzH9/OMPP2LRyVQygW0TKBWzxXEP/1n7UEcFq+1s5j6KKaaVyEemqf4ppOPJoz4Ubyg5H6afqSa1LL9Om3YZZuQ0ztzHAF9huHH0SvUCLnuNGh655ggsIGvCcyosl1UWEiaGHNFQmCeFm+E5URPUBWypmsS9LtFgiHPSi9jd3ajrhVw0+S67k6uedU0dsmGrmlzPlyf2+8Fog6WqplgifynmpOGSZAW6narWKcFotRaJSSmUrHM3IZA31KraHxGLNIArk3NAfnHjHpL0wBCy9uAc1qEpas40wNTwselR9OFMU/eD0x0nRZMoZJ2JOfzpUTvMtTpmlLR05jIq3rU2H7LmkLIfnf12UNcLzxedP5dlZbvdGBbDWoA5UEq1gdamJcnk1EgnyodEAXJeZMvjk1EcMdu0xpOJcIIpNpvP+BX1MynM2Ke/dcTmkNpPuZ8Y9g6lnszJNNnaJ34xfQAf9f/c/5qyGffGdJ1mWq/JUrB1J9P0X/76/w94sjj+XIFINLrphxPIpTtbO+ZOP3/+MXYx/IWCSuc90Xywd0kCksM1LZSUqASdf7R4vfiVRDXrOPd2iGlTFkiZusr137vxED9pjWrSiEwTPQ7plNJpbOtAC0bEEjvJAcvaoB4SqEmHmz5lMt4zsBEdyEdAHaMDKSQXcXDPZZ4FKE26XTvaWTD13sN/A4bH4nLp3geODT3wHCY5k3Eyt9GkZIMFTd7i3NdiyZblTJ8zuCQsp4yOeRzaOX3Dkv6My5g31xTB7sp1kS+OeYAgUcS13tm3O2tdWZdKC/pyCxSbkpg6BcflLRS3J0UQ8ChJlvVC643W51pIkAqkzDGakOl5iHUYrdOPJrlMDrDFnXa/n4nQcNd4WJ2N8jxqjd9++8YYgy8/XShlkZQwgpwlMWFGGEpOltUZUIiyzXQXzR6TRqbvyQCyi6VnIYEcR2e0zpIrnjkTAQXhRCqZpYhS24qK1Gxib7RjsJbC8+XCp+tnPj994e23DesHtBSTckIWklME9Ie5Yvcw8rWBpuTdSXmQUqFWWFdNgjv2G0/XNXaQEq/uXWLDlM7OWAsqd7lUjn3n9fWVVBIvPDFBhCmP2va7EpS0MgVq23HgvVGLnt2SSwTOSi0yll6XKzZgSZnrUvny+RPJ4Ng2HFjqehr6ttZorXG5rixF41pHH7y/vlLyyu9+9xM/fvmJp+unGMU6eH56oeSVpVy0JG2yzjJ1KZSaIhFufP31G711CpJWXZcFGLy9fdfa9C5j6iEj9pnjvjw/87u/+TkkPok//Kff83bfxF4bYpIMH7RtsLc3jtZPT4Ntv+nZX6KL2AduledPg2V1SjG2/c7r+2tMYVR8Nne6JRKFVAvt0DhxbbzO8F0gxQ6tVZyN7Xjldnuj93fcdnIVWyY1sCQD3RRdw23fBayUSEizTrZ9v1FL4jjWs4BoUzZXBK6Wmii5stR0hnrFQYHXbrGGTSzWkuQdV3MJppqCuPwrZk9ehU7vYuFNIHdodBDtcLwvrDnxcqn4pyv77Rv3vkHPYIXrWiKOGt6ccfS/OCdSSby9fpes0QdLznx5eeH2/Tvb92+Sfzti58bY+zE67dhPMHLfNtqxs1yWMOtXwvb2+oqb8/xypXuj37oAaIyjHRhd7FeXp9+cfnrKtlEh0XuPfSC2gfFI2N3FHJiVgZl86+bocfd5XofcmJi8RCLlehZONSVygVqK8oIx9MxMyVgfu5iGuWBhulxXYqKsPLcu64sKqjaQx56xPj+Rl4W0aArTrb+TzFjXIu+IBE/ZWBOsqZBTYpks8kio+pigbWy+QbA+fYo3sJJVLIwH4NSOmLo3wSemzFYguvlDUpjziuVEbpUUdHaPtagzWcBuNxWnBqwlR/5sJKuYFVoXeF9so2Fkms5WKzgFJwd+EecHaP3P5tEpKw8AYwJKSYCVtQe4/aj60lnYmaXzrHc6ahnl2TKgJThIdFfx5sMgZdayMnrmuHf++D/8j/z+969cyjP2d4nX5xV7MZbPztdj8PUwflgTLzXz6y2xvzu//dNO/8MOv4LtgzR2uN/h9q59jXFbGmWp/PSv/5ae4Ft0hsfoeCpRsC8oAF3pfuHdK25VU+vGneN2g9dvcL+TugcY2gVs7Rd++R8Ptu33vPyfVy7/7Rdu/5+D2y83xjuktTJ+95nNEr8dUD594ukf/jWvn3/Hdvk9zb7RGKw5/EfCZ1IgQwFvjGA9+RBLLZ3/zofnpv/u0U0zz2EpkRTbRhd4ceIDkwGkfHR6onQnhF8p9rrWsJXJNhcYPqWSfXBOhOsE8JTme4TQyYM76LDFgJCBOHPe29ko7lMjHUVLKcqp2xCD5RidRtf0s9hv0x6gjNlGQNLKw+hNHok5C3dYanixtBbhS7IyM41/EJB1xxnkrLxtKVUNj9Y4ehjSh/XAGJMJvdCPg327U7Jy5KUWUirsbQeD5aLpzPu+0cadW5cHUF4Toz28Uc2MvIS1Qp/xFWqJ5uIQSzYnZ5CCsRVxy9TQm6zUwPLO5gEEs36ogE3m8g2LOIV/aPCMkKMlSDWac5wh/wRrUtI7qUxxwhBQ+YH7g1DpIUGPxrbBOVE3xXpUTNHDmg0nkor5PO1ETmngBPjS+WcB5enDUKdZ1ExGprFreXGENcYDGpsr1k+gVRO6IBetldRTxGE/vUBh0WfLUgaMIbAJM5aKPAJjsuHzSzDxjoTvGb+raUYaYRkBZbki9sxBqZX16UrMTWPbD3kyXYqArCbz/ZErT5eF58vCMbS3yrpGYw+yFZ7WF9ox2O9Sc7gZF9QUf35ZsOwcY8OKUdZCXS8slwvvr+/s2y4wyJw1Sw2TsxhK1mWR0EajlDZnsYAbKS1ikC86a0SC0PO4rhnMeX97BYNatW+KbjaMHbOBZc4c+H6MM4cTm05qiT4GhC+rmQaF5FrovbH7fp599IYPo0Sxmwgf5KYYlFOi1pVCMInUOcF9cIwe20qsXSIPmHtBazCHL1yh7Z237+/83csX6vPKT5+/8Pr6zp9+/YqnxOXlonNIhyaTzWcpkao8OB/TqmWoXlIhBcOptfvJyJ6m/tO3uQeQrz0shlSgStq3qcT+VE4i03DFwRre0AnDS6EmVz3CINXZ5JwkikNNnO6c9j4ncB3rQIh5gGmyNDpN6v2hXPqXvv5q4EkBLSIE0y0/K8ykOCCCbjOTs9E1geecWkQ67Zbm9Akfkq+UHItpuIoaT6xJSNwxvWKiWygwSEmSRvzFfK5YpBFzI0ALUZW2VFdfS2FK9qZusoUBont/dDgQ++KMXzHduUV3aupvPwKw80H58CB3KMUvVZM2elMaMMGOf67lnoWT2Ry3PfXg6raPOGxsCEiaenwLoMYmgCNMM0CGx2uf1zanAMYjTXFvUhifjd7FOkiZZa3kKPgNw7sAjFQr1+tVdHOXwensurVDn7PmGppZJSK9x3Qxk0krBIV3dn2nb8kshn3KC/Q5Sq2nv8DRpdd/33YVVT3YMluj7wf7facsWYBBTG5rW0whCd+TLpQLM8k+ZABtZ9CZCeFkEqQhk+vzlsZ1TclCtjmW+JiAfLCHjEmb6k108UtSMt9bJ/dBaoO2bQz382DONk36HO+NNgbj2BnDWRYxsVRxCghqR2ffdtrR6S08wiLgjq7CJ4XsY4aJ0Q9O/b9rolK2gZlGekOnFJlcb/ctJBba45PVtLddfE5zrIZhpDmlFj7/8Jmnp6sospHY/Pz5J16WJ+iacKPJX4VSlhN0EPkjQNjRWYaRS6aUS8jnCsex8/b2qoK/ZJ7WC+6wZmnPl6XKnyUnahEo/O3b94f3kWV8ZL5/e2e7/YHp73UP02Nd7eAYB+tlYVmfqGvicl349v3Gvt+5HW8yTLZCGYnOEQwT7UOBH/JYUOLutN75bk4x54fPP/Dy/EIaDY6dPqnDS2WyTwqV0MrGftU+6IhB5WYcGPc+sN4hOdt+Z9s2SbAMvb/DGInpVzCf+xw1nJL8NZRsKUUyI2Rc2re9a1S4JT3jNiQnHDZOts7stOdg3z6mZ2psa10KuWwR6zwAghHxqkciLNDE0llTg8uA/u39Oy/XZ54uc10Z212TwtbLs5LW8ElzI/5sHIcOoKJQIyCg7RzbO94OqhlpdLxJXuhj0Hl4pZ0VV5x3fUTCEp3InCXBW0rl6XLlh5dP3Ldd/m1ROKWQ6pHnpEZ1hnsp1KWcMotSi+KA8CHFX3uYih73fnanYLJUols1D7BYga23MDGO751dxjDUJQoPj1rRXWdXjFYlRQIjRllk+wwYMUAjqYM5eue6LKQXSSPNjGUREFW/XE6gaKmJUg33A7fwV0uJUi8fCkF9znqtKpYWTZx8GhUjzGKR/OiSMmtK0NCADwcYuMkwc6D9nvM0CZi5hilxizNHzNkPrA1Lml4WU2fO/CBlpl8KAZjPRtJMFt3BGI8EAbSmuuFHTEysGlEvwLBHR1NrtaaFUYyaG21APyNjOnuL4awTj1oyRZ1Jj1HrkyWugnD6RcY9mn6YwXw+QapYPipME8mW+Lu4Zy5PrQegQcSPTqXRj1faW2H/X/493N/h53+A95W+rnADxqB9Ntqz0X7t9K8d/6XDrwfc3uDQpCbfO2EDhJkLGO+NP//2T/j2ztGariUt8g8bB06N5mSMkU8ZKwvl8sQoNxoJT/mccGkOqev+5Vop6cpon/j+h8qbO/6tUjv03KFk9qK8qbnsB1gqzz/8xPLzP9D//M79uGNhUK/uc8fbzDdhTg70EdMeGYweTMzIcSdjV4M8PMzpo7uMBp14nLEjWLJjMk1iybkZvQ+OYB7OpNXN6YfYxN0kAWlmJ0AxJwmfIIIf8jXszigZ94fUbh8aPS4QBHzfNSVyyHctm+E9GsjMialiL7Sj48kYKdFtpssxdRQ7rSOITG1Yx5OAOkex+8xpEUg62YApgBvzCYLMukVNGNWasXdif6YUTTHfBC7kQVgBEjODaKPFeZaYLANLsh4Z/U4MjjpBFbFRq+LK3K1RRKZgOLrBQVOxnbOeqc3JpoM5tZAw5Pagn3YerFcfTBJ2FLctbA7AQ0o3cw8fORgKulfTM5ABORg4syTxD4w7MUuMiT4lD46DyddwDrsxj4psFkizCI9Ya0ks3YlbWFKcyunkLMczDB5Qyg84aT7r6Pdm2UHrPENxaJ59J1gVFISainKN1EOOOveUy87FErOvPScBpuSa/pcMsu59KsrBRj8ELnVjySvL0xNH2mjWgiFqLJGHJLtQSmXNK9Oz85IkPb0+rSRzjn0jWaLmi1hZFobXZtR1wVKitUFOhboupOJY7mJVpRxEiBjGkOH6sU4FaINsmVoWqukzPq1ipvcAdFJOamIOZ7DRfSe7DM2XvOr1BpwMTBtqPnY12ddamQWz90Efx4enH2fg0BSdFGeP2D2xTno6ARvSXA1RNweYpDrFw0Ll/NETVJKHZo6G3GRnqna2lBjD2EcLNp32kv5eJ+w2RN7ojuTGpQpk33eMRC0LT5dnntYnZnKW4v4PV2MwWxLbK+phDWLRPSFyUCxFjaPY4kpq9BkiUNiYNYPYdeOM8xMQnGCHWFPpAzPQMFIP30+3ALmn65yGJ/hwxr4pnzLdL3MLOyUPQ3gxQB0g8tGJBumBRuyYH+av+PrrzcV1Mkc+56EpVJ9DlMR0ZiqTZnr0RklyqZ/09X5I++g9EDIHi2R9JrQppnatKZbdaHRU4Ey6qeV42OcZaVhMH5KJYByieBReKTpERl0W8IH3AyJY9aYHYUlJ8OT9mI+H5K2Nk+WEQV0UyFIEUa2V0MifJAKh5TLo9XCy18FSLDw5mAne/N2xlCm5yhdgdB50aBUXswkx4GQq2XxCLlqrFYvu5wwFBHU7Fiv9LDgmXTGFqaNGrhdqzZpcsCx8+fKDEiIiebfE5RLAUyQgiYxFp9hSik6Cut8y8HWWZdGUviiU+jSdTA8vr8GHDrxH98zC28r1WnvvtD54v28crXEcSqjub3f2+8797UZdVcxd10sg1y2SqDmHhZMhOLwHwGkhmwqqMAEfzOIgusxmD8mPZBoqqscYwYiIxennG6i42Ru5VJZaFYP6ILdBap223dRxLEVU46CsplivA+jHDgNSvTCpCd6N0QvtaOybvAZ6m/LYQPRHp4+DsggJnx4Cox+R5AgEKPPAtY6mfDRycUoJZL7DyKjLUDU5q4X2H4NlCdr3cErNfHq5stZKKSWwaedvfviJ8exst862HxxArpX1+kSd3xsd0+/fX+lHYxk5TLVXclkopbDvO/u+gw9qFqXYB5RUWGrlernw/PLE9XpRt753vn79qgkuKTxkRuL7txu3268fpA3yXVvXFWdwa69YeuLFVuqSuDwt/Pba2dqd2/EuJgkCWbe+0Y6DYz808juSXjPIVV20bdsYx0bfblxLYXl5IfUGbae9v6nwzKuAsaC1piym5zAlyfigxyGEGbsn7l06fUudfd/Y9ztPT08BoE4PDwS6BdA4wR5cFGdRohXAJngw96uApx7Akw7C1gfDDoY1LFWwogTfNRHILLrSLsZXqZllKSHhnInhlD90oEdHJZ+F8ANAH/R+8P7+jeuysK6rGIlmHMdO74OXlx9IqWhNxh6fUpIjGgz1mrAE4xDwtN9vWkPJJC/qjXYcmA3kn6MiQYey4kK2fDIfJ/BT4ixba+X5cuXHzz/w7dsryW98a41u8HS9imJ+hh7T+bd6ADAKgqVmmbEzgadn1vVCOzSy/LW94UfXxCAUr6YHWEoPwBkn2E75BKVyVqJESDP1fSFfaQGaRDfdRialEjxHE9gSI9fnUIqEYaPjvXFdVi4lx7N0aoGlFn789IQMRxvPTyuXtXLf3mN6VDCgcznT1AkC57VgJUOd0i7J8WyIcZTcWFOmWmFvhzrrgwB6D8G91kjFSEnnxzxnidiNawtMCcCYjfiZEHs0K7rWfalFIEeYyc7njz9k0mpuPIo4iMmDOH6IhbHm5ZGrtOnpIIl3zUv8LmaMd4JdlU5ZzZRV5gn2hmeEzu8oDqaXlT26sMQ6sEj+RwpPlFiVKdaO6PYq7jS+WZIM3ZUPQytQAyKnzpIaW3uF98H+n/49vL5i7QluL/RlhTvgnW6ZVqD/+aD90uCXBr82uL1hPbxm2lCjI0uqNFBH/Jdfv2LHQWqd4oklX+j7IVlyyDfd5A/UUqEWNQ16fVXemIrWmvAD0h6g+FohXRntM7c/VPavg5dlYUmZPR/0YhxJCX73xCgJr5WXLz/j73/Pb7/8e459kH2oeMzynmzboUaWWUw3Msl9fDYBOSUUzix6s2TcwFLqA6B2DWcYSDZ0AtpR7DuRwHbobcgHVNWICnTT5DU938hffDb/ONcJSEJ3oMJSMvCCm0bDu8v824nzxGUobkNr5FIrKStG4lOCpT01OmxHw0qBkiXbVPdOW9HlIVJSinOrnyxVD2nHmOaZZ97rDxbA3Haz2o390Yd8dAQSc55vMDv/8shxG1D12YY5DVmB9FBfpP6BmROy7XbsH0as6/01uAe6D1pwGkAxxkiUvODATsi9U7AWvNP9CGnjlAsxcWeGR3MvLEpkEh93YhD5TUikcniwxEAm71J8zCbCiBzUo1aRT4zAaR+TBxL5bf4AAjXJl4n4X8K4QQBbxBKf8jBdek75rBUt6cxJJYW0Pq4pPHktwKecHo/RAxSZMy1U7CYs7qPPeDcZr6AYjaZwe7CNukvFIeNrD7/fxBzck4uAH4ExRipwuNiDNewWej+wAbVXnpfCD5dnvg/YHFj0OZdo3tS8kFNhLavk3Bn6ItuQH75csQT3+xtmmVKe2I+N/bjrfufEsoTUjuMEnvLQRGapMurJzGUVsPpSpNQYfXBE7pMtYSWxulMTPK8Lwxtv2wbZScXUxG5yX5sS5mSVtaxRR0xFUyLnHsCTztR1KVHTibXfRoBA0/rCZi338Dmb9TtJWEDCH0waZonTogGa6DHBdXhMiysxoS5i6BhDdg0x9GoAu5ZUmLA3McnMxUZOBLtH35RCqifSQyLXleFSxEwA7unyzNPlSUxkn0oh7aVaM6VUagoG1nDaEPBEc9hnciHk1gP8J3I2B7pFrt571KAP0KkjlEoS/ADTh3zESEGASKEtG+EPOPGC7pr4nkb4a3bGcQs2oGJnIsvvy51qsg/ZUtSyWWy1Foy+FHiCsEOLAUv/8tdfDTwtfWEg3xzMoKQYtWmaFtphzQvJYRnqnuSRyWOh+AI9EPDoiDckqxoO5oPUO9PjpyGAaWuFRKKPNRgvi7ouQ74vAnyExKURSE90OQhA393C1NAiiBq7haws1ceBG5O/1rzodZtWvA6OoM0TgEhRVLtFNPXwzsnBSFLCPyBNs6/BNjYl/YuAOXzgBUaKjlX4rBCB0wLFzAkuNbGHSdrFogPe+5nPWp46zwBSgpq7d5m4eVJBU3JS0eDt7Lb0IwCrseqzuIX+VCZmyY3n6zPXpws/vLxgKXP0oNQmmRrjTq5FCzckNslFGe4uhFvh/DEdSAXkFs+8B2g45wwLSVdgmAlEINPGOYZ925umHX3buG87v/75u4JvD8Ph24aVO5ad6+VCzWF+7mJttT7Y7gelCpzat+/0tnFZnWWt9B++cHoERSJsbYjmHjKFjJKcgtgQviu9kMF4JFF9Ws0rR89ryF/YBajijKXDMhiv0eEsJaQeXYhyRh0ajEtdAl/UAbBU4+Wp8vOXK89PicvSWa8wSOwuyWPrg5oyz8sanUR1PDBRX2FQanQZsphldVkA4/12J+ULy7WwPBt9QMkrl0vl0+dL+AjtZ3awH/LIaruCpo+FMSrdF3773vj29qpCaQy+353WU0xQcEgHNRfWkslobX3/9fUstmmDo2ts8P12xDSzkAS403ZtVKfR74P23ljThXJZebu/cd83tntn22TO3uhsx037Oy80UzcsFz3X9yHA5MDw46D/9g2WlXJ9ZvQVvDF6ZbQAhobAoWQLtSwk6yQGZ5hpSsKWYGRlW8n5SsoXJfSWSIvkS6mEeWAblLqw1hrTdQbDZTCvw3bQ+k65JJ7sE2UMOJyna2K0VcQVB/clWGWXKIxRIYdDygFuHwLKSaRWsHum9pXkBW+JdjjLi5hXIzq79OiiNiWWk9pLrP00xJ4r3bjWlW98ox0bt9sr231jvSznoTVZryR1m4+ja4xwXcGM1hvZM2YFUoGcSaWQSw1ad+N2f1d30FzFTDYoUCK5GcMlU8ZYcuapXvlcnwN8d/rP/8jL+om3+z3AKxRbI+DqkJ4+DgJj1i+fqTnT2+B+2/j+/Y3eO5fLhVIKfXziRxI97knrXaaYPmLwhCJECXBrtIPe4Oufb/Te2e43llpZ14V1WXi+FNgHW9759v2mM6VmMQmCOSPJuc6aww81OoaRhmHdxQzqxHkk80n3KYmxiQcGUL+xz04dTlkmg1kAXkkyKjc3zKoKjrGDDS5rDkbzLeKO1t5xiH1qzAIw5MdR0E1jX5p8uGL0FX3EKODZXjMUB9yhD5I75SyslvN7lJ+pQaUCRUneHg0ogdpGDhNHj7NC56NY2Dm6h3YkPCQYosBDO3bmD1p0Ky3uWLYillsk36UqUWst40OyKI/jj1m4DiTxXRZ6G2pC9U5rPQZ+TB/LOeQ9kfMFTwFgRbZ5+ieGXUJJMaGqC5Bwl6mwjyQ2r2U8rfKxIVgzrRG9aPLo1OF0209/CkYh90UWIMlJvbGPb3z9o9Fef9D+efsRW/4t3C/YeKbdMvc/F/Y/dtr3sASoTv35iXTspPt7TJ97ItWE5YRn2Qoc2zdSLVzK4Gqf+Jx/xy9/+IWvf/5KzxnPRl4zy6Xwu8vC5enK559+4J/evvGHxdhvOnmfSyW74fuGtUY5Gn4449h5+vQj16fPYjgkI7umSvKtkb1DP9i+/sb29Tfaf/x/0n/9X7D2TqIz9oNkzmXJ2u8uxrITPioGUMELo8/R3mkuAIFu7tQAno9jp5nRwhphpMwNNbJyrljYXOAdHztzgqjbwLJHlqHmlIMYMed7/iU4KhcMFf2i0YyQfKlgNrOQ19nZXz1Rj+wKy2YMP9g5SItwsDY2AUfxK097iDHwGMIjaCYCgAekLcQ1clbCEDly4JmXe3h6uqSsPQC8xVTZ9bD/0Jh6raVhHbdxFk6yVAh5YwroxOdk6QmcCLA67hspySA9xR5MAZqN8K46WsMQe2D6F0rKyNkY8KbncC1q4JcozLv3KJmVt6nJ2cAtzj854KlAh3Go+Z1yxgqsS8VtMFILQ/MBWab1J/w1DGOQbZCqkZcULNDZTOFkEvXhENYFFk2ow+90d1ItioNLjteNRplpIZs5lxySsSrQYYRHmVGCzRHMDDhtUHpv8pApcYdNMrnkiZQ0AGOcz38/mSW1VEqdnjsCGwFK1vnVAa/yLqxJ0ysXVGuOi6RLdX1mYLRgzAyDT+sPOhui1nTfIp4m1rJwqfDkVwYrqRTFUUJKfQj4uhQNNxKPHu2rYKtdrl9k+F1X2niieagzPIykgedPzzEJWdJFt0bOnZIPSviXjmCz9p6C8SShdAJKKJIsmBLHHs3ikMx7byQXIJJzjTWp/TZ4V/PcY11DaJ6kPMJmMNC5mVMWUzPNZkzYk4RctaTMqeZwSA7VgGwsIQU+tniueAD3KYDDzmVdSck0BRnlLSVbDARy1ZeBPk7eU9cENJ7qPBsbhRIDo3Rajx5+S6LPSSmB04+N0W64r3z58YVv759lG+HQ7wKtKhnzHGepcmoNZOskP7Qv6mQsRzPFYk3i9E3qk+EHPpqex7KICRks9XtTLCdVPMBnEBhdvJBHZok80nd9jCNaDN2M4ZJK5nSQbZDXq/KVrpwqWcZFHg8m5aB37Rc/lIQJ3FUdMJmJ7s7HVsB/6euvn2o3Cp3B4UCW+dqIBcaIDmJ0DvMomI/oDheS10iiCAqdkjJPMMfai6OqRfHoCqgYka9B/M9HeHXIyylpRoGQPfPzgFAXI4JydDAtrqE3mTinQMDP9iaawJEt5CQOSoXjGplmqeoYNAsGln0w5vPoEsYY5GwuatrQorMprHY/JS2OtNhtiPmTI101NBY+EwbDvVFDqzq7+QPEtrHwSYKTWtmmpjS6C9NsXPpPJdI+wp9i0vGiugqehYqqZeG6Xrisi4JpC6AtCQ2VaW8RTTPNwBaHcCCiw9VVeBj+SRLoflqwKThYJFDBxpl3fv7/ZOlkWfQ2aEfn2Dvb7eDrb6/07uRcaa2zbw0/Gm6d1js1l0hexKM99s7b2866Di5u3N/u9OOdjEwNJUMRzRvlIiKJzeKYYCjMIzPYW8ME+gwLQWesrxwGrblOMz31hoYNyA71w+fMWV0oPxTE8GAhGTWHV0KLQqKIQfJ0qSxLIhenLsYxjHIY3gSGlJK4PF1Eo3R1eC1eFyTtsWRQTN45IWu8bwduRZLZ5YDh5LSwXld++PzMfizs+65c0eH11TmOzoh94Z4ZnukjsR+d0XcwMWy25kFRVUGWD3UUS84UE1A4hjOapLuSGbR49ppy0VuXljmSPGYiY51ujf7DILlAgWM/OA4Vb6LtSsZnqZKDUttN5tgY6tzgdDNRh+8bn45O68bwrA7wmGxE4iBQANf0ywPo6iaCCnWDkqvMeFM9vV2m3xlzCkt0YOUVkSjhT+HeVQQRBeTo0O7ksbNYdD56Z6nGeinc9gCkyWAVS0t0qPpZOHgUxLPQNjdsyFAyexTrw+hdYI7lFEnTzPzS+bllKhmLIWQWloaWeFai7qPR20ZrG3VYsE6Cqn8mLy6vtjHIdXkA+u4zoEUXXx2mUuQn0CNBbzFO2M3OBCg7pPDHE63dWNLCkmqwC+Hz02dyqsBX9rYHkOxnt/sctGCmCTMknp81JabtB/veuN1ujN7JOce+gqe0MDC+v72z7zs3vzNcEy7Prnv8b3TFhtv7QTsO7m/vjOtFPmJLZs2VtS5xfr5FcjaCFTLPykA7Qw44elB6JiN3Vm3RWBlB57UAbU45FvJX6W0/WTLMsQTx7zNhyUmG/RbsXDNYl6TYxcHsjAlQne8fUi2LsyDOKxnaRncqEmUBMjP5CQaPSebtLuNhnfzEmRIjl03ynmMMdVZNvlUDGH4X2BrSaskQ/Uzg8dgPUQif9HoyI1fcRVnvPllgxJn2kGiKhVEiEbaIvXE++pREPMBN8HgbE1vBO25qJKmLrO+3D8/BMLE4PaRV3j6cnnE9gcPi/vCKYOIGjofnoFhDKgKHI7kpSWz0MeRhlTUYQue9YyMAWTfoB8kSr6+Ftt/g5Qdgg28/YHzClgvenH5LjK/gN8Uxy4PyVEh7w0YYSXuhVJ0/I8s7x1sm0VnXylMtfLqsfP/6Bum7wkiwdmtyXhyeDH4oie8JEh3zA+s7NWWqG8doWBukfeDtYPSN6jvW7/SySrYnqj788o6NndHfGd9/o3//le2X/0x//SNPfVdTqnWSQc0WDDGPBpwWlE3/G38kvNpbkQPMxlYVGLUdPbBg+W9gRh9Gd1hSOf2VcIGOCYMoViVV/rB/HKz3kxk09/hcCDYe4XUGZA+T5cfI95ie/Fit8RKaOJmTmCttdE0VNfBjP+Ueeq1gUzBBppN/JUAiavxJwM2m/K+Kj3M2BTyOGlwZsSMfEweuaHLoCOmjpl9qb82Kf3rRhaXJeX2SkSHgCNeeT2LvH71Hyf1BSBSN9ZFnvFU+K0WBhpMQRfYcXqSYYdRcg92juD0C1ksEiG5okJJbyMvi+Iv3jpmWGkefoSyFQWd3h5hyNhkm9iHvTuYspoEYNWd5pY2pFtFgGVCTFhMrLSV5+7W0nx1MSwkvD52NxfXNeF6DVJtjPrtsOQRMHG3Qmj8YSkzWh0/skckOSSEFlG1COlk+PUDI4bBkZylhJODQQpZastboNCh3YM2ZkhIXsp6JFywX6uVKd3lIHQ7NnZfrlVozox/IDLqqoV8ILzAjUTFM3ruW2AME4ejUlLnm+jiT4zru0bBY61VS/VoJh09Gk8flbb8xcJ4ukrsd3sE6iR7sLsnQxEiPutQVKyzHKeF+rq/uE4ghlBqaQiw/ZQtATX6JZfpStjkZsZ9rXq2YB71snl9a8/JFnSDryciK2DbX7hmYBmJkmYl5jsUk4A+1is3DyhVbc2K7Ka6enkw5i4U/BxQg4MmjYjbkMzl9z7Kl2I9BMHF9Z4r7kHPkY2Mwxo77wfVp5fp8UeMwJHQGIfycC/lEIyInCR/FrPqLyNfiRFBd2yTfT9blYdV3GJLxYxZxK/Kf2XhKMz2yqOQLaRSSy0LIXSDSSIl+SlLn53NqRuuxi9FlJrmvu9oVDDvzlBH2LSnPRnE6G4XjnErxL3/99VI714ZdS2YkMXsAFZdZSVmLNTGSqW2SM57D4DDYNxYjn6fZtoZAyABPXjVaQGaJZu0hGYiL8C608zFNLIJJLNQ8C57xYXKEFSG4wXg65+CFoYVMrQfWB2NXMJ0o3nTFcMBy1Q0r6lyahREYmjxTmXJBSZ+0uabHghKIKXWYk7dyHAajDFEcXUa4OaanEYE7y4aClCcrqgGJbPWUqJ11RtybkqvuUXhiMNShJw7uFImuAXWa/bXGHC+Yk1GqsS6ZuiRa3+K5yghaWmUd8Eff1RHOFVKi5FWyj6NhhNmsx6EWxYImDagbY4jCOUFDM4E+PTohBTEeCOCPlLClkEvCb5ne4XW8Mnzwsr6QFme9EKwjgXIHB2lEwVlhKU65ZNa1cFkzT5cXxrFyXQvLoulwRtLo9kjOUsokK6RFgeoIH5it7REMFEC6KSK4JUg1DoCQ6AT6b6NHZ6vzdH0Gy+xHY7izXhZGH5Q98fAiEsAxpQ1L0Z5clpVUC697ppWkDll9prKSN8dSZ11hqZXny4XndeVpXYNV0fjT1z+xHzvH/aADmwedPRUs75BK6P6ddr/hY7CPxvet0m4XXj698PLyHGu388fv39n3g2W5CgDoG8exwYwDQzaahmFJrCrVwqZRzDhLETB4bI3v376xbTuXyyXqvkE3Bd9hnZGcFq8nxoSAjkmb3/w7m69s7TvbceP9/SvH0bhcngLwKYSyi0sOZk2wMWq5AM5AhU+thWIVb4N2vHIc38DeMWskBLBvu8YQ16KOBO6Moec6miQwl8sVywNLneEbrd/x8FMC0YXv+5Q3Z+nDt13m5+5hiKhCpSDqdb080UnRETMO/8bed3myoSAyMO690WOKmozMGwtVnkeROXSc5k4LSbMh9mLrg74djNRlIg5gITO6VnoXrXifMiiGCoyUKdapHLysifGysr0t3LIzcgCeeU4tVLFgDtdcRV8uoppfy0VsPCvY4fS3Gz99+sSndeXt9Y3jOGhDLKn7kEx5a7tAwDyBAnVFU4D8vRh/+PVXRFmc3gOZf/j7fwBLvN/f2faN3379c0zic/miMAEJ59dD4E/bdgFvf/pNMRbn6XplXRe+/O4Jy4n//IevvN9u/PrtFTMNDjDTNMsxNDW1JnmdtaMzujq8ozv320YtMkBdliuWK/n1HW8j1G/yqenD6cehySkpkasW+G9fv3MNwHh6n0wp1pRu3e6bXiflM4GkSCpgwWxo0RUPoQ3dJB9prZFzE8msxM8mxUKzVWurg1GwKcOJmD/XXSI8Nuhowqaq4E7INmLgRQnTTpsFZws/DlOhlEwAtrK+AErNJ5ErRnxDKcuZ5uQs89Tdm/KCOHN8GozP+hqjNefYE93Vtc8h+ZwJHdZDPjUYLcaep5nEjyiUIzVNkbBGoeqEP4slyhC13btYmkuRL15r8jtzl79KSgmyfCVq1TQlQ9LU0cVaMYfgfqhZN/OrlAOIyzjG0ZW0j+a0cdDHrgEeUdSAyaA6plDO6ZbuGz4OseE9kfZM8YP09qvW2h//RNkbi1Weu/Hkma/fvnN/e+P4/k/YcWcpjeoHi99o943jvlGXlZozt+2Gt5327Z9I46Cx8e56pvc/fyV9e+Pp8oLVhXa/sf/p9/x/f/kT9XLh8umFt29fuf/2Z8b7OxwHrwTzkYzvjdvXN3outGXBri+wPCNT93RKGBnvHH6w+Tu+69fz8Strv3EZG8U717oiU3+xnyFFg6djMbGpz8WUJ8A790Ik3DaLINSFdjFbTMuPZJVsy6PpFfAiGhKo+HRKVgRwzcZAXpcoGtIJRk+g2jClgLE/3CZzYoTFxhEx31hCpdo+yN6Kj/hI+nkLm4Rk9YHbTqlsFJ4WxdQk/VmAufncIKaP4IJAu6n2iHdRo88R4uhZzAkEOJk7JS8n+2OWRhbF5nQJUbNBVzFltTlpwMkIjxkxOo315aIi0mD6pdZFaondN7Eyg0yWkli5qSykNsh94KZ4wAxPOfib1qlVzcQ2JKMpVdedg/HgIXXXKtF1laeI1SlMiUvCGFQHC58+ebYm8Kp6oYlnkaJxTRJbw3ycxsu1SMJmLWw5LEfhaizrM3UZTPRxeFg7RANHfn6SgF9YcJy9afhLWab5vu7PUsvpLTgCBK9cglUmj5kxDpa6UFKANz7Z+sblcpH/ZxWjSL0pOwERUMEvH8HykB8HCLKYbFqWegEyjcJgDlCI5nx4PXkY/a/rJ+Wa1vGhBmZJmoYXakGpgSyT10UATpwRZ62KkfoajRdJSPcxwUf9bCmZp6xcsu96vnW5UDNcF6MfTbnY0NosJT9sTsKyRRL8aTQ/RBgwBOjb9MjSNfcerPqhfTolwrOxN0xyWkLyOH2SQA0kGZCv534j4tn77Z12HFyfLsyplL0rZzgnCs5F0JpIBnFeWshwdagXLCe20WE0vKpRdG87ORUmnJ1LoYfRP0FKeWCj0eACzonOPuOvat91UWNvtEbrG/ux876/su6Vy1Pl5fOVp+eV1gbLJXz7UM06XMB+TqgOcIN8CT/Rg2kSnmKNJsuSe9YENrAk0/ruXeDnMUhF9yhFjaIGn9hrqcSe7xEjg0XV6qHGkRP3T0SRh4+fptOageUwYE9JTZgxlISkyUiEvCyPLRWqhO5NTb/HVvsXv/56c/GZbsW7jjGpgjo2iM7YeUicCZTQtam9zLNgOl8zWDse8I5N5lIwgQjJwEQGbQbcSaH6Z9c52x8+tY1+JnTyQeD87wek5I/mbnSgJvlAJ29cmk0tpwJEOq8klnr4iEwjcI9DytzO+zcP9vn9898sOugDe9yLmXycxTTBggACPrP0z25BgE8E8DGTZPvw3o9N5+e/zs7X7IRgeu2U5kESprIWSXWUHB4XMDecmG6S8Z3XEEbB4W71AEXtfHd0WIT55qOFxZmM4eB2UqjdwIq6q6km8pJZnlRUlksYIZJPs8yJrovtYCy16v19sC6Vda2MDKMtLKWIITHvZ3SGLWjbJ65rjz9PkkayAFAeJUXcC+nt5fkRCcS8hxGscy6UmmOigQrvWRick248xS892ZTkv+Ke2Bv4JiPsdk5E1K/Z5TYXff/pcuHYnGOu/cEDNNAWUJcsD7Ae4pQRY44H9J1G52aD56cLtQj88z7oTf44OsQJGamfYIcH2q+iVvfWh8u/ZWj9JzOh8KOf5uLSP49zx51d1jiv7EwRBHiIOzogdUlCwivCveHeImkYnEwLJgU+0fjAGDn3iYC+4Mzh3hi+A/ICUgebc39+4B3HWpscRZijYt312Vo7zn05k+k+A6rp23uX6eAjOUMMzPg1KfFnUU9meDp9YERIVVdrmuuPKKZTRAv3B3MSs/OwEvitqYpgRA0f+yIAwxyTRE0AlqFJN7OYTwlG38nJWZfM01XJyU7BMQGzKZFyUSNgyL8nd6fMxCQ05wxnNE0emmv6el1ZlhLS0o7vhjVoLbpvOl1xxod7piEF39/f4twYLMtCrZXnKh+xFkMMok8hdo3NEKZiRJOg1LEyd3aaBt+bQLOSH2zc1g4BZK2JeRu7C9RZwkZMqLJYrwGpDoEdvatTmUuhRIfqlLpELPd5Tsx2VBRcR2vUXk7w4Pz3AKCUiLVYi/lMkh+mGcEcmGd63IPh4/yV3GUGncrpT6DrUuKq/V8ggBFdpsU50qNRGAkQIf+1eW7rbJGsJSCaMw5r6ui8TJ+bdmZKZsE4ihzCZsyOn59ns9l5WyYDeL7E3EtmkraM/hjH7COkdHF+6c7NfS4ZrsWLBQFDvoiRSyjvsbn7Ho9nngHnx9HFTG8oXFIQcFkfnG6yc4VGRHFULBinxcA0CI46jtkTVmLqH8zriY74YHqv+Xz1ZLH8pqR4KJqYk/2QJ8h+g/sbfP+mq8oVGx3bN+zXX7H3d+z7b1jboBw6Z943uG+abLdXSRdu73jbSa/fyOPAbMPHEBvk/Y2yb2K/esdbo283eQjWSrte2O/vcHsnb3t0lPV5rayiRtxeFSj3gh8b1Dc09ZGIRx3GHdiBd2gb1u4s3LlwUL1pCmCwLfuM/WbnFj3zrtlh//Dn86nNPHee86T5+LQK3MIPJX3IFyMZDINun/nreSrq/JoMwMla0Ld8iB//PK+eeyYoQcOVIDt2NissmDvJ5tkwHtfl/thscaXT7Nx53BeYe2b+OfL4iPsyFba/uCw/L3Tmtvb43eZanGbtukXz3LPYYB8ilO51xIkR9ysFMuVxZieTJ5HNzM8HHpOnUzIZJKfpGwTTRFk53oyg8Vwi/z/rcwQsJNNkbvN05v0WvlTdZz7qkVq4AKdoAClmfMhphs72HPKYeXZ75AP6C4t9nM6nIIVGfH+COaVx5pQpgTOpcY53xaY51l4hPMUUcEWWHHGDDzFN/pOSWs79wHkvOAE3yegWaq4x9MnPe1VKIZfCsi4xxTYmAKcpa9U9TNkoVQChpYQNsYBLSgE8rfpMQxM7MxNQmHvExY5PsKzTJ1Okcx2TOVQZ4wSezDQUh5TwnB7nLfPZF06mjfPIv2b+j4VNCvR9AxdQMYcfefOHVDFqVLNoRtgcJsGDPQZn7Sx/5g9nxrl/o95jng2RAyCg1oMxNTPadO4inQqaSKhrVwOYU2ZqQaqQYbWfyqk5OAFmA9Q/SOVmtf2Iaz1+Xhc0YhCDmmF5noP/LC/6OKzgQ+XJVNmcZ5rZg6FoQiK6d1o/ONpBXSuX68rlsrLtLexjdJ962BtMfuoEvVKysL1QrTsHBxgWj8Mil4u9bSIu9MfSi48SiHYoxCwaT3nWR67GKMBI/czxBRzPmCH2IEYAcxEv4S9j/3xL85C9ftib2bAUE2VHP5nkf83XXw08rXWl++BoB3tvvLcdD0PK5bJqxHxcfKp6WemlO/2YY6zD8CupgyBqmTTOyUQnSzkxDUs99QjtkxrpIU8jDgM7i0Nv+l75W4RuPGRkREJdZ/IcHhYjDk11WaMzEh2QFAukB1XNHSwXyEmWBoMIsCouUiwCIqhHSJWvxnmkmRDHucAdeWx0vVeORGJEoAcxE/rQlKqSiAlksXEsP0xF43A3TN0r4lAw0xtEMJhpaKadBYqSg1lVHVgxeV2URCkp2CAePkNOyvLBOdoglStWyxlA9n0DS6x2BVKMeU0x7rlHMhsjX/0hj1Qh00KuQ2xMp48w9i2F7rBtjTZi3PRlpebCi++snxb+/t/8jtYPvn37jZwzy1IZe8db5/PLZ5ZSpVF1ycvGaLRjJ5tRkiaHJTLbu6RYb7e7ANbupFwoKdHGzt6VBBCdAquJJZUzMbQzUbe47/r9cHUK2uzQ+2Bvjb119qNplGj4eBzHISCodZJVUqrktJwSDb2+wJy27xwU3t4q2/4bx7FTL5WU4b69SVrpB0vJ7OvCpSbqjy/c3jfu93e2rbPvzr0hsCItDAsT0aG9935/g9FYsxgsSzLG0dn6DfvJeFqu3G7vMXWvnb9m0ijQi5jOk07DSOFY0THCaQcwmkrx2GjrukbSJrlMPzbSIqaCWSIN2DeZCh9jkGxQ06DWpMPhaWG9Fsq71vPlUinZWNaCu8X0v455EwuARN9v9NbZRwBd3jXVzgbVBk+LUe0gj43kGzCodcFQ904RPeIGxDjndOrwe9+Y3dn393eWZZH3UICIPobiq6srVGIMibw1NLjB8dPQ092x+055vfO5XrnWT1j+lWE7b/t33J1F9TBtDGqp1FKoMZK61qL8cdPrO07OC5fLFSXIzs8//47reuXYNT0urTFhCaenTk9dTCQS+3Zgbrxcxa773ZdPGJ0//+kP5FJ5frrwb/7NP9KG83U7OIZ8UGTE2Gl3dYZq1qFaU+JUxvfO/ft32u2dt2+/MZOKl8+fqMvCWhe2/eDr+3ftjW2j9AGlnB5Zx76jDqxYf8e2hXzBuK4r67Kyrheu1yt+DNrWuL3eohCfQEyKLigq9rKRL0XPbm+KBThmklTe77v0/E1JacmZXBeW9RpJQeLYDsX7AMilSM3g15CXDtq14Iumb5kN+WsNFxM3pNQppZjmqZStjS55u6oSUhGwldxi6MNjwEMuOrtSripQU5KMpzdR3x9ivlNS0m4BSBNTa9xJyypvgi7wsuQnmRT3AV6RYa3YrhrF7TQXy7kuhUoHa7Te6K6R15pwVGit8fr2nZIz61LCiLezRJyYBdY0Np6F5Jl52yOZHdN01/3sBIqAZ/KhcljWVWfe++3c132U+Bza65IOurxWLFFSVQGOXlexQKCNJH4qkCyFjMiV4Ol6RkgxwgA3ccKTgzg3DUoUoxPQ23d5z7RDHfrpp/hIMKPdEZ/VIl+SRLPTo9DKwURVIprJ5cI0/89F62IL89g+OVQOHUnMVehnVuuksbP/9k/0799ov3xnT4VbLrzWSs4Fbw3vg3Lc8H7wev+GjQP6nSVn1pR5vd0ZR4Mhr5KfLolMp/Sb5CbeqXvn5ZApLimzWqG78d5U7DeTh8jFnOAgc9zv4M51uSo+PxcGB4eD+x2ORN/DvDskczk14MC5w9jBD16KpjDftzt9dN6w0wO1ZGMpi8yYu7rDBtobTkw6njnj/CXkdETzYY0mThDp8WEkz6i5tivbC+PmXBc0OTUsHML414DlUkkQAzn8ZEs5zhxEY+FFloLpdDKXkqTnrR9nMZqi4kohF665YMPx9gCdPMCGqcQYbmccmpVOsfA4yuUES2YybeHtMggaSQDRXiIT9k4ako3JL3TmwuDBEihLjW06h9xoIq/sJ2JDz6aY617kJLCmpExa8nm/DLCSgBETulTkOuOMj2ausxWBj3N6tcAYi0Eria6xc9Hk1HOS0iCTh4UHYNh1C+nRPk5D07rj3ljcqwns9GBYz2ZuTZmlVDFAwyOvlEwfg1uPCzhrCaKhleK8g9HDWqMswRIaswVBSfostcyCOfyxTINqcoLt9sYYjetlAeNs7I3RlYeUhVrlZTOZrPftfsacUq8sS6GWCzkv9EMTIa+X6wnMTxBFgzQa67rGNHWPXHvXWrV83q9S1xOogSANRGParIh5Eo2sEZvo+eWqM9I0kOrYXSBwLagxbef5YyNAxzUzcO4uOVOKM8OAxbTmRzS4s1m4DliwjMMD0JF5vxkl6qqSdB1Go6YSZ59eeOwHnUazxmNyYCJnPfcJwBJnspNwk39mLkZvUin1hqS2s5liBctay1KwuNi+SP46MFr3yCfUQO0+SHmJgVqhXpmTHFMKIE1T3Bkwkph1D4dNzrV/TriPc60uMXCqqZk8goVmMNWv55lfckzxi3M3Re4MjmXt7tYbmDzjhneO0eTDm423baO8v/Plxx+xuvD3//h3fPv+yvub/IoH/heejyOlcxBLH8I7xCYODCAa5tVVT44AvSb7eISXqaUsliTGOHQOlcDVUhcxqSRiymjn1gKIWJRL9EPTEFOuVBezMQXrcr9rAEvP/eR8ZPdQj8RZkMVslEebYlKpmbpUjqPRx6FJix97Xv+Fr79eahdfybRwKyXMqgKg8cnxCH+P+HI4O4fTpV2ysLmQY2H5nAYR7BvOFkAgg2cfkPOfJ8A6/8U/dO/PLpxAFWce6UYcBfEiupER05ldFTG1IhBrWZ4I/Yi/n6Sr6VExJxxJP/nonMzu6JlTBAo6g7w6xaIVz4lDMj0coSvt5wF/gkyPTxAf/cHsSkmdFOZ9hkdH5SyG1GXp8/adXbMAgYafB2QpWcHKY25iJCpKRgS+TNJ0VFsRGPS5RU+NJMc+XG+gshMlVadNif/5d4HuToFEMumUARk/eueaBfwsa2WMRB4vJzjpRTD7ZRVwJLmBq/M0oKV+Mlhm97cUPaOPmyiIH6SZDEbeZMlPAO8jC+DRWZ9rzCTBRPTpuZD134P9ONi3XYXlUPEiP4SQwLiumzlxATEvzIw+2fIj0/aYLJMNG0TiICZa6879cO7HnduxsbWdrR9679bxGO17ri2be8AoSQE7BUvImabC2lNjBtVDoITzCOhiMdpjJLvpnkxtvq7xMYlrdup6OziOLbzAtA9GFHJ4aLjt8ZqGRYconbFgsq0kzQ1HiQAEz/3MQKasLTiWpoJMpP5ICFvQCirJGskGJ9chYtkYLfZYjLw/fWEmY0MPfcppUzVKWc/9JZ+iFhhwyGDiOUxwVnHPHn4Upj1SUiKXKvDaCtkyy7JyuVzZ90PJeVa0LWMCf9rjiRSyXpRAxcSc5MbYJ+1aLJz1ctFkSQSmtd647ZuS0eHRYcxM2+PejaM5963JLHEcWGpYyqSqEcHLKt8xjsZ+HGz7Rg/TeOsJQmpkwX91PGRdnW3fIhFxymXBSqLkGkbvU1LYZSpJTC/18Bd0TZ8cowtsi05k6510HBytsZwSixk/51oCUgA6rqRlds/xmRxp/R1NoPKTPVGyANMcU2OGz+67Q7D5Rvh6qQmn95b/gNahe0ONh/A80Bthrk7r6J1cxDbyAOm9N7qJZq04+jg9xjz5Irk+OW8BJOkz97hP/SxmdNaEaejwkE5Pl4OBpnsoGccLNr0avQtcjQmtwOnrNQvtds7rTRxNjDJ5IKpp0Nqh4rnKULS1zmgHLTr0S85n7J4n5fz/85ZNr4/TP2pey4xRf/EVRaOFyWacw31M6RlnF94HwYiOon5+P37mFqqu7SRFzqdvrvPhMSKe86zOSR5rY7Q4Pz9encc3z4LuYx4VzR3m2eofUyY1CCNp7mceFi3881v9NJTOJimqR4NrFkx/kT+ZKVEdDSwxjjdSO7AWcTjyyJQSoylvyuGhNLY3GAc+Nnn95YLvN9g1vjwb0aTr2LghL5zIvabnwEiQqiYeos/Xez9BvBoMB2PH0Rj55JlksnHQsJqsOGVdN8kEamTTgBbnjtEwWrAWTcbuDNo8xVKRT9Z5VgTVDY/1H8/lXAWxsdwj15yZ1fiwej+san+8rnlXqtH1iunMh+2hFPA5nlvNv2Ef3j829WRAeICbxOc3XKyfmbc5nHCujWgQ8Fhbf5Ghqqj3M4k3seUJ1k8ORmuOdTvzHIv1Gob4jgogj5xLnyVYy4mT2T7fd9Yflh73WBYT42RBzeFBMM5aRZ/PyFlyGNXyFveb2K2hHEiIwTHZkJGDzJx9zHg5Y0jI5symRUbE+IiHkzUzhzXE0EPtAy2YE0SYk2Y/CAj/gok8p1O6ExPc4vk6p4l0jXiXs4ZFDPfTQxeLNeoqXJcqyXdPTqLj5pS6cE7/jM9nwfuvxVAo7ozRWC8LUndOppAYSLUsOhdzeUiobYQkqVEXsZnMpoRYz2O5rHGfz0V33udc0mlr4cgby1zsQa3r+JwhrQdofTYIPrxOPGNN8lYGcrIXY3+d+acp55uxOcuIK2Ku4hv2YPLg4EGMmPmdT81SBGcLlh7xmR7sVxWgMw+Qj+KsDyYDMOo97HGuz63OQxNDNEP83KCcNfuj2pwFUdwdQzfmPN04z7o+5pCOSX4QQzuNJE/LWTvP+pk4++df+uMaDDsL2PncH3y+GU358Odx1hTmASqefoZRl9k8sR4/y/mak6EMfcTAIGXEtDbYW+epVK3bWiXvc9kTJLPwhgx1EHbuWYJFPNnCZzCc+/X83JNpzLlOPsqg5/dmT0wvbQspxDmQxR6/ZotwoPtxHkEp1DMR90rJUQAbNocClcg/TtWD4rYagZkaQ2as5YeU96/4+quBpxE67aVWalq4pCv33tlGF8rWwpgqJTwKEwUrHeq9aQxua9okddEkBAEA6kKMCMC11DBKS+fr+IcHBHZu9s68i48v6aGLCv3ePyTQkVQNVzEfW9HMkR2SWBxj8BfB3OfmiV9jhJAmzYRR13j49DVR0ehm+JSfPFZYeE2gJH64ZCEDJTnJWJaFNhp7u59So3MywGicEyE+XiMqJoww/MY0BWwmJulRZuAjWCcWRrz++EVi9CZEs3zi6emJp6cnlnXh29s3BhpDjyVNAaqFXNUBTRCTW6LjMpxjF7tiqQrA58han05bEVAsBTVZm2Q+e7Mweh0H2Yy6yBB99EHvO+MY/K7Kp2dvByln/uF3v2M/Grf7RrqIrbVtB6PtEJ39JctvYKCEQa/XaN0RkwEuV0n1jq7kw2JKIjHJKbIWwOmImdZ6g6TrmcBaClNDS2IFjHaoQLOKNxVzb2+vvL7eeN9aSOOigE+zcJPB72A8/Ea6uow9Z9wvogeHPGm0MBImum0p0byxbzd+eVuwr4lju3O0nd9u3zmOwfXlM9jAvMloOXiV7nC5rsBC7zdkSh3soVW94/tt4/X7G++3d3U2IzhZdL9KrZRSVcD60OSWIdNEH0OMs5ypeaLmnfe373z//sq+3U6/A4uu3jga9+ONZb1qnGxSQMxh2OoNRhtstxa/Ot5l8DuGxjlHEwejSyLYDyaV32xQimNNTAobB5pQB8luJLuTzSmW1DFqnX3cIjItjJ4YXc9PkiUiQVCXb9tvlFx4enri+fmFl5fPHPcOI9HaLxyHc616bmlO2fKhxCMnhifp7E2j3V+eP3G9Xnl6euFSVxarfPnhC+tlZX1aOdrO/X7TgZUS/ehhyl4lXYvPnRd5hmSM3I3t13du9zvbsVOvKy9Pn8gXdSZzLby9vbH98Y9iBRzIaNQKOUbev30/eOfOt9/uQRJybveN/Tj44cefuT498Q//+u+4pER/e+P9/Tu//PH7KUWuQ+dHHoeufXqdjMHhd/ah6zvagV0KP2Tn+vkpjBU3dZ3azuiNFt3L4R6mqUgGZFAu9ZzC4ntnPw7utzs5uvLJZFA+RwWrSMgcLfbrMqKQ8Nh3Hbp8A/NNOvi/Wf6Wy+XCy8sbTubPv30Xu8U2da9zZnDgNmhjYxrHy9bA8N4Y3hghd8gpvPt8x70pmeudY99PIHLf32WGOho+Cr09g3dqimZJl8kvdN5ubwIYy6Kkf0SiM4x2HJoyFF1Gdez1+wS3SpZE2dqQr0tfHockFfOrCvaxM3pmWKIPMUDa0Nk0hibOHnvIQIezN3WWu91Ql1rny7a9s64rmHNsd/px4L2z5EJ9+RRnyOxmx3kSRUOOQgTQpF7XoZ5IpKIpWKcHw4ezO9cCvcv03jtHmNrO+BzHqwq+EqKaiS/FmW9mpLKcCfQ8Bkd09ycDa55/2Qo1GetaOG4b+3YPED+f04R8Sj3Oy/UAqVD8SA/5wjy6IhkBN9rQGPTWo3ju85vszM/E1spiOJQK3R/yu0iGOx/AgJS42g23g+I7TsLTn0+WuIA8476LnbHUNfxGwE1roQyjWGL3O42mAgsn7QM5jd0/+H8EqBrwQ7YFUuJSCn0Mtn2P/KezWqWkzLKMqBFkqtuHSU6xb/JIKYWlqlA9+gEuuZ0mre2aCIbT3WjDaEWQxNYk+6w1OuwmYCjF++Oc/pgeg2gm7DR56QDD5Xs5PGMu1qc7IW+JTNgPAUldLKaxqwFQsgxmZyPMDVq7AwM3MT5JI8AncMu4pZNVPZsqmcYE9zA0ROYsoqIkNTWhrpFHaz0EsGTEvVXc6iHtcptz28JXD+R/BaFdcp1x5w4M0CymxnUbUc/ZuU9KAN+KO4aPplgcA1QE2gzMRjAC7ZT/uz/2hc7r8KL0JknzLAxdjRAwMcyykUriOMK3JZdoyunZqxZUXpsC+Kklk3JhmEBkHzMSlLMBl2yuCaHwl4tYb8fRwgIjAJdoOuAx/MMFs0wJ2hid0Rs1Z0pOYTStZkRGAz9yLtRaIi8blGA1jhga0henpMpaL2ep0GMiYF20z8QiS6zrEk2fg2XJlJoY/QV3sdAFomsRjxgsMi0jzDJLAE/bXqLx3ljWhfV65XY72Pd+Dgt5enlWDtzFmu9HIyV9Fgu25wjGyVLKmdvMZqVP5vJSwYzj/R7NyhbelMaSQg4YA2dGazJQC8ZMDcYSw8OKZTYMZdkzY/vhnT6OaFKlc1+MyO96DA+iIK/jw5nSgB6TV69XmZeP8CUePkg0aoVsWicea7OWyhwGomWrxoLSxnQ2g1UfaMjJ3nSQ+IjBOuENhpksEGKtzqpzyvPl8yMmjGKbas4csuxkmcsiK5Rv375FnlHEOiyyiBijnYbmjACjWgDK4Y+rBq4R43hVG87moAl4w7vylaOxLovq4RF1afhHW3rI/i1ODY/D1IfUK/su0Kn1LACKzH138r3xJVWx5VI92Wg5qXns7cDplKKpgH7Eed4HydU0UU37UGWJtaiwpwZQC0ltMLKnoThQU6W4DPFP+VX4zFkWiYZsmg6Z9L6daY7eST2TPEOWuiMl1RXPzwt5McqaNK2vN0oWo/JSNbGWYMp1HzH5vPKWYDuaGsj5f2PgqfUOyU5Pp6mdTZE8PFDHoJ/iUQTrACsx+WDCbQ82hJ2LdP6VpGjj7CzPbrOb0MOPozfne5u0caL+uXOEtGAeinxAe/vQYRu5mt5jsh/iMMuxWU90EoRkMrtE8WA9pAMzbTAleONkdky4xx/Xbrrexz2bheX85bGpIg2xHId4JNJ4BI55P88+rg632Ox53tPx6FzL36Uz+oKMxiNznZJAG/qzcdIfnUD6oyuAqROYc45DNubwBZproGdtYg/pj/1MrpLpWeZJ007oIAyQSY/rfDLobs8OSWdORpEJoiY/YFAtKejcdXhkN6G2DIqHlniyR8KryEYP74ZxPqc2OqN7FKm6wKGq7jyYFSgmxVrX/3GtnWAnKJpYfEaPhCUOhAlk7ofkdpaW8ApTd1wu5TORmwdapKZpPlaRUi3tJFTIze62xmOPYIBVlrKyPj9Tr8/sR6d5Y6RJ7R2BpHoURDvE5xxjdjJUfLp3cE2ecY0ekhQzC4Yb3uh+YEMUdDVKjaMdAudQwpWKEqZJfZ6vb8G2q0WTQ5J7eAVwFmuKF3Et8XrTPK+NnVo0IaTkGkmNfm7bdo5jZ12XuP/jLB4n5XoC96lMuVuilsRSNOUjZ+NyWWntekoBU44bMIqowimT8qJ9Eyy3nB33jGVnvazqFlp0SyMR+OHLD4wxuF4v9N6577eg3Mc0K1wgSNLnzUlTN/Zt4x3j2A5K/sbWdgadp8uCU7leKkcAKmMcHPuOVSA7rc2k3KJBlbi93wVQdbGEujllVF6erlhKtNY0ne39PdYDSgIwvOeIo5Xhne3YziSjuQQRRx/k1mhHk7lla/TjoG87lkUL1p6cSbZohxYMHwKcLUvFioqY1idbxM/zyTxAIXNqTlEMiLkzJz9Nb7uRlPBPsA9T4nW0xNF2JbjMZMjmHIbH9/e4zOhMEvujB6t1ninqIhmWjVLkf9fHgTGwkJ9ZrO2BjMydEaDUQesb06uqFAGRfWjSYc3qhPW2w5x+aHq9dmwcW2HfbpKSZIu4lVhqiik3AabPeO5GSZI4jYjH+PTJ0ihldfaCqecZ88K2ufbl8PC4uoeZ6EEdgzxSSMc1pt59nI0Q90fMawFWhwqM7pIcfPt+o9aDt9uuiTu9c68HtRRKXllqZS31lBmc53TXs5hFbQrmRIoOodZNTAAaApZ6yJUUuyXHx/oZa3VM6LzXEAmBGfMUS3GkxcokhqGHF4te8+z98PH4cPnFJFhqomyOj0Px1pwpF4ysjDmpbPa3cT1Hpi+Z6f0nmwRTXPZ4rDNfmQyZxzXMax8cozEapxnrI5dLZ3SeDGsfB06jeMNJ9LafmUzJYmqmyNlKNFIEznsU9zHxCjUCcuQ/7poWiimXG9YJPh5zOI389wy3htvAcshBgxk1SPKwyWJoqAAQkyNbR8MH/Mxb3PdHfhKMDnUvHudwNsWDMuVMsScJ0MlOGg8f/Es4c9P5lfIHFsX5eRM5VbFch5Ft7kYx0U8Q6GRxhAn9kPzEIwa4KUd0G2rA2gRGJbWZzEWBGR4To6dvT/z7XKghq7XRz6mgZ1F/3indmzQTeYu9kD5kNlGpW5xvE/z6mLtHDX9i2dPdwuJ8KCnFeHexhES6DCl61BozTp3F3mwezr0Np6+Opag9POoYURBUZIasi/TwYMolkbwyvVTSfL4fcn0PdkcOZpfY1rNpbCfzRqWD4smwCajqZ1Nce06ZU3YR6KHlhzw/paShQQk8GUvJlGxnPZXKwpTelqLpq613UjfqUqNeC1730MTvpa7nA/R5JCed9UcMTlnXFafQh0CnnKcMeci6I0Em4rkLhMHSCdoQn/1yuTAH1lhKjD5kobGWyIOVu4mZH/YAZTYYHvms5XlPY02NRzZtJAgJk4BHxe9aBPDM5+7E9OdoeipUPprj83rmcAli7eYU7P1gyK12PtyTQaWXMTGW7ENNGoBXDjYduFhE7qfBvNk4DerPz+tzHz1qbWeSa2ddOq97nM8zIWnkXKzTDkOybr2CM+tvO9dolN5xpsRnjybj4JGPTb9AMf6ygNR43R64QZ11ZTDbPWlQTk2TlDAbJ0kxLWp+mNPpFAOmP1KOfeIxbV11fTqxho/7vk8v1BRRZMZBy4CsT/ajke5iqqeU+eHzZ4698eufv2LGOQVwHq8Q0nlJUiBydxw89sX0UyTqmclgq8koVmg+VSEi92RLwbpTgy8FkUOrLHKcIMsMDEsFq3b6fWninQaApQBeckk8XVZSgVzhMKclxXI1XdXO8agNdZ8zeWQWF/mgeCWN/62BJ0FxChQlY8POWjNF91S6XWjjOKmIYhQI4c+W8K6Efw8pgcAsP8fHOQJ/DNHHdDDlc1N3Jltm2o7HDhXywUAeE0fTZJ18HmZKToZLuykMMQ7UqZM2o0ciMXXDJ114cC70McGoZKHl7AH06ER0i8UdARUX4i32jBz8i03Dac6C2OP+jeGxRoXP5zTBJ8PiRkmnDNM8UZTYSXsOX6FEgF0B+ozO6Ad9HJQ+x5fH0Z8K+CB7SE5S+GScdGiEeGN4KvI8qgs5fEBmpjwlOzlnsd1sHnQzSZ3F7YOKPDM3TYQb4Y30+DJQkj86rakwmeRHw9mPDXCul2eGw+11U0GaKnpwjTLzOjnjaXqhULlIKFQKpAR7O9jb4L7vkDK1XiLgSp/b+yBTxPg6rzFkaDkFMBaVgxn00M6e3DfTYZcSg0QfxrY37nsXddiyPudwsYeYBRIRPDgPjjme1FIjpY0UwKLyLp9xVUDOuvL88sL18xcun77w/bax3zZGSow8qZgTfFIvMqhdzNGjh+9KBuKQGzGphqyPZBkGjc5BG5NOnhT4B7wfN/Z9J8ehuizrWaAMG+xNUoWUjXWptHUlJ71/DT+TNvQMU6z/4Y3hB5MU7HRa36j1wuVyYVlWSpY/jDvc7ze2bWO91McajIRSgTZF8h4RJnyg1ppZaz7Bp+enK4bz/ds39omwesJHZvSCj0pZFlIu9EPrTWRQZ/HK5XJVt9Ak7wJIJfM3f/s7khnPl8r9fueXXxXPjn6cWclSBAhPjXDfd8ZxcNzvtL0x+mB9WljWys9//ztKLWDw+vbK72+vtLaxbXc9WxczzId8dJJprPWt3+mtKSktmX00Slv49NOPmCXut3fe39/5/u07tRaWWum9RQemkixTLytHP3i7v2nqpSUOjJEye+/Y0Tj2nZSMvm30+0a7bZSLPIqIGDySzo+U5aHEGJEUVNYas5AMWlfnjUhwVEjK9ysnP/1L7u9bTGISYNni8E5Jh2qJrrUlWNbC0Yz9uAuwCCaiPEICsCuKaT0m++SSse7qAJkpeSAAjqT4nLKRa6IuhaPtHO2IfSHWLCEzcHeOKZFL0PrO3hLDm+QPS8FdvlhmxlI0QfQ4DlIUvDoOBsf9nS3D/f3C5bKy1iWQf2M0eSfBw/vBIhmfuN/MkVp4IVmZ9HLEfOpOQsDTfXuPaTudnJvGWgdDpjR5MY3RonDuARhr7bajkyzHWGrFsBTTnejO7d754y/flexlJWIJWGtlKYW1PvF0hfXH69ktFbtA46kls+xnMZJt4PnMRMnJyUkeD92H2AyYfK9SyC/awWDjlLPnojWfa+TTKsonkyLaaQLVotjJAQaBn5IfdeIn+KazpRS4krndHMYEQFSGxtLXOW4wTWeHB1tpetekx/ep2DhrPnxmyh8YXj7P5qRiJloP7H2XKe98nfMn+lmQ5GB39qY9Uyk61+e8B4elFpZSWeNstrHHC+ncs2Fn3KtLpdSi5oPLo0iApaQrBypy1PTTZF2BmLFuDayOiB0Sw2GJWtbIqeZjGGANS4NsB9kkv1ZOpjPGmIz7x3E+PTazyx9jdF1X6QezOaJJvRPYC7ZFgLuz+04UojlHaI9mq7ddZ2mOMyklmZj7wFOMVjedqetaSFYwq2zHwXbsZ+zpCCmvaw7GkTQDHYNgnCR1IyI/dD0zF8dqKZValgfc2Q7llcc90gA/JWCzVLWhcogUeT3x0mkw0umadAJnAt0tXm+W1JMdFnvJzmMbLDw6s4a7m3Oa+GZTidNdbJDZwPgoKZrNvamiOA26jQeDdcziJOLDnDodjSn3oWlpRty7R6lfU5nb7XwZTftyjtibkxkyJ1mrQNd9nIydFGthsnZKmrl5SDAMLEmOZ97IOakJQTRdiprRRE2mcyPYPQE8HU3myHWt5CJlgwAKsaJOX03L54TyaZew71IcCHgaDGocLU5Piv21zKc9rRVyAO4nBBkxzLhcrkxmyHFIWp3ryrLWGXAesS2sGlIJZgxovLsTDfPYd8GsnYspx+foEd8sGohPT08iMRyN3jThGBPIONUcifKhdoycETvzc3lc6Rynh5dhkgeeWzo94PwkOQQgEg2llHVGyts01nM8vxEevTlSQDOxhnwMEiXWXzQDfap7gADlNcVwzNt4nlGTCe1DjV4JzB5MIvxRc6Zg458DSJxZkUdNO5SXR87QQ6lRimTWLy9Pyr2Og8ZBH7Bk+UDPrwl615SjNuycflyAm3PEdMZq+ZSTYmoq5MnCRvfPkibjqr7+0ICB8LSCy/X/x9rfNUmS5EiCIAMiomrmHpGZVdXV1Ts3Q7Qv+///1M5N93R9ZUS4m6mKCHAPDIha9txt1xCdJwVlpoe7mZqqCARgMDPYLFahjIx7jHL+x3FihEdcKQV/+Kd/Qu8D//3//u88PlVQUQkIxoKbk+tHovZtKe0UwcAkq2uBT2RjVgG0FUhV9OEYc2CcPM9qDXBtAmoek0AHDBMlc98c2ON8rz1krEUrJeXRxFBRVFBme7tXNsKKoStwzowVwKYEe+ngJQvAkl5wsw0NDp3tCsz/ydc/LrULLTEN7gQ+g07tFgarAT4IV3q66hcLPaw5PMzYaMJlq6hYBxTPmJDB8eIWyyOWwOpWgEn/jITOY2GFGAlJbUceIBH4r9SSaBRJJWQTXB0HwYhInvi5i0TS7bDoAqjRswKp6ZYKLMQxNofF4g72kqJGRyiBotBgCscxQ5jUkxbHzFAQdF041INhY5GQWPillJCMucEKeaDp9ZRsFYMDyoNrzAmzy7xupZkilEVtlGpANDyD2AUwCJ4O+DQgxuqaU4JQSpjbulOqwBeMpmAmF3mwXwnukhbkqRyHqcf9Tu8kPrPKpFwC7RcHCrvOZ5kMJrcSfifRGJ5KGYpjHeIcfc2udu8dZz8hsgFSw9CdHVEzx4wDtdSG1m7Y2jXFapqvZJ9LP5OrWEvCwHEllgBKoZYeBaOfOEPe6TFlgDlgFBRpGA+sTopF4W1zrtdVdBT9wHACqhzbGoW6E1nvGHjIgbfbQL87fFYIdnpsjAmvvhIkFp80qnMEldkNWoJqOU7MPvB4DIxxg8g7zE7YPGB2wGfHVItnCQxrqLYBPlGrrcNq+gjgb6LG9LPaKmqt2G87D8AS07wGGVgeBf6YAztiWpqE90zlSGYtG+63Dff3hrIBXiZqBW63gj/9yx8wxsCXL+8E085O34JplGkECC0S/EJ3jg5HRR8FP36cEP2Oj8/v6P3ATz9/YfLb7uin4fuPJ/pJmekImZMFIDKRSa3j4/MTj8cD+/43tLbhPE7AgT/+8Y/Ytw2tFZzdMQKUOPtYXdArlsU+Mg+6fEOfB/rZMeyJ86j48n6D3G94+/qODzd8fP6gpLQpvDC2laqUGiULL8AEk4JZFK6C8zhQ50AxoJUC04ZTKvY15SqB1YmtVXD89hOiE9sOTHT0yT3LKa1PqDu2xg7PwzuaGt73gtaApmE47ggzfzYszA0DATQKp3nQ04/NihIxpIlSJDInk0Nj4cnOFxmcrVR6rM2Io+Ae7qPj2R8oXfDlpzfU0VA2pTQ2ge9kxwCUlsFhY0AgMGXSRKCFCfLH4xsMB6ADWn3tpTGepDaPEaa1scc9fUQKit4R2gSYN8xZ6GdXCr5++Qm1PvA8/sbEpyYgnaA/k7FWC75+/Yr3N4JOtQbTLsz9BZTGzzmD0ZD07isGSZzXEkeaOLki2YVUVU7U9IHP44ExBsw5XGSspBGQweR0jDPk5D2S7wsa8XnA7IOMWhVIIQW+B9Pu89GQ3jMaNPvZv0Hg+Px84qev7/i/2v+JfW+47TQgnxiUOAkTR4GQPh4xKE1LtUy0TTDPAItkgFOXuP9UFLUB24rMEn4fjlqjOHQNwIJyejJlJXISgjSQK1H3pIHEHbCZmQ2bI1YMrQlut/DKwsAaYLHigsFcAVMCJkh5hUEszpfkjogEY89WPIlcE0tOH7lBskJ5TpFtxPHzwawKAGBV12sCGNeORQ5Wqoa/DDCEYE6e7aXkFEUWhmqOKhOoBvcTY3bMkcMUCORIGk77pEejSOwRX7nVHIw5HtIZLZlTXswpd07K9EFj2VYCAFZKksQdu/K5tyjus5AaSBYbWDjAcd+4F2qjZ86cWGBE3ottq5HvMr8zs+xHoVbGNFeyTVz42bYWTCQo1AlWctQQB5+YOJ7Wub5kAIV+VgYyFYpnAZpZcEiPXCDGzlEaw0fGHSqAKzm3YNNckw2FDcjMbyK3FvA5Iz2FYmmz8JbVmPXwOnNIFOiCcBhChYavVI0M1hd7wSO/kKxNkFSoaPwZ4Ml4MlxA4UucYTEfzdKwFriYZsHci7Nn1S0Aczvle+cwgDS31mgO2+T9oA9e7iHmshr7rxaqC/aNhsuCwqmn48Tb2x3btuHzR/iTKZUOW21Itsm2NcqdZ1grxGdx57Ci27ZfUrtWwnyaa6lWSgFtRn5bCs7e0cdEu93I4F6gTVkgFFsYEpNqlWWAOW4psxFDUUErG8gITUMUXw3+xQ5dzwyoWqFaMAdj5uNx8DmIQFFx2ypMOVGcsdNT8BFnD2OIzRHSYK4F/rcQjM1VLxdgBLvkoK2yEXgcx/X7DKdADQbSvXFdRxydkaPT+tXXWueOYd0XnNi1h2IMKeJjrIYnzyMa3hvixy0BHcc8Q/ZqZM1VFTZeYw26R22ksV/j/iUYQ/UKwFwCaz0TyAm/SSFYSTECmYQkYjCf8cUSpweSACjVsCZzugcbNv6u1JCXheRxZw18HJ/8GQdeveroJxk1U5j3j46YKHcuQHbbycozJWAncW99IkDBBh/0i5wh3UNnvV7CZNzEFlmie6dKC5TEeUzSFlG4HbB50uZkFsAGtBa83SpaBR4fv+J2u2NvJfRyxgEuAFTZxBei4czzIs+ewQK7YANuBgVtGuATOk8UGwtEbjLpp9cCgIbATDHN8f7lDaUVzFAA9BEYQkm/whIRX1ClMU8JMkOCX7x/DbvXBeyOoJfaJHBZlVOWEQz35gLtr3X9//PXPww8uV60QkfCqGG5lYaACc5EIlr0oioCabYahnEvVO5Mr/j6BD88D6/4C4mFpQDBDLzkOp7pma3XMgkKYOzxvB8LdALItgKvxYPpUUI2lpMu8uc9Agv/ROodAFSCTGwNMnGSuM6rsZLgVBxmKinLXIW+BD89Qac81LnwLbqcC/KOpNZ4SBdapntsVgJZ5epkcpvxYwd102wsCVLUatT414Ltlh0PgixzGvYtfClOX0EuGVGlBdARz2FOeiYkDTfvw/Kmyk6e40Vjfx3ImYgt4CnvodAAzcXhhe1TL+ww5QQE0cLgPR0yBGIsqmEOm5FQ1ApVR6vG4sgIoAKUrZjRSNXcYZMa/1oLR8prxXEcYVxsC2QFwAQu/xEm78OMzW9GFqhUZHgZAxjDYZ5ggrOYWsmPXq8HAnMjgLq8PwCLAffPJN1DZadcSdlpnj2C39HRj4l+RAD1yvsyQtqquR7DP8HCeDaYF61yz4gP+Bw0rp4nRAzug11hCwNkbiGMSR26gV24WlNPDZgTxecEBfoVpenstm3wGR1UiUNIARQyPGYU5hAgZUiikfS0iv1W0XaFVna4tThaVfzu9z/BzHC73TDHxOfng6bufWL5UuR6RXa2o0MxBI/PDvcPnP0T5h1ffvqC1jbs+094PE48T8e0E95HgMGgJh+OnJpSimJ0+i7Vkv5t9C745z/9AbUJ/RAKMI16a3rsXMUq95WvPw2kzI7ZcYwn11ZX9OdP2IqglS9QNzyPJziFjfvbBZEIYgFblt12UUxld2mcnLgmDlQIdinYtKBJWWs3d2qplEsO64AY2gb4MJz94LlQFAL6NtUSUgOfKGK4bYVsIIk+tzhEDVBOrDEQeEL0flNmIQZg0uMMeaCCZ052kzKOlvBZ0K1QS99TUs2kaRhwjhNtVGgrqFuBtihXR5wZWW4KAnAHCwDEa8Uasuj4P48P0FjdUGoMOIBhWofZiD3GsdIEyIN6L4pSbnDMSN4qzAvMeAa93e4RW/9OeVDJwz8TA36vtor7/Y77fce2tSi8oyM3CTxRdkbwZYEjwSIAAInrk/zgfDxI0EhV0SfBjmOcOM8zgKcS64yd4YxdvRN4Ok+yXWrl5M5WFf080c/HJefWBnPB83lijInzLLHeLABAx+ePJ+Y88Xh84JfnF/wf//VPMDFoJXuMTBdSbpLVnLocD+DJAtQoFdAJmvAiGbs8g1QVWsHOZJzRiJkRlTUpmrCzOkbI3YxJLouCC3xfwwMiockznkbfcSY4pY61Cfa9YAx6Ci6mgK5RByD4xNEIJo6JgRwfH++EVUz6BGVpVwOMAFbIRyKph1y5Ct83PZ9e1roCPj3WHAGEWlmcDvcleczgNc3IBIw3SJPj7LJrGPFCHcPZDPIYElAip8lihfeHvz/dAiAkAEYfN4cUMsVrK+H4IHFWkdnjbvDZ44wicA7JiaeGrWwoykEm0x2nz5h8lMUbFvC0V8a4VsM3Co4MQwTB2LkGBG4KV+ZzUAIdEZr5LJQZZVGenWm7oGElIVopwR19SbLJAJn0XQt5snoa5QakLOBrmUROHQx7FIInQlBxrPheVjGesU0iX5N4D4kcJzgnC4CSAHA8imCHhD+ZQDT+O4k7DlTRVRSJ6JqqxXM+fig0Y2sUvCP2b9QcC3yM8/wl78yvZE8IgLSoyNdic5t/XPLsiN+LRD7VHojPSLmhBGCQsplrct7rec2zL4rora1c2n1gTse+N7y93TD7wWm/4P7ZYmqhmeG275SkhXVEGlOLCGqpuO97NDU6auXUs9qCzR15c/rqqRaUfqCM9GuhXYCv+idqoHzyTTnNPKY1S9Xlj6RKUM3iOi/T7ZSYK7ImSksV5taFTc5p6CPUIZWslVYruhtG5HyrQHSsuJrP12yGOkAu4GkxPhU5aXvVJhGD6tbgcPR+xPNUmNJexYi9QUsLDDn8fkfGVr6OxMsFhL7OUEUA43jZPx5rTQQtGyEuAWbHoWCUGAMBjEcdrODQnx6MrNU+iLp3ZQGhMBEt8fxiXzh+sxc4LGMGGeGqU4tmzRZnUcrnon4DmE7m++W01lyHyYrKCSKtEZA5jgMKAvlpwZOgsc3L5zDB2tE7zvOICdEF+95QVTBFLpVMbHuypSutIizqq/i8Wijzdsn8LWIYAHEjoC/0Q4KED5YNwDonkBo9o1QEt72iFeA8PsPiYK58ImuHEp50Aom6uyOpm36lpleclJTRcYiFzgF4Ryv7kn8XMWxaCTyJYk6eB1/ebmj3G4YQpzieMxRMyV6MidvQNUm0rNpysC5zMjppajw4ldDyeZdgjxd6Hgwj0wwatkr/2Nf/FvCkUjj2e07YGDAomS9xOGqlbC6TLOtzFQEeOtiild3XwsNmhL29uS3Ut6YWsfiSQV2FdiyuWJhEabNTx09etopWKx9e6CBZGJQL8IpNheRHxSSZES6di06IkLUFfzLPOwfiZ8EiygGbY3UieETaS2IeT6XYEs+ygJqkAQvQYvLG8BV2kJAWdaDJpklKpQN6mUGWSLxyukat7ISluapGV0BF0IeFkdnlXcGrnEHLNNStYL+T2lpbwdE7A2msg/v97QIXzhOjn5DCJIVUbwkWGFYA4SRJW5/BYbxvIb1CBDkV6urTW0PsSpj5nuwQpymcA9i3xucyeL9sONQrkDTmImiVCebRD8AnnpgwFGh9w7BgOInDIkll8lGDCac4z4FpZ3RLSoxrJa2XXZUSiEAAXlKCzss0WVQgjaNVZwT/OefS0Y75hBglSQQs/GLMZfIys8uPJaucmOjW15E0jXtnCiVJe7uhtYb77Y6tNmBOPD9+4PPHd9h8QKQDyjGrn88H9v2Gt/s7CwlnoANiWpQjTCMr9tsdv7x/wU/3O47bDhkd//TLzxhjhLaez9Q8glfSnEtI2IzPe6sci36/sUP348cPYLIz8ac//SmMvycTobLj4/MT3398B4TmgpuyC3jfNggQjKyOz88f+Hz8YEA0JgHvX79gaw3v7+94PJ8c29sn+jhhU7ICjP3H/9YoLEUMz+OAyMQ5fgAy8V+3G0Q3NCiO3vGXv/yFXjYzoYmLRWXReTUH5mQbLcFrgiuOH5+/YtqJ9uVnmoKfT4IM0W0EyP5I6v20iX4e0Mku64TDlEmTRgVjAPpJ83zRyqlwvWOcEwrFVnauU7Ew4u1s22mBzkxOKLeYfWAqO+NFSW82xJSymHRzjgEBwUERQakbWsQYcYdMYN823OqOIm3FCkEJdkDWnEL2YreVUEEUZb8xQbGYCGnGA9nzOTNhhQiOOYDK84vxztFPxlyd0flysiQs9qO743E+oVVxzgNTJvb7DsiJxzgIYuSwK1Biw30f3hqR5QqAsjeUothuFdut4L294X7u6PPE2Qee5xlgga8GSe8HAKC1TBQGJYDacG83tFLxPH/g6AopFVDBl59+YoEtySKNGG+c3jfh+P78AIrji7/TrHwOApy1YfSQFBXS0bOmhwv9nvw6g1RzQl1In50ywFIEmwjUgBqg/vPzk/fzk56AtW4EEGd43yHaRe54PiiaotiT53etBGx6mv8Lwf/7va5JmrdtQ2vAT+930Odq4Mv7Da1VOCY+H+fqEGfvZsQUyoJrH2VFkEXobSuYZaL3AA6Q8nN6R1Rp62fHmRMp6VklkcBLfsbobHrEU0mpAonvcR8CTADBVqb5ZPWoT9xvFaLveB4nJ0B2w7QoNoAlhbwmJTq0xl/mNo4ursRZ5XB6QLkhjWOzqZR5kOBiu/Mwl+UBsl6zUNIjw5nmuIBTHsjgYb4XzaYECwUvnf6TeUpOraog8KNGvz4VjGMuTwwRQJuuYuNi7/B7WpnfbZ7GCrYkbFm4OjVAnKBZBfV2gwpCfGdRxHCV3Fpl+Ti53k2jqNNCCQMUak/QRHxCZMLkCYijiGNTxSu73DTkircwDDeP/CeLw5gmJ4IS05No8CvRTY3PLgKoo24FhgnMjlQj/MevbbsBAvTl+xlnT9g6SOYr0BVvUz6T0+d0yeMAC2PHFsx8zSoqpHkC+upB0lYCHI4ReXs2FEwsvPDI+q1hvp+ToSHJgmcOuAJl7GB4tHslmr+Ni6JtCggn7gpicttLsb2ONVwNUYBrskgC7n5JI/N9i66fV200s471nCb5cw6oUlLKMyZeR3DlpNmI0mxaC/zrG9wN+95QakH7/e8iJjGXtikotYY/JKPFODn9t20VObWuFMVWK7ZZMGeNnJW3zLnlI2gE8wyKoju2bUNrWwy7YO5wxtABog9paRKHbU7BxUuYcTLmycDd8Pa2AwDO4xGNncnp6HVbrFBzhU+BaEVRYN8vzYsbGeTWJDzZ+OS3bcPLQRVeSFgAXVFd5zkm1xPJBVzcKWf2wV1ZtwIUhG8ibRzSU6dqkBkMEBe0svOBF8UYE73nUB4hUQyRZySAIpeszuHBLg8Glyi85FkPqBnqqom5bvPuCgRbyBy1SORBDiQTMON1jbNqAZq48qrIT2bW1nOi1Yr3+zs9PacFc1WCIRegKhSZwq8ERwScfMk1V1BQF9uXMPcMcJGy7hm14AkTnhke+9/kajaIA5eXtAJlo7S/aDRKozkjIInEX0C+UinT90KAPiXOHjcgySEA0rR8KyW80JKayc9ciwL7hiKC5+cTZo7n9++wseOffvkJjz/8Dv/HH36PUhv2ppBz4JwTdvKe7I0x5zhGsEdH4oO8IZqT8Hj96ga1CVX6VrX9nXYjnMCCt9t9gduqBB8l2JdaK+B6sVjbTsAY6dUW0mDQBoKSOy5q4mwhzXWFOP1YgavBj2hCd48a2wzTO896S6b8f/71jwNPWRxJsA+AlxGjWDctF6SHv4Csx8vvJyotpUCwhvYykUCJjUZ8N5ODzCzSdFsiUUQALIgCPrt1nIzCDXJNxZD1x9dvBbPKL8lfJohpIumRBBRhwiouAYIQ2eX7IQJt/FwkmoCvRO4334MBUugZFf1lWd/H6qAlff61C3M9WF8/I/lphPwYC9QYLz95daa4QBetTnC998t1enQoaSDObgLHbV/JR2sNc5INlZQ8zWeMSKglAy0W84Ajs+P5RcdQE5FGxLEwVFxaWYksKG4mi/j45DNBgkjEQnNuk/mZJsU0PinBnuhWWE6sqxjGgMskiEVvyg3StNWMY9xbUOHzoFgj1ldClMlwBJMomJPyxj0THTy/jEGJshvZKNktyvM9gKd1S+p1kBqwkjLJz5uXhEhUSsPeNhr9iwM+idwv6rXEOFlOgkmTYc01DKBqQp8FtTTc2o5WykLeayl4v90wjWs8D6YxB845ohC+ksdM7EsmtAKMMfB4PFClQZwm3u4NCMp/l4o+OmopmJPSq5L7HtG9tpg0B19sIRV26L7+9JVSvn3HGDOelQeDTcIHPIGDuJ/ruZLNZN7RxwFRRx+OFi1kc/qPzEim8h6UsjiaLwlPJM3IRIR7Z8yOMQvXYxgrJ6AYJSkPYtHYI7xecwS4h/DsjPUWSX+aW6sqZSVmIcNxVA3AIvY+japZfBpsAe4AlqQ3SFLIs1xckeaGmQDSW4YHmbqiOAtsFimMV4iCixNWOEXHJUDXYPzNGZ3uGIflL+HAzIDJKX1Ws9MWZu8qlM56SqaumO5RqV/eIsDLpomWhIXc1NC2GkanTFQUvoqwEntf4hnWIquoJ4OirI5hqYLqBdu+wRG+VBknIyakSWOpVPDPBOdLgRYCPOd5wBxo251nT0gnCO6GNAohmXQHpuHoHfsYGCk7NEOVAqmFhtHwGJoBuAWyYHFfMlmKFctz2OLsDop++NgU0CdJlR1wm2QsauFB3Qe9M0oNeUqSFjzOBBuoRYLtGDlDXENtZE2VyjggAtz2gn1X7OFjojhwv29x3y32f0pHrvj8H/5j5Rc8uySSMkERskpYZEVUlwKVHOaBSPL95fViKeX1Z/Gdf20IY1iJMyqHpqSwKSyvhee+GNCqQpTFlijI5DRbjNmcBrQ6qB5ACxc040cWzJKSTKw0Cy/7wDMPWHEwQRgALmv/A1jrnsWCo4LgI1lU4U2S8niwUKQsKZo1YAEl0PDljA67OEydDKDCRqfN3Ldg4RVAU2YdkoxHbsp1v5nTOFQC/V/JOC9JVFC2AvUYNhKPMvOvWpiM22TMKKQwAIV5UhGFWDB/fCKBvxXpC6+Jsd/ZdAWiaJJVDPJZWNZ9XB8pk9BgC0dy6kg2ARug8Bnvb5SDpN/XlDiHyGSymKSHkHdS0p88Con17Gv9ep6HWpY0hfc0mN6hFFAE494iRggiriOYLwhZdKwH5TqWODNMLD4LAc9EbnkuRP7zCoTFXvXMD9MQOPPjmCypzsZ3yt7+1y+Jc5T/LpHLeMilWRe+/MwL8JSfU+LfW6N3ioW33Lalx1NsxgSwBCGbxMt7ByOIqSc4EIONmVobzIB+TtRtx367L5CAsVxpCi4BPGkMnmDKuT5bylAXcymnNrhApKIKXiw4sGJ/Po+r5pOIM/F99wARAuDKM0Fp36FKabXHeZKeVslwTIUI64doHIHrc4btA7K+iM+wPNNCcZt5R7Jvc4IYlSBy5QWRT0uso9dmo3IB8nXttaq94h2ZJ8pi3/l8p88FmzPkOr2ZkIFSQs3D72XDwqIpyTxNVkxQy+mfwcNPmTcCbIgLyj0gEfCXV1xKCSW9o/JzyDrDNPIgc3IdmzZaQ3k0TVduhwCBcZ3VyAD1UuNGPapJ6vArp8lrQjY4InFM1dFSssiVaEh8ftEgpaACy5jfw87AV43526eU8SMbPHHN7pFTR2yOtUgv2chJZbV4kUb+rTi6KICJcZ4oRXHfN7zdbni/3/hMPVvNV72mRfCixcLFnr7iK39BMizwNUQ4zbZuqKWihwfiHj5r5vOlRq8Eilf6kTlMWWci8wldkwehF3aQ25zLVDMVWiBjruEcALZkndF0ZC49/5fc5//X1z9uLu4OnxPHcZJtFDTIW63oIYmYnSyMrbZVJuXCtWHURw4m/6VyQfDBOpoW1DCQlcmFeYyTgbzGhAWLRQhQvkRIMoqquTbcHKTVq9EbIXFkBl0WZ8MNZ0wbczgPEo2OnYYpNhDePdFBywM+6Oc2YqKHB3RTbR3MnsE9R+VGks8xnQUVBV4nx8eenJ7Ww+diTE6HKK0uszR1ysS8E0EvwaBx5eE4uxHME1mb2iap+nN6BPiUZzCwqtplUDh8LXaHYwyaYtLr0EJLza62NkEpBthJRsykdtuVSeNr90m1sQvsTgYbUkKXNGzhaNVAV2wa5uR/M/GNqUGF9HjrjqINBRtKmOh5eC30DyYvj+eTrC1Phhcnmc1Jw10ybDbMaTgfHLUr4jjGg9PQ3riJFezGPI8Hat2w7XcWIjG1KHYbACYqkCt7d5cwNx3AS0LpAGbcj+EOmw/YfMLsgPmBMthB3yvp5RqTmK7QSqqoClBLJv8zAuMvcBS4K8wrP79s4FjnDfu+4X5r+PK+4etPO1R+xuOXDZ8fLG5//vknnP3EX/7y55XIt3KjtPDzhDvw9cvPgAuOx4Ftq3jbd4zPjn//f/87nscnfE78yx/+BbVVGDgF4vv3H+joUDvRw6sjzUJ1En4+50B/As8Pxzf5FUUKvDPJ/Od//mfc7zf8/PMXfHw+8K//49/weDzx+Pzk4a2cxmMCfD6fMJ8Y4+Q+LtSG00iahUopFe/vb7jf7+ij4zgOHOeJ3jvCYh6OGcUVu/4zwVJJb5+Kff8JIoIf32ja/8c/vuF+67jdNzyPjvHsaNuOUhuKbqBXD40xGQeNpsv9ifM48OXrjn2vKBsZLB/HB87Zse13HOfAcQ6ItCh4ySgco0Ok4O39J8zR8fk86OsRXgVeCoYKpiqwbajbjtt+Ry0TvUykl4d7SHVjpO9N9usID236CEC7Y9Cg0IFHP/Hx+MRtv+NeNnR3SnNJD0OtO+CC+eiAA8VoRi8CHM+JMZ7461//hv2248tPP+HsE93oK1ZBU0mF4Plgp7R9vaPPiW/PT3ZMW4WCgH8eiAmW37++48f5wBnMVxWa1ktVbLKDfi2C7DiPSd8wrRVSFF9/+Qn7vsPUIUXw8y+/YNs/IQJKWErFXnfUUrAJ6ffP5xGAD6nkn48HRCfEKr59m9APZm1jTnx8PmNK5ly+BRZ+PCn/fp6fC0R1oxfbfbuhlYbng3uy7m+AsDu1WhnOn5c4hMXJ+fj+eMJVcP/xgdvecNs36NYgRTFFMS7BMqZfEwSbcMw3pcTJRKW8NfcVvGP2Ho0jxa0qZKvotZJFOhW1NWzbjqEFsxTc7g2tclJRAlaZ7LVK5nImaN3IUtvvNz77rWEOxvT7fsPeGkohuDH7B1oFfvnpDXOceH4eq0lDQoagKicX+aRfmGJbYIsG8+OcHXMAqjvUOG5apIT/YZTa4aFY686CLwL9GJymWHSLayOTcEZ+oyHDkZCeRsmDlZxKdLwLaH4rhoqCXQpu9x1mjo/nE+cYeDw685oYxzyMhaV61lSRDofcigujrNyk1Gs4CQNUsFQCpE75gAmLWREhg+cFpBCZQHFgOLYpKC4YGyUqXoKTLnMVMjVYJSW6rHYQNLlp+PhB0WWiy+BncIvpkQHcC+PVAnw9C6U4aDnGAFuJgieSbrMTUjaI0ssSQlNlBxn4xSglLzzq+YwFgBJQmaD3x15KDhNjkSJA2xmXp4XVQCnMac6JKpFwa+zSecIhKHVfecEKuq5RbJJxVMsNggJOIo6cLRtMQhB4L5zoKp051bbRU6sWwfOkKW42v27BrjDXYOkh8kbAlGyAGhO5arDyBErvyJRQZZHhvsBMRMEP0zAZT+8uRz+fEGGn3d2hNqMRh/j9AncW/LOlf5isWqKIrjOZ+5aIqZTKvN6F+XcpIYEk62blaaL00ErWXi719FWJz9DahlYLbnvF6INTeOOz1nZHKRX32zvcsRpXIhIqDODr2x2qguN48Hfqy32ozC3nYm/lFLrOWCGN5sFVcZ5PzDlj0EVBrTvmdJifqO2G1t7gODFtoO2MZa0FCO6DgE6AhxOGEtMOc3sMcK9UTYNvo+dU7Gs3oPdOVsOY0FKx7Rv9LlUhMxc/18tWLtbm9IkJeukNGEY4FUtVFCnYSgtVQlAPVFEIV9MbC6CHoRbUtqEWgzfDKQMDMWo+AAO4r2m2cDLsaviwMadD1G8lzgA2yDi1NZQ8lczzftDjzRv91sK5+QVAQQyPEA5FQcVWKwoowWWASL8vJYNfyPScbuhZHwjoZaqMD2yGUxLt7mgq2EqC8A6LgTGcSimLoeUjAIqthSdnAosSZzjW/USWJ87aaAH1glAIKfrTeD5YYZxX5lViDh8pI4v95BbqGkfbd7KSe+f1tPA5s8EcM+6xqKKfYdvRGlk3tbLZtK4bIfDwiKMgi1UEaBJyYgeGrUYVELU6CCr1MSB4oOQzNw22VQCTqguAmhPA9PDMxcWANMZbR4EPnms5Turx/RM+HV9//oqvt3f8dH/H9x8f+Pa3v6PedmxtgzayW398+5UM5KbR9PBVA6fBft03CIiBqDuKD9xawdtWsNU3FN0w2hn3jUAn2WFCW0ihtD5BVOsBxIbagoPBqFDwcWBMMstNAYSNyhidn1sKfcPcAmcBpKb0mtOBe6ckvTU2yIfZiwz8P//6x83Fg73EaVa+ELEXbDHQw0AQkVpnsg9gF407vo2obtljkUIAJxMH+KL3z4ViYzF+MublIs2ryNfIy4TloRZ/j+yiA7pkZjzcBYIce56H0PJpihcjYhupedIHlyEYluGjBPKZQevF0irxgwVkmRZ6OmWXKI/5SPITTpZAnK+b8QpJBHqrWPc5PSLyRWIJxR9blyL5evFvVU5lWoi8J4MqfjoeoM3FuYxXvdDm37yu5FXmWzDx9QD+mBRe1wNEUvPin+BpcCmcBCeuHEU5gd5poN4HPWjOkxsSKqC9sOM8j5i+wUA2OwuzOcJA2yeO8cT0jnYrSNuAK0VhMcdOZ0Rw8eu5al55sO+Qfmcve4MoHi7KOAEv1RzDSW+FnKhmjosaHuPGuW5CZhcTQnJMMfFRrmyZTM55G8J81ylrnP3EOMgq3GuB3N8g4rjvN6hwmtwcxvuL6HZqmK9GYHMjoDm6YQ6DaEfvnHgn4MSEooI5HOOc9CQZlD/6fOn8xP6YIRGaRrNW9Yl5kB7fR8dubU1+6SdldDMA2tc4kxIDAiY87Knxzl2iGGO8MJ0orbKZfl1JaZZYm8nECwDQ52L1Bb8v9OOXVCEB9Xx9C/YBG50Esc2vAj9X2ZwTlPCzc1pU1njWEwiGCCn9lKmSJZBy2yk8WNmIl6X7n3MEsy/8ZbLD//L2abrvnh01dhU1wAz4JbVa9zhGkbNzwuRELDsgCSxnEplx7Yqf8GQnUPaztw1ba6ilBIMNkCgYOKKW0gGYoGlFUUXTgiY0lN9bxRZT7xxkOtZSsW+Umapegx22bScdX6NYjfhjMZVNpcKmYAzD43HCbaLPSePsyQ4tGVRcK7e3OzuTXtD7wOM4yPKJxG+K4zjoHWROhuh55qhhCQCAZ94VQ/g8Pc4Gsoaca9c4ZcUdkDKiUM+z0JF+hOG/yxPPWdzOCYxu8Ep5o7uCRyzXcA52WGcX5GoISybgHj5XWHEPAdqwaeOoRWCl4LZtfH0vaK1h229ck9Ow35jgcsIkAkSk/0YtBTXkJQ7S6iGUFGkp2DZlDBqK+6bYaqF0B8CQEgb2caJKiV50mJy6I9mGCJYRshsLB5wAPhab5oV9C8pKSVeKrh+C/SYXw8YwcY0Lz/HqBCTy+WYAFDj3wzoDESvMVsc7w0XKrNN/o2owaQBI+P6Ul1/w1UYtLxWnAEI2QF6zg58/PyPivHUxBNng6kBLeqaEsEMWfxxQJ+PNAS8CFO5FAlchnQA77DVASgnpnrqiBcM05/ji5SxlYOTa5me7WDSZVyV5O8ObBkuXOUewnRwQt4tvKpcPTwLZTXgue8RqRTRN4/wtmm93dbElnosEWzBv/SuZiW/Pe55xPjCIDIv8bOveSgxuYVMR0RzIPboYJyFRLFJQBKgX4TUmLjssG6ohvxGNseTwldepBFMpr3kFg4yT+QyjCYswjc4bYPFZkt2tyTaKiczMvBfbwi3ik/hl8B3diQSeiiCAJkeN9WeRf6tcn0sUbNgZC7yaOVdI+kstSC+wZPst5gEEabrdWqFsTQAZWLuytZzozL30GzbjZBO4tRpSuxZNimR1SjBWybixiP0S8mGejhFD4n45EM3sYDNAQsIbhkNe1jrh/Yrx4Ai+pARQIfks4lrBs0GE+zClj7lKMz6llLzFhOsC1mf6krewMrwKAdZ4UYvFeZFMpFIVmQkkIybZpUiIMdl4667nxop7nW+CtSyvHwGBSdXChvQVCtbZn/JEPr+43+mH6zmB+oofGVJmAE9ZNJtZnDe5XzIX9FVpacqP81wI3yCJQJDPBfbSXF6XZ9E8ECxWEEAWqFz10hXff3vPWEbLaxET54csEI3M0ZeJ7DSjxTI7lwCyovCkjy8blcT+fX3/WjdZjcYxK6k24Y3NfZvDJJDeNVFjX7sRWD5MGYMgK89PtjVivWkA09fCcOSQC0fu9WBe8UaACqHwK07ZpSUTKl4rwntKLAUkt9iYnMraGvZtwwc+yYRqDcK5J//LF69TyN71iAda6DmcMmcHimkA0LTLgSNk1iBAL3zulul85GTJ9l1HYZ7L4bOGfPYeCg84VHKicFofGHKwlMW+y2YxggG+4notl2Hg+qH//OsfZzwdB1wVbYutKJSEyfSVlJKW7hjPk7yBUjmOsnd20wF4oGKJuKojul4F52DHmcaOhWitGY55hLFiCZPJiVLaSvQABuc0dtbQNGKBJUma433ZCtDcsYtdrxcMgqMfABxl4zSwNMfjVAkihuEUjRJy1GK5oED9v1zGoRYeIvRTcBgKignKCAmBcnqTaSKOwKbUt0uYj3PCQTxYLYBER9wMY9AXgaNdncoeI3r87A8GlcZuZvegXhcFBg+Gibo6LRJFS9t3fP3phtv9jtYazsGOMA3ECWjM6Tith8dLjJ5UWV5bGXzY/WChlZz2bdugoujHEwAN3enZRD8iQOHzJBiXAc9ZJGG7YwzFsyu+fzvwfAyMDvTT8Od//xvcDK2l/5BAxhMyBswPABP39wqziV//9jfUUvHl7QuO48Dz+cSY9Fr5+f4Fu2w4jNMNtgB/zuOBrTVsrWIGSpxyOwYAjoGe5tFl4EaU6NJtW6Nu/DwjuGZhvOPL+xdsbUAqfarO84RAUHea7RZV9HnC5gBCkqnhK8Cc/oSPJ0rZoQrM05hsGbs61QE7D/x4fsfxveBbLfjy9oZ93/D1y8+cTCmA6ESThukDxxg4bF7JtAq+f37Ap+N8EMD7+7eyIiy7dsDtrePNKt7e7jjPB/7t3/7ym24GINC6A8GwMDH0AIty+hhsop9PwCYe5yfaFu0nK7CTZpluE7WSJXQ+njCbIdkTlNowxsSzBwuRTi5QYeE9zVHqBsgDz8eBHkbg9BTh/RZVmmC6w8OAfk56ExTXNY79a72h1jfAd9hsmF3hk4XueVAD3VpM99Ad7o5jdCwPOji2WvDx7Vf8wMQvX+8oreF3P73jsyg+vxc8PzrGxwfal4atbDiPZxzgxgmIAEQGIBNVgabAx+MD3QzHjxs2EdxLwQ8IjmcwbdyBGlNDcrqUNxQpuNdGA18HaDrItrhogcwJBXB/3/F23nD/+Y5yAnacgBJc8ck1Lq2CTuU8MEuJKZtm2LaKbdvw9f0X3O93/HR/g72d+MPXtwUGTuM43l9+9xW1NrTbG+Z0/LQf4FxIw21r2GvBVgjejo9P7q9ueGt3/Nc//dc1rWtG4vHLH76itYoGwRwnHh+/wqbDDoWPAhPF3z4+4OL46w1wn+j9gfMY+Px+YC8EuRoGttrwL//Xf8P9dsNRDvz66zf867//jR+77DhN4GckXAtYchpCRid8uFGiEkmaSRb+iPM2vAaLw43jlSWKlJIMCA/wpFTkpDp3g1hOnRPoVKAXzIcAtaHiHfbsmDZQsEOkYYwRSV2YbgNwMZg4vQgytkdTxqJzuAoeZ3F53yr2WvG+31C0kGlXK/a2QTWBZprP395uABzj/ERRxd5uAXQ7aoCMKAR+n8cHIB21AV4nZjtxaydaaeiTo66lEETuZ4nC9g6VSskcDoJPyBHmsgoYei0YbJC166ag6XpFUUPVMPS2AkhfSbMD0JDE0C+JSe/0TGQDrIkEfMZgEk6HBTuyvNFw52ze4QegjhbehYBgDk5sypzWRgemoYoDMnHaCRFOrCnKc8mV7BiNZPcR0wU58TSBsxg5PU+CD8GI0TD77d1R9WWylWR1ljJc56Ql3tU1MEBbIyhgMaHSKE2sdUNx+jHpmBADbtqi4XbJFboLhhUMi25+Iyg1UirhBCo3YcHKoROBfUgFWVHB1nKE95pj9Ak/B+rWyQ4ysniGDdSiBLFroe/iwbNlgXIc9huDH8jSPsXpSuYVYgL3ymbroOSuIIGclBbS3Q8QylsCbLLwrTNJTyCeva0x3z7OjlIqtDbIvNgJqzr2gqY7ijqqOGzyrGxFsLWGHmA1wLOtRsca0sMKhnxfwZX3cABAMDNng3oNw3/mLxx+sNHHcQx4odfTdBY2aU5c8Raxw6DRoLLBhk8tRMn2ugOSknGie03JrjvmA3N07Dey5KbQFLsqAU6vhZMrHTjQYQ58efvKadGxf0Tofdpao1fhnEsm+GqI3LaG29s9APKwPwCQXq8ONsW2kiB5pQ+hOVqwA3bf2eRonJw65kBCNssfJeJC3W6Bbhj6mDj6jOnSW8QL4PnsEBTUegekYU7FtAqfEq8TzzWAQxGDYcKUAEZphTYZk+oRnZEbVtpMmNsqYi3iUnqPbnXn852c2IVB+wYtQj8bAKen7+5k06yQTQczjqpndQMXIZOfAReiBUXIWuMWC+WGUKLE84hxyjXUFUiCAeusZLaUkDfS0D3YmvCIiTRTVuHeJBGoLG8cF94TFwdannOcnD5koA+L1JumzhbSYZMB1Pi80zGnYNAQEE3rsiZxY72skVuaBAM0SYwLelSYdzzsRE5ZrprnlMeEvQtUy+btMMa4YdzHTSlvrHLJDWnRAJyPc9l41FKwb3fMMXDOE7U21teFrzMGwYeiNYCgBk6iHUC9gB9PYAiCacDwyNCE4MoZfrHTWA/tdScwaqGimsFCA1Ckce2Frs/hy+IhYyRVhIKt7lApqLJxX02jhFc8mkwWTaAAnpzqHFVOebSzw+ZY3l/WLauUVROzY2erUTqPAW+GX27vON++4pf3r/j49QPn40BtO2q1aMQ79rbRgiPAMy0FtZE5nIOUarsRBHXGcgXrRgNY2/QP3G/vKKVhaMWE4zAq0c6QZTuATdlwqBHyOgb3QHfQx0/X5PNj0AtQhcjaDJSGPlTcB/t+J0AYk05r2VANqM1QVAMPIQBo4wIC/7Ovfxh4QuGBP4UrnZ11dsWzo5FdfhYZeZaydbKAsDAatGlXp0AoO9HoDiwfgfTQSelBaj+DnguNrocnfTa9EhBeAzlFLq/vtzdFVVEccR0aBwlvSWE/hpsVABYtPN6b6zc2CT80b43Hvb9Q9XVngkGQIG8afU94dL/idzTlgwi0OL8iwrjEBUTXLNBHjkVUdjvNY2oIk97L90MiAF00SwJy6+nFFynTtdDXxBD0USncuOAfkcqDPa89Hn5irjkNLTuiAEi/RFIj816BCHAUAow3MyZ5OeCka4oIxpx4Hicex4HHs+Pzx4HzHPj+4wc77oWHQPssqACKO6D0LJJKs8HvPw4UHZijoPeOfnZIsVUYW+j6gZjOYZSKIg+mMBhNxsNqSWcX7XXrhP5WlWwM89C9lxpJT3ZpopPgzu6eJG09TACnwL0QTxXHKdGZKDlOU6OzNGBDAFP6JInQ1HXSULoXTrmabth7g7Qv7NKp0Oz42XH0iX4apHgEcT6laQaflKrCHZ7AlMRzVYaw7Eg4OGkNM729MkDgAngckZRJFBLsBKAQ1JLQZrB7Fx0LuUDn1wRdS0US0jxRuexoRJcg28DDSG3WqpDJxF413ysKUM8uDg8cCZZHJmHCLBIBOwJpiqyciuVhDs9C20D/LHZVbXASURGaES+Pq94xRkeN+GUBUpUiEPA1yMDwxYjp55N7JUyv0ziU7KUwEDQPILWiYwI2V4eqpveNR+KmHs2ieN9SUJ2TQjS6t60QRHjf7zzYzTi5SI0Jk0oMIFCMHp0Sl8XAKiE7wDTMs+Pzx3ecxxNNNaRhKbcF9ltDazu2207jfFUcz098fjzgs2O2ilnYGBjBeHqOiTM8MKgIdvTJqTD9vBPgeHvD4YbjeKL3AFMm99cIzxGy2zyGFnDNlsI/c0z0wQl4dYYfXo0R9M4/ouF15sFcWqxhB1wj4cg0N9aak+0yw8umaglGEBsrGl0nX2AFFqi16L4eqazQX0YckTDaKiyqFvTZCdaoL6JCdqUdCDlTdlxf4ptcZ5sgmYK+ALFlZSKUrmv666CvqO/o0X07F4uEBfpce9DdKKNZiZtFXOCLFCH/zJwT8njPeb65DcBl+eto7LPsoC6PI/CsFQVKCP7cI48AiziJ73mASZZHXp6h8c+0ZLJ5JMwvJ3jGlsAV0xDWbEb8iwReCNRCbfk2+LrGkictSuGzKWChVgflVKIFky8CW1f2etpe5/4r2GAx4S2fGwmaiuIEGpCAqOfnlpUHct3FZwwvG4JegrwFOQwjSGCRPzI3Yzp8sbr5/LkGsvmh0dQucT/EmZOVYHL6f/iMAM/HbN3xJ6JAKtdEZk7VBKchhzdelp7cEMkG8/XMmarxLKrBfk1/qhw/n0UwWbnZNtc4A8K7J+JDshURuWsRSlpXUxMxYUoBgQE52EEiBuTZCiUDW6NQMl1eTy4BFgMg2zpaMkUi1tIQOsRWENBU2SL3jayOTDPEBM18mHFvNHJHxPNFAJW6OhnMcWGKYQpMjibXotBGKXof0X0viq0o9kLZ7ywFt30nu6TUAG02vl4pGO4YBhQj0HG7vfFacpM7mRa1NKgTsEjmxfJFFYlR6PE5gMU0Rt7r8BeFpT+PRs7qKxKUmBhdtAI2ofJiaBzBMZlKQU+J9R/3NACKjFHMDzSulzlIsriSdZmgU4maQEsyaiViZD6mWEev8SjZMYKQ/pLllx5izNkj0kXMHTmmPmMT71rcAYIokIIIKyhSF/s2zydEznsxsfN1ALEgOAArB/WIO3kzuX9z4iKw/OuS+ri8c/JV8/eChablevF1xl05Khle4XUpV4RJHzr8RkkScSquz/P9I38sUlecX4EuQPwrcgV7Xus6S5cJuvOZjfgM6evKNCDWuV559iVhi9dONmNZLxBrJr4viMpuXvcOF0jINcoHVZJOieB4wOm1te6hhPKhBvCWn5D02VyL1/tcjLYSOT4yr0kSiaePMAkYAK5pavl6SVmTvJ8Rv+GwYD66k9SSB/rl1yYvF8VYN30w3hUyct2APjrO84TDobXg7cs72r7BXn53TgJlmSv4youSTZZ1TA7+KkiGtUfet2KlllB5GebkkC/OQfJQMXAK3zk7+oxBFohGWijOeI+VvxcgZkRzrufAPlatLoDWxiaD04JEcuodWJeasUGc6qH/7/55/+vXPw48tQIXQV8AxkTxGFkdi6Gs5ELXg0xtYI7rTomN9YGk+LkYpjhKoQ40E3YtvOk0luUN4qaOBF9CMmBAlRoJQ1lSj1YKNcu5OeZvbwwXebq8c7m9b3eoIDqnqR9VQLHQSbo+Xhv8lTLsgciK/yZ8Ike+Mrbx3UokHX2m3pOoO4oGc8aQhusraTS9utHmMfpW4l7yZz28f8baBANrVxK1QJrvLRf7FZAjozOgasVWN3ZN3FC0wVEwrcClwLVCZEMpDWlKnPMFiYAbej8i2cy+PHCeZJXd9xtEJKZOpDQsJFVtg7vh8XwEiEE0uEBx9ie+f3zg248nPj9P/Pu//RXH48D57MGSSn6d4b7t2Lcd215Rq2JAMXvHn//8gECwbzn60vD2peJWyT4ocwJegmm3YfSBOU+wczrYzXRf60lLReB9vIsBgAJA2W5RsG/UztqBWipa26H6BBMcBtuek6WCqQOETtsd5gXmGoaFDpwIH6NIVFDQzxyPTn3yfWPSOeGUAH0+IEqART++0Xyy/gn3G+VIH48Dv/76gTGAYQqtilIjucgDxRJ8GXDrK/F3iiBBt6AB8wERx/2+4+yD/nBxU0SN46Y3fp7xMFD+7NFtbjhvG9wUtQJaDC6DyXShQWTSz8cknVxKYRIKgjf0+Cr8e5/wopyIUljcHP3A9IHt1jDmgB2TCYyWVQTZzBMsQDBlATGNoBGL5s4CGgccJyAdpdI7LFNeJoUT0w4ULbjvNzy94/H5hBfKOvadTJDn8YnWaCxY4DiPTwAT+14AcNSyKhO4Ed2fz49z7fEe7AB1sgn3tmGrDT4nCgRfbnc8zxPP84zJik7p2UrWsjhjl6ftG1rlviwhM6hVcas7xv6G33/9Bc/6xEOe0MrkdLs31Fqw398BKMZQ9E6PwDFo9l4DvBnnCesnvv3lg935StPmMeMqHLi/37Df7tjDW2N/G/if//qBP//tz7FeKu5tW3JMB3BO8NCuMcXPCDBNm9j2Cvg7/uWf/og5B3799Rt8blC8hTSTnWeaO3Mf2iQN+rZX7LWhlYrHeOAcHT8e3+Ay8f7+FdIEVsn0HG5outHkdIaMy0LKZlmTJeUcsY9ZhJsJjjCxrFtQsZVFLkUJcUbZyiGAafAAM1RYMKmGRNEnjo8DrSjG7BBxavS70xNRuE5rgKsuMdXIsqT1lXxeZ2h6ilyy9Tz1VH01HRQG+Mlm+ciCHTjtZBdTT9SiuFX6wcwwnnGnfwdAbztRcJJZrFCyiBrMTzxjUp470NrO4mw+oVo5pSkT7MpCek56KyIZyyqLuZtfxnCW+XUMpKD838VIatW8Dp6j5xyrILAcDhC58FCeTQkese7iNN0s1TJP1ugwmzmWTYewS5tFzaaVzMXzhE4CdIhiT51eT0xAZSXkmZuoZTEbQDPIyF4+GAI2HaKozyLcglLEd9Lw4QpWg3GCUWmc0uSlBJGjk1GgCTz5BTxVDrAY44A6gkXDRgMZGFiMWylZmAFJta9RqARKBhUF2y8EL2otIU8pq4lRGoF1DblvBeVfbnWBcSbRaAnNmY+roMsiVaORqq4B8LGi09jHolij4Ed/Yo6+cuN2i8m/la9vkYcMd9RWoUWjuEkwFtgkWGqYMX2uYJYYdR/7Uio7oy4KscKGbgA7BSzkez+j8ZPPpGD0DrNJhqEAsMmTL3JoEcExCeYj1n5tXD992Pq8ayIcwmg97mfcqih+I58dHXMW1K3St+3G6WfHceSCx61V3LaK276RKdvIhrDJfbTf32ITkhk3zBfzfqPVYcRJxt5luqx1AVGquqZCA/REOn0A4Bl121vIxJiLMWbSOgBh4IuoSfi5OWBCVQkwzr4arog1HnpZuANnMNE8UYGonaQofFD+1bYCEUqQ6VU7oZWKA5s9liWtG7bGtS7BsiPmGcqDFLGykwHTuUB2BJB6qUnok2sB/mo0oUQLjqPT/6qUtT/j06+Kgl5LbIACAtEYlhGWFwk82ZxXTAlAR0JaamZs+pfMqQ05yCDPmxLMdBjZtioxaCPiMGV/UQciVDohfSw1vdp8NUvFQCaSBKPY81hwvMrzeIdyiBZ9hIoLmfIq6Blvw7OtRsF+naUX+KSSPjrc8KnCWZWZEzjh/TMsYC3voyQol97Fc7HXCFjWiFuC2gQea6tEU7Sos9RNgDTunSbrecyQ8Ft4M13N33Maz8bOWniqodaGrbUL2I1H5Mq1OrpHQ/YirmiA9S3Ox5FKgxHrRTUm+immhzdjIFj8vPICQAHiaZAfZW02ykFAbgQLLKeT/0fQyd0xvUfNET5tpngcD7gahg+UVvG7f/oD/vXPf8GyXxDekzEHm7IikMrpxhJDIgjihuQuJjpDQgpn45LHtgYRpT+YDRxnh6uENyfBfxsT5h3P4xNzdtxrRQ5TSiblwj5qDIiIRrcZ72vZdtZRuLg9tXJQgnfwdcwXyWeOiTEnzvNY04X//w48aYxGZ1Kfm56LzrOzG4swSzURJjy+Ri9jIYDONR7dSiKaOTJyzjCPyz2ZjKlFR0ykOQFLBhIGY4Qkhgs15Sgp/Mrrzs7l68aHANbDd8iZ3rTQWeeb+YxpJdkVRCDCIIookVylwWX6IBEtl+sP0usj6NqOS9svZEF1txizuhyoGJyd574EkLdSMU8JxyQ1PANsPkPn76gTrdYFhjHg5udym7BBcEWASHBkBUyCY7I2EIqySBAsdohIPBdnBC8iATxJAHXZOcjbH4HXcdGQg66a0xzghj6emP4A9BN9/orn+YHP51/wfJ7AjESuBFgnZF90DJr4KfBxPGFjot3vLMjajaCEG7b3HftbwywNpxDdVed1TQUpy0E5lEjUfcY6lWDKCb0iuHmpxbdBlHyOmEAyWdANGM7HwPPjxOP7g8Z8aDzkBl/XLJJKJ5iV011oQhi5tpXVtUCwssQ4VnP0HKkKTCtA3VBaAD7eMcUxtGAoCwgp7MiUKMK4pwOxF0BKJXhsgEyBjOiQKj2fuHEMEMN5PtDHwSJ6niwslvn+ZMCbpCBrPGc1AQZN+DHIHiJr0WHeMeeJMU5OXVOytjwYYCoIJhbpxrxvXA+1MvbkNAuIo7YCOThxz2GrsJVksYEHH0IGusKEkDHYokgWTLiPmDYGaHGcx4nn84naNqjWSMwFW73DRGGdDKVWndO/xOHGg/Trl5/w9f3OvaeK9/c3iHCCWY5FTf+2UmMaCW4r5ube9pjkt28bWqmwyULitu1IBsQwFsJ75QSw/bYB7pijLzN+uKHPA44Kh+HXb3/D58cPPD8+cTye+Pj7rzjnRB+GuhgRPNDf3t5gBnz/7Dj6ib9/+77iZo+Q7sdBbk14rVkcB0ebugABAABJREFU1ubGQ80M377/HffZ8f7TV/Q+8O37r5g28P7ljR12EVKIZxqmx4CDqNDpBTQhULSQR2hw3AVMtMdwnKNzCIIqovmOopxqR8khDTbHcNgci6l2jCe0K5ptmNJRdonpW4aJTmCnhCQK3M+jGyDhL+aZ+GaDhcMY9j32fJxi6o4x6RyZnb40+IQbE4hg0rok2wKIcZIcd26GeZ7w3iFzosJXEeoOPM6TJ1pM1OOVvRp5EozLziTP/MvjRQKY8KgkPM6GqD9XvJdCNoACqK2FJCfYhDGtTmKvIsAoMQmWQZwznu0MHm6vPgiU0fGMm6Ozc4nr3FuVTuXeJDiD6Dbm5zFACVS4AG3GsA7zmFxpL4VSnPV2DTohD/Kiwltmdc6yYUb2kM8yGQbiAnMyGfrkddsClSJnAoAwI02rAcqKgmVgMS0qVrnUCneBbZPf0cr3VOG1B3CQCZxIDIEJ1gxEgs2ClSMlYOeu8Bo+RDCYKguNnIxamV+RhS6Moe5RjIU9ggSLFoblIRH3xqMQ9mAfIvKf3PvJCCLbq3K8c1DSi5BVT9CDdz2Lg2WBEszw4nVZjljmjUpAaXnv1GwpJksoRq1D0QcLsIKUUNTFphIvELcYChLXHKxVESHTs5Brn0ysGswrFVvXlBOeCDgn2BOm50j2Vog6p3I/SsAB+lKkRuyAAKoFrQJeylqLbJZxejHzSsNWnKDU2swEHN7ed0T6yMmDw9jwazXYldGFz/Uf9UCfnefg1lBrxbZRdtgy+Ipg04KtNgwdIcsrAY4gCvX0QQmQPcai8zM+ASdwIUVQGh+6AItJtFgWKesJ8HJTWiqYTZgpMPJ5kynFojDOD9GLvRdme3nOAUAOeLGQ0XqAJMkG5ARciWLQ4zVDGobI7WIN8vYFIFMY78lWcMxlph35vyUzrXKNCotxeNYu3GcaoFeeQ4GJIZmsr3JhQygZFNwXgSh6nATJvsscX7PlHGAkgLX/CIpd9RSQg2sZa1wpj1ehXHWuGoX3sK6Jibj2pAM+eb1BwYcjGvlxPjKUxsbJMwkXSC0qwRoMxroXeGXcLjEhzcJnkz45Aagn4BGvK3FLWLcRxMp19xvGT37wYC+L8vpWfZu3FlGzqax9nOcp8gyJnF3AsywDenptiZAwcnnlAWOEKfitwSY9fiTOMInYiGCiw3l2i2rI33hecphANP1zumTaqADIyeCl1nXGeKwtnruSD5FQngjl62qRq8WaidjjAS7m+X+xjLmHL6uwXMwCrRXMpCjJn3OiNb1iEl6/WGeNOQOgv/KwZ3/CZOLb5w8YDP/8L/+M//6v/wqtbLQMM9YdKujBAnNhHjDDoNqGrlpCwYFhHPIxWdeALKUJYL4AkBKNJ/OJ2Q3jHGEZNGAyoubtgZN4AGYZT4RFStE1mG30wXha9MVaCBgmC/Drj844PhkbmxbMMTBGD3BwUma9PCL/n7/+YeBpSVsiSDPpi4c9Q+e/KOVcPQaHa2ESkh+oJ20OLz/LJDV5R3MO6s4b1iEbCARebj9/LwrwJDsStEjj64GpAspbHFXzkFHAZNHukjLJz8V0A/JCwwQPfAs6WyZl150AAM1zeAV0+MWyms6Fu2jVEFhMHqK0CzTijHts7hiBMhHkiE+uAjG57sPqHvnFRJnXdTLxRyQXlHSk/DDN2Bjc0lTO45rmCpBFyKrqCTwFACjZsRFOYFsBMh6PBBKVwTDgq1dWdqytOJ6i05wBYRqlgXlHc1qZ+RNSnuj2dzzOX/F5/BnH0bGVdxRpKPUe1EV2jAcmvPD+Pj4fcHNsb5xOsrc9urQT+/sb9vcdVhw9rq6CGml6ZRSY1IvRByDN6D0TUxEWAuYxyaxiToUPAJhMMCyYOmY4Hx3H54HHxxPjPHFrIXJx7ok5BwxhqJ7322owbZh9q/GzFgFBpwnAmYzNQW5EMnul7Ki3hnZvmOcnpo8AnjhxhV0cHkyy1mqAjSJAqzwQIZAJ6HGGCTYLRibqDpeJs5/o/Qn3AbOOOQ5I20BDY2qPbcaEmzgoiguBJ0xg0i+ogBIdt4FpHb0fSKPNBLKVW/oCniIJNge0KrQA5wiWWhScpRZokTVlj36dV5xhjT7IUg1KfVFh51jDM0H4XIEZBweZHnN2PJ4fuGGitYrz7AG209tiTERSX+J7hj7pGfPl/YavX+7U32vB+9sbNeJzYgaYNjr5jK1uyLHBua/JfFRK9ATY2oZaCuaYwdjZVnwak9Mr7nVDaw2/fP0CB5lBZ+94KEKGxmszTJy/HhAovuPvmH3g+HxiqlL6ECakiET1fr9jTMe3R8ezn/jbt28EwmoFhkHM8ByfUAmj+6w0Y/rHeR4454B8/xXDDf+vpujD8ePjV5gZ3t7fGO8mD2GaBwdoUBIEE8rtRvhzlRLAEyd9JPDkcPRxoikT0AzHkIEEnuiDwU4WjBNXay04xgGcwN1umBjQTSDDIcMwQe+CmxqBSaFclqaWA3P2kFfEeo6YqEJ/PriEUTk7zzYHfBr2krIFW5lWNnNKIfAkmfyGb5ryUMI4DljvwByoEvJkpdzkMz3oVBZtPkGnHPaQLPvEcLIooWQl0j+RxYICXs7MiCUiglJYaNa2hRxpwudAn5NkNZUFqs943YtNrOtPrv2UDKyrUl4P2TjMDWg0n5CMQ2oWaRnDuEcFGkUIwYYiTku0AsgweA8Jb5RnEqC2RzIOldVdX55qkk0Zg7hixHI3l2DMpjk78xODM3GNHCPzg8TbEiBTmTBBAE8ChGFwWZmSQMsWjHMWTAkWksQZjJC15hHqJVlnMLIYEBaqedgvmYJGQ02iFy/AGrxSEc87ZDjODFEBtJCMnelz5uAeLtv1syo8f4FVpAqwGloQxGRFgTibLnAWmCoI4InePGREy0pEeC5ybVYU+KT0cQaNsIoG24rrrG3XNF2ytQm4NykY8yRWWRqKVNzqnWww4yRQh6GJhtSFa234pGRQWRyYRmEeMSz9wohN0COrFMXslA9nkZyWxlpq1MxEknmv9cqxBLQcsJjyCwmWOX0QrfNsrpXnxu1Gz73jPMnOqmUx3EdnA+jt7bbyyeN54vADb2833G93dsLNsNUofFQuVcPkQJht21ArmU0CYARzGQAKKpo0dOmYZsG8y7ohAA8n2Fp0Q6kbC0wBnieft0oMcKk1Hnvky5EnMKYFo8+N5vKl4HTFQKePUoZZoYekBiuFRXMAfkCMJ2TuvIAEUZTKSW4eHm28hKtQBhASPAQGpYs9xp8KWU7sAXUPE3nh5xLHM3xb+KLJXmYeUapcio2Vg0csjXxd/AKBCKZwcy1XOeFQoGkMhJoO9giQwzMvjvfImKGMp3CSEEoWAMI8l0w0Xk+JM4LQKX9u4UMJxATwJJXNZoupxdkgt2DfEyjjgxtR30jcYNHrGvKG1BKy+NiDhoES0FlObNAAeSCOtesCyGFt9h++3MP796oYM+dNYCnjKPJyLGse1kAph4Jks1MJimUZCKyYKAvYTe/F64oo3X05b43ATx8DW6uoW0U/T9jIFqesc0Zjkro4LvZYsP9LvZr+CTKxdiaYAQ+5vwgkADzAA+Ty36iYAfpzKfieCnD6e4IxyHtWFsuTtzDPtZftl3cnlD1ay8ox6MlrqHEIrvpV8vPF9YXdgpSLsHKMA8M7vn/+wO12wx//5Z/x0y8/Q2v9DfAkEv6dhGsDeKIXWGYgERJhldJnNswJccEcEwXzRXYoIVmeNtFnDxAsGNgwoJBBrRBUUB3BCYrKBnQpbOREDiRigBN4GtNCNkdmumDCzfH48clBXJ1kmPu2Y45OtYLTpw+xB/+Rr398qt0xScMrlx7d4+xmIuhxo7mBXKhBPOHoNpDePcgJD7HIprNLw3jB7uAAETybsZNyYxr4PqstF9M6dEUPbgyt0FbhmGQGCH8PNSi1WuH0U1zBt8TEoxHmzbXWCE4SwIRhDHanAzxF1fICWPnajFxM/F1tJVDnCIKS3CUitkqqCJj4JrKdlE92wmfobQ1MMHkjRr4RclqDrtdWQOqipvZgPqQMJfXshrFu7+yTU6L2hvve8PXLG2pRFt4JxiESXZ2r6pjQQJY97z7/26MbGV0zgIaRcA9TU6DPNDlN6jzWInbrgNkCC1Uq+ph49ANNFT+9fwX+WfHL19/jX37/3zC7A7bRt2Xb2AmqlCa5DJpRu6HVO41u242fe3iwzhxemIR2H5F08q4Pi8ktxUGe0gv8GYWX29VNZ0IcBD1MJg4J2gq9SNwMsxvO59/x/Pgr9iLYbhWGCY8kZU6nASaU0pDosKyBpsFQwJy8X3qya+CgwSgqNm1cEYrFQCvjAJ4H7PkD7gPv9fd43xRiHWMc+DgeqO2OfdvCsNCivjPM+cHujZbokiOzJI60tTDpBhaD8fn5iTnZqayFCbZF5aQhsVQErdiZfFdxTD9ZpNlksmYDgolWgbOTPdbqhlIq+nxSylQdMEU2/kQMYgMiERzBvQJJiSen0JgN9O4Y8wS8Q4QFXKl6dc9DYpz6fHFHUcXvfv4J7+9v6M8OMcXvf/kj3m5f8fXtlyW1+XIjuHHf3y4gwYIRGH9U31GKoD8F3+cJPH/FmJMHFRq0bNElc2yV8q2ffv6ZZqm14fl44Pu3b5jDIT4xTnYgBH+LPfjvGNPwPHvESiwGy/H4gI2G8vufULSiFcXff/0Vn9+/Y8yBaSPYRBwsoC4YZad3l2J5uTyeNG4+zif224H3n3+GaMP9dkMtlYxRFxRUeIyD1bYRyNsawQ3rGNFBgQpqykt8xr5mAXXOgcfHE+mhkgxJ4rMaDEqBT48/Ft93yhf6AOaECr2obJx45Bzade7bome3usN1YvoZco5JQKIpylagWwGqYMjEj8d3FuLBBjUznMHsa6VeB2j8oWFwBWIy5zoLUguWFA9RuHcWz974N0YfPFFKjGyc4bVAma5DOAnKaeRpU6F94qO/4TE/IU7vCvYqJ2Qj64LMRWTJA3fFlGCrCtfNzMTWsBo10+eLr0QUMKWgtI0fwSNhnSxUoASxCS4xH2j7bX3uNIzd4kxOg2Q2jthF90xwI/W0OaBKkLVUQbmRvdhHX53XBB6kXAxcSryuQmmMiTmDBTzDX8GcrJYiV6ECdo0tJbgCxhARSoJHRx/XZJma4+wnO8JiTDYVjpn3wnmuzpyMV4J1GWCJw1HC3DU76hrUfT4zRQJ8ABldLgKNARbuIQ0SghPulN+ts1wEKBXqghYMNwWWPC2N0V9zHoLel79ZoChrYErJIyPfw6+JaDSvpdRPUaAv6SnvpS4gLycMJrDlTlaugA0fFUXxxsIwTI8lzrIZ8dbhq3tMthALupQbr/cuTNLxIpnk9yNvjFHf0x16K4thYcUxqgWINWEN8KKYlfGS/oYCGfMC7zJPDJuHNfmp0PxczYEo6iyYFzU69jKZ0DY12mCEcTP8RcJSaOfwOTocirZv4f9UgrEgq4FclPmpBkNhb0brjKIx+t1wu3Gv3G8cDmA2oNrQmuD+tuG2V4hOuAFbSEYQuUyfA60WNGAVriPqglL2QGYs8tZgj9mMqEBwkOuYgxdKAUobnPBoJ3IMPNlHhDQK6tr30d0L5gpW4zMn27p37E2w71usE8fn88nceZyAKlSjOJ0Wg3bIWiMYzmCXXDWPeDnhKwcJhIPnoNK8lzHMUFyDcc/7P+O5qBFUqSUYi3NG/eHBuvTYx7j2cZ6FlgARVl2VViEZxxe4IwaPHM7y7KwZc6PuMbLlBCnXjXVsbJCsWicg8LzXOVhTA9SQcjXxPeTSy6+qOMECM2gFqipOyym8CZRJ1A+MX8TLonmz4p0hZYSGVL/wNUacoSpRy02yTsYcATBe8kOJYmXl/m5wNaAwdrHxH3so2MrTRvARBbLYQJr8JYjEWRI1EOtDIJUUqTgg446KAKbfv1WOQARl2/go5wgWHmWdIkKbA3NYDPlK9UEfg8xed5xmGJNDmuj3BoJs4lGPcu8ZZtQHjpTgWKyB2njP07CaHWCygzPnjMUHoPHcdZp1uKzVFTU/ssJGMkSX2TxS+ojF1vXA6F5Ombg3AcTF+6etjQltaWY21bLh7ozTggKoxgAp/lM2Sl4nQgYvitY2vL9/odx3TFyGztH8T8KIBGNzxXyQUGGK9K1ypHTb0ScbF/1k3ZjsutJYT319/xIVejKFBdvWUETRCmHT6vy3QvE4T/Qxgtjhy2rBZsc0p3qh28pXHI5HDCSCGWotkML15T6gsJBrXo/1P/v6h4Enn6R90TgSqyNDhJXJiAeimTDsBFkZw2dMFJCVpEnQ9mym5hIg2wjrJrqnUfiFampsPgTlT1NWkUEEGcjKkmzFN5euUVMrHBU8KelkefRAsdM4fKX9UTzMpNYjJVUXCHHxfVZEDZZKAmNchCweL/Sbu+/aTOKLMAgPo+b0bDHhKD3HiPuma0SxrPdgoaxaAxnmtLiSibAkCDEjoQrgRAqKNtSmuN02mlYn7OSO7BLS98GiyzYDRIiPmNs8dn8JHyl+K812o7MUcqkiL79PF+34Y0jzzpQzwAylKratAF8K7vuEvVe4KWwQfLtt9DOoTQAcgBz4+PiOOTre3+5oteK23zGn4zhGTKEAHv3EOQZ9w6KgsvAqQnZ/AhXPPkKOcU6dNwt9QXod8VDkwewiEJ0QGXCQGjnHE6M/sLUbtFQcRqaHVoXJhI3YE0LKMWu1YDAhTIynwXXAPMVLgioGTmijjKvEweyTLBP0CfQD8IFNOA2hT8qc+hyQ6vTnCLYeE3yDzSMShuj05UpdenxfHZw0jx+9w0GQuIik0oTxPw4WXfsgJAIB4kFsdSizQ14K2SRuA0Ajm7pz/Kca77mFmWAa5SmuIkmCwp405FoLes9kk0mYRoJQa4C1ARbZiAlhkSCrCG4bPZTmSRbM/faGIhVFGp7HE6N37PuOUiveb2+MjZ3d8jF6JFqGVmt4HjlsDEh/kvloZETgZURwqRW1bXh7/8IR9XULeuy30BvToNXN8PHxBODovSN7oMmSkojjIyTETGhDVg3gPA4WbvCIsaRXc4XTy0IEyGlsfRDkpaQAOM+O1hS13kBfDl6bQjEDTOG4aAAr8ZLFCIRKFAS5riIZVT6/4zx53/R6wpcvQsQdi1a1cy2IR9d50idPIWTBlAn38MryTNDjmSun+PAWKEzZAV/eFvnvwjPyHCdKrWg10WELSTXZgQhAKDj/LJy0YkpYqkdyZAEKqUYyyn7aSwQiiyOOFixPpGgRxyAe3uOXVHC4oHvHaSeqaDStI/YUXUleJnAWuzI9dRc8kd11477yBJU8La2xwA8tlwGshVRN5AJdeCawo0bfoJkXD6iith2AUPYZ4E8yw6aHn0yem3NGps7iedtLnMUpU47CMz6nZOEGWY2lBKckpqWREhWgoHtIka6JQTbnJXMXiY50+I04Tf/zXniw8dxT0k1gIxllQExHzTJK/KUgtiVVWcvAk7sgcdbiJYZejQ9IgKGBoDCWywLeFguIlR/SDyfHPAtAOTSQyVhuusWm4QtF99NomFrAJp2uUiArBF+/QpDEFoCm0PX6y4gVzmlQLiu+I4pk/iBrNZ7LPGh6D0DasPIryZ/NdClByGXq6tHPTGNuDTlU3FuRK874NUxAajAC2ERekyCncm9BQSNvQUhrlJL1F+BJlWwkgiHRnIyzFFFoQWPwhDhqeBfymTuqkMfJpqxHLsjXL6VGHseiogb7j4zZmLK5GN1RAGrYW1QNrxNFH5yKVWtBUUFr4fM1DSI1vqeoVTAnh5+UGmzYYGAviZpeHneezBWpkEgOBHE9SnmdxVRpy5zEGZ+1OFQNqml4G2wvvz7P+kzBjshNIFhlSzxjvnZRegChBnvuJMtsMfPA2GAx6dU18r213wBLx6n0LFsxMViViBgnJVi4XK8Cjb2QcSvujfsCCx2IuJTAk6/8KY4xLAZw/r/LytHye36FQu4bS+AjVt3aFxfotIArl5XjQ7DYpB5oSVZJHnf9VRmRViEIuW/yMWOTrVLKJ1ivLM9bLNBpxdT8XoTFyACRUwvVr33Gl466Mv6hiTnPa0PmZxO1BJsy4tCKM5r3MW5csA4t1iSc8ik4VSgZ6VSz2e6XnFhiv7ot0NCTrhm/4wGcGNKYm/dR1t2Maww5I1nn/1Eam6xSNiISHJ3G+DiCmTvdUXF9Vi6nuLfOdTw9eDwisRf5M6Ivsi0PFnr8Nq87rW+4ngJAiGXP68wWS+ZssSF+87xS1pUsNn0BnjKGZz3EZeHXmom1l8ATQF+4CKK5Nficl5RU1ntrKZDwWkvwq5SGfb/BjhOj5573l/2XefWreozvRBBHoeM/EGmceUASX9w4MdKd8bRowbZvWBYiSmLP7XZjM0EKGbh0IqdZ/2BTeoxQcU3WkOM8MZ2+kGef6IP1uYN5/AIYjWSitMbIoTSX+us///qHgafWdjgcHUyOhodhliA6kvQDMAgQI1L7GKuzg8mLxJxQF3ZpgCvRkqCdzgQbClBoSGeBzFkkqqphuGeOWnmQ0aclkwgJcEzhGubbAGZ0A3VGwaRYRd+YJx+wkio+ZhoHXwk+SmUHMKQsaVynUkg/DeNIfTnAuMiAfDSSxRBYYGXezg0TCVIVPhjJQBJgl0ZQj8J6sZAiAbOQWqBQQoTwu9CpoHViXUV3P7/D7cT+vkEqy8BaFK0K3t42/PzLF5RWoIXmzRYbUwW47yGpUYEWHvhLZWnJx8lOC83Q3TJgcCMrgskVB8a0idFPorkQ1MqkjIDnREHHLkB9fycgA8N2a7B9g/gG8QIYAZ5kas3Z2QUrii/tDY6JOQ5MP/D58StKaXh/+4JzAucAnjZgk6NR1UtgZ4pZJdaL0KTNOCpY3C/jzcKD3kDfrjEdkAkRxXa/AQr0cQDuqNtEPwelZ0oj0TkHx8aG3EhK+F80rhgajJNJoAlkisLccM6O2gTl/ZaqL9QBMhzGkwc/9RTQkLDBDO+tQrUC50SXA8cYsD7x9vZGBtN48uAvjn5+BlDo0R1tGN3w/BwoymC4tTuNodEgVvDlp3dSdhPkyYLf6W9jLhgzGUhMXM2FMhs3tMrRxPt9w/1+w5e3O2CUogGOfnQUUIhYK+CuNI0G/RQyeYQOQMPMWgt+98vvcb/dYFNRZccffvdH/Ni+M05FN7C1HbU2/PTTL3H9E8fzwMePzzXSfKsNtRR8+9s3fH7/xO1+Y0doTHx8e+Dvf//O2KgKaRWb7vjTP/0RIoLj+cTn4xPff+34PA88H0+ytwJIhwj+Xp6Yc+J5dq6vovg4njjHwPuXn3DXDfvbVw4o6AM/Pk/827//GgCfckKo6gL3cnQzNDrO/URCCqrhF6U8yG0arHccnx+o24ZSG/2/VAHl/t/qHXMazmdnImOAaYFV0PC2VNT9Bi2NWvRnx/PHJ+7tBtkTfAgT12mQ5wFRoBYmXV44rpnKPUc/T/z9r3+DasEff/97YAB//8s3NkNWkZ3+KUzpnQ+EI7lvNPf3OXE8gIJgCoKyrm0reP9y42lvnYanDmw1OkyYISMiUFVqpYTqOCCfH5hu+KX8AbU13G43AjCjrwTQo6nxHAeT+5k2rAhz2AFYh2KiRCFsCH8kBXwOjDHXWbvtZJOGVycggj46xuy47W/Ybzd69QF4v3NoBmaYeO8b3t53OCYTMA1GLOhd4jHWO7/ELz7I1RYhdR9xbtNzJBhPCeKwwoYgpk1l48ed/iPi8EI/Q5jD50BFQbGC0UMK5JQH3G68gudxZO4Y4LUziZqObSMIuVWFiOHvz294e9ux335aRrycGsl4CzhalEWWn8XnNZ0sAMAaxKbWAJ2Ad6z8QPLEyy5s5LY6DKgh0wopXY7SXjKfSTNcQYWqge5/ec8JQiImjk3rzAUcSPVbyg6bVgLCSoDztOjeR+OHTQ+yXUb6Xpqvxk8CAmn0NS1Tfw2IWaPDL5GzcVop87EXQDEkmU0qk1bZ4NC4n1EkeQIGOf2UbLtcg601FsDGvCHNT0Uutq+mrxkIwrlPJJtG1NjgiQK7ahQZWsJnaCPDQgReAkwCYNPRH2zG3W63mLpZV7E5B1k0LHSiNIgmIQswp11C7BORCRd6gbiM5b3Waky7A/eBtA3JkE9PHSkENLU05kjOPLptbeWjIgM6B77cbmiFPo0AsGlDkYKqe3ywKJAFZCYVxc0oH6lbQ9pgcOiD4e3+hqIF5zkidyA4pLUsWTPZS9xvIsD0A4n811KgjaXFeQbzKDYJ7xUnzkHpuUIGvK9nrQCktig4uZ76mOErw0pe4GilRv0R9gCMpMAwqFHKVLc712xIjFbgiCycOAuj2Xj9rvBd+hzw2aGTBWFpO8uSyeZJkQJ3xZyCstFIeQ42ZBOYGNaxpmxW7vVSNuaWsaCXtNfkUk5n3Rx1gs0o7EruO439lgAbry+rBo9mB2t7CfuMrGeAWiQqEsYONtWi0Rv7TWNinqcR9tQwF0aU4awvYivwHhePaa9jNYPaduMwmbaxBpgDq/uYYHcCA9H0h6YfkcDUMGWu6yrw9ew11md+JePIIk9OcKda7NeeNiLJgCKj0xG+dHDA2QQUrRyeg2AqMegCALRqgK1z/V7akNTC51kl7h+Cpev08aEaIPhOAeqQ9TIx+7kGuSSwkfwJy/scjLoSALQA0WAD5kHQ2gZjotZsEApUGkxpVyCYq3FeWoNDcDzZsBEJP0Bf0WaBTx7kgVpKWMdIgGHXZGYI2+LiWBJFhIefpbF8vLfbJWFbh58yl0t84JUllU00lhS+gCHyN+xlj8dzEImGkGOOg+CnsjknkGUsP/zKa3JnLLwhG5ch+2f8vdiSrTW8vd3x808/w//+DeN8RKOJj1lE0bSu89pGNKv0ev48t8KHrEY+bcB9v6G1gu13bBK0WmDmOJ5HgFdXU2AYQcPzY1LFMTrJC8+B8/nE8/GMeK40z3fD+XyCTGEN4In3sAKR7wtEt2iCWVwvCRmGznoYAHx5AvynX/+4x5OSgszNEzOfAklN8zGizIlsZmIZvh1pIOe//ffrleZ6uXCbxX0AgYycSBGmYs6idhmBJkqYrKVEesHDigwq6kczEcyeYrKoTLJAIDl2WL5nyKgigQMkkNzgU7hfMHtmMvjNx0sAH47ccPGjcR8W3T/+6HVav2x+iSJGcaHt+Tb5ua8OA8G4QJURhUUc0R5osobHhxZZvg61ZqL58nziwlbyjJcOAnyhykhkFHkd19Xlh3MI1ihpxPQfCwZWMJzW6mBWH52Cws3hTEQK2DFPYIhd3gBqkAwHoMV43MPO8Nkd0UkEkfb13P3lQQVw9rK6PDtzHglwBMtlrO/5PF+ea6xiPhuiAB6yEgN/N8PqwsBTw55rgcciCZhBx0vQgOBLWjhK/F0ATy/dk5QlcK1ZAA1xAMaYUPhrxyrkteIR0CelEwKssZ8hlTMTaolrQzKXVAonI7aNnl0h1QKujnQyAtkh4VuQqs2kpzb6F3BqCSJxb2hloJZz7ZEaz3Lf6avlowWY2eGrm8hEMaVux+PkOpACDSW/B+ujFAb4++0GlQIbEz4EDzkp6RAmIu6K57NDdTK+OEHH85gYp0GaQCpe6PhMOmZlwjCN5qpzDogrLDrUEIFPTq07+qSPl3N60BikQs9J/b/H/Z7mOPuglKtco65zFWVyluttmjGmRozxkBLymZKSnLE4f4/oN0f9ulYC7jLj9xmXoGTopbQnNwwbTBmrbcXoTKbIPoq1Efc3fRTyawZ9v5UabMprz0gE2XV+COO7zcH4JiEx9onZgdHYMMALy8Rh3Dfu0Vl3AvgI1mtejRCMGn2EbGzG/STQvbUW5osEjuBCnT4ycYy4gSz8sWLxOrYku92RpMX7ljiL9q2xGF3TfgRn/Pfb7R7yQYLdb7edbIEhqKrY90aAfhrSK0JzbwoZXRfzlvscS3KaVRHf8xVwoV9hnqcRy0DJXx8GU5rf5xoOpVPISC4mgWJg9InRZ7AgHO4nRBTHQcAoAW0Lavgc6ePF/QU4bBI8fz/T2wdrL2QxwM+Qzz9jdq6JnObEZxfKSWRcjwN27Q+OgM6zIKQ+liwEYI0qzkM7zggJUEJAVgfPZ4JMKEqQZkaB+bIfVp7ORZL+tBCExYDI+neJ/ehymdmH8wqSDfJyUvP1F2Phyj94fl35UEmJkiPYazHtWAQz4ryqXJ9b/NoDuPIKZBe4KGSdnfFXyoRfY22laXnuJ8s8RIR7SIK9AITMnOdUDsLQAJ4y30M8m6mM0TVYQKVk4chC9vVSo8Een0PXquH1Yr1mTncsKigCtNUQ4N6xAFA0WJMiCeABouFhE6wSKQ3JQnNn4bHXhlYLashUa4wwb6WtM8lif7XWAFXskeeUejGVspFaSuWfCH8oOYWpBPOF53VOKIQ4G15RpCXwj4gJyeTKPZGrS9fzukyt8+cWOyn+Lj17MufkvX0BPj3WZ9YZ+aREkCzqtSclawsuWolQFdt2xXeye2kHksNPaoBcZEszr+DWcySz0CXvpaZe4CWfz0Yb/3tlh6KQqE98xaPM/K4WM4FVfq6rTL5i7bLScI/cQK6cMvZAvvJrcU2mTwAVERX43UKPmwRQbIWsvFG/jUUeuXSmjHJF1Bycse7xy28yi4uqRfL/feUUDo9zKvcqd3fJWkTkugoFz3TJeo/fSs6v+ys4cb0e1rte9z7ZNK8MwARx85qzlH1tyJDlkjWMrNfXWAdkmb7eg/is0YwjuBaNkJd647q26wmueBMs/6U6yHCbP+UJKuY+xFITZfNA4jzLPOT1QfE14jwTXOtYdMXzNQYr6/ysaq5vRergyAFcv/269n08mHWtkMxB416sZ/7y+POZeuISyB0FQeS0krLs6xdfl7R77qHrmedezfjD8xnhbeQrjmVuppHTuWAxqVQYc7MMY72V52lgDpPXKdksAMG8Wjh4oSYgaYZ5kgR0Td6WsI5xnCeldMdp8GGwg1PFj88D2ip9bw0AjBOOAQCckJvNtEtWenkpzozrFkSikJ/bb+7gf/71DwNPJPcLeoBOXWLygQhEedMKLDTJTJRr+PuwszMoacvrim7jRc+S5OEht+g47QU8Eoi0eKglvm/Y6g4acgXYpYIujo5nBNEErgT0xxUMqygKdsIiGXWhkbHpC2D1QvMnPEjttnthMm0xFhJBcXWgONkGmJG+ZucwKXdKY84JSjjcHF5SBzvZ9cPVZ8xJXBqaYJEad61F4nyswNhjbHwNzfUMfTu0wFAwrQJC00vVBsGIrr6hVRaqpfJaLWUOHrcAhKy0FJTS1pNLyU1JsI/bJwBrB0ISSEQ3C82IHBEAz0BlxxiQBBkWT43XYINrih31DpsdGp5dlCsJ1CrR89WoFxwnx0xut0bjO33nxq47phQ8esHRDc/uOKZioGAElT9HwNrkWphGHwoWIUzC+swJZ2HqGqg4wS+ayfXO4q5DAClQBQ7r+P7oOAYw0Oh/AgVswIbjeD6uLRzrv7mjAYxYL8VNE8E4Df08w6i1UHJmgIXMLRPFUnVRac2UU2zqV5R2g85PCAx+TsAH4KBuX4B7cbhWdBRAKqbvgDrut4Zk+dWSI98bBAX9OVCk4b/8y3/Fx+cPfP/+KwOvCN7e7zQyz4kSZYMZMIbTw8Acb7tga4p9f4NKwbe/f6D3ifv2Drw1qGx4jhNjDnz58o5tb/jDP/8JIhXnE/jx4xN/+ctfOQnLOQbVh+Df//uf+ahCtrnfKp7PDzw+n9F1GvjyxYG7Y6sVRTecvWJ2wef3HwBuEAg+HoMgxhwQEWwbJ/8czw5q+H+CjQd8nvj1+YHH1vDH33/FttF/7jh+4Ndf/7K6WX1yypjqRnBbNlL3W8W0ybVsBPJHn3g+T3z//oF9v+HtdkMpDZQHbtgaTa+z0KLMgh4Ew3godTOUEgci6HPw+fi2frdU4P39juESjQSmFmMyuRtOo8TTKiTBgVIAKZgYGAD6JLilKnh/v+NP//JPgCgMA1JpYIkgdUvLZMBy6AbO8xPTBvaNxdUecq3n84CY4b7VdcgzzDvEOb2tQDFnx/H8wLYVtK1g2hkeSidUyaIa3iE6cfZP/PrrN9waJXL9PEA/BY2t7VCp0LKHxE7RA3iib5WgqeDeGv748894Ph/4/PzkQQ2gQykjHACcLNSi9GHzkBeX6ObNHAVfKlSATQRvtxu+3N8oizYjo00ol8mGyDDDOQ232x37fsN5/iBTJkC3sz/4epWMzvPzgf2dppNqlDoipvGJJRMhDE6d0DeToUwyWLzPLLqgEVt4rziRr6F3x/dvH5F0K8Y4MOaJ7VagVTDRI2I3xlCzUP455aXmKIU/Myc739u2hWk8R/nOMTCDCT0GJZO1Od7f3/D988B+a7jdKt6/fsXttsH8yWZHZDeOE0K3h8h2DKVEAyXYCXPEFFqj15+/AAn0xJgoR9DSHfA5aMRrE0UspDBCo28IZgC/ORWoajBiVMiaBaumaYLjaSt5Z7J6Je4lp5EJH+AQFmwXv8Gx83DnvhXyThSRBHok0yGjK55wFF9jIjnb4PQ6gD6YwJI0UY2SXfyQWWvaJnA9FyGIZnPk+CpED4vghwCGHu/YQ4lKVnk2lQAsBhqtAmRdK3KaIULiJALZmaj3biF/yyLZMU4y2ws47errvq+OMHNSw+j07rqScKznldVZic97DE4m3bYWxVY0a2uY/osEo6iinyOauIhzEdi2Hdu2Ycz0JAypo1ZMczzPznh/f8Pj+YHzPPDz+x1bUfi2U4blBIm0bjAIpssy+NZgaG/BNrODHfCmSl+WBrQahWeLwrJwMh0HhbBy3Pcbai14PD/gbhClJ1SNKXacoJrAJONzAvnptdNK5c84QoLtF2iFZDFE9Wa48qE8LyJD9MmmlLksRoGC73mOGbVHAsgBAoR80KOwB/ySrwog2oB6A0aHz46pWUlUSk3OjiIFe9vIWt94ntL3zACxBZLipYYhcMHmlIMmvnAOsJH83LH0tFVoKdE8i/pBBNoaLIyFA6ulRDRuEJmY4Q/rkfsVTaI7zZQF8CnXuRn0imXjkIHDEkzRYMXNsB0JUEEEW8g1E96bIwYVAFHzhE3EBB69LyC0BHujRIOXha4HQcbQzweBAjhrEAEo7y9srgmwbWRQPY8RgCgbVmuyNQT9PKEAGScIfkDcA3V+xmzszBjiQel4SEtzUQS4ZFHbeeQEYzhqNIlJFllcPRxjAJCouZRsXmWbk8/I44PxjxcAXqOvOy5mazB3uIV4CBgM3Si1rZBQXQgweU62xvO3lIq05W61ogpw9jChB4JF0wg3WkxAU0E/H2QnScYngUwBep4XkRdiQqSSZS80j7cnLWFwfbRgRHrseacETGQxu7Jc5U8t3OzaO/EiCcoWrVFze1hM+QLSEtwRRLN7dIg7NnXMODuXMCxqfOIoDjiVUZwsS+YRzx4lxiHgAAo3zLNjbhzaM86Bx8cn1B1vW4M0WjN8f3yQuSUzGtxkAbsrSPxzmHBA1/Az/JtA79BG5raYoR8nRkQ9d/oTn73j8/OI5i3PhzEmzsFBDKMzpm6hSrvfNwx0TJzoo8PBGsgceI5BFQrA80ACqnWHBlgrToLImGFJIb4miP7vfP3j5uLA8mHILteadJc/4xYoYSw4zQ5voMZ6jV9mQEug4upSu1yHzPIVWovu5c8LWnpNXYmkLALVa2eQl8Tfc3Ax5RwEj8PRNT9pdExEFosmDwxEwOFejCTr5Rodiexm1yP/PhFtQ3YhgkXL/SjXha6u0AuImBuSBRBwuc3piyb0BXGUuJCXbpN5dAzj+yLsePMyeTjVepmBe+jGyRjBJTEkTQcE4eJt8jOFL9dai4HkivCS2e28OqoXuIJIivS61+6BqnOaVpQ8/J1AwlOG6RDQ0wiLicYur0OcWnh21XjItbpzTSfhIQsCEWh0/1baHobdMCZkJTp5HsgvRCBWsLoBvhjSax2vKOrUUwOCGrTjPga8cIpWUXobmPeXwy2AO3m5WbGKuBb5jM0juY19JpqsL9KqNaSR7GMBpcW0g1pWd7eWhq3ta7/QNwHEXVUwpIKCvTDND1q2iqAmMDg57ebpHIs+BhkxNT1ywIlwpVVs9x0unJjYe7De4ofmpLT38/Pg/pwEdh7PgT4MbgqYQozdQkXBfdsBUYznCdjE7CPAF11M0IgUOM6OogKbk7KbfM6gCWPvg0yEoKVOm3g8HyiloZSKYXPJRSgDucxreTVX/CIrzDFnGBNXTh0cw5FGkzaDLaCNjAwNekWc3KpCmnuaAgPhU8ROd1GJ55wFKNddWCXFKHLuW5ES/iGMlXOcGGYBMhgkQVeLgxFc0JJ7yCM+hK8XgXeyEqFYrFI3i6IiWY1jsRo9Rj6nMWgmdq/9E7LBOqwI3ObqYtGzzDB7h5eY9KRXwcv4/MLmDI+TZDnuW8N+3yPPV+y3O/bbxL4fuG0bE2ItBHhaTDZd1Py2gKcSf3e/37DvGxPcUvDl/Y37IQotd+AJxXBgPHlOqhMkLi9Ubuag4duWRZFmYh6NC2VR214+VxZTzSu0CUrl6tNSCPi78ZybIf0quppAZDNLmE3mo4hCwK8e9XWeXky4ZElZXIcLoFKCZJwcTcWwicdxQoVFw5zOscInIMPRw9ulJitv+bM4bFiAxHzPMVhkjBGeF9MW8NTPEb4F4VnWDWaf0CL4+eevqPUL95lR8rIkZpgRX3Ulto7wieKJBkCg6ihVUJtgWsG8AgqvO3IJjfuaG1X0mliY/+8CmKaN6ERKWhbzJBjBmcvMqmFsnlOOrtOAL4rVpVT1Fw8PWV4qgiRlS0jbAkB5yTOYHlwVg6zXjaQ38rvM5YaFB2KwHa8TieelM3Tw/5XnqYlcAM9CtF6KhvV5CCylBD+axrHueV2eeZ2/5GNy3RctMZ0wCm35D9fI2FnW1DPk/YmvWpTJtWZsCVaG6mIppUG6Rw64hdTMPLVUKWOirKUoGdjTPECR8OwoNc7UvNZk2xdgOlrl5K0SUhfPAjvvp8f9iziMeN4a95zfizyQQfK3qXU8YfgFtElcf1EBLMzZ1xtd7ECPd0uz38Xgiz2gyS5zrFiWz11fFjOPg6vWWP5emWa/ZI/JGmHztcRz0JezZK79ueSMqksGtz64XM9cBItNsT6dXUa7+dlUcj0KEIwgW6+n67rTMHaBxisvQEiRo/7xl3WbtcT/ciLGhEyjP+Q61yyB4+vnk0VvkZcGGYyv4mQNGoCcxvn6lbWcRwikX0/eLl3Pn5Ing3NsNzLvzol/lg1p453MQUsavl4JQtE0GQE85eukfM7W2sh7pSEB4keLmsI95F7Bho6bns9prYN1Zua9MAA5POGaAM3n8+JpJXhhnKbKJ9lBNf7MVffxecdvRx2Zuc5ic4UZHI8eXnN6mSVTMleLv1wHYo3nF2PgxeR6PROu9/IlO5S1FvMz8Q0uD6SLySX5idfLC3LATkrGtQYJQZIRdsWHjNO2PkTsrVUHxieLreNxxniAa6umjz2cX1eK61Er5vqQ6++zhk0FSSGlISdY+stnX+eOx5n5WqTG/mWT09b3WTNxyiitPIiNWMRKj1iqQDQnhLly5HU5ATeN9JMDacSp6LM8ZxjT88zoJ8Hf8xw4z4HH80Cyz3rnxMnFxGIByty1IEz8X8Od/OaeQnKdXrF53cuXtZLMuLXOrhfAP/L1jzOe0hBM2JWrKgtdyBDXbWa/iwVwqzSy6h1bI/W3Kp/geZyroFmHVAAeMxD1Bb68gCekNkr4I7EryA3KezSNXa3lxu9g99QFgpanChHW6dSLSqPWXB0YT9DAukbSH69t0ZFzQBvNq0sN+7UMfFMDeaQLvbuFDj0ehlvQ2EI7HMwe4o7XYp5zXgHDSA+cABdSAE4yAUS/kjpaknIhuTnlyp2Ev2sYYTbLEcFaGo7zABCTg0rB7e2OtpF9Q2bEpEGZKlrZIBJj2ZXIuBsLllZqyOPICmtyrY00o8+R3O5X2pz/LrWgthKFtWD29PCqgE6M8YPSHW8cHamFut00IxWgtEBl9UQGqlY2qO44OpkOAJO597cbep/4/HhCpqMYsDu9LCyNMyMTZ54lEFdUp6+TDhY4Y3IyYE6CiXhCKQIULorhBjNB5I7slpWCn3/5GX/597/h4/GBrU7UsuHL+09kxJ0n0oqSHeM0lIzjLp9x9GMKBMUFVZmItkC4NRgyzPEiAQyvnro1+tHsZHiYVfi84aevv4ek0Xyl9LI0gnrSKsY0/O3bR+zBQpp/Lch5w+cxMI6B79Yxx4nn4wO1srifk/et7RXbbcfv//gHTHf89e/fcfaBx+MTTQqaVPQnJxt+/9sHAZRJ/6w+uC5aa6BDSoWfAlTB1/s7zBx/P/6O/vzE+fmJbbujtBadOKDdd7g5nh8Pgh8yUBvQdkUtDQbF8/lcXbnaFH0aTvuBP//9f+Dt/Stu93cMI1MxJYu6V3hx6DTAOQ2Slh+Nz0IKxqAR6/vtC7Q8cHTF1nbUugXwBtze3iGlYMbh7dPo+6YN0ikBa0XQFIANiA1UcTQFbo2TdiSSvBmJDqUZMa0DyslPe4EqO7Tfnw8W7M6iqtYGc8Hj6Eh5nZdM+wSALlDJ+mDypZQ8alHM4agusKNjFsb54/jEx+ev2PcdrTXYZNdNlaOzbUQC4QapDlSgHw/0fkAwUINCX0oha8wGfvz4Fdu20XOp3MhIyqQfA7UC91uLrq9A2wao4J/++Avu9xvKrqi64Q/v/4xS3uF2x33bsbeG82CHfwtflRE+hYaONBy+32+cthSAQxFg2yu+/PMfcTweeH6+wWLNfzPBYcDHtwc/66iX949kETJ5GvQAnnTCSoHsiscE0Afe75wWddu5tx+PBxYtuzW0tuE4Oj4eT2wtjZEZcyU85Lwoam1otUJKwxTFedC0u4bnDOWwdPcrqwRK8HJGXstsXF+Sl7rtEKnB0AOAgmMM/O3bJ1rd8LZXwCl57Q+CtY8HC/Rbu5I4Jk6GEYB0C3ub53GuYR9ZmPZOttMRf7fVBoCeDr/++ol//bc/4//8P/8b3r/8jPPI5GmLVA5RRA0AHZAD4h2wgWkn3A1FKSGuTSOBcxyn4XnmdCVb8X9rG0QV276tAmeAZ9WY9ERwJfgGO9kRIX6MnsktFKUirS4ip2no03F2W4l07kXklFAhiNJqTtyxlZRKMMqLEBQnyzmAzxijzK4zgUkgGhdFSTHKYiBY3CWaPOfspOLn1MIsrhyoC/TS9axmFDWlNvqPBADRcbIwtTAqRPhpagkfeA+2Eb07EtTz+JU5eQRxIGmCbgSTxORaL1lKRSwRF9y2G4uGcjW08r6VxmZcCTBpzLlyl9ZaTEDm/28x6a+Ej9kYnbnNVleTolVO3as3nmn++UStFbf7W0xRNIjys28bY+MYA0Uddy3haWTYlACzRkMTaXQ/J4QcdyTSpo1FNEKdoIMIXitlNT8zTzW7JKhsJsZwBVUyiKYBkbVCnf5DPuGQUDwwtqjrasKJABLy12x8QgVpQAxhgyvhFWa8eqknNNh1qxoExnlyz0ncr9JQtQajMqTPJdiLRvZv1Zdmed435FhxeWFcCMx75MAjBmoItlBw1FJSk8D9qlQ6THPQHcWBlynSY0700dckXTZDFPWV2R9rcpXjTtnL9GtS8HSEf9KJ8zwuwBQBui2WCYFGNozsYvIEOCNw+gUqmBe4rzBicEr53WExHXgB6HmOuiAnm/ao5arWOJu3YPdVnIPDamZMIlUli2vfd36+OSJ29/Ck5DNSLSh1ZwSy/gL28Pm12gBR9DGDYUu56JiGt7uibTvPPLNoZgRQpkCFLm+o8zwx5kTV9L/l+Zby4UsCygY2105aFihcDOojJhoWMndDFs3onAzM8rK/mGdl0xwefmsxaQ5S0aqgFYH3TqYgCMCv+KVl5cRZo1h20aNhkOApgUrW1FQw8CzIyfIIAMwidsArioWfW9LDJO6FJyDIoREeOX8pdYHvXEcKgLYG2Vh4hcQA+i4BnPrJ4iIbF5TP87xkrM18a/mPIWLnNPrtgsw+MuN0xRGfrDfnYK6ejM/2AjxRgspJkHbhZfz7RGvB+0lPY3oniwJvb294e7vjvm+47Rvu+x4sHcPzPDBsQjEhWrCXbZ1VKgCH58U0vRI1ciXoO4bFvhQc44SVjn2/AwD+9uuveB4Hfv32gTknep/Y9x37vq/YWGqFlIIKTpIe/cnaWjh1FkoiSYKZHrJY7gEqmBROwB2X7JJ5E8+UBPI9wGfeI/xDX/8w8JRLJgnYkoioLEXWWpwjkcqXiWyTpxPpsKCpVtL2HbJ0kIkiI5MLvIyP99RjS2xQvFAPr4sgXqRY2k5P5JWHDITBdYZZn6jS9wwe7AmQahkHqXsczEsjeiGG6QXiMFiRQFMFkMnuZQEMxqRP0meACeViTi2IXaIDER9mUWcCe4vPwKS08hBZTydZP2GSCg8aek7D4GfP3pQF2lwiQQdoatbqhtY2bNseBqqIboVjDkpmahTarVWMEZNMCngoBM3UZ1yL5DoJ0GMtY4+iJONk+h54AIhEbWVy4/MwV7jEuFlhca2BJidSzAcXY019BvA14cXgEmNO3SCT9Pm1oyzXdxi1woCe7CX+U2I0ccy5jgOwQsAx0okuEzBEbEpudhPBcLI2fDJ41VJx2+748vYFVRo0DhMBcNv3uPbrUGB3lcg5hEAYE02Ony5esW8bWq14u23s1BoPruN8YoyBs3cUxPQUp//NX//+FwYhJ5o+Bo3TpxtmMJ7evsbrfnlDHwO//viBGZTOMQVycGS7QuBjgMbONGunOb1huuDsJ6Vptw3SKnLs9tnJVujHhJZC40sroKfU6ocyXy0eQIquw/s8J1QH5og9ipRbCSoU1SuGdeQUB3egljCbBvejggWiOwLYqiuoTusQBfb7FhMHfdnd5B7s8brQgmUSalEEMNAwYZASVPuCWu9wKMbESlTHZN/UCkGh2grMmJzla9kcJGjFdAkJHhr/zV2W019S2rqMjxFU/DmhJaamSYkhEQQFePDF4aQFF9c9GA+eY+YNAoKvMKA4qfM+eD0NBEFrrbjtDfvWsDU+X55rl8cMDWljfxaDqkPf32C+obWC2+2G1mpMYBL89PMX/Jf/8qe1NmprLAC0Um7VGa9KMB4QQDiE8eXsJ3799itcHNNP9BPYbztutxv21lCrwN2w3XaIRGcWBg9/OMoXmSwDCPPgiN9uqCq47xt8Mon79nhi9IHj8QmfQBVKNhn7Y6KPjwVieCQE5pPjnp0SxPd7iyk7jI28zmjciAM2UJRyOl5fdIhh8DT2jnXuHgwikPKO8gIc2EsGtk6ZkJJ4jvBO1tprM2GGLws97OgZN/E8HzGZBS9JA9djPyNjmScnYhWlpHCOZbq6bWSa9SjePEK3rKSwom28Zzlta2tvLCDHA7e3G9pWIeKYsyPZcS4ayTdANiHtxkUqbIGBkcwGGMwEfmbmsn7XQdCBTAfeL3bl4zwK/41sBmSBkzYDZgGeTE5EWg1okCXAlF9hI3Qzco2f5u3k866ikJBkZz61WCPrrvvKK/IfScPhHMcUErnMQ+Jwp21CEbIHQ/LeWkwSntxjK+9CMA3zCsVRwx+oaNjVm7MYUEdSKwy0VeB0u6wK4rWTtRA5ohWNqtyvIhkBusQZXEvjHlW+nrsDjYXKvt2iUZM8+LxL+V5KQFHINstza039i4KmO9emhj8dSjaL0rfSVpFlwUJsbVuFcKkCCIdsXADYS8FZcu0ZP0v4QwESk+0iD9IYbS6ARNPPXgqEUDm+CgeYo0des4BK+W1H/NVDKIcJSKE0BQuUzHz78mHzlMJI3NzIW/DCYGVqFdmh81nn2ja/GB7L17EQlCOLg9cwLPL8KFSnJHLiv2Gge5yHa+8iC9BkF/Gzlmi6pHKshKS6qjKG9cmYmY8bF7Dqg+9ZauSPwoE8Zkaz/pfwmqAwYm0CzFPEsvi9rteE+UEy3/iHagEy8J0MvfTbixhSNEDeWOMW7sc5sY0S1BiWsCgOuUZCRcBoy7wi5ZproiRrjbOf/L08FwtjLmM1QZsxBpKFwzUX8lClJHCdPcLfSeYIrzFruktVUkItwX1BywfWPhfLyBKgEF2xj+ySXPd4+YzBfH2pcSVpFQxPtHyJJrrED4lHwzeGDLz6wgEJYcUBWDKs8kyhhD5AFxS4VDJcZ3xeQewjCWWHc9gRL4ZDJwBIpR2LzRdGkQMJXiVDlHUL2bnMGA1UrYYXlybLMBh73GwoJds1ugJlMu9mSPO08MybIXVLxq+l95Z7DGphjoxolvI1GcvEU7x55a3AtQ9y77txTbnk6s2NzvtCCxPe8+CdoiRjTBgz1qTbCBJkNyLWraz35XTCjHGCMQdVGgK4c0DWHAftXxajP/54NIP7hJSN8kl7YQ3Gwnr14uVnn5iTtZM7+J7uZNsHE5f/jdeAgqsenlCdoQqIz5kqBSGYe33mYEdlbAyQVCNPyMEiCQCrCGaoVHyt8//8638DeIoDArGRnGhvdis41SMvnJFuOJeBqqC7YdrlE6DRypNYExaAAxcT36U1duhtZMIWiVgkEqIaXUN+5Et2BBpOI41zGRg1khaCM3ETLW68hVuRHVB3YMbGxIWCxvPiRlVktkkpiIKMgMKF4FKAYBfxmTG4IejlXpJQiAVy5VKbZpCQwIhkKIyAB8pHWgn5h+nVhQwE87Bga6ypmpE8ikCFmy/HXbe2Q+BERKVg23bs245t26OTgEuCYwOlAtud6HxrDWYdo3fAM6HjwWng+xliaoAk2hzyOY+kFoBE0kWTScqXptGMeonNvUFRAdnX/eDnc6gQWPP+jPhaYZOdKsWEisOKwdUwzgF3gXUGlGQUwjymdQj2ssEk3P4di9Zew2dhWgqomDTGecWHZ0youHkZDFUbu08T9IuaEyIFVTa8397xy5dfVpzpg3Hu7X5HOFrCsnPAW7oOWdYFFh2nBvcbvtzecL/t+N0vX7FtBX08cPYDf/3bXzF84vl5oKChFV6LuOHXX/8H3IH77QvcBL07fDgwJNIow/3+C+qt4Zefv+LoJ/7Hn/8nrJ84zo45Jmw6JUpa6dbigMQUFUe0omF4Hk/0caK83cie8vRFOnE8T5zPgbI1bAgJHQCa+Wegi+Y7LLpcZENMoyfVPAcTXjcUODYl6k/kv7OTN3jA1brDvYS8LRLWAIz2+xYdBMe0gT5PoAD3L29wKTB4SNfCEscBmWTf5TRJgu0D8A7dyILglKKCcxBM3fd3gm5zshsoBX0meDZRimBrBcfzRO8HWiSbZz85WdQ6YDVAp+iuiL5MO5GVd7zS8Dkx7EQpBPKKVrTaUHSHoKCfBpuCUjdKNEIHz3UeE1oCeFK5ANriQHOhxNEdGwR7qbi93fB5v+HtvkfxJwFSO3MwVdxuvN9c8RMQw5d9g9LYDNu2Uc6mBVaA3//+Z7y97Xg+nzjOvs6PUhrmmPjx7ZOHbSkYRvAmy98+OqYNfP98YFrHOT7xdvsZX9//iLfbDfvWYKPAYdjv+6KoR+WyDtgxzhWnaC4ZRcToaEIAGTHxzX/8QD8e+PzxDXDF2y19RhI0cHoHZZUTzNwxB87xgNtELQLHPYC7CRdOdk05zgx/o6qVvnNxiOjCbsm6Oc8niTaR6Lo5vr59RS2FfjCIYtWSdZmnU+xnZ+GAksWjxasL3DsMA9N5+tVS4TLw+fxEkRPn2ReozO7pdW50PFEFmFUxx4nenzxffWK/BUs4gVBJU3WgaENplZPWwM/bWsXvfvcVZgeO4zu+fP2C2974ueak55kI3JNNweJCQI81FjjRLEAUSsx0AvwekDQodyBZRyVZzh7TlUBpDIdJ8IqrMC+qMbHOlR4oHvEQLmhNiCO6E0AJf8GijMpzXgBlVAUAyDhR1RV/83xKsPRKUMNE38OHSXIqkaLGNCubc51DnsVeJNsaLIu602Os1hIeMFfRmkzgxSCwmHYUkgRVCSm2o0URRLAMoJ00gaMcPgIMrrdCAKKsNV4g0yHDY90B6fApIBNRY5pUqbqKXk6uY94jZsD55GfSnB7s69betp05TuUwmZ7jqM3QysbG1DwpPQ6ZUKkAghliCKZCgJgzkv193xdLk8zzirOPYCnYem756DSK75K+L8kgD7AwFIewADfZwOJrjUiBi7aoz2z5nczJIqMFiIYs8gN4YtEuLwxKR21UEZhz0us4TmQDVNVZTCVwEi+SrLL0/dIongBZwKzHomXKWymrR5xnweaW1pCgJidWRZwVIeumKKY917kAEEJmSZBFbKZeggSO7UW6Ts9MDkeAO6qTpbQJGWznafTlab7sqCie5RnLdV6hKGiqsGC0xsYNmweAxt55quTExxyGkCV3RGJnbdC00gRfuWYgSj9RREjFxa5xJ1BSsgHhDu+ThmWbZIkarFvmratYi33Lv4hGr4NMLI8JZVn7meHsJ3ISYmkNtVQgAfbJeHb0cz2TbHoUJbNwjoGJ8ORSCVmqByzB15kBqkepHvGKuWGrZN+4C9QCMBLG4MX6DxDJLVUlIe0OaS9egCeTkIvG/2dOVVCvZ5kNBUZFsiwlAQvDnAMJ7jO3iXNbBTb4/j4Zb8c5oL7BpMAGa1Utef9jNRQHlqfYxZlTCFAb3AXHeSwwQBDDAdZn4J1sUldtSf4DLWcmuDZEysvZAqhU1LqFbcQlP80YdfbBdVPp5Td9LEbgtGxFcX9bccik36wYiQ/06Od9UVDansB1rucFwstrfeDrHJz++plD+cMuMEyIYVROCGLcs7l8JB1+ycny7um1TqZPhEknADJaR3i82pw4j0+cx4HeBzyIAurMj8Qt2EcnZXe1ss43X/lFrkvJTQayzhxAt4NN+jkx4aj7BjWjv1iyYcAa0ZCWJayHSnHUwr1EzCRBMUTtoKhCG50Z09NJPmYjxVb+6CuXyMa2hK9ygqv/yNc/DDw1jUPIWaAXobmVOSfVuApmUDtPHwskqiKUdUVHQzJpdyZZ3bC6R1UrqhQU48OyQSnGHAOQAi0NA4ZjnGuhbMKDYSsFDKmTFEHMBANXl49jHIkQVRA8Cav0GDEfCZZyvpW4s5OctzO8Nkxjo9skrbmPoKwqk5/iaA4grk0Qh5kICiKhO2k6BxcCL6LYa4OLARpdC+/rQabE0NFg4DQsN8Oc50IlS3QeXSaZMqFjnzaDiUWZBcEWJnU57YSGfBVt22Ms48CYLM5K5cFBHwJdniS9H0jTzRFyEgMDh6afT9KaEIe92gLQ2FXgKGxVDz0rPWN0o1/K7OEP1OhDcvYzQE6s5IfGvB4FMTc3vWcUPgZywh4cmJ1yK4wRMhdOArDpGJHkj0hKs2MzkwIXyQE/f5TIgfBnV8ZgMSkHEBWgSABHshJ8LWRSnMcBVcV+v+F4npzKFAcevYZ5SCVbI31fIDxAOaUrEhw/IaBkZc4D+63CsENKxWkn/udfv0XhU2EmmIehxrN7PNldG+eTH3PQa6ppWwdUPx3H09GfnNj2+fcPnP8fyv61QZIcSQ4ERRWAmXtEZlZ1c0jO7d7t3v3/37T34R4kZ9jT9coIdzMAqvdBVGGezT2yGNXRmRkPdzMYoA9RUdGTQuikZjZU2aFa0I8TcMcWE2CQk9IgUGlohWfQjcKACsNdB1w7Dj1IZ1dWYDyqVgAdjDnHgSdVdfoDEwdKG7BWccp3ovA60HHi0b8z5JcOVUcTwPVk0iqk+a7qWzhTMwdiUmLqnZ0ngZ9uJ7RWSL36p31EPUwySFdgA7QJA2YvmNbRDXAd7FERh/uBMT9W8M3qEqfjiQmqCzAobuujQ0FRXje2BalWlDqgtWPYd6Ac2G4G8wNmByKfAyeLFpR6y3wTqhQVZAIN7k8IpFSUELh99om379+DLk/NnAWPa3ScK9ZACRXHVgeqOt5+3rFvG759ragb4PXAfnd8/XnHcRwYvaPdKGiZMihzPqJljdPmxhwolXtYasGwgv/0//079+QSDHBs+w23r1+gWjDN8K//8q84zzNE3hlw8QzaEkL8+ONcgIybwYbiHCc+x99R5hvEdry/v1HLazypYeGFIF31FYg0BZoK11QEJWjz2m5REHCYkvEn2KA+AG+M8i2moU4yG0WynTurVUxUiwBFaIO7GYYJhpP9wsoUHzQn/imKK+YRQFskp2cGEG7oo+Pz8YG3tzu+vL9TiLVS7DTBJvMQ4VQGzhIsQgkWKenxUf3yYDyF3VRtrAYLEx4ZAxsE//7nnzGHYXTDdquopSFbBFMHsukNtRTswUzStL0A2sYW97rF0JKqTHZHR207J2pGJumT7Q9fvnxhJXJ+wdtbgxcDrLPo5BewQabQpQ/Goz3hohD1iBuMRSKJtq0ICTKxk2iRU4mKcJwJgWBp/cS9uKXI7skAz8naciFzTYpE8pm+EpEdMP2ipp6GLldm9T8CRAIyScj4y3HzwIS96JgwALdomdJKgNlIPubgFKG9IOlEWFRzwWxkX9gYaFpR2haOPjSPRKNt6yoa8u2SBRCAY2jrSSRr0mJfm6PWgtYa5uiMtQrb+bTk6wQbKET5qzg8gJNkEBMI4s9oVN8zTE4NpRKMTo3XR6xXRWiT4JJ44Fhsh1cORLkGyMiy48lInNlqEm3IGYu6h+ZHgE9Xgm/BrslrJsCabTElCp7il91NBjkyEcv3gIOqDU6f4hK6bgQudTG1uGebhg5KxGsz9+qkhpeIoAZ70hjAE6wTQNyoZ5fPBKk3WZgkv9wnh9fEPo3kTz2KzbEfE1ReQBFsxXkGgWuwzUWAqOIbBrsjjENfpgtc+gXg+AuYGUCfIofwZDWfvphCwmVppfgcQLRfOhTn7PRboWFki2lHkGMBFAbMMwu/V4GdW0qWnVgsjmCSCnLNsPbDYsbkN4QMu3MOlNAaTTkJuKxzt7TZbGKYxYj5glkq23Gf8XyhEKFdz8STTFss5lkydAWCEQUBFtyAgbGgYgvWxvnscPQVE9do9bY8twGoCsiQoY9K4esJ8dArjW3hEWOlcDjPNpYVdzhmH7BukfAngACoJNhKjrYBsK0CRfHwCXHDVgMAnTOyY40aR1ntzclISZmNRUKI/SlwlABlLNjrmvWVIujD6beSbMEqfYjtF5TG4sp0AkFQQGOAyDyDtaUsmEKMdnOrbON2Y6HEnMMjVGmXLTSLXlrHXoECBye499TRFFDXFbIAO61bsHLIZOo+MJPhGa944IQ4sBltv83O3N0FYoM2AkDqHbMFsf7wfJGs0Hx2cknRrCuPXDp98QV3SLSCOVyMEkHuGMZiWp3007MgQFZlL40WqFPXLAR0MPzlHVnxj/dSoFRoq3h//4r77Z1FNC8QtCiMVww22Eeb3+QZMDK9zvnEOAbtrwJzcCCJgn4oZYcszpo6YEJAiPN7FOrUCz57D8J0dMXE9ZLVl6xA5rcUTD/h1mPjeeAZCkGNgk9gNeJraBiZXokVpG99aRVNAPZPfvxp4Kkm9dKM6vUIi2hRFXSQxh+LRdkCBl1FhD2f3A+rJ92d1NpoyiObShVlst+Svc0TNgYrXG2DTcM5oz82gn2KO8Z2MWbOPk/qeuBKHj3ALgH7smsJsU6ffBg+iRaLLKrZOqRhJKEMDk1kIc4yZySqHqOAr7aLFDET8Xi0Mc1gTOS4RpECKUFvFwnDz8k5JOE4ok4IRwhlG9dmToI/0wybNFSppL4K4EG38/UkJIJlgWoFXKOKiKiSVlawlMBTso+qtri2FJImODIHnRLpw6zmpqCilhrMtwDuHIBYks9W4OmwS0gXkag5x/7m9CPAISWmyPXOYBfRtxyJ0uW4XwAa41SraT0U+oX05+mYB9kPVTgy142rlJ8EGgsuXhqDCfaxg61Uzj0KB2nuoLE3ACaClKG4qPnRZ6wSgrisFtVWcRw9zkxUn6KCMozaSlBgjB/vtWo+B4f6gPrEIdw3R/8CbZxwNkzw2/cHRAW32y1YbAjD5DhPAi7jPBnMGiBNIPuGrP7YAEZ3zBMYh+P4eGIMA1CglSLlReg4x6RuyVZCT8YkDh/rQavq69SPAAxNJppMbDpQpEMJs6z/AIkWqqi+FYl2gicMT0gZ8Now5QHSlA0TA30+ifS7UwcCCuiIJC+Aao2kMJmX7BNC9tQ7KDY+5lgTwiTBZ4+gNO6N2SYdp0gmVYp+nKyalrmAZUOH+QGgLE2QrLxCBOqVZ3x0uLN90ZytkxR9F5RqEJ0wPyDa0XaKtA+fMRkp+u9LpdaB0zGLBns1S+jTuFlLhdaG/f6G2/PJ/XI8MJxAPuPkSHyiKlXASTSqjqoTRRzvtzt73u8KqUDHQN0c9/eKPg/MPnBrN9RSGSjOifE8IzkkDdbmhJlArKBgw5yCv//6HWKculUbJ9Xdb+94u7+j1ooxBo7n/wePxzNAdYGoraBd4lD2g3avNSa9GIppA4d9x94ctUy0n96xbRXf+3cyu6xE9YgsUsOkELwwkOfyRNtrbcEgMJgopjitv1eIRxXR5WpNclaxrxbh9Lu6AmsXCfuYAQmp6G4DMId1QwHHqdvR0c9O3TwFztA+mnCc/cTHxycKCt62O2qpBPvckIPUHIBpBKlRLSTARRCK4HeU4iQByWDqhchvcqVkGpoIfv7yBcfzxIc9cL8V7HsLP8bnoyK4lQ21Fuz7hq2VmBQXSW+t0CLYb2w1LE2CvXWibTtq21bwP54nRAT321u4hTuAwURUBphWc/cG5IrXYSkZnyCB5IwBIqFLJyaJUiGSH0mdjgQT8kleQOm1wGyttEiImWEw0RANtnQmTwuAIwCWOoLMfS9GhHiwTDwKRUSNwp6Ej42YwpLREICXG1hhVI3CDoELjSA0bSavQWAchwcbgxpPFJhii4SUAJ64r9LXrYEsEnFPImDO5C6Fid0MPiZqq9j2hqmAGQtfFzOErLyl+yEOV+qcSYydZoGsM66s2/rdbJFD2PCI3Nm6Fq+ezDFdPpn7XYWFA437eP0IdQPqX8X+DxRmtcqz64PxLv93AWEJVvt67UsDSCS/FnF3ruN6n/y5S48rwYfIuNe92UvsWTR8Q7ALMsawfI04H8AlnjtCB0oC9NQoHpdgsrIwRvZHFPGvswVOOmWLTIIZCVmkLlKCW3PFsNnaxRgyNm/quYix4BrXserIZWCBvaCmVPo9WYy4Gfv6WtMUsyeub5AZhUdjwXjENDrNKV7ukfAmSIMlO5Gtp5Bo5TOPnORiqvDxBPMFGZtJmIqwGZKcmTQ4EsNKJhlCyFQyXzL5frISdLijlA0Em9ma17tFTsBYXjR0dt1xnif3YojhpyQIIiYyMyipmig+oVKw6xY+yjGMWltDJ1yB253aZSIckLG6tiALjJj5nJ3AjpkGGJhZA5aWzOu95hd8UmO3BdCch0e1RDsWd/R0gtQoBed5EEAp3OsWRWYOXyHDbsbzkWh/mTZYbCqpb5pMdZ4LcUA643etbIvySvbccA8Wp7A7RwSQCqhDQ6NuJpCr+pIbsj0yhy4xkFNILZETgcCTO69XCrQ2nusRuyOKPNxzuYI895zSTZZriSLdiJbMTbYAFI3xJQYmBhjJUnKE4CNgrlh6vtPjfFv4Kl/PGiJsq3vxl1mESpuXhZQXxBbXxHpO1WWr1wsrEvQF0yclQ5ATNVlIMEkbFQXDsG8Gzsx0j/VHbneejwEJQLBAteJ2e8PWbuAkPDJvVTkl1cKWW+SpU0KpXxTDOjAHdmWx3oyaVjZD2EXjHpxA10Vc8BgQxXjJOyKvDmma8Luexwq+5AEID3HAD0ktmffwmtiMHfcRk2eSKW82Liwk/nP4simy9tGf+/jzU+3mCMSUbWDQ1OPwdbOJTN/rDQYKkmNMjD6grYX4l1I/ps9A+CiEdQsh8t5PYFL4jD8vqI0P1MFKUtOgqbkQpIqvmxnH2QYK6zKhcGrPREAjKKgamkc+IXIC3qFKCrc2HgYKEQfsS8sRgmyOYqxAuUfyWgU/rrtf7J/Jh5vItwnBDKl6BT/mwCTkISpoW6MItRn6oEaOtgIpHLEOKMdaQjFrGJo5MaMFgUBtVJQiSE4HRNG/gmhCxAha8fttw7bvuN3ugEw8n08ApKITldV17lPzwCNUIE2bAU6poVOTqoQqkUxZ0PZCtDOCAIizmuCcTMQtXTh5CEA/CTrs2w2OSaFCF0wDjk5WxNk7xhj4/PgA3FG1YN92vN3vmJ3T0R7jAAzY6gY34PigkKmHHpa7o943lFZCgFcWBT3b2syBGfGOS4jWRcAnhZTR0wxRhlzGjq/Pio5AsLeG788P/P3vv+LjjwcejwOtxDS2fsa6ZNWJU2Q4UYsGutAzYZwDEEXRHR4imD46hhGscRGcY+I5Js7pqFKh7Y3tNWY4Y3Q2WkNtjq1wj9voMHQcfZDGrYrt9g33+86Rydrw5fYTjrPj2QcEpPCOOSA2l0hi9qEPI9CrVaNt1rCVir00qBeOBT0UfVS43NCn0mEYjWPbKlJbzIxV9jEHziONqOK+v+MmN5T+BoGijI4NO277G7QWTLUVTM3OM661AZpjWZlQb4U6QY+PD/ZrnxPaKu73Hb/9Ifj8/MQuwK4SzCiHD9og1ltlBfqedtPoGFRSNJMT2EoxQHq0uwmO4xNzWrS/Fpzj2j+qMZI3ND3a1rBtDXu5Yy879nbD+83xl28T55Ogw9nYruEhJl/aRpsFXViCBmhQhBT10TuOTP7c8f7+BVIqaj0WWKlR4S8iZH2OwbH202HCIHb0ic/ngXbf0W4bbl9vOHrHH58PfBwHnmeHy4Nrbw6fHFVvVVGkAZWVo/M02HGSKQYAI6jJ01AOsi+/fPmGIhvOo+M4T5znDI0qCaA8qdhkGIccSdhlBh6cXDcIbEfVb7813G47JjY6dS9sMd4KZidTrqFSBzCAaDcCwcfjk+0DITwMcdxvb5imqOV3gqrRggIwSBdjQlaiPYbXzERLTCBzwucg6CdKsK6f+Nd/+S8cjTsdre14u73j99+/4+Pjgfc3AnKfj8eiqWcGKt+fmNPx889f8Xa/4XZrbPUBg8Zzdj7XrNi5QZTXlWuaeEoBUMJWiVH0ZA/GaB8Dmwr2rzf0e8HXN8Xb/Q23240M3/CZqorbdkNOoSxKQHMJd5cMljsgMblPOM6ibhO1UgMNYKWOSdtBmylkHXvoEWSyTy/KBNdGJNg0XKtQtTQdAgTSKKRtVaHYMDR0DkGdPIuKcwaKDg82GegrIrEWBVrbYAZMCRIcsrU9mCBhfz3UnQha2GoVqoJgNttiN+QVIwB7d/oJK4xXtESrcLRoWYIWGj7KwAKaKrYbtY8qkgUdA1M0hKndcMjANMfn84laagwnYXGhSMU1REbQ9lvswUtaYPMbAGGxSa9Wrt47WgyRKLWBmkKCbLleSUqAXnGk4VUjySdI6xGXQnJAR2a7mayGrgWw2iSzYAh4sBB9/Wy2opIJ4GhVg9FgS9ulFOrIwJMJ7ctfZPC+3yiA/Pn9k6LMtx07e/PQk3krGUbxfvpJfblS2MqkWoBB/TeLqa3uV3qQ9wAkGyvSkTlBCluBz5iu9wJU8TUCwELEt6JrCAyOg+1DyWh3RMIUra6isYaxzlcoygTIqf0k0cKt0lCi7Tb3B5P3CfcBMzJ82TnMdeEE3ElGlQClMd6eZpiTgxK22C+8n1j7YKz8oCkDhN7YVShEMOcBMiJoG3JCMlvatVaYG0ZqyDhCvxEBbmXxCrFnWDAuWhdgClzF0lcQOZl02iKZDK2uPnsk8hcQdQ4+iwRvSymrkOVOLdScYN07Y/PeKeIqwQR2GM7jpF/bN6hqFNsodixgwTrPECeJTsyTAxOKU2D90MH3hYT8igCVa/w8O4AOn5/IAUXxExzSUgS3ewvQOlvxB+M+OFy3AD8DGBbe03l0JHORg5AKxLJlkTZia+wWocQKW5ikRMtQdFpw8E/Fbb+HcHOH4AD8wO2+o5SC43iyiOODezcE+n1eQOEMpkkPG1wjsR+jk2yhAYc6YpKl4JQZ4DKlUMxmsF8LevSahUUPBg8WM/bs7L5wOEolk9gmn4KNvpyLW7CyVNhSF3bTLfSdApSBBM4FQa0bAOHzcBZLai243XY8n58coOBkN7bbO31nkBIcBJ8VwjgJF+NvqwrXAq9bkCgyRwxQKoOL2KMLjAq7Z1ODybU4bUvnKn+XBdbwb8leDGAp8++cLJks5KIF0CBFeIh/B+jPadcn+ugsgpQKF8XjHOjmgBZ8PD/w+Xhge9sglR0E4hbTeGlzJQpNxkkYC+GRqiyqF8TJpg4vArCDO8YkKFr3hlaI3p4WNogVGsragHqTcD7XNcG2hPbY8nEXII60VFlTjL2gwU5fch1GmYY5jYMWspX2T378eeBpORiLZPz6XmphMSAWiuhloO/zCrA9djPW/XFxEIYylOwtqyhR/dBgGCU1V5TiYOqC5W0DjE/aO4/nVekmBTgCR43WHydHBUm8FKchk/hd0bjk2KTwVeFZEUHcVp6R5eo9gyK8BDaCgazQ5ckOdlUyUBxRYSNIhmD0KFeJX/fUtiAg5nHzLhp1j7yQdGFXleI1IOHzCRHiwmlUpZAFNc1eqgy4XkdW52sExEGpD8FRyfa0qAyJJpMjWl1iHQLP5auqRuWfU8QoHB2HwRNdpRjnmJy4MabheXScncnmGAN//P4Jd8dWGsYdKLpFjzQZDmYO7BUwx3FES+bMVjmHbBXSOK2EgfhL6BbBS2BK3GfwaFmIdiVkWx5e1j8NpiwHKHGezvPE8/nE4/GE3CvHcBoBWaxglcncNFuaDjlu1qJSkuPQPSseuI7bMDJfpnNHuZSoDr6cFY29XaIS6ALMSCKd+y71SLL/uWrF0GBBxB7J4F01WwCyugFkqyaCT0YQlAHqhGIM0LGFNsb0aFNwQ8szjEDv1a7KWDCTCho/PXQfrECcDmoFk2ACNC2ovHZR4gWs1GpWW8fEzGcORWuhLTQz6Qv04vX3I8BOPQQ6dH4WpbhtBuSqBJM4JQNLY0pkohRe8Zhh9GPtVBAaIIK9UexdvJBtaYqCilZ3eGFibIVtQq4lWsxyskq0fAhrPOKOrShqBJOZZJGlkElEiSo1lg4EC7KybF2GRTwHBN4fxwFTweY3TDOcY3A/Gs+w+2SPuEWF2oERVSFAMeeJMdlGAZABhNAlsmmYAhYJnGdqpp7SstHpb9LmZWJ1VW24HgWevirsVokEb+VOEgQ2T6cbah4u8BnrMKk1cpwdtRk28F6YDFRqP6iG9s0/OI10omBVldfKNRULpemkyjuBzzEN3z8f6GeHmWPbHBMV358Hvj8PuFbUajEJ7krSWyk4O/v/38875nadhaIMzIp5MAfnOkHLDaSgSXqGYNKVrPyBrd1Qx8SACNulixYoKu63itutYuWmYCKxb7dwi1wDDXvqYXwdHtMkw5tL6i0RxF0haMl1igox6+QLPIqVR8akTHAYJ6xv5PvGLskkktfKM1ZVYTLi93Kv0UZMu6bT5sLJ69+iigpHtMbHNThZtxpTbRLEoeB02p9scdSwl7lmeQrjfXOfO+MZhL8QvCABntfjmW2sIsfS2gh2ahGC5K8t55wMFwmdCDSm9bL4wPXUwYSwbjWehSxGjcRZ53RIxiHU6mFSprVGjGdksV9xeiIkyAo+ANo/IMDiOF+ynvgCIq7NK+vZSnx/UZforX94hleL/1UMSv/0QrBY5yLD3ot95GHXs6AVAyGyOCq6WifWdcY+MXMWfvMa45nCZflzz9bneP0rgZAVn9FtX0nb60j6XFZknJ/sKJcAl3JS12sUd+0ZDb8ur/Yh1jxP0vUR+4SjImNvYO1gRAEt9y3j5iwWZquHZ2gKUfYGTAvxfTbvxXUKEgK6KvQZLWGB8gk2sR33+t5iMvriHtImGcgECdAoZs8sRhv0ygey3TnnbuXqWf77ZWNmFwBbiuJKw89JXEQOnuEwnmBz5Z6EIDWZkoFEOYEQFw+mElNsLiAT684JjsL3MruSZnUOEAHYFk4/PpdfIjg21grT5uhiNs7On7M5mMfVaDdFTME1xX6r1/G7otnYP5FHGEgMj/jDQn7BSzI0ZW2hFY1FnI9IntPmZ8wrL88o15D/zn3QkEMSXAwZDCdp09KX++W/R+4zIYDRgz201gYS/bPsEhJuqcBIgsMTr/myM3jt+YjdmTuHf6btkbV/PEWC8jzH9TjAqccI6ZJwhgTq4/08czqNGI0xh2pFCwmHpXO4mHxsU3NPexDFrGQtpfmKM2/Jbgx/5ZEP4+WO5Ye/MaZyT/sWsYBfxYz186JA5Nw8q6HztT71x9d9sVASmEHGAzx7c52fzN8NwNEHxnRANCZvT1QPvmrYYcgFeAGh0ytZKguSg1776RLfpy0TyRBw0g7HPvdSGA+LrJZsipaHHMu6w/Rv+XlFI8sK+mXHLPaLxN5h7j+X/QscL+Iw/eF5/Y8+/ry4eAY78PWokoJMQUDqxJgIrCRNl2K7Ra8K2BhGNlOAU+ozRB1PVtIFQfkChW4jGEAghqakypVs15lnOE5SD+vWgOxRRdDJCivJ2YY3Ao2dMxxbtA7wqY6gmheYOGYcmUJLwWuPvvkRNGBrRHQvkjYTZ3dbveSIKmMKruc9wQVvbUcBdTmmOcbJIFGxo5SGqgatG9vNZhKkuNYolQmhjmSsx8aOnnjwMJCWn60FimEZKMaBLAJTCXYKq4+ITdpP6qG8vb9DlCNIS6loW6Hj0EpUGIZhZOw8D7Z2tT2eYRUUo7HISTQe4qiXeCapy0UV/SQzplVqpXw+HjjPE79//47H88Dn48Dff/kNHx+PmK7lGGMsP7XvG97un7jXO/ay4eOTWiD7RuPXjyMq0wO1KdqmKHdF8YZzGKCOttP5prAkdz9pze68Pq45DfVwx/ESTNSoykig96o0Iv00wCb2reFXG/j8/IB7iRH2sYFeqoUa4y8s/V8GgHKHu+N8hhh9cbh3Ju4VkCb4+OMDH8cnpjocHd+P76RNqy49o1YIID46abItqmsABwIARkHZMXB8PnAeB6z3hcSTLUNQNavo0z0mTibNnA9mzBO9n7D5BhgZSYITj2Pg7IYBtte0phgHJ+AdwVKwIxwjSHPd7zvGMWDDoN5QbcO7vhM86L/DTkc/JmZxWHGUJhBNwcaB5+OBIoq9VFQJ0d6jw+zEfd9xu9+wt4pt29HaV/y+P7HpO+7lC97aO2nGQodQVPHl/gVzTHx+fjJBKnW1Av/87Rtutw1VKmQqtlrxfvuCf/r53+HoJ3rv+Pr+xoQuppIcI56/ZNAfgLsohXhN8fnLE4d2nPukDtXDcJ6Cc9ChO5ztm8Ypb+lcc/KaTE4wRCs4Bfjl119AnZ5MCKgPNM0C1I44X4BWyYzBHBFURDXNcyoj8DgHZDNI2TBdcZy0D1KU4JgobCrcSJnuQ/AcB4pUFG2YQ+CzZrcQCxQRKE/rGHbg8/E7/vijYLtt1F+SAejEbWe723l+ADH1Z8Y51tA2Kdrol2ah/5qOKt/w1v4Cmzc8H8B//pdfMGZHue281/OJ43HgfJ7Ysp5nrPSXEPg+++B0xlrx13/693j/+gWu1HLKyVyl5ljiymqbARb05yXGPEcAOdmWRBbo8ezok+K2jy7okzb+2YE/vndA31C+fcHpxkpce+frWTYSO+YxcRwH3u93bLVgU4fXAmkseKA/eL+9I6cceWXlP2eJcuKOQHPqFM0FmYS1QNwxCsU4RU9omdjaRC0da/xy/Iq7LJthNtBaIQP1yvdAXUhW2M/j0unq/cBxDNRgdRTnaSkxYv60gaJGMe8Ag6ldU1BvcbvRMktbLREcKy7if1xHJHyIRE4sMgWPoCyKB+n/S61I7lOfCexmm5HG3c8gVntolwoaNjgU3SL+mjFmNnVccGEPiPZMTqnhc/CQPGCSpIBVIFkyAjRn+wbZ6uGDPRhtIeg7YUjB59t+R6sVffZI7Mnc+PbXf0+wrA9kJbe2BtWK1Avb253rWkLIHQhgwpePKSUKC8XhqmwJgsKgmCEEn+0yMRwLqzT7kuBlS2AG80UvBlQm6IlXpAhwqRxs30TZrnuenBpWlDElgH4eoNYQmSqtFTI+JmMBRDcM/Joo5UAUM0poZDnGOWBuOIV6KPu2L4DOU0vDmBLNACJUClwdVhQuitwBE8AQFmYTcJdIqFRqTMX1l9Ykvk8pDVn7fAWd3MmtkwSuIIAl84n70M8BxLkvNW46QDpN/Uu/1jhfR18OkbkHe1ITMYJDQrMsE5qQ4NCKvTWs1p3Yo/khcV2I3ERFULctNwhgr9V8vIA+cV7jWlP0fI6xthRbcfKVqanizpjQ4OH7sJginll1nGq2Ib9oPBVq5E10iCtmhKwcUIHlc0UEKXo9pwEGHP3AmCNia7ZXZfEzk8UxXmxDFIyywJcg3TgYt1loFGUxQhO8lHgOIEhlbqg1qf5kbU0bLPoZNT5FgZqsMKeHpoxKPEuqL6CfZAtK8RicUtfP6xlFS6VvzMmj21ZWvnE+B47xgEihvVhFMP1h3d0NrZZohbTL9sYzlOj8OM+OYROt7Wgt2EsOfHx/RHJeIhQ3PJ4PPJ7AvjeUtsG28Ecxye84Durslph6CMXceE3TJoZxCnQpOZmXdqTW6GDojLP6DE1elNCSHGxhFTLUVRV7rZjGDpDMKPM+k4nYzwNVFG2jbmYphUkJgKN3FmCjDXSRJ/LUeAi4w6EmAMiYm4MTpOew2GsC1Q3H54mncXCJiKwW+VIaRGsMnuB15R6VSXtvPTSaXFDKFgXu5OwGWBtrQVkUhU2gIqHkLNJdrXYpATqDkCHpFEMvomgMABr0dSpkslvkmg5nHCQhBTRp58+Dw2S+fvmCt7c3zOn4HE98//0D3x8PlG3H/uULrFZMkCEc0Q9MGzKfU6E0yYwuoBnaTxdJZy4WWAkAsjV2fhRwcMNeFFIFsm84S8VZGmYnAaQfHQbBqJWA3BS4TNjw2Cdsc6W/uoDPLA5kQSILpAs0n1l8vGw+AhVi0drwZz7+NPC0Kn2BfK2vB/i0tAiQaFsAU9H3nO1ViZqu6XgSlNBJFJ+VxHDC8Q4rlc/NAzDBCdRZEhUUVuPSJWXVKMf6aqJ5waZ5Afz4kvDF7PIw1OwzZ6Sqnvfk3JDul5B0PIx0ulkjy6/ng2LLVH6df7JdK0eFAmugryb8GU7MPCjRiICRyWjUxHHdeT4XzbuCQxmc5GGMlTRPFtirdkI+85e/xx64Knxh5M0BJFMt+FaeiHw6YvzwO//4PqvKkEyM/Jpd+8uMIuTnMfD4PPDHH5/4+OOJz8cJC3HSeMysWLlBxYDSMQvwfHL6wIx9NsfJIMYGUAqK1xfAMl4r/nSLzRJwcVarEWhyVvOSVZMbKtd4gad5VnN9gs02Q7A3ASu/NmRsErmCq9iOJhnQyrXTXKhjpBJVSV1BdilJH820PQFeD300Oq5rC0UVkofhZU8wnHcfTHacNOg5jU7kuvpVtZB1rugUKcgeLbticOFI3gmjILJHXiEgKCqJwNuqovD3EYAWJ6uVQgCMDCN+atBWUYI5pKFhBQBaqFdXKpoqmhYmVSjY9xv2221tAnFHLYq3fcNeK+HbUoPt5mxhBRO6qm0FfYyHonXDBMfjxCgD1gvOZyejLPQtluZEOIKshWQJJAXaaaciuDs7RDlutY+O8zT0SdotTce1s3xxISJ7jhZAcYdF/xnHwHI/kZlZ2brghsyssio7FxJ6GQzJrRh2MKdTXvooZE5ltRwewYR7JB8eLWEUsgYu1ijXJt8q2RuyKr4AmMCFn3DJz1d7K3FvrNpzfLddVKYAE8ycTtqA4znZ9jhOtrWcHf2YBDWFgQAmK2lVaQf7nHBhEPb27Qu2uZP2XRnkm8Z1vZ7xYH7keRZkYC2r55/r2fmcMtAMhiqivcLGICtFdSWwEiVkyyPjwWBatprnowTL1RPgsNyDuX4IO85EkZXT9PMvAbD7NRo9nseM92KS5rBgg+aeCSO3LCcBqMvOpVF8fZYpTusxDGCVC/HSyg5fz/3196lRBraaLIMl16fkHn2x6p6vV5gErHsI+5l2K5ZJ9GLSLP/kXNb8muf3kL4xYguAyeDyDBbtR1ds4fFskpm13hsvr8eMJQoOZQEBtF0EskvqocT01BIT0sQGA28nAFAq21VEFT65V2q0drBFE7EXgikYbILV3rYcYW5EWXswfy2TINpFWfHOf/MJj6fpVzwnGTi/2KRFj1qb7Pr+i/lC7kuJhPklHgCcU57SHKddfvlgq5TG3+V68bihjKF4vmRdxPIPniwDrBgj3yEnRefzZOxmL7HWtbyLuPayDy2XncgUi2YAyOLJSOVHrY5c3Zcb/JHdE5tXcr3zsPu1J0mCu3brOsdyvQsAZFljxu8m8MRWXP3hZxNYQ8SYeX49jy9YmOP9XpG44DU2tQVaeKz7KyPph02x9sxrcsavW248YREmrxt4YUylv4vrsaweh72hPbB8GlzbfFYJPAmiFSlaMGHANZ/oh7h5bTsgmM4KqC/fmc8uzHLso3j6K/CNdt/co2s5fAHRFkOnaYdzhfl6lv4Xuaa85RHT3Zj/K8ZMPacgNQjIFp6cBMcpnmwbcs1zI5iDPfOqdcUk2dKY52jt+ViXGc8171OSMWdYMghpRvPZS+wnBzACddxvO21pxvLTYJcn4L6QGGSQOrueO5eFf4k9KtBlttdOS1+wtnOSLzL4B9vqcjO+HFKef4uCCAPp/F2bc8nX5HNZLEyJ114qs+H33OHBGvYozLlNzDFwMTRlaRmNEa3ALdj1URnJbpxQhoR7sIaRr8/3TM0l2CWyvzy/AKaASrJ/5OX5Jk6g0bF02SiPX8796ZBgD+dh9hWzcK9GcS6LAHIBT4j8vZaCGu1s2XK2bEHcHztmWPTNwtPlz/KmgNT0w9p7vvJOT3b3dQDD+mWGHz64KIdqBKHkVRg9PzNHzXvK3B+xHmsDxX2s9fKXvfLiwq+fSR/sq9vjf/Txp4GnEpNCEjBiHsEl0DBaNSjCFKRUQIM15ETF2bvP6RCb8Of3UnDOE8fxhLZKNkxlhWkEk4rxuAR1OECgEOsuZfIgziegitIahlMfyQanQDWjGGdL42gOkYJaauhVOUc220TPVprGqWzTjILCNtGkQqVeExuipxaVlr8Gi2R6kB6FdHxJVNsd6B1LfFBYvfu0E7CovoHiZaqslM45MKfj7J2tT/Gw97bTmIRuha1eFVxxXSQxLqRUJl8tGIEAhBUIUbRtQ4vJCa+bDchJFBoCooq677GRHf08MYzTAwzXaO+2h5CnIAwBImZPWuSLo7cUN6SoKJHfq0XTXTCH4jwc33878Le//YF/+dd/w9kdY4K9/6ILxYYZhjV0NDznA3P+ihSpBE6IOLbKhNPRob5T5K0at968Apl0ODmWvQQ7xoXBA7W8HEeAgtOT4hjtgsBynGYjczbAJ47zycmBbpAmKE1h50vQFpbgMjU0GzYJdkhjUlO3EuDPxG1/w37bUesbBBvcOTXifvuCNRraWZUHGNC02lCi5c2nw4ahSCXbbPZwSDy/t71Exf8TZtRTO07HsztKqzFFK0TZXaJ1lGwCmwNjHHAb0GrQZjjmJ87ZIXVingc+jg8MbBhoqFXQdOMERweg2W5ELTToAPQB1466V+z3hi9fGRC93x3nFHw5C6xI6LBtgIfQswvKXlGkoJWKrVRsreDxWdHHEz/9u59xu99og84DmJ+41Y7/63/8C4ax3adsMb2rMwnxYSgo+HL7FoCiU0sDjo/fPvEpwC9/m2GkKTBOB8pgZJ6RsGswFkHBS58BlluCWgVP1zAnwY5sTyarZiCylgFqjBYQxLOJpNEGbGaFwjG9sU26aDgo4AchYC8hzltgHpoiFrp4GoCnAMUTUiL41XtfLaVw4O3+DpsfGPPJCow4eicVer9Tx2VMTsEhrybA6EFwKNsuVDUmUBEcM5doGY37E2oLOQRSG8HVYNkCglJ2OByfx3fAEa2fE0Um+vGJxx8FX/Y3SKl4fi/4eAz8/nhAXVC9AK4Q22FVUUXQjyfghq2xGIICPI4HPo9PlPcG2xy3t6/QtmG7FeBwOEYUR6LKXQrEagSmYQPGhBbBdgPG6Dh6x+PcUQ5gv98g1XHaE90mSr1FFfQErAGz4qbB5ouAo48OxEjgvQpapWBz3Qre3t+wtQJxwxzAeBDoUAAea5pju83ZwsqpUxkYsaWizyMA5NjjhdpsvZ8xZS2SVVhQwyVGuEdrI8JPOFl8tZX1dRFwgq2SiZLJjaEi0w0Rjosno2pjslRo691DUlx534BwMuzKOCKL0/DfzmkzPsOjBpOKDbhAU0eXCcHFJCvKX7clKC1xhkP0OKuaKymL1johc3L0GeAlWSGr9quT7W6xNwAedQCcHgSKmnokwjzvGlp2Fdp22tBSV0iqIcJdNFqAwRijBcPkOA+ysIuhthaDClo4kbnCTlVBu+3Ln/cxcY6B0iIe0IYLMEcamIguA6xQrE9akZf2UqU9ysEulz5FFiR8gS3J1rj0KZKJcRXOJBJ7iVgkk+WeQEUFpl5JiACoLRLg0NjqPXRlUk8n53jjFXxiwQECrBHUyvJMySg+dVbyXh3Q2gIsph3vg7pmWrJdGjjHCbNJ0X1R1BLraR7J2STLGpQNcXjohzn6PKGi2MrGYoySUs087PpTIrnOwDIZPzkQwc5otc9ERBFJaCSp7nALkebYW1pLnLX5AuQQeEli0sVkIVuEAFawGUPnEJ6vE3HYTOFlAFojDj7DJqTg+oQ7mQSIGIVMMQHKjCLGNQ11Jc7DgOkYljEZmQRzYklU9JOyBsr2CPQe/hucdFpUos08hAaRwWCC09Ttssh7EhwcwdQZM0auC5kZY8z1EgsASODJEKAHFvuvRsuThMixKGU1jvOJbGErhZNDLV5bFzi6jhuZGL3DBkPDWnfGQXAybXon0FUDeIJHmx+QbXhksBhmv9rm4TNAkgCBzNBqg79X1CoYDailYm+C43kCfuLbt58BCI5xQktBU71YMpaJfohtWw+QvYY+IsXQS2mohZpWx3EAAuzbhmyzY7zn6IN25k1oT9c0NQU1ey0Y5i5ohSxGnc8Vy6sW1C0Y7OlBXICTiUYVwI0dNkTqDK3F4A8w5upjwnzg8TwW6y110kqAeRo6mBz1QzbrGAPneWK/31BrJaARgtQpAk+hzXOx/FLMfYwetpNTpTGpMzSOgzH/0iGktEcRQCqnpGurMFVQKSuE1cPHFqlQnaj6QAJdNQpf08/w1Tz31HNkZ0ZqRY+T7LVsXAUIcEHb8qtjMv/VlA8Xin4/Z05CB2R2CIAxTjicWrQwnM8j/IivM1mEe2yvhXFIHGPVBPSA5/HE5+d3vH17g9aK4/FE6j2Kc3CaQ8lgNVv6z0SxlvsIYJH3r6tbKVsXQXZsnP+mgro1dCiGsCDtDkhpcA/dSAAXlOehSxewqgtS5oTtysGCMouzFIDxa3dS/N2n/aiD+Cc+/jTwtHq/VzU0tQaS0sk0gY4ZyCpABpjURrG1cKuyN+diSMlyOnR8ib2uKndUDxmsRgWdnWJcIHNSygKpI2Mo9G8cQIw5XqJiWmA+1/QkMyLVgAAzgINpfCjm8KowJejlcNKYI4QzcWQNmhVBQs0eNO9E/Ceuqr0GLb5HBWFVJSYJ5mkUPG7lqiwAKhH0eUz98qTYRmAXAFVWTlZ1mAvMaieAVgtarbht1IxZARxe6HXw0FTI1spAwKMlS5Sifgos7arQdr0240uQmfsmA6j1nXhvfi8PPNe/aMFWG768v+P5OPDxfsc0Je0ygoFFmxeKYG6tYZhgWkGtDH7MDqg6bpsC4LjP1kjl3rcNVSuBTGdVe4n+xi04CIxhxH4DDRtWDJBVjNhni8mCpQ9EOjdZCqUW3O63YG7YWowMOtwl2AtxLmJS2cUgY7VhzgOjH5ijwmaBTQILr58OX4GrKIXH3SasPyO48pWEwwlAuSUTkc/WfMAxkFOSKwJQlLxOCYMmqG3nuplzKgwE97ZBdcPb+w33tw2qhtIMX7/tKJXrqxICkY2aDoYWgQMD4eoSrWwF9Y2J8v3LO7b7HTkDh2Bvw22748REd2NLTPajulJsHQoxikPO0JkyKzi7waRj/P33AFRmtHv2cHQa9+nwnHAT528llPEc4YY5I6gKgVBzgpApypfFFyCqnwJIYeJlKUxsOdobsY+w2CSpO5Ll7tRxYeAf1e2sCEdFzLMkKNRJmhKUf5ElUhobDxcthYA2BLAAmcjMyLT72r8iWJp1VQprfebwTkHSTUlLp8i6w/wM5mSP/v9rQpqEaqRGpr0qUzF900HmnMNRWkGxGH8siiVELMlsIehDUJiLL2F/EFM/bHRWCCEchDFmkHEEkBoMX0dIV0JkA9sLuCdsOiYKXCu6CZ7dUceIKhsrizOmvTAMoc271s8vuw2lXhkcRYI6bYYaiex921EkxEaD5ZW82QIJP0MbtjVhW+N0thjvBXxJw6M/MLxgbxUGio1ODzJYXBmBzQDFcs864wLx0GNRts9b+BotARhMnutSClAaXGrgPGx1KnJNY5EAEUuCN5KMkQRQA0hwXltBDRp9+BZ/YZVkUhwszqzo/qMf0miFQgqeSwRh4shKe35K6K6ghEai4OWcXHbAokJNwWNf53bpHCVjlNSu8H/B+oqAKKMKsxGJsa+DpiVqn68UKkgw/9gGLxSRQ/YsSsQkXOcSoGJ8ckFWhXqN85ZCYFR1xSBL1yErNGlbgUjcHTkpcAFlC9iOH3QPzcIrjnytTacuZGyU9TuLuROP2CQ5KMl6uPbQ6vFaZeNgEDqWDlGy2FeiHKB3Emv4VHztndd9yIp//ly2JF3xGuQlfl7r82r3fe3v9X9htzVA0BXe5e5iMIJkrjDuibWBrbbcBFQXzhH2SZTxVTqF9XPLAl2Xkgvqntct0cKKtd9d8n5f11NWrJFTExcP3wOg8jxzmS9IMEF9PfKckof4WbMEKAJkLoW5wQL8Xvdivi6W7c24VMIvxMNCnrvFpA4NnzwvvqZ8RufDei8G92SEhKwHDFdPL2NYM0SuMQMIyxgR1961Kxb4kW8WxUxxAA1wg9pY2y1PjCbTMM5RghyreyNuM9kSgtRqu7S5NDe9c4BInie2DQqZNKE7C03+Tgb8mYtEnrGYtXkXExBF1bpiE5hdMTZAfyt8D5nAqSeGDpza8fa2QUOn1QGM3snkjzjpHDFAoOgiCOQLZ9LNZF1RG9ueciLtAiJyb4EmrgSTUyJbpgB2nuUssDKeTNbrq51nDpwlr9xWkQeDxXYgl8wjTg1z54ylssU0zVF2ECVzzs2Rk8h8aMR3LEBmDDltEqxQv4CnYNM10Tgb+Tx53/xbtHHjYjBLECriZpddq+Ej5hi8x1qWb8rWS4+iwZosh4Jk/xEoE0AoiL9OaOid+rJMEqCNBwOTzsDBIsI0AvYzbF/ap5Vi+bXfEuTtk+BeK5WA48wYPeIOsDCbrb9b40TcOQcen98hbvj29R2Pz+/oxxM+B4ZfOpWp3ZvMZUU+MtrJZOIl4TLUhpHi5yQcRGwTZ5btvpe9Z1GWufCPLdQTqQFJu5dTB0EGptNXQ5b5AGP7iwX7CjZpvJDEfblb5DKvNuv//8f/FPBEcAQ0KKFiLCDNS7WguEYFg4aWwsH8vd4Hpk28bRuaCoobxCZbnmAoiDa1GQi4O2bleENMVgxqidG2Ak6ccCqqFxecMbFh9AnXClSO1FVwT/P53nisSiTXoph2EkU2MDTX7FmPe5kZ+BA0CmkpLBQ/gpAJLConVlVGs9sI0f2FGZESbQqd/xEAExA0+sm2wOqARTthzQA8zad3iBsK2KrVV9d/Bj1gZTIN6XJjjhSKcgHutw371vDl7Y77vtHYKxPiaVfSepkdsAdec61o5GuMKV/hizGwmFk5KdemtGiL0Wj/yH7eDOgAj0qdwQZ1N7bSUN92tPLXoKobStmhUvF8HDAzTr8pBbf7vg7YkDumDLy/b2hVYfMBFcfbvcLNMM6T1zqBvd6pwTNYNRFpmG4454z4yjk90J0VMHdITbEJOpkWwTsdORk1BQUwTnLMtqOzs1d4v+3Q1tAHR8BCS7Bex6oGFhFsrYSz6OjzQIqKw9m7Ps4D43iiVk5Lm+cDUx3zfGCcD/Tzg7oUpaGVhlor5vPEPLn/NZLbIgWlbLBp6IMBlAaoVKpg2InhHaWxXXyrgNZs3+C992cHoLjd+BzcDDaobfHlyzvu94a//vUb7m83lDaxFcd//OeveDxueLtvOA5OrNv2jcKyhYHF43iioOAuO32uOO73Ddte8OVWcGuc/mHxXNq248vbV3ycT8zj4CRIAzDp7rbaAGc70pyA6cQ5BGMW/PHR4Y+Ox99+gbjhVlhhPPtAbTtqpT4Ak0nubY1pg8sBFIVFX3u28BZmB5jBfqOYP67zAO5tFeBedhgMZicSZXKPhDDiPFXaQwvkUyBkjWYS6w6EJs506mzIohVHouDAeQaLCROqBa02LJ2xFNlPoHh9fS7baBHUr6Q0Jj4RdFLc6o4HPiHd4c8T4/OJst04lWPjmRp2RoXFkEw9lRaMQf5Xa4qpdk6dmQPDRqSKHNm83RtMDM/nsZxtirCutMo4QSbkWwIL4mg9GwfmaPDJqtE8TtjJyS0qBSobE7cAp4FITkAh7ekTwxwTDdKAYxZ8PB21PqNQMGA+0AfDPNW21tYjYfFI5pmYFIgVVqzLhBpB4k05BeznL19wHAcezydmsIEhHCPelBXyZAzs98q25RO43Qre3naUJpgY+O3jCVXBX3/+BhfHqXFcPK8LgI2XZP3yrZfyIwg8iWHOHjjdTrCrFvqkugOlkqEmZGPstxsEwHieEGH1t7aGWjV88DW+fotqdJ8zgibQ1moKCSP0BoJdpAIpZKaUBM2MVVs4FtOXwPrE9AlRewGGg5pvGoGrQtAIrCiBNWEAwCRa08+mphBHls+RlVPhhFoQMLKoGErJYC/ZUzP2BKvcEyfbP8cFDhQr655T7z3Fv7UUSGmQyrWOqID/lkjTQ1vHohXOEcWtmDQ7Y965QmPiTuhB5aExVlfDe9P3R2GgvNAk5oyJvVmBFVuMgRTU/sd2fyYEMSYaZGStQl8COfixjYHXxdcooVOXNnm1leT9yFVcWwxjJbg6Wf1DLdlSg9XOq/HatVzh8w+gQTwRAjEJFmSy6uv1HCt75c+/FJM82EelkQUfvRMvgE7EWZEwFJUVzE8kY/tqY8plyPcrBcH2ZytHgtnX3VwgEuS6TCbMZRWBDXOBagvkEQ7uhjIJjaolNdXWOkWMyLIpwXHxCyzEyx6HQI3DZWyGmHUA/0UVLVhbUmSd+TnC5wp1WlgriR2aa3KhIbFzw4dGc8K11swZPPxIEMWpO8mgntc2JtuchfZPMSJPIDBgTqkBDu5p0QWSoGMC0f6yJa5nIACKVriA7dA2OQozbM2MJLJlwQh5Rq/cjT8jq9BfhAXFLVplAVvvZwFQamjkJUuLmIADkzqERULZ1qP4ZRPAWNIrsE4bHf5BorDYyg6b1GWVyYJ7gs7z6Jmfw3TCu618Qv/pG5reF0j0PMj80VKoO9RPbPcdWy0hYeHQGvvYCrITqLaKKgXqJYBNsBMmrzvsFfeVorhAQ/f2ODvcOzsshIB+cYFIu9q0BgtAZZUjM2bzkHhkjkh2z4v9ifvWTO6dBWCCeYa0xtlWP4LpZ/EMePBDG6pPmAtSEJvdM5OdR2Pw92Jy9X2/RQv8XHa4agBPlkUahwtzYK0FpVb0wf2MkCPZWvjmgyxirWXlhNMCltPUHA5bQqsAhaEhZCyUYuTZ+trngk3hvFDYCEmJ9GsxhTMLvX1yLArF0kl6KXYB/KLMrfocGKOjd7IjvfI1xjgj5y6rtS5zp/f7zpZLnxjHA7/+8l+hmPjn//BP6McDsx/4/eN3dOtotwrXYIsGWUHB6dCVjxtR3ic4uHxggUd86e7UfgRlPdwVM+KFmbFR3lcRtNsWTFl2mGESpJbCiZAiCh8BBo4BICalhs/SH+wi85G1J+THAgO7Hya2bfvBf//3Pv6nptqlnowjApz4nsZDoSgmNxCg0NCvgU2IsQrqk7oYM4AniQqq1pp1PhSl0KNFEn6OAXXBVEDVCWIMgwf11MPxJsiSQAnHr9aQ2AfcG3JanIEAzxiC3hWlbhzVmxMGoirgOcUAAITCphKAk2UZarKiYxGSJlMgp7URUMqKLR2hAKuSu1UJNnnSAfn1WqJ1b47QkAFyKpgNUutFWcln5IuVTBJHDuaEZMiZjBvASAYLe0bgqJWka1tQX2Oz1RotFnyxUkskJAvVWugqr+Fy3MksK5LikAxML8fvEaA6K0UrIIuJG4Hiqw6IArs4fv5pg+rP2LcbSm04zzOAp0BslYDZtA4vCisVt11RioDL5qiVPdKlctLGOJngdw8HC1lsjSZltdql5/Jia++bAGUmKyrYbQDbINxf9BkK2xZV8fv3B37/4zvnRblwn4pgJD37JSCdc+I4TpgNqDhq40np/Q9eizjaZrg1xXYzjhXXJ0SBWgf2zfHTlz2S2aiUDcNbK7jpDVsk9m6CVgve7zf0PiievO1oreL+ZUfbawAcivvbN1Q7UQIEg1z6B3vj/t83TvHa98YJoeLICZL9GPD5CVRqHjzOA/2MqWQTgAnG6dAxUbZgLU7FnILnjMqGAD4d/XD4MTF2wfh2g09D7w3Px4nffmUb0jCK/6srMLk3j36CVkw5PrwIOpeGotYC9FOAAHvMC6Y1zm22Rrq4UFwSCKp0GOo4qpAwSh77WIIlmboMXnyB+ZaVETOYKI5g8/UUbobHpAxHihuXbK+IBJyxhxIYzmAnaL6eiZtnm6WhKUUgZ+5TkDLMc+xIppNEEMR/8VokvLdjxlejNiLh2CA4ngf2jRLcVSs2rbhvN/jd0Qpp5DUqQD6uBLOgQL0CVuABDkokAUUdqhU6HN6B6SeO8xObcR9P7/w0MqdeQe8EdAyXjY10Cu4FbgXuhbpxfBqAnXA7+FccAJ78nQjy2FaLCAQH279EAd2YLHjDHIoq7yhF8H57ouCET74OE5AgZkRxwQcFYCXA4rf9fTn4e7vjVjdsukGL4C9fvuHcDnxGkEdtmhI+KJPUuN9KFp37jlIEtQomTjz7wNZo585IWE81uLzqQgHXKHJ/2QfroZMgFwnx0h907pUmhSOVp8dkSb6wC3DgiECbu4ixNs/SHDGxKVh8z+OBxU2x0EzxQU2gyLbYSqOopbEqX4B9V7TaQv/OMI5zaatklpbnxSKxzcB4Xevy5/S7HlpzbCdku8qcc7UeZuIapcqVVHpmGZ4n5wJHuLYGTtxlSMrhKHzveUUabO0OECk1RtypY+fTIT6RDEVgUrh3kxifHqww4asVVaQRtx4JlPH7jmBFzotpx0AiggkBsLTpErqIewVQguGRoEO2lMUShG15sTdhX5IPcrHkZcU0+dr8azCxViWWCQPHV8eezBZ69wWc0LZhsUlMo+Yf7Py8xnzmAFbL3LoI4AqyXu4bCMY5Qk/DXn8lWuYBsktB8EeDSdD7ILM5ErpSGapL0QDejQlv4RRX2AXGwZOPw3jQ3BdYbCHHsFr2ooU7WyrgMbhHQuPRgRwsAMRjm5N2JPfPy3NGxC4WS/LDumiLghlZygpZvikBUEk7sl7Rkf0kxLA0rs1ZJI2/O7g3Lx/IvcRrkmBAWsSeWRJBPPt4i7jWgnL9nBvG6DFVVJCC+MguBSdz1YKNrgBHycsL6JdJu/nleulql79MPhJBOFkgq/vFik4txBxeQFJWxF5x49m2w7hDLlbKy7NJI+R5VhP0SSHu+JlkFSY7hxo+czHxKFrOXMRfXruuwxmadNOD2kHxD7hRL9EMGB1ZVqpCIMZiSq1E4qsWceEY+Pz4DvMTWkgsqEYWf902SFFsjcnvGCPMUbYkRjs3FFUKxEKXaA7ABFvle7cQbE9W+HWSsZgoEnqOW20vcW8QEcJW2og8LZT6NQBsi+LE6giRyMPsIi5IIQBx2lh+tgYSMM4zNk3aNaDViq2U0E+NqX9gQYVi5+ViCYf/biEZMgwoEvqmfaA/O9stVaOVN6RjzHB2gkzdLCRoDNu+odaGt/cv7DjJ/TUJyMq0ix0lBFw8WOJz5YkFqY+m4XLYxhlAsmu01IU7YgqCMfl16FUcMQh8OPokgwk1xOHTmoQ9RcTNM7uK3DlQS3Lqo3HdQi/XzNHnYEeMA3NM9PPE5/fvOJ4nmhbMIGDUysETIrQPGWJc5FmDeCheuceZQJz/tHeXF/Wwn4k3SNxvkljcjNIBCfAH+KQCFDPABro/Acv4nIDqpbPNPVEyrkgwCVjMrAU0zUkbHmSAzONf2+/+zMf/HONpLcp1WASs2pdSWDGWoJa50dHahPgkgux0/ibCqmIkwiVYMxn0aKEeh4lQOyh1AZJqhqgIJeVRDKobjaTxIcERU6UosEzos8amDyqdTYzBZLZs1yEFgNFZrWglAyJg4MTw8UPQiPVXgakCQsHiRMJlARn4wakymAz9g6Cfw7ECwDVNY9LRFKd+Cin3E7MfBOyKwGQSfAovRsKir2CvpAGPceEWDsWihRBe0CIJKYWUvtXuE8BTiTY2WUY0g3vEayXdMpPdCKolWQIljMi84onQKqLTY6BgP9CTnTYFgEqKngLl24a3t4L7/Q2tbeiT/cC18fV7f2KME+fpkE0gW4tpR47zwEsPPWCVB48TrTp8DBRsQf+M2rZmH3MFItlBao5U1jSmz4QwYuIJVlLhMV+XlUJF2zc4BH98fKyqYNuZcPcQPddgA6hQVHIMVphUBVUYHPTxRGpMtKZ4awopBikdWs5gCU7sm+Prlw0jwCQY6bz3UlG2sqYxmhm2reCnn3ach+CzDLy/33C73XB/31BbwXFwdPjt7SuKHZCRNGcsB7w5K9jbVrHvO3766Sv2reG+NXx+/IHn8xPj6DifBtMT0w3H6JhTMEYkJxagKxwqjQ59CGwIxhMLpLbhaM1gBzBvijE2wIDRGx4P4PffjoX0rwrOoAM6RufmFfaiKwrGBIYJZNBI905A7vSrRVFmhUvYEXEMPPFqDDyr+WHbUmskDngYeiwKMBBAUtjZqQaAgIu7YISWRdLZ1R1OlD/YBw6xsRyBBxU3GUsrd0KyAyjxWEC2RlVZ7HiBLup6Rlukokto0/jKnhQa7WuZJmhQmn0lq8dxoPc7RdyFFaPbdqPGVqFNcVHqCuEC7dUJPIkpYLruQYWVbVUBdGI4YNZx9Afe5g2cXDcwPUTsNetLGQzPqDoxmEYkbgJlPdHj/TzbjhzwDtgRwXiwVuNa3SrbAkHdnHN0VmCTRVMUcLa/FnnDViru+wnxJ86DSYwES0DlAldmgNZVFVvd8X77Gsy5ifu2YasNTRuKCn56/4q+bdhSv7nIsjVTLBLHKEgo21e1ANM6zAZG7xjnRGtvgJaYlOPoxVfwrZ4xK/fAajm6VnZVaRfrG3FOnesNjT09HCYEVIY4ByUYqdqtkbVkAUSaCUYATzUit+fzGb6AieGcc00kfAUkVAr2PZjCxVHqjl0qWqPOFCZWkOnr/GKdQ0cMJAmGSXxj3TdPU8Q8MQTBfGJYj+AudMVWchznZBVeLiOw2lvCcUjsu5zIw0A14bb4EPpaib8v8MJps9hi6UTSRQhClZfv59s74wiCL+EXR2hSRJsJVC4dhxJxexxK8bh6f2nDW2sVIEIm2ZmwT24oWT+HaMmIFxZZMZAgq6xhX14Bn4x54hktEApYPhwSr51GJDfn+vkAkdRWi7KGr0imc16jpA0S+XHHyMszWJd22d4cjZ7AIvwq5pZoMVvxUgTvZpGgiKKWcnWJO9l6TQuK1pe2ulwPjT2U+/i6b49nopKV9JeWlWTeIlsqljIxELuBejkGc10tJKtGJvxH7tGMFz3XReuy75LyHDZXm3ZExeu/yy/GU02GZCHQeU1QcrhNjHnG1V+bMCddZYwecHIuFBIsxwKfyIIwj8/h1NmLdqrFz8gYNVpteu+xZxCTSC/pCyDjYQ+gNnedx33kc0rNlhLFgn/8YLxO5l0wxKJIqs49dgFSvrRw8khxPdN+g75OEnjiujGumqvVO9kF1MYxdju4L/BVERpULyBNyYEwLswBVy4AvoMLfHQChzaQww2a8myNlztPZojNAe8nHh8TRy+4vb3HFGiH1gopBa0otm3D8EmRa46VJkNOCNCospXQnbGjhWTGFlpJtVJ+ZQarzjPnlMwbHAjN15aAoHtoHVoALIpzdPprFfqAICFkXuRh6gVgbKu8HoD+arjhnCMAWhBoA3AGII1kTUnBrg17q+hOgO7JKh1aa+xGKAn8ZJxG4Anq0EEQsYqiT0d/dHhzlFrx+fkgI00Vc058f3xizIljdDyPA8/jiZ9+/hlv72+43W5sxX7Z5xKfKRPjkXMi9MDMQp85JDDcBSPkJKxHbho21IzdU5bmTa4oFsbY3FIWIliRYxqKcP3T7tL8BcjqvvToHGTBiQDHQV3bEhqJkIuZnJMmbUwMAJ8BxtZC4KcUFjNbTeDJljSKxrlmLk4WW/q/tEjrCUXBB7gKLismCYBtJjBn1zldrrEoRCbqNLgMCAKwNGHSGzQXbuHoxkBKIUloAV4WGRl9JCNLEP/25ROzrffPfPxp4ElrVAhK0qk9NpJj+oBOABE815wsJ45NBRWcGjXzAQCrR7zHoRXLQ1sAE25arSiuaNoAiZuDr+9JQRzmCAyFQbWD4AnCcEogfXOyrcs1hceY7EArtGwoJaYsmME6LWXREhVs9lFSQoXGKPUVJCooli0hLsBgG4CniFlU5FIsV+mhIAK21CGEFen5YhNJgBmIsYYRZYpCaoimCqJnNqiIBiBafsSykhYBUyQPGnQcBXBrBbemFJkVsNIeCWkGLVwnw16ZoK1o9f/0I97Moo1EyFqLOdnBCEvKfIhNSkbPub0tAClf6C7FXSNwk0v8tI8Tz/MBt4nN6TSOftDxE2RH6ZkkYLEo+phxaPnMu0XlagJ74bhLjQOWQajPqCZ4vJpgVRITUCyeJsRX0kFwFKg7R0pPJ3Dzz//8v+I4O87RCQIC2O9vPJiSEQlp6xLPJNtoRSjmWgpHV1dx1KTYQ3Dbbyhtw213FB3wQaH/NyVab4PCiuqCVhnM7bcN29bw5ds7+tjw9mVD7x3P8zv+8395RNAWAOIEzt7xOM4IQspqS8nA+vPzO3o/IDrx9e0L9trwGRMJj8+TVQMdmDDaAaOIvIIgUOroPM/vscYaScjLutuEDaA7BdHP8xNwxzk/MeYDbucVeIkAUlcri9SgkfvgmqrACw0qp7sxEYB6ML2YuA8/Mbov4GRVDEoyCwo1fqZDdCJ7oulAGNotCCiqC68jojOJUosRy0k7js8JJ1MKwBnvbZqAL2gbcQm8Z2KmpYKVvAEzMoJG6FaIFlRUUqM9xAgzqcMK59cRB7BYHaoSVVi2pJoIakzJaqWilBYaKIqqDeIFNrne4qyEq7N1jPcQ72hReY73NgeOPlAMaE0xYrTvPvnaW7uhbg337R3Wgd+PD9QiaC996RrKz+o1AjdEIGhQmbBqKDeg3RXtzpbDv/zTX3D7vOGPPx5Qrahti8BmrjNeSo3AnaKitZWwyYaffrrh7f2OL2+CooZ//+/v6KPi218KnwcbteE+UJR73gbtZi0VVTbcdAv9q4ltayhVMfGBMQ2mT+g28ZZtv3lP4KwdlwyqLkaaKlCjsj8aYLPAI+DFecIFayqd5DMQuV4/RW08AQoCENSs4CYRF6h7tEqRbTgH2zohBSYKcyrUfgj1tGqpUVlnIleKRttMTBMSxXnGRFLJszNRo0qbBMAxOPL58fl3ACyKfnnf8fXLjn/+D3/F169vqGWHqpFB5QlokBHlQkCJiT4i6EQAIgTBRpxIbaH94AIbwJykrtdC3SkVCr7qdFbho00go8RSCkoNuylMaM07ph2ASQi4CjZtaFXhezB5cIFy6aPWA3YhEwkMnoP/A3VBiTZ7g6+2h4acJEobNu2yd5ZWK1hBL1gExIEWLSMl7BtbAzM5lrAR9PkUt6d/SFB+6VhKAkhy3UviAy4rcfDQmvH1dVmxAV8nda9ejJUh4hFWaxcokmB9ZDRUoisQmVfC/AJZQJKgahgBzjHM5PNQJasiDgkTG1DvLKcIlQB/a9niHhNAYXylWlBaAzSY+WaQGo7fwxCaBZBTXhgwkQQkm6kIZLLjYIGnk61xx8nYqyqB8dRw5PUozCLxiwQD6T5Dc8+R2pJjgaiist47xXYzIbJIUnyBuC++LrdThpQRL2UymhoiWHuDPqv3k2uvfB4OgtfJ2AUAO8OPJbiZvlB8vXcCbAORVGZhRQTdBvqYZG64kCGMAFDi09FhdlDaQzWK3AlMZkyEKARyenVOHcYCABPgYNxnNqON6GITyEoSgxkDD0A6mETwGM/uwRrPmAwrPoUKWrTSFCZwBO/HWCESc60IniMbDk4kwTfVsLWhnTUH2YQBHDMHKxyS5A61Sw8o4+aqSrb/y34wy+nOwewQhYFTXNmi2AHf4VB8fn6Cxc0bRBWPz09stxu+zMl9XwRnyLgg9vaUAraB1wDLs72YMhAmI3JYxhcBeSC1vlgLF7bfQnD2JwiNlQtIchrF0ioKHFY8umHoT8eiTQVzXQA0AiZ8HbKmTQFtmWsBZ5xvtI2PZUYuLQVTKDUzhlEepRKgf44T3h3z4/sa8PI9/KT1AZuG8/lkcb02fH584Jdff11s0LNTzuDoJxKYGXPicRxoraJtG0ppfAYB0NRgZkJkdYj4YKwwxmBbWLF1JsxAoW8LnaU4MT4IymyV7Mu13yWYtz45xS3Y+gBQotPFU6x+Mico7K9fubu7Yx4pgREUxPDxooJtu4EgLQHYMVjY8unoM4o02462NWgRjPnEx8cHBIovX94JXtpYZz7Zi3NSpqC4wp02O5sj0tWxGCTRnRBlPSGAqtqCBx32b3B/upPQ05aN5j5UEWz3G8pWgBIT1Ge2X9Ivr/MtAik1fGRlkcqj9VYQhJC0A2lOA/SOcGMOW3n8/+jjTwNPyyjGC7v40uBMbZAfBAH56AJkEcAVCTcAXEv3FMvlAmoGKJbrwf+qlIt9lkyYaOGSEN5dMYrIOqxJcc1/Z38lgvVDSqJEhYFItU8iyuHnAviwH64nq7xZqZKw2JZW20EjbNwQuS6AhDZIJF2x4TNA5yaLp3qVKfioMzgqcQ1ao5K9dg7Pjzvgl04V4nczgchRzJnKFmGFomomYbZeLh+2hQNJJ5rgxrqtfKjXX9bfi0RCvPQDch1xOcP1e/HKEeylw1ijMj0d9KX3wP7lQVbYJONpRlIkQrBNV5eCh9PxWCuBu0Z1C6HH4bAITBPb0GCAeAQCCQFwHbNucQXAPPhXID3zESlZEWaOUjd8+foN8vEJf4bQtztKbaRIgs/Cp7G1SMh4khDQ1aJ4+/KOWivavkN9QGZnImq+EhMGig4FgQCtZISMOZAgKdlxitu2Ydsb9o3aKrUpfvv9xNmfeB50aqKcbCZo6GPi+TTSS5d+LTePw4KJNnEcBbdtB5xT2I5Hx+dnx+gTpw6YAF3Y3jqmoymnNGjshdHZVlrrxrWR0GLIwEkAw4QNwww9pDFPmHdw5vDayXxyzp54Cf2CpSGSQYbiontrCfs8kW0cHtRjzbMYwY1EZSdyDtpIAURYIYO8JOrZ/uZzgZmr8qAULZQYY6t6mbOkwudrz9ijFkmDeyReUlg1WRaEmmNpyxwUOHdjESRbWUpqOkTynDb8pTkhTuprUErbl8AX35JrpVHdtkjsNCYeUvfSo93i0vpZ9+kZdMlVWMDFsqyFiVFOCONUp4ZWN2xtx1HOZVaSWboEfCFQa3G/tipfXpho16aou6I0fr6/v5GNeBJs3Pc3HP3E2TtShL3WGnuf7JfaJPRpBr68Fby/N2yNmhpv7xVzCtruDCM89dwcJVgqPrmzWqlQb6ihOWgODkoowNk51cq1A+IUCI2PVckLd1grbYe9+Gg+SwVQCFzG7hiW2kKXvc6MJG1bGn7u5fRV4XM8q93h35I1BbZroAfjSTgFh3R3Tpapha1153kGk7pGewfQjUFzj6lvhmQrTWwNaDVbORxnH+hnx2+//kFfoMB5bujnhp++vuG+72yvgL7sW4nkNtmCYeWj9Y77LJgGmhVUR2jsJskZOYcu2TkZyK/kMXw1gNUKyXar8ChCxlRW6lfSp/l56a+597Av9Yo7li8KYDdZEVHIus6Fh0/0q8AV9iuT5iIaSRNWy1X6YsYV0SoqEYDG61NHLq49EqQ1eTfiJ13R1AsIkQB9hjbx+RIO/fCx4HAJXxBrKILFwrh0csLGLSZP2DFc+5ci/gFqwRaYw+uyFUc5fNntbEleMSSrf1GguuLTfD8yywgwiSMSs5d7QWqcIISML06p5wLnftULYMuinEaiQubqSzjJiwcLKzP2Qz6F1FaSFdOtt3qppi/ALmLoH2QB1vNJRmrupSt2oz6hrOuIH8fqpEgzkq9luT9enpTzX9OyCHi9uaRJW/dwXefaW3LtCYKrAdjHmycrTJBDgaIwbiwQQwDCJg6JggHbYmXF+b4KkPmesW7BflxFybV//eX5pxZctPyG3SCgc+0FJFjFX48/PboYaIMJUF6vK0CwfhgXs4bM9TG/AOzgUYf9u8BgnncylBJeLaIwjfcDz7Uh842y1pJ2Ya4Nmfstcwpzi+dr6zupLzVjGmG2L1KPJ32SAid929YaylZRUGDWYTBo5TCYHMxjAZLr2p/BaAEgOuHKOAiv+xO+0kpEMfkcQROPHMXCmrGYFmwyTV/qK3fgthNMGDjBL/yrBqPNMw4N5x1xTwK3XOQgWKhguMM6dYp8GqYyXx6Dmk7necbngZwG2g9qzPbnsYoHH5+f+Puvvy5rOEKP9uP5CYjg/f0dY048jye+fPmKbb9DtVJOIJ5VKWyjK9GOCfeYEi7UQEvGXzAq+XwJ6mReLgAwuJq1XLliGgYCq8bhO5C1X5JR5pbMJMtlXcZMwPNhEwt4SrDGjPlG20qsecTnMwsTAgvZDS2Un0m2ZB8DW2PhnoXYq2MoF9TMyJxECHvHY14faT7CEqSW67pAZf4+ba4iS9pp9QB5RSKF4X4tldfYvJFU04ExmPNGNICcFH0ZT/3BvqS5oR+O85rJsfuypVcB53/88T/RajdXuLCOkHCJen9iOlBFEa3XSOGzXBz25F6JRwrColVY0O1J0RS4KsSEVUIIbu1ORyMDYx54HE/cq6IV6neIeUyhImjguXRmmMPIuoFED63GofXw2wJIYYV0DqixZWpNgdEc1cgpDk2SOhjJozujMg0gKjZSTjBrK6G70rarEMT/n6G7VBv1goZlO1o4QRdOQBKnOGtSJ4EA/1gFGUYUm62Eipy2WiLOvZINhzjvdfQD1gpuW2UlXRUjqMNla9DScH9/R6kNrtGbO9OZ46IflgiqX1BAFc7/mj5h46LsZQLYonVthkjstJ5+m9ViEZydrY1sWaHln2PgHIa275yG1DYCY8r+VI43JotETcgoCwaH1MbnqY7hzpHV0oFywvWEyUC3jukTre6ROIC6JHPCFGu/ugDnpBBiIWzKKlIEuBYVtBSSPTodwXF29DGx7Xd8fJ4YA+xpdkHb7nRKk2PPxSfptK0A4Xif5wGo4+29oGw73t++oZ+fePYTv/7+B75/PLD/+gHRgueDWlYwBtQVZDkpBKPz2X3MDincY7f7BimFI9Zbw+9/fMe//Ot/xdv7N5TS8Px8wF2haJgT6OcGrwVeFB0DwABKB8Qw/QB8g41bJFoFcyjOU9F7xZgFAzudp1TMqEpNN5zmaGAiXrctdg6D+oFHCBByneaY2O8Fre5orYcw+u+Y9gkpPRJYwWkPBiAs7UPUCTgOw/SBfh5IsR0tNOwFESyWHRnFV2Glo48TPVqIRQUabEH4CFnAK0klkONXBRIZ8PE96KSiNcRpb/v8IGgSjCcDxRSnGZ0ehDpSIlDZ8oCTti0I5pNCZ4DjPe47HGdrAYSLY/igczy5Z6dxCgYUgJEhVrJ1BcwfewTjEmdfSqHDDZFRAeDdsW19Uay1bhjD8fk4sDnFS2ckiK1qVGUSiCFYJqIo0bpmRuncbgOihrdbw/v7De/vdzL29g3/7t/9Be9vd2ytQZJ5khomaYPRyMhqHuvtKJX6N1++fsH9fkO5AVDDP/3Hv2D0ib/8/DOo03Yxnmqr0KIY1iHiaJvAMWF2YPYD/Rx4vz+x1QngBvcCKYaihq0OzNnRxxNVg+XJHRrMCwn7PuD2HQIGzK6CIQKUCNJCLF9ioIVqwXkOWB/gWHWnAFmAA9MmjvNg625RlKpoUjDGFTgIFHtMk7yyQVk06/QjvoSwwU0HWezN0dlOQfabokoDgkEwAQx3PAen7cxgv+4xpEC1BehbyP6ZBpzU1EilCIitc2EDOKejnyfG6Pj444PtEpNjzPdW8Muv3/G3v31i9hN//fkb/h//t/8N+84BFYYYCQwGYgws2YApYjEQ18PXDhgemG6hjTb5+5SWh8W5z7Z4N4kpO4ZWNz4jbyBA3leMxIIKgNpgKjA/YcF2TftXpFASIEe9O5kntXKQyOzBeAiGjwChE+TwEvyMeTKuKQqKoyP2rK+2rXVOIpClJo0ip68SDIk2rwhXprwk/8m0DLbhDNtYSkyzSuZwBMvIMCbDIidRJz9yOAMysM5BDPC15y2C+dQNyqS9lWjtwKV/kzGMyGv7lsAm2xAxCWYXSTFWwOzk5UX8IgG2G7A0VHIC6Yp9AWgtHOYxKDR/TjaJVGFh7lb3FZuNOdGfz5ggKD/cP8EWBle1agheW5bJIw8XoAQfZw6cY6CPjlpiamSc0VpreoKIM2MPAi9APYLtn+y39FtYwEFp9fqihMaHM7ZKsOgCV8iqmbFhVjwaCVrGh+ljktwjITGw1iJe04OVQ1HxELeeLF7NZe9lrV/KEqiWkPbAVVwSgfXQaFv7k98voUUojmhpD/1QnzDjLGutDm2GomSP/sDeixyCuGsnU9YNObkZ6/GRbbNaapTPh6yyWPPMD90jPuR7zQBJb/vGRZoZLgfTxHLvC2ptENE1XAHgeUqNGK4XL/g4suhH37Lfbjj7ieP5WK06xfm6uWZjMnJi9wpfbHYakeiuwmHUhYLRjKVmF7UBPcwAgZrhbJnHLug+4cdBjdAFKGroNU1UVdzuN6jvKMrzVXI+WwwEMpC902qFRWxVUgvRucPGOBhrWIdWMsGzqMtWMaXuRzAUU945h9vkyCFJHWKnMl8pyU1zdmaYodRoW9TwQ8ZhEuYDWwzJ+ng+cB4d379/AqK43d/g01i8fTzQn0/M84TbRE+YK0AYmxO9n4xvY+ucxwk3guCqjPV7HzGQJYqFAMwZmwPAZ2fxtd7e8Jd/+g/4X/6X/xVkTzr884FtH/jy8ze4Oc7PT/5snjcJvWMj+1PMITU2Xw6kNUHOVFwmIM7isLkYlSViFq9CWYuezZlxoJ15iGPC5ggNX+pfYVLonhxfX6GMi2M8Ka9znlFYmNFyaoa3+x1vtzvu7+/Uvb19ART47bdfMMbAt59/wuwDz+cTx3HgPE/awxIi9ylFQwQ5zt1FWvAgoSBaYxPImwEkOySGgujS8FrVGBe2ehrbUhWUCGB9yyDqKPcd1RwyHfPTMU9fhekc9jU8Y2OBoCz9WAJ9LOBv+44E/fnpC1jP4umf+fjTwNMMNHpFSfBltFg9ZzIiwOqFXf3ZQZNO0DIPOJP36P0EQh8i6WWyKj1ZFZP8wUAfL74Mgz9fzvcyznzYGUnFdUMDdEoaZbQNJOMh/VVsSHhWW+gINAKaFPidzjHv6mW9Tfa6quZhCsAnX/zyo2ntVvUCsZ6LclM0aKgvH6px2ReYs2h3vojhmceuP7m2vhxY0ci1Nfo9/bpfBo6yxOHY0pcH4R8+3H6IfXJnLGMQVcC1PusZXe8JJ6Kf4yOBVxbFdSC5QlExy0ojHFlt12wzgrz8d4mv52usd4kqYU6xsB+uO156/VbupTyUIeocxiO7dVMbI0wG74U5OWj/nJOOZjyvLCsmCm3AQreC9YHs6Q126BwOn0DRhh7U5uc58PH5pE6RVvSD56KCvcEORwVBVYtxqiMooOfZKRw/KeAvSmd79I7dDFKiOuETBoWZxrXH47Ogu0drqvkM4x0AnMqqVqTWWKba5hlIhqBpjHBlYJjNC34lwhGMMsAMtUElKGzGYGX6gHmImIouliMQbDbhOZsv5z8aUriv/GIzafToW1QQWc0xZJ+2Rhvu2vNwZIUcIEjNP3PqDHeJRZ0MuVvD7tnLLqe9DK2erIS9OCeFvBQpfNlN1ev9HS/XJ8nkuGwyJ9J4EMQiGI7gNur3savjSvnAaSMcq3poK+kMi1kUUjiyHUWpx1AVUvSahhh94rUQVCGbMSxGsEX2Pfr4Z4WIoxSHoADS8Pa24+1tp0adclKnCjDGF8ARrJYAxOL4Fkkx0cteaRWUCtz2hpatcg60VhiYTl9AYDVgmrCFTQVn6BvuezC65sSQCUVFTiP1bD8KI1gDOBgiC3TIfZLtQlkV95d2ZM+dIWkXM1EMHTJoBJQlCiuv1XT6Jlm2LcDR9KfiC2hI3wsk9EGr6ZFowC97lc972YLr3a7fS4OrZHIMC/06C3l6AWRG1S6KUIYQ+3fAxrwAfaymUwaywX46jxNzdHwe1LJjaydFRM+z4zge+Hw8cL9tl4ho6m/gH9yRXS4YsY6IUemLyeIv8YN4sJ4ifsljsF5Col1aoWHLc8JRsqMYu+gC3SRtP83BIjNr+OUSFeE1QU6zZd+vmxEgecppM/J689mlxgyFqa+9Epy2FRL5D09Wlv1Yi7eSt3jQabk97PkrcPniV69YLuO9l/fyq6oqAXBkHJrxxo9xYrzOdWR+2Ie8Hr/WAckqvR58tipckQiu8/HySj+eLKw9sYS+o5WRLdtGf5nxb9ruXI+XyvHra66FQT5HrLVY51gy3pPk6VETxS/x3Ish/+Oa8fWFyb/nc5XsuqT23ssN+npCWM9lXft1qelFfrgN+cevyf/J115+7mJFRTJovt5L5PXp2BXbebJmY708l/diH+XNSdgwXncwV2KcfRZ9cz1UEHaCft/8aimlGQzLFOyXEu1HyZDhc7gmM/4YV+aXLjskQlfPGDFZdK/r4uu/NLoLwNNg5uezj8lyXLp4vdU+E/eneS5iSQPURqx7UQTLG6t9GhLF+1cL4ZdtyXtJsHrGNY3InQSx39d6+0rHTS5Zi4zTLa59SV4YATybjjkGZh/oegBuqE0pEVN8nV1uYcM16CjuNxhKCcJmW/uwieJswZ3rWriH8s8c0OBrL6Zl8rUAybjLo5IjuBwgOCR5/nzZ0Fc/ehwnHo8nfv/jD0AUY+Y9TxyPT5zPJ+bo4Vdjmp+SyTX7wBwdY/S11c6DwF8plcU/kOHUA/gT9+D0Odcm9khtDffbDe/vX/D+/gUff3zHeR5Asehiyugk+F8vuVwa5NTzlWA9ms8LhM0zHeQOrPx7gi3AeLE10QmTvlhwvXcQROAcVpR5iIf4fg6tWoYtfKVnF1TamsyFhXEsJCbyBdP+HER4t/2Gww4WsKexgwUSrNN8TSBp0R4tf8k3xbqX61QvcY3I59UViYv4unRJU7LOSdZv0vZJ2s8s1pQJlBfbEPzGZJs5OE9vkZqAZRNebbsjsI/wkz9Mjf4ffPxp4OnRH6wYTKLHGo7O04gXrDGn08NVqWDTglY2TlERTqYzcUxh68DJzBIChUsFlSs5/rmDIxmlZ+mL9L17vXNClgPTY2RpVkc6GQYoINWnACi2Kjcs4o/YfMaKEajTICroM9jgytDWJNsFAHGNvI8HYrpg2MRjPtDQcCv1Al1DAI7q9oLR+9pOormJuStMeHByMLJHgnzYRNs2tHbDeXxijIkyKcbY0pkNf3GmDGoGJhRGATmRmGAT98O4CvetYquVSdv9Di0c8z0Gn0dtG7RugFY8zgmdwO2NzJ0RmgGqjUfDDWbsmdWaAqMJvgRlcgUvAXARjkVqdACkH+cB8slFJ+4iMN/CcVAgtUQgMue8EqVBg6kJTLpAWgVaBUfKTzyPT+QYZ4//KwA2daAKJqgp4nDgZMcx94NAo+9bPEZaAot2n0eRzVG8V10xD4NwJswF+23H73/8G/5f/+9/ZbKo+xqlPZNxMghmFhQcw3E+ewSZDjP+8G9/+8D8KvjLtwobFYdV/Pp54r/+9ju+TKC2DSkdLogA1GgQp0isg1FkTBwf5xNoip+0wrTCpMG1AlowPFgs9aqywydqnSiFe3raCfOBEjoPx3NAVTlhRBxtqzAZOOYDh09MB0rdAReMTv2crW5g8w9Ib3eyQ1QcpLMr3G8oWrHvBQ9QSNJqgdcG3zdMnPjsHR994Huf1EbBjhmGc2TwE2wD16CflwIxjgJObo/BIa6osmPIhKEjZeRVec4qtwcqlPhXIaOTmgQVMiWYcIKqjYmnkOnDSTzcQdm6S1DBgMpqozE7BRyo24YmytHIxn3C5JnrcERVSwQUrFfAhQFHlRRL3HCOgaNP3N9uaK2iH2dUh3K87p3BykHGHRkWleCg0s6oh/AtKMrIJAtwNZhzIMHPf/0nfPn6Ffq2o1TBVh1f/Cf4TXC7NdSiuCmTKItRvxqsM1fhpD9x3G63qJpZ5P+Cba+43Rru72/Y9j0qSyd+/mmD+4a//uW2Ws4SwE3R95YDHALo4gTRid5Z2fFhGOMJwdX2eWsDwwzH5L4um2I4wd8zJudIucXzvaHUDSJvsGk4DkOrEyIDNgEtFff9G04fmP1BUAsOn51V92jfqrEn1AuB00hEpjty9HiJCnvVsthmuyhuKAu7njGAwW2iCPBWN1DvK4ZV+ERrGwScbiNuEB+cOtjaKiyNEZNzolpWcgiCSWR7gINMHa2sCPcY5STVMGAYmHh8Hnj2E+Zk587JoPLz7ASaqwByAEiFHId3etA+yHI8jmfkdYo+O1nU0d6nIMv4rTKwHcdA70/0fjAOqAavD3gRtNIgM/QdAUDIqLM5UQvbnKsaIIZpT64NqA/pYMGiiGDbFTIrTtuikLAxNvJIgBTYCp+VnTFVVVM8ugWDymClwbwAlYLy52Abj4ihyYQWRSsVTQkOcKQ7z30NksF0oI+JPqlHJVoxs0UwNFCinxtkcDDha4VToQL/x/D0FwVu1HLJ1kFFX+3bSQa7EqYAXMKSnpEMLQBAc8ImK6cE2BlYLxBNgl0FRw32kUTCarNHslyROjUWzPHiV1ESLhCTeN+yEsQV4ntqPfIGxDtZEkWRY8UlEuMSA0UskpI5fBXmPJgcDIEFohtjY1W2kjvgIEst2TtulAM6ba4YQUXR2h7fTwbay5p4jkc3FAsmUKHdHRqvFyPdHQYoJ5+WwniXGmJcdzLFeFbUQ+LCQDaVcOCPgV0D1CPxBXZlRC6WoAVbC6kVFIlRAOIZCFFrLDAaVmrZGgYBYp8lEOdRBLbioRUl6H1gjkk5AmUbLoT7fxrHlV+tnfzeOT4BAFswDQnOF0YYIbicHQdmNZKnayNLFCw0Trs5RaOnj5cCEf0X5RIGRkzAq7JDUFC8YAzDeTigDShb+FDHOZ6AW0xejRSdS4CqmZz3OOMpAXG1Fxl7hsh0cAB4Ef/1bAe1sNXZwukrFhSJboLQd6COKXMAKJ8ZPIsRjiRBVwSAAAlpC4CC9QEEiAHaGRGr4egnhs8AjhzUt2XONebAPOZlVzKfGRHHI9v/FDPACtkKEjtAgiU2YMcDv/z2C47jib/8u7/g/nZHeX+DtAZtO/cUOo7OKWXu5Ka/xXCpETpT5oJhjmMObLVig4BD2x33jQNFbFALbQw+JxWlDxbJ5AKGBjA9XoB0LRWlFFgpcON0ZYuzk/q1MoSTXU0xzPG3v/2C3379Df/lP/0r3Bz321sw98oq5J3zpC3tJ1QU7/c7hjs+V0xI8fVSClDPaMVP26HoWtDRqANnczGW395uaLXgtu/4y08/4f/+v/9veHt7w9v9HX//l/+Mv//t3/DTz1+A9xvG5zdoUewbFnSioSGr4FkqlVNlRRxzdmILAZDcSmNBrjLKbnUjOHI6xjjxfKZ9ceid3T99HBA4GgqymtNqQymVNqMbEJI3BRIx6yvihNi/9OcWvqfVEjacNv4YA8fnE3h2fPaJooppgr3tuH/7CQN/4Ph0/N6BXx6dwKdGzA2HVwO0ALpzIIGPlQ9knHPOk1hFJTO0Y4IdTAUlwN45absJGvJPtwm3gZzW7JFPmlJLah4exd4GuymkGeZ3aiMzbiSRgR0aAyZk5aY9QiG2c47JuLMWjDFwzhMiFaKFg2z+JPL058XFw4kk6FRkpdMvDy+2hJM/WdcIRwIMrF7SWHsENhoi40AizRcKKEpwYqH0SHoqoqqIlHyKxAdREUssmQliUsCyguGa+GJecVT6AiggC4vf7zZWXybfUpYuA/U1ojoZMHUimxlkGahdtRg6+b2Fd+NFn+XlO4KFFnuiwIl2ukcfN1Yl5BVNv+p0+VT4/xfCmWgvR0gyscikQZaDzmlQ6QhYNePzpghmBnGkcOdz4Ga97klA5gN5XxlwJuiUlYCcchLgGKISEbsh2WUeAMq6t/Vc806jPhtft5mzEAhwzUic+AoBmoYWVzLpUnuB8Ycv8EFwBdaL3icEnzKgTsArr+0lBKao3zAcx4njPNDPE6VtKBLO2x2ucTAIFWGOuRLkEs82a45ta0GZj+RhkH1VoiXS3XNwydoPSRoE+D1WeELDLGnmwnPYJ0W3NajsbraCx9UG4BHMImIV1x/OmuA1iA874IMVBwEgIcIneZ9MMBhUGHLyJRBsgtiLIknzBMUeI6GwyX3T2oZaB2plRScPR+6ci9rPtZC8RhhgcmmxpW3BYAJaWC3RtDEWARleNAM81hW6nmWeX8SZsmhpydrxtbdCIBQOqbGj7WJ/IYO62O5LJcLZklNe9ByiToWsyhctAXRWmCscc4mA3/YdbhXWOqoW3G83WDf0yhGyNSYokWkRXi3fSwSlBlgQH+acTvrt6x33tx2txQZBw9evd5RiaJVMolu0jFmMai2F7dfs4uE6bzvp2uIchawGtFaxbRVV2RI1YpywBJW5aop6hhNxAiWpNyiCRbFfFfz4f4nAHY5o87nYBSUT0vgti6+tSpxHH75l9TgC+2x7C/tkP9iurKBWBmXXTuWhfWEWpSbPgvKDhbGYoi7R6qHr17OBIYVz04onLUdeXm+1JObbXo/5h8/Xj6y6L+2B/DVhAo1op/AoCg1MnHNgdINNhVllIj5YqSwgS8Z8BjnBL8aGEfhZVUufUA2QrtLL7K2FdiE9SBUA9zfACr5+e8fb2w0QYMY0SPOo5kcbtY3L7qzDBostHz4m9hSQMUihDZPQhrFow82nq1HVDrezXJbghdGmAfplkgxIiM5SRJRtYnPaKr4lQxPramNPSej9/MPuvmxgPlx5sYdpXyXMm2Npy+G10hrX/RLX5PtkDJU2mUv13wb6+TvpUyA/sofwEsus33b/gQmwdPfgS2Pqx+jn5T3l+hSVaDV4eTHIag2EvKg3+vUnEKT7sO+MBcLuX8HP0nhZsU5Uz1m4TBYNfzzbCAXOAtfLVee92g+rINd6roAkD+X1pBcvaV28rGclL8+Oeh/xb4n2jHinBC6y+i15qOMKU3PG13ulDbqu6TXeZECByy7Fvl56I8sW8bXY/cV4V4ClT7R+JnxoTtPMt8n3LIW+qkSrmATbGyJLEybtMGPPq/K/XlO4DuKhvQQnaOVp8whUpC3PeJ3DGcLW42XPvuxMWc/t9Z5oe1YeYgke6fVb8qqYCwSKHOCbr1gnARuAOZxC0yEgmV65122SNcZzF4yweB8Wf0NuwpIxHc8mzodFjjDcY8P+eN/rfoFLAyntjmB1HWj0dGb8rIGCizEOTvnHV2smAEH6TsYrp7We6KfiWQVtDtwqC+fM96JNOx5wxlzDyVxml0eFlgZVAk1U+3BKt4TIvgS4vNbU1rb/cZMC/Ga2Ay/b7ZFXpnZPrJJPxphxvNnye+Ugo0/GoRb7ZQrbvN24fqJrurYv+8o4wMAOANeXi5WwRwtsRFwr49paC75+fcfXn77ip5+/QiAY40TvB87zieezoBT6PE52K8xfjOw0G2fEZwS7NGxkFgIRdn2qQEwhkaONmf55BsM59B0dyA4XJPstFsedU+Myv8TySmlfqAuJOFGL7XtlRgCibTh+c9jE7KHLpBX7bSNjfiMIfvaOj8cDv/72G9vs4vdFgXGyHVdK2jvqldG7DmTxKm3FiwFEshFZxIl7yPUKNjzCRtj09TgpEeLLng0PBhgApI5bZRcIm3aimyOYZ4xBOJXbM0zMy8J1bTloYjEH/+THnwaebjXHTtMgLxBmLQQv2p2K81UEdaMGgJmhRz/gaZzqIDt7V1ttbI0ZxqDKDLWGkSyNgWrQ6M0ZbCargGP/gpVQ06E6xGf0cla4V9igwPM0Hq5ssVSJV3YA01kMKuFsVDCm4XGcKKWgli0OJifA6QpOFVUAdVlYBARwpbMcTuSwx+QsVWVS5WM9QKsVHsaPX6HhUJGY/AMwIA268aSeFQIMgABSykuTl+AKX/ixgARwYyZVdb/dsN9uGDP6QrWxWqRszoIJqlYmgxkkhIHSIoDE1L+hsZAZyIYdnoZaCmptC90dZ+ee6KGZkCIKADoGfAxWoUARbhqg8wq+1w6P9wl2GQAG+rEPHRPn8USfE7UyiO/nGQ4WEC0odcfshnFQwFagaJWjS+eTfdBJYVQrmFkReol+mFDo+oTrsh8e1yPiaBD0c+CXv/8N3//4HXMcwbx0HMfJZGLboKWg1YrRJ57HB/bWcCst9AkU3Q5oEfz0l6+4328Q5eSP43igquLtdr+mywiWkU8wjW1ugAYbbx7XNBETg6vjnCds0NBvW6WxjtG31LmJ6VMeoB5y/GjBGB1mbHmspeF+v2HbCkQNjhPmB+rGgLBjQATYGqCF7KkCAgyQSQcUoHXef1NWSo6zo1XB1jYoCpknT2pufXn7BnjFGVNt7MpUoqpKZ+qgFl2+dmSMwbbKcM4x/YQWxbZHVc8dIVEG73zWpVbasj5hTpAl3zen2OQElCV8m+HTS1B3HNwX9y8bpls4Lhr/aQccKbSuSx/F50ARQd23FUTXGF89jA5ir3eoVKhuuG2gICgGAMOXL2/RdjtQiuJtv2FO0rT3upEVEmAG9W8UbW+Yc+J5HqhNYkz9RqDPeRbabUdtFbe7w73A32/49v5XjPGVbC13bBvD0wSNSmHlsdvENLZLFiWgsMWUTB24ztykVtLoZ/iPa2w3poUvkKgSNWoy9RHJTNgdo8aPTY5nVr2S/RS3l3iOt3q7AOmIOWs8hwzOe+/IBLFWaoSUJUhLllE/D/TJ/Z1tIFovhiITneXi13kW4YkLVwOA1W5Nf7Js0WWHqa1j0W6YJO5s8dL1bN1pH0QANCaJDFC517UyMFwZRRRBVpC3krYsGDDQElcgp75WRbeJ7+eBzw/D6IDqjd+bnUyvAczZYXOgFUUNpoioYGsVKIKtNJhzdHJpDVoKbntFq4pvX78AMHx+/IZWBF9uDffbhrd9w7evN9z2BqjjGAd6H9BSsd/v6S15xvtcsQ6C8VBUCDQ4YFBMqeEjAJXKfSrUCDyPJ6jLVNFKC93CCPYb11BCAHr4QE7FcmPirjKASMZscvLUhEPU0GFgz/VVFENa4tCTUqmQWsh/NgmdROVkIacu4SW6ny3GJQJhRhM2X4cfRKK43LXDI75bBir2YLKFMvDXqPpGtpW7D4iE6vXDX/WRVCBSmbwHe9E9RJD1JTlwLNaIhfjqdTqyyBhJVSa3L8BHWmIK1ia4FL4gGVRc7rjyjM0Yg63R9S1BoWAAWQ/nc4HFNZgdPG9OljkyMQi2Z1xvsizUIzFMEHul3ZGcItn4eAH5BCaWGMALSJXWjGOzBS9YBAAzMi9yaMBcQy5oUyWSoNdipWfGswpSfgEafjX/iVxrzK9czzMaPlb0yiKErhaqVq+pqwT8eBe1gC3anmLqvoqLt7cbdey0Abhagc14XzNyDnMPtkvkBqSbhn6ZxYCDucSI67aFPaUuFzW9IoGPqdLnSXHjGq1ASBAtAEg4p7uxwBxyHWbwYJzYJNhuMybO1Vj/KKStJNAJhLkD4zxjPSXYw5EJCJBTuT0XP0FboaTCGJMTNkOXR0Bmbj6/4RNnxO7c0jFQCmlDOLntsGQLyAJpAU2Yi98qL2c+dLzpJ6+YJnVhKwrtn82XYneCtbFflCzz4/PBwkwFzvGAPU4c53e0bcO/v9+hyoIut2mKUwuex4N2Sfge9/sGrQ1Fd9TCYmhrG8g+DD9WajAaFdMMPQYBwKmbl9e3rI+TlTKdWnLJ7m4BSNgItnNnMbZCljTHfdtgb294v7/hPCfbxyz35uAZbYAUQat35lnmtPuxHwGwo2PSm6UhTwaqAqhuqIUDjqwp2X4CbHvF/+V//Wf89S9/wX/45/+AX375O/7+t3/Dx+MPfB7fYb91jMH4q6lia4VAWj9x9hN9DpzHhBlQ6oRq5BBgfuzB4O+DVA2Jsz3GWNtkGsGnmf4otC1TDHAOWz87MF7MHfdRkkxmgFIa4KLZWFI2LsEmRzCJnH7g7Cf6GNC6odSGLz/doFvD1/d3jD7w2++/4L/8y3/C//F//D/x8cd3tNrQKjf29+dvcDHc7xXwSS1mn5EPEQhMTeMS2ISJIokzq8XPAmuxEYVrAeVC2HLpFnI3gqW72pX+rzv1cr04z1gRtPsGawP9ecLmxJRLzkeGQyfgMbH2FU0VFOZ2CpiSXT3d8d9oC/x3Pv408JQTc7LvfcG78T6iSpTTKICbznN6GNJwSjmCM4NWDSV5uWr3SwxzOdeoKgzrq5XKY0pXinZKBDQqUQ0tDoPBfcBAyhzH6F7xkQFETSNASqYNIllXcNzsosohKvnpbCP4rhLJQgJPANwTocwFQgBSYWScCbELKFKX4ACCshoH0eZgxd4tqIAEmizEgB0BBIlASjDQnHcXHXEAYppQBEgpKquFIqqlbmj7DRzNm1pOL8FElOZSiDOR0RWQCpjQ68v41gxK3En570+0wvGW/MbLg8jATqOVDR7BQbAXViCVukFXb7fkc0BM17AM+AkwHr2j947WuF/OgwLfnOpS0BoNOCnt8UzspRKgCCmbl9ZS+Hqe+kPQnEFdMh34XObssbcLAFYEtlaw7yEUD9LhERU282siXGkFUoCJgXMO6HBObhPFOB+YTVD1C8Qnk+kI4lolgJUMIHtJEplMxeh0y1Yup4BuYWLD6VA8P3Oe0AqIVIgwAXNTWOC7pQQwGVMBkW2FkUgJmAz0/mQyaYPjaguF8gQIwe+5EiYVXgd3Lw8QAW5E8Mu2Ea0cud7HGetYWPk6T/Teo5osPzwXX7bsCmBdbJ3z3GseYTDbQUYEiKS2Oww+2NojxtY57j+2HBPUvMSZXwNiedk32dYPgI5KCm43tq7Vnef9tkcgWNgOZG7Y9ttK7nLniUbQiATCWCzo54BCcN/e44xWmISgc0xMfNtqxIInigpazSlZFz05TUGpbbU/THPUrVKYu2JVMBUE2moDpEzM8QAHCMwFxtYSqVicrWnR2hDPqwg1oZDrFn4gmT2pKUbAGEC0IZeolEpgBJlg0oamyKot38LdxUk2moYD+VwiwIwkNIMBINp6JfZmhMJrIk8EdJD8HsOeFKJfVV4Nod8wKa9Cy54HVyJ4XA7Gr7KCJxuZtt/DPy1AQZh4WC5EPksNEXC/LBf9zBVgWH7jJcFM3YPMVHOdORk2aoU2c0cCEA7ECKac28CwCRMG57d7g98Urb7RTnRBK4rb3lbVba8lEjTqqRGcV7Qtqqpu0AKICvaN4qNv9wb3icenYasFX243FGVgl+BU+uecRjiz9dZ5Hxrt8A6yjBSOohT49MkEU73GnkQwsgT7tkNlYPYTKimuyr0xLdrmtMWenyv2UGQ1PZIvuZ7NIrOBcbZFV4FGj/YPwBACNEHEXFwcSDyHKwEncARBAHsl2swNxevSIootjper4RZ1RsnyMj1znecAVq4YMZMCibNzvd4PDLvcNeF711siQ4aMRWKPpvOPe+GZ4zUmF+tSursu319ujIW48N3RjicQTkyOc+P/6Ouz+OQGmK5jktqeK/Zztonr6+852xbIZnkpEjptC9sUsfyPX4t1rZHKan9aVfRYkxS2zv1AU+N4TQteAUfFBYJZthD41VqY1F9bZW9dhUELI1GS/SHLWyPZbolRS7SXjQAyMgZe+wC+Es6cvsXMgHlDEY2Eeq5rZCEpWTnXMkrY7loqhdpzjSXjOaz4jmL/TAEz0ZS15lf8nkA+AKwJx2kOF5OfayWQNfVWVYJJHi2VL7bZnWeUDEO+ikX965XhDTi7K4LNsq4ubVX+XABGi+0az1r1ymHy2mHpi6KlMnwka4m0S31ySrAoVoshAO79mV7vOqgsXyYXK/YmnUcAuOlS/Pq+5Z7zFaPCHT6oS7piGkcUoq6pA8k6yvMKjJf7jXvovM7j+QCEANW+33ArlUMGbKJIW34AoAwDiz2h7ekxb2qtn0CzfThi2JJMPkQcEHqo+TNAxgu0iTYJIGnkn2KDwGMCv4iCwzS0Itiiu0HFURqJANMGzAbmC1jc7UQWqrie18mfa2JtPJfoIAICrLUBD2Z8rSwezclBYOc48fn8xL/9+nf88vdf8Pe//4I5Ddu2Y7vd0PZ95YS1VYxj4Byc/ttD80g0OyJs2RvzGS3/hiKN5zf0xkYUV0phvlBUIJYklIzxrk6gPKwWII1kDBLoK5+nEcyN7gwgmOixDjlMh4NsOChitXxvjDtqE4gavn/8Hs9ooI8Tx/nA0Z84zwOl7lAlYCnCYRLc7wTboM72OL/slYe9vJiCLERJJitOA8dskvaw5LoibafHFPpg50MuPzaNcT+S4SRorcKrYgzBNDLR1R1sXAuWaBhXEuwcNqKgIZzGqxH/XM/gv//x54EnXMYyDUZOjpAwiFtsvGNwHPAE6YNjsi+7FPZWugsV1C0djb5QZSXGL9uqnrhTHHTMTmaSOoqzv3GGrlTGaSakoKvTQAz30Lkgcijh0ON/fL8AZmZQ+ESiH9qppeBrQ0TdxpyMo6gWbdoig6SxoQPBD67+hdUehzySEUfo+0jQTAU10M1pEz4myXjBEM6QKoGn9ZoqgbILfNJ4J4W7ZDuFG5H7SmNeqqLUDbVu2G93AMoJBR6CksIqXgq+c3qDQwppt2aXi9GikJIHHPC5Ui30c2D0iVYMVRu2bbucLgC3qBbiSgZ8MqhJNhQDIzqSGdMcLkSbzrW1htEnfv/9E6UoWqs4TtJBt8H90p+dLI3ngaIFWzVqIdVtJVmr4lpSdJZRgMU6MwpNhx4HMttq4Ou6sh10HJ2AT90gMLSq2LaG233HNMeYhlq4viccM6oYKkDdKwA6fPZcj6jTKM7jA/sm1AJwwzgG4ES0t7ZBS8VzHj+ATm4TNRgro3fMOaihpA4pDi0OrWGM3eHoGPMI3YcANhHOeBaMUVHKhlp3nOdBp4kSTK4a7bYEUI/nA6MfcOtQbdDCimfm+mNO9HPCyxYAgEfirLHGUWkDqwUFQKls83p8PmFzoJaCCVnTJWaAQCIEKlYyrRlFJGtQQKORgRLtSoIJcwxOMzS+v4OjaG1OVGko2lClwEzQp2MrDa3ty8GeUYlEVO20xvh0vwKXbWfvf2stztGIgDemsGwNR++YZri/vTExjtsxsDrZtg1NlRpGMXb9fHQICr7cvjDQLILhA8M6WiNwtxeFigP2ZJIishhVNmckzHTOrTVAONHRTGHWACGIBWfwUyJo0waYTxzjE2Ny5K+WRnHv2pYBI+t1hl3guWeLJm32cRwRkLIdgMB/sIViESTscXGPZC/o15qTQx2CELIMO8MaiQTNn0Z2BDs3/QMrhkAquLmldb8YU4vS7QExx7O5fFjoqXkmsNx/JZgSHr4wP9yvAE2hy8GbW/iw62O17iASvtVuGRZVmBglGk6Ra4Ek7X8lrxE4hL2fHgHq9HWPOQYYAe4VaBQM8h0BTAmQDoBwkpSrcNrWYGCT2g/v+w7VhvvtCwDHOIC9VXx7f0NTwVYUt0rdh3GS7df2Da1VvH99Z4USBtEJEUNrLKgUITvheBZsreHr/R29d7Y3R6yQI6o1imRj9JhSFwyMSs0sTstiYru1FomSQoyzTCFXe7Go477fUaSjPwdUy5rkZjYxB0Vd605wYfpcTJ4S54ts7iiIhbvJRDnxzzWQIphlFglh0cJAPHyvrOS7AiWmAgZwOFNHEZRF0FJxHA8yglsYnjg/JeOmTCk994MEphTFAKLqoR3yDxv1ZY+8JqArWM3cOdqyoXG/btc7L7YPr20GGAl3surydcWjso1LqgCszJLRlyBVvLF5tDYVJAPQo6K8kvdS1zmwAAlSbNqzIGEJukQcKEYmQUEUZXLtDCxEKXQpCjKdwGuhU1jdTtb1Wj8hC8pBvxh1s2AuJPjwutpcGYlXWOzVl0/zGQyLYGbWut4wAQInCWIxz2biiRosm4WMXXbRgqmfLJBu1B2hhEFaLq4b9ZTi/pSMexFOJswW58w7Vu4RIDjPj4R752aqpbHAZbmi3M/uTrsl/qK/E/lMxHFY9i58zAJTr5Y7j7P4WmZOzKpEXkSQkHuEulrxNaGFBjIcicONy3ay7SuenMoPReF1fuhU+KBij170AEcOK0gYNhleLFLQSrBcz2csTuDFbMJDkJpsMoIEggTE0ufZiuUnHENypa/iDvP7uCqJUfW4mM5p2BgOOfOobhAtqErmiUKoVSjnOqOq7QJZww9w8hlANoih944xBz4/Phm3jBPuQLvdMObEnIBUxpkSuW3vE0UZ21r49gRXfdKPTwCr6g2CIln165ODeyy0wACKb5ecwOiTHQVMFBgXzBiGYwNZvrOzY4yJVhR7K8gW87ZV9DEwTk7ey6ljsiRPsrh6TSs0e2k9W0i4AYo4+xM2T7g2oDS02qBa8HiQwXucB/744HT4X//+K375r3+PuPWG+/0Nt9uNubEbaqvACRzngePkJMdW92iHtrAhod/oFkVrg5UaJp5nuvfQ/ZQSrNLX+8ill/V6advyPLPwE1p2QgB72sAxnwTSLc8jsFhR2XYZoBBxARbn21Zwe2uom0Jk4vfffg2ooqH3A8/nJ47jgeN8YmsFUgtu+w2AoeBk8TW6REQcPQYgkQitMHDQEm2RBns9SS4SIXjsDnkB5INNKUg2pa2cnQARlTJt8jlnnCoi2PYGh6NMwXGmPA2PdwnwLm3szD0zEe2oZcXTzBvwpz7+NPAEX2abjtYZkE2zqEwKnp0BWB8dWgonyhTl+PYIhnNiUUnHdZwrsgoFqQi6FRRRFkAKVDZwcqsD4qgxEalI6KEkRih8iNOA7hwjOgsfQtWoxBnAYAPLQebYQlXKYFtndaIJKYN9dKKtkdSJM3BNHRgGQkRT6ah4z3noE1Lh5aeR41aRyU2tsZk0WsVoiDmKMYPANe3rJSjkDmLQmi1+HkwGifuO6IlI6BgY4egSRO0xlWkpIoWhV2iIfwIYgTBrYTJutsAVM1bgLEdSzxhfW9kj3Zqj6hZsFgngjyuQTlwFMFPAayScDjdSiI9OltLj8cTj8cAjnAg/shJF5zh6xxLHtBPmHT6f3LMx3WB2AgCtDHz5qvh6f7/YeYh9IS2uLypsc/WXLBr6As/8Hw7dCvpo8Cxp1mawwWr4OM+gKWKt+TprcwTyH5Qrn6zmo2CeB4o4tqIo7jg/PzCOk8Zpkv9oQd9vdQsK64gkhKCfOdZ42G3boSI4zo56TjzPiVqyRWhDLTu2ekctDQgRUptMKO9fC9wPnPMJkwkUi9hn4ji/o/oNWn9C3Qr22w2tbdDSYJ6jnaO1wQxFG/b7W1TcsOijaWxrrXBj+6sy38XjeALPiemDyVMFTAiiuUyM2VGVukEa7Q9j8lxppxaWoESbTIPNTtAJZDtUZfl0axwv2prS0fvA/tNPKKo4ntxv7/evKKWhNbapEUjRYB0EcKcJDAbzDzkuPUf6Cm63PZxKJnJXpfVxPNDHwPu3G8ciV1J0Uyx+mlPsHECtfL1aCtQF+zaiRRY4xgHrB7b9hlorMChwKVFh0iJYvfNG6n8GmsdJgccZtU0GiwKfukg5w1k1LubB4gstPwfgFZ7jlkUxrcNcUJQMrQqlnoNfeWYdAkehThVAgEtmAJ3hjAMAybY3zwAlqvhkqwrgHkLkLDAYMtnKZDmC+wTss221NtrWHqD6Qpg98+DQJvsHEdf4c0RQnxpZK0fDlczmv5f2RclEI6qDC+yPYB2I1hVZoEIWHBJEyvdigadcmZFHA8Sq7ku6MQIbM4oOsa6CYEhlInFd/Er4IkOAq6wEB56jyFk5ExO8bRv2orjH/msl13FDqwVvO2eTqk/cKhPPcXK9SzOUMlDkg+ypMVCboFbBPAZbyRpZyNVBlugx4MNIz0/tyQQ9HBGcNsCoK6VKcN5jI07nOh0e51aiPdn9ClzHiPu8WNzZ4sT2LwqrhsGL9WfCvhJHszwWFACHXAF1LZFIkNU5xoC2tsBaJngUwF8xA1ixjgia8gY3xmXSKjLHS22jojWSmxK/HiCN+opflpxJbALqTySgmglvSJNm8h5bMadUcoLWlXRkdZoBdQDq0cY3Z9jRjHOAYL1gxVEKCRt1rWXIYP7AVGLBbKzEtSQLfnI60XRlweOl1Tb3iry8RlbogczhEti+kvHsbc+WJ64ZVqs/f75gk43rFmAJ4fEX9ojkMJMrziVwEm3jYWPma8urgK8XPTlagr0R1iMnOk4fTNS1MhwuWVyOsy5hW4VFxbxuTcO8Yh5f52ElCvG8SgARWhg3jvHjxFqRElX/nK/EON3M0Wd/SRiDDR9vmvtmMdzcKOmQgBmyYJmsjdiX/lpYuPZHtgwTXEmmtrP9OqywRQyRzV4GgsRTwZbALI4I14jFpatNjywHC92dnKAcBT2zaAvnYZEiQSALMCQKr+z2iOi8kGmdvmgG6yBjSYkCzMxuAU9mp4fIs8PQAXXKH+T+tQnIhNR8tjOYPz8CT77i9wAUnLqMPK8JKnsAMBc7kcX2AL8QEJUxZpMlnZE/PyMG9Ij7rkB7zJUKRwyw8YwNoHow5E4Wmz6+f9BWiuNZnij1A9vtDbf7jpxWusCyAFB4jApEledWEpzjeUhga52LSlBxrGcVAKPkrTM/HqOH7ZKl9zR7tHNLTosm8KoOtKrwraA26gKpnFCdKGWgub8QNwBYjy2Ufq7EPk59XE9iIhwUda+tEmQQg2IwKVEwF58DA47ff/8Dj8eBz88D5+OES13FyY/PB85+4t/+7e8Y8yt++utXlKrY9gpRoA8NuRPFeYaAuwg8Crw8q8lMFJ4zcQ4aA2fWzjgfaeOKXhOiF7NJCmrdkBMu06fIi6lSFWwb12RaTKVeC8JCDUm89E+zjzXRsJ9PAk7WaTfccfaOP377N/z6699xHAdqLXh/fwPbIKObJKyWufBoaTISJ8wFI8BrQwzY8tBOgnBgBRw1fDKZaLQZErliauGWFesxnhpnDKUKRlx2u4im5wRb6twxB6Cm2LRCmkSbLle2CAcmWDjVlQlnPPAnAaf8+NPAUyKMHoF2Bh4WBk8MkNkZYPtEjQcPVUhxLBp2bAJHGPWx5mMw2HlxbhYVLCKdglr0h03HICb7aqlVgkzjAjVkQ0nqWcTY9az6rSpwBm2exGNOWBJQB8YmMAa0FuqoeBje5NnGPSEAGTNWuP4byvMKTmQ5WC4GkwhFVqKiJcOT4hfGEEACT8iKoiIU6BGOHrzPeM8gbi9El7vGYQMYGeiIRJsF3yllzyh0G4GWG8RC0V6YRFr0/16Bb65jBifKNhJOPYeiQVDJhor+GE+avv9YydWodqbuynk4znPi83vHH98f+P2331fVMtd4WoBdISjJrpEJCa0nmzNaeQCfbF3sZeL29k5tlX4iA6jUMuANznVfSU1Ns/bDuch9EM/qKv7Jys/ciSiz3a/DhE/oxeUFEyGmZCH3B3uvW1Ec4+DeVNZKRz85TSZQcckJNZNaQJyWQENZyovweCQdWTUa54kxqLemUiEIMWph5aeUxuk9EkFiEehNcZ4Hej+Rwv+l0aGM5xPmCi2OUhW11Rf9nIgn5ErQmxbs2w3jHEuI0CaBXE77IXOgd0OtBBZ7Z295C3FrtpsuTAPZmioadWCnXljGVwKCQkUraqkYTuecUwZLURRBBLSKfSsY84TNjp++fUVrDX/88QEAeH9/w7bd8OX9Kx6fT3x8PKi1VQpu+0YGjxBgSuCJaxatwhHo3G4b/n+s/duWJElyLIqJqpl7RGZV9wwG2NgHD+T/fxbJB54NLGAwfanKDHczVT6IqLnXbBJornUSqOmqzIwId3MzvYiKijZ3bHC1tLkqQgO9DZwD+Pp1R993tG3X9DcKHL5eLwI2CfTOwL4YY1uTUHMLDJzwONB6x7ZzKlhppTFYqbp9ooQQVwA8NVmktH/MMLNTT0B0+qoaVxKUVkMkAGiSTBqToSp4UvyUTFPLq4JCQIf7xL10GaBrDVRzRzFZquo+b0lvgTVlS2tSmi/NLQJuTCQ2mFUQThtp7mh9Q5wTA9UiYqs1pXJbL3FWI2MISP5XCYxlJSSX7fiRNQUl1MXIqEQ+UYyjqKp42R6Bmkq/eH+3qiBBsyqAXNPEAFay7p/D90tkGOY0sUX8itqygPC8Pq+KIlnVdy7bUEGB02BNoB9932PrsK3h6zu1EFwVYd8bemt4bARwMCeem6M7pzwhoSmafJ4WJ3IetCtwjPNTDMZ3mDknnAWD+ihgvlpUlzgp92TzDQnHCKCmX6VYkHAmiYMTGQBrMJxAihGwWoPKd1/BcDHEMivZM8wjsZbKGPvMKDaOzqDTnmc9Ap2XaqmccyJ7V4KH9b0rWuB/lxjwBKwldtsFli0K9RW4C7Rh7EIf6opJst517QXel932zg/7aO1b3L7HvebStongqbulCD+uW1TMWcmszlRUwnm1AhdRvsZyRznhW4wAtSqzZeW2r4tTlBQc9gWg5I/OHNezLJtRgzbsuuN1PlkNDu4nZdiBFOBXbEbFpPUuSR8bSAnEKgyBXS2KmYt1bYWwZSi8EzB00ZMUtxFkYYvOxfDh7YlZ/oN+VK5nUSZiAWb1DC3XPkDebNi6m6t4YCZh4/zhp0zqR+iY6fkXiD4n4I0DThYYUcATfTuZNEqoFf+VTQsrlqAKouaLrQXYug+DIV0AabX7RdmIKwGrwTE8M1Akr7wjTaYxeF/aq0yuxYgj2raAoaqBp9YwI8QWNzFoDNkcCAoE58pxNAXXCURTi+3ycpDfdVN+kGJXJsFGxjZNsdcQq8RWHsSELta2D8kRRPk6S7XWgK2TeqZRJ0D7leefoBcylFfUswdqYAfxNe5fYokXiLsAq4q97TptkSUIT9Bha9QejbiJbA9+1uvjk0SI5jiPE6/PT+zPN2xbI8NLvK9KZtKTxZfGfbDaerU/HGQKneO1/G1DU0dIXfPO/3j55VTsz6EtJZyemWRSGePRCEOEc2pkGlp3RGcs7TMAnIx9PKXUUkxW2cYsf6HNNUNdKDJnxb4EC/AEQghcuBg4KeZjRmAC+Pj+gaNTq4n73GHU4MBxfMN5Hvj992/YH5wo6c2wbYyjqMen2M2GzNeCHGH3c1+5MQP363sqgJI9nsvnZhYczdzUvcuWm/Ltyx7Vzmu9IcdAjHmB6HJuq4slq8BA5lMAmOPAsMD3cXD689sb5jzx62+/4PsH16D0nY7Xp3LSdTdXzqW4q1p0oxzrun+sdajuqKa4sZo1WODKlR/Sp5UNlf2uISlTxRZ3tN7RsvYGrVCFlA5qOrvWIUl7V1H3vi654mraVejab87+v/j6w8DTMYWY9Y4aIWsGgRGm5EOL2qhHkqgKE520paFGZm7ODHHrvi68NlAQ4uM3jRRwEwV6zJMtQufQA73U4YGKeTsAtvk0f2CARiWS5spaUw+pHNIMZEugGdpOp3V+HEjjiGrrQA/H3in63KqPXcLXCyQJMn8Y8LCqmArIRwEXAHtVe7/AjGrPM1eCcuoXixLuJUW1Ejnv0ohALGe4+ti17UyHKWErcY/B9ipvG7Z9x1/+6Z/x/v6Gj/OTBqlxg7kZ+mZom+EpPZnzPAFreOxfcY4D5/FdbRZO7Z4kw8baFZnOGQI82NoVk+1JmcDWGjn8ADIJxsxRAr87zA3fvn3i8/PAv/373/D6fOH3b9/xyy+/4D//+jeNzGzYnzTu377/jtYcP//pZ4q7jhOU5xzrYO594+FZgCfw/Okn/MUM6A2GjUJ9mdQBSaBlW/Ryb22xQYDEGEWlBcyqkknwLONKKiw5cv08T3z//h2HRpxu24bWd7ZQZTnlxF6oduUGM1c1zRtBjNZ3tO2Jt7evaN8GzmOy5eu5w/pGI9M62w5c57f2hxna8w0JYJwvAIn35wM/fXnHX/70J3x8fsNf//pX/Pbbb/j+/TscHVufaM6WxCFGHk6yhzgliIl9gOfr8dyxbQ0Rg73jOaVp4/j+emFEwmpEdQbG58Dxu2jUYmf03pcwPAUBG/bnRiHsZtifnAL2j3/5mcDPk6NH/2//93/Bb79/w9vXNwbV3rDvT7WL6rxYYwvvOdA3toC6qhNNrYUIAtD7xuC7evQNiX3jc/iX/+OfFA1dycnXn77gX9rPqB5ZM57x0N66AqtAs7aCPmUOAAInJqhv0QBnUPT+viPRsXWDYSLO73SIyerHpoCHTu5k5dLLIlR1KdH6xN4cgReOg6PJaX4KkJyLXWFtQ1V4aU1E528VLDhskhbcVAFbAXrQOaEAae1lVu0U18eJVUVPMiGg9akK3SJTGJszwyrAZ0BQCTyrRrZsY1Twa2pTEBDYboFaivINJQ5wVjihShBBVeMwhLLhxdzQv0uX4lIgFsd1BQcC3g2goJmSay6p3lPxvoIHLlusPWUmoL8BBQwCbI9VelgfLdsvAMTUhoIVU3OLrSgUQCWQABrINPZ720YuSAtXigECMwU8oVoBlR0Y7cEcBNF7bjBMvD2o2eEZaHEAZyqINrS+q+BClk5G4EAixeoqf6g+NTga9vZAR0Objt3IWHFssFRVL4F5SPchgECnnwuXlsGAQ8zsdHR0YKq6J2bCprWoYDZTLZvOFlSyAhlLUIgYeNvfOBxghjY6MKptUW0nm29Yk5wyEOAY6xw8u5aJZgRKY3KPIq52sFcBP8VOFNug2uKRiTFfbOXzJzwT4zjgIbCvNXSNYz4j1eJ6JTJzVovQWM+5mIU1+Xdt0WRyWi1+/H1fIP7dn3FNBOCuKVEVeMsGqRBl1paG18iqlleRycHW7k7NmUhksjpbAskVMK8z5KA9xrza6o1tGYxnEgExPL32PNt1gTtgMwVoOeAEQVwM2Tq7syQRYqqKrfttAthBnbLyHcsrhKyXnv/W1NIQQNwm884VI5LZWukkksyuEAPfIxgfaijPtmkfBzRmuzg9F/iwAPGSG0jujy4BajNbDISa4Mg1rq0iGxfUn/JJcebN5IPNFU85RlAvcescQNOM8cRMxb/myzdR9iDwShZr+yYZj85hRb11DK3RHARkoPtvzReoVyLDs1qn1AYbET8UQNyUqEcuPTNr/FkGK3EchtbEKKWtmkN7ojN4b5svO5qV3wjHH5Mgj7XrsIwMAga1rvpTWlcOww5Kc5xzADPgGhtvzdafERPHnKhp32YEdmLyTDfTVLf8O9Z++euEfl5nqIbcnJgWAp4SqwAtZhpa8jM9kH5S6L5Am1rHAvlQhRXudccFQk9cukRnTJyL5aZ1tJIBYft/UR3nGEjzVegxEEw55wFz+s3tYweJFHH5UmN7vQWAxvuZBchpUSoXm3VOOwHMGjIQI2/EDBpJFxhDJnVDptqqQKNoeACZFP/mo8frCJxz4H3b0Vpy6NAc1IAFOyu3jbHqOA6CWq/XYjcRbOCZ8uaoKadRUiih6CnUXm4747MU7OyOfVMMHY5xBI7PD+m6boiD/s/3DdvW0PeNgz7csW0b3t/f8e37N7VuFvB1Y6Yqv6oCV7XMpUgEj/25JGgiGmL4si9zSu9XzyYVr7UC5NWBtGRhMhBxwh3Yd8ccwDgD4zh+3O9ifZpY01tvqP6E3Ru64mIyghJ7a/jTT1/x2y+/IvIEjGxp7w5M+QsVHoFksZ29f7DGnCPUbm1ecYaKvRlLa3HmVC4v11SxNZiXyBMyjgHt2HmccBieznzQWhMek8sW7E/uu2aULurwQoJxxhBwXOQd5Y5NkhTSoE5LWOVMf+DrDwNPMy8DgRXgmoynUElRj01ilstR6ItBL4PhAlVaUZDtIhClS0dCBqcsLsdpq6pgvBZ30W8LwVVwxCodnUDVAWYWsdUWXTwtJa4sR9lU5Xei9ulyOF7JRl2SoaZLRL1XJTjQmlS7BXLRvgEsMbCK/qvlrOo2oapdIfvFllrXCBlagXpMDPhHW04OjhfLtjkm8iFKqTeKH+/7A9u+4dvxfa1xMdrKuFOQvOE8x/psW7oEonDrdFwBJJ8JRe8qmS26bz3X1YB4q5SVbgsN4pwD5/nC92+/4/PzhW+/f8P3b9/x8fGJuZFaXQnxx8cHem94fnlizoHX+QKMlGEKt6q6ZXdRUjEjdD1wF/Bp1961q+JX00KKUv6DRkUFbbgTwq9qaz0vTi/T2oqFZHMSxC0Ao/rncR2gWDmeYTFGvMHbjhJBbI1isqF7q1aPxU6+HUiXWuI4uCd669h6w743vF7AnIdakKrlU89OrI4CVdnWWLRx0TiNwMy+71c7QwZaN2yPDh8UsHO1k7Rqt9UEtuadU2ya2tKMEy5ac2yPh55Hwp16SD//6Wd8eX/jGQXw5esbYMA5hk6/4e35QGscq6wMak0g2xbwxDXuW7VgDDgIkFfCXXTVmkpS1P4p6u4YA4+94e25S+sEqtSkxN4TWT35ifV+yKp0KIlMTQAVHy5RgJjOWAW+qGDvYtzQpND6rKCrgE0FiU2OeeZgsi07xC0Sy8nUWV170UTS1TqW8HgxPBdwov0W2oOm+y1mDKedXUBTJT6hfO/iWOQCM/RKxDojOncAUlXmEG2WQZ3d32UldpzaFcgRl4bOCqx1a0vbqOxTLhtbTE8eBDqudR+1xrgqXSY7YLKZlWjitja0M8WW4WG/gCd5B7t+N8sV65Hzs+sm7p99O/e5PNUCxOoy6g0LTLye4fVz03vX04LpOVntLwWyKbZH7cE0ZDjMAl1xzdIiiIC1IFCkey+dQiSTlWmJpQVZd5UAwFYTS2NbArrW/xKJLrCNttpQU+hM+yUFYtT9ualNK68K+3rWMAEKtfdvZ+aWqBloX0mKqUxlzXW6dkWxrwrUMQp8Xust251i6YklRIadqw2tTgBQ8LBqo3w2NyCXsZLYX+HXiG793qqS15fOar0/15Rfl0WsHbqOiH5yYxrh9p6IW0KGBZwsADMvX5m19tdG5nOsNV1LecV0dcaujpy1gfWrBluJ622N62gKfLD765ErZrjskva6hnNUb7BBAXqapqJVLpzIvD1vaYTl+oxr/9R9rrWu5Fn3nbhiD5ph07O5J8hlly6fz81p0loxivyb4f7I66sq4qn1E5HnBzu/nq4KcXebw1ZTAjzGx15PBnch9DWWfr3vOnS4Mx4YR+faI8SFCZB7bxzE4gQPKw5fAubaLtwTfAMREZfdrtZsgpHVlnjFiWsflV2p1wdQ4r1cR7HKV+xmeoZXS9x6Ilm+mb/HYk5e+5yVmx/8SLNq0tKWE7CGGatwUZ96jz1tfVfvH7FaqRdLaLFB+btX4l77DWKEuApezG+qZW7Fw+yvh7IfTksWU4VxgP3o+wAU48nRLv+aFGYv703A8LKiawfezi33Y70CK6ZbcVUMRDTmFseL8Wq1NdqVA8FUQFt76coz+Zm1H7V3Kw++W4h61plIN/lD2QaUvTMZUV/+OIIFC/4pW1qDKhyZBA0p58J7zMa95a61nqVZZoB1MWau+CDjOq9KvKXlVfEBpxM33Zcl1+CawqnCRCYeNRxJe6DsemucAFiC7LfV0zPVGS/fWkzMAEpIn4UUAEENpPLHqdbRAtAz5APIMLmRS1JrMTHHoAZkF5MosM79uioRZFyMw8opUtuMwA4uFqThBz/69/+3vivbZVonCKMobVQUyF7FvYo/UOworeEt1vj7r5pcuf4eiscJpStXDxVo6K9c+9BlIDM0qR4sBkfaVWQq+9cUPwv8igx2lPxB5OmPA0/aGpm5jNsUBW8zV6WHG3tzomqv40D3jRO2agTxyak2x+eLdNK9rYoL630FECUAThaInJqGBngL9A3LYW0bRVdfh6k6wWpoYqJGBDd7RxjwMT4RCI5NtVR1LhESMQaA387fAABt56Y/XSMug6NxX3NoTHmDd/YTf5zUf3rsnQ4oHKM5wm2hvGdpXAl1bL2xJ3ymnKsjNT1pVuBqizChQClhQcewgWPTXdMCuPa834GJQOKcSoQisMPQwN7VdMPj7Yn39wdeJzVyyEBwtI1V2TkmZnzCjhN9f2LrROYdhjl4YIEGt41TczZu6BLineOg8RwcNetzYu+Gx9auTR+sxM4xYO7oe+czsZDRMMz5O47zd3z79r/w++8f+Ot//Ab3DT/9xLam1jq+f/yOGQPPp6F1IPE7zAP7fsK3hqYR5QDIaDFD9yeaN/T2wOPtiWOGktliogVerw8ARRFltaK1xvZLiS2Owf7uAjT4u46q4hpMkzPotBOgJkZr6PsO87Ycd8pZRgQ+Pj9viRCnzFnrgDWc5yfaHPgcQAvDia5nowQkE6/v3zVxQmOEpV0VgIKx0n0wuL/gTvFPb59o/ROPt4Gffm44xxPbI7D3JwDHb799g6Hh/ctPSDQM8PlTAJJ06m2niOL7u+Ptbcc//uPPrFbHB/7hH97x9v4/8f3zEzMTz53PYes72BTWhcgD27aTceP3ONSk3UXB62q5+/nrF2y9CzRMvD137HvHTz+/yWAngJvOgPEagQ1mD4l6N4yTo1Wt2lUrgBcLMzPRW+eULSUNrxdB2/3xkFhnAHjhOA5WxLKAbahNhi2krOx2HK9To4zJ4Hs+3wEHRnyyajFjtUw8SsRcOiENpJbn60U2WO9AN2RzHCfFX7ttSoawssR0ViJDIqJdFWwSO+gEm7M18hyJcaaqMQ4zin2Ok63LzR3IE5YHMiY1drS3UuAD9FzY9sH1aNL+Oc4hcAHrjBBA9WvdxLC9KOwVXberbYinRC0J1ZrAZzTByuw4BvfRZrJT1BDZNcXP8gakNROI4CsRjgycObGt8fMMEiYkvo4r9TVwJPIFKvAsxs05p7weRaoTsNL4qLYDAZQCOEoTiOB5fQp9zLi13JRWAqtjrG5HBkbUVKIKNhI1qY42nZV5M6A3aezkWNdUCbovuCHXnwU0DVbH9+aw7hhekdJxBWOKnubk37f9yTgA2zpnK/aIhoTDje10SIKkmUmmQ3OOlI4gWO3GqngmYIP2qXe4kqvz/ESegbfnG1pveLR9aXWYAZuZ9O8C7mqnWmkfg2MbE9YnINHoK4grVkViDD4xAwPdZpemC9T6yOB3IvTZzQ3zJLup9DNa3zDnxDFCmoBshW6tYQwOLWi3amOsgS5kDm/Nge7Y+gbzxvgqgEwyPjNCU+0MZCHdklVnAtCs/7i7lcQnaI+XXQDkRxUs3wBo5FVcRCXywAIe6ndD4+djQjo3CnIRWHqQi/qfSppPlDZbSyUI6n8dQ/suJ7yJxV6amNKI2XtDmOMF+pXzPNG8cciMPmlOVffN5eINUPLDHhUZWN1bQXb0Ir4AUDMCTr5tuMCpVDJRrIBc594K7Flrr4Ra11VyF6EJWqXl0cWqv+wHNXFSCTTfu6GKwVUQW0UxTS81qKASaucPtmcRxCzGt9q39NwlWKFzqlaOpG5qiXlPAKZWDp/cG+OUvdO9uvmyl68xMBQrcgNyDZ9fvlz3FxPHcYqQ7mI6VTvmZZcBFWkgbSzZhgJOQoM9Zg6xf3VNorgOUHPqGCWUfLWpUj4BizmB1uFJ2YCylas3IStdrVZIMsQ4AZYHpkmfa1fXR7MORHDvDurPnN8OxAw8398BA44xyJJX3EcOEfOI4yj5AhbKR6Ne3Os48dif2LYNMRtiGo6jknviQhGJ4RPuiSMHZg6JbVOmJBQTC0HSol2MkwI7Mrx+tHI59Z+SeGBk5wUCxxgLkBxIDQig/9nEroEDMQdGsAXKN7KWWrUsJiUWIpO2MRzAA3/967/jnIE//+Uf8Hg88HiQTY80dcY80GxH6xu+f/+O85wYgwyZ/bGhuaNvD+6ZnDiPIe1bxiLnuHXiODCniZlpZF/DcZxal+Q69NZwHN/w27ff19TTRAcc6O0dvTsmNlpam4h5YsYJDi4Cfv7Lz5iZ+PbtQ8OLFAFbSk+zDLniHjMMgEwXPLB1amm6hnGds1qKOzyB1mhnjnFgHBzWdEzDdrh0RYGPb59QyILzc+D1/SCT3Bxt2wSwAMXTyQiBWALsBs/KCy/KTvTGQuwEmYSpPD5ztStaAhiJY75gznyMOpOx8tEZB3yog4veQiB1yj8aXudBv/giRlEan2YAGjUQV5EjgeN14N/+7d/w2++/Mx84DrzOgXEeyAxsG7vEyABEJQIAkvlMGrWgaD1QmmzMQUiuSONEYGSSDEXruN5M3XYYpVmld9v3N9raSEQYKN8lEFUO+ThPJAJjHoxZGwp0IFkliCXMGfgcLzTv2DsZX90JbkUYtmar7fy/+/rDwFMrAVNcSFve/l0VQqAQ4wpgrgpGXVI5YGSF6Nf3VrxpdNelgZKYyOQCweZKRKtPv2jaRIN1UeVgW+F9TcFP3u7iVp3X3aQ+P1GGOxcQwol8DK9aUg+AE06MwUgFp1ahUoUgYMBg9bP6+XUdVr8j9HR5O4cCwqDBMqj/XImSAhtegC9jD7P1TEKV0pBgBJP4AOdQtDWRoRB9AiisIJG5pKqwgJEsphWqoia0VkFX0eSXSClEwKf3wxVicRVcAZYZr4kJmJEOuzm+fn2DATiOE1t/YtvfKVTtHduDzKrH0+ENaL1Wd4f3xj9WiDSfUTOBh76hdVdQWXtKTIlb1fPSksoVnNyZTlUpuirjegz1mus7qOlZ3OHc9IWIJ6qPfqmA6U+sULbvGzbvaNvGVjrwwLcmbbEGbNNXS0FNiFnVr2LFVdVSGgpfvrzh+bYBmGgO7HvX5L3A1t9gYO850vF87JyS1B5wa6JpsqVxfxh6Mzyfjrfnjudz13EM6hd1VvYiAo+doM9DwFNDX1onvQl4araCMm5OGtGY1K6hSLyjeTklGvjmqjJqnautIrULpPEMmNbNAZemS1XEa9cQ8GB/tUNRmIEBChSYKYBvAi4q5UCGWJ4XA2Cxpm575kdWBc/PxZtRcpa+7NA6pxkwG7jEGYuofq9yGqmZCqpyVTBZZYtQG2ZejJcEhQ0n9Wnr8KA0ZSJYgZ9iKFpVBFOOU6ejkplKw7LWLHI5zOtzLygjaLh4B677WLbmVj2z627vr13NtLJLl5lPJnxlk1CMs7rF67T+kAQ69TxM91JaMQRd9IKiGmq/LI2/23P88ev+ubfrg6E0LXC/Jrv9qSu82flrd+cK/NaN3D5DqQ7cOCkn7PrcmqjGFyxnyn/Xjyphqs+9O3DtFY4Tp9h7Wfryv+t5FfXfyOTLCvASV9zgYi+pBfdmlFmRbBxUEAEeek0jrWsOS06hdb6Hh0AOryqs9oJdNtHXfqXfs9J20t51hxiB1LmpZwIzApaMHpa/r+dcFfCyZWXvR8w1nabW9Gp30tko/TR92NqlhrXPKlGJTFgylVgaQnmxHAzAGgySasuQHbsOS+p3c30O1qpe8d/1de3iFRne98l9D9p1Fn7UGLt86lVwKJuo85TFZjIxJrECysUWXNagfhayw76A5eu4Moi38hPrUn88lfXduqaqqC+sCXklddrrZWEyL+Zd7ZO1LYp9dVm0WoHrO/cfVdxcn2M/PgcCJ9SpKkDrziiqz6p1KxbO+tS73bhdSwF5xQarbmoeg1ulHT++F3XJcNmVW5HNEmwNs9oNtfd1CTe7VDES155t3X3blmxFTb0lE8qv6n+qqwFY4MftQS3zaAIoVuej5WrfifXc6xHQpmStwzqPYmzges7c/4rftU8Voqw3LF24qx8413q6fKOvA1j3UEBZrOfHoUR2nXMxgYAopPhija5nrpiiPjqAmCwKzFHt7sUeqbhBrWTAVczSR7FFOavVQj7/hxN5W3Usu7ZYQGJ+lxuNxWABYA2tObIkLmrYDa7iLpe1co36iIuBYs6c7TgHp14PFsh7r/jQ1nrEBMILpLzsEHB1ppRETMWAqxtC70VQOC5Xqhgpg3toRujx8LrOOfE6ThaftUZTrXD7/oYRwMeSR2jK4zToypIDZyLhGsbDp135hgonBdzLt1bUUPEjk8G1eOvZ1nNHXtlbWjG0gHNMnCf/UEWF+5H+s2kXkxE4JgeTeRb7KJYdLttXheTmtuLFmLFakbV9dVZ0vcW0K98WNclxVmgCKGdXRMd1qQKmWgBXXrvOvvRgmy/JoeqY+P7xXR0ZTXI7WYZxRU+rc6k2x7Kvl++TtVC+oP1V26bsn67p4old71DgeuEhZZeK433FTr4+c0jLi4U2xRuysd3I/g51Dtm5DPUtJ9NTvfmX/+7rDwNP719+QkTgdR7LUdK4q40s5kre984pHUSM5U7s/iAdTUyF3qlBE+W9E9R0ApZgK2Iic+CMT6w2DYEsNR2CTJtip/CgjzMwx4mHk5Wxo2NCoq9piFvrXAFEbP3jxog58Xmc6GpJY8rpeL0OzBho56VnYabmMwW3s1oEVhROC0whYGAkmUCzWpdgYloYrHPzs6VN22aQFTAOVo3SuAFdVb5QkhpmgFHQu4lOGXMgzHCcl4OawdGOsMF+3X3HnInX60TvD7ztT3h/wHxDpmOcsVqKTiG55gx05zkWsDFHCXGzEvp8PlAaAMBETehJmDSLNIZXwMlpE5EHD1dzfPmy4+2t4y9/+Rmfnwf+82+/YusP7PubjIThOD9hDvz5H35C5sDv3/4Gs2tiVcKw75t0qgaBtAnMmThedDqv4xv27UGR6U5HTEqpHt0NdJtrskIoCLMb6ATURq5KH9lyXBPqGmwwl7JDrYcCiCEB959+etfhT8zzRIwTOTnZ73/+0z/h7fGGf/jpZ1V8OMHs7Y1ifq03fP3pgQTw++/fYAZ8fXvCe0ffNoqCN8dxHprqENj2jn/5l/9BCmqeaN3WNbw/3/B4/ETx3WyImfj8OPF8f+Lnf/wZ8xxcw48PzDnx09c3tGaIPLDvHV++PJfhPs8n5ph4+/yOGRObKu1bdzQ4uhEczTRpRgSZYVrfyIlZGmgVjFrC84BNg89rfG3ZHTLDVXWuE6Wsg7Eeq3ZzTOmPpYoTaqsMYJ4vsqL6hjnYd89KiC/Nt/HiOdj7vjDj4Rw5X8lkk8Ai/AY47Y1C4NKGOA8yFoeVk+kasW7IGTgH4Ojso9+fCrhrQh9Q01CagjUD2TyYySDPOmICx5wwo62dQyMYQgKE245zJoZEmSOBaimJGAoEG8hCGKD+UKKkUUaUPV/ZCCntRVuOxPmptlq1n3jfFXfSFsbkH0TweQh8IhNkUyAxGfhZJXa5NCdmVvXfRVGv4Jx2x5DYGpPYDqP46pwK2C+GwghW2Z+PNzJRTrLERtTo72vSSBUIYgxURFRjwEcBeLIQMFxrW+AdpPVhmqjjvkDQSti8krELgeI+cgjvugImhSv0B3B4KElLttZSA47vMStwb9yvFKoOTonU+fNScC/tkRRVgX0XAh4ZiHhAgDjb3UdOnJOM3mKppc7OaWSctE6Wlhtf17yhGks40dBqO6HiZnaJGn3m2yY9Qe4L0vPJounN0b1h2xnWzjkQMTCPXPfmKyYgdFmiu67EYg62qe+PHROGkQy7wmTvDbDWkTYxD9r4NE34i4nXwar725cvOgcDcw4c58nqebumqVWSaugCfhlPdU3GC4iVAoqlzph4vV6r/cDapqUh2PJ6vfiaN2piPbYNI1IsGEN4W2htMdhhQJgpWVD4W4lVGVK1Wa2CzQ0Uy2UGanpQ057oFwhyS8rrddaMo8dRZTvugW4A/CYsqyLYDKlkmMNAn1ZTTDPEwLBE6QdVQYGJVsKzoZp5aGOo1yOoE4DGqYNtFdVmnQI1JpjcLC0cJW12i1ErgSiAYrUkFjiQVzbi5dt07pmUMV7I2++hTroR2CntItzHtQNLj3Brm2wkmSzs1L4x21ol1/XcVIl3x94owjzGQLWgNLF6WgFKK/5LFatdbFpH7w8lnBORQFMulBYCa9tav1qjNbxIWZY1x/bY0XrD8/FA3zZsjyfO88R5fhIYgePZd9qd4xCbgszjMedqK7snYhTzFqtvgUOBHJzdarXOYioU8IRuCzDi+2K1ym5bB6qrIjlhd30RS2FEYnzvmIEYE4uxZkagBQ1FsSAD+uSapCJp4/n3BI7zUHwjOQ3bEPPAHMeK0anDCszjRVDQNzGDgAjHOBOvT8aa5ylmdSt/KJsQRSzwdS+Qf75ACqy1Bbi20ICI6mYrdq6lo5km1obAn5DWUbUrp2F7fkHfHviI7xhzYA7ZXQmmOzrgdWq5aeYCOjmcpG8bzhn4/ttvGJNx+XEO9I0MbvMGZMOYZEs+kmxOs4amoaQp8CUi1xCNFIMMkh5JsC2SbNqXnpX0w8xwTLagj8E47/F4YoyB779/xy+//oK//e1vS4rjp5//jMfzib/84/9E//03/K//+Bt6d7xtD7hTO7EGbIWxVaptIKDZcwGyPogsOsgedu+yLxMpjbtIIOdEE+DHnwFxkm17iD0dmcwn9g0xqK11HhOv14nvv7/W8CObG/b2VfpljjOBMQK/fX6HI/FoJfgPbG1TsZnFo3Gc8r9YjLjj9cJ5nvCN8WTbNHW47HHkmkA4khpER+mI9itPm4quUyKErTVkc5ht8AwgqkBBW9Zaw+P5wGPf8Xh7IDLw11/+ht++/YZ//+tfMQN4//oTPj4PxDmw9SeQYtxmdTsQzTQrMNNlWSqfp60JxRUm9xoWS/qhgTFJl3bwsiUOdG9ranYC+H686JdsUldw8xU/htoqX+MlEDvQk9hM864W5g0wQxsD5xg4StpDcWpv6kjJ8pN/7Ov/j6l2QFF0xWNeAUdNTQkF+guhS80OMiMKWWidxMJqgsaFhpchU3BbiGvRrPNipYBvqekmTqFi4HpPM8wcHMc6D7QkeEWtHyagoXapQhoB4wSDBUapJSmc9DY5v6s9l2itJKIQaiZ2YFHYzasSX1621kt8KLuITZVHuEQd5hoVnivgCXfaYFVsVpXMbkHaHXUUpZ0Ag5gAAQAASURBVJyfOzTBq+Hx1vD2TkOaCJyvEwltOGk4ccx808G8+BM1Wt2lcpbADXzhOtaaXhNEGBBEKOMHYKhKtkCF2++WllKdqr3v6zBABgPNYQ70wRHh3si4eXvuV3LpqnC2ay/BktP2SodqasRsawIE8tpnuN+XpuxFcSmuhKzOSIVMlrHeqyp1FA93PB5PzAQOjk9azyt6w6Y2w+djR3NjkhETOQfO40DOwNtzw3NvaM5Rxc0Tb8+Ov/zDz+vstY1tPWLS4u3xkOBdU6Uq8P6kVhIi0Jtj23i9FAjmY3x77hRx900gxYZMYN8esO6Y4xQg0+FgD/W2kRkEa+jdEPNcDoGOnYE9DNg39fNnTegwYEwx7NS+WNUaab64WgoyqRFlZkAcTCOMe560dqP4s0AJ7htFPAnRofUMixOpc8RKLFSpcbg9lAB3JTYT3XeYO4amhayqLsSwAZDDxAziIU8xYgy27OZiNhHdWRW0Eq425LKZQcOKbEyoPw9SiBcd3R15DlbjegH/BErHIDDWG8HoOaudEGhR1rfBpEXD6uaNxShwtI44e9MDwKmUFAIH2kqYcGttZBJbuAgLB8WFseVtuXfIZHC0sgeBSx/K8wpcdQ6rEsdCkxLfAosLo0ExPaSsUsBJ0m/UxDcDkwlX1XyKvVT0/t47g+EplpyZtAax2ohTQWbZQCCQcbGGa0Fq7y0UVFWxSsJLsLc1VfwyZEOxwLYaYoH1x1bUz6lTWqiVDdyYVGaqCiqAVjJTzzOVnFVVf2r/ctpkJT8MMKkifSXLpV1RQMRVSTbqXZjDXL/v/IyRduk8BdvgOQurXnPZ2vKfMGq5zTkxMOCNFPvMJGU/GbB2d3SnnLNb4rl30vi3pnCjfCq3Z+sMFEP3lkgMTDQA05jMLj2mtd9YkS0QokRieWZUaIN8KKQj0Rpboqvq6wwOx6gWSoEr0P6fE8XaKdD7HBzXzjZ9W8BRZF5s8GpREjBQyTeZlGpBUTvPAjTLbmEdXNSUntpWIep/xSLFSuGSuAJpu96yzqximFA7xPoqLRLD0vy4slteU9R7ScTfLJSMTwXstt7f6QQEFl0cMsBgai2MKXa6tMS2Jq+T0NlMsctzMRYqxikGSabaX38AhjS9D7f2hlottZ552gKDl/4griNbgIMBZFsqXm4mrSZjIXLpnSh5QcUtSroX2JJ15YbSDblsj13PtVDyICO94kATkFw+3UwAMHCdhSyQwuRPbJ3JMeaKU6BY1qQRU5qvxTgZg7GmaSHcON26tY7WWXz5+wmevGTadlsALn5Y17U3jWd8RdO3NSRLt0AHXmxooivyBjYkgwVzCZFX/AhNmxb0zeEztQd0VpSthWze/XwseHTtJ56xErlHVste7V0o/9H1I2A5kRrAxCmAYuxk4hwc5NLTllbPHJzayjg3l52p/G9NElTsfO23ZGtcXu2wKbCo8iPuvcptQlNLr3NvAmjlvOXf+B60mQT+M8fyPRVDmZ59vUcmvQayuhEAxFChg6DxtnXZeOZrn8eB/vGJ3ife9s7iR+Vi81ShomxRrn0whv5tImFAwuYJtkitvfkjG74OWsH0MwZexwu//vYLPj4+cJ4T+878JdTqVPlMTaYc88bZjdp1IfBFpgpXUe7KscVArhavNAWwsXx7yg9ElA5mFscI69FNPkeLICi8PdB8w/E6MY1kjHOobXQm0gIHIHBcLc9gcQ4Q81y+oZiJ1gwVKRI89DXcQJe1zlkWu76KIHXaZCd9U9FGLf6p2M+MnUwesbJTlCYb5Pck82HNMebAMQ78+3/8B/72y68450CEWIHJfbBSbxU3+Bx4fU1s2dXEcQVv3BczBeQWMGWweflYPsasrcj8XsUP+odTK6IcY3WNOcakHMYiBUleohcuA6c8TFICgnkS16mLRVc5cFklrwO6bO1//fXHgafSqYkfnWNmYtwCB22bVV1oTrHPmYGcuaYe9VYioECN5fzBMSjxqMQEOZD5wtWXzs85Bql44yRYYZWIGnDElMB0EpkDk4ndH3q2RHoXwKPErTZ0iL4YAeRIoCdQSQ8Aj0DLRAvAMjCSyKi7syIcE5zGZ6J0y1DfojZWNlaxgEZJ2lBjnCtIejQimdmkkaTKvDQNFagV6q7taVWJ5KaImNjbjue24eefHvj5Hzb0HUgQZW99x5ev7zDfQFpkh9sGjQngFg7297Mi7SsxocOvVoH1EBk4gM8m0xXITQne8bqbcVJN9fhaBRdeQums2PW3DX/5xx2v1we+f36DSG6Y2ciEGb/DzPH+/sQ8J47Xia119N5xzhMjJuZ5IA14PjcFS4bXa2DOF2YYWiYMTXiQ/fCHj5DMvh9/dtEWlz4CmMiaXc99Cox6//oVaB2jqsGW2PT8nAUbinxvnYLYRgmJ779/wzgO/Pz1ga13dASaT/Q28aefnnh//2d8fH7idR5iNjncv7AXtxPoCSQ+jxde58TXn79gf+yAnlHrddZ0ls2x//QGt47zZMLoxvbGfXvi8/WJv/3+K376+hVfv7xjaxQkdx+8h53sw/P8wHly6t7z+QXb/tDqAM/tAUNgHL+T8dSAGAdinqzmqwpmaZyqCJ6VEqpvjcnjPCkivu87DNLVkqONEv50io6anM1qHah2mgV6XEE3ExtNnzKAAsYTbtS9ar3h43VgJqdpABXY0QGN0zAG14LgaoHnIRs5VgBccX4lAA3XqN2qkoXe18DK1Ldv35jkxpRO1Ybz48Q8Jt5+ekffDIkTMyY+X9/QegfaG0Urz6rOFwnasRlbN4sF0jR1EJmYcSAR6BvZNe60BRwp70jrsE7dtximusRcNpyukaPFPX21QwAH7dPUcwjRdrOCi5AOCrX24GUwdWkKFopG7d6ZkFWwlUm6t1fy6RRCzMQ4PxT8aEda7TBWj9KcDCpwgmVvTaB1AU7SUVJwv5KCAjESK6iHbct3mpJ6TmiTP1j9jNp/CuiZYDZMFPBUdoN2eXXGrYgWSigrSFGUmLkywyv5prbLmJx8FMnKH9mkTDSRYo5WoJ+JeQ7tm5ryIh0DE1stpwJAJVgAEm21rqyevUoKOs/qEb4mSDUkusWafLS1XGd2ZuCME2MOjHlSawQT9p3t4dv2BqTheA3ECMQ54cYJYd0mugP/8s9/wduj4/35RCLxOl+yK2Tz9uZ4nQR2u9P/HRholoA1zBiYx6AWhhggCOCcgXNMHOcptiu1SHrv6Bvn4xwvTjXtuybsbR2v14HjONk+bI5z1uvFOgQTxJjUfXFvMGlqHK+Xfo9r1Lt0NGQDzRr6xqETpxLIMQasdVhrmCfBRH/QbxCHsGWPeK7KRhagwee0xqnn2nF6WSUSPF3Iqz2gKqwRQWDtBhysyUuWmMlJt7hfj3aUG7BVvCZtnAzqz1yAi8IXV8x53/tpQDYgKOA7dYFVSMk5CTRE7V5dgxKojJSP1XsF/4iryPgsgWo6jtu1008QmNjypnuJBG73WYyxMeaVmihWNnexuovRINF2PTNTMFaAPdnalexuKyG7jIYJmLieB22nWkaRbMu3xkJd0u9AMWu1h1TBONIXkwzJxJrsj2LM+krkG9rqgOD9N4xz4vPzYFzkBEG8OWOfbcO2bTAzaVOFGA/clkN5Ab1ZFZduzE0l8AXOsnPjAmRjpqZQOYe3yIed54nUxCnatrjibGeC2LTXj6kpqFEFDwg0CayCrYC2OZnkdTGQV2NUli5cAODUr1NrRnNPuz51PRX/YCQSk1p1so2ZVZCjHX8dLyANzQhkO1hILDlGoCRWaqodY661T8VwXUnoBu0JAU+eFDf20nOycgQscswJnBMNZLubppevBHztzbYAu+N1ADbWEQkBk2SE6ywKCA6dk+bbtb3hyKQP3xo17wDDa7xwDPqTx76j/7xj35rYpWQs1QRrW362WG6De2ExvgzHMVRoZZ7bZAt7K8MknaCMOtAYI/H943f827//K2IAMR2Pnb51zAk7z7VnMyiSsrpYMlnQSRIWFoAqaxMoZjXXtlompwqWmze+h03MJMg2xRqLMurZNY1NQHJSMxOgXzUzvL9/xb498f3bJxzU22PsIEY5gNPA9sW2w40yEWTqtMVGjDFVaMaSryCz9NLThaAlr/hJLahsYWRHUwmUhDFm9McGZOJ8nZqIF2je0ZrzXAVWPOUqCFbObu5riMHH53f8/u13/D/+X/9PfHx+kgUWzNvPccWBtDoVrEqcfbGKyxOpYC7mX5JsTTWPRt9iKuJZ2mJ/1uQ/2ukB5OQ9pKJhM9i+r3bgyETOxOd5YsyJbX+IAMCzs7e2QKw5AzNP+EzGJ52x+L7vGOeJcZ64A+UGIMf4vx54Gkr6mkCfGBxt3ltHM9J2J9U0YdM1RbPREQcdlm1ggJNACTZzwgAZ3mtUn3U5pSTwIB0iE4h1IbhYh651TfZKVjtnTgANfXuS4uela8Qs3hLwSFhStLTAunZyNHzbNsrFpn4HdKKshjMw6xqpahlCx68qdzdurCldGctyer7if5fYWpcItbYQbCYnftW/QXoezyGddpRxLdAjr1aiCNE89bkRA1szPLcGy0FaJOh4neVleDfAabTcmMybErxQVbd157S/uJg6LsApVbVjZScBKzFBUoczGppdTAUzgTTa5FDA72h49CbBsuDoXQcQEojLAyNOoBHYTAWgjobMziRpMjBojUHBFOPDItHSaQlfybaljxM9O74+vwjQ9EXNnXE9MwY3AmhaJY8VINpKyLL2dvX2ZmDOg2LSMdEB+GbovuG5/URjrMQWBuyPAj5Dye3A3hu23rDZhhhyRga4tJjMDlD3LLDvDb3vYlupBciNz04BqqHx85tjcwNqtHI5qiAA0wzwZNVswwb215N6mfOEI/G2P5igZ4CT74LDBBzIopYHjXhvCTdWpZ8SaGfbHMX+OZp3As2x7TsNfxrmUc5xq+VmhSUdHoL4lLP7ZODaFdDVtMxICkxXvgEA58lgtW8UJZ8jrt53MPqa0h9Q4QtFdrNkVStm4DwOJuydSeUpgL05W9pmJFowYcvwK4ALDRIwPWvpoZVOC2LwWpw3QeCF+2XOCjjHYgClB0aewM5AbOaBPE/U1I6+kc1YSWXrTQwngXGoajcDcYr+6jwngws64OT51fN2v7EhFVwAZSIq0anKZIKUcL5ZmsFDwYtMmVfrCe8YiVgTGJ0PH2d+ArALfIEJXAF6aVkEAx76G1uBb85QUJWYxvHaaMZEMyaasU2nk8eDkWQrjkoUvcQw5xqRWwFl3JM2bX4K9DpKEaqVtg4oZD/noDRRwwVC6SsjgCybQL9arW0hcnDaxFWBpc3zddavpAfFxkgFCslxuMX65Q9YNbN0NJ0XU4JVLQ1k5fBZPFojmAOo2JIwIzALFSbOOdZZ9ObYZYsyKJwfCbRBwfrjeFHAFKyUe3JYSTPHb+d3+mNV4MJC+FXDGYkRajkxx8t5hsYxMcfEeZwSK5vYPNEdeH0feD46/o9//hP2fcPz7QkY2x3ZcjsFNJd4KdkpmIkzD/hMtsMkn4dLL22DA9bwtu0EoIJCaUt0H7YYhpANak4RZXauDe0d6nj0/YEIivC7AE22BQbSaGP7A2hZgBG1DmGTNi8Bz44S/x4R4GyBQGupghYjfO6JCoohRsnEjFOJna/2w2LjQa2YqyotoCPnTYdDe5FHonynknRcSTh/rmRB8QGBgqZryQWmXH9S8jXGOK9kDW4gDBQbrvhx5mrTI4hjKqbJ+s8JTzJwZ/KaigncW1WKxVATI8MgADJTOG8CSuh9VeSS5k8AExlPPJMsunHtSwus1qnzAAuQpkVdCZdeXJzN0pNhVCkpCjFME2RiwFWIVRYzp1hjtzahKtnTbCo+y4QpJitWkgGY0gg066slOs2L5w8AjMOQED0SaVhtMq1xUmsxEeC0fQvkNJ1t58j2vrFCl6YWYTMC5QX86/pG1RKMLKgxB5HIVME8QrIYJVas/WtAdiDOiZwTu7lKsQ0Bw0iCwiNjFTSKEdOyWDfyfWKyUUBbfq+KCu5KTemfetSac0ACWQwA4OibTorpukeoLcYxjGftPD7L8XB/uWHGwEj6GjKFBLCpzY2xow6TNC7XNEYx7MYYKibMlWlGnvI3thJhILG5BkUl47mIKY1Vo6j3Or/ya0qsIwzTcAMLeAam7AJ5rxOWJ2oqZr+1vhnY+tOaBjxIu6bIAF0gWjhbjtouxl8Cbw+CmI/9gW17YHvuzN/8XN05nP1kGC+2b5LpGOoAkQs12o+tka2beTBPEph/iP2MJAPXHOwICPpBbwM///ldlnETMBUIH5hmKoS98Dq+w13tygJbeKIb55JkSSIYaiob28UVo8zJfMjIrm1GkDNnIOeBjMECnjsCHZHy48GuIOr81sgx/jsaJU0oa9JkM/OSWJA9GGo1W10pUeAwA3XacxMxS7HmPNX6eegsiXlrBfUJvzO7tRBBbeKAgVqM51kNdm0RSIgZXMy8rEhN7+9WuoBshx3HwPGalGk5DWNw2A/1rV60w9I9SJQfSvq9DE2lBM+YPnRGRYuF+jIGbekqqKbYuTrbkD2/XCbrlooToTgec/D5d3aqDHWL0D9SGqCb8o6s+70YvAOh5EmvcQDqnDHtAcoIJHpeKMZ/9/WHgaeYUweI6vJ5DvjesPkGB793aGNjmgLXLoOCNZlhnGzL6HLEI4nE8abVhuPcuJFD1OVCK5jYcb8KtRUDqzdNbgIf4jlOVfn61R+uyleVw4v5gGQlMCPhMWCe2PaL6ung5msoTSUG1JvuYTq/05eAYaLLecQgKMeEyVaARJPfiLZKS0A9dECyh7ulnAEkplbouAFT3jhR7C/o3175F5opk8mBZg3PfcM8D8zzAPCE+bbQXZMBH3Nia7kquGZ89olEt53/rooiAgYav1klcQmDm51AgYaiVJqxNWxV+U20xKUNwha41tqqYvW6QAUJ4zwYJDsQyfaKvRF09Ox0WZOIrzcm46WfxDVVJHUAMRLzc6L1DfvjiUPV1zpIeUvQIiaO48C2bTeh/Uq2iyFTCaeqEkrmIk7EJO27mWHrHc99A953nHOoXZTgwfNJZs2YJ6d0nC88uuG5NzzbhswuI1tBOcDpj6Ry7xsr4WwBSeybWICa0BWRaNawNcPeqKmUzKtwnFhRl1V8mAWk7mCPuxLE8YIDeNt3Ji41tSQ5hcEdOF9KapNJqrW2gKdNemGv84XEZNsWEmcweOitgyB+qtrr2N8YSgfozCzEoBuAh6aSTQX/ramAG1qrWK2/te/OcaL3jkfbpPH00iQf575FrLiquwQQByc3pjXqmSEwjlOAAhOjMSbguwTUJeofcv3BVqkxLoBCWS12saJSehQ5oYSIk/7YrhGqXLCqFbIHJm27iQnvBt8McZ6Yg07DzAhIWgltcwJJU68/qgJW1PXk2kGJVArMYAQjm5Tat1YOO1GTDWE30EOWicAIVjIaFayJE2BWgwjo/MmQYjWxbLc3VY3GAViH2wPFUGUQQ2KqJad3MNDStaSeoa4VCUxIQ0kBb+nsNU+lGByOnQLI/cYIyAhMTRqhHZQmCbjeq13O+exNCZ1V1TOkMTSZ1FsT26eMI3K1+V3toLSFGbKdRo0ZMl3nsrMXqZ6f6/UgSjstuZfYuiPbZVUAYKXOI1EC1MhBextkOmyqUO4bC71N7xNzaN+kWnKAY6TOnWuUseOcE+eYGJq8OAaTzm/fDjgMu3cCWTPwthk2N/z++ycBATGM0Bxta9j2jtdInNPQN9czYpI1BrXbPl8nz8N54NGof/bLX3/Dvjt6B75+fcfz/SvIIJh8LuM+Xpwxg4N7aM4TOxybVaFChaJkkzoceNt2eJ7IUT4lUO3lXq49g3pGRp2xcLsmYYJB47Y/GdMoWbVMeCMLJBVI9r0tgIWXoWRANiaSLC9WqqnpNIIARXeHN8kC1AjuG/MgMnCMg1PessMjl+6GwQREC6xSAFyTwsrCtWqjAQAVFBiGCXyyXGe/1jPLjhg1oVisnOucE8S+Wn+9AhkBslLM13247ACvmv71YrpWoa03jZafl9aOg+B1FdysKxHOXGyoYgea2ocjahIUr4u6HPzVKdt9tf0JeAIuPZOkjSLTFSzApVhZtYqZKDqC6VkAQA2csbjp2wmGmskEtwK/mjC3mKGLtgTUA0m7EtnmuNnoSlD4PGDX6PX6+e2XV+HHWjUXMZ/ovcuyGaY00CAGGDFExuxN06Dbzv9Wq3Gous8FFjtWRzbUwmc6D8wzuNfGceCMayT7WG1fprYjYJ4TMU7sTgZhR8OE4RSj84jqWnC85PtbSsdHshiIoIZSY5FsCYkDl5YkpB8WwqZczMnIVQBFk46gVUfJCWvUv5zyFcdBWYNirVJvduKMsRiBBdYuH48LTGK3hNg4IX2kkB6eiosEM0ga4KRITRmNuVohZ+VnOQnO1eCTIEMljUD9sgrK6Wbmmg87Ebgcl63vAqcYgqUnTL1W5sRkKfXecZ4vAoHS52kgi3LYZPH3aSve6e2haV1v6H3H9th1xk/6mSYtzzQckjewSpp0eCsG4fvx/M55ar067y1S1cukTTNH4mQBOgLWAj/96Q297djajt+/fcPrdSDsDjydOM5PNN/QfUPO5CP0fgM3i0EOWPe1jDMn3fxgPiIJH5bF0hAjwOlpgwV9a3DrmAm8jomLtDYViUsbb1JaZl9MRCdghkAXbuBO5rSP0nEjqFHWolpq89aKVus758AcA+M4yIpsV1eKI8WcV57hBR8VcQDCBqSnZUCH2PTF2wgZOpAVVEAsBxTpLMGRk1OITwFP5+kYwxHRMMbAcZzY+6aJyFcx/yr4icGekL3lPuFEUhAo0v+5fMaP7bkJtsblBa5latot1v3KqwAxCNZ3FlvmuEgO1U1kxWpMTtKF4gQE/UUmhDsodm2GtnUJ/KuFdwa6N5T24n/39YeBp9JZWf0MCaJ/NiTcp8qUUfxyRmAeBI4sksagNeSuao6M5zEPbS314utgWVTSelFeOfpc6UyhiLic4sVAGWga2Z3umNYwjR3XFon5CkVH561rg2DGqjV+vjCWvgOdWpJmghAFrxLanEOIIQ/ktURWb8uEA6wgphKJFECWRmBr60QxkeyhX4yvDFhvOmy24oI6stUH0Y1Vo6HKxqMqO41O4rdvByskjwZvDzR7Q4YDbujemRg4K9aGExnG1hg+eUTRMgU+MLCUvo2XPhKTjRmnEu7yHWJoKQHMBHISuHrsu4I9jbAN0hEZIG26RW7wc4Je2RVUdTo3BAPnZo7Wd8wxcJwvrCk2aTQkGxOH1+ulCtWBOEN9r9T9ciNwEkn2W99El42r6nj1vl+BIFBtCERDYvI5uA30JjASQCYnkNHRdcA6qledbYiJh4MVPbGH3Cb6JoaZKKikTU94JJp3bP2h9L5aDfK697iS761vaFUq0v4xGHYJ24ZE7QkUdhGhN1i2xQy0JIjkFugt0BowO1/jdqp6zF3frC+AMSanWcCnDKSv05KyNKE2zKwfk7qHaXMBAFW5KU2SvlGEmM41cH6e3LRiyqQpCRU9tRJzRGIcHNM8Z2CeLyCvsdCWDCxnNoqKH4HWE60lZkq7SoHbMT4ZCE8DQFZPaSLlSgJ5RrZNQogpzbcMABvkOqndtRdLLfR9auI0BW6BxDxLK0baXSkNoAQ8qZ+1bbfgDgDUluAORJwYmRd7oRgImUhznWe1V0UxDG2dA6CWeZKyn5X1iUkl61qBAUDwtyw6fygqPGrEbiU1V7UnpRXhYhKigqJbOksDm+vnuD5SmgW5KkTFTmRBBQw2MhdQk9OUKCXqP0z0Yt23N56TFLU5FUwYyOy5NFeuOzIFUbid0wI3UkkIVC1bkF2SKVfO1yXo6J0Vr5NDpsVuUUpnZEVmlP5isdqwks4KUCxdoDgT1JUsxpWQhgDkjqYEk0HGTAU+1TplxuEJZjDrClqY6NTljZHwtuHRH8gxcWTgt98/CewpeGKrBJOXExRonm1DGMc8o6r5MzE/Thwngay5d1aXjQDG54uJbHrDwImhs9QM+P7rr3AEfE/80z/+BX/5p3+59kSy2tuL3QMBfSpeGAhOLsF6ADEZIzUTw26TyG2yyhsZaNtGe2ICZsbgNQVF3L05fGc2EMeQ92WrT/OObJPMEVVgV9lWRbvSyKnowAsUBZksUOHDOlv/vAlw8U1xlWJksY7OoKZN712so4Z16hQQz1BzWfUK6wC64waMaD/XAa+9Zxf7qQyC5SSzLMicYHB70B6o4FItfIwlrzZZw8UyL3YnfY/GRRsZUW7g8xF76Yx5FTAVY1Wqm12xja7/KPuBXKBGVfTn5HmxVmtQ8RDbRGhO5KVNPsj+3oZh+YQVd5ddQWla6Wwnw6Fag0QqmWIywul2wBpQsO0rCa0Ep/Ar8QbW+lVLWQhszqREQruuFigmllp4mp5RCrTW7YC4SVvFr2p3q7M8xhSLQh0Cxus4zgOPfcfz+cDj+cS272j7AzDH5+tQrCgWgwA+AgR8v08VhbZtI1gjncPm9FNWcXed4SRQbUEwnSCJqc15roJoAckYAZsGm9QatdBZMuVKteHDMNKQ0cV6Fps2BCYp3potEUb244Q6DCRBcap9MAUC1WE1JOZxYsyT+8OKccX7rb0UBSorfiwNyQDZiQDb7+ck47U2I4s0J2rYiwtgbI33svKdUKkoBgtiIBjUV9/7FAuyZDrIJo6ApojquitONgY6BcpBsW/K/hLkos4m2/+rkM9ifjqHPjiesDRMcHDP4/GOthHALN2xt7cv6H3D+9sXlO4hC10NX798xZe3d3x+fOB8Hfj4neuwbQ/5s1vrX15yIby+B5+zAg9riZSg9wxmT/vzoZih9vypWB14YkN7GPrG/OV1siDdJB2znnn3BRqaUQImTKmrx3UmM8l2dRawm1pQKj6CisAOW7h9gSettaIS6P6oj4sEvv78ji/v73i+P9C3zoEsck9oABp9yYzEiBOpYgLHD5hAG2IBZoZ9e8CdBQLm9wSruvwWCxHK8Wf8EJeyC48+1VWwMNfghTEF3PB3LFPtw2xbRgY+Pg6YJbbHzrXiA0RkYHuj5u3vv/0HfvnlV3x8+45jDMrsWMOX9y9q9wscL2rydvl80WZWzqwyZIWtsnuXP+fUzFvxprMYVKxpt4tVCRVnF7MsCozbgOkYLwHBk/kYlVjFiRUDl/FbtVXzUJe2HkEyAxQrktDe4XuHtQ2Wcck5/IGvPww8XTo2V/Cw+qF1eBdLxiWLd/dPUDXIc415LfoudEDSqoVj0ClUQqpgiNo7rr5owhjlvCmgZwoEAm6BdKPhhpyqMfGeNR98TMChST004KHEd46hKq1d1RNRP1mgY+XQZPgFaDLIWWktDXcFVgs0U7AyUr3kTnRmHQhVWBPVUijRLyIQXPtbUkWKoq3KGlueIHo26XQRgdc48WibKMsb3DZwHKkADTNVg1j1zRxMuqy0Phi0u7VlYNed6n9Megc/7j9ds0QmSwMnBYy0toHCi6xUhwA/7vWCpKfWtxIlX4ysnOUQabTYtuD10JZT4KFl1TST1RorNlkkAp1r3ZWYQRVR0fe9ua471jOtcwCoWqkPM1FwI6aSBuMzDlVnjO0BTYF/TDq7AU7gaWrPYVzHxLa5qYcdqHYbpKoVlmje2OtPZIjGuKL51JlJU1Woc4pKFnWfjJ00VS95YzBVPDxF7YxCL1RDcOheyGbjx4nlpMpiczI5LOkkqP1ykfCrOlKmuJJO3oOxLAiQ2ZGpin2u/eOQ7bE6LyntCRr1iqE4hvUCDQn+QtPsSlxT7RdNOj46rxTGJzvDdf9LFFdBfawJlWynY7sv7++uYVJB96rs8uawyqxiz7TGiShkcvNnBgVkS1NDmT061/1mM5Tbcf0Ty16JagHu8LmSqPp9XRAqZZQHkr1O1Gj5XDYaAi7KMeheUi+Vz6gAW99Z/8qipNZ3c/0ErKgpmAOuthYBjm5XArzKyLLTl3bgLdut5WJmpSW7MYSqYqgf13WvP1ntLqpCVwtf3SyuX2bwn+u9yoNSrLMYHrfEO+vFt8egN+O1/OhDXKy+GWTy2Q+vL7untcn1hPns5dNuLholZmuyc3E/Z1reulZX60j5Zn6OfKTRR1gBiTWtKFOMvxCgs0kja1ITYwb2fhVdZlaLI1diiFrudq0DRVepH0cxboO3RCqI/zylqdYcZybO4ITETODzPGAx8e37C+9fTkxpwRUzpuy5C4AGEk0JY0ODWcBcjJtlE0VVN06likiM1tczaGWnBBANGduQfYaSHXhDCyWvUiB2JcuZNXyugBsg6iy0hnooV43qmgbI9yk2hK4FmtQmO5WyFTweAkdvbXbLoGIue5vrwOAG3Fyf+iMclreruZ8Zu14vVhUnZzFxvusg5Y01TW9r5ZEEoohZDU1CTTJIiLmmNEXkk43gWQEkWWDYcnV2FdUKZIVMhwGlbXZZAdm/Fctd2o+3rXIdd/m5su3F9cyqQOO6VdP6OAoMyRUM8mjq91NFSywTt84Br3XWVa61W3ZGkXCigOfQuxQzMhV3cp/XnmRYZ2vfuGzksr4ViMn3LnFbQPpkseztArxjwpwDHbZ9x77vQGsL7KbmWWBpg3nZMemzDhZLwmvCYYF+lVOYisFQK7zipAJM9TszuZrl81PtJ7bIQgaf3JNM6ovxmlrX22RjxcEGMqEZixQrNDS6hIl/wlA6edVeT0Z/FYtk2zUBtrerFEM9VrGnF0tXj3HtVawzjFs+J4uDVS1ANYpDrVmGavWpbE4bj5+nWLCKzkt7rBy5TsuVhjOkFWly7RkelNSetfU5hpIKoS3LYva5dKKs4reEWV/PwOBobdfE1A5qbSa27Ylt2/B4PgEkXq9PaqNunJ745f0dcQ5Nq+UVuib9+WJW/nDhKK3aSFA+5W4jDEuofmudjLhuaDFRA0EyAn03wMnwpUYXgcRLz2wi3aSty7yp6ZmUjIoZFmhYBcbyn+XPq7hYxbBqey4Gd0JSEaj3qpiFDIHHY8fb24MF4EYtQi9zVIzyLJa8hip45++ImT4Xy/QeD+o6oljx9Zx9AezLnq69BZTPWMNZlCdUXBsr/rvyAa9teWf9w1bhnnUbatwdrxOfny+MMcUiMnhnUWecAwOhXOeKFYWLXWfl9nUBT3XmsYrLjPeglj8xKW977cot5Bu8dG0BTrQ2xCDAizDpErrYbEYGnq6Lj/aKl2v9Uk7ELJetcCfIT2ZnUtojA3/k6w8DT82vNjcK/G23PIHGpjdqM/XWMIHr5tA5rjvGJSDduLh934AK4CwBmwvIcnnnCAcnrD3W+1lTldmYqFuJvCR7LZrnQrNzJjIdrT8USPKqQwoDjmss7MFyEz5fJzef2qoCKedzVa59nOgwfHm+weVoxxwS1JY70ghoNewRfFGunxo9DrUpVEtJd4r02ratFruppHtMJhlhNKLd2mqLiteJOA90NLbWWUdY4FByG92Rzw32/sD2+IrH9ifMkwd0Tq5h7xNka5za2IHW3y6qYebVZ+t9OYBqsZnzBFF3PvveHsuxRTREFqkagHUEgGPQ4XPIloyOGVh8Z5I7T+rvvD03TjNpG46Dgn9be8AtkXkgc+D4/EQi0HsCQeHilKjmtu9oDTiOMiId5xl4nfydQKKbKMpB4K2EFa0shyWaxnIOiftlBoX34ARcwM9mdYLV821/iG0l8T8MRFBomZNVcglPmnfqLHknpVmBUDkfBJaoaRlIgCwXQMwQw9JSmyj9Gb4WExgH2YoETwHbfjQamZAkQcAxYAo+DYaOS9QVmYhBkUizjhyapaAAfai90s2wdWcrVIEfCkwnRJ3HJc66jLUc3lmCEr0p+ZSmgxJK0lgbYA3bo+m9gM/PT3weLwVswPvXL3B3tjmegdfnS3TsB6wF0ktfpILjhrQd8AFrqpC4BDEz0UXLPk6ynKxv8hpJ2rH0H7iHdO8CLNyqo5zfI1jO/bAm+ggUBlgtZqtdJS7UryP1j1WHVuyESccbZ4n+XQl76plpeTkxDAKuA2uC1nmeaNtGsV0DLChubXDs/aG8KeE50Sa1+BjkecWrTMQEhF30dKBEVyGgN7NCutobqVYQW4Kl1AwwMRMIbta0PSihOPNYAFV9VQjTxPZJJSLWau4HwZDeHDZYmPC1xxs8gzR5GHJMtoy51fajXUAx12yd1ambKpiPz5DaPa13TqtTpa0ANObtZDakqZU5IaZGW4zREbEqzFwvtg16+agUmwpqx5OdR0xkSqi0xlHhWq+le9M4dJk3IPHRSnbqHmHrnE0DpougCCyw2fu2INVxHpjHgYETPqjp180xD47rxWSgPpSozUj082Byoevqk9T+83WwfWQOakcOasbAHQNkYQ8lXjMHYhzIeeLohs2B9y9f8Hxs+Od//mf8/PNPOOdUArDDMmBqZ8kItXYZ9m2XTwjaq07fFcnWkAAAZ3C89w3WWLmcnyfOY+B4nbyHzWHdlkQAQB3BOZNaVDNWolrB5rN34BwYgESDK5kxTCMTzduOSkbtFhIBtpJAb536O5xTznPXJmocdaYm8Tn3qFtjopk8iyvRFOBBsVcyvbSDVvZodS3e1n1WETLzYpFVeyddP9mY1EuSoTMm5fBrouyyM2sHa5dJvwg1AdcnYJpIJb8TOeFhaM7WoxmDxZXXgUKcU2e3CqCtc2pjaCqbnBOfnSplrKjnldQpBr2mFcpnwpZwcw2aKParwRdr3TZQJFeJVSUiZom2aeowrnXMWntaO3Rjp8FUK0xoCId1JYOKTVnoYeyVAm/cK+bYZMgdJta9N8U6ImeOMVmwtQtRK0HyWVqceYGd1cJ7joExJ0WiU+LYRnaCueHxeGB/PLC9PeFbR0rw/z5d2KXLKDUtJkOtI6zhIaZxqxHzRg3YcY5VeKNguPZXKnbLWO1DiWRLXrUl51Wk2K2zCDqAlo06sMF1nGOsfUJ9qSqOym5m4pVD75VkrnlyCM5MxpNmZFimmJiRsJjXHj3JIvGZ2NJgM0H260QNeCIFUx7FxHiEIc9KKitJvU4olJhXItnLTyi5BQw1ERrOj9i2Ta8ZIHQ6dU+KJ24Fx0QVLQniN1OZIpdDFfglv67Q1Lyjte0mMF36srh0viQYbkqIr2mWNXCnMQ5JFVXdgdwQs+Pzg0wd947undO0jZIxx+vA9++fYjUyLmBC7Ms3Fp6BlF/Qc55H8LrUGmkwnPNT7auG6Yk4D8x54vX6RG8ErbLY8NEwA/j992/4/PjA1vo67+YT6TpnmdibilpZOrGmghkBsFQxw2CKG7XaVQAjUiU5iAk2PzZY37EAaLH54iTY8Kf3HX/6+sRuExYT5/GdDLTWUdIAmCcsA++SvzGjxEC3HVsnqE/mY+VBhufjjXHooFzJWNOYeZbNjVqXqbN68yeZiTgTOS6/s/fOgtTrWH4jxsE8VC2Qz42SMhhTNrtjw4bNNoyPifEZ+PU/v+H7b594bm/YeyKM7KzzU8QBGN7f32T7UzmWEv6F29ny3x5YeMME2+onOLCsJ7s5TJWRknEobIDFdJ5LShoJJEyDRcXhWZk19ibWmBHAqlh/RgF3JUehYtfCTLhv2FqnKKDZ6sQigeMGwv4XX38YeNKxR8FsV1sbVPFlIsXKaCUaF1rIiqyqVrXuwGIq1A1XAF80NFafytn6Ci5Ml8PEMGjQkkbXbswLmyZqGGvn9Q5xR3yNTtqsED4dSruo0qFe/qzEUYh0Ud4rGLBwuJEZJPetC5WwXZocWC7mRK2Vesu4ps7PrhtlFa9YRlAFzsDUgGtbLKlmvjYVBKMmNIK4NbRtR+s7nXOcyFUxE5qqFy7xNltEK/mFK7nC2gbaiFk9pHyh3QQfi0J7JcF8paA0wO6vl1OstYauwyFABsjU1BlzhFdMaetZofI59d7TR0gfZaq1RWtsumYrpojWrqp+a89rL5bopQp+dSwucApVLcz1b7Ioba1ZvffFkNN+NjrRyGT/Jjf6SnCzqArSxMmpoD0LVACKEG9KHOtcVuvHYi4lGDgZFnnmOorFllJQhlxBB1S9YayQykFKdDZuAQQNr7cL9S+nWHts5e2ogKxYgn5bU13z+ni1J1nlJQqGrl9Y7xkp8b4yC3AF2VVxFZPPaSEy1FaWV2JtajurgQCpvVGOANqfACs2PI4V9DSy32CggOu1R1B73VLszdveL4Ra2hWV9PGzfH2mrUDx2oOLqZdJG1rJkGxeVcN5xddroWdUY6qxqjW+9lYdfxfojbV7td9ufd51fsuOLb+RWM/Kbq+u/b1aQ+p38saqyKV2pDW/qnXE+2K9p+mX1idpa1QFdrXsoOxpBV52fbZVv/2tep9/t273pO/vfa/8w9rot8C69tZd06YSt3qWF1cKt319raM6Em4rmct2lRj1j3Zaa1+3ubyxKl5530y1RnzvahflLdvadlWZp/fO5XMNFbzgel7GTRSyv25YWldHsMhD7UfGt+MM4OZnZwA5A2McTCzAJNW79rxpSqPRDkYalSjaDsuGvQG9Gb6+7Xg+dnz58o7HY1fSz/tsBsCpO1XVz2JaFQMhbr6h/Gvmbes4wbtqpSQOUee74oLb6TEm/eXv1hNLsWOd7QBNiTkrurxexiJV1c8L/LjvGW2DYkPWnlttqKgWq5s58GU1/rdrqn2cdj+Lt5/Xylwu77YH6t+29uttk+v/9YuJcu7rPWsf389Touynr5inng3UYvdDbFH7fV2PEp761vXWa+8tm6B1vdtFCLRbd3GzEQao5e2KAdZZreuu+/jBf9Z68g/b1PgeJMCJVWmGv682Vwy7rELWPqklsJu9qRX58eL5HgS7y4ZfZu5m7HQ2WPBKgmb14G+fkWv1yg+JAYprYxSrDMaBHW3b0PdtteVNtbqte1PcVjSBXL5GDFY97/W5mbgv8erYsFznh/H9db5r2mWtUFt++IozFvtM5/e6L1ydIY4qKeizBZ6tY0AwZ8wQw1QMtdq2mYuxxOKmcp66v9u5K4CsDnXtUdN6lZmv1eHLbrEEjTn3RfmKirNkn5dPrh/VOqD2z+1a8b+7r3pOdqc6ZV5E7vKZtkyqYrGKEesM1y/XZ1/6YAViU3frsmcGU4HXJSnhCA1WoCB2x+Y73GpIFi72uWz51Up/bXRDkjln8mHJLodlDxRfVAt9ydHMycJQtTpyyAXzFa+hB+eJeQ4U+YGrM+VPVfyXv1qn9L4trGKKH+3wevxc5dqhC0z7wf7q+VIEnHuDU7gpv1HPzAwCqOvDCVr1NXk+r1yz9kJ5BBnmpZMUl21lp0AQhAUwVNQt212ndHnmOjcGxiRXtXDdOi/5BiovG8W91ryhtw2nZFk+P19s4w9qiKbLstXaAihJjwgCsRXPF0i0fNTlbJcTzds93L1e+XYWNQtsU7x7y0l/zEl4Hkyf3YwDbi6FMunm6nrrLCXqOq/3w3pCf7d53FTwuQUB/8XXHxcXv1VuWO1vV3AR7BulAeHvIhI+ueMjp+yVVsUBR78sSSYyJqCe8rYWUFTrVsGgL0dhrQJBGoEBTtyZebBfs22oUd57EBB6D6LkYQwST+8gINSR2UAh4E8gJx77ExT27DjmiY/jxUNlwL6zYnBGInPi9BPNKTTKgLIRJTeHCwxo0rs4Z2AMVlza1rG3BqDRYZ6spA0DWjP43pYjIG02WIk3Q987um14+hMxBuY4sG/v6LtrIk/iOE9uqNaROXDOQNsf+PLzn/F4vmHbdpxnAjbRbEfrDc/nkyYtTf20uxgoMjYKUFfYVK1GNQ1IBwNT7Wm+wTyBDLizxS3GQCQkMJ2Y4wQ8gBaq+s6177LAjwYQeX+thOd1/obP1yf8oMD93t+ABCIIIACB8zCMw/DxwakIfeOBGYPAXt8fCEygTbIPAJiL7C5DNKcOrmPREwtZzpaqNthKMDKv9pc0TXFAAnMgkwKyFMe3ahDllAAz7P2BzMBxfGKOgfP4xGPf8dip32SZNaEV3jbEDLzmC1s07EHW0P3sVxuQ5WRfr7HCkYOaYL07mqnqbhTLnjl1rtpi48GomdR7AqoaRgLzWKQj7PuDFQ6ZTbOBjIE5PgEE3GMBh+d5SPfIVmKQNXpZpt/RxFCsxFusC8RKSsvYN98Y9M7U+t8SbO/w7UFWIoB0rbs7R2fvz6sSJif3Ga91fWaNujViOs154pCwXiLlXIGYTDLJ+CRjwZ1JbmYFe7z+0ktSkxTjeRsIc1hjghDzkJlv61xY4+CFbScAdgZbF4/jBZhaMUuLyVkpSVU8a7TxCgYKrEnRvhXsuTn2bcOMCZtTrDmroWAEEkmTolmQBp+ZlCoNMKMtn6KT0/G7khiWQaVNrkqnAooKzqIc7RVQJxKYQMvE1pR0QWzBJKsHoC+o4KHAAqzvkKXpRlubjd+NajcGVgBQmiwVFLvamFYAqcockweeHSGOgOjQnFzDvZMH7XhxPuuo3jDaVQGT9UOxA8quhHRdrp9TjH/ZqwL5i0EJBqlZgUgTA9eMtsyLnwSB86mx0aEz67fJS7c4oMAoaRZWcOLptO9xrvVvFvIYZKy0HWCrM0VwYUCMb3h9fOD762SldNs5jKA3fB4HRkwOLTBooiX3zdvzga/v76w8tn3tn5pgNIN2fds63p47nm8bXMKokFjyn35+hxswz09W/5B4PjZsW8c0RzonmSXIukyjFsI5B8YcahV3hOgMUXsxJ8IC1kG/XFp+OguZiXMqgVYbPRmuClCV9CFPmCW2voudYDgSGIEVW2UEphuOPGUVOVykecUQxvMGQ6a+V0NCbiTEejHtNMfb5wyCf/paRTgxSJmf5koEDNeU114FglWsor2vtvjS87om5GlnJyfwVFs1+3DyAsVqotIPAA0XzSXJMMaPCXHvnX4cedlIMGLbmqMyRanprXbE0lLq0t6EMf6j3pzOjirPGv3B5kbjf8sPNbF+a9WW/hrIgnPY1RIXBEf6rL/PVURzw9JPyo5V6WcvBc/1xSoyDHD6GiUMxFiuiVjwZRv0VNffFsCVxRDZ6IdOTnxMqKsB9Be9Nez7A3MOjCGoMqnnxudQhR75C5ROZMI3AsZT7Smfrxe2bcfXn3/G88tXvP/08wJvxvzEGBPP5xsgsCBnIgcnR4bYqki2rVrGspsJmUhgJbSuhGueg/bbuN8IHKkFP04swXhcyS0qccwLiGhazyER+RL6n7quaL6A2zlPrZFiHGlgjjHRfEMzl90z6p6lrTYhJstjnVcz06RnJZhO+0nGZ+AUyys7lXXiVDIfFzgQYsQsRQe19V0+R0CemYZ33Aq9IU2wPJjmqQblrjKoAakOkmkF3uZqK6riSbH4W6FxQb9I3SEVBwvcg4aBdFPXy0EwqTXse6couAOU8gDICJ5c1+aMWbcdzXfmdGPA07D1B57tiZ/efkZzx5yOnBuQGx7Pn5AReH2SRTnGlKD5huYb4KUhGziVDx1nMibyQd2h5rAk06tAlXEw32l4Yh4Dx8dcnQ7Pr080T5zfXzg/PpFzXM8simvLZ/VSO2C1ifPxFKgjiYJW7FAsMAQgS6vYiC5dpEjFCDoPKGFxm3i+Ubbj/f2Bx3NDzbPanhv2bcfb44kZWqfPAwhg35kbhmLXcUpfdVbbm2ufJz5f33l2zoHeG7atI2JizFC+HHh9fiCRGizCe7NG/bgmSYAIFpTPjxfbESFQKKs47PBNMcMkM2nfduUHDzyf73h7vuH//b/+Df/5t1/xr//+N/z+7Rs+x4EqZry9P/H16xfMcajDgfcdk103M6uApqJTGoYAcBPjzL2r/MMeXkMybg+xnMDJ8xmJecrXC01q6nIpuw8kvIkNHypEpWFrHJyzbKCmjSYSJdF6iZUnSjvPKi8zXxiNLgAwR3888Ee//jDw9AMQXiikjKdnBbIlOqkQ39TuklgIdYouhnKwdiHxhZQ38PfdG4GnQv0t2Q6VEqi9BeyQE2VgxcSzhEqVniBzAKIVz8Q19KSSHgD3Mba1IVs4ugKmNI5LNgemtFOi8uKUYJzuzfXeBqzrrR+6+QoM3a7EblXuk05gVsCgIMUVRXmADDIJ9hX7KlqqN1TB0JXaYvOGvXc8tg1ASlBbbAEBgynq6qpGe0fckkA+Dj7nyJX6Y7GjSuNpjY29xYbGBUkAMCbdSCVu6h+NDE15433OSuRSz1HgG06K8I3BkeaWDbOLjaLe9jkHxjkxzonPT1I0fSoJraBQmkNTiDjMUD3nS08iVz6NCtGq57i+FliqOzTkqvTzj1/nRvuIZfXreiBhOP6bkwDdNph3mHeJSmqXG5NlMia6jnJXFUMOG9f1ZOkNQXtQm3Mh4nUQ/j7wLIBBz6e1210H22tsvbPVMbid6et6inYK3JIFldJMcne8D76Xy1BaBSnS+xmrsitWJMSaq8hSAEwBYrz/UDZlq1padN50TavIUkMpw23qJ7c1vexaKyhtYXVrHY4Cl4JnM2JQSLiMu1h99+opVsC1jBlNpNUz4h/gqsaudEbrjBCjLhkWV4tbAZEGZ+JWVRZ9LoUQE9UKVwd9Jch1DsRQg1GXjKyuuS55JZB1diqNsUpnKj29dsulR3Lffnb73o+J423pIatz+7Qf97AKs2Alu+65fsvXK5Y/0+9GwUJuSw/EVLm+WA8X+LRAKF1RMacuMfXbyVig3HVtwLXW/KetZHftM31G0chXvUcBT9G37/aoXlhMm2Jl1goUe640HO5r6y4/Ghdn5L7KFzh8nS9e+cUMYj0p5FvL9KudvOW17ySSsm2Gx6MpYOzYnm+ahNPwNnbMDDyfDwaR84QB6AbsW8fb87GAJ9fZ6YqAxzjRlITse8e2sw2dGnxkjPZNlHP5WCSFWQMQo8Sue9B+JDOpFtZWvHC/32o/dwXxnP4Z69ksllvWvvCbrauEuABZUusRxQbXFD2r2rSurhgx9T6ZYoPwjGfFXgIq0mLZQYLHtV+00yNuun5Yn1QtgHc/s7bd+l5d/7Wv63d/OMr5d+/AD7gxgW0xgSu5Wp+7qsTLES2f9gNLEnmtm9Ue5qCGi02yLnbZZLeLLVtXVHU3PhZFC1kaJFeRlAVHnqPAxZhDscxc4HDe1vAySj8skuFuO0yPmkDztT+uguBivOqNr8r4xU5dIdn/5v8F0hQTXjHhvda9rIDe5GLdc8/X1N3rve2HT7u0Zfj8iggYMKRRlmDbd+yPJ1rfGD+BIuah32NR6H7VTL7W1GQApSlXMSV/pvgtU9fJNzCdSauYuKa2ai+Vnisgmx03t5hYLT5sLVDBPW9gqUAWPkLtSW0+yV2JDGmw5mo/Y8+Erz3BP+VV65zo0F9tRot5wv2HCORgS2OAxWtNQ6KOVj2iqJu6dskP93Db/DUwAYYLOAauZ6UCQUQsfRq77cBqkU/jtDm3K4Y22YB6Pgks3SEW1ZRP6vvVTudNDKcfDjU3ae+aKGpsk+9uaA51whAU2HppRzZ03/DYnjjOA8frE98/PvHx8bkKUaPaV2NiToPZWOu2NK0kFWJixKTOSE3xNqRkQLhvjLC5nqWta2/GomhM/v6dLT21Dwr1iVt3QtmU+1LUSa5iVsWrXGdeoxkUo15xStlev4Wqe+94PB54Pp547E8yvXSdwwJnmyuuqQrHLDBd+cAYt3brLPuTP+T3dR20ASFfranSapHzNEAAo4fRt6VaqNHL8Cwm6/pMv5t+dTu4o20syB9jYH77hm/fP/DLr7/j9+8chJJgMZJxmcC180SK8AJAsiulo6rYyDUJEMzRMxJLeiMrf+cea3Yvnub1vO7nrU7qyqnqAF0xWJ0nGO/by8bhinumznaqOFI4BGNcMdgA+bVbR5UWr1n56P/+648DT36jV6aCcbVikAXiq4pSG6S3xoeRwcpDc5RiOmmBV+J0gTK5grTWnsh0WBYQMVbFvcZzMpBLimoa4NapDXEEdnNsZpp0m+BkFMMhemOA1RDD1ZvfjVpT3q9gsrtjN41pd051MwdiG4hMnE3G/byCtJkUV+vCCh06kEFHvrWG3nf0TvDJYDiM0ypG8H2PMTBiyGkyYG2i6raT930mA4pMousTTK7TEi+ci7XjzfBl2/HTvuPnfUPEwOf5HYue7ZzoNiareOz62+B9B86xnimg6QYpwyTH0IWX8CACM8kvmcHnRaYcJy5U5EnkNjDiZIXGHGNO9qUbK8yvT7KEXG1l7oFxvnAenxKWTHz/9okIYOtJxNsazvPA5+enppXNdbjSDpg3PJ4PtAQ2O1H6Ci6B1aJbhILJTJC5psCXlNuhbccJJu120B1M8Pd9WwFCQvpcMsJWoohVcxW9F0nGUPMHvHc4OjZNcTgGJ2JZyGlYguLsD7GW9mpC/TGKzQnEua7kQqrLUI31+ykmgFlne0ejM6QvTGzlvCdgMxW7KBMzTpKCglxOKUzUGGxOpphY/cbGqidF1B9YwJNsgVIO6qsYNTFmTowcl12Sdzq1j5sM+7Y/CdrOiXkOjDjh/YFsjqMqkUTFuC/1WVvfyRIAk8V9p2bKeXynwfWqDl4iniHkmYkaxE4aiDlw5GS7r1UwBKRVIFwBOEuDkbauQ9E8/1WJpJmC30oigByiHKui0QyrUhvOoG7T/dywDFQiEJPC6k0RX+IGhChi4b9NwCOo75fAPA4FMgBZYRJRBoP2C2jLFRDQ5re19VgIAKqysWjS9XzUlnX3aFmokr5Y6ysPmShbWdU84ApgZlazNXc77QKfASdAUXTUzZdmgs1c+0+8eZQORvthxpMmqyyASjGAKgE1DCGy9k2sP2uv6zkHclU7AfqN9fuok03ba/JvK7DC1UbhzZWcKWir9pEEJw+tzwAZhu7Ytk3n9zojCzq0+93eFrY+LxnQeze8Bs9ZaTKQQWVom5OuY4m0E+aJL182PJ4N2/aGbX/gy5eflv8tYeY///lPaL3hdXyHIdE71vvuvmPTlFA3h8nnvI4DvTkeD+olzpga+9tgLp3KJpZAaoDABNKM7X4aF13PqIlZwEDR0bKhe5OGEfdV7ZsoNoMBmzuZx2OIDavEVYynLFt7Sxa6Yi7KCAbmOMhACMYWWQCfwCc5La6xOS7pg+T5MsYZNeGIGm8GGKcTotG338VdqQ8ne/F3YCqrt7RHtjJXpZVKzm7bC8USqnv8MXa29b8G5u7Cw1FiMDRRKhErxmUCWsUa2jDmzldFd1asCayx9gCfn1d2M/MHn5BmZNWjEXiK0HPVVtc91JnkMipBNMPexH1KIE1xX7XRz7mKdgUeYK3ZBcqmEiEzp44GjQZtEsDYMOfC4tbZjooL+rIUZVeWxlAWCJCX7887CxeIUWxjFUc19ZLMxbLzLMh4DiCMmqFx3QNvsvxZX6gCU339SUcNqwGoGfbTT1+w7zu+fP0q1o5hTLYsTShWvZn7wkabd01bY34yjokZ1F29bNtEDILXHHRUAGAlvIwbCpAxAC0CrrglM/B5Hko4r709i6sgpmKpB87gPVtrME8VFOu58Fl2qWoQM2jI3oEgM7G8Vek7Fk9uPatMcBopWVYzirXOFq0CyObnwUEquXMfDiXf0j+laokKqhUL5MUUW7GstuzHeWDEuGwuGNO5b4DE4kNFcU7FdLEOdS4jMKaGP5iRfe9+tdGPIWYr1vTJVDF9752T3aJe28huaiQFrM4bLj2aNemHMQ/besPWXNadOnJuDY+3LzA05DQ8+hM/vf8J/+vf/xX//h//iX/797/i4+M7vnx5px7erGmPBT75D/4bbvDOTpcuhk/pxXqY6m6JOCsXFsPfnQV2v+Lc7uzMyEHgqaEtxv4Ix8ix9HhCg2ZWO17QRpDJJsaKgPEpFmVpvxF4kr9u8nWVswQ13bxdfvL97R1fv3zFn3/+B7y/vePjg7q7rxcZdudBtnFvDuQGZMPnhxjpTpt1nIrvzFHT6ypk2DaCzmtSbWgC+ZxI51qemirfrPNSixGdQAwy+Xt/EkxsnedI2mhRBWkDYvBZHueJbd/w+PKO43Xgt19+wy+//Ipff/0NY1hJMKL1DX3bETFxntR0++3XX/B8dOwbi/UMYcWjtg3whtY3MTMTRw4CZ0ahe09fe77ZTTbHIfmPWNPjvNDq5T35jFkHZx5beUb9bibfBwVQZ+IIxj/ToDy0aV9gsa+BGrRSQ1cKOtL1BKf32bqS//rrDwNPo6hZssRL0DVytW5UqF1gRoldcdNc7Qu1APU7xPW7qs4TQEMm6XEQndNWAlbTFQhTlt6NK4FNN2TQ2XCcJr8H5GJATKs8h6bbMMgUSsC7K2bKBZJx5Gpf9xtjXHQ0A0ZlN+XgvRx7pah0Q0WVc00VSyN1fw4exFCiViqdHANteuhtBU5muFHTc63nUHsLK5uJ8EoyCNw1OHYk3mDYm6P3hqEHYku7xoBaSzRkNkyNwazy1mLy8J/axKjBZASKJLRdSeQsPQprqzI8xqGKEVt0Ujy/jAv8+vg4cR4nvn37RPXfz3NgnienUrgD4OtLuDjjxHmeeL0OWp+eOF+cQDDmgLeG/vwTzDrCbD29agWaEutYTzCxkONa9rhVgtdY4PpKth0uXQRXlSdzGXrk1boSemYxjacdICCaqgJlIseACcysPnVo+VlJh8QrFWC2FYfrnEEBBM9ra76ClFjBzwUIsApCsegqbKfZal+YSafFKRU0sqzySBg2dQ8G9E1jlCuISU5sI8uH+8QECKwquhkrqLfqB8CJH+5XFa60gCofXmBQnqiqpXuidbDqpOpigQ3aoFhTm0xpts76nGpVAhNEVkjY881RxdJqM4IvdR2tNbGuBLYVMAnaM6SJUdiWvcuEqM5iUuUBJkEFCPQFBsRgxD0VMDCQIH178XnkM4aAm0oysv6erHMAodYw+yEohIJyBswGTnM1dK1/mJyabPOl+yLASSeLmIit5MhlsC4AlJs1FbDTTqrqI8tF6rEtwO3GB8J1gm+MMCtoMNf+1f+gWoWz/m4MejKTY4Bx6Yfh9u7X8VbleoGBhXBdidYd/FkVSFTyff3MtBawH132CvbFRjFcrTJ1qott4Ytyq4DdJIIsn2dlqNPW3/Vk1uuQlVTUT8rW222tikVyJcXrQgG1gqgVCFVZLCdx/wPUQ6lA8/39qRbOnROsHGqT8NXStWegqe3IPNFNXjMDG070TLiq6zBDa4nHwwALDLxYAfVgTACoEirqum7F4Gr/Mz0fky/U1asKvZ5fphQC4rJFSni8nisrJjB3NT6iFmxVt9Ov558CzYrebtpTrCbr9wtk0YtScUETS5stcgnRQ/hxruC+nnqxrluTvfLVblr7twTd1+jm2zmqdpxiuqFOvJ6/ArYrcdG/s9572QvUYgIptqqS+OStX8zCW9hzYaD5w38vUBuKDQvMhtgjuc5egXNFxL2+7h9EN1VbOeoetf4l/I0RbN01R6iNkYyPqWCf93TMgcgJDi/Ard3VdGYV9yVknWnrAfD8VwtdsDrfpE/aepXuIdC2LTCFZ/Xv7J7YuRUJL46Z7pmFobxslB5GFWDMKrkPtv4YEMGuAr+18MWNCWxwtE6FpCWe7zVgpQYCseXE20a2k1dcyqtxa3weYqQiC3i9Ap5ZrXKK9UO+odo+5zxX6+MYJzLmKoYXmDDnULuwznSEJv+KyWa2WIfmBhsXSzZvZyZBYXlbYOxcBeHKlbKKDypMo4rqYeucLEA72b6eNiV5EGgCnl7zXICPGdDiEl3vJsbXDKSxiF9sFwIMZdty+ZbyCXUOK3bIBFpLLMF8CGhUsUyB7zp7rvL7zV2gWHn1zFJC0WVXoXi32pAI7svH32I5c8e+9RWXFUGga6hPMU4r92iSTABYTGq939qKOCTr7ctXPPYN5/GJcRwY42RGZKXVnppyTvDCvaF17i0yaVTQWjmsQAOJa9x5hzWRvS1NX62PfK8ZcJwHzuPW4YGSoiDZw9NRE7yrRdEKcQyXTTQVylzTWV15iBMU9rJzZOvVBMwVr95sJkRubNax9QcsN2Q0jDMRYWj+oA8JR05DwJGzax+zRaw3X9MireLxymehKeYruCi/h+X7et8B53MAgL6x8JmRa2phWBJwWwVudZJkyjDwTCQEwqolNo4D//pv/4rzGPj4/oFv3z7w8fmJOV1d3rTvc5woJinzskskfd81bE2C5tSuLc3XRDrzDir0EC2tPHHJWSw3ZgtkL9uyQqk6p8HnZwZAxZiKFlMOLFcBVCfJEmlSWfbLljE/AZlRfACoOJGPQ0F1lNfn2blf83/19ceBp0L/9b5VrymuqSkqYLAZV4WlMeCaSjq4CFe8wYSTxqM0CKrRMGbdrNyK+vPJUJBZLGeYajPyjQlbJFvPbgwgzLWN+YCNdxIpkAYJ39/Q3DnpwkRLc06CiDHYvnVMTAucnWbkWJGd+BvSPqkAyFPJn4L2vRl835i4zoFFn9dBx0L3HUWdZ5fQbXLMnMsAVxtkZJTSCBe4BR3mnKTxRWDPxLtxuphvjaFGkilmaIhZCfEGZEckWUtjKihxQ/eqMKIeIqvSt2SspqnV5AUaY+q7dN/lJAcT7dJ9ARlAUYy0SHz/9g3fvx34P//Pfye9cRpR/5F4Pt+w7w+8//RA3+lkEpNG+jzwep3Y3wy9G46PF47xwsfnB3pv+IIHzPY1FhbZ5AQbHXJVS3AFOJFYBytqVGYEaZn3nleQEbiEDN3XwTEIaMxEq+Q+iq4PAR0XddgY3VHfZzk+VVVWQkFjOM4pEMxQIrsLkFk2g+y3vjWx6QJIVgy69EBMwFtWy6OMWALUNZMhIGo/AWdvdiSr49a7NCikEdMbWQQjcA3lpQZaOUREW/+u9thKKqcYTqX3xmEiN4CbR+8W0UgDSobGLbBthmoXhFfbQ6PtnNSVK+CNVSJR9OdYdkfhOkfBu2NMrH1hkJ6EQffNc3SeU7TcAh8r6GBrofsOJMneU/pUiQ5alppYxAS8m+OQ1gSnUQLnMVYlVx5MNjYFVGAJtRZLYNnu0tWriEKtGUx8xwrAG4Lim72Ekrlnh80bwHMxDIpmvoIJpc9VBQ+BrlWZhFqys13JaMyJGupcbQnLD8iu6CTKmsdyLLXCl6A694QMJ+rqrk4p0vNjhpiqYq/cOeX6tKtdtr4UzOtnCxAu+5+5BKqbFzPushWS0LiC8PqM+j99niVWoLsC9cVMq/fzBTYnAvCQXZYdWb/3w9Wvs13AwgxVEIuBY1cBge95MV2v++Ra1fl1X4/mQihQAZ6tRKYqal++vtfjUZsDdbw2VToRiT0GizhxwpBr4l4isGWiY8KmGDCdCUh7UI/uNQ8UsJFZDGRq9pzSN8sAtraxJSNNci+29m8dG2QyYK09mFxvxigqNK0zoKSnNXgmzip0KHA1JbIla84zEgTblMSVwhZrH9RsS0CTCq89XH6XQFJngjtv7bDt7ocIqDVp0jVNpllf1fKq+KOAwnsLKBlB62Ssey6fUS3569uw5Yjo+gqclvFeLCBf5KpVIFzx1L395jqTejBra/8g8qpdkjD4lbNevkcBvbboOh8puKKYkwt7qZcZENILjFNtN2D41nGx+UPMjkpujiDLuqOmH/a1tTjBWGcWxr9XrIuUVAVgjRN1OdGoJsZuFdKi2jaLZYGsSWg6ZmXHqmMATEBgBI69nkktaHKdCwjYFJ9Mo/bUOSvyTHjraL4zUZQND+jxNuqYFRsZgAAFfo3XwTirkbnU+s6kSIAUkgl65sVoqadsXlEDNBluaiovZSGqQAKxsVksdMzzIGB2s40RHFxTu9vUmlfxd9dnCdVgu5eZfMjlH8jaLZvvmDHFphq3tcfSPLJIsfsbcjoYvrPIOYtFDIJOYYEpBqUnE9ia0JeDvjkm2XfeDF37BDUNq4CnDMZrBUQKeFjsYyVtlTMlmOw3r6mnXPQRAjO9yARNdkmaW3fgqfxu6wRTdZbgpuGCBX7Jl5hrouJkrKeD7OBE8n3f6LOV2HPy+g73pjNigHWYN2zbvp5Na52xk3yAgbHin//hZ2QkXq/vGOcn5nnAkehu6M58bCg+AsgE790wZiLVpZJ52XWdOhi0p27xeA1DWcXr5Uh8FZI/Xy98fn7i1PM27RF2JjgCpeWX6Camo8BuRE1OFFgFh4VY/bLBjUYL6CF5lxQYIvCIaYLOAgCZlGY7tvYEsCFmwzgBoDSWFQ9OpxxFspvhPMRya40xjQL4u/+ZKA2+Ymu2letC8h9931nAbvTjlRfMOflc20bcT9qkANv4AeqwGdsT1pJzaEFizMQ4DvzHX/+D2lPnwPEaOI7BmEGkEjfgdZwoALQ5AfmYA+eYeHs+0BqBJ5uBOV2MX04MzUisaa+tL99Iuyx/GiilIYqiR6I6UIjZ0k4TgL7Fpqvt/ypcVexC6YBbYdUqnmBuZH5hGGR2C7i7XLQkf3QPtzzr/3LgaaI4AoXyp1o2DWh0WiM5inbkhJtja9tynKcS9bRLwyVhOkQSjkNTAKi2E6sWu3IGBX4AZpxet9D4bKsUldK+mQlN/IICIP6tdV2DHFIGSb8AcM4Dc5qAK+MBU09pVNuWgy0HRvT/GEP9mcrsWlV/KR7mdrEikBwvf2LiiBNzDGytAmFS372CJzAIYD/7FEC2tho3Y3NEUqOo6Ok8SApkQWfojdbSt4b+4Ij3TFtTE9AIqjTf0NoGbw8kmFyTeUZ9HYQh466HD6yaYpUEdX2p6wJSLQpkf0zRyAv53lpHaUSRpnng+8eB4zjxr//67/j+/QP/8Z+/IEYgRmJrHVvrmJj4PD/wiu9o3dEfBB/L+IwR+DhZ5T6PwJjA52dg64YxqA/y5e0LzjNwHhRozzzRfCd4E1dis2LapHHZ2oawuAL79aUgac4qblBwtCoHMtoV+DadKSjwKAPMbgAGLaG+exW7ZUgI+pjxXizZ6uSiclNfCNSRyKAhN95LAAhzTCMjEMna+pylcFSSqAB5cm096alzYZ1Vo0f3WxJZVZ2LNk/0f6gNwGCq0KhBAwvUClY3BLqLhswz5FmcowQsFpOCCQdtgqsVdiW7k2OyLaBmKLVRGnAcDG57pyhwV3sJGWjsv+/NCCgq0BrJ92MOrYZGtRuYC1C3ouzPleDATI6x2JNNe2nybovxVS2eoQqpAe4dCYouIgxwVbqcwv9Io/D9elqpylr5DFZmRwxUCwYrGvxdGGDdZPdOCncbk5e+NSAo3F0VzTg5ptmE8vlqDZmVa4ohsbJhlB/ivaf2sAIik+GxTXvgYjnI8EkbQXvBQPtj2iuZYgGmZnsWEOlkC8aVeFZVvKChKzlQwO9Y2BQBt4ul9sO5znrG1/sClUjrSk1MoXVeU+uk6u+tkskE8SrUFEOBFeja86gDcSXWbujbjqtSXeev7LDDrK/3c7FBveKPFdBdf2Lyd0vPbE6yh7ypOCTgiPshrns1W/AiwHaP87yCXdMoc05h0xOyDm/AGacYnzXdicUQinZX6wKDTgL9QFOlFmcu6n+xF0r7wYhgccuAPhjLB6sKKj2PrW1I0GdYJuJ8yQ6aCmOGbd+RARyvQzZjB9KRcdIy5fVwCtybk0Ma2IohFpQ3sGNTzwoEZmYmuhP8t85CmeWlt8jz1RYIUs2L55DQ6BBA1DuZEUH5gFgTkurpqYhU0zWnw6ZaPYyJIdkzbRUN1n43X9OVGLzXWZePlH0hEKqEy2pv0jAXAHGFCrJHZsyTQNYhkc9islzAS332AvxrDZeRSbYjZjJZ1R5d580r7qvTz5/bTt3L+zRoDqERsyF/vIL1Wtl584YUa3JKHHqlm8FpVQUcD7FUWIk3IOZqgYE1ykxAIIFuv2JYsyuBPGzHMBWKQCA0g8kQi/kuilfpcQb2fbuKWilWqZIIJud5SU+W140Dmc54SMy9EAMcqva3rkKKASmAoc6bAauVmyzd8yqOyr+eJ5k6++PBVtuvX1mwWt0TDgdbx1ur1vELeDLdB1tvDox58BxoYIoZ2cvfP35DjInuQMbAyFShruF1vmQveW1l92AmkXttsgSWRt4oP2Y4zpP5gezxam+J2pwEnaZaLWnn5bmVh4w51LbWwEqMwJqUzVgbjklitnpKc8UOFeV5GnImZg64RMNXHAtmrrQMGghzi6soKMz4IDM1TEVAsRPsiTGASHT5b7YRklGUat8xlF8jEEINL7UImiEb9+asOCNZ0DStjbmhbRRJbxvtX1gymTdDjKtAA8vlhwrwXnbLHX1/ADC8xkTzjt43RLLDIRU/bm8P9H2HNfqgz/MDwMTb1jC2Bs8GnIdkvEr3U4AbHKWpGzo9lSM5Fs/8Flvrf4o80LQX5kQ4C3R9e8Bbw/fff8P3jw8MGKY1MN2V7yhzx6CU3SVg7F4s0zJGpZFW+W5WUdKMrL8xkJiAhUhGvKdMYKjDI/T9fdvx9nzH+/sXhAOHBab2y7S57O5UR0UBS7ltyAQOY8w2M0gmyFj+onVKmPSNulUZU2D1wBw8Q8c3yoeEbFffCDLOc8DyQE3xtnS8Pg/MSJxDbWUCqagxRaCwzuscZLh9fP/OcwyjVvCYHDKkInsisVVxjtUm+R4qdX18p8h+aw+44h9AouqK45q7/GWB74Tb+Ll8zxRhJtUSawKcvHZU2YdI5WfStAZzD76tlRHRflDsvoKiMlEmf8eYcbFWVdQseztlvss33br+/tDXH59qVxEvrg3EpIoHPi1WYB5VrTeOVo2kEB2nPKnMXZWv5IMNr4NbiwS4DHqhaMVwcNdhBz/7DiphlsG5pj8UfbzAGNLt+PshY+1yADEHOH6ZDydNh1M93+yxFn1YD2zOwL09I82Q0lgoFLKerXmNi54YMTFisBdfSZsllohePWdDMYdiJRnVIsIpKRw/ffn665Wpe1w0uib1/lqTEBNNxoctR136AL7o0DVJAnBkkBJ5tTkpQGIUIRMrWnDoGVYCBohNwSS5gh2oohozcJ4nPr5/4vvHC7/+8iu+ff/Et28fBJ7OicfjATyf7GN3YOSLycfYcKcyzhmYebLKpKTsOHT4hYDv2wM5DwwMBeyBLgHaYjwsMC/XDlq6XDQ01zkpx10VRa5PiM1QVXSs3vT1pJT8VQFJMhRidlw08Vqn6zwYIiY8TeCeziMU2FSiXN8DbsK53KuWNSmElP/SceCfAkWEoJeeBZRw9pp8ket67tX+pfFS9BIh/muvesPKGm6GsJI3aHvwX1cSwkAZCqi5f4qSXREHsQ0CuQmyBQ25NJ7YOw50gWE8ZwQNXQE2UM+ztA8EAgNieunKFFQzIdKeiOu6StdnPWAkin1Rtqj2ESnrpOEiGSCHxWJfuJFGTtuoxHBZhVSAzMDyqiLl8hRXkJKoCSbc+0yMGTyK9lz2Ji/gX6YH7ract7eqjl6Ba6VLlXxUHppYF8CnbbmemU6D7HSu10BBVi1TCVFeE87qzS7751Wdqb2ud9YqXMfW/u6/9dPb+YT29yp0XHcH5MU+LJtbKDGPbCy7wLeydU9XUnyt8w3BQrU3s6XvB1ODpuCbjPq6qxCd2te9FhBVK1NDHEpvp4RauUWoYZegX4AnK21WbCqeiWvJmCB3u+KCMU76xGZy9fJDyy7YLSAeigNirRdt7gXMmIPVeAVVBIQAzFCCRCFegwMppt59sRzwdgVbxbjitVPrgwGwYc4Tc55YI7tlA3tzghBqt/HWVeVhlfT6sCuQ416Zi0mQqdaUhNoHK1nmGUq7fEsiGQQCgK4BBRIC8LBLSyak5SAAsGlyVGhSUINYsbrCudpAJjwmuvy0GwFUmEkyk0l+qKWrGCNWz1DwV6DW+joV9/NfJqjO7QVk2aqwwmxpFNVecInRVlJpPxyAWCb2iixUuVWhpmLD1UJd+8suO+WK2Xz5pGsfsiO+ipuXxSirQFdbMRtt9amJkHNeYHLk0nFe17yUCzIxogpzvq6vmbywxE5K98YFDLVkXIZsTEySZ2POwOuTHPzpDt8bme1JH9Wc4FGTfpgEQehbBIC7jGmKRZrLVzmAfmnTBNQOr5YRvX8Ek1ST7am9W0zAOQUs3mxxTW19+/IV+75jfzxgfi9MEwg0SE/T/eYvtNPMpOdJjcU5A2jFSiFwcx4Hz4N83ozgNGMzxYmx9sXKO0BJjSUYveKdXOBXZmKcpxJb3a+rzLF8aGlHLRWtdf0h7ZpznKgyPFNSnuUqtlSxjeZTcYfzvfP2f7Dau2LyIvW+hoqkKu52VJtjtRrmAh2a2l4xxLaS33B3ZJK15W7XexsLE7T38jrmLHxmgVtAtYym9L1mTto/r0EOBLbTAetOtnV3pLPQ5zVVOqbMuhik5XPl7xjmGe1u78hMnKeKZ76xK0btntYcbd/gW+dZwsQ5OJGsm2Fzsrmo7yq92trF/1/ig7zF6rUNiiFa8RAA3hPA9lyd46pRozm8N7zGiY/joB0xaSXLfpRItlehhY+f7aDZVqGwYr9b5IMq1jnY2jljwtqlD2VWOURtV9qdkhfZ9x37/kA4n2l4+ToxMZVD8b30TJoLyKp9Yksr7+qU4vMgQYL+POYk40tnaBxsc4PzemZQ222cAzkIZlF32vH9G9li3z4+GQtuvvbjcRwYY2Dfd77PeGHOgc/vH5p+2HiGQrGHN3DCetltxuQzp7q6eB6Og8SK9y9viperc6OeA1/bxJY00AGn8pVqRKgzWYnoSgNxy1kUQxT7iJIIzLfKhq09V7Y3b7mCfEAEEIOdKnH73Sivp2C6eGKZXIM7M/mPfP1h4EkfgzOuYdU1CrUm1Y150Oki0DBV/WhIdJw5MGZgc7JSuKEAtoRTC4o6JxOvSST564PJtDcCCWMOwIoAKoenMcexaKmGwwKfCOxp2EyKRUnxL5jBvPOBuFFU8qzJb1drRndQQH0MItAzgGawxmDMmtGxI7BJtLOLreLAGqd7jJMbpnU6M6qDI2KidUNre+miY7wYhFPr2dYma7ImgWQwb8W4cqBRCI+JNkGSx/4g3d4I8nzMRNsb+pcn7P0N8fbgRg+wxc4vUcYaDZ1CWrGS3HJ85UiVFHqugDUr+MwEMORoT1QdojeXvpPGVT6atIlOcLR3X8nZcRB8+tuv3/D5ebBnuAUsXjALzHgp4AdeJw+qbxQutGYY88R5vmQgnRTumNi3BkNH9wcwDd9//y6xuhOPfUdrO8Y4EXGgY5e7vhLCMDrn0tGY6qUvxgqD5MbWCjdcIp9spYIlvKkn3PsSX6zDD1Xn3F09x5OaVI9tObUKdh7PJxgAJotuFXBDLXCL/pMroIY3DATOwapNto7en7B0nCftyt6MgY/NSlVhavs6x1BAevC6gvRZ2q+OSoTMOL6ajuAkfdMFzGKuSuZe43WLdi6gj1RT1o5Sr5tZVwICqOYEmmPC0BX8KHhP1gNoSBNzBPo+0Rx47yX6rsRhTpjT2Jpo6Cu5clpVwyW2HjHxOZicUr+LRj5X/hnXpBKxFiooajufY031GPMQW8thLlQSl3MxGDZNzqixtMgkW8Md6Fz86nNnOxS308wTSPX8p0vDAtJ4AODAOeXUrWzbxqpjiMZeLAiABYUsTT+wqhlc47SGao2jE7vtOyg4W9Rtniee34kWLyCrJZCFCSZZqAVVYSAwIN2NyuBKGF5n0KCCcPmIlTjSnobVXr0ltVFprGy7nLVVy0s509XbWtkrYK2DGgmNN2UTFXqWE54KqprGsP8IQlUCo4mR+v5q6Q1b+5rU6rwx6/gZ49RzLXAYkywI+V8gWSy4f15e59RsKS/qs6VplJcovanoYeAWLZ8zx8BEYhjUbuJAo89oGkSwErR1PqC2ESYt3rv0wgxmG+/WGtI7XimWddlYoxAvEEBtZw2yMBW1WiVnSAXfyXHrit0efWcMEOyVn+cLZuCY4QxMIyvWW+I8D0QkPj7I+khvSOlKUCuBOjrz9pm900eaSYQ1AsdgxfT1Iih3nty0vnW1QylYnLOIlEvPba59biSGJbWsOhhHTQMo1shrmJlir9FVd+mflJagCWhMaaEwJtI0Jz2gsr98Ttfu4JGs/Vdju0H2ROuKoqpVHkBNBjPujd46GdoRK2EqAdSpEdLZIdtdoqyl9sb4R4eKV+PQ+5ieh8M3kx+5GJRXWk4Qb2RNChZbU8DTANnh3Z0DIsZEDoLbzYohQt/TjWBozITtDWiO8SK7N8CBOn3rcGtsPZFdbuMl9r/uQcxXFrIm8uSAlZyBeTAW7q0hI3CeFO89zwOvMXFM2RXjnjvPib/+8ivatuHx9R1/+ed/xF++/iOmANlzklUztZ8sVGw0Ce6b2BCWGJr1TT+oQoATTD2H4pastma1YffGgt+YynlcGJFJrsGWPw9wOEmAYOm2bfjTn37C/nigClBt66vFpIlxd56nGDFYrYQcAtRxnC+8Pj+ZfAaBJzNNXMrAebyQzlbB4/jEOU48n0+xwlhgoj7UxBxTgj6O13lgzkA3Z9HwnOu6AJ6zc7CYXCPICRoS2IkI7iVwz6/2GbH6RnDaHOmQdiWfMHjbAADj/ETkxBgHWtOQhgWeas/LJ4tHXU3jy6eYcZB6JpmpjAuaCtBYNnqWb1AbEyeQBv1bUDKhYcIR6KxqI4ahdKcyCLK11iXhQPCrEtQrQyW7eOakL21GsXJwjbs39G0jmN7UrdKgPNLRrKO54/3BvAWyA3BOK3WvSakO3wnl7c4zCWvwtqNvG7786Sv6vuHx9kDExH/88gvGOXAcL3z/9Td8/PIrkATxN2v09157OAgTTkMBs24aApLMDVvlBxLCdoHuRUSZwfYutlkVM8nRxYT75ffv+PXX3/H9YEzXG4fekOt2YuTQtHXaAIPh7bEvgCImhxtVEaBtO7X01NFzLqF0MCe2ROSpR8QLrWK7GdD3ju3xwPbY0HrDOT615iRifH58oG87tv5EtY69Xq+lTwWrPJK2AdYXEzhy4vvHB/8evK7SyZtzsEPBHcdJVuPn8cKcE68X40hLZgPdHHt7wOD45dff2XmRBJHPFjC1pc+TcfXx+dJeJ1t7L81b+WTm9aLHTJ7XmMEC775rfdpKgU1P6PWaaM3x/nxjLHAeWHnbTA4tqPSv5IBu6GTq6EE5KArQtIrlFCtELL8fzt+bdq7XLdF+6XvVQDXcwDMOHQlED7b0F5tO0FPXe5zgumAO7MIoIiqO/O+//jDwdFVEweW0H/B1VPpVDp6iixfCnSALiEmFWBTL+AjuKTCleo35wexhtWKWKKEotLmyAukdlCNLJS3V0mTIpcmwGBSr77E+z0TPt/WwKrmigJgqw1bXDFGtC3CyupNr31TiI5pdoRisflYFrsIjpSy69/v7RF3/iv60XuszlSxlVTZc+ZGo2xUEtbZaELS8+gtPCltEFERX+U337DoE6qxZRq1C0nor4FYt1HVf13nRA12MuJm3S9DzXl8KfFrfOX3Iq5/67z6rqpleweWE2URvzkRgGMIMj33DY9uo56MKGYELBgN0zgKQUI0566ovnQkh1JcYa17AQyXBVvtFDLNQBcGqzaVeadfqXTntOk9uBYDEWtMCv7IuSnsorcLs0PXHOgv1KGempp6UNkGHha8kowRs159cPgJAtQloE2RbgBg/4DrWdrsZ7hfuZGRdp/aa7qGqeaXfU1W8Oqt1RDNvL1uBe50HRfeLZUAGSMowUKNM4qZ1zqIYBXqA93N2P4t65mXjyvaEXhNZVQpbz6i0cFJPuYCYWhRWqoGrQq9rMEFsq2p+txHXHrj897WOtZeup2Jrqet+6nkmDCUgvOww7AdKrmXt8XqFnnPpbtSeUasxt3WBIWXj68uWyagfJ8iIIzskVcnVXcj22O2l16mpHXDtBO6AegLlmQL/+9e1Rpmg2CRsVdxgt3tet7AO9/reZYpv+wd5Udj1/FckAlu2heuW672vNrmLMXa3wQVeMqAtNoKYScBqo1tPviKYdSarQr8c4PI3vLT8oZJWr6s9XD9Z2y1xMa2MfiedyXRVmcvG2vXY6035uc2lzVLrfwlwVkOAgfY9S4i28M28WEDy7BQ9BgDZdLYrhSab2dIrcHQynyJZ6HGoii62gpEhWZU9avQosLzZU1wnFvhhU+BHW248OUMt4HMq+G5ia+fF1K71Xu31Wi9P6pBU5kgWyJqLel1DFhPU1vVdz7K277W3lpUwJxiS621ubNN1JK6v2sdWLZFXPf/eDn0PV8pfTgXPq/prdV75QXl7/7y9/lrbH+ON+xNYwqulVXgL1stfllB/ja12ff4E75+sdu0bgabNQCY7LjYAkkWEH8bJ1xYPsX1r4cqXaNkidA7mJJhsk9OWzsGWlzkxDhYuyTybOM6XBqe88JqBMwLdNU0oDWNMfP/8xBaB9txRotVk0TkHuuRVEKDN1nOzazcgsTSIFhBfwDfU2ZCxAECSKhQfas9akJ1STCGy+mSxFceUfWm9o7eGx+NBtpPWjMDeRKpFJlF+J68juA4g4/WaHFbtXVwAk1+vZ6XDcNNSWey2jAVolbGZxSpUbOBTwNNtKuXSvhPAW141IOA7as4dlk+929E6h4n1Fgpryk7HujYzQ7uCsnUW6jwtO73ytlzXUy+4xyh5LeJ1DciLoVj+6eYQXWetNNeW0QiBUzmRJUqm96/P97UOldBL9dIuLSpvjNV665p2J8F6v4Dy1jRQoa20GiUuLnIfWyk7CyIGkhAc7EhpraH3DY/HE9tj58S2zMWsISg0Mc6ThfOK200AV6Z8VMWnte7Vnl65beU0rR67/pvL5nN/1UrR182YiASO88QxTuaBBoHxZR+151Zueitk1zZbcaK+5bk6Orj35i3O4vMKMZxM7MUqBCYCrQOPR8e2GVpXe3TSTjGeG/TPEMMvWMSZI9DbtlambEbFOgU8vV5kHY15oLo35hwYY2hKXl/P6PU6McaJ798/1n7q1rCZYzayMc/Xi8Cbk7l8RlAcXzERQZuhXH9yOvZqU1sekizEDOXZsqN/dw7XKVJwngGkV3cCY8Urt9GZqKJmiltkl99e++UWK1bc+8O5rfAxdLZFCqK542t8vUpFfVz5AnmWqfMrdl/ZDRVG5vK7CdiEWVAFxKCukB/94P+vrz8MPO2qnFJjaDXF8RKSqgrpnM5Epa0G2AOZHYmO3oDeDHt7wMFR1Rx1fsID6ms2oHHSSiandiTU51kBFyMCTVq6puWxHToRxkrgnoaWEy0DHgOeia01GoSkmgxFLDfMxr7YTKB3tVDFiarweqO4ePU7HsdgK9XGClGbYsBYR43B9U6jvLfGNkQhpE3T8zIS3jtac5wnq1EU66wDKae5NgUfaszJKQEGuCdaGhwbmTqWCE+NsZzYN77u2YC3zfB1NzxswI9P+INihHa+wIr0QMtA728MyGJi2x9o3Wnw4krG/YddoxBGG5IV4ESMDmTHjseqRDY4LAxDAogVrDUJTTs63lrCHo4//zSw94bz+B9an41Ie5OImY0luP72fGjaCIPF8zyYSHTgsT2wtx0fn58Yc3Ksa3P0h0arIqkPZexLPytJEtBjIBWStaMa05vwycBzU0V9HieDASeYBud7xQQRcTTpvQUiD3g6GhoFYpGYYuF1VQOHguAD1GfqaapmBcb5icwJn2J4IOH+JEW4khT1HrtXRU3BH6bQ2YRvu0TxWIU57UACOEXy7sakfQIwo2PatgHPwGuc8K3j8d5wnqcEA+0WDBoiqH22dSgYUMtBYomPjmPIiPGAV2sKtS9kxCaT+F4BXRqFHZF47Dt6f4BjmYGUyGLCMYNaM6GpWKgqV1c2eJ4K0uLSno5cRhppOOdQ5XwgwnDCWe3pGyviwfZP6nftgKoo8InEgOEEMHCOTzq306Wbs6Eq3bQHBm8EnzJJt2/2M5AEyNxY7Zulc4fL+V1k2jqRtBmmAMIqCK92JomjwxqdTJ3FBMYsR1jNlpAGVkO3ottz/7ASViZKz156ec1qflfSafkGDg0oBpktLZEEAA9pxkxwjLBYLLYBaKq8FBMtddYaunEEL4Nx0e1XxKWzqJ0PpNpIBB5mXlpPt3bpvYn6LIe9BJXLxmUBJWB1zNT+AVaeLFmFKmKUZyk8UOurKkOsvdT7MGkqYKjEnhms1POkvfNsSDSMoeBeyVWJA2PpolSyTmZSVQ4pRHxN4VzaUH4lHPS3xRi5gEBvG9ycgWaUnanWi6vtKlMt6JZL+y1tLByutEDMOlZ0ZIZmfP/mHVVQqYazbWtqETrpW9/euf8zF938ubHyWC1KkcVSJbrkMERwkEmcANKx9XcK1G4dMQ94brAZsBl42oZ04EQs++Jh6GIgh4HFqTk0ObOSv8AYQ8lRw3t/Ip+O//zPX/H9+3fsjy8w74gjWI/yJsZxRySnbB1xIHKS6RkAxue1t0uUNKZsFltx3TQxZ5YArWFOBodNzGwWPDURagYwTvje2DYAW2CyWbVOka0Bif9e9H3u1RmAhaniz7PmzhbI0vTMZburFTnW3l/DA374MqBYvwi9ly0wpEvsFHEls0yMxceXTVvsQu27ac57rthDh6SJEcYJr4NmKMleIRuPPspVyKsax4zAgQGcCUxD26mJGBF4nZ/49rdv6M2x94YhQKmM3usg++04CZacx4E5Tu4b+fE5qT/yebx4BnexbN3E3rTVvu/Tsfcd//w//wfe3t7w088/wZvh+99+wU9/+oL9seGzYs/Kc2Qas11Tml2F1tfrhAHY9yeaN+y2Y8TAGJPTEL3h8/hEZmDfmVSN0mJBFTEdo2yt4sDeup6PtP7ACZV7b/jHP/0Z++OJz89PvD4P/PLLL3i9PvH5+lgGrXdOg912slx2abuMwXi59wZsYl+fGt5zJjYA2/sXJtKRsA3YfV+DYvKT1+Mgg5wT4QhUPCYH74zBBNuSQNQ5T8WLBmcWRAZRXgUdmtaammtKTrkh52BSPgd9xoDs7gxsLZCV4yARKeF1JyvVQBYc8yGeGVOAVcAMpzTH0nwzMfoAoKXAeTD+QyuQmG28CXW4ZGCoMG1uGhhlAHYgTOz1hHVq65kn9XCPgRcOnFEgDLDbBkt2Yjho5zlcpMFGg03HI/fVEdBbw9v/h7K/6ZIkSZIEMWIWETVzj4j8qKqenpnu9xa72Dve/gCcgF+OA3DHwwG3BXaxO7M9XZWVGeHuZqoiwjgQsahGNTCdbfW8IsPD3UxVVIQ/iImJ232d490aDi/So3VsG+3Ac7DI/LIRPLJS0MdEj457bSitoIpdj+B+awZ8uW14ub/g8/0V3gr+8v4VfXRYabiVhu1mGO8PfNzeYTUZRU8EJhmeQcatOSdFh2xLkYnJFl526zi8bNjnRPQJHOxKGDqTfXRpUTUVhQs+Pr7i+dzxeH7FmA+8vpJZPfqb4g523QwYtnpD8YKG54rpYrCFs7ijeU3SOQLsQOqD7BtrIb/rbDkPPwWmO2PMWh378cSv3/6K//jDv8Of/t3P+MOPHZ9e3/H4+o45Brw1zDDUQmbl/u0Db8+Ox7Oj7wFM4F5eUKzg5g39OPB4/7YgGCu0b7/89itjbxWvSqt4PB749vYm7UfHtpEBGYPFajILB/ORGXiPQMEb3Az37Y7WqBvVoRyusLPpcJ7lUiUnkMVUJFuXZyoQwKzrDPPQEBc4dGZnn2uve1Gu2ZgD71PxQ7sDB7tqyJwLzEMabSFQ2c5hHws0TOAwgdUEpQLySYozEzpQnMC4fpBRX1yysgGbBwwTrZ5seB8dMQ9EcLjYAPNR5GASw+rEacXQboALiCtx+uJ/7fW7gScK/KZAZSJsDCLO3nlbxo6tORrZuNpfhHNa6q6ol9pUccr3w7mgM2KJ82dQtEaOK6Cn2csA45wjkOF+PrNVIwv93wp8slqHM9A+n/Na8EVLj1jvZ0HxaIqLC7jMlhEnxZfAr2iOKwiKswIYpJsacpoLr426C3YtZa9rZ5Cviq1SUeQ1gddbTJXQMcAx6wy0WrbKXNdgrY0CVgEWmQhdq42RwV5eVqQo9MniYb539q4ymSVDwldKyujH82FjUMOgAC/3Bi/AH48fGFAIeKK+14BF55k1w10T7eBMTscgxdQKsBWym7bNL9VHY3sC4gyidS+pT5P/vA47TnWTyGsG1M8uRtraQGfAG6B2gJscwZxIdXFWTE4GkDkRamA1CrF2oWpIpHh36r4gWxhMVTGh6BdG1VxtEfmcL6+YrApbshSQbf+qQGs9cl8Zg0nhF9ympJvhZHfllrL1O4yhY7Ej1johE2/1CWPln+u98htclnMqlkHC12CbQLZ6Rm5UsStTm4ZrdhpmqDJ4fa2e6ovF+P5vyRLIc2Mwo6AqhdJPpkieGVZruhKiuZ7V6czOdciCIp2onufEaWP5k0itCD7CCyhi5/Ve7ZfpjRc5dO3o3EXXnz1tpMJmXKvTAFRRwcWe57OXf7iua775/4/q7PkfIYAo1trlfSJPl4Anakxc7zLf6rz/9e38OT37xUq8/Gq25+X9XM9u7odsY1g3E9dfsGUz8vLXeq7P4FlI9syp53QWbxIwy5HbEZc3uNxQUvHzWRhMIGJgkYjt8gDOB8s/Mn5YQUv8ix+NXDY9zxw1ff7Q37z/OipiuqT/zGANl9+9PBtbixXfXfJpO+z7j0vbLSDFDrbzFzMmbmOiRKA4W2sJLJ6tpLk1Z+/UTTv4/ttWUSvtSfHgcI3geQ1piJ32n5XykEB3qD32uq4h1uZ3FU3dc2q5+OgsOntdNvy753FZ13NPhbD4rFL63y7/8q2n38LaLKtanwBSXGyJ4i5XazGSlb6W/nK+9J4JIiLO/ZS2O7ST8u5D+wLzqneW3pS/mCzWy+Xz3iIjiDx7l5hCq5N13GXbgfU5J+vqtHam2CjX13SPbr4YMclizNiUAv05fZT+uA8yY3p0zAgUtXEfx4HjOPDt/Q3V2S49O4sgLlb/vh9ssel8j+M4qDEqZg3k9+eUAC+gYTks7Gbcm69SC0rjlC53ij9zhLzBFaMVMKbIWCaPV/rok/XLdYZdoumAcKI495f2xff7wxSL5OMxrXMy4/hZyTQgcFXxcruxyAHg+Xjg8fHAx9s7Don9xtonDVHi1GH0c3pfso5MnQvnuUpeCvf9lAA//1utqQnaGLJOgRgCzvvgwJhsL7TvVk/rl2CqaQ0CZ8aYAc9c672O5sXXpE8+/z9gKdS94gLmIJicWh0S9UmL8B2DPi5fln4Gl38n22XFdzJiZ/rMw516l5Q6WXfNPXTx43zlePnM7y7ZiaajZy6yCUTwjNcg1qpRmqOoTS7bw0VhWgC4lbrOq5eiLzH5la2WWpbuHf0l2/nu9YaX+w3320YgsQeO544+J4o5bKbwNAsvufWniZ26dBW16y/u+sTStcfUuhjy1Yv1HGqVdEcJgg3UUEopjol9P7RfU/qChVDqskm/rgC+hpSkXdXUYddyZZdSkGgQIhjAlMMun3yeAzMDCq+x3SinUCp5JdUDhoGYB8bxZGtq7xhh2Aex+OcEHs+B5zEoqxMG7yxKmHX0Y8f+8bFIHSgFYdRdOsYg0cXZPn90tnGueMQnXBO1kgl4Mgf1KCyUR2nvRlqmMy5hHoVFSssYP9Sh8t3relDXO8SKTZe0BBEsZD42Axw4IeaTFSOwJ1s7On+Ofgjn7wJ5sC9xRJy2A8lG07m9+Mfrhbp0rS3xhhnLFiSTrU+d2+yeUbdMLMNxrl1INY75FOVJsvj6e17/Bo0nIq22ouJQxZ+TFhwuxXdNKTLHnGSJuNgkFM0lykuUfaI0CvyWAux9IGZfaz0mg+wOTZRCQ6hiPqe0YYxMoh5Myi0PpxaZzpZPLccgprGl5o4t9BwG9P3ACFZH3E4jCDMqxOt7EMIaUGUnjLx8Ke6zs87RKvUVKM1A4CG0MUs1tObY+wAmqfwwgSJzUlvKTKMLdVScW7vPIQpkYctAGKsc7tgKK8OfXwpm3/H1/YlRgZgvuNWKL6+v+Dh2HL3DpnqQywaziuOYDF62DUcf2Ednn73a9SIC+zjk6GzRnkut0ggQA0jOv9Ui+nNfvbT3+x3uhn3PKWghYVG6u60Cr3/6DHfHv//7nwAYmm1AhFoVDhzjoFNywxg7Ahy/7Q5sjXo2o3fM2UnfHBsiAo/Hgd4Hvr0/YFZQ64YxJ7pEwgNYU2JoTEyMJXCvCAgsOrTDGQpcKYzUOCCNPwzox5NPT8mMY8K8soJiaslxnqPhZeXoUxzGjsGKiQLSVgso6KuWEDeMQU0KUm4BTo8Dns9jJbhmrChkwB2DVY+qkaxFVORaGmLwmUFBe6kMZqtV2DTUORHT8PGNwXYt9zWtC65AyvhMB7oqt537pBSc09foHIvE16eZ9CaEgskxpwhyTFB7Iq1SqTArYr3wGcGdwsti2E1npdk0QWLfj3VfmXCcALnBVQ4OxGpRgAIWL2wd2ntHrTe4F/hGRg6p+Qks5r7eMWNXwYCtBIBhdJMt8ySoqEoRfJYA4E/FJgQrwn1N/1mZXl6zpoDk+UNcmFDyb24ZyuJsDVnsBiUPKu6fgIF0R+xc85VUKJCrSgDMnaDUBP8vb2y1QaYVyyunEw8/A6IVus4p8eQdCBftPegzYJiosJCtVOLv2TKy9MJw8QW6pwxgwYLHVqgLNwGyUvugHoo7mpx1OvUMfiMZSydywsASmWBlOx3v3cSQGAIJS2XgOnJKiUEj7bknSCtPzR5tUj0HFgKkNFMcKK7WUbUPzb6073BZ9gwivVT5wPy/uf5NH8PExai7OGPSN11Qx4AhBVDPQOwE7LMpJkVOuQGpCgK7AooApDsWKtaEQMySt40zOcv2leeja2rpgVYb7rc7nh8H+nPg1ggRPT6e1BFSQkJtNU6n/Xh/5zk6GKh/+tTQquG2OX7+6Qv+/t/9AcU4cOT92xtG76zMgzqUc0zsz45oA2is8Luyeu5jtshBe44VwgMzDD3ICHk83+Be0RrQvKGUG2JOHH2sCTHFqR/WPZM8Boy9X5IJkKlUQP3K6mrl8BBozaKe2cS22bJXIyb20bWnHFtrsFbR6p1AvoCGFMlujVPfVoAfU4NHVCBzR6vSUilitGebU+6JeTk7SsAAnCLOpgEmK3ETgGnAkr9T9pdgdw5XSf25fMYGnKC8DkD6kdzoa0urVd3NUHBTQJ5JdtKJgFrIaH+8f+Dx2PH1t3dq2NSGr+9f8Tx2NOkTff32TQLXXXaQrIOy2khNfszQyrYA8bJtaO4acjPhUREI1LhjzInnOChy1qibMyfbR4o5fvr0M7a6oZSCfT/w9u0bfv7pB/z80w+oCPgYcDHXTTpuQ+vJSUuMgWYCB9YUX3A0ej8yXjufDfcFqGFlSkTm4Pu6oFFjsbF4WfthzoF931fC9tMPP+Cnn39GqwXHseM//y//Kz4+PvDt25vi0Xa2ss2pPUaf7jUZT33p6bnihqIC8L7Tl/oka6kfh9rfAkcKkj874/lKnzwn0PvOKVoHNUJrLSfrx3Lq9ESKI8c69+kDeOagjooxJlJ241ooKm6njkzR8IJQ6TFbMrMAhID1CYgZR3tOo9FQ6W5Xbj3XzzT3xbwCgDE4GGbMg3kNfGmTTqPoMwcKBGCa/DkZYy4w1KS/h1gAEPW4yChphcy4FMCfnZO+mrMgfN82CVRvi2H9OBjPWyMrbd4v0UgpKEYmiZuhNmoC2qhotaBt27r5e2M+dLvfKRotW7PVhh8+fcbPP/yIl9sLWm345bev+Hg+8fXrbzB3/PjDz3g8H/jtL7/i/eOBAQr3L2cKYOzMg7yo0K62KrpVgpHUViPQaYV6ZzAOY4E07Mhuroi4SQNooJWGe33BL8dveLzvGMeg/k9XPN+fkmgwtNJQtooxn/S5PpdtK+64qRNizol93zFyuI58irsDZVuxZgKsZVPMXQK1Or788ILbbjB7wctW4KOjPz7wnB2/ff2K/dmxH4zD9+E4wrAD2CdwTOpSuRkeb2+wGWiDMde+75yiWgr24L56TmoVdnCPoZBRia0sGZdxHMguIAQBWjOgGqey1pITpAM7eN6fR2e+WyuZeYplIBYQ5GJoCJT7KKbjw75GsAKsgfOsImBF7FwwH4jBYvJjf6JtDffXV5731pBVxOfk9Z2lHrWCx0DxwimnVRcmW9An/WAOBDIFsnNKmzVvoxATSEARfWDOjq26fJLaygf99bZtun7iPWzvNH5vkEHKgUeGHo7ZD9icKNumPO5ff/1u4InipOnI+RB404lqU1eIVlfMJAA5ZSvBKotsH+sy3KxgO/K/VWmi9WaAvSpcvPmZCLzbYpqUVUmYK/gn1dwzvkbGr3yoFLOk0KGtz0zat0FVBRN2HCFRXvY58idcG1NOfAQACTRKTyLbFbKHk3o9XEMa8rGcFgP3ZGgoCdf1rfqp2iFSh2doBWYQYDt7LIP0+AjcthteX17ww+fP7I09DlF8DcK62a5nDcU3sKXMVitNSDxwgWdxMmoSIc9WFyY2hlp9rWHSPjm2lvvoKrhsBtgSKRaOGp2fG10eh/dVYOzV9iZqpLE1IaZaTfizMbuoyXL0SoqKJioU7WGy1Phss37sAkGGKlGeFb7cxpC9yMqF0aFNrY8+SW1uhtXHNVPokkUbE0WOSRwDcbbenYywKdCAx061R/XAR6TR4zkzy64LCtJmYgK1e5xTdiYssnUEdJKLRWU6KGIWysnOJc5Lc1Rr4xkXD9RwAiiY3K9k82lPK6jl9QOZXQ2tCQQ8pJ3I5IBHQT3/YgQuiqnOwZxgT3LkGmXVXuc6r1MJ+9lXnuc7U1w+5CtzJpRQbzXFHMcKcs0aPIqmgoHsB4HaqfUQ0xCzAqrsGZhkzJH/BiQEliC3G52E4xSqXm1zdoIISLsl8DHvQA/hTKzyVs+bWt+kz81KSMZUuYcvv4O0y5dPUbKU7BQmgefnhex3Tutar0trDbfIebBOKEdfl0pP3o8pER8Ri9puoeEO6/PPK5+XW847y8/JBNQ82RAJoNg6d1ftD7L7CjJ/XUSgTCKubXjrnvR+hhPMhqrmnr5nLk0Fvt9lfYJA3AmW5sOcyPal9H1ZYYOu4gR/dL2m+4ys0qUtP1ckmSMz5mphOx9rXN7s+nWu98noSlZMvi+BeEuA+vw1VvJDo9aPgW5ZgKJuDcU/d7gZ9v1JSv3e0drEcRj6c6DvA/uTT/jYBX/JrtqhqUqYeO5APwz7k+OY+yQwXH2i9wPAwA9fXvH6cltaVX2wTaXWG88r+8vYhpUgs2zXjLOlEHoukDbUtm3ofeDx+EAEsG2nTRwXH7POuKudIKQlYmS9F68LiKeYsGxaxhF6U59pJ4A5DgayXVoTEGuk0BvOMdHjgNmA+aaYRlPFiq99Zyq0sYU0+Dnmq1qdFeapPS7UV4nSZR/Jb4mMskAKS9sfeq+AphbKhhsUb15eac8j2SPnns39vYCn/HH77h1WXL4egnIJmXLMYLvS+9sT7x8P/PbbV7S6oW037DuLODP2ZVc8QcAYq1gQJgmJoI4M7UxBRnjp7ldcmO0ekhJgTDJhkfqOjtfXT9jqhluljMVxHOjHgf3xQH99QQr7J8tkwk4G1bKH2kOWLZlYMVoGznNpvagYEVjTxRJURw4mEGg9+kF7CVbGYUzUqacyBHYFns8H3t++iSnW8fH+hudzx7HvAFICAycoGIF+7DA3FDTAOPjDvSBCUyFDieHMFnEs330cPd1aPi245zj2RA9M2iYTxVnsy8lhY/DaR743FkkqQxdc/uDPzIFTV0V+f/kInS3wPM/IyXLpQ7PrhHFhvlz/nlMTeSenDeY213NTi33aeq8OzJywx5bWLErm3eS6JYuRfzrYGaFry1Y7rANEMNnJPipeYK1qn1Hfx43DJ8rWYK0gqq1WxNTg9OYcJtDO4wgjk4oFWxYCi3EoSnVOWsuTX2pDKRXumxhQHHjzen/B7X6D14J9dBx9SDx+4KXdKDptjtkn3j6oDUQZmaTVRzo6Plu2JSzQc00yB1Z8VitZWtTQ4x7IQq+l7ZnEovo+UDBwWEffB+UoFKwnIL+wEsV+Ray/9UbKyaA1La5rQMEYwbYzdVx4KVwPtdplXFDVSWLVsW0Nf/rjH3A8n/j6w4+SOHCM2TDmBm+fYePA17/+BX0EZlQMOLqxAfXCXcd+7Bquw70zneC5lcA4OvrM4rniFO1BOPfIFFDskYOeTiZbWvcAyRk5idkyb86KljH/wexr0MV38AYCCLLzkvGex8IAzMz3FiPK+HAy17NFjkTXjnS1uIe+E5HSD/y3MOiX9HbIkvelUIeMJ1QCjLQeMhbIHE8/axlfJFue92lhZ1ra1RqdYNXygfxsB/i8DKiSMQn5CLKU+fnjO6/7X3/9fsZT5DIoPbeiticKF+a4+JzitAIMC5jTgy/DFACwkyafDEsA1aa6Y0zfJK2dQnCifueo4WKAc/EsOorGMi8ymGXAwfcJPin9ycl7PaRbUBwBVjJKsgNWJYEbZAp9nTDAG6tMYDBzs4IRgSNIP4NYMNTtUFAK9W42vwQ/nDKSo2QZ1IXGfhqi1gtVUNde8nd1TzpAMwBHWQFZzMCxd1QPfHn9hJ9/+IJ/98c/obWCj48PdFRMiaVSX+mGYhtafWXg0wMxaahmONlcqRecLk7VDoondnQANR10ox7SHAMWajFKcdhkSa32BLI5CNwRbc9WotGTnWIwVJhvrDKWBpcxfxzvZLywQx59AmMeOPrzkvyRJk/jq0pYGGyEvtiz7V5WRSijTu6xWMEM4hSdzcC7OidxEKyhEGJO11iLpxarUkBhu8LEOTC4r81w5P7Nz1v7kXcBk5iiGcbepfOglrJiiIMgUY8hBginity2G683AiO6DDf36BTF0owiJfRbZF8kENo7rzMwYW7Y7i+YQ6NpNTtlqoKYL9qJhPOUtINJSgasJmZHJvZkRcaa4kCtI4JmRYYtUk8mgBiOxYCHwq4gM4GJjdpxL+0jPDtiHiqAWAHAsnc0tHQOjpfbC8bguOTZO/Z9B+KGWgJlU294sdX/HJPMtzkcHGnbZMfIbBh9p32IrN4XVOM0SrcKoKP3v67kXTezWGWu6Wtp4xIUItV2flftTxAl78+UAc6VpKlwYAYKBl4Ssnk6Ohc4uRpk7HQ0J7TEpJS/cgarMzeE7uUE0PQhGXRnImQgkFRsBZhMHPgpIxlVMU9HWtgbvxwAlCwuxMrYzprpQLqidNgo6kIypALStZIdGHCj2GlaiEu3HNfg+1wWyeDgPygdX8F5fhmZVqNfQCD+iruLDXqyrJIanaAQ04YTfFqsIpmrdUlGwVUEzt/V/l70csQqFozJEk0CR6mJtx6Q55vbCewFpD9gSs4WVHVJ9NMOXIBCI1h+PHZNfetIwPj53NH7UAsRrzVmoO8drW2431hkmbxg7XXpZBRf7W0EY7iH5jR8fT8wxgH7drAgNnf88tcNf/31F/zv/pt/QGt/ZPJUgY/nG9wdt3Ynk2MGeukIP/JJL1bejK4ARLEQsMDz108vcDe8v38FWTBKpM5TdQLGnoUtJsQxtF9gaJU6KAwaJzqomxhigWShAcXX/ujHBwPEWVl9b/SjZWMb++gDx+Q4+HbjtY9Oe+8xycTQs8/7CVwAI8U9fQouUTxzTcR1MVitcfPM/q/FkYznp+y8PBGQE4S1lwZy+EumGxcmq4LwK/CU+zCBPKxPD7E1swAylw8KEVkjBvbngb/++g1v397xl7/8Bdt2x/32KrMXnExswO1lWwk8/UYo/jH0g3v1KfAjylnEs+LANIKEY2jSn6FtjTHrHJyE5IZpNCA//fwHvN5fgefA2Dve3n5Df+7Y3z/w/PSCcUiPDUbBXQSec8jWlhWDJeBXnQWasL7inRT5Lkr0n9Klur/cATOe19yzXlBqxb6TXe7SazsO6mC2Tfs5+mLMf/v6G479ieOghtS3394IEO2dz21r8GJiuvBZPPcHzAw3u6PWqmSahbbjODBGJ6tPjE3ew8TeO/b9OAvmViRLWxEY2D+eZHcXtvGbB64j6ecceOwHlvi8GTW3dIJXa5nlTjxt7TrbyvpyomMR+Eu9uoExJlot0sHL96FdZ6wT+izFgvO0vez0OP1I+rTzGfNVvJARjhMEnHlUEyBJHxnpEcVeXXEdC7eBiYK5znqCXLVSt65pMt1tIzOOmuwswruTIVIqi7VbazyblfY7GpatMAzGUQDtXAWqOzZv61maBM239oramqq8gGHgtt3w008/oZYKKwXv7x8EOA8WC358/QKzghGGfkz89u0d3gzeilrF5gIfTLrHZB7SR6cPSDtjTXpU1dd+merO8UrR9L6rRWwWjGNif3ROa+7A/rGjPzqiB2wAVhizxQyUQm3a6tQ866S7IKIvgJVgXqC1O+63iloDczq+fPmCqglNpRTcX1/gXlG8qcXR4JVxV319wf3ljn/8h39Ef+z4+s9/xZ//6c/453/6M8a8o88b6v0zDuz486//hOMYBIEKlmYTyqkK/XjuwByIWgkulYDVCasu4KnDmvb9amecYjeaWN0HcghRrQ3FHRWaxj4n2aa9S5x9wjcxFW+VBY2h4vsw+qsrYrKYReye8mksnPOkCJyVduFyKbIPFuoOCE5ODeai5o5tq7AS6PNYH+Vqha6NEwb7cbKEcxK4xSTwAzAvwSXeu8ST2SIP2Em0EfHHoCL3mMpnhSPMc5psbZw423M4wNWX2sR1eAhlT2SrJHl0xNmd9a+9fjfwNC8BQvYpaunYDwvtEUw+sJxmIKqhi5J/qrnTUSVbiDm2q2LBRbIcDcglQoq2rsKwKKgWeh8jdQ5miJJJ6DUUAdYmRqBkv/LkOHWbnDoT+lDeVV0sq7CCaaLBChGPQeHRiIDNBLo4LhoQscPEqsRc7RWM9OTUzYHSVNF0DCsruGfBUuNW49S/6qJIenWO350dNphQ3EWXNRlr0oonJ0QYD+hczpDBXCkTpUy4a7sF0GfXqNqKLH0ZWOVi3+pYPfpJ9Uu2QDrZMSQ0eqFZ90Gx8sVLzeq+gAY3UrEjqJHFCmcGR6YpE4OTKtx4sEoyyKZazgLwgt45mthNjZGTUyBnEBzivgHCIZ2Ayb5iyz2eVgALdc99BEhYUUEj6Y9zgR4JO5dCg5BNQvm7IZCi9842yQK4aPecBMUPZaXNF2XaPSuSupIQrbMMWElIklg1Ry1PnkMFLqzgSV+h0GEyqacYrnlbe9dMYutiVIX2wfF8VyKb769nf2EzxOgr515iwsmMSmAtKxILlDhPaSbO89r7DIOjYMoBsDvtyqg52ZK8J35Rl4PX5qUQwJip+cXfSQsX2uOOYPVGo1rnPHD0A2aO27ZRdN4men9qj6QYobMKZQXDxRyT4aew/gSwL9CBY8mN1e3pMuQzjYaehS224FVPi88/2SsCOiBqrKJGyw1sTMaYEItlku+v98r2mEWZ9XmeVa1fAjcz8v14j1P3OPUZSWVg8UDJoeXTzc0LTUQBsj2UyaWkiydB21j/mwI9XB0y2QI3JXJqKAnAm5OtqD22+tWxwnjkxLC1zpmwg8lNKNE4mT4EoE5LvAzD+dfrRv7uNQGdp1WRJLQAYC5fkcmNBdTiFUgRc/PTzg6141yrW/nK/bESaeReSVDw8nPr37T/icatSuJVf+saVuR18H2098RgCfmstJknyGhYgnr5HgDCqO1SHRjHxMfbE+4cmgHcwO52VllrK9oHB2ANExUTZ+U+DHC1nmESQDuSaD2N/mcMHHEGV7z/ifn4wPOf3/D5x1fcXhs+v2woxVBvape0J6YPWD0Ak09eezoZZwl0FJ1JW/7rfqsANtzvd0QYaqXGU+8HE/ZSlZhk0YrvlaBMPs+UaZryobU4g0VGl/TbpcK9LpAeuScimXJ61qH2Zi/LHq6i3Ubg7hid/gQupnE5k4IEifT5M3KkPM61ST2dbIODkmb4Yr2s7mr5r3LZbdr163/fb1gs5mYyYv1i3TJFTgB+tfQqNuSeV3GxDwESYnKoMIMpxkkM+cnA7bYJGO6Lmzp0TuLx5P0UWsyUKRiD72+lYNt4FjzL0mLXepFuYCmI/cm1G4FiBZ/ur6utuQebOT5+e0N/2xF7p8Ct2H21cRjF2/s77p9uKM2Z3MNgi5WrOG6kfQdSd2xISNuzeCe7FQFk6/uQg007RPBc15ei3TJQ9C2B2MmqmKOv5/vt6294f3MMtR9WLwSNDYjZ8Xx8yAdy2BCTUvpv6svseD5cgr6n5AOZrE4Ta8whamPSmIWy9/cPAgZgntPnZKEvxJaaY7WTjXkgp3TRTJbFikw/FGsHa2/pzAaSTStbmQGK4jwYKKWh9+lKkCkbYIjCASp9DrYPq206ANgkez8/J82du7FNTMWoAEWiqaFUdG58sW2gVjD9MpNU+XPTucoIYCsaQBPaJ4v+G2KwlDUEqhdHN+ZKbo62tcXo6mMgejKo2OKebWQITu8Lsd2nF4Qb7o1C2sWMeeEY8OJstVMiPAKIY2J72VBqxcvnO27bhtvrZ+zPHW/fHtyjcGz3Tyjm2Oodo0/89u0rPj4+cPR+MiVFYXHZsOryYwO0vTM1PHN4S+o6cg1pU1RAU3F42oQpDc9iy6fXzzxnc+LYn3g+PrDVCmsVt1Z4HoIswFvbUNoNpTa0yrPzw0+f4G449ifPSy243zbc7zcCPQbcbtuSKkkJDhNo3KSJlWy+URzbbUO731HbDW43HNHwnA3PveN5kJDxDMfYbpg+AKvKgXrSG8hcjokRT6AE5gtjphgTwwMeA4cd6E7hahYgOiwJDNMQo8DmQLGJVja1LvOkrXgoi67L1gWmNJP6scMBbJG+jv46CRQwAaGKwaCcZ3V3iB3lgz87pZUE84VHZOxJlq46BUy+Z4ipJL84skZlAtVHcl5JVuGwmvG9NMYK5/K6klk8eYD1PcjHWvhi72IK7LKyALIZBN5b3TT0LZARchakY9BuFcUrMOa+I5hzEkbwdPj/6uvfADyd1EoGQ+nQY1VgFw1QUJHBBE701d/KJIsrQOr92f7iVuBwVlrlbBGgMCiypYAg0NlDoGRcCZAhgQTjRo1MhH05Tqj3sniGihTpg1GQMQMN9jyDiLlXteUVRCF7JpJqNERHy3txwJQIrmIF6HymgCculdZJo0C5xo6RgV8K0QGaFHJWLIYFwgLVDdOCqOUwzBm4uQn44/YdnZWlWmio6TzUfxqsspTCvuMEnghmdMzo0uvRBysIjqQZr6ZmLNApb3AxOuCoosDSER9q3UoXzXbLYlmVdO2bWBNkCLbyvUefOI4BjvYDxe9UkeJUg50IeK0YMbCPWELrKQCfYKTBFrj1TF2KoPOoqLjcjtBj59lmBJvTdMlliFNyLQNym4Bp8tMCOQT4Me6QRobYGy4gbLXWBIOHovYeBw1jIt8QJoAyAesK3tl+hpBDsTx3QZBVzCs4wcehlI1xXDmrY9l+ZKEKFgBRep/PD3hpnDipfWRI5iOvbyzjJ3ZDjkOM3Bf4Lim+AgDrr0GKP5OsAGn7fjqKuXafjLtAg3m+3bXaGOC5cjPkmOf81KvJTIeMwc8/9id1IGZHKQWtbgRGYkqr42ydSmYA36NIjJK04NEHWEnpcKfGW1bJAgNjenblguHTtWIPhFNbItcnVuIXC3g6W8VyAc6bO88x10irpdMQAm/y57iBTe2qCUhAO5yJm1hkas08r4e2fa1rrvWqBibjQHpGwcobVss2z9FUe0LawfMSYvmjqVZRAvPSIRPQmTobVALUubV1CcsGY0JMnQsjNZLBouebTNZktq4kOMP/3LOXPbXeS35maWUx4SODa642jhNwHXqP1AcZAhwZnLOocAGeDFiRPE5bPHCCl6GztJ73d6BT7h8ucCaWMLKeVvvevD5DfRYMi6ICrGRzzmRQucAYYT+n614b09WKVtwQ88DzY6dtaQYDtWZi5v01ZKtFoCJQxPo92VnZOhxX4Ekp0yG9ub6AJ/mVYMvP17d3/N23n/Hj+ytu9x/gpaFs3JPTdrbU1g4kQLQS+AvL0JKdiJWoG4C2UbPndrshZrIsGDRXL5qMNJAj6YEgA8WSGcf2vvMU0gFUZ5IO6YD1MdHEHOdkOIjrn2dUoErk9anot+I7rjVZVQf1fXR2itjhWDYm1jmZkxpppfjSzeQaZKErfQX3axJJGIdg7THkv+sNkpm5vhPpg888OU8k27Iv8TnO/XbFmS+4lXyxmNautZgMFmIOYAITroJYh3lg2xoLG0FdtaGAL8DimruhbGQP1OLoKS5eqKnYWlWdVpbJgDVx1Jnk933HKoQWFjzy2eyD4ubPbx94xgem9Es25+Sl0hrGHPh4fGA/PmGbaj0yB8aBxYwN+X4VcGaofe6gz5oRYgDZSmoyPpgJ2IBFv2MMgRRZYEp2pWzaDPSuVZ9j+bb3t6dYH2TifPnyIwELB2IMHPPSDTHrYsISeNoJGg5qjZbaFjsShgU+sc2J6L55Rd+72l6f2I8DpVbeS57pqYXRvjeAkwlDrTkZmApsoHVxMR5Pu3LGHpcYQ+zujIMW8KQeqgigx5SPKqvwFBMcaV4KrG1IVlK2yvN58ImY7j3t8BDTJoIMkVL5PEuw28DU1x55oNIOACt+zVZtA3CrBa0YENR/c8XFgQmUAqsV08kG6zFX+ahYsHigHHoqrmqTzKcEFmMGLAxlyid7wXDHLI7X+42yIc9jsfZRqMOmpA1Hn+hz4uYFtW34/OVHtK2h3e74eAx8fXvCK8/b63ZHKw0NFXM88fH+gefzwZhP9clF8J3K95J8EWDr9RiaVC4xc8PyCaentGV0hlqcKFtB8elSGl7uLxTdfj7QjwPH/sTLy12aWE16uQOtVGztjtruKLWpcFHwD//x36O1gn3/gIFaW7fbhpeXDbVRsD3TkdYYI/XZFUMwb6q1kmk8Bh5joG0VZWtwNNy2H/Dojvfd8PHnX/D29gEU4AjDaBumcYIfxgCOjhIEMMfxwJgdAwf35Y26vfNQsD4DBw5Mm0tf0yA/Ow7Gq1MAiBm2QvCRj2SiTw54GNKAs9UVALWZTxx9R4Gj2qVInoUx2LLBiEBc/j3j2wGQAKADnWLmK7sN+i0JgygtkR2aADw4xCCbf2Kwhc3lu3zxnoHBHDuBp8RJAFuMpTPuTMeW/jiLsCpsrF7cM59gnp+lN0ctDQiDqyjBQmARe52xdYuK7LDomAh0FQhMefHve/0bxMWV3vkFHJjscUkdlDRIlF+iZlOA1RAvrGixt3xy4Q3wYkAQlSuTC3o8D4yeFRlD1GAAJX2eANQjnv2+NJYBQzhF8MheIWrsk8h+NSZtc/BaiAaqHWCQEdJKAUqF94B7wVY3THN0FPQ58ZwHiQ1WUKdYWoUifRZZ5bPFDAn1Nqw5Velo5KwAoNQbAafjQIDjnonCuqiooHZSDBXWg9oNEejHA26Ol/sNNgS2dVK0mwKeT7dP+PLyGT++fsGcpB4/lbSwOsUqGxD4eBBQKHXD99o4KUrIsZ9rP8gxJVix7ztocfn3tt0QMfHMygEUXIHtW6y8bEzgRyfq60zGaIy5psQsJqZAKyBQhXZPDKxKJAJbvWHOwPM5McNRyrZGSY9delpBx7bvT9FRHffSEEWUVUDtdXY6SH4TMEdOYegCiJZ44mRo7xmcRHB/G4Apyq8HYqoNY7Jtx6dAS8KLaxyrOme4DxTrZMDtIBuCGhEEpAyyTV3skyFdgSEiuCUVXKCCwEvAOLpUzI3lzJUwtEaDc6sVEeU0WD7XzxZVyzIhSufGscqsMMwgBJDJhep/BFXgq9eayRgD0SXWlywXTFH6XWut4G4GYIOaQo6VYaQ5nkq8s/0lW1muSfgCeQTw8O/qxzeHoQqEO1uesj3XRL8FjGNskxafebrOPcxRy42TQaoDeKJLdHPR4YO6a3/7svPkKe9PYBHr7/lvKcLIRQhcWTn/AghaAEXXmuV00ACii8XA6zqEdLhaFLz4ubYGOepyJrjACn4JejChM9my1OJzb9p/njkFxjwT8ADpy2xnVaDsjtIcMZ0i+ZeKzwIiLAsT5589EpzA0qW5gkS5b+DZ1ghpYvDaV6qrfY3LHlw6ePkcMNXSmTvRzoTIdGZUzU87stYtOOq6bdqrkeAVh1M4pB0BJir5NM/2OaxqLBMTtXyr/cWQejKBDEpcQpQUzqTuHPQ8ZgZceW71p+U9IXVWuNsi9JztXJcUSM+KNjUc63m2UTCjoHdTQtkxp6p4bthGYIwDHx/f1CLjSzNGcy8poAomLrAC9w2hpPNjf3AMuoMgrh2g3e14/XzDD5+/4A9//0d8+eNPmA48xXAhC4+6jEc/4LXgVjcsNgM6UiyZgawYSzAGzzExxxOIgT/+8WdEOGI2HP3A46HpeQmiLBtEOQIWrTrjqgogOiechVrWKwHrvhM8PuaBmIYaKtSZwUHQwcScOHrgGDs+HgOfPhvuN6ejNcNj39X+wuLL7eW+wKOjk129kt2/AdyqVwAEcaLn93n2yHo9ASeLbGWFWmlc8WWcukHrXBIooT9cKTxgZMjQw11bFi+JfUanK+A2na8sABFMJubDPVQLz8LjOMj+mQRatm3DnIH3+c6EBAQzDzFUJwLHcaC2gh+2T5h94CGdlohg173agtTPTdvkLgY0R5wjlEgXJiGYBEoS2DFIc2Nw4tumanTuG7jjY9/x3h/4/KcfcbNALfSNNh3oE/uxAz0Qfaog6dQtkw9j3GzCXtQ+K7sQETimmNTuK+mDXUaCpw5ZFl0mi19sHR2rJSuHtmQ3wv78QBaeuBanhsscPQfxKqFjoFFN8cEYi1c+5g5DcE8atYaiKj594c/f6objIIDWe8fXr19h8uvHsaNL/yfUvgQD2m2TzQ3apqm9BAPUgnVlxWaMmWBfut1ta7JDrgIgmTtey/rdOWl33ACUgnp7AWDo0zTQyeETlyCAa+ZOrdU52d6VHREmgOjoh2z3hBWyLxmFktkIGOZgvOLSlCul8PrHxEtztGKMjZzM/kDgiI5h0sKtjijcP2VpGhp2Y2F/cw6Cqfc7mlVUxZhmtpgXlgAfHFu7w1vDZo1AqRWgAC4h8eM40DZHu1XcPzWUWvHTz39A2TbMuuHZB75+/RWP5xOPaWhoqF5xREEMYBxPPB4feP94Qx8Htpeqov+pp5q+fuwHCgxbISDWI3BrDbW1xcAOdO6NnmU2xnXmFeMgIeCx9jr369txEIwbA605Pn264+gHZhz49OmGtt1xu93w6fUTfvrpZ9xeXnDb7hzcUwt++PICcxB4MoANOio2a/AN43ngOJ6AQWAUQfIxB/a9o5bGNrYDiHD85T/9BbeXT/jx57/H/ctP+DEq/vnbBx5f31BLYHqgbgWBgXE84DHhxm6TYoZqE6UA95dPQDEcY2qgy7FaRkUChR3sIih9oBrwem/LviQjGMcHJgq8NoIkNfOHtPMZ+0IxRkEpN3gALUzso0kwSPgFwJyesQzBr5o+w11kh0BRrG+K55K8YDrrBkcXYDQyRy7ENzzlIOzUiqOCBE9exr4uiZbZd8zZVcgxDkWI69AlDhhjDMc4z6Uf5pPPfMzkgwPHjDOn8QLEhrDA88lBGBwgxd+pLghNsfTIVj3H0jRLvek0Qb/n9W8Eni4V3sh+ShlEOwuu4jygeorkKQn1PLcm4El/BjhJzIyxuQybvB0DRgMZR/rMObuCaIW+obTGuPFV0FuJ+4qcY6Vt6hW39ftAkB5nDriq0IWaMKYAhcEQq60rSbcEl0ijVuSoEMjW6uUnn7UQJh5uFfBUsNH98lOWoGAyH7geKSbKCmMtTsBMH2IpRKekv9WGrW7Y6obesQKkXF+7LE2fA9XKoldn0MdrZQtQJoLfJe2mCrsSHOql8FCMkdXg8x7MmfhlojLkXPlczrH3CTRy8zNpCX02wU0oSZuLjmheMCHKoAIxzXKjE1ZAGwKMHKZiMJOU73rxY93+5RkG4Bme8q9DF8u0SQszM9GK5c75ufzFOQxLVyZ8gWEA4PNkRFleGsBEKp9zAgl6ErkjeZS0V2QNUnjdoIolrTHBUj+BzhDtOkGCv7UjOWKaLSH8iQkl3D5x/QWzv/kqpgKiHuzlHHx3MrINRNodcyWxWPv/vG6cm4QRAVcikhWW+zjWep7Xd0ledBkJhF3vYd2LGzyKzkqC3td7EOgxU+sJK8i0bF0LJZV2ipXmhxjmeU12VsdOxtbfPo/vr//UgsiIPLQG+slcJq1K3ge/leBC2qBMmhlCJ+MmLAE+VmDNGOCmM1znxLT+dk3+8nWeJIAFgAS3ISvouv9zV+d+PNlrns/LjKxC0EkmcLko1+vZns/clRi4ncAy71tb6jzpCyBaOh+Xt02blneUYHOuxUqacdmL6QnEKPzusf3N+oSKGYWUv+/XTYBTMrHSZeYWX3pRltcoINcYsKfVOOmB+o7lXp3fP6nlPtMCa/98d45s3UY+G9h5L99NtAN01pWE6wGsgQFaz6OzVTYp6mGGMTseO9tViyfLajK5QaCP5/L1pVSyfxSZRByIYCCnrSc/XHB/vePLj5/x8ukV2/2GcTzR50TNPSJb3+fEhmxlm/LJZ7JpcX2o/OWTEQ7c7y+IcPTDFEQm8/tqQHE5k3QaBAbFfJqnvfAiprf2Mxm4LHTC0+EqCFOrbbYlzAjc+sRoavcEk48wA+ZYFXx2VXEqH8RGXnsgL9dNAErqnsifJWvLxEgyP2O83PpqOeMpIwixbFCCwdoXIrzxJ3U+HXYBRvXZa7/mBtYaIdsUcl/qLFkC/7GYsUibI1mBstj7Kr4YpQumirAE5w6YKyaYU0xXMpinTZ3pc/3ynHKaJwEaA9Z01mxHJKuTm4lakrambXk9Y1JoH/TJibjHHBzGwMBpxV8jBRLnBNTuOlKjbMry5vkOiNU9ll0Y42TCrYgh111s6wTcLaMFsbtTx/PcH3l2gkDfOkeyOOEqMiVrjrYnkCL5LEQhAiEmVuRkRZkiShawYFFV8BivfD5zBvbjwPPxQLLwx+yw4Yjg1OGzLUbTtcZYrMGT26L7WCAQVhyavnPdd7YUma24EC5Wu3xhMm/Tf3mpl9iwSHpBBVCNaE+/TI0oMTQ0AXuZ97icWdNwE3nRnCs6xQAupcG9oNZKPT0bqIXtZlXaTLUaE/lITw7M6mwRhKxv5T2RWS09MCczozLt5mcZz/I6t8rLqm+odVvyLqG1I3NUcVkpaG1Du2+oreH+eofXhvcO7GPi7YMtdgMEK5kzOpP3PnD0jt45iIHakgZpcWBldbIHcIIqcLY6l+KoxXH01C4VCLralyTfEc44cQB9J3hbSkXEwCHSxZwTpTpu9w39nVq3nNZWUb3i05cv+PGnn3B/ecXtfkdtVTpa3AO10pbVBlx1kRACmgzYD/49AeDiJpZXaoxV2AT6AB7vTxS/Aeao24b750/UB6yFoe9UEagAY2dHjWl4WA4iiwBurdE2HTuyY8iKiCB5YqT9VtQF0lKrMTRUBinsDzGqpTlo2TaXZ4z3l8iFe+H0yKGIbAVL8iVI5i2AYOdCgeJexJKKYLxiqyvBE7I1W+Ct+kgEzGBJQ6xyd3DQE6al61vkAZP9Lg5EFulWzJXWQ/Fx4iZpe3HmJZa4SGYBivnJOk+f7Ksw4EaCTmQXS0qo5JJo7U3XTpul4Ob78PS/+vrdwJN/17NvckwFCDFmDAAORQak0IrXghE73BrcK+73+3f93/3o+pUBH3QuFNh1xPFUAHUgwzpxqDDmoeoXpyTs2fNUKCzMSUm+DP4arRoARarFVFBrRywmVhXARC3+OA5MFAzLKq5lxsNgPwKPeRDRVRDrrma+GavyOsQuoqaDX4IzoB8AMGFDwbeYRfzAyVY+m3ISWv/BQJrVDjpkfqjh9XZHdcN4f0NY4FZYSZiq2hjA7sE8TD5xzCfMORrYCuVKSzPcW+XhSNE0YytLCodnxb8UsQ0w5NBE18bANDlbZzUshcu8cKce2TevU8X1D4yAplKwx3iOgTEeFH2shjl2jL0DNuDGqtaYgcf7gQig6DkDpGZGAF/f39GPDnRW5G6tCW3HEqJDJlPJpvubsxB5nVC7FwJS+QYAmBdUr9+1nMActd2RYfUI7n23gnuNtacEfS9shiNt838yAIOfXUuj0/WCsAOz52QNoNgGaI8Z+DPu7J9P1tvKVHW/5gUxgb1PpOZH2ygKOQer+e/vh85U09qcASUrVGcy0ZLSW04WlFuCHgULxEYssDT1qRZUEQC/6xRTBbBQ5cmRqyu5AR0cjSmZVWTqXNoLAWmAAbWdEVga/lAAR7FUBg5AAgo0wsfx5Cj3m6p9VmBW4Gg4W7AIypQWKwEJAOPQXhlFK1cobh8OWxpRavdkOIk+pG4LnX2A72kELnPV1V2k6g6Q1fgz8eJ1nNPpxEaLc21qVRttapEowQImSuFQhSFxRIqBFpRi6EOT/gqZO6cqUoIfTK7LYvkASVqYB9iCMQ6tNfUn2GbLYBQuRzc44kFhI1q2UzACQWAAxsBtiF5skYmNw5emzliBxAI0tbxreo0Spikaug+yc7jPeBOu+5kjHfpQ3hWC0i6Vt3WuE0yijaTOl35f7SatbetsABmIKEHUo1ygpdgGhlhgQp6D/F22R/PdfCFd+cp7ISOmoLAoUDX9Kvpqc8l9khhJ9NQAuyTtl+QrbWVGJTlYoFplwaWrCojKILwb9scT374NuE8VBCoAx2P/wIyBdpAFVusLtlZwf6masjVRC4O1WjkhtxSgloLbjYWX1m44Zqc/1mj02rJA49ia436ramlQpXDGYkcm25uG5AXAnTowEcDM8eahoxZI4CQryi/bjeCCkSVhbvDNUb3gUOtUtvRmHDXByqkDqNbQ8MLx0DGkN0nrOmenqHJUoNwxrQJR4aiyE6xYPt7fYaWi3V9IpS8VAcPj2bFZY2vGy532KjVoADExqB0y52AQv/ZWEIxSLPAclCxIbaqi9gXMIf/oHJo7J25t4z3k1l5A/PfAFv9tOVlkSG2BBfaTNcU3Kn9TmDn9CuPXSKojGBOyutzVbqFqNICt3tBKw/PxZFwisMHkf80MN6M9PAaTu5dyAwB8+/YNrVbcbg37gyLGJhB/u/Fa9sHJbTi0xu4snMVEHE/ar5mJd1UMC9kiQ/VGl9LJZvCtok8K6nt11K3hse/47e0dLz9+oexB/0Ack2wDAKWahpY4+qECmib/UPOEOl/D2DI1BcIliyyTk61VTO3hKSmGZPJVA8IN1Qp6Z4v/HBNzgMLgRnHhCMDHlK3IdukQY5xMrUUDBxOmKA7UgPkQmCHmwMEE9jnfQbHrtop3Uy3ZHqH2RrJX7n/3d+jjwD6euB839NEXyPncn+hjYD92jKNj7wfPQalI8frjIJPo1m7AnNh3iajbRC3MAZLxNaQL1BrbrWwMztcZpy9Zvisodr61O+akHpkZgbSanj41AdFXy6l5hXmB38TU1sABdieEGBy22pYQGVs6OGCIMU7xglbaunbMBxC811NHLpbMQHMnw6xwehyHmTDO3G4vBBf6wFYb20OH9gkKPByoRX5Z+jeloN42lCbNKwTmEmrmurbbHT/+4Q/44aefkMDd3gP9+cBfvr5jDOq4llJxf92oE+UFt5c7Cgy/vv2GR3+go2PEgdmf2G431G3D2HdEH5ILC/jgmWnVUTxBROqA9X6gz47n+GA77NEBwWtFGjvH40kZFHRKNLzcMOfA3j+oTdsP/PDjj/i7l5/w22+/YcyJz58+odWG15dXvNxf8Onzhu3maA3yY1NrEthutnLGNKG1MP6JSZbPy8uPy7ZyqIpjoiNsYPNXVG9oFggH2o15wce3r6htw89fPuG/+cd/jx8/3/Hnf/rf8P72wKcycHhgc9OzVkHRDOaNwPsHCyavwcnYI7qI9twPEXPteRTRMY7BIGsciiEdW2mAFdqRCE3I5j34SscyV+erGNvs7l5op9aYqDNKLuP8HQ/FQ/I9B1h4yQ6VU6fTkGLgyRxtwhLcqEm7j/30N2K43+uNeZQA/AXOz4kCAoleA0PgEIvuc4GtGYsohBVqduYKru6cUK62/gQwq+LYMMYtYuKW4vA55I81UKrSD3cc9M82hXWw6Iw5UCIBsH/99buBp+W67WQ95WesIFdo+6oi4VJtXwlZWUl0wGCRQIUe/hSFzA2r0G0nTZFvPq+xBDKTyTAvEJgDlwThuzB43QMrNYnNi14sLZ1wKu3F9T5xCfb1fivp07aZuoqUGMzgiF5Q17oQPN11/giWosFKFE2lFHOls6r4XWsTTOjKYnMk0DaMz6a2Bi8uMTCJ8Drps2MaAmz7MrCaYk4GlqczOa9mbazILE3XEedt8A6UVa6R3IIMzaZEzUCUPLIdLFYAPQQojMgRv7YqSgEsxtV6b2Z9gAnsOziZx0yshzExnUFpiqc5ThbD9WleUe18vgQlvmdHpCH3yz2vTUzkA5YAaAJvqh6deZhAEqwLWPv0uu+csUGemO8YDQTNHCOgtVAS6HkWznNCdhkr3xmA814CWYlfMb5BjJaTpYYgIEgtI1/Pfm1QnJW73MemzZLdbRmoqnSIZeFXPqtAFhTWRyayF+eBvGYASQF1fbZrvbX7gMiJfcsN4XKBl9W2yxMnkzBRi7UG+gyEGBZxwmRXoCLXnNUIravAEdVd+AwmwbSYBZhVdN/TaSx7d26P71+Rn3Z5znkFYZffuNzspdrKeznXwtI+zTzP1/Nva79d1+LKGrvCGbGu7fzHkG/Inz2vTvsLp45UshHWD8XlM+GAWAO5abmPKfrt61nO766H/3GZyBPncuStR+43AHbVldKanuud52X9K04Lsp7C5TGca5j3FOvPy/NZn62Kd7KO9GYBwyqx68cJbF6eQPrfBGUDJyiU95efrf3If3J8/xSv1u27A5NPDenf/2W8EescX73vuYdkC7UnwjRly6gVQgFcMClSvhnSIKrVWDgqBdtW8PKyIScPbtVQCrA1MWKdyd59q9jahrbdcEwWU6xVmDtq1UjqQh2bVsX0SH0OPbOThctE7LRddvpvO+9/ip4TesYOBqELRMV5/LIN/cpsSD90XsdlJZcP4Dr2bM3MZ6E4JdYzxtKN6pOFrBr5bye7dg7a8gSx89+om2EXRjfPRx4kS/+Tu+ES63xXMf0X+yR/jFqVEed622VjLSbN95twSRcYsNpc1271S6yav56HPOy7Z3MeflvHNe2Pp83BeR+ncTKthQqc4WQ662dSD2jFw+ehZ2xiWP82Q1Oe4avEykQDEOdbZ+SyxABjOQADej+Z9YxLJxgzTBX15NbSEy0W2nLHeU2m2IsUAt4LYi0fqYIQ9n36BQQocWFKPNMGab8RgAgCD3oI4U5SSVLalmGJdQYWQ40ClquDIuMLCqRzH6CIRSZbGUODDkraRLb9A2f/Qe7VrTRKWXRpW44iJiAfUBl9Mcd6DBZHS+XaBMV6EdIdVSKX4GuuUwKyVUBjKZXJm4TdzYpajAOtttW+41ZQjC1RzRNuYsvlGTFe/LXbekalfg88rfV3LMZTBvK1sJgWa8AONdtyGjHMMIYD01cS7YXnlJIjpkIFAXdMMUBk/zclxBOBCrHPnPlFJu6mSc8BEDirqSGK5VuSGVZrQ20b7vdXbNsdrd7QU+8uWUz7cZ4BPwc0uJFR7AYc48Dedw6gWPICzDFiUK84Uj9BazUHCxksnjN+6rNzIFQWs6H3AQH7Whwj2baFxbvbTfmYNdTq6MPw+umGl9dXWAHmmNi2DbVWvL684LZtqK2w5b6Qge9+Tko8p3PHsrHJPF3FWg2yYvEoMwxXHdxXDAsDWnVeb3QSRMzx+dMNFp/w9gv12HwOeAzUtMMr7juL+BwYoynVWsOItPLMR5P9NBUDf6fRCgLiSzdXbSd0l7zeS2ODbMRc9vL6dWXNZ+SW3RVZzIOdrHRFodzfYWLr63PTHof81TzPI1ly8nWB0yZqlVfUb9BzSL/I3B4hdiqw8Asylb5fw+w+S7u6cqEV8sUK5bLHCDFXYWtFsIbVkrtW0QSGZ4y69kf+8woa/tXXvwl4chCzhVpy6KuDTaQO9rEGGQUjgOk5kasBsyDC0T8Ezyh4rbjxJmugx8FDDG2CGutzJwLofd1Y0djU1Sa0XZC9PdA/Btpm0kMYmBgY2hwurajeJ6I0wB0dBwYmWtt0zbe1vPLadBIwkVtSKR+AB6YBHUwUePNyjtokVjLQFl15pLggK3MuRsr5mqre0aF4AqvaNzVYnd5qkxjchudjxxEHUWQAqAX1ZcPnv/sR9dMd77GjT+rJ1O1HCiQ/qQWB+QovG27bZ0i4Bc+js7KRm2+y8jWmpnjBV0vMODr6MjZkLIw5sB9PBc5jjSgPUS4huv2j7xq5etc43QPPvRPBLg0+geNjZ9/0CMxxYPQDTY70452VxPe3DxgM93ZHCqA9+xN7PxZYBRm17XYnAw7qjY2JIRs2kmu5hAQAc0eToTNgMW3chUSDB/8c3e7SsYwFVs7TKgACOAlaTFZ7oCQLvI5lt1R1z6R4iq7N6Sx8DnMM7PubRotWVA+YRuKuJEUsGXcaYWooUSxVOw5mBbdNAnIemLGTpaPNl+LIDNocZlUVPyBZTDFP0nnIYAYyrmdFbirZtkur6xmQKQH2rKJ9D6ygKIm6fE6tSjSXeR2r/QagroHry5Lpd0n4U5clVKXNyYilcr+01vRzgT44fcLExEiHyLLNmbybAXOwku9e5ETy30sWcBBxR8QGjA7YRK10VEPPxRSUZVYbQTbgCYTkiw6RKa3Kh3yDcw8sIFFedCa4cLIDzr2sPTiL7BCZE6Vk8sR7S1fUilNMNIM15LkIYA7ZcZyBm65na02Pls+AzpxaIlBlKduIqm8IB0ql6HJxx+idlUK1p2xlYyBcuQRne4YYiCEOiEFj3w3TecavY7MjGDT2BL24+ATuc0MuZ6ukaCHzWKDj6n5B4bkvrJTtz13BIJlmKUgKm8gWcIAix0c/uXSpA5XOwFS9zKAmk69pZBQggkxbqKATGXjKH1oByveaIsoLVQCg7UihWkCtYQuA4a5JEHKCLUcEKQrWZLU5VzIC+creD7XccIdtLwWfPfAf/AV9qvW7DZQCfPryo9bJwNHVO1qruN0bYpB9fb9tKLVgq6wMxvhAMaBVMsxKcTw60Keh3W4EnszXmXen+G0EW5CaWGCj8/p3jajetg2csvuRESKKgtjiLkbCXFoddqLoDIzHwBiB/RADOAYnaM7QVDOXLwmxlHn6EB3HfKOt9oBXxWP9oKhr4dQe6mzlqIsBoGDMFOJn8r/vO7xQd6NVMs2PowNDk5ukvzLnwPN54HZr2G6VE/RcW0ZnfWJinx2Oga7xzEU6NbRGce41mNjevHcPtQemjZJd8EhBaAXWsqkJ7lEUd6x9fTJfxZVKzb1VVLnYw3xFHtb8zKJ92TkxyYyaRnG2w2Xidhw7vFQUuwAApWF6YOxPkIXRAEw8nmyVscr7AoB9PpftoBrMwJyObtQsmzHhk/fTSlFiMBdYdPp1E4BaEQYcykCqO/o48Px4wGBoZQP2iRhAQ6H/Kk02lywnPklQF6w4pnjsjFvP1ttaN8bRYsQ1CUK7OwWRgyyeZPdgToqAp67L7Oh9/w6Ic2c7pxmn77GgqSEMIBvQw2nTkOCINsQgM3MIXE21u5ftxoLhnGfLoP7sk4CCq8WMzE5Hazdszq/eD4EQ3IObgMSX8VxtkfSpjufzgeM40A8C2zlI6HZvKF4YE4+xdMIMwO12J3CsoUa1dtStYdtueH/nVLUfvvzAKWP7gTkm+t7x+vKCH374Ef3oapdkUtqoUgzM1GEVuAQ+J/oJxq5lThbE6lmISQC/VnYCzCgrHsgCpNdkqG6Y0+FNQFjqSe0PmAqi1F2sSwokgaPZWQj2CVTnIB8vHByT8d4wX7YjagEqp5faHIuRVbcbSmn49OkH3F9e8fnLj4AV9MPw7W3H8zjUXTNgPTPLWG3PjopiE17IEvr14xe8vX3D14+vKO64bw0f+wNf3/4q1s1EnWyY27zCIvAITs7ucxA5zmmMALoNWHF8vr+uZ/fjlxd8fv2Cj/eK0Q/cXxpqq7i/3gFQQxACbeHMcV8//UeYG96+fcDMcd/uZ9uyA6Z7YOhEFphbWwUFd8et3uhPYpnUBeZSx0qEGXNpj06MODDiAAzYbhu8DJS6Y84n5kfg739+hf/xT9h/+U/wB/C/vv+G2A/U8PNcjB3HHMxNzDAeDwEdhqxIm85lsuozbuw5OGAyRg3ckD0gQ0ydBH2a3ihA8K3PHNqDZadM8gRHgjhg7FXFrAyQCDHlA6YZY/2MDQWgkdnEZ5RrnLWLOTvt1tKppo2uNSe7iyAwgQCHD81LvhEqwJA5CDKSzfGcO5nGYqG2UjHGxD7GitlMOEKXPQi/Am7KNa0A7jg01MjGFFO5SNqgc9BXY+tnKpxNTPRBHWp3FnCLFTjYarsW/3e8fr/GU2S1RR9gplaWWG0oYXl7Mi5ThsYYdBsKop8BWI6JTy7utIHp56SYmJrGouBh9ik9JVvFL07RALI97SrMajCNNJxn4KHEi6Kl3OxwwwhKeXlQoT3zMuRmzA0neI8OWEys1LBI6A+xWuKSfruwG1xQwdUOsZqVLklB9mVfGROXiple2Z4/h2rwVihgb8G2w+pAdcxqpEl7YFYmlT6N9EcjpBjh6JmvxvneC+G0XFVffz9z20yKp8CGrmQ+1g/l1mE7SK4HZGjUrjPY45xJ77f3D0QE9qMjW3448W5ga+wP//jY0Y+OfVeVLbrSGArY9WmsfiCw3RrMisK3vHZa4mEEEKcqaUsvIDg0Dlm9y4XPna49dB3N3r9jJXBf9H5w/aSvUlsVWwsLrGE7Iqs+sLNFMBPFyD0oACwmp5UAnI6RlbQxByBKJsy0dybbhi7XuRgk64GqSpl2RHvQlTCe9HqsNU4ncfJATubjSthNhyCAK5+La3+eV5PxynwgX8z97ftvWlYs8tJjgRqnFtxY1RQs8PEEu/TuSiaw7iUnUmXFMBPuBKhq9r+bn5ph4hvMVRJWOwcyKZpwv5z/CbGccm3585b0KF7lsrmrpmmXNY2s0Mda/ZOSqy0FWx+ZC7fufC1JVsX0JLKcLJvJZDGfXcJ752dnwp2xxOoxX9fpKlyca7xMYUwtFxNsFzsxWZh577wuLlyCSFdu77LZyyjlB9jaexmMZ9ney4XFFBmUzbWea1MgzvNh59H+rg0og3MlstzKvKdcg0X9u4QDAAG8abK3F7+51sG42mRR4nJmgDVxyGNpoqyzq72QekB+sXu5aHlFiyGltRjZ/ny53rz3VfXTvaX9igjMnIoiW+Rqi5pQsGWr1sYzY0mtB0zAa7sZSgANnPxYasH9BZq+Cu77IAjSNkMMPs9SgeKTdPwwpIZekx6bg+PhPWi7WRvg85bC3RmkAWpxJ5PSPBAlFpMqRqxE+Vyj69LaWqe0Bcnwyip4a5U2fJKBcU64PFuWTQUeVjj57WzPNDNWoZN14CaSB8HLGTxPsHRThlY59clWwn1lItp6Ztf7KgImx0jQOM7jlLbnGnumf7okeqY1oZ8cOv9nfCRrd/omvRkjOP7QOqPa33Ixy94Adqm8yjfN0x8sXcA8kjgZMOkH8rrWwJS+n6L8paC1hlIP2hcT49ZYXBxq9UuwlfpLE4ihBDF9s+4BBmpEiRMek0AyMqa8fEFrt5jTYqpF+lBOSExpg9Nv0O4Yjxq1f0i1wHS2GOaemzBQb9Q5FQonix/JajKAxWexr2NCmtswwwKGhsCU0Nfx/GDy3Q8cR18t7wAw4JjL1hGUT92Z5U/yPOH7V/Y6rCTPksOZ1j4uuQku66piXpF/G3xO8+DAmVLZnmruqxUmpVaqhhjVuOiloqIU4Ok5zEHAPsRqMl/i7PlkbhuBp9bm0gKrG9k7EYbaO+63G1tu2sZE0594ud1wq1VFyYEctFI1CCOSfR3kvMn0IjktYUCrjT/neXJoH2YENQUtbWgeGJMNSemSynssDMRc1FQvk4m5F5gYUxljcjqz4h0DYGw9M036yrO8gBcwrtMWVoHeULc72+RKQykN2+2O2jaYU1+p9wP7fqD3ji7guC5Ai22f1YCtArUaxqB8wsfjDc/jA6eHUqv2tgGewBNBk5tXrcykllrv8FuD14oug2YbWVpuakHdOz5/esWnlxuqD4zRcb9XlOrYXihYP2KsuG7qwdTqalHU5DGdTZpPPusZIeFn/5dnRLn20r3UMWaxy5aG4QxTTnICNdbUZl4ZLxUSzmEAtsKi7B9/+gOsA//zy/+MBz4wngnIFhQDBxeZ8lyT6DbSjgj0yenw6/vANILfVhJ/OMkmSPzhOy3PufK0zM0c/Pw8p4Fk13LdbLVch87JyfqB7EcGaFdGfMaxGSu5tNIiwd6lbXctmJw5RBJtT1xhPZp1Tq8vDmAg0SEZ7Mscyx/mf3sm5zO+e09KXQYLOskCRfppO21E2niTDzaDBc+v0gX5sDgvwL6/3v/a63cDT7GqlQxauElZcUK31Q8OA6ZVOkNNymEQs6GgYB5kOxVpPWwqS08fmGVo5CerPV0bqljhaMH9oNP1SvowQEYNAreXG99nDmCw5lVLQatlOb5IQTvjpLX9EOrpjn2qXUkV9irAypWwx5xyHqKkKcBeAZgBmXCbxdLvyFcKbebIb06XIQuCkjX5ORRWNNAwujYwE9brISOqvqqqRfBaqTjA1rNtK4itYjRDr8BeJ6IaIgqOA0APtPsd7gWwhhmO594V2FwSD8+NnS6kZkiHpBDm6NpDDKfj6ICFRONOqifAsaGkmVfAHKVtGCPwsaezIJtmTsd/+S//BY/HA1+/vQMOFFVXSmGVrRTH/rEjxkQDJ8Qdz0Pl+gn4hvCKj52Mtnq7wUvFMenQDJMJhwc6xBKQjXIFiKnRVACxDSAmGFAaEfri3PM7KEFwHKTpmksYOAKPJyf+1dJwu92w3TeM/dB0C426dVY7ith1xYsAudw3thJNKIE5ekfdDK+vn5YhfH9/YM6J15dPNEJi4fWRo7j5LDIggonW6g6veb6xLAxH3LoSD+gccY9ToHYi2xuBTGi0X4yMFiZE2jc+YCb4z7I6aBKtwxmIrxNkK0BKEMCdLANaJCZEsx8X8FMaEqIQU6Tz1NSZi5XI91+tZ0hNFhPF3ig+Gpye6O643W5sSYVj9F3PThPhJhDTEOEotsFQQUHjQFkWN9lzBLAcBcfhOH1oLHuy7v9iT/ziAGcmslrf1Co72w/PjFD+QrljqPJyhlml8mfdqxK2uRLQYwQwKDZsyFZAvqHjpHFPnSdDpEtg8G0sP3Di6FggTOAAhdVDAatJQDJp9wYEg58wR0dH70+YO6ZcWFHgLd/Me9Mc5LACTAUi2bKhfME0ZQtBds+cOEHzbK+4gEsGVc201mv0tk5VJugLJFfRg1dPVo5yNSAyKOcAhtSfiAj4xhCsz87KcW3KcwOIA2F9bQljfw7bTGOwyprBka6v9w4zTv9KsHlpM2bVU6CHC0TvqaUiv+9XxlMy+JTwTfD3xxgY6Aibau1wMRni9MGRlPEA9S0C2516QWzxCdwHOOq6MNgutcDLgCUw74YmjR0eAh6EiKcKMRXFgGoFxQNVzzHGRBxsm7A6VQFlJbyClHMLScA6IE4c20hCE+SMLeMUPbe1ZxNkplnhczU/G+gDWK0XZFcVfP78ijk5BQ22o48nRgyCEwLLilHvrBbFCtpPNMOsonqlEoXXSu2YPjBnntE4JXHc0OyGMMcENf3ymdLuFZRSUdrG6i3yTJalIeXOVr0lNya7kiPup6WBMiAnEIm1ZWob6GOgloLqZdmBtWc1tTaTo/yaQZbKRCzWOfdRttzwYrhFbNm4fvR1DryWJaLMj5sLEIUCc7bfa+8C+Hh/x3Ec+PHHH1Fqw6fPL+jzAHwuvQsvG1hYHcB0tOZMZD/e6RswsG0VrTr2QU1LVwI1wdHy02KBZAm66AYx7WSiQgwnn4Y52e4VUyK4sMUuK8azZzDYAOKYKNNQg5Xq4QGvG3rfqXs2mQxaa3Bv8MokN+3oNYYDuG9ystHj8cACb53suee+L5sy58THt1+lxRbrK5/fQOBkQho+xo5aK+73V5TGeKhIUwyX31t2WSY6dVsTTAqoEORknPf0Z0aWKxzwjTa7PwlU7B87aqnY2g2lFpTq6GI3wWl7ttumWEeMxdmx1Q0RFW/vXJfsnihremHGBpGeBK2QWZQafGPMNZ3sdn9F7x0vW0MtBa/bDXNMPN7e2WZcK2bfMZACzmQdUcOHPoh1uNw71Hh15R3t5QWBWK1Z6S/mnLBS1jUSpD5TxQSeqt2Zn0QypypKTGxWpFVWLr6eR7qWG4o7bqlbZQXHk3H/KrpuDQSwTINyplruJkp9QWs3vL5+xtY2vLy8Ll9kxmmdHx8PvL29Sy8vlnzLy50TOocP1OZoFfj0UnDbCn77+le8vb/h19/+C577AfeKosT95XbD5+1VkyUDZZC9ffNKEKwWFcwP3D+/ot1ueI6OcMMPP/2IAPB8PjkQog/cW8OtVswfmIeyddxgzfQ8GO8fR1ccJHarA7eXG2NLTRtkgZA58xiMfzjdEifooPbK1Z2RAIWYu6UWtNuGYwIP6WGN/QmUommH2Z3BXKa5WnBn4KWwhf2//2//e3z9+Rv+l//xP+Gvf/0Vfz1+ZXxgFSgDJQYOPDHjwLCBMDJj3RocFUfXpNigHpmpoymsckiBWlDP6oZhzgcCg0X+lJkx0D/RbK5CfJedVxaN7vLFg5hDitVfZTXgmeWKERaBWtMuM2JO+9d7p7C8l+XtzZPeYIyDPXmYeibuKNIRTkApi6p+/iRYuJhqB/VLOMrfLWolCIFKsJwwmb+bMRvXJ4XDKa4agFHCoM8ga1sxszkZyopcVbBzEUdi4Raohkgg+Xe+fj/jaUJBkKvKEYsiPibZT2bUU0llpJyMBCuKTkjpYoLpsKkgDQw2kz01Z5wyFgFNs9P7WL57Bv+a6NMzCl+YqWqGYt/kpBArmEXvb0wEppJEBvpYAu0OR1PyZk7hxojJAMHUvy+KctK7VxwcOBlKIeHHTMEcGq1I15hmP/EEKFhkhUX4q86CaePlsA5eP9BnX1VPihNPPPsTdRqmh76wxlECD5h3OCbCCrxsrHQVVlpGgL3H2RMMVbIysbMLoyHUEhUGRGNIvGhTA6lzNHUITKBFbTcEDMchY9uBx2Pi8bHj/f0D+77jl19+wb4feDx2AjJbgVdHqY77/YbWDCWamC+k8zKBA/oRgB0Im3h2irzDmcy4TmvMyXHhGcSCBzIQwKTjrSX7jS+bw7Q3swJcBOQYx8bmFDkGUjwH233jgw5gRsd+fCxaZ4JzSeE5+n45fDRosNz3NBwTCeQowbwEgimMOxY9PlGHQDGKn2f1eKqS6E7HPDu47yzhHwpcm8VqZ2UwkPVsiYg6s5urc1v8gdS9ULZM8X4AJdk7tgx8yLFk3TeCyW9OBVyZDs7qxJbTYYqYOmlApsxCOhKWA1YQCCXOOSGRBtthuSdUMRwCYRYDrOg6kn2zgPbcRQQBYGkXsRIpgmK7AEzA6wYrFS4wLquDObUs++O5TBdAAcnQyWmbafmg50mrlM8g//Gsp5/JKMRm4ohl3puZ6ZxA50pJZCYgl0IT1TVdwsiiSgJr2lxWe4gPpGWWPbADCKzhDxixrp+gyNm2l3ZviyYxw3TzseznOQGK4qtFgQLZAjy8moeCVDc62y7ZTpohChMXAVpwgRfnsyh2brcEgq6/m3ac/qCez8dOnQ9O/hxM/NaQgu9ZiO5KWpaNKLAsfMjGTswFHK1u1aJJSnollkbdCiDZyUhhmNAaAAQ6DJpslElhLCay2XWqqPaFayqKEsTr1Cceu7x2rrt74744MmkGYja0ytZWIloN5GiYzO9Q6ymwmHqIMyiFrS5p6ovE0r9JzQSDwWbA0JHDBwDu2znIIOD5O+3ref4yMAVQJsbcCUCZrtELssjE83Ky3ooHPICq6sazf2CMied+4HF07HqWZmWJMvPwMYGeMzA6k9PihSw5KLk0g1d+Lxm5mCk2O2GRbANaCEzqHY5kOQ+JLCOAHGwGsYQksAoQcJggiGeGBYquf5sdpTYU10j0KYFpU/sjkUEFEqzwU0+jrDgjMvjNM5V6a/Viy2j4vgMxAOhsM8mDAM98diM6WyCQ/kYFwcU2B0LtkR+dLf1//fUXjOPA/UVTvaKDJaYDwMCMDp8TIQH3POReAu1WFgBWJPxaUntKe6kgizSyJXrkgQlI52YWJVtBwGQWQ9fiJHB4M/rqmfSjKZZ4TDweb3grjueXH2FBcfecopusgQzhpirhLmA8Os+FqWUeOvu8zNTXVMwdgXF0PJ87z77YE3NO9J3Fl1optsvCT7JauBbHIbukr+JPjGEUP1cL6jkJLq+Be4P3I78xuc+nrotMtIHUoYVYmBHB6T5cXgpY10q76RRSH4NDFgaYyIYBe++0f3n/F4ZiDsZoGmTBOJ85T3qyZP6saZZaf2TsCDJx3Aso5TGwx87PafyZaQOlOW7GmNuUIgEqPllI7gE8v0PxQnXFW5EbFTJycj1JIsg4TDbXNPlO+ywneEHFjGGMnboXFFC3aZotBr0phY0wdLHByIZBVtkBA4Z3AUmVyXwlAMjBR5wkasUwbWLvOwLAIaH1UhqexxMDHVaoTz5UbE0GWgl+VXOUcFgUtv4N4IdPnzFeJrbbjTldYAHbafm3zImSuebAZhs2f+UUyuK4KVY9jieSOGB1cg86cwnzWHFhACDKRsCu4hTXhxkezx09OkrZ2DJe7yJ0lFW05jmC9l1aQ9rqWipJGAoY+6CIf21Fe76hGHC7GebNMedNmn6M4WTcUb3ipd3RjyEt3YLRgfvLK8YAbp9eUD4+8BgdDoqucysVRAdzbWuadOhkOsbAsImueMKMnR4whfFjYh5P5pxOP2sqChiYS5PWxJ061f4KnLIkbBjDApM4myuAyiLnxECFCbjisytgEXys+DMw3BFF9lr5VuZUDmNLveKoHHhhae9ThgL8NxaDkhFOHzdEhikmhmpMiXefU2RHMpWCsR+LWXmEJyLEgFSukuzHv0kDCCDGNabhEu5B7+hTWI5lYZc2lt04LP5k7m8q7l823n/19fs1nqZE8VSF76rcTbXvJIjiCNyKAsEYNBSmgH1OFGtMrCaABJ4MAp3y/VSFUzRP4omvfsoTwef2QAR6l4FTRS2ELrKl7kCMLjEwBTbTARNzahqDBlPgb8CYpB+2UpgMOojWRpdzEDsmVk0UruTJlHwP3UNMbigDRUytnoyANPYB6VaBtP41ZU+uKkd/u8CVOTjSkMDTxIyOUjna02ICGOjjiTZ8OaBhgZ7V1tVC0BEogL9wQk4Nas90oJWbNAqyIk79qFIbLnZtHaSYBtOW4v6bWtuJ8BDri8FGccO23TEnp2vMCRzHxMfHwLevO/7pn/6Mt7c3fPv2jfTkHgSNtorSCrwVfOqO283xw/1OxxBqERkH9mPisWv94sAxu5Ixh9VKVk9kFX4s9poBnKyQVGkrmvRFhDzd53pNsmhi0hkVAMkS0OBjgTKO2/3GdTwOxDzwOB6KVzjWNen6CGpj6eSh1RtaKSvBPSYZY5IQUIUrMDrP5RjsOScjsS9Dyhwm4KXBSkN0sbdovlH9xvPXd+7vcgaax9L6yja8wSA1Br6jlpohpC+QYWEynZh8ksa/9DgK9xdkr/s8GTYJrkzQVqQKDdb75X4KwOuq7EQwKDElXsApihsZKUQmJAqajRWKpPPPzJb1xb5t2RyToY15uaB53pN0ggIBs7Ha9pZIcbDtMgTQFB9AaWI1AsmGKk5jPlfrRayknbZSWzBiAU/uBMGLNBbYknHmBnF5MgCWU8xklcCTAuhaqRsyxcScbJ1gJSSjJT1lL5he0PvBUdjJ6I5Th0NhwXLiS6couoCdTYlfKOAup2h+rn3nCdzQaG8D6EFQ2VrujbmSSTfIF/BZTyUr3QIRhpZOV0BATvpkdUp7LMtJyi+ia5+IGcHAMRMPFV0sF/18H7+AFwSeuC5mhhjSr5sZt+Q5k1aC87mNZB5DSBQk+DgnKfoKEhgD2AJokinr60yGwMbzu8RmdA/GSmcAsjOubc4zR02DayuewLmcZGkhja5k1BBODSU1JvaXK+qeO+3D0HpwfPLgBMWjAlP2cQokcGPgqOiTLCRR8cOXXTWTZo/WzQsI4jtHpNsAvOaeD2pMzgNWpd+GjDP4KmIC0A6EgCe2z1TXgIBoC3jK9yV4KAARQJuOMSee/R37MfB4HtiPQJ+cPFQyYdXGj5BfHoFjTFWw6wIbc894qwzeOSJQSf+OmIaKClGQtY/BSahDe6FO6TKx6MAwzcR+wGoVoxYV4z53R2vyLzMwOzVnqnGITHQiCMm+tLiAQZNxQZ+cFJSNUGNySMBw+lHVCWBuaww4ANiIpXc2RiYb3MiBIBteTEcOXKEm0ZhdSb4tFu0I2qw5DKN3HPsTj/c3PB7v+O3XXzDGwI8/v2DDTbt9X4B5hCk2qMiiKCcXA9tN2jb6GWoKgTGiHJJnWw0fAzGjyWJjFN73SAYZ6F8msRUVLScsJooR4CPDRGxLZ3v3x8cbEIGPj7+HY0O78ZyQgCjhWrGEuuw8jY4+ZASZgkrCCG4HvMwzUQQww3AcHfvjqTg0APC+j52adttWxQgOJENaFRD0oy9tpJgTTwQTYDfUSiBiu2/qsLhS7ngGTAw6aqIyIAtkYYZaKoyxMn4g05RFhAovhs02vreTTTEGyIs3TpIKBI7jA4YJN7JffMWF1IK1MGyVGmOp0eZwpIZWE4imFOA7dmloomGtzFHGJF9jH+yEQKOP6wiUzVC3hmQ2TAApqB2AgCe1lHc+bzQxvg5p5orNdLbcKoHM46Qcj10ayfZQsm0Gq7R7h0DMYbKDJltfpGObKxSUS3IBMLOYmJsmN8uCXVWReNs23G433G4v6MFCfTjF9Ed/YIyJb+8fBGxqW3HYVsWQsy4zzP3t01CicHqevqIDGIYfv/wAd8Pr51cxUw/MYwKdLHh3w8vLHTDg40EZkDkndbluN+Yqc2IrBYGJb19/AyxwvzeECXiyiWED1S6FwQBiiMlYK0qdgE3c1Gb58fafse8HPn1qaO64v9zlUevS98ln1/K+BUIGJidrtraAnefzgzbLANOkxVodW3XAbwp1JjIWQACjT7TS8Hr7hP154PlxKC8MfP78gjDH7fML/GvDR+9wGKpPbHVDLU7bOgC0hvCKoQlxfRB4GmXVL1fXScgfPJceZtqBgk3+iDF/AD4IUqXun/mKndmJr8K9UY0146OU51CUTn0jy6FNJ7gUCMwCAk/ikcygRmEV8ORMBViAGfQNVpxdb+WSPa60g62GzH8Ce9/J1K4qjMUk0y4mqrRLY8yT+DKZz5N5KymUECBsuYJnqdlMnw1OHkw0iownxnojBDqp+G4AXlqyYkw4hvKISNIJIFoXfs/rdwNP5fUOA/CYBzelKYbxbLMzxLHDVgDOyCY6GTYuw8LKlsHbxvuoE+ETKHwIBVXjug198OYcTBIQvloSTuaFKHieAXpRUcNwOA/dMI2HBjcUoLY084ymsOQI5+VP03S6oFJ/TFLxIQE/H1lpURycAZEeMqUoCPpQwI90+WwJjCAFfIScRNGYUBfdz3y14FmwslLAYCenirH1x1CdCX90LEe9tTs+bS/4fH9FcWDuO+Z4Yowd3l7hzvY6BKsTgC9qblbSeu9kwujOlq6HNnT2rBevNBhKnKaqoRSLkz5GOCL6omB/+/YVDAsbej/w/vaGv/zzn/HnP/8Vf/nLL3g8nguEmEKS+7PD+0TZB3AMPMsb3pTU2fpwro+Vir3vOMbBislW8f7xjkDgdqO4I+aAW4i5MIEYKAIdku2V4Z2BDtwKR/AiwCBpJZ482dn2WpTE9smRwc+PQz8iqiNO2rfSKfRQUFRO5hAZWFMTB/ms+ayyWjl0toxVolqwQRND2oakXkOUTL5PjqoNhMDWQ2J4fYbsx/mks/KVdjPbjaYCb4Am6rtKrttp3JW0Jqgysy7tWIFjGkrPVoJwtb6ENBpOR7iYP5OWvo+DcagEuV0VUVamOJ7c4PAyxL4So8fSfgVgBFcipgSPsyLlqxceSPA7dWnUXlWyIqazM7K1l8/BlKxa8PtmFAam4PEgzRzZlhCMrIIjzXNaZYCJc05/KQDB2GV75EQkFDST4r6ADo5ep0j0XF9Mamn36pbVMjv3v3MtayusKEsjMdTex68JDAI3luCDnsOyiYlVaQ+l9kI6viWDaK6qfyYHZ1Cc006u+4AtGI4+OO7Y/AR4CBzQy3NqEs8tkolVxKoSMw4gA8HTiRvOoRQK8LCquGcyWOyUtcdKP+Uf9F3LbH9ZUygYdriRxj1VlZ7j0PlmhHOkJk4kYwwsXhjEQg5WxgSuzEwQ1RaJfrJCFpCy9gyf49JmUpUwK3EICKQ1Gfgpf0ogbwEBer85u5gOvOtqbSXW0JkgUJQ1S+PACShuCcVaalHiM+Qo6hSARoCTvLl8gKaxhoK9VjiJKjK4shOoMoEXvTOhy4quBVBaRTMyPy33zmkJlBjl//iNoraMolgkWdjpp4s7xuzone2HZgCn+MV5/oKV1gJfrazH8wHERFOFMdvAqlrhZ7A9oY+B3z4oOB5VhahBEVGvVUU+KAuFxPYZJBdFK0wMgeiDZ08BfdtUGAgyrWawTaXWgqPTpu2Hqu1gAlkEJDD3l2CwglQyT3ivAYrHQwW1QA7qkK+JQWZ8kCE7IuD9TIhjUjMlIu0Bz6QD9BkjzmR8DJgTAJkhFh5iYa6xvJdxHPo40IP7Y7szVihVbRti73I6WNr7YDwHti0sKRU3mFfGX2OITZUgiQT/B0HjGAliAJkhnhpJ8lek2iKC2ZmHy3JO7B/fFP9ovTHJSoiBT9tnYAaOxwMfc+Ljo2NGxzEemHHw7Itx0RezVUW1ZEZlghaBZmTwjE6Qa5c4rgHSajnbPEMxZfqCfd+X+cniUT+eTNLMOalL9zliYnba8jHIdOyjS4PpZO8tX+4s6vJPB2yDO1lIycbCYBJqAmWqWi+ZCNqy3wjqAhUn+07VZ0QEQQtz1NKYK2TsqUfHWGIo59A65BQ9D1hhAWdIugGV8USrjj46+tGx3W4EBHQu9v2J3LLpK4vYRjPS1bt0mVQcVheEuwGd4CclTCZBTcNZAGGwQeCkcfBC7wdmGHyoiCHJD8QEVgzJwoxHrPcrpmELzv1iM3nXpv3LydNwCtBbYe4xQeA9J/2RjaO9cOwEnoLlbUsNMAbi8hO+1nyMg8Lkk5qvKJvssbENvBiOvuMYO6YFSiu4446IuUDS4jkk6cCtcE0+xJAbYr5EcRwx0ffH2oeh8/By/8T3qbxzYt1iuk2j/zAN1FE7mUtb7GxXN/zdf/hHAIHb7Q7A1FandsYxWZCS/dtqZfwr+xIgy7d4FeAPvL6+8Fk1sg/3g2y6PiYKihheAjOl2UYwzfD2ONgaB+D2ekepDf/bL7/g17/+hj//9Vd8e3ygbNlyBnSjQPksE+FGLV0EOoABw2GcwD5AsCvJSxk/mk+0RpCaw6x2YAQGymLd8LiqUF7IUPPiKwY25RYc0sRYH+m1jHzeKh84+yHfReCpR1zaxxWTJNvSkiWIDGXY6Rs8KwTpGUd2MfFNMUTa0oK6YlxPFhwEsqGiegLlAEagFYKrLNAk4zS9GAvSc503dWmFwLjTMq/41RSr+DqbaT9t2bQ+1QmhnLV40bJPFrt9ueXf9frdwJM3atgcoyuRYRxjYRqxSUQUkVEOk/hM8gCclQajWBgcDDj1ZW6X6S+XxFZhezrAMVgNMvbGMNgzBZeZHJpj2uCmyd0AOpycPp2Cg+eXgvMFHzMJ9JjL6QIgBc6M965rZKCw6l2X6B6nA8jKQ0AUuUQt+/pcJktVAUuRPg03pUml30BHyhsii6R6pZMeIRqi41Y33NuGW2swH0zMNBLUIJBO9O2sOE2t/1WtHwLtToFHJZCR1e+x2Fp5UalhwC+oYj8BFDx33s/zeMKsoLWqqWxPvL294de//opvX79h3w+8vHxisKWDNxWExZhA7+zV3Z9ImpbpXtq2Ybu/4OP4wPN44vayIXzDcRyotZKOCshZsv+Vz2AuAeTFkolslZCxN6y2D+Reiqkqj61cKFNqnoWJfsgx18sRlSPKfHjEeqi856EEYwZawdL7oGEiQ+LQ+ZrT2dpkOWgytVjYCpsVnwV25f1B23WcbBRAtnmtweWMKNhjMplVx/zemYzbBZiJgNgmYgukZtlah1gO4hTd48UlkJfh1glmYGlfzBhiB1DLxkpNApac50CUvvYmAHgtCnCwzliEGAwhEXZjTSqnqMBcVYaT6+EJYuS9x3kPeVjikshm65yXDEjSZnY5DmqcIcQ2nISueDlZO70k1AayC/TZQ46NTlcAjbsoyrLD61rGqtKZGUq7LbA3IR6Tcy3FyFg5H/jlTyVH2jJlAdTpE+N8ztCzV9UmZNvp7G055hCrK53y+Yq135DJmE8cXSKPkW2C2jX6O0ytYjpfadMuZkv3e+7zPJfXMz11zj0ZuOvpix2VCdj1PWFAsjrSjxjlrIGkMwOIbGfL/icxdy+Be7L81vF0wNWGxcBWz39OPXeyXZd/y6WDKTDJSrP0bkKfc72JuAJrSuz1HANi+Wk7jkNDDACYQBPjgzifm0PrlX75vJ/FZkTulVQgy8RFtCGxQviLbM1IMJTCtrnfTAkYYw6rnqRHflnu0kApOeFGzJwMUNXiPjDXfkyb6NpLBZrYxuACAH0zWykFIFyEEEL3yva0OM+3pXYemUE1W25Tv0G+KH1vHweezwfY7LVhgbTSHjyHrTBes7xu7VT6MwFSg8CTqc0ygakp4GHGhG1knnT54p6MjmuhQetwmYmGJSCruGACLObZmTynJeTBnbLfsrlzLFkCAPzsrglCwdYUc0cNCtPznpPFEQQIIgPxPFdaGz1DTvLSABOBt7VxGlOK2mY8uop/efKD8U3o2viY7NRr0v2Z9mgtTWdpByb3VtrMZKvuV53JBLtzX04mLp7xxf6QAGyTG6IPGL2LdQOMfmAHsMeDABwOkPY3M6BnsXjmuTsHAwz5Yo+0cKz8z8npU+mbLTIGxur4JJuStiv15taaBDW/YgKt3phwNekDHUN5VSz7Rr1VQ+nUqcv3cncO1Mk9HoBV2i5OMB44pNPDtjoX6CzPHYJzLJ22hruYL0bOGKG4gnulWcFUu+Vqx/WLrTXa+YyVl8sWjiVUDgDb91urAo4PcGLw2UFxDr2QXzMWh9wdY5rMIAMoC4JC2eZG4ePJ5yVGf2qyoWbB0GGd9+BN7xtQQc8Ux+d5gpitJl+dvHn6XZraWBISBOZ4HRFITyPWnKG0hkP7ubRNtksAiGLhMQiCzQDmODUdc/2ypbOqlTr19JZ8Qa59SpK4wKmZgKCj1Sag6cHWTieLkQxAAG44JgsvftURm4EYQ3pIttbjLvF46BlUtXC7+Ro82HLAk1d17bhaKefy718+fSLLp/H63t8/CLTWyinyI1mdRh0ic7jl4ChOIzaTxjICVc+33Zs6JL4qFswOiQJPRvUk067UJpZuR58Eju7bBt82/Paf/xl/+e03fH1/x+P5gNe0A2JkB3N8gG2vS6bGQAFxm9Lz4rO0BZRwj9TKlXbjOtOG12VnkDGinhHcmAsFVlyqQFT7JcvBCQTawo5y+AMZ3bEKMZaV+/Rp+X4Z51ue94zvZJ+d9nPFRJZxWIAyJXmGkEor6WEYx4D2IwsCxXPy3RSRJkPYkH04uy+K2Ikzhljjcdpp+/4WPK9BS1gkI7S6txSPcnmL3jdQV7wPrOFb/8rrdwNP33Y97HEge31DVX0PTkFINxxjIEbH7Dtu9zteb+pBxqSQn0NtPEEhbLAqcvQDR+/cEMZx8VP05xliHxlSQZABL2cYc2KYEOpUmeq9w6DRgKVImJXOl+wbPnSE0XlbwCSsnEl4z0RGSYOBY7zNSNdEkGmTU8MAVpzpSOfS8UAG9gKtvFpKwCyasmmDHscH9ZU0ej77vmdubLBVxBFo2tyYga0kynugTMOffvgTPn9+QRGrp9aCWTYEClBugG3oETAUtHoH4BQQNiappdLxjT41ptZYERkfcGmnFC+omzJ3TAlVs8oN7YX9mBjRUZx6Glnd/1TvmCPwfD6AOXC/bTAEjv2JVhtq2fDTjz/DvWDfdwZ8lsHjwFbZQ1xuDQ7DrQmwKyZtEuCLbZgWaNuG1io+vd7QGvudyZIiS6P4XHuhONe9q2K6Tie/y3UAjRoZcWzVTMDDZwAKsOGM6WY4+jzgDrR2mfKkPUOtBeDZaXDbRtG9CgYKrGqwWmszK3y0OLUQXB0ywssIYaJPBoRkBhkQpH0uQeTsY8A8mXdJCJ9DoDL3K5CMtsDes/3qTCZjTjnUqSugM88KdijLi1AibGdgolwqQ6qVfAKqAC/HYAJZ+L/FapJ9yWCllgIbvjSdrPB7LnYIgOWUhui5U+Kh5gW1cA/kdJqjD+61ysk0x0ER89RhMtD20PZrAtw0BDbA6mLqpJAxRccDWCCXdGUsQJl7RklnO5qu+ZKcAOBkCkbv/HsYqiiY3fXcwUrP/nysxDC9jgX1xVwC1SMG19EKxuwKRBjQwKdwIz2XS/sHY5RLgoszJUv05rugXk6XYOTZzptgHwFAJeI4nWQ1W21/ZkVil7RVNjmOPOFMk44Hg0axlDztva29hss9rdcFbGfQk/qGupZMnudcgAHdRgYfZFFNPT8zAIWU/+OgD23tBndS+Efn7/rf7H0gxMrLlWWemLosBJfGAkzFD11ju2cbgNvSbcn1ZEv4FOjNJ8WmAyyGKxMlVawVcDUB2VjFEp2ZdAEWKIXgydTvr2ovlHmndgACPThttJso4iMLNGXtpVvbdK5ZWdu220pEmGsatq2h1W0x91Ijqo+ucxgwLyhV9i0C7UZx3d6/Uifj6AhQyNfEDrppUlLvmqBzmQRjNlHKBdDX/0LVzgSfCKJBZZc0djeuqTkejzf80z/9gj4Y6/zxT3/A6+sLqqYJVQ8YOsiWY4GIdsDhNihQqvjEswIbQDNqAw4jaOVDbIDI5JF72QEVpNj2EGbwgwLHMTq8NdTtJsCEABrrPJ3gUq1r7+fZT0Cn6DNiEESb/dB+NtldToAj0MZ9PfpUYdERrTK5Ojr66Bhzyu6fwPbixbnA8aG1ln2Kxb5ju+UZI7JdPUIM3zBYr6igv0ABrBi8MqmLQX3T4gVbu+HT62c8n088njsCFMEtqPJxSrAHz2JHx4iuIgJfDklU7Ds8Jm7Zs2BBCNMcZYSq7rr2C8k0p6daEV9U4nMFbBvb2oaPj4mPY+Kl3fDl5RO2VuDFsA/tWfOLvQpED8Q+GTwZbayJ7Rtui1Xej0NcRE3AEiP9BDlPGzaGAEvpzR37jhQgJwKTPgmMcxHYD+rylEIQrli5SHEQGOsDq0DlXgjkVUMtwCxZpH6DZWuSGayWxQJKN8rwLlAs1p6KSRZbKWz3Wvrbsu+lVKSua1HrLj1b4Bg7qGVFwKvVhuPY8Tg+lOQCt41Mnz7Iyng+dw5BMACNDLlayWzs40l71c62zfQRtVZs2w3RD/QgYyUQa+CEOfWpjiGwr1XcmlhzmobX6gZqx40lpm6KeWtxauyqoEl7W8XKJBjfuzTaIuDm2KzQToyBViuqlwU6QD7V2l27h4yS5/5E3SjtUbYNBlsAGYFCp3Zg7Ah0HPuDeUqtMCt4eblhzMDRJ6ZkK+Ykw6c2MoAC1OvBDJRwAAX78WRLrtrU7/cbYlI/MePI7YcfYD/9rBjJsM8D4UC9EeTvs/PnSl129PV2YyuizllYSJuJ691qw/Gkxl4tm+IHvr+ZYcyOY+5oeV77k+34Ri3fz59fFuA2BqdpNsXqY1D+guVLDQUZA+MA20ndOcwCQLihz4H9OLUFowOla2xLBPaPHW6GW7kjoOZAV/y+NdT7DfVWAZ/4f/9//kc8Hw/89PkzEkB67DuOfuD2+oLqjq+/vWPMiVIqzCoaGioKZpkLR5iDheTiLE3VcoklC/3QYRPTkp1O38G8L0Qq0fOOqSmNQErYxDiQRSxzFocWqJ7MYGe7pEliJYNQFskIAo2M1UEMgJpgytkV9GbpZahLomjyJFGmQ6wlZjelpo9W/J/2U7EeQG0m7s2KWjmk43kceqaMdaeCgFOHN2DZmiybn2Fvdu94ZAHNNPWX8dmIswg7gjGmlcIcERM2JwoGfcM1N/mvvH438DQiE/5sfQNvUgaHfj+TJP3s5GSvKj0FGkRb7KCJUwchMt2NyfA3ETQllWf+ktVQ6JBigTqA2DvgxsuEzsu5CZiEazQqn4K+hgJsPRRVbpBJQCaAOFlN+Zt+wSZWKhahqoI2mf6dwbgqV2emjbNUHSuJFj8eqw6Y1dvctHoGmeA5eFCjD1gYqlMgtrqrCmNKxoCJgqB8Gkz9rHFezPlldvm+wJd1jUpkzJbWQuKvqxXrQhVn8A9IngzmBSMSMDBsreJ+3/DycsNto1H4/PkVZk5hPLB6QUR34FZ5b6yuGF5ujUBJpbPts7Mf1w2tVZRS0RpHcGfcYSsJzj+xnBQuO+T8j9x/Cabg8psG2Jn4aiXE0InVEuWmymf+DmIxYlLIGFn5hir1Cri1tZRk2No6mfxcn9M6iysINJlIgVfIvRm6j6z+8o6yKgW4UHw731t7IBOYy87Xn2SreMRKvtcRuvx+Ul5p022dnbOKlckyktODJZq3zscZsLMCet2+hhyL/S9NIgN3dQ+pSq2fTYYkus4yQa6S+1/XnyBWACdbM/xMOk8rob+H1rICMQRc8CwTDDh/K9ZiXZf+spbXf4/UfAuxSbKKaStRZsVUyYraGS13hRZtRlaH0h4PtTqywpjOm1u0XK4vFkb7/U7Ia+SO5zbiPZzcqb99Mld7e1Z0eJag9rdY9lnhA6o5hoIQ3QROCBQnQ+aMIWB59i9LeaVhA7jsnfRJf7uXYtn486nrN0J7PE5fFmK0maWoPfUCLUgzT1LMqiTn45G9MCdgTkHgKYefFolnDwkSxGAglczErOslC2mdQdnxwLqXBbBcnmUKI4cl0/Aaasy1Fn75yFzra9fbes76oLmsqJ6mnzyyrPqmvTE92wQfkn1qcfFUaT4GzysZIwab4BQwTOoXmpK1MTVxt8Mm39ON4rScDpaRF/3tda+f9v+839xS34mMr6cqe2A8Q3MGns8DxzHRe+DHo5Np7XmG5/pdfL81CbzLt+Qzgtb6XPecDnVhglyeB0wFFLURhVGLg6CcoxowpVmScR0ruPJJIeHxOFfhtOc8CTlZOJkD1N8Q2K99mZN/s20EZkjK4/eafloNE5MxH3aa2bXVT3/FlnWtqXRqzFx6QpHOl9fuzgS8VdRo6/zNSUCsGFuWmZgQQFPfM22r/IoidYSKOudcJT6LULIS6/yej5asGiXz+uKGOhnG61maflZ2xkEQJQVhCao4QRT9bLLzr35yse6Xn1bsGedUq/StU7ojrsLxipOHQEOcz+vkUWe0td4ZZ9tH3hZ9FO3eOdjFDZc4Ivcdr59gL0AgNkFZan5NFXRia8rrFeOLRZC3ed2v+fnE2k3tnmcewG0mwewM+/TkuDxkjrmup8gvudjybEMjQ7DwYJ4seggw1RTR63PxnAApwxuYgCaAmQ+ZibTlcdpaxWCUPsg2eNpcX7YNCHMBRBf/lb5OsQk1eFh0DhVh1p41yoSV9A3y8cWTBar4SjpGEzpTMbEGYNhpS0N7nrXwYFiVwEEEIAaXF2ArN8WD0mFVvBKnh2DccilAmSQE8hy4GVrl0J0xxmIU1bpROwqMH3w6gaeNn3nMglYKbrVhakL16+2FwOoRKx7Jlsdt27BtGxDUM6tiPPHn5NdmAIO5SikGymae57NKPiYuRbWifHhk3IBkk7O1eEZcRLvJ6umDbfHpW/N05Bm1CT4A538T/JnLx+cgk9u94XZvKjqxKFREFHSfgGlwjoHdKTPzYNrhsJDPNZWVxUJLO5hnDRk/42xzyw2oa2YTJ4sRWfIxu9iw0D0oBlv2Nl2BkjG2rabNtfUhJ2s9Pf95HbFs2NXfX1i8+UGeeWas988ztMIjOR6yTeeKHEIMPneCRK0WjH6gZxFV+4ehvq5PA454HkIrdFos6JzkUvpapzwfihZnxjRaq3yH5TeugfT//9fvb7WrB9fMAcOERyedzhzVp5JpHrqBJ6vjbcIbULaC4+CI4FpusFJARidvNgMaU8WqtAoE8P78YOU2XBUkx9EnqyEaD1mNgnc1kr459aACHBfYiTQiJ0k4SskbmedB10Zvzgk6ufyk7ZIFkG2ENtRr2ifKBIXX1RqXYqkZZPEwuYA76vG49JQSbDvkAO+1wA24V23hOEgFHYeciwG+wbyg3V5gYwDvH4CaYti+dyD6A9MCj7df8Xo3/PHHH3GMHV/ff8MMTqzzjS1f7XZjAJW6BYDYN2rrG+wjToF4mKOUDdnFwN7/yzhWZKJkSOE9NwVy/gJ3x348+f3i8BKwl4qXO/DlS+DTp/8W//v/7j/geB5LCyEmMHbXanXURtbQfduoNfE4gBloEp+st4Ixd+z9gRkFEWS5cES42j/jwBwTx36IMszDmZ6OgCmFWj1HV8XZbtAnj21qjaXBNsZe6B0oJcSyU5Cm4LYfx3eBemobGFwti44ctc7FrAyALoEEwOQ7gxCUnJIlgDIDJZf0fdK1ZTHYmkAB3ZmcXwBWCNJReww032qZZdAiVNzYlknjbQoSGSwNY4DAaU7SPwAugM5Zhfai0MAvlNFIJiX3VIGprVWOVAD1mAOR0yYXMKszLS2NY2d1HtNwjATgkjtVc0EJ/jCcJCwqAzueuV+AaKzAUnBeATwkFB6h8bAFxRsAjUhGlwtM4VnI7JMVeRxPJtkWuFlVcKjPHhT/tAwOjZTvfvSVfzQJmHIT0uHNDmnGONxI306bFDqzHlJ1iYrU0AsLjNgZroQcqNHRLUAq2POf2zDPePGqaWFQ8KzKjZ7/6ExYO6YCagWxYYvlWtyRfT8xArOfe8clVlzN1KOvqszkYYs5UIOVTNpaIPWvTLolx+irNaPp34AOCymsqd0v+yRD+2Toe1lwWIHZzLbIWBp0+QwYFFLTJQGZYC8dAimkzHZrzIl+DPQ+l75FthfsR1/g9nmGTsZIpE8yoG1k6VkQgCVDlUBXMuUy8NSn66zxPuc1XlL4s8CnYMBVnAl317SqUPs3JlsDAhPFCIQMbVJ+PttSqMFDnZxF37YzfAvkVMehJNJxzECXuLjDJAbMogMtDLC/P4HxwGrd0zMsXrR/O22hDbw9vuLoT2y3Ji2Lwj16HNj3Jx4fH/j8esPLfcOXL59wu234459+AhA4jne2KE1OUSJwJBuxMuh8zgSQZifg0arRHkzwOo32j108gX3f8f624+PHB1pteL3z7Pejw82wlYbAwJw7zCgU7pgoHrjfuO9TO487lQl4cdprdfroXxlr5VS8PvolfLa1P/vBISV2vKM0sqD2JzVOKLtAmxlIUWuVYPhYUXusthvuzQ64GEEGhAPdKPY9nT81jJqLt2SKBptFYI7bdurKRASOOcApvp1JvRvKlnqfPKhT+mZzAqh0p1lYsMFzP+YEPODlSV/mhho3BDa8v3+gHx2/Pd9gs+B1+4KnAe9z4tvR8e25k8FSoAlwgB0C0YKg04GO0hxe6ScNBozOuMRlq1Rhv4KYc+N1jiBQ2ZMhDKB2Qw2saBXpQwUujc4KeCkGBLsQxhTbyA4lpBJeRqBIb6w4/eIC+cRCcunNmRseT078K2uIxxATLsctcxOYMS6fNtcQCN/E8DBTC+ex9BJTy7T3nSwmuyEwcIQtwGnpq0B+OUB/3zuOg7/HmNWwGW3WY+wsRjs4XKZUZFFo2zbpCW30WIEziEtjqUTTEwSeTOqGy97jHExSywaEaaofT2HFhs+3tpJoHIEhIf5AoBknHo9BXb5NTEuYIaZAWbcVw3qtaF4RXrFPQwRj9K3VdRYT8CzB/eZzhTtAEEAxAPPoKKXi3m5kdoqhFhGLBZFg021rOI4D/bEjnGwoFpGdPhWyy5OWvMg+9MmuCS8SCvAbY+wqKRMVivvjQHw84KBGLUJMQwfCDQeMGk9bhYFM1ALA6yYQdKK2DbfbHaUeZP2mlIAHam344YfPaFtB2xytAaNvSzLifiMz7qcfvsi+O0oY6jwnEiZrrrSiM96XDyy3DQ7DfaNkweEaZOCK9/qBbBHMSapD+jlzit1cC4HjCsRgnnJzIPmyMQJDGlSMZZqe41hA7wRQiqZJ9ifPrQHhFWFFLZPqNgHQqvSM5oShUNIjCI7UG/fm3B/ok4MXyn3Dy8uGGjvqNPzjP/4d/vDzK/7P/6f/I/6n/9f/hP/b/+X/ih++vOLf//0fUH3D7eZsCTwmbuC0bTueBBNrxrjAmsCmc530i5nBSIyl39SPZHxnvMYJdftkvNpjwGeHx8Qme1AELEUU5hQ6FyvW0cMisNNgsyM0eCLBLxYLSKvVEV1xpnvatIR2sIpOORiDbc8ELxPIqVqDjLdyz6Aajjiwx4MkCzN0LI4KmWibU5eqP5emJYeOAEcCTzEUWTH/l8OVp6e6VVn4hQEa/mK5GnVDwDDjYHw2yUJtVXpWM1DiBKz/tdfvBp5C4AJ7uLEqHxS5TC0OBdgrQybbBMU1FS9HwmMZP/5nAh1CRBc+mGyNk87O8eTU5PHCJBRLR4obNpOabCHA9WFCmzsuF7D+lc6AVaYUqVN1CzgrgnMquSb44LrfTMJWVSSdKTLpEyAwk7Kvz/cMB5X8m/4WvNcE5Mx9XbGt/1crlLsOCenBpUjjxEi9JN0ZSMbDShiFWroOLhFWO5dk9XYu0PMMLvPnDGrlCjr1FbQwAeKvnA8hta1cVUEGFHz/rRUYNjrQqWBxQuO2CTyVaqiN1Ql3X+JrJRPNAoFaDWMQIOkCjOagtgwvZ17uTb9oQArzniud3logBexyAASkmGNqmlJqZiUbIKcPWu67EDK9nqIx+YGtamq2pPEjBUzZWWE6D5DOxwQDPQkOO05WAj8j1uflN7NdLwGErA8Z2MNu+VDWGlxiyvU/fP+V7325xrPaf67jIpXouvPM2OUnswq5uEKrSqL3sawAYJ3nKwMjtN/XSVcie+5drfFMm2Trv/NuHYUBVohkPL9fj1zHxb24lgBDZ9rmWtm0fWF53i/7L1dsmaczKV92Zj191S7WuYpLgKzK0Vork63OKV26Q410XbV2fftaw+FH6ve1H/IykoXAgCm0nvrdMU9GxblQwHUN9KFT1xN6ricb9G8M96Ipnj9HkE4tzFdDb+eH8/3mCk4uO2Q9K1vrjHWN2r3rWdDR670jLj+f675+Y/284Xr5/KAiv8DncOpYpU3IGm3S83l9aXPO9zF3AtuwBeqSYaXefz+vyOzU/FgrNfMZnjpbgRzPfvqvq77WeoLXW8//j795ZrklpUlzPSNsT8+zkyzQXAi5HgWQRRV6qdmgd4Jow08gK/pgsmgMzmda1Vowg9PxwggCP/d9DRFgsFelJ3Pg8Xjg7e0NvXe2CMyJ+33D6+dXtnFxZdjtr9W4Blvxt8ENoHiFGimpLZQgsBuD/pf7Hcdz4mmHpqrtwO1GttLlk0I2i3srLYNawdJ2Gdgup0tZVlpB/XdXnIUKS+Y5li2Mee6vCCB8UkA97VwC3RrNzSryyfA1kAEhfgnXR8AnlKi7G6GyALKS7doPCZJiyRzIJ6TPAkeiT+2PpjH2y+4l09Dlf8H99h2DW21xy6Yvxqwt/TBLmQZ9b0RW07PwZKsFDPNcUrmofGrnRUurKCenEgRzpI5YtoLGWjMs25j23ewsn5xo8WltkmlnIOvd1GWQovYUYx4rrmdgJpuVy5G+Wd0AfuEoZRqeMhFZcEThrpyK5QNkc/J6VNzMh2gqIqwzg8ve0H7IQSxxQtOXIOh6x7pfWy2IcmYEB44u4ImJZlTutDATeDTRXWzGLCLo9xGx7P7iWEcy92wVwVKPqQoQ4HlUU6ylrRPosPyrWGm51x1rP6wYIB2UnrcZ4F41XTp3l1hiThj47GAwttmaBiPlEpv47Tr6dmF2IQweeWL5zHPK13lWzomfJnDJL4V3yNYHtxX6lJ93WaB1HGK1jS9ml5j+udi2chaDWVGyr2FVM5YfgWXyHksTjhPOmIdsW8XtdpOwdgBGTSYWCvketUjgO1vKQVaau1qUAekHqsXLWPzKHLi49MS0p7N7Iu30GTcETpZiFmZV3KWRgGGqyDHFJDp3+2LT+aWjBiwWe5KahbxfNcvS12fDzMwghVtvafWkLbd0znGSEdKXcQB3Rz+A1l6w3Rr+4R//I/bHAy93+q79sQPF0bxh9idsBqURYPSBponKuOTHiLOhR/Fn2sqYpw2PtYdkZ5NB9V3MD6SnjFzjEI6Rv6dnlQXmXJB8/5XHad+epNpYIWn6L1PQFTKk57+poB1AFjY9yopTPIekxflcZqgrDKmFxQt2iAg8J/cbyGZtra37HgNYM8lzkYAV29EEcE1Knp30gTp72c0BsPAPZK+SL1Z4kf85Y5Lf9/r9rXbHLipiWQuEYEWn974cjTtQWkOExkNvDbg3asSMqSosVJWns+jR0WNftpcVRHATmSoK2QPpgWhA2wpKqdgHK/Q8aZDhJzo/oWrBOLT4hCen5UICS+Fe6PPb4x0xDff2GbVU3NoN7hNmA2O8Y44n9vkEYhA1tYKtbuyj7sd6yK0WbNUFwgT6LpaLsxKSVVvSuoHpgR6HJs0AmmELd+qvbBt1Lh7PjlD1ysRCcfV8hoCcl0+vaK3i5dMnlFbx119/Y3UGAITizzERcydLRtUMs4JZzn7ZId0hCVORQhuB4zgY4JW61rz3HTEDry/cH4+HkPRWMXqOzDwQBvT+JPBUGuYc+Ph4h5lGVQcrVLeXO8wKWtEIUAF+ffa0kDiOHXMO3D/R+MZkdePx8YFaCm6tYY+BYwxYZEsKRXuTbrzEP41AlVnBU2KcMzSFbmagnoCoNro5rIhxMhnwjAEezEJR14igQ0cghVZT6BOARC8NMwiKtMqR8r33ZSzpUNnLzikP+m05vBEHx3vOA1ZF21b1M0fRc7OncbDltKhDRYN+9Cey9Szvs4AqmBNYQA4fuq9ShOmvUIKZzECopWXpPmTGAKAaq4vJaNHR5EQKBWnZKhBDFYx+sArayBbgkeaHh7RXRgRSLHBlDvpsKxonnpPDLusit4I5oHNFR39v93y8SMYiBfhdSUNgqxt/f7G5jLIXEUAZyLZivlHouRhgE159sZySep5ARAa4EVN6b77a4zzyfWLtqQz2qheOjM+9lYyzFHkXkE/88+JkEZjq3TdRc11imAAWlZZi8dwzUxpZ5ieLa072xbsZWiEQ7autj9PiMlGLmOhy0jlpiO10AU5uUGBRUjzWyGApk9XTSnvax2CrInAGJbJ3bJfACgBM758tbQlwroXIhJRbGiJyICZBEK/X4NF0fkUNN77HnEqWzZDTxFrd4MVRvK+qWDKeEBnsUjsjRSNdQtjI/wttAAEAAElEQVTQ1LdkslEHYkoIs697WElNIRh40s1PZiJt0tmyMDNwgPbH4BRaL1XPLGcoZWSxwrqznSnNAoDFrJTRGBx3KEawg6ESg+psYwtnWWFgT+ODvQ9Od6obaqls557A8eRk1xOIJcPRpOdhsudwnuXeDzye70iGR+ouPp+cHPh4cNx6PzreP97x9euv2G4FtRXcbwUv9w1WG15fbnjZGkVeS2VBZw44XJVaQeQ6VxkIR1C7oRSOmkcMHIf0eErD55cb/uE//Ds0/wvmMdCfD7zNgZ8+/wnVOYF0BYViZs5pq5srQE1FtkjPZZ+zxUSN7ejo/KecnjEngQidJ8qpULkBo2tPVu2ziRYbajS2nxWHBWOF5wcZWbVUtFLRijRkAGxiRLgqryOAiUGNj1oovaA4I+USSmEMt5kYHkH9IseErTnbsewLc93bGrM9C8/3SmZXcHwG4oNTPDCGbPklkQMCYRxJT9vWUFpBEWO2967vU3zYvZ42aEAxnBJYxcojoOmqgJNKIF/gaKbx5ZN2ZwI4NMVPJlzgK/cz/bstiYdzgE/atplWkB0EZUNtRrvlO/3MYOw0cuoTgJnAeJFDzyk8YoWWBR4Fmk20ClTpe3XtZyuFrAhNQMzkKRAagkJNvsyWYzEek9nKBM43ExDZsd4hQW0NsjGdhyUfpPq0oC92Ssh27wf3PtwxfMLKzD4gYBa4T+y7QJbg1MbWUudxYLtVnl+xgZ6zw436Tf3oeIxjTQPzcuOZK+uyuK/1J889bVAhAobUgZ1iF0fEOfXVkuXH36+F+lB12wiwjIExaXOrnuEqeluWuwKzd7GTucf73Jef9OlAN6A7bJzXl/BncXZoHD2Y97gB6hIppVDLyjcV1buKGI4eZJo/OvdzKw0ewDi0N2YXK2miCji+3e7sEumhOFDM/ABKu6FW2r6JwOw7DIVSAA54KehjoH+849h3REx8ermjtYqffvyM19dX/OlPf8DH4w1vb79hqzzDt9sN7o7+3PV8GNdnOICIS2urWMdgUSNGMLeY0gRzXgOCXRgBTe9MTQcxod3ppzFPKNw1lZHr0jH6oWem6dSK31utKz8dk+vHeTiDzFgTo1m2g4L1HdGp/tRao30K2t4xA9UNzSr1mUcHSlu5/ozgZN0CtK2hbDoPz3fsjwnziVor/of/4f+An3/4Af/P//v/A7/+8lf803/+M/7whz/gy5cvOMR4+nR7BUDW1rSC7hN77zh6jknCyksThOnSlKWtcgBF6wlgMsbzUlDCyLzJOMWZc81k/ohsUC6AUSYDjKUM8AJTG2OXRl8xA0pOf2UMa2mfJ5TTaaDJ0Fc5iSdJPqCHDhSnhm8B45VS2NI9RseMgR6HzoeaDi35fFiffzx2bK2h+obt9or77ZNswcTH8wmbE0dQwsHEyluFVDBvd3NY3QSY5ZQlrM9egd2gvW1WiTMMrLg+STUzA8Df8fr9rXZqo1jjcAVguDuzskkAyYJ9seyY2GCt8QC4scWMq8iK4Zw8tMhx1FlPsAVEMAjnHus5ccH4oIf0VwxQbGGIyTY77icl37nDhKSvFptIw5pVJ5ND4shH9ngN+OTBAsCpTpbk5kKjV5zGI9KBKNBUHzGtRax1FOSxnE32L6cXSMTXS1kIP3WJDJvT+LRMBgorpretoe+kydbWsN02vH76jPvLjT3SRmE7OrWcAFPRSkMpbX1ulrzYHsgkMo3UlDAmpz0wCUbSs4tE49NSq5KVVGJT+TVA0fhEhGFEaoFkR9EwsP1raKJP9v0mKs5nR4OpIMsCpjGXpfCwD4lcewXmPjBisNLN72qPndwdS1rx9GXTLikWUiDajQynsCuDInk5Z6rmYLSYkwQyKMqRvcqoWTmZl+Re73i6I73nZAi2jJk+170KC7Olz5Q983kGzHK8KStbMUXHnEoKAsgaaiY3pj3Oc5JtM1ojBS/FTuZJKuokInXqtIi1ASYSuc0WILbuFwQYM8fSyic7KETFjTMUXcFYZCsogIDYlelo8r3zMYWAiIuuQNo00UD0PVUOTcm0EnQCMeWsWMlu5ZqbwI7irObwXF1YNDoe5o7aNuQuYkUp9yadp0JGnJORaKvC/gZQXMADV5JC6bSlgyg+td4Ca7Im4sKKMDm1ldfNE6QJJjF89lg77+RbnOcxEwIvlbuJCO9pF4B17k33Gjb0FkoYkFUe2uxV0TD1u2Oia+rJVItsmFhXZuuaBrCe2TSDKUniE5M2ST572em8P4DBAqvzAn1wnnIgVP1LVtBc6xgZmJgzsdae50QlMV0DWODE30xi4lpp3yaLop57J4HcTKxN3x9qAS+Lsn21XvI5a8PgfIIJSMHzsK0gV1eJ1C1IofY8WddPWM9eSUCkVoqKTSFHnVPMFlPYDCUY9I2RFf0CzIFxTHRI/L9zzxPUy+ZB2R7tEZ61gZj7Yp6M2dFVcIA5jqTWTwfbsBv6GHh7vOEYN6D9wILFMfBx7HjbB3759oEBx8vLK8IMe89Pr0hB75xYFzgZz+kLTfbB5FtblS11FvM+3QvbO8IVqpgAae01BGayYBV30A6bAuAJn4ECMR0W8CTfIntjRnAAwQQkn1/xyndUS8yIUDCvOA8gUGQm8LSAUwQJDbA9rTBAT/2ZCESpixUUmBhdlVzLRtYEELVPkKPYDaXSRpcZQHW2/Sxwn+erSAh/RsCGSYSVK5YT71KiI0FX7qGscPMzk/HdDxaJzP+/lP1Nl2RJkh2IXRFVfWbuEZlZ1QV0A1jMkLPAHO555hzO//8HXPCQCwIgvgfdXZWZEe5mTz+Ei3tFn2XhEJ20bq+IDHc3e++pqnxcuXLFVczhTvMQSBB8VhMhHZaJGANIO6BzMSMDcz7Xm1UOaElfMDOe4PONYAvzSvsB2bWMAjL2cGmhIMEn3/sOe6+sHRNv8KEwzpyRE43F5k3QOfgZYYaZdn/bQXFqxDzzFzApM/OVDCAkeKmiU/ruFyuRQtRpL0yJXjI9Qnsirx1wwNUmrviVr9xBef/Aq7YRgf/2YmsiNdAFPMqm9SftsA+YUbQXi3H/BDlLjJF9W7zN2A5Bu1b1JeYackohtsdYSNJuFgdNcgXYbZYZY1/mW0XSZEap+AQEej8ptq+YyUpy0iCGm+9ibnaGWNhOcq9QvexrLJXnLsEvxptAeMVaE+c4ac9UyHMLzMVV25NA59rdIbZoR8IyF2MMOOeJBINpx+o+DwQS/EXjjoUw5PmdBm8cM39/u8Pdr66OtdRqSRapu+HHr1+3fmwtzgmgcxKoFntnzkEyRBZCNR2ZgLRtAObycgI8F2CTn9mOCiU6ii25txEgkANDrW37hexUuSax6hlJzNpLRRPbvnjBdvSy72RfMnby6pRFsaDws7FgZsbPnH1irgQMSciAZSwLhF+t+Kn1tVnWRfIfSzF4MXhraPcD0Z8cnjDIer3XG758/RH/+n/9v+Df/7v/gF9//sSKit4NsSosAnPwukq5abdOuK3tR2lz+Eyyg6gCKsCwRc5moEIkkm0NlE+mrrJhy+TEPoi/JRFY2k0LnSuH1bJjeMD4XEtOaCfICqeCWfYgzcVBLQU55TJUYMuCqyEhYMZoshcqEBfFySiFIFjIhy2ubym+rV0mMpx+qNY73dE0xzKgB4SDeAZeSG5k5lDZSroNpoxAKFniXsniNe0AQWtw0ARoj5FmEXY953/i9buBp1obIgL95FSS6g5vB6xWGq45cZ6fcBju7Q2lOqeyVKDbQqu+E3EsS2Y3AwinWNoCg5KkXLdaOFEB1Haa45RL1kFe6bR8Jz6J/McS7dScUXt6Yth126YNaBN5xuzghs+Rj12G1j1QijaAVTnKRgPglQhg5IEqbHdTMLKWsfoKVvOu5GjnYIAYSQtCXt1RW6O4nGMniKUyiK9Y/McK3I6C+73hgYneA+12w+3tjh//8EfUo24KaGsNffYtaOel4Xbc4V5F3QsEpvSkHIiFmBPldoPJuAOB1q4xr3MEYhDsMjNORlvcjLGoM5AGlrcQONTj/xwd5obb7Q5SQCcBv7nIZpoLlREWihLgOQNQz/qcHDE51oDZQnM6+tIcMVSFqwarhnVO9NUpOB4mYVkFJMvIapJR8uUQPUwBf0jwkUmTG33jRXG2a00DrLTpMCdDKbcaQT/bwYBBTCao9UIAxTan2rdLOhRZtTUzHKVup11KQa2OFWOLtgrS1b47lOhiMy04ZnRI8wywBJnUFkt2iu+A7xU44DUH4OtlO6uiE9SMSttd/DJwZMgE1rANPgoDBgxMJu2qWBgiyUVgJ2NIqPUK4qFk7EqBBQ6/tI9kVGwWQFUiNq9gmAGIWEDrutfiif5fOmZuZC9AO3pOtu2sTIZkJ1I8fyaFVxVjhKqTXqSnJa0cjbFOkXEvFO1dsbbT26FvBoa63gxLzYzTTxYfGIMT2R4ve49vvOx6YqAizCXLuDdgJGuNa0g7blqfRfe7IKHe3I/Jt8j7zg9T0CptHT7kzqTUgM3CSXftnLBpmmQ6sTAw0cGpJBUCqFQpzGAxAMwlnzADVjNgv64nz5Lbvh0ebJ4q0sHDLrFU7cnrPGDbtrUcV5uZWtdYgt2B0eP8xIqrJYMV8sqR90tTvcYUwKOEbg75Dt9rtdceL/tb/1YEZGVb5V+/1gvgFLakeZWprAoqgV3EUQyiRFGtyshEI9PiPMBgwmBlB4ErAqvznBLY5Nn0DG4VF7FNydCniYFbgXli9MkkwKmBFCEdRhkNUs0NUXi/Paj3NeaDwWTerwJrh6N3kNmIBqBi4gec48TP357weqDcfsCzf8PZP/Hx8Q3FF/75n79hWMHf/t3fYa6F/vxEc+qsvGaXCdJmUE+8NDDXibU6WChw3A5cIJoX3I+Gox74ww8/4fF4YM6BWoCMT5BgSRStE4Pwoqqwu8B+aO1gtIECQWOFAmrAaxGzcrAFshhqayx0iT3xODvB88azZ+UaJFBLQa0VzW9AGLpxAlnqCC6Nu44IrFaRAcxaQB8bsmBSHdhASoY0h1rDvAbBw0EQLsyQ+puRbIjSFBeQoTTWYnKEwPnsSMYTq8plg05zpg6HkspSEMswnhBrRcF9lq9joUr7sVnFwoLPAPpEnB24KWZSEWesuUfdt0L2YJ9ifg+yWmtrqp8720HnwnK2gyWrJyJHe9PCZ+siJz7l717tg3yyqdkoTR03eAWsBmZ0+YJDftYwV+qtkTmyzJmw5JEO6vA4A/YNRHEJl2IkAfkLmNEZh9iLr+JNKLaeyNJZdbaJ7LLM1oO82sR3AWQxoZuvvmSndSoqC/S+RIOp2VpLTsIlS3FMMbI92BGBK3a/3+/AdICKQgAWChqiFPhR91pYKLa3KmYZdQ5ReA5Ggq8bItdeNxalIR0+A3W/uC/HlRSoQOHqjED6TS84e8fj+SmmoKFJE2ptn0Zh9iKx7KU8K7BQjkNFNvkhPzip9zxRbzd4qXg8Hpt1T7C5oa8TH+eUlIfj1gpKMTw+n1gr0G2oM3PtfeFgASusqKDPZzPH5/ayrRxo5VD+z/gz4GLTcc3g4P0tanbej4rSCt5uNywAj+epXGDikH36cn/D7Tjwx59+4iRrdKw18f3bN9TqmljKffd8fJDpaznRNRTLFVhhjJ4Fo/QjrpzJZuBoBbe3O84+MEbqpgFekpX2YOdKa1sz1pQbvLa2b2HzwuEGzbn/ZzLJaTaZRgPoayjfLMxbVgCVMUefC+4NR3tnoW6OfaZICKAtN7XTegQKgrYnATQzINchQNCiAOXthtv7O+LhQD9xnpxYfvv6hh9/+hv8X/+3/x2t/d/xb//Nf8FaBx4PIGYDlqPPJ9wN7+/vQHRgfsKMWoVyCwCYR67nCWqXNU5Q94rRB+aYBOV8y8lzGptdLZAMZQzZsMbCoiJdy8+R3Ulw1xx+iO0mn1aCk1Vb44RGnkeCVSXjqEkmUoGDusJABe07cCEPouVx4qGJVe6eiDTjtwWMeLIEGwvVQp0xL3mhB6xWhDs6NJAN1LCbcDzjsulAFtVD5yl2rHqB+/tJ8Mz7nnEMgJMrzYBbLXuNsmOBRYwrPv09r98NPK148jDqgYcbZjwparW4sOY0EHM9YMvhq2CMwLnANhc5SqLlPBwJppoDsy/MPLQBjE70H1YQcwHRScNOoCSgSloCElC/MtijnJXNXHXbqdAGmtj2MXfrSkRXAB+AMYiGfr0gDaMM0xY2hnrlB7xw/OWMiTkI0qAAx50AWaucYOCe7W6phaLRvqC7K8XYqueiWYeCjaOy+iYEes2J4hMWHUejIfHCB+GVlGFXIBcLcBRUM6zFgKWfEsFWUDYX4JVJaq0yzLtSSGZBglQmUMQ03WUJaEKEgFu1giCAkTpVciwBnKcACjPRvgerqaUBlSNYxyD9GNV2FYUj6BkItVL2IQqJXxYzTBCQKuABDyVKU/gBK0229wzprmSaVQOn4YnV4hnsKQGFEqVkZwQkDLrRXu3F7BPf+0ygQ1y6CmZLLUbJilJnrgvxj8CeIJWfJufBYpKpcrbwfIKgQSxArVLmmXwUrAXMLo/4UlHkOE8lmZHMiTTEZVd8XhrGAAWa3BP5jxK0ZL8aM3WHWg35f+ulhSkiq/oQOJfrmElt7jG9hMCnoDB7r8sF7CEDbwIGa7H1K/SsCLQJyAggq6uIde0HGeUE2sbavCs+TwFoc17VImwLASRQCXCwQGy7cgEd+zMAXacE3KWLljcTU5UvI9g8MTVsId/zWkNPFsNS4uSgNpWp/Q2Bc7JFCWNxqk5WUS3D/riuI7JabRKQXhKd9X3ui0CGIhAWpjWMiy+XyXje+mZN7TUGsykriqiuAB0GUA3ACaYBoJDwhIkdNTS5FCtU+VkIkz0KF0jC40T2x0QyPjN8y4Bq9y7lPtBSpE6DO1MIatRxbZ0Ele2PzCXpzEOMDa5xN/M5qbIWAEYsVlsnEDMyfUKpTDzmK905zwQYhKfPMsufnQJ7HFhZ3+Jr196lt5LnawkIZ2ulgopkeMk3meyUgaAv38dFAEgwb+0/ohQCbubwFVhOsH9E8EGVS7tgt+fyAcDR4QJUjuqI+4HPZ0d/Pil8G4YzXp8J04AlDZC5KJo8c+z2OjHnwHk+cTsabkfDmvSFZFBXHDcOIkANLNMgheI4/MD97U84Dscf//TP8OMPXwFvfJpl6Rlti7h9Q+5x7ovQc1PbulgpZPReTLulAK7dHIGKOQxzkm7vJu2GyLMn+2ETyYTJltxMRLmTYgfYawVWZ/V05qQ1lsQZODrUGgD4YjUZbqjHwZimVsUrASzH6sD0LG20FwB2IQdaAKCw8bJ93twaYwgLgj3FL6A/QZugDg8GA97z7PvslNK43iPBB4nvLzGpgu+9EBhn6mgaY6Lwyx6nYTB5JlJG4YdYMAiM2THXUJGB9jMicI6Ox/OJsw/6DW96xsBu79Y5w+qYWKgIAk5z7qEps4i1F5Mi5GsqKCV4QmkDFez2ukKt0gGzQdAVHGaxdA+lOCIG5nzCVASF0dsZ2PoJMUbDbLO1YIRvcjJ0sg3mnFgAiuIX079tQAmMM/aYcZgYM7zeLJjZCtm2yucktg/JUsmyKvIhAs6Dwa/tyv3aLIPdh5iHL+OsOcQAdjxjwEHN1hULPQQ8rcnkL2wXIVxtw70/MYaJXabJg88nbdLbnQAICsILMMjEcXf6GA/lArRtfKxl+7xMdhghZKzAPWUICpMrZrSqmMT5HM8xOdio8VATiJRPkU1PBi7BjoUzBvLVV7Bw8Hlum8EPImjbe0cVe2cM+UkBzglEnWOx3XOxM6RGwbMvMT5klRX/GNj65xYbDF6LNm3Mk8+/srMi5kkWiBcWkFz3b6aKPs+UrQJX4RkLyDHzYzxhXvDl/Ya3tze8v73h7TjQakFtC27njq+KEqq5xm71Pm537vWR+q6Kq8wo6p6F5sittnDGYptyFZtznvTtxwHPjgOZBCsGk+7uzgWQjC7a4FKbWlNVMJwLQNkxBixjRW1/XNe01gJKwNwwxLihfx/oneLi9VBOnHlFxmWuwUDguvZFncFSq2J2/toQ4wmBDVbX2lC84sQTsQLPzxMIw9/93b/C//Q//YJ//a//V/yX//xf8ee//0fcbzeUcijpD3yeC8sM4Q3LJibmtm1ps6wyLhwrQVCesaIcKOQPWVwhm7OYOg0ssBxYG8QGfC7GB4kzrAt8SRBbqhW872ABkfADmdfJzmJOyLUgVKoJpFD8ushaRXazmINc0InBIBe1NTKJVf0MV2F9EhTnIu8NQHuqdVuoiGDRMxRn0w4bVn3jZw/twuCz417KwjJj3in7u5RUxVwqnKuwGcCKAQMwjWdPNBHl7CJYKGb/Pa/fr/G0njwmLwniWq9JJJATtdY6MZfBV8FUIFENTPigqrSqHJ7Du4oBZ1CrRX3ZRNypzk+jMeDeUBsf1orrs6d6oyxIyS5WRJsMgXYKVFXadjOUwsNtMbYIZMQJIIWqnX24YQqeuHnGVOAS62L7BpNtjgoFeh+c4mdMBNtBAKS1omStYA4mHL7IJliWqTDF5Jpzo7hDThu4lUslI9bCsgnzBcNALQZrNNwwaqBQWyJ71XN8quO5CuZyjMEtWNWeQX0WPqviVRv1glgyWUnD71Z2JYJrxgpRUkgXdIjWAow0xfm6vkHghBXLgeOgnodVBpPPR8eCEjxGIsgxzmzRFysHoWRPYIWxuseKpl+J7lICmCLRGfMCG9yrBrUH0ED6PvKRRTv9nhq5cjqifs4yHBOgkkH4UkK/dmoApV+2W5xydLa5+nuT+mvYz1/wPO/HGPrT+SqaNmgPQLwNPaNJgJbCiLZbL9ZL4L9CXkYBbLYCeIIQG6T6rRggr47AU1Y/PS69qBR85a9cIp0pbMeEzIB4eV/LOq7WJwE38D0ECyCnfSia0rMWUynWZs+soNbXrkFkO21kEmlXYqevGQykTYGsukv1MVdVdr+C68zJGQKlI642usz/AT1v9nTv0eSIbaNiLFVh2aZBrbShPaEzqrZXr0rglmyQsXIeBuzx5yEB5jkR7milZgivnStPLEeVYORK4Om1Cg2y3ujNDKkVxO/F1tC7aFXZJpSgLfbzwQYOba9jJoNutHfJtgynKC6ZMmRtmILwtSbPQxhSjniDL0pylnRacvoHz9bFSCOamQulNoAEjxGq6CcInj+eAFGuv5h7YWyd0jfyWkwFEB47Bs5rADEDtWiyobMyh369b16i+bUfLa/Vck+SgxZqR872trWPxkU7D50RZOt1AvhIWyOgOc+Eic2CgHuTzVPQs8iQVXgHgvZMGsy4X/cUuzxvr+cvEngaCuqokWho+Pj4xPPxwAzaMU7zY+IaYZrO7GS4CXha1jFXx6N/w9lPfH5+4P3thi/vd5gs+vPzBKzgxz8ctCE1T8BUAcnx9csXvN0bfvzxD3h/vwPa81YboIlJ2wRYsl8vRs/2nukrci9Il8u9iH064U42RQTtzHx0BcZXez6dbtp5FwCbdlMgKi723dUiTFZQIDYwNOWnM1gnrp+gh9gQYkKVwuRgTQbSazH5IPudguNkQuY4c8j/cB9SuBhwq1jJaFWQnI1bCY/yfBlssvh4PjVdzMhsMwu1Xb749IB84ZXQ588AELh1sbZ2+0EawACLTDW29lFfT4zR0azC3cgWX4FYwHl2AaG8J4hVdq2wvPwcAmwYa665BMQAc8meri7AMPA6SQj2V4Ne8lwG1GrIfzRvPONiz7C4x8lRBSo66vkmUET2hJg0r+zTPKJC0pKNyxYNgpJYsdt8Lzfs8iC5B3Pv4WJXh1hqu70jWT2R5hbJ7AzFZmybvxI8Q7KjdN5envi+bsxt6wCx8Rbjrr6oczT2ND/fbGbGpYHec2MsFFDbigU/JsNeKsIb/U+fTL6rkyiivOAaYJQJrT4uW0WhAq7un5OqDEdte7GrhueM1EOcBGDhYjDitXh4AU/5mos6uwlGjUkb0OfQ48tEdux2KZ9ZlOHTPgoZU5/P56UlFXzWtZLteU62iTKvAtu99KcLKEhiOocccdgDHGgWYugHUDXcJyUMRLzJGDqwYNaAoL3B4jnIovVRHG9vB75+fcPXL19wqwXVjbmZXA0sBMyyK8DF+G1NXRh4/nfPEQax7WnL5vb90nWsjmWBMQdavaGUetkVAAjG3PxiDLI06ZUsCcXYpQLBBq6l4nrGNmkGLsFnbN/MYiFzCAeu4qRBXTtPSqrUAzF1FtUNsPR5tbbNZIyglq4FQa9sEZ7KDaz4jq9boX5zDE5QPJ8dR73hb/70J/yLf/mv8D//n/7P+Ms//oLv3z9xHHfGN8ZhHo/nQ2tcdzyQ+ytZ/6Y8cmoKdsnCqo5o6JmsPMCWurSBaUttg0C4iqwipCTGgMDeA3uEhf490v5a4VmdIaKIgaSoy4ckCxXKL66WcyiOpk9cG0RT6z+oFU0meF6e8I60h9lir3M5VUwPxQVrOWOgUDu8O6Lcaf/6la9dNtR2DAZLEgYIlAtQSd+atmiBoB6JEZRpmTHQo6OGq+XxJQ/6J16/n/E0OfL01m6IYDtHVvaqqGI5zWx8fgDN0dBQjoZbuaEWVhBmf2IG2XvuwFG4qGtNtINCtPMUNVQtQLUQCb7fqpBWjoS1MPbXh+F2UOB3hdqEHKJTT+kUgNXQlW0fxokGdQCxcDQe3CWQxhVscxw8dRJaoVGZ84bAYhUNAdjEioI52c7WjoY+eLhardxwM4M0V0VgolWndsFUH7aArB/asY1zzEWGgoT3MmByrzTInrRMCt0tTLy939HuDYGTaKZDm9fgxtaOZY3sp0IhP7dGgMcmEGqh0+keaiXKanspHJc6Blvc2HpUUQzAajTqMWFueHu7YYyB3jvgRTwQJiVv9zcZxo4cswyorUmYghcFaaFWKl/SFVpZGMIp0cS1WCmZtWPZCVQKnGMajlKAZjT6C4CEdGO+MIjApJbB/mY/wpEBrlggRofHBMwAd7W5BWJckSwnEgZGZzKUzZSGudswYAMLQz3whKMCSqo1gjgniqS0WHVek8kItsKAvB51JyBstdM5MiYSXoCGws8upmsKuKi5nMTC4ITtUsdOIMYgfT4wQT0PTQKB7G8my2aoaLLGsTGMDIoTrCklBFbLpy6l5iEGIBKsUgALOkxkorXBj7qDZtp9ioiSXUfx0BeMASy0Z4WDY9SXWhNyj6expcM3pJZTtg2eJ4O0KjH6nRsEA8pIWrQZ21QcErYnfRsgWyhiCajFDjwS7kAEimvyk7lsFitMFQIdIaA3wE0BArRjLpxzYhUCD4MeTPuNTpaUfVGulwJlALXo2YoSD+lcrAUBlay6Za98suKUSV0OyxwpPpifnUFCav9MBVEF1E6ZKwNiZNs9jkJacl9rPwN217PF74KX2K7N6772WlKvCWCZ2I+kM5s2ZwbJ+9rjStL4abQ9cw79PYVHgy1bQb8DJY4RCbDys5YCj3o76JtCosl9CqBzlFrgTXynABkxFqhHRcLUkYUUJRxzsoq7WW9iElC/IZ+KIHOBy2GZfO/mFlb8V6iVKfWhGHCZYuMEn0LiuqZnkC1vtOv8GWpZDQJoALy0nYwu7ccErt3IXuPUeEcF/fimNK7A9+/f8fPPv2KmNqM1JagCPIyBZqnArTW4VYxVYPaGPx1/QKkF7VZZbV8dR6u7XcTd0e5faOUzwAvg/cuB+73ipgLtUSbMvuP753fUUnC0BsTEwlKB5mpv7H1usFk3gtIo+N/7A2suJAsi9UhKYRFojgnLYlJhMSuB7glTwjCRwCzbjaHi04LqZFpftW3GUNyUNlJ21LnWtgLfPx9cnzw3tcE9xKqiH6ulovpNLbuOS9+GvmAtcH+ZYUy2fO9Q1Ljnz5jysoybGPgyaq7GhOIwxkiObCW+RG77YOvlVNtI2S2A9A/JQA4zeC3ay0rCcLE/EoCZlqybtY3OXBS6XStZvReTtBbH/f4Fn5+feD47+jkBdJgd2FpVFphQLLxWkgHZFloKdZnAM56t3eaO2+1FD0toC7ULsRORyFgkgByMQ0BxAX6jrxatOwEHAGrHqayiB8TUwdV+DFzJ8uDgGt+xxLhaV3RdZMIYulp2OE2TDt28wDUpMmIpEQT9GUyi6ASeLvBwKR5wvUdWdA2XNS/7+dKXKl6UX9jJVVz2aqAr7uJPTIi1j4WpIl+27lXpl/Q+FDPJRhrBM7OJ/vGEeYeVudsSp58EqvW8vbGrIRQchVgHEUCtZBPEYL505QeMlxGpVzSxxLoacxBImAyWlMZywqQCqPP5JKjTms4a87NQXLUnx+r8R4JeBlglWw17sNDSnrrOCaA1kYFcK3AmA6QesJJsJgI6xY0DpQrjwDl4D64pbCEmnheHNWrZRiwMdMADywZsDmmr6QyHwDYsNCcT0xwo1XF7+wlvb2/46Q9/oNacwAkEUI25kh+Mb8fs2n/y6yrWwZi4w4ygWp67vVfpU3MwQSuNYE/h+nH4jVij8rMrBlCBt+NOBgoWi17L1P2T+VCB1bIZM+b0femjqrNro9YkCFwAlBmBj9r4bJ/9FEDCgs6aJyYG3PpeD5e+X2pwjvVMVwX4QmsFx0EGWvST93eeqEfF+/GG9+OOL7c7CRER8NowreC5OsGqceKf/7O/wf/+f/vf8PM//AP+y3/8j0As9PPcw2Tq/UaA/DlQveIohjOeZNFMGqRbORiX2xDxIwDlNq0eO7ZbCPRxTd9M2zM9MM0AYxyFuShrEJwI6XC4N3ipkplIxpOJRMJBF6GiQVEuUCvlX1xMrFgc0hHSGOThicuGifABAJHDGyzghVq4FFPX1E0YDHWDfaEhDb47DjL2FPFAbbsWFCBHBGo9gEKsJBavfZEiiBRLSIO/2wE9T3ogMDaxiD/EpHhIligisMrAWgPTss3590NPvxt42noYbtnZILBEjBxj4roC1KUwttqVUNKbDn47UNG8K/bUsFIIJkFgkoluV6XfEMXRx1Byr6qngrBaDmTizuQqQ6/IzgYFacGJSwoiMslslUlXFDr9RAeRFbUZOCopiVP94l7mXry5gOEF7SCrCU6HWFVRnMbrTAJMiNLq2VyxgxuKhc8VONfahtxLIra5OZJKT/ZUKYUU3wgelkatFmr+qJ8x+Cfbk6qMoyO1IPh+cSUq2XLxUk3Ndb72BHvuS+G/e7bsTQIUHGcd8DX5WclQMTEmghMDYVfgvuQIiHgzCclKssn4+NZTUdAyWWFkNY7VAjIilqoxuQ8VQGXyns/TL4Aj24Uskykh2bHkNABetwKADIYsjc1+X1X/IscWX4ddvmz/TP5jVoaupDfnUl2VK/nInTSnoGZxMblCQv37OjKAk5PyZJnpPTaDQtshWJ3xshXVlCiyJYybWGuIDIaArcXgvp/JDpT33k3wSVUtXOuYQT5xrGSQ5Tm068eUWF0h6WXuXgWw9x+mQDSun05DCSXte+0zgAb3iO3fz2eNl72gvfKb86BgLegU9th1u/gOua9JQJqbDWYChRgHi4XycjeWgZsXzKywCyzbbXx2ad2Rbgys7VB0P8V2tBJTekdIAKbsa8lxt/6bBCBBFd4vC+YZ0C7kQpvlGdL1mzR+tJtoS7hxctpjxlLMp0yBAdkYI7KifQVaZFZh791sCV2hlhHLq3b9L/J0X/kL72jvl63Rs3dmAp2pqfTqWu36udB+ifw9u/YFGM8R8PQNqmydKIA0/PyePssCav+wnUzl/eeVva57CiQn6wu6k9jXlJdsr29y3a0qY/l7r7YqrdLLT18+ch8Sh2GpailGha4L4OKnNcnW7RQV5jhvkAUTttkAAVbT55yYBkC6G7Crop6sYHfg/lbYKjIZ6L2/33HcGt6/vuF5fuL5/MTbraEqsDZ36lTKL+UD++HrHW9vB1rlZN3Hx8+IRWYANR4lir93NTel6bmFqpb5Z1HgmfdfkDb3MlDij28/bLIvBFTSzibwpBMQZANxqmRIz+2yZZf9XUDkfniB13W/Y0wl4ARvq3EdPO2WASWfV7LZBJrudo8dnLiIlTqweoOFwAh6tCFmLszonyMA59SgXVNNkxkKrmFYmvozp4o3JY2b2K3SeEpWsEwMT4sAhmvfbm+PjQ4F9vsAIR99xb7ujuNoKrol81jXaJqGFKFEeq8Ed0n6Xq3QjMv3m4H+NmMTneO0n0vxT57X15MY8tKbWxnXdzcorSJAJMC+rdSL/9SZMxl4i2vvyH3utfQM+l91J/d3bTP5gEudbvve2Eu/OxaQtj19TWwLv9/5xaIBGa+AseC+gpCv3v9JcDgyWXtlfOJi8qcLIMjIYuQuMmp/zwjYmEwU4wKw4C7mI591EVM3xHK5wBtaC5MRX0ZB/vSDIn9izcDsS7Ex7d/KGEq2OAzcf1xw2sgxdjzCY63rXmqF8yzM6D4nY7ki38X7Xxt8AgJTLPDtYx06lwnILvjWfRkw2YPMEzIZTYAxbR6BupKOG1ZYFObQKK57Qe6PreC1GVVF3RxWHV4Kbvc3vL294cvbfds0vLDs2OFCXcHsNTCD2LMCYQU2JKBNgCdjXBV/tp3j57tTjH0qXjLPe758vzlQWkqZTOXLl/xEdhVkrmMiJ5iF2DiKA9KeRXZe8JlSCoRn0tzg0+WVVLR4Gd6yfQsXfXdakIVJoJJ5HHOEbf9iIeaERUEr+nIyx7CkQWRsgWOIPHC/HTj++Z/w5esXtKPyvK2JQZoommuo1WJBsJijQKQDiO2VPtLTpl3FYZPvL2471kxZlLRl/DLZYMUYYWDRSoCQVZjV7R9X2jgkiYXDBpinXnqG7tskbxsSwiV2wWMf/dgGMrW9mAcwEDUBsjvHMN/xdL4XYy69j84FEnjS30M+1xvvZ0mLlgTO9IECn3ZHyUv+t0PDy6+8XnMyeWmDApy2nHGx73v8p16/f6rd7QsMhq5xm+hg/y640W1ht1u1eUfziq9xxy0KbjCsTiPifiAs8HF+IEetFq9o5YAX9m+vegI2JOTHA8BDBrR7BdDwfD7R+8CaHAl6OyQybo5aGloreMzAuQK9sLXkLlHrssiAeT8axnliPJ8yl4CtJ8wWUjM0nKj1jIk7gMMWlE1iuaqBlYFBH47AQPTBsNC2m9Rip57OFcsTRKGxa2oZ8qHA5bhjxsBYHTAKoVrcgahY6x2wheUdAq3xWBM9acMwfNFGGecnilVUO1j1tAm7V5RSSalc89o8lodnbWdsqpLNsXb0Udxhx4E5l75I9yxNmkKdd/7swaDJGziu0RUEAOfzlDOtgFV4PSjON4eECx1emqopJ1jlEUo+J57PB8boqMVhVsk6WgMf3zuo7/KOjwWspZa7ECgaun71Xb8m0hn8mGEHYGuODAWZ3BaDG1lgc5IRt8grQQJaiEDvGUYJwy6p0eHIZjM6OdvU9ayarghVHibW4vh1tmKQRYFQko1AXx0R58vP5LQfVUy1I4h5T6wZOq+c+nOUAwHgHB+8Xq/sr2+VumuTxkqXJo0xaTookMWSRpkFYAyYyrYuac4zSM2AUt/b50ELIaZOPsct+ud03pbsDdDBhS0mrI4NXsTkCNbx6Jq25LDGNWfFagK6/4gcLmCiPUMCkWtXA5B4waJ4H7zCa0MpvoUf1+JY8VtrujO1fGytOtoBsl36vv8+B2IAVZNd3OsOSKBL5RzyQGp6RbDKkxX/3vt2tKU4bvfKwQwGPGZHaK8J4megMTvpwwFcQtJiNeoZxgQp16gofoOZ7zPEPJVTgM4VWAM4jsLBEwIVx6SeBMevv7QDGXC7NbXK8llVr0jANRlPCLb3rG2jkomkfegAgXTfoFnuODUYK3Gib5hKKovss0sDbb1obEV07tdIYF4JVEnB3yFmGAAjwJ0JLjV5AqgUO/cCVnvXxLPLtyhpK4eG84oxFottxTC2eoexGp/XGTMkwqdgtGj4hhLJqck5meheIVpggXu8ZJW4sNWH+gAXQIGdwXK/0b7EPh9Wa/ILlSnJJmx4ssCkM7ckxpzAFJmy1OPIz/TSsNzwMaXPcDRVpSeGU6Lgj3/7E77+zTsn6prhfjS0VvH+hUMp5hg4bje01vB2p9Av5oTDcJQ32d+CiYYZX3C7v6HUurVJxqCA6a3dkG1/xQa8d+AcABbuIOhb1XoSj4cAemDFyUk9GsRw5r1UMSrnwPPJxDTbBIsTxqROEJPA6gX3UqmJCQNwvCTLAfi8AlnpoCzQjrQb2xQoxk62TfEbxVgHJ9WlZER3Q4/A5+xkM6Z5DqCB+9dWnrMJ94LiDf0JrDouQVQBLwsP7TnfZ29Man/aYJp3NGrXbNYKEmQBvJHpWXTmZ5C5VVInCaFCGGUXPIL6E2YI7zp39HAzXliB4N7LxJfJtytOfPEfERixUnaIwf0BjXevGOcpZgfZs3N9os8PnP0D5/hEn59YdoNbw+E3ghYjmfMCr4rhXB1rDCSZZxlU4OGQmokrQXINoRlqMTYBDaU0YHE675xsr25NOjDrU/aLundrdcYJKGil4lZu6OcTawHLDsActspOf9dkFb2AzKi5yCqrDIbY/m80QbWQOb2MNp2C9RPnHLpvYyHXZIfWQj/5fq252AuFcQXWbneBVm7zJyPhoYw9ba8thfW55gSeC+PQGRqwYMB67sROwd0Ggec6OW5c2V6XxpZX6uQFiGZbKTg7QRYOvTbccpriXLAlwEfFSO9dLUIEDuqRrMaCeUp/RoliLwfciyZHB7oBc1D8POaD4VCtG9Ag2DVUv6WuX8Tckgyfz0+eWyer2UtBj4ExJo7ayNasPG/J/orgWV1zIidn1lpV/OO91FplyzLWYY7kpaA6/TWJbY7a7lhrYXaKsnstKKvAInD4nWBXMcw18dk7mgVqAc7ZyWScFF0u968wc/Qw3G43vN3f8PU48F4r3t7fUWsyngq+fv0Kg1imPPD8vjnO86Q+0eQ0zve3N+YsY4IdByb2EkFwAmwuIAzcA8kKMeB2U0ug4lDqfVa8vTUW65Z6uRCozuLtGuxGWbFwHA21NpzPgTnJ3DGYtN/E3m4NrR6UbEltPVPqaYbiGqjQB7w2ypPIsLy1G8HzUBdMTk40gjAZdxoM97c75lz4+PiUbw60dqCUimd/MuYAYFgoMdBQ8eZAXR3rlG7dCsx+7j1k5uhn4OPjE3/5+Rd8G78CX6727PNkLjxzkErl2q/HQq0Oa7RxK7hGbobW3hhrYV1C6wYUC8QkKFiL4sDWgNkRcyAn51ZNbpwrUMJwV54Ec01aNBI9AGpUGscKYE7YuFrQyprCKGg3A5wgeMZVOF7pUxVTJQnjDPmQ5vR51bYGchbCuTrOHEw5CrwgUDDFOJjGHLocZQPVsSbW6DTOIXapAVGesBJ4M2poj2ffWtKTzg6lcbqgKXYtJXaeP5UX5ECwMedmcjrYuZEv+43m7f/49fsZT0hJv3QO2ChjZntSbWI7FwpsuXQu+JVBE5HP/x5Rgzkrd4XMGJexdU8Ahz/NYISVP+ZdRJ0FCqMUoNZANbUaVcfyhVIlHr0c1Q01ewiyZ9TY9mG7Ggf1yjLBdlsolqNqjVOY9CDyYO+x4cycsR9WBu+vQZGcqlK+nZxeFSw2lBiKEk22y5nEysLIvoVoiT04lYptH74T9l3Ny0VLEMGvNdnZfwZqFtshb8Kdrm3KuNgLO4LtGhlY6mFG5iUKpuwKHPIe4+VnzCqDjGV5fti+B7WlQIdu0sCdJyfETOPEjrYKxpp4PNRaEPkF3ErZfcNEetc+7PsJ2HXpltcYsYPf3BOvFaB8nmzxymB87Rtj77VvVuC1fxUe24W3bKAFFzTDytvaSTE/KxeTXxf78KWqxAXeQMy10Mk02vkg9vS3EAtxN0NkRV9g0g6Ar/e77gnXK6tz8XKZ8Xp+rx/llhObJbNY/LUBy1OTnJXrp2K/YT7vtddyj13WGd5JcD7rfQ8Xs+mvX7typeub2XudPdn7e/z97OWPWPvMw3LH5ycqw/qr57NPQu6tXfHnH8l/er3MnITCa7wCF/vtJv3rm+K1h+na0vUBu1a3jVHsf30N+zdIkU9pf5xshl3Xk1gGmSx/ffazIoVte/LBpn7SCgjEz81HO5gmdldoXhk6AWSLxbatEJshJL1s9GuXxU0DoHNoL0sju7H/qv/Zq2rXR2P7p/wXJlcrEgSzXfXnuVubAcXKme75dfEF6O6KGi6Hn69snbh85Su7IcHPTLrXy3vbZpj95qZ/Y6+0SwReBtK+v+wPrZ/Z3GSp2Oundd7nLv0q3zq1bMxMWocXxHjcD7RoIEMKuDVOmPny9cCcA2MEbreC4yg4Dg1RUytDM7WbrMW/e0U7OHEWizR8n4wxbhT3Y6AeTB5SKNgs5IlTcwLbh04lIEuFCyAk3ZGVz5ezoM1kuOwHhajzscSlYWH53LiXcvz6q/3f65y+22QhI89+2r7f7g0m7FPku6v2nj9ElpXWfhmsLFDIOzTrhqzuCIJYKsvsszZTxD+uc7fPEnDZB7uMYGTsoWA3LM+S7OW+F7ksodMJZEf+3AulZmugQX7GLrYA//+VhRz7DPHnUvRVYHy2GotFvSRWuQuMkeB9giiyA4b9XHiur4IULFkWYnzr/GVhZq1MJHZbgVqeXPsm7WmoQEimTIiVa5BWp5HhTtmIRTsQ6Vfjij9ya6UtiBeb92prLO9V9/YCXm+w8CUe4XWn703uaIrQx/bB+6NzUV927OUfrlcWCfOMXdevsySWR7bRJ3nO3bQnxbbUz2+brM9d8vlZtgskjL0EZjIRLXLYFqAm1gsAmu1uufeT0QZQN8x9qWhCMHIKAFw5MCnZ9GKQL7sAaPqzy5ab51niZ+Y02WRY5HPhv6VV13kR6zQCLJpo/ZmFrN3aud2EBSzY3pQ+MeMDaD8tdfXk8IcQS9IstbtYFHJQc5LtqA2lVry/vfNMwHEcN9zvb3g/Gt5axdvbnUUUU6vd0cim6XOfk50/yp+8xihkpKm7Iq7E/zWRzv11/f3aW399HlgQLOnZ9jPek+riZbKhc+reHKE9qmeC2D4423KX2iIzjvSSfoc5xnTgGmCk3RWKDty1XLFtwj4z4APZ/siyC+ECYvNGzRII1vssDkSxc+3poLOzNXmNQE6lfT4/8Zef/xHP81NFapmtmrbnsukLC3MNeFT6WMVBaTdjP3yB88EBLlccKsa4OzsuovzmfnlEZPND9/uyii+di5qgjK1phTXVq6PdHTrDyaQKqLTJ55YtctwGV84Qnm2jvu8to8T1enb2rjMg/cg+YLbz1JVt3CHOtToYiEbxDR0E7jgVVizqBeR0aygm265273Ndx84Vk12pIMLz+yqa4v+/1+8GnsY5Ucxxlw6JOzS2ewGDBvy45YhAGoTZF1YtwOIIwtdAvaAhDGjqYaUeCu/6/vYOxMJzPOhQi2/k8jxPPJ9PnP3EGBO3Gw0Qqz5J3zTABpp1+Bw4DiKhY3zAwlH9ThTzSQQTE6TVt4qjvgNY+OwfmGuijyfcgXoApS7AB8wqAFYTVgSe0kCaa6gqWrCeHWtMVqgAaQlxylwavjEGe+QLdw4DBEOFdKA6yDZIQAmGPjooTCqxRIl5BxbuR8HRbmi448Adb/aGao6Bk1TGmlS4gBfjcxXVl07ZxNijAKRLbb9PaiiVQkrx9+/fUWvD/fauSk7FU+KDQM3cHtStcazeMebCUdlLu4aCqdow18Lj0Vk5qQ0pUH9qjDZiYM2J5+OD52kBqw/M3lmRNMPHt79grYH724G5Fn75/MTZJz6fHaVx7OoffnjH/dbw9d5g4GjupC8zwGTVEGGomibSn2qlvDyqfs5RwKDbIxsMpGehttJl0Hh5jlp1F2C22CvtxWDVMQfTuOzZZiWXzonCjFdLxZKop8mgFunFUPSaVSkaCJVUw/ZEi9aazq1r9K+BLLrAmA9pcgm0gRKroaSyGJH3WHvCT4CtBklJdvcd7IyRQRkfHXV1GJClo4PacC4nmAEir+By674NIoMoJy01LmFEAFdrxDqRDBX4BK4BOtl9weesAD7HDkdkW+ZgG6zaBJpzXHdXBX9OioketbGCM+cWJz2OtoOApWpUvTXU6nsK0AQd+5Hjk8dCK2LfGStrpVAHI/rVMkCNL9oNC2wn5yXBeX5GpzIqxQYVgLL3RMmtkijTPriEuZeShO3yuGYvfi92onAB12ZsByWdnNWemBNL/c0z6GLmzHac1Dxa+P48uY9dU7FKJhIFYy7MEaiQhlw7UAyYGMgKL49BThmRYwWUIKhdxgrcG5PoaRQuBjBC00Ez4HIgWU7pkEvaxsUzQdHTbDWKve8iQpV/7qu5FtY4AS+wqDsomC7e5FJCAQnG9+d+7pnc8txeArNYwXbiMcSAuQDHHXjqepYSOXeTwLLWVoFErIVzjP3vqTPkW6zy0sK5WAbY++L6lwvQyz1IXzJ2AocgGw+yZfTzts/1hNiXCnTG0nRUJMkv8OX9C46joUjiqajFrlYmacUnjmOgtok5TkwEjnoDzOlfJzCH4Tgabn4A5ycigEMMpQJOP73bpN3O5C+k4Rdge79BA5YcNQzWDHYYnmfHmFl0Alqrssf0/b9lI3JK6JYfEAtsGu3OmAulHii14DkHMAY+zhNurOCPEejTYEGdpSlm0tW+Wn4z6WpMxguwRRsTZPAyaJ1kM0hHzeFwaZYlwJkJZGBRkNUMb+WNupuL6/PZc3CC7y2TYHARXH5pxoDBYy1kc8+5gbS32pS0JZ3fBZgJwAHtV2SkrQ1paaykCUoyll2aGgmelyyUAaa2A/6I2HgIhLSplgAFR6WPceeegmF0ToftzwmPgrfjHX0a1jCNPgZqS3ZfxwaGLKR7lpoY9NetZqtN2QNm+uTI8N47DEC93ff9mBn3llFiYCgmeDvYMjrHkg0Cit/wdv8RpbwBdhBsjBxAjs0AXWrFynZQBMTaIUvcjIBu2oyuwRcyEjhP+scRY4MhMQk+Hq2hFmdrzlp4Pp8gm3fQ7hSHK36q9WISXZAXfXu2Om6RfLWBcojJFIijllYB+YcStxms1FcDAToslJrJE31VTrvMvbrgZJFO+jiY2tWQOkyB8zlwtIaj3ZBTYl32z50AQjMW9cZgiyzbonifj+cHwZWZbfRtxzvZOo4IxAyc46QfcrFeqyGBVtOe/+HtB7KczxNjTZx9Kj+67cLV2Tl5+tYqEtA9Clk4m71NJHJfCzZAw2cIN8SUWl/Gcca+kcekf+5zcrRNACl9SsZJoAUZ3rfbgVoZg7398BPa0fD161cc7cDXH36Ae0WReD5guB8FrarN7aWwtoHToGRLrUXFHOB2OwBgAzl9PFFKxf1+4PPzit/MHLfbnftlJmhbNlDIWCvFnRVDGmOyonjKK7WDlgT5SykILJyD4NtcgeM4cL/f4ahkq0jo2lSkLuXSYS1egJviWxMpwxYixpZvgWz9HIox5wmYoR3UfEM5cJ5PnM8n8wAvoPxH4ON7h5mh1TcUX3AbzId2zsBr6p3nu4+Oz8f3HRPma5xP6T+KrdUa/vLzP+L/+f/6f+Dv/+H/wBgPLJUs3r98AcLweGgCOqChJWS8xRKD2qB8A5iz7+ede/KUT2YnAHi9YWRqJxilvTE6iya29rxX2RcOXFoA2UjF4bfGffLx4FkQW7CUhloYhyJcoCDFvWFlt0aT20bGaKycNsxzUFagLYN1kDBSdJayAKF95QKoqhmms0BTG9uw1iCD8eP7B4o7bspHjuOGZ3xycvlg/Hg4gXUPJ95VDT6ZR3v69v7UxGiTZlRJ77uLBWuqUyF1n3asUXaR6TcSRf/E63cDT7VwkhrPOo3SVT2iG6MJY6LO8ZAUNHSvuyJC9BSotQlUUqWUuREDCo2CJsXx6n+kkc2qmkJfOZpSrjaLos+m6JjjUJA3BJ0WlVRjXehf1VekUwt+dtG1b4QysMEzgABDShlkm9Wci8hjEqdsKzkBwwTAAWtqkoZlmM5nMQOcojf1nnBMUQKHwBKO9o4XITNSP2MBxUmt3kVCMwVsU8+VCWOxFNXb6T+rLiDAAVH+99QJVa8yGWIFuuzkxZQ8bCdgCZAy2MrDPibbveAFK5hojDnweA48nyfO80R/fmLOgTk7AQ+jGTF39OeJ/nji7XZDK2zfsyiYXWuxFMwvVqhdFT+KSetZb8ZdwKqzbSH/TWtJe67Dpz2/1JewdPiKF+VmBRcXR1OBPHa1fWsXQVpm+tEUME/2WWyDzvdxVT8CReh07il+djp8Q35PwYpQllyLXYXM+4usrmB7kFf2DFvCGCgxmVwKcBL5VmD4wmR8rZjrLbjX3IWKSwhZV0IGlW97Aqg6mrsxz7rOLc9H2hoTB1P2wzi5zQVc8nMX/BrWcwUpO6TVk07EfgMs0HVdCbZFVjTkzpQP5XQ9tqi9vF8keyV1PHR/iP2+uY72ei0gMLACKNuymuys7T2YFFiEbRu4K3n7ccoW5zPNyn7eqAwEr2/tv+97RrClJy7bsEGaCAZ24NAGJgaZmGSaaPlLsjv5sXJiWa7RltlAJa5AcuXe1FXt2q5s2opkHLwwRuN6TzcQsAsGfgVas+wv8vWb34tgEqfZcHoKuXZkbRSJsCL75WPt4JVXmvpvVxsJr5f+KObca84i3StdWbVFLdUeNY/47Sa+PKDaBQkCGNa209tnhjZr/ts+p6o8hpgQ6cy3N889Y/vz9plIP/hC3d/shpdzIze+/zEBAUkI5o7fQSDtbojlfJ1A2quiyjIjAE52qmjVCUYhLyfoA1K/oZg0lVKgXSZCnzpV6c2q8NK6kkGitS9ptzRp0tTaNTOueQ3E+SyWPquUFFqGEte8JwNWarpdhooxQSjWYGHnhdeC5BxFyHcH9vf5ZrQJm+hsYmPnvrH8t7SdL1OCZLt8HwqxJ+xaG/EuWNkFk+rcjTx3KuiAiVJJix8MwpOFvRIEyetA1fXkyq9tI3MPXqwoFcncNqOOyUpS0bB9WdqDrTWWz+mFCX6xylJxjhABdWJ4LqpXRAB9sag4et/tl0sDGi79yYBZMvLpyrbflQ9j3KVrsYwh8bKOITk+FopoF9Y+M27Zzsn2tktH8AoSrBSUdoCTowoBa7wIZ7+w+xkhLmwtsJW2bSk+pz9JcIdJoCb7ucG8KFEn04aDHYDbcRCAQcGaE49PJnRzpPh8YHQCVibB7JATyV1rlnHotWZrJcCusyCjHxmrBgdOAPJVjl3IA4ygW0BA3ERIDHHL6pW5Qcg9zKbwDEweXaACq4DJYe7SSJHj1D5SUSKykJR2SCwNFRES7DHdL+UFXuyf1rS1yvPoFys0j8iYbD3N+K5me/iKy1S74v2ic7ggcG2orV3AYRY2YJKkkKZT7gHFJabYAwJpUjz/Zmzj4VReXnutFaUUvLc7aqEWbSlkZNzfsl36jlorbscN7hWt3nZM0xo7WlZoamMyz1f6ZgqLp29Fhjy4bGER2F6Lo1XqzO7hTeDnuDHXKK1SIysWqgoKvZ98vp56UI7UTc2jVzYjhKeMRT4CFEDsQmTouWwbvggkezH4sm2P8+e90tKv2TGldScXRWnkCABTZ7RuIkQtB6IRsGaRiWLv2bKWdnfvN+MzAAROIzboM8bM0vYGeBc/fA/ImWPgfD7x/fs3jH4iY1+AhbZkPxuo8Vt8YvmShpddtt/FSNd+dnO1Q4uRFMqDNNQiC3uc8AzZp9h6SZf3zdeVF6URNoGsqkkoZmHcUcx363Ges99GMBnQx/4iuTTYuaJcKrTROKRDjDzEfuZXyCbtTs9YkIBRAXBIRL85i00WIRujjpuXWCxtSur2GoLabpEto9ghJnVn+ffdDYKM++Q1JgjSOSc6Zsy608d/4vW7gae70E9TwB5rEOWt1zj7iIWspdRScb/fcRzSEponYk1uEncU3FXdUfsAFsLl6CBfLDCjaMRoYMF8ggJMk+1vTnCLlRJWeGtxvL81TsczQ5ORJHWOyxAL7PsNQ4TjmJzT8zE7p100TURS5WrOyWr9StiBE6YWgK5DYSgCnSYwAr4MZTmKFRz1wAqgj6vyNwbQF4NL7mpOUlgzYDNQhoki7RjVMB14YpApVjMRwc7G1gwMTNzqgftxl37LlEj7woyO5aDoIToMjZoyBkCgYhgQmtBgoutnVTWd/P3+LmOoRA3XONIxuoKVHf8BmjQIMEj8fJ6Yc+F2e8daQB+Bz8cTv/z6ndNiHg/8/POf8Xx8op+fqKXgn/3pT2hHw+1+x+PjE5/fvuOnL1/wfr/jsAYvDVOVV49Dgd1CqTfcbndO40HBOnkog/r1WCkQ7WmkFvp05LQpZLviovbHHBS5XUrkjqMBTjM5lybCSbNr67T0gYWshBsOr/uzNrD0GwcDVphScHgHeRlUMb090omoCtg7K8VXi+UFPGXFBJgMNLKaxnieQXlel4AyMuuyTkbHZ4VpxBrSxFlXSpqU3ARg16Sh9+JYYssUUb4zUfdMhzJmRiZEvtmLa1zAUHLlTX8vLtBQxjzK2kGZF06epE7K5oElbLjfL1PKjPyTTZT/B0CTeYz6UzAoXwLwkhhl0quWKgIjAzH1/vp88poy7I/r8+UAJhYsrmkuV8srMBQE9Tn5426/CZrcykW/Vy9aeWlVjv23ta9gg05IgFIVJwWW7rJv6pspOcSOvBTMrDQXV/VIz9IMViq2BxTDDDGAJUHO2A+QVUYDUGyzERPAyu0x1TLhpQDSZVpQop0Lki1OzvUqmgTjSuQjUq8Oe8xuAAzkgn31nK74MrFQyaC7oRZsnxCLjMw5WFGr0s+oMuluk0UQdzgaVnD8NIIBTXH6mCxu7NHXer/QOi+NAbaXfZbMiZLPeC1gZQKnJNhxrbOxirqWwWbZZyomixoZOmUC53vHxq4uW/4IQmcH+/c4fEAfiGuKS6l6J2cwz96HwOt0pX0mtZbFqT8zjaBe75r8Yg4Hx07PycmSR6vao0stYYGzn/RLtzf+TnNgchraTuaVJRS1Ea91slK/Bqvb2TIbIS0xIJaYnl7Q58BjDKRukBvAdtIQQEDNrVo11W8BOc0O0lZbi7+TtihioZ/Snlqclngcb3y260ROWFxRYGmTMtbFwlqnAuWCbDEqu/VM9i0IaBzGolauN9babORMNISMMkZwASi+MDExgkLyS+DFVZTgflsAajvQnOzumBNjPnY8MGJp+AstolujSK3zGiFQOYVNL3RPSYXOOnjpKCXbH7BB5Kvdy1CSTbNigyop7LwmB5y0djA3zJ9ZE5xAZbjVA2sFPvonxvPE+fnA2xuZ1Gs9EbFQPeBOvT+zQGlX4E7GcgoGX+0fbIubgLOKzviXe7IVxlyHzlDvYwMDrd3QSruSWOOf8EVfUgzlONDe3oFyYKFhWUP4UgLCkdiZFF0sF5ONHHwGIJASxgnTtbZd6B3jZKJ2NHgpaPfbXqO3240sw9sNrVa81TfEnPj+7Tsej098+/VXzNExe8e38QvO0WF22yy0aWQbZDxz9k6touNgwjOZYB8HGS28XoFytCQ4rKn9DTCBuIxPgJgdaw30wemgriJAaxWojqhAH0+s0Slk7dybC9LeKoWTRM0wLXYi7POEI1DqjZHTZCydEyfDLr9WG7W2mFbR47lzkhY1xXzbIG+Al4LjfigGyCndQCLHHx/fEQBK5dS3djvQ+0Q/B6C9lJpRXjiGvZ9LtvtUa2dIbFoMTdm3LKrXwmFGrXJAU6kH9y5AtkRpaMeBdrujHTfZv4wdClpt+NOXn9Baxe1WkdHJceO0UZUiMcdC8YLb7Z37cS5YZbHo+/fvmHPi7XbseLI4hf/zVZQ0pw0Y0sisrW4ADLcDrZa9n3NUvTlwtBve7u94jhPnOPH29oZSCj4+PgjY5MQ5TRSOHTdf2qCBE2ZAKyyyYzAWfz6fwOQudVTZcMb/53lusDkZaOd5btmYiIXzfDIGIDaOCDD+X4HbUdlZEwWtGWq7o7SGo77B1RUxxeCHmOFdE0htDYEnthHYfp4YpE8iQHZjNcrV9LNvDVw3QzuYR/bzgc+Pb/j155/Rz6eKCWTRfvv2CwKGWm6ovuBloJaJV5XA3C9V7Yu0m9T9hTxr7/Qxt9vbZmsHmAeHnOvUdNIsHLdCHCMlD6A8EZFEi0BIp64YxdLhBbVQT7SVimqFeEbkaIKEneSTjDbYQLua6UFgsoPAs3Ap3yS91oztTA7NQ9rA7kAB+tkRiySMAke73QmElSJm1qAfUSHjepl8t8GXUxPXQMmeeCXOEPzuS1pPdsVchgSyuMcYq0u/zQ22FplP+0n8j1+/G3iy3aOqJFQGspQ0G+DmDAp6Yy60KDK4jrHGiwF20bleq2fjQgkXFy8k8BdRkK0DpK9CQnfAHOwPhgR9udkMj8fE7IE1DCdJ5BRcNoJHSW+LCMQCPnsAY2C6qkI9e5oZqK9pYs64AKvA0JjDZx8oZmjFEYMiuzYLq+xqMRyguNp5ggmZUxjMghTfBI+yGJ/9/+EFYQUDDPL65HjYpMr5Sv6HHp8ZWjUczWElCDJVOssJsMqxW3v4fqR703lnTzgp1yHnw6h7bqFLHlj3UDB1aanknynmSJzE1KJG0DENyZwTXZTBn3/5hv/63/4BvXf03vHx/ZtEX1kt+vNffkVrFff3B4Pmt4KxTnz/6DjFYHt8PincWB1dQdXHxzc8Ht/x/rf/CuW4kVahnl14oBxLjCdjFXMGWhGCDiV6omrEBglAo4FknImZEbiCaDbjMY0TI8GyNEG6HZkfS4lzJi6bHQQmItmCl/ooAhPCXtp81mLCh5xe6JvZlSxAspewHTENh2mtCwgRhc6kWm1e0JrfaJTojZhMEWqGuSo6rJTsH9tJFc8mFAy4glM3JaqJCgns4N5R9VVJmecPrRBbgu/NfU+wp9hLcGeq9GdQJ/tSsk9DxnaOpFqn8KjsXBrkl0TaS+XefakouC7iAqIuIHGvtQAObHba5gTlB+x8Pm38JQYOJQAC2CL2foGSmNQC4dtJiFu93l5CjAWtoSoisRf5hSGzcr3ir480LtacCfS/rvkCOkJU50lggmqYsmncFbE4mSorywxI+Cer5Kyw8lzYduAEMyUmn6yIbFmCwUKJ+HLd+5S9D601AA13iMWhFC4bb2IoJuBM0L3w9yU4F0i/c7VOpQ13y73PAMiL7ec9+8T0hYFGCxLJTisb/OU51vONa7R32XsxSxu+q1ChIoqtpHknS2/Bro2rZ2wvCb5a+gBMHZbdUbx7+hm47T2b9NncG7t8/tsYh3vzhaGM0J7X/lLwCbwwoWBqN4g9HYo2jCLJ0DlmG0CIgQCUajr3TMYN2BoYRZX+IVAUxhZwJkivVHtQjNSApUIBUNT6h11JTc0tcwKmZgXLGRftRHbvMa4Cp8LR7y0xDqb2ksllhvZBLTcGwM4RyCOoYXjOySTFJlshvKBWiveOl3ak0tgC5CUHsrBgdqXhuXYMOD0uOj+ZlLKte1F8W4cJxgXVC0qtmCC4NjLJl5BzAk+0MXSIbKUjM8Gt4LCbtD50zjJ2QVb3l0AnIHWqXlu6kHY/LeM26/y8bJsKFcHyfdwJFtKfEsy1dd3unKGAKmPCUEZnUJyO2dmeajFRPPB2q2gVcBtwDP5psgW4bFSijrYmbK0tzJ3OKjQwgAQrFkg5qSmLSMmMEgOqiFWyBkYMrpCkF2DBGS65j93QY+Gzn+gRFNCOQAwVG0xyAtX0DA3Vm4ptN52ppe7I4OAeiRn/NfujtILb29uO6o/GIQDHcbCVUzHu+/s75hw4nw88Hx94Pj7x7dsN5/OBj48PDhbQ0JqzD4KX9UapC1toN+YBZMguBKiT1A7jlNbF4QwsxmjSc+HvMq9IdhEFLFohi5Dnm7HbGqbx6Y1dD1MHoZJ12aC2FAFDsU4km7u6w8GigTnQbgdz20kgxRXTAyw2hxnGYmJYsp3GJP6NIHMesRlgY3bMNSngn6Cyzk8CqXOy+LsWCDz1CZMNXBFKs4yFl3awS6Rky7WLCWO43+8Ef1pDFkbv9zvu9xuLJqbChzF5dq9ot7uKDIYmkJLgFQiEe8HXty9qiVNRIn7LGrU82OxPYsynZ2FuOFrFKo6jNcWLamFW63LEVQBO6YXjpoMhwz/HQBFj8WJ1qIDqdWtIuUNDZNiGi1D3ggGIhXG+DiYRAWMmANC345hKzqdEy00lyCIezhoCgfrQ514sv2T6VXWJbNAkYu+pxnkGcLFyLRg/3Noh6rdjzKm9QZC6tgJbhv5UO3zxHRebfOjjPDE6mXQ5uMgVH5dC7bi698KBMQd+/fUbfvn5G3755VfMOXGrDX2SqZ8FraM2GE6s9eR7ZV5g0CTylxhmvyhzUBxolQy7Io22ZBUDkRWdJHqjesFvJmUrf0vbmp/Lg8H8p8r35ORUAwc9TVO7uoq2ZGNlDE+Wu6nInywvhkEFBbLhiuuy4Ocb7FFQnWchIGTI4JN+qcjfut7HFZ/sdnYzpN7pCnag1+wP0Zsyd+W5mpoIv4k+LzljDMZjtZCkcj8qh7ycnXG52qkRsZn3v+f1u4EnZILJJVYbC1H4fD69T1WCB8IX6mrwcJQoGKo21rg0jkLo2QpW0JIFq9waK3gw16KTK1ZR9MARXSNEHR4FcVQt1MLoa/dgz8lE3Kzg7e0N5kZnrU3OnsXAOEkzLfcbzA2zX735axnmdE2FqBijUzCsU6Dz2TtaKaiNgnGrLxSBZhOi/IcTODrBZLH4FRBO6ofkc+SXQCcvWF4wFkXK+jixghN3Cgy3qCxKKiCBOVoFjsO5uh6s3gAYi4cotZvMg5NG4Kit6VJo4Eqt0ocITQswAUwvVUgDYg31eF5BH6DDkJsbShDlgABs49zPjm/fP/DnP/+M//yf/iv3wloY/YFYE29vB9ZceHz+iloN97Pixx/e8dNPX3D++onn44QPxxqBX3/5oFP6+oZVArMufH6eGH3gX/zNv0TxG9Dn5ZQ8UFogfGE5wbw5A61UJCWWF7tRkRdrwMO2UggVDFqpV0Bh/Y2Fe7rTuSuIcvtIZhD1rRzF9Hs6A5HHDrZbIaBEh8nWboqBW4NlC4Yulm0trGgBEFgQu+WEP3VTUgoAlLPfbVD6zNcvWkXX/asiuXdvtqQlcMdHJdoGzHPMOp+tZ2KRwVPed/B3In8f2FTmZH0BEAvHGNjbIigtG7KglpEEzBYDmU2BB69/zrGTtVoViOiOznMQFFEwUmvD2IFA7POwn+VfJUpL7Tueib+otCuro7jE4fkrtv+ebY7583NOdUdJvySfWwJPUIyVLCYlaZZ7B2I6vQRJF4CjnzXtZV2fWYKufF+tmp59JkRaRxB8Ml/ASPadWlBzDWBYwQCupHbfnHoWtIjV03kmzkEnTt2moWcOaf8l20TAaxCIIbALYJExl+uRrUJkKOjM6j2yXYcujoAJ2yLEzIFdLAg9M/e0d9rveT1eMObkxEK1pS5zhLlaghIEcgWYDF5y0mTZWop6CIPPPWnfZoxHUrGTsBMICFoBpzZe5ySD8M1gLAJH1hXA8k4CW6QYIT8penie//zcvemvvzIJZZUsJwVuoeUEPxeB2K1hAsaJM4IjwRXV8zM168sKzFgVTdZIqdStS70K2ogCuKYwRWAMTjhF5XMptapYYLu1s7UCqBUt9Iym1pwTJl1U+GSJGrpxlLS7WhZ2jBzAvq9kbpKhtXTvay5gXslDaRWt3gkWrsDjBGJ1PJ8Djz7x67cPmAVuh+HtXnB7u+NcT7asK0EsjVONcpLobq9PYxgugIYVVgugRLJTBdbAyWbUdfGeOBGPn1MJPPGhY6itr5YsDF7AU4ItYw4sM5R627qRKwIDZDc6Yq/dnqypnDPtxbW38PKyay8CZOInSKtJlUOjvnk3BL5yUIcJbE3PNeaCrddiZCROsa9gdrK5sSaqA293xl5mA26d4BOb+/8qXKDftzXhsVCNQBxFdjUCwRm/zfxctZlfoq4qCO7zSGCtj4HauI9XjiJ3xo7mFasAAwuf/Yky576msVQoKGyjIyuRtqEdN5RSUI2ao8fBfVELK/5NmiKp/RIAWSSt4f7lHcnmTlZJqw0O4Pyglt37/aYzvfDt28/4/u0XfHy/4fH5gX/37/4NnuMTfQ6MuciCqu+41YoSbH9tB8hIlDjzikkmeTHMAawRqFUJacamOe3MaFPSf7vxjF/DGlTAWIE1F5r0as7OgTUGstZLTt5FYMbgwB2xJGupBAbHBOA4ClvjFshEdI6DY4Hbq3JL3kNtLFiyhZXt3sm2zEL9mAtjDZz9hNcCr1esmkL3OYkYY6KPhTFyPWzX4JKh5IejNTLTjtq2zpaZ4YcffkCrFYdYS2stfPn6BV+/ftE1XXs0IigK/v4Va7FrgtpHjtbEkOtP7rHbfdv+BAKm2Hz7rCcQkNPDfW0g9hAQ1g5qKGaEbmYY0RnqvdikBNEigDGWCtwn3t/e0dpxtbLJfx/H7bonMyw3sWfWPicOCCjKQtQVEz6fT8bGhSBGdgHMCPQ+MQf9kZujZjPyxAaZshC4r0udDWS3sAibuWItB1prOyacz0/FUyykHo3MFBdbaw4OzQgAtR4gn0B2crNxoH1F4Kn3LvaPWr8DiBl7OvihHBFecPa1Qaeff/4F5o6jHZhqD7Sgf7y1ijk7+nluwD5jGxYOM89KC8w433Vzh1NrueiaQ2DT3kCy/Q67gKf14khCcbhsaoIyLH4xZnLphc2p6crGKbdj8k/mH7F/N8kFad/YETQzCkcxF5PIRWJhwaAIJCuwl3g7czXAJmCT718Lc6wcOBF5fsTWC/cdr/EeMyvTplJReikWmdLrK172mSHjeu5n6mbwUnG7NcyxxMRXIZgZA/fFSy70P3r9buCpn52L40XjbAEpbUqwMIgEWmA5MBB4zo4yK1oAKE1aNRVzGUU/EZrCRu2iDHlKORS4LhWu2Us/B/D5eeLz84lxBjALLA4gGs6nbSNoxsB6CfXvixW4NRnqjU7xv2IOAwVgB+dUAKBA2TmCAW3MncfNxVzEg/TQBY4Vv8cB9MDZOyg0d9NI1FBFbeGzP8h46gulVjTXSPMlYVpQnyb5X0y1HFYqrKS4HnDYATUwsR1kTgZdFho5enC8KYZACEPvg9TEoCB18YZQVbCU34IqO3g0to0ECDwxVyHt8fl4aiOq+tPIAtkMDxAYYQxkV1uK6MzHwf7qOYExTvy3//Zf8ff/8Gf84z/+N47FVuDDwIzV1jknxpz4PH/FeX7g+fyOeE5gLOAZFJDtBGwev55YtjBsaCxp24lxAnzUtmKb0BwTAwQqEQWxKpYVcDpJBsLkGxhE+2dosFvIQoCNW9G5jj0GtTYeyBSfnYMjqikemGKYwMYyMnGJBAGuJfLfJLtMhMcYKG5ySq8OkJV/Dyb7ZlCrDbQ+CSRL4wXpIAEYe6+THQNA9yBmgbkSyT2PCul0Uyvq0gjwy/AJTfD9Kwm+MdFPRtxvXtvv6P12VBIbFBihKXwtMwUDlsPmgovFwzZC2S4xRIpE3AEGGUPCmNUJPpVS2SI7KQ7K1hoC4dkmvLGBfsKd54HPy+HBdpbNbokEDXdkJUera1aFJUU50+marm9PonMllzqvCUKyOlGRFY1AsK1HtpVn016crv5V1Q7VarVXtV4ClJcqG7HxrgzWlZaHKbmytAJAjL8CSU00YqiIYDxn2qtsgWLVf08IBVsMAgXNb8gJKNmzsFmI0I+nLlKADnIutRbYVQ3lTe8Ahb33vp8Pkyfqx0UCJygC+WPvl7JBeQIQYy54KSh+g8WArdTpMJyLduS4MagdY2AuFTxeWhp44RdgH2kHYNA4L97zSv2CZKwl6+mqPCVQTBafYwzRGMO3xqApMKG4e2Ajt3uHIjEoJCcyH3W+skUQbhhDuihJoim+f3OJ5RlzYW9kACQ8m+jl1B9wMWxaI8X+3o4dFAFALPqgdrSLMRxst3l/u720ypF+X7zBrYmKD7HaErhPdhmLSa5puVPjpG+3G+9vA/aBWm6wcPQxdsLAY0xmzRwTSxVJU3rEayCgGNI3XBP4/HzuPOvxmPh8DPz5z7/gcXb0OdBawdvthjkNn48nSjEctzuLfLho7lNFlWIEzFIvJ9bcttJXMtAYH6hJkWdT4GjqfS2BJmN2jOUooTY+c1SB/lUSAdm+lkAS4BjjFBZXdlvKUsEGnnsWAsKUQK4X+wTavORuIRI4zsleF5Bvew8G/VdqeYaKQyJCYjlsmc4mWQ1MrA1LI7jNHNmyxkJKbPbBjmWqK/GUMHa5/B4LSToly7AwCdCBJmeOKbFtxqN0qhyvPlcyUwPFsj1Q9kDtqukjaqlw9l5gqhBhtaJ6Qylv+PrjT/j6409ofsC94K7YqpUcRU9/aJVgN4ECCmW3wr1axG4lvkF7kxPI8vmzDd9Rb4davVP4GJsdtQ6uX58sOhyl4f39BxztwB//+DdYa+Dt6084T0oxPM8TP//8C84+8DwHwgYwJ8aiXT+fAwmQE8RMm2UwFZzDKy/RWwZy7N5YS5x0KE4GJycrCYXeySeAWCjJEkx2imJuM8PSSHVF5fjS3uAwPOaDucRzCPQvmMHirleKPA8ngOX1QJjhib6BlHN2xJpoautPlniAWmkrJuN5oRQJdhcYvrzfUeuB2/2NoL077vc7aqsojQWM4xBiqRg+WxhTfoM/c8ieeIYKbO1PoX5gx3RkYxTcvLDNtrywwNVGX7VHQ1pUME5dLF7BifcEyGCGBoFxR9H00rnXuYhosHWzFMtYqD1L+Yl5tqsFvn3/3P5sighxdg4Z6udJFtlge3QhAs9zKD2fx+OBOSeO4yYgiINE+pnDM66C/Bgsro3zwdypVJhXja5fcFt7LxWIcazfZ9Fkqahr24bzcfH5tXZjnCHAt5a6B92EFxY41sSaHWM8UTVkpbYQME3fONcT1O0KFco6Y0or+Hw+MOfCQ21+t7d31FoJVvVJ8WwV0j4H215v73c8zg/8f/7Df8X/8d/+jM9HJ0PKGUs5gGpB3/CYmAsYvW2me60SVldRdIeostsRDiuF7WfgGvVHFoeZZ8C4HTxUSHSgmAb/qC2cW2ZdzCoj+E6mWMpQBJAxtGLx1PuKSNabASCxxZT/0rcYiagBxtSK/bMRwcQwHCNJAOxOILvRdhEszHB4oVZdcRWOJmIuPPqD/qBWYROVrLE8kovaeTGB9ZQZhKHZgaM2DKc/e3rfoOgaE5RHJ+uyVOkuSr/t8fnEWhwg5V5QvewMmIxg/K7X7wae2AOfwclVdQU0DUqOkjErA4WxFpk6SSt0IDRJJtvVwkzGGDvRJhul7AQtEeBYht4nzmdnQLic1YlwzJ4aRNq4yMPHfuVlgE0BZYvVcPpros7UAjeUqLAITWFSpLJo4FYEpqsdRAmKh6EGld1779QIcPZcTh3oCLHBIjAWUBc30NzBaiZYAwliTKjhSahl1cS7Ahn8CBgGLDrJ8rFQ3XC0IiFuGv2skHA7OYOtqFcaqiAr9wsrJrwi0tOvqnSKs5LR5tfzTrpxvFQrXgEUKHBSu0ypDncGtWtNfHx8x8fHdzyen/DqaDguNkTMfT1zLU0ZJEhXyDBHnAEswMEqd+8DCxMdnHzXSlFCpQMOBlthRIlnTAbui5XSFTSmKQrpybhB0t619y3fTyddCeGu+K6s5ibAIA2HlQE3DXIROyJ/NsMHlqV2xsfvGBOyDOoCk8EyjPpDQcCLP2poTcn0TLAiv/J6FaBJOyTbYLjgfGYBWX+dAUNsdmKmnxlkbxFMvDjLBCXgF1jgFwsnkwOobUUoIa7NlK+sXl+AROpR8BwtJIM9gyFbpnY/GXOEqhBKLnL/63NSiDDZKLW4qjtL9PaJ1gzmfgEjyiZYcXDUl/sOs53gAq/C3y/Pf7+HVt7ZDGi5jmaY83oKGxLQ9151TAA5w1yvDQjnFUGBM36z1iGnnWBStsDwb2JE7HZPXldsplsuh5zrvhaC91yui/GUV6Im6e3Eq+xFMvuuYOtixoVXJjUhpb1kBL4wxfae1HquRSYCjQ49v1vupAxFee0XrEJflaoDZIb5fl/dFMzrBhEMCys6bCkoyqeebCNVGUvRsI0YmHNh9I6LMWJ53H+74LLLrzY19D+ZWLvODadI6vpUMcxrYAJr1x5I4E5JhNt1/7mGWQ1NQ0QAGtd16vGZG6wUxCALNif0Ja0cMRM73jeYZyE1UBgasQJYvaBVFim8OKpnVfdVu6eilINnfgFjcH+W0ijoamQujBgqCpV9LpJVkvvSwaAzW9YzQcmYxF06kZaJLtktcxkiJiz752Sh1qJfhi39vhhZQeA+EhQRmJFnacyFMQOfnycez1NiqtxTcwViDHg5CPhAAsnS4FuybXg5azy7gUsfkDsj/X6Ag1eoFcP4YinR5HsNrMgR1kqV8vtmcON+3lN+JnZ8uHSPZGAAqQGWNtY81//FT0S2LtJX8mhLZjriJWHQec1zz3zm2mCvbcML0rwELgZYqBxCUGCBewViaahbWMdPZy4EQAnowsoEUYU5+ciWIJiKiL6WknpDl34bry+u5EfMx4x5EdigdaxLVDCBgJLsx4PJVbfCJOtoKOWG2+0L3n/4ivevXwhEWcWXtzfUUnE7DnihrKg0G9Ca2qKsbeDJwEQngac5qHNZJWyb+nJjDOYFtSofcLFD4wUsq9zra/K5W6UGTW04btkK28QgAR6PJ477n/Ht2zf85edfAaPGE4G/CXU9XesdbDsq7lgaYxuFrWuQludmvKnIm/uO7Gq1h9tLQsnAEy4fXtKDCtA2l0iBlZ0XHKXB4ejOqV2zT3ipnHQIFWWMyf+yoLxC4d6ZayYZlRMCUwvTDLVezHLW/WxPcDP1GJMdUzQJ9I73rz+iVupyHfcbgYOD9rSpIEpWR0WTVhYAtdFhSwS4gJFs4SVYIZ8izUIsSOyYaj2OHGkfGyAyS1a7HHcwU+Z7FSXkjUUDU6GnKmqfVzteyYLFVOvo9lHXeU3QK5laz5PF15YMFrGyIqgJyKnAp0AMercVmY86Hp+fGCMnFmqghxhP5r41n8hgXkrQxbSDozjgpYJs7EiPwwnK2nO1VNxuNwFtfQ9y2lORJwf+lEL26XHcUGpVYU5tr1kUFng1xwn3BlTAnQyuGowpk2FtKiLPOXW/1JPrY5DdEwQhCKCJIayYfsFUwArcrGKMwD/++Wf8+u2DulOFE9ERtosiEWQmMgapLF8bsIwF3ywGm6XNZm60QlP/VFgJBObQdLwcMGZq4Y5spaN9vwrtiqnlMwFeuy3FKmtvHMY4WSRDFi71LjuHWruDa/ucBJ+QMS39Z4Sppsj9Tr3TQGiKIiYxkWXgnwIByepvBMXGEljaYdKcyu6CHR8aPY/p/uj7eD1V+tVWJmZZGPLPkdNpV2A5Y+MkRpCbbOgjC1ihyELSOVD7YWRh7n/8+t3A062w37sED0jJxHESiJhryUkbaknkvGL2wOd8KkMAjoNJG6UOGEzPKJiLU+4SfzGjeB4Aae4Ar+yLwvIszudJ8MUqaql4f3+H9QKsQibQChyHAR4Yj+9ABJpxIeagThNAwfJAwRxPGbIO90At1C2xAMbzE71PVnCyZQHQOEgJmQ2Kw42QyK6mrERTgliAVSami7Ztl5hzc6GSRsAushcAgQb21lYc+tQG2IDfHa1Q1+nL/Ya31vDleMeX9gUdGrU7F0VYjzu8HHBviEmqPEXBpXuFEF7Cqi8dk6NL2yCniKQxLClqpmoqHTFBnqlnH2BA8/7+Bc/zA31QEJFB90I7gL/92z/i9tZweztQKwPqNSmUNgdHrudntvZ3GxCjqr8BgwnNm8bZ81PprNge2VAs8Pn4GV4Ar4Zy40hRimQbLCpu7Q7zivM5MWKg1aoAKcRmuhL1fNH4ETBha2ffUzM4ovoliVbfe635XgWIBkTh3pmT2jBGR7xCzBhLkISfSHERUwLk1DpJ7awEh4xGm5IzFJiNWBTFlNErXmWQCyIcc1xJFbuMaASBiwm3BBaFJ4CXVWYgQb2QgYWCzgTKlMrx318S4Qgo4L/SW75k4ZWt6srRCo17/FWKTqOeLSXOXxB0YGBLjRWOmyZN9ATbI4uqeC62xtptJnsS5B6DzsCxT+oUhS22VQpIhpKkTPwsCgKOmHx+mYBB9mM7RlyQR1H1pM9T9OoKqwxTliWARifnCjbXWgrgCoHNANuoll0AkwNmnHKykO2CXJWm0d5LYGmslZtAwbhan3S6WHkRaCTWBEfMUj/FK+3zFONpJ5ZwgQKFyxrZfknBxDUTwNOaZu6IpXMA7a1yLb3WKs+pVf5GqDqFuVArQYwxpfnkTQ+k7vMAjdkOU8IULwxHJZxsEY4NYIZLBFLjdJl4OkYAIwwzHJyW5HDnfs5gj+6alcMZhDGyt2elBkuukZOdFVhYVqRFJuBgZ1/0j4w76EyqMWQoAhnYVqpWNY1HKWDLSfF0N4J2X1oHtt6YGLLuBJ+G2C2ZTJkZrNJ21Ca7JVCC+kYGA9uKqY1FX1oqR3uv1eEOCte2gtpcQxmoTxEBHGqHoFAwwDAhA9s7HIH+4OSpYgNzBJ6fQ4khdgDI6jZQj4qIifN8aDNNglZOdu9cAz//feq1OO5vN/zhjz/Qdq8DOdkrgRDaz0BIyJWALp/tOFlhP4zJVXUB/6FkZQa+/PCG4/2OL7/8imWBv//HP+PxcMQ88eXrDT/++I4AdXDW6ggstkoZ7Y0FoaVkU0VqFdlVGEn2OkErqP1Cds9MCTsLS+0oKMcdcA4UcQ0ZyGJDnwz8r4QKSnYLx5MHsMapM542A8hJQwl8bjvOEVg7kAbYOsZvuqrIOZzihRGYlRWJrlfFXHNw6mbvOe1JTDBgsyiAZFZ3sgPQyESPKb/NdiQbhufPA+eclN4oBHmyvT3Zb+eDosLVgZgTc3TClLKpZgUod95LkW1zx701tHZsBuSX+xtZf1XJuJtAgib2QcXb13eUVvFcHV4L3n/4ilIrajsYM5a2NTrmSe2ZLBzxTxpoJnRXEXJPtVNxLcC2UWuV8aNwVnouxoPHcZe1DozO8eh9TLDdEDCrOO5vcGMhdK6OOQxTLWy3t3+O484Y4stX4I9/+l/Idh+ceNx7x5///Gc8Hk/8+uuvGL2jnw+M3vF8PlnMMMc4B0YPPLt8fUg7Dq5kCgKmAZP0QRhbTrzRvhYYgbY5kbp1YQMvFg9YjloPDg8a9BvE4AK13TDXwuPsuFUOxpliVE/JLjwE2LX7HWsNPB8P6ifd7zgqY/1bq6jV8fXLO47KqW95WrIV8P7+jlr591rrbiubk5PGPBlKRj04GCgKbUCttr+XzJNkqY7z3PbC4ahe2eGChff7gVobPj4+sVbgfj/k4QkQzAnA6ibQxo6UA0WgHxSr2QQ8aL/62ZlYzxPmQD3Yts14ixqdn2LhHGKSF8WQo3cyiedAaTwzqYv5fHbUWvD16xdJsbDdDkipC9s2LVv6A4EmkXzDgTEKW7PBOLJ6we39gBW2slF/a+14+bg3xbBssXSBuQSABABksi/b8XjQD5GRNDcgFMjp4WAbbQDP54k4mSeb4ufWDgKekyyuX375C45bw9EPHG8Hp80LmO1nB1YQCPCCqA3H2xvaccPf//kvu/W91IL3txtcZyIAlNI0YCpwv7+j1oJSD5x94j/95/+Mf/zLz5gLZNiJQYZFOWYWFhwWFVHuUEJIAIrirNzjymeWmLTUNiSDr5X0aYwD1pQUAQoqHMWDcXoC4CZQEyp0qBiUADnEaizGYWYda7c/WmHbcMqJ7zhNfj99E8kGYvEH441aOfm8C7yeKJjR4KhYoRZepy7vOtmV0wudh3nDmTFe54T3Q63UfrsxLix15zhjXHk6AjiswsKQMF0JSBda03y1jrwf5vEpzj4X0KJBEaIAtwRJA1hkny89grd6tc/+U6/fDTwVAQqciJICVAq+V1YR6PhT7DUTgtQGAkC918gFA9sYIhBRNgDDTSH6NHBNGo6XIFjAFx0pv79g3EAztlDbigWv3ChLAUiKTC4doAjAKlHCObIvsyOcQmAB5sSssnQ96KzX286NMwmcK6lqht2G4kVbg1lhYEoAjOAUkwHf4mOBQFkL5Os5dQEsUHeSyuDFS0WtBJ5aqVTdLw3VOUkQYbpOtmBQyq7I2QKvE9AQVxLDpPjSmNkoL+wipAhQWdL/MkudkQxGeH9uQK0OMsoTFqJzLtXw9esbwDMrWqZjdE5LmINb9HYcKBqxmjhzdSMrdE04YgNPDK71fkZG0cRAxNj0xa3lEFAyxOmD7hWnDVlGAPs+EikHMhm7/jdfF3ctsB+YQBK9LBkpV7V95cndjIr8e/6WyNc6FwkkmO4jz13IGGaSw4MkCG5rG7BVjGLKrED8poc694TOmU7cBt1CrXb7qWQJarfdEYC4ngaTAwYcfiWzcZ2dfK6vfKbfoApIiInf3+05LE29ADiZhNhOvvL9LJ2F1oUncam6ft1/PrvcG0TwE1xzjqGOlza21zOTdg8vl56BxbWd9hpvqvrL77y+w1Iyt/fOBub0jH6br+3zmECQIT/f9nswuMxpWC/3nYNmI3dw7rO0NxfPLC1E4K+hv+u1wcj5unKCnoy97tkGlfecQBRb41Q5TJ++11tnRGyruI5mGqVrewCJ+5MZkIwnY7UdxsEVsATOdN3aB7lmufdzjy4BPPGyRu4XQAdLfZx8TnZdnyWAtRdt78vIfjGAZzlCz5gblmDXi9XJ45DvE3qIkc9AulURSHsSL+trCiDcVM+y61H+d+upNd33t9SOEfO3elwAg8YEoezF16vi6QK7LVgVJ7NQAt/GhLA25ySZwp+nb51iUOQ+khbTSktju81zdGpBhFHDYJyh9obYnZhsoyPwycl5E1hkU6R2w+fnJ5MZJUG3t4q1Jt7fb5tdcdmlF4OPZKsAwHo5aiEqfxYA5C8DBG18oVgBiuG4VbSzwkzTVvsTa0q4PVJIVU1yzgX1pXXY7W6vhueym5dlzBcZo2y19ty88kS0fandE2ozyn1NseLrvRJISuF/AIghq6Xt7vq9vY+3r319+b7K/NqB7WZbCqwNk9jzZTBMyUsy9KgtRhuSMWR6sjxju3t4e7jr3OV5P8dg67WKQvw9AYiFicdcatkTAM+4TkNuKkfMv719AYA9vMW94Ha/cwpvZdzyRe0tx8Gpwcuop9SO4xpNL6Cpx4Trv10swXy8RYNxTtd0LMsYLGOFZJ1kXA/GTPkzigehuJvalvGy76/niowR/bdDDkzgmisWXgABihCjCEXXzLiIQvq3nWOcvUt4ueLxfKK1G3rveHx+YPaB83yysr8Cp3eJlDNZgxJ3xNwgSMjO712nFtMZ+cwKwvP6acezwL5MtjRCwzuSPRhbP4vvBwG5BqiAjmkUcU52hRtaK4oDG+5vN7y/vW0dmJxS9sPXLzhqw/vbmwqiFO+utQp4IlumlIL7/UZx9ueg+L8YVRSUZky9AbI9spN1Beq8KBazK/+hvWeLohnFkJPD5QiknEVs/5bnW62yWYwP+puMsQPj2kug6HfaO3OAMJUAUMm79E6NXyvMRznAgQAlgSdNpyuMizNmW+sSH99xXKxrepfu99UOmENAJQuMKU8Si2eiqJWUQL7scjrT7QPIuLbcc9v+WJqv/coOn22HMg4NsB1RsS7AQkXs3ew7J2BMYYiliXUuCYejUuM3oy4Z1hTDoAYRbQ/AwlfaiOIE/ccSMzA1JpZt1lXvHY/nE79++4bH4yG+pzbPJg7xhnfBgeiPCr1XrLlfv8ljmPtyemzGJco3XhpQiEM4TIz7K+65YjHel207kNF10b8VxQozdiM61ydiL+vKy4srL1NPyHX5LwUUWlJX7Plbxn2AbKhpjA7MuS4rI0PZm9CG5LT6F0LC6+slz0gmpkf64Ix1s+W+wF06lUg85/K5mUtzF5t8leubl1/PYujvef1u4In+01GdLRGtGPp4YowTFRLAE0c0K4lxGqw0eAnUesC8Akt6NnPCNH41xfJGf6L3jqOKZeSm5ypwajHpbZ7BK/D5OCmOVQxzGs7nA2sYxpO6LzMWynCYB875ycD/SEr0Ak1nQUWHWcE5uujEnzALCnW3irfjYEWkZeIQSkoVYNWCr/cf8Ownnv0kylkcXaKG5UajtU7pOGUPvAFHG3AL3BohooJAmQvuQ9MmHMU5uYNVeCiwA0q5Ec07J25fb/j69hWt3GBW8HwSaLnf3jFW4PHxiXI3NK/wdsCqhE+N41vXWpi9o7UbAx2ngynQ93TfAYrT5RjaiMBxYyBO6QWKJK5ISu4E5hPFAkczjm/1QDkqWrvjfv8XGCPwPKcMqu1Rvvx9w9sbmVkeNPS1Vnx8fMPz+UBtNI7NNNJTFa/+0Xce/ZiiLjca5mci00FB7px6yKod9bcwJsdFD/ZNl0oknJFzbJMQCLBArGrbmHhIMA8mDQwzzBBNt9KcwIAxGCyV2tCaepdlBafauzyJJwJDxmKVhoNnOd4+fUip1NGIoDMf8wGCl10jsAcabuCUQQYZZHOb5ILIJoMBEQNKEWhIE+SC9M7A6mAmJNm+ZPyVvXasSgdp0YnNp06IhO9Lo0EnaMvnuqv5abBlYFck8yZQnOzKZo1JgViCywh2wQ0zJjWgTlrP2+3Oyq4o0b2f8JkgnIypqLkh7Sn4gaM13O93PM8nzt5JVY5LaPp2u1OToFaxQCeTZlf2HbGfH+/kxVlkUg8gBcm7qibLWNEKAx1OJgliHe42l7UwxklGkVdVd0ITVhTaFYc3x5ikOjMOkMPcTLkXJ6ox2xEUQA2EAMsMzlYip0hQ3QIE8gFsUWPofEDT+GJhzROxFprue0iLAWCFrR4HlhOMSLZLJpyHUYh3rO0eAQ+EB1mDQdHXcAOsUcRVe2IhxJjlc2AlrQMg6OAZ+mRgKbAbmpyIOZjvgkHzXKTQu7uYlMBYnStcFH4HWbQICoua9gnPrcE8K5u0p65qXs0WjKnpOMF7DCwGmC6mUiTYFQKHWWSYKyv+ak+bUGtN37aDrdqRoSgy2DbnmJw9dh5KsJVAEthnkDgjMMHJqwRoD0AB5FS/lBeyko96kOmEQpZAaLolAC8HcoLeWBPjPPFYAzm0BGa43VlZ6+OavApUIGh7Yy3ZGnp3ZYpXJCXbVWqDWeB5PgBbKLXgeQ58Pp/4+Hjg+Xji7//+z3g8T/oIY+vy16/v+Od/u/B3f/cn/O3fvmMP1bBkqSWFn+32c05p4hTcVC0fvUsl0PTsg+yzAlXoDT/+4UC5LfT1Fb2fmP0TbIk+eT6XfImlHdAkrAjtYFEfpVWU1dqxTsalmkKaiSFA/xmZHECMW9B2Zzt95B6QCHGtWSohOJjshD4XXLOaVycDyKPCDbgVQw+yrjPIHUg9JWl1IFsEOXk8XsBMtrYS3AtQP5FABrhfg20lBiCKSXKBrJdSQP8H0/6gza0oaH5I00qMB+c+XBH4nB2fjyf+j7/8A8YMtR5S5P9+f2er2u2O6oYSE8fR8MeffkAB1DpaUazg69efcBw3fPn6gwL4Kf0r+pfb232L4aaeYGpjUUycjKehtjxzTpa6tZt880DExHg+CTDZwowHhsAcyhwwRndUxj5WtSdYAIUHGcMGlHpIJPxgTDIWqoYK1aKhCuoFfz7Oq7XOCrzWzaR0sTb7yEKlYxW1KbcKK0WMYNpHFEM5yHQcvaPcHO1+w09/+p/hZjifT4ze8f3bN7RacD/u+POf/4xf/vIzgcgV+IePX3COjvN8YIyO5/MDfTxx9ucLNsDWn+dnRe8Df/nHT9Ry4H5U1HpHKRW9c5Lc82QO0W4Ncw08nw/cbxNvMySDQVZZWFADtThuP3yFHRW9Gbzc8FYcd7U8jjlQSsEPP/6I42j48v6O43bgdtzQbgdF2yttx1ErcjIX1O5yOygs/Xg+aWdasrdts7iT5cd7WDjE9KpicbVWX1qg9fy59DikbedmGHPifD45lbE19I8PPGYKtRs6yOZ6PE8mxxuMIxODOmBsdbbe9XlAgiv3tztqqVzXMfBxPrm3qnQnEXi/33A7Gs7nk1Oogxpix9evnFCntkLGLrop9unjfr8Ki0WTJXlWDKaOAPNAdUM77mRAro6IiefzE4hAdeB+NLgXjMpWsRxEgQlUO1AbNrg51lMYAPd5H4nDUhIEYmQTXpN8SUmdrURDEjhTcUpxDOOGusGyZLF/Px9ABKesh8geitesUgeQoJSjmDqNVIS1GVjnxLmenMoITVtDADHEou3ghMSK252syltrGH3g3/67f4v/97/5N/j3/+k/sAXZDcGxapid4GGfE7HILFrmmOVF5kHFtqGYsUp2whPcdrJU55rShQbKrQEr0D+fHBAxF2pLHTI5fOULW5kBiS4D1a9SvyNQCgvo1RvGmngOdT7EQpd8UPXU61MXlq6FbXJqlSM8jFhkaHmtEtp3Ei0QAqUdUQlOjbUwF9AHSSbuFd4IMoUmDloryA23EBjoG8yydmmGYUEgEikByxTrL8YDaLTTtXDgx/JBAF9xFpxa3IOJDoo53o47qhU0z2FuUNsqdcv+CjL8//n63cCTmXA84yHlXmWFsCr4ocYMpMGhoB2BwhIJcjQyo+0lYcVOB/pCr47cJjrQY1yj4F9HSwIvSGaAwZUExRPbdJDSjwU4GvBClXNjMMZqr8EwWaUpFL/NwwpTZdvJFoip6Umq8HjeO2xvMKsFcNsaBa4A3YViUr8o8ixt7pRpNY1+F9WT2RMMIlR9SW2CGr6R+2L+kszkI4mN+hYLFCw4JihAa2n35QASWMjJBrGrJBFXokxtiNcNlolVQtraM1ozhNYkSPPeNUwP+OLeqtXgfttA0aq+YVY3Qzt46GJT/RdKNRyo8EoDGSsFCwPFA9Zst/WdEbCV9eHUNJIjitcvBd8iApkxPmesHTu52Em2btQUrCdoAF0HnULu16mkLZ+Q2nosmVITgZY7ARwb/yruk3t9XU7VgBT9noujardOVyyBR4ugpWUlTm5qLYRNVrgXEBpJyzMokCjZMpGm+Tqb6Rhz/5lAkd/si7xG/YX6INj7jxMns80s2Sh8oNlKlEEQq+wM+BGk4BadFSauBD3Wy0dTpo2qaXkx8fIMkm1IjR1c/ctKyvJ+8h4pGnnt/bzdDF6AtFF8RlZoH2JXmO3lTEUeHQBxtYCowpvPgvYqI4fr2XJ9fQNGsIstFrgmh0WyIHbVZ718YTMAk9sUATE+9Elp7+UDCEhrP0ao/SBBx1cQKteS15ZVNV57TsgM0ar5c1lEg/FzeZWCdw3XM0ay/X6z01QJ4zO8mIRKTi/Lw0p2lhqzkrSfjRLWF0YqbanE9m39Zq2Qe9MuNiA1ETOYwsteMiQDJs9iCIQOfY/PRWfJco1W7l7dC8RPsdcDpv20dK4UP7yscY6I3s8ev2U75dvwPJjs+vV8r6dtO5lk1W/tqnZq4aUP2SidIL0lX8FnSp828bJvWJmiL+Yc8g1uI4B+anR5Omcz+jiwSMAxwXy3GaLYG6cBLbX7IZaGcixMYzLpxfDoT3x/PvDt8YnPzye+nx1nn6jSOjn7wIonSv2GH374gQwInau9F/XcdZoUr1xahQYDfGn76UJj7TXgTzju94qwA1++3jCGY3Xgdm8bmIvcu4qLco0uVpD2VrKsQ8kJhtYv0nFpn+s+dgRGUCy9E0XRKWZsuuY844xdDKnXFSZ9FO1Z/o6yoKz04yVQzQQLIOgRr1s6doi3Y5uI35z9cIFPFpBUj+JNVuYJnHOyHI+b/LjOYWpj+VL7YRDUcivU9QJQj4bDgPcfviJg8HIQcA3g7e0d7WhotxtyMA6Bpx9RgsXE5hXVC97fvqC1g0m9UyXDpZfUWkM7Dumj+baLbE1eWB6cUNXKHq+9k45kTNOcUMhZfmJtQOFi+bAajt2hcO09+tGidcri0SsTOpeslEs7JcHhIrtwMYEdOS1pRfpdB6zQlxSCTlb4/ggIMDHuBTHsTK3KsIUwZwtoASLuqKXgaAd+GF80BU6tIR8VfXaMcUpMmqDTeT62D3YjaHueE/0cuL9/RykNR3vf+5ouIvD5/EBY4Lg3REz08UQrbHG7VbKNRraEFTKVOE3b9yCEWivuYiaZkUnydr/jOA58+fLONsla0W7HpaujIgQyLl8La06U1li0XGsDTmQriWvy4kPStyDB1jVgMFmDPA5as4wkJgHKUlygI0H1sqgxMyfBBRYCunRYuxgZ9TqfKdWRtmQX7bFZR4CAChuAz11QNbV177g4NPjIHSFB+DlyanMyohkTb8YNqJ3JVvmXybjpR17iVtrs9PWK015iidRfi5diRuw7BRCGqRbVbZVdTPndvp5+eu2caA90WGvHPhfQzg+i72SbdcbI6ThSt2qtCYtQVxLPwlqGOQL95FW11hQbXLkEPbXvbqA1STBohfIMRfcwcBVXLv3fA7DAL7/8jG/ffhGIB5RWdjtvvBTqQ/+9QJu92xyXYi+RTEx+MRlW3B8TS2xMdvSYgF6nT1cxY64AgurGYf4SO76sVcaVSGZZkuLVzyTgPvTvAfl3Pfal9WMsbsqXqCkNV7eF/GWG1O7Mr2JtLtP+5oLa3edCzALbk6yv/ZksexaCGVlkLP5yShgX7JhUNt4BiUzJ3dv+vc14fTlDV6yXMQen3GIO5CTCjCVz2vPvef1+4AlTC8ELjzWBecJWx3v7gtoqK0BzYa0TDkcrN7QCtAKc5xN9BEqls12gXsD5+EBYBYxTN25HQ6AjYqA/hTI+O0px3G6sSDwej60ZsgNJ8HCOU5Wc4ihoQFQAHJda2x1hHcu+kaJZsYNaWx0IYN7uRJ5x4wPV5wxw9KR7VV8r0DTdoBbH6AOPxxNwjhw0IZiYJ528wJoo7B+v5dL1qSvF8jKhYORa3HGr/CKgMTFUzSMSXNAmpxmMxSkpt9bIEIiFVXLqwidqKXi7NbQ6Uf3EBKs8MeLa/DBVCwLn2cU6o0BeBnrupHrPSUOXG3TOIZHN1FnCft+liTtrdrXlZZDN+3k+PtHaDff7V7ZFjECrasHwAmBhzAfGnHg+nht8vN1vOG6F0xTXwOfnN3gsLHccVvB2r4jBtsvHCvQA+iwIqyjljdoibojo/FpJc1Wg3AxYahV0VkrnemkdNYlzChyYa+LZBymNRqp7TrxikK5g2RMkWRRNs8BcnxL7e4dZUQVbRk9AYSBk0ATEuoDg4pjnwOMxcL/f4a0RgI2BWCfM2G5qHihUnmf6MU4a5hAghAoYxUXp4AapyaHWGE+IVIm1E7ylEOIAjvz9zBoykZGlBvf91pEIIDjKhMZaVWuXuKvpOXEyWkDCcEpXkvVEgKyUBl+GZ/AcJ8lhOTBsYK2OZo3nTMyVBKNq5TSNVgr6OXjGQPHbVgsiDM++MMcTz8+HqOu+DXZkvCGHN5CaZwGvHOVK/c3YumjP51O/d3mU1PU4patQ24tANbO+DYBNGfmpfm5PQDMcAQrmV79xxLOeXUxW97AqOIVtcp/6C13XQPB1XxoTxBlij1iOd6ZTR0xNqJGgqLRmlhJjL0kz9k335VjiTFBSa4OA51qBGHS2IwbOxaoOSXmZIFm+GziEgs96iQUxJgGh3k9QrJTXZgFNy1uwMsXqgfKgxfO41EoAhe5hCHTZoCePvVM/pmgy54pA+LyS78mEhAKgxwacak1dswx6WK+accKgMdvBoJFasRnEBHKaHaDpmMFpPRacApsZeZ6rbEGqZlhWdnvLbAoeZpenWRKSTXFt5etuOI6691sOy8hWCV4KKfbZXrEm9VCoY1G5RzP7CdDOTWCOjohTcQWDIFZ75TXWwBgPnsvmaDlowlj1/fbrNz7Posk+tcFiwrAwzom1gFIbAmwLcHdYaTjnQp9i0kbg+fzGqYL4JKmxFXw+nvjl+3f8+v0TH48TYxbAKt7bHTEDH79+wy+fA//46yfefnjH3/7LPyrgWsJTBA0aUJtjdPoQs6G1y6lJDL1myP+uKyFhgaLgpz++4cu8wSr9RyuGfg48P88NeM6l1lqxebyKaRaqMM8Ojimh3uOKwAC145qm5RJgyumkCh6lV2c6CSsmjuOgALEny00IT6n7LCU7fUkD72YV1QzeKlnS/YnIFm+jb41s64mpMy3m9zJMvLQAxAWLUYbBGK+TuivGUz5PYOhnjkp/1kExYde0YTPD0cgYOMdJTY516PhQDLtUx7AnHIGf/tkfyCD/ww9o7cCXrz/t67t/uaHdGo4b/fdcgVoqvr69wwHUBdwq93Lqbzw7J/5VCXTzsasgpGRtDGqwkIcJDNniFexiDgdsOWyRSWBKCqoH7s0xVmBEh9nagChgGkDDGJNrpuLNBuwCraRvFiy1ZFf82qqt3dg6PSf6oBixO9lX5zilj+QvUhO5xx3QYBWriy1ArMrCANwOsVaCIITXtJeBbx8fQIAtZ9Xx5cebNFYf+PGPX/DP/vZvdjz9d+cnJtZeb5N/fT6f6GMKOE7fV9DHwLdv3wCrML/h4+MTj88nvv7wB7Ta8O3zGwKBduc0wdqA2U/088SPP/yA++3GKU9GXdJWG77+8FVsqyfe397wdrurIG/44e0NZkA/nyhe0Noh5nfAG9uX9oALPhBqF45BfVvN0nt/e4cbmbYr5mbsmRHrnbDdsUAyaOD5+GAynVMuQe1exsTchx/fvyOCGokUnL9ikmQ6HPcb4MBzPPYAFkdBKQkoOMwmC/2TTGCIvVWcOeOcE6VN1GbwMYAS+Pp2k30iGDxX6hAafvjhK4o5Pr99YI6Jj49PtFpxv903EENgaKlVikDsnAvfP76j1oLjaPByFTiTLbzWwvnsZK+3otgp4FYBFDyfD/lbsle3/pdLE2wFnv3EioVyBO1ZO6RPtJRH0WYjOIAKAIvQAay+th1IbVvIW8aaGGPh+8cTpTUc9ztjoeJ4nif66KhB8f4ROXmsYU3gMQJ9LpTnxE9/+MquHDds9dSYWLbQx0RfE+N5Yo2Or283df0UjA50o6B67wtWTnip+OH9DbCF//if/j3+29//Vxw3sv3a/VBoQrBoYvGxhWHFxLSFbkMgv1NRdUE5U2CowycQKLWglYaOEyMGsKjTGYuC6Le3Sj2950lW7+D0KWLcIoJswArYJAK1/c0pWxuB4o7j7Q4WfQny9LUQfjDmkA5/PzsWOA3Q4mLqwhyoPFNT5zBiooK6jmN0zNkRi1Npc5JsFrZX194IIFbDnMyrzEAfGgvnfCIFyOdiRpSElCzwzkIf7YvC/Q7uZ6xAUzdCDuqgdnKFtwSn1y4ymYZxjPnA6gPn5wPHceB+u239wNVTu/Sffv1u4Onn5wOtFvx4fyNSNwNTPa3LHMuKAgRDK3dQxFbVn+VivMT+s2Mk92g/fARFjsc6SdeW8YSR/XKOhRkGeJVg2NokAKtqCyshY0WtJM8kCBPLyLgK0yYkxKrP4AOrqgZlRchSGDkcIeR4b9Qgo2ko+JjJ+AiompoROjbljUr7IfBI7QViFGxK5AIQjhkFjwmcsaRJBPTBytwP7aCeRb8YSXC2/CGku5RIpnq8kV8uEMEVJAe2JsRaKTyr1oEIMTZyM4JIeCy1Vmo8cgY1SvwJKlzVfEAtBIiXHuOCgolWK6o7SiwgBizouAzY9BXHRPGF1mzvJ0vmExg0HaUKIechfC72ioeRjriw1BoSEjLMSsoCfGHAYZHDJEkthC+ET0QxRAVict7gCh5em7kBAY9AcxOQQ4baRp+xm8xQVLXIZC1b0swcJRkOGRBFvFRksrpAEHNo/1cE4EBrDneypFKweS6aoZV6PYW96Rl8GAK1CrmeE8lsNKOooLNXiMHUigTDNwDA/XGglSJ24VU9PTSKc4wnjV+xXR1LwT8Yqyh9TlH/1Do2ORcFxv2GZAHtkgOT41mY9C+J3A2nhoNVicdLfwxWEF5oq1Y+49zrmsyzgpURT5YQBcN3z7ZlDp2MpMuh5KanU0vjS5BjBIFhBoJOBl29WIW75xpQF6eq98Hnk5NgAJFrLQTKsa3C5TSAXazQNVyAcViobdPhNRtal65ZIIw5bAo0joUcwyyYCanFsLSvSykM7gBEOGb4dnwZyO57CxIdqqoqy6n8ZXnTouakDoSbigcz74X2L+nYc4WYAgtbewixNUUsAnexP/kRBltABfeAnxCtvio45e9FxJ7kmSBLKAgqYk+kwCcEUJV9C7H3yKFRzoa5W+DGHHjVVuGkM4LByYDNdpRYrApmRdNb3Xt/dfrRqrHnVXoMC5NdBdKiWJMBPMEkXlgxFoiSN2UQuxdATL4vlhH4SteYo4EX/x6AxOPZqsgiCSesGRZ8iU0qX19coPnquETVQ3tfz1holnmIoCM71VlMCsRuxewnz7RvsPRBA7U45jcWcNQbAkDvHTCH2yfOvnD2sZ/pnCcIaZ67Anv2jsfzBHrgAAVMUQyMnx1vty9oreHt7Y4ff7wD0fe6Z1eaKaxShyteJR42CyQPqsBD4nPcB3OS8YWgn/rpTS1t7nhYwHSfcyYzzjgeGwT1TAEkA24DZmrNsI3ZKlnlp1iVgHNKLRLUnLq+JUALaNVQSrBtXmzQrODaFlKlXg/UHl68iEmbDEzgdrttdm6C5cmLSlbD0tlKBrEqQtrTIVtoCu4ZpyzEBvur56hz+qtbKxztjorWCm6Hkmcjc2JruKGggMkGB58UlFq2dMSPf/gRMMPXL0+0duD9yw8s+s38WUe73WHu6BovfncQSHaxc9fa9sCzcJETjcxVtKIvzTgWxpa2QKj9xThpTRaoaGx9rH7ZfWdBylE1UU/7b/8lNguHfiir75ouCt9Mi7nPLOMDBxNnWtzOQmmhPW43h5fAis5CVxZEXMnVws7LvBoiktUlm+HSH5oXUMTPetGPAluAU/utFseyiWmQpg8TaMBQGp9p+sxaKhPio+HZu6aOSfOrNEQE3r9+kbaL4csPd4w+8PZG8eQfn/zsdmucKNcKxujoveN+v6O1JvtuW4PrdtwwxsDZGm43tuxnCS+F+lkQDIwYZJwEmfpsn5L/GIzp3NlOhFgs6J9PTt81YC4Wd+eON66iQmrojnjKh+YQD7aB5X5imz196FF5pZ65jV2+GK5YidQhtf+TXZr6obm3JAAFuQu0mn6ORdTihTklFrItOvWlRgxuGLUahUTEJ8hqggWsGpYtnOtB8XhzDu1Y2XoMnJgsOlXqLU0YBtHqnYumXQlrZON0+jxbqW1LMIcWg2sw52BbpbOjxoy6X5YIh/IagloDqTmXung0d2RJIUJry86YZC/mgJOudWexFGg1CKasgPtErcqHlH8QrA64V+k2Tcy58Pj8voutgLMIbYF2KxjPzsE7c8DXkrSN4fF8sjAo7c2JwFEctVU8x8LHY+DX7w88HgPVKXAepxi3WKhroSyIkR5YA7ASZDqm5pM6LKYm88oycs8tIwC4TKBJqGBCmzck/bKwOBjClcfThct2xd5bpr2InYswjyquKZGlEMiSnEZ1J5txBnwpJ1sTWBpgJL87h2J3LW6pPE9rnpi2MNww/MSIE11YRw5/WfOk9EkE1jKMnnk4dR951JgDlNYwgqAt/NLWJiFH0hSZimwsIvYTjeXKy4oYwtw3R054BfYbzKBeXxgQJeA3B0pgGjEaD78Cxt/x+t3A099/fuJ+u+H9jz/B18I8RfkyYLo000VHbO2AW0F1ovdjMhikSj+N6bk6F7/k2PqFGQ5Mw0OTAZisGOCcRDROtf/UA7M/sUBbVAywxr/XpoaJBbRKbaq+iCLSAAWAivDAtMrge7NRFug2FntMzeCVKDeikD0jGh7MMRZTtz2pqjZAk49srt1SZTBVf7Uoi4egWoHXQlrdor6HBVAXU4IBw+cCpi2yHWB4dLbUHeVO/YT+yYMlcbtaGyu6g4k1HbzGbXpBlIqoZGSZZ9vP2m2NRI8rGWyLrIUiJTX+N6f3hQKHKXe1iZRjbE5iPm1WgROR44Hh5C4+y3tbcBjqGvBFtluCDjQmvAcrBr8baaOaJEYUmc/Y6iEQgFWXp1gdCwsnOiYo0E4XS/0nTiJzoJHnsDan0eBFWl5lYBXHqmwrWhhY0qBytYqZgqDblfnjEk+GElSyT3yKRTAHp/atCW8NXgqqkR3WRxpdGYsdHIPAKRbOzirtUl/6/UYts7BTbChgaZqahQQQrSAWnU8Rff04qMcQfQDg6NSMT6Eqz9k7Viw0JF1fEMMCGtWJdyJpYDDRjip2zyfbCOrtal2dMvbOqv+jd46HLQdy6leFQ3gYg7DsGQPEdCjoJRA20ReBxVX5rFpriMmx2xQ1PoBSsMwwNMmDBtBx1IqlgQTZMpwC0GQzMFGFgIe5yO6rlToBY6Q45m9fZtKZm7EZStR8otjrdniTiXb2ZnsYEI6+qCWUiRE5WjxVrTJ5ms+TpAPR8c0AX0sByxTbgrfQZ0crDaWq39sWbU9cLYFYleu4+CzcS3ZYqgWFSZ6ZzmQE4A0xNLkvIE0Apk18L35VpzYgxf5lHXbLKIGWZZq26ZWMg9TGyt0faisdnZMVDajZlrHEHBkU9r0dN1V4s/3a0MApO+tJOPHtTcBqBvvyOVYIEEYAzyeZTk322o9KwHiMzQL2PBdggFJaVRtOTklcmOsTMNLcad8o6ni0ImmNayTweVKHp6oP35tYEQsUT10Tb/cvfE70QljzgZw2+nxMnKPvlsA5BhPrSqasB20IzyqTjH5ScwvgJBR1psMmvzCNgjbhqEZL8DwHrBTU48bprkYmzBqTIrrBqXELE3MJ6DG1MYRApmU7dvCahAomImMsfJ5P9DHwfGmj5+RM6jGOPjHPqalS1Kq4tzdgGc7HxFxMZM/Rcc7BVqZKNgtb2J9Ya+xKIiLQiuGtVHhj0H+7BVor+PLjj3h7f8cf/vgH/HB3OAhswQyc6kzWcASwRiBAnRtIrJxFtqA+UhCISIp+JtnoHWt0RHA9//TlK7Kt8MMHLAKfj4UzJtyr2JDU83o+P9WmQzbvLIalUdbLxL6uZBY+O5Pz1BtzL1i9I8CzigDWmrTL7YAX7ZUtDC/qy2RBz4LV57km6v1gm8WzA4vJQHXH2/2NArSPB4PlcAbVZltieAb3kWHu5DQmv4aGsvhBhjyOpkLo2Gt31BuqO/pgYeH9XrGW4agLX76+4evXd6ROYOrf3O9vKKWh+he1jPUNHEA24e3tTYWUgVob3u/vrPyfJ5KHW24H2R9n6jAOZJuJLcbMvTMerk0V+zkEfkDt0Y497EE2vbWm++P6ZEsKjHGuO5lNSwnUIoUPFpVsQk1pTO0ZgJ9lzWWbVK0O6iZWTfRJADtsIXDCzMlgE+gwwftkmxdwb8nAf9B+F9qZbMUOB7MOB6wSUMrelUgAKijg7m44Sk1CG9fKDNYYX/WhyYG1IILAX8TCRN8AB3U5XcxHIzhYKkGo86SMhxcWym/cU6VSe+l5npJeIFDiBsR6h5nh3sR8qAfGnCycqbW6GvdLglBYjHfGIOjgbipcAH08Gd8V7Y1xXqyBTq2VOVmIezyeMHPcGoXmDcDz8UDvnT7QDGNwWjY1ZBkXt+KonvFykG2NQDsO2Q7+HDGiK1Y3AF/uyYrELoatAHKoTQJP9HtVwFgyqAJjcWpXEfv/tAk3w7055px4jq4CTEUMyqrEyN8mGPNcA6VV1OKIvhBj4Sn5lQwLrAErJh6DBInmBXP23YIXAM4gy85bQ8DRwzA03XsBYqkxri0O5lF9oISjBPYZv4vhxInkZFFWa5J9YPLdGoGEPsVimprKFwNTAHu2rzo47IqCkzzbxZwASNB1pMZ90Mng1hz1MLRGtuY5TtQKVBWOoeuNtdBH4FYM7XZDP8lC/PXXJ2qt+Od/+hNghscaKMVwHAWPc2L2B2wO+JxoTlbd948PguOlYjmZPH5U1OPA57nw6/cTP//ywPePgcPvfP6PJyw6DBOH2JUKL6X15rgrtomVpTCgqy33VHsmu0dZdKuLYHJZk+3HizHHY5ABFO5YblgqZALAXd0hLswicxx3w+iD4JL2s0vDC7USv1iLIHNxoE+2E6uYg3kVJYvY12sNxCRr1NxQGm3uGQ90Kyg2McrAQMdzPrDW5KTecMz+UCzIKeMsDnVYVNgqLBwU4ib1fsPqJ3W2jW29+XpOtcQi9dsY4zEMYX4RwUnMrXKq3VwdJYC7Az3IT0ubMTNuoVvZ3RhjMR/2sK01+ntev3+qXecoSuKQEx0d7SD1LQOQTfOqEhHV1IkzFgW0XAGFGerUtI+WyDM3hIHCsaFeSVigFNG/LdT/qlaYwkBvmSGqY1rBUL82HOhK+pJiPkP08cZqXo6J3a0q4DhvgtTBRZ56kAnOqGKDiB28DKVR271aJkHa+MYNnn34I4BxJjJtMIl99UEY514qJgLPWJgWGKaKiJumCwLfv38DxsD6+Ib7reH97UA5Au1upMo5gQXWqkTfC20cB0gl1gNHtrpArIIEmpba5/QIXlBcare4RnFn0h1M1sSMYnVFdPz8Wo44mUCbBCA5VpuB7FwDisNgMNRyYCEELHDEI6twTPDMjJX9WPBCxzl6ACCNe62TgB7+v5T9XZMkOZIkCLIIAFVzj8jMqpqZHjqiO7rdo/3/P+iIbmnotqdnuqrrIzMj3E1VAcg9MAvUsh+m87w6OiIj3M1MVQGBCAszSxVVsXHNLMYPkFM8ukC4nLbT4XcXfUCdGEeEAhNwg4vSgi82zcIhtLYSFIAAOavs7BbRkOtGCaoVJWKhDpKmbqUUItTxAtAka3CeZEwIBOYQMCgoVcljAAinKVwp8l1TimETYZ3odbIQJrvofU6a+FmO4GZSwZpA3MC4DSzNjPcqQrIWJrg8hDuVhfIbCeS6ECAj2de4aEaZsjxoQl2rGtU8WegQULi18OlxwIIpFpiaRuEW8kpwIKeGkWJLgGqOqcPIVyy6GWA3oEjGDgFZSrnKku+4GUotLIh7Z2eqOCUvMbn+TWvPKL8aQSBwgiyYxxu7bb2TkZATcIqbAIMENQN7ZQc2AaaiSUaUpuiEFfF22zZ4oQEzQCn0XAAAE3/3sYCqER3HcaG0Bm91dbuDLoV3TBxDDCUxMMDCCbAliSk0EyGwlNLgHHc8kl9KlkbbOHWRWB0T/tkZXb1UFBj2tiOn6dhMSTQ35BVdtGPS7K9xrfjXNnprhEbGPs9PAJQxmwNeKq7J6aW5uXOU+wQLdnueegb3Rs+7zoUtbb8bCipa47640DAxOI0HnOQWBhSTJ1hQnmHm6PJe3dsb13pXPB6BzR7wvQDTcY0AW4dzFSP0TXBYJQOF3TxdQ6f8sK7umaOfJ4d9OLu2Bu6TEZRQnweLoZg5uXbi7E9EcJ9iGPq4VpfwOA9Nk+L6+/xO8O0aB0/dlGjOQWbwDFzPgwBodYw5cF2XfKkchyaImWcRpMJmxopX1Zj4tG0jq3V0mDt+/GlXQllw9AvHddEQtVa0PUHgN2ShVdzRakWrLkDTE1dae73tG96+vKOBdHkvpoIrC3oVOy9nZ+LSy8hfMbtYIVNzdh2ROidKvq/hkg3AHGlISy+gUoE+OB2H8h5D3TayplIW6S7GVYiJ5jCvyBNOF8ZO+philwJmZNa4mBTp4ecv3kP3GQehrzRDrUYJRw96XaSctc+B8+PbLSeD8dw2lmHXJBBWNz5nV+PBqwOQZFVS3mgcX97e9jsuB+PA+/6mgR5iQu+SewTNl6vGyad0k5K7HUDBnBuaG4p/WcbMGWtX8zIol6VUC4AVxTyCcgg2FgLMtWKQ2VxLkUk3i6+hojQKmTjbtvO5DRXqJiBS65LAzA04LSBAzc5SXNt8inWSPiW2ZP/9hZ3Le6L45ck6gPJ55l9mhs2aOt38uxwW8jopKr/XxJafEQuYcHWxuoBo5lsFpTWye2ZKstJXDpg6h9tWKXXq9JItMqcmg1TLN5tCM1lRvsCdZNM9JN3jviSYWd1RNkdttP8YYtfPwSEwe9vlgbWWHfrJ976uDusTpevsspuxkc/m++cHshiZk/5ICcD0fgq0OLVOZKAd4wbp1gcW8DPYKDjlf+PGRmarhWwENfARgU1S3vT6SY8t5u567mL21nrnNolZDCbaYlmRGWdQ8SBwxALA4F+t588DiA2qObA8T00A1eQ+/Lw+lYvVlTPkZ8gU1IPS/BLGEfCTTcq+zlkOt+C2iOV7lVNzqUzxFXuJaEvBoLw1a5W8L0wtWRsa2IyrpaCaL3D7uE4koBcBmLNpvUbL69mxXqEEevMNCCoPyqqddE+zppR/XqtFja2B1jYBq8wvm3LujMU5GKAVwDcTG+6OUxGQfJJEgj5ocfP+eKDWSoA8mB8EBAhdA+fR5VFGewqDoek6Ecyt3Cbe9obHY8e//eUbfvn57/j573/Ft19/wRhUTOyPLa2gcU2e+2aNEr+mnPCF8cnmLlatk0NREGQV+SR4ZBFok0BKqQWwwnw2yPAyrKONa7NywNPdDJWKyABvG7ySFebmJM44h9vYeRK/mMwlt22Xioqfq5QiiF5svE4ihJeCWu8YzOdeYGHo1xQjytCcg29YVxqbEdNymgaQqqrO2trUSHUTY9boKR0wEnx0v6gs4b4qMFnzsH6ILsWarDfIeCdjzsUSy+mgfbBJ6KLFE5jFOmvNuAf5bPC7v34/8DQGKbugBfLEhLeGtjXgGsDIcZoEBKihrYg56bpeDBb3iirBpKJWAilz6rAzQwsToCQwqqSfy4QEoEwquB4RMEyNw+ymwhhQoTdXl37KbLJ6UyJNingkvdmYLPFg4gE2hcakwdwaU2zyCwHBlQkW6Dn+OQ2C82DfGr0XTFKf2UmxJ8MJLNQvMn/abugBXEHca8oI16EFFYHn8xNxnRjPX+HlDW9W4A1omwGF7IECAjQITmUJCxR59mDSNygPi39fWN8GyJJ8vYBLytrWYROZDEHfp+QhJyoxohG0QQQXfkq/AmQNJf86JMucOixLhWHgOZ4vHZeUIZHJRR+EiVYbbnM4yT+WZDNNF9XJm8lGyoTHJRkgiyoQmKOoW6GDVtIsgKg/b1nonqUB7mDAn3lfWRAADHJJHY08MC1faxNAwzuZgcNz4kCM+56ryK551xN40nuw3mAHrKiTNtZEuSK1pYm1lUdkSGOuREGdyKGAC3lTrPHYAm7uBBQLfBoaSc73ZJIZkdOthhJCUbRViLmnUZ38ScSscNwJBJkElGeRQj0pv0HosBDwFUC/xmJRcN/lCHdT7pTAExPfLIbMMh7kgo4VXFfCDqyiwFQchwoM0vnbihP0MaCBLKVbY72ug4aN04NMSSMo1XZyWNbUKbeVaOQj7xfZC1WJ+BydSf6Sj/K5JtQJqGsOHVzuZKS6jGc1ltcKafEOw3V1nNeJTRNNtWQXAyoTAiaWg6AVKu+zCrCFVQsQm0Z20ZA8xZ3dZQTgUVYHe07512SMUSKVMuFWKver1hpiav8kRZgJSA8yQ8Yk+FGMUgs4D9ez314YxemFNK6Oa3Sa3mZn1wRzzQH0vp5/Hgev+wGgKbGZC8hoLDqjYMTEcxwwGCe/qRkzTZ4Orm62Ud7T6s570TtiALMPbNuOrW44n13+GDThLo2SgEnUC1Yc87okn1ZBMS9UkB4PgSkjOMVrqw+YV1hoCuckWPy87qEQLt+O0YfYzEpwrxNWG0qrOJ6fOM9zyQbP82CRNShRpjdQF/BEOdfHt18IRlQyJo7rQkgeewU9SraN/jlm9CYoQTl9MXpxlOp4ezQULzg/nzALfPnSCDJtG57XiePkJJ7a6u3T4mS+tFKxtYa3x4ZWK4r7Gp3dJROkh1VB3RriDMR1LWZxySNUXW8CUIzZDDexzpyptV3sHjzAoktsQrEzYHz2cwbGRXkdQGYzrGCeBK0FvytGxmqeMH9yJqqKFfAqljfZvmacHDaVL3Evhs5QFgNzTjYNtB+JWuB+D9Ofi8MLAY4xxapVmI8xMc5DQIgABAA1OH2IA1z0eaGk2YygokCbsm2wQuDfiqO97ev8zvL1y+Odz0/71yv3Khs2jFcur8MhSUItDXM6zqugVXqNvg4QmHPgeD6R/mpz3sARgSdBHPIsNJm68tRgE9IKDcRLIQjy+VR3W8XttjX0TlZXmotnvHclE5xCzPymD3b8+yDQXuuOnCxbxNL1kr8z1xszzwU9r8gCLe+fiy17/8+dQNB0rAZh77efR17nDW74DZoAi8UZL+cBCzPnRGpgnaUpGQ8BTznVcxoL6ATtXkfOE/TxxSrke/K86gksbhvBqt6X5Cynzm07Y+5xXMzpJ5mEtTT530HNVdmKzPRQMow+OdG01nUvQ/nE8+PJ2GBlxY6i/fF8fi6fFwCSLmcuZtpzmVeVBahFYMktPfeFOz1xqMlTDcYGFQt25owlrQ5U/3SBIrW8ehyJ4QDl7gNwm5Kvqik3GW8s7lyUuLNiQrBovTQVTSUUl7JqqOsko7A9GlL4vyxDBACyPiIrMkEuEcTX2ovMhyPvO38JN0NuIH6P1secK09IKZblSk7Z3eAe9Momcy2F92QETjGT3LY7lplJksq8NldiNiPNXUBa5rpFkAAZh0raUbQe+3nhGmQlNbEIbU7UeqtITHUWp5pW+uK6YagJPjSwq+jwH0P3RlO0a624el+vAQT9wHrguga2xyZvL67HkjYYmQsY2dqPveF8fuL7r7/g+7df8fz8DkPQn3FrzMUxKAONybpMDAimkJThcq2ovrQsG4k10DCdLVSfkn2lSkCyzuIFNinjTuhvNUqW12gGIf6ZagF6q1KeXtD0zNu2kxF0UUo7OtnqrRR8HE8E5mr0krTCBinZP8wn3B1Ds/SKYtu8KJWDalR+LF5wNiMBKshi8qwRCgcD0G2iDDV+jH6RM8k1ssFJb7A15M0p33ZwnaadydpzBtC2gptlIKXgKdlljK7yto2Z8Dj/Xjv4DvD/wdfvBp58AmUErE8mAm3HVtjd4rsLFAEPjxkTH89PjrUfHWXjSNajc/FtbeOFbIYaBSU1ngAuMMHqDsCBtpU7yZ0GTKCVDeaVUqJwmO3IaWXppTRkcEnWSMgTgYcsu4eT5tqdFEWHa2oDH7wxu1WCFXdQNS5YWaVhaBHx+guBJ/AZXEpM+3WuIBjq8i5Ph2nCdRoNxqKiJx/LASuB4zzo5+I8gH/Yd0QpmMMwysBzPmE10N4qnucnTe6QgdphpaGUHbVuqG1DWujmoZbrZU1emNzwWtv3l/H/EVwB0t8C+s05PFgHEfsGubjdCsyB42QxxAlsjtIKqcTXxQ3/eOdIdAO+H5/8PG1nR9sdV78kRSFIVGQcd54nEMbrmyC6Pwti7gs9hssrZfR1/20a6b2Tk2OSjrlVrqVzXjrYOD6ZB628AzxlRw0eEzE7Nb7yLzK72XwliMkVy2DYhJ4aZaYTq2jhgXU/ExPlFIC6TzwIuCYnYAXwKrYDgGWR/BJsw7WumUzls7kG9d1zpGm5phYa4FvB5o0jY4Elz5xjKiHL5DxWQjcE4vRBoG7JNsdc40yT2t37BbjRoBLscJgb2lYRoBljTj3pvatYdoE5QIwLXZK1EZN7PQxmFXnWBLcb1yVcfjQQYBFA9NW1c8ldshQsYngVdThm0JMnxHYyM6BUAdMagV0KfFS4z1UwbfuuA8GVFFxLhjXAaUXmE+GGj0Hzyn2jZKe/TIvIKElvolwTweInkhn0kg0aTYbNHNv+WMlQLglJ1NEK47EXfqbzuGC+4/3LO6y61kQngKZEqUi+YcUQPdCvvgqIIcPKIaYcpx/x4V/m6CjyTTAE6MczLjFS/d9fraG0bRUucwb6vDhMoTZ0GXx3JZS2P2AW9P8yhxslJ8liTfNIMu8astOeMbttDzR7UwIZLC6Mcpx5DVwfB+NmcUlUuGYZ2ydyvH0CVtfZcYwTl1ZSLT/CAFxHrLg51CDpJz+E2TvMgOenY46B52eXjG7H8Zw440CrO9yB46Cvj291FXzXyf3S9obSgM/P5zKDBQLfDjZJSnGMq2OOge/PZNYYae0TYPYzcPWnhhFMAPc+//h8MqaUhs/nE9/TfN8IAlGadC3fktZ2bI83yqfmwNYIDOzvZKW0/Z2M6dYIMpaCKA3wisfbF7hXzEG5+aNJ2hGBahPVAz+8i+2igRYxJ0otTOYFhlzzIsi3aYBHo4SKCZXYj3EgRsBsl3SEa7M1FYGhpLbsbFTExPbYYB44z0/GAyPrw1E0kIRdVSAn9aqBZo7Hg9KEOTu2x4ZSHM/r5F5thflCCdRe4b1yzLGKpAF6P3ox7G9kb405EMeFa3ZOQIMB6nRGCNj2KrlQlUSOCf0qwkzQtbFbGwGa4yagr7xhxJRMFkBQtjSCuQMa4/Q4GZvb/o73t3f84cef0EdHnwOlNJg7Y5g5Si0oVrA5gcBHuw36ZwKomASe9u3F20IxfOUy2gySuL2aB29OgHLNoQzK0Nv2EGABRCdQ6jAB4nKUnXcjYMrYy+gGjgUOdAeMwyWKNXjjz8wgYIo8vx2oZRNIy8ZuFWuIrM+UO2h96rrdHW01Q6aKwYls5GQet7WG/QWMvC4CJtmEuGKsc6KWSonPNNgMmc7yy41+Rtz+gVblO9YI7oVibwIMBOUJzFU10SCFQubgxQHagOVZ4mJ2AbOzCC2YsuSAzvPQ2QN8+fLGa02g1m3lHguAktzFjTWAN3uR4AcfdLIr1cCkqqIjvIsFH4iQD+1M9htZPNksAwzXpeaGdlCeZ6tgnxOXtk5tBXvbMAoLfgJCgHmomXAPgtnEwHABCHPMdW5kc72oAZ8AY4JAOpSYjylnnQJTr8ETCTngJTulRpAxTPWDcgkHm51dKoAyNcG0Vq1t5o1jTpkdJ0iNtU9qKQQZCj20Po4T4pST4e7OumUG+nEukNUGQbRwIJwMTZIayH+lRRYXyrRKOwoj6Nslt6svki4a6eu9gBWvKA1NUMDXWXL0zpzTK1rjGrgHp2ABTSvlNjK1t/2Na7NtNLvuqb6oKEaLGi8h0IxcnTHAWNRYt4wxcV3p10niwvM8kFPerBqsGH795TvGHHjs7wuYzjp3a7sYlZr2lmBM2IqJVOlO9rHN0bWeH/vOfL3TE8ydPnAhH9XreuLP//qv+POf/4zWGh6Px5IVfjw/MdNrtzXlyxvjpBQlNqYIA7TlmWG4FjBIgMqLLCBUeyAmHltBMxe4Dp5B0zC7yG1BHyoD5fj0Vmbu92gNrTa0VlfTuxR+vjGoEDn6CRTHT3/6A87zwHkeOL498fn5CUsK5MtDd2MuPDql2mQKUQFBue4mWXP6JGpCqd8gc/phjn7Hct4rni2Aah93xOQZ0YojCuPZIdCVDTo2tjyZ+zFXU9ocmggamLgWMGsJVhsY45Xn9U5vq0vSwpj0aCwwjML1AuEuv+fr9wNPzKPIbKqSPKjzuApch1hNROuo9SYSV91RasXRc6oLQQjlNzJVtPXfecuTJsyVaSrmXZ1vei9RJkIa+YRMToOeUWPmFCbqR9mYZlI9e/DXRWDJEWtinednUzXC33hTh5Ed0O3WBsOZoM0JTJdeVZIuMqheJFj65WapqlpFb5hMy8HJf8lnG4lm8nhhFypAU1EBdCjGTh4kxeEdZMIbpsOLLAMyzNQp4idb1yeYTQ8mkxt7eU3+VcxYD2tZteBOAsNI206+mgn0iNlVBIotYoWMsTFRSyWLw3loXIPJ9WZNaKxBFoX0/ZHchklxB4KHRWQQ04GcDCtpAXXDyIQBwNMnmEBKKCMAMeBr+sH923KnC7GM5CBLwF4daB3kU1X+upMJ0Bo/S7LuIFAzn8Bv+Cp5f20tCZL7DUC47qPr73V9AV3vxG93FX7z31P0+8UVye4H1IksLklWrox1zK7XyMTW4pWVpvVQnDd48j3X2gp64HiwAE7E3gxax4nIq0M157p3wM3Uc7+BlPu28/kyGZUMQ4HbFWe4FycDuG5Xdrlz9KqJ/YOXvUGQWUtxrUmBcEqi+D03+JByAyZi+pBIZkKA0ymYWOe0uc01ylvdnvV2AF54nWutqn3EPZaFIUx7j51TgAfM1HrH5PVDYCbvmwzvvaCUpv0DRNB2P8cix8pTybKZ6VWzPlks+VD4PcmQwygosWYNRuAux5Yv4sjLbXc99zlyreWZr87flFeggevNABhNFw2KTw6BBnYn51pHOep7hkzVS/ZwAgN9dY1MDLVkJAqaXzFPZSrStwa4qdIj2A2tpcEAjXXmc5iRQxMYy0plsjE6f7b3QC0EQkdnQpkTRLtkD3Xyfk5MHBdHg4fOhOfF0dd3ITtRCmUWU683Lv4e6qaNbgLKA+d1ovcDEZQ1hzEB/Hx+UiJQBz4+v+Pbt+9oOxlFpQ8y+qZACHDf1FY5EHEatp0Acdv4bLbHO2rbsGsEuXmBtQ1WKvbHF7gzIS7ueN935Q4THgOOgR/e39By0l5MnOcTXgq2XWaxNvE85dPTuC/3JgnfnGS7SQ7JAnbq+eY+s7UwDdzjIYmYl8xhFIhWvNDmXfufZxhlCwDcUKohgtKt9K+DJvAFWLSTANNg2NCDE3H4D8rBjDlWAiF9TFi/2athBWFM7DksgYmOiZlmztiQoT3AvZuDL9bnVfy2jIPTFoM3tUl51petrp93sJnz9v4FX3/6Ab13snachasr8TenJ82j0Ih533Z1DkKmBvTOM7+lhWnOn4V5zLmS+fxK4Jr/IUlwotzyGSpi2NCPNBabzWBrKMrrs8w8zOYymlgxOeMCHPCXVDt0fudZVhVrIDYv71fG1rzl97XwyOF7A4ZCymR+rFvOGZTrl1oJKorhAug6EauhBMOSurve1V7/TTYPUzE2z0ky+cXKCwJg/hJbA7EKu1i3xtbPQ/egFFusNATQ1/WrWVzyTL5zjyqT/D400bFkwzf0rNUs05/ziUBPKeXX89LQodHvXD3lzzP9+SiVzxH1yY6GANkIDkEYY2LaXWfwLNZn0RqOAKwVsefvMwiZ9wTIrLX7bLqnzYE1lhYy516IYRlYjLF7B3PBpVR6gk2zm0UP+OoGmmibyo+Q0e++6xNiLM8Jm3ygCRypVBIgjlVvmWGBgUVgjZmLTMA4OJl80Scwf+ke18KmbIBsbKbKymFMtVveQMWp/MWakLHYU24OKC8r674lmaAoh05QsYjBP+cUGCzAGJEB+eVu56K1Oycsv33OzDkNUL16Z/gzSS8CgLDWDllcQ8xlZ5N1DKaR2ltujvPsGKOjFjbKppjlvXMw09oXih834UD3K4H5rHeB+/NmLmZZf5r8+QKzD3z/9g3fv31bTUZM7ss+lpvnYqtHkQNoMvrDtDZDgFGsNQA1FbLwsUhWXNazpmIdPNuMwGpygKH80zBlyUD2txeH14LatmWFUivN5yL6Irpk0zjPpePjQJ8Tuzey1XvaAAGpFJiL/T4xJ9mnBjZvuP7us5+qIwdCoJ5qr5tNmrE8a0Tc6ybVIpbDQyRvzmI8dHavGJAP9HWJqh5RYRtai2YJxnGTJUsqup7lxI07RKpXXs7X/+Dr9wNP2wMoDf0KPKzhS9txHifO62TyYk6E1gvCNow+cB4HF1fZUMoDrWwY1xN9TJRHQWDi8/snZr8w+yF2gOPqHSMmhiUbh8lAXwig4fmRmypA75qyQk1MasKTwl4bg8lxKeW7AmMYzqMoAVbioOQDBpQpxFCvqj4vApDUEOgg08ZrhYvF1I+JPg8k0OBaJDeF/ta9R3oGWPqr8OA8+sTwwHnHJFIjS4E5WQfH+cQYHZ+9433/ij/+039Be3tHt4JSd5g32GBBg1l4/9tX1PpAKZsKRS20kAwKmUyazNQ0lWywQzyuLk8mJSaW6fhrvM20BViInCmRM1IZuw0mkLYjJtCfnSDlBby9VVjdcZ4nxgicwa5+295wngf+8fd/wIzB45gXIgbiOtSppmF4jF+JnncawpImy65hdU5aLC1QjLT6HOfKI0oTCuCwucEAbMXWZoVCmunvhqQJV2fAZmHMA7y0JpnZa9J4g5gjghMdTKwrxOoSWqksd16QTdNBPjuP1VKIpFtlYOhjwGpREa0Da+Sq5RqbUxRpeSCU4pgaoV23xsQ9E04oqcmAFRASHysjiRUkDdd1rnUOQBT0AqsV7oHqL0VQDCZ4s5OFAjHYsgcl8IrrTMmnKMTXhVXoRAos8j39PtRYLro6EbhrQMuuIMEKduZSF66ETvuh5EjpnrRfIMeA0ccAC3xohcyu8zzYsd842ndMYMoMvw9Kwtr+RSwdsZ5mYEjWEuD0t3cr6o7rIIBiBkL3EJTnOhkTi4mmKWm9Z7KiwjFjmvZq0sCBiePZYWDhz4T5DaMD50XGVZ80qST7jLc7BzuUUlDrF7TiuCIZV3xm7a0B5hhGpsrsE1E3eNn0pJUAGWXNpRZsjw1jMIlKuTLNH4Eixklxw7g6fjmfeDx2bNsbSvB6z37ADNi3NxoSn9dvAEsAMJmv0mNCLC0iRDg+L/R+4vF4MJE/OKDi51/+gbZteLx/xXUdNBXWOqmps5qUvnyc3+C1orRKqddjx/nJwuQ4L1Kxt4Z+XXieT+REIC98/p/n529kGvS5GxgX9+AcE3/9+WdKFhuZdr9+UB75fD4JVo2JX5/fcI0Lb48vjOWa0BXQs3Pg8/MD/TwlK3G0unFX6UGbcjv3wLZVFG8sFIvjj//1v6DIr8Wdvjt1d3gh29cAfP3yFTkd0b2iti0PH7y97WReSSbDkdmG1lzgz2CMlKxxzomPD466fn9LuWtBXGStlhKADSWPA4ETYwLP84kpz0OzQNtub5OPj2+KHUwOH48N19npyaLuoikx7zKsLipyJ4IeEQ50FVdWd4Jzc2CGGM0u825l9K5n1mhMiIgBqwQlO+QzW3bAA9cIMoHbA7gq4izocaDgQsWARyDKKaCucT+2iroP7F86/vrXv+Pz8xMTlQNGZiA8gEJreUoruqSQ9LdpLSUmFeYVJedHG6n9Xgrev36hdKySmeZ7Y4yMqWfmeLzvqLXiy+ONOepFPzgaVLN5OLW+Q2CVlbKApynfqSmjU8rnCHbB1EowdnYTWOWzdLy9PQBQFrrwMjFLmC8ABZtCgmuRJ8jOTrJpXbilzCtwHZTKeilicTtpIcEmC08x7p0imV8twNVPjE4WmsF0jx3VaEkxeuceWiaxE8XF46/JJpEPmTzACLzvyAmxlnkXdf2LiZnF8/5IaaKRbeWbGCrjBmgEsBexw8NY8JsZHvuO5lWs2UCpZB0OMwFPY0nusnx9exBE/nx2guqS/5mtTHExp4m/BVxSVC/aK9401bJTRYBAw4Y5A5/PT7FBG/rQJLMFduv18Z0j0mtRAcqR8L33BdakF+VEsKCvlZ6jg8NEgJDXITBnZ5FY6moCtTeOFc/pipRAk5WbNWOCRJT2d+SwgeIGTMO4eO8ee1tAwfn5IQCUoGAytgHQP2xZehgeYo4fx5P7TLJyBPMXIOSpeDc5z5dJ1AUaeJT7JQEuEQj6vNkxpxpdbDiyFgvIS3dVoboX/eJ7W2OhXQsHAJ1DYEugd+eZEwkU8TyyUrm2xmB27g6b9H6qtWn/G1m0gw2wa0BAhxqAoH+OBTBL3A14MM/MacH0l1QdJIDymBNDfnjmjrJtvF2LTMA9w+YpkIBuxpsxAqd8FK9zwBptUK5BuSpVNsxzSV6gKZKNvmRg3z++0zcJ8nxNQHNcBANMLNcAnp8H40oho6pWw9VPHL8caFujhO7R4LXg89fvAOj/eV0Dn8cHPo5PfH8+8Z//05/w2B8IzAV6mTnBmjlhZWJ2x/Ps+O//8j/x3//7/8RxXlSaBDDDAWs8a2TBMsHhUAQbs1GWTb6cs3z/nsCLR7aNDe4Bc3rbxgAnjhtw2USPiSM0yd6ArXL65KZnWUNgkoYDQL6d3AA8o/f9B9D/86Q0Fht++PEnWhy0/4nPj+94//qGOQf+9S//gx5VMXke1KKmQojppEE+SLKBJMbK+U3EGRMhIoKqhSmWvZskfMqBzQ3ojlkAjEsYVCwSz2YNqJXTbWNoQqki4eTeX366ddO/COYzxu8xBrZGZVQrfPY2PledbGac4iq8ZsU79IT7/sOv3w08RTho3ExQBNMRwzDywDUmzTM4jn70gfNi597c5QUxcBwX+hg05YuJ86KJ2rwGamFQSJbUzIz35LK41vhgx7wmxqDpKiJgpm4RRPsVFRYOjEngaQwiOWLUSqZna9GvoiT/f+SG0D1YjygWAQuRRnZB1FITKNiMyg4pD5xQUMoi6C7vb5SckMJA+vXMCMQIUAmtQAwF/8l75KWi7QT92MGy+zUVPvlLgzZX6+kGRNIEnX9molK8/AbRhzbQy4+tf853uRFa0fqEqi+hWBBaGPn+AdKZQdCvz8BxdvSe18jPcx4d5zVUaHNZULNM+moEfbPu6XxK0qYhlvnG3RnJp2r5ZFe3cfEtXi7TFviRydS/B3bvLpvpPt1rJn+ljjpvYPoMIV8xssOo+xg5dvVGtglGKZFOxC8/VUxR/uMGNfMQ93w+ere4P9ndDZTxtaAUyseCiedvl8vL07eFnC8fh/XR7H7+sa5aXY64/yxgMiJ32P25oCQwQdsZ9/fmE3x9/9sv4H759TTs/lwvOe/LM87HEffPaL3fPiwv913fRoCAzyd9nLzQ2wcvzxiYBLlhQJSXv88uh+6VKY4qoQxJnpINE+t5x3p57pO4adSSacy77SNTQkmhJSkKMTsoq3BI8o8uVcGYlOoGjJ4GTno1IE8TxTiCDhxrTWOIuYrIxfKQ0/Aaxa1nePOFXIa+ZbHnAlhrMOtDfetiV7DGyhjCziaXsd4TaZzr997MZByxGKcAAYKYOpM61MXi9NNLo255dmANorCAku11DChZGByCEIB5wamkrF8dXhx7NFzXiefn5/pcOVnvKUPvUjQh7QW8np1r4fPjk7Kh0db97H3gPC/kmUaT+4G5aQy04hufGUGerW2U0jiL2sf+YLdLZ1VxSiPcDVtS053d3Lf3N/53rfSyag11I9D7+fkJAPjpx5+4N+I+v02gQXqztcr9lpT4WgyzsJBIo+0+eeZvleBBUcLlZhhJGjEyN+nTR5ldMu+ge5Ty8pSupGFzFiOlNg2f4NnqakbFDLgYhaaud4BUfxIONVq47AK0L0irBrNKwFt7+I6PBQZ5HoZyDsu0JAPnlHRE8sPKaY/VHOGUyPUV7JyvWdoy5oXYsKVWBBw2xExVTEtJKZspLLz2fadvSNvRvGCrG3epCXDxgrcv70w+myR7j01d67kabG2nl8jb48E9VvoKWEU+TH3KgzL3p4ZK0M/y/oUQYGJAwe0jtBjAzvtniuX5eXM4QAIbLICTVZQBJQufUAy5w7zwKPzmbFpeJJLpxp1DGbhm8z2X+bUlu0yvq+v0zPuKL5YFYyMBiYDYLoq6KWc2xUEPZ7c7zyxSOlZsZlHLi6K9wbrkBUxl1WMBpGfKPU1VjapyDxHBzHZLrOv0zCI870nc52kE85YAjYUznilNnZEST51jveuMLvSXRMGcbFCOQbAmpY4rF56SLM8baMR6zblyT053IjAM2UrAjBLSfO7BemV524ldloSibLT6yu1De5csURhzQa6hO8dbrC0auKy8M697Julcf2nKlSIok4U5TI1CROYAt/Qvm5wzz6OX3CfP2zHZPA3thXxv5LLIlOUl52MDyFjoZ96hezv0Hyl1f82R8y1yGdBIfjImAQvsM4D1ni56xWNjPsA1TfkeQg19o5fVWudg3RKKDb4ajIX1WMZ7QDnSnR0yxiczPrOBQCKGaScxIlbuOIGVs1uQIbjICdm4zDsyM4/L50xgktPMyQpyUywOwOaAa4hO+q7e+bEDq5bA/fyRuaXez7kmiibHsxEjYE0BbsZd14ygd9nAFCHrZsMiKGOjEkEAVGHD/ThOfD4PHMeJzGUJQpNle9cT/MTJVif4FGrGxPo7wKSgybpcl2qvmaIhuW0cRJav/cr213PWoKlihmYZn5QzzZdQlDVB1WdQrTwnloLp7f0Ltq3h/csDY3T87R//hgsXxjXIOk2H7TxbMg4C8ky6Y7eJPcbhWtxTa9r3zDis+D1xn4PpHzzvvU0PmFiTtq8hb6aXfY1511QRAYEUWk/2snZMlkYGB/0XizdEsJ4gQ+zGErKOpVl/RvH/9dfvBp76YYgO/Bon5ntBc05U6bOR7gnD0QMRHefxyQPiuLDtD+yPhu8/f6L3jn/7298x5sAfjcnkeXXM0QU8sTAiG4adNZjjCFILj/NEKY009NB46YuocY8LZrYYCgBglSa3c7D70i8Wgs8LQBTENHXs7okXiIsHTeTi5wO/jw4Gn2Q9kQpMIMMmF864BqzK3Fk+PFe/dPDM5f+RU1JM7veRGm4FILhj9ANnP0UUMezWYBa4rgMznJ3UtqM93jEDeB7X6uZLEA2gaIEIqAPoTaSOGSJBCi7G6xoYs2NrvNev7I8McplQmQ6JItd8UxLb+1x029SOX5PdqGMeGBHwzoPUq8NB8Ozj23f8/e//wLY1aePZxfz73/7GAyCTLgeuk+hs0317frCr0trtdcLrJvJv5qj1DQiOO6asMSeaBerWaOatdGos8zVtYn85ANzu7MNeAoASkwCpphiTHk8w1LppTeRKmokYLNpzqQ2r1xKaVB1cg23bUWrhONwYlCrq3eZL4YtZFvUd4D3b6qakSuyzkYlPHlpk962sVMkOx6LHeta+tPM09S1e7n/z9AFh4meVr3deHWnenexIm5ye5GL59BzjpYOFZxE/3y7PEy9kp83rpIfAq5eDujtFHm+jj5Vc5+smK9dVaE55s4ROxGm29uQKB3EfJOuVrIi1yHf3wWSleUNgwhzY2wNv+xsugahmTEmuya5vP1z7oi5P1LMPdkG8oEfgl+eHPrMxns6xpD5eK1I2MSfw7fpce7OWDcUaPeyCQK3ZBJ6HivxKmUvvt++PsWC9cGCGqRNJxtj+eGDfdrztZLqMcSH9SNYWKAA8UONCYEAOtUzUlS9xAkhgaw21VK1RJtthgJemhApc/2CBCwfXe2idBw/tsjXsj3ccx4Hn9+fqkL5tDyACx/ennpevPkwWxKbR2x+fTxjYRa5eUcuOZNadBxlBX9//AETgs39g9sC3Xw/tHUdKdD8Ovte20b/AsOM4Tjx//YAeAH75+MTVO/rIMeCGOTv6edJD4Drw+Tw4LWsQcH083gn2eUG/LvTzgoT6eHtsZOTouZ/nuabJfvnyFW/vb9j2nxhrnYARAQX66LTiMlLmKF6zieKGr1+/0ljbIc+GXfKKWEVE10FSNTI8gMWC8sL1/v37ByKAH3+kp1W/TvR+4bwObBvXwHEeGD1gRiYG4qLf30lmTPGATRkfD3oQve+NS2qcTL7c1xQ3k7BiTjIZvnz9gd42naajY8TNOhYQsW/8u23bVpexGBlPtTaBuEwMy4t8axaNcW8V7sYJQQa8vb0x3j2PlwyLAaRkkhwZg7DyhBgXYvTl+5BsP3OeH2eQvdtKwdv+wCOAs7ORN75/Y7JvBLlgTQUQUNs79reKbXuDwXk2h+QyAowNBE1aI1D05csX1Fq5XrygloZWKoqGXUQWYwCisLhp+7bYS1lspwn1PDscHD0A3YOCQqYSUoaTxaMaSdFRnabxLlNT0wIs8l/svQuEdmxtI5Nept9dfkal0aertYbzOmlsLM9Ryis4WbPPju/nJ9d+legnZNVgwKVhHCHZOT03NxQvnIQZZH6YGVqj5DGZJZd84Io1MVLJSKBZLpk0j8fO2CYAeU6gNBr9J4BaZk4XNIGs9yTT9BIa11jMxWxacSK1L3ZPspwNEBvxPi6rt3ucOwwzJ2YWA0bcZ7meL2OsirUE2nAXxM/nJ4DAxzf6nNJfakrOLbbpSNYHC63rOFdOUSrBzpQbhYpS+lVBOGbgGPIEApmVljYUCMqCAPTrQnKxCugrVOXXMpW3wFmD8Lzl/S2aCJt5crIgC5zj7I8DxSnJ3hs9y4rAylMDHqakjjfTK9nIiieDjXmXYXjVe5ZKb6bR79yN9eOdf6ec+ZIPJiduG2IwphdzTHlKHoM+u2k8fyNlEz5BGXWfAkl4r6fJL6inBL9okia9dDE5Adl0vxJoSJZKkSdlsq0GWAe9ffmy6oT0wYNqqsf+hmLsEWFyX58IXBFLrrXXXYxE5wTWEGAENm1KqXBN8RzjXCCS2lhI77eqXLWLtc+r5v+Gco9TTLtbzuhImA0hUFW5ce/cH1sBUkWygPAx0OeJ87w0gEeNy8K1OmdHBUGSPk7tL8iPqKy4nqwhW9YBLlCJn++6TtRa8Xin9+C0gUDX9DPJbkv6BA6c88T3/gE04PHDA+GBc3Y0NSyOfqBMekOVumGvDf/yP/4Vf/3b3/HLr098HgOlvSGs4/PjGwgAklUWMRehhE0V04AJspNXwcZbsCxulmeQGbLDkI0FyoI5RAbISXHMMzPfiwBiBopMwb/sDwBQPt3R+7X25OjygTI27ubk/unXiefngQDwv//v/3f88U8/4e1tw/P4xN/+8Tf8+usv+Me3v6tp0LA0aNkA7pcwCq6dUgvoQZtEEjWtbeLoT8QI+HQUUHJuIlE0NDjon+3T0WwjWIogYNg73n/asW0Nn5NWDnEcvH0un8gpUHo9Bxro65EAs2B2Qw9D9I7aKlwTA4tN2MwJxwQdI3Jy71rAv+vr90vtUOkb0APHNfH9uNBlSImUXmlCSO/8YIHCzv0Arhm4ZrAT5wVzcodSgkJjZI431GtBJmiictJXpADhQo7jXqQAasqh8GJyqAXA0YcsQELMAZ5WIVPMxKmzs2Xr5Zk/pXxICdW8hXeGlPWodnMVYYaVGMCwpjppx5ByqMRN+S+7SBOkXhbHLKzoqoyrXQ+cMhYmu80JtHgh3d3cMTsnXKS+M1kOvroxgiuU/Ia9ADpKLkLsl/Q9IXp6U5KTipr1OOUgEGgQN30+v8HuxIY0bN6/cXU8P2jkGj3w8e07Pj8+8bbvovnzWffO8dh3oRM4T40ZZ6sAxzMTn/JyzTvctqVBReRUFEa3CSyKeMRLshhKMBUFuTGFtedzXUAN1j16jaCLJqquaibNnKiX3bQJmHo0AoZIyVRC4FD+G+pMZ5cg2M0W6BTIww183fWZ9fxfPtPUvkmkupScpKUk140J9BxKUG/AzeQFFIaXp8/tZGl2vuR9N8vt9etmK+WmyU7YzV4iAL3gAq5HHbYEfggOL5AomYumt1OCkVJH7jN+7xTYx44mVvKWCfO6UwYsDzBThzewmIchBC4wl/8dJuU6HiZqKw++ZPCNwXVynepmGWVmAA8+ggTqrl28Dxyn60AUpDkrzWuzAMOayGgIxDB0DIF6Rd4QgX4RVI8gXbk1h7nMCJ0jabtRitl2+euUirf3Bx77Q5IuIEbG6Gzhcf9MTPD/CFgBgeg53cnkHzNhksPYnJQSqhOUHeAZxu7ujBucT4QrGSEQ4xEd45qKi6YCIte34nh2EEBpIyzEPJn4OD5hcLTSYNZR0HGeHdcIfHx+ICZwHFyH4+q4esdxPVfMnmLXXhcTxKZpcREsAs7rWjKVZ+8CP0hJPk56IDV5+lQ0bAGUOlHqJvnIhlIr6v7AdV24zpPFkjve3zf+rPbU6B3FK7a2Yd+ZgJDUD61/w7Y15MS09A3Z9yaZKFkGD015ggVqcZrcOu6JeQGYpFe2ClnKhjn4gP4T1WkIT3N7xqEq9oJhIsbFjrCYV2acVhZGdsjyulGjJpTcuxjGpnXhZrAWmPUGCTL+m1cyfypFuVXAmUEFUgTlZUaZmsnnhmc513GEyYgVitfpnaAE0x3TAK+7VlkjA6XkwQ6kT12emSmZjQnAaVprVuAuo3ozmJE5XTSAAuYokQ0CJhtRCnwMPBZIRSPWtm2AHQhc+OOftpstmfsC7A7XKnNx8OeLWC0EKAta4z0pIHDTapOUCWsfTuUPmU8U5QYwgughaZPBUD0nGa2jE8sENaXGL1O7Vl5y1+ra5txklHGTqUa2eyDPWjbK9H35Pl4QlV49fAnlQsrxWqsCG7IJMdZadDXq7KW5WSulLFNM5zVVTh5KPJunSEi3dG/FszwC3dZ1pafgdJ1bL9JOmMCLQrPseLkGeqsEG0UyoybT05YUI9lAS9amwjvvDzvsk9Pd1iQV5SYz47KAD7wyLXQXE2ArtoAioxEsG5YwxJSf3qQnp4mBy/UnlspijInJirk+6/paKoK8BzK79mSFvQxJMQMSMFOelbl35ig9zyXcnplzDPnP4DfssBBAOCNkJkx2mjubY5yAXHTdCZZp7et+w+6JVabXzEmgYwxY76yhZoJA804vXxg7COURugZTMTIR8vRjU3sqr03geLFok9WDBMXz75JFp1HwHpjFFvC0jm5P4PNm2WXCn1NHnRew2PpFe/t+lgRHAcPsQzmW9sEYAq9cjFPGT7svfr3M8r5UrODQGSYEXc1OskyUWqekQvGgyzzZVr1gqg+x6krWDmvR34ydmex87uEIgokZP1e9pf0VSKBDMc3vtYCXXQXtTTPTM7sBRzK0u4YPveav/BnmSWywkpjhArGZs3HaPECP3Y7jONZ032yY5YAfss0M15jw6ih1w+fzxD9+/obncaL3gba1FbP5GXTWI8917ee8RxmHcn1oLc7IM+S3t4IxVc9FdTYtLwifmeTyLiyhID1dQ+SNPETu35PIkO8wZiq18jMY+nVpqNWF6+x4f9sF7jfmjsF4U0ym6eGAPIbzuawm94z7XIP+PQPZDKkSdeaEZWmziB1LWaSaibYIYnpNrvllnv+CAYQnSH2zwVh7JFtCh6zVFfPznrgAVDZLFYtAibanXcyavvkff/1u4KmB3ZjrCgzreOK5aIUp5LKYokQDhgIvDSMKrh44RuCaQHl8RcEte8OUCWsti8Hh2sjHNdeiIrVv00rTgTk5rtMN2Bup73N2dmeRFDyZfEcetgJmlLjKbQg9GFy2UlbQ8IU+6TdnJz+saxFd0qxycp7Ve0JSBsWpESu+5ZhEJrOcafOysTCBiwf5ODvQCqwY/UHKhnqe8DFEt2WAq3WiPRr2x4OTYFpD2RouTbXb5KZfVDxUd2j8w3p2SQ8vVbr+5ujdgAtrU3NyExekG72LuEnm2jBDRa+IOkjTZK566BAiIr/J7PK4Audx4H/+y//E8Xng49dPPD+eOD4PfHl7R6sN+7ahlIrH2wO1bXi8FXXfB47D0DsFhBaG45PFlGNDrRVlqyh4oNq2wMWYPMiHdNFWQqATkfcQkMDDmR3T38hDdMgu8ERBM0T/zrLGIH25iYWz9vCUKSxXgPvdHdY3wEAzfigBopdZdrMNlxIoqoUoTaXvw22M6paUyAxWvz2Y5svj+/L2DvciKauhtIqIwSlLQX+Dqz+BCJTGolT4pw4Mvm7KrZKF+Jt3XIFMR/gqYHPKG5k5pdhK0O2lNxnTNNgT8FIVQJVIqdjISYspW3HwnoyMIcxE1IVnwkxgp74clGuzKwFONmQmoBOcU1XXwWjyH5knr7iiwoZjXoF58dk9n8dK0pOdEiogvdDrpGtEfZql987iYYuNyZvOhZiB6CxANhcA8DL57hgHrnni69d3NE3+mqPjPL4ji97a2O2/Bv3BSuFEzY8+ODGsbqjbjra/4YcffsDb2xswlcBEjkKXj00nWHOclwAKYA4+i35qQobATAiomf0GQwVbKH4zkZ+TBUq/OuYItP2xQA6dwriuC2cyFEoOTnD0M4FFdocSRJ4InBeng6KyA/3x7QMGx1Z3SjV6oPoGt4I///VvOJ4n3CqKF+ztgefHB/7x97+h1oJaC57nySklaUZfoJV7X13uwfLYYO7yDOk4rw98eX/D1z/+iLpVjDnwJVig/vTTH+Gl4DgG2r7jhz/+Add54TwOfP36jrfHhq/vDa069pJNhYL0u0k231bfULxyciUmvCjR9UBS+PdtRy0F5/Nc057GDFxqsMw4MUU1z6Sx1Y0JWd7flHh6wTwnYjiavyEiyEZz4Mt7RasVvhmOzw+cx4G67QRKKvfbENCz3LTh8LLx3I6OGZzyxGQtTfcDVnXO4J7MppQLZo5mlbI5r2ukeuVYF4z4zn3vjed4TtMbFyf8gBNpGMQJ6NZaMY2G5smMLTs/xEipR9tVuwRiXpgrSQMNjVd+UTF9Q07UTPZWisByzbs7Skz4GIyB7qiSGfm2A6Dnialw+GifKMeBP/3pT9j3HT///HeMMVG3DWYOWMW2EaS8xkWPp/nCAmWE5F4aE21vaK2hLGaCznrFtH51gpnyRrIQQ1aMRQJPMrVWYRCREyZ17iBBBO6hPMOoDLHF9iv598mghUuGNdZZ3ZSn9H4X7LUWMqt0fs+UfwUZ4O9vG4QWoCs/TNBp0+dstaqonIoDjOMcX87Ps233yPoxB64x1vPNgiO/0kPKskhXDrl8iszQ9g0RAe9GINudzUy/my/MW+MGm8zIqjKyZsyAz8/viJiUk8ZczEXz+16PbJJcajhmke06e15Yf+nDZ5EFYKc/aC0CSm52VE7v4xAFSYwK8/BXVr3pfi9Q7OVmvf45gZjsIxuU6wpA5vrMc55LYIiVA7HOp+JEROBQ86BEBUoFvOC8Bs7zhB838ORGP8cIsuKnpof5XtHahuOD7ONt59Sw0fMMSIDtzjN69JeLA6rYyNd1UbI6yso5h4JRNpGTxRBCcQO8BtN6mWPg6h3FFeuU9Wfeh8zPE8BHgnhZl9t6v1bamrxbCr38yoQmoPH7ajamcw2bGGUuX0kA/byIaRXHiIlLYBAQ9JWpDf0pj1zlOvO8eEa0xrJEcT/BnimbFZu5B3gz50jgrWMicOFiUwIu6RKW3LKoxznmta45Aqy3CplzKRHLmifP+lDeEiM48T1NtGfQ59AMhpZ3VzFHz7JAjDuolgAwsVjwGSmKGh/nSSf4ovhvYjlcuSVfSgkX3fy8yNYxA7atcdDG7Lg6pyxPyVPP88Cv377hy/sXvD02xRfH5/Pg9YEeVuPqaA9H3d/wj18/8C//+hf8+u0Dx3mi7Q3pYZyAmmZTwn3e9/AFUaoGTJucLJg4YE5dt5uMosqB+XxoKhuAPi8B/CSntCJgviTfzmA1ED7RrXPt2ASccStBlfwa80J6VmecPfsTz/MDv/zyK4o53t92YBretgfORk/X6pWqB5FjxsW6smxsRE3wzCdpQDFBDz0mz1g+exNYy3O0WFm+raw5EqCdKGC+wumdXK/jHAKpfDVJcrhRTHnOhmGmsbleL88aN8B8wksSbAycWcLzfMyBqweueaHHhQr6Snr9d9Y8/4uv3w08XZOa4OmAT6Go2iitUiIRF4uz6MlUYKemuNMYdcY6EJ7PQ98S3GUlllbfdJL07KivHJSbdmjsu+oPGosNIXBj3LpRDERcCCedepkIpgwEAmFi8NAEdayAwWOpaVfyuHhRdn90A7t5MYEeOgwX08kwnEfbyERHSRVwJwcGBl8emvQvmMUwEmlPnbnxHkTQwNjnBGSU98PXH7Fvm7q1hcUrAOCVziumDRJlBvoUXdmYsEwTMr9+xmgSl6iyYb326twAL7InBQl7AbYi72OFmeM6v+P57PjXP/8NH98/8W9//hmjs0i/noZxFjwn0EvAHo5anXK6AXzOjvPqShKY6F3zQsyBfgQQHR/fn3g8Hvjh6xdU27FtLtmCrjdk2umG2u7pDwFOL8kRujO7BGZKxk2G3gJEdLmBWD4STM4IfNxZkp4jxcIwdTqyM2y5xrRnmCxfoMcTO68TkM8HfTMiKrzakh5ByVPmEpnMr6851XHgO9KEO0E0LJ8EmFHOo71HI8l7csMqCkTDt/DfJH4QGBXrz9ooSLq8OvPqKJRSMWJwSMHqDKmjqgR9jHHfSzOggNKIMZBGeVCyvaZCeKgzRt8VGjfyATGpt7U3yHzQerZkIarDpIQ4R85ymoil/+XqDgY3t4p6W2xBK5zUkuuktIqCgrrVFQey3WW65ibTv+dFc8l9YxIZ48K8WBxWFbC1Mt71eZKhUAs8ClpsqA3r8DCbeLyzm98KO9K1GTAcHqA/EwytkNX2eHtD2x7Y9i94PHbU1nAdBNH+9m9/Q78u4DdyjQmzQcAoOKFtdXFAqn2MzgEAAi7TKPiWDvCeFhVdMwaMphIY55FZDMakFGXMgd4vFsOl4JfPT1HX861zIlGXue7QoISBEZSins9jyVIS4G3bjlIavn1+aCIMvWhmDWCf+PE/fZGkzNF6RcRE2zcxVZLVQnBiq3cHcN9pVt77E0Cg1MC+Vby/b4t1WStHZ2/bA2GG85zwUrG9vS3/wMfe0JrDrcNtYpfhOnKq3RhMVJxyxtEHamPs6ONQuTXXdjqOE6c5E6WZgIKemc6A9LxJ6kRgKBERADwm91yYGJR8lUAQ2EWwYJghQPgNZW+o+0aQRyycBJW5D9mkKW2DO4Ge5QUEwK3IIJ00dXrRCXRUWOQ+JbU9pkuia0D46vxlXA0r6FNdbzOUbbvjp6cnmwDMcSkv0UQZ7m4ADk6hZ2HINddhXmG1LEPfsokx0AFYQVhDCPQK9Ps8tZu9VWsBJE+96dX87bG/Y8Ft8kXZN97PUpjm1VphPpCeRHN09C6QQzzFYpnYanEw6CN83gyEyXXiC/BU3jBVaJayQLMY2YCSNMl4v0qVsS9emlTK/7YqY2WxoizPHYEQBtAfSdfK443d7uZN90CPy8SkMF4vXtblil1my8De03+osPgpBSvW5gdKwIONjEDMKTZUtmB9FUzNHR4Vpd3s6Yxz1TRyPVERBcEEW8yN0inwHJtz4uoXz0V3WLDA7ZIAut1FDAeLBNIXssj64bo4xMMHc97+Iv8aKXu7eEZPAR3JxJgxl7T+N95CgMBGYz2nwnOm36iObhezK7OdfMZAblvGdTI7CIqPMXhWlYJUK2RBvfIbMalyfcbs8pQN1MrnOsHnlCyxYXn6ZuMx6F0L5RcxcB08e0qtq/DLxOZmMQkIkldRHxNnl+G3nQS1wGKCGE/cwJMBOVktzdp7TrTd9sU6uz2rbgZGFuH5vwS2Yqi2cRXuY64JXtB6Xf50un2x5D5Z3IKG0JFne1msBl/XW+AjFoP0xjteGHRYPeeVF/LfIaPw3IH8l+u6MPrAdZ6wAJok8wAlnbN3XAXy1gUQRmAYhjCCJ7dlQ+Ykptw+MIQucQKqScJH1cFIdl8yD91SabuC0Jr4lqB79Bs8QALkLsBAoHHRvVbscQvJP3PadfpSxYoPLoDzld2XxuFXv5AT+XKCXAFgpcgrSojaugn8rY8LV+/4+sMXPN7ebuDLCAp9Po81VbxoEIYJQOM5ExqIwemjE4GP4xN/+/tf8ee//Bmwidoc1/VUjt9RvGDbGq7RgZG5V+7f5EENeIixlfcaUgGYoQsQmbm2oL2DwJjJBqpyPjEGGa/67FVMYqkqABxXLPlnTMMIelXDFB9gqHUHJ5oXjEGlQJ8GrzvOPvD984m//eNnzBj4PE5cYyCHp0wx8VyTkQMQCyrPbMvZRGIBZp6i2tBsnSuAzkDF07XvVavMMTBiolrAnLUG/RIHLN9E+35oD8J50q/JhRYA+trEEVMNNTbZ5+Am4EAIfpNZoDXDCEOfoM8kbkP93/P1u4Gnc202k5HaXFrNok7nNTv1q8l40AcuhWPBJ0CvGZiMyHRBksm5bpbNACa7Ta+JQxiBgWsepGabseMDGo/zYErbaqN31KRchGBMk3xJi8+UgMXEhACr5O/l4gRUNKpbkClL1osIFfUJlPEfSVgxhPNgIMpIZhWfMimBxRxkv9DAy8FCeJhhuhBHJWSedGlMXNfByR+FBcKXLz9g2+p9CN7cwZW8YRUcM7MJAXUKVtqInh01HewWLtmQaK7634wpinwWjxPSYN0JnlhwBPkqAg39+I6Pbxf+5Z//go9vn/j55w8Uq2i+YZ6GcVbEabgMKOGI5hitYHbgPDs+jye+Pz9ZENeKfum5X+y6fvz6C75+7ShoeHubAgZEnZ80Pya7BkL8+TwGCI5SwqOn5KQxAnyNqhGekRRI/suaNOIOFtba6VnGMUnroBCJVP/6QpdOX6kk2o5+aW1ieWSFNYSx87y2+JywcSdyUPlR1BW7E8TXg5WvVzT+O78nAag+Gcjc8RvgiYmTkjxJ7mhIxsTJIwtGJVh59RErGU1PIZrg5dhwTWzQRSWAxjd1ydNsfX6Xp0u/Blqr696b9lSA3RUmiP3eq8liMltGlrcRqjqKCQbmASgQLMFJemMNrScl3cb3n5EyPFvPE4UsPI7r1aSL4irGk/rKe99KRXHHvr8hAHy/6Mm0bxv6eeA6Os4YQL8EjpBfYXMAdhKgeBTegwTgQAaDe+AhAKCAzLJaDSgFJbDkQi0MpRV8+fEN2/aGbfuyfBKu54l+Tvzrv/4Nx/MTMW/2x9t7weOtIKYYK8F2FJMidgE5deqWOiBlm2oWxOQBXkrFMHYiQ8BTvwjOz2nofeLj80AyduZOE+m//e3veD6fKwoDhhlDSdeF3q/F6Liuk+CWCq9aKydrjoHt7Q1123SQmrxoOOHpsTX8+NOXtY/mJEPi/Yev8rbIHrrj7fHAl7f3Vdh92d5Q3HFenyjF8PUHTuwsNgVnBB6Pd8Y0TTK5Os/cCCabxZzP3QLH8TNiBradkhoO25gYMVCsolbH53Fh9MC2fwEs0I+OiExOaGR8XRMr4K3zq0g2mHJZSU2dSVy/Rp5iLK3mJPAKnkfmlMaZAdveEHPgen5IwuvYSoE1oO4NVgyfBxmVKatLw+UZhto2MjSMk2BOjT/nFMCCWhwdnZKKlGYqHrKeoNfj6qZKGp/NoASeJsTEuAY9qNrL9KgIpL4smTXF5LmRuAFXu3zaBPzNQB8gGFNd+UloQpqRCh8OoLJB5rQnCBvrgVRJrbZWKXweXV1gSVrNsO87EIbzYvLKuFGw2S7ghLK6PMvGDHlaAF3Fli+JXzbp7gIoxMphHsAY7i6Gd3Hmg8VRCz3kHEwpbrb0DVJZcaD4koz3qSI0uH5a5XRQTn9j7E52a1GBkbIeg60zqnpDlV9nsmgBwDWNbsqsFwJS1mo3vmfuUw6SoPzxFu/cZ1n+2bQvshNMmVQysFIuT3CUjGsC4dJXMd6boTnv6xATf8ZAlY9giB0R4+K96pfyT0OJBiv0fJxDkmZjp3yMievsq8CspSAnmAIAesotf+vXCUCsx3V7KLHT50IjgLl8ngSSuSZE2hRIbVjg03od57/dw0ESfLol1aNP5dtkNvR+oUHToWbmKWLopLwzATIY5XTgtc85UYz7InNRgP+ZhSxknREIdMl04cDVB46zo9WGTdMHCe4z1g1NJCNIkcATQY5L3ok8Vm1J7vBamCkHqznBUB5hE5OS1tZwnCeu0dfgilK0Jl5WZNpZmKXchnfCC2PakIy7tLrev67cPOGOlOM4cuoe/F7jZppaueqCXN+QZHiFCu27kdUxa8VIYeP9zMcMWo28gGjXxZz3Ok+4Gd7bvhr/Y3SMq2M2V97gyp1uI/nfMPjMkCPqe58vu50AR4Fx4peksImA0t7DkObbiEAuaD7Cew1OSInjFdn0pIzPli+wl2T3CTCutoCQvF9dQCUw1Qit+qR3PZk5/NW7GgubSjhDqY3x1tiU5ARQXauezdRkvVIKHo8HY4aURBEg8NQHqnyxmPPRfiHXapGsOdmSn096HP3l3/4MYKBWx3k+GWeDHoutFUT0u3E6BhUzAJIR6RirRkxVEjyNqtMa5B5WBckT2fA2nkNOllO4YUpib97omesFmF3xc4iBD4Sa5kNozjovcpgBHH12fB6X7vMDVx/4/vkJ/AOIGHieB5+J8zyfkaxVX2cpa6IgYyefqEJPNlzSw9Qdt6Ir8hziGTu0HANcC+forI8dbERWp29VTNSmOFwTsBdyYfSvmymrg96bH4LvmeqgCDaKJ/nXSzkjKXUNkyfcxMBkXpIL+z/4+v3m4i23ACi5OF5YQn1Q8yvfgi6T0lpE5w1NdwnDlIF42emFUQqL0X6dyDVXaoVVx+wnF4TosZZ0NR9EuLUZzEirNJBSn52Yc4LJaECHvfSTk8BL8YrsT5sK6FBH5DUJn5OG4n3y2hgwHQ5u+GLy9TCNrR0DYwBhgwey/o02DdmdIBOQRsf8bBGn4jVvhAstz9CMCDR1rkt7hzvQtoKtPRBBby3HREwHUJQMlZWgLf8KVqwAv4vgUXoSzPGbIJsHkqkrGgEcxwGA19BqYVffbLENeKDz3s85aEjnlH+MGfj4/IZv337GX//+F3x+nDiPSfOyvaLHQE/3fAR++fUbSnGcx0FwLyb67DjHheOg8ejnxy+Y88KjFcQcGPGJGRWwjt4PHCenGpDkY8iupAFrVO6ckxpYc2wPMvj6SHlA0vg7ZjgdSpIWOmLlFAtx17pJMK4UdoqKDgqEyROIwi2YGEQmnNnUFbAXLbw75jxxXKcYBc7iHoZWNpA1l8i1kjmQiYB8hsZkesRdlDGh5Njzsu3SKjPJHL2jVsdWdgBDRn80xZ6ZcEdSdVPyNuFWYWWugEujXxoYE3jKokrAggX2nVTkGV3rkfd8SXgU0MzoL9C7jOUbAaXrPHnNVR4dZhhz4OzHAkLTaDWTK7MElmJdAw/XKtNZ4PPzgJmjPd5RlVS1WlFLXca5Lde/THv7CEkd7y7vH/7pT0zGyy3VhIAPguiOJlnE6BxvvNVC/6DP70BQfrn/8A4zGkdGkJNdvOCnH35cAHMtlmc3ABZ/BkodDOBEn9ymwQ5I298YEzsTmX17h5cNgYK//+Mbvn//xP/87/+Cb7/8ir//27/hus5FIy/F8dMffsIf/vAHDgWoBTEPxJzo1wEP4BcDrvPA8fmJ6ipygx4gHx9PFpWtrGd1nCcT77Orcy8T4EkAoQ8+dy/0nim14vvnk5LN2pBmwtUa2vbAu8CIx06wupay7pcZwTFQfYT22FC2ShmAAV++fl2d01Yq3rZtgWhV49L3bVfhHplz05tJn83dUT4CNibGKHAHHm8VMS+McZGNZ8DsT5zdEMGOdXptzK5R8qVinJ1NjrhAI3T6eMyR0rRkzjhQO8wmhpHF4xuZWaVShhQAZqf8kebaJsNgnt98HrccOX2LWlNihQpo4i2nCCWTkkAYwDMVbqj7Gxs+YetMy2I3bKwiGIDgO3nfjRMhyZM5EI33eAiYnFE0Rl17CUxC+bZsEoyYjPluy7cxnTta2wFjjJzzkmmuw0pdCeFIeYSr478RCEyfpwigFLJtiD8xADS3xZhI5ggAuGdxT5DWQlPvvKCJkZBNIlNjql8nDMC2P5DT2AiEM4nO1yNjbuP5q+l+2TRyI5AXAdSajcG6ZETXdQlUEnAdCbox2S/F4dYQiOU7NCTzZROAHojZREjwpaoQ5rO+WU5hmehjjQ6vRdN546UxUHidReBFUT5TvIoxQECErC7FvZ6+QAk82KJgrGacKrMEuLzckx/5XMUiiFjfV+WrFzOfH88lGIuPmEFTYDNYkZG2Ba5xUeYrwKYnQKf7VN1xPD9xPp9L/npd12/u2XWe4Pj3QJ07vDYBT1z7mecBEFGBn89dYJ3mbC2JbJ4FL0WSyRJBu1fnLnPFVxa1mQFFDBmdob2n1M4X6JVy5/M8uActrQfIekiSWQQNnGFAqWLMgqDjdY3Flk4T5YgbGMnPSrZAWgsEx4rDNCeaoSmSKbBxvQ3JdKbAhgGyN0tzuNNH8HiemHPibed0xhk94Rrt1UDvh5iAxmb3uk8C3WpduWYCWZl/DA1D2Ledeb8YDuaO9/1Bhp9sCfolHy2n5B8hQZHOHDND3TgN1WtD1SCJ61Thr9xyZH6rOM9cTX6nes5j0o/wHCd8qk6QwXzKOI+LdUtr2wKe8ldd8lLei35drBldoJNz8McQOBIB+eEantcpkoOahxvZPVDzkzjjWPKttGXxUmC1LMDIXPvXx8pveQZB50FaOoi8MALHmUzAZLrmUAXmiACU52mg1QRr1aurbnLFCm7wPif9lKysOir3xZoUqTU6B4kdCVADQK1kde87g5apITvGwfOlFklkQ/KqwBiXwAaeWW9v7yilIpvwUwz9fg18fh5qCO+UqqLgPDvMBoGtCBzHE7VtaI8dH98/8f37d3z7/guex3fsXuEO1CYmkQGGgdGfIPsJaFUy7PRU7pdiKq/pBZZdgOYNjt4Tydn0hpRRiadyAAC8YGpA1ICGHwQJMQ7DVlln9KCfZQIzJLMSQJxar9PZEKob68Q+Or4fT3xchl+e3zBGx88//0wmLSBFha36OYczLODYlgPZfRauX1zPtRbMQWJJyJ+1Ly/astZSmKHsG3PO4hgGpI8kcphF0FMzcyXma2y4kTWtJqm7Xl9DkFLlMZlHcUK3LAJmZ21RnUSpGFR6AQIp8bu+fjfwNKoJtEkkjCyFHN9d5hDdg4EbxmAXg272NiEz4KmkztfBFZM+CWa8F15vlDBAKRsfjdBpx0paglAvaLrLpIsdImNSKg20QXTsgALXv//KLETLP14XhUwELUjw8LsIJgrIg28KRGJQUWLrSpYtaYJYlO5lLJfvlGytMEAdL3YN5vokrnvnRp11TgfKYJLNhgxOCXLxfYDUz+d/c7IFUFt2sV7AI2S+JeDKbcmNsuMEBd6cSpJSLNhcOmxCu6HnMdH7gbMfOM4nzuvEmEwghZvqXrGjcPUOH9SIR0ycs6/vI5gFPI9vmLOj+c5r8oCXyeQenYWdEq+8NIIQc30mJtcGmFz+Lb1GoETupUsH7YGUhK1nlndNwVTIdcoWczwxv1H3RMl9mtXSNDsTdh2MhcDdcVwyj9SI2WDi46Jrp4cAArdkRvI5X7/ke6PEfk03MgUDJ10eQT+EZhX1BSxJavxcj/U+Ll67kYY0YFXBpsMvb0GuyQSBcuRrjAmk18lgeWj4LbvsZiPFerGhTryp4CvNgUkm3vKXioSvfusbMdJ3aE4UtCWjYgzgexTJP8xp9s9Cive7bpuqlgmMgWtedzhxsov2twfHZCNlDARX0enPVb2w2wZD7ydBvKiYY+B8PmUE7ahbQ20cLZ3soVIcb2+PJSvzykKjkh6wvCG2RsaTB6nly28igG2rgFUM5yj2UhpgFTMc37594m9//Tv+x//4V/z68y94fnzH6B3neb7EgYZSvuD93dE2yNOm43h+AnOizInzPHB8fKLJ2Lr3A2MMfP/GiXBtq9r7E8fJ+NAl/yqFyVDMlCjK06lWDE0CGzMQZvBKcLJunDjVSpH3guHL+xfsW8Nj5/Nwed7BA94MZXPUR4U3MnhhwI9/+AkBw/F8wt2x1Q394hSRvVVO9CryCfNkDgYgf4CijjnmCZwDswLmga0S3B59rm7yiqMAkIVe8GzIs2NMekTRryleYgmQDQt2bF3JrvFsUmHttWLb317AYhbD2+PBTt15sJgxSiHhAcvaW9NQU2oLVNDCs6roTomcysDIwpXFmIMTmpY+l9EE0jatpO3mfwIIehuSXcSpoJSh5FkrX6TBM4FY/n3+ZaFEP72kjGdsxD0JV52vvI+WsVLnf8YNd1cRaMB0iFx4syJez4JaUNa13f1A9h2VS8QLU8aScczrTr1HzEnz+FI4YCN45iwDfdi6hCXLmwHMyQlIGZctZUvGppeTkZ4BsYtpa3qxlPkHsPa6eVERb0hmEV9HrKaXPGr5m1U2514ZA/n0E+hIGXuONh86B4rWMiJu/6jJXCglTu4sOMkKYYxH3GxS5kN8BrQLwALb8vuSDZs5U6gROad+RvewuDwxXK8vZmRKrgk8DRWfvHtDzMs+OpA5Vuahkz5XaA3neeHz85OfSSxMAPDOwjflFT0moHHzWeSnzNctJ9+pIMYtfUrgNZTH5xm3WESWrBaxiZg5q56674sW8Sob85kOxanVUY8bvOQ9ySYyc9wEnQD+3sWSzFHhZmKD4c4vTXtreb/Wgt/knoCaZKFBJ1QJQDnYmBPXuDh1txi6zuTcAzPUHBeLK0CJ4+gDj/RHW5sk8+S5QCVzXhdepKLJWgj6cawaIGVgCey2WhcLiKCJYZPPqRXj1OzBc9dcDVQzesaw2mW+p+ln5mSEVi8YRmaDyxaC10nGDusp3V+oa2Wh+KLaRJYJOQ3XlKMmO78WebQpl+q9iykJpD9j75pBps8ZQebTXLEBqIov1+grXymWvmd5ryLRJr4GgGWWrj2c9yJrPiRUmI86YtVE+UVWIplFHO6heI5Y65733eBzrngB5fEhI+6iszr3B3CvzXytEAuFcjDWk8kojQisiW6rluMgg3XOCuSjbYWv87zoXk8RQYCAV06wJZCmlGICZvJzvC7QC67pbHdNFwW2R111n5eh5tSJb9+/MUcbJzbLKe7C4ByAiekVEs0XMcFW3TCwun0ZEzJV1/dkDZ73r/hLXavaIZ+7F8lYRHih8b98kQc/925svg4BxMUNmFQk5D0OUMjB6yDQ1YM+budgjdLHiTEufBxPWASaamTmL8lK1OZXzZQSSpYiLwVIXjReWMVKzFV58hkyraCfssuX2aB4ES/rX6SRoK1B6DV4e2mWP2yqlkpmVt7jkL0Fa+uiOOWKBzxDtLZFa15rqdpv9tL/6ut3A09T3iujD+R2GrNwsZ8hGhmTqRGB4hMHJrZuaFfBCBqAUUJWiHQHcD4JJgV8sZJwaURsfUMg8FTXwleCmBKxwAXJy8o9SjZXzjU7kc3JB0VKZGpqXTdXsiovgBcejlq0ZsBQKzrMlIg7vFUdHKlDpxkeBuBw7KWtILU3dgc/nt+5+Bp9nGohI2MMjg1GBJq8rEydRNY9FWYbGV4eGBor+usv3/D2tuHH/9sbHq3hUTdEdJydRnqwAColU6UGwk4e6sPB6VU7piRCZgYOwosbVCplad+L/A8qdWRovhOk0qjJb+NagMS2U5f98fEd7sCXxxsLpXFhxIUxA29vwB9jw//x//qv+Hye+PXXJ3ofOK5fsb9vaFnYA/j2yyeKF/znf/oTDOyYJINrf9DY8+PXCsTATz9+RXUm1ClNqM1R24DbEzAxdTARs4MmkSzS5nDM0hBWcXQmY8UrLKAxoAXADkQDomL0J+Y0FvMGykIjELjIhLPK7hNMo5mB43oqgLDQDSOVkZ4ZBzvVZUdE4DifTJRKAZK1pAC3FQaKMU4le/TL8bZxIuFkoWVBEDcD4AhOmEq6vxmZQY+3N5gzOZszgNFRjeh7NQZmFpgJPBkghlbRoWsKfGsyjBm8mEC1hjED35+fBJoq72+yjBgzHGbs3Fx94HlMSk9N48wj8Hk8aSjogUBB3R7w0lRs6gCJQICGxNULHl4WON1qvYG3CE2icbRtQ8q2kk4cEAhbqxI5LEYXJFVN8LsrgR9BsKE9dqRchQy+ief375gx8fz4QHHD+9s7E6YujXsYLA7EBD4/PnGcHX/99QP96rieTxlqDvynP/6AH7684b/8pz/h7fHAdZ0oKNixYSIwUCkxjgmvm2KmgMksyAG4Ohsl6EkwZoV5xd6+AF6BXnH2geP8hv/z//3f8P/5P/8bPr5xnxYj2GB4IAbN7f/+lwvf/vEX1GpkFhb6hM1J/xFMU1Hk2BsZEP1ikhq2K5EuSM+tL2+Gr+7Y9w21VLw9HqilYNvIqmitSRY70TbSw2vldM/H2xvj/OgoZtjkfdVkJm1BqjUQmEJZOZWMXhh5dB7ngTEnypO+Cl/aRgzz4jTXQCCuC9YB976KNQSBmsUwNdLsR+d+4ARBYIRhzIYxd5TWsO2bDOYh0FuJSwBbS8aqwUbBiI5sXCSgnV5P+b5eHH4yIc2kqFQWq7U0DIi1XJnkNasCvNta2yapyBjAGPpM04BMaCaYIBV1iwVUpE+BwQigKvZQZpzs6Ak7dY14wBGa4BZrj84IzM6MyzRJ6brYvCplo4nnCMyomPIcMBhmyeKqM86KXew2xJgwGggHcA7+Xa0F3hq2QinuM9kpALyQDZZeM2MMtOKo2w0WlsLE7ZKZ9fL8eJGVpVSrSG7RszK1AHks8zYSVTIa0RBBYCWbB2FgzNB1DoFMZhPWBtAGbExY2uNNQ0HjHoycLBcvo9ZZpNRSgAI83h68Nxd9ahaLxgxper0mB9otrybYWVaBONZwlWSlsAHI2Fv13pKetZs5bQ48WlsAZC2+nluEQXPGwGS9YGsFtRU2MOQtVArgJW45bbklLplHxgz5W+pMuG7gibLcgavTQzIBk1NTLmewno2p4igAcfQW2J85xxhdCTuwAFVIgjXYCLomu/pvb2/LUyMNjC8V7DCgeGUuZs6R18AasKCqAw7nBD/lspSqGMZx8f2zUKw59ZINqBnM6QICZHN7BqVvjnF39pUbGWhqP0HZZLA6WuAID08CCkCKvZVXBzBepMYieOI8U6rzhjE6rn4usNpbUVziPSarAa/2WUgfrhxYFAL7egCcwMpx6tED58VGTyF9mk9Hku+QeXj1HbXReNzNUTZ6+3WdtcmGtHI3+ZLBl0bVMz1ZDTwnLZkuARNTzwDtHUOrO5rxHrgbpeID9PCTxJfgqUvZEQvMOT41Rh3kSx4BhLy73r9S/t3PgQHgqUluBNhOjNFpEl0c0eWZ6I4rOp79WGfJdV4Y3nEdNGXf1DizMVCymSvvpBK8J3XZEmQ8UNMgAmuiuYCKmDkRFzA5J33HwIGBzRUHxQYRzxUlili1cX/2QXlqSZ8rxUohL1zfzufHRoDBagX1I2I6obMpq1hp2h+0yFHsHUMmy3Wdf7OTNb3vO/OzGUmOklJGASnYMBg2xH4rKJUgJ/dy05nLuneMieIVbWuYMdDPzlo8AtHJxismFQEmWtmwbRtsVlwncJ00mR6z4/PZ0a+Jx7bh6+MHxjmYrG4m5nUiJlCjYouGPTYcvxz483//C57fDmAYTlwiNPCsjsr71JUTcOIfAabrPDFG4Braw/ViQ8UKRN3RADAIvE3wI2S1yOFAZCYbyu6wAkzvmDZwoWMaZez+YIPMacmI1pi7nWeHT7bMer84dKNJdTIOYBp8tCWVDQ9gYykWE5R7zoD3jc2dMQnqWeUe1VAJg2FTXFksU62NlMiGGy7V2qC6DvbQABXItgckboSZzgQyLM0FpCJJJjNRO/7q9DSewkuGGgwM3wn+aR8UMkOvMVBDw6sG4LK3cDc81GSPDmzlDT99feCXjw88+wnHPdThP/r63cBT+iOkZtstp9woSZ5KnoRaT3Bz0GSWgMVKToJTi0bQjE9ZGr8nYhkDQgyBMf0OPUKYuWloT2ZKniKCRl8hnXs4KFkY1CKWlJBBCQE/J5FCJVZ5veqKytniNyhmJgDpId2lr3cT5dUIohFx5Cum17eHFoo+SGTQDY2ChgGeZyx/dgT126u5PYF+DswtsLWqkY6UhpB9yE+6aJaFnjM5FhSR1xd34FP6AdzFaR7i+QfmG0I/AwjTRnrtKuIVzRWCuxY5i/atOeaj4acfv+Dx2KRnv/DxfGLb9lVIskveUUvBH/7TOxCB88nDvHjB1tgB2OsAYuDHr18oaxMybDqYzeLlIvRn15M0ZY3rB7jGJyA/DN1zGLILnvIKvh6zBcIQSQvQW6gT4fIdAnKM6cy3YgAwHg5MXJWA8T/uQlYFxz2CVrTI7Jx4duozqOizIyegsEuXXYy8ZABL1kfasoAVpM9HXpI+z8vt4ue2l1fSAtVnyftGJlZSzHlfMnG9F1kWzDQ7ZGezIEcj8x7IKBAEKGq9JYpFfkFFnXeuYSWPrM5VuHFvru6pO9xz4ogYE1lcBQRE+IrjWUAuc76Xfbq65plojvUkCSiMoWTNsdWx9k7vk10ZTcP4/nHieVz4+ddPGhueB2xcwLzgmLiOA3/88Ud6Tyh5Le53h0wMr5xuZXqmua+JSGpmRlAaFZJIuQ6OqXU1JTHNSWB5T1andAZpzH4Xs9PAPScAmKAg92wpFXsjS7MWShVr49SOUos6w/xzqQVvbw+01vDYNtTi2DYWl9tGH5g+5gKcqhgP+4PMx36ecDdshdMNaykYF6cwFcWB5HNMTyaLmCIBTJlXx5gwB4XVGccV53ISi2dcEbBFwEX+Iza0HytZIlnMqRJNPwJovZsAm1d+TPJIkk3o2pMZQ8xI7c44ZikzkKRwxRBPKVEW2AkqxAr1Ke7WhwT7bgS10qYkIruqjGXTEiia8JSOa49Hds6RJ4RlAOHrRcYtW7GHf7r3DwtL/ixNWblW81Mb0sMm/8b1fPXaqWXUvVneCyqOGCNcW6Mq3MX6uzUmu5CFaMHplq7MjxIgrQ3lDikx8RXoxIKO7H6KyZsxWzHFtX+ys84YIxmV1kN+uaaAYQxM5Q3GyovXAsan6QBF4rbuG7u8uhcQ81YXUdx1TWIsyVw918XNoMJiHc2QhMgLFst5ZuFqK/4QZ3uRmGRHWGcpPyOlCUg5iv4u1216WObazXMSYpwTBLvve2Yg2SDLdTIFZhBkuiU3bKQM5DCbZSCOHCd9/4LY5uAf9bpYa5cTYofkgaa8Ay/7nJ83PQPXuYtYoN46b3Azl1Myj4wLAqlziawccOUk+R7x4pHFHT5XdgukF9LMOAZkwrr2MbQuE9QL1JczUZ6PL3lgdtYBW/43uceSffWat04BWikVjJdcQY4jSDbZevZxXzd0j/Pr9dbk/ULuqGS2IxmEihPI9WCSHzE2uJgsU36hGX9piXDXKWtvut3MM+ViOYE1mTuWN9+wADSXfDN9OqaYm5kXrhxGNyjXwgK58hZojcYMmNYq7UnEhNA1ANm05O+GiRXwjakyxP6jJWyCv1peYtiEikW3XCtaW2s95b39bf6U7/P6ZVBNpddncy0oh9RqMN00yujyUnRPkEAW1tO8Y0VWc7b2x73MtJ8U43Iv5rkOYMX71zyW8dAkV+K9MNw5IeTlFAr06V32ugCmrpn1xi3nRjjups6dozN3nOtzLyav64pnwK2g1g2Ak3Ap1lTvU5Jk7tHqDWlAVODrfLYgo61ahU/DdXR8//VD3ptZc2S8WRjxYmHNCNS8vmBOYVaBHAqSsd2xsITf3OS1DXhPA7F8Whegb1zNEdD5YEhVEo+JUKTTzwMkmQC3xQ5iSePm5F4uK4xZbqXfKJoCJtYUmXu5ljLnCrtZmgpw+nOs2jjrwoxF7n7v3Xw9sYsM+XP3bbpXLe4YaAbLuDDvc+23MenecrFWly27oTyfpnyetDIXW9IK10wpse717/n6/VK7K1YCpFxtdTNq1aSLZCzNSfbP4NjcT4c+lFPKAcN10CxsDqgoVMCH4+PjQuCEbzI3nWIzjQu1NdSt4rooF6ER5EQpvMFD2mNORiFRDfNCYKKLKjaMVEhUjWgW+8XdsLUHHLbMA4eYEJSxJGWtcqFVcryecaG54602NHNUd/TPjugD3ln473VXUAaiA9egl9GIiYOfEge4gZpXOArcNpwyzK4RKBbwR9ViK2h1xx9//BN++voj3t++4POYOK++FvIlZJa69AQRqH6vtcrxnkvPgkU7RwVzoU7cibm9HBDcqA54XcnFdV3ydDnhMDxK4aHaO0dAawG7A3/84QvGlze87xyT3fY39DHx7ETtR0yBB7yXrRT84ccvOJ4H/vrXf2CrG/btIXAgYPO/ABCTKFgI0zekpAABAABJREFUZ6Zynk9c/WBxP0NUfEfbqLfv58HEHFBSpbAfhjGk7xatv1aZ7pWK1vZFKeZhQ/BC4WzRIy1I9wQArxvlR8d3eE4VU6dyjo6BgWdX4aX69xqdZn/meLzTePjbt18w58S+NZhNjH6gj8B1JOCSZwejh7vj8XhQ1vN83ma4Kk5PdbDPPjLasABxGfBGXydJGrHbApTF6tAvRtgEW/r9WiraOSFMlHMER1u/FDC11tUt3NpGAMIJQr59+QIInEqGUkbeVr/AzPC+b4gZeD4/gUHA1Z2y1NEvXPO6QRIdjP3qyEkt13Ghzy4TR8OPP/yEGcDn5ycNzTuZUNcw5ZzGqZ4B9CcZNm2reH4+8fH5gcfbTpPmzklvj3ggOnD83BdI9f3jxPN5ohZ6r/z1r7/ieZ74+8cnu37jQowDGAf+8q//gugnfvxhx3+x/4T39x1tM7S3LFYKpjUMqCMHrEOHfjfJ9ivwVlY8MHkonV3m3MYy9W13/G//2z/hx592/F///C/4+P6Jx/6GUjg62kHQv5aKVhq2nfT0wAUvhh9//Mp/8537CvRw4TNgF+WHH38Uq/Iu9hRlsG87pbyXJleOEy7GaKkcsXz2jq6hFjM62BEDStGEGGeTY17AeTwJHLQd6akGdU8xB0z+WkySHcW4biBD5VIcdSsIAXZXZ8e7iW005lhyzNE5zjoLgvp4B7zgfH4ySrSC1hz1rdHLK5T8GEfBB4DzksGyfC9ggM9NiU1Kdvgza4IOgGNor+r6U3rbJwsN96RNs4iPCBwqPM5BCnwNDgJhUUsz0+hiLiu+pqdN9Es9DFOSHmtaoU8ltY3Sx1oqQsX8NTQKWclen6EiTsyiTHgM8FIBI0ga4EgOr0UJcUExw3kd6jQyNpi8CczKAooW4LEKN3qm1EamMs8CJXKKLyXPvgiyoyvzFgP9N3i9aeQ/5T2mM6Z3UOZr9KUADdj5wcieNM9pnkEgC7YKXJtK7C29Becq8t800RFuGL3j27wW4FKrwVAxCs1mK14MtCMWODJBNjhA77RALBbXnBN7bfhhf6AP7rOZP+8QE1zJvc5sAk+8X+M4mFBLLt5KRUwaKN9nKw+k9MBoJc8DsZsmWR6jyz9QACoZMRuO88Dz45P+dMWXNcqdBN8TSfOaljRrxvpe84qyp5yJUuE5ByfCubHWi8CcF1PcMXXt2puApK0vHkmSgzBmFX0+nbPj3xW8AvsxY0kBi2Tus3fFaa6BNBruY/DMlEw35XIAWVZTbKrQNSZQ4aQKol9cb7zfHF4QjfHgeR4IffYciMFhDVkLCOAwh/k9In75HIolVpXz985p1JkzpjRvxj15uToZa89+Aj4w3NZnSPC4z05LjrzPAsXGzGE35X6PFR7lYSrmYLWCtjW4GM4zACtsZpzHpbXjajA49rdNExtZPscgo8HBxkndqnYSAA0oyjXWr7T2qGShOqeoFskkGYcYOd1A6d9UbA3gePI5XFdWCmAMQNfvEnVG4EqzbTFzeudZn/mZAfj7x3dEyKgaQJlcZ60yT6oCTuYEAWIzNHOEG1oxgbE8Nyco/wckWZTEzt3JTNMOHJOAUfGEkZKJFuuMSfRinZfWeKwZFS7X1eHNsJWK6J3KGlmstOIrnrAGANl3CNRG8+kVOzUVvUCIoefkaNWU+vtkuObXAvsyZtzlkzwiJU1HrusJl2culqQy94kkjVb4uRgGKCE35is2Amm3MUa2yBK09QVSMFhUTqpU9QczlNbknzzwVje8vf/A8+jiYIgSjuf3X3BeFwczlE1eUmzOzM5YPTtj+/54AGHoV+CXn7/jf/zLX/DxeSFQyaZy4OPzg0qe1+FIM/j7JlsQm/ACbHsF0BEgo+qK0BltiEI2qBuH3kzVImOusT1kKKthlGvHgNvDVPmdGYcFAPcAsMWEBMg2t03DRuKlocU6oXfuMDcg7Wie56eUPKrtiuGaHIbgg6AO/SbFqHagbvdZA4GlOWwJ8xILz6R+oEw6JjCcw8JMjaKEb6slE8xEeuEvM1setVS3ADYo4/VWtV4ke52AiXnLJgybyqnKoi9g4PmpAUCK+71PWv644+3tK9oj8Dyv3z3Z7ncDT5YIHmwd3p4IZWT3JNG6IpR5Yvo9QQp6cMDdzfXlyQDcdp9iFAyivm73KNUxDdYljRKyC5BOyptnt8YUWlnB4naoABsRQiGZ8IYJNQ+jNASGIaf3gUQksRI6rgialw3Q+ynnGQ2BDX0MjiseNLYu6tClrncGMEPor5LKEQELhw31mCMQKWswIrPn6PDJg5rSk53+SIOsieU3YApqcPSh4oPzrGBwsUrGfQhIouCSl81QTpwoBaAzT910HZKLZqxqbUkB0rxPixWT5pSiGqF6oFcyAXICm3u6eKn4MMr7ailoFRgVaI1MlyI5RARW15PjKUlnzbDiTuAiXIFf62RwaBbvr4qRmYh2EDlP9gfsvqV8dmMVS0lbzM6ITXUZYoplHPcLpF7eZXIrI4CADN9jLtR9dd8VaMbM7gEEIiZ76d7oE/SHCi1VU8IJgKDTGOhTYI3de7BLbpBFr5cq0DVuvweQ2ZHebDTmd0Qkp49rjPdDMOMsq4CYkyBwAtDJyimFlPGB7JYn84X3fsibBcBteJl+cCbPJOhZBNC7YfWGHUvjnAE+jR1Tz83OZdzxZXDPWaiYigqLwAxf93+oE9avrj1BsOJ4nkzc+8Tz8xPPj0/E1XHJMDDNL/N9VGHj45PAk9eOCMMvv37guAiSxeQUO5sXLDqLoLqhtYq6VdRWSSFfa5BxmB7Q3KeWiZQAtzFsXf/auoZVhKvUAeUYwA9fH/AC9HHg8/OJJgp4KYxtW6V3T4GjbfJFMB62728PlFKxlQeBawHcKTGAG9rGc4TENnv5RelV8QB8KsJmd0xrfjL6u02UqvUfrx1WXWBk8aV1kYygZNGqAxR53+xmiCwQothi82URZLXAw+lVCLGD3GScmklRrP0BV4EOvLBA9CmHktT8lWdPdvbSm0i/FJCQXiyunm4ANzg089nytg3JF0YkiyTZGgkqs9Ay7W1AP+uEDfPM+k1cy2Qusjt8F33rW9YlxWrkRKTEhsareb33N8s/KWOVqROXXgl8kAKAJH+QHCJD0utZYrqY9FhLhsjyZsrPG5A/B1axJqMkJfV3oczPkfFkIIsoM5NvXQAYlAatAgu35CoXKvQZlQvkbVtrBy9Zk5kmZZqOs1ifrZQcfS5sUmeUG9YY59wfrm5tbqcwoMh8uizWKuV3ps+XndiMsYuVJzBoFQDKy1zPMQurV9AnJv0ysms7ot/71oDpsRJ9LnSWDlrJ64zgtErmbXOKkQQstpYp7+wpvYn1ci//jzcsh1+MHDgyJTmY93mZR+46+3EXy5ns5L3jRFiumTx7khEyY6znkesoP1sW/bnGxkyGQ1a7N+NlRYTIXNVW/pVSO18+NcnE0GsIpQu7c41XwC5BEd6nZDK+MEOMcWkxlrQ3Uz5pAYQKw1CsWvT/l+v+jZ5ghUCd45ZNE6yVB7DYy+cQYuPg3+VjMGZLJgafre9hfld4eoD5rLzGfEoGWvTZJ5J1wtxSz0j3Zim38u5LCpHn60uKpp+Z6BiYpqakniOBDgKnocYvLNbPEFgM7cF7n7mbLBY0/hyArUmOBIhKmJiejtllxt+qNuXtK5jM+tBgHM/zSdedOZfltUwyP6H8QUcOki20rjuZXfpvu1ctshOaXqi5z8h4g85iR3jhgJ6iIll70wHVp8hX5Pow05K4I2muQYOtfHcxm5L5phwgLyEVHTejLNbe4R/nuiaHzv6Up+T+wM0IXp/RMobmfcs60xQDJnMf7XU6PXAfSGmLJBnkzc3nkmffrejJ+8A7X9ToyCEpCfqz+eFLYYNgXmIG1L2g94nj+cT379/xyy+/CGQsYvLeSgBIFcOciu8/J1jHBpRXAQmXsAmQEcDXOlq/4jbFzmeToKGCiZROzAGn1ihiLgUFgs2S/NEF9Bs/RxIZYq3dO04aeC7HnAgNEEs/5Dwb10mqPXn7f+U3Zei511kOYMlYu743t4XlPpH8NP+s4MucOlnDU+tOOZw+UzINLUwCn/jNegfy3OEzS8XQ/f9YR+eeRYjJNYP2PYWEm+fZkQ3E/+jrdwNPJZNTANfkyGEUoFQD5sLc4WZ4FNGf50AvhtMNkO6xawpL8Z2dYek+I8GcoGyIQEqFWUXZOLUrcKJfjtGBOdlxLtLtx8iEklr2KfMsWCx50BncpB0DDmpEzQY85qKkP68PFmdaAbaMz3KdGw9Ey+US6MYg0DEXY+c4T4zjhMOx1cD7g95HNGVXUJi+QLIVFIemJcRADU6m47j4jomJXz8/4XPiS3M89h1fHj/AUXB8/8TVT1LGq4ofbxgo+PUYNNltO5Ftb3iOX9DnscaE92uglIq3jXIfG0Fq7doJBqhgpb48MIMmg9e4QH8Oeh65O/opb5eATuZAs4YdMjJUAjLGwPP7J6wQVMpx8xMTEQMxTtikQXLEheIDiAsjE8wATWUD2JToZ0eDfjEb15BMf4/jxJgDx/NQiHPUbUPbNjKu0vTZAG/ctDFl7GZAnxd6x5o89ng8yBrI9VKAmF0+O0xYDXUdJgBQ64ZayXjqYQixcAAwgQ5wmoAVuFVc54Xr6Di8Y1SD+w6zgeP4DqjYmGYq4pQoZKezpwyKScjZL3hNsIJ751CnhJInR2kFvV84zwOPraG2hn7SJLCUiuIVj21HwDFgGJ0T8ABeZpEXieEOQjRNXHcJpbK4bQ9Se/u4GDTVGa5e8Msv33EeF2Jn4jhhmvgw0FrFvre1Ts7jA3N2PD8JbGzbDiscCX8cJ47jhGtYDHRwbduGMQLn0TUhZKpbWlDKzm7LqAKKGno3+ssEGS/fvn3iOi5sjffm/OBIeEfgPJ44np/0WZlzXbfXijEnjoPTszocxzlwXgNTEwf/7a//wIiB/QdHRMc4D1QbaD7xn//LH/DT13f88T//ET/89BWtkfq//B401jsA+gvI78NhaKViTCXg4ifPyFG+CVjRr8Gco2nDJ/7rP31FqX/E/+P/+Sf0QZ+/OSeu60JrG75+/YL+PNGfB0FhN5ly5mjkgn17MPZ1mWGaccw5Ar9+/7vYROoyunP/zIFrVnZ8VHxms6CPgYtbcHlpbOps/qYWU4dzHXibASjwQs+EqUM4nMkiJ0oWOIoMwx3WOa0nx8xewT3lZqg7Ne/JfJKRFgITsxh99DJ5LwBswnd1o+wGPbJQTfZgKDGcKmIHbulEyiiKsdC/+hCzK/1aJvrMwgC6b0q+XxhYLrZlMkFShlfbDkzHvGTaCw0HcaAPgf3uKnqUREIVAphoBrAmXnG/scE0I+WbmhYXnNj22HYAWGPIYXyPoo5nZFad/2YOy7HToSZKAHuhPGHqf0NgHruVIVauzHBz2qDOeCQAD00rcheIYxjRlXROuMmjBUqT5U0WmvCZJte1kgkw0vvD70Q0ywUCWipZ7AUA4wphToBYZ0cWHF7pbTcG90KfjL9t39TEoR9ivzoempCGziRjCIwq5fYYUeorA9oXmXXbIIxs/X1Oznr2vmTHC/hUkZzNSMrlmFBNDJzodxHQychJpUVKhS2TfZ9L5rvv+1qrCSKZ0Qx3zhwXzVtJ6QgWs63I/7OvQQ6uPQmgzFU4TADHdSClHCHQaIzJMd3af+ml5Gq6ElCTITAfpfazQDPVRzMGMByjM3EZYOMvZZdLdhixPKJS/nedBC9bExAqlCq73I5YhdBQ68AEKkc2DI2f03AXwJN6qxu8dbK4KF4lC4Q+fJrYl/tQxW2uaU6nZUxfz2MkGFzgNu9JhSFmVq5nM3CiEuDG/d9kVMumA5uM2bTJWrO0u0G1DJlVNa0BPoqvtdIguV93zHUroJcLAeOGinBDafVuWFpIUsap0SMnWDnBwD7pK9tnaIrkhClP3veHzqCMj6DZ8QycqjBGT28XArxvj53soDlpSuOmRudAvzQkZ/PMyJkr1YrjenKi2uiA0WIAcUsWYWqAe9FQEsP71y+YvePz11+0FjSN3B1nvzi1ddu4bpbZdqUCBWS1jTHB2QQCDQLMK8TiXJFMAM1AtmdUVWfwCfGhX2JgMosAMCdrG8o2MUtghAm0Vq6vM3FGrMaWKwNd52sCMXoWt5zN4UamUYUasLhtB8j6uVlJC4Ayychmv2vDWmRqHkqv8xqYp3IqWN6bgYRxY60TSjTR5Y+JgjCnH9kMNZIMbW+M2NYJhMxb+nyFBleI9byAF2A1+MjQ5pTM0TuaU77f+0XyQyncU2OiHwf9pL7+hLNf+Ntf/4Y//+u/4p//+f9C2TeUVnGOJ9dokMlfth3quQBaJ5fiMmMTz4kEUhNhmmr29UmixTDmSR08Z4ZyJFo9JEDE+q/MmxEWU803aAo9Mp6yGV6gfx9drM1CQDZimdIj4ygAOAHcuC6eSeeJGYNTjfOc03KupXDcSg7hCMZnWw2r16ZVJqup3iBBJArxiCS1c7vwe0fmb8HvschGfp7iAAbXWC2NNa5xGvQ8+1K6aAdgYV9SJBDYUyYZjOGt7TCLNR23lILzGjiuE29fWT/j23fMq+P3fP1u4Kn6WjEwuCjIDMDEOWIdhLEgmQGHY7dCI9PkBJkRsDJoWsXUhDwdWIyTAC64DqTiga0GKKMQ9RYQdTO3sGjuptX6sulh+amwgIU+Az7VXVLiUfBysIO0/jsZDEVQ/rdP3sAdgA+Qp07MlWlYaQhzdBieFw+l67oSwVpgBS00Rc01MqEIOJF2zMOORm+tMnHat4rtvaLtQKkTgQvug9JDN5qhiY2Zvj1VQJzE2kIuYyUxFkyqxezX5niZ4hIvxYWYToWrcCUQV6d55egXHGnGensLwOQ14zQCRHE8too+B85xwbzQl0SL/xwHbADXc2IOGpsHfDG0Foi/UnldE7LDlgFfvgPF+B7WEHPwFyjhmUnNrRUBwxxday9XdV9BfMgQvk9KOJKVQIR6kGE19RdOHXQ++1oK5qT/2BxBeUliNOkrxSuQppk+MHMWjEFwjtg+k4LaGle5ClwyEct61G6GrdG0vM2NoFYt3G8I1PrQfuhk0tUqSUwjQOSOUpOBwmI8JRnrUFNyzYJGwTVYPHeZHXqx5efgJV9Hyb1eh8mEwwpBrq2xcMPUzzhZNUDguE6sEXxmq6s5gjRyoCPMcJ4XJ6SI/WHoABzfvz8xp8yKVbXw8Iekmfz+GcA5B65r4DxPGZA7Pj8+0XunQT1AOVbv6MeTa2l2TlMz4LpoDksjc8oaCTwZLo2fjULZ0/aHd8AC7w95nWBiK8BeA//0p5/w4w/v+PL1nVRl6cdLyYMpPSdcHTFbDAI3Q7jDJ72G6DXB1ZYdL0PDQtmNiVn0gWvczIPivmS5ZibD/+BkvEkJlWmQAxRrka3fAHKM661nL/IgoFl9cccwx+iDPCqiavpeJmoDHSv7tpvbFZG0dKCVBjgld9C6s/yfyyRRey3BjZJSGaXH0F5irCx3US2aLllBBNnsNx25W6abnebIs02xif6G8kjSNBwPqCs/1ZEkQM8QlAmqziGZuUJU9lHIbpgzrXqRaYSOwrgLbiX6FvRyCASK2IiuWGTlZjfwKAie21EWQ8nyxeZ98mclUSwL/Oz+iQmtApEsRR42paUDRCwAIc/JEeySZkHv2pclpzxNjkr2MBSdLR4mxoAYmqVgGuOpgYlpdRUdCO0HMm57vPimqCPqq5BIdtUUQJ7gjZIWyRbZtS26Z20BRstkKJ/D8vfIAvyWdixA76WjngmmGdkPJi+nYrmXfEmVMQGbHJdeS8UyHpVsK1+T02HTk1Jrf0lDmFvNScBzxEQJMmGn9lSe7bPHYgm12tgUHHPti0DovOV9yI6zLXbOuNelrjsLKoI4N8CzWAdxrziYQBCkoS1vb8DuvZPJuq06Qf+Wa/fO9VzfxOekz4sEDzMPwvJU4RLgbplBywPYfGE332DWzVQ2rhPc/j267S+/bgDl3spk6PDSXtiKERiTxZ/B1r/5Wld8riN4HqS5OD/TRB9xA4Bu8JCXlAk4U2NjZgxJwEFTrUulF5IF1nTt4i7GSk4g1FmjfIzFmAqvfG9LVm2VnNOYK5gmgJorZhiSwVdargnF9Mn77e6oWWvp3jFFlMRQBeaqwFKuhcwLIMsNAUK4gxHB+lwHCvljwGwqbzc1PuyOlbrfBrF8tW7db1bYq29V/jnXrGetMCemOUauQe1lWHqrUtpavKoYNharXWqO5wlE0PTdkhkBAag893Ji1oiA555zAJXekVQ0mK7PVWfxTBxpXRFqlqSMGv9u/+nLzSWV5HnECXhsWOZkrdHZJLQpny93eFDWNDGVfwi/1RvkuZtSSFOMNJS1l7mn9KFCuW1MTXPNNeli72eybgLdCha0ZSFmuyQVSr6IUTMGZmrF150LGMsmCdxhxfRcJmZcquvuGpzrUesFGRfygvs684oZbCsoVY3gYM1zHBcbMPOCW2DfN9nddIzJ37OzHxYIJwD7vD7xb3//C74/v8FEPPHqeF5D03aHcs5gLq2mSvGCSyy6Kt9JrRqsCdhmWu9riyA98XLdUwGVdY4AHZ3RFmIuBnOE8tJ0y3yisCxGNSpjYjBnzsYVv83W80fWOKptMDt8TlQxSUvkFHKdY2aoRl1RWswsn8RhqkFiLf7CIgBlADaISQAEV9nUsZWD5ZCvPOccjBlFwCm9JZNh/3r/DLVI9q/YFwiR0sh8ioxheRbOSTyAmQwHnyGoPgliEjNr63FgdGI09XciSv9/AE+UXpi8OAI56hZLCoMlTANvHgYKCqoBFwZGkLXDriqTvGsO9NFxzWt1s6r0z4hTSSsP71YgdsU9YSRHIffJcbJLayTgKWBiFN1FxghSsqPnIuWBWAB4Tep+kUHZS08pBg9lnT3VEqRxYA46yCsxKJrQNUW3va5rsQToTdCQlPymo29o0w3wQCul4hwXrutUJwpo7zTVfnvb8fhhw/YwlDYBP+Gmkbou47Ui3fLsMJmsi5iKPFFNRSEPEV/zRgDcn68SJMguNUJytpiobqhe4fLS+Pj4WN9Xa0XbCXjMkdBgR6u8drcGN8NeGj6PA5/fJmwWeGxweU6MzmSVU1IcW3lXp2mszwcTnR0qEsp9WGeXoUuznvcdQR+vfnHCSe+XNL707IAZjufJtZrXMOfyoBmCOn2KT6LThNgc5ZvMT1TQzMBxfvL7to1+EtPUsc4eDGRklwcI9xGZfY1BaBiTOwdgg+Zu2wOwgYlrYdYV1Oo20B+qlHYDqE6g7LhOjDHw/sNXwAy/fnwDTN0QJbr09ZgojZ/LRYNl9yIPYFaCKWFyGbwjDKMHetfUilJv4EkG1Z/HU10GHuj0PHAgHLU21NLw7dsHIib2N/qZlOo4zic+Pz84wtvvTllMduHHda7Oa5cfA5CHGo06v397itZuMOMkwt4Heh/49usnzvPCcRwIAFY5cew4zhX8OXqcfnHuhkcruI4nfv3576i1YGsNb4+K1gq+f//EnBP747HYWx0aiFIaojR6IhTD+x9+RHXHFwB7Lfjy2PC2Od42x3/9z3/Aj1/f8eOPD9RqOK+cfnjLrFLDbepiY+qg4qLBLFiSJS8EeEsk46mtOJnsneM8cIzr9h/aGrwU7PuO6+L4771wstR1dMbnUnmgdRAEn6vq05JmMQuQiQVz7LUhx6f3a4gRkH0ZxiMviup2sbCptiZ2TB2cV5+LAUWQTFLHEQtsiHAlpqYWCSslU9xhsnz7JGXv1rLCyEpT29yi3NUH+WUwjiBSgusY8xNhPN8igmBkFhmrcMjwPO+iMTg1DkGAKjiaaSXx6eFy9Zx4Q3aEleShvMgF5RUA5T4E9ZKdUrHQHQBe5oprSdcv6TVV7m52hMb+zowJ+b130yalbnmaFl13jl2o+6Z/n/c6FvCUB+OS4wUToOaGPum546goVlHXmWCY4WoyqHni/IwOSj+KJzNTBWilmaqnt1RKKQxoKgxrsXWetdYWa5Ly37rubYRjTFbeteUZNVcTSBUnbqkAgSuzTMkEAlkAuLjHwTR4YqzK3srdp+TCsdU08OqYqNjKxrhZErQhM4AyRBV6AhwyST6v6wZ19KxywECZoWl6XAOjU+Iz+hTTdgKPACo9QhBZjMlnKSOM3euC9T67pWw75dlHoCLXVkr1iPVEzuvk3cozIHgGIAuHLKRv1GaBO5Z/lWdwyjiVmBPYTc+dmzm5WBnKCywljoWfe/YEngQGFkd6QiaYETrb1xjsXGy59qFmkmWzLOOyGGZmCzRMsCAi6IG0zmqBgzqjQg3HEXyGtW3rvuY5qaMS274RcEqLijEp9bb78yWb+hwdrgnTGbOziKvOsz7lIUtmHfR4rNWQup4hduq2JaCrM0vrexj9wdxdvncs2F2Ac7I0+JHJKvNw7NjWvopEsVPur/IXOYlwBKYNkMRl6z1GpNxbj8hT+iiWX7I2dA2jcBo3Y4OtvJM/K7As9y0IvCzQayFZAgxw5+MGiEFOptV015FkZMFmsekFpdGnkB5uKuwv7uOBA+a3j1FoDQYA8wI3gkwRZJy4rjNN1G2YPOsgMPcGcSIAmymPYlxAhIpkLPmVqiflHrTVyMEGPU4kKYESdk4g67Njqw05VZPqO967ETnFMZjnus5HC8VNxnl6CZX1eZcNBrJu1DqJAMJXnMxnsIBjS0m1QB3oM0yy4Kcl6JwSfay4NyXFMatwGM6r89lVoFXHVhy999/Uu3DlOGL/xQS8cLjKAm2iw8zRyg4rhm0raNUAdCBo3/B8fsiX90QpBY+3RoglLow+BUxLfmcT4RPDBr6f3/Df//zP+Pb5C0oDWnOU5vg8B8a40BOg71wTCEerO0pxXCfXbd00qGQB5KJhTf47zwxbO4MSOv7HPUkVqBAYKpuNPElZ0wfJIJBMVqBN02uVYLM/Riy/yXvwivb4vK0AFmgZxAlqhOq/mdEDBdpr+mxk8gaamrBl8LUTIQHYrMEI1ItWQP0iSDrLwDBaCBH4YiOeCir64JL15ajmKJ7zVDNv7GvNmJEd3wEOPFr3imDxyPWPVGIFKCvrKCDDtJWSThFkto2TPm8I9P5EYKDUueTP/9HX7waenv0JM0dBQ44Vz3SnZP4kxBGanra6PLPDwKkgTUmhqxVeLeCV0ps5gBmOVnmwzJNyqFI6HBx9eNkFi2t1OapvcDdsiquZXMTkmPOhrkAYMI2HhIf8c6LAIzXbTGaehxgDNEnRgc9SnsWFUFaANE/LCUkOt10fgqAPsM5nBWzHtmsqW7nNRHMxlEKKs4BV0l0RsFrx/tjQisPig0kCCJigDAVVxwAR5wnJZAYTllYfaKXRPBAmBLOKXcBDxzdbScSMKW8CZ/E4oMJJ4yErpXajL5qOgjsPFCuGVtixujq7aH2yoHSwEwKIIIYAJk3OWttRSoNHQT/YsdzLOyWdYDD1WnBeB6n2GpglzuH6FeoUIZTkWOVI5EiKPpkN7pz0MINTiqb8T1rbYFZwnVyjoQyVxT0Dzbbt3PylrO8xJYLIy3ImrFXFz+ORIFwXeBF4PHa8+Zt+zm7PBa3hOW9GyFRniWNhDW8Ck0ptmHjClLhHAF5J98Rg0TjOUwWmK0kuMPCQP45L2UWyAQI9LoJ7MmOfSw/siVoAMTH74LQ4N0QXr/EiYEC/AiZkmcAOFfPnecLNNT4+MC79ex/oJ4HuLiD6PE7MCPz6/QlzoDTDx8cHvn3/hpbmupOA4Ldffl6UceEKOK+TBop1o0x08r3Ooy+fL3r93B2wn3/+FaMPvH/5ws5fcIz0tjUUSRU/n58Yc+DLlzfUWvG+74gY+NM//WdJdQxfvjTszfH5pAzv69cfuI7E3kKtQN2A2paJ4HRDheFHq2hu2Kpjb47H5njbCrZKmcfMDiRuUJ2ssY6wCU3iRrI9U8aUbhqCLRiydBYmbDAjCJyAHRc3wGqOsWYp0M+DQxgkkwwBXEVj782A9/d3bUuCQfXRXrwceE6UmXp/dYZR0FrhoIOZ7AAl54UJmzEQsxveZEhfecA/jxMIYIQDk7G7945xDfhWuV46u7VIFovxtRIXmwFcoqqzqAutfkMJyi9DI8MTmOFzYHExJvX7fTA8mTFJspg03gSAzriaHhnIlCRwS53E+vbEK6ZgODdszqmGtskbr5DdajYpQ6kFZTowxd4E2YwEI9NvjH4m7k6GGAzHccEWs8BUyGQ6pkJjUdmwvoc+LNwrS7rn91TK5aGAWMVy+lHkZNg8P820FuNO02rJZs0gqF50fntF9Qb3wuJQdHDgvo/pOQOk8SalZgZQ7qY9oJOc/icuCRHoDeNGltRUJzsB+CkJUamNFPt8cwCQb0wtLp803Ts1w3h+VAQabsalgMHClNacgBYTy+RbqchISDRcoOMFyDogn+95nfBu9/kAxr9rDLgP+CxqqizID9fFPcQ8JWMNzw8yO+YqnFjoUaLDRp8jzZ2zARDGNQD5hawiwmyBSQlW5AS9BGQSLEsQ6YWDt+RbABZ71oqjFkfMRGoEzolxc425criyvMWy2GAOMed8AW8hthrB/TEvPZeMFzo3Y6IEGURdzG8vgseMOygSdDRbksKM3VkRWBbDINMGeg/mtZKaZH46BbbEJIgEgrn5AhZk/3mRj6aAzQQY6UfDNdpqxQYXmwJaowEY5ffbrqEG8g2yyHvK9/NasG+V09c8PVZAyTKM7DeIfTgn+uzofeDqgbYxh0gf1oicBEpmB5ADW9QQiIl+XgQI4j7R+Mx92TyQ6fISe1i6SG7KlZGzaEJN8VZZ4/Quk3Enk9K9QPALc+HICgjaF32x/dhAKS+AP6/7VQ0DrZn8eQQljbCAFyDHX0+dLEX7xbPJaclom2sAi9Je5u/BeDdj4tKaTTmiE7EGDGKGct31GLfvjWNJGGEqgOfLuaB9lTULrwHAzJyQhXKADOWIWEVz0YEyRyCZbmNeiMiWbgDoMGeDPw/A4gZYY10S9NLl/qw6p5PBhwXAIe+pEsIiNQDC7n21cmOdu6FcxNU8nRNVcW2OiWRcmomJohvmCWaK+jEgsLA4HBN13rkXtB63Vnm1lrJww+ydLCLd/61WqkRKDtoiC2zGDTZkozBVO/06qRpQrRJa8yS48amMoWEUq4YHv0FrBQHYVmGloPvEr5/f8d/++f+Lf/z8M2CBq1+MuxNwK3hslWFek/LmECMH3EMwE0M0mbKasaAgmJ5eee4z/IU2d35DEEgyLuExuV6urJ0UP/nvYjSHznDlfTMtGAT8qAegWnIutpwZ7mgcwQZFTFTtiVpuqV21gmYNLo+suC7EDDS8eB+DbLUMjtUL13KhV9osgyzGkrYJhukCTiUjHkwxYQb0YKOn6FjxXFoZmQRUDt2bVuraX30KVEsZdZ4ZDoJZ0eA2tMO5H0rltU2jJDmM527vY9kv/J6v3w08HeNisufA0nrrMWcX8zYWhJJHUwLBcobI213wOMBJbS6qpLqJ9BnggYCYKE7JXgUEavUF2lR1unKEOhE5UBs51YkwjjlMcMwxdSALgFLwmUHfgYiANyUeSrYMTiqfvt9Bml2a1VInXPTQXwqHRDj1/q5EnJTN1K0P2ASq3dM4ZvBgtkKwZd93PGrF8/nJa4dYNT4RLpNzTckD0tSQB2MpTd489xjuajS8yWfmTQlY8J7NlOIhR17zsy7dfAYDy0IklAlrQ24NMTkNcQzl9tJ9T92kZCjESF0/AR+AMpvZA++Pdx4241odpm6UrnElaXJVYHkIvX4tWq13gjAzDwtpfWuVzmasJKLWBjcenFn0ElRSARMTbWvLGJu5GItQLwwkFo4OAgD0C3C8vz0w58Tz+cGEAYHWGtq2SXpmGFcmSCx603eolKr7pZ1jhm11txwGJkKZbOSUtrwvo6ub4mUlCwADxXVei1YMQN3PjuO60B47A0w+3sX9cAJKY8C0B+lfMGkSawC2upK9OSei0xicxpAXAGm5Z+Dseb2BbgG3gesiC7Jr2uE5OswDXgPfZG647zv9GwZ9pv7tL3/GnINFqRNgfB5PPM8Dj/0dpTTkJK7eExFTLAvDtm3w4vj2/VfEnPj6wztK4ZQRFENtFW1rqLWRKSfG2LY1fHm8cepZ0f5A4McvFY/N8TyeAICffvqJAEmtKK2h7Du8brDacIKd6FOjt/9gjSxMTOxbwd4KYhyIeQHjUgzkATSziAlyTSOmuC78eyDuAtCTVsPnnwVQ7uMEB3jOvyTOKngygZ2zI0ZnsCXqwbW4GLCGbef0x+M4UIrRk6oIrJnyeymuRL8jeR3Fuf/WetHrsVFt8JicdqK9XEoRYGwYURYDw8Ixp2MOw+hAtAJERYyTRD0BO5nFzJAtAYDzBXiCJFrFuP9SFu5KBgK2GFSAoSvmjZnAE7DNCQOZV6Q4q5O6vIqwQI2Urd7/MNawB5cUsKVRv9jDHexUBgy1FpRWYF16l8kEfasVCgqcaBWBYpTDNCWc5zzX9SpKYFg+mYz1+kfFojUuGpA/TTDWuC8G6uu6mhnj4i4mlZeq2HOCYyv+yivG04PAxG4qCA9er1ec50mW2JqMdjdTyBIBCyL3dUa/1OncMcb15LVojfLuGhTfJwAURBjZqiqMa6kC21hYX5Kb04uIsgwY/Vo4SMbE7K2IqJSSvdxbFohQ8yuYt+i87QLxs5jisuGepJcKJDUTiBIApqZYtbqYcXNOeEozdfYDkDwaMMvYnw/cVkwf4/6smVjDEyhWwivfRKtFN1qFNvj9brme5nquOYbdUmaQeUJKn7Ae25qiYwKwZkwxgn19Bnp42GJODcn9DFhSKSA/d5C1NeSVaS6gXEVTAJfY1h5iMaiog/LigJ4DYjWUEnQKsAFpYQuAWNeYWfVL9p4FQ35nMr2ssAIxh7y7sD6nx810oiTDlwQz5Xqv3nK8gUWeZ5XrIYIqgpiAM0ZtjwfmdSGurtdKhhkwanAimiSt84W94yo8p5haWYACBJxnDHjl661BBwlzZ0EUauqp2I4IHAKeks1GlYQpZ51IIG/FGzFDyTDVfbSZiiI1+YCyFYJIY3AABPxuroHv34MGgxM3E+b/x9q/NkuSLElimJq5R2SeU9V97+wsdgGhCCj8/z+GHwghQQgpAiGw2HneR1fVOZkR7mb8oGoeWXfJnYYIzkhP961HZoQ/7KGmpsZjnBz44cXUKq4W1oAhuP1Ny6hOgRX4hdUCn8qbEhdQay///LTPAgEDYJeAvrkmW2lBUcD+KpoY7yMEsswgs83MGCOhnkdAWVQOIAZQHSGBTKb76FVMRZL1nLmmFnPyWLWXCohIAo6zWLPlDxrWmTCj6DtZiFht9XVeqsU9Xu6SqSXVoLZ3Z97HmkIuQIa+mBxcLyazO9JGkdl4J7PsmMByu1aggAoTiywKIVAuyemYV7FiFcfVJp7GxrMxA+c4rvPRu3ygmO3pa9/nvGKR+g66+EFWTKt20IotGPSlCAae13mwtV7UDyRb1AFvmEh8HA/84z//05KOiDlW2tfAyZeZBERiAuFAtW+vvKMAYO1TFMCVJfD/avdjnVe2gBGcswKbX2z3KMC0AFDoXKOaPxMu0DA05dymAr6VA4BsPOV7SCy2VRrwqvNoBmx+MY8279itc4pvGAZon5q+v1qUazo87zQlMcIbDNTmNLM1dS+0L2lXqhL67jAshlgYRCSpN1acrteaEpAv2ZgpwCoyF+JI08D9Z1RSOTbZfFDxOGHoYiCiOebHEzMGur901fwbP78beMK+Ic0w24ZS+T9D1NjJha/JkyGjAbdr6lvnQnQqrFLkygzdeQDRci00JoOeHjy0LVmZ9AR6u+Ht7YY5KKq29Q22gn8h8ikjpVYHAAr+khebDYtCga+KGRIwVX2rHSmgCgtovC1dQBtHeDoSDRS6rhoNkNiaL5ANWXRSUUL1ogQUGtDfUEwSjqIdyNbRd1uGcg6JQB8McL++/wFf3n/Fvr/r8gVI1Q/ANgYQ7R3eOja7Y7OGDiUdINgTk0gqWTMECc6YPOTtah+rxSka3WewGpqdQTy1ethKSNqoo0ECYLsBGJjDlPD5CvZ25x6OOFVdbBhjYo4DNxiyAR4HAEfbdhTa7cb2HHMa0t52BuSZQPWbi8FSrJlt+4oMsiFYjS+6dyyRuj4ZhLzdfpGGxRsvyaapipgY88TMSSHu5QTKATJNoy5Nh2GK8SSK4gQAw7aJ9q2jcJ4n4jjlf18v7uU0XxkGgalqQkjPaCL9ZDKjVoeOnesHnrPt7b4AspGJOGIlfaYE0q0AGTKBPBzH54n4PFeGvjppihZ7cnqZOUfVj3FiTiautzsrpOegCN3j8dTpA+LckMGANiLx+XkAYCWObVGxpjN9fPxAInF7uzGh3AJ//e03/Olf/4T7/R3bvmNrFNXd7e8BJ5jbW8f7/Y7eHtj3A1/e37BvvN/ujtvtRgcdgX3fcLvtTGA1sMAduN3Y9vumUkLCsN/u2Pad0wBBjS1XSxcrnRXoGN5uG7bm+Pz8VBuxpuW5mGd908hoA3mhwFPB6lsjyDnniYyGGS4HkDg0Ded++4X7ZmxDPs9RUjO1TQKCCMKxus0KRwikhLFPH7J1bmI16hR6TMxUFVMADUAnbA58uf0iUL6meAFvtze4Gc5zLPbkDCBOw5YdrTvOk4Hn1n8WQh1h1JBwDiJgdUzvI2FUOAU3j3lg31nR/P7X3zCnNASUjM9MnALh2nbHcSaex4FVUVti1ibg/iQgL72JZo7QIAELtjGjBzAmQdeNNrqYO2z31AQiABsueviGDY6GBek4N4ps0irQVICl2MloUdiOmEAkuvlL64qSBATO1eoWTJxGroSiJukp0wespkfyzjG44d7tN2rGLT0BpnJXYvzye94EbMn61a8xKObzsZ2Vd3JR5Z09HCHdi7bpXtimF0+idjHRJR6/2LlK4Ga+tABuO7bbjpS4ceX7xK9IP6tkuXlH6eMwYaU9nkjFDhdgUGPNTUCV7xsyJ2Kc2NoN3fcltj/mwAjqknGQypP2AIYIMbIGC05NLJA52ejJ+4R13usuBkCAQXaabQhz3c3Uf1Nfg2xauCMsJEsQ6MZW1pC466g7hAuYOY5jiaCbc9pXZuD5+UFvak3gCBN0TuP1Qm9Wm3olyy25x2ey+LKbJtuh/CQ/yODUnJrzAmnqHhgW+3q1GNUzK2Gcc6BvrOpjctgJ3FFTrlIAW0tfbMliWBk4BZF+z5RIkAESKC2RCjsYM6QBXUBx3ftU8hTzCuKrmu+TcUOg2nMulmSR8MjKvsAtw8UCg2zAVuOx51R7ORmKLFY6Y5Jd4+f3Teziie5scUeqlbKq5vXRSjaqbY/3wzT/mECez5MDX0JbU6FIASfJoinScR46hxHUTwmaubbsFchyJlKGBNmhYwj0j8qwcvnJ0hxper45GLucYq9v0rgcwUo9bYXp1z4EUs3LIQos6H2j/pFY2I/HgcjA8zwu+6XEdk0U1b40nWemOko+1Qpj6PUXYWCyxwJvtbQlVpPdJemGBIvHtEsFpiiF1LLI8DFm965CsGEOamkWK6za4s3I7povbaKz8cWma7Jn5Q2AdPBojHi169bVG+mllYSa0R4ggcRc9y0E9q/2NAGBcWqgfTFJ1wfn9Q1LbCevvA68tw9LnCD7nMOt6C/IdlG8jAtgrBiFOnihbN1kKwlkUC7B9C5qdUINjeDaEBCUH+g8665cxL0mosnXLDYdkLahWrPNXWw/xTFiP4U0RpcGqRvzJ7M18CciMEeuNs5QXN+84zyfOI4Dt5ur5S6XnXbfcLu9qwDPkVqREx8PxuMzmSMEQJaOimGAIZLFlb7dEAn86c/f8Je/fMfjcRIgTl+sZlPTs09NyxsTLdXGmg6bhr3v0i7iO2z9hoGBmc/lE0o4fBwHYk4cB0Xtt76z2DcHYgQsDD5po2dQP3rpxOrekU1O4KQDInWkbNwNzZLEgE5g7DhPPpvq0QSCdXh0KePGrhe2zgPZSaKxDLQ44QjsIPCcNwbhR9ZkWT7bNN6fhFp6LRAWzMV7hbcpLCxRkg+Ma1zDm4gdWAOlGLSC6fV3CMIdEQK9VGw6L2ZzxW5nhj5/ovcNt1uHHae0IBVPzhNhwEPr1fad74Lk5M92MV9/z8/vB54a4ZYsR2B0KjO4QDzk3IQLx+GBnkIQm+kQJgOK5QiFIKcCwVTUzUNjawywBRHf1hpByjA5I1uIN7JomgwfeCgYzDkA+IXIA3jRAuBjeAVIVQ1IGqFZfadsplZwpUOugsIAhMRK6MuvZ19GNetfL2i5S1ujkvlCXJV4m4KUiSSV2A1bV7K9esyvr6DYHY1Csw42Xbne7aIcL5yGCwNAh9KABela9UAr8NXelfOWpZSh13crsS1tAncK/BpUQbQrgQ0AFkPGwBHGMbPmBjIytF9NiUqyzYJUVl7aVuOjI356f+i9EwyokWx1iEhVr7j3NWVC8Q7MdwYMjS/de5NBOhVATYmU19lNeCqoSNO16iixRbcrCePzXaLQS1ZgDpQIaLl6Jr9XoF33uqolM0lNP8eAtRANWOCSJuc08Pw2p7Mdk/Tkq1IPrIky4BrOs6oYiTMGhqqeWYlYgGzCAFuWxPp7Pj7Zgz8OmOWaHjXnxOfziR8fn0pYHeejIcPRt13A05NIe9tYaZmBfWdg9fh8AsAF2FlIyFZJ0CRo2axjf3sDwJaTfd/w/vaGbb/hnCe+vr+tqYveHG9v7zDwTN1uO+73O/pG9mRR/80S3QxfVssOcLvfse03hk2mCEi267XSBwNuvS/tglArCP+aglH3xbCpfa+4vvsFeldFtnQyioXopd2l6C9TdHwnWFAgA++iqqRQo3Pq3hsk6E82pznbNxdzAQbEpaFSVaYwTXbrjhpjXih+aztt+WJ8NrXvUdgWYRSxjHoXPgvtC1BtmSkrHsmQeiohqLaZqvbNcDyPk+OpbzvvfZoSUFsJyTw5aKBGHodahC3JNhsR8OS564vdRcNQotYrHym7KH9yBebyA1rzGpLixTZcVVC14BiFWq8A/OUnr+KDgck27XoBh/XddZd5PoqRDqtq+MvzVVKyGEQrbAEgELLORn1+MoCrR4f87n/Z0y/bmj//Wl0Vugt/eRYBWvWOQkw5BpzniRPhXkS3CzyrFzaDNWNrYTZg2qrQ8yraKjYs4KveDXjRx2Dl0OXsTAAEXtYGLj0V5z507wr2sCbrFnOIg1CoNZXReNZVLGjpqxAg+sViAFfSskRs89qHDLUS1l3W9xWDAhoAgDDU8Aw0rWn5kDIw/vr31Wpu5C2IpoY5h/z2S9oZ9HOV3KrUiGK0SZEXJiYVTDHNilFKqiCxLvwycIx1UmB64oVBZdr3FxtxMRKvxLwAnkpZWdnH2he8fmYW0wQLGFmvZfW4K2jjta21KGDq9c/oE8iSzxVn1u+XjwAuhmQxwV0Fi3qIi9HKGITLV0UzMj033zDmYCImRhBteAITaK2ThTCZELeqpGuJTImYidlTz1P+zNNWy3WxU2y9TkqQm/evCnChToOawlXixBCDbWlardhRrfwlRlwIJ8RAfMkpaikjXwrGdk3tzUYvxvXnJ7B4U3D/q+0QAG4ClureKf9YwJPOoen3imly7WldJ1/0iCzZkXoGFMtc72IvNrB+NV/eNOv0XqPudXrwMwufHRQTc/nIyl+szpG8cP2CQghMxaCVEANMftdU0sRiVNa7XL6Pa7YE0XHdr9Kn0kBHtZnVi4bur5hgZTvtdYfBPVmrUYACz840MrcdxoQ3wdbHinN0cWcBzKnumvXsFbYXcFo2hPEKDMpBxChetu/asfL3S7trfWZtQF5/L5knN6RsMWPvxSepYm79WvIuusDF1hzHPGn7tTe57IY48UvI25adh5hLpm6K66wB5xgsUi5wzVEJ4XX96Cebb4g58P37D3x8PpQLQ3GD61n5wSUqbgLyTYSKRBWMLuDJmsNLRIyLuhjoVucwJ5fSAStbH1y/qb9TRQ8R2MTSYt6VeQ08yzpnifW+BISk9TgGVgtLLZTWIfVdKGDWeJPW44fimAy4kv7S9mJBVZGwQXBynWkxYXVw6t1/Bl1zxQXrvOrPklhQ8RlQ5i0VqJaAgZs0Btc7GfNw4BU5pn+p740gjoE610m9Xye7tCbaVpsqrlv+b/78buBpU9WMVejqM6TjSaeIdhmyUDKTHhgADnDU/Xq4NPjkSzYDZg7M47HGYkOBcOtqFRLDBkJwN1XeIzhqlAJ2FPa2TayAmOjGYLSaAU2iutFYBRhqzxnnWEyO3u6AOaZAkWFTh9zRXx1aAsccAAJPI5rtrYnSG4h5MilTRY0kCvW3KhjyqErIAKsONADb/oZAYCQnOGTEGmEc05DuuLUbNt/IcDGKKKZQ08gThsDNAs0C3SdxQwtUI0kENVCqyngypsCJqn6p6haBEpkrVo97mXCjGNqUbpJtbK0B8OPjAcDQ+o5tu+EPX/6Az+MT5zxhu8aenwQvbNBIR2vo+w0djufnKTHLG0oTK2JinoF+e8db/4rjeGKMgS7B4Y/jAwZg29iiM8axHIxpkpZ5Q2+Gfb8jYmoyGs+HSxD583Nq5HcShNh2RFAnqG0bto1AxjwnRdbNsW83OsUR4BDCeSV/wVa7t/2OzInH8wdqRO5+v2O7bRjffyBzqO2GScNr+5FZoKY/PI4nWwyUfGylExI74nxinAPfH5zqxmo8GTJjBo7jZNCegIt9czw/MM8Tzx8/YAlszoll+75hBhOlz+OJmZMjhjMxjlPJRSVKBmTRx8eVDOGip0cE7u/v2LYbHs9vmHOix84W3jvHj24bcNs27PsNd43Q/nzw7P/xj39EWuA5P+H//R/h7f+yjOj7/R1b2/D+dgen2IiNZqVpUBNe2FLACVYQMGCaruPY9wZvhuN4UFBUdOXbfsecE+dxot84PnTOCn4LcKqWqct5fTyfiDjJwtl0HmCAM1ga58EkC74SoCbmj42NQonYgQC1r/TsfWPCN+WIOEYZ2G8dt/2Gvu2Y81gMCTOKtWeAk4vgZECptLPfeCe7ggK3hjlDAoJ85tICWo4yJyI1AVB/igxDOqSCOtIS2eUZzfE8D8SjgBZgHkyke98QyZbK5/FAPD+xSZeLwxkmp2U2x/2+c8RwslINO8SGYlCFpMZSMwotz5h4jqDociMjIgVks+310h+CHL9pwp0nJ4T1BLVS9o7RJzxU2UVynCzYouTNsN1ukJtYQWrDVliKAqULsA8B/c33BW5Bf9dVhGC/cjAgdr9ABunMNaM+nkugtdo9+HPR3U1Ba+ttAfIJTY9M6O4I0BU4akF7VoA722zkzjNUOa6qXOkYKhGogDOa7GGdKQaAaRxoADOxaThK2syw713tGS4xf9p3aHVj0m63bjAL9G5iLFboDIIoKi64+dJUJNYnhlYkckwxFinWas0xjG1zR1CQ9/ODmhgJAHNUOAsWkkKj1/mPC4AhW/nEaY5zFKjPfTmOg2tU018hAXcztkcn4NkFcrCdeZy8A94Mm8Sem9M/ntIrRORqEXDn7g8uOLZtQ2TgGNKEjFCr6rZA5Xmesh0Kkw1omo4XSiROAW3V1sICfpX96mwmLF9ajmxFY7QfEs5d7Upr9SjwXto4xzgxg/fX3CjKao6+ca2O44A5sO0dNW1ngT/OaWgyD2JxmGJLnoVYepPnlfyPFIDseg7GKV46MMb2Bs9E3zmQpJhJXQWkS2uwsidf9y2lDUPGtl22FRcwVsMz9n3nOXw8V7tHk03fMuAxUVOzqubfnBIL3jp9gWKhAsx+AgvmBYqsZNsJ+I9DgvDPZGygdqZMFrhSsXkCGJY8H6mynxlM+kNTsfox1Ia7daQ5vHe13ECFaW6IuWOzjXFtE3goth4n3rXFIuFQkNAgBiB13qqTK4373lpDzimm4YlzzjW12TfGXrW/LITojEtrZ4hx0jWkpvBS2jes5P8ClbXOg0A05BX7Jj8k8HgOCS23DRCIxHMcmibHlskCbRJMsCuHqMS4fm/tsOkMNVuFjmpVHJW8suLI1iNNw47JDe07Z27POQjeNFtgbzGrm6nYKdZ+xeOZEw627LjaYUw+ayaNMxltITxKDC+x1aam7yEVw3nDbobNqtPCxC4NfB5sNdu6mKm0xrxPkzo1pU3lraG1RDYHxNAJCUzHGAK9jWApBEy47MTgnxF6wQS/gPMkO7kEqlNADDJZlFCc7F6TH2VHZiX9kmiY/O8GA8KRpwGTeXMN2JhzKA/b0Fpg31mgO+bEOAfMHff7G2zbcEzK2ZQm1JwTP378wPN44u///t/jtu94e3tDzMD5PHEeA+MY2G9v6G3DzXY8H0/8j//D/wP/8A//iLbk+EUkgcGDue08BzLIHG6NsfYYHCA2k+d6JCVkuoppLVM6SaY8LdE355qfLCLtzTHFJKxi42pibbcyV8ueuYqiDpE/VNQiAGM4ngfPYybSJLMy6TsrRH9BnniOjP6gATAN02q1x1OFWTh227Chr0E4s6SBUIM1ZP9B8gwm/dkCtMuPyrB2tf2vmDA5bCtUrHPrC8BlyzzYImyOtt1Y7D0HDMx9t31Hbw2HGNpjEqTzXSznH59owSEi7OwxnFrbCWIQ54NF2hEBt53xXsWEv+Pn9zOeIqpAcW2HCciRFkH1HlY1GXLwVU+lwdHIaK+gj7FNRNW2c1X1ocOtouViADFZiJVY6lgonwt9t+ioWZTm1Lawf5JCr0QLS3cJaWvj4wVxpF2R2DZ8tUOR5h5LP8I0AhuZiz0Tqc+oSZlJFgWdotDYQoBFm0UlzZk/GTW+BZ3F1jqpvdYY7BZvG7n+sXW8qxJRyRVQTRMmXaqISh5NAKOR2pi5ArVVLSw9I/hyYjWCfB0Nr0qEJs+4MUEwtkW4Em8gOYEPQAaZOUxG7OKsJdQaOHGeAVI8DTWGuHqRNbUWNURrCY/SR/AYp0uYkJXoyELtOVHIrCGDQXc5qjEIMJGOSoc/q09bz6ehHYv1QePLL62JesfJXz9PGQczHMfECPDfopam/n5qOytJcomUl6h1gM6kbxvTnmw4jgPjPNdRmEHw4PN5YMzJtjzwu1tnQnM8fmCOE+PzE57AzRvGtqE0MwJJICYC2yZ2oPbOrMJcU5AMmGZVjfPkOVPgDnfc7+/oOwcCREzstxu8uTRa2CO+94Zt67jvO5o3vH8hA+WXX74gEHgOR5c2Vv1sfeOfvb8p8NCGW15tMrJEvfdVGWCyX8aeQVpzw6jgw647ibJpJgOPlzuTTKT4m6l7BKDGRL9qoWm9ysEQmLiaKSnCX/oJXvUWLANsBmtsmzWxFmDXfCe8MP64/AU2NAbxYtfY9ckEiqryh2pJKUaB6RyadGN0B6TlI5Y7AXDdiziPn6qBMJSG6Jp0U6LakayQzRXD2Rrh7mJ8ccqY1hW4WlHKLmat46U3ZAJnyzlVUqCyEkxsR4CafzAI5Ck/p4wK/N+eBV6YgjiR1PNiQegbViW47G/tHxMG+qFYf8F5TsKxBBqVeK62nL/9B8oY/qYCCqi+bleRxIDF9G3FqKy1ZKa51m396EiVwHLWdGgv4Ek2tdicVpW9q2pZ9pOVOlvTihYb1i7tAi9aWDGXl192XbliW9TYYO25X6yI9ZCqDhpUZS0fxcyW/16Bvi0Dm9X6pZbGRJQDX2yYmo5pThs4q6ZIESUGrmqHXcSsBXIqvlFGXL6Jd1H1/RCQY7VH2ozE9RD6TDKk2UqCDLGx88Xc1OVQgqRk6Cd5geuErP9VzwzkOtcFyC5mQtYT/8Tj0NpfwOLLBa1X5T8mHxe5fnExll4BlCwfW6yEn55yPXpW3GhYcY6pQr3+TIaSj4uRt+5MMby94qUsWhXBG51HM6vRs9onnWP1mzd/aaEyitFX/AVnXJMLDGnreQrcgt617s26Z3nFePxjPFyh84mKMzOlkcPzXZMEZ7A1uCiLUWtY1KcCTMoT2QV0pM7StVdW4fS6rsWAU57Nwpb8l44qNXwV27MYVbvI/y1eBArF4jm+9g+pgkYnk72SySqelG0nM1BsBwHbrPardGe+8hgWigm4l/+9zss6ZcuKl3aY/XSG1qm+jr3VqawNu9bx+r0rJgi1Z1XMWH+vmJn/xU/m9efWn395+OsPXo+jG6gVXt0ZpQ364nak7fji/1YQnfXEKiwmitmfStq9SdsTdYZlfy+U7kpQs5gfss2v611mXcaB3R7FXMsX283/dthqQU911BSLyNb72uVbX9bYLDnIQ3Zq6ozXObJ6Vn17/X+umZ4h8ZO/q/0M1F2w664KnF3VxixAXCcisQ4gj03FF6WjVXezHMh1xgKKAThyfrl55i0sppYESWn2ot5D31JDT5wvgxgT3//6DZ8fH+tEXqezzv61f/RDARTrNgj+v2pMzRyABfaugvALqzmdRIf5pBYsgUEVurXWOfMnzEHIk0y+4p9aQzEvpy0jtFwDdRxBHwqdUx1C09JXwXCxj0MxYdRZJOjohQ/E+hqUTMQrM335GMXgse6g4eWYrPvtKDuj70tJF+hFElcMQdkH05FQPKOW7GaO7poOrqduPlZsQpeQLw9QttWX7efz+kVg8A68kFF+z8/vB54+n8jWiMPK0E4A4WyjgtpSTJXiynsaGnoa1AOEQ9NS7hqxuO0GH0X1LRHM0GFhBrBtN7hTPPY4TzyOx+pT7HtVSvm/B4jaWyMaSXV5Os2YJ1sFxRqw7sjegAnc+x3dO358fuCMyfbBvCYtIDjmnRCFGEBa/AHAZ8BOKbu3ouYBB0JgwwkHsPWG7o69O2zmaleieMBGQ9HJpCLPShXvDDLJnFXnL7cbvtzecN++UsRsPnAGA4zeXa0GGk0fdGxHHCtxKECg9Q1pwPP5ScPfG+mgrSEGWWH71rAmkM1AnicrbbcdnKanJBLAeVDE+u3tHecMfDyfyHlijoZ92/Hm73i7s6o/B6tjZ3DyzYjJIV8NOIKtZFVFmWqjOY8D27Zj324a7bvj+fFBY5qp91YAFgT8MkwJF98hk8wM2vYOaNz5vr2j+QbPA7DA2xfDnAd++/4XtXIYnudAnGQrJRJ9I7Ph8/FAuT9MnpeZDkvH+WDf8MdvB5CJGQOtO/re8P3Pv+Hz8QHfNiQS//Kv/8j+aO9oreO23XE8DxxPvndrjh8f3zHmieP8hLvjfr9hDMPz2daUiWrz8d4xIvDbt2+YkUyUWoOJ7WDuGMcDQOCtkZMRPjVamVNFYDTOhsTWb+itYXu/06etQAD4+uUrbrcb3nZOd3w+H+ucbftNveb0FL4RqPr69Z3V+859g/RTYpwr8fz65ZdVMUsEpwo5WSA11e779++IOXDbSVU8j4PVmvv7CmzO80TMSQalXdMB57xaTcZB+3aOU4kfPUziWEHIOdgLnhqHs9yB+7Jf7mKebA74toR8FyUcrFJsNTXTqHWRIPBnZmggC8InRFvwlZzVBDdOzgnAKCqMmJhDdx4GWOPkDccK9s9jondW/kIMpSM48epqABDIFPwM84ah4YfnycrV1N/hXxxIHyvROMdYLRW9d9zvd9QIaMjhFQsnQd2Dz+fJCramvMCAYxAoo/6B43bbAVDbBaB2iOLLpaWx3XYggfMc63tWddLZLl6sndaMZy45adLbBezM80DOZKuy2iUrwHMlMRUoVD1qVhFCARKLDtx77BvghucYSmIaWu9k+0RpE3FNyO75OVmvGLWYK9Y3wMiySoDMp3BNDmNytjlbDKo4sKu19TzJEHseB3rvL4wX0+clrCVFsbeG53MgjqBWo2xshUXNyfgsJsZqt3gJpA1YCX/A1r1VI6Y0xpKtMunAplbx5jieB8Wu1bvRKlhDoBnQuyFzqNpalXqypDpYQHk+yfhAgLbVCHbDDPN4Mn44BgGEnjglXFzQcmtk7Yyhc+KOmKeYhkpEGt+BFWegV8uiANmMwH3fZF/YhrdpwmjrO47jpJ7b1NtJG8K2tYxwBzZ9D8CEgE/Jf1dCZuC7RqQEXtmWfU0W5KHid3fMMXCep9pLr2Aa7ggjT/rMKbC5EsHr+mcBborWXfphNJFkPxhW6Q4GsNo6Brx3WPOl98VEi2WnGj6ReuAFxOI1xOUeMRGOxfpwBd/LpklzpjeOw80AmnXZ3wbvwPZmyBlLFD1msF27t/VdpWEzYmLbN2z7hjFZoKx3s36DGSf9zZxL0BwATlSCvjMxLmZMCqDCXHYmZmBO6icCgEleYuubJsA+KE8AKklFBp7yna01tuED0gkMTZjC8qeuLMcWcENWHQDs9/sqMHIhBcxmTatNVANTooo09D0pG2TuGJOZ35zJFqltY3KvVsxrr8hyqGEvCIFCdEEYY+AcA/ftC/VAlfjMSUC1NepZtbbhGGT7vn15QyLw48cPshWazvy2ocR1H4/H3+inXGDZAhWMd35bU4wv8PYaw06/KJRjSWa0Lu3DuVAHhA0BKryjZxxAGvsqGu0NxXpBzdvXLBSVxAKFsBeU8pPYdwGEBdrKZzK2AOMXY/Hf9OtTxUb+WY53Z+jhsrjgeZ4Tc1AC4f3+RjsaJ/O0W1vQTH3/OA+khqaYGUyasjmp9xUm4EXsrUzwLKVdBaup+2HFyq7J4Lb2vveO8zwxzlODp2wNRCnQKUYVTS8G72IhGVu3nnMgYDifp846gWMzLA3JmhSXk4yWBYoai3yQDW6wNVAlJ+UuSiIi09CMwPatUdMygtq3c2h/vIqQvJ8OIOVbxxhLF2xZzwZkY37rm8P3RgmNCDzOJ87jgTlPRAzMeWIM4FAOHWBs2d2wSwsxz4nz4xP/+o//hG/fvomBh5fiEnOsNId1fdecyDhxnk8KjWfC1U2wbR0zAz+e3/F22/H3v/yCfdvExOVeN++Y58Q/nIxRPn/8WCCIyisYGtJSfrxayskMIwhEB8TOgJGM85s77lsngBXAebBLZJNWqxXwF6/+RmA5OhKuyaEJm6HOpiaWlWPOiec5NB2U/re54b7vqGbY1ToKK14eSm4oFrZCe2mRsJhoW1+gumUgjgOzdeICOrsjeJ+8G5BNPqnBW0f3jt03TeJz+HbD7IE0xxgHHp8/AHAatssnRE38zKaaxYZ0TrVLp52ztsO9iyX5YqT+Kz+/G3jqfVsOfwXEqi6UQnr3C1mGjIqrlQVwpIUU5BPNuY0xoCkitjQYwrjxptJz5X8cXaxfV2tE0b6JwIXQXlcvO1tYoMqta1OLmWCF4rkhjQwS9KSI+UocDJmcttHN0VPjOBV8GYDtBSGlIUqxs8SxMI1SBVCC5UMtSvaCcnqt7WCS7z71ewonTYF2c9zuO/reEDkw40RM6uo0d/WsUgCvej3LmHs2WBY66QA2IfVqG8jCCJNAm3dUHy/MxbDpi7GSANxF0QVEhQYZQwBufcO23yjI3G9o3kXvH3g8Hng8nvjzX79RHHEmbvsd+3ZTgIuFuM+zRMENmRPH+UAL7WkeSJvIPDAj8Xg+UQEwdTVcyZKvVqBTObPJeUQkjuMDbg3HwaRvZMOMySl0CqzmHEy45VcjGRCuygMMOSagSWwZwDyUeA6xE9T+Zc3x8fmJ5/GEb7xfHx8MUuc4pQ30ZHU8EsfJ9oHzGGQyRSNLJCaUXuqs+dJaaM6q65evX5h/N18gdt82neWvcANuzoBkd+C2b3i731bwfpwHEom3t5uYSaJt3horD5H48v6ObdsXsyjz66p+bvuO/fa2DG7fHa079r1GpENliQa0DtvvqAlLW6s+dCDhEuNmoB+DdqYZnRornALDjPWESFV3IBq3qr5NLTYBsga8gjAHNmsodgZcgpJI5OpdBwG8ur+oqToAqzpF7S1mB4PQcLEZSsdNNpVniO0ETexBAg0Gc7bwxoyVzBeANwWGVV0Ssk0Bk/h5gV0EqWIGIh1DEx6rCj3HS2UTVTUWE9Vz/TrNnO7mYrDwbhn68gmtATV55JVJY1YsK1uBd1VpSj/ItIcrnLZcbQk17tijoaj5NbHImhIfBR+uFtoSy1xvoBYegAFBputMXO8GqOXJsdrCIybvrbTnmhuqt58kZAWywE998mbV7uA6d9RLM7WWW733AmpqzeocQbm+MaAs1lEdN2YgbEcWO8ztEtm9RDVNCRRp8NzLWGe+ilaLWKM9MNDnYCtKt/5QGkqroz4fSjwrwSq2Sm0uiRu6g3AU/XxK/yxqmpr8dLXvIS8gobT8llhRVVFRCwnkUDLukHaRK5upk8AAH9B0xVDRwghsLy0X3bMV14R0IKzxBHuxhYv5w/PKY1bUllzMKZ5nW2DIVMuAgRMiMybPhNtiVkdNUdNzFyhxrTELS2sPAFQbKZmB43ouv/566i4EXhiEEKscP8d6ePnc60Wgd77C8lzPRYZCtWDKqrDV0bDOZCXpdc7qM6viwak/3Gfef+7ftumUKPnhxDoC5d27fp3g/KrghjSPvLNAiDqHSqCa7LITCK1JdVdiT1tbk/RKcmC1WFUYmFjsP3gVMOtdtXwJpJT9LGQDeSL4oAWU1/mRnc0CfCLZfhO+xGsCrJwz9qNNr680GIrdlbieLw34aaBJXIWUS/NKbDwUU7ze4fp7xbwqlprBUAM0EmylqoQRxpMyCxABXzmXXyyeDe++NV/nAcZ2ISu9qVoTQBqyTMqqaXFOSlDAyma29bx1rk0M6bbssa/3wDrfdu0fCAguvy2xb/DorD9Tfq+goAJK6gxkbUZi7c2yaWsXoDXPaz8qD1s2R6MfXsD+YiN6fdpPLI7l5fkcM1FyBDBqz6YmydWglLUWCd1r0/nhJDwzQ9dgphjXIIc6IfX9rqTXxAieVuuTYgLmBbT4xRLKKDUc6V3ORFosu19FVLLcOIBpwV8vTFHatFjvorqizrd4d9qbiiFpTF7ivpejYJBf1t5WvHcxslVQKVsdoZwQK1Yxm4p5+HemOmmU/cv+0I4ujlGB9POyDxXvQG2J3RsHpMCu+3QMnI/nGkzQjQrACIIw/CeAMLTO2OHb9+/49ts3PD8PzHPKvjqW7mJKf1gxUg0SWUWOBXxOnUxSJXsa9tZwVzv9tjWMkwXLrRHw3ndOJP4UG7kYbZH0UTVBnIbWlk1YQF00INtVDKtDULfXwXX2QNq5um+g2DvBVjYZC7LkX/ceBbqDZ8QZF8CgolDS5jg11eqUpRFsnZYIC0TjwVoYRbArq8FQFNneyPKsiZWmRw/FmJmqT8uOeAAYJ4rtBIAe2u6w1tYAoRknLAMnDzOowTwpFVBLpQnqcJFjGgeozDnpb0g9/4mU/V/7+d3A032/IwA8XnogTUHtGCfBpG3juU8AcyLyRNsaq0VOSqwHx1c0o2ZEHEkdmgH4zjHjKYHpbjRkMzieEepd9bZjCmVWvoSRFFgbQeFONC5qM0PbrLr+uMDnwUDBysA5Jh5kqOwSgTsDPYFbUN1fQ+NpFFtpLnCzG9TSJL2EmBOmumzfbkrEuhJLor+H0NZKUryyjwTmecCNrC3mRAYhbtg24L51vP/yjv1twzE/MeYT5/hE3zu23mG2EZnUIMd0BgyMTTdY7mDQb0BuL8E4hUs5IWei98apgeyL5IHshlvfEXPgPJ9obrwQOqTnSQ0hA7UFvtze8fb+jrf3L/B+h3nDn/78L3h8fuKvf/mG799/4H/7T/+M8wycB/Dl/Vd8efsF284pXNtuNLLjgdYb9vuOMU4cxwF6jcS+G8wTGUTyHx8/0FrD7bYjRkNGY8XVGp4HdbPO81w94ef5wHF+IvJcnwkYzr9uchxkexxP4HieGOdc7Vo/Pr4hM7G/tH3FMZAn12fGENtl4nk8AAO8bxhJobZTY9dhHeYN7+9k6Hz79k0U8MDb7Yb3+w1rUo4o+tbviJn4+Dix34C3t4YmY/Lx0BS1raFvG/745Q3bvuH+dsMxDhzngfvbG7Ztw9e3L+y3jiFwc+LL2xt++fJFSL7h+flQaxzZM9448e3rL284D7YI3vY7mjV8SN/r/f1XZCaO49TkoR3nGJgxcb8TKDrPeVUDg+DKbd+xbRtZGTHYRx1M3tOA6Q3nnIgxcAxWpPbbhtZ2RRZinQCwnMhxIsdJwWtrpOe6Ye/U/lnMLqdQNoOtClB577BG3qeAcgrBFwfSsuCnKwFh4MYedYpJBu8zw4iKZ4AEGUSiE2eKodOuRDqC1d7XMfBpeVVVID0Ub4uJeUwyg2IcAj84Vc10niMm2al29c1XyH+BSgnLqb9X7KGKxQjOzclkmAw4W+AR9I7LK9oFDFXuQu2vQoGx2CRIDRkwXMC9GayrYJAELQwDeSqoFXOhBvi4HG4VGFLtPaxga1tbQ5phCEQJAcjmjm3f4NAE1plcxyR7kqCUAUOitnkCZujdVvI/J9PJ1jiZBhv9xl7OyNv6s+4r2+K5kf5aqyk1cwDyBa37AuAMAGaimWFvGyYmnjPQTZpm/ZrwVFRqy5qWA1bsdEbJZtIk11xbBjIdO3prqClAULA1Jxalni0sDraa8T1YYeZzBmpCVSJDzImU9gNYvIrnee33Stn40+vcz5cgUumsd4qwFuPu8fmkb25xBcnaf/rtEFOCyakZGZDVmlTsmc3l/xJATOQ4Vntma6xkn8lCQLV6EeNK6TNeibhX8gyCIzED5/kEbCLb0DTRCe+7GCm+fCq1cngHV3Cs+5OR0kMCq7/A0qcj+GSAzwWUrPan9a4ByYDDBMrEHGpXr/unBLD6qywXoc3AQEYT0xFpYoSyUFNJq5thet1Jq5wM1RtoEAOnAYxPJFqLa4DIlK7mftOUN/mF3neMk9o9+96XYHwxs1KP7SqebZ3V7THY2t42RyBx5OB9aE0ta2QSKWOlls0gOLhtG5CGcV5w9eSmYD7HT3Y0IlbbKg9xclom/9CVnJXNLFAOV0tmBj9n5sCZnCDl2eD3jTFsyj60jbIEx7nagrfm8AbpuOXVyu++9kMGmYK/MFjYAiJKtymjwKWf72Zp43A/CyRssNYR0h+d0mcKv3AzmwKPdEdCzOdK0lzTbd3VzhjUHlxhWjL5NtjS28IYaAKfjvNJcE176q3pbswFcNRktPIxMGmDSTP1ws1NuW1gSF+w9hIJbG27kvFaA93VizlxTX5d9j7ZAs0WR4IQbm2xnCjfULlvLuApln0G2Rz1+7qTivB1r5SXgb441IJGPIBFG0447fpMsq28sXBwnNI+U9ZvSkYNhvNgp8t9f0NE4Hw8kG5kBr0ANjDKQlB7BypaOBkxUeA34DexVVtRPUEWzVAnwTSIJrDY3LyLEAGCDI91Z1OaTF5A23Vup4C3pS9VADvo99itxhyweqdKmcFVyKDGop5d7eVTmmCgCaJlyNRn0k/CgYSrcBwE8TJwxsnCVgdMwe8cLIYUmCbEVQUbdiI130ANW7L6du8ClqD1TozHE4/vn3jb7mhOrWCDcVJiyoYrFt/ECv/Xf/kX/PM//TN+fP9kB0yn9mprjbn7nJhGfzmmdAPneb1/xXsjFpsXZrhvHW99w5e3fYG+nMo9sLUd3YG3e0fOE5jUv93ahjkTM+QrKr5LB0iSXGArg20KOzPG1H6ZZBx0p60xhgk7AVTXjGGmwQSRJAjyMxZmfo8CgK06rSquMk5LnmQ93XqDOfWidZUX4DRMa9d5UAj8GTWjhD0GOBl26xwUFnV+C/fLi2m5N07Um8cB5ITNB+3w1pGgzuPmO7x3vL+98byPE89IHCb7gIZmCfMqqhrCOuAd6G+AN+rynQeO8URCAGeTRtnv+PndwJNNIn1NVUAz9WhXdcMMm9H4d08GOzMBGwhMId0yxBo7ThtGp9/aJkFPnQ2DABwm/oXIl5aQK/AtUORWLRc6JiwmiYCugNA1mc+dCUCxadZ0FQSTjCw6Px1F6EAJZkXV7FO0tlSi2yqhIJKDS9fBVmARGQSaSgAiBVqJ7UDxOzmUJmq4A3E+eZi7I9PhfnANgiyDrWuK1ASs15QCE3BS6y7mT2NVyFI6SACACVOiF0EtixoOW0FK6RdMCfHV84uFqoNCoGK73ZmEyDh43zACmOfAf/7Hf8Jf/vIn/M//8/8Lj88nPn48MYfhPIH7/g23/Q3/7t/9EW9vd9yzwywR8wN2AvYshtLUc7BNZoF6ERjjlDDyb0A0WDR432HmeD5PvU8oYJ54Hp94PD4wJo37/e0OmOHjxwH3hq9ffsFxDHz8eOA8JsYZeHt7R2ubNG0Cv/31r0xWeydgpGSmkljueZPzZTVmN6BvN3jfcJxkj71/+QUAcH/rdASWeL/f8Ha7rX3Y1XpKKjz3t2/AfrtCwaL27/cdrXfc7je2MXXSMUdM7PtOMG/rCgboAC0H9t5xU+Jt4ES5zEDfGKC0JnFPkB7fOxlJ8FRSYIAz6fA+yaZwA/BE5sAYO2waJ2vAsPdO4IfZsHS12DrTxAY751hNJQDv0L4zOKlEnVXFRIkL1shXNMO202FSEF4jzc0xG5kL1mztGVKsqlBJ7GUmSmaguJWsQUloEDIjddejGJoEzhOJ1NjR4jkkOOkqZ5BJAyVJlkBje8Kp6YCpwIhnnKNOSw+kdeqtnZGrgj3GIaYX001qOPHe02HacqDVLrD06tQ2SIFUVp2qilT2vzXX9ws4eF33ir9r1epomgBwExPGgJRdqTYznkQaFwYkaqcgiRgwtncxARL13BJd4ufFSGiVBEiEin+O3+3tegcYhS5nUPiy8oFyotR9IqONE/+ul4tl8ysGLa0W7vulIegaj4vFhm3yQwAruGEXA2AlRUaQgxoyYiwJwHO1dNcEvW3r6K1YTi/+FhX8X9yF+o7dd7or+VuENMbS6L7L/qdaHgFVxg1AvuxtIpP2uMCp1LjoSlEjx9L1mWrno0pS4Jzs42yiq3cNMeD2hVx6XscIV0XdjEn5mGPZw1r/lczrLlOA/lobghnVpKBE24Ueod6LgGTklZisY5UA8mJAX8n5deQJ6NRzEugpPTVOFDW4pTTiCVBjJYkKsDMFkjCYLuC02pkUcqwdJgNK9iTJbnxZvAVWpRaKZ1FBccTSR+wbC2Yz5mLRmWQVEFXJr5it7OFLu4xE06+JgozlmrfVmsWBCcVyLKOhPUjyNqqlo3RQukS857zGnruTNeG2o1lbAskZEjRvdU9tVcAppZDIoXWbQ3ESJ/6Ysx0557xAF8VzSy8RWAnFAkOi2A+utjz972kvd76YF6/BevkOxpatXdqZCyiPsrUdLRvjWXfYPBfYBlSLjpIrl46p7m2Oq32sWLuL6aG7MWp4gQDCMQaBWG+KuwR0KsxMGLI5NfzABDJezkcTS2MO6v/1smmZy7vWrYM5dVh10YK4O0GF8sPOCZORU8fFZVOgWKMKotqzoO4kAdcAWgEF/mIrBM7p/MJ8gS9kknKt1tj6BeLxnXkYLltdzJdqo6y1tbqw9bpWb3/5AzXLyz5ftpzkutczY9pD+X5DJUIoHUSTbTIk22DrDEZiDP7hAlRfiLcaxHC9IwxkvLRS5AWGWKAGgk397X35CyjR75124DxPngW/hqnAnLZvLvgbyGvYxVo/BVO2dbWnGlu74DgFqMbMNURm7c/yAVrL1tavF3nipxuYbI93d32nOnHAZ3jhtjLMFaBoulvVtpmq3NRe8XgJvJOWHJJgjaIsfl6Hzgf9o6kFa+2nqQibitNUTJyD055bUtt4T0PLBM4TMSbb684TmBPeNnXHYDHLzsECcmkVhfOm/fj8xMfzie2+w2Zf4vsB4jpwgj9uiZ4dEYbzCK1/aPK82H5I5Zkm4Kth3/sCsmIOmCX2nYDRL1/eYZn4S1fRSXpsbFzgGnEKHPelJXea8U75E1M+HDB70QU2rnmkwTQYiJ9TDcC0JhEnSo4F1vj5zfASaiAtEDYxMAhWtwQ2wMIRrZj53GfiJpogD9LMiu0WAgAxZeWSg8ncAFdxqy2HK5ub6rBytXUmmb3IhZWipkrHBLYccBw4Q8ShPDBzyD4odvQNzWqQCEF/yg8xJ8sZwDzhMWEDmmLol/3+N35+P/Ak2m7VzMwZmM5IdNAoduP4927GKkckII0OgBUm6DBfoA8DWQqPkgpWgU3OQpErWOFOZxSj1JaB79WKYexTHufJNNqqjcMkXG3wtsFRzq7KYXIMx8EbpXHp7DhzmQVeJlLZEqOQdKhK4ds65OXuajRrlgFV8ggFvUgwCBeo4E6GFg81q6qtUYdijhMU1G5odsKM6Kc3Vm1KEHgJC5cjK3ZXM8G8MnpWtE5eXKCSigLTZGIrkauxzGJmMACj8V2xkzFo225cvzGISllrGCPxeA78wz/+E/7hH/8z/u//z/8R53li63fEdMxB4bPedtimg2473AIRHwtsqoRhHNQz+vz4wJzBAExA2PN54Mf3Dybz2VZ/7KnKTe+aiDgf+Hx84PH4wPM8MCPwyx/+CHfHX/70Z+z7hv/wH/4bPD4f+PbbbxhnYIzEL1//iH2/Y9vuGGPiz3/+E1rreHt7A3njE7f9jt5ZBbN0Ts1z6ptYc3hr+PLLV7y9v+HHj0+MCLx9/QVmhq8H29w2d7zdb3i731QtMNzvb+h9w/v7V7Tese83tD7R+lGbcNHGO/+97wSOZrKSnZZonS2TaQQdKdrLnvVqVOWlTOy3TSASg1UyMQwxeFebwBsYsN2KHUQn0vpUK2Yi7UDiBIu9jvMkuHe/sRJmAOZ54pwCCDNhTnDpHGPRrV3tfq2zul3nr8mB9NbJoJgTZh2tg0Bba6hpMxSWCnQxRWs6zEokVtBjbE+twG+xjHAFkXgJBgU6sbLKX18SGgKe6nuQTJ5iBDYng6rAKktOk/l8PNaaF9vpeTxVKWNSd3dN3VsglYAEJLbOYH0GSfmkvdNOZbUFShC0QJpK4NlSmz8lJZum5DD4CZgFRtTn8+9WYf+nYHg5EzBJV6JZgt1N+0gmPJ9ja2QXPcbjamlS8gtpqLFAlUxKvDFQUGKTIfA/FdzrOZZPqUpv3zBiwibWUIU6VC6wZ+tdiffFUHCzckZKDH3ZdfeGzMsvmUIhUwLf2+V+J+I6l3WujCEl1Pph694xoPUugDcu4AnJ/V7v/eIjdXp5x1Nt2V5NGUwKALE3XWYswcRPYFKxAtZId7cF+C9mh+wG97Gqhmz9Ks2UOagVUgzAod7n3jaUVkIqCYfAA0FDBMOLqVFJ8mBwbZpEVD+pKnMlTxFzJeCL1VcgsFowKoDLmjpUWjR5jbIHl0U3noE6/3pevhDl46vNkWADz2KdnysZXfrqCEWMvs5fMW2UDQvQvMAFVwCqB17Gha3kMjT+ApzZiwj1YoOwDSIiL3C+d7aXj3MB8/WdgYHLkNWZ4HklYA/UJNbFWLQCYrv+XFvaGpfij368kuNYVWhO/uWACMaGsmVwOKhD4bbB0ZF5Sg+j2KVXATBB4CTiZBIAubqhdWpYINspsCKjwGoF8dJWI1MhV0ufJeUamsCrgFpRQkneAlS5eCzclf3jvT3FHDBNDCqbwFZyxriORvCpdSZhNW2rEog6G1YtiwSys/z6sjN4yVCgll8l/lZ+UUUYtYorYl6TcVPJe5gKg5NMVo4XV3FDZ37MCfOmhFRgiOwTt1k2C4WEJpADTZpvenLAqRGnweo667rPXuUWv+L7oGbYOgMCDIqlstp6Uee5GFCK0TNpX0xF7IR88GWfQu2ZhgswIfsllv1czKq/+VmtkAX0C9muNjJOPbxyiiseWVdayarWJ+oZFkzCa6WWHYD5W02vnjOAjvV7y27oTNVPTSurMz9PjbwHz/y2bZjzxHE89VAsjCETHx+fyMQVn8oP89xBYKOt+CUVfy7bthmTbCVYBJEM4xRbfF75Va0fAf7kvqy9u8Clq6XvAqouX6b1qiRHzwMrX26yc9yLmhLK9xGgqXXj3QZWC53WdsRBGwCy+1ovlg0WyIwiBWTK/xWDFnB0IJ0575zY0tHg2GFs4z1PxDk47OccBJ5sW+fe1zlKHGMoB7PVKfPj8cDH84l+v8HmBNwRk5PqKtCzNFg4mlEz2aOp8MrCQHNXIYp/hT6LE7T37QKexkb22LYxFv7lyztyTmzdGSdPTfmGwbx8TChGAl5DzUSsWMzkl8q/Tun3WE7hEr0uDhbwZEAqZiG4JdkGczZEuMo8BaiDoNg6Extt/XTJCMxqO0/UZMjSZgywEDcUVPAuk/ixoWEzh8dUvHDdRebIlOfwZovZ2JUHPUZ5VBZAqHUVaDgx9D0zDgFKVzGutY14SYnj88VIBjBjbhcTnoPYkFjl/4cDT77+nStByclgbgUUUkq/w5HWsHmH9YC3VFWOY29nBKKVZkrRqLelqxDajKnkg6/eAC8jmoBNJcoyGlPJnxksEk2BD1LO0IAxFeSBI0ojAxZB4S7lD01FnpjSPoChOLFbVe10PGdqio0RXGmd9LiIrGHCKFrsLK0DBaE1vcJAPR2DrWANCsYDKUovlIifaH3D7b7h1z/8itvWMI4n3z+oseJwxGACdnt/58jsTX32OQEckpu4mFCF4SUIFnQH2m0X0Aech6rRt5uM1I7XyYEwJmsAk3vzhuOQ4W07Ijuez8D/9D/9v/G//uf/jP/b//B/xV//+meEGazvOBMEp7YNH48D5/cP5H8yvP3rje07CER8Ako8Fh1WOkbPzxMxE81vIPUd2PqO++2PbBmICTs4VcEbL/7nQX0P9zfs7R393fAOAGbY7neYA2/7v2dL2d1xf/uCf/f3v8rQJW63N2lF7MgA/tv/7o/Yth1fvvyCDEOEYd9u6K3jy/u7gg3BJnkysO0UrE1TZdMdtimwbk2aIom9b9g6q7hu1f5ol9aEOdImSCHlGesdaC4xTUs0UKPJU3TPTNhgYDnzRJqSyoyLsSB2HmrNzZgwInDCFqjHs7QtK3GcT5TAYGuO2xuFPMc4FkvpVWeMfm+gXIa5Jl8qQNu2CtQ2rp8osQlV6DyXZsMMCS1XicihBNs5MTAmxWytKm4GoGOMEEtMnyOQr6nV1Lwp5iBNXfgM70eKNTnGSjoA/RqUKMiZRRI8G3KKZgYLUtznVPUiaHMS1DXbtq5AaGCMhJnjtm0AugABMgnNDLdtp3YGkoMTMleCXgyli6UqAEdAENLUUncxoMxKL6zAhwqagJSzzJfAf9mTq0S3EmOrRNyLGSJRWAVQ5+OpwPWGvjlyq6A3ReU13G4cTEA9i851a3Xmd5QgKQzYt42V+ZVrF0Soo2qBOYKjZ30DitEjxk8lPi4BfZpDImMRU+PddTZkRK9AU8COkkkkCzSQnbdINIufEwrPK9AEAbvuBErHnAzSesdxnphqWU0TM9iotVGHMiBxar1HsRds/QkJWg4lw7iKOefxVNBrWMMA5DOcmQ/O8+A79pqcNZbP6k7W1dR7e2PQv4oxIPDC4JGMiYhNyQsTujHUG5UvNj/p0CuZC7FIvDVWdAdBUGaGrnMdCEvpjoZWhsyhmLzvY9KHtpd22gVS6t9X8UUy8lrvORNdgORURbM3gfxicfGl6dvJckm1xAOepTem1rUqlGVpYRC4M7WIIRyZHTU5B0rSKD2QsosMjotRN2MSZJoBVpM3wBx9qxjgYjLNVCFhY2LS9x0eXSwJFyOtDlExB7bLR+BKYmjLX5miunruAn6dUwLV3jlf1riC80iy1Ex7scRsZRdiFgwRYo4mxuPAtMlEK4vtRJ0+tr4PzMnMp0T8XftK0eVY7A+rBDYTNQSCBUneSZf+4DkH5SB0yKn0weKmeMR8frwk9mI8sa2LIrmh++XSRCtmZoHLViwMsC0nYpCZIMNTEByZOuSeudYrgjGbAj3aidKiqj0yiSebS3wa8K52FiXgQ4Al7NJ4K78bem8H5P9UDF13gC02ASDnsbLy5l2AMATwMmlrYh4XsGGWOAZBQ2vFfVZy2x0x5ir6JDgcoZhHdfauVujAeY4FMLV2URjcG/rWUVObyy4sqa6EALa53mH5U61v2f5Uu+vChV8ArgK7XUm+AsyLAUgHyXXR2qTOUPvpboXWXfevstflEi7QdYjBd8QUSNa5Bq3+Zi42XiWir7pLEYHjcaz3qQEpZCkF5qQsw8xg8goCpZlA3/brc3UnFp5TsatihbJ+5Z/MDMMqLwReAcrKVfJ1j12MSbE5minJc7LMh1ihXk67ggNX4R8CEoNM2jVJPbWHgKabVQ7F1uIItdfLv9G8N8aA1fpsQAmQU5wZjEv1fFV0CT1asYwyyNQZYnNGBppR9gEumenusM1he2nQzdV1dubEMU98uf3KYrQDS/DaWczqG/ONz+PAcZz487dv+OuP7/g4HjB33PYd80ycSUCWxRw+53EMDqqIU/aIk/SWDa2znwFEoO+J5+cd27Yh+8aJ1s3x/PEBwPD1668wAL/+8gXfvn3gL799w77t6H2ThqkJjCF4VLigIAq12vd1VjGYJzEmycXaY7uxaDWm+Fs+m7EqrThdboNtuwD3S9dwxsQZV7w9dV5iFlPcynDAq34ICnUjK0cYPC9dBB0n3bRQkYkC52kDavAHCy6NjC8zxr4wzHhiOtj45BvgHfalw+6GIzlA40d8p0xQIVoRsNOQ1hZ3hY8+gRirY6ul4ebsgvMM9ABeIuz/6s/vn2qHK2AtAb9CiIkkE/BxM2yoSkIZgFgATCpgrLueOZXHiHKWiUV30/SChKo0i3qdeKXQ0r6uiJ/JQvJQptkSvCrQyqDEZSbpayEDaS9gdAAvfoBPYWR1FfjmIH14Co1u+gDTk+X6m0BVlZnQV4sKn6tJcO8cuf506R6EnFjoELdG4OF229GbY57P672NFcEQJZwocl9U4dKDyALyKh1UUBcyZCYGWi1ahJpns06Br2e/KjdTlYwbYIZzsLLbO5/nPAP/+qc/4T/9b/8J//AP/4jvH9/w7/7+j7w8k5/jElE+xonv37/h+fxEhlqKcNDBVHLrzkpIAOczkBPoRvrpeRq+vN3x5f6OaQcMJxBPBlEbE5A5eVF7u8F9h7ed2l3usE4R3WZfYBbwdmLbgfsNaJ1gztY3GvtkxSWiYd9u+PrlD4hwzNnYk+sdf/j1V01x4nk/xwesJawDz/OBcxy4v93RumMatSDutxsQiTgnKxC+obfOZxYI8nw+lrNWmgaT0HfzhHuiG++Ky1nWCF0G7jqXedavCFSeAoFZ3WDw4QrgpJkh8IJtZn4FEkj16zPAgXNfp1ohm1gbFgJyiiGi71eMxIqOsyq2koLWkZhoPlltk+e3F4M+i4L9ajHFuJuPE2MENuuy3hUxMnk+x9X6MErc3neUIHndoRresLRV5enypBtjA6IAqGpBSO7PGGypGmAQ7oaCetQ2AJEPFfwZJBZPUfyq/ndnYjgGViLu3tjymHRSr3YPFQShtJxsrfNl3w2l20BGCatQMDKBErMKmJedQtGna/9lh/JlfVMT52QvrlSRp65p/WNMePfVSgaAiVVQwwhmYgnpfZUwVyXdlTCFS9BbdH5ThfhKryrBUUHA/LLYRqsIg5haVaiwerWXd89Vua22gWLYRDLG7W6rnbm9PEEFYRSQZLDQwCJJZH2+Kk3yufQ3ghpyIlbOwzMfmlIEsZDWHc9QpVABBMiuiRUM2gIegGLWQIdXbSWVnmpfqekiMK7A6uW7CoDkolfiS60MJdp8sJUMuDX5ZiVoYilgATPX3kUlvslgOaOiw2Ib1RCKK7Eje0mBJBLAxEyxM5JDPLxa5fQclsZJOS8/fjk+rkPZG3MUwuliPK8boGWpdhtk3ZtrbWonba10LhJKfSULDPLb2scyQhmVGEHrjwVWzbU2VzLpfgn24yVWC7ENm9r1FwDtttquK7WtNSCD7nWVbP3bG5nGU4AbsQe1njJtWGe4pmA2JaPF4KZ+1Yo+SdqW9k7MC0xNTQkOaJLRkC6Nmv/SjcWqqabNqBZehpYKgy72RxZjTJ8iEHZZPvnA11+r+nIB8AGUQgPPtikmxc8/xQTLqNZL/Tnt5U+ity/gl6n4WYBtOVCeD193LbW+1QpYMfACMuyFwaHWGKhVqphszbB0ptaaI9e5rveEvUJZUHsS7bCbtEAicMb8qSDh13Fe57uO2AKeIHsWeq8CH376+4kSta/JnwUmv/5T0/AuYOmKZylEzud8bYVcp01rFwWMl88wtZLj5bOMYO7PLKf6zlf7dP09pjpyKlZnLBf4ZIq76sd1JupkWV5+tr6tfo+abmBrMlwFVKw9rzYgZK69X+wYd01anDKnhr5vYgFDLbyK2S1XfFhFqzUk5kWYfi3v6z6/xJMOrJxk6t6vUOPl/Ssjr4af9Q08fC+5HMGWmZcOVtngWtHFgFvFm9cbbtf9AQgK6+8wRqNOULX119/G699JrKKOufTonD1VF8B4eYZlM3RPmcsplvOrFc8qSGgvvkuxahi5NTOLWdXW96xzpPi89Y7H48Dn84mPzwc+Hk+2CzsB6JxkcZ6K6zdnp8zMFBMuVvwZGexSUgqZDFqRMTHOgXGc9L9mq4jzMQgW7tuGcdtxv+34+HhgjHMVbRaTOQcSDgvtUqqLIACzpoKhr3hgScq87MfSfIbOStpP61KFjuu+ypZa2SHeq5mx7HaxQgNTMdcSZdIZw5rmaFbnXp7C6ePYgKT4rr67/qwv/jokJHHFp07LGgIyh8mmtYbcDNiN+lw5ceTJ+4lG+52JSGItrcuuacBQTRambVZbXvIZt2Vh/u2f3w08TaluTKT0lhs1fxJoU9Ti4EXGYB9ih7PCNCb7cp2jbNlOph79oFEDcglVjyCroO9XGEZwpPovVWEHRNG1K5mC6SknunVsrQsIM0g6GuRLUGhL3anYROGOnZXXqbbA3jcGKyPR3dCtARJO21tDWsNtY1/7OQ8mjYGlYVAdwUKQsBCtYF8mtZ4mMgbm4Jj3LlCjtU7YNiZu21e0Hfj1l7/D+/sveH4aohty3q6WlW4wD4zzO5CGmQ2Ijjhdh6RJALILwMESJ17t2BCoaMb+7kjsXRP5ciDSF9MMUGcOjOOr3TkRKARyjcTz/IHWN4oKtsDXL3d8/foOYIhISGPbfEPvO375j1+x9Q0xD63JA26B2/sdDFwD99sd9/s7il7f+w0Gx3zS7fS2Y9/veLt/WZoidblnPGAt8f6l6WIPGtqtwfoN8I6PZ0CFWOzbhj/8+gsyBsZ8ogt4ert3tGYY41DiH2it47a/YU5Oo41Jg/vLV0fzxMfjB5CJ/Y2OBJ64f32D+btGNAOb32Dm6NYBT0RPbN6xececB0YcOFeLVaB1JmdpjsCGaTXBDeqDT8CqgqWgMi+TagC6swrlpqQeG5pGXDSd0S7mzxwMrMYJGBrcbqwmN0dIYPD2voGVznMBzOW0a+Ji3+8wOFq/08GrnSvUt9569Z0YSLhL6pk50OwdroRxHGQckft6BZOlT2PecKot5zjIDjmF7pQgX3PRUKULl6CeCgD0fiImE7KpYLkgb682xr4puDCKoBPBxUrC/QIzyOxK+QaN9p7VbsGWnU3jlx/5iWrtAKD/pngggZpy7gRkXMmh945NFdSMxHG8Ct2udAirkmwUj0UaGqolBjAPmCe6BbIn2vwpDlagJYendqOu6nGW2w2sNro6b0yYIaHWRIXzq6pqACuDCorMsC3x/tS+9AW4ldeOIMjaFZgUANH3jQzW+eI3Spy78b+324YRDsyLrbE1ipyaRKLnGBTt3O7rOaDvOccALFm5W8/F4KE3vXUy+DlPPsckUs8Wq/o4tTgjSt+DoFOzxBxPfP44kJWYqmreirUGMjWOcWLbNmxbp27dvLRCSvuJQv222FIAVsAOib0XC3MVIVBB5PV+vndkeqX2xGBnvGgHklWi24jMIFPEaQemGHwmm5Z2JUivLSevzOrWLhAEmcgxaO/6SyLWGPQdp6aEgXvRWgWr1QKTtP12tZXGuOzRpgR0aQKtVm+OGjbdsbASek0OBWC2AEQxDSqZksbEqfthlVzkSiqs7tA0BdHUuiSDmK1FBfYvRmp3yMqgClymCYj9pF3d+tv6eyntBhantvWMXi2T1+HmmluniKzaV+g3KvlV64p0BZeWDcTEwvUzifbCNG56VjIDxiIGASsZS/ibkzX5PQ0a5Vy45LSXFqNiODDS43Qz2ZWVUtazXQk1rRd938DBJK5hAXYh9uvW+O+VCPaOdDZ6ee/oYLzG4g3XbqyWirIYOhOAWk+y6qn6Md09slBeixZIYJwFlmCN8K62srK3OeZVFKmSVNkIAVu9UUNyKtaDORA1+Ea6Mrpf46DPippyhGQcb0bGqL4XoB3zxgTHZZfPQV2QC9zGuoNoBDcHqDvZGqvsKUZAzgAaC6pwVyFZ+k9WbBdNU50TDSzMlBh+tQFuaiWPIXtnwH2/qZhFf7w6DnS/c1KyY4yBGnrRVQSr+IDyDozBLqCp9lmHNMhEcm+KlSpPydWaNVRFSLClu29depeoGy17iAW81ZQwwLAuBHQZ5M+BYkyA+YYZstFu9ME9jhjLg1dcwOmsV3cHwRS/jqjVkWLhyMxxzlAcJSH9Aq6bq10Z2Ly02TThzLD2kUUMAUvy1xXfeEsOmRHYugTxxdjrilu8JjqfY8X8FUcWS22csmMRQE89j5hK3q411J1zY8t/tZNet7SYj5eNK2/T3JHuK1ZPtaMzzqd99caYOuAo80R5iFiAUO/Uqyp2eCg+EqkRTfaluOcwoN0b5tZxdmnr3Xac35749viOMyd1sVSMGmPonjgi2drfvWHzhr/8+MBf//ob/vmf/wm/ff+Br19+QQA4zoHnOfA4B9e2NRzJN2/3HTgN53hCAT3F3CP5nrqDzR1fvvyKbet4PkJi3A2xTcXUbzAYxnMgRuLt/o4//EJb/P7+jtvtDu+8u3/68284j4Hn8wkztoHW5GC3hFkNRNHeeVJHK6l5lDFVaGauxO6pRAbvLPNwxfwCXPoqttMnsDAD2Lz8Y7VUp36/MYlG6UWWVlJGcnJyGkIsuGqPJruowaxRBw2Jc3JaS9982Y45Ewjlsubw+WSetXUEDDMJ8p3nB/J2w2wbvt7fOFAlE+ecOB9PdGu4tQ01ICaNIGozDW+QHmvZNcSAp8PT8LZvP8WK/7Wf3894sv8f/11Bol0GEWLzUDvEljG+2BaQs5CGQ6g6/hKsrPDJCrl+RQRfvhd4qSJUBGYLrXS7/G0FdzM1hbbQV1OVWYnjNAYVoeyqeVUwAsUrKaNQ3+yqFFTNN7IqefpzqXDlFdqvZMtMwUqsale1ZmimKas5zir1tt2wbTc6YtbAUX2m0DuaVTDBA5opGqGxKkZtCSeSr8Svkq1V0V3PcI035acLSqvFU8JRiSh7YvkunFhF9sF0YN8cX7/c8Yc/fCVraK+JeQ3uG1q74cvbO95ud4zzEzFPzNHhnnj/SgfKqTU33PY73AnQ7dsdbg3jSfG4ve/ofec6QQm1nPh5fsBb4pdfd8AmIh9oXW0H7Ya0jv1JEMJgC3ia88RxbugN6A243SiIOAaNeDFOtt4wg5XYEBuld7aAuFEhk5O0dEca2Ths+yznrkg0y9BVMFNJ04Shxn8LhTfpjFRbkBI9vFbZ1uXRnVOAVBMV3TqfKYvQWXeoWrDo7UIJteFqx2KpRdi72mqrEb/kwF9ZIblKW0CNCyaryDhVh7OtFRCWyCSrJmQoMdaaSnIrmIvgRLdZVUHQoZoBWjXe52ITGnivkwlwpVw//8hJiAWWlXxkTajRmhrb/ixtiQVWqHJVcmXj5LhqDZYJEyCVSEBMwOsf2gGXTVrVdd3bnyqszvdMv/R4eKJT1dHXepr9dEwuW192QVUija2qu74Aqgrs6hkNrLQIpbJ1gLO+TvbcLraqEQBqEkmsPao1clESmNSC1Z6qNfjLOpoq9KZkAKpcJ/elXnC1dcTP7/7qr2oilCXPxTVlD1cCL6ZnHVBT8GLV5kDE4Sf3WWu7Eoosem35hStNvQQ5gdWisaYv/c0ZTX1iXp9d2hAKf9Ye6cN//rd+ygdU8JRZvs6W/6hfK/Zj5nW+lqtbriS1h9c7rvfPq7Ww3nmdk/VnXn/vb19bSRUupjF++h4eElYdf/69AkdLN+j1DF1gwcUiAArcrKT3ha1Z/hK5lrMGn/A76hxDZ/NqT137t15QtiTJ5ipQqkSQ6+69rsXaM4E2USGA7hXiOrMvX6PPqPY+rM+gZhQuFp2SrFAcBxBbqSW7woXLtnP1tT9WLKZrL2cl0FZMN0ZVnvnyebXNuq86Z1coVQw5rCSg9vdqE681vxhfa3HSlZAa0rK6F1eshMx1NddXZqKE0WFXZdyAF2bCy+682nDZusUczQvoXrofdZeMa571/ihG3uXHaxPXM9Rr1bqtB3u949de58uzhV2sXqs9A5Z+0YurW1+UuPZk/bJiinVv9E6lHYW1X1h/p1rlFzyYlz2t+D9wsXjrHpSNRmJp+tAlvNyn/JltdLWav+q8XQtm9rOdK4ZR6VC9Luz1sbZs/bK/adfff/WXr+ejFiEub/wCRaPA+tc9XnsYAu1x3auKR2rNVstuPVsxamoD1qInrmmk9WgvljZffJX8ETWZbNmedffX+qCwB6xsyWr/X71cHeOXPO/lbDjs8t2vRgHXf5viLtPhT1byAFzPV3vz6k/qlF6aO9ev13PZen+s76viz+VzrnOw7LNs8bWfP0dddY9z3eGX9UoBWHCkXRIJV9apb9ZeLvF3QAUKW9pDCWDMieM4YMACjQ2ArQJR3S221TuAcZ54Pp44jhPjHNjuLBKnWF0sCIAsLSXUazo7wKFGrSPOiRiB8xhiqCpfcE4unQOYbmhT+bcDJiDxPCcF47cd97fALzNxv92x7Te1wgb++tfvGIbV8mfoL+ZR+XAF+yv+KUOSqKy2NiZll5XooEH5Gh0ZShPrbz5m2cwXD7tsj8EWk/f16EbSvjJVstUq66+fb9dn4/VcLp8CxR9Qy1bFL7FimwKJSXIh4LbA6TARNKZ+qaEKU9DdXXaXFunFNlw5TnVp/Z6f3w08ta0jkPCYmAbpiDCoG0nqXAP1XjjZzuBbl+DbVGWkAg2OD4WS6NToX/RLcNCTbCjAYN7lsDnBgzT6i96dwGI8uXeEnRiYEmADdRTSgBxE7awhWvKwkpWNc5JHFS/9tQ5VAOfAPB8YTobTavES7azpENy88ddW8MWNZpvEvChyOgTNiJzGlPZMBSAnJ6sgOCZ0326I8wkgcL+94cv7V3z95e/glvj8/ldUtjfywJxDk8wc2wZQmLtsgbP/9py49U2aQRe1k2K7jVNtpvqFnSPmzUwVSE4gKsChkvs5Tzkugk7H8clq67ajtUBD4L/7b/6Av/vjG/74hx3P40nU3hz79kZK/Uy83d9wv90oWoagrlUzfP31hgQwR+L5HPh8nNg3imybpgpVYN2l0uowbHvDtlHYLhJ4PN5hBnz9csOcBz6fv2kcc8MxDTMdX7+wMpz5lIX4IMsJjr41tN4wxxPzLKCQwWsM4PN8oDkBy/3OquXx/CYhQ2q69L0mB0lXKBxDsYGrUjtUmWvmROTzRE2TQ3RAoNUyMknQxSTi2FVNyUnQh5NoxFRYYp8yrDVNqYBJr+SeYn5kn9CIu1EMMtjcDmuJABmAMzjBclNvfU0bLDASSBzjoK1oT+htQb0VAakFtlYQkMCUfamWqQxoqh71bsYcgA+d3205vpkv1aNMsu76RnaKDHkmWzs5xW+nSHFM6koBi33E1i7g1vTMVuA0ABPA0WT3DcgRAszoYYYSGOqbkLkUMzDmiV56Kyepr61TQ62J5cBWWfspmaz4jVffsbUSc2T7gnJNZBje9psCGSaR3tgyGQlNzKjapqu6L0bODJxjXpVDvDg7o62FWvdeA0WYEmwwOrVlYxgkcad9jRYvp7q/7SsZqEmfZHKxIhiZqmoZfNvAckFV+wGULoq0rcYx9L+VsLuVX8a2NcAS8xhkqz4fvEt2TSIq3TpdjzUudpxP6hlKoyYyMKR5hDW5RGBSJTIArDOKqGoyfzlW9VzmFpLLAFs+ORK9t45IMigAVslqut5TbW8lun677UgEznFg7x2+Gc4nn2/rXTm4xO/HQE3dcwXub7c32vnzJMtlHqulsKBkVpsTz+eBmjJa7JliC1HXDhg51h5zYp0q4i5tGCVFZtVmRbtYwfu2ybbL30ey/TJf2i1nqHBTOjRRoT6ZpGOcqga2FW95r0YkHtqVIJUAA5Ss6RxXCwoTa56HbW+i7M+FVTAA9jUJFFmM2wJAcbHvxL6HEUAnA4hFok2aU8cp+r2Ap5rsBkDTrypQx3qPkRMeXM+udqPjwfaFlWwnWXwHnmwBjlxC3805nOHx+ak1USwmv1pC3XUWoXjwaktSLGOpuKd8gpLlVuxLRvpkYlfZv4oeffk3VHirfV2MVijWzYv9btLFsNJF0V7W1MOrZY4Id2RS68mTzM5G4f+VpJ6caMfhXyvDwBoyIF8emdczKCGvSZjWbT1vnS3rXa1JB+YMPJ/nymAqwazJg770fKotsjQjJRKfl13Z+s5K+Jwv55srWHn7EWPZWpa0OyJOrquYZ6UlWQWlAlC4J7IFMvg1uKd7W4kc70JidZcWK/lJFkiv4fDJParWa0Ti8XigmFme/P4YE2vqqpGFUrZ1xsB5PJct4wsb4xfYT+L2BeCT8YjFfKz382oL5wvAUO3wJqHzhImB2bxV2rqSt/rc9tqmayvs0qMpORejPII+koXvxImp4UqBAqn3tvMEGBY60cXC+jwGRdubtNk2rnUadYeGNOAsE+c5BCKTIXG7bYhBTTQ3ijprW1bOwls3MAafvTXDZo35VKPNmfNEgozrkP8cx1CMwsnJM0q7ppgfL4W+fCmaGvWgDFCOxFb8xexywSXBM05VAuaYcw6MGDDflhC6KamcYZg2YSD7rBnZukgovrpkYbwxrsqToM1Q8RE6I9t+W8COjht8kx6fWNdkG+utPBkPgW3d3qi1x3PNQjXtU5ctDcwgc2cMAj5e8V/FPC+MymoZ7y7mufKL5znw8e0bvv/5L/j16xe8vb/jy3ZDc8dBgwSDdPYA5qEz8PHtA9//+g02AQ/g+HyKRGf0LdBU9MjVojWlD2vu+Pt/9/f4P/+f/nt8/+s3fHz/wP/yv/yveDw/8OsffoW549tx4m6G7XmHY0P3G45BULPr7nz/9gFvjl//8Hf49VfDf/wP1dVABt15nrD8Z8SYOI4nmaLq0FlFROTVFWRdeaRsUtlHs7ra6uIBLA0tHC6mOqwmqBKLqLjCDMpbXOw/3pmSOyCQZ9hkKyIgUNCBeVLbVUCQ2U35hgCxDDSbJCxg479Ddj6lI4bVX4AdjHG6UMyYg5Mm3zvCDNMc3Xa0c0d80L750dHHhONJ5vl4IntHto4ACQBTc0Qoi0AGKemt1xCER3V8/Y6f3z/VLl+QrQQW88VscQRChnPynrHn2vk/yICRmKoCUEMiS7TXpKORK414QRYL8dYlN1yif68ZmGjHFC7u/GxpAfG5U05ErtiYukzLlb5clQIqS7l6ni2Z8SYq+caFolZAAlsnt9gBso94cUHrzxT9lK/kyzm+TrEgHXASwPIUkNIQeSp5OMF+zkZHIbFAasa4qlj1ZrzUrcvZ46qYJJtKsf6vkqUVYF4/FFit3m0laGoLKNRzicfqfTOYuG/N8OvXd5yTQtGc8nbj54zAbe/Yt6ZpowRU3IF95+UfdhmMbdvRfNfZMD2/Ch0AnZRRQE7WAa1NbRn70BlGU6tpMX9cjIWoZGNKB8VgyYBAWTTZNLg0SlLgCAMuIvqoyrgCn9IF8dYQYvnUeWw6W1ZPZprMNWuCjAPGaxtTnwkH6TEDq6Lq9V26MMUwVA8ydE/LibGyVmueC7zmJImAeywAAFl7wKSjKiuRBE7YSsTABmI+Fuigp6H+kwUSff36Slmy/l/9YlXHKlHh1btaBss26Kya2iteP4dPhDAFLQkBbfmiW3TZnrIDJiZX/V7pnaQV9g8g5zIBqX00p4BhOv+3QwmYaJhRb5VMNJs3WA8Ki2vxF+Aj20u7qQTete9KuHpvmBNiGCox1EPXtLjzHFobBeEh4XWdocVkNIJZnOb3Wqm1a23NVjLkfrGQLuaVLcPHOyl6d1zJy6pCJ/97tWFAILhATqyPswts5YvrObGS0uscvdYXl3l4+T3dU1QFkol9K92bSiLrDL3aQNmzEuUkHVqMDjE4eAyuijr/Wjm3l2o2gKW9A0Alu3VXQ3KSFTh5M4m9pybKCCizIn7p3qfaOGTTskSEs5LPfLlx0FoEHHa1jJWPLbuhdV7Ak9f7VSWvWqCslkmf/cqMwNr/+tyQH1/tqFm/B5ix7X4Jw9cayp6mErXr117+ge6b3jdf9vs6J0Cu5718nnkK5JDv1D3pL/va6hzzL6m4hevMQvZDZ5eP7kv74+czUWxLJqFQDFU2JRV/cJJRWSm1cgmM5HOiuvPXPpdA9VQrjEedx1jPkAII1iSprDPDlYowHc3rfi+dlnU9auFfzlX9EZ0lgjP58kcunlLZrjVNqmxYrd1PDoLfc9kQxgplV66WQmCx1JOsTU5MvB7XrkdhARhqs6ufFyDjeqefYyICty+fVb1x657Zuj/118lsDcyyW3nxGepvXVo4BhSzeLFlX85QKvYwHZor5EGFySsO0d26/tDLd6BiAiyQpwxnlp1G6UtdPiHrv1Gskrpr/HLDFedcMabOnYCVxSD56Ypf71mXIX86P1eCV1n5xVBL5gO4WEPQ+a2WuRI9BqpDo04kf5oz8Vx7anFt6bKLl70vi1E7uHymYYG1K55eNuKalDghcDuu7grt3AWI1TtXXlNr7Be4puDl2hPgxe7UHbVakXVnoD93RVbrIV/eWUDHip/5WzzPasfRYX+N5f7W7pZdLN9vKbamiAIErPz6/bjyk/X39eUEtAEYY64aHhMIFGCP0kTKv3maVLwj+wYBk5b+E2uIn+/L99S5j7XPtp637kdNqrVisf/koAgg10KlhCFNOpuv0+ZejgtW3BmpLhn5pNbUFqX+hGQr/XgeiHMIuCpR+ssfV2weOiShAvXn44EfH5+Yg8C7NcUPmszarekUEPgu9iTc0W+3NUV623fc7oH9dscx5hoaZMrEz5NApHssYO18ahiSM7fiwA4s/awIE0B+nd1ekxLrUGRgdV1kvqzgVeDO1Lk3rmquuwfujdtigNZfhRdLLVGZ/WKh4opvCrMo8xXFLig7aGxvLeJApvqXDLKJOsv6vfKBpngIcf1vXzfaXthJ1/3NYMtyc8fWNvR+5/sGQeFmk1VoafjBqLHtMghTDChLFirCO1YWQ0OK83eynYD/Pa12GhvKReYC1jhSJnPAcEM2TdNyIFy9za0hzkRMw943dHdsTuWlDY70iQmO012iZCZqWhlNMPmOCg6W6J/YLaXHoTHvCNFKYUgj80IlK+zaJDKcgJK/qeYc2UOahjlIZQFFyGEmTQjHGQq+ojx7Qn1WsLikOA3AJqfDrj0e8DEPhLOy2VrD3jd4u6oVCGCOE+fxRG8nvBm+fOl4++J4Pv6CzInH8YNtav2OMAdsA/IGZMN5lmaKpj40Vvp3d4wHqFvVFFQrWA6ouracPQObWm93x77fUWynz88HjuNAVz9x32mYK9jl4Z4YOcleQuDv/vCFbJo8+Ge7UxdkTDIwnNpI9Q8sEfEQOMWR29uXG5rvbA/LSvqqDXKqNWpiPCfwnASTHKgA/fPZUdPnMh0ZDb41TmPCQSM9Nh6UCDQHelP16JgUI5fmkZnjfnuj0TJWvMYYQHQlsmQGAernP0+03rFtG6sok+L2gGPvNxrbzVDV5efjiedxcNQ4boBvyDA8H6zc9H4H2nfA/yJr4wI8coFLrTc6XvhLsq2AK9iuyb3iPpiM4HGemHOgN8C9Y995h1itmmQmqP1rzpMTlOaJyMDMid4a3u5i3Fx9DBjSSTPphLhx9HyAYFm1g66qMWiMGWyxyhVZDlctD2ZgG6I0uxKoKWGZiSlmVpNgbnPuPZmUphWpaKmSFzoWV0Jp7kUTWuB3aiR3BdlkZSZsY7LAsET2s0tEOSefNQPdjSNlN9meyYPfawpdTJgBvbsGEVDfoxJqd8fttuM4Tk7pUQDEwBC436jhMs4HDIatb1hTCwV01Gje0agfwz9jMvsCoawcq6q9jRNTAE1PbNB6WTkKVGBZAMzS0XhNGmf98TqRZDr13q4x5WDC0XYClTMkVL81xMw1NQd5VbCnkrGmigzp0tzf0j+bpQ3ohtYb9n2/ArpZCd28kgV9CSUiJvrGs7NbRwRZQpVU9t7R+7YmsA3pPNTyRJ21l8SFZsAIbBnvUJp0NJwVteM8cZwn9YfMpKEEAGSHeWvIMek7xmTCozHT1Au6PDl3F6hpM0y4+Xk1UaUSrEiJseMah913MpzOc4jBFwucjdUOSoC3ZlBBd40MPVbf6w6zJbxaC6XXVkC/Tta2iYnRrqDPlGy8ioGX3wsB91Fv81NSpESmHq0GGijO4JaToWhmsL3aexwxTuQcSyS2ErJi2rDbgyztmLJdCoxNd3sMgcENi7FYibSpfDiUZNbnrelbaTjPkJAqLxEnV+rOgpFqa0zyn4eq0ZUg25Xcl37MeRwADO5Dd9zXvSqh4AV+raO7MvErKdR3u5JYMi4uPKaIXtB+FKu0bASHqHQllZUY5VVErGqBPrTOGnH+SuhMwOWgP1os7vrmWIyzliqcumMkp0a5AHzzVnjwOidZG6z12zsZHdQ1JyucSVo9Lyd7BVKTATkxEO4Y87qR5R8LkL0SmhJ5v1g+TDeCrEEl1G4UEK69T8WaDk0llNZenTvd/gVOeRUP9GfMDL0rYs4E0uV7eZb2xm6EmKzKJ0lkFKCuVNvFrJ986m3phHCdZgz4Jtu1mN/0YU1JIQpyKPQOF5A5BSp57yjgqc7SvVMb8Hw8+RlO39Z7x9Bk0OKEbds11bJsxNbJWn8ehyblXbvEdTyvGFuxNDRpdrFTrEAjnYEIUNTFBDRQVHlMslNek1X6BNqkrbOgjAACA+c41r3wRv1LAlA8J/UuBUKhBBgUT7nOENl5TcNvuM+hNe6Lkum6c5dWEWUXHNnI8unbDrLgyRb0qGm4BfikNLWkwWlkSxVLLcHp1MdJselb7+v3aTNJGpgvgLcMzJpY3khFhaOhJutVQS2e58rBFJqgiMm9NTQBjHNOzPNELuZbxTt9gQq1zqV+XGc1tek1xTxOMaQ6/QhgKkgLYLK2zlvM0r3d0BuL33Ny8phD4Nt6buVkc15xoYS5b96xoaGnYZ4Tz9++Y3w+xYBt6K1jzsTUs4dsLy18wxjUDPrzn/+Cf/mXf8XzeSDGxNY2TUc90I0Tn0dOzJw4BTabU3/z7etX3O93RAS2bYd/6fj1j3+Htt8wKobo1If8/EFm3Pk07HtHc8Nf/vJXmCX+43/732DrO27bnXHPeCxLyfzQ4Nax9Q1vt/e1L2sGXAzU5Dn6MQfQYdiWrTWj/nQah2illy+9QMjyBemGbCoewYg31P0o+QYv/SfaFu7XxPF40pJ73Wnj8CeQoW1JHIOA+QCnxuuyhMBVvS8AcHAg36Ep7yuJlQVSNhZZjuNA3zf0vuH99hX3+684Pj8w8kBrN9gGOB6YJ9mR007ZqA7AMcOQaGi+Y7OO1m+KTzilnbngccXJ/8bP/66pdpfXZcU4UpOJVEyIYNKiGRZwUwVtnitgyKCjeJ4PJbeq5pMOcF1snZEKFBMEiZocS6G+lZQY5zxzEaIQa8M0W8yI1LOXOEi8BlRFWhMgXn3jAGDWsWJwpA6vq/fTVM3Xd0KVequE7qra1ejGxFUhBlS9mLmYEJlsIeito6YadQf2Zni7Oe6bI4OjaJs3BiMwdO9AjTZdhlKBAoCcgKdRpM8B20zJT6BZR2FooSSDd6sQZahtiYlOteYkgL5pUoXFYgEUyDMxCAiKHZFhmqaTGv8t4Wv5R447nmSVCcWvPt2qaHhThWhOjhXFNVbWKrlUVawVWKAfkxCl28azOyko2HpHBWAZ1WrBAzhGwnqDbztmOGATME7yaBv3cYIJYrYJ80DrDERaJWAyejwWXcFY16kofTMm+jnZ/uXG5JUidzUqlAkedYw0RjQDiANmFyuhgrEhYVTqWFRyWfvE42xFJK8kOLECPtNwW6Ajs+E4+TdrIkJgoPcO9I4M1+cxAK6Jc2MSoM247nekQCA9RBrD1CzqBiN7FMDEqxurxSUFCFQ7okksecwBiKXGszyvDJLHB6030avVUtDamhbmFZGtszQVMGk97Epcu4FMMgXwBRDhBUIpm9Z5UHTHCKx2d7S+MX2YA/t+Q/OGM08xR64AlO0vF5BctiiixGYZHG2bEqDytAIISwPgapVzFKWi7hVkKVwBXGYxihwo+wyg+LQmVlbvLobXFZCXZsfFbqItcTHIqsoGVAsbn4stIjVEgmc7cVWsisFCIDIX+6cS57IjZjUt1JZN+Am8lE3orSFVsCCIMyV0mdjMVnAOMFBzY/i+AtfkhMwx58UQWWc8F1CDYtfJJ+qEXeey1i1TGjcvlXGtRkYl7/GTTSsR2t4aIlJTYoCtbVy/kJ8wWyzbYkDVtKJaT6X4qAou8movAEpLjf421SZIYCdWAlWJ4ozSv+Ka1CSqBRjUEQXvUx3ZiFytxtWeByVw3NuahPb6nOXhXxhxKHZeskroDA5LL0R4JKt45aeLVQIAzvYzRtQ6Uw6BoZNB2nmgbx3WfAmql40YJwsWrRvGOdmOWILQYjNUcm/Bsx8v61BMkKgke5KxQ1CE+8lWLPk7GAr8pq9lEWRKK46MoPaiBxkvrNAXpgRsgX4VnLu1lYTVecioQK0A+yt20xfoowneIHMlcVixULEaiplZ50JnYgGOyeBaW1MiphRklb1InYiyVzp7czLpy6TeH8KoCQNbdq+eu9pE2XfDs+CaNISFUVdoX88YmCNpR6oTSEvQtISr1JMEhgD5Kkax1/rX0mU9fmnJrUOx4mFqeFyMDOEOsKo8CyuopCWrwgpbPjFV5DEBV9UiaMil5cV9Kzt47e36rBWwA/lqi8EHqkJmLj0ZrgddgokNgqXrBADbftM7OFavhVGoeu2rUMw5J2Oxdolx/2Rbzf7mbBHgNZA0WkWLOTTKHAKRg0y/YsAu267PXHZLe9KU+EPf5S/7ttqA64qh1j+vQjpSbWZ1F19eJyBpB7VF6R6Fzmq1VNrL913PinW26AeZ7QwNv5lejFtf5+tKXsnIicm1MYExrv8GnMLG8hpkyzOWiyrUt4aXG3D5sPUtam1HXNI6BShO+XpWPZAtpQ9cR7OY+kGf3ipGAo6TBZ8MdgJQhgIrzq12QNqodWAVd7NNb9s2zHFijhMNXXkON3EmCzWCtgQ6yYNmFWviev7KjSz03AZEg4u60ptYPxhqX6PMC1nxfKflICB2UG8vPpyngFMLA+El51ESHxusqUW2knatCc10g9mOx3Hi+XzgL9++47fvP/h7rdO3zwEcotp4wjDhSMbCag/fesfXL+/Y2oYzKD3A1nbKlByfBzKBvnVCXd4xzoHn44kv73dsG4GkVoz2AB6PJwt48yrcjcEC/zhZcC07UBqpV9afit0JOvEf5sRRZyfKDjCuIfm+2GjSvK24ANzbAoXrQgQKHFK8UGa4/K3+flT3jDVoXBtq6mMYmfRnnGzRa1etZdki3RvWTA3VAUO2mVhaJvKItev+2wbkTj8oG827mJpQCLbjdXC4g1crbAK+L2JPemPWOq8uFyA4VOWnAOD//8/vb7Xz1EKmglEGZVXQYaDJizcvt4gxJ8bzyeTO2+qFn59PeAK7KHKF2l49by8VUiszxe8h2CNBYo1xdrW2RVCMjDbPdVb4e/V5awJeCohhPQhVkeA5bYo1lHD1zggmEtTYKZQRcGvXhBYwCS4PUzomqJZCQJREBqpFa8xMoAEWrHBuraObs93PE3sz7N3wfut4uzkQBwDH1ht4QSjQzaoPj2bvrECU2PWYqYqAo+tcnmOgKI2MQVMJe+3q6yh0tp6NcSpgIULb944IsspW+0nLlXiZb2i9qxXBVjJQbA5EroRijoExAvt2Q29dgFCCtIgELMQmaHicJ85zst3Ort7+BfW5o3cmoNV6QOCpwQT6pB/w1tH6Jp2QRAbbFjt4Qccploy/6VxMwLuCHQagMx4Mfo0Cd705ehNKTnkuAK4kp8ZUF10xUSTqUGvb4+Oh/nvuZWsbqnJcyXYFsDOf8BzwOZfxi5nXeUtDarIUcOlLKZcEoimw5HM01+SV5jDbiLAnWS/PITbJJGMncfK93JC0VihtDgp8BsYIghcvwfVU+42rrSzB1rtKDKttJessViSroIAJVaha1uCdezakNUaR8WICVIijyqbGw4+D4N7eLwfj1RsL2o2QFkbb2nqGAB+qd+oEoBWb5wpCiwHllrDG6jZBuINJ5iQY0Htj5XWcaG/v2Pr2MmlEr2yGrTeCJAVIKNem7gFUlQH2rTP8mAkrOz3PVcGsqH1pnYBJWwV/pXHgRQ1IX/u6aOa6iwkxsRoNl1m8ABg/tzZUEL0S4JfQgAwTgZITwKxpVtX2c7Geek0wcsdMTqi5VOvXVzIWaE1V50rYyEal/5IN77zH1jo1rY6BGIOAdOndVAYnavc1ujkx1EJ+Hqz2dLFxmEgFYpClUsBaVlKQWAWUK+Ev5gdQLRyFIY7keSdjiee9fHwX26J5wzkpCHq73bBtG47jQEQw6DTej6pAN2/USVmWIa+zcN0AlIaJQdOw7GoRPM+LjdM7K2qVYIw5Vhtddce8ftcCi7LSEiCWT4yVMLIV9QV0BbSfeAkooy7LenIoECPYnFcghpc/Uwl0MZ9MzEn9H5kdjE3rHFXgeR4HzuOJHUDLJl0G3psITpN05zTIMRgYb35Nhyo7amawYS9YCZOpMYYSAlyJnEDLsnu1jCuxxJVoxgyc51WF7Lc7z67QiNUmlKVdUWA0MI5T9o+AUBNwlFE3twAMvPzYz3df57vuOPM7/t0KejPrXa42pDGG/HBVNK82KOjd+lpDftEKpJFskQlbv09WMwC0qjny6TkHGrACpek3F8CjJJPnNlcxznoF+ljaYnNOBG/mOuNslZcteL1RtQbz0EmMBb5VXA3dt1WMrTRKmk8zA83EUi5wboEafFDGyCYbfvkmM7KZ61nqs80IqslTU1MRpqSZraWMDcsa2DovBXjEEN8qUjIbBB3NmQvUc9QpKlAyyoQn2SOln1PJIOuyvtqxoXUiSK1CX5d8x3W7ZR9UqFzsG7GcxDwb+o4hXblqTa/YvO4qP+4ChkJV6tcqv8mnFHJY+l80MbHubv2UTqxpwmGvNvZqe0OB3/yz/D2rYFaMr1znpJ4lZqA0/0z5EpBqrRHLfyTCAgNThS2Bc4m1NgaC0HMyR+A07LZkQRLG4mZSO5RhxlzxTxcYlzpHUTFJFbrSVnyXy9Pw7o2gNMKMyWQ+ktMSi82F8rN1n52M0qZC+UiMYjqaYd9ulVqyfWzGAvxWkUOAwLbxHOz7jkdMgTcqcnvFsFXE1d3xF+28VLU5xxW66k5KIUOAoa9iFtEbSrxQn5SximUuvcR4YV8XqxqyT1Z2ak5M5VlzkvVlzbHf7xxkZCqUGbD1m1acxXjvd3z8eODPf/2Gf/3rb/jTb98AkA3Oib2il4IdJWbJDieQkX2/33C77fjDH/6AOSbO41iFndYbY/fxHWQjbmwL9I4fjwe+f/8Gy8Db/Y77/YZt44S2mIHPzwcqyFvxxThxnieO48B5HpiTYHkqTs2yhaj7QTYZJ4ATuAnoTBYrj9YV6YYuIBYZyzauNlzZxubUlOWEZhZNi6nEeDdfME0B7ABSw77S2M455kk7a4wbj3HCu7rftLstDKUBpj+INTG67ro7sjlm3fsu7Sk4zHcAO3OjmQsnCQOGJY7U2nbHbBwINsdEJidtN+/Y2wa4YyZZhuc4yRSzQOuVU/zbP78beFoi6MkL3gCyy0JBWQIuSnwcg8hqKli9bdi8k4r45AJvzkP11rdlQliVyWq/xIqsUYJdQroVYJRzAEjZTMjgZqJxa8nlsNr0zkV20lVzcpqmpaGnoSUZTxQNC0wzDAOgEfDNCKovNoKCsDmL3Cyn5Apck1UmOtCJSJLvKIB2OYNRxhgSj6uwd8ZKKCw59ey+3/Dl/rZEj49RzkjcsVm4tyNzA+ASUqsgi4H1yAFgInS3HsdzBepQYrfqegrqmEA1uO8YI/B8DjJ36hgZKzKwxNBIblIYGzjolq2Sz7NKzTt7e6t3GEDrG0FO4/kZ0kxJ0WBJ52389cYLVeN0m/sKjisxMXow9LbD4DgnjdB2v4NTQUTxtsYqjOVFR58D6cB2+wrfNoTvOHLgmCf2DaQmg4jvMU8GEI0DsznmcsDgiJFQPsd2nOPEtiX2veGc8yVhIRttjU4NYAysMzAF7h3jE4EJ77mA+BmgzpbxcyroKwHHcwiAWWyiMmLXr2VVYJOVvgmTxhMdZiowTgP6nUyscca6LxTKdLUWKT2xqxK5KhCW2PKd9/6n1hM9u4KfikYLFKYF4P1g7Fa/Gqvy0NsFTCMl7KdgZRwEaTxZuZo5rnODoJ1xas3VFMQF/ogJCQXeGWRfFgUaAFIBawUdpadFuzSVgJOh1bZ9gQ690ZEczwPPx5PaZU1gD2RrFjBBW9EEnt1uOyq9s8bgsUgaWdVKBSX3O4Fo97aCypXNyeq4V9CrRol0AowJMfQqCQqCxoXBVGn9FUCSmw1V+y7goE67nPJkW1kFuWxZEPFNR6FIa6akptoeVjXHCbalItEsO5oCTgQqyzisauycB+ANbQPGyZGzFjw3iy0A+TWBtQmIQVOpVyUjuEAntYQWm8GL8ZRKcvX3oESiAH/uda41con1zpcAuYC6he3VSkt7Ye8bPzuqRc/EINKYdkuEUV3zlOg2q/P1vEq1FXD1LlFMUAxfR1Lnpu6JoRhopXFURabmDDxfCwOlu0HSQqz2124N4RXUXQmO4WI3VyT/GtCXCgODS7aAZmDpGo0xFejFAgKHQHRL6U62jprIuuKMAsdEW83JpCpyEiCdE+YTIu3y/p+s6IYSnHPM5UMzJgzzpztRzx5KvoqdFgJPShy/2DlZ+1Mbj9qLC9Ap+8gR7tJK82olOq+Fk+lLk2LDWlTo/DGIjxhYVcG8oJUrRns9ibgSWN2RmQXIc+8hX80/G6zm6hMKZCxh9gzpEq6PN2THet8CA6u9n2LCzj3nJ9KuOQFkAh7yZbNYZVXG0f9ZgS9Qsm0LhKDm4cUyKN/x+v7iz3O/sgDdCrHEsFMS6WUjnCyUGVcL+mrj1CfHi54g6hmlqVMxJIdtaH9cKjzypY7Sj5ngIKCXzYaCeSq349Y3kAN7xZRItoKWNmAKVNm2jc8wGaciFTeabF6CYEMm5st3pVtN52F8IXbWPE8xyreXpFD2toxwJYS+sdUJLIwCCU9H6aNm2WYXeBYUXu+OiyFRdmqd3etsLqIYrngg9T9aa6uVmj6JjFVDeWUN/GiOgvvqQ4pVVWcRwNLNkjWDoUBZoFiIOi3MeSTmDP0+7w1gxjb+ErxacTyA23ajLzCgmIAGA9KxuERTp3rFWQS5Y9gVF1EXY4FkoTyQv0/WSSQHvFDkPdkGbsXIV/xGhyrJBlXEC7gTSGvuaN1VzDlROpVzbVWtAUF/sytOrPjzmGyLpHj63+Y4V0ugCSThmuRqazvHgE1p4Zit2K7azmG0DRGXY3YN0Yo51QHhqOaZORVDaYJbd7Z/rTjZi2kINOloRlP8M0KxmloDY+Led7X3dzTv8mfAx+eDsgSdOmIERwiQP58H4/eZ2LYOaxv+9dt3/H/+83/Gn79/x8dxYG8bYk789v07LANbb6tcOZMspH2/09fIV44xcJ4HPj8feDyeeD5PHB8HdXw3SpjEccIasG07blsHvrxzYMsceD4n5mz48n6Dd4qlk11zMSXHOXAcHG5iUExs7F5K2f0UW7XZBmpndYJOlrDOiXVeLkSs3uqs6O5iL5Ecw84Ygc4R8g2XC7ag/UPQ1nm5OT2v7zf6sjEJFosxN5VTZZNsSEjbU/covAi4toDkynzMG5qGkDCkoNRQDMVuIuTMALZoMNzQUnbfXTlDIpshb29ge3ziQOCEdGrTcOt3ERBQZDd0b/B+Q2AgpAd1efH/+s/vBp7CcgV6MCLfkADc+o0YNCJDrRQ2YR3w3rlpcIwk8NScQebWO2qKTTGp2GJXL3AlRyYqN2ONcm4A//SrRwCaJZqRgVSaBENJURS7ZyruSiYSHi5jTXbQNOAw5/QD7+tzMocCUR6+mRIt7obSuxmlK5IpBgorYgGOXHd3AR+43knJOf2SgjSoIqjNvvUNt+2G3hjYjwU8OWaKBWYNsIaU0n5V0BbwBCx9GjND2gVgNSvqZluh1Fz92b5aAGvaGZJ9yliBlUmQj4mdF7KbvpBoapIE24L8AgkieNAJ7inZ08KkkjdvO6oqSFDDlo5SyRzmi8OoHK51Gh5ONCNSTc2Xi76oCIDTJhIYmIBRL8il8D/TcYZaRE0tFzlxVDXKNcmRYxl5ToeCdREujoMoslnwnImVU0FCtRVlGtsRG0GimNyLcxwIDGwbYFrrCMcc20rCTQlhJFbrCszgKXZJrWdV0JAMeLVeFE+2xWyrpC+ULLW9kc0xCYBEBB1ea2Q41ZlzW339WX0IdNe8rvna/qXvfhUPTYOjK7l3CQqeNHIv6PrSHVLrmzmD7ZoE2FrDPHkm6qQwrLsqmPTs/J2a5Liy+ypgJfusE6kJmRe7EQq2UO1vCrz4bzlMtTL0flU9XUn3t2/fMM6B2+2u9jPa1mJQXWtXAIQt1gOyqh+dAXcyeYEldYdAZkzKnhqu+wIrmj5/XV+87HFtJbRm8s5ITVEhE/Jnc21rDyuAJ12Z4BKdYe1eiupcwXwJlCs8Z8Cqz653ZTIKBhrGZGSu50oxbGhxJQaAAp1e13WEWkrMFCBPNLFfqlKV5WhqL5ACkvzyUiYvVCDSWrSEmxIsrA989W7rxVKReyIVYBRrAWTupQIY7X0IYK9AnfGuEm9A/kVtFWrp2rZNay/9iGoPdV8gnV0Lvc7ZVMAxpclUwEO1SZZfmaGWqJd1IO5kWK2amQIWDeZTbqm0lRorpJo0SgBWp2BNn1JCUpoZecULBiYEHNpA9uiMxDmutW3SIjs1rcxBMGoDE4zXKYNX+xPv8jwPsqqTU2gbwIm9eTGlzqFM1cmymEOt1OYocds5x0pwFsu4qP5dGlJZd4l3kuCg7EDd8fo/PeecaudUK4eZi9VXw0de77ODLNPXhFr3Vof/EmePa31fW66Wof75Z7FATDFBXMycui/rG/Pnz/hbbbG6d/pg7nmUz4buRWJNZyxdRYGPlWRSP0OAR6V3OidT8DxtsfZd/rDuUNQ5VGsTvAqi6yH03CaA2VDMjzUNS3caZppQqX8srz2Ii61SLcG29u4lztJvVCKdYv+z4NVY0LMqjDj9YYEfaiepvXzZDp0vtsIkDOe81roAkCXeriS7SZi2JoGaPiPrTCmhDmOiZeXP5DurM6DG2kfM5c9gLHywoaL+r9bcmeCZLUZ9ZQOmuKTA+gIT+T2BGlNfd6cYxWNNvdV+58tdQOUgqf+87l6xZ4AqxtjyF6+MqbXMtTZ53ZcCGniUyh/z/p/rvOhZqoWtfBheQIuyiXH50tQGLhHmYozNyq9e1kc+epVEC0BJndNiRJuKdLBViKrDZJAmoFhmiYT3ajfi27tsJvIqUFwFqYodIOCpI8ahYn4xBK+1SwPBzxdWY2mEpgFnnEBy4vrVxs3TNF4mG1Z8bPmz3ZrS0SsGD1q/gADlEGTZB9YAFnWJXMLhFW8DMcaSZzFJKaTidV/rLoZihZliqAReilgx1Qp5R5NesEvuJRI4jhP7vmHzTZ8fisk57TYEBnsHwhq+fXzin//0J3x/PPCcg90WmdQJcuC+c7gUkh0ahsTmjAXqjEWwDe55Hvj+4zt+fHzChsHTcO83IBLnQe1kdHUP+I6agn0egcyGyFDOcq1vndE5OYmxfBO/f7VMKSZw+aC2gCcgNblbGpAp0kMruR3GKTXN2IzA1+aNHRGWGIq9ylPJhF8xou5Bljs1h3cCeHNI+ymEDSCpHZVYU3nTVLR2kgDSwRjSr/ezdJg1NOuLl87ct9rwEk15SwywIJ9qbyz7ZHYBT9jZqdd4plY8muyeMjjsLPvComZvxjFded253/Pz+4Gn6jSZSqDC0I3aPbYxOInBFqpNOCKpagyAXTSmOBM5AqZx72MmA8XeMZMIqssARo19d18XunnDrfUFnMTJJK9BSHljCS9xocU14q8PHrDeGiIdkXTGAccj/QoEgcX+aGCi2qxJS2DCWxA8UkvQnk6gsfMEJi5q+RkTlom93cHqEeDeOdZZTqKBf2YeHIvdNgm3bgYcT4zjiV9/vePXL3fc2oaejvE4CVocDdYM2RLTqDP0/uUdfd8oaIeA75OUugBiGvumneAU22QM3mqEOpBJIzIqQXQ6uHMykTur4tsC3iaam8bQB7btDkBMpQSgY+7e0J1immd+ImJil5PBybHn1VQHACY6IZlbSQQ4AZtg4JhzCbY6jPthnHwwzoEab2lKOPMJQKO14YbjGRphPJaxjsEL1LsqJoOA4WM80FpnIBYTPR2Pbw860k0AitovY3D06TwSt52Vh1lntBGYsMbO6MdBRtEMLGc3lSz2RgDrPIP6X43C4JkdMd/Ylzu3VWGaOTD8WCyNroDIJhlDX9qNrYfuK7iDRpe2XqyFbRmV0nPwjY55YujuMBHdNsNwx4yNIHLjhJ6RE2kH4AHvTATapvYZVUdhFw4wBXjuRhHQlejJuVYwEGYSMhWLSQlxqkWsEt/bTuqrVS+p6OiRibkZpicGDnRz/PL1C4BislzV+4wAQkwLtcjmZKV3zsC+bdj2bVXdjuNUNabaILCqCVvrLD6XB1K1+O12Z1I8CpBxvG9fMD3guQEBzHYqtiPT0BKA88zvt7uCGwLYQ6LiULLDMaxtAQfmwO1+QyTF7f+LhFFTG5rtdFzJwKYYZsiXSq4xIOpbgQsS0gVEwwaa7v+rIOYF4hE8KBHbqT7YBZS4I05O7XRV1q8Mj3fplWDuKoBcrCYx28wWkFoVq9Ji8s2UCNL/MCB33NtdI7P1+ZmwkM6RmDBFz6YEDD+nScQ289rrAgxnAmGTjFlUMG3r3MKv+1CgQN8vIAEAdqfYe1WzRhD0Q5pYNCb9oCZ/WULmDB6qVamKHd4aCRHNETEFKE3AFAQW2yKlbSWqdTwn6ZXSDvCNQWhmk39Jjn4G4G2H99L4qL1jMsP2W34O0MFcj+N+oeQhwtAcywY8TzGUimFYwFsyEQkYvDEQHrPaTGvPeHDNjN+NFGAEdHR+n1o8syLJ9Q/ILtC9YrK1oXtHt9K0YsIQdW5Aux5BxkgT1X/fNrb3iDlmfn3LlLA4tzUW6HOOEvzvYp9MjGCluauNyZxJ0hhDvrbD2wZzCrimGIgJYEwBWc1Qrd4rEZ4sqpnAQpHXmIT99H+mmP4FBqgijqlVu4CUl+R+FRkAUOtE7e31PWZqXzeYGLypqm1dsL8FqsxSM31ZvBwF/JmRwO08e5Fj3d+iUMaKUW4XkIACmqj3Fmphb0oc9fYEpsBYr9xHcXMRKm4uDRmgBKBK92VrBRoycZ8x4M1xa3sRpAXsmEa/20rUmYwH4IlMtmZPSE+gbGKJpAbfnxdWayuqe+pZzK61JaifQKfQb781zJgUfTbFU8ZkiRN/E8/juF7RDNYpzutuOOKpZFo+u7nslsCBUIxpZOJHMH7skYx9QvmGNPvGweEvxUTre0dk4DmPxbpefn2IlbttKPiFrBND6eTVmeRRcPR9X+yXKtRkAQrdVkJ5gUDMP4pBU2IjNcBk324o8HGxanSxNsWPS7Q7JpqXDo0ASzHiSwe3wDqYIwX6YCvGzVBSKNsY1R7uixV3fH7C7BJG795xvY7OZDE1/AKiahhE3WvLgE1HGEH00v/LyJX2c3Ix9R+hRDUAbAwA4M5ixYyJMXgWuxewwSEypn2x3uDD6N5jIM3QO1lCY4b8Elah0bIh0+AqFM5BP7ibLv5MaTl1PKemw0KXIQ3nOfD5ySJ5b70MlAAAg/cdcyaex4A70CeY9VqjT84ke9oM/XYHkCx+FhAV1Al267QX6kwJDQLZcBXrPTttlu5bs0CMwOfxoN1yh1mH2wbrZDr99uM7fjw+McPgvuO+f+UQGANyMsbzSQb8/fZOG/TjA89vn/j86wNv/RfsX99wawxQYmuIGLzPaorc394ZN93vGnrBuKtPkj627Y6+nbj1xHOc0vOlhvGXL191lCa8pDak1zfHiZiOOR/Ml0G9402s6zEHxvHAHCccDd0Nrd8EpIq5bcpjJMPC/F7Aom8XYKSnWO38CQK5g62vW++LtYmDSM6t72LZL1eDBkoH1ZRdXy13AcuBflJH7nw+1Ukl0osnrF14hVvD3t6WH2dBS+CPGWZ1bghncdkZMz1P6l3csRnfM1rgbUu83058aYYbJiYODJx4zIlzBpowgpyABad5dnUR5EFNaZ/KVszXe5tNwNmuj5IW+jd+fr+4uF3/vkSzLsQYMuSG5ChHEJhamPmKbLjRFYhFMvAn1bsovfVHK5G6/j6NaLkQfvfVl4xrUpWSpStgAawYHRUsSbeGQSsjh+qfZKFNu6AKuLglMCtaNhjcpAx1q0Dj50ALuEaa4/X3FHJafZb64q2e0Agc5ZzYe8N93yn6LESTgXdDhiOExBJIcAFoWn1jhbmWBIteCwX+FdBcG5VZm30dgWIZWMZivvBiXQAB6m2yKmkuFkkxOxompNOiylcogGOSytNsOkWz9lII7mpZUKIa0ljIdPXZYg1gLN+LxKoUppwOJzeURgzXgsPEpJ1kWD3g1NHhBxVYGIN93w2qKKavVrR5JMYhceLuq0d/FWmtJsPkS1uUHH0oYe7UzcmYFG3PqibwhnGnNhS0zgCp2qNy3Q1Wj2xR47t30mPz0veo0+h1SKxaYXinGWCKLdJMiQ7gUZVkTtKaMZTsZsVFYjvkqtxUklbH67qLuGyJFVgRV5XTeJccTIJc1OtMxxrJnrla5BhkExhHCKCshEbtoH1rC7yupNSqWqFMSI0KpOYKOKLGQVfgagBO2QjZJK0bnA6hGVZrDUxQrAx3jSQGCDa6EeimXhjWZ6n2qXtZFXG10FjCpq+1XCdVNhG1ds1YAX1J5lcFNsuuyw5en6KAdX35y/Kaku1Yn7G0WCoB0m6v5yqbXNRh4L/4/AqYCf7XOstipoLasuN6xxUsFIC1Dhl/jSKW1AsIqF1DeVg91wIzEwvUWM+77iifMfSMvsQbq91gai1f/l71IHjdNK7RCynquhBrLZQzRk13fNG1yAJLdeZefFzttam1ZrXH1768/JjuCErH6OW8VXKTEGvJCFKRSYj1+7CXyqJWp4pC1SYnS7z2uFryqmWHbUyykRUBVBLsl28ZQxXpftl/npVSpmKSASWdF0PE6vHW3l1j0OX36vtWsKLdzmK2KlHHy520Kg9qr9QKU+LnZLvY+gf199zhBZgj1t6kkTVS314+eVX0a5vtxWcY1hkoZkWxMZbzfvXl9RfX9bDrnti1Di9wEio0r/iA35vrzK+HqgNYZ+sn5mp9St0BrLv/ciDpJ9zXvQ77+XMTL+fYXv4ucv2J1D4VQ93WeuVaQ9hlU/jVV9Jk5XNW/JnrnczKhmktX+zrFS79fN7ItHtd49DzXa1XNBexAN9qu8XrK9a61vsafWu1g6biFstrty7/Xm9bZwMrjlq/L9ua+Pl73WXvMF7WPbQXjAtmgd+4WgTdTW0iEllW3AOnYHDtajFUy5as1UqxiKqIqb+wYs3aKzdg4pqwu2JZ/OSz6mygfPTPS7taTauYAJ2Diuuud68P5HOVvMZrLLOgXJO+lFrOlt9FxTOXv659fd07mUJ95cV2WJuICrRMBQzZz4rlUO/P/zYUe1asMidZYN37dWcEIqNsHt+9kmqujc5c+WLpwMVLD7jpnIZdcZ1h4Z+L0btaml/Wr25gvnxa3cHSJmvAxXTSLlIjtOK18sVQRiGylt7XIYXcAvLWHeVaxpxqmaq2VyAKePLSDVt/BasNKkOMJL5HE6O4dGRjMe8vGYnU5NUQa3ixTQGswTx67wVAz9RkTnUw6DkjAo/jieMcyydR81I3TH6TcZNhc05VPI8nxvOJ83lSEqLd0J17HO4YAGoyrxk1prata7qvX+CJzr57w+6NRWrQgnDAhFiSSA09kEwL1qahQKjERL74qQzmxBFzyR9c7Wfy7RaXfX65Jua5WKe54o11VRnXwq7HMFPOLRBYFQGTiP2sVgita51rxpb0Z1WosJhMTmMqbbss0GtsVp0zzUjfScVQTYLhU8bTYDrrIGandWAcXjlDDRMJuCW6BxpCvFcJg88Jm7o3qIEFen8BWWxJzyuJtSqQgaBTvXa+vMh/5ef3A08VNEtbIqNohfOqlitBUJOOqv6sypgW68vXOxoMXzr7HZ/PBwKBETJir1+JCjhpIPcuFshxrL7ikusaz4MBixg8gGPGiXkOOVRVllYUMkUNJRjiLo2RCgLiVAVisIoMVinnHEukvFq8mle7BzCQmPNcmiSuKk0YL8wYAxYnq3llluaAJw+GG0WtWwD5nEQe244//N3f49//+z9iWsNzBGDUibpvHSMocrvf7tjuNwrcuuF5nKzOm8Fbw/5G1Jxj0lU91oVsRtpoa20Jtu37jt4azpMVq+p7NiMFMBt7Pk9NjUGyHYxOSSPrW8c4J47nUI8zq7cw4PH5g5fZRKt202SQtpKDmlB4nA8Gu872NlYN+C45aOjH8QNmhr41AANIVYZjoiYarWD0fCJT2kgywDNpyH48nsgMNBWzfVPf8eOx6O+RnPLRTbTzTk2Jx8eD192pF2Q+se1ARuA4TxQQ2JpzqkMDMh3zZLW9BOJac4QlOhJmkwbYUow40jC7RvKmjNxm+wI+C8TxotKvoEJisS9C1ZVcFwW7rwl6QQDMHRtYqTrPk783pYtgWFosoSlz97c32oHJQHUO2o2tiYmBxN50PvY7kIkxDjR37Nu+AnVWhQCsNo9TgRiTk33fF7PjeTwxVZkKsL1shV0KIt9vO7r7qqwVUBc24Z1aKC0ADwcGk/EmbZB+v+M8B57Hk4KOTtAawKpEbPvO/VBbSxiQJVTdAOCaWPbxOFdE6ck2kb6XBgvobFoxltpFGU+2KowIVWWAamnqjdMZORlRU7KKAwtfyXgNCajJn0iyQJDAxIPjcN/eODXyHC/VTj7vTWxVOm/ucbXG+kYGHNl5QIyr1bD8ub20SJlsE+qd/+ZnUeLFIJ0CB3K+JFlioSDJyGzSv0tNVHFLZG/AxoQnFLwAFfSGJkQaDAOvIJ8h2XfPL1/RyRKL3ncGBNrXWmMkJNLvCI1EDr3vvt/4/kEqfKCSECj5Akbp4AEcI23lqgn+Ni/Q0KSJtLYZ6CBLJAAEg7trFLQt1lsF8b3dyFrW900xQwyOGQPnwcpzpsH8hr7dqEuXwPEs1sqUzW/ak0QM+vQ5D55zCfebURNuzIneG8zIUokZ1NgCVJi6Ero0LBbNGGzdeD6PKzl7OTrLr5kxQHQFYDnpv+X7tu3Ge1WZjZLJSsj50fETyBVGm9D2hnlOnMdY1b+pu9ZvN97p4Pn0NCDIEh4z4XHdv/Okxta27wrapVOToJCuGazxLj/PkwFuexHtzQLyWG3Z7mq3tsCcA2MM9LbJrjNZIRsskKfEfPOlTQ0EzKtVqkD5CVMLPZPCBMQyslp0slOUkK5IVL9vs9rTlNC6wbL0hmr5WSRZFSQFy7zDCop1Skv+jntP3zhVha8G2MTL4IFrg4GV6qldrH61slAlvmgGa10MfJ6FEga39fUFtvLPVAtRNbTR5q20FMpmcIHzF6sRkKyBUvdc/3U9eZ1POUKoR5P3S7ayWVcSyqnFMa/RPEyebBXn6r7UlDQDB5nY0sQi82PMiXGmWLyXrlsJaZ/PA/WmvTds246z9KCMFrV09UKJ7GJzGePR9R6ym4DhPA+xpRMRjKsquW6vYHoygQ0byj+UaGbJCjT5TmkiARfYVUwXLcqEmLfmZCNURpoFvFznqPSmdFzpS8Q6IkM5MeVvV5Wxzh6MzBHZGveGvu0/FT0ycrVNuQY3FHgxcl7PEjoLQ2vYV+7MYTIIDaFoqzhSlcHc2iqkFlBScfJUwmlNOcSLREABSZNtEnAjaMLBBDy0feuMrSRv8lBM2HppyZr0IIFNQzLiIIPvtt2ZM5UOEejLt71jjsHb7hJ/b0O4hGFgYgZ9V0aiqVVr33UrswpBISZ/YLriaw3IMptkx7S+fHpTjBhVUFAM1g0Ct0ofMKgfZklRdqMAd7EVTEzAZmx7isG/d8YFP5o7Ag0jBuNw3U9Bt9gaByzsfceIgRkTt63h7bbDW8NjTPzpz3/CeQyxEwPwwON4IMZY9tQm2UY9djw+PvCnP/8Z3/78z3j89mdsnaybOJ7IGJiDufrmif12w/1+E6sROJMTVEvaprn8U08kOEgLTjZrV6xxjg9qBdFpoLnuJxLvbzc0SXdkAo/nKWSDBJXpDYGJyIOFeQTm+YmZQcF++aCS/Gju6p0bKF3eAnQ5lM0wbVFmICEytulPTTM2Q9oGGHAMssN9g75/Ij1hFqtAV4LwczK2+RwPPs8GMYhxdWMVC1TxTMmfcJJxB1iq0q9p75ztkmOCkxdj4v71bbVG8n4x/jzPE705zr1jRsecjuOcOJ4n/vrn3xCZuL1/XSDXPA6cp6bXG5Z/gDlCBQJRurHddjTvaOn/xwNPJpWslEFJQItkqyJRVeSatFBUf6vVxVVpKIetX/75u+znqgXR61xBJiJVcZPhF7pf1XCFMMvOi/exWjZqc6viTyT5BckDkUqKsBZdrp4m1xqEYaG0FUdUv2z9eH00CvksrpQcFtjusdYHJkGzWN/ocjq+7UsEtJ69EFY+voI0gReV3KUcZjGL+Cw0prOC48aAOKwSVgb3YXQsGcHqjKVo+1hVIAa+EJATADRiVVT6MTTZLAbCnbRbBDU2wKQ8VXWJZPtegUoz6HzH5EWnfs1ExCCt1FwifUCJCvKxSK2PnEKlJ1kAQpOKZcFzMjDDJIYrSn5ek+YSuXSryAQSe0eGoM6nI1cF37WvtoJVgmaGJBpvQGKgmEXhPNccIcrnN8dijKQSd1Piw5XXWdV5NOkbQS1Llih5gIsxhpf5kAoe+X4ofAarWs0DvgKvCtRWxURnbQmtrn+uavKlr2ArmCtOjcGwtcYkbPJXmgmAsOobrkBN5zxeK3BlgJXIBP/bX2JDA9a7daezZuvGy/41ft//l7V/W5IkyZUEQQZE1Mw9supM9xAtzcP+/2ct7cO+7GyfPpeqjHA3VRHBPjADopbVdCqHaKwoKjLczdRU5QIBGAxGmAIxjb0BynaJYdXa1kcwK2ZHbuf6gyggOjt8mgZc58kWG8/nwqoANlZmgLRbU4/C1v6+tEb3/47dBSjnN/YK2Royed83q5Z2Lff+7aq3TErUuFYAdAMu998ou4Mc5jw0NBoEsF32WKAr8Pa9/A7q56S4bJWJvg232B5rvt+j1e5FCkJTk20VM6aYhys/R6bu7UFrnMsiO8sqMtX5Bjjpfnb5JgMQ1yPluWm3699Lh9K+7BBfP7uNDjPUVtfIeQ7ZdcJv/K+lwyEUTFtAmVzFHUZtLE9bjt2pdoJ2fSzABq8+U5dg6R4Qmh863nk/9/WWoEgm5jMjS5F4rvOl6+ZQZCYyG3jUZkQGyrmcDNU+Xr/b9iHP3LvHkeu/IIy3NbMz7/edoZHR3g3b7wjsdZH3yZIu2dC8jmxrsTPrPuIf1n46b/mzAsFi1RpNe3pndm2gDjrfs2Br+1+A/Jq0rXH74lyXgdv6zFWlubH3j7y/Ig/fGxkpbUydOvxvyRRk1jb3KnC73drnGxRBzoHs4J4H+moBYV43O5UOkuelc7yVnr/vrdp16zZvtTje/hJop/NFc1Ym4L5W4n8xZrrxP1q9u3Evvkf5GppXfZHLz5jYPi3enj0/d/MT8j7LBu8zyXIs8owK1Nraum61UZiMFEBUZxn2OGTXOdQn9fm4DVSuZ9RMvX3Pfqwou5o6XPE2ITdfHhm4ATB/G+G7rc3/yjm6T4EJ8C3GZkT58bidwVvvzPZaua3PstH3j9UX4w8vnokB6tIli3oPW9T5kXs3f1Z3EfvCNaY6uyNubCTbK6NKzMqvjNstRs0DfZoda93P/NvsFtnvzZTmNry9Ny9skIB/3v8tzsvfG7DRXZ3FxfIExOrYbLk8i6DzJplc6QvskRMImmCv7VjO8rP8Qv5dC1LPnqwhg9ibGYPyYcwhNprOoHVb+rbvj7e79i+MJAjRDTVU3IduwNLa4Jzw+q1KF6e6X/Nz7egl6l4C1TVGqTy8MMeJr5+/43q9sMaF8K5nHFA2k/5wZxKZOqjbP8xFHtgseGhM9xm6T8wVQ3Zzy87UaeG0S6npVGdg7dWddMn/TZXC31lMIRs9scom0efMHWIsSUbq34mxWbuoljdfWXseWnO18QTa3qs7ZHfv9xjObypwOb9ATkVqiuWa3/srSg8s91Lalqwag2ebir1/l8ZkxlaByjG6vyJARqbWXaxFjWJRqfKKWRm2zJBAa49DrKt4JyH/F68/DTz13nmQqJX7XAFMroKprl1mXQfCQguCTq2LtUEstMCgr0vOqEFMlE057Y0aE0OU0GzlO85ZVD6uFcehLMAYyXcUXdGoo7OMWlNuLD9DqE1xBEiHvBlKiP7shn4orpisS05dr7l4IAWA4fk53lebKMdXZzHmH1qMM+vLoyJUr9vtLo4NxMUM84Q6tfSG5R3R+Gd5w+v10vhqIzTgioE1XvjR/gX98UC7QjoyFwUTzwutU48nO/rsLg69gvkU2X2tC6cZxYkj8HhQQ+l87ba4FRxrq0z2Q8c1lgKUbzHkokC61jni319faGb48eMDEQvnmgjV+Jtq16+T3TCIF7HMYswTY5z48dlxHA0//35izcDj+Cz22VwL1zwRjZt9qkXz8/EEBf+8DoErBsb1jWzJbF0gpeZ5YhGs6CatE4JdnPxVa6mZ4V9++5RRy6Dikp5H4PFBtHwGEGuos8oBt4N0VgOeD4Ea64KZ4zga28pOsrbct2bK94vdk9jyPQEe/8MBbgXUsu3zUIks2WjuVsJ2c4hZlebfDSHdiFDXOPd0KslS64/sGAS0SKeENiPBmo+PD4rqXQO9M/s+xER89oYIh42hLJBu3gIDAwu7HKe7Yy7gXDrcshWxM4PmUPkdAkdq0EjTaq3Aw5zaV8oET1sIh7qlBK4gozHWwl8Osv2Otvdla2RZJUKXmaZDa3WMF/JYzRLEmGzb643Z/XYcPAigYy91qhBiA4A6DYaicl/nCw7HtFYHRpX7SNsFi+y+cw5qgTDCfwNIyVbLQJvlW+W6OaneU9ozK/VmwPtoDbRXIHs1lrqWiemUrKipltksK0iHRCKbWpKVme/U3Xh9fUnPqRUNOrm+UyzT1EEZCara7nZW7JFxisXKzGlr0odbE9eaGJfhUmaIHL4sa7mBI7KFMOqJGVCA35gDrXeydJrBj8yiL7y+vwEAz+cT7BxzIsKB1ZQBbJgqwJ9zIsXwCczscgUyk7zAlAiyUVqkCDW7LpK1pdmTQ7+w6JAG2ZszFrDIQBr5fOUTy/5ZYHwPJgx8r60VIfFjnrPXCMAGXq9vZjad2hCfzx+yHQtjXBhj4vFgtvP7+1XAEq/L8rveO1IPjbbRClzrx5PrVewDOqh81gEx2/TyfqSPThu3FFZZINv6bqfvDqbeQZkEPvdzb7cNlY9S4q9sY2rxteZyakNNURau84sZz4ONMLLM1+GI8Q7+3oPlZK9k1z36zFEMLWDvW2jNTumPRQLVltpWqRe1YHbR99IQNGegtyCm3lwFjJrKNfwG8o2YuLJLrf5/h5k1UrINus/Kr3HwmuVuArIIgMmRvJaMgwK7ABM1+5VAgpXzvP31DbnSVxBTLF2tJZhlESjdwsm2gz+V2QyV7q85a26a/NNaD0jWJNeM6xmx2E0R2pM1rdhgY8ZngFXmOtklgJx+jXAABSQmGL1i1ji5PXC0AzHPsruwwLJkigXYACaDBwW/ASTT/+i7yUdedykoGld+p1gw7UFbCGoTrljwB5mU3lox9pbszTXo49hx0xoUSF12yJpKxjPpwvtbGV1B50XpxGnOjecRsrQMgeOxk0IJZNzF2KnRmE1gvKo4GLRErddDZfRe58fa0gSrFhUYgHmVQud3k+CpJJuJPZvzGpkG11dX5khrSOxjMhQOxj5iKsa6NpiTzyQbcPghhptOewWvyRRGUCturQvHkx11RwQwJ8ZaYl0eWEOgl/YFE8C0xw7fnT9Bfy7F5d1Tg8zZ3Vcl+CYWVvhmeJhR/2t3F6T23RLrtVE9G3NSN6wbY0cXI2SCmjQrAm3SB0y7f2cwuhijjwc7/75e3yAjbdVe9BiwYBlYjlv+aY36Pl5rk2V1/DxYZk0iEWOTLLYBkF2BXQ2UrDdiN+vW4TRBm97YqMIzTgS7PHvKJzSwzeDEuE6kHIS70UftBvMDlGpd+Pnzhe/vk35bP/D4eOJxHLDmePgT9nxgvF6IOTBjUt5jDbx+/sT/+D//f/j5979hzhPjpO93YMKw0G2i9YbHjwfjoEb7EggcT/rFQ2viNU9YsPR2YmHaxLTsfnbJDl1g4ddjs/Fbdplkt+zrou6d9y5G9BSjiN2bZzDZOtfC2G5UgX30jwLnHLTPIe0pf8CtS09NHXX9A+xen77W0DlBDqWZwbrOC8ENJEDlWZAWi+tjKRE6hth4TSVw3hhrXer+PYOsvwgy3QV608RsP2Bd2fSglw2jXzpxPA48H51+7rholxGI+Y21JiYGJjqZYUFGIBq7hj4/f+C6BhtvpUM1BnyRxRUATG29p9h+Fq77DsRki/d1XWWz/9nrz5fagcaZgs57UKjFkwdtI6sjGkxZtSYkL4ONdAjuGTEIZa7uLdnuO5IhImcwHTWoPjPW1v9Ig6MAZ+bm1mFeHgYSQCwPvG4mgsGklpICVx7WS21LeRkFfPzU1vCpoFB8beQ9RFH+0qHjeErEV4YVyuo3OeGZ/Rhr4ngeeP74wLLAwCyHeNwYLHNMjAn8/PkL/RyYU6DD0HHkHLMxFmbqWwksGAkECoRAJJMFGGdmNhQsjH2Yp6HMbia5cDMrnmPDZ1fdvxTzkymTmW4mzU2Oc25AMmSaWCmmdthNLb7nvBClPTBFhRbVMTrbj3o6qkszFkhVOOrn4AagKWgxjX8Esk0ty0IScOOztsykrE3PjpujiQzUawkSxCxGoAdF6LKe++agwjkfFnudpg4LkDXSOeZcwPUs2jsmAA1QdityHtgUxd3UaVmgmwVgycaRI1wMDH4mQF/WRZ11OeZzAX5bNxFe2lIwAlxuym6l0Lpqo3vPrjOryg3Z+Y/MMxMgZcaSG+/ULErqfOighxzO1u8ZXYN7iKZMVpnB0s+jWORa1REq90GuT2j0LIOhmgeyObPduekQZtmZI1aDYeHmZZfzX9cBgZMMuEzrmAPIzjNYUeyU3Ou7jbLQ7wy+1uShuwx+8IAiWyiQQXy29vU83LRmmM1qcgpHAaimNVd2N68Xq9bFThvw53NlqaKCaKvtsIMwzPL576+aR9ns/P50XDMmSYZXphzdPbuG3+6mhodOhN4bC/U5wFTakeMvFo1MV9bNwxuZZwoS2JlUGTZp/TSVkMacbGF8Y8lhsmxxKnhhIyijvdKfyHNh6abNgQkMgU6xcmzj9nz839R5aNKSWGtxvNYuj7AEkxRcmAWu7K7Tcqy5N7N0bGMM0jpCAkX+xkhNEBxIBz6/1N7XX5YqaE0k+yKgTNstsGL3JQa7uTk3a0GZuPpnAnZW9nTFVACqb7F0/nJbrtv6205esTxls3O95WCU+5Brq2bh7k/cggyQwQsBtVYsUAmB5tqXXS2gFskch7q1yR+JBLC4B7O7Uu4/MqCi9CqKUYl9fhTEIQ25+mlsws/+7xs7Bvtv5Ce1Z6zmNHYwf5ut+w+iogTsOUQyl2/rJ3h20H66nj+5pPqMgeNrZUo36eFGUbMgS2jZ+zxqmJBGuPTnNO9yt9/G774O76+QWcnHy/upbHW+PwGnOmPsdq33a+7f5fpiAniEghcxIK3kBHTf8jN68/oa2jPZODHhI27Z6vRTqhPiKn80X+5RP7PbLeaZkRo2zYEUDk+dyJy0LOXbT2tIhuqaZIwyCSBfe0Wt+XtnPMcOwnNC50jWut/We85p7pXtN+XUWM6rZB42QHy7Z71zg0C8J4onQjY4VBKoMQvs9XPfGjxgkGUsSMaFbF924wNQ7LH7+ogE3FfOkfye21qtkuwlnyPNeulAodYL5z1BMp3ttr9v1Xm7n618PD1jtw40jV3tFdl7rWOXPVyTlRSVQAuVFjYAWgNM2iVjSWLqNXhpJ8Vcyo0XkiaAYc2cg44sx09UOoK+QOqtptla8rnqjMk/gRrPnFF22+ZZn/7EEMBEPWBDKNGfAGTuEVF636Y1wU7kGWl3xrySbeD4zjnRjwfBRFcjnckSv3FNeOdY8JlQ62/OQEx2+3ZvWDCcY+Dvv//CNYNJQflulJshsNuOBj+cPm+nrwIAxaGpygHO64IjLHVqL8Z+WtNN5WX0rOXHOm2zmZWvlaSGFOvXF7JKZUIxIwHglUsD+29EIKaJnXRnsydorXhWtUqRSY0UPA8ygbbeIADnuZvSJpUETxMfELsLtU4SmbRdiI0NFac9USzgJiYtL+YWu7xcrKolKYlQZRZldTT2zhhlsI6Q8VJnYt66SY9aRS2twebEVMd32upJRhrSNmmXUTcFhgPp013jwgrgeHxUwu+fvf488BS60cFW8Ai1bPROVEwsFYLDhiyzCoS4TmJZ6KBK4o+wQQCh7mJeiQgXzd4aAGX28rAb6Xyng3QzBituHWIAHlzpaNzMyP3hgqYL83ohoJbUtrPmY4y6XmuuwFh+pIJABlqu1rBc0LWIZzKLUnAVSAG8pi4Oa5KB1dpB59gc53rhmgPP3z7w1//9r5iN12QNd5b1GTwc13VhzQvn9R/o7cBvf/kXPvOpNqdOA8smlh+ApabMwtfXL86VgqXWtmN8vmgIE5wCpt63M0KXxmfGKoeCToumwKm91FvDz5/M0B0KjJMSGnEHoTgnz+dT32UcT4xdshYD58WuE6RAdsAakvFg9sDqgdmYAcTawQszk15aCC6AJ5CAjgFBtkxm+FtvAl5JOTVLZ8cwzqFDiKYkA4younlVitACFZDJ7DyA7mSGyaFmC+x0jLT/2M5N19it0SsIDaHTN6+7KaMJD/gMTGOnqN44pmab8ec69AIyLsbOV2kaAaAfzB4hs71utVZSf66XDgCBp6ZMJ5ytbJuDRjiPFQPas9OBiknNqJ6BbW5RDoI14HBD64Z2GMY1cc1LSHywz4MbusSYsaDuTQZXJrc1Z4cxAzNxYvtYgRHBILzfjKjYKm6B5SG7NOG20B5yTCdFDxEDsRxh7GjnWruAMrBmaJ2HNRkLPBySFZh5LsxGBkSQJZAaegBwJmtTZWEMJshoizCgOdx66cPkDK5gzbq1hp4dKDJb0wyPgzZhrhsTxWg5c+9c1wb7KpNt4B4rcJp6XH5UhC97sBkcdzZMBve4/dOV5c7yzQgyefI9zESzRbOb9OHATNUCgcZABhUhhpDtfwefy9zQvPOyi8Bz3O4lRHcxdeZZy8RK4Z5kkEEQrfcnz6kwdddxPI+DTul1YsyJX7++ASzpt0knsB1w6xhjYsxVWVVXADyg0mdpKayVjJ3QdgyMoB203lQeHUreSJsvUMFbedkWuC4CT+ymSgAyoO6MJidI/hDsoOYU66UxJzPA1zXQxWaCbFHO3Z05EFqDqrkrBkkoaBvXEPgFMZ8bG26EZVzHMtXalzuoL3CWi1EB5CxHEODvabNTx+jmQygITOfL2g5auU0ULSpotVDyq6zjzqQDYg8GqOcQKdrJG35kJh1QULWnk74SWW2W509r6MeBwCpmIRMXkBPfa38vMaCamLDs9oiyZ9kkrsLxAg+sQJJaJ0jL5bXX9SnsDSuNy25yEmnHN6B387aq1CsBvxvApLfSLsi25WfiBk5itzaHQckR/QMZYGUAispOV4m3EnvlB0aI/QdkeUwKnNf5mrYCVvqIK9L72mvkvpYMNciom72VZln0P/w+baTV2yvRoLHgqmUgNEdUd0QA5bN6ZvqlWTmDYrL7/Liv6SnG5+5+BjGnez9oL9/Km/lZspBvz+e3cQoIDGpofqgXPHDOs8Yb2EH0fXTSRo3rRO8HjuNT9xkFsoxxbqYNILCNtie7EL7OE2MMfD4/q8lBJgYLjMklYrylXYKuiXgDegRuKfkI6Py5sRGZ2JQ/FEpCIFf/7bryn5bYBAjI1mxQ372jZ7flmy7V2/2ZZDFUoVAsQstAXXPVqJs6F2OcvESCaHnNZNdSj4vjjZojPskU895c2ozN2W3YCK4YDEc7kMXhUzGBvgBDB2uDNCfHAqwpQQJVLhxwkA3Ls1EdY9cCTB34BO4lk6pKp2PvfwsHzDFH+vN8BmddENc+4qavtOd7Bf3BFfSrdhn5ZihG0E57p+/ROnUEVyyc82JSBhOYQFvrbd3BUtrjVqp2+242AFJCwbWF8kyKAGT/FwI/+m/48dtfCDwtYAxgXIHX60Kfgc8n/dyZVXsROE+u298+P+HumHB8vQb+57//DddcOJ4fnPcIXF8X3AOfH5/0ER4N3ttmIcauVKGpXlgYirkbll9YfmHEC3MN9GCTLDKfG2Yw1rCMnQCxIBuWwNjU6Uqm3JwT8wKuC5jTFTM94EiuGdezQRIVg7bKjoRl0/ecMGODn2TyZFUWJFBeHTyd9jLjZGDL0BRQ3rR3ci0ZdvWB9zo3k+9ikSUktDfZJa8a5JiJmBDYZy6xhbFO+c2OBXYUn7o/xoqQdi79+uOjo390mMoup+S5/WjAbLjGV9mFMQdGDHRr8u8F+M8Xn6Pz7FoBfL9eWHHhr+1D1R///PXngae1QZJYjkjTcqtDzgyBZ1raFuziBj56Z8Apx4zUNZB1EJBB04RUiQgK9LE8OOkVaFPssqCsqdYvuJiEBE7VxtYxJ6DH1wTcixGVG80gn0c/n4PBbRqIROZt8dn6Mhp9B8xi61IAygoEae0wsJOeng1dBlCGUQszzDEiEPMCOvDoB/wArAWOp8MtMF4MDLsdiCX68gJsGc7vC5dJWFMGjp4hEeYIw8CFhYnjODj+yzQPC3MCzUm/ZRvpmwMIZrfdd/vXqJIng3kgTD/HHq81F3p/wttBB1UAXf1Ph21qzMzU8qk6e2X1Fx1S9wfmuBCx8Pj44NwuA4wsCDMHPLuJGJp9oDXkLKAf+k5IY2hlAKGMCwxjci00V0CGDEhJx2ard2UXu0qBpgLQdpAK7IFHe8hU7GCytw57gH/rOuZGCiTvgs7U44DNBV+91iPSME4KtbfeKuBw7Z0CvFT+6jCEu4TAE1Dlvkkp034IxRaABRMoY9LaossPgxW4ZBYUwAOf1WXkOO9LrvYEbAKeLDcU+JCgVfNG8o4o1DEGWWHAm5PJKEt2A9LBahnAcpTjFqg4oMgpkJ0xYiVPVuw6xm949E7hvKb1e06gd4I+Qfs2Uj3fUR72UkcfC9bfH1oLgYVKeMYGXgA69zlne0IzUlKwoSwZHXJ6VMXwSF0G8NDsLYUzVZ7bpF02Aq/zBQDc6yDEXvwMBQ9LGcOM7ufUMyUMprHi2hBgmveJ1BMijXm72qLbB5CdLdNGy1XfXjDu7YyXAvYMbEyZLgIK1bRgUuuNa4aCz27GThzITHAG7lz7hzTeou17SHAkA6IFkBmkqCSUJV4rgSDHGtpvOpOOzrKq8xwC6S+03tCjszFCBC4xnrJdsjdnidq10DvQWkg4e0mwFeWsNkOxNosgJ4FKBn1G9pRsPrs9htah9r8pyIgAxOK0UOtpJRLS1u5XMh12aSCQSlLKBovpkvOtXQvv996I3CvhwBJACUSVVO9SIWa/e5P4brAcgx3wWq2dtFPprqefaIpe/d5VFVHX5pK6AxQ34MB2/pOlOhuIIaBLBgmz250XuAVn7qmjoV2WoJZ8Dwqv5lHsuodVM1RAT96YWEx+YxRwiy9dwyqrWvOisjK3VqU+K/L8tNs+EyPdk9nC61dJUdqiGiH9L7vh5mYuJgOQzDUokKfPlXtY77dkppt8v73e0o+MZcr40hZxSbv8l9DQZAAqV/wuLhG0imVONYkRBI2aZCNiSRMPgLISSHApmSYGMrSXQA/cgsRqv212A2cil5K0BwGPpjUgZllA5dsu9kv6rrKnNc+5vwDMPD8YaASSGSdgETne0LOmreZ+Qmsq3cngfO3nbBLzl62fkwEzU5QCTG3DD0jfnZNVs5dMnghIJiJjBD3P0r6PPYbpewFcr4YEhzuB7OYSNh/aOwL+3OrMDATGGohTnrTGvnlDNqFJvzJyLaRPnHvRcu9g27W4LcpcV3OzfRFidpn2dR3dXOdL/k8OSq57EZJrbUPr7I/g11QpYSaOWhe4LIZbADiOB3oP2RyKefM98qFVHubO+zzagWuw1On5OBS3ETGIyXjJkGzKXC4EWXnuNgWcqn4JJsyaGw5jU5oxR63B1tkB+LxOXkNgxZVi5sbkYkzqWHpn2dsCEEfHgkEtecj4IEV9z71YjjejpDNamj2yfzy/dZY2E2gsX0iJCkT6AbJWbpVs0E7iktAczRHaCx2YU2fHEoB3wKyRIIGMWwh6ufypYpBqrDJ+XrFgjUAWfQEync2AQ4C468wc10lb543jtgKv7y9c54nn48DxeODj+eTynRucm9qnAyyZ+nr9xH/++omf378oVo30txf680Bvho/PH7DuQKdtXvBaJ8yzZ9WHAV1WIZgs9sZEIm1SwwrHGEq+hiG7UaYel3kn4yl4xGYsZkDJ/ZA4IMH8sndQhUj+rSSDKissvOwIz7upclfKjCyT/lL5PXwtLcqQzTAlHrN5D3XnHGxUJmNhaYt4vTFIrOBCcZ0Hq9YhsOhXmBK2DvoA2CDy9n3S0Okc9VAH4PspBnhj/McxXLgmZ3YZ5XbGmBgLWHD0x5NragyYN+rvGse6dQLjx/FJNrYdTAh2AMOA5VirY4w/Byn9eXHxyCC8Kxj0CuToeMWmSIPADyxYR7yYffZG3aI8Y02lOshFo4xBbIsPgJpMLK/qSOAJiUijkojv95tpF2Bnc+Rsw5k3ygNgASVmZisnVYeIjM+1Lgbt5jtwHUE2Qnjp7wQWUuQWENopZwwAUrCZByCfRT04VI/NoGHFxDUHHofjeHSWDrVAf/CxqJHjaMYuXjEBIyRL5tPiQZ+smXCy0wh8NZxr6HtpnOfcgaXZxHTgCEMLpyOYVNcIOWIoAGHFRH90tYhPR+AsQGHFkB6Fo4WRcZhO2+3Ze+8MuFSKF7d5AaC68UCVJoIByePxgHvD+Tp3bbnR+V6L2bKjH2yZGsrK9F7BwBgXIi6kTka2okwV9eat9rhpYfTOjFTVg/eNxPfGwzYFe/uDh/XX+a294erw18QGbCq3IOU0IIdENdrWAp4DHhrzm4bO0Y9d1gj+bKkPZgpx5tWt0SF053NTC4SBY+9kfSS4wGCxIcxgljoHKjtsCeFxfy7pGLk7ng8Cu3NkR0ka1UAyFkFWylpwHTCtdazgfMw51eUS5VDvfa1DQ5RSyI6oYLL2HXKduCO74xXtuzQMyoyrW09HqL78/H5hCFhoRqd6riW9ocxOCkQvgI1Oc3PpIESgKKqyUbFCdM8dGGV0e8+SIKAWpnq2CO6LdExzSCKqSwoz+Y3MBmdHoLEmzot7sR+9viPupacmJpYc56IOBzNDoYBgO8W3AMxQTlwGAZtLoHWUC7qibmNteAVq6epLfyWZI8B+ToHBpmy8e6MDOLU+VqD7Q/TtBGgSeMrSKXZfdHeW4ELaTpZHitbPyiAkKTb6K4GNkD7FmOhH6q6xk8j3N2vqrzHRgxnTU9n3KeD5kM5ZA8HtX98njgPonaBUgmU5V25OUfy4jVnUskEmBCJUqjcBAhnQ3rV6X4FAadEtQYobGBKj1kIFnPV3Ojc51yabBq1zZdwsmBUFOwBGMqd0uwmA0T4xuRMhW+up85D6DQxSWNKq8yz3E+SbxB8SULqnBJ5yzPbLav0bbgzd2/ikL5LsvLRDpuxzIIEsKKC0vZYQsLWwjFoV7EpplcBIHyDBLPpAG+BNEWVYgiDykzTxGbRkhjjBqkiQS2zLPXdpobABMf0smRZppbfl3W6Lw6VPcwOeIseRbyy5GqDAE9TasNvv68ZyBm8/Nkg0BYENNEaVpeU1+74Pe5tYrXVUQJf2kvPAhFTqYvFooG01S2YB5OumHxCALfqy+ZWm9ta6bTJJNrM0y6Uq+BDCwFI/WryyL8Vb3zntVY9gOgs0hjVO8jnNBLJFnTmVhCk/VmVRTl3RtLPpf7FUSOsjDOe46E9oPXJB7wQg0g96m+c9r7SVkW46bUQEGcGImy2xKhv2ZerUTWCmq/Nuc8MYgTkuWG/7TA+OUmABYoiOceHoBKxYosUbzHKYYvasKMAyAVWYkqYJ3uUhfItDKAGR6yk77ADw3HM57F7v55mfXXRNEh25l2+7TPYrtcsACChbFdAfJeS+yr/v0gSc8l+9bcbyCmpxmVHO4TgOtOY4zxciQuNkWMbxW2OLCe+NJAbOWmTIu1XCbKafvhaWO3V+VHadbOSPTvBwvphAOBRYX0qqwRsrTWbUvGWJtzeWeuZJuAC0ZbAl25C+DNI15ppP1paZl6ZYLCUYPRmPwRKt3D/GBeGty2cNgVby4RL0AoidLhEixHKZS3ZVb/MmPddxIrupApA2sTTIBHaVnXojLNjuoKcz0A3A0bcPvBZBOzhgfO9YC6/XF65r4PnoeDwPPB4HuxaOq56BcZFhmuOaA//x6xf+9vWLXe+sgdldnvf9oJbu8+MDcGPndqNtWqkVmfGa/A2uQyZmzEECQXPY4rUXTS7PnAQ7zdAF4BCpUjy8CFCl1ESCdBDQk/OZG6f8RkuGqNXvPAx3oiZtA6eYCXirs9HbQ9/ne6+6EmPq6boUTzI5lODTtm9pPlMfO7s/8xx1mACvpNw270xWNKsEOwK7bPzunbgnGZg+/D2kkG2jhlWouoIdbQ3UXDvHIhi1pFV3PLDiIivt6GjdMcapKg0mYvrR5Gs1Plhr+mLDWh2b0ftfv/488ARmx/rHgTlI1ZuDtP/WHnBrFWSFsvBm6iTVDR/PTzz7gfP1hbUmxrrQzPFoT1ATaclwE0Ff2OK1IaOylOmjsYydRDfGcivUytOhjIftsol0MCAXy6CDWBkXGZ60Z9eSwC8aZlxka/TO4Dzo7Kbj3sRWQTMyhiI3YsDRC8XlQsW+6Tqo8xCX2xtkkHABBnpfaDbQ7ELMC8sCbifR22HAFAstmLl0TK4JVUWNWERoWwdwwNBh84RhYNo3g9LnXrFp7HImA5kdaIAH+pHtw1NjS3oxzgPPHPj46AUmXRcFyY9HU/B71cEHkF67MHGO2l1QXL/1ghT1mau15DK4/YD3QCyq+bt3GYZWfzAP+HIcmTUWMj9ecztd/oGPxyfGPDFjoqdIvmcbcAJqsEDrpP0+DpYAnoOtXhm7SEzS2z7gbgFG8wPZjTHLQkiTpldsZvj48QMGwzlZuvjr+1uOY7bnZGYKCziOJ5o7uhN8HCtwHBQ/fl0nAcLJPdOOYxtbyBDKUDz6swLq3OvcZxtGIEAaOMdJP6kx0GqgE7gWGXINhrguXioziGI4rDVUpxxsqRqtAqqv719orbOcxCia6aJwjzHLoeA6nBRLnkNMjaZyVZRhBxg4PPrBoH+N0t9J5zEYC3Nd6UBKh795Mv2UVVvKxnpjQOgpTr8PPA5iBnL0uue8ZMOS1eilY4YARfoEJrgy4GvwAMySm2yuQOYgnTprDc2kFTYXzm/VewezOtEc53UKCKUGwePoAi0HYk2c398CVR1rDAJuepbUZguxVd3bBvWQpTUuAIbMrgQaAIh2znVTDjUjC6TGU5ODyPLsqCDLkEHUKseg7EIyOZqjtwM4Gq5BYPtSmdoaDAQOfzCI9QZbhilgyWwinI7xNS4UGJYO4FiIGSy/CxfbRdMcA8CJ7Mpm/mIA2CjU/jpPZBLlWoBPliaS0ctneH29YLjQXpNlaufEiMARydbb7EgmdNZungEIdAfS19rOxgKWoVpCw2CNOyYBC5aGybHJAEMXS8BpqU13tt4eQ6VPQCUyxhAoLxvOrql0oEytsqfAzCV0hu+V17cyU8prM2fBs9Rv95WA/1vnTAEQZHvo2TwD+XV7Jjr4wGYW3rdrsmqPrBgAquwoYuJd3JpM4xWBmMHSajZazZXLrqnG1saBZHYZde9MGhQC+l36bqnlQVAV2nsskzwySElfbhUXYMfEuQBsr4mc1zXLenMeZpaL9A0GAQL5FcTJLyotG7EhbBVfB28bMldPQCU1gq9qvby9DTvcfg/oaXPz0KcdXRVc1ghrq25/ibcTYgRwfawEEhIIiGR40TfzJbsJZokNUKkT4LI51xhYzoSQ5/5WeWrMhbuWUo2k2f1RtaAqfv8nLzo9lk8aOwi9gztVRgXTWpoFpmeCwDwZOyp5FOslEPUMpoToGNqzgEDgW3mzGEv5swScEVCzAl3LNHcFCvOG51R8sHjOp793L6/OskWeb6mDAwbSa+Dr6ycTB4hbiXHoKJV8x5Nivdd5ItmwcXBNtHCtCV33bkcyQNTDVQmvOXU56VUimQ9eu2mvuyWhlNTJzLk0yP7pLEtJh3r+yIWh8zY1yyLtnZftu5fCsQJk3uyYOo2lv4ssa+Ye89YRi80f3EjtPrzT5uoLY6zqSJWA3zXY2CVZdMl0GmoyQHDFtxwEDKcaRUR3lWCzGclCYBwN0w3XGnV/JrblQlRcZEgwPZA5+zrjFB+2IMEBCrjppyYDbSGygkAizCF7NMdQRNaV+ByIpiQatHyb1iKACAqvuyfgxjnrjRIGhz1qf4TiSxbDmLqhG472ABCYPhHqxo30Q9REi41/QpUjhu5d5AigO5OJY8zNMisb7DgeD5akAbgmO4W/Xj8xxsCPHz/gfmGtLwDU/aG2U2AG2YzeHeOa+B//+q/4/fe/w7Hq92GqYPh44OiNQFvraO0Bgys2JNN9zF8IzAKE713tjv6BH58GmwdGm8Ckj7JAe2tKTqb+UzhlY2CG0eQjll0CsvMb/bKB5rRh2TigCbAEaOcjtn2HztuYVrG/hICKcMCTrsHtwbmClW5WPzKGcADyEyw0B4FYAylt0CWrswafr3vnWgwK9ZuxQobMW2lI675XghvywRmriD6g45PAvsTFu0gxIXbT9wVzw4+/fFAT1w3Px4HenwDoC18TuEbgAvV5rxeF4c0byRBwjCUd05lJCAK5Yww4DiXTDhIHZih2+eev/0vAU04qafqipkWg22bWoLJp+pyMS+tkLNllzChnCQbS7zfsSyR1eGcZYfy3cu9C3dNJ0Vt0eAG3LCFY2wq937RhDQRKKmOeRf6WB4Hop0tGzeise7NSoKd7BPQ0kNhu0oKyJ+k487HLVzQEs9HY50/c/wHRFj1FoOmKQc6dqVuerUnNBlBomZG9HEzVeUIZHnIAHYmuRSxMjHL4U+gZizXGWzdhH/apIZBZhCbARX4ha0yD3ZlcLTdXONpUtvfGYEo2WGBKGkKC34UY7z9b9iCZNol2A0KT6DCYlSAl3ODRENGqzCEEdKyZBxeBqt66mBMm5JqBcWADHkjQKMGl5qQZ3rxNb6kjsLsDjZlt3rczkb+LNUAFF8AjqJFizgajN4HAJmO2BWIhwIUGM8AS16ZnSbHfKttQVh94d0CB7KRl2jscXpeTT+cKcOiwr70tvpipzh0bKCk6PfYfZJQMlscmHRqR5TRDtuIJE8jolkzCnF6Xg5GCqgs9gU+V6VYIJWC4uavD5fvaRe7BsCqHM9kHjqXtRy2btuv7MzdteQrwtyhvKOO9VWddOWhpV/brLTJDaXzkVU2HDScUsZbEsLk3YxFchp4x6C8LHFm0vQJeI8F4ASeedjAza9JtAu7Uf9z+nctoM2lo13hdiNaewqMRu1ypMsB3oE52v8awTt50rNOi7lW3wVBRnMVamrfAkC2GE1FoFTDNoC0PZ2AxqkON1fetsUj9l/M3rtSrEYuogMsMkqzKIK4xb/casOB3sCSDq+YaBBCasrFjLdhy2Mw5LRgOCRqtNZA09qh9RrufmVYg92tsBq/OoGJ9QDmpPK+M34bYz6QL174NlQuYAkJ+TzJsyjDLriwygG80fD7LtuuRoUXag2SD+N4itRmQzCX8wzpwY7Y+1ycSlKr3oP59DxprK/3DFlR2VcEkAu9Bao5JEBz2m42rSwiYijwv839a6yEA2d6+/PZyFGs314AngqLr543kf+4hS2fV6q2UPuC/MxhtLb0o/llyTHIYYbYlAhKUSFCDM3IbsmTTbUHzPaZl+fOowS2VUbb6bYfbjaGXAxv7GpvFlXO7dWtqHm7gDM1t1MNx3rWnbA9eaqk56IRTb9O2Bqf9wQ5nic/bd+b83O5bBjNqOGogajFtm5oPHfV5pP+TOTnZEDN7K29JIOk27ASiVqDamd98c2+uYDc28GcuvnV+7/va36lbFIsoXaP/1St9jzx3d4e+t4GjXza1CtJ3kC7cdaXoiWwbsO0ExAhsjf5ADl+tX1BDBdi2rfy3W2a+zurQ2OxpNGCX7mD7rrBUEIy36eJnbuWn+bv0PTWfWGnj+feSHxGxx+s+l0DGKTtpVuBT+Za57/eZbUqup91ZiOr8nIYwpLGatqa50629zaubiamabESUz5VPPVWxQhkBo/gzdJqJnUF9yJB/tvcUBalz9WvP3M6onNsc81ruN5vCeHTCIyFDJfyk6YRKoGtMkmlYE6zZsACc47JiAOyLXmuTREyX32g1h1naDiQ7Ov15zjPdEzo2NeJmtb5ybVSVjM6+Emyu8xnFWMwu0UCCIxNjXlhrqLxyIdZVqzMqpo7yv+Zc+P33v+P1/aWy5HWzTztuW4taud7JWjJzLBVGGqRtdDtHuU24P4/jgesIgm96BiZq2Nk94/m0U9mAZIHVU4kN3IEnNu+QRlMsIMhAS98942wAVRFhuT/kX8ZMHy7PNYOhCfhzrRVDlpQCrBqqxZqb1NL3EkZhWYbtspVa62Ziku4ECrR2SeTA+6LP+3w7EOX/AIUz1H6XDR9jVsKriZXX+0HdPjH6x1oYqiKakWwonfW2mWEmJmwg7z8wZqDpDdRYbczJVrz5X7/+NPDUu+uQCFBEYyDRzhmkLjMoWxjjxRGzhRWOGY7uCzFfsJhoHio7WDivX4AMh1uDt4ZT9b8BHjKPJxHlKcFKh2HMi8GqAurmyRyY8HAKk2uecsJjzFovXF4NCxMjphBQ4NGF4ieVFgZvQUHjtmA+JLBOg7DCcAYnucG4SXyhZ8mhOq69HYparKbDu+kZ5uDE96PDsIAF/PW3D/y3/+0D//LxwI/uWJNjW6VOKnHq7vj6+0/8/vXCQADuhGisw54PREAdUOj8DpxYcWEMLtw1Fro3fH58KNueWZpsw6xMugPu3BFzsha0NS8x7DGvMsLzGmSgpQGGutCl8Kg61D2eHxhj4Pv7RcM4dzZlrBSbTYojM1q9P3LbISbZGjGoE9Yf6mwYKcZL1N2dmRwzw1/+SmYRwjDnhfP8Rj8a/PGE2eCazFR4zRmKQpxO1dGPypDm+xKEbf1Q9uhbYNxDlaJZ7sbs0loH0eYIXCHNj0aa5EcrLwv92LoHiGBvhADWGOCuHxqTB8wHeCzw6N8Miu3QWGtwGI7HB8yA71+/6BAY2SvP/sB5XVhzINvydktx8Q5vDY/e8ewfwCdwDbKsBOsiu6MsBI52qDQxNURonHcr6VvpLjLogeR+mub1kH6Ocw0GkGVR1Fkiw9KwWXtrXHAsHN2531ZU2fBCBrWGa164XqOaEnw+nywTHRTrnjfnAFNMTJVDde9vgUnuKWb2gARj0s4FpEOGDMb5LBk8GOjYv8aJ7g7Hg+VW1YY+ry8Wma5HceeDXSq8IXxihopjRuDr918w4xiFOcKlORCBw4waYO1AdiyjM0gOJQ9fPd9iC140BWlIFk7DmIMlAJ3ZQDWnRDMvyn52+zk6mwDMcXGuFCSzTyrXRYAecJY1zXFiLtaqZ+Daj86Mi9bC9UVG5ZedRBfmQrJxs/zlmi+GrNIHW9iB1rwoFvlwHrrzmnLyHnxPtms3x/d5YozJDKJpXJHODW0T6aeOZI7SVjoexwMrAsdkxusc30jwhIL4+QrAF1JDoCBRsbS2+5IMkbVBviHmrgBrnteBa2QSJnCI2ZFdoiqEEnuQZXiNdHkxiBO33swBnv1LQZ/dgow76LJi7gQDHOfJuXo8ntxawX+fa9V20/EjbRKBKe4wrR8GQnREN9AEJVCussm5u+i5oALhUEIAZgoIgRQNdz8qGAMIarLkRp0n5dS5STspUEmMMdl++jiOCvLHnIi5ag30dJIzqNdQssxjKrBTsAyrtZXi8cl2cXUg8lx7ITH6pTkBmMk0NjllfJHMiaiucdkVqOk6Y040NHRLYOa24ARTbKgVOlu0BjTOQh/11waV0kamHiRBgQSH62l5eqkUzsJQCTLsQAVr7bJSkwZpxmsIseCBhUnbkc9JJwmt04I5a0gQSuzlPXL/Sz9nztLc2w8thrP7BpxCQVKK//hmQGeYQ9CBKq+u52EwwZvv2RFO5VwtE3fGTpdz7v16nietQEtAhvPQC2Sh7pqB7KO1llgqeQmuAb/pNxZYlgw27bdmLOFINt68Cf6zGcyWIcjAmV2TtM/0au7IDrJ59geYwCuhfN1bsYTFJs8VkGcr7frEilcBIiMG7cCcoDh4B5rzjKx1mUF52rNkFtQCenu2BK6SPZuWhU2XtjVe8GLCJ5Ail5MxR0ph5HMsJkRbo3BzsjwzsJzFWNTv0Op3a3COyu+YlE74+PjEHEPVKZQ3+Hg+YW64zq/SEOqtS7LCNS8sec5E3IaIb7Cx4pcE+chs5dgt7cNLtqr3jsMcrR/ar0NMj0AzKwmTwMJD52x+YzjHgOyVS/sF8se1bJsR1JhXaTmZPRDNxXILHA+CGOYXDEOxWYLCjBEvdQAXnH179mSB52IIXPO8AXxN8SuT+6/XSXBoitnV6CN5f8guT6wxyj5mObe7AY0lTtf35H6tZH0SB/iZ43Hgx+cnPj8+8WwHfl2/4/r6hWYB74bHo2nvkYW9NEcrgN8+P8iQOwe+/uNv+P/8v/7f+PX77/j++gU/Dng/8OPHk6wdLKwYGDPQaYTp/3grmz69q/xuISkZCa5Yf2Baw3cbgE9cQTvQng84KByeUhQs4VwF0kJ+5wx1CfaGc5wY14Xz+3dc5wlgwRE42oQ7ZU/mCjU7os8f3mFIZrqaU6jej/tS3YlNiejq+s65djfYYTi6Gl35RGDCnZ3vBhiDsCSywaPhYUlQmFWamQATWXGGhQthE95YqeWW/m4kckY9YfPs0YBZNmZXgCEuzHPi+fGJ1g6cWr/z/Aa6o1vHx/GB//7ffmNX+znxH//xb/j1/YXXeLFSpA305nj2jvF64fW68HhSl3ktVuC8Ts7d4WTtRHyTvdgmjudR/tc/e/15cfESsZycTJUeJc0xcHMAK12dGxgCGwzZPLGoknLweIDsshPYHd+jU0bE3hBGQIEZjFXooIVEQS2JPmk0fN9XPY8XGygg50CuAC+WqK8cLi0I3kt+dy8wAgBclCXTuNyvU+ZLhxAXDBeHJ4BwW/hEZCeO5vjx8cChTlz3bCqMdH73xQy+TYSPEl6DB6ylWk+24dYhiYmwTZdewQ4PS8ERLDMIbxOhV9Rz1nDaLifILFAelk2lPvdMV/4nfXcdFA5mmiVSXa1okawjS19fZRCcD5eTMLPExLcz4U7nyJ30eHNSK1uTmy7DJr8QvWVnva1FcM+OkRS36rDIgMXqPuV0u9dzucqyMkiy1PjJcXPfnZ8k4pgX9Ow8Jt+V864adG6gWm/mE7Ch52GpiMtw7rWf9Pl0IHLf7qUPpGZBUk+t7rcorzcnK5lPU1mhZEtZ7gfkGJmch9gOmuUhxe/YbCQBDzlU9fAO1g/pZpWheeM6lMeSGVQ5+enE5tfn4Qa8BcURUQyuDGwy819fkQMWf/hhBhu34EOGrth2AZmS3D+3wOxtX9Rl0z7dX7QBLs0FLa2tM1FsptSHoehny7UG6ptAjE7XxkrQiYB+gsx5AO9MEpA2av+cgCxL/xj7WGWuzHTOC1zimPK5WTqQ+iS8j2S0rZngPB9wSEftHGdNde6zIfbqpIABx6zYJTt4CoSc+JCtwI1Sn6LvmTUNlYNlwMhnCdnwiBuLCJGrnXsq0lXPn+kvTwaMlvaNrWfa6G+zrT2f563VurO3N3Ga47YsMzBHrZ993XRuFrJFfWrUlDOTX51bL/b13+zHzZZlWU4eUZz7DOQUJK2l0vz3R+SAhPbIbW+Z/i+ifrTLPuMtOAuj5aiNTmGftzkgKLf2xS3H77bpClDL799Pm8/qeY7frA8vlSDeP752IJMZVf1UTmYg5yrn48ayeL/QbQxQNi5Ztf9AqLLbPG4DmY+K+mkClrl2thXaz67/z3cU+6/Ow70qaHf/cCP/+Chvwf9+a9Q8pk95L8fd9yS9ukpiGN5q3PIsrXUS+ybz+cWyz3X7duYXgJJgg/3hRt9uWter3ZdGAH/Y1SB6X7/W2MdtHuw2nreydc1hnfv5KFVSaPLDkk1hdY919ufRmXeZvsnbYgudSQl43HZBXTJ3ebz97h/X7AaI3pg59fRpP+J+kus6ljHYH3TEtj2h5At9T9oX2zaHpx0U2b3NadmpuNu8fAYJDb8NieUo6s5vay7SK4u3AUi7svdUAmrswpvjU39UevwPI6i5zKSHmzrD3Z7lvhf3mHrNYbK+AGw/97YXspwsTfF9/t7nMvdf7PGRc5CsF0uNNCXfeIzxzc1dTZ9UIgsgI8HicpffJr8hUt4kvyPHTGXh+bs6STPBzdtzX7UmMmive8/qC41nrW+tI9G99jgj417ZXNzO5vTPy9mkPwbDG3NHE7Z9xW0J9h/Nz74d03Vpz3pVPTABPa+zfsfb5vcWoygIajd1jH19vXB+feP181sNq/g8rWWCvwHzvD1vzjeTAW4QcAyWdKoU1rSfvCQrMjYywBTP26zr5vrO8wdVPcDpsbTnYcBi50rVNVasbQXEZGKiHFQCKw6kXtMe4n3+4+Zy8H4yMZNJP4PblA1miaA55zuygZKt3BVcfwaY2PXVujEIcmEFIoaun76XKE9i5nMu5ZtmF9XU8rRkKNrGY8D76q5nCSZJGJuz3DIbgyUTMGLIT2fszwY4h0sAAQAASURBVNiVv8v4Ofe2J+Lrm4QB1ufsmOpPvP408LRUmztGsj3Ukcob5poS4tUi8T2B3oH+BLyxPE+t12huDUgNshiL2iPSiOhu8MUA4eevX5rILfKVWfPc4LHI0Pl4dhq3AF5zYMxRolt1KLqjNaB3kQQDrAF1sl+wYpcC6RB1jQHLJrgA+kMZMGVyiLQD1ow0NASm2tVmDTcNWQOscSwUqLs5cSwDegPOceLn3/+G4//4F/w//vt/w2dv8Dnhc+kQnZhwXA0IXEAM4GPieTjm9wsLhudvHbCOnz/ZxnLOieYfdKD8RPgLz+MJg+PsXLAjvng/7rjGhViBj+eH2mfrmdTSvB/Mal3XVa18Wz/qoM9yjNY6no+POtjzsEzNojEvUoD77hSXhzXF0XgoUDxvYNmFK16kWUawltka4ovmea0LcG7Ixw9SDaGgymU0zQdSi+dohuN4gKXVgdd5gYyvB0xME4BG0cWqiGA5Tjp1aYBba2jHgX48mB1fC8dxoMdmSRkooP31+ipNpsfzAAC85kl9mdZFKbcq0QEGxrjw+vmFWJuVczx6uX5j/sJrLHijkGR/HFgBfJ8vCptax9EPHL1TFHxNnIMZwlySoI1mhsEMk5sGMHZYpO9CuunraxTDiYekS+A52N0E2KetC3xYcqQNaNKKehxPrBX4+nrB+8HOQ9j+fUQoo+sAHpzPtanSh4t6Osias0QEcq5iUZduRa2x9qRe17q5hNkd7mhO/azomDHxNV46+GmYk5FnMKyZ+38HYhsh5Rwu2SgEf3z0W1dB3R/rqLdt+/zxA7EWxnmVlk7VzivrdDyemverAuHzfOEaC8/nE0d/lI7G9zdLMT+PD1zXhXOduAYzjz8+PuGtsauinOvmDe1oGNfAHAvwDrcN2jDbuMXUzzFwnRe1ZRqzi1/fL4TsAvWCJpIl84pvZj3HVY6ym+FoTfogS1nawPHxLAr6WgvndZGJY4bX98Q3jC2CV+Dx+GDWSZp0d0cuuym6q9ujylLP81S3MgUfzpbBHoYVJwm8dsKswdpRbIcs3bPO+ZnXLM/SpXuSIrE5P9CqO89vJPBsRrCOBAdmxwpQhEoKM/FxC/jygDIzZvLDSsRXm0+2E+XIZBfN7JBH/F2swQhlObO8iocnBf8nx9Myw7vBYfrqroCCjkzvz1sgq4BgsRtQe5Dx1qSPkSLjTdntLBNNPZ3I8QSbGSTrJ18beFIwkDcFArDdU2ssEGsShG2HkhE7yjN3eN8lzLz2wjVXJbaaO56PJ6pTFl1MBTK5fgweWS4khx4m0LGpQ59hKpM411BC+8ZwEIPr4V0OzCr7kAFQA8GFJU2MdhxlctGc+bXMmCtgmuuSOaaoNDsUUXPjdb0EDpPt/PHxgRgL43VJT3AHynmOFwtTYLb6/YDBQCqkZsCeTEYgo+tMPCabhihC7hVqoyAo7eCxkzIVlSoZSM1AVwyZJUY6ehrZFmNO6t0oETZjYs7AdfEM9Mnz/vnc85taRc/ncwNSac/fXn/M9+7gP/foW2CUvmV10uJYEvTOiEtdkrIMHl73hUW/o6tZyHllqZa+O7KEi//mecu19P0669nImLOa89xP1zUKkElWHQNOBkaG7fM2MZAUUmLFuIEfkhhQnVzpwml/rrXE7LViJIzgWu+9Uw5jBu0UEgPY+//EpVISdkUmq1b6kdkhVWyHfnTMucTk1nkh37VkFBLYcS/blmt9SjNzz65uCE6B7jWpdXhfo8oGBXherEVpASzGTH+UluCzNLGUWKodoLSCCb0ooDvBVCXs3KnFucaFiYnRLp2jS34r8NLZmQmV48nGGBSV53P242ASRoxqmHap7ZOFTV04rghTBzcG+c0bnr1X4ggvJravi37Kx+fBkrjFWJCNadQNOJldZV+CrD0n8916qy6oKybcHEc/wM5+rT5DTaVVe6kLEImxNL8GTQC1sGC4rm+VqnPNmDQwHYYR0Hywy3oCK72zm181lQpX12eTntTC6zyLjUNuOM9c7i/eH8XbubIOMWXnkl6S9FKbmHprrZKG8JjwmHj9+oVfv/8OtwZz4Hyd8MNxPHkdsm0BW86292H4t//v/8B//p//E/HzgsPx8fwN/flEexxovWXxgc6OhfCJ8InrOnGdA3/5/A2P42DjhTHVQTl0llMTmUBH4HhQhP11cZ+c69QzTOoDzagGRc3JnrFoHC9juds6B+K64HOSMQ9gTAq4BxhcxBgordfsUK6KlKUYxfyBlHBslQQKIDJ5FpjzJGCEWdUpaN+AB9qxG05l512Xy4/F82rhiw2/JEV0fLDZ1RgT8zrZ1EoVAiVtkgO+dAbDBXYtvL5fbOIkPTc/PmCt4XGoyqE1zPHCmN/4eDwBN4w4uRcfDYYXzq//xGsMXGPi+QHAOs+CeWGMF9gt9oH2gFjArKRpWGiq5uJ+MZxj4DUGAidmOOb0t8TAf/X6v6TxxGCEDoRnPecNPrx3SeKkMOBcK7BcZBYzZEtDOg5JwQcD4zCkavhKNooU5N/r6lPNnteZYyIc6LFRL9Lbl4wLKnBJ1DvbVHod1KjPFuiEEJAVSD5gZWsrHTLlKOqzmW1HFDuSxlQPbeV66QMbo7f6Tp54zZ2giD9g9oD5hEceRolYhjKca3dlCeA6p8oxJJ7m+gXUmQsHIEHyzNVwU/JAyQxadg4A8pBjSRs71pGtMGMBk4cuaYFdh5g2sm0GDcWSKXIIo8CaQ8Feah+VM7oXoBfiugAM0c6V9bGk/OowAbC9sFw3Ac+piwsAS4tCn8/PNGtce8gSnU3sN2dr8zGyJjfL8eikzIXszPyWfaoDRoEk6SILoQ6Bniyn2A6pbggVZ+rv1rmZPDOEETRuua5SBwxsS75C5RXcVcgyjFBXEkg36/aVJSAXEKsGmZlRFl6ObaaUSscBVkZ/Z47uWaPMXNRX7bECtHjzNxp3sRIJ2gpiuwWWiKhsWTl4ixnwqfelU5zszGwtH1CZQIRaSuc0hBz8qcxcZpwVOgV2qcWdkh+Z+XfAk0m0HfLM6LIb0WYJVHxQSyAPQdZmE1yaZIwh2P2jgtQgeH8TPuA8EAAmyCA7tqhZtLJGLkukGJWzdCOCCRcL0nKHBM21RpNAxNLlwJRzSgFPjtvrdcJg1Ogww5xcU3Nt4IlApQDZzEwBlXWkbgfHLwEr2pzIs1mZbq6byDp02d/lOylhtacUIBP9hE/arnT4VrBUVFuFq1BR+8rrZBmPAklHZlFRf2dJhnlqHVnZ+VyPuaETSKqlj80KqP0vwKmOW2wGqN9sXK6jndk1jc3OjLuC3Uj2Lr+x7o+dWrbVSzYiUhtEa77W6X4UZImC6Tz6gzGr9Zmt7HMtpIaV3UoJkHvjdi8AAx4I8LD445X3GAJx+1zaYeoQNc/zcHM1crwT7PvjvszZ4BjdMsg6Vu92qoCUP3zWFXRPiG6vfZMljMmoMQNCDQ0KfDS73QMAN5Zs543KCd6fAUrN6WZzdZJpvvczhT7nmsfyK8Ry556z6vZmKo/yuw+HZPpluZbKy/JOxIDMLyM+TzbDljfQjNsudUj/E3GfX752KWSumzxCEujJNbdqnPYo0ia7znmXcY/MLmcJWNpZ7P9mF+f0t3jC2G0F5n9zK2SmWOutdJfEQNJ1k/2x9T+4Tsq+aF7y3K35jL3eatWtPek1nzVOWlPS/rMM7CZQgKBtJuTatbX7GSPtGRmjZiZtpm0H9/3lf+65TAZaGtpa11H/pf0d941dr3KJMpHkEoBfAg6MOwCmJjhGxmzt2SyfzXnSTZIkybOEPkAUoJlMm9TJSVDDAMAm4Drpd3CEWAna7DL5vJ+tQ5gRAMjcn1HlR6nn+OafISiAnvtO45NMKr8x7nn59NNuTCeJx+fUvL/3faRDP0+gkowZLQMxT24YRQmXp18bU8zzSMZulH0yPX/Oc9r8NBNLn9ksf9/nQ7Cr1hjZ6S/9H53TeSgG0wN8sesydZty4JLBpk8FtBd3vEgbvEHi8llmwcRijOW5S9ABK/05bFAdJmmAfQZ6Bie1pvjM5W8iyud0zVcTODrHwnUNjGuiP1gWn4uCyV7aK7euMljHHAs/f33j1/cLI5JxZiJmUPM35FtzK7E48TXFqjocYQsLE9XRU2PS3BnLD4LSzQJP70A7cJqXUE9EVuKg1thaZBKlXSobmjZ4O0G588r3YXJrFLs+pXhyWLPqea9sk+3JhB4BsB1L0V80p3aSJaNLmrs7buZ/R90r6G/fnqGOn7QtigvjtveW1onZTlavGeTrZFxuUPzCztO8yALWRuaXzOpcQOtMFKZ9uMaF87rYTGueQFCqxWPCl6Mt3vveO0Bq6Jnv74cHzJlgttu6/TOvPw08uZxoaw1zAr4WTtU0phj4UCc4tCCrtVH76bwWDmenKCijcBgXCTM81AnwaEBIpEqviIbWPhgUxc2RVQczKKh6vb7gEoZ2I0Cx1CLUD7Fo1Gp0LWDNhUttxpvtLKvabtFw3TY7Y3mDoxVTZ0rPyMRqmhFyPpOZEPj4Qf0cKu576cHkdwAu0GPVzzwWGgLdqSH0eH6i9d9g/onuD7KXvv6uDTFJPVwTJq2O5g0xgb//5xe8HTiefyUTRy03I06xeZ5YQ85d9ArsSMszuAI39w3yBahn1L3heBxYGKz/vU5cA/jR/4LWDnx+/FDnky91ViJ7qRs7TAHA5/GJiMD3JW0TNwJXTs2dJWe0AjgEmkCniIHH44nWO76+LswFHP0TO1M12QEwQAfdKYzXO43bOL/RvMP9R2UY2V7VcdgD4YFX/ORcYrex7426TUP18k00NVvc7NdFR7b3hTVICWWWLHA8cu4XPCawBgUMERssA4pxtjM3qwJMN8ePHx9cO1PMnph0nOVEOgh+uQHPThBteLa4XYh5kjlWtGK1wQwxw1bgOslyaY8O7x3juqh/BHUDFDMIi0E2O1Ry7n79+vWm2+EdRL6yhAux8adGc31NHcDKsrCjCkEztpaHMn2AIzMaC7aYqz8ljNcb1+hYc4+rIrHlCoWbNAgy+3gqm9+yJp72YSFwXi8aXemOpUi3hUSn1yLbT6YiCg0JAuwtA4uQmG1qp3HsMmde4IGc9gmIfdLx8dsDX99f+P7+haQlP48PuBu+vl7FpHLneDaj47GuSXYiSRCwcKwR+L5eNTdk8DRcc7Gb26Km27hmOSvp9VdWuMsSXNTZO8cpx99rn3z9+l0ONoHtWJ5nYjmVrSlbjl3GGGnLjBn2BLKp/wY8D363hWHOwJiguKHYtxbAmIBhcclhAWuIOi7Vs2BXxLCAQRpIDbUeDOzutCYDyab263MNngFzs96asrTnzDNgyanFzRYVXIHArDEtdgbSOZHzHVD2NwoULWHZDJNshwzetyeVgWA5vqIJrElAaQTZAdYaIgbWuuDWCyhFSGTSFqJYAwbzTsdLCYglplwsNQVQ6+cZLO/l2al9m9kQmDR6HHNNzHNKV4QsPYRaatcI5okoiGBNrRs622OMikmzk6j4GijGjYHPEtRvm2uhGZl8UDnSSlDvDi78ofS+Arsc5bntZ4KMQ6zwO3vij6/jcQBm+DovhPYsky3ZcXLhUNYXM4MP+k5Ha9S/mKsAzceD4rKnnVqjZBQ0a0jMZK0o4Bza92GQLGyUTQHYgZh2iGyXERM2F7PSi7a7+UOO+A7bI9gSPcLAjkX0GY6cekD749rjTMoiSBZMBlWOemPpNuicd6PUQMupUXctxu+O4+i4xOywZeWvmFFMfcXCeaXeGc/UBP0N3CYGvhcIjHnyjMtuqSGGCPiPNRcbfzTXmg3tD827JBWWkRE75yDo1PjMy6yAOnauArIzXwaVHLRVQAEAnVsKTC0Tb3T+iwkHFAiawBiZowQQs+OXm6PbZh/NMTGCTEA3stsi1OFP+kO9P8heTR1D0Nd9vV7oveHz+Kx98VZSl2CHfubpd6+Qy7GB8QQvYLkNbbOdytApiWOOx+MhdrZjXYvxSWNfpmEBwOGd5/3Xde6zXgzRmBpjRlSURQBdlmtMzGvg8+MHdQSD+2zF1rhNmQl0MkZn0kg1D7MA6ajEajseSsS61tPACu6bMQIxs1sd8PF8wM0wXpf8pmTdZ8LZcDzpU7y+ya5sB5vMuDrYRSTDn3bTDPj4fMIQ6nwsEEMAIyt3Apvywv19vk58fHzg+TjkrgTO1wvswtne53wu9H6gecOIE2uCrAkDfVfEBoxXYJm0/3pKmPCceAU/050+qqlzK8EgVl18f23WtKnxT3OucQzqdqroH51KsQKetPblh3f0SkJXGWWwVMpVAVDAmQCTgVlMWc5jsCMzGqKx27sPJWMGwW034LxYkdMPxhQPMc9SC2g302JIHQFAzB0Hy+z6cWAt4PW68P114uvrwn///MHzrXEu51gYg4LQn/0Dj/aBMRte3xP/+h8/8W9/+8J3EE7xcHx4w6NrztbCABDWYAfLk35+/47fPj/x2+cPxFh4zRcGmBTNs/vwJ/3ga6FrLdrxiSsaFr4EdDnOWPh9DJDZmfEp10e4E9zCLcerMyfPhZX2IZRMhpLqQYvsxkRb03sOczF8mZhmgmciBcuBACbt1LOn30dWXWuNZ/IK2GHVAKFAV8UjWKJwRGNTKKeNPqVRCWuIcCx1Y0eRJkB/yjiGsRbWNYGLSdLffmNVwnWxk/qMC74CvjrYBW8KF2m4huKqpZi6PRDmmFj4vr7x6/sbX18/qcE8v9FiosfEczY8TnUXduOZuhbmAlnnzybcZmA1xl6HF78GBQT+k9efBp7mIPuDIpoJQlHOdFwCkKayyCYHM7w6BB1OQ/NIB641HRxWQUsim9mqOm5RipsBTa038z2RRgC3Az9uCxTb4TIeAkSWu7p9KAMhsAh2c3hVk2ta4MliUFgvU0zqcdZkx1wVaC5R/0LMsNRNScedujiM9bO0rItSP84BeMPnj7/g48df8PH5GwIN16BuD8EUCpCzzrTBPbKyCIcCdHPWboQyc613hITbYUImlL3Pjcz/IwCXYGPL7H0AAUdvDzkzzOCylSMNhgtlGhfZMo/jAVP9KacqbmVDnKWuLnRkcKxbwCcar4KyzOwQxc5DtausgQdVCvC6OdpxbHBFGY1IUWrYDl6QGT+WEbrECG1lxo8zls7+SMHetrNKKUR+gCyjZix7iKPjPF860Pne1h3wA0/bQsPbnNJTbE7HNDuOQOj4wsIyv2VBBJSEA7MDwfUdYVjTMC4+t1uH6SwKbRC/MbDMwHruaIjUdNBOumfQVnC99NYIrK0LS6yZ6dyz5pkx1L5sti1TNs6Txz/XRSbMvMDugoYxpdPQD85lu/EdgsFuCOW/MxqQyxfbwUs7WPvXrfZzrFFBfmuN9HYFlNkKtXXaCsMqUGpnBLkgM2scS+BSTJXwQCLyrgzlDvHuwUNlnEWFX2pVnSU452UFdCar9Lp4QLEcgk6NexSoPtcWPX29XgoMd2lSZVwrOOZ3XxczLNc1tZdcgfUOahDcu2Occui0GG+6NhuwaHTunaU8dbhHMgbEgIRsLRQ0FYMwAJvMAiM710EOuGV8t+cDGUnuEjCIRctvpiPQEgzEzq7nMqqEiCWDQdZeAs6Im16dvjK7gurhNcdLxMZkAMmNzPI81rjxbNrbHIDYJCA4l4FJno/y+OV4BzCz5NSqFLOpecEec0iXrZXjm0LSdK6gYIBtfwsgzvnEjYWRjlYBMZnxSx5WrqcoJxmZuJI9yLVcgX85k8lyzSA19h62t+FFMoMASDvC6l5j6sxIJ/QWvHPvc48AgPWjxnS7Tbf/+l+ASCGHl8tLTk0G1bdypf1Zjs/MVCRy+22QKrunVkdenZnstsp26FOC4QVEDMoXcIz3Gry/p+Yf7y/F84LoUP9/fy8xFDKrUpOKpR8sBeTY74/a21qOTQrXXO7trz1RW+8G+gF69iF2nlVCJctZqnrbNxvEaw54E4Ec6pwfL52REJubsglR4E2VXZp8x5uGzlLpY42jvqvAsnr2PJuScSXxd4l9Z6fszLbvcjh7mwGyQnm9BCANYsbJ8NzterIneheD2QTorFA4GBWMh1gj93Ootc1iDDGtAKsEcrJEAYhIRPsbQeDvrVMc9vq/X7+eS1MfpdeTz6sSvroGYBl3yD91sX3re6Z8Wp0j7q4EGyrRkWBg+eB2s70a5wTyWiWo0+dCdQm+LoIC5lHXFh4CJiwCpSOjeew6a97BOM17AW63sdEezhJZNloSF8d0fGjMetKOFv3j7MSM4HoYKp+7M2iRfl+dV/Wb8sPzZ3We9C5b/VRDnFXMZFZJANY4phmfzVgwnZVqQ4UVBJeqIUGtj7v1USJgLdo9ATCMd/hfyaTK2KVimJU+BH3n8HWzKzqnVHlheS5orSaQmOuV+qAc8ECgqRwVAhtb/6hy1dA6dO13yjAElnxMNu9IP41n6XGw8zd075SS2Osmj7+0LzV9BrTe4L2jHR1f39/4/v4G5UoajscD/WhYLhsXgwC9gx3pvOHr1wu/f33hf/7tP/H371/oH09kTOMHBfhj0gdj8YCj+4M30ibcD6Q+Lmeu1d8BwxzI9BuTmeYwO+ANaP1BTEp+qTs7eYfmhv4PO8stLYyQvxCxKJ1jhmkk+SxNE1TtlJ2mc52YNaxsQdvTQ8nBhfbblgrK8+V+QBmcazlnYjLGmmsgG+8YGiy61pgB0Vh+NtIPTbuwsJbJbdOXZoJDZ4BamyB1AGGGGZ0JXGPjHqj8NHCASExDkQjEcGJHuwe8fVS8+vH8AbeO69eLoNpi5VNTd7oVLDu1aYB1eDMcuWOnGGBamHTVyE6eewP/09efBp7GuDlL3gDvIisCMbBb0Bq7upDV4pjTMK5Ad5b/uILQ3o0MBq/cwNZMULt0SqeY9IMETgWdhQK6kCCLKOc385XLJg82ZpRYE5mlcEP1+1WqZGJy5G43/jc7ULgy+KgFa+XsRFEUmWHTPS5pTiCzAYYErzLoZB2n43lQV+D3Xxd66/jxl0/8+O2v+PztrwgsnNdE67Q81g9a17VYcuYN17gwlhBIN8C5IMdiCuetRt/ZLrglwyNdz5UH6oJ1dlFr5jWgZjReCwvzutBax9E6SrQLQIThfFGX5vnx5NVDrUxjaztlWcBxZPYEVdrTurq+CZQaY+TRKzCigx2HCDKFEXxhGafDe8fj6BjXi10W3wI7OXARGOOCe1dpoGq0VaPPjMie+96oi5TstRTVS5psUpABGr/W6IyFmIHpxLeujEx1A3TqXKnEBbdAp1jFK53NkONK9QzIMcIyrNVhfqA5cF1kjF2nAgc7dF0vYBeWZpT3djwO+vstRPFM53wViNO0jsnYoeYWgVhXZs9hTUFA8LsTdAoLlBCgnKpLjtEYF7wveHCux5x4JMNIujtkayf4EoDATqvDI2p+PbvC+KYZJ8Mkg94xWLv96A/0TuBpjAtjDBwH57M7SzEnNmiT7EhhBNQmMwbTyJr8DNgywxntZg/S4df+V6C5LHUkMuCcysauWnfpRJ0SgrzOq+4r2Z6pSZL77LpGlU5mgJt14rnvAI7L99dJHYOx0FrH4/GUc7CfneV0rOdnUCpH1d4DDZYZJnAsm7lQ5blZEoc8SBFAJLsw6chvxQzY2Bnf34oCcXei1W0raxXCk8gHawSqG9hlbsVV/kddVdHxjOzQqKyZS68mW3Tf/hTbxjJ4ZNBd4IY2c9R/8z4BU7bq5hwbKsgwb3S6FHyEnKudJACW5pWX5Ug2Z4dDagwu7kskmytBZwZjsYJd+aa6Cj6ozZSNLBZ0Lurgo2O2QZc8JlvN4gas8hx1I3iBBrSgxt2qcuFawhUIZPCVpU5kp2GftYbS48ofc9x0xiob/SYMb1m8QPt2qUPLw5lhz3kpdu8fwOH7PUIBIJCQALDbpW+gK/db3tc1h8DUnOsb8NSSSSp4Q+VYmWQDCD5ngg8A5jUQlh3XDM2pIzMmASpobWagen81WIEg2UX4PqBve7k3Pm8Y/S/s6/fO8XIxJjh2ZH2slcT0PIA1FxG1eeKPawaQb0Mf4mhbsH5NHobN6OO4b0Zf+gZ5+fJptNc2u0xlpsF9RV9Twfmxas7Ydjp1W1geaSBTJ8c118OqtRcs9wmWJnfbuknuTck+3lvidQR0MvnFaVJojCrkSBNrVoDHXXco16q79G50vTEGxhr0ZUygsnntja3xtMH0u2A191mn/5auLlRaoc6bZkYf7rZn3vaK3tOyE7Pme9Zhvddmltp6pC3YQaTJnnf5T6YzlwG7KVFAHRyuZ4FRtvdodn/MDZ/LEJZZ/uzIJ33BYDJwiLl+XaxyaIft7eRKJGtuHZu5tQFllM8QubwFjuUgkNmPDZJpvOckHHJYr7FjInT7DlNaMZnESTtxzhdSLHqD0XuO+FW51kUcaO22FtQpujnQqMu35F+sQcZ3E+vSsuxrLUwERiRv0bBsYtkSu9SkjWh1NjBQz+SDgu3FiL2BFSzNTELJ9CssDx5AXW0Xwqktys5okhBI4wGBTgKeoNKnBJ0yDcV1sRmie281xkvBOfr4+GCjk/O7fC5vHda2z8O4BcVqtAhJhBge7YFA4HWdWsc8x7v8SQOlIrY2rKlUkfa4HQ1+dLx+v/C3X79j2UJ/dDyeT/Sj39jdgLdFLaNGRszP79/xn7//jn/9z3/H9+tE//zQ+QO0w1mJsMhF53Hn6PZBd64FOyPPhOEDBD1AMsdio5fmWi9hYNPfB/XLjifmCoz1hQWgtwe54CE/w5ziz+ZYYr3OyPJ2cY7NMN0wY5e2AV6l91UqaQSwXDhzJCifSZEgmSN9PM43T/XNmlasjgYoxsSU33QlhNrky7eK6WPyKuyUaALGM7kMabrmH9lsnTfrZhsTLJ3RxDpObUr68MsagI6w1I4m248xf0frD7T2qfPS8PlseB4Df/+3v+GMC746LJzdJMMwlFE0GDVizeHy2ZfYeK7zboYjHLKTd8vyX7/+NPD0PH7IYG5mzUpn3luhmzSeXc4ALUPrDm8PpGhXLGp20FsJ+vGGqhVmFhyizqXri3LGvLFe0rADwO4mlJKUP6iNZRe1PSJwDpY8uTELuiawRNvs/YD7rZZe2a2kaU8WA5JZkodKOvGuYG+cFZS7dVJf54uOugCUkCJ9ObahcpQwnC9RmpdhGHCOQPiB/viBFS/MuPD1egFYrNsMAyZF3kkBPUgjH2MHdR54HgRo2mIw1tbCnIlWa1OFUPjeK47rRqpgQplFBe8dMQPjJHV7XlcJgx8HW6HOIIX3/H7BG9cAAY8p4GYfmtnxITQmLCMxraFVhsS15uA8uOdYbOEZLhDFau7WYpBKijFL0egk5UZuyjpV/IWE9yOzKXJQvFmxYqZKqfrRtV4AxMKaFL5u7eB9XbNaXdPmpNjpknCwhEuRFHk5kSsdvF1XD8iI1tpU6YSCT66jBkRHFwA2jYf7kEPdjh04QgY8ncsm1t7399DhaHLIlzKSdCzNrYRy3Y3WUx0b1qJ+ghc5WMZITjgF3lwZe5U5yRl199I3Oc8T5sygZsYoSzDkn0u4Hxl9g0vC6jsNqIzopvlzXu9qAffOhmsSaFgzmM2fynJbAgjbFro1scp4H3OyqCgBrjlI66Yo5mQJgCxZCoWGXQUgVDAkxzDFkymobGgCPMd1IYEJaoyhxDqP44GxJuY8a/9kE4TrIujrzhbYc2qdQcwuOYwskeE8eWcQnCUOLCPWXhRwVQLdxvU7siwW92x9Zlt3NnxntThXWT9OMCPLQLgpqWu1qnkB09gVLeQVazkwSz2RJMsEg1eBhdmKeYD8wdB+oyBn2h0LwJcsiuaJdovgTXbwCzHHXI5SAjJZGpfPm+wdMhqTlJzh5f3c0dophC09qS6npiEjz5lsN529zPSH2GhD97eQGT2WNsjBT80N29p7iM2SA5xtiYV6h4KSpLw3PVNm2CtYhcoQRS9P4LoYRxU0E7ho0oV7HAd9izkzRtAYGXd4JkQqOMFtfK3A6ATCNgIt+2teQUiOee8JxjPCu4tFr9t/Gw/5Wm31nqDW4qGz745/lg6KxmKKhTinOnCp/DAQpXEBBZpbR+/+emef9dbZNEBjm+slgyc3YzklNqjj9wvqmfNMJKPkPSC9f2/hRJFhb95nnr/72bnn1TlTgYvX2EOAi+21phub+wIKJkLM9GQM7rVJ/Sf6cNmGvvyGpEHK1q6154os++R4ce80MAH0BnNYQ4JTriRTahUmO79ji7y7unjOoWTN5PcsgTyQvTAQdIqAyub2ioQ7mSuZKITp/NxdPd33nCbY0pv0O5TcGjqjUcFayiW0my3C29/3PySBBbLTc3N2DGYFOZm7Za9y/dzAlT++NtuG63ovM/vjjO91Z/vHBcTKDo1xwaZvf72A3Kj93HtHABi3XUQwUmtZbCYDQctiK2OCYr6m56If3+QTpiRQO1qdeQG2bp9TYEWyK3K1CiCLOev+TNUGS7d9B0g0KxqLUAIAyPZSWfKZTMMEJQHNQ4REqfmMvZsYsNwz1Nbj7uR7FYcg/SWWIwNKnAQ74ub+SjOXa+pQk4Z7j7KlsRrg+ZH+pgYE0eUPrMDQfcQ2MjV4Bu4tmnHe2xCLKMeX88SAPwylIVtuh1iNNxek9qSFxKUN9A8Vi5pD5IaJkHaO5O9ZiRCB7+9v+bDJkJNdoVDatmHGsjiyn6e6+Eqr9b4HQfb30Q/MFUoATsRkSTXtyykSp3iJMTHWwDUnViOL43WduOaFa0gc25gQhlFuInzh37/+hn/79R/4Nb8xbOLH5w+tI4J3YWRP0c/jop/XAsZC2OT89YZHP9AOJj3mnBgX191YIeZcLzmeR29ozfH8/MFS77//BxMf3mtSTMBJnhtQGeyQHvOayQkChnHPFjqQm7P8wVKMpF8rnzKWwCD5tNWFXustbViWsSIcER0A4+hKEETAQR+4tU0kSaH/BGO27xc6azvcmvYifTOWGurcMahCRvbAO2CUw+AezzPboQHcEhYhQNqyqmhiLGBMQz8OkifmQowLLRwHevkCHr32IdcqJLWzYHK7s+x7pl9gwoIMXIM3H+K/ev1p4OloD9Xo7wzQ9v+lWVJO9S6lokPvMGVa8sCfc2CLrYJUVR1srhVg6kiBcnCs1lWi3WEUGGX2PspZmGuJgdQxM6gXI2vOBYQz07y4sAxNi0FCaRJ9dGvKCi46WPByuEz3yVxy6EBj8JOlOjlOBN1sV6PYLq3RxZSlVCndMga75vD+wBrUUjrHAjDxVHcSKBj3dcu8LgbQAYpp94eYQIv6G665eQuOwOdodjOYwdBoCmFcoTEFnaE1Fq5g/fDjSYbP0ZVVwA6iuzW08KqjvQvqIYh03+xF0edZbx95Vm3/Qm9eVbaQzlQanBDjDPijI5FBsWkuij5efxR1mtUayLKVKjuqoMJEsw2xEsiGWHMKPEhKLj87FRTMOckYWxMOrsNiLIgRc3+e7ajoJ0kBl1c958QWUlQ3L9BhYEbT0GMb98x6JfOniWkzYmxHafK64g6zS8cyjHHR4DblYz32vKYx1rPUngiuY2jus4QhHUQzQ7PObg/jJIjsqT3BzGNexw03pXS5QAHalhuImQ5SGdJ0Om/rx2wzs1LsOKRTsuQRLnt/Npo7q+wFAIx5s4cRmItZv2tOLAseAjoBh7Sj5i0Yby2BJ14k19RC2jCyAOcYRTGP1BeYQ6CoYYyJ8xzo6sqVeyGB3i7wd0XS5BUgG27zxLHxhqLcJ+svgw1KClmVTmXUmc+fjrBWNEIiv3kwpv0useSpQEq1x1xyPDemytS88YBPFh4dZdluE5ioA4kdXzYY6Y17ckHPYYHsrlrZ4xsQDoHL8hfyKfhsOtiz+1QyB13nT+poWDK1ZEoct6y7eS3dWotIlkz+vVkMBI67Mq6dTkE68ZHfUeGZnB6J4nbZM70SfEhBd9f9OKiRcIsEOb9raYvl2PINTZ3vhJSUQ1KlclbWqsY8WUcMksVc1M9662T8jc2MrYBVey9gN6fs/V5rlu73r71qGsO0BabTromlW9n9SPBCR2uuAe2jum4CVUBlYNN5u78ngSczUzfcHCfUecTLsixln3v8vmxMUENwe+DeGrq09+5jX+WLWXqo/fs2XPuy9d8ckfchTRmDdKL3NRJMSVA59O5ck1xz+Z8cW9Q8WO6FG+jHx94bLh37Cg50d1E3v7U/UkeHerq3Mtgctzwvc93k2jAxEYx2cCHewPM8PxgQJFicAI3LXySglOxa+pa5XqyAhVrD+l0dJ28TkSxMZJWlxkHMJxNTXveV89YyEpFdXGLGsmkKx4vs61bPUeNwG6v7K+Tjvd3f2yex5wmZWNtnRLEM89MFskk38B++N0qkv+7JrADv+5cuAYix9jU4Frm3dbYYyz84jrcxBypAslwXsQPOTAa2trtb5j1lk+XW2a3MJgr8TfTIAeUW0tdE+T7J7rGW5bS14rffnQGsfrN07qgV2rbHSw8QexwcECgbtTZz/GlvvPZZ4JYQyPHRz1NyJH31uaRNmf5AsBlLyaSkLxzYQbCb9tTKhbz3eksqv5hfqQl6i0maeyWD+LFMmEJxFD+f2qf0STawt23TfZXpb53dKdbcVHoTLcoYmoCi7eMkbUbVEnPAGzXGeFbMOmPev3CDpFNjynFVwkJv29IGTYmZULe3VWfJNU44onwz6ipS0zScibtrDtgMvM7vDYo4YL2LBbrw8/zC769fOGMQ2D8Ys9Ep5F6kT+PIkroYSjLbgKNhmgEHE5Q9cp4aYHMXLZqLHRtM3jRDfzzQ1hDHLEH+MiRIu8nlwXNzrMAGi2XnAP3J+bklM5A2TNNg+z1M9sjHWgvN2Vyi4udcY8HEtIvlHkacYLPzlqqVjM1+jHewbMq/v502Bj3tlq6gz0c/0hc5sNQYhN6vHWmdzKZ5IZtzpGRIPWvYtp+RCVxUAnwu/sztAJYhRsCDSZelmAIzPYBZwNPSQZRs0zRzS/t8yU6FkUz0fzvwhClgwh+YEbgisIJZ+kcnQjlysMuY3Qy9BcKDQmMOHiq2sHwpQKXAF1bWpIdaUsqJVqCeukSk0QqpjFBJAWnmWVZxNLZlp2SK4fmUmn8CKZOHebNOFBJeYq4ZFHCBpIeQi1t0YP2km8GsI6yTvnmRKWLF7wvEmDwQsNkzoYNknrNKlswMz+ezyrjGCnx9nwqUDJ8fPwAsDDGpYGylHuPCdU7METAcMCPN0dDYCrkxa/Y04HF0/G38xBgXrsWa1DUnpjnWxRaoa06W2XmjwJkCT/OG/vjEnAPn9Y05B+Ya+O//+3/Hx+cnzvMXy5eeH9ggJAGoZG9UqZ0M8BhkTD2PWwZar8z+NmWOXUEsatGzbSdsZx4gNofFhcCFmFdt9j2vFKdvhWATAEDfHfVaF4qdmlSgJlPrHRUKpMOPhblo7B1sx3yeJ8YYeNhuwxz1mcW1DhrFfObemHlNJyhXngOVdQ8IkFUmjIfYRLNJfaQwUKRuoUt/zIwi2XNSZLK5wV3PmXYnaT1uiFAJqn40J8e/9xw/zc8SwLQmLJqAF6HiAhTIilw6UEOABz247xfbgPfecRwNx/PBNTWpB8ADOYEBg2FR7yZti5z03kj3XqOQ3QpI0peJ1igsKEeI3SchAHEh5sJ1sUylMjbqKEMwKigoqwMkvz8Dyd7SIhyY0/T8UkZx0W5VFlGBXBimca+nrWQXT9q0mFd1iEOw/TcC1X0ua5VHW2JpqVzVUPuMAQ3ewK4UJyUzhiyMAHUHUGtB4KPme8mrHFXCs48HNk44/nBoJKtyB2KGKB2GhfRDWWIqFvt+rBtr7R5UaJPTtgQZQA6jllgzPHK9QE6Kga2bs0TEIAdH9t4ESiqTHJPnQ3Y5FNkBWR3QdH4lDRpm1I5TRh8RpecQMNHj359jB5Ucl8hIOMv47kGyOdypQ8QjUmKYMMA3eAugvgu6L+AOBN3KoGKVU5aaEylcfF20l3Rk9z0ks6jK4ZDswbwOM5psfB8sxVGwSVuJjBVyEshCWYFsXb5uY3X/g0CV58r1qmcuRz8ycIKCIjq1BpTYeXWs0f6AGFd3AefN1ss4aAM6QDKaHd7IMF1BDS4vMEB+DFSmIEZ4czHyTOXloIg1y2JGBRdL+7g3Ni2YioVSK8zMinG35Ql4w0vjHXNRp8OyJPK2nrLsUvs5E06wZN5uF8gUaI61aswbMh7RDrvVKGSW9152m2dYvpjQYrBaoqoAVuVRM/t/kDV9zgLnTZlc3k+oJCttdLLJrbShtmO+59ZVAuICVmNNfP38YgD60WQMpijTyZLf64Md3DSfkawifudIP6lloqohS8JzEDIerjNU297SzgDIMsJa+7Kjb2VwruAcAcRCTLGRm4AF20AHG+5ElWvf9f7e/51RN277lRuG7G1piXjsdRZgLCCwPcvH95ij9s4dDAngTU8oF0owbLqdVUvmTHpTN5afu+P5fNazZEm69xTv1ljcDusE0SGb1pu92RPUd6vJRbPyW6ppipqicK64v7U0xeoOCRqDOcBBoWCTzspxsPR4NdqE1yXW4zT5zVZjnzYsQU2ljiuhBOjM4kTAzPB4POSLUZuS8iQqcZcw+rzSXu0k2lIcZg+yb572oD3t9J2nEldZghcAdeYglpVxXBtMrHiWq3ret/xtnzk2oetmHGVi7hm7oOme0g81N0x3dpK7nSdVMaCEO4XcxeZWRcFYA9kAQ50VAO/F7uL+mkqSYJeiwtX4ivOSTVSuMcVIrOGTD7cTx62eadvo2nMZB8AroRoBfH+fMGvo7QnDQvTUBGJ5+ON54C9/+Qu8O2YsXHPgHBfFvQ3wxrKxPriUus4BAJjjxIgTf/v93/H7r//EX/7lE4hAPwjoznEiK0jcGWl7sGT6vAbMgUdzPI6Ox+PAnIMyGWKBE5sLzHVxbsdC94b2dOCgz+SHo01He5DlfErcHuljYoNAeT49e0MsV2wKREzGMDAMNSEijrATfIBK+ZF+kTFmioURJ20mO3iU/2UwhOdenIAYSMupZTuMtp9dAwOufTeXqp10LWsBD/lrMcUCG4x/HWh94fHgPlgLZP97UIIoiJesYCi74mQiXMcZtZpSZgJ1/zx3BZ7Pk5ABBoCGiEvn44Ffv77x9fffcX5dmOdCC5Ntu3SmAGYqVVbyYrlgMMWMS7ETuTHsWnhEe2ON/1evPw08mbIUVhMp9yCpXUi0Mc0xkDvSAAIXSEO3FwaBnbkjjvxcbOZTIKnWSwsrvyX2wJfjuDOQb8y7CIkkGualAyhSfGzT5LfTfj8PowwKyrGXi6QZt6AzmsAC2xGmC2W3Z7uNqU7k0HVvw6JggQbruk54GzBfFBNUJojaHezkQqM0Ma+Fo3vpX0QsXK8XeicN24U6IyZiXWUzWZ5mGBhkB1wT0RqWu7pd6blUNjTnxHW9JMY8CDxg1aFh7ZZJLtAqwYtbrX+kqwllKt4zlooL050Uop7zbtwUYigVHdfqocRIuK8rrT45MjlLocAmD2mLqCxRznU+P8tIxntgpOvPuSj613a3mPpjue6iauo9MzPlmG7WAvaPdPnMiuVeqV3AEFDC1tz7csw9s/aq0V0MKh1iaGDT5G98b/xxtWZAklqWOWZ0ktYtQ5FO2/73ilDL7bQGyoyAbdR5PR7qBQLFeruLCmHqgA8CAQDBjczKFKCDN4AF0KEIOZErYDOUlWOwEYuAzporGazIWswAWWBjLjVO2IF0MuMSmOCaZ5kEAZ2oQG6MKBtRBsryGbKUbdvRpaDAkcDpdnTK8bJs1Zpr+e5sb9j8fa1C119QJRP3EFIAMdctnW+kbb9lhhKwTXaG37Lpsaeq5ovLZu/7DKb2O+8uA/a6R5rHePt3rY3INUXbmM0QmJ1diJg78M4hd5VdJj0+8pwJpXO0X8Hx3UZKcWntgxzJ0H3fJqf2cC5aBmaW2oB7Zrh+69m1nuoHW9Tyj8FYzkNdLm/TdN8JSOV33faV5UDGXrd8C4FIl73JYD4PJrvNVNzuyxNIkJOdgJelrbivCDOxwLQXiwwdSMAm/2DfGu7wY46R3Y7X2zSVv1LDf19Qe6T3P2Pf7z9aQPzDd5Vm3LwQa93s6HrzSSoAxz4T35gm8b43t/2sQ6HOab89d7JHNxC473PJ50HIIa8HYDBB36VgcaSuVe3z2io7wN4DnwP1Pp63U7b2756/ePs5bmPBf0WVkudPzFysQlBHAlkWyhMnfSwNKPYqj7p+2rL7XvnjH8C555WAYVdG3o/r79uV6jyJ29gzmYDtzyRL5m2I3hdz+ip5z2+nb/mAqEHMLVRAKHxPwT6MkN0993iXRX+zHwnCAfe1tsfqfg7k2N1Gtyb4fadsw5jnw77HPKP+uLvuTx9173s/yDabFUCefhRw81/yjEkbLt/nD6tK97bv1N/WAgBIl7P2uSGrM3JMCLCGxlb6srG/pZi9EZtEX2uJd+EIJR15JjCfmNfJc0H3bMC9Qc17Quc+vgIfcu3X/K6KGXKd7HlNA7mvZbwI/XG8v3IcMjVqmUiST2NKzCSgL0dxnxslAq31oFviMG/Oyv7m9Ify3lCaf3H77ZufnRbTUKSwihw1vvyuqGvmeEZspnuumZRkCORaIWAEpO91H77bOamfLdmQ9FFMcV8m/GBiQiPUedVqH2NlDJX+g+OQTjGrBFKn2MruMNa7n3Bck2uxGohaphceD0pGZMGSiszqqXMtQbEFfd1MyBlZ/WsxSbVw2xeQxtZgYsLZvX0ZCL62pmqkWWVl9jbP+zTikMnuhAFzJ2PuZ1DO+vrD5/ciUdwlyRMykFbNV9k7Qz0D/y39L1PDGZFCAMZcgYUlPdACgICaB1tL8QKrlQA2J/AGePrAlmdMHbzcz7e1vBPwIR+Sm6gI9PXduRgDZosFvbZLC5fwglhAiTzmyNUtLLCjPEeR1w+dwypx1F5JqO/un/+z159nPF0XCIfRAK5BZsC1JhFls9uiyw090WAUHZ2D6F0LLHfAJqyxTe4MUZLTUdEGJPMpy26UsQlRMzVC3lmjN1USYMEygG6kFV7zrAx97xTRGtesoTJQD36NgQW263ZvbCEJIObEGgNjUMOHZXn8pDrjApPZ9cN2t7vu1ABa7UC28gwoI4aJgV3acTwPlrQNPsevr5/ovePz8wPf3z/xH//5P3F0ItnNB+/ZWfb4Gq+qBV7qSIVPYOHAssB1Dvzrv/47en/g88dv+Pz8Dc+PH7jiwsKAdx24yT66LgoaTwJPkTVu2IyYMb4wxsDr9Y3jONAfHc+H4ePZMAzsdqj2hWtxjhoo6t5bag3xlYJnZVjAhVBsDWyABwCyXDMQFSRf54m5Fk6xJJ6PA83ZGnqshjEf7FBnBiyttSnwKw2OgY4cHBHMjEC6O+P14pr2TZO8rkusJDpwj37IoZt1MLBj3nbAkgJP4z8x5oXP9olH63VAjzPFlbOGskLO0oaCtARa7gt39OZ4dMMcbJuclc9N7VznYEvn8/WNfnQArcbY7IFy9FfgUlfB/niUHYwgKMPOd+lCKJtjDmAATh231M2RpJCy9K6Dkc6UNzLiDrXDnUMlst9DrXCfyK4ul8QXk4nx1KEb4HpfK/A12Z78Ok9e37VOIu0RgMdEeGBqjY/Xie4Nnx/Bdt3eMBfwunRQIPB1nXQQPDPpDaaWvum8uDksAq/vS+yFWV3yzMnMnC9ShrOlqnkXnV/ZJUg8fREshBiTDq470q5ZYkO2JNfUeQ46A+Wm0e64Ga6T90PGNHWbtoeVIobShFEW7+v7pw6UVffXOv8eWr90ukxgdOrcHGLlJGNiZ2fvTplB9iRTOAZEpD5NOsDpnLZd/jsXmWG63lSWC+vCcmaRben5khlooqJPZngDq5wc78zkTpW23rZbHaT30itLZgwoxL3dY7k5oe6Y8kLJBKAnkI0vZkiYtpGRaqK53R3WypSKcm3yvDYQkZpAt3JlGdQC+G2L2i/3PcaxhIkYDm/UJVwLMwZWXUvgkRkuBRJxe9qQ/U3WQpaELJ3PgJz3LAPRM2XpS14oz77zfNHR1vdESDQW7LzFAKvpczfGZ41Xjl06dvzBUpC3MtDLUqkb8DmGSlCPZEWZHEGBqLGqNvGP7ComUtR9dCiJ0DtLXaRTxQ5XSz5L+jaZuCMrOvnUwA62kqVUiZECdFHnwbUmrjnegu8MErh/We4QytqTgUYAszNyU0Z0YZmhCzzPQCUmN0RvjulGHy+ZrHsaGThLN4z0e3nMznWZwVLC1QmhJqPlDiDkGBRgCOmuJcVKaxyh8jZTow490xJrNVmhUHv3MMDhOFqWGk+cF/XMnp1M2Y/PTxjkpGt+qauUIsaBDIVzbnJd5M/4HErBVsA/a98W0/Ce5wkFZbFg64KigQrOWZyzExVveGVqt2TBiTGR9fFxFLt5LukOBs+JLE9jc5bUQlLAvnZQDoCSDQHEGO/fu6w0TfSQZODyyhoLnQEQDitTaXlWmTOwViJ1LHVfy1Je5/uSXbIi6uxrWjMTtCulW7+oS+o6G6eqDGB5vy7xfq01Zcu29iXZTCvotzVj9t+d0YdFYCXTSc1yMrhjQmtQ5N4aGXegrfXgfZk6PBuAdV1Yg75TAHpu2d9K9LiuzwUzl/w+gQvZyMjdxDZXkmWaulDK5V0EJzJha7KlLcsjR7Ua5rW79vOc1BFUTOfOTmrEalk+jFhFQqjGM0lldseYKoPtnOvB4gl2Sc/1pGdNACYWx/hat7LXBBuFUlG5wQrUg5Vbyv0CSh1QNUXj1rVnKU0KNzaocE8gjX5yIJQABx69w3DA8aRfLWkRM+Dj+RvWmni9vlV6z46SZAZyjQ41sFgWaEq698bKgOsaGJNMGDPHx5M+b+vOuTfHvBY1Y+U3fn7+hs8fTzweT/z6+on/+I9/w8+//47z1zd+++tf8Hg8Cpzv/mSsfi7aUOeenmPCzoU+DX99fNK3fp0IOI72ANYAFcm5SWwRXLQpG3KRUX8amVBkO9JHfb0uBBaOz6MOifCJqRjEYHgcDxwBHJ+/YX1/w85fIkQwAbCCLC3IfzOjD0hWE+0Kfbps4DW3hESdJ4pZy//nnpozPUGdQmbIBgRFlLiplWXyYNgCMHC0Dm+QHpzK/bSem7FpTQY97g3dAAtVWQza74gLAPdj64Av7iWKd+fJyvVuCMDJuj0eXVrOBMyYfBDbXeFt6adast8cj8PwbAseF8bJTvP+23/D9XNijRfG/IlYk/e02DzIBFB7Y4fDQW8CF2iLBwh2jjHK/r5pSP6T158HniKxRD5Qc0cHEcwB1ETx6M0gIsECKwcjgxrcMlZ5rqf/UVmj2EBEng15zf3Kw09/S5zM3HhQpLgAEn3PcouQBdZ9J1qeWkm3LFE9A3a2x26/XUL0vRxFjldsGgiy3jifN6OxzMjWeOViAymx5/nCr18/8ZcfD7g7jQZoSAKkQQakquUAhL4KsMQ1L3yfX+hroR0H+uMDXXFf1YUaHYKqwNA9573n/FsGEpgwsOTInR0OeqNYc3Z1SF/ZNHZ/ZA/x/7Jk5+ZY6/3xNte5otPpl+Pfci6sHHgGtvwWNsBxMSKYsTCdUDtTf1tCpa+Cev4Eirzd69sVbFolt+s+s5wva3zzttMoGEI0Tchw6FnXH50/3tfeA29DcBuWP2Tr7A+/t/2cEbjRz63uNyro8/0FYgLW3OvCbBiQzndS/XlIbtaR/H45/dw3OfYEJOakcb5Xtq6lbE8A6G07rgKXMqNyYX9oCbkPzAKweIPpIMo5hCGMwNOagZjpkC+c54XlDb0R3JtrklqtsSROsgr0JNeXQapp3xd5R4AYUotJTupULXe2E05Bw8yu8ACjfa2lXwYxJ/MW9Moevekw5SRHzo/Abb0nHVczh2pUCvDcoIMxgxk6uAT+7RznbcNoP9vtd39keWwnIJ3q/VmrxapnS3OT+zuBH1MJTWhdAqjyAI+qTMjxyW6ZpsM7zyyH6/hUyQpyfvIs0GljrvnZLJD7VCgGzO1X76mADXvf1Wf+4V//+NPboN5eOh9W3u2qZ6qRy7GuvYv6t+1/6GNRY2957XqWnR1N8ea7Gb7fY60CT2af2HkFpL3bMQbNUc/Dr8toAXtv1Vmf69rerpFTWqOkZ7n7DNvs5kbItabuNn9kXWg40y7m9baNBDZwdVvXjGr2uGsM77MaSN8n1zRUfX+bwwR8BNCtmgXLm9+TevesbLMMbU8zYnst/KG7gPQ87P/RQ6w9cANC8+x22auw2/43WdU8X/K6tZe2xbrbgAxiOce607cDb3tXOTb3jmv5mdyu9bUAgRjbT5/7ZOl+85y8BydkSGwfxG+jt8/O/Ld21D8O3/sejBxPVFk3v0vOfN5PrYBcU1ojGpMEqootylNVz85PsxPuzZbk9qpxiPf9Lcpy3lZ1icrf3+6jpqXmAjem9p0ht6cw/dwsp07bmyDBfWVumFNrfQ/I7TsJrEVdu0Z8W9y8X5VKN3cBYTrb7je4bxSlMfdmT/J+FdHEIki8MnaRVuD9yLBkm+c5WKdP3Z8B6oaY46Ox8LSJGTv8YXHdN/bbz+/nZ/47191ODCAF2HWtu5t4Ly3cl+F/l+xC2f6bf5GvrI2f9z13u6Ke24GbTlbai5yOKB9x6RkS2B6auz/qXb0xQfOAsg207fWrveOKc27u7R7bvW/fysjL97BiZqd/nq8cjpVMNciP1i0FCEAXKzK/La/rDSx55rjv4oyAef4jtG+57/uhphJBJvz5OhFzEoQ3J3BYg1uGEez23YF5suRzEXwzAzEQCe1alkMC0jczSdXkQ0M+fuqgKta2BrOUzcmET3qNfjvrjUnXDjweH1hz4bDvOgOzcjFlFvKM3cZhAcZSwr3T+Bx+q4bac7zn2tJSBpByOUxG0r+ctSaz9FRzKtBrLpJUkq2WceQ7cOqgbFD6Chmf+k23No+EqP8uQXIlda1ILPs5SCTU+QGd/Tf/fvvo+lYjgHc0x9GaWJnBxHn2ihQGAJOKos4E09lDph/P1ZzbwO2+g2d/ni9/9vWngaeqd3ayKB6t4VgU/fr99cI5J3WMALaTDAEgCkoDS8HXxNRjA2DWLYBbLKm27MxqF6gQKFFCBkdSekhNjEhRzaaM/36/G7/tGicQhmYHUqkfsTDniRT2PUMGKluEO4M0ZkXJkskOfmsyQ8W6b0N2eTKw1jzArGog9YJQpXLIrzBgjotBtZhZzyepItf5hb//7d/wP/rEx//z/8CPz9/weg2Whyw+10f7C6IF4ljMGsXA9/mF65qw1fF9nvj793/i8fgB//hAR+DpDetqLAubZKs1BzO+a8kxZ2t7CxQNk3pIAcNEN0NDx+PRcTw6nt3xPBo+/voXoDW81BbS2gbk1hyYI8rJm5MIuPt9GSpbJUHpohdqsxe6vSaOR0Prjkd/qiJKxmktXNfEdQ0c/kT3R1EKm1FbSDJ5WGtIA4mbf8bagoxVpsWD83E8cJ4XBdOPDvOjurwtOeHeOmYAX68Tc7DsjVIiZNQwy9hUqkgGxBpTz0vdNA3DzahuBkMepPy5sneaoKk9AXX14ClBI7rmhOHAQ10e+crOCtJXmYrgJabq1gjsxKKOFoDv7+9yFnp3tOeRd4k1mQHJxlTJ5oH2LyKwFKTO60KyDgCy4rJenAybiTEuREy1gAZghnFN/Pz+hSadtPRgsqU0s6uW/Q0EsNKpGJeAcR3i8IYxF77+8+/ojdmoS8DTs33Ce0N/PGGxcFZZquzYXNQxMLLN3Bze+fzWFnrjvF+LGmjDFpYHloup0ieT2i7NgRVYIDPnyI4Ut6wgfVJjZyxM6ZkZWufYXhrPLPkwBx7PD3ZiDNKrX9/f8NbwfHak/sh5vtTogZnTj+cHGQHni61vHymgO2qNUnuPo2EWonQvxDyrLfsu/9nZWzpb4g0s3y2x9Zw6e7VuIeCJWe+Zjpy8R3btCpjPG8VYoOdMbbAtHJwlvEOZsdd1VYYsz4g8N5oO+Wybnmtr6ro8oenEZPc9kygmAlV6wEcJpMZWBVuiaZfrtFO1uAcBCXpn8FYBDqaAMR4ga426+nbQJ3UZU3w97bEARWsSE32zMemd07lcwK7MU/BcpTm6bVdJ90Qomxpv9w8ApkjC3ZHU5jtYBLAbaETgtFMjYLW3MzApRy3HV6UE9I02cJ/fkC+yBpvExHdgkkKY/CvLjrazvudj6wdmZ9KIKC2X+xyZ1nE6wwm5kz0iRzS4j/c3sDy0W0MzF1NPa8zkbxQIQiHZPA8end2OruvE0u8qDBRo250dvvJ53RsK2MilmOOaiQ8xUxqa9gfAjsGj1kg+5MJ9rHhBS2fuDmwgKlgAQK0eoBjVBDMSzOIZbe44pKPF97OE3BrgFjDnNVjAIF55BRBqSmGgDoUfm12dXUulsQLXOCdbCulPAGMRbNht5sloqBJG7PU3V7J8klmjkndLewmUALJxj2UH1bJ9CLJupos9p7SNe2k/mRmucWGskQl7QMHYkI80pM8HGKztTqQrgOuL5aFj7Q7DLl00+leBG4GQdrgZrqkuxkYWXAIRkeeuGbIjLow++VoJaO06g4SctKpvbMm9J7jGO+c8FrLBypzjBsSjvm+Mgd4P9H4wCJZ2WkSUHuZUp1czU8eyIIshmY0wWKPNv8ZFHzHot1ZzJQDhIUZwR9lxgVZmU3tfz81tgnYToy8G5KLNcdm4lYMwFzXyElUFtg3Qjss5D+S5oGqQGn9pYunzzTvM87zg97meF2kTEcUujwgcx0HwYcnuVUMOwNURd30PYEWVFe6xWGha890ZJLc2ea50r/MtXdWhZ48EtBY76SVDiE1p+B0pZTGkD9S9a487O6GNKG2dborLNJYyd7Xb2LV8VWVK/rxZNhBgbDalhwncEnIRYIOTKM2rGRv468dD9oDl63OibFA/GiPKM5OmPE/GNdGPjv7sCOfefz6e6M3x48cHendc54nvry/8/P13AMCP5wPPxvPDpJ8VI0saGw574tGe+DpPjN8vtBPow3luzAWo+zVaw9E6WgeOg/bu5+tLCV6BHGiMFcxwPJ7wfqjjd3Z+Xzivi6NogH10dGuANfrLjx/wvvDX/+3Cox3ov76RTRBKMkusxa+sEoEVq8k94A/6kHMBq1k118pzJ+d4gaW5Jv3VGQZEg6/Uipsg4W+Dp8fBMxW+kLrM1zKMC/CDTPw689HLx8uzYc5L7EfALKTByfFcix3P12D+OpPq7IZKv82cvrGcfoFNGs6gz2nu6P1Bv7N1XFMNi7K6yw90NHw8Hvh8fuC3j6dis0AMYF6BcQXGCMA73MnYmtfUOlxYmGiTuMCUO5YpEOICar7QrM60P/v68xpPR9LSApF6MdDhawNhEylstcCuP2MuHXhBoNKyvSYNUwTgaSQ1YGHGetFATXqi7SvrIW7aIDEZeKQWC8DrUiiV77V0KHVA7ICVDkhmfdIpcLNqq5mGaOsFyNEKEGC7MWlWpPOe3wXVSG+6rCEdO6n+q4QmcqcYg9kVCbDoDzLjItbHmDqsEh0nAj1WANZgjZ2Q2lpFc51zEPyZ6kwGlPPJ5A83ok7EQvNTC6iYSAq8Y1LV/9EOYAFrTHUcsToYyzGY2yBkpcQKItdJSweSLZFBI40NIhCNpyOduDqDb4FGEuG5ZtyA3iBncjs0uAFZWJCscTo9etMtI77vpWgVdKAsHbU8QHOdoMZPRTwb0TYUKyCfC0KQnfStm+seezyWiaFyd9o2u4gbyXATYKLLY4FAOjvqulAlaDwEAaiECshsqoFtPkdMzGuy7OLRKvtRHWEQGE4xzzkDI64CPrjPQvGi1TNlrfpc78GfLTqFrD3nOGa2OHqWoEh/aYCgA25MrBJvtHKi7swblpNyrKcYMd68xpmJHpVyLTlwk35h3L4HMjN+K4Gc68KyZMQtTFxg10yCRGxpTwOeQaQnlbhYRCH6Lqqcpsp6ZYcYnKwbIOsKDixNHyAnaa3ANS45ygryM6CrzJCyWxwMwLdocTLSPGPTQGVs6HDt/VLaamnEIkvUNhPMMuulMbOqXd/7f7MQNI5r3u4VunfUv3KtFdtF37mvx+swg5OOoZ5LeyQBY4MpwRg7UZjARr12ULwZk15jqg3+5tRCY2+Q2Dv2Gs1n4SmqMyVZQci9k8FqPu9Edl7l9XLPZwZy36fpfNDy3gBOGsR0YmTfAsnW3LmzfPpt03ndGXsOAIGPssuGPY4138C7U5j6RFU6RSZksV8zSJBT97bw6r5uc2fJ6tEz5/rLtZjnt+xtzhFuV+P1OFCRN6qEa6wElnZGnB/Js1I+CiCWAUWoPQE9Z7pqqbQzNTH5dZzgnK48ePLMSI2xnOs8i1gWzRMsS0bJvtSzpj3JCPUGNJZTm0ceCv+p38GyA1buDdqwcjLfF7r8oD2iBnWNqjdYnXGh547I+6tVUgB07WlzmLp4Ft8xy9XEKudeTzDYa+1rOvlegUoB2noTFeieya1OglG5KhRx3XJoMnMe9WhWP8/yKI2yJTizwQJZuST/3pwT7D12O8cJDLVax/lGb05h5Jpn2g76k/SI7vjfjAVTq3e7gY8JGFV5rrL1LPlOG8F7yax7OXH67uy2usEQ2fyaQzIsynzHSkyyzjs3lFB92ZDyzWUPcgLThm2Dgx0n6I/uixZ2f2wz8AkgmlgDuQbqe3JZB8+MPNfKvpipuy99rTLFb5+1t/WQizH3KXQiwKlnhgTUVNpZGwYygzefhmfG7YCODUDVFr4dX/VseWYOlavmvjRDyvOnCH1XN9kYstNTvsxN1zdjtLWS+3G7bavfVtIjuSYF1GlKqxybBx8iK2LCaH9VXmsJvsIw7bY+cv4FkmUyqXlWYMT+o+9K/zx99QSPYg8pk90SpUaw5LOSv+D1IUYoS+5Qdm3ZtvH05SdB1DzUYSpV5jMb8gxksjgT7awmoDh0wAgAxsQcF1zdF5uxJG0KUJ2L8VlrTA7PufD6euHr5y+M14l1XiX/QaYtWJ66gLa2/R3B+hZrB882a5TXqDL8PBUzKc5nc2dpa2sH4J3+dGQib89ba2z4tdZCBncxl/ZDxqNGY7+yycVmp6YWZb1k03PDW0o35F6IBVu8671goaTB3iMrzy9vZRtNiyLPoTSwEhQCwCSVi6mpr4OJgZpVRbl29vkhfOAmiJ9lfvms0HBYq3Cw/J0iUmjjNQ8KgScYOkNSAg6sEzEHOTXdMc4o8DUQqi9udQbevCM08/Jbc383JXbjdkf/7PWngaf2zNITbq65JgaCOXob3Ag6Y2ewrveaATiBgpzcUwOEAIUbpVsTIaTbUI7mAtHmmAOZafQQaIAAgkGoliVg3KxKh3ForJFi6IbrEoLe1X0OmQGJcqbSqEhv+EaVzonOU8BwtEN2cjHgmCw95NnJwfAWersO1NQUAcT6AEjPSEFcGaIJGR5uhmybOZVhHeNibXI84I0H4HkFxgz40dG64fF8YIHtPs2IxI7rhXH9giHURj0RZYC0s4nUGUjh3anF31SmFQtY18I8J9qn4+N4Ejg4J+Z1wSK1t/jM15y4XpdASGfQEmJ4eRO6izKWawUex4HmDa/x4qHkYluZwW3RKQ6WTQFyjlqOs+rfjZ0QWI5/P5BznME2k0SGUJMsjzMlY8w6TJmPvExzttudg/thjCkLkU55AiECagJwBShTwRp9KQWlxyFKcOgQXwJ0tD7RlFUiOwNIUUOyfNysmDLcC9k5MDvNLYmKdwb1kwfXCmW3wOxMam7NyZ+P14U1Fsw4H9eIGgN211oFdJzXKeMtpmLfXc7SJFUXJrmCGWim6GHWDa+1qpNh9A38MCtPiiirZbkm8jBzRcD3ji8FGkZ2cKMdOIwsC5IyjVpkzWDS4Io5kcHX/ZBwc57M4Loa60yTIKBjsEQ+JOSfhzFMov+sZ49AOUnIQ9CMWiymUTSySoY6lwRWZVsrBjGxBoMH9rwWrjGUzXa4HA82BnBcS4F4ALCDALrS5qlTwZJFg7fM4m7dtdov69221QaJELCWMMudZrydv9Tk8UaGZzKqyCZQQ4NybPMrqHuVVOu5EigJHD0zMLyXpcwNGV2cBxeTtcnxbwrOYKANX0G6swHtVm4JpEMoBm+k48+/WaKNNxuRKz+FMA9nR5NxrT+UpZVp2oEDFJLYenPO5mA2jcDTgRSHjlAjhgogxc6gEFYev2WT1yQTo8tpgDWkmTynGFRiQBgMu202LzPn0HykVkG+DxU83YaOz1m0eSYpqhwCkAbJFju+f9AyKtX9177GDiKzLfayLE3yWpu7hTwqKLgD0nELRnPOUKA+/53gcT1MAInGsGnDqpbj5uy+cw12qus6K9wd6zoZ7KPVHg8wOcezNUEsfg+DUj4sgzPZjsXkz2ueeZPFps1gPJlZJfovv6kcyWTQ3gEBZFCuva4vzgDQ8N5evsYycqcne4NAS79FvnH7e/MmkAcWV+nddzVqsBTIFShWTlegfsqHCt07lAwyt2IyM2aZxU42MzR1tUtpgeuaaAZ2FVJAsZ35HfuYcZwzIOXYeK2f1ratyr3IRF2C8VFMwnvZTr6SzZTjDWdA0/t21XOIWm9oIHs6mRgIgNvXAHWaSrbY0rcbDM/jkzZjXSrXcFhTp78JWCy0ZFLtJZjHE5DMl5zCWzlkZcUz+PQyv4gIJboWYo29pnKLqrNXhVSLDDuCyPKp1vbJc5PmmMxY1GW9jyfibXx4r64Es/SHzFSlAKTsQT10ftATwOd/ePPyXdcKIHvmZBIdWxMsgcvaJb4HV7sXBqq/vu+U7bdSjBbAXLffxL5fKAmUgId8XIVKslO3JN1E6aSZRKlyDvvi+fs8pF2qVulrToIJkMQC2OM3wrTGdyyVzEB4gOxDdoLM+ybQS/84EFXaVY9+k5/A5LB6N+lncj9cg8waV2Jm6ryfc+L5/BD7jfaQSbiA0k03XeKkUGAnrVaynBfZbiO9QMPRmYRN5r9LJ22uyfgs9lmx0nP1Rt9qzT1Xxs6XvR/pYdbeo97PqK7hA0s+wDNPNqw1MMYLD3+itY7e2K36eg35CgCaS3+WrPhfv//C3//9b3j9/ML1+saE7OHRscakZqjKkI7BTtTXItjkR6/nCi3FXWJIhox3Axb313E8cDyejF3CkB0Tr2vIT+ane2Ozpjku+aLZhXEhck9yUoC15Ns4WsS7sL1GPK2B0nm1vxDZ/MuAST281gzW6HNe11S8P7TNFtA6mml8e6c3uuau0skklaHWR2ssJSTzaQFr8K6S5BL8HPcPbVnaT+vEKlJnE0ZmkQPs5n3zhmcZFqpSEYsJwAy9LazOzsQL9Dm7NYLMcyLGC70DMwzfLyV5J5msxyFiTtgGCMHnc7DL3wx+l0PAbmPH7STx/LPXnwaeZt6AcwNf6yz6FRoXKje+WBELmKo5neblQF86CBtjc/gdEKgFLc0TiBJqq/7UYb54jHLSGbyk4TEAEZ2bNgZLxtzg1mFguQXXlxg0iWYamR62yGiJGnLI8VMtqFp5bso06uYNCrwsP0knJuYWyW6t4ehdrQmBsaizs6QL1LxVacR1Xfj16xe+vr6r1Tm8wTtg1li+EyCaLMDNRJuOxbDkt4/fcF0D1+sL/uMHHrbwGlOaL3IT2g6sa5kZM/RpMCjnyBI7s4bmhkf/wMfjBz4/fqA/CXAhQiCfyzkymETKzA3nxbE4unSrFOhkEJCgSwSKKjzGpqxXB60gwd4lZEqW2G4ZvBSAEDTgnzGXyqM6DRvUlWFO9N7hjUgvS9rSqabA35oZ1EjEe27U3nvTkaYRtAwmMk4J0rIjMOdFB9pd1FLd88hSLH4+13q2kh5jYI7d1jvEtDNviAWcY2BcfE9rmiPty9drwmyhtZ2xz3r5a1yIWLhEwZ4rnWQvcOH765ecMwWM6TRkYTQMr9eJMSZaJ+25UPna47aDzRjc6eoJmkGemanVOJBitvWc5QUuBdr3roBcH80zsJYoK9iWPCn7zIQxSJ1zcHKMzKOhw25FYMRmJiCAmHnc80hDaH498z0sjyBr6yTtG17Zj8zGz0UwwZflmYHMauf1MzhuWdITC3MN7kNloRkIq7RjAbamGFUEVw5vWCsNU/7VASOjwOFbzwnAWmQnNe37x+OpTJyXmHXvVqyuCvS0vkXqKFAxBLzPSWFEiJ2Vbalz3wSAEcwezDW09nfkmfugupkuOgUMmpkBhJEFtHKNaAAzqUAQHNtBMN0H5NTm92gemqdN314Wg4XUM2u1dzLISpbGqjKwdDiz9bMy8MiMap4dt8A6D0FEnae5Pl37B07wMHTGwEJOctruBAfTwZGjkgCNuwDjexcc1+RlAMOgqLVk82YAH2XLEixdN+cnxyF1EFoxc+iIR9oVl1h+Ol/lHQZaV0eCQJXCFN6j/38H9EOsBo1f1Me1NjXaN0BvlzDyyptktdezOUWBCfxvQdn7dTgS6nKje8jgxQD48jcHMhCqqjRsJEMu/IrNDrSUCsj9KxsUQDiznabS3jFZ0u/lizSNEc+rtRbQkvXF6+e5Vc+s9RcF0uk69q43ZbFIal+g73IjWxiYcXcBE0z2rMLoasRyioLfS4AoS9hoEynwy0DBFstdENJC0T7FMiX7ChJBMgiyFNp0nrTycv8xoJ+yRy7WwrVGrbMhtqQQQnXq1XwuaF35Lbsdt3UHMJko259CS77P1Dten0z4LG9LPVICeTfgdK29fILzsuq7TM8kH0FMD9c+dQBjRmmW1P4VOG3Su8hyjWJerOyUa7AEmaVFUr7CTfvsnbXue+1Fdla2CthSnyQfKJl7LF9SKZtsTChJ05UAOc+TZ/UYLEntrdYtWTSWztfGqdKY3LbhZtpp36Q10f27c297BLILXSaTCKDdGO/I7wXtm8nmGxkrS7YnAf0s/aOMAlCsRBNEaXldrXFnSVsZRZOtSuay9n5cez6W7sVVTt/7AQTlQLjtMnmx7XgeR0OC0F3lrnOlADx9Z7jYm94AqTg0531WR64gK5wWT/vnVrWyFhOsLq2gagCiOG+ukH6RzuHFSpVAqMKCiZYpMF4pEDTvaN5xni+eNwLhLKSHpAYbseZmmydSl2sZWZWxGV5rEAxN8Cv9xewU2byXrZ8qK6gug7nxBWxbAjA6F/JzJl+stwOwAysmWjN8fD5hCPz8+Tt+ff3E63yxaZPGKjDEBjWgUVC9dcP5feL19Y3z9YU5TsS6uB91Pyto+17juwDVJs28gUxQpE8d6I+Oo7PMSqQgwIHeG85r4uv7i029rBEQa10SDXovHD9+PHFhIH49cK6Jeb4E1ToB5AhKmoDjP8fEdV5cf7bQFtlOCWAt22coQcFVpeOmJKItCeV4o2yQ4xYXsGqrNcZyvrbO7VzB7u7GUluWoPKMgvZ8rMBYTJbQ/WUjMFdsPdZKPizF0mlBtChNZyPtasgGoBlwBeP7RdagW1P1x0AEgaBwhx25BgInmGT/HtQEa63j8IaHN/zCxLy+cV3fGOPCFVNkCPoQy8EqG53pJvtcEViIcbVCe4cMMhZN3Azsf/H608BTorhm1CJhJxyZyWzZPrgsrwVEeDkuy+gUmBOViyDSBqjsxbbTp+cCt9B2Gs1VB26clqyZh/ZY70116aISR6NmzAw4Jqy5FrG6Mai2spvXQWZm6h4QaEtU2Fv5Eh0jqxpej5ATWCFYOboNYg3qKEowJELdDUpwggtxKiOBIJtmacGPa+D7+4Xv14nneeF49NKTAazwXeods94zHblQ0PHx+ADmF77Pn7B54bCF1yLrxZEU5yQPpiOQZVcBLAYACeSksGT3hqM/8Xh84vn8wPE8cIHB11wT7juL4a1xl5shFh2GNNxkp0jwLBLA5AbvQutfl7r5GSTOnd7XKnr8DCL953XWdTL7j3BpawSzD5FByaI2yRRgYqrXRk77qgMubo7THARyrKm23FR+Mrfxa06dB6L2KvFcNBil+aQ9dJ7fZHw4AxnWGUOHcZYdBsZIBJqGwb3JKZi1Vs5r4HF8oHmgGR2P60qHZlPrc4zGuOhELI7P67xwtI7H8UDmtl6vF7JsBUCVq82xs7TXOXBeFx5m8Nidbnb20ZCdtxBXjW1lx7T2uqit1zmKLRbpdKSN0IHNZ0pbEOU3rHjfb5YOGVaxb6h1wM8sKBMLUqWX1p/JIGc3IIWWZQ9o2riO1qAGyrWGGBgNhg5LUnDsLMXKCAPbocnLLgUiLtbhjIFJFQI9rxF4gmHGIHi1JoNfddPs1tUpo+6UDqaRsRgtg34BRIqvmtZ/7w+kkxFLABLWm66HiXUYkXYZdJTFJyZILz0igaPrBvRoIqkPpCwfY7PMpJvOHK4PC2BIz4ggkgPobwFEkgiKau7sEpPXrpKIDIrzfrQmUucpWRt0WlDv4X1LN0202XTaq3RUdj8sD3KteyPMX2LHN6ZEevpbOUZfnGXOUJ1/BjzYjLd3IDDBbs5Dubsaby8aiNaxaQ0g7QHfu0tRwCzS3aHLOccScMrgIvV3UuTUda+pu0tnCqWngkAF1UPT0rpKgFaIpZGBOT+wy6FvmU7ThbHP6iyDyuBh2bZd+ZwblNolpKhll8G+7EiWmNQfq8Cqygu0X8i6dPgSoJLTe/NXLHIV36NiAplWN6M/NbeoZypmjGjm5mL9mtW6jpWBWTI/9Pwr7YjAdM9VIjtcAFaOEUE4skwtj90bwJChnlenXzr9VkFkPkJExpw619zVKYtUCO6TRaAmErRxPSegwqAqWYC61ZJBwnFf8eK8TNqS7DRElyHnPoNy/psdYlclHABqJc1Y8EZtEpaZaIdZ1HPv0ruV01hTCqmZch3mHOQco1531hhgVQKTfnO9D7JtgrGzTinL8Qiqzh0oZwmczp2wuQNcfV+WeC3dfJ65tZZuYFITS6BYM7HBd5Qd389R4BMA2NSet71nLT8n0EcaZUh7l6+1KhnbHg/ZTN7rEAvHewewu6PxmffaLi/hD8BNBn2ZTFhaK+6G7Lr3XsJ6+5OJqjlLJyvR1QVUaSpAlvYSEGSyPVM+CKy97X0eCTpL0xZYJjN0JkT6H+ruaHYDCeM2d6ZHJUB1iIm+7nsz511zmA+6xBzv1jSysdfzVNJL7LFk+2dX3oXUS2NXxYiAI2MtAoQhX2vOAazORI2SDa0bwqgPDJj8Ns2jSrHWDCV4HfeEFf3rjuYN45rUO1NclElfiHGirXHzDfbG5K4lc105Pyx1CGwHfaRFZA+xFqyT/UE/MucXQlsCFbfYPi8iHdw6H9K7p5i4N8cU8PR8PDDmhV+/fuL7m8ABEOwCJ2YlZZg4TlkNM9fA19cvXNdLmsKsbjHZsxnUCD7HicOJIM4aIWHTM5OKCy1UqeLGAqMW1N7qZEx+v74RMBz9Q2FfUwd1wJ2A53E84OvC9XzArhdm+vDY8jdHZ9e2Zo4RQNjQeC802akROVO59bj+4mbLdXCyygpqhGU6g4O+nBm7mvbW6bvNomUwJp0BU81W90C4/Hvtz6W4tc5Vdb5sIjPMifLzJzIRlCsg7VOefbT97IYMrBFFtlnRKCswpec4AesG601s0IWxAiscx7zwjCe8dfRG4MmC3ezmeGGMgRHsXuqWRIi0F5utmnXht0peaPMixmI1gbd3m/1fvP58VzswczvngnnD58dvuBbFDdtxMONgE2MFWmN5wVgL5kSTQ5b48CwP4EOuRoreMgZWbNW3RHVjhvnwhqTy8XM7K53MmHUpOLFPVLvzqbadB530oWByXBNExAl5Wms0ZIv0NAAQbkZKtkwfRJt7PuhMMHMMtVYPwBd6GrY8U0XH9iMF8ha8gyihDt5mDg9D6wcAabNIQBQBzJMi4D0O9GhFNw+w66UhdocCA3ASsvPu8Gno0eGrAcPoqAXbPMINHbxXB2n+1yRCSxo6GSAuECoR60L2u2N54Gu9EPNAW8BkegB+PAUY7cOgi6b/sA8AAbuY0evmChRPfBwH/PnE93VSOyfFLx8sLxhrYAXUmY8G1JbR52zUfvj8fJaTMQWYOaWgAWuYYRjz3BvIISeNHnWKzJJSv3CqFj4ZAylaDATOa4iuCzkMPJpXBF7lnGdtOsvcztcQzZMZhWXA3399YYyBj48PAMDvv37VuD0eDzyPB64rMAeq5ruZY6yBr3Fi9MB4cu2MMRFtogXw/et3xAoJYd+hG+i0jVtAbbCYMKH6KcRsqZVWzmgCvJCWGtfD43ngeB5ysumImzvZfQW2TNW507wlwDhBumlrHWcEbLqwKFcbYjLl3A39+QDWpF6ZoiDXHr/mhWQ+MvDRuraJsQwLDUd/wIyBFECaNsxUYSktLDQ+72pIwm6EOlukiGUGeEEwpOHgOCb7AAw+AaN4YKAOoTVRTIn0v5sCmSy/G/NSUPVgyYo567BjYbwoRF6+SktHyhBBoNXFcCpQz11OhLLYIJhKYDUzr1AmaAcTCR6vRSC/d4lEtoY1J17XiSk8JsvClpzF/jjKsXEnRX4K9M/15Laz8Bn8F6AnMdd0LChNwuQGjGv1cVBo/roGYjJ4RGTGXuCobDInDYB3BtMmx7ltzZPq4JFOwiLNw+bgGYNVZTypUzRH2lwJt1sjo3JNPJrDjwMIJVoa7d2YQ7uRpVitst6xM6V6hnMNzkN/AqthLTnTgbJHm9Wy2RcZFmYSIkuL0EibD0t9IJ7tKjjgmtF7UwB2i/JDgV+TH60mDVq/YwITC73RCc5xhINju8bN0UpHh2HNnY0DBTN3b8ZMZUcFfilW0O+bEjLF2tB7lpgJ6fQnoF8BMKC21lmqGBs0WmqHjEhEkgGJscS1gvAbsHVff1t/7rYmJ4MVmh7XWSMmlhMg3myIVs53rCnf4IC3hkPB25R4eYi6H2AmEhLfZiyq1abytdLlySWT+GJAIIESbJp0tpa3AvWXwGUzZvhHsEspltEhd4nORyAFjbOsgex1OqzJHIzJoL1l2TBSK8Nh/gAMPLeDnzU3PJ46u7xhSXNkTAHQSii8XgKiFHxwLiRwqBV/rQRN93piS3qv8pvruvD/p+zftiRJkuRAkFhE1MwjMqt7uxvAYGYvZ///k3b27MvOGRxUV9clMyPcTVWEeR6ImEU9CkAnrMozItzN1VRFWPhKTGzGKUElcJaxteQu0Y0R6EKD5DRTy0SMCPmLnzKDUQVFzVoFUImYu1aeZiVSARE9y3cJTjjGPSl5O0fDGPQkwoJUDWzNNOkGPQHCZyWPynxQXOUnWclrDekR0jMUXFkjUj3bAM2YLMgyVGs3FEjy2lnnZCrZBSA5PqXPlBiYvkfUW2ObEOSXSHgrLuhvR+mV9NEWAssm0cMAGqbyd7zuo7X6LMMOVjNVQFtKv+cSdQAL6J0PJjnzuUQB8SDiRnxs6AblUZUwpa/uwRgiCeRjzULwVOEyAHjKSUhHO85LpOmgL/YmUmu2ONHXuebCFZPP1gzTaH8SBTvnVOFFSMTYKIuV7f+jbSS6/OUOvn+o6yR9MHeUb0y6k7RVxphLySuSFNMnIiqEz3spPujtUV0pyy8BH3gOejfAAh+v7yBCjgnzBfol55z0B5rheDzq3LkFTp9KiGUBOZ+B1BlMkiiB6JSb3P4AcC16CVcOHUk/i5oEVYRL/ZqFprR6mbhGnn8mwL88H7iuE6/rxQROOH766QvaGFgRmJfj+7eJWA/8/NP/gre3nzAeX0QUfhsooJbg8zzx/f0bfvntr/jzL/+Gv/3yN3ysDyw42jEwfeHb9++4VuB0h3vHcD6fudrAmqmNDohl+P7xgd/ev+PnP/yMt+cTf/h5QAw1ONDw5Xji0QeeDfhyNDzfmvijHOs8+d7Hgfb2Ff1/+894/dGwzne1/gWeP3+FBTstIlF2zrJdz0pWB2cniQbqAs/hFRfRqQPybQN9LbQAuh3SwTk1O5DtyKYhRhFEZJ8nB0/1Y3DQzuhADCAWXrHQPPDI1vbUzjoXYYbk072y20lnrQb+hKGtRIgr7bQCbkJDzUYAjfOajze2QntPTa1iDwbiBOKcOI7O7i9MdGv4h+PAT8fA8SCR/Ov9hMeFx6Ph8ZIt7g+4kWx8oOPZOq5w5m86Y+vX9Z12HzoXRwM6MFxIZ1hOB8Dvef1PJJ6k8xZ5IUY/2JZiDC7RGkbn4o3h1cJhdssog9UrZrEJEfNG1M4MJZvUrxiAuDEE2Q+rChDbXHiwmNdRBAEj2WLhufd90+mPCkoJCe+FagpdJwRTTMcyx88aQq2vgs6ZUaCAujcqfU1Hqk/WVyFpEl4cRVaZhasOKoo5KajWctpYqLoHJtXEc0I/moZJOVYaCyllLGnNYGXUtDaRhgvkQRIydldoggmihZszpLVlJl8VtdYQjUHGhSTW48M8WxcEWdxHJrg52CcKBEw94b3TsV9roT0OPEbHOcHqYzpsjWY/e/VTViKUeAKRMmgKIhVUxaRxs6rsK5k3F3L5gUyoYDtcuespSwD3cONTkH3tK4OaZjXqNDzklIScfMMlJ+xcC80betG5BT7Oibkm+sF7er1m3RfQ0Yw928sDWSRDo6I6Py7MBzAHp3y4lEYAeF0n4IGjDVZQhHDhM8kJHHTeo0lW0jSGkDCeVeMMElQVw4aTZ5IWxpZAZDIOG+lEu023OeWVrgunxdDByz3i7Msk5mWooOBOpODhVhVWVtyYaE7iYgTbkpifyRD8FnBmlcwyJrNa8wpmI6u1u+pbhxYZZOZ1u/SKS3qoqxBJ+BoMWgyV0EsOEDoibXMHKLDjNTkRxKzDgwmn5Apo0leZdQ6d4YhdXU8UA8xUscg9jL//eyIastYVu01nKTkfwaRgbya9tNs/6pxFHhmhy1Ya407Itu39gJyxPOPQemdiB2nQb+dUNIq0D71hDMO6nNWbJKBs/dOeZUsmA4pW10qofiYIpD3rFfpv6ngKsqpBkucQiXuedQNthbtzOqI+u9AASthkookomf2Bqee6hiokcWsXKTB/n/fU7zZKF7gnY4iNUAU8uU4yqQJN+PRd8a7sH/b5IsIQ9Wz5DKZPy1aeSiQE4K3CtLxcriT/tJ18Kuet0DgKStte//x+tYcll0rkk0YFNivFKHVWPUeoLcWQg0Bc14i9UtCPboFHPrPV5yUqLGqVdRch1//23j0NSdx7So465Hi2pnuUdWlEVPF+W93LClbWq3Ez41zJLttg5FAibwTS161UhfLYqERTblGupdYq3MlpYyzMWMldJgS20LLgQkWQz1mchVDbK6Slbm0RjBw0KAHZ3qBCiN11hEyXB6yxINb77YHU0maWFpz3RdSluIlS4ipJof0JIWxuTsEnWcN+7mhRKEhUAA5shw63s77XRrklqeo8qaj7LUSx5CrlGemb5Efe/gzbPgsyuZnnl8aAz6IVUZwu+Wv7PEfUn7kuUWibkJ2uU5gLVJ+VPiqfIdv+dnJ46546mJ8kZ9uMnUTf/thNloFCQ5T5qATvDXuVrdQmlFqy5JqeI5KyYNsSIjYT3aTv6/PTB66jEnni45Ovk+sCXS905ng2xLPZbtexvC/p09jiDJ0/qFx4AwlrPeQ7RCLyQ0WjW2EsF4oO3U6Shd2eG/LdNT7dUsgykBaToBIlRbQeodtmN0pPZK9vNHEIXZfJblgW5fb+VrJVds+yU0CuFflvOm20kPkpk8lTt5ajdRaxTYTj09kmnfKVSNv0uRMR40i0aLbG5jmV0o3Pej8FsUjsc/9VvP17oxf1vU2pYPX3bai5f0fvmJOTfOdc8Jj4yb4wkeRE3lxXIIKULb2/wdoDkaj48kf5pzsnNL6uF97Pd7y/3jGZIQaMvvfrOrFCHUoQAtmZ3O+W/rU4Lxdj1PM88Xw+cAxmgMwYRzZwiuFobGvrDWA9yLFIXiyZMmAM9C8Dx69vaMdRPJ9tDImZCl/qzumKlct/CaOP4EyML7AA0sG4I4QaV7Bc+1y6xG96uWIcFq6WU66zq6kVvUPsSaTbPNR6VqyhHyx9QJqyv/tCjqSg/W1gbFO6LHWNQDJ7iiy2v6Dzn1ySEYYehiOLDgZ4LLzmCYejddqCAYIHlvz9gYaBgVWDOKiP8yS5JpX2FsjhWg0NPeTTZMvBv/P6n0g8XQyqDgPMcZ3fAWMge10LKxbJpR2seLmhOwR3PNiaF47wE8uZHOtgRZJO0aTQG4RMsFr8KZgZJmCDo4evFcDidDf3bRx6D3GdAHg0HHiDg5Vwv5jEeBtPKrswxFx4XZP8PqOjKWGWkwE4oS+qsm0ROB7MZs5QK4xYWWMF7ADaMNXTQlwHtpVOazrAA8uJbHJiCMuJmPOCgVX6azrWeuEvf/sFDuA//Md/xmiGj9dLzghhtsdxED3igoY3IqhiTpxzoR0H/ulf/hl2DPz6/h1oXwF7sIfeAEKGJxCZ1QjAJr/UbnAl++xyIDpgDzwaR3mOY8B6J+JJB4EZ5o4+BvpgJSHccQUJVtkU2jEOknS/riQHc7R24DEGrsmphS2nKvZ0XIVeTQgrCmUIn6uCAjJSDSFO0lA2PMYbzvPEr7/+isfjiefbE9e5cGoEawa0EYGZo0EDFdxlPipHfF5zCvKcBjRwamrE29sbrDW8vn1Qjhb7iI/jwDUvEkEL2XF+kAB1LjpqHLXJVrkcvXmdRNg8H0SVXeAEyfNdrTVh+P79HRbGUcHDiIhDGn05dkpenOcHAkAL9aYrMZktJDJjW9m5EBlBx6z3jtb7bsdrWflhJe3jQ2Si+gICEISWRQHf0yl1bmgAnFX01zvS81qx8PHxTv62OXcg5WwJ9CbkhDvG8cDb+AKhinGoavc6XwiQVDRi4fW60I9OWLOqxVN6JQOb5g0wUs26p9ujSnGi4FoAn91T1FRGBWkZzOSo2pRbXwHrMsgZbLQnCHcdWItQ6KnEUx/p3DORGGQzRyLuDIGZbY0K5pIcmqgFyBgq+Tb0LGYVdG9HUEFYS9TQloFwOdPlTPJgmFoHrouf39oBRIevDqCzxz0RNXhJxrjGAFtKoya4hYjNWeDI8bI5zrraiq2JENd0fkWsv26JcjmGyafHxOqNZ6EsScrhDkC304hCxNgwbORPqk5X4LkQa7KHvlkFq1mVvbd+uU9cMxN7eT9KJBp/x93x/v5e99JFXpNB61wTzVCE4d0McxEVevkOkArVY7fpPAZNeWTgYtZIXIxADhHI5EUhNAC1bsozSuJ89mVVYJGtE/TL7fOzCxkncbwh73JKytYHRRCc370lSe5DBQBU8nsjNHZb4ydybO39/ix+BoFXUcnIKkDdW+91jS5y/GxpgWcL190JUzLZMwDjZUyoAJ+zHODR2caQE38z+OsjOSZzTbKF3/cQivZZ/g3AJrQ1IAzqosNNTZXs5nTB3V4VQBN5r4L59GWy9WXz++T+mJJjxsqoAZipFZmciuLMQu0Nqqijz5FtjUAlxHpT24sikJl2RY0hAVPcJSRliUhUEWi3xkGj2sHKPhLcEwCKFhjZrtUs+aWiHIC5FnyeHEHeOhET0JhqA6550tYcRMat6ZVZ6GUnJR/a02YBaOpeTfy9tRGVzFfb7E7ApqyH/j0vdiWkzPfOlqxD09hsidcpAuh7etO9la740ExcMOVfWbXlMRCjr96aeE4gP8NSZ2p1taeVRI07R5ksQctpwb4D9FyB0n9pQ7euAaJkKiLgH0K2C/Vig5yFLgSptcZ2qGChs7WGcTCSDScCh04l9/5Qt8N5nggLodcMA6S65YQt4UatyQZePCdJNbG3HNnedddByXF6XRqy0oeKT/rFmw7aLYpZqDjQbBevyWlKjsvjODDMqhUMQVRYPvfz7SG9HbiuE+Gcatds78dKeYG0dpCbcS3pJg+cc6P7+qEpXUl94CF9dZV+GePAoz/V6cHEUzNT2z/P3ooFn47pHe5CE/MnYPGa8hlO3/lail+Q+iUw1wePnopmRFDRV7+ul4ZzfJGMkRfncbzBbYmr0vTsqSG8ks6ZVIibLAYcSKSnkml3P9qXy1dC6ZU1Ha/XhfO8cJ3iyW0PeBjmCnz7mDhfEzOIPMMCfDricjzsQPSOj/NkylN6pqmw/3GduNbEBLuQPALz451nrKs9vg+1jJ30D4J6v4F8U+wkarBrAh8X7DVhfSJeB2usa8J8YmByIvIyrLPjCu4JEbRDBVfyoA40/NPP/4z+v3b85S9/wfv7d3z/Th/9+PKVNkOdBkfvtV7LGffM+Wec18S8ArCOL8fAjAvrNSt5Mo3Hxh4K3CZ5U681MUZDHw9yvHqer44+vlB2MbC8wxbQxxO9Ab3nZOwDAbZURnZ0lF6T4kufGIE1L5znB9GHcxUFT/rQoyd/KOObay1YG2yjXl5dGhGMafoABkgh1I35DF8ONA7r+fMvf8XHnOg//wysBR/ABxznmvTtECKwh/IvDdFRZOXTLyACSxzGESyQ+VzoEejhODpjC9Gb4/e8fj/Hk2+ugAADRQiCB/EJxIpC2ED6urLZuBkdCNrmYCUCWfEHkTlykEq5Ci2RPdt3zZ2ks0i/CgD7iytFwFYh/ZltaqbKXMgDUUwAmDGTH5WMFNXGrqakg9LyLmR8cbvvXelRIKj71J1wTRMGW9BV2/cCq4qwB3l3Pl4vbqsCLS9XzuR4hW4hqtki9H4YQA4l8RwBRIzl2qWj+ckBz4PEfGd6xi0SLRUY3XDImcl7gZHjh0grVmEti6OpoANK8NwHymua2lRLizUgJiBkkbTIVt2ShXQ4KCYKZZompXg6T1GG3swFLVyY09HawlCigSgf/k7vlFkXiohyyGRLjf2VH+oZ2MU2PDmVMOHK13WV8QVQU/GWemTNbsGV2gY4QTLQKpjZGfSciuXYidGsqM2TExUez6HAdJOSV7XAstLFfU95BvJ8WG5MBRu19Doj5bQCu+peDnFuWZ6Pz69E0pgZbN2+n0dJ13f9fsuiaEZot1fUeecJcxZ0WS3zXZnYj6DWo5tY5vfvl//s82a0eP/cuuO9dvb533UGP70He91KbjKg1fv5AMhKYVSAsZ1vyAVKHWhidM9WjagN9L0Pd0VWewHcE5P3+yr+Acs0pM5ZpIOtJK8QUDuEU1LC9L0Ug2xLScSPnPEm743v8api8QPv626f9qxalGo39nurYl7X2euOH66RTmD+4FPwjUBWnpmcpSeT65FtIxl7V0xh20FPNMZe85TAPCPJofD3h4UObbYN6wYtn7ZCdWQLG/0du33vx6tmQHiTOf0rW43Tpm05i22faklT73GPqt1ve+L8ed6u1uS+B/k3u/39R4XxOQl1+2kGAjf7/MNj/iDvtm1QrVnur9Yl9r8/JY+yJSgvo+ttLbLv59MtmN34VKJ+f29ULdO+C521LSPx+Xdv5zt+0IWfH91q3eO+BtrE1Dn1yD+o1kQJ5Ocw8RR/Zw/SMO/P+uGe7Ef7uJ2BSDn7dO/7eROlSf2mgohloW6Vp8K1N2znLVXpfl6u7ZbvJII3eH1OEVM37IsAqEZ1fY6lTquvHCqTa6r2ctv76O6IKujsNuva4aqYa1UTdRSxzU8iMO4bvQ/E3r+4Waf8eygxc5fX0vO3c7DNN//UmU453bln7Quy4PHjy0rk7sov9UTERkju100//zcP9Zav+9rf0VF1lm4VeItMLG4uQLtfL5/ZfviM2yFtku2pgkzbO3njbft886kfCj2X+s/yAVBnq85Z3OVAsm6BzVkVQnPt85PrCsNOWAfbyhBRPub9kO/llTL6rIS3rvlkC3/YCxm7nEjtHuIYQz133APm9Mex7yH13f1u7uuXH5ucb3Tns5NhP0gWbFprO7JIQ4yNpgWSyyxjT2nZ2IFzBAoJXByR2hVebSOWf1jM9GJKfm+1hv1cdN4LKLULUSzQhzuHM3UWHzlZ2xg3Ks4mf2lTjJvr3RijKLhbi0mO8zyZKPebfqnugCieQGhtUTadSbfwJnLupg4YI6ftdKxr0a1TAv/o5FHqKmzVGQ9T8fCmS8Ai+s8//QHn60KE4fvHNyLw+lBeABhj4PHYk7KHGcZy9N++EdR0zkqSttUqvk6FlejHlPWKOy27sEIIqUTVU+c3ddJETqJM2wzo/OV5TeePMuJohdoypP1ztR+vkjXDJxHm99IWIdHX+zMhXbMUgyVlhQ4+YJnIp7SSizuUUGvwBqykk0i9YtDfnVRHFkKsBwBnbkKo1HDc4lTSKjXc9dW///rdiac5P7ih/dj9wH2goSPmQqzgpCYHbDIInhdZ6QcMFk0QPqJ82HcLEXRB3EhDPAZcTNdq8N9GoV+EXRJdQAJeWJAsl5kxZCCzrgtrTYxGcrzeHzSQynKvOZWgMEQjgtNAVFOOcu8tCXQ38kkdhRgi42LQYQj1bzbrnELl1CrlVADqLwbQweyiDVwxK6POSuVTfnuZHXx7f8HD8H//f3WMxwMzLrRYcH9hxYV1NVY0xsDr46Ril3MwHm84zwvfv3/g7cuBt/HECiJebAlO6BdYPZglQstfcL9gzglkhB0aBgYevePLc+Drc+Cn58A0U5adVdCWbWividUWol3ozwf60TkBbgGvecGcKBWPgI2Bj/PE+v6OL19+whij2Pzn+werIKp0kkuPlfi5uNbLs4+fKKsxOj7eP/D6ODGOg2TejQb540XUVSCw1omP10TvTHa9LiZtGri3YwxBS1+ENHtgDMrHeBxyhBuTZternKreG45jt/Bck/vi4vsZ/YG1yItx9AesGU5VSFrvgBuz3EYEXagdzhs39lKQOsXJ1GB4jgeOPvDrx1Q2nQr2ui701vA4DiozGF7rEikmW0ASiZGOJDxEageYEErUP6yaWwDNk6hxv5oqkYuYdk01JNIvFW5T0prbaQRLRABroRk5hNIwLDl7a61qFxyjw45Rvf6GVr65B3BdJ1p0koHJIfWVRpGW3n2hGfD29qDE+8Q1o5zSrbzzlVX6DLBv1egiMzTkCGwDlH+JG5oLZXzSsSmfNwN06Yy1NNFwdPSuB5sL5nlv6SFTLqrFomVyIITEF/zaLzk9e79C7b/pDFWQgJszL8OWCYn8/iXOCmsNfRzoXQjFCKjBvshTy1m7OWBrMjAbpgkjXUIFx8KF8A4TyDd7rsK1IdHVPhEFz67n0j2vEFJnTXgPLEj+4CSiNRM/gDiujAgDIju8qliOtZ8/nTQ9Q04t1KwUvlc/jU5dudE9dFxa2+sLqB35Jl/p/+d2UredyJVj5QnwK6vcg9/XmVlQm6arHGEGEt3zop/sJOjMw+9yLbubU0NvQaduExVzujreAgqke166gr8dG1gKOrL1jUTrNxRSciymw5gfCICVKv31FhBB+8X2R17n8fh71ybjUjX/7x9Y3N8lXXA/9ahz0NrS/tzQKq4E/m3K6T4ve18/BSl6iMzpeiVsFVx5JoHJqbQiMMVTO8YeHpIBah+1IHnDqFtMmU0dpGWc0gsmmoJ0XikeXMcxiH5hKw8To6Y9s3q8HwLS/ExwmhVNSQYe2cpiwL3ImAGx7UsMyzb93f7SmvxGCzgcV0xx2KC44x6PIVvONSZ/mwMO+QCVui0kSVuX7M92n6NRHzdNs8tOvdAeE1GWCSjap5p05UogZ3G2kWdogjbZYKxkm1q7fCNpPTbSLXnFcz/a6FWRD3eOt5c0ptwmSsjU7nL0596btDfVdogKdF1nkzYaRF3JHpXWjqhiZYPiHACjESlB3j2tb65zmskbOr012nAicxLtt6kUesV4O0jfrdB8j6+NYHPfxXFre/L0GNyjBg6hOdrABNhG9EPSIhEKMxa1rNFeRez2rHkRSTl9oavdehiH/cRUS5BIl7NuN53XulODZSusryR4Brsn5tTZsiqemvzS9HU8VqGBUtnmPOVoTH3NTKCIysThmmziFZwOZs6kmzgdMJHLx3FI33HLzvMsEeqKc3JvyOPGqcpZEDf5Mqlqc7JjoucSJcoE1K3kWTqIZ4b+3z05+gDQZPMdx4M+g4v42s3Rx8DXtwfO6+T7RN5iiZbpRHSdrxd53KzhcbzBjAOpXO1sc068Xh+kImlqH0ZDqJ/FI3khQ/pBLdEmDrRboqBr82NF2Q5Ksn7XTPeSxSn6LY+vX/D25Q3PL1804duAM/A6A8/xwE9fv+I5GkZvmOfkdO5+EKxwnVjXxLVO/PVvv+Df/vo3/Pb9A69z4nGMG4LTsc4L4wAe/cCCc4DWJJjhOJjY8svRMHDYgB0HDgzYBM5vL/x2MY6wtnA0w09ff6Lf+ngAMRAwUds0cedZxajLA1+//ox//Md/wtef/4DvHx/445/+iNfrhXNe1LVj4MvXL/jDz3/gdG9f+Id/+APMgI8Z+PWXX/Hbb/8FAXJMtTYwALzOE2s5Hg+DdSPvIRq8G5xj2OCjI3rDslY+iYfjdZ0YR8fbOGCPB8bjAZsuf4NtfJmUXJF8aUDkFPhseQxZFCPKLdGIidrPVwjpmL776B3H86AvbU0AD8ZG0Zj4HG3ggVFcgMs5ofzRBvrR0L8eePv6BceXJ6UtHP694foArgbO5hhNwBDHiQuveSLGAA51s7lj2Ci0t2NhQhxnvrAwcTQh3W9xzv/o9bsTT3ko7tUJOux+c8SzurYRQ5YeQy7uTQmFkklmqhY0Ht6l61H9AwhOFGhhSkDpYgYZFWb/LQ0nXQP5M7dKg5x2mJzhTqhtWE6q44jGMqqMDBUEmIwRK/VYoQqK1bMXOiFvDqb+5J3hJ0eSY3nbcHwZGlYOTE6+MtZyiudcuC6SbUNZfYU+XHfxDzFDfSNHbcA4OuaaWOBIdocmuHWgaZXDL1g4gqMJtQafM5iJZsoRuB5RCKWldUzuCXcAS7wgkpk5SSq9plA2iw7kdc1q3VlCCF3XyUz9yZ+Fdyyw5awrYRHBtbjmVFtkSChIzPx6LcxrceSvCOhM1z+vi0ZC7XTwRG9oulmkcoGcPxLJmuC1GfivpVGSoyvIt3L603HKyudKeLCUxrUuOgQNtdLFBaIkUMYQARFxu6qoQQckcwams9CD99vBDL/FDpIDEG8Q95ITM7cBLO6ElHfrELFZOf7p+FUG/gaRTzg26rOirlWRdCmmEIguSl9A1w4zOlCC7zfNahVjAistOndypciFICe+mWDD9fwbU/dDOFmGfk/UAdIpoMN0c7otYI3VsdQ1DKLT+Ugh2xogFWGTc6lyegVn6eCaAj7Le9ONOkLEwTQa9DWzxoqtjxNRaRASaZax2wG/S+96xh8loxWjAju4uJ/9iNJFexWt9jdqNRLJSMPLpHyW9PRsGejb5wp5Lh1lq5OPRBH7rtCj4lMLw6fKaQYp+0EqEKHIhDhxtkfcrFx27KEBBiAHOOQ52K0iVtWeHbeY1qXdNt9wa6tAbIdLcODI4BRCRaRtQlaxUYmybKPZE9Rky2LvBW3ALekYmUS1OoO7smylV7ICamXblYwUl0ZVye9nN52qXJfA7vmXPa+9CSs528WUH+VL9cWMdLCr/5/ef/vFNLVh+xlTF97zIJ9kYz/B3/0N+tRP37JdsdWyolCBtUdRqOz9Wbf6fSYXELcumfrLfjWrc1zPXbrBJAOo/fh8vvW9RFZpLwuBU/pXrbygbOzfvXPCbRVVa96QoCXUQihQT31gNxlJxNL+GWrD5El9RovUj/MMZZIxZdp1z/T/om1koN3WF3fdnGKbvpJ9Xm8iM/Z6IdcjT3Ok/a30EvLI5ZWq5VB2LPckf5a+Um5mIbW0yjzbbd9vXTNHmP8gn1H/QaL8PiHP7GaP61zcVG/b+1vvvemsQqRB782fB1HEeR6027c94E71WzvZvaCRNxChAmFsfydyrWC3oRafX6X30vc1KFiS3mtRrYnJPUp/WkTtEtf0uQNge79HJSl7LlTxc8kmtHsynPIx2sFAO2Xjk09idTbSBgHVEElbcluXtMO8TyXEsHV93HRXol6zFbTOzQ2ZWPurjcnfu12lZMhA/yqTnRCicHsDN3mwJB5vnz7D0rnx2Pql4q476Gxfd7dURsldyn3K3f0z0so348CqrvuCabIXvI643WxMTVQEmMzv6SPyOvf2TuBm423u+5Ivn1NaPTetnBHuxwZlJ8LrdvSBAi6kz3ePo7fO5xpaMxyPgQBjmS/tJ/Te8e3bO87z1FpZJRzy2iscronsYxzwy/H+ceLjdZE3NjpGfxa3WxfC5+gHRhs4kpcJTK5GEBRiRv7Y1FkG6dxwzAlxiwFNLWiRHRNe3oTaDbfskKPXMJWEGc3Y7js6xvFgJJlT7cbA43hi9APNSKHw9nhDa4Y//PQzfDkezycSnWPW0G2gtSU7mLkDtYBnbJA2STEggglGrgkpIXo4mjtsrY2+rb2+2bjG9lCG6OLQilvBR++pdjoVG2pyNxJty/NZnVc65FQnKdsq1qkzqLjZbofGYDhax2GNEwC1JaqFM96eEy2S85K/t9xh4oEj8Tn4/C574ACs54YTFd1UgPzBn/rvvX534ul4PJBVByq+zF7TcNJoiLsiJiwCqsMi2wfo5Da1Y3D8bfOutrUAooknwrEMuLADmqR1bn7bRUFd2bSr7HhyNkiXNPWtG3Jh0qA2crzwCSrZMGJ/lgWAtdAbJzilsK2p5E/c0NgS9gCK06K1hnbw93xNwSc1RWgml5KSeslbZeKpcceaiwRgDThfJxBMxKy3JUSI1sTUmw8gnCMokYrJWLWcfmLhxLIOt4a3LweOxwDOC7EW1nxBDcNyAthKZ8YEYD2pNdg44K3h8oX384S9f3AHj1TKqv+7yVmloj7fJxn643Nb4Ot6Ya1E0ZHf4vv3b0Q6TXI3PPpXrLVwnh/ozTB6q4PCXniNgDcg4HidF97fP/B4PPF4PDn9z0MVDcfrPNFHx2MkGbhX8ikz0qMdzIg70NrAUzDPDel2vL9/8HwU4oYVEZJCspf5Whc50ILGrB8DCwvfr++sovSOBU5IXNdF+Tw2pDTPXSbjKihZ27kdxl7p7oCF4zBCRDvSeBpgUXTmAOCDbr6TUErVGEOCaXsbiOaVkCKPA/musuJVCRMjuXidcxnBdFZgGfxTd7L9kI5WBMkAQ7IRIDw8q5bPtwMm3olmIkivdQkgvJJc4/GgUTkeNSLbhNa7t5sprVjBKqeEnayKNeMEjsBGEkjx09jrWonaEOQjmd2kXuRAALCoIKAcT9ycqfzS96UgmXwLx+si4pAQWnHzpAEvtM/Wi2tR1ioJUFwiSgD75gtLMsJEqRUBrKHkTFJY63bL+6PJETPpy0QfKGuOkb3hSIcwnRdDHwlVT5nYsOKOoYTj7Q4qaKC8pLN8R+qYGTgykL/Tmu1Kp/aAn+kVXIWcZrMMfPjL3ej40abTaaWDsupeOCkSFdnknsbNuXbJ9CES//P8oL5bJ9J8NQU4exIa1+Oa4igxIih7HwgX1D7bA1I2kTbKmaROBB7o7Gwne+uUO6pN0SinRUnCLGUZ+XPuXUobg26mhXvraOjkmLI90WoHG7ogXO33crwcCGjSrPXan5QVehE3u7+Fr/ycls6kYX/zh1fKQCbR/1uvkvkM3tvWNbVWjg1fCCJY73KI2OtT8aVg7iWHXfucE8ebwlahAlLnUibFIZUOr0U5q9yf7XCu273mnrb60PbpmVw+FxMrn9GMLJBlsgGVsM2WDopC7u19W7RT4mpblTTdiID0gNvtz1on050JGZwTiPaZo/OMbJ9u8vHETcJ1oX9R7dWs9BDBpPtMUlmbnALlM5vnxIsFkjXQ1LfbIfisR8y6bIRacUytmtL9YwwWD26BNcoXVuCLrQdb+pqQnM5t73XjdXbzein3pbnspu/0uy1lqRORPoUkOI4HuV6cRb/lC0nhYCNtPFvLli8SBhujDNpeotKaOJ0yKFwZ6FQVnDK13As9c+ddO46OLqQwkJwpGdA1Xt+JjMrfy2m6TZP5ACJpskDoQXR4+SMIuE8k59maL7iTg7P1jkMcd76WUEJEco1+MJgPYF0s/ozjgeRFbSqMw1gwy4I5j6BVccNVHEPtG3VkxgrJgZmJLBPsa5W+2gXMBgM8kyi0TYgbOuiGrkrUc9lIneA1LzSh4LO1C5InboNtf1OcSIcm1+3WTNR9Ql0bo406H2mvG1L5UmckFx2kr6Yv8tpl0g05ZVgHLpF6faK3hfHgGp+n+GKlB+nHELVn4ECk1g6+9yKFR388EKMjYpPd5b0+HofaBWedyZ5xlNBR7p/tpxUSwis5GXqKwsWqODEXOama7bK+azBJLC/OxX40fH18xcf5wvn9hf/bv/wLxjjwt7/9F5yvC6MP+uBZxPbA5fMTz++Xrz/hWgt/+9s3/PrLB77/NvEYTzweX5GTKw+7MDoRLWM0HN3gjb7ha/KMPw/x1p4XgAmPCcg/O88Tc04YBrwZWnd4F+JLcXi26Y7HgLWOa17S1SK5dyZqIibbvJrheHuiHYPcy8bcQm8d3TrGk9//+e0LWjP8L//hP+Lt8cSvv/yC1/nC63qRW7gZDgfMJjo6bVcCSdoowEnG5TZJhTIe3Oe355PvnRM9AFtOnVjJ8W1naaepu5OIG9r7nidu0Ucaz1Hx7rkuTfuUqCumJ+glFDtIkjyL/jojNtBs8BMSvakOMXaQGr72gYd1HHPK/wo8HHg5MF8n5jnx0NTwY3SBGpyxjAPDFNlcl1o3+VnP/iCopu0mu7lO1PCaf+f1uxNP2Rd9zZszWPZQVYeQ49ESmQByP5tXIBMmpdiaWgNYmsjKr4XVmFNo8TbmIB2sQI70JEP5zZmOVfcEOSrL78GvAUk8KOEIgK1AEVjXwkLgofYFCzCdmwcpKwMBOlIwTlPT9Rl47Sxooih8JdrllmGnZ4B5iUTaM4DUdcdAhyZGdB4+XxNrXoDxAPUU+IPtYL6IZmpq/QIYfDVr+Pr2BQjg4/0dz+fAsOCscXc0wk+UhDFgAWaDkFgRAwodjNdi1b+tCf84MccHDB2YDjcmijpaodTygMYyHQxXYMYLrliVQKFzApLGR6A1JtFeSy2Ao8MtcCFYsRIHUiUTFGi3x4ED4GhJM5JEwkWEbRggKdzrOktcjP/ZvA9GmPLrPAl7HMeniCWCjs4dIg79XhjbjHxqRqOIKM2MZOpqX/BmKnTzGarbrRwvF4KHfdMN2U6S96BkjTcGER5sfVKgFzl5EV4tcvJZJPtRnBOt90o6IcAWxsWE1DEGWjeE9zyYdCUjKugLrclSzJNcT64zSyJdOWNa63RMUA5lNg6IKBb4hFhJXZOtlTCTs8tzlo5cQt096Gj6WkJtkhAWIBIQRnh7aAJKS12WOith/RWYAxFZXTDua/JyRE6JiaQWQ5J1V2VXUVxWVULZmkx+ujGJCKPOgFrh0lHjMkQlvdba+jgNQQu1+VZbhwK/NoTea1giUMoznZXb4igq0syNjsi92ieAzmEr3cvndM/qYxIi0/FNBy+VrjUFqa7gYCUaYOvHcpPTJNzamXZ0datqxq75Wq6MYe+PgrQl5ChaBnmu5FfiMITYkYMdqR8iYJGjqwGoagcheJObDZbov0AhHq9LCVTKWteEQ9M5WGvugymrlyS9+WxcX37OTv6mzvCSfQZmKDmtFJQeybOqn8HD7b/Qrx295ymvBC8ySZAw/dwcfVlsuc120gyI8/Oy9QGGQgpxOmbAvdWa3eNt+lT7/vIegd0OkgnY+9s+J0+hM31/zvubocRBJlR2MjNt6R35hLivGD61n9yfISvmGSzve1ICMT8Hn9EVAWWl7IdniNvn33yfyLOn57LcI9vvz4AYCpBk8FBEI164jHyK/V9dc8tOLdrnm8u9MUOLnPp3r9hKjm7rXPdSMoU6qyVEoG1uBrVMKNGkKUlVVJCuyTawz8uX/D53dKOQFnnyjR4MK9DcwCi52vpoLpdrqKR97XmoilCHG4CS6r2p6p5otLqifKz2yb8NFSFyUlzvHPVtWuQ8V4F9rXaT6TxziW7r7Y4AcdIHgIGSyY9009CRa7dJQv5Z8Wvdq9vBRFGu377v1IeyiTmJVa3uTRQFd26/rPYTGbJlIOUtpIbSPoVszr4Vrb/W9oaLqzPYu5EJHA6stCHSBTpHeX5Ky3kAS10XBhxypAol7p/1VWnU1JVZHLO0G5/3LBE/x3HIjvdKIuca9qbpwzobPEnSU/L3vJTSZ9t4txNUGa3I5A1Cibcbilryl/qPxcvG2MlvQw+QiNf04+QB/aCy0hjvoB17zfM5b+eAdZXb6bAAKQTEt6rR7Wb0FKkH8r1CTUWIbFz0FVT+uE5yu84ZOB4HkwWLqPLXx4QhVLSUv+NO/a/Wyo2yTn1htQsppOUrxS42pI/UpRuaitU8TK5n5nVcnQ2tQfGcI/zC6+Md85z0eY1F7ik9FfLt11Kc3TvOtfDnv/6Cv/36Hd++X5jPhqM3cjLFgsWCNRYg4aguAwQ0LdxY8wTjUfcmLmc+Z9cgq0QysnA7cBxfFTN3aMYc/fVAdX70YwDGIvOMxbPYGvoYOB4PtKn2NWNBaljH0Q8WVN1wfbBr5XF8wc8/A//pf/nP+PW33/CnP/8bwh3XcsBIATGMAJdQMTuS0sRQitjQboULV6xFFFNvwWnVQT2Amk6ddldRURXDJBNl96NkPH2z0F63m5/BRA67hGBANOUubucpkMjnJjvD4oz1hhYL4SyBt9RJ4TDXgJ3UP2ZsL+yGq1DCPAMTCz1E7t/4LKFhGVXk0C2xg12oTHuAPET//ut3J56WmyqwXou5EyjZShGl7zh5kZntMC8/J5rOmQIvD1Y+4V5FpcyQFl92Ks3tk6g9IDhVKIuPyJGgTAplVcvN2Vs6EjNJ52PenLSmHv7XxVaz0Rp6CU8rEjFXXz0P3XGrUAntIyREOmsuzoClKny2LGrvARinVYn3RykAjN4xxkGYH0ji3QcV5Lwu9LFbG0ZvOMbAmhNrLhzjQLeGmckap8Px09ev+P79O96/v+PrlwNHc047i6ATqBYcBPg7o8vYeEH4PRY+1om0LNfHCy9VujEd0VhBHJpcNdAw14XrOvHAAz36DSHCtVpr4TgGnl+e5DwKThvwAL58fSLM8HFdQDOMg6MeY01McRSxQtQAkeD10WCj4XEMHoy1UUxfHgfHwFvgmhc+Xu+ESKoCzczvg5UXBVHXeSKOo6YEbSVAmP2nhGcqkG6YPhGL09N4Jujg9mdDzMAVjtaoJNi+RW4sJgByKpPX19Eb+coGCffmvHgmrwksQ7ghGvuVOU5UaDCAnExmaB1wJTwzGM/+jz5GJZ58aqrKxQTFcRxKlqhdC0vJUmcSOSvhEXuUeRsI0NDcg4d0iLiUrPYg6MCQWyCnEyUqRQo8Sp0jp+v0kf3NfJYpHqgcQz/XBV9MPh19KGlFh7p3JgDnxclDrdH9NXglRZEA+cjqFpDtd0WfycwLUgulswIErCUh5EYmmXWMRLQZZcc9uRFU6QSTZhmgdOkhS8dc41PXFDdRF/S2DbRwNH0ejQOLAb2x195aJtR1P3GTu1s8mZPgXInn5JjIc0I/S4nF4kVS8Nuln7qe0YUQE5yZa5MWjM7NWrwfN65RBuMlKwENGYDgvQarVuN0XqOcXGdZQ4lPL0eJyYWJRAKGohlSX2Trt0nn8WdEWQA0s2tXoXRfO1Gi+40tC8n3woIBe+QBqMWD986JPrPaEoZkdYyNfnDPaW38jMfjyf2ZTMBXa2s6Mk1T/CopzI3ltVKJ3Zxm+3xEx+jSz17BSAJfM1iEnj2rc2Fe7SzF1yLUAT976cxrdSQOvD/DWulX5H3sf6cDp9ve95GB8C0p9Om9SLQBsFsgtrOHvRQKoDYSIwN++yH5454tBfs+h9oCiKrYz2+RNsAqYMvAhW8RN5bOcF4z0Z/0gTZkP0o29365EAsbCUMuiPtauufzRf2m0trly8UPspIylegiedsoEt4ArMbkKUGPKJRAuy9betvSqQbpoQq/ez072zP31DKu8Q7a+Fnk1EE4XK3F/klnS0vXEuRUywy2tx3qvd/kIO9dayV/NLDl0T1w+UJHcgbyZysnCP4wwcw8KujOFECF1To/TXooktvxVsxKbqreOpolywzPkKstMXfVfjiboYDPABzeS2jcHdc6KQOt4fF8cgKxcWLU6zxr/3vvOJ4PtRspEVCnGPBFpHwDK+BEMygukB3KiZOJ7EyUQK7H/Xkz6ZHTLXMKKcLqnnIFNqoSn/TOLYQQCrnJpgGceBi11wB1Seoug9U9yokBJpMXvTU8lIx0o2+/whV81a6WZoV8yQivJOg+1/u+E4HGrbMi6w49TFORs+MWyJqhnv5m/1qtaxNSV8kj7OEUbXDwDILPPhoR6752Yuk4jr0+auvKE5boqr5YOGYOXclaMPGbcVW+TEkq2E5q5bXz7ysLO2rtKcXXqBPdr7q/Ph60/YKFxaKvEwn5CoIJAobxeAABToWb5NV9HAOjP+HrBTh5XK0Zvn59IO3VOUnZkYmnepbUE2blm6Zf4UpwQH5Ssyh6g9QjnFwJJUP4WXzMhukTc028vb1xD0D9fr5/x5wLb29fACy4pZ/nsB5AN4EdGrw3fMyFf/3z3/DXX77j1+8nVgwco2O+OO12mKMPw5cvD9r6ucAiGqoYmQI2+sCC4Zohf6qVzXu9vgHuGDhgduA4foaD/GbZCs+E2MKMybj5OOBYmHaxrW8m4vPA4zqwWsO6Js8cGoYNPPohtzxwvtNvf759wTie+M/WMP7yZ/zl1++4Xieu60RvDyK5dBrCSTcz/ao4LeW6q1h4LVGYwNDRcXTDGIHW2CnAwgKBKQ4lGVUjcss2y52gSSc0z/hGT6d9ahhN/q4SWoqOhb3ZqGtIfqhWTPE5Y4Y2OgwDtkDOqaR2iQA02bRle3wz8lwNw2kJAgEcCzmuoyM04RgFjDiy9w7gxHF3uDW4NY7Y+52v3/3O949XHrfbl5ygdDTV0MJgJc+9YzoflHqQQd2CDJ6b3AFWSMJtN+Z5V8vPAzllywQFnYvGbdgAjAvtAbWfKUgNHux04sN47XOeKmA4jj44Unf5btcCAPTKQE8P2GJrnCEJCyUBSpykASgkhhRp0281ZeF762WYd9sif1b8DLqDJgMz16Sztxqu1wvz6GhtINpC6wxw13IYJkYXymMuEfBBSZmGx3jD2RzdHOYDsdiy0wBYY/a53RzsiAaLRvRN9tBYx6O/sY2rDYQN+Bl4re/w9sLj60/sGYdL6TZc8yK5dW9sC80E46ST/Hw8ABiu1+LBtQbDgdYMHy+Hg1Dvbp1Z98VkhsuYH48HW9aoWXC92PrHALLp73wuttqh+JXGsduRKsBp2gWnw98HM781hStIPMiKxK0PRZqG3GFEu7k7J7YZat+veWEtZ8JhUe4zEPzanwAoC1ltXutiMCPY8zoOZZ4ZBDSkM8Xn95XNrUAbrBCjJ9dBCHHmkscMvNnW02BsMZIPaBpTu8KVxGNbXnF4RBY/dvRGRc4svLtjnVMOH7VwIDC1Zg4a4X4ccACvtTCOxrHU5yW55v2d84LBcBrXdcXCYR1dbbbhCe81nSdC4a3R6V8KouteDErGZdCVAVzQoLbNj+CxlM/IDIT22jam/VP8iqyUUUf2lhVSAGF4vV7IJDNJ84/qu5/TqwLdMimqwH/KwUouhMdjlCMYYerDN/RxFCGwu3P0aidMt0GtqlDCUIknekQJH0nIfya7UMmN1tkmbS0daiCEzbQ2YOaFUpsi7fVsr1ULi5mXg9/Hg9eo0ZciA4YBNpCIrfsimylp1G4VGAW1lUuQjmg6Twgm8Ju1ap3om3ClrFqi3hJhh9ZoeDPp6loX7WltgFFrV2Sn/WwZmIIOd9NZSexBBmBAQ3Iy7aBHtjVbsqR/5MnUz++V/shrWC9Hd6coUJ+Zr2x1yvvJtu0MFDOJaxY1MMBjoqFh9AedGOmAKVTXj59llfQx3Rs3zS11iFXAtF9R5w9A6emCc9/iz1Arw04Y7aBmt4YIFaNfHSM5txJBsmU/cyQ77sk9xe0Kpp95rQ9RHPeESTp+lJ110W6k7rB2aEloG7Lh67YEqFaSfgtqK7GWCQbT+cuCVFerXBQCpqW8mlXyMS2Fi5+lUHq5JlxARLACTJ1oNDZU3hVM7oQZuZha+j21h4Fq1M2LN6D6MSS74bc36KLJ5KI4jvoHgN3R9NJTnoktSye+7d/T+maidesTJh3mnPRtRi+EnadMgD5l7+nDhWKKXWi4Jz0CQV5L8Oxv3lM+1ki0mu/z20JITQUW2S+YusDFg7nmZKFICYb0LQAgeWRUDKeeUhJ9KUIqXjcFXalf2SIvxFFrW1clGmZpVpiKq3vqofx30xmTqFquD3ZbO/0D/tZKlObGFtHHWfQFl3sV7Eq2MqH9CWGoMwG1WWldBnY7Va4fScmTM5EBsWtzaJ47EnntU7ZLaH0oyI+VxVMI8dEwF9sR2yAqIyR0KWaFbgiDzwzu+NM5OdxmHOOm4mWHNRjCSjY2urzLR1gXi5CpdlIWwhd6G/TpMmhWEnuMRDmWEd/nCMkhpNZTz+E90mkt9Q4DUOi+4HvIAgBYH0Dr5buGnoHFCOqd9HNyulork+r1GQkOCDfGheqEyMwu+bl0PRA535UU+e36hkT3hM7i0Aj4RMGsc2Etkmc3GGLK/pv2zRzNRp0TPkP6fqkrU4BC8WrqKdpi+nSQ3dulVxZYXfGEoY1EpjjGYXg8Gq7zHWsu+DrRDPj6hcOTjt5wzouts5lhH4xd//Lr3/Cvf/kz/s8//lf89us7fv31O769f2A0dtIYAscgx9lE4OjAY1BvmjWgNzRjGyQPbsfywHUx0u9Ge49QcdkCUz5VRMPywJyB/mBboIuiAuJAOl8fGEfD1y8P5ERxv4jWP985yOkpyoyjP3D0A4/jUfGKx8Jagd++vag78cDPX/4J/8//reGP//Vf8a+//SuS7XQ8CTiw0WAxgXlRMwUIEICK62Yiy/fyp9o4EKYW1yzSFkqYuoO2oQm8RqRv67idW0M7HtURoOVCt87WsFARjtla8YFSVt0X7anI0JuKGpxKz3UIN7Rq26d/60bidD86fDSsWPBr4a/vv+HPv/2C3/zCNGfCyjSlsDf4GljWcaHhtUjFc77e0czwD8+h+zLECvkY2bmWnSD//ut3J56uixWNQ2iLCgSkPOTX8fjJ4d6cH8yOguewMrQegSsPsRyEQLalBHqkcyGj1NJZa8Ca5aRnQLdNAR2ERL01EBm0QKUwFwO70g1S5AiwRxiGbJKmHlE7mvH+u4TCZ2yDLzhsVh4rCaFVymkRraDqQI4e3Q7szZcuJ04O/ZyAHFfyz8igKoBLZd8alFjQn8FQr3eg9wO9qS+U49EUPAGF3qi2oUDyP2SFNUk2uypvj3HgApOA13Vh2YVxvMGGFTwbjVwNazoDyyQ9DyE8YMyku7ONszVERwV156RCduM0wdYa28puTkpvnJQAp6wtcUO07HvNdxsqeHbBWzfq4P5Vkg0A6D0DJy/Dshanxo2HKkJZkU5now7gdggziIq1CTYTQr6mrt0e+7PkaOfI083vFFUZ0KYhPzokU9lG2ttdSWWVilXidM7SWWRboO4/UT1mQgjSuXY5XL0CsA0b1a1UyxzE/7KBEq0CndscL5jRiUz0WzMDRkdMJgmT8ntJns22o56dthyVqnDJ+EzsGHUk4fhaTvRBt22kTY6j9EBygD1UlZ3VGsNrtwyO4rOOpQ6xfYaobJT4IXmjWQM8KsBh0gmcDtp7JZ6uUyi1h1rnbJN/cuuS6ykDQahVkDqllZ5EnQnkmUZsXojGJAroi+qQtHrv1leFH9Yrz19+cR896Kw1S68qlLxwhE8li+h8cA/VCijS7RYLITsBt9I3SeafznBVce7nVdEcq0rZ/gjJ324ppEzz/svBl5wnAiOrmJWIsECOnGUQqhDCrK5TcfJtlbic90QCk0VbbKL0RLV2SFFlsiCT3fuMZRiD2zdvnyp7kVU8izRi+PT69LnYYV/q99RxOekziW4tW9xV4c8WW5gV2o2FjPbDZ0X9PUKV4lswyYLaLSFQj3dDx+SBy+tF1GNVUHN7rvw+bu+p9UuDkMk9fcZt5374/fy9lPf7ksenz+Gzcex1QdgyOSj/gMnxGuIn26QEj2UK8LbP0rN/59aF1iPy9tIhbihagDrvlPssG7BaC9lhLwfOtD4KE0AfT9epJbS9htoTihr1ZEQiqfQspk+8P0PLT0s9wvX12zVzb+60CGXsdAa3z7QNUdx2KCvuRHredZb+G1tGq30bGxkEJWIyaGXCft9PAHLAV30mO2SZ6EjkWTaTJToiuT/y2hmUt9gFGSm38mVThtwdPXY7mq6s9acnHQEkZ8/Whcknpb3OBLc1taYrALyfpbwX6RYkajVRK7HPYtht5Usn7rPJj9Jz6zoeKH2HfMa4nSlNyixfPxNPY+zn0LO4CtJNCbte8uW363Jgg8lPyxag5InaqFX5UytIwJsylgGiRMkgZNacpf+2NrH6V8UAYUSCBAshCEhOUj9uW52ymbYpPj+x2pCMU6olV2UL5Qs29HtOHWGhBHWXjKoIlMknoNam9Gjuy/1c6WzddR/39fYeTR8vXZQ6NLnAfGEkcqPoSPIRtF9gMj0Ty+SQHVqrTPRuRBfjN8YVOZk47aQkr5IrBpRf60utY8jiEmUo99eso/BbxrgSdkPqBYBQ0Sx6JRzyDFP229aVihnSu9xUElqiFmidHRxrnrheF0LcncdoGMN0LtTpo+mkODrcge/f3/Hrt9/w119+wfv3F75/vHCdU5MuB3ozLGdhHQ3wg7aD8R0LKGjJ7co9WOGYHhjiLY0sbjbua+khcQ2tGehHg9lAcqByzQO+JtAPHI2ct0t74GthXeRE7o8vTJxq6jY5LhXDmCHgOF8fCATGceB5NPzTPwz8+tfvQPwFa00YHPFoyMIMY58tX+4Oh+NhQ7Q0aRsZIybogL5br4JKmPCdBdgwghWiShvSGVs/UX2uOp/kazXF6tvvTq4v3HWhksBoWzbT9pg7wm40Q/nz3gj6aZwEefnE+/nCt/MDr+Ak095UIMp4uUH+vOGaXr/XjYXCxBDlPW8nDEhE+b/3+t2Jp3EwQHseA5kMWYtKYU3CKhNe3CxbRcosi+TNSOAXqQGDiI1GctsQUmIp2OvOw21C3rRquzCQWGsHToRWJiRPDl0uwgrEXFASF18fT/YyzgWbjjlPQMIycmShCLJbKHMYzqw3BNs1aOiPhBCp20xGjEIYbVcrYMA6U3WrCuUu6DqdVDNCXtMpT06i88X2s/frwrgmvo6fEQh8f/+QjAVyKlOAbX19dLUkXUCOiB0TxzOAZljRVMkJzNcFQ440p+x2S8cGsG6IJGV8LbXQHGgK/g8YhhmeQlT4VPILC8MM4/lGFEtrOK8T4RvG932d+YFyeEPoKuDtIDHgnBNw4Pr2AkKtZyDxqimhgGBr3+M4NLZyEa0VwPPtC3rveH99KCmm/vCOcoiBDIp4+F3zqxNCP88TxyDv1Tg6kVBVVeXTEuWkEa4i+uvtgAG4Fp/B0NA4DxPH8cToA+f7B3zxnJgZRrcyuqFkoPU0enR/Q4psBbPuy6ISGBC/ilPdcm+lNh0ijCd4SUEPkJBwLKFTYgcFCSPvx5HfAeRQyp24tXYwYTnPWUm35PCorjs5kkNVBnL1dvRxYM6Fj9dvhP2PLtJz4O3xgDtwCk7d8h6WuLSCo+WtsSccYOKpLEAGAzKKfokPSiO1ASbqmgUrBp7waEPHgUx0pH5K3xPImEcIpWHoTTou+6xdFXRVOkb2qpscnYVdybREXQLhhrkM4Z3Xx1B7OfXMXBcCgRk8/62xfTDcGTxVeMNreQRmXHSM0OSsYCM05cCxMp5oQa5JE8mxJT/VzQmDPqs8XMF115QrYgwuuiW3R7bvOtxflNVFGaQOo+wtVTC3YVxyjpXsj0TApKMAIdjSeZcL0JrCtyGU7RNAoJkI8S3bIHhGyKEABVScZhIGteChINY7IE5HoFYbJieuLPOtlaQWzqF7RdkgWnXqFAZnhoZRcOdM7Pq64CuTZvjEB1XbIoRSZUktQ6JMsCfi+HZM7g6ZL1wXkwZAsF21dUDJ/9SRCHJCtXGQxDduifJIKLdkoe2gxoR4WouOZI6j568tyoR+r7WhXMTdSavlBrBRWnPOnaiCknrFT/M5YXXnRfq7oFffzx6ZT2gqOY8AdfQ5TxUE+Awbtbavm2esdbax99HE1WHwJfQ0kgg+PzvdtHuAdwsKA2X7s+0twIB5rQB6EAl+Q97mjqaslRrIa6tca8bEOYGUpCzYCRGeL4lw7pLuiSTLt3gKHKeuZJQpCaTvl/2BYTWeeaLD9SzBIHM5SU8TpZfIp0RJhFCJ9726J8oDvJ+lpMePZKitdxa/IDm7hdor36spunf5CfdqpzMDmtbD3cVPY6pyK5kAq3ZN3G7B1CrZ64x2Bb/5fDtpy9/NinuI94q+YKJ717KbBUAlMbp0uEyS0PqL5138mlVANiOSBShEVu22CsF8FqtrdrQtrXH7bN17DSZKKWodvSXhsqEfTyCYCGzyG6w1clxp3VPn5rWlvBQQ8ftN+sdjlc9XclA6oVUskqYrwIboUAFkHCRTNiGwMyFrSa6ObZPTrlWCT8WhhrSxpEIJxQ4s1hAtMc+rYokmOWlCE/gr6RyETrVQi3y2YNJvBJjI8ljwi4Oe+kEuWmud8QEcoeEP85paiyY+m7Rn0Hj3WyKyd+Rk5bgVdmsPkEgqyOZD+3xDBBrkr/HfLOZb+bmFEJ66yF3tYQBo9KmNdBMRfjtCmUib+IgFs4a3N9r6OTkYB92w5onzutD7F7T2QGvsaDnUfbEm2wd776Ii8O0r5W2p6M8pYLU1+w2gT8xjujVJTqpVeQDIRITih+sKuLPL5Xkc+PL2xJ/+65/w/v0dZks8Uxfmxda4hoYv44nXxwl3x5e3L7hi4b/85V/x299+xXp9AD7x6IBh0jefFyYCrxe7Nl7ngWN0PB8DYzwwuuPxfMB6x7V4rmwQeb1A+4Xecc0Tyy92nXT679asujrWXPBzENvXeeae7UHZFYXLt7/9hsfjwa/nwZj1+4WFhd4ONHSEd6xpePmqVtDzJe4tAbLYxuTAXPjnf/hHHP/vgT/96x/x7dtvuPzkwIO4gJiwdQHhMHf6La2jXwsNjofAIK09AG+I7zuh09pAb6P4SNP2pa5EIAeBl90rztNGP2deTiTlItoKEUXx0Ed2PjTGDwufOjTuAshhGbyPRGllXDb6gdEa4qS/dbSOFgPWHI/xwKM/C73cG1FMzdNGklO4N8Pj2RGHI55f0AA8Ff+FB1o0HOH17Msv/JCD/u++fnfiqbX95QFW9A3yWFhpydopymyGuIOgtjcp+UzdI6szTcmqpn5GGRNEQVP5tQPbBrY/WCQZ154SwM9Nw3kjw3Q24h2ts0Kg4Cen0CE/ywQTx24/2CGMghxA3jEUENxdd4b6ZtupbIlyyisZkDNfKz+ne8jnT6hfQYiDvDbXWlAaFu5yONtu60MmjHpDC2fizRwRmqggOoMVOW2Lf8+qSt1G0HAXwl9wbQLYvJBVPJBMTmRq0NMTBQSlFQGnKd+GkKMBTT+7OQ/praaTz08QWiRbdQhn5SFNh4G/k/FXVeK8algcTxyEb1eMpyDP8rmRjk1OQOhMDJTx2NW7z++XRAfXOk9hEdvnmzXtjx3EHcMG3AaWia8KlD+3LQPYvw2X/LgCpaS0dguMBvHW7AArs9K1vPqvp4fz6ftbtvNEVzeSsu55F7W/KTLar2y7qakfyOoS/xdgMMZ4Lj+5bacwFuZalUQKkHetWS/nkWu/qwLpwebaJSqFNPd0xinc1VhDB9F2OwjqfKNaDct5zM/6hAjKJbDbGVYt+9YCQvE0VCIcu8Jg1iFAErYWyulkQiQouQ5XJUQyn1NwPPeq1o/ViqyahJCj2SpAOLruXwlbtNRvqXtuTpZ0GX8nK+F3BIbV59YZuiUt7zqttKn2PxRQRq0d9yos10SRwN5grv+d1wNcB6nWv3tFSkUincLA4B78E1Fnw+o+tl3L696fIit6TFoBGTTDEgFIzrASn3xs6aR0qNNm3b9tt4fI9rGmFjPHTl5k68N9ZLRW57YQ29bCNjpky/t+2vp93eduX8pKdZ4XJaLzeeoa96By60pIjmv/olTjD0GF/m1blvN+9ut2p5FPanUfPyKc/g7NikR/7MTk5w//+1e2p3y6C8PfPVMmsKLdMwkMPnK4iJkVyqSc1c8ftv0j08dWgik+36VkbSviz8monZZLWUYePWRgGRGlliKtYNpi7M+rr9ua1hbWOqbhTR1/v4e8xj0JxPdsujElraRfHKkyS/Ps86OrFFl2fvQnWdY9xe0P2z8trqBKCnJ6GkX7Jv8/vD5xDKUc5T3d165sgtbtpsKsHvymc2+reJettAO43XuTI572r8i280PzDINJO/u0SHv/bicCORXwE3rwdm7+m1HFPfFTj3vb83sSt+31yUcJ+b/pS33Sd0E/Ps+rgYmiFjfEme4z125/f+tcrrvuLPnmttCjkv1r3y9tnm3LY5LL4heLKibvlbzFC5HInxAyRhrypuOtfmv/u+xxXUtBKDbSK5Ob5a+nHMiXSUnKkmPT+5KeIQex1CRncUBabafVeSmddrt+mJfPUCb59sr2y62LvPbXtCl1hm4dFimvW4fnmWo30TdkJ0auc0Qqyh9sl7PDoveD61g6LQCVX8nJ1GCWMcjt3MrGlWaL0pB6i85EJJLT9mKU+dVelPwlqnCvq9UXr7yHVyWxdcN1nXidLybz+vZ7wxeBG60VXcJAx3TH+2/f8fr+jjUvWARGR1EO3Is3Hg5ckocIrGmYHYg20N2KpynpuaI1uIEJb30PrcmuaU8V/7Q6DHshu4b89M72r+RUSoqDhkBr9Is5uIHdL+HA8tgcZIuxLXkEjfF9ZJH6if6Hjm+//ILr9QGPl+gyJizWRoJDBXnLmCySNRQG8bN6wKxXodjQKYOfZPSWeMrzfBfjABOr2ZES6dvHXqf8vbtOSH8rOxty30NRn1EfbN9OqFkTUEdGtGFPn+5G5Bic52gUNAGgku7oLdtXM6twwBAYaZyyoGKU0WbGrqYb2vF/9PrdiSeCmZwjoNV+lRXaJNleYFVeVLjgGNELvpZIoEPjWA1HY1U/lhII2JUdUwbOCQNAc/XsGjP/5obWnlXpAaK4nqwZ1nrhPL/j7fmG5/HAdI4sTL6YZ+OI29OAeS1cqqJZADaBZgItR2g8JX+OHogOzIvZ8bWYqGLRowONo1xbM4xxiCiMhJnTWUVa2S9rhsDFpEE6LlKmhBwCjonHQdKwFay4/fLrN4QZ/uU//Qcco+Pt69dSujVKs7Ga2g5W87sgjg4n9LUDr3XC1sLx088URHcptUayRHe04KHuQ8F8tllYw4Lj4/pgIqI1oB9AB851ogm5wgQe2zSIsBKyo1GZhPrZl3M9IxyjQcSoARLqfVDhrN2r35qCOiX7MvCa64JhlRI5umlfDHFdJGWPIOpiiEgRS8rY0Q5COjmVLWCNbQ+PB6fZkaZGShVSNhrRvBIlBP48Qi1NaoljNWmQ0PNasNbxaB3dB2waDjwwTK1JyV8T5Pey1mDdqjKZqs3FH3TJ9XEsHGYY0hdmPF+O4JlJ4yvDVpD5pipra1s20/k3doPPanNTsLDmNo5dPERKSl0fL01oZAX58WDFKRDonawLJmP0+v5OJOSXNyRZHqnqOd1ttK6R3I5YE4BposwtjAngSNU9o5JMo3UiNPW/1S7kuNAI8m+0BtgQQNsI9qqpJeURWMFPzcFWzzCqT6MjRK2f7SpdyC7HugBfgXGIqF/uZIBoTXHjEv025EC0oWSGi/x8MYFm4mQzwP3F/nU5NE1tNExGGAJDAJuAZ8ty61IVMjRhyERpOgchh5+OW2DDIogmY6uhEuFK/tCZpd5PlAuDbGCMB6XTCHlGLKwrEDHJsWMGTugMoa46K00hCupoiEjC5R1slJG1pesGyToV2O9IJHVEh9nAXBnoPKr1ISvO9A4SAlh5dmTbK0BbNTpHkBOgzbOXCIJ0giOSN0f3hkDPdZZzvCL1BbZjmrwbugFfjjE63t7ecL5euL6/oz/Z5+9g8EN0xU4EAHIwb2ArLdwt2BY/iBCSRA/nuRCKqQ80aNJsnsEgCbsgMNW+JY8IvqaWPGpgwyEEkPtUy+huC83kZNcU2eWfx37f2z0SQeRT1cB8tlvkc39vfgEmRzZpAeS4Tl673wjcU3DyOonadk3zTdQUr5vfo99BlK3QL/p9Dglhpccc6ELwZtHmmqnfaSPa0W8oST1gY7p8zlXyP45R7ScR0CRBwHomIptaxHvJeWtEbSYyJluqdtv3LoztoDmUH7khWNIxNiG5fH+fn91RWKEMZFsG3a7os93CP9qW4rAwDoY5z1nnuRmrnlZBqZet0oFCZQO3R54WWXwaer/4/2CmSWHcD051O4g6WJOtoxHiwGh4jNsoeQAm0PpaSy3fdMJTmAygnxEM8EkOvieluQZDjHFI/d6qx9rXtU75SBIFkYzfOeDylejiDP4gZGGzlnQ1pa9WIpTaPruVnAHX6hBHTr8hgjLpEXcbma8qVqQM+U1Xg1OSKgmcReTUKUTWnK8LADhkRDKaRay3/kTrA8/BNq3zPGsv3BeHzmQQip0kwM0P7aNjxSQn7FqYvvAY5O4hmi6A6WiPA8/nG17XxHUtvJ8nYBeeD1b8p090Ax6N07pCLZWP0eBtUK7XWbqi8hES+qSByMIbfV5gqOURQTQuEWVdsZ7kJUl8g8Ee+XW47zlcqRvRlIcRXW+ZcEDAY2rdxXmkwv79lbrBF+kXfmydzuR55e8iMM+rfN68Gkm8F57HKD3r4fg4XzBrJFMHMIPj5Ws4CbYO53h7xUa+4JdjqnU/gufq+XgUWo/Tu3rRaFwX+Ynfnk+sNfHx8R29A4+fHlg+8TpP2sHe4Iv8sJvrF7BE5yTSXaqm95GqrfztTJCZEnrzSt/T2NHROxLl2zIWtkF/J1yUIxcHRh2DyP0FfPvtG3777Te8/fQVj+NBZDDdKXQnr9KX9gQMeHjH9+/f8f//3/9/+OMf/yvOX/6G59sbvnz9Wmj412vCg0m5QOB6nZgAXtYQ6x0Rhp//8R9wPB6wwW6Lkcmlx4Hp7BR6vj3waG+cBr8c6Es+1YVxDDwfT/pvLhtqgePZMVrHz18OuAGXBhWRuJu2YLQH2giM/qANi445F87zQnLiHQKJHH3A4eS5MpBT6gt5iNf1HV+ehj/+6/+BNT/w5YsQaKeQ/G2DTDJRNMYDEYbz4oT2ZgNvxxc8n18QkcOCiJjKQuAxmMBvEbBlRL/eChC8P9cAHdxki/czdNaH0M3sCOJAh2VsTPo4X1h+sVOrdxygvXo8MrHa4BfXh4CGhuaUnzUTARt4jAf+8PYTLj4C1zFMJrPDxhOjcb/bYbBuGE8+y3V9yOckWszWxKMZE0nz+mSP/kev309DHmkc9c9b8olaL52pNDRpXMjn0ZSIKlLkzAiGlK9n1Tnz+6jrqk7NjKaFTvm9qQFVcE64ZvYe7+yi0DJBAxOpJPTnJuxT+0SO63WZaj1qmrRMFhXcl7AKVFIgDLaakEY7eLHE3ymLz/bLbRQAqK1Paxp5DwwX13VhnhehqkoWMGclSLKUvkUUAWJHuz0/9yJiAuBUA6L4YhtFNFV21C7jn53IMgKxUL2mLfTFkfCwhWziSEcrpIx7oo3k1FtW7gMlO0nM6IJNJ+oLlWRpdKCjaYqaeBGgJJCcbxM3TDrW6Bv6WkkFSznmddLZacrkZq454PUMZYiFtPtUZ1XLmmUAK1JHB7POC+LKCEHXgxXLsHRqVXFDItICybucjtSnZ6rfT3crqzK27wP5O4bkPzNIPnGDZkSG2JDzTCubAXpVdyOrgqhzg7if/Txb/F1Xm0Tvnf3jOgZNSCj5TloTZeHlcWewUc4b9jPdwvT90/gcj5CALxnFMhjJYEtewy0BkAk2KyWxr39vxdn7ntUOU1vwTTdmQllnK26JDegJtvhttAwMCBG7f/ZaQ/eR37Ja59ynpc/f6RmUbiXE+YaUMOzecxChGhFVRXHpw5StGxRpr8unKkfWbJoMMaSro35i2hiLWwIsgEzaIYZkPwSotc8VfdvPlJsfVndTemJ/3VAWub61b7I0xmQG093UMlnUyHfXWRKxcnxai7sxybWIWmd+O2uaUeer1sxqkyUf+VD5hf05+QxZab0bwroGKgbP792fg5lUPYcRLVknv/oGrP4stLI+e+u7PB9R1S7mZXcbYjbU5HLlPuzP+PEZ98twQzN5lBzwV+86l2crUbNmuf7k82CaUFpcKMEkTt4onnye203ctxe0Gw0oMtRMsGa12+q+9grFTafmuYhsEcv/ar9TnyP1uq5kkr0607VFWv/6k98nr09DTku9V+PvyIL6ez5vcnnt/riy+7i9z+57iNsCQboVKef374P3dENDGra4QeO7rTc0uIpL5F9po6uQKd1hmWrNk7rbDLTzyDHUAhahSLfzdyLoSt7PX3jx6WXyKN2EXO9aS9lvx3Yjaj/KZypFX63GGTjtpeN6m7j0XPqJNmiv3BYwXjfzfWVzUz6kS/N/KNnG9hekOArhGRthk0lBE1p4L+sPhyG2HJbc1p5H/c+wF9D2m/d66v7yzN7eXp+x7eyPZ+Suj7asdSVsVp7TREoDuiPxTRaiQd83kQI3JYZ05UILZYFWQrH2Qbybxf1cuC/8J4uz9/T+io1Ebk1o+fRJbtcuua49uJ9NrVfIroE21mO3dN1fvTcV/dJu3N7xg17J7pGQXd82KUr+b5rvpuNu64K956HvBTauOeW1dyY+07GvM9ayuJhnM7a+9xxsspOcOzHOe82CNQm/p1ZMqJpUe6n/QDsrLxKfkukSwD3xdNvLAG3qTHRZCH+f+th2PFwP4ii5btbIZxQCIsi2HuPAMThhOrsyJDale3w61jXxev9gMjB90hWfzrsFEEuTk2PLDKcPG67Xi8nOTq4ptwXrA73LnwvHahkfqTtEOi/jGVcxtvwgiVSzqISd9w6/Lqxr1h7kICqGirx+h7OtTAk6GOU222kh+996Qzsa+uh4++mJc73h+FuOMNMZsD391QIohH+YyLIT7ZiFlA4PDU0LwMPK4kjUt2rGtikGg7dcd8+HR0HF9kG7feVfDcm/m2cuLV6uyW5X7VvPGvWXtV4dEgkWIrsPcwPm/H7qUCqU9EVQcmth8JXKU0PIunHgWtgG+wPscPsdr9+feFr/QLTGzCqD1zq1QWFb6+QBaFIYNtCwMOAiM+vIFozsRGoAyzkLyD5j03jOIUWWDkgiHu6bY4MGYnXAjcMAo02gEWUU54l5LbUpLJg51vkBdApoNJAQagGxyG3CyU3GLCVY2RgNSFKvGnNsvM92SBziQk49Ok9VvLOVyFgl6Mchq9U5Zao5TI7wuTiFyVPxtIHwhWue6CBabH68cFrD+vUD/vaEvT0ogFicVNUaycfdsV6sGD6OAx6s4nU5RC3e0eB4szc0G5jrVBD+wDge6M8nrvnCXBc+LvIqPQ+21A2wNW/5SmQeNcQI+FhAC5xK8jUMZl9xIOYFzIW3n79yksJ5saI/Z/pKgDV4I0QWrVeF3kYmDUxIAyW4wnEu9m53dCCYve99cALC4Lpfk4f0OJhAfb1eQDOMx0BSXRPhNjWiGeIzMsAX++En0XvhjqaJMhGs1I+ebTx0aaJpIz3wPtm3b88nHA1XC2bE58QajsMawibQoviMyDEWeIjYe/lCt85WVBGvX66R8FoVGnIhUVzQW5fpNxGRByvinR8CYHM0raChIL8P+9Y54ttEJs5R4QDbL81YtWGR0Kt1rR+d1eWWZzWwromPjw98/foVrT/QhQRpxxuV6qQUt8ahAh0HcLEeTsdPMqZgORV7K7dmQ01TRwQC15q4/ML0C4/xxukuWFLCJx2coel7a1dMmx1U3mCS2xu5BFjh5/j6TI4OY8UhnHwattRsGtAZABOHcKEl2SPfxGthaCisLRzXRdRIe4ws3JNfzvhzdjKphRmsum3nEYhF5NbyqJbjJodNapP8PSvQDlaU5mupb1vTDo8DHo7LFzSKQUkk26tsNGLkYXKhFOnQNSNqNYsFrQ00cyW2OhwLbaWxV3J+BdAO4HjjSW8B6+RDWNh8a+lnpDPKRNAuMFRTJ38IREcINr0iEL6TuokcSPJ9onEkB7a5zgAoWap+8/AdKAOVpDToyJnSVi6UDLav4Z7JFLX3WHL6JIKECVHa/w4P46RDBRIRrEQnciinHtFZaIVW5B7tIA8QNaaS8hGsQub43HE0tdNnIrZCAXLPAVgi0KXMtwqAVqKIIhCdhj2Le2tRdpOM1Rr1dHjC7pumMaKSBUAkaKOoV6YGnMAgLrUDNSUGi2dEwUqiVXY77Sh4+7xx9xgM5ru6DosCvfEulKBQZXKtVclYyMke4lfJcG1o5HO2g05n8QH1vEAC349+8AxdO0n5Y8vJaJTow5p8Eh4Ad2fl29QOAcYuGRRzHHneu4KScMzFKT5eqUHKhjUO6WiZqAhnu0MorLBM9WgAi+7jDqxL/ynP5sKQbuQ5MvSs6RGVoNaKiEBc9Cn7MNnmhvN84XW+8BhfcPQD10U93M3qU4nUW5Xw2+2f3HtS7RmWTFI3YzHIHehEmiB4j9f5Eupi1Xp0XXcKyfY83hAeHD0OcmGi85mTmP/yXGEOy+id6N3DGs7JiU0QwngZkdWtGeY1cV0Tj8cTvQ/6sFpjGNCOvY/Lcr/TAtquTYQUTq5JIpXmlF4ZEPgdWSYgb07nxGgArRCzJ32MRp0nHBzvY2XwtAOOHDaUCOZqK5d8JwE4nDq4iyjZDFjiSciJYW5KHIehRVbvaX9bcCBJUSJYGVE8D3LO/OXjhamftxCvKSBfkryLr8kwcwj1MgYHvDgcZo7egIcm1Z0fH4ABjy/kiT3PE711jD40Mc+Rg/QOIdkqsAO0Dw0s/HJPI/VMIh31aj3QWyh+UfJLiPAVSYrMixDtpcEORl7aJBrIRCknEzty+AaM/nx/HJKpnYyue0i+swZ4LKyLiLRMCO1kfU4Pt9tDseidNIfuDhtE0LPjQDmltH3inBltoPeGL8+v8OX4+P4h/4Xcme2JaufLgmVgwmNi+ZQ9bCps5eRehZkOeDS0GAAe9FukxyKovySlN4+SRfpMOhUJPCYy0cJzEgz2rWHZxArHi9paPu3AE/Th/VOCjs+x5qyz3tvAcbzRj1sXEoX1h5/+oHUmygdzKhni1dHwen3g4/s7Xr+9w1+OL8dXxALOb9eeYBYd5guvk9PK3h5P0cIwJnYEXt9+ob0AkXvPty/o44Hj8RPG0TGOAZ8v9A789DzIIdY70B0+HGtdiHmhx0ADUU7sAOHQkqDjiv6l4/SJ18c3JEzh7XkQtadivy/HsIa3o+F9vvCaJ/A8CLTwBXMHMGG9o70dsMPgB/DTv/yE/hX45ftXfP828e37XwF3cUE/GA8EO6nchWaaGVEdsNbRMADv8AvML9jOEaps/zl/lAN7BC4ZTRO1fbHg1AbQgoTsjbGBz50csmZoo2EZUXBTA4/yfD/GAJqGh6yJ1+uFcTwwDq4HmsGOAzY6EUujwdHZ1hiG18eFj2/fye1kDZf4hu1ytM7OtNUPOA7x/TLmhpGD8xgd/e2A+4mFD5zBRGJvvc7Mv/f63YmnwFSmC1qgbMlAGbhmGg1c5IxLwReDMsZePKRJtNc1ShBIGHsqs5DiN7YzrcCKSSe9bWXq5nLoXU6WstM2684fowEYdIQbDR0D9AkLVaHM6OWKzNQaHdKYTuRBNyX4SQAXsdJvYEBX/r2y9VKmGajRMJqCRzqpFqHMs6oqjZMQ1iLaZnQSKwMcidrkfXgErvOq7PdcmnSXPnuG4pn5V1a3RWfLnzNwaZiYfqE3oA0oGJdru1QhAb/P9EbPkwWUwm1yItlmSAcOBcUu5LmUNtpuEck9UzwCJWYZ6CubWx6sTUAODHwhx7OHOfcRTBbmPrTOL48FX6vWmuV4JWogp1dPla0maVyfhxyQNdX/nJxPIqFvDVe2nGRwiky2oHqe2dkWqibTCbZO1FODHGCVIITAxvYgMyCDkGSUdUq5VyXKjI5Vx+a9Imprk81m1cxC1V9Vt4upS//Gyjp1VIuXI3l4+JRp+Mtt0l4FDKOzzXKpesex92xVaAAgQ4KIOjZe7SmqCHUqVsiBBXJCmipYalmoXvn7+mfZAVuvjNYVhIvnrNEx5Hh2oDih1OLIsx1qpWRCJW5BDaQLEEwy8nxBMFT9TvAaocQR3V3tZ1ihGKDpbtkS05v6p4Ob1btLR7g+F5QLC2Q5jwiOTDjo7FXL8HUrpgn95amK5Txl55B0Vqt18Z0IMFbmK6wLBT2NJ6lZg7JiuwopXjnAFWys0p/Wu4KFXvJGUsWGRApIIvLm2W4DJUfY91jymBMXc4uS2JOy72yhlcxlTjQn/vFcujjohMCUPKVzHdgJMhYg87ACuAX3hkCSPKPOhXSizt4O91q9d3eP1VPrvKpVC5lM0x6J80wZZxF0y+FpqlTdqmrcKiE+fRN/U9bVAup5bvhMhfaM/TgRuKF/KaPcEyFZNDQ1vB4IATr11e6rM5KtIbnGye1Sk4KQ6J2MZYROuBV0+Dvp/qkyeGvzSYQA27XA+3PaW9T+KnhwVlM/tTKFCG+DPmWeMhiqIpmoGrvpiIgtQ/zs7ZTtvUTtc/6+Y+vouwwVVsIk09mWYn/v7mXLghe3hu018YWc0mi1+LI16QvlWqrA2G3rezVvl//3yefQRuXbeRZ0bvIc445ycWw0uD7B2bY0Wkf0Ae9LCSqthbsCN9xkp20Z108oFypcIlFW9AlgKNRy5DUMQjNDiaAmjkHqj5pWHC49rZ95kmxDWdKcy5c6XfIoVHJOHF3IyrXW+ZaQToR6YhoS/FgoJ+N/uIa21yACobZ/6o4AOYAoz8MGi62FptR+6V+JTi8EhBKkdD12YidlcSPzZQ9v8rn7j9pWFqlayrxpfVZ8AtMmwoNdiizizrW2Hkg7Z9SjlWDLBEK2nKs9mOeroZAZ5WvZTtSbiw4ikOFA+kzJpcipzFAnA7Oy/L0dizRBOXLyHZFr8r/yzGfXRms6I0r288MQYBu9O1vpHEA0JsqWsQ19pf+Xyfqw8jGb0KnuqQOD02OTHwiBwEK0TKkocS05b12crIVgyALLVhfthpKi3y/EsKFQE2lz0n/0ed1kSHutqXp0Q5ombxsutVXlsQ9Pn9fBKWlMuBkPNQKuUfN635oVc4WBw4YihKRq6kRIJcg1qumKZuUzQZ9d5yyVNTIB4WWbetoBY8Ktjy4/SXsvHfPJxsnOZHtz2rQ2Ol7nydZ3A9rolfSALyGAZePd8RwslP/22zf88u1XfFwvzFgYojTJe6yCkgFjjHJhxA+BPOksLofQzkBzR5wXXtdviMcD9nzgfH8BcPz8n/4jjseBMUg1wynGDTaM9xoBG1yTaIplGotB1+vCvBanCrZcEmrGyUxhIUiZHPTdvSPb3BswrAODcdlyxzodx3Ggt5/xz//yn/D2fMN1ETzQHDCQsNzQYdGV00iUUS5AIJpj2UWflX31JQfNU/du3zq1JP0PyiiBGlGtpO7y2U2JoqHOD+1vOAuCMwvvmfMAW59DIIz0x3wtXOkfW4O3hugGt8bUqpL3MdmWeaDhYTwHM4TnkxytNenHX1edDc/D/HjAV0esiTkvXOeLyLRG8MV9Oun/6PU/kXg6Jag5It041c4BiGxr9IFMMHgsciu5MVsYIJJERHjH4E0SKaKqIvnF84gwew1WxsKYEOGIyYO/Y6ZKU8CTgBhA2ETgkiIJvB1f0K3jElzMDk4pe11TiIlRHsxUW1RrGts4lVhITodwrEkh7G9DsNxd/dapqQw+9rGuhJlcPCVCtpM/WlOVlo7WaF0OS8NxdAX7XPPX68LzufA8nkAAp5+cABRAKCCqEco5maEFYl24fCHWBcOFc71wGDAeBw/Dcsw44dcsY+7ZAgPxcsUs54vVhIbRDvT2wEwDsTb3haVn0gj9Z3U8VwHiZqmlk4KZ0oEaN5nGuQ8EJnzOChgiLhqd9ihHmpRDDp8La3q1zcXkenc5ID1htME+fV+O83xR7n76CUBOBWSyLKegPA7CXa/5DvqjrZ4hkxg5aQQLbGUZGx7bQA4j+AR87tbPimXT5aSzWz31MCxnf3bNWlDCwgJy0Fsl5lj9IWIqqwnVSoib42AgCieiKp1AIlU6EFNOnIwQM9BKDmUSiRZ+CMXgJ3uuh7HClcFLCDWGANCY+JoiSeS6KShLyy+kSHKcAJxaFxRGbGCGISeu2XbZxUE1NPp1waAJMO2p+0ljq+CwiCaxg8VsndMzmhKuQIiAo22HXVVF6pF0xvnvbkrGQ6Sj7mU8rA/dFwPDNDrWjfCRdCJvWtlMwcmiM96sgxxk28Ge8UHjFDQurKLz3HJ5neesZfCmSjVETBsK2ww3R3ODtBikMUG5xHGDpqDKlmSYBs2FmAFQUy0N/fZcY69zeqYVcQXgHclbElhCrSWsPmW0Dkatk4v/LoXdxEe2YmL/gvhGJFDZHt57r612DyZ4YAoeKCh7diRvm/KZMsgjshIVyNOKpgQtkO03ujcFq7A8z3kWbggtMyXuKIs5RY6t7R0DGXjvx0t7y+RKFmY0ObW1jVhSJN47z7ghlLTw8k1zWzKSbNJNIFEJ9ZimJvF3QnJ5T/eHeEucCEOzSjLdw53d2p0OPuU6k9VN3iynLTEQyOl2MKs8dE4D7NJ/JmhCymOip9aaDGwsK3hEGzNpYzp3oH03Hf8ItvdkQOwJgWeSoUFyUtnFz75BrqGZwTwHoqTsxA8Bz05upSxmQi7/7iA/GIMTJkWnT5QgAbu9ZkcevH4mEYJBtekcbGHyH9p88r52s1YFnc3rXASIwoTOb7XgJNlry6ToRG8Hnv1nIoMPri0RvHwm1x7cz0PuS3IJoY26tQhqxAz6rGXTI53qDHgo7+TaaXTuVKzbfgQGUTi9MaBeQVRaa5yWFe7kXaPyZvHLHW7khGtCp+ZErpRHyjanfLlQl5lCqqKio9oqmzUVOLXWINx1rSvd2Qro6f+14lKbItKufc9CyE0clMJQ8Sr1eabvdvIQAIOafIYmkt+mVpa0+/q8Oo95VgKb30UH30uuqTczqU5emrvMSg9L7hIduebCsuQL0gfKn9IJ4vQ2A9KScSpT4Jr0z7qZCm+NdgKggW+mBIgG9YRjJvRmpK/WsMSllknrPMemZBx1V55doS0tdWXgotEo5Ki1IWRuwM0xjfoFDYgsqGrjWVCLjSSFkTOoN8Q6kQNwGHAupCQkT+xjdCUQUH6OBYmXebbJj1bIowicKthmur0hkd2tkgXneQJmeD6fyMJH8gP13tF7xyHE6Pv37wA0aRtcv4kFt1n+/NSede3TOOhj8zkuIMgXZjCc50XEzTgQDswZhcrjArPLJoA9uRjBWppDU6xRr7C06/HJHjYaGzQ0jGLfZmGcf6NtmIlwypha8tFk29sYeP/1N3z/Rl7fIX5AD3EFpf8s3srneIOZ4S+//hV//ttf8P31jssv9Lej7vl8nWppo5559Ad3zG80IvJrRosKSvhogXmdeP/4hnh7g11v+P79F8x14X/9l/+Ex3jicTBWX35tzrw1Weg5BlrvLBqYAf3A8guv7y/Ma1bhrWWmEIZrznI4TH7zDGdRW4WAQ37Q4+DUdHT+3uu68PPPPzNWA/Dtt1/xt1++Yb5OxmTXIn+qDTQMfb4x4dQAG1A9cRbydODJSXsjKW2U7Bfi29J3NGBJaZ/zUqKYvuNcoq9Jf641IrVBXrwFvmfGwoTjOQYevd/snOykbEwAuCY57uw40IZhdcPqHdMMwzrClFi7yI31Zh1f+gGzho9gp9gZ8vPWRSDLyqKWFTLR1xfADO8wvK6LkyFlC5/PZ53Vf+/1uxNPxtmWaSp2tb4q1r2QHdSBdHaM0X05JJm5c0FkIWiZdcOCDEWDlPDSQaRyj7YQvbOlK5Sdz6qTHM1mQIvA6B096Nw0VwV+0lj0wT7GZHk3CUR44OhPmHGs5FqGWB29Gx493aSAdyZjsj/X9VzDBhId5JWaTgNuSGNdAbOcy1Dbw8wWDwjVtBYaGORntnTOE/Oa+PXXbySZ6w9ctliKbUoESTkupkIxBWGHMbg9Hk+c/h1rTbzmhKPhOXpVS8zp/DVL2JCe3IhWmtPlPHbM6Zi+YH3Cp6G/PQsFATOejkQ/qNK21CefU7eyxSQRVkhHK6NRMzn+jnW+gAg0uAxfwxREEkkYag0GR8wLfvEAOZjJbjL4x+BoeF9MKrUAYaKtYc00BOTaOsaQ55romsB1XYBdzA7DUK1s6UhFyCkUzwaCCaYImMa8AlznrMzQU9xOQAbCyTfAq6QRj3qfKTNjVeU3tq4GqqoHBT5mveTOZSg/1cstHSUFT+Fq3SJ0OFGJK+aWahN6D5K94Fma18nAvdHxzT2Ekh/k3GBrEMeLKxDI4DcDZqEbeh/VEtdaEgabZhPLWNEaKCBwzLgqoeWhNkmh3Y7+4HotrnHvCb1rWH4hR0QHtjMID7YdGdt3zBrMVV1ck9M+nE7t6I3te+5V9B1d/BkKUs12q2OyC5HbiPqB7YQmhEKUxuL/szpD3Qmnzmyh9jaTOGarlxaVTiMRip6Wy0BHWsDhtaYCpgnL+bCI+zHAp1HfPtnGFguZMA1z+DqRDn8zw3GYIM0hdJE22hr6GIQ2t1E8Kxu9lcEF93mLR6+17Or33zxaJj2ls9WtuHkcubf5XPqcxmADFjuATWczOtv/lGhEyrvtiUP7HNkWYDnuzegUJb8KWlas4tOv7n77nZzLJETxOBRCMGUzA6qt42iTTP6p0B3irpFA0HY6J8TmVkSA9rFaMiASTiXSS2Cixm2zkszWKU8+ASVVrTjdGCx0oQHyVoAMAG/JH5Fuf2qFnIlOo8zGYrvrTp63+nm2iCS5OCvMqxJWRIPyOZbvtb2vc+8NXiO0b8lXUKbceLaSnLsU4n0fc035Ddz+0D1t+oBK9qiVf4iMN5NvrecERiaVPHaVPJSg3/cqFGDsNTiabJ4QP0RrAHmu+RKZsGQ3nMvaW56dvH5JN/IsZG6q3dcJQutm0gFZVNObI2DG522Zy58LscQxshbgq85KrkUlrdu+EyYGaY+op6ZWo0lPbf+rkpm+WLDpXfuaaw7ZS9vpNOkCX5Qja7KLi8l1FpmYKmpKOGIAawamz514yrPZB8yY5PKST9pfcpWu8ltmSALz3BfHpHF9oFbscFb002/xKIRmTm+u5AewE6EREFT9JsKpZfcZKE6RTH71rY9SHrLF1UDkSRJp13iY2Anu1pRsDtolxnH7DtgC29mKp0RpBjdzntpLfa42johwOpzHYNEgfMlOSb5zO2/I7fTDAZFzt1EIvkL+WJYTaJsmdjI8dWInXAwhWyt1JZ84pYtnNy5eZ63s7miFdINUSvrSlAtRLwQDU56vVnp7po+qghdBUClDXm2k0P0TbSF77K7PapUwai4C5aRRsF24hHhmW99oQxZUeqFUtgLUuoqwnokxx5oLzbpI+NmGuaaG3XQSubdO/61Zro3jFHKqtYzgIN+1Y84J98AxHkgC74iNOmrWbwMWlOQ0o9+YyVNlYZkUkJ+TyHtO9ZGJj0qkWLPan2xbXNJxbCfetj+LvO6hZPAt8dRVyGtDdhQc4GWyq6WhiL5xW1hYuGRQ//inP+GPf/oTPs4T072SmwgmIrMToS4j3eBKPgkWwQIySBAP+QRmDX94+wIAWB8vPNvAl+NAw4LPE+dH0K50+nQrgrxQo6M9Wz2btYbTp5LKBk4WZBumO+A9/V6orXlWIdqa4fl2VNugg7HIeBzyq3K4WcP1fuH1/YRfQI8n/sMf/hM++jt+/etf6ed1oNsDhoEZ7AZKCo1oLJi6TZgALkhiAtFEpK4dltOzTa3kBNJE6kYD2hhERcYFz5wD8Uj0Y6SFHIFljmWGZR0TAfOpwRStPqe3of3f0zdJYE+aIXMA7YEsZMZcmOcJTEd3w6FulhUXLAcdmdBNk9QymUQPD0RrWOfJeCNMQ9ACYYFlLFK18kH+x6/fnXjKFpF0pqhHupRN4zsiF5rGntwlC4b12ZGGwbPXPFCZ8bkWZk4MA9AaFaunk9RSqFV5DjphdJ7lJC/a5NE6zEmqZjo0WArIJBgjUlkSZeTL0ccTrdNg9Qasyax+b8bA8JZwymRBJqF6Jx+HK+DnyNXtoN180jK+5Ivge1ZFdFzLa04mvHqH+wX3hdfrxGoT798/8PppCpbamXn17RwBoUBwV/is02Hp40AYydKuuQBMHMOFSKK7ENmPKgcLCUF0sBWwcc9Ck3zax0R4w3jg75IIiZiA5fc4PrOLKIgOa9QkNJTyNzCD0hiMR5CjQI/JXvDO5KMMnTX5ZEHnXGQ35ULRIew42iGUwES6xL0PtNbx+ug8/s7EZhe6JwPMiFC1Mh2GjXbgykf9jY5clIzxLEVlxiPYNshqpUGj8+Q4Kaiw7cgkImPJgNn9c8KLWMVcwYDkLuHk0J+R18v7MaKyDOA0RrUMZMC2fMFDnCLIthnsKT47BldVWcjA1uCLXEY5hSmr+el8GtK4S/EG9joBtT9JqMg2oaxq06AngV7tgBKZq9YcDOjc5QxzciJjfPXVYyMAlqqCSIdfTqVBCB/r4sRgsEsUCZFK7uzr7nreFbnfVpO+7q0OrdbPU8x4XjKBonOolCIyyINBMPbIDjfEIsqq1IBp7wPlVNM5ZOAzF1t703lnkA7MleiIbEuJSpJkW6V9asViSysqWUHn1l2JJwsFEIcmB+p+08GWYeYUrk4ekAyqAXG8ZdKe+h/Z2qXAtyvA8fhsW9LR5aoKgVPSHzpvQmZYBjup51FBUeomq3W6nflaF62i2W1NedM56OCTHQCUDN3yAAUBiQCifO1JmnVy9XGpkzIpyWBEbT5Cu/TOs3Ndr3Kacy2zAlt2PW73lfm1vBfp1tAeLCXTA3S0eup43+tRlbrYo3cr7XeXA/1eJp+afIt8jsx5Wa6RUAbkRdjyW59Z62W3YNnrvjLETruz22Ds01eU/WLwkp/C5FM6jLmhpZE//3nb07vM8L42qiQDWiCUaDKEW73H2M/LfZp+k+Kgjb7LKkxtlPksTDzl1NawtEH4dE915m4raj/8+8eXyefgOHIlvgy7dctYKGzGIKxZ+iYuxGXsNkv5H9frpD5JXVi60YRG4i7yLCqB4rkFtzPT01/bN59LpNQOJ+0C5BGS/ditkDsIAgD3RX8E9OPcyYnoBljyFgnVhMYWLj6CEk8KvocSKIkmWy4dIToClWbpG6YM6W4a6HfmOUWsSjyFL0BFNIQXMgMR6J4BNXbQmQc/MoGdfoJOpQo6EWnbc30Aj6y+byHa6C3JpO56J55QMpc6S0vwWc82k79Gu0AB4Lng5ln5ivtzeU7VaIfR2M0wU9G4f/KFDKFDbUWX0DvRM4WSTt14Qwsm4im/k0ilXK4kWEb+hnybLKAkCjS5W+5ol7jZlmyls2ZsWwojih+bZ64Kh8HWJCubqgS87N8KZxE2EoWcRSgDEoipFm0TX6xNY5sgqPq7kLEeoeFFOkylb1lcc4gAGpSp3KNEnZYf6qgk7HkSDe1NZ6htlEdNKRU30aXpXZwyqKS4FHTanz4GxuAeeoIPSpM1kMuxMMlgiJiJO6tWwoxncpGXOj5KH5kMQ9tnITkGXUbWPvlOTEpnm2UmnmZbSoZy6jf5qfgsxzEKCZT8j9Ksshri3Z0L//bXv+LPf/0rXoqxG4R8dcfUfTXtlessug6lY6MOk9ydvLb0YY/xxNfnE+d54vV64cuXBx7Pg56VX1gn+ZX7s8HF6TxGRxsGeySHIBN505eQP/K+G1jsTqmWLnCozdYdcMfzeHLqpXyY5SxEj+OJsv9Kqvzt/Rs+XheONmA48I8//QtG/Ipvf/kNkB/c8YChY4G+KtHJwcKSEipJaM9OnO23rMVCypGFi5ISqNiWyUzJkQEQopm5qwXuhojVpVPcwIRSa+z8qsJiKpRWPLp2e79SMYzPPGWT9+LumNcFrEAPDnBqaKzbB1vwqui/FmJO2OiAOTmw3bHUvj5j+/Ar9d/lKub9+6/fj3jyf5CiPCuoi2yJYW9OITGWnJ02Mlmz0AYfcuYY9kOH1IALDp9s7bKu6j4CQ1UUawqcGm2NYTu2GSAMS9RHwKPhhUCLAUNHBA/xsg4Px+vjlOO1BD/u8O6IFnAjefJyVZcanZ41NY/MXMYs2weBsIYLJmhtBm4MBsllVdKCFkRirAhcPjHXgmMgkOSVjYdKUMzeSNq2gk6umwG9c/x8b/jll193RlouiUcoOaNgraW3LsdhLTR7sPruHWsZ5sVgkTDJbdaATrJPGKyd8g6UkFiBo3c8jjdE64A7Pn79jjYa3n7+mVn9MbDWxHy9lElWtbJZoR1yal4Z8XSOI5gph+EVVEZLhOPLHQ0dZgcukLz7GFJoSE9ribhyO84ZgKSDndVYZt4Bd8J1M5EKOYMkY968YTk9keOrWfsqFEsDE51yf5qc2xXZmZt7YdhtUXK+QAdkDLbqkFdASljOSAaVrY1yxHtzHM0xL7UENCYjs/0yvczlU3BxGlAPx2gKWmOV8vw0Sc6YBDYD+pPPf50X+RA8A3pgjKYMuoiqsz0wnIYj9nVz5G4qLRbt4lYZ538Z525l1lrH4/HY8OtKrpr8SlnNtvd4zYkVhqbzyMDI4esSEksTNhBQThTrUkuYHLDHY6hfeulzFtcWGsndDM8vT+5lEB22zhdb4CI4WcQM/dDY+JWOfsjREAo0n8dwS5ZYebdZRGxZBW0kim/t2EGoX4iY1eaQgVgDZaoB8Ak5JnRkiO6RUwzypiVSMb/CN+wZJmQQXOspEllFf0X62o2KG5y80frYKCenrryco5WfUMI3HJdfuNRqDQMOkJAxe/2nuyjmeIY2DBmoto/IKgwTd8BG1IiuV0l1cQ2ZpD+yWqnbTDRtI5Iyg92t1VHJGS3OD8F53N5JZ5TOtFqp4WpnNjzGIHeMJ0qHgxPi09WUPEVWcq2epdxqnbXXeWH5jYR6LbTe8Hx+wVocYT2XyJTBNXw+RZx7vRhIN1Z1mUiQ/rImtSKNXQlxVjA96CwiiNxJG5jtHRV8RrZR0PY9xoApOZytHEQlLrX7seUBuFX5nE63xFIxzaiAhUnhi3tUhtDUBkvCzAwCP+1aaLJpT4c/29cclzvacaA9SDrcWibJMwG45SFRmu6uoDYDarUiqJUoZT3b01MPjMG2/9frRQevdJuQOmZCj6Zjuu1TPqs8EQCGFlkAEMrkk3Sm5s0/ed7DAzcDXYmJ+1oZjMgIIUUzSALoG0LWEBkoLp71TEaybYHoqlxN7mdOIg0VTKyQBJE6IkURQLYkJ6l1HwPuHDSRCYe8NkCf9eP64HvbsZOESsJ0U2tgo25wDwYiedakY91YbA9DzcpqguGMPnbSde4zYGZCt2YS8t6qkE+d7alaQfmsaRtC+8mkSwPGwaJgUV9EDfOZmSDwOj36M4sEJN3m3dNeTI0OB1RkqyAcFfyl8JoZ2wxvdi11pQvtnCgB7vnW2ZCsbTk0cT1mgpu6sgeTjlPOzScuPzrCTEQm4hKbczU5ZYNZBr3fSn5Me9SMI3FWzEqCN7RKJrmrLBP0Uqw1IgAi8HG+uM9C4Gd7dQTQRSSfqKZMyphoGZo1BolarxAKxWDZbQ+fGr4EFbgaeZ8cwCF0zsj2cCSCpmFqwE4fpCpZa8IXiBjReUru3bWWBlh46T1r4ojKhICSZu0gT1BOqU7fia3GWkvpmelKyIXBrOPx2Ggmdpw5fMpvbla+oavAccm3eowHbOy1fTRyKV0fjt4OPJ5vtAsnUVX0TwlBWXPW2mz5lwxQPCq5Zu7oLXUA392tlU/F30kZ3kgnFsvluypeXovJm5wYOhff31QsXsEEN6eQE/lzfkx8fD8xfupox+BQjwDOSaydNcdxPPH2/IrrXHh/vfCXP/8Nf/3rr+jtUJeM9kPyGQFSnjsUf2SCQkhLAh+J7FwAE2WGRyfC5jVfbOtqRBk9nk8creOwjnY86JM1JsbnbIC9IfCAtYEVHT/99BVmRgoTBMaji1dosnMpvIoE2e5p2Ci9MQzP55CNAU4PZCZteeA8L+q+1nGNhiu69F7H4z/8I+wPT/ix8Nuv3/C3v/wi37/j7ESlZvziy2GduQoHC++HCqDni4PU2uggHbeK16HzBuAKJQQPDgkiLs3hzci/FBllO3ohTZmUTT43NOYFlk8cB/V6V1yPRp9rrgmMgWMM0RUFzC8OJHvyzH7gxIddeA3HR5+47MK31y+wMCyX0CtZfC1N7jyGONMMSEqKdcJgGNwcEKWWCE3HDwfrv/v6/VPt4glEOn+cdGTEcWIH4qvqdTRQO8hr2TKwZBxaGgs6jXMtJhlMFZIMyrADz7BEaujLo8gJM+SBB7wRCtYiWW1UlRQC4VrBLF7LlgwXcoLuLOGSyZFDIxZroTWeyNyMldlBOUZTRs9u4Qn/napNDoZWKvueSbxHQWyFbkFVcNhFZPXlAKDEzXmSJ6Bqi2W4oaAz6k9kwBe5PwMBBjmsCBjCFlLzRBCGbj3rljcuIinTYZ0tRWACh0i2LuVBSL0vBuqwPFTF7rADRETWHkGJ2VUWFev41Rp8ZabckKkcEqjR2JJzg05N11Sack0iHQ2uRbOdAPOSVWq9jLGrKuCxI7t7ZGlKmwXkOHp5wZSpdOc3kS4RrV7VpL97MQuVpq32lFvPG+i5jkHHanSDzwToy6ld6a7e3disOFMS87r0B6rJQo9g+n9UNp0yzEA16t6s3kujTaejgq905vU8SbxenmH5nbdg5n7n+TbbnDQ/vgI78XSfcMNAIjThpb7J9TdVthCwWKoiRyHoSC5YRVHc6osozqtGQ7O5HKyQGxQtQ/q33W7IG90zT5eCwU8rYHWr2XualeuNsmtF/khZdbBfgYmhurIFEHp+263KiNsY1sAtkaAKoQE7oqNxAkxvSxmXHs7fzXMmrcd9lhYWlwXPSMoG5YI2JZ+DSMBKKFlq0HSe+PuW5zTuqK2tL/bfU5dHrXs90u3fsmZVqaSYLCQayuTs5VmB3pfIt/zAu3rYJy//mz+llSBbm8oGTc5WfbbvRKTuISVk20fduUW1huSzuC/MuZAccfTR2CZa0/dkx0L6EM1gbtqXANKx0+ooJEQdSj3i1pWyi0oAbKRdJqii7tnSMob0EuGqn7h7qlIcqQcySFCSEHn/KNu526OybSlQS1/BblRy6p54un9m6qudKMNOEkRsyoGbXsjVN8lHto26eyEQoooHSRVw0/QJinRev1mjv+Beb8hnbbKpiUinlx615jR3eW6VbM0gP++zPnivzR3tY9KfeZ7uaM3ce/5O2hcI5ZwyYCWzexpVJluEfE7ELwBiTzONYHWu720w3E8lgXK/0/e6tUveW5W3zmi1NlxHoY2Ma5V7X1yHLVurpf9JqKf3204e2X6EBaDFtqHtNu662l3zHlIvSb7ybNGfkxWMrTcSfZi3lxtYO5qcHin7Fgj5t0tvb3neKvFIGYnycZosB/3AgAOWU9P6ZzEIbb7kKCUnfe8y4bHlEtgJ8096usRpyxh1Pm1CwMt08J74tjva6X7RJITPNWNbmpce4gGRnbqtr6W9kh5jwiXqOcu+fVp/ruXyladRGs7lq+bZg753O4U3FFDeSy2t9iTpRAoN21lKoo+c9tr2V34f+zyHPssMTEQhgJUnLffPVBC5veLTv5Swvu1nOqLSd1tn53r+sC+5zo3nPkIJ3NaUeKJ/n0maOzoMASHWG5Oi4L+T53CIy8ynuNWYHVQXxr7njWbdNvXzI3NdmrdKbGRx5q7/KnmfsUw+M0ibcE8wZpE0E1w54p6fZ6WfIlic9EWeWgtDNlqVf6r7PgYn3n18fMN5nvh4f+F8neoQAC5n6+HWn1Cbe1RMU8OCMsZWkc+COqKBexWAupLoExC5ZVXw6Y2ULW4iv3ZO/g4MeDQWF4zvgS0hiaDz2ACTxKb9sc9foXvtzVREBmcL6ofujmuRzxbWWKTpTNqagQTozfH1H37COSfiF7agIgKrMa8xxWe7PIRczU6mnIwamLITo4kzT/YiQqNyGhM6HmBHjoVi/W0nCiUpXZzgg11B3Gd2L0a7+WLpqyoKTnQwAmZs4WMHh3ixzLFa4DLHCwuYl+zNkHzxHpcv9G7FRUhf5rMdKoDFDoxUPP19r9+dePqAAeiI/gDVWa+sb6I7esuR2wEDuUaK58GE0nc6UEt9j9vocZT3ARoGi6xJiwfBGmwwaAk4sCbaCjQhTQ5k9Xwbn+nk95niLnk8CC4bWb1pQrBIAQCoxa5BpZ2cOAviarGcYNIQ54WAuCAAtdzxYPVuRZIcwZGYKWTlhHVDiJCXEGxWmk5x4xwH+zt9XjiOjmEd3z++Yc2FP/7bvyE88P/4z/8r+nigNWaQr7UwwXHJ7SFjO8itE+4YZsAgm7+2DZzSdgBB/iZD5hNXGe5czxYNX8aTbRaLkwhmXGhjYLSOx/Ek6a1P+Ol4LZGyFWS1l8OSld0VpjV2sHqXP4Omxjm6MbjrjRML/HKsQXL4bgdaV3+4O+brxXsZGmttxvRKqIUtQISd+tutGXrsRBOJ4xos9thos4Y2DkQwMdcfA2aB9foA+bi289wEEScqISppMcTvsiooDyFWRiXXrLMd4pokXLymSLeboaln/SEkTHPAF9FHOBz2JLonpsNGbOcMwBg0ug5WZduAECdWOs7knM+p/uDFnvzWWc1by7FehGq/Pr7hMb7gp69/4Ij1tfBaJ2IyiDKYJko0jDFEqjcLqXgYtJ9Il7cCqfRh1mQPeLan+WJS8KieeN/BRRrZSzxaIkZsg0ggN03AyHUG/8KWh8HqqAdiXZjhbJUmURNgYHVG1fxm5BVykZx6LKwQWaUQnoag7lA+wsULdUkHCPDEcx+Z2NKoXWo9nPOU3kzOBNAp88AXtOKxyVcgAEdxnz0fX2Ct4/v6rnaQDM6014Dgvw3nRf1kGvd+HBlBbMepXOIyNnSoed1sDtW0SdmLnQwPxGqYZ2yuGDlz/UHSzMsvutHBlsV+5Cju5NFxzHVxz0Yv/oV7VTYdXZKIdsUN/Mw1nVWaT210WRVvlQhwX5It2a1xS3JaCc8WpACQRPBy6u/EuXHT+ZZ6z2plAXCKEM8CHZ7rPAFXIsiAnJ5W17AdTFhYAs84QcUdrQvF1lmpbwf3+QgiOX/7fskWAY/nV4zRyZkSS9wpHK3LiZByLIFKGOQ6H8eAOwqti2BydVhDPKnLaoqOuO0SZRoO5PhphCai1PruWNZrEqKcHgWAo40d+Hiwmq6FSEcz28SBof3daCF+CP6br4gQhwGTDFk4G+OA2UMfGdS1itha2pZPCSy2N8AAjIbVFAwuEuSGCkjJt0dbqSJdRtVqhWHF9cDj7Q2rAomd3OM5nSmQciorVQxbmWTKdVoS8ESemDKHN0RlZXN5pZ04Nflp/GkDix9+azHaayw+CuQzZjGJh4cBBwtgQE4kA9x2G3u2elcjohR5JnbMxOeZYWREBc9rrmov2fubiEzArKtoYMBSEaF1JB9hV5CbKTR06h5OcCK32bREMVGfnE4UCSk31AbcVcFQi+PItoWVQZZ8LUMVYGOx+LekfyMcbUbZLnKDBO5FIAMHxXycSlxrWA0TZNLjS0iOcbMt2bLbhRDt9L3of/PvSZCbieFuanmU3LiqdEl7YGqxRyPCA9D3Gqd2rTkLwZM/MxDZHwZci8iOTGYAIT98o/2SwyeTF2bGArd0EQVmkevKDcl/qA5M6U6v+yNvyiRno9MRYmu9EFgQkbbcuJ1KgeSX5O5jHGx17Yx7Yjnjk9gJosfxqARILF439Vbv9Pkt7Y1ZUYqUDVkTa17UP7JfGZJ6SH+1fkO8gEj5PL+gjGbA2oSMdJE6D7ULrL5jGUCJ1Ca+m0SBCWiQCK17gbAJ/Wiu1n1Bt5cD85qY18Lb4w3HGAhNwYQC5z463Btac82/FbJiLcTlgNCIDWzzswDimkJeRbW0zteL+10+QKLYUCTWmXzMVjQmroGEP5uJqxRKQBt1JTl4MxbmQB2zDvRO9EwNtOlbVtuiXlcbTx+kDjmeD4QvvP/2K3ye6A34+vbE25PDcKaTOzPQYN457CAcf/rjf8Wf/vXf8Pr+Dbgm3h4HW6MWuZHDiJRaSZ0BR3QmEEIF5VD8DgTGocJlAAjH9/MDrRkeB7mRzALf1ze83t/x83qgacKgaRBV7wNjPNEfT7Rx4HgyTv3t/a+wBrx9eaJFQ18drxmI69oJmHAlVB29QS2VAIL3e80Lz/6gbZjCgEfDXI64gHldcEz0AbwdHR8n+QJ/+zjRAXz5wxdy7vXAv/3rn/DL337F8SBpeKyTawOAIAoS3rfHE9d1Yq5LXTFKiCoZSgCNk1u6NTyOgdEaJ+n5wrWIkvLI4sUi8jSErLakR+AZc8nUYzwxji9EwjmYWLMcemOwQ4jbpLqIhn/4+Q8YY+D16wdWb/hycGiPjQNXOD7Wi62yYThaUH+LfP94DPqPrSF8gajkJft3Q4UvA5ZVZ8V9kMS/9/rdiadlUhhl4KhkQP1QTg6k1OlDKtjP3IUCS2TmGdi8MmDGzbQZhj2WnK5OtjfQUScEPBNU/PBNcZT3lX+2UiDMTqfFafv+y3BQQcZNCZVzavz8/Iz9bTo8zHnt/6WDlgTC9VmG/cz3e7bbW+RcZ0YzYZjWGuA0UOd1cZJRazAbsLaUoe5COvGzchXJJRJlrFvuEQJdRmOZMsn1ez+uZ0KuE2Eg/q7YBL/WUFXHzDJlS6QZKgkU0crRoiLPT6IjucsCVvvc9GcH0DxEHM99XLGqFcmwR0Cng0ubqeq2nNaUsYyPMwm6nz63JQ2v7cKsgkhd+PbbVn+LcCRxHHQ+koiTraJbvrJSUkst1Fa2StxuDRWjhZK9SkJxumKiBVCZ6tZ2gJLOW2ba8lp1faHJmgxv8sTwbKAqNeVqKRJOZz6/t+WPz50VC4pFVo5+CFLqlXvgu0KkoCWDl5CjlAR4UkB7LRtQY4ulL7a3WDcinaa6YYDOXRGN6y7W7rE26Mzns5VsVRi4z43kO599BZV9Jt0RqICFTpp69gMokuwM5NIBlUOWyVnoPNW65T9jV+hYRdvvsb1t0mV3rNXtM/Wx8d/YpkxAMP8SYLXq/ls6eyG9DxO3xe33wRsx6WNLbXOrnny+pv39XyVGZqVe93m7L1v99O9fnz8tPr3V6kPyXvPP+LTs/Pn+xS3dsc/W7Qf26Z38M/biyA6ksbhtQJ2d+7Ptl06N9JqJz8X0e52TkjxlIBF4W0hTHuvBypn4/EGlrwxKuPFaidRoJnRPQrBTnJvdl2nrJGC3KuSn3WQ+tyGRStD6VJvXLTm31zPl826Pb7L3333dK9v3c7E/1+pe0y9ot/s1Bfp6v4KdehKde3evpPuumN/XHPUe06G9683Uh8iTY/nc8elc1P4FqA/jtqY/7Gm+d39fUFcAFgk32co81e5GJ/6o17k28fkD7r9Y8keVwn0k+8WNDwqo82d6P4cBpNSVpdZtiwdQz2qyGZn4yX38rBJ2kjXXsdb4du/Uift7qU9LFmB73dM+mtpDtTyJiI9q4bq1jEmssvCVSbOA0ErOJHoWUvbSWq11eOrnTFAZ0sbxU+wG5aXOL5Rf6Zy4/Zl3ACFoy/KVvrqfsb8TrNoLnejIryi5TvmRdlU+S/tnt/cj7+/v1N/e59u+JKKyvP8Afdhct5BsgygVDyCJlvkoeZ50L/nJtZb8edvSUYkL/n2vX1Qs0+o9odY7UXDVfnNN9iGO1J+prsXdkxyZNzz2vk8lg/LO6rYlEZxUp6Rjq1/dl8nnsG2fAqhWoHwa1Cem3bmjuPjTRGjytgI3NbTXwj5r3fi0ltrF5XX+SqtS6HXDed/3h1EKvroRolDLP2qsAgBp/UyLnyW1fL/dvvI29jFJAc+1Fu9x7Q3/Hopx2mjFZXXNE+frA4BjdHYz9MYWyOSBtZQrsEPl/fs3/Prr35iIjIWGAa/3QSjb7HGQr95aAQEyRuSZST1w83Ea2BmkyUVhUDLWwKnz7HRIWonSorbbg1tXAjq4xtluGwi272mlXDqL6CsDekNG5ExKhyaTk8DcwbPg+spdt2CCeRhIgC0/+xgH3t7e8PPPC9+/fcP5eiGn/bJ/Zp9DEweqNatW8i5aF9JtSAZvQVSuecX2aX+20uO18u9WWZWyPZAv0KOhoyvek72AaZh2CvpnxKRw7WDDMMEN5qZhWwTkUCUFIqfKZnHZOCiDvK76vu3nKhvAH3Gd27237N9//e7E03n8BjOiSyJkNZcx26NMr4HB/iG4PMIxF+AXOGK1AT8/v8DMcPmSczHBCkTArxPxujiNWQchoftQQgM6NEmIfGAx8dSFmmjgdDi/iGKB4dFJbvxg6pZpq6DQpMOciKdzpknmv9mny7a0ZqsUEpUopfMYnH5jflv6SMWUAd1urUk7kn37nEqg1gYj7wN7THe731zkqDieb2gwzGvh4+PEr799w9evXzGOA2M80EcABx2DiRMeC+f6YOZyThydyKRjMBm0TlbU3oaQRjjkU0YpkhAJX2sN5oFrvqNZ58QQD4QvmFPZ98bq7vK1+9ZbJxmojLn7ZOInCTBbTtXY56b3Q+NVOZmlvS40OEYYhi88DXggMMLRxwNhhmuy0n30gTE6nqNhhfg/MgBOZNcSX9Vaaqu1shjLyZmFxfu2JImifUAEMGNSqT0PKYmu5I+uAZ6Jjij0BDorI9d1gQiLXkFTEhGGIO5E4rByktlJjwXMUOsPq7I9iFZbcKxzotmB3jnRhkqdE3iOQxMbJnvep+9EchsMmETJAkCTZIycPGZsAUoy34aOYxDefGmE7k50aRqGGSKm4KZqVapuJKU6Qs9k/MxU2llZLgOXY9gV13HiGie7HOMhZIcSn71LZoHkXmASNmBxIkfGBoAFlnp8pZvX+Znht0CRlfbrOjH6wGM8VJ1gAtWD1sAMaMkNtoA1L8zJykjvvRCU87oA40jfzD4t594cQi76WnAQ5dHQNuRVcN9w4PF2EGl5zZuu0Po4jUvvnTx3MgrzukTQuDCOhtE71jqrpcoM4r1BTXpJcuvyuVG2cis5WCFS9mABBpHzIlrkbQgpW1UIovM8giNgW8dxPBgkOTDn4sQo6doxcnRzVpkCLZEkurGCiws+uLQm5U1b/pDVpHql95utkUjTvf/O85bVZNOjp5zyd3kpfY72CxFCFsoZ4gYhWyVMlfQIYC6UXWv9kMM2KIN+ooKpDNDcb96yHP3gOfVwXL6IeOq7xYCoosLIw1rDeU34ebKV3OSQyqEPV+uu1BCLEiZujXxsBrtZ4Z7niTUXx1ibwa8MEohetN5hRgTbWjk2ntd1ZPLFMSIJ/9Ntb7XGsfyTk2OtFzcGgyNP3+2H1w6CdnIv5UfISo8a7Z2JiyZy9nkb71xOovaeU3UgvkR9moTneB4Y48DrfOlsUX5OTY5pvWFN38MQhAALBN7PdxisuLLmnJgzJ/Dwc/pBWUoblklhhHwciNxZ+ipUAEl5rgSkZcFoFxvMDpgN1Nj1W1cf177VXjBI1llAcHqUYRe2PANDY3Jf+kMHrOSXHJiL00GFFrKIGk6TbeYtN1kBOFSIas0wHg/ux5xKKngFJn0IjZH7cJ60a+IGM5h0sMOxPgXLADQdzIunI9sOWjMmhDp5b1rsszeBslsRgb6CLQ5BYih2gfFZMo5gcdJwaJ93C7OrBUvoi2rZUSCIwmAizCs+IUWh0tKZDNEPPdgiYwkHUlarZWuHhYo8HP6A0MQrvcjT08v/zRRh2SbLNiGu6wJt1QrHo3VygiqBkoi+OSdbynqiJzVJU/okkCgryaX0my/qcsaH9B34WBktcZ25mfyzS4c+joHLHacvooEsYLYKFZYynyn7ECdNdjhYe8gsZXGWf46h6YQrz6f8nVgaVmMMspWgdLUhpe8A0C/HqKMpu+LSV6b2OZR+al1JrSDVAMzgFxnIepCG4tGNPuF0oO3zaiAfGSu0TTKV9j8QnSswU6+kfTRDTqdNNB2/bXg+3uAIvPyS30Lb/nw+OC0Y6QGm4uZ+996JvtI5v9Quqfgf0Fmd14kxDowxMA4AaDUIyHLoWaPcvq5ZyL3WhhI+l46E9F+qctkcHrG1naBmgHU0hqCQCoIHOYuTrLwFuLflA+tMAeRCNOCtaQpf73i9PvDXP/8Rj2Pg69eHpjouXK8PuDMZRVkDzBamv/DHP/6f+D//j/8D1/kbEEt2dAH4ANSNY7jQsAC7YHAOIdCi2BQ6Uh0bcMr8Eifb158e8Lgw53udv5//8E/48vUrMAYmGhH3Zni0AQ/gOk/044HeDG/Pg36cOgIe7UEXqQPXx8S3+aFVMTwGuyXIBW1pYkv/GoAPnzAHTtnvHuykOhcR360BLejv/3Q0RBy4jNyRX48v+Pr4in/+wz/hD19+wq///Cv+9//v/wfff/sVX788iTx7PEhn83HChgNjoK0Ji4VDExeX7diHKnKDLI5GH2qGowWRsysCpy/EJAIxOTM76Js92vY9V5AresDQPZPUwBgPOAIf5wWMjv7osHZwMqQ6Pa7Jqer/9NM/49E7HsPw+uUd3//0K9ZvL/TXwpcnJ9C/zg9YBA6hcQ0Xmrk8BiKoW09dpaSTENgrnB0bzhv/xP/3P3j9fnLxzkP4qfPX0qfPLL6SK9kuk9UCEebBAzE5di7J5gBT+90E5AhxApYg6QEMHfCsu7VP3qSSOp4KS2TN6l+xsDLiG/LvtYA73WsKVvVotpFLZgG0rgxtXms7AcW7glACRk5YJH8MiiQxjFA7Q+Wcb20ZcvSSt6ApiA61iBiQBJy+oiY/LVdbQKnsQLTAtKXgnQbVxoYHJurpWlMEdBcDCjmX/LrBE2AFp04CRma1NwR6f6Vd3NUB7hR/TtlMh0wjGZGoFq6rLxJaZq+6ddbAzFDEudnWNOeruIm4V7z36ZOBekCJpfbpUYDEWPDnSX6ZqDCospTynfITyaHhsbkbgHra5Hvi6NMbMkYyU1xet5XKY1WVee1zEZZL6OJ+AvN3GkQYq/Gzds88s2LhznaDyr7np9mGT+d9wxIxJZnNRDOsEFgdB7rleF3trWQ1mmSZG5IHClXhSc4YE0pL0PFQYiKd5AzILVfXdlIXCk6XT8QMrZzOUcqm7s21bg1WhM4Z/ABQ62O+5PgFE4cZCLdsCUr51OdAjim7nTLRwSR763TWky+On+VKN49PrcZ5FkKBVyYJzPLccB2Ss8NjwrwrGFQQIf3CyVKcGmIzlOCLvR3pIGvPOMZbz5L3ou+FWscyvtsyK3nmgpSMZltoVp1YnVVboKejHLpeXseUA6b8Jf/AlmGrs5P3kC1omxDaSj4K15atmKk3MrFxc+RbWnNde6976vCbaKTOv8tLUM+X8sJdRmvbFYjIJigxm3JGrhG53MmBI31WLVR8R+H2AAEAAElEQVTc/Nv669xGIA+TtVZn2fOZZH8yGbNicmxuZBVecofkZOsVMDU7kNVUSA+wGq171dnkR+57437zfAQyIeZspSoPje9LRyV5d5DXr3ZE7mYGcLUHsGrNgqXUev7zpiNLSGH7zuu+7baf2QKYLccee4ppTtiJlLNmKag6uyksViq9fIiEtd7F+Zb4TP4S3kPD5sbjTWa7aTfZ75T5dHixdaSLNLpQYNhvyERpahwZRjm0aQtS51rdW2mpoL9RvmXsP7kGG2FWN6a98rXvK89qvtLP67qX1pgEMc/sy035SOhSh7ueI6eP5VALvtVl+1SIMBEEx16Zuz7JJE/+bBcRqctaUSdE3fk+7EZZcsqBy+ethDNCU5KAT1b4tg78d5R9A5T8tr0fdd4iW1tly8LEOxf1fOVj3/Zi8xrxOtn6TteO73cAzBemTmTrXUM+QBRX0UZo60zedKTZTkSkrQhg+yGeboXOe/uMJv9klvXNktX89148fieT/ULJ+6K8ctDR1sM5kc2wz6nLR3FPGWl6DtBhtNgFmZbYpixStfIZ7zdUgXLaE7v/XWjQm68GMyUEeZ4WQj75Ta4lb/n35Dyr+Ob2+VteN6pibwav02xIr+/rJo9ofpoWCvShVaApLpqUSStdltxTdr9G3nGg0Cn0pEgFkjuS3F3FPxauoiinZhW65JN7IB+ocf1ymAGpLRjT5NTbvfH7ueoYpp900wCfbf72S7LFqvjv8kzofIRkcPsEUUnHjB+4FZ+LKGXzASRX8goelpCvmXvSemcSfC18fHzg+8d7tSUvtagnyT3tuKhU9sJt9YDkkdoty5QhFjxKjzb5FjAWBEZHO/hlLTuaeC6GdYyR/LMnpps6jjkUJ4ITJ03dK1rAnH+Eng8rn4WBG2PymPx3K3A2EzyP1sjt2xsuv6jz8j19MKkY8j96w88//yOO4w0//9c/aijYBBwY0qPHYEs8IruJ+Lu42YJsxb+dypsLKFkylB51WK1zTlv8LJryW3lYVLDl2vdODsS2xNinNUrfL6kLArzvGY71mphCavUxEGuUrKUAuHRwoRjDq52//IGUfVPfmRW7JGZEJfH/vdf/ZOLJENNRCRIN4AgsZUdP/UtIFwiJ4FTg8MD8uJjZez4QjQ7neV04zw8cnVMnxiBCKYO+LmWApu3xmw40MccvTdXBgncHGis1Fk0VmxyDGYAU+QbYWBbJKUQgmuNO1Afc+Q6yeiYUg5Rh9veWljXgaOzhPlQxXbEzmakYO+g0OHgg4I7RB57HQd4mn+TCaI3M2csRV8AneS3mcpzXqurRMrHzHwutA4+nxsNiIObCmlNQuoZ1XVgR+Hj/LmgsuLj9bgz0SM61Gk39qECG2oA5TBB2Q82M+hy40Yyit44O4FSi4VoLpgl45NkJcuqE4cuXN1ZLD/Yacyd4GJsRUvr9/YIDeH75iW9ojhmO/4u2P22yJEmSBDEWVTV77pFVNd0zuwQCASDC//9PIBBhd0Ez29115BHu75mqCD4wi6h5ZM90zgd4d1TG8Q4zNVU5WFhYrunSaeJY1dQKyorqPVFmcLGI+HfdX+8F2sQdVDHU5L+js51EdCU+9OgK8rRwQovhIVpoVMCTwVoFvaGJMp6BcE4Lo4Hy2Ny5TBAZUHfAqTtllkwIBeVwXFdWbQlzNtN5Slp+2nSo8m/sHya4uaqaCusCgDsGgEOaOGuRoRK+VCzP72p775pVtdPwgMH4HgR6JXtsHaWoH92f1+QNPf9g8ApoPDxU1TZeWToUBrkcMezBCYdQBZBxCzWALpXkmoLPaB3Lry2w2Yw6aml0lXDaoIZOtm6s/Bwz2KCGB9s/Mwjl8Y3W0W/WJyvQrtFDKaLJ/ZrAgMBFo/7RtV6cRlHOGpWVUL+g4TVf8BmAkZWXe6ULRDeA7MM1qeVlhmYpyHmBGlwDoZapzW65hfxyeNQCamIxGi6XzlzrGC1ZXzo3NycJBWw886/6t5xIVYlNJUgESEbvO6iCKTFXYmhBZuXKvWSb3aDpONA9jJ7PVGCZR505PrN7lWefO+j8WmSQkGwT/Sfqf3aSrWd1vr/BTK3Bmiq3fQ03emqAbVp9Q5ZqQusmjIGPvhkgEJzmSMwOTVxMfY+cLrmt9EAWjYY05GIFzDrOo2Gtiet6lf2r0Crsfkv77wJVRYZsi0lDLcFJrhHPYo4P33f3NTf48gUZzKnIRMNJ++JiRW4A1eo1IUZfst2+tBUDCGkdmZKvTFbWCsy5KgYx2bQmNlSsiZiXBl2EfAovfCfIbSd8vgO4uSb33+CUx3lNdLUjdK1fMkUOBcu9DRaJxPZqOsQZC1Gfb1aiyfd0ZMfLPRwOMYCgc9b7bpVMBsnGehxkFEwVwoAc6mIAk3izYqdn+mryi4GAr/mlFlEFj3p9VBW/W0c4qOF5A2byPNKPbpPn0s9JkJDagp1MAv07zGraUOaItyPKhMtSEJsf3Orscs04Xhw3od5dWEsyfg2cyeS87HNDdOM0IzTo/7FXkWuxQWw+gNZuthaofwsEcupeEn5odwxYZCb11pUcqfCQrLAIoHMtXzfG0sr2FsXXEACTYu/NWCjKwmUWFPhenTWPm5A+wZKMpdN2ZsLuYgrbIKMtMj4D9vrenn/F4jRgtS7i1/I56lxzsh6HrYQBp5hYnGa7sOYeXEHdtlZgwZqB0H6Aipt5XXOq0+LgCPnRXFSqVgn83gN7z+41M/l1gV05RjfvEQnSKJ6IoD4sqLd0B6QNnKQdTTGS53routMWWsbLQA7ByOnW0RsaDhYqbnYrQdbp+4rMjHGVgz6jWyWtCHkRX7imYzQDurRdW6tcKXRG16zyEEIx0vL55Tm3lixTFsZ9LhyPgT4aQdzG/RkQQGcANOhoOQvqOTWWdiUZjjwspUEmdlcEBJCb/EECRtsWchvvPUlG8CqNvK2Vl4xM/qRdqUmBQNm/PHCsT2iCIzSxvbPr4DUnmgo30chC6tKQen288Px44edffsXPv/yCa9EHxESdxdJva4yTBhq1ucJIloB8coLFHmXj25Du7OsT1gLtpPZTmJNSOAbG2wPjOGttFi4c48R5dLy/dZwPw8fHr3B3/OXPf8LoDcNMer0TfS0STLgEOMWcOsA9cF30x2t6FQb9YqHhbAQi1iI7chwD4+gYo+PzyQ6Tmbqh5wmgYTnjlGEH/vm//BPGeeDf/vEL2vGOf/lv/weu6egTGMfA29sD15y41kTvh8A1Ca37xdh3DD7jbvBFHS3ozLvlFET5bZgALBFZ7sFI7ZftOjiYi7Y0ouEcys084CaNZAbXsDb07o5Ax8sCMS98/PIzXuvC8f6G8InWDev54rlsnF66AiT4dA2hkSRDbvxIS6v4IvS+IIdOBIA/9vOHgafDNCI5Enhii0DrEpR0jsF0kH6WlR03IwgEvtZ8o6kEqJVEHA8evBaYkVWHnaBbJSn596JI5ljZRWpji3TBQdAhKFpJu5phB/9b0rwR1BdSwMD/TXCGI2mp1bM1koCGcKKKLYMwW/lxZawdDDBRFEzRMV0YUgDqKNrOs5O6GSsAh6bzMYmfc2b2Cl+Bz89ntan0wRaz1SaWOT79Ax6O51wUiO0E8zyAARMow7VwBddNgslfECMxT17Xki4S6YrHMRhUdK5JgMmjtQ70g4iprwK5soVi+WKFpXdYA6eNCfxpXafRZfSQ1XbR29fk9wcx425gqyOzSjmVbCnpgN/o+2tPTUrRxAoGmnGvgA/JsRCNApJr0gn03hFGkGBTwdnKxr1Gh5PVX1sEbE4FJUtDlnvvaDmyONIR3tKtYKzjxvNAZhX/LUfDVzIcKTza0K1hLQrZ2WGb1qvX5GjwPrhuybaIDFxLey3bDVUZgG1miBwoQTJO3EjB9ZH94howWq1P8GohiMWDcBcGz4TUrDFBNVRwfU9UzEyBrdpROt9TU84CTA7arhLlhL3lDo+hdV+VtdCcCPBBFBjnF4PQfhxa5wQMWyUFBQRECt9q0t+tJSsT4BTUzsAxARNqozVVgVIstSsQSdHsJSYE7w9tJ7rQs2i9Iwc3VO/8oB1JkDsjrg5NcgwvQcBkMyR43HvqETBYLI6QgCvAat98CZxbnnWu/VC74lpXBZ2ZR/UU6UTUGd0RGcpmF/ikpC8r8ZlupW9IoLCmgak9m0l3ilPHPmrIBJy/z92/n68pGEPtAQAlUH1vl4BtwOS+KBtQapr46Vhqm14CczjkhZEw/eZmNWZSXkB+Br7G/bL9Gc9G6JzmMopr80Pyo881R8SF5IjN66UvVVIWHcVQQUcKp/PzXAAhvqxPgqwAweBAAtlMale2haY9kejp/X2JW+c0uNtX1B4rb1lA1k5C+f+8pwSJ937azz+/0zW9FQqquIeA0myzrG5r7RQCWbaqKRlOm7afO8pWVsKh9kjT29jSwOEilkUGJTzJmJnBWCQaz/xawayp9qb2BQhc5d7LggWQS6BdpDMeKnTRt5JBPBNYwG3aJazWk+dEvvrLU4HaV6OeOavOfM1rqfFLtoNJ954sRkDHK47A/ZkHCvS1+tao/yXTpGEIBMkphfkseq9+nNteJUt+L6GuKeOV/HRT4O+hAR1Q+4z2ifFuEsytzVtJpa4vf6X5i72PHdvu/Xhed9HJ9hvzf2NfY74mQBmA3RKryxA4SjHwbYPzbCSTT2VXbJ1T2hkWY1G6HwkyV0Ke+0vFYUPaIU5/Tl+ZQM9ta5UfLnAC29ZuXCPtQ75J+7TMr2LkXOZk7mmSaywDTDIbTsA9r9NT1F46pa3p+mAAVLzUFw21AkbkWcoCRTJC2H0QAI5j+9bsKkgR4fQLeyDGXRcnQTfecRYa973tNcnYaPuMjkpkeSyKJUOeBduI0QCfagVaE4DjOHrtuymZD7KpCJiQ4em3mNGqm5w/BC56Z+u8pW1HFjzY4gqg4vAEhfLRRsRNj4objEwnQz8Y2yXTIs8fKsbBzV8T5EVvZYPJxNFe0+bKr55Ooe8EIUdjURK+rZFZ7j/FDAJZiBsR6KVu3/ZH6WNa3pvY7HH7/obsMOBGmvPCnEugnyYB6SwBreLZPgaO4w0//+MDf/v7L/j4eOF6OaAz7jqTBMxdxVn68ZHPLWOrgEDvhmw9TxPhIta0fgKmQqpaiqMNuHWK5rtTUcgMCMrP+DLMK9DMMdpR+265owdJEN+fn7h8AY2Dg3qn3EyDAEvXROoIwDl0qOJpcCqqpemls9DQK8rLmEcBguvFp59+hjFvxxgP/PM//a9AcBri6/nE6/mJNQ0vsEtrjAeEDeJ1SYbGqbX0iqUMnYU7BOMxWMAwELYw52R3Uogt1Dqqv8inNJwk9t8qdeWEwS52bUNNcgRW7Ts05h1NLcvv728YY+A1P+GTeMAyh1vgCsdrLVxTA9M6eW4dBniynQItTCB6ZmL3UH/nbbVT7MsL/oc/fxx4YuiOGRMAW+FaJ43OjQFiIf1JNQaTJeuOZgMdDW3pUOoCm3HiyePscGOb3MqDJcfX+07SEaTPWgZqnVUAtsY4E0uTI3Q9KVVyMskNa7Ao3ogCwqaN7KRsLsCbpplkL2Mac43DcCXm4Q1oBCBCxjrvz2PW/bItDpjOSsJyopXmGQswWOrpEBfplQ0mcIuMs1ic7uAe+Pj4RO8Db28Lx+MN59sDq1Mj5vn55FrOiRgNQ2MlPdTvHaCREvMIjdoJTBIqvylR1OnUGLIFHAMY/dChNwFaget6AdIHYnDN6XEtMiAOTCdD6ehNqLMpqgmxMUwMotC1ycmtBX8+MYzXlFW4c1BmbiKdeAY4Az65X8KXglQa8dEHnxM0LtR4aAPU52FQMxmUL4c19ienLhG3oibAGcXruPUJWDCQgmDrvmNRM4IHYdUqknTH+yGmQWSgzek+cky61tq3SGoz121N9sS31tHk9VnJCaADfRCksEEQM9aCWOdqZ7Qy9r4mug1qSTVRTHV9XfjLujjxhgENHWgmnF1lYOpqKDBT/rLWqueE/C+A0XaQl4Ho1vdhELXWFJOlU0PEs0rvamNKtIH3spzn19EQsafEMHbMahBZbUMVDX8xeD3ayT27nqhWjXpKPOeewFNMJMsha1x8ZFYBB0wT+TTyNQKlgZa6AsyfGtlHmsaDjmrDAVDMhkxqeoLK7uCLgazfhzSkeJ4aDtCmTV8YvaPZoPaMk7VIPGAnIK5+dOuph8CAei2BNfY1CbTW5JSXNoFh+gvVmYKsaPI51b0kkFORdb52JyA5QSc8GS5q4xZwdouCtzaWZVXVb+dM7wlg7+pkLgQrfm2zriL3bGMLaLaoJIPky09lYwK1ZeemxhovZ+Cw9O4+cs825BTY9E17rwkGlHCnZeKawW+IJaXvzeA6k7ia3qfg2ToKHFTEy+mYtwQxi+Yw+oX79KPQdaJYz/kMvBLKuWg/z/PUejRWA3OiaBOzzKCCFrSftJ9dmhPYbONkUuWV7NXB/UL4K/dg7ku9K6vQ1dJQwOp2egTRlDzHrvIpBMCKAIdEZ56TwN+NpWFKiK1xAqyrLacudrfsNGdydZ9KlZn9mhNuBm9ez9nKB+ZW4+d2PZBMaABUtTv9UCUblowgIFu2Vk4Dk6ZAMv9cDN90sGY7juORve9YXk9rHb2TbTn9CcD05w0yZAseLM9Xq88xOU2/0fcTf7mfODIxrGKH0gDSv/WeFfG135S2IhP+8hebCZP7eInx7AImkoGbTj12LQKFdHsts2wiE8cM6slYEqN3L2Lt0wSLCshKG2W0Z5wKts907gePIBNP2k+u55vbt7dkzTDpL8aotGrIAhaQpn9rAsZZ++IeTw2lLMsboGSUSW8VWGKD+0P2uo+xQRTsdvbdNl2fiATTai3uP7JBWSBo1gRL5hk2tFBLibM4Ro/VvyRNqW3pMGrFddkr+aR6chY4xqHr4XekJEisRTZ7eO2zt8dZsfFcC9c1qYHVRzGKluhqY2R+0lAFVNStAMDWOAT2/s6WZHdJOKRqTDJMs1U+ShKE2I9hNj6ba11koIwu5roTKEJw0rZ8XxjXMWSDfVVKBgDFmuwjmZYJZLGrwdfC0TLW/nrO956UNmNuWD2H0To1KWHq5olNbkDUpK9kL8F20WnbVIJp7tpzsoWMZSbCgbfzvV4fHphIRloZbT4D/V26G1PS/8UyBaQtt+PFjNlruI5RSac0RcMxr0sal0BYF4ulaAkgmLsAI/D0fE787e8/E3i6vDRbs510HAfmNdGaC15g+VUGRedDYHKCtzx8QJDVAxi1h0EWf53NNhDWcYlJkWB6MxIz5gT6y9HgeDwOFgXmJaFvxrEfrycZQr1hPA7qOxn33bxektuRiPhauJ4Lr9cFO6jTF8qPkj0UCGqWBZkd5ir+BM+6WaDnxE7lWKOf+Od/+l9wjHes18Jvv/6K//P//K+Y03GticfbA+d4kPThgfX6VPcKF+u1FDenvQiU3TvPExacRuch7b30q/CKwwyoYVdmwDK1/3YghiylAdNf8gZZGBgFBKYu8vvbO1o3PF+/Mf5nLxgmqF33nBOvNcFJ9ye6GRoG48ap3FMxEIvudRTLbnb5+ApYUeHof/jzh4Gn/lwUyOLxAcxhfgHLMMxJIx5k4VxrweDo/daP21xOWckVjjpMLTQRLsRBMvKQQ20GSwEOgsbTHRLwaujjQGl3uHQkJJKafLUOATf1GXQi0fzGJk4qqFaQQkLwmtTErmUGCVzdfsjJdZp5t212QqJcYXQAK9J9sSfSjfTQlZGstZrv6rbQ4ASHAFgYrheZJa2daJ2te2gdf/3rL2j9xD/9k1BPBD4/PwjuOMGwcwyMMPQF+LXgrwtrkN2wWiBW4LfXCycOjJ/eBPypbS+rSjCKJh4BtIVljuf6RE4AdhnR1t5V0VGFHA1d5o6aGUA36gPBW1VDajS6IqkMIFytDgQSnS2YERSQA4BmmEHQKwc+0p8I+DQvvREgI7RMMPWsroXLL1hTlVyOv6sScRwEq65rlaHoRvDGwQ3kQrytpwiuYYH7Uf6eBkL0cl8hrQOrChhgMlgoY8oCtkRR10TA8TgpcL2cDJveKUb/XN9Jf+10bGENrb9JekRJxhJIuxZyRLGLAZTjyaMknYGs+me9JYGPFEm9YlLrSfoMBgPGyaNnBFYWNh09+wKytsmqADg5AsCeAGg8q4hK8rN6mG2AtAlKuPqAoWMh2Ti84tY6TtCA1p5KOjTDHp4bgQvTLiAm+gmwR1rj1E0jmJvz1AY1YLCA5qp1mIzwIr3bxQwcRkovDHDPmnbnM50LNgjkJwLYQKc111UBJsBgc8lZmBWsxKDYpYkm1hWTqImAQNbGseIAp4oMMRZDtOAOFACbsbur1TbtlDnrIu4S4LVMbQgkhy9cT9eSGtqtNSBHYKNZabGQtmyIxsyotQQUQjn+BKWtUSyrBCCy1TLUbpIVxWRqZrvAcgJsuZcrkq9ljbreHWy1/asif64EItR5kQkiwaumBJHrp2RLtsblc1bQ/ucUl7koWj2U6GQwaxY1fj4ZO6lryARJJ5LGpwLt7H1P5oWB7eUrAqmbkYFy3P1YI3MVKvAMCfmu+aI9cJ1HieRHBAFAA0K6UndtrNTiamILu844AFgfOPrY+zqDbyUpyYZq4wCsIVa/MVD4+hxJncyC0Hm5nRSd7MZCStqxYMsxZSistFH0CQRSrcGsS5tRMFUAqRWYzOhknnbbgEtqsmWiP6/F9q7exW6DnhxHZzPpXV9s2x00yYTHRONvpgrkCoxBRtEK2prX60KKyje1t6xshM+Q5rbeQIPRyGEfGxMrL2BdLNsG7QH9Cs+KAn2Kzkba7BQMnk4pgF5tSqowaxjFvYU1N2YOFth6dLmXvECcei43gDp/zz3QipkRSqwiCGJea2IzKFvirfzcUEVd+2RJK4r+nOLf9Kl8HpGH8YvdQEkumYpPIXF1FhUdJGEohbTFM6g9ReCKgGyIBfdyJiOjb1ZjfnVgcG8KXH07BnesO7/f9/2NzqTvetGncFT61lqlKWHRtTUVb5PB5tz/LTZrPQpwMrnqKDZz2hgkkGK3U2ZRQ3MKndOzvbdpMolvdQMRUbFgsg7S3owcXLOciZqYg82aPBNu4CJqz3NabhqmzeDjIB8DWlfs4UBOfhLj65oLbTScbw/aZt0vBwbpO7MTIgLDGuI4ipWRhZNspUwzlT7NC2gzWBvyNZt9m06s8HBPhlrq6qLWIM9k6lBdYlldQQZ+w2AMrbbYaAm2W8VXRz9oc0NSGX3gWosEgWLk8LpSH4p2Y1X7unXmVw7pR8Zug0uA+Ogdj+MhUOK1WWThMAeisRBagvJaXxP4Oz0qzmiZBV9kW3oOTgmDYVTc52bM/1rgFRdsqZjuseMMoFqgzdI/8t/MKLeygvEWAbryKgAIeVkjaSE0RGLYIXaQ9kjnoI/fvv+GMMe3P72jDQ2dqrgWcDSM44Gwjs/nxN/+8TP+67/8C76/XlgCuRmmh86HCrNz8uCYYa4nPNiWXAFRFsNTGkPrdw6RCJw57rIHPp5PfM4PPH4KvP3U0Y43tONgfGMdfZzw5Xg9v+M8OkZj213vHdelWGR0OCauI2DnwMBJv986PDi46okXGexO4HL6wgXHNNpFQ7Bw18gcbb3jOAfZRRpqEgEc7SCxYmVF4OB5csNcwGs6Hj/9Ce3xhtUbfv75Z/z1t98wrxfmdWGtjusFdHeYOw7r6NbxygJoTwBG8Y5LMxOGazH+HOMn6m7NWWFlky+aTpvY+yGyi85yIyMrgXWDAZOnfDnzCIsOnwSHhy0M6zjfvjFvHcDH99/w13/8G3xRVuO6FotXLXPkZMpKBxfK31tKobhiocxZmV9H64h2u2/FOH/k5w8DT226klNUu5ErCGoaLdCbnG/pybCHzEqcp7ENJZoOr+2gVoFPVGAAHfiom6G2SxZZTIecnxmtCUSqSAI5jKSB4FZ5d1UmU8SPO4AOgL5Wu8IUYKPS7gpCAaB1OUqJcXnmNQbcR7EChomtX+8m0qtapkJgHG6aLv2WKBvIOlgeRI17Rz8HECF65UIiqABbJq71qkmC1djl4BjetYigZvXK2OtvgxvJHVhYmNiGlyLtXTpWFDKf0swyA+/BmirAGdxabmPIDrIKJaaD65lQ3V8AgJPVUPo+qkw2tdgwGFiYrlTQtCd0PDIRy3XP50iNoXZzVqj18sX2l9ZZJflSdzNjAiWDQlAqYKOjt13NC3eBRajKFfck2R8tEzOoQmVsQyxndrtqyKCyZUrf6U4jEI7QtKiM0lprmLEw48X1Tj0bGJpl8n8TqvdkOuzFyC2f3x91LPVvclj5opzmM+UUU5ON150JcAabrQJqmBcLC3IKBmwASk+wgircE5RQwK3kQ7aDazoAEw079nltjQBCNnjk+wGxXRSQlnlQYt07qb7J5TetQTMGMHtUNWqaJSSqmMFqZAtkS2p5wzTZF7GOInvBA3WfNPI7obi3JKZ20ehDR56ViUy+ipESd8bYgQD1LpD2s7M6MqUHoFRMzziZC66TbpXEuTd4sLKc35/7xEFwK8BW1tL6EYBYtjG5PhJLhio5pcFsVm1Je02APYE0bUnUbmnWsBsCk91Cy51gBkHTHbCmf7EAGTjIz7+/uzYGTNO6SBLK4HonMQA/J6+h3JqeR15t7sFiW1mve8nvbS1ZvmQBo5x61Ms8D9ltfW6uFA2pvbIqttw+VTYdJkBVLD0znOPBKpmYn+FA8r+ZhKZKne4n7y/9svYjg9ediCYYmIEVbZDcreXOBZP7ljzzW3KYKys/xKEUubZa33vkcwdSsbVnAEO0W1EM+Qxd78nHpxjj5k/ymWXbHUlnKqBZeR2klo3dBDtTgyWQ9iCBxf2er4CM1sy++tD78AKX6G6ydGnHcv9+/RwgnxvjtdS4q2Kb9nEyt/IZ60V1DvQwd/x0O3fcnmS40ndUiYG253am87p227jWJ8Gb1hBI9sO2gbsAofXOvafvLsOcpy8YxyQbr+X97zCztNoS1uVUXn1nk70us5Cxya1NKHdInUf+2eufE6S/61ZFPQfcP8Uytr0VrXCLPdPmqN0oq+WS/0aLZLPvHdDEyPB4KWbptZ4OdgsUdKv7bhlwI5DDTlLD6cuZrKXOdc87aXlAYOVTtm8MnQ/cPou+6H7mGRNnLOiZ6AHFvM1Y6K5BV4w1ZCyTtvx+0ahjkjErpz1OJt9InVnXOnCCk7vjmi8MGzA7y3anTp398BVwAQC9i16I8ol234fpu8tG6x8sGfOyp+kTLYHA/FjaYp1wpK9wSvAKqGtVyEtNSsjnuSeDeq97GujWUHIJAx1HG9R0CbC7QaB42k3eYtqMBJfazQ+mrfsKPFE2hJPT17z2qkQIDNa+yngnQvZZXQDKR/aepD27W/GMH1tp73ANoG4bIG2/IMR8DNqqxTzTf60lsy+ffhIU0ivxfhs4bZM22mtfW4TiKX7n83riGB3nYyBbwkLPwXW/fTDevebCb98/8fMvv+JarqmIilvFhqMdC2hiAJh7XfKHdtuDjKkp/cS4xyDtzlq7BqBjLeDjSQAjrMH6gGVByQxN7Lk5XwjsYk9Lf8igjZp3nWeDLYG8r5QsmXr2sZSnOUf4cFAD5XKW/OsCNaJb53dfsFr9vAd2UzSYMtWIhuXUSR6PB9rjgb+0hugd4+2N33Vp0MgC89BIKQqoC4rxGkHVtG0kvMD28CJrh1r+VkaWSAmTJZ/SW+rhcSsxVaaPyBwxQeFQW1IEJ0suYRstQH2t88TChc/PJz4+X4AvWFByxgGBS7dzobOphmOdCZ0vM5nKJbfV6H8sMQHFHvhjP3+81e5gy8luW5g8muGwyc18hqhhgxfGlqKsFkhr5QIQDY/z4G1EakdFGacl9E8d2VUJty5dKewk5JoLwMRzkmFU9Eq1pZgq12GAXzQGTRVdt8XAwNhXCZiQtbJZ2A15gS0g97WK0nqXM5rojZvfVLExbaRhXcadwplY4P10iTpCrWz8WgmNHrheC/NapACPhksbp0019ASp+M/PJ0XEz46jdRgOTFwwAwYasBZe14XROv787SfgCDK+Lsf1uvDx63cAwPVModUHbE0glkZgA7BJBllkL322DQTpoNa51slg02b1kMZQ7zjHkBirtnQzvL29MYAKVEKSx3pJn+Y8Doze8Xg8sObk2FMDsAKhKm3vh4x64JoTn9esIOA4NYp6vSqQYxAqPScEcqw1dP2vJ8etvr1JnBnp2tX0DNtUa1Vv3Cco8J0tD2rVnIF1a2OqaUmVxN0ArPx76QiEYDWO0x7VmrQr5YQIoPG7pJUyofFKkEO6G4d0oC4CmM3QxokIx/V8fvnc1lkRbem0QFDzrp9x9lNjhNlG4w5MVbmz8lWTzfRUw0JTZhpZCwpOdkKcCYOcswJKBl+RMSACgdFPtNbxui7GvIN/Ps6TSfJK5iMQcSFwVcK7lZhQvdoZi7VOwLyr6rhCbVcYvB79MoE2sLTTyXxs8AB73tGLlt4EDLZ+ovdAbwfWXHh9Pgus6Z0r5UEqcQZiEYFhB6KPqpAG9JxTINLkAGOybQZ6fvoxY9tUgr+mQkAWE5K5Rv0vxW+M8hXosxrGZNsVbvcKsJhgge2cZliTZ3BommC2HLkHnvFiECTQfC5V5NLmBtustz5cCjYSNEuGSMuWLW4aRBSEyzMqGrvtsrJeGuD0voyDeI/LyMxcJfyagB52S0MjmyYB8qax3XmtuT8Ze4vibxpEoB9OJzG2q+onGU5hbEeB2GFbE41rS908xt+pN2dxKVcw6TVk+iD/qURTh7ACjmzxjOD45JeSQhdg1TtYPAITxRZf13+nWlGAC+0Nz721ZAttSL9AFuf+yslD1aIz155UVuA8//0S6y9b+QAghxf8+Hxdbe+J08tsI+0S/8zCAMGyTHrTbubzV+Daudd6Hxi2YKre339SPBag/blwfbn3vDbup7QfW0fvDj7tgD+DOv6OAx12G9iPYI5+x6ev9fMFJsEoZAclI2DUnhnHqCSedkDfaYAUmyu4ToZQFj3XFINH7Q+8T9v7+nZ9BUrf1qImHOpAhoWYQ/vcLoEs1ZqQdsx27NB7RxtdBSmKzpo1PB7vtYJr0g59uQ4li+mbWeix2je5rCWQfGvdy7Z5Mm+1jgh0l/Mxtiv78i37oIp4TwApVKgMr5Hm9mMRBxkZK5k2is4bAHjXGXqvZN4SdJuA2xLThtz92iXBPdFkcy1ZAb/rm2Cckv5/t0hx7UtrEKi1L7/gQBs7FklwtHTPtMBkz4Ct6LaLcrRDg+sbORwk82gmnnZI+NpZSI3I9spAdIFVX4rNYqP1JhAV2vv0q5QaYNtvKP45joGIJskR4Pnx3H5UdqNLCmFeE5v9CoEATfuE/nFeUwzBF2Unxqj7dl/0sCoKdOtq5bv0WrGm3dHakG/kWSALveMYB8wmBbBTRgMEliECOvU8IRYyfeChTpK1HLHY2nSMgbe3d00db5LTILMoAoCTkVZtbDewoYs1k62Xq1hvew/t2EB70yGwJgvGAZ8Oi1XPfqVORDhG73h/vGP6om+Q2PH7cRAsMsXWi991zYs5lPaACXyq3W5boy73uLvjui6YGc7zQE1AVUyT57onyJYas8ok2Q7Pxcl8B63BG7uF1grMWztYVzE8jM9oLVd8e+B6Xfjlt9/w93/8Hf/217/BrOP9/U8Iv5ija/jK6yLo0Hoy7ALH0eFuik2sZEYAMnXjcoxx3HRaM59j/vP2duL4duDPf/4Tfvr2DjMVSiPgDRzkZWRW9tHQhuHX778gIvD2/oZmhrle6Gb4zz/9BTncYU3KcZzjBFrAzwde8cJv378jpwdaaxhnq7g7Ftlw3TQZz9kGf4yOUD7fjHZ7Xhd6P/Dt26GuI8DjwvP1gceffsJxHPgvf/kvON8P/Of/5Z/x97/+Fb/87V/x9qc/4c9/eod/Ohlrsp+niJnWlWd0IFYTGEyb0QVKXdcTvibwItsMAQ4oaoZT+/zNjvJJNa2SQITE8WmXzZgXLDNwqDfP5Le3n/D27R2P44HHceLtbeCwjo9//gXX5wdenx9owzHD0LoiCuVg4Xu6osm/jyw9W+4BnsPdujwlEyLi0R/8+eNT7TIYy4lZQfp/JLJgKYQIavZkYpfOWsFMFtcyIFwh/Ze4jbEW/SCr5DvRpfU2yNDLieXEDiY9aZISfUb93pVVksnAJK21ROqiAt+s4uZ7s1pHQH+j2ETNbxEJbl95+4mKWm5GTK9l9TSXNKPoG8MKGYRtB08mH1+bAXNIlwcCVVolGlzXrLQ3JZ7RAi7n5DWPMoMNfsKmpmB3qVjet5xotTgkiRi6H96X6sucNmL3oPi2hk0tlh41IUjAOTazR+BF64hGsTpOU0SxT/RYFfgkdZg/bJQMtTxk/QFfDOt+hoYMmTayvK/5dy+vO8q9ImQkD2z5RlrAiFrWr9sU2C8W2LNBKU4saNZuk4v0EfkZ7Ra0q1R635q5xzKAzaSQ4Fme0XwuKMZVS3ZgJAtHLSl8erWH4aAeUX6fgiBTm6thJ1KbCpyhdFavdop1F1Hfq5//mwAZJPa8yEQRSLUJBnwOsC0oaC0/P+1TBgm3Zy32Zu4nPtasNIiGHGmbeM251M3EcrPUCGoow5dgnDUxTQwL1FWQFAmSJbQZKa0S+twsrN7sj819pLfCfr+x6usNu73iy462vL5c4f2mrAgnMyWNVqQh03+yjSyTkqoCqnpCXIWvryXR+U89nnrKUXe6b/C+B+LL1etVei729e7vSVK+9weTfPvuuD1NbE0W2eESMf96OQw2dLiTjZRnncF+3tL2Upkw1yrK/pWByOOgGypI7X4vpbG1L6SmY9Un5+m7/T59aX1PVHCdH1U2+HajX58t/96kLfL1mfyQnOK2FgWu2O2TM7iFknv/wq7YrVcJcO2L3Gv5++d5uxz61vvip2PLPZuM67T7+070PV8FwPO6fv8TqCRPQEXZknxP3CMJrZPu8ctnWj6b+0rdbGVk3LKfzZezp19VfXenTUrGNcimcwWvaGDCdPu2DOW2Dbai3dPhJDi6NWX25jXcP+x+b19Bny+Xe3vNfVnTL0fZowwW7myq+o4Co1Ibca/dl3P35WbzrbFZ7GVRo/zkV98UZRCYfALJ1qsnFowBoro/72d5V54r5pKNx/1c2fbTOxm4n6G0tQCZWQLNk2FUticLqQKwYvtdRL4nr8fAtuosGP7wvT+AnrlPb08WXx4o7n5q70uLPP/0ibjd892OmOvFgb05jPFMsv6WAHtKXeDrQ07fkEFJtfzt3V2nK8XYbzY5izdMLuOL1trXdXEdT3Fsfkzis9MB98JC7iH+T3WEZIBX653vT5+ZNj33jX2J0ZLFnGeYz9Fud8qPp2TJImDVGkwxdGoPJlMz3HfrrlYtmdd3PwRdQ8uc0HGDPG/2Kj8l7Qis9kcNvUnCTiYHgAp0ZC03EPChmufeV9Wqfdu8FKp22VsUYQG368CX57HboreNuW+sm3UMcbBMjDnbZ7s6BNsuQhXwJvBq22t+SU3dDiAhZ8Z+jtfridfrpVZrgCy9/XwjEqxXAUI5Uk2jXLmXbr467mf6dp4zLwoClOPsOEYXMBg3HyewFZHKOghEFUnS0AcczToefWQWgQvEBHJv5Q7+Ym9v/r4W1QQgWiCuqXZzq6MTKmwDDrM9+Mi1l3O6tjXDcQ6cjwPn48QY/fYefZZBAxMSyAYQ285Ei1s8JSJA47cR0PFaLwS7sczIacoJ92WZ04+HJpFj+5O0ixk/wKwKor01jM5hUmcfePQD0V64gue0BdS2jpIZ8cy1wfuJZWLj7V0ul0GiQxW7UwvS9gv/g58/DDy5IukGMEGTEWgKMhjMsbe8Z7V3Xpx4ppaMANlA5IkT3f28JtIGnAfRvqTFraz+RrqvSQZR60UdXnqQLUTJNX3XFC03IECCInp5F32QFUEB2o7n9SJKDjIWph52Vtl3+T82nVqJu6w9Ho+HHDxHP7ov9mGKBRDRyPByYPk+TK9LkwKGNkIEli1cvtB6x9tx4vv3T1xz4dDYcy+UclXljYH6KuOfBmaMgxPkRPVdc1E80BxHf2A8Buwnw3GeeDvfsCJwLVV5w7FeFxyBxymwzwFrDecYuK6L4qfZLnOke+RmviZpigFwuoB5aShZbzfD33CcHevziddr4ng/Wbl8ewOC/dQRjvj4VGvc2gFTUfSz4tBh5oAtalW5A6ujR8PlZMaxYtNgg1ULWMDVijOVWI7jjftwZkJGw0TtErKQdKu3FpuA+wV3Tg8h804sKqfzJFNY+1XodpdzceO48y5jOedEWs8mAdUcs1vtOJDjHBQtZ8zILxrHgIVxSsZc+Pz8lO4Iaa2GhnVdZOc0shA51UpVUZ3voUD6JaHB1NrgsWRgSyE/Qx/nzRiBrJKAqhK8ZJ9q1103IEveJKt26fDa7kSgc2sr7xrjoDDn8yXNKmew6Dq7gQtkJTj6Iapzy/1Cu7PmYsU6GppLLpiAfn6pxnUDr5WezIAQc1LVHUQCLidM1bVm1M9xS2YXacQcYZviwrOCuhTCJdWc97OMwsMDHS+d3bf3N9quL+xQrkkfqnrO0F4adGJN+k+gDbquJRAlKfaWEa/sptG56L9024FQhdTX3v8tO5rMwFYeBlbLE8PTtMdsvzCK7LfWMA5Og3k+n5VAVFtUTfjT3QWD4OfzQ+vXpfkHSbtkCxeZEvdpafefZBVmMhEg64ZMJ6Zrox9KpGjDW2vAov2CEsolBlSsDYjcGR2tGTiutsNjwpECvw3HGEyOlnwNAMzUUFrVktPMcByHWGj8vuU5GQ6V0GTLR9GI3DYor7OkdKGKPK016nAkAAFHaoiNsZMZVnrpj6zt+6uftHGRfjGKjZKHLf3UHUBqbcAaxzvzZV73ku28cJcmE3dvTQrqGQe0L6BDfsc9aeC2y4lUGVMowF8zUxSkxpOWS8WzFNE02YkA5gS18W6C1bmPbqk2w4jNrKkyTbs30t8KWFquZAjVkQQ/B0Yx+gwau7GIZDKSd1YfdeZWvZ/POvC6LlaN+8GJOR54rQsegW+Pty8sw+nO4kNnUtNj77UEnkYb8KAm5Ogd4+godM9RZ+JezKMN0jPLLCJFu6sldic/uQ6ZzNttD98WiEmEl2emzVL8tmv6t4S3LomHpM5EXpceJNlfKqPpPX2M+pw5J0oAu+1i6PV60fHB6yw2JaWWGnL5rMH9n3vEzASe4LZ2yTngGWeBUfGygguDsf1FgEPuOgPwdj5QZYf0r2BrlqtooEMsZpt26c2G1P6KrUmW7DHaxXpY+3Hafg9jGhTINDRwA2YUFb49Oz19TT7mx6xMjNUOum1OR4LVOWjh/duJ3tI9O5bPPPXIIhxMYDSiEj1rRl2toLbqnK8tn2EN53GILZRFuIacvNilkeUJ4KFlUFx7vqYT3+xBax1jnDvJXh1Ne5knLdttBiyF4J1s+hTm0KNTByxtZ07SIgOIzIzMEHKNz8eJb+/v+PXXX/H58YnH8aBvPjtWd1wvrlvMhWtOrLVw9geO1quY28HkOG6zoBhILcDFTAzlAYrVkyXXG1uewoODncIRK8QeIu/CzXHYQK/WdCtd2Fe25b0udAt0M+Y8AK5XPjsOemqtM8k/Tj0PTt9tZlho8JB4tXFAkbVszRVAoBgt9zHjvIZzHHg+X5hz4fF4K6Y/tBfdqdvZe0c/NGDIUCzB759PzDU1oZyhz/E4CAKCa3I5NXfWuvD8/MAvv/yCz89PzLnw/FzSPWQ30hjJ6rnQjdIMlH0AvzsCETpvntMOD4lm+95T0pJFa2JPThzHA+dxwmTH51rSoruJ0at991oTr+uF4xxonfEeIL0wAw6kHW1o7aIO0otMwDXZZXOMwXM9vc5tFzAFCXuP1ijDMi8RIww2CNzNe5yLRY0rJONpIXziXO/o3jFfT/i88Bgd7+eBb+9vMDie33/DCEczB1zF/+bc3tOrWyF/uogA5zkYU3lgWmTziFhM8qGZ/+SeQsYO2w2Ot4HWDa85scDOJ4yBfp78OAus+Yn5CryfDe+PgdfzAzYn2lpYn5/4/OVXzOcn1nzhcZyKA7KLoTG3vphj+HKMY/B8ZlafNiuAbL/vrVGne92KBf/Bzx8GntJCfWXiSMW/4iX+JoVe1x0UEIupWADBrtz07U1RWgpkMhZhwJEtMfUURM91UNS5dIiAEmvLq2X8kIAEZAQYGMyliTkQIBA5zjp/DF//FAUilROWQ0v0u3xzZFApJlDmOEo+C1lGtjrcQwu+n8h/04Fp6J0tK5zewc9iHy0P9lwHlg8h7BmEBq6LlNIBJdNy1AADnXDSeC0M83UhZISbAMWs/LagUakEf9FRJBHDgEKfCU5Z6Rpl5BOIHShCAexaYhXcglQFbokK59Jlm14CVgFIQwjIKVStD4EdAUgcvgJlMVkQu+p5rxyXg4kMjEhz5pdK1FmVIToOvz1HJposWtyD3Kb7TqNkIAPnniRsC2MtxJrBjdKi11WVzvbnBb4EEYEQQYLXHBn0p9EwU2IB5MQ5Ah8DGSCbUP598DMw5+/3/lU1RmdaG+92fQq8bmYjn/uP5yxj/a93bMgtw39vajNLloA0eax/OYMFzOaaItt99ncnnlxVKNCwpu25a1z0lixEbuSddBPEQQijyZa0MAX8aeVYgxPpTVWpLei518dQqx6ZYGV/+l7APB9ZiVc+xuuvSjXXNNuhEsgLcF+lxlw9AigH2kdEC7+T/vtTK+Oti2cOqOsDb3IpcaKuhHyGZSVfLBlYnW2DqW2tqY9e/7ZurTXAbS1yPX7cOLd7yx1ge+1+uIF8SznVuN1r2oe0FTxfTFJg9nUZHGVDKgmT7bPWkJNR6/pue56yDGIp6BIb0g+adlHb7d95hm52i3+xn39qh22f5YBlYp0FEb227MoP6/LvncrbWcvnnicNFvvPEV/PYa0NeEZuX1XAWUYTFex/eUS3a0h7I9uv+CG/q/6LQIo97w8LoCVdv9Xr7nuq/je+vq3srIDAYpn+uGp2s2tfgI68rh9/tPe+bOavvpKPwur5Ya/63gP1aTv+yF26QYyo52ZdF7/SDuUZxo6t7vsKeT7y77Rnkjbw5Zzt+yhw7fcLxfWr/Rz3y2AMqH1QOo6/26O8qvw/aM35mFvFFOXmcavSpgk0MWXzvfK1dbnaT56vbfvezdgase3Sza7f7CPks4rtEvbDcuis3Wz9l9W+LXeuMVv78yWO1KBO2YG7LUw/Euu2Tvrg+66PLwzL/YuMwK/snECu1/6ELHzWPf3unPMn25tvRrfeU7ZpP94fPod/LoBHdsYB2WbUldxZkgofFD/ezlmejSrx3+yHNmQUmLTt3o8/tOXJItMLbzdSQJ21ut9ivVQReT8rKGmuLofWCaL/4L/yPuknFAdlvBwNdiuUGm4DHQTsQ2ci/36thYBVEdXMCAqUPf8xhpYJaO3mM7WCKoZkCveFMXr7b2h9ym8kq0Ls78jPqnvenQVlO25MNl4mAcOsDSdb0AAVNMTYAT0aAacc1xpVmIFen8+4mM/hVQgoS1vJySYAENTdZziUHyfQveYsmZlmG8QoHwPlisZBNnM6fv3lN1yvJTu/Kqa1jD1gYL+HpG7u8S8SGPuhJGDgOb+dxcwZzAnw9jY41bwNNBWwoVjNETWtcfsGAYy9155wDxIbkHIJUHt9YL5IqJivq2I/goY57Tb2Z2u35XCvKkw5ODSiDnuI7KCCISgNlK3xPhd8LgrNL+q5jdbwOAb1mm456b3VN/du2YOKE6Eca2vaQZIs5d9ubDggUBNTtXaR8RRMchimdEr+//bLGm86QCkk98m96xM+L8A5tGw0qPU1eD2S5CARIf1gq1ZwhIrMZRNTOzOQPU3/vj/+7//8ceAJ2AtkDbBjU0ezGq3tPDoX29fF3WAdmAtwx3meaKYJcRE4W7ITgIiFdXHBAOCnbw/0zqlQ4WQAEMRfmFcAxoMaUMW9UZPGwABPqjtoEtE6zjSonLz3nAutT2pRgYGTalMwtA3gaMFF3Kp4zzOI972RYkUBRhxDfwBheM4cnq1e+HZQRNsDffAwvqQpYjBqMC+H4wIwcZ4PKva3zu+fFJP+fD7x/eM7fvn1FxxvDe1sQA+YBNvmWvjlt18xrOFN08YaDL2dMAM+P7/DV6DjQFyOf/ztb3i8P/D20xtGW0pzWM3ueAARWP4JdyLZ08kEaYNMNF9JwyOd8ThOOQtUMJj75lL1/nWrhJuxz93dcfmlUcpkR7glO7aVsQ7p9ZipAtka+vmAzYn1ZGrb9LoAcAz2wq95AU5NJk5jERAUTROlDLHYwMv9ykPaaffL4W4Hww0wxsCyhZh7rLipF96Tp6h7TQ1Qh7NPGawst2YYg/pHCQoBPB9bDkEBZEBMiFDiLlq3AcDCDI6xDqLBaINsv94HWXmRvekNj+MAZ9DdAosMtiOrslmFojbPcjFX+iAt20N6RnHzO11GMXQPXv3tyfzK78uzdvNXMG8Vuxqow5WgYETDnAbDybZZvZ2C+0mp5fNbk1pyKzVYvrRZ6tM7J9B0fZ+vF8wazscblgfH1bZsReX75yQrJsIQnRM9WNZYVM4Iq9a9tSbvXUKJc07UmPWkButyunFiz6ER5AyYuB99krE4xpBN28FYawye1lyc/uqshHdV7qj75UjvaYYsg2GuPKhp+PYaMbHawbTdtFfy+rPPO5yB6+u1BD67RixndVtHxw2X2KnPzwvZu56/pqqrrxeZiu9vZNNR90qgnwLubHPj31ids2yNuv/Un+0eYKE+hwFMnltpYBiku5G98EZtiNvn0T7tQCI8rwvob5qkM1kZmlMV2F1awTnGLfnifs+EboNu9GvJlA2t/9FyApwxoIi0B7oW/RcFOkkQN7WzetHWChTdyZXVvtjJaJ5y/U2z25+2Vs6UzleO0e69Z3TLSnbcR2irRbWN/doM9r4AGtsG5trkGmZbCBk7ZPy0INMuW8zMwIq4fA6ZcguiA2C3Ge3nqC+v+0+GceqD7OR/X5spcEzww2JfWyVYubm0vndWxG1n8n8FhKfGz9fwNx+f1kQ6Ilm5zmceFmw3bvQ1HKMsP9pBO+1QorIqoL8zUel3kl0jVmL3YgekzhcEJmfiqkHe9AG64NZphF6yhXyeRl+tRLPbvofAje2Uq/Pl3CbQGoonTm2MqES8947Wm3SpfCeiCuyLoWlf2Y1pXZr1PTFRe7+pTfPO6Mvi3+0pUFMIxn2dD+2e5Il5x5f/riGarAVrKvwtacUbNhU/WUOtYq+0QdHItFhLgYUKhL1nIUe1FuP1RmX0HUCHtcWBz8l4FIDQbxNMTTZidxLKNuZzqni5oR8dYxx1xrProOeEXU8/xQJGDeSRDagCd/rrTKK1p6bP+mwO5phqQ+l8nhEEoA1AE6AmICw7Jnh/LCb5JPOGpCZTm/9mKALQVNtto+r5Bs8vY5GlwUXyUbrfz89PALRJfRxorXOasrPY23rDcTywt34GmYxHfIrhOHZsyP2ar0vtPeC0AQ/G8Q0Gf104+4HxPqgbe7G7oLWGt8c7mcbXVTIeK6Q/mIBWA/OOg1pUUy3b7opPZPcMZBMH4gZi3X70vNYMRAuMnCIblDBwkDAA2JbT+OLfZQc0jAdgeHOcXOP5IpOP+55nbU5qf1pnm9K3958w58Tn84nrmpiLLCbmivyZK9vBF2IY0Du7dfqQrVlVgD/OE7bY6ZJDTvK+j+MdEYF//PxJ4KkRXDzPE3NOXNdFvSVr6ONEt4G340+4Pv6G/+//9l/x/ddP9HagGYvF4cmah87sgPuFuRzmS36f++5oBjJ5pbGKSxHJBkWRvngciOA9Huc7Ho9veBw/4XG8w5sjLPc1gO6KX+nD+zhwng/01vD8fMo/kCX7Alkzo3XMSdbWb79+4LomPj54HoY6fTipGLcYDGpj09YxKL4VsxQdHR2XcALrA2ENL4GqaI0ZzzLMzydl36yjX46xAqd1/OntG2IthKbCcQo7TUy2by+D7nOQEegC+RBY17PivZVTpK0Viz8Q1GALTa29+Q4ywsXot8nW4SE2PQLRmWegc0Jy6wvoE8/rV1i7gLmwrk9cz+/AeuFswPHtgWaGz48PrDnxelED8TzfGaP1QScTxnuZBLKAgIll3jsntId7dd5kPvpHfv74VDv9V+khwrpErTK4MmS/MSe/GuALFOOl4KJFoAenRYUDFoZHp5NeCLY6FPqa48RbjR7uzahv2dRGIWfLy9AUMNxCMUa7KORbP9YbpaqWaKg+0bWxd9hslTABCtJCTjX9u4LSpj7ypqp+w05MLYTwxkLRlm/JGQPJbH/QlAU3dSNyzOJaCy04PWyuycq42EbNKEL4en7C10/Iyg/kcLoRte2i6TKR7bChw2npZGc5Z+pFefV3JnKeVRTmq6xGWLCK39SiYEYasC+yZrzfqixKAOciMo9ulUS6u9B+PTvF4jnuM/Gd/DBONUgmhiC9RQQd14Q7r+loh/rxFeT7rkA0s5IKyM1tsYP5TNlysl5VTZ0B0orJNjAzTaeD9Je4rqT4Lz3vHxIEE3PHb8yc7F/FV70K/rtXkpxTFa0Tqc4Kw4IrIE+xfMDjQrbdkCI+4JHXSVAkk4K8Do4VN7DlREGP1qoSU9wwt/sf8gGm1g/+Oz96/Zf4CVbARnx56a4KBIjQ12REgVhJ264KnItSHvmZO+nMai+Fvq161D11C5BstMBdHJdJywIngQAJzFhX24RFtY+6BabR+bLFhffkeX60d8NMCTD3sxvXxnGzD5HV2l35KUCwErU96prjjruuPalQYBXvnqwx9PtyrnbtUju2AudABktcxhvoYPjddeU1nSfp2ENtoFGJPNTuKWtrHef5vr8zg8rYiaIZ2EabSQEyuUftpahrliPEtjv3n/pz7OtH2gMF7KGW4LUkQH4XP8aGcr4AdFbLLWiATiMiBBZGsRi7knDa7Lt1yI/atH5HghT7e7O6mgCHffkEVbh/ZMVkhQoOU+sZK6VRn5H2vqCq2MxApG6K3cCTWmdeSwqk368nE+wAgd+spuV3NOkF+trXe39v5IXo/u8MC/5btkFFvatsgd5rSjYyAcqzbZFAmzoG00/XPUJVb6hizcDri0/S6wBse19bYtvWvV/ybRnt3J7Rze7X/em/uW57GhifV7IhfEUamAIPIxaKwRlR2hfL1z4rrSEhkmzl/BF45P+1DACqdWyqSu3S8qtCIlQQ1Jnn/39lonI5dA36fTK7Sg/kZvtco6m/tBRmoC5bm9POyNi4F2IUCzqHtVAXhuc0Y5p8log8kPIb3Cj6K1WDy//k+U2bsqvu+zr3Pa/6aIFnLpBGNjYNEteiYNwvpztZHYyFVQm/7Zu7/yrmw36J9g6D2i0X8ftzx72ZuyxqD+ZZLiaI7jPZA2ZfvX/cPrBJSqPfwMM8465YIm7XErL3W0tp24g63wgWa0PP03LdMmrN/aEW3d7BiVYEl1wfa2CcnyFN7vohHRq2OmX4IoBDscFu+933uV/19d7v1p7bLW3m7Rnn/9nea7jbXa2Lu1d735cHB9uxGbK21OCTfqE3gucxFxZHXiNZiwYVbFTky8LjOHrFJQsqIJbzCrRo8BAzylO4WhN8ZQOQsVOCkHlvuldm2cnks/2cPRAtJS7496uApV6f62L3TAFPo0nugi6GoIVyraXAzFOTSDHRnC8xbWgvO7pi8qkiAgQ6WvmRtBmtpQ9E2Y7retWamEFspiy0CsBaTO57Fj5tM7KchDEc7URDx+u58Pn9wm8/f+L1+UKsRc3Qvn2350TcKjJKJzQWp9AZkJOTQ2vMQkXGCNqrimcvX2xjXoFYkOROQ6ydKzXLaZk5hKNjrcDzyYnbbOvqbJkUiHRN2oxrLVxzyW6jfFgEu3ZGH5KNadTJazwDU6z6ZaFcyDESBFlJVuF9NDsINrVe93Y2EhYOdIxoGMGW8u7GPHuSGMCDSruZmmVTAwAoCSB/GEH1EYHBi84SKxo82A6M1tWZk/hFq+6iQGjgR0f09MogyKP4O5Ev5msXSA5ZeLyfOM4D0Tjk6fnxHZ/Xk8WJbkA3TE1RIoBnaP1Ado5EMgvlAh1Gf5c+SZoaSku4Hhk3ZWfLH/j5nwKeAkIUQ2yH4O/brfpvlhWspdasAfOTv4dv4GktdDOcvbE3EY6nQyMheQiu+YSb4bC30uQh5aQz2ILh8nTyCTxtKmxWxWqMPO6tWAyO5nKs5XhIkEseXwY/p6vxp1u2/XGDtaLvLx5Rh1r3ju3YQ1TGkoLIID3EjkrRMhOzJitOYtq8HNda6ME7Zs8rMBY3Xe/srfz8/IDPiSajS00DGoGzHxU0nuPE23lS2yEcrzYwLXDNF6iJEzxkmWxV0EI2mYMsLd2KxEiNdEsbQD8Ak3MLox5Poz4RHX/HfL6wwmlEe8c4OKltvlY9uwBt5XmS4fD5OfcBNKMeU9p7Jag+l4JTJWPWcIwOswOv15NGVhXM0Xr5v4YMPPZzhdFwkB2ZbB/oWQZerxemX3i8n9ybnRNGXq8XeuP0Fb9VUXZbHe+wJSCBKf0gMRQsE46bHgpcWjKrCvJA4xBBueEVgTldUxVRrXYuPR6EYbQTx3jg+XK8rgmzA80GRqd+wly83rVUFRudgU34NjIyLjxxSs6D7Zp5f6yqf7VBmfztvHC3E+1AO3ZSFrF/mwEL5BzdEY39znMSdBvjLODY3TET6VHAzeRKDJYXdbPMOnpvOM/B+5zXjSKfIASN8JxLzLKcxkJ6s1lDEzAOMCh3I9dpYhLYbTkGl1oLCXS4GaInC4Qg1EImXQoqlyEUXGaVupVNi/rOPjpSF6n3jnOciJgwW0o8G47zqOfh4ZwkVoGTEtf7AytAJW7/dQYmlTznv6HygUCIXcKJlRnE+mKPfgJK1KrpCExYa/j2fuo+ucaccsPrOg7agQyWc3pkl7ZQJhb1Y+mPrJzmvQpdDBrLpBM3MIoL4Wo7XevSv/VKbneCnN/5NeqPL3/iz/W6kOozSaUvlkDsT6jrawSeAgH4YgCFW+XYspKdrdsZpCew1HSOdEO3hI3f44DJ5iNg0bEFb3X9wT1LLMlYUDDoffs1FHRlQOZggNutf3kmGdyGT1LgW/pPqDhg8Osiq+E2AOALgHRP4+wHu3JrwUD9PYPoFa4qeV5LJmWZ+H39lYK0+d3r2u0WCewyS7Uv3wdYgQ2h67e87wR9sCG5jF3qhAW+rGt+DsDH2xp9l3ZsPdEpn69s5xa0b8bM0NtaI5ublVsB700sEwMiHJc0U8ySRSdWVwqSAoiUObhc18sEad2ug2dfzy3B3Nq/KdSuz20N5l7tgGTGRDGDIlIT8NbycgOx8mymhtq81LZyZAzDc5Fj4Q1xx2W5F7L9ONKGNQRSf1Cet+0pmsno66AEQiYOIeZjO4Zelz4+/VIU056551fA/x5PR2T8ndF+hpesegNbaD/qfshtZ5Ag8CJaASaqejE+NUMJOCNqT5UfAljQc6tCW51lXWnvvWIYREhHcRfr+Hm0U2OwpSOZM1k8CYSAZ7J28yfkOxOg2wpefFfKHiBYTip7yKevvcj4wlpnAtsHIi54TPlBZ8hVGyJ2nGYdRz+przk/6L/0vFz7lH63YQO1+V9DlAA4ARITMMH12ueUj1QtS9ipf+rbZRte7iNXUdp9VbtTgra5n2vLhAOWk2ZlyzrjiHXxrHvbLKvNtuR/lzS8koV8XRMRGaPqinWuk+2zFrtJTOwO980WhaWtjXr+lqCF9o632/5xrbO52om42S+nbz7sELhkWGti+sSleNbeTlilYmSXcCqs2gllZ6z2PPC69sTUnIp7qRvnkBZx74acPJ37uNK+STszTs7Nfr0uxdKLzPzoN2CNa+muKeRNk6IBFQQMa/Livr29wZfh47cLv/3yxC9//w3PzyfWNcnqatRX9OBk74rXBD55LPiaLEK2PVE3947fcp3WSCKgRiWZccuZZ6wJxGzwy7AOxR6W+qLycW2gj8EYfT6xJjtO/vLnn3CMA9/e3vCaE79+fnJPid21pgrdBWaTBWWH4RwPNDF+Vkwy4IysxyvbCSNwhCC3a7HgAsb/rZ1knTcg8YDH8cBxnBh2oAt4Gm7oC7Ar4E/plAXtJdtR6UNdecFCwC3gzXEtYDpqsrMT58HyXh0sZgesHWXLaniYEQy9sNSaSP3ECMf0hQbgCCMxRZ1lV+YJzfCXf/ozzgeFlqcv/P23n3F9fsKOBsyGaIbXa2K9ZvmJ8zgBaOqtTsJynnlZd7SRwC4NSw1v8PQ0iZngD/38YeApFGgy+BXwBCZUWa2jzQuYpkMFqPuy9QFMjmWJEmpog6DTKzjy06FqqA2BLaoohGM6RPHtWCaIKZ1gOl8DWgT6LenMYGeJTt4UtI9jwJqjdRcwwkXl2mXAxl2ToIxDE9oq6uXvPQg8tTbQWi9EMAN2awJ/2qiEjhiI40oKdxegFlEBxWoNOA5MGY1DSvVtNLRoOD1wNIO/NDIzNN7YUA7l0U+uvhtiBq55YQ2Ht6DYGzrgHeHUJyLtt5Ma6IsotQWe13dugGYCW0ZVwtma7DgPipirQw7uk8Ck6N+7Um0M2m0L9JqMTWuNgm1BICcCpAM2QxuD1F3PAHsnbdmysqbGfjeyJFoznONAxNAY3O0k51oCgQa6KqXX1ISIRm9l8kZMgolvN2MVLN/jqgTsKgmfvS86UGq7tBuYkvuTbSUJeCRz6h499JbJY0PyLgk0E+CJxmebiR9NxW6x2UH/hPtLleqsYwYWRlX9E5ABeL8ed9Fag89ABKschFg7j8jaI25z7CeRc1d/cIr78bHXJEOwupmtHjAlJ7YrYGZk1ZmxWsBWR57H6RNzOsJWJfOtg4A2mBCHbFMmLcwZtDoemDPBJFXmHLCg7er2UEA8gUbKfcjPLo17Z1ueAg9tS8eCtSWgwAsoSvyx1qKpdVBVQe5LBjCPtwcMBASzLYFC6Cp/KfkIANd1pRXENcn4u2ZS9FmSyBZmtrnwtQkCpTPfug9TCUsDzBUs5V5KcXEAJlApwY22wZxA4PWiDRosidBR6Zwz4VKSa4HRD7VdzQpASVenIbWW4Ar3KWNcJ1AsW3wHOioZS3N+c4rFFOObvpw3Juco+nkyAkeCQGoPCxf7q/rd9QmR/xXzQ9XsIZZeJtxDhtrCYBr3bWLbZBD4unJcNwGdbN2LvGwlJgj13VfmqfvJ55LtRNJ5o09siOi7VTdcovc53v1uQ3J9Wz2bDQUpoF+rBoLULs/DpyQKxiCr9w7rTZNuJCKaPuAHUCH36D2mycQ19B01Oe72/iamL6AA3lgWYiBHhrVBDId6Vvnplbfp/QBbErh+7hNx24c8G9pktwvNa8pR4cdBZrV1gQC7dFjXXkm91jGfgwmZSiYBL6zXUyjOms5XsrqKHREzgzSenYzV9HQCFI4NoV9mbHcL3Tc1OaJaqMqLWRaVmpJ7XaO7wH4AYjmvFXtdGuMKKrwaE1nboB88W5YiN1n5z68BLs+/idmQTGO2IUP2vW69AB++LNsa+dzUOFsaQbW29Yxx25+8NIudbOVeTyZH8w3nUBvT67UJiqbOU2hJIwPH/FtDtcKlpk09W9xYg8nXjUzuWyWEwzToRGu/4lLmv1hgAxPk0PON9N8mbUxjQrt043neloSH1+3PuXBfW0Wt/pznjtuCgHraWFMVf/pU24fuIRbzCe10JJj14z6UXzNtElcFv65C+BK1vBR/afUCW0vnvu3cqEMDE7Nf1f3gw08rIDZJPjPZSPmJvQp7f+Q54yOmHe99lL3LQUEp9p+3UXox2FIC1rky5UdyC4Sxs2MtigBnW3GkTpeGIunDzZJJnsWh+lKsWALg1W4of4Y6pVFxckiCIztGy67KT/44DEKPawNNtu1KxvkwkhpiNDFQgHEcyiOTGYyyRccxkEDoWgsSOOKQJdnZkgjomTtc5XvLHodY9Y2dDeeDRbDX9dSgo4tDFW4FyIzNrAgroeFAh87vEsZpYrEY/vROQfLzQbHo9bpg1tGNuXRDx9Ee+Px84r/+7/8Nv/z9Fxxt4OgD3jouvOBYQFy0pbhAKz9hLdAFqhPbZMzLQRC0g2i7BW+3ZgKvuGhnjIUJG4Z+dBzHgTEODmHpBLbKPmdcg17g3mPwz93E2vpceK2F17UIZq0ohs2aEy7bYK3jcZw4jxPH46gYiEydAOaL+y4C3hpWbzj6oKyDwJG0F5+vi8OVzkOxPuPL63XhT9/+hGEsfq3XC5+fH7iuFzLiTB8QwManXac6COznyFJDxlEEQnnN9KXuBveBiFEgcrZWO1joey2SXjogDWOr82bqFKhIT3E7RsfoB1o7tM/oRqYHXtPxWoHLgRlkYeVQiqni+lqpLUbJFcqF3CysYvOI5NjajuWbYgR8PdP/vZ8/PtXOVKmCjK5lCL4DdlZNeaP8YfLWkrqOVhTEWEQ10eiILp/wJjCksQ2JowWDE7Dc4ZPtAdY46cnN2I9YzpcXOBAYMvFQQEmADLxiQo5oMkAVOIhKncFGIcWiJ34Nfneyk5mou0S5wSlNSd+PUEubGUziavcgOQX7rPVkrhG4shCzp2MZk6zehwKIjhaGMw70xoAREtROmzEvJnDH47EPyaTuxYwF74HRNElkiSLsXQlMw5qBazraG+9rzicQRsNR+hsQmusUZKvgD6iq5Y8waAJvxnX2pOFm8NroWJJiyeBxEkEeneweiqkgK8rNjIw49ZO3EICjyuNogwf72k479FrrXT23QtKfTKDGIcBO83CqYqsAJR25GTBXOlyosqLkMfbfbTJBhio8Iwy2CfZkoH73yayC3NgoqrZfqWUiJ9e8Z50TrYIvvmUhBALl2NX8W8BT7L6+j+xEOiNFDgLYqIdFgHIYq+81gUyf20bWtZSUaYxqIEe6MsDkEeL/rVuQHdjGOJNlMysHDE/20YQ7p2DYAtDa1vnqXbTgDTwlAF2MhCC1GCt1iEQn82A7HTqGPRDSKzBjgBLNSeeWRpYko7cw5AKobCjoyxN4yudBe2WWIn6s1MVEabgYUIHTnBO9c7+tttc5N0eEWELKNeZa0gfzAlgYE+YEopXpSzGKsvKdtPhdhWRyQ+2AtIzSPAq+j+NjWW22DOSNSdgU+A1NmOlicvabzgGnw4T2S1C3RC0JoSB2ATUJENpbKL0PK8Dmy49sENfo6z95rnMlHrmeCpQNgG0tkqZnVYoWCYZEhtyx71sftNu0+JqeTlqV3c2auAXZm6CCBHNMLI4EIyoBRtWPIfdVLmmf/YCQ1Nv9pR1j8sXzxmSAjJadMP7YEpWgUwlPIgq4qqAsA9d0yX4HDARSKJlKQNaTzdfSFkU9szvzZyeRex+koHiy/fJ7gEx+ba9vflAGkeXDv26QH8Mnk0Zeoi4e6wbA8GdlsqJry+Oe15baU5mER5AZErVG+zrz2X9Z/3yt/FCCmEDu79u++GLPN6siz8O+5XscQ3A+gil++nj3rf2WLL9M+7M1mrqEGk7B5gL6SdVCq1XmpoUjEjo2VkHD1tq2wzR2Uc9n39YPi69APydi5l5iQL3b+3qjNtP9uRB4SjFhq2eYq5n7uliSef26rH0K8xHsM1oCxOYVO+RwmR8ZbTBUosyWtbTBAssMtZbu9/fm2b7vvbIM/L92Y11nMQj5TKUYFumN6+MUO1OYOcdup61IAKTgnvBi8OV17PsMJbPx5buW0wcnO6ASGLWV9dZvNnFD3fff5eJVSz1QsTyt3X42HiwcC7eQvdrtLPeftNt8q3N4CBKUbMo5UxunlT8t4PTLXonaM0hb6V/Pa4rOmzFHSQZNP4bYdCoX+SqbDyQLjb/M8XUHlC3dcUNgA/q9k8VUwt8IFc0zXknDzX0wpSFlBmmL7XNQzLa1pU14jG9/yD30A/D0ZfWVhH2x2aa91A3WNzOnj9w3AgIzt1MOmSxJgtHSBWrbZua683NArSf5M4Pa6bDjRjNOig4A/uSUxLkmzCAh681YY1zPNjWYgKfReT0zWfcsnzQY3h7Mq47Hidd1Yb5eBMRa41RHdE4QnZ/467/8Fd9/+Y7eqLk0W4K/ExEvcDL11LVnIQ9oPTNlHiq2jG+73LoVyy9JENOlhyT2fgPj4DEGdY3E4rtPaSwboKLFmgTZWRzvMBEb5nLMJamQZCsY90xq6rXWcJwnxnGgj4Y5F2IRrGbRfTHHQIO3gPeGGANtnMC1eK/JUJwTDR1nCMBaC74CExM/Pd5I/lgTa05cryfWvBT7os5H3t/N5YJFa96vFeOSv7JIiWKcAhEd7vpzSlAY+yhmANPJFHZpgvHjOveuAKj0lwbT1HqCbZym3isq9TDMFVrnrPOk5mDDkl2aQV3Zbo1yCjpLGUcGcuAAd09Xt5PJGPk9eP0Pfv64uHhLS21ojawDqkg0RKrpZ44TfBDZ2pIAA8WFNVtBCN/sXGRHw4XAXKyuFyMJQGABK1kjFEsj6mZAY1sbE8Ud3LO1g2JgvQ+2yckuLekeLCQ10pA0/axi7GQiyhEkbvA1UTEFO4yTpDxCR2SsGIWpF9QD4WnYciNz07QAXnMB1nAcZznJqYN/ngda7zqo1HR6NOA4O16vC8uf+PXXX/DtTw/80/tfcJwnZpDRcK2FlgBgJQ6sTPbOe3896Vg4inahuWM8Tox3joYnxMgKfQsynT7npVaiTho3gNe8YO6wwT7681RFou0AdAz+3sXE6EfXabi1b4iT0Rt764/jDQkFyp3h0FSFoWCjOUoQvrcufaiogMDlVDMRgfI89hZPOvje0Y4Ow7gFyUo8h6inFl/2fWiP997Q7FQg0yj4hzTKSlzVZ+3usKUgxQDCrIE1k7pbu1HVWHp4B5M4j8DH5wf3aGsYxr7pZgys9tSaDATTHTqOo+E4Oj6fL/b7Xg9R0HntrHAvRLaTAerdbuid1FafAbSBdh6idjmyLc8xxfyRk2sK/F3Bu/QQDEByb7jMXIuGtlv1ggndCsmeyyGZ7MDbeeLtkZU3hZnBZGYt4PVkheuuCdIl1r0W9aLW5Dhdjk8GAQ0ILBt0DvAMlBVgNT6X1hreH4fo0Fe1sE1nUOL2hGGW7oil8GtION4DzQXWigLfso+6MTA6HifWcny+nhjjxDlOvK5XsZkI6EnsD7cEEdIn6E309WxX3W1mXckIxWGbEgEC5j3bY+VEE7gyaxpoavQAlmxDE6gVlaAfnfdzqrLGR82EZYldcYykVM/ar61J0+/M3nN6bDV+3JK9e5Vtm+UCFS0DgXtQlAE5mY6mc1IVa607BNL00mhzFkTagUmDJaCkVaBdwX5YsdjC1AKxNjgPC8y0Hy5gIxMW7OClafDEdV0FBAzd8HxN0tDVVnccB2wvS6VM91AgK3F8gTyaNaBD7W30C4CpjVGJaSSXYInhuEEwtlJna0+yrnIdUGBQJVtmiDnrfjuygJQPMZNW6BntxCV9r9mumlODy7afsa3vsz8HdV2ZZlorgnhm05Xo3AFbtqHpHlIk999Z26ys9js7If9PzyVyn+Xwmogvv3LdmhmiWEsC3ltTBVcMHr8BivfryC3w73w2N6gYd2iqVnZkRx5P197Xec9+TbIpGqrVZC4rFg/ZeQkgS3A3HCOY2DNG/QpqZiI3N2de+zE2K/a2x+5xV91Ogmgm7+b7nKe4cdSaaoy3exEgj5PC43NOanh2rk8XGLEUbHuyHoxaIhaOWFOFRhZIaTv4HWkywj1JyrQgIoUCIfFjwKS/2dSmXfn47dHWOAMbAiCWYshkSW/Wx9apQ4Fd07O1Ucah8f7MTa0nDUsJYLY6moD9dc2bkPpOqMzItKG54/c/utjf7mqlbmrtAuO7ANtTEPDbYc6GX3TGp5iQP9Meb3FbkPz9nnRq0MPBbZ8jpLOy1wRBVha19jK+84qN6tyqkOoC5VzSBkc/ATNM5QaI+rI62562aCbAo8PejMxptbTApAdrht6PH/Z3gCwvriNtmz6/WmSNz8sdiKnCA+9paTBGB6qwG83hrUn8WwUmAz6vi+ckAi0HxciJTBW0CJgAvi4WXHuXRpdaay2UA2jITVOsY4rZFScXYHgDzrPNaPoCwAFTtHksCHfZaXTairXYSRDOfdEaaqiUDgmiAAAg1GNsY2DOhc+PT/Q+cIyjCuSXJ+sdgFjoBcLp8Ca4+Mv3X+UuWBR6fKM4+BWOZgFDQwyB1yIaeIJpWYBAticBr88nd+Hy6iRpYFH3dXE9juNAbxwq8/r8wN//+i/49edfMD+/I+YTDRO+npjrBY9PhBFU9CADPkhARU7oY9zY8OjpKxhTN2niNmuUvQnHZISBPshutGhoIzCGY/SF3mbldteLDO3jPOC+cF1PdOt4PB4Y40AfQ8VH7Y/e8NMY+Pz4wIdYjtYM3mnx1oOxYDsGFhzfX5/YPUl8zgls5kiFlTbPmIvAHH3ITgtIvF6fAlAZ9/fesdqFF0jG8GOhfxuw1TB/W3BbcKNeWBNeYACOIcb4mvQBHmX7l+QRmB8B8MxNBdU7cQVu2SQgqLujNNtKaYvF1bB0IDtzMuDxduLt27vi7MAv//g7xhj4f/xf/q/49ZdfMH/+DWbsHuqtIw7DvMj4gnzt+xv1lC0cDdmtoZhEPuZ4P5HM1rUWfF1YGMxzv0RD/+Of/4lWu32TfGAMdhuYFPLf1E6RAb+SdHoHPpSqEsYOFkos3BMzk5C1nmBIBdKCya5ZL42myIBQAU1WI6x1Ie9tB6VQ8UQOkG07u0ZEiqduwFKDJhM1XrZVMsPrNGQP9i34QQITJiMYyZ2qtjImRe3Lpgu1/NSf3QVe6SqMWj5wBj0rxG0JTsd6zRderyedVsUHOpiBYgUYsmqjHur9SAoU8Vjo/aABdgKG6SgsGFysRWZC0/cgJMSLQHMmI60nK8hkvJWoBHUprJLgXOkfgmTIOIyhA745dg1kwXQ0xSUVjcq4cW2ADTzt4osqYdYqgYcSrAzkdsVLT7qSG7oNwRMKHrU2YxQ6nslDhcyVjPBaswUqWwQD6TDzx7QvswIbZXTp4EXFVsBFAEBNE/f1qKcOQOeW7E06+nCaAcbl2jhKpk17P0FHBvDAAin6GcACWTHTucor3Tl7PX9lYHUv0N7OpFuR7F4rRgdkRQVBpdYJdnDqQxfYEcz+FOS4E3zqSrYSbCnwBxkYos4qtE6uw14tgMKkwh2xb5nBXaL+Dg4tyDPGN+hzcx9EBXn7khWS3RNEZPBvxQBc7jj051zYrAxnAsatsK/bkPpqCvawbUOth/YucGPp/JjYpS2MbHmTH4D2iPYfwRtW9Qkcc4sQ4A5OPBS4lIF/attVImC570JmxQq05NACbPag7E7tNa1trWKgbJxOk74/79v0nt3Wk8USy32Z5zY2vbhlQF17OG6/r9tQu6DOnutbtcYp2JqtTAWeCqTez/VWHb8BgSqkytjwoeU6pFZNXV0dsKRoJzdSn1WMqKg9YvI9cmppuPR5m0XCduS9n9K+IdfR9rrkPgoxVrsWOjV7Nh9mr22yJn6/uvgdYPMjs8lun3G7gFrHBAkhC2vx42fyu5KF4zfl4Twn2bLiebZv14e9E28bCbif872memd83Qv7v9tnb6bi7avww+/z0+MWwyg+ivRXKijk2UkQtVg/dZZuvsSY7DUFJSv3gof2EcFK5K88Z/zqsi3NjHGda+0MX/ffF0/4FXhy//rMy//cUJuIzTxIgPErCGc35t6+wy/fpPuijIPOi9yMr1XMPT53gRHIYlKgtHuwbZDJvhWrRAuzfXTUvqt4Ra/b96qJdXkfd/tfd+L1Xo88+W1fRL5Bv27wy5f1VH7/5cd+eH/IbpJh6LdzkQFAOjv5uS/XzrXzBJny8oyFKbv3VUT6hQRkKw/DfY/uP+WzRu0tHt/bIBvQkFYkHPn73Mum/dzquoqNV5/x9SfZdBlj5B6826r9TlMyi5t7topd9z2kY9bnJRAdXnnJvuvs3tg+P++eukEUZUbsVuYITiQ3QFOQxYJFxkdpR/Zzzuuhr9sM1pw8XU/gbvuQ7Zu6by1iro0Hp8H1bvW9BJVyUwTC91kOgad5iVlcybjEoBYlUSUI8AAZw9+flWUNM+8/Eozc7OQrWaGyH22wnWxNsm5aibTnmueVfLX7zElbMWEVDsguNgwA81pYEQXA+ZyYrwufHx+4np9sjfYJhFg/wZg+P78Y2el3t3ms68sHsAs3uwPiXjih/IWeuzlSI5J5hFo4lyOnJprut31hR+1ij8Fq8l2zRrZe3z6czOjd2u/OTpd2sznpixGheGjn7Q4WyaN8H9iLFMCaq2QuEtjmZDlg4sLCxLKFJcApsnBZumPMM3ozwG82KG0SkuCSrPh9JnlvtLTpa7JBrzADSwsUKmxgx3qROMq2bb2TidcEas3rQovA+59PzHFgmKGHaUAavye5mqbrSB1zasJqx9qOcg3qcgqSccKVg6bt+sFH/49+/jDwtGScczwlRA1vZohJSli3AwEqt1PY+YE1PzHXJxDske7jAZhhXTzUVwTbKs4TNg2YhnEQ8FiRZtMkqikB69ZhixQjG0Tpsvg3A7BlHF25DCuoYWRAIc1HPxBgSx4sEOa45hPLZ42UTuPf0z+0pFLu1sF8iK0fNGqDVaPXYoWJ2k6kLC4wUVmAknVQxC8DvwBWkwmXXsc4DrTo6NFxCVQ60DBgeH97w9GAYEkR1gaefuGXz18xfj5wvk5QyJ+H3hdbIBuIqrPq41hTvf6tI3zh4/rEYR0RE0dQcO3j9YSvwNv5VoGpr4XXdZE90zQmHIbXdcGvAOyJ4zxgnej3eZzqVUX1mE8Ze68xylkdchzHiYaG63nBLfDW35iYzotGeFAIrs2ArRTQJgvlGCdbFi+yAVZIgC0CTT3rr9fkax9spQpfpd1zBfVtRiOTpTeOLp7zQn5ROzIpzmote7zfHu94PieeHxcdfEMxgarMyuPDdrXMMTKecFaAsoUPxsM9F8cmo6lyEUGRzt7xeH9Dm472mmihQG7legxd55JRcaz5Sfp8NzyGNjda6V0sN4zRcZ4PhITtLo2zP883AqCTjub1eiEnqwQoZtiJgFWVNCIopI0op2ZVfWbIuUKA5AByqlSCIvcfM8Pb2SoP9giYO/ddkLnEMzluQTvhuKY2vGtdSij4QHrj+Q3PSReANd7L8hdghn42THdcM/VVuMiGwPePX9USTGbTcbwJUDxubCMGStQ8MrR2MFRvptHeHVmJIjMg8Hyxv7w3jSwYp4LEuVvpbgHyGB3HODkNNEc6W+y1Tkp4FzPFDMl6yX76a0rDwYO0dksATbRkX4TUFTTZDpPZ3pn6E5qY1TrIoIlZWk35HI+D+2M6Jy92tV+asY3yupx7PCuO4ZjXi9TrMcox10+BAftvMwBmAqXoTnYi9ybbuKeYCVYBCbUJqrkOa7GVq/f2uwQ3p/Ikk++ejuQePromp4oW70/aCBu9Pm8LUobappnYpkZWtbTqHpr1qvQZspWyohTaUwHqZqC+hexVOjaSAjIBcbBXlG5hN6rwM1PTLiLbmFbdKjUB1SpvGXzaV8aTntlU5debtE3sRh/X/rgLUTOAy+B4J2xpIfI12dp9ZwoV6ICEvdVWamyvyDa4lUyCW+C78aqvmja42ezSYBEjsMwXnygs9hSjfIYZnLcOUFsxdO74fTkhC8CXdnUCn0RrhMcjk3ng67VzwpbX57RMqnqHhwazzBuz2Dp6YzyEFcV86WYY77Qra114vSbzPzE5Wh/73JihNWDNLBIxwG528Pncz2vuLSWMw3Kyj3wGdrtwCdXrjHM4hoRRlZjk3s9BDjn6PM9+iMlFkWj6rNdkG0obDKjXvBiP9kY2YbWP2RYVbrQNbJdh8SO1L6QCrOBeaafzQce64GvVaPRkBHvkOuWeMTLcW6NOX3BMOcwk1cBTmbITbOkOzPUE1FoTMDEts5GnA9FgjVNGeWwFPqpcxYJGr6EHud7LKEb8fh6c5psMHqiNKqIYmafakO4AXyRTeeYk0j0VynpH6w2veWFdrjYRMhx8LTyfHxjNcHyxudzHTS2/vbUqSmaCjWLgz3p2ZgYMYEOACcok3J33xes4xgGfd6AiJ20Hnq+JaAY7BlJbNmObZBGvlYx4nucxRu1nXk/DvDh57bpmtXNzjW5gvE8VjR1m7FJojYX0WAvzuvB4e6D3JiCfDE0yMNg+hUYdxghHP8Suf75YWElWjgcmOOWbIugAggDY9Xxig05iWz0vMj0a7V8/DspuLLFnbGx7rsLTnLPithbKXdJeab9574gWYt6kIZV/BMBuEna92FJM2XoV4Dc4m4WRBI8MFob3x0/og/pEc05NU2cs5an3Kdu3kRqyo9kKdxAYkJ+9goX6icVuj7ASVX/mMIR+IJw5UwOf7Xk8MHrHuhhXzTWxJgewhLsGcDW0Q7FSOP7x93/D3//2L/j49R94fn4qln/C4wXDRDfX+igEQMNoBwr6UFzweONQJA50gobzdFg74Gvh8oUZEwuBxzfmki/nIKQ5Ha85cM0D1wWYvRDOPHf0jj4azsEBHOMYeDvfcIwT3x5vnKgOAkStGXw5/HMCl2sqZcYtuxUzgl07XEhDqP3wEomDGkqsMls4QQ11XqzukoLI9lUg5sL8eGI8DjzeH5j+AbyAb/1PGDbw8f07/vGPf+D//X/8vxDuOMYAItB6KMZaIlgA5/EGs8DMwqjzmUUzzDXRXNqeHXDz0vUiQMYzb1ndVJ4WxnVc7uwAU2EPTq2sz8Vp6uNtFNs82gWPJ3p74GgD5zA0X/i3/8//hufHB/r1wlgvHH5hLjLl31m956ROvzA/PtCM7ZwDBowNflHsYlFzCqRcWEzAL7QAz3Kd0v/4538CeMofo4C1grmm/sRkyFcyCFa7kjHByikTCotWgFKimZZBC3gTPemahaRl+KtqCuR4EnGPTX3lNWyEMYOy+6JsgJKBEQ+6Y6TIuE5uIuiJEgINnoZNn/RjE94OgomKRzoSAN6229PHFU27ujJ9KpCl1g6DCU5E4NeQohgtOEKyNQQ6FhpmGKYD3aFpal1Bd0bKt7QokPzLQoST+eDqvWdlMYMkK/q2J73DFmATe6SoBFvR0UPJqC+2VqidJx1AIT2uBDikCZEbRk4UsNJpqDROzKA8yIj8l6wuZGUtHzT3n8UO4MmV4mSBsM62r9gB4GZU3enCeka53z0PmxLY4LOi6BAdaVbs7B52Wzo3BdqZQN32RkIKuWPLEWr/JyU2W29iObV0LBMtQ7VLlPPND9e5K90Hni0osdnVon2m+f00ns0YsDEw5y+yINUOGJqAiHyGu/JgxvWM4GhpANij3TPhVMJqYjzqOjJxpy1xCvrVSWzQnFUgBoHhWEpss6GBrDJRDmsnmBac+2Y/hEy7W55v7UcTlZtSRaz8EZPn2ja9NhNwF0MTZc/036x0RwZV2dyY389LzVw7Ky1ZrQhk0LurJIhK6cpxbPBAAqP5Oq/QUH/OimVWCBsQuQ5Zwc4WLa1lZJIKgQdsKUUe4zLI8gXaxsST8uzmqdvnmsGwnkKyUhSHkg1aW5d7Lfcybv9Qez7XT99d33Z/Dvki3tct5rx91tdKNtkpXut79wo/fi/XNHeq6rJGP1Zi5bnSdTEu29rqO8vW1YvEbIBXYJnnrQjZ2s8eiX7nr03fq1Q5Lz2+3sN9MVMXhecJ0mi6f/JmjBbrM9ex1md/fuxmIn113nd+3wZA66nJFrQQW/oGNtW/35IbyHcBGVcoWNC1mJ6v3pIXlmb8lkintU427wasgcDtsutZ5inLs9jqkWz7lf8eX75jP4q65MiYI5BU0dwPyS7+nS+J/fzy86EnGHkoShdnP+myBc0IoBhqD+azoD9I+woVkHNvtdvT1n/14dTMiQIo83vLa98Z2vms9KtCg7qj252lD8/vuWnp5D3dvDbtV2or2v6cfKRdzIgNs6d9yu+5xYc3o7FtguGuQRcCwepG6pnvBJl/52Xv6v4y3t2WS49hs4ASMKx1qQD9ZvPKDsQPMfRX2xgQwH37Pqs9p72ocxfB6VK8HrLquPRkFWzNKn1W3CLn0F6IjEHkOMKxQfI83zc7H1mIy+urqB+FYt7Wb5/r22bS+uWzyPewDVWXYVEgW0ROfGpongyHhh0/8Us8n+zdHiRwXrZmt7OEwL8EZPYJ3Y/y60lha85IoB9WzPHa+7j7Se0p0VjvPnvvxVwWnu0Gg0dLCji10JzTnlMLqef1lPGw2/fVk9oviaj91ZDMOi8mt6nFm7FfArP7nisENCgO2/E+bpfAW7C9dvvRIhnVpKjvc8Z2xSxmqP0tW1nNikeVe6LWKnCL2/b37adGplAymAGQit854Z2T4vUrP7LenzIlwOfzAx/PTzznE8/1xCteZOdgiTZjFRPnFt8ayxvYaeho0fbzsY5ADpjirwA7lrpJn/Pmm+CbyAGzYvvm5svCR9dUVA5j4vTv7REA2AKlKBxjNOqTKvfkZ2+mGV1c7lGxad0JthlpHSx8Tgq2e2p08vWG3DcOa0FZkuxkKMajhqSsWew9F97ROovzFlHdWFkAz+tKyxTYBaIEoiXpXZuzQo/anPIlN9OUZ5D+hVI0K2PA4E5tZjhAMKd7oIejS/tnPZ/w60IHyj9n17LVGc9OsBCj68ctvJmauS8rJrVev3hZd3v73//5w8DT01m5ax44rBEVcwYbU2wS2FA72RPAhJtGXR6d07BW4PX8TkCmDfR24NvbN7V90Xz0cIzXC2aGcbzD0OS8ArCFeT0x58L5eMejD8zrgwumEdyM46RT1MgkIDMgjVZuL27aHHG5XqyA/fQYODqFtUntkwHsHW4dYQa3cXOqBnNqNB06LUzWJpD92GZ4Ow+6JSc1fS1u3tUB+5xoy/GmXTzXE9FNQJJjwoEg0yABp+cZuEyaUm3AMHCNd7zaN3j/E9AeOHsnA1WWzC2KpXDGgnkKx3H4+2jAt2/vbFGaAXt1hJPFY2b4fH3AfWLNC90CxyPQ+xNoT4SYEg+j7tL78ROO0fBmhtfric/vv+D89heMxztGNCw09AjAG8Z6EMBYvYTRfBHAaP0BROC3709WG44Tvog4kx3Qb1pinHr2nBcDhs7n3dFZFXRD6ng8+juAgZhnhZPsj55onUyWM2h0zzGo3aOgJkCQMhwIXacbK+YvidFhBJAjVWsKgQy1ANUdHABJ43dTH3VvCGeFrXqQNR2hK4AaMurH4rjW5/OFt/c3VleyemSmigGN4gCZVEOjdOFRo1sdqqo2XpVdmixjRuMejri+Awa8nQ1XOD58jz8ffQDW8brIKOpBofqzHZixMD1wNMCa4SU9iWsu9Gb46ds3nsqQYOOceBtvaKPjClYZSVQICggujoU9YBgwnO0BRIfFyWDEO+AvnBE4reMcnQZ9BtZiQtRkUKd0QcIWXmtihmOch9qpBs/0BMwGdbCkafV2vKE300hVB/CCBRmgrXUcvVMJyAPzetHu4aiKXG8NrbFtGNNxuPS0FocMtFNTQ9dSi+3FwJ5eA9Fp6K0ZuiY4vfxS9Uf7DKpuG/dYs47DDqzlqq5NLAfOxzuaNXzMJ8wM53liNFXCgwyIbg8GIje9LNczy1zUG/feavy3a74ABDrYH3+OjjXJqBoaQV7B/xITqw8k8DmvFyIWzoMg33k+EM4efWgvATedDEvAHkKtdtUGsqMItQKbdF+awVM3MBxzAjFDrcyGbgPWQueXGhOsZm9x3RwR7vMFQ0NrZOJGQG0BCd5y5DGM+gB9NJyPjmu6pm8xOTtUhV7rCbKLDq04J8qa6d4tsBan1zQirbQ/ihBcarO9HQgEXtcThoZhx80ApTZM290cFrAuEdtsRw8xZCIwDiagqe8z5yTj8zh1XcDzybbvMcYtOWeC0BuretX+EmSP9H5WG3eK7ebEq9frxSBQQAhZRIYYhuv5okaaM5geYhC+Xi8GXWNQi8QDkJ3jtE3uC2sc4MAE2m8FBRWi5DfTZoQ7en/H6N9UMQ8yxSKDYBXfMqNRFTtTgANqTW3ACkM+eaauirLFLq/pgtbkw8SEKzCOhZ5mDcfgtB62yAieVnKb2vzTyQKBWBH854VQUG2ytQm2sU2Lr2940B7EhsbGYjB7GPV81lzo1jEw4L1Bl6wAX4zybF3AUhuJWIOeMIMBbaBbAH1PTOyNDNKj5Z7i8yP7QOwOhjtiyQDX60U216GWmLXYwtEZB2YCbhboR4L3ZO4eNgrQpEAuqIemKYU8J0zc4K0YnakJRnefIEEAzRRzUYMlc9UIxxXUzGytY/onYgVMCs7747xYbSpJSq/FcRyMhxDJ8A+gAJkm/RAozuYeaGLbYwUaERwMU7yiokRHY6z4Wtp/oE6nmdp7Wm3X53OKFfrAtRx+BUegN4MHfUHTA7IVLAy5482CfmO9YEZ2aJgDzcm+6QPruuBrD9gJxRBzUYPqrumZgHvJNuI2pcwZ21d+paSKwzyczKzB88biLbVnIxYOO7RrKTlhS2wmMeTCnVqRBiwTrF/yCWJ1WwewxPp/gmE9494Gq3ajFYCrwAUAPrVfWtC/h+FxPPD+9oYUdl+e+1k6NzFptVqHx6zzENrHKfcBo0RDDxX/SWpEB5mKbQrogdr+X6F8CJQ7aY0DiyzQDrbOT020TnYflN9FZKM3Y7frunBdF47HKe2oUQDw8sCnWM6tNRydHR/egDCDjRtrGuBgGz1YU7tK6fX1QKyFa34CdpChFRNhyhXNxHpv6Dbwel34+Jg43g48zkcVEa/XJ23qPuJiggzJxiQInYVd+p20zy4SQRwBH4FXOFZzTDRgdMw+4JjSySNr8YyBtRb+7R//wL/846/419fPeM5PPP0T1gLWg6SJNhhHuWN9PmEOjIvdQqMxr4oIxKJdOc9v1CAOh09gvQLoBzt8uvSMJv3Zw94AC3hzHP6G69mBv3xDO75h2kvxDYu/YQPMNtRtExfGn37C43GgycdSD+rCOD7Rjo7HtwN/+/sLr+uJFQOBBus80x6T+xNArImIhbZeaHCcJxlJ014UBZ+fwEXn2kdXHMw85q11spGOE2MMnCf3rjXDOWhXsCYe6Pgvf/7P+Pj4xG+/fcd5PtCPBz7nC3MtPE7mxB+vS/Y5x5lFgZ12nMiuJyyHv17IYvESbja1f7KUdHRpoS7H2ciys8FrZtfUwqWCXp/A2Rre+on3NvCGhve5MOIFM+aKa11oCDyOU1p9J+83XGzLIOsUgDeH9QH0UwBgDlBR4BCGWMRjlnc4Dgr92wE1MeKP/vxh4Gm0oT5DTnFKdmrErdJf1RsmvUsBZu8MmMKNhs52hXa5sqI78ixEe/dBJvJIY8q/Y/LdW06TSLVOKFi91adu61EVrghN9mCQM/pANI6sJIru+m+A7oN/77FbZ7rQ9oZOdHUJgQxWIqKhxC5fk/RnikfyBl0bzBWV0XgxdnELjZdECSTy5hrCWnVtsahDw/Z8vvC9f2D+p4k42MrDrheNRg8UNZnLEqgJXxIpzrHaa4VEX1uh5EuMHoemUw2yURwuKLmVowFYqVii9e1nwECcCY4CYiWubH1gAM2R15kws9LS2+4x5WQPBps5GryXEEFW7mN/n5kmqSVrIwMQCmin+EQmBsUwMSHMANtUlAxECzli7bJblSePQthO2JCvUcKYPbuRFE3ty2qx02dthJnrcK/a1u/V9rpbWqS5gfjCaMm9Vfe/MkBXG4MqwxSV49613ukAZIBScI45XOL9CuI8AHMVXjhl0LC1Cnhu6HSsN/SmtTXAY96ufYsGV/Ieex2X88ywGsVKR8dQQKuXqXjMgK7V807NjTxOulSkPk0LVTH1D7/X3EK1yBIY2FXcPkZ9bNqkEMMxbt+1k42o1ikEqmppOiDJ4qgJK7Y1cdD0HQI+vvImUIKdofMT9eWZTKq1Sucjwf27Rg4BBV1HMlBxY1Vl5QUKsMSkyv22LyYD4R9Zpww/OeZd7s1uzwVKQKtquVtzmloq87nxJ3WaaE+KcRd7jfNzeea0UfTJVbm3+htdxI1dVvseVdVja1y2keQ504hcnR0ybnIiyCo7wXWmT2DQxodWorgYur9bFfOHn9Tfi/pI07Pcvi6Uft0WX34adV9px6oqGwLBXQ9GDieZxQDU9taqBbHVft/Mo/2VpkcpB5C+GNLuMoFnt334Re9BLZOm6y7m2W1dEiyp1sXWcB8skJXGiCjdpn2B9rvXNW249Gn396NsFUFIWDAJuMUr+RQTKBQRkOBQWGlx5Wvaff3L/uucynbnlJuctoP6PMcSy8O117KSm3FC+ni7+RmrmAilR7GXg38/VUDrvbONG4XMlX1zFWPSK2YbF4Birebn1pTA+57Lveq8vmbpS2/7AJuNUGBy7TfGZhWP5jkoT7nPbK5zBGOT1DhbJTitJPsWP979xr6/slKqpltu6/TON9ur1yZbMG1Xxh7pm/X47/e8I5vbRWDHMvUrgGwz++q37hOVYtuwm12teExt0oj7pyQLVCC6rjWnICJZPGZ7zyZg537b1/q0kAivYpTS1pEdXjMHWQA1pVZtc8mGT0ZC3LRjK+5Jm6f1JAt7MzQD0n5EFpBRAKPr+mZpDpoKLIEmJmbYbS/pl/uUr5S9Mg0Y0npS/zCBEZ5vTlPMuEs2I1vHJEFRtlsgUd7bXC42nsDMfKbaQKH9zjVa6T332VGhgUuU1yx2W6SPzGJp3q8YzbSO8rEAspgeJBjAZNvS7pStyaPAa3Sfsp/Shm2boRg0SHopY5AlMH9PPN7ngfsu22mza0MTfyFQuvxSbJ28sg9f45Mme7dbHrOgoMcRuLFbN1jIs82Y8z7dNX1tFsNjQgV3bsjjONCsYy4WAdyZ33brCAusWPjlt5/x2+dviE4WeANzJcblBvM98IHLZ9QI1T7PO+BEedoJD+BazslygWK2Nv0+V6XleYbj6IZ+Drg5prNdMcD2uWhqzWod7VAHS2PuuxA1VGA1rtf0wPSJuYLT/Kbv81VxUNQv5DkSE39pIi6ChdVxPFQMhyQ+tBcQeFV8TQ4QzwB/DQw0NLz8gi1DzADc2DLqwHWRmQbrIvDHrROGOX/rmWdg+/q5SqOT8SPELKvDUJ7MxfxOs95644NoqPzMRMP0AOYCrstxjMAaiiWbVczvt2ftMMwbmyyzt2JkqSW3Ju3e9ndNtFbcsnT/S2eOIu9lyv7Dnz8MPL0dD3lTR/OgBoCT/JWV3KLqmyho7miabuZrVfViG0DHdT2RFoRGQwGaGazn9BZWEuIuANdoGFofbDlzBoGcpjHweDyqunUrX1bAmr+afRXmapDhjGwlCIRlJcnEpuDmPWLA0DCC9zcvTx+PISbOZ0xMd7wmWVytH0RAWxNrYzGwVzkydBA5xQvwxpGRQJeRHWCyZgVuuPNzfvn1Z3x+/ob/9T//BX4OVoTCcX1+kJLbDxyD93q5Wnj6oWADmsYVmNNxLcdDfdvXfMHXxOVXOfMYA/1xwtdkxb11Bc5cE07UW/DPT6RmQo6NN/XfpFOlvgqT+a5JFhE8rJnYHceQSB37092pyZKtl6pBKfjPv0/gzjC6AIMGIAw+GWhQt4nAFid0BYRPkfYaRNs5hrmjAjBeOd/H8yokmMH+1trQ1gvkpt0tRk7gZS3eD0BGx9YoATIwohFrCrjkSMEjySkiDeeDrIipiU7J5sn7Q7CClADHmnTy729dY7NT62RWj7VFICcsGKym5a2laVrAlkgQ+HuACd/ZD3hQRwOWYpF0oIcm0YWxYnutT9HtpTfkFMgjKwH5QPR+r9fEmmhwvI9TMXIaSK4n9VcyWGZw1m7GPpC2huyjmqtYYG+F+MjAvh8Dxxh4fXzHmhPHYHByPlgdnHOSRekBRC8QiEmjliqCSU99ejKgyMRybD0E6PZzqhmdEYOYOWdGksikODtXKxHInICcSQLLzomZOaI1WV8JXibYFDN5GMDRUmdlCRgMgWFde6SXrSaAjLquDIzuZUKzPT0FsaefldeG9MK0Iojdilbjt81uIJz2RE5ZjTxnYkaWDTW1aeq6cNsPthPGvZ/8C0iYQXqOFDYzfHx8IoIaaHAyoiiqnsCHYTl1w2ahkLIZ07HcSieB3zAUeNW229eg6zMlYRZNa6t1qySOQVrZkgxEC8jS1hHInzo6XQC7r1uiaHsHhSWwlokXaJcrmY8CnqqtprYjwQE+K034UXLA+90AR76raOyyYaYLX0p6s62dyXV8+f4+qMtxc///zvXZ/kdkoq/Iy3gek0HFeIL/FjHh/oQ79eXa2RWwLzE3lcC3ptiik60UqXejs5GtHALI8tktT701vdSoT9T6QBbvTIkdWW8qMtX+pSPjiGzgdS0F4LIn1SoCtXmmNfr6476wluM8TxzHgRm7aFcnJDQBK8+H2OZRn+l1TYW3yDlW0UbXMecsXbMsGiRYpIxYSfx9b+5EMR9d3kk9Z5dIb29lh6cYfNA6emqJQEfkdm230wAT65/6eQINAYTGWGfinnaEAIT+qDOTa5BTmnNcAcDXGFD3D+xEJyUEdnyRhRU+Db+1KNqXp5mDZsh0TzvHvZf+UcWZu88yiktaNORgHncxTeargCfrHW2QobDWgsJ1TgwEcJ4C6gQUUTB4SZIi23FpP57P182+UD9zXROpt1dAZwGlUbbEExBGACeZnVPFz2yZN2vSQMUGC+SPvWXR9FJ8x2lqjlCMo2SuMz5ustMRWawhIN8HNY5MbL61XLHbPa49bzFD4FoTw8iKXk7tp5SnP48HctMvZ8LfnHtgLr7/PKUfpmVpjePn5zU5LKh13sPt7BgYv6ZOm5lxppXOIgDY0L+1DQa45+TQZAq/VMzl97Yx9DwSPNCREojlTo1ZTiBdsK4p29Iq1Epj9J2zzcW86Dzfigmb5yz9yDEOWBvqjJgVRx2dr23yx5yMp7i6+g7TnnGIyuNxlFZe6riRRLP9GuqtDDrCNSW47emYgcXvW9TiHKNjPR0rCLxZa3j/6R3LHc/nk0WGAM5jiMUaeK4n/uWv/w1/++Xv6AcQg2z8z88PXK+FhTJqQiC0wTuBp+XAUjyohAgO5s7P69rAUxjMGyzki0dFvwhwyt3jBI4/HVht4nN+5z2YkYHWHAsXYhywt55WGFdTMSxtUe+4vOFzAR8fT3x+vPD5OTGXYxyn/FbfdtB5foqli4GIhdfzgkFkiN4xzjf28ERq/MqXeuDyidE6HscbIjoiuu614cCBbh3PeQGX4fqgyP3RH7jmwvP5qjM05977GWweo6H3g/HAWtRmihCziBufYFEWPVvlGbmHSxqkGWx0snLFZHfZIJIBgvd3sSvG7ERrgeMgj5CTwQPTJtmBI3AB+FwOCEupaYDS3WoA0Ewsxu1DA8BUzkmpYFOu68onhf38QdAJ+J8AnnzK/Dk3ZjeDdVXa0yEKAXcTC8mMdFt/IdYElmP0zvHmkQcc5eyKQq9ALSvY01kRp7OSuKM7Ii4FYJnQCWFugGNhhZBYWYfCteWAKKbZMOTYOD6aYn9RoqlZMePYRKg686XfH6LbnidFrNfCFQuXqiZkzDCpyLYLOPR7TVYwA4XTrZg7dIxZMcsnQQYKD50YYzIwr+vCul54PZ+43h54DKruv72dKjAH1nrB1wU7GSgwuDWKvrfFDbsoosyzQjAnDDhOCke6IOvnawoQZKhuZhhDSdY10TvQx0lR5+MAWocDEo0P9HEARaeEjLaL4XGjgQcNnkOaVj4RNnnwb3o1qRcUqpIw4VikJy6nIL3R0VicAGioipUAfZAOegKky30fKsOm04Zh1r9l9SBgQdDqbB2j7yDAQaAnk8emYNEgJguydSIZCregGXmBpmQSDA4WpLmWU8VCvboEuXL0tpUDJCgwOgHCkGFcc5bANYPRUNCwRDOPCoxghn5o9KYCK1Ol3RAYYhkV8OBkxGUw5e7oTgBltF698mYU5gzPTnrS2Zu0nhjgMOnh+PhWzDGTaPySMDzjfTIQ1pqYaxVbaCl4hmiwfZx6znsaSOpL+fXis+od4ZwstxqD9tc1eZaMQVssU3vkFqhsluLWVslupM0DEFjqBW9ivdGYO0L7fyfaPpn0ujdFcDcgIpNh3/Yik+ecqsb739M22a7EIO2SMOvWKeBeQYRENTMovQX8oTRVQKaJwpuaLwHgTOHS5WrNQp0rV1sAmSdWAEEChAR2aQNd0zIB/3It6RhMhYs7YyNZi/xG9fPHrZpTQag+pyCHDGSXrtO0HrkNo84qhVS54Nkali2ADgIBW1DfgJzgB/BZmGGFgN1mO47xDXxSA5EBed0zouxC0fnznxaQjfyGAw2Obods1xYTTvApwcAIgpJTotA5LjttcK5C6JwX59ISuAn5OL6mWdozxQi29TLqGTX6wH0vt88qwEzrfRMcvafTEaEkpP3u/WgNKZr+o04B6pN2Ys/boY0FULa77kPVaRYCFsxecH9irkVafNvVStMzSOH5AGACeFoGnaXB2G52n/fbdFZbj70PAJROlc4wwtBHl7/mXmCXVTI/eKqLba37rumITatQuEfkk0axGivZdImMTzRT8U8gCfcIq/A5frlYm7IlWfEvjS3eGG0us99KDAMZG94C/H8nus190mXTty0UeO7ce45kQ+wzn/qaDNSBrSbDO+EwlWTKRMUaCNtgSQDrYmtCTfDNHaoWQLbE8bmkeHd9VN7abY/vqnfU8YKldmB+dBTbOWNb6hfmynwFMmtvy19Z7qn8HlXVuR9Cdp0bg+Du9o8bOGELrwlJMyW5yVYqK6FnbnndEbfY5A6QEeg6zyzo8R5erxeua2KthSESaGsdyXSjT6DwulUaRTmKUNyAYGK9pywrRhG6H13v7K2uZQYB5mQRLNl/b8lwU8FWsSWHYfDx7wKg176HipbLGWOZrnmuKEa/g++FgPMsMBRYaHyovXfGxfJjDbhJI9CeeABdrZAjOwrkZ1OOgTFCsE0u40Z9z+p8fkMgsnsWgHLjWsXUHZIIyMlkBfPdjrrWb64chOEVb/E+E0C8xYStYemctQKtshUt2f5jA9Da02nzj+NI58VT3cRMv03IrnhbZ6aGAdV+7/JVAcPM06Y8gb8Nj7J9gAqq/krHyucyDozjoGA1K7/IQhYUI7TWtu3Sul3XC58fH/j7P/6Gf/z97/j+26+q4xnMQ5O9s+K0AexqELeGNpqG0kgqwB3ozOkIEvKaM3aU10VOczQdqzaoh/v5+sRbCxzHwNvboyaYt8Y9EEbZjDYOtD441CI7bAKIGIgRaOcEXgsznmiD4taHClmhgpSBOUZLGYUqDLe6W+ZfQLjh8sBrGaYmXrNrg+fpGAfe37/tKEj+nPE7ONALA6MdQKhY2RcMq743ogHwYvkYIKBWAGOU9SXIHcArWWXuLMy0RiykGcHRUFFd6wPn5HDq3yrGi4BhKGdSzD0OtPMd/fyG6A8sdMzJPOupIRqe362hbJC/uYWzzH/cME1nM/bUve0/ovxG7fnGX/9/AZ5iZYVJLlkGjm1RXP2ZG9Yop+wGKeQ7mpN2/jhPdFFG3RPg2IF07+yXZiXClexlG4MelnWsxQC5t6RYQw4OTMhi6teqg8eqV4aaPOSjHTj6gcc40FvHaz1ldMgkMHFRG0xJVZSg3c3dIychzRcZPNdc3GiQGUi2TPIM61Eq2TIDOie5sZuMUx/CUquBBrB6aGOQVYGX/FDDdU281oXX84n5eiEepOy+P05VYi7M64U1Fx7nN/QxcD2ZhI/jBNzRw4AX+1gdPD2h7P48DkSQ3udr4XntCqdeCs+e6zkR1vBQ5aOfJ3WyAkqsUZos1g89Z05NcFXgmhx1ugVqebFK4DFZsaU5qAXdlTqxRyIDg2sHTmg41NNt2ZKpE0gAzavaySRQ1bNQIGQCnswIygAU6osM1hlktWPgaDup87h2RRemgIdnoastJ7Uq8ud3VHp9/r2dhNPc9HEKwjdglYL0YvApmGutsxffgev5GwDH8fao1+wq0hIdlobsdV2w1vF2HFpLOTczBq9hJXre81mEI2ndNIByeqnzEtlqw956dEdDFJCYQYX7JHDhjj46NRkyEJI2ua9dzcv0Za2L2hHnid46aelignU5eibcBFup2UDg6XXlc8iWXmnxBNlyc04B8K3ADLI3IK0GbKf9o03VvibIpOQkOH2O950BHIrVWFoyCm4TAtBGgB4+96hKzmtlgqi9KEChtabK0sD1vJh0WO4x0Zd1jsYQWxC6vrBKyhP4Lmq0uRIktep6YAr8iuT5gkmpab0r+FKCE2JVMUuCWgV261ImBwlwIBL0zWhx2wLdRv2d0Yzk5t1nDXVDYlQk+GH1mXcbs9tBUf6lCViyHmLlkTFmZhjnrtBGgD5BdHH6qA383jp+YIGvwHTqOCkpLRsRt9cUqZ7BQkvdltZls1s9h6RI8ShxQlVvhn7c2Gm5kIqyI1A7b3tB/v6eNJil/UQlCfXiBCF2Zo0E8TKocVWQE8QoEAI7KQWA3saX6XlVqf/dc7J6P3D/7rR56WerTLWvpyLbLEY5zC64P1kNn6pyH0PXFywwZaIZKFHxhhNACnPmd+j+minAa2o91JGG2iWqRURJVjNQ+Q/yTQJdVKzJ51IdaLpHxnEJZij6rsecbVdOG2BDtmnhmmQ5n8eoMw5ArCkBm03AvU8WG5DPTc8uUoxZhTzZ3HweHqEJm3mvXvuv9pzuxXOf1FfwRQmQ5/RSz6q89l8ABbZ1E7O4wBoByciCzS2qjtx/SpYdmBeZFedxMBlo2/YkUJsT96Tko9W4A6yZOAmcNOMkpAL3EmTWfUcyeDuKtYFcYu3hvF9shlzaXAC3FjfaCYiVsOMovjf3XbauZnxmp1IIfVAY6rWp67PP9X0Jf8+K1AfBjOzhjK+vufC6XpjzurGcEmjaZ9aEoBp2QeHCutlx7ZNm6Ja+11COLSda22b9liaY8WwvMOFDgMwoxQQ+L0706iokg/HBvj5I6gEVv0H2IBQTEwuTPpKKa22YWoo4idkMVaA36xrZ7hVz5Xnuil3D6Ytb6xKJzgnUqNa+ZGx6BFZzxi1dPqGJ/Tb4YAk88Vcr/5HQeRZQuu4zd+E9go2v9vkGtmR8sO287kUM3MhH1EAm2OLz6b0Xcwy1t/N5Ox5vJ8waY1doCqIYaHUgyq/qbHkWWLCvL8H3mZIverYCgMPJRmnWqgVpZY4UButD0/ROjONgq3WIpyT7nkDblA1PW/N6vfD5+YGf//F3/PwzgafWO47zBIJatE2FWrb03z5TIDnZboCDHS0Z65rx2pq6RxhHxc1vb3vbGskFC47n6xP9MPQBPN7+hOMYmFNaah3g5NUJtAP9GMz/2m75hSa9tvOB6E/mfaOjgwVpg2FdEkwQsMrcm0AMcQetNQicIgAs4FqG1wRWN3YsgWvQjzccx4n395+o0zs5ibBFAJM5XY+OEUM6mBIEbw1Ar3NCcL3JtwDZIjqvWwdCgYkdMMdz5nvVVdM72uBEyFBOMsXoSsJaNGohW2xbly237FboaOOBfrxjPH4C+sAyw1ycRP851fEl0ImTpXeeoB1cZyWn60KxWxaJsV+JLHhFA5p5dQgp2MIf+fnDwNNhHMveQG2j1DFi0M9D6MGHbyPH6jZYDD5YBV5dCT/HbSuwCiGHMuSXEq9A48NNPXYT28eN4IUHxjD5DQaX3z8+cB4d7+8HYA5ru9/1aIcSEB2wS0mFdVzrhWmGV2e/rOd0ttJT0OYKq4Au23Joi4PibB6Y5pjZ8hBcL8gopG6Am3FjQ04YAHpHqMKWdLgK1mQQkp3TQxsaJ7g9HO/vfwaJH6TXjjHQu+G6PrErTA4mhmLJQBWoSVrq6/MD1+sD6/rA6/NnPMeF1hu6Af66EKDY7jCDDY5P3eO7VRmAoQ0Ge5/PF3oYBjosRtE+eT8SP13bOeUeN69zq4PBtaBjmgJEHHtq4A48ON58ITARFhgIOv0UI7emUcuc4lDBHxtHBfalP2IivCLwCiAnMGYQMS8y6o5GEK03OoCOBlsQAq6WiS6j03+oBGWyVT882HT0VG4N9dBnsgaT0ctkQekMRe5o1MKAttTO6KmjQzApnFX31gztPJCGJYot1AR8qNoReb75yumzfLYj2SU0ZEvObS7S8JvAUgvgtMbJjs/Aei0FCWL2GFsyMxHKcerJwlmqKj4eZwXM2c++4kKY6/kpODTxA9tmCABiLzWxArrx6+dmJlA7heDRMejgruuDzisdKhzjcaA/hoRWIQMvJ60VnWvCfFVLR+9Rkb6Bji5FHBPAdZA11Ev1LW5J/06bg0cdmRgjNQyaWrRm9vlrmygxCdcziuS6sAVjRWBIkDdHiCuSRIThusRwFCOm2a5SxlxkBiloIRtVgWJkYs2VGYMDCFYmiwIBITo1AO6FFuiD90LtGiuWhaXdVOBt1pgJhIoMQAUnOXGttWQ84kuCS4ee32vqiL0xoUQ7DgnJ9jEY9M4tp3h0Jpyp73EcHb37TYQ84JJNXlFRhfZKVof1ewPa0JNXSW35nQ3jsuOt4pucMpIJDaTTsKc+KshYAhxatrIx+eI5A4sFj65Xz8IxkzGQgBYZgTuBTPZYATv68+8RV32nWjLyHO/kt1XsYpb+d7Nn8nsYAI9KDj1iU16xNWx6rgkScE8GYrIPeS9f2E5IFt6+5myTAlq1pZhNWEycR8MYBzCylfWq97UmX6Bl6dB58MGbx6BkQUCJyG6Na2KeNOw9G0vix5mIaVKsi+low8pUsH2e553r3GhXs33WqTsJazDPwJL7xgHk0Bdlu0gdl94pAv84CGYutaAmyBYGLGlahjVpq2zgAwBttIDOlQBtuwGT2O2NnvZB7/sCtgJIXUBfLhYwA2x+745TRxab+KbyXWnDDCYWNrR/lURWW2Hc/vfecsTBGmTMR9kwviZblMioSvzM5SNp/qJemz93TaSIZPne2E/y+D1Z4Ql35BEl0qGkOVmeqXezfZArDiTD6attbNnnC+ltkZAmMFTi2DP1czRwx7D3jEQsdwxtyOnTvWWlDEqAtBZiwMxLCWwmwpZ6O5stRukBFEAAKA4PJVkIzpkwiEVCR1h+9ktFH8DynVTJt8y1MNfigBcDUtS/j8HhLq0jYhUAxS/T9ZVR27a89S6QaA8H8Agcg7vqdS226d00DKeAyePY6Zr7ZKtdoz7tkP9wtZWZiphxLXQblIlQDJYJZzjBIweZX9Z8DwWGfNZkGxhpZoA17kXqtvb9DBBo7RSLuosZKU0uWD1qFq2oGQwjmz01O9eEWFcHtgi7Cly+4FMMaOxiFfc1BcrzrBCY20WTORfMpD9n8uUOxAq0wZjdtSal8+VbjJ5tfhoaBKAhGSH34obOrZ575AntjEVNjPbf1hMBslSidfrn637+Nh95yQb13vH3v/0d//av/4ZhHT+d7zjb9n1KDymD4VlkAp9lso/B4ujQOc6pwKZ9udYLmS8P3z7QklEUqH3VrAMLWM+Jb3954M9vf8KIBluBw3i95+MNQ+yux3niPE/G8Q5YRfRWMftxDrz/9A45QpjIJsejK35le/q8OLDMYJj+yWl+lvbPdZ1MIPsAmcDWMC8y5jmoqd3AE8VHHqWj9f3zO75/fsfr9aSPPQ9cc+J6PdFl54dA7zS1oxuWLyxNpDdrWAK0pzncG87+hrUc15rqfpm4Up7HM67KFutAmnZ3V5qnnZF4ggOtH+j2QMRgG2owb/HlxbyCg0MQ0DCsiRScE/8MLUHWSflysjObGNY/+KYg1mCynysWMF/YtOkf471//+cPA09NwXyLDI8zwdpflGEx2w2YULHtosPMBSY0JnY0G7WJMnGFSbCQjxx51GFZEU5nvJ2WIm94sCeaAFEyPLYegBXyGUV9TvS++tHN4UZYqVgCFQsZDW/ITcqITfWVz6TUm5W4mS2UQTElXzAaAYAPN1kzkVUjBW/FBMMmgqYQYyWRpglQxmka52Dlek6XXhJw+ar7BEiLMyOjKunPGQ2FT7ZFxoTPJ+YFPNqbAjDeTO8El3rr1TYXeny1T5pED9di2+IS660JLcZm7RBAUsUTKCbF192VSY7vXzDtA9VVUrQ+c3Tq28HaFpJsvQEm2uz9c3cYiJyB2GtXp/YRWTrWWvXh+xeGkto3jckGJu99XXMnjRlQ6KPTACP3f32SnnqEgLSd4PWe96x9YLlLNEGkZeAHoekyJgpWUzekNVXVVbFeBXRaJeAZ4HeJ1DbvSGYXr19Vzrxqg1rGUIyWnq1GCtbDOIQyIoCRa6GAzbJCA2TbU64VAYZAHzdQAPns0ukUP1rvJjiXI4zLPmV1pF6XFVids+Beb80Ad/iaSI0lJrahCSo3A+0osHm39WQgI726CnZVXa2s8us+58W1/Iu629wdP9Tgv9ioCvSbifCWDA2uc356Vdrzs2+OI/9cAT2gisna7UJ9X18B2xnMVKLZVNW1Ehrt1jHGgbioSxE/HvjcvpZMLVWz8j4sI3kGTZFRrScfStlGNJh0n3RVX5hPQIIZXvuGiWkr0OPHig/kE3zpRGuhUqPOxRpLYGfnobQqDg6oSEBQYfT2qzq32QrjaqVIcJ9MGO5pBgj74Zc9ECiRz9tgyBb9jJTuXhxgYBcKMFrvQCxkmxAsbbXYW7lN7olxMRwECt62ZWtfwaR7y5veIoAr6j257pWw2j5TWWRIAKnO2E2bJupzb6dGIEC2p35hYOXa1+/b/s580LGvhcwG+smuFgO01GbbwAOLEckIQj3j9FtQ66evBCFSLkBPKNJuK1wvsFUJhRwm94cJ/MlE13ZwDKAP2iZiTNyYdwYYhWh55Q2MYaoNyZSU+SowMBlmqbVFYDi052VPB2O33faK23nfiTf11jbYQvZrEzgQugaBBrfzWz44H1HahHxekA3JX+kE9Ib7MzbDbjePzXnbP1orobHZhpetTmYNSxXvSAYLboyO0BlRcpQ22NPvqOX43naT15b+dsc4wfjabmcg9718R9nQZoWFZXdCPffyiVGgxO/PQl5P3lPaAiA1n7Jt2ANi47T6fFh83We2z1heLWO5rUd3nzoX2Gc30rIlyzbkx8zq+WfsEdj7l21xN4eGupzydTnEwwSIJuPSPRB9+9tqDbtdP5DtpGKdyC7zuVq1To3e0NrQpONGxnRQK9TVyp/C1MUGkw3rPYFOlz9mey+Z/fSzvkIAZ9Sv1tlmlxIZ9YxzK6M2igxy7ic9ZyEPxsfMNYGjxZZr4P5g/N/bYB7hGWtpLbAx2T2xdAi4S1F2cG2aodnY9s4JHG0/knZAsWu1vG+fnA+bbPrb876121cbmqVUxp1lyb1M1u2s85RMvoxvTQhB+SfsbVZnp0mza03mmG3HLXbrgqkjo5tJAPrjt+/47dffYMGJnuPsmNfE63pWzJVM/tLKtARTclBW2kEyPDNGoM4TwTmDKxaxmpo9ZZvZyWEqnPArjnbgMci6wgL6IChz9FFtbaNzv++itnxKxS20Zed5wC92vQToEw4xtGnjF5ZfyjEl5o+lvAGKe/RcGmVmko7jk760ZVEWeT7575FuwQLXunCtF9aasmUH9+i6CBpDhBsD3GlnR2ro5vlqhpDcwmy0PU0AZ2qkphZdPuemA2bp5yr/y9hPnx2tInpDBycoN7Aur/ObPjBfF5okaTv+t/o3xULla4UP3Cxw+yGGSWCUreqT112Fiv/45w8DT2uRAeQheqjvIMxFW+2q/EfbzAgq4wPN6XjXNQlWrMkb7DwMkUgcwN97ppw0ZCa6dxqxZmkYVwV6Zg1/+uknJioOihEu0VNhQLDFaYjlcGqyVpe2EWD4wFNCWqFqXa69AjGrGJRJPXZcigZRV0PK8OkcuYkqWbcmyig36OU0bs910aHERSfsbKkxy+l9hhyVCyfgsxZwjoFxDMS88Lom/vqvv+D5/sT/8//+f+OoSTjWfOL1euLxeODxOClo+3yiwzCa4fEgA2FYw/s48afHT0SM14U+B1FuN7ULXDAJpw1VaSFqfQ9RZlVHszYwxonjfCjyVRAAAK4mQnf1pW82g7IoUXKjWp9gakHCzUmmw8mgTkyZonInjResfkTQgBGAOqtN0nQv8+LY3/PtDQCT3i6hu2QpNvBzH+OBgGHEQAn3LopfH2od64NB1TNeDBqWAqkKojNYlk5ILYAcoJKKdEi9cQ9UO1IEfBkm1BKlgP1LFT+NiuivFIAegHX0IL1iXpNtWJ1tK8cYHKuptssIVnZD552i2dm+BdFRd+tjzFU07waC1hSMNVwS4M142nNPS2ixiT2WSVeAvEdfgWstsgIaA4feCMgurAJ2ej8AncUEkBcSCFD42hsrHgZV6vJ5BNZ8IcBAEAYcJ7+vN+A1X7jmhWNIePJaFag2mCj3mqan50NHb2xpFdiVEz3ye7KRzFUp/rielXgDYD9/p4FfKcBZU/W0N4yJda43ZDt4YrZgc9ojD2rE8UwZWQcRFXwnHd8imQZZMZJN8pzKKVZR/yFYFn2XnU6yWTYBNzxfLwbP6ufv2Zpx2/8rJwWpUp/CivdW0wQZikE8kmlDOjQkNp4tsDxwur8CW/E7n1n3oSQqE26WErmWxxhIAVp3TmUBDNeUWLYCzuWOy3m+UtWWNoBx03RqAyQ7wkayo1DJtLWdKCLEYoSBelCWrrGSvQxcmGAnKCfgKsrEVuaVawQBW9m+Cotq3bL6lLyGu3aSmEFKuOoZ3duDfCc2mTx8bbvJcDiNyLbnCRjlut5/PBKU0+3/8O/1cbdrzva7+7/ld+/kWCDv2raUeiod1yKr046hWKBlyr8TGzM0VacDqQnBIE87vNplKFjdcfQuwJsgBhNMQxPLwkZH6pukyH6HyQ+qJTh9S4IqzuHW3H5iVEaghSVRsvaL4l/ABFpEMhUciIWGXoBPhOP1uhRXDVijfuC81m1CXLZtsKKc4FGeOyaZNz0bAOES2dVPS4C+nhXfn3uh944u0d4pWzzEeIq537qmhh8InO8ZzHtAdMpiYs1wWLYoaGuYNofMC1L3r58H2aKLDNwdqCsJaJu1k4W6bNnIGLiAlcg4aIOtdRjgdV4irBJqsohMyXR61Ilm9L31P973eqJKgHx9U+eC7zZnM8Y9piLLnEzIyHpSccyEmdUTRZ2xYrSBxZvemGDm32cOQYCucSAHAsftrnN/UzSUMZpHTnSjD2ue8YjOXJdml1pXEgBpOa5cwG+lVgk2MUAHjKDuoTH0oT1pKliudeFagd+elxgQYmJJ5gOxGUpT63ldFyBANTRM5vUSK1w+5HGILaSJdi1ZdAB87r3QYDjGWW3moenY2lHIyZXn442xuw3kkJXUkIycqFcgo3QUg2PrO0y6UIY2d8snaW8ctmPRC6xZaoM0sZimpwRES8WM8mcGthsNsD2RiXXT2WKh4vl67WQLhuN4wDDVds/n3Y9zHw0F09MD63VJXzg7Yu4/jAdttGL11AkTiF0akooH0xZaAgQIFp+1i9YkI2vB4W0i29anYvd2dIRYOO0I2BlYzxe1K8XIX+uquGT0juOtk6FyLfz9b3/HX//13/D52yfmi7PZ3L06QxjSsWPD0wdnDqQNHk5NqRaOowHJ+WQBy+GQTp2AlUOdRp5aWO2AX47nxxN/+fOf8Z/+/Bd0HFgvYBpBmv/09o2Mdht4jAe+ffsJY5zo7SjGPJmsjtdrYq4XnnORhVuJNIc8AcDyJ8+qiiLjcWBNMotCLL/Q86icRz5qNOb5KeJkBrwNYHQ6BU5oZxeQGRAD3D9tYbaJOLjPJj4R7QXrC605enPkMCjIls852QFlxABiMW90AB8S3a+YE7vxnMCncUCRQDELB2oKpRxfACyosuOLBIMDvR0oTUQGSYAF89twHEevyYQNQV0xcD1WFjV80d41gV62BBgexXTPycBfwFZseYhA0B6ULfkf//xxjad0KRnLQoFaMI5mjpNVOrmk7AhQwG/pDyOQImb3KssODzIbzz8z2C+EVAGdwUoQmN/elRTxi3P8a6vkLQ23gtwOmDmi6TPMyPoRnOt26xsNrcB9YW3fKxTu5Uuqw8Hx/6Psb5ckOZIkQZBFVM08EkDVdO8e0b3/e93REe3eLc1nd3UByAw3UxW5H8yiaoHq2cZEd1YiIzzczdRU5YOFhUWASGJZXxQIFVq8kEOg45+pwwCNs7a1UDvgUoBCMMoWddQiMTwxuvpEs9yrghIZUOpnVbDvcGOLWW+GDAM6x5zHHbD2IQDOGagU0lmNqDogxiyCtz1jUQ7NdiJSTpTrtFF45SB43Kq+Yr++9mElBfrOl0f72LGQG2byo8ex1roS6UW2rzBKwXcFZPy3K7qq/tt912p3WUVuPgOrAN52xb/YZfUZWa9H7jOl5/qIy7+u1wrSnhVB23csI738NU3zl3Uh42miRSlY+KqOP5evEt4KaJZvXwdXO3kdW/Vjgwj7oq6hgtiNpFeRokywPe7jsUpa/ie/x1AVKyhYNVSguz6KbJWoqop0R7QSU/fpj39XK+c+3cWEnKqeHItdQBq62vrWnmKCsaMcJRKPZNmAXSmBkkLs6uIKf8rpCkRbExKBlRyxEFnrIsubteP33wScHq2d2Puv7PBcDFOtaz27leAEMqt9javIeHefj/psPD5nJe/Yu9D2R2OLReuzF1vtuQmfd8k3rZNZf9bhRq4PXcHY2oNrcVFO+ktOt3zE/qo9tp6f9v4CsWCo1t3tE3kdEVPnfmdkTJLIMlxnXAHRAsHM4BmIbLAqrix/se8gc1fo42kB1ppvh1snlUFzGaGHXbVVX0OBerXWeH4+ys/jC+i31ikhNg3fcwPftbfqSvjeZnuP7GQaX8DWNb1s+bH9s3x8Vr3H8+F/cdW2Gbb7+ebX33s+9/9J/PQPe+SxCKXPt5gQjzeqvbq60iE7AtvG3rDWpIoPud57vUR2iICQP/fnuiaej6Y3Wiw6vWI3dWLt6cdpxvP2K4wBKs6p+93FnS8AMNab6r0EcmauvZXI3cr69YZXTJWP57LYTbWOddbXWdxv9fQbpv953k9NPi5h9dqH+/r2GVhnVvvf0li5/sPz3zbscf/r83jmV9Cwruzh0R73X206X78W/+/r52jPLXbpWvqyCLqH3M/DHu9hf/j3l0/M55rpN8tOrOdSl/14dn+wrc/oY++Vf8e/78td++WPNrn2wZf3kH9i4Urfs9wMhscaPiyI/Ni+dsOjU3d99xFj1Q1lMTv5uWMOtTb5Wobnvk08YwpsW1HA8+P8FPiIDIHRucH2x5rV3bcvnxmPHbVtmBn3bAJaE06sW2tuECC1fb8h1/lYz5fGRnncbpZ6xnhZjZuPa/mj79h24eFvUCbb5N95HRGlIUubar5bK1Ovd/neijwpC1AyJfz32qhPw272jwyN59l/frPOS7Fgsd4CymCw/az2admPp48RC4c/nsgkiLaL7XWNfO9V2MvE+8cnPn98chDQDNTgJWqP0jmk0x5Ux0HVnr7sS9HGVk6ZAIEePeesELPsHIskFfclkyc0TYYzOGImIPYlC/kdZh1uB5qfaHbArcMhdijYdpgzETMRIzZOAANy54PF3kYq9rAH+/aLd0pURM8ISxG/7t2tsgDu78V0T2nAAUijjRZ8CLgmv63CUG5soc5QfXT5CV1bIBa7fDM5yy4u44jVjbBMdK5cwp2SPI6FrAArj7EVk1bc8ARZZgzmF93W5wDqaKocRPujdrT9EaClsecWyr3O/Ox8fJ7wgGr5+BNffxp4gqim5uDmntWbX0JmBrNTN5UrOBHkqPYjGcBF9173IoNS9yvtgHqb1cM/ZIwTx3GKekr2R1V7UnQzs2JnTBy9WKRkElUfpJthKpEP9WQZAi2FzFvi1qaZmVid1MZPbaVpMgKYA+/xRjsOHMeBaQ2RtkYYr6AyZRjHvaKoWRPvRjnNyQTdhHy3ch62NEMaHJzI9cK8bvz+/Tu6sYrw159+wXm+8Pe/f+J6N7wOIOHox4EEcI0bcyY1S5oBMfDj+ycA6uE4iLh+/+13XO83Pv6f33C2E0c79ECGDp1G5srGJxz3eyAi8fn7J/p54i//9BOQiXHfOtiGkDPo5werReUctBlWVcFMYpJQEhYy2OVU+Kd5JXILOmIV1Tkyl2QLOvD5aMUyBBwTNhkYtlpz6zocZI/kPdA6e5VHhKpyBhHjdH8XSsPmaB1Ho0KPZ6Ifzj7j6JiIxfbJTNgsNgIZVzFLSJ/rUfTqTFJoGZiwDeZJheS5wcPAcb0qRDBj9W/OlOgxwdbpwUmV8Mf0OCL47/d79bw3sQRjFtfSkDYwMTYwpfPL0de8dvmpZQNWGCWU3paAYsryUdMtQeHMSAiIxVoXV/sKaa/83R+f3zlZKtkC4schhqI05cyWg/+8fyCSZwVhEp1k62l3CnM2A0o8ntVFkx24uW9USVntKHULO67Ro/kaQMa8wUlmNeZ1Py80VRVVlK1zgkb7sG1kiCllFAw1MslKfJ86V1C9yjjWtfaGIrlyhu/rB8MWOSPzjgK7a6S0qerSrZgYU7pwoQCnopuo6GAxqPhPMvHSDPCmAJL2yCPEUOKvm66v/GgtrHfX2ohhF0CgWLJ8Tfhm6qy2TWOFr9qsazR4RAm/FntruX0mc5ar/bpJaLX28xixmD1fzlvmOq/l0A1BtmRrGJOfWW3WTAPaakWXpULCl8D8GGS9+HLyj6Si2mcggBKV5ilahyFwA0hqUFWbu1rDK+HtnW3DZduKQdzRd1hX+9kYYt2T01Br3Lu59LTGrdYz2/pZ5f9K0BiQrpmvZ3xLF2mFWQVc7bifk4Cg4DM1pt0N53liDNm2h9jnWqvH11O749CAhEoZNogD+ZzHLz6AHSAxxJg9jm+4Jz8bzspgf1Ho9r6oczQTX5hr/KxbyY+SBDO4sd2BFVoy9WDbwdZzW0MGMoGkVlTlUCZ2Qe2uFCubZ6bYTNTNaF5FgsezqlRRhRkOiYC0ozoAsvrmmNLGwgYEoDYcsYAi52JprOm8KDbBDpzJmgwMDF0P1vv+cQpirf991wCGtuxrsUQKNQn5pKm2fE8OthhzoBtblELMBo5KD8y5z3TxCDdgpg3lTr/lkzGNa1KqUhbGn329T8yBMSG2qlcBv44o1lRASD1UMa927HoOD2yO9yVdTplTHK3a7gZKimJMxsiliVPZxZ5QV/sIK4koopqsDUz7skSb2XLel77RAlrAfTeCTPXjfLGlekld8HX3ZLJ9HAeGJs5OgRXVZjpSftf7EvhurW/7qkQvEDyL0HExXXMp3n4NkSqbBbD31pLtkLtlOy7XNmKuggB0DgyGfjg8E7M9GTW5z3hKaNgUu3nDt2/flh2p9tRqi6ppi0frTDbN1uQxs8dm0QktMX41F2GYYGydafKnjaxnPdAm2ZBL+qgVEx2N4MHk1CBYhnQYyZIO2TIzB9paPT57DOWa3OcqqyA94EetyUQJDNixyQmwxB23dLmC08+sLXZ95KCN8AYxFnTCBC2sdmvpf2In6GRDvdDNUMoMI8Z2J4lt92Yim+zXrBZN7SPsmLo72d63GO4uH9GcHTuApqYdh3R9Yj3nnBO9NXx8ewFz4v71dyAmHImzn6sISmCweC6J77//hs/PN/7lX/4F//ov/4rPzx9AAq9v32g7jAOxrjmQpwFoGG+CKaXhenjjntT1zJhwaXZN7S9OlyZrt4TqYxL8M8XfPrn/jub46eMD//TXv+K+B97vgV/++f+B8/WB8/hZ8X+D4QXMn8nMQQdsIluiiwH8OZhbXT8oE9PbISzBcbgBIMaQkzkTzYhhAPQUyRYz2vtEqxgqb7H2Ez7ZIXA6tW9zimE8VE7IufLIkYzPrnHhnhfCOMF1vMnm8sOQmBiZGMG8Z+b2azQejDEiAwcOOByvoHrwhZB+W1skhJg05hniXt1i+Aft3XE4jkZh+LRq75XftFB8MGGN5436qoHPz9/47H7+Bo9EixvX/QM/Pn+Hv054P3CX5EqS3dndEcZrHeMCdC2JlFxK+QMySmdMzBzqTkt4jD8ETf/zrz8NPI2sEZICBZwBQh0YlMEBHkERk7v1Z5mPXJX/JbooZI9oWmGtfJsQTW1/2QrCsR687d8JaZGAgRin1BXl0FYQERA9zE0aIrHfX3+rMQGAIf4A2Rd4QLG9qMtRQslpYFNMjNI8srrmRyWXwUWt4wZeClZba1wVcDMYpsDNsRLh0jGoyVv3PdG74XXud+Ka5jokO6iK+hYD1mS1nnokFCasIP4LaCgEPxBK2JgUtN7h5rivm2mWG7y7KMW2g2WljdpSe30qusKyC3sLPLYDn4iSTF090enna3NvGwXJ7nsKCKdSaPStgcyx0jyQMxNfRXtqcwz2TmHA5Lqvta6M9OtCuZ8hth+qimjYL9g3aXqez8CON8Q/tu4JCr6HGFm76sSjpEhXzEFWI1zJOAHM5cQrYA/qnNHx0+Xz/0k3P1pnO4cCSiZFui71ga9JJVqHSr420VS003Wsqv5Vp1PPLvcz4zI/ztF6QgShmje1ljmeml/Ior4Wy89WdprJ1rTNGsj6Jb6XKznSM4UAkDo39XxK66WE+L4+t3rbbbew8YHH/sSyBbP242O31TUs07ESOCZIob3/2FE71s59juq5btCvTmFU9I2iWRCkeq5XrQ8WgJ+Pe2OgxvJoRDGUpHm0T4uCZE0BSjnNde35WDj8g09Y/20FNuduhV5svPrdvQDUOJGtWhEoX/Rc0+cbLPAi99WvCn0WEF2vL1uT8l1AVUpLfNhU2azJjki2OCxG4MMXVWUp8QfGRK7N8rjTsnR6lrbXkLXoeLyqgAaTvkMKLMBaj8j88plpex8+WR4FEMSD1bGDsbWo+Are2OPn9Uu5zwew6OnrNx6JJFs7GKIvEfMnu+15prCBrK8smn/n5Y8D+SXk2Ku6790NFHDmyYSeMxnIuYdBaNRwPm91nenqlah9Kz0eAU72ZX9qT7itaVj7cPOvtPjqKNdf9cwhBmTZKP5PTdt5Pr+9bkAxNPa+4TptPaptO1f7qm0wD1Zb4fkM+INiPjr8D8+tnskDhLR93dz+ZBsUy2DFVY/nZ2qRSQUZ1rxK4I/nwRMXC/BRnCWTiGUrZW+eflnPp85i1vskP/u5kTa7ZxvpL4CfbHGxDg217+3re5QfcrWc13rVchuw6vuy13X1ZdNrnbddq98tgPhrfyN9MRer2qtz2T7tmNIXtMeOiP0Z/DfZ8AvMex7Fygt0z39knywBb/2eAbutsS7uaW+eYD3wKJJoje3r86mHsoFRtZ8UAJpMVlOgUPO6y8CXsfO8WpSjePpoZLGminWjZxrSl9V1uZjNz2f6dDFfWIT25cErftBa636L/705xFj/y6PBAsJmnohZonZRWCKFthg4JTJRBdB8vFusz8OXn9Rn2dJYVQT1+L/4h33xR1209U51fbnPlaP+vVvjqhWLZ01gi7pwcm0OycSs87jPXsr/Rob0mPhGc5ZGnorjAsHiWWh5TO9r0j4KAZqlh2szwYFGmwltKmJf140fP35wUvm4cXRNzTVqN805MTBXbFtgLLdBrv3wh939sCm5WqZhQDrByqWHZiIn6DObN5zniZ9eJz5eh/TjEh+vA8fZlxxFa66zUYNoQuvI/wYm3KYAj2MzrqC4U5t9KreuAQy1l5jbVHFzNS/vP1n5m86Z4oCafJz1vfLZRrAsk8M7hlqy13NFxWuhz7R1qSsy2PXERwTBtkHac+399RywYha3ZNxg5TMccOrmpdkCowGsNvjERCQwpuGeBp/gvaVaEWNS0igS0FT3de4NfG9PVNMY/d+DOPo4bwGuZ9XCVwypmzXFh/8YNf37X38aePoxvrMCYQ2nE9X11oCpzSIULBPASNHNgKNxMpTroE/wxqw1tqP1SnaB0gUq/YwSsiMqWYE5p21x4lYgNNo8bE/puceN9/sTr48Dx9FxD1azjr5PYIiS+Ood7Tw0fSyRUXoohoQjsq3oJOArUENw+l5EYLwvCokfHRMc9fkeQwkJK/xn53hYRAVfVXkFLDWJQqOVmxgjHUA3TcVbiVHsACIMMS/SHl8dNWXq8/ONOW5c7xvn0eDtA2RLUbuI7IoGa445rx2EIMX2aggcSPuAeUPghZGH2BSJaawGNiXg5obr5thkBydo/OWXv2KMgV///nec3z7wym/46XjhPI9V+R5IaWIxEGntQAlhL4F5HURrNIhRrWSx41BvFHwjm4FG7RlsAVjOsoLQbh0LrhgTMTT2OfnZZobX65vAjE59sQeNsBKXShi9N411PTDHoF6SfqNZU1WUjKuRE82bmAYKmoJRsD3yS+peuaYHEBzj2d6OnS33jjEHZtzIbPDH6M2GA/IofH+oP7jXhCfDebSVnEdO6hv5BDCpGeWO9yfXZ2Si946Pj28MboYcQwSrABmwSUPUswTSiKzHI4h0kLpaoLMtLTVWtRj4V2KEBYyVKGUmz36Ft807mndq7hj3Q31eofa3rq99fJAh5PyAGBPNDN0MCDkcJU/ncfB3b+qvwWnnmjve96UJU6wInN8+mNKRpoWpEcuuitNKuh6BDcl6dEmt7SpsgEEjk8K6z4ahJE2EG1bq5DgzAiOD98J6FxW44g+JhVNjDgZkTIyVVHIPEHdShTHoPCvvCzOkNCxctqq3xgBozHLzS99lTNBbuUPzl1HTNL01wBOf9xubYSB8y0o4WQmAAvQxixFQ96JwemWitCumvbRBKgWPmnBnyo3LDq+k8vF5K5xmjqX2OWrYQEnCEFNisRbqumwXJnqn9s1pHZu1WtVEbnBHordEa9IbECDbDyyQhXFUhfMSrVZy9SU9jAKcsdh4I2MFs/UOpUcYmkBGZrjjOF5IANec1D4rEdT1m9jJ0UOfhu4td2LsO/mEiVFZgNs+7vqe1lkj7wEs4GkxX/QZxYC4rotxSG8rQC6haTz3jtGfb3p9olgOu325vuzLX+vLK+mM9SPtYvpA5PJrc5I1dl03Wk9UE63V+6CSGyVJxop5gT9Tg3q6KRlUsjEQtD3twJNFybXSGY6dONVGrKIAg19Db5s9E9Jom2BiQP0mXm26Eq+YuO9rrRWSGlHdxcCVzkPpsFE/kfFBDbpYDMpRUx4BMub2eaAeka11/ApW6Ig316Gkneyl5WeaHFvgKWhnzAy9i8nrzjgifAEkpes7ZJ/FN15728xg6Wq3eO4tRWLaZ5yORbHoFEvGzXD2Pbk4ktVkmppcm2zrhTzyRGXFT8YXn28uf9vagdab6lq5EpzQ7/V+8NnOPca7Yr0Zt2xt21tdwMNmpLW1R+pJzEe3g9suuniyQMPfb+hdVfnQ9M/MdZ0mu5sCGq1JGDtpow3UwsICl1W41R5+Ts90N7xeZErM3LGIta8s+lxJ6LY5G1TdIHzZWMp2GMj2MhwHNZLe70/ECFxqd+olAhuh8NDWNMVKkYECdQxzEizw1mHNNQEu8fn5ph+P0hIEdU1b2f5cyXPlAkP3mpkc0uKPPEGA0Zhso2quc4sCsBMsaNBmOhKtNzQjMyQU11ETTaRV1fIqho68MWOgly6pZCuiBOf3kn9NRw3wTpsxg6BLyMl+aUnyfSZWnqAYqZ4bczuoCJpULtF7HMrud7GOTLZxk1nZamqekTEONROs/eGOdnRkXsAk+yWkHwQ43u+37Av9ZvODMf490MUoqmLM0U+cx4mP8yfc7zfmfDNWBfD+wanj7dBE6iQTGmj4/fff8T/+x//Ab7//iuv+xF/++hNb764L9/WJX3/8Bj8P2NHwGUOdOdxvvVVMksuutMp6jHq7QzHAdV88u70DB3V/6VOhCeBcw9er45/+6X/DP//zX/Gf/vKNenow/PyXE62TSe7e8PE60NqE2xvNg5/XuLjdHNMnjv4JmGHiF7ELb9RYxZCN+JQGGs877XaAtvQ4mP/cOQUG38QKMBhqkgBPO9dYDJ9BTVObQO8N/Tg4idwdr3Zg5sT9eeH6/sb9vpm7vz7wfn/ifb/Ru2KeJrxBzHRfGD2ZhhkE3ZCJ1mi32yDo5Y/ST4FjmhcFP6gjbB0wb0jndLw0K510HI3x4YyBcZOhOuyFO08VLRNjvoFMjMtgM4D3GzEu1soq9m+VS7NVeQQBrvKB1OetQJL7mOx/2VSBZiY/WSSbP/P15zWeLIUlTknQKdjSYhtsBbYtVekyigK6FtvMkE5H7sJz5nKWhaFVlc0pIQQGF7lAKAWPMVVM2I6JASTZPZF0yJlzI6P1sL0v3ae0hhGOSLKeTJRkdzE6zJFRY4lzs6+SCkxphjgawoBRE9sSaP0UW1OtA9WhBArbZW+rGjMlPiiNWAIClSREodMVgMv5ZoqPWZWFSk4dc5Au++PzQu+OGS9uFMj60L8hMzCwAxIGfR1oHBkOn6TdhaFpHKO8GBIUD+QUPL23O3oXACZA6OP1Qj9Ekc7QmGVdg4mBJRBwLtphfkFPMwxj3DKEvhKREv3kJI9clNpC880AU7VmiR6DQcGcYz1/ZIitpMRI7YzXRTFItxJ120loJXYFbZlXfs3DC1eCFAkfDmtYQBoUhHizBays95G3ba1ag7Rv8gFIqa+iAADeM7Xbua8ZHBY4ABg4cIxi5+6Nz1mfTdHLkI5XKMBQP7PWsp+OFs62vNbUbkTQZoFcwbauprN4qHWPARfHEtdXFcUXlidkY4W4VRFUErSSHu11AiQU7a7qaiYWIJBLq61qQAx8m0mMXEFBJYCRiRkL8lbQSsNsRpr6umRrK8DOBBP3pybSDIp9DiYfa/ob1pbee+HLDyqxZcDQQcp8DAoPuy3OJCqYHhIetmaYSExT87FV0m/IFU1BDKpApIleru8/Ae0k6yKqj7YSUXzVq/BW7rMqHxp1v4JfOvy0BmsdVfjOTAJYUdVdfF0LW6vBNUUyIMnSwdMv8PHoNbtKy3uulSoQKYVNqRVrJXOyJ9bWStQFVAK7qP/StEvfZ97Lqtf1P9qquTkI6XDABMHrag9lIUW8BFfBTNM4phi7rsRkljglNrCQy5zYWr+sb66LWJa/7mz5WLYr5NKCWPvFKikY0hEhoL8BjVyPoJ5TFMPyEfh3Bbcz9r7h+5a+yW5/rcSy/tZD2nYhYlf1dc913//IYipgaUUUgIuZVGuSj/8uUDhURHDn/rH9+euXokTjH7pea/GffxnbkZb4JvTMa69wv0Xt1/LNybOIhCbgFHaY9LNar6r0lx34wq6s633cax3IYlIsO+L1u+Vo9HeQ5cgWqC32mimGSdra87UHTWPUSzR6/az+4w9B6Z4SCpQg92Lexi5I6RghIxfDZAGK+rkj2NJdScqDZVzJ+Cp8mOz/WqxkS6LtNcN6Zvsm6p5cYMOG/SqGE9O6uc79to11LpvZmrQ0s2LfzSZz7H23EnCU9s/XGEInT+u7n/Vm4DYsbZICiNQuN6Xv2fzBtMf2GU+DnPX2ZgKq9iu/ivybEu2Hb5S95vPSmqjtcsSOzcu/fQVN67ZsvXeB/DDIfxiHhOQG5GYEXAWziq2XzfNGEHGKhVQ2Bg9WHYDSFFpMELo3AThN+QxjnaeQuj2X4/FVLaAFupdu4wbTbO2XqDZXtWbGGCv5NmNsHrKjwNNPblZE2fOa2LZVLrHacZizJUIj3Wkfd0EDJoDWIV9hi/lVMZEZ2G5tarKreDYIUlbe53rtvNlad2OsvRVZ2oe85m1uY+cq63sp9hXtVER5N9736rbROpKVMtc6AwTYHJw+vRk1AYQt1n9WF8oynptBtexA6yy+tb436xdbzBg4QebOGGxRnwkEJPhuhtZV6NRtdemTRiY+3298//4dY16YcWMMPrsYNxyJb68T4erKidS9imWeNdhlUsTdmmwcE9o0oFkHnKQMsscbgYzB+N8NOLvO3wic3fDLtxMfr46jCbwzx7fXAW+dhVgzWHKwUHdQIyoGi7pJH4Y5gXkjJztr1t5rznjRQ+SCYjOR2RpJplPrjvTQYLMBxqnKXXJbqAjJ+qhN7XDKCjTTWZG2bXoAHRyAZB3dO3o7xalp8NbR+gmoJRGSCTDZ5JjKwy1ll3a8VLGwaWqjZ03XMxRrdMvHtB1X6nOY8RQrmGxnGt9cLKuZA9dIFC7Ujqa4jnsi7hvIxNk5ZKm0RlP2dVtdxrNssS/xfbDtFdt/bO/IwQjLJv9J5Ol/QeOJbzoi0XIicmxDpkPmMjwNWEEBKxyxAkwraK83IZfq8S06XcFxIEvRrOHj44O3mIl7vKmOzxI0imbtjTS/wxu8JdAOsmZyiorsKykxjSC1xuaDa+r7MPU1O9BPOtwU6AQyJmqKFDeDMWDxg9o9hRW6o/vBQykjHFf11NNgt96ZDmfA1eM8nC9gCxSAKChpB0O1fEjVW50OOCYPp8HE3gJ++/0HvBn+ef60QK5KxGImRuYOfoIjXd0OWDO00wC/MTNwTYNNw6mqir1cm/nCdV+47wuv8wO9HzheL6ZWN+/z528/wQ5n1XZOjHhjEf7WpLoSBNzAxGMbIJNVhNY7zvNcr7lyLG0PQ6AdPJFW7Q8OZAxgcvpPTQCJDNz3vRxiM07oqI8c16Uq1I3WGs7zAwAR3TURLemQlz5Iw6a8i3h135NV4Eajk4eCOLf1J2cugLX2h2G3qVVwV4EPEmuqmFi8qIlXrbNF0+R8Of2ASTgTLYf7gdY4ZWJOtoRe9ycSA8cpYkqrtITAk7nh7Eya2+T73ddAqEebLZ7SAoHj8A53I9OjOfzo1BV7c/RrAojLsG0UE7qqyj7p76vS8SWp5D5pXpMQ1ZSSian++6kkgJRu/l9TIFeTaa5ZNGiClwgxKnXqdsZkS09qytCSNcQRsYGxnEeqfzwGn31vbQEVtZkrWX+k8V+MdgVcB4CRkDMP6pFoeiSTMeoqWFTQEAjfhF4KrxOgrIA3wNbg7LaA30pgUgl75WNZ6oMwAa072aWG2iMJBgOZqkjOyQTJ0Xg4egdUgQ1AlOBYydozUa3otUZ/Aztgr/ct9gs8SxoJVS3jr21AYzlL0ZwynuLGYuv6Ho2+1nYlfw/gqRnc5zrrPIs7qF2Lp31FsqpapNJhaHCtV+NhZbLiQhj0LKjNBPRO4GZGolxenZsneLJ3Es9L3VeuBJXhRUA2QoFyfTQp6JVhc8T1LOaUVSBrKBo71n4Q+y7HenqLXSOW0hCjY7E+Ygs8H13Bd42AXsek1t0I4maSPmc1fdLEaoB0m3yveeoM1RoJqP+yzx7rlnMsbaIShK+z8wRLMgOYc+2pfGw9AEtzi4m6c4KlPmvKvnE6arGEgJoqWc+iPjKRErPe6zwj0KYBLjvzSHjrq9jRuqK1BqslCmyXqK+ZgRDrEkq2zbCS/DEBgK38i93y0JpY9/44Q5XA29pnWpWqkOr6WmtkBuh517S8VSAKJaTJwJ4Ft7o9WyAVEmKMqSCh1nG0ai5SDFa+u0JBPM6sJpq61otpQCrpTSUgAruMkzVRhYtMDI1sp5/YcXG1DkUqvmoOP2TDx834az6TFJ1beknsUkPuo50VE5YNLXW3Z+LL4qn7EBDIG+tqmxlln9veIwt4fiTyaxstoE+TpXW+6vlN6Y4VWOitcbLhDF1HnbuUr9PPFOu42tSfAIEBBPFKFAu7UGFG4IrvuXW+irVe+/GOKopUzEVfgLJP9Wb4eo4KZJleBcdAxkOfxapATbsYAmjrWdTX9ukFPtY68s+tZ78BvPI1iS5WegFqBE06zt7XpNTaJcja6f74XwJt8jqb8RoBy2CBKpIj7A3S3RN7SPbAO9+twNb1bAzU0MVTZ1ExxsQqlvA+u0B4YLw1TSz2RMMQQLIiAKuYrTCk8mssVhFg4DkpQfgCUJ97h3p4YNuR9mtzx+s40Y1x//v9Zhw8E9aYs7Apnbak1t1VVGZ7nCMd1Kg0x9EOFs6rmrpTLZzHgRmBz/vG3QY+r0Ez6B3pB9Id/TRgToz7DQPQm+NOwxyBHz8+8etvv+G+L8x54wrpFE9q7P387QPvmHhPtn/GnLJd7B6KAPIK9PZC6wfXDIYxFYN0trm1RqBw5GYUewu1zR2MfWfg1R1//eUDP70OvJoDvcNaw88fL3hra0pjxkCD43AAyY6SAtcoZzKQ40JGR6xJm44SOI3YEcsu26iup6nRgLRyRZ9A07RWuFiqjjlV3GkN3hrO9g3dnFMzI1ZnTSBhnfvmsANne+E8Xvp0g7eD0yhTtrAKZKkzFFUMlw6jtMh2imOwPFCWmvJD3PFTvgRGRi7c1xR7ZrYBJLtGKFtbthFklTswMTDnTYKIGT5eH8RhPi9287wveCTOfuANxpTFSF/rq3tza5rUyXU2MxG7UjqnmvZd+agTDLe5467/6Ot/AXgyajo9A+WppAQVW9RYcY271NQsBuBc2FAlag5Su6dN8RGGHBdgRgRZtRIyMmAMjCPQqo/TqwoNJvhpmEayG9M2hvCOahspY3fQoQcp1nNWJdLEmXPM91haSbvVgyKLAQbXt643TLDjSlhN9/BAHafGuoIbx1sCc6qSy8rwUU8ybjicAphKIkyKc26lvTNYMewUFfZCltNwfpAGPOZ3XDcw4z+B2ukNd1D7qRpb3Lo2HnWc7tsUIHWgnUi/8Z7MK9r5QUdxByyJ2LfzBBrbkEYAPz4vNHO8WmcAFwG8DbgM/fWBdvRlVIql5s2XM4Kc2NFOeGuq9GvSX5KVkgquYpIZ52DVpSv5cAEtlRV4CzkMY5XTHEl0FOkNYwbueeNoXRXJLiDnAMxxyyjw9WUMVHlhqIorEo6JERedZqfxt0hcpnnOapMpWmJcN6vYAbiQ+DE1zrQojlUpy00xJ/jJFkD+LASODlB23st/YwVwFdDMquoH7vnGmJLqM1VyjS1zFSRRRHqiRrcf/RsBhLfEmXPKUbOtwNzwY3xyR00GlD0P3GPgfV8yZI7MCwxxhJQL/V+JGBTcGVlaFM2loeekMAF2SgiwWmJTyXzAnEFKZ1EGd1AUcL6Z1LeuUcHwFegU87IqlK3LVcieFpWbHo2gcVe7Qs65kkdTgtnkJJ+BMSBmXCXo+vQi80ytPSTeu0dzK3lREp0w3IPPrq9qck0PCbzFmmHz907Y4GQflSg8Ayu5yGdiXtpCatdYArfG9Rrz1v6S63JgQMmsvEIxDRdAHnPZ2krGTblAsdOsWgsrwcwCUmSmDJgWS5Mi1AZjaxqowu5I2bmO8pIWruvdDnK9frG1NtDEAgdgvluUIqf8VO7E95m01PPRY0zQB8T8BNLWZJs6n6nnlTOlDZPUUzL63GaO43CMEaipnLQ8tpgg3C6PZFGJeYBr7HqmJ3v3yFS0Cu5y3X8xdjNd02jU2gom36HWiLaAh82Oq0SiiYY+ZwBLB0N3arXO/O1bunQLEHImmVyauhYoni+9Eorcn+f5AJMKRDCZTT7fQ8xRshzIRLQugXtse1xtrpnc6737Yj8XhACwPVcp8Do7tU8L4J5ZLV7HStpzGmyxeuyBd/B+NzBkMJfouWmftAJXJoaR2SjFucWmjGKTlq1IJUtmrOq6AcEhBZdanyIYuM+Ixa6owuvSOiq/tVq19TzEhEwzFlp0+aUxR01PJYOxwfa2qPuFX4idGsnJSOWtjAF5FS45hTfgwdb+3un7Pr+zuNYa1zAmh4SYFxOc/jUjpWXmQPoCCurxlp7Oum8hVGmOxQkKHVqfO7ZBnX1qmUSw0n+2A5bgxCbZmIzExOQecoEVjzbIzFwsvwVYhFq6CsxQb2C1aLD4wALR0Sm2S2yl4b5DjA4smzFWe6Ytn6XDhqXOXZIGAgA1iJt+UH6vWD7Fbmtiypz90ICCCSQZE8c6b7SpQ5IP5dci1FIg8LVA5EgKXldhy4zM9aQxWKBX1DNQ/G4CuIuaXvZtlV6KCTIIfJ3Hi0ViCcsXiEYAVvvH9ucYtN+SzHkk7VZWnPrY4Vbrpme64gGDZmcpta38KrE0VqZ80DAWuI+D8eh7Dowx2B4lVlLtw4pBSOJXq339LJk3dR0+U0yHrlYqxRSRiXGzZbWpoN9bBwR4RExkDLHKbMWLXTmb+CcraUdSZiLcgf4CIjDnW21Qarw3IMIXyzj1MwPbkMuZZvlTZJkg/U8x67DiuGpjB7DAPrNiGlJiYGYi3ThcIKDWAlnyFY8GbIHeEl5OwDWIZT7OrwmcIgjJfCPc4Ae7fJpzSFbMwI2B6czz4IY7QabN+YHxfiPyB/7Lf/3/4f/9//l/4cf7AlwtDYpJMoF5DfnFwOH0+T2YA5nOVc7AyAFPMnkTZLJGAjlvnpnmYkdtto57R5rjMg7y8o+/IH/5BeP1M8bxgeHKo5MkDMAxKaSHdjRkO3CjSY7FV5fEOwITDT9a4MqJd3yCotuOeb0R84bllO2rZ7hBfjPGFJ/XD8ycOPrJ8xdAxMT7fuM8XjjOF3ISgGIxotH3E8BAjKF8i8W4Hxd1kL5/fuLzfSHTVm4IZ148JgG0FAusfJwpb2XRWNZS4GjppBnUQeNtt6VltT9ixegBklzKv1akYYrRS2+bhS4B9rciEvmsGRe9zgByGMYwjAHcgzBdwAhgGTCqeKIJ3tbZoRIg2aMIRACWbmV1/0Sk2ufxJab+j77+NPBkDTIUtIopNsRa5AQ4bQuLuaIjjwZOj0tGWkgHp8XJ0iYmYAqnkmg8Hod3xGR7XrIVir37jw0JU8AuQ5LKUEzVEiGGmQOAI5WIRBCdn1NsFeeDzDTc90DMiXHfaM3QD9FYnJsrkeAUSFd3haFBrUVwJsLwBTytPp3cOCYGA3P0A3BHDyGb40YzVrtXtlUx0kpaNPmuKlAeC8Q4nNo9M94Ys61qgluj6PncAfCuFLPSP6ahd0c7Dhm6jhEGi0QIHJnj3sF6O2DtxLwvxBy45kAzTsoA1J+u5MF6px6HkvsKvp0sytWuUYFgc6rsVw8qUDiMnl0CSCYxJaxu2osJIvjNGoomlrxRvpF3VPY3oeDbFPhVVat1BWsFZuzfX1OAFJxNJRxjxqpm2WGwcE6zYuawgI5I6cNMAGnoxnbUnEwI25Oanbz6StiGgKezcXJblDEAI6SlQmIbz7aHI/W1Pp8Y816odo3VHVOtP6q2QQBspuFoHwwkboIOzLsZYKQfQDNc75vrGQ4Px2GBMecCKkjXH8Ca3+Hah3WeBbSJxouicUJAQnYdaRpvEkd01pWEugcoNsUWwtYN98VA77rZm//Rv4lyy7RhqtKIqIo/FosBjzWNpB2oKuMaaxxMlWxVLhpKD8FFmQ2xrBraqq5XWlYtF3Reu/K/ngNobt1tV+Zlhn0EvDW0pgopUhXh3G2gMFS7QS72Hj970Xf1mfqLTIIHVT3LOyYTOSbeoXPjmMl9god+wk5sao+C+0wBTqupe0jZ6RoxLEDflnGWv2A7JbxBOAWTVCVrBYmk7K6X4HLudpLEWL6r9ltVuYFHIihmowFqjZWWjetZyIakDNqz7Y3LtJPuiAsIoMmOko2nxFMgwJp22XwJoMKg55qVFy6XYnL+S8ejno9tYKVe28C2AO4PjaouTKXshbHtPAG4WgHqPROgPc7cwJPA3gKeXC2o7k5dtMw1QadancqHAWDrdVKXbKVpRhUELMuli8zar7QXvbXNstAql02PmYuZgEz6rxnIOdUiisK3F+hV7dsRQ3mOGlRsn1GyaOssCHCQ7Yp8sL0KgFPc45nrPBS4Ysh1fSvhArgH3VfIQNuhxFDvP/X5XfZlBMFaZ18eihmySGzJFsqAqt259cmWjUCBHvtZ1WZOTQ8GXaF8qc591vGqxED+GJpMXD/DZnbUaxfw9ABu62sxKbJ8F//U5NKIwPW+0HtbulfrHK7d//isGkObAo9li2rPJLZuFpkYfK/iHqcQiKc2UNkKCRexgm4GO075kd3eyGIV/anp/bZ9eHi/LLBKwHLmZikurIy2A8AqRHUBd9VeP25puEWuNsKtgVbPQRmErW/peRXD0ZdPCFX3M+ae1iUwtWky19kOXDFwzVv7W5ooiw0njSP/ypBb7WWyOQbGd1MttiXhWqwogMATfeoaZ6cETraqCg/2tOf0jaHJwEjgPE8BWvSdc+hMhM5Bbvu+/K3x+U0xN1tz2heBrDCsfVOt57Wv3J3gceYCOt1l62cu2zS190MJKDqB4xkTd0xcg1pCrTokcrcLGiBAfx8mFucDTQknUkUg74/IizHFPbl3rFor3ZDhAKZ0u8aSvSh7uNvXU7ZL65ZseQIAawfMJnJejJUqZrMnY68sT8VA208t4Kkc29qzue3c+s56Iz4H2cqE2r1Dn+LSZssEOnMhgo60kft58yPnINjIqai7gBixWfU17XEqeCCrz+CYiJzIHALxGtqpdrwkW8fbC7ALc17417/9C/7zf/nPeH1840AbNyKTxucQqVjIJHSfjTPSE8CdkFNC5MSdY8XU5atY7Kc/T1MMutr6qTM17EC2jtdP34BvP2P2D8x2IlrfNmj5Bfm4zvxxmgOtUzIgA9MSd05Mc1weuO2NK75LK80x4sYcN8klSWC4zm+B+wWDj/nGjIHzYDwVRsH7a7zhRyeeWvEjGBPZEjlyhBk1a7Uvrjkwxk39rHEvYOW+BtpB7WIEeM61RxYmIoBJoh6Mpcr/V15vN0xdBgT9qP/7LG+5Ckt3Unez9nvFKoC6OQB4VEzfYOVDhQfkHMoDCahHGGYYxpTONhKtBLBi54ZV6Nyt/EC6WuKtii3CWPTzpQG4rvE//vrzjCd9iovqW4CPzMM63NxnalYpcAOQaJuBTZ+qAGhdIFqcW6Ph0OSApkDYa764rGK1FgGhalti5Bt5vzHfv8HVn3kcROzv60LGxMe3Yk5QG+W6bxyvD/zy+gmfn59CsgUYteo75d5NBViGoF5TAqcCo5SniCCoYCACOQqWhpEZBAjpTtxBgIHMGwI51shWOfwb6W52AqoIrHH2uLBETSGRYDnHJXA7E4YJzwHHRHdp4SRg1sRebgqpJGjeDTED7zH4PGB4HSfyJwbic0yM+3e01tFVka1WRyCoWOGi9AK4LyKuSIh67ehHQzsajYwOGNeEel1++NpLmckxu6IiUww5MOOGu+M4OvzsTAwKsR1seWKblWibxv01J+mY/SSr6eMPldf1rA2Yj6CMgROF2EtvhWPDqelwHpzsYM0w5sD785M6V/2oE0NxORklOsDGKjRCTEJRuEFQthzuDsVX6qozR90GtB2UwxoM31DTuixplKp32FvUncI8EBhkdTVDf9EgTznFEQPdGtxfmJMCkuf5DTWFI5E4+u75rxB/Bunv2U8GnaI7jkqslNQigKMdcHp5HmvTlMPsK4msAJMi/bEZXrG1rVKBJLLWTSwmsehmgONl3yF2lATytDak4pYdY2ugNUM/Xlw3VBV0Ice0U8it66EcmUGpSc+Mzy0i1qh4gtVCshSgHG2P167gZ7Ul4BFltY5qKYYZ3p9vBr2uoE24GzGfStulXaAgdybB1WZKgly732yhNVE7LdSqmIZsDeaNLckZOBrtqHcixqUjAoHXiZQPkMbGnPi8bmpNeKMI/QzSc71RoLGe6w7RUReVCcRQUGxAOgXbLQ0Y9C288KqYyzOZrgs7fQZY6SsGJNkPifuqZ2Ss5DaxDMRWMxDYmaGENcrn6Wqt/GNNFR3r35W0NOtqZ+jL6LACOXV+XYK2+9y/LwYr1g/dn0szgWfXqp299kvdZzySbiVs7sW+g/aOzrBaa1Nn8VYlnSLjk+CQJdKMxR+QGcNbYFLCIJxf1e67dA4ipKmm5KDsnJU+hjpqsFkkz6/WGShwAIOAnZQW0xp3LkiqWpTZG4Y5prqoKCBbU1dzBnXG1rrx8Dg41tmsFWECACuA3AOVyM7dGoAn4GEwFQCKDWK+OHXr/1JxiMT3aNkriTL670qe7qmsS5lXtd4nAEu2FxzyZw6IPTwwK46phEsgQ4Cf2ZxMWwo5QzZc9yI72lrnc5yxdJeaGIvtaHrYsuGV9AqgmMFBJF+eaAHYKVaKYkHsO/zys3o67egP/T2CwBAgIQlGnoWaWKcYQid+Me241gU+pJ4ZyDp/xKxbuycAo5bLUNBdSfTzudeakFFZoZHaN/UMmtluiVYbsxltJUFfQwy1uSggOZRU5VChIJjgN2MVn8m+Wv+WL5VflIRDle14LiRDkBKRJzquVar7KmZ1akc7VhumNzQztSQ9ihlGnavfvv++AISAwJ/7hjmL0bsdDo/rSniouFQDKKyhWSKsLVtd56NqELXnlkZW+TOQTYSsdnq29CbAuFu0+d477aEDAwRzMgj0WAI2grX0IOOnuaM12rTrurWetMFlWw22B1jI7rC+Xt0ZLMZe414tgWT/CtVI2tl0UOAb+yzMqMETvFc/9n4urculgaaCZq4VAVo/+N95I3Pg/Z4wTxxnrLZoF7N/gGC9Hewv+e39Y4HEZoAfB+MMf7QDTmpMkqBs6E0F6xiMl90WO/xs2rNZgBfZ3Oa2GMyodh4DVhasIkPZtBW4lKaYcrTEXltXHLqHa0igOgK9H7LpPDM1GdckqpoIHL1TrzRpU0pvsTxeKvcYY+DlL7g1ymxEUE/KDeehXC0Cp5tYrfRF14/fkRWTqKPlb//2d/wf/9//Cz+uwPntL+ivb4A5fv3+XYCZtD0c0n+a69/WOiyUv3RDPxtyauhFqtDWyYWbwTMeAcAPnD99CEANwMlkihlAB37++WecrxcHvJjBjwPHeaL1hhETMybtlaRkVPElgDxCTHjAdE6mzuPnfeHDTvTGvL1bJ3srA5/5OyImWUfKPkaByNJajWQsSELFgZ9//oXt0GMKd6iW7MB1SSz/EugfiZ8+XmsoVFhQdLs5WudoJhQr9b7RE+i+yQQ1lMNcYFJIAsQNXbb78/PNQrBy8BgBV84xQ11ZdNxsPzQo3sLyjW5b/697ZXKyhxFomegJHOqy6IVEjAYJLHD4kjYtzYNia9nSWT5I9ttSjR3J+9QBXLlyugN2rJ/82TY74H8FeMqnCZPDzR0sPEJeVCuFV+IPLerjNZFKkoR057OCagoCvXr+N5d7jczWyhSjg+gvGScdQC7hN3IrGJTSeYUWMJK97627+v6rAqGgZlHM/pFERnePL/dUQWUFKVX9MEtYPxn0CRnfVHaD22pMoVF3jbk3iZxiXdKqeG0IVMgrVry1AvOIgZyDp6EE3FBTBBXGMSJbDsc0mQLJIL63hisuJRGD15MHFjBgcgRmFaLwPtU3tPdCsVY4jYWV9bmChwIq93bjKa4g1YvGALV0KHFxAzVuFIDUHxhQMr6o/SbHXr/Hf7Ixs8aHckymrQSawWgFV4YS4y2jxXvWPULVHwLcqEjJTPSI3IwLvVrPWcnEooXvjPaP/0rt3USlJVVfMgDUZskINAUdacWwk0M1Q1rsRMkYuJtjMWVKI8LQwBZYaWG5y5DnXn+15yAh0USQugsQsIUcOvZ64LHX8/Ednh2s652P54/HawtM47ngtX61Lg+mR8UvmfBD59pqKgo2SLdAtDoHouQ+EoRKZAjg2jJ+prNYlelq3SMYnUhRgyupqgRhBf4K3N3bblkCOB3vsTZLswm291+1A5URgNX/Yy2w8tZMQZe5q+yVNNTvb00SOjr6R1U2NeEmeZPYjFKjHdDI3HoUzD9zAR1wqLKVO4C12scb2Ft3XMBMtVwZa14WECPo8Sv5cMTY7aWm8wLtq8XwsEVw5tGMWGfe3FRlr9a6DQoUq2rvs1zvs4+ppj65r2uvK2P7jj1+p5gFOhWrdUL2bAzAE60AAf1mPdan3a9kB/XI8+mg7cvKfPkyPH8JJTxbCcUUYFSJnYnllHVLpvaCrOlEWtTnMyiAPMtJmZ6DLXv+WKhtO9c/bf2jmLG5bJXaBsy+3Ao3tFZqXadhKEDcVcTHbylRsXzaFCxfXoldxS6wB9ttfeq2B7zvfS+1L/f/1kdrJ9nzJ1Vd1L4sf5GyMIbdvr9sqzxDxTFYJmYxHFdBRcxcsulq/cs2PPeLw5bPqc+wff/23JG8/3Xvj+XNx28vW1hAotl6zVrHx55d0z4XY2f/eRyfx59tr+MP11G++OtVbZtZ7Oltr3PtV+TzN/azWkmu+brBrJijDqbVs3mshGxv+dLQpLg1XbMxgZh4/O7yGYwRv5wdvd+ODfDvXC02SFOtfQ9m7/IxAJC2j2z5Sat20X1+AdrQMScKpKotEZls+0H5bqznUi7r8QT2OclKxvmZ+HI3i+MoYEZ7tvZEFChV61L3Wf8WeOHUULEwfGkvxX6Gy8eBcUEBh2ZkqGwfXn6b11oMIJZndsxQmk2cTPjUToJiVwa7pX30tHv7bGyQfT032aQvNmbFcnuPJilULJSBRUGvV1nZSohoTPs2VnGoBvVI9P/BECwgCeuz6tponxG1To+CjPE9Q8XiFWNzlXWUKybAsikrBquL/bKDnrb2sZke+2tdJwCSG0gcqPxyrwNtQfO2WH5Pn7JiHWCx5AFokuTUNPfShoIKJuUvxZJVV0gVnTITn9eFv/36O66bwDfU1jbS2M628hFgGHNcr72mnDHMuT9bJ5sJIa08LLsdskEhG+v9gFmonXIPDjIBKU1i6alYxntH6x3zmsoLCozcorc1mGvF28uXyz7VGUvF3e7SP0rsoS9zPTDm6Ymq+OZiufG9ez/F2iorxvid98U1uEcstlKq04UUiqfl5Ee01sgg0oTIOl8SCKrNiLLn5lBxgLa0aYOUmsXqHHic1NqrM9VgbvW6Ylal4v99xk2soxUDAGuidYMtN1ekVmivl1ev+92yAbZKAa4Ly/o7tz0xq8KPi7WP9QFffeP//OvPA08XHx7k/G+JInsapqcO0rp9JV9sD4hJDZoJIC9iZ+95czN/SMwtDfcduGfAJDL5YS8GG1NUetMmi3ooi3eMBJ3d+dGV6BvuCIwrWHH0JjYPAExkOs7eEDHw4/vvqP7rSz2z/ThRY5DHHJj3zeoiAkdrqMkrSCDH0FL2hcRf4P2uAeNG1PDKeyGIrXHaWwNpySPeRG6DOjiOQnkFVLhh5oXS2PAEPILvcTTEfXP8bLJy8/3vv2KOCz9++x0fH9/w008/rYpTYTxDtOJ+sAf226Gg5b5gccNzIOYbQMD9GxwD8/P72nzuZJ91iUOOQeaA9dJ4Aitz54nv70/Mz9/x13/6ZxznCaspcqQgoPRaWPGgULv3gwynxkBiqOoy5iVHEOvcuz2FDoVGR0OmACg5yxmBmPcGNUBHSmZTAw7S9u/3xWde4I2ScbYAshUCg+KsfB6G08lMiDFlkKADaWtfJgCEwWa1mNlKhCkYSVokvxzWqqWHRoCvCVJpM6gz0E7AT8w5MO+B9IopL6YOlex6W2KKEwxiXQHYXBUfFxDsmJPCcrMl0hPjEgiJAMstqUpLY7XLxMopcCIC877hUEVQjhgyqlXUmqOCHQGkbmBlLnZluujLYIWZGk1almKiSe/CKnB2tYwika5WCz2UObj+NbnLreMeNx1Mm7J1DH56JdZzLMQ5VcE8jwNerzXH0ToFGqUFJE4W70HCsnZ0jDnx48enApzE63yh9473m6NQXzrztDVJ56dJg906WuN5MJNI87ovCY8qEGq9LhgKIktLDXDpbzj4TEjHp15D+ZAKSj1Y9bNgG1imJpgYKfgwQzqDqff7QgLoTpD5OE9kBO5xMdk9u9YzYDUn1bHPIalNqEIwNNI8ktfuSZHk3rZY9874orI+OvEssNp3IiNNMOrjGY7D1+TFlP5BF02+xEld4XAl8ow12Au/Eoeh6m+BzJqgChjilgaM8bz5amvbLSeaA8s9kWLaxSMJ1vtS6kH6E4+kp9pHyq7VNMAIIC3xCRUiTJORHhPIZCRxtIPXEGR2Xmo3J8OKnzMHdQaidbKp2mYSTVGCXef50BSmkLbLCrxcbFKzNX3qmciiErWxx9PDNiB335f8rZK/zM00U1DesthG2H60uB2xf7ISCch2CDAtIGjqzLQH6BYzwI5FgVLt0HWQKUMWXRWfdqIA2PK/iLkC5GoZXwmVAuy6J55ThobdS5MpvgR+tJMBFW0V+xdYKfFVr7Y0MqPec8Cs8/107Gti7D1YmOlWH8GWZOTEHAXSCuCf8sVp8JRNOXZeWMEuAWXug5W4whAtsYbQ2LMwkYtZNTQ8wjTsJjKBmLgGsCuuArtzyN8/7ZSKPGKhqey0wNalpaTgJaeSMIR0tAxdbIEExYhrGq4Fiw7lpzPU7pyGbsZBLPNGP/rSKopM3PeelEi/ETDpsUCDI8w7rM6UVqyY7xt81ZnvTHes0zbSjgw9N7E3G+NpM8eYoQEAvhJtHiJu0hoy8YWDXb7BFVcYmHGpmGsG9IN7aipen3rPo78QMVfbOQC03lmUIMpKMdt0NOxR7s8/XAGCdCMG40frC4S8FQN3p6CvyyYywXcx+YCMgfdFzZ7mJ9sGz4PFxDTc1407qu1GjzZ1r4+zQpFirclQwqmY2KWPBNgGw5wsYtSZWxO/uOxNbCLGilz/8aZEgLeDtk02wBR7zEzEGIxVg3uHwxA4XdNJOxeo2gB/rQJSan3GuJmKhiBnk93To2EzClmTv/7+HTEmvv30TYMCKFQ9Vy9Drr2gU4YZF6/ddlEHOWQHefabiylbLNOVli8Pr6JcrBbSmsTXe2kOUnsqInBrsNPhDTXYAYnNHM3YbWsFjAoYnJMahHiASstVZAEd0vDsnft8TtxjIGJStBuG6yrmFJn0kL3MSBzHC4AYwWBC//3zxn/9l1/x3//2O/7l79/xLTu8d8zXB2ZMfI43Y/CcOz666dvzvpcv797wOlU4fp0YF4cxTVVevJ9qA9R+tAOtBbp3/PjxO2ZM/G//2z/j49sHjnbiaAe15BKc+t06Jgw/9Q84gHGTZfXx8YEZwH2RWe2gjhYiqXGcnNr86ifwyz/BZLO7sWX3/fmJOSbuiza7HQf102Ii8sbABNoBU55XAEz3ho/jxBRztNdQpNbkfwhn5tmXFU1PjBy4c+CKgc/7wo/7jR/3J89Ac0Bx/JI+OGmXvt8DkRR1P1vD6zzhygvuz0+CQpnwDGBSOigF+tGlsXBcLZlb6pyg0ESwsUX73Aws/sNUMHeYte03py+t0IjAj/cnxj1wvT8V3lBaZiDxHhyqMufu7OHeFDgdCXTaqGonnUldybMf6L0LN+AZH2Ns8P4/+PrTwFMDQaZeLKD8agjUSooVKqy+ai7SzNyIYhamZsgUCd0Ajm8Mfq8EZZU4pDZJvZiBODZ6mlU55eKluVpwREuGPVBQUXfBhC4UmHhVLxIrKKgpGbyO+lDdoyi1jsc9KPHxB45YVUZUpbbaP0TnJAU0N5ouq5YLSTWBAVBgaKK5af3FrGCyWf3zCvCQeF8XhU5RdHxbT871zCrUhRcdeiixEZClwKOQYyZOlehtNHtPwtJvGIPNmVk5kZ7fo2KFXFpYUdozetRFIV56CFlv8vwcfa+q0Wtz7vayYlzBFfCtnVpJQXUO1xaozFKVJoEa3Qmq+uPn9MhQsNEXUk0AJFmBoGiUHq0JxCpB7PpTQNS+uGITrc+CKp5pj/Ole15aGUrg/HFmUA+YoFGAlTXma4En68JKAByVAPh6XrwOiTBnYeePT/lSfapqOL9vbl8mP3Hr1O/yfWyVVysFfFTOKjGs9o6qIBfjIb9+XqFSe7Q6738xZWBfPtf0LENg5pcHYYnqsX0CDxWor2Nqa0cuO5LQY0YxnSpZU/vbCtxrL4rBp/NZZ4Q2BEjjDkwzWAY8CfVnfWjk0opQCqKLfejQ1J3nWmVg/V3BtWxqltZN2e5KNhROFnC8H9J6j5nsyW+Pb1ZDck3Dq3K7Ya8nbDOBymFC11s2R2ks7AHwPp7Y4z9qN25Hj/WceE6pwWJffvbl2ScWQ7aA0RIiRz3TBYDt51gggskOLte5mGKgr1ucWltBxXrdAg74P64g5Xks+CxzL43eQ09T10EWLK+PIN4MDqkoxlKdL54FBlBWIJo9fEetbeLLtXxd9Fx2CplftE5o7rWnzRe4/O+957YtWGvJXECDGPo+91UMggJNW9ulBhmUwcznm65VrB23rrP88XoGj+vU26zv6LXF1OPrbV3Hc42292M8QX+ABVICNf6j2kfq1NTzhJK85718vZsvj+HxMl/7UQnrTLQWFVw8Fl3+1so3GTZbSKdnvXfZp/JXX69jnYt6vDovePx8XaOtC9h38+VQK3nPXKyPBUY8/OT61LoXPJiLtp82Hr8PM9l+Xshzel+d5eab7bEAX+3zP16Pt5oAiD/ER88ntTeRoZj+Ffs+1uCxA/e67L1aZ6jO/y7C6YZz/24xsrNxr0ZW7OHLDnpdgz2e0+N5I+NBt+SaFVD7cLL7b3tcy+NArHMq//KHI7btc7DwXOdsAVGyM8jcTHPVHmpsugaawkEgoxfIN6MSF563lB1F5QnPPYW1Qb2YSs99prvZz2PffYJ6XaXtVL5VB375t0U9y0exULkUha4JTC2hk4et3KttKy/K9TwK2MgV31ZHSsUNVfCNRzEDGhSFfLYPbl9dE4LXn3qAzyP7tOXa0Ot/nzZAcWgVestW27KJf9wbtbK247XHo1rXiQK0Sk3nUeDIREZ8ef2XItbjumudSkNts0r1PAUUsjCcj5hPhdz6A+x4NSGmfW1bw3Xd+PH5xu+/f8elKXUr8Qf/xHN96XQkSUPJjDrrBmDuhcB0FaFQsTufgWUSmFT3jUO5lzecrePoXS22hqOx+6EKdzkDfry4LjGQcHY/1PnUfq+uFImKwMxUIEkCUloDR7EVxf6zzcjJlXdgxSkFkq6vqGdeHnMzA2vfrimSyecdj/zy2ZW04iZdQWmJ1jRHXoAt4PZLG7nip/39dQGoHJjn1FfHTZ3ZQOn/Md+L3CWzXMV7e+w7+fQi5Qh4GjkpoYKdt9RzeBb1ATz2tem15ft2/g3lymatjPY6S+7Jgu6f+PrTwNM3GapXo+5DxBCdFQB44yNrQ6tKm0BHQ8eByLHYHDDH6+MbYMBI9hf33qnzEMD1JhLXJPQ6kkKwBrJrSkw4U2ikAXMkN5hTPDxxYMYFTl9QtUiCsn2FdM4Jb2Oy8t84gWPCcAsx/fy80BtHmCK4yTmxIzHeF8wd3z5+oqC2c6rFjAmbBCs4wYLTykJJmLU92cgtYNNEz1Vi4wF3jTA2GRkvSu/JgKCdugVWq677ZltdTPz80zf03vA6Xuit49/+/isyG375BTAcFH/FBctB3QsApjV2JO64MO83Yr6ZqOSQO+Wzen2rQAwLWZ53fgkWkp4TaB0jJ/IKHGfHeZykc7YmIVe2RxoA81xj6CG65ilDzSkDogWLzsn+6Y55X0By/CzHbo9lVIoufLxOeHMO3kweSPbeYzmEchplpbr0XeacGGPift/4OF441RfeeqewEVLMiYZv5wszboy4VsByTwoun37SMUhcFI1svggeWIdLlH3TdumYHtR/wzr0SwejxrmOH0BW3z6FpmWJGPBahd8UF+akQwkrwlgZ86bJV2yd837g9F7Lif5iTdiNve63JhoAkOaJhLCT+moJIJ3BenPHTFahtgaVDHAlNsCq8CkMBzX6TOPTHWiNY2PviRm31opGsLeTDDtVpQvojkj0bPpcBQYZBF7cN/C03AvPonc5SenKmUETsFRlEwCSybM6UfoVWSeGQYHs1LgH32tKSBoBb526YGJ7HQcFoO958f7hqhCLfWeJ8yDDKe4JD0OviTyRsMkgojmpsF1sumwcw3xFTaFIFIza5EijHSiBVTeK9u5kcvLAyBa56Of3eKNJO6pCgN6ph0YtDIcdar0oz5rlJWNp9DTfgX4BCQQ8qvqbYj2xFsQpdhyyUEQDXqecZek1sOa9bD5ga9hteurcHbCgHa7AMWy3YkcE5j1XErQq0hVY6WvUlMHOs7TOBQywuVoXZeh1vwxkUABwVBAPmHVeg3TFwiaOTsr7+7rYVmsFG+r3AqhJUMCF9NC1AmOyat66Y16feL+/4/X6gPeOSLZTHP0Dlk1J8kRz4GjSLtMXQbQKX79kiQuIHZMVsJHSjJLOSmYyIEpNj4oKliFg0QhWCvSWweH5EMOJNvni+lpjwQRYWkRdNtN1nZCmIjVTeC73Ve/2gGLhrIlbKlG0/kg0Tcmo2tMq2JtqA4f2hllN3VPouvZKopl8lBfotNk+eIA9KR9l5uh2YmLsqTZIFOtjJ/e+bGcx5UJJI0lbhuPFSbYGskLmmDBwuEXle1X/YCLg8Dx57B1IkAE4lh3dCSWUbHmrkdA6Sw9gyHhpi31YLSwWvNmdsGD9DtTq6PUZk8Wv8zxRDNwviTqq0qwUl0HOBg702TWV6J4DCmXXvTRrjCn0fMtGv44X9TCv92JbZ9I2HSe1+D5//ICZ4du3nx6JR9kf/ilr2SoJAtDbqZZrXisnLmM9myz0GlUxf1TJg4zlp9B/+VBYsZN4eGOILYODiXdMMoOtrXbG1g/l/kPJlbFNH2SCRISmt9pKsAp04JpLMym26YfOfwEsbcU2bOnltxmLAPTbzRp665i4UXwa5hgQN0CMnVlwDJBhZKAbtcFCgz8A+sMDDZ9jIO6BQ6zNQ+1P9/cf8HbAj48Vp1RjdsVjr/MbRb7HhWLqFHtz62sxM3IwriSIEAhLaeH4ak221vkMxpRmwdYfck9JOFCvqkUJBAsMUt4D2T+AmmiIRNycikj5D8UQ3mEO9BfPDpmotIiZ7Pg4Xi80N9z3pc8OlN6uK644f/oJME1Ii+SAIQDDC4ix9eCrJWfOAlDKblWkxGcUOde0whL5XuWwtP1qnWO2IMloARqwxJi37vvs1Np59Y6M5JR05QXMX5JhpRczS5OFnQZhiaYr+W5HW3aLG1a7sFMqITUdzOHI1oHW0F8vmHfGYJNtbAgy0U2gbzsPXNfAv/zb3/Cf/+t/x//1X/4z3uNG/ziBA0ib+PH+sdrjXLFNSiLidbzQzPEjfwhUndQr6o25eU5MC6RzIraBzxcJ+HQc1tHsRBX/fu4HvDn+8jpxHgdOGD5ax19++llalRLbHgl/fUPvB4a9MTPx61savzABWol73mTXyLf0bkBOtPkb2JDmaH6IADIAnzi+MRZ+jzfPjlfsF2ui66ghJjq/15t6os0aLKndF6P8T+0JsoXnTOSYHNikvCSi5FpImLnnIBDkwDWGWmRpfDlxm/ImORL3uBBmq1UwQbZpJJaupTd2eZFAIp0THRUSdnRdes7TDfAGZGenwUgU8ti94TyOFc8PSeu4YtjhE9GC+0fxQsy5YmiALDHaP2IVCeVEzReBaGr9+osTDrsIFvc90QVENjuXjf+Pvv78VLsEgRQDQtFUmHIQcuqx7AyYxFdglwqq4ERCeWiEWi70DqsYSaeJ5cgqIeWG3eEiqzIa3SxDlIOL5o0tDumk/yIDbsdKIjPVlpN8/5ryNI/HVDBgBYOmrN+KtpdAavVq7DGDWk0tQF27gDFRcVfvvlm9KVDJqaY0HU0AmwupRKDGJFIXWcnYui5X8L0ngpBS3yRaLQyoqv0ATONmNvtJ/bwWcJvoPQE3tDBcYwqBvknhs4ZiwgRIRW8uwWGxY6ZYEFCbxVRSlWnrUKUeqreqChuKGkHtgl2Fd2vYKhObafMl58ndsrB2SI1HzYkZgTHVBiMEube+qiWraovczJnaj0agwR/Pz7AT7XUJ9Sc3e2JVzio73o/88YsMGIS1roQHammLLP0jqO/eZThqCfgMa9pjJa4FAGdC16NrckjM0fVeClCVRDDYYGuhL4Clqu/Qs1SF84F8w0xMObAFNYMBk5VumbRFtD5/ZGauKtQjkSlAqAQPLTaIUQk3ULfGVpMvLJrEep0/Fjlr0sp6fwaJjcj2fj/Iolku+7Qem22uylN+hEu/rgy1V5tENaua0iU+CSTmGJiGVXGFFdybardoS/eukr3SRajJUBlsHjEFh25YUw9ZjXc0y/W+pusqDbRQorDKObmriWWzvc6B83WzKk9ZZ7qq9gLW630qWQITSWpIuSaEV1ZSC6tAAcUqkmdR0r+oypWgVpWpbK6uYyVgCdSI5c2x288YGct2pBUVXfeiIDpVLODlhRLSEE5QDA7ZhmLeAkvvbtH4dW4WY1EHlK8tu7CZC7w8vmaTTFV50zOXYVhrUQFWiVizDZkgj0v8sknDrzdHZ58XMjeTNTHgTrba7mbTddhe3/qin3m0DYpRubU7lJQlx3HnY43rmaxniYobqhJqK+GohKStRC81DdR0Tk1hnXaQrrUYIKGzStYn66LlkUrzwLR/6hlVhXSqYEG3vit9X9g7j//e38NaF6z9x+dcnIG69zr71Lase9AfMTsKbK99sV6nIKzO41OsvexvMR8UQa12MYOtayjWobmtIl/W+ayf1R2k1stNMHYF0roP4EnoY9xRiJymJZMttO0IHv7K1mcxAM/y/uvcYRerysUtEIr7+RmPLocIrOtbMd7u1qPovomNuM6iLamH6usqX1k+imxWAnmLeZKbZVFAeMRYMVAtzbKVdYm2fd0G4zajBbb3OWQ3IHvDNXTFdNj7x2qLqehAQ02ZAW9qKcSySVuTZceRz06FtayQNqBz8MSsbgKeFFQnka/LzS/7qljA/Eas07E0E9XWZ/rshER6pQPDXy1f8/gsPfzy/XzO8vVaAzNfjFHTvbMVkGv3VZ8OD50mRU62dhFKG7aYNMsv1n6rAEHn0xICql09bdtWbB/BeB7QtMzkKUjnZ0bUE8gVh/G4VOypwlkCRTtPrWEglz9PJbTVbs7JHWIL1WtyYgzAqwilfWCcolNP69nxvmKZgnYKiK443iX1AMUgZvtnJXlS9saXBVgbb+3XWm+K+uv8K16JOfXMJlsPUVIoW/M0Yq6eABiLLYz/fRVSWrE9rD6rpgPywZLFy0sKkDnUOsFN1SoISuo81rCso3W888avf/8Vv//+O96fP0iesABsUprGY999xemTe9E735PTLSsWrGvKtUfgiZJN1vZhPADxHRMqyKZyJMrS/PTthdfHieOgrlNTm12acdIfBG5XvKLzx+2Y6BUPBgtcHgMdIS1NtYwpj4T2oh8H21Dntdj65beqiOF6fUNjh0Bwlzh2S7QSIFREKUoWfE14B2IEcAcwAjZTc6epW8fCdydYlcybC6wOI7OK7bIDcIKBZVOqsMKYf5/TyjerYFJkzkixE61yDQ10yc2+xfod6TNaxb6yttqLJu1VGMkyLOoID/HSpJVHMtkEmY/lTzKX/2hmsplV1OIFZwZtK/7c1/+SuLitC+BFmUMaMZtCyKpOUxCtIFUIYQMZGJU0ZDmD5EaomKu5EitmQMvxmTbOcgIwuCa/WVUZJtCPhrOfFFXLwBg/EDlxHk3B+o0YA+O6qV7fHNd9Y8yJGykEmZu2qbWKjovAzUt9sVk6GfXAMBGaDFaotKn6Nu6LYMZxcBtZ3UciQCDnOMnuePUAjAykyFvGsCHR0LrWIxsrhBNo0MSr7jCbDL4j0I4TvTUc7jjc0b2AhUBKdKt30yGfCAtEDvQ20XqC6isN39+cbDTiBywaZuka2IHAwMzA2V84+oneX8gEPsfNw9EbR1MO6d1MjrX3NgHpyxzqEwUS0RwxHTtIplH3/uKzq6CozgQqVqcDMXDCT8WJzJoCIy7EBD7frN6d/QOtdTL4gto9HAUfj0OvGX0Cx7zT6VfPsgEI2wLmPIhKSMMESBbsxEDvH5IStXBxSwd6p2OesyTxU8ktDYwrQTSYRAnLoAYMYwXd5Why8WwZElRbJ5ONjt1KVwFSqhLAisnZz5X0Eaz9g12wSsqelSGuY17aazGQODhWlajIOksxdlvbTurLee+kifaNFEu3HYissesVawlAoPwQ7ZLT16LJYRR7oQI/VqB47wRrGjj5KeWc85GMQya35HZXXAsVBQTQEDBZyYeCr94JppbW0XGeK4jlCNdYFbrFwqtgvrVVqZr3BKIcve17yIS3tqpBAHBdZIacJ59lgV+mRU+AzLtM3HUTZeCXN9rJaG9tBSyGwJENNT641uPsJ2CsNAnLJdDhFGqsMdxmjrta9lLJSwRKm4jhZ2VKQKvtvKaJkb0VSnISuRlyYkp5IzOLLZQEwlolYrVno7SBHCHmZybX+DhOfrwm4LGKFVhgfe1G4zkwsTFLr24qMQ3Ze8+GiGqjUeL8JWh+2giTPZjLqX/R9Um1YEDJS1bixSpur4qadm8IkGzecBwdwIlT051Mn++yJ/CbO7gJZCTlF5n5haUBVNuRozfDPW7MiDXmuM62O/fZ1BSeRIHDAgeSdpOtP6VdAbwkahoCtCuvOo5jnd86i01s2B2iMYGwpjHGIT5jCoJKh3kT0CV2DjQV1WrKW6J1soTmrQIBHoWdBSjthLHuuR5TJTz1lW3BNqjMaT3XevKyqxVMOkqoFQsc2LpRkK/h/gXm1k8qdo8S17l+d99D2RqU9kftk+bgKGaSe800ddP8cf1iAlZQar72e3NqbCDF8AqsPVGjxxtMe8of16fz+wAt6/mShcypYm5k/s4xORGttSUA7wXEen20ErAKloslCbHKvj4OFMNj3DyT7rX2ihFkdwo4NEB+m8/HGjbTI1QQzQ7TBL1QJdxWdsbTgMBugVaykRDgFVWIFSBvpTnH34+sa/B9VpLgkmsvVWDEtmNOOQ5PgnrGaVMckV12pcDbRFc8k2gsHq1Fg+KxhDknHo73jTHHAojXunox6x7+M+luQ4ydUMHNwOLmkqdoBo/H0AYjM63OdoFPzwIsmW9QImyc+IXQ6PoCeK1ugD4gqSO6wBbQjxW4Mm+CECFGGu2LEjivZ8FrXqLUdV69fA4Z/gD1BN0cfpycbDgGfUy1mycn67mRMaFBjmS6JyfsrqE6Kz8zPX8ujqugnZiLxJxiwGRjrG4aIBKY0j1i/H32E/V13YNMZmmiduVDR6cdDfkr2rwCO22x9Su+K6i/pj7muNgN4NXOVqx1nWetX+3rp6j0qogCqwjH/JDxCgBcP36gWpDqmdUUufqdu3THnKBdl8Zs7ckxB/pxMg9uLOrdc3DatyCx5xTJkjU4zpP3PcvLbEbWfV3IBD7OF3779Xf8t//63/C3f/0X/Pj+K6IlwXldz+ugTrEHgZL7VodIBPyg7z7cOedySkqjGO7KFdyN3Q5Jw2cwHM3R09BCekTIVbB9dce314F/+k9/wXGeOF8vHOcLx3Hix33jjsD7/Ua7Bz4+PhjXi4FKUEVOywLTE3O8kRloMdAx4cfBmNUPdW+QfhaZaN8+kGMgrk/GDiEo2nx1DWUjkeAEWdrsDKBtq0LZShY1PMticuBBJJoAmPs9Ye8beA/YzenNGQM5E340eO9A6Onq/T869RLDJ6554RqJ7B2ognIm4h6YMVbRKgrURcLT4IHF8ouVk+hcoNFWozEmBiuA9PWM2WadJwMOY1GxgCGLAcOAGzvOGJNSk/RoDVUqEowFsgr1lUUPkd13p5azmyR6dLYHNd8oEfXnoKc/DzytayEevNKupAGwZR642ERiabQCbR3guEljm6LJm1FQeox7VT9a67BmyBQFVAJ3ZmWwKgg3NLVD+AFkUgy5OXBMOquVKpoJyNKhckM7OQ444Ke/ZgAA2YJJREFUHejWYdkwUNXEXEi9IC5Udlv9n2NyRORMIc0KILKJqaOggjS76uPUg60Hh81umTrsqeQZqWoIIVAkEh1EX3N+au0rgEwhmIZTmyNFC7z9B+73C+P6rucDtpVAQsORgE9EDtz5CWvM0r0bUWonUj3Hmy1hdqIFx3lHcp1nTGDcFGdPAspwA6aroiKoJox0WCRbpyqwqsNTN6QNzMAu1kGqRHkx1kDjYXL05VAQqfGzCTQKFyLp4M0cpzV4GPLzRsyJOQeygU6vaddEBUbVWy9Dl8ErYnSLqjCNCNI+lWi23hZbgg6g9hXrLKz8TZjHui+KiicKdNnVXlZlZkBi2Csc3Q5lBXeGOTlSOGcNoeY1Wu5qdKSeR1XNFcAS3KpKGe+3vqYS9+M41T4raqdRcJjV76/sEQYNCcRYCUku0WOuxGoDULS4HQbP3gqY09aEHNdLdgBcjBiF5dpP6uhiSKDgB3pnVvYGnWXYmtiCYrKs1SsKvRQwzBZ44L2v62a1oWuPxz7jWexKnoPD2bbR3HHNCzmnQIK2gMr1ycUksLYCiIRayXQtZBrGOo+BENvReH1g0Fyj0aPszWKhiRk59Hy7QMnwWrwdPAcpulMOzGLSH8KXExxj8rONI5Jbgd5F2VclMaG+cEvUYAazotQLgEKN27aVRJJJB8zJoJVdnrw+JnuJmKRQzyjAJHAcal8Q45PBVcoPUduOROidzFUrr8ngzkclu7W+9EfqKyIR963XqCLXDXFN2WuNr+bhwmKMyC0sIAG2Eh0G29U+U2BIQ0sKLu/fxmqJqkCCQA7PvOMAosR7G5qdHJk7pyrctpJpAhbcwzUNqmK4p5ZOtRHxcxsrzWqzioCKB4bzlChuc7CokljthUiBI123a8u/1USz9SUg5glqtWUp8NirScaX7CSjFrEAWq1J+RWgEHBb1NLczKb2vO9cYBIe+6Ss1aLNWMERapd63Ec9D4uyMGKR6fsJqJW0OM9AJkc4V0sgsJlDJW5c4PNX8JJr3FpukKJ8x3qmWYugX5F38dLBzLUvY10xUHdYwXCdiwpYi+0nT4JiIxRA52LY8AwoRsikW49gYiQQGY8tUHuxpjR5gVTrGFRhD8u3IoHFTik3q/guZZc5la6iy4r5np+ZC7hrrS3f6VrTOcc6m+6GMe/9+ZXs6zwXZl0Fm2KzmcBSWJ27VF5tgEsbTwN3LAkmMNYsR0dWYJN9sQxA/oHvb4tlW2Borv1lgDGWfIra6+6R2ZCPKdNTQJELROwqJsyh79eeN4L9CUgbNR+goq/Cz9rX3tZnRgzcGhJkpsOD1EbUvcj+7Eeua1b3AQfq1D5SS7ox7phB30DcxiTKzpNXID2Fc5msBYDrfiNhYvqDdnaGNNfopmrVSkO2t2ryh1hpG/C0SKRxpDmjWsUbM1nABJkkM0FWhjPPeOro1Dkm0+zNnARkXaypWKbJWbXeZkBjDlTaQZxw1va5C+CqoUF6lsd5aK9Aa6cx99DxUUxRk7ym4qnWigm8ZVfMCWClxIkzXSXkrLIi1xEbfAqxLCLLXzb5BNc+UJtnAncOnSHlfnoO97jX5OS6txocUA9vjoFY3RdYcQJy77Ha40ZyIdw4LAMATrGFCJAH7UHKE2lNupOZcv34jh+//Ya//+vfEPeNnz5emDaRHmjG1/scBCHFQu1mmE4mVY+EzQEPAlEN8q9DwwvKZkdixi2Gn+IxU67kBFUxA7/89As+Pl6UKTkaRkx4Bqw1jEzM+6Z0CdMImCWmPcgpwgjmFDhmAhUhZiQAz4Yj1HqWjnGzDb/1E2cDJ9QlkGEwkEQxx73sljng0bYPWratQMBd4NKtw8LQg6/t3tBVfHHlvR/tBGbiPSdaGg5rsNTwKHOYd/RUnK5uAiRj3dZPJIAh8CgjNagjaUet8n1uspQEgOVu37RMjpgxkmJo7wdCsUJ1FzVnMW6MgaZ20+yMk1fLrOzEdBYKZk6ysTJVnDZAsV/G5DVJfJ/6gTwbvQukHTfCHQYORzv7IdB726E/8/W/wHhSQFT8ST5G+WROiSt3jeTiUVehCa090DsnXGAG7jEAczRR6biZdFGdAfaYnA337OHlGJktBu4+6WCPzoXqBpsGH4FwBUBG6AJxr4CIrFZXqyQDBYMB74vXE1x4E8KICsTBtr6MxB0EnjjYyzDlBDmFSotmgroKeMJu5at4pqZeMamvQHCPEmUBU8FjAU9jIuEEQNRSI3AcZ2eb4ef7wgRww3BfP3Bf31EsEccJoMkYTyAHIm+M+UmwywxunclNA3wk5riQoYl+TrdQ9OkZExGJ+03gybwmmzmsN7TeCXqEsfPRsPQ8aoOHGG5AGS5WvlfjhBxaIbGsJPH5V3JPJNzpUAJIDyyB2zCJgzecRn2muG5Vlyb85dSiWXv+ER2aAjCVAciekO6JMUifM/Hj860VlgNr0MQNCHiifhAyaXAsGDAq6OKQQX4GAZA99r1o6K11bJaAUptMYWusBo5QYFZBv7XNhnBV8UJnek69r1W7MafGSVenBIABMRu8oR0HMBMjKnkJzHkTQOmu/aMgUEEupDFQlbC1tOXYbRGD1zmtII7nvUxA7FRGCVYx0L46PSbdLAglwobWXBVY1P2t2ZNoxgl1GbXq+73pAPnKNJdeAeBHBWkCntCZsKcuqILksj1mC7Ag3ZrBeDtZOSxBT+FK0vDhVTDhTVVMWJ2u9s9US2QJDq/2itYXIFugaCStjpmStk62jKcJvGbf+Gp9eAKBourO681/VzsO0VVewxBTEQSZyHQqjQlfVUQmSU3JzrOCXnR8nl9LQ4mIF9gaE4hJQK45Ez0T8pA5Me4h8JFBlRuJUr1bZf47ETOdoTFWElVJyvt6C2Rii8OzfYn2noyvipAjY08KcVdbq+FWgQFW7WICGEqfIssn2LKBvak1IfakIya3Ic0lTp0s4L5a7MxkX1LMQvW4F+gw76FE5MAU0+4JHJgB/RDopHO0YwpbrMMvSY8RjiiB5ar03+NGa5SYN68R5KnAN1k48FrPSvztsQ62Phd4tBYpMdxkcWOBJqkbmICACygIZRJXrKhK/r+2woAGR98rdsJmXcuoIcQMCDwBpVwOvK401xs/waehwSR8Pmo7BfdEpELl1D1oXWfkYhSVcVrVeL1fxD8Gf/wn39uLXaMrrATU5Id38ZDBfq5W7bnuIdddpfbsRmZSH1jtclGLjNo/e5Q8AE7B1H9HteXWvorEDK2Z5wMA2V/FCnEN7mCCrvf4B+Yg/+Yo9+03uI5txUZQnGYCoQrkrGWdOZUUNCQIDrhA8/ebtuL84KSqMYf8rRqQZGfquZgVvGVr7bgx2l6Hx36iraGuJ/WD1JDEUjpKKqD21HoqAsiqsOdNhZnYAgaJ0qpRghRvPmPzvSfswBbO1/RDgNVzY3w1VXhI2/uT18h1p8YlYGirRa2mMD3bleuL+oY325UefkPLKVa69ql+bQFPmFjTyrJiNfq1Lns6Yq540cxxtsbkMDQx2h1DrTnFDJ2f0qYtkfEoFpzmJJpaEpEstjiZSiadouoGWdHdDKQbQmz9NAn/A2zlEUDKMIrtSe597w/9qQQwxqC0RuvKIWJplN2jNF5A29I6wS59LyuWMDGRZuC6PrlvzNF7w9GOlVATADK1mdpuM1KCa8W0AJmjZhATn58P40S1il0jq3WR+395IcNi7aXiA7amx2Jb0P8lQiSFYo9wt9aEc+7DuwDvZwHDq/vCVlIPr/OjvRos7hXrt9ihwAb2y4cejWyi5ia25ECN6smgDnAXe/v6/IHP33/Dr3/7G+Z946dvL4y4MDGQxi4CjwkLJu4sSjpGAuGKvSYIPGWglS+Zc8VcoVuJIT1HI6OfBUgVhDAQMfD6OPDTLz+hvw547xgx0TIBb5gpPaEm2+ZAOMi2NQmGy/aPcWHGLVBaMULFttPR80AkMABq6Uai9RPNyDibyn0dHd0FxAwVkR0EVw2oFttqN6+2ssSe3Bsz4WFAULaim+P0g8/AA+mBVzsQPnGPDTwBBGAPU8dLGpmT0kZg8Zfs0QHpWY+BfPi6Yl0vDIJOVjlcLmYikGsoQjNbJIpQE0w7jIw85WYxb8aTDrDbjMCTIdj9YyzKemLpKDpSFUos/ekp+q1ZZ4ftys8Mbiwakl1HRtvRGo7e2K2m+OPPfv1p4KlHZ2g3xObRuOsV5Ow4Ec8gi+1aifd94RpjOwfn8btHUcKVNBhQ/YqOxoAXU0EYX8e+9I5mDZ5EI0snioy+CU+2uayeviQiD8RKiCMT1xi454D1TpBESOw9b5CJ0R86JNwcLDCl9Ak2tTbXOhDRj1DLkRmF/MwpJpYVBECBCBHwwZZyDGsS63W4H3AcBKuy6PICqYzMhGrXggzmHAIhkkbyt9+/4+gH3u9PHP2AHx3hN2D8QLPEcR6IICPN1JfU24nmDefxE2I2fP/xA8fh+Of/9Fdew+T0vsjAGJ/ITPRG8fLjOAAU98UKagZ7TRkExCTTJKvVZukV7LVMBaw1GnlE6WeBbCOwwu4G3DHhwR2SbkB3BrYVUslxwgxpvLJ2iBGSDXY60AxX1OjhcnwJtyY6JAPbTdln4tG6wKz8UMVJsSNhfayoAesxMZFxgQNKCO+b4GgTJVk1+tW+kEHjaE4xQN0O7qBAKpNc19SVBseJBNk5FdwxWKuA0AiSWCX7NHDuTmaVrprBnVqdMjDeP2jQFeA2N4nRAa0rnpDjMYEROXIthR/kD7PaCArmTiyqeivxQu31GHOxaI62zdZO3h9/an8oKUoteD8OWFMFQnVFUqE3g3KMVMLBZKwrIYHAH7aYMqhyVOuVWHhRIRIrTpaBhsZgtTVEJn58/x3uhm/fPihGGDcsgMMOtBQ4a2yF85grGcqkQGmJc5ZwLC0aVtWX+5NVnhkElwg6YLWipc6OywaOOZHOCtJ0rsxbZ3Ozkxzj/hTQSzFnP3mdKXuYtX8SOGolxq3guS3TvlhNAktXS7ZGjK+kXzuVkaZSFdmKkRQtL6AiJJycabQz2XD0b2x7lngqkKSnJ2A3mZ6pxPYUFb6anRxQRagYTjyT7qxg7gS/klM68S5NO5vluckMm0EWAUEnnZvyQ2UZstbSVrtmCIgOMYPcOQxgxsSHnwtELpBScTyq2njPSxoAvhJDPqObAacB3vnL1RIzxvhihwtnW62EX3+6/jtT43lzbCDLgH7yd8YsFhjZbR2NLXepoCspzlmi9mufxKM9YiWULDxUoQchBpPcC0cMq7CFanMrJpeABLFTprRbqi22QIANBGA9ByyAMcWo5t63sPXfkTUXzFCtcCVYarPa0mRXcj+4pVignqEhpqlBrYBJe9Wy2B9PMBB7bY3ahQVy1fpd84aF4fV6PX53SpC4EsFqz8ACa8OSPkdJ5ZrQWy17voGIkD1YzAjvX5LIOW/5ng10LnBiBfBkLYRtgOh5b1gndDN2ihEVUGZlWK1O/vBjOzGsnVtgWwoD3QwtAwhcFlNGbzJHIJ0nYQoU6f1g62AToKDurVnMjKihA0AqljlWkSvqBrFBL5OfKQoP77E1cGJpUsOGgFeu3y9/7KqIP8jKvK3gKRizoij/8mMAOGRXssmnPQE80t9Rha+Czdz6ioPmfWOMgX50uNj/mUxwsmJ0ML5glzCr+K0VgJocwCHgnu1kQXYAqgCMvfdj+569XRgPZ9yK1eaKu1h4KVZgLrB+gvH6db1RQDUSiBZ74ASqBTiX9EixK/n+iqcAWOP5zlmMs/KP+zqrLZRDEYB5h3InrMmcTbYbiv9iTIIrS3je8DoOwAxv5VM5uI85yzPLFaEAOxk87rfYAHGo4D6rOAxDhmNmTQktW2VgyyjWGbVgK/CdWyXXnT77Vkx0j7cCQDGUVheBkl6voqDOJFTkNTLbS1C9AMq6h4ob6neAOrPLkgNiuHWxNGaBdQ/magGhpeMba487Wt/F1wepFdW+idCwFnOoqxldLalxs33yvm9OhWvOQhwS/TwQM/Fv//Yr/v4r9Z3mfeGAumsiBKY7Us/B0Ss60voFltYjgJkcaMUcUoDTiMXy7dpbEFvlvi+M8kGpolgzZGNx05L3Auto/RSgqMEG+hmzjQ5kIK4L3hznwaElLDpq75napYd8RQzuB284TocnhepHTFzv34FM/O///NfFIvzx3fB+22rXdxFT2FVRdiEV9yv3kINKaMqfbMrIgZmGloHPceFzvPF93PgcHNgFU/FPQJMZW9nnmHsPmsE6fZUjKeytXAsZ6HQkD4kPrFbqKgh0ST10m8vOmhf7lT42hNY1SX+UtqTvAXMrDgcIaM2bHQ452E3DPNDUHaT9kvNhTPl3b8pvgu/lKxcw3TJ7JkJtu2i7GPZnvv488ASi9SXsu8YWA0Du5A6AVgGoaVGJqn6G2j4UIWdV6Pi7VidJX4vjoEWh0wGgBNC97V74Ff+mdDzqalhLrCQ4AaLy2GgwJxHZ6ml1KMFXEkvggTRUT6z+aFli7FhYJs8qDFNg5K4qkmNCjnhu6rr66+SUarSt5InUi98ak6+lW1BJQ7UFaMUqUajnkQnc98A9+IcMnYb0AQqdpw4ONaM8DsAJPnGiUkfzE+6BMb6juaG310JaoQTqTvZJe2cAcajnPVQpr9aCzVxjBJJhK1CEPbYU/riPH8GFvlNMjxInDwX1ASP7okCnVclZ2w5hnBroTQkHQOCk2UouFu8mUvnv3qDl3gqAYncJpzNiSh/BDLBHNf3xrCtN4RZKtQdVA2uu+6/KSe3PCnqQuYTjGTsYbuwwmtVhBZ8wanqprY5ASq79YrWFqjW1PoMebSW1teZkmwxsfQn9THSjEv/le4hxoKywmAk1AY+Bhfqy61cUfFTiNIeCssG+cfQ/ZFs6i9U2Uc+lzqTpupkYaHJhFEMsHntSDjxDTIRKqghwppLWhfYZ1vlZAZ0psk7pCal1jvo7TNZSQHlGIG4a/yY6r4XAckH2BjqppV+Ru+1l2Q9se2SydoA4XytIS4zBhLXMaj2XANS+aGtvz2BV32FiLlqdQFLPGRFjGZw6oVqHYn9Vu8sEWyv6aqH4mqiW00QFDXVYIVBH8WOJV1eLbiWRmSm6d92Gwb1Lz2MneMQOBEQIeKr98ghRV7sAnt8D9xgFR3c7U/kvrimlcG05JCClv+FFQ19gje7PGOzleq/ioNiX6wOwtNeKHVDJwGLayIml7CuZqIEl2imq42L5CRgxsxVYezFEq5izEv4FpwBfV0vPrHyYfL0SpmJOztissC7QMB7AEwsl89FyqXtTctB7W3t+M614XVnf0znhZxOAj7of7CS+HlxV7AFT66pvUEb2lnHqOoDYYNHet9tq6z2R8CXAbOtsFBjCta51fOwdo+9aMFYZaNRZVcKbvtbmH76sqvAPZiEYB6y9srcs1o6zumksHWXU90mDpo9QYF2ARIGuWtLViletOuYFFARbY20Luj5tWH2j9loxE2o9ax9+aelb3/O1Xgu8TqzXb9uy7grVslzXvf+D+8o3AgdbryuFFrYEpYbJAB3FZIRcBO9px4F1HkqfqzStUqAG76XWMtefsmlkfQmY8VxMStTLdf+c5iiA2PZ2XTIGgKrbm1myXoTSnuFUqDBTC8Yf4zGgCgP8vlguaIAAaMjvzVlroP1cSZdsuZ62nqHK+mJBrvagusY6mBXn1D5AtVLtHb2eV+2fdUIfe1X3vfahQKryTeEhUHvHe2UTHpaHf76G4iuuWGdJtmJNeMSOWQICBTIXQ67s4Na0rCNHm0X2gnIF0XmZ9K4NoyvUetdlrvDvkSzKdiKLEaanspiuFTTsneASk6rWMzdbANaSZ9D5xwQlAJLFtPaI8aCziEds9dxrO8EvcHivsSznH/bI8yE8v7hfCcQQ+P6yYx6/W7tLECtYdORbFMu/7Ilj+8kSMvf2YFAmlvZQRLI15bFZ6AcDP96f+PH5ifd1YY7Jditto2JxVq6C9C/5KsE30Oerg8R0fc8YqbocTDqdtOMauKQtUoVkuCGVl/C5dKB0YUFwNAT6ujUylMwlgSCdpZSGUFZ7ZOp6DDlZLArw0XOAk6zKZAF1jIHmjp9++qBNiECMDkTHdTNfhlW+XzHU17hkxUOGZe+nWHFFaOkwvHPgiokrAveK2R7nL4EODlUL2aK97/j5Dk5SXTpjmcsXltwEoJA6xRBLUK7C6lnS1q9zrj3GoVICG7FjvUpHYFjFsLqoObnAZC/z75Dd87VMlY+WTRNb38CcJfk9BwBrez3LD1YC+cWZ/99//Wng6Wf/i2wpDfzELCntAu3IClJyngbS79LI4hk8dEc2gUauvkI5GIPGKwemqocOtoyRQVGBEZkKTZufKC4F0ZSiwJ2UN5LsJvstVwChtQ7TBTcmCtmoNRJzxZgBan54ioamU1Li4nz2vKZtBGxR/9Ih7YxEE7sipOi/QTSQhQSg5UBzcFxnksoYhsV8suYI73SOocC6NIa8AJ7EJVDr49tfgEz01xs4Tvz24xP944Wfv33Dbb8icEkjwXC/ieoiDI6GZh3323HBEPMDhsYJBNHw/j3QuuPsHxj5xszAt4+TByKSgcf4AbeOs32I0dRwIzEt0BuInDZRNBfysZ17jQRGYxD0+jhYdbom7jkxgmPFvTWCZjpAAeC9DH0lQmRTmAPRALPAmG84DIdzVO4afzkhx40dEFbSgLpGW3TOMQYwNuhFOnziPICqbJYmTJPGDrUTGDyWjgiTKgP80KeQIZMzcHYnAyBY/bMZojfObWhbcly59m3MG0kKEQAjO88KQY+vRkKb19tmDi7Hq6RtvFkFPE+ORL/vS+yPY9G7Tef/fb+RIP3ZV3ABitkbq/2fg3v76Kcu0cXooegfgyNbTsvN0dtBxmtTgPCIGtj+Kc2xYKtNAUZmjew3mJxiLkcEBXlNZykGKxVNNqkfABeRo3ghWv4cc1fbBHQfHUAkIi6KcU2+hkk39/hffvmLroojbglOMbBBBXlqCShKMxPGJtCjwR2suMh2ANQiMAU8gmRQQYf1hoyg/lqwQgJXAioGXA0oiNILQYVzBP0QQAl+mqjrSyyZ2Q7t66qY8VsfHyfbkq/JEbytYyqgqNNl+l3arxDo1ThBwxl+LZAnmGB6NoFWu3XHs/O1Cm7Os5PFOdWqIJaaA/gxOaGzOytYMVgZTwNb4jIxBhOD9vFa8XYk2xjK/ceUPoiCvIgbFfB4o5A9z+hqGF7MM5qFui4mP5VIPjWUqD3REZNsvQJka7LeamHJiRpJXWeytRNde4T3RObFeZ4oLmj5o+u6kKA+gRkp5pHEFcl62xXu0PCDVTVTEMs2EFAEWL7pOA/EDHx+khXLzMHhYbjeNzICr5PMmKNxsk1vZJWtsdCZqKkuY/IeWmN1ddwPdl5nG3KFUtclEWCJWzPxJ+u5uFsDu/l9gehWeW614cqGFdhi9XT0rGwza4AtIr5B+a9AETszBICaarmVKJDjCEzuHe/tkfx9td+193Y1XklIbi0lMuSoS5hp+P3HW+cz0ZrTb+hmpn5njsHBP6PBW8PHR9/PIlghLfZwE6BZU5tY7ClAoJ4FE+4xpp4d208qeQVsPeeVcK/x5LTpHGOtVn+dqWLWVfKGzBUINz/IcJAI/XVTw2gmmdMRSR0Uo19wsC2G9mSIFdrWGaxpVa0Les3SD0mMeSPSFmO5HxJyL/0LrYwJXAWoh1KAAHNespsNewKmL9FZxqLXCHhr6K8Gj9Kikz2fYni4/6EVtgp/si8JjHmz1eR8MUadu9Xtvi7+flT7B1uQej+2KHUBvCVYP/hskUOF2gMZWPpzCUNpK0YmAYnSikrF+lAMhgI2ASjh6aSK8c+z6KpjsVhNRtYGxKSJqYKyWtuRECOFeyuG4sys5M7RD7aeTcslB1Hsgvu+YWZ4vWRTmdUBmBrYYhxdrz0BJKYn0BnXwxjTFbg6ecsIYUA9t81YRDYFOg4CTK9TawG15LhjPBgWLvtuSoar0FexYjHJs5J8VDJK+Q7A0O3F35FW1+tsMDEtaHMnNeNg+Pz8RGTio7+QZtJ+JdN3CMhKU+GllSyBwi+3tTdrarQ6gFD6ZljW3HaG/cRnUc9fcUkW+LDzidpXW6YAqG4JYLelVmw+JPrOLg5DV1sjInE42WVm1XovuzmDU2KPhuYfygdo1z8vxnDffv4rkJNC063BMxHuuGPgv/3L3/Df//Z3/Pr9DbPJXBDUD6WAviFxVXSx8hG3VIcPv9THot/hcAgO/mgYyrFjMsh7HSeQgTkG2cONLFXeL4fD/PLLX/Dx0y/4+S//RJ87nB0I94QdDUfrOP0lxnQHLNCcHQr39Ql3x3H+jN9+/Z3+WO1prR04j4bz20sukHprlolXn2hm1Flyx6t3XJ9vfP/9d+ZErTGOnwNzvrUOhjEC78+B3jp6P3SWBMDAYEYbNlpiBK/xp95xno4f78SnT7x9Yh6Gj9fPBOXuW9gHAGnaHs4En9PeE/f7ZheNBbqR5TRkK6eYj/Eewmd2+a4F2Z0Yn4AB50GJmmzs8mHueADgJEEWc7mbL+liA8oLkbiD2q2H9JPDxNTMQEzQTgfZ1LQdtkgt3QqjoB5XQDmFEyiMYIdQQoLm0zDvRPYTaA2XdPD+zNefBp6WIG9uphONh6GqOpWq1N9ZwVslQWAAR2crhyBD625Lb6A8san6WOibe32GLRCsDFMh8k+jVtT0YjHsABl1YdI0UcIdqTY6SdXJYROYSiWeuRMr3WNVliyVjuQWxTNgCwgCREPrv7Uq1c/Z0cicgYRZa+3BXc9uGr5ZNgBITnJ5WmDb/5lWLDICgSOZNIcFwQkLJX9MLhjydgi3RUaN525cdaO6PjUNoKtXeq8gMu4hYxyAx0JwAQVBi95c7Bpe8Koo1jPEdoqlg1N6V8+q53pvfgD3Wpaexw64dOJX4aaYRQGxyFCMjkr49pvXrq7q3PNzC/Wuqjms7qdWdv+OVUCVBaxUMq3YxYFVKlW7V1qKoUdH51S95DVVthCpsbrSkciqEte+35HMYiNZJS01xUpQg/axrkzP7NGnjGcNqHZ1VeYfS7dMAoGm0HtBSUrMgQnsCWTV+hUPQxkO+K44V+W9MP0sIFnbqNgABRQmDL5uvarhdXlVdYWCWVVsV2yzgxwrm2Fl05RI5OPeaw+i2CSVIKZ+h73RfY2Ah4IX2zss88vnZRnRf9iPD3uq658Rqhb5+mmdo1qr2r+O/flVURZ0S/uUvI/6jDJYqxqj7xVLp66pRHtrHQCrbQzxRtf6FejE11RFd1P0v9gz0O4VMFX+QReBohXzOYYYipUhfXkTYI3i1t+aaBQKkGEl5LzPuzurPJH7qvnS2j9AnZVqZTXbzxKpZ6H3zMczXUezzmDWcvMHu/VHt5O5bF9koqTEUrZnBQVrPTZIzt+pveF7j2kPFSC2vFX18D1YquvM8I7XtRSo8tRo2SFI7YvHc9O14fE70HXVnsbjHf49Zg8rrrUym725vOvy/UDmw2ekPZ7iH77qutYzzFr4f3hpfdSXZ621eLyhbjfXz/aJL8OR61ysb61TXD4SsoP1yXqXx/uibOQf1mtVXosBsVjDFe/U+zyecz3zBXLJpkr8oQDjitGetrI4HHRNSXDbsfbH8/WJJ2DHz4mkN9bw8W3zn77e9n5Ze0vvkWuf1hrx+dPP1106asLRes0jpKiEpdYxH/9dX8sWPVn6pS+i31qBuP2hHaj2JgBLf1x/nYXS4ClwKvV+UzFrW+dk2ei1Lth7I+tp6c4eNqJ+8sXFAIzDXQNu1lbTc1jHIeU2y55CfkhaYHreO5bA8h2bzfj8YX75O+vcoYoYqthn/uOef0RY+o3F5OI9PDzm4xwY/mBXtC9tneW1ato7fH6pz17r8O9c+2ZE6GybfNgztqg4oL6VwLMtdZnmfSco27o/zhYoSsCFKeha4xBzYa8q9rCYHUdUvrL9D77YLf66YpNy8ty8itUE/Jh/eSIcxLPXplh/X9wyCAbt55nrue/PebznevZalzpWyOW7v3zZvq9a2z++39NX1TrUv23tFX6/GJyoM7BN0/qgimmjuoEyCWp6w5zFMOJzGhG4xsDv37/jx+cnIggmZa15EkRQhKZnqHgCBEefsbBMJgFF7GidrMR8DIuuvVSxr6kVseNox5o62nvH0TuO40WpCTRAz7wFUIJNK6+H7EJoCp3RTs8AxiRLqdYn4Q92H1act1quHy3jLNbNFdeSlMWWuYo3aSTGutfQOlYpqBn5JtN4Rov5lG7ULXbjlEfTH2bKK7cPMaQMTbkS92sVELYNqLCJ+X0CqOnD1UFij9fU8yi9uopDK4aBfOFi+6Ly1ZRubeJ5LCuSTpS0QjGTXLnAMkqoQTcpv7sPUKKcW1aCqnuk7MvkBHoN70oNLfgzX38aePrx3NUyYNaEzinRMk0DGxKdYwXFkSHlePUNWgAxpvpEdwvGcAYqEwMJVeFhPHTOEa3lQuK+kTlRU3e42RvF9OQ44roxxq0+e6Afqh5pnDfGRDdDNye7KBKtHwAavIKz7FtkU1We03n8e/Jh93awQpIAciLHXFN2Pqyx9WuQpXVYl3FmywPZWwRufm4vglwxMBKYMB6MdqO3ScFBZdL5wY2Qjeh1tSEZHK/zhJvjun+AVPAbHiemGT7Hr/j1x+CTbyDzK43UfTS4fZATEI0TdxJoOPg81DZkYNX+GmKnQIamPdYpaADe+Uk9Lj/wfk+METg+Xku0lUbZSBluvgQfK+Yn+Jp63mT6HEfHcb5YpbsSt+0qhTnbTd0N3g0jNAa62zKuTBi2N1KRGAWKllDwnqwiSz1uGUk5AQOs1/3zJWRaDWDMFfjyeZBiz5Hgc1UQR0yi2vdECOmGO9rRqbEAx0z27r9aRz/YEmm52XPuZPZdF1bglKj/xgqWqjKnSArz5tjzCkxmsK3TvUHjTTDuiRiB83hxmkLwXnr7wMTEPS+tkWEGk72j/cS1mBMNjqMdGJgIDAQ6Eg1DyHvEhHfH+WJF8mjAuAfe943ZEy0dh6p3UcMBRqL68YtVfuVU8THlJJqCnMZ9Mm/qSTj1JNwM8aUqrLGlLt0yMR+nFidyrCBzc99oaO+hllMvpsFAc0M7HPkyoDs+f3BUcGkA9H5yzxwHxjXIWFIgcIhZMi9We74dH5gRGKr8ZyZeGlWfqmBhXuBEPLEr4MthjyH7bLZsUDlv4TBo6apQy7nmzcp5iXYb5HAT3ViFs5UoJ8wOuB248cbMAeSNwI05Kbr/jolmLyS6/JrhaCfBalBnrjm1mprAhMTECCDNMJ02/BoX77FahJXksHqjGFMsCPMJB9lr5UCnJqh0CZrDlCy2Ct5DzNvJgoFBunqpIkYlywrnGqumqQkma8y9g5PztC8MDZ8Xx6ezMshntOohYowMTeOxg7Y3byAscKsyvwoxTuHiyKSYqxv68YE5Bq7rrUktjwSkRCdm2ThWsDjtiXugKofH0cgQ7c7WjUHhpMjJ6bTmDB7he0pROCLJiGneATjueTFwyypG7Kp9b41DIJpaRTRF0cViua8fcAW8KaC9NKnQNsjjjVXamM4KXDLM9GIRVVsAOluy3ZCgBtXMKjU80oZMTeO17Ssq5lngTCW1laDp53ITrdh/YMvBrWmfAJkI7g6MDYhVssZu5EcruQskCIrD9vMk+zMZw4w54VYaSrze3kvTaSwGCwzwvttcRWKgrZqJS1pXmWRQmBvOl6Z1uWPOwI/P7yvQhZKFJr+Wk8FqJNskeyNTYsyJ90Wm2XEcXCcxU2FOzc07QXlNslAyk5Nh7YbZe9l5Eo8MNwanEvWT69Y42ee+762FU6lrUB/wut9Lx41MDODsj4ICUoNdtHecbDqy/aaSJQlL2359xI1mhn4YjrPTrxxd4IyAJvkPNz6zudo3yI7ifmlkPa5JYrambdWeT4HqHCczlUgqflGwX5qMJbVQw4lqs2ZlTwCm087bfaMm73LwShF5yYxNJIbzDH+OH3DZ+cgCB5i0nscLcwbG+42drJfIJcHKahc5vOQvRuHD8q94VOh5Bifor3vvjEXEzsqsYQuG5oc+q1gqtEc8pZ94wgq175/AUkEjLu3ISzpJc5JV3zpFjWGbwTbmWJljFV1mTE77igINeb+uSXg/xs11URuW1WFM6ecAMLFyMmPZdWpOYvlNV9pmzjAtE7hiYsbELebzcRwolosyUdniwH1/IjPgpyblGs+mA2vflb+Jx2Su5m3FHSZ9Ud95svSQQu1VwGGMrWcVVq2S3ErEGbdWV0Lt/2VZE6gAxZZORgrEKR9KNui8xWwNCq+zXVFtQQUQB8/v1g2TaHNqb8LQDw4FsFk2n/adLGfZWcWZn+83Y7njgCVjkBgDVwxkHhyq8iJb2oOyzz0C7/vGdb9x/vwN3jt+++07/vZv/4b/4//8P/H7r9/xcuYt70twiTnZJEhcapWaQtioD2o4tG5upvzAGGt6A/qJGWTilQZu987CzT1XTOcOdDe8Xic+Pj7w8y8/4/X6EEvNcfQX8+vWMc2AOTDihl2J19kQ3jjx0zSoSG15EYn7nvi8brzvgeP1ghlZei0m7ShMzG8Wa6sA9O2XvyABfGbgdtcQMT6bMzuaB+bNDXa0RPNAOyb8mPBz4vcZuCIxT+6jQ9jCDOarbhSkjZg4ekOeHd7I+vz790+BMbFsTc2MsjB1h/AMfTsPjBi448IdZAtncr+9+jckAjd+W6AOwScNGVJ7IgT8mUOT2YGMgXdcGPPCiQ+gdfTXB224JCPGeKNkFFwdAkOYhYUjc+DKAW8N7exotwExBNyRwZtIDLwJsyW7vJh/09ZSMzJhUxN1a1DQmDgy0foAHnHOf/T1p4GneGBoXLltzuWC1O8px6fvVUBUtPsahb5eYVWxsUUeVFZDjSPbgn4xNfKxWAU518uffzITYypRwNfvA2vf7sTFDBRGDar2o4JOgxnp7lEaJ8/3QAU5XAyCAakWLbUxlG5D6nWrb9uEEjKA2M+r1kz98nJuq3WiEM9l8G2xoMrhF71dkaPAFQbAodYetiRh62RFLaCCy6yqnO7QsA+NVYKXqwe22EzUdIDWxQkuZADzpjH0cqIpmpXtivwKokpMD2tt+UcBf/13JlBJJgxdQd5KiAt9NzoK2FSAYovRlpPB2BatfWxBq0pH/SzXE1o071nARezf22+AZzUqNH6+ppm5mzThcyFXa/Jc6ppzMz2mi21XiY6SSigwQez2zQLGkJCAMzW4IgeWiK7Ljj4R7qTulsNh3kSnrgRL+1pJp76FqpjvwMgVkCjZn6CoXSjwgJOyq6oCn3vsNa88sPagArldha9z9zBytUf0c7ddd1s6IemsAPa+GDEzKRwKo7Yav3y1Wc6o85YLeCr7ZKikoka2mwL2AwVUjJikAytgVbMMxrzXupI9oHU2JhgAVkI516h7ru9KRB6PrirPq0XDONmR9zhXorBpmbIWa60hwAYaJW2r574SHI5+3fuL41wZKJP9VMk0sF/oMM8lOB8SUQSAoPADSvi1QG2pJPEZR1Dp6gG4LMtgO8EvO27Y2mCmvbA1YWp/ce8T8H7uJwXe0N5VgFzj08noenBZa/EefqaElotFaEgscty60hKW/mr7DdjsxyjQqGxO/Z8YIsa9UuL6y8nZ1wRWqQBPa2J9XqL2UHLly45gV7boy/R69sUzqXokbcI1BEwymfDE4/xVm+T2q6XNR+3CDrcQUGSrSLQuraqjtWlh62fqdEAFI7KKKJ2SL+djbfTKXbbtKKmTJ0cLdYuVYNdTeIA8ZS9rD+6niPVv+7JNHrZsG6v1Oj2dfR9fLkTvlbmenUKV/d75aAlbn29qS9lnvbn8tRK50qOo75V/TUCAqhi6YGUdsZlTUXtHC8sOKWp8rS2PzcxaZ+1hr3drve87T8acDlVoa22SNfwoZs1e+IeG49rgX1ex1iz32puermvvp6pQZvvn5tS6eX4ZHrbEVHAQs57EeHu8svaBr9iJ9ks+30sfyR/7jOz3jHxsQ1vnJGas4txzxz2x0brNlJ96MmCf/rH2SVmnYsjF+v1ai7py2R35bf43waXe2nrmVkbHbH1GxaIANje3Qrm9sDrPnNBqKGYer6Ra95fMRHU0yI+zpltsssdZ1B54nkeA+x91ntf3VcDx2iN4XCTqDYAv28KWGU5dbzH1n3s1HzYYmeUlvloOK5slIeDy/cA6JwWerbPxfFryD8WUWO+83reuP2UPsPYw91T9H1mvK9eALd+eQbDJzRfrJcG1L/+4P3OvWUIxf9lt7SOvacNr/RsATkB++vGyv9UiuXeGret0dXmsFc/cMbth/V7te+pmViFiPwYo5uO+kbzL3J0CZiyCrbb/DOYER9M188pqSqJmGsLMVmvh/f7E+8cP3O835rhZCNKzWfZd33psMX0v1v1tYRD+0hLPB9lWLV0tXNox+XVPPNeuJr96c3U8TIxxcy9HtWNV+MRcxt12fGdcpzlZWI8lb6F1WvdQ+1tSBGWHjB6/t85Ub3JYQb5eHAoiaROD7fjbIJ3dBgh8zPlgna6dUicOilCSsltzIsYNT4gMIg0/tXmnDhYLuLpN7eOoLWXKcXLboFkCrZxGhgqfaAOUr+tBzEQ1SoBStFyPpnMRERg3Aex6I6a9jPQieGYp5G6UZIltXcr+ue2IinhN7u4g+JdNVsw6RvglPSBwPPgGFr6IKn/m608DT2vEd60aGGRm0DkEgDF48aspx7SBzSXICuRgAoymJDoU0Mdc1RYXhbup4vKeF3VbIpcRJMeek+8IvqyYBmNOXO+hzWBED0ESyrb4X4U3MzSlzasVSaLenWwfRBnIJ51TAVjZ9gRihPQR2LbQz2Ml20XxLdChyj1L24qZ0QIGmttqi2PVNHBmkyYKhNg2wB3hk6PgUSNJgaO/CNDdA3Mkvv/+xl9++SuO44XP8YkxAh8fRFxxA8iaGlGMGjqhNPZ8Zg4gyYBgbsKe7e4d1/hEzIkP6V/11phE3JxsNcbE+e1ntJc0fSS0Z40TChMCH6LqVtVmSZZVt2r30/ObAYuAZ+BQb721A4kkM0QOo4EHZ4wbMxN+nHBvONCRGZjjQj/Y07xACO3vmiC4ApTck3iahG7f95vvM7fR9goklSVf1yVdDFY7z6PJUFdwkEpqFZBPwYeRrIzLrNxjYhIt4+HVeFyi405BvkcwAiWlGYF5X4iYmHOwB906jmZA7xjXDWQuY5oxNZHiQPaOiMS4OGI1EkhjK+ZMUEMnSjhUQW3n/R8HgYn3j0u90JwSCe94vQ5WcMaFzGDFujkZXQJruSk4dQ3YwbE8805mHgFhhe+tFRhXGjwJhCNbQ+8fMDdWJsaNe1zIPBRYlNMu5p6pO7BaJyvB4fl1g1gfQKoy0nvHdb1xXZ94f16A3QtYgx+IHLivz3XdZz/Qj05nmACMEzWPg7pmn9f7K+0YtqZq8NqMk1GCzJjmCfc9iWdpR1Xbn+9AsP6eYj10N6RRf6+3huPorNRPsrIyE2fvi4I9NZwhjUyBmSxRlN6SiX3YOvTa9woaR9zLZrpR04XTmDrZnTDMcWHMgf56wb3hPF0OePBGVqvPTqxqOlulSe6+znBr3BvFYLNWyW5izoF7Xui9U4/N+JPPzwvuhl++fUOmpqDJDUbuBBBgoFShCGOFXH8cfH7+2GcMQIhMzUzITFQPqkZyGwjgmYIrBYmaUPceN21+QOfuKM+ERCMLtR50bJB8nR/2sW/focwp5KsXkyuSlTLXTEwDE2MrgF7aOGI6tM7q2JxDH9M26C5feHZVhN0xI3G9L0DPMMPVyk5dH07RhWztl3Rqg8J6NqE1fVRo5KNjFYbqt9ewmdjTLcvfF4BSYF+W5ACYTGTBeo/9VklC7fPWyBpCppiXJi2qfWnrS5/5FZ5iUKm5WGIylZ9SC8KsTViJ5wZgUWuVDHpbgdQAonQCKzguP6SCyj0vJi2dWnlmHPbAKjYnS57SITKTn53SLyH1GI9MHMXeiAeDj0K0wJoGpkJbLKAf+jcWlZ8MCcaXsA1GrBa2BwLT+qHPmSiB6ydoVIlTJtmZlYAVQ/qo4mPNs9a9In3t5/Kt93y2djq8Hat9inFtrutsshWt02Ks/CgNx0Eb+36/sSf3GXo7aeevST+nBMlstxTyPRxPANaLnqKk62gVixbYheX/ioEi1AcLIloM8Fz7/bqL8Uw/+PHtte6vhiC0xkmwADVc3p+f6/OamI9li0rLaYmCVyHSpOWHxHl0gRSumFyJqMbGUxMwVvxXvqEO2tMmR1ThqTQ4IZCC11ZxWdQUq71Yey3AxsgaRMJDHBxjb8ZiV02J0r4OZXkFqYfW09OqaqH4UUz5DA54ctNeV6EH2LbA9oSr1pnZRo4v8hTlHzOLaew4zw+yX8dcrURu9N9LA8mK5U3/m8Ep4RwUcBSRTnnaVNHSdxu9VReMGIVO1kYEmZFTcQu/RwDiOA5kUM+1gI3VjlyMVlRBkM+kKR426QUtFpTlitMC4FqZy0cERqjjJe6Vey1JBREpKof9fL+RKR0tYxxPsI1xUkTg9VMXS4b3fQXZjW/lu+1sOBXvfP7bv+H7v/4Lrvd3jHHzGRYyUeZTcUFrAgoSmkYawKSa8R3MxMNPBIBrXmRizYAfnXqg02ExMe8LFrm0ZatoCtA/9NYXMDbmDbvf+PH5G9IaAr7lYTq1+s4XffTn7586PxxmcV2aKhkAMOGN+noEPNnVM1R4THTGsmbo941IMAcxwJsjesfrPPH+/I7r/QlctGfNuZ+dvarwDmRrnMB6DWTMJWZf8EWDwNxMHJE4PPHb9x8Y37/jiIRZw/H6wJgDn9cnxhyYd8C7S6v04JpJImgEJxSmKf8DcOvc/rj0HPzY9iQmEGSupjx7EWYsgTYoYn9PoPuBo7vy6YEfP94wd3x8e4G6ab5sGTGZR+fRGytmBIJxCLA0spHAuG7hD0FiTOuLGVt11oiBxO5wqrb1mAkbjCt8+heQ7//u608DTxljOWMedghlxRYcLEYKKvDpCxVGJe+Yy0BCG7QQRINtpgeSxtMeAUglfwak70CpeAQMTJik935wMYPC4FwktlBZ2WldrRkfrvcGKMjwh6OKEOCUuzqdicXUUdGTTkcihhmq+rVOh+2OZBZG3CTpUAGi0VVN39+ta2OikjLcq0UGuYK/gif5Pn11U+0RwBRqHTW+clGgnwyFFMNhTwocI1WJ4LW8Pk4YgPf1Rjsa+qvziUYuYzj17EhFBywSpze010kR8TmBptHWaot0qOXHdqBd97TDaTrKiEBvHedxYEweYFe1ojkTZsyQg+YBSwfyHkAkerfVQrMSqi46+wIpBPbUetuu2Bb7YQGg2iveHuNmdQ+reuQGtkEJfFVCuwLkrKftOAp0tI4p0BECOSp4qvHfZkoeoGAGu1pQDrpWsOj0Bom6IvnLJrUbK4F1Bj7NvMj8/Nzm1BPTDs0VX2nf9P4I9iso8nXQzGyz2BLLOFcVbVXs6+y1piQ5yZK0r2yDOocrsZpztaGRvFfZ5E4k6DQaW38mMOalnnExjmytoPIlgU5GY1wCt+usI/fzFRhSIKGho/nH6jHvTe+n3zNVflDtc7H3Afv/k4LyZYArQVIyVABpnReCzQTpTEBs4qkxQucN7Q0GX4uauhhZbJ0Gk5bG1k9ZKaQArBJjtmSCH4qVV1UwaXMAgfIGtmFncJy6F6VYgTAzX4wxSF33Du8HBSKbGHZKpGYU48/XehYrMlW58Tqf4PvaSmSCrLZgQM6K9E7Cq/oLiL2rxT+UPNb+yth2YdnjuVkm3HapffSo1AaBHVSgHLtNo4KYYg3rrvjoFAyMMXDPe9O+/QE1PMDxGqtcewBrryqQtjqjBd52jnwWawFGu15tgwzuamoXDVhaSlvi6e8JRpa/L5HoOcpePQs9YjpoC1YVuQLE3vr6fgVU5bGXb/SmJHXbnVq0OsfF/C2GUu3hfATaS8T2YWdM+8D2B65zVB+j/1zg0WIhLtYM7V/VmKrKS/NWzN+y7zuX1ctRLSn1vsVa3X4qpc1W9yZP+QXJwrYBi22lW3rcHGMWPEDRio7YqhMjZAufk8iKdbAXqNqflTOj2B1IAnRNdr2Gh/Bav54dM12HadBGYjG+65MWSwpFe9uRA9egbnDb6czy8alYi4AAbbheVvsjEmkSpG/VsqPErDHmtKiTigWy1HwltuRTmD0hZlDZ1UwUe+kZz+n/9agKyBTLYu3/zb4um1i2cPUSZO3cJraCkqzYtsiy/OPeY6YYlLGcLebFiuu9IoJcv2fVe5ICrQVY1qRaaos4gQe1lLiEkmEqcoBtuiwOcQOEVTIWnKyHBNylr0p7MuYtW15gOuNZthrJPxr91l61YrTY8omzkAXUOY7NMFbhsyxmxeiVe5gLiHkYiRo8tIYiRBSPdO1jfpat81asjxXL61jtsexAuvSUcsdVyzaaYJgEljad7PC+MtsHX631mYbrGo/zoTOwRsRi7bHKD7JeKMZy2TkAYv3hC0OLtvB5FEPDKR6fUevhTjBc61bT4EzXUGQHNJ6aYuXOZU+g5FjP13z5u0q6s4A928/AFfesoUbFXG7Kk2bFp6ZEH4vRN+aNBfqlOMZGCYzj1TAjOCAGBm995c41yOH779/x+++/4/35A/eYOicDqcIc/WCx1huBxBkcLlB5W7I9HkjcogKbq40sEzknwm4VGAK9qd3VacE4aX2TSQDg9Xrh49s3nOeJ1jvBEsf6HBjWvo15A1nDVQCCKRMRQ/lhFXsUeyXPUZvAPTVErGExG8/zVGGEBJJZhAgztKPjtBfOTMR9rjbmMd6K/01sIZ6bJqDMzBZq51nKV4YTwJHAEcAdgI+AjwJ0DC0LYwDMBKJr63okQp0oDgDeUNbAtG+rKFT+0iXmnQWclN9fvtR2UIHKkL3gKbSaJr4AZ55zk12u90rjgLXS6OVb7rhydQSBNi6e9leHuOlMETjkvTZzdMnYYAq8n4E5H8WT/+DrzzOeJjU/zI7l3CMCI5PIIh4PB2CQYZ3JnEmQMh7Ak5IOT1YluhHt9zTMm6BNMwCei+oVTiGwEnmtwCnVeseFSzQ7cR4v3HMgpQyfQR0kpFgRCjBoGB2nn4ADl5xOjTVOgU5jlBz1Dg52K5EORDN4P6kpIuTbONoLkBFggCBQQr3vr/7SBALI4e0ItOjZpLQnOKWLxjsjcccNs8Yk1aSTUPvRmt6rIZP6SjFpwEtAnIz17Yx7V/95EtTJSiDc8O3biTknPt8/ePB/eiHnlD4WHRaxvSS9TA7/dZz49vrA98FxlTmp7+WLHQBdu2ttdC5S6w9bQuGcOOb4OF8Yg0lNXBeQiX52GqipIDexdW6CtMuu529ynjmLAst/h5BrYINNq1VHe740NNb0ndaoYYEdEM94JESNTrtXoC+tolnN7wpEzQwHus7OgWmTQncwZFV0ASxGo4InVDCdlcQCBRcspofzfK7tKINUZ8DK/Cj4bG7UOdMe98Ve0FmuFp+kHkbXzzMTo6YtKECqfJMAKoGyqqaYRj8sAC5riiMw1JqYaiG0mvz3eCalFTaHKmqaWJUPA2vgeT6OBu+uCUSBW47KHXBnoFCG31pVgVT59kPAp1oVUS0tiYaGAoIzpClmB3o7oDrIqrYxOA6tw0DRVXMIFKiEyhp6e1bkmbStpFAVej5jrGRuxiSlWo6H/kJAifR4ZgbtX+1rAVaZCT9rqqJAJ+d/RznDBG4osC8tP689t9cM1S4XsuGRyJiYcWEBRtJp6Dqb1/Umg7MFXu3A0Q7cjUy5RLFd6GVqolZa7Z9lPPUIy47UOaDO1Qy2VM7kGXRNSgsFoc01ye3hQc+DgHslcTF5nrz06Mz00bnWc/+3dOsEIixCZe5CQk15BQytEcgr4IlLaUA7cN03Pj8/0XtD701TklCZ5gLXZoR0dLT/VzteIKCpewaQxUrtpgL2gWqH5vMqzbe15xnRce+t+JPv11abDe+P+iFlXXSOoIp2PS7Z2dAUoS5WX/OOIc2SooA/BTRNvnEB+CseKHCX+3Unc/uzvrwJEjWljXmlCfiwB4iaCs4rT8p13w/u2tdnn2JBLPuzbRVZB8VJwxM3WQkkk1rtmWnyFzeIGz4YISg7t98k849/fy1wrJYkXbg7eNAbFhiijQM3Jhwzx0qmKo4pZvYuiFVl1Veb0piVzfL5HSpgzLlXbduxB9vIDfAG6oY99Kr02EL+DpUMQnFHPp52JRsqJBkPyWqjrnZaWLnhBNIXoyz+wFrfE/Tk60ytFAncc1DfrHWYEXAqzdGMwBhk9POB8vra0fda57ZdC5BNJgUwR87xsHfynQLkyWjE2gX82zgFNzaTHFCybJx4VZ9XiXC9f0kLrPeqZDwIOD/3WU26hJiVLG7mYxIl/VqBVgnAvaOAJxgFNjiVTb5eDMwqkESBai6mpH42SvcTWOcMuVtBaGN2YaHO8JL9qPMY2xykgprMuSfjlsxGfRB4hvmhAjayWrRVbEgjE1hr4c+zCOUOxrjKkrqWzHOkNvSw5zXYJZR+zpgyXSz6TmmrmXwh5P+WYZFdrBgxUwwzxSrvuJadD0lulJbhOkfgvndvKLkFTO3XxTYsilzZOZTBROnVhWLOOQZQXQFZkh1fi7wVS/O8cg8QaKu8KJaeMDXajNo7ZmSN9L7iuMjA/fmWz/LVdleaU62mWcoPFeO7ifEfZW/FMKl7mkGdUzLdm6Z6B8wnrHWc3zquOXF/HzBv6N1gk7HiiIDPwG+//Ypf//53fP74nd87T0wBTwXiTjEp///t/V2vJUmSHYotM/fY+2RW9fQMyUtSInAF6EUQ9P//jHgFAaIuLskZTld3VeY5e4e7mx7WMvM42UNOEcK87WhkZ9Y5+yPC3dw+ly1zTb9qc/IZkVxOmnwOTXNXV1Ho/AZOmPiNDIajN8WvC9k6N1cgBhCKZ9/e3vD160+4vb3BrGHEgAV9d561RNgE1uwgbQITT46umJxchGPKUpkSsiDC2x14nuK8vQBX7m9vCAC/fv8mFL2OmjuO24Hj6Jqwx+l3z+cDz5M8WGuxODqEeiavqeLAYD6hR6BHw+GOOww9gCMMxwT85L64dcRSi6JkZQlEUrqjLfJ3BUuebs4OsAgiHLMtMYC1HN4YD/FoJkp1F4uuMYcb+aMsHBaar2pB0I0BUAyKsl07lrOKtYi6GmPLKAKFgkQADqLYHLqfCSxTniYnuCYIIIimbN2xRohnKv3Of4nEEzMAcAnzAqpPUEkydOxAyKhd4I3QvXQcuoLRtpixxiKMszVHl2FZ51NKTAfcQIObXEDIyUMByCkGDrZnLCJC5ph4nAPnHDizKiDBbkjC0VCSZglGyd7Ia+ARVyenFCMUVO1qexrR3HpuCACn4DS/6bNYmTGQINObA5MGpMgrxd2RGM9yhAHkJJZsdWDmn88Qk86SVZAAKass5y08H0/8+udfcfx0x5f7rSD2HIU98FxULE0T1LKKEGE4jaSP3z/eEQ58iZ92skH7+3brhPGtTPJxn86TVQF2trA6SKLbxdYDdPUTq8VPVTySpWUSjFHbnAOPxzsRA2vVRK45eCBv/Y4sM6+hZzsnYgbaVxLdGzjq3O4HW4TmSfRLLB7O8kK2JxixlKTwMkRpKKsqFUqqLwb6Zmw/AIKIG1PVYy61kKmFqomIb8jEGpNXawarL3FBwiWK5BJypLHPADgrG+6suCfxPN+lQIqnlcE+GPznecMK8TouPVMUogaAWpRMZPCU1SS0LcdU7Ua9twvykPc2h2B5Srj11gpKzTU6lPRdGyab1caFffdCjSi8q4D06oTx/lVls6zEBknz1X7gcCBakUQnvxLld6mawjVlYnC3a2FlcDnlaGZwBpC7MJPu2hcQAbViYOCJoxvut4bzeSLWrFHNGXS7p5PAYDZkNJqx1aq4ADLQMq7PNbHEYLcRFjw4Aa+ZCWkFZMn/qXHgiMm2R+fzm6MM01S1simL2VsrbrJcN9h2NLEWpjO4782VCFl0ZCuYDXyxG3fCyJE1zifbFSI2WkvcAuau9hZVXZEMKYbc+KKR0HpZmKrPrL5F2hADAzidnc09Iv6auflkHAZY6iS2ESO2UfZyyqQX5uQgDWMAFcYzo42hbMXgDORISDqwbCkYEEJ2fmDFE7DBUfQNMGNgnHwLmcwonV1aAbUmuPx3oQzTpiQSKoj0aM20H0ocgYSgkbFMQCgtsA1Je79yVH0mKBRkVfBD54HtdWNuZ0UmnmLLYlLEBNR6m+jD5IGaQklUW13tPZDoxR3EWMZA+r2S4jCYHTqupvOb1dXU64Hn87k/e6/gfh5DJYLyO1GtrhfHUntDwn8iuqx01yU4DY0uh8FTVo3V0mYNY6CKAHt/sb87z71lIg51L4mQQNoF37yMlUYLWlWSxDbY8ot+kc7uHRZZaMjiFTROfRKGH5l0BMy3T4NsCwjUd6dMmjH4KRuB3faecpxJoAyCHJqYpLYKjolmcuU82R7a+g2+AoJX752MjRyv4RrGQmgg0A+i2J+nKBGmiJzPZyWezZgMJi+NkkErlDSbGBoLnhOOANpqDxQXX0geUy4CUZ+fJP4A7UFrTtL/mb5twNQzuiLqvOQcvwx+XIMlkk91XWSOAVVsOc7lMfW2OpDtzbyPfHbeX5JupwxuygHphciED5EryX2S05bcPYWBHkoFZ1moTTEP+UNLpmafraxalu6mo/Tp+qwX8/3aFaNvk7pxSrcSnLDtKduF5EtloOh5tllQcmTRSC1yzTGXl9xHKKADOwWqBZmVFQ5Bilmf21oWuie1sdn2B7CT7Awe/YfHloU0B2whPJE5QBKYp48RDMsqaZYX6QIyOZxrEkTnRG1Otbp/QvO7/NXL/sA+B6rUu1PPE+VLbmSkEUUIFCI1xDmTPrsr1lxBIn6EFU1Jrl8A8gOIVGF3BM/ukLyRWzLwxGByp2vYQPoCgBBLlHNvDd4beqhdrLNV7fz+jrkCd2tYC5iPJ2524PCONg3rGfjLf/sLvv3pV7y1jhPSL7EQxnbGBaL4wwzeTYmiEEq5zA9Rye70G91x3BrGnPh4fKCpRSw953OQXLrpnPQmFI84geY5K6nwfD7hreN4+8qE0XlKvzrBFs5CsRt2i2IkAQ/P0BgnhojRR8bP4tRiEooFQXf6Df12h7vh6B0drIvkvc9JfXUcX+Et8PwYRFXHO+WzGSwmLCaO5E6Vb8eWdaCHo+0TrQ6lnEYtneatEpr34wbrDY81NeSHJeWcILzGorPvR6mSJv8Ix0F5O4noJ/33xAInlNrK9lnDobOQ06WbZBShFkVAqHKBeFIvqiAIdFjQJ4fzlgiA35PUQ4CSozehxrlnZ4jDtVrCFzDYxtmjg3mLiTkD7x8nphLXy0jtMVD1jX/2+p9IPAnKlWpbys5LIbNdLtLTV/DCCQcJT6Ux3yEwVOHgmEPX35l0ydaczJYjM7SpXAEp08ZHuSAAxgg858JzchrUAqvb20jRGU1ERUIrY+0sZEK7Q2/Ifsx8xDSM6bAlcXVWFagcHOSo6MjsdTo9TVPKznnyHrpMxeU5eWjiss6X5MDFtFQVdG3OiVTqrDTTwzvPge/fv+Nvf/qCo98xzoccd91bLCbzOna7oWWFm9/xPJ/o8/gEG850A9t8kthPdyyHBI0KaqrCDhl1zAm487CtbBWRQ9lkTAXVNAPWmjifgUw5ZoV46X396BvtIaTbmiE0nKu/VWSDh5y1lQ5TaCqRCNoo/AxUY2nCg2GNXYHl+yWXCWJahOmaGWKRxyhatiHsRExrDea9kiXlkMyLYx57p6MEUsoUWw7iEmitzFDLgWTm2sDEiT4owMCgAsY67Mjy7KezkAk2JCIgear4WiLBJjJrzy8wBc+r2jCBC+xZZ5jOvlo7fXPhMDjaXAGI1LVRcSYDKisZ3xGm7fekbE0UlNjQKUFykDNYoD5A5o4QCExNELRgewcN2EByAJAzgIZoVXJEesFRkzTZusrWJbOFhYnugaPT2C8b7GsP4PE+UeNmK4nE5PWPyK9sg0qukwouL1rbnYTjhEeLsFVrY2A7LxMBOmvOKk3u725XEuVrqCrT1I83y73NMFiJtky2B7q7Ej+hNQLMicBicNmAUGAyTkL+Y8vbzHhRTu+cRKDxg1o9rWGLQaLfmCzKbw/p8Uw+6LWXNrriwplM8Jj4tSp4DFXvso3msh+0JRcH1yDqIwNck4F0nvickjtZksj2BT6+zjNRJ+ahID4dtz3lykyFBqGciOTk3xcff+sROWSwy7GJHIlO/WoZ2FzPXyZWg0iQtYhq8JZVvgWbDGaRyY9sM6z3W615nVd9SVRycLdkJV1QJp6nHLH9ZJvLyy0xCgzq19pIh71P8i8uCes5h5JB9ENK781xWdvLWgH1nVH/3oucqIVrkJ6tspFrX/eTn6PqumxuJgZpmxrP0BLprnS0vvCHe/p81TekkXGQkwKBJLfmmy8+jXHSp+XeXNavkHEJsdbP3XMa1kIGu4mIQtkStRgHKkmQ+0gdF0J2iBOsuXwg0QNkMtQuRbnJBEVTEN2K+2LWfcnxw/bT+J6pKbS9u5IEaQ9V4fetRzPxNMYoJGryLSpUQILoVoxqO3MYW9Zzn+TDVpu1oRKF2fq8x5y3LdueRYScgCa0aiZ45bcaJ5fIL89gvOESfsNBhAQsYBy9hWo9zdcZg+D0TxDJH5ZFEdn4pam9yERjUkhcRVPPspRYLun0QmOldU7vAJkIu/ibBup1uhhWOiak03VzGwl3+Tvtx49XJtpcnGyhBAZj0ZZON7VKKtDFvSgicgP14RQ6DoburrVg0sfAQu31nGY8Ey2fZ2vBnE5aU3Mjz6Pvsx06m/kQ1Spn5f9kfJIt2NU6aZ91bKydeLoiDQECBjZ3HOV2Fxt53xvdLS4rsC3Ucm9g+zzF1l+xiFxKYUkUR/o0mbRPBVxSatvXliL5hNCYk231XVx0TChqHQ3wuAzkcCGAEoEXS4nDJlufBZUtA1fd7kL95ueRPydweMMYC+Oc8H7g8AabQDwX3n/9jvff3jkt2AdtDRbgtPszQihoFNJmy0f6cESQwxumaFl6d03u2+ioyISzOJu9dXYAeVPtkeuX0wzXCvIyw3F3JpfnecKSi9VdxQm7mnRkS7MZEGtijIlzcaJomKsoqvgCHe4TrU0052Q9+iykXQgSJFFPryXeY6D1G1oYkV4+ERAdQDO5nCEuKgBj1H5d8w+8ByabPiGnjTLKoVuO1g4cx4FxPthdocL+SsRY8rlxFDlSBTUzWG9Yk1y/FmAnCdgJZkGf0nV+rZxbtVFKyLPzCgh2Z1loerS+THGza5cz6Y2mvqpEnMZU8omvqcnfiy2KuYkOxghzPaRvMofD+OGhwlkoVxEI1k4/eZn//et3J54mDkKKnwmndNihHvYoVx5l0Mw2gdWczP7BcbQ7HzjoFK42RfiqAM0Be2usNonMrYwyjMS5oD+7kLBRx5xsGzvPKG108zt6u+Njcmz886nWHTPcesfXr18Y4M+tYI+DztTzqXao9J1BMuV0FqDbIln0nU5Q0BAZgBtu6odkcHsDeTM8mOGFGfwMYA6E5hs3b3ADZjBDbxISA3CIsJnbyxwVq29sy2lm6IyhkbWA8+MDgQW3QPPA0dj7ez5PQkpHYA0K7q3a3pSAC1XrYinxlwF14HZnz++ISb6R1iqIej9PKoNTFaHG4a+tnCkgIbZuTDp2ZeI5Ul5Td3Q3sVIPLLSmMcqLqVapCY3nNLx/PIlEOkMBHmUD5nj7wj5iGp+Fb99/hcmpdPExNJM8Lar0cliN0zVCCbOq4kVW35lFdstxloaGphGljnZncHaOD6JtkrekThLUkrBbHVzKt6mK6o0oMiJ3RL/ufQcyMAywRc4cCDcmCETMfz6XFBIr+W6oahuRm3SQIiCC40BYTujhpDZ3x0/3n7bzPRfO5yLBYOs4Wke0KEd6nKzWsQ2Rzm0iu8Y6sYR6MQOsEc0yx0l0jAURWIKRhk1o9RkMWRM0XW0TUGSvQCTbPXimGtyn4MRsTf1kaOZCksEvcXXQBltl/1u5OQGsJEs2tWDQsVkxcXTD7dYwFltQLTpsNvji+W8ZWw/D4QfefvqJqNEncG8/wxpg4nFGoh4vXnJOTklnzVs6+aZgjDxnMVclDkKVv+opl5pOJzYiWL1Cw5fjhpxg0sNIx6akayaPbkr3dmNb7/x4AtHApulMKGpUuNGoe3fAbjC/ce9joqnak8Z6ZWIisq3Z0VmJwIwnZgTGENlx6/AG3KzpzBASDUCjj6kbSeY6Nw+hdEYmMh3bUWAbE6tsrUm+VuBxEqLuXe3SQusYAHhH2My0zD955dlBYwIrESIJlbMGtL5RqgghiGBV2Z8BmC8cN/IoPM+T3AtuODQAg7GMgkDdezqsRHkCyESR0JYQ6WqSNONyfwsnFhqyMRvSjYjA0UmsSt43FhSS+DYWMDDVVqhpZSYUoYpDGaxWDkrV6NS5WX1vandwJbCIxFAAmnR7lkWfVkG4eSal5t51S2Spao6Z/L5wqyyhVLL9omuIRCZPo4o0Extlte1mJuS4H7v+9zkRFICGorDNPWXHShYZkJ3yKdfl2N4oc5H0ApZfudHZ9TWpJ/izmiYojo6LKqh/mdBAkcAkjceuCbsB6YyJ5MfTnSvHSLl2z0/VuoH6Z50q0OS+WQay2U6b3E3ArfUqbhGZAAXcLBCsCJzPB7o39H7gaJ3cYNLrycHphRQ56evNVQ99HDyb9zuT/bnSmQjM9mULI9IzgvJojt4O3O433O83oZwTcbxXNZ/zOA625woZAwUmiPQz6GNm8Ho0EVGv1M8qeAnlSc4oFgcC0p0Zs6w9KCQTPw0ahKGbWtlu6bbRhMkbl62Z+Qw+kRyRKwbI40I/Z6o4R58tALsk+TAqeQZ32sDg8J2lAM+UQKiW5SXuPemI3l2IbY5kn3MBnX5SOw4UKieTibmxCjjrdFbSomIr5ETWbB8YQvKmXJI+gGfRhbZMm0oemYW5Bu1RnQKipzOwVdlZnDLcew6RIOJrjst51f7VgB+gAmezlMn9dyZ83LEJ5sUplly3iTKKAKpNNv0YW0q6Dhj07E792HojN07bSWBYYMwni5ULik82QoSUHEzEVosRMkZRdGGiZYlM1EsMs7B40UnZkk0iea4TuUyXkFg7CdZ6V2xG/yFRt4BVkd6VUAh1r+Dy9zjz5FPfH0dXi9vEmFkwPuBNqDTFK6SNAUZMPN+faN3R/ID5AZjj8fwuHXSgheEGQ0eHR8ef//Ibvv36G/70l2/4y7cPodcdb8dN6GxSy8CAnsXpTB6p/TDMcC6t8TmIWJxyIjRJ7nbr6EfH7dZBNDO7YyICczwAcxy3G+1ia7S5rYPKwNH7AW97kMzHxwd+al9xu91KlphkhwZPLE1izjOpbiIRuBcUXUix/tbRbh3t1uARpRNSEJK2Zyjx5CAZ1Jwsco3ZsHDg9vYHLFuIvrDGg5QSRt/lnE/EWshmlmmO55gYzw98/fIV96Ph3Re+Y+DX+YExJjqYL1jO5LxDxSA0JKLahIpdETAQZcX2VyDhGAQeMLfA4tlkgjMA9rUBC7yxBePejp2AN2/kjk5beGmRZEGB/MWssREx+BxPnoeRPkv675N0BodjngMjBmIaYByktgLkc+TuowXzF2EdgYlzPOSPDiTM7ZwnIgbacati7T93/X5y8cx46TDDkhOG9e1qWQCNlwHKoFIia1JbkixjAZE/o8MSasEINjPK0bRyBuhEeaGT6KirH3nJKZ5qf7PdM+zJtBL8XLlhqiJpo/UMNarVVHHCfl67JJ3yUGSga+ltygFIZen5PwloAzdZqWBg0aliQgPl/Ev1ykHZVTeOd89qCkVbhSL5EVRNJNyjo5SooTS25zkY1Ad2pV6/T4BuorNqzPGG1yirb4J0Q1B9V/KJir9FQhypPCkKQlvkqBH9fyqaNSessTK00hkvJy6DFe23JZQXVVWn450GmYdc72RgXVWWxekRJnjq5V5kpy+BYR5B1LoEdutEIouiIIfY7QXBP80bnyfSmU1ZRMlW8gMl0qZuSM5gVoyvIlIdVhdxBLaDxEq9goy4imyu7fWLrjK8neZs18zWRXeqjKXpC0Soce1NVdBExjGAMCTXkzYLZg2BU06HwRR8ZbAcIM9N3Yf2uVAyJYhcU9Mem/0Q4CmAzcIe2zV1VvSciQvJB040gGW1hjcgFE+eGe7VHnB1Oa9gBWghnbO6mS0XkGi1huZHjSx3JQeSxyCTOFY6IR2rnea/QrN2WyxQvFjSWz+uTaQsf1ou3V22NunZk8w4OXYqQAK5E2KwHSq0l3stmOS8tq8wkavApoAcPKgMdm07kGAbnhlRkqy2DLja4swc1qz0bw2NUGLiytUCM7WOXvYDF/mPXE2rSlDBmHXOcAlSUm+5oVpISlb1irAtgybSSWBV5Sqrj0xytqqYy6eoMGq3xIUmpM0KDLMVLkDYM21eqwRRoVF8y17UGeeim1C5lrwgeTaCwQnM61xkgJfJ9xx4TlljQjLP3FzZRndBlX0yoNp/uzibsU9k6Ty7Vsj3aUOkHv6kGetjIZ+Cr566t91+RjSqZK7+ZJrNtoyluQ6Ur/DpIOX35pnRg5r8l08vL2d832nwVvfn5uvrF1cA+48LmB+TN/jfuez6Uvvrr4EKYvpBri99IMm3fJsUg90Ko0c2AyzXJ7BbBy/PHUCWxioYvZzENH4GIdwWkMMW7PNDSA8vklfrZ5zClIXQfRZpd8XRJqMWADrYtuCe5KrxaXdCvhTSl9X6ZRtjUxIcsTZJdcnEfn0ihKibcj/i8ufH/972jH7jJq3lvmgSKGy3VOfeBYpbLS9hvMvmZxEi0TV77e3yGbkCKF2GQiLSTjABC1wnElqJkdB+Zvp9aB9UQlKyqj46lV8EMiG7kRRbv7IQFUjEz/V05LX0eR55X7b/zudK/VjdDldjKB2e3xcXvyxlKn3gSqLw+Vy/K6Rofqxs8ubhrF27XLILkajLz75J+kzbJmy7T3dxo3HrE2O/36qIlPZnIYfp0FdbCMVppjXwBfnjeW/8TDGyKs2GH9RaXP476vxvP3Qnnsp+fPqAz/5KGQX9M5P63TdPWiad9qu0XsDWUdixFp9XdkVHN1GxbkTw5XpQBaggYl6fw2dlR8YUioQE00q0Z/JL6yvMNADH+8cTv377jo9z4DmnZANMbk4rzmMPxc+gn7SyiqaHiuCwqiJVV9yaQ7nST0kZyWXla9ZnXWRMfDdOw2EsJBtV/LZTtCfak1xHrrfJNqQ+Su2ef9LnjLJ5G90cl31MPZ33aiyKSP6bATEUS8m/6scdCxPDzst3Xp4Nm0JjgU2aAwsDAcfCMyYea+KMBbFFQY+AhVDnVK5cyjmqqFl6pZ4ki1Ty89K/w7aRuDw1z5VslfY3W0q3vfx8ZSdHqk2uqxLFy2CX3Eb65JAOmkIdz2nsOss7kZ7JeAtI6hIDi+xAJFLLHANMCHZbG5H3z1y/O/H0HKy4tK5e5sZ2qimhDwSO3lXNIQqK8OIFDk08eHgiDxAPQ+sHlg0848R5nhhx0si7oYEkhOlor9hOaNqItXLnWYE5CmYHnIOjONlGtfDWjgqYPAzP7w+MwTHhBdNUS5L5DlhJ1OvISlpDTpAicugR5KE5siIOh9/ogLNfd+DxHKxO39if346GMU9CttUPy57NQEBQS8xSmr13tMPx8fFQQMUEzdvbmxxpZqdjBc7B8e0zWKk67ncAi1n57x9YMfF3//pf4Wt8RTcGceOcqPazi6Jwb7jd74ABj/MkSXA8MdfE4/FA9APhq3qkLdtOBKPObDBNHvtaW1WKc/oD8Bwnvj8eeHv7inbvyHHbUbDXWYa1t85Rl4OcQkuJrzgaYk6c50BzVsvHIgHhYUSCPL8/kSNaeyP5J3I/VzraGmV+tDJW5nI+bWed0wEAAOutevRtUQbnGBgDCEHeb/2GTMyMMXCOJ9w6er9hjMF7jRNmQEOXoZAyF0cDAFXixGkTIMkziDGJMPg0NIsK6CwrcMYebEkLFUsEkwIQRxaoaNwb+nFgjAVTBSOEckqHi0aAEOLz1ChjcQfxu7JKy4rMeU60BZgHcvrPmsrOrIHkPwo9T3OOlM6KZm/JWKEgEgnf3hWzrLSQBwGAN6KCvCuJplayWGU+AlFoodb5dxcp5TyJZjmOO9acGGujVc6nupqNnzHmhLfAMmL8enNMTYYsRzazWUFDNs+zDPcaTBQnKhNv7bOxulSiK6j6FM1nokQV08iZV/zOXMc9dSffZ0JzspUwocdzBdbzyYmBMXG/34gga3sELyskA+04RAy9QH4ykcsa88LdHGMtPMepQoLhPHm/U9XzRItaaY5JHegBxIDFQjNWoZ5PoLc7juMLAN7fczAh6BKKMUf5Z0AGs8wiJBrKLz5zE0LOEMA4kdwp9+OGCPHAOD87nE5MIhJ214MiFHM6Vqr2I3LwAqHhcgkx58D786kqo+M4tMbZtm1NrcVswbzf70guNQPRRQkHP3RemHSe0hmn5GZ7nmXX4pKoH4EmOMS1XdFzzZI4UkFTtr8/n0/6BU38aCBp8u12aBT8IoRSdtscbLePhTXECxckpqTdZWU322QMRNiMU7wXqZ8MuE5T4lYl+bOhH166OuZkeiw5hi4owmuQZsaiys3uiGA71XpSj/TOSvMYT+q2tm1kccqVY7jPpltjC4QuJicmfMm+ZUA5V729dwV+jYnc5XvcvAFV7edQEbb5rHqG1Kw7iOL35LPngchAUrIgV714fTKY1r9zyg2EjDE4ESKx0FsmWcl7MudZybqcelYBmBCkBrXPOdERldTJ+zSUHoZQyuXEyw90OLq30v1Zac9hbx+Ph/wpOtJj0ObfNPGYyemBOcnLA+2/skyonnk9w9GP8sWy+j/GhD0eOE8iLDL5CiVm+6UNZ46TKODMRGgSbiuTQC4oCit9kPOkHjrHiZwaWS1OId4kv8GdxLlVTFiODi+KAQcR36PcCPqqHtn6J8L3ZVhL5N1KHpAk13BC+0znikGvZfLRSub5DRplH1mcNMAYEzwf7/BGxFjlshfX69C060oOjifQD7R2w9Gb2i2JOFwzU/mBTF6oX49nxoznCvuqFh+sSur1bIsSZyODuSyG8p57j2q5AgwTIVQNEUPIJFYEvh53tNbJpbKWSND5ue3o5AMyw+Ftc0w672vG4ASyNXEkyk0IvViZFOmMG86TCJsmXxoANJq+EneJAgCIKCdegXsuBJRXC1oqgyEOur1y6bdWEB9EZhkCS0nH+RhaYw6cOfohRHvT2Rw4Tw2eaVlIFv9VnWOi6KodN3QO8z4Ocic9Hg/MOXEc8qlPqMuGcnC7MRnMjg/d/yWRkUT2OWSJiEKv/QXkN2HxNWY4Z8DmLDTnmOwG8eYw7+iHkNjueDwG4MC83ZBJE+tpow8s6/jf//Ef8Z//y3/BL3Pg3Rm7GgI+B+KcsOdCn4AvRz+sfLK5iPapwmUL6TkrmQ5jvDznxDmeWAs4T6ZckufIzfDlfuOan4MtvA68fXnD3/zt3yLM8Hg+McLgreN240nr5hjPgd9+/Q1fv37l8AUjcrz3A2uxw2DIvmfCrUsnPs+lhNbC+fzA4/Eb5tsb1tsX3A4iVx9nQ5uN/rc3rpn45Y5+Q2sHnvMbJgb6209osXD/eeHj8Y4//+VP9LvPBTtYHPDbHdm2f66Fbx8nvDfc3n7Gx1z49v4d//W3P+Pbt284D4MdB/y4K2554jmfiOcHQlPtNKRavJ2OhT1UIka26Zp0mWS3N56+QkIrsQ7AwDhUbjhm8Ey01jAX/dXeD+Y+FuMODj8Rl7QyX24Nbh3j5BliB9fCmig094qJ0wy9HUQnyic640R6CTMmINCJmaF7Vyx11zka1D2H43F+wOaAneQc/D3X7048pcOeVQg3y8KVqpFqnZLQm4L15BIpByCrJZARaK5MGorAz9SvuzJ7qk2KdJCWCXIJKWV1IMZVN+o1Uf9Z+ZQ0VueSGratYk3OKxTQptOymUGiEJrb703yz+xdZRCTDZrVl20bmUNCxcsNqzJvlTC4IJnqwXRP6TebnF4d7XRiMzOdGVPzzJQvKa0c0boDjHq9ElG0QfsgyCsDRKCc30FugY1KcyGfqnohmakMQQa268eqDV+eoXBOssjx47KmlANY4ikQZkxDxCVnnhGLXuniRGEShK9xtWvVd+RVDtR2ojaXwq5W7nj/4vQAJSOWLRAXJ78CHL6j9g5bD23Ug+9PW5KhvaZazr1agKoAfGy1GsSuJlrdo9W+loFN6I5RflJGlwz3NT+/sPRsCa1PGQokF0neVU6GymBvE+JRlOigb/LKXKqqkZip9ZTS5XmPeYKvUSP2vuW+8NzNCrJ1V/oOQs9DcpOrnWiePbGS+uBAVivTt7XiqdhBXJRTnEYl183SqKxEAqKSN6aSSfL6VKXB9rNFPUQGtfk8unehaNyF2PvE05HrsT796Jq8yiOulYGlMxNAOFFtyCRKBUqS9eppyLbHqE9P/ZHPvhLKU0jZlJ5E7uiABVukVoTGlidUmFdW86DPoH7TGiVZfgpDHsF68Ch5CAVGrVBe8clZyLWOWifJWVzXdu9D7vZ+b+4tkBw6GRg4Uvayst8UKOwq107/KCBOYyZdn+7xznko0bmi9oIoi7nvyyA5CRUSJtZKfbWfgWKebVBW33X5GGyUnexk7LbUq+3iv38IAnPVUndeZHrrNsiOr2o5cwXleReJbNt6OAMH1FnK58qWUS2Vrswacu/9s0re+wgvW5F2Iy4ceXX3peovOgnar1ynVUb8r0UnUPYybe9GPljxl1y/r4ahSH/X89l+0Pgsmnv9se/XUnciPYM8w6vurVWiTc94sc0/Hra9NjnOWfa8Eun5PLhc26bmYyeSuhJw4jNK3rV6hm0AUO1il7MBAAUVrx9d9ark9SK3ItC57CPqPpikCPz1aoa++nI+L8k/Phv9hB93gS/gPnoTkjx9tcua52CIMuvraqn3n0jktsk44LJlZft4fz++G/Kzea+oddj7ZT/8vS1h6TX9bmUyQd/pbp/bE9dO4Jfpo3AXwsUuXz7zJq4+ZiZa87znM1zPR65J3rlZ/Ul7wq/ZP+eZ3XKxn/4ipPJn+QF7nTdCiQFpZJv2D3ZpS0FsJWK29b3alJKsfa+7A5rAiE++kkv/8x6JpL7o1lzs+Kyntk76HCDj8vv8DK7VxSCkPb5IQfr5tX+Wz/DXbTmfPir/u5Zbe2c70Z3qJeOF+gFQicA04MmheP38vUcqJKcwWibrtw+XMVNLXSB/IFvcExmSSD5c31++OO9lxsT7xwe+ff9OO+ziOFORNgPXza9IPacGQ6g3lj6jBdAuSK+LvTFkASIteFR8Rn+W97O01pss3Ou+GRuuWqsqXI6l0IxrsFfWsFv6pR8Xn51o8tAaUP+1PL+pNiNEkE5EDlHlG2WZ+jfMEG5oR0chwudZ908aFfL1ITkfjUg9b7Pa+KfoSNIZyUI8/dukttix6pbEbXcWtr8/9Sc7Nfi7EP+c1fmo9SrdY/vMI/VS8jmifr/WEufe1sNX1HaUTVahC1E5BxPH4NL98HeXs4qUhQX4Lhrs5hgBGURxkVMVAwZfcVWN/8PrdyeevtxulUBxEJZFbibAVIV5nA/29Sp5c7QN18ze+mecYJ/hgWgGOwgdjGkwO9CMSAszw/uHqs7u1aaSB/mczByOU4knExn55ME06xgWmA3K8Rqmp1K2vfFuzETKmRtxwgNoRvd5rkWCtgB5c6T4CfeTYl8L5oHp3NyAkeC+NViX4dQ43ImJGcCYch4aYMZpVmOyLa4d7O0+krNC/dIxgpnMBaKrcpSuBHLqkJ+TfaO3406OoOMgPHIFZjjOwYkxa5zIYHGtRbLzfsdanLg2gpxMMTiu1TUVZpwcDezHwJfbHffbDR8fH5hz4ssbObzWkwFp6135NU01i8mx0LEQI6sdrJgfB3uoFwLP84k5Ayai6dtx6OBR+Y4xVcBwQDDVIRLBdvCgz3VC7bGcOGOO89kQ4QhBdNfahsWdU2fy0KcSfD5HBT9w7vuSVciAJ8fPxgrGzIvjSI/joFOwFp7nOxJV5iDnVmg9DURy9XuieFSRnSRcJO+QWls9p9co+WJEIv58O/A8H9xbpcGPnhBhaqk1aRAzeWTm8HaTohrIKtHAwjkG5qTT1sVrkSiq3hu5GuZGa/B4iiwZUJLCAe9wBHqEKm4n7ref4N5wjgd4aE331EqFJjprPZns7H0HiAw2RzmGWS1zweYRwIqJ5zlRRIftLnmifmmNof8Qbwa5XRpYbaYx+3iccAdudwMcaLcAJ6oaxvugLGeQdBjCAmM95dQ5Cft883o8z1P6qhEB2ToTwZPcad6aEGwLJ97lA5EbI5PDXs4nH5TVlYkkuo3F6Rwpm+lAJvEr6YR/SBqpuh1Zqe83tVFOxGL11u+qrJ/kaKp2ky8HdVw8K7CZSvCGse3BlhBec25Zagzkx1TCJSd0cvMAoVXptfCME/VmQsi03aIacj5D5JRmaNaRSUpgO1F0qLh6Bq7b/XZUVXapDfmQHcoJZN43ciXvMwPVa+AcsYhVDVY6F39IfkNzTPEOwTqscyJQ713TSlT1ld9Kp7ETLRkL40GesithtR+H7oZVxjOJLs2YcE9geTqxDrSDnHGFZlwLgXZ5n9hJrMGQ6xhIwvzUA+TGCSENKbesBTUgJu2yEsgu1MrVQbVmiCSeBSpRPC9B31izEk/5Hmm1jXLJwKYmQF7bZKL2ZVFxYlfNgEy8k/OJZ4tDFPd+H+KTIRdIVMELwKUQhJKtlH1Azr2iJ3IBLSGcDC1R2O3SzqjPmKdIo+VIu/yURAQAwFh0da/TpwDasuUmdNkOn7bTXmlnriOym2y/BmDbxRTPUUYnOSGJ/GiJHJXfY40IDOdPcmKq+9jnA7KlI21nHp60vV7PnPt2nicHCSSvoYJvE2qD9sZkG4WW0X0Rsbc+7RNyS1Q89O6S76W8r7M4YvQlgHT+ASDRTVUKIhePkPqA4TzTNhG55nC4cUJQkfIKPXmeWhvxP7m7JuI63t5uskMPrc01IBnk91BibMUTgSieSLaaLpHzAvCoDqiWNmCtCuJXBfYQj1rypKGCQhdVxqwfqkicC6lK/4Jt7jidkeeTSE23htYO9HZjGTp2ETOrrS79mWdtrusEQe73kE+dZygXKFLK4lKakx4oIuxEg9uWP78gCwEVhNwRHjy3EcWviaamqeb7vlR0JYfVnhjWxGHK9qNMBKZspSDuc28qSajHp1qMlniikHGVMeyz4IRdRJK7h9B0/EzuQyPS5IKma71Jp0kTWCKvrM5QnljaoTyP6X/p5JsI5m9WtgDSzWsqkaf1vd/v8gmP0t1AJuIvl9knvQlkMSU5z5gg6Dfq6PFMKgBDctutmmaXsZxQVsVnm0j5Jr/f8CF0WhXj9LwzAo/nE2stfHkzTbE7eH5r8IQBzi6KpBzIqbczEy8NGOOJcU78+ssv+PM//gkOw70fuHVO8v3+fFbRmMhfK31gHloHw3LDNMc6AoiNvsZchRx1B770OyNg2VaoW8LMMp8ETpBruN0PmJOQvfUDYWzxNQtxtaadBLmkFgA4hr6TlDd8zTgXng+iPNec4NAgQzQnLclcOPqBn75+QW8dzRvPTADf378BAHksjbEuhBYb64HneMKaYmyT/7Mmjhh4u9/RfOGwwHFwzQP5mgVvAbSDiRPvwJOxxM+3N/QJvAf53h5PourmeRK80cTta/RZMqG9IjAQikfVkld7EADIgcwc0HYUzaQjfig2UgMAyUO65sJ5LuT0wOfJCbvtoJ5Kzo8Icle5OezmiLXw8eSkv+YGvzlau20kpmT0lP80oedBMBb1DpNPOk91YynhdbODNg8AG9aD4wp/5/W7E0+HMagidwg5e2ylEqAi7LawWmZTTR0GdEhk0nbFoQWWc+LcjEEjIpTymomcoMZyjfwzQxmACh4yUeCKcITQwJqYFnK5SUx8zpU0BbTVKycScKITs9So/krkp6VDKQh3vq4pyG0ZvDlRTeEGIjli86MI5meC1K4Vgpcap7B1x/LMyu6KTVl9+aSmaonL2AYcSbRZRRJNKLBGWOBZQsOkRes3OvlrktQ2gKVnWEoQzRWAZRIk2yyyl7YDTgiw2x4dmtOdak0ARI0f3eFGeWuLLXTnecpRIfSe0FV+lovzKYHDu78ahQQqV6FlhUfTKhzI1qo12d6VsGWzzs8r/iE+J2yPqc4RzpzatSorTn4FGtt+dD2Xy+jGp4pUxFKrEqftwEj8WRwukdW3TJjQaE61h25iWWWobSNqWGVwBVtKbioQsERYS5FkJjqTt7CsNAbOsbTPRHqkAyoPVS1DhFTX1tXo0a0QExtVhLOeJz9bSHPiImVlARhKfrae+8J73DwI+Rk6klJ2K1IXZfUpz0mGG8gFVrAMQcunpmGZUDyJqAAATs6IqWeIAHwCbqW3ACbvGLvSEVwpg9VfIp2nM6PoNj0dHVKDoDas+lpQfSGdq3ROUf8dsaqdcQey1ME59rkZYfwh/ZvV2pQh7p0cFAsl2iAuHGznsrjLQvvC+w7pX0h/MgfBNiTqdwkI0knls2bBxuxqB6B74zO35BKSDLmqotc2puQ3iKlWCAqnPidfg5KDkvq0RxVkaBtA+aDsLiTKIYPjCi2D7zVgJ/0iquVsFt6ZmxbSEfVFetbkzYOFUGWJDORnMokCrElHvzVO+ctR2RYGkkorge0mnXBJ/hS6NgM1kory/ic8lEB2fje5KNLxEaonthyX9r6U2JKA2ztRpNmqRBs9qR/UHt2kl7NdeK2g4159jhe9ftHXSVYLHZWSnRwjbOLn0RmqxE0szMFNq0AzSoRkv+enQApyusyYLDT5BRyNnmhTyhpbqpvsD1DVStumLU/bZcm2vAe2zq9K9L6X3cadn0bHiAW1kPNCxzcRF+b1jZ9t7CXxto1AnhOdeZ2DQpFGHm3KAX2S+KSPanpnJJotX6KKsaWPZvXMl6/W+lDnJ5o+p8iaCjpz5ih5JmTWuiJT8vNYmU9UbPqZ0F5eXqh719kutLZX4o+/TQ6LIZ/T6lhvnXXd5VxjJqP2eZpbxy9VvCOr5mnrUy5VuPD9fKkj1nnF3qmFPM81UC1aWfHP9eOOCrEcgZnTjCSrpiR9IgkCsgFlPK97lrK99XBNDdPdsfU36r0y1dSPsQptH2EwP8CBQOAao1VRCxGZR0Oet7isHZDyAngWDUPcXUsDNdw3FQANs+7H6r3F9XZJPF33p54bSm4iE7KWD0ZfJy6Jq0yWfOLXs2p5zVbjPEdp64Gs1yi5YyaOQehzhTjlJiEzhZ4IWeyflT6Q4llrYBlRJvv++Z4VTf7nrOdHIV8NhWr/YW3i4g+kP0QdbdqfdvX2UQ+S3wEhKepMcsPJJ3vZD6TLZEA40MB4cW3bnihn+ku7wMdp6dLlkt2V+q/0nknWLnHppa2PamTVvbTe4CGqAbfyW1aeAyXmmcBUPJnKWD7WisDz+cT7+wMfHx94Pp8EFdT5SGSoJkKmG5gPLHlbsqMr2FqcMs1gbssjdD4sskdE50DdFpRh1BqGkOYsvrDAwAFHaQsZn2eCfPuETFSyNXXi+XySxuZaFCp7yXtb+rvFwX0KZ9HegeSLXbqfhgt6Lyk9VITIQgzBHWDiyRbOmFg4RavA4mEDk8O+QH0YAz0c1m44gu2ULYcaWcMwAC39bse5eKbqGGuSMpfa6wxnPsLkj1DGRunIjXRNJSXdGzt/wkQy5a8JwWWSJ/IUTzUhOJKnjuea3VyxghQwzXC/d4w5MMYDifqeyWeYk+OvHREOWHUKBV+zILlRM5cOBpNUjqlE7++5fnfi6Z7GqNFBARbmeGLFIBLGHAdHIDGZIWM6zcRYlBUore/BQPW5BsY8McYDvTW06Bw9DuoacxN5I782ZmANOeeRQcB2dtYCJ9UtojaGBU6wt/mxxkUFAljMhh/9UJ/ytRFQm2hKVNInB1ykqeB0EzNTkkVKQ9U+OKtb5JdisoGIBELnYk7AAfeO/sbxiO/Pd36OgYR2vEmtWT5nB9zR+h2AYSwGnVUNBisZRLKwSvvxeIobiegWbzcATG4c/sYnFZqCUxxYNe+a7jTBaqdretnb/Q1jTZyDk9zuxw2jP4DIxFPUyOfnOZhwUTUoiRfhQE4xe3x8wI8D/XajkmsN3jiqMtFvmayvikwAovMk+Z5nr/oCYqE70JvhHBPnfGKtJ53gwUr+7bjvDdU6Z6D9PB+IFbgdN3IRHAeDulPGewa8U4EfN1XbZgaNQuCp8jonx48CgfutIcVoKjgrufkU8C+c56NOTDpMIXjkXEv925Spo3UgJqAkjpLzMGx+tJhRGf4krFuaQDEiKzYKKtZklbaZOBUSZgywcmLK6BPp541/inQwW0U9g5m1A2Lv6lM+sabh8fiA2cKtWp3E0VIw8HRflIiQMzvFOXNF/2TAkToG2M6vGassgYFxDqwsuFfiLtEVTN4hg7w26GTUXsnYI2Cd1dY1iLSDb0RaiEMgR8ynM+vrgprpAHq2GwSGsW48FgeT9goAduLJKxnMe8mzv9YstJe7AW1/7yoHHEjU6r6JHSwgnUFoL9eGOrs584cWrJpGBneQYZWmKgw8EYppzKpVou3Ahb9XP7mZjBGDuGYg+tP6boQK4HFyXdcIJQ53MBhiDx/ZElFBeCa1L3JSa8vnGDEqWIKHCqxLxQzTeaPDRfwer9RnU5MNUb8LhJKAjBmtZGLIQWpyuq8cNecpxBUa3Dur+eKYYIvyBHk8AkdngWGBMnnOj0sSNKdh3pRASW6zqT3P4FXuir4zwFHwtUCOGgaR+RWiQB8wM7z1N+mrJych9U5OiRAq1lllI+r3RCT0HgdgB6o9whoMCzCips9BPi0XEra1pj0W15Zph93RC46ufVciLCvz9CGuCYulddd/jfOSHHHxOByF7ptjYvgsPeytobejdHglRjPorkAmg6q1E07yW8LyfQuWHGfyyhMRY0nCX4knFhjMV024gXR5IU7rDO1yH0KWxFPA6U98aoGBOCkWLmtBabYMapRXn0EeojFZzQ/p7lhWPkOeqyUdkipnJ7hRwVkGNk8lR2neDWOQ14LTgJSEraRcthCppWOtXTDR1dvWtTIWWFBFerHtyQ8GFEwYzQoCk0+Ewp9B+6p1AYCNyFLSdyXqjHxOXDgmWwDfOhCZ8OWH1TjyC+3EnFN2nnqsd/IhjZETFxsOZ4EvfevUX6akxrLkWcqzYUDvtN8jpTMyukdkpH+REe6Vf0p2ZVIecSny0H2U7w/5QNQZY/FZmENruDUWPs9nFK9eFnGTL+likjhByWYlJjhV0DCc9zDXIGfmeQo5erClO1DBKZ8jz+9OBgGoAHmLSpRP4BedwWSsbLnGuy/xJsYK+KFkusacJzF/AwtzDrX9tP09K3XDUrLBG/2zbFtZgIkTKvUyeW0dZuS8YtyaRQKvZ12LQ3RMSSqiLY2OhznWTLoEU7FgoQkdYZYJm90RsRNsrRJkwNa1XdNHrxPqtg7bPksGz6kdr7+r94HtSk1J4QyqH88HHuMsbrs5NMRdST4ivmXnNG07pbnatDJWsh38EyUOVKuia1r7mnJpDMftVtMlAfLl1ET3QK2lt4Yx56YVAFhgDGBi4tv7d/zll1/x22+/4fv375yWCYIwYk0VaoQoXTuRRFQ5wRdjLswgMTa5dgzuimGVQycYYGINceti1RloSg7Wuq8Qt5gm9TVDP2jP+3FDhJHTdzG5dBwHbrebOjw4oZHJEHImP9QBkxM4qfCViDVnHjE0bGwd8pNMax64f+kwD5zxgVhOziNo2trRYa2jOyfZjo8n5ph4ng80AD9//QnPBjxs4dvHwHkOPFmJwpfjDixDG0TEzXPh7TjQji/48yL/VD8XPIDDO0ZzPIXONzOcH+84xyCfdZ7XAEhPjgJQ1OFNmoggDylcoFhktA7J6EpTXb9LNJXbDa6prWbAA461Jp7nE707bm8HcyTeMAZ91Y/BXMeXLwdutwM//eErfvvtL/j2+KbvikJd32632p6KmxiywwUeYK3L0dF4k1Po9WBnVW+O9+/vOo///PW7E092I7x/zbOcKWtMMMDT9DEASYyLK3ikA7rQW2DFEBlXPuBCN0fv98r0TY16NDnm749v5QxNZYYHFg2ryMVHDG6cPHoTETEXh5Mn7ke/KFF+R88gfTJ4ScaANXOkoBSpO4YMTU5aOhrYSrCGFI6hdYN3sVxEIOTwm+D9RC8HmgccOTe9aTPovHYFc3ORkNybI0CyLzoHgYWJCCOE052JnkhXIpikcCbowjglbJRiN/z2/gHYRO9v6EfH0bMSJCUfiwgsWwpaAh0cn976HSGizPPjxPu371gj4NFwnqwCraxEGg+bddAEBwnpMxsb4Xg8BxMNhxG+GYPIJAUSroMAMAM+JlsB02Hc68KkU8TCaQFui+HmdxTPVR7rGAjxgLl6fbMC8Bg0TnFsw5jOXo6SxmJFka2ebHOk/+ZKESZ8HHLYDWfGoFgIp5JKuc7Ka3P1jE8mWth+A2xCfRN83TAzSDEamDlP9MbMeKPwI/mcODHT4S2JJIUqEjKOaL7Je2KmAZGGK7QBJs6jADoWlWhvmEBBvOlTcNWGlFCAzv3hB9ZSZcsDzYHbrTGoXwvJX7DMsFpgZZtcOsfpGSuB2RXgrBkXbR7SA4lScAwlSjZi0WVcs9qdbo3aWMAsvwFU9kBB7DMZuAKwSWPZEuqb1chwuCpoFg6bG8LfcVT06STSQguh/ILnrggyewfAVks6vAw03A3nk5Dw3tjnP2IySIzJ5MQissXMcTQ6XEnGWksZQD8oE+dU0Ic9TSeEBEW2+irZ2gRfcrUjQ/Lb3TEEA48kX/6hAEJZDSGE+JrWGBwk+JDxmRyuRCYFnTtn2QXHYfrdQiIi4FH6kWYg25DLYuXprzVY54VjTPvOlqwAB1aIX8mpXvhISwkC2RpY6RdFzbutwuioUX8yYLrdD2kBoYQSFbAgInwHp4YA53iwnXqqOqigktXABVvIxj3040bnR8E7Tc2kw6ZgYg4rWUDJQfJr6YD8uGmXgCAnpAYYkI9xYsVCPxqSQLj3ps+6FHHMRJYt3e8LZgN5KA2NxRYD0DhYJHNSWZFOfZpcWJZcXpHoMK9AIxGDLaGfQbFINCBkY3ci1hhspoZmBQvH7YauVoY84wGR0yOU1JVV0ecm+m8qEKn2RaASJjnl15TsAxKNgkJ1WzBwigHqRNDe5xRFvj9bTxmAJfIpYiNlCwkj2awgaeU969ks10L3DcCaEFiXYJJtttT9pjOdazP5gh2oaulWQDp189twvRlArbmEMMziEnO+gYFzytZY23GY9tn1/LQhDHIyqTAvLadSd7p/2guzptH2Oe49AzwNZnHp/kw4KWjrvSnZIJSLCg5Aov8dt9Q1njqnxLAQ6t4ob0SdmHwK2ebGVr8komUiIKQrUQUFHk3u2ZF2TI8Rk86HyX+NRHxGFJ8ebZ0QWUoSNlMrtBDgfASdPXc0cwxNfd6JmUwoZAupOGuSjiAWuhvMFppnIpZDBWIN9K72Mf+MOMnJ0i4/18zZTGCBFq5zQt8SCNzbHbfjXjp3TTb3J4VCCl/655BdqURIBuKSV9Ewl59mKk3ntDGb2hun3KxYnKRnW47PkB/kEKpsff4enUtHoGnCbU2eK5+cdlwbS7B0FxVHLMlFQyhxkOeSxOMdc9JnJDId0g9MtmSCxNPHE4oHId1hYNvpkowUcl06Qt0JMKLgZ+xEUSBKXhGB55MJ2Vs76ne8L/ukM6RQKKFCppvR/nS4UOx7ShmHUgCnkuGUca63XoHiLdK5heX0UvpYEYwFuXd7im9y4MBOdiLkOS77MXE7Ou63A8fd0Q7IZ5vkOwzGE8xjB76fv+G//eXv8Ti/IfCAKW6ppLfR9sx1cmDHDLCQ55jesATI8DC0NdEi4FPIPMuEPKrQ39sNrvvpLhnIQTONceOYA2iNQ4kcsG4YwdZCDHbn3DRs6PF4Un8uxUMWGnjkOM8HC+q2JBdKumjwCExIPXe83W/0IX3gnAPrnDjuXb4EC6fHPNDMcY8bfDZ4dKxw2sTbVCw8AF/o945u7M5CewMaMJvBzzvmt29YY2I+deaXo/cD/d7wfDzxeDzw2/fv+Pb+HQmaGWtiBik4FPLBEbhrQjp9sFHJOEAJ26XCUCKCnSkpX0t7IuUmn4TFBpGWy6de2VZqac9csreQfMUGRzTDdMnbAsIPQPauHzf8n/4v/yu+fn3DH//4E/785/+Gf/yHL/j22694vL/j8f1DHTWWt0O5aU15s4UxP4AItDBYGGaifcPZ7QHHYww8p2GEIfz3pZR+d+IJnQd6xSil2JujdQc8qs0mpDASAk04o6GJrIo6RcEkrIyUe5dzycxrIGGXC+/PDypqg1rK2HOr+JwbuDp7odFq8lJmT21ys3tr5GCZS84dA7ns7yV/VSJPlJ0Vn4u3hjWIBskWh6NJtc6nHIOO1gK9R8aWmMYpEuzxXFhDlXzxy9C68vu7vJOmoGLME94O+GGYQ/cMiDdkItQWUdXAIO9VrbGzEhPitqKI8X/f3z8Qa+CPfwQ6Gnrves0k146bWszJgRNrlZPR+p2tEAsYzxMf7x+sLME1qSoQh1A1ZrAGrEYnyAGMJ5MZSUr2HBPRFqcFzgx082DykHVHtamsOXA+T/b/9s7sq0GGNA068VB3cac0S3I+9bPKwJPb6qbsuYLHqsrrjCkJ2sQVQRmkJhoK2Mcgeu7e70oAAKe4IFo7EO4KENUWCTm/6ecrkM+kQ8xAM8dNjiYsObIgNJVzcovM6gQrf9YOdKNTlMokYOImUxo70mEAnctGp/TEUvDjGT9jgck5UzvEHBO2NAvEGtA4dSumUCqAckNqv6EFRO9ELjyfnHxgShj0w7EW8BxqbQBbTpcRhbImnaNqeUBUi10zp2yms5I+cMLKJXEk0w98ukGzOscZU0VwEMJKeDOgcxVVzTbf5PuhxFNXcmq3APPdwiIAYZW4OoTeDHGm2FKw0pKzYxU68tYV9IzF/QuX8w489dxHb4WQdASwJiwm0WiQPrNE4czt0+lP02QsTrsAVHqtiieMwS6dHzmhJa90LGdw3G+3DngwwZ29URQGOe1830jHW5vWW0Y3Ctnd6vxjAc2CiMw8hzqLCwzMKJpZqJCes+TNEUgIF5QEgCJ0VyKGe0tocbXdKQ3hRjPpzraPpX/nOtFRbXXPocA4Hc41Uw8Y4JxcFwg8BydYZtvyigVvnc7YYkLlHE9WogbQ3cUzJaL+FUkDApih9QPOJdM0V8oCQMRPhCMmh3bMmfeHjSRBomYuuu8SskcGy6bPilDCQ5M2VeUj+tjUZq21NdCrd+kPD8ljIBJFACgpJMRP2kcA2U5DOUourI04KZ4VITFgkrdqvdgBbfLOzJHoFumTZnQCl5IDtsTz5cWfyKIYWz7y3j4RP2v9lv5ATmPLFnnxyBxqd7mIii4XOgXli6yxEYWZePEmLiUw4REzFBBeT3ee2Z18QX5fBrzcnaIQCFfRT9LPMwFo5CF9tEH/rbeOmugXKD6XNS+DRxJdK0vl0tP87Hzeiz6QXqafI7TOONH6nYigoSSk7p+JG5ntSY62REPsJEirM87k+j63maAADG6Ls24Q1SrnZqrmA+4H3IHeN73BlXeIaAJ+9037XNw1gZ0EC8pMyyg392Rd9HIjMhh1f9yn3ncRgyKYewVNYtXXLfLKJD1CFJVC0i7gInQaECPk2BFdUmWSyPRbJhwHVXt6FpXQ2ZYlKSRgqT94dXVLuO3EbCw2epkKLl6J07w9ylbLoA5eCJBkMfJoKea4+w33dldReuF9vjNZUvQHSfyMSv7U9+R5vvBA5W/ytKisQvuh4hELho61TiQvFmOHJj/+mgC18icSzVhnLQCXzNPzTkeE/IYNTeeLXJStUS9NIcmzjTATakQpOgJNbaqZhE+fKe/VdR5ZTF1C+gA8+zz+TOyxpRJ8TnFFZYImI4xstykeUTfJUE6PNLQ1Khmfye9rmx0ikAM8QqhVpN3PKrT2pjoCFmMm0xNFio9ko4s/dCGndXmdxeQBbT0Nh6bhZaIOwIpTuj/lgv7PwoK1jttbx3EYWguQ7mMWsjELq+iBj/M7fvntH/Gc3wE8K2E71R0TxuL2XIMdPuV7dSLtAHYkTN2qgA1Up7b94MV1OPxgHBUTR6M/9Tjla6pLZE7yPS4FoNaACSba6Op08hwuxRmrwVbHRKJWu+Sa905/LOC+RAGgWCAM3phA//rlhiU+pXE+cD4faMcXwG7StQZfHR2O26JfZNEwFgsc0RaiCfDigX5r6BnP+x1ww3SHnU+8f5CPdj5zUjwpZ96+fMHj+Sd8fzzw7f0d3z8+8PXrG+UkyE21JifqToR4kFvpvXPNkp+UCO5HnqHFYxKLiLMgumnraWyfEQEXl2TqAFKZ0G94zid/7tuXhjP2q2RrA/19A/rR8e/+w3/Az3/4CX/3dz/j6z9+Qb8Z/v4/cw8f3x8bHFGuAPWAEU2AOZ4Iode5JtQXsAOwDrcD55ziXPX9Of/M9bsTT4lecAVea7HNCUstBPxlLWYYyA+DYH9xBdhJRggJqg4W0kFfOIWwaXf1IM8AzNGT6FLG01ao7cE4CjYD12CQHItB9hjkJBC+WEpO4y817vM833GegyNA5fyYs80qEBhrYGqM9eHH5jQCx7EGyPI/sRj8yUFv1mmIjQqyN4epDSYRGEuVBEKJ6ZA4HEc7yMcxgBiExs2TGsWXyHatK3mxEHPI2Y9S6g4Z83TslXAZZ8MThMevZXg82Q7GwCqA4L1ba/BbU3uLoHmdWd3Rbwq4+P2GDVs/joOB9HkK8hsV2KkUgeQX6K2jt8bAKslhaeeANRFj4H2IxLkxXXXvjuNg0Jxom6be6nEhOUul/xxEiNwOjqR0ZYx5Tl2QZwXzbw1dGV3MwHM8CatsDgf3s3T7UvVXTjBWMOjLDD9Abi3sqv1Y2bYhhzWTDgr+E5G3Fs8dnb49FXFRK4BTHzNIJwJO+U3JOKvjNMBeSMPkKMnWQFtZ+2QFwRyIUpysUde/M0gzw5oDH799EGHVtjPQelPWRv3o5VwHR5M+TtxUpWuHl9OVXjcJ1aeSqDvYXarInxc4Z0LTz5VEvKZzxvGkBrbDIRxT3DhZpdkOdEJ8VZVtvZIFGdywxZU6gUZczgtQ99PYf0ndEzxHh3MCRERWVvUS38E2ZWiQpykWSYQDeH8mMaX44YxJOved3MjAxrGDP8a7hvEcgA14Y9tbtkteWI9xjifOdVbwnI4+HUzTvcquZSChZxsj0vOrqZIVRC4aP1uXFhD973BDeAh9Z3jOUTo+D5aWscKBa9CsG+TraIR439p71wsjdkt2XhknTT3nVhQbOtwV9GViP+OQTAcAyUcT6lowtTEoMWKO263XeTdjoqp1kmeeDzoQYw0+cqfs9EYi87EGHIcC9AwBo+xSfpd1LlLmj9e8VNrnYLuPM+nc5XzGJE/DCexATv9urWcoz7PeklNgqfVnIkJ8LDTm2ASwKjjof3SKFFQ1BzJxtGinGBh5bchaHGBxO+5YNYDisj+2OSXmCn3e9nKmoPQ5DbF5uWbIFurA4m02JQEW4GHoKlbdb294Pgc+zodQzayKmgFzntRLQsd4E4k1dotrRstnVsWNJzPAYpqB+4ZgrcmAOj/IfyOPoO43ALtRrtEALxkTUXqeDhe3Xx2c3FclizIYra/MIC/XKJebLd3VolK2YelMhWLyPM1ATn3lkIyUCa2x/B5T4JrIotqTWLK9kSKF0/ak0OTyg01YsL2cdoSJIaJnlai/3QCRyOb3UzYy8N82Kh+4UBaLR5sJQvqaRNS5UFXc7oiF8TwrcZHtX9dWpNxEFl9mrQHRUtsuMUjXPZS86PbUqrdYDdCe2w9tTEpkKEFRybuyNdlOKf1oybcGJEJr33Miny5/EtGBYovCsolsL/7MTZc8kVbtNdn2W0MvlJC42sLi8IyFMdelvTwXRP6BkMzVJn5V34ZCL2fb70z7rYJE7hPWYjG0ssSUUVieBBaGQ0Fyrl/yermSUZkAXggVCxNRE8iuiaQ5oG0OJSuBHNDA85+Jy4ZmDYcfDMTnCSze90C24jylapkQZhvl5sQjwivt79TnZ3IHta8cVLMLP4loywi49Eha7CB5N58BhYc1W/XZMKuE/oJep6IQYPDjBoPh/najP/78qLZlkpMHxnW9zLaPpHZSLBa54nK2cw/z325d/i2FSKkr+sbyY0hJpTXVd6V8ToEeVsxq8zadATcW5zNhly3FIwaplcbC8I2AiUVEeSa3nu9P/PrLb/j1lz/j+2+/YT5PxpCRsUEWzhkLjyUfszegHUwimsEi0KQiw+UXAziNeuQOttNOdSsM+Q8GiHIj8FxakyX0cn8D2g3ADc8T+PY+0G4d3pydQtbw8RjUZ805fOr9O+43Jkr6zz/BDBjziXGeGCcTauljs5uA/tjtdlOrGvVtbwdacBquLWA+Tpxqv8YMLHOYBkX1wxGt0/4KHPHldgdAjidPXQ6CWW53QztucDswz4HHr9/ky5w4ETi/f8MZAT9u6G9vaM8nPj44yMGdur97Fy0C15Ik9TqKOjYuv9CQlDLOZGMW+cMuCUS1GCv2QwBr8P1z7LixeQJC2Ap7Ph+MERoAC3Tv1MtjiTOzs+Uuz603fPn6M376+Q/46Y9/g36/4ac//hHHl59x/29/j//i/wc+vr/j+ST3VHNj2+R4Ioi4kS4B+hsLDiHQzjkHbv1Avx84vz8x5qjv/j3X7048VX+vf67SbLhvGjM6IjCiJdxikxaGlXGSPkCNBg5WltZcGtMYsJ6TNxSTKICvMm8mstRydg3sGEdo4cKRU+uAgDWiJTghhZXTudg323qUsobR+WYAnJOIdgBAaASFiN/PRJoNcjqhbeTANk75s1ZCCMwiUMwI3IDqH+V8Rh6omPSQ1lhMUOlEWASRP3M7oDaXkixI/Yq1FlE/K50lPhYnFfD7w/DJ8DRrRKHUgSDkM2UhLgo+E4v5J53ouYiIgRwi2WIkNLQCfFWH079ILoZ5DhHKMenRelPb0Q5GicC4iL4SM6xSKLFwZD8xynFi2JTuVVQ7iewwE27NymFQlKFAVW6pZYuHkktzVDU0A7NYabxVwal2C6EssjhaDhqqCjnXQmtK/IKolEo0ae/YsrPbCgKXfysgIRqEe6C7qkB9j0xNZ2siJ5akQ7tDb75nngPeyRuVNfXtmGYSc+sQBilqobPJVjRtl+W3RxS6LyBHTfewIvvJ+aHdiRKrKoHahrZjSb3h1jSFY1c4y3eJdNZVOTSjg6PArAK5CuiW9s530BZQAHp5Tei7P8lB6qi8Nyaer5xfjqyWD+zAYAcK2YqWyaf8vETxVKuFHA/7NH5esluJyYk14pIIS4xLOtCGRDplSgEp0Qpo8txl4JP/rrXNuDrtrlGKMvGE8dyvK92R37LvOeUB0hvU/1bBcRE95usS/Xn5mO00W9mPfEGukKt1b4WrMJAPkP/HQCkDvOKGvNgfVqOZmMhnyoB8rawq63uXIckyh37OFgGrs5r/n6ufyZ10/PmccqRVja8R07gmdhX0Bx3QbPMrudjiUbopHfG1hny6VbKe3522la0vKQXAvsHUN3ptyY5eIx+gO3ktxkWuy7ZkoH2xN/WakBZXMag1FQcuDkpNmVFrSQaaLcjD0rzBbe51831mUwezvSh5bFiVTKJWykDs+8v7Wp/lhLduJU/pa+zTc9mNihoBZcr4HD+swUac6E2XpEDykKQbJhBYPf/Wv6b72Po97x/I9qBP37LvNZMwepbk7Mhbj8t6X9+TCa99P4lA1NPJr4tKwOygtoJoyzaizX/3+Tu2nHxe3E83I+HcBK6ZkbCtUYDItor9vpLpHz6aSaVsNYoLEoufSxt3+V99hJVuiNyHWvFL8qyeiTr6rx4p1zv1FBQgXeyjXYTy2hKqu9B9Xe9RZ5xvqLN3RWVlMSRBqznNqhCh++5RyJOVHROpI6N05sXd+uvzUfeNagdlgVjJVt8vvpJXZ6tKtSXtW7r8ZZf7jfJX+Wyr7jU/Q09UEpO8UUST5QNcTl6dEf1RZ4XFYkFfrfvZbpgLaiHkvV1srs5pxiGRBR/5/59k36J8uTTKmfC4Pnv65YzB8qBu5GQGD9Yyya3f/dAtUJerPXAC5/NJD0MoU76WNCrwJmC69JGOX8jOX9f6062UPKW/uD7Jflz+5L1dP6P8n0Vf0pPKI9+kVj2Xn5zgg2XyIoIgCsOq9aJ/S5ux5sL7t3c83h8sPs2kWkl9Xt6TdAoAnQ9r9CtTNXqizHJ9jPjhBeBe8ipesoith6WPsjafOp+wmg5Yx5yG51g4OvnnWLBmUWyt4DpM8tee54njeGKtNxXgpnwFtoNCQxuol9XOqGmX2l4OlWmOcFFnjEU0cnbsWMBtoduERcc1yWsBdQ8F/Sj5OGk8yWkL2JeGeUzM54AN8mjO88Q5zuroILdww+Px4OfeNP0x/VvT0KcFRLJr6xfXGDYLCvxj8MxNlK2Lavv/FCcvJijT13a13jFsEY9hFoQdGojBRBDPueIR7ET47bjjuN1x3N7ITXm/4ddv33CuwF/+/A0Ljvfxa4FoIvMIZp/PhnshkQOBOJmzMP0sW4w/FXf+B9fv53i66K21glwegjGlQTXkWGJWH21yg6ItRPEA8FgNtY5BEFAiCQxFfBUBiBtlnjTcWEQujZUOiZAIcPmIBkwZ9Ll4kFyEyhZFALvmLAXdLARl6xw9L06dKaTJU4S1MKAfDd0ajkOkseOEIXD0A22heuoRYFJ8BWLwvtrtqMRJ5t3GUELhsEI5IQJx0kB28fHQ1knpGKsvPqhQXE5NBXMAaqpbkNuqOSsk7uzfnjbpZHvAMOE2cb+RTyaCEOiJwOPjA2MO9E5y1/vtoDCuJfTVYLuXO/rbDc0bHs+T8N/HQLW/BIOXsXjgsm+eSn5hPp9sYVJrlsHxfP/AmhNfv36F+QEsjj0/bje0o6MdHR+PB87nx3awZWxvrTP5E5PQyOMGNI6kh1re1srqrBzE4PoQFiwnY9Iw3XpnS5J1zDHZ+iCZOG4cP8qtUwIpFlYM9HarSgqnrvD57l1ORiKLIrCEmrm//YRsD6i20hUkcu8HrHXBnnmYYpKUkDUsVo8CruqRCAspDAhBR7stNFsVPHfTlI7k9JFMBRYnWzjhxQsQ4szQwmSrbmy5RSvjhqU2zQunEBSUHbcDrTfcm6Dhja0/oziudqU+JwZyuiDHTocJuprpL2fyjHHiTvKcU9BeGKC2tqXk8XHwu82N6L8xpNgnnkMtdXLMl+Cb050tbyLADZCDqXnDcdwlD5mcklOLwEYeCHI9R8mdJ3dKEPFE1ALPL2OJrcTTfzs17jc5uoo0PgNtOe+BdHzSwDmWKmKZJPPmeI6BiCkdcUGVzARRc/LgGCeicXrl/bjR0ZmC0XciIkkiq6qk7ncK6WGeBtG3LRlqo8yErKqjUhr8jkj0BYOLko9EAsUmtsznVLxwaVlKR2BHPbc3OjDng3D43g44O0dxiqx2hSNUOcsMC4NgcUUIXWmWI+4/28nt4tJOzskE6CEU7TkcMCZ+XVPlDj/QoTaZQFXamAAb+Ph4glBtom9gYHWq5IStSR6BuxNGn9xh7oafv/6EOQY+Pt5ZdeuC3SIwzg+EnDWYVQGJZyERTZMBV6GV+DsO0rgQfPtuCQrdbx3s1pFIgv0JgMXCOagnk8idgWxWwtVivHYRJ8ls1xqYsURSrHta5KBq3vF2Z8U9k7MIq7bX5/lEjIWP3z4AA76+fakkUyJZhgjIc4Jr6/k5dIoN2ylr0oPz4ojq4Suw92BVmksf4hHh+zdpQQaCCu4H26+7qSCXgpHhYSgZbMk5JL2zWCPranlJTqZEKfvlzADZGiK04FryJxrXDqi269LrSy0d3XegZ/RY5pk8f/JVLmjhnFh4+G0HxsHPor2cNa6+Eh4Kju/3+wVJQ1mKpbVTEiMD7/txw5wTz8ez3pPBD9qhYC6DvwvJ9FTyAp+D3NRNteeXxMt5ngoUqV967+Unn+cp/c3Poh1XcJ1RiWUySHpaiaLdshf1dxYUUrdN7PO0kwP6ewoht/QdspM7gcw288i2ULPiSV1KXC4zVe7zPtPXVxvx5SvnYltK8/RHQsSzpi4Dtg1a3aMSEKokckJgoo9i30fs9r7cmwhOIG7d6waOgxxxz/XgORZSkX5KBnu21yvYfrLAlsLmjf530hqsbPUlYtRCdBud3wMHR8fPEz/d7qR2sL0TWZxxofozezIWC0lrnRiYGEY6jzGTuU+saIpvDFb+n8GIhrGGOfPMyOeSfjZvTBww6wDSWDyRXDG8qa3L6n0qOxGtTRCBOWUj249icohEVyC8tDbZ6t5UtJ8rMD7Sr1KSwLMIz+JXaKhRAgTcHLfWFOxnDBHI+MA0ym0q2b2Tay5LJa5gfZ4ZyFfnju4HY8BJ/p41k5ttc6q63wHLohrXLb8nYxcMtuPde8PRO+4aNmWLMVwmsFpr+PntC+bHxPPbB97/8g3ff/mNMdJCyW049diEvteMMbU6FWKxHQ8L8EX9Sp3qcFviAVScscTbFIFnOeH0qyhKPAPTxA3mHXbcMI43PNodZgeWH+je8R4A1sT5/gBRwJ2Dv7Cpah7PJ9ISJXfsnAPP54B7Kz1tZvjDz1/h3vB8nECe6bXQATzOk0VY+RBrLTRvmHfgiBt57M4FW20PZTgpR70SV9zbMSaC1XpYYxLn+PozfJ6I4ZgfwDifGGuSMsUM3jt6J0Pf7bip0M3zOJU3IOA6FSvPSVK5uOSS7HDiLRyMwaa6c8YZmDZwAgV+8dVk++ICxllqReanfb0zzhjzrJMAkGsacGACj8cDcwFf7m/4m59+xt/cf8YX/wI800c0/Pv/8/8V/8u//1/xx7/9d/j1z3/Bf/rf/iM+fvsV3375BziAL97RwGE/Lv/Q5gTCcb/dcD4n3udg8nQAsWj7fyws/Y+u/2nEEx0jCu4O2NO5Etmsqv18XyqNFH7+I/kaYjGANaE3sv+MfAq7whUGWAayQjLRQOUNZmJLpiQdzJVVYbaOEbKp51gi6lIW0Wu6Vfpz6Y2FKrNecGx2i6maoKDIpfgqSEH5KEiFudeT95qVVXMaemIj1yc4rsnwhIGEz3I4XTA+z89WmxQNh+CVoX+XA8V2vhWDKK/xwBhWjPlA2iE5QNlrCu0TUFVlImWWWniIAknCPf2nuDx2IBrYMMWUhRJYAsh2RTeDTrftDKHSCTqYC351hIEq/tJhV8VIjsBO5ggaLjeN8q2Kaf630DhuTdWPPV4WMnSZua8Wxaxg7J3esojKSyjxgALvZYIur+xZp9OHCkryFZejJCefCT1TcFMtZXk3+vyFIEFcCLm0PT+60UH0Vxooq58rkXH5boNGrpoXvDwDmGw7CgA1dS6yFY6VpKwSIR2Dy6qtFeWYyF6W8dycHbZlCum3759xvS97Ro+x9mC7hft5f0R2hg7wyqqcNlHxop4pZWvfZ579hYUauXwJUAKGnPAkRYX0aZIQs64McvR95CUjMW2ea9f5r3tcn9cTtTah793fnf/boXN+p96TglICcdWRKZtAcZftu9gKMKzkvvZtBWMN6IhchSv3Qp/ZLr/YGsP2PsZ2era8aM2QuJ3rJ1yv+PxfCnzyeaq7RffOvdXJuCTZGMihkowAqtKfttLAFtMIYNh1khLk3Joqh5e7lVmpdjEaAG63Hr7adPI8IYOdROdQD7kbQskansFdUb48Xf0gtG95H6kvNopky3W2eEDtqCXrWkeT525woT+v65pyOwsZirBPuiMu9/XJgmjPk+clPzLq3zrz17cGkCONDUIkTCFbbcsRInlLtJ+5BhH7c5HoAd522c/Pd4lUZgaoEq7zWI8Tl9W/PGvqbnEt6BDx7Fs+Q25/2tvPOuQT4jK2rs/jXaKkM0WNhE8yZjrs5ZmUjdYzXRJEOaE0p5/lAv2ok0qpmF+eIf8hv8gcmztH99wScZqIjMtHRm4w7yFtaagIE2sVFYIJLQUlr5K7y6Rrk08w7X2tcaBakPPJ4rL+aVazgPEJARqyWBd7XyJSq7SR4NerbGZuJPLztsynbryucB2MFLbLnlwM+kYM1I+iPiOfKZOI17W2tNVpEJCITMNcG6lMn+HHrfqsCH58ZpOOsjDpkXzdtjZp1ytxka0vFztG++Cf9rLWGjpzyQlyXbzYuj3Rr5XYtG3H02/c+i7XXAlk24nnz+KQupI0Ipns/rH1Ma77dNm0PK+78yAf2kGKhdqsfTakv3K7UjtsE8z1ypcnqsOt1YuWkYfPlayKlcWJfe+puxJF2jX1kMV+7UPk9MZE40vX13NdICP15PlL1DOX7ioElXyS+KzjMul4LURdEXulM0LoxkRyCrGzEb38xN44WKUV2kO6MhdVCcM1Fx4fD5yPk8Nhcr0iH+cqz1ok/SDbcZeK97VLlu4Zy1EL4GChKI+y5CblgOc3nYrUOMbuDUsuJSX3kspjhYpBuiWjb5NtgWuqpdj5OVcfm3u90c2tEV28uro8Bm+Y3LiUlZyqvLTGiaSi/yN6k0j9D+QOX8/6J2mWP9+PA2hAs4E+B/qNlDCW7B06dw6TfVn1GWn7ShH+cEnTf5aj0oco+//JMtv++VUnFRq4dGnsDp0p5B12wSi9dywAK3D0jlu/4e4ddz9wuIZnhZFj1AJ//OO/QrOOX/7wR9gKfP/lH/MUMT6NLEQrDmdAg4z7mB7gVF7PLqUfbdp/5/rdiaePp/rkG5j1PA48zhPnJBm1r0ZEhiU5ZFQLxFgTLpQCnQgDoOxkALEIGcmqwpxsnXtOTswRHx2FrXFc6nme7Hs8SUrsdsfmqyBnw1io4BsG3N7eAKMQj3ni+XxnVtyEMOodiRbqt1uJbfYMu0ZyH10QTLuV8xXil2q9aZxmjuzd6uQTtFywWhgnT7iBI3PnxPOpRE8QSUJ0hg7ZQeXzfJKcrwNVnVnRtvGDKhvBjK2kBAHy23y8/4aYC//4jx0/ff2Kv/vj36oawylTt1tH6w1jJjR5wdvQzQ+0Fvjy5cCcEx8f73CH+lFXGT2zEDqFSbJ0dDjxyMFhZI7b7Qu5NGBVke6NvFhzECFyKJny+HgHnoSeZsWrggEwYTnmJlE+x8l+1Lc73Bse798LIcGqzA6Icxzseb5jjAmfE70duH95g7MZg9PvulWFJIwK8THeaSAx5dSRW2zMwNEINe9N8rImPIKVIk2DOp2Evx8fH4BZVQhGVrBUPVrnE7HYDtZ0KHojMmMF1DvsOBf71XGIpLSl8y3upGW4JQQ+BgnVnS01I54kcDYD9HpONgS833VWNTFDo4132ACck6N551qqkinbvla1YCRHXKKi8nwkL0JEVEXjyi/X1Hef1b3rKORydvRZfH2vUbZrPoHYcPsogk9oSkUvItnWOHI4VPln0E5CQprs4Kj1Oak3AIzzlLNBUtEZ4iJZqyqguUo5I6+1NNLUrbCNzAq1BuRkrqtDfj/uaO44zyek3lCtA0HkHeHI6VKvHXwY1NrJBHSAcsqX0OCSRLHjdtzQmmOcQ8aYqMmIIJdNWKEQ0oimYQJALiwAh7E1lrBo7se5JmIF+tHK0cqguyrMXCZU09jKNkfKnCujYG46ZypKOBBJxhooeclExlA7d6KixgqWVjHFI7gAvwEeu9UBAU5lVDLHNrfLceN3c4JgfBp7XpwnJw1ZP74iEHiOXaVemsh1v98kE9fkDknFIwAXimeuiVsjinZK58+Zr2eA5dJvMBCdOidMuO97v306KwBwvN0B5NhkCF7NjSWp8W4XTKTDtdVmzok5Bg5v2BPiII6e/DyHdzr0a5KIOKvrEYHzcSKTa+679Q6IC4ze5HxnRRsgUkUoTgi5zFBHOumELQOWkYwYLlQkkEjhBRW75ol2HDh6Z3vh5EQgMw4ASb6FfgCtS4dVgiKDFhQfSQCoiVySZ0fC4oGwKH1Q5+jioPZG1FIsIKdtJpfdTnrTHj6HihVjcZx46+iqqM/nSa7LoE0lmTHvsOneR+xhDq301W79gqngpYCE/hHtU+vHbiHNlqQnP6+b1/2mzBVCIxJR4FteAjCQZB+GT+0vRIMzAhpjVAtC00TXqVYYF6rp1jtOefFrsLLdzKpNI89yJgEgPy2TGE0IsmqVvWS5FL6Rw+oaT6wdDgFCL2QGuwLe/Lz9Vs9gTS3u9PsgTrBLQFytn0tJuYAfl++XNOXEvUzSrWxpsx2UZT4iJvfi1OTazMnhklDhZ2/ZC7Vq9UT+BKv9aUfXAp5P6qs8Q26TttRRvK6ZCM91qHbxkN13w3K2c6QMrSJjzgQif5Y+gbmh3XjWSPvhODx9sO0n731j4qM3DgRJXwSxkdSHyH/PycTBzAEJFqXvk9fvdrvRFpyPvV5B5FcWqXJKlKkKWT6tO9pBLhvVbjFz4p9H+fnUI44crJM2ODmvKjLFlbCYyYDe5IuZy7ZseYnFnz2fu92/NyNNiSs50Q0wFsECgcfjY6dO9LwtQj4D7+/e6Qu2HHqggsqMWRMhN7hPduVMW2qVwJiFClHWxnzLsTBPBW4AkzA7uZWyzHVqzWg/gmgZKN4b54mPjw8cx8HBOOfQcKnUYRw+8eXta6Eok2j6OA7pAceawPv3D/zll1/xX//zP+CXP/0Z79/eK6H2nE/aHptMjF9amhYdV5wjtE6ywRpoAxhuINH+F44Oh5986HAi03OwAGxP/kxs5HgEIiZiAV9wxx++3nGLG4440AaTC64BSq4EXAzuVT86HudTQ7AMx9Fxvx8YA5hP4DgO9Ld76We6DAR6HDfH3/zNv+Zwql+/Y5xsr3cTMGJyHwgfXtpTgQWMCIXWSECOgMAK3Jvb2w3PMWHiyVoA2sHES++N93sG7m8Hfv75J/z6p1/wzX7luVa8SbeSzuNSF0SzPdxnrBNZZKC/jWoLt8UkTeISw3Ni70S0QDeipr21si10+ZlHSV8qlWAXVUjmU46gXTiOm/xbtd0CiGZYDvx0/4I/vH3BH9sbfrp9xdef/ojHGvhYJz7Gieec+Fd//Df4w9vfwJ+BP/3D3+O3f/hHxDyBONHgOPJ7EYhxIsR3bNbwh68/Y052rvV+wLzj+f6sKaz/3PW7E0+znD4mkbogtOwP1khbQK1UqUyZiWNyCWr3YavYXFEQ8JzQU1XmNMrKyl715xW2DuyMvLWsICoLmHwXQL5Rk6VEaq2Ka2Vl9XVZuWlyEhkLcow1X0trGimYkZXxzPCb2rVYBeg33VU6OHJGV0QFcGOobQkNOeEOgjSb5xNn8iqdo3w+qlWZIuTo30rqaW3pIGRSSEXTlgc9+YO0bjFI4glOJ1jlRJjO2YSBrRBjLKx5InDfRlv3a4ZS6IYd6KeTUFxAjIQxzwWXc5LGbomIO51SdxdciCPr6bhrn7NQnnJiWV26VgmygsR2SZKJZuWaAYl7p6MzgUwbpkOdrQmJeFjBFo+1ltZYARbkuC6uccCFYtPqxIUTY1GRNIjEv7LG/I7WuyYvyiGW3GVoklUjVqGTt4vG19lbId6u3BdVAm1XmKBgP5EJ21FCoWpg6XRiB60lgShHLnT4LdEfEtxM9jFpsK90okqc85mugSu2LCeEOolny/eI/Vro32GCSyJh04kmSS8lPt1LVkDzNbljiZTbGkiVmTURk4YFoTakyGB8VVDj0k+1lvihuod8iLr9XAokT9YlrkGSz0dcPwN7fT0N1fXhsmoZte45ljf1QiIWS/psk8XuiWbSNfnpoaRWnjcp1NJ7uMhLbN6v+i49wz+Jh7DcFSErom71xwUpRzWrg+ZWSae4ypWpTmapEjfCxWwjPSLl6JOu5bnJrarzUwGrgsI56/yUA2x0+M7xRARqImahNjI4yIJJ7H3PRF52mNaXu2VH1lV8as2j1mufJ8vnR+45z5JHPg8+nXHk+fy03J/lzSzgi+04UphCiObXpB1CkbzmGZXnyLNoOTUyERNpn1WdVWIz98WEst0NOfkMTFVaBerYxkHLeA3yYGyDx5qalLkJhaslKYAcJmGoLS/dkHwgVWG+nGnljuWZpixx3eIqyuXQ7H1k2wULAZn8hc5QTsvMwMu1t4VWkq+C63fgh//OADys5C6Dq9SZ+6Gi7NNVBkphBS6ysmWm9JLZ5ad5ZqFEx0U+DZUI/0H0+M61v9v9gh7Ltl2dybUWzioQJFI2E0ucPJVE2+uf0H1XlMp+pusNca9SXrcZ+3zTljou5dfSXl73w7aM+jXRrvUpPaPpSLLNqQutinvxaY0/3Yel37JqHSO/W3+XP3RRtGnDM6mdv08kHRNLVmtZfK+RVBx28Wv4DNmlUPttW1BzndKX5bH4a0HY770IIAAmodUdYPb5TRseqrcELuOFf/BZolD114/h5+r3+jsTTznpLp9/yce4+rVcVqG+87Xli+WzpZ65JMl03/WzSJUSbJ3D/gzu66r7zRbO3KdtK0xnhbbZZQgM2IWcXNU5y+/i2VnVeuutAZH6GOXfNnOwj1OoCcMPPhf/m2ucswqlI+O6pxe7pcxdvnZTZmzU1WebxefjzPndPlp8oHEFS6BkbQ+aMjW8GJIXjX7GkhzQH8s4IQfTJBLkfJ54PE68f3/nZGiouGQOTJ05Fd7miqsYcL3MsNxko+nsBiBUENcjJ/+VONt1HSURSj66NUT6PWCyKztYbC3RH3Bdsmumt+QKVVFIk9RjLTwe7xij4XY7LjbJPslPFp0TSQoEvDlub4fWcMKGwWao9Q1gNRY4zwfgAX860J0Jve5CgOrP5HqGL004TQCCZaKB920Nb35nS56duB0HzuNgW7cJHb9Ck555n3le0467Z4fDxRkos75jhdRLYZ999PTF88xvjbSBMvsvFZKzvG/ZZeKffI2VPpMxDq/YNmPFgPLOzsRvu8Fvhr/7238FXwv/5n/5t3h8/4bvv/0ZCHJ4wdNmN37D4s9McN/QcDlT8Xej/v7H1+9OPJ3LtRknegdu1tna0xzLidyZEm6FX+ju5G9ZFApUhQY4l/GmJyrZUZNBLIWWfY/RNusB7UT+O61jBjhe491ZkdXP5Pg/3x/YSnmV354k1WYQ95ExswnQgc7FVxtA8gOlqc62MrbjKonQmIVu7lWZX6pWU4wWzjmYITzpWPvtrs9k5nyMxU1O7CSgqXSBNU9wGls656axhttILdsKOL/Tm8EbcNwc3YDbzXG/Ob68sU3yeQ7MOTDHg5l3AxFEKwDMcmYR5I2LNXCeD5j9hH44+o2Z/vN8SBmrMo7APJ+IOdGPbF3jeExM9mqf51PJRyCRQwtJptZhzXH0g19c/ANBIroV1eEZ2e5oDrOlQNvUl9+ZjRYvWROUELHQ/YCb434DZpt4n98roTIHiem6JgdkQmysB2YsDJw8eAd5BOAdHx8fnEonR979zpwZCEu+8gndv36F9YbnOYXMphFp3nDc77jdb3g8HqzmDU4KnCCBX0/OgNznIAQWFoS1O7BUJXP5ALyPzU2ysHAujnfvvdXUhUSepKLN1ofmNCBz1Q5phPtC6wfPgJE3bMWlfUbnpml65JIx3AmkvTdyXWvaCaIhbA8fAGhHM0jg+ZDRc4ZfY55qlWzVnvF8fHwyhl2IrKzgAyYkJXDc7rDgs7HXn6g+ViVIEDlsIz+2qaA1zPGrLRPjQttlEi6dq0xAfLpcLZMr21mSoNXwPMd2HINa1zNw86zQijJfyiqrtu6uqYETvTXk5EMmwbnW53niaYb2bEIgBLx9gRk5HtLhzpALSYCpFUikY/NOrjnQSRqaNgTs1rwYFMhEXaRzQ8fbywHfUF+oChxKYkgWFGg+n0/KeqNOo8+RJJ0X9GgExswqt4ODPAIYJzAHxkyn/9r2ZnpOK73GnAknWZ5LnzsuHGMpVc7yzG/vvxVqtbWGox9sb3VgrMl2sxx5vUBUUPOMPjUtFhp4ICg0snAQFz8z6IxB49klmRlg8VrkLVjiYLGNSkEG5Bn8XgKnlPVsYeZ7BpJAGGoHhYK4JUh+JiU5fZHOZoZIZkStBQJzZUEiQFa5dOysAsO1Vq3J1vOSrSxYeGOB6+I/ZEA9Bw3GoWr1cT/w1NRNrAnM1NuOQ/wRY5wMMLVGQwW0/eGSw7yTdDKyZTChDukxX6UknVz5URmLdwVu3jjmPtvAppIqEVFo3ePIKTi6D6FPAxonnk5vxEUExE0IOtsBoN1uMLXpZOIpEUDZNhOSC4V+4kRaQlhvWeNYbbV2Khk5Y7+3kkjO37cmp9ZW6UZpAuSbOFKefC2p+5/nQ+eOnz0lp+/v7+i94+3trZLCRBNnIWwnCVh4Memjtk+v9iQkhzybO0jgoI/tdLM4l2vN55BLUkXNueb2Y7PfNRNPwV6kcodTlnKKTp55ZAtLBo56+muSB6sSMO5Ep5wiK1mBOr/NMhBdpU+QoX4iBxJFbFnYItru+XxS37cGoCG5gYDAl7c73A1zfCgRmFyD13Yy1L8ReVz2vsyZqIdt6/OqVmiIAiI3TMkA6o0sFtJ+SilRVlLXXq6MITOJcLXtkE+NAHl59Fr6LUALV5J6KRaZJA8EPulrwOp71jV/XGJAf24WCXXKVkVC8rFNHDaoInGKwDV53gAGiEp6eN2D4VxTA3waVgOOI9GUyaFGXfI8H+JG0qh4C7wJid5vb/R1J2OIcZ44xAvZZZtM6Ea/PGMDgNbQ+wH3tjmdIsPwTNjmQ62KQSin3HMWbTRtPWXAtkc25vaZEMK5uszc2nubNs/NiPg+GqxTD1Ov5tTGk8mmdZLDZ2Wxmckjh+P+01essfB4fMf3bx/45ZdfcZ4TvR8gbn5hYGDB0A/DWAvj+STSqBpGXYO2sO1K0MYNyVdSkpgZ+vRKQlPU9T+LQglmN0HvKQMd3oA1n5izo60GLCLNvB9wd9z7DTMWzjVxNMf9dmCeT6wx8csvf4IZ8Mc//k0lFT/55Yq5AMYmc06cY6A3x09//Ar/bghfaPMJn4HnxwdmBFrcMQA8P4Dj2THOD7TjQDs6bodh+VGI4/XUqD8Tt1gE/U9vSN6x4zhwax3H7Y7nxwMf375j3u+wceJ+O3A7Gh7PB9siNVl0g1oyeUadTZCNDtvadiQ7i1DJpkV+1ZVeyOd1CRUbr+CILaZZDFq4ddpkhrcM7GiqXEg2dWfA0PuB3jvWOjHXiTlOJePYGnsYJ7ei3fB3/+FnfP/bv0NbE3//X/4z/t//r/+I+fGO5/OB3l2ghw4EYzkL1xwzU5PAQgPj+t97/e7EE+wAbGFh0tl6niQabo3OO8GCCJCM1s2wuotrhou3UIlqjKkK5kqi5DxUUsphVRGeU8beFFBndtpQExVmZrrXxTC7KoBLCm+G+AuV+ewck8iATRBUEH7O6XGmKiPQHQWnS/6CDGbcGhaAKXlZaxLSboBbJ8yu7nkJmt7oW0QUWXWGnq1xk8lJ4Br/ylfkuE9rCu66AZZpJbaIlImyXYGi+qJx7N1hT0LnzsfA00+czxw3S3SRm5UuPlpDNLWXRcAxNdp+yglU4kCbSwf2VPJjqeXD4XEA3pQt1VqF1Kk75clbcaAAJJZjrOVax1Vgr10YYFC2EnFiDMjMG5jA4pSEkXSvxl7XmNvII4DnmjATRwnYcuiuYDWCAaeDyQ85iVOti+bJDyVjH46j39FajkXXeF0DvO01Hov90X5OmAeDITBpiVBibS6Mc2AoKdjMYV0ymDcfoAOlzH45FkrqkHwyEx7sSYcMPPuyTSgNg5mUTLYLmH/iNmHSAXXiKwzXeYyMjuxya4DQXxnAMmFVCSD3rXMzYNIaV1UmttOVLWGZu8kkDoNRKubc20x2A3Iy0ogooVwBdZRAKdhjgBlh0LBLPf8CYrHdww1p2ttlxGssJn57dya29Pl77PZGPGVyiVNOJM5GpFtkoKQz3HpnGK77bCr1kQ8sEGNQvtzquZeC3qWx4q3OHfBXDrfWurUdFHzy1rCD1EwA0LmhYeVkMK9nZHWPyNH0mJYcdxJ4B1sKKuhJRB928FQHK28jf/75/jm9a1fzC4mhN9ZHhNqg1ioS60hiWiVDabf4VV0yiwqEV91L5smK1FWOfraDTrWTsV2aQfEc/Axz6oJ+a5hTI8n9Wi1Xi6sCkAp4gEpKmoo5AFF1sahDyDlnlyOV9ijPUrmwhdDNQHHNBRgJtDMA+CwfUECsqq6RuDMscEjfbdujs0aIsBLel7Mknol8bqaYgsZNibM8M/xOJr3Bj6uExpIsonSw7tt0VmxvFgsq/Dv9DsQCNGSADvIFZRB5+CnrbgZvnRa3UJyo1xQhtXSI7ci4RHjGFDKCP2UDehYBIL0Zsq+qWmZhRYgCByuMAbaDFWdXvhdaa/FbXBFk+88VSbH3l9VY2h5O5swpgZfAPwNcJfbcQ0W+62HlN7MAlq1el3N7DZLnwnKF45GfRZuVdiO/m2jkBSwFB9LDZmBxyXEZ0KEWjcgW3qUzKc4foNq5cw/zn0z273N/TZTI1Eg89vsAFN9YEbcryRWTbWaZTafMe72HApDFTvxwxeXvH/Sz5OhqH1OfsoI/Idhc6c1MnuT3XJFmwMrYXrekREAoabCStuGKkNtBk9WdSqKLT002C7lfn5FEadCztZrrF5/lSL8LVZ3SL/hkVy++eC1Z2iUZrZAfWKdAv1uWaMuGjQo3ZBthIVHNhByJ8lXyLwTbdoBg27FrQmrpFN2UeT225VonmiUuOshCtpUF/ZTlWjaE/MyoVU/XOp2z0P4Wgixf+QnVFIAKxmE5mVVnUh0T3ry48PIcrDWrGLapiaxaZCl/pIXYNx3IvjoHkK1EP/pKmbdP2wHIXwzFYkaKEIMJfC25d6+1qGfQuqatof81t3lofnkNp/CtNTGfq+SUfEMrKbSweUN5BhZCZP6hWHfht+/f8ZfffsMvf/4LssUuP4/F24WYvhPyQtwgz7gc8EzAsZVXz9yIMlvsEMUQSiknr7HwyMRT5lzdJhI9xo9fWD4BnDAfcB+1RT4DbTmOxvjzeT7pb46BJHNgHcVwPkgyHmsi2vZVeU4YmwRMNBQDgYZ2a/Cj4/7lC9Zi/Pv9PBkX5UGORV9gzFoDvh9CwoueBJWTVPJQ8jxEsdHYHrw0nIst24vF/DEQc7L4Zava/awKwKQHmAgN6olq61bHsdTw1U9M+xo1gX6uRR/r4lclX1Paz+QlTrRzmOFZSFd1SKVf6kY/Eo1FKTMmKpthHY7ZgWEL6I5bb/h4nhhjoHfG4jMmvHX83b/+N4AZzjHxp7//r/jzf/sHyrCFkEyBsIHstVnuzEcZ6R4y3/J7rt9PLm4HwicWTkxVa293R290mCNQgeTzeTKxEw05on2uUBZSPsVcgHhz0iWqUfDaj1NQt9qfDHSACn69U/TnmFKADLhbGD/b0kFWUsoAa4QJHkerwCGdtVbOHqcdmZJTlaAqx8NgOFRlvGPGwmOyB3iOIX6HQFcQWSJmhBdaZ1vXROCMoYl4XIfeOfp9xUS4Y7UkOaPDGljoncgla5Apnlg2MSsHa+iaTkSDzYj2aB29NYx4x5oTj/cTjs7pTuKcMgVKmdxrRysHjRWliTUGhVnBQcwQDwUdkjGePGwe8KPXdBpbwByOWHtkfawJ6w7vjtYO9H4okOPUEDNQkUdwSltEhr4AdmVyioDUldwyb8UV8DgZVPTjzqTESv+KAsm8JBOd9y9vcDeichQ4WAt4TmFRgi+rMTTGTUEPz4KF43aQg2WsgRXkBWnOCVqsMgIxJs4xYc+T1R71mB/lDKEQXefzxJwDty93kUur4jXOi6Kje5eyGmq1WKGKUCT3kX4XATdxFI3BajO6DF/23Td0VTYTPWdwZA0yW/7gF/ioHGHIaUvnkIGqVfunADz8XkWkcwxOldTBv2layFmZxhB3lKZrXIx4VRSQCdeEkM8KVnlbduGVMDly2xB0yZALDeVq6cFK/oqJo7Nd8zwfQIDEhRcd5Qi0zjM3zrOq7UCUQQ0nkmBmNUROYmsNb8dR1cW8s3Z0dG8YTwYyXZxCE6hJLa5APvu+EXvyk1mS7VMX1Xrq8/0SJOe+0eZYyXdxnKTytO1cOiM/OuMROMfJswmoRSPleuF5nlgr8HZQT2UbzrVrIp30pCnI658KljPwuHKw1O9loJNPZY5VST3uFBJZjhXAmAnNVzVey8LpWbtC3iWba430odG843a7afwweeJ6b0xax8QYRGRxfLZzeqPxmVw8FuRAZPEFlmsu4ylnO8cTs2XI0dsBMaddzin3MUeJe2+5sBkncV8a1DLMZJn5QjVNx6Wa92kPVKgBg+func9Y4pIuaa4L2UgcfIZca+j9Wf+njqA+nlrr69lk4t7gLaoVggwykL2TnSgBUITg3MgwWdNMyEpWx0ny1JxEyj9KrbuQzZJv91atrp4BOy7Bogndc5k8thMYDF4CnA5ql4AqKhhCOUIxdvCXMtvEN5mI3S40owXXNO0eHz0rzfxMzzMR6fyu2tDa50wArElESXEOXeRAUUySKxcpshznfRMpcsHAKtKH4y/zuK4lbqGQ7l551hZM/kNC+ZdQKiPEyaLR0q15ob9a70RgicuruNbWQu/ksMs9S53hdq3ams62BqiA8kb+FgX4CpL3gyKjbqYuPJEKCzEmQogMU+RgdmlPoBPNn6Ut/SHxm18QWEKB7yQO/fAMJsWnF/SJi+OO/e8/fC6Va+q5bIVZlzOUfjinLMk3xQRcyYhKPOGTTDGJqGKY9PPRHJwYmibkcwta+veZQaLcLazwQo9VMj4CBDnn86i9J++7Cj0G+m0/6LKrOOd5U5s0p+TmfSlJFVkCkg+hxC/bH6HznbaP/uhxY0FqaR2vCaMcgV4JoYsAVaJUiWZymGUxLFRTVULe6om1FhASU4dNAf+Clc+7an+A5KijWxBYcwBGLsRsIczYaU8Ppm57PB6Yc+A8n5x6ez8UdzXqq5hYQlK3mya/OWo9s4jPWCJRgIwLAMZdzUh3AumMLl+xIfkhFQtk4sjKhcDewc/bbikfagv31CMRlajwTh7N5/nAcTDem2tgJ6Ep66YBRFpscPrhwgpynv7lt9/wy69/wT/+8gvutwP3+1EI3bmm4gmCM8hzNTjlO9HrHrVu6brxvDoGAtMMp5hauKdWksTkIt8ULYPdCcRE8Rf7xHTyfbmfQovLTxiTHH1gIezx8YHxfOJs73g77ozRQDv2+HjA8n09lBDKYSbcswXqgsfzRBjQEfDbgbd+wIyTy//07TcMoc5SVmNxkno+//PxxIwQfygL/dkaB+l6OO1Ntv/F0creI0Lt14v++Tix5sD9OIAIPB7SW26aaDcwQnvltHvLto/K4hD/YIVi4S1v3ZTkCvqRs9zoC8oclwS/Ek7RHMucseHKglPjusmH9Oa71c0M6A2rGebNMbvhtIUmwvH38yTa7GB8O58D1jr+9b/5d3h7+wn3t58QMPz6/R3jfCDWgmUcLuT3XIuFO3fsScYldv/s9bsTT88nJb0fX0ACvyfR6BZ4PAbWBI47DdiYBixgBFEc7qEspKaKId1Lk6HnQakHilmBSxm1SxkjiRXpvGvUtaoBMCMJ1hxoAFqweuvuuN97vpQHfowyuMm0H+tEeUJliJcm7BE909shQ8RkyIkcw0qlT2eC9x5BGGUeIAbcTtKsZuU4Z79tGYIM9EFjldPhVtdaGUnEELuPdQYJydKhKwe0+BACdi54OLrdgOaY03E+Ao+PSfK+zkoukTysCvdjV9Y8gD4chhuOfsPRJ44eOM8A3p/ox1eYEzYbGhNPuDGf3QIYg+SFK0jg3G4HTPxW54MB+nEwwMgxyTFOBQApC3lMgTFIcN+c4rzy4OoQb16d9K4y1bm5hsyjqqhz0slpTgOanEIAdlKlHM4MBKt+oGTRImrOIHSSM+kFtjPRIwyRsTmSZLWJ9HdqtOyai3Duth2rx+PJFtGexlL9t3NX34tEWRD55ZdQvZzOKHnNllMzlNLEXIB1JdX0eSIVhlrtxhqVUChy9jEuQTuTvKYEYyb7jkZHdY5TKAJxIBXPtFfA2w4Sep8Ptbk0QU7hDODW3oskkO49HVATrNuw1hMzZsmDTSl2YAe26dg0wb41WXOOUevqxvPJAle6C/VmOXBRVaGxrEhwN6m9qyW34UCSRK9qjwWABOaSOyAQi+1b0wv6gKGqezo9EUtIxdgBt2VgQiiyryWDtVFwuxWIxpYj6nkW0ntzd4TuWctUznS2zq5Jp3VUFVEk1+5yQnegdjvuSnzQEUnkpxn3LKvsgUBo4mjrgpHP1Mt72hW9d9TEvxxJzDHrfLZsPUvepvv9Xk7/x/PEWM8qGjQNy+AI4wCUmGYCVQGT9AirnkFnWuUvBg50WDCYzDGERqyz4pf78nw+8TyfuN/vaOi6J51jySjtvJF/T4EgrOq4mKoA1oh5nf90sGibmaROAlw+nxIG4mLxA5IBoTqswkHgEigx6OP54yjoPAWq9A62YyDb8eR4RfJflBpV9TmgpBdlzdDgtpMf2TaTe6c4HVgKhGMWz15TUmGGku41IXcBnX5HInZdLaLZ0gMsOXNWbb6W7biQnzLZipv7ohtD4T/ZU1jLViOSZQPXytR4ICvm3GoWozwDp0AF4V5rmzAG7b3tYhii7oA+Cqy+e6kUzKRgAJIB96ikK82ZVQagkjJJxB7bZ7smqRjA7DHxyV2Vyc/dCr1tsZvDu/g+I/VmgkhZLDDb9gmyN7xHr4A41zCUsMpE0XOcWzW4CPoHN22sgXnuQRZzTd4PEu2m5KBZEfJWAlt6htFcIjbsk1tAxOvEGav2l+i3JrJf6bUIkdfLbucZClXBSwei7EKmXSw5O3NfhSjIcea5PUxQUh4yx8WJVHqc1B9qq7dMcut31lzIo4YIwirWTHliQYek20K/R+4vn2kOjstYalPt/caAXQKe+jjAYSoUTaHUPiV+Em10QWvK1mXwVonfgNYoz0UWPfR6bNQwap1a/TayvT74b95G1LnIKdzzVPuwBbyLUkNdB2mHT7Xt7mSFbJxZxRocskKUdCV0XTpEV6HWJN+lewOc8OUmfqCo049aA+yEwCXJB/k0zfj+nXCXLRaSKFsAASXQ8jzA0foNrR+0l9h+OzL2MsPUwBSEvhOetH5l3yC7Oy+oSPoO2U4K2Y9VhfBQ/BNTG5OVpfxdRPnsicRe+f6L3uytl9+2+X128dc8icN3e+79fmPr1u3GL6BKxZykWACIYHo+T/z5l7/gt9++45wLPifsNPRGPUl/xTHlB0Wo0+NKuhjS11o3Ey1EMzCeBAtHEUCOxQr5UDMCmMlpRX20lPXoLv28Jg5v+OqOn1rDW+scj2dsdW9muDXa6XXrsr0TCwMzwCQ4FMsuJnqWS9cOoSN1YOP9g50t/cCIhbg57s4WuNv9C3p/w5cvv8GMpPxrsrgeANYAHueJwBPvY8GPjj+8cTiV3zvQGlvSg7c/l5Kokvn3799L9r9++YI//PQT/uQNcyx8//6B79/ecf+bY+uNS6yZ6NQwIBqQvFRFnREbze0OdipJyRpQFBV0iXa3hZmxAyWAMzgA5JwTzTo6Gn0Yi/KdKZeGEYP8YDFJW2QGP26M13S/pD1hHDNjICaA5rh9eatC7Lk4D/1+/4I/9Bu+/vQHBAxvX3/C//Yf/5/48y+/lG6L1uQGqgCwVvm674+P0mf/3PX7OZ5OVpMOCV2ovxWTgjVnwDoP5KokUrAq2aLOjnJjpRyytSMdrOyLDoQqaVnN2q9hXzMRJ45VbU5UaAymBqUfgIJaZ09jytKKJQIzOaqaqFCG6WKQs8ofgovmRFEKnGNJrS4IflkCxdcs3UN6oTnpjpDwTDxdnLN0Ppxw9zTOlgIfVqRkpaQv/0vrmIaC/kkGS6FMu6ow0zANOJ8L0QPdaLzORWhe9kBni1IE0BZbDFtr6O2O1k7MEQAmViS3VaMCDzAAxyqDvaZ8pWw3MSagEIapqTxNk+AinZNJJxB+Qb3lcy/AInD0g8+vpGROo9oVL1RgUJWmhdqrJNRjBnexZzVYKSWUmRWOyKDQ9l5tkb5MndFuHK2Ld4eOxjwHDYHQSKbgGB7orQPY3EqZ8FrYDh15RgBYBzIRkAkLM7XLSYaW0GGKVao9SkrMJOtUJjtBimqdJIzV1G4XcsC2g8fWKzonCUtddIDUynBtRYkol7HOKgBWYgzFZXRtq0iHEDiRE9cAq4L9igxo5GhFvl8TIyS32YOfZ4EV4ItuiqhWKTfyVMw1eF7nrAo1z4NaAGwHBKi/JWuC1M4QamnlLBEZsax4e6sgDbGEzrJyEgNZtV6wudTuq2lHcgCJeHChjdLJuJwXOSGpSwDqxM8E3z84pdJx/IBdJfdGhOFuL4hCSZ5jaAQxjfBxsIrl7nQ9hwJH5GRIIJFXhcrxxMqYEJ4M6MMUAKVOKSRCnqGrQd+RVwbklIHddumm8boRmIvw44/zwefTeTVzLFUvY+1AFvkd1RQSsj9X7ZTVZ7ateDBI6T05/OgQrUXuq6pCtahzloYo8vPLrtQGlazkxJ0rsW8SJieqIlGOiT40AEmI2npWbbct2s+bcq6gRrF3DbMoPWr13TNRvJ57yuzGbofQeYsdJrGVx/QdfL3ZXwfJKdP5XyFkQNrzQ8gmKHHKoAFIkf1EAFpLGUiUk4s/K0Ym6bxO+JL8JXfjxgvmxlgumNY8tqJKkFFgBzWJ0U+5zzOrQCkSJm72V/d8bY3b51ctd3KKEvWxdokVVq2xUOC3fQzYZ9sWIaRItkVmkeDy3cJK6N/ZHrXtbp7BFfve83yxLTQu9yY9LpnPtU2dna1dXklwtcuk6ZLtTK6pIoaWPsTaMn8dXV/pHcnHEgt+FbLsss8AoJb6bOWzFJBMfES2TABJTgy3z7wry1Q8uAQiOg0ZzEC+zE4OhvwG6pgaN59rZ9e9uaz15b/TBm25WbIP2dZ40TeiLTA/WGxW4jv1/9YUl6RPRBVpMum75qk2QyjABnL4R6UplXhKO7Qi0HYmQai4TIpsPfnjs5Q4+d4zrWouIlBSL78JKqjEhTj40op31YhMXCn5ZiASSHs4ITS8bZ3GSdpDHFkNzRLdm/6H7iVS9j+fl4Bsnp7xx8QTs9K7ZS7PjuoW28e7eCv5i0RWGEyouQs1gaWNVlQhvbUiYMFzxZadTDzL7oUQ9lc7so8+9UidJCb30s7XcJD0//L+JV+UdcnQyiQjkAF+7lWsVXolf5P+SnaApNx4ky6SP7FicQqqbpvcaJ8RhYmabK3hOuxmTcYvJv19jhO/ffuGj49HId5mcRBmkeWi0xf/uynZlfIBWIEIgDQZJry2iwYlxOUFRFjdU5SvL39/phcoPRsTrQduZvwjlBUc8KBcN9mo4+DU9jk3vUtPmc3tlU+QPhfjAcK14nHCfKIvINzQzoHWGw51g7RmuN3eKolHdNYAFldpDPrTKwA/Gm7oiMNw+EKDw48G90WU5DmUaORNZSEpIvB2u+F23OTjidf0efKcJOI0H+ay6FkkKD2eZzc35XJeAOmgiNKDFlCb/e642AMu1D0QBExE2ubqNolqt5sZ1K3F35ujt8UJq0DF6C5U0oqpwp6jH0f5TCtChZkDt9sbbn/o+Hg+sAD8f/7T/xcTfxbdjyHUEmj6XhbYeUbGPDex/D9z/e7E01BG/lCi6fE48WYNR2+4HXesFogi8COpMMBe4ZwgkEF2Zg4RVg5ATBFbLvLMhLFaS1nniNLzPCvYm1LKc+WoTW7OHHSQ+nFDb52j3AUwmZPOSWtskbndbnLwVNE02wWGrK5CQaJ60ZMhnoEIHaxmTcFFyLBQocEC5/MDZsD97SvoBAaec+IhpIehVSXSjFnja9vNRDq+VBhHY995jrmf51kOrItfhUqao5/TpzWQ26XNgMdkRdiBdQ5MLDw/TrQvB76+/YSP84nz8cFxlUfHIAEJoenhIBEDhbDZG+4HMOYT81x4fgy0DqgTlro+kRM6aNX2EFzzOSb8YKsIxzaw7SHWQn8jumzI+T2fA+gH7HbDnGxJOPzGTDSwnZYAELPI2KFWhI+PDxgMX+9fyyimE9Y7iZCf40RMwCXHc57c1+40pksjfRNmjazfb0W01m4PyFHLhPWyd7iZ43a7Vf//Q8Tq1neyBNZgviqAvN/urGoNIgcIKw6SKcdEzIHebmhNY9pl/AOo3vWsIDzHwmGqtMyBQBBiymVjVh7OBJSpXQ8oJcwxoIHlvdrBPj4+YGZiehPSCUT7QFDurhGiTZWb7l4ti2syGZwcbIlIfzw+qFdSdkDywDEWeus4Dme/t7Lv7obWDow58Ph4V5LI9dqOMWhcetuOxxwD8zzZtmlK7mFml4DQOQvJYwcIJWULtxtbL8YioigscM6BMSe6DUqHg7Dp2ESFcwq5qfOavF+h4OV5cvoZiUMNLUSUHIHb0eEGPNRTb4eVzsgTH3JUcmx88iKkvFMeqE8SYv4xBpKcPAMYw77ncu6B4p4KLCXseJ+fOG2E2sy2WgD8fJhIo9lSxQVVC6Ul94phxW6PAYDhRPYV5DrvcWclqvJ9nk+5oAyciDLj+pB7yrYzbEQO9uhsg/ZNQq5ucSJjjOcixyfnxKzkCiHqklNeLBz3oyNJbcc5AAu8vb0xQJ47SOydpNo1clsGPPn+5vkUn1oQnWvpiGRAkAEJkRAZlLuq2CT/5YhvPlOSevO8oPE8bzSREp6xiNhKp0e8d5XICiUmFp3t1ppQljvA6eJ6YJv1wvPxxNE12AEZMCoJax2o5P4uGrjvZ8x2LQSTk7gGPFrPdLjPc8Cs4Thu6Sly4IcZjnaXfaK9IOFqh/vBQPE8hUp0jMlC2uOcaP3A29sbx0snKjVo+zl4gbZoIBSDhQKtPfHJvdFizHkpwghZkBGjgqVZ6DQUAiTsEiABWIu6jIEwdWQeiPOc1Tad0Hzaycl9bw0xT5Fd84ts+T5LPEK1TkToyF+x1DUg0bmKdCTD13kxOd/LkERVTEQQoZ2Ip0TIWL8k8xSIt9ZqMijUNhZBYt7UQdfI1txw9Bt1xkqdzWTUc5wcJqBiJCx1o9FX1NeaCp8wIxpQazqVCFwqdmRwVfoI+zyPRVT9Sq0ZceHhzIR6y7CYFEyewI2dHMkx1ZbBG58GS34tArgfm2h9zIH5UHBrpDDw5nVeE03BqVsKhseJWAu3I9vML+hthJJETj8fCsCUSMqEEwspOYabSYxD/HnkQzEhEMQOI4hzemLZ8thERUGdxvOVyLOaMG18ljHGTkKm7yVfeK6BTLHnagJLKBEpEf2VqN/6b4Ajz71XwnilLkz0ifE8kf90YY3A4yQy9svXLwgEzvlQ8pi23DVxymsjI/Oh2GkSTg3P85XrUCliZlrU6t1EuUFEyP4UTsIst2n/it+hWCH3uZKJheA2tJa+yuDzC20RgfJ4xxqyQVHnnfKUvoRaEh1MhscFbYatI5q6V7K9umkS+ES24Co8wGW4Q6JI4BXbEV+zSn/01gu5VQnNFdxLXTU0Qgt1u99LR7lTH48heT76TmZDqN8ZWCMwnifGWLh9ucGs4fv3d/z5z3/Gf/pP/wm//fYdX79+ZcLj1jHOdw5ymrvNLmsUDrVfaRgL29MX0PbAg0ymHWGwANoSbQOJDcgJBoNpgt1GUpEHKoJIOZ5xDpN5707k0OH4+vMb/XVQ9398vCN0X7ejw+6NJPLziZgBt4a3+xv13pwYMfG+nhu5rmJgOxaLXLcbZgSeJzAfH/i+PvDzl59w9ANf3r7i6HeMwTa4GCy2Ehn0RGjy+ojAt/WBZxtYp5HW5Uy/FGhGzuAuePXHeKidvmNG4Jdf/yKKkYavX77i/Pqg3xiBx4NFyH47KtE7s0jSbOsgK0mGr9Q0wBKHacaZfj1/dK6q0yKTVAkU5PE2AguM+9gPtbk9T6SFd2dr+VA3QTNDN8cfvvyEP/70M/726x/greP9HBiLtseVjPr+8YFYC19++gpE4P3x5Feaw487/tW/+bf4v/3f/x/4t//u3+O//B//Oz7ev+O3v/wJ7ob7jajVRHgZAkd3AmN+x/X7OZ5iG5c96YG/yyrpjEQzFS7zksnWApuV0swKRDmYlbrWoYooo8HP4muiYNzcqQgjXDx4X5s0mI5goYbisusVsGCjTqQEy5vP78zA0IQIkeLPzPo104vcCDldzFBm1U3CunbWVWQOwOW7L/nTqjCwKgcmUGAIy3bEnYWP8EqclXLS4XA9hgPqD+YvaEx35aB5h9tAGiYiDKYy71vlVeUa6WTQcq6lSkERQl4eJB2tWid+1h7lbfvjY2nykX3ai8wE537K5mwZuXwfl2WbcpgVYRz35cd9kyqXcxbX77k4tdfX177lzy7/kVVh00Z8knXJCIPhBpyoIKucArD3nFU+cRI1Jv7SyaMIBWos+fU+8zzlLV6SBtkeY2qZC9tBLyI+PUkAFxnTCFo9v8MxMXewTM1VFYMMMoA9utZN7VJ5usvfi8saXPY8lXM6ubVHgSK+tVnB2vW7CxHj9gnFAuwq6Y/ojkKgVfY52/aI4KvKqfSAK1CKscPtmtgWe0/q+1JPImXUSoavKqqe2xhw5B5nhd7MPu1LGatPK4hCWBJhdLGS2DL8acx57PtlNc4/OW35mr86F3lf1xvQEa6zil3hMVi1lpQvrSsTcJ+eI/b5yakzV73641XtkxYl/5XYu+qyy97U56UM1e/3elENJxdTfF4X6XAGSF7rykRwFlJMNmejspgs3ftzraxu+0j5arsE/MPFs3OVD57pjXZjkBfS/Reb7J9WGj8G/jV+XRuViKX96J91z+Xr9jpKTzGRyPafHy+76NO4/D+kJ7aLsH9+tZgXzVHrzpqSgrgQp0XZciYNkOjqSnpni51t3Y1QMYwJUsru3HodaXMlM7HXK2/5UwI35TCD9mDxbN89Pv27fmbXn+89KDnUjZSelL+mQmi5OJ/MOS6oo9jflQW069nM73Xsva1zmToh/ZXLvoZIm/fz4KJH8r7/KblG2cs8OzIsQg1f/cv9fcVTeZGZuH6foc55JuXjUrDN+7smRvJZa6m2GZBnY3WvuX4Xb67W+dOxudq/i0+RfkLUfpQSAoCid6izrd+lvZ7JVSQ9te1aLWntx1WvQtyo+aJY/C5OoLSLfeD/Wd4rtj2lnjV89rM3guC6JiaD8dlWbs63jUS8SuFlny52YSN+PvuD1x3Ip+aB/PEz7dM7Un8V0iwP1WXr0s/TzRRih+iuwFiWH8T1SOT05cZ0zOre47oBuJxZXPdPPjr7KLmW/8ST5B7VPV/PZclpreYnzVM6N1jIrMePRIHFRT71Bf7jnuhM5Pmpp8kdvtjg4gqTXFzMUK3Pf+dspZ9SbZyXZ3TzT/8NfJanXRRTrKbe7h3H6eECyKRs3tf17CQyPeV+zonzPPH9/R3nOIWSauits4CM9N1ir20p5otNi+veykbqnj2MRNmLLdxKE9e5Yts21z0RNizUb2Rd2uUxRiV4Aa6FA0LLTJ7LTCY2v6AfL0iNWtPkf2ZZIFEQxYOk16wVpAkZC+OYaN6ZhOxClC8NaLEd0yeCNhZBClgTY5Czap1DhcOt273Oh9VzRbBYsuQvsYMnWyqXEtj74GQR/0ceI9PPMnytPS2/Tf7W5Szns+OHf5dpKd0qDWM64yswP0tC+TKRNhnisG6dRT9v8Gx1xdZXRLmuSthncUO9gLjd7vj5D3/AnBP/8Pf/FYBhjInmhtXXpmbRJ7Oj559w6v6Jy+K/p81f1+t6Xa/rdb2u1/W6Xtfrel2v63W9rtf1ul7X6/r/4/p96anX9bpe1+t6Xa/rdb2u1/W6Xtfrel2v63W9rtf1uv4nr1fi6XW9rtf1ul7X63pdr+t1va7X9bpe1+t6Xa/rdf2LXK/E0+t6Xa/rdb2u1/W6Xtfrel2v63W9rtf1ul7X6/oXuV6Jp9f1ul7X63pdr+t1va7X9bpe1+t6Xa/rdb2u1/Uvcr0ST6/rdb2u1/W6Xtfrel2v63W9rtf1ul7X63pdr+tf5Holnl7X63pdr+t1va7X9bpe1+t6Xa/rdb2u1/W6Xte/yPVKPL2u1/W6Xtfrel2v63W9rtf1ul7X63pdr+t1va5/keuVeHpdr+t1va7X9bpe1+t6Xa/rdb2u1/W6Xtfrel3/Itcr8fS6Xtfrel2v63W9rtf1ul7X63pdr+t1va7X9br+Ra7/H79pQ9JapTfcAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import cv2\n",
+ "import numpy\n",
+ "# from google.colab.patches import cv2_imshow\n",
+ "\n",
+ "save_dir = '/home/mshukor/ofa_adastra'\n",
+ "\n",
+ "img = cv2.cvtColor(numpy.asarray(image), cv2.COLOR_RGB2BGR)\n",
+ "cv2.rectangle(\n",
+ " img,\n",
+ " (int(results[0][\"box\"][0]), int(results[0][\"box\"][1])),\n",
+ " (int(results[0][\"box\"][2]), int(results[0][\"box\"][3])),\n",
+ " (0, 255, 0),\n",
+ " 3\n",
+ ")\n",
+ "\n",
+ "img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n",
+ "\n",
+ "plt.figure(figsize=(15, 15))\n",
+ "plt.axis('off')\n",
+ "\n",
+ "plt.imshow(img)\n",
+ "\n",
+ "save_path = save_dir + '/results/vg/'+\"_\".join(text.split(' '))+\".jpg\"\n",
+ "plt.savefig(save_path, bbox_inches='tight')\n",
+ "\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d2d00b2e-87fd-41f4-a6fd-535c9785519c",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a165db86-23b6-40db-a2ba-daf62db6b8df",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "ofa",
+ "language": "python",
+ "name": "ofa"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/VQA.ipynb b/VQA.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..12eaa40f04d0c059a0adb90b0b2008164d53f421
--- /dev/null
+++ b/VQA.ipynb
@@ -0,0 +1,449 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "51af39e5-c289-48a2-beeb-48da7a783b35",
+ "metadata": {},
+ "source": [
+ "### Import"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "60f00b1a-8270-4baf-b619-954e0fa66b53",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "import numpy as np\n",
+ "import re\n",
+ "from fairseq import utils,tasks\n",
+ "from fairseq import checkpoint_utils\n",
+ "from fairseq import distributed_utils, options, tasks, utils\n",
+ "from fairseq.dataclass.utils import convert_namespace_to_omegaconf\n",
+ "from utils.zero_shot_utils import zero_shot_step\n",
+ "from tasks.mm_tasks.vqa_gen import VqaGenTask\n",
+ "from models.unival import UnIVALModel\n",
+ "from PIL import Image\n",
+ "\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "# turn on cuda if GPU is available\n",
+ "use_cuda = torch.cuda.is_available()\n",
+ "# use fp16 only when GPU is available\n",
+ "use_fp16 = False\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "3d4175e4-6371-4d33-854d-edb3cbf7baee",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ".register_task_cls(cls)>"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Register VQA task\n",
+ "tasks.register_task('vqa_gen',VqaGenTask)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1c08f39f-5dca-4b9e-9351-acf62760e9fc",
+ "metadata": {},
+ "source": [
+ "### Load model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "42ecfa8e-8a4c-4bde-b462-dc101818bc00",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# specify some options for evaluation\n",
+ "# checkpoint_path = '/data/mshukor/logs/ofa/best_models/unival_vqa/checkpoint_best.pt'\n",
+ "checkpoint_path = '/data/mshukor/logs/ofa/best_models/unival_s2_hs/checkpoint1.pt'\n",
+ "\n",
+ "\n",
+ "video_model_path = '/data/mshukor/logs/ofa/best_models/resnext-101-kinetics.pth'\n",
+ "resnet_model_path = '/data/mshukor/logs/ofa/best_models/resnet101-5d3b4d8f.pth'\n",
+ "\n",
+ "\n",
+ "\n",
+ "parser = options.get_generation_parser()\n",
+ "input_args = [\"\", \"--task=vqa_gen\", \"--beam=100\", \"--unnormalized\", \"--path=\"+checkpoint_path, \"--bpe-dir=utils/BPE\"]\n",
+ "args = options.parse_args_and_arch(parser, input_args)\n",
+ "cfg = convert_namespace_to_omegaconf(args)\n",
+ "\n",
+ "overrides={\"video_model_path\": video_model_path, \"resnet_model_path\": resnet_model_path}\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "4aff0dc6-1069-4619-890b-499a056bf2b1",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "self.sample_patch_num 225\n",
+ "self.sample_audio_patch_num None\n",
+ "self.sample_video_patch_num None\n",
+ "self.with_cls False\n",
+ "Frozen image bn \n",
+ "Frozen video bn \n",
+ "Loading: all_resnext101\n",
+ "use bn: \n",
+ "load pretrained_model /data/mshukor/logs/ofa/best_models/resnext-101-kinetics.pth\n",
+ "_IncompatibleKeys(missing_keys=[], unexpected_keys=['fc.weight', 'fc.bias'])\n",
+ "load resnet /data/mshukor/logs/ofa/best_models/resnet101-5d3b4d8f.pth\n",
+ "\n",
+ "unival\n",
+ "getattr(args, \"stop_on_max_len\", False) False\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "# Load pretrained ckpt & config\n",
+ "task = tasks.setup_task(cfg.task)\n",
+ "models, cfg = checkpoint_utils.load_model_ensemble(\n",
+ " utils.split_paths(cfg.common_eval.path),\n",
+ " task=task,\n",
+ " arg_overrides=overrides\n",
+ ")\n",
+ "\n",
+ "# Move models to GPU\n",
+ "for model in models:\n",
+ " model.eval()\n",
+ " if use_fp16:\n",
+ " model.half()\n",
+ " if use_cuda and not cfg.distributed_training.pipeline_model_parallel:\n",
+ " model.cuda()\n",
+ " model.prepare_for_inference_(cfg)\n",
+ "\n",
+ "# Initialize generator\n",
+ "generator = task.build_generator(models, cfg.generation)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "38cb01bf-0c77-4a8c-a46c-3f8d02944847",
+ "metadata": {},
+ "source": [
+ "### Preprocess"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "95e9105f-4435-46f8-8204-a80802361f6a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/data/mshukor/envs/ofa/lib/python3.7/site-packages/ipykernel_launcher.py:8: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.\n",
+ " \n",
+ "/data/mshukor/envs/ofa/lib/python3.7/site-packages/torchvision/transforms/transforms.py:330: UserWarning: Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.\n",
+ " \"Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. \"\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Image transform\n",
+ "from torchvision import transforms\n",
+ "mean = [0.5, 0.5, 0.5]\n",
+ "std = [0.5, 0.5, 0.5]\n",
+ "\n",
+ "patch_resize_transform = transforms.Compose([\n",
+ " lambda image: image.convert(\"RGB\"),\n",
+ " transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC),\n",
+ " transforms.ToTensor(),\n",
+ " transforms.Normalize(mean=mean, std=std),\n",
+ "])\n",
+ "\n",
+ "# Text preprocess\n",
+ "bos_item = torch.LongTensor([task.src_dict.bos()])\n",
+ "eos_item = torch.LongTensor([task.src_dict.eos()])\n",
+ "pad_idx = task.src_dict.pad()\n",
+ "\n",
+ "# Normalize the question\n",
+ "def pre_question(question, max_ques_words):\n",
+ " question = question.lower().lstrip(\",.!?*#:;~\").replace('-', ' ').replace('/', ' ')\n",
+ " question = re.sub(\n",
+ " r\"\\s{2,}\",\n",
+ " ' ',\n",
+ " question,\n",
+ " )\n",
+ " question = question.rstrip('\\n')\n",
+ " question = question.strip(' ')\n",
+ " # truncate question\n",
+ " question_words = question.split(' ')\n",
+ " if len(question_words) > max_ques_words:\n",
+ " question = ' '.join(question_words[:max_ques_words])\n",
+ " return question\n",
+ "\n",
+ "def encode_text(text, length=None, append_bos=False, append_eos=False):\n",
+ " s = task.tgt_dict.encode_line(\n",
+ " line=task.bpe.encode(text),\n",
+ " add_if_not_exist=False,\n",
+ " append_eos=False\n",
+ " ).long()\n",
+ " if length is not None:\n",
+ " s = s[:length]\n",
+ " if append_bos:\n",
+ " s = torch.cat([bos_item, s])\n",
+ " if append_eos:\n",
+ " s = torch.cat([s, eos_item])\n",
+ " return s\n",
+ "\n",
+ "# Construct input for open-domain VQA task\n",
+ "def construct_sample(image: Image, question: str):\n",
+ " patch_image = patch_resize_transform(image).unsqueeze(0)\n",
+ " patch_mask = torch.tensor([True])\n",
+ "\n",
+ " question = pre_question(question, task.cfg.max_src_length)\n",
+ " question = question + '?' if not question.endswith('?') else question\n",
+ " src_text = encode_text(' {}'.format(question), append_bos=True, append_eos=True).unsqueeze(0)\n",
+ "\n",
+ " src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])\n",
+ " ref_dict = np.array([{'yes': 1.0}]) # just placeholder\n",
+ " sample = {\n",
+ " \"id\":np.array(['42']),\n",
+ " \"net_input\": {\n",
+ " \"src_tokens\": src_text,\n",
+ " \"src_lengths\": src_length,\n",
+ " \"patch_images\": patch_image,\n",
+ " \"patch_masks\": patch_mask,\n",
+ " },\n",
+ " \"ref_dict\": ref_dict,\n",
+ " }\n",
+ " return sample\n",
+ " \n",
+ "# Function to turn FP32 to FP16\n",
+ "def apply_half(t):\n",
+ " if t.dtype is torch.float32:\n",
+ " return t.to(dtype=torch.half)\n",
+ " return t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1719562e-a17e-406a-8232-fe401b5031f4",
+ "metadata": {},
+ "source": [
+ "### Inference"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "824359d0-eaa3-4aa1-a35f-32d011ed2225",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHrCAIAAADQdLtwAAAKMWlDQ1BJQ0MgUHJvZmlsZQAAeJydlndUU9kWh8+9N71QkhCKlNBraFICSA29SJEuKjEJEErAkAAiNkRUcERRkaYIMijggKNDkbEiioUBUbHrBBlE1HFwFBuWSWStGd+8ee/Nm98f935rn73P3Wfvfda6AJD8gwXCTFgJgAyhWBTh58WIjYtnYAcBDPAAA2wA4HCzs0IW+EYCmQJ82IxsmRP4F726DiD5+yrTP4zBAP+flLlZIjEAUJiM5/L42VwZF8k4PVecJbdPyZi2NE3OMErOIlmCMlaTc/IsW3z2mWUPOfMyhDwZy3PO4mXw5Nwn4405Er6MkWAZF+cI+LkyviZjg3RJhkDGb+SxGXxONgAoktwu5nNTZGwtY5IoMoIt43kA4EjJX/DSL1jMzxPLD8XOzFouEiSniBkmXFOGjZMTi+HPz03ni8XMMA43jSPiMdiZGVkc4XIAZs/8WRR5bRmyIjvYODk4MG0tbb4o1H9d/JuS93aWXoR/7hlEH/jD9ld+mQ0AsKZltdn6h21pFQBd6wFQu/2HzWAvAIqyvnUOfXEeunxeUsTiLGcrq9zcXEsBn2spL+jv+p8Of0NffM9Svt3v5WF485M4knQxQ143bmZ6pkTEyM7icPkM5p+H+B8H/nUeFhH8JL6IL5RFRMumTCBMlrVbyBOIBZlChkD4n5r4D8P+pNm5lona+BHQllgCpSEaQH4eACgqESAJe2Qr0O99C8ZHA/nNi9GZmJ37z4L+fVe4TP7IFiR/jmNHRDK4ElHO7Jr8WgI0IABFQAPqQBvoAxPABLbAEbgAD+ADAkEoiARxYDHgghSQAUQgFxSAtaAYlIKtYCeoBnWgETSDNnAYdIFj4DQ4By6By2AE3AFSMA6egCnwCsxAEISFyBAVUod0IEPIHLKFWJAb5AMFQxFQHJQIJUNCSAIVQOugUqgcqobqoWboW+godBq6AA1Dt6BRaBL6FXoHIzAJpsFasBFsBbNgTzgIjoQXwcnwMjgfLoK3wJVwA3wQ7oRPw5fgEVgKP4GnEYAQETqiizARFsJGQpF4JAkRIauQEqQCaUDakB6kH7mKSJGnyFsUBkVFMVBMlAvKHxWF4qKWoVahNqOqUQdQnag+1FXUKGoK9RFNRmuizdHO6AB0LDoZnYsuRlegm9Ad6LPoEfQ4+hUGg6FjjDGOGH9MHCYVswKzGbMb0445hRnGjGGmsVisOtYc64oNxXKwYmwxtgp7EHsSewU7jn2DI+J0cLY4X1w8TogrxFXgWnAncFdwE7gZvBLeEO+MD8Xz8MvxZfhGfA9+CD+OnyEoE4wJroRIQiphLaGS0EY4S7hLeEEkEvWITsRwooC4hlhJPEQ8TxwlviVRSGYkNimBJCFtIe0nnSLdIr0gk8lGZA9yPFlM3kJuJp8h3ye/UaAqWCoEKPAUVivUKHQqXFF4pohXNFT0VFysmK9YoXhEcUjxqRJeyUiJrcRRWqVUo3RU6YbStDJV2UY5VDlDebNyi/IF5UcULMWI4kPhUYoo+yhnKGNUhKpPZVO51HXURupZ6jgNQzOmBdBSaaW0b2iDtCkVioqdSrRKnkqNynEVKR2hG9ED6On0Mvph+nX6O1UtVU9Vvuom1TbVK6qv1eaoeajx1UrU2tVG1N6pM9R91NPUt6l3qd/TQGmYaYRr5Grs0Tir8XQObY7LHO6ckjmH59zWhDXNNCM0V2ju0xzQnNbS1vLTytKq0jqj9VSbru2hnaq9Q/uE9qQOVcdNR6CzQ+ekzmOGCsOTkc6oZPQxpnQ1df11Jbr1uoO6M3rGelF6hXrtevf0Cfos/ST9Hfq9+lMGOgYhBgUGrQa3DfGGLMMUw12G/YavjYyNYow2GHUZPTJWMw4wzjduNb5rQjZxN1lm0mByzRRjyjJNM91tetkMNrM3SzGrMRsyh80dzAXmu82HLdAWThZCiwaLG0wS05OZw2xljlrSLYMtCy27LJ9ZGVjFW22z6rf6aG1vnW7daH3HhmITaFNo02Pzq62ZLde2xvbaXPJc37mr53bPfW5nbse322N3055qH2K/wb7X/oODo4PIoc1h0tHAMdGx1vEGi8YKY21mnXdCO3k5rXY65vTW2cFZ7HzY+RcXpkuaS4vLo3nG8/jzGueNueq5clzrXaVuDLdEt71uUnddd457g/sDD30PnkeTx4SnqWeq50HPZ17WXiKvDq/XbGf2SvYpb8Tbz7vEe9CH4hPlU+1z31fPN9m31XfKz95vhd8pf7R/kP82/xsBWgHcgOaAqUDHwJWBfUGkoAVB1UEPgs2CRcE9IXBIYMj2kLvzDecL53eFgtCA0O2h98KMw5aFfR+OCQ8Lrwl/GGETURDRv4C6YMmClgWvIr0iyyLvRJlESaJ6oxWjE6Kbo1/HeMeUx0hjrWJXxl6K04gTxHXHY+Oj45vipxf6LNy5cDzBPqE44foi40V5iy4s1licvvj4EsUlnCVHEtGJMYktie85oZwGzvTSgKW1S6e4bO4u7hOeB28Hb5Lvyi/nTyS5JpUnPUp2Td6ePJninlKR8lTAFlQLnqf6p9alvk4LTduf9ik9Jr09A5eRmHFUSBGmCfsytTPzMoezzLOKs6TLnJftXDYlChI1ZUPZi7K7xTTZz9SAxESyXjKa45ZTk/MmNzr3SJ5ynjBvYLnZ8k3LJ/J9879egVrBXdFboFuwtmB0pefK+lXQqqWrelfrry5aPb7Gb82BtYS1aWt/KLQuLC98uS5mXU+RVtGaorH1futbixWKRcU3NrhsqNuI2ijYOLhp7qaqTR9LeCUXS61LK0rfb+ZuvviVzVeVX33akrRlsMyhbM9WzFbh1uvb3LcdKFcuzy8f2x6yvXMHY0fJjpc7l+y8UGFXUbeLsEuyS1oZXNldZVC1tep9dUr1SI1XTXutZu2m2te7ebuv7PHY01anVVda926vYO/Ner/6zgajhop9mH05+x42Rjf2f836urlJo6m06cN+4X7pgYgDfc2Ozc0tmi1lrXCrpHXyYMLBy994f9Pdxmyrb6e3lx4ChySHHn+b+O31w0GHe4+wjrR9Z/hdbQe1o6QT6lzeOdWV0iXtjusePhp4tLfHpafje8vv9x/TPVZzXOV42QnCiaITn07mn5w+lXXq6enk02O9S3rvnIk9c60vvG/wbNDZ8+d8z53p9+w/ed71/LELzheOXmRd7LrkcKlzwH6g4wf7HzoGHQY7hxyHui87Xe4Znjd84or7ldNXva+euxZw7dLI/JHh61HXb95IuCG9ybv56Fb6ree3c27P3FlzF3235J7SvYr7mvcbfjT9sV3qID0+6j068GDBgztj3LEnP2X/9H686CH5YcWEzkTzI9tHxyZ9Jy8/Xvh4/EnWk5mnxT8r/1z7zOTZd794/DIwFTs1/lz0/NOvm1+ov9j/0u5l73TY9P1XGa9mXpe8UX9z4C3rbf+7mHcTM7nvse8rP5h+6PkY9PHup4xPn34D94Tz+6TMXDkAAQAASURBVHiczP1lnBRnmLcNl7e79/S4+wyjwAiDW3C3QEJCiCuBuCdEiBJCEkJwCAQJ7jDAuLv79LS7lr4fZsPm3t1795Znn+c9P/VUV111VfVv6rj+pxX419lfWCzBBx+9CYNcj9cBguAzW5+Nj4/1+LwAg/2055ewqNDklNSu7kGn29fW0TplUkFbW9utWzflcunUkmKhkA8jEO73KRUSDMMgAEhLzUBQSCgUDg0NcblcFlvE4bLefONtmVR97PiRn3/5XioT0QyQkpR69Mifv/52PDk112BzsPlcLpfj9/vlIToWi2UYNUgkEjbGCno9fC5HLBS4PEGHfcjlGOGy2D9+/+MrL708ODgUG5MolErOnz/PZnPtdntMXGxkZHhHVyeCQCADcbl845hBLJaOjYxGRUWZTAa3241yEa/Hw2NznA5buC4UgCGH05mWllZWWeX2+mRKtdVimTtn1pOPP2Ya0ze3NB07eTI7K9fjduN+/Lnnnjt//rzRaExMTjYbrGVlZQq1atKkSRs3btj1zVcDA31+v39kYJgvkbpdrpz0TKfTWTJrWnR09JEDB9l8AUl4s9LzYBg7fOJ3m82RlJBqs4zQND1x4sQgSdy+cTMsNBRD2QwI2FzOlNSknu4+FodNA5BQLMnKnPDSS684nc7KljoOxiq/V24c1XucLq1aEwwGdTpdQlI8BULDY8bs3Jy+vj6QJnVKmUE/CoLw4sWLd+3atWDBgosXz7/00ksymYymaYKgGIaxWEx3796FYGDevHmrVqwMBoOnTp1MiImLjoh86aWXHlSU5+Xn//Lz3tam5sLCQoIgGQiMjIo5cPhQYWHh+vXrN2zYsHLVmtzc3Mcf3/Trr79qQrRLlizp6Oh44423jh8/eu3ajcLCQj6f39HRJpVKCYLa9+v+V15+0eVydXR0JSQmrlixSq/XC4XC9PTUqTNm8ticU6dOzZg9y2o1379feuLI4dycrC93/fDtt9/y+fysrKzJkye3tLQMDQ09ePBAwOXt3PnpJ599iuP4jBmzLFbr9BlTe3u7Dxw+mZGetmjRgs8++WDRokUFBQUDAwOBAF7X0FBXV7dr1y4Sx41mMwiCvX1DhYVFh44e3rHtdZfTOdTfRzL02bNnQzSqF5573keSw2P6P//8c9uLL+3Zu3fIoF+5cqXNbMlPSl+xaf2lv85VNjR8/fmX7+54GxKwNEoVj4vt/fVgf2fb2tWrjDZPTnamXCwwGO0Wi6mypWHT8tVBHD9z+UKkRmcwmwQiocPjnlsy/cqdm0UTJ/ME/HOXL6bHJARpUqtQtbW2TplSFAz6YRimGABBEAiAKJABGQagGQgCcBz3+4MIhpIkKRIKaAYIBAIsFguGYIqmQIamaXpoaCQyMhIAAAAAGIaBYZiiKBiGGYYBQRD4bzaapgEAAEEQBEGGYcZP+j8777+f0n+yhaYIEIJAEB4eHdFqtTRJMQyDoRjN0DRNIwjCMMz4qWmahiDofzbD8QEfDvu/dVsYhgEAevwDwzAQCFI0jSBYkMAhCGIoEkUQAgAJf4DH5bmczt7hYafLk5SYqJSKGts6x/T6GdNLbt+5d/9+KQMCMVGRbrc7LTmtq7cv4A+SJG23WBEEAQG6q6MzPjGhs7tz0dIFo0Ojx44cLysrf+utN0PDdb/99PMTj29pb+vs6OoMCdcyECOUSCEQnlwwicNhTZsyxe1yd3V1PfH4ZrFAaDZbdeG6xx9/ouJBmcFsuvegtKi4uHBKCZfH53LY4ZFhPKFAIODduXkrIS5+oKd/5vQZIonQarVardbY6BgaYCAIHhgY/GrXLozLC42IYGG8pqaG/NzstSuXwwBz5dKllra29Y9uqKqquXrtxmOPPX716tUtWzZ/8+2uF195/cyZs2q1VsAXuT1Oh80qFgodDseofuDypaulpaV8Hm/RogXp6elTikpu3LgVEqq9futuScm04sLJAEVERUc6Xe6BYb1GLeXzhC0t7VwuVyjkqZTK+/fv7/zsi6effu7Chb+Kigp5XLbJbF28eHF7R6vVag34Cb1eP23aVC6XK5YIv/7666lTp8yePdvp8vB4vOrqaplMMTKmdzndNXW1b775psNs7OjoOHvu3M07d4UCEUUx6emZFEWIBNyoqKhTp/5ITU3Nzplw6NABGAar62r4XO7w6JhSKadJEoURgUCo1YTduHm7qramr7tHpVS63e6JEydCEHTy1KmwyIhH5syurKpZsnzZWzveePKJJ0CS3rBhw42b16BLl6/du1eWlZPPFYolCqXXH2xubREI+QgKWq3mzq72+Ph4gUAAIQiKYXaXs6uv95HFi6KiY0iaQTE2TdMURXG5/ICfDgkJ5/PEOE729Q7U1dQ77a6ujk42AivE8s8//owmAy+++ByXJ9JoQ0dHRxkU5UukLIFgyDiG00SQJCxOu5/E+7r7BnuH1SotxCBOq0sh19jt7pHhseHBLqGQtXXrluLiwh9++I7FwXg8rtVm1CjU6clpAg530fxHUhOSLv51ASABn8tntVoZhhKJRKOjw2s3rKVhRqKU0igAwzCHwyEZOj0jw0/gLrcbQhGrw56SmKJVaeKjowRcTl5WDkgzeIDIzclbunRJdVU5SFNTSwqPHjkQGxMxaVKu22k1moYnZKUkJ8Zev371hx9+wBBWdHQsm81dvXbttKlTXt+xLQAQbsKnN4wqFLJJhZMsFktjY+Ot2zeuXbuak509a9aMvr4ehUIB0Uxna5vX5oiPjDaNjnExloQv5CKYzWgFAUApV6UmJ+tHRvfu3btr1y6dTue1uY2jRhgAvV7v408+4fZ6Ll253Nvf19LeUVFRqZBLG+sbhAKegMsLj4yEYVgul3///ferVq2aNGnS+vWPXr161ev1wjDs8bhgGLxw4UJtbW1SYopIKPnk0y+6ewaWLl2RnJLmsLteeP4lBGXt27e/qLBk4cJFGIdjslomZOW0tHXAEDq1ZPonn3wyf/78t99+WyQS3L9/f8qUKbW1tTQNiMVSo8HsdrtFItEfJ04dOXKEIKjbt2+DIDht2jSBQCAQCNIzMm7fvq1SKWAYxPGAy+X68vNPGhrqVq1asXz50gULFsyePXfMaNq+481vvt0lEokIghjnbldXj0Agomlg1qxZMTExr7/++meffTZt2jSj0fjpp5/yeLxHN6wnSbK1tfXpZ59PTU0/+ecZXwA3mq39/YMpKWlCodjr9Wo0GhAEz5w+dfjwIaPR2NbWdvXq1WN/nDx69LjFan/qmee9QZIFgiBBEV6/UW8ifHioStPT0p4cE2Nw2wuKiwCaaW5onDl/bnRqQk1TA5/LvXrlOoqin336eVdXz5jJMP40V6lkIqGQ8gchEPD4fRajacxkdAf9cYkJMRGRHA5r7oxZMrFoaGCQy2LHx8elJyWdOHXSHwgwDEMQRG9vLwzDNEkBAAAD4DhaGIZBEATDsL6+PqFQ6HS5DQYDG2OBDECRJASAMAw7HA6hUDiOHwiCIAiiaXqcvv+LjPk/s/HxH9KXYRiSJBmGgSBonFX/4VH/hnw0Tf8nLARBkKIogiD0er3JZCJJEkVRmqLGL/Of0/jPgfoffvu/eH/+eSwEQQAIQhASwINjRqPL40ExNs0wEARhGMYwJIvFSkpKCgkJuXv3rtlsRWCwcNJEn8f3/jtvP/n45tAQHZ8vlIrkDMTI5dJJkyempaWMjA65PY7BwYEtTz+xbNkyHA9cvnjx/oPSDz/88PPPd4pEIoZhXnzl5aiYqFH98PQZU4uKi41G48aNG1atXhkXF+f3B3/7bf8HH364cuVyh8PhCwY2bNpIUdSrr76s0WmEQn5+fu7hwwdnz56JE34WCxUKhRAD1NXVGQyGzMzMIBEQioV1LS0dfT0ShXxwbHRIP7p6/fq9+35d9+iGzz566/G1qzasXPz1p5/ADLP7p73nr9wwurwbNj+m1GhcPvfq9etQDntSUWGQoO+Ulv2y95fW1naLxdLT3Xnn1s3unq4vvvj8hRee/+yjzwx64/ZtO06dOnXo0KEnntjC5nLy8/PHzJbpM0o2blg5MNCrDdVRDCAQCvSj/S0dnUMjY/2Dgz09PUKhOBAM2uzOhYsXh4Sqvvn+y6KSyVwhd+XqVddu3KipbWBxBevWrUxKSuzv76+vr/f5fPHx8Xl5E1taWgYHBlqam/V6/auvvvr7vt94HM7TT24BSKq7u7uhqf7ytcsEhdud9pBQbW19lVDIxzDW0MDQujXr2Rjn/Xc/cDhcXC5fwBX6vf7EuDihUBQIBCiG9gcCKAsz26xsDFm+bAnDUAAACAQCFps9dcZ0noDf3Nx6586dW9dvCPj8mqrq/v7+uro6nKSRxzZtfnXbm2we5HDgFB1ITE6ZPXu22+0mSdxqM3P43Hv37y9euhSEYQaBBGJRa2eXwWJ1B3y+QIABAafbw+dyIAYAMQiEULc30NTUkpmexmKxCDLY3e1trq9RayMgGAkL10RER+7e/ePyVSsioiIpCu4dHPYHAxw+aLAYBSKJUCj0+XxSgQjH3R2t9VlZWSq5oKLsfm5ejlwiriwbyUzND/o9EyZkHDt8bOXK5e+++26cJqG5vlLMxxiFiIsBAwN9i+fPqqurJykSogC/0+lwuFQKmd1u9fvdFoslJETlcriDDCMQCll8rkKr7u/vl4qlfIHIoDcSBNHf3y+ViGZMKxkYGABhyOH2PDJ/LgvFhgYGLl26qFIp7t27IxaLuVxuZJSuubk5Nnba9KlFZWUVXD4/KirGbLR0NrVAEMQQOAKBY6MjspLit17fxmazX93xzu/7f7l7665UKk3NjHe7vXk5WRwWZhwe06hDOjo6uByOSCDmsNgZEzLv3b9vNduUSiUGwQqZPCkuXqNUHfht38jgwLZt22tra4uLiirLK7u7era/9abJahk1jK1/dKPX6+3p6+3u6x0e6s9MT1UqlY9tfhwGkePHj5tMpldffXXbtm0JCUkXL16eNWuWwWAgSVImkz366KMZGROaWpqvXL0ulsjq6xqvX73619lzRqPRbLY+8shChmFa2zsSEuL8OG0wWe7cvbPzs53Dw8MKhSIuOqaysjItLaOqqoLFYYeEhAaDwYAf12p1EIrExMR43L7Y2FhduO5BebnD5RJKxF6/r7dvIDU1ta6urqKiYs3aVdeuXevq7tix43WXy2WxmgAA8Pp9P/60p6ioKIjTM2fOtNvtWo2uvr6+paWNzWbL5fLk5OTyyjKTxbh48eK9e/eWlEwL1ekgkPnko49z8yZnZWU1NTV5Xe4FCxYEg0RPT19qaurSpcuFQuGeH/YYDPont2weM4xOnz41Kyunq6e7saGBzeJ4PT6Pz//mO2/eulsqFghyszMdVtvChYtRPpdG4fj4+NTkJLlcvvP5l7URYRAEDXT3FhYWsgGgMC/v9v27Pp+vpKi4qraGI+CzYYwBAYqiYBjyB31xUZE0Q3O57MLJBdtf27Zs/Rq5SKKVyQAAYIJBAOEajca89AkMCIyNjiEIMnXaFBAEDQYTgiAwBNMMwDA0QzMIDNc3NsTGRvO4PKN5NDw0bBy3MpkMBMFxykIQRJLkwMBAYmIyTdPjRKEo6uG3/90MHmcSwzDjHIVhGACAcQb/c59/VbQ0PS6Oxyf5X8pQmmEQBKEoprGxEYZhtVI1zmDgb+QDfwPyvxzq39+Kh1v+F9QwBAD03/oexPHgiH40SBAEQXA4HASCAJrGUJSmCIIiO1u6Oju7796929rYwIB0VERkQ0PD8mXLjh8/fv3W7ezMCZGRUXdLb5MEnZKYxEYRgYArFPKDuDc3P+fkiVNKlXz16tUajcY4ZpoxfareMPbjnj1J8QmnTp1CQKSuoY4vETAAcOHcXyMjI16vf2xszGgcGx4efu3Vl9evf3T79u1r1685cOg3CIHLKsqdTntRUcHPv/wkFkuD/gCO44ODg7W1tZMnT3z66aerqqrUWq3D4/L4AkK+oK2j837pvc8++2zPnj2rV62kaMZsGYMYSKNSn/rjzwnpKQAE3n9QbrBY9x08CADAtWtXZs+em5qSgYBQVU21VCJLS0tzOFxXr17VjwyNjAz29fVBIJiWmrFhw6NFU4q9fr/H4+nsG9RqNDSI2BzuhJQUPhtrbKiLiQ5HWOiY0eJ22ebMmn6vuqmjt3vx0oUwCDS3tJtMpkkFhadOn7lw5ZpcrZHJlcmp2MjYSG1DTWR0VFtn0/y5M0QSsbWnd8Oja6ura2RyeUVlpcvlSk9L02g0IADPmTU7LCxMwONp1fKrV2/xhKxVq1a9+c6bMrmSpgEMQ8PCQmPjovgsvlgs7uvrs9sdSoVGrx81m6xKpZYbijicTqNxlKYYiqJohhoZG6moqszLzGQYxu/3x8fHXrlyiWbAnEn5MTExTz+x5eDBgyiKctmcD959j8PhJCQnob0syOfzPfLII/39gwqFwu/39/UO2KwOkqBgiDWiN/m8wQkTcgiKYSCQy+chLEwVovHhAafH7Q8GSJJUq9UgCJrNZl8g4PV6TSajw+EYGxvDMEwilOZm5Yll8t7+HgYg1SFaEIa++upLi9l68cJ1vzuIAohZb8AgUCORInjQNDjEAaGA1+dze5RSeXtza39vHxvDcH/AbLRsXLc8RC0TcDmtzc2Dg4O6EI1ELGxuajAbRjgYhICE1TQCUH4eG31265aJ2TnhmhAeypKJhFKB4Na1qwBJqeWyrIxMDpuNIkhoaGhnR7fVasUwTKMOcdjtnb2dbr8bwcAA7r9w+cKoYdRP4Cwux+F0V1RU1NXVjRkNOl1YR0dHX1/f3bt36+tr2Wzszt2bHR1tycmJIRpVZ3trZHioUqPksdFwjQaDwBCV8vTxU7OnzUpKTj9x4sSHH33y9vvvGczG8vJKrVZL03RldU16Tk7f6KgsRO0O+mEOq6mj7dzliw0drbqwUBpgunp6RoYHeTzWQH9vQnxsVWX5zGlTqqvKUAh8fPNj9x7cu3XrVm5O3sIFizZs2HDt2rWZ02ds3rgxQhdy9PARvV7/zTff9fR0HT16OCEhTiqVSqXS8MgIsVTS0dWZnJyqVmtLSkpAGBnRjwqFwvb29rS0NLFYevXKdQhG0zMmXL50dfeePZevXqUBICsvf/OTW3r6+mPjEhqbW/bv35+SnFZRUXH+wqVFi5fSAFhX19DW1kbTNAgxUqn4zOlzLo+HZGgGAj0eT2FhYV9fn9PpHNMbs7Iy79279/MvP4XqtLNmzBzsH0iMj5s2bdqmTZsOHTq0d+/ejIyMAwcOMAwzahibM2dOUlJSRUXF+++/HxIS8uDBA7Va09DQuHTpUrvdXl7+ICoq6sSJY6mpydHR0Zs3b25vazr954mJ+bkff/TRvdLSOzdv8dgchmHeefONo4cOLl68+OOPPw4EAjw2z2lzPr7x8fDQsIiIiEsXLnC53IiIiNam5gnp6YkJcfVNDbW1tWw2+/U33rhz715SQjKXzQYhIGdizqTiQi9NGW2WsHAdAwC1tbW7f9mblpxmNhlAEGxsblGq5FVVVS6PFwAAk9NOkqQ3GOgb6L9788baNas2rFnttttgBnT7vBAAmC1mEGRUSnlPf//t27dnzZkNAEAgEFAoFFHRsQzAgCAIASAIguMLJr/f39Pbo1QqeTweRZAYhrExls/n83g8EARRFNXc3EwSBJ/PJ0kShmG/3w/87ZL9r6Dy/7Axf9v4qf8pgh8Sbhy644Qe3ziO6v+ZYgZBEMdJAADy8vLAv+3hKYB/+L2B/2VF+5+Q+D81CAAghgEBAKAoSq1Wh4SE3Htw//bt2zCCBgIBt9dTW1dnNBp1Gm18fPzrr762Zs2ajY8+VlZWweHwuru729vbf/rpR22o7saN61MKi6Ri8cIFCxYtXDim19+9e5fL5W5/c/tLL71w+/btlpYWpVL54Yfvt7a3tba2VlZW7j/w219//bVi9Yq4xLgXX3xeLBEeOXqorra6v7dPJBAmJibOnDW9ZNpUtUZVWFQ0uaDA5fZmZWcHg8Hc3Hy5XJmRlu7xeEYGhxITE9tb2/SDw2dP/blw3vxPP/30zp07H3744ZmTpxxmu5gnsBpNJ44cXrNsGekPYCDIwngAhFA0sHDxgqSU5KSkpCef3LxwwQKX26dRh2ze/CSFExUPHlSUlVtMZjwQePvNN7Zu2eywmVksZNrUKe+8/aZQIJ42bXpLV9fV26VDBpPeYmvt7O4eGLp59/7vh48lxSdERkYKRGIEYw0M9BsN+tjYWJwkRBIxn8+vq2s4cuiY3WKOiYw6cOAAi8XKSM8WCiUoxr5+/XpdXd2SZUtZLDQpKcFisSUkxIWEausbGi1WayCAJyQkpadnKlWaIE6eOXd20ZLFXq+XJEmGAYRCYWx0zMmTJxEQ4bDYNEnpR0dTU5KioqIoiqqrq4MgyOPxeL1eiUyKYWyX10NSVFNLC8ZhxybEi8VikiTtdqtCIVGqVXrDGJ/PFwqFhYWFixYtEgtF3+z6+qeffhKLRRRJ8vn8zz79ND4+fmBgwOPzIgQemDt75uFjvw32D2jU6vnz5kVHxhj0I6HRsXk5RQcO/BEZFUcBVDAYBGCEoigKYoLBIIvFAgiKw+Eo5QojRVIErtYocnImnD3zxxuvb7fbnX19fQAACPkihMXOmZRN03Sxbur5S5cbWxqXLV9aerd82yuvlUybFR8X53Y6gv6ARq2GGTrgdDo9TqVSKRawTWNDI4M98+fONhoNxcXFUZGh9Q1ViYmJg/0Dn336qcVicVhthZMmk27Cajb7vYGoiGgeR1hf02jUWxx2F4RCkydPbGlrHxkdlUqlHo8HQuCm+qa+7r7Y+PiSKVNampvdbrfX42NjHI1GIxaKcCJgs1pysrJlErHT6bC73YuyFp/582x3Tz+KokGCvH77NgAiCMpOTc8QiQQdHV08Hk8mk+n1I263Oyoqymg0do32O/QGr9/LgEBeVlZfz8AfZ89ufemlno7ORx/dFBUT+c333/6y99eqyhq3200DiEQhd9TVwigCwFB4ZAQDAiNjerlC0dDSCACARCoymMZgGGZhkNfjUMilCMqAELXvt72n/jzr8Xj2/vTzpx9/fP78+a1bn7FYTFu3bn3iyc0vvfQSl8XmsFgSiWTHjh2//PLLvn378iZOcns9g4OD8fHxv+8/mJk+gSRJoVD8y77ffD6fTCabMXOaVqu9df3a/oP7Dx482NTUFBkTOf5YDwnV/fHHqSklJevWrUtISFi7du33u3/gcbgRERE8oXTFitUoiiiV8m+++UYmk5SUlEhlQqvViuM4BiNcFlvI54sSE30+X29vv1qt/u3AwV1ffEnTdFFRkUgk8Pm8ERERR48e57I5ly5cfn379u3bt0+ePPn48aMfvv/B++++m5aWtmzZspkzZ9bU1Nnt9qamJpPJhCBITk5WTEyMzebgcDjXr1/PzEwfGhp69ZUX581/5NtvvnvqyScCAZ/dZktMSLh85Upefo5EIt6y5YklS5ZMnzG1v2/wzp3SZ599bu/evTOnzZwypdjhcBQUFMAwqJSKQIAOD9E1ow0CNtduscbHxIRqlH63x2G2NPd0zp7/SHlpmcfujE9M/OXQb1euXHv37Xd1Ol1oaCjJ0KfPnEtJSenp7PL4AmIhg/sDDEHZ7Xaz2ez3+masXtXS0qKQSMeBKhSKhnu6wsPDAQBobm7Oy88XCHgujwcGQalYYnPYSZKEAFAikYxzRaPRVFSUabVaLodL4DiGYiBDj6vJ8fCn0+nEMCw1NTUYDPr9foqi7Ha7Wq0ed0H/r9Do/8b+KWrHo844joMgyGKxKIr692Hgh4HYh9MbD1T/515oDMMAAIgICzcYDONx3/HB//3I/6WQfbguGaf+/250nGEYCIYBhuHz+QRFEhTl9/sZhrl+46ZGo4oMD8/OyWEA0OP23bl5SyQS5GRPwGnmp7173C5PT29vXGLCzZs3bTbLux+8+9fpP1tbW2NjY91OTzBAaNTq7OzsysrKfft+sTmcK1euPH/+/DPPPDM0NPTxxx9+tvMLpVIZGR0hkYjmz5+7bt261PS0d956++eff3Y6vLt27aqsKn/+xee++OKL2Jj4mpqazOysd996d968eTk5OW+88Qafz62qqR4cHIyJiXl269MZGRlr16yJioqiafrHn3b7/f4VK1akp2TqR4c//PDDVatWzJ49myRJFovF0LSAjQIcNggxBA3aPe6K8mqT0SaTKtkQRylRWqxGIYcn4QuvXLpaFgw2NtSZraYFCxZ8+eXOmJgYiiJIku7s6D148DBLJJrH4vl8gaSUZAiAbBa7acz0yiuvtjc3ExSdP2kiDIG0yx0XFY4AoJsAfU6XRiVnw6gkPysuJu7Y8ZMBn3ftmmf/PH1GLGSXV1RarfZQXZjb4Xfa/L1d5dOLZ1AUFR0dffv2bb3ekJaWplCrKIoymUzt7e2z5s6RSEQyhTQuIb6qpg7Hg3V1DQiESkRSDELDQsJwf3B0aFSvG4YRLBDwy+Uyi80CQAAFMAzEcDiczr6eOfPnDgz1u1xOhUzCxlAAgLa/+spnX359+tSZyZMngxDCMCCKQEcOHnpk7jyJXEZRNIuF5uRkScTSU3/+2dDYEBIaDnV2d128fDUuNnpUPwyBzMTcPJfLhaIsiVTD5YkNBovb7QYYCGAghqJpgqSCOJ/LQ0DIabNjCHr//v3G+nqpVGo0jilV8vjEhKbWJqVSrlDJLRaL0WxAOVxfwK83G802OwtjNzU11dfUDg8MP/XM0+3d7ZpQbVxinEwu4nIxpUomFHHyc1N4HGZstFOnFU6fkjN5YvrMGfm5OQkCLoeDsZobGjEY4bE5ZCAwOT8fpBiJVCARCvhc9tBA39BAj1IhkcvEEEh7/d6uvm51qHrlulUpmalF00oUGrU2LFQkkbW1t32+80sCpzCEpQvRqVVal9OjkEijQiOVErmAww3ThCTGxsRFRHrs9rN/nacYQKvVSaRyDpfv8vm1YeF6o6Wqph5Gsaqahp6eHq/XKxKJEBT2+b3ZGZmPb9xEBvwchu5ubALwYLhW+8a21wIe96ZHN166cNFisWze/KRUKkcwlAGAhrr6GdOmW80WFoLigaBCJg/Vhijk8tDwMI/P63S58vJys7ImiEQiLpe7ZuWKVatWDY+MXLp0aeaM6fEx0TlZE3AcT0pIzM3P6e3tjY+PP3f2r1mz5nA4HAzDNm3cNHvuHH8woFSrZDKZyWSyWq0jIyORUeGvvPIKCIK19XUmk6m4uFAiEWVkpLW3t7LYaEJSvM1h7ehsK5lanJGWUldfA4JMSkpKX29vbW3tunXrFi9eKJVK586fZ7KYu7u7S0pK+Hy+Xq+fMGHCvXv33nrrjfLyB6P64Yvnz2/durWjo4OFsQI+n91uJwiCLxDhOG6xWDAMW7t2bVdXF8MAEyZMaGluY7E4fD5/wYIFD+7dr62tfueddwgymJmZ+ccff8THxy9dunT79m15eXlarSYtLZWkqe93/1hTU5OTk/Ptt9/Om/eIyWTxer3TZswwmSyZEyZEx0bt3r378cc3KRQykZAfGxudkpLy3HPPLVu2LCoqqre3d8H8R9pbW7lcrtlsHBkeLJlS9MUXO1lslCJxAADc/oBEpfKR+PTp01JSUggGQHkci83OhTGFUNTZ2ZmcmPL7r/vsBtPpI8cTomMpgOFx2X19fR6Ph4diIpFocGjEZDJxEayvp4fP5dZX18yYPae2pUWjC7X5fBRDkyR57uIFfzCg1Wo7u3o8Hk9EdNTFixdRFIVheGRkxOFwAAAwPDoCw3AgEKAo6uTJkzweLyoyimZoGIZxAgcAwOfzjUccKYro7+9XqVQIggQJnC8UwCgiEAlBCGJAgAYYivl/QwQ/xNi4Y3wccv9Uq//Ulw+dxg+91gAAPHSe/4eKmSAIgiBEIhEEQV6vd3yfh971fwru/9kMH+aFPdztn2f/5z7/s8MffqZoiiTJcS2FIMjypcvEYvGdm7f6+gbYXC5BM+PifuvWLatWrpRKpft+/W3HjrePnzjBMMxPP/1Y31jX1dXx0Ucf9Pb2bt/+xp+nTn39zTfp6elaje733w401jcolcrZs2e3tXYwNKjWaj7++OP3P/xgaHTk8uXLHC4XZWF9A/2vvPbql1/s2rRpU1tb2/7f950+cyo3N3fjoxv37t174sSJ5ubmEHXI5cuX5XJ5VFTU8hWrLFa7UCh8+613SZL+8ssvv/zyi7z8XLFEolAoFjyyqLa2NiIs7MSpE19//13JjOnpOTkBmgwylAsPBgAGhDk2p6+1u7+ipq67p6+3t6eztcXvtFNBvK+n6/JfF958443XXn6FwAMet/OLL3ZSFPHHH8djYqJwPEDTNIZhv/++Pzw81DI6+sjMmRwIGu3pHejsvnz2L5vJ7LE7E5NTjCbbK6/tsJitcXFxAoGAohiSYMJ1ao1CHhUVFhURCYIAQDPr16/nczD9yNgbb7z7youvpCYl67RaBAKWLVn0zNanGhoaMAyLjAgLDwsbGhqaP39OV1fXH3/80dXVVVhYODY2evL0n2VlZcPDg3K5lC/kZU/Iune3lAjiCIyhMCrkC5ITkxQKhcNhE4j49Y11FouJxUIBirRazf39vQIBz+P1dnZ0G40mg96I4+ShQ4dDNLoff/wpf9LEGTNmaDRqpUqxc+cXGrV6SnFRwOsbHR3F2CwWi8VQdH19vUgk5fF4yIzZCzc//pTB1Cvg8adOner3ewEIBBCYzRdcvnItOiYmKiqqq7cLhWAUZUmFcr/fy2dxcIHIgo5ZzOaUxCSKJoLBIAiizU2tRUVFZfcfhIWFSWVyiVIqEAicDsvt27dz8yaOjpjj4+MpipKI5XV1J5JSUjZtevTt995HfD6aIkg84PS4fcHApJyMvAnZtbW1MASK+Vy/xxEZpqu4f1clk/l9ngvnzz2xeWt7S5NMIrAaDUKeqLmjJS4uTiwOtVqtQgFXIpY5HA65jK+AJWP64eamBoN+hC+WAHwgOjp6bMz45FNbLly4IOQLvG6nw+FAWSybzWY0mj0eT0pKUkpaTE5uVmlZWUZ6mkDA43BYbqdDqVBwOKzhYQ+CIFwut6KigsPhWa02kgLz8/NQFL13775aIROJRLk5ea3V9YMsFgsCWQCjk4qHTUa+VDpncv7Fc38a9GOHDv7++o5tDIk9/fRTIjHvxZde87ntCxYsiIuJslgsFqMJhmGXw+nz+Tx+n4DLAyi6t7tXp9NlZWXV1tZ/t/tHj9fL4/EmTyxob+14+cVX0jMzjEZjYnJSR0/XmnVrKyqqlixbPjI0uH37G7NnzTh8+OCjj27at2/fjBmzNBrNwMBAQUHB8PBwUlKSw+Ho6GqfmJ/X0tI0MDCwevVqu93+zNPP7friSz6fzxPwU9KSayuqpkwpunbzhsFgiI2NN5uNu3d/v2jRoq+++mrDhg1jY2NdXV2DA6NrVq1qbmpYsGABC0O6urpIEv/ss8+2bdt+9er1RzdskEnFY3q9Vqvmc7m6jMza2tqBgSGHw7Fm7aqsrKwffvgBAIChoZFvv/s66A/s3LlzxsyZL774YltH+7fffvvk5ifWr1/v8/l+P/BbYkKy0+nct++X5cuXj46OfvHFFzExMY3NLTD651Nbnr5z9+7Q8MCyZUsQFr+rr9WHE929fYuXLvnzzGmpTMEAEATAzU2tOI6zWKyR0aEb1y9/9NEnJrNh6fQlq1Yu37Jly/E/jj37wrPhkdEwgnV399a2t0XFRPcMDzhc9pKpxUa7VS6VjRjGNCFaEgSO/nWmIDs3PjGhYPIkAAAoGMYwjKHJ9pbWxYuXgABT/qAMQLBJOdkXL12RqzW/HzwcGR4lVynPXL6QHB3X0tISsLv6+vp4MnFkZLTN5hgYHpo3c/adO3cG+weEfH7A50cQxOl2RUZE4jju9/svXblM03SYLjQtJdXr8WAYG8FQFIYJHEdRFMMwf9A3NDQUExctEIhMFjNN0wK+gKZpPo9PM/8S/QVBEPhvDwH/DzoYwzCapsdTsVAUfQjgcTA/zFX+ZwyYIIiHycz/kUEoCo0jViwW6/X6+Pj4cWf7P9Oex2PeD4H6b5Kc/+mjfjgNkiTHtfV/Yv9+VjAE2x1Ok8Go0ihpACRxPDM9PTk+obGp7c8/zyAIlJOTE64LpUgaYqEoKt/y1JM3rl6BQNDjdl746y+Mzc3KyORyuZMn5UdGR7z/yccrVqySqZVnz55du2rl+nXr9u//xecnSh+UZWdnf/rppwsXL5r3yCO3bt2RiqRff/3tLz//yOXyP/3sc7lcfuzo0aqqCpFIMnfu3DVrVtEU9dxzz/X19Z06dZogiDWrV65du/add9766aefDh76/YWXXrp1645QIkzNTO/q6/t5768gAKjVyhtXrw0PjW7ZsmXRkhULFy6+eetWgKRS0lIdLqdIKA4EAiQNBbwBLodlt1okQp5peJgOBm5e+evM+Qt2h1UmkxQUFMTHJb755pu//Lp3YkEhSVPBYBAAIAzDSJLE8QCGsY+fOPLxR5++89brAr4wPj7e5XFzeYIlK1Z4/IHW7t5lK1dkZmeGhIb0DQ3LxBKDwSASiVQKOQRBATyIYew7dx8UFBVRFHmv9L5KGdLW3PLyy68YjUatWlMwOY8BGaNxLBgM2m22kZGRwcHBYMBXWVnT2NIcHh6ekzGhuqwiXBcaGxd9+vRpggxGRUXcu/eAxcFG9MMkTQRxv4KjFIlEd+/eHRoeUCgUUqm0prraYbdHRUX5fZ7kxESz2cgwTFNjY6hOFxcdU3r39rlz5zLSJ+w/cHD6zNkXz19wmK2rV6++evXqg7IKbUiofswkFgt5PB4EQhwe12QwDgwP8fn86dOnQzgOSGVKigSlctndu7ffef89h9vF5nGtVmtZZRmKwiqVgo0iFEkiEMpG2QGP1+t0QSAoFUtEfEEgELBYLARBsGA2w0AyqSIYDPL5fK/XLRDwenq6uBi6acPjEWGRbBSxO2yXL19nQPT7H77ubG25d+fOokcWYAicnpyUGBuTFBcjEwvLyu7cvn2VwwFFQgxDqfBQZYhakp2ZWFRU4HK5JkyYoNWqtVp1bEyUy2HDA4GEuET9yNjw4AiFM3KJsqujy2axxURE0T5vpFajlYoBHLcbjX+dPnP+zNnamqpjx/8gSFIgEJA08PhjTyxZsiwsIlKt1fCEoq6BIb5clpI5wRUIeAkc5nD2HzqIIiBN4T6/OyMz1eN10Qzp8XgoitDpdD6fz+nyuN3u4uIirkBYWnq/vLwSYWAQgWMTEzg8dmRsuFghgGBKyMNKiibX11Qf3P/b55/t1ChVH3/4fjDo//DDD3UR4Va7ZenKFQAMefEAiCESmVQdouWxeTRBUzjV09ljs9lmzZqDoCibwyspmSERKasr66ZPnVFUVHTi+PHzly7gNNnd3R0MBvPz8x12FwQhn3/+xcDAwPy58w4cOGAwGG7fvs3j8QKBQHt7e3Nz86FDh2JiIvbs+f6DD9/zed1LFi3mcwUyiRwEAC6XS1FUdna2w+HQ6XQFBQV5eXlisbi6uvrMmTMAAPh8Po/HtXXrlnmPzD1w6ODWp5+4dv3KypUry8vLy8oq2traXnzx5YKCIr/f/+zTz7z33jtyqayi/AFN01Kp1GQy0TR97q+/OHzeO2+9HQwGHzx4oNFo4uLiYBhcsmRRfHxsTvaE4uLi3Oyc7dt2fPXV152dnY888khcXNzXX3+9adOm4uLie/fugSBTVDjl/fffP/D7genTp+v1egzDcnNzh4eH/zx34V55xU8//xKXlLhv//6nn312dHT0+PE/aBoQCcQhIaFhYWEGgz4+IdZqM1Jk4K9zZ5YvXz5nzqyCggK73X7+wqWGlo7bpeXXrlxramoqu/8gJizCMjbW2tI0NDxE+PCIiIhvv/y2p7lzw8rVBZMLCIDu6+o29Q3hOA5CgMVsjoqIBBmgqakpMSEZhIDmns5j505XNdTpdLqff/7ZabHt/fq79rrGvr6+ZUuXTi4ocDtdFQ/KSJLs6+7xer1btmwZHh4OBAJisVitVtMAEAgE9u3/TSSRLF+2PCUlxWg02my2cbA5nI7m5uZx521XVxcMw16v968LFzq6umAYHucuzfwLhyAQAoH/3gIk5h/2UF+Of/Z4PMFg8J9SGPg7OYskyfHDQRDEcdzpdP5Tm/4beyiOaZqWyWQAAJhMJovFMk7Qh9/+m8n8h6P9U16PZ1b/714sAAAkRQqFwoTEOKFQKJOIuVyuwWAAQTA6OlqpVMoU8ubm5r7+PgSBAABoaGj4ec+P0TGRjY31zzzzzNNPbf3x+x9Sk9Nio+MTkuKrampmz51z4vQflbU1mx57LDQiHEagaTNm7tq1C4YQh8MRH5f47rvvlpeXxyXE3759e9euXZ988kl5eXlzc7PZbI2Ni5NKpVnZ2TAKFRUXHzp0qKqi0mI2pyannDzxB02TNTVVn37yyabHHm3taO3t6x4Y6Js3b96o0XD2rws3bt/y4UGH0z0ypidJ8vxfF6vLKlsam6ViaWNjU0VFpcvptdudTrff73WaTMOlt26ePXFy+yvbvvz8q2N/nGzs7Hrm2Sf27/9lbGz00qULiclJnd3duojI1o5On89HMQCGYQRBIQjCYqFBwqcL0+z9+ftXXnuxp79raHSgprGGLeaavXaL3+kn6a6eTj6X5XDa2HxBfVsbh89TKaUAw+BEgIWxOrt7u3p675Te/+KLL2traw8f3Te5OH/mrBIIpg8dOXjwwJGe7r7GhlaKorq6uuRyOUmSGRkZ2dnZkZGRCII0NzVJJaLEhAQURubNmctms8+eO4uxEKFQSFGESCQSCAQwDMnlspKpxQQR7O7saaxvoklKyBfggaBIIDSOjgl4fJ/HjwII7scZBjx29MSM6XMam9owFvv9d95va27Lzs599tnneTzBF7u+KphSjLBZwWCwra1t1DAGgOCfZ04H8GBBQQGXy4O8uD8uMdZmdUdHRm3b9sb9e00ORyAru/j4iUMWq4HNQmmK8LjdhN9nNRvdTgfGRmiQDuK43enwBrwQC2bxODQEjVkMfjygUql4PF5tbSOXK4QR9twFCxWhoT7Kb/fYOHze1KlTMtOTThw9+MN3u/v6h7Izs7wuhy5ELVcrYS5LJle4HS4ARBGUJRJJUBZ7RG8YNRjrm1tUIaEdvd3d/QPrN2ysqqls72ohASY6NtZg1GMYFBGmFbDZAIk77Taf38sX8Gx2K5vHlskkYoGA9Pm8dntBbo5cKIjQaFgoBYBkU3Odw2Y6ff7MtRuXGSKwcOG8H77/emrRZAmHy0NZKrnMaXewMXZNdaNarQYgMDo62mQxr390PYuFJcTHxkRHGg16u9PutDtAEhKJ5RjKJUkaQFAaYkEQV6YMlYZEN/cMK5RhGMoZGhn12RyzJk3ubGz75cdfwzWq9955d+fn38RHxaxZveHB/erhIaPBYMfYfJvDxeVyeWyOlMuLDQ+fOX0GjuODfYO7v/v+jVe3QSTpstpVCklWVrpExq9tqIqKi+5o73zqqWd8Lufadav0QwODfV3xE1L8APXVF7uMRvMrLz6nVauefOLJ7u7urKysxMTEubNnLZw/LxDAaRooLCx59NEne/uGTBYzTZMMQ8XExre0tB0/ekLAl2x+6pl75VWpaRkOh0ssUeBBWqVQV1ZWD4/qY+LiZRKpy2FfvHhpe0fHqNHQ3NKSl59vNltxkoiMjTl+9ASfz799+3ZouE4gFA4MDUdGx46Omfbs2dPV1vrYhvWREZG//fZ7d3evVCrNyZ7wza5v33vvA4vFcujIwaaGqqDfqR/q37v7h3MXL7z78WdSdcibb7559uxZlUaXkJQql8m4Av71azf//PPMz3t/FYvF9x+Uut3uhoamt1979fKZM/t2/6QRylNj46Vc7qoVi/JyUkUCPlfAqqguW7/x0fCw6Dd2vHfw0DG2QNjZ1d/bNxQWHssXigmCyMvOkIkE8+ZMf+6Zp0C/b/qUQh/hl0kkWoXmxo0bAYIEYGTfwd8e3L6u0WkOHT/e1tkTBBmegC3kcQ0mq0qtjooIvXnrzuObHo0LV42NDWWlpseHRW5csbKhqX7WjGnff/P1W5++/9KLz8fHxfx55lR7XaNKrnA6nRkZGTjE3C1/wELRnoF+Dotd11DPZmPmsdGffvlpQkZ6dkZmMBAQiUR+bwAGEYZhQAju7O2JiYsNEvjFy5doGoiIiDIYTCwULZw0WSqVjnuAYRCCABBkAIBhgP/mImDwH/ZwIwRBCIIwAHT/QbnPH/w3OGQYBkEQgiIZGKIAAIBAnoD/bxK2aZp+6FWGABCgGQgAaZKCQAhBEKvdJlHICYKAYXh8LTIeX4chmKH+JUD+T2w/XBOMgx+CoOHhYbfbTZIk8D8uUP7NvRqPND8UzQxDMQwFAQwMg/TfpOeyOWKxmMsT6EJUkeGhKQmJFE699OIrj29+srKq5sbNu3abBQLA1avXfv/97qTEtN9++/3kn6fqG2s//vAzw8jYz7v3mIf1Ppcz6PVcOn9h708/19U2L1iweEJGhsfjGTUYL5y/ZBwbu3/nJgKDa1avnjdv4dVrN7q7uwUCXnVd/ZoNmzxud3HJtPrmtqMnTm958tlPP/l8xYoVZ86d3r7jzf2HDrd0tD+6fuPl81dtdvfateu7W1uvnrvEAoDs1FS31XT/9o2nNj/+2ccfJcbFAhD9ww/ftre2ZCYlpyUkui1mw2Df3WsX2hsa/zr1557vvz1z+qTH63z2uafult784quPFq/YEBmTXF7d8P0PP0ZGhoeH6zxOV2tTs0AgEggEFENC0PjvCMAQBDAUQdFLliw5eeI4G0ONoyOnjh9rrKlwmUY9NgMIA51DA41tHUQgKGKxwjQaHMeDNIii3PIHNXXV9Y9v2iDgYWtWL5s/d45GrpxaWOJ1BVRy7eiw3m63c1jciLBIlVKel58vEAoRNic1c0JnZ/vMaVPioyOiEuM9OK4fG0NRVCaTUQTJ4/Fyc3P7BvoNBgMCgwTpLa243dbbBmGoWKLgcAW1dfUUDYSFR1rtFoPJaLKZ2jvbSACkAYZhqKWLFy1atMTnD4aGhh4/ejxrQtq0qVPWr1+/7tENSo1aoZDpQlRyqYjFZYlEIhbC0o8Y29u6zUZLyZQp4Tod4rQ7tGp1MBiEICA1KfH17c/8efqEzWE/cfwkTQalChWXh6IYhnFEGJfn72zBQBRFUQ/oQRAURVl+r4/P51EUxeNo+vr6mhsaZVKVyWj2evxWiwUAaZFIBDIM4Q9Ul5dJBMLFCxcxJH3ixIn45BixXNDS2uT1BIaH9cNDo2w2F2OLEQxQqDQQjCIoGp+YkDlhQm1t7YWLl7u6unShod6Af0JO9oVzf2VlZnu9/pTkNIfTJBZKFCql2WxlsVhymcJoMPm8fpvDDjCwQChScngQDDe2tBYWFFRXVzM0GADxgNcXEhJqMplMJhOfzblfUUkQRGRk9MYNm5xOp5DHpxlmeHjY4XDw+UKCYG7fucflcs+cOhcSEoGiaF//cHh4OMpmue1uf9B38eJ5oYAXGx3F4XPTk1LOnT0NQgQLQ/Umo8PpVKvVak0ogtDBgJ8v5lVUlW9at9FitT/3/Esvv7ojNT05NTU1JTUpOirC5/MhEGQ2mhrrGybnT4yKjWltb7NYLAgLS0tL+3LXV0ECb2ptmj59emp6ytWrVxmKFPK5NAU4ne6DR3/XRoW++8Y7p8+cMxjGpHKpLlz31bdfEbjv0092gjBUUDTlxq1bifHxMok0PCICQhGPx1NaWiqTyRAUunfvXpguJC4uLjY2trKyMi4uzmKxPHjwQKlU7t79fVRUlC/okSpEHW3tzz//PARBbrdTKhZxORweX1BYWGi322/evDmluNhkMlgslilFRZc8noOHDzmdzpKpU6NioltaWvIEkm3bthEUkZGZ9sknHzE0XVtbC0LQ2rVrOzo7NRrNtGnT2jrajx49vHDhI2q1+uWXX122bMXmjZvyJhVNystfMHfOlStXuvsH163b8KDsfnpK6s2bN0dHRuLj4xsaGiLCo1LSMq7fvD1rzkwcx2/duXnn1m0Oj9fe2e30eiqraubOWxjK57W2d+bn5Mulit3f/9DW0v7hhx+++tK2jo621157pau3580331Qq1CgGDwwMXDz/lzo0BIURuUDU1NZqMJheevbZ3EmFEAz89ttvUoX83Llzi5YsRhAEhSGDXm9zOppb28fznhQKRWh4ZEtLU1JSUmNjY3dHZ2HBpKKCQrvTUV1TbbPZpGKJlybCo6MmZueODI6kJiWHqJR7f/lZIBAEcHzSpElUEI+Ojq6ra3hw7/6qlWsEPF5GRsadO3ciIyODBC6SiEEQDOJBpVLZ29vb398fHh6elpY2NjYmlUoTEhIIkvjXoti/+cH8v9KC4+G5/s0WmUwSHhHa3dOZmZ4xTtNxNTw+KxiGCYLAUKyrt1cgEEhEYg6H85CU/yzwJSEQAiCAoSEEphlaJpGarRYyEIQwDEXRkZGRcRGDIAhBEOPlSQ+93MA/KpRomkZRdDzny+PxsFgsmUxGEBQM/2sA+59X8TCtbJzxJElCEDxeiURRFIIg42PSNB0MBsVisL6xoampqWBy0eDIcEx8XKg25KWXXtqxY8czzzzT3NwMI8j9W7cKCwsXLJifk5uZlJRUW1134cKFsPDwF15+6d69ezqNlsfjLV26tL29s6amxuGwX710OS4upre3Nzcve/r06WvXrM/JzT195kxLS4vVan3hhRdCtFoqgHe0tT766KN9/f1VFQ9uXbu2bu3a3Lzs4ZHBsHCdTqf75JNP2ptb/jh5csOGDd9+/d1zW7YSJLl+w9q83FwYhebPn69SqgJ+f9GUYqvVzufxdn31jdVsQVlYZ2dnV1cHgeMSmTg+NmH9ujVisfjZZ5+VyaRjBmNP98CECfL21hav1/3Syy8QQZzFYk2amAfD8MDAwLgMlYol4784iiA0TQMAPTg4GB4Z8cprr4ok0l/37Tt2+Ejx1JLMrNw7d+7weTylRAYzQGZmOkGRGIszOGy4ce0qn8dZvGi+w2mZO282QwE2qyM5NeWNt94sKirSaDRHjh2qqakViPgen1smk926dUuhUPT39GZlZJ48eTIl+Z2xsTEKhNLTU31uj83uVCpkpaWlkyZNAgGwo63d6/XyuFyMxSkoLJQqlB1dnTwOH8HgmLjY4eEhj9vJYrG8Xq9KobTabT63Z/yxGR0ZZbfbRWJpT0/P8PBwV1dXbGysSCS4devWjh07WlubXS5Xbla2WCSIigy32RxdXV11dfUrVq7yBgIMw0BrVq06evgQn8eJighvb2+PjY12ueyHDv6qU6tC1Crc7wv43XjQf+rUH36/Pz4umcYBs8nu9xEMDQaCQS6Xi/sDDE4yFJUQGy+VSvlCIZfLa2xsVKlUKqmcCuB0kIjQhcZFRQY8bofF7PY4cvNyAgH8xRdeVSg1M2bOphmQLxRFx8YwIE3REEFRDAhjbK7N6fAF8bTMCRiHGxUbk5WV1VDfZLc7RSIRi8NGUdad0tIggTtcTqFQCIJgV09vbGx8UdGU6OjY9LQso8lG04DBYOjq7JSJJUAwqJCIJ6RnEL6AWqnhcrkOp5tmwKiYBIVSCwCQRCIZ/3flCUUKhaKrq4fL5SIoy2Z3JsQlgwzkcnkGBga4XK5QKAQAIDIykqIJi8WUl5/FZWEMhfd2tZOUPzo2srmt0e11hIbrMB4HpxmEzYUxnjosatGS5U8/92zvUF959QP9WP/eX79vaW0qK79//vx5iqKsVmsgEBCJJGvWrEvPzT149Njg8GhcQtKY3lg8ZSpHIJzzyAJ/0Hf1+pWvvvrK4/E4HA6jfhSFQImQlzch+4uPPlq/elVyUoLHYTcaRiAUSk5OHBgcfHXbaz/s+bG0tNTpdL786qscLpcGwDBd6NrVax599NHS0tKjR4+Wlpa+//7777//fmNjI47jFy5cuHLlCkniQ4P9Pq/X5/XarUaaJmmaFokEwaC/t7cXBGGKZCwWU+aE9LN/ngYAoLW1+f333w/6AxERYRiGrVq55l7pg57ensjIaBCGP/zwQzabDTDEF198gWFY/+DAgwcPoqOj790v6+7uffLJJ4MEnpqS+txzz4EIjHHY3/7w/ZFjxxAInj9vXnlZGUkEX3nl5dSM9Ju3b7PY7AmZmYaxsZCQkKe3PhUfHx8TH3fw4MGZs2dpQ7VcAffTnZ99vPPTufMfycnLnz59ZkhIqEqjvvegnIOxVq9c9fTWrQzJfPDeh9WVNU9t3YwTAZVKNWvWLIFA0Nvby+Vwm5qaLCbThPQMuVzO5/Pb2trGRvU+X4DDZT2x8bGc7Ky7d+/y+XyIYrwOV1dHB4fHQ1nsgYEBgVhEAQxXwP/rwnmYxf3i2+9NY4aY6GiNRlNRUYGiaGZmZlFRUW5ublxkNAAAVpfL4LByRILKqppwre6Zx57o7u2xW20sLre6tvbIsWOPb93CZbONZvP9+/dDQnUen9flccsVCl/Af//+/Td3vGEymebPn5+RkTEwMDA4OBgaGsphc8Z5AAEgBPwPgc//Htr+18YwDEVTMTExUqnUarU+7Msx7oKmaRqgGQzFTGaT3W6XSaQsFguCIBiGH/qiKYqiGBqEIBRgaCII/u1XR9iY3e0aNRtZbLbH4xEIBOPkHk+rJkmSoqiHpH+Yif1QFgMAQBBEYmKi2Wz2eDwoCv97BT9u4y7uh8liCIJAEAQCAEFQPl9gfKiHjcaMRiMCY8uXrfQFA9nZ2WvWrJlYMPn3QwejoqLO/HX+zp3S48f/SExMpChq46YNAwN9oaEhQqFw8ZIl7733XmdnZ19f35Xr12ia/uuvv77++qv6+trPPvuEz+cyDLNq1aq5s+c898yzXb1dEdERzS2NA4N9b7/1Bk1R8+bMHR4aSElKOnzwwKKFj6xbu/rW7WvPPLNFIpGEhoYyDPPuu2+fOXOmpKTkm2++04WEGcaMM6bP/GnP7vfeeXfLlidWr1zl8/lOnzld39zUPzxkNBpffPHFrKysiIiIpobG9ta2WTNnnj17emRw4OjhQ3Pnzn7uuecgCBoZ1TMMs2HtOg4LnlpS+PJLLxBBHMdxiqLq62uFQj6PK7DbnN1dvZVVNf4AHggSDAA4XZ6+nl6tVut2u+UK1dfffPPll186LbaOhmazwcCGEKVcwRMKqpsa/SQDAnB9TX1HZ/vMmdNXrVrBZmMgCI6NjQ0Njw4ODmlDde99+IFYJl2+fDEIAlqtViAQxMfF8XiCCZmZJpPJZDKkpSUNDg7++OOPiYmJsdGRYgGfxeXojYbWto7EpJSYmBgQAIYHhwK+oMvt9vv9Q0NDNrNleHh4aGjIjwfMNgtFEThByGQykUjkdDoBmnG7HC8+/4KQL2hubiVJuqGhoays7IUXn5NK5QiKvv/+++fPn/vuu2+ysrL0w/qBgSGn3VFXU1tVUXn//n2706EJ0Y7oDSweH3lk3vwHD+6FhISgLLY3EGxv75w2bfqJEydGBnv5XMGkSfkYiKpkEp1Gfumv8wqlKjMj0+l0Njc3uwf7KAZwuTwcFoJhmNvrxfHghAkT3njjzdTU1HRtKgqBXo8rgAdlEqnBYMBQhMNGh0dGwyLC4+KiGIhVMLno88+/IHCmsLB4aGiosrLcZjWnpmXQFOAPeCGYDAaDGIY1NzdTFKVVquxmm1godDucHA7v6pXrXB5vUkGB1Www2S0cFh9GsZBQndPtwknCZrMRBKFSys1ms9/vl0qlKAvr7ekKBIM2m23MZIIQNCQ8TKlR93b2EASh1YYMDfYnJyfDKGI0jjmd9pCQJJvd7vcHuVy+RCycMW3qrds3vB4XC4P6ejvDIyM4CHugr99htWRnZKRnZ8SHh1WXV+qUyq6ursiocBQDaZIaHR3l8QQGg0GpVAmE2KhpqHukP0iQTpsTp8iL5690tffPnT8HhbGQkJDnnnuupqr6+PHjEqGo9N6DJ5/Zkpk1oa+nt7OzEwAAtVr91FNPfvX1Lr/fz+Vyc3Jy2tvaoiIj9Xo9zZAEifMZ1sZVa5ubm5949NHFy5cuX75co1CajGNqtXrSpEmvvvTyCy+9cu3atdzs7C++/KKkpCQxPo7H440MDYMgOHfu3OLiYhIP2my2kpJpGRkZK1asEIvFcXExJqPx2LFjbBSRikRhIZrR/v7hoYHI8IirV6/GRscNDAykpqbu379/4qS88IjQX375JTxM9/U331SWVzjtjvCI0MkFE7ds2bJ///6erq6D+38DAOidd7fzuZy+vr7vv9/tdrsZAJg9e/azzz5DEEEWijE0ffjw0WDQ73a7t2/f/vXXX587d66kpCQzM3Pz5seffPKp0RG9QCQZ0+s9HteOHa+LxeIzZ8/V19d3d3dPL5nq9/v3Hzz8ww8/fLnzy/r6+pMnTwYCPrFYvGjRovPnz4+OjpYUT71+7VpmZqYuPEwql8zNn6M3DIeEaHbt2uUN+Hft+kanUadnpFZVVSSnpmUkpRw8esTt9aikyq3PPn3k2DGP3VlSVKwf0ScmJxFBvKK8vLi4kGZIp9sFIWh5efmnn36MQIDZbExMTKxtbDp+4o8Ny5a9sWM7TTPx8fEwiiAwMv5A56BYbHSMyWqprq+bmJ/f1dszZ/Zsr8cTFRUFg+A3P3zHRzjvvvVua2t7WkKCx+dTKpUogt4vK/MH8c6e3tMnT02dNuWll17CEOTGjRscDic+Pn7SxEkUTdE0BcMw8/8pcf+Z/TT+AQYhmqJDNNrOzk6BQPCwdQbwt2sXgSCBQJCcmMThcGiaJkkchmEAgAiKhGEYGtedFImCIALDIARRJAEjGMpi4SRx+NjRt7dtZ3HYHo/nYRUTCEEMQ4N/lxj9mzJo8O/i4/EVAIfDQRDkYRrXP70Ff2dZAyD4LyOTJDl+FIZiHp+9raU1PT19XNXBKCaVSiEI0qg1OE7ev3+fxWIJBAK5XK7T6aRhYYkpSXfu3A0LCzt58uTtm9dTU1PFYum7775v0Bt3//hjb2/vnj177t27t2TJkk+OHc/IyODxOdNnTHU4bVu2bOnp7j575kxYWJjd7pwza5aAx1u5cuVPP+55/vnnN29+7Iktm3/4bndIaPjnn3+Wl5f35ZefoyhKknR9Y1MgSEgl8ri4hKKiIrVaefTYyZKSkuqaqlu3bz6yYC7KQkdHR69cu7pgwQK9Xp+Xlzc2Nvqgrm7atJL4+HiLxfLcc88lpySWlJSQJN7Z2SkSiaZOnxYMBtvbOqOiohiahiEoKiIcRVGGYaxWK8OANE1L5TKMzVIp5TRNS2XisbGx9vZ2AACysjJpmhYKhSgLE0slMIRWV1dnZ2cvW7L83Nmzh/ftnzt3rlwq4wsFre2dXLEwQqVhsbkTJ0ULuUKv19/Q0BAaFtHc2h4VHiFTivIV+TiOczicioqajo4On9c9ODjI4/H4fD6Lxdq/f/+Wp54CAKC4uFghl3o8HrvdCoKgQCQhCArlsrhcrsvlkskkAwMDbo87ISkxSOAYhIiFIp0ujM/h6vWGCekZ5eUPVEql2Wx2Op1qtbqnpyc+Pn7r1q3d3Z2xsfFmi7WxsTEsLIzNYp89d46iqJqamje37/j9999XLF2hVKqqK6t/+WnPpEmTjp84WVNTE5+YgKIITvhPnz6JSGRiGEX4QkFkdExTc5tYrDxy5Ehe7mSZVHz8+B8MAI3oR0EQjI+PD/GQ127e6urqjI6OjoyKMphGAzghQfgUwATwIJvNYhjG6rCuXreGCATNFqPLYcGDvtz8/KGRYRwPxsbFARCYlpE2ZjRdunYyNzdfqxElJccCIFhaekcikRVOnsJisc6cPVFQMEmj0dgsBoCi+7q7TGMGt9t95cxfGzZsAGiGCOJarZYI4iarBaKAqJh4l8OBB4IIhpqNVgCBK6rKV61aNdjbPzw8HBamGzMarHZLTk6OQCh0OBxGh0WlUaBstL6hViRXoBjC5XJpgOHyOaGhIaOjwxSFnzhxYvnKFU1NTQwIsFAsOTHp888/T4iLiY+JxXE8EPB1dXQuW7j0kaTE+urKmsqKC6f7osLCM5OSABRu7+q/feNOZFR4YmJ8Y2Ojx+OSSGR8Pm9woNsXxHkCSWtrq0KhJEmSDbEGB/q6ezo3btw4a9Ysnzdw89adnNz8xISE69evv/XWGwiCqJRKl4uAIOj5558tKCjIz883Gcw6bQhF0IMDwwE/LhAIMBZrzGCgAjgKoVKp3E/gt67d6Ovpzc3NTU9N6+nqlUsVa1ev8/kCe3bv/mXvzydPnrSaLd9fuzptxnRNiPb23Ts2m41hmFu3bk2aNInNZvN4PKFQ2N3dHRMTpVQqs7Oz79y8wWYhYg5PIhBolKq33347b2J+/+CAWqMuLb2Tk5NDUdT58+e3bXtVPzp66OBBiUzc1dVRX1sjk0g/++TTqoryc2dOZ2dlarW6wskFV65caWhounz5cmRk5J49e+MTEuqbWmIiQqxWu8/nO3nijwMH9o+MjLz//odfffl1fGxs3sTCEydOfPLJJx9//HFsQurCRxYc+uXnH3/aw+Fw0tPTT506tWzpColY3NXZyeVyt72yzWV3ffP1d7du3gwEfMuXL6+sKHvrzR1Z2dnpqRndnR0VFWVffvnlpscfw7hrVq5akZmZXlpaOnkyM2Y0v/ji8yeOHtuzZ09UVJTL5aqqqkJRtKhoyve7vrl//8GxY8fS09IEIqFAKOyuqYqPjZOJhGw2m8Ph7Pnl561bnk5LS/nr7OnIyMg//vijvbN75bp1s2fN3L59O0UzFrP59OlTW7Y+5Q/4IQhCYYTL5wUJoq2xOSMphY+w0tLSeoYG4hITutvautraWQj66KOPBgKB8PBwiUiclJQ0zg+KoUdHR71uz+zZszMy08ZXqImJiSAIYgg6HtSEEeQ/r6P9f9P+4cilaZqEICgyMnxwcDA6Ono8dRkEQRRFxzvaslDMbrWx2WwEQRBkfKXydy8tgGHGO1ozBABADEkiMEwRJMwwBbn5HpvD6XQGAoFxTxhFUSiG+fw+i8WiVqrGq5CBvxXqQ7j+na1NwjCKYdi4r/ufwemHV8EwDEWRMIwCAEBQJITAMAQDJEkztFAozJ80EaAZg8EgEAgwDEMRlGbokRF9VW0Nn88vLCwc/znkcnlvb6/NYe3u7YqLiwkNDV23YWPR5ILR0dGW5rbUtLTffvvt3r17SqXy1Ik/HA6H1+XeuXOnSCz4/PPPR0dHQYA+deqPVavW1NTUiESixQsXqZWqmzdv/vbbb0eOHJs5a1ZLa/uwfvSH73brQrXHjh3D2Jyyior09MwRg9HhcMTExEEoptcb7DZ3SkoSgwAUid+5c0sbqmUYQCgWzZ8/v729fd68eTqthsdh19Y0UjTw2ObHGQiMiYwKCVH7vJ6mpiYfSUrV6sFRvdVs4nA5IrGAxAkYogEMZQCIARi1RltVVR0bG8sTiHwBHABohqF4HG5MVDTF0AzDkBQpEgsgQAiCkGHM5AsGwiIjBnv7ftz9fXpy0ktvvH73zi0+l7doyZKosPCDBw/m5uasWrGCx2UHgj6KIuPi4gJBIi0trau9IztnAh6kvV5vXXWNL8ETFxNbVn5fIZM6HA5YwNdqte+9955arSZwUsDnq9VapVKt1aq7err1o4bY2Gi323v5wvnYmFUkTnV398bFJ9IAozeY+BwuC2FRQRzi8hLj4nk8nt1iNVtNQqGwb6DX7nTiJLVk0WKFQiGRSGAEkUjlHR0d02dMvXXz+oIFC7xeb0tr0+TJk1tbW6VSaWiILkSjxUmCxeWNjIzI5BK7zfLz3t0KlRLDMOTOnTt6/UhSUsKlS5c2bXz888++GOjvh0BGplRFx0VL1UISoDyBoMlsE8nk4bFaq8Xd1NbU0tHCYqF2uy05McbpsOEUSfp8IMiQJB4bGxnwBq5euTJ37uz21mYGhPlCsVIpHxgY8Pv94ZERBw4dXLBgkUImJ0kagiAGAHg8zvBwP0ORM2ZO2yx/rKLsAREI8Xq9XDa7sb7p8Sc2f/zxx0VFRbGxsRKJxGazQAgol8m62trNRovH5TKbzQFfEMWwhJTkYf2oSClvbm/VKlXSoAxmIQiGRERFmK0Wt9vNZrPlbInZYZaJBABJBDxuDIZghu7q6grVaqIiw4M+v0DAf/fdd0pLS602c1hoFB4gEARbt25Dc3MzCEHr163d//s+r8t//PjxyYWTmmtqJyQnytRys94kk0rrW1oJgtDpQvv7BuUypUKhEggEVRWVFpMxRB3KEzAyibS7td04NqJVaxRyCQECSqV29/c//PjD7p9//nnuvNnPPPPMkiVLjh8/Wnr/9rvvvjsyPGyx2Lg8nj+ABwlydHQsTBfu9XoxjC0SiWia9vp9/mAgJi7eOGbwkzhDo/3DgxKRuL2ru7Ss/N233l65cvW3337LMGBJ8ZQjhw6bzeaioiKGYWLioh88eOD1+lksVnR0dGtra3R0tEgkIkmSzWb39vaOt1AAQNBqtSoUKsOoITQ01O32hIaGllfX7Nix49y5c36/v7y8fOnyZTt3fpGdnb1x48YH9++PjIwcPnrIYjYGg0GZTPbxxx9v2LAOgqCuro7Dhw+DIBMMErFxCWfPnf3ggw/i4mKqaypDQsMDgYBSqZw/f35aWlpiYmJcXFxR0ZQPPvhgcsHEnNzcu3fvvvDMU0UFheVVtQ6bbd3a1TaXraqqqqqqKiMjo7au+t7dUoZhFsx/pKa6mqKojIyM77//ft++fTweb+HChfHx8R6Pp662QaNS7dixIzw6PDUzrbWjdctTT8yaNUsul7tcrkWLFhkMhtHRUafL/vXXX7//7nt2r9vpdCbFxku1qk8++WThvPkWh52i6b7BAS6b43DYSByvqau9evWqWCq/efNmdWVlQUHByMjIihUrzpw7f+rYsSef2jo4MgwD4J9//nnv3r2Nj20qLS2dNm0aRREYhAAoMDo6umjRwnPnzwsEggCBHzp0iA3DGzdsYHO5bc1tTqczLDIMhKGA0yeXSj7d+VlDU9OHH34cGxUZ8PutZotcoaAZGkMxAADGGfM3t/6/lL//tH8mUo2HUTkcHoZhZqtFqVD6/D4umxUIBNhs9nh4dTxTGoZBmh4/lnrYzBIAQRAAAQZiHjaXBgEERa/fvBEWEd7W1hYREVFXVzd1SgmCIADDcDgcr9drNpvHC6P/2SoLAIDxst3x2icA+I+bdP4zDAxDEEEEYRQjAkRtba1UKmWxWDqdjsViud1uPp8fotMFggEEQdo72lEWp7+nN1Qbkpmd5fV6d+7c6XK5kpOTe3p6RsdGkpOTx52ocXFxbW1thw8fXbVqVcHkiVeuXv3888+7urrcbjeGYQsWLNi3b19qRvqO7duXLlvmdrvffPPNxMTEnp6eBQsWVJSVb9myVaVSVVZWAyB46dKlM2fONLY0S2TSM2fPHjv+x+x5s+MTE6x2W1JyckhoGIvFNhqNU6dO7e7pHBkdjY6OXLTgER7GHjEYm5qa4uLizAajVquNDI8I+AISiSQmPm7doxvi4hLS0tK0hZNa2tqJoD8nL9vuxXu7OxMSElQKOQtFPR6XSCAEAGA82OFyudwub1hYGE3Ter1ep9ONrxFpmmIYBgJBEBpf9FAUAyIQ5PH7jEZjZkZ6WIgOAaEXXnzu8o0r16/dKC0tHTMalq9bK+DyuGz23bt3J2XlcjEUgUGFQoKTBIywyCB55/aDirIygiILCwvT09M9Hs/y5ct5HLZCqRxP/vf7/QaDCcMQlVodxHEYgXp7uwU8YXi4zB8kxAJ+fn4+BEEIijIM4/F4rE6HUCSJiY6OiIjisjl8Ph9kwL7efqvNBgIwDZDBAOH1+GEIXb58OQAA/mAACEC3bt3Jzs6uKCuXSCRxcTEAANy6fcNsMgEMc/XylYyMDIGAL5FL1298FKBImVRMkjibhYaoFTAMQwBISqQiFAGJYODggf0Wk/6ZLY+/+NxTy5cuGOjrdFhMIj4HApl79+4ODPSpVMqkpLj4+Fi1Qo77fRiGjY2Neb1eFEURjIVx2DRJOsZrJBhGoVDxBBKrxWmxOu+WllXWNgililOn/1q1cgOXIyQpyO70sDk8t9fDFbBDwjQjYwOvbnu1oqJco9GUl1dmpGdDEKpSqQ0Gg9Vqnbd44eDoSHd/n9FsCgQCPp9noK/XbjHTJIkhCIJAHD5nRG+4cfuu0+Ota2m9V1mNA9Dw2JjN5cqbNBFFERLHR4eHwWAgVKHEXY4QiYTDMDIeByJxGvenJ8RLeVwaD1gMBj6b5XE52DBKEkEMQyoqyqpqqlesXoVx2G++987g8CiHw5k4eZJKpdJq1U6Hw2WzS6XS9rbOSYVFbDZrzpzZsbFxI3o9gdNul5cn4CsUKh4f1Y8NikXc2KhIForpQsJpEhodNvmdzvSEOJDCv//264DHWTKloLWlISMzqaam7sknn3r/g4+2PL115ao1GZlZi5cul8gUuvCIMaPB43NLZeLMCekzZ0zj8/k9Xd0Im8UTCPSGMY/Pl5KUvGjhIxACr12z5uSfp7ZsfWq8uAjDsL1798qVijGjgQYggVjkx/12l/23337F8UBISMh4gmcwGExISBCIhIPDIwwDRkVFBQgc4nA9ARxEseq6epFIVFxcbDabv/vum4WLF3V2doql0rlz59bV1f3111+zZs+ePXv2rNlz33vvg7b2zie3bD1y7HhNXT0AQA6HQ6PRxCcmXLhwITY2ITU1WaVSREdGJSYmMgjU3d/31a5vSqZNdbo9fQODPX29Tz/9NAtlIzBMEMTSxUu++OKL9vb2P8+caetob29tW7dm7WMbN02ZMmXx4oWPLJz/ymsvh0WECvk8DoczefLkuvr6S5cv37lTeuDg4du37trsTgCAVqxaM3/h/M7u3unTpyfEJkzMyy8sLNbrDa2trV9//RUEAoGgb/q0me1tna/v2N7Z2alQKNw+LwiCYqlk06ZNdXV1FAS0tLQ01tUb9PrW9vb7ZWWPbd68ctny8PBIX4BMSEqZv2DR2b8uiESihY88smLJYggBaRBIT08/ffoUQ4MhISEojIyLLYvJHBKq+/P8XwePHoEgqKO5NTos4umnnrI6HaPDwz/v3ydTKtgYRgKUzWZ5/InNcrn08OHDIr7AZDQHg8FgMAgwFAAAJEVSNDWeA8wwzLiD9L+brP+L9lBrjotdimIYhgkNDfV4PFXVVUajEQTBcfqOa1OfzzceRXroHx4vLgJBkCJIs8nkdrlgCKII2usLBAn8fkW51emAuezGxkYWi5WVOeFhiNftdptMJuAfb3d4WAQFAMB4qTHDUA8zwv69j/qffzIMg2EYQRB2p1NvMIilUqVaHSSInp4eFotFEARFUxAEVVVVnf/rolKpTE1L1oaobTZLV1fHCy+88N2332zcuPGrz3e+vu1Nh809ODiclpam0WiCweCMGdNu3Ljxyy97c7In3LxxjcthabSqyQUTi6cUAiD9008/5U0qWLhgccaEzJycnD179nC57KKiApyiKZpeu27D4NDI5ctXr1+/+eBBucPq+O3Abzweb8HC+WFhYSdP/tnR0fHrL3sRCExJiSdJvLu70+FwsFgsg8EAAABD03K5PDQ0tKenJyUlJToqmiRJNpdDUZSQxy8uKHzn7TeUSuXxE3/I5dIJmRMYhhHxuDFRkTQeZCMoAoEwiBAE5Q/i7W2d3d3dQr5AqZBpNSqZXBKqDUFAiMXiUBQDANA/ljsABIIoirpdrojQMBzHnS43zZAMSAMwcO7kn7/+8uvg8MD5SxcP/vabSizxWh1Bl/f3339HWBhJU7W1tc3Nzf19vR999BGO47Pnzvrqq53egP/6rZtcAT8sPIwEaIIMer1uiiIIgoBhkAEAnU5HEJTF4lCrtUql0ufzBXweHp+jHxvR6/Vuj1siFHE4HARl0TBodTpJGAqLiWbYGEEzPf0DoZGRQqkUQjGeUOR2u5cvX56ZNSEYDHI4HIKmHG5XaWlpaGjohAkTSCJIkWRCXGJkZKRGHXL//v3wiNCa2qoPPniHhYJKldTrc6IIRFGk0+nw+32Q0WhUK5WhYSE5uRMe3LszZ2ZJbJRu9owip2kAJgIygdg8YrQa9SIBe2x4qL66wet2qJVSkZDPghEIAMQiEYkTwQDOMGBnZzdBED6fT6PR+HyBIE5ptKFXr94Y05siomKzc/Irq2p5XKFYJINBlMXFTBZDYkocTuFOtydI0Dy+ZNbseSAIiiQSkUh0794Dj9efOSH7xx/3IAhKQgAFg0KZKEAFvQEvAsEhISFBn7ent8Ng1JMkwRPwm1tbZEq52x9gQLijb7C5rXPMbEMwdkN9I4fDkUokqSlJbBhGaFKIsXQy6YwphRBNsjFYLhXHx0QjIITBkEQoCHjcJv1YWmqq2+EcGe1HWEBbd/NnX34SIH3pmSkqjdwX9N0uvfv7oYMikUgqFVMUlZWVVVwy9fyFi2abCcFQFofd3dXb3dOnNxgUclUAD9IU5PPilZW1cpksKipCKhEyVACC6OH+PqlImJ2RXl9dsfOzT2CQjo2OCA3Tfvnlrg8/+uTK1evZufk73np71tx5Hrc/PCyKzWPn5ObGx8dCENDc3FhfX9/f2+d1e9pbW4V8fpguhMfCRgb679+5K+CwkxISX35121dffzs8OhKfkHDg0MFTp//s7u2NiYtrbm1hczgvPP/C8uXLFQpFTU2Nx+NhGMZkMIaGhipUyurqapFIBIIggrJkUoVUIUd5HLvbrQsNferprQqF4r333ps8Kf/GjRsoi8MwzC+//OLz+ebOnfviiy/CMNzd2zdv/oLM7BwKAEvvl/EEouIpUw8fOTY0MHz92s1h/VhmZqZEIqmrrTabjcOD/cMjI3UN9aUP7s+Z9wgAQSwWi83lXrh8ac/uH3s6u/t7ehVK2c1b1y9dvZKQGF9VXd3V1j4hI/PxxzdNK5ly9OjRjz/7NCo2Jq9gkslsqK+vPnbiaH5+/h9/ngqPiDCZrWvXbwBAWKHWSOQKty/414Xznd092159bdPGTRjKTk/LXLp06Zo1ayqrKgEAKCkpee2117p7e7Vy5bQZMz/a+WlDde3nn+28fve2YVR//dZNGIY1arVULCkqKvrok49jYuJ4XG59XQOLzRkzmF5+5XWVRnv58tXFixcPDw5ZHfahkWGugA8AAIQiKpXK7/fTNE1BoN5imjJlit1oPrrv98ryivrGBgCF7z144A34cRzHKZIr4kml0vqWpg8/fH/58uUbN24cHhwkiaBMIhaLxFqt9l8SgmDkYUoRCIIPRfD/X9l4eHUcqC6Xy+/319bU60LCaJoe97X8S8oVBAYCgfH9xwtzx0lJURSKogqF4uTFCy3d3QwK601GFEXjY2NVCiVI0hKJZLwFvdfrHa81giAoMzNTp9ONu7iBfwSDH/J4/F4xDDMeA/43dcP/rJgaD/2O83vajOkoC4NRpLyyYrzR27hMJwgiNib+6eee5XA4apWaJEmDXq/RaNhsdm9f/94f9/T09H3+2ec+r18ikdE0nZOddf/+/Y6OjrS0lJKSkvj4eKvVmpmZmRifwDBMW1vbwMBATk7ekiXLEhMTPR7PBx980NvbW1xcXFRU9Na77wgl0k8/33nx4sUHD8rOnj5TMGlyfm5eSkrSnbu3BDy+027Pzc0eHh6+ee3aY49t7Ojs6Oxs9/k8M2ZMHx0d7e8fLCurGB4eZUhKKhKHqDWjo6NVVTU0wBAUabU7MBSNj4/v6uiSSsUSiYTH4ZAUjkAwBgMDPd18DhtBIJpkeDzerdt3q2rqVEplZHgEANAsFozjAQhg+DyO3+cbv40kSZIkjaFsAsfHfwWKong8nlwuy8vLw3E8EAgwIM0AAMhC45Pjk5OSZhWVYAGqqbw64PV5/L5A0HPixLH6usburkG3K3jyjzNvv/3m8hWL0tLStu14q6mpqaCwMDQslAEBl8fj9noEAgEMwyiKQhDkcLgiIsIcDseDinIOlwcAAAojaqXK7XRo1ZqkpCSBQIAHgxaLBURgmgH4IqFQIvWRuFAuDQJAbEpS3uQClU7bPzDocDgYBnzxxZcBAIAQ2GAydXZ2WiyW4uLi6OhokgjCMIwgyPDwsNPhnjp1amdn5zvvvLNmzSqTYUQg4DA0wefzYBiiaZphgMbGJmRa0dyq6rs6nfarL7/Lm1i0aNnyN958ZWLRxMtXbkql0rCw0PjExFGTDWVhapWK1o8NdA/5PP7U1FSxUBLwBSAA5PG5KArAKOzxOEhSHBMdV1fXiAep4dExHo+TlBTf3d0zpbjYYjSkxETL5VKjxQQCME5QXm8AYBAxXzY2bBEIEIVC5vO6bTYbC0ULJ086c+ZMQCbGiYBMIplaVKjv74dAhiCCIgF/YGAgKioK4aAMSKs14X6P1+PxwARNghTA47AIwEfhDAqRIIMBEEnSg0P6lOTE4dHOyLBwkVAsFIl7+/v6TQYbQbAFPJvXlpAYGRKqq2uqgyBAFx5m97jGxkbZbG6YRgFhut7ePjlPCFAMFcBtTmd6csqGVWta+jselN4vL6uJighls8BDB37Nys1JidJduVk+ZrbOX7DIaXX29HUTuF/AwsRCQXLqhGG3k00yCA0IxaKmzpakiLjE9NTL167ShA8DiczkmOGhkfbGxtkLFoz0D61ZvbyyrLKi9H5PW1fV3XIIhQ3DoxKZmINx3G53MOBTKBT9/f0IAqVnptlsNjYPE8qF8Zp4q81scpohCAYCfk2IVqJS7fnp51t3bnf39q9fszY1Oe3IgYP5kyZePns6LDzyz2N/yhWKpNSUr7/+WquLUigUJotZq9UK+QKRUGI2WUmcEIvF3b1dmzY94XK5GAYyW20J8UnZ2dkH9v+uVKj7+/U+l1stV6AhIQDC+vmX38UCcagu+pmtT9+5e6+iopphGCFPODo6vGP79oqKio93fmoyjjFEQKtRIQim1OjsdvuBAweefOopg34sMir8wb3b165dMxtNfX19GzduVKoV02dOe/LJzUeOHHn8yS3VtfVXL132+/3z583zBoI37tydWjL1rbfe+f23AxEh4Tab7amtz0TFRA8PD58+d3bPnj3r16wNCQm5c+fO0PBoiFbd39NdMDHv9VdepgHo3v2yGdOnv7btlQ8++GD8VdZXL10VCSUWi2XmrOk///JTQWFJe0un2+U1Dg7u//bb3JKpa5at9jo8DJcMDw9XajU0SXocTpqmCQqv62yZM3uG12HOzU0nAfjRRx8ViUR+3G/r6yVxor6zW6vVkhAwODgo4vEnpKY6PV6nx3v9+tW09KRfD/xy8MTBU8dO4G5vd09PTlYWl8PdsHLlh2+8nZqa2j84sGzZiilFxSROREWEUxQDw3BlddW+ffv2/rQXoiiAYWAQYoB/be30f0PK/2erlf7VBQ2AMAgzNB0IBPx+f2x0DAxCN65fnTFr5jgWSZJCUTQiLNxsNjvtLqvdFhkeQZMUCAMABFAM6HI6JEIxG8XK7j/wuNxatRpDULlUVpCfh6Jod2dnZ3e3WC4jCEKjUiMk4fF41Cr1Q9X1bzzMf/8JMQzNgJDL4+YJ+AwIgAD4sKBoHNv/0swLArp7BoeGhtKSU2CKYkiSg2JmszU7OxtnGKPZ4rQ7hEK+SCDgs1kMRTMkGR4SqkfR5tb2pKQUhUI1ISf3xp272159adQwFiQCdqfj/KULBE1Mzp9IBHGP1//7gUMESe///SCfzz9//vyU4uJdX3598cr11tbWqKiYixcvTp8x5/ChA9999wOHw/v5xz0qlcrptL/33ntdXV0///zzshXLn3/++S8//Gzy1EIaYMR88cjgWMCPJ2dlhkeF9w/1z3tkvkAg+nb37ssXLv68d29zS8u1O3cWzJ7tsFtlSnlvfw+OkwwIdrR1ojDi9Hqa21pz8vO6urpmzJhx795dNobFxcVhKFsiVUIohuMkisIgyOTnZbHZbIzFoikKAIC/YweQQCDo6upJTU5CIBhAEAAEaYABYIQBIBpkYAj0B4IMDcIASAQIHpsT8JNOl53ECY/LffTo4a6O7qXLVkRGRsl7BpK5orT4dB6Pp1Ko01JTURQO+L1cNv/ksfMNDWVep/Pbb7+FUYwgghCLhWEYgKAUAwAMzOJy6+/cGxjo02g0IAiLOQKT0dTT08MAAF8k7uxsT0pKYrFYAAMgCBSq1vJEEpvDJmWzNWKeWCjQ6w1uiy1Eq+3q6KBpWqaU9/R2hoVrU5LjGYDo6+sfGTZU19Zl52TqdFocD2AYy+MNIjA92D/Q29klFoq5GOverTtyqQxDAIagCAIXiUQ4jiMYu7+nd9sr2yAGCKxYvq632zh5cuFTzzxmd1k16jC/n1mybENnj7GqtoWi0aTEdICCUYSdEJvAQhEWC7XZLIODg0QQhyCEoQEMZgc9QR5boFWF2ix2HoerC9FUPrjf2d6GYHB4ZPjlyxf7BgfUIdogSTEAZLZaCTwgkYi6uzvDw0NRFAZBuLe3t6u7l8fjMQxDknT+pIkom7X1mWfCwyOyc/Psdvvo6KjNYoFBMEwXwuawlEolTdMurwuCYR6XP9Q/lBCdaB4yaSVKESYQC8U+r9/pdPoDuNlmfVBeJpfL/cGAz+ejCFIsFMXHxqnkCj6Xp1Gpg/5Ad2+PQCDw40GAIgf7ehmKpIkAC4bYDBATEiIXisiAf0w/IpYIz5z/68d9P/n03rdff/u555+ePmNKuFID+8E7l0vBAFwwZWJNfXVouI7NZyenZ0AYu6m9G2XzDeahzORY0m1L0CnTQ9SJKpllqHugpS5aIWUDlITPFvF5MpEIBoGurq70CZnDw8MrV6/2BvwBAm9pb21pbW1ta3Y6bBRFBQKB0tLS2XPmJaemuL0en89nNBqtZmtHW+fnn301pjejCFut0gUCZF/vAEBQk/PyA27vqy+9PHPGjIkT8w4fPrx06dKurp62to67d+9WVdW47I61q1Z/89WXJ48fg2G4vb2dYZiMzLSSqcUjIyNsNru/f5DHF0plMqVKBQAAwFAxUdGPPfbYTz/95HTZP/roI5vNMjw41NfT9d7bb7337tsqhfzIkSPXrl4tKZnC4WBuj/3xxzbcunWtoGASReA2myU8PFQkErz99tshGq1arVYoFKW3bntsjp9/+PHN7Ts0SlXx5IJnn9oaHqJ75pln8vNzAQDo6urasG59U30Dj8sNBgJtbW0gCO7cubOzq3P8ETneP7m+sWG823NtdeXSRYuffPJJnU4nlkgmZKUdO3Zk2YqletOY0Wx2uh0YB9u168u4mFiRQAhDsMViCQR9215/VRuijouLa+/ooIPEnQelDbV1t27deufTj0AEvnLnVnl5+dq163U6XdAX9Hq9GIZZLfa21o6Ax3uvooyG4Nz07NJrNxNSUq1O12DPgCY0rHjK1GeffZYNIdEabWxoKEiRQ8NDN+/dA0EwJSXl5JmzIIY89eQWm83mJYKJySnjbAgJCSm9f88X8H/66acajQYAAA6HEwwGaZoEAECnDZkzZ874u5LGifLPxKL/G1L+N9nDifF4PI1GgyBIfHz85MmTS0tLnW4X+PfLJMYlMk/Ax3Hc5/PBCAIAEEVReCAA0IzVYlErVdHR0QiCcDgc5h86lSLI6spKCAAlIjELRf1en0QkHj/jw/DzuDL+Z3ozwzBms9lhs58+fbqrqwsEwHGPNwAAD+ugxoXvQG/f6OhwQUGBVCr1ev1ms1lvMOTk5HBRFgaCZqNJKhVrNBoMwwiKBBCIgREAhu6XVcTFxYVoVdUVlc0NjU9s3pSamh4bFZsYn5CXk/vnydObNj0eFhbm8ri3b3+jrKwsJSWlr7+nvqF28xOP5efnnjnzZ2NDVXFR/v0Ht0LDVNtef7GqqqykpFCrVaampA8MDPT09FkstiNHjj2+efPgwHB4WOSq9WvLysqamprulz24cevmwQMHIkJCH9y7d+v6rb6e/uqq2t7e/t9//10iEUXHRIpEAq6Qy+FwtEpVYd7kKZMKYBhmC/ldQ/1n/jw5tXhKY2OjWq0GQUCjUmVkZIy/iTWI+8lxSUvTAACIRCIMw6i/M8PH77bb7ZZIJL29vQAEmizmy1evDI8Mj99VmqIgAKQAcGhoyGQyqVRKo3Gsr6+PxUaFQqFWFzJz5kyNRjNlavH2Hdvq6msrqiscDhuAsi1OT0fPQEf3AMbiSWWyg4f28QTQtrffnbNoyZjJDEIATQNmkyVUozONGLq6uhobG+/evldXV5eQkDBnzpySouKSkqLh4WGr1ZqUlHLhwgWXy1NVVTU2NgYAgMFk9ONBs9kMQbBOFzY0qG9ubm2ob+Tz+RRO+L0Bw6gBpAEEQhcuWMxisQJBQiKRXL16lYUiedk5La0tKMoKBqnR0TG9Xs/hcJxO++YnHzMax0RSUVi4zuF2uf0+mMUy2+1D+jGSoXd9+92Lr74CnTx5mqbBF194dcqUKX6/XyJVoiz+vv0HvTgNsdCY2IQgQRjMFqFQyGahBoNBqZInJyeqlHIMhVkslsPqCHgDDAP4AjiHx3e4XCaTiaKo1NRUi8UcFqZLSEhYsGABh8epqqkaHtGPmS0en18TEup2u2Nioima6O7pQBCIx+OIRBIulw+jqD+IO90up9OdnJwqkSj6+ge9flwqlWIwgiEoj8P1uNw1lVX9A33xifEcFDEa9CwUiYuJnTdn/pTC4qiwaOOIwWi0slgsBEHHeyOMt0dwOu0cDofH44EMQAaCOrUqQhcy2NszMT8PwzAIAlx2m1gsJglcLhYjAMBjoQIuxuegaoVEK5f57A7CF0hIjNPrTfdry77/dff9umqj18dRhyZPKl655Qk/h1m4eFF4ZMSVm9dbOjoDNMmVitJys24+eDA40Os0GoIee0drg3VoQMPj5iTGymAADnjMQ/1uh5XDxpQKBQbBRqPx3MVLA709Dqdt8+bHUlOTuVz20GCv2+no6mzncdmvb3tVLBb+9PNeh9PJZrPj4+O1Wi2fKxALJQiE4gFqbNQ02D8ik8jlUvlQX7/DatOFhEzMzw/4vKV3b0+cmLd79/d9fX1nT5/b+tQzPA6vsb4JAsHSu7e7OtuVckV9fe0rr7z04F7pm2/uEIoFVrtNKpdRINA3OISxkDBdiMFgqKur4/P5EAT98P0PN29et1qtPB7n9OnTFqvp008/3b5jW1xc3JQpRSPD/b/v31dcNGnlqmWrVq+4ePH8nbu3evu6Z8yY8d57702dOuXbb7/+7LPP7t+/X1NXGxYV8fiTT+z88osly5clpqZs3Pz49du3Xt32ml6vnzN7dl9f348//rh48eK6urrM9AyLxRKi03zxxRfBYHBgYAAAAKVSefTo0U8//XTnzp179+51uVwffvj+6OjopUuXamtrn3ji8V/2/fz5lzu9Ae+hIwd7errq6up8Af9rr7w6/kTe9c03icnJ/mDw3r17IyMju3/au27t6uHRkaklJVKFor6tpbq2qnBmiUQowmBAp9E2NzdjKJvD5jkcjps3bxYWTBKLhSqF4rXXXlu+bFmIWsPl8P0+or+rz0+Qte0t18vvnbt2+d6DBwqFTMDjhoeGZSYk97f31JRX6lQhMwpKuAjm8/m6e3s5XF5zW/trr77+wvMv7dixIxAIhISEjAdKMQyDYZimSY1Gs2jBQoD+t281+D/m6P/l4f+lQSBEUuQ41Xw+HwzD/f39AAAkJye3trY6nU6XywWCIAMCDAjAMKzT6axWK0PTNEmROEUEcaFQKJXLwsLCxovfggHCaDJa7TafL9Da2rpgwYK0tDQ2my0Sibq7uxmGQRCEoem/Y8/UQxc9AwIU86/BYIFAIJVKs7KyxsbGGIAZ3/9he+qHKwOtVldSXAxBkNlsJmmqpq5eq9Hq9frKijI8GEyIizHo9adPnzZbrV6/3+XxkBDU0tMdJPDdu3fv/n53Z0cbhsJl9x58/vnnFRUVx48c/2n3T9OmlFhN5unTZrJZ3Pul94oLp4AALZdK5s2ZTeLBM+dO/35w/+zZ0/v6eg4cOFBeXi6Xyz//8otz5y9sfOxxq9W67bXtf54++933u4uKi8+cOVdf39ja2i5RyPPy8iIiIiJjY/InT6qpqIyPjlm5fMWiBYutJqvP692168um5gYQZLRadXHh5Lqa2qioKIpigkHCbLE9eFDe2tHq8Do/+eSTsHCd3+NVyuQwAEgkkmAwCEOw1Wr1+Xw4jo+/MuTvRt//kqw+nsuGIBjKwpQqVV9//+WrVxAMDQsLUygUIABCADgeiTCabB1dPWw2m6bI2Jio6KgIGILZbDYMwQSFAwBNkuRr2179bOenLU0Nv/z6U2tXW5AmKQjxEczZS9esTtcrr708d95MGoYwDsfh9jQ3t1ZUlPn9/hs3bly7eiMsNAJFWRRFLV26NDc3F0GQ0dHhvXt/0Wi1fD7/mWeeSUpKCg0NzcjIUKpVHq+nub0NJwmVRpWbnx/ACY/PPzyknzltNh70R0SE2cyWpoZmg96IwWhJSQnDMIODwxazbfbsmatWLu3qbB8b1V+6fH1gcMRud7DYXKfbcfzk8eGxwcjYcLvDLFdKE1OSpXJZAA8yADRv/iMXr1yfOWduWUUlJJHyTp8+PaY3+32E1+vu7mltbG6Kiko5d/HsxEl5uZNyRsaGpXKRx+80WUxut8PpdA709xoMerlcymFhCAKhGGyxmEVSyc3bt3bv3TOxqADjsZ0+N4vP9fh9IED39nShCDR16tSWlpbcnLy2to6ysgqDwQTDcHp6KkVRKrXS4/fYXXab02axWNxeT3dvr9Ptdrvd2dnZra3tv+0/lJyQGBsb6/F4+np6nXanSqVWq9WBQCA6RBumlIt4XBSG9Xo9XyTkS8WhsVFxcTEUxYSEhWJstkAoZnO5EArFxcUNDo/4fD6hUEgHift37+PeYIhGF6rVhYXpcBwXCYQkTvT19AUCQTbKgmGEJAkQgRAITIqLTYqJofwBiKRTkhJhFPHaHUGrqaW2vLK69E7lnbKaKl1oDEUgGzc9mZKauWbdBr3ZKNcoxsz6iLiw3q4ewh2QKZQFM2eAKGa0mHv6+4QsblJMJAyDepOxt79Po9FMysvncbgOq4XAgxwMlYqFVy+fr6x6wFAEDDI2k5EFAybjmEarQmBwbGysvr4RD/opkkQhEAZBLosNAyDuD2AwhIAQhsAx8XF2p02vH+HzuaFhIW6H/dbN6ywE/vHHH7lc7pkzZ1QqVU1NTVpayrPPPjswMABBUFRkZFd3xx8nj+lC1FGRUR6PRy5TShUKDpc7MjzscDja21rYHOzNN9985bVtr772qkqjfuqpp/oG+gEAOHL4mNfr3bZt28cff9jQULd79/eJSbEVFeWtra1KuSo2Ok4ikWAYNjQ0tGnjxr179545c87r9nzwwQcLFy5cvHjhrFmzrA57S3ubSC498sfxzNzstJTUnTt3hkdE/PDDD06364c9P3J5vF3ffBUaGnLu3Dm1Wp2Wmtbc3CyVSru7u1evXfPVN19lpGeUlZWtX7uusqIChgCNRvP111/HxcTm5uYSNNXS2rpo6bJff/1tZGRkzZo1xcXFJ06ccLqcHo9n2bJlH3300c6dO6VS6c8//9ozMIwHgk888bjVZr179+7WrVtDQjRisRAAAA6HffzE0arqCggCft33c+GUwoGh/kit7sLZv+KTE1esXslG0JtXr0UlxL37zluVFWV2ozkzIXnhjDnL5y2QCEUSqVQmlrz4wssff/zxpNyJmcmpVrMlLi7BarGP6McAANi5c+eKFSuefvZpGgDu3r27aMHi8UKdcTYECdxmszzsqvhQBf4f2H+38P3XEwHMwxAsl8tlGEYmk2EYplKq0tPTm1tbjEYjDTAcDsfj8djtdolYAqNIkMARFA34/Dweb7xbVnRkpM/tq62tV2k1/iBhMBhYLFZ0dCwAAOHh4f39/RcvXkQQRKFQwDAMgsy4fgX+7jtNA/8S0KUYGoBAAAD4fD7DMDExMXw+HwT+Bc9ur6dvoH9gYIAkSYvF4nQ62RgLBEGIARiG8Xq9yampNEOz2eywsDAAACAIUqvV06dOhWEYgqDGxsayiqrjx/6IioqaPn36vLlzn3rqqXXr1+dPnsRmY3w+NzkpYcnihSFa7d27dz/55BMuj81mI/Pmz8nJycrITPP5PWaL8dFHN23btp3HEf5x/M+Aj5BLNCxMsO/XQxnp2fV1zatXr07PzLh48WJUVFRDQ4NYLC4pKdbptDweb+niZb3dPWfOnS0sKiqYXDAyNJyUnIwh6IP7pfk5ubVVtWKxGCcpg94I0IxcLGEour6h4UF15dVbN3r7+2Iio1YvWc5hsREEgRHQ6XQCAKBSqq5evWowGgKBgEgkEgqEAAAQBAFBEIJg47kIFEVBEBLACZKmWBjLH/Dn5+cnJCS43e7xTnlGk9FqczhdnvsPyk+fO1sydfr4zyQSCWAY9Pt8MAQzNIlA4/1EGQIPbHvtleXLl+mHBm/fvWK2jAVJv93jokEI5Qj0RofR7O1p79bIlckJ8fFxMTk5OaHhOqFUMnfhvLGxMQ6HU1RUBNLM6NDw+HtuRCKBUqksmVqydOnSgNcXHx8/fhUgCLo8TggBGYbSj42iKOpwOKRS6cDAgF4/0tHZNjY2Gvb/o+2vw6M6329hfPsed89MZOJOEkgguLsU2kKh1I1SSt31U6GlTouUUih1WihStDhBQtxdJsm4656ZPVveP6bl9P2ec97f9XvP991/cCWTK5md7IdnPfe6171Wqt7r9WJcvKCg4MrVGiJGajSasnElCoWirKxszpx5er0hHCKkEvnNmzd//vnnltYGvV5Xc+3yyNhIW1uLx+MhovGCwuKvv9lz+MgxhgZoFiwtq4DkUsPcedM+++KNH3/ae/zY+fT0guMnThw7cVAhE23Y8IjX6yTJmFwumztvXjAcgjEsHkuwAERRVCAQcLgddofZ7/egGOhx2VffueqJjY8e+OWHNL0BASG5RNpws0EilPg97qyM9LRUvcflvn71an5Orkaj0mp0ra0d585dYFmWokgYhrhcLD09NSsry+/3ZeVkJp+92+H86qsdh48e/f77HwUCEQQhwyazTm+AYVgsklgs1kQsisJwOBwkaTIUCqQb01mQARA4Ly+Py+WOjVriVCJGxr1er8PhkMlkarU6MzPbbrEzDJOSkhKJRKPROJfLV8ik5tERlVLpsNutY1aGYiUyBUNDIMBwUIyLY363Ky1Fh4OwdcwcDgRTNNLVS5dkK7UlWv3Uguyq3PSB5vqb5y/u37//maef6+7q5QtFQoG4p7uvu7uHSVByqcKg1IqFogOHDookYnWKjicRkTAQJCLZ+QVCiUyq1nX39fqCPoqMpev1XBTZ/+23aSm6jY8/pteoc3OyrJYxv99fXFTQ0tgwahoRiURqlUqlkDc3NEaCgdQ0g8k0JJNLjJmpHC5WUJIXIgINzQ0j5pGsnEwWZLp72p02K8AyOUbjjm3bWlpaRkaG5TJJfUNtil5bU1OjUMgikYhUKvX7/QDDQhD07rvvHj9+NBEntVotGY2S8SgAALW1teFweO6c+T6fTyAQ5OQVPP7Ek7PnzHnlldcGhkw6g/7r3bvlClUsTjz00ENerx9kIWO6kccRHP7jz6++2hUMhPNyCwR8Phmn+FzBW2/9Z8KEqraW9rysnIvnzvs93lSNToBxbKNmh9nqMNtramo++eSTHTt2PPzoY/3DpjvX3SVTK+Va9YYNG7Zv3753794Dvx1QqVQikejq1avBYHD2rLnvvP+e0+mcNLl64sSJR/88xhdwq6omQABcVFD8yMOPCXjC83+df//dLS+//KppeHTz5s2LFi3asWPHnDlzWltbm5qaHnjgAa0m5flnnv3r0oWu5lavy/3s88/de9f6n3/+2dTXhyLAL7/+9M2e3StXrqRp+vCRQzKZ5MypEz3d7evW3TV77qxp06Y99/xzPr+rtvb6qttve+q5p+fMm21z2ysmjt/89DMQl9s3MtZvtb76xuvFE8ffef/6jOwsnC/ApOLjF8+WVJStWrXq2737UlP006ZNa2ltSyRovV5/7tw5EAQxDIvH4zTLkCSFcbi3sOTfOPf/FwX9X0RG/8uv/h9etwrNZG/11huxLCsSibhcLsMyXC63pKi4vb395MmTFotFq9WGIpEkYHv9PoZlMA5+iz2GQEgmkzU1Ndntdi6XW1BQAEFQcouXSCRDQ0NyuVwulycPK8nRJvCfPMSk6hn4h3yGQCgWi8ViMRAEkyIsAAC8Xm/yiKDX67UpOgACGYDl8LgwDIMsgGOIVqtFca7D4erp6evv7THmZA+PmDg4x+/3c7ncFI1WxBcU5uerFcrHHn4kHo9PrZ6cnp4+NjZS11j3wEP3l5QW5ebm9vT27ty5c2RkRG/QKVXyjz76aPNTmy9cOPfJpx/9+OOPJ0+e5POE+bn51jHH4sVLlyxZcteadSbTiM/nRxD08OEje/Z8u2Tpop07t9fUXE5J0S5YsGDmzOlDwwNDwwOW0bFTJ06KBMLCwvx93327YuVtUoV89759P/28/603Xv/z2BGGoUqKx8mksqysHA6HV9tQv2vP7lGLeXBwcHBwUCQQSoUiFARIkoQAsKSkBEEQmmZD4VBBQQGPx2MBOrkwYBhGUZyi/ta7AQCEIFg4HKZpOhAIsABbW1urN+jSU9NStLpxJaVTpkzxeDyHjx3tGxxQqFV52TmhUCj5x2cZBsMwlqX/ju1iGAgEEQRBEYRl6Z9/+qG6emJLfeO5v/4aGux1Oy0QCoWJyNCoraN7yGwe5fP5EASAIBiJhFiamlBRlpGe1tneJZdLMQzKz8+NRCIqlaqgIG/WrFkgAjsczoKCgkWLFqWmpiQSiaTlMJeLJxJRr89ZVJATCAXiCdJoNAYDPhAGBwcHKJa6evVKIOhVq5UADBSPK87JyXE4HHw+P+k6N9A/JBQKhUKhzW555eUXYRhkWSYaJWKxGIIgaq3G7w3YrPbXX39z1cpVN27czM7ODvkDF8+dh3AUwhBIqVQWFRQPDw93d7W3t7XU32yym+0iHj9OxLkYt7Oza3BwRCRWQggPhtHCwsK8/EIEQVJSUmwOhzcQNGZk8RHEOTZmUGlQAOrv7jKmpunVugQR5/F4kUhULBabR0bnzp3L43D/Onva63YqFCqKotJSM4LBsNVq53E4FWWlMMgEfL5IJGR3WGUyUSIe8XrdH3+8ddOTG48eOX7u7MXikrKsnFwM51MJIBAIxaMkyOFoM9JsXnc4TmA41N/dxUEQmGXsdnt+fj7Gwb1er8fvY0GAJMlQKBgI+EZHTfo0fThKDAwOJmiqauLEaDzhdDopihKJRPF43Ol0KpVKFEIJgkBoiCIIBIRkUgkIMJlZGRiGghgkV4uu1V3lCLhAgqS8PiwcXFhdqRHjWz/6oGJ86bbt2wAASE83CnhiuUgpEylBlhoa6BbjmEYkDrgdPrsdw5A4EIc5mNVmD4SiOIcrksn8wQCPx4lFCKMxnYxHX37xxWgw9Pijj7379n+efvppEARfffUVi9XM5/Pj0ZhEItHrUwkihuPcSDQWS5BKjVKmlIllwhs3rjlddolEZLWZu3q7VCqFy+EIh/w4DOVnZuZnZ+3duePRh+77Yf+3ty1dpFHLE2Rs8aJFYrE4HA4Hg0GapskYKRaKn3vmeYVCoVIq/T6PQZcCI0hFxQRdioEgCBRFI5HQrFmz5s2Z8/Mvv9bW1u7cufPy5cvHjh3PzMw8e/YshmH33HPPbStWLVu6cu+33z3xxJN8gdBkGtXrUz/c+vFtq1Zu2Pi4yWQ6derUwUOHUByZM3cuzuG43G4UwxYvWUazgNliO378ZHn5eBBCHnrkkfLy8sOHDzc3N//yyy/Tpk277777uru7J02aJBJK5i2Yn6ApAAAYBjh27PjjTzzpD4ZJhm5paXn55Zdphvb5fDTNfvTBR42NzSxJwQAYCAR4QkFFZZVSpfrr3DmXy7V3796nn356yrQZpaWlMSIaixED/b1vvvGGRqf79edfJAJhQU7uwNBgVlZWVpZRKhXLZJK33noLAIBoNDqlonLrJx//+OuB5ubmmdOn9w72TZ01bdbU6eOLSsAEvWT+wrq6hjvWrL5y5QqYoIMWd09Hu1gsbGxqMhgMwwODNTU14XA4Pyt3ZGS4p6frrTff9Pv9AoFgZGwURVGRSJRI0DTNojiHplkEQQQCAQzD0Xjs35Ld//n6/4m+/+WV//OS+n8Hw0knjVuvJLVRNE3DIESEIyzLrly5clxJ6cDAwL59+7q7u8PhMIfH4/B4127WjlnMyQzgZKbQjNmzIAjqG+hPssooisqlMh6PYzQae3p6aJq22WwURVEUmRx9If9R3v7NQrMAwCSTGdl4PJ6MSuRwOEKx2OqwJwvi5AgpTdMURUml0mTxnfQ58fv9g0Om3r6BwcFBuVSKoijNsv6AXygUcnFOPBZjGUYhk+dkG3Ua5bQpU61W67vv/sflcbe1tW3evDkYDrd1tqWmpu7ctQtB0d1f7+ns7HzxxRdnzJrJAHRuXsG6u+/ZvmPXwsVL7r57/dmzZ7//fu+lSxe6utsKCnNHR4auXLmoVit+PfDD/v37iooKVq5aodapAQhoam5iGGb58qV//HEkLSN92ozpK5cu7+7s2rJly8TJU3p7e999772UlBRDir6qstJut3d0dH21ffu+vfsFSsW9Dz6Uk5mVn5n93BOb77hthUqlCsfisVgMx3G/39/Z1U6SZFJhLhAIfD4fh8OhaOrf7pssy8IwTJIkCwJikVgiljkd7p6enoqychBkYRDi8XhioSg/P7+ycjxPwA+EgnKZhIxH29pbiFg0HIkmK2k6QVGJBJxUbNE0AAA0RTEU/cfBQxK+tOFG3ek/TzgdNi4GxmJhj88JY3CcocJxwu0PJVhApdZCEIKCMB2LL1g4j8fFKZoiE3+fsQAAsDuszz33gsViyc3JAgEKBoB4NJJIJFpbW0OhiFqlUivkV69edbrss2fP7u7uttksJE1hXE5Xd6dEKszLy5k1a4ZerxcIBN0dnSxAoxhGUZTT4cVxfHh46MTJY6++8nzA71YqpD6fLxwO83h8mmYa69tuu+224aFhY3pmc3NrOEyMjVkUCsXs2bMRFMEuXbo0oXJcgorhKEejTHv0kY0FhZnxaLy3ty83JzMYDMaI2NDAoN6QHovEpCpl/+CQzWIliLDHG8jKyhsY6OvtHxKguFyuhiBEqzd09/Y3Nf22dOnSSCzq9fojkUgoFIrFCATHysvLMA72888/y1WKO+9YfTJx1ucLRImYxWy1WCwul4Ol6Oopk0CQTc9IM1HUkkWLCouLR8Yshw8ffWzzpq7evoO//vLtt98AAEtESB5PMGp1Mgyj1GhxDicSiRCRkNvhVCsUoVAYwxCfzyMSi2EIBGmSZhmKoREY4grwQCCQmq7XpOrHzFYiEQ8TIZ5UoEszxBKkz+dDEEgpl/q9PhRiJRKR2+uJxgkEEYiFYpTDqSgf1zUwcPlcQ2G2np+eHnF4eTwchhGX2RJ1em12e05eAUUm+vsGM9Mzu9o7oqFgf3dXhoIvEglQEIgS4ZL8rEgo7PR4pRIRDAIQn+/2R3wut1QhZyBQLpWhUthsNo8vL8Nx7rWrVw8dOsSXiCVSKQ0ChUXF+vR0Ik6Fw4TV4iRJEufypXKl3eaOxxJOh9tqswEgY3c6JWK5QCASiPj+gLe/p4fPxXUqpd/rcVjMEolk4yMPvv3Oh5GA74knN8VI6tTpM7u27xLgfK6ao9FofB6XUqb0ur1arfb0yVNKpVLAwS/frIVBaGBgoKJigs/n6+joSNUb4vHokkWLi4sLP9j6kVopzzZm/nn8KAdHiwpL3n33fb8/SMaGm5ubH3vsEavdYTKZxGLhrl07KIqpra31+/3btm2bM2/2gQMHVq25c/z48Ukno/vufeCd97ccOHBg48ZNDS2twwP9DMPMnDO7o7P78K+/fffd3trr11qbW5566qmyioozZ84unDdfq0m5WVv/0UcfOawOqVSu0Wm1KbrfDh5qbm3V6/UIBCdoyuvzvf7Wm9/v+25wcJDH41nsNgAFD/xx0DQ0LBKJWlpaNm3aVFxU3D8weOzYsYGeXhBHT548WV9fv3r9Oo/duWj+vNffftPn8/36668LFiwKhULt7e2rbrsdBMG33njb43Y+vvmpN958R6dVSyQiEAY8Hh/CQJZI0Fx7g4xEaTKRlZV1vuXSqjvvuP3225976mkenz9r2nSbzdZYVz9nzpxJk6osdtuXX37xxSef4zhq0OsYCPb6fRwY9fkCHA4WDIfi8XiYINLS0gKhEAfD+Dx+cp/6n6H0VqH5bxT8X+Luv7/r35Oy/+0XBP49nfzv+R+GYZLTbhRFaTSaFH1qXl7evn379Bptdn7e9fqb/f39MAM88tBDEAACABMMBV0uh0IlLyoq6uxsl0sngiyAYYjP7WNBqLq6WiyWSiVym81mMKTEYjGPz4+iqEKhcDqdSrkieQPJhiVN00k3m+R18uTJe++/D0excDjc09OjVqvFYrHZaq2trV1719pgwI+jCIYhcoV08uTJ77///qOPPLTurtW9/f0ej6cgNy8piaAoKhQKKZRKr9fX1dWlUikkEsnLr75CkYmsrCyRRFJeWvbd/u+Hx8wms8UfCt+x5q51a1YTkcjZixcwDItE43PnzieI6OzZs3Oysl966YULF8653W6RSLRz53aJRPTLL7+0tbW8+PxzxcWlJJXIzS9EUbSlpclisdyxalVfX59ApEg1Zpy/eEGrVKul8gULFny7dy+PiwMQ+OPPP/X19O/7di+EgCKJeNbsGVnGbG8ofPC332ViyZJFC2mKAgDAbrcHw+HC3ByGYeVyeTAYjJNRpVI5ODgIAACKoiqVKmlbduugBkFQMo0qEaFP1/w1YcKE9vb23OwcgUAQj0cxDGNoGgRhv8+XZTQ2NDVlZGRwUUwslWhUCoZhKIYeHDalGVIpisK4eDweTzL5DAsiKO5yudRazc3a6zNnzO5qa0cg2GmxVk+dwlL0zc5ulVYZCIXsTqdMJuPiuETAl4klOIaAIMyyiWg8yufxs7OzGYZhWQiFIZ/fbzAYEAQSCHg0RVZVTcBRzmeffI5AaMgbpGPUzLnzYhTb3NzscDjFfJ7T6ejv70/TG2QyyfETxx647x4MRmx2m0DIy8vNo2jK5fabTCNpaWm7v95ptY7GokG5QhSOBHEOKhKKA4EQjytYtXJmaWlpWlpaS0ub1+ufMWMGioKDg8N+nw9CccbrCfZ2jwa8/tzsTA6Ho5SrEAh59NGHi4uLIpEQjiFCPifVoHU6rMGgy+PxeL3eFStvG19ZFYuSXJ5QqUohE2B738DpCxf6RkYmTKrmScQkwAAYojemnzh1WiKXyZSKcJSQSCSDw0NcLvf21be73c5333vHarVyONxJVdVTp0whwgQX5/FwTMDjAgBLxWNj5hGAoXKysq5dq7n/wYe/2f0tAMLLlt82fcYst9cbjcYokuZifDJKJRL00OCgUCg0GAwQBCEImkgkTCYTTdMEQUhkUoyDJ+kmq3U0EPBlZKT1DfcTsbBcJReKBRweF+FweSIxhCKXr1zRaTUAS6UadHweEqHiArkowVL+oC8eDfFwPORyRDzuqsqK/JxcMhzGuVwG55EoCnBBtVbg9kbaO3qff+m1rp6erCyjWiVj2AQEJGIxkscXeoMhmUrZ2d8PQYicL0kEY1Q0ijGsEMf5OMfn8yUAJpYgEQSDIKCppZll6aKiAn2qweV229zOEBGRKVUcLh+EEYlUzgKIWCSXKzQMC0djdDAUdbjcDofL6XDzBUKRWEomaImAr9doYkQYZhkIZCUigU6jjhFR6+jI/NlTfC7n4488cvzIoXS9XiQQqhRqs9ns8XgGB4cJgsAwLOjzJzepd995W61SYBhmNGYxLPjZF58fPnokMzPTmJ72xuuvPvrIQ7XXr4UCQZfbIZfKPtjy3sjI2MWLl8+dvWC12nfu3Dll2tQzZ05cvHh21apVNpvt/Pmzy5cvhWEQhsGWlia9XvfMps0SvlAmFHe3dS1ZsPCzjz6ePW3W8cNHX37lldr6hpqaGiZB/frjTzAIzZgybfHc+fn5+WKhaO7c+V9++eX777/vcrncbrdSKa+rqyMIwmqx+4KBPfv2qlQqoVDodrs1Wu3gUP/27V9u2rQJQZBoLFJUUvj7od+aWltOnTktFosfeOCBNIPh9Tfe/PbbbweHTNu2bascVx4kQkQ4dPjw4a/37120YIE/GGQYgMvlDw2adn+9RylX1dU1NDW15OXlHfjt4Gsvvr5g3oJzV6509PWl6tNcNjvCwVua2nKMOWKx9I41dx06dmTp0sWbHnlkavn4BUsW79+/n2VZm8/97Ksv5eTkOJyOx59+8sknn1SrlGQsLhAIGIYZHR3VpOhkMgmOc6USOYJxeDweiqBerxf4p7EK/uv6f8C//7mu/d8Vwf8daPu/eHfgnxo0uV8nJ4OT4JfsJgIAkKASarX6qaeeOnz4cGd3l0AkRDDUHwxEIhG/30/TNAjDMAyLRCKzedRsNpMkybIsQ9M+n08oFPJ4PJvNJhQKvV5vPB73+/0QBJEkmTwtxePxW0R00ggzyVFDMEwxTNWkiRKxxOPx9PX1GY1GlUo1ZDJduXIlOzubpBM4jnu9Xrvd3tbW1tnZ+dRTT1+4cAECQDqRAFkWYNlEnKQoii8QjFnMJE3V1NS4XK50Y4ZIJEIR2G63JuIkAkIRIhohYuFwJCU1tWL8hMc3bJTLlSKhRK3RpaUb77xz7b79P0ydOvXBBx/csuW9m3XXeDxRLEa2t3dOrJry5ptvv/jiy59++vmTTz5ZWFg8fdrMnJwcp9Mplcq//HK71+ttbW2naHr3vm+dbndrc3NPZ5dQKCzIz48EQx9/uu3mzfry0vKSwqLVd9y5auVtubnZHA7ittrTU9Jmz57NgoA76Hd7PQN9/RKBGEgeUERigUAQCoUkEkl+fj4AAKFQKKmku/VMIQiyWGwdHR2m0ZGDBw/q01IxLsftdk+bNo1hGBTHAACAYTiZtuu0O7RKVYpWq1RKEQjkcriDwyMJmhWLpC6Pm8vlJmgKw3EWhKJxEoJhBmARDCWphEYrPX/hlFatbqqrr79x8+Jf5+1jFj6Xm6JQh30BgIVcbq/D7R222ho6O2x+X5KUZlkaAAAMR8bGxiAQyMzM3LjxCQ6fBwAMCLEw8rcojIwlYBAR8IQQAA72D9AUYzRmVVZWMgxDRqncrFwOh3P+3DkIAJcsWswygMflVStVLMCGghGn25NuzOrp6Tl8+FBnVxtDxRAQIEJBHEHdbjfAQn+dPrtv336LxRIOh0tKS5OJScEgkZaWNq68FJEr1UuX39Y/MBSNks0dXV39g6npBgCkUAhnQYhkWBSDEBaQiLjBALeosCIY9KMo2tLU6vf7EQQiY3GYpdVySVqKniCC16/dOH78+Irlt2EIWpCTW15S+sFHH85dND8UJgQCUSxK8vl8AAJHR0cfefTx2pv1X3y5s7igxOMNdnd3S6RKm9MmEUoYANQolHwejyAIkqHHLKMASL/39gu9HfWfffze4T//XHP3+gJjVrYhtdbl5gmFGI5FwqGs/Hy3xydWqg3pymhrWyQYMRqN8XgcRVEiGIAomgMhXAw3ZmW73V6b3RmMEHyBWCyVp+rTaJqJhVxKmbypsbWrp7diXGnPwGCmIQ2GUICFeJhAKWJdLpdak87j8TIMGZFARIoCXIB2+DwYyLAswedzMYL1EKE45YqhaFZ+7sDIwK+//2rMLjEPmQQQJOXx7B5HZW6JzTpiCoWCYZLDxnGaoSmA5dAiMfdm/5BCq5fwBAAIuIIevkSiBsAzZ88ZszJjJJWfnz88PALSYFdvz/z5C61mW11dA0WzQX8gLVXPQWCHnZRJpSxLV1VVmUwm0+jw6MgwDMMarUKtUpv6h7goN07EAzRAxuJ8Pr+pq2vm1Ck3r12bN2Oa0+Pq7u2574FHpDLhn6eOqOWy9XevtlgsvX39JWXjrtRcmzt37tJly+rqG8Nhgi/kDQ0PzJs3r3xc2dGjJ37Y/31+Yd4LL782MDBw/eq1NXeuttptcZq6cPFyKBRK0akoKja+smzbtm0mk6mwoCA7K2vTE0+oNZoPPvhg+/bt4XB4cHCQpKn5c+ayIIShHDLB5uTmG7ONQqHw6Ref9Dh8TfV1OVnG7/bubmqu44tFQ2Zz8YTxF65cWnvX2mc3PwHSlE6ns9ntoyMjP+7//ovtX7z22hsTJ048ffKUe2x06dKlarmSYQCn11ZXd/2xDY+YHZanXnq+e9C0ZeunCxcs4E/EeBBKA+yWd7dcu3p16ZLlGZnGsxcvfLl9m1KtiEZiHX19F3bt+ujzT1cvX0FGiDSDwW615OdluadUp6amlo4rnz175rFTfwZ8/tN/nYJweEZ1dU6WkYNh6UZjmIgaDAatSrLtsy0PP7IeQ+DTJ89EwtF5C+afPHkyzZiRm511f/W9DU0NKpXqrbfeuvO2VRMnVJEJEkEggKVb2xptPjeCgGw8DqIwAMEAAPD5YsuYTcgVcDGUSsQYGIMhOBQMcDgcCAIYisYwDAAAFmAANonNf8PM341PCEqWuUn8oxg6KRhOjpEkO6bs/4i8/W+YKv67xwwAIAiwAJAM72tpaUlJSdHpdBACsiyAwDgAAABAYxBM0zQHwzdsfHzbtm133nn7srnz3n//faGAP2wasTsdSqVSJBIxMOjzBXy+QCQa9cf9+hR9TlYujCISiezQ4SNz5syRymU2m8NoNEaJsN3hEOlS8vPz4wmSy+Ml624EBn0+H87ltHV1BkLhaZMnu20ej8OL4UhBUSGPwyViUbfTmZ+fXzl+fDxKAiBAUJRKIKqrrU/NyYlGo1qVdu+PP44rKdVqUkAQZBnK54vIlEquWHb09NlpkyejKBrwBaVS6YjZFiTiacaslva2AfNYblHBuMISmkrgOGx3DudmZnFxaUVp2dDQoF6rOvLHb/feu14iEjY1N6y67bZXX3vz+vWr06bNWHv3XWfOnecI+Kum3DF/3sITp4+bhgezsMzVq1a0tnfs3r3b43TNmzO/pqamoqLilS2fLFy4COHw8nLyWJa5efV62B/niaWDLvOD5UWDw6Mep0euUTS2NQ139b751ttOlzvqjrlcrqA/kJ5q0KVoE4k4BEEgwFBkvL+3z6A3RMJRBoB83kAikeBzeUlsA0GYBYBhk0mtUinliqVLFmi02h07d02sqkYRFKBpFmCB5EKCkZGREYqhjVmZo6aRodExo9GYkpLC4/EYhlIrlEQkArCAy+URCAQgC1AUxePyEokEyAIoCFOJREpKysVLZx9++NGzf50PB4Njw6aysjKZUBylSIzD4fC4NI9HohCMIO09vaQxZtSohTi3r3+kq69v3twZAMCgOEcu4vAwmGEAEMJohgkTUQYArfaxWQsWcFBsdHR02sy5UrFMqVBHIhGPShMhglwOHwSY9NQMDg/l8/kMQ2k0GqlM9uuvv6nV2rKystOnTmzb9qlQxBVJBMEI4Q+EdLqUkVGrRq07c+ZseroeAACOQNrdP2Q0ps9bOM9qtYIIC8AADMLQpUsXTv91amR00DTSH49Fens6e3o7tFrNuPLcWDwkFPKpBJCiS/N4/C63Q6/XDI0Nn7t00e33eIO+8ZUVIomIhhgiTgQCHq1eu3rNnVOmTGloaIjFyDffePtqzXWWAYhQ5Lvvvq+72aBQKLhcLkWR4XCwv78vLd1QOb782rVrTqczOytXplChGM/lcfN5wmicHB2zYChHwOEHPF6VTMrnc+UyUW9H69zpMzY+8nDvQC8JMPdueNTh8iQtZCmS1Kp1Hruz8WadTCqVq1XBaGhgZNjpccEomp2bSzI0xTIyoTg9xcDDeRn6NIABB3oHPB7P4MAwFYON6fkgwGFYvK2jv2/QfOVGvcXpDwQCCYoqGVeCcbD2zrYbN6/7gz6MgwIwBCGIQCDCcS5LgyjIEXLEQkwUdnkNCnXA7Z0za25PX++48RMmzprZPTbqD4f4Al5Tb9uoYxSi4nwOiqEQLkCEGI6TtEYgYiIxp80ZDhMUSacqU9x2LwpxhEJhXk4uGSOioVB+duasKZNKMnOvX7iYYdBJhFiWUSuTca1WM8Lhz5o1S6vVejy+48eP1zc2BINhqVSq1+vD4aDH4xIKBTRN6/V6t9vt9Xppmg6GoiyMccXSAdMoE6d9Vu/2T7dlp2e99+ZbfT1dBQUFDofD43a77I5FC+dXT6qaUj09Hk9o1Doehy8WipobG2bMmPHll18UFxfefvvKvr6e3NzsjIy0M2dOdfd1b9j4eGtrOwyhMIx2dHTU1TV4PL5gMLzpic0TxldBMLxh4+MfbP3w0KFDTqdz0qTJIqEkJcVw9erVrVu37tixY8KECfeuX8/n8994442ff/45Nz+vqbXl998OKeSqJzc+0VhXP3XylKN/ngAAIDMze9q0aYf++GPhwsUTJ0588+3/lJePnzlzplgkvXj50rIVt4UiBAkAWz755O233lepdBALNTU093R2mYYG3nzr9aKigtdee62jowPDsNLysobGxvX33n3+0kWFQvH4Yxuy8wv6xkwXz57b/PRTCoXC6nXBILRn9zfbd+7o6evVGvRiuUyfpi8sKTxy5MjDDz+8a9euqslTwiTZ1tsbiIRDoRDMABqd9sGHH12//t5xpeMZBrh+4+a27V+VVZSvXrNam6Jra+uIRgmpWPLB+1sWzl+wcP6C9o5OFMVBCKFBeMxslQukIMuQLJ1I0C6Xa9u2bQsXLQJgQCQRAiAIIxgMgk6HHUVRDoazNIDjXACAIAhhmf8Ro5vstiY//ht3KSpZxNTV1VksluRXb6mx/rvQN3ndsp1Kfpokn8eNG6fWamiWcbk8Pl/ANGIaHBq0W20jIyNdXV2dnZ1er3ft2rU//fSTy+WaM2fOJ59+olKpvH4/AwBCoVDOl3S2tBnS03zhIEVRTIIiYlGSSgiFwhgRhSBIJpMNmYYphgZBUK3WAgCgVqsxDPt7choCgX8mg9PT0/lcXoKi29vbPR5P0j6JJMmurq6yioqqyqrGxkaSjOEYFwAAoVi0dOlSiAWKigqjEYKLcy5fvtzYVG+xWIhoHIKgm3X1f50+GSeIoaEhgiD8fv/o6CiCIHl5eQAA9PUNVBQWjR9XOjxqohlGLpaAJBiOxI+cOjNmHpo7d/r3P+y1Wq0rlt0mFIr7+4Y/3PrZb7/99sQTT3z44RaP13XgwE+bNm3Mysmsr6vjicTjJ0zyB0KzZ89+6qmneDhn85NPTJ40cWBwUCaTmS2mF1967vkXnhFLBKvuuH3ajOlWhxVDEa1C1VzfkJuVLVerQqFQQWbOAw88cOP6tYaGBr/XZ0zPmDlzelZmFguwCIozDMAwDMuCIpEoEAwMDw///usBjUaT9LW9Ne9rd9irqqpSjRlCkQiAwF1f71q0ZElp+TiKpSmAZf/OTobcbnc4HM7KzIJBKDVVX1JYJODySJJUq5UQAFA0lVwYBEH0dvfgOC6VSmmGZhgmHo8DEJhkTbRa9bFjR5559qnBof66upvHjh09fOSQaWgwFicoMsHSTJSI0xRFk9S5y9d6hsf8BJGgoik6tdNupykKptmsrJxIJBqLxdhkcBPN2CzWrq6uSxcvd3Z2SqVSEIYhDPUE/V2DPYFoJDM3Ly0zUyqX0QA7c+ZMpVJpNptpmjab7QAAcbncBx+475FHHurp7crJyYQhgCRJoVA4MDCQkZba0NAgFgtv3LgJsAACsPFIWCER61TKCWXjRFw+SCVAlkbS0tLGxkbT0tI8HueypUsvXLjAsjQGs1QiduXShTRjRlpqBo7jq++66+ChPzu6OlctX3b+3EW/3x/20zbzWEF2hlwsCvl8Sp0mThKRSMhgSNFqdEVFJX6Pt66ubrC/f8eOHXevXZdIkG6PE4ZhtVaF4QgMMUQ47HDYQqEAiqIej49imRSdwTIatdudBfm5TpuVIKI0TcskUq1cSVIkCDBcFP7jwI8rV60WPP3U8y+9PG3alOVr76y/XuuNhJs7u6pk8kCM0KUZAAAIhPxisRhFUa/Xq1MpR81jIiGfJxINtnYIBEIURGQyhdPlQVG0vbUjMyvr6tWrlROru7q6ZAopgsI+D83C8LDdIsIQm8ORBLP+gV6JRAIAAIeLRkN+F0loZVIUxCAUd9hdSpnS4w6IhaIRe2go6F9+2/JUg/GPI0c3b37Y6/WPtNzEUBwUQQIc8jvd/YMDxhQlCMM0RfN5vGiCLiwsHA1H/EQ4YBnjgFyVQiUWijxud/3NuvyC3BHTEBGgwwiDUCQklNIcQcQdkGDolNKCMZvVYR8Y6u8TCAQajeo///nP3u/2XblyCUNQGAJoivS6I3wBl47HcRxXKGQuhzMUCnBx3rFjx+6//95jR46yFF1WXBSIEN9883VVVSXIst99uzc1I/369RslpWWJWHygt6eweEJBXqF5zPrNN9/s3r2rtLT4s88+IUmypKTk1KlT+lRDKBRoaWvmigQsABw9fvTs2bMTK6sy0tPr62+2trYfOXbUYDBk5+YIBIIVK1eNmq2ffPLZ559/zheKFi9a7PUH169fL5PJfvnll/fff//gwYPRWGT+/PlVEyq6unqu1VzhcwWZ2VkL5i/h8LgbNjxcVTn+ux9/Wbdu/dSpUx977JGmts5zFy8gKD5nzhy/1y0SCL/avjMSjcdIyuXzn/zrbCASuW3FmlDAJ+JLO1rbdu7ciXLQwf6B0ydOPnj/QxKZdPGyxSwIDJlMO3d/bTCkvPTKy29v2TIyMvLMps2qberW+sbHHnvsiw8+7OrrffXVV4dMw4f/PPbwY49m5uVIZNLPP//c5XJVVleyCPTVju0VFRXpqWnt7Z0up3vv3r0FpcUvv/razRu1f/z+h8XuePa551gQIBn6k21ftrZ1vP7ySwIub++ePeOKitfccWcwFNTpUwAAiJFxZ8gfCIduX3FbIk4BCOq0OhRK5eq71mRmZ0EQFE8kUAw3jZpAmlEoFADDEgTBACzMIrFYzGazpacaIAhiGACC/oZVlmUhCKBplmEYFEUTiYTX6y0vL08GAYH/k3t00tvk/x3o/hceO+mDkXw9QVPhcBiCIJAER0dHTSZTYWHh0NCQSCA0Go0EQaSkpIhEIgACYQh+663/fPbZJxkZGfMWLOro6kpLSzty4sT86bNAhnVYrP6gb2xs5M7lt4XCAZJmOAI+wzCzZ8/2utwajUoul49ZLFq5EoYhgGWTf4FgMCgSiViWZWhGJBKEiWhPT49SqaQoqqC4QKNRJQ1+YRhOS0tLQgJFUcPDw3K1JhAIQCCUSCR0Wm1+XnZRcQHI0o8+/OB//vMfY3pGIBAoLRuXl5OVk5MjEAiikRBBEOGgX61WD/UPXK+5WlI2zmAwaNVKvz+YbTCwAOBwusMk2dbRM2PqLD4P6evv27d376aNT5hMpvHjKy9evLxr984TJ05UTaisr79ZUlJUXFLIMIzT6WRpxukLzps7+8yZM/c/+NCihUtyc3NRBAIBRmfQz5w948yZMxiGTJ48df/+fRwuNzsvO9raOal6Ip+DcxCsubmZL5dgGDahpLS1rTUcDuu1uvSMjEgkQpFkgmURBElG1wQCEbFYbDQao9FoVdUEHMdT9Frw1iyvw4FguFKtpiiGgcCO3m6rZWzp0qU8gaixsSE9PV0qFkIAjKKoPxiy2Wz5+fksw7AsDUGQXCYBk56UDOJyOPh8Pp/LI0ky05hJqDXJlgSMIH6//5/1yYIAm2xYbNny3qxZM1544YWhoSGMg/YPDWA4LhSKeDxeZk725MmT3V6PyWyJhSML587m87kKhcw0ajXo00CAZQFALJEEQ0GUYeRSGYIgpqFhu9Wm1adzuTy3z5uampqdm3fm7Hmn15Oenu7xeNgoKVHIo2R86vRpLMvyeLwEyTIMO2XKlEcefvDM6ZMpKWocxyxmM5eLsww4MmK9/757P/zwI6GQ7/cHXU4nCALBYLC7u3vq1MlJ0R8MASzLAgwLebxBuVQOQxCfxwEZlodznDZnPEryuEKZVDUyMoJzIF/I3dXVRUTJSDTR0d7F4XBAEIQhaGxszGaziQRCEARJkkQQhKIokiQRFLZazRXjyxRK6ZdfbmMoOile5fOEWq22raVdKpErJFIuiuVl59BUQiTgu5zWRCyKIhCVSPB4vEAgEEuQOJfT2NwcixMpBi3J0gmGdvvcEydNqG+4QSVity1dPNjbe/Kvs5UTq/hikTZFx4KAxW6XKOQJlo5GYhAAczA8RaPDYIyimIAnZDZbEQ7HHQyyCBKj6NbOrrkLFqampmo0mkxjXn+fyecP+/1hHleIYtxonIoQ8XA0IZLJb9bXi8Xi/Nw8uVgEswwOQxlqJUKTPrsVQ8FQ2McXcaxuC8gBJQplZXWlx+dxuN0iHt/UPxgLRQW4oN/iBEhGwhMWZOcLuAKAx/f4I0FfhMXQCE2RLDswNCgWCkUiERGLNbQ0j42NCUWCtLQ0mqatZgvEsnKxkCHjtXUXHW5rU2tTbm5+PBTpb2sXo9j0qkqf28pShFwq/Ov0cYfNOn3alMKi3JDfFw4GE4k4yAIajSYcDvL5fLFYTBAEBtABt902NlI5vmzUOoIKkKqp4zUpsqHBwXvvW9/X19fR0Tl/wRKKYgiCQBAkFo/DCBIMBufNXTA0NHTo0KGqSROnz5zV3duz5cMPrFbrr7/+Vjyu7OFHHikoLhoYGoQA8O71a+Px6L333nvmzJnhoaGHHnnYZDKNmsdkCsWJEyd+OXDguWefAwH4lVdee+CBh2bPnv3Lz794PJ6VK1fu37+Pw+G8/vrrIAgzIEOBLE8kiBCxQCh4+fLlYDBcVlH+0ksvffrF561tzU8//WxKihaGwSvXrrAg09HRsXfv3i+/+mL2jJk+n++1114bHhgMB4I+n2/79u1lZWX79u4pKszf8t57jz38yNSpU9VqtUwmGxweunLt6kMbHm1oapQrFX8c/N3l8367fZfL6ynMy19+151NNTfeeuut1PQ0r9tTWVl59erVM2fOBEOhbdu3OZ3O3389sOuHfRaHfdbU6ZPKK8sKCtMMqVK5TJdmuOeeuzdvevL3Xw9Mnz7ztmXLDXrd4GD/999/l5OTs3Llyq92bF+58naj0bjh8cfNNiuMogKczwDgtYYGj9tHRsmAL0jTbGt7h0KjDRLRju6u21ffqdGoBXzBzbr6gYEhQ1qqUCSCUQSAwEgkEggEkuMJCIKBIJwsdpPMM00nkpUuBEE2m62rq0sikaAwEolEQOB/DOr8l8r1/931XxrSLMvGyLg/GIgnSKvV2tjYmNR4Z2VlLZg3PyMtffbMWRMmTJDJZAaDIZmnCwGg1+NxOp2vv/b62NjY119/rVQqjx07lp+T297eHo3HioqKMtPS71ixcvv2L8USSTQaPfLHH/FoRCWTm8fGaIpJy8h0ez0xMs7hcCiKSppI/Pnnn8FgEIJhCIbHxiwEQcAgyOfzfT6PWq2UysQcDocgCBCGEolEIkGPjpk5PEFre1soEtZpUvoH+sVSEY6jIAvIZLK2phYeB5dJpMFwaPacOW2tHdevX/d5XCjIEOEIhqCZGUY+ny+Viaurq9P0hrzsHLvbo1Qq5TJpT3dnU2tLd2/Ph1u3Dg8OAizyx6HjXI6YocDG+qavvtr2xZef1dVd16ekcnhcDod3+PDhF198MSsry+12l5aW3XP3Xdu2bUskErfddltqaurIyIjb60kwrEAguHLlCgRBkyZNwjBk5e2rBk3DbrdXoZSXlJZ+uWM7iuLGjIzu7u5kTzcnJ2/OrLkSqYiDIVq1Esdwmqbb29sb6puOHj0aI+Narfbv/gUDOByOUCgEAEA4HB4dNXN4fJFIBAJgfX39H4eP1tbWzZw2U6PROO12g8EAAACMoAwAxhNUX19fWloahqD/mnxjWIZiGQaGYKFQSJIkwzAYhgEsi+M4F+fcWjl/dzFYCIGx5NkxHo/OmTPnypUr991334hpqL2leaC/1zxmOn/uzF8nj585dbzmykWFSCgUiBsbmvlcnkqpGbU7apub3X73pUtXTKZRoVAYi8XC4TDAAn6/HwRYhVyFomhedm5aWtqZU6eL8gtStLp4NKbXp3O5/P7+fgxDioqKaJbhcDhiiTAY9FVPqrpac1GplLI0xcEQlVwFsYjV5vpq+/atH38SjZEsCxBEbOmypSdPnXH7fYWlJdcbGkAUhTGMgREYQ2kIQGiaLS4u6+3tlAglDoeTpdmCvIKmxpbt0e0uj3/JsiUQhOA4x2xxxGIkxIA9Q45QKMTjCWIsK0LRQDTKIADK50XChMfjCwQCYrHY5/NLpOJg0KfRKn75+fuiokIYRmKx2Jdffnn77bdPGF9140ZtT3uvSCJGQEguFrW3NN69bv33P/3scdu5OO5y2nOyM0KhgEqjMWZlunxeGEfjFBsK+FiQVRtS7C43wCTGFeR5zWOdA+Zvt+8aX1auM+gtFqdBreWimJgvEHC4VCzORThV5ZX9Pd1AgmUBUK9OMTssGARCXB6RoHA+T65ShojImMWck5/ndDuysowajaK3r4eMx1iKEvD4XL6AyxeP2Rxej4eOxWQSERWJjTmHK0tKFCKJ3WpmGEYqlSZpFolY2NxYn1DoDBkGpUweDoZCQX/A61m9enVH2zWnzapkVSEMCoRCFTNmjvV1k0QsEI2HiIg+JYODcf0Wh1wsmlY9WS5T/X7kEHWjxpiaKpUJUzTqrq5OBDEIeHy5ShmOBtW6tBgRvu3O2xQi0eefbY/F4Ey9WigV2hzOI4cPcrg8HAOiEUIhl3B4XNuYGeVCfC6XIGIcDkejSwEAKBAKaZTqq5euVE2alJmb297dbXO5YBbwBwkUw1atWlVb12izOlgIdHu9U6ZPwwUciVJKs0xPX/fxkycuXLigUqmmTJsRi5Eff/xpTU1NLEZ2dnRDMO50ev84eFSfpj1w4Jfnn33O7Xb/9dfp1XetWb9+XWd7R1lZmUyu4HK5Z8+ePXX8VCwaZQHojjvueOjBRzo6uoqKCleuXHX16tU33nituLj4wfsf4Ih4n376+Zo1azUp+m3bv3rwwfsvXrnY19cHQci9965/8MEHL168ePr0ycmTJ+t1GoGAt+7uu77+eufixYtX3LYsFic+2vJ+KBiRSuWbnnxcq1K++cYrQhE/HIlMnjrtrzPnzGarSCK+cPnSlGmTvV7vjh07wuHgxx9uvfP2O2wNTXt+3D9pfOWCZcuar11/9Z03NmzYMDI82lRb+/3PPz5w34NWu+3XH38YHhj86+QpgGFlUsXxP//kY7y0FD2sVdTX3jz115kNjz8xf87sTRueeOmFl1avXrNy1SqZTDI45Jo9a0Y4yr7x6mv3P3DvrOdfgCCgsa2lp79PKBTLecL2gV5Nii4wFJg/a05HZycNsNWTpza0NH/9ze4NGx69fv0qGYlGQiGZVDFu3LhBs9nrcvP5XLvVNmnSJB6Hw7IsB8NZlk0kEkkz+iR9l2zxkiRlMpkwDEtPT0dR9ODBg6Ojo88++2zSsOJWIj3wj6vR/yEM39pAYRBKltQymWzmzJkQCDEsgyAIAsH/TiJK3m1yrCUQCJDxuM/ve+mll/7448hXX321bNkyU9/AL7//9uijj06ePs1ls2pkipys7ChFIgjS3Nx8+6rb+3r+6O3uqaioEPL4LS1tlpHRFctX0CwD0FSqIXXevHkDAwMV5RUAANEsAwBAeXk5TdNer5eL48FgMBliODo6akhNi1NUjIzn5+ePmoa+2/f9lvf+c7a12ev34wje09PL5fHy8/OvX7/OFwouXrz4n3ffnzFjxkMP3CeTiCEQlMlkKIrSNO3z+YoKi3x+HwzDHA4nHI0NjoyKpJKyqgkogEQJYqC793r99cOHD8MgWDlhYn19Y0VFxcFDh0+fPiOWyUEahiF4aHjk8uWaCVWTe3v7MZRz8tSZups3xpWXSiSSvr4+CMEGhk0Sn6S+sa6np+/OVbfPmTs3ShB2u3PSpEkXL9d88sknv/3ysz/sHzehQpOqJ4jwqqXLLly+zNLM3FkzGQZQyhUIBIMsAIIAgiA5OTklxbxA0Je08wRBUCwWR6MRsVicmprqdDkDgUBaWlosFguFQhTDqNVKs9WycsVyDIGjBJGemoZzOBRNsQzNsmB9fX1eXp5IIExmXgEAS9M0iiAsAAAAQ1OMTCIF/mmUJBcABEIQCDAAm0gk/hHJsxAEwTDKMACOcxOJhEAg2LZt26ZNm97b8v65c+dslrEUrTLod/924IdpM6YTETcIqQRiqdMbSDBogmTVao3dbpXJZMlDA4fDudF4HYHgmpprd61eFwNgsZBfUFBw88aNnMwskogKUNzt8476hjEUDvj8LEWnp6eHgyGv1+vxeNauXeP12fU6HREO4jgHACDzmI3P5586e37WrFkOh0sokZqtTp/fK5SI3/zPO+9teVcokoxazJ988aVcLpeIBMb0DA4Hg/h8QV1dXSxGpqamFeYXCAQikiTvunPN6jWr4vH4kcN/nvrzHAcTV5RPHB4asVpHR00Wu9Xlcrh5HD4ZpwA2SS+h0WgUxzgcDs/pdMdiMQSBXG6HVqvKzs6GIAjDsBRNyoqly08eP77zqx0ohHo9AQhE3W63z+czGAxHjxyOR8NxIhQOBj1Ol8/toRNxiUgYCoVGLGa7203E4gAMcwRCX8CfnZeLYZhGpQr5/FnG9OlTpnZ1tnd2dmZkZDAMEyOifq+PTlDRCCETS3AcBwCAJEmKJPl8PgjDJMNOmTGttatDl2YAETgrN4cBgRHrkNagamqrj8aCKTpFQZ4RhigMBV1u76VLlyORiEIqg0GwraVVKBDIpNIxqxNAOESMcjj9LqcvTlBSvkwqkF356/xvP37Pw+AUnVarU7Ns4sdfv2/raBs/rizCkjSY6B/u44t4tTdu0ACdQBh3MELQrM3rfeWNN5Va7dDoyPW6mzQGZ+Rmj1ptTrdDJhJFwiGaosxWG84XKrlKv9mbl5obcocPH/zj2rWaNL0y7Dfr5GI2FhZz8Yri4sry8rDfx1Ck02rxOl3jSooxBAmFQgRB4DgeCASC4VBKRqZUoWFY7Oq1+nXrHiAiFMLiqepUu8Uai0aaG5vuWn0HQyfS09M1upQQEfUFvAAE5hXmNTY23n333RcuXGhubl6zZs25c+dcLldpSdnzL76clmFs6+g6fPBQ0ON79913CwsLlUrls88+CwCAQqHAMEyn09XU1Ozcsf2LL76IhEJOh62goODHH79PTdHXXL/W2NI8f/4CDocze87McCiUotX9/PPPRUVFH330kVymdLnd1dUT77vn7uzs7HHlFcdPnvj2228HBwdv3rxBJxIXz5/v7e1ub2vZtGlTOBx2OZx/HDx07MhRhqInThi/ZOGCObOm3X/fPXetW5NXkGt3OhQKhclkWrVqlVgh0ek0+77dazNbLBZLe3t7ZmamTCabPn1qUV7ugHn4+927v9i53TFinrtw0YoVKx5/8vGtW7du3LgxEgrv2f3Nbz//Eo/HCSI2rqCoKL+grb2dAun9P/989eaNWCS2YsGS6dOm3X333f39Aw6HA0bA5pZGgUDQ1zfw0AP3kfHozRu1O7/ecb32hsvr0etTQ+Gwy+XKzs7ONKbbRkdPnzoRjEbeeu+dzz//fOvWreXl41INBp1al52ZuebO1XNmz1arFFwunpqqL8wv3LNnzxuvvQZDMALBiUSCZdkkz+zyuGmWgRAYgMBoPNY30A+jiN5gEIlEEAQtWLBg/fr1AACgKAr+K0npv2Tz/R9eSXdJmUSKo5iQL2AoOhnXmvyPmdxBIAi6Rfkm/6VpOi0tTSaR0zS7cuXKhx544OudO1UK5XfffddvGvrpl589Hg8EwyKR5Js9e7Ra7cSJEy1WS29vr81hhSBgxDy2YsWKaDxO0ZTP57NarQxNKxQKiURitVlplhEKhZFIxOPx4Bg+Ojrq9/tFIhGCIAxFC/ii6zdqHQ6HTqfzer0TJkzo7Ol+9eVXe/r6du/5ViqVZmRlV06eZMzKhCBkwoQJXL5w3bp169bdlbS5BiEIwzAEQXAcj0ajDY0NJpMJRkAMRzgCfk/fABUn7VbHyZMnt2zZwuFiHofV47aAUOL+B9a/+vorx0+clEgVJcUVzU2dHr+nvb1zz549y5auuHr1+pYtHza1tn322Wc2m0Wn040bVzJ56lS1QslBsa+++mpkZOSTrR+JxVKGASAYVWs0r736xu6du3bt2hUl4wIuD4GxobGR1LT0jtZWnUbrDvrHxiyxWEwgECQdNymKRGEIhkGGpW6NhyW9oohYlCAIl8MZ8PmNRiOCIO3t7QRByCQSu9WamWGUiSVUIoEgCIagNEUBDJuIk5cuXTAajQqZPBaLJfEVBGEMw0AIYhgGAKBkfBD096d/kycAyyazsEAQRGHkVtMk6QSXjMZiWZYkyaysrL17vq2pqXnllZfMo2PxGCEVi9paWi7UXGrrbA4SwZ6BoXiCmlhenqrWFOUXlJQUyWQSmqERGKmurp5YPamjo+PKtatDpmG5UqnSaKqrq6VSOYqifL5Qo1SJhaJwwO92OhJkDAJAoVCIYcimTRv7BwbSU1NZOkHTdEZGBpVgUwxpJ06dnTRp0pdfbv/666/7+wZGRkZUSvWXX3754IMPzpsxo725BWaBJQsWTquerFFp+7r72AQDhUJ+koz5vW6GoU0mE0WRPT3dGBcvKswTcHnFRUUpKdrlS5dGQrENjz05pXr611/tePu1N4py871Ol8/l5mI4F8NDgWA4HIZRWK5QcLlcHMcZBkja0zAMcO7c+b7eoRUrVvb393M4nJs3anu6unv7B8x2R2FJ6czZc/1+fzAYEglEUSIWJWJyuby/r4+h6L6ePp1G67S5G2qbUBiSy+UwACIQev3azXff+5CBYBDDY4kYgILGnGxvMLB737dpxoz09HQ6kZBIJGq1WqKQ/PDrL0OjwwiOYFxkcLDf7/YIObzzZ88RBJFuzODwuH0D/RmZ6TgmdDp8c2bPr5w41WxxOey+FJ0xQcEoBu/Z801VVZVIJIhGIxKpCOdw5Cql02mPx6MCgSAzM1MgEkeiMYpiEiRdkJnpczk/eP+d119/VaNS6nVqv9dlGh5csPA2VVqWzerm8ITajMwIEcO5HH8wKJVKs4yZvkCoqas9joLjZ8/IKik5evwEgCAqjSYei6WoVSIel4vhNAs0tLSmpRtxlDM8aEIwHsWivf0DMEila8VcGBJjKAoAfV2dbqsVBdHSwuKKsnKtUgnRYIpWz+cKvB6/zerg4DypRO602CiKKa2o6Orr+/6HnzdufKK+voGB4PKy0sy01DgR/GbXrmg4dPXKpYyMtCVLlqSmptusDoVUkZGePq6oRK2QXzx/7p033zh9+vQ333yDouiNGzcwDu/8X2d72juN+tRk9fPaa2+43d4NGzYuX778g/c/fOihR3764cfGxsZXX355x44dBw8evHr1ypTJk1etuu3IkSODg4Pf//RjcXHx888///777+/du/fo0aMahXpoYFin08Wika0fvJ9m0Dvt9oqKiueeeX7NmrUSieTJJzbn5eVRFDVj2vRVt63c8v6Hmzc/LZcr33rrP/Pmzauurm7v7AAg1mazVVRUMAzAF4hYCPz1t9/EEuGjjz745n/eZgB206ZNzz79DBmN1dU1PPzww1lZWY8/voEgozqV8uzVi1q1Zs93e31uDw0Bcp0mmiCDweCxw0d279gpl8pwHO8dHOjt7S8pKVm8ZGFPf0/3QA9Jk4WFhfPnz3/wvgc1at3JkyefevrpMEGIRKKhQdPxIyf3fv3NBx+8P3Xq5HvuuSclJUWn1gm4vEXz5mM8vLy42JiSareaWRCYOnXy0888o003vPn6q8sXL+GgGEUmAAZMBp1a7TYoQWsUSpBl3n7zTbFYDPwzGZL0PwcgkMvlAgAAgJDZau/s6dbr9WmpaSzAsiAAAIBAIFCr1cl9jSRJ4P8ew/d/LsJKejsnITZ5LEiqoCEApBMUAsF/a7ZZ9hY9nqzUIQjKzs7m8XiJRAICQIaiC/Lyd27fcenKxd9/P7BixQqeUPDNvu/6hwYmVFVWjq/688QJkqICodC48RVtHe0JFqBZxu31G7OyG5ubE4mEXC5PrsmMjAyRSNTS1tE/ONze1tna2goCgN1qU8oVybuKRqMIgkil0iRs19TUBAKBjRs3rl27NiMjky8S/nbo4MFDh/qGhv2B0N59+/3B8JUrVxAMNqSl9vb3O92uaDwWjcdCkXAkSoilkuzs7JycnGT/uLOrvbezI+ByZaalDg+P9A0NpqcalGKxw2mLxiKffvrxlg8+6OjqWHf3XS++8hKCQO0drX8eP3zy5Mns7Fy5XB4Ohzdu3Pj5559+9PGnE6urG5tbfT7fW2++uffbb+5Zt/bVl1+6WnO5rbUZggAIgu64Y/WFCxeuX7++bs0dKI5wIRwm6YH+oev1dR6PR61Q5uUVYFxOe1cnEYuCIEjTieQZCAJABAIRCIzFCIoiuVwuBEFmszkajYpEopycHJIkw+HwxIkTU3Qpw8PDIpGovHQcyzDJM1yCpiAEBgDg1KkzOp1Op1GHQiEURZPPGoQhmgVIkrp1xrulEPwfmgMQRBAkRkSTNQNLM8llA/wzRJ7kSCAIYlk6kUjo9fpXXnr1/PmLOm2q3xcSi2Wjw+YLf52zmEdxPufi1UtW8wiGgBTFMDSdIEkIYGmKTK637t6eBMV4/f7UzAy1XufweGNUIpqgYlQiTjMMQMep+MjI8Lx58xiGqb9Zt3TJot6u9qmTJyaJG4lE1lDf6PH7vt23V6tP6e7oTNGon9jwuIDHjUeJ++5ZX1pU+NhD99MJ6q41d06fMtmYlp5pTJtUOWH69Olutxvi8TEuD5NIhEIh32q1dHS0K1XyzKy0gYGBhYsW9PV1YzgoFgtu3rzpcHhSDdndvT2TJlcf/fNYY1PTY48/erX22rXaGyACYxzM4/FEo1GCIHhcPo/HS0vNGBgYLC0pO3Dg95ycvM8++2zt2rXjy8umTZ9624pls+cvOHLseFd3r9PtEool4UiUiCZUKh0AQHK5ks/hum2OqvLxP+zdLxWI9brUEydOWEbHjKlpEAvOnjFbo0uhYdgbJQJuLx0nAYYxaHV5mdkn/jhy81KNGOepNEoun9M/PAgiAFfEgzAoQhIMyIg4PKNBX5xXIMC5PV3dVrtdrpIT8ZgxM93jcWMYSlGJ7OxMgVjA4XE0OjWfz6upuXyz7kZrR6tKqwpEwmN2s1AmGleYax4ZiBHBQMCj1+tAGPCEfTQCGo3G5cuXzpgx7eTJ4z//+L1GJZMJBC6LBcSly25fJ+YrABafNGuuUKFK0KAxNYMJhIY7u2JeX2VFFYCgNIQUF5caVAYY4RiNmWUlZX6vDwHY9NQ0giDiJGWNeVkpXNd7I8D6YxhLgigRhzwukonFuBiulMjS9YYsY3aKRmsz2/q6+4K+4NjoaNDn16rUCrkcx7nxeCIWI4UwIuCgISKg1Klrb17bv/+7RzY9WjVryphpZGigDwWBrHTDc89sjkeJhoYGl8slFkkL8vNdLhdLMyBLk1FifEUZGY/MnzsHYNhdX+9QqlVt7S2XLl/Iyc7e8eVXfQNDff2DNoddKBbZbLa1d90di5HvvP2fQwcPfb1zV35+vsvhbGpqWjBv/pYt7z39zOYNGzZyOByLxfLKKy+tXbs2IyPj6tWrb7/9NsCAPJzX3taWiMXpBMnjcivKyrd+8FFTY7Np0GRMzySIWHFhyZxZcx0259133T1j2mwyRjc1NE+sqsYwjtvt/uHHH2UK+ahprKmpBYKgjq6eltb2o38ey83Pf+vttzAcnzp16owZM7q6ur755ptnNj+Vnp7O4XCs5jFnwPvJzq90UsWGRx8OEpFrTfUpKs3x08f1aal33HHHurVrFy9abLFYABAKR6KjdiuCY1cuXdz3ze6wz3f33XejXM70uXMbmlq+//5HmgHGrJaaa1d7ensHhoY//WIbgkIZaWmJRIKmaQSCQ4GgTqkOeXwwB6PjpMduS01Nferpp3779UBLc/OYzSzg4CIunwiE1AplXl4uy7JdPd0US+lUGoBiYADKy8p5+823ktsZCP8NY9FoFEVRAISGTcM1166m6FNBEBwZHRkcHCQIgmLo5A0ko4cCgUCSJEzi8X9LEQwCIARCyUIKRVHgn1BeAACSMb0sS9N0Irmfsuzf1s3Je0hKbW+5/CcdIp957lkul7t92xcIgkhVCl8oWF9fX1E6TiQRX7pyWa5RlVWUaw16q93W0d3V09ebmZnp9foNegOO4yzLIhDs9XrdbnckSvj9/vHjx2cZs5N0fUpKysjIiMfjUSgUHA4Hx3GJTMEV8G9ftVIqlY6Ojkml8uopk7du3ZqRkfnTr79s++pLjMuTKVU1Ndf6+vqEQmFvb29LS0sgFOno6nE6nSzL4jgukUjEIrGAx6UpkotjFQWF6+5aXddQv2bN2hs112dXT+9s77pQc2n9unusFnvJuNKLl84vX7k8vygnLV370cfvBoO+iZMnbn5q044dO7744os1d92lVisvX708PDqmUqmzc3P8fr/f7//m613z5sxw2sbyc3NCoUAkEv3h55/0aannL5xVyKUgwIxYzaaBwZ7mdq/LPThiqqiokEokbpsDQmCVStXZ2cmyLIZhJEkmS1LgXxHOw8OD7Z0dHR0dkyZNEggEFEVxOVyRUARBkNfj8bo9GpU6FPRDIARBEAsAKI5FwtGz589NmjSpML+AoqhkOu+tJGaWZREMRTD0Fu4m+w7JZi8AAEmxOgiC8Xg8qWCAICC5VJKeZsn1kLxPDEMQCI7HE1MmTzl/9sKEionD/SN8WMgS8dqamkHTIMbBxHJ+JBamQAiGAAyFk6N3EAQk58hRFEU5CIwiDMCCKAJiCINAAIZ5I0GemN8z2Bchwvfcdy8Igh9v3crncLMzjT6fj2XZtNR0l9Odkpp2+syZknGlPKGgqDB/6pRqDo4a9LqJVRM0amX1pCqABRiAZkEKgIFd337d1NIeo+ie/p70jAxIwOEiIEzTgNlsnVBVyeXzXE7v2Kg9FI21djSXjy/bsevbvMLy7LwCBoCvX2+qu9H62cfbn33mJYvZ+c5/tjbWd7z26tsSkRyA+QCNoSwk5HExlAZpcmRwSCnR/HH44Lp16yiaMJn7a65fq5pSLVWJvt63R4rDCBXTyuWDvX0drW3p6ekGgxbBIQwFQJbJycmz2Ox1dXXr16+fMX3avFmzgDg73Dd05dKV1tYmECKnz5jksVlyUzNwiGO32lgmwcGQgpxcQ4r+/JWLuExQX3fTNDKsUigYCsAQPBomcZjLsmA4TPQPDOWXl3ojwQmlZdFICOdxE0TManf19PWptVoEQSkGEMsVMI9rdrkkQl7jzVqIAVRStWlwlItx5WKJfXRsoLs/XW9UqrV9g0OjFrNOp0tPTw2FAu6wPyPNOGX6nCkTytLSDD09PQFfqObihforp/TFJZAmxWR1ffHJp5a+AQHAixBEDAarqqeXTJzUP9Ln97knj68QImiYClhM5oaGplPnLhI0EIzTCZZlQdjr9V65Vjtt1pysvHybxarXqBEIAnEswNIemgUgrlKhCyfYa/UNPe1dKMsmmAQMY1KZMp6gc/IKcByPxwiaIhNkjK9U9JvHnA73hJLyWTNmjbndV+qbxmyu6tkLVPoMmUIzNDR0vbZm0pSqKzVXTp88JZfJwuFwIBAg4qRArNToM3h8aW+fyWxx9fUO5ecWnD916tyfxyI+3/33r7c6zTOmTJJKBE6XOb8g84lNj4wrLVyxYhlJJdo7uxiAjcfjupQUCONyRJKrtfWTp04/df7s5KlT9u/dB7IADsJffrHt9TffOH/50qSKCVwp78GND6m0qnvuvv/FF98YczgEIv6M6ZPau1oZBHD53GXl5U89/fTU2bPbBgbf3fKBaXR45e3LA0HP/Q884HC6z5w5q9el7N69+/nnn927d+/E8ROef/oZs2nk8uWazOxcHoJ0NjeKeNzvftovlivEIikOcUoKi2rqr7/10quLps5cfde6hvbOEYudoVicw8US8EtPvFCYnf3BZ+97ozGMxzeNDZ++fOGe2+849OtvZy5cePW1t774bNtff56QCgWXLp+//fbbO3vaO3tbKSa+cP6C3379/aknNsQIr0gkGLBa0rNy62rrJVJRikYml4miAD2tahKEof2mEa0hfXjE+ufx0xqlasW8+b39gwAM6A06rU7NgmxLW2skEjJoU0AQBGEowVAABJKxOMgCCIIwDMMANAAwfq8PYNh4LFpz+fLs6TPkQjGfy9PpdCKRiCRJMhZPOvf6An4WBMRi8d8ORAxD0zQMwf9OW/p/C8AACAAQ8LcKGvwn7+hfgi8IQbBbphy31FvJ2OPkZv1PkiCIIJjX6779jpXTJlb/9eefXT2dOfl5+bk5Lc2NM6unzpkz7+2336EoRqXSXKmtnVQ9ZfrEKTabzeFyhqMEDIMAxNqdDovNFo7FRSLBnClTTGMmnV6b3HYFHC5HJPBGiRhF4zgqFPJrrl5M0OTPBw/0j5r4Yl6PqR+BwKDNsWTevOc2PlmYmeX1u/g45gn433jjrW0ff+51e9atvjM/I2N8WbkxNZ2DYBQZp8g4y1AAAJAkxbIggGH1jc3f//hzQWGhLlXrjwQamponVU4//deFdXffd/LPs+WlExbNX5BlNC5btmz16jVknB3oNz3y2GPffrtzxpSqkYFeBACLC4qbmpp8Pn/NhSu7du2evWBhbXPrtbpGozE/r6Bw9tw5g6bBv85e+Pjjjzg8XoyO/3H4z2xd6tTZM7PKimfNnFleVNRvGujo66qonOD3+wOh4JjF1tPbf/NmPQKhSTkLAMGBUNg0OlZz7fqQacRoNGZkZIjEAoD5hyABWAgABwYGCgoKQBiCYZgFWJoBIAgiwqGW5sYJFePVanUikUguyH8eK03G4hAAAgybXF3/QyUAwyAIJl1CQRBkAJZhGKlYwrIs87ePKQTDKMuCAAAB/0PYj9A0C4IghiFkglRplEePHq6qLHdYzRjOb2vt6e3o4WB4f/8oTYEcGKWYBM0wLAhQDAtCyMiomYjGVRq11WzBMJTL45FUIhgOkSRJUyRI02PDQ0QgnJFuLB9Xdv782a6+bozHJxIsAwAJmr509drUmXMaGpsrKiroBImClNXmsNptIjGfy+MdPXbCmJkjlcmIeARGMRBATIOmhXMWaBRyDgqWFufrDSqIRfAAEfcEQxhfmACBUDTKEQnkWrVQrBsZ8/X2mVMN2Xa7KxKJZGamjyst4Ij4fiLsDYa/2P71hsef+eLL3fqUzDfe+ODzD7etXXdfV+8wQsMwBTtdHi5fWJCZu3TZbY88+ujkKdOqJ02Vy5V/HDoqlWmyc3N/+uP3KbNn9JuGsnNzRSJRKBBkKDZdb8AwzOfzeTyu6upqEIZO/XVKoZKbrWMlxTmrVi7X6XRadcpfZy7GomR2br434E1J1ai1agRFXS6X1WqtqJhQXDTu998OPfjQw7FoXCaVz5k9I+QPYCgcDPgy0gwajSo1VX/pwjmZSFiYl+vzeBmKrhw/XimRJOLkrz//IpFI9HpDKBSWy+UIggyZzQkQVOj0drc3JTVDm2IIR6IymZwV8K82NTn9gfTMvFgCoDGuJ8FgGl223mAZGCb8QbPZzBXwcSE/EI1EAebAoQOjw0PT58yIQsyEqdWGPKOd8Lmjocxx44f8viuNzWVFlXxEcPnKDZfXl6LWK+TiGBHNNKauWL6kIC/b5bCm6tVSKY8Dco4dOP7U4y9kGHK6u/r5YhEFgyzOoSjEE4kOWUwqiQBIhECI4nA4SoE04LSRIT8KMT99v5ckIhKhIDVFj6LomMWezJp0Op0mk+nppzcb9LpDvx1IyUnvGupftHL5c6+8xACsx+MypGiO/3l0oLcn25jBwdF5c2eXjivu6u4GQJAg48GQd+26O9Vq5cWL561Wa15eTmlp6eTJkwOBwJkzZ/y+YFVVVUF+0bx58y5dujRz5kyzZdTptGMY0jc4wONxZs6cPjw8+Pxzz0IUdenCxaqqqsc3bVx+x6pUY/qzzz5LRkmEg0sksvLy8WKJYvGSZQ88dL/NYiaJyBtvvHHmzJnPPvnU5fJs3779tVdf/evU6XV3re3u7tZotadPn0YwdGB4yB8KlpaX6fQp4Ujk6292T585QyAUvv7663etW79h4+MUQws5Yn+Mvtbe3tHes/GBR86cOMUTCv7448i+3XsuXLgwbcas5uZmIEGX5BWo5Irvv/8ht7xg+epVKRmZdfUdg31DSonE53TkpuqOHTu2e/fuzZs3j68oP33mpE6nGV81PhonIIa1W60Bf2jq5GnPPPf8Vzt2BsOxeIIdGBqNRYjc7EyxWEwlmL379l+9fsNmtvz0009PPvGEXC6vvX5j165dn3z88QP33Z+bnTN18qTe7u5k+Xj+/Pnc3NwJFZUMzdIsA8EwAiO3ikiapkGQBQCgp6dPrVZzebympqYFixap1epknxWGYaVSmcx2TQ5cSqVSHoeLYditxhsEQQAI/LPx/fdft1hukiTdbjcIggRBgP9K7UUQ6JY1JgAA8XgcQSCTyWSxuTo6e5cuX/bRRx9pdbr/vPtOTm6+P0jY7LZlixbef/fdn3/8EQpD1y5e5OMYC1ACgUAmEQPJrB4QoigqNTVVq9XKZLJINFp/8ybDMPX19TKJhMPjAQDAQTEcxz1ej0wiyc/JbWpoLCkpyc/JZWKxhpvXe3q7vj/w483Gmz8f+MHrdtrNFh6PZ7GOoSi6devW119/3eFweL3+vv4+u9OBcXAcxzEMgyAokaA5HE4wGG66WV977fr2bV+uXLmysbGRYdm169blFuQ/9dRT58+dO3zk0O13rORx8RdffPHJjU90dnaH/SGZWKbTaAAAWrBg0cYnntTqNFyBsLuj/YVnn4sQoYK8nHGlxWOjJpvZwuVgmZmZ58/+1dvdrVOpLl+++tILL7z0/AsQCPqDgTPnzpJUYnh4mKEoMho799dZy+hYLBTBUWzGjBlqtdqYmQ3CEAgjZoft+vXrV65cwXG8srJy6tSpIAgmm7hJKphMkCAA1tTU8Pl8oVCYjJJM0hUkSV6/fj0jIyOpZk82a0EQDIfDiUQiEomA/2Ry/Nu+7VazIwmr8XgcBECv35f08f4n+Iu+tWz+vSxv1dYwDCer7W+++QaCoChBUBTV19M7NjKKIEh7V3c0ToIsBMMwSzMAQ7MMVXvjmt021tHeevttt0+unJyIJmAQQWGMIemQN0iTtEIu4+JIPB4/cuTIlvffF4sEVsvY6JiJJMmxUcvtt99+8OBBFEUZJilaBOVyZV5eHhGNAQDg8/lWrlwJAEAikaDpBM2Q2TmZubmZ4XD44oXLEoksHqchl9NbXj4ex/nXr9f+sP/H9NQMHMI6Wlp9fnf15IkOh9Pj9WMoz2F3HTlyxGozZ+cVT5o6PT0rU6ZW+CP+C5fOv/7mmy+89LI/FIFBTKfU8URSEEOioSDMJGxO6yMPPZySokzTa7k45nKYU/UpQg7f7/LkFRSYrfbOri6BSDhpylSBSHittrZvaJgFIRhFgmGCYpk5c+b09fW1tbXJZBKxiBfwe1P1hkgkWl09JS+v6J333sf5vOFRk8UyBoKgVC5Xq9XRaFQul6fp0/fu/Y7HEzid7kyjMRqNcjBEIhIMDQzw+HhxSaFjbEwhkbS1NuMwwsPwnq7uTz5832u3TpxQefz4STJBB4LhaIwcV1ah0hscHh+E4b5IJEAQgUgUxnkAjMs0Cq5U4CdCUYb0hP3ucMBPhAEMcfg84Xikp68XRdGc3Hy9VifkC9asWb1gydJffviRLxKWVFYdOXbS5vSQICyXqftbW3oaW1AG+O3Hn3EYW7JoKcvAsUgs6HMvXzxHKuQf+Ol7r8Oqloi4AFOel1OUZ7CaB7/47NPy8ZUACPn84UiEhkA+JhAlQNCQmioR8RNEODc7XSEVwExCIuILBDwOhiqVco/X6/b5fQSh1KQ889zzCMYxj1kpikkkEgd++tmg1crF4vOnzhTnFbz8/Itfff4FSLM6hUrBF7ktluee3Xz2zAmbddTvdjz37Oa71twJgMzw8KBUKhRL+Pv37+vo6GAAViqXRWMRBIE+/fTTeDxeUlJCkuSZs3/xBPz9P3wPwtD1m9ev3rje1Nr0+hsvhyP+poa6keF+r8f+9MZNPpdbLJP6o9Enn3/2/ocfeeH5l2AIkqgU4RDR3dkrFEriicTrr785d9asr3d8ef99Dy5bvAwE4T179ojFYgSBps+YumzJooysjMrKynXr70YQRKVS9fX12e12q8W+ZeuHptFRFgSrp07hCUSFxUWDA8N2p3v56tVFpeN+/O57iGE9fm/FxIrlyxdfv3rp0C+/61SaBE1t3fqxQiJNRCJ0PDZ5+uQf9x+AIHjz5k3trY0EETp89Nhvvx/64MNPREr5nj17JhSVuuz27378wRH0dfd2ffLhB+FwOBwMrV2z5sknn1IpNaEgYbU5aQa6WdeYodW77bY5c2Z5vf4XX31jxOZsb22rqKiYNGnSxfNns7Mz33zjNQSBnE6nz+ORSWWpqakej8dkMqWlpYlF4r/NFBnANGKKxWN/N94gEIZBAAAIIqZUqzAc7x8atDkc27dvd7vdCAwCAPDHwUOffvopCIDJhFeGYVDkbzIw6UGRbCH/O8jv/yP0BQAAhCF/MNDQ1Oj2epLve+vtIpEIAIEklUjQFBGLtrS1klQ8EoyolRoiSIh4oheeei7g9D10/yOZGVk8AR9iwcrysqWLF9XfuL547uyIzxf0e/V6nUgkCoVCMAwDACQUCkEQTnpSYhg2bty4JNOu02gBAKATVIpWBwFMPB4PBAJJ88j2ltYYEb1zxUoYAkgqdt/D9zmDLqlCumDeXK1KOXPmdIVUdurUiUuXL4cCgQ0bNj71zDNPP/Xsl9u/euSxR599/oWGpuZIJJlgz5hMJoamly1d+tNPP02dOvXtd9955bVXcB4XQhEuzqutrb377rUQxIRCAYfDtmHDxhefe3HNnaunT5tGxqkx89iEqkqKos6cu3jg0EGFQvHxRx+++PwLN27cqL1+dcKECXn5ORbLmFQqyczMdDmcWrXmP6+/WT6u7Oudu2bNmrVk2bKqSZUOhx3DkJLikuqJkx6+/4GQz4vjuFQk3r9//6BpmM/n//L7wQOHDv72x2GpWLJ08ZK01LTkfGl3d7dYLMYxHEaRBE1hKDY0POR0OgsKChiGwXE8QVMQDMfI+I2btbm5uXq9nqbpJOJ6vV6Xy5U0i+bz+Ull/v9OXpB8+slusdfrVWnUSdT/LwNyt65bGZ0AACR/bDQazcrKeuedt+12u0QgbG9pvXjxksvrcfm83mAIRjCGYhEYZmgaAsGhwf4ESb711hs7t2/3uNx0IgEzAA4hIMuwDDVmGmhrafAHvEWF+VQiPjQ0lJ+TG40SHAyzmG0LFy48cOD35FpK9oNZFnS43Bych8CYxWIxmUxcLpdhAD6fD0MACkPJH2vMSMvJzg76QyjEQXCce/nSFT6Py8U5KqU86PciMNjd1tE/0NHdNaiQq6NUDIGZTU9vamxqGbOODA53AQCkVKiys/IsY6MoiosF/Jt1Nx5/4olMQ1pV5bhlUxaRZLD26iWBkEuziVnTpvg9VgykV9++fPOmx+fMnj9hwkTryGDQ5dUqVU88tuGDrR+Hw5FFi5eWjC/vHeiPBgJyuRLHcat5LDMzc3xl5YHfDz373NNp6Vk2uyMSMYVCkVC4XcDjb9r4xMGDB6dMqm5ra4tGo/FEhGHhnIICHl+YX5C7d99+j98H0JTD6YQgyBcIQQBjtlpLxo0bHR3t6epOT093u92r5syIxKLD1rHcnEyrzSkSiXLz8lpb2zUancvhbm05i/HQyrIK89BweUlpKBrjoAgFAF63F0dYnVLrdDtohmEBIB4mVCJxOEwQiWicSmAoKhSLR0eGpVJ5IhxubmjE+PhgT59GKU1LT51QXuFxuhLxKIfLFSiEHBj0J1g74R0/uxrBMZJKJGBQo1HxuTx7yJSfkR72ejMNaW1tbTwI1cvU6TptwOcBYJovEZosI/nZWShMRZkEH0FEfF4wAGVkZEh5PASg41Rk1BFU6A0KhcLvDy5btcYfDoMQcv1m7R8Hf6dBVqNVBXw+MhbNzM05/Ovvc+fMOnXqTCIQmlw1MRQKdbV38URinV6XmpkxYBoR8viFuTmjQ4N3LFv68GOP5mTeVtfQwBPwP/jgQ50mJRYjq6un6PW6mzdvPvH4xjhJ8fn8+fPnUxRVVlb2559/anS69z/4gKKoYDDo93s3bdrEMMDcuXPPnj2zfft2rzv0+MaNj23aWFpeplAoPvzww7V3rJZKJP2NdSK+QCVVknHq978Or7p9BcOw77z9ZiAQYhhKyOPfftvKu++++/v9+7Izs37//feQP8DncXq6ujMyMmpqamKxGBfDjZnpn2z9CMfxSxcuWMesW7Z8+MMPP4yfUPXXqdNvvPefa+cvjPX3/PDTd8OjI2dOHa8cP+6ll188d+YSgqEane6dd96pqamZOXNmc3PzlWtXBzr7VQr5lUsX7r/vnmeeeSYejxcVlhw4cICHIEdPnXB4vL09Xa8+91xhfkFdS8uo27Xjo8+Nmdn79v9QXV199dqN0dGRhx687+z584uXLv/hu/13rlllGhmSSCQ///q7Uq0qLyykmUQiET979uyePXu7OzpFIpEhLT0UDsQSJIyix0+eHDduHAiCHq+Hx+MBEMiAQIohzet2giCoVCpZmmFBZmhoqK9vYPGixR6vp62trbi0RK1WKxXyBElCICsWi1VxFQgACIJQiQSMIgzLgOzf21+yEXhLmPrfYob1Xy4waUr5t8YVNRgMydF/q90mFAqFfAHLsiNjoxcuXDAajVKpVK5UulyugaGhZcuW0TAG4qjZaZfLpRqD9pNtn3/+0WcTZ057evPG5zc/DYPQlGlTa+tuQiCoVqrOX7sSTySGh4cnVFSAAJygEiKhyO5yWyyWtDRDKBIuKytrbW93O52V4yewLKuUywkiIhAIdFpdLB6rHD+eBUG/319TU6OQSLMyjNevXiNJEgbAl156yWF1FBWVXL58+b577o3FYhXjyp599tmdO74qLi6NUbTdbp0zb0E0Etq9e3c8GnO5PDAMIzBmtphKSkpmzpz56GMPZxnTx0ZHCvNzpXL5L9//yuVyk+KmEyf/nD59+vq718di5MmbJyQSSX5hXmtr67hx4y5cuGC2WadPncxFMLFYiiDQ5s2bz1241NzcvHzpYoqM0zSDIAhFhVINBoZhysvLr1y5SkTjXB5uGjXrdDqxWAwAQDQaFQgEk6snXq654vJ6cC7nt99+02q1RqMRQuBHl60QYBjLsgmShAAQBMBkluvI6EjQHyguKenq7rLb7cuWLUs2aKPRqEqlCgQDFy9erK6eqFKqrHYby7KBQEAk4MtkMg6H93f4FQwzDENR1C29/b9xFwAACAIoKgGCMMXQAABwOJxoPPY3Ow0AAMAAwP/NHOaWx+qtEpzLxRmGeeihh3765dfOzs7snLzeri7ftGkpBsPQ2KhYJODhOMsyMIIAIAzB+E+//L548eKb12tRDopAIAWQNM16PTaXwywU8sIhb19P7+OPPHb58uWgz19bW5tlNLa1tak02q0ffzJkGlartBEixuFwIAQAQUgikcQSFJ+DdnZ2C4WCsbHRtDQ9gqAsQzHs3wIIHEdTU/XBYHh4eBghElFDSopMLqHJuNvlCIWDBbl5lZOqSCIacEWHh0fKxpcWFhf9/vv+zU8/OTI2PDg42NDYxUWA9qYWgUAiFSoSicTypXf63Ban1/f513tOnjlZUpwZixPG3NyG67UCkRiGYQzHKYoCEZikmZb2dqVGHQhE93y798133p09c+bRI8eGh4ZwDodJUKFQxOXxjw4PBUMBjINzOFh6etrTzzy/7q61kUgURoDJU6s9LjcZSxgzMq1Wa9jjT0/P6O7u1qYYxBJZfd3NgeGhOfPna3UqGEVDoZDNaZco5WKRJC1Vz1C0adQci8XGjSv3eDzaVB0LAAxN5RbkTayq3PLBRwDIpqamWiw2IhxZsWxZhiG1u7fD53LjGNbQUCeTimfOnGk0prscjqYbTeNKxsVjTfEwqZaoeFwuiqCxBKGQS0ulurrWFhgEfT6fWCAmotGegYG5c2bMqKw8f+VC6qpV6enpPrfL4/PlpGYY8tK6WrvCQcIXDtTfuM4lWcLtUvG4JWWT9u/5lo/BJXkFadlyn8ebkZtrtlpYBC8pKqprb/WfCkycNMWRkt7UfBPDIaVcLuSLghG/SMgnhHxvwB+nEhTDvPDiC6lp+r9OnyHJ2NEjB8csZkNaRiAY9tOJiuqJVotJLOTFQNY2NpquTzlx9FhRWTmPx7NYLIFolGEYgmVHx8aIeIyLcYlwxDw8kqJTgzj8+dYPDGl6g8EQYVmDRufz+be89/6CRQs3btzIMNTdd9/z3XffsSxbWFhoMpk+/PDDVatWlZSU/PXXX++88144HDxy9I9773mwrq4OQzkLFy7WadSYQLRt5/bpU6fV1dUWLl8+uarymWeeWbJkSWPTjbVr1od8XpfTvnjxwqrxFd/u/TYYioyMtc6cOfObb76ZOHHiO++8Ewj6eDweF+dEIzGr1a7X67u6unIysx66/wGFQhHw+UUi0XvvvXf2r9Offv5ZY139ujV3Xbh8acrkyTMrK1958omlK1coFLIt779rUKXcvvp2fyz656mT9997r0qukslkubm5V67WbHhiw7IlSz794lOxWHz+zMUH1j+4YsWKQMDX3t462t8VjdF9fX0kwz7//Isjw6MyiZJKAPV1TbiAd/T4ny+//LJEIiEIAgLZJ57YGPT777rn4Tlz5sTj8Scef+z++x5u6+qpmFDR09xsSE2RSCSlpaUCAY+iSblcTlEUQRBCsWRkbFSboisuLqFZmqUZn88nFotDoQhBEAIep6ura2RkZML4CT5/kKbZ2bNnAwDQ0NCQl5cnk8kMKXqaYVEUZQFo7ty5yd0NhmEAhGiGAf4JdEiOAGEY5vV6xWLxLcHUfw/o/m9eicViIpFIq9H6vN5IKGy32jgcTjweX758udvtHh4eHhgamjt3biQSuXTpUmZmNpsg87Oz7FZbOB5lOLG3Xn053aD/7sDPMIisWLqMAZnFS5fv+2bPzDlzg5Gww+E4d+7ctClTtGoNn8+PRAmpVBwIBIaGTE67Y9niRd29PYX5BRAIJRIkhCEMRUdCYYFIGA6HzWZzYWGhgMfDUVQgFFtsZogFv/5q54svvnz18lWTyfTk5qcwDm5MTwUgZGB4aMw00t3TVzV5SnaKoaenKym93rx5MwfDTaZRp9MpV6j8PteMGTP+/PPPstJxo6YRr9dbU1Nz7do1hobuuHPV8ePH8vPzi0tLDhz4ff/+H+69d31ufk4gFCIp6urVqzweL+D3PvXkExcuXTGP2Vxub0tLE87jlpSWYRg2MmbR6zQwAjW3tmRlZfH4/MrKyszsLJJKqFDe2KjJabOXFBdyOBwWYCmGdVrMFy5cYEHY4/Pec889UqmUCEc8TheKoq3NLXbz2MqVK2OxWCQS4QsFXq9XJBLRNC1TyBmWMZlMxcXFSXqZiEUFIlF3d3dbW9uSJUvcbqfb7ZZK5VwuV61WI1DyKf89BZ5sMCfR99/GL/9wLTRDJxsQ8Kh5LBKJJGep/x9Ogbe0+rcoaBgGaZpGMfyNN15bvHgplYhHwuG+7m59qoFMJBpamxUKhV6rQ2AsHiEeeHRjJBqvb+3mcnkRgiATJMOwCZIWS2WGtHSf380yVHp6ulwu/27f9yq1QqXShEPRKBFbuGy60WgMhwgOh9Pf3x+LxUpLi1kW6OnpcXtcU6sn19XVPv744wiCuFwuDhfDUQ6fz43FiORvxDAJkUiAYQgUC4fpRNxtt0XCQa1GTYTCFvOoXCq22xwyiRRHkcH+PjaRaG1seGrjZgyAp1dXrblt8ZRJBempXJk07nL3tXfW9vR2qnUp1VOmr77r3ozsIowruVnX9vEnX546d4UvlY/ZvN0Dppbu3klT543aXEKFgkHxczWXNj33FFfAbWpqyMvNQUFgpH/QOjTS09Pj9XpBBF22dLnV7nR7gyqtDoTx9q6BxctvU2r1RIwMExE+ny8QCPhCgU6vj8bjAASBMMSAzOWaSyAC1zfW8wQCj8eTVKgDAGB3OWEE0+r0LrfXZnfazDYOj0sCAIwiCIKwIDAyNhqnEkaj0Wa1whDgcjuuX62h4rG7163TqFR8Pl+v18Mo0tTSfPTonzCKVs6YeubyhWA4qNOoGTLu93sTdNwb9nb39UbJeMW4MqVcxlK02TSsFImnV0/0Wt1jAyNMlKmrbXWHyFmLV0QBdMQT+frbA7hEG47QMkSARRIBjxvHEZfdfuLoCYVCWVwyzh0INLV3dZmGh+yWyhlTwwhgDXgKigqCbve5o2eWzlxaWTLJbfV57L4YQ0cS8UQ0zMWxIeuYVKNbd8e9vV2tP+zdjdDRmRMr1CJ8fH62WoAq+RAHBvu6O1iGAgGGz+cL+Hyfz+fx+HAuZ9yEijhDyeUKPl8g4gqFHMFnWz99+aXX29o6Vqy8Ta5Q6XQ6iVSk1WggEDx/8jQGwSqF0uNyLF+6bPfu3Xv37t25c6fX6126dGlvb+/8+fNBEGxv7xTweLFYLBqNtra2L1q45Nq1G7m5+TyeoKOt87PPvhy12np6esLh8JZ33v3ysy9GTSPVk6pEYsEdt68y6HVOh7W0OK+jteGZp56wmi13rl330EMPrFu3etrUqVu3bl299q4vt22/774HYBjOzMw8cODA4OAgiqJcLvfXX38lIhGv21NUmN/X2ztx4sRxJaVjo6aPtm7NzcoWC/iPPfDI5KnTUg3pmYaMOTPmNXV2b37+FTYGvvPeuyKJ5NFHHgmFQgiGlpSN++abb1AYmTN9JgoCN2uvrli21Jhh+GDrljV337ts+crj5/+KBomXNz0d9QY8Qf/rW95FUbSnsf3333/fvn37/PlzdTqNTCz54/eDk6qqfvhhv1atkCkVOr3hyOFjiUTimc2br129otJqZs2Z89NPv9x5551dXV06nc7j8dAAq9Hqjh49cu3atTmz5ljt1ueff95sNstkMggAhEI+SyfEQtG0qdPSMjJu1N08f/Fi0quysakxGo0aUlIuX7zk8XhYlmVYMMm4UhTl9fuYf6AX+Gf6NmmrHovFkpar/5+UvwAI/kMiAgDA0LRYKOJzeVQiIZFINBpNenp6NBq9efPm0NCQRqOZPXv2kiVLYBgOBoNyufzajatOn+tK7XWCImN0orm97fLVK3KNYt68BfUNTS++8jIII1Kp3Op0nTl7XqPRdff2PPPMM0qlMhwOkySJ4zjIsjKZRKlRG7MySZJKSU1LTU+LRaMwikAAKJVKOTwuC4AcDictLS1GRGmarqqqUmk1t9+5Zty4colIunP7rpKSkvseeGBoeMjr9XZ3dnV1dSnVqpUrV+QW5P9x7E+aYRcsWJCfn19bW3vhwgWGYcrLx82bP3/69KmrVq2SSqVyuVytVsfj8Z6env7+/jVr1mRmZdxzzz2vvPo6w8LBAPHcsy/cuHFj3779bV2dO7/e1TfQL1Mo0tLSNmzYIOALOtpaAAhUaRQVlRMkEsnixYvtdntRYQFBEBa7K0GzCoXqr3NnFSplY2PjwYMHr1+/fuj3gwG/f+83e1pbW1ua277ds6+5uTknL+/ONauf2rzZFwycPXvW43RpNRqDPiU30zhv3jwQBHEuR59qcLvdfr+/oqIiPT1dr0txOBypqakGvSGRSJAkyePykui7YMECDMPEYnFOVrZOo5WIxDD4zzjcP7NGt1R+t3D3X6Zpf88BJ+HZ7XYrlcpYLAZBEAfD/7Ua/9fi/CSWJ783uYxnz569cOH84eFhAZdz6dKl/t5eGAITFGO1Obr6Bjp7+wdHzKNWh83uomgmEI4DEE4zCMOi0ThFRBJxkgFY9NKlK+vX33v85AkGYDEMmzi5OsWQpk1Je/21N6kEYzabR0dHDQaDRqMBAMDpdKnUyoLcvPPnz5aVlamUcj6PI5WIBvqHAv5QIBDq6OgKBoP/FPQMBAFImj4lFiHiRIQv4GakGCQiccgfGhkZa+tpGxu1SMXiJUvnzZo1bc0dawcHRvbt/jYSJabNmJGTn7l48fQ4Fe3q7gsHs25cb2ptj+flFEaIGE8iWLZySWlBTmPdzfq2tpaWtg8+eJ+lyWPHjt243sDn81mAhjF06vTpmZmZcqUC5+H9fb0sC06cOClFZ6ipvZqfn9vT0wMi8OTJU85fPE/R7O2r1/z2868PPfxo9eTK7IwMLoq43F6S7h21jdExkqYZjSEF43JjFDl+YlWQiHX29DMsBQAAl8vx+/2pqakgxbQ0Nwp4/KmTqt1ut5WIoQieok8NBsMwC0nEco/dhaGc7u7uzMwMsVgYi0XCgVCIpj/97DOZSKxVqbIy0mtra8PhcPXESWfOnPUEPZXlZWQ4bLaNqpUKr9dLxCJyrby4rIxgOV9u33Xv+rV8Dh9hgKDXM9Dfz+OKuTi+ZP6iC9duSEVSi9UxfcZcqVjBV4hzC4tiFJ2eabxRX//gk4+fOX+upq3JIFdBLBsl42qFBAZoFJaZTCbH6OjihSu8fo/L47xxoxmk4z/9skcqFY0vLWjvGbp8rS4nXZ8uk1NkYsmylR63Nx6PD/d1K2TSkMfdZBnT6/WxWAyE0ey0tMFBs8XvSU9PJwIRgAYi8RgDAlNnTuvt6sQQ1O/xoQrs159+37lzp1qjKyoqwXDuwYMHj58+A8NgcflKQ2Z2OBA8d+GyeWS0vKwiEArCEDChsuzChXPjKyry8/Obmpr0KSlPP/30oUOHJlZOImLRtWvXFhYWfrv729LyUgTBdu3aNX/+Qpfd0dHZTcbjXS1tVRMqOSgWCAQee/zRhoaGgoK8YDhkNo+MDI8VFhU1NFxP0Ui5QEbY525oqq8qr7x29XrS0XB0dLSiokKrUgqF4s6egbVr1w6ZBnv7BnzBQE5+XoKi0jLSh4dHvF7vvfeuLykpWbRo0eLF4JWrNSdOnFgwZ0FmdtaXn31eX1/vCgSWrFqxdOHi4a5ehVbO5/M3P/WUWqsGAIChxAd++WX//v1AAtq0adPrr705aeLE51545teDh/Z99+uW97cuW7I4Jz/P5vHMnj93Jkk+uH79ho2Pt3Z2dXe0+wNem8Xyw/79NqujqmrS9Gmz6+ua3T73wNBw5YSJIMA8+ujDh37/ffWKFUqt5ssvt7/86qumsdGZM2azLKjTC2wO+8GDB7PTjfeuv8/hsHMw/M7b75BJJAgEwTBiczk5HA6GYdeuXSMZWiSRTp48Va1Snr90YWTY9OD99/u9vsK8Qq1aHYlEQoFgJBJJy0iPRCIURYXDYZFIlBwIBmFoeMSklCuS5HOyr8b+E8/w3w7D/9p/k7oxGoYhAGAYhgFBNicny5CWGgwG3W43Gafq6urcbvfsOTO5XK6Qy0nT6REIVUqlDAgUZ+dRcdLhcSjlKrlYtGPHjsGevoyMDKPR2N3d/fLSJT2dXcFgWCgQgSwAwzDLsBiKyKXiUJSkGABBEIfDEUhL44IIC4McDE8eRMgEmaBpDMO4OMfr91EM09TUxMGQ1NT0rR9/sv+7Hz7//PM5c2bJZJJlK1aoZPLzNTX9Q4NhX+DOO+98/tVX+4cG0/U6nVbz5KYnAZZOUgsQgibbojiH4w8GSsaVejyeprbWzc8+8+OPP86aNU2plE+cWP3zz7+Yrdbvvvv+hReeM1tG937/w8KFC91ub35+oVQijxCx4TGzRKaAIKiru8/tsGfl5gwN9uflZkMAkKLVvf2f9ydWVk6sru4bMHH4vMuXLxfk5TvsHqFQbEhNX7R0ya+//hoJhgoLCw0Gg8vt6O/tGxgYOHT4j+eeeTY1NZVKxGmaksvlLAgkaMpqtaamptbV1eXl5XFwToJK0AxptZpzc/PjZJyD4TEyfuTP45drrrz87LMxIspQtFarTo6TJcnhZFWatM4A/tFP/S+ZlX93eWmW8Xq9xcXFcNLIm6X/i1br30vo1gfJjkmS6EYQCIKgd999d/LkyTRNE0TkWs1lnU6nVKpgBCPjDM3EaZqBYZgiEwzDMAwbj8eT0/DBYNBut7MsNTIyUlwybuasWR9/+qFOr44nYj/+9NPYmOWdd94zGtO9Xn9BQYHZbLZarWlpaTTNDgwMiGXSgry81tbm2bNm0HQCQSAIwsrLypL3WVRUBIJgIkEjCJx0F4GcHveU6dMWLFvCk4gADNGlp4kUCj9BlI6vpEEQRCGb0xoMOs+cOcyykac2PTJxYmVTU+t/3vj4kw++2bPzQNiXGF8+Ye6cmQvnTY/SoVDcL8Sx+hvXLl69yBXx58+excPg9XetPfjrL6uWL9EqVV1tre1tjRqFVCIQ3LxxvauzIx6PIhjME/MvXL1y+NQxv9/ndDpUKuXAQL/NYeNyuecunP/22281WoXP66Zpds/e/f5gBMJwm8spU8ldfrc/EvT5/aPmsfbO7vSsbCIaz87NU6m10RgZCAT9fn8oEPR6XKWFBRWlJW63kwgFhUIhgiBcAZ+mwIA3xOeKfL4AyLJcnCOXSkKhIAzDwUhozGohaYaFIZzHGx4dS880yqSKGzduigXi0pwCIhAJhwmeSEKDsFiu5HIEEV+0s6m5vub69EnV3Z0dEAQFwiFnwCPSyORKDhH1eFwmsRCrr69prq9pras5d+ZYLOo/fezgQE/7ifMnbX7366++5nf4J1fPlKuVvQO9HW0t1v+Ltb+Ojupu18fh7ePuFndXEhIkuBVoi2udQt31qbu7Ky20pbi7BA0JcXcZScZdtv/+GOD0+zzvWes9Z535gzWTZPZmzf7M59r3fV9iNgtBNGSbmF1S5ukd3vf15/XHjjTVXSmdXCTQiUd81l7LCFcqL66cJBaKva6w1pR+75ZHh/uGL9Wed/ucJoPRbhvncXh4lAj4gj5PgGUBmmTkchUCY6FgBABhXzBA0BSXz4NRiIjGhELhG2+/danx2je//pKQnSk1GX7ZuUOqUL748ksJKamhGP7r9j97BoeFSs2sBYsL8/IZiizIz9t8332vvfLy2TMnz5w51dXekZWVxeFwHnjggQ8++MDlch07cvThhx9+5ZVX8vJyhvoHnnnmqeTk5F27dg0ODkmlUqVCHfUHh/r6Dx08+Mhjj+7dv6+9s+Ovv/6yT9hiODV/wYIpU6ZEIsGg1zWpOH/cOnZg/96W1qZHHnmorKwEhmG73c4ALMsCEolMJJGdO19rTExw+7w//vwTxdBunxdC4EOHD4+MjNyyZDELAPXXGvzBgNvtvu2222JE9Lfffv7g0/d3HNrVP9Q7qSB/pK+7Z6wnKzXdZDDoEoxd3T0QCzz96OOpyWkVkyf/tuv3ebfeUlEz/fnnX5s+ZVaCMXmsf3DzPXcFAkGFXOl2uy+dv4hhyIb1q0ky+svP3we8no62ViGf9/CDjwwMDHn9gVNnaqM4lZWREoiERVKpkCd84403VErptOqqX37bunHjxp07d5aVlblcLpqmIQj85ptvCkuKb1m0SKOQq+Qqn8ej02hkEinIAjRJ4dGoXCoDGPbUqVPfffdDbm6uWq26Wt9w+fLFJUuWgCyAYRgMQQiMSMQStVqt1+u5HK5YKhWLxVwul2EYj8cT91hQqVQ8AT8O5/+sUf7vgfcfjzjMxyGfvRGDGOf1WK3WSDgmkUjS0tKWL1+uUmo4HE5JScnxUyf3Hdj/2VfffPbF162t7UNDQ06n0+NwsiyLIfAdG9e3tzQvWDCvvb0dZIDs7Gy709Hd3XPmzJnrZ2EYgiDcbjdOEj5f4FxtLUVRCoXiulAYQYLBYCAUDEcjcfyIf0pLFy3UarUuj+fAoUOpGelJSUkN9XW7duzYu3evzTaRnJQKwbBcLn/vg/f9wcC77777999/OyYcAADE83xAEGRZ2u12ejye1pYWPp//y9atz774gikl6dftvydmpN5zz10NjddcLrfT7R8cHB0ZM3/6xeeXL1+0mi3jNntmRrYpIYkvEja2tPIFouz8gsGBfpYiS8uKxUK+2+HMz8mlSBKCgOzM7LaWdpABKYo6fvy4SqUqLi4uyM+vnFyVm5t75WqdQCAQi6U8Dn/cZouGY1QMTzSannvmWa1We12VjiAURfj9fp/PFwqFIBCiabqoqAgncAAAuru7GYZxuRyxWCwSiWz99Xccx1euWY1hmE6n0+l0NyOf47VvvPMcB+Obv/pPiXk83PC6IAmE+vr6eFxBPIYhHtvM/r+Pf3v7DUkSBNwkRcNQNBrOz8+/4447RoYHtSp1V0dnf3cXS9FEJOr3B2MxnCTpaDjCMjRDEyDEwAgDgDRF41wM5gtQPg9taW2YMWPGO+++RdMkiiE8ASeKRzKyMh97/HGSpAUCAcMwCQlGm83W0NAAQWBWVpZWpe7s7ExKThAIeDf19BAExXM+MQzjcDgIgsQ/CYYBEC7C3bdrn0ajYRjmeM/ZjIw0U1Lq2fMXVEplQlKi3+f2+SNmm9sbDkdJnPT6UlJNKakmxT2rRELJ79u3+TyOrT/+MDQ4kpBkysrNSdbwoiGrH5UsWrRgdHQ0PT1z2GqumFpFU7F/vfraimWrQtEAGaM9To9lfDQ/r7i1vQMEUQQTUDGSC6NClEPDXKfbodMqxUJuokHrcVpvmTt7ZNja2tKi5Mv9Tvc999x1eP/+devWz5o1+8fPvk9PThEJJSzD2MYnWLGYx+HQFIFHQY1cHPGL3V4vVyj0+LxKqcThcfYN9hXk5kWpGAuALvvE+MhY1qxZp0+fzqJyQoGw2+1ua2tTaNQERY3b7UkpKQTVl5OazkExmiJ9/kBeVnl3MChNMFksY/l52QRBRMKkRiH2+zy2cUtqZg6N8vuGfM6A54777716rb5nsFetUsBCbGJ4EBCqBRwuQdIaiRD3i0160+BgnzFRIyQglgthiFifbDhTVxeEObUnDkilWpFCtHjRopDHA5GEUCzwONmBwS6tWhyjWJFcLQj5UAxNMaWOW8edlgkeXz539uw5jWVaAAEAAElEQVTFc2557/23svJyf/tteyBMPfPiq32t9XavNy87m4hEOUKx2eY0qmQMEesc6AiGcLUuaWDYAsOQXCH0+jyIkBPwRwpK8hqbrmTmZ7z55qsv/uv1L778pmJS1fDI0LsffeS0TyQkJP355w7buINimBeff04i5vPFKAAwJ08dRlBs8bLbHnnsYbfb5/KFIbP5ct2l++/fVDl5UmlJeUVFhdls7u/v9/t86zesHR0bHhzsVyrlPf3dKSkpEMgGiPDDjzzS2d7lcjvIaGj3nzsK0jMxFlFqFBAI1p2/jAdjFTNnW0aHAIYd7endtfOPyrJSJhZ7ePM9OYVlfJ7k/KUrK9YuIVB0qLfb53L//P0Ph4+d3LFz1y0LF5cXF33y4QfPPv1UclIyRVMcHu/s2bNJSUk7/vxr6ZKFhw8fFgjFu3Yf9DoCZIyOxSJr1qyJ4gSXi5l0WophGltbT5w788033wwMDPy9Y9emTZvam1q6+ruSM5Jfeel5i22woKSgvbXhmacfnjJ77rJlK1auuzM5I3fdhrV7D+0ryS7Q6g3+YKixsVGtkd+yaM60qTUdHR2nT9fmpKR8+/nHOoNh+vQZOTk5r7/3wbrV6y5frQURhqXIK5cuTZ4xa+PmzVlJiUqBEALYezdvXrd6HcjDlDI5CIJRkiBxHEEQjMthATC/uGjeooUoBB05euRq/ZVHHnxILZexDGu2Wu69994TR44JBAKUg1EAyABAPKGBAVjruC0aDmk0Gj6X99NPP82dOzcpKYkgiHi9Et8ZQfDfMpHiu+f/cjz8TzxnWRYAQAhC4s//yWVlGCYtJRWGQYzLUWtKIRACAIhlmDOX66ZVT1NJ5eFIEACAcDDk9/tFAjFPEq5JmXL74tuWr1vzwFNPf/Pp50888mggHB6xWJvqG+fNXUiAUEfvQGqCCWBojMtxuScm5Rd1tbeVFxanpaVFSTwaDMMwLJZJ+UIxAIGXLl3ISE8VCvg8DibgqYPBYFZGJoqiudnZHR0dy5Yt4/F4fr8/5Au98MJz2bk5g8PD/f39C+bNe+Gpp44cOtw92L9u44bp06cvWbIkPz+vo7Ortrb2xIkTGAIUFBedr73cUNew/bffA17PF0dPvvLM86EwyROIWJa5dcmCrOxUj8eVaDB+/uVnP//885tvvj5hHX3kkUfOnDrx7bfffvPNN8cPH6iuKJdKRObRkWvXrlVVVfF5KIJADocrGAsbU5JefeuNiYmJN99+o6ggH2aBjLR0hmFa+nslEklBdu5ty5dKBSKAjduBsuFwOBgOYRhK0URvT3+cdqDVKYkYnZyY5PcHcZLmC8XRSNTr8XC5wvyC9PaurhFLR33d1blz5+bm5zU2NspkMpqmKYYGQQgEIZahY7EYj8cDAJBlr5/q5s3cf1bAN269AABgIQAcGRrOzc0FWQYGrwdI0ywQ5wnG3/ufvZmbJXLctwNgAR5PwADspk2bDhw4FInE3C5f3dWmtMw8Hk8g4QgAimFZGoQAHMdhCAFYBoQgmmAYkolEIpFIxONx5ReXymSyI0cOZ6YnRoIhqVTutLiefO1xAZdD0TEMxRgWZAAgOS2dIam+3p6MtHScJi/sOLdq1Yp42yPeT2JZBgAAgKUhGGYZAgBhCAJYkGUZACJZOisvRyASIhicnJyYnZM5NjrM42I8ARcA2ISkRK1en5aVmZicFMEjOEPQDI6gQCQYGB3uL8jPXrd21ZYtm9atX3nP3XeWFRVfPn8p4PZ1NHd88fEX+3ce/uW738dt5kgg9MzTL2/Z/MgPP3wvEQklYmmCKT03NQ8P4S88/WI0QvT1D6t0Rn1SEioUPvfs00mJiUG/f3hoiCJoo97Q29Nz+tTJpUuX8Pn8L7/8aWjQcuvSFfv2H/z5119EUhEeipkHh/kotyi3UC6WRkJhBEECgQADwGkZmTTNxGI4RVE4SaIcTCKTgAgcJXAQhkvLS5LTkgMhv8GkD4XDdueEN+CVSETtrc0sSYo4XLfFxmEAb8BPMbQpIcFo1Nvtdm/Aj1MkVySQSmVCoTgSiZjNZgzj6g2Jfl/A7nAsXrv6rvu3hEIxvycAgWgoGFOJNFAE4DAg7g9RkQgGwUqJTCyUrFu5bubk2X4iZkpMdUw4h3sGpTyhUMAPhIJ+PNjX2z80Zh73uQftVh8ZTUhLCeMxCmTGzRafwxJyeVUSRczj5rKgQW2QcLm//7XV4XC88vbbH3/1oUYGKcXMyVOHz566JMIEApHI7fdJpVKxVMRwUa5YSBJMjCH4Eq43MEEykUgohIEIE8WZSCjs8qYlJL3+yqvZ2dmzZs/euXMnHo5oZIrpU6cmpaSSALjz8KGukcHvf/lpoL+39uRJmmHH7Y6Vq9YMj468/vrr8ftiAGDS0zO//OJrAqdxgrrnvk0paamFxUUoB/lr1+7LdfXrN94plcrz8wsTDAkep2di3GEeHjCPDZ08dXRaTTWIAD6/MyFR19ffLedJMnNyHaGgRCq/WtcgU+vm337b7v0HaqbPunjl8rXW5klTptyxadPxU8eHhoYgACopLUpNTb52rX5iwnb/5k2VlZMOHNgHgiCAQAVlJfuPHDpRe7a9p2vOgvlHT5749MsvXn7ljT93/H3i9Bmj0ZiTn9fd11tUVBIIBHzBwPDYqFQml8vlzz///Lp162pqaj766KPy0uLy0uIrly4hEPDBe+9UV1dv3br1X/96IQpCk6dOe+bpp7u6uvqHBucsnL97916lRCFXKhkA0Oh0Gp1OplBMq6l57sXnbHbbnDlzPvviK4fL88BDDyMYevjokdWrVycmmlxOjwjgqOQqY2pyS/21eZVT8rNympqaaAgsKyvrHu3PzsjMSk0fGhnmw2i86Tc0NLR7316Ug2VkZb762qtBv/+VF16Wy+UsA4IQpNZqv/z6a4FIyADsxYsXn3zyyXAk7Ha7AQAYGxtTKBTp6ZkSiSQWix05ciSuA45b/d0gv1zfK1kAuFF3/J8xs27C8L/VNPGXIpGIx+OhMMKyLEESIAAQBKFXKwwatVgk0GnUKoU8NS2ltLQ0NT1FIVMG8eil+ss/fPvdnJmzvvru25O1ZwUiQUlGVldbKwIDBRnpCXrdiG3s299/ARBYLpIEw6Gr1xrKy8udtgkYhPoG+qMkThNkLBZjIdAV8LV2drAAC4MIBEAsCBAUCULQwMBAb29vX18fgiDpaelFJYV33n1XQlJSdm7O/Vs2P/HU031Dg9n5ue+/8+4P330DA+BDWx544tHHz5w8lZeds/OvHXt27V27am1HR8cvv/xSPWXKnzt37d63X5eYSNBUyOcPRUMTPmfVpPKEhARUwNmwbv3Vhvr77rs/GA7X1dUVFxf/+OOPDADodLq8nHyXw/n22+8aExJT0jPrm5rP19U3tLYadfq1q9fEBXiRSIRlWZKmQBjCcRwD4cTExJ7+vt7eXrPFbJsYH7Na4w1bPp8fD84qLilUKBRGo9Ht9l64dJHL5Y6MDmm1WgxDIRgwm0dTU1PHxsyDg4NOu+Oxxx5LTEwcGhhUKpXxCxdXtQWCgTj6/lPy+88n8cfNOjjuEX3zD9xut1AoTEhIYFkwrq8lSTJeiIM3sqX/7VD/tnLih6JpmiLI/Pz8NWvWDA4OKpXKkZGhzq52EGRxPAqALEWTcYwEIQDGEH8oAMAgydA0zSIwNjpqXrxw0c6//xBwMZqmUS7H7fUlpaUvX7kCgCEIQiAIYkAmGImMWUZhDA6GQywINDe16vV6pVIddyCJf1kgCGJZCIJRmgYBFgEBmGVBkIUQCAZLK4vVavVgf69EJMZQ2GQyXKu/qlarKYrye33pGalpyUmzZ88OhwJSqdRms6EcWKPR4LEYQwNut1tn0Fss1pGxsbLSXLFYeuzYsUULFzscDsuYtbb2YmFB8YjFWl/foNUYtVrtc888de7cmd7ewbbWDpAhJ1VOLp9UyYLIx198lp2Vy+VhW3/7jcDJKVWlJIlPrqjioOjo6LBUKpZIZDAMhv3RS3X1Te2d995118a71u/Y9edwbzcUJnkcrt/jT83KoEAIwLArTddwkuRx+Aaj0Waz+f3+4aHhvKxUPBpOMBpUKs3o6KjP55s9d1ZReSnG5QZ8voSEhMO7Doyax6bVTOcLxc3NzRM2G5/P7+3uGRyzACw7c/p0k143NDRgMpnGx8cHBgZUcpXBqDMZ9ObRUZFAKBSKj5w4LlfKhm2eRINx0aJFVvvE5YarUTySnph85fzFnIwMtUIUCwdZEEhITrva2MLn8INen0Iiyy/JBgE4GAlml5cOD5vJaGBoaIQmAKfPVVNTw9J01O8f7u+bXFGpVCtH+3oCPjdOgQ8889xnX30RCOEIzPUGnCSJ+ybCdz28JSVBceL3Xzp7e5LzCxMlevvoiEjGG7OZjYZEm9PO4XN4PJ5l1MKioEqr6evr43KEFE5bzba01CQOD2NwUqHR+qMRCkLmLFr6xuvvSKXSZcuWzV+2oqmpyWQy2e32gYGBttamnrbmWxbMFSKgz+cbH7er1LqzF85/9e3XxgRTzbTZd9199+eff/75l1/AEKrR67Zv337vvXd//e1Xdqd/5vSajMw0mmJlMrlULAkHgyMjwz3dnSNDwxw+b9LkSR1tLTGPN8Fo8vp9i+fN/eXvvygQDLk9RCig1qpADufFV163T3jeevu1qilV33z/y/0PPlJaXHL3xnUbV681ZWYzRGzrLz+88cZrCxYt3br191DAt2Hd+scff/K333+vb6g7evz4xYsXGYricrnHjx7T6Y2ffvE5AMJz5swZGB7q7mzfsGEDF0MttvGdO3c88cRjH33wcW9v/99//22zWd54442CnOy2trbW1tZVa9YuXrzYZDJ1dHSAIHv64uWUxKS2ltadO3fmFxZkZWWNDA0X5RfUXqw1mIyZmZm1tbVlZWUQBHG53OLi4t9+2vrE009lZme1drTbbDaIZSQSSW93T2F27pDdumzpbefO1oZiOMSwNVOneCJ+Icrxuj1Ov5eHYkNDQ4XFxX09PQiXUzqpfNxiTdAb9u3Ze/78+RWrVs6cPRsEQQgAYBakGHrc6eBwOAqJFIZhl88bJ0vLZLL5c+cyDAOD/9X7vWkHGN+84nyW65rdG3sdCPxftqTZGzG9NzfNm2cEWQCAQJIkURSmKIplwbgdP4rCFEkiEEyzDBy3HYYghqLDOHX4xDGxWHzL7Dknz5xt6epwOFxinuDlp5988913Hn70EYlICACALxJqam/nwmhaQsrA2Eh947X77rxbgGEMy4xZzGqtFkaR+HoWCfjhYLAgLzeKE1GcjEbD8aTC/t7e7OxsiqKMBiNJkRAEUQwDIwgLgM1trSRJSoQik8HIx9A43Xd01JyXl1dSUlJaWpqYaLrjjrtWr1mzcOHCjOys337bds8995SWle0+sE8jEuYUFQwPDiUYEnYe3JNoNGWkpF66WudyeWAYbmtphkFw0aJFG++488efflQoVDVTp6Eo2tbZkZeXd/ny5YOHjhQXF09MTHS3to/bbaFoZP369f39/ZWVlbNmTGcoenR0VKczvPPRB7kF+Zvvuoum6cbWFgCAqsrKrjtVwRBFUSMjI0ZDAkVRFE2EQiEOitXVX8W43NmzZzc2NGRnZrW1tbW0tZaWl1dMqrBPjHM4HBzHe/v7Z0ydRlGUy+WCYVgmk8VdzG6Ga/0nWMZ/xd7wBgdu4DEEQbW1tUqlMic3l2GZm38MwzBD0XH60k0AZv/Drvzf5MI0TcIw2tPTU1MzE+MLaIZV6jRPPvkkDKEoygFBUCQQkiQZd7WkaZZiaL/f7/N4A14PSeFpKamPbt6oNxlisRiMIiPD5s+//Grz5s0kTXNgiKQpAEKuNTWKxeKs9EyWoWtray1m28aN6ymSjLt4Xv+fMwAAAP9V9jMsAIJAvLg36vV1dXXZmRlZ2RmXL164cmkYQSC/3wsxYFZGGsMwAj4/GgkJBAKv12NK0J85e1YkEjE0LRaKdNrsQ0cOYxxOVna6xewoLjYadCnmETtFUSKhsmbKXC6XL5OrcrOzJ0+evH3bH0uX3uawu5966slN99977MhRkqY++eST7OycjSvXRCKRPXv23LN2w4BllIxFGQbwegOpSUmOCefSxbeoNSq9XktFqekzarhC8ROPPlZ74dyb774x3NMnUykoPEaDwWAoEopFWRQNh8N8oRCG4Z7ubqvVOmnSJBonZDLlkMvrdvvFImXch16nM2AYhkAQh8M5d+YsGYoABBUJRAKBkEQm7+jtlqOwVKfWULRKIZcrpEMjg3KFNBINyZUyeUDp8YVYxwTEgfyxMMkCBAtxBHyRXFKu1UlE4it151PSUufNmWmbmAj6/SAM2nyewqJcg1LW1NIoEPNkWkUsSiFiYV5BfkNjAwRBZZUVx06e6unum1U9GWSBKBXzeDxXr1xxmm2zpk6XiRSnai+qTXqdKYHA6SlTp327bbshLdPR2KJSCmNgDI6gC5bOZCH41Nm6jfc988WXn4b9IRxzUTG/lC8ZjEVHrTaxXEFSeCgchTAOGY0QwRgGomK+wBF0SaUiY4JhYsLGQlQw6KJI1uXzD3W1z5pZdeTkabVJbbFZ1VrN5ct1ycnJMqnYPDwkk0la21u1YolarQ74gijCnTVzpn18/M/t25MTDOPj1u+++8bhcBj0pjOna6Uyxbc//XTXvfc57J59+/bJVDIU4Zyprb3t1mXDI4MjIyN5RcXpGdk5BfnmCavMam3pHVAp1AALuby+lUtv7xkcGBoZmjdrZv3Fixeu1AUDvs8+ej8tyWg3j86fOfOOezZNmVIVDAY/+Pizr378flLlpAP7/k5OTn7pxedLyibNnlmzZs0aoVDc2tJiHrO+8NxzK1aseOuNNwsKCl59+ZWaWbOnTJm2a9eu0bHhlqZrLofz159/soyNLbxlyeqVq7Zv27Zr999vv/H2qy+9fPXaVRBiVTL5/PkLBQLRE0880d/f/9prr+Xk5ERisZGe/gsnTnd3drzxxhssy4ZCoSS9vqKiYva82YODgwcOHLCMmSdXVJoSE8bHx48ePapWa9va2i5duczlco8ePbxixYqWpuYHNm8+cfyUXqM/fubMZx9+yhDkmx+8Zw94VTIpFwT7Pe7K0vInn30aJ8lp06Y5gr5cYxYbI7Izs/76e8ex2lNffva5WCiJBIIojIAojAAQysEcDld2bo4v4O/u7HL7fRkZGZMmTUIQBAZAAABg6L+Gc/GJ3T+NA/9z2MYCLPB/isHAfzdmvmEfTVEUgmAAe33LjkajPC73RngiEN/aUJQTcPogCCorLgkEA3NmzjBbLQKB6NSJkzuOHErPzrpy6WLV9Km9Xd0Zaek5yWkvvvLyGy+/fvVaQ2trKxmNDZnNMpVCpdNyUQxkGYVEyuMJHG6XUCoZGBlNTUoO+COhSLS5tS0zPaOyqgpk2fHx8eGR4fhEw+l08gTCi1cuRyIRlUrFkBSHwwEIIi0tDQCAp59+8uOPPyYIwmDQHTx4sLi4eOXKlaVlxRs3bpw5e7ZEIjp8+HB/b1/B0iXJxgSNSnv0+LEFs+d39XS7Q6Hly5eHw9EPP/xwzpx5YiH/nXfecXu906bV4Dj+8ttvAABgHhl1OtwmozErPePQnn0ajZZlqJbm5oWLFrEU3dTUlJmZeezoiaysrLyCfKlYkpGVY7XZiBgukoiLi4vxKHGTFUVTNALBSqXyWmN9fl4hQRASiUQiErtcrtuWLevo6LDb7e3trQiC3XfffTCKOh12oVAo4PH7+vrUSqXT6YxEIkqlksfjxddPnIf13150CGIAFrzBW7655JwuD8OCcfRlGCYajYIgyOVyAYaNr0zgBm/gv105N0bC8T8miFhGRsaCBQv2HTqsNxicTmdDQ0N5eTlIgSKRJG5jCYIgRTHx2UckEiEIwuf3TK+u+umHHwCEjURDCMqhaCY7N2fdunUAAMDxxYkgLADk5mTd/Jq4nJ5ly5b5/UGRWAAw7A30ZSAIYliCYYH4xwKCIARCLA1CMAzZreMCDs9mtV6ovYjjpEKtkslkoVDozvvvm7fkFplWzZeKET63f3RIl2TwhAIXLl+SyWQQBIlEIofDETday87O5gl51glbVXVlOBZIzUgcGu5JStNfvHImFo10dbQ77NY5s2etWbXy/s33xvDI+++/LVEoP/vm+/m3LLlY1/Drtj8vXLk2b9Gt6+6499Dh42+89ZFOnzIyau3qG+CJxGarpaevc/+BvW6PQ6OWKBX8o0f2QyDz0fsfqVWG/PISgVJhSk2+bcVKlU4fjkWrq6cUFRSK+LyM1BQKJ7raO4oLi6RC6ZxZc3RqQyQU0WuMfK7IMeFsa2nnYrxYMFpVURUlcAhGOXxBZfU0TyCAcfgTTpdt3D46arFarceOHbNZzX19ff39/Xweb+XyFSROQABI4rEkUwKfy+nsaEtLSaIIHACYGBUTycWt7e0djS2pOiOHhWZMr6meVDU2ODrSPaDg8PxW63hfL0yTJoOBgCmJUsoQMYRmywpL9XoDwUAsl6NLTRHKpQIBp7w4H4j5FXzw1tlVeiFYf+aUdXD4x8+/6Lxa77W7dSr15NJSiAQ7O7tq6y58+eXnv//25xe//3HPg09iLNzedDUhSQewpEquGBgZc3qDZIxWyJQxiuTyJCQBmDSJIAXoNQqpiOOwjGnlcp1OC0GQVCxJMSVeq7sSV09eulxH+PwsTiqV8vbOttoLtdFwMCc1RSeRUiQTCoTlMkU4HJo8qWJmzUwiRlAk0dHZ7PW5Pv7wAz6fbzaby8srp1RPP3Pm3JUrV/gCbiQS0ejUX33zlcPj6OzpVmiURRVFDAaE8FDVlIp5C2cTdKyrpyNKRn7asdsXJrs6By5fafbHmJkLlk6bNvvg7qN3bVznc9oBPGaQSrd+9flfv//a19MVjIR5KHby5OlwOLp9+5+ZmZlWs/mjDz6cMmWKMcl0y9LFVdOrn3jmaYVG3Tc02Ds4wBMJPB5P3aWLZvPo5YuXOCiiVStXLr99Zs30hARjb3f3tq2/3b3hjq+//Kqvt/v7r7/Zs3NXanqa2+uRKxWvvvL6wNBIfmGxLxAqKCzFAGjCZq2rv9LW3nL88CGdRjVr1owQESvIy/t969aK8vLbli4dGRmhCDInK7uqcvKcWbO5KOZ1e8atlskVlbYxs4jHRyC4ua1dJ1Z6xiZqpk9fvmrlFx9+SAQCIh7/3U8+wkS8GIG/9dZby267LRaJVpWXG1Wa5199efXaNT6X+8+ft8oForA/4An4LS47CIIoB3M4HDKF/Pz5c3V1dTAMFxcXoyj6wQcfREIhhmVg8L9KkHhtcXPH/DcAvtklBoH/M/D9px/Wv/0w/gyGYZplYBgGGJahaZomIRjEeDyCBWCUAyGYw+keHTFDEOTxeNRq5eTisgmLGeNyh4aHNq5e67SOt7a3vfXuOwlJyTjNCHiiktJJ0Sje2ND05ptvt3S2ezyejevWi8VCnCY94SCGYixJgwyLQDCGoBwE1el0p06dauvsipKEy+WSSCQMw9A0y+VwcRwfGhqKxqIgCxh1eolIrFGqXHaHRCg6f/58oikhIyMtRuDf//jDtJrpXp9vxarlDMBqNJpAIFBfXzd/7pwXXnhu5fLbi4oKFi+YP2dajUgkuny5zuPxLFmyJC8vT6fTFRQUsCzY3t5+/32b5syZo1Qqb7/99oDP99JLL7311lupSYkCLmflypX3b7r3kQcfaGy41tTU5HTYN2/efPr06cyMjHnz5h0+cHD9mrWTqyoczomegX6aATAuJzExWSSSAAyLwoiIx8UwjKIohqEQBAJBUCqVVlRUTExMjJrNYpHY6/UnmJLa2zt3795tsVhmz5575x13kiQ5PDwskUiEfAEMw01NTXHFc9xQJZ4CEuev/fOy/uegAbzxKo6+8XL26tWrRqORYQCv1xsIBFAUFQqENw918yD/9u9/rqV/IjQEQU8++TgKgQxNx2Kx8+fPW62WGB6JxWIMwLIsiGFcBEZpiqFwisQJliIFHGxosO/0qWNypSwSjQIgZLNNbNmyRSwU0SQFgxACYwzD0BQl4PJEfAEIsDaLNS01VSDgjZlH7HY7AIEAxAIAAwAMTZPQjckNDMMwjNEAQoMIA0BIZ3t7cmrq3Xff/dXXX0TxiM6gDfj8oWjs0OHDoyMj2RnpOUsXe71ug8GAwBgCY9k5eRGcCMVwkVRunXBkZOYQNOl0uoUiOUmQFy/X79mz618vPOf2ekiSzMnNAmCypKw0EiVtttGaGdU+n48gKAy5rbmlc9a0GXkFhbPnLcovLm5qbv9px849p87yYHDLlgcnT5tZXlrU1tpMUQQM0WIpV6XV0QANg2T/wNAoPPTKS88fOHRidHgMZ0jLmDnRaNq+c0duQQGAcVpaWkQiicNuT0hISElK5vP5dtv46MhIoskYDgZjBGEyGNRqtUqpEYiEDXUNoUCwrKikb2QkIytz5749Fxvqlyy9DWDA+vo6MU8oFvCIGC4W8FVyRUpyUkNDAwpAEoEwxWQkSVzKE9vN1kgokp6YyDKsAOJAOHPhcq0pOSUpMYWPca+cv8IXi0LRiFAoQRDM7fGqpEIxn1eSn3epsVmr1QZD/kgwFIkGGIYRisQSqbx/YIRmIiTFqCQyCsdBAYtgsE6tNvcPeZz2qnQjQcGISpZWVNw6Nn762Ek6GtFodAqewGm1piYnchj8XN2JCw1nfv3s456Whr9/21pVWgogGEcgdPsD4wEfxuXQEMKVyMR8gctm0yuVBB7yWIIalVqKcKxul4DDmz9/0dDYmMMb7O7o4mN8v8MPAPTgQC9FM3wE7mxsyExODPkDzz379Afvf2S1jUci4UmTy0PR8JjZ6na7IQgorSjz+V3PPf90bk7RwvnzIBDAI9GAJyAWi/fv3c1S9OrVq997771INLb+jg2BQGDEPD5l6vTPP//8bumdVy5f5WBck8n0xjvvRmLUjz/8MD4x8dzjjx87diKEh/OyMscHBg7Y+qLhyJZ77qu7dMUSi169UFtQVJhXUORxOlx2R3FxaUFeYUJCQltb2/Dw8K+//nrvvfdevHD+1VdfvXjx4pYtW/xe7/q1a+fOnlM5edKnn376yksvXb16df369T/88EPTtcaysrIz52rlUlmC0XTx4sU1q1ZvuGNja2uzwahxOtzbt29ftGhRSXlZc3OzXq8vKi49depUc1vz088/feeme1euWPHwI48YjcaxCRsBUvv27dNoNBkZGR9++OHMmTMxBOnt7s7Pz585o6arq6ewKD9ucWA1W/R6fV9PfyQSudLa1NXdwzBM2eTyzu625MSkr775TqvVZphSnF6PRCAUiUQ0BlNe8q/DO4MO94L589Ra7d/79t1+6+0CiVgskbIM6/G524fa7HY7yEFTUlIyklJgGGQBYGR0rKOtDcdxkVBE33BF+Cf9GLiRCnezSQjcaAhf3zf/L3A3vvGyLHvTWB/4t2EwCLIgQNEMDIIweJ1FGsajH332eVlxSfXkKZ2d3XK5PBqNjI6YI8GA2ggCLGs1W+rq6z1Oj9M6vnDp4ikza154/Iknnnhi69atAE1DMMyicGZRPoqiVrtDLpdPmzIFBADLxLgOMQAsCyMIzZAgw4A0hQEQwgDlpaU9g71Hjh6/f9OmiuLyM6dOhwPBhERjSkpKOBw+e/aseXTM4XDccefdyYlJw4NDJE48/8wz9VfrzGbzyZMnH3rkkZSUtLKyssGR4ZGhAavV6nI7669eNZtHa2pqRs1jzY2N5aVlrU2NTU3X1mxcLxdJJsYsIzaLRCQeH7aEKWJyRaVMJjt6+GBRQeHff+1ITk1Zu3qly+kBYuSD991/+fLllpbWH7/73mg0Hj11TCqVmnRaj8fz6qsvX22oZwGVQq5AUEilUtmdzh9+/TkzM7O1uSUYDAp4XJaiSIqCYRhFYQAAbjYVMBQjSZIkSRwnz5w588uvv2o0miW33Tp79mw+BwMAAEEQAY+HIEg0GuXz+VKpNDk5+eb8Im61Ecfgf7vu/2wax+//AACgKAJBMJqmIRgeGBymaVqn0/kDXplMBoEQGF8VDBOnVYMwBAIgzTLgjcnxfzZp4o+b9GMEQRiazMjIEIvF4XBQyBc4HeMXL9SuXLUGwzCKpDkohuM4BKIAAIEgGPT57ROWooLcv/74lcOFvcGQkCd0Ot0lJSVb7t9M0yQMwizNABDL0DQEQQzNMCyIIJDZbE5JSWtv7zSZEkmSDIVCYpGYpCkQZCEYYpj4CodogMVjZDRG0hTrcrmQjJxsiUwaxqMqra6vr2d8wiWViDRag9vujARDMqlUgHGFOr1AIHA7XO+++XZZ5SS+QHiu9nxbe4dUKjcajW63OxSOqJWawf6hqqoqpVJJU+ykSZNGx8YUSmU0FgZBsL+/H4KggaF+r8cTCcdWLF+dkJBgm7A3Nre6/UGlWrH01kXpWeltHZ1O+8THn38Ri8XC+NqSkpKp1dWRcODPP34k8AAnPU0u5DMAFI4E+/qHExK1Xvv4YP9AwOtjKaa8vPzQwSMrVq0e6Bs0aY04Hh0btTAMQ0RjGAJxueiYebS0qBBE4Nam5uS0dLlckVeQV3v+LAKBZ86cARhaJBCSOHH86MnOzm6VXJGenNLZ2ZmUmBj0+TCQkQgEiTpDNCMY8QW++uSzME5wOJz0lHSfLyiTigCQhUCIyxVEA4GVS27r7ulzWWxcoZAn4qNcjkoisjsnlEq5x4nbo1EphoQiMa1GNzExkZeRHhCKBBjAwGCEojABB/NjMASyBN3R3GlQSIQQAgjo5taz2ekZDMO1T0xwhJKQNyjVmdbetfHUhVoURi9cubhqya0ylXL/vr0lOekhmhibsN+x5YFThw+HQkxbSwNfKOAI+GMWa3F+njscHXf69PoEmsGlIgSDcARhVVIJAtIAE5MKOB635+dvvhBJFQqRsKO/HwVROhbt6m5rbW2fVFbRcuUSEAnLBEKCIj//9tuM7HSLeVylUo47rdfa2h9+7OlQDEcwuLS4JD8//88/d1jGLPMXLFUq1LnZWQI+RyqVR8Lhvr6ezz781OF0btqyJVFnuDY+gfGFyQmpifrErtYugzoBj7GTJk3l8ETHj/995vRRpVRKxIIsEZlWWXb65AkMAu0j3nVr1u/aeyAzPSUlLQGn2V1//YXjMYqIbFi/dv/+/UKhcNu2bfl5OYmJpk8//Xh0cOBfzzyj0mp+/uF7vc4IAEDIF3A6nQ2NjZ998UVvb++fO3asXL3a6fYiMJaekXX67LlVa1a99847999//9y5czOzs44eP3Ly9AmCYJavuN1isZQUFTgmbJFI5ML5c8NDQ5sfesDp9j7yyGN79uyBQGTd2nX19deiBJ6Tkpmbk7992580TUejUZ/Pt2nTJhAE33znXZomAYYZGxt5562301Km0zSNYRyRRHj27DmZRrVg7oLq0hKZWHSm/vLVy1d++fUnDggTFCmTyZpbWydqz5gHh+cumP/HjscgAPjg/fcJgnBPrr7W1Ojy+UEYRRgy0ZQwqbLiiWee/vbbb2EYxGMxBEUTExP/+vMvAACYfxgM3cg/QIAbAhLghskfyAJMnH3F0DeYL/97EtZ/oO9//vz6SwiCRi3mppbmJbcsBgGQIIhgODA0NsrDODlZuQ0NDaFQRK/X0zQpFPFTkhMnJiaGR4fqm5rtdvuttyx2GYxmi0Uok2y6594tDz340nMv7Pjrj/aOrmutjThF6tWqrKwsu9USIwi3z21KStQqVCgIxWIxLgbHiBjC5Y2Om83jFpNRX1JcsmTego8+/fLwgYPTp05zu93HTxxVKBRisXhiYmJyReWpM6f3799/+4rlxcXFOI4HA/6vvvpKJBI9//zzIolk8+bNycnJzz///Ia16z795HMQAEpLS3Ozc46fPJGeneV2u0+dPmuxWc9cPFc1uUJXNTlCREtyckOxCAsjWoXiypWrn+79OBT0/7Ft+9jY2MjIiFqtlink0WD49OnTXV09/3r5pTvvumvcYSdJnC/kuVwumUKOk0QgEMBxnGEZkUgUjUbzsrJPnTn7+kuv3Lp0KYKi8Zg/lIPBMAzeYBqTJAmCsM/vk0gkOfk5LMX+8MMPixYt2nT//RNOx+nTp2umThseGZRIJHGfFg6H43Q6eQK+QCCgGDreUInbY8W5Xf82kf0nEsNgHCABGIJommQYgAWgptaW7Mx0gYDHYzkQCN2cpN4sZP2BAAzDQoHwJq36/yfM31xCJImjKEqRJIZxliy95dfftumNBqczAMEUQ+PRWJDLEUMoBFAMCzMgyDIknZiYyOehV65cOldbq1IrGAhAYE7Qb3/tldcZmmYZBrwevcACDAPBKMAwLMuOjpoDgQCXz/F4fCjKwXhcEEFD0RiHw2EBAARAGgRiMYKmaYqiKYoSCEQkTmEoCqVmZzIQ+P3PP+E0JRRLpXKlXKHiC0QimZwjEJRMKlfp1XsPHkhISU7NzFJqdakZ6b5gYMr0aabkFJlKyRMI1Fq9VCoPBHyJiYb+/l4UAsUSYXyM39fb29U9ZEpKFIh5nZ2t6enZKckZwWCwq6fV4zUnJSm3bNpQVpC17+9tb/3r+bHeLpNCtuGOjYVFxSwEHT99+uvvv3/6uZcOHjk5e94SsVLh8HitdpfLFxQIxWUVZY89/nBmVgpI0gatbtxqu3Tp0t133z06PKLX6NNS0hkaGjOPL1lyazASDodDAiFPIhEACJORmUKxlEajMRj04XAYgqCEhISc3CwJinmstpW33lpakOcYtw0PD585exaEIKfTGQ6GPC53Z3tHLByCaNY1YU8ymApLS1Q6fWt3L8zlieRynCKTMtJyi4q5Ep5t3JybmWYyqvv7OifsVgYPBx3jPAzrH+rzRCIUFx21TYTCMYVUIRaIuWKJWCylcYIMR4UYl4OgGJ/HYizORSkIwDAMA2EeF8ktyIyRoczclCnTF7M8ASZUON2h9r5OgiKdNldmVsrv+/cePnNaqVfrdDpejJWxfL1ce8v8JTJtWn7FtM6h4Xvuuzs9PbVndMjmcc+esxAgKL9rQqcSepwWDgabTCav3zNiHgChmFAAV5cVyDmgHAOWzJvJxVipjOe12xOMhgnHeM9Ab2JaskwpnVReyhJU/1D//EULogQexmPTZ9Rcabhqtdl4YiGKogMDA5WVlevWrR23jRFkRKtRrVx+e193b2ZaRqIxUS6Rwix44uDh44eOToxZ+BjUfO3q5PJS89BAXnaGx+uQa2SnLp49df68bdxeXF5+uaUxxlDd7Z1VU6rnLF9qSkxNSM7Qm5IHx0aUOpVGo9EqVLv/2p5oNEyunOTz+fr6+qyWsWg0zONzQIgtqShVGzRujycjO+up5546XXtWqVWnZKR5vd7777//6PETpeWTdu3Zm5ubP2V6zZPPPP/uu+++8srLIpGor69v586dIAwgHCy/qPC2pUuUclk4GPj7778eevCBcav5rz+29fd0kzS9asWK8qKy1ctWud3+2vMXLMNmKSq4fLXu9z+2V0+bmpWTl5OTs2nTJh6Xt3v3bi6fEyPwlPSU1atXazQaj8dDMfTFS5c5IPzu2+/wEayvu5th2S/e+cA/akvPzzGP29zRkFgoOnfxwptvv0WHY//6178WTp91+sSpb7/5LiMjo2bmjJNnzyhUmmAgXH+lbvXq1dXV1Twe74UXXuBiXJZlORwuBAMQAHa0tx86eBCGYb/fTzF0PE8prraEYThumh9/cn1HY6/LNIHrRSr935Ud/1Mk/s/O4X9t0wDgcDjUai1JXp9MIxxMqVE//dgTAENdrD1fXTlZIpHI5XKVUtXZ2V535dK+QwfX3XXHiy++OGvG7PLKCn8omJaSTIP0np1/e13uJbcv0xq00ydXL50z1+d2tTQ1T6meNjg60jcyRJKkVCDyOl0wipAQ6wn6SRwvKygqzM7VqNQUiaMoumXLlqzMHLFYDILghvV38Hi8FStW3HHXXTCKvPD8C0tuu/WHH37Yv3//iRPHPv/88wUL5r34/AtWq3XLlge3bNny6quvVldXezyezIwMlmUBhhUKRfMXLOLw+H0DgxfqLq9dt+7NV1+xexyvvvpyf3dXQ3NDZ2c7EQo9+czTn3/+eXZWRnJy8qoVK3/47vtjR47++uuvmzfd39ja/MDDj/yx469oLPbGG2/s2vF3YV4hzAK9/X3xj2v69Ok8Hg8AAJAFuBgHoJmlS5ca9HqYARxuVyAUFAoEEIKAIHg9cYimIRAEAADDMB6P9/vvv3/yySc5OTkPP/Rga2u7y+UpL68Ih6NKpVKr1fJ4vPgiCQQCAoEAuCHjjq8iELjuCvnfzWhvDp5Zhrlep6Jo70B/JBLJyMjwB/wURdFxfvL1Bxu/KRwZGbHZbCzA0izzz5XzzxPdJBLepIDRNA0ATHp6eiQSIkkchOjxcVsg4IMAgKZJmiYxLocGaBZkMC6KctHy8vL6xiaRRIpiGAaj0XBs+tRp06dOY1kWQkCKoSEYJGkq7rd19mzt+IQjEAzm5udJJdJpU6v1OpNcpmAZIIZTBEmHIzF/IBwmCBaBOEIeXySQSMQUGauvu9jceBVpaWrGcUKr1Xo8HqlURhFEX1/f4IA5OVEll8qOHztTWFjR2Nz/r5ff7+3pSk9J9dv9qjLtz79v5fE4G9at6WzvyM7OJkm6obHeoDMajGKLxRYlFVqT9mztpS2b7vvwk4/b21uTkpK6+vqdHqfT47banbEYA4okvaNWHk82a+rUSUVFYZw4dOxkR09fhc2i0WhmTim/ePFi1Ospysr8/Zeff/mBeeP1Ry7UnsvNzkhLToIhyG6393R2qHSqBFPqjBlTC4sL9+zd1d3VkpGW3tLWKVFK3379ldNnj128fDUYDDJ0lIoRcpHcbbHbeBKJRu2J+Dk8bpCIOQM+AAZQLmz1Bc0eB4UwWpVMLinXm7QJpmS73Y+gYDQUhmhWKOJDfAEkdKtFAgxF/b6QUiRAGQaAgbbuzuyUtMHeAUQonFIz4+TRYwMj/QIBb1bNZK8vwMLs+MTE6tVrozTZ2dTEQwCJDnbaXUX5BScvXY62DxhTk2UgNGw1h3jCaBQngm5UJFaIJYMwDBAETeIAJPaHgjKpdGTUQoKQzxsQCaWICJ5RVfOd7EeeUcATKvRKX5QM2Tv7GCK9fNrkns7OkVFbSmrG22+99OSTz1ZVz7R5PRl5OZVTpv/x13ZURIZjzhSVgiRYEBWrlHo+jyMRSoM063P7GDDmDMW0GdlmsxkLBCVcDomH8TCPpZlwOJJpSpg2ZSrAQyRqxdKUpAGLfc/BwwgKRWN0TU3N7r//QGAgIznz8KHjHp93w4YNw2NjUQJv62g9c+4shmFCATZuGz175tSm+7dMqqrU6TV+r2egv/+Hn77/8fsfSASOxmI//vJrzfyFar3h/PnzORnpCqmEYEiPy5GbkdnT1SuRqRx23+r169754N28vLz7733g2LFjFEWFHBMkAdndnueef56iKBCEjcbUFavu2LFrh1ShO3++AYIAHCe3/76NJimhgLNhwxqNRtdU39Td3vHIA1siMYIgiM8+/uTsyRN//LEtryB/8/0Pvf/++3qjiWLoPfv33H//lsamlsZr9Q0NDZ9//vnZ2vMWy8SF81eW37YaQRCaYD/68BN/KKgz6Jubm6PR8PTpU1UK2aBlMD0zhS/kXWttvO+BzWcvXDx+/OjcuXMTkpJ6B7qUakX5pGqH3UdStMPludbWlZmbB9BEWX4OxZBff/f1sjvW4eFIV0NjyrPPMyCw7e8dnR0dL734MgrBP//4izvgm1pWsWbNmrjkY0pVNUEQ+dlZgUAAZAGKpjgYz6g3dXR0GnV6HpdLxHCQgzY0txw4sO+WxYt5Aj4MQgDDAhAL3OC2xBXAcZselmUZEKIZEsdxPp/PAgwEQvGs9P8F6P7TooGiaAiCcJKAORgPgAEAZEGWBgGQZQmSABB4tGdQrdXpdDo8GGYRBOVxUYSTrDY6HK4rrS0bNt2jVslYAGBEvJbWlh27d927/q6lty4LxWK1dRf2DQzOnz5z+uTJqQkmk8nEktThhQtWrlozc/aca42NdCy6avmqrXv2oTy08cqVnNwsvUY74XWFgn6ZSk5RjEYhh0EIAFgWgRkGgFGMJPEQE1t66yI+gjmd9oPHDwsl4mDQbxsc8/uCBw4cMplMDEmdbzi/dOnS4uJilUbt9oe+/+5HrVJWVTnplZdfmzNzzt133zlr1owPP/5o4cKFTW3NFEUhGFcqlnV39d1576ZbF84OR2IcLv+vHbulMjGGIfv3Hb7znnuLioqmVFXt2rmHBsD8kmKGYjgwiIcjr7z8mkwmO3nmZE5mzqKFCy9evHjm7Kni4sIpkytpmmYokmZomVRCMywLACAI0yCToNVXTp7s8npC/kD7yGA4Fp41rUal0mAYF8dxAAA4HA4DsD9+/fO1a9fmL1qYlJSUlZXFgkBpSQHLsjhJgCDI5yoJgoAhGGQBEATtdrtIJEEAkKQIFOVcX0UACwIggiAMQ/3j+v/XrAEEQBYEKIaGIBC4ri8CGq5cnjp1KgfFEAi+CZwwDMb90SAIBEBQodLw+XwIAEEIpCgSQbCbRfC/gS7DUBCIACBEURTCwRiATU5KxUBuMBjkiWWdHX0dzZ3qBYk0wLAkgWEYl0VZlmVYRszhyUUCy3AfAAMES0n5Qr9vPDM7g8PnkRSJggjLkABLIwBC08yY2UowdDASjUQiBfm5AMPSNCGWcMIEAaGAkMcDARbAkFgMN1vH7RMTo6Ojg339NpvN5XJ5PB4AABAiEg0GAikJCZZAIC8ry2Y1+z3e5Uvnsyg92DccDET/3rG3fFL11frLHAwyJGrPnLuQkJ7OsCzNMjAMBsN+p9suEokgmBZLBQIhVxyMxGI4h8PJysoYHhmoKC/t6+1OTU5ITzGdOnFk06ZNY6N9HB6QINCBOCtRyhEOGoQJrUD2yuvP93T1/PH7XyPdrSyEbbl30+na2guXLi9ddvvu3bv37T1sGRuLhWMBv3/2jJlpCRk4jvM54ryCpJGxnn0H/opGoyiKHti3W6PRXDh3nIMJKirL87Kzi/ILaJo6evgInydgIEjKF0IMa1DrRSKxeyKSXVCkkkkIMpaRlVk+qdDr80TCuFgsbu9q7+4f7O4eBgFaq1DJREKNWsnn84VCvlIqbWpsTNAZh61ml8ednpCsMiawNNXf36OSyEKJKSCDFhQUxEKBy7VnEgwJPLH4ljmzOrtarzbW65RKo1xDsZBWZWRZ2mRQul3h4aGe6ZWlVy7aJCJxJBDx0GMIQISjQYQP82UirgCLeF0SDg+L4RAMDHZ3qWSylKT07pH+rz//lINiXA4/IyPDb7EOWocSTKaIP4rjNJcjyM3PIwlmzDp09MRRmVpdVFaOB9mWhubyovKLp2o1EgEX4/iDvgge8/p9HJ5arJKPDgzTCBghKRqPqfh8BsbMdjvI5U2dM08mVw21d7e0t0VAethmJiIhCENZgDYaU1atXL579+7ZM2e1tbSdPXtOKpU63e4EgyZBr8tITtu69Xed0ZCVleV2OEuL8mGM19fXZ0pIGLWM5kjy+waGVArZ/IW3zJ47/7XX3nj+hZduX71x/8EDpSUFQ/1D42OjFtuYmC8wDw+plarGxsbKqskH9u1hGfDSqbMVpaU0TX/++adcLnfDnXdcuHBhcHCw8dq1O+6441pDk9VsycvN3rd3dyQQ/HPbdp/PV1iQt2b18ubm5vJJpSiKoiinsbHxz7/+ampqam5uLikpuVZfd/HS+Ts33lFQUPDuu+92tLdKpdK2tjaZQlEzY86bb733zHMvDHR25uUXv/veRyqVau+e/bNm1nR3dyYYTRbzyJJbF4ejEafbLeQLhEJhb1fvuER44VztlGk1YyOjHAghY/iBfXurqqoEPP5jTzz62WdfpKenBwI+iUgkROW//fGnSiNNSUlhYSA9O33rtt9Xrlg9MjKya8+ezQ890NnW9e0P3/uCPqlU6nO5Z82Y2Xjt2oOPPJyTmXHq1Bm7Y3zd2nXDoyNyuZzL5Wp1uqttrQP9/Zlp6dFwhCRJvlCAkrHBwUEhh7d06dL1a1fjBM7lcJkbATXxQiM+V4tLkq6TolF0dMzi9XpLiktohmZZBoKQeK38PwXg+F4Z3yjjJkduryfgI9P1RpogWRiEIAgCQBInzEMWEASlYsmEbVyjVPX09IikEoVCxsc4XKGApejDhw7NnTV73GqBaZYB2CeffBIGkdO1tWKxMMWQMH/6zHiuOwTDfoK0jo7weLy9u3etX7eurKDoy+++yc/Pl0pkJEEHAoHEhORAIOTx+1ISk1gAQhCMpkmSZuKmIDRNsxQLwZDX4bJHwoW5eb5QGAAAs9ksEksS01MPfv3FuXPn3nvvvSeefOyxJ56Yv2D25cuXs3My77rzvs2b7p09c9ZXX3310aefXL3aoFDIPvz4o7r6ayNjlrvuuguGYY/H097ebtSq79qw7vZVy44fP3nXHXd7nA4Ohrz99pvvf/xuRWXV/r37XC5XSmpSjKAC4TDL0hwUO376VGZWDsMwU6qq6q9eQxCkp7d3dMTscDiEQv6iRYtgBAn6QggEIwjGMAwMsiRFoyhqdzmzcrI1anVmRlr/8BBXKAIAIBaLoSgKwbB13Pbzzz8fP3byp59+Ss1I+/SjT5YvX+52e62WMYPBgCCIWCoJhkN4NIaiqFgspijKarUuXlzyTynRTUOVf3aDWZYFQQCArqdgMSwD0CyCwCzLAiADIVhffx8AgSmpqfFKN46j8XkHTVPxJXrz7u2/KIE3hsr/jO26/hKCbk6jKYpAECQzLVUmEgV9YRThSTjioCvgcwXEMgUDMwzLkAALgmAMx5NM+trz50PhsEanjlEEC4BcHu+ue+5mGQpgaBYCYQhiGYplQQhCEhMTU1JSDh45mpmZSdGAzWYzGAyWCSfC4xIEcfFy3UBPr9vtdrndVDQEgiCfy1OpFZMrihVSCZfL9fh9SIzAH3rkYbN5dGxspL6+zmQ00jTtcLh4Yo4vECQpuK7+qsU2seiWeRqVHEHhqTNmvfPuBxs2rBOL+F63R69WhQOeaCRgGbdIJYpkXiIHE4iEMq/PWVJS0txY7/eEQ/5of8/w3JnzRs1jHpc7Trk0qtQUgZNkjABxmUIEMqzXM8HnQI8+cHd7Z++fO/bt2L5t9fqNh44d/eG7r2+//fYEnXLNqtUdbc1ZaenNjU1XLlw5f/58NBxkAWLO7HkCLn+gd3D2rLlUjI2RsayMTKvVer72YjQWzivIf+Xl1yUiyRdffG4wGLt7+t0u3+q1GxgAIUiWINm29i6LeeyuOzc2Nl4dt4wPDA0PD4/KlDKvLxAMhWEYGB414xpFMOBLTjR1d7YzDEOTlFKjTk1MRBDYbDfXlJV5nc5pFWWecfuZw3vcoUhSeiqAClbeuaWns4XAw9GI2zPcq+XyCU8EkLEup0XI54yOdOUVl1VUT28dGAiQwNI1609frAcZgoFYkmVEYnGAIgge4gr5jVKZSMCLRcMAyEq4cNDr7Qm0aJM017rbuFy+VCoP+X195iGSwsWYIDU94/zR0xBMiTUKkUyRmZPPF4knT608fe5UV3tnVlYejMG2Rh+PZSAtQFMEGYsGI+HQ6HA4SrJcQQSPwRhPqdUNDY+BMKyQq+bfNqNzZAwHuJhEanE5lRp5OBBINhgC0aB13NbpbjtfW5uZmRnwBlLS03g8ntPpLCoqxgCKJxBBIPjjjz9euHABRMDS0iKny37m3IWZM2dHoj+crT2j0mu1OgPNgvsPHykrKQAg9oMP3p27YH4MD549fcI2NtxUV6fXaeXpGbcsXORyuXCSEIvFc2fN8/l8wxZzQkIiwzDXGprEYunnn3yOcjnhUFSrVPzy/c86g35wYFgpk9vsE/Pnz126dPGzzz7N5SE///SDXC4PRyMBf+j0mXNvvvl2fmFBxeTK1NTUv/748/HHH//www/b29v1eu3EhK2wuGTW7Nlvv/2uzWYrLZ+0YNHiv//eef702fkL5q1bt2HxLQtzcnKI5MT77rlbq9Xu2bMnOSnhjz//LK+YtHTxosZrzQiCfPHlZ4898mh6ampeXl5LU9NQXy+GICuWLVu9enVZeQkAQCwL8gVcGAZfeOnl2XNnyVQikUiw/+ABFmIXL1lisVjOnDlXUFAUjkafefbZR596IhQJTps2zetwNTY25hUVKlTKUDQikorWblibnZvb2d4uk8lkMtnw8HBKdvasmhlCvoDCCZlU7PF5A6HQ5LIyDsKJBwYzLBNHX4Ig4vGrN0Pi4tsoAAAoitIAAMJwcnIyy1Bx0XBcXPE/Rd+bPK+bZByWZX0+X8fAQKreCKMIA9AQCAAsIBCKUQ5PKhVLhAK7bbzT05OanuqYsHe0dpRVlNEss+bWZecvX/pp668qiWTdqtUUwJ44ezolKVkoFuTm5nIRFGJBFgBAGLY57ZfrGxNMBm8wAIHs1l9+evjRx5cvW/nqW2+mpqaaR0ZXrVrT09d7+tzZZctXNrW2pCYlJ+j0EIzCcNyVGoq34mmSTDEm1F44d40ki4qK7kq/Z+tvW595/vnk5OTq6uoZM2aYzVZTYrLH4/n5p19vu+22xbcsfeihh26/7XYAAHq6+1avWffXjh33bbpHq9dPnzVn//59H3z4cWZWutvp0KrVjzz6EASAMZxEEc5jTz1pMOnHbWN+tyctOaXxat2sWbNkEsmYxcLhoCfPnCQIAoVgEEWWLFlCUjgAANXV1cFAOBYjzGazWCJMSEne8uDDs2fPnj93LopycByHQYgCGBRFQ6EIXyxEOZjT4VYplKFIOBiOwCzA5fO6u7v37T0QjUZNJtOho0dQFO3o6GQYJoZH8FgkMTExDrF+vxdFOTTLSEVChmECgUDc0BS43g2+3ke5WZWCIMwwVPxaMwADXr/NAwEQhBgWYFgWYHGCxDCwobGxYvJkBgBgCKApFkaRm/gNwyhJ4jRNwygQDAbFAiHwjw7Nf7G6bmD2dfURzSAwBIEQw1AIgjQ3NbU3tWmViog5gMAsi4Jnz52SapVTZs4CISiGhzGMCwIgCAEIAjW3NlE0w0IgF+WOmC1paWmlpaUQBGHxIKO4wTXNTNgsRlOC0+lx2J1zZs/dvuPvrq4uDp/bPziIYlyHw6HXacRCoVFn0BuMBoVaJpeCIEvhRDjit9vtgYAvEPQjar1+1Go5d6EWp3CUg/YOD65Zv+Hvv/9GUTg5MSkWI5wuF07GgqFId1f/mjVraqZUr1i2/sUXntu4biVIQRALCXhClVodjdGWsXGtUoWHYx7aixO4Y9zKUIBWb1AoFA6Ho7KinMPhcLl8oUBsm3CkJSdLpXwUoEQcUTAYRBCUw+EQGG/EOhyM+G5ZPJcvlH/6wVuPPv5EU1NTT3OjUljhczkar17+9svPIAA0GgyPPf5QJBI+fey0y+ERccUJhuTLF+tuW7H8ct2VwRFzVnaqeWxChaqDweAti5Y88ODmp559fP++I1kl5S9+8olYLHY73AwDMDh96siJgZ6u7rqGGB5Jz8w0aHQ8Dp9i6FiUEgvYCBnl8FCaZQAInDZt2vnz5/PzCg8fPtze15ug0s5fuPCvnTsa21uzkhJjkRAF0iXFaZZxz6Wzp3EAmSgqlEhFyVnpEa+nqKjAYrHEomGI9KUZtCjC4cFYNOA/e/akxR3KzStVKukpU6qOHdwrFkoS0jImrBPZSRlUOIwJeWkpGRGPu6+rp6S0KOhyciUCsUDsD7prpkxuG3DGP7pEfWprR5NlfCInr0iqkTHhgFEsdDocbAwMBAK/fvkFBAPr1m/0hyOHDx8tyMm29rUTkQgKAgl6HQ/jIjxUIsYIBGFcQZah/b6IY9zNMpRGo3r/rXc0qZlcQU9mTqYhJSHsdqE8ZGiwn0VhIcIxJCb19g10trXTFJuZmen3+LVabUtLy4MPbeZxBb9v29bZ31NYWOjyuMN4xOPxyOXyaDg0c2YNzYKzZ8/s7OpxOlz33HPvlYuXslIzxQLu688//frrr997770nj518rL1vxZLlmJAfiAatbo9cIDq0/4hIIi6fXHn/rcut5rFDBw5AEDLYPzRn5hyDwWC1jB87dUit1sYi0aTkBBgBYRicOXPmkqW3lJeXJBiN41ZramqKx+fr6x0oKilVKTVlZWVms/m9d941m83ff/99Q0NDc3PjJ599iuO41+vt6upq72hNSEg4sG9vMBhGMe7zLzzX399/7713L1y4sLAwX6mUmxKNyakpmstGoUgilkq6urqGhkYqKytPnDjx0EMPnT57pqik2Gazpaamxudnx06cyC8sXLN2BQcTiIUiCAIO7t9fVJSn0yp37PzTpE0MRkMUSPcf7FdKFB+88+627ds7urrf++D9rdu2hqORYNB/cP+B1atXF2cWNbY09nZ0mUymL774or6uLi8vTyKRZGZmFhYW8lAeCEMQDDoiob6hQS6CJpkSAABgQJaiqbfeeHPDhg2pqak3XSdvwuo/pZYEQYzYLFq1RsQXgADDxHcfBGMAFvofsqH/c0oHw7BUKuWAKECzNEOAEMTCbDgWixEkVywmSbKludlgMHEBkXViHMQpmqb/3LWrp7d3Qc2sHfv3LL51aXVR2ZnTJ/NKiqrLKvRGEwoAIABESQJDEIiBGQbYuv2PzITk4oLCnoH+3QcPciHk62+/qaye8vpbb6+/+04hl7N40S0SkZjD4WAIatDquBhKsWzA60EQRCISx/sBKAojCAQz7NzZc0as5r6+Ph6K3bPxTqfLyUCgRq4EAGD37v1XrjTo9QnmsQkeV1xSXJGUnOD2OOvrr8mUiltrZuIUede99yQaDc88969HHnmEg8ISiUQkEEIgEArGiUWCuzesqyovu/feu8smlT/8yCPDrokoF3I6nUlJSVVVVXv37p1UWaFWq6/VN6xdvRrjIFwOOjI2KhQKu3p7F9yyyO122set0Wg0JSVl+/bt23///cEtD0ybNg3logzDOJwTMMwRcHhjI2OV+cUTDjvDABqVyuWw//zLVp/PN7VmekJCwvDwcH9/v1qtvnChtqAwT6/X28cnAADg8XhcLgZBfJJmGIahaRpDsUuXLuXkZMVbxMCNSMubl/um9OjGjRfI/OMlAEEERUIQxOVwRy1mLpebnp5O0RQMQzACxMtcBEEoioq3NjEMAyFEKBRyME78FCRJxpve8Zo7nqIB3pCPYwAEAkAkEuHzuR0dHbNnz7598W0gyFIATbE4CRBCCaex/Vpafo5Kroxr9liGpWmSooihoSGBkE+TBA8TEATxwP2bURjBYzEIRFAOxrIAzbBXGuotoxatduT06dM2m62puZEgCK1OR8bwkqJihUKhUqlQCKJInCAohqScHqvZNuj1uSEI9Pv9MAziRBQAACQSifz11w6FQs7nCb0+Nx4jPT7f6rXrzp05KVcqQqGI3e1evXrtgkVLczKzaZKhKALDsPvufzTgcxSXVbc01Y+YR8edQwGfX8ARyqWyaDiCxwKNDfV6TcKMKdOs3gmJULRzZ5fTbUd5yKkzJwymhIuXL9Es5Ziw52ZmoiAkwHhjY2MCqTQ5JcVsHVu8ZMn58xenVE+eWTPl99/+1CplDZcuHD54oLwsJy835+67Ni5evJSm6Ugk8sMP3zkmbDAMCQS89DS9XCXcd3DXLbcuAxoQkUIdG7EPDw1p1Iq5C+YfOnTwjjvXbN36K4hJu0YH7T6zlCcAIDgxMfGRB7acP3v6yqULXL7Q5fHiJDHhcvJ4QqFIHI3hGMSTiITJCQkgQ4+arTTFtra2KxSq5MSks3WX4POXZ02e1tbePO73IwCAcbhuV0DI5RklgsTUtP6RQcco03KVliqUs+bUlKTmXDx72qDTEsGQ3+cSCxCK8ElZ1kfHrp4+FRh3kECYJQid1tjZ2isSoBF/UIDBIoHQ6XZiDFVSVOCwWRUCLszlhYJ+GKU1CqW7od+YYIhGIniMVEtkIgQ+c+IgTyJASSLgC1ZUTG7u6AqFAlKxOIrTfl94cGyoqrrszLkzCqlCIpQw3ihB0jAGwDRrGRvzRKITUUYsEGq1+sTkFA4Cj0+M3XrbEnlCCk3TJ0+fGBgZAnG8etGSaDQ6bDVDEKeno51mAAGPz+FwotFoLBaTisSXLlyZXjNz6rRqrV4zOtZPsdG01Ayj0TQ6MsZBMZVSCbKAzTJWlJtfVlz29lvvfvHpZwKV9tYVqxbMm61LTWtra+scMsv0iRs2bTl6cF8Qjy5btfKp5/916tjxyinTk1NTrzY2XKu/uvWXn3Jycvg8jojgaDQKoZC/4+/t9265T6VSff311zUzZ+/4+88VK1YcOLR/aHgkPz8nEono9Xq5XH7l6tVYlJg2bVp7e7tt3PLMM8+sXLmyqqpKIBCcOXOmZuZ0hULx0y9bzWZzZnr6J5988tYbr+fkZgn4ov37D85/763XXnmxr7f7vXffHh+3SmTSVevXPvvss1yxxOZwP/HkM26XMxQK/fjjj1q15tWXX/n2xx86u7uj0WhdXZ1er4cQ5Kmnnnr11VdTE9MZlrJaLaFg5NzZ84uWzjt37syzTz//+COPj9nMK9euhGjwuaefqb/aMDg4WFE1+ZEHH9j8wJbu7k6AoO67626TydTa3lZTU5OdloHCsNFgdLldHpc7PTNjbGxMIpHAfDgciXYP9ESj0fLychRGaJqOU5pRBKEoKhwOAwCDYdjNtvN/0pIdDkc8IIhlKAAAKIrCMF48xPB/hL43j/lvBkZKpbK8qMTldqtVCoClQQC0j4/7wxEY5Yh4WHFxcSAQqm+oE4vFEEGXlZUN7h/jCwVhhqyqmVZaXIJAcG5egUKmFKNcgsBhGoC5nPa+7kg4Nq1kUiQSKSovXVhV7Q2HbQ4XycKJJpPL7V12+635OdlvfvoxD8V2/fXnAw88MG1ytc/jqiwvt4yOggrQ4/ahGCwVS+IAEBe0gCxoG7dBECQWi6lIrL+nN0bgAon4+10HUlJSrjU3sSybnZ09ODD022+/FRcWZmdkNjQ0/uvFl+cumL9n7y6BWLRz506bzdbV1jxrzuyxMUs8IBKCoKL8fIKkGltblDrN4XMniqdUvvTiKwqRGAQAt90FCFAMxVQKBcAwhfkFw8PDPV1dty1eEgqFSJzQabQ9fb1tbW1Llt6G49GZa9b4/X4AAB564IEff/xx157d337/XXV19ZJbb01OSURYdNnSW3/7fVvvQL9Gp25qbels6ejqblu0eOn06dNCobDdbk9NTU0w6iORiHl0dPXKlRAEGQwGLpdL0zTDAHFUxTAMQzG3x+10OhMT5/2nJDe+nMD/1+MMgmCAvQ7ece0timEETQEAu3fv3gXz5sEAyNAMSVMgBMXtwYPhEJfL5XA4MAyTJIFgUCAQ4CqU8YP/0zEGuFF5xwllLMsyDAMBIJ/LYxiWAcAnnnx6zarVly5cePjxJ3CSJQlKxBWPDI16XR61RCUQCBiKpAgSAcAJm7WtvUUo4IEswBCkTCieUlUNABCC8gL+UEdDs9lq3b13n0gkkMukFoslMy29rLRYIpGkpKQ4nE6hgEdRVCxGWAf7IpEQRVGxaDQaitIQFQ6HotFoOBhCEATBUIPBIJNJQA4PycnJieFRv98fHyD19PQYDAa1RiIWyVpbunyByMJFS++6626BQJCSkoLTQG1tbVlZyfrVq25ZNP+1V148d+4cjKF1F05npKaBbHhwcCAp0RQK+RKN6aPDQ4iI7/P5RCJRd1fP8uXLjxw5Nn/hgp7uPhDlCfictpZrVZUVvd3dPB7P43FrNKqWhk6dQd/b31dTU1Mzc/bu3XteefXNlStXTq+ekpqarNEqPS53LIoPDg/Nnj37wsXzX3/wSWZm+tDwQDQaLq2oqmtsBhBeQXHZhQsXBDxhVnZG0OcdHhryezxSmXBK1dRJVXNGHOPpWVlGjc7udEyMW4QI4LLbjhw6WFU9fcxq6RvoFcuktnFHMBC2O+0oiPH4HL1aJeLyJHyeRCgKh8MSiYQHIlGWGjePx0LB/JI8BGLHBgYSM1ID43aRVGI2m4VcblZGmtvrZzHOhN8XiOIBb4wvls2eURN0W/lcNuhz28yWUMAn06jCFDJs84iVyjlzF4yM2QZHB7NzUg7u2ysX8nkQk2UwQniYw4JULCrh8SI0wEG5OBOVZhYfqe/MyErOzsg+cOzIcEtDtlBcPaVqeNwqFgpbBoZu3XBn5bTpTz/6UCwShbj88orKUyeOvvbqy19++x3o883LzyOiPqfHo5QpGQjEcTJEMUebu4UCnlAoNhhNYh7K58J1zS0ZhWVFJcWXTp1ZuWb1kWOHLT19Ug6fgcGEhASv1x0lqY7egc0PPXLy9CmzeTQvNycaDtpdwb/+2nb23IlA0CeXy8ZGrQwDpadlVU6dfKH2PIJgr7722qo1a+vq6++77/6KsvILbc2FhUXHT55OTcvw+XyJCcZ3X3+1qaFeKVHIxJK8vBwGBFQqFUMR7a1t5tExKQ9OSkoSCHi9/T0CgaCrt2/R0ltjUWLzfVueevYZCILsdnthUdG8efMeeujhzZvvdzrGRSJRf38/xTBGo7Fq8hQIQn7f9odYIvzmm2+OHj3a0NAQT4B5//33Dx069Nsf23/99beaadOIWPStN14HWFqvN952222/b9v22Wefff311xMTE1y+YN2GDU6nkwHYv/7cm5BgyM5Ku3rl0unTZ2fPnn33XXd3dHb8tWt3UUHh1atXPC5XKBRSq9UMAGTn5uiUeh4fVitVHK7w0NEjaekJlZWV3339A8MwEpksMzuDiJF1l+rMZvO0adMs1rF77713YGBg//79a9eunjp1aiwWgzEUgRA8hvO4vPqG+tTkFJlMNjA0mJiYSFCUY2IiEonotTqFQnF9ZhbfFdnrGyLDUAzDgCB8s/D9ZyuPYZiBgQGj0cgXCAgyxkGxGw3q/6UG6ebQDrhRZMeB3OH2N7c3T6uu4iMIQNEQxgFAMBgMDwz2paSkiEWSMIHb7Xav24PjeBSPTC6rbGxrkSrkmSlpQ0NDf+7emV9SVJiem2TScWCMZZkRv/Pq1YZbps4UCPjdo8NtjXUcrjgnv+TixYsKiWje3JmbN92L43jVjFknDh+WisXz5s3buXvva6+9VpifazWPkSyUlGBkWZalmRtughQAMjQFRkkiRpByqRRkgJ7OrkAoiHKQQCAAQZDBZDp27JhEIlm8ePFLL77Y2tL+0cfvnTt3XsAXHTp65IOP3gcRWCAQjdvsQfeEUCzNysoiaYbP5+/bt89qtWZlZc2aOvX06ZMMw1gstqysHLVGF2NpQ6KBDkfEYrFMLHn11deXLVs2Mjok4PFnzZzV1d8rFgp7u3sSk5MABN29e/dTjz9O4XichxwjcJZlA6FQNBo9e/ZsS0tLYlrS0rmLs7Oy/t67DwAAl9/d29s7p2paxdTJDMP8/vv2pUuXQhCUaDSBEHvx/IXG5qYnHn8iFA6JBML4XDYYDPr9/jj712Qy7d27VyaTzZ45y+12czgcAADiOT//VeNev+70jToYBkGQAdj4gINlWZKmORzOyZOnURSdPaOGvDEKYRiGZplAIBDnWtMkRdM0j8cBYcRimxDy+DKpGGBpmmFQlMPckAjHcTcWi/H5fIZhIAAC4iJiCHR6vM3NrY7xCaGAt27VSoFShIIgBsFBksrKK1wwe35aaror6IMZIDkx6eTxY998+5lUKoZAAIYRrUZ//vzFCxcu7dy1h6SZUCjEEwjT09OLCvOCPr/ZPFozfWpnZ3tnR0dubq7dbucgMMMA8TgHGqAJgsAjURhEQBhSq9UsC4pEIqFQCEEQACE8Hg/U6ZUYhkEITFGUSCIJR4LRaDQc8Ku0KqPO6PeHlQqNddw5rWb64OCg3+v7+vsftTpD3BPKYR8vLSrKzy9QaTVBr/PLzz9fuXyRx+Xo7e3SaCQwgHR1tmkNKWbzaNWU6r17965ds76xsTE5MaWhoaGjZ+CRhzb/9tsvMrkkMz2jvLyUL+Dt2vU3F+ZnZef+8dfffn/AbLWUTZo0ZcqUgYEBr8srk0tYmqZJUqlUdnV1ZWRkWK3W0d6BJFMCjuNcLq+tq7u8cgrI4dbVX1MpFAcP7uXxBAaDCUUAlVyBR2MJJr1QppEYNKkZmcnGJBBFQJbmgvSJI4fam5v4PAlfKIC5cEpahtvtY1gWJyJ9nX1erzsSiQQ8ngWzZvV3d0EgGCOiMAtyUS6CIBKlvK7ucrLBWFlV0W8xAwGv3mhoaWsnItHywoJw0Ksz6qIUMdw/mpyaaQ4GeVLVSL8ZYKikJJNBLolEfX1D3U53wBMmpWq1ISH99mWr3n33tezkBKVGOTYyHJiwJoilmTpd1O+LREMUQQJcVMAV0Swjzy0/1tiGcICi7MLW7s6gZRh1usrKS314ACQopd506OwFV5QqzUjlCziqpKRrLe10MJSRntM+OMwHY4UKmVEnxymKplicoSiaFSlULXZXe2sbCyAol5uTlpycoDt17vy8W1el5WQNtnc0NjaKxaLHN2/5+rNPSRLnYGh/f39KerovSi1bs/rnrb9NWC3333sXF0G+/P6nysqKBx98sL+3+8CBAykpKQP9Q5XV1dPnzMRxor934L333586vWbatCkCgUDA4/f09Q4Oj+I4nZ6VSxCETCL66rNPbl2ycMhsm1pVXX/1yowZMy5fvni+9uyMqdOmVVdv2/orSeLz5s9pbW/t7O6SqVTPPPfCocNHXQ5PT0/P4sWL8wryg8Fga3Ob0WjEcby5pQXHcYNRR5Lkc8++8P333zc0NH722RcZGWk0TX/x1Zer1qyDIKixsXHnzh3l5eWRWDQWI/RaXVlJUWJiIo/H+/HHHwcHhrdv+62srOxs7blPP/00KycvLy/vwN59bre7rq7O6bKbjNpJkyZt3HBnWnomTtHRaHTXnt2VkyraWpp+/vGnoqKiO+66Mz8v/+q1huFh8+jo8JpVK/bu3681GaZOnfrFp5/t33ugtrbW5XJ89cUXXr9//fqNcqVi0733fPXFF/oEk2PC/vAjD7777rsxHO/s6d6wYUM4HIYZaMJma2pq2rx5M8uA4Vi0t7fXHwwU5+aqlCoAAAgcj0/LIAS+Po1jGJal4xoPmr4hHblhlx8nWI2MjAiFQpVKRRCx+NuB6+YG1/H7f0GEZm+4TN8oiSCCIv1R4rc/fouEwi8++STEghRLh6PRaDisVqo8gaBQKLxYez4tMwPjcqLRcIopsflqIw0Bao0mFI2pDLoYRQaDwYbGa2tvuYWiqIGhIV2CkYNwXOP2pKTEYYt52DymlKsCbl9GZjqHC/62betg/9DCBUvUWk1xXt7LL7105Ojx0orKcCw6Y/rUooJ8iVCSlJwAsnFLToBlWRgGWYBmGRiEoGAkGgwGMS5HLpGMjpn5fL5aKe/u7lZqlAq5Yv+B/R0dHSmJKQAAbNywISc774MPPqisqqBB5uq1hu3bd2y+d3NpSYHdbt9/8MD8+QvVavX4+HgkFBaLxV6b/Vpr4+Lbbv3r7x35ecUoilZUVGAcBAFYEARRGDl0+OjA8JDf77/ttqUCHs9imxAJeEQMr6isvNzQ0N7Vec/GjTBDsywLwTAAwlEC37Zt26xZs1ISk2iK+nP3jp3bd+oNptnz5x3ef0Cj1yxbsbw0v7CxvfnChQszZsxSKBSjwyNlJUUAw77z9pur1q7T6XSBQIDP5aEoKhQKo9GoWCx2ul18Pp/P42/9bev8+fM1ak0Mj4EsQJIkl8tFUfQ//FWYG5SC/+pRsyAAMCwLAh1dXfsPHnrmmWdYmqFJ3GazIQgSDocVKhXDMAKBgCIIsVAQT4oEQHjMauNhHLVKwdAkBEEMe10fHLe9jMc+cjgchmHiTAMAAscstuaW9qSkFL1WZx4dnjetgisTsAwl4gtCLM3hS+5Yu9FgMPUPj6QlpiQlJjz9xOMdPW1SqZiDItFwNDkl7fXX3zx+8mxiUrJcLudxOSSJUxTFAcH6hjq9wcDholar1T4+kZSUQkRjHr8PhWA+nx+LxVgE0Ov1fK5ALpGDIB3PwIVhlKKoYDga/0oiKB8jKQqFEJymiIBHLBEGYwGIj0bC1NiYJRIJQRDD5cPb//glwZTidnqeePChl159xe52V0+uQmFweHBEJlG6Jzy1Vy4nZxSmZBRnZsEcvuzy5dNJJmNaVrZl1KxSKUQiAU/Iu9JwKT0l1Tza39Jcp1AaeChcUVJoH5+YWjG5ta3DPGFJSU5PSUu5cqW+f3Bg0+aH8/PzQ34fj89BILAx2rJq7cq6yxfLS8u8LndZSbFILNi1a5c/6Bl3oBROi0Xy1KQM86jZ7ff2dHUoyif/+uOPZ85d2LlzL8ZhhwcG83OKxsYsagiSJKntTlskGDIlJgc87m8++hAFWYSlhgIjEIIFwh63508+TySRyxKTjCAIJiUn5ubmhgJBtUjssFkTTHqCINQaZd2V+qScdLFQxOUgYxO273dsq6mYAvIwp9PJoWm5WGge6dPoNF1dXSwIASw01DdQMrna6nJl6KTjHntT29VGiq2umjlz1q22cU9ze7vdYxnobt/1K/7F6+/ec989+tSEMBHKTM4QEIRtwkXiYZKl+AAEAgCHi/n9Ub8/GI5GjEqVVqs/cvkSQjFiAKFImg+jNBsTonRhtnHEGTAqBSwDBTxel8sjxdC+wW6pRpOiTFWwZDAS4An4fUMDGr0O5fHsbkd11WSjTnv1WnPAH2pvb5cJODKxLOQNkhTDYlwWwqgYvfWX3/zRsFQiTNcZIJYZtdnW3n3vxSuXu3p65s+esXTxLa6J8T93/fn8M88/+NDDb7355tTpMy9dulheWb5kyaJ3P/3EPm7fuOHOtWvX252OGTNmnDl9srOjVSjVlZdVZaan//DDD3PnzuXy+YnJaUq16aEtD11raTxXG/7xh2/0MsXCqdPsLvuRowe8gVBJSfHIqNnn9ScmJHm9/q7Wznmz5h49fqKqqqq7u5skyUgkotNpd/+9k6Io8/jEl19+GQj4DAbDCy+8QJLkH3/8kZGRMbNmBsXQxeWT7rz7LoVCQdO0UW9YtmzF9z9+J+SLJBJJR1eP2+sPhUL1ja00zXz3/c9tbW1PP/tiT0/P3v0HQYZNSU6uqalZvfLWaDRSd/Uyn8/fvWcnzUB2lw/HcaNJHwgEDHpTe3v7mlWrC/LyvX7f5YsXp8+azePx9u4/2NnTVlpV+tKrb+Rn5/2y9dez587fsXH9O2+98cijj+3cv+/nT7b+tu33jJTkUChki0VhBpCLRQ3XeqdXV0UCfgxFxRKZw+HYsGHD1l9/r714oWpKdVJSUnFZqVIkJBmCBgESASZ8Th6HK+ELIQCIc41vEkchCL5ZPdx0DrJYLAKBQKVS0TSNoeh/8VwAFoL+x/SrfwPgmwoTCIIikQgZo3Kysvv7+wmcgkA2QhHn6y5Eo9G51bN8fl8wHFIoFKNDw4lpKTweDwQAfWZ6OBzWanWfff758g1rcV9QyuXnZ+bsP3jQGwlWVFRgDOwet49azBK5TCGS/HLuAhdGxXx+eUXB9z9+e+7Cue2//tnR1GO3TIyJJM8//6JMrt51cH9JWVlHT++xUycfvu++9LQUhqGi0SiGcSEIommKBWgYQvBYzO1wytRKs83a2NqSlJRkGR6UiWXjNifFAE2NbS6nb/u2HZ9+9HEsFnvl5ddWrVo1NjZ27Nix1IzkukuXp0yuCgSC/f2DyakppaXlFy5c0Gq1melpYyNDsVikuaXn9TdeixFhx4SzdGPJ+fPnYQRkIRpmkbh3fX9/f5TAUQ5md7oMBp1CpRRwMJPBGMNjhYWFTo/bMTFh0GkBgKFphgQoDMNmzJih02hIgoiEwquXr1i/cl11zcxhm2V+Tc3jjz8aiIRBCPD7/fPmzctMz2xobFQqlRiCNjU20ASZlZUFgZBUKqUIMt5V5vP5BEHQNI1hGM3QJElKJfJYjIBhNJ6afKO3ERcC3XRjZm5cdAhgWCbelGYBiiAxLqf2TO3smbOGhoZ4PJ7TaXfaHcWFhRCC8Hi8eGwJJhKzDMUyDM0wEAJxOByaom+uqDifi2YZEIZolokRuFgsplkGhEAIACmahgCkt78PgBCaBcfMVolIKpIoIlQURlBPIMxXylUGgy9GyFlWo9P2Dw0c2L+vb3CALxBgXIyhGRhBhGJplKRmzJwpkko9TufgQF8k5Av4vWQgbEpKCPk9Nmvo+nlpWiSSKLUakUDM4/EgBGYRgM/nMzQg4glZBsRxPBzDKSoqkohBhAmGQxKeAOEjGMDhglxMLBOPW60TY3aj0WixWZVGlcvligH08LiFpliMA1ttIwzDRij/lofuTkrJQBAhXyiQiHmd/e3lheWVFWUCLg+CkEgkZjRmTJnCo8FYc8tVmV7pcoRd3ohaoXRZLbgvIFMolq9eKUA54VAgryA/EPSePHUkKTG9KLe4o6vzsy9+wxBw8aJbZkyr6OnpcbvdOoPWaFKzbH5rU6vVYg+HLkEMnZKcaDLqdTqdhC/WKJRu+wQT85lto0K5WqrUbHpw7v69+15994Pk5MRFty5sqLsqSxBSVIiIhcjeQGlxHooiDo9tsKel6WodRUbFSg0ZiRaVZ3K5XJfDOTw8bDAZ+/sGPXYni8Hnay8N9/c57TYOykcgYHB0gMsRKTV6uy8aaO0miQjDUpUVVbqEFJ8/tGTajAuXLkqTUsLBgFquEIpEYpk+EPA53IFomDh/9rKxooAOBkQ0uyA/j6SJ+itnj9ejFUWVNbNmt/d0jPaODA6PWIPBn//cft/dd1dXVZqHB7wglWo0FCYUdjQ1BVxhGKNMCOaKBWIMLtVoXBMhVCLMSc66fO6IRMKh6eC4fQKGUdDmkvNF49Q4AAAipVoil+cxYF97JwKCKqHQ5Q3yRVgsSkLBcYNWw0WF4WCQYKi84nJdUrYvTF5raNJIMLWI38OQxmQTArMgQ4BAbGzCFY6KtWIJTIMUhqn02gGXq2rmnENHz2AMMH/2LKFMggoE7Z3de/Ye/eWXrc+99OpX33/tjRH+UPill99ITst98bnXHA7b2dpzNputu7ubIMms7JwoA9EkrlCKb1u+JDE1IxAI+ny+Y4eO1DVcmbBZ7DZzWVFRRVn58OBQWloWQ7OWUQeGcbr7BnkcTnZ6JoZxa8/U/vjTr9FIJDEpqbCwUCgUOt0uu8utS04WSyUbSsqS0jJHh4ZfefWd6TNmKJTyhx57EgGB0kkVIAvJpNJN6+545eUXyieVttZffP0FF8rjDwd6m69eFUhEazZsHBoZnjFjBkDRf/z+WzgcFAv5eDQ8pbxcn5A4bfqsUDR2/kTttc6Wwzv3PPncU40dbZkZGXwOpJDKVixZiKLovv0HZ82ZbUhIPHj0RF9v/7ff/jrY23/nnXcyRJQm8QM7DyiFgns2rGlsbHj+6af2/L1j4cL5v2/ftv/YsbnzFmRmZg/19arVaq5I8MSzT7s9AalEnWhIj4SDUqmEoaGstMzR4ZFI2C/mc2xjw/fdfWckFgmGIzAICXh8d8AzPDRalluAQBBL0ix8g7ECQcANmwMAACGIZRgAhKAxi5mmaYPaSFEEBEFMvGUdL2hYgAX+PX/m///HTbdC4HoxTYmFArEY5AvLigrzLXYrAoMmg0kuVUjSVShLj4wNymSKEfMYXyr1R6M6TMwCjEYi7vI4D544aDSqGJ9HpVR1dnYLONz83GwEwWxjNisB/PTnHw8++KDZbOWi2Ib1Ky5dqYMZ6KO3P1qxYplQIHv3o89LC0rbezuz8zK9Yf/d6zduWLXmgScf8nu9iZk53/629UpT02MPPoxxeRAAkiTOsiyMIgBFIxCs02sQjOP1e+RyuUau5oNY+0BvUWmRTCzp7u3p7O7o7eq8cPHCBx9/8OTDj6ZnZ6akpuKx2JjN+vyzL5w9e/b4xZNTi0oIMoLjYT4P/fP3Xxsbmv76e4dKp+cLxQjEcCAsPSfr3KXa9KQkhAWjIRLmMjTNgjDXYNTRFAsioFIuo2I4C8IUDFEUxeNwWRAQigVRkhoaGlMqpSKRCGNhiiCNWh2Py6NpUiITkwTBctiNGzcG8Eii0eT1+r2x4KnjpxQGdU5aptvnZxgmOzWNhYCOoUGVwQADEBHDUfR6phNNsxAEEjhBkwwCI3UN11QaDYeDUiSOIgAA0CwL3eC3Q/EbNpAFQBACwPhFB+IyJIa6brkFcTnf/fRjBI+UFhd6PB6pVJpkMDAsBYAIC7Age70lQzNkfLXALAIALAjRKA9jAQCEEIomIYiFQISlGQRBItEQj4NBAEvRDIwgDMDCEEJR+OiQNUwwEZzmcbhQoiarIO9SwxUERiAWCruCZnzEl5juZFmRTNp27eqlS5cwhOVgSCTsFwhEERK/ffmyjKQku33c67ZZrGYeAnojYbffJ8JEEMqHGMiUpOUJREZTYigURjiYkMNDEIShSAhkEQRyOBwsy5pd7nA4GPctMZlMErGWICMSUCDkcRGIBSiKBnCCpWmTwTgyOESTeILJYJ+Y4HK5EE/odjtRlIMTNJfLZRjW6XCnpiQ99fDD15pafv1ta2JKcnd379iYo7S0eGxs7I6N6w1aVWt7ZzQcqJlRderECV1O8gTpGxzoFwnEEzFL5YzKYDg0NDJUPzScmp4tlSkqptScPn06hcP/6PMvlRr13fesS0owXLpcOzTUhyAQAAAMxeIkQVERmVxeUprn8/mMWvXw0BBOhIwJWk/Qi7mwaCSclpYRYaH+0VF9EipTKp579umRkaFDhw9MjFtrpk+dWlX16ScfOD2u4qxcjAF5AARzBT2Dg7jPn56chqKcdqulpyvC5XIFIqFYKrHb7TAMO53O5WtWeSc8PBARwZhBo6fwSHZ+Fk6wZstQok4ikcr7+vpQFLWbx0AYbb7amJ2e6wizNAFgqIxFpAEG7epqS09PT5+UxNJQ65WmtKTELpczOT/Pa7cTfvL2eXN6hq0mjfLw39skClnNjIoztRcf3HLfrl27XnrttffefSvZpGdxuqPbhjP85EnThAh69uKZywMjYYKVh2NcBuHzhARByTAhyiAkSVMQIpTLHdZxkGLUOi0HEfrCuI90mxSaqdOncfm8CxdqU7joyNCQCNYgIEjFYmmp6U6Xr7uvc+aCRUqjadjTJVQrcCoaxbAoANMs6vW6RkeHBQKBRqPzuz0Aw6r1OhRGxsfHRyxWmUp76MSx83WXC/MyUzLS/9y1d9my5TyBfNsfv5MUddutqz957wsWIiEA3nDH5gsXjnd0tNjt9qZrzSRNdXd3i6SiEcuwXp+Un5vz8cfvT585K+BzxWKERMgxD/arhDnFaamNAX93Z7vX6wYxpHrKtLb2Dh7CdLbUYzyO3+Pv7qGiMcofjtxx910cvoiLcaqqpvzwww9Dg5bq6sRpk1MLCwv3HNz79/Y/XU5nZmbmYF/32CgCs0QMjwaDrnHrhIDL06o1JUUFBbm5XC7H6XBUTp5MKhUioWRkzHx0//6CgoKjRw8r5YrMDP2MGbMuXq4LhcI8oYiLCbb/tj0jMzMm4OTm5v+wdSsKQVt//pkAgFnTa/hcgT8c0ScmJ6fnSJW6s+drURRev379gw/cjSK848ePByK4QCTrOnf+808+/X3rto8++uidjz4wJCbMu2WhVCJ/7dXXYBDBQxGFVOL2eiEQq6yYhkeiVVUaiqK02uRAIHSp7mpXV6dQwLvrnnuFfAEAAD6fTyAQRCCKw0B9I0MUw2o1mhhA8xiWYCgOjJEkGWc+x/vREASNjo5qdFocxxkACkejWekZNEPDMMzQNPT/Ko7+1+h7kxB7wyeBiR+NoSEJXzjYM5RgNBE47nV405IyTp2v7WTpeXPmykTCC5evGAQ8m8WaqFC5fX6FRGa2WFLT0lQi6bZfty5aflswFkkyJRgTjGSMuHS1vmWgx6hQJms1XZEQCoI9A4Mzps88c/JU9dQpQrGorKRUKhnF8WheRubpE6fVBs2cmtk9LS3ffv/diUNHfvtjh9qgGR0be+iJx2bOmL7s1ttQjAPFsxhRACQpFARhhtXLlAwAoAgkVUjxWGTYav7wy8/++PmXWVOn7/jrrysN9QAAZBTk2q1Wt9MTCIfkKuXBY8cGBvoW1cxWqVSd3V2dnZ05WdkfffQJwIAffvSR3eNatWoFAmNhOlhZWWmxWHRGg9vtdvu8KoUsEAioNDqMy6+vr9dqtVKpPCMjbXB4RGc0eHxeiUhsmRjv6eqWCiRl+QUkhce1swiCIAhynfEEgjAMswAoEAh6x4aT9HoOl3vt8rmSggJTSgIAAA0NDQRF2iYmxFLRQG/f3RvvYAEW5WBx9ZEv4GdoQCaTWMctOENpAZ3P7Uk1JYIMi8AwydAADCHs/3OtAQBgARYEAJZh45SC+BVHECQWi3G53IaGhsHevnfffockSZ1aC4AMTREAAIAAHW9VxxXDEAgDAMvSIAOwIACRBE0CUUAivSk4jjefWZbFcVwmk93kgtEMCTAwgiKRSOjy1aZ7Nt3n9/n6+nrVanUoGFRw5QIhLxgMm/Q6p9POxGLJCDy5strtdPX2dZI4w+dz8UhULBQVFec5XePjE9YJlxOgGad1nGUYpVhKUozBpOfxeCjK4fC4FMkIuRhBUO6wK+jz43g0Fg3HLcmUSqVEIlEq1QxDaTS0QCAAQRACQBgCGJpEYBAKhoOTKiraOzssEw6xUOT3+8WsWCmRoVyOzWZLNCW53e4wGYtEIhwO1+/3X73cwDwKVldU7t+zXypR8fjglYZr7T19GrXq710H0lJT5VJJ38CwUqm8fenKn77/yu4Ye+qph3o6u9RKFY/PFQj5KSnJDdK6S5evlU+ugjiQWqe6+/67nnv6uepp1eGg32weYwFKpVGNjZkxDKEoAoMRnUofikZMCQl+f9Dp9qk1OoIgWts7I+GgywXLJJLWzi6ChoRCEUnSP373PRdFTCbDpvs2+/3B40eO/75tz6qV9505e2rcZU3PLHB4vQCElkyanJmZHfD4HFa7VCgKhcOhUIAFGbFYGgqFGJbicNG9Bw+OWC0sGTUo5SI+j0Sh7t4eEEJ1chFPIIwRVILJwONwBwaHk5KSqyvKJtzmQNCJsLBKpe/qazcZtEq5wGsfdfT3eKIhvVCx59sfaRAYGhjWag0CTLjt+AmDQusDeiUqjc1hD15rEApFKk3i5ice/+7br6fOmnH68OGc1KzUFP3okHlgYIgGyNKKSUad0TJhx1moz9pbVlTW2dSOYiKF1oSSIZxEowSoS0yXiIQgDIvC9OCItbRqmnlkrK2tXSgUpBsSxDQModCshbecPn4CxMgoQdq9bmOCKeQLElGCRTlOp1MpFHBgCGYxOV/aVl83Z85iVMTHcZwhWYVMLlYqKQLnhXh2R+CpzY8OmkdBENBqdFbLBEAjzz39itfvIohYVdUUigQgEKiumjJqHtu1Z+eUqiKApUxGXeXksj+2/4Uh6JJFt3i8zjPnLgUj4SnTaz76+NMffvm1rfNyc2sTSJLHz56dP3fWY088bhm38YUCAIKPnTyF4+Tfx47XXjg/YbezLGswGFxeH18g6urta792jc8Tvvf+hzyeYNO99xUVFdXW1j704BYGYIV8QXlRCY/P4Qq4eXk5VtsYEY3VN16VS+TZ6amHDuybM2s2gUfnzJpx+VLdyMBASVFJeXn56ROvDY2OnD561GjSR73u4pKCSxcu4xSzcNHSn37+tbJq2gOPPNDV1YGDqEYk/vKbbwsLCxcsva21u/Ptjz9dt26dXK7oHhxo7+6+cuXKA/ffPzTYm5aeQsaiLARUT685efJkSkqK1+VeuXxVLBrOSE4NBjz/eumF7Jy8O+64yz4+wUUxg0417rCfPHtm2pRZY6NWpVwaCoUs4xaTMfHihauvv/nGLbfc8vjjjzhdrkiMoHAChiCRCOnv6eZAiFgsTtboOwb7GIaBQChM0xQVEQqEJIkDAICiKEWRLAvRLBUlGL5APDg0IJMrYiSFIRAIAjAM39xX/9fQe/PtN49wg4bDgCAI0yQDwGmZKcP/H2t/FR3Jma3tosEZGcmMSjGzSiUVM7q47HKZmbnMdpva1IZu2+02M5fZLruYWVViZkwpmSEig+NcqHvttffY55x//Ov/LnSRI4cuMmN8b8453/m8U26n3dbX01M7Z84lq5ePTXn80ahapawqLQ9TpC7HIVMpNBAcCAVUagVBKA0G01333f/V7m+tNptCrYpFEpFEXKPWzZ0795FHHvH4PUsWLTh64jhGKIKegNOeFUnEu/sHGuvn7v7mh8XLli5Y0PDDdz/U1NSRVAqXY8eOHN+yZdvOK6/4yxNP7vnzj6XLl/d19/T1DZjN5qysLASElq1cpkBxWJQASch2OiAUOX76jNPp9Pg8fT29m9esdZktVRUVk5OTNEW9+eab+/b8vuv+B9/59BOT2bp6wZJDe/Zeds1Oisk89sST2dnZW7dubWxszCTTmUwmr7BoffGm3/ftmTunwWI2jUxxoVCIIAi1ShlLJzUqrdViY0RhYGiwYU79uXPnli1bdubCBYvRRKiUVpOVpNI4jq9YvDRGpQARkEBIBCQAAgVh9mcWCACYyAsQDAuA5PH7JiYm5tfMkSSprLQiPy+XYmgEAVAUrW+Yq8KJlva2mZmZ3NzcQDhs1OvjyQQMwwiCABCY4XmZknDpDBAAsAJLaNUABHIs/+88JXDWZAfNbgMDAAz8ZxkJ+M+YFkEQCQBkOB6Nx3757deHH30ERGAMhniBBf7TIIEgQBSFWXwXCIIgCImAxIkcCiOz+g1BkCiJICjNRlVCMCZIQjQaVStVszMUGAZEkUdhhBMFEACzs7M/++rbosLcV175u8NpNJosIIRgKE5zvCRJMAiVFpfAEiAJAIJCZCoNiJJapZYAIByPbdy0XK9W7j1xHAIRCIEnxyetJmt+fj7Dc6IkTUxMFBQUwDAc8HlJkozFEizLWqx2tVqFy/UyFINRJJPJxGKx02fPqDSG0ydOLl++dO261UyGxjBEEiGlkkBSJOWwZ01Pe5LJtFqt5TimpKSEZVmKoikybTKZRFFkeQ6GYblSYTSaYrEomeZ4HuruG+4bGrO4igEEdTgcNAf0D41PznjlGJrtcm1ct05vso+ODK1cs2FgsHlgqDccCqXINAhBbu+kglBZTY6N652IjHh415NGnfZvz71cV1czNjIII5hCrkjG0qFQKBqNWiwWhZygKHpyerKzu6e2tvbixYsrly+bmPAWFBQYdFqH1WHQm6LROAKjRqMpFEsggGA16SFQMTQ4+dCDj9sdtrVrV6tUqqmA25RlLqkv+e3w3hXLl3M0D6nQqrLak4ePUkJaq1LiOGa123r7B71eP47jGIYp5ETr4IDDaUMhcHJ6xm63FxeVjI+PyhVE2BtWcpAISIIg0lSsorwUgECeE/sH+0RGQBBZKBSqq58zMz4m41kLoUIteAbTC8n0ypzyRIaKJSkY5i67Zgv9o0Al4+7JEQSR6Q1qr3tMjaplIKqSEfffdKvFYpk3d2F7S5PLZhLYuNVgTiWFE4cORtLMmjVr6xvm0nS6bai9sqySAwAI49OpRCwFYgTKiozbF8krKdA7rIMzMxqTIcdaMemeGBkYKCosOXH8qEJlxAgjC6ipVDxOAhQH2wxGQZBbs7MtgBgnUw5HViYRZZKJVCw6d91ysz0rkozPTPuTGSqeorz+YDIetRhMVqt5y6YNt999l9Wgg3nus/ffwzAcFKCCPFNJebXWbGlpbVq5el5HS6c9y3Wh+Vx/V9ull25hObIo35nrslw8f0qjIMLhcEVdnUFv6usfXrZqHSpXqbWmV998BwMEBgBcDvuZU6cjoRAoAZkMoyL0ebnml1/5J4LAHMd5ZzwqJXHgwD4Mw7JzXbfectPU1PRAv+2VV15ra2//7ItPDx45aHdYXRaXWqHkOM7r9WJyzGQy9Pb0a1SK4uJihULV1tZSWVmuM6jD4fCbb7554w03d/X2/HlwfygW15uMK1avmpgcK8rP/33Pr0FftLKi+vtfftKpDMuXLZv0TPUMD2pM+lKDwx+P8CmqrLD42JlTLz7/0hVXXdnc2mI26TZt3JJKJfV6vd3u+Pyzz1yunK2bNvmDoXfeee/o0aN2i7Wp6dzc+vqXX3zhwL59BIhs27iZ5LimpiaDTu90OsOpxBc/7dYr1Beam8wGK5lKRBPKAwf27T9wZG7jgicffjSvIH+gf2hsYrSqtoaiKKVS2dTZJvFcTmmpUaU909ykN5lNSlWSpmempy1arVKh/HdejSjO2lYtFgsLwB9+8klVVZVerw8EAtlOhyBwgCSB/0HhS/9v3N3/jfPf6mBQkiQehiQATqWTba2d1vV2g815oumCCIEus72npycZjYT8AQ4GWpovfP/VV089+AjFMjiI5Duy3F6/SW9YtXxFe3v74RNHGIrZuXOn02L2eDzX3nRdW1sby7I7tl/6zU+/AACwauWyV974x5IlS6LRaGVluUKp/PPwgW07dtIZCpZBNVXVLW1dB44eu2TzujVrVs2fP/+NN97QarVanYFMpmZ8/rmNja3d3SAvLmmcl6EYBMN4UcLk+MDocI4r+7abbg4Gg5niYpKhjx49euP1N1RXVB44tP+3Pb/vuue+nt7+/UcObb5025kzZ26+5rrPv/w66PN7fTPff//9HbfdfujQoWXLlpSVlrT3dDz11FPX3XB9gkyXlJb6/X6VKr93oBcQhcrSMpkgGtXaSc80BwODw0MIL7mcWWqdFgKAnr4+pyvLqNfPhAMACMAgKggciqASDAKzNEcQBEGQ41gYwwkZPr+x0aDXyzAMQ1E6wxByfHR0HMdxrVoDgcCRI0duu+V2UQAAAEiR5KwGJpNJQqkeHx+HYRgxGMfGx3p6ejZs2JjhWBSCpH+n2f9XVsf/BQwXBAkEpdkMRxRFeVHgOA6X4bt3716waJHBaOJ4DoIg6N9ILBACIBGQRPDf4ssKkiiyIAhKEMzzPIph09OecDi8bvUqjmP/Y2WQMhlGEARUhoGANFvxAwDA8yIAooLIrV27tn94bN/eP+rraiFY+PHLb1QKdYaiWJZVq7QIgkESpFAo6Azrdo+NTYwa9FqWZQVRVKlUY6OjzWfPQoLEi2w8nCorq9Bo9QCEiLxkd9g9Pj/DcCAINzU11dfX19XVURSVJjNutzsUCgUjYY/Hg+M4AMJqtbq4snbdxg15eXkMJ4AwhGE4y7IQjCLZ+fnl5eU9vb0Bf9iZjZM04wkEHU6bBIHBSFBH6DmGtzudHo8PhCEEQziBRXDopz9/1Rl0a7Zc4vWEMUyWTiRszvysrGxB4OLx+IXWNgiCgqGwxWSeP3exw2X67dcvt2zc/Nsvf5xpukhm0iaTaXxobGhsSqs377js8mVLFp87dZJlMrk5WTJcRWUybc1tGzduXrVynSAI09PT0zOTuXlFIiQrKi6b17iITMT1ap0Mlee6Csn077icpVnOancAEISkk4LIGvX6iWmPI0uvN8q0et35i6cYlq2vr7/Q0mw0WBsbGvp7RnQGLQyivT3DyQQdCiZQQUBxmcVsW7h02fvvv0+mM2q1XBQBiRFElgXlOM2xgiREQ2GtXIHC8BSVNpmNNMdyGVanUWZSyXg8LkqgTmvyuqfVGoNKpzt7sXXb5g0dZ86kBEmBKXCFLJmiZ7wBFpIwUCYJ4kt/+1u+IQdiGYUoAoCgxhBrTu66rZsPn2/uaG11ZGdPTHiLXOUrGpaODp6pLc2lGTFLrXAZNUkOmOrp9IwOeOMxDJefm/bkFRSoEURmtVVUVXj9HiGTwSQW41AcEhdW1V44dap2+VJ7jiuVSLb3dWsc9tLs7O9//DIUSS6tqxwf7jFlWVUKDIWgsyePdU5OqFDcPzamwyC7RplyOXkQnQgEVHI5CCMKvbFvdCwUCufl5PjD4aWrFrz74Vvnz590mcxcJl2cm2U06ovyC3776ft+ktY6LBaT9sKFswX5Za0XW+wmw0OvPnPHnbc8/OC9NpuFTKfD/kAkEDh65MjIyMiyVavHR8e0RnM6kWYyLAgA0VTq1N4j/b3dPMsZ9FqKohrnzbtq+/ZXX3+tu687O8tO4HIAAKqqqowqmdlsNGiIkpISQqFatnzlP//5r5OnTiVTcQiFEAQ5c+6sQk7Mb2hMpikNDJ88de6Jxx89uG9/nIynfMFgOORw2miO1RkNtfW1J8+dKauonr9k2bfffnvjDTcYtBqVVjHjnpJAcNnyhRcuXMBh4dyJAxIA+SLRkf5hTE4sX744lIxt2bSxu70tMD3dfPKUx+stKCh4652/v/7yC329Q7fcchtLM7fcfCsIAU8//dzHH70XDoefffbZkpKS5ovn/vrXp9s727yBGbVa2dLRbnVmrV27FoXhqsrytz98Vy6Xr1mzrqS4UBSAzs7Ohx9+tKq6Jjs7p7Kq3Go3B4M+jV7HsnRHR5vP59NqtRs2bGI4OhmMYAAEYkixKzeVSM8kwrM18ewcd7YMBQFABCQcJ77+8lun09kwpx5GQECjpRkax2SzjlZpliP4P1Pf/1pDAsH/mz0nHo598/0PFC8ACHro7MnsLGeGpFiWVecULKipRTB4ZHzEajI3VNX26PQffvPZogUL55ZVhb2BlpYWvdHQUFlFJVLNve277n+ASSQhBE7SlEDz1157LS8IBfYsAFfGAoEURZWUlyEoqjcZt27d2t7fU1hQfPLMaZHhCgpzHQ5Hfl6BSq/t6ekxZtkNvHToyOHTJ099/ukXyXB09GLbL99+7wkFDDr9yy8+X1dXd/rc2VgsNn/+fBVOSMl0/+hw/8hQ2ONHJdCg0/cNDd6z696rr776hb+9XLv/4GMPP6JYueLI0UMvPft8S3urZ2hIjskSiYTDZoUhsK+vx+GwzXi869atW71sxZkzZwAMsdtsRqOR50WTyWLS6Hieb+1sz851sSwbCwWNel1foL+ssDADAqloUq1U6jRapZxIdbYnSVKhUPxnd5mfzXgGIBAQQASGQQAwm0zdg/0CyyEwxNEMCiOiCMSSiaysLBAEXnzpZe/0THVFpdvtTqbis9YquYygMhmzyYpAsEKplFC4o6urce5cZLY/DIG8xDMMg8Pof18IhqDZzj0I/cfuJ0giy/ByOf7Lr7+wLLv5kg2ABEgiAIOgyIkAAICwJEkiAAAQCEIgIooiIAoQACAwDIGQIEkAAITDUY7jJED6dyksioIgRqIhu90++5jxPC+TycfGxs40NS9csCQaD5vNtpA/0NYyfsn6zeFAEMZQq8k84Z6oqanBMNzj9mhX6ZRKpdwq7+7plBMyCIEYhoFRjGczCqWSE6XxmRmlUlVfN9dktobC0Xg8abXa9HqjxexAUBkvSEXF5eFI4rc/9+fm5p4+dc5isRjNJpvNWVhUqlCrcByPx+OEkvju+++u3HlFQWEewzAMR8IILogQMjIxvn7T5pzcfBSXt3e2SRAAoYjH5wsFAmazOZlMxhIJuVyOIIjA8W63m+MYmRz/6bevXDlZWr0xEkuXFVUyJMkypMiALC+qVBqL1dTT23/ubNPq1av3/rFPr4UXLVgQCaemZ3wavWXN2pXDw8O/H/i8rGzOHXc/6fFMT0zFAxHx0NEWUWLSCX9JSZnZbD975uK5s83JdMrnDWAYrtGoYrHEsSNnsxyOoNej06itVntvby8HwhmOZ0Q+FA2FIxGlUklTKV6g83J0LS1tW7dcqiA0nd09t9x694effAGIisZ5cxYvaBjo6+X5tNli8cxMRaPBm2698cjeQ5PT7pNnz7X19NrsWT6fD0IQhudRDIsmolVVywoLC6d9bjKdVsrk1ZWlDrslmU6FgyEQEuhkQpKkvKzsUCTqScRUhHxiZPjSnZdPTo2999EHV1y+gyLTo8NjFkBLZ2gMAXUWI59mRBSWcYxBo5Kl+BQXXLR8sWdopLS4bHR6bLirdU6Os21iNKeqfjwVe+SWm378wEsGY3Sap1WQQAsyTK5W495IpLKwUOCBsbGJcDRZU9dIxZP+QHpsIpRntyI4NO2LKZUwmaSDMzNBr9fn9xsJVUVhaXZJ4dTAhG8mZLQ7B8emTAYHTYuT4ZBSK+qCoXJnNuAN+vonGZqNR2M+n09RXAagcDgWzcsvHJmaqG+ch/CCJHAyQgURagRDc3ILpHSG5wEAgv3+oHd6xqK1IKDQ13bR6MjNACAnsKVlJUP9I199/cnll1/26y97brzx5uuuufXtt94oKCgoLMrdsGHDZ198tWrdJVq9mU+nhnu7P/zovTm1lXfdcXcouPzP33+bU1c7MTExPjPc3t+iMsiffPSuycnJsbEJjVb3y5+/6UyGJ++5Lzs7O0ULR0+eObD3QE1NTXZWTiKRiISDAXeAFwSz1dLe1VlQVGh3Zo2ODn/7ze783NxIIh5PJnPzCwVRHJsYx2UED4AIJrvq2uueeeaphcuWWB3WJx97bPHC+alEksykJ6bd09NTaqUMAkEUgjFQO9LRMjQ89u4//7593YbnOx/Xa7Tbtmx95JFdeTn58+bNmxmb6enpu+a6a++54/b3P/hAkqR/vfNPCIIee/RhkqJKS0sKCwufe+6Zg4cPpdPp+3Y90Dcwkl1aIpPJfD7fxaZz77/3ts3ubFwwf2piMhIO/vTTD3a785FHHsrLLwyHwwsWzuvu63RZdBMTE/v379+xY8dl27YjCIKAAIoSWqfy/MULdTVVIALNBL0WrXEkOQMAAMdx/6H1AoAkoQh6sbXNajRuvGQdw7A8K8pQ1BcIoDBis9lmG8X/Q/UF/u8gaEmSBEGAIACCoJautkQqfstNt5r0huuvv/6JZ550za09fPSIQobZbNbe4QEMwxARkmGYWq3esP6S0uKyhNcHiqAgci6XMxGPX3/ddWfuu5iJxxMQkqRIjUbjnpxyuVxKjXp0ZmbGPa3TqD766COr04E4sSNHjyModOb8mWt3XGUzW/r7+8PJJITjOXm5iAwlYFhOyCYnJ2e83hWrV69avZpluLGR0UgwRLJ0W2vH7Tfd9sHHH21ct9FqtV5oOmc220NBfyQQuHL75QzDEjJsydIlIAzt2rVr3py5Wy697M2//+PLrz7HCPmtN9zy9ltv1y9duPGSDclEQuBYHMe9Pm/DvEZHllPg+IGBAffYxJVXXnnw2JGmpqZW4GJZWdnsDjfLc6kMpVSrv/niy5GRkW2XXupwZc1MTqusRo1WVa4vZwU+naFFUSTpDAiCKAbD0CzfGxZEARBFURIhUQQgAMdxg8GQTqclEZjNSqIYFoQhlUrV3tz6xx+/Hz54MBYNwwhYUVYOITDPzTZ1wXA4KgiC3WKBAKCnp++2224RAEAEJQgEAQlCIRSCkNnIrP/yzEsSCAAS8O+yWMpQjEIh/+KLr/qHBl9++UV/IEQocCWh+I8rH5x1L0sAKIgClU7NMtrkcjknCILAAjxHICoURV0upyQJECRxHAejWDwaVqvVKILyAi/9JytzampqxheGZIoEOa1iuEQy1tbaotPoh4b7Y7GY1WjgWTa/sGBizF1TVZ2Tk+v1e80qs9s9yfMcw9EwiuA4TrMczbFT/kBuWUmeK8+kM0oCMDExNT4+cfvNt3KCoNPp7Xab1+uVyeQAjJRXVBUVFeXkFpEkCYFIIBwaGBojyRRJkmNjY5devk3geLlczgmSwEsSABIKhSAISCAaHh0faaifS1FpvclI0VQsEUVg0GAwKJVKmqZhEBQ4TuBYEQR5ns/PLZyZnrQZDDFf0DftczizYvEwJ7CixOEyBU2lI+kgaNQTuJzHmZaLFzVKouX8SJ7DRJFRms6UFZecO33uy68++8ebb3I8otfrc3OzWY4xmW0yAi8pzevrbO3p7Glp7c1QfF6eS6lS3HbzDahMJvL0jM8/PjGl1+oxmKepjMWqn/YoWy56YBBUKRVZToderdbpdD29fZgghiYiRpl5sn8yFArJlYrHH7xfqdbnOCwFBUUkRdtdLkmSREk6dPhYeVnZVCC4ZN0a28hIXl6B2WyORCIff/xx/+CgSqUyWi3hsLe1o31+fYPFYmHSlDcYpDszSgiqq6tzj08a9dpQKITJ5MWlJdi0NzE4NjY9lp2V09vdJzJieXFlW2tPZXUVojKEUjQE4zazJRKLWdSGmaC3VO+0uvRcSub2jHZcPI2z0jgKz1m8wEngGTpVkpPT19GZYcGXfd4H7r79o/ffUOtxCAbSTFKJEDTHpjlOptLQNG/LzV20csmf+w6YNbq6iqrFqxd/98VnM1OTxeXFK5dtCAVjNCEPRSIbt2yxG82vvfrqD3/8mW2xyuWgKGUmvZMw4FDiKp1Og6nlxcWFQ24fLUnX3H1bX1uz2WmFMnxxaREMw3FJEAQOgeDly5e3XGg6f+asyWS4/+G/vPLqi0F/IN9sy3VlwRgKEQRLZ4RUWqtTG1Jxo1IV58XFixcP9A3u2LLjtwN7AgE/jMnuvvf+6667obC8qrZxvlIlD0biEIan0pTNIedZpvnCueuvvfL555/75MvP5tTWFRbnfvr+hyqFPOj1SAxTX1U1NjyZSqUwWBYOxx977Mk1l2w4duzUxx9909zWDEHQ5s2by0pL9/65R6vWbNy4cff3uyVQZJhMmkoNDfURBKbTaYIhb4ZM6C2myZaJ+fPn6XRqQoH3Dw5DMP7e+x//9a9/JUny8su2/e2lF9evWUEmEzgCoiCgVuuGx6cK8/J9IX8iFs3JySkoyFm5cqkjq+D4gUMvP/NXiqK+/PJLS04WgiB54VwMxkqLis+fPfPQQ7sYOn3HHXc89NBDp0+f7urtAQCourZOJieSVOaNt94eGRnp6+ub9HiqKypHB4aaL547euJwVlZWaVmZRqlRqRSJROLRRx+XAMDn8+3addfPP//c1dY6MDFoN9unJidvveWmhY0Lk2Q6nkwhCIbDyOjUmNlq0ao1Q9MTjiwnzPA8KCjkxCyqnuG5QCAEQRCG4R6Pb159LSxJBIbyPI9AsMNmnzW5zHpn/ifq+98RHP/1r2AYni2v1UrD9i2Xd7T3trW13HH3PR++/8mDDz4okaLJbBZB4ODRY6eOHd+55TKMUMgIRb7VOTo+VpaXDwji1g0bOIHv7uyyu5xX7rh8z54/b7n3Li6RBKWMKz/X4XB0t3WU1FYV5GSPTYwuWrQgEgqDvHj81EmH0/bIgw+pUALXqhbPnzvknsZx3KLTJdMJg1bH88L01IzZYhFdYiQWwxCktKIUkEoAUVq3dk1NdeXGzZtefu31K668UqXWBsIRuVa1felSQAI6Bgd++Pmn+x54oLa6ElcQ4xNTtD+gwjDfzPQTzz4dTEamQ/5VKvVAf384GMp2ZlkKTMOjI7m5uYIg4TjR2NioIZR33HpbJJG8+eabL9u67ZNPPpnyzOy85op5ZkuRK/e9D953lRauv2LH0Pj4zs1bgsHgl19+XlpaWlVRaTQYk0KmtKh02uefW1UhAVIkGmE4wWw2zn7aCIJIIiABAIZhiVQSzckDYUCpUSMY/PM3P2Z4tra6+rNPPn3n7bcNOr2aUEIyjGcYCEZmRV0ul0fiMYVCHk/Ev/rkC7PBaLbazrY0QyCowDC1UpmfmyeBACjCEPTvb1ySJJ4XeFFUyDCWZVFUplDIz549/+ue35999tmjR4+KAKhQKCKRCEEQACDm5uaGQqFYLCZXqux2u06ng2BYBCSGY1EEwmQogECiCOj1eqVSDYGQILAoitEMz/O80WgUJXHWhwUAAAbIJABKkplwPMED4Oj42D333PP5R++IAkBSqSUrVg4NDZiNhgsXzpMk01hXzzK0yWSKRaOhUIAgcBSFQQhhWXbW29U4t0Gp1REy3D06uWfPn3MaGzZt24Ir5TyVwTBsdoqMwojIi2QiNTPpPnz0pChJqVQKhmG9Xm+2GG0Wy/LFi+ob5hblFuRkuXiGlcvlLMuJgASjCKJQED///NNPP/xAkqTeYnJk2UNBP8vSJCnObs1r1RoAAFJiymAwTE9PU2nSbrKpcAWNmnhAUqvViUTMbMlGYTgaDoIAajWYcBkGS6LSatNqtb6Z4aVLFpYUFcbj09ku88hI37R76u47bopHgm53WKfWq5Ulfo9PqzfL5FhH96DAYfMWrCotPbhi+YLNm9Y0NZ1IJv1yudykcyBSKBaMZMhMMpFaunRpMBJdvW79WPdgdUVFd1fnTCZD4PIISVcXlGgNxqGhITkMQxxDoJBJq9Cq88gMFwhOqwg5x9IpMsVxzNDAsNVkHhgY0BsM0Vjiy6++qq2uUygUFEVt3n6p2WppajrX19ObikE4hFw4fmre3Kq51bWnTp+pKCtrP991+nQLz9GiKEEogqmIo+dOx0naoNDYsh0gjuSVF4ZTURiG5QA40jegVyhCVJIH+ZmgH0eRiZmJDC5qceT4idPrVqzLziulY+Hs4gK50bz7818JFMkutOdmlznMM0ebL0T51E+HjsoVWjHpNhhyBAzgGN6AKBISNTU0xbMCw9HlOUXMCu7AgQMXO9roC+kVK1bwycTgyOCBn/8wWRxauXp8sv/Hr7/NLy667qYbJ0bHmlsugnwak0kFxS4lgitAGUsnvTH/7z/+TIO43z/T2dmpJBSkAASSmeHOjlWXXOLzeVieSUYj3e2dhSXFgZDfpNF1tjWfOHrIYVYbdHCGCsUDSYph8rLzcstzBrr68l05k95pV0VlW0v7yMhoJh2fO7fB5XKNjIwwLPvDT9+/8urrI+Nji4orXNl5UVZqbm6prp/HsxyOEzl5BT//9qvDZh8fHfVNTcfCMTmKmY2WgYEhjuMgCO/qHHj00YfjZOrEmbPffP+TDMV5hl+6oPGSTRvPnz+7b/9vObl2TCbjpEzDogaapFOJ+JIlixAU8nhmJifH66qqb73lxpdfe72ktFCtJMYnRs1mM8NwX3/9zZEjJ44cOHj+4vkffvo2EQ0mVQQOo2mKqiqvuP+ee7Zu3ZrhBR4A+wYG5TLcPT7WcrE5RYstI/39bw2ptJpgMhZpizRnqLamiyzPjU1ObNu2pbys6LW/v77hkktaLrbfctPtrqL8gYGBPfv221o7q6qq7rr7/tNnmr799luKJH/79qeaivIsp/2STZe89o9/9HT1/vbzHxfPna2pnWuy2twzEykyXF5RcOTQfppkAwFvYGqmrmbOosaFYxPjVmcWrhSbu7u1MoLL0PMXNgYySbNGr8TwZ/71ilGtrc8toVkGlmG4nJAriFAwMjM9uHTJMqNWLkmCKIooAvM8C8MICEG8IP1vQSf/X85/BSjNgjgAAKDpDEmSP+z5ef3q9TACbLxkbWFRPgRdtnf/ntraOU3d7cXOnDtuumXz5q2//vBzKB6/86476HgUFgFWkgBAFBhapVJqLca27q61K1acam5iSSYvJxdC4ImpSYqhElTywE+/hCLRyjnVbvdkYNrH0cIdd9xx9Nhhs8kA8hDL0wgIO/Qmks7IUQjRaVMp8kx7c3FlmdVgSkSiGoUyQ5MgINIcA4KgyAobNl2yd9++jZs2sAC/eesWiYa0qPzIqVO/7PmdTpPDfQNRn6+js+3s2bN33H6XzWRctXZNR0fbA3fd9ef+A1dcfRXDCzlOp0CzuEw2Pe0JhSI1NXU9PT0+j7+opHBB4zz6FpqTRIZhjh07tnbt2n++++6JQ8cG+4c8vhlXSfHtN9506NDRp596VoLgZQvmXX7lFd29PeOTE8lk2hcJ8bwIiNLw0FBWtmu27oVASAREEZAAgQckCYQBBEVlciIWj4sS0NPbCwtSa0fHq/947dTxkzazZV7jvEwmI8flM36fQaPlOB6AIRCG+oYHk7F4fm4OBEGt3Z3PPvsswzBVJWUAANAkxfBcIBYjMBSBYBSFZ/FhAAjCMCAC0KxbCoKg3/f8+fHHH3/w8Uc2m5VhaBkiA0EwFovN7hajKKpTavkcHhRBtU6LYRggiAgKgRIgChwsSSIMAhJgMpn+W/YDFAz6jCY9CIAklUokUjabbRaZqdFodCYjL0qJVNJqNH368UdXHNwjQwkJ4Dx+HyFHRYlPJGOAhHT3dDY21HtCgYQ/FAoGrDZ9hqEQVCaKECQBubn5G1as/eK7bywWS4akovFIQVlJc2e7PduBYAjDszKZDIIgrUbT3zcwOTquV+vzcgtcLpdGozFbjCiKjo4Oy1B4dHQEAZHTp0/vvGJHSVmZJIo8xyoIeTpFIiAsMgyjUesACKQSqbHUCCKXyRUEQyYVCgMISkyGZVk2QzGsktdpDaGwX6M24kp1UgqhmNITTGZYEsBYgzbfkWNLJMhR95TZ4MhymKcmx9IpKuknKy/NidHT/aPu2qrGL//+r6+/+uynH//QsFxebkFvT6czy1JbXzXhDhw6dnJgcPDma6+Va5TPvPqCBDB9M9MsKkflehEAz128mM6kL9myMRqNsSyDosKqqsbWpuZoMjI1PaFWEzaLJZNMkun0+HCPy+UiQJ6DRTkKAyjknRi2GE06WCYzaTEClIFKQqFiaEoqFvt7u0vyC4/sO3LdTdd/+/mXD933YHV1dZpm9+35w2q1rl279tzpM1nWvMsv23by9In+0WEClSWCodG+URmKKRR4Tm7B+OgQCABkMCxyogqCXSatx+vOxIFxeLCmovxM0/ns7NxENNU+3L9oYSMscVF/UGexRGMJLayM0qQMRPtGhpyF+S0XI6UGc193jybLGk7GOyaoUKAVIQC5Ck3Go6V1haFx2D/AcpkwyoCoHEVF2ogJPjJAioJapRmemamqntPRNiBlUgoB+PGH36rrGpctW9fd0Rp2T5MCxzNJAZDc7hl/ICRSZCwYznU4POPTRovRnKXXEoqjR9sraiouu3I7iBGdrW0f/esDhd2O0nEo7QvGnWdOHiWUypDHp1ZrzVbLgb1/Zme7Fi1f/Nl3X5utyiKr1WIyi4CYoVit3RFMZAZGOyQhE+exuvr5MMwEpgcb5tSFQv4//vzF6cq68aabNm3Z8OZrb/7zzdfve+Dh3/fuW71q3Q1X30STGVSOTE1O0GGq61S7iLAqgybLalmxcOnFk+d0JgsPoqdPn64uq0pmou998kl3d/eHn31uc9jvvf+etuaWE4eP4soikuXMlqzOrgGdKSsdj/36w+96s1mFowXFRfFYJJlMulyuJYuWlJSW+8JxkqSfefbBM2fOGG2Ozs7O3T/8+tuv+x588KF/vvNWT9/QD7t/ufuOO06eOrH60ssoRgyF4/vPnhseGx8cGI4GA1Qi6hkf1+v1ep1xsLd7XnXFmTOn1Dqs0GnKz8/v6+4LBHzpTDrfYX3huRfuuOsendak1Rmqa7IvNDe99cE/77rrrvlz69/91zt7fvmxqqrq+KG9Wq22tKJYFKTFi1b0DgzefstDv/14YN+BvRMTY4sXNV6786qezh4E4HwBZNWKlTPe6fHpqfkNS2y5rkQgHAknJgJBpdGY8IfCfl9nwFdVWnm+q9s9Mx2Y9Op0OjKewVnk+6PHMhmSpTNbNm+k06lfft19zx136rVEhuMxFBNEThIhGIZEUYQAEQSEWTsr8D8wYf0XYwv4N/BSgiCIZrlYKm00m/7x8t8QAKQzGZqmFUqVVm8I+kMXzpybjoYL8vK3b9syOTpSN6e6ubkZggCV3qAxGlMck2IyBlwJiXC21XG+q21qxrN83sLO5tbNl24b7O23Gg2tra07Nm9NUuSxQwcPHz6IouhD995fVFz8zicfm60mkqK1hBLkEBEACCUei4cASRcIBPzppM1itWj0k+4pTI4bjcZwPIpQGSUuzzBMLJWOkeTaS9bt/f3PnTt3ijSbX14CaNOxRMxk1N/48GM4Kutsba2uKYUlARIFmVbV1zKWSDHOwvJvfvrlqh07Tl08L3flYBjWPzAgQAAMQhgAuCzO7s6e8oqKtq5uk806qzED/f2BcGjrxo2r1q/+4L0PcQhT48T+g/uzcrIXLJwng1GWZLKcjnxXztETxxc3zDOrtOPTU3SK7OrrWLpoMQzAw2OjRqNxSWMjLIEShPAihwIATdFmrV6tUgiAWFFS3NveffO1V+Ki8LdXXnriiScAAIAwNJZOKxQqXC5naFrgBALD7SaLAsOdNsfJE8eLSorz8nJ5nlOplAAAAAoFAAASCJAMnUynjUYTw/OQBIISxPEiJ4qYIEuSpCTRVqfro8++gFDE44+CIChXcDiCazQ6FAYACQBAAABFUeIBEAZmQ5NQmOdZABQBCJZANEzTPJuR4bgcQwEJRBB5MB5FVQSKy0PRmFqhtFuVkiiBEgRBwJ9/7ktDIJRMirEkCKunxqdYMmUttAGCmIqnIqkYLkOUmMKalVNYWTnlD2RYpqOvH4BkDAdAsFwUAV6U5jY2KNXE999//+TDj+7evRsy6Apz84/8sS87v0AuU8RTYQSWwTAoSFIoGq2oqbQ6cvR6NY8qo7FIc3s7m0kjIKBSEiVlJfWNDTarffW61WkyxQucEiMIGY6BMIFhiCgIDocjEo5xPKPT6zAMC0ejmIAmM6To88vlcrVWG4vF1AYNxWUUSgUAS7FYnOW4FBnF5RoM0yrURCAQCPsZlVprszorKotj0VA85VUo5TwDXHnlFopMmI3ZYjH+xGMPb790gyCJeQW5FzqaIEyHK3RNLa3Hzp3DZEqFRr1k5XKjVT82NpZMJicnJ67csX1yYmjvnl8L83PMdlu+Wo7AgmdqAkEQQoFGUwlzbpbTZgdEkCbpidFJJS6TywmW4ekMz3JcTq6rr7u/qCAvvyRvYmw8mUjUNDSkKY6h0gRGvPXG3406IuR1K1FIiYo/f7nbscticzkpidea9UIkgsmRjo6W+QsWNZ89f76p+drrboxGIxadAdDtd7iyBk6fGB6fTNNxQo57A4HqqgqP1wshoM6gIbTKixd7bfl551tb8/PzeV4sKyluqK89cPjQ9su2jYxO+jrajUqFXAZLklKnASk6CcPwtfc9MDbhxqwpz8TEjtvvaTp7TArFERgxK7lweLLj+PlV12x3R4MWfdHg2RZWIItzbBAEAOm0gMp8HB9KJ2oselOOvbPpzLzyAp1BNzTUHXL3GMpyiRJnVXY+0NJ+7uLF+3du6e0bOtHXzicycyqrpyYnQRAPxtJURrrq5rt2/7S76cKZVBJIp1JyAo4lgtkOq91sg0D+sp1XHjpyQqHRY4Ri/YZLFErZ66+/ednlO5I+rwpDVDJ5Mk5mMmQqFudFSa1WO4pyWY6acnunRkacLpNncmbZkvUjg0PJQPDEQD/ACXMa5l5zw9Xf7P7unX+9OT4+2dna9q3FNn/hQgzC3FPTcSp2w9or23ou3nzVTQePHbnzkUc2bdpUVVF94thxndb0+ptvTcaCv+/549MP3l+yeElWbo7b6+ka7CcBfmZ66pbK23mWnXFPmRy8VqXGZDhDUyKHoIgs25XfOL/BYDB4PB61Wv3aa6/NbVyyb/+xcDjECux1N9wyNe3Ze2CvUqPyBd1tnReefe1FvV7384E/nnvxZUiAY+GEIIlWu1mlxLNs9nCKNqrM0UBYBsKT3sQCfePyZat7e3pAApt0B1zFFc7Sytwss8XuWrvhkqqa2vXr1wcCvub2lvr6+g3WSz779NN0Iv3CCy8U5hd09XS3t7eOj487rYUQhCQTGQySHT125ELzOZpJbdm2Zs2qbe1tHfFoCsVUhQVGk8FeWV7nDXhPnj33zfc/9Hd0qZWq0qqKaDQaC4ZLy8sq5tb9/Osv5WUVgUAgnkomu5PlJaVDw4OSHEtRaUKp2PfHn2PDQ/fdebdOa+BFDkMxj9eTZXcIoiCKszsh/0Ya/T+k9H/j/F8sLZGfTTiYTR+KxWMnzp+36I0Nc+rDEV9rd7feZNy0ZbNCThw5dWrdqpVmncG+fPlfnnmmrKwsEouKAtDV1zG3olaJYYlEDDXqMQRaVDuXJDPT01O//viTwWJcumixCAAAAre2t9EsOzQ+SqfJm++8SyaTP/LoY/Pnz1+/aWN3X+/cqhoAAGAQ4iUxkUiwZpsgCNFgYOn8hSyZsZot0Wh0xuuRyeUQgkgQBCGwwWDw+/0H9u5vbGz49fff1q5be/9jj8y54Zb+waGnH300kUip9VqIQD/54ut7dz308ccfK4wGUeSvuuZqs9n8zFNP//7TT3fed4+MwE9eOFNeUjq/ppYR+Kl4ZHRsaMuGS46ePrlkyRKSJMfHx4uLiyEIMJkMY8n4Xffeg4DQgw/s8nq9iUTsp2++Qzhx4Zw5JrORzjBateam625AAVAQJAmB+AxzvrNZKVdmSCqZTM6dO1cCwVkOJAjCEgDghNw/EOIZFgSheDyJYVhBUckvv+2JxWI5OTkAADCZDEtn9Hq9KHAoCs/GNvs80zl5eQAoHTp06OodOxFBRGCUZVleFEiehxEkTZEoiAkAMuHxZTIZSZI4jmMYRi6XZzKZTCYz6zkYmRxPpygYhnmel6nlMpkMBEGVQmk3m2UwpJBhs7tGLM9iiIznWQCSEBgRATgYiY+FY2a9ARIFjhNxhXx0eGjG662vb6ASCZ1KCUMAzzEgBKEo6vX7VFpFXV6J2z3Jc5zb7UZEQIPJU74ADUslRYXnOy7I5Fg6nYIRMBVP9Ea76urrfaEAIkdBBJIEjqaY4uKSHLvzjz/2pELR9z58t7qu6vDhIyAMVFSWqzQGSAJgBCEIAkRAlmWUSkVXV0d7W09JaVHfwMi8eQ31tVtNBp3dakVRNByNTE67+wb6P/joQ5cr65577qFIEkVRAAJBEEKUMoVSriTxjAQIJJkSBFylVnA8p1XrdFpDMpkMBAKzw3CKomAYhiF0NhxDo9EkUhRJ8QKgstpNQX8qFvInImGtVuuwOSEMxWWS0aapqHBdbDmpU2n37zk4f96cvPyc9vZ2myN7vmzh4UOnhkems3PzOnp6r73uRostixAJCIFmPD65XJVfUC4A8orKRqvFNjjYnU6mWJaVRM6V62QYbmbGrYvFlBqNUiHDMVlOli0RjlJpkiRJjuNIMsXyTCgUqqmt6u/vJ8cojVLDi4JKox7q6du378DY4PBDD95zxY5tb73x2vSUO9tmCkQSv+35nuZIs9I8M+M16IwIplSb7RU52dXVta++9OLQ1BSO48XFxQWlZdUN9fOWrPB4PHq16uKpU0tWZLWeOx2Y9pWXFobd01pCWZjnPH36rIpQcBwnSVIqlSotKJrbMG/f/sMEDjldDlxiw6GARW8WWdooU0SGR86dPO0Jha06I0kmX338geqc3KkM/8Cdu6RQOPHNF6fbLubVVhYVVQ1NDxuXNebL0NbTxzgZrFTgHCVA/nRnW2tFRUVtQ11786lp97iOUBQ4jPku+8yYpy8Z4yQ8GIpn5xccPXMmNB00gKqGrWurCkuCXh+KYeNTkypCWVBUUFJQFPIGRVDBMIwrJ5tnOQyBZtxTVrns1MmmZILMzck7f+YsmUpjCLps4fwjhw4nwhFMhwEAgKJwhhZsdvOkN+gJ+CuKSkwmg1xG6DXakZGhbJvt1IH9vCgY5AqlGe1vbZU4luM4QomH/J67br2JljIDff1qFaxSEuFIaPvlm0wOzYXPzzU2LNKbTWMj4x9/+MmLz75QWVa5fsMlHYN9D919p0Gt3bh0WSqROPHb7yq1srS0NL/GiGu0ufk5X331lVqpzKSSCAJZ7RYURq674cbq6urff//9s8++oGlar9dv3bpVkkCKjA4PeX3+4Lp162iSvnixJSsrOxSMrl21ef/+/b/v3rN/356c3CwCgTmJN1s1a1dvjibCMCyVFBf/+MPP26+/urS8rH+wL53IQDBAkuQnTz4FgtJ9D9xf2zi3s7Nz5zU33H/fLprldDrdiWNHeZ6XeGFoaEiByyVeWLFs+czMzL59++x2e2d3T319nQikT59qEkVITig3b91WXFC+YdNGjmN///MPhJd27rji8NEjx44dHRkcvHDhPK4g1qxZs6iu9vlHH1FqlFarNZZMdfR0T4xNjvV0dDWdA9PJoqIinzuIAkA6NGOzaqtKi3/9Y8/8JYvOnDj+0jN/ddkdvMCDMDo+MTmLwkcg8D+Z5+DsGOx/rr6zf2fVF5AkGEQAEAQkiWX43NxctUJJMbTBbDp66kSJDEun064aFwJIn3z08Wt/e7m/f3B8dOzJJ5/84uuv9DpjXUVpMByoKCv3+LwAAMIYiokQJEETExNvv/fuB++8e/jw4Y2bN7knpy62NG/fvMWsM6kqFRwnvPH+O4Fg4OVNm9zjk6gIeAJ+l9UucDwEgAqVasY7nZWdm6bIaCCk1KgBRnRabYzAkxnq/LHjlbU1sUBgoK8PhZH8gqJYKml1OfcfOvTwrgebL3TcfevNGAjrNcpx97jZYskvLoEx5dbLdjQ3XZjTMDcrJ+v0kWPFhfn7x0aaz5zLczhMet255gvlNVUGjU4t8DG99uC5o9WlFfF4FIIgu90Kw6Df7y0vL40nwhJNP/yXp7u6uniWnjNnjlGr+fXn35554i9qi7EgJ3fn1VcAkiSJEklSEATJlYrLd1yRn5MzNDwyf/58kqI4joNBUAJBgBcQDI5EYhzHmc1WAADauzoX1s3lef7IkSO7f/ghOzeXYRmSTJlMJkkQgNlFNQlMkWm1Vk8oVSTDXnvjTYTJMhgM8xzHUBkUlaVTlCAIPC9wIiuKoiBys/oqSZLECyCYoLjMLPUFgWBBEGAYVSoIBEESiQSf4UQQEDgxk8nIZZjNZFErCQwCMQyfHVgIEi9IACeI55ua7DnZZDzkMFvluCxDpk0GfUlRIQBA/1dGkwwGACBFpkEE3PXAroAvdObchVSSFDkYSpJgImmy2JZdsvrUhQsAwHMiJ5NjJJkqLMhZ2LAoy+l8+W8voAggCRyGYaFAorSkPMeVzbP8Q4/tutjUTNGkCIhKpTKZTHICOLtwzIscwzAgAjMkOX9B44oVqzEMvRrHIpGI3+8f6O/58/df+/oHKTojgVBpVYXJajGYTTJCTtO0IAEiAJIZCklGkmaTVeREndbAZMh0Oi2XKyQJQEQoNOMnCMKoMcTjcRRHVBiuV6j6ZnyFBSU0Q6VSSZ1aA0gYw2QgXqSpOCFX8zxFJRjIakQklGfTy5Yu4gXSZLQ0nW/t6+7ZsmXLzMQUoVLGYjGBl8hYQuJ475Qnz5H7+w+/YnKCIIgL5ysTidTY6OTChYt7unvnNdYvWThHrtDEgoGe3mZW5NQ6XcvJ04W5LlEQEEHUG1SJWDweF1JUUqNW6TFdLBbjeVGl1I2Mj6dTVE11XTARjUbi0+PTjCDYjYZtG9aewFEYBILB4JlzF2traxU4IWFYMBa02OzusTEFrsokUvFEamR6cvDjDxrnNuQVFapUKrkMn56ePn32DPj556CEm83m+jlzSgvLLS5nqSDZiordU+Nezwyi0a9ZtfbEyTMpKi0gUCAQMFlsI+4JnhEqiorams+RAU9xnqswLz/k8RktRt+MR6PR2JVQjjUvnkw6jMYF6nxBhkPjoRdffP7tD9/dSG558Z1/Hd534KHHHo9T8e/f+3Lr1ZevuvrOtiNHxmf6S3PyMxQCo0jT2TMsCCrlhEiRDBk1GXRpr9+h16AEPtDRpcBlFElW1M8xz1scDEcjwfCvP/9cXpTf2d2Bw4DIJ/s7zxEIluusMOflf/HFF1GvX6vWLFq6cGRyhKUEs1YfDUbam5tpMt18vqmjvTmVTMaiUZPR2FhTIAcEpV5VkGedHHXvvO56Qq595+03chhWLcO5dNqq07MUxaVJlUYTyZAauVwOKsZ6+sbGxr75+us3/vHW22+//fPvv86d0yACaCxKeaaCfbHAVdde19M99fjju955619ZFlMgEDh77uTrb75x0y03RqPR7RvWtbW1BYLe66677rXXXnFYjEYlMTI02Lhmg1Kj9fl8Zp2htKbq6NlTyxYtfubJpz78+JPnn3/e5XLZbJapqamlS5fSVMYz4xbZxMIFiy9Zs5JQqZ97+qlFixZ5vX6tQvHGKy//9ttvC+fP37Zp61XXXjU2Pt7T1293uq644vKhoZG8HNfIyJCrMGtwqn/APezzR++49sapqanDR45cbLngnpwCJKG7tf3Rhx/58P2PxscnX3j2hYMH94+NDKEoPH/R4mgs9t23Xz/6yOOBQGDp0qWbt26ZnJzUGg07d+6k0kmSYnp7+ysrywf6eleuXOmfment7fZ7Z1y2rF0PPYAriLzcnPrautdff7VvZEilV9vMJuzf5D/Q75suKyioKCphFs+3Wq25OTkuh1NFyDM0NTk5uWjZYjWOF+bmTIwMX7ptu8vp9LpncLWS4piZmZmlixYBAMDzvCiKGIb953b7P6C+AACA4GyfEWA5DkVlaYqkWd5kMZksJkGUpqenp6enL7vsMoVCIUOQTz/7XK1WT0yMnTh+/LXXXtu4aQuB4+vXr0+nqLLi4uPnzp5pbXE5nF6/32m2MiQVocjbbrtDRsh33f/gcy+/GEsmtGq1Kzfns88+yysqvGzbtq+++FoB4089/AQKo1aH09/X89sfe+697Q4IgkAY0mq1IyMjjqyskoJ8GIS6B/tZknE5nCIC6TRam8UaS8QdDkdRQQGBERAKJVlm//79NqN56aLF73/08crFCyUIZlk2FIr0Dg7Na5jvnZ5xZNtynFkkSU66JxbMa6ysrMwtLOhubf9m9zc7tlw62jskZngPFWg5f16n09VUVKlwpcVi2bdvn81ms1gsNpvtx5++P3369KWXbMokEkadXhA5HMeLS0tWrl19+NDRy6/Y2dnSds899yxatGjZgkVFpSXRTFoURS2iDcdiLpcrkkqMjY0hIuBy2mEYRhFUEoFMhpxN8YvF0ygEu1zOp//6fDgczs/L9wf8LMva7XYAghEI5CVR5AFeEtIZDsLlA6PjdCYjCMJwRxsGIzzPMwyDY3KapllewDCMFVhIAmYXn0iSxDAMAESapjMsnUwmZ1+fmZlhMplIJKJUKnUGY3FBodOeFU4GcBzHcFk4liRUSiNBGLQ6pUIugxEYQCRAEgSuoKBgyjuiVmnHRgccDkdPT49er4dhlGMFSAIBUfL6PJOTk4lo5OTJk7fffvsDDzzw7NPPLJq7EIKg8ZCPT5FOh3XNxvWHDh0IRSKEHBNEnhcFkedqaqv0Bm1/fz8ksDqFkuXo2ee0oKjw2JkzCp3m4OHj6URKqzNCMCZIQCKestiyEASRIEiQQASTKRSKgYGBU6ePiQIsl+MD/b0URckJwuHIstvt115/PUbIjRazCEitra1KpZLnBVYQQBgiCMJutyN/f+0fv/2xh2HYwYEhh8tOyFQ8L2g0GqWMYHgOx/GpqSkAkEiSVCkUIyNjdquNIlMAAAgcL4piKh41GHTxUESDyziGyXHaCQJavqS8tLjCPT7NJOkgnUFR2eFDR66//sZgwCNJ0lD/QH1jvdXqnHb7g+GEDCMQGC8vrxwZGeEZbnR8Oh6P87x44NAhh82SpsiRsfHNGzdk55c583M///z9geGp3Jz8/Pyc8eFBh9nKSYAAgDKCwHFFOBxWAGiGEymKUoKIw5kDiVJv36AtLxeWMWsu2VQ/b2EgGrRYLBiG6DRalVrjcmWjCM6xktOaPeX2mcssOCwnYwkMQwfGhm65587E4oWnz5wBAY6hEmQ8rNeq55YVqQiFP+DNyjb3th5rv3AYAIBoPKk3GAtLSitXrdEYjIkUZc5yOGRwZ18PlWFyc/Oa2pqD4xPRKVV5fo7JYOjv7XZodCo5ngyGrEYjj4BjU34pwzY0LpgcGp+ajsmMCqdZm5PtvP/2W+/d9eBf77r76bff7e3rVgOKAlvuaFPH+SMnr952qd1ubu9uoRmKGp1aXNcYSMZoKqPH5FqVPEbGc1y5fjqVIZML5lR3j09GwvG4N75k8apfXns5ODG1cG69Qo44bcYpn0elMGi1apDh5ZhSRFAAQ7UaQzwYOnHmrEKj5UUck0FpMqbVqVNkMic/Jz8/+6lnn9HrjTqlTIUiZqXOGwilPV4AQAVGwjTK9Vu2/PrzTxY5vrRhTpJMWo06Tyrp90zlFZYKLK9Wax35+ScuXoRFIJFIZDjxyOGTV113RWd3f0dry8TECC9kNm7YfMcdd19x2c7RwbGLza1vvvfB0hXLt2zb6rTbms6euf/uu/vGJu+65w6t1RJJkWUKhScS4hHYbLV5PB4QBMPh8G+//HL97bfeeP31N15/PScIWzZt9Hq9qUTSM+NGEail9eLll142MjyYJlmbLevtd9557fVXsrIc99577/hEOC+36MWX/3b/Q7tGp8Y9vpkzrRfHh8bOnW368JN3zEaLQLPJRLQoPzsRjXW092Y785596j6L0WIi5DqNrsBs4wXp/ocf3vPH3mgsUVtb29bW1t/be8XlOxLJ2IWLF+oaGhctWqQz6KPx2Pc//lBaWnry9Nkrr76qo6v7zz17KyvL58hVLodz7brVw4MDH//4ZU9PT15eeXFO8a77H+wdGkBASKXS3HjLrYtXrext67jxjltrSooACRiecaMq3Q+//lk2p9Yz7b72tnv0OvXxE6fvuOeBdJr8xz/fYBlQq1Hptboz+8+99MzzsUiEZhmd3JJmmOKCQgCUOJ6FQWiWbQRBCARBkvQ/JW/MHlEQYAT5txULBEEUEQXBEw6ZlQocJ3QalUJegACSHEESyURudlZ+WQmGwP94842rr746w9C33npbVlbWo48+zgliSVHx8MjYuNfb3dN57zU3yVA8ToX62ru0JsOiOQ1arTYnJ89hMLf19v7t5VctRoMIQwtXLf/www8nfDNTAe+yeQsX1Tecu3jhq+++veGqawSO16rVIAwlk0mDRpthaYVahWMyGEXkhJyQYVXlFV3DAzTLmfQmKpXGFURHR0cwFAJ58fXXXy8tL7tv1wNVdbWr1q7Zf/Do2tUrU7Ho999+d9+uBxKxpMKoMRrNJoMFp0hgoC+/uKS9uempZ5+76cZbUBDSqTWxdHr+kkXpWIKiaBiCdTpDd3cvDKOTk+5IOLZk6fJrb7whGAz7Il3RaDSvQPz662/9waAIgyXlZVUVlTaX3WAw/PDTjzP+wCVbN9fW1ja3tZbmF9ptztHRcQgCNRpNhqQVKsIfCqAwku3KSjMZnmdDoZDNZjt06NCF82effvavsXiC4Xit1sgIAM8wkgQwDBONRhmaiydTSYrkBJ5nOZ7nVTKZhEhymYwmKZJPchwHwpA/EJC4f0d6KBSKGfdkJpOhKArDsJmZGQiCZmZmwrFoMpnM0LQgCJdeeqkx23qs6WRudl5pQTGmkCfTFILJUiTDqflgJGY06PRarRyT4Tj2/gcfffTRRwQKjY9Prly1pry8/OzZs5FIBIJgvy9I4OjsRjuhlCeTSUEQHty169ChQ/uOHN6xdeeEfwoAxDSTWrK47uy54zyZyDKZ/DMpAQYlQbJarQgGW2zmUydORqMxFDXM+o4JQo7jBENzPC+Wl9VFo1E6I+IytVKhhRAUAmEQBAVeQlEZhuICD3CsqDNYkonMmnVrSorLndkuGEUYhvF6vUMTk9F4rK2jvaK8tL+/v7GxUaFQxGIxQRCMRqNarUb+3Lt327Ztnb09EIyOjY8UFha63VMiCHhjYYvFYsvKGhgf1mm0AAgWl5dF43GVQi5IYDKZBABAFEUEBQk5znEcKgOTsaBeW4ghEktl1ISMZdOQRC9cuuKdd97R6bQIgvT1D86fP1+lUkVCoUg0mVuUt//4KafLQotSKBHnQICm6VydOUOzRpNKEDgUQZrbWr/55ru29q5lq1YuXlC7ZcuVfZ1tU2NDoUBQrlCq9UaeR0bGZrKdkCSIOKaEUUJrxHGaNuoNgyPDDpMpHIsnUxlOghIkxQtSmhEEAMnOL9AoiFtuvtlhthqVCoqixvp7jWq11z21ev26vb/9GYmEXFa7b2j04slzxZXlo1MTFoMxFApMT44ZNTpLXp7TpAfplFGBKAi1JIKi2YSg+FhXZ8upE5hSWVBSZtKbIBR84tHHfvvl977+QZrnjWZ9vtOWScQt+YV4ZW1/T2dJQT7JkiRJYio1JUA8A0zNREJJEtMosAzQT07VFpaurZrz0T/ffv+9d3YMDX3yr/fySosLSpwKiKsUDF/s/qJm3tyF89dMx6I8iG7ZtP2Xfb/X1Df4hoZjTEamlLcNDoqCYDebj58/Vz1/kUJj7R8enXjjLZwRrToVAoscn0ln0qhM7oslA9F0YXYuhIDRSFKGq0c8ffPq6lhKEAU4O8/FAWxNfY0vEKIY2p7lHBkexBWE2WaW0WEEBRQqjQNXD3d3ZxflDU2OVWq1Hp9v8dIlwf4eJpUIRcIuh7OsrGwqFKYZKuQPpdPpGb+PoZnff/wRlkSlUvb+hx/kFOfp9PoME02R/r+/9TpJki88++LMzNR3P+9pam+55467Hn/8SRmCFuQXffvbHwwAY3Ji9apLXnv5b8sXryLkMgAEB8Ymlyxb5g2FouEwgiCNjY1PPv740oWLCYLIz82l0ul4PH7LLbfs3fdHOp0OeD3lJcX5JaUuV543FD3b1Lxv358bN1+2YsWKH39+NTs3+9Tpcw8//MiF86dlGJzJkMWFJZuuv/aP/QcIOTY80LOooZZlxb6O/oaaaleWI0WnvV5vUXW+DFdm5+UptZrvfv7uYkszIZc57FmBkH/56lW4StHa1SZXK30BLwRBB/btz87NEUUgEonEYjEylf7www+DoZnSsvya2gqNUnXs2LGPP/zEZrNdf+3t8+Y3BHzekfHB3bu/fvjBB6tqyg22uw0OayKVGJqZRGGwNL+wo7tr2eIl7ReaLU47JJd5I8GTF8+PjY3hMjQ/P/+aG290Gi0pKjX92++PP/QITWdkOJGdo5twT+mNOoNaK4gCCmOiyPM8D8MoCIKiCED/Mxv0f8EIYQRjWRbDMFEUh0eGIQxV6/TT09M0IbdY7VqtVgLARCzBMoxKoVy9ctXpC+cXLlxYU1X1wXvvz21seOqJJx9++OGRwYHymqqevt6a6rrhibHPPvts/crVNp3ZpjMOYmhvd8/qJYsRGBsfHm+NXFy8YOHHH38sI2RTXu+FCxdKsvNKc/J/+XOPTqebW1Nz+223ff/99529fTUV5RzH5efmud1uk04PQVC2PUsCJFAUIQhiaDZNkma9AcZQVuBxQj457Z6enq6prSovKBYB4d5770yQyVf+8XcAQy+99LKCHJcSl2kV+Ifvvb9z586MxB/Yd1CGoHl5eSAIL1q+tDAv/9c/9/x+aP+SNSt7+/prK6reeee9eQsXFLry+waGo9F4W1vHihWrMpmMw5GF4xgLiKMed0tXx8IFC4w6o1yGv/DcC9ffdOOxw0fsVhvP82WVFY119SfPnP3ht19OnTxZWz+HoihJkmQymcViicSi+a6ccDQWjScqS0uqcVlucWHL+YvhWNRoNr//7nuv/f2twqIiXzBAs1xs2kNmKIHjKYrKMCxLM5IkCSIgAFI6nRR5fnBwkOVFikpLAifwbMDnxyAonU5HgiGlRslxTCwSmUVOxmKxDEnJ5TKG4WbzAVEZhmAYRVESCPz204/Q77+WV1bYdcb9e/9ct3Z9Xl4BTbPJeMKXyRC4LJFOjY6N6bUGg16bX1R07wP3D3f0KmVtdRXVX37+ucWkyzXqUQi24hguxxKpFILJZAqirSPw4ssvQaDwxBOP5BUWBFPxc2dOM5y4dvvGQ79/DTOsy+EIJykRADMsZ9OY7Fab2Ww2W62j42MiDMg1qgyZymQYo9FcVFDMkD/ZjOZUkvJ5gwqFOhaLc4IoxyAI+XeEtiSBFJWBIESvNxYXF3tmguk03dLRve/o8WQ6heP4xNi4Xq+12m11dXWXrF1z3TXXIgiSiicQEHJku7RqFQSByP4jB882X1iweJHBbNKbjDffcuO//vVWV0+3nFCOTYxNe6fMVhMgCtkuVyIZcTgtIATLUZRiYAJWUGlSYdKTGSoZT5YUF+i0KoUSE1gRAYloJGk16yEIPH/6zNTY8BVXXyGC/Jbtl/b19SE4xtFUNByqzclpmNfYP+jVGZWMIKp02lgsEY5G4vH47Ayf47isrKyqmpqWtrbRybHujprbbrpp7dqNXZ3Grs7zBEGcOHkOxfHcvHyfx28xGDM0G4nG5XK5UqlMpSme52d8fplM3tnTXVVdUzenPhKPqXAlRaUVWhVNZbQKFYFho4MDgCTk59klGCHUuq8//XTjpm08x/X39MWCCYvZzLEsIoGwBFiNFhzDCgsLIVaQw4p0Ml6SVaxVysdGhxKJCKbTbFxW39/SC5ssqEa9/8AhnVI53NMvVxLbtm+mOGH3F592D41UF+RFwn4ck5ks1vb+gfL6yrDXz0djJoeD4qDJyUmZEvOnIgwgB1F574ybwGQ1VaU3PnD3ZesuRRQdMklcvnHdzz99YUGgDfPnHm1t9wZDDzz4mNpkau7rx7VawYNKEJpOhKhkJsecw4AMlSLr5tQSGmJ4fAzgUgXZOSwoSrE4z7MgiiAwRhBYKBgxmAwcgMiUuNnqVKAogqFer3dBfcPhkyfzKysnp6ZSKfLEqXN2q2NsZPTjDz/iGUYSWL1en06nx1lPTePi1tZWWC4DUezwsaPLl6/0edzJsWGDRj3t906NjcKAEEhRao3GYLMEI2FeEBvmLXC4nIlkdPlTj7z82vsLFiz3h0JN579zOLJZFjKZslraukbH3E8/99zuH3Y3VNawobgr29na2opplK+9/Eo8me4bHJqc8axevqK7u9OR7cJV6sLSwtEjEz7PzPZNG6+89pqrr9gRDvqd2a54PKpUaycmJp57/q81NTXTMzMUw86dNz9JpwP+iNPhfPwvjx8+fPjSy3euXrXmow8/P3X+wPjwiFmrXb96zejw0MqNm44cOZWIpblUanwisHblKn8k5PZOLFi+iCJTSZY0Gaw2Ww6mIrbtuOyOu+70TLudWXYURnTmnJLigpGR8amJSffUBMsyS5YsGR4ZuXi+6Y677jx86Ojq1WtPHDve3z/47Mh4aWnp1VdcuXfvXlCAz547nZubu3j5ku+++55k6LLyggWLG4+fOPHq31/Sq7RUJlk3p6q5u6M4L8vtnggTeA+XYTnq519/uP/Re7sH+iwma2l+7vGD+2vLyjAZJMNhPsnjMvi3QydXrFo5v2G+JEmYAnNPz8hkqEGtFSURAkBJkmAYnd39lSTpf6i+/12DJQBAUXQWipTlcIqAhGDYnMpqUODD0UiSpuOpZCQYcjmzVCoVBAFOi8NmsSA2+z/efOOGG26oq6+//Y5bZ6anSyqKSJY6deFMYNpz9dbLPvzkw0u3XQaSjCvbWZyfF4xEigrz+/t67E6Hzz0zNTV17TVXXbWzqH9kqKW57bmXX7z55psb6+oYkgoEwjuvuOr48aPZziyNWikIQjKd4gQehRFJEmmORRAEB8B4NMJDgEal7BkctDU0dnf3YBi2fcvmWDLBCTxFUUMjg4WFxRC/7y+PPPbee+9WlRZxPFdeUbVxC9k1ODg2NrZu3fp/vPnGpdu25bicMzMzM0Hv355/8bFHH37xr89V19dt2rA5v7Oz6UxT9a2Vx48fz1DUrl27WJbu7++32WxNTeeiqYTD6SosLK4qqxocHJw/fyGEYrYs1/Dg0Jb16081kb4ZD2y2xiPRlUuX2SzWlrbWttPnrQ77gmXLeFFQaXTD4xO8JFI0ffzMebPDghOKJcuXcbxIZqhnX3hJAqBjZ84nEgmZXI6iKJPJEAQhCByZStI0zWTo3t5e98y0xWTu7myn0qTf4yZJUhR5AABAQJIkAIIASQJEEAQloLi42Gw2d3R0zKmts1rNKIoqCMLhdDocWbPcj+7ubq/fNzo62tZ04YI3GJzw1NbVvfr8XyPR+MqVK9etW2ew2acmRvKLChUabSgWJzO01eaonVMLbduaIamPP/jw+ddeWry4IR2PghLA8QwioiIgReKxwaHh2++5Y/Pmrc8880x3V8+W9flNx44a1Wq5TPHxl58XWZTOrDwyQwkSIEGwTCYPh6Nmo1mtVMkQNJVIAgBAURQAwolUevGSNYIIhCOxZUsX82xGoyIQBBYEHgAlfzCQk5crSRIKgyLHyuVGUQAwFI/Hk7t3/7B9+5ZIJJKdnS1JklarXTxvgc1mqaiu0mrV4aD/22+/1el01159jdVi1qk1OI6EgmFk0fLFY+MT5y80rVmzxmw0vfjyi2kqhSlkchkmCJxMJuMZSqfWhLxehQznGUZtNFMUhcpkvMgAsESzjMDzZoslEIxkOS0KhSojUYLE4ATIcph3Jnbq6MH77r3LbDP0DYyEIwmZgiAIfGraU1lW7vPO5OfmjoxF5HJFKhVDZYgMxWk6TRAECMJarR5BkFSKRBAgJy+7s6Ul5PUO9g8tXtTgcugGR0emJyaryxsTiWg8ETGZ9TazmWW5WAwgyXQsTtEZwWQ2SbwgCFJuXt7R48fWrl9HqAgmQckhkE2nk/EoKEl5efmgILjdk/3DI4AIKhUaMhJz2W2ReKywpODw4YNGo9lqysWTKRiAqTQlx5TRUMKg0YIyjhGZZDLOpGMyEDSpFDxNeUcG5BCXX5ZXtXqDgClhkvVPj/s83gN//lFdv/D+hx5LRXytJw+Ho6GIz5dbWNKwaMl4V19pdcWgdyISi8CYKsuVk0wmVXIdiArxFMUxGUwOQRiQp7NNByOPP/H031592e1l6hZsGjqzz4AkV1QXeZP0TddcrTW7rtq2Y3x63GQ3V9XUnj0ylm3TwUp5ntomVhv7x8aHu4YkSUKV2NTUlN3ukMmUJE8GQkG9QWsxO1LpZoBlB7u75i9ZiMjDkaDHYLKQqfTk4EBlYZ4gQg1zGk6dPn/Zlku//OKL/b/vBWm2yOUqzs0LjY1LcogRmFNnjyvU8mQynlVeS4bJjIC68krHzp1hmYzdbJKhCAbw4zNhg9EsQiBM4NFQ+Oz5MxWJKJOId7f47733Brkcar14MTs7++WXX9aYLZ9+9sVfnnw2GY76A96SkpJvvv78lhuuP3XipByTHd79w3Wbt7z52t8efuxxuQJ35WRFo0H32HBFQf7k9CQvsAybqaqpcrunPNPuFUsWB5KxWWdveWVFLJZIUyQAAE88+VR2Tt6hQ4dWr1l39dVX+wPeU6eOffbpp1dcvrmmuoanMyuXLkNR2JptHRjti1FRS5ZBoZYVFefP4PhA/6gn6FNrFaNjgwa1try4vHdkEATgVUtXvvjY07Qvun7BCoNBH45Fh4d7o/7gFddcd9+9Dy5evBDH8Y7m1mAkPH/+/IG+/u3btv3+2x/t7e033XRLVla2SqVKxFITY1NjI+MIBk9MTRcUFSrVqt6+AbsjO5lkvP4wD8CkOrNh3SXuaY/PG2moqZt2+1RK3ZdffbtuwyV6tdFgsIz3/bb93s379x7QKjRrV6z69NtvItHkhtWrf/rtdx4GlRrtyMhIRUWZLxyWQMDpcEq8IEEiDMGS9G+DCfDfAov+j2iwIIkQOHtVS4SckEQRhCAJkERIZrLZO3v7WJ4bn3THook59bW8JLqyshAIomgKJ+SPP/nkt99+u3LlyqmpqU8++ejjTz67/PrrGuY0LKtvONd0fmpyfMfW7X3Dg2QsYbKbly1ZdMNNNy1YuvjKrZdu3bYZQbGQP7hqyTIIgNvbWtQ4gQDgd3/uyXHlm5y2/MKCA4cPXbH9MpPe4NVoxicni/MKAEkSRTGdoVCM0Ol0lMihMJKdnb3vwIHa2lqTyRAIBFKpVFZW1kcffSQj5Ddddf2lm7bNbaz/y1OPffXtV/mu/OGRMRzHC0uLDx05cmD/oTVr12dn5zjNlotdrUvmznN73KVVZV99+vnk0FChM7uysrK/pz8SDX3//ffXXXvt0NDAqlWrNBpNf3/vs88+K5fJ+odHtBp9OpUaHBwuLi7+9ofvr7rh+h8++RSQAJrKuN3ubJujtKTkYltr8YKCBY2Np0+dnpiY2Pfn3mtvvN4X98tkMopmeQlWaDUUzQQi0UwywwkiKwo8nYklMxRFiaKIoLBcLhd5LtjfOzUx6fd5Al6fe3IKAACWY6hUwmQ06TTq/Nw8u92uUqnmNjY4s7IMBsMsWC2dSuXl5Ykif+TIkfXr1+/atQtFUZIklSqVKIkwCM0+CZIEgACQiCfPt7f8+P0PP3//Q8DnLSsrKy0sOHniyLHjh3bs2AnA0KefffTMcy8QCk0kmohEQr6gBwYhvd7wwEMPpeLxRJoVIZykUoIgUXSUZTmHw5EFANWVNU0XWj9892O70ZEkY5tr1k+GpjvPd86fM1crUmPjM3IUo1gWgJF4MlmZU3j77bezPO/3+YaHh60GE4HhgiQAADRnbn08ndIaTbhaicmgVJqFYBEAeRSFV6xYbjAYSDozW+hnSIoXWEEQaIa6+uqrS0uLEBQiKcrhyjJodXPr67Psdl4SaJo263VP/+UpkiQNOp3JYMRxJBKOjo4OI/ff/eDLr74y450OBoORUPiB+x544olHYVBKRpJarUZkOb1eu3jJop7Onqmpab1GL0cQTiZjRImXaEyuZEgKAgGSpkAQVKiUDMMoCDQW9idjWaOjo2q1qrSqQKlUxiMpSJAMBiVF0xOT0zIEVWr1CSpJMmmjDhH5qFaDgzCKYbggwRSbVhEKluXCYb/VbMJkyPDIkNVq1uoM4Vjyz70nbVbl2hX1cyprSwtK4lOjIEkBAN/SdraoqMjlMFrN5Rda23QqdTjsVyhUgVC4tq4hlpO7549f77jrrql4VIR4g04/Oj5SUFbu9gXpTEat1jpQlUavQRAkw4P/+Nc7b37w7jdffaVUq4pyC6PTPpjjMA0EqdCJiXGtVpshQ7yQUSIaWAG0DrQ4bdkqBENhnGMBnTULopmxjuGJoaFNWzYjOBDiKZlccercodMn92OEnOfFS1dvnBobDUaCkRmPpNL8sO/QggULE3GepJOoIoFiAIHLYlQYZEmlXJmSEJTkNEZ8crqb2hshQKK/+WzlquUGRw4TCopgRq0EHt2w8tx43++/f1deXuadDOYt2SAoHXnV1dG+QXVl/rF9ewkZpBEZEMfzbcXHTp1wZNtwuSzDiSjDYTgWT0ZMCoU7nsitqvBNTquzrHKjOtI7JjCc1qZPpJI8w81fsIDi+EP7D+WXFpPptCiTFdZW9zVdKDZoYUh0urJG+/sri3LH/JHDF887DDZISk956ESSNmhMZGw6yZAuq6WivO5oc4fJatVpDQ6z1mI0Tc2M+yenU5jygb/dgRHEJds2+73+N99774dvvwE5rry4yGI3QqgwMjKwavUyo9HY0dv92qtvvPfee1//sPuvZX89dviQw2rr7uwY7O/FMEwQxG+/+UHgOJvZSSXSv/3wg9Ns1KjlDJ3yen3pVExvsFQuqtm/f//ChfNBEPR6ZxCC2Hb5ZSaD8YYNt3S093315XclxWWBQOjGm6795KOPWZbp7u594YW/dnV1DAz2+QOeLGvW+YunKssrSvJdoyPjbIolIT6WoHFIThAKny846Z5et/ESTmQpnoZQpGpOA8+LWpV6w/rVDEuhCK9TK7ra2kSOKi0pf+XF58tKK7/6/Kv29vaerpaW9uZMJlNdW8NxfIamI5FYb3tnOBQtKCh49ZVX7r3vvubm1vXr185fuDDDs2aHjWtrbm7vuNjVznLC3bvuV2OyN959yz0+UjuvvmOwa2pq4o7bbmN4rrKsFBTELz77/Gxr00OPPRkOh60FWYNjY8l4bO6cOSLPghAEgrAgAdB/9HYWg/U/l17gPz6sf1/BIAiAgARIAASKkggAACCJmRRZWVw8PDpi0GnmL1o4MTFRU1UNibwIiDIZyjFseWnpvIaGjostRw4d+usLL+w8eOWZpvMzU+5dP/1y9ZXXxIbH/9x7qKyqMCawZCI+OTa+YF6Dd2KqrLKyq7srkcmgKOpPxh598okHH3ywfE5dz+jIkuUrlDKZjGFr8osykWhLV1vjnPosm721p6s4O1dA4FH3pCsrSwAlGY5jIE6JXGdrFytyDqvZHwolGE6h0Pb09GSX5V2z5XKBYREU3Pfn3rySovfe++hvf3upZ6S/trLCZDbveuBummZxFCspKtapVTAkvvS3F2EQ0msN5aVVFVXlu+5/4OabbqguK/z+qy/q5lTFk5FkPEzIMLvTFk8mSgtLEAIPxOO4jGBFoXZew+7duxsbGwscWSDIHj52aNWqtWfOn2/v6S8vL6/keBCThRNxa05OWV3d/Hjc5w/yrECSUUkEOIiHQSidjMMwjGFYLBahSFLkhYGxsfGRYblczjMMRzMZKu2eHE/E4oIg0DSdn5+fleWQJOn22++sra3Ny8uDQAFBUUECRADieR4AIEAQIRDEZPDJU6dffeX1srKy9Rs3RcjM+GR/LBHfuHw5CEDBaGzSPYVAMAqDOo3WbDauX7l8/cqV999z7yuvvPLjjz/K5XKFQrV04dIjf+4HEThFUw/cfed119+4ZOkyRKYNhaMIAHr80WAkrdGoMRkEioJKqQchSQoiFotaqVAp8gwajeG229eGYpHLt1+2asmKffsOuMfHzNn24ZERvSgRGKSRQTQgSwVjFpvl/fffz7CMJIruyanuvl6jUTUbY2gyaMuLCyLhRGFujkVvJTMchhKSAEAAbDWa6GR60ONbsmwpKUm8QOt02UFfmMBQlVw/PDHmCxIqBTZvXn1RUZlSpWI5Op5KYBjunwlprXq9UqXWajAUwnGEJBmPNzA+7kWu3bkTgEClRnnxzDmGpMf6+216s1arVGtNFy6eU6oVOp1ucnLS6/WiKIrIMBBB5RCUYVgck9GZjMDxmQxFEITD4UAxTBTFsbGJhjn1VrMFgeALTedr6+uD4ZBOo1UoFAiGqXHC09RisVhMKqWHpstycu0GR1/fxPc//Z6bX8CxEg8BCrWaRwEYRglcFgj6YBiGYVhtMUbDCbvZptcoinKtRflFIwM9wXAgxrA0AOW6slUGg8hzk+MTLJmROBaS4YgcVlu0cSrZ2nYBJ+QrViyZiXgkGZGMRU1mhSUr93xTu8hLZp0hnWZgGZTheJvRtGHTpt0///LxR5/vvHTr06fPBTUzJpOJYclQ0K/T6axWm9lsMpvNAb8/EQ7n5eaS6bQOJ9hUQgQAAUDd0xOkSJdkV1B05vSZMwSK0DTtjkU5STIr1TIe1un13a3tsVQakqFlBeVqQl3aUHnyeJPJpvdNJ4+cazMW6WvKa5WCGoBgglBOe724DFMjYJHTkYikzLjU3HJOl2usnLfmzw9fLtTotXpTIhluKC1KdgxOTA7Z7faBzjZEgPqng2s3rfn4n+/n26wFWU6vbyaZyoA0V1taMTU8WlVWkYjG7BqDJIgKFZFXWGDg+TQrdnS2IVYNCEqu3OxMmtSZDBPeqaJydWtLt93ivOKKqz794tPOkf78/JyRkYFEIkrkOKRU0mYwx11pdzIhQtAV2y7d/fV3y+YtHBuboIFUX8AdJGmZQtKJrNyYdfnV1w6MTvgmh80GfXd3OyWSO664YvGmq843XTh5/MTE8GhzU5Mry9Xd0f2Pf7x++NhRMBoXWcai0eAS1NXS9vnnn9/34H2XXbMzFoudu9gsIxQmi02pVhlMFqvVumblqvWXX/bSX5+bO6e2qKjw0EFRrVZPT0+nUmRhYeG4e7p/qJ/lRYVCptVrCgvzn3v+hePHjyuVSl1u/i033Pjaa6+tXbs+Pz93cHCwpbnrz72H9+3bd+HChWuuv62xce4TT7548uTxLJtlaGTMFwim05TBZPb4Q7fdfsUHH32ybdu282fOj4y6TUbL2Ni4zW5OJpPxWDIv36VUqPbv3dff25eiEm+88ca/3n03nkrW58wXIfil11/TaozdfX1TXjcvcpFIpK6mxmo0BUIhR25eaZEMRrALF5phGOrt71Eo5Zs3b9y0adOxY8fkcnkgFGxqvqhRaqbGpt5/690Tp0+dO3Nq6fJlBQUFarV6eHh04bJl+04cb29tqy0pt+fndEyOvvTCK/FEqqq0sq29JR6NLVmyhBdFUZRgEAAkEYGR2UY08B+a4P8RDf7/VkPPtqYhCFKpVBmGMxqNv/2xR63Tshna5/XKEcxsNnIMA0Cg2+MOhsOpDMmKwnMvPv/wo4+uX7sOx7DLNmyW4XhHV/vgxIhahTdfuHD06NH333//xRdfXr9+/Vdff7VixaqZnu6Wlpbx8fGrr766vb3dbDFGIpGNmzYpYBgQJZZj5zXO2/39bovJlJWVJfFCOBrXmQ0szaWTJM2nMRSlGWZoarywpMiV7ewf7C8oLJapNMloQuBElUId9PqsdkeSIhEcufPWW/b8+NNAb8+y1Ss94+P19Q0Wmy07O6ezrePdt//lsNuDfl/NnJoFjfMmxyd+/PHHpcuXbNiw/rFHHy0vLzfotWarJSc3XxCEcCQ8PT2dTqcDkbAU5Mh40pecOX/6VEdX544dO/Rq1bR7cvmqS5Qa05Q34MzJYxl+yuNjeL5vcNAXjICg5PN5KIqSABFBEJZmotGoIAg0lQl4fTAMm6yWgcG+8ZFRmsrE43EAAFAYxDAsGU8oFHKDwVBfX1dTU7dixYqNGzd+9tlnhYWFS5YsEUVxNp5SFEVJFFEEgmEkkUqKoohg2NXX31xRUfHTr78QcpzjhUAglIxGvF5P58iQDMUITFaYk6dWqf7NqgQBlqFQVFZTXf7VF5+8/upL3+/+8Zdffuvp7AyFQjCKOHOyIrHoH7/+dOrY0SuuugZGkUgyrdPodSptkmMJAocxSJIkAEZQg1pCMFGSinJc9955Dx2N/fHD97FY7KVXX5GDoMVkUoHCgjWrJvv6YoEAC4rj7unS8vJ3P/lUq9REo+H83LzmixdZNoNAGoqi0ulkSWlFYWFxMHDRYc+pn9N4vumM0+mEYBSBMY/Hw/Hi8uXLaZYTBIkglGkyk0inJBhZtmLZFv12tYaAIYDjgDSZYVkWRkAEQYLBgEqv0mrViURCIcdUSjnDcIl4tKer6+OPP0YwhUyuIFAUIZQKUIIYikxR6XAsvGC+s6ysbGRkiMDl4UDYYDBAEDYyMmK22GQYSpJ0LBKDARBFUYqSBJGbmhjTqgkZplZp1KFopLu712IyQiBsMplIMi0CUoahMZ5QKORmi9HtmTl47FBVVdWUZ8aVne+PeDmBT6RIAJIwBKXTcYpKiQDosDtTZBJAYFSGgwhsNJqHBvptevml6xcIDK3T6fqH+oMhL0un/T5POBpBERlH80laTHMAwPACD08MTxYWF4ciCUKjhTA5R4sAwCkJucizfV2dyVhMjsiMuRqPx8MzLIggXc3NQyNjT/z12X3HjkWS8VvvuXPPd18JIouiqACBGo1GkqSmpgv1DXMxFJdplDSM+ONpUSlwFAmjMlyvATNhCRASqWQgGGxYsJAjU5lMxqhRe9y+QDSZ4zCZ5JZIMEKlkgigOd/egSpUN9xyJax3HDm0N6+sis2M9PWPMylBpzapTASMQjqjnmdZPSYTEwmHRpGlsp9q97u7hmrmzq9Yvr776FEkEDDplDqOt6jkPeGkPxo12a3rL1k9TaW/2737kmWNqUAgND6ownG5HKmuKLrQ2T3lTnT1dKuNRrVaOzk5iRIqtVwx0NPj9gZUKk06ljLqTZF0IJ0mT5w643K5dEq1hEAtHe0qOX7s2BGbTqMmFLSQgXiJFTKSDP7u918MBpPNZLQZjbFAIBNPpEG2rna+/8KpbKNaARlQSEj5p+1ldXUrtg1/9z4ziR04ceHqyzeu3rgpkpTWbdmSDgQLiwu8fn9paR6hVFy8cLqkKK9x7iNffPn12OiwwNAUQ6MY9vobr+89fuTJp59Ra43HTpz56pvvDu7bv3DBvLGh4ampqf2HDh45f1qGYslk/IMP36urq7NarTMz3skJdzKdkiTJbDaev3Du4YcfvO+++/717ns9PT2rli8DAXjXrl1vvfGP40ePQAjs9c4sX758fHz86NHDw6NDOXnZZRWlg4ODMkIxMjp54sSpm2+4vre3V6tRHz582J7l/O6H75cuX1ZZU/rlN5+Wl1aUFeWPDA8OD3XbLBZQIlsuNi9evFSpIBiGWbhg8fkLzf5A+Imnn25qbokl08Fo7PCxUzMzXp6lA/4Zg1FXmF/Q3t6uIhRRCZiacutMRqUSP378+Oq1a2SErKOjA8Ow9vZOhslU19bwDCtpoGeeeWZ0Ynyor3/Hjh015eWtre1DHQPeRCiRSMytry8pKckqyv/jjz+WL1iaEQSr0TQ9Mc6z3OrVq0EQpCgKx/FQJBKLRIqKihAYkURx9qoF/htA43/xSP8d2/G/ps0gAIqCgCCQTCarrq6+eL7JZjHv3/vn2nUby0qLx0aGOjvbu3p7Hnnkkbq6unvuu8/vntm8fesdd9116+23TU+7VSrVd998++STTzIk3XTuvJJQdHd2ffDBB8VFpRRFX3HVlTajmSCI51984eDBw6lErKamRiaTkek0KpdjGAbCkMDz69euO3LiuFavr6utDobinlDAO+mWgTAgiFarde+B/StWrRwZG5fhaCyaGB0dNduzPv/kk5tuvJ73SAAESwCoIBST4+Pz5s1bMG/+5VfuXLBgwYKNmz2eaX845A8GotEojCMiAj385BMXW89NzUy5crJ1Ol3QH+j2+5ctW9bZ1k4xlMQLF85f5ECpub2D50WOFXIL8ocHhisrqxVKZTgcXr1mXUFBgSSKfX09rAiAqGxwaCSTYRiGoWkaAMSBvv5QMub3eCWR9/s9ksgrcJkgCOl0OhWLR0LR4uLikZERMkMBAADDsJJQWLVag8lUXFyMomhpeUlFRUVpeVkymWy52M6y/C+//Hb48FG1RvfzL7+pVCqDwWCyWhxWG0OzoMRSVBrDUVxFXHXNlXm5RQ8+/NDY6FjA60NR1GKx6JRqySLGwqFkMtkwpz6ciLECr1LI5TJc5AUYk9E0hyAIisisFvsjjz66bNmKx5/4S2P9nPau9pDPSygVE0NDDMdOjo4UFBVFY6kFCxZWVNXICEyC9HSC02h0MIQiOESDGcSo7xoYmnBPLFw4//lnnoZFoDo3JzIxxfi8fErdNjmFyLDpyWlBhlx69XUPv/zi2OSMLxBBQBBBkMOHDyIoiMIwjICxmJCTk8cJEi+CGKGYmPbm5BWWl5TyvBBLJPIK8otKS06fO7t8xQqW5ePxuN5oplimoKiQUKtYjosnUoIgyGQyBIUkQJIkMRqNROIRlZIfHh+sqqqa5Wj6/X6KJL/84rPiogJQZVQq1AoRkBRypcDyqVQKRVEURdLxhCQJKq1qy5ZNU1NTbvdMOk3JMLnFaU8kkhIvxGNJGAJgGFYqFT6/x2mxEQpcpSLoDFlUkLdzx+Vv/eONufV1eQX5w8PD5ZWVs3hrMkNHYjGn0/nzb79fccVVkXgEhCF/IPHCC29ZrdmxVAQRAI3BoNYbRADkOIEkyaysLIZhbBZj2BewGXWvvvTk5Fj/yePH7Q4rRaVPHz0KMAKB4ZwgajV6n8eHYDJMoaSTaRmGcDSDEQoWguvmzTNbLWqdGkURq9EQDvo///jTwtw8iZ/9pQ9kIhG9xeQPhpJpkuL4a26/+cmnn9q5/TLPyHAwGKwsLx8cHGRpZja5gxN4q90+4/Vk5+YnYmECE9YuWzM6NB4MTWOSoNJpJXvlwZMndj30yNTQwLfffWnQa4R0xqQi4gFPrtOqwpUIQZxubrn8yqu6h0da27sEXtJptHnFhTk5uSRJwoK4e89vPJsxa1SO/BybTmcgSZinJRRW41iYpH4/07/4ik2VpXNZLlVqVAf9vrHekVA01DQ6kZdbCOHiJYvXne/pHD954PL1q0Waljg2lkpSrCDACEQQk8EApjHmFxZ1X2zT6XTBRHTJ/EXTE24EQZIZdiYZWrho0bEDR6cnJxfMraHS5KXX3jhv6dL9hw4e3PunPxAozM6lKMrmcoZHppyEoDUZ3B6vTWcUMgxKqBfccOVn3//wwE0PNrW1tP3y1ZrGkq7ekbzCEiocMpYUnR1J2YqchIgsWb5MoJLvvvvu2JT31ZdfWbF++e5vv/nwg/fKSoqPHj2KyuWv/uPv111/YygeD3p80WBgYmx8YmJCrVaLMOgPhNxTXgSGeZ71TLk5jsmQFEvTmzdvXrx82SMPP3j7LTf//suPOIaWlVWcOnmmrLyqvKLE4rRnGDYcjbz80ssPPvjwm2/984abbwU5zuFwIAjS3Nxst9thGPb6ZiiKmpgYq6ufQygUQ0MjWTnZ9919z8WLLT/s/t5isZWXloyOjoYjQbvd2tTUVF5e/sgjj919523Lli0TOJZMpVxOx9josMfjsducY2MT99+/68jRYzTLlJRVgBii1uj2/PlHfl4hAIr7Dx6sqKhQyOWgJJr0GhSGqGQKx/HBgWGNRiOT4/sPHbr2xhtKy8sWLFjw1dffgghcX1t/+PDh7OxsncEwPTP15GNPCpz41rvvFbhyimrKLpw8449HPFOeSy/bNn/+fJfNNj7lfvPdf91+482lBSUROj3a08vzfE1tlVqllgBJAkBREiVAEDlRhsk4nkNh5L8Ci2bTgv9XNFj6L039//02Sfp/viLyEIyyogBB8OETRxvm1BvUWp/X++1PP8EglOfKkstlDfMa1Rp9a0dHNBK3aLW1c2pvvv12k8W8devW8dExUJSuvGInzbAHDx5saGg4cuQIz/MffPCBSqvZvn37xnXrPV5vIBBgBd7j8TzwwP2xRIIkU3qlGiFwFEZQAAIkadLn/vqbb+689bbWjj45jtVWVauUCprnIQRubW3NznIFYrHi/DwEAnv6+r3+IAKAlWWlew7tvfnmWyN+v9Voam6+8Onnn338yefXX3ftz9//+MOe3xsaGsbGRnw+37p16zx+3+DQSCAQunTzerVCTdP0c889t33bZVqtVpKkn378ccbvSccTd919r85mRlBZltU+Mj4WTScNWmMikSBT6dkSlqKoI4cO7N+//6abbqqrqzt9+vTIyMj09HQymZRhaCQSkcmRVCIpQ2G5DE/E4xCIcAIPw7DdZpkzZ046kQQgJBgObb/s0it3XkEQhEqlSafTao1GoZBPTs90d/euXLXq4MGDeVnO2tqa7Zdetnjx4h07dhAEQdO0x+NJJBInTpwoKy01m80mkyGRSr7zztvbLrt06bJVUxOTFotFp9bgOC6X49PTM1qdWqNUCCJA0RlG4FmWjcViEADbbDZIhlJJSqfVMlRGoZCfO9d06+135Obms8lYOBbdsfOyvr6e3p4uFEU9Hh/NMCqFmhcFXKmCZOjWbdtcrlyL2SFD5BgCiiCg0aklQCjMyfVNuw/8saevs1vyBMxaXVtHcyoZV+h0Cqt5yeo1N959l0FrbR3sm/YEjDq9RqvIczm3b93YP9ynJpQ8z/sCkdfeeH3+/GVNF1vj8WRBQUEiFonH408+/sj7H3zQerF5aHRo4cKFDz744NjQZJrJmK3WFElVllfAoMRk6DSVEkUgGg2nkymOZ5PJZCAY1BmNyUR66ZJ5JUXFIAiSSbKvr++xRx7V6/U1NTWgUo+jMkyv1wf8IZ1Gp9doo9EoSVM4KoMRCMexJUsWXWhpdjiy/L5gIBDMLshjMzTH8BzHYRjm93uVSgUAislIrKS0qLAwb3xitKqisri4eP/eP+69+y4cw1rb2+VyeUVVtcfjCUUiWq2Woqierq68gqLq6kqWow8dOvXVV78WFVdG4iGWkdJ0RibHDSYLk8lgCJxOp/UGrVVnlhNIQ31VLBqamBhau3qpSqHOpJlvd/+IS1A8HAIlyWm1cBlaqSQiyTgC4qIkgRii1RkmJqbLq6sXrFwmwKDD6hoe7P/mi8+sFpPP4xVFMRaLJBKJwuyskooKmUyuVaiOnzrtKsgzGswMSZWUlX/68Uf5eTlkMqFSEiqVUi6Xezye2btGYHiNWqFQQZFgLMeWHQ1MYwo5wzCaqmVTYb/V4cy1GD/7+ENcgWKcZLboEgFvbVEhzLBUIqXQKif8HpNSY3PmTbk9IAaPe33+DK/X61cuXcTJ5F3tbTpCefFiU55aUeMyE7iMjFMyDFHpDKfHR8Iy67KFc9QGy5F9R9ZsXLR1446uMxf+/s6/tIRSQMTl9fNDdAyYmmKptM1oFiAgGI9SLAOASO28BWcuXoyl4pkM43JkadU6iEDbW9uu3LrDHwp29A6IOABCyOaNW3fv/k6GwiuXr7I6nQ6ro3eg9+033zKYjSaDQaXR9I0ML6qsU6MZFYTRVBIERCZNK0DCsmT+z+fO3nPbLiFN//j6X2rKsrzeeJbVGJ7xyHPnWmvnLd28tvnc2Xg6+fyjD1ts9qeeem60owuzmbMcjvHhIYZMazSakoryE2fPnj3XlG2zyWQyv99fVlxy/ty56sqqVDwxMjx8xXXXnD59+u+vvRqLxd7+11vJZDInJ+fyyy8f6B86duwYwHORkF8SeZvVIQii3xcmVDIJAhUabW5udnZ2digc1enNGZaDJLGuru6ll15KpxIIAhUWFJhMBqfT0d3Ro9JqYARRqTQtba3Ll64IhUKhQLCwuEilUh09ehRF4e7u7k2bNjz37LO33nprJOCZM2dONBbGYEQuV6jV6u6u3oaGBo7jIQjS6AxerzfD8XPmNvy+Z4/RYo4HwwAALFm2uLW5BQAAMhFnabK6qsLtdpeVlLe1tc3MzOTk5q5eu0ZCoFPnziIStH3HZe0dXV1dPWq1+v777993YO/cuXNzS4ref/u9Tdu3z4yMHz559IYrrq6sqXVYbRRLhUIhncn40Qcf3nLdDQaH9fT5JlwEK2rLVUoVKEmzZitJEGeziThBRGAEAABREGYFGATB2c1O4P+fFev/Kar/y3WwJEmSyAMgDEBgJBEHQVCr1rA0JZfh0z6/RqXQqNSSJAEg/NmXXx08ePiB+3e9/LcXLBbLU48/ceutt05PT1dVV9993725ubmCJA4PDy9ZtPi7775rbrowb968l156CUEQFEX/+OOPvLycf733fltb2xeffpKhM3JcLggSKwkkmZLDKIZhEIYNDg9+9N67pZU1Bp1+x7atJElykjgxNWm320VeADBMjRO9vb2sJHzw7nuffvDJ+Pj4uebzvCS6HE6n1YKi6LETJ6qrq6cnJt95+18qtf7pZ/6yZMkiURRFQOrs7i0pLXe73TTH2mw2QBDdnplILFZRWRmPxSiKwmWE1WiKxSIZgaMYuqulVafTBaNhXyAwMjgMgSAEgNFQOJmIz0y5FQqFyaybnnJnMhkQBBUKBUsz4UhQEESNTmU2mmAAjEajd955N4Jg1bW1qv8PZX8VH8eZrv3CxVXNzK0WM5NlmWSGgB3bYWaaMAxlMplkwjRhmjA5jtkxM1sWS7ZYLWpm7uKq78AzC9613r33Vz8dPN2CE1X1/7nv57qvS6XW6TSVlZU9Xb0HDx8qKi6+nFNbX1OrVCuHR0YvR/+63V6tTqfT6X799dffPXjv+++/PzIy8uEHHwcCgSyZttvtEARJcCIcjqp0Wpqmf/5l08njx1584YXC/AKG5REEgWGQZfl0JqlRa6ZdsxKJxKzXCTwPQTAgAAAEiSCQJMlYKgmCoEqpRAAEAkUJhj766ONHT5zEMSIdj7/44oupbHzo0sVr1l1t0OrWrt/A83wiFTcbTQ6bY3h4mBOFddfe0NA8L5bMlJYUpZMpiQSX4DgnCBqd1mAy4jge8fmCkRAVjwqCgKJofcMciUrjHHP6PH5IggX9AYIg6upqJLB4xeqlJE/BIqDX62fdrrfefV+jN41PTMbjCaPZmIwnr1i9pqai9LXXXp+acJpMpvLy8jVr1gwNjXCCaLJbk4k0TZKgKKTTaZLKciwvlUkoilIoFNkMSVGUzmA0Go31VSUsyyIoHo0mbr7pVgiCbrjhhry8PMRktkbikUgsJlVIeZEfn5602+0ACvEsTzEMTZN9fX2peGI0kbTZcmCzAYUgAYIQCZ5MJtOZDIKhXr/PoNdiBA6CYCqVMhtNs7OzBq1u/vz5nMA7nU6TyRQIhLLZLEYQKIpCMIBi8OK2BRcuXLBb1IIA5OWYZRIIhSmeSYEcpJYgCAZyiWBNeVk0EqrMLwRhSKvQoZigVuJqdc7ChS1yKeKddZUWl85rbuk+exaH0bz83IDXI0GxUChUWFaSSdIQBM3Ozoo8kMpkmlvnCTzAUPQvP/6wZdNP+Xn2yVjIZrFI5FKLUcMJbDJBnr3Qlc1QSqlMbzKePHX2pVdePrzv0PCY88Zbb+/sOA9jOAhD8Xg8kYyVlBYNDY9KUYAn00aDCUEgVkaOjg1ctXyN0zUz5Z8ot1qD2SQuxd1+n9VqAxBxuH8wlIhpJVgwGJddPm3LUEaJlM6QM84Bnd4WjPkfuOfuAKB5882/7dy7N03RNfV1phyHrG8AYnmW5xNUSolIUoDARyIFCm1nb7dAxZ9++Nn0vIUvv/DWPz/5BudRqVYG4rAMV2KYRAbRIQHLceSFQqF4Kjl30YKR0WEcQrOxmFVvLLBbu3p606kkBsFalamguODE2ZPTAX9Ty6LzF84pVboUJb727oflZZVTzqn+gb6ZQOjU+Q4YJ+RyeSISTkSCUhQ8eWhPeW5OTVFx0h/IKXIEBAGWq6rqa7qnZ0anLq5beCVP8TNTbjILZczExiefIYqbz57tev31ly4cOZaJRVa0VN//7J/9MSqnsmBybPbDTZt9Po/NavZ4PFUVlTZbTp7eONg3cNc9d8+5/8HaurrFixcvWrFiw9qrcx32Y0eOv/Xm6++999633309PjH6zjvvzJ8/P51Od3R08CybY7PiKAwCvFKpvHRxGEGxOXPmHDt54qW/v3L0xNGvv/5aoVCBEEJIZFdccUUqlWqZ2wzD8NCli8lUSgD4nr5ejmEFQbBYLNXV1ZlkTK2SgQDXceFsOp125OUWFxcfPXr0T8/9ed3Va9ddswHDkMVLFmWzaaVSns1mU9nUkhUrlRp9JBK5+ebbb7rpBpvN1tzSunRhy8nTpwry8+0O2zcnTt940/XD/f0Bj5tnWK1Gk5fjIDA8Fk/+8OOPMql0xfKVS5Yt/eSzT2fcrpKyEruj8KsvvsrJy9XrNHPmzDly+KBOox0YGNi9e/eiBW29HV3FBYVffPEFQRDnLrRbC3IZKjXr9fz866ZFixZFs4lLZ8YjkdgVq1bLJBgv8BiEQDAEiCIPADAMAoCAwsh/BBZdxu2/D4AvxxHC/9+Q+p9I/n9l8L+T21GGZVAMU8oVoijCACjBCUEQcixmURQ5loVgNJNNl5WVrV17DU0xu3ftHLw4yAvCkaOHBQDY9Mvmt15/IxqNltRU5uU4nnnmmdaWOX/4w7PxeHzLr782NtZ//+MPc1vn/PLrVhAEG+vqAQCQ4BKGZimOFUFgfHSiIM9hlMsOHDmEoui773146dLF5597TimXLlnS5p6dMRh0Fy9eLCspTcWTTvfwxNRkLJ383UMP//DDd1qDHkeJsvzc7t4eQiYdvjTY39PPZMmqqqrPvvxi1YrVL7300osvvXTi9KmTJ09rtNp1GzYsWLCATCadLjcEQZwo6CymSY8nkUgYtLrO7q7pySlRFHv6upOJ+PlTp9UaVWFJsdM5CgMggeM8w8IgRJEkjqBhX8jvncRxnCEppVLJktmC/Pybbr7BaDS2zltgs1n6+/u3b99eWFpSU1dbXll5afBSbmHR5NRMOBY/394hV2mtGM4wnMcfiCRCk1NjdbUNKAwXFThIkvzxu68eeuDBvot9J0+f3rZt28yMK9/hGLjYPzo6WlJSBAISg0G358DBN959e/369R9//KkMJ1iaQ1BEFASWF0VQkEqlPCAmEgmZTMbyHAIjlzXDHMOCIKiSSFARhAgIFCFQFGEYFnj2ow//8eWXX7d3XFi4YOlvB/bRdGbl8qUMw8EwimHYE48/pVISf3vhxc7OCxAE1TbUr7ty9T0PPFxUXJZY0lZYWAgyQJahJBKZNxjxh2MYhsslEoXZXlRejeJYOp0e8wajY87JwTGz0YDx3PYtWxsaGhYvXnSx+0IgEDDYjOlkMpVJMxyfn5/vC0YSicTIyGAmG5+ZdokCW1H2NI7jKAbb7BaFQgFBEE3TsVQyGIswDAPwAgxCEABIJAQiQXAcR1EUgdFkMqTRaHAUK87PE3kBx3CKZm6/9db8gtynn3o2m816PB4klUrJZIpILMyLQmN9UygUnp2dQXFMQUhhBNBoVCAkUnSmtLikvLzk6NFjWZriOC4aiQMQRMikFMlIJBJAhHCJbGR01G634jBs1hs4ii4sK0RB0Gw2BwNhuVzu9/vVWq1er6cZEkfQZCorV8o0Om08lhZBWKGSknRaLpcKjEiSpMjwCqUCYGkJBkoIMBIJ33bjxoMHD0xPjS5cuFAll3Rd6MAwzNpqluOge8ZptztwCZZfVEinKZrlk2kqnkhALK+WyiVyZdYgjk9NFpWUwgJUV12CQddGvB4EBERO5BlWFIV0IqWRKh32HJYDIqGwXC6z2M0fffJRS1OrCELJbGbW5UIhoaKseXZmSimXhYMBDIeyDGNyWDxBr0SKMyBtshu7evtASLQY9KLIUwxdVV176sDBaCQp0ypiGfre665z9fdCoECLvIAhWoUyOBMjNGqSSk67PRDMDw+P5ixYK1foSytKYVCYDXlhEFpx5RraO8uEvTIYo3iWgWAcEXSIvjFfPxqOXbp0aenK5TxJzU4M0ByfzCQ9QU9Fee2UxyXVyAC5ghY4HhCbmppmJydAihSALA1DIpnBCHWe3UKo1QLFZCIhi04DKFStixecPN2Ta7ONjkz+tn0XAADxKMnzACDC7oDLOTvNCTyKohwASgkpoZLacCmMABNenwxDx6dmSBgfHXOPx2LBYBJJcK93dCRlKo1a/8hzd+fMX3TkZM/7j9/r7BoyqizrV60c7W9fv3DtotYl+08dEXlVZ88FAoetOk2B2VJTVFhRVanQqBPp1IXuC6+//Vbbks6CohJ3wBeKR5Msdfjsme9+/P7aG65nWbZt8eIffvhh3TUbzpw5c+bMOYalCAJLpVKzszNSCc4wlMVsEEWwq6NjzcqViXj04L79BXm5eXl5Z9rbX3vj1Qvnzj/1xCMlpaUWiy2dzjocjvrGBpIkIQgozC8YHxvBEXTtlVelE/FYOPy7Bx/46adNXs9MVXXtm2++LpFJ169fP2fOnFAoxHMSh8M+NjaCYQgM4y53eGLSa7dbvcHA0pUr/D5fUXHBoQP79u/fv3z50u8O/bZ8xaocm/X4sUNmg1GCS9VqJUlmI7FoMBL+/R//WF5evm3L1jfeeMtitf78w49ffvP16Oh4QUHB4OjInJYmX8C7dMnyH3/+6aHfPZqisp9++vniBYubF87zun0SGdFUWw+wvFFvPHT0yNT42MaNG4emJpfNW6hVqHzptAIABEEULicPoigEQTwvwhAkAvxleQ0EgaLIi6IoCAIvCjAIgSAoijwI/u8MFv5dAIP/nbn/H8+DBVH4lwc1AIIQJPA8BAEgCAqCcDlSHoQgGMVZngsG/Xl5ecNDg6Njw8FweMSZq9Zp1VrVt9981Xm+ff/x4yNDw79/6snbbruNYZjC/AJRFBmGuf3WW/bs2XPrzTfOX9hWV1e3efOWJUuWGI36WCZl0GodNrsvEBIgWCaR5xXkT3ncNpN1y5Ytb779djgWvuH6m0KhEJmhOEGMJxMwjB4/fjKnMHduyxyf2zM0Mvz4o0+wFGkyW90+r1qlW7ZyVY7V4g9455cU3nTbrTt27Nixb9+ixYtbFy/p6upCZZJLYyOzLo/JaAz5fbm5ucl47Pz58z6fb93Va91T499++3U6nZYgiEQi0euVHMc6L11EMBiB4WQ0QpOM2WwuKytDEGj+/PkyuVKpVOIY1tHRcdWVaxubm2ZdnsrKylQqtXnz5qMnjhpN+vNdHVqTYXBkuKys7PJGCoIAi8WC4SiGoitWLMskU8lMsq62QS6XMxSl0+l27ty5bNkygiA++/yfjzzyCAiAer1eBIGiwhKSyuC4xOvzv/Lqq+FY9Nt/fpWX60ilMwLAYzgqiCAMQ4LIQxDKsiwEAMl43KA1oBqMZWkIgRmOhVEYBpFsOoOiKMMCly4NFBcXZzIZ9+x0e3v7XXfd1djY/OiTTzkc9mXLls3MTFdXlPv9foEHpqenl7TNv/GWWyurqvbs23vhwoU//OmPRXm5A50dyURUqdO0Llhoy81lRYFjWTkug3k+w/AZikoGIkyWkhJ4hiLdzoldP/581yOPxKKhPJu5uMBuNqreObifo0hA4DAMi8fjFosFhTGWoul0FmDFdCzVfuqUWipFQYBnaQkhm56aFQCkd+DiqHPCZLUiMASBiATHJTiRyaQYhuFojucEjU4/PTur1xtBAKgsL1EoiFQyfejQof7+fhgBq6vKDxzY7fF4VAo1ko4mQBhEUcisMV7s6ZPiEgJGlTJZLBFHECge53NsVhxDwhF/fcP1wyODQ6OTVpMV1ukCkQiMIDTDCDwv4XmaZVRanVKumHE6821NkxPORXPncAwrAKLdbqdYZnhkTG80Z7PZTDKVm+twzYZwTDoxNpXnKDVqMQiANSptNJrgMZ5NpxKppFwup1lGbzAhBKbUa4+d3L9keRuGoLOTEwqZIhZJYhj2254dPZeGEKncYrc5JyczyYQcxWEQAuiMXklEE3FMgbMAmUqGyXRMo5YlsxkJqrr2hhs//uC9aChiNVoEmhVoFkMVIMBkUnGWF3RqKY6jBRZjmqIO7d5hLilds2L5fQ/eO9DV4fV6BY6VSCQsy5YaHUePXwBFyKCTkikSgCCNSpsVUul0mudEnEC1WvXU1FReQdFE/wjNCIhU2t7eXq5RITytdhjGhkcK8vNVaZKlYmWO0qmpKQAWMAicmrk0r3UhivIzM5McRZ89dSze2FhbWKgUgZmRizKDGhekHAjQaNKqcAx5eyddU45xd1Vj2ZSzHyGgcn0eKIqQyM0GXERGkpdXEBgekhOy0REnzWRwGARBIBSLMjCEU1kIBU+cPr6gvslkMETCYaNST4ajiYhLo5YrcSARnAn7nUmbyWzK4ZXoxFBQLyUseblut3vh3HkswPUPDxaZrQYNYVMYk5GAPtcSiFMlVrFvZjSYTty8fCUA88UP56d4YWQy8Odr7+05f7q8sHjzd99kM3xuWcErf3fnz583FImozDlbt33S13fp888/d7lmVixdhqLo+fazFy5c+G3Xzieeenrfnj19nd1To+MV+QX7d+0y63UbrrsWIrDjx4588+U/9+z+7ejxExiCymQKi9m2bevPzQ2NE86xRCKBoWoym5bJZBzDYzhitVqf90iEfgABAABJREFUe+7PoiguXbL41JmTjzz8sNcze+7UiZbGBkEEVQrlNb+7Rqc3dnR0TEzOEriEoUHXjB+HIY/bffMtt5w7++PR42epbPz662+87rqN/QOXnnjqydUr16hUqmg0ihASqyM3EA4kk8lQKIxOOREEwDDkzNnzCoVCFLid27ZKCdlDD9w/O+2c3zKnvql+947ter2O4zilQe6cmgyHw2azacWKlbv37nnz7XfnNDbZc3IaGxsff+zJZDLZtmylWqeWKOSJZBJBkCPHjm687oYLnR2TE1PXXXvD2jVXHTt7MhWJwFIU4sGFSxbv/GYrIoI//fyLwPG1FTUZhonTjJaQAYIIg8jltjPPizCMiP9KS+Av2+hfDmAQABGBYBgAAUH8fzgGFv/bWgQBUATE/wnj/9sliiIAgZcHjoHLznoIwvPs5UIcACAQhFlBFEGgsKTQpNf19/WF47ENGzdwNL179+4oQ5ut9iMnji9bsuS7n36+9toN119/PcMwKAwBAMDzPIZhH334fnNjw+ZfNn/+5T9nZlyPP/WkwWB4/fXXFyxpo0lao9EMTY4nsum83FwYho8ePbx+2WqeExcvXfLee+8VFhTXVNbE40mfNyCgUENNbUFBQeui+RTNbNy4/uwf/vDWW289+fQTMARlY0lQBGQq1fe/bmqsq92za/cTj/zOM+s6fODgkiVLiwqKJRIZDEI0TV/q6esiM/09PTareWpq6mJ/r0Im3/XDj/FEDMQhgiAScZqRSDAJsXjxIqveePDYCYVCdf/992/duvWxx56YN39+IhkTQVAmk3V3di5uW7pn36Gh0YlVV68739WXZvsxgGud17xizbKtW7a3trbOTk1LJfKywvIDR/drVdqC/HyCwCxGg2t6qv3cmfNnzy1atgrH8cGhcZvN2tM/+Nu+Qy+9tGDPoUPhcLSuofHg4WMBvz8/P99usRqN+s8+/WLbzl333HPPNVevzWQy8WgcwxFBEBLZJAzhACBks1kURaUEAQKgVqOXEAQAAiiC8DyPQQgAgsFwAJVI3WHfA/c8Oj09vXr16pmZmQnn2D133vXQI08eOnD4yqtWLlmyJBD0GPRaDMOCviCOokuXLkVlkjHnZGlZ1esvv66US195/bWvv/tWRMHJqTFykD5/5nRubv6CRYura2tgjciItASRChQgUSlQGI5HY/ocg/vE1IWuszlHS5fMb13WtlBr0E5PTW3b8qvVZOI45vJtL5dIM5lMPJrQqrUd/vaBnl6fy7188RIYhFiaEwSBEwERAA1GC8lzqVQKAWFBEEEAZhhOIpGhOIEhuEKpHJ90qjR6vcVSXlyAocAvm3/s7hrCMDQvz0FIcbd7Op1KwQCYTcYQpVajUCgioWA8HicIIjc/zzk+TqVIUICsRoPRYPZ6pykq29jYyPLMrMuFgBzHZhEcxXAYFkUlIU1EYyxMq9WqTDzu93qUakUim0blEkBCRINxFJOKMMMyFATyyWhIqVSyJIWjMoGdzLXmZUh6embSlmMFYQhBCQBJMxSDoKhapQdAVIREARSUcgWVTuZaSjAQ5ynGZLBgCLp8sQMABASFz5/rVMllPrdHiiIV9XWRQMA5NaG360xGVZalKI5XKOSrr7gyTnO4QjY93Gu25KZ54Hh7z8LG5hRNxhIxtUqlQiUYLGF4BhJoOpNhSSiZSqm02us2rjpy6OzhQyevuW5jMBJqqauYmfCOjjgxmSgAtiVL26ac0yCA6DQYJLChWV9pcQVPZ/0ht0oOewNBBCLUKi2iIiIet4yHsvFYSMhU2K3R2Vk2k/GHA5F0qKgwz+NzQwAoV9hZEMQZIRrzFefZs+k4k87WVtc5x6cu9Q7evGHDwvrmnd9/n5OL6VUml8ddO7clzJPHDx6US1W33XGrSqkZ6Bk0L7Lm2PP6+/vmzG+O+ZMDXb3FZpQAAOfETH5RPpNJIRIiFotKcalI8yQvyDAplaXUErk7Pmkqr8j6ovU25XAAnlddvr/9zKHT7bnGfI6GIAUSjlIphq+rKJ2Ynh3ou1TeWFdSUM5SZCSeJej4mMvHTLg0ap3UqG9Zuvqx5YtJGkARYnh09sfvvx8a6MlRytY21VvyrH975c3ahlrnj5OpULyouOzQubPxdLL7yGmHRXPm2DFRBB/Zunl2dvqqNVdl4sn5LfPWrlk5NTnS192NAHQyE4ZB6POP/iFVEBV5ubuyqb/++bkrVq622+0ihggsxzLZ8spyd8DdOLceg0Dv7Cwgwhgu23vwyNtvvNjb3QUIXHND66XBsdVXXW3KsX/55U+ITLl05Ypcm52n2V93bu+8cJ5nWEIm9fqDgiAYtIbSkpJoLGq2Wb0h38brNjzxzNNOp/PV117r6ur6/NPPfvnlZ6839eCD9z/x5GNjY0XlJaVKiYKW0a0tzec6Onfu3nXllVdOT83GQkGBYeRqzdTYiEaroyjmlx82XXfddR9/+lFOjm3IOSqTyYorSqurq/sujggg+vk/vxgZGTp77sy5rjPLr1rJspzf7z+7/8yCRQv9/uDChfMXtS08cuwYimOPPPk7Asa3/bZtaHRMKZVXVJWbraZLF3v3nTz60atvMRlaKZOfOX26sLzUrDcwgCgKLAiBInB5HEQUBBAEQREEABHgWBZFUUEAOE5AcYxkOE7g5RhymYWiKIr/hargf5ddXSbufzD434v/ZDP0f9TH4r+4D4kCJ/AABMIwyrAMIPAwjNK8gME8D4MYACQpcjbgM6m1uw8cKLU4Vi9e4fcHPdHQddfdwLL8Tzu2Xr927blz54qKCq69/jqapWAIgkCQZWkUl5w8f3bW5XrpzTcFALj9nrtEhvvL73//l5f+dv2GdW9+8MmVV1+lwPG51fUytWLG504m40I8E8kkURleU115y83Xf//D1w8/8PCiBXNJklSpjUMTY16fT4bigxf7URiymfSpbGbzlm2RYAiGgBVLlzknxwsdjqWL2mgy+8E/Xn/skfvvuOOuyaGLm7/72uv3Nc2Zs2PHrmQ8CkGQTCLt7zovk8lybNZYLEHSTGFRsVIlBUFg0aK27s6etrY2ksysWLn09Xf+sWvXb4cOHzeZc9Q646mz506fPvnss09nMmQgFOEB8Mbbbvnyyy83XL82J0e3bdvWhXPbcnPzL/WNFOQWRUNRvc5YU1MzM+uurWx0Ose//PLLifHxlStXut3eI8eP5RfmGVR4flHp8Cgilyt279r19xf+ajHpHv3s0ycee1wtlVaVFlWUFuY6cvsH+u+44pZr1q7bte1XpVLJ8zwCSy8nS8IwLEflMAhd7qkEQmGZQskDIkVnURQGRF4QBBhBGIahGFal1IWikY1XbWRZxGHL6zzfTiDQnx5/lCTJVDiSY7JY9UazUX9psIdm6bVW3bFTx3EpbtLpv9v0EwILqXRkeHj4jTfemLdwTn9fz+afdz7z9BM5BbZ4KpGMhg7t2XX44G/LrlhVUV5j1luyJM2yNMdxJp1275Yt27dvNdstW3/8urrcolGXgAj61T8/TpEhQm8VWZbnORCAwuF40BfWKNUjg8MTU04YhUAA8nm8ACAIIglBjFIulWKYHJegAmrWWgAAgiCIZVkUgUAQFAQOBuDp6Vm5RC4lCAnI93Vc2Lt/H0kzWpV04YIWv3sW4snp6TGCIAxaAwpcfrp4oamp6eTp00azaWzKqdFqMqm0RilVadWOXFs6G3LkNbq9M3v27soy6ZrqhkQi6fYHCKmU4TheFAQQgGBYKpdBECCVKzAEvnhpaMmSJTghhVEMRkCWZeVKhUQm8Qd8JEkWFhb7/T5CLjvTfqGxsUnk6EAootcZYRhGEIyQgQgCAQBisVgQVMAwDOABiUSqN+kplpIROAigNE1TLOP1ug1Gvd2kT7hcOrk0EAjMONkcs9VuzvF7gvEEG4hGeVHIz8NIhvzyq29zC/K1Kr1Wo5gYG0YAQKGQZdOs2WRCITjf6vBOTaqVCl5gQRGIxaK4QhOPpiKeYF1t9Znei999+pFVp+joHTCoDWq5LCNkyFRSKZV5XbNlRfkajdY5OoSjRE9ft0KCyeXS8yc71FJta+M8URR//ekbnUYVCUQwgpBKJOlkSopLNAqlSDEAKyayXGlD8+SEM5LITPR1T4XO3XrvPS0tjXsOn8BgIp7IzJ+3cMzp/G7btjtuueWOv7+494vPe6dm5HJpV1eXHEQwUEwmoxe6zrctWb6wben+A3tYUYQk0o4zPbfccsvUzFgi7AUFwFFUFkxFcJ7LBINSKaEkCJClHKhU0Bs9Yb8pbZKj8MzEYDASluOSTMxlaqoqM+ZcGB3rnRy3ptIGtaylsXJqauTQ8aNKhZRFOTIenJpxOWdmVzY1DEwN5tVXty1bXlBUrrTYo5HEhQud+7ZuGRsbBelMZXHu6taqxopqWAQu9A/wbPLV5/84PDrCCWDvxX4qm/7hq69iZKqhpmX5qtXlFcWfv/1GQ55t7pwaXzS+e/fuDEXm2XOLivLnzm0ZHx2emXEFg4HN339vt9msJvOyZUsOHz4843GtXne1Uae/au3Vo8MXAVZIJ9I0lZXJVYsWLZYqVVVNzW0rr/nzS69ICeJsd/vy5ctsViOTJf/w9DN/+cuff/vtN4gTwn5fOBaVERJ7viORTesq1Jk0iWHYwECfxWJ57Y1Xf/nlF7fX88C9Dxw4cKCpsX5+67ybbrjxs88+s9ls33//vcOeC0HI6dOno9FobU3N2bOnCwrzBb5OggBB97RerzcX5nZ0dPGcWFZRceDAgYqa+t/27qmuqy0qKurt7X3k0Uf7+/pmZmY2XrdBq9Zs/uUXBATy83MHBwcPHz5sNJpEUWxrayOkMrlceeONN2/atOm6624EIeTgvoOPP/yIz+ejqOxtN9+USCSkUunJw0d/d98DJAqEM0kEx6rq6rMC7Y6GHFojJ4AgAoMAIAgC/O+4X1EUYQiCIIjneQCCIQROp9M0y1+2D/xP6P6bsv96eVmrJQIi+J9v/q/X/1oQX/51QQQBCOZFUeBYHMUEQeBYFkdRXgQmZ6etBosoAqX2gv7uHgRCS2trEtlsksyoVap4OjM0NFReXCIK4N///vdPPvlEFEUYhmEQEngewyWhSHjPnj1/+svzKABNzsxgCIqiqEwme+eNN+ura3738OPHThz9/MOP5SpFIpOKBiJFefkPPPLQx598KpHgQ0NDcoXUYrT09/f39vbffffd8UTs8JGDdfU1L7/8kkohwzDs1jtu53l+dsbbfuZ0Ih5tqqutqKg4ePBgYklbY30DhOGV1VUVldVPP/30ZTH50aNHARGy2S2hUCjEC9dcs2FiYkwmU/zud1dnMuSyZUsQBHrzrdfvv+/BsbaJibHx4eHhZCLjcs90dJ77/R+eePbZP7z/wdu33HrTmiuWXRro+eGHTTk5Of/87FNrjh2B4O++/q63t1sUxaH+oYUL2xKJFM0wHo9n3TVXu9wziXhKoVAdPHjQYjaXl5eHAmGVSnXddTe0trbkWIxev9/lcrnd7sbGRofD/sGHH+Tn5y9btiwWixnNJhzDX3zpxZ6eno8//ri2plYUOJalMQxDUUIQBAwjRBG8vJ2CYRgQQYNOT2VJUeSTyaRULgNASITAZDqVTieVSiWCQh++91E0GINQ7JYnH77z9luOHz9+9uz5tWvX3XP/A3ffc2tucSGGYZAIoCJ4qbOfTGVaW1s+//qLo0ePPvn0E0aDefvOHc89/2e1VuXx+odHLxXU1gDJqFWm9sRiFAjAAvTzVz/odKZ1N1xbUViaFUQRBJMZ5HzHBbfLlZefT0jQcDBYX9N06tTpD977UKmSkiQpCDyhwOk0E4z4ZzzOfEe+zz8r8nQ0kXYUFuQU5qcpOkWSGZaRQ2iWZ2lAkMgIDCXS6XQikdXpdDzPxuNxmUzmnJ6gaNZkMs3OzLim2c2bNlVUVapUKhFkU+ksD4IUwy1ctDgWi8MgIrAcEg2FG5bXlZWXDg4PR+IxrVZLMnQgFFTIpSDETY5P4ARQUlooilA6nQBEJEOn/CEfTiCcQCtViiTIWBV6UASyFMVxLMtzEAySDF1cVppIZ1hexHEIgiCSJAEAqKmt7bhwQaFQ5OXlbdq2ub6pkeV45/QUjGBGsyWWSCMoKgJQJBLiWEAikahVBARpJycna+sqQVgUQQHBkVgkolaqMtk0JiUQHJMSKASLhATFcBSX4JF4gubEYDQ1dnFKplSiMGi22qUy1T133XOxr3/dujUAyMa8nuLcHL/fazbqXVNTGIzgCBpls5ksH42GcRzVajQGlRYIhcc9bplMVluSPzw0etvjj/zjo/cAVtTqtWlPWqtUemdm9GrV1OQkBooypQoEQbNGq5Prs2Sid+hScfOCieGLtpyc4oJi96yHFtksSwsAodFpI9GoQafnaEatVgcDMV+wQ6GUOwpz5XSSsKAXunsgBFFo1EGvy+OKPv7QfVw8AidN277+briz++abbxVEseP0sYTbVVhW1rpuvTsY7u/ubpm7EMQAnhc4UMxx5CGk0DfUp5TLsjSQzqQymZTZbrLqtXQijkEwIIjJVFBPKGPReAxhR2em8yFMCcEpWFTJNQXmRFfvpbbWhVPen/suDoBlrJCVEiZtbW11SXnZiX37MCWRL1fzRhrFJMX1DXc9vkRlyXXNeH74cWf/+MVLfT0SUViyeFHzDVeNXuiozc9DMTgRitAgNuOPNyxasOfoifqqBgBEPvziC61KTSWzufYcTzp19uSZVDg8NTOpVMmyNDU+OiGTKimWg2F0bGJqTlNjfXkVl83OBAPd7e3jas2My/vQg/cjKLR5089ytermm2/mOb5vYKi6sjweiw/29ytVchBAp33eP//luWg8kuPIKy8v53mxvKpGodRu377dNetz5NlwKTE5Nt48pyEUj4+PO4edToVO5x4cXnPlqra2NopmGYYbmxj//scfvv3228b6hrYF8w0GQzAY/Muf/3zy+PGjR4/+8ssvNMv+7pGHWlpaYECUyaU+j3tsdDAQCJhVMr1GWV9XOXhpSGfQWu0OnhefePqpzb9uraioUGu1k1Mz12y8lmG4zb9ub25saj91ampqCgSAQMAPirxWq801W0EEaV244OSpM8l05sqrr/7iiy9z8/NlcjVJs7XVdS+//GptSxPTw06MjtEc2/NbbywQWr50RSIUKa9rGPe65HI5SDImg0FgWBBFLkMXBMHLrefLU78cx0IQJAAiBEKhSIggCI1KAUEQIPD/k6b/FbeiKAIiAPwP1+jLRfD/Fcn/FloLIBiNxtLZjFqp0ipRUeBQFBF4lgcRKS7lSNYV8CWpLMWQCxcsYFPZHft3jg6PXHP1NZlM5viZU/feesfw8HB9XWNJWZkAAAAI86IIgjDP8+998EFLS8vEzAyfJqsa6hARpDk2kU0rcMmtN99WVFC8fNXKdwuL/v7iiwFf0DU1fezQ4fp5Lc2N9fn5+VUVFUqlsru722bLkcuVX3/9pUqlOdfenuOwffrZxw6b/fvvv+1sv3D3fff6Pd6NG65BIHjKOelyuSYnJ599+veVlZU33XL91m079u7bm59XmEzGk8nkNWvXlZdXrlq1or+//9SpU7/++qvTObVhw4apqZlrr73W4cj79tuvZVLV/v0HOzs7s1lq0aIFm3759f0PPqMoqqOjv7a2dmho6Neft8YTUYZh1qxaqVAonM6pOS1NddU1O7fveuWVV5YuXRyPRU6eOlNZqdNoNJ3dHSqVQq1U2a02hhWfeeYZt8u1Y8cOm82OEUQ0FDl3+tyq1ctImg2HwxUVZWql/Mzp09u3b9+9a48gCBqNJhgOvfzyy4lEYseOHaIoUjSFIfBlT+/LPVuWZS8vLgvmYRCS4JDI8V6fX6lQQyAUTaYYhsIwzGC2wABMkczrr/+9t6d/7oLmK6+64vY772toaLLYHDMe94x3JpmlKY6PJ9Mcw2Mg3Fhbt3fXb+NT041NTX/5y18mndPbt+1+74N/8IBYVV516803HTi474brbxrr6iQYLk9tGPW5IzxpsOkFitu06afq0nKb0VpaVebxQXfccQtPUxNjTpokk/GEBCc+//QzhUKhVMrj8ThBYCCEcXxWpdYm4qlxyqlRaVFEIrDpxUvbRBCgGJYXIIlMlcqS1VYrgqEUT4ciERhGM5lUKpWiKEqqkI6Mj8lxmS3HzvO83W7PppKPPfb4xMSE2+spKi3MkjTNCJeTDQ1GayQUlas0iCiK/f39+/YdVOuUVCbLyOUICMkkUqlEEQlE1Wr1PXfd9tlnnzU3teq0huHBGVEACYIgaYakaZqmcRRlGRqCIEgAystLFQoFxzL/miDkeBzHOUGAERAAoOLiYkEQyisqpiYnvV5vZUVFKBTieV6lUTc0znnn3U+UKl0ik+Z50WrLDQXCGIYZjLpEIsZxTDabgVBodnY6pVBICYlMJhNBAEKgZCat0ulpXkhRWRYCUgxt0mnlJkuIZtbOXRCNpycmJrOUWFhYXoAgzsmR9gunV69Y2d/VlWe1OGem5QW5xQX5rpkpn2dGr9VhBK4pyEulUhOjY2arHZdI83IcIoZUWnM9HvfnP36/etma40f3cSIpQRFQBKxWqyAAHvfsjNtlt1gBAAhEogqFKUVmFCr5pUvdByecUoWytKzMYjZX15TOTo0lk4msTK6UyTlRQGA4Q1F6lQ5BkFQy4ZqYYRVgnMLLq+sEhk6HEwadORSIvv7uB21z51dXNHg8HufU5FfffnvHHXeUlNeqGpvOdndnvMF9Bw4iPFtUVIUpkGAk4XVNNlTXjk9PNue1tMxfNDU61nnyVFFhfjAcDIFAdVnFQF+/SqUxl1TG4kmVIycW9us1RpQVU2k6x+DI8GBNUcm+CyPDUxOV5WVd497OWExjVK27ZmMGyxaUVpw7faZx3tz8gqJmkzWvpKxrdOrHzXv2HdoLkJTDZEAwaP3yRasXL/P4I8F4NE2LgRgpU8ryy+x79x3Q6pQD3f15JWWLjPqO02erasv37tlBpf03XLeho7OfB2hTYQ4PQpkk6XGHi4orBnqGURR25OcBACBw/JRrXKNWxjOpBJ0AQcCgU1VVVP4i8jk5Ob/8+MMdt92el1+weOXKE8eO5FhNf3nhhf6enpqaWv7Mqb/88Y86nUqtkA0OXLzxpltiscR77723atWqs+c6Wuc1Z6lsniPX63ZRPDunsT6dSHVfvKgzaCQSyf4Dh/7x/ntPPPFEV1ePRqUuKynVqJUEQQwPD0MicOnSwKVLl7LZ9JVXXumcmiosKG5qbrZYTR+8996qFStOHj+WzVDOiSmX2+0PBaUK5dJly06fPu/yeGOpzIIF89Q6rcfr53k2Fgkf2negvLgoHY8hDKEmZKlUpiS3kKSyarW6oLDI7fb+8ssvsXhSAMDc3PzLzxdJkl9+83VJfiHPMWPDQ4vaFqhlisHBwWNHj773+jsKidTqyAkGQyF/QFWk0GgNoABCCMKIPMDzCIKwLItjuCAKlwNiEQThBB6E0THnOM/z5SVlPMfCIPS/FrYgAF7uIv/nO/9eiuD/Uyn8f8wBi6IoACCKYxMD/QadXlJSRGA4x/EwgmIiYNSbKI6lONpuNo8OXor7Q4V5uevXXRNvixsV6r6x0camJpNe7w34yyorZmdnPR5Pa2vrZfGt0+k0Go2rV67pHxrIsVnkGC6KAEZgEzNTOqkMR7GWBa2bvvr6/qcfv+La9VU5BcVr116cGJWieElBfiqVqq+vTyUzubm5gUCgtbVl27YtFwf66hsazGbz7h3b5TJZbW3t9PRsb1f3oQMHo5FIU+OcCxcu1Dc3rll9pc1mw3E8GAzH40lAhJKplMVi+e233xobGzEMEwSgra2tqqb6/Q8+uvLKq+e0tPp9wQ8//DAvzzE+Pr5q1ar9+/cvW7bsxIkTBQUFOp1u7bpr33///QUL5o+Pjy5YsCAeiy1btmzXzt8OHNh74403P/XUU0ajcd7c1uGhIRRFw+FoTo7d6wugGHHs+PE1V6yqqalSKtXHj50sLy9HMTiVSfp8vkDAr1ZrEok4iqJ9A5cwDBsdHb79lhvHRocfeuiB3//xT9Ou2Vyb9dLQ4B//+Mdnnnnm6quvJkmSIAgYhjlBxFCUZanLWygYhv/DORwEAUEQBUGQyyQcx3k8HqPFzLMZg8kGw/gnH/3zwIFDKAonkvE777zdkZu/bNkaQEQfefz3zsmx0vJKhULx1xdeWQZDAiDG40kZjmUztHNyWqczLFu24vixI4cOnmhbskiqkBModurYqa2bfi0stPfu3dfYUAFznHtsdm6OYyLun4mHYRAlYKy/v7tP7DrXccpsNs9fsOCTTz/94B8fbNr8Y449b2RkxB9w2ez6VDqGEQghxbNpEgYhnmP6B3q1Kq3NYhdFEcPwXIc9GU9AAKiUq1KpVGNzY2lxcTKeCAaD0WhUJVfrNfpYLFZYUhyLxSw2u8NiYxhGFEUIFOVyOc2QBoOB53kERGQyRSKRICSKZcuWdXX1pFMUjhMQgmMUyzTPqUdhOM+RKzKcwLAIAGaSKY1GgyF4c+OcuXNaFArlpNNZXFQkJ3RKuUmjMEECztNwJsFxFMiSgMmoB0Re4DmWpVVyBUNmRZHHURgEwcuaRlbgszSlVqsLi4oyZMao0fE0ZbdYAUEUeQGGYYlcBsIQCCChUCibzarVao5jUAzRGzRjo4N5DgeOYqIoplIpl2s2FokGg0E6SxrNNoYVBBCx2B0qjSEYjVEcj8nlHreLYRgYBiuqq2bcLl4US8rKIAhCEUIlVwosm2uznTx6RBT5/FxHjt0SdrnjXm82EgMpJsdkZlKpWCDAkNmANzA0OlRcUXKh+yLDMLXVlbFYFISBTJaEMby6rlatVqMIjuISlhdNFvPQRF+aTpVXVhQVl65YsUIpk05MXMqQwf7O7qDX57DlqhVqhqRYiuYphsBwv3+WYykUhc1GE5nMXLt+Q0/HhUQ0VJRjy6STGIHzAHzg0KELne0klTIZ1TKB/fjddz77+su+WVfd/DabvfCB+3+HyBSdnZ2trQvbVqzCBVGB8gyQ9gW8l0amJSolJpf6fV4cgbMZanR8EsLx0ZnJ6UlfKk0BAABQNIHAUTIzE0sEUtlwIhaJZPLMBnfQX13TqJKikUQ8Q7P9PSNKnXlkZOzeR59cvu56TV0DaLHc98yTzzx6X//Zo21VRVcubW5rqVnQWJtKJD/6/J/tx08pFAoaRU0V5ZxSvv3AfrVGWV1YEJ1yX7963Uj/RY7jJp1jF06eri3MoxNxoxzes+2n1176q1Gh1skUntnZ8eFLchzs6ehgIaBl7hzX5IxGpwNhsLaiQiKTxePxluZmv8fb09OTY7cmoomvPv8smYzX19cqlfLOzk6jyeQLBn/a/EvbksX19bWuGW88HH3pb89PO4cmR/urSouLc/N1cs3c+rkSiBjq7jcpNXQ8cerA/on+XotSetMtd6295vq/v/Lq3//+ysnjJ+bNbXng/nsz6eTMpNPtnr377jvXXLUmkU40tTTd9+B9dY1169avNVtN8WSCFwBHfqEvGMkrKnv298+JiFSltxaV1ixcvKK7f7Bl/vyHH37k9ttvN5lMJ0+ebKiv1WnVx48cxAAuEfKbdap0Ouv1+j0en9vrU6p11XV1KZKCJZK62qaWltY//+Wvvb298USUkGDt7Wc4jkJRePny5U1NDdl0KuD39vX0fvvttzKZDJZLJscn9h0+OOtxewN+DgF5CIiB3GU5lcgLBIbzAk+zLMtzAACwLA9BiN/vl8lkBQUFHM+hMCTw7H8DpyhePt8VAVEEAfH/L9er/wuMWZZOp5MtLc1ypczjC4xPTY9MTiayWafb1dXT6XLPlOXl5xpNi+a1FhTkUQArQQiDWktguITAqqsqRFG4eLE/JyeH53mVSjU2NpalKATDIrGExWKREXhddY3VkQPyrCiynMhajbpZrwdBkASZXnfddQV5eTt37FColTwM4gRh0OpYlk2n0+lkKhwKJOOJC+fb//Ds7xmKfvi+B0SO5zkWEMXZ6Znvvvn2/X+898Zrr8+bt+DOu+4xmi1//duLa6+5FpNIT5w+s2LFKgKTvPzSKwqFAkWQzVt+ndvamkyn0tkMx3GRSKSmpqa1tfXUqVPV1dXLVyyNRcKhUODmm2/89ddfSkuL8/Icq1atqKurq66u/uKLTy1WfTwRDgY8NJU+e/bk9u2/5jgsr775TiAYXrf+mvsffMDj8y5YNP/Djz+gGHL7jl0gAltz7Bq9Lic31x8MjzudFrsNQqFz587BMCxTSPMLC9rbzxsNupKSory8vI6Ojus3XgsCwCsvv3zfvffeduttVZUVf/nr86+99tq333579dVXUxRFURRJkrwoAhASS6YyJM2LAMPxNMulMlma5S5/zkMQhKIoAAA8z+t0uhyrJS83V+T5tra2559/wR8IaY2m2+++q6O3u7P7UiKdWri8JRhxxxJxgYc9sx4mS1YUl9ltjhNnztryCvVW63MvvLT6iis//PDj0bEJjuNYhs+x54Ai8MR9D+VrDA6txq5WB6amQZErri1lGbJUqW3Smc0ixEUjchmh1CuTyRhPk7t/23ns3Mmmljk8D9bVzjl06IBUDhBSEEZFQoKyAgsINAywMgmSjId83qmTpw4LIgWhIsWQ6UxSLpcmEgkIAs6dO3f4yEGcQIxGY0lJidlsVmrUWoN+dnaWJEmbzRaKRFOpFM/zmUwmnkqzDM+wPIqi0XBkYmy8vb1Do9GBIOyedQECwHEcJAACiiICAMRTcUKC6bXqkqJCqQTPZJMAyKcz8SeffiKRjLlcs5lMCsNgQRBYmpbJ5LXVtSiMKKQymmJUCpVUKpVJpNlsliGpRCJGkSSZTU85J8hMKhwORyJhj8cTj8enXbOpVKqysnJ0dNxgMKTTSa1WazabpVKpIHC8wPAcK5NIM6kEDAJ6rU6tkDscDplMcubUaZPJVFdXZ3fkhMPhWCwqwYlwKBALx0KBcMAddI5PojAGARBHMxqVur97wOt2IyhUXJZvzzV3dJ/nOK6hvjkUSYw7pwBe0MhkOVbbzNRUMpXwumYxCU7zHC8KgWg4t6hAY9Cq9GoQBhQYEcskZqen/vjEI9M+jzcUtupNdkceCwB9A/379u1DMSwnx5GMxyEASMYTWp1aFPlp16xcLlVp1VKFDIbhdDqdokkRQwadEwmGVpr0PCyKKKwxGRRKIpgI4lr5pHuWZ9iu0+cKHHnOmWm5Qb5g0bzyksKKvPwisyUwPkb6PaTfYzeoVi9asHpJ29dffvfGW29TDFNb37R85erT507v3LGnpqFhxYpVkVBQJkHINJnKUFKtsaSmJp5KlZdXQgiSSqVS8ZhOK+d5XkbgVCwqMhQMgXKptKioSKZSy+VSmoPNGqWKwLo6+2x5thSVSQbiWY5nREEqUeTaHX968g9/+9uLTzz8cHDaWaBF1y1utqsInkp63ZN+92xOjk1tUBMq3GTWmvSy3q7Ts9OjFcWFCAQPDA59veVnjuNcHk+CIQ/vO1BmsixrWUyg8oQAffrZtw/d8fD46JTHG4QQcHLGicigDVdd5fG61Drt4kVts7OzgUCA4wSDwZRKZOVS+UB/P8MICqmsON+xd9fuYDCIimBejmPJorZHHn/Mnl/0+Tff/bxly7BzXKpU1tQ2lpdVXewfGLk0mA6HvvnsYxXOf/nR+0opIZfLEELS0DK/oXXB25/+8/CZC/c9+FB3d/fiRUvaz5xbs3r17ORUSUH+HbfcbLVaa6uqv//2m+HhIZdr9ty5sxqNxmjUEzhKM+SObduHh4fLyirOne9ct/66K6/ZWFxR+8Y7Hyg0RrXGMK91gSMnD4SgV1599eCRwzKZjOM4v8cbj8ZEgFepFRcunOVhsKCs7K4HH/x19+6CitL+0VGpVlNUXtHZ3VVb1zA4OEhR1MaNG0WRP99+dvmKpSIo7PptZywaNWh1h/YfqKurA0EwTWZxqaS8sFhKSHQ6nU6nE2hWZLgh5xgEQhiCAoLI87wIgiIIgDAMQhCCom6vF0JQtVr7H4mEMIL8v0D0vzFYEEUeEERAEEERAEUABP7z6/L1P9XUDJXlWFoukRXk5uflOQiC6OnpGRwZTqQTBo3aotezNBkIBzgYBEQeAyBQEOksnUgljx445Jqe2bT5l0MHDqxasaygoKCqosJiMgGCAALg5OREaXExAAAoAjEsBUAwBEEQCJp1BggBSTpLoJgAi4898ujB7bv3HDnECHzYH3jplZd37tx57ty5H3744cyZM8GgH4ZBl8tlMpm6u7pAQZyZmvn0009nZmYmJ6eXL19us+XEEvGurp729vY//um5RCJRUVm5fv16BIHefvttEAQ5jistLd25c2dDY93ipUubW1pqamoWL1580003ffP9d87pqb17977z1ts0QypVsr+9+NeCwrxwJPjjT9//unXz2MQozTJnz549fuzkubPt+/cfnp11r1u3/vDh48lkOhAILVqydMu2HVardeXK5SaTgaKy2Wx61uOWyWRqtVoul07PTG7bvsXj8Wk0ui+++KKyujqZTCrkqkwmo1ApsyRpz7H2dHa1zmkpKSn5+OOPz7e3P/7EE6FgcOXylTzPP/fccxqNZmpqKpPJSCQSCEGCwSBJkhiG4bgEghEEQS5HO2AoBoIgw3Asy/KiwAtAIpHIy8sTBQEQ0Y3rr3VNT/3tpb9+8sWH9Q21HRe6HY4itVruD7iSyYTOqIrF/TarBkWAZDzaef781l82f/7551etW7tz12+vvvbapHM6x+aorK0bHR2e2zoHAKBHf/dENhp16PVghpJL5QiA+Dz+kDcol8nkKmVDbWNb89x5FZUox3AUqZBJfD5POpl8++03k2RqzpymcDhy7PgRqQwjKUomkyUzaV4EBFaQ4FK5XDk9PQtCKAghyXRWo9NqDMarN25MZNMenztLkS3zWtZv2MDyHAiCsWji8nbt4sWL8XhcrVaPDA3H43Gv1+ucGItEIql0mmI5HMfVWo1Br4dhuKioiGGYzgsdJqORIrMejxtRKBTZbDYY8ptMplm3y2Kx+MJBqUKuYEmaYwmpBIQQjy+UyZAAyCWztF5t8AbcRtEokWJ6gyYWjiAorFIppRKlCCASHHGHwzgu0ep0GApmyRQAAA6bnWQoGEVIkuQ4LpPKUCyLyXB/ODRnzhy3ezYcDmu12mQ6JSVwmqZpiikqzPV53SjGSDBUpdIYjWalQptOZ0+fPafVaQQAMJuMkxPOpsb6aDBWWJhvNVh8wZDP54cAOJ3OwlLiyiuuGJqcnJqZ1JtNIAg68hzdvV03XXvN8ePtWY5DcMw7O6OUSi4NTRbk5WplykgkolSrshRJpjMBt5djGAgAQQBQKxRRSkBBpOfMaUyrnfQGSmy22Vm31WqWplJSucTjdpXkFXgTcUghw3GcTrM4hFty8kO8INBMNJHIkmx5Wanb2y5T6hqb6lM+D4hwGIGTqXQiGpPCuFKnSkVDGrlcpjNr7Tkz4ZhMozp98qReazDrbDaLibBZY2HLjHOypKQEhblsOq6QKu5bv+ZIe8drr/5NrTW+++Yby7ZtISlAbzK0rlodjgW1gDg745FrZ3Ls+vHxcZVW3dnTzSHosoVLnIMD0UyYodNIFnA4HKAUTyYyOCPIpQwg8JgI84iYjEeri4oHxqdtdqt6arI4r0QlIdKROKGQHTh8KJ4IaUiowaAvrShjID4w68qx6lGUA5SyZJqNREIoB9Eg8tP3P2swyK5XixArg9g0zBbVFOtLc/ds2SmAwKaffpAjzFXzWqNRdzARTcfZronJksoqQqE0aVT2nFyJQZcMB08fO2xQqg7uPWDcIFm+uG3Hvt2hSBgFYAgEHDa7z+dDISAei9VVVg8NjyrliivXrJmZcv667deKytrb777PF4yOOSfzHLar1l4hsMgLf/27wIqV5VUel1elUgTCXhCTP962oLSupq6+uay2zuX2DPQN3HD3/dlQyDUzvWheqwTH0tGoTqX82/N/ra2t9c54YBCZ0zTnxMmTarVywfyFm378qbGxMRoK91zo9Ph9o8Mjb779DsMJepP55dde37Frp8sz63a5Dh7c//zzzw8M9Km1mtfffCMWi3379Te9vf33PvDgzm3bc3NzCIKYt3ixRm+anp7NMNRPm37+ddtWhUJRUVW5fcfWyspqnU53cWi4oqLsyMEj4bD/phtuDIWjiWyyeW5zU1NDT08fSzPz588Pp+KNzQ0yFDvVfr60urKutIwkaUSCD44Mw1kKAgSapnFMwvEcCMLtnR05VltxXsGky6VQKEiS9Pv9Oo1WrZQLAv9fkfkfw0j/qzeWKPL//ta/fux/nVz6b11rEBRFUSFTKpXqy0fRIi/kWC0333gDLwq4CIkgcH6oHxLElup6ERABluUhAEQxEYGOnDiZyWRsJnMiFv/rX56HQYgXOIbmtGpNIBBwe9w4jldVVQk8j4AwgiKCwIMACAsACIIYgiezpEkni2RTN950097f9t18w43XX399dXFZIBTs7O664YYbUpnkxYG+FStWmEwmAADsdvvmn36sqa8jpJLamvqKyuoffvjp1ddf6+/vJ0ny7XfedrvcBw4etlgs7733bmlRcVf72Y6uTrvN4fP5rl67ViLFX3/99eLi0oA/hKEoiiOlFaUcK0QiiRs3XnfHHTc67BYAANavX3/q1Kn58+fffOvNhw4e7unpOXTwWF5ewerVq0mSyqap/LySgYsjzzz7h2Qymc1mSTITjwb//Oc/NzbWHz9+XK3WPvXUM59//rlSqfzl11/Pt5+155iXti3KzS0k0ymDwRIIhLR6o0ypQnBMIpGsXbs2HPEHA76Fi+ZPTk1s3vLrmTNndu3a9fbb7z7+xFPz5s9xOp0AIOTl5WWzWefElFQhxzCM53mVXMYLPAiI4OUxbQhgWRpBMAzDRACgOR6CxGgsXF1VcVn6/rcX/w4i4JlzZ994442GhsacnJzC/CJRyCoUSpriqCyj06u8vumh4YtyqeyadVeKovjNN98MDAzYbDYIBB959GG73fr2ex/ef/+9d955+7PPPbd3997m/HwpJKIYBrA8jqMcxQvJLM2xYZCVGdWFJYU5eTkGp/G3MydEtYrkGBkhgyH4ww/fv/qKFSzPZjK0TClnGSAp0hwvZDIZhmQRiSJLijKlAUKkJovR5Q6nUzQCEwN9F2tra222nCeffNxutacpZqDvkmvapdZqI1TM5XFn05nKSkc0FDbpDYwg5OZYRYETBEEEII7jKDKjkSlT8QTJ0BKlPJVNsSSFQCAI8jq9AolGo0qFDIKgeDKh1Ch5gM9kSRgEtXqD1ztrMTpQXOb1uhlGwAlIqZJNTE3rdLpQKALBuCiAvAjxHEtSLMfxPC9CCAoCEIiCmUyGQkCKomAEzWaz0OVeNABJCKlOo6MoKktTvmBAgASv32fNyVdIZTRNZ5MJBEBT6ZhKrpUrlQAvgCCMwDhN8cl0ym63njpzWqfTSHBi9epVPq9bqVROTU0lUjFBEKy23FgsHg3HdCql0zVTVKwsLMpvWThfozU5p53llVXOiSGWTw8MXoJRyGw18alkjsOh0un7+wcKzBaZRimCgNVqRVGUTGVyrPZoIq5UKgkCp3wZSIYlM2xfX3/zwgV0LKrHpNOzMyqlPBQMWPV6QOAsBoPbM1tfX+uecgksICM0Q+OzoECJIK7SYVk6LYVQOpUJu3xaABCyNAqIEA9JAYgFMIDiQQ6kRYoiU7b83AGXr7Wu9cypU/F4tLfzQklhjlKGm3RaAQZ6evvz7UatxThwsVsGQmsaGxrXrP3dn5+74+47rlm/vm3plSaLoaCu3tbTBZKMy5UQmIxnYlSrkoiIhgfhBCMcPX1ejSOFJVVMKtV/6aLVZDZb8ibGnE8++ND59lPOoYsmuVZuUCXiLEVmAZbm0pk8g0Wt10EEz5IkyXL7ftvNMsn64pLSHBtPkgTPEQQq5RGaRtMZSqHWXhjoqS6pxOUorFey6QwPAjq9Kez1RwKJv7/z7IXuUY6GXJ5ZZ8/wsopSFAKDyUgym66sq7KbzJ3nTqEKqOPihar59al0YnJgZFCtJjT6K69a7fZ6pCDf3Ng0Ou1iUmmr1drfdzE3L6elZY5ep2MoWuDZW2+99dvvfzh07OhX336XIdn33v9Ap9MxGfaqFWtYjhno65mccCYTAaNJtXjZUhDGWlrnVM1rC0TCwuSUKxT94JHHDvy2C6BovVEXCYfXX7VWLiV+/v7HvLy8JcuW+gL+iwOD6WSGTlP93f0F+fnpdPrXzZvVKu3hg0f+9OffDw0NG02mssoq18ys1z37t5deYFlWLpc2NtW7XTNUlvT5PIlEQq5RzXrcE6Njb73z7uz0TH9/vy03T2XQ+wKB7tNntUpFQ0PT/v17TQbjquUrJBiaCIUK7Pbm5sZ33nlHpzMYjfq77rits7MTgYlTp87gSkyvVre3t2/btuOBu+8nSVImk23dsTUZjJ0e7H3sd48MzUyZjaaE3yeicENdPcezKIKIHAOAEAAAAiBmKJJiOQiCpFIpy/CYDO/s7Fy1fBkn8AgC/Vdk/ktv9X/pPF+Wwv4/eFb+TyNoAABgGOY4AYYhGIRAGOJYWhBFHMNoQEBFsLywVA5joAi4/T6dQoXLZXsOHwmFAhKl/I+//31XxwWX371q6RKOY0QAkOAEx7DlpWUzHnc4HIZASBR5CIZ4lgNQBOB4AAABBHZYbe39fTIUFwE+QVPffPftX52TS1csv2Tr//LLL37+8cennnrqvvvueezxx0+eOHH+/Pn112zcunX7lVdeDePY3ffe43K5xsbGXnvjdY8vcNc99z3/3J/27d/btnBxXV2NRqlYv+7q4sKiOc2Neot1Ymriueeef+qpJ7JkevfOXbIaaevcOaIITM1MTU9Powje23sxFgwXFBSoVNJjx441N8954P6HPvv8k56+nivWXNnd3X/33feebz/92ecfrV51xdp1VyoUCpdnRhCZqenxltb5mzf9VFVV9cN339I0vWbVFTTNPvPMM/fcdecdd925Yllba0vj1PRkd1dXbXVd52ivVqOjSLavry+VTMuk8onJKU4Uzpxr37jhGq1a89JLL9155507d+784IMPdu7cXVRcPDIxYrVaAQCIRqOCIJRXVVIUFYvFMAQaHRvFENThcKAIJPA8z4koimazJAhDAAQJAgCC4PT09JVrruA47tipE+cvdCIoPjAw2Nfd/+xTvz99+mQ2GWMplqcYmZSQEDIqCwqipLm5ZdvOTefbT3e0X9j886bNm35NJBKDo2M0Te7et1ehVH3w4XvRaLivd4DiWEDgpTLC7rBNj03guAgBPAsJuBTnUuRUT18/1UHI5VqNsdhkH474AQIVOF5KQF63R6rAegd6YQQRBRiGMJ4HIUigGAaXEvFMAuWYkpIyBEMTiRhFZ+oa6pUShcgIBoX25b/+jSCIgMfnD4ScQyPFZVUcx3X19syZ22IwGJLxFMALAsfDIAAAAIZhWYpkeY5hGU7gaY6FYFgQBB7gsukMlU2rFXKzRU8xNILjuISQ8TxPZtIymQQUeBDi09kMiuMNDXNGR8aj8ZhUKjVqFPn5+eMTowiGyhRylucAked4Rq1WRaNRAeQBCIBQHoYBmmbTiSQEgnICj4kIgSPZTBJBELVWJaIAyWQEHPH53Ea9obKkaKiro6akKOB2moy6YDgplWioTBrHVR5/0Gq3Gc2m2WmnyahXK5UaOT7S33v/7Xdc6OzYu3/flWvW8Izom/VhMIIShMGkY9iUyPMSCZZhUgqLIZxK8jwnkeCpWAoH0WTEN39ec2/v4Pnjx+x6FZNJxGJhiQS32Cxpe47XG7MrMP+k22QwYbjMnyDjYmB4eFirVVuMFlQUMZ4uzC0AMHx4eLC2ogaiGElKoZJoBRlL4NJwPJJnt2XT6fGhCbtJEyeZgeHu3KI6g17lco/lm3JMOTbnxCSTYbzOKUd1gQyXsBSbFElALrUZtOkUmYiFQYqHQaS9ux0WGCmBs7yIgowIAQLDyBXyTDJrd5homg9FIsXqarRYIEA6EY3INbrbbr13anp2z67fftuzq6y04vqbb5doDLaSskvDI5Pj43aDsbio/PTJ4wLHD/RdBEAEhtHpQHjF4rZ8Bz/rcoEy0k8mD14crW1c2DfaU5hjTiVjIAyAEJuba/JGwwKZ/f6Hrzdt2r5zzx4VLmEp2qCzSs15yVSGFWm5KPCiQAMUhgOpWBqkkfKiPEKOJlK+6tLq0ZHJaIaSqNgsAC5Zu0Guz0v3DYVD/t1bfi225dhsuRcGBgm1QoJIDp84DMFwfUXVfuf0wrkLtv+6XaNUsQAzOnhJJldde8XqVDq9fed+mUzSUl/f03spFIzF4hF1RjM+PkWlM6Ul+SzA3n3Lzdt27KioqMFg2cXRHiab3bRvz6KFLVdfdeW7770zNj5cW9+kNRiffvbZKZd3xuVqH57evP9MLOA/d+6EWiMtys+bU1lst5oJhSQ061dI4UgsdN8j958+e2424OFZLhwP51utFrNeL+gEENp4/a3f/fD9gkXzr7jiiv6hvmVXrI6Ew9989/XI6Oi8hYtsJn0iFr/6rut7OrrGx0ZKqysvjY3Ma5ojwaWvvfLWTTfdcN9d91ksFgASW1rnHj9+VC6RNlVU9g8Pb/r5x9rqCpVC6pueUqlUx48ft1qtAoY5cq0YhqlkhNM5euzkYeOoyeowFTgKq+vq3//wg+Y5c9valiSTyf6h4RTFWvLyda7Z4fGJ6vziqamZ1YsXcy5WYDkCxQQQyFCkVIrRPL943qLjJ05c6OpevWIlTdMqvXr04uCStoU8IIIwQIMiwvEIigqAyAkACsEsyyMIDAAABAA8z4MiIIIQBINZmhMEQS4hBPE/rLH+s1YWRREA/0N6/a8S+V/OlyLwbwcuQBAFBEV5nudFAQNgWuA0uCSYjnf29586cqx5zhyjXKXSK1uqqzb/8NMudpcvErrrltsu/0EYggSAF2FQBIBELEZgGAgIPMBzooCgkCCwMATxEDztcytRqcvtnhwfKy4rjcSiHMPmWWw9nR1XXXXVS3/5a01NzSuvvJKlKLlad/JM+43X32AwGCqrK9asuuKBhx68/oZbjh45KZfLq2oaBi4NPfPMU1Jc+uwf/vTsH36fn58LJaHFS5dv2HCtUmdOZzNVNdU2m8Xn9+m1OrvdMTAwsGRJG4BgCpVu92+/rVy6ZOO6q3bt2DkxNbnm6qv+9uKar7/7/tsff5KrdJFoaN++fbU11Tgu6HXK5/70Z7vDdujoQRzHc/Nyfv7555tuvJYmU7W11WVlZc8/99fHH3/y1InTcgXx0YfvfPnVN2Mjo4cOHF65cuXV69bu+u03l88/PuO8584HPnrvPZ5jpBhmsVka5zbPuGZLi4tNJtvb777b0dMLIOjo8Mjho8cymczp86eL8kpAEGQo1mKxAADAsqwUQ0GlghNBqz0vnU5fvDQklREOhwPDsCzJ0gIowVAqnZISsmgwWpBfcuTE8d6+bqPG8NUXX/3w08+XLg2XVVRMu6ZjyURtQ/1Abx+IITTLUGS6paFKK0N/+XnT/v0H5y1s1mjUtlwrJWQteTalXuv3+4vzCwhY8s+vfsAQdHnbAhxmtQlap5A4nU4cACEORmCU41iRZxVSGccKSrmK5Xg+Hq1TaTGO64n5MEJBkmmtSRX2xQYHB3ECgmGY42geEEEYkuA4T3EizwsMRaaSeeYc/6ybSWffe/2NqppKkQc4TnA6ZwPBUDKdksrlK69Yc/L4GYvR1FhVQ0BQwO2FUEQURZHjSY5jGZQhKZ7lUBRNpRMKhSSTTKMoolTKWYZBpAAKIKIIT0+Hcxx5iE6nKywsHBsbkys08XhSqbRjgiiRSOKR+AzPSxVSr9cvgECazAbCoVgsplDJvX5/WXlJwOvjRUEul2ogdSqbTCSkao0lkUiwLKvWKEmSRFFYhECeFzUa3fT0NMdxCpWSQIl0MgkIAiEjlEqlRqPzh8IiDHn9PhRFKSorgAAmIVhejCeSuXk2uUo9OTXT1NA0MenUabQCIObk5KxYseLjjz+WE9KN664ZH3Omo6RoAqVSGcByEI9Y7bmucEwAoWQyhqKoCPAYDAkcLSEkjqo8iQTlAT6dTRmtRgSDovGQyawOBv0QjzTPmR8OhyOpTDCRAhhOm5c/PT19acpr0SrVUtwdj1fV1gWisaDb7bCYEQkiwILX61YpCmRSLBYNy5SSaDRMcyqM4+c11E+SonNmVoSR6aBXbdMWFxRMz86SACNVy8OhIAxCCrVcSCcjDEMKYjKTpknWqtcqJITV5tCatXKNgopHFAY1I3Aiw2iVKpzjRI6Vo8SRY0dwhayurs5uN3MyoqiyUAAZu95CAtnR4YvvvPK3O+68rbau8sSRIwILzPq9lMAgMonX5X702adOHj81MjKaYbKH288tamx2FOS3d57J0Zt2bPrJ29KCEYoRT0SrUlIoPx0hS8vKARU9MHvmvgd+t2L5Yo5Oj/pmYJxvyLXIyEQ2Hnbk2iAeEgWOylIAgspwiQwhQIYM+3xeV6y6jKAACoHhgCeazNKr1l555MROHCZ6O9tRmC8udSAo39xUFYxHFbhsyiU93XVhyVWr6+Y3j14cWrJ0kRTFjx0/LNVa2y908ZiUoclINGayGPfu2a1W6dUaWTIRZhgzDPE6vToQ9OIEvGL1yldfe3vpylUnzp1hWW58fGJOU8vzL7z42TdfXujqP36mPRxNfvvtt9dff+PkxAgo8AqpLCOwGACuWr3imWef7e3t/fzDT0mS5EVh+dJlIyNjFRUVIAipFKqRoRGvy7106VIEQfYdOGS22gAE/fuSxa1tC3fu3vXeRx/v3rqnproymYibTLrbbr3VH/RSZFKlgKec0wpC/o833920bYsUk3R39vg9/oaGhsL83Pktc7q7u//05794Q4Fnnv6jzWpVyJQP3nfbS8/9+dTJ4+PjoyaD+dzZ002Nta2tLUpjDs0wI85xXCHzhyOL2pamksny8vLcwiIQBMfGxu64+dazF9pnZmaUOs1VV1wRi0TnzJ1Ds4xZrTvb1/Hz1i3l5eURCM0gPJOmUJlETIpFFvvopPPEhXON1bVUPIXyQP/gJZvJjKEYwzI4jCE8xyMoB4DZLImjKC+IGILwAg9BECcIIASCICTwIg8AqUyaoUhQVEuJ/z46/B/c/R918OWKWeT/JcO+bKsl8P+aeqJAQQKhAC+cvnD+QnfXkw88uHXr9nGAa25sOt/fNxZwm4vyHrn3YZ5jAQiBQJHnWQTB0ukUCMMABJE0LQIQLwIoD/GIKAoCA0GoKBplqgTHKOTy411dew8eqq2puv2mW+QErlKp3n3vnWd+/6zWqzt16tSG62+YnJy22nMampoOHzzI8qLN7njuz8+fP38ex7B/vPvuy3//u9frBUFQJiGyFPnSX5/fuHGjRCI5sO/g2NgYIZFZjaavPv8inc2+9c47VTXVdc2Nlzo6hr7/6u6bb1NppBuvXRcKhM+ePd8yd0FxUVVVecPY6PAnH3xx0003Nzc3N15347FjR5YvWX38+PGJyfEF85e8++57s7PTKq1mfGT8lVdesVttsy7PpUtDDQ1NVVVVOp2upLR8z97dGC655Zbbbrrppo8++mjr1q0ff/LZ2/94t6SkrKSsvH9w4JobNpgMxngirVRr2xYvgwQxp0q3b+/+3z/77Io1q+fNbV1/9VVKpVIQuOaGRgyXQgDg9Xn9wYBGo8FQLJ1Ji4CokstnZ90ajcZcWzPrmjl69Kjd5igvL1dLcI4TFColL4KeULD70sXSoqK77rxPr9NOTLl9geDE5KTJbMhmM263KxIMpqMxKpFa1Dq/obbuH++9I/Icw3BZjpnbunDTTz+ynDhv/iIAhL/99vtrrrkGx/F4NtM/NNDf3TGnuaGpscZ98oJ7clqC4SDAQBAkgiKGYRSdRUD88nYBQBBBEEiWyTUYQ5mMh8rAAioi0Pbt21EUVSpkHMcxDIPgGMuyAACAAgAAgNls0Wg0aTILQsgzv3+2srpKECGv3zsyMpbNZnUGY2luTjKZPHehXamW8QCLoHCWTIViMZqmZTIZwAMChKY5XoIRGEHAMGS2WEBAYFlaKZdznDKZTFy2K+E5sb+/b2xiFKEoqqOjIy8vH0EQr9dD4HKbzeZ2u7VaNUUxoijabBa/P3g5ClelUqWzKUJLTE5NgQAgkUgCAR/DcCaTSavRJWJJmYwwm400TV8cHKisrJTLlbwgICimVKgoioKgbCKRkMvlElyKYWg4HC4sLd20adO6jdeOjgW83rH8/LypaZfAMrwoZChaEEGL1RaLRs51XLjr9pvIdMbnD0pl0mAwePvtt/f39m7esrm4qARGoZmZKRRDYECCY8T0pJMjpCBEZLOkzWbDEZRDkEw2LZVKxkadwVBCp80Px0maoiAoW1iU5/f5zbk5bn+IRxAMx0uqKpw+f5oki8rKLVYHAAAwJIyNDHv8vhTDGdVan2tWoVbwolhX1+CZnPR7/BWl+dlUSq1QgvYcVzZVpjMSGDwxOpaJJDUKNceTk0ODiXhWrVZhqRhAMnpCnqYyBAyIrIBBQJqk1Go1JxcZktr86yZCoW6YGScQmAZBhucEFFRICAIQ2FRCpdZgPF3SUDo47ervvSiXuTs93qWLl8UDUblGZtCYtEbLxPDEyZOdOda8tjVrPvjkU61DX1VT63V7gqFYJJZYtWYlRqCZVLqipuHcqZNFeflLFiwaHRkEBHF6aqIgz9rQUO92uxKkEAwF1FGtx+tfs7Jty44d9fXlixfMf++rz0FELNPrcDIZIxCYZdMZVkpgKAQDKEpxDJWMgwjKptM5RfYzp07KCYlCrbrknnrmxb+xEOGfTsSS0z3nO4wGrUoi02u0GTITS6TkFtUtN91yYXg47A1GPJEceyELYJNTXiWi4jJxi0bpdo77Al6bNd8zPZvvyDXobcdOHjNa9aDAG/VqtVKRyYrNzc2bNv0yPTGaaWlGEcjj9nq9Locj54MPPsrJzzt2sv3df/zjg3+8XVCUm++wlzra0om03+sPRGbrq2upWPStV1/R6kwtTXMwDE1R2SNHDwEA0N/bSRBSCU5AHF1XWUqlYj3DE2ar5ZvvvrvrnnuffvrpkfGxysrKw4cPazSyjRvWTU5OYBgmk8gziWw6kdJqNKIAIQjy7Vdfn7pwft36awgEraqqQiXSnXv3vfrqq7t27gQwZM68VpfHHYxHv/z2m6KK2is2XGfJLzh37lxfX1/r0hVXXL36ww/fn3X63F5fTn7e0mUr7LlgbW0dgSfN5oJNmzYZDIYr11yh1uknJiaWrV45OjoaC4dgBPnpx++XLF0KZMjaiqqo2UrSlNZosCGIm/egMBqPJZ2pidPHj99/423mHNvx9rOVOnVBUaESk4gCgKGYIAgMCIRDYY/Hk+fIleA4AkMCQ4MwIIiACKIczyMIKMIAw7I+n89ht12OO/0/O8///eW/Mx4AGIZBEAT+da7MQxB8eS0IAgRCEhFOZlMn2881lJWXOXJ/2r7l9jvv/PijT596/k/vvfz6R2//Y9fh/XuPHVo8p5URGJlSBsMwxdCiKDI0bTSa0+ksybA8wyFyDGI5GEIZQKR5LpCICwh0xZJl1hz7D999//gjjxIQAoj84KWB9o7z9z5078vPv6Lp7wvF4kaj8bZbblWr1A1NTXMQZHbWffz48XNnz166NADDcCIWv3LN6vvvf9But/7tpRf27Nv7/j/eRRAMFIHc3PyZWfejDz9w7NCR5StXXLdxI8Nxf/3Tc3Na5z7w0IMej2vg4uCcOXN0Bq1KpeEZLhAIyCXyvLwCQRDbFi5OxmO+WS8iwh9/8PFVV145MTG5ffv2xx9//Mt/fn3y5MmHHn7oQnvngdgRCILuvut+jUZFUkwmS407J+686x6apkEQ/OyzL3744YePP/74ry+88Punn6lrbLrqqqtaliyCQTAYT5BZOkWzfq/PpNGcGh158P77Hnnk4dfeeH10fPyzTz5paZ4jk8kInEhn0rFYTK/XC4LA8jyCAjTLSqVyERDVGiWKogzD5jpyJRJJIp7auXP3Tz9+f8cdd2zYuN7l9b/y+mtlpRU4Thw/diorMo//4ZnJyWka4NNkNpFJ5Bfn1zbVrb967Z333dPX33/tdRvqa2v+8dbbn376+aXeiwZzzoXugRde+LvBYPb6/NfdcEMoFOrr6dm1Z1coFJrb3KDRKigy6/N5cAGEQBhGoMuJmjTLwDB8OY5XFEUGEDEcJTOkFMVtEoWTS8tgCMwyEolEpVJkMhkAAjEME0EQFAFBBGEIZFl2dnZWpdaXVzgCgVBBSSkEwwePnkyn0wqFoqy2RhCE3v5+QRDMZhNJkslEkud5giDUajUIghhKAIIAYRIYhBAQuhzoiWFILB5BIBgEUIrMUhTNMjxOoCgKSGVYYMaLwBCAIWg6mUQQNJ1Mp2JxvVoF8WLQ41PrtAxFcxwnk+AixxeXlVIUNTh8iWc5MpO1mEwAxyMQSnG0lJC4ZtwWm9ZqtY6Pj6fSyeLS0mg0WlZa4fK6NDxnNJuy2UwykQgGg2azOZlMSjA8nsgEI2FCrgiGQ1q9nmUHPX63IAAMw8nlShCAWV6UInBZecXpk6f27T+4aOHCZCaNS/Gc3Nzx8fGWlhYQBE+cOKnQKu02czDohwQ8EUtI1cqC/Py+i2MVldVarWZyZlKv10ml0ory6j/96XkFLi3JL/Z73RgmJyTY9IwbRVGG4eOJZJrM2nPtjJerriy9ODw2OngxEo1hUkUw4BMEQCJBfZFIRUmp2qjP8AxNCxkWlGiMVr0mQyXNFns4FJLptPBMMhpPRAYG7RaHo7H5s/f/UVxSYDXZxp1nySzbkGuj0hmeYWQyCUDTAM+LPEMmkgUFuZNTblCGrVi50heKemdd7nEnR2dZXlBpbUqlOh0LoxAn8gzKCCmvv9xqnnb54n5nko72y6WQSF5x5Yop5/hAYECvxwsLjRwZBwF+w7XrZ6cmx4cn5HK5WqkFeNHn8Zu1esxoOb77txy9QoaIRw8fyHNYG2pLDh0/OzribGmeF4um1UpTUWH5zNTs+Nh0QVHlmqWrUolMYW6xIEAoiAIcx3NshqQDE5N5jlxG4LNkBhVFgUAjLKNXqWRZhU6raahtHh6aiKZTZrt56bKFXb1Dky7P9OS4Rq1af83awNQUzwt2e55cYxgdHOoZGqqob1ISmEatSKfSIIHVLZy/fdOmxprqhYstB47uX3fDtWqt8dixY9FwsG9o0GTPg2DRaLZ3d130yvw5OZahwbHegfE7brtRLSdGR8e//vwjk9V+5z23F+UXBfz+2++4JZ2MN9ZWFOTaW1tbUhly3/4jjrLKPLGwvrpq1297zXb7FWsXffThh1qtemRidO3q1TRNL5i/6Ojhw8l0qr62ZnJy0mSzvvfuPwaHhz764L2B3m4qm6Eoqra8/O8v/PWHH/554OAuv9/vcOS6PbO33XrX5598qlSaLo70mzS6Oa1zrr/lupNnTos8E4uHYrOJscnZ9ddeJ5fLd+7Z63LNlJeXtrTODUf8t91239N/fG7J4sU33XrP3PlTFE0eO3G49+JgQW4xjKOlpcWXensaaqrHR0aiiURnf3dDdfnY2MTs9Mz1G6+vqKyEEWRBy9x0MrFzz14URfUWk9c5Pb+gQElIT184//jHn9ZXV9mK8uPRmFKp3rp7Z0Nt3ejs1FjALcWJocFBpV47lc7arNYsScpgWGcwUBRVUFCgValEjmMZBsUwmqYRDAYEAUfQNJkdGhnGcUlZWQkGwZf9CP9v9P2vGq7Li8uJCxAECIAICgLwnzovMJxIjIwMGa3Gl19++a5bb994zfqQy1tVUz0TcJssxompyWXzFgIIPDkzDQtQlbyUFwUUhnCFPEtSJEBLJHg2ld6+fXtuQX5rY7MrGiwsyI8Goi6vR4oTx6dnqqqrly9b9uGHH95+8y1HDh3U6/VPPfXMwSMHT5w4cdc9d0dCYVAEoqFwT2dXMpk833727Kn28YlRqZRAUbSuruaFF15sbGz0ev1er3vX7j2Hjx3dvGnTgnnzd+367dChQ3KlsraxnmVZpVpVYi6dmZr+y+//ODk5+c5Lr169/tq1V187Nj7y4Yef3nrrrTWVlXqDKp2NMCLtD/mkMvTQvtMuqzk3NwcEmS3bflm0eKXFpneOjy1btmJsbCIWiz33lz+JAvThhx+//PLLJSVFTz/99Llz7UajEcfxM2fOrFq5dMGCeVu3/vrqqy8/+ND9GEr89Mumrq6OM51d8+a25ufnZ7NZjUazcF7jrh3b//DME7/88su8hQtojhVFsKlxjlSmEAE+kUxhGJJjt3G8gMBIJBrJZDIUxSAIhsMADEISAiNpimFFvV7/wXsf7tt7YPny5a2trb/89Mtve/egAoCAwoP33iuRSIqLixc2tIz29o339C1ZsvimtRs0Gs2ZM+d2btp68Mhhr9/z848/tDQ1AgBwsf9S28K2TIZsmTN3TvNcQQQgCHJOjvd19+zYvlUlw+c21koxPMeU29nbIZMrUYDlRFZkRAiCOIbGUPTyPXb5pmJoigchpVzBMKwAXk7ZBDQIykmJTCYjCAIKo6lMGkEQTgBwHBdYXiKRmi02DMMC/lAgGOzp7a2oKINhuKa+jhN45+T0yMiIXC6vrCgTRTEaiasVGhRGAAhkGR4EQQiAYRhmRB7gBUDkYQjiOF4QARiGKTILw3A0ERc4BpcQMATQNKnWarSpJChXISqVBgTh6upqn89HZtJtixceOnSIYwWWZVUadZrM0jRNkqTAAxqNRgBEu9VmtVqHLl1CURgGkWQyqdPpyCzDi9kFC1sC/pDH7X700YdUakVf10BecW4sGtVqNQAvMAyj1WrT6bTL5dLr9SqVCkJwpVrT0dk5NR2USFWj4wPZNB8KRXJsDrvdTGbjuQ4rAoEIBMnlsvPnz5JU5rHHHjMbDYcPHszJsRsMBimufOm5F7UqKUbgdJYXBICQyzSmnFAmG4v577nnbo7h0ukUjIgmk+WVl19PO6fsebbCwvxIOC6RElqtkqSprs4+o94MwgAv8hU11b5QSK7RJDLZEydP4oQiFYmxNCNXypQKeVVhEUEQo9POVIYqKSmpq6zqOn9KK0NggVTI5YIgSEV0aHRs9W0P7j3fm5drGR7oCUUidrNl0bK2995+36GRl1jVBXYbGYnIARHHMIRA/IEECEOsAINqBV5WS9HswMDFiD9oNxkGhkchlrpiwXw5joTc40qFQgbj6XSaFQUQhQiJ1L5w+enzAwyfHuwfLM4vqK+v5UXuzJkzxYVljoKi9dded89tt9kdBSqVxuPxLF28IJ2KFeXmHTxwwD07YcTB0sKiZJZKJWMl5SUJWujpGaJB+HePPhqORY8cPa5SqAVAvDgwuGL1qlDE75rxJtIpEGZumdcScU/BKDLrCxY6zJlMBgQAvcUW40VPIp7vKMBo/sDJc8vaFp85fy6ntPTJ3/8JAOHzHZ27f/vNeann7vvuKS4rePfNN4osOVSWpDNUgcmG5zu0VkdpaTkH8p+89c6Tf/gTy3GzAfctN9yiUet/2vTt2NjQ4oVLn//LH++9+w6L2f7dN9/PzjhVCvnM1MyGdetCYV8kllCpDVetvwpD0Oefe+6W226/4+57fvl16+afN3tcXp1J0lTXNDRwqbmuwWDQn7lw3pabq9LqLnV3Q7zIsiwqk61fv/7ogUNKlVyhVfkDMYlEUlFR0d3dvXHjxmPHju3es+v7778ns+mHH3544cKFGIatXbs2m6UOHToEwzCOoyaLOT8///Lzf2ngYk9Pz0MPPXToxNF0OJqOx7Ra7fDwcENNnUKh8of9gIAHI2GlSjM0OpJOpz/74vPtO7dNzcz887sf5HJpMpHYsWXH5s2bRYGrravMZFLLli2jMlmvx51IJNav35BlaABB+wb6X/nrK3fcets1GzcUFBWG47GhwcH6qqpoMJRbUaLVaofGxjVy5dmDR0meteU5VLi0prE2P8cBIejFkWElShQW5pMUk4xFfZFIYV4+BfAYCIMgKCKQEsXZy6FJCCoKPALBgCByAg8jCA8A4WDA7/frdDq90UiSpEKhQABQ4HgQhi5/DoIgKPz3YAbwv3D3P8OGQZDjOQSGREDkGBYAAAwjJiadJ9rbcVFElRK1UmXWG3AIIzPZJMBrCUlpZQXL0nKMADhehBFO4AEAgAEeAAARgGAYTqSSr776ularXb169djEdJbKVNfXyQkJJiEAEMw1mgLJBIHAFEV5vV6nc6qgoICh6JnJqT2//VZTU9XZ3XXm9Dm5XB6PxeLxuCAIACA0N7XyAtva2vLwI787duzI+o3XvfLKK3fffTeGEQIglpaVUSS59dctHo/PYDRKFfLP//lZRWXZ4kVtFaVl8Xh0TlOLlCA+/fTTr77+8bHHHmua0xRPRGEY1Ou133/3ncjxN915u8/tG700cubkiZbmxpwcW39/v0Kt+vCjL+6881YR4Ldt23Pfffe53FNer/eB+x/ds2dPOp185dW/67S6d999zzk909hYv3jxYqvZ2N/f++nHn5w7d+6FF16IxmP33HPP9PTsL5t3TE5O1tbW1jc2VFRUDFzsffx3D+7YvkWtMY47nQsWLDxztn1qcnL92nWZTEqt00oQUPzX/xHmRQGG4NHRcZ3RIEEhBMFgGIZRBACAu++8q6en7+OPPiUUsvffeudiVxeGwIXFRbkFuRwARqPRl1566bXX3mhsbHbk5tbV1Z0+e+brr78uKCh0TzpPt5/7edOmxcsWj4+PAwCwefO2waHhq65ae8P1G0MBj3N8LBAKdnS0nz1zuramKtdmFgGIofjyyop9+/YEOvr0KgnNZLUSJU1mWZaVEATDMCAIyggZRVGCIEAASHGsCCE0jve7Z/wiqUIIAYIv95xFUZTIpIIAkDQDwzAkQgIIWKz2nJxchUozNTHZ0jLnlVf/Pnhp2OVyZ2kqS5GlJeVGvQHgAZqmo7EwRVE4imEYkUwmOVYARRGB0UQmzjO0IAi8wMIwjBEEhmECx3GCAIKgXCoRRTGbzYoi7/P5wpEgotMZaJrW6dTd3d0IBGo0GoVchUCwUq2RySVyhSJDZv2hoFwux1AiHA6LIpBNZaYnJ2USKc/zOTk5Fy50lJSUomZ0wjk8NjpRWFDgmp3t7+9f0raworKss6djw4YN58+c5Xims7PzyiuuhmHYkZ9n0hqi8SjHcTRNFxYUnD7VVVZem85mOQY0Go1dXV0MVWa3GSOhcFFB3vTkFG/Ur127ViKXDAwMTBD4ufb2J1ufRHFML1GoFVKH1eYL+qSEjExnwn6fTK5WKVUMI00l41aLHYLAeCI8OjpqMJpDI+OxZMLl9YEAkpuf193bCWN4bfOcdIJEICAUDQ0Oj1GCUG6yxTx+gRMhFLTmWMP+gN1mmxwf98vkNRXl1XnFztnJ4f6+lvqGtra2Ewd3mzSSTCIil8s5ToRkxMzMTGF+viiQAkUV2ByRQCgYCFstFiSbkuGEwHAEQsAiT7MCRECiKBIohgBoKJ2WEzjHA+lkpryhFuM4bTiiRKDp6ek8m5XKMlaNFEFFDEONRmsoEuZ4oLys7ux5p0wCmiyWaV+wq/+XsoKCVJjxKNPlcyyuWV+Soqw5jrvvuu/Rx36HSKSr2hacOH7UF41xMkwQGQwUTCqlDAYGe/qUJrtWreifGP/6+8/XX3e9xqix23Pi8XiGy8SyMRHgS8oKg16fP+L1kekkIBjkcmOxPBQN6TTabDbrSyQzWdqqMox2DZRWVhRXlAyPDZZVFNcuXAjJFYMDowqJMhtPKnWa8eER5/CQWW7IJmhTbu4Nd97OUVSG4U6d7+rp/aV7sPOWjRtnZ4a/++qbnDzr5n9+rdEYEFSYmZk6sfewQib5+fsf57YsLCzOi8YCtQ0N9Y1N27dvs1gMbUuXdHX2R+J0Q1PFpt/2jw0PPfLIY/v3HigrLy8sK8q3mwZ6+2mGGnGOxLNGFANxGBzv77/rntuOHz4SCoVoni8rK9m1ZUuu3YYiWNIfyCLY50eOtS6Y//mnn+YVFGz9dduBAwfefPet5uaGlnmtE+Nj23ZsO3Pm7PPPP69QKLZu3rFq9VU//vyDw+E4c+bUo488UlpeGo5HVi1Z9ocnn7hi5coMmW2qqwN5YHpiPJlOeP1hhueNVptGp/1x0y+1jY2FlVVKtWrLll872i+gKNrb1ZNOpkqLi0K+iF6nunjh4ujEeGFxgVKtnfX6UBS94/a7rl55xXtvv9Xa2rp+w/o0RWpjMYamAQjUGPRHTpw8uv/g7bffnozEVBr1w/ffCYKgjANZUIQhZMrl6my/cMdttyeSaZIhSYZS6rVSuRTheZgXKZomOYZAsY6+bpCi58yZA8JoIBRUqVQoggfCEZffq5XJCvMLFAoFwzBqpZLjOE4EUBT+jwL4/whKEkUR+heXwX9PKAkcx8bTGZVKNeacjMVic5qaIAAUAFEiky2eN+/UhXPF+YUNZeWJWHxoarKqvKL93PnquXNxEMZRnL8ckwmIgMALEIyAMAhBoihOTEz09PU++OD9LpfH4/HUNja4g/76snKa40dcU2ODw5ply1EQcrvd4+PjZWVlJ06fyi8qpGhWqVS3tswzmLQ33HTjli1b1ErNLz9vOn/+/PyFCx5//NGCgiKe57du3xKNRnUG0z+/+rKldS6IIbNuV05ebjyZ6OjowAlpSWlpcVmp3ZEzO+m8dGnAMz37+ccfLV++3GwylRaXP/TQQ4uXLt++fetnn3+4YcMGg8l41VVXLZi/+OzZsxKJYqD/qFajqW1olqs1h46dTCaTb7759u7f9g8ODs6dO/enH79Pp9M33rCxs7Nz187ttfU1d95xZyQaiUQjExMTap1Wq1X7fJ54NIhhmN1hU1ySffrZx+++++7Y2MiLL7741htvu93ux598Ymiw6dqN17/66usfvP9JaVl1lqIKi0vGpiZ37fmtsbaOkEkTiRiBY5DIAyAoimAmk4EQWEJIrFZrIhljANBms2VJ+qNP3h8dHb7uuo2vv/76d998v33P7rkNTXffecdQf19Orn3UOTE0Mfbgw4+NTjmvXH+11Wo/cOjgS2+8jOISk8WyfO3Vcgh4BH6mprb2QmeXQibNzclBEKihvm7jxvWBgK+/t/tC+7mJiQme55YsXiTBUJXeEotFDCZVLB6IxYNapZzJUBJMTmVJBEEv93tVKlU2laUoShQABEZFQNCotDTDEwgy11qwY2wgreNUMEGSJARBCILgKCECIAxhIgSm41mpQjo5MUXgcoVcHY/HL168uGXLlmyaLCoqslotOp0eRXEQBAlcOj09HY9H08kUCsMIhomimE5nL7MfwxBCJsUxhKIoiUzCA6LA8jAMAwhEUxQIQSAvCIIgk8lFURR4AFRp5AqFAiewGZdLpZCZzWa1Wh3wBauqqgMBv9fvgxAkk03JZDIExpRKZTqbiUdjFRUV2XQ6EolIpVKGYUpLyqYmJ2vrynp6ustKyjKZzPJlCxUKKQTB4VAwlUpZTWYAAHieT6RTLXNbQ6GQXKqgGBLFJaOj4zqd7uzZ3lSWjaaDkUBSFMFELGkyaMrLCnPsxmg45HV716xZrdVraI5GYbCirPz06dP7Dx6oqa9ra258/tnnrXpDKpspLqlMJ1MZOuMoKhsYn26sr4FhsKqiFkYRQWCyNPPhB59lA0GjRW8xGWanXSadNsduSyST8XQ2mY7nmCx+n8+en8/jhCsQSESieoV6MuROJzMQD0gxXCnDpQQ2p64+EYqCEDfjDccz9MMP3b/r1+81BKiRSUM+r0KhMhpM7UOzxctWarXqQ3t/Awi8wGobnRiN+CMFSmmVVcOSpFwq0yjkWYoURTEWz8IISNK8qCD4vCIUk3Z1dpMM5TDqh51TWhwuVGsL7A4uE/d7vQa1EcMgBkAYjmdYUswrnPFGPb4Rq96RzWZ5jlbioFFj6BqdLKubc9f1N+8/dWh4ePylF1/ZuXM7jAg0k5Hi0r6+gRnf+PLiAgOKCSAyMDQoVWjLa+ulKtnBE2eiyTiCEShOMDRbWlqO4NjY+HiaTFaVVaKC6Ar77FqNTIrDnCBCoMvptBpNACDIlSoUIlLRxPDEmFyvsRgKR13T//j681MXzjEZ2mYwnD9/9seff5hbWEULTHVL08or13zz1bcULwR8HpzlnS5PQ3PrnTffNjEz5pmdPHrq9It/+tOJQwfDAXc0ktJqFLW1NdFYenxqUoTAdIYiIb6v79LatVfcdPMd8XicExm/3x+LZu67/6Fp1+ypUye3bdmMCEJzfZ3f702kUyLJaXVqQoLG42G5QkbgEgmmHB+frFnUWFtZcfLk8Xg6s2rVmvaT5/weX//QxRUNcwQQCEZj/lDwuptuYlm2s7PTZrPpLJbBwcFYLAJDUFvbIpfLnZeXR+DSw/v32fPyK6oq2zu6Hn/0UTKT3bJta+v8+WqZtPvcWRSBLo0MMwyXTaRLS0v0RkNFQ+O8RW35JSW8APT29p05dbqnp2dkbNQgVWYzablcznEcR7MoipaVlZLZdDAQnr9wwejEaFdPt1wuZRjupptu+v2zf3z4d/c/9Ohjs34vIZXhKBaNhDAMG50YNRhMXJbq7Okuqaq4a8MNxzrO1NfVFZlzRAFIc/SBAwdSiaRUq8pz5II8x6GQRWdIhKOkKEhwApcQAgTmm6w8z8pwAgAhj99LZiiJRDIzMwNBkFavy7GYL+utIAgSBAGEIJ7jYBgEAEgARBAE/6tl9OXAhv8IROJ5XhA4AABIkjx8/IRWr1MqlaAIaNVqQRBwyeWhjBQkwXPMVhxBp9yzLr9XpVEmg5GWOfN9kZBZqyUABAAEGoFAQMQEiBM4AACyFHnu3LkFCxZE4/FwOGy22kaGx9whf0tTo1qt1sjlAMOFUvGe/r6O/x9ffxkuR333j+PjszuzMuty9uxxd4u7JyQhhECQBCje4hQrLqUtFIoWLVIgECCEJECMuOckOe6+e9ZdZ8fn9yC9e/e+7+///2j3mutzzT6Z2df1er9f0t6+/oq1fT29DU3NMIZ63dNOR75aSXz0j/fXrVtnNFtLCotOnjiBo1jrjLZpr2fHjh00TS9YsODHnbtXrlk9ONh/5syZt955UxLAU2dOq1SqGTNmGPX6eDIJIvC0x3Ph+KmpqYnbbrstGo989NFHLMvqtPpkMnnr3bcvmD33g/ffP3HqZG1jUySeaKprmjd3Lqkm3vjbWzAElRWXDA0N9PX1rVmz5ujR4y73+McffaKjNENDAz6fb9u2b+69994jRw4pCPLmm2+22WwBf+jpp599+OGHd/74XVVVBUXp7Xbr9u3blQrs0qWLmzdvdrvdJaVlFKUvLS3+7LPPPvjgI4c9H0aw/fv3x1PJcMRvttiyDNt1qWPh/AWVZWUBv0+r0+AoBsOwBIAMw2AYBsPwyMiIWq222+zpdHbdunUzZrYuWbIIQ+E/v/yXpUuWF5UU5tKZ0f5Bj9tlNBu7B/oqa+v//t4H5y5e+H7799ls9tNPPlm8ZMkLL7xgttlRDJdgYGBosKK8UmA5vUZFaS73KQEdg33tZ8/0dFwSeBbDULPZbLWYMskEoaKi8QidjieTiXQ6ibrDqARmUllI5kVRAGVAoVAIHAdBEAqhPM8jGJqmsxpKk2PYbJbVEJqeqGeQj+sVOkEQYrGU0ahXqdTxRIqiKBCEM2lGr9frTUZSpZJlAMOw06dPbf9mG6FUp1IpiqIoigIAIBQKhSJRSZIux8FiCAqCIKlW0QwDAzCGojIACDyLI6ggcjCKwjDMsqzIiazE5mgakEEFhsViMUHgvd5pnueRZDKDKpQgAhMqUkmqDSZLNBqdOWt2wO/XaKmzFy4azQaGzWVzdJ49P5lMogSW5ehgJIDjOICCWZZhGOZ0+1kzpRdFsbS01OPxlZWV9Pb2XnPNxv6+vqba+oGBgVQiWVVVBcOIKEv9vQOUXifiIgRBE2NjFpPBaDTqtNTYZJ8pX+/1hBQKlShJMghKgOz1et1Tk9WVVZeZuyALlMng9XoVCsXtt99OM9yxM+cwQk0LIg8gGVacDkSUGmUokZienLztlhslXkjFE1qtVmfU+wYHgj6/k1KjMk/AgBLglZIgJCKYKNpIwq7FxVzOhKP9ly62LF08d/6cH77fwfC5PJ0RthcoFEQqGJQFxpFvzXJ0Ipuwmo2mPNvZg8e6hsfuevD3f37m8QpnPkpQDCQDPHvFykVHfR6T1YShylAq7spli+wOOssEU+FCo0Jv1MYSKRWsqqyoHhoaDUa8hSVOWCFbS/I7E5lMNsdBEiyJmWxKhkRBkspLy/o6uhbMb5sK+FM8o1OhEADYTNZYMgLqVcsbZhSV3v7iC0+SEJlKpQiLTqPX5+WxHs9U5+CFQqdzdGj822+2RaMRi1Un8Jze5giFQjqVXmKloZGhLAitvmqDwZzffqGzf2RAq9P3DAzc+bvfut2eH37YI8tynrOgvKyME4WJwUENqZIQaGLcq6O0laUloCRiqBpRqg0aik6lx6enFJS6sLa6qMDpm0rE0slXX/vrwiVLRRS40NvffvGShdIbK53dXR0/7dtzvv2MSAt5xU6Lico36JVKsLa+BCfAndu+YBPpjVuv94TD3RNjWpLwJRIiAhw+edzpLLLlWyamJmQI9E57Guqqk4nMPz//esGSpfMWzm2CYEpr/vqbzz7/x8dMJq1WKorKiiIRD8DRWkiUKaSkyD4xMqUECERA0wx9ZrCDlyX3dv+3qW3LVyzBJdg75srFkgGX26bRR7KpUCyazjG//Hrw9Nkzr/31byRBKDMZLSP8Zutv1KQyk0lNjI8LBtOBn/ePjY3Pnjlz1ozZap3WYQsgEPrFF1/NWzBXpVJ99fXXsUAAAMX1mzZuunYzCiB6vZ4T2N4Rz/e/HAh+9uWhX391DQ+btbpMIl5ZUaY3qZrbasPh4OHDh7PZnEaj8UWnMQxpbmocHO3KJlO1ZfmESpWX75z2jL/z4d9qamrqGxvCZ1Jnz5xnMtm77ryd4TkG4Bc2z9XrqbKaqlAybtDqVCQJwXBnT1d339AvP/9c09TAi8LammqDlsIJPDDt9Qb854+fKquobKlvzHEshCAIIE9OufLzi4ZHh/Ye2L929RpZlqurKyktJYjCv0oMJRmQARAERUmEEehfxPd/yq5A+XKIx78SgyEIAkEQQRAQBEVRXLx0yWVhJsdx0XAEkqEcy+cXOB0WowDDmATGEylvIGgwGi/2dRZQhng6A6OYCMMSAEIyBAsiAIE8KMEwwvPCrh/3LFm+TEmQwdExlmXdHh9lM6sUSokXcAhBZVBUYGbctGDm7MaW1l/3H1i5bJnRaJQAoMBh27NnjyMvz2A27f75p1t/c7skSz6fb8OGDSAMnWtv/+GH77/88kuOleLx+Mply7OpdAd28cF779v25far1q4fGR/b/vU31127aXR83O2Z7h3ot5ltvx4/2jZ3Nk1nnnvpRUkUz5w8k0wm33zz7XfffOeO226dO3euNT+Pl4Ebbrjh5T+99MRjj161Ye2JE6diyVgqm3rk0Yd1lOHChQuJRKK9/WJLS0tHR0dFZdm8eQsikZjZZJhwud94441IOLZq1Zri4hK/379x48ajRw8DMkKS5IkTJ5YsXqhWq3fv3r11603l5eW7fj6UX1Ck0lJbtmyprKz8y19eRXDEH/TU1VYf/PWw2WzV6/UGSgeBgN1mEQQOgEAABMdGxwRJqqioyNA0JwhGsxkAgIsXLz7yyCN6A/XRRx+kU4nJyfEF8567cOG8LEm/7N2rN1Bl9VXPb3kZxzX3P/BIIpcRWO72227bvn379TdsLi4pfPb5F6uqamz5jmg0NtA7NNDfe8ett7a2NLp8HrfbfezU6Z6OS0wuXVpUbLPZjAa91+NWYmgi5PV6PaRCabfnBYNwaHRaCcM5mSZEGEdxWZZYllXiuMAKvMgjIJLjeEgGcsk0h0AUpWEEuVRnCYQyPM9zHKdWKyVJSqVSPMvl5eUrlcqpSa/NZuMl0Wq2Mhw7MjJCabV1dTXBUBLDFAxDhwJ+b8CPoqjBaMQJZTYjCCx3+UmGUQzkJUCGRADmBQ4G4WgizrI5CIJEGaAzWRhGRZlTqVTZDJ2VshiOgiCgUqmydBqZv2Reb29vOssBAJBIJDxuN8PQHZfaeSFH03RzQwVJql1uX1Nj8/mL7SAk55ICKIHZdEbI5cwGQzAUAQFJ4HhciaWzaR2loTP0hYvtM9uadGqt0+bI0NmqmurDhw93dHXOmjULRxRFzgKPx1foLAiHo3Zrnj8QcDgL6xorjp8+yqUJrUIBgrLIpGGACgcDyWR4zswZSqWSFTLlzqLJyUlJkmQMBWEoFoma9Ybbb7nj5JFLaT5XU13jmYxxPGBTqREG1FkMIIShhNash9rPnby67nrFdJimM0qLBRRlkQXMJrsocDqjhcnlQqEQiSlABNPa1IUq0jPmctbW6ymDJxgwGo1Jv5fNsYUOeywYTsYVbDoriqKC0uQJwJLW+u3bPiVw1dXX37x/z3c2my0n8hcmPKua5sU7BnuBfkSNK0UUwVW+JG2w2VE1wgFghoFlCRscHgNAMgPIeptJhGERhOJen83iTGKIYlLGdBqTSucNxHIs297fe+31Vx3dv9es12pJgzfgRxUCJCVAUPp15y8KZ/eCxQshGQvGww6zNRNPD+WGbQUFyfGxQz/9smTtmrltdYFAEIbBrp6+LdddReAKu9Uy1t8d0WtmX3WdljSPuacPnNoFMFmLTucsK5qYDu74entFSfHS+bP8kUBfX8/Kpcsceks6EnS73UqlctnSJccPH+3qihc4bKRaGQ4FDVptcXkZLfKiLIWCQRwEI9GUzaydvWDOUFdvdX1l94UzoVBg83WbvJOTSI5tLimnMymVmeJpjgckS35JPJY8d+jYaPeQxZpXPqfIZrX0jAwuXbqMleWK5taa6kqjhjpz+OjIwGBry2xncdHhYwcvXOoUZckEIbDMnzt+suPipa7uDpBH57XMCPjGdFrV/NnzeFHetWe33mzOREIToxOdnb2bb7geV2LOwvy1G66cOXvOhe5L7qlpCESvXLeBzmQ+8wVvvPnGPJt1ZHLaZDLNW7jgsw8//uWXX8wGgyiKmVgsTWGv//UFkqDUKl19Q1OO4TZdc1V1ZcWM+UsuXbr0xGOPZ1LpwYG+xuamoydPLV+1sqikRGswPvP8yywvjLp8nunJL7/4REVgQX9o01UbpnrOF2oU5XPbJFGcckE4AWtIYv8vP0ej0ZaWFr/fX1NTk8nQjY2Nk+5Jl8stiqLdbpcQ9NS5c8XFxe+++dax0+37ftn77e4dbDpbW1mVScYCgcDhw78e2XdIo1SX1FY5rPZv9v7sDwVQSOEPBliG/uj99ybdk75wsLWlGRREBEFkThjyuB+570EABgFJDmWT0WjUH46wIHD6+BEIgh6//wGFQgHIIghBvMiBEIiAsCzLIAxJgAwCl9XM0OXK4H83AV+WOP+LB8sy8O+9LwAAAHSZZ2CYgkRxHMclSTLrDSAIwhDsck2LRr2GJAFA1mk1DdXV57s7SAi3GxxWSvOvLTIgASAIg5Asi5IoAQjePz7U2NbkMBtllq2rqkxz3PjEhMNoHE8mSaVCqyIlkUcAVARkUq0Zdo0WFRXZbLZoJpHLZHVKzeJ5ywZ9Lq3ZLqHK9q4umuc1RuPp9ksQCAaD0T889cLR0+2z21rzHfZ/fPIRKEsLZ8/evXfPrj0/bL5mk9mg3r3zm2nPWGNj4xWr1sxtbfYHIhaT8ejRoxRFnT5+asmSJYUlhc2tbRVlpb5Q+McDB3UGY0G+c9XK5c8/8yzHcd19vW+8++682XNKSkoAALDZbBfOtxfk2/aEIwKf/fCjtwaGRxYtWw6hpMGkP3n+pNNmDwQCs2a2uKfHJJmx2owjY2PpbG5OSSFHM5vWXjnY1//s48/87t7fVlRWnrvQvmrVwqaGugunz/Zc6Fu6vKSutikcjnti8QWkxW7Kq6gp/+abb1asWDblmiZJEoIBQqEUYAlEMYllBVY6ffyUDACffvr5I08+ZbJazu3+8aNPP77n/vuysUQsEifUxOiUX5aEpWvWXn/tZmue/f0PPhocHs7m2DmzWo4ePSryuY8/+sBkMi2cuxAAoJ937lEQOMMwer2eYZjnn3jUNT56/tyZjo6OkfExVIEvWbgIhmEQAjiOQ1F02ufnQNZks4KyzEgClONllo9zSRxFBFFEJYAXBRhBBEEAMQTGcJHjMQHgcASCMCWM0KKolmFAgZmUSg+XkyExy4kaBaZWaZRqsKe/55pNm80GWzAcCkajIOQiSTIUDDAMncqkU4l4NkdzoiDKUmF5GQLBpEIZi0aYbJbnGI7jIAiSBTGTowVBkGVZBAEUhnmep7R6SZYRGLXa9IIgIATI8zwIoxwnSIJIaEgsk+VECQEEXq1UJBIJEJStZrMgcKLAsVwWQTCNRrNy5cr29ouZVHpsbEwWRb3BoJWhoN9fXFDc39+7cP6i8jJ++3ffGwwGgiCi4YjIsTqdLhTwd3Z2plKpSCQmAWJ+vqO2tvb8+fMev6+mtg5EMVUu293bWVVVHYslkpl0MBQJBCNVlfUDQ2MICkEwotKoeUEwmUxaDUHTtFKhkCSJYZjLbzYkAxiGsVkaBIHR3gE5x5h06kwsnIxFSFKJorDVauEp5dHjJxqbWkxWQ3FJwfDwwIcfvItjsDfi0et0KTYNAUI6He/qjefnORxOO51NCpLo9U9COBkKx4eH+pqbm0+ePJml2Vg8RdN0LBYrdTpwBWk2m1wTk263L5dJ64wGitK3Xzh51ZWrBRgRQZihMxiu+Pnnn0mTHeRFmBdVmAKH0aDPjylQLJ1UFzmVGFxSVD7YnQuHw4lUVGc0AJCcZRgURo1GSy6VFhgJwxAExkEZVOCqTDp38WInqdLJsuxNhkEVlmFoNaSVZKG4tKR7evrnH34EZcBmscdjcYOCyM93TrjdPM8DANTfP4jIYiyaxEgNz7KHDx297tpNRqMRKKu5cu3VP2z7XIHKwUg4355vUJv4dCZPpX7u5Rdu2Hx9Q2VdimOymRwKQgSOEySZl+9MZzMEQYxPukrLy9RKbKC/x6o3AoDUM9jbN9hntVoBSSbVqmQuS6mUNaWVK5Ys/nbKD4siyPM6jEj6A1Gfy2QyqFQqWJQpXKEiCUypmDx7tmNo+MXXXp0zf9GLz7/Q65rcceiA01HQTQ8ImWwqnTip16oo1dWbr1FbdD/u+P4K5ZqqmoYpV+DGG7eAANzZcXFwcHBqagoEpKefe76irPRvr7/aPzJCkiQMQelkCgKR+jnzNm7cBEHIyMjQmTOnKvQmXzB09NyFwYFRhULR2XnuxNlL5eXlvqzovjR8//0rH7v1/omJiZdefP7gzz///tFHly9ZfPkJRGQpuiYejkcTmfTaq64cGhiuKC3DIezkiSNff7VtyeL5x48cXTx/zqmzZ+oa6uvLi90To6WlpeeO/7rjux84JmezmMY7O++/5547Pn30iy8+v3ih02I2V1VVZTKpVVesTmeSkgy1tLVCENTV1VlVVZWhM2aruauns693ID8/X+Cl3p7+iqrK9Vde1d3Xe+PNt5w+eWr37t1zFi1Yu2LFoUOHdvy467F773MPjHzy4/fX3bgFh8DdP+2+cOnS1VduSNGpRfPmWi3mYCAQDEe0lN4bCpnVFITAuVwu32Z3T3sGJ0cEhg2mEzqNNhfPVNXXzpu/UKUmLmubZQAALzt3YRSQZBD471Ss/xs8ebmO8P+ZfvXvwyAIy7J8uZoJgiAERiYmJ4aHRuvr6wdGhmEFZlGQPIF2dHSUmO05BQuplRIg8xx32WoiA4AoSQiCSqAIgsDp06fr6+tlEAIgGEUgFYYY9PpTZ88UFhYqScLlmWZzObPZzAkCiitof7wsv5BleBTFf9j7wxVLV+Q7nWabeX8iEY+EXVNTDquNzTGzZ86aGp9YtXyZmtIqIESQJQGQlbhi7YYrL3R1/POGG26//Xav13/dtdf8/e/v+ULBDz/8OBVPL1m0tG9k6Pabf3Ps0OG5K1eVVFfedMvNhXl5NoOpe6Bvx44dc2fPTqeyf/zzX77/evvy1ctLy8o2bbr2zjvv3vXDzqGhoa6e7tLS0hu3bHnjzTeammfu3Xe4oCD/tb++OTw8evzYiVt+c3NVRW1pkX2eZu7o6Oj3P3z317/+NRIJ7Nm1Q6PReNzTW7ZsOXXmdP3M1vySovKaqj888cTVV18tMdylCxcPHz5aWFKsJAiLyczEE/k60/mOCzNmz0okI2qlSkeqSVTpDfrC0RCl0sIoqlKpnE7ntMuTSqdbW1sLS4ovnjn9+EMPeb3e1995S280/Hxpd2dHtyzBN95wXW1t7f79e7/74bujx4+99fa7So1qoH/whx07/vDkkwsXLL73gft/3L1rzvx5RpPlzJkzAk2joCKeTd9///2+UPDAwX0XLpyHAbCxqcFqtSIIIoo8z3Ie3zTLsmpCiZNqWACkLMchMG7WKZQkKcgcIIOQDAAgCEEgDEiigEAAzwkyL3GCrNWqWZZh2RSGKuI0602l/VkWVCMogsAoxHEcw7BWqz2dyioxpcasHZ2cvJwrkkmlLRaLz+fhGHba5cqxbEVFBaXXcRxLKJXJZDIcCHr9oXQ6iWEYRVGXo2A0GpXRaOQEHgThf814AJjneRAEZUiGAUwGERBBIJkXQEEW5Vwul8lkkPHhcY7jdBptIpmMhKKkSmm1WqPRKIriKIoNDQ1NTk4uWbKos7tHEDgMQ9isoCZUkUhEq9V1dnfNmDFLRZDZdCabzdXVlvt900kuXl1dEwn7xsfHKysr09lUNpvVarWrrljzw86dOEkmkskcy6EQ0NnTnWfPLy4upiiqr38oEokQBCGBfCKWTGUzICjLsqzX6zEEzmQyShJTKBSX479FUXS5XLNnzuq+1KElNBaLiVJjChxTlJJDI8PRqIzhqtlLFjdU1bS3t6dSsMViymY4AJRWLFsyMjooSyJG4hIH1DQ0sHSur6e3rq4OVyoBkTdbbZwIVFbVXXJN2Y1WjmdkAFaTKjqT1euoaDiiJ5QGrRaQZAWMxRkmlY7NbZ3d3nWmo7N71oKl27/8urwov7S4rLC6dte+wxorGfOHUBwjtSQOIWNDY2VGiqFZlQJXElhhWbF/KpRjeSOCpWgaxIgsz0mJpIygEARDGOYJB/VWMwlDQCqZztGxQMBqMqMIlGMZWZZFWUqmks7ieoXFOjwwAABANp2JR2OUBWOzmaqyUncg0N3bf93Wm1PJeG9vv85gybNbXRPDTz759NoNGyrr6//xyTs2HG1w1oQwtUaHwIAQTuZyqVRhVen66zf2Hj2zZNWaCz2dBKbwBX0wobTY7BCC/Prrr9Fw2G61LFu0sGXmrJhr2uv3FJQUKzDM63ZpKKMAABlO9Mdiv336yXOXus5d6LR5JmFJKCvI848M69Q6pUaSE0GnSsVJTDQUBQBAq1Hd/cDDwXRm/cYrUUm65/77QBkKuAMv/vGPNc5CTmB1RoMkSUd+OVBTU3PllVd7o2GJBR56+PHDh38dGhwcHh5ct27dnNltbrf7xMlfeT43a+7cRCLBSkIqmlh5xWocVRVUV7700st0JhuPRWRZdI9NTE17vB6/SU3Mnj0bzEYwkrx09sjdv713bNyVTkTfeO3l1175S3lZ2ZyZzds+//i7r74QRDCZTkE4/Pzzz8+Zv3jfvv333P1ALBxOx2MkQTS11BeXleMo9v5HH8uyTBn0CoVioK/vwonTdbXVdDpt1RAcDvpc46//9S+TrunbbvlNZWX51q03ezzucDjqdDrmzJu3f+/ekpKykydPihJvsdoIFVlYXNTZ2QnD8KZNmwKBgNlsrqyuCYRCjCBq9IZIIslKwrdfbpNAYPfPu7t6uh9//HFSpRFIRVFhISQIhAzefv2ND/z2t0GP7/zFC56eoaiQjYaijgJnjuONRqPNYMilU30DA3qLZdGsuRCpMJmN0z2RebPn6VQaVuBhGOZFGYJglmcxBJVkCYbhyxz333RWBmXov7D230FX/4XBwL+vA/+lgv5PDL5sC76ckCVLUkFBAQyhIAhKHG82m0FBzmWyK5Yu02PE3qNH7CaLLIsojkiALEoiAAAIghw5cdxoNJp0+rmz5hrMpkQmi4AQIkEYrsilUlaLvbKy0uVyFRc4Az4/x3EyCOIE7hmftFB6QQYovXbVqlU+fwCEAZqm165Y+TPPT097rWaLd9qDI2h9fX04FDh05FBtZVVhaUltfV0uRUcisUg0PjYx+cSTT331xZdT7mmVSmU12ZcuWV5RURGIRIcHh97/6OMtW29+7sUX/v7+e7+96+43X/9by7XN8xbMP3nkmN2ah5PKq6/ZGI5Fr1p31TNPP/2XP748c8bsxsbGutoGrUZ3+vTZwcHh5uaW227/3Y1bbnAUFDY0NNE0o1KTP/74YzwSnj2zpbi4eM6cecPDo6dPn12xYgVF6detW7du3ZXbvt2eyKRVOvWbf3+nqrr60OHDf/zjS6fOtTvyC1rnzBodmxBA2ZqfNzXtDiUitbX1CAKNDo0adPpEIkXTNAAAJSUlOIyIMgghaCgUIkly4cLFqVTipedfuHTh7NbrbnC7PZRKfe7kWTWp+emnX5pbW9rPnX/k9w+MjI5OTU39uHvXydNnDx06uGjRorffeI1jhVWr1oxOTqxdv0Fr0F3q7GRFwe/zoigKw/CRI0cOHTro9bhraqqKCwp1Wo0k8JF4mGGYRCyK47jFZKRpWmA5CIBQAkdUimQ4kkin9CiOclwKyJEAgkEoy/I4gucYXoJAEsN5mWWYHIKDGqUmlaZdiciLH/3j+bff6b54UqlUyrJktVgz6axKqcq35/t8AZ4XaJrWAwaCUEYjYS5HIyAEiEBNVZUMAhiGyaKYSSQHenq1Wq3RaJQhEIbtkixrtdpkMqlQKFAUlUQRQRCOEy6L/DmOSWdzSqUym83CAMzmmMvpHzIgakhCRSgFLofkGD4eTylpFlegAAhKEuIPRAoLCzVqpc/nGx4ebWxsPHL0EK4gYBimacY37ad02nQ2azTp0+n06XOnLTZzOplR4MpIJCLLIGXQ+4PBObNnxJPJb7ZvRzH42uuui8YiAZd37dq1p86enb9gAccJSlzV2dnp8QTKy8tRBNFRGovVqEimp9zTCoUCRXCCUBGESqlEJVmUeBmEcVEAEQznOGFsYoIgVCAIDw2P3nL7Hd/t2hP3BrWEgsD1JEmgEGo2mp584g8vPv2MxWLJ0AmaBnKsMDk5GQ/56mtqNSpybHQEBSFAxox6g6OwLBhJkyQpiHwkEjFbLDrK3Go0/PDNtwajMR5NpGOxhXNmmfW686dPqAmcwBGjjsyEYwoMUiuIwLS7qrg4FAotWLi0sWWOmIl3DQzWzpk/Z84ck04vcFlvwN82aybNsIPvf5BgJRHCQEDq6rwgyyACKGRe4mnOqDfE0xmjVkPLkt/vUWtJOkMrQDgaDdC5nI1UWNUknMHFTFyjVBEYyQK8yHAQBImiCMMozws6rSrH8lqVmsSxdDyq1aoUEFBgMf3zk3/8/rHHWU4aGR2XJUGpIBoaGtrbz/M8W26xEZLkCfq0KhXHcCSBwAA/NDVhGBuZOWf2T1/v5EHx6IkTT/3h6erGJoZmIQiRACCWSDgLC8tLS8PRWCwSzqM09fX1fQO9Nou1oKiIYUUYQv1e77xF8/VGnb+9XW/QHDp8oKmyAoVljMQrLNoRz7TX50+q1YtWLNFqtSZb/pDX//22ryKJqN1oBDnmH6/8efmV62ctWLz5lusiAV8d1QSDCKkgrXkOjV4XCkcrS+1nzpz54ouvpibGmxtrC/MdChTbu3cvCILNjQ0njh6rbWh87Y03KsrLXK7Jb7/9/sMvPxFT2RtvvDFHZ6CSfI7jBEGAGMap04+Mj4yMDm3cuBHB0JqGxvkLF73z7gevv/oKIPM3bd48NTaWTUZqShxGo/ng0cMrly5945NPh3oH//H+e1Oj42OdXY0tjRUL58xbMHfByisS8bhSQQKiNDE+mslxJ0+dYVgaBOWe3l4IBCorK1dcsTISi45NuyamJow65dhIX0d354xZs/Ly8iAIe/aZP85obTtz5gyO4wqlur29va+vb+bMmfFYqr6+/tChI/PnzxdFeXh4OJ3NwSgiSUBJSfEt190w7J4ac09pSM0br7z+xY5vd+z8YfWG9W1zZ1975dVGvTEWiyrU6sLy8vmLFrJ0rmOoJzDtr6qpG3dNts6YoUZROpO++pprkjR9qf0CYdRVVtUEo7FcLpdIp2AINRl0CIIAIACiGAACoAxDkMzzPAQh/w2oMgBA4L/3u/9JdiVABv+Nr7L8HxLo/zogSZdlXDAMX2bUzgKHJEk6o0GJoeFYXCWRACedHesdHxpZs2CJIPOAJAOAhMKwDECpbEalUY+MjRcsdICx2PjEhFZN6TVagWVKSovUpFKtMzIMQ1FUIpHIy8vjeZ7luVAoBKAgolbAOCIJcr7dYbU7Jt0T00Hf2NjYjNbW9957j6bp2267zRvwlxYVTnvd6zZu+OrrbVmenz1zzsGjh41GY4HJ6rDnYaTy0ccf++OLLzz5xBNTU1Ner7+gqLinp+euu36bTCadTudVV2/cs2ePw+FYunTp6Pj4lVdvKszLT8Vjbp+nrrHuqaefrSgundM6o8hZ0NjYeNudd1x99dV9fX2zZ89uamoqKytTEthbb73x9ttvf/TRBxMTY8uXLgmFAgRRn0zkmJz0xe7tdluhVqu+53cPFBUVHTt6anDSpVYqsum0ElF4QlNZHLHb7e999OEfnnlhetrrO3xSRZImg3FgoK+40LHltluUAiiBgMcXqG9sUFMaGEHUoMQwNANKgVBIrdaiKMrSuY8//GjHD9+1trY+8cRjsWC0v7+/pKriz395GRCkSx0Xlq1YGvZMNzY3ZdLJBx+6//z586dOnXrxuednzpz5zjvvfP75F1ar7YqVq1EUPXvoeH9/34arN56IJy93Wo8ODM2eMzMdjRblOzEYRhEIhoBoOKJU4iRJmo1GAAB4npdhSMZxAMGSmTQJIjpSncmmFShs0hhyoTQogRiokAAIQEAchwU6RyhhludC3lQgmmJJ5bvffr145cq3Pv5A4gGEwNJ0CscUHCaqVKo1q9f39/ajOFRVVeP2uFAU0WnUk6MjMAwXFhZOTbkFQQj4/IlEgiRJu93ucDiy2Swvial0GoAhRhQEEMgJPM2yKAQzghiNRgFJRhDsshsKQRAIgmSeMeh0KpWOpmlRFFQqQgY4XsghOotJY9DFYjGjxQSCYDwSlWQxmUzCIMBz4mXyqtFoREmiKCqVzeQ5HdFYmGcyyUxCr9cLguDyTCsxHMbQeCKlo9SYAndNu/Mc5muuvspsto5NjB8/fryoqMhuy2NZtrSo+NSxk6tWrerq7KuvqR0cHIqGwrAZ1Ko1AsvFIrFcOmM0mEFZhiAoEomk0pAkCQgCm6wWCYQKnCXRaFijoZxOZzKVaWxpzeVYp9Ppd/EQADAMDQCA2+uzOotvvelmDEE4hqFppsiZ7/WO8gLAsOL0+CSO4zPb2uhMpq+vLx5PmEwmVKFMpXMoBhtN5myWOXeu3dFQpSI1AABZzWaOEzwez1BvP51OT064dFpNJBKrKqkJpb0giKrUcjpDuyPBz778pqaq9uDOs7bifFKrOfjrp6VFxQqVgjIZlqxatWL5ig3X37hn5w/Ht39FKe2QICk0GpYWcRTEQEkFgTlRzoRjmN5hMBhj4SgjyFo1wQsSIIsEjss8Q2IIAkKwIIOSJIkiB7Asz0d9/jQIOZ3OshLn+JSr0zVlJZUWow6TOBUMVBUUjPrDF8+342p1VXXF2PBQS9vc0+dOazSamM83PTKu0xCoEs0wOavZnJNAEdHkV1WOdg/u/OG7lhn1vx7cX+DMa2xtO99+CRAFlmURFG2oa2xubvROu6PhkCQDY5NTa1avTCXjCIJodVRwcprUGLOpzJ333T82MWo2WphUqiTPLOUSORrMM+kmg54Mn5uxaOH8Ras7R8a6esYSe0/Q2ahDr65xlKpIQoUpJ8an9u/Y2TU4SJCakuJyFEVHR8cf+MOT5y91/PTTT5Mj42yWZlmG0mmy2eylS51XXLE6EAjFY2kEQWqqWlevX3Wp8+Lf3nqbyTKxSBhGwK1bb+g93x6NBASRGxkZXrlq9dKlyx966PeBUHD+slWLFi3ZsGGj1+v940t/evPdj8+ePfvoE49es/GKO++44+MPPnz4wYe6+waeevr6pllLyiuq/vTcXwZ6utVKrLqm9I7f3uIoLurs7atpm/Huu+/29vZWVlRs377dYbODspSIRf766l8+/eJzQRDtefmv/PnVSCjwp5dfgmU5E08ODwznuNzaK9Zcs/n6Dz/8aKCvf82qlZOTk5l0csGCBYcOHTLoTcuXL8cwxS033eH3+3NZJpFIUJReq6bCoWh/f39tQ/3KJcuGpiaYdLanp6epufnZv7xs1FCfv/OR0WHpGBnClWoBAJSkKp3NQqRIR1OiKOp1xtKCkmwmFw6Gx4ZHHTabz+2aMaMVgiBbviOaSmSSKTVBUhTlCgYRUBweG83Ly9NSlCDwEILJIi/LMooisgj8ay4ty7IsQxB0uSH4suD5P8nu/68Z9b8Z8OU/qX8lUwIyBEIAACAQAAKAKAuUVp+TBQCBtUa9CAMyDwCgDMOwJEmyLKoIormxqbGxGZGkirLS0akpUQLyHHaOzkEAyLKsb9q3YN68c719FpNRQ5AYhqEoGgqF5s6ZISNgJpuFeSAVT1A2c57DSZHagHsKAKR33333vQ/ef/wPT9x11x2RuMZgNkWD8eqq+vFJl81iz2QyCkKpJBUcx4TiYSZLr1mz5op167Z//fWNN15/rv18lskdOHr4rt/cNjowcvvNtz398otak+HlP/5ppH/wwy+/fOmppzSUrkGnG5sa23LdNV988fmCOXPbz5/Nd9jrq6ua6xrMBmN1dfXen37+cHrammdevnyl3W6fP39+TU2VRqU6e/b0yuUrPN7wpUuXYrHY/v37r7jiihdeeKm+vr6jo+NSf1dRdc2FM+16SpdKZjZctf7++++vravbsPqqdevXf/XeJ5TewNE5vVpHpzI9lzobqmq0FBWKhFOp1NDwiMAxNouVoqiJqUk+x5gLirdt2/bXV1+32sxqUjV35gwJBE63n9t03eabbrn5nbf/9tXnn/M8/+Bjj0z09PQN9Nssxuuuu+6mm3/z2l/fxBB8ZtsslucWLVqEYfjUxGRvby8AADqNNh4Moii6fv36r776qqKiYv78+VMT40qlklAoEolUPB6XJEmrVl/OKL3cL8JKMoJiGAgrUBymQD6T0QAQg0AaTIcowVQ6ASEIDiIEjAAgmBMk93hAMhttDY0r2ubNWr1KTWl//uGnqaEhjYYiCDKTyRiNZo4LVFfV4jhud+T1DQzxomCxWERRUJIECEGNTU2SJI2Mj+VyORgAy8rKcBxnBZ6XpRSdHZuaiiXiZoslPD4OwyhJkplUmlQSAIYhuAKUZZ2WUigUHMPiCIrjeDYVVavVgiCAICDLcjgcTSaTGlKH+AIug8FA6Ui9Qev1ei1WYy6XNZl0kVDUZDIJgvDDjh/1Rp0oipF4LEdzl0MvL6e+xeNxkiQRBKFZBoSQkvIyn8eVSqXKy8tZnvOHgna7Xa2j/vrKK+vXr503Z+7w8HBxYclA3+Bg/1BDYxXPi2o1EQgEHI78o0dPJuJpUqHRqnMCz+spXSaVBgDAZDJBEBAM+CfGJ1k6J/IChMAlJUUXL16cnnK1NDefPniEiSYxCVaTJIqTqWxu6y23+cPhqoZGDIJwpSISC1ut9v37T4i8BBEQCkOgyCciEYUSy7NbEAQJhfyOAqdGox4YGCBJUq2h1FqtglCWlVUMjQyLmEJrMCUT6byi4vrqqmw8lkrERQjLiqwIgIIk86CY5yzG9eqDR88//NijqMxHsrFTZ05bTSaGZ2EF6HZP3XPPPWXllXWNdfc+cP+KOTM+f+U5FYopcQKR2RjCcSDLiHQinTDpKLXOmJXlcLZbQRKSQgmSZCwekSyWcDyhxVEIAmEMURIkwORAWBnyRCuaKwa9PtfQMJONIQolisI5NifwhALWUAqF1xdY0Np6+OyZdZuvQxBIpVIFI2GNVieIrDeX1WFQfWWZN5LBQJShc2k2G/ZGenzT9YvX3HbT1h3bv9EolB+9+54AKW675bbS0sJz7ee7urqikVAs5lQoFOls1mww55sN58+fV8KwQo16vd5YLJrMMjiOf/PtD6GgHyU0iXCyqLDEOz1VUFhmMhqTkwNX3bC5s3vog398okZBp0FbmG9kWALE8cnJyYnxmEpNCTw8e8nKjbfc0tPZc82Wre998L42wzz30h+P/nrQrNflO+xBMW0xWsLhIAzKCgW2cOFCNaUbHp3UarUCAv+8/4DRrFu+fPl7b7xrpLQSz6ZCAbsjj6Kog4cParS6X349OuEL//Xd91UqFSfJbC733HPPHdh3MJVKFRTkfbf9q+bmxt/edCfCoq/++c2/vfP+0ZOnmufOmnK5WCXYPGvmuquvcubnZbLZbd98pZv2DI8Mfrfje4NaXeqw79u1g4Akq0HdUFdPUVQyHs+lM9u+/iYYjr/x1tsHDhzwuV0mvba+tuaxJzZZrKb9B/f/9ZU/+4PhqqqqSxdPpdNpAEI7OjpWr16t1epOnz497fGdOHGqtqa+srpicnxqbGzsww8/1Ov1b7755nXXXRuJxnfv3v3jjz8OTY3/7je3Lpk9b+GqFYlQ9Ozx04FEcqxv6IrFSzU6tSBL2ViW0KjpVEZvtmAiIClkUJZLy0rUSlKBIRmW9QVDl7p7li9eND0x1dXRWV9Ty0iCDlWWlpZyPJ/L5URRliQJA2EEgWUZBGFQFv9FeS8j8X8WF/7vffD/QeLL9YUAAEiSDIKgLP9rgg0BoCgIMAwjgCSLklFD8aBIoHitrUAjIywgYyCIIKgk8iAIQjAsSYAoChCCgqCsxPDigsJfjx4x6SiTVgcAAKHRFiDKs2fPlZWV6fV6FAJzORZV4GOTU22VlaiKPHLh+NLFy0AanhyfsBhNmWiC0uuUKtLt9dz7u3umvZ6TJ09eIi6Fw+E7brvbptEHIW93fx+BKvcdPNAyoyXo85r0hiGvp6DI+cYbb7z66qtz58+/4447w4nobbfc5hqbWrRo0Zh7ymq2/P3td5bMW6AzGVcuX/HIY0/89eU/sqIAIOjyZcuiwRAMAnk2u1FvKMh34BhUX1dlsVgRGEQRqLV1xhdffDXt9hw9cmJGa8tvfnPziy/8KZPKzpqDnTp16vePvPvEE0+sXbs231nQ19+nIDHX0OjiWXPb2tp+/OWX2TNmzpo912YyLpmz8N3X31i3br1GR4FKzFZYkGFzd955twBJ8UzWH41m03RtRRUEyhAExeLJvYcOtdQ15OcX/ObmWw4fPkrptTfffHNPV+fBgwfvffT+997/0OfzrbtyLc/liovyNVrd7NmzBy6eT2UzL/3xL2pS89EHH3/4wSc7d+4sLS612q2xWAxF0eHREQhHAADQG3UTvmmFSv3V9m/Lq2tKKsv9wWAqlzZbzYGAL51IEgQBABKT41BM5EURw5UMwwAyiMkIKIoiL9DpNCtKChTDeTnimlSpCCUB4SiCgkjf+FRIkHR5jnv/+Kq1paaqrj4bS3+/92e/21dVWCIo1HwslpYEGIZRFOdFeXzKFUukIQjCcdxmtCMYxjE0pdWwgmi22ftHhmAELSq2AwAAYZgMQ9ksMzo5wfO8DAKX+afd7lAoFDwvWs02DEExJcHzPM/zkijCIAJBPMMwDMNk0ukcy0EQJHISCCL5jsI8u5TJ0IhZpzPodLFoNBmNgKLg805rtNpcLidI4tDIqMFgyMt3ZDIpBMeMWiNBqGFQYFnW5XIRKg0rsziikEkgGo2mUim/H5AESa1Wp9Npmpb0ev3RI8dnz5t95513dnRcHBoZBgEok8ksXLj48JFjdQ3VU1PuuXPnfvLJZ0eOHWtra+no7ONYKRIPEgQRCruKCp0GnR6HEFyByjqDRqNpa2oeHh40mUwlJUWuqQkUBEgFPmf9+t8fOawilS6vD4JRnFR/tX1784w2EIZkSeZY3mq1nzl55uyZM9XVlUHviJbSKDEcgoFYJAwAIo7josCNjw6rCWVLS1Mqkw5FEipQglAkHI1cHosxDBNPJjiOi0WiJU6HxWiSQIARRUd++djYGC9KsWi0vq5icnT81RefLymrCETCYyOjBIgAOGQwF1+xclU8mpnwTXUcP7z80082rF9f0VA/2dfN5HiJ41hOyrIcCUGxTEajVaWyGQHDlbgCYhlSo1XCsIjiTDqnIJQwJ2q1GpploqGgjECEErFbLbIsmvS6MIZZ9MacKPOirCQJJamccE3oKFO+wyGkUoloNJNJafVaXuQ4XrRa7QDID3eckziEzQmEGon7w/kWmxpHKxuNKmdRUmf56cC+0rKKzo4eg9GUZSWDQTvlcZNqlSO/YGCgz+nMv/3WW3571+86e7pbKopKigr93mlJkiSBrykvO9fVfe8DD8fpDE8nXC5XKhJBS+1qowOh8rbtO1RZYNzz7Q4QELQwZFBRKo1qcmIElQWNvrh29uJlRcUz5y/KKyzzJhKTAa+tpuLpP7105sixTDAisoxBQypwiMsl+EQkmMzkOJbn2DlzV3y/8wdHfsFLL7948803z1wws7m5EQSBJx55tLm+QYkirsmJs6fPNDY2x6MRHMHVJHXvPXc0t86amJz85z+3/fzLvlgsVlTofOqpP5w8efzs+XNnz7X/4cmnTTBoczjGJoYFALx2y02Do6OLlq6ZmppKpbriydhzzz2vowxej5vOJJlMXKVUGmpqPC6XyNB5FissS5lUYvPmzZgCbz97/qYbt7invTqDftPVGxQKxdatW/fu3TvYM/Dl9q9isei99/1uZHDI5XKhCryupPDqTdfv3bv3UmfHyMjIqlWrbrjxRp/PJwjCxYsXz507F48nt2zZMmPGDEmW77n3/gnXlLOg6JH7H6yuq6UoDYBANMt09XR+8Pnn8+YtdPu8KpJYsmyxUqGEZGDM5+U4zgAZJ1zTWlKlUCj8fr9stsSSKT2Kkmo1oSL9Pp8SRkwWM51jg8Gg2gQTZjMvCLFE3GSyZJNpWYHhGMkLPIYgvCjgMH55wnzZ+/uv1qP/h+7qX4gLgqAs/49N8OVXTPwvLJflf7FbGABAUIZhGJAlFAB6+gZKK8t8bheOYnk2GwCCMgCIgoAgCARAkiSCsgRBgAKB16xYPj46kYklSsvKxqZcsxobbXbL+ORkT09PZWUlx3FGs6m3r6+1plZLanlWGBgYEAQhnc2MDPQTqDLLZbLZrEGn/Xn3nrvv+d13321fs269giTOnDyxeNGiZbZlX3/3LYYgDqtjeHCkvroGAURHXp5aQ1mt9rfeeefmrVu//vrrr77e9vRjT+zav79vfMSg012zfoNE0y+98OLvn3pCDcDzZs144pmnZs2eLYl8YV7+1Vdteuv1v+kM1NnzpzAF6vVNFxYWdndfCga9TU11t2y9IRwIbt50zenTZ2AY3rhxo82Wt3jh4oVL5ra1tV28eFGlUm3/7rtFixadPXu2s7PzuWeeDUXC09PTS5cu93q9k1PuibHxufMXfPbFZ3sP7mua2XL8/LlYNq0xGiQQUmpUnb0Dw8PDZosFAICff/65pKSkuKRsxdJVh3/df/fdd/Os8PLLL3/0jw+HR0bUWs3rb76u0lNPP/7U8PDoRx99dPjg/snRkWQ645n2/3Lg0MaNm+YvWnr+/IUnnnjSNTW9ePFitVrNcxzLsrt+3LVqzco0nfUF/IlkjOVFDEaKi4uDwSBFURAEQRCUSCR4ntfr9TAMcxyjJJUsyyoUCobjRVnCUQUoi4lsGlPhDCMotVpSp0v6QqgCi6fSsRwdTqdwQrvk+huWXHu1xmC+cObkl6+8OnyxE4WR9Vuvm7dgvs1kTSbjMAxgOMJw7PDwsFZncLndY+MTq1evDoTCCoUikUrRNI2iuN5gLCsvL60oRxG3BAIcxyXSqVAkzDBMaWmpLMvpdIrnBUmSFKhSFMU0l82k0giCSNEYCII0TcuyLAgCCMkWiwUEwcKiMkqngWEYhREUhSVeGhsby+WyyMymtlOnTlkstkwmg0IKDYlRGh0EYTzPEwSRzWYZhrZazeFYNBF3qdQ6JQaGw2EEgo2UnuM4DMNC/iAkw6IgwABoMJtRGFFguMgzkxOupqamwf7+oqKilpa2XC6nVpM5XmhtnfHdzh/7+0ZtNvsHH3ys0qpJFZHNZaLxoFqtwxUKgiAKCgpkWZp2TXpBWaNSGo3GgM8TyXcsX7L4wIEDnulJrVrVXL+UY1hfLFjWUOWeci2/YjWT4wQAkiC4rKJUlCQVQfCilAhH/C7X2PBQQUGBQaumcxzLcHq9nqYZGAbzHQaNhpIkyTcVyKa5UChBajVanUEGgfr62gMHDiAQnEml1UoFRWlCnmmHUVfYWD821J9M4rkUD0myWWdLxoKBEdesmrKf9p/dcttt4Xho/84fRJYrLa/0eTwwB4wNuUrqC8VoPL9txpnTJ1UoX6g3KAlVJpcuMBUShIrPcgatPh2J5Slwjuc0gMSADKEACRJNybxWQwgCJ6NQPBGVOIEkSEbgMQCgWcY/7ZZUKgAUOJZV6wwormA4PkNnC4uLeE6GIcTvmiJxbO/evZs2b8rLy8tm2PwC58T4cJbHLHZTyDvhKC4QpBySi+JqNR3nBMS75o47kyAXG/ckWb640ClF46ACzkazMIoaLWYlSQyNDL/993dbZ7RNTk7xTA5CQEEWcQXGxmkmk9ZrtRe7L1DO8vpZc7o++6KmvFjOhFLeifHQ9Kxyc8A3JgE4A8ACjAqoqrlhdtXyKwd6+pdsuIpBgBzNjifZ/Tt/HhronxwcCISmgyOTMIIAoMSLIszLtdXNkMRXFBcvX3bFxY5L3+74XgZBQRK2f7ttydJFBIkpEcE9MXbo0BFCiapVKCAJ9z7wu88+/WJ4ZMBms11xxepde/aPjo7u/mlfV2e3WqNqq683GikIBrhcbPWKhbfcfL3OYD5z5sxTzzyh0RsqaupZXjrbfkHmhFe+efH8qTOmPMOpo8frKitS01MOrTrEpk3llfn5jmgynU0lb7xxazwaQzB0eHRs2crVjzz2hKwilDrNVbNnEAqsurLkm6+/O3e2/dy59tIyZ0FJ4XU3XOv1ej2+QEvbLI7jAAjcvWdPLBa75ppN0WhUkqSjxw55vd5fftn38MMPNTbe3dY2U5bBf3zySTKTXrJsaWlV2RUr1vaPDPxw9EBzXS0oSA6Ho7iw6LabtjqdpUOD/XkFThJGIUFUKJWVNsfprosZhimw2QQ6F09EKUrTPzxUVFSUzuVUBFFeVYkLACxLhEqj1+s0arVBpYlGwxIIYRjGsqyCUKIolspmL8uvGJa9bOcF5H85kS47jv6FxP+uQvoPZdblHfC/CTEIgrwoIBAMQZAgCP9ViwTAMMwAIiKIYTqlR1UMKAB6QqVR42qSFyVOEFAYhgD5sh4TghFJkmQQkCUJgSBRlKorykEJSKTTLM8pFApRFKuqqpyFRW63u7S0dGraXVFVGWe5wMhYVU11ntk6PDacyaTa5s7etWe3lTIsWrTo0MH91VUVmWTimk2bhoZHG1ta6WTyyx3fzJk55547b3/uj39erjd6J129fN+SBXO1OkMqk75w4YLTUfDt9u9PnDjx11dee+KJJ67dvOnnfft3HT2WCIQffeyR3z3wwPDAYFVx8crlyzKZVPeljjyzdWpwrLujW2+3b/vys6eeemrP7h/3H9y3devW73d8azabOZ759ddfeD7z808/XrVx0/ETRx997KH+/sF/fPrRhx+/P2vWrI0bNy5cuHjx4uUFBY7CwlKvN2iyWvYe2N/T1asmNUUOZ6GzaNrrfvzppwKx0Pvvv9/S3CbRLCrKOkKtxBV79x2sLqskCPJix8WcLKzduN6g0V9s7/zssy9i6VhTYwul1W77+utN11xzy223QID00gsvut1uBab88p9f7Duw98SJE/FwxGpzjI679EbbmnUbHnvsiR07dpaVVy5fuUKpwC5ebI9HkrX1tYuXLEzE4x6Pm9IZDA7qwoVLBQWFJp0hGY0hMhgPR5hUBoVAAkFYNgcAgFpNYhgGgDLLcCoVKUkAJ7A8IGt1GtKgi037Oy91ghBCFFj1eVZEY8h3ljyw5UatUZ9Jx3/5/vupS50TPQOWgrzSPLNer7cI4juPPkrYzEw2oqOoTDZnNOoFSQJAeNWqVWmaRnDM6XSIopjL5VQqjcli40W5oLiIYXkQBMPhUCwWwxS41WpVKBRqtToSicRisVyW5jiOZzgEwRg6R+kMACqpcSWmwCkVabSYSZLEFCgAQyzLioKcSMayqTTLMgG/VxAEkeNBEEQ6OzuLi0tpmg5FojmOhRVoRuY5gccAQKfTWiyWcDiayjClJZWpRCIQ8JmpPKq4yOP1sywLIwgnyVmG1VJUPOItKbTwPJdjZFnkuBxblO/EUXj+vNnBYDDO0M3NLRfaL9lseZ989I/mppaBkZFTZ86uWrFCFMWTJ08sXrrsAnTR7/UkYkk6nb78Hubn5dlsNlmUkikmm4j3D4zv3rNv8ZI5Fc5ivz+Yn18gAaJCbdSZHPE4u/unw8Fg0GAyeoLexx57pLq+mRfZbCxC6bVGY4vwyacDI6NqlcqoUzJ0xufzcEzGQFFMNiUIAk3TJp1SBjmHzTw5NhkKhDY1/8Yryvl5jmDIj8JQeXlpW3PbPz/9hGXoM6dP2ixWo06fY2gMpTLJEIFILvdoSXlZS0PZO39/66brryVgoKTQ1tFziYDxQV9AFqWUC3e73QaDochmYZlsOJlUKjAQV8o0N+qbcObbBAROxemDJ4+prfpIMgLDmCca4GJcIi3hskCLgk5lpxMBs8GCgaKg0kczERyE0hiSS2e0Kn0sw/FC2KhSU0ZzTmJQWBNPhjN8hJf4poqSzv6hqSl3fX3bpMedSeZIjTkXSaQowIwTYX9Aq1IQGMLw6ehksMxWMzoxAQmYrcARiyXUhLahsaowvzASjNAc7/cHs0l28dzlMAbv/XnPjKY2XOa6+8b5bBYDCAlAPa5ATevMq26769SR0zt3708msoUtra7eThNpMJvNiVjCH2e3brm+rnV2YW0TptV7AqFINJ7RRJ958R2GjsRCPr1KM9zfq9crDTpqvHug1OGorKw0OG3F5aWFBuvY2Lg3HB4aGvri++3ZLO0Pxzs6Oh9++KFQILjty69MlBGiIYKANDCAms0IL9E0+84bbzW3NpENjfOWrzl57LAkSa+//np9VdWyeQ3bd+6e6Ifqa4pJEh3o6SqorHnqjy9wIlBS26Qvqezv6f/hp9ddE2OD3RenpyavWrf+hqvWHDt3sqzIvHjxzK6LPTiKyVqNAoIvnO4MelyFlSUdPT2CKEIyVFZWUVBclsrl7Pq827bccubMia+3bfv+m50hf2DTNVc9et9tkWT20qVLQwMjoVCoqKgYQuDJyelLnR1Ou/nhhx/ev39/NpsVBQEEQUqneuTR+53OkmAk/MxLLwwPjy5asPCXPbs5ToBhWJKFPGfeR//4GJBASRJcrsl4Krl3/y8lpZX5+fm5XK5nbEySpN7OrlVLljSWVk6FQhqr6dCunzvPd16x/IpLnZ12iw3TqobGxgZ7+1YvX943MmTQUkNDI/FUaoQFKDVmLSr0Twfi6Uyh3Y6DEo/ACIILEBBJhAmCQCFAhmQAkARRhkFEBqR/j53/5ywaBAAAkC9//FcJEgAAACQBIADIEAJLgAxA4GWbLybBAAJ1XegurSjPZDKVRWUwDMuCiGLov9fH/8J4SUYAEIAgWZYFUbpcmAhAcCSXJjRaSJYAEJBlkcDg6vKSaDRCIhCJQDared+BvQX5jpNnjy9fvpzUq6dcE3lWS57DKUjyqpVrjx49GgomtBodIIvvvvn6tTdee8Pma7/88svBgc7CfGM4ElCoSavVODQxEQ6HSZJUk5pIJHLo0MHi4uK6upr5s2e89c7bTz3y0J6f9rz//vuhkO+mrbe8+eY7L/356W+/375g3sI1K1Y+98yzzzz7/ODI8IlTJ1MZBsKUoRRd3dC6cs2GgwePA6DU3DZbTVB0Rsp3Fi9dvAyHwNOnj0fi0WeffaSzszudznzw4bvPv/zczDlzZ86etXTZqta5c0gFtnjRgvbz552F+cFIuL3zwuwZM7MZ+obNN9977x1sadn9d/8OgVBaoP0xP5NJZ1PxXCJm06qcZsv4+OSTjz7zzXffrlu3LhWPnT5xvLq6+tXXXqmoqHjn3be+//7bm27actPNW3bu3Ln75x27ftzT1NJcUV3Lsrws8s78wvPnLxU4S5qaW/MLC0KhwNn2AaPRGEmM9fR1a1WkQUs1tTR3d/Xy2dyadWtqKmtVKpJm07WFxd/198oAghNKOhMFEVkS5HQ6zXGCSqUSEUCBKRk6k40FEYLgeWhsYiqaym564rG2lhltM2eAhDqZTPR0X7pw4eSxPXsme/vnNjUpRaGowK7T6kQIiA1N9EOAWac+09upUhOCwEiSROfSeqM5EPSJophnsYyNujAMYRlOS2qsViubzfjcLkqlHu3vj4TjCIYWFBWgKAoBIAQAE2PjbrdbgSqMlJEklWo9paE0IAgqYIzP5lgBBiQ+HPFn08lAIBAKR3meBwFAkgQURRUYDEKsI8/AZDlJAkKhAJKhGYMk8aJYW1ujJAm3ZzqeiudbLDAAx+NRls5lU2mW5ePRKAiCekqXTCfy8vKMRj2MghMT4wiG6fValmVUJjsjAaDIgxhitNtHRoZYWZyYmEwFwyRJDg0Nnz1+OpfLrVyxura8DACgzvaugiKn3++35tnUBp29sHDGwmVayjzS1zMwMDA1MRaJhBzO/OKyYgOljUZCRkNDfWMbw/I+r2vVmnU/fLf7tdfe6+jqknlOFDhSocizW5326kgi0WCszc8r/HHnTzNmtGq06lQqxfAZmmYL8u0+vy/shwlCYXbk45gtk0oQpAoEQY1enw7HkpEYz8mSBGgoas/3u+bOn7d6xep3Pn6PMhmGRkZPnTq/asXi8sLC8eHBQCCAABKby6pIZZ7VmkgkRI6fHJmoa6gP9I8OdvXOXbjo7N59y1vbujq6SaOZRHF/OGoxGKPR6MTI6IJ5s3M8m44lLHqtOzChUZMwBDIcm19Wtvmxp4+dPmkgHeHYdGlVzRg6yorSgD/hsFEEDIpKIsMxsJgjcZEUOYHjq2uafTx4yn3GmWdVYLAgAiazTWZS4WiEZtKmPEMuw6qNao1JPekeLi0p16m0sXAqSedyGCoDmNFuT6VSgCSKAKdBUNyhEUQYgzGfx2+ilCLLhYOhwUHgzOlzvmlPcVmpzWLAFXL/YIdKo1EoFEePnZhVX1ZotvhTUQkQUyI75p7865dftHf21uU79/p8Wgzo671oo8hYKHXkzNmVV228af2N127dMjzuHpwMnD75/Z6ffghNT6kgUOTSBIZajZRdJ1XMrQERRVldQ3Vl1TWbr3VPuQYnx37cvTvjD8uiBKCwyWTmkoICRYscDu+Ux0DpcQTruHBx2uUx3HlHvrNQPz5JKHEIEEcvtpN6U9OMBT2dfX9/6+1EPFpbUVXmLC4pKkxm0pAMlDWWbL5xy8KFiy2O4qwEXuq8yNL0xEDvj198/dOeH31+9xOPPvbofb89c/p0OOA/1X5CIYklec5tn/6zvqFWR+k5nunq7Far1c2zZsAwPD0wms6mG1oblQTiHhmZ9oxNucJvvP1GLpNduGBeU4NjeGDQ7Zo+dfJ0MiMuW744mUo//uQffvp5z+Tk5IP3PBAJRV9757Vnn30RQaDS0uLZM+coFKTNmq/TGl1B96dffFlZXlVodzY1tnz66ReVDXU6k8Gi0zE8V9PQ2FDf8PGH7990003hcHjlkhWISsVx3NGjR1esWEGSpC/g7x8ZWjhnXsfIUJUM1VVVZWNxSE8qUdSqN8SiUVKpRGEIBEE6m1bCsMVimVM+s/9iV0lJzdiUS0YRE2WQJImHYAWEwDCYyOZSqRTkyBNFAQRlSZJAGJVl6T/Z7X9+uVzA8H9H0/9ZkfRvlgyAICD9S9vl93irq6uVOMpxHIrC/+5akgAZlP9D2yVJEIRIoCDL8tDgSJ4zn6VzNpMRAEFREGQYoXMsjuMGo+VCR4c3GFFC0LLZ83GS6Onr7R0cmNnQGqUiYnk1w3M+n298YqJ3bHgy5Lvqyg233nZXS0NbR9+FQc3wzJlzNRri1VdfVSh0M2fOKix0fP3NNxcvXnzm6edomu7t6Vq4cPH582dvuOGGBfPm3HP/fQPDQzffvLW1pemDDz6anBjZsuX6F555+U9/+tNPe3Zde/WmNVese+6557Zu3fr0k0/19/YNDQ1df/31dDozNjaWTqfr6mu0Wm0kGMrSaZ4TDx48eOzo4YmJsfkL57W0zsZwIhSKPPz7R9/78INDhw5FQ8EL59tFUSwrq9h01cZP//lZMp7s6e8TQPnY+TPpdNpGmVQq1bn289dvvbWvp0dDqnwe78YrN7inpr/97ru77r5j1+5df3r5L16v/4477kilUkEv/fZbb61aterb77678sorb7jxOrVabTabR0ZGzp0719jQXFJSYjSaW1tbX3zxxVtvvbWzo7ugsPDChUv5+XkwII8MDRTk2c0mq0WnxdVqj8eDKlWUwXLPw8s/ev+DiUkXCENyNmPXU5p8q72gGBZlSIJ4EYIBUEUQDMNotbrLCnkUhU93dew/eLy+reWhO+/ZXFOrVKu4WGp6yvX+39/9ads3OIrmkjGjSq2B4flV1UImK0kSBMmSwPGSLEMyS+dQHEMQREIQURRlQEpncyYbUl1dIshSMpvRUpTAZjVGKh5LJuNht9stsHQ06LNarcWFhZhCwQlcKpUKBYMkSebn51uMJl4EcQTN0ZlEOOqenGIFPh6JiryQ4wWdVqUicRzHeVHKc1g0Gg0MgRqSUOJELB4JhT0Ygo4NTtrtDhxVIKRaheJY0ufzeDyNjY2tjc29fd3Tky6jySqLQC7LiKJoMOgMBsPYyDDP80qS6OzqoSi9IAgoimbSaYqiMqlMGksizkIcx7ksE4inGJrt7uxJJGIVzhIQBJ35pe3t7evXrz93rl2n1fX29t5x503xZMIfDEyOJkWOPX7o2EeffFVX29zWWt/a3Dx/7lw2R/f1du/e+aPJqMcRNBCKJN/aptKoLWbdxXPdRw4djcfjd9592xXLln/x2afdHZe0OAqDgtNiBnDFYG9Pf1/P6MjA9ddfR1HUtm3b8mxmglSUlhbjWR4GATpDa+3maZdr0jWN43hldZXSoDUQRDAYTie5spJCnFSdPn32wqVLDrudTtM6nU6tVFy60D4x0D+ztUnkcjLA2+zmcDAEwlAgELA7HPkFzmw6E/C5FAhQ2VJX0do4MjJSXODwxCIYQZgoJU3nZjZU+/1BgGNMBmNweppRkiqKSrOsJMpqtToni9u+2xbw+ebPmJOIkw//4QVRFGUc+fbr759/+L62eQYUhjBYhDElw3IiiJIqDc+ynIiCiBwIB4qcBZ5AUK1ylzoNKApDsIyhcjhDT4ciiUw2Q9OpeLiqsqE/kaysKdYeVQG86PdN6zUmBYnzICvSYiybLCP1I0OjbY3NbDaqUuCtLU3haGDtFVccOnw4nknxsmS0WD3B4LzqSh6C61lOJqCxiemFyxYhdK69q+PZF//IY3DQF5yIjwz09V+5fk06kzh+saupofGbff8AtboTpzufeerF9jMnMUiKBqYLbeb6htJ8h5VJx+ksS+AKq8WY40WcNGMoyUnAw48+HInGaY7jc0JDSWFVTeWU252NhixmWyab1WsphmOHRsdoliFJ0mIzX7h0Pk1nr99607NPP5FMhrdev7mkuPz11972uL04CplMJqPZdHDf/oaWJkxvPnz6vEIJ8TB69lJX/449yXBczLHTAVckGxroOtdcU9JaV7Z25fJ33n7P6/WbTKaJcZfDYth41bWNTTPOXTg17prs7xtxOBzhiC8c8xIKUklgokxoNBQgw83NbQ6HY/een5945PcIhI6NDOze9T0EA+3nz1nMjmXLl1y/+dpXXnt93/4TP/7461VXrn3hhZcGBvoKi5xrVq7NLyhsa51pzbMfOnL4tbffPnTo18rS4srKarVS0TnUvWHDhpaZMzr6erJCzqQkKZJsrms4cOBXAEFTDHO2s1tBKAd6u+bNm5efZxsbGWlsbp41a1aezSqAMmU09Az02fLy4hIbjEetZgul10JKLDo+VlZcxItcbVUlqVQxIv/xex+sWrGCAwC/3x9MJioKihqrq1hRkhgWQJFMJmOxWGRZhmQAhEAAggAA4AQBQ5D/s/39H8bf/yXC+u8sj/8JxjIgAhK8cP48EAQRCBI4HsMQnudhFPufnPq/7iyCMiiDIJjJZAwGA03TkAwU2h08z4IwAkGwgiAlSRJlAFUSFdU1nd3dFEWVGQx33HDL4cOHP//yiyvWrQcBAAbAhto6nU6XTKcikVhHR1dfR09bU+PCBUt37NgpCvLTTz2xZs36keHxvoFhnV5bU1l5xZp1u3fvnj17NoYru7p7SbXG6w+UV1R/8c+vnn766Q/f+3jzNZtefv7FO377u+LSMjWpDfgCogB09vQuXLJ0YmLi7XfeDAR9GzZs+GHnrk2bNh0/dvKZp55et+aKqqqqRCKRTqeXL1967NiJ8YnR4tISnd7IC5CS1O3+6cA111yTy7H33H3PmpVr9u3bRxCEwWDwujwP3nOfUqNasGzJxms2SbwwPjgMMjyO47fdfudzTz1NEERtbc2BQ/sxBDl/7lxTc+sdd9zx5ptvYhh27ty5J598+vTp008//eTyJYs/+sfHDz30EMMwq1evnjd3QTKZ9PvDWrXKarGr1drW1lnz58/v6et+8MH7P/74Q17iDxw4MO12lxYXhRLRTDIxmkidPH4iL8+mpnQaDeWanFLg6NdffAYIGSmeQyx6q0qRCEVsarK3/dS0Z6KitVBPKEUIUSqVsgyKosjkOEEQOzp7g8H4px9+WVVbM9TR/fPOPd9++40BRIqdeR1dnaVaUqdRCwaNzLKyIEo8j6NIIp1VkkqWoVlZxHFcFEV/LJqhs7hae1lvxQpcLseUV1ZrKMpqtcRjmckJN8/KIE7CGFZV29w/NFZR26zA0Gw6HfT7eEk0Go2lM2cplcqTJ0/5/X6dLc875TbrdZIoQgioJMnCwkIFSRg1WI7O8hwDw3Amm8NgLuKbCAaDmWwuHI6iMLJp4/pAIKTT6NSEGgZABELgWCJeUVXZfq59etrz0EMPj/1x/De33H7hwqWRsSGGYdRqUhAEq9WcSMQymYxapcdQkqZpg8Hs83gRECvML6Y0VL7VkUtlgnQSQSCHw5FLZ1avWB2JhFzuSZd7aubMmXnFtqGBwdvuvuXEiRP5Oce4a6ytbVZT84xUhh4dHSsrq5gedwV9ganRQavFdurIESWu6O7untnaVlVSdeFCOwKLq1YutFqtR48d7O+/VF9XvvXG6wkS7+3v0FLk5V+UOGDSM1FWVV1UmHdvza2yLLIsr1WTo8PDsiBxWS6TSZeYrRgKi5JwOWS8ubExlcl0dXURKmWhswhE4BmzZkAYZrRaWtSadDbLJNM4pvC7vXqdtrm23j0xxtFZJQRN+TxJOp1vz/OGfEq1MsdmPT4PQRB1ThsEAt//86tNGzaM9Q2k4zESkORcBpQYikDiEX88HlQq7YkkXVCSn0gkOBCMppN2Zz4s0F6v12m3gAJ96tSv6UyuubF+4ZL5S5Yuv3HrTWw2Mr79c5xSakhzhuc5IJIBREGAmEgkiui1ajMIssksrTMba+sqc1EvIPKUiuQyWafdzE/7VBpn18h4KBAuL5cATLQ5qZr6OtfRQy0r5uQYIJbOKpSwhjDm4rFJj49Ramqq6h32PEqj9nun3V734ODg0hVLX3vzHYPB6PPHZ891JBPZiYkJTmBxgRQx7FJHD6VW+WOZmavWtHf1l5VUfb/v+7pZrWmaxUjtrfc/0tDcMjId+vP9T3jGhiGeJVCQ1JM1jRV8OlVsN2W5XDyR5SU4ns2tvmb1kaPHz52/uGTVqh0//HDHLVtSdK63vx/IsUoQUEKgkElTKlVOoDt6ep1FRcFohDLo9Sajz+uRIQAEJIrSJJKxOXPmuKdGa6pq3nz97YDHs3zZfJHJ3HX/Iz8fOJxfWnLDnb9V6MzJWIgGoas3XJ1vs6GIAMiiw+p86YXnPv/yk1jQpzeaB3r7n33muYDfV1hYODTY+4fHn6Yl9vix07fccsvdjzyy7cuvGkYn6EzKkWdxjw27/P7C6ipCo6kqrTQbLaFIOJ1iZ7Q0ff7JByNDw2pSWVjobGpqWrxo+br1V338xUfXXr9h8zXXnT9xcP2apTX1Nfc+9mAikw0H/KRSFQ5Gv/5ux9Fffz1/7tTiRXOfevh3oekwiCHRSOC66ze+/8FbGyLX1NbVnTl1isIVGh0VCkej8UhZWdlg/4ASxdwTrtkz2lzjYw57nkqlOXn0mNFsKi4smJycrKuo6BvoD0y7PdOu9LRv2j3F5HJZJqvXU7lEoqe/R0uqioqKhkeH+BxNasixaZdSrTJAgN1qFUU5Go0ajcbekeFMKtPS0CAIAoZAsgxAIMSL4mVF1f9FX+B/2pD+jb7/zoj+15n/sjDJsgxCkCTJKAwDACCLEoagsixdrsD77/v8R8GDfJk9QzCqJAyk+nJDYiaTolRqCQAkGYjFYmyOyc93iLyQSadr6yovXLiA43iB3bF06dLu0ZGDJ06UF5c01tZMTUziELx8zoJYMjE0NECoVK+88ueKuhqTwZhOp7/88quCgqLWphmnz57R6/UgCNrt9oKCgkQi0dDQcPbsWRiG8/PzDXqzIELv/f3jp5/8w9q1G1555ZXNmzYPjY7pqeyWG2549PHHx8bGdu3a9cKzz9y45fpvv9l+/PQ5u83W19d34403ZtLplhltZ861L1q0YNnKVSgGP//8szfeuPV3v7v3l5/3ffLZZ7X1DSwnY6jy40/++eqf/8JzMoYSrS2zAoEAika23HgjimHnL164Zu2VbW1tTzz2+LyZs9N0LuT35Xjux907H/797wsKikpLynWU5tzFznfffbutraW1tTUci9bU1Nxww3UEQSxZtjQWS9x1113THt+ps2dOnT03d/7C0dFRn8/3zDPPffbZP2fNmmW3W8MR765dPwYD0zCKSZBktegiYW86na6pKtcbLaFg5NfDh5iRUa2a2rp1K8sw3f09o0MDm2cvLsf1oshgagqFcSTGNRdXaEgNLGPRoH9q2iNJkkZN2R2OpsYWh8MZCkXOHD7yxCMPzW5oLq4orispCvYOINlMU2lhbMqdTfC8KKAoDMKgKEmiyBOEUhR5FMExGOEEgaFziBIXQUCSBACAZEkiFAqtVnv27Nkly5aazaZkMsnJgoYgeJ7HlZjHO6236tSUqqu7Q4WpqqurCYJIJBJjY+M0TSMIkpefT6jUnFFfXFLisFtZlg3HIplMJp2MeUZ9rskJjsmpVCqaYQVBMBpMMAznFRaazHa1SqUgNIIUAhFUpdEyPIPIskxRVHNzs9s9XVpSDoCwxeo4cPCIPc+sUqkkSQJlyOfzR+IxCILy7XmZZLbA6TSZTMXFxXqdbmpqaqC3R2EwTXnGTWYzpkDz8/MZhmE4YXR8IktnGE6av3A5xzGJFD17zoL+gZHRsal7773/o0++uvTp9xAA9vX15dksMLw3FAjSNB3p7MAwTKvRxePJeQvme9zTKq9qycrlIpBta5m5f/+++x68LxYJ/fjDrkg8AiT4SDLuCvjGpiZ0ap3DYQvG41pKJ8uAz+Wy5lkzqbitsaGlof6Xn/fZTCa/12NsqNOoyLGhIQQBBIFLJGIajaaxti4bj2eTCVECes5dCCYTqzZv0umNehUZE6RkLE5RlN8foFQkDMOyBAIwVFpWEQoEL13qUJEKHIFJgrCYKQxBLXoym+ICgcAvP+9dueGK0dNnoBybycUKnOWpVILn+by8PAGQY4mohAA4jrtcPpjAx1weg8FkNeWdO3RMazQb7WZHUYGzsKCj82z7sWPvv/XO7IVtZJ4jm4t0j45pDXqA5cwmE5PIGPV6bV7lruF+u55SUdpwNHT0yIEFDeUCnVJgSg1JgDBHYYhap0PKS8+dPlVW02i0OX2+4DWbf/Pn02eDCZpmWJJUSpLsDcdxQssBUDaZ6Lx0XmIYPaURERCUxJ07dxz67YGJ0Ylffz0s59jotMczOSKwTJ7JQsfiFc7CWDR88siJL/fs9CfiJ06dlARpz/avV6xcpdRS991z7+jk1N/+/veTvx7R4MqGqkJTnk0UxZ5z50UBkhBiyu0lEAzHlJRaM+Xxvff3D3iBLSstWLN64Z9f/cuKZUsCidT27T/Mb2xAAV6lIkBIxJWYJxGmDCSCo5Isq1VEPBbFEBRFUY6DRACMRKMrr1jrnnDddsdDdCqppdR9Pd1N9TVvvPW2Nb+otLraHwy8/PDvxwf7RBDZvHFznsV05tyRhx97JJXK3nrLb0xGvc5AjYyMl1fW8myuqLhweGwYVsDBmF9vLSQpzTMvPq8hKYqiHHZLcWnRT7t/FnMpVKngeCE0NTU+MppJp81m88yZM7/45xczZrRhGETTzKr1GyEYtzvyPv7yyzWLrrIZSrbecStGKifGp37dt/8vL/6No3PRXCQUCkg8TyqxmqrKZx57EEPgU6dOaUnVyNiYBAFKDGxrajhy4BejXrv1+mv+9uabKg01e+68WDwye87MWCQaj8fVKrK8pPTbL7dVVFRds2mzSzsFy2A2kykpKUlnMjiKKRUkJEgsy1pLCy8N9DZV1giiKIGSDALl5eVn2s/7QsFbb70VVmCptC+VS+spLQcKSZZOpRMpNuN1TRSWViIoclnxDAGAIAjIZbD8n46j/ya+/74sy/8uBr6cFH35zGUoBWVAusyY/y3mkmQYhAAAEEURgMD/PdkGZFmWQRmAYEiQRJrlQQSORyOEQqlRqzzeaDKe4jiusLBQT2ljAi+LgtNuOXNuwjc+tWz+ohHXxND503UVVbUl5WqF6tczJyZGhme2zXDY7AgCHTlxpKy8hE6n/vDUY529A36vj+OYdCLdFelw5jkmR0ehklKXd/qTTz7529/+VlhY+Oabb86ZM4dl2eKi0lAoxDDMQF//66+/UlVZfuzYkSnX9G/vvae1sSEWC/v8008+/dS7774biccUGHLVVVdFEunh4eHrrrvuk08+Wb58+c6dO7ds2XLNNZsnpiYnxkZRHJs5sy0cDu7e8+ODD9x74MCB1pZGf8Bz5523xlPxX/bv6+0fuH7LjeuvWvfk43949dVXGxoaVqxcefPNN+/YsWPdmitKSkoWLV96x623rrtqw5fbvrhuy40lJSXhWLyrt+e++x968MEH1q1dMzw8LMtyQUHBrl27tm3bVlJcfOdd9xw6eiSVTNc3NGopHYxg3T19z/7hiXg8abfbJUl48g+Pjo0Pw4hkoLTLlq04efJUKpHJZmIqUgUjSDQatjvs8+bN+fXo0Wuvu4bn+ZDbu2jG3JDHByG4XoWzHMtjZAYQEiIfH3c7vTGlUldQVHllY31hYSFN0zCIXLhw4fNP/3n06PGKckfrnOY1y1b1jvRTJu0UQ6dSqWQurVYqeZ4HZQACYFmSRVFEYETgeAiDIEBCIIiVJRQAJyanWEFQw3Aqk0FgIpXKaFQqEFJ6pz3Nzc04jpIKAoMRlULJsjlYBoUcm4zG6sur9GbryPjYxMQEz7ClxSULZ84emxjvHxzMJpMwKHv90x989J7RpNeqNVo1SWm0CoWqpXWOWq0GQVCGwVQmk8uxqXjqUndPKk5fffXVOY6HUAxE4HQuQ3M0EgqFIpGIUqk0mc3haOTo8WM3/+aWYDAYCnq0WpU/6BsaGmlra5tye+hcJhaLsTkundHMXzDn7TffcjgcDY11kszPmTPL78+z2swTExNGSms2VSTC0ZDPHw6HfN7o7u9/YRiaZVlBEFQqFUmSV2+40WjW1dbUiCJ/89ar8+z5KjX1xOPPyBCp0WFWq1UGAZc/CCkwnd0AEdCh0wchAHF7IxuuXGd12A8dO6m35ReV1/T1XmR4UE0ZABzN8rksn8uy7Kw5C0AIMciYwANaDTU0NNTb261SKzzeKaNe3dPfo1Wp7GbTZRUlx3E+n0+lUiEQlMuxzsIiSA7o7TZeFBAMJkmlJxJJMjQgSpACowWhrKw0lskIPGtTaq0Gi8NkSsRjdrNB4FkFAtM0ncildTpjntkQyrKjHu+Dzz7/h3vuLC8v6Oy5hOPKGTNmDAwOe4Nhk82OKYxOR0E4SHOwZDLb+RydSNIFFjsvy/09nSRGEiRcXFxIIKpUNnXh/Jl6vQniAYyEMUQyaW2xWEzMMr7RMSknyXIWgUwIgsIwrFNreCZHKlCGpmlANtqtGlwMuNwWh+VsKjg03FfV1CJmBZnn6me30Uy2bcGsRDwiZTkulUtG/DybtJWX2POc/b19w8PD1S2NNkfe4OCge3ra7rRGor6ly+bU1pThSkUoEGw/fR7m6NaWulBw+g8PPJjKZr756NNZixe9+NJLrRUNv3/0D7aysr0//7J3156ejgt5Zl1dSZkMgUN9/QSh0OspQRBAEIRQpdHhGOzrJ7hcnpnSkBpZloOJ4NTUhAgBoWgkv7wCgIFMLtNQVcbKPCPwEK5g6BwOITgIwBJAp1JF+c6+nr5kNC4KHALINRXlqVTmrTfeJAji6SefmJwY0xsMdDYDJdLrr1hz9523tZ8+Lgni3LpynuePH9ixeNUVt9xxp9Xm/HbbmziEKRGFzPMoCisVwIWLnTNnzd983a2cyP30y56Rns8ZNlVQUKRXqyvKS4pKHDRNr1i7avdP3yXioY4L5xiGu+eBe4vLKwYGBm/eetOZ890z5i6EEbm0rMpqcUy6PI6CvJdeWdB+4cwHX/2jb6j3zMlTuWxar9coCSwcDhab7dV1NQRJQihSXllB0/SIxy2AcigWXbl6xYH9+4d6esYHB80Ox8yZbZws3vWbW3/at2/3jh3rNlwJylL7xfPFxaWCpBwdGq6urCopKXvzjTeu3rQpkUgM9Q9UlZSqFMrq8or2vm4QgS8O9JaUlMQyqXg0NhX0+oIhhQJzu93ReKwwvzAajRIaLUWo4qkkQShSXA5SYBa7rW9okGdYitJKssxzLICgECCzHKcmSFGUJfBfkPy/qfD/3P/Ksvwfs2cA/D/mJUkCIASSJQmEIfnylFsCYAiW/p8eJxDgRQGAoKlpN0EQWpVarSYFUbBYTQIPIAgCgjIGoxqNRhT5ZCpeUlJEqDWAIDeWVE0irqmpqUFuuKqkbOvajQePHdm568drrrtGq6Oqmuo7L13s6e4sKSlZs2o1w9Jff/l1MpHMZDL9/b0Oh725rcVoMaAI9OEHH6xbt27ZsmWDg4P79u1rm9FSVl7c3dfrD3l7BwZvv+M3kxMLd+z84bnnn7pyzdoNV63/4quvPvnkk0gkQlGUAkN6urpnz545Mjhw/szZVCp11caNR44d1mq1ly5d6h8eMVLqxsb6gsJ8luESiZjRqD9x4ojVbnvx5Rf1Rs1P+3ZBOAgpoGnvVDIdSSaTr772ytjU5EN/eKSopPjuO+/au+/nTz78+PW/vnr414Pz58//atvnY+ND0Wj0q21fu6cnFy1a2NLaBMNwc3Pzu2+9e/LkSVkW58+fD4Lg3gP76+rqcgx76NChZcuWGg2GBx+4r7W1mWHoivLCzz//zDU5MmdG88BgT011uU6jQAABBgEIkBmGNlu0fDqTTiXoaAoGgY6TxwpNpiJSnS8J189pJQEZBVmv3yuT6qnRYV6F3HD7nZuuu95pcoQSqc5L7adPf3vy5FEcQzUaFa4EnQWWrbfe9OvBwyMTY2q9wecNKHDSbLIBKYXIZNRqTSwYEDiB5zkcxzlJBFEYgSFJlEReAkEQEmUQRQABRFFEoyJjiSxFaYJ+/8LFV1jz7KlUShAkWQYzmRyG8bIsZehcy4y2qqqq7u7uCz09EAS1tDQXOQshCHzttdcpg37O/HknftpV09Co1Ko5iaupqdKqNRLH5uiMe3oiEo5BIAgjSPvF86wgcqyA40oJBo2UyWQyAZAAQjLHMSACsgKLNNQ3shxz66233nfffXq9/v0P3v1pzy6FQrF40VyL1QAjoJ4ySABot1onJ8chUAZBube3x+2eysu3y4C0a9cuFIW7+7rVhLqyslyU+N7uPg2pSiaTY4PDwZCvvrHp6o2rJEnKz8/3BQMsy7qmppuamsZHB1tbmiRJzGQyyWSqu+sSTdMIhjA8NzXtzmZzEAxjGAYAQGGRk+ezsbj/oYdvnxqf8PhGi0scw0OTLMupSY2aoGSea22ZAUiSLxCWQfhSd+e8uQtgBe7xTGu0RCqbCUUjZpNVkiSGpvOspmwqpdPpODYniByl0fKSyOQ4DpCSuVwoFk/QGSWOWK3WC+3t2VRSQSivvOrKQwcPqQmryLKuaX95aXEkFEyn0yaDPpdN6/X6UCAMShwkikqFQkdSQpaxGSkcZYbOdn4m4Hc+8Ni2j94rqyiHIGhiclKpIpfU1I2NT2YSaa/kURGaLE973T69Qa3PMysx2W6xGyZIKc1N+tzpUNTPBQVA1OEEnc4YlSoRUaowKJZKKtVYgsmW1zWkYJIpqL144WxdSwPPyV5PcEZZQSoaQBGcFfhwOC5KiMag06iJEmfe0QMHdBbLvLamkDc4e8n8nV9+C/eNmA2qWCyhN5qLigp4GfSytNVm41iprGLQFwoW2p2DI+P7Dx1euGzJrHlzFQg8ONA/MTXe2txGi5xNRXZ2dnAYQpUXd4yOr1t/9djUxPOPPzl/9qI4l3nt1b9+8eknJly5sLGBYzOAzKIQqceVdqvFPT2hVuEmyjjudncMD2pVRCiRQEm1GoXTibhSoZZlGJBhjufVekqWAZPeoFBg/ohPqSRFUQJlGEURUqHKt5kH+wdBALrhppvffutdt3tywYJnh0fGzp0719ff9/57f7/zzjtjsZjWaB4ZGFm7YuFIfydFYOWlBY21NX19AzoSm+BoDACaGmZ8tu3LbT9sv/W6zSAjRjOhQCCwe/eP69dvZFjxvXffHxwemjGj9cp1q+12K45hn372z592f59haQzH7nvwgSeffe6n7364afP1O3fuTCbT7Rc65s5Z/N13Pz/51NMXOy+1tLS9/fbbFEURBLFn1061mpx2+y06is5Et954pQKGPR6PIIG9Pf1ak7aqtkZHmVKpdFdnv16vVSgVZp2huLIyEYtXVNeAMmCz2VpnzT579vzMBfMHJsfMDrvGaOzu7g16fcU2R77RcnbkPMwLF89fTKXoJUuWxOPxhoYGm9UUCke8Xm/A69t/5nhvV/dNN25pK6/55Mt/zvtdQ2lByZ6ffnn8wQeHh4e1Gp1nykURmmKVemRsXEEqAFEiIFStUE2MjRsMBi1J4CCMgaCAojAEswLPiCIqihDwL34qAQD0/y8JC/pv7RQAQP9hTPr3whiCIUmWJQCAQYgXOBRAZBCSZOD/KrkuX0FgRJABq8ms1WqT8QQEABAMS5KM4rAkSQAIiZJIEMTOXbtq6upRpSoXSWV1hr6hPi2imNPQHIpGv9+zy2qzlZQV2/Jtvb29yXRKluXS0lK11vCnv7z28gt/NFsM9957788/7e/u7esb7o/EYymW23z1VS6X6+qrr/7Tn/5UXV1tMBnvuvuOnp4eBIFq6huc+YXDw8M/7vnll19+stvtx4+d/Pqrr3bu3NnaOqOtpbW5sYkgiImxkYqqSpphIpFId1cHJEuHDh2aO2d+T18vIoMPPPIwm019+O5bZ06d5Xi5uWXmydOnNm66CgLQn3btnr9k4Zy5c7u6+tasWdNx8dKRQ/srm5p//GmP3Wh+8fGnOru7Pnnvg68+/+zBBx/sfvC+P//5lXfeeqOirPT9d//+0h9fQ3GMMmo1SoJh2G3btn3zzTfXXXOd3W4PhQLRSGTmrFnegF+hwPbt+2XpkoXz5s5MxGLTrqlzZ09EoqG9P+0hSHz27BadRh2Phtuamg8cOCCLgCwBSgWRSCSSiYQoCCCCJdIJJYYsrqu1aMjAxETGx2ESm+O4NGetW7K6et6cmraZq9Ze7fN79vyyf6x7MBQKnG8/3dhYV1xSmJdnU6mIzs7uTDYBgYiKJC8nh6eTcS6TCU97JBxBMDgcCuIYgoIwjMIgDMGijCCIxAswBEmyhEAwLII0TSMKjGVZGQJRDBMkWQYhjUZLqrSSDGgpfYrOsjTDs5JKpXR7x0DY0d55NhIKLJw712AwuFzTzz7z5P5f9o9NTvzltb8SSgxEwFQmCSCw1WSkU+nHH/q93W7FFCipJdSEOj8v3+l0Ujqts7AQBiAcJ1lR4DlZ4HIgxPMcDcgiKIsEoUA6uruWLFyUzWarqioSsXiB0x6LhAO53LBdd+utt7739/eTKdrnC1gs1jybPRwKkCptSWmFz+t1u70ajcZZUJTL5TiOw0mCkSS93qRQqXEUQwPBWfPnCCLnsJsJguju7eUBVq3WEFrqQufFzr6uI0fOnGrvWr50sZ6iCI1u4eKCI6dOptI5MZpTqTRqDZlKJJU4AQiyb9I3s3nmT7v3nDl8vr6+0jU9btCqS/Kto0NdBQ5zNJLWEMoujx+EFdPuoMlsx5SY2zchA5i9wBaLRSqqKqtr6np7BgQBUGBKAidkhZDLsTpKk4jFI7HE5axtZ3GJ3cYn48k0gsYicTqaKM1z9kV7c+ns2dNnIsFQ2axZSgSbGhvzTvtIBY6ReDgR49lcyOcpcOQZ1bpoKAgjWDLLwSiQYOMcI1nU1E8HDs5esXju4lU/bv+mpKjAYrXEkpHRsb5UMu6w2QXGL4tiZWnB0PCkxztuKCqPR1OJcBzDQUiDlxKlOZpToag3Fi6wWSgF5gt5AUhkM0xJUS2dSkYTgdVzFrsi8fvuf7iv42xhRUXQFzu2a7e77zyl09M0LUk8DNJRmk0yrFarAjgI4hH3xHS40Km1W/Mc5q6BaZJlCgvNZ89/Z414knq9J5KTjdqB0cl8R8nvH33shb/+Zc0V6y519u7Y/u3y5astxvw/PPrEurWrV628sq+3c/78+UNdndFk+u3P/zngDVoAJUho2pYslQDxSFf7vl0/Ht27p66k6HdbtrQfOwaiII+BDJfTmXUcAsEKLa6kOADkeMFEqiAF4jRWJDK0Z3DIabNk4qmIN6BGRUAC7XY7jiMBj9dp1VMqtanakmN4VpSchUWZNO32+yAM5SQ5wwrbduxMZEOhdC6YYvvGPc6KKsJk+OCrrxEYP3/+7IX2dp1Oo9cqCNIyOjEy7RpfuGxNZNK9YOGiGQsX7D906NvPv2yqKDty/OADv38kk8j19fSHwrnxMffgQHdtXWWxc+6vv/7aM9CBI8oVS5Y98uhDY2NjJrPj6MnjJr3BPRa798EnE/GIuai8rqbmxT/+CVMoEYL9/rtvMFT56/5DA329eiN5z113hJvrfj1wYEZ93V/+8qeHHnhwcmTMbrd39fRfs/l6Sm/S6axrrlj15jt/Y1nmqhs3BgKBH374obCgmGNFfzjS1z+0aPECTyRGnzvf09s/ODSR77SJomw0Wb789IuqikoVQbz91rsWex4My0sWLtm5c+fRY8cpg37mzBnRcHBqdJxRK4RYmslkMUplMVgIijIZzNFkSqlUVlZWagkNDMMYhtnN9traWveUO5RKNlisHMPXFtm8/nA4HKEobUrK1lFaQRAwBOEkURBFBEV5SVSgmCTw/8LI/xP7/P8ETuA/QPrf6AuCoCzJkixBMCxKIoqiAAAA4v849r+E06IkygCkIkhAkvVaSuQFCAJgCJIk8TIdlwFAkIDZcxaMTI7rzWaMUulIlWx3nO26NBb24TCyceNGJYb2DQ2TOMals3XF5TTNJIKxBXMWTYy7H7z/oU8++0CpJOfOX9Dd348qCTNJjExN2CymVCL2ySef/O53v5uamvr++++tdtvatWu1GiNDi+cvnJ+amGxqqLOYHfPnLerq7K+prrPY8t94442PP/7k+uuvJwiipq6OzmVYng+FA3PnzMnSdFd3x5lz7XNmzdiy+XoFDHtD4YP7D7366mtffPXd2vVXnjxzfNbMWTVlTZzA7Pj5B1uefXhoHJGhrguXipxFv73lNtfk1I8/7Gy67jpR4muqKydGx+6/7a7i0qKbf3NHLkvbrIZAwHexvd1ks+N+JBaM/vnPLzc3N99/z73Nza3nzp2TBNlqM2eyqeNHD7e1tWzdeuO8OXNUCjwp8ZMToz29F/WU1mSmLGbj8qWL3//7e7NmzCSVBIYSNhvV23cEQTAcVwKioCaUOAbNWrVw+KN/BKe9gMkoGE3a/JKG+obqqkZLrSMYiB47d3r7S3t7h3rDk66m1nqFigDl9NJFs9VqsqzE2d3dXd/YolSSJrMdRiFe5GRIliHBaNLlcAQC+WQ6WVVUiLFcOBxGSVKSRZ5hQEmGBEkEAUGSBJaDSZJnOQTHYVSSJInheEyhTmUyFqv99NnzM2fPqa2vi8bCQk7QkprpaZdaqTDpTDajdfHsBZFoaOcP3zMsX1RU9Porf9mwYYPZoicUCM8xAAxd9svZjFYNobGaLY3NTTCOkUYdIEJaUouqdCq9lRVBDFWiIIahok6t4disQgFBoJSjU6AsiSyHUGrN3r179/6yN89m43lOFEUEVRpI9aGD5yymArVad/Fip1qtiicCoizFEumqckssHtWbjQoV6XK5Esk0giCZVFqn19itFgSWeUAUBK6ssuLQ4WNOpxNVkDlfmJOReIqFENGq1TTWNcMwsnGdNpVKffrpx01NLTar4+/vfICiGIErcgKPizKdySmUpMvlMugpj99TUVmiN1LhZJCRihWkCgCkPKfj+PHjTS0tNDPJBvyuqbGSoqICqyaRiVWWl4BKRSKeS6ZyooTu2r1/3DWdV+h0TU7BCtkTTehVmpA/JuZYEseKyksyWSYaS7ndHpWSmPR7mmfM7Bvon5x0rVy6VOKEVFenxmhM03R/Ty+dSKm06rraymQ4PDY8kWe1KWGitbHNqCGCvmkjpeEYWkkotZgCzMl5NZXtpzsdBs0zzz/z2T8+CUTdFw+fQERBZdQFPaFCgz3rSeJagpAUUFpwUqpCC+UOePPtDp4XczmWgDWQxDFSjlSiJgRJRUNKnZZC8SwgeVMJA8gSahVGac+f+PWr/fv+/s7rzsKCPIth1cqV+XUlgAryd1/MpZJGp40CMa1KzuYYXKlQkqrCIkNv+8WOrou33bElEcps+c21v732ykyw/PHnXzy663tQTioSXFFhoamkwmoteOq5Z8PRUE1ddXVVxdlzF48fOapRKU1m6sKlc6lUTK0hJ8YnO0ZGjp0+74ul0hHaZs8DFdjY6MSvP/1ybP9uNa6cVVNdVmD7adeu4hLn1PQUy0nmwoJ4JGJWqy0m/chIT77DTpKwBAkSJ2QFsaml+WIH7fUFnfkOW4ldjRDuyenxsSkcVqoxkuMlpUbT19HV1DrjdE8vx8p0jpUgGEYUiUTqi88+1+gNLTMa289f0FHUYHeXIAjeSZ9GR/24+/v2Y/vqysurmuunp12xTPym2+4Mh1IBb4hBtK+8/Fb7xfOP3r25ra6yUK8eySTuveueGzbdtHjJwiMHDyiLHS2tbRzHFRaU/e63tYuWL3ZPe9MZGlDoamctYXlOVHbsPdGep7N9+dU/LSar0aj/5afdqUTkb6+9kkz9f2R9Z5Qb5dn2PNNn1Lu0q+29eIvtde/YBowx4NB7DT2NkEZJQoAEUkmAQGihY6qNsQ3uZe21vc3r7b2rd2l6eb4fhrx5329+6OiceaSjHzrnmuu+rxKfHJs00FRdbXVdRf4bb7317O+fzmUST/zyp0ajddeu3RCgg0NjfYMTDzz0sMfnGxgdnwl1xdJxBAX+wvyxsZlVa1YXlZQjKNt3rttis61cuZKmTDgm9/f3B+bmM8lc+ara48ePH/z66KUbt5w6deq2224hcaqwsHDLls3P/+mPLI3OzU5YzAyfSXadaUdRVEqoFEGnUxkxFBno773o4ouqa2vODQz6vC5dUgUAUxmu2Fvg9jg/+niHM9/H4EwqnWlYUB8T+POTI+Fw2OawFdp8oi7HEjGTyUIRNEFQnMAzNA0hlBFMV1QM6jSJowgAAKi6doG4/Ge6fME+BPULniWgf+cJvrAGRhGAQESHEEUAAiGGYBfcTQBARNfg/4y3UQRBEAABRACCAIhgiI7jGIJc8CehKoSIDikEaCgqIBrQEAOGuW1WlKwYGx756z9fueuWW30+n9PisBpMgiBIkuS0WJpqGtOZRGlhUTA4H54LQQTt6Ol86Ec/OHHo0OYrr7rntrtQDcqS2Nvd/ac//enxZ5765uDeG2+5URK1wwcOKrL4wl//ePxk6zff7DHZTOlEsmXRkhVLG0iaKa4onZiaaGtru+2uW5YsW3TgwD6JlzZv2hQNBhRVv/rqq9dvWG2xWBLJZDQa9/vzasqKi/K9GT6havI3B/bfesdtbWfPjIwOHDlqyOb4hS2rYpEgAKAor/iNV1975Mc/6T7XbrMa16xZlYiHE4kYSVOyqtTU1ucX+K0W5zU33v7Sy395f8f7GzZe1Nlx1uF08kJ8bDjy3gcfURj+2yd+denFmx+4997O1qM+p0Xgc5Kmd3f1bN26taG2bkF97Yfvvftad4fJQGWyycaqypm52ZqqKovFsmvn7pHRyZtuvKOzs99h946NjUmcRJkpAiNJwhBLZOYD4wXevGuvueG6bddt2XZ5ClMz6WQmGD7Z1Xb8H0dCM7OozbTt0ivefelfG9etWbpq7fxMeGx4xuZxaRgmqRjNWgQxp+oiJ/AITlltNkChCpdDNFnVRMTgQFUuEokBgBAEIcuypkIMxQEOIIpSJCPlMihJYJIs4yRKAoqiUBVqEmAwyue1J9I5l9eEUIgCVYKGOEMCFDUYTFJOjIcjN2zfvuOjj/71r3+tWNq0bsulFpTNc3rj6VxP/8B1GA5VjSAIgGMEhqEAoBhhMtsp0uRwuhFMRwjcYDZzimRyWGgSRyCqIRoKKJymcJIAAEcBIcuSpssMQ+M0Q9kdNk3RHA5HRUUFQdKtra0a1JsW1k5OjxcXF1++7Yr9+/drOupyeRrrW/r6+kLhSElJcSyWYBiDLMsAYDRrwHAqy/FOaMcwXJHkSCiwevXqoqLC8+fPmUwmhqJELi3SuCwaTUY2Ho/Hw5GlS1vq6mu6unsGhgdWrl99rqdPVFWTgU4noxBCSYa8YG0qrpqZH83yGbPFiGEAQjg3Py8Iwrp16yGCZQUxy+XGxsZkVZmfnwcQ8RcXRSIRq9ttMlIvvvjy+fO9+Xl+q9nCZXNGo1HIcWaXu6muampkhCKRXE4WOT6TSFsYo8nIAgBsJtP89AyXzU0JU7t2f2UwGBiMkLJcLpmkIFpVUeFwWmKRoJTNVpWVyLKcTMQTsUDcbmNJTBR4FEUYBCZFHtOJ6dFxq89qR3BHVnzm98+98Je/ochfvtn5ydZtl9U2NXKxhIkyx+JBt9udyYZZkoKKboa4GI3rUHHZLJFcNJVNUTSdS2dqqyvbjp+SM9ZFC5vGh0YWV1Z2nDrrcnmAyXDsbNui5sXJcMznc6sS9+Lf/uLJL1i1apWhvPTs5EhwdBq63KzFgKhwcnxCUuDytWvbO7vbzp42AxIXZS6U/P2Tz736zNPPPfH8kqqyuWBcN9suumxb+/n+3z/7tKpIDrv1wIFDGE6iKPr+++8DAJsXLiwtLUUx5Ny5c8OT06+/9rYG8Kwo2b3OeCI8MjLy6Ucfh6dn/T77c79//uV//AljGMJqiuV4g8VKyDqBQAqBhK719nTXVpW7rBZBlgYGh5dtvPTqG2797WNPiPF0gdOnZcXTJ04pEIZCwfGxEZPZgGCow+WMJuOSqm+//qbZFH/i8NHHf/3k7/7wLI6jVrMFBaC7/Ww0FsQBmkskFjbW7ftq979e+DOGgWAgsHL5EqfVHg0mdAWwuLmrs1cDmMFovuHmK2O55KOP/bK5pcXMUqfOdt11733ff7C47Uz7I48+etsdtzcvanrtzTd++KOf9PUNRCKR+ViirbPz3Llz6WSquXHB7PRUNplwOhxDgYlEIuq0UF99cQDD9cbGpkd+8pNXX/3nVVddtXbD+sLCwgJv3gPfv//YwaOrV68e7J8LRc+2d5wpKy9/4unflZZVHG898bMnfrZy9UpXnoNXBJfbzTJMfX3T6ZOnevu6SorL7G4nRjhEQQiE5s+ePYuh1JO/+a0oildeuxVC6PV6PfkOFRGfee53Npvtby/99YUXCm0227XXXxcOh2ma7Oo4y/HpaDhislg1RTcZLUa7paurQ9dVjssaTSaVQAPzc6ikEig6OjPePdIXS8YaauvNNpvH7RIFTuAlmeehoiRCkWKfL5lIoCiOoDgGUFmSERzTdARFAECBpMg0jiEoCgCqQx0AcGEC/B1yAogg4EIWB/hf22L47euFikNE/5YfQ+TbmGgUAh0DCAQohBCBuo4gQL+g2ALf5Xx8m4ipfzfqliECEASXEV5XVAIzoJjPaiMbFiyorSNZ2m2xsJTH4rTxopJIxoanJ8ykKZ1OU7jL5fL4fPkahIqijY5NOC22m2+66Z0P333yyScVAkbjkWOtR67ceumunXtj0Wxtba3b7VZUaceOHVaH9dbbbr77ru/ffffdR48cr6io2rh5043XX4sgyIb1a1vPnLRbrFMTkySOL13aYjRZzpw589QzT3V2bvj1r5/wer0vvfTPsvKSQ4fGzGZjRVnpZ598brPYaZqdnZ57/vnnn3/++Ys2XRyLBGORcDbL7d2712S1oBTRPzCyeMmKcCQRDERXrVpz8ODR5ctXplKJyfGJjz9+fvGiJevWbpRltaur6/rrb2tsWrBnz56O9q4lS5bfesv1hw4dKCwo0HQkwwuNzYva2jucXt899927rGXJyPDg7p273nj99TyvK39x08JFjdl0pq52gclsyOVyvT19JQWlkWDi5ImzGzassVns6zdszORyHd1dmexsaUX5b595esW6DXardXR8/PUd70yPjs71DSjJhIVhLlp90Sd9w47iAqvFhJIoRqOapkh81moze73eC1MNl8uVy+UoimIoEgNo+9mzl2+9lBMFAsWgDnRFpXAiHA4aDAYAIMsaM+kchLqq6DiOqrym6QqgME1FZETnZUXDgSYpEEExDLid9qwg66qmiSqfyYo5gcRwhmGddoeuyG63m6Tw3t6esrKSVevWEzSdTfLpTAbHcRLDGZrGUQzDMAg1WRYh0OOJqCzLDMNousowuKjIKNCNLJlM6ASBkTihaVDXUFGRc7xoNRs5XiQoCscJTePxq67YtmvXLkXRUByDCLply9bmhUt+/OMfPfX046+//vrZjs6NF21qbFp0/GirpqKhYAzDsDtuu2vv3r1QQxAUgSokjBRGEBazgyQYimQghCRO4Cg4e7atqbG2urwsGgs7rEar1Z9IJ3s622VZwTDM7LSPTk+arJaWZS3LVq3SVPCrXz0OdZSksHxf/tzcnKKqvCioqlpRUTkwOOz3+iRRAwDr6evbunWrpCouj2dyejrf4yssKg4Fo0bKkIzFPZ58CqegCnFcv/7a7T975Cd/+tNf5uYCGIZl01kcxxOh+T27JmorK5xObzIRNrA0DtFoOEEZSYKkGQxDNC2bTFXULvD6C06ePElDYHe7yguKp8ZGDQxBEajN5Y4EFCGXQlHUZjUCaNR0LZnNMQxlspokLifrGA0ITZFwGk2FY7UVDW/t3XfLgw9//Mars8Gpb44du/ue+4f6+vu7zha4rcDAIrKa4QQuk9M0GA1H7B4HKkgswZA2QgMIa8B5BTqLS4rLKjSr1egX53iusrnF6nLEOGFTYREA2JlUh91ojWSySxe2pCRx/9HDRVb7kg2XqKoaiYUyglDsyp8Y6+A1/eWX/1lTU0mQ6OHWE1deul0EekFj0z8+/3L3kdbYxMjytUsH+kd+8+zvLQ7nAw/c99o/X85wuRdffNFidrhcrtbW1htvvH7V2jWbNm3ieJFkaIPJNDc52zs2nBOFwMz0Vx9/3NvdubChoXxJA47o8XBoZGzUaKQhxQxPT3lcdn9eoc/ljseziowsbF6aiIRUA0JiTJ7XT9HsscFeQJGIDkaSoUvXrzWZTFFZWNyysLmhQVdku9MhyipOMqzJhpGUy+t0eh1V1eUmEysrgpEluVxqsL9nw9p1ZosxGo0WF/oD89Pnz/esX7fm8y8/u+Lya4/MnC7Md5UW+blcRspmD584kxW1G2698bk/PNvXfe7GG66/8orLeZ6bD4Rf/Ne/yqoq393xYTAYfPrpZ2ma3vXZ56Pj4x0dXfkeb35+/qIFjVar+f3335UlvtCfF47OWx1WJt+FouqNN10rSlxxSXlBQQECsGw2u3rNml17v3r88cePf7O/sriUZtCMkIyG4g8+8MObbrrhnffe/sffXigqLlza2LCkvq5rYMjtcKEYTCZiX3/zZWVlxcWXbn7/vR3llSV1tU2vffLZ2jUrn/rd7xoWLN7x6SfNC+vefuO1jo4OI2t4/vnn6+rqlzY367q+af06RUSi0fDeL78KhuYh1AgCd7lcJInIQq6wsDiXyzkd9s6u9nOdHUuXtUxMTk6Oj9XUVM3MTMuK2Np6vLC4aGFjky/PE81k0nxGEYXx8UleVhYuaQkG5nhBsLocNCBRiEyFg/FkorK4NJaO0UYDTTPJdKrY79d09cKMDsMwXdcQFIPwv7bC8LspNVQQ5NsSQ+3/jKPR/yyUEfBtwhYKEIhATYP/y330v4RZ//kSFAAAdIDqqqrjwIixsWQiIcsmk4khyCs2XfzRZzuK7rxDx2BwOsVxnMtic9kdu78+IAiCwHGZTKq4sMhkMrmcTrfbPTw1eiFKem565tbrrouF5ncf3Lt2w1q30/nZZ59AeLXBwFgslkwmlUhm40nu1ltvdzm8L/39pWeeeeZPz/8RQUFJUfHNN9+8ctnyWCz25c5dyXi8oqLi4MGDS5ctraqp+Wbfno8/+Wz16rU333zzwqbm4Pzchx98IIkiSbAGg+H48dbW1tbdu3cpirK0ZdGRY4fqq+pEjr/oooscdufNN93y0MMPCoJksdpxgL/yyr9Wrlz5zjvvjI+PFhQUPPjwAw67i6KYTz755PXXXrvv/nsXLlx49kzHvffez7KGubm5W2+9fWBgoLahEULYN9BvsVmf/8Oz/sLiv/zp+cNffx2enyNxIqyprs0bKspLT5w4lp9fMD87x3NiTXn1qlWr+ocGb7zpe7qG7fpyb9f5PqvdcdU122+65eb8/Pyevt4nn3kyNT4nRmKZcKzY7V5UX2+prbN4nT3nB1u7On64fYsCoKjJAENEgcul4hBClmbmgwGb1eFyOaamx7ksh6KokM3FozGjwZTNpiVFEwTB58vjczk+nUIxhGIZWRRphpQkCUcBQHQUQzUNiLLEEgynKSqKyJKMKRpBMJFoOJ1OFxaXa4oqS4LVaI6FYqqiEEY8KQgFeb6uLl7XdZfLZTKZfvmrxx57+ncmhNI0qGkahJAkSUWSIIQsy+oIouu60Wg0mlgUQArHMAwjEEBSOIbjEEJFUQDACAzXoQ4wlDGwEAUQICRBQx0jcAY/e/asoigOhyuXyw4M9rW3dyqqDgAwGmzLl61JptNDIxM0TVfU1ATm5hiGufX2O+++486tW7fdddddKEAZGhcECQAQTyVJCkVxgkIoLpvJicKC+upoNEzgaF1N7Zn2Mz6fr6amprKsfGZmJpVKnWzvLC0tFRUxnU6TJF1X3+h0Os9199I0reshl8etqqrL6R4aHGMZysCaBF4NBmLxWGbzhkuMjFERpYbG+o6ODp/LbbE6BV5hCAABXlffqKOYLCoEjhoYlmVZCKHNZhNFMcMJJIm5WKvD4UAxBCoKhRPn2jsdNqfb4YIoghGEJokOs21Fy9L+yaknn3pKh2D3J58GIhGXy1VYUsrzfCg0s3rVMo/HnUskdF0zmcx8jstlMixDsQyFAZShLWU+f+e5czgOKAkAiPQODzaUlDJ282133f7zHz78xY5PPv1qT0lJSVwQ3TomZSGiaSzNKIqazuQWNC+OxhKJJNdUVxVLxNK5LCDRifEZhy8vGEsda+u0uFy0gQ3H02Vmx+jkdH93n6IoIo5k4zFFFmeGx3QCUzCk3JsXTGUlRU5nRZfdLqIkryO33X7njl1f+kuKcpJw6sSp6pLqesuio2c79Qy/ceuloz3WN99+Mzo2deNdd1AmUy6Xy2aznChZrVYUQXiet9ls+/bty+VyDGuMxOMmqy3LCQRAM0K2p6dr/+efELK4aUmTze2saWwkdHDs6KHK8opoNJ5OceUVpTyfKaqoONd9Ppbjnf7CbDIRy2Tz/AV9/b0LlyxNz8wrBFno9yUx0Ds61Hr8xA8eetDNsK2nTi3beJHFahYkkUAJs8tSUlgyNzeHIGB+PpBKpZcuXRYMhhRZjceTAMcGegcWLlpEErSOAJvTu6ABHRuf+vfb777275ePHj3+0ksvqbNBVFVkbcLrc7zy9DOtra0UTuz46JNMJtN+rrfrXCdNUZsvuQRqypv/evXsqbbS4pJoKDw7PDQxPLRh+WKHz6tpWkND7czMzI033lhTXX3q1KnCfH9BcUEgMA9Qwu32njx9TFDkw63HXXnutatW/+ihh7vO9xT48zZfenFdTdWK1SsOHTmcX1I2MDH88luvnD7VtmDhgmQiwdDkyPCglpM0Vpqcn3a4revXry8uLT5w4MANt9w2PjoQi0arKirz8wodNudf/vzHoZHhb/bt8rl9y5cvHx4Y3nLxZSaTyWa1nT59Op3iUAQxmQzZdLzYn5ef7+M4LpPJNNTUzQSC8/MzNofDYDKyLNvV1dWEgaLCwtdffeXZZ/+A4lh3f9fq5ctYlh3s62FIQkaQSGDWbrMlErElK1YSNFVXX88QOKLpiVzcbbDlJN7hcZkZJivxkiJfKI/ToI4DDCDwQmo0AECHUL/gF0JR5L+DKiEEQIfw/+imUQT9T+bVf1mY/idR63+ZkZD/z3B8wZsEEERHdARDJU0BOrBS7GQszpiNoVi0unlB89jg+b6eioqqirLKSCoBSHxodKSprjbHCUajkaaZXCZz8viJmeExjuPMZnMMkI/+6Cdf7Nq5afWa++++73Drca/d/re9h75/7917vtq3cOHCTCYzH4zOzAbCkcxjv/rJi3//h8lkuu7GG2wO+4EDB/r6+q644oqLL72kpqq6qqqmsX4Bw1ILFy705ecbDIah/qE8X/Hhw4e/3LW3pKTkoYceuuTSy6urqycmx8739OVyuVyW/3LXXofL/vXXXxMEkZfnr66pe/K3TymK8pNHfsxnc9V1NbXVNZ999oWq6elM1uNxP/W7Z3ACRQEuqRpFwHy/J9+fl0zFFVUwmZlz3e0Gg+n+++8XBOnrfQctNqukShhOPvXUU6os/fjhh4YG+3VBqC2vsNsskUjAwFB8OtvT0+txuRc01E5MTHR2nzY7DRhOQkxL5xSHL++dXzxRu6A+noi+/PLLsWg4FouimtyQV9K0avX8/Lyt0D/SPww5+eSxk0I6XV5YUODx6ZxI6RiF4ZIiaSTAEGi327NcTpZlgc+5nO7JiSmKJlRZsdud2WxWkhQN6gCAUCiUTad1CCVJsFhM/rz8np5egqAwDCAIhIpM0YSmA00HaYHDGQpABFEVQZZwHLfZbLFYrMrlriwvpxnSyJKSIsuS6HK5kql4MBhkaEMux7Os0efLdzgcSFZlWRYB4EKsB06SoqLyvMjQBkVRINQg1BBUg5gGUYZAEYBgPC9iKMEYLBiGcZyAojpJEypUaYyEEDIGo6Kp6XQaP3v2LMMwiqJIkoIgSDqTLSoqeefdNy/ZfGlD/YIrrrrysSee6BvoRxDk+b/8uaWlpf1s9/DY+BVXbvvww42ffPKJzWajcAJBEFkWdaDruipJgslkGpqdWb78rpmZqZqqCp7nNmzYMDMz09Hd5Xa7XW4XQVPFXq/f7SIoJsdziURs3zd7OJmXoSYLHIIgNM8JOc7jdlrtdgC1iZFRE2sCAH6WiFfX1RgMhpqaGqfVMzcVKrmhMhFNhSNRqKOiqEBAOOyOdDaTzuRomuY4IT+/oG9gwGq3X7agfs+er3OqRmgqlxNEg4hpoDAvnyTp2bkZDCAaQGmKwDTNaGWnpideeuWfa1etbWhoEATho48+mp6bLS7IJwk6ncoCVGfMxkQ0lsmk8twej83Mc1kxl8vFojRpOX7uvNnnMNscqAQpgBgsNKrAcGAOQuTjz7665upbXB7rb3772NrNayf6+nCdIgiAkyhipHEMTIZmy8srM4ND03OTmiZZrSZZUmtL/OF4Auig0ueQUIbCaVnWonNzRT6ft6o2l0qFxCyNYwAnDCSN4SAWj0dGJ2VeUAmUxg1dA6PVtVWFC5uHZ2fy8vIuv+jS5555bts11x05cLC+oVGIpZrKa/7wi58PnG1vWlDjry7rPnOyYclynzdfUHTKYMxxGS6VAwArLy+PRqMkScuiHIlE7A4XoqvtZzs+//wTPpt0W9hLN67FoT4RmDvbnlu0YBFNk0BRPBbLovpFPb3n7B5bR1en2W4xiIbyuvLOtjan207QmNvn7h86v6J6cXVZ9d7hiYKSYrvbF52bK6+su27rNb2zww/d9wCX5XSzI5lMRhPRicnptbKoSjqOkF6P32Z3S5Jy/4P3h+Op46dOnjxzIq/QW1pa2trayhBkNp5GRPWVv7y465M9H3/xicXhyPIZDOo+t8/tLUjlhKm5YDIWf+nll10uVzqXZSkG1fWBro6xgaFsNuvzeK00JRrIZUsXqoiw7qKVs9Nz/3r1dY/D1tvb3911bs2aNYlEqrujs2nhYpvd1N83nMlxjBE7dOToj378aCwWefChh66//sbHHv2lyWQqKSl69vdPf/r5L3lOzPIpQeAv23pxXX0VhmFQVy0Wy+T46OzMfGFh4bp1FyEA6++dyGSkpqamLz7fWVZSeb6n+/KtV2zZsu3qq7eXlOb/7JEftrWdngsnWttOC4IgcDlVVeOJKEnQs+EgpemrV69atbQllUrIPGdmGQNFJ5NJd563paios6NLQ6DT4f78850LW5bYrbaly1o6z55pbGz8evfuTVs29/QM+zx5yUgMx/HFCxfanLZ0LFFWVHzsxMnFC5sQDdFVOScJiqaqmazD7YnI2Vg6bkJJkmYghhMAlWWZxIkLORu6riOojug6RBD9QmXCd9wVAOw/qIkhCAJR/bu06P+v1hC9MJpGLnwGQSCE+ndn0P8ixBck2BfgmEAQHSCUDmRNwRnCn5cPFB23WXkud/011548dcJIUyxB+B3uc/29LCTqq2o0DXI8r+i6kTVs377d47BjKJLhhe72jq6+87UNC7Zdtf0fL/9zYmqOItgrrrrm00923n7nHa+++urdd95x6y23/uOlV3K8dPzkcdZo2LXri8rqqtXr1ttdzqefeqq2um5wcNDt9h45cqSnp0fX9YK8fMPgSGVN9V3fv4eimKd//7tkMnP00OGXXnrJajUvXrw43+9bv2Ht5OQtBw8fCkejD/3g4anZGavVGk+kDhw8PDo62tTUBHRt08YNn3/6yftvv7nxkssikXBDU0N9fT0nCpGZiM3mEETp6KG9FRVVBEG4XV5F0RRFaWlpKS4uHhoejYTCRqOpo6PzhRf/XlZc8OILf3/qN09esvGi723ZcuzgNyV+nz/Pp8t8KBB0OCzLlq7ASQLFgawKsWRs1br1VkceRRsdTs/l37v+8LHjP/jxj44fPYhCrbjQX1pSlMgmnC6bpEpZjvvyjbdlqBd6/GdHBjNyuqmmvri2enJoUldVqOkMRaMIAChMJBKRcMxisUCoeb2FKIqrqoqiaDqdlFUFxTAMwzCSEEXRYrFE+AwARDKZzKYzOI7jOK7rKgCQInFBVVGAapqm6lqOFzAEx2QdYhiK45KqISjGS+LYxDhN0wAgmiqKIoKiRlVV83z5LGtEIA41hCZIAFESJ3RdlyQpJ/A6hBiBA4QgCZagaBTHJV0WZQ6iUEdUCHRFVXVEIwgMwVAcx0mShBAqigShhqAQwwGCoclk3O1267qOFxQUcRwHAErTAEVRu9OhKHIgkGw7fTybzUbjIUng0skUBCgEBEEZXv7ni7W1te3tZ8bGxw0mFkH0C3/1HJem6WKIQoChECAkQ+c4bnh0pLa2WlTkZCZtslo4Ucjmci63B8VwUZNtDse5c+crq6scDgcvyvu/PtjS3JTKZVRVJUkqgwJNU4uKC1BdUaVMc1NDMBBWNLW7s3NocNhstlKMgeOEXz/xJKLrDQ0NXFaUlZQgy5KuGcwmDUVwHKdpNhAKQQinpqY0CG+44bpsPFFXUTbU3ZFIJJLJJEmSTidTXFyoCooMoChLksBhIr169cpdu3a2nWhFKMppd+QEPsnzZQSeX1o6Px8kaayqrMxgNM9MTMZTSYnLGWmKQDHaaKJI2lJVphFgLDgHFeA2O2SeN7vMZmjoHpsZHx5+5plnbr/jlu9tv/qLTz+1WX2h1JzT7ogncySGU5QJKtnz588TGCQJIENEU5RsJiXFI4zRKsgiAMBntaoSr9NQJjRZ4YYnInKWs9qdOSE9H0lYzA6KxItLizLxtNFqBwxmY2wcDkOJRDbDxVPnVi9Z8c67/z54/GhZWZkkCfFY0uq0RmLRZ55/9qlf/AIVhbVr1iQlYd+BAzX1jfn5+eF4TBZEs4kpKa2enJyUJbWwsPDIkSOKplqMprffe3emf6CstDBB6FVlhbyQYykS0fUF1bVf7/+msrSaoQgUwuDkeE158dT8dCiWKMOqaqvrervPn+/qaayp5rM8xwkESnMocn5sLJSIkywzNRfAEfjmRx8FBb6wsHDr5Zc/94ffn+vvcbk3WK1mDAcOh83ksBlN1PTMmI1Z7v4AAQAASURBVN1hznHcb59+PBqLkBQyNj7YdrY1J2TyCrxHTxwmDMSKtctXLl8RjaW+OXSYNVsgpw0MDfd0j83NzXDZrNlqv2TTZqFEGB8fRxG9o+Os3+d12m20iS2tKjcbWSNrWLx8UWd3B03TX3zxucar61atHB8c3LR+jaoIx44doGnaZDYf+Ho3YyB93kKZF5YuXdFY19B9prOmorq+vn7LJZef7+o+f/7cxNRoUWE+SxM3X3/d6NCwDmBhod9is2a43I033dbR1dXUsiyTyVCk8auvvgoEArFw0uW03XTd1RSgwsFIIpGoq6+56fobCBRTZekPzz69sLnFbjYQqJpOw0Q8pGvKkpaF119//SsvvTzc28+QhM1kTIaDHpcLRVGWNXKpzPjcvCRJiURCkJW8/KKhwZFgMFxVVWM1WDwez9cH9ucV+MOh0LLFLRRjynHCgppar9u145OPW5avGBgaMZpNsqxmuJTFaqVRvHOwz47RoiDsOXl0cWU17TRhAHc4HIIskRgOUIBARFEUDMMAAAiGIvp3rYXfsVUdQgAuUFwUQogg8MI699uUjv+NvjoCAUAhgvxnyfufu/oFQ9N/mYu/lUnrEEUQmiRxBAml4kDTHQazFksqLJGk8dqW5uPHWqcSCX9+vsfjEWRpZmZGVhXWaJZlmaZpo8WckwQDQwfjUVdh/l0rltqMJhttevCBh9Zs2tDVfX7VkhUQUv9++8O77rzny6++EGXhtrtuaWtrYyl63bp11dXVHR0dfX3ndR2ZmJq67rprjh9v9Xq9W7de1t3dRRDEvn37EonEH555NpNNLFy4MJlMVlVVzc/PP/7Ez4aGhiYnJzu72g8cOHDlFdutVut9D95fVVvTea7b6XTiOP7+Rx/eeuute3d/ddVPf6Kpqqprf/zLn0VZ3/Xll263+8DhA+3t7du3bx8eHu3t6zfSpIG1AICXllbgGO125fWeHzx+7BRpYNatXF1SUuz3589OTT7yw4fkXG7Lxo1CJjVy/pzHZsOgFgkFZ2dnL9++zWi2n/z8Y5pmSkpr5mbDCxdtXrho08zc7P4Dh3t7ezo7uwcHB/PzfdUVZU6bSZMlXZI0TmEJdjAU/KattbKgaHpmFkFhns1SpJqjQxM4r9GAUCSVIRld1wVBIEkyHk/OzweXrVgaDMxxHMcwBpLnJEV2Op0Q6gYjMycIXpebogmWZRGI4jiO6FCQJBwncRxXFE3TdAgAAlGoIxgEGIaZDAYKUCqhohDJZrNeX/5cMFRO0x6PB2CYouter1dV9GyWY43GSCyqaZrRaBQFAUEQEsMFIeNwODweT/9wP04SvCQCgFms9ng6rqEoihEoSUEc1VAEIxAdgaom0DSD6KokCZIkYDhQVRVFcQRBof5tf3Y2m5YkCW9sbBocHEgkEpIk4SQBMEmR1fr6hoGRXq/LOzY2NjQ09Lvf/nrzJVtuvuO2wZE+VNc+2fERVFWSYaxWa47L4DgOdIgRGC8KF8ZNyWTCYGA4kauoKJsLzJmMxgut3fn5+TmOi0QiRqMxlk2rKFJRVzMw0Od2ODds2Oiy2o8dbSuuKtE1CCE6NxcwmUyapkFEk1RFlIWqmspMJnPJJZc4HC4UYD6fb2xsYufuL1qaF+748CNRUq02V0FJcTqTgpKqKJLJZPjDH55NJeKrVqw839ffe743mUgbARzt6Sr2uarLymYJgqGZUCgEAMR0DDcxEEJFkmhNaV7YMDE/ayLZUDrTc67LaDSiKELRLE1S5eXlsUS0f2iQxHC3042ioKi0cm5mgstlaIJkEaAo2oplG6sMzMm2U6lwlAJ4ipNxoFaWFfSNTeUE9cP3P9h25RWNDUtOHT7ucBgpQDgdFiGbIwFOEQwAHFTlXCZLkqQoSkaTlUUxXpIxkjJZTdl0ikRQBMcAQGemJyiKtTkds4EALwi33/9Dg8WZyiTL6qs+evd9KIpdHWcLfZ6sKFIY7mDYorzqE61HKZpl3LbGqsZjZ1pPnz7duLyRz2onu7ts/sLQ6NCxs53OPO/GizfOTs1uWL/65OkzmVRiwYLGB3/ww7fefBsjKUXTd+zYoWrK3i93Wqwmt8dqNxny7ab5wIycMTgdjkVLVqgoEYknqisxg9loYShVUJKRIIXqDZVlnef6Z8dmLRbL5vWbTp9srSovI0jGbLH1jw67eZGlmWQqDrI5HUNi6Vjr4UMmM9N77tya9Wvuu+/75zu62tvbOUGIphIQQyxOc/OipgMnDtvtzvnZWZ/PV1xazHFcNpXx+/2ZLPfgD3+0qGWxqqqnT5+eDAXHhkfOnmyTZKG6ulKR5MrymqFQsm5hxcLGhjPtZ5ctXzI0NFRcWBCOBBOJuNPvS3NcLB1f1NT89ocfelzu2flAcXGxSms8hDV1tYOjY7fcfBuO4zNTUz6f7+ipNkUV7r/noePHWzN80mK2uJz5xaVFf3/5pbfeeOcnP/npmg3rl0mLJTHncDjWX7zxzgd/SJAgFAr09vY6nG5XQfFixoiRhMxJKEosXrHC5bROT8z+8tGfTs5Nbd68+cs9X/7732++8MI/EskQACCVCuM41nbqVEmR3+l0OsyGhks3q6o6NT712Xsfbt9yhbr5Mk2WEtFggc8XCM5lM1xRUXFxgY922M71nispLlI1RNd1o8U8OjK+9bItU9PzWVGpa2hu7zi3bNkKgFGn2zuWr147Ojub4nNVTY2hRCwYjRmNpng6taCicmxumtbBotoFTqfzyPFjuKyV+IuD8Wh+vlNRFBwnAQo0BEEBghE4hFDVIYqiGAYQHerf5XJABNH+BzF19Dvk/D8GJggQCOEFZqxDBAUQuYDDiP5tfhYA+gV+/B1mwwu9SwBBcBSHiKSoBIFLyUxaFuaCgWXlCzQKzXE5PpG8Yu3Gc/0DaoLzV1cKuspg+IVQEFlWJycngSz7vG5d1wvMDkARsqwGg6Hb7rzN5XDWVFSOT06dGxyuqKg4frL1uT/96Vc///n7H7ydTKaXrVzF4OTvf/97mib9fv++r3bffffdBw/s0xX1fN9Q/+DAzTffvGHDBpok7r33HofVhqHIJ5/s2Lxx00c7PuC57FVXbrvz9jt8Pl9paemmizaGo5HPv/g4mUx+73vfm5uZ2H7lVpPJ9PGnO9esWTMzMxOLxaLxVFd356133qPjzP6vdhUXlxoMBr8vL15caLeajUa2srKcAEhf7xCCIBaL5YJiqGXp4sH+oS1XXB6am+3sOGsyGZ566rEif/79d919/NBBp9MFdD2dzdpMJgjQ5pal3X0DswcPNi1aVllR17J0zYt/f21iavq3Tz27/8BXy1cs9tjtS5oXFOd7JicnAVRyuRyFE4qmMyZjMJF4Zcd7OI6vWrHq3PRoPosCCjVazKFknDAb4nxWRZGMwCFAx1GgYZimIyaL+YKwWZJVXpBisRjHZWVZRiC0sEYSxRLptEk3YBAyjAGBCIoClqVURddUSBAUALKkqyqCQVWjaQOUMqIo0ixNUlQmmyJxPJNOGxnjxo2b7TYXhADHaIigiiYCDDWbzbquG42sIHIOuz2XyxktxnQwMj8/W1RdZmINACIkwDAC1YAmiCKG47wkayhKUgYA8FxWZGgSR3GoIXxWIjEGQQEOyHQiQaKELCo6hbCMkedFWVRMJhPe1tZWW1uTSqUQBKFI+tGf/qyzszscjsZTXDo9OTE+jSLggw/ea2heUOj3vPrKCxuWra+urDh47Eg2lxMkXtN1PpvFCZQkaJqmdV3XdZ1mGZLCIaLpACaSMbPJgCA6jqOqqlrM5ngiqShKWXFJOpVyOtxmszmZSaW5DGWkWauRz4oWi43AWIfdB3Uik+X9+W4MJwcHxi3LHFVVNdPTkx6PixfSPf3z4+PjK5cvZWlG19WqqgqIkROT4xa7RVMlWeGttsKq6rJQwNjf36vJmtFo1hQdQJHBUU1TktmUIIo2m40m3ACBVpNlLh7J8TkCx5PJuDEZz6YTrBlDAVKQn8fneJnAz3V3zjL05g0bLDarpsomk0nVtMnpWV6UzFa70W5PpVLBXK56waLPj53x5Rea3AWVNQ1zE5PxWAwlDZHAvIGgbGZLRsy9/da/l7S0fO/qK08c/lLKpgk8i+m6IusIChgLxRgsalbGMICiKEAQAgIjRsaTCYJmHEYnosOUkJEVyYozko7kUG0qE2uuqly3aUMomqGTBsCQrjx3bHhsRW3tfGzeTGEURooyJ0Mmr8hjNliHes8PDwxhJuPYTBAx6NdedsPg3BjFWpe1rGTdnq8Pfn2src1pNoOxcZrAZVFqrG/kJd7n95GUoaOrU1Jkn8vBMgSBo7FUcnx8eOOK1U6zeWR0eGx0QkCwwtraFctXQQjjiQQ00QTAQ+H5gjwPIgplRfkUwzAGA8enS0r9wXiwsLSks+f86kVLLrvx2vdef91mYMVEvMDvQxTJyCIL6utUVf5y987TZ9vWr153x933hKKRrw99MxcIJ2NJFDM0NSwvLi5etfSi40eOkizjzncpisaS5pwmHvzqwNuv/ruzq91sNlMGtMhbcOm6VatXriosL33m+d+vXLt09frlb7/13tufvFtQWGi1WFiCqq2sSkViRQUFmWxWzHFr1qyZmplZvGTZvffff/LU2c6O7s2b14bD4aKiou5z59t6eu0O19IVq6enZ++4+76vvvryw0934Tje1X02Hk9ef93NP/zxj8wU8ZMf/JA1GF3u/HgsHA1nPIU1xzuGDp8+39lxNhyaL/Tl9/UNWMxWo9mUzKQSyUhZeY3X66VZ+uJNFz/yq1/YbdTUxGTz4rpvDuyfC8z+4vFHo6EwgbOqrJgthqmJsWAkWFBYuGzlqkOHDq1euyE8Hz5w8IiRJiWRxxEtP88jcHxlRRnHCblclmIMTTV1nCRGEql0VsAw7KOPP9x86UUSiZeVVebbfRPD44ueWnm49bjJ4fLY3alsqrd/EMMwQRKLSkqrKio8Nvtg70BOlUprqrLzkb1dBxRFWb90dYLn8xxe7bsLZWhVVXAMu0BwRVHBcZzAcAwBECIIon8HqP+BWl2/EMEBAPx2pIwi/yk3RC/wZhQCqCEAQB0iCADfSq4A8i08QwgRACCE31mRER2BGkAIgKCqVujLxynybFd3b2xOSeby3O5QKp5UhcqGutaTbTMnw2uWrlDwb/fTOIlTRnp6etpf6CcQhININJ2EiuyyO9p7z/nKC3/1zK+Xrlu9ak2L0+11eGzpdHr37q9uuP7WPXv2HD125torr2AptqS4SJT4W2+55WTr8QW1dU6H43vXXZ9IJD766KNoNFxUUMhls1azube3d9uWy99+651IJLKoacmBrw8X5BcuXLi4rKxssH+ANRpEXpBE/qeP/ri2trakuLSiouLW278fDkePHTu2oLFpz76vyyoqRqfmnG7Xnt17tmzZwlD0p598UlZWFJifHh+b3Lt379333FlQ6FcU0eNxxuIRnEBUTWxZ1gQwhGXpn/30R6lk3G4zjAwNHj9yAIOQJam5uRmv12swmjhZPn6qzeHz/Prpp0qKFxAE0Xry+Hs73rrn7jsnxkd+/IN7CwoK5icn5ybGZifHMAg1VUZpkmBogOIYriIk4rc79KxEYTjNGjRZywm8KutGqwlgKM/ziqoyRkaBuo4CRdY4jpMlheM4giIlSSEIgqZpVVFUSSYBlo4naIygCRLo0ONyz0/PmUxGRZd1XYc6oCgKgZgkq5qmISRAIFAlGQAgyzI0IOlMGscAZWLC4eDGTZcxFJPL8R53XiqeSaczDMMQBDI9O8eyjNVh1TQpnYwCDLnwvEJRlKIoAAAcAaosSxKnKBJJ4RRF5XK5eCITT2QYg8FAMZFwCuikw2GicAOJGVmWxkjU7cZKiopRFBdFOZPJIRC1251zc3P4/HyYYY02u8tHsxzHVVY3XHzpFc8///zqllW0gXa47AcOHDjd0X3rLXddvOmiqy69AmrINdddG0vEf/Cjnzz66KPBYPCSyy/t7+8fGxnGIMKQ1PDUhM1mxTFAMwwv8gTFygjCUqQsiroGdQ0SFKPoUNO00rKyyekZu9M7NDgoCtBoNCuqDEg0GEmzBjGViwEAEBSBqJLMCF6fM6+kxF9UODIxLqra2OSs02Vvbm4+196zfOkyDMGCgfnla9dY7CYNqpyiWKxmWVVPnT67bNkKijWrui5oysjwOOF2AFnCUaTQ68OhhqqaqqqqKgcl3mwwaJqqo2heYXGhx69LKqTwCrezs3dAUlVJUx1GCkV1gc/Mjk/RRgNmQGVRdFlsk5OTBpO5rKKCNNqri8sPtrYmclwynUgnE4XFBfFoojS/aO3FG4PBeQQD2VT60KFDdfV1rMXWPRlwe/Lmhvt5Xfa7vRJENQy4jFZB4gmW1HQEoiCTyVAUI8sqSjOM3RWNxmUdZgQFAtDQsioQiS5evaK4ciIwF5gMBI+3nkqlUlUVFYM9vYGpibtuu40+1xGNhcrKiqcnxsVEDM3xzryC8tISEmfC4bC7wCMmcjaHxSO5jQy9++33IaJW1dX57Y58n39kbjqRSGAQOrz2ZDaD4lgmEe8/10WhqixnubRgZA1GklrZ0qRzKYfZ5C/0RWOplS1LP/rqSz2Zs5cUapoOoxmPxVBSUsQJPCLwLo/r1ODA0tVr9KQQCieuvfG6g/v3uylTNicExqdIltFxlM8mSNxXt6jl69bTgpBNZDLZjCDlpgdM5+amZhavXPejR57y+/MQXf9y3wGjzfzK62+4bFaj0VhZX88yxp5zXUePHraazRRFOR2Optr6ojz/lmuuGBkaHhkeNLtsPp8vFIi4HHltp8/qsvTQnXdJPH/q5IkQn03HA4IgiFJa4jiP13fiyMFwNF5WXvLIDx/O8RIvKFXVFQ0Lmr7cvfODd99asqhFV8HzTz1jMFM19c1zE1O/f+4PZ8+e9rq81dXV/or82+6+hVBkX3leIpN95pkndEkrLS2dmJocGxlljYaq2qqNGzcUeHwFHo+3qIRh2Fgg5HBaJVGhKIpi6A/eeMNut/NCrtCff9m2rT3nzl9x5fbWUx0b1m4qLi5mDeTu3bsATeYVFkGA/+6pZ90ON5+Ss6l0aVnF/NzkmrVruVQcIHB6enpqaoKgaFVVAceHs7nZWDK/pAzTdZqkzp3v6esZTM8FGm6o2Llnd82iBTmJ++id9wqLixYvazGROgY0HcNFRbaa2GwymssmZjPhEnfh3Nxc5+mzDoNh/YY1e/ft27rl8lg2hZtoM2PAAY7oCIpgmSxnNps4WWEo6sIMWUd0gH6rk4IQAET7nxbC/17rfmsdRr8tXIIQQxAE0XEAdIAgFwgwgmjfcWkMAu3bXGgUQy8UICKqpphwIqepPKKYMQpDCU1HCl2+uC6PTk9kMumsIsZHR2ZnZyVJmJqZHJ3uv+2K63UV6rput9pK3H4aJdNZHiXwRCzusttphpQFvrGqmiHp3z/19C9/+djFa9ZzqWwylhwZG7t822UffPDBQw88uPfL3V/s+Li+ZaHLbMllcZvVwXFCMBAweexHDh+sqam5/56733z/3VQqde3lV5pMBofLKqaSRhLrmJ34Zu+uptp6i5leumapx+q59LLNsVjsuT8Ovf7am2dOn/7gww/9fn/3+Z5Dt93hstt++tOf2Z0eTsju2fsFptrXt2z6I4nOBKc+3/1Z0+Lm2qraAwcOjEwM+csKEEAk0xlOFLz5/lSGk2S0s6OnqLigtraeT8bno+H3d35c4vEhWcmgU4zVxJgMy8rLAYae6eyKJBK33H3v9uuvnZybevW1F2xW1yv/fOm67dtkLl1WWBqYC57r6awqrWIMxnQ6azVbSIQBGpFN5GiGxFSQtsnZWJq1MDavVcnxbAGla5gkKUaDjgOYjsYxmkzJEoUTECCs2YChAAM4geMYQgNMz+TSLo8jy3MaipAsKzN4SpEimYzf46atFllTCYoCMtAQDRCIDhRZkTEUwTFcVFSIG1BMV3lRVnQSJzCSUAVFUARffh5OoUNDg2vXbCBpmjUbRUkQRF5WJYaheCFHYIBgadpgAAhhJZmEJmI0quu6okFFgymBS4scxTKp+UAskSwsLKytrM53enxeL4HiWUH0+Hxup7PQ7adpmuM4WVONRjaeiOWSadRIi3zG6bLyYhYnAX7lVZe3t3cmEgmCoBiDqbOzm2aMjz/xm6mx8aZFzXfddUc2yzU01A8PD7/+1mvXXPu9RCR9zTXXlpSX7tz1eSabymXSYyNDksAhECEIgiRJDMNYmhElHiCIgWERgAaDQYPBIKs6ieE5iSdpemZiHIVA1zQKR41Wo6l5wehgfyaV1lUdQqiokiwDo8Hq83tomtY1YDEbfV7X5OQ4S+OxeKSj82xlZaXLYc+mE4IgQAhIkoQIYCmWISkdAziOF+QXhkIhkZMHzg9mM5mKykoraywtLojPhdesWJKKBkVJzfFSMpXOy8sjGTqTSXM8n83mjFbb5ORkSWUVSZIAgKmpqVQiTTGMgWTy3F4pnSIJtrlpUddAj8lsBQYjhBABGEmS8XBEVXSz1VJSWFzNWouLi5PpVCwdZ822WDT5hz/+jTEwCxrqaBqvrK+bCwZQmmXNZpy2pwDG6GR+ceX89JSWy9Imy9TgTGFxkSwKrMFAWMwQoDhJO/LzJE2LpbLhZGLFhg2VVXUzM7PegpKZ2ZCRMS+otgdmAr989BdtbW2v/vNln9OrZLijh46bTcz0XLQwr6CpsaV/bEwE6cmxUafDwZjZ6cmMxWbuP9f9lz8/V93QsH379nQo/OELLylZ3uv3EzT1wA8f/vzzz48dP5HnK5xPhFEEi0QikiTV1tan0rH5dLqgoIBFIJfNaGI2wiUUgOQVFpBGdkFTY8/5vqYVS0f7+hIjo6VeF20kXC5HIpwUZX3FouVjfSMGyhDnuHMjo7c+8ODTjz2Zp2hDff0GgpmZGnN78wKReB2OUwyNAQA1tcDnlrhsRXHe4ODgi3887iooWrL5kvDEzOlTbY0LF91wyw2peELmpNOHT+3Zt9/AUNdfe+39Dz4AUQAAOHxg/9kzbbs+293cvOjAgdZ4nH/zrcuqa+qe+u0TFRVll1126VtvvuG02BxOm9PtcjqdyWTSZDKNjw457a4kSFMY5THbjBiZRrixwHgmljjf0dZx/Ogd19+kq3ooFLr56u3j4+MOh3Xt0mueffbp1//99lD/0NcHDhYVVAkpTVeVREKy2fKee+6F3Xu/stisf3vplYGeczs+/GhiZuKj9z/Kc7pjsZinIL+ooHior79pyWKj0RgKhUwm07YrtgIA+vr6SsrKH3v8abPZPDc3t37N2uHRof0Hv0Gg5nLbSEAgCJIRsmvWrGZpfGCwz5fvzYqR+gWVJ1oPlxcVkigU+UxZw4LBwUGX04NilA1FQ6l037nO4uJihSAaF9SPjg2bbVYF0Xd/s89fUdrTe97E0A/f+X2nxXnk9OElK1ccPnx8QW0dQRACz5cUFfvdeclM+sN/v3XZlssXLKj7cveX9fUNuRw/NTPb2NgANQQlUUXXEIAQFDk5Pe10OgFJXljKouA/omYUQf/HCQz/d3Slpmn/mUPr/xWq9Z9j//f8d92EOoT6dwtigKIpVWYALgmqRGEAxxQIjS5bZHRs85LlkMIFjieIBS6LTUe0gfmp3lOn3/row2VLluq6boxGKRRnLaZjxw5XVFU5zdZAKHjht6eSSUVRvF6vyWUdGRretu2KwcHBuZnpE8cOX7x5/WO/+ul111wLEXXfx582Ll9SXl+jy8pV269+5e3X1160saVxqSSIHX09v3zkF+/8+52OgcGxiclAIOLzOmsXNwsMBlQtLfGAofrHh/g8gTbiZ8600zSZyqT9BQUURQ0Pj7YsWd7T1VNdVfGbXz+GAOL+hx687LLL0/HEF1/snpsLbt26raKiouNs+4F9BwsKCiVRLC0v0iRlPhbPc7tkgSdRFIOwZWFze8eZ1157devmzUcOHmARtKyg4ERij9Vk3rhx7YGDh/ccP1pcVnrrXXdv2nxJb9/AO++8l0qltm1a88brbzfXVF6yfs3JkydxXfX7/SV+r9liPX3q5OqVK0iSDgUjLMsajUYMw3QdWhmTv7jY6XOIvIQRFMRwAACJo0YjiRF4OJEEBI6hFIZgfCLnzHeQBO5w2ggM5bisqhE4SqIAWM0WHMWgpuq6nM0mSQLLZZKnT53weJ08lyVwHMUQUZIIgkAggmGEJEk4TsgQahDiOG6iTLqqaLKEkxQEgBOkYDC8/arrGYahKMZsNHG5bDqXJQhC5HOxSJwkaU3WKCttNBp5QVI1mOMFgOIQIggKzBab1eTSVUCTLFSBmbE8+tNfaIoyPz9P4yhB87lMMh4JphNJRZJFWYIoUBQlEglddunF/rw6u90+NzcnyzKOk/jJk23xeFzXIMUaMYIhKTqZzr719DPpaPTv/3hheHj47jvv2r9/vyxJ1bU1vChgJGayGv1+P47j4UDIbDaNjY0AAAgSTafTPC8iOqBpRlNVPssbDDSX5TAdCBxvMBgkgSMwjCIxRNNCgaDM86oooDSRS8eNBqvTZmdog9lgtFrtsqRH47Ecl8nlcgxJKJJA4XRoPux2eBjafMWV1ybjsWgw4LBbfb78LJebnJmprKzUNG12djadTtfU1Hz22Wcnjh6zWcxGmjZQ1LmODoPBkO9yLaisMjIkialOr4sXsulsFsSCqqpSFAshRDFMkEReVkLRiNlsVhQFY+misqL8vMJEJGyzWRCTMcHnXP4CHaOmAxGP2202mgxmzet1R2MRlmUnR8ZSvGAwKymLBUFBTuBZiq6srSwpKyYoMhgODw5OWq1Wr8MzPTZB4PQDP72rtLqy4+CR4+e6lzTU4YH5nCxYnBa725eZmgqFIi6XK51LefP9k2OjwXjcarR4PfbZmakznV2LFy85e7JNkiS3xwkB8snH77/y0l8YxmBk2HAmSeAAw4DLl1dUWnXk0CGGmAZAcrvtiszLkkbxXG1ZKVT0fLOl58yZ813dgbHxFWtXVlZXxGIxFNFOnjx+orUVEGRxUbHMSZFghOf5+fmgqmkICgRBIAgCx3FSls04Ycz3J3PpidFJh9F1qvUkyjL1ZVV7P9l55datwJPXdfp4cXmRWUNSgXCaoeo83nJ/wfj4+KaL1moA/eWjP/vpIz9jjOTf/vqixWQBCNrT1eP3+wFKxoKxbDJFMQZZViwMGwplFi9e89SzVw+OTXZMjrYsX/HQDx7m+dzZttN//cMffD5v5YI6CoeLFi7IcakdH78fCIVeeeWfS5ctqSwrnRjv16H4+JOPNS1s2fHpFxhO6xrisjtMVvPPf/7z2anpTz/+xOawb9p48fDwcGVlVZbjWKOp5/wAhiJ2u9Vut+q6vnBh49df73XZDXU1pZl00pfn37X38zyvL5cWVVUNjU831tX/7Kc/mZ6c+uVjj584cvCpx5+kaGLjpk37v/kGB2hJSZmkqbs+/KChup4y0D9/9GcUQ+/etTOdSkxMTczMjvu8NqvVmM1mE/HwQH/Pnt1fer3ebduuPLj/QF113eZNFx07dmR2ZiI/P99koAKBuVQqVJBfnsmlIUAsAFm/cePiFatKS0t5UXzjb3+Kx+MFXg9jNoVCEYaZSCfSVqPdZDOZMLS+snx0cspmNuZynM/jOPjN3urq2vb2M2aTAYdAyOTKy8pIFLz6978X1BR/+unn8VS6pro2z+XzWC2j41MT8zPpXLKxtr62tvaT3buzqfQyp1tS1GXLloo57oLkCmJoNpsVecHpdFoNBhUiKALgBa8vABeGycj/dCN9i5j//fa/+pOQ/6irMIAg4H9BL/xvMRe4EJ91gVwDADBVVzmBt5hMGVEiADo8OlRaVlxTWjo8N5FvdYq6arU6IAA6TpblFRVs9wdGxr44un/58pXltYWtHWfArO5kTFBSuEQinU5pGkQxTBRFgiCigdCffv/cr371q6VLl25Yt3ZmavyKKy9//fVXNm5c98XOTx6+7wfRYGB8anLP4QM/ePjh9Rs2XHnZVfv2HvjBDx7+11tvrFuzPhZPVFRXnWw7VdbUJPJSNpMcHByobWgIBeZ9Hrc4L81Nji9raNI0re10qyiKiURsz1dfQV2/7ZbbaZqdHZ9GoPzIj+6PJbIv//0Fs9V05913L1+57IH77hME4YvPPxU4sTDfbzOZsvHk/qHB3/7umbfeeiOXy9ltlq7O9kg00Hb6JE2TUFX2H/imu7vbajZ1tZ6Emr5kzcrP9nxZ5K/ad+ivJqvl8LGjv/jVz48c3F9TVvzbJx8fGu47f67tissvHx8dBJocicXNRnZ4ZEAHuNvtfvft9xYuXMwwBp7jRFFkWdbm8hhwemZuHtA4geCxVFoQRRQjoC7Lqk6zjCRJgiAxFCVzMgYJqOkkg81GAjkui0Bot9oUWXO5PDhOapomyzIv5wgcxzBAkwTOEKp0QasKSZKkKApCqKkQBYAgCA3FUQSXZU6SFYylAEQAokmSQDAGVVVNJovD4UQ0hMIxqCsESWYyWbvNyvOioih53nwCIxEVRmMJHQJFgbqGcBzn8/lMJpMgCLqqUwTltDiiwdDO4REcx3k+ZzabZSFFUAxJkh6PZ6Cvz2azUSRDsQzOUKSBsjjsCI6lclnWbMFphkun8QV1DVU11e1nOzs6OhZdvLi0ojyWiBvNpoI81zvvvGm1GR9+8P6ZqanJ8VE+naurrP3ggw9IHJufmTYytMlkRBDEbndyopBJpAmchBBoKgQQtRhNsigZDbTbas/kMuPDI4sXLxRUzUDSJASlhQXZWAKFSJ7Hm0knRV6yWWi3203RRCadqq6pD4ajiiTm0rl0MmU3sizNCJmc3W7ddNFFb739dn9/f1FBgdlm9Xrd77z74czMTFNzsyzLwWCweXEzhiJTk+Mel5Vl8FwuxwtA0zSGJTAcRqIBRZVmhByiCAhUCIY2YIg3z5fJpBQNDQaDOEngELIGemZmCicwRVNZlp2aHk4kkul4JmpiGIpoaKj/8IuPGyvKGhsbTh4/mWYNfCYNlQyEOq9km+proplMz+Bwd2fcbLWjOJbNceH5OaBBn8+nSaLTas9zu+anZ+qKyyYnp1/5yz9vu/u+xSsvPXb84LnJQMuCxjMdpwHCOBBA2OxWk4njuVQmDREUw/Aity8r5KKRUGNJKcMaTQyNY6CwvJhmyGgsVllaRDMUwzCIjqiKzrIsiuK9g/0PPvSTLVdd03W27e03Xs5OzBiN5mA0lkwmSZxYsXSZhmFz2VR5UenGNWs+3fcVNGCMzEp8xms02Cz2oenZ5iWLiitKekb6FUXRNI1lWVkWdV2jaAJCzeJyCBzP0hRQoZUyXXLR5p2HDwscL8Uy5XkFMyPjGKKu2nxxLBWBCBrJ5hpWL7Y6nVIIetGCI8cPr1i01GIy/u4vf3jj3Xd/97e/RgORsrKy2fmZoqKi6enp3/3xzw1NjZ/v/JLjxZbFi4EOZU398/sfzkQiDhQ/se/Av158UZG4TCxeX1m2aNliBUN0RJmcHiurLrW7rMtXLa+sKj998tT42NimLRsv27rNZHGebuv469/+BKBWV1NNmwxf7d1bU1W9bctlFdVVc3NzQ6Oj6Wz2iy93mVi2s6PbZjWzRkM8nZwKzjmstvn5eb+/5Kqtl3z20Qc4QY5MjNx5z92JaOJ062mbkZUFUcok5Wzq4nWrvDZzeUlBQ13lipalEqL89CcPj/X097R3NjQ1ZHgumwyPjEaPnzhaU1+3YsWK7VdfxXO5zs7OxgUNBw4dlGWZpekHvv/9w4cPOx2upsYF0WiYT2X+8PSvt1x2qeqyvvf2m4sWLbpy+/ZAcG7p8lUmq8Vut8/PzPd0nz/f2YORFEGSPl+hxehIRiMUra9Zv9lmszEMc/b0GT2dTnMcxHCXzZqIxlAck0SBpXCv03Hom69nRicuueji+tr6A1/t/feOD376i0dPth7v6er75S8fy+a4ydnZ2XBocnzC78tLpGMtzct6+vtHxiYaa2p4WVI0PctxUNdInEmkUlku57Q7KAvJ0rSiQwS50GOEfiuR+o4G6/8ldf5v6dUFzvtffPfb/GcAUAi/9QGD/0FigCAahPBCEta3adIQ6rpOIqhOkzlZ0XFU13W/w01iOGHAIIolBb6oqGhgcqzMX2LA0c6BQbPZXN3QcLPZ8vHunWWlFWvqW3ICT7J0OhKvLC2BEHZ0n+MFccmSpePjY8eOHg4HggBDH3vsiYfuf6Dn3DlVkyVJkSTlhhtv/sWvHr/h7tt/de314UD4B4/9/KMPP/7igx0njrV+uW/vNVdeHZ0PPv+nP8ajkcjUbHh2+trrrsxEgmaKITRdSGfT0Tgfi8fDoc/efcfmyVNlZcniRQyFD/X11dfWT42MdHWdu+OOu/78l6e/+uKjFctX333rzcMTY7958lf+osIfPfSw0WhMZ8PjoxNnTh/v7T6L07jRQH69/5tvDuyvrq1yeZwa1EtLSx1OJ89lnSbzyOR4XV2dmOVlWVu8YlldY/MV197ocXl3fPLxW2+/aWDpSy/ZVF6S58+3xiITwWiwvKZ0xdrl2WzW4XV3d/U4vK7hbyZNrGnp0uUERSeTaQiBzWFVVZVhiYnRMXNVJU3T6ViCoSirzey22qfReVnVMIzCETQTS5AIgugayVIKikiyagYXnEaAoggUxxRVYlk2lUqIoqgh0G63oxiGIAhBULlMliAoljHLogR1gOG4LMu6rqMoqkFE0zQN6ARGGAwmSeR4XWNoUs7KNEkCDJaXVZpMJi4n8BJP06QkihgKUASSOFpUVERSVDKZpCgKooBhGIqmMQwrLyvjBUEVBQyaVJkTcxk+k6Aw2FRffeDwAafbZXcYWMap67rdbne73dFYOD+vQEcgAAA10FaHlTAwEoSkwSDLso7jEoT4osXL6upqtl627d5775UlYXh46GTbKaPZpMrGuuqaPJ//8ccf7+polwU5GgoxJLFs8ZIvv/zSZrI++cQTT//u2QOHDpssDgJHcCLH8zyKoi6Xi6KoUGAWQRCDwcAlk4XFBRkhe/rsmYvWbwjNhwiCikfilTWVoiJHQxGO41RFh4BQdC3H5/K9ntbjJ8sqSmury+emo1az1W439p3LYD6H02EcG+2laTgxNRiKTBlpaucX76fT6UsuueSbr/evXb9u1dp1OqK53e65udmKypL2s6c5PqshutlmDUai2UjMbrfnsoKBZUvLK9Lx+PzMtNNmR7E4hBqO4/UNCzhRGB0bcxjcLodjZGwUJ0inyWRhDE6bs8yTh0iSxHMkglYVlzhstomJifrGegLDoKbOTk/RRlqQ+LGxMYvbbXHYNR2IvCxzQkFpcVaY10QtGkubzKyBoSQ+XVLgCs8MF7gd8/HES79/vn7Zijvu/f6B/fv+8No7N26/gmbIucBcNpW64ZrtUjb38UcfaBiG44Tb5ZGTqBlgHe3dqZxwsvWMyWJO5HKEQqbTHI4LFpM5z+Pv6uoSJHnzpkvHx8dzsvqnP/9eV+W77rz3w8+/+tXPfwVlHtHnUMqAkdjQ/Gz36LCEIZTVlBH56qYFQ+0dLMtSGG6xsRiKGw3U9Tdf137+7MjIiMlkMZuN2VxSUaRFLQvHhocaFtSVV1Qc+uQLBMc4WWSstqNtbUNjI8talk/zueLSUpfNPnC+ZzYYblmzorS8bOfhE+aJaV1QXU6ngaLNLUvi8+E1S5eXNDXecN1NL/z5Hy1LVnT39sZyAp7lRJKsWrJoJhSram6OBkM///nPrTSZTacohiYZ+vTUlJ1ijDS9YeNFBEuGQqElLSve+eA9RZJjsQTHCemMmEhwV11x/ZXbrjt+4lgwFpqYjuzb8+9DB77x+TwmkyGRjq0oWbG4ZXnr8WNPPvW7zRdtmA3MUxTJCZwoiwX5XqirACLxaGx0bELRNb8vT1Wk4f7+Hm8+BklEh8WFRR2nu8pKSutqKlK56OL6BSMTk+WFhfPTszt2fHzfD39otLk0aCwqL7xi+zbrPeTE0ODefV92dXVoulBbWjQ5Ezj69YHFzQtvuv4mvy9P5IWPkU83bFhz0Zr1kxPje3Z/RdO01+e59eYbKIYpLSziuQzDEFdd/T2n25vjRLcvP5ZMt7ae6u3tjUbDI4ODPpvNY3MIgoBiWNiXl+/z0YxpNhCxWE2JXCY2MY7TpCBJRqMxnkz58gtIjJqcm8mk0jabbbCvt6S0fPPGjcWFRYX5foggdQvqNQQykHrmd88GYhGMwJ1W2yeffHLxZVui6cRFazZgBBkZGb5q2xUqx+UEPpVLmQ00bTIHY5F0IlleXEKT1HdrXR0D36HvdxLoC3Ni9H/pnf/ngvB/uYD178iu9h27/W/ODBEILkA1hBD9rqEBIlCHuI6koEYCTFFUQZT8bocA9Zwi+goKu7u752IxI8t2d3Qmc6mMyF++flMikdA1benCJe+8/uY1267MKyyYCgc++eijdDZVWlxiMlksVlvH+XODQwNXXvO9jrYzd9x914t/e/Hrr7/Z/r1rCwr8S5YvueOOuxCUXrfl0hf/9qKRMtx66y1P/OinbW0nt151+SM/+jFKEWcOH3/quafzPb6LN63fNz6ipGInDn+dn5+/qLkJUEwkFkNQsOmijV8d2Gtz2ipLy+ZnZ+PhyC9/9nMcAWdOnljYvLiluWG4byAwM7t0yaKOM6e7Orqr6mr9ea7+85133nnbxs0X33nnnXaz9cihQx1n2ymGTqYzr736L01Tvn/3vaqskTjFccLczLwkCzqv0KxpPhRtWbTkwR//tKymOhAId7aevua5qwgcXbl8hSIqc5PT6URK9Lg4FfYPDi5cvNjl8778z1ftLmd9fYPJZgUYGY0nNIhQFIUAEE/GaJaAQBdkvNDvU1VRlyWWpXK5nJDLEgisqCzrOdNOuAwMw8ajYRRDMByiBMKaKIpicYLCSVLRVFEWcrmMjugAQwRJNFnMiqJoEpJKZTQVASjBmCyqoMiShqIYgiCiKF2wrqmqqqqqhiIEzeK6pgoKjuMMzWTSSairiK5WlVdffsVWSZFRAqAIxiK03WrJJc0kiU+FQwYDg+JoMBwoKCz8+NMPHTbn8MggRZKBuanx8fG7br9R5XmGJt1O+9zMlCwJKIBGli4s8JksZoGXSJJMp9NujyevsECSVYDiBE4oiiLkOI7j3E4Pz4koisajMUWWcQDgnj17fHmegsL8WCT01JOPXbpt20DveUVCLt685drr8n/x80cf+sEP33373/587+Bg/+dffGW32y1W+ztvf+DzFciSCgCm6QDgmCRJCKIbTawg8QiGQoDQFDMnzGqR0MJlS44cOjw1PWsymVQEpnI5XsigOI1jRHllNYKgRpMVoLimaQiG4gSTTienZybs5vxgMFhYaHV63PFkqoaiJyYmKisrZ2Znjxw8VFZaevttd37w0Wc4jnMCb7LaBFHWASKJ6WA47PX6UEBQpFGSNV5QZAUKohYKJ2wGEXM5ent7161dY7PZ2s+cNVjNOIqF47GZ+TmKovLzC2RVoShKFGUCIqIokyQ5PjVpYY1eh12DejgcIkgsHEuTLKNnuGgkTAKsorw8x2c5VROEFEylCguLYlnBk2f0Ob0oDrylxXwuK4q8qkh8JqVASBkMOo6FYgkjiyZj3IH9OwUpunXb5TaX++juPVabAUGA25f/+Zf7JJ4zeXwEy87PzysYrqFQFiUhm/XaXRaHMxiL8Lmc1+K1l5TwfI4giEAo6PZ6xsYmDh094HZ5y4oKVE0mUPC3F/7y3jsf5PvyIEk63e4FjYsisbDJanJ4XK3t7cePHluyZMmN111/yuPb+eHHC5ob+s6fy2Si9U1NBpIdGxh2u91TU1PxRJRkSA3RKYoCOpycnJyZnlt/0cbZiYnZidH1m5bHogmnyTrc0wNN+OHWQ5vWbXTkeUOBmbf+9UZJWfm61es0HMn3l02OTxjt1nBObFm74ZPPdjYBXBG0e++9d8WKVd68/KLy0sBcIJNK/f3kqb4zHVu2XGJiDX6TuaS4cHR87Jprr73mxutJi5FQ4cGv97333rvBwFyBx3fqyLFCT57fMzc+PbVw4cJQLBlNJP7x6qsNjfUWlzOZ43vO9X38wY7nnntmYVPz2Y52HYHtZzt//NNNmUyGwPHistKSyvKPP95RW12z7corh8ZGZBQlAOovK//hz3/V1tZmIOny4qKi6oq3X3+numnR+MTQwMjoxMT08PCw3+/kFLmsDDImm8FoFiXdYLHOBIIIidfUV51sPzM4NlhZXrblsku+/9NHX3vhH6cPH3GbrQ011ZlUprKkzGe1UZquqXDNxk2n244HZmZXrVoFIbJ9+/fO9fQsWrRoxapVmy+5xOVyHTp08LMvvpyeni+rqBodn7U5fHW17oamhTqUg5MTR/fuM5IkitpkVcEoLB4J2O12BKjB4Jzb5w5G5l0OO0ExACAMQ5WUFIXa280WqyTJKI5BCGWoaTha09j48j//aTCZq8qqnn3s15uvvHJiapKlGURTdu7bd9HFm/ft3n3l1svisdhcOBIIzKG6mud2SZKCo5gqyQPzg5qiNtUvuJCBJUmSAnWWZf9Ppob+/735Pxf4L/z97zPad/lZ2H9lYH0n48IugPQFnyWKABRFcQyT0zldR2w220wiOZhMo4iO4JhMEkU+/4mO00ubFtIuW9/ksN/tHZue5CKJ8WjAYbQtWbho19EDDEGaCHrr9itHBwdEXigpKvb7/S/982WO4/JdrpLColSGW7du3bmuc72ffVbf0DAzP1dVWT3YO3TbA3f3dHSfPHlyfn7+kQceXLF86YKFTS/+/cXFzQszuexFGzZVFhV9+P7bd95zR3tbay4SOxcKd5/uLCwv7x/offGPfzp04OD4yHhxcSmDk6qsJJPp66+9ITA7t2LZ8p6eHr8/f8dHO0tKSlQNWbVyTTbLzcxNV9ZV2Wy2dIZPJdPf237tpRdf8qtf/rK+oflU25kjb7979x13Xrbt8pqamuHh0eaGRcODI8G5WZPZ+NCPHollUjpAFjY2TU9P//a3Tx/+5iAh68ualuR5PJosnRvqdLlcZsq8oLZR4JWx4YnLL7ssFgoTOF5VWokj0MTQCs+73W4URSRFhohGEEQmlzaaDMlkXEQF3OepLi8nMNRqNRtpRuRyiWQS0yBLsSiOCbqOMSRpoDVFTkYjVks1gqCSqNAUq+uIzWEXBMFgYDhBQSDKUkwklfS6PWJc4jlBBhqhoxhAAMBQFEF1FccJHAOiKGIYhuGopIooiqJQ1xWdhzzNGBCgGM1Wg9kkSZKq6ixrQBBEVlSGYVAURXTIGhiSJiRVZAyGgcG+k48eu+uOe0ickCRBFgWz2Qh1lWEYSdQyOf5CHAdOMFxOEnjFaqNYlgAA0AYqEomFQhGHy0kzjCQpBpoCFLQYLUBFjCSr6yprNCeTSbyzpz0YnA8ELSuWLx0aHMlkUuG5ObPB2LCsWRbEjz7Z8f0HHlq1fMWd99yfSSfPtJ30lzdfs317U+OCPV/u+cEPfmC0WBVF0TQVgShK4KIiExhEIPT5PBzHISggaTaTycWjifqa+r7e3o3rNwAAEKgX5BdiOClrqqLJHCfQjIFlWV2DsVSGoAlRUQGCS5LocDlxkiZYIp0Q5oJxisYwgkZ0tKF+YZG/IJuSnE63BoHPX1BZVacjwOvzkThutjo1XQmF426PLx6PWyw2hgqiNpSiKCONV9dWBILze/d/c8mmzb/6zZPvvvPvbDZd4MtTFIXjuLm5AM0w/b0DZSVlgWAwmeYwgrS4HEKGmw2FVy1d4nKY06mEksqQOpoOxQ04ponc2LkOm9MGBd7rsKmqnpmbHZkNqCTN0CagqSpUGBbTNEjTNAGQWCaHYuyqjVdGwnGRjy5bVf3NocOIho2Nzv7yF09lIpl9ez51OFyyrEJNVxGA6CiBERpKzEUiLoe9qKSUoiOj4+Mef57dakFRFJHU2fkpFEVplrFYTJIiWe0mhjFQNBacmUxn+JWr1lSVq7qQSYUm8/LzU6J+9vghnEAhhHk+f7HBPKfB999/nxeES7ZsKyqr+Mtzf1y/boPD6Tx5sm20f3L9mksOnTiE42RtfUN7+xm32zk/G5ifD9556x25VOarL76QeM7udlZWV48M7brhmqsXLl308RefLlrcsmPHJ/FwdEFVhYWmlBw3PxvkdE1JiThBDox29w/1x2OZ5pYleT7/K6+8QrHM1NRUMpluPXBocnSspKh44/IVT/7yZ+3t7V/v22P3OafDAUHTPt/39c79By698kqfxyUo0iNPPHb2xHFcVjo6OqLpZFlZ2U9/9YuLt17+3F/+UlpWUVxSkE6nMALs/vzjY8eO/fKxn33/+99/6403d376mYE1jY6M/OChB67cdsWqVau6ujpWrFjx/e/f+8Zrr7e0LDHYHNevXJVLpcOR2Ew4XFBeuXr5stH+/l0HDlvyfePTU4/++tcPfv++kpLi+trK2Zlxq8nV1Xl+OjC3dv26UDxSVl9dWVUyPTF8qnUvJAgT7dq/d8/Z06cv2bJl6crVF6256N33Xh8an1B0ODw6tGzlkomBQZrCFy6q3/PVZxUVFR989PF9DzwYS2b37j+wevXqpoULd+3cIwjc2fbTVRXVJIYe3rs3L8+rqmoiHE3mUvl+bzYe99sdmqanuBxlYG1mkwyRXCIuyhIv8Hwu58/LxwCMpwQURawOW3dPF8AwmqGmpqbWrl+L40SG56obm/fv33/06LHrrr/+nffeu+ma6235+RRLYRj6wXvvLVm4ePfHn9bUVoXD87OBecJgaKip6u5o53KpTCZD4RTbwOQ53Q6Hg8BwjCByPM/zvMvl0r6TNgMAvlNQIQAACBCo6f+hs/+nvvA/uuj/psUX1NEAIvp/FsYAQATBLkR4AIB8V1aoIRAAIOnQabScP3/eYmDz3K50NiPzsizLPqfdYCfqiq873duTSadvuXy7hMJUKK65YTFDOO2u0aHh7228dC4UPNff+/GODxurF9x0zQ0EQD744AMry5YU+C/etDk4O5fIZGPRaHlpafuZ01aHZemyxblMUlXED97698233uywW3/4wx8Gg/N//vOfa8orX371lYfvvd/u861buWJ8fFzWYXAmaLQ6koHohlUrbUbr0baTRop59+13EFXzODw2gz2VTVIMHY0nYqnM4MTkdTfd8tmu3QTLKJqoqLogqfHYrCgId95152wo8Morb67fvPHaa673ePKPHj3asmTZ408+ceudd113821GA5NOp7v6+0mSmQzMWpzeHzzyiM1iFGUtr7ysu6vjBw8/fOpUa4E/r7Gq1GmyJKKJ6ETAYjZ4LXaaICREA6r8xj//yTKs3WpNJBLl5aWKzBcVeWQ5l0xEy6tKCRwguoIguiCIGGbEzThC4kCDPM91d3ZUVJUrkuy02h0+TyiTpQwMRpM4QYmSnEpx6URKVXW7xdXQWDsxPkMQBICAJGiRl9xOdyKRgoCUBFmXFExHCjy+0HQ0mk4jBAAA4gQuCQIAQIM6ABBDiW8fy3SNJEgMagjUURTVdV2D0OX1YwShQR3FMZKkFVlDEBRHKZIBlTW1ssCfP39O1xEKp71u99zU3NzU9HB/X3FROYKgOgI1BOI0o6GIBnUEQXWAAIJgWYPVaqcog8grJosRRzECA6IsGwyGC+NrhmJFkc9kOQSiKIpms1m7xUqSeEQM4cdaDwGIrFm5amCg/+jRY9dfd+PnX+zO5Xgulzp+4pDD7ens7kqmheZgoqqicsWay8oalo4OD6Yy3JIVK44cP7Zhw7rZ2Vm316PIfDqdpmkSajLLGgQ+R7NsMp1VBdlmsUg5weNwlOQXdJ85U1pamolFbI0LM7mMIHCKJttsDlHkzSYTihAITmGoRqCEqiCSygMU1QEGCJjMZjiZ50S5sCi/rKQoGAh3tndYWWM8lsSqcRSQOEaNT898tnN3V0f7kpZFd9x1mw6QLM9xXNbndTc21WVT6UwqrenofDBCUeyKlWvO9Q1FYmkVkldfc3PH6dbJyWmfNx9DFQhBKpnV0ZyuAo/TGYlEo8lEVXmV22zpau+oryy328wABSSKMTRhpCkNQ4VsxmO2hSWFgJIFI9wGayAWOx+cEyS9oabKiBIZTo3EY9l02mm31tfWxlO5Y6dO22wuo4k91HYaR4lAIKCT1A9/9GO7z75681oaY8+0nfa43AxuTiQSopryeLw4ALFsjo9naYsT0pH+8Sm7zWkxGFBA0pRJEARFRnhOS6azBEEEZsN2h+T15lnMUl9np67IJIVZLYZkLOCy2sdiqaV1C6PReDwwV+Lxq0uptuH+to6zxYUVOVncdsU1w8PDqy6+DDXYv9q9TwUA0/mSkrJwOMxxQjbLAU0tLCyeGJ+2Oyzfu/VGp9mciMVPtbX2D/aJmjSvZ4wua1V97VXyVa/948VTR4+aWaagsmLL1Zenktmi6qrCsoqBocE1y1YgOuwb6J8Nhfft2t3WcVpHQZ7XG5wNVlWWb9u27cMdH7z42msCn7li2xZ/ns/lsAcCocHhIYqivvjsw+DMtD8vX0a0FatWbl6/saS5eWBweOmS1ZFE/NCJtlWrNuz8fHdjbX0wNP/hO21nThxbuWrFb3/9m48++uDZ3/929fJlyWiosa7gWEfPB++/a2INLMuePHkSQVBFUZ769VMOl2/n2x8tXNgk6/Bke3s4ErNaDJs3rK9pXmIy07t2ffbCX16+59Z7Pv/4bSOK3HfbnbORSOux45suWr189cre7i4jy2qcROrowPAQRhsW25x/fOa53/3md/984R+/fe7peTnrLauoW7ycF4VIInK+rysbjW7bduWX+3becP21ig6PnGitrK154e8v5jiJMRi/2X8wNB8wMnRteUUmEfd7fSkDlWdhMIBYBGFdc300GcnoCq7wqAJxSbA5DDQA6VTG5fEgRpOKIE63a2JiAkWAy+VIJOIVFWXdvb1Wi31qJlBRVeF2u5PZLIEgo0PDfrd/07qNM/OBRx/7Jabpk1Oz0UgIR9G7br/ts893Ts3PNrc0dna1kyyjpeNHvvlGUuSrrrvGTLM4QqYynN/lEjMZo9cXiIY1XbdZrbKqoij63dr3AqZ+i8EQ0S8MD/8XxP7PaPlbGMYQBH7r7gXahe3udw7gbz8FEATqEAHId7laOvz2InHchKIGE3vk+LHLNm2GZjM0IARBAoAQCLJz/9der3dRU3PX2KggCE6jtdDjw3yYoGk1DfUlJSUlJSUNtTW5dOaXv3tq4Hzv1Vde4S/MZyyG46faPt75eb4771x3d2VZ+cqVK5csWfT8H/+wqHlB69FDBpZcs2LF13u+evq5Z97/+IMX/v7ik7/77VNPPjU5MfHXl19+8S9/w2lGR7G5cKy7d2DzmlXzk7MIguz/Zh9ttVZUlZ9pO7N+9TqXy4Og6IEjh5evXL3n6/0nT58pKiz55tBRwmDKisr6TevffvftwtJSqw1b1Fg/NDRytqubIk3pZPL4sSPRcOSWW24JBObeeuuNDz7ecfW1Ny5ft1KWZR1DZ4OBHV9+uXnTxp6xEZOBHhocPXro4PhAf8vC5uu2X9F3vlviEimFR1GYy2VkNeXMs3d191jstq7uHgTFa+vrkumU3WUZGxtdvnx5NB6CQNcQWRSyFI0BBBIYrqMaQ9EAYKosowRhs1q9Xq+KAKjrYyMjbo9NV7Wla1ebWTA3M19dWm5msHyfH4GYoGjRSBgFkGWoeDwuCbLFaB8eGl24sHn9houjM7PRcKy4qqhz8FgsME8zlKDLOI7xQgYDKAIwcOGRS5JIkhR4CQEaVICkijRNkxDRJYkkqPlIeMXK1UaTZXJ6trG+ScgKKERIQKY1QVEVDMMgQCwWi6IqiA5QiDTUL7CabS6H+0LYC0oSnCRmRJFlaZolUByIkpDOZaKJeFNTAwBAkWRRVgCiF5eWTExNEhSZSedIkrS4XKysAByHOKYBwMsSY2Z1oOMsZURRdD4YmxgdQxD0zJn2gjwfBmDX2U6X3Tk3MdNN9qxcnWFIzGI2zAZm+8dHcYAhgNmx8+vqqpLf/v4P7775VueZszIv0LgxE88iiJ5OZivKSoeHR0uKimi/AwAMQETHNIQiFILoGx8rr6rGaELLQYPJmMpkMrxgMNCkkcZooCOypquqJquaRKAYhgI+x3mdeZ1ne3lOqq2uNhtdmVy6uq7e4XBJULOaLOe7z7mcRllNFRbbWeNir9e4ZHHL9Njw3OR0XX0NhoNYKjk/F9MlxcCQtMFgoU2JSDAFcJ/HOz09ncqkW7s612686Iqbb+psPROcnAlFgoXlxePjk0aGTWfTxQWFuq5HIyES03UMaiiMJaMqJxt11WRkNEmURY7AUCGdplSEC0RVqy2Vyl1/3Y3yl1/V1dShmj4XDaS5AEkxNivqtJt0PWcAqhgLplBe50mXyxScTrndHi6Zjs+Ecuk8hqLnE/Gly5cNjw3KEu/zeYxmy9zweGV1VWmd5+TJk6KYXL50qSiKM/PTPIkkc1JRQX44HM5lUk6XRZIpBKI1dbWxWDySyaCq1Lh4QSoRowDIJlM6Qc2nYghKfH2y0+8vyC8o1BHcanOW55ef7+ypK67eeuVVFqcrnsu+8++3b7nlFtst177zzjtJjkPxmIHBjAyaS8VMRtZkNHd2nGzvHy8uLLj99tsvu+K6/T/6wZKq+kPnO8+0naurKPn0vc9Lq2s8xVW33Pej5pXLAEXs+XofbzROhNJ7Dry5omXFm29+9Oabr2EogqJ4SkhYKKPX6uKTOU2RTp9u5YRM89KWh75/V39/f9uZ01+dbquqqqisLHdYWE4WDQQoKsk3GEzZbLa9q+vAoaMrl62+9uabxyenQ6EQAMDhcLAM/s03u3vPdWuqWlJcUldXh2NEMpFYUFNdlO/PxIOZZLqy0FddWimLSlYS8r0FJIpHQiHEaoQqZq0oyyXjyVTKgsGG5U3pZKr3bFtvVyeKEd+7/KqRseGkkrn30UcP7z/43F/fSOfiZdWVo+Ozn336qKRqm7ZsHRgacecXrl+1rL5hwfDo6MjkkNFOF1OeF//47HU3Xjc5MuBsWVpRmL//q8+v2HrZ4SOHZuaDqVgSrTPu2fnl+x9+smf33k93fPzKyy9GA4HRialkMq6Y2LKSYikHWRrP87mmJsadTjtKwLb209U1NRRtnBmfLC0t9eYZ+ob73S692F+QyXGnz50VNCXP6yvy5YfDkSqXvaykbGx43GF2YiS1bds2q9MejcdxxsDnJE2DxaVlf33hH1u2XvrPP/29urLC5nVNTk42NTX94ue/qq2t9XpcFostv6DsbPc5mqYZo+2+2267kFHA0KzVaiUxLJlODQ4OJnKZ+uZGDCd1XQcoIkoyhREkBlRVAzimQh1HAIHg2nfb3v+jwNIhvLAe/naeDMCFND2oawgA6Lcire92wxBqALtgVtIunMexC18riDInSoXFJbKqxdJZq8UU5tO4JGYVCdcRm9XhdHniHCeLEhdPabGMkMu5nM7KyjJBkMfGJoKRMKKrBIZu3bLxyDeHHn7kxwuXtHzv8ivuuOVWUZN6O7rLaqoWtyyaDwfsHldpZVVr66lLN13y9BO/STU1kyT5+2ee/f2f/nT//Q++88671950w89//vNVVRW333PHb5767X333WdkyU/ef3/Z4ubLLrn01MljJGuwuB08n7MxDEUR0WxiU3np6TPHjCaWIIhwLHzXXbf97c9/vuyyrbOzsxjh37B5s8DxGEA+3/05l81aLQ4KhfnevJXLVmbSvIFht2/ffvbsWZPJ9O9//XPf7p133ff9iuqqKJQvuWQDgYK56amJ8ZHznWdrKqsuuvvW4sKCgb7e2cnJysJCLse7WKvN6eMkcd++I3c9/BDPCwLHLV+/8VzHGYGTaJJCMdJktgkiNzY6nUsLeV4fDohgKGo0WXGSIIyUClScIU1GVlSVmJCu9TlMZquOox7WeKqre2pi7NLNFyMGbGx6ROY5ymwmKJITsslMxsRaGQNDMmaDE+0eOr9q/eqHf/AIRWK333vXSy/+zVOSF5sLKrrGkiQpaIKkk5CCGIrhOCIroqSqUAMIZrBSoqpookLgTJpPKSSEEJE0hCLQr/ftuebaG5sbFwAIcQpIssaLcjIWx1HM7rC5PL6Bvh4Sx3VdVXTFRDpUHVWhbmCMOCAZFtNxUtN1BENRFMcA7nO6ywsLt12yWYP65OSk0WrBMIwxsxoJIAlUXbFYbIqihGJzfJZnDRSBYUDVCYzAECKXE/EnnvzNCy+8MDM7b3I6m5qa3A4nz/M/+clPbrr1tlQoWlRaMhMKpbnsxPR4UUlxJpedmx6ncMphsqQT0aEBfmiwb8NF6x584IFTx4+dbGvlBbmysvz0mbaB/qG777otx8uyIgCoKZKYzWYVFVm0aNGhgwciEDFYbIqisCxjsdgEQUQ03UyziKqZSVbQJEmWWMbM8VkExxGcUHVYXFpSUFSIUYSOQdZs4iTRYLdOjI4VlxfF4/E8v58kSVGR83zePLe7vrbu5X+8xNIkl8nSJMmyLIRaMBZBdMRhMxGarHC5MnNxPB7zOazV5SXTgbn33n7Hk5dfVV5VXFuzasvF3qKCV156JR1JjM5N8VmOoWmvy03jtN1qI2na7fT39/cHZuYcFnNZUSGB0gSqEzhOkGhOpRgLq/LSmZHzAqkhLJlJJgbGhhAIEQU1YCTOK2RGsridqkXHVFXOZmVRZlGYjIUq6+sRFI8LuUXrlns9ecPne4qrKvZ9/kUkFp0LBQwkMTAxQM+OExhUVWVyYowTeFEWJIljGGZ4eJggCEVT5+bm0uk0gqADQ4P5+fnhcNjKUEmbXZFFTuBRVbfZLCSKNJRVzcVSwXC4PxyqrKwWcwKXSBQ6XZ/t3mVwOYvKyvMK/OVVlYFwKBiYtzrtBfme6fGxjCSsW7cuGJyHEKqidP3Nt92MaRV1C3bu2n3J5eurS0qKW5Y+uHH19MS0w+5dsmJlMBqrqq/dvXffzj/8Pj45N9s/grNsWWWhJ893/PiR2WDooR8/bDcb3n7rnSW2xkwmtWLdskQslJzFXI2119x2+6+feXbifMfWrVs3XrT20Uce7u7uOn7kKCcKDodzIjxdWFZSUlT81Vdfrb1og3d5/s7PdtIoWl6zwGl3zM/Pz/KzFouVYVkAMIfdJkmZ5oULPtqx49MdH1WUFqmyVpBXqKp650CvIAgMxUIx197VaaSYpqamEydOlhYXxVMRgiITyQhJAI/L7nU7MplMJBYnaePRg4eq6uoHh8bCkUjtwobiyrLm+sbJmemu9g6v07f9mqsLC4u/+GJXMp463dV5bnBgZmZG5Di/14chwECxB/cdqqyuwnHyhX+8iCJIJJ4gaaakvGzbldtPtZ29dMvFqiYeO3bkxz95uKenM5tJOtw2DJMtFlNgfkoQpK96e2+++WZfUQHDMFX19VlBBCi+aOGSwfNDPl++BpFLBc7mttXU11mMhr6uc+FoqKK6ys6w//rLC8fbjkmS0tzcXFRS/NGOT5oWLUFUmI6lTRbzx1/uePKJ37SdOiar2aXLFtIUsbi56fjpjkAoED0ST/Lp4vJis908PDbsz8932ezpdHLjhvXZdAqz2hmWGRjoLy+rmJmfjUQief786rpaRNFlSaAIgiBxCaA6glxgwwBBgKZhOAGh9h8b0v9XvfD/DZ8RBEEQAsPhd0PmC1iNIP/TsKTrEEUxCPULd0VRBAAlzQZZVoysIRyNmCwmK2ukcEwMhObn54uKikRR1DStrrTCvcyJAWQ0EGhvbx+cHJkdm0ZV3eN2ewvzNBQuWb7i0ou3iLp+su30P197vayidNOWSyRdbW9vP3702C033dDTfe7yy7a+9uo/b/jeNRrU33z571uvuLy3v+/dV1+++577V/z1zydPtj3y0MPX33LDFduvsnscTzz15LIlLTfefvPE+Hgyl2xqXnS6/WxBYenMzFSGl0ZHx20WezgQ1BQdqlBT5Ssv39bf379sxfJMLgtwrL6q4s3X35AEwWw0OEwmh8mEYZTicaMofuZMezAYrqmr//GPH7n33ntuvfX2I0eO3HPnfT954Mc/evTHJovN78v/eMdHPT2di1ua1q9ZPT019c477/l9eTiKLWhosdEGRFZ7+rtII4tC5I477ijI8z3++OM333h959mTPm8eTbGTkzNOu0fTQDKRLSoocdi9gWDUYvGsXLly5eo14XBwenqaMLKqpMikLEBR15FsNkvipK4hBEE5TA4gZEgSNxrYgYEBALXh4cGmxgVms5kimUAgIIoyhmHxSIJl2Wf/9IfWo63HWg9x8XiR26NostFqkWIZLpUhDTSKqgDqsqqiOE0TEEN1BSAUVPUUquuIgTUiOsRxXOZTFsoIVElG0IK8fF3VNEmTZZHAKQLTNZnDUEBSBI4CPpfxed0QQovZmLVaFU1WEJUThXgygc/M4AaGJuh8nz8UCMeT6Ug0JulqIBzau//rrVu3NDY3ZDkhkUpCCCKR2PDgiMfjmdZnUIBb7RaapkkMh6pGkLimq6quutxuPBQIX3fN9e+8926OF+Px5LJlK97697/7hoZXr159YO/X/X0Dy9etgZp2qrXVY3fgFHm+q4MiKAqAw4cPl1eVi6IAIdz95Z4nH3/y4Z/81Gq1JBIJksIzqaQs8tOTU3OBEUXJUSQRicXtdvvk5IQ/v6C/93x+QWFXV1dJSZnBYMhyOQKXEJRQZUXMSjiGYRSryBqJkal4wmU32e0WRMMEnstm4iYTaTHbEARhGEZSJQTVGpsb0um0LEokSWqiIgk8l85k0zmo6SgCMQxEwwEd0S1WK0RUWRJRFGEZQuASQBVQTebjipOlm2vrQ4nkV7v2UAxjd7scXrfFZr/52pu/PLh3ampqamJ6dGrGaTEtbm7OZpIcN11WUer3+wf6BucjSRzRCBTxOM1cNm1gLZqiey32TE604mTnidYCj8dKMmE+YyONNoMJ1QQDTUnJlI5ARVZIEkcwnTIyUBK7z5zSAZhPpQMzszaXZ92KVd8c+JpgjOlEEqDQZjIQJMhlOBRAHQeBaNjudAOgYRhmtZgRgKfTab/fz/M8LwqyLNvsFh2qRQVFLpMxHAp53XaSpigEdVqt0bg8PjJaUd8QiUXzCvwz8zMoyaqKmOcrpMzm812d+fn5EGAYa5ifnNq/f7+qqnYrydCEJoutra02m62ktKzt1Knjp87aDNTmK2968Ed1D//kZ0e+OUC7vWtalncPnJuamHn/i129XeeMJJ3JZRsXNVMF/nVr19bW/j+y/jJcrsKM+oe3y7j7zJkzx93i7kISnCAFilsLtJQaLZSWtkhLi5RCcQ9JgISEuLvn5LifM3PG3bfL+yEtz/N/3vm8P8yHfV33vte61281Xrp4dteunQSqIDD04FebGr0Vs2y2cCmDYVI8Ea7yeKRCMZlLDwz2GFW43+//9W9+r9GpnU5nR0dHieHuu+/hfXsPmAyWqYkpEsK4EqXBSbNKZVIQ/uGBM6fONrY09w4MLl25wlxRQdM0QRAajaayuv6WW2/a9NmW8bFRm1E/Oj3srXRFYikCVwAA4HDYjHYzrlKEp4OXuq+Y7baKqsrBwUGApioqKhKJhFqtnZ72AwAgckCRyq1ZtnRkfJguAQO9lwcHh++796Fjl6+YLZab771/6YJFMghEEnGNxfLwE08US1mtVj3Q3z/U37dw4aJIMJTK5iq83uOnLtfXNlx3/W1Opz2RjL3x1vsVvqZLPQMHjxx+4403/vWvN5ta61euXPbMb361ZPHCgYE+FMCisUmvr0oAmeVruq677V6tzhBPRK1Wa+/ggMao/+rrbUO9/bW+yjPnznIcpzUavC43AsEyAFnstlMnL5w7febO2+9YZzOPjY0qlKqegcHlq1aNjIxpNLppf1ilKTTUNba2NL362qs/ffJxg1EzNDQwNNKfTueXLFlw5MiR559/bmJiAsMQ/1SQY1n/+BjP89OBQDQavWXjRv/kRH9/P8UwI0NDFovFbrZgIoCLQKFYUptMAssrcFz8n/QMyjIKQqAs/i9W9H82YOh/G7DwQ1/h/3cA/99FDrIsg7IsAbIsg1dvviRJgqGr4CwZhiBRlASOxQ16JYkona4R/1iJKukUqqLAuk1Wl8M26vdXuD2lbF4UhEg8AeKoTqFqralnOZqn+SuD/VrCPh0NL1u4UGc2R6cjh48fG5sYv/fuH7/25hvV1dWPPvRoJBz74osvdn63w+1walXqhrrGnr6B2oZ6XNHA8szSFUu7r/Rs3rrl5ps2zpgxY//+/a+/9u+Du4+uWbIuE8nOaZ+biEdv33jHn1/44xXwCoxhpEo7b+Gyo3sOv/jSK888/9zkxMTMmTNVOGnS6q1mS2/fleaWFn8wsPKaNfu/3jw1Njx3zhyB5TiWUipVAAQ63c5isbxg0bLhsamJiYmmxhaPx3v//fcvX7Zy8by5mzZ/deLA4YceeiQbi+eiMYfBAPJCMc8YtNbaGnlGZ7ter88lkz0XL0CivHDNmtHx0ZWLF3Ms+/rr/1y/YU2hmEZwuVAolIslgZWpMjs6MlUq5WQBXr/++kQmkisUh0fHCFINI6AoykpSw/O8wIpKrRpHCZfTQ7MMKEMCJ8oiAPKyKMqZZFqhUAkSr9GZCFLd3z/U2Nxy403LD+zfj8KIw2YhMPzRhx74fvt3CiXmsztmzJ6pIEgEQYocp1ApWFEAZVQWBASGJQEEZBBFlRzPShJEwyIPy5AkSBIA4rhRbdOgimwmr8KwaDxRX1OvwEkYQDhBAmWIY1kUhgBJDASmWJYVBA4GgVQqlc4kWVmEYdhstWxYv2HFihW4WlXOFy+dvTgxHeA5gBOkIk3zgDQ+Obl3714Mw3Clhud5mmN/+ctf+iqrKysrOYYfHR3dvXt3KR8sZoscxl79ZMQwvFgsIf/829+7urokjqez2Uw8vn/Xrmgg8JP776+sqnn0gUe6u7sXrVi2feeOdDz2xquv1DXUI0plnuX+/PyOJ5966q+vvJwr5LPZ7JEjR/700itanaGurt5gNlW4XBAI5rOZuXPn603aoaFzVV73yMiIXq8XeInjeJvToVUoFs6dFw5HJV4AQRCAgTJFWRy26sr6fD4PIXAmk8EQtLm2Phb2qyAoE4khzfVej8ukVkGyLLI8SkgqApdAIBqN8oJEKtRXA/IETiaTSRCUFQpFTXVVJB4UZEkWpUwuB8OAnkBFllXisAbHq5z20YERQJIkEBi+eEljMLZU+xhepng2OumfmvKHxiYxNdnR1r7x1ttNVss3W7amotFCKkuiCAZGs6kkw/EiAOBKdbFUYJMFtUKh0+kzuRzLFpLFUqFcqqmu1+l0RYkTswhHicFcurbCxssCKgoqkoQJmAflMl2mGY7iOKNCAUAYxXJspniiu/fMwaOzFy9YsGS+xaB/5cU/aWXZYtCCLFVXUz8VjEgWq93tuXi5W6VCw6EYQpBarTaVyZmNRlkGGYbR6XTBYFCUKUDgrCZtvlyCZYnQaCPJaC6fB2HkxOkTrgpvdXX19PQ0rlRRgoCpFXaDYXBo5NKFi5FIBAThhtq6hXPn+P3+cjlzNRhnNJqKhXIqlXn8pz/3er0v/f3Vjzdtqalv2PL55zAMN3R1Htix9/C5E2K+BMMwDIBRhjYYDNlYhKXprWfOpooph8XQ0VzbWtdUymWiwXElQSswvFAWffWVA6ND/sF+s97Ai1JrQ8c3W3aioOLHdz+w5tprMQXZ3NFSLBaHR0aqZ8+at2Rpha/yz88+W1tbm0zFXXaLKNG1Na2RyNnB7ksujysenp41o10S+Uwmpddplq1eGQgFY/G4SqXQqlWsQYfgiEKhGAmMN1ZXx2KR1hmd/nDwuutuSKfTx06cWrVm/VQg3NzQaDaajx49KgqQJKISIDvc1mK+FPD7LXrr6dOnW9s7vt+7Jx4Mt81ZEPAHzxw//c8X/97Q3ASTOMuygEHCYTQ4GeJoTqvWjY5NURRTVdfU3NK6cv16SRA5jgsHA2fPn/nbqy8HAoHxydFf//rXk5OTR44dXb58+YMPPvTOO28fPrhfb7BMTsUrKxvueuABlhMqKqu/3LrtyPEjWq3WbTR/v+d7t8dptRgy4ekYSLdVWhKxqMVACqlQVU3dlaHBsb5zJoNZS4KbNn8IgWhXV4fD5QAx5NyFi4sXLyVIZZmm6ptaEBT/1TPPLli0eO7cuTCKeCtrLl26NKdjRnfPlepKXzQYunDmrCSIxVxRhSo0ep3Val22bMnmzZujsfCF85cMJmMwMJWIhzs7WvQatVqlwHGiRJVCqVgmn2uprJFBoMyyKpVKEEQSRWieB2EI+n8m6w9tvv+XIv3DyntVhYb/B8aS/k+x0n+zSRAEyf/rDJYBAAYhSZJBSeZ5XoljKAR3d3cvnr8QRVCelxmOh3Esmc1gEDw0NooQmMlp58r00VPH165eaWXoDfZVLS0t/QMDJ8+d6z5/2Woya7Xa1vrG+uqaz97/cNu2bT/7yePzFy02GgwSzyUTCa1GYzAYdu38vqur6/S5Y3V1dYeOHHe4vO+8+35gOpbL5YZHhu64/cevv/76qlUr2ts7L13p3r1zx7G6qr+99vrIQP+bb7+TL1PJVG7u4sU0yw32D67bsF6S+aHREavVeunixfkL59EMk05nvvzyy7ZKz4wZM1AIZgRBFEUQgQeGh1U6/Z133f/hhx8qlGoQgnp6u7/ftWPJkiUEjhbzibpa7z133+FxOr764kuv13fddRsOHT1EEFgsEi0Ucp98/onNbJoYH+NZetGC+bv37okmExqNZqC3R6HTHT19srmxzlXpZPKcxWqiaTYcDm+47vqhob6LFy/DAIapUF9N7fyFC2EQjEajbS3NoVCEoTmDUTMdCpMYUSwWMQwDAYlQoEoCKeYkQqniaFEUAAjFQRApFqgVy1c9/tOnCIKY9gdT6bhOq+q9cvnyhZMzZzTbTBaTxQzCACDwVKnASIISRYRiCSNwhMR4gYVAkZElnuUgDGcBEBRZFIIxAKR4VoIEndE4NjZltjv4UtFps3d1daWzeQTBZBmUAJlmGFmW0umMwLGDg4Nmk14GABTDHE53S2s7gMI93Vfq6urOnTvXMzTwu+ee1RtNtMAvXLiwt7c3GgubrfYnn3xSq1a73W6twaIzGtRqtVKtgmFYSSpompk3e87q5decOXvKYrJwHMdSTKXXZzZbz7MXEZLEe3uv+Hy+9des/e6772Seq3S7crmcQqU8fvJYa2v76MREe3t7KhbNpZJ9fT16s81mswGgnC8UJicnk+k0SZImk/lXz/zuzX+9PTIVEscD3crhfD4PA+Dh4xfXr+xUqlUluiTK4NjEhM1mKxaLGo0GIzG2WHa6HcVymVDhNMM7bPbgVCQVTtMcC0JXfRywyvcwKDB6rU6t0LAMJ4oSCIKiICAIWizlrVZrLJ102yv0egPFcqRCyXGcJAOpXO5S92WdTpPOZq7uyg6HEgCRSDQGSCACwVSxBIHyxNh4qVBsaGgQQUgSBEmUGU4q5FN6vc5V56ut9ERSqdHxiYGhYRHYPmP2LI7jbr3zDjVOFDLpUwf2J5MJnU5X4XHt27dvVtcMrVbf09PD8JxaoVQpNZJKc+LwMb3TkygV/fEYzknTmRwiivkwuGT5woB/EuZ5WBAxGCYxjEeIaCHDFQoqk1VvtgRDKavFrFKps9nsV19tueXmG7/YtPml3/x20j+tVSIGrW5kdLKYKyazgxhKjvtDAADgBMFyotVqvXDpSltbq7ui8sC+PRAE4UqVBENqBazVKArFEliQi7ms3eVEMBhTkBPDA1OjIwqFAsYxAlfki8UKnzUYDWYO7OF58faNt667dt3A0OCYf1Kh0JcpjheEMsWFw9Gnn/7Vj26/4/Mvv6iua/7q08+yTPmum29rndH5j7/8SchkGyq9BQWKCAIkyiVMcnnMieDE/PZZPlI1EJrCcVkNwmePnyAVOATziAxNTweb61rwak8BR5QSdvjw4brquhde+/vqe2+76+a7NXoDw7IarerTjz/aveO7C+cuLl++/HQs9ORTP//Dn57/+4svX3PNNdHwdCwWBUDR47SGo7FsKu6t9ESD/kQshCIAx5aj8eRA/xDHcaVCLptLaXXqigpPb9+eWCwrSRJJEp9//jknyPW+Br1an4nFXv7bK26nKxAKRcJxUqHS6gwmsxWCoPc/fq+zrb25pfXUidNNLa2/f/YPv/zdb/Um4+at3/X0961ds+aPz/3BZLVU1FQNDQ1VV1R2zp6ZTqcHhvofXPp4RUXF+YuXCIXS7nC9//ab+Xx+5ozO0+cvlGj+wMEjFotp1qzZkVg0m83+4bk/7tixY/Wa9YHp6PxFK7u7uwV4/IGHH4QhYMsXX/b39ilVpMfj5kUmND0+a0a7x+NKp9OWljaBKZeKJZPRjkgKWpDLlNzVOOPCpYukQo2g6AyXezgwdfLUCRiG6xsbJUCq8FUk0hmz3dIz0MfLvM6slyH5q6++6poxK5vNLliw6OD3u3r6eu994P7PP/+8vr4RAaGO5s5MJtNotwYCgcvdPVMB/7IVy6uqqnQ63cGDB1euXWWyms9cOpeIJorFIicKoUSsSFP/+N0fMZVCBmQQBBAUoTgeRhHhv5FgAJT/O2XF/8sG/v/3hq+uDlenMQAAV+lXMAjJICDLwFX+Bi+KIAjCECQIAgCBPCgzpbJSrSwwlMVoikeixXJJgeE8gpSyJbPekM/nUZLsmNkFQZAkiJgNVyuVKgVZ6/FOT4dPnzhJc6zTZlctWDQ1NcVxXCqVOpA7wLKsRq1sbGg4e+pkV1fXjLlznnrqqYGBgds23up0OiVAnts5NxQK0fly2/KG8yfPTk9MXH/9tQd2f//4Y/fPnj17YnRAoSCGhwcrKqwDA9133nnz1i3bd+7afflKbygw/fWmL9PxWE11FY6ig1MBt9MZDAaramvqahtu/9EdLpdr/fprCJGXBJDiuVKhDMNwKBhpbWkfmZiSAVGjUVlsts+/+HTp0qVPPvn4qRMn9+zZlc5lMRyvrq0vlMqkijx3+bxCS164dHH1qqUoAVXVehubG8bHxu6978HB/gGMxMxm8+333HVg3z6btyIYjVTVNTocdhTGi0Ke4Wi7w4yi8OTUiFancHscF852wwTk8XgYhjHq9UajHoIgFIW93lqG5owGFJNRupyTIIBmy5zECwIrQdKyVcsliYMAkeN5HIU8Fc5HH3nk++++3fH9jqqqSqNBl4zFnXbH0sULQRC0WCzZbDaXy5vsZl6UEQwrlimtRsPTFCuwBIwCosCBIAqBAM0iCgIgVIzIsxQLwJAoi1MjQ2qlGpG4cCqzeHmX3mhOpXMyCMgAwLKcBAI0QwfDITWp9Hq9N1y/IRKNVVZVozB27vS5+qbGpqamR+9/2GqzYVoVhICkmsQQJJWMx2IxiqK6urrqqm8jcASQgRLLl0oljMA5jqMpjmdEURTpEq3S6latWS+wTCQcrqttam/pmJoKmLRmpKa5TuD4bDbLiKyvroopU06nc3hslBHpcIJeZF0ZGh2x2+3L1679+z9e3X9o/ztvvWM06mvra8+dP8Xxj7/11r90Gq1eoz3XfaW5tatIcQqlJplKaHRap809MTrhD4Tb2syFUt7rrcznM6VSSa1WT06MOnxOUIGWSnQoEqqvq+FYsZDO//v1N4dGhhmGmbtwAcPyH3/8MaHVg0p1GYCqGxtQlSZHi1imYNbrZBhKZ9Jao0kUZJ4XSaUSRVGOFzme97hdyVhco1Vr1VqO4wRRFERw2j+NEaTX40hFIizPa3AckCEcJwmCKZVKqXxWo1GxFK/V6Kq9rhJL1/g8O/YdgDVKk92cSmaSscSxvQe0Wu3FEydr62qamxub5y0UaebCiSNTo+O1bs9w3xW9weCrdCogOJ3NpWhO6bC7fG6H0yXxwqR/ikcQQJSsuNKOEWw2A7GMTqmCAKlUKGoV6qLAmpUKQmcogojT5rS5aig+23exRwuCEi989tkn3+3cdvfNN0mStOurz7sHh1FSuWBxZyASS2ZzEKGIxGKcwMZT6bbOrmgieer02fnz5hjNVhQGBYGTSiWvvSmbT1v0RhzDCIJIpjIyIBIw2lxbHwpGfJ6KUqkowNj48OB1N9wwMjISTcTZEjXY27Ng9ly2RCXjMQxVWu3uy5cvq5Qar9d3cP+Bd9/5z+DQoM9XV+Wy+JPhKp/7j3/4DZbL1jrsdiVRIHm+SKlxgqaR1irPFAwUc3GJRKvNBl4oRcaHYRjLZNNtrc0IhMo4aHM4h6YibdWtq5esWrRw+Zuv/2PNulVfbvrw0sXuixcvQ7L0y5//bM/275Lh8ML25unebleN794f3710waJ58+YPDI389U9/7OvuDU5H9EbD+ctXjFZTaHoagqCmxvp8LkMQWFN9i8CX33n77Vqvk8RRhi4dP3oQQ+HKCvvo6OjC+XNvvPmW8xev7N9/oKmubvnSxQanJRyOxmPJZDKtUCknpyenpiYNBsPLL7/e09udKmZZiDe6LAP+0W937JQh+MqZ04uXrzh58iiCAjAKNbc2uSscZ06e2nFg7/yF82AYfuYPz1pNZp7lhoZGABDaeOPGzrZZf3nhj5UV3ofu/0kiGUMQOJNJJZKRrq6uoaEhQqF0ON3vf/DJokWLOzo6AAT9+ZOP01RJq1bPnTkjlU5AHFVX6Q4HMyarJZVJizwXiIXnzJlz6sRJrEzXVaqL6SwrmwKxBKFGGSoHAEBGiUocYzUaVBrN0PAASpDpXNZkMoQiQVeF50pvz4oVKxKJRL2t1uW0Bqan9u7dPTA0xMtAPJFye7y9fX2zZszuHRzAESw01Lt86bJwOLxw/iL/ZABBkL179tx4441mqyGVSc/qmrF3116XyWq1WvtHhpYuX6IzGmiO1SpVhWIJgiCCUPCiDCHQf0+ifwBP/hA9+kF//mEMg+APo1f+35D+38MAIAMy9N9dGIZhAAAkSRIEAdepmWI5n04adXoVhNR4fdFgqLW+PlgscAzrNBiUCB7PpCwWMwIAMAJwolRlc1y8eHH32LDWYBRl2e1ymLXaEsV2zpt95uTJXDHXOW8mCsFepxsh8e7zF9//6MPmttb3P/pw02efj4+Px2KxlatXBYZHskpSo1LnMum6mspTJ46YDKr3P/j3zx//ZaXLc+zYsWQqvnD+vDVrV/E8NzDQN6Ojc9m6a2658ZYPP3i/pr7GabWMDA6VqHKJohQatdagX75i1Ysvv7J06XJJklQKdd+585MTgYaaWrPBygrs/I6udD4/PXF0x47tN9288ejR42+//XZfX8+XX37ucritVqvHVbHl628Uat2of7pIFxEEiCaCVdWeCk91bV2z21WBIsgH77z72j//xbDU6tUrW9pbw9GIBACPP/mzLzZ9GQ+HtQrdxOSo3qIu01Q2nbHaTDU1lYlk1GLVsWx5Ztdss9kYmvZbTKZAIODz+TACp1kqny80tTSfPXpcY1RiStxXXQWhkEKtymZS/kRIDzkAmScUKAhwfb2X/vX6P6LBIE4Sra21KAqXBAECYJvVXSgXksWiGlcIuCAAoAiACIhoVEqWZSQYBCCM5gQIhGAUlUUARmS6SKEkJsEQBEMpjpoqpBUGrcxLIisYTJZ5CxaVaUqQRIFlAADgJVkQRF4UfT5fIhKTZbn74iWzUT82MhoMhkmEUCmUVrPF5/MplMo8U2QZJptKK5VKURSTidiC+Yuqq2sy+TwMoRCE8BJD4IpSuSyKokqhFkURghBAEjiBB0FQBsBKX3V1VW0uk4EhpLmpBfFVVo+NDoMguHPnzrq6unAsminmCYIoUQVIgrfv2JYplW/eeNvQyJVYKv33V15ta2x94omfKpQYywm//e2vuy92V1Z4fJ6KE/u/b6itViJkKZ/weezj45OgLBj0aghFRJCHIKBQKKAoWizl/ePB9o6WZDJpNlogBLbYLel8juPlxUvXNTZ2CAAAwoAgA4II3HznjyPRkLOqhmaKWt1QIpW6+ba7Tp06AqKEJPOcJOOESq3W+oPTJKEQBA4AIBSBkrH4O2+/bdLpBEFGEKRE8SipVKhUwWCkvr6mpCJKDCWBcjqbUxEKo9FsNBoxJYnjOGpGpwKBLFXU6/XDg/2QJAKSxHEMDMqACGhIAuL4DavXhMLTF8+eObzvUHWld86MmVa9vv/yeQyFcBRMhaf0OqPeoAVhLFEsggicLeSNCrVGocqUiigvVVW5YDpXzqQhgWFKokJJcAINwxoFhgmCyJeKnpr6IIoms+VkPmmxWHFC0X+lu8Lnra2v+fjLLzdcd8P62+86e/Z8f3//sYvdnTNncgJbYsoKjYIuQ9lsdsrvx3C8qbW5t7/PbrXIgFhIpmfUNUgMbTcaQ/G4gBFqrSZTLDqdnkw87nJXZHOFfDaDgZzX5YwEtGODwwatJhqOqDAiMh0KBfySKHpd7nyJ1esMbo8n4J+EQfnYsWPFUvHRnzxks5oO7turQYE3/vGXCpPthZf+Gg5NXT55UlfgWIWEEqisQiPDA15nxWQykeIEopB3Oc0NldZMOg/DKAGJ0+FgfV2LP10+sG1frHX69OF9tU11Gi05MelPBzM90wevWb0qHI6+/Nzv21qbKry2TC4pEFI4GLp2/YaRkdFkOuePRJYuW3ndjbf+5GePf/zpJ8MTgWAkrNUZ/VPTVVVVS5cspyhqxaIlb77xd6ZUVhK4JPAkhmuVKhwDRkYnO5Ys3Lt377zly373hz98/P4HfZe7K7xOUBQVOOZw2tZfuyFXLEQjcTNjAyRp05ZNvipvqcw4Kqr6h8a++ua7RYvnohjYVOsb6b+i1epUGBKZmohP+z///HMqV2hrbhk5ey6ZSgEAkMoVQBmYUV2l1+uPH9iZSqXWrFjgcnqOH9/v8rjPnDlVWVlhstrSuWwymZw7dy5GEPc/dL/JZDl56lQun3n+T3+2m03h0LTI8ceOHslkUsOjUyShZhgmGPDLIACC8uTEWENdVSAQgGBZRWAiS9MCywOSSWvM54soqaqwE+P+KZHlFCg5MRnYv3vPvPnzPQ47QzOlQjGZTFdW+JrqmzAYGRkZstist9y68eOPP2Y5euGCeXNmz5yemp6e8ldXV6MgeuH0+XwhazQaFy5cODIysmLFiuPHTi5bNN9is4SDERCAZ8+e21hTtWLpMhkCaRikSqV4OqRQqVieA2FISZA8x0EIAoKg9MNMBQAAACQQACT5/84Bg//H9JXA/11B/yBN/1eyluSr2L//1ixdXYIZAERgiWOLxSILwRIEs7wYTqQDiYhRrfUHQoIospLQN9BPIBjA8mqbyWo1M7B8zeo1NqOJprlgIpZjqEwue7m/R4VjNpvl0qVzdos1Gpy2u13r1q2VYPmNt99cMHde18xOGIS+/37Hrp07auvrSK1WKwk5phxNp0m99nxvb117yx333Pvkz3++cuXKecuW9/ReGRwPOuzW+x5+/J577jty+lRlhUfmGVlWZnPpXC4TS8ebmppWrFj5zDO/3bx1y4/vvRdF8c62dqfD9vPBxwPR+M9+/ksIBo4cOfTeRx8tWry0rrFh3oL5SqUylohHIpGRkZFHH36M47hcJr/1m2/tDpfH6xsYGpZFSU0SbL4kY1xtdUM4EvngvQ/ramupcplEIUiGZs/qgEXww88/nTNz1m9/9osCXfa63TqdTqXTUAyv0xrOnb2g1euMJh0nFBOJZD6fn9nVUSxQyWQ6Fou1trbv2b+vo6MtmUlrSOXk5HhVVZXGoqZYTgAAVKU2W5wOp7t95pyDBw+RmPIqJrqcL0RD0VmdXQ6XHZIlDEH0Ol0hX4JRXKFUaxUYxssYiNAlFoZRGEXLLINiiAZHIBHkUSBXKtC5sgTICIaoCVKG4DLHAYLMAZAEw5wIGHRGq8EComg+XwwGgwzLqdVaglCUy7QsyyqVSuA4t9sZ8k+EQ6Gbbrg+6J+SRalQKNEsBcFAqVSAIADHCLPeHA9Hcixts9lXLF/V3t4uiByEwBCCcIKEIBgvCgqVBgAAUJYRDAVlQBJECAFlGQQRmBV4iRckCIJwlCuKyGj/YDAY1Ok1HS2tKrV6eno6Fow5K9wgKBYyuXymaHK5PU5X9+lzx48er6zwLl68eNbsGRcvngNhaP/33z/9y19//dWmkZ5uJQl2nz02e/7yQiaRSoRRFI8EJ5gyX7ZjPI+KooDKUCaT9ng8dJGDYRADUUgEJ0fGK6u9MggAKPT0c8+q1fbqlkadTme1Wr1ur0at1essDncljoIOneXzLzc7HT6TcRgUi1MTYzqDReBlUqkQEglSYYBhEIYhjuZqan1Oi4XKZ0kMkyEQQRAIQRAME2UgnUliShKB4FpfJYHAkCRR+WI0ytECg4GEyPEqtSpTLlhttngomktnXEYTDkCMDMAQwDCMRq0q5wsGUjGvY9W0f4LmuGMnjoMw3NXeksxl9AqFWaeNZRLFvBCNpJVW55y2zv6+oRKMchTdUlWjnqHvuXDGBfFawqpSG1K5jJyltBoNXcoDMIKjEEGgPE2lC6VIrKhToKlsfjg+qiSISDQE4+Cszpkfv/9hdUPjb377K7vV9tknH3/11VcQgqh0GqpMU6AEgECxXJJEXiyxlZUV6XQSx5Curg4dilG5HISALMvmy2UehlClssBwmWJ5OpnQO+yp0JROr2BLWZNaORkMOF2uk2fOVlZWZrP5i5cvzZg1s7q+DoVwrUF//U3X6rW6cMD/9dbNnTM61m/YsG3Hd2qTyz8cFkAJwsBX/vnxz3/39E01rW8/9xQOQzwNYCShwJBiNsWViwxH3/uz3+3dtiU+EW6rbZocnxAlSKkxkBr9VG93i7cil4hLONRzOF5ZWUOodCgnq42KY0cPLVy4yFuxbnx0GMBRjUrt8XhOn7pw75LH7n3wYRDCyhz/6COP/PYXv7jcN1Rd7XvznfcHxyayuZJGa0RQcnhkQq/XKzD09MkTOrVK4nm9WpPLFAFJVqCKuppqUAaWLl26fe/+HCVUV/o0Rn02n4FAqUzRRYbpHxzmRdHj8TAM6/f7W5ubJVkMR4Llcqmurm7+zK5qr/fI4YNrbrvhn6+90dLRks/nAEjyeFzxePTlF/6SDkXOXbgwHZi67Y7bTSZTX19vZWUlBAHZo4ecdktocuLowYNLli0/uH/fgw8/0DNw5Q/P/XHV6hVdXV0US+mMuoOHDuj1egmE7C7r7gN7FASGQHAqnqJpunPW7HgqcfLkqaWLFnfOmTM5PmGzWJQYQZfKTdUt/uCk2mhWms1Tl7tlScoDgN6si0yOQRCsV2toXqBLVIXLDQHw6NBwNptFca1eZUJlXOahnd/tbutovXTh8jUb1k9NTDptVrpQemPTP31e78ZbbpNYfufuPXXVNUsWLJyYmLC7nDaLdXhoVKPWwTCs0egmJqevDPbX1NXrnfZoqUgxDC9yuTIb9AeqK304TmIKgmYZHIaVGFYWhB/QzQAE/sB8hv5n9P7f51eyLIPw/3noB7Eagv4HuZQlCAIl8b/VwrwoqkWUhwGdUl0qlcKZqM1siaeTiXK+urq6mMkxomy12/QEfvT0ydbGJqVOJzDcJ+99oNPpRF44evp0Np8HAIAul712t1qp1JMK//jIqH+ydkPle+/8ByXwX8USG264vrm1JRKP3fWjO8+fPjM0NDQ2NqbRm4rF/IQ/oNAYH3j4p6lU6sTpU0//+tl/vfrq+bNnfnzfvRcvXVAqlXv37q6prt66+auVyxYuX7uapoqxaAQnEJvZ63Q7eEm88847d2z/rsLtMZvNs+bMvXjh8pHjx5LRyNPPPfvwE08cO3r4ow/fb2pquO3eu80WG332/NTU1Pc7d999z73bt2+/9957+3p6d+7cedeP7o7Egu2dsziORRAER4lsIofLSGVNxfmLR86dvWAwGFk6Hw9Pz+joVCrJwZ6B8d6Bm9asx1EUoNiBibF0JgkggN3nFmjhqy3frli2ZPPmzZcuXXK6rAiCgCAMSDIgyXqtbjoQyuQKDrsrnkiRCpyiJY3BMDIypMnpGlpnBILRTKY8HYzedc+PY8mCLBM6tSnLFXlWbm3pAkSMkKGpwKRSq6cpoZgvgZBMs2V/0O+yekSGAyTZXenmaKaQzZIKVMgwfRQDlXlAp7X4vD6rs8AzkXwykcxwIKz3uE2Y5kr3WUKjwSCYzmfzgkAY7N3d3ZIM+wPTG2+5JZVM0IwgQxACgfliwWm1cQwNgwAgSzxDM1RJocItVtN0KNDS0nLixIkKXxUGIXqtngD1LneFzWIul2mKLeNKBceLqAJHRFACAAiCRFEUJQmSJBiEIAREUJDnBUkEcJws8bwEygq10gSDSDwR9foqXC7PhUvdTqdz5oy5035/KBQCSIwVIaFcntXSngmFa31VoWho//4Ds2Z0WG0Ok8lKl4qwWh4d6kUxYMHSBcFAOBIKLZzTUhXRDw2POhyObDYbjSWqnLUyA6kUBoZhQBA2GW19fB+GYVqNyR8MlJmSWklSpbJBpQF5NJ0QNaHUhVPdOKHQ6PUIhqjVpM/n02q19R4LxeZCwWmb2RaOxnlABCFUFGmmkIMBWEVoYQwVBI4gUVYSLvX0+2oqMEmGMYxHIY6mYRgiCRBgyjRMkpgUCk9XeatQDBdwWqNRCXkQAkWDyRyNRhUwlo4lGVnG1cpyuYCqCCFV4CWQQKGsUJrovlTttPE5TSYyVVVV01DlO3Hp0tEjJ+7beGNkfIAuJT02RyScWLt6bU8kcuL0CbPOAsIQly+3NNSmcvnOxqZEXw8jipJAmxUaDIUEXpJwSBQFkWVEXmaTmYLAqTSKYikvoJxaS9Jl3m222xT6Q4f31ba3DI+M/+yXv3nllb8/9ds/Lliy9rPPPtm7Z6coCwInAzIiCixdZguFHKtTGjQmWaaT0QRstuistmQubanwDoyMIqxI4AomTxv0VrPBmg5HFLimBGCZPCXAUjoeX7liLYLsZOhymSkURNrktCci4VgxS5gNX2zb1tLcVlfX8PM/vsKy7FSmjOC20yfOWdSYUafBCGxw9PIj9/74x3ffueSmH+36+jM1KMMQluc5pYzoSD0FQ8/99eWvv97y7kt/PXjswMxZzaVSUQ3hBpDzIuLSR++k8sUP33gnwgipEn1bbZ2sQAlEWcwyu3fsbe1ob26bgeNo9+ULEsf63M5nn/mVRqHnYdRkMNq1mt/87pmXwFcGB8YiwbjJaEolo4uXzEUx5NARv0aDfLNrJ8NTdqe2VC6o9boSW2AYIZuJCxDIgpLT49ai2Hj35UI4JMsyCoN6vaFIhUiSTMXDtTX1K5cu/m7nrt7enjKduooIeP/dD00m030PPnT6Sl8wGlcf67v7jsd+8+zvFi9eXOF0qDF1pdO9adOmSGzy3bc+TqezmBLrHx5qbG29dOZcPhm1GE3ZTH7G3Pq58xfQFAdWwyiITwxN1dX7Fi2eSxUL/gl/IZOanhjNqLUqlYLLZZPJOIZhmUzGbrf5qivPnjs1b96cH2/80fnz58vlMoIg+Ww+w6VYmq6rq8vkS2azNRWK2032IkVzHKfXWagyL4JSmadhCJIFRmeyRqJxrValNepQGA1HyloNOeUfx1HsyKHD1U4vIQDjE8Nms7m5ubWusen5P/4x9cl7GIY1dTWHw/EMRWvMJkam9h7bxzLypN/v9Tii2QQvClaDecPKVaLIh8NRXgZKDHf+8vnW+kZA4CWaLousDACiUskCcj6fJwjiqqAnixIEQSAIghB0Nf77gw0MX11/IUiU5B98YugHwxj47zW1LAMwcJU9KEEQpFGpUqmkw2aHJJnUGxBZKmazJAZHAoHqWfOmWV5nMooQEAgE1i1eatTqJBxJpjJNjS1Ob0Uql/WPT7a1t1RWVgTHx0OZLApDFqtdEOWqukZCofnna29k0klRFE+cPI0KskVj/M9b78yaMfPVV/+ZyWXdNpe3yhcITL37/nuJSHhkeIzn+Z/c+8Azz/z+icd/sm3rlmuvu0Gr1bY0NlR77LWVGz744ovt3++cOXf2vGWLlaRicnQs5J967JFHT50819PX47A5ooHg87/+mdFoPnzk1Prr1h7fv/e9995DUXTB3DmCLIbDoeHhUQCEly5Z3t7SdWjfAVAS//3mawaD3u2xHTm5X+R4t9MqgZwgsgxD1TXW/fjeu4+fPrZv295FSxZ4Khwnjh13eqypTK6YKt64/tqz58+/8tbr65Yth1BIBvhsKsMDYiIwnSuVV69eK0gSJ0hKlYkqgSNDfp/P562sv3DpUrqQcbpckiQU83mn3aJVKXlRCI4HTg4N18n1wxN+EARLjFDb1RJJxcxF5x133NbZ2a5SKhO5DEYS9z30BM2UpqenYRiFYTifz5MkKQhCuVyWITEfjacKGVwGe7r781kGsZiafLUb58/1er0avaa2ttao1bE0UywWY/EIiKBavV4FwTNmdop0HkBAWQBKaiTlD65asRpA0emAXxCERCIhSYCCUBbKNIrKMAxihBIGeABErvSNV1ZVrLnxRhLDMATY/M2m8dExrVbvdLrSqRyLEJlM5vCx074qr8lkgFEURSUQBAFZJDCMopj/smMAAEJBBIEACYRgEEIRSZBFWWJZVuIFEsMRQRQJgpAkQa0huy9dXLlmld1uHRwY0ONGjZLIlEo4Bl/pvgyC4PkzZwSWXbNiGUPREs+RBD57Zue6a1blssn58+YM6vpb226GEWF8Ymjx0vmiIMuAAwAaVASZK+ZEUcxkMi6XCxClyclJt9vpdro0KgKwW2EYlUGoTFMKlcKmdZJapa++ludFmqZZlmbZ8nRgqlgsmtSaCxdOJFPMnJnt7R02g0GHwAAMSZhay6byBYaRKEqtJjEUTSYTACgpUHxyfIokcZJEYQSjEYkRYJrl1y1fggjslfOnvc4KXhZzpSIniQAAARCSK5URguRBRq3TAiwbTqdItUrixKLIwQRu1KhEmENQsgyDmFINARhLs9lYeG5jbffIyPtbv2quruHTAp4LhcJJpcYfjqdigaQCxMx1Xgut++jzr2mOVkBAhRIvcBwk80Ump8XIYqHMgIDb7kFRmCmyHKaQMzysVttMmsnimIIkNRqdLHJqHJlV1yxLmE+vzZZLN127Vqc3Pv30r37xi1+gBK7VamOR6e937JJEXpaFmipfIh4uFAq+KhfCCUolWS6X88UyqTXeeNNt3+/eRSgVAoaO+/0Qhjp0ujKV5csUAUM1vsrzx05PBSZtFitVyOMgBrDApcu9V9tPz50+c/78+UI6Oz402NN9pb+/v7W9baj7ok6JW8waUkGYjGZcgQGCtOObzU6n85aHHzj8/SGAFjVyCoB5BME1DGUDhT8895fX33jruzdfurJ/W4GhPLUNDMPAJfb4rn3hQHDjnXdc+9DD248eGR4dURPaElu22E3VtXU9PT0Xui81NNR5PRX9A30IBnlsZpVKBYIgjHDZTNFhIFBceOnFP/F8Sa9TpTPJfLZgt9tvvflHoVAoGg6r1WpE4vKZ9HhgguNZEEbq6hoGJwN6o/3kmfNao6nSV11TUwuCQDAY1OvMCq05nskvX7H2s88+Uxmu1Dd2DAyOqQnV/b9+pK65beu33/zjb39nC7nFc+Z0en19A5f9EwO3XL+2p6dn8ewOkadHR0d+/oun5s3/za4Dh/76l5fsDusjjzxgNBj8E5MEgpi0qnQ2MaOrjWaErVs+pGmeFYWFi5fMmjmzwuMWBB6DyPff//Dhhx4dGhoaGOxbe/+Ks2fPtrV2lMtll8s9NDxKEhpvRV2hmFWbNCW2XNtUxzF8IpFob2n1+/2+mhq93hCLht1up5Zi4vE4RbO8IMgCg6AIzzAQIIGikM2kjFqdzeMYGRolSdwfmMykczNmzDKbzZFgKJlM22yO9vb2qcnAoaNHbr7pJovV2tPTA8Nwlc+Ty2S7u3vmLZxt1DtYllepVGa9MpJKxWKJuoamw0eP+LwVp8+esTlcKI431NXX1NSwJYqXxGQiBUCgTqOLJVIYQRAEIYoiAAAIgoiiiEIQw/P/ncRX9WRZFq7WCwL/n98PFA4AkK+ecV1lZEmyLF2NJKGoRq8bGhpqamhAINhitRtNpvqa2u7e7m/27l61bEWhXAoGgw6jhQOlKabA51iTRrdk+TIMw1iWndfSTqrIc1cuZMrl6clpt8Nps9kEnnc4nSq14p+v/uPPf/yTTqcx2tw+n+/s2bMoBL74178uX75Uo9P2To3FqcKcmbO+3bH9179+Rm8w7dr5/ebNm+tbGnbv3xeMhr7c9OnTTz+lIMErl89cOXvokYd+8umXm04dO7H+2mvPnTmrVijnLFjISFLv4KUF82d+8ekXTocjmysl4uG/vfKni90X//aPv9XV1c2fM//o0cOVPu9kKFRXW9/Q0FQo5V97458oCDksZqfRmI7HlQoFBCIMQ7ndToYuU6WCVq1urK36+quvaI6+9tp1vUMDmBKfOXdeOpuz2h2zZ8zcseUbHEWb6mptJvPQ+LBSqTabzVqtDsWVQirlsdm+37WjxudRYmBFhevUcQmBpWTcz1OFeTNnUgwLw6DNZuNZLhyKafSma9bd+OxLr7W1t8oS8OKLLwKCODwd4EpUgSp/+tnHe3fvqaqqFEBxZGR4/qyZnIQ6HA6tVo9hWLlcpmnaYrFAEKRVGuo75xryGblY/us7K0kQSWUz2XxOELju3p7BwUGWonsvXhRZzmaxCoJAFzKlUokulQmtCochAJSUem2BZbL51Nffbq3wVZksRoqmWZ6BIITiSggCKZXKE2fOToeCjXVev99/+x0bFyyaq1XoJUGCcSiXS1vttlPnzm/6boenwlvOZB0Oh91sthm0EAyCgIRiKMtxKIFBIIjjqCiKsgxAEHSV+AuAEgyCPE9LIsAwVDabhiBIgROI0WIeHhttaWmuq6utqvJdvHherVB5KpzxVIJAca1O8+3XW3ier6urU6uISDiQSCT8k+PhUKSxwdfcXJ+IhZcsmAfL4py5XT6f78DBfdU1XklkyyVKBkSlUpnPZ1VKJUszGIzgCFosFufOnQtBUDQcNBp0hUJBEAQIQTiaSaQCAIRnZS2CYChCyAihUavpMmXR2nScYFLhw2NjAIgVS7TAAyqVBpIxQRBKFItgBMvzPb3dhUzygXvumRwerXQ69BhiNJsKeTqdKDN8NpzOrd9wo93jQgT6+vXX/+2F5wfGR1obq0REVug1iAzjGGGzWwu5fCgSzBUzSo1ep1FjGAZTnMVuAwUAElkUJN0VXpDlznX3ACicoApKDBElvquxaTqVvdAz8PvfPydnUmVJCPjDM6pqrVU+lVaTposLlzdo+6ZS2ZRKQegQOI8hYqlU3zyDRBGYzQ9OBoaGAnajMRkLIghSQgkAAGgJwVFCq8DT2bxAF50mLZ8plDIFAyS3dbVwdI4Hpb+/8sdPP3J4vZWlXHrjbbe3tbSfPnF4cmLKPxUslsoatdw/OP7YQ/fHoqFcOtPg8GSypTPne4plFiUonU4DYmA4FeHKeQICKCqrMRp4KotwPAFBy1at/OjD9zVqbSqZtViLqVQiOh1OJBIOq3W4t28KhoLT0zaDbuDCObPVBIFSvFAU0vme4UlMBh1G7cz25v7Bgffe33T7nfee33dALgCkUsrn43KJW1RXeb73zC3Xrnr3u+3L7n2g98TxRHhibGwwxRbBGDDkDz+6dLmtqhk9dkaWwPr66hNH97lnzuQEVpBEQQLOX+73T0c6WttwpbIQScTiSZ5jAElAMKKYKVIlmudKBp16dHzc46mYN2/eyMgYQahmdM07ceQwyII3XX/L3j173J5qjUZz+VJfNJSeM3MOSWDbvtm6cuVKDEf2HdxPYng6k1wwa8Z0IHLizIVt32yvqan7x19f+vzLz77fuydVKB/et//JJ5fF/VM3rL9GrVNXVtcQKpXDY9+x63spKjU2NoAIPDg20jVrzqLlK3/2k5/3DvQ+/sRPZs+c9f7b/5qaGL7n7h/v3rX/cs/l1ra2TZu+aGntvOW2W/2B8IFDB6+98YZkNOatqmVZ+vipMw88+tjcefPsbueCJYsunT9z370PfvbZZyqV6uDBQ2qtprGx8a9/ecHhcjz66KM7vtu5f/9+j8cTi0TbW5vmzpsVnPSbTIZCNhkJB8fHJ30+Xywa5GhGp1XzgAgAUEtDw2QsVlddk01nAASEIAiCEUmSrt6yjoyMxMIxn883NjYWCATy+TwAgiRKjg2ONtc1bd68uaLa3tXaWVtdKUHS3n37fvSju2imePDgnvrGNoPZQJCYXq+/0ts9NTWBIMjCxUsZkadKJaNeP+n3x+PxRCpZyOUba+somoZhWKPRSJIkSdLVWXs11Pv/nEP/N2j0f83d/51QAwAASvJ/o0eCJMqyDCPw1aGuVaoTJNE/ONjR2ipKkgwCJYbuaO0Y6hv9aNMXj917LyxDkIpMhIIWhUan0bEYwDLsV9u2GIxGiePHR8c2XHftsYNH06nc7Bmzvtn6Tb6Yb2huUqlUnbNm79q3f86cuQMjIxOBwPR0wGGzdM3s/G7n9iee+One3XsaGhq+/3oLhmELFy5sa2u75ebrR0ZG+vuGg9P+9//9Dszzj95339v/+Eddpdtutx8+fPiO224fHhqxWx0Ggykaja6oro4k4htvuvuTj/5TV93S0NBw/sKZXzz16yOHT3+77euFS+csX7byvXfe9bjdkVB43szZfX19Rw8euuPWW3/52GOJRKJvoLdMF+579IGB4aF8oWRPRTAcjQSnEQgUeW7/7r0NjfUsQ41OjAgSf/jo8XQ68+hjP7XYrJMB/+tvvl5X5auvr8dRROB4EidZmpsOhArZfGWFz+VymUymSxfOT01NGc2mMsXMmjevwuu6cPHK2IQ/kysAkGhLpQlMefNNt7cunEPICCMJn37x5ehAbzIWzcdTHCTLZbqtq6uuuVGPo1u//HzNhtWL5s6IBqdljMykwwzDabXaXDaPoihGEqlUSouRyPfKK1e6m9wV0URUg2LJaDSfzWlBOZXNtLe3A6JkzET1Gq2WLYiiGCqVdAgieZ0TuQQnc0atCYZRoFCy223JVLyls9MfCEogkM5lFQoFjuNFSkBw1Gg26Y3GycCky+XweDwSwBfLmcDU1Nj4SDKZTCST4WhMqdZVe90z5s9xu90whkkAUObYq+8qDMMgAHKcIEkSAECiKAgCJwgQAMoQAEmSJPASDKPFYpGiGAzDEFhGymVakqTJyUkQkjUaVVV1JSRDvT19PMfDAMSyrEKhUio1gVAARVFR4p977rlbb7nJ6bBabUadXpuMRRUkefLU8dvu/NHx48crKyt1WkO5RBGEAoZBGIYhWJYlEYRktUbJcRzHcVcd71QsA6MkSahFGYJRBOaE669dnM7QkIwk01mGlllRTmcEjFDINAaAqEzonBYbXaYmJiYqPAoElgBZ1Os0dCFmUGn0Bv0N69ZlEnGn2frWy6+CnIjyfFVd/cp1t+oUmmNnTvgaattbOhRK4qP/vCXI0E233/n2qy/gCrzMMiwvqlTKTJ5JpkdppqzSKPP5QiIfKTEcgEsiIAKcEJmcllAQliWIUFSZzbXVVVNTAVRCQQGfzuRDaU6GEQGCf/mXP968ep2hwj2QSXorfG3zFzU1t+I6DSRIq9fRKr06kU4p1VoVrjp88BCuwGie9eoU7RttYz1Dy+bP5bnCd1u3jE5OSgSp0RpS0eh0IKxSaYPRaPeVyw4VYVZpQQGGSsWOiopEqZQsUJIkzZo9v6936Fe/+K3T4bj9lhud9zgvXur2VFXO6Jz5m9/8avvW79wOYzaT0GszgUgKIZWSJPSP9EMMWFNTVV9XU4gnTSbd0HBOY7EDHF9pdxw/duzW++7HFaQkCSSOmY0Gg16TjMXTEBgLBQOTU0sWL9yy6ctNX33BMEw8Et6/f78ISCzLQpIIQ3KLt1ELUIvb6/oGgrs3f2GyGgUYMag1sXLZYvUIDLuys2kkmV3bMXvZjT++YePGNetvAgVq61sv9vaN33HLzUvWXAsKwIVzFydH+qo9vgULFtE0feVKL4qTM2bM1Op0Ab9floFiMVlTX7msZlU4EdNqtclQaHig/9jR3dPT0wzDlMqcUqVRqNQ6gz4WTbz/4Qc2jXJ8bASDQZrixyemU6nUwrkLR4dGRoaGLSZ9Q11tIha22+0kCsyf2/Xdt9vSucz8xXOu23jdZGC6rX3Gl1u2XB7pyX5Lv/uv9wZ7e3608YZ+hA1Hx+lpzlnrsTkqciX6uptvKxQK3T1XLnb31jU1oyrNq6//+9abb1q9ekkkEr5j48bOpro6nyceCz//x+d2798nSdKV3h5RBr/Y9OWP7rz7zRvfkkHp8682w99sXbFimdZi6u65/Mknn2i0KlCSYVGGZCg8HVSpVDzLQJIqGgyaDAYVqnzmF7+96aYbuOrqWCRsM6hGh66cPX2qq2W2zDggSZR5VoHBGCQTMAgjQLFcQkncYrEIgqggyJGRifr6ekytLBVZnc5U6akMhqPR6EhlZZXBbApFI4VCgSRJURT1ev3FCxc4jsuk0xiKpuP5wcFBl8tRZosdHY2XLp+RJGDlqnVXrlzBcDyVSe47sBeFkfXr1hmNxlwmFUsm1Go1BEg0U54cH6M51utyWUzGCz09LMvqtdqrmA4YhnmeRzBUFsT/ewYD/wVdSTAIQj+UEv63FRi8ehctSzIIgVdDwMD/0sCsyHu93kwqHQiFSJJUq9UKgmQE/o7bbv36+51n+vtMOr0FxzxmW46lhlLhUi5nUCoFmvW5XW6Lfcm8BVPh4My582AQNplMWpN+0YpF/kAgmU23NrcmYvGt337Di3xVVRUIAwgCtbe3Hj68f9OXX5q0WrNOVeGwTE1NxSOBW//yfGt729p112y47tq2thatQX/27OmZHe0yAGz6+KNFy1d+sOkrldYwc85ci9lhNFglEVi4YPF3O7cHg4FzF891tXfs3rvrl7/62QcffRCNpB566IFkKrR506auzk6b2TI4OKDVqKKRUFNDw/HjR5PJ5Lx58xwOWyQS+vDD90EQtjvdAAAYDAZBEAiCUKiU8xcvVKvVcCiYK5QMFstjjz/V2Nj89NNPozgi0OXrrr2GRIkrVy47TBadWnPm/Lna2to5M7qO5LJDg73xWGjOrJmXL14AYQSCcQFA3N66r7bvM1k9y6+5fv6CRTa7yWw2W632gweOPvXQA2KhVFdXl4yEG2tqOr1e3OFUG/V0Po8rVQtndlw+coyAoCqPT5JEs9WKo6jZapFlQBAEAq+jORaG4WLRZrIYJ8bGlyycXeup3P3ZV6mxSRWJW1VqBAK8ZrPbZJ7wTxnVahgCM5lUY0uzTqkJhSKxcjFPFTCM4BhaBnk1jssI0tzcbDGZNWrD5QsXa2pruru76+pqOTrP0jSB4aNjw/fduZHn+VNnTkSjwXQxXSwWlSRhNVnb2turqmqMBgsEQbwM8YJULDMADKEEzvMSXWZAAIbB/9ofIi+wLCcIAoYhCoWC50Wa5kRRxFGQKjIsI4gCQJV5UKlTlQslUoUrlJgCJxQKlVqtDfinJUnKZvMWu61QKKjVapqmZVk2GAwoQi5fvvTpp5640n3x2PFDAs+pFWRDQ0PvQL9Go6qpqclms0ajWZIkiipZTIZSoYjhKMNQIAiqNbpisZgvZPV6LUMLJrOhWCizgqDVamSAzeVyalJPYgAnAIlkJp5MJzNZk8maK5SSiSzPS+VyeWoscP8DP/ZWGiFIKpdZEIAL6ZRWo8cIQhAEnuVMesOLL7wIynJ8amJP7whAGggETeYSZrM5FY6RGIxA0vN/fPG266976+Xn7EbV9JQfg3C7wVQSGUmSLBZzmaZypZLWaBmbDDg8FaF40D8RKuUpGgD+/vLLB44evHzw4I82rEmwKYCRCUyRKhQUGm0xmzFp1DzLjYyNxSjKZPWwPJSIZ4wWC6YkUsEQi4ICKMIYrCOVUpG2aPWZVJzUEMkyZXU6ZFHu7Owc8fudTqdFq69paqiu9ikQLB5LG8y2A/t3l5LTAFseHRym/JOVbidDC2UZoHAykM6bbK4KT7Wvpoopl06eOGFzWHUmc0dn54H9e1sbG9o9lTu3b84mpw0GAw8giSKlthlFSBq+MKHVqu0WIwpA7gpPiS2LNDWjufnUpUt7Tl186re/2r7tm+mJqaaWjvrW1mgqEhie8E8HQBhWEITDZrdYLJcvX25pabl2zRqjzZIvFIxmk5LAt335iU1FFJIxgKM9FlvP+GScKlXarUKhrCGVMCSrEEiWQb1CDcLIgYu9RUwL6+33PPnYbTddl8sVpkMTtRWeyxcuvfPOO2oMFST4wKHdXZ0zCQyPxmOpbNZut2tV6lQiiWJQPB7XqnUKk4njRZfF1tLWbLWaIQhyuit3fL/z4pXuO++6Y2x8fPPmrV6v79+vvfThfz4QWC5XLCxasthXXX3u1Mnh/j6Do2LXzu1/fuEP/onxY8dOjA6P2CzWuiofISOE1TTqnwz7Q0889ZTWbvvnG28lg5F4aPr22zfe9+ADoVCQVKBnT59MJBIlisKVjr/85S8njx3P5TI19XUwiuSyhf6hwe4zpyBUWrNmlRJX7fp22/jYgMFqbWjuuPmWW3d+/x2KopU+n9VqB2H09Tf+aTYbVSqNy+WQJPHo0aOL5i+86847X/nLiwf276vwOmVZfurnT3/++ecIgqlUKpblkok0CoOBUNDlci5YMI8uF4MhP4ljECjnMqzTbhVZhqZpGEJTqZQocEaDPpzLeX0VVK5QLpa0ZqvV5hgZGTXbbdFkTq8ztre3nzpzurq6mmKZwaGhpqamVWvXfPzh+42NjS0tLXt373G73UNDQzRNl0uc11dx0003nr1wXhRFEAQ7Z8wIh6KDw92z58xheA6AQK1al89kjQYdjCC8wAIAUCyUzTbr0aPHy+Xyxo0bDVpdd9+A0+lsamm5ytBHEIRmGQiCEAj+f6LAVxVmBIJ+aCeEgKvH0AAAAAIgi6KIIMhV8xgAgKv/CoZhDIZ5QUin0xqNJplMSByvUalJBMvkc1t3brfYbUvmzq/yeMqCACIIxAt8uYziGEniw739eoPp5NlzVoulyDMXz19YuXK53++nWYYkyWK+5HF5CsXs7j17Fi1eEI/GTDrtUF9vMV+wWq12t+Pw4cOzZswUBIFh2J6eHqvVGg6HJ8an1FqNWm/w+bxr1qwZGx296drraZr96MN3U+lsMpmeP3fBzp277rnn7qaWRhkE/vPOv2im4HK4W1tbRYk5dPBoe9vMUDiQS6bz2eyK5at279796GMPv/baaw6Ho7q62utxUxTz7dffNNbXNjU1TYyNJ5PplpaWj7Z/+9lnn/lqas+fObt501dOp9NgMAwPD4+Njr7577cgCPrrn/4qCMLGW29869VXOhrq/YG4yWKscrnOX7o4Mj42a0bnvY88ODbUf7nn4rIVK5PJ9JXenjnzFze3tDOc7PZUOys8OIYCAJDJ5sLh8Hfbvum90i0DohUC1i9cMjo8qFGoksm4x+NFRJmWBJHjFRptw5L5mz7e9NXu72+47Sa1WqlQElSpjGGYJAFKlUqSgGQyeXX6ICSMiUC+TNk9riNbtuEllmdoAAFUEsiLgkqnTSaTCpzAcRyAoVgiTuh0IC9eDEzJJhUJIZwkgholIsClElXf2CQDyPprbzx+4vTCxYsSiZgsyzq1RgYEqswe3nfg2d8/nctkp/whq8PqcThJpcJut1dXV0MwIgNAoUiDCCwKMstzVxnlnCgIggDJwFXfRBalq7XUoijyPI8RuNlsLBcZkiQQBJAkgOPEYDAsibKSJBGDwYAgEIGhFEUhoAQC3HRgWKvVz5jREY5Gh4YHCIIolko4hnEcg6JwKpk4dvyIyaBZv2Gd0+k+sG/vLRtvjseTeq3S43HTTEmSBQiWYASUyrwgshACczwPwagsSaVisVwuG/QmBIWGR8eVKpQgMSpNYTBK0QwBkzIvUDAemA7o9cbG5qZ4PKpWq0lcQVFMmcpZzM6XXny1rsbFi6VCMacgtbIEEyo1qiAgCJFlAFWiWYp574svBUF88U9/zZRoTC6qTPpCLjk2NlLp8pIgSpK41+P+Zsd2RK0HCAWsMiAoUYSxRCYJgiBAFPP5Ii9IIMHJMEbRQiqZvfPO+wQZCkcinV2zl665Zu3CuZP+ECcUQQgicUYJAmAugUuMEleiOFa1cAYFQ+kCm6E5jBB5nqquqUJluqKylhYYv39CLpc6GnwKFJIrNAAkoxCRyWXLPNdzdL/ZUxEYHppihR07duSKpXKxSCgUc+Yvvv2u203aRTabzR+KOTH++MHDdL6o0+u7R4cZMlymqUuXT5+/dEZJom1tXTffdsuRk8efefbXFTYjCbAiIzz69K/8E4NjwyNHjp+kBLkUTOEqwldXUcimAIn2VdeMjA6TajUEiPsO7jPa7Wajemiwv6GubmpiYt6CuRcuXSyV8zAMulwOWZYplqFZZmBosESVT587f/bMaRRDJQh2uJx1dXUWg1FQqRYuWhmZGp8cGGzomhk+eoRDtIbqitHBbj2pKNOA2aItyyzDFeYtqBdKwuXB8V8/+KPjh++95Ud3eq2Gl/7x6puvvXHd3EV5PtW+fKnb8+C+fftymWxNTTWGYUMDAwgEz50zK5uOazUkLjNiPoFixNGDe81u2/bt2wmloqNzVnvHzHsffhjBIZvb7vZWuFyeYC7/97ffe/H5v0CpKIgpuvuHxwPh6zfedvd9D+/avfPvf3v5ySefvOvBx8pF6typkx+8+16Txz3eN5wsFN/68DNRlH/7q19mEvH77rk7nS9ACPz+Rx9rNKqg3//Txx7b9s22B+756edbv+lqa21vbRsbG2tubZJBgKHKvb29vAz84Q9/MJndp06cuOH2O86cPfWrZ373wQefX3PtDU8+/pMzp06fPXfJbrffe//9sixHQ+E77l4hycLk5IRWqzWZTC+/9LdPPvvsu++2m42Gd95559vt2zQ6Lc8xsiyqlQSnIRwVdmeldXR8cseenTM6Ok0W++ULF1taWjAVBhMqihUVenUwGIIIhcfhK+QylCBQHC/IktPtGZ6cFEGYIAgEx86cObNm9TXRaLShrn5kbBQjCbvdvmrtmvHJiSUrlpMEUWbKjz/503Pnzk1Ojs+ePfObbdsRAty+c8fI8Ljdbq+tqzp//szYxPjC+YtOnz677tp1OE7q1Bre6kwm4wgC+wOTHR0dOq3A83x9TfWpU2emxicUTU2ZTAZBkLq6OkkQyjxPkqQsyxzHoUolcLXiSPpfd+FV+MZVytX/YweLkgwBV4VrQRAAAMBxHIEghmFYlqUkCYIgmqbT2azJoEdJhcgLoUJSTyofu+1OTuC379/DzJrd0dScLpc4CQiGgyWOIVRKX7WPpZnqhrrj+w6Ohqfmzp4TDAVMJpOvuqpYLNJFupQvuFwOl9shSUIpn1u/crlFp/vys88hGRBYwWOt+PiDz3fu2t3QUPfYTx7/4osv1Gq1027Q6nXxRLL3cjqTjI2NjZ04emz+wsVr118HAEAuWzDqTX958aVMJuPzVf/n3XcPHji+dNl8hUKH49qe3rHZsxeHw3EEUUh88oH7H9q6desTT/50x47tBIF5PC6LxTI6PGI0mp977vl4ItHb30cY9Bs3bHC73db6erVa67DY1lyzft+BQ9FkihWlex54sK2haXRy9N4f33PtNes2rL/miScer6usqHB7QtHMpSvdJo1uxuxZEgxO+qeL5VIkFq9pnzd32bp4Ir1u4z2uCi8IoNFYMhpJHvn4kwMH9mXS8Xg8nk2lK70VixfOjcXDAC8nk0klqSAQ1GV3hafDbqsdQxEag8ssD6nUiEJR4hlCSQCgSLFFTKmQZZkqUSALQQjMA5wEi9lSxqEwAQhAwDJDFyie0pK4CiADdFqQZAAArDpHJBmBMJKiiyAIKhU4J0uADJAqRRkAIAThSjRYhmQQoSlGYIV8MV/KF1qaG7PpjIJQgpAMiFIwGIAh7Gqj0YYN15EKDYjIBIwCICCIcplhc/k0iCAyCEAQBPAiiqIwAAk8r0JRUqWCYfgqkgwEAapYZjkaAgBQBsulQrGQkyUwlU4EJic5jrtw4UIwGFKpVIIggQgGwjDscrlyuZwoymq1tra2tlCiFs6fe/HixXQ2m0onisU8hmE8yxgMhnK5bDKZwuHwvT++R61WUuXi+Pjo0sWLaqq96WyK4Tme5w0GA4ZhsVjUabdmckUlQUqSyLIsx3AkSSIYolIrYokUKPNWo6FU5JRqDSdwSgVBl5jpSMhoNCqVqlw2UyqVCBSTZaC1uU2CJbXKsG3brhtuvA4lkHK5mC+WOAZMplNKpRKGYZZlWUaoqq0jSTIciflqGyVeDoT8yVSklM3HElm1RqdVkmoY6+vrqWmsZQSRoqiNt90UjEWGJibmt81NpZKxaHTmzJmlYhmGURkEaJYnYdFt93zwxac33HB9sVDgGe78pTN0KhoOJhiRnxwdiQ2PKgGJ40tGk0ml0qAorzeYSiWqCMkZlkdgvKK2fmxwtFym4tl0Jpaq12uWd7XydIGmabVKJUOgyAtJjraZbTRNxylqOpbxNjbjGtP5c6dkCI7GkyLPGxRKBMNlhFiy5hq1WglDgN1spumyxWKpqqtHcaymomKw/8qpkxfUBtWS5Uv+8tzzQxdOzmhsChboVCpVV1e34bpraVb44vNN3ZcvrV21xunWHdm/Gxf5xbPmyghy6OQJq9liN5k0elPvmL8oSgsWLfxi05c//8XT40NjfZcvxlIpBEM5nhcEweV0FvKlUCgCAIDFqDKbzXa7fWpqQqNWWyyWaCQuSZLRbGEoefH8Tq/XdejY5dbW2tMHttXYPfFgllBIDEPBqAJGEJKUU5n0dDRbEhBGq7715lt//5vf/uu1f239z9sOhy7PUo88+ZvdO7//dtt3KhI3WcwKJYEhKIHhIE8DqIxBIFNipsLRjT++7+Y77njornuDsbBCpV1zzbWDYyPXbLhm7vw542P+np5+WKncsGLt3TffqFHCgiy2tHbZLPa+7ovxbLahoe748eN2p2vjbbedPHn69ltvOXX8WCwVvvu2O2fPW/jcyy9+9fFns9o6VixfDCvx2sqW8cmxw0cPwbAs8BwkyUpCSxCKC30XP3z/o6rK6mA49OFHH3krPefOnL71ppsvDQy8984HN15/A6nADx05eOfd98ybt8Co037wwQcnjh757TO/3rdv38DwyGM//WksEjGbjcuvuSaXTlF0iSozO3fu8vmqn/rZz44eP0plijNndn256dPDhw+VqXw0HDQbTVarBYAgtVYrCBIAQOlUttrnq62u+ezjT0w2m0qtNBtN2XwOAmFZll1Ox8hAv95qngxM6gnSbXeURMFidZ4/e765s/3wwSOrV68eG53QaDQYQdY0NIYjURkC5y5eOKOzY/v2bwcH+iwmc7FYvP7662EY/vLLz+sb6wAInp6KOmx2lisyHG00W+qrWgRJgBAQgqDW5rZcLj88OgxBQD6f1el0mUxOQZCCIOzdu3fjbbfbbLa9+w/Mnz+/pqYmEotWVlaCMJxMJk0WM4ZhP1Qs/LDmAgAASiAIyfJ/w74ABPyvMQkCr6KsRFFkWVatVqMQRNG0KIMICJXLZUEQWI4+fvRYV1ub11Nh1mhkWWYQUAAAqlT4ZsvWptaWmorKBFVAJRhCYKfTSeUKuUK+UC4c3ndg7/c777vvvtmz5x44dIQTeJvN1lzXEJyeNljMFy9foOjS+tVrc6lk35Xug/v2azQamAcWL1l26vzZ7oGBd9/7QKnVbNu27ejRo6VyzmKxhEKhWTO7LAZdIhEbHh1rbGl3mp0ESepNRl+F12w2Yxg2PjX50UefDPf3NDTWtHfM/Merr/3+2d9YzTaCUBTyyeH+gUgkIknij26/9cMP3wUk2WAwjYyM1bU3tbZ07tmzX6XWejyu5pbGb779VhCEbLZYUeG2Wax33nlnOpsZHR2dng61t7c7bdaxiVEMQeLhUN+Vvss9V9Qk0V5XX2B5XhAK6dTEdNDjrZg7d+7q665prK2RMB0AQKSCOHzseO+VywxVPn/6HEszEl9obGy+cukyiqJWi8Fht6ZSSavJjGFYtc4klikNqkBRPBqLaQmC1ChyvCDJQOfGaz978/0Pt29+/ImfiDyl1illEMrlcgqFAoZQjuNIBV4sFjmOMxgt+WIRA8FMPtd3+IQZRMESS+EgjsiCIFjMtmw2C4iSxAsavS6bzYoCgBOKvkw0xJVcVitdpssUo8AVEgDrTUaa4Z544qnR8Umn01Usl9LptK+iKl/IlAtUIhbdsuljSZJkGYZRSJZFCETE/yLMAVEUUQSmaIZlWY7jSvlCLBajaTadTjM8BwAARTO5XDYWjYqiWC6XyyWK4XgExtQ6bSg0XeF2kgROURQEQSqlGkEQUKtXKZXKQq5I07RCpTabrA6Ha+Wa1RMjg7v37jEYdMlMUq/XgbIsCbxSqZwO+g16k8ViYxjG6/V6K5zjo8OzZ89CINjtcQqiyPAcCIIVFRXT035Z5DGSUKvV5UKB53mLyVIoFCAEQhBkbHTabFZXOB3pVJZUq0WAp+lyOBhxuqwwDIuCTCiUJqOF54VUMrdt245sOi2JKE4oE4lYgcpfd92GJUuWJWJ5XuYNBh3PcQRB5LIFQZL1ZpNarY5kcgPnuyVAcnldtZU1EIwBMCCWc2qr8+KF05OTkw8/+rN/vfEWk8vUNtRhao3RaolGIgLLAbJYVemjS2We5zV6XSpP1VpdH237ormj8fq1G0gOTksUD3E+u0fm5anxie6+SzUV9sm+nujEuMCwEgGXMqWEP14EwUG/3+Vy2CvcAf9UMBiiBZEAgWoCXdhUpVbALMtyJa7AlVEA49UKVAIRnsuC4FSWwp0etszEYlFOELKZoluvr7GbYUBkJGBkbFRhMJQEvlSiIF4uUQyu1pI6XV1Dc3NTzdjI9LobrrFaLZ31DR/9489nDx6dMbNlKhyBlLp9J04uXr1q5epVFoPhy08/v3jijAKV6102kBOUOv3FoYEKr9egVuV5KpEuJZL5GTNmdPf3Ll21ZmpqCoXAUCQ8MjKhN6pVCmWF25PPZutq69U67dkLl9PJRCmfcZgMVRUevV5fplkEJTFJkDFsbGyiqbV1LBhMTk+taGvMhoNpRKhzVjJlJpctOhy2dClTpJlSqsDCCMtI47HwHQ/d/8yfXug7dfLTv//jyuAAheFatWZybNLptMMwXCoX3E5XOplymbWMJGjNZqAkUJz42e7vbly7XoMgmIHEcM1vf/98KBb//R9+/+TPntLpjGdOnqdkCqBoNpMIBwcEgZ87b+nwwLjICyar7eiJ4yRJqnSGxpbWX/7614Gpic6ONgElo/HYXbfempmadllsnfPn8DKQjMdBTPb5qppqmzdv+mrhvLnHTx8bmhhTGzRapWHJkmW93QN6s3nu/Hm9vb00VXzpz39Zs3YZnRdIBDNa9Y88/vDvfv88jmKVHsejjz9xYPfeI0cPPfTwo9dce53LXTEd9Gu12k8//mzXrp16vd5isfkqqw8cOtQ1c+amzV8RqKRWq2+++UZAlgBA0qjVZ0+dzuVyBEaqVKpEKsmxvE6vjUWiSxYuyqTSEAHqdLpMJpXN5hEUFzjeYjIAkhhLZWvqfc3Vtbt3fo9ptTffcusNN9x6/6P3jw0PrVq1iikz/YMjbe2d08EoK4qJVKYsMUsXL5k9cwZFlTiW3rp1a1tbmyzL04EoTsIUS910/S3+iclSPqPQagUBMeuNDc31gYC/UCiIvDgyOm6xmXElJgtiJpNDUVQWpaaGxt27d7u8nvrGppPHjt9+549QFB2fnOjq6gIgKJPJkCRptloQBPkh4Ps/zRmEZQiAZFGWRVm6uouA/6sKBkFQ4HgcwzPpNEEQBEEgEFQoUSgEkyTB8wIAShiClvP58eEhQIbUFqOSJLUIYbUYRRDYs2+fzmiYO2Pm1NQ0oVMTCuX5k6fLhQIg8JfPnOse6n3+D38yGs19A4MUQ+eKhWIul81kGprbRidGbrjh+v6+nnwi5nbYt2z6yuv1TgamYBSxOBzpfOHylZ7fPfPsooULDQbDls+//c9//lPrq5Q4SmJLToedE4XpUPTaG2/1BwL/fu/te+6558qVKzfeeOPMWXPqmxrL6bTDYUnEc5s3b7ncfSEcDuezhdVrlqpUqnOnT918y01/fv5Zp9OuVqr0WkMmk5uxeG42U9z81bfPPvsHEARf+Mufrr/+WhAEZ82ZvXjhov6+vm3btk0Hg52dnSRBnDt3rr+/d+HihVaLAWD51tbWzVu3SbxQ76vevX9fR1fnvT+6S2HUt8+YqVRqeoZ6L5w9k0/m+waGwuFgvpBmqfy116zpbG6cnpyqnzFjaHB865ZvcRRtbqmPJyKACKEoCcDcooZWPl+wGUwMy4sgQBfyKr0K4SWK5jpvv/GTf3304fatP33ycUFkIATkKQ7DMIVCgaIoDMMMw2i0qu7ubpPFolYqJJGHceT0pm0IJ2AyKMCyBsOKpZLd5Y7FYjzPIwhisVoj8RggAiBOjKTjeQyEQYhlOVaUIBiHABDHCZfHPWfeAlkGm5rbM5ksTdMcCwCA0HulD4XBnds2AbIsSUA4GpocD3y/czehICmGBQCgUChkcxkEhHhAAGWIxHCGYRQKJQjDKp1eAmRUhk0mk5Ig9Xo9BEE6g0mlUssAJIEASeIYApMENjU1kYonAADCcRy0umxr16zTaAyDfQO1NfVnzp6amvbn0kmzzQHDciabWr9+fbFYPHv2LIrCixbPP3f2Mktlb7rxunJROHjk2I/uviMZjZw4crS2tvaWm68vFNNVlRWlUkmWZYphQAhwWO0UVRYEgRM5jUbDMAzP84VCSalWqJUaGMJS6TipRFraZsViBZ5njWajwPFuZ0Uylv7yi0179+7vmjm7tb2jo7Opa8YsQqHZs2tnKOC/eO78t99u/+tLrxgMOpwkKio9F7svUzSN42RfTz+JEAabhSQVAAChKJzP51UqpSAIMAyXSnQ2m2YYxm63Wx22/fv3czxz7733joyPFXJFr8c7OjoKo7CSVACibDZbC5l0Op3q7u3xej0wiuiNZrVWA0FwfUOD2+22Wa1qtRpHMVEUAVEqlUp2qzGdyefzWUmShgf7x0fHGIrOpFIDw31Dg2PTobASkOZUGNWQYLNZZA5ACRwnCUEUeZ5X67Q5jrs4MaWwOQCUnBydZLlyKs/qROmaWS3LVq3Z9/U3GjNG06IAgAq1ZjiZHUvklIjSaDZkUnlI4s0ONwhDq1evxlS6RQvmfPj3PwQudbvtNk+Vl+a5zTt3qW2OjXfeA+Bk74XeCyeOKFCwtrm5c8GCt/758vyONo3GRuqx/sGh6WDYV11PMYzd5vT5qgOBgCAIk5Pj0WhUpVRms1mG5hRKwu12u5xeXAEW0rmJ3lGjmahzukoIhMiyBiHVNhWqQLu7e0hU1T848tDDj7bWN7/62l9QmdbxCoVWpdBpJhNRGAAFWZNIxLU6pQDIlwfGlq/Z8PKr/zCZtYcO7t72xaYLp85kcgWr02o2m0FeNBgM2ULeZzbn8kmVQXf45KX3Pvl8fGL436/9va2hSYCAoZGxYDT+7gcfnjl3IZvN/+lPf97y5davd38zNjAA8bQSR4wmzZJFi71e76svvTp/8ZIFixb/681/SyKYFYRPv/sWQYnIhH/Hlq1Dw4PRcOD9f/8rm0xm0skLFy5M+acpiqr2VcEg7PF4hkfHJifHLVaj2Wg409f/9jvvHj1x/PNPPt+7e8+pM6d3frdDQxDXXH/966+/Ho9FZFl++umn5i+Y09PTffDg/s6OuQ8+/GAwEf7bP1/7+c+eUiq1r7z46lD/gCxJv//9M7NmdB7cv08SxZ07v+MEzuGwFaKR2pp6QZK7e67oDKbGxsaqmurx8fHR8XFvpYfjGJvFlE6nlQr1+PikVqs361XFXN6o00dCYVGWKIbz+6fnzZunN6j7+voIkjSZTN09vctWrLp8pae9s/Pi5UvV1TVUmQkEgjU1NQqVMuAPF8sUD0i+ap/BpG+oq0/Eo5u/3LxkyZJ4LCkIwvjU5Pz58406/Yb16+vqqv/015fclRUqhZKm6a+++tLtdqvV6pa25qmpKbVabbc6SqWSVqc+cujodddd98nHn7krKqpr6hLp+Jw5cyPROMNz8+fPLxbzFEWBElhVX61SqRAYyRfyOI6jKCqKIgRBP7CufggpgSAgiqIIACiCSrwEgSAEgBRVYnlOpVIROFamaJ7nlUq1LMsgKIMgCMMQz/LFfC445ZcEEYKgq8r2mXNnF82avWD+vDH/NIyiF0+fmR4ZJQlsaGIkHgw/8fTTuFJ16PDRrraOcrmsNRqCsQgvSBMTYy2tzbIoeF1OSBBefOHPFoO+RFN6va5UKkTjiTLNuD1eluUfeezRGV2z+vsHH3rwfp2W9DpMdpMBQ/BSmUkWiyvWrR/uHfzLy6/8+O47xwaHFWY9z4kut6O5vQvFiHwq88gjjwigyBRpJYoPjg3MmjHj9MkTkxNjgUBgaGjI6XQeOnRk7brrHnzwwYnx8U8//sjrcXX39ngrq77ctDmdzpZppswxKpXK47If3r+HpUov/PHZ2bPnezyeeDSWSqW7L/fgJHHTxltaW9rXXHstCAKyKMQi0U8/+Wh0eMBhNw/2d+u1hts23nL+7Emny6bX63fu2nvHHXf2XOrzNVSfOHbyxPHT1dW1+Xxer9fiBCKKvBpTzaxrZJNxm8mUL5cxlIhEYowgVlU5s3lm8Y3XvfX5F5988sWvnnmSg2imxBu1eo1KmU6mbBYTCMIkofh2x85EIrF4+SK1jIiCgDlNR9/9ApYlsVhCUQQCJBQnAQCkaRZF0RJVsHts+WJOZpUKDPNnEwmAkxUEVWQ5jisDAglBDCe0tXdpDGZ3hbeuoSGTyQiCgONENlm8fP6Syah4882/nz9zPhRJTAeCgsibTRZRlElSaTAaSZIUJR6CAIPZxPM8DMNKpVICJBRFARlGUVwGJQwjWF6SJEkQeBxBJUmSJQkSAZplQQSUADGfz2YyGfiqkqMxan2V1c888/tdO3ZpNJq+wQFB4BKJmN/vd7rs09P+WbNm8bzY23tFoSBVaoUo8lShqNca6mobL13pSSXT16xd1NpQWd/YBohCJBriOLay0scwzHQoVOH14BghSOJVa4cgcEkWcrmcTqeBEEyUeI4VymWmVGTKZWDdupu1RpIplft6Bz766COG4W665eZ1GzaYLGYlqczmiiWaBiFEr9OQKIJCwJtvvjUyMrZwycJUIobCEIIgFENr9Ua90USVGVRFToxPlgplrU6dz+dwHBcEgRcFDEHz+fzw8LDL5UilUi63I51OZ7PZRYsWDA+OuB1uAJBiyQSO42aDsVQoS4BYW1sbiURUKk2Fr1KUABhGkqlU3+BARUWF02ZnWRYEQZvVCoKgy+UaHh5mGGb23NnFYlGv1dhtNpaiVQoFRYuZYpZnWbFcLMYi3aeOHzm0H8EROhtOR2IKmOAlMcuzCrOlwEgMK1VUOGFUGJ3OMDQ6u8qlUkHequqJk4cJix2G8HA0IkmSoFHxpCafyKIEhGNKlqEQGAsEAiwv2FzumpqqJx+55733/jNx6Hhbay2OElkJ7I6E2DxNk/BP7n/EaLW0tjWzICzJ8C8e+LGVgEEJ4kApncshOIGgOAhjyWTa6/UajUaKZnEMOXfujCAICoUql8tlMhkAACAJREjZ6670Wl0GkwIqlVIUHRydsPnMchmiZchmVHc11G8+dJhSav7+tze6qhtwlP3k3Y/2HtxpxBGt0VAulXp7/Dq9qrKyAiOwRD53rntAYzCvWrXmtts2NjTWvPfvd1599VVvTZUg8FypVFVZmclnUB6MRAMKtdrmrnrq17+/4YYNPrczODEFIrAIgiWaW7R0yeJli999+50bb7x52ZLlOr2+qrZKEITui2cP7dn7/Y7tTU1N0WQikUjky9Szv/v9hrXrVq5ac9f99x8/efrCmbN6re53zz7zxM8e3/7tNlHiN27cKEpSOpcv5+kL50698sILbqczEolks1m1TiVJkj8Y0xvNj/zkpxqLsamqHpPAzzd/MZWIrF6zhCBIp8Ot0xlomvZPjFusJr1eb3JXCQKnUir/869/b//6G4tGOzUyWFVZ2bpwviiKA709yWSSJIjKysoSVVIoCBWKCqJMc2y5XG5obIxGoxzHqVQqt9udSidEXsgkU+lUqrKyMp1IV1VV9fR3W/RGr8udz+YgCEqkkhTFdHXMGBobVqlUZqslkUpOhyLXrN9w8PARs9VS6fNVVlZt2/ad0+lMJpMOhyOeTC9ZskyrVGzbud1gMs6dO/f8+fOZTMZXU5tOp5OpVJmm5i9a6Pf7SQy32Bxj/kmlSrVq0SJZlkPTQRwnZ8zo7O65IstiLB5ZuWzN8PAwy9GFXFGg2dOnz9bVNwAwpFQr16xZe/jICYvNZrGZs9lsJp9zu90LF84vlUo4jgMQLEmSWq38r9QMAJIkIQjCcdzV9ff/KgOWWJoBQbBcLKIoqlari+XyVTQ0BEEoiqqVSlGWs9kswzA4jmMIUswXfB53KBQOBoNeX6VWq/3XO28vX7rM66soFAr+kZFtn36uVJJKnab3UveiFcs4Se7o6IIAmGV5g8UcScQmB6fKVHHNmjVup+PcmZPd588NXOm94doNAIZ0X7mUyWZLpZLN4Wnr6Hzp5b9pNBqH1fK311/XaDRPPfbI9PBgbU1l5+xOQoEXy9SeQ0cS8cwjjz0Wi0SrvJWbvtla39To8VaUKGZkcCQTS4UiwY133K5QawBeXnftTTiOWkwGjZrkOBZHUYZhPvzwQ6Ne53ZXvPLKKwH/5J133nnddRtsTlcql4/GciRJptIJtZLY8e03mzZ9AUHA6mvW/vo3v1cplFSRQlH04MGDK1aswDBMa9Cfv3hu966d3d3do4MDbS0t69auRECht++yw25qamjkeT4SiTS3dOz8fg9Jqh1WR8fs+T09PQf3HywWC3qNVpRYGAZRDNHAeI3diYoigeEQAEqSBLB8Pp5wNVTnkvmGFYu/OHTg36+9/etf/QTAZYvWms1mCrmcx+UkCILjOKVS/Y833mhrazNYTUZCpdGoELP225fftOp0TK6AYCgtSm6rtZTJlstFBEMBBOYYXqfWppkSiqKxQjbCU6CChFmAFXhUqSyUWZVK3dDYbLa7mptbJRnQ641Xm5oKWero4SM0lbn1thsFHnB6PG5Xhc1iAhGYoTlRFLPZPIJAEALLgCgDEAiCIi+pVIoyVeQ5EUEwluUhSKJpVhQAAAAEkc/lcgAAoCgqcyJNUzIEKlRkKpUilYpUMqNSqUCjzUSX6LVr1x47dgyCIEGStDp1R0fHt9u/cdoduVxWlmWPpyKZTIIggBNouVyGZWTunNnJVHjdug0v/vXlzz96z+c1jY6OFwo5URRTqUyZYpqbmxPplE6niaXSdrsVggFZFglCgcBEsUABAKIicIErcxyj1alPnj7bUD/HbPF+u33rhQuXZs6etW7DdYuWLUdxPBpLlBkahmE1qZNAgON5AJR5ugSBktfpfumll0w209To6L9ff+PnT/zkhptvmgxGcJUKAJEyXZYlIBaLWS0WmqY4jkEQDMMwgePj8XgwGFy/fv3pMydZlu3s7Dxy5JDZoJ81a9bUhJ8kyXwxR6gIUARJXCGjkkatm5ycvHCh+4knf67X6zPZHIIgfcOD6WSqqqoKwzAYAPP5vN/vRxBEZzRptWqVSuVyuViWJQiilC8YjUaN0kQYyGQ0XFVReblnoK6y0mUxTMWn8vnyYHevFicFjqd4ejoYPHbi5ED/iM9uSKbCqSxVKFDN9dVqFaYjYQxFYoUCChGQJNf7fCd7rgSyhbqK6vHxERCFmxqaUrGYJMqxVHbunFlr162xOL31rc3fv/ufr//z5pwZM0G9aSSeLBSLgiyWSuV8qdza0hQOxX1VdcnpMQIWMYXCajTKEBTLZEplurGxOZVMX7x4cc78eV6vj6JKW7ZsUSgUEIxKkqTRqlQqJSzKDF+kSmVEhlVaQoPA3samC5euwIhgUBsHhqfqDM6WCgeHCZPTiQuDQVtVxY33337zLbejPPfBn17oP3+6tq6yJxCAObFQKNQ1NggQlC4UBofHaFaoqay7/kc3rVyxIp5IfbV1y7avt3qdzuWLF4Vj4XnzF/McdfjQ0Weff/HLzV8LAicJTI3XB6NINBo/dOyoSqN+/PGfaLXqN994IxIKywheV12nUipDodCy5ctnz5l55eJlCJBkFG1oaa6pqXnpT3/69MOPZQDQ6vRms7mqsmLWvPkjY6O9/cMatba+vhHFiFA0csvGG5h8bnK4jy+XxsfHxybGDUZzJBJRqxQiitpdrslJ/3UbrsVJhclmJjUqmOOz2Xw2U2QYLhgMppMpq8WEYUj/2GS5XK6trb3ttjvi0Uh9bRWKS4cO7j1/+KzZYdWajXanA5DBSDBEFYpcmcqV+Xg8/rNfPDVr1owtW7YcOXqoubn58OHDK1etCofDGIqSGO6fnKqtqqXKRZEXBK5cW1MFyUA6l5ZBwOp0gCA8NTVFYLgkAWarZXhkLJpKPP+nF77d9p3RbIFQKBFPySCk0+nS6WSpmC9kC1qNnqJzTa1tSpXqwrmLPMvOnzuvp6/XYDAYdNrB4RGFQoERBMdxuVzBU1Wp0es4jhFFcd68BT3dvclkEkGguvoaEJTjsbRKpQoFgya9TqvQ9PX2kgqVTqfXWoytLR2XLnUr1Sqbw8oKfP/AwN333sMxFAJjSqWySJXtdrtCRYqiKEkSCiOiKMqyjKKoBMiCIIAgKIoiXSxpNJpwOAzCMFUqiaLY0dbG8wJFs+FIkCTJUqlEEAQAAFq1JhAI5Ar5hoaGaX9gVtcMGILGxsZ0Bh3Lshat4cL58xWVLq1Wffr4sX3ffw/CcJErA6x0zbXrIQzz+/0wiKSSGafXa3e4SAILhULt7e179uya1dlBFwtvv/nm9dduyGYLLMtOTk4gKGayOFheiMYSWq12MjgFYMhNN93y8J33vPDss/lC8rrrVh3Zs9NtNB88fmIintSbbThGrl675o9/eP6fr7/2yUcfv/7mm3u27/rq088rKtzRbOamW28rlaidWzYbLWYAAjlRoFimorJq9tx5y5cvb6yvK5TKJKHUaVWSDJQZlmLoXKmUjKWnJsb1aqUsME8/9fOurq6f//qXhFqNoQRNUXaLlSTJqYlxHMf3799/5syZfDoyPT2dTCZbmtue+92zf/7zn2+68Yaa2kpWKEbDEb3OLAHAkmWrOF785JNPf/+753K5wptvvn761Am6XPK47TzPAoAMQrJGqVpU10Yns3qFQuKFEkfhJJGLxGStWgkpLF2NZ8P+/Vt2Xrd2uUJFZIKpIxdPzp45y2IxYSgMwzCMYN/v3mOx2TACJWHU7rQVAP7Q2586DWZIECmRIwXQ4rYFwtMwKAO8TBAKCYBlGBMRIVsu8bI0nE2gao1CRoosCwIwjJP5Qqm6urats6u1pYMqM2q1VpIkpVpBU8LWzVs6u1qe+8PvIrEYgpIQBEAAWCwWIQi6epxP0zQMw8ViEUZxnuepIkUq8FKhSFEUCmNUmYYhgcAV2UJRr9cXi0UUhTGMAADgapZPlsWrtJlEKk0qFBzHI5AMaLXqnp5LmUzSbrdp1dpoNMowVHtr6/DwsNlsxnE8Ho9LkiSKIghCogAwTBkAgFKpxPPsL5/+GY6Cg/1DogT0XBkwW61zZs/3B0ODwxNNTQ2yLHo8nvB0SKPRoCgKojDHlzCEKxYLalxrMVswqOLo0RNH95/evfMML2EWm/HRx55o6+zAlcoz5y8bLFaaYnieTyQSoemwCAEMy6rUCpJAbXrt0MCgLMtKJcmz9FNPPTE2Mjw0MtzQ0uoPxlmeASRJkmQ6X4wynEqllES+UCiWS3TvlV6z2cwwzNToRGBkqqurkyvQjb6Gk2dOqhRah9WWyedQFBdZWZJESaB5iEdgbGoqAMPw2bNnrVabwWDQGwydLW3JZBKCoKGhIbfbzTBMY0ODwWBgaaZYLsXDkch0UKVSoSiKoUQ2nQOAKVKFjo4MXNIYa1s7UhSdmBhTqHG7p7K2vhkCZBwAIUCGAPln5XI+n2cEWKlAYolM76Wzx04dzYSC9ORInuVNKsTmMHKsgBcLBhwtajThSMTudno9FROTUzRNOxxOEUYP79/be/nimpvvTieK1z/8aNe82c//6pfc+LSkVJQFzqbSBhLT9Y3NkCAaVcjFM0fVBLZk/uxwLClwwph/UqnXp7KZvr6+ttb2OfPnSZIUi8X8/kmlUtnc2jI4OMjQVG46bbNZHHZrYjqDclK1y2uzmzKxuJQrCjRbZCiBAQ1uMwbLpArli+W1na2t1a69h8+9+Ozv//rbP6xZv+6NN/6xb9uW7999z2bScyILYkgsnvH4qgpFqr2xMRKLJcKBf/3jteGBwfsfeOgff/vHvXfec+9dd27fsQsQxVyZ1Wo1T/3mt063azLgHx8flwX+cndPqVRavXptZ9fM/fv3m0wmUeTXb9jAMswbb/3nu2+2bli9prHa9+EH732zfdt//v12S10DA0H/+teb997zYCIabW5pu+f+++68+y5W4Ivp6NjEpABJ2WLu8P5D504dgf97cMtY9dre7gvVFV6d3njzTZ3hcHj2zFlbv/0qUyi98Mc/vvP2f7pmzlBbjAAEnjh45MiREw31TWfOnF2zZs3y1av9U+Mkjla4XfFU2mk1V3s927/e4nK5k/HYlZ6Lt9560713P7xrx3eDAwPDl3rLJTqZyUI43NrWtrChuaOz7cyZM/fdf49CoZg7d3ZVVVVTfd2F7rMej8XtrlCRKoYukUqIJDXlYoEpKzLpgtmoRxBieHykxHGcKMAQigiCIMk0y3CiIIlyT18vJ/AjIyOcyJWKVGNzE46j9fW1/X09gJoEJA7HUK1KqTeZBgYGrt9wfSgUqa2uyeSyMoxU19b2Dw785K471Wr17t27RUAmCaTSV0MSSlAGrGYLiRPxRFSn0fI8WyoWNWq1RqMSRZHlaFmW4/FoRUWFx+Pp6+8JBKba2tpAQErFY4Asnjp+or6uzuPx9Pb2qtTqq1eWOIlBEESVKZIkQRCkKAoj8KtsTp7neZrheR7F8WQyGY1G6+oa/NPTOo0WglEIgiwWi8GgDwaD2XT2cN8Bs9lc5pjQdNDjdPX09NjtdrvDodGqz5w54w+FhqfGg4nghvVrPv7kI71SieN4MZfHYTwUClVWVTlsNo7jTSbT3HmLsoU8Q3M7d+xCYHzlimvMBsOZk0cNZlt334CWxAuFXC6fstocmVSsqbXNaNSPj48/eM99PCC88MIL6UDwxX/+7eCRQzs//wSMZ2SAmF/fVuavaAxGj9cXioTbG5r84xOpaCoeig0MDGTTSatRn45GGmt842OTixfPFUURwdBgOLxq1c3FYjkZ9L/+l7+Ecqnq6lpvRfX0dJCmaRAEBFkaHB3W4IpKX0VTXe2O7dvSqdTgQN/H77936vzZCofram4VhqBisZhIJFAUsVqtJEL89le/Xbh4yeDQWGVt09bte1ACz2bTDpuJYTgCV0AIFE9mLE49rtB8v3sXXaYGB/rSyZhOr8rl0gSJ4TgqSbLI8qQICoLIcQwhgaQAMNkyLuEsI02ngo2rliDT0919/avXLDOZjJu27CQVmFqvEyRRTahRFCWVCpbncfL/R9Nf/2tW1f//+Nprd1+dp2tOTXfQjHSDgkiYIOpLfPuyXqIoFioiKiiigqSgpMDQMUzHmTMzpzuvc3Xua3eszw/z/f4D67Z/W2s/n4/H/c7Go9FiKZ+rlmmWYhjG1A2R5SqlgseSGIY8zZBlnwXsmlohOcaoFxvjrZLsW15e4VneBZjjOBhNQhcDAEqS5PP5VFXNZjMB2U9C3LRsz/MQ8DRdjSeiGIYROGVZFkKurhqmqbuuq5uaqqqmaSKE/f8xbbhlWYap0STh80kQ4MFg0LHqGIb7/X6apn0+CUIAziA4PMTgOPBcEuKqoVMEjgGPpCDh8/mmJqeDIV8sHimWCg5y/X7fhx9+IIqi5yFZ9m3YsOH1118/55xzjh8/HgyGq+VC2SsupZbzWe1nP33w/vvvqWr15XSmVKk2tbf2r149l1oMRSPlemk+NR8I+KCOW5aFAeSThXq1RlJ4KBRqb2nP5Eqv7/no6MFTroO2nXXe8Ng8JCQpKD76+DPKH/+6ZdtWmudwApIkaZp6vaY4LqAZqlavYxjG0iRLEj6OXd3TzVPM7t27RYFbs26N6PfLvkALzg6dHsWQAyG+qrNrZHQ4HgvjuGia5rtv/+ucc84RRXFoaAgB7/zdF+TzeYzAGYa55bZbn3nq6YYrr4xEIuVqCZIERIDjBJrlLcvq71t39Ogx13ZZmjFNY3ZmulKprKyssCxLk3R2Jd3R0WFZlmWYPMPIghAOhjAMsyyL47hcLjc/Ny9IAlmEek3zyaHSyvLy/AxJkz6OWxEyGAIURVMUA3GSJGmOYfN5dWZsZMdZa7lo8qrrb/vcLbdMjY3/4q473cXJlniiotZDnCAQOOMhCFA0Huvq6Zofmx4bmQyFfZAkWto6gixtqNrJg0cEglrOLp130YX/euv973/r7pfefoOCpBdxikqtUMrXbL2zudFriEMA6vlSUpTLpsawvO14zS1tGMKa21rf/utfN23dAgBYWlpCCI2Ojtq2faapSVNUfnKGsM32RJx1HbuqRMPBSq22UsxBguI5jxIoCGC9VHIJbKWWxkivb/t6r5gjLezwB+9uWbvmTw89cN1nbv/hffdu2rmeEdmx0emTIxOBoNjd1UliMBGP+mOxN//7OscJrge/9a1vHTp24pvf+Pp777xz4ODh888976xd5+3YtTMYjvb09hqmNjEx1tXRuffAJ2PDowzPz84v9vf303y+UFGh43W0NVUqGc9Rz9m07tl/v/zD73/vK1+968nnntnz6n99krh184YLL70U0uQ99/7YNGyW5cLRyDWf/uyX7rjr+WeeZHC057+vYMibHjvttbX95sHf0zSNARwhRGDu5NjYfDbrqcbx/QOfHDx2y1e+rlXM3//+9x3dHV29PS3traNTE+9+8J7kl9euX7d//yf/fObJRGPL9775tUw65XrmqZPH/HIg6gv/+aE//7vxza7O9u/9+Cc0SQ0NjRw8eiTREO/q6T56cN/A0GBXf3fTyZZkLD54+hQvya7rNsa6aJot54wKZjUkukRR1Ot1gpBau/3Li0vLhWJrSzMg8Fqt5mMFEuKARKVSpVAoNDc3t3S0l8tlmiI8z8osLyUbmkReSCZiBw/u12o1nyTjGGYo2n///Yrg86/uXe0LBnifpFlmplZNdHR2dXV9cvjoidNDM7NT2Wz62muvPXHiOE0RRTdvqFaxUG5qbJQ5QSlVSJL0C5Kp6RCBufm5oD9gOSbNsbpjjE0Or+rqKZaLU9PjXT2X//eNV9dt2NTYEO/v6f3kwH7TNDmeN1QN+P0YhimKomkaSVMkSVIM7bquoii1Wm15ebmvq3d+aVGW5Wg8MT45ZRgGREypXPUH5NHRUYqiXNfBEJAksa2tDSF0+sgwRzMsRQcDgcOHDvE8l83nAPAaWzq1uppPpfa89uZX7/jqC08/Y+qWJPh01VCqysmBQZ7nfb5AZ2frE4/9PR6PAwCbYwkOJ/OLqeFjAx9+8B7mAcwBOI4Hg0GKZTwXrKRzEi8sLS3RFKFr2uDI4PkXnPWPpx5LVfN3f+87X/vu9/f885mVhXEXIyHJWKq1c8vOn93/c4lkTMPq7l+rumjT2eewsljIpJ9+8NcnTpwwTE3XUTQajcbCi4uL+/Z+JEmCT5ITUWnt5p7Tp0fvu+cff3rod92rVv3sJz/lRD4AEU+7wKy7tnX55Vdu2bT1ySf+ttex29pbGqLhVatWCYJw8PDR4dOnw+HwutVrv/zlLy+slC6++KKBkwOqaWm2aVYKy8vzU9MTWlUlIJ5KpXVdR5iHAW//vo83rF0zODjU39tHAFQvV6V4TGQEhFwbOQxG0h6mOp7pORAnbBxHsrzmom17nn/uxb0ffuprXxQJxjRtj6aWs2kLoK7Wtny5HPT7EEnWLQsyjOE4/nAIQtzFoCyIMs9BSFA4YZrm9q3bwsHQ8cNHWEaEEFIk5qd4DENRya/UazXXBR6iADBdC0eQwCGybZxiVV2zbdN1bdvULYsvlwq2bY9Mj8RjjQ0NCYah84XsyPCoJPsNUyNw5kwQ0CfLHMuSJKlrJkEQjm3ajkfTtG3bdbVGMyQJKcdxSJJACGAY8DCPoqFhGDTFOp6L0yxyHJqhPcflGIpnSRcgDIeEKPKhsP9MY50kSRLHo9Eox3GFXC4cCE6OTZbyBc92Thw/JgvSV79yx2uvvTY6NrS4uEhg3M23fO6sc3dblsYI0Xi4tamluabWOnoIVdXP333jh++/y7KkoZUlyTczO9rQGPIHkpaGjh0c2b/vyPT8wtYt/dffcNmatT2VunZqdHLg5Il4Y5wkaN4nzi4uuK5LsQxL0ZZlIc/TDI2mSUPTHc/FMVgp5Ltbmndt3ux5tmOBfD5PsizD8qMTk5ZmsTTpQtJxHAu5gk9OF3Kt7S37jx6+4ebPCCKj63rLqqZA3Od5XpQNV2vlSDKSzqW279x2bODoJZdcxMqUqqoUyciCPDI6y/HM+jXrCtm857m5XHZ+fl4Uxd27d+Obt5xBBAwMDGiadqZ2rajKmfuJ4zhd1zEck3zS6sBq0e/jMNJyPM1UHd0gSaJSVyqq42WLNV1hRYkgSJZiKYJeSi3HG+L7jn1SVjPnnHsppmu/f+6pcq32vT/84dufvSGOMNVyNLsqcLLnefl8nmWk/R/vLWXLBMQZmltaSrW2UvV63c9xrlX705/u37BxWzWT33bWjgcefeyGg5/86rcPtDR3NHc0QkAlBD7A0abtzc7PkZ7JxpOmrluWNTU7I8oBTVUbGpoCoWCxUs5q2Wg8lslkIIS6ZlYrNQwDak1pDIUoEhIAIQJZlhVhfDyg2oPJnGsDEqc8HHfJQDycL6/YdY8TApih1DM1XzzW0rO6ODf33e/83+9/87uOjb2plYqm61VVaWpNVsuFhcV5muK2bd05NDthOvbjTzyBYfj0zMy9P7/vqX+/8Lv7f9OQjH7hC1+5/fbbp6en5+bmevvXDAwc23n2NtnHT89U/KGA43gkTVkINbW2zSwsP/Tnh48f2Pv8k//gGSabzz3w+98cPnrs4T8+eOD4/rbG+JZ1Gzp7Vv3nhScnJmc72tr6e/r5pva33txTqVRIkjzw8Sdnn7XrH0+9cuDgvr//7S/nXnBurlLq7Vt98MjRhdm50ZMnUgvzXR2r2ITPF480NjXhyNv7/jumVssuL6cXZwf3fxwOhBoaY//4w4Omaf/0pz8trt2iW/bo6aG33nr92eeeefiPfzp58pQc4L75/76RjLaeGBr81ne+q7v2ZZdddsU11+7ctOGnP773Dw8/+Pe/Pf7unnfzKzm/4Gtpaj96+JiiqEFZSiaTAIDhoVGO4xKJxML8LEKoVW+BAOM4bm5+XhRFgOE+nw8HMFPMqLrWGmstlCqO50aj0ZLrTk1OhIMhxzSUcumNwROZ7EpLS3MwGBwdHZU5ubm9I53NiBBOTEzYrkPQ1M7tOxqiDdVcMSz73/7vGz09qxoiMR6SlAvK+XKlVI1Go0q5VKDIUqlEkzjHcXMzUzt27YpEIstLC6alQ4Igacq2bdf1MpmMaeqcwA4MHGtoSHS0tbi2PTw2rKqKpmnJhoZsIR9LJgzDMk1TqWuS7LcslaZpDMNs256bma0p1SlsKptLe4mEZRmtjQ3zs9ObNmxcWVkp5DP7P/mkVCh0d3dbhnH06NGmhsbx8XFRFBsakj3d3YlEgqLI2dnpKy671LQN0iN3b9n8zlt75uZnjFr9hutvfOmVl8fGJ2KRKE3xwaBfVVVJkI8dOcoyTD6X8wXknt5O01Dm5yYbGhrWre/HcSwYDEyMjAEMW1yYhjieyRT612yo1Y3nn3+uOZRYGZ90gXPB5i0fv/bqqaNH7/nRvZfeeovh1Z964qnbL7/iucefnh4dFwm6u7eHE4XMcioWjry2542piclnn/znqZMDv/rFL5578unCUmpyZGhoUO3oaBsdHUFOUKlUPvjow7vu/uaXvvSln/74p4vziw///iHXts8/65xMLpvPL+395MN4PN7S2lEplePx5C033ZTLr/St2fDzn/8iEAhcuPuiDz7cG/AFFUV577335hYWMWDfddedzU1N6eWU57iubVIEUVLKTQ0NuXSeJElZltPpdDDggz3IULRENLaysGRbhlLRMY8UJF5gJYi5hXrdcJGhaqoHBH+gjMBLh/bvPXbkvBuvOzo6zLMCBoDEC46uiDRDMnRPX+/y8hJG4KZm1zUdQMzzgCCJdibF0pxV1SFG8JxYrZQEnhs8eEBTayxLm6ZD4rgHyJVKRbEVFXir1qz+1I5znnr5+VIh4xNYx7YZkoYk5iOlQqFw2ZVXaZoBcAwg5AFX1/Xl5UXD0AgSVqtVnCQomqBoEWIkhGeW154oivV63XVdx3FwCGiSQggRBOHz+c6kAnma95CNEPBcgGGYYZqyLFu2y1OiiRDJ0LapUzTl2gDgkCYIF7nEwvKSrmkYhpXL5VAoFAqGLcOwbZsmqWKhEIvECBISOPT5JISw//vB9yiS6+rqsGwjHIr++Mf3tHSs+s9Lr2Zy2up1HSvFMk6SSkWZmJiAtBiItgDPueTiyzLptKoTqZR96MAbp4cGO9pbc9WFP/zxXoaGhUJueGgQ4UxnZ+dK3pD9ftO2/H6/YTmW5uGQthyIkzwJcYpjTV0LhSIAABxgYX+gvakBwzDHtXECQx7GkMzw8GhN1WLRpCAIhq5ZpklRVENTYzq7cnxgQPLJJMec6Q2vZNKNzU2abpIkSVJMJptnWRaQZjAW+dOjj1566cWyLCuKmstWotGoaemQxOONsVKptH3H1vMuOP/06aGDhw/19vYahtHU1BRvTLquGwqHy6VKY7LBNE2EkOd4LMupap2madd1c7mcbTssw8uSQEJIkWRDLAEQhB6KEaCqVZHnAdMul4pBicml54NBf2db3+MPP2Qht2PN2nU7tjX09mKhCCjXgixvOTbQDWC7gUDAsMxQKMQy4vTUBE1RjmMRrnPVlZcf/vjDpqgUCq0fm5n2eRv/9a9n51JLF2076ze//+Ojf3z45NETjW1dIkuSAMMEsmzVu8KtiCFlSB89OdTc1npqeOzmm24Kh6LZTJ4VJZIgXIAqVSUSCnMc57muZaj1mpLNV1zHXt/d3piMVCq1bCrNArKjo0NQyvsPDW7o7zPdatv5O8tHczwr8RxTKqYzuTxJcZ1tnXGCHV4c++b/fmvNqua6ben1Sjgs2abWkExSOLmSyQmSYBsWjuMSw/AMu/+Tjx95+CHzy3d87/vfmRwbve666/bv33/F5RefPn2Kp4l1/X2E544On5JFTuKFyZlpgoCKUiVoprW9hQ8G9h85JsrhK6+5+s5v/s/s4tK9P7uPRqivs13AKeBZez98b21X50W7zs5m84BApwf2Bnh+8PBHtusxtJBOp2648aZv/M//7NnzwT8e/9sPfvCDeDyeyxfLxZJnmdu2brZsY2J0uqWnw3PN8dGTda26un/V+MmTwNJ5msEdc+j4kW3rV4fC8T/98UFVM+RweM3a7q1bt7737vsnBk9eftllp0+e/OEPvtva3n3h7t3JiL+9rfPk/oNvPP9iPB7nGPri8y945om/JRKJVW1N9Uqpc1VXrZxLRJqa2hqPHTtWU5TGtoZoJJ7PZgFmd7W3m7oBMIBwgiSg41oeQB99snfdmrUIQIGXDctlGBZAkE2nV5YXezo7KIoBCBN43rFcWfTlskVZCrS0dmRzJUhCnKY4katVSpIgFlOZ95fflIMBtaawFNHR1iIIQqlSnpiaCQbDgVCEZ0uWYYgSn82lm1tbS5UKgIRf9u3bu/fzX/r8hrXrPvjgg4ZEYyq9wtLc6tV9R44cs12ntaP9wIED51943uzsLI6T/WvW5HJZfzBYrhSD4WitVsNwCACG4zgGwJnZklpXkOdKAl/M57KZFVPXbF1nJXFocsIfkAOSMHhsybZtmedc03rj1f+uXbu2MZ6cmhzPphaZtnalWjt+9Ghzc3NqZUmSpHwh+8knH/dv2jQ2O4bzFMYz+/Yd8vPi52//MisJ//738wCA6elZgqB00/L7/T5JDvj8DC+cPHkyXcuVq5UDhw7G43FR5LOFYm/vGg85Pav7E8nGwcFTmVz6xs9+5s09r82n5zhJBMjDSWLHls2IJv/3O3d/8Y47L7vmmtu+9g0Bp+679yciSwUkaXFxgZV4P0+nUwunBwaffuKfRw8euefe/2tsaBoZH+9a11moZ4sLCkNTq3t6M5lsOV++5JxPXXX1Z3hR/M53vj944kR7S/PCSipTKor+4PETB1rbW5R6FQG3XC1hBD41N+c4Tr5Qbu3ovOuur19//fVTE5OPPPLI8Knh48eOff2uL67MTVxy7lmiIBfjSRzgszMztmH6fL7WlhY/KySTyUw229HeXi5VZqbnfT7Z1I1YNLqwsEAQBM0ymmE6GAoS9JbLLsplSzd/5tPb+/tvv+XWpx75y8RSKhQW1VJlZmqmt7sPYFhFqYg8ZXoGxBBJErZlKUqVZzjXdUicICAuSSJN0xAB6GK265RrZZIAxw7ttzAnFgpQLm5Y7ngqrTJstL37hiuuuvGzN0STTQxJ7R0eHZ1ZjMZ8yLbKhTJp2TTLG6YDAAQIFyTJ1A2OInq7exwbjIyMYJDwBUNVxfAgBgkMOR5OEo4DAIbhBEUzHMBwx3EIgvA84NoewAGOQdeyAUAAczEMg5DwPJsgcJpiDd3CcdKxXILAgeuROOV5LoA4BinbcwmCIiqVMkIA8xDL8p4HJicnPeTiOE7i0HXdUrkQiYTDoUA8Hi0UCps2bKhryoEDB4PBCAboH//o51dcd1O2XI82Nbz3yQe2bREUPjU1lUg0TM7O8DRzcP++t9/e8957H/T19BayuQsvPPt7P/jRY3//w6dvvA4jqYnZWZqkcJZ1IOACXMVQJTyBHGBYSNccAqcIgnCRR7OE53mWjlwElbqKPA8AkE+n+7s6IIFDSGAQNjUl29s7n33mhbff/+D8iz7FMMz6tesghFpdzWUywYhvempqzdq1FE60NHbOzs7yjI8mBBsHJE7RogBliFF4MJygcKKtfdV///vfnp4ez/EWZpcTyQiGAZoh8vlsd2/P4tKSLxBc1d2t2yZGEkE5spLL0ixbrlZ02wIkrNcUnhcAAC5wIEVLgggRcl03KIoWRI7hqNWaTuA4wCCsmxBpSh06bnNTAy1xkOUgQQHHbXGccq4wOTpseMAfaYS6rZdLn7z9sZxK6RKAAJmek8nrqqFlixXTQrIo+SIRD4B8PhuRfYuTo3NT46vamkhYE0yzvyGi2ZVTA8eTDa2vFN7uWdP94IMP/Pess7/xrW9nFqauPHsLVas1iQGtrNqGu6F/3ebNRq6uYBj4+l3fOLBvH00yLMViGDY5PUUQRK2uUATd0tg0MT7GMQykMcw0zxDwWYp2IPTT4tvHT1x3x9e//u0fLEyOLo8Nj54eDgT5qqlwgArqWJTnTbM8OnF858aNu1q3De4bNOtmyM8p1RyOXBzSpmphDJT9EiPgEODQQ5jrhiR519bNx44dfUkUnFo1WyrMzc199a673n33dZ5jqsWCh9yluYxiaL09/alUJhoKMjRJ0XB+aTYUieUy+c/cevvFuy+0XO+F196+94c/oHA8FJSaEo3ZxdTpkWFeEOKxWGpmwXBcHXqNwcQll13645/+RPb5NK9y4a5dbU3JH//we/f/8je//sXP9n3w0ZGDB5566qkPZufuueee5samE5PjRwdPv/3KHtv1bvjc5+6/7+dWrS5SvEjx4VDA0GprV3UJDEHhTk9n84mTp4orC6/+54WbbrllcXHl0JHBu75+d7VWa+vuuvjiTzU0NNiebrnGug1rr7nu2mPHjo0MDeMY5FlpfmElFAoUq9Xy8YF16zcCALL5kiD5O1f1Ejg0dZMkqIZ4MhwMW46VzazgFJ1LrQBIrFq1CndRSPKlS2WGJpWaWqmWdu7cmU6vxKOxcrm8vLyMPGiaLs/wqgG2bN0+NTOdLVZIDOqK5pflSqnQ0tRcq9VEkY/EotMTo45pSZHY8sK8aZoXX35ZNp0xdT2fL46NDHV3dwPg4SRpGAbLc6VK2bZt09QX5+ZZlsUxaBmmzIvAcUuZgl+UssWSphoNDQ0EQcWTjV1dXYOnTs7MzW7w+0uVSiSWKJZLsVhM0zQcwnw+Lwk88JCm1Iv5gutY+Vzm3J1nzc/NffL+u63NLTOzU+eff/7xQ/tdU6ur2vzcXDyawBA4eWxg9+4LQwHpteVlgeVmpyc7OzvHR4cD4dCaNf2Li/M7tm1fyaSQaR85eCgci+M4Xq7Wfnb/L2Wf7+JLPtXS0vLvF150nHpHZ6dp6ZOT4xhEuUzetcym5kbomru2rud5/ujR4wzHvfzaf5INDYLIHz5+pJAvjoydHp04zfKkBd1qtdoUa1hcnA9G5IDI7d6x7a1n/gVdfNO2raTr0hx78+03v/XSyx4BZZqKxkJLS/MffvTu26+/ddvtt930uZuOnTiGWCo1n5+bz67q6J1fznvIWc7mvv4/d+88a9eRQ4fv+dGPAQBr+/uSiXgyEW1pbsJwqDkOR1GOZ3ueXVerFE2rht2/Zt2Nn73x+//3ww8/fP+qKy5fWlwUGa6cz93z3e+alvfbB34digRpmqY59pyzz8N4kiSJ5bllnhOC3d3FUr6rtwNB/NipAQwnzt21nWRgOru8eeuG0dHRklIMhAIIdzXL/O0T/6jWdMDLBsGUCeQGWbOCUSyzqX9tql52IEAIYa6DY7hP4EiS4Fga81zHtDyCNDQTR0Di2JXsiuc5nmUzOOF5Ds3zNA54mnBsODqT0giSC8cu+8Y3r7vx06vXrAEYhgDm2h4AgCMomaFNo27phk/kHAQSiQRFCycGTnat6rVMh6DIel3BPZwgKJ7nddMAEAICx2nGBSZLswAAHCcAAKppuJ5L85yjqjaCAGCQIlzXdTyPpDiIgOt4ALgQEhSFe7ZDk6yNbIphbMuBOAIAIAw6LoQQ4jSDHBdBnBBEn2kYhqZ3dXWlUqlYJB4Oh1PplY7O1oMHD4oyj5MQp8iJ6ZlysdTU1NTc3OoLzBAUNj4+vGnTBqWYeuWFl3CasxyTgGRdUWOR6OGPDyDX1DRF02sURX3zG3c3NzfPzS3c8ZUv/uFPvydIxsPAcmqOIkjbsDEXAuAkoj6Jh/VShZclgOEAIoYVXMzFAGHbtutijmdiBA4gJJAHkdPd09bZ261aDk0LLIsfOLjvjju/7ovHoi2Np4ZObd20nWQphJBjW40tbY5lX3j+ZbZtz4zPB6PBTDa3ZesOAEAoLNiWgWFYtVp16w5BEJZjC4Jwww03HDhwIBwOXnrV7uWFjOOaH32yV1WVUrXy2RtvjkRDhUKhWKtwAu8PBkTkaJpGQNzQdM/zDFenPQp40HUcHIcYBgzLghAiDBGQxFmS5fkzxQlVUQSKau3sgACpSl0xzFJmBcdJ27Ta2trkxqbt3Ru+9OWvfXJifylbvOKKK//y6x9pVK2haR0phEyXJHl+I01EsqWGRAQjSMsyahs3Dh47ury0BAgcQw4xOVMnaU7AXQ8MffyxaKl///Pv25s7+k+tHhsbvfG6ayfGR+6+44snBoY9wzIh5vOHbKV24NghD8fUWu3u//kqyUALmU0tja2tzSvZTEOsYWllXvIxWqU+OZnzIKRwmsd10sYYnDIspV4qQc92fY5SUf/y8COHuvvWbdywetdFSi3zyd8eTgToPF0rqcXlUnl9+5Z1GzrPO+fST97+AOdBT+eqF159neNY2sEB5pUrRYoiRb8v5A+UqynLsjXDLlRqR48MBgPiv599KpctPPXcvzyEfe3Or3a2tRI4juEYSdMCGVzd1JvNFLo6OnP5Io6Trgei8aSHsEBc8EeDr7z1/uG9+1954V8EdHyxUKpQQox40aWX5NIrLEkcPna8Vqv5fD7L8TiAXn/1xf6udkhR07Pzv/jlzy+46MLLL/vUxMTk3d/+xqYtOy666KK7v//jO7/x/2ZnZp58/t+6pVerZVFgfCJnaaoNPCkZT5ULxfTSwsqiTxJFnkUEqJs6Q7M3XHPD/OLCnvf31iqKZSgstArZVD6TnR0bS/V318qF2dn5Qrag6+a6teur1arE0awYCPj8XKFY17VQpKGuawcOHeYoJhpN2jpm61hFrREEYdpYPN4wNDElMkwoFDUNtaGpaXFpbml51h8IFapFs662trZUlIpa92q18sDAQHdPLwZZhGF1XYlSMY5i27s7ZmZm6vX66tWr6/Xa+Pg4xzGCLKxkUizLijJXKmZpnpH9PgRQIBj0ADhw4JBt26FAsLt3VWNj0jA1VmAL2VylVIhEYtViIRoJqBqTSadqtVokGrIsC6eA42qz81MNTc1yMLCSzkKaZFneJ4gDRw6XKwpw3Hg0ynG8ptR9wRBJ0JnMLIaDYDCIcMx27WAkjGPQWTYklj9+fFBX1Qsv/NTzz/0LQri0mNZ1PZ1d6Vuz9opLL3vnrXcjkUg0Hjd0fXZ2urW9o15TdF3PZrMbNm1xHOevjz5+6aWXCnzQs4rxWOOFnwp/9ME7tUqlsbGRE1ie5//z0mvhcBAA7/bbby/kcs8+9TJHUw3JBEJo1aoeSeQZml9KpcNRdlX/uqA/IM2Nh0KBxYW5lubmeCw0N7swMTZx8cWXpebm2xvaAkE/xcJTx45ALdnd05XYueG1J/+SnZttbu+yavpD9z/CiHg05oc4ky1mP79u/XP/fOqpp/75y1/+9OjRo6t7egVa/mDmo6bO9rplmbbV2NB86xfvIFnukiuv3b3tnCsuu7pUKYuy7NnexOTQwsLyVVdd3tu5emTsdL2m1hUzFGrwwPTNN99Uq6h+2ffdb9/91ptvtDQ1nrdt+8jIiNzcxAvMX379u57uTt0wSJKcmpo+tP+A53myKAYCAUni8+l8oVr2JxvGx8d37TrbteyQL0DjdC6Tn+Fmu7q6TFO3XMt2bEzgP9izJx4N7dy2NlsrI+SGuBhppyjPFUOiVilgrh2UeNexXVegGFqWBOACgqBk2a8oCkXTum2pphWKBEvFKsJh3TIYhpE5UVXrQwvzQEj0X3DJNTd/9uprryFxCFxkW66LY7hn45CGGJAkn2F7AKMdT/dME2B4enmlp3910C+TBKYbdX8wQNqUqRs0hnW0tyLb8xwHAQvHKIBIzzARQgRJIYQxBAkI2nUQDRmconRdZxjGtWzP83Acuq6L4xB6pOu6DEubAJiOybCc67qQhAgAhBBN0xTmqboOIQDQgzgkBIbFEWhMJLPZLIZhiYZkS0vL9OyMaVhNjc2pVMoy3WKx7HleJBIZHZ8YHh7t619dKpVcm3rttVf+89KLfWs2+nzi3HK+rbXdQ0a1VqhXSgIr8JSYDDX4wo3vvnNoavLxq6+58pe//G21krvu6htODh5mWArHCJblDUMz1RqBwZ6uzvGJFE3whlohCcJ1TF1TbAtQFGHbCAPQQyaJEzxLliqV66+7LRKL5HMZCoKZpcV333wL85BnWBG/D8fx1mQS06xqpUJQdDGVqSo1y3GSySQksbdee72rq+ulfz9P07Ts95m2FQiFGpuSxXTB5/NBCHP1HI7jPZ3dr7zy8uLsYmdb1+To2PrN6z/eu5eh2A8//HjLli3Nzc1nbds5OzsTlH2Yz89xnKZpiqJk8/lEMlZXNAhxgJmWZSEcs4BHQBx4wDYtiqIIkjZNnWWYru5Vmqa9/fqbS4uL09OTPM8DiNVqtXw2F/QFSVl8uf5PAgc1Q+N58a3nXxVZOiN2NiS6LdN58+33rtx9jq4p6UKOFWlT05GNferii8455wKB4zlRqCiVSj7dEAhW0sucKBiawQUCWdPAKNKz7cau9qGZyZV89ps/+iGhqaePHH/++f+Mjk6uXdVVLJVIQbjh+s9eed31w6Mjoi9E++SKrlfqaiaXd1zEcVIxW7YczwNoKZMt4MBzAB3UEmxU6Iz7AjJlWdf3bqo6mFEqZrPZ/fuO3Pern135xAXH971bymaAbuFt5esvv6KUXXj2yaeOnjgF3Potd3xlOJednZ0t2w4NoC+eJCCOkTjGCsFE6xfOv7K3u8txnNTSiuNYcjQyMTL8rTu/8vNf/GL4q3c8/Oe/CjzX1dlJQlwgKQqj5ibnJ0bnbATKuUJnKFSt1U3Tml5Y+vd/Xpocn8gtLwX90jln71rJpBFIQtd99h//lGWZoxmaIqLBKEXAkpKv1Mnp2WFN01avXctx3Pr1a03deOapp5ua2wAAtm3ee++PBJa75dabdV3/n//5n7899tiGDZsEjj//wgsSiSbPAsBGATmwoaf7k4/3rl+/UZTYyckJ5DqKUnFSnihLkAAYhur1GoRgZSVlWtqOHdv2f7CfYZiWljaeFWiSBQh98sn+rVu3Ql2bzmU7OzvTY+mGpiQCttycxD1gufV0ZqFSzWzfsn1xcZHEsOzyctjn8/lFQzMSicZcJtvdtU7V1YWFhfnFhRtuvKFUKmWrhXM+dWGpVArGw5Nz08FgqH/N6lRqpbGheWJiIpVKEwRsaWmplIoDAwONTUmWoUzDDPh9nofmZmcDgQABiVpFyeVyzU2thqYVCoW+vj6axKvFUiQSKeaVQi7T2dk5PDy6vLxYKlVkWRQl38CJk62trZWqciZH6iEMx/FCIZcvlgVJboo0VErlg8tL69at27/vSGtbs6kZuVxelv0IoWg0XMhlk8mkxAnQA9VKJejzR6NRkefj0dji/NLrb7xWKjVs3771w/ffn5oYo1iqWinhmB2Khnv7OmrlWia7PD4+Kgf8iUTs0MDxjo4OjqEPfrJ37fp1lmWm0yu5XDYRiSLP5hmapZnGRBy4DkORJA47Wxvi8fjyytKf/vD7dWvWfue736dp8qUXXxwZOEVRFENSpmnWda0yWdKUOs8xtVotzTCiJEyNThfLFRwnAYYztPTW+x8GJBEg59xzz73hltsIgnjrv68IDLG5o7O4tPD8i892dLQ1tCfWrl39wTtv62Xvy1/9uum6P73vvkQi8ehjj0EI21o7XnntZUczCrXMV776lRs+/emP9n748MMPA4SaGuMYTXb29c3OzzQ0tXR3dje0tI6PDTW1dUxOzVIsF4nGEQb9fn9zc3PA5//ZvT/b8+Yrpq7193fjEB48djDo93/u1s89+sRjYkiSQj7GNsqlKs1R6zeta0wmWZZ2HMfvD25v2AYgrGsqz7OZlTTNkKZrUxxDUORKOltVar39fQyB1wsqR3gcLeRyhRAfkFmewXDHc0ONCbdeYBhmeXlZYChJlh3XFQTBdV2SpC3XqeuaZVkYhumWwQucZeuXnX/JG/XXFLWGs2zOdU6fHEo2t97w7Xu/fNstseZmhBOu5+q6TpIkThIYQATBaJrBsRyACMOBi5CHEMAATVMUw7AsG4vFXMsWBNE1HehhFEHSBIV5aODosc1bN4d8QVXXIcAIhqMoyrIsDEEXAxRFWY6GIMKQI3C0ZZkAQwxNep5H4ITjODiOWI7WdR1CcCbzj5Dnui6GQxyHhq7gOI65HnJdjqJdBxHIcSVeCPj8CCGKpRaWF0YnRkuF8qHyUX8g0NPTNzMzRVGUwLMkQW3bun10ZNiyLBzHE8kYz/PplWxdqTiOjRtWTJKWZ6aLxXIwFA4EwpCgDcM6OTLIkkQg6Hvx389RFC6KVNjHrFvbn84sAQxalnNG6ilJkiTQwNNZwCNkczTPcCICEsAI17MM3YKYi2FYqVwgMWJpYeHQ4aOXXXpRqVwVo1Qul/vszTe1tnV/6Y67ki0N3V2dnmOvZJcJgsIhYXomTkGaIqfmxwOBwM7zz25ubJqfnzcNLRwIzs/PQkOfOT2MYbjE8yRNyxyPAWDb5u033TQ1NZVeWAhIctgX8PFyU0OL64G333nfNPUd27cXMtm397y1atWqQqHg8/kYjvXLsqEaPlGmaVa3TNe1XdfhPLQwOxePx03TtG1b1/Xenp7l5eUXX3zx2aefWbu675xzzrn++qubm5txkpienuV5/s3X3/D5hVKt2tTS3BNvf/ujd1995d+8bjJ+YWD/BwJH9jdK+bEBnPcNHDw5OzatlVWXdF56/TVZliVeaGhooni6UMjEQwFGjiYa4jJNO4tZAwDVMgiEPfH3pxVFRQC2tjUH/OLtt9z63f71N1x37aZE7IHfPUiyzNT8/OnZWdUFhboaiiYWlpZ0w9ENC0JK1a0vfOHLTU2dlmNjjk5DgqApLhJwAaoXPUwk0uMnWUbilLrFwHQxf8nuXa+/+MLLNmpfs8ZOBsPIk1rsd/e+29vcetNNN4uR8EvPPfftH/302ddegQAv5Ur1ej0UCuM4btjmxNTkd3/9e0s1fSKDYWi1BSCBXWZrPtFXqxZPToze/+ADG7dsfuihh+YWZm3bampojDdEv3jX1/yB0J//8tfOnl6e45dTWUEQHn3w4amZaV6gd2zfEIuGm5qSt33+9q5Vfal0du8H7z75+N8qhXR7ezskMFoUMd0iOG7brp1LS6mpmdkdO3ZMTk4uLy8HfD6/z3fHHTfxojA/O42Q+4PvfZfnxVtv+/wF5+/+698evfdnP5eDoamFlC8UcQytva1zJb3cs2ZDvKltdnrScSEB8eZYvFgsZ9U0x5ATY6MiS23duAlzHeA6oYC//aJLNU0zLb29vTWVXmloabrlC7d8+OFHnS1tpqlOToxEw8Hjx45Ikrhx/drpyam6qcg+BsNgvrACMS8o+XyyfOjQIYJIWJa3tGBTNAsg3tbRYToGRsFiqVqu1TGcwTB2aGhKliKSGFZVtbm5haH5mZkZSZKSySTHM2NjY5VKuaW5QRRF27abGhuWl5dnp2caGho8x8FxKhAIRIIhBLFaOh2UJVvXSnp9YW62VCq1d7SGQqEjhw9Ho1FRFM9wcc+0iSCEHau6pqenbdsCOOQlHgFMlPhkIg48ZyW1tOuss1bSy7WKEgvH0ysr4UjkDJXw6OGDpq7FQuHx4ZFEIg4gRgIYiURc1z5y7GhTssHvl995561gIBCLRVRVMU3IMeR7b71VLBZX9/VXK8WJicktW7dWKrXpyVosHPJsq1osFAv5iTGKxDyjXsVxfKZc7Onp+csjf1YUhWfpSCSSyqR8Ph+GgQxww4HALZ+9uVyp/fOpJ6Px+Oc+/4VLL7/63XfeOnbsCM9xrus2JpJhSWxqTNbK9XyxYLuO7SLMQxPTE5l07qabbt68eTtFIklmU/ns4cGTn/vsLZdde316cdapanMTU5+94TOOaygV5fHH/y7Kwfv+dK8L0Pf+7we/+O1vI6GwyIkIoT/+6SGfT/rhb38rCMLBg/t/9etfHj10SBK4xnhsdHgo2dIQCPnPuuALkuRbmFu86pqrz7vgXJ9f+tMjD5MU43oo4A+RERoB9+5v/Y/fH2hpbJqZna5Uyp98cqCrq/P8iy958/13VdOyHQ+UiwRBYCS1qm+1qWuReCQSDOSKBcsyRkdPkwztAaRp2tLyHM+wFYVrbe9s6ejU6yrDMHVFqykViiKQBTiGd1xT5mWEeeVCURR5PWOwnue6riT7E8mGVCYNILRsdyWb6TXMZKJhYnwSkgQJMRpCTdMQQnVFQx5uWd7czDQpBX7y4Pc/d9uXKJ4moG1YtmfbLMMClnNcC3Md4GGIwBiGARgwTd2wbARcjCAhjluu4xmGZVmKovh9oYAvWC6XeYazXQsh7AzxKhQIGpbJs6xju7gLkeXhHgQA4BDHPUDjEHoYjiPHtnEMkBTlOA4AyNRNgiAc4FqqBQDAMLxe18CZOixwMYS5tsMwrOe4yPWQCwCOKbUqUa/XBVEcHR+JRqM+n6+lscmyLNMwAIadCRP19HYzFM2LQiaTISlCkqRatYIwsLJSZWmGpKl8NhWJJUq58gv/+k+sIRkIRkiWz5QLBMWEImG/zbi2izBHluVCIbt58+rWtoaVzBzHiq7rWpaF45BlWYDs9pbE+PAIRIbMMaGQcHpkaHZ+JJlsXL1mFU/Yhm7zPB+SQvlS+Zxd2776lS8fPX6sXldndZXmWMEnHxsc2Lxtc/+aPq2ucjSfzqU9TxN0yzAMXder1WowGCzXbcvzUjPzDMOsrCyjrnZRFHlJHB0d5Qni8IGPipVyd2cXhNAwjNbmlrVreh9//ClZloHrBfxyQzzB8uLWzVuOHj+2/5N9kMAXFha2bdu2tLTkOA7DsYVCYXh4uHtVD82xwXCIZ9mWlpb52VmKotb09VWrVQyDEGI/+8lPl5YXfD7fd//37h3nnq3W68vLy8NT41PT0319fb984P6dO3b0tndu2LbNxclT+4+cGB/5/q9+MvLCv0lHVWpOJr8QiYRjfnlgZrmlKykIQpFMUyxTqysMReHImh875ff7BJrA8+70yZPFSLCUy9IuTsnyTLGgaGbEFyA5xrPA0vi00N9z/68eWEpnEcvNFHODE+OZXJ7i2JaWVpYXlpcGA/4gRVHVcsWqqqnUMgAAYkShUBibnixll3Ub2p7pVIusrqaWilAg+2KBg7MrVQcDwBYDcrlxKiGQI7NT77z6LM7JpObO60XZJ+6jxFq1LHGUyHPHBk7decfXL73yymA0RjLszPS067p6XS0Wi0uHjvoE/8z0mE/m/b4oRVEYdFf3ro0mYyQjnRibv+iqG87efcn8zOTkxNjy8lKtrBw+dnzvvn033vjZ7du333jjjSdOnPj0pz9dLOQa4hFJ5pKJmOvar7766ksvv0ZTfHvfmks/deEDDz30wrNPT06MXXzl+Ybl5PcddJCXLeQTDQ11TSuUyuvXbVi3bt1HH3+4a/vZH733brWuaEotkYj9z11fPTU88sjDf9yydTukSTEYtHGsalseTeQLytkXnLPK6M2k023NLcnWZrVWrpSK87PTJMv4odDa3CaLcmp+YWZm5me/+PVDDz2YWcyEQ/bo2DCGIQ+4HgbGx4b6V6/dumV9R2vX9ORUNptdXJgP+XySJEQCfiMRG59TgsGgadqGYYyOjHR3da1uT7P1AAEAAElEQVSkl1mWrlSLAi9XqwWSpE2bESVqdPjUpZdfBhFTyZUaww0zY1NNsaZ8ocAwDCUHlpdWDh065Pf7w+HwwsICxEFra8vgYFHVFIalypVyOpOybTsaCxMEQVEUThKOZWcLBUWtQwhJCs9lLVEUTcMI+P2lQtG1Hcuy6qrqeR5O4aIoFotFQZZyxQJFUaIk5XI5iqYNy5QkqVgsVqoljhWQZeWy6bqmRmPB5paGo8ePbd66eWpmVlGqFEP5/f7JyYmPPvpow4YNDQ0NAkMvL85XSmWB4w/u2495CGKoWipiANi2rSiKLEt+2RePxuKxCAAeScKV1LJhmC0tLYai5vNZwzAESSxkUwihg/s+SsQbBJ7NZlYak3GabqtWqzzPVktlkiRZlgkGg/l8fnh4+MTA6Z7uvum52Vtuu/07d//vjTfdfMNnPl2r1V575dVCPjs2N1urVEvFPMOxrutajn3euedfccUVOEUjz9qwZvXY1PgHnxwIhULr16x99sl/JuIxhiOvvPLa864TCIK478c/uvDCC7v613329tsRIO7+5ncuvvyKUDS2fedOrablstljAwOf/8Itb72/59An+xdmZ2MBf0PA79rmytwsR+JbN6xZXF6670c/wHGiVq1feumlgiS3trZCABSliuN4MBItl2qdHasit39hbGR8ZGyKZdk1a7deedVnLr300g8++rC7e43sCzY2NBeLRYqiLMvBEDh85OD8QqpcLnuew1I0yzGWZcl+v2NZiVhUVeoURWTTqXRqKRZNKIpC07TlOABCDwO6rmOOF/L5cRJQOJ7OpGZnptv7VrEsW6lU+tasXr9hU7lcbmhq8cl+10Wdq7oOHTrk2K7neRgBHRtFwvG7vvNNv+g/a8euO7569eYtWyiKQp7nuqaFAIaTJISuizCIaJwGOAAApNPZ8fHxcqlw+MhBSWQ8zzlDMyUIIhgI6oZhmmYikaiU6xAnASJIGicIyvJQb18vw3EeQLbrABySGO55HkkSHkAIIV2tm6ZJkmS9rp6hsBmmhuM48BBJERgGXAdjed51EfAQSQIMwwBEOI4h4FiWRdOMUlM1Qz+D40AAEDVV9Yf8UIeLqeWlpaVINIxjMODzm7ZBEIRarzU1NSHkzE1PqLpWLGQq5RoAkKIolqVNQ3c9m2F5kaf1mC9EJymaL5VrAg1xggMAzc/OxePxqbHxiD9YyhX6+rrPP/c8hCzTcFjShZiHQQ9giKEIw3Lam2K7z9uyuFx64d8vEQRkWLK/p5llaE/L4pgnsZxt5nledLVcrDH+0XtvNTW1BGXeNa1KNR+NRgeOn16eX4CeDRCiKRaDNIZhFd1CCCnVuiTIEieXSiXLsyCEpXyhWMyXC0UP82zbZnlO4lgAAESgvb0dQlitKqbtHBs40dnThWHY7x/63e4LL2Joyqgr4aB/w5rV/at7JUl69dVXX3nl1Ww2s2PHjjVda3VdD4QDtWo9HI1UKqVjRw+cfujkzNSsZdj3uQ7P8w3xRFdX15ED+z9z4w033ngjz7Pjc3MtjU3xUGRkfGztmjWPPfbY2Tt3XXvV1ftOHHzr9TfefP/ttpamO7925+b1mw4/8jhQlig2SrqAx2loA+Bg5XLZw5zV63un5peNiuW6TiQcpAXac02RoQTXPndVCyNz9QjfnGwZXVi2eWDhlFasLWaWeYq75YrPIYgIhvrKV776/e9/z6prv/vxzzyIf/3uu7V8uam1JRmLDw8PtXd21Cs1HMdxHIcI/PFPD7keBBAxOApjHkWQ63o6N2zbtLyUFmVJslCu7CwKiGNYiuB9oryrr6m/I8JgTIgVDy7knjz4kSzyrW29TnHl8xef+9HgcGY5f+Lddz/672u+aEwKhRDAGJLSylWB4TwSFcqa7VoYcH28pKt1QBC+YCIQCMWTsUgi3tjS1N3V0dPdLcoRVf1Iq85s27L11ltv3bZl6203f+7NV17DIHr1+edFiQ2FArIs1ap1XhRa2zr9fv+hAwePf/jeR3teu/Lq6y+/7maO4x64/xeDxwY2b+jt7t2gadrk9LxhmKVSqbu799SpIcd2n37yicbGxqWlVKlc6O3qPOfss1mWD4eiDYnEk/969uabb/rdn/6kqmqhVOxb3fuTn92XZNj+/v7FoREA4b59+xiGNgyD5ejHn3h2aHz0kT8/+o9H/04QBCPSVd3o7F2TW0lv2Lh5eOiU53me53Akuzi7YNu2WbcDwaAyO8MwjG2YpULh1Zdf6ejoaG1qt223bhiNXW3ZbJ5kOc0o+cN+5ALDsCRJQsilKXjk8IFNGzfOT8+bmilJkl/mRsfGKYYuFDINjY0+f6BcqQWDQYIgJicnWY7u6+ufmZny+Xw4jpcrFQxCjudZlmVZ3ufzKYriOJaLOYJPZEUOeUDXtEQi4XkeA5Df7z8D6pFl2fO8cq1KUVSlUiJJnGXoQrkUjYZd180XsnW1JotSLpcTRZ6jqaWFuUQi0dLYNDo1EY0F3njrtWQyeeTIgXJV7evr98k+lmUOHz2yY9fOuZnZUDggSdLU+JhnOxxF+iTx2PFRnyjYtl2rVlmGd22HIkhTt8dHx09DDEAkCMLCwty6detyuSyJEyzL2LaFAVdXtJ6ePqVaKxcKrimQJM1xXK1Wz+Vyks/nC4ai0WipXLVtb/fuT01Pzy4sLNQ1nWaYKy+/7JlnntI0LRoLr12//tOfvVnihaX5uWI+f/rUcdu2MRwCAOYXFouV8smTp7dt22Yb5nP//s8dX70z4JOHBwc2ruknIK5qxpOP/KlYrUmxhlBTx+bzL/rvy6+899ZHb+15o1hS165dZ5jqnj17ztq262+P/nXj+rUfffx+kKIMTe9pjK9q75idndVUlWYphqPv//EPCYqsaWo4GmmJx1976bnhsSnbddf0dnMsXSmXAADJZHJufvqpZ57/1KcuPvvsc5eWlmzbjsYTf/nro5qmpVeWGxsbK+Xy0SNHrr/++pODpy3LOvfcc2u1soesai6nORplkYMnT2zdvg1DyLUdQzM62toh5tVr1TJN8zyvGyrDMDiBQY4kKJzwSKVc4nycAyxRYGMBEQLszETE8zzH8XxyAADoeYBl6fn5+TNKSgzDPc+zHeAhQpB8X/zyV6664moMww3HLqsKy1AEgZEOAUnCsjxNU4HrDAwMHB88UTd15AJL14IBX72mUASJecgDgMAIx3HK5XIgGCEZOlcsQJzmJcmyLNdzNcPwhcKVuuq4ru06CIMAQ5qjUxRl2jqEOIZhFuaV1Josy9ls1ufzRaPRM5/qeZ5tWhBCVVcVRWFZvlwunzFYu66NQeRiIB6JMyxVqqzgkEQAYCRBsQwBIKjrGicKqIYMUy8XS47jFAoFxzV7u7sikVC5mKdp2rL1eCw8Pz9PUrhPDnieV6/Xu7q6JicneZ4vlUqGYwqiWK6WEM4gDNIMjeOY67pa1QvIEUurUYR79RXnm0ZJlgSappV6NRqNYLpnuY6HEEOQjm2tWd29qpd67dU9lmW5Nuxo7Zoemy+v5BPxkIMqnufo9SruWR+++zqG07994IFCMSdQPsV1gWXptfLgkUNzI5yhaxDigiwBACzXZVgWp0gPYcFwiOd5WQqKghDySyyFizzLMBxCSFXVumGSJJnPlXnRH4vFUisZCKGiKIDwztm1kyTJfz3/AkUxumkFJ8auvvYqRTds2zr//PN8Pn+pVPzJT36ysrICAabVa9PT0xDCoVMncQK7ePenrvjKHfPzix1d7Z2dnadOnZqYmLjo4t3VavW+n/+cZVlOEFdWVtrb2xOJxKuv/nfXrh3f/Po3Zqdn/v3CczvX7/rOj+5pbWwo5mrIwQtKPea6FGHIHOVoOkUL0MWRgTGEVKmZ1YpaKdUEnjUsV7MNloS67fQ0NWfLpcLcEsvSmfKY6UFFMefSi1t71/Ru2LBx3YbBEyfeeOPtltbGC3Zf1JCMT42d/r97fkLSTKZQbGlr1evqrm3bCtns9PhYY7LJUY3p6SnVIP1+f01RWZbesrZneWYaK5v5bC0dLuiVimfXxXjMFnHX1Iv1Giv7dAbWMpl8vYQs4MUD2WpBdTyfi2bmZltEQissRmW4pWvLUr3gpnXOVc3lqq6bUmMjjrnf+MqXn37micXsAi1wt9x8Y2YpVSzkFjOZyVPHWhqjp48UVN1gRX9Ta+tFl1x8/gW7L7/2OpoEEHkT46P/73+/tWfP2yRBnHvu2Z+//da77/6mJLMe4giSril11wMjIyMYBm6+5XPtXZ3pTOae//tud3f3r371K0HkPvn44z1vvLq0lOIESRCE3t7+SCTy5OP/6OzsDAeDmzZs5HleUeK2ZtzxpS+TNNve2TU+eFqrVBSalGjy9LHRt19+OXrbLX988HeeBQqFQkdnG0nQX/vePblcrr2zTVGUxx7+89rN6yHPHTp1qrW19cPXPlRsu2ZYcjxBEMQP7vtFLBqdn58fGRlZ3dv38ssvczzvYWD7zl1KtVLM5GiKEASuWCxOjE1Joq9zVZfronA04SLACSLBsPWCLvuCAHgcT4dCgeam1mpVHR0+hnAgh8PlWnV2aaGzq6t9VVc6mwnGowsLCwzDaJqG4zjEiPn5BZKkATBKpUpra3N3dy9FUUeOHKlUa8VS2ecL1FVFN+1QJExAgsAgQVAMReeLBcvUdV3neb5QKMRiMcM0/bJsuY7n2K7n0AzFUKRl6JwgOJbtl31+SWZttlKp1Go1AuI+SZ4YG69rdde1MeSNjAzt2HlWV0ccIpBeTpEUAQBgKFrgmLHTw8Cylhfmh06f9okSRVEkxBzXZmjKYpi6WiMosqootuls3Lj5sisuXVlJjYyMTE1NGIYhClxNUU3TJAiM47hiXZmfnWlpasosa4Ztx2PJxcVFwzA0rR6OhS3Lmp2dl2R/R2fnhx9+DADQdT0Q8K1atWrfvr2XXXrpunVrnn766WI+/7nPfW716rXf/fb/27Bp8y2fv/3NN99cWVkZH59cWZ576623fD7f6jUbmlrilZoW5AJDx44ZVu3wkX0//O4PTx09FXJLwrruB//2zK4rrj9+8gRGkocPHcvn8z+//wGcwmdnZy7afUF6afG9d14/56wdYV/LhVs3UhT17LNPZwTG5xeKhVwkFE6lVpRyuaml5eabb56cmSIocmpq4htfu2NVz+pf/eJnBE2wLJvNZnVtaWxs5HOfu/Xqq68GnnHq0ZPLSysTE2NDQ6daWxq7OjoQQoMDRzmGfOjB3wYCgcXl5auvudLzHN2oNyUbDU2tVquO4yCEkAcc23Uch+dZvz+IkAs8F0JIkjjEEEezHuYh5Jm6GvDJOjA9z8E8F8eAolRVVfU8TxAkgiBmZ2dbWtogApIkHT1yuFarRSIRXTcBInw+/8L80k/v+dnGzZsURZFEkcYJgpcxALJLheHTA/lyZTmTWVpYKBeLgshdcNHFvkhIZLiAJHuu/ev7f0kxBEKYa9sugARByLKvWlV8Ph/NMgARqqaZpkkzJIbhHsRKlTJCmG05kCQQDkkcowjI0oLneYZu4gCF/T7kYTRN+/3+oaEhgiB8kgwhJEnCcRyeJ13XtQwlFg0A1xMlHuDQNM1coep5HkVRZ/rrNEPW6nUIAcELnKZp9WrNH/BJolCqlAMhv26ZMsWTNFWv12uVCoSQYphioRSOREqFiqopNMUSBFEqlYKhkGmaplIv15Ryvlo3bH84WirnXdflWUYQBJYn1FpaZOEVV51PEXo2lyrlyd7u/snJiRpDkiQOXM9zEEIeQ1H1WgVnZIomdMMkSWJ4eNhUgW0Zpm05pkHSJHQRTZA+SV63bgMOHJGlLV1nGcKy1VIhKzJEQzzoubJjuwwJy+VyPBiu1hW9UnUBSpVzjuMgC3Ndx0HA75dZgccpEuJEOBYlIS37/RBDC3MzOAkxEnMcz8MxAidPnDrtC/i3b9+ezmVpmp6aKfzmd785+5wLVq1alc/njx4+smbNmq995c6Ojo7lpYX9H+9tjidpmjx/5/bNmzcCiOVz5a6u7mRzw8TExJNPP73r7LNuvPGzLkAURR06fLhSqe2+5NJsNqsoypbtOy669LLH/vH3jz/4cHWo6ytfvOv07Ozo8IJpmmJA2HLx+ceeeUImWZpgdAwreybiIMEACxjHRiZJBREuIF3o6SaLQbNetyTMdYDpAI4VXeh5GJRFf5Ms3fqlr6iZ4smx4Rdf+HduZWX3zs17Dxx76503cBYnaPLAwOErr7l2aGayXK8yFBMjyeuvv/4vj/1V1w1Z8icaG1S95iLPdd1qpTo1MZ6gSZVBPA1IU+VZQqtrq1v6BxT/yHvvCTLH0BKNE4LrlG2bpOWKqfOQ5KGIXOQL8q5rm65bKuQ4kmERpB0QQLChscl2HYpjq4aKIQtAIPJMrV579ZUXkIN8ktjR2iDLcjhAr2Nax8emPv3pzyKSve/nv8hmV9q7u5CHySI7NTn+5p49/kCovb391w8+8NBDDzqW1ZiIe55nuEYoHFNUI5vNnnvehRdcdsUfH/xtpZAK83g1PXf9NZdfcNmVP7rvFxdffPE999yjafrg4ODU1NT6tWvCIX8+k9q6edPE1MTY2FhrS/vc/GJPT09ZqXMid+cXf/Diay/RPNfX0bHv3Q8aw7GOppYbr/uMP9bSkIhMTU64psGzAk0x0XgMIa+Qz2YK2Wq1evzEya7evq3btxw5vH9ubq6mV6+79obHn34SILi8uNjc3JzKZJeyackvZZbzBw8evOSiixYXFzesX7u8vDg/P8/LAU2vDw8PG7a1ceNGz7YGBwdlSQQ26Ovveffdt7t7uwdPfdjd21+pVDds27acy1x9403/fuGFlo5O1TALlaV0Oj08MiGJLKqgpsYWXddrtZrf74c4iMXiF1100ZEjR95//4MzMFufHPBIzDRtgQ2s6m7yBwOzs7Pz0zMUgau6RpLkGYSvoigiL5i6cUaSwBAkIIh8Pi9wfDway2azuWw+EY0pilJygOnYtmdjAiaKoqHryyvpSl0lSTLZlOzvX8PxIk1SuWzWtR2GoU1FreaLn3z0MQmx0VMncIAMw6AgqFUd5Nkry9nOzk7D0BVFicVilUq5Uq1kcumZ2dmpqanl5WXNMB3Ha0w2KDWVgLjr2tVSMRqNppaXXc8uVysMzU9NjPGS6JNFn0/CAeJ5FgBAYsBz7ffff3fj5k0kTdA0vbAwR1HU+Pj4gQP7BI5Pp1YuOPe8zs7Ov//jsZmZmabGlrPOOktRlM/dclsgEPifb86xLP3II4/UDbVarT75xN8+tfu8XF771JVX4ThIZeZxtRKIhNf39oyfGOjoaJsYGcnlC7984D7NrvuF4DXXXHPw4w/+8NtftyWiLPQmRsZeySxvXL8Wx2E+l5ZE2XXd+YVlUZS/cNeNPM8fOXr09MhgT88qRdNdhOcL5eb2zlRqUVHrkiQwtAs8e3lh/h+PPjY1PXLkyIBp2JZtAGRzLLX/k49lUQpFok1NDe3treVy+dPXXzs7O4thCAFXoDlD1TzXae/sIEkSYVCQREVRddOK0BTLcwBijuNwHIMhQEDM1jUcx3ES6qYBaAzDcJKhAU2wLCuKoqZp9Xq9vb0T4IZtOp7rhgJB0zLK5bJh6jiO4yReKORln7h1y9bFdLpaLWM2Gh0dX1pZWV5a4WiOEklJlNevX79h00aGYSS/7LpurabYnluolGkcIgBs2yYoHCNwhBBOUgzDlCs1wzDiMU7VDIYmeY4zTb2mqa5tMxTtWDZyXEEUq6qm11XGT6XSC4pSTyaTmOuSBGGYOgFxhqKVUoVlGRVgrusi4Kqqqmk1AABA6OiR4wLHFYtFVVWLxeJl11x/8803FwpFhiAcxyNwgiFIw7EJgiDq1RoOoVKtiaLIiyIj8nrVqav64uIyQ9FnWIwYhnMCRxCQYShR9qVXshBC3TAaGhp0w4Ykla/OQIygGGDqNVmUaIp2DVPNVpO9FMfYIUkmMM8vyTSBLy2llxeX2tvbV9LLoVAAAyQEnuu6NEnZBMnwoshL1YqqGfryyrJed0NB3vR0zAMIIdd1CYJmSOaKy69RKgpJEaJMqUaRZqlPXXLhe+/sqdYKHEtDHM+XFIQwRdUcG7E0Z9suL4g8z1eUouNYAACeZQ1LNzTFRdjKwpwUCOqmUaoo13/m6ppSmpyZDkdiJEmHQs3JZHxlJXPHnXdVqzUch4NDg+ddcO7HH+z74L33L7nkktbW1qX5hYHjx1964flAIJAulb5+152RSATDkOVamqGHWxtJhn3h5RePHDnyk1/8rKOja3JqygNYKp2OJht37mw1dWPdmnXHBo4LAv/eO+++u+et6665OhZLvLznpXq9Nre0WDfrYZFny3UMiJZDcIJUt+1KubRYzJIEFWQEjZNzah7jCBWYzcEABaHINzhafSabFvwi5ZG8X5aDIcNyKQRff3NPanzaxYCqqm2xxKaOVbPDY4c+/tgXiUSjUcJFuaWUq5sjQ8ObN2+xPS8YDn7m5psef+wfmaX0xq1bTw0PaJWKJEnLCwuaphkekngZMJSG4RwhEhL34ZH9+wempDDl6KZfDOmOVrI0myVwSHMUjby8WlVpHhVLOR4TwnhwV1IWBfkt7ZSP5nXbPjY2YXpg89b+SsWwXAenRJblwqGA5zlSJNTa1rS0OGMpNeRPlqt10R86fnr4jTffWVhKP/nPf+4465xLrr6qq2PVC08/K/Ciazq//sX91VJ1YXaBQNA1LYCjVZ0dI1Mz1aq+fuPmQwePvPiv55uT0dWrOqfGR1b19ZGQ3v/e+1cePnbOru1fvesbOI4PHD++98MPhodO+iShVMh/8NGHgiAtraSymTzHcbplyqHAxOTkk88/98v7f3HB7vNnZqYsUw+FAuvWrCUIgvOcC3Zsbg7w7W0tR48cX1haTC2MBcOBC3acNZuZxz2vlMtKHOs4zOzkBDJQKMK//OxT11xz3eT4pFYq13mBw7GZ0ZF4JMwJ3He+951TA4OqoaZSSwihZDJuuG5zc+Pw6Fhba3spX2hvbVPKldWrehyn/v4Hb+EkUSiXQrFoTVcs4K4UM8MTIx9/8hEvsgyXODV4MhqNWqa+ur83nV6p19W5ubnm5uZgMDgzM7Npy2bXdf/5+D+bmppYmlm3Zj3HcaNjE+tWrx0aHrZMdHJgSAr4PM8DCCYSDQB4tuvUlapj2a7tGI7LM6zjOHqt7gsGIAHP5FpTqRWEkGPbeUURRdGzHeR5/oDfsC2OZNW67pMDJMvVyvWAFFqcXZb8PkWplwtFjuMIHDIMk1tJUx7GsQxCrm2ZHMuYpg4xzNBVUWJVTTFNHUBgOZYg8cGQfHpoaH5xnuUFDMP8klwpl0ulMnJdvyzrumoYmqIokixXKhVA4Mj1SBy3dD0aDszOzwuS7FgmSVCiwGp1ZcvWjSRFn3XOrsXFZcMw2lqbpyYXGIomIIhFw6Fg5NjRg/V6fdPGtR/v3Vco5gqFwt+f+Pv09PQjjzwSCAS+/b1vWXU3KPvee3fPsRNHSpnMl2675Z3338F4iGPB5Wy5Uq2fe/7uy6+4dNOmTaFYUncqshxoSLYcOXjku//7nbZkeNP6DeVcoTXeIPoFDMFSJk8S+ERtormz9xvf+15Hb/+JQ4MHDx9es2X7Dbd+7uFH/vDkM88HI7GRsamXXnnVcYEo+0qlUjQUZRnq2aee7Ovuo1juysuu7ujoyuVygyePBkMyhZNzc3ODp4YnpqY3b97Esvw777xHEMR111y7d+9HeabAs5yi1vP5fHNra2M8btt2d3cvzdEOAATN6KbNcZiqaAxFaqrKcZwoCIZaZQTedgxT0wmKLKuK4sEzTO9isVguljgRMhSNA7xSKvn9PgKDtm0ihFEAQdzrW92zd++HHx08bDguS9AEQTR2tLSt74lFwxwt0DilVBQMxw1k1QwNB5DCCQtzkesZdd20nbDPb7rGGVvwGTFlLN6oKXUCgxTECUi4jgNsV+YFJ+CpSlXmhdTc3MLsXEtHJ0GxOMlohl3V6vbSIsuyyWQCMzGaIJHliALf0tLyzW9+Y2RkhOd52zYtzVy3fv2q7s6X//MiAMDzgCjI1Vr1muuuo3GII4S5DvQQcABD4LrrEcBxz0AoIYSZfDEYliuVCseymm5hgKxUNddVNm1ar2pKpVJCCHM9WKvWRVE0LLtUqa6kc5LfhxDGy2wxVwz6xGKuEhRFv4TxQalWci7cvi6TiS0tLYWT0aVMLhINtq5qL5UKmWoJo+iqqpEk7WEII6Fu2x7CaRInCAJAABBWrTrA9UjISyyjex4ALkUD0zIB8BiWq2kagRO67QWDYU0zMotLNM0LDG07iMJhQA44yLMc2wHIdR2Cosr1CiIAyTJ6zQLAK9drEEKcxCmCYCiJAEQ4EmZp5oVnXuzt7+vsaNYMrZjJHP/kaDAamZyc1Mv1+fnZ6278dK1cOvTh3lgoOnF6eGZ0dGBgoL29va2l4dprrxwZGcntP7y4vGIjrFQpJRKJcrkyMjylKirv93/re9+xDfvQ8QF/QMQAEY834DiYWVoAjrOwNIfh4PW3/0sQxG8f/C2ynJKihIl6zAz1b9pEOpY/FHziez8I+mmVx3LVnOEgvyhIOM37IghzhCDPcEx6aaW7uzsc9I2dHp2x7DX9PX3tTTZF1AvFmcVZoaJoxexQpuo4IOn3ORSRH9dKrmZlZ3Zt6Ng3OZ9TS6SOrdnMU5DpWLMGEsDxrHy1HAiGA/7gTZ+5/rXXXvvk/Q9Csehcpuj3y75IUAak6+r5XIGhaAYnDVPXbactFg/wzIKjsRxXUJaSgp+hJb9pO9C0a3XXBqToApI2NXfD+g51eAWpDt/o/u+W7azI53Q1VcwlEjGXY97QD3ukF4zLA0eK8x667OKzgKpOLy67BplOlzo7Vhn1nMxzR44P/uuV17585x0vPP/c0UMH1Vr1VGfn6YFT0WiUoigEwEoqs5LKIYagJJ/tOuNT8xAjZEn46OP3stnc+r6uIM8amoqxtM1Qol/cHA4AiA0NDnzxg/d7+tdc9+kb7nvgt6ah2qY5Oz3z2n9ewgnyS3d9/dVXX1lZWWEYxgPuhg0bggFfPp/XdTsQStgAT7Y2Z/KpRDykmeZvHvw9gWORSGj12jU7V7WTOMExzLGTp8dPD0uB4L5P3p0bvTSaiP3wB99/7423I+GQXlfnp2aamhr9Qf9Hez9pbG7oX72upmpNza0b12986IEHLdvASShLQqVYwgiIA6y5senowPHNmzctzE3fcvut8yvLhdm853nhoLhhbW8ml9+8efPxwROqpn3ty3ccO3ZsbGwsEokkEkmGY6lyGafISDTR3iEWC4VkMqnrekMymV1JMyx71TVXz0zPYQCMjIzYllurK+FoBEFMMSousAkci0TD02pZMxTXdXGMICiCpimapMrFIkVRAACCpgqFQiwedm0nlUrJsq+mKDzPu57nIaSbtWSyUVd1Cscx4PlDkm25xaUMpEjbMtR6jeeY9obkgeVF1zHb21vz6Qz0TIYBjl2XZX8dOWdEhJCEFM3W63VDLwaDwVQqrSp1mqY5Vlzdv25+bhZHriRKhl4nCNx27XIt7wCdZVnbMaANIEZQFGMYFsYzmq67ljOXSuu2W02no9Go5ZjZYmGLJJWKld7+vpHhoWA4FArH5xbmGIpvb29Wterp06f1uspRLOOjJVZct7o/FAoZpm1Y5lVXXHH08OFjRweam5v71vT19vc99sRT4yOnHnv4T0cGB+bm5hiGueOOr5I2NVX+Y6FWoQShb1PMKpkspGgPe/aRR5/+x9/6Ghu2bNk0cOKYoenRUHhmcbailvu3bA0Fkqv6Vl9y1RUr5dKjT/xrzwtPMpwwMT2qPKPE4vHvfP/7uq53dHS4lkbhhKM6Po4rFjKu61588eUUpN9877VCKXvo6D6SJCVJGJsY3bJ+Y6lYoEkm2dLU3d09PTLGQKZuVFZSU25dV8rlaDAIPW9mcg4HRLlcXsksT03Pb1zXQ0AyGgjhOEmSOEUR+XweYUIgzJVqBaSqDM4imqBpGniYKAQwF8NJQle1aibvkTaJOFYgHM8DAKmK6liOUVdZhkcWwCEzNTG9slC86YZrPYLVXQ8QGPQwo1rXazUDtyzNcCDAPMAA0kaebusMBgFFUhhuG7rr2o5rYxjmeZ4gcLrieLbXGGsANjA0HSBMN+uQwG3LIACZWZy3HRPS0IQuYMkTQ4NapXbFVVeGRXEpl/rLQ3+64Uu3tbW11Qzd84AHkGXbEAJ/MBCORnzBgG25nmOEoqFEIhZNJjhZzmTz4XCkOloWBEFHnoE8AHGIPJKm1UoFehiBkYSjexAgVdNEiedYoV6vZ1LZoN/f3dMbiyUMXW1sbDh69HA4HE2vZM94tldWVoCmNjb21DV9cXERx0naRQxOOobNUTRDkCxJkhiEHoIk0bGqa9/BAztse2R0WFoSOzs7Ew2NszPzALmc32/pOsmwju0SJA4hRBhOEATwAEnSlmG6HrBsx0EQQsgwlIeA43nbzzrf8yCEBEDQtS2CQFWlns3ldcPCQqKm1y3gYBRUdQ0ShI2QYVoAmCRJTi4siyxN0cSZp9CObVtOnz4dDgQRQkrFqFUqNEEOHj88NTH21a/fCXEocnwiGovEY6aqebbV0tj06ov/iUQir7z4H1GQo9FoQzxm9vRu2ba1VK56Hmxv617d0x2NJ4ZGxrZs3zo6NhYIBCzDTiSSsXjc1ExJ8vX6QlW1Mj0129nZDYFLmmZLS8uho4eGj58+a+v2DRs2zMzNehBjoBD0RQHGVtX63g/e69u6keL4sVLOT0RFVor6w4pSaetbd3I+a1fUxlhjpDdyCjtlWk6uUunbsD4SiZHIrmTTk5OTfoaNCjTQ9a7mVk9QphZT+VoFIzyRxEMQEqbp9+A1a7a8cuKIQXNjw6feeW3Pll27GI4+55yzkvEGmsINA1geMiyHYRjXcTAPFfN5BL1EsoXHac+xPQQs13NdFI9FtFqN8DyW5z3DjUQierluuY4LEKQYAic43vAcz3P0ra1tG21q9MShgBwo5OYTsl9xUDKS6Iu3ibzgh1zn6nMn65prGk0RKYd5+aUViSSAofWsXW2UM6ZpQgREnisV82+9/t9/Pv7Yww//8Z4f3zs0fOrU6cFAIIBBN51ZuuPOL+7YscNDVsDnn5ubIwiCF8RQNKKbhuz35fLFilpNhAOk41GQnBwZr9VVOeAPx2OxxjhkqKmpqf++/ubrb+yxLGvt6nW33nzroQOHVtLZvfsPrN2wiWZHxkZGbdvNpAuuYyl1rbm5uVwuW5bV1tw2Njol+4KbVnVlMivjY2OSJE5MjDpu6/nnnreytMwxeFdfVy5bLBcrBEs3NjffccedU9PzyYZoPpttbm4mKVyUpBs/e+PgwIl8IbPtrPMESf7rY4+vWbuBoglVqYs8t5zK0jis08apkfFzzjp7y5Ytosj/+8X/pFLpaDAQiUVNU19KZZZXMgcOHQ+Gg7FYbM/rb7S0tJy9a+eJkyeXl5dCodDo6GhPTw+GYR999BHHcQjzmpubPeCWSiUPkYsLs6nUfENDQ71erVQqgiQeOXJgw4YNne2Ng4ODDAWHh0/6/LJlagihqqrzguhhnm3aDCeGw1GcIldWVhiGS6/kJEkmKBIhRFGU4zjRWKRUKjEMY9u2otQEQSAIPJ1KUQyDIc8zjPTSfLlaK+azSwtzuq5CHEzPTEYDobn5GY5jSRJXVfXMUY7j1Gqa67qmaeM4jhDW1NQ0P78AAFYpVXmBbWpq5hgmnU4zDOMYdeghHx9EDjJqFoVzpua4lsrzgqrrLuVAgIVjMUVReJ4PBAIsy6xqXDUzM1solZKNjQMDJ26++eZyuTw7N8dzQrWodHS2DQ2dDAQCnufZtunz+XAcgwguzS+Va1WCIHZu2/rc4LHm5tjk5NDgySP9fX0///GPL7/i0q//v293dnbMzc2tLK88+/Lr1YKCIN3XuzYg+gu5TNQfTU3M3fO/P8jlMhs2rotHQwOnjilKhZNFTKYvWXdtW29HR2/vSq4wPjZ50403Dp046VioqTluVOumoJ63dWt3R+svf/2rT9982xfv/Pqtt38+s5DZsiXU27968NSJer02enrktltuf/Lp7HNPPf39735vYmR08+bNhXR+JbjUnGgUI8HJsfG9H33kOl4wEi5N5z0b4DTT19fnui6GYT6fDwCQyWSi0XiZrAejEcfyKJ7VVEPV63LAT3IcIPFKTQOIgASNMGAZtms7tm1DzzM0B8NJz/ZqdQ0HUPLJlmUappbJ5xobWiKxqK7XIYEzPGdZZkNT8uG//LOtp7leVQDkWjpbDdO2LY+kCZphRIEBBFR0g6VYZOiea+EC5xoOx3PTU+MkSUKCcB0TEjhCGMGSjMC6EHgAsbxQq9ZtBKGLWQDgOMFwfJAPIQRInOBk7k+//0N3e8fV115tmgZLU8l4LOj3Yxjm2Y7jOJ7nUSSpqqquaq7taDUNx/FqpYYhVC5X/385Z4QURcFwAicpAAAkCQ8ADGK26wCIEQxNQAgpipIkCaFqQPbXqjVd110Lbdy8JRgMfvDuBxDCdCZz+vRwNBomCCq9shxY3Z/NZnXTIAiqsbk5Ho8fPXocABgMhjWtJtKsrpkYxhEUyfIcwHBV1ySf2NDU0NTSVCjmRodHHMtNJhIzkxN4wMdxnGqYJEliGOYgRxRFQZQBAIauYxigaVLRdAxSEPcM05Z5eXxm6tzzw4aNNN0OcALp2qqqVuqa7A+QLFs3TAziJE0phpMtKjiJeQAF/CFBEnmeb2zB00vLHMcA5EUikUpNIUkylyu4rksgnKAwDPNigWBzS8tZ27et5PJDw2N+SezpWTU3N3POOeekUks0T+++4HzMNp969hm/LB0+tDcZj3343n8hQfZ092azWZGjMZys1LXh0ycRDhFOSJIPg/ji9IxmKDjJ0hyXbE7U1drp04PhiF/mhaP7P/nfr9/9/77zvwzDjIyN+vx+XdcRdEiSJFjOHw5d+MOf7BsYSOUqPVvPoTAKQZSpVeVYwsZgY1sLBRHmuadODem62dDSDAmkqvqePW9QrvGpTesjEh/lRQy6uEcwtjk5PFxDgGUYvO6Sos/EPNe1XQvRvNMQkU/MLn/m+mvXfmPLqy+8es0ll6/bthnh1MzCAsVQjustpVIrKyuxZIzAsTOt9kqlwvglhFOWAywbiYJUr9aDNIMj1zQdlmBIkrQsx0MYRpDFSrW5IclaLkFSpqrsjCacg1ONkp8gCZIkYK3Oi1ItlVqYmsA5qo0PtbS2N6r8B4ouJoNk3VxKLUdwOtgYyS8spAu5xtYWkiBsXZd5tlrMvfvOW9u2b3FdVxJ413WRZxm6gwF3YX62Ui5wHEeLvF/2YTiUfX4AAEnQCMMD4UhTR5uDoGnpJd266LLLv3LnnSzHlZSKj5Wz+cLCUgoAoBnqwMDAP5964m9/+xtDEc89/7wgSF/96h1GXclm812d3a7rUgzZ17d6bm7hhef+9dZbbwWD4SuuuMK0QFVRVVUPBoOapvr9/lql+sqLLyUTCeSaza1Nuy/Y/eabby2lM03NVeSgr37tTkgwjmm1tjStX79W1TVFUQr5ck/3mrqmLi8unTg+YNv2qq6OQjbn7+jYteOsXCpdUmtf+sodq1paf//gA2dfeH5/fz+FkancSlNbayaTUQ27sak1HEnani3JIsdwEAPzs3OJWKxeq5mm+Z1vf7tWV/75z8fXb9wAIQxFYqdHh2mS7Ovrmxyf8Mni7t27p6enOzrbHNtbWFqkKGp0bKSpobG3tzebzZqmWSwWJUkAAFAM7XkeJwgkQdimtbC8gGE4QZLAcbq6umu12tz8vOwTAUKxWFRRFIYiEcIAABRFGaYmyVy1qjieC3EgMrxtGRBzKYq0bZ3lyHw+v2ZNf34lJ0mSbVulUpnjBF3XPc8LBAKW4zIEATBCVVVV0y3Lkn0BgiCQ43oOwjBULpRMzcAxTOBYHAOqZSOESJLQdUOSJFzCDcO0kY1ZFoUTlm7wDB+Jx0ql0vLy4sjYWMAfQh52/NiJRx99dHR0/Lln/93e3o4QwoD3xBP/uPrqqz0Pzc/PMwxTLOV0o1YqVuOxWH9fd6VSeXfPntTCgqKqLMvalvWje+69995739rzznP/eqG7u7ujo+OSSy67596fvfvB3rbW5uaWttHhseGTx957533Ktc7e3A/ItYIoFgoFURRXr1m3acvWneecfezI8NDw4J73Ppoem1paXIzGAp/+zHXd/WsaI/GJqek161b/7v779r3z6rrujsGBY9/9/g/iDfGRsYnW9rZQLB5YDCUSDds2bYUuwjDs2LFjLM+RJDk1NeV5YGx0gqaopVODnmGdf97ZJ4aHKN246aabtVpZkCTTsBiWrNVqluN2dHQQDLa0vOJhXjgWX5hfzBSKBAZpmjZMk6SoM0timqSrjs2KItIB7kEcxymMEAQuGAwbmrm4sizxQqWuYBiGAOhdvbqQK2ayuWQiqmoabtuRWNT2XM/z9n3ynlarQ4xvbf6crigExdcL6sTSacx0VEvXXbtaKEHPLRvqJddfHeCCtVr17T1v2LaJgIvj+Bl3Fkkx6Xw62dQsiaLpejjDAM1wPYxkOUYQMUgYlo0QggAyFJ0IR1d1t9MUpGiiXqsahsFRlGc7mIcoiiBxAsdx4AKaICmKAggBhIDrSaIPAJBKZ4LRGEGQBEEghHGigBDyPOBiiKYoFzkIAy5yiGq1GovFWJYxTUNRlHKptmHjWr/ff/TokXK5smHthnw+m1peWrduTSad5lkO4szxo8dsx7Jte3Fxfnx8uqEp6fNJigWUuiIInFK3SJwGFGEi14KgrmueYwUCgdTyst/vDwXC3Hr+1KlTfklsSCaz6XQ0GqVpUjesM08GVdcsywAAiCKvVFXDtRmWdwAkIMQJQtGtiy+5Yt3GTa6DiaKIPKBoajjoK9XVM79ZAADbdWhEYhiGASALoguwWq1WKlVYlhUEwcWgCzCOYdPZfK1SdiwbAg94CCeoarXMcgzPicNDpx74zf0333b7hx9/9Nkbb0YQMSLrQc/FULlWLtcrwxNjluuZrusXeQJ6hqnqFTW/gJcKBY0VAqFIIZUh161xPHsls7KSSlUrij8kbdy8oVCszy4v7Tvw/vrVa9Wa8vFb06pRN6raY4/+MRCLjc3OYgyl2U5jQ4L28KHJU/WKka+WBw4fj/hDHR0dg0cOrd2wHmfJ04cPtDbEFNU4NZMKBeVKqWx4HgmIdDbL0rhflGSej/hDNbUIcI/kiHpNwW0MBxTNkNDBkIfZFNR1jQKWBxMIuW5dbaX5oi/47FPP9G7d9e//vlzVtIGxEa2ql0rV1196ycNcCEAg4ONZukYRCHMs5CIMcxzLAy4AAOFwJZcPylLd1FleAFoJQ1S9XJVcF9K0ouuUKBQrVVM3LBOticdbHWjQlIARBI3hCEN+2nI8giUojAEQm9fLS6cH+g39nt4LvvbSk6O1bEIQ8yyyXU/WXCkgOo5HE7ggCLIofbJ3L00RDz70+1giMTc1iRAyTRtCDACPYykMOBhwIIQ0QyIAXdcFAM4vzJdzpWI2OwOJVa2tF19+bVt318DgqXt+eN/i4jxN0wBi2Wx2JZVxXUuUhHhDvL2thSRJjmR3n3fhtZ++4de//m2tUvrZT3+STqdZXhAhOzx8OhqNIs8ZGR6++1vfSiaTs7OzJEOnFtOxaHglNQsA1tTQQOL4zPSCpldS6bxRtzPpnOeCYrGcaGxobW3NZHIUpBfmZ+dmJ/e8/VZd0Vpb27dv3xkLS2q1NDo0tHHD2qAsKeXi+MiI7BM/e/PnPRw7ceL4T3/0k1BAXHzmqYaGJgjws846a35+0XWRadoAaBzH+SV/qVSwNC0YDEAIPceWZbFWq8XikWcfeNbv83mO6w/7NU1LJpMQwuPHj+MYzGWLs7PLGzdsIClK1/WmRry5tYUgiImxcU2zaJrftm1XJp/xPAfHyXq1Vq1VLNv0PI8mKU3TwuGwaeq4hw8ODvKCEItHarWa4ziZTAYAYJomwzCVSsUwDFnidF1FyEWeo2mqTxA0VaVpGgBg2JZWqvtlqakhWSkUdcPRdfWMCY4gSMcxcRwXeBGHMJ/NB3xB0zQNzRRFplqurVvbVygUKpUKRRAcx9m2ATHXMOukwBEEUalULM/iCZ6gKI7hA7EwRVCGYbguMgwjl8tVazVJ9m/ctMW0nUqt2tza8o9//GNlJdPW1kYQRKVSY1hYrlay2fyBA4e6urrq9Zpl2z7Wt2lTI4Tw9ODRQqFEkvSWTZsbGpsqSr25pe3AocO33v753/76/k1rV/sEvppJ/fyH323vWv2j39zfGGvIFwqiJD311DPQcy/YuPngoQOyINZqtb61a3/80/tGx6f//KdH/vDgI3MLs109nSRN/erBX504PqjUK5++8TPpbOF3v/l1b2//i6++gtFsMhFbWFq86Mrrz9598Xe/c3c4Ije3NY6OjRUqNV4KKnVrbGiIEIRsqZwrFdt7Vm3evHloaKhWqnzqwgs1x5qfnl3V1XbW+ReOjIwtr6RCPn5+aXF1fydF4xiAtVotFAqcGjmh64aqqrZtsyy/NL+wffvO1NKiEA3Ztg0BjmMuiWE4jlXrNRoHPM8bpu3YngttiiF1TTMsi6XomqHRNGe5nqZppuW4rmvZNk3TuXzGdW0KhzSGBX0Sy1IUHaBYJkSRp48O/vGnv3QrRQ7hgIAqsFiSlhkuVaucu3VdYGvr1GTqyJED8VjY9RwPIM9zSEi2tLQMjY7edusXHRdT9bokBkzLsizbthzPc+v1eiGfhQDDPA8ipKuabume55i2wTKMhwGapgFABEHYGOYh19R04AcQEhDBM1NuCAmSJGV/0HERw3LVmoIQAq4LXA8CjMKJM0kIiiJwHDMBImic0NV6uZjz+/3lqpJoitfU+lImhVw7Ho0sLMwB5IVCgVq1rNcVCicADnw+n2lbq2KJyZnpCy/edfz4gGboGM4BAjddz8Mxy3Yt1+MpBifJer0ucnw0HIMYTuGEoWosTW9ct2F8fGJ1fy/LsoZhQIp2XZeiKIKgZFnkOA7iwLVtXiBFyYcBCsdx2zQYgklnMzd8Zs3gqVMYRrY1NyEMuMC1kDsxNb6qpZNlWc8zJVFQShXA8CQBNE0DOLRtm2EYmibT6TSGQ+R6GAA+gRJ5Pwk8S7dpknIBohlKkmXX9eLR8MjQ6bvuuive1Nbe3prKZSKRUDablSThvffee/WlFxPR6Jq+jdNTE+laVsmX1vZ1UwRhaJrECCzPO4Yej4RX5uYJlhYYOhKN1Xz16blptVgMkNJZ55z/3D8f++SZ52LBsKVUevo7c5b92gvPBGIJnGT8gchwvvDU1KRRszp622ROghx+5dWXfe22z//8ztvM7EJmBpIUfk5Xa0MkcnJu2XNcmuL9AmYziIV0rVoNBWTbtHiRcW3NtfBIIGJYBkbBWCRWLuRVw6yrNuYBwAIG0BSJI82GDtAII8hyMklmaOvOb931+iuvNcSik7NzM5Ozpm0HZCGXy4TDQQzZilI2TNXFAMIQThPINh3XsAzo8/mA4+qmwYmiEPB3J4I+1ifFwz7VKpdSgKRtx/VLMqjUGdP+3LqdwZpeDogYhtmWgUzT0CzCQgaBIRzaioZoyiGIj08O9JnWoxfd9vm3Hx92y1E6RHiAIfBoMglwAmBuqVplWZb3BT7a+7FS166+9pqf/ejepqaGcqUIAPLJsq7rZzaRtm3XarVSsdK3ur9cLoV9gU2rN7As29vdPTQwsP/DDx+4/1fBYNDSDEmSRI5RkJZMBEkCdbS1T09PO5rhT0oYhhdWVro62t987dUTx4/++J4ffvvb3/75z3/JsizFkKeHh6664sotW7a99NJLHMcB4AEcZLNZx3FyuVxXV5ftmIZhlGoKgUG/LxqPxIolBUHSL/p27dg5v7T4l4cfCYe4SCjkWFYsFuvrbq1rhiD6Va186NDIT+796fHBE6FoLBxPPPPsc93dqz57620f79tfLdcam5J//vujWr0elKXTp4c9Ak9GYstL6dX9nYZh4TgOAKhUipVS1i+HdF0/Q4L0+XwURe3fdzAQCMii2NrePr+4gDBQKVcVRdm5Y0etUvX5g6ZpjoyMUAzt8wXS6YyiG1u2bOEE3nGsuqbZrrt27VoAgGEYC/NL/f29pVIpl8v5/X7LsgAANMBkWa4SFcPQVRVzHDsYDFarVdu0goEgSZOFQiEYDLqO4bruGcxn0B8o1ao+fyAej8/NzUEERFFkaXbk1BAEmOe4nuuSFAMhQK5Hk5Sq1OuaRlEUS3Oe6xI4zrMCRZAExN//8IP+/v6GpsZ0aoViaR8vu5ZpWjpOEZ7n8TxLEASGYYZhUAy7kkm7tktRFMQInuf9/mB3X//CwkKpUuV5NhAIb926eWpysr2jua5opmkGfPLswtQF5+/etn3n9MwcRVG33377Y4/9NR5LchwxOTkpCAKOQcOyg36ZpIj5men+VT1jU9MdHR2yJNRy+c5wEBfZ1R3nHTw2+uVbbuxftWb3JZdOz8xMTc18/ou3+nhfrKErFone9vlbM7nM//34p3MLCz2dHbPT07fcfHOsOfGvl/4ztjiLy3wuNX/k2PFDB48NDA2RHGNZ1vW33B4ORzu6ug4fPPjgb35dq1RMw/rNb37zy1/9dm5xESept/a8edHu3T8/bwfHsJddfonrutOzs/39/aVC0SfJpu1wDD85Ofrqq/9NpdLxxtD1117hGmY+X2xujQVDAVmWi6Ucz7M8z9frdRJA0vNIDAYlX7BXnJ2dJSgSwxH0bFFgqgXssisufeHZZyqyiHAISNLStVKpQJJ4tVrtbGk7OTpsWy4OKct0kOthGAaQy3OcUlWBhxzbhJjLcVymUhYpRJC055pvv/xSABntqzucqoogZkBk2WaE9+EEaG9tLhay0aAvEY2mM0skTTimIXAMjhHlYikg+4aGhlrbOkSJ9pDhIYukMBJQplrvbGtdXpgFrgswTzdUiqE8gDAcehBzXNd2HMdxCJo+M1tGALgAIYRqtZphGCIjUxRVq9V0y1Z1TZClYCTsAkThBE2SNE0j10OeAyH0PAd50LFtgiAIhJBl6E1NDeVyGcfxcDgMIJhdmJE5HsOQ69i6rnquyXFcOByWZX8wEp6bm6vW6oupZYIiAQA8z2ULBQ4XCIDxLGtrdVmUBJolIVkxbL/ff+LY8ba2No4THMclSdKyLJZlGZ6bmZ3taG8vlkqY7fK84DiO47qqqsg+0XOBYVkMQ6qq6jqqYUQYisAIzO/3/+Uvj3SvWhtL/H80veWfJcd9vl3U3IdxmHdmmUFMtsgCkxyDDFFkxYyJIYkdM8XsOIaYYtkyyWKy2JJWy4yzw3jmzOE+zV3wvNjf8z9UfarqW/d13b3dnXlZ0T0vajasSqUy3N3HopAoGEGs67pHiGwoRFKGhkeOnzoZSycZixRTjvwIS0CVZUJIGIYSgrquIwD9MIooDUIPAtnzXFlWO5NpXdMBjVYWF9LxRL2yeuutt4KI1VbrOIiiKJIEQBh5jttutzVFoZTKqlqrroYR0+PJbD5zYfyMHwSdPb2JZLoznz904MBqqX68t7eyPNdZzMQMHZGgOT8HBWi1GouTU2oyJWmxMOD9XT0Nw2pXVzND8ZH+3pm5+U1rR6/vyvWk4orrYoaZ8CttCwVMIqAZWpKpVucXcpk8xKDhtCRMVufLfWmzUOhlrTaCAEmQRaxWa2zass3BaloxkMROnzobM2BENAC9JrdyQN7RnQ0Wo1XKn3ns/nQ8ARASiIQQukHEIq/VqGAMJUliQjAOAASe42YNRDBCnAdeW5KwJJu2780tLHk6XPGXxJS8Jp4YHe4KI77SbDKs5OL6N95790i57VgNBYhG5IZRqCGIA6CYZohAs9mUMWFCeJ5nGsa+8yeuA/wnt7713X/5ZavS0vsNBILWdFlfE/MphRBGlAkR1mrNU6dO7Nm1WzN01/eEEOl0OpvNLMzPAoDCkA4MFPr7+91Ot7+vf3iQnDt3zg/cC+fPvrz3WRJRU5EyOtqxfmh5seREgc9tIETEfImgxfnZ1ZXlTCY1c+GsLMuDfYPL5bLgdGFu/q677r7xxus/9KEPvfzKq8dPHH3f+97X2dmZyWUpZ7V6ZbWykkrEIAgRDikTXd1royjQVFmkYrNT05Ik93UPVs+ecV271aibpt7ZWfQte/3oMODCajV6u4qVSoVAdHD/gU988lPnzl84evrsd7734207d9x1112jG7bs3ffKoUOHNlp24AT1en12bqHVahyvN1Pp9N79B9b0D5qmubKyUqvVFEXJZtKlpUVMxMLS4oZNG/0wkCTJdd2VldUCY7btTE9M7Ttw8Iorrogl4uVS+fbbbjt06BCGyHLbzWaz0JnjnLdatVwx4/v+Cy8+YyhSSJmAaLXiHTt+MB6PY4zj8UTg+Kl0GggZCNk09TAMfe63LW95ebGrq4uxKJVKMUY7CsVisbi8vBxEgSzLuq6328z1Ak2VVU21LFuSFQjhwYMHY6aJMY6ZMc/zLKsdBAHGSADg+348nrhYnEoIRgg7jgOhgBDatq1Ksuc42XQaYOY4DoSQA+H7/rnx85IkKTIRQphGnHNeLHY0Gg1dN616myAlnlKCINBUY3h4eHx8otFq+r4/Ozvd0905NztdLq8oihKGYU9PT0dHJ0Ko5TTWjI1msnlKea1ef+655wYGBhOJ5EvPP79udGxufqbebJmmfujQvnqrqev6vb/4n0qrFYTOD777vTfcfNPlO7Y6trUyv7h+Xb/len+57/dnjh/fc/lVu3Zfcu8f/vjP/3T3D3/+CzfwT50/feTMueG1G4fWrO3v73/DW9/x0isHb7rkcjtg2Vj+0NmDyVhSALRj957X3Xrz8Mig4PDoyTPnpxY/+Zn/jKvy3hef+eP9f/3Upz71ulsviaeS6zdumJmZvvn2m9cMDjzz9HNWq/Grn04fP348V8guLi5v2rg+8oOJianO3p6R4f6+rk5OWTafklRlaHhAlmXXtS9elQxDi+lGBTQJQvl0qjS/FDjekYOHrrrqii2bNp8bP89CbiTMtmMrmnrs+BFJVyHBQRDaftCrKUHoOZ4tWGQkTSiA7/uxWEyWcCGfr6yuEEKCIHCctq4pjVrdCdwwpIAB3257bdtu+1EUZWOqbbdZFF0sSwWAW45tBV7VdYqFbLNeazabEGIhoCRJjArKA8YcPRavVCoDg8OzczPd3d1cME1WHdv3HLderweeI8sywIgBIRA0kymIZFk1Gw1LjZmqrEZRxDmHBDPGMMYXxXBmIi4AaNrtgFFZldrttue4S0tLrVYrETMdty3LhNOQUyZJmBAiYQK4IBImiqpTFszPz6uqiiE6ffrs0NCApij/v8smtWbNcNtuRUEYMtqy2y27PTs7e9Mtrztx+hQT/LkXX+js7MQY+46rx2K+6wEAQi/gEQcSNI34hcmJfEcn56BSrXd3dYWUIQy8MOjs6r4wft71vEQ6VVpZdT0/lUoJAUxDBxwCAFRFd10X8EiSSCoWtz0HUprJZJaWVvL57JWXX9q0bFU3C/nOrZvHHnnoMRUrggnOuWU7BCCiElXRKWezs7MYY84phBBjDAmglEoYh2GYjsc4ZYwLSVYRoEIIzgDGwDTiTujaVhsjubxSqlRWdV3v7e2Nosg0ze7uDhhSGjkCCChgzFAupscw4Vx4PR15gMjkzHyjsurZTq5YSKVSBEud2UJvZ9ePX/pJUKtp0C+YcrPuBszHmoqZwFHYkU0PbtoYSdJyqQZknjV0z/ELndlsOtHVM/CH7/4gNBVNUQ2iRohTJiASSdOQCeSIBSDUDaNer7u+W+jOy6qSzuQECyEnoecnEvGAeZWlUkKPnavX490DmUxGjcc7ij1rh4Ye+sNvr9y+FpeXpZYfBcG1fUNnm61zqhIK5rcdz+cSJpbXdJwAophKFMaY4EDCiAGhywoUERI8rqmAR5gzFlLV0GSZaOnE8sxyvjOrIJkGYeTTrlQ6heW5hZIULqwurQaMEY/6MKIM2IEbMO61VjVFlRnwaEQVomia77XjkrL3xL6raPj9W9555+O/lAnSiQoUhQuKIBcCeZ4naTgRM1549tl3vuc9YegjBLLZrGHqnudBRDAhgNKuYofv+81mc9/Kq5yDMAzPPPs0Y0zX0ZW7dpgY12sLjUY5oK7PaBiEBOoES4yCaqNmmmYqGY8CP/Lb9Ua1XCmvXbu2s6tHkqRqtfrYY0984Ytfbrabf/nLX5574eU3vvGNH/7QRxmPVFVWFbxuwzrXdsbPnz139nRPT1c2mdBT2kB379+eev7YiaMcQokADiMBaKte78gXGy133egaVda4wKlkOgbwoSMn6/Xm97///Y985GMrpdWvfuObN9xw0ze/+c1P/MunSqWl+akLMzNzjusDgN5w+22lpYWrrrnuH+54a3lpeWhoIJNJPfDAA5TS191y66t7X3n22acvueLKU2fOlMvlvr6+IIocz7es9rp1GyRJueGGG/bt23f46JGenp6DBw9evCgX8zldVZaWlpjgEGJnxdZ1XQiua1pvrrC0XMpnsrlMOp/PV8qV5eVlqovV1VVV05ZWluLxeBR48XhcMD48vEaSpDD0M5nU1ORkrVItl5ZN02xYDYkorZbFGMNYSiSzlUrFcVxdF42qnzBjgHFNkdvNFiTIdR0OQMtxJUkiMrF9T5OVtmdjCCDEAgrKGWaRrquaZpRKJUpDRTcS8YSqqrVqQyLKRz/yiVKpNDc311HodF232Wzquu44nirJqXiiVqvFYrGYmZiamorCUJZlx24nEonhwSHOIoHErh07641qpVrFGF64cI4QOZZM/M/PfnrZnsu6ujqSKTNuxubn508eOxnYwYXzFzo6ioVcNoqCoYHBUqkkhHB9r7O//6G/PHjLTbd86wc/fPn5p/fs2PHc44+qptZcXrj2umsmF+b/9fP/zgVh1IknMk//7fE/3/+Xzdt3YFXduWXH1Vdc+cADD/7+vgeGBvpnp2a7O7vmZmY3rF33xOMPYw4YR0cPV7kQFy5M7j1wuKOzKxU3br7+td/+3nf/9OcHBoeHzp49vVJeTqQzvb297Ub9jje/OR5Lfu0rXz559FhnMb9l+7ZdO0VlpVy227ICZcib1dXADSzLAiXaU+x8qtEaG1ujqtj3K0IISca1ekVQRhDwPC+iYSIRGxtbc/L0qUwms3XL9tNnzzh2pJiJRq06O7OoxcwgCBRMdF1HmDPGfBppsoIIwkhopoywCP3gtjfffubMiXq9ruu6rusQQlVXb739dhoxjPHomgGCIJG1/oHRs6eOZJMZIRD1Ilkj7barpXQZYRZxMx4vl0uOGxBJ4gJEjEEuhBCu6/YODK6urjqe22q1svk8i6IgCBRZ1eN6q21pphHQiHEuy6oXhhLRGAUhpbpiMCogRxBgwLiAABIiK6ofhZZju56HFYwI5IIKIXzXY2EEKOMR9X3XabdCdnHyLEWcCQ4NVVUlmSJAZFVP6IlYXJ+ZnCJY2bF1W7W6aqiGrMmKrAnGJqdnRkdHXKctEaVarXcWO6697rXHjx93o0BSNEpp02oVCvlGxRYQ+CwASEISQUR2PV83Y1a7PTa6bnZmJkmTYcQwEQRjykIiGd09vWfHL4yMjCSTKcfxPC9QJBUAqGkaAAhjCUKACSSQRFGkqGpEg0a93tPTs33bNsdxhoeHXdf99Cc/u36sz3YdTVFlTFRVjtyACoFDKhPCAq5rGqfCtx1ZlkVEISSMhm3LSyV1ISCEmEWRz0IAuGkYvu8DwWRZSJIsIKrXalglo+vXUcq6entm5ucoFK7vMT8MKZIgCsKQ4QgAWFpcSqVjioQcu5VK5/K5jG3bgIuL0lGoka6Rwc2bN//23j9FQdCZ1rO6oUjq8vKiGgFJklNpE2A0uf8A0/Q2ZWNbt4WeP7JufTKWeOGFF3yfJxFBskAC+NxHAnuWrau6D1G76XXnu0M3oGaskOsMfBsiLiFs2U1DU6lARJFCRrEsYRkDxhfn56oXZnEUAQCkmByT49fccIMXN7ASw5LZLi/S2mrA6GK5pECs+gDLhLIwZIGkyBBCPwwkTUdIwhCyKERUEIkEHEaeiznnnDNKk7GYYDQIgpGRER8Lp+mwUAchEzBoWo1tfWP2YqVk1cPgYgkoDzxAVIQwMFXVoaEnhEpgxEPqcQPJTARc0568cOpNvf2f2Xjdz0rHK1JQd6whfRALYcTjjChIVkoKWpibAYLHU/FYLBYzjVqtlslk2u0WhPFsNj89Pe15XiyZKHZ0RIyWqxU9YSiKkhaAthxmaqqsSJKUSqRjEFtROLs0CwRmFDLGCZTisSzSRW9Pz1XXX4VlXZK1Unl1eXl5cHD4kYcfe+c73vkvn/1UFPK1Y+tGhtdMCFguLTpte2xsrKPQMR/MJxMZx7FdJ5yamuvq6NxwyUar/mcjGQuCEDIqoGAsGuztO3Hy1JYd69u+093fXamUYylzcWlF0+Vz50/ZjWsu27NzZmbuVz/9n3Ub1n/3W19NpVJB6GUSiY23394/MJI24xfGx/v6BvoHByAFiJBX9r3qOO0oCjEmf/rTnxKJxJYt23OFfCaX9cOgXq8DAIMg0HQzk82ulMv7DxxAGN96662WZXHOJqenjETs2NGjmzZuueKyKylnYRi9+uqruhbr78ufOHQo8Pny0kq+mMtkMu2mE9OTO7b2zS9NIaRgQvwICBAKQIkkqKCuG6qqiMcTKysrQgjdkCEHsZjhBm4YUMaArCimYV6khOPxOA9DTVEvpqg83wMQMMb8MIAIxxIJhFC92SgUirbVxpIkWKTpGuf8YohEkqTa4nwQBNsuv7JaaUKBKuWqacbHx8er1aamxUaG14+MDrfbbYhEu93qH+6dmZ4+d+6s77te6JlmHEF48ZGnyPJll166f//+wHVisZjv+4uLix0dHRDC4eHhMAxTubxl2dXqarvdjsd0mUjZbO6aa66ZPneWc2677aWlxUql0m63VVkrFAqp/t6Unn7fxt3f/t6Pv/zNL7xjsGt8396koumSVEgkZ+zoHe+/m2mSIceOvXDkuz/871Pj5z7wvvfv3rbjv/7rv0b6h//60INf+8oX146OVZdnfvLSU0ul5U987F9mJqqX7N65cfPWJ596FmE8NTV94szZgYE+gngmoVt2w/ECRSOMBdVGWUDabrcVom3esH14cG1Xb+H5F19wfCeXzzhOu1QqBUEQUYoQD10rJBzJWq1RXzPSt7ywNDM/f921V8oKr9UqzXpDMBYzjPqqjQCUFaJpWqGjuLJalhS5vFp1w2hoaJh60cT8Qq1uGYYZCer7oS4pURRhWSFYJrLEwiiTy7EocHxbllEylfjUpz6VSiUAkH3fhVgJaSTLcnlpeai3K4qipZW5Teu3qGamtFIjUOaE+NTHEmI81BOaxwKXB1pSY4JLiiYpKoSi7Tr5Yg4hWFldYYzath1LpVutdiKVTiSSjDG7ZVVbjWa9oRAFEiwpMpZkzw8MI0aIJGGZMxR6IQAIACSEIERmPCSEIIQEABAhCigUiAt+sTiECQA4p2EIgRCMy6qayqQRAkEUhjTEGEVR5AY+RYA0qit9W7c2Ww1VVbdt2yYYcGxFIun5xfmhgUHXaRMRTp0/ncnnOKdEAhNTU+s2rJ9fNGpLtY5C/qYb/vEP9/2pXq7EjAIDEScaR8K2Gp4TMw3FqjeNuMQo1XVVknClWkpmkgCrQiBErWwmvlqRLLuVTmVVQ0ECttttIQQmFEJImccZ5AAIwgQCgFND0xeqC6VSY3TN2sMHj331/z4nYVCvLDpd8fXrNsiqphDkO246loBAWqmVoSRjCftBICuko7OvbrUCDKATRQinMmnBadsLFAxlGWOMIFMEBJqqRlHU09O1tFKCAqSTsSDiuqKdHD8ZuMHNN9+STWRqpfLQ4ODEudMYS4RgIFgqnwqZV1peGhocSXVla6utmcWldD4ZzyUUEhvrWJNe09V2bMJIZ0//8YMv9ceLkEdt31clKiGEQtYM/WK+K6wu9gzFGhKZWFoc7e2DEXCc4Gc/u1eI6NrBDoaohiVGcc1qqLImGUbQcAQBCANAoF2rl6bnY+lELlfwG64kYYZDjcAWZZyoxGOyjCNElIRUMGROgaKiWq0WMmvqxJED5eWejk6IUTKdZZyRbLrP72w0GhwKxASnPFPohEz4vqfoquAcIcQYhwzYmKVQwgidKC6wYVDPIYTYgYMpqrpuxAn1g9GN6xTDiBbm2kzs6B+iK63Z2XldlVXC3NCXYoZCqEJB23cgwQQiLrikGcz3A8fzZYaB5LNI0+NPvPTSlRu3ne4eUAZ6G+2AA1pdKdv1tmbqtm17jlNrWQvlUkJNzM7Mvf71t95w9WvOnT8bBf7S8lyam5lE3kHIDUOHMyypGOpu03dIqKc0LZaMQur5zAuZF4SzCysUSkNrNy8vLjEaDvT2X3H55UiAkydP1prNn/7kl1Nz8w2rLRhQNBlCmMvl8sXO3/3qV+94552KovzDHW8EANx0443/cMdbDr564PiJUwsLc0BwGWHmuaqmi5CeOXOm0NnF/Kheb46s3bBm7aamEyQ6Cls0efvGzQIElUZdMcyuTIfjwS2bt2MIDx4+dubs+d27d9ca9e6ervv++AfPC2ZmZhbnFwAAFy5ciLLZ2cWFXJB76YUXi8XOtSODr/795cuuvnyptOR5PoZQr5UlgsZnpvr7+zeu33z+/PlctpBMZPe+tLenp8cLvWw2KylytVI/fPRINpstFrtiqmnp2bn58vzCSq1WMwyjr39YkbXNm7a3rXB5een6W265ePakCgVZlk+cOAWjSNd1RiNFkgPPi6KIRYIx0KjVirmuwApBSHdt32a70cTUpBeFjuv39PT4vh9F1HYsTTU451giXhQ2XdvQDAyg63uxmCGpUhQFlFPPDjgDuqRgxtPJhOu6aiLhW3bbcbLZHKMimUxOTk7GAJiZm7adxkDvSLNpLa8s7dyztaM79b8/++W5Exe6+wuKprphWCx29vf07ty5c/uOHcePH5+YmOJC5PJ5Q9dt2/aD4C/3379z964Tx48Oj45cOH82l85osuJ53vz8YiwWHz+377XXX99qtRRNXb9+vWNbURBajgUlePLIMc45AnDd2PpkKhOLxeuNFtZSZkrZtGld02t+5rP//vQTj/7+pz9EwlbDLEbyzIWTuePdDyl/uP9PD9j1ZjGTe/1rrzNM+fipw6qC/vrg/TffdMuXvvxlq91UJVTo6Tqw/1A6kzs1f/Twof0HD7w6PTnxjn/8p8mJcQlDScKGab66f293T+dXvvy14ydPfPnrX3A8lwds+vz5xYX5MydPffSjHxm/cCaTSz/w0AMjgwOjwyOnTp0a6O0jABKMEPNURZc1UwggSdgwMEKIyBEQMoJSIhH7yU9+vmvXDiQBRSd2u7laLc8tz69dux5CmMzGORPzCwuxmHT1nst2bFyXzSdnF+alZFKXIHTayCC6UAkhiyvlts+9iHKP+U4IEV5aXB0Z6r+oC21aK4Yu0ZB2FRNIxirWNNlQDcIA95mrKBrjAAPGRESEHIVC0WQeUu5RhJAQGHARRG1NBc1WzfcijFG2o9CyrEyhWMjkqtWa12oTQkxNx5JhqKnQdzjnUUQxUDCEglNTVhiPKI8oFLqqIUQgxzQCmKB24Hk0yII4ihhlAgmgAKnmBRBgSCSIMZIkrCiYSBBFCJEAQSFhwzA1RUdIIloAGCDZXO78+fMCcIRQtVoXQlRqVcGEYRirqysEY8p5Op1WFW1pqdTZ2dnb0dXTXYyZlz/y2KMyls+fGSeIpFIZ1/IjQD0vEAIUMilVliRMZIUAyiQERwb6bdvWdY0FgWKalFLOEOcglyvMz8/rus451zQNE8AYlSRJCCZJsiRxSqngFGMMOQo9v6+vr7S8evfd73rrW986uqZbCPqbX/10dm7qpRdfvnA+rUiYcwIBi0KGFdkJ/QhAXddbzVboB5qhCzcIwiCVS7/2ta+ZvDDRlc9Onj/jux5jDHERRVE8mYgnTLvd9h2XQtHV093X1/fkk09u3bKlVm8ODg4KCKrVuiaR7oHu9mqjzX0mwGq56vpBvr/Pcbz22QtIyOv6B2KmfnZ2jhmg2a7zGuku9gXMU5Ma4wAhhKgLHD+lx6nvxXQ18lynUenuzNhOsy3k7OhYKpNeu2adGwWqrkhY84IQwDiHyGdROp6kArZDRwiBJeKErgRI4EcAgIsSQUKwbXtIYCdkjbqT6zRsr20KHMt3KYyELBKAhS7TFVUlUhyLgbFhP2DtdjuqLFtO6AHm2BYhsh+FkWDJTKrY2ZGOJU+dPkk5FwJEPMICIAKYoIKvygRhCiPf94PAxFSHkhEjfWrKEawROqurFdChY45NrFGPzZVmNFOhfiiiSFFULgCF2EUUKzoBCIaRLOk0Em03hJAIBiEPqIJlN2hBf7FSftPmzf++//FS1dqybkyC0NT1l/cfSKUzqmJUy83A577vAwFuuul19cqqOj9HKdfUGIGYBj4QLK7IGdO0XE/GAiNBeQCxuVqpGopCZNUPA7vt7dy584prr7cc+/DhwxDCRq3685//jEBUKBRsq71+3RrfTSHOMCGEkGwuQyOGmL9Sq/3g+98aHhlNJozJycl77rnrd/fe+/BjD1919bXzs3NWq3Xp7j3JRHx5YdFnlEJgOU4yk+7t76nWVuq18vTUxKsvv3rlZZcvzM3qMaXdbjas9thaZeOWLcWurlf37Z2bnuGMrR0be+yxxxbn5p/929OEkHPnzl0cg0uynM/nJUkyEtqWnZsPHTp0xRU7Uul4bbnUlcrayM7lcla7JcvEVHl5YXFm/EJHVydl3rGTh1ebpYXVuV07d84tTkOECoVCT0/Xrl27GGONRqO7u3Npaam/v390dGRmZqZcWrZt98L4OdOMq4r0x/t+l0jETNOsV1cJkTtyWavZwERAiKLQS6dTzWbTcWzXdVVDml+aBUBQ5l+YmQh8Fo/HOUvHdaW6sgQhNM14EHjN9momkwrsUCayaRqe5wmM43EzZBQDgiU5dFzGhKZpuqZbzZaiKLqu11erhpnyvVYUIUr5wuIqJno8HvdcO50qzM0vpzLJ//jcp2r1lenJ8Z/+9/fLK/Xvf+dbqmk4XjAyMjI3t3Dfvb9Lp9M33HADZHhxcXF5fimZTJqm2ajUq/X6rh0QQdnz2fGT59auGV2YX8nmi7lsbqVc2bXrirfccef3fvB9x6WnTo43GzXf92UirS5MdHX1tFtWrVYrl8sty67V6i3LLjWqvmNT308n03XL+c2v7v3St3/8wffc6VRLkmpEUZjQlKkzJ/e++MLNN75maKCnYblNz77tptedOnG67bkL87PT589v3rLR9Z1du3aNDI96Udg9NCAQmJ+dRDKqVquDfYOUQdf3VEnqKBa3bdv21FNP3Xvv7922KylkfnZu86atvm2dOnm0slJKpRJ7Ln3Xxo0bxienMMYdXZ2yobUbjdVmI5+K2b7f3dmNiBQJAAhuNJuEYABErVZbWV29+73vLpdLqqrX6/V8rkPTZgFAXAiEOIARExEBwrPpoZOHSqWZsbvvHh0ezciSyxA8ckRW9SBijLFavYkQSqXSrh94QaRpWiyWkIlMI6HIOsGq60SKHNNjcca5AEySJACI74WUUhgFmBOMMYCQCxHRCHNZURRN0xDlKkKIC5VIEQ0IAoYkR1Fge253V6+mm67vp7I5gGU/okJEkqTQIFAk2TR0hKBgFHDmOY6qqpZlKYrkh56AXJIggBQiBpmQBISUQwjDMMQcmLohAZRMxHRNsdstIagAnDEacQ4BlyUVAwwiXi9XJEIUSbZbNmOCcM4hhEYsrijKUqlkmmYYhoZuRmEAgDBiOiLCsizP8+oVqyNfuOef3mO77urKkmDUarZqM3PFXBEhIjTcnc+UV6vttmuohqZpnAVWs7px7WirVmeBT6OgqyPfbrcEpxDQiPKIck3Turu7GWOqKhOCoiiAEF5kCimlYUQJAggBJHgkBEDQstuKpnZ2dziuOzw2Go+pRMKShAvFTDJuOk5bU6XID2gkojAAEGAChRDJVMqzHdd2EmbMQqBWqz7wwP1RGJWy6XTcoKFvGAZBWAiRyWTaLct1nUKhUG81bav9/LMv2JYThWx6evqPf/yj5waKrCyXVuO2HgZUIWpcUx2P+k6YUEwacd3Qs+ks59xtNkPXUVPZlUa5Y32fpEoRp3FFUyFkgcupRjDwXZtzarUDVZP9oIU4AULouhEnuuu6EQ36+3s5pwEHEcVBRB0nABAiICxKNUOj3IMQKqrOW/7o2jG7ZQkEwzDEECezuXRMB1o80dP7pnfe+eeH/1KbXZ6ZLwW+wLLctuuyEJYPYpqorpRQEBeyOTEz05GNp1JdUehhgCVZW7d+U61eT+eysXhyzciIaugvv/yypmmFQqG2WolCDjAiEvJ8HMfEQJBrBBJlvlRZXm03w6pOFJg0ZqbnBEoFIc8WU7VKy2WR43i+F1AuQj/CEcAQUcFUU4uiyNQNifs0oBfHOKEABGPfC4kqIQ7HJ8dv2rimh6hV0RJRIDhv1fyRgV4KoBCoXG3Ozy4Ui8Xb73hTJp9bWlo6c/ZCrd7SNSWbKiiqDhFpta3A8wFlsizlCtlSeaWjoxN4oaLpkqy6Po2nkisrK7+797enzpwGAAgIGeMEwb6ebtPQMBAEAYJgsVgwYubs7KyuahZtQy6+9a1vlkqlqZkZxiNJkp544omrr7lmanq61bBSifSunTsrlcrS0rkrr7wSEmlpeTlbLCRTiVK5vLpa9hx7dHgEA/jUo49fvnNzu446O4tWvXV478G27WlmbGhwZGJmduvWbQ8/8tjRo4eLxWLbsgYHB3ft2hGLxTjnKysrCMEgCFr1ai5ptuplDuimDetWFhftRn15YVmCaHJ2ZnT9GMCoWq2Nrh1tWlZrcmLHrh2Dw4MnTp3q6e3X9OrAwFBIaRBE+w8ej8fjMzMzI/1d8ZjxwvPPbt68GSOka1oqGaeUcg6EED2dBYxxoVAol8sBdwgEdrtZLBYlSYoUwjmVZaIoWjKZrNfrl12xlQmeSiV6unoloj737NP1allSiKooqqo2Gg3EWVchixBSEEBY9n1fkxAkiAkaBE5IAwGAKmuYwIt2AUmSZFlmUUTDECJS7OhyXR9CBCEKgnBqarq/v1/XZM6IYSgnjx967KE/dXcV3Va9WrUUiTAaYggvYlEx3VheXv7Tn/+cTud3bN/JOX/8kUcVWdNUI5PBtVojlco0m83hoTUC4s7u3mw2DzEikkZZeM8/3w0AmJ2fGRoaaresleXS5ZdfXq00Ymai2Wq3LHulXHE8r1Ao6DFzbTYJIRBBRATy/PC+3/zWajX+7evfP33sxI9//JMbbnn76Niml1955Z57PigEg6px5O9Pdq0ZpJQ6jjMwNLi4uCirUjqdOPb0oZMHDi+Vyh/6xMdUXbMazdHRUZ8FiURy/MLU3MysqqoknWjWG0889vjs3MLkhalLr9iBCLaa9cB1Bgb7rrrqitWVysTExOc///nOzs50PM0hOn785G23vQ4yphuxDRs3Hz96cmlpqbO7i1PWarVVTQkjP2Ym1m9ab8zEt23b9tBDD3kuBQC5vtdstADEWFYAoxBgXZEopVhSPM9DArhte6Ve95PJpfKqx5jteQwIWVYZY/VaDROiqirEKAwD123LskSI5PlUUbSLxkoaMYBAEHiWZQuOMCaYQIAFhIJgFDImGCWyjAkCnBOMIYTtdtvzPEmmEYs0Q4lCpmoyJFKlUikUujzPExwT5EuSJEtaFHqKLCMEoACaolJKPc9LJBKEEEWRaRQJwSSFIAkKJADgEsaICRkRACHCWJak0PGwqhIhWOSxyDNjhq4qCEDBaUBDCaLQ9WO6vnF0rKOY1xSJRlySJFIuV7u6ipqmWU5bkqRkPM6iSJYU33NzuUyjWdM0LR5PtlvWN77xJavVWl5enJ6ePj8+oUhSEHrZbLbtuI4dmKY5tzAfUsEiMTMz09WVUFWk6CqlXL7ouJIlq9WIJxKO09Z1XdHkiAaEEEqpokgXiQWZKEIIhAgACGMsSRQBKAREiNDIjyXiIAixojs+e+ixp973vntW6/7U6rShSbVabfD64VgsEXguURHgAjKIhWCch8z3OUccAM4DQRWII4xoEGkyoaFvtWgmk3ZdzwtCRPDU1BSnTNMMx7YTiYRm6PFYDEEoETK2Zu1rrrv+4YcenZTloYG+jmJ+obS8bmBotbQgEFeANFBMNa2GE0Wu14YQmrquSDLEIJ5MTJ+/0NPZpQNiSjpCAko8FAAhjHkECQiCkLaDZDpNBAQRDRGiUaCm4kKIizEEy7IwliAgyUTc8dyG1ZLi8SAKDTMWUR76AXODzddspYEfRL7neYEXEoUgIYCqkZT5k4cfu+GOd2zs7Mt0Fm+8/fW2427ZdgkS/Iqrbhg/e0aJnJip9o6tvyOfO3Pq2J9++6eAUzeMsjn5LXe8fWlp6fDRI4KhM6fPdXd3d3b0lkqlRMyI4nGr1WBUuI7reKJhg95ZOfC5SCf3XPua3W/ooTLp6evP9nYdO7h/5blX0vmMtOrOLE616m2JIY2YLep7NJIwZoCHAPiuSwhxrYZgPGnGJIgAQAAAB4k0kALGQoKBDFfmZq5N9x+cm6GYarJk23ZAI8v1a9VWrqPr7LmTl1xxWUdP98zCYlff4Jp166/tvfHw/r3TM/Mcgo58wQ2o1WwjQmzbaTRaEOLx8fHdm7a6jmtZ1sjY6Nz0bEh5MpvNZ3NCiJbjACA8z7u4PjmnThC2HXepUlNUvdWyjHizUqn09/d/8Utf7erq+uxnPjNx/tuVct00k/MLJVWL+T6VfPmll19OJmKX7blEUZTSasWImdt3bDt58mQul59bWIiZcVmSFIWAuB4IRh2Pr64KjPtHhoaG1vphtLy8vFKtUCACRkPKip0d73jnnb+79/8SiUSukO/p6nYce8PY2gf/+hcZIVHIdyfTJ44cveKyy/987lyqN7N590478Ee3bYQSHhkY6RkeLJfLyHUJQuVSuauzZ8dmZWlhmXFw8sTpWDIxPz+/Zs2adDpNCAHM5Zy95vrr6rXmysoKo2E+n4vHYxerbLq7uyqVSr1eGx1dY1uW1WoXi0XXdXVdjyIWMc80411dXVddddX5czNM0NJq6cLk3N9fOphLZScvjBc78hBIVsvmDCmyxmBUrzcTsfjF0kYEuef6koRDynRFpUwouma1HQhhPKk6npfIpD3HgQJgRV5Zmevq7NENsrCwlM1mFRmnU/F6bdXFEiTQsesd113Snc8lFRV4/vBA3+nTp2XdYACGNCQyblv+wPAIkWXHcfYfPQg4f83rrg8DalmWaZq+70dWJR7L6IbcarUnJsdt25YVBQDUqFcRxl1dXRiCUyeOG4ZhmBplYXm1Wih2bt669cLUZBAEAOKARoqiMA44ELIRJ5ArQOhh+N3vfe8Xv/z1r357b+/YaMNxLkxMuL43cWyayJhzHjdj//Hpz37uc59brVS6+nrr7UY+m+wZGpAFzybSzZVKXDf++vBDD/7hD1defvm2y3flO7sWSo/PzM3mMlmr3ZRl9fs/+NF77nq3H/iGqVUqlWazbtv26upq30D/c8+9sLy83N0/cO7s+OjwSCaVKuYL5dKKVW8QQCQgbdu4lSFOI04gHezu3rFhYyadq9frTttut5oIAcPQIA/tNkom417oh5R7fiQTIjhxnFCSJEWXAeAIAazKiq5hhOYXF+K6kUqloihy7XZ3Z+dIf/+ZI/sljExTlxUkydD1LEXRECbNZpWyAEuUSFrbbYQ0lCRFkQ0vCBljmioxRqMghIoEJcwYDUPIOSdYDgFHkoxkSTHUyGvZvgcAAkCSKA1psHZ42IylarWmksoqioIgFoIlk/H52TmEsCzLhqZxSqOIKooKBcQYc8ZM0zRNEyEIgKAAIs4hhI1WM6QRERADKCHcrNd1XQcA2I0mlpVWswlCmoiZKpbWrRlBCMkYBb4PAVcSKgCIdBRzjm0HQRBGgQ8AoMx1XdM0NUV1PTuRiAGA6vV6FNBjx451dRaPTF0YHBy8+ZY1L7708uJyablcwUTBEgppRBTZDz1JVXWdCCFalmXGYgghIiuUMddzJEVWjAhjKWIcUoolEgQeIYhzgLGEoCxEAAAQAgKALqJWAgDORRRyGtLOYudqpbZx3cbLL7vi0KFD//HZf/vQhz+4fmx9GNoty56dWwBIJip0XJtRMTQ8stqoLZVXBAYsorlUUiek3bIgxHFJxTppt6w169e5nl1aXJIUjSBEEBEwQlgaHhmJomi5vApgAASamZzatWuXrGi//e1vM5nM1ddewwL/zNmTKOL7Dx6oNKxr9mwz07mDZ08XkvGMoVPblnQVIg4iATiMGfF0LPnnP/z5k+//WCyT6hjo87xVhKQoilQMMQSKqkQCem4U+gGWlRZ2DV2SsBQFoefYEMJCoQND7nmeIskYS3oqSSPgtdskZgwMDG3eunV5rjQzNc1ZdOHCec/zMIBNx+vryK+qOsEwoPDh++7/8kt7337Xu0/uP/KOd757dnIiVSy+/NKL1Pd0GS+uBCcnZ3Zcesm/fenrd979/jNnzvz21789fuzk88+9tH7jhrUbtvhRZNXrUSRGBker5erqSgUAziIhy1q6d/NgxlANpbcj7jWdKFZ49Ohk5E60WdhsWpVatbe3M6pXe/s6bosNtFxANc1vOU4QcQlzjXicIsBZFNhAwVFkyjKEPGA0BEBXdE6ZLrCNQxQJSik24MTMxOiWHet6+iuOJzEvk0wNDw2kcvlHH36Mc753797hoTXIUIfSSaIqb37r25LJ5PGjR9wg3LFr+9LSYhj5I0MDxXzh5b2vduYLhUIuYegmkWrlsqaqSIBUImnZzsLCAoIXwQbgeF5nsaO7u7vdqAPOZZkAhHTToEyMrRuzLCtilAPYbjX37NmTSqcjRimP5ubmiCSdOXOG8QghEEuYuq5dmBi3j9kR45dcdulTTzx+3XXXnzs/abdDgvWI0iDysx2pnuHhlZXlRDp98vQp1Ujt27dv34GDw8PDMcMwNO3W171ubmoaQ/LUE0+6trO0sLBh/aaBocGnnnrqlXr96mtfgwW3mq01Y6PnJ2asTc7m7dsPHTmiGeba9euPnzzGeCRoVK1WdUVlgd+yXc5EaX55+87d69eNPfLo477v64Y8NNDlOY2S31RVNYyoEAIiks3nQhrNzU7HEvFcLiM1SRAEMzMz2WxWU/TZ2VkAgKKoUUQpZbKqdnR1dXQU6/XGuXPnDh06LKiczCTPT5zv7CpeeeklxXx+44Y1rVbr1KmT2WwWIsEYkyWiAmZ5js8CzAEmaHBwsFIpqwBomuG4gWf7hqTIqiJLxNAygedJkiRJkm3bmqJKBDWqtUwqCQWXJRgKThSsEUJ5FEvGoAApMxGFQbtlE8WOxWKypjtBCCG8yAH7vo/CEGIQ+B5gYN++fdu3b7cd6+y505lMZvzsqWw2K0lSLlcYHR3dunUrhDCfz48Mr71Yv6ho6kWkWMIEQsg5JYTIihLRCCGEMOYACCAQBQhDJoDrWYYqsyDESG7bvmEqe37xi2q1iiXiui6lNBaLra6udvT0P/ro44ePHa/Wa/v37xcEjE+c37hxQ+g6KKaEnr9cXvnQxz7+w+//KG6adbvJmCjXGxu3bjF1/fFHHyt2dD3/4gvNtn3nu966tDzjh55lWWYibrrOgKJv3rLj7vduP3byhN2yCqnM+PmzIqSmqgfQKi0tHgN8z65LoARefGnvbTfdsLK0cubMqUsu26SqarlcDsMQCOa5NhcQE8Y5VxSls6sYRSEUAsgSJhBjDCHkEAQ0ABIIeSTjWDaV5OfPR2EMCCaiEEPgWq0oCgSjjm3ZbV9wnEimLcsSgmGMZZkQgnw/VBRFUZQoZBBiWZYpDaOImXEjCkAIhKBM1VSMIaVUlmXGBAMiotx2Qw6RqmuBH0URC7iNkVRv1lptWzPiqVQiCKJWqxVPx4GAEOFkIm3bjoDQD6nv/T89lKloi/MLS6Vl13VlImFMkCxTxqFEGBC2bdMoUJnicKpIsq4aPT19m7Zu7+zqcWx7oLfnC//5ub6+Hg4ggogyKkkSYxHlgglOIISyLCME6zUXY7Bh3XrB6crKiuW0Vaj4Pg/D0NDiVKLl1VJvT+fo2jEGxMT01OLykusFg4ODK+Wq7fk0YjImECPP8/SkgRCilGqaJikq5bzYkQuWg/MTF67qvIoy5thOKhlHCABZdl33oijDdVxMJCSALMsIIMYY5wAgAQQOGTUUPXKCM8dO3H777ZvXrckk1M3rhxSZpFKZuflGSHmxsyuiDCKQyKR9P4xn02emJ5jggMHQ59QPsC7LAmIiWZ6PEJYk6cLklK7rmUJnMpG22k3G2Prhkc0bN01MTB3ftw9h3JtO25aFMb7v3t+dPHtuy9btnuc9+7enMGQqkcIwCgV453vu+s/Pf0nX9Z//7Ke//NlP6+WFDQM9XuT5wlPjphMFSjzWDKKdl1210FzV08aFC3NXdudVpHtRwyVAxYIyHvgcKkiSlCCIhAppEEmSpKp627KvvvraZsOqHz+oFwsccMEEFRRxbEja5MzseKVVrdQBQLomcRZFURSPx2gQdeiqJpFMJrM4N50wY/WpMwP5+IO/v9dyg5/870/e95G7n3zoaUOTScQ687l0zNQk8uAvfv23Pz/41xee37Z527dK37Ys20wmi329bKVUnp/NpNOdhY7HH3+cU1EodFx22SUyke6+++6YKUMQBlivrK5kDBOoqcBvf/3Ln1Ggcc3OHflcMd9blFgEfOfMz/4EwiCELGCRJCEGWBT5CkY6JLJmcigzIZLJZGC3ZSGgAB51AigkaCJVltzIJ1AA5rfssNL8r+9+Z4YLFNA/3XvvH//yyK7duzdt2vHSS68k06nzFyY279zJmHBd/8SxA5s2bXzXe9792U98ArJow/rRQwdePXpg74Z1G7ZsWNuqVSUhFhaWCI26irnllaW21QyCIIqiwcH+pVI58oOIRbquO547NTPdkcnYYShLCPAQcWroRhh4peVlCIHTtgSg1doqxKBp1SDmO3ZtlmX5lb3PT8+VTU1FEISRH9PUfDZTrlS7OjqazeYjjzxy6WVXXX3VtZ4XSKr23n++56/3/zGeSCWS6eNHj1kN5/DBw3e+7e2H9x8QQYQkFHmB02iZqtaq1AxDWzM4xHl/tVL50Ac+fNU1V27btm1yctLz3K6uLsMwoGa+/Orey664tLuy2mq1p8bP/9M73vnT//nxxNEjuVzOUJUg9DqzyZXVWtuzJ6fOzy/MdnZ0RCGbX1zo6+vZsW3nmbOnJCzJpibL8sUMeTabHR0bW61U244ty3IQBE2r7Tjepk2bVlZXe3t7c/k8BHhgYGB2drZWq83MzDSbTUOPMSoAD7OZxHo8/ObX3xJ6zT/8/mc333r75st2HDn6qusRVddkVV1eXkZAZHNZ13UTejwIvOXSiqLKYRi2LTsIIgBAV67DsiwYUMRQIZ0uV1adVltTVCGQEDBmxEvLZV3XPc/r7e6GEEIQWZYlGD944FAoiJEwg5AdPHwMQSKo0IgaeX4+ldElzbIsydCRQMwLHMcpl8vHjxzu6+tbt379O9/5bt000ul0Jp2LmSZCAAAAuGCMYYkAAIQQF1FjCKAAQgjBhIwRdIIQS4RD6IcBQogQScacMoEx0o04BIBoigBQldW51dVqo+7TiMiS53lCQGT7COH23HzP4PDDjz3+0F/v//yn/j2ZS9mWU8wU9WT8xX37Nm3bkcjmbBo9+Lenr7ni8m9/9zvnz57r6Oq8/vrXXHn5Fa+7+dYf/fCH3/jGtxzPO3LkaCJlKLLGIeru7l1ZWc0VO770pS9DyNu++8mPf+yx+x84efRQPB6P/GB4YCjR0dGRzR8+dqLaWmUM2GEAZDlTyJmxVBB6nh9wAIMo5IDXGo1GvSYAsiyrVqv09xsIBpKiYglGoed4kAGh6aoAIAxDzijkTEQRQdBx7ETcNGK6IhNJxpqi6rrOmYyRGkVclrUwQq5HNTUuOEFQCjwn9EMAIOQCQB5FUYyoURRRSmVVY5wFroMxRggICEQUmooW+YEiSQIiELFMLOH7rhW4siovLC9dceW1IWUtpwUASmaTjDHPC3TdNE1TCE4ptW0bAERkCXLRqNXf8oY3WZ5jmqaAgAkoSSQUIZYlp954+KEHUqkUAEAwDjEKwpDx6MMf+uj4+MTu3bs7OwsIAsezy+VKT99AxIQqYwQlJiDCiDDOEUGc80JHTlXV5eXFdCoVRdHatWv37Nn11wf+TMMoIpHvuHv27Ont65icnatUKlddec30zOy585OiVm+12pKkICJBAQAXhqpBLppNy4xpvh8ttBey+bRlWYoqx+OmbVtEUiRJ8ryAUgoAVxQtCIIgCDRN8zzvIt0sANd1XZap7/tMCFlVUBiVyyVVkTZv2egHDhC0t6cDMF6trlYr5XQmbtsWljCNaK1W0XX94KF9nu8CiMOIdvUU86nMzMSkhiXKKVYUq+0ks8mdO3daVsu2HY/xZCozNDS0vLz8t2efWze2rqe3L18sBDQqlUrLy8ubNm362Cf+Zc3Y2u997zvPP/tUKpFClClx49Of/szr33DH2YWpHdt2vOktd7zlzrfc+9MfvfSXP3QUkwLJksQVRWEIIFV2A7rabpYWFgvZYjlk4yu10e6i0y67AZMUWcPQixjBSFLVNpJ02fSDyPPDsd6+s+fPnz51bktK5xiE3AcCKwBGnGqqPNLTe7J9wfZsCUltuyEY5SxKpZIY48ixCVA9v52MG4hHWUXGqshkMv/3m19XG9VHH3rsc//+79/61n/lY/G4JmmQxjRjsJgPfP+y7dsff/Jvb3vrWw4cPHz9jdf/9Je/6OrqAgBQwp546qmDhw/rqvK+993juvbMzMx/fefbURAyEFLJSCYMCGHbA9dfednPf/XXam2ZR/y5F15whHBCz1xtBm5Up5HwXMXUQ84829E0HajKguv4QcAJo5zJDd+AJI5IXtGyapL6HmXQYa4eN82I6arKJVqpVR/+zBefcWu3XHNDodA1uma9ohg33fS64eE1v/jVLxXN0DTNd72j+w6/+OLfX3j22VTSvPTSPddcdfmFqQvrN2666213fu1r37r06kLfyOiLzz5HaXTljq2KBBynHU8mE8l4vd3iCBINY4BIiGRVbrcsPZ2KJ2OWVWeMcc59P/QilkpmPv6xj587d06W1enZCVlROERXXXvdxPSUFwbZXAZhCCJmZPRKuRwSVEgmdVVVZYVzTog8ODh4+vRJJCvV6qpEFKvlJeMdew8cOnDgQCwWGxwczCQTq816oadrYHSkWVtlPGo0Gpl07qMf+/Bjjz1SLpd0Iz4/N7d7986pickXXnhh67ZtQoiJyam+vr64YQaMnrsw7nmeTCTO+fLy8tDQUE9Hp+c5WJawLDdb7VNnzlx2xZWVWr27K0UIWVicvfaa6+fn58fPz6QSHbNz0x0dHVbTGRlaU6mtNptN14XFYqfruqXlZQhhNpOLIjYyPPbGN9wxOzt77Nix5ZXlC5NTvu9qmpZMxvv7+y3LypDkSrkyMzsVOfapg/t0yevJEHt1+oztlUslXVVN02w0GhJRdF3nHBGitj1fCGDE4rIsu35N1VTFNBljpUoJQggh5twx4jEIYbPZ7OjqCrwwkUgkUynHdX3PM0yt7bZDz9d0wgHDWDl17kIymVyutzjnkmG4LSdhxiqNRqFQWF1dXZif37ptGwDo7NmztWbjhhtuWLt27VVXXTU4NMI5BwBwhAQAQUDdiEIAFEKCIDB0lQkKAOAQUEoRxpRSIskRjyDHoYBYlhkAQRAQQjDBluNECIAgYhGNIMCSwsMokUxOzU+XJxeILGEJBTTyfV+SFIkoCKFIVoCITp4+k80VVFWFWIJEGV2z/kez8+/6539+9133PPLcMwcPHzU07ff3/fF3v/4/SKQPX37Z29/69seeeGJlobR+3cYv/OeX3nTHG48fO7J5yzpNU8rL5Va9oRCpvFz65c9/Ua9XVhu1pYX5yXNnB0eHSqVSplCcmZw+cu707q07Ozu7E/lEEHKB5Eqt2Wi7tuvFU/FYMiWw44YRR2Tj5u1mTM/kOmqNBqVUUCbpMqMiCCLXC2LF3GqjoUeeKauQcY3ISCKyKimSZBhGFEVYljw/tFyvVqvpui44rNfrlHMBABNcUbS2FQiOOWOu60tEixvxMPK5EAJBCGQWuVCgKIgu8uJAgkSREcGqJAWhI0AkySqlEYTCsS3fd41YslqtJ2Nxx7Y13YwZ5sXlRCGLa/FaZRUKoSmShGFPV8dXvvQFM6VHng9YODUxtWHLZkqpqqqU0sDxZF11XfeJRx87e/z4hdnpiDMN43rL4pyvWz92//33/+gH/93VWfBDH0KhaiaDtYXF5d6eTkY5Qhhj4AeUOL7r+z4A4Oqrr65VyrPTM5s2bQKADw6NHD16tFSq9nV3VFYba9euHRgenJubOn/+7JYtW1zPbrfbnHNKuWAgkUmt1mq6rhGIVEXiUcAiqqsJSnksbqqavLAwt3bdGsaiarXaPzhAI44YggRFNGSMKYoSBIEsywByykJVlS/+tzFBBeQQQQghMWXX9VOFHAVicWUFARhQSiBJJbXu7s7zZ7V6o6KpcsNrmTGNMTrY3dm02pVGk8hSy7Gvv/l1Siyxb++rMgBYIsW+7k9/+tNnzpyan5/PFDqAQBjQwZGRVDabXlySFaVSq1aa9SAMf/CDDx4+fLBWq504cULR1EwmE0UsiiI/BEOdPbNzS7e84c2KpCCEVAXGFCk/NJTIFjgL6pXVuflyYWwN8sNCZ0faTCJT6cp2feVb3xjds+E7n/73Yy+9smM0HwA58EKZSNlMwrXbYcQjwd2IIyIjgrkQHEBJUZKZtEBCkUjgCup6GMssDCMvwghEChIRAwhhSeYejRhlnBmGxmkEBFVSWrvaTiia7beFbw+M9j328KOX7rzq+b8/mcx1fvYTH18/UISBu1qv2a473FNcDKL33PmOtZs37z90cKVZSybSzPNzyXQ7dBeWFsyYARh9+NGHrrvummJnx19//BM58C0aRhStyef0VOr45MTT9/9u8uzE+z/2vhcefuSL3/paxOjaQsc7d1weRBwqilRMTVvVBatR6MphjqaWyj6CFCE/iFQOcSAc4AICFB92VsQ6M7dOVzSsWLWGmsuM7dpanV+ozNfeeN1txU7Sn+uoLpeHBns3btpSr1d1TQp8WyIKjSKX85npaUDp1Pi5WFyfEPzIkSNQQslk/JWDRz/7xa8cOn4qj42rXqtVStOr1YrbqmiaKiukZTmypp6fOG8mdIQABxfNNSgWM8LQhwgIgAGSIVEiDp2AT84uVZsOwWG1YvW8dqhaab6671Db9hGU25bbWehWidZqNTilmhG/6KR0fZ9SFlEWhKGiK6XyCuNBEESCS88/t/e1119ryGY+lbOqdbfZvHT3nmIuuzg3a6bjzba1Uqlqidi/fvYzN910g+y0jp85lTJincUCAiKTTPmWvWbNmNQ9oCgKUODOru31et1t20ulsq4bf3jwQSb4quVxTrs7OhmUXnPzLXuuuOaXv/m/ZqtdLBZatpdKxU6eOuoHkaYZjudyITgV2Ux+aamUSMT6NvaeP38BClTMdzhtOwxDhFAxn96//+BTTz1tWc0oihRNTyQSmUxGCKaq6uLiYk9Pz9LCohGLjwwOTJ09Y8pyzoQl5iZknM2k1w6PmfHk0uJKvlhUU1osllhZWeFMSBgLIRpWGyHEuACcsiiAEHoskIksS7Kgot5sSIpS6OxkEGRy6dn5GUmSJBlxQTzPabebqVQqkU4szC6EAUtm834Utv1AUxWEiWTo7TDAqqwnYj6LYqnkzPzc7PzcG9/w5jvvvHN0dJQJgCDy6f9rsgsYi0IGAFBljUhYACHrxPFsgLWLak+iyDIhThCCMFQUBUMAAYwYE0JEjDIulksrrVYr5BBRyiIqGYai6SoiS5XJdmM1lckDwBWJAMhDGoUBjSKmahqNBEZS4LobNmz4yMc/9tFPfHzn1Veenpr64Ic+8ba3v/3YsVMriyuve/3tjmP/6Fv/5bYaOy+/ZnFx8fjJ44cOHfrLfX+GAj755JMYoWuufG21sUyIYmi61WxBwD3XbtbrBw8eTGUzf3v6yZG+vlNnz5TKK0TVCl3du3UVczw7OVtqLgMopY3kpvVXb1i/ERHiuH7f0LBElFqjbcQSDOJKtTE+Pm4acVMzhcA0AFBVZ2YWvv/D/7n6mqs++IGPPP27X6pYlgSmXhjSqOU701Ozjuf5fsg4YILLqqIZRrXWgIQhScgKbDZbRDKDIJibm1u/fv2LL+wtdKZkrF2ULYc0tCwrD2WEQ04ZZ5xgLIRgIcUYc85DEQaRDzGQFOJFVIYSExGRsQywxBCiAEcchty3bFXVAeSIgJXlJShEMZ/zHDuTTv3vz39x7tz4ne99++W79kgS/sPv/o88oP/bF76QTqcD6qfjKSf0BGUbx9ZdOH/2qaeeNFNxEUSASENDA67rvudd737HO97GGBWCSYpsecH4xJSuG5qmJQxdVRUaUkYpiakx6tF160frq+X5ublNmzfohup6wcLC3MTE1LZt2xfmZ1PZxGtee9XU+NmZmZnXXnd9vV5HkAiA9Jg5ODR86sw5iiLPc42YEWLgB76hEpeGiqZQt+15nCCsyzL1A13SKGfNSs00NKDKoR9KGmaMA4AQVCqrdSIJPxCapkBIwxC4LtV12Q9Cq9kqFHJEYvv3H3rhufd99t8/qmlqsdgBYCRpZnt5MZFKteyWbEj1mVYmHSOE1yx/sVQLQgoQjBnSo3998Oabb3zrHW9st9shjTTVqFSr4xcmi4Xc9OTE0sIi9b3nnvqbqmtR6AvGi8Wi1Xa6u7rOTZ6lBhnu2oiR/Oq+A8lsDkAYCYQQOHX2zMLywvU33LB79+4jR468+MKzN994/WMP3d+dTHekkr1rB9776de/uv+QZzlKD6h6jXLJvu41r+3syufShfsffuovv/nlr77w+b44MXXDpkFg+RjooW4Qw9Q5QyIiWGDOMjFjKnBKlhG4HvTbY90FRY3ZIpIA0JMxeQm0OERMAMgFFRJRKGUQAsWIR00LAy1q+k4UhYyKkOnpBC2XjY7kocP7Nm7adPz4cROJz330E3fcdtPU7AUoibagA6lU2W///cVnMCZvu/22dZu3vPzy3vLSctt2t6zbePjw4YD7+/cffOXlvViAYjojp5HmY8/yknENA7ZteHBxtfzf//3tydljP/rKd3ZcsvPKG67tysaVvHEgXKYJ1QtbS+2mxPG8ZQNZaUIQi+t6xCUsMBMKkYVLA8ADJuYILEXNsxa9NtmrJtO27e7/2/Mx3YgEsGvL50vN5WJFQaSnvy90HSzJe185AA213W7XVlZtx4snEjfeeP3pUycuTJzt6++zak3OudNyf/bLX47PzXZ29WzftXvdO/+hHdlewz716sEffOubjEprN4yxhaVq3WrUAoyx7wkgfMaA79NIE4IjHjJIgWvZRtKoVuYefnAcYxIzU81mM52Ja7q0bmzt8WMnI8aNRLLSap85cZbImAmgSJJKZKISy3UoiMY2rdmwdvOJEycJljdv3vz0M08MDHZde90VkoR3796ezaVVWZm6MNXfM/ijH/1YUdUtyS1bN295+tlnhgYGR4ZuqFar+1898OWvfu382XM//P4PNF1517veVa2uerbDAWs7VtRkpmISrEmKKautrp7unr6edDazMj/vOJ7VakWUvrz31YmpyWQmHU+lBwaGy+XyymrJjMVSmbjv+45bkyRpfOJ0V0d3f3//5Mz5mlVZbdSd0M2FyVw+4zgOpyIMvE0b166srFSrle07ti7NLl2YmAhcwQSLwqCjIy9JKJlMHD6yv5hLc0TajHLXNXOd7ZC3FmawZnoRdcMQy6rt+ZPTU8lkEgrQ9lwJyzKRBaMyRhIEGGJNM4BAvh8SiTAIBkfGJiam4vF0aWnFkM2OYk8YhhdLmkPElLjWbLeZEFjRUul0FIWZmNFVLF64cKHu1Iq5rtC1I0pty2lbzmqlsXPn7m984wcbNo1ygOwwZALabntmYd7xXCFEq2739/dLklSr1QRghmF4nrcwO5fNF3t7eyUZA8Yvuvbi8Xit2aKhJ8uy4/n1msUY8NwAIRSPxwkIoKKqMWwYhiZLhBClkIynko4dUEABBkKIlJahIQsiKimK07L8MAgdurS48u5/+qfHn3hi3/692kekK294PYXgwLEjHMn3/uZ33/3GVzZs2PDz3/9lz/YNH//kJ//8x7+8+93v/vsLL9brdYb4P3/4g1fv2j2/uHj3Pe+NxbKu7wFIspnCtddc89LLzysYmcnsrt2XbN68+ZGHHr3ttttOnzwpLcgvvfJKvpAdSPWNj18YHO6ampqqrS6sGbh1amrq1LHTEWBbNo+UFleOlk/F1PieHTvaVhNhbpqq4Ny27YHhob7BgUOnz+zYtf0PP/0xZ0RDiMkSpjDT0/2RD7xPLcbsShWG1BWhQgHEUkcx+9Y3vXtuaq6yUtc0VVcVzw0+8tGPbd2565bblr7/4x/oqnRzTwEBoQlV5SSANmAUIoGACDklGGGMGQdQQB9rWEhe02lrasA4gyHjTIE4IgyoqGzV+iRECEh3ZG3bRgA6josVgSk7cvL4bc6bIsqSmbikUKdRlrDcsIJNO3dXqkuaREBEJUy4EDKU/LZHdLXptGQCN46u7xsaPnTgZZVId7zxbW94461B5Jw6M9HV2a/57NzK8trNm2qLy/NTk7t37VxcLK82m422S4LIj6dMy27rqtLT09O2nGrlnGXZVvvMlVde6TjeoYNH3v/+u06dOmXb1nXXXr1v3z5JUmRF97xAcLQwX5KI0bZ8QohmqG3HVmTTte2eYlcUUUXWqB8GQTA4OHjq1KnR0VEZAsuyIhqYIs6jKAgBgNzQVT2ux+Om4zYTyWwsnuYCCM4VCbOICgGEgAhDwSlnkSyhhx548J67/0mXlWbLompNRmLH1h379u5PyGpC0WWocs6XlhZ7+vt6evtzucKll17KWTQ5OfnSSy/NzS3Mzc25bdsPQtNQOaMxQyOEaIqqylosFlMIdhyHRxQIUatUPc8dGVtz8NWDH7rnA0/+7amVlWUhhG1biXjcNPWbb75x1+5LLNvZsWPXubNns5nChs27Xvva67p6OqGuzS+snC9Xc9nssuX1ZItyPjk1OZvuKC6tNpOp/B3/+E++7//4q58fSuYjWS2XyzxgIZGL6zZEghOsCoBOnD7/pwcf9jxPw3h1dvrpRx/4wx/uy0rtpE78UCBDYTKGIApYAJFMAGCMEUKEoEHgYEkQFYlIqBJBCGGMgyBSiAJ8p7env1Vv9PX0/+Kn/3v3pz9xdP+B8ckFCoSp6aqq9/T31/3xQr5zeGS0VF7NFwsY45WV1fNnziqKTAi2vZYikaRp6JrmN1qpZCauMy5JWFZlCDs7upOp4G9Pv/Jv6tff/6EPv/LC3s9/4l++eu9vPcD4co0KRjiOMLKDEEeUEIAQchShCey4dhAEUEYSBxoA+XQaESwi/3FQ26Ole7gcASgjGauy6vGFwyfPrD41PLbutjfdKsnKHx988MzhY539nZXG6pNPPp7KpGkYYRDmcplTp4Pt23fceN1rv/a1r03PzRY6ihjAY0cPr1+3bm56Kt3VKSvGum27nnzx5e9955uU84Y9Nzy67ZJLdvq+b8TihULukYcffOXvL/EwiAKfIzy6YT1TjFq9brcdWZFCnymKCgDP5TKe5+TzeQgADQMEBQ8DAXkYRrqmur7vur4QgobM0GKDg+t6eoeefOqFZtPu7Rk8eGj/Jz72ya986ct/f/mlpaWqgDwWiymGPjs/LyvKZZddpihGPt85N7fwyY//y+L8wl/+/NVLLrv8r/c/ePU1V/7kf3+2ulK2bfu39947ODBgGMb8/OzA4PD0/FxnZ2cqnUYErl+/PpVKXnrppX/65f+dOXkqnU5XG/XS7FxC02+44QZFUf/7Fz/duHFjLGE4ThsC3WrWVVV98+23tlzrkQcfL6/Mrt+0vtW2ROhTjJyGcIg8Pz/v2s7IyOiBAweKxeKaNWvq9Xosnty4cfNKZaVWq8myvLCwBAAAACRTmaXyshrXn3xxb2cho6pq6czk0JoNju00rZYia9XViqqqmXQuiiJMYMxIECwTQoiEWq16vdokRLbcMKYpqVicAxiLJ5vNZiqTvHBhsren3wvattsWjKfTyWq1GkWMc9BuuQQpmqadO3O+p6dHMKjKem/vQKPRsCyLEKJjWUK4p7t7eaX8+re8OV7IPn/oKCEkCKKVpZVWs61pGkIoHk/4flitNoodHVygWq1x9MgpTTV0Xa/U6sl0RlGUwHNjsVi9XCkfO4UIXphdUjXZMPRMLgsA0DQlHlMQCjU9jTEEAGi6KoTwwkggDDBRNCxjEEa+okiQQ4RgPK6HlKqqmkgl8/k8hqBcLj/4yMM///nPOQP1ZuPvzz7+h9/94q73fawjG98y1hs5q5XFycF/eP2///vnJqenPvaJj09OTt90003nL5x75plnDE1ttuqcAGIqVacpyyoFtOFZ23fsOXPm1I9+9KMf/uj7f/7z/ZVKpdW2du3atbi8ct11173vA+//+99f+OpXv1qt10eG+mYX5mbnZwRkikripokgkyWUycb9tu/Znmc7qqIDADjnkiIDKN729jsMzZyennzNG27ZedO1z7z64tiatZ7tNVcqBw6fKm7ZmkxlCCGGYTQarRdfeOVT//ofRtx4/wc/+Kl//cTw8KDnsre8+a2vf8MdEMBrrrmm2aoX8plKqwEk7Du+rBDucigEAIIDhAhk/GI+SyVYjnzKGKMQIFmKQcI5b1M/IthvWQMDA1ajGYVhNp2LgpBg2bbaraaTzaaXlpbWrl0ry3Kj5nPKTNNMpboQwVTYLXvRC1qmqQaUQow4FpzzeCax99WXPvYv//rjn/1c1YwXXt6bTGSuvfrKK6++kgIwu2RNTC+lsh1ENoETxbt0Ucg/99xzlEiteosgydRMkkjG2+1WuVy6qGwtlWpbt25SFFUAMD4+Ua8114wOP/Psix3F/OjoWFf3wLadV65WKgcOHNJUc2Fxtqs/HViuoqqtVv1iNkGVFeY5mWTK90OEAAvDhYWljlwmk8nUm81CoUAFAADYtg8Bukgh79+3t6N7CEvE9lsei83MLkCINU21Wh4UXAhAsCwjZbVUeePtb7zllltOnTysqXLkOb5lBbIaBkG5XPMcv7Qwn0slnIgasczb3nbdps1bpucXlpdXvvrlr1RrVQAAxkAwoKmKRJBK1HwuEzNM3/fD0DcUvdVqWfVaJpkiQDCENE0DEHV1dbXb7WqlcvzYkWuuueaZ55+BEIyNjiwsLfq+VyqVJEmilC4ulWLxZEDZ8uz8N77yVYYhg+h997xfQySw3Ww2G4/HQxHKmNx5552qJPfkc17k3XzjTb9/af+F8+NYlQWNdEzS+fzXfvjDqu0WCHQxlhWt7DjZbNbQ9eFCftMll3Wu2/2nn363K5tw7aBGReBPxHSdSarPAgCEJCFVVYKQhiw0CGGAck7DMGSMMY6wwKEftSotH3r5QpaY5l/+/Nc3vOcdfcOjk2s2eYJaq7W5hSmPCdcLd+25xA0jy7FXq/VYPJFkkWoasqqEgQe4QASUq9V8JoNlaXGlTCQ0lEm17OZqvSGQ5AVhV7Hjb888feDIgYmJiV3XXvn0qy9l0kkIoa/IwAsjRjETAnOsKxhClYmqZ8sYIQQDxlRNViXFx6xWrRGIAxkckqt5taMI9TanwnZ1SUvH48OaHLrOow8+MDw48sXP/sd99/7u3PjpMo2gYKah+FjIMjl29Gg2m3344Ycfe+Txb3/7281m/ee/+N8nHn+8o6PjPz7z6WbT7hns+/rX/2tmeu6Xv/rVd779LSTAv3ziUxBIW7bscD0PQogl9IMf/vevfvm/l+7Z+YPvfbfulgvx3quuvQQRKQp8w9CEEM8//2K5zDBBrVZrZmYmCAJdVSUEIaBm3IiigEaRrGuMMQixrhu1Sv3551/03CiXLaysrEShn89mHNv+xc9/umXLpi2bN0zPzpw5PavKKkTMa1vnz50uFHsMQ5ueni6Vln71q195nnfuzGnN0JPp9IXxyfHx8anJyY6OrmQyeRFnRwTLqnLsxPG4Gas3qvPz8zt37vjjfX/YMLZ20+4duq7mWnXF1E+eOnVi/LQqK2vHBvt6i9PT0yz0mr6TyaR9Pzx19lTLrrz5LbdOnB9vt1tXX37pM0+/eOLYyZtfd33LDXO5nKtd7BAUp0+fnpqatNrNTCI/MjIyMjhkGIaiKG3HNgzjwsQEEfLWzVvaTnP71s2cgtmZxUJnyqOhqmudpmG17NCPJCzHE+ZyqZRKpSQAZIzaVgthyKMooRmaomAkRTTIJlKW42TSSYhROpPp6uoishpG/rFjxxrVWmexA0KYSiUcx4nFDF3VHNvJ5/Oqql78NbNtq6OjgwkqGHesdrm0stqopTI5n7LF1ZXZ2fnnn3uxs7NTllVJko0oiseS5UpNVkWtvlKtr3AONEUdGOgPgqBZq9fKbRqxYrHoB161Wm+1WrOzs6YZ0w3N991Go7qyWuru7k0keldK1eGRwVgyyTmPoghgAgEIXb9t1x3Hmbkw3Tc4kEjEmnazVqkamt5oWa1WK5/Pl0olAblMJE1R9+3bt2bNaHdvz9zM7Ff+83MT58f/5VP/8eSLf8tqON/bc/Dvz352tWIYBuf82SefIJLU39v59a9+8QMf+MA73/GOdDq5ceP6drNh6KqqGdVKZd26dboW86Nw587drWbbcbx77rnnqmuufuWVV/7pvXefP3/+ne96z9LSPEYYS5Lje7FEnAJ4sYNZJVglhEehpkiYAkWWVFWtNpqMiYhSxn3Lrr/+9ts+9pGPXnXtNX8/uO+uasWPaKNpaYbpeX46XhgbXG8YsYjSnp6eN77lLbv3XDo0NFJaLK1WKjdcd6PjOL/+9a8feujRH/7ox319fRgJlUjLC4v9G9fuvPRKLEtRFIShjyCXFYlxDgRAmNCI0ZCxgEqqErgBFEDTdM+xAxpyACEmsoQAF2vGRvbs3DU/t2ToMd8PjRiEWHZ9L5ctBEFAwxBwQYMQCcShDLHEeKgqxJdkCDHCEoSQcgYwbLatvsGBa6977SOPPFIqV3t6+w8fOj42tiaZiZ04c65Ubsua/sJLzx3cd3zNYF93ZydngAv81DPP3/Tam+YmpzODGVKr1S5uWlmWGWN33vnW5eXlUmn5kkt2RxFLJd2tW7ZfccUVJ0+ebDZqBw6e7Ohsqqq8ddvORDK3vHof55zSAEs4Hk8GQQQF9BxXJlJpeXlwqMt1Xd/3McZ+GGYymaZlAYRM00QY+pQbuhFFESEylE03wvVa06OugIsMEijJQUglCTMGAOOyrFSqZVXRP/7xjx49ejybK8iSVuzo2Lhhi23b9z3wHTMeu+a6ayyrefLkya07dg2MjRGK//iH+8anpsxYgnO+bt1YtVqlNFyzZuzksaOQI8apbbUxB5xzTnnAHCEE5KLZbBq6ChGCEEiqsrqy2j06NDg4eOrkmY1btnZ0dKTTKd/3DT3Wbnttxy6Xy0wAXddbrdby8vLgcN/tr39dvlAY27CxkMl/8eQXkomU1a4Xc/mV+Zkbrr/+9Tfe8Oor+zj1z5w8sWXDlr7BEawlQkYRhjyk/X09iXR+oVRKIl2lpLOY/8bnv1ip1mWFKIqSTiY3jax943s/2KpWqBe87e53/etnP3Pf/91X6BwUTo0gEPqepukQCs4i27LauqlCJGs6AHJAA6tcS6SSH/+Ht89OzmzZtu3UzFQhkfvm57/y69/88h/f9q5Xjh3aNLT2wKFXbrz5dZu3bv2/e3+/aevOZDo9MzvftFpLpeWVWsUJ/Fq5/P3vfz+fzz7zzDMHDhw4dvRof2e+VakogpoEw1Si1Ghls8nqSnl4/fCmtaN2o/zSSy/KAKGQWYjTpo8Q0DBCTGBdYzKuVCxNAZCikHMggARBzDTdwKvX24QgziB0aRvQg2H5Oi1v6FpbZ20aeMJvRXar2njvPXfv2b7zxz/63paNmySZz87OUhqGYRCLmZ7vrl+/fvz8xL999T8fffTRd//jXbfedtvv7/vj/X/+y/nz52+44YZf/uIXkxfO3fPud9x557uuv+byj3/4AyMjoz/9yX+/653/+LFPfHRwaOjaa6997rnnYnHjnnvu3rVrh/31b4R+GI/zwf61UcQ0RU2lY4VCoVjo++1vfh2PJWRZbjYtWVE5gpBgrMgrK2UAAASA+l5iYJAx7jh2MmZ2dxUgoAP93aWVuamZC296wxuuuurSTDLdbtbsFW/Pnp3Ly8sJM3HVZZd9+xtfUzCq1kq1+srwSN+Zsyfn5id9r53Jjn304x97/LG/nT59ulqtvu+ef8YY//R//nvPnl3dnQXbdRlj9crqcG8vBuzEiRN3vetd+XTq+Sf+1tXVoenyQmmh0NU9OX5e1+Pnz5y9+abXJjQDM7F+7doTp06dPT8+NLom39tlNvHywjznvFpb9X03FjMUTU6n0+X6zPnz53u7eyRJqtfrhUJeluWurq522z555uSx4+HIyEijVsWS5Di2aZoTp6cMzTh77uTc7KzVcEzNUFSSS3XOztdipjk02G9ZtqqqURTlsllVV5qNqk89TVMMQ4tCpVWt15rNTCoFMZmdnaVCtG0731FsNptr160bH59o1NvJWFJX9NLSImVh224lk4lkJoc4HFkzMDc3J8s4Hjd83ycSbFn1wAtPnDgxPDx8x5vfsGZs7aZt21fr9b+//BLm4JrLL4EQMg40Q48n05lMRlGUQrbg+/65c+fq9frGLRtKpZKpG7y3P55KHjp0qLy0lM9lZIK1bCabTNVqNcocopFkPJfJ5IqFnng8mU/llxcXmy3nYiZL07S4GQu8sFxenZ+flzAMPKfquU889mg2nTx27NjQ0JAkKb/+358Oj65BCEVR1KzVr7rqqueefuahRx9+2xvf/Ouf//rdd76T+35c0cbHJ32va3J+pTiw5m9PPrG6uvovn/zE4OCg53k//tEPpy6c6+8deNvb7ti3f2+jWkEICSEQQgcPHJycmL777rs3b948MjR89Mjxn/zkJ+95991v/oe37H1l36FDh7Zs2bZ16/aFhbl8rhiGbSq44NgwTE4Z4MJUdM92sKY1m01KaeD5CpFc21E0FRKcyWReeOGFxcXF40dP/Ou//uuN1980feL8vmdf9FnY3993/VvesO/Y4UJ/HweAumGztHr/b3578sTxlfJ8KplJpJLHjp6aWy5xAThCRD5w02su16BcXli66pYbESISAiyisiwjyEIaIoEEFFHIZQAVRQECUcgh4DomIIy80MOKrAgBAuoFQaPRTCQSM1PTBCt2y0aSzJiAAGUzhQvj52ngy0TyHAcCwCKqqCQMGI/kwMYg0gjUARdhGJimedH1kUgkrGYr9ANVJocPHfrcf/xrb2/Xgw/dHwmkGem+/s5HH/3Ti8+8eMevfhlE0d6/v3LolX3PPvt8q9Z605ve5AFKNMNcXV0tFAoQwkQsXizmZ2Ynrrzq0vVr1/3+vj8qil6tVs+ePf/UU091dnZmc+m20zx8dHxhYUmW5csvvezVQ4fi8aQX+G3LNc2Y4FBWZUCDTCYNIdB02XPcMAwTiYTve8R1OQeyogoeIRxwEcgK1jTFD+yMhNPZTL0lunq6T588w6OIK8j1I0KAAIByZtv1N7/pH6jgq7VVCHA2n9h38PjLL796623Xr1+/vre7CwBgJlKpQrFhtY788Q+I4aHRMVmWFxeXZQnTxdD3XQHB5PREyKgsyRhiIYQQIopYIpH03GYulxECNqo13TCo4NQPhODZbD50w+GhNc8+8XS91kSQNOutKAwhIrJEpqdmoyhaXinrut7d3anr6vGjh1q1WhhG5VrVDfzu7t6ewV4ZQUFwCMDk7NzJIyc0WbEi10ylF+aXX33hxbbrEUWVZRlyIQsI3SiONYdHGgsd39u0fkNfV9eJo0eW5xdOv/xK7cypz33vu//x+S9dc9klAKNbX3fby8+8tLwyw4GAEHLKXMe3LEciqK9/9O1ve9sPvvbNQLBUotiOrFve+EZZ1+MdOUCZHjeXZ+czo7ENa8Z+/+v/KzVWP/eVL82vLtVtGxPJtt3NW7YNj64pl8u6rseTid7BQRqxhlGbm51dM7r2yisvv+W222uN1g1XXeY0mqlEMh1PNWv1gaGBK4qdz7709450vpDJXnvj9Y89/fQrr+5VdMPIZ91KWS/qJlEa7VZIIGZIAzizachuWSMdvZ6gjVrdLddqzQZRVASJEiGPR1RGKhUTijfInJEAcQ3P10rpRLqpKzQSTz77bHdv3wc/8tEf/vCHdr0qBCRE9jy/WCwGntdoNcrlyjNPP/e+D3zo+htvPnjw4C9+9dt3vv0dn/rMqK5qphl/73vu3LJp81/vu++ZVPL222+nkf+GN956402vy+TMRx999NCBV9eMjm1Yv/Y73/xOPp9/zWuuf+m5v9/1rnuOnzz3wAMPxWKGZTWJTO666651Y+sb9XpWVlLptB4z3cBfbdQ2btty9VWvCTwnbuiH9++3rSal1I08M6Z57fbq8tLU7BznnFJq2baiaXOLS8Vc9pVX9x88emzDhg2Kom7eOv+fX/7qAw888PpbXnfZZZefOz8+MzOrKOr117320isu/9rXvpZKpLuLhdGhwYP7X103tnbb1s0HX32VSAhC0d8/ePe77pyZmdm66arpyYm/v/D8ta+5ZtvaNZ7neHZTOLZMmcIxcGl/R++F8emzZy4ghCiDpVIlm8tRyg8fPsqs+tjaDUNDw8lkvFJveGHEASr0dK3Umh2Fgus6tt3WVRUKQUNfUaV8IZNJxTnnuq4BwCPOAICYoAhFR06dAljN5tKLi0c3btrqe17bCosdBU1RIQRh6IeeCwBou04QqIEfccAoY9Vmg3NuGoaCcTuKFAAy+ZxhmI1ms7xcCll04cKFNSNj6VTMcRzXbuu6LoQmKXIQBG61Ucikz42fN3Wj0WgmEnFd1yMmLy8vY6B86MMffds73i6remll9cTJU41as7lcfWnfSx0dHYSQVquVzxdmZ2cvXJhUVZVy0Gw2DcMwDONnUDRqdc/zJAwVzTBNU9fViz5dzwtWVlY8z2s0bYSAmYgnEglKuaZpY2Nrtm3bgiS1t7dX1zSHkMnm+UQsnsvlUmvXT82eP7x/P4ui4wcPQMgBAM/97cn3ve+DKkFHD+6//fbbMcZnWs3D+1/Vdf2tb37ThZNnH338hbs/+Mn5hdLI+k3/+NHPjowMxePxy6+/6Quf/8+33vGW3ZfsfmXfvp/85CdXX3nF177+X7WWrUjw4Ucf0WM65QxjKBAeXDNWzBdarcZ73vOeQi7/qU99+uDBw1u37Dh/bsK1WrquT0xMyLJiWa177/390GCPppoAQd/1g9BLJ3ttp51KpTwWJRIxRVMppYqkmLoOJQIhDiKqKfpA/4ipGqWl1Q988KOz01OmrmSSXWm39bnPf1ooZOLUhdtuufXCmfFvfetb2zavDzx7sG8wiqKB7v6J8cnuYrqrp1s11Pn5uXwuM9g1CDnMpjIsohhAwZhgACuYQAIYoFwQQqAAECAsS6FgnFMhGA19AoSMURRFEsKSafq+v7y8PDa6oVprIiJJAgAAKOW+7xNCMsmCEExRZMuydN1EKECcASolzBzkDVUmQRQQhCWAOOP5VGZxdrZaKZ87e/rQ4aOXX3ml4NFjjz66WqlNL8y89sbrLt29c7hvzZaPbrjqysv+/tLem2+64dihw6oiXXHpZelsZqVaJkEQaKrOGBsaGj5/7kxpZenMmVO93V2TU+MEi46O/PMvPLN33ys//OEP//yXP/3lr3/69Gc+Ob8wddllV8zOLDz11FNr121qO348lunrHF4qzQMAMMaCI8dxUhk19EIAQL5QWK1WdVVRdb1cWe3q6lA1Q9SZiKihxwATMc0AIY3CSIekvLKcjMWxLCNEMQYIQUWR6/X6lk3bAdAXFkuyoiUSiX37X375lRc5g7/7za/edsebG5VKX9/A4vwS88BseUEnqsP8o0ePElXt7u6UZXl2dlZWiAC80WoQCVMoWBSpqsqAMAzN8zwIoes7nANZkxtWi8gSALBerUkIx1Mp3w0u2jFjsQQXXNdM23VMPeZ7Huf80kv3nDt3TgAmSSQI24DFTATNYt4JXZkIXcVR5DMRqIYqq9LS3DSBnGo4IeNzh/bd+Q9/YxBBjiUkKYpCw6i7u/eKa67lLOScZXKZycmJv/7596qCTV1XUqqc0M6On33fPXf1Fov79x2enCt96wc/+N///UEmmT996qyu69u3b3/++edvvfXWVCq1+4pr3/n+9qsHD0ydG69b1hPPv1BbrUhJ03e9YncP9Nn+6iv5ro5m0GIs+uwnPvHHv/z1Zz/7WeSGNAgvvfTSubm548dPKIpSrdYGBwf7envPnT4DADhz5syll+yempkeXjP6rrve++lPfqK3s8PmcLntRJVGM+CypC+3Vl7XP9Tb0XP6wnkAxKVX7jFM89H7H/Ijz4qpckCpRS0VI5vXGxaXsUCoc/PY0KbBYKV+4tmXOQ+JJrcdT8EIhBxqKpe5wyGVCXbC7Npsj9k9NNJXmyvt3rH9j7+9TzZf+M53//vpRx88+oUvIqJCiF3XSyeSi3PLiqLceOONX/nKVxRF+c1vfvPss88eOHzo/e9//x/uu2/nzt2KnlhYXo2nM2tHx2Lx5OzC/Bve/KbJmenhnu6vfOHzf/3rA2dOn3uyUrvlllvS6fTxY8e7egvnzp/4h7e8/nf3/oRTxfd9iUpf//rnWi3/Xz71ycXlpUajIcsyAECSJAhws2mtHR1JJ+K6LFfKpVf374cQtlot1wkYbW7ftnt6dubUmfFsvnN5uRZ44Wuu33Ptzbd1dXWkUqml+aXnn3/xjXe8+a5/7p6+MP6lL34jmUr97akXPvzBD91xxx0f+MAHHC/MJZHv+2dOnU4kY7lsaseO7YmY/sorr0gYtpu1+enpRx95+Lvf/f7a0dEoijo7u/949nixmLMdK55KMAErjaZmmIwxiWFJVizbjiXSGEkdhc6RNUO1Ws0K/Fq14XhBGHkdxU5ZlpngqXR6dnba9WxN0wgkkoQh/H/CWlkmCCHGWLOJs9msrpqxWMwPIs+1mR/u2rWnb6C/q9hhGMahQ0fCkK7tHH7umWcZYzu375iZm0mn05RSKHh3tnNpaYGFASaoq6vHDwNCCMTQbdZXq5UiJqqqZjKZtut4nlevVTzfUlU98L1YIhH4rFZtdnX1UMGnJme6uro6OnuPHj3quGGhUMBEGlmzfs3wSHd/389+85uBwUGMpfnZuXQsKREUecHBV/efOnt6aHAYEQwAKHZ2R1HERdTfu1aW5Vjc8Bx3/djA1NSUbbX7B0aiKPI8j0h4bm7Rc33f9xVF6esdRBjU6zUhhKJI7Xbr2eeeevbpx9tOODY2Vi6XDVWLokgiZPPmjZs3by72FNPx2IkjR9OJxObN68uVlb7e7jMnT0LA144Mb1y/9u677241mhImIY16+nq7Cj3FvgGsqh255OjomkQuHzKqy+TFv786sGZD38j6uVL9r488sfvyq+u2/cjPf7V148al+ZnQtmOmLhhFAiViiZOHTkxdOPVf3/rO/X/+6y9+8UuESFd3t2XZAY1MXWk7NkKo3W5jTMxY6sTJc5u3rDfjiUZo+6GXzGZs11spV6Ai1Sr1pXIlpCweN6IgVBAyEiZyw9XVyumZib6h4aWlpdVqRQi2+/I9ttuOCNRphBDKxGK5TNbzvDUb111+49WrK/OYaYlEamWp3Gpb69eua1n1+kopcpyTJ84aSqLQ080Yi1yfBRwKIElyFLT9KFAVTZYJ4xQIYMRMLCFEqe06sqmrpmEC3bIsCSMBuEwIpezYsWNd3f0coHyxU0Due4EkEUppR0fH3pf+/pY73uB5Tv/A0PHjx2WMbactSbDRqE5Nn4MgisJQRJQg3GrbzXr93Llz09OTMzNTH/7IB193y+vKlcZtt986N1u98prL3//+9yIB73jjW9vW6oP3P7h+/fojxw7f9qbb33n3e06ePC1JGAtAZFlKJ5PNZh1C2Nvba9uWqRv5fB5AEYslRkZGms12vdF6/vnne3p6arX2V7/ydU3TFucXNm/ahJD8zHN/5wIMrxlbWF6hguq6LiBIZdL1ZrV/oAOIQEBhxI2IhiHDiUSCAwgAsK22aaQ4B1FIEcGAs+WluWq9lsulrcZqJp0ngHHKZFlCCLpOIEmkZTlf++q3i8XUPf/8j17b2rx+7Z6dG2J6Yn5uxvfo8y+8dO7c/6aTKc9x0rEEY0zSdEDabc+TGaOUdnQWXN+1bVuRFM55GDAEoaLqRszkYeAHFkYwaaZ9P9QMjXMuGPdtV1WUH//4R3d96IPJeOrSS/ecPXt2w+ZNGGHHcRgLI8DD0H/wwQcvuezSqYlJu90ClMaTyWwx6zYtzpkmsKLJbuSFQieEK5iouja4pq9dXknnc8z1G6TRm+wGRBJBJGMCJdJutyUMvNDSIlUnSARB6FjjJ48P9XSX2i1N0yrzy2dPfa66Uo7FYi6AbsB27dy5dcv2NevW3/mu93R2dsuy/L4PfiiMonqrudJq3fb2d7zpH/8RM3b85Il2o94oVwbWrvV9v7un6NmeJmmJQnZueX7npq0f+9jHrrziqt//4Xf/9dVv8ogeO3bsyWef3r1tp5zA5dLK6aPH+vv7+3t6VpcX7//Ln8bPnQpCmkpnF0uLDKLFlXK2kG+225IZOzs7BwjatHbs5b37Hnv2eT0T71s3qhUzNe//4+otwyUrj7Xhx5a22+7tbuPuBiP4AMNA0EBCEuKBCEmInBOIQTw5SQgJISFKkCBBhjHG3W3v2e7Wu7176SPfjx4453v7V1999e69rrWeqrvuqruqCgtvvx5CyIqOLMuZTAYwUDNvBvEq2f7RwVPn+nYcd0wjEAxylzsy8fs1bzSQGp6EABTzBrOAGUTC5EKRM1PTs5df989jB63x1K2bb549e/bfXnjhwY9/rLWm0hsICiFUzSME7OvrMwyjqqbym996rLa65viZU3Nmzbj/Iw/eddddfr+/fcaMb3/rW51dl/fv39/f39/a2jo1NTVnwcJHv/bVjz30sR1v/GdycvKee+6prKrZt+/An57/89z582+88cbOrsvd/QO7974XL4/mUmksGLdBNBgK+KWyePT8xXOyQor5jFUshH2tHecvnDh+avniRYnxsYDfVygU8sWcbbtef5AB0dLWtmjR4kuXOxOJRFtb2/z58/3egGObVqE4NTbeeeHi4YNH2ttn/uKnP9twzaZf/PxXN9xwgz8Abt68pburb/++Q9ddf2NlddWObe/U1dXcsPmmn/3sJ31DgwcPH7rqqqu+/LWv79u7o/PipVAssnT5snd3bF+8dOnJk6fz+eKiRYs6Oy5UVZS7VMTK4h5NI7JMFCIpuuM4mBBvwA8xApCnUtMKIUSBLTOaL3d1Dw32zZ4xEzdJ589djITDmq7IMpEx4pwz6jg2VGRiGhYBmuyRHNt2XVYoGNmJSc4AxrgsHM4lp88cO7b9zTd9QU+2kAUQl5eXb3v7nbVr19bW1h48eDCZTjfUN0IAxsbGUnxSl+VsISsg6L3UIamqQx3dp/s9ek1NVSadn5iYUD16W1ubqmuRcGxwqEfXveMTHZQBXffW1tSEw2FV0ZcuWvjHP/6xvKKqWDRnzmygTKxctXrnzp37jhy6tao8Fo8WjGJ3X+9Q/4BMpIDfP2vu7I3XboIIYVk6ffYME3zl6tW73nuvpa6Bc25ZViGX7+zpm9U+gwuptq45lc309/e3tbcfPXmivLyirrlRcGgYhmnaiOA59XN7e3uz6YzjOLonEI2GOecIIds221ubOy5eGpkY6+/v3rf/PSbojOb2QiYfj0UPHNx35Nhhjx5ITKVdatfX1z/61a8/9rVvfPfxJyoq4gghJjgT9Gc//9HWO+4sFGOjU+Nz5s6jlEuSFI2GAx7PO2/9JxAKFQqF8vKy8RHn7JnTxw8daG2sa21sHJ+eKmYzPl9ocnyytaFp/dqVDzzwwPFjJxoamyDGE4kJxoSqqpZDHc40RZYQtCxL0fRIvDJbcNIZs/PywFSykLe4yfGq9TcmUsmFS7y3br3nxz/6hVcJxMq8kkQE44xTn8+3fv1VvecueLyK31Aa6upTk4kcNVRNz2SzjZVViUwGYuD3eQJef8QfgY5TdPIMGpGK8IZrr/vPf97MpAuMQ4TI8PSlk+e7V61ateX++0I+ryUMl7mUA0KIl2DmUgAAAMJyXQkBQQBwkSyp+XwxKsomk1O6rkMIOGOO4/h8Xsfl/UP9V6+/hgGKBTSLBX8wpEhKyB9obWtmnKoefXBk2HYphlJzc/PRQ4dDUf+/nnqxsqLWslxZliVJcql29733PvjgR70e7Zrrrs8Vrc6eQcNh+w8fO3b4yJNPPnntpuvPnuucnEgcPrL//rvuDoZDv/jlL6vr6lrbZpw9f25oaKiqvIoUchlFwrZtTicmq6ur89nCggULcrncudMXIrH4xNg0Z6S3Z3D7u3va2lviZWWBQGB8fPzSxW7HFp/73Oe+973vffnRR9/bu8+rBSlkquYpFDKVFTGfD+fzBUqZJEmO43gDXkppNpsNhYJCCNd1DSfj9/spdQni8ZqIr8DmzG8tFFMhT9yyKIaIM8YokyQCBBCMU54rFJKrVm+Khv2uQallJzM56sGuRbft3H2ua/CRR74y2n/59Vde0jWZCoQBcRwHQphOp23bicZCQghIoODQNFyfVweMZgt5VcGOURDcJVi1DBMgXCwWIYRQAEWWHZs+8JH733j91dWr1wqLLVq2JJ1OKoqCCSwajhDM6/UODPb19/cjhFRFSUxMzq5vToykJI/qcI6RDBnhFtKRD7kCOhhhT9/ERABDy2aSouXlFCxaADvUdjSJeMqCUX/Ushyqch1Bx8wjwKPRaDgSiVXEo+VRSimEOOr15OMRyaensqlHvvD56pqmrAmLtmXZ7okzp13XdV2XyBITnKhKR3dXRVVFxBcIxWPr168/uu9wWXXl8NgYIaSIeNijcyo4FalUZubiJS+/8Ngtm29+7nfP7tqx8/jx47fctqW6supPf/zjilWrls6fLyA4tH+fYG7X5Y5jh/abDl2wcJFlFz7ziQdnNTavXrr87W3vXHXNNXnuPPLVr0haaMOjn9Ob6x0ohnjGQrQByDnLciBFLnddl09NO9TNSBK3rLLbVi4wb4XpIs6aqYs9iaPnxk5eoEUqx6PlwYDswqGePmA7aQIJlUzbTqWzszlypqfNQr53tO8jn/2YWhbYesdtL/zumUI229TSKISwLEtVVcs2sll4/fWbMIChUOCGG2662HHp0w998te//vWmjRt//vOfnzp2OByLnjx9YtbsuS/+66Xly5bX11R3X+xonTd3kc8n+X3Xb9my5e67VVUdHR3N5jPLV12FsAh45QULFhi5/PnT5yVZKRaLsXgMYyzJxDLzCIiKWNQxjPrKyh5/59lzp2e1tXk0vbW1tWAUDxw6XCwasiqdv3hux67tjkvj5ZFw0JtMjr375uttrc1TU1Mz29ouXryUTeeSYyMuZ9wu/Oa3//Nf//Vfj3zxi0MDw90T4yOjw4jAw4cPfurTn31vzy6X0k9/9jOqqqTT6Ww2d+zUqbsf+PDZ02dOHD0xe/4C23TeemdbNBL747PPjXSdaayr7unpAZDMnLNYUZRlK5f3jwxMjE5jjCvKyzPZNECCKMQVLmWupsmXL18sr6yaToyNjY1c7ujNJlOp6eT4+LhhGNFQuOTUIBeqoiABPB5PNpvN5vPhaCSRSian0xIijY2NhmNG4jFVkqampny+Fq8aCgb9Q4NDqVTaMMxz5857vb7Nm28uZHMD/f26rCetLETMH/JySn1Yx1iSJB+WiSRrU1NTZ06fHx0dBxjsO7C/LB5vbm5VdS/Cus8frqupZdQJh8NT42M7Dh9etHpVa1tjNBaUVSmbz1xz3XWvvvrv9pkz7rj3ztHRUYfRTCZTWVleXV0pKXKxWMwXi1N2hrl2MpmUPeTBBz/55Pd/EIlEapsqx8YmXABrozUenzZ/7oLf/Oa3k5c7ZU255Y6tJ0+dvvaGG9pmzuru6vX5fLlcIZNM5QvZvqFBKJHZ8+clkwnTKmKVMNOyXUf3acNjwx6f7tKwruup1HTbjNa1a9deOndxbGR4ZHwIAuwL+HXNzwXt6+9/8sknv/zlL//zn/90LFtWFUrp5OT4QH//iaqK6zffnDOtZXNmdXf3X+jsOnrswJrlK3/21Pc7OjqWr13dXFfxj788TwsZ2e8bHB8Ol83mBDAEkEqEhGVJue2221taWuYtXDQxNYkQ0jSNc4YxtBmNlcfT6VRp5IXhuBBJien03//2+vPPP333/cVcIbd43uzx8TSUycL5i77+lUdqqptCfq+MJdexC0ZxMpG0bXpm317XKHT3JrP5HHfsSFksPZUAppO1neGh8VQ2UzQLR48NpPLZgcHR6cR4fU2t4DhUVt43cHQimdH9PggIA8ADPTaBh06f+tnPf/n5hx6a0dzKAHMZg5wLKDhjqqJAQIVAvoBf0tSiayMIiQCu7fhDYUe4GGOaM5mgtm03tbdVVFXOnjsrk84DDjFEEGJN0/L5bCaT8fk8AwNmKpWKxKKK7Mll870D/b5AqKq6uadnQNO02bNnUkpz+aIkSRCAVC5fLBgd3T2Xu/vOXLiQmBy7au2SyrrKv/799ZHRftvNff7hL509cjx3/jzg4A9/+MNvfv10a3PLK6+8euN1NxCfz6PIBHg8uuoZ7OkLBAKqKquqShFasnzlT3/yy7Wr1z3+309svuUmTZee/dMf/vnXf8fLoj6/fvT4ictf/MpTP/r+57/w2dam9r/84zkFh/yqToR7/vTp5sZaRQK6piDhcOoACHP5vBAiEApQ4SpeFZncKhqqJnMq6mvrSlriOAiE9TDAiBDZYRZWBAdAAOBSEQ5G//q3ZxEiExNjPo/GhRAcVjRHX/3du8MDg0889sWK6ujZE0ckKVhZWTk8PAkZ9cgqd0w16AMCFU2LUubYAAgXIaBokiSIV1WEEP5gBDJgMS4pEhLAMk2JYIyxJEkJe9rv9d147bW260xOpxLjiZr6OtWrtrU2nTx6HEOQyxXmzZs3OZEoFHN11VXZTBL5iZkvalCmgAsIoCQz5kLmUETydrGQTnpkFbhW0KcUzKLkcCgZAX9ECIVSykzTdijRPNABTBCICIOAAgEwoi7P5dNen0YYT5sFBoVbMC2T57l8/HJfMVsMhcIIIea4EsZYQi5jRJJkImOJq4BMTyd37drVv2JQUZRan2dqeioU8Fp5E0UlR7gEIq+mTw+P3XP33Zl88o9//3POKVaWxZbOnSt5tM23bQ57/S/+6+/jExP33nuvaRsPPfRQJp1+4R//vO/ue0ZHJ6MNNQ6jJ/IpcfWSV3xGOF75iUNv0qw5Bu1zw4NZ0wSGbQLmcFdGWBayIMB2XaQHAkQCAOVgYWBgmuVzOddSgr66m9es+9hdZudA5449p3btj4Q9bkutnMlZI2ND6ckOXczQwwPF3Ceuv/bA1x9JOlZXR2fHQH+kLAJc4a+uBYhnUsmg35/N53xeLRQK2hZNTGZu3nwrY4ef+tHPli9ffsPmm4kiX3fT9UtWLh4Z6p0cn7jzjtsOHzoS8nrHx8cffewbt92+9Y1X3nj2b3+76dYtpsW2vflKLpfZeM21b7z4n1Mnj8xeMP/DH39w9vLVs9pax0eGFyxYcOjokbdfe0PWPQzg9NR0LBgoi8UmpsYkGcxob9d17dSpU6ZpLgALZs6ctXz5srHx4ULemEpMhyOhdDKdTWXHJifK4vHamio/ltMCDPT0RwKhoO5NjI/lTeN/fvKTn/zmmerqauby4eHh/sG+wcH+cNBfMIzuzsuOY8UrymVZtixLllWvz7f5tlsXL1zTUDdz7vwVb7755uy58yrqGzouXXj44Yd7L3QUbWt8eIQWjPPnz+eNfEd319TUlILgmpWrDCH393UrBIcUZAtk2WY46KlvaOkfHoIOtUxzdGhwIp8YmhrN50zLoobDUtPJYDAYDIQHBvo450FXjE9OxqJlmVzRtC2PzyeEkD0aBDJAyOLUFw1ARRodHEay4gAQr6qmTGi63trW8td//LW+pjYSizKXSkwpGvmcYYX8Add1c7lsdUW5qsim5Rw7diSZzWl+zbVdCGAmmXnz0lsYgJmzZpdVVNqVPDGV8AdCS1asvObG63/z299W1daNJdOhWFlza8uvf/HLT3zy4/fdd9/+M6ccRgUS/pBf93oGR4Yj8WiiMyUkqaqicmhgeHB48sbNN7z4+n8S+eLs+YtzWUv1BacMY6C/j3Dw6rvvts6ZV1VV09V76bVt76xasxpJpH90IFVMpo0U55wSJgfUZn9DbUVVd1eXRyXxWDWUSWo02TSzobOzc2R82OPzlAeqIqHwxP7xRz77sNfrjZdFX/rXi4TILuNjI+PBcCAcii9cGDlx4hRjbPbcWc//6c8+r+qYlqZpkUhg+7vvrF69mlLa2dnz7W9/+8yZM8GI/41/v5LP5T7xyY/v3bv3m49940c/+sndd9/9wH0PXOo4N53Na74ARlLQE0hracBES9vsTDZrpTKqJhdNgzHm9wdlSUe0kM1mqQsFo15Vs7nhQqQGoiOj3d/7/o9/9KMfp7Lp0alUIpmmzHnj9ZePHT+Sy6QnEwBCEQoGK6tqNl232nXdytrqn95xj5HNR2LhcDwWiZczx1WJygAUgHHKCCFnz57PZrOc09HR0e3bt7e1zXjj3R179+6NxCtzuQznLmPClQg0KYbi9Zdfef2V1zatWe0TQoLAVRG2qKTIyXxWMCAUzaNIkl1UmDOdS5kAMUDMfMbnVVVJcZGtKt5gOAqZFA+VFzJFBOFUcsqx6fDoGITQtu1MLjs+lU6lc7fffvvU+NiRvUenxxNlkaju9/UNDYfiESJLRUYnh8cghKFoxLEpFUjVtWWLFmamE1966IHm5mbLsvbu2X3+xGGIyMpVazAHqUxK07TG+vqnf/XrUChUFo0uWbTg7TffIRgSy3QEF9lU2nXdRYuWnD531rIowdqePfu23nZbd1dvOpP8wuc/u3nzjevXXT3Y3RuL+mbOnHn2Qtef/vzXg/v2Hj9+0rHYo1/8xqWLnf9+9eWWlhbuwMaGGo8HjY5MIIJdLsmqLxxGZtGwTFOVCBdc9/vS6aRZdPx+P+W0kDWJhAAAWZ4nksQYkyTJtB0hKMY4nU5fvNixZMmyirI4dylzKRAs5PcBTsdG+h/+wqcdx+ju7Y6WxTK5XKFYrKypLBbNZGFY93qJLFu26/FoluUQWTazRQ6AZTsu5x5FpVwUDFPFEqc2hYy5lDkuhIrrulzAoulOT09HK8v3Hz7MbRYIBR3H4Zx3dHQGgwHLsmTO0+lkZVU5IdXnz5yurCgvZHMSJqV2LNO2SiycYOwU7cqKisTEpGU55X6/LKvCKEKBOMCuwxVFsamreTWbua5lQQgt2wWIWJalaZomKxJBCsEYIgRlgAhjrq5qiankE9/6rxmz5/g8fiJJuq57PB5d15FEOBAIIZezaKRsaGho5uzZV69f3zc8OH/+fAuI6uYmCWHBOQYQQIhlyeVs6aplG9av37frvc2bN7/6ymtQxmcvXsjlcuPj4+cvXqiIRH7729/V1dXV1tb+7ne/W7t6zVcf/cbevXtjDXVnkxPW/BorpGNZSVK7OzHs9nZmOJdVTePIF4wIDw/IhDF2RXEOQViWi8WibZjMpbKuZpMmg9gXL2em3XP0woncfhLxVq+d3TKjevSV7aZdcOu8yijMO3RYcxeqXgYYKo/1TEyOjIyqAnmRChl+5eXXBoaHgBDUccrLy3OZ9OjYkMfjtYR77733Pvvs72tr67/0pUee/v0fevr75s2bF4/HpqdTWNGuufGWebPnvvHOjoc+97ld7+194V8v9QwMypJ20823zJ45c3xksLG1ZXJ8eN++3VdvWLv6qpXdQ0NdvX2VlZWvvP7G6hUrn/v7Py92XKqLVwmADJsKQCAi+/YfXLx4oeOKmW1zMIHlZeUzWtueeeYPi+ctbm9p0zVVI9rug/uJoqam09lU2iPrIX9IltSJTCpcXkZkyaPpQZ+/MpsbGBqamE689eqLC+fOeOKJx8KB4NIVy0vNmq7t7N13IF5RPjDUX8wXIuHw0qVLN99867p166CA8XhVeXnViuWrIQSMMyGEhElTY4sLOAIIA/7THz31tzdfr29pryqrGhofudzd74/5crlcNu9ACWmSLxiJprovaE2zdeC5+74PD/cN5G1OmKS6SkW84vLly67ter2Byclpj+rNZgyfz+MPBgSAU8krSwXC4TDn7OjRIwsXLxgZHWaM2bZjUXc8MZUzzFg8Gg1GfIFIWVnZxGS6oWFGa3NLLpMZGO6bMWsmTk07tomIVh4uB4JDwQyzaBhWLlcAAOULRYIkzkU2l9E9PsthxOMfnUxU19Xffde9NbVVJ08ejZa33HH71nff3W5ki8uXrnjhhX/c/cA9N9y5dV/HmZGp4XQ6LUlSIBBI5bKOy/YdONjU1FJTVQk4/Mff/rls2bJ0JseAWLp8maxrE/l0sVisjMUvHjkFIVy9fn0un88Z+Y6LFxcsWIAgsO3StGdSKBQURRG2AzGqrKvNFosDI0NmsVhfWzc+Pp7LFkcnhrw+HwV8YjpRW1tLZKWuoWn+4iW//OUv/T6f5vVputcX8KuqKkkSRGhwcHBqcvLAwX033XD9v1960adrQtU4ZwhhXVN27nj37nvu27Nn95Yttxw/fnRgYODnP/1pNBwpFAoej8d89dVCofCXP/1569Ytuz/7bnV1JZGUycmE3zdKbTfoDwwM9UciEUB5oZjlnPo8CkR0KjEsBDCMIsEQUObqfsO0HeHa3G1sbE5ncw989KMVlWVGvqAoem9vz9j4QG1tfcuMthtuuG7Dhg2lrktN9+3dt/fMhY5lq9ZADgASruAcYqIAwABGTAgICESELFy+GAqAIOKA3n//R37201/seW9/NFpmFA2MZAgZEBwwIBMFCKaFfI7Ldh08UBH0iHDQbwMb4YLlLFq4wnTsCxcveWV9eHLSyBTamhpvuuH68xfO1lbXZTKpVDJn28742CBjoqm+KRwKyBhjjKvj5T6f7+oVK8LhMJYkDKHf72tvrEdQEEIAxJIEOQAcACEAA6BkTU2NtRAA06Y+XS+1OWAM7r/vLptSRLDH77v9rrvuvOsuAIDlUsrEHXduBRzcfPMNVACXcoARd1ldTTXhVAhEBWWRSCSVSo2MjDTUNw0Njv7Xt58YGhr6x9//Wt9Q/fLLL7a3tz/xxBPLli27/dZre/u6ctnUvt27XIc+99xzM9pmJhKJk8dPlJWV+TyeoaGhQi5/8byYMasxHPRTzh3DgMKlrqNqikdVLMtSZGIbRb9Xp9SxTRMRWVPlUnscRbYmq5KEDdtBEGBMBCKC88RU6pvf+PZ3H//vaCSUTExIEs5axaHB/vnzW/v6L5fFYt6wH8uYCTY2PqKofgGRpChcCNOyZFk1DMOmtiRJECPAYcG0ZC4yID933uxcOp9OTEeDPkWVcrmsN+hVVS1TKBZMiwswNTWl+H1btmx57g9/vnTp0oqVKwmRIXddx4YCKBIZHx4JeH2+cFhVVcuyhRCKogDICZFUobiuLcuybZsqVnLFQkVFRTqddvNZTZUFhwghRrEs65QyjCVKqUtdSZOEEJKsQogBQAgAwzAUSRaqRhAmsuRwhoVgrg25MzUyNjU2qkqygBhjXDCKAAAqhKLIgjIhBBNYQPDdHz65fPWqQCBgW3Yhl6uqqjImpx2X2ZQxziVJEhD4gwHbti91dd+tqX6PdzKb2rZrR2YiwRnbuPm6266/iTH2r3+9VBaN79qxZ3x0yjAKqqp+fP6iiVnlJ+QMmpwuWBbNW2ooqIYDTeWVGceChmM5tnAcwyxKmkItB3CGMU7nC6okS4qGMRW2XYoZs9msIyNQESGAFieSHb1DwfKypZ+5f7T7cgd3HLkX2exCPtUYLK+IRXPMzpgm5CKTTlfV1sxdtODM8ZOZfK7UTXf+7DmvVw/4QpNTU6FQ5O133lmybHEsFt+3d/9jjz3muu6DH/3Ypz/96a1bt45Mjbz11rvjY8k58xbt3r37uef+/Ltnfv+Lp378qa8+etXSjcP9/fMWzHN5XtbBnXfd/sorrxYLzqar1r+9fYcmaWWheCaVbW1s93hDpw8dMW1mmDYHeOGiZUTWPb6Q4/Jnn31u48b1DY11O3fuXrJk2blzF7Zvf/d733vc6/UuWrhw4YLFf3n+eSCQaZq7tm33Ytnv8TTUNaiaPDo8YufzPlWZ2dwS8PguHDs2EA0tWTAv6PVVlkUHRgYvXu4sZLIqANQwBnp7Hv7iI19/7JsAoXShMJAYRx5/LpOlzNV1nbvULhoSJrFI1KMppmNKkqRC+OWvPrZw2Yod727/94svaV7tclf/LE9b0KOuXLqpoSZ04nT//Hmrp3ExYWTyLsea4vOqd9x73+9///tzl7tvuWXLj370I+qCtrbWjz149c6dO9deVXv8+HFZ9eg+4HMpIaS1rY0xVt9Q96nPfPpXv/qVqqqUcybA4PCQS/n41KTq9QiWDIVCFZXVR0+eJQRDSYVYaZ85yzScXKbY3FI/OTaqxhTI+dTkeG1NxfDYZDZbkHWNc+BwZhYtWVE455wZmo6++pVHPKqEYf7sqV2FYn7PnoHB/onG5saZM+Z86xvffvLJJ2/90G27jh8YT097VKWhqcGyLAjR8MjYoQOHW1vbARd739tz7PCxWKy8uqqGI5HMpCsq4pzS4fHx1sbGN/79qk7kzzz8heHEZN4qHDtwaMmSJYqicChkSUpOT0ej0YH+fghhcmIqGA7VNTacO3cuFAnXVFX5fL7a+rqxiYlCoTAwNBgui1ZoWjQc7em8XFtVlcikZU2rrql9+V8vToyNh0MB0zRd16XcVhRFUfBzz/7hV7/85acf+uTPfvbzWCQiqEO58Hv0E8ePfuwTH+/t7V29bu3Xv/mN40cPr1u37ruPP0Ep/fPzf66ra7zv7nuuvuqqomG89PLLv//97/oHh4f6h+pqmzjnqVRK1wKOzQFFmurnghoWS2enDMOQkKSqkiIT3a9alqt6dE1GhmOm0+lc3rBtK52ZyqdTrk3nz5//zW9+af3V1zQ2NnIgGGMIE8YFACCXK0iqSgHIFooAQYERBw6GBDAuOKECEKLYBRtCLgFEXRMJEAt7/v3aa7KmU44Mx0UYCCFkVaGUW46tqHKhYBBJllRv0nZyU5MbZywMenz7du64eLl7zpJF89es2njtNVG//1Tn5cGB0QN73ssbRrGYhxhBRO6998EFc+comrp27drqmhohAOeiNBcFCsAZQxgLALgACAHKKOccYlwwDQghAECSFAkj16UEAcAE41xVCATAcSmAkLmMCoFlyWFMcAhdQZkDIcSyBDGxXJdTVmogllSFcxdLUiAUIH6/v2jkkUos1wIYdVzuZkIosubx+1pams6eP1MwsnPmzDIMq66uacXydb//418ffuTz+Xx+7vxFkGjJdEbzeL/znc8CwCFQhkeHZQVVxMtqamr+9Kdn4uVhn4J0pcbnVTBitm3nrYKqqjZzCcKu60IISrtEKOWUOppHz+eKwUgYYywEwBgAACzLqqmpCkdiiakJRZFs21IUKZ/LDAz067qeSkwEa+oYYyMjIxhjRZWCQX/BcKkAtksFJqqmO8xJ57KapsmyXOQFRIgiQWA7fp+nv7fP5/FKBFmmyZlLEHYsW5IkwFnA63EtOxgKFy1zOpnesvWOybHxTD4HIcxkcroiAwBUWaaO6w/41qxZc/r0aUJIU0PjUF8/EqC0cAJC5Li2FyHuUhmTWCzi9ftkACCRHNsSQhAJMUGJTBCHrmsjhCjljDEkEZdRx3EkSYICMcYopYy6RVbUNE0wSgELBLytzdUAYQCAXaCapjnUTWXSiqLYpqV4ZK/XPzw2um79hpa6mlOHD4fKopKmm/k8hsgWtLG91XFYoVDwaIprWIDxgO6Nl8dcLurq6oaPjniV0O1bb5kze/aM2bMuXbi4c+fuod7B+XMXLJo7HyF0YO++jRvXv/PqGxyAlk3zJ9rKQrKP1Ho9QHYy+dzQWNbKKa6YSE1zDoqCyrIc8/hdTCRJ4rabyuY9mqYpKoYoNZXwqyqidGp8WIY4JEvNbW3pZLKqqsLGqHrBnJp5reeHilOHz0EIk8I5OdK18/prGETTU8nVa9d8/bvfHhjvQzKviIcdxwmHwx+6/Y50Oj04OOjxB4ZGxm7YfNP5syffeueddevWHT9+dGxs4qtfe/TVV1+9eP7cjbdtyeYNgZDi8Xz+i1+sbW763BcfXrP+qn+/+cavfv4TXZYPH91z7wN3pxKTwUj4tg/dUUgXnn7mD42NzQvnzjl+5OjlSxdv2Xp73+AgkoisKuFIdNGSxUahGI3FO7u66xpaZsybt23HzjlzZ1VXV3uDAYezpSuXHzx25OKlzrJwmU++rEua4vPIAe+6q9e+8Zd/ljdUvfXmG7FYhDKH2o6iaAF/iDERDUQnU+nyeOVgzwAQ2BcIQ6SODvelCzklmVu8ZsOHHnjo6NlLRtHSvR5/MOzFNrPtbC47PT1NJEmSJAK4MHIVOBTw+DHngDJAxZpVa9esWTdv3oLHvvqwabojo3Zrpac+AqeH+xHki9vaOsVIV6LYVFm17a9/vmrBws986NNTQ/3/fOGftV/+stfrBQgePnpsfGJ6w6aNIyOjV2+8ZuaM5r///e/RaNmqNat7erouXbrU2NK8feeu3v6BysrKfD5PJCWVSnm8GmPM7/HW1lTNmNEGAJAUKRgOcSDa21uH+gdMI1VREa+MlwW9OuRCIqCQk1RJyuQKQgBFkhm1TcOQJcxsU9FUyoEPAa8MLpw5ghEPh6N+WQp5fGP94zPaWp946off+uF3r7752n0nDlmWGfL5BOMjQ8MQQsMwB/v6Z7Q0d3Zcqq+s7Lh4UdG19Rs3CghOnz7DhVtfWz0+PT2vdcb2t9+JxWKz5s19c+e7leUVg51dNRUVM2fO7O/vQwBevnwZQnj+zNl169YlEomqqqpMMpVKTLfWNchEEhAUTfPE+bNhX9A0zUgkgglJp9PZZMosFJcuXmIUiqlUCtTXZ7Np3aO6ro0xVBSdU4QkgjEeHRk5ffr0ltu3vvLKK0NDI5GA1+WMu8yy7G3btl29YdMLL/7rvgfuv+GGG97btfvUqTOXL1/esOGart6e2267bcuWLV/88iOHDx46c+rsgkULK+KVmqyWhaLnL5wzDCMUCmIMhRAuhbZtWYahaUpZNJbO5jz+iKrJU/09gDNq00AgLEuACg4hpMxZd9War375sWUrlkMCECA24wAiLjCjwrVsn1fN54tIkhkAhu1gjKFELJdC7kCIITAF5AbljHIJYy4wpXZNRfz1V149e/58ZWVtYjpFFBkhICuEUhdxjhTJFZxIcjQYQghOTI5AFY+mErrPe/P9d0fL40f377csix0g8RkN06nM0OjIvAXzm9taly1ffuutt6qaT9d1jEpNR9SxbYwxY0xwAACAEAohGGccIISQwxhCCGIiGFNVFUEkgOCcM0ZlgiCEEEDKKBTQpRQRDAVASGKMua4LEJYkDAAAFCEMIEQupwhBWVU45whJCCIBAIBcYEAyuSwhyOf3d3R23X333cFg+Be//PXixUunpifNYqGusU71qIFQcGzi8pZbt9bXN9x0272pLN9yy92aXrZr39Gmxrb+wdGvPPq12XPaC3lr+co1j3zx4TNnTjU1tVi2mE6OjA10XbjU7Q+HARCaruiaZtsmF5QJRZYJY8x2qUpUCCFlAgCg67rj2BBCIYAiq7mc5fN4ly5dOnPO3Fg0NDE+nM+lGbUwQVdfffWBAwcEA5FQVFN0LEsTwwMEQYKhriicSNilNuMQgUgwwpjIZrMejwdBQamLZEUikiLJkoShYAQCTGRN1y2zqGkacyniopjN+DTVYRQ5lCiqrujJTPrqupry8vJYIFC0itlk0jYtCAEhpGAaAb8/6PP39vb7dQ1jbBRMUNrAxTmE0KG247oej9bS1jY2MpTMZQIenecExNyyCqWB7xhjyoWkyZrqMU0zAiOAi9ra2rqG+qrq2kI+W8hlHNvw6LpLWSKV7BscisXiGBEiyd4g4BAAR3iDocrKSgkTJABGyCTMH/M3tzfH6yp3791nO9Tn88mqcubchTvvvkuYjmkVvbpaWjjvOI6MicXsa2+6rjweufqqtXffffe+fft+9IMfts+Ze9W6NYNVNdzlA309R08cv3r9+pqamm17d4a9wbuXLTmYtS8baTzGh3NJO5PnDsMYu/mCVBaMhiO6A02jmMRAQqphCEKILMtF0zQMgxBCCBlPTNmA+X1BmstLHo8b80l+OWNTkDcGT/VW+gJNn7srn0wb3cOXzWS2aCwqr8wZBnCdxYsXFi3z8OHDAxc609NpIOCHH3hg9syZL774IoA4FIl1dvU8/9e/3H/P3fmiffDg4ZkzZ3q9uuvaW2+9JZvN/u355xVdq2+sz+Vy5y6df/WtN7Zu3RqrjH3otltP7D346//55fylC19+8SVd05x5ruU6wwMDn/rCJ99+a9vhowdmzpq579jBnJk3XYsQxDmfnJro7++75ppr0rnsrNkzjh05OjIy9O3vfPvIoQO93V0ywc3NzYNDvfF42XXXbz5z6uyLf/uHaVnrb76hYOQN2/QHvWYmt3rJEgD51NSkx+ePRCKJRHJiYopo/qaWlmtvuOHvz/4pkUiWNdYfOXKcGvb116z7zOc/t3TZMsuyWqvLhYAAQioAgYAFr0w9ZEwAAErvOQCQA8E4liQGeDKVZYLeePst77715p//9reZa6plxcxODDsutxg+dWxPSC7oOlZCetSv1vu9w3sPQCuPvbBg5OcvWNDT13/Hhz50/tLFg0cOz5kz5/SZM5Xl5U9894ff/OY3//H3F9avX7946XLXZZcvdxNJg0jWdH9X52VJkoRLJQjHhwYL+ey6desM047Hy4OhEOeiq7s36PXVt7YW82mBic0YhoAzkM7lq+tqT5w6SQgq5vIAAE1BEoCts9tc26JFs9zv8yv64oWLXdfJZjKmYcXD0YVtc5767vcf/trXb/3Q7SfPnuIS8qhB07bcgu33hTKZTD5bkCRpxowZc+fMGhgYmLtg7slT5y53d1VXV6uy4vEGCplcajpxfN/RQibTvnrlxb7u6akJYzo92N27ZNWKqalJznl5eXk+ny8Wi/Pmzevq6kokErW1dRiTw4ePzJ87b2pyLJ/PY1UmWKooqyiPleVyuVwx3zfaXVtdDRQl6PVeOnu+IhwJeD2LFy04cuQQUVUIAGUOgcAxDK/Pny8aO3bsWLN63dr1G/70pz85FOSLpqJpCJNt27ffee997+zadeToiZryii2337Fp07UOoxcuXLj/gQcWLlx87333vbttx/FjR8rKyizD5JxbhhmPleXSGdvJQqg5jikAKhoGNS3do4b9+tTEqG3bhewUgXzJvFlV5fGB/qGJ0alUNosUn+z3pdKphYuWrFi12qLMshwmbNN2KeeCQwAAo1TxqqlcLpPPQQA4c13Xxlxhris4dF0XCcQhFxBgjBlnGHBqO0aB7dj+tmMWBvu7ESSQQMe1XQtzzlWsyBJGBAIuOKUICJXI1KKnu3uS2VxVpgb39V04e2HWrFnJvKX7wguWLf/kF74IIVZV9cqySM5d1y26lqqqAABZUYBgEKISDHPAIJEooxhjl7qEEAgQZQwLAThnXJR2GwMABEQ2pRgiLClMcIgJhIhBYVOKEJIlmTLuugwhjBACgHPOEIAIY8oEQhgC4DKOMWaMQwEIhBBjaXh0bOHiJY1NrY8//t2FCxfnc8VXXnpx48aNlNJ8Pt/R0TFz5sxCMdc/0JOzWX1d8w+f+tmXH33k4Ue+/Ktf/zYWCQXrA5FwZbSMS4r8yU8+0tHV+YmPPXDnPQ8Eg0EA6XRioqe3c3x0qKf7Yk1lzKOriiQcjm3bBoArmsoYEwhqXo9DqRBCkiRd15OZJOdcUQgi+PDhw1OpxHXXbLIsIxaLTScmBXMNy7RdR1G1ZCpd6w1IQMTKolAIBAnn1DYtyoXLOWU84IeapqXTadM0McbUpa7ryBjbhgk1GUPkOg6E2LIcLiBj3LJsQogQIpvNcM7DoRBlgglYVlbW3d1dmnZk2y6ECGO5YJkuY67rplIpwoCulWmqR9VkUChkcllZlhVZxRgrmuxwN1/MYQmdPHPaqyqN1VWcWj6vEgj6M5mMrMgSkU3bcWzXdV0MBRSMICBhMjQ6YppF7jhQAJ/XW0wWppMpIUlfePTbH33gQQBx3jT9AU33ejDGHIJiMa9KMmdMQhhjaFP33LlzFRVVm9ZfXSyak+MTuq5LAtZXVgKHBmORqakpXVFDLGIxt6Gu1jCMiop42x13jAwO/M9vfv3av1/3YHnXzu2pVMane6jjBgKhz33hs83NzTt3747qvs333H7m2PGr2JI+JXlxatSTZ1DGQNGwJPnC0Wy+ePbEfkXT6mfPLApLRraqqrlCgQPAgfB4PIZRhAI4GPo9QQkTpbaOue7F8xfqamory2uK+ck11147Nj5uINHw2P0XPvujQjLn0XzT6TREZFbrTG5xmrdu2XjDokceu+mmW1VVi4aib73zzqXOrtmzZw8MDGGMFYnkc0XXsu+/977de3c31tdmMum/vvba/ffft2D2rPPnz+9+6+3rrrtu7tp2AXkhPV1ZWTm3vf3mjRs++dCDw6MjlutIsqwoiqJ7WuobamvrYsFwNpudmppavnhBIZM+tGdPJOCXJcypOzE5JhGUzaU557X1dcuNRWXhkK6oKpE6L1zsvtjh8emOYW57822H8U033XD2zBnuuArEPX3da2/alB4cO3vmjOu6Pp+PUVDMFQsFA3MwkZkGfpUQ7A36I7EYkPADH7n3wQ9/tKqqtmCZlwfHunq6k8lk0bC6enu4gABYsVhMxZKZL5RHYplkSrg04PV54vGg33PN9de88MYrvlD4rTffXLdqpWUZH7r7wf/s3Z4whhqjralsorqtvJCXBeHdhVyoqimVz6ZNc3vPxZZmj0Nga3X19h07ksmkomhvvPVGIBCSJKmj4+LadatPHjmRLxaefvrpv/71r6+99u+5c+d6A15d82qKHouUTU4mZFl3LdMf8TqWiwCcOWPOyRNnVq1a5fcECJKikbKEw1OZLNYVVdUv9vUP9vUG/YGlixdvuOmWPzz7+2y+IBHZdV3XZbNmtmXTSZ9XtQFniHcP9N770Y83t89YtGjRgrlzKORZs3jo1JmPPPTJrVu3jvYPVkViiqJ0dHcFQ0EHusIrWhtbLl26dPHc+X6/r6KiYnB0ZEb7nN6+oQWLFhzcf7CluSnk93V3d+/atnPDhk26rJy7eHE8mVi9YvlE7/DK1avGsymEUDgcPnz4cDabXbVq1Z49eyKRyKJFiwvprNA9re3tFnWThZxCCDXt5MTEgaHxQqFQVV3hug5kvKaq8vzpM4VCLjkxXTTymzZehTHkvFRzBBAKCKCmezgHiq4Zpl0wiouXLnn+r382HJfIMgdC1bV0Mnnx4sXVq1d3dHa2t7a+t39/Zbw8Gi9rbG09dPTI5Nj449/7/tatW669/rre3l7LsjAQjmsHQ4FjJ08ASl3XBgA4tk0tW5YVSYjs5Liu4Nnt1S11lRGvJ+aPZLPZhoUzCrNqp1POtv2Hp8fzNY0N3/nvx+/80L31zS2m6UAICSGuaamqDgCwKBMCzJ07d2Cg37YcTVEEBABAGUEhBFAJdTmRcYkyYokQhLmEGLfjkehH7rvXoSCRSOQKWQhFJpXO5/NT41PcBkxwiIFVyAvGIYQIoW88/sSMltbE6HgoEl6ybm1tdY2dL3pCfgCAy1zGRMGyJUlCgEMIZYUgSRdCQCEEYFxwhBETHCCIOGaUykTmnKtY5kxgBBBAEEGIEIeAcw4J5EA4lBJCGBUQAAghh8DlDCEkE4lyxlkJ1BFAoLSfV0AgIewKwDiXIAYACAEsxyEICwBIJp2XZbmsrDwerXrppVeXLV110003OQ7duWvbV770JYTQL37xswMHDhw5fHB4eDjg8y9bs0bYxUxq+sL5U01N9YQQ1esZnxy+5qrrinZm1apVAqgLlyxYf80mKsC2HduXrljpAnX2/BXLlq2bmhzpuXzh8qXTnJmhshDAQAjoui6jQpIkJHEhmGAIAOi6TFFwiRTm89lLnZce+vSDmq6cPnlScHfV8mWmxalDi/kCViWsEAgFo0ySpKLpOtS1XaCqGuLUsWwiSZRyQZnf7/f5fFOG5dNUzlzHtE1o6rpu26Ysy4y5tiWKxWI4HAaCECI7DhVCcMBLCyYZY7rXE4mGOKcDAwOyJleXx8sikVNnzxqWVVVTHQtHXMNMTqcba+ocx5EU2TRtTSWmaXopz+aLEAqMkM/rBVRQl8fj8fKy8PlzZxVZRxBrioYxVlV9KpVVZJm5Ti6TTml6IpEYG58cGh4lGLY2NcdDYcDhpptu+dQjj2g+fyGd070eORziwrY41xSFMRcSiSJEJOwwphHFq3mXLV+JIGyERMYEACA4B7B0qgSFIhyJSADWNjbIADZUVHIAbr5h84svvkBUDTts/YZNqqz19ncZhgEgD4fDfl+wqqpqx3u7K6qqF85b2HH0TNgbHOzuXVUT6RhKpkOe6rJyORolCJmjk+MDA5GacjUYHBgbkbCMoVteVhEJhwqWnS4WmEs9msIpUyAGXDDuTo1M9Pf0VlRWqpIyPjUVKA9OZjJerz8SCWG9ufbFX+z++HecTHFkJDNz5qzxkeHvPvEd8mM1oHmiwYiNUVkkmstmmes2NDQwJi5f6iBAUMs8fOhAJpeNREOLFixYvnz5sWPHvvvd7/b09DQ3NxOEdV2XZZlzjjAuZdhs16EYl9dW1zc0AAE5EAAiKpgCBeegrrIeAA4hvObqTcWiWRevHhjo6+no6Oy4OGvGTAxgYmJSCCEY/9jHPvb8838aHBjAGF+1dh3n/PiJo47lNDfU+GOx8xc7XNctZHIEksrqGobwvKvWDWbS6WTq8tAwZUxRZRnixvoGnk76/X7bdjp6umfq+oY1a5etXvnm7m279h1MZTOlhJaCiYSl0jo2G/HCyVMQwpGREZ/u4Zxns1mPx8sckBgbOnb8UF1T8yuvv7F6zVXvvvXmJz7x0Wef/lNTY8tUYtIuazh8qnsRYVkLr5o3v2dirHf4ks8f8VU2HTl3hsTatm3fm0ukbIRuuOGmb33rW16vP5/PQwgjkYjH4/n6V76cSWUlSfrZT5+6feuW3z799Mb16zWP5xtf/3pXR1cynREcQCJxBmyHWmZ+586da1atmhgbPbR/T3lFhUdXHMeamJiob2kqL4vfetONZ86cudzRuf/g4d7e7oHBPgUjx3EVSeGU9Q6NmEbRoTTg8fb0j5RXVqRy7MjhC3v3nFy2fEmhkJuampi3eGH3jt1P/eyXAZ9fl5XKyvJjp07rgUBpujLG+MYbb5zR0FoejZ88fooJOtDX19rckkml4/GyQiFHIHjrrbdWrlxtUddm1DCMu2+5rbe3N1RRpoeDimVoXk+2kC8UcuFwcGhoCCGkqmrfwAAzLElXBYQTU5OhcNDKFzP5bCgclCXFdZxkIhEKhcrKyiYnE5SDsalEdTyOUySdzRw6cljTNAGgZZqOQyECnAMAAELo8OHDu3btqqmpCgdDmuaZmpriro05xhi/+MK/nvjBD3du33nTTTcpusYRnkhMu67r93sramu23HH7trff6eq4VCxkKKUnTh5TdK1QKPT29paVV1dXV44MDaVyaV8ozC3TzmfnNtcvmN9aFvYHFCIsC3JL9atCIbICAlqoOh7NjkwWi0Xdo42OjNQ21Gsq8coeIQD0eDkHAAOg64CD1SuWrlqxFACAJYIQQgBgCDgAEAABgOW4kkwQgCU/K2HIBf/OD34gAGQcuC4tqUzy+TylPJ/PUttRFSWfzw6NDPf09BQKhXVrrrp6/dWXunpO0hNLV62qq68BrvD5/QYA3HUIIRhDyLmAEELsum4p1QwAIBgLwQAAQkDGOCEEIQ4FBFxgiCAEAnDHoYqicMBd6iJIIISMMYAghNBlQsIQQEA554zLRHKoK4TAGHMAuYACCsEEABxBCAGmDAAMKHUJQpQyiBHBEmcMQkg+9KG7Dh48OD2dPnH8TCQSKYuWNzW0/OY3vx4fm6iqqHZd17HcJYsWX7504dZbbhgc7B8a7skkxkeGxzo7T333h08988zT5y6c7+3rfPqZX2Sy6f/59e++/NVHW2e2vrv97S998dGcUZ3NTDPGzpw5AbioqqhYuWbj/IULLpw/eebsfl3XAwEfd7kQjEiIc4oQYFTIshwMBhPTY7JXMwzT4/HEysKPPfa1r3zpy7NnzhTMBUIggBljEEIKuctdh1FEIEKAEGDbLiYeSZKoy13bLhgGY4JSWswVjaIVCkcYYKnEtF9RASZYllSEHMPUZAwQ0HVdllRZQhwIVfNNTqVkWS5tGTNMkzEXYezxeGQieb3eZDI5PDAEJTydSJ04fsrj0b3BgC8cEUI4jmO4diwWsy23tKFIUmTq2IwKr8cvSWo4GEom02XhUFmsQtM8iUTCMhOmaZqWwyBJJBItQX9VZXlFRXlVVdUzf/h9vKIiFom0tbT6Az4IAAcw51qWY3lCHkoplLAH64wxgrBMsCxJEELGXFmWucAGpbKsOMxFkBuOgQCGECLBGQIyxBwCRhkWqLunl1vOyMS4mc2/9saroVi0qaV51+49qVSGS1iB3OPRamqqxicmMoX8jj2758yeZzp29+CQCbnfq17o7b6lvfWhFTf8JX9ZhHzFyYm+zi6azHhaqsLxcDFvEOYCCNxcvns8oene2pamkOblCDLLkTDRPVLByFtFY3x4WPEpDQtm5PL5Yj7P+21/LFh0zHT/gOaIuiUz79zxx8Mf/eboqfPUKlRUlvnLQpX1te+8/s4T3/mvU50dr//j3309vTKRpienTpw4VcjnP/rAfZtvvLa+pcnnDVRWV11zzUYAwPz58znny5ctzwALcFGgDjdNjCXhCkwIhFBGxOSuhLBlO4QDgQkFLsa44LqEyJyzEkeJV1WrktzeNgsjkTMKlLPv/fd3raIRr66EXBSLxaq62ke+8uilc2d3bN9+vqOzWCyqHi8gePeenW2zZldE4+PDQx6ff2hsvH9waGpkdNGqFbPmzydIkmV1YGBg2ztvUc6LRWN0bLK1ZQbB6sRUOjQxvWfPgR1790bKy9pamzEhREKO4wgGSqp7CCFnkFLq8XiILJ0+dbaioqKsojyRSMhef++ZM6+88uqDn/h4xBdsrKwpj8T379lfHve89Z+uq9etXzR3TiJv1je2VcTKguGGlUv93lBUlZXq+trJ4dFodc2mDbceOXJoZGz4O9/5js8X+MCpCSEAAIy6waAXQswYW7ly+cqVy11GCSavvfzSCy+87POHTNdlgmcKRVVWbe5ixLfveOuee7cePvie7vNChErW6tc8Fy6e+8Mzv29qauq+dP7QwSO6V/PrWtEwIECGaSMsUYCpgKNTmQTKQEWbmE661JEkqCjw5IlDAkmUg51v78SECACMTM51nMsdnZKiGkZCwQBD5FjWMz/91S233dZa16ATNRKLTk5NVZRX9Q/0Qgj7u3o6Ojp8vkC0LH72wmkokUhZxDGNy5cvX3fnbZcudoRVTy6fHxsdraiuUoiUyxUYY3mjmM3kGhrrLcvyaXrI13Dy+PF8Pq9oGlZkTZUEoACJXCFv2zbCRPN6w5GyYDQaLosVTVtAjCVSzBcCvuAtt9ySMQoQQlWWZUnt7enJZrMN9bXXXnPN3//5QigYsG2bMkeVlUsXzg319RIIT58739DQ0D8yVFVVhWUpkUorJLd+48bZbTPf27U9m5k2raLt0MrKykuXLo2NjcWiZYP9fdlsOhQNOo4FgDmnvX5OS31IEjJ1bep6VFUIVwiAsASBiPg9HkUGXMgySRXMV/71jw0brqauC4SACFLqIEIooxwIGStF6hCIKGOSJAHAKecOY4qsMMEph4hgyrgQAiMiEDBcVwhRLIUbAAIgkEe3AVCDAVmSg5VlBAAFQMDYosWLueAQICHAeCbFbas8Fq2pr7GpSyRkUyozDIgkhKCcSZhwARzKZUninKMS/RWCcwAhEkJIRKKUC8gRQg6lkiQ5jGKMISQWsxFCmEiUcQAARAIAQTARAAohgAAEIoGE4FQhmAHIOQcCUcEgRggjwbgoLWviggmuaapgAmPEgWCclRYYk8e//4OdO3f/6U9/GhkcSqZTgaBv1+5tPT0Xm1oaxyfHCeK//PWPAQCuYzHmzps/Nx6LXuzoIqqseHzx8srXXnvj+LFTuUz+/vs+efjEkcramsXLVvT09PX1jxw+emTmzJnjY4nm1jook7PnLkzk8qP7jy6Zv3DTDfcuWbLu7XdevdR5sqmpERDEGWDUVmUEGWG2IIoQCADAZUIcp/j447/+87PPHnjv4PXXbrIM07UEAlJPVy+gTCWKbdscu47NCcKUAwGJx4Ndk9q2ZZuG6g+0tLSMj09OTSSqqyuj0bKRkRENYyRhiACEECKk+7ySgsx8gVNKXVNA4LjM5/Frioq4YNyxzKyKSKy+Rtd1RZIt7sxrqu/v7tEUhQOhEixL2HQcTnljWURR5UR6MhyJTKfSlqAcQyAYd2wIoebRA4GQ6ziGYXRdTg/3j3k9Cue8pq6mrqW1oqp61uy58xcuqq6tlRTVo2ncFRKGK5avghhwAAzbTFt2ydMJCGRZxghjCQkhmOAACZc5iEOEEAAAYQkAJAsOCUEAAawIIWRJAlxwTgGWJMQZwIyKkeGBrgunWlvbf/nHp8Oqb9asWXbBsojx25/9RtU0wbnfo8ebGikQkxNpPRCKRKPtTBpPJn2KBoisQ7Jnz5577723o7uTA/HQvJYf7/mPOV3Qwv7IknmEkNG+YcMyNSwz2dX8HqKrrmmNjw2UVVcGItFkIosoSdqGZdjZ6YxX97XPmjk9OpFMZnxawCRUppTarDCZLmI0tuuAGvEueOqrE5//upMymxpaqUr+/eIrD3zso0dOndj53u7G9mbLdU6dOmVbxkc/ct+9H75v3rx5kiRRIAAANrUZ4JSz0j0sWiZEMsYYE4VLAADAQSm5BR3BJSRBCJlEGOAIlmQYAquyAEgICAAGkFPmGk6Wc0458EryDRs3Lpsz99HHvkEdl2AlZ1i/+dXTt269zXDE4hWrJUl6+YV/jQxPtjXN0nxlfd0jr7/0lsP5/IXzwuEwo3DtuvVvvvafdDa7avUKIkl1dXX33Pvhvr6+eDw+Y8GilpaWUCx6x10fEoKt37hh6Yrl//znP1WEHUan0plIvJwyARG2bZtRxoDAMs5YRZlKwUj4XMfFxR6taBoEgfqGmsG+/qd//OPfPf30uU2bLMooFB+/+8NPpX8Vq4o/8ujXP/VZk6gyRBhzwRGAAArAIIA11fUIwMaahuUrl0HEiw41LUeRZRfYWHAMCcCEENl1mSRBAYHtWowxXVUGB3qOnzzl9fmwJAnHBgJCgi3mAgIolgGUTh4/9cB9HzFtR1JlAphHkvoG+j/0obs6OzogwBBCTdMopZZtKJIKJVQoGAgKapklC3Y5F7atqKqAlDIoE0mSgWVZMiFQQ6V9iIwJTddL+x6g6zoOJbIke3VoW0cP7ol4UXtjw2DHqVnr1hu2XV9dhaDMDBrwhTZvvqlo5LPZ7NLFi03TfP3V127Zctv48ERjZY2macMjQwghRdHGxsYc141UxJlL29vbq2Nxx7Y7L19O57Ljk1NYgFgsBgge7uuWFU0P+DAhPhi0TVMicDo5fmjf3s9//vO1lZUtDc0XLlxYtmzZ9u3b33j9zVdffy2dTMqyvHjRAk1WKiorJ6em5y9Y9I9/vAAh1HQZQcm2XGo7Rr5w1bp1B997b+6smWMTo76A16fqHkUWAA0Ojfh8noe/+jXMARQCEgSheOO1f5v5jOHxJLMZTdElIOUKab+fxMr8PhVpIRkBFQsOIKQOlFTMJeGTwwVjKpNJIwxcans078uvv/mFr3e1NzbbDoMEQyJRziEiQHAXAIEJhUgg7AAAIYAIC4gszgEAFHEIIQZICOEKhgGSJAkwAYgAAJQW5SGEBOACQpczRLkLoMkZhJDZLmOMSBgh5Pf5yubMnjV3dkl37TAOEXYE4NQtyVepAEIIgaHJGMRY5YAKAThH6EpNl3MBEISI8BKF5by0UREAgCDBAArOCIKUcwgw5xxALoQQEJW00xCgEpMGEGCEBQSSIEIIwAQoJZwBgBhCBinlpRYmQghkAHCAOCDHDh+BXHR3Xr7jjjssyzp//uy723euXLM2l01OjE0YpllVVSXJRJbUbdu2V1dXNzQ1Lly0bAFHzz773G9/+ZuN116nKp7bbr+rMl4+lZw+ceaU5dCWthnDo+O73tsbi1dMpROZ89mGhoY33nqypbltyZIlFy5fHJ0cbm1o2/Khj5UdrDp5bK+uyV5dczgUTMKCYQL9fj8hJJez58+dVddQ853/fuLvL/zp0OEDg2PD5bGybCZbV1fT2W0QVeUCEiIzKjjnqqr5/Rpj1LIM10WUs0h5maJ78laBQY5UYlLrwqXzAHAgBCZAVhTbtajjyrIsDMEYM5kNKJEkiUNuu5ZDTW5TzGFA948PjwX8ESyQXbQaaxvOnTkjE0nVlEKh4PV629vbD+3bDwG/1NWzdtUqTU8jJOuaH2CqKl4JKaqsZPO5YjbX39+LCIzFyxYtWLhq9YqW5rZgMFjf2BCLlwkAOQCmQx3HsbjjGpwxxjnnnEuShAgUCMoYAwC5EBBCCAFAAgIoBMNYBgJ88CoBDBBCIMiFKLWBcs4JRAghRCRAbQIkBCjEDFB3zcqrX3/9rdMnu3781Lf/+fcX2mbPnJqcrqmvKy+vMAwjk0r7dK1gGhRjRSLHjhxub21tqqmZnppirp2z8ysXLTx95gRmoqyuGiSy1TbsjqiVM+qLqVwymzWzBeQy07JRxJ/LFMpjZWrIpwd8MtKcdMEpmFjWqOFMTY9qXk9tY206W0hm80SSdFnIVJ4eHEuOjXC7aAwNS+kcu9g7Xh+JzmjofOPAJ2/8moalV195ZeN1137j0190ZHj8+PENG6/+zW//p6mpKRKNmI5VcG2rmNM0RQjBGMMSKd0iCCHCEueM8StRdylwARABCJkQXJSwRyABBBAcQogAZbRkt6VH41KbMZdDABHJUztdyMXi0R/85Ec//enPc2YhXlMV9PnPdF7MFQqNjY1NDQ1zFi36wfe+P23kx6cmly1aPDwwmEgl/X7/0cNHLMM4fPjwpz//udWrV1uOXV1dbdv2ggULFFkRQEBxhWjec9+9JasGgM/93uxisTidyR47fXLX3n2KxwsgxBjbjDJOAQJCcOqyYDQQSPnyVj5WGWOMOUWRTeY2X3/Nvt3vdZw9b9rWwOBQW3X9rJmz/vDM7x/6yIPz5s6zmMs5IwhTkxIMIYQYQ84YF4gxB0IoYahAnGC2sNyoqkpYYYALKgDgkoQd6hJCCFId4QBADh453tvTU1lZ4zKg63rp8iGElDIsyVyS3n777Z///OcQCdOymWurEjlz+tzQ0FAwFFJlxTAs0zQlCXMGLExVrJY0NYALDgQiGCMMOLRtA2GMMRZC2JYty7LrupBDhK7I0AxqGqYBAEAYEiRZhulihzN26wO3XTx9+t033qmvqwk0tpu28+Zb7yJEmMs55xeOnTBtQ1PUvjNnEUKDPb3/Gh6hgns8HkRg0WU1VdUNzW0BVXcZK5oGpwzY7lghzSznfFdnS0vLV7/+Veq4QyPD6WLeKFihcLhYLA72D61bs2agp2/e3Fm65AUcVlVU9vT0NDU1dXV1vf766z/+yU++993vA4Q1XeeCvbv9XQAAgAIjsHXr1orKykwurWkKF1xWFWw63X29d3zorjfefiuXzeqqZhYNxCBzqawqhMj5bGHvvgMej4cLqihKbXV1cjoNAQJMqKpKCDStAmOurPgmkvliMhcOeerrGstjPtO1kSxxSRkcG+/oOROO+NrmLJg4dRIh6PWpk9OTp06daq9voZABAAUTGBHOBRCQw9IhFUAICAEQQHzglwAgCHHOORAQIigAZexKHgWIUvYOIcSogzGmnEIIZYSEEBCh0pR1VVU5o5RSgSTTpUgAgSBAGAEguOCMI4I4B5wLABhAEAjABBAuRRBBCCHEDHDEr5gVEv97Yfz9jM7/fX3wYSm9JCAQUKCSY7jyBcE5BEAALj5wLx/44Q9UYBBe+QUGSqEFJH/7y9937979zW9+84abbnz44Ydj5RVFyxwYGum9fGnhomUb1m9at/7qQiE30NeTzab37nlv74Gj99x5j1Gwb7rhlnyucGD/wc1bbusfHLjUebksHrcZf+ONN9auXUsp7ezsOnn6zJz5c6bGx4Bgq5Yuz+YLp06cqK6K61qzC0i+yK7ZcFtVtOIf/3hWroxJqiI4ZMwVgvm9XkappknTyWy0LJpMJp/9818XLpgzc9as7o5Lfp+nu/vy+ORYdXU1dVxVkTRVJYhBILmO7Y1FqWOpqmwX7YDXAxVNkeR8Pq9pGhNckrAia45lUUoBUBBCeikuzhejZeVYJbl0xrEtVZIpcyzXYYxpupdSPtA/UlPfXF5Zq2geCKHXqwMuBBcMCMM2JUkCAIRCobxlFIvF+vr6xOQUAig1mXCZUBRNkeTq2hqfz/fhD3/4iSeeaGxstGxDUzQGOAfAYe5kLk0pxUTGGBKJKEgWQkiKVgJgQhDjLiFYMCA+eLqA8ZKIXgjIBYD/++Dff0FeCighF0AAJBjkAiIAhIRVlzNCZMO0quoabcP80S+fWbRs3X9/9wcXzp3/1CceSmRSeaOY7++NhMPVDbXjYyNCiObWlnffefujH/3of956syJeOWPWTNMsMsaGB3tJyFceCKeyKVgw7lu07gcn3r589LiWoQ7BgBApEgDRgEokEvLbAGGvmjBMhXHHcTgUjmtNFxIIo6p4TcFwRlKJSCSiImSYZv/YeKGrR8vlXSMbiQT8jbX1mzfpFCYz2cyu84d3HvjsV7909MTR9Rs2VLU0DwwNPvuHZz78wP0MMNN1RpOTRMZEViUsUyAEEAwBiOD/z0KQKIXIJeMHAgHBAIQcCAg4EEgIwbhACEEgMCzViQCltKRvZ8wVgAEABHWJKlEJTWSSQa//ie9/71vf/jYhUm1V1bZt21asWNF7uSubSM6bPee+u+7etm3bN77xjef/+JykKoQgIUR9ff3f/vm3OTNm2VRAjDCElNPSVoOiYwkGsERKDXIEIi4oAEAmEmPMq+m67q2tqpk1Y+avfvNbzeengCuqbFuAYMnlbt4ocE2LV1dmc7lQKNDf3+9R5EwhT1QlkU1v2LB+8+bNjuPYpsMR6Onq+uMf//jLX/4SY2lqegpjXB6O2I4rYyQEIEThjCFyRd6JOfIocHB89GRX14b16wlECoYCMM4pxphThgj5xje+tXTp0pdfeg1CkkplIMGccyJjIYTgkDFuGKmg1zs2NvHKq//eevsd50+fMQq5davXPvnkjxzLjYTCmUymUCgQIpdWlzq2U6QmQEggBJAAQJRkLzKWGGMAAEqpYBxjaFlOCbEA4wBCj8939Yb1ixcvtlzLNE3TdsZHxyDELY1NUAAcCGy87Y6Bvv5TZ86vWr26ublZUZREIkkd17DMmlD10MDgwMBAKOBbvmLp/PnzT5w44fH5xsfHE10DBy51HT94uLaxQfd7NZ/X5/MHAoG+/sGLJ04bZtG3Ykm0rSGRSKxdMDufykym88FgECYS3nwxnS8kM9ny6ppisQi5OH/mvKyQisrqxqaW7p6+J3/8E28wwBGCECqSTiSZMVoejw309AYCgYamxoMHDpQ2EKiKpns9zz7zzPzFS2qqKk6fPLlyzZpUKmNDF2NsmjbEVAgR8PkLhQIV1A+hgNByKcJYIhpGVj6bVgiECIRCIQpwxnBsYJ7vOuTz4TVr5jMHbdu2P1ssNs9oQqZetG3btgVwGmqaJhPTr/773/fcdpfLmSRhwCHlHENUkhAjggXnV0BLlKzsivUhBgAHAkEIAP8/KEUFxwKW4Ko0tBghhBBgCHAuEEbMpZALCCETHGMsIBAICAEgBAACwAUUgEDEOOCQQ4wo54JfCfiQAAwAhMAH/5WU8srvIyX/P8ApIBBCAIEAgEAAUeocAhyCK/6CgSsuVwjBOeSACyEQBxBCgCCA/4u+peWPCCEBrxAnhJCAAEJITp48GQgE4vH42dNnhBDp6WQuV4hGy2bOmvf5h7+4ZvVVp8+eudTRs2TJ4tlz2nWfP1petXTJ8onRcZ/H/+6O7SdPn/73a683NDY3tzVfuNxR19Dw4IMPnjhxorPzkt/vxxCNDoxAwbyyHNCVRXPmPPfn54vp9LyZs8eGe3RVMzJabe2Mz3/2sb88/1vJLFZWRc0CgkBEQgHBgOLR0un0e+/tXbhg0fjQ5MN/eG7z9ZtWrlzs07WL588WCoXe3h7BaTAb5JxTVyCo5gpcSWQLhQLjoKw8LklaIpHKZ0zIgE5Ux7IcgypEQQJaFifCwoxIhFgWzWey00UzEPRRw6oKRwiG6WJeQOAICmXSNdDXMnumkEjfyJBhWz0D/dXxEAAgl8sxCCBGjLF8Pp8Ym/AH/Y5tjqWnE5OTyXS+sqZm7aaN1153Xayqxuv1ShJumdFOKR2fngJI5CyjNKQUQRlLsqpqAAAhGIeAAMwYBZBTwUtBm+BQMCAAev+IMCCQALz0vEshJIQCfYAuAgEABEQluRCEEAgBIRQAcA4oMjDilGuyxh2aPX16ODlNPCFFmfBv3HDtnRDxTAABAABJREFU+PhkYmK8vb25UMz19/fPntk8OjRYSKfwrJk3Xn/T+bMXysoryyOx/v7+6rrqkZFhIeOQz3fy3Jnqpqa6ePj83sMPbNz4t1QHTDqyAN7yckmSMBQ2BpBxWffYLivmDMdyVUWCnBnFIret6tpmgEkul6spj1npzNT4lOM4cLiXjGT4zPpozcJFK5ajkFcNaB4JL66oub59hX155Dd//0dQVsWOfbOXL//KV75++4e2jE1N5q2CFvApPo1S6lIbA0gBJIQIAangSACEEOfcdaksyyXPULrD4IM0whXTYkKUEJpDADmApQx1ydG7rsuYizEmEkKKJAQnDBCAzGzWF9MaGxp+/LOfPnjf/UYht/e9Xddee22xWMznMuPjo5qmHD9y9MSJE65j3X7HHVdv2KBoquu6yVwGEEWI0ggeXpJ1YExkmViMyV4P4IALRpAqhOCCSbJcmvPqUKu9qeXj93/kqZ//FGkKUWWMZOq6siyH/GHGWMjvO33y9KqlK1pb2wlEf3n22Y7e3mVr137ze98FAMTCsc899FAwHFq9evVzz/35i1/8cnV93eDg4IsvvfTlLz9aWRaj1FWI5Lo2IURA6AoOOBWYIJvOqq370ZNPOdS99bobTJdiCWAAMASUC8rZqnWrbcM+sH9vIBBgTEiqYlkGAFySiGCIICBc13EchNAPfvCDDZs2tbe3ejTtn3//R8fFSzU1NZQ6plksuWDbdiGERJIQgIBDzjjjnGCEJcVybBNY0bKYLxBITE7W1dWURWOhSNjj8UBJBgDU1tY2t7ValjM8PNw/MOL3++ubW2fOmocA9Ps8Q4MjN265vaWl5eLFS6dOHL3pltsC0ejQ0JA/lFiwYMHxYydHxkbXbtw0d/acjo4OVVX3HDoKAKivqC7a9Ns/emiwr//UyRMAweHh4WQy6Vh2W0vrRz764ODV/YggwzaO7dz96iuvhcrjUsTv5IqGnccQCWD3D1yurCqbM3fG+Pg4sy2H0dHB8e07dwWC/v2HDlLXJV6vKwSllHLmOg4hWFXVQCAwPjpWFo1omgSubJ/jMpFUj6e9pbWr89Lk5CR1XcYExBggQqnFGEUSSedz1DKDXv/4yGhDVfXhI0cYwpZrCcoQEBDCyvJYZjpZV1lNFT4+nQGIOUJ+6bWDnIpIzB8Neojij8Sivac6AYcEEoyxx6u//K+X/nHDP++8786iZUFJBRAxABgEBBOHulJpszoAJbdTck+lbByEEAogSnwZQoAg55wIKATAAHAuMESMMwwh5JBj8AEuMs445xgjIkvMoRBCjiAAQHABucAACgA55wICjCAAUEABuMAYA8EFgkwAyBkUACMAEOQl+ivg+34VQAhFib6XdryCUnRe4vCIcwYAABCX8BVCCEEpMgelQAOg9yH8gy9AWFIsASG44BQJAIBgggtBwvGYKsl//NOzt95yy+lTJ6qrqwkQm6+7oW+4/4033kRY9gfDO97bU9fUfOTE6fqWmYFg5PS5CytXr4UY3f+pT3xcwr/9ze/Pn7+4//DeutqG8vJyxti8ObNbGmoPHz0+ODjY3NzCXMtx7KmJ0aeeevK/v/NdXfemUrlIBE4bBR4qE1kpHmt46NNf//3vfzQ+PhkMxgFEXq+Xc2Dbtmm6D3/h00899ZN3tm2XkJiYGM5lCwTLs+ctbWq3yysrMJY0TauoqGBUYCwtW3edLMu5XI65vG+g93vf+54AJBKJlUXjExPjM9pmq5pnYmoyHApUVVVhjAnCqiQzxlSPygTPZDJnjxw9c/FyQ20tlEggEBCCmWaxrq7Oo3knpybKYuHyijIhhFEoyKoOMXEMyhgvmkZb+8xPPfRJwyr+4dnf11RV3nrPvctXrlq8dLnFmM0dxxW2YIbpCMYFYJBgVVUppSrWOOcQEAQlyEo5YwQAcDHgEFEuGAAIQgEQxMQVAgMIAOQACIEB5BAQXIJVVGLGqJRNBQIAwJEoKQcE4qXwDgCAOIACCMExAgRxnMu5fr8/NZkrTGcrw6ETk+NN9UuzyemqyvLjhw/ddNNN1LQvd3QGg+FrNmzs7OuREb7YcenqTdcc2L2nsb11cGC0YFmyKg1c7l2xfFVXT++7Z3eG47H6SGWzx7GroGk6yXTWLJhBf0BCEDKWnZqazuZUSZVlxbVNm9qFYqEqXBl0keZF0KtYQ1OTg8PMKrhj40RWfJuWl7W2BCLxlMOIRaE5LQe1id3vhE6OqJJMFC/j6OTQcKSyctuJ4xYSW7ZsCeKyfDFnF00sSUIAjgG9si8FAAE4ABgiIAACgNJSdIIAgKCkrQAAlUyylCkFAAL4fvpMIMBthzkOtSwLY4yxBBg3bRMhpCgKRhgQxKBI5NIf+8gDNdHY0Mjw8396rlAoZDIZXVUjkci8ObP8fv/46MTtW27DGK5YtVLS1GQuAxCECEkYCc45EBIhV6iCEK5rAyK5QgggJIxtRmVMBMc2ZRgChKCkKK7rzp454/577yuYRv/wUDaXHp9MjI1PGIYhy0o0Gm1vaP7n839VQz7gMpey2bPntja13nvXvWdPn9EVdWxs+OYtWyqra7Fy+uy5c/UNdSsXLxkY6Ovu6qwpi3HOAaeSJHHGEIYCcCwgBQjKyAXgng/dkZycQgJwLEzH1ZGEgbBtu7unb901V7/92hupxKSkefx+f94oYowxgrZpAUAkIquKNHv27HPnz3dcunzx4sWmhobnfv+HH3zvhwCAdDptmnnGuCwrpSX2jDHquIQQgCDEEFDAoHAde8WKFZ/5zGd27t4VjkYJIe2trR6PJ5PJJNNpzaNm07nh4eFDew8eP348Hq9IJKZnzJhx6fg5j6bPXzBvdGh4YmKsubm14+QZxnlLbdO///FSoZDr6+szDeOt3oF8wRBCjIKh7gsdpbZMwzA8Hs+e8d3pdPrMubORSESVFUppQ119TU0NcFk+l3vjr/9oam9NGrm+kYEZbW1V5RVCgOxYwiMRjQGzkG+vrT9x5NgXHvzEGy+/dPfdd9uG88rrr82dO3fBooUY4yNHjgAImeO6jMqyzIBQFBly0dPTgwW4fPlyJpviDGiqalnW9HQGAkgk5a9/+YsgIJ8rBvyh4ZEJDpCiqQgBwQVg1HZdGRPDLMRCoeGhoTf/87rXo0WiwbHhnOAAAKgSqbG+zqcrsUhtKl30aPLQ0Gh5oFz3EElmqu6LhCs1D4gEfH39LkVQljxAEAjRV7/+tbWrl1fVN6RMQ2BCZDmVSnt1XVEUwHmJ2l4BJPa/fFO8zwfeT0FByrkESyNBaClclrDMuMvBFSk4ZQzikp4aQIwp5+gKnF9hmRhjIITLOYCAMVZSfkCMSvSXco4hZowJADCCAiBXcAgARBBzID7Azvej8NLlgVIH1f8mFjEAV5qMAACMQwAE+oDlo/fdjBBCiJJjgQJgiK58AXAoAISIQw4hJPF4fPPmG3/4/e/++te/qqyI1VRVMiYOHzpw/vJl0zQZF7Pmzfd6vaZtjYyN3nzzTZ1dfWNTySMnTsYrygRgoUDw+uuvP3Pm3Kz2ths3b/H7g3v27Jk1oyUeayCK3HW5DxGUzRXe27vn4S9/afX69VU19aMj40ePHl8dW5VITmcMOxYrp0T2KconP/eNl1/+Syab1Atu7+Cwosq33rZ1w/pNLS21jz/++E9+8ePly5d+4jMPjQ6PZQ3n2hs3Gw5zXGaZUJJwzna4oIACJRLjnDc3NtdW1/r9vhvvuOvEiZMSkiVJCQf9miJTABl3iSyVGqsxxoJxjDGBKBANh8Jh6joP3Xfv0OWuMq8/2dOnE9krKxBx4TrZdKqyLObTPOXRiIxgrljwBgPf+u8nGhsb33rrLQrg1Zuu0YPhZVdvrK2t1j2+XNHoS6QAAgJBAhGEEEOEZAQERgKUVsdbroOuJD8o5xAhRAhmjDGXIYQ4AARAyKEojUmjjCJRKiSUojYAIYPoyjEGgIv386sCAMgZAJDz95MrpcMjgBAcCA4U17EJYa4QAurHTu206eVdu98mKiYEjY2NyES67dat09OpuprmiYkJDsGfn//rphuuu3jubH1DU3d3d31To+M46clkQ3PTWGK8wh8Z6RvKTSVDodCSFSuiBWBOTQ9k0vJEHlTHSMSfm5w2E0mzmOMCSH4v0phMMGMMum4sENKifgPwxOBAJpe2mCu5RVosgtaqQOtsf8Sne1QBLOLz5J2sQknZtIUODBJFyZmOcKmFsAVdp+j0X+xMplInL3Qsnjv3puuuCQb9E8lJSVOpEBKGCCLOOYao1AgIASBEcriAECKEIMQA8CtBK8CwZPGQf5DS5yXBCGUIlAg0YIwKIWRMCFZdQDlADheu7ehej0PZRDKx+eabOeCWY/n9lfF4nCDEGGtsbmaMxaJxjCGlHGAkIPD5fKZjCwQdRglBHHBKhRCCAShJEgNCgoBxihGymaNiyWFUQhhiBAB0BeeMI4wYpTdec21Xf8+sme0cs1wuBwRCiGCMo9HouXPndEVVJdV13eam1mQyuePwu/lsYcNVG8bHxx959Ms1VdWjo6PBUOTtd7fdestm7rp3bb0DCcQZVSWFuzaUEIKIM4aRxAHDjG/fvp1huGn9pgP79mesQljTX3n7rU1r1lREIpKmqD7f888/H/UHH7j/3rsf+Ojbb237+c9+FomXmaapqjpChDORzeYef/zxd7dv/+lPfvK73/522bJljzzyiNfrp4yall2afm7bNgCAEMIYxRKhLg359Kp4PBwOn7t06bH/fvzLX3m0p7srkU4NDw9HIpHDhw8PDw8HAgHXdft7ewb6+wEDjmVrsmal0l5Ius9cCIWCuWw2MzGOIZIU2cikLMcmiuxrbOjp7wsGg7PaZ5iFYiwWI4pqmGY2nwEAKIpimqamqpzzoaEhjLEouqlsxrStZCHfdeGShMnSZYubm5vffufdvW9tG+kfzDnFo+/uqm9r93p9uq5D282OTY2OjgV9fgVJu7bvuHjxYiqV+do3v7ln7+5Dhw/MmzevvaX18e/8N4GIUsfn89q2SxDCGDu2LQS0bef6G24eGx/Zv3+/YZquy+fOm1ddVetyoWueuz5875NPPjnYP+D3+jgCQjDLcgXjhHMsEZfbyXx23uxZL/7l71ah2NTQGAz7ezrziqLYjj05ObW4vUVDrDg9KjNuZTGdSq5Zt5BDo7dnzC/5ncnBmrkzLdso+bRkJgsA8nq9Y1OTT/7gqW8+/t/RiooipQSAgM9XSjKJK3rF9/HsfV6IMC6VDBBCXHDKGWcAQuiUPBUpBcSCCQZKCUDqIoyFAIILiGAJUymlKsD8CsH+IMAGrrgy5f7KJ4yDkmgAAMjfp6oQvZ/6EhihK5RXiP+nAExFie9cufgSJEMIhYAlLfQHeeYSUvMPUu4lH1zSc3FRKiddUZYJIQQtNdnCm2/ZOjExNjTY79HleDxeLJpdl3s0TUNEipdXjoyPtc+e9enPfjafK27YsEHX9UQ2/9hjj40MDTc1NXzq0w9VVFREwrH9+/cTBCqq6pLJlCRJ6eRUsZhfuHgpF+jgwV1P//o3jNKXXnylLF7lcoYQ6Lx8acdbu1avXc2AcBmdN3c+BEDGWFNJV8952zQ0yVdTW3XixAmJqIcO7f75j362/vr1586cqYqX3XnnnZKk3rr1zv9s25ZIpTU5UFJbEIJ0r+YP+ZngCKGgLwKRaG1tfXfbDseyElPJWDQsBEMYYIwd13VKuEtI6RB4Na+AMBwN1dZUTQ6PPHjPXZXB0OTw8Mc+8/FZK5ZJuiZc0dnbe/P1N/75d3/43dO/DXi92ULhtq2337j5pv379/f09d625fbb7rg9Y5iVlZWmbaazOV/AD0RpGhkQTGCMGaOEXGkpg0IgiAF0ESJCCAhxqYBPCKGUQgFLdYIPCvil2SAcldACcsBLgdj/c7IFBB8Idj44Gfj9wkapyMEEZxBgKJumQYUV0EL33f6xfDYXiPu6Lp1TZeXGTRunp6YGBvvq6xr7+/tlWWlubd5/6CABoqW11TAM0zA0n9cqGj6Pf+Gi+RcunBseHKLMWbhk6bzmmXo80nH4zC93voKunttUXl00rYGePjdbkDXVCeherxcrspAJ0VWbU9eyW5tbbMfM9Y3brgW5m+vuZ4zKM5oD7W2Sjj0+r6bomCiSpjMMFYzqXjpNpp1pmSEmZCTZtu31evceP9JeX79qxcr+vh7hOmG/9+Zbbli1ZpXLWK6QlSVcuu2EEMBKEkeIEGAQle4nAAgAXnIKGEMkiBBCCHYle18amCo4Apy63LCtXL6IEEEIKZIshDAR1yUFOY6uqBhDBgTHwmZUJZIqaxBCJBAAQMaS6VgYQyQQ5KI0vr/0yxAhyplhG/D/jN3BssIYw0iizLkSMpZEYgAAAAhEUHDKmcDIZZQzpsrK2NjY9PS0N+yXZbVYLCpE8vv9HZ0XPR5PVVVFWPJ7vN6R8Ymvfv1rkVhcluU7btsqhDh29HA8Grtqw8avfOPrZtH4r69+df78uUXbMiw74PNzThUiAXBF9sQ5FwTJAHT19arBAJHVzq7LrfX11eFQz9jk4OCgaZp+v7exsTGbTOXTqXw2FwoFvve9H7yzbbuie2zbliSJMaapenp6/MEHH/za17+xeNGib3/7m4ZRePzx74ZCEdMslu4/Y6KUvhOClzIRc5qaljS10nQ2EA4lDJOGfK6qTg2OxMrKVFUdGhpKTk8LxicTU/l8HgKuK2rA5/WoWjQSiUQiFRUVEELFoyOEYrG43+9vaKirrK5KZTMjIyPJ6bRDXdu2c7mcIsmcc4gRkSUhmM/ni0ajZdF4IpEYHh4udf1qRLdNixDiMpo3itOpBHMpYNwTChGEIUZF6kgITwwOezU9ZxQLRlHzeogkVVdVLVm4qLOzc+eOdxPT01dddZVlOUSRv/+9H1iWNTY+SiB49CtfGR8fBxBjWWIuU1Q1FIo0Njd99rOfHRka9gX8SEIIofJYWT5fjMRiQyOjAZ93amLiueee+9Z/fcd2HSJL+XxewgQLjiWJIw6BqCor/+THHrzc2VldWTWZnLRNC2IkINcxWjNn1uyGGozsgO4v5JKDPYPxaAwrHEBcHq+TJMlV9B/+8e9FBAHgsWhFPpMvFnJY9Vj5XHlFxS/+51dbtmwpFotAwhwiWBomfKWwCpEAH0AyIFf6SEs4zQRnQpRWHSMAMcbMYQhCSmlJXgMpx6RUPuMQAYzIB3VigaAoVX+5KNWQOARXomr+v+gI31dZljzq++85AhBhgD4oPf2/AMz/F3qFKF0thJBf6Wa64nU/+MMrrBfCD/6pEEIwjiUihOCUYYzBFdEWRwiRmqrqmTPaXnl5EjCaSSUVTb/m2o2z58z7yP0fdRlNZzLReNn+w0euvmotpfT06bM1TU1P/uCHu97dLmHkIUoxleUu3bBhw8svvmDa3Ovxe3TVZWI6lekbGNR9wUXzZzXU1t5w7Y1IyMMD4xXVZZlUYsOalX/7w7O/+9WpBx78mK6rVjbjUDsUiWaydqyi8fD+PXU1Xgrg4OjYb3/zjCaLJUuXd3X024Zz2623C5e7rpWamtRlLAlXl1xdU7yxKETIcRzoUkWSotG43xfmgpoFU1fVkcERBGE4HDbNIuJUURSqCkgwpVfCEIyxabv5bLauoqr/Uvf8uXNWLl+VS0yqCBmOi1VZIIhVKV5VmTOLoWisobl1VkvL6NiE67I9e/bdfPPNy5Yvj5XHR6cmvLqez+cAEn6/D0EIAccCcOoirNqWTRSZUlqaQ0YgAhAwQYRAgIErVXoBuUAQYZdbEAiMMIQIIgwYc6HggmMBS7r5/wVUAQAAEsb0g8NQOivvly4ghIJfqbtwCCAEAgLMAXXyGADKmWUWGHWSU5lUJrl+0629nZ1vvLVDgryhsXY6PQkk4TBjeHAoHo/FAqGB4SHTKtZU1DiuWywUUtnMkZOHVy1aVN5Q0drQ5CkL93R1ntrZQ4BcGykrqMrA3iOZfBaUBTy1UUCwTDweTWNCONQtZh2AYG1ZZXEiOTo64tg5T7ZY7OzzNzeqC2daqqK6wHZFfiqf0kzsAiSQGvDUn5vAybxJJJA1kK6atkkQPnXqVFO8anbLzNHuoXAwIggvmIXfPf/XvUePfuXzn5c5Zg5DEil59BLyAQBKN+SDUs37tsqFwAiRKyEzfD8RJa6U3l3OKOWUciwBDJGAkHHmcSDgLtTUIqfIEbosSQISLBEkA8YJliEAEGDbciSCr3BsJBDCDqP4ir1yKICuyo7jUJeWsJnaDgcIEi4hiCAQgjPOIZIAAEgAgQQWCGNUdE1BEADIcp3qypp0Op3KOkg4mqpKqm6ablNjWzjiL5pmopjaeXjv5NS0kKAv4E2nUr975rc//+nP9u3c/d6Z95YuXR6NRmHsSnpNVqREvnBk755IJDRr1iyMMWUUQ0IIoi4rAlrb2CSoGE1MtTe1Cubkgbh09gLyqGowwBE6ffJMxOtfsWLZth27fX5PLBZzbDcQVkGpcglKdTOAJRIIBF588cXrrr1m69ZbS8/IdV1K6fv3H0IIZVlm3AEukAk5fulMwKNNdp9Durd3ZIIChAAksgQhdF034PMLyhYvWLBk+bJ4Vby2uqautrqtucl2rM7OSxUVFUKIYtE0DAMRCUKMMC6YZsHI1zbUzp07O5lMZrJ5Vdb8Xi8hqG9wYHJqKhyM6Lp+4cKF7f/Z3tXVVVlZGYnEkonpQChYWteGJJLJZmNlEY+mA04hlox8gTEeUHWZyO1r1iq6hjWlTNMKppEtFgYHB8+dPNbX052fmgyq6oHde1auWT0yOHzv3Xe1tLTG42VdXZ35QmHW7LkLFy5sbm4ZGZuYP39hRWXl2ORE7+CI61JkU8yIx6MdOHbCo/umC4bjOEa2uHDB/KAn0N1xKVoeRwTLWOYO5YrEKAOAaxKZnpjs6+mXZHU8laKWLROJI+6PhLOTqVwuZxVNWQZ5lncdqzwWc2yIkKx6PePjk7U1Zf09U7mipVWEqGvZ1Kiuqey4mHFdRw54bU7vun3rpz/5qd8+/TQHwILAZPSKBElAhN4HYwAghC5nAF7BJ/A+NHIgJICgAMxxsUCAcRVLJRkGB4K5tIReCEAEIacMQUhL6AsAhBAjWJo8BTF6n7cwCEvDrFDJ239g+EIIdMW4BWcCyAiJ/xd9SwT5/wLwB5+zK+JXAN4XNsP/BWL4AR+HEJbUXoxzVKpzlwrZCJU+JJOpaYfaqu5fv379008/89K/Xjm870BFqKZ3bHJ8fPyuu7du276zvqE5Eqv69+uv19Y1OI4jhLhxyy22bVuWxRjLFi0+OvbA/fel0vlEOhMMhOobarhLhRCpVIqo4Wf+9I/+/v7BiVFAKcZMQL57/9Hf//bpL3zpkZ/+7Ae/+J//mS7kDctWAmHbtoKKHvaHR8ZGa+tr/v3Ci4Xs9O0fuX+kp39stHvjxpUV1eFkMunxeIdHh1atvuqTn/1cU31L0chbdjGRnNI9vra2GZDjgYGhzTdvmZqaNA1+8uR+yy6oUuTQwcOBsKZgJW9kNU2jDAUCAUVGUIBC3jKKyVtuv6ttVtsLfz926uzJT33pS0/94AfTiYmO3uFFOQYJwF4dulJNZcPHHvrkufNnqqsb5ixeGotF7rzzTo8/MJ1MjSeSjAMhQYQghlgIwSmFAHEAIJQ4d4iEERC8FCVhKBB0ORMCCAEIwYJTxgHnHIMS0UGCi5KongMGIRScY4QkUuI6gBBSWsEBAJAxYZRjDLngHADGGCKYCgAAgALYtkUIkSSZcQaZgBgylzqYIiEJQe0i131opOc0TXEjb5yYnmxdtbkYR8d2/kvzxsJNVRMDfYwVrcJYLBIEDBiGzV3W390ZiQbzmen2ecsqq6LVjVXcRRcvdI8MD+emU/m827h0SZGh8W0neEhXmuqhpgEB/Z6g7TBquYZjCkaBSwOxiFEspKeSqDABL4+ZXPauXeVta4QQezXVFUDSdYkJDwRIx5zT+t5M5YhRgMIwigRBVjARkXp7ulnBnLW8NZlMSoTkchnAKfcoAV9o97u7Vi9ctPGqtWP5aZkhxCHAmGNXwtCiTAESkQBjgpc2M5YmtQPEOUBICME54wBCgASAEF2ZoY4pt/OFgmlaPoIEF4xBDiCSIWMMUwohl2QJYkAZAwAI7hJCgCRcSiXEiYSEEBgSKjhBmDGOIBQICcAMx8IYYo5lSUfCZYxRWkrSlJgDF6LUuC5RUKIQAABgA4449xLFEcwGTCAoAIj4w6/vfW/JvAXv7dnjOHR2a7ukkIxZxAKk8lPHjhyZN2fulltue2/3blWVmaD7jx+qnlEvB7wHT5/86Oc/3Xvp0v9H1nuG2XVV98Nrt1Nvn17VuyXZknvHlhvFpieU0DHEECAJpEBCgCSQACmkh96NgQDGuFe5ypYlq3eNpOn91lN3We+Hc0fwf159Go3m0Twz99y99vrVVr0BCIGCno7OhcHBnc8/W+jt6erobDUD33aEEDKKNJpqUrdtu6uz7PB29ss1V18xMj313W9/+4YdN61as/rk0WP3PvFk2mr1DlzOKFDQnIkkDRhVnFNCwLGd66+9rru7kzCDoAeHlgFQpTUgBzCUL51mxkhpAJih+viZkQ6/0ApSyyssLFYLjo3apEozhDCNXn3rba9/4xvXrV8zNDzc3d09Nj4bhPV6fWH3vr3zc4uCc428Xq+mYBrV2uDAADNQrzdzxYLnFpJEN0jquSVB7fHx8bGJySCJuzu6N2+5pFjw4ygtlbuuve5G17Pn5uaaQcPLe0kzkKk2gLVaTQiBiKOjo1rrvs7erq4ux7Ucz0vTNEmSk6dPjZw4+sSp061Wo9VqVRcWm0FAgDi2kyjtl4vPPP+cJdjQ0NCzzzxVrnRyLq65bseGjWu1wXJPb7mnHxFOnz7DOW9V6ytWrzCAjWYwOjrKOS8Xy81qI5/Pnx45sn7dqljGY2Nj/f39WuoobFmWZSLl2kJrvWXzhk9/5i9SGXMhZJwyLlKVdnZWQBNmicNjk8tXrhh083HYPD02C5Q4lPOY0sX66tVriVX69aHn8h0FLdECL2jJRdKybF9rLYgVBbGfK3z9W99+bvfud77znZdfuu2yi7c3qWUQNaWIJgOTpVKMsWxv0GgAgQIhQLlBQpiRKROcEJ75/RTJYiORUpAGlFGOZVMDKpWEsxQMN4QgUkoJpQoMciKT1AbBKDVKZ1dms6T5YowlUUx55lUzGoBmbykEbQwwlpHJvI1OI+ccjMkE0FprIMQgIlBEZG0zBTHGoEHKaMY6AxAwSBE0GERUhGQLfaokMCalBIO2bWdkoTGGj42c/flLL3R2dr6yd++rX33rY088cvTw0W9+71vvu+ujd7zh9p1PvzA+Pv6GN17+4ssvDg4PFgq5xYWq7/vjYxOI6DiO67qu40VRtHvf4c6Orq6e/iNHjghKpJRJkqxetz6f92qNet/w4Aq2otmoyzhxc/7I1PgLe1/+8j999amndx47dmz5yrUqToJ6PZ/Pp0Fr84UXjE5PPv7UE9MT40889MhnPv83UsoP/OFHVgz2z05ORGHAhef4OYJwZM++I3v2GWNardb7P3jnh+/6Q6RkxfCyf/mnf/7KP3zx8ksvqlWD6uyk0mHMWmEUxC2LEjuKW17Ob9SDNFVdXRUAOH705Pve846ezo5HHnr45ptvtiyrUCp974c/3PPic3v27DeM5P28m8+tWb8BKHEc91vf+Z7RRBll+W612Zidm3YchxEQ3EqVAkANOrv+UArZw2HMb2kKRMy6NRDxvB/8/A2rDWtg+17VtoRnsLMxygBjjBOiDCJidiWURqPSHDllWYUhRQTADK6hGYZjlCQGTRu1QaaYAQiSRJu0tTCbA60ttfXSDQf2je381Xde8/o397zlznv/72fr6+7Ka684sG9k/MATXaUepoER3jM8NDJ6ZibAC7ffOD12Jm3KJ0+/dOzokUrvsq1XXb12s/vK4WMn9o1Ap00r5eKyzkgqSwIRImok1GNNkyqSupwkSTw3fs6Xxgtko7roLhssbNmgCI+iqJArKqUUBS+MUpuxWLbmWoPTae942kCZKAkKE0K11rWpmVat/qqbdgRJzIGEaRTquKAJJpHx7OmFOU5IixqLsJYFrmEMUaLmQIQQiUbLtJElxjkAKKUAKGNcagWwhFNnvBSj1ABqnfdzShowxLcdxpgGzJolqeCpTDKgG22RiezAgDEmTGLfcQkAGEIoTWXCubV0vc7e24YTSgkQBE4Jtaw4jikh2ZDmjLUfByCEUgNAwZDMT6Y1YwIRGRXcEI0kiOLhocGTu/YsjIwaRsNUkgs3v3Lw4MnjR7du3XrZ0PChQC3r7F21YcPp0bOjY2O3ve52KVWuWCBIqWXlPL9aq5UH/IhgLW55trV6zUrfdvJg5Q2zPD/Scqa+4DJGKTUUgzgIW83uUinnuDqWmusLhoffdvvrlaBIsLu/t+D4Dx962BFWb28vArquK1qBknEYxn7Rtm23VCmnMi0UCojkAx/4wDe+8S0pJWXgWraU0mhtWVaiUkrAGM0JoFRBs2lxHgQtxhmnIpdzHcdjjPnFAqbpqmXD/f39L+3eFYah5+eNlouLCwCkkC9Jqc/tOxCGra6uHq31mRNnoyiaHJ9wfU8rdHN+rlIKm619r7zS1dV15bXXFBCLxXKr1TRKWY5NGK1Va60WR8Duzh6tZb4nX6/XXdft7e/LKss6ujrn5ubm5+dP7R2Zmpqq1+sHDx6s12rZ+98C8BwLABzfQ/Sk1MYoAGzUq11dXX/zN3/z1FNPnTx5squzoqRp1qvdHZ2TM9Ov7Nk9PLx82fCKQj7/0ksvtVotx2b5YmHdmnWlfK5eXbj/Vz9fu3Y19vRQCn/zN38zNnZu2bKhQiE3Pj6plJJSuF5uodYoFXJ7Xtn7wAMPCCFUlmlMWaFSNoxIpfxioT6/8OzLuy/ZsrHsuYVyxUIUqbIsxy1VEs/715//fGq+WSwWbctJEuk4zszMlGc7URSkUhXyOUDtuu7Ro8f/+q//JgkbD97/m+tue00rSbJhJaW0sjI0YwihFDIRtMkGsNHaoKKMGg0Ibd8OIQQpIiKlQAEZo9nYppQaxMzqQ5dcCYYApdTmIutdEJxnczfjO7TWlFImlu50hGYcriFAKTEGKf2taPn8sm6yD5eW44xupgb0/++Ls6ObUpoNbAYUGTGAYFAplSXdWlk+l1Iki87Whh8+st917Wp1YXp26qJt2x5+7PGp6ZlP/dmfr1y77tChI2HYAkpmF2aXr1z2wAMPdff1rlu1vtFoEEJkmtqWhca4vp/z/fHJ8fGpiXypgDp96NHHLrhg47ZtFyOqqNnqLJTSNOWc9VS64jjWaK6/6vpma35qYX7HTTcfOnTo2Wd3lUsdniMciwtHAMCpI0ePHjpw82tuu//Rh1etXfPD7/7wwMsv3fH6161fv2Zy5Mwlg6u+/81vf+jDH3366acWFhYKhZJl2UPLVi0sLsYyXVys3XXXXc3GdLlT5NwVo+d8xpEa7udcrRAALI9rraNY2Y7XaC5yKrZtXXbJtu3zUzNhK3j5xZfWb9ooDbzyyivrV6740z+/lRD4zQMPlN3uMAzr9fqa1SsatZoGAah5EAohGHVAEcNMQqjIHprzxCEBjUZqIxjDzNSSmd9wyaLOCBijwXBKAYAR2g7ZoBlCs4RjLP3RWVoHWVITtNtHIMsfMBqAIKUUDBAASmgipRDcGJMoxQkjWTYqJYYqlIlJZRwFXT09fkfP/uO7lGQdPLp8Ze/xp381Wd7y6j/4wIGnH+2a6rspOrZ3gKupsbiVw1Z1trYQRjhbq3LCB9Zu8zuS5vFTK3tW+zZ55dHnVl5yXWXNBsu3FhdnVQILY/P+YI8pOjFKnsbh/hNQbXqJobHq7SgNdHS+uPP5yGY9l1yiSpXFucXS8mGBLNLSVkg5rdXqYRIBo8PGXTWtlKBJPRVAFVADuDBfnRwdv+mmm2KZpmnKAVGlPoWQGVuaqfG55TdfFnf4LtCEkKJmMWqfWdwg4ZzFSnN6XhwhqCCccd5ufmxfejIDGFINyJAAUNuytcaOSsW3nTiMjJaCWZoYaSRqzNqIKSfcEnGaCMaFEEEQcNuSUnLGlFKcWcKylq5ChDAGYAgwRtFoBQyy2e97vs44ab1EoWWWBzQsuxigAYQsuwcJRInUjArOqAUS4Mt/+7eHz5z613/9t2KpPD09uf+VPYKQBx5+UG/cfOmllx4/fjw0Op/PX33lNeuWr5kcG999YE8hl1+7dv0zDz92aP++d775LQcOHhxetsJHBoleNzxEAIwBiwrPtmxGAXUQhoJTQ0HYVgLaJih8twicG7j0iotllE5WF+eVJARqtaoQPEPeZuZmwzC2LabRxGmCYdhqhoSQNFWU0ldeeSWKY865ksn5hx8Rs32jo6NIGOVIwkYzlJHSqBJgALWoZTGeaoXjVBoTGPna219zZvQc57zs56SU1WqVcxFHKggiYxTl7NDBg5bFS/kCpdRzXYKGUWxW5+empnO53Kr+Ia31cw89RikFg+ViCT0nDMNisUgp9X0/n89PJZOc0FAmCwsLWRXSmTNnJifHJycnwzCkQFBrBBSUWpbV5eeTJGlHECNQSqJWIDVyzqXWBo3N+PzMzLPP7FyxfPjmm29+/vnnEcnyZctOHj9x0fZt9973m3e+/Q+ee+6FybFxrfUVV1xx+PDhaq1RKlYYkPVr102Onrv7hz9801ve2NXT/+Y3v/GCzZv+/u///uSpE0bj6TMjK1eunJgan5ycXLVyxU/v/omUslQqMSoWFhbQGCm10ikXAgAc156rBweOnRysdPR2lkudlSRodXb1GuH97z0/n2nFHR0dBlDGqed55XI5jZNmbXH7xRejYfv3v6KV4kIUi2XHcabiqFiqnD+4zs+qJU0jAiXEIDHtfA1CiDEAhCrdfved30YQ0Zis0YtprYkxlHMkQAkRjGWhyoxSMCbrcwPELOgxG+FSSkIIp8woDZRgW9cMxAASZECQZIctba+4S38UoDlP8WbgWNsQfF7kvEQFGgO/EzNy/kfOmgsppagNzf5KiSFGa61TDQa4wYRbIlXk1ltevWHTlmOnzi7WY7/Q8V//8e9/8/nPLSws7Lj5pqxMd/369S+88MKVl141MDDw0ksvxVGUGQMIIa7rrl6+rN5szkyMX3HJtpJv/du//dvqVatK5Q7KaLW6oDVajFuWncWDTU5OaqqLufxivXHBBVt8v+g4jgFI01RYVhSGO669/qc//hEwevzMmY999GNRM548e+zQoYOUw4aNG8+ePffE409Nzy5+754f5zo6pJSCO6dGzzLBgdKwFSFhb7jjjfsOPV7IeWdPx8QgAQIaBXERVNxoICGc2nFY82wRhlF/Xy8ijo1NJFotv2hLHCczp0aCVvLSy6+cm5hyXCuO4zAMoyhRSs3PLxBESsB2HUOM5Ewq5do+aMkpUZlzPHvaKMlIDtr2k2YWF9JefZauTZBxEtknKMkSUgghWitC2i9im0qh1AAoNEtmI8g0CNkXSSk1ICGEc0CtCbSt3wZQozGACg0AGDRUY5ygTWjcUpqxhSh+25133XLrqx/41SN+3Hp2Ktm24y1nHnpg3+7mLXe8c/Hn/1Ew1WGn99Rcenyhuby3R8VRlyBF3ydHzjx29vSWZWt7RLHvggE1dSyZGKnO7BnZeWL7hZvec9d7Wx7/+i9/Oj81nY4lutVUjcYd17/qfa///Q4r5xWKXqW4bs36L33ly0dnxz776b8irfQvfvPjR8ZPVFYOh41mjJjWoxyxKoNDmHPWvzgLKqrqmFIScSKDhBgyfvbchZddGhPTnKu6nh0ZzY0hFBOZNFrh1MaO1ZtXff6Rezq5e+HatQvNesH1YplyRniiFWMWZjYkRjL5ovytOiO7O2fadWMMQQQwGk0jiIBxy7I8z3NskbWmc0YB6NLdFgmyViMghFCXUUTGGKU0lmmOe5xzbZQyyAEp5QYQCTDGAZACR0a01ojaGEgwJkgppZZlG2MIZYQwAoQsGaUooQRAgSaMaQRkdHp2NkkSW/BKoZh3eKFUPH365OaNmzptr7dUufiSbWfHRldv3qS19kC++PwL//d///e///ON8fHx0bHRzu7e7CLy2IMPHz12mABduXJlxctRAtpAYowGpJlAxpAcZUw4FmESTDMKibBSxEBK3+ZcgeYs1Mp37FX9A11dXS+88EJPXzchoBUaA67rpmnqujZhQISdQuD7/mKtlpXEPfzwwwBgWZbSSbFYaDRanLIkkZRS2+ILC/Wc6/T19BbzpY6uzpVrVm/atIkiVEodVs7p7++PwtBxnOHh4WazedFitVgszlbnoiianZ676MLt1fnq/Pw8pXRufmZuoR4EweLiom3bs/NznNBGo0GBOK6Vpmkcx6VcyRKO59pxGNWrC8kCGRkZaTRrK1eubEWhZVm1Wk2nUgMGQRC1AgAzOzubpqkxKm9ZaAwTIrveEQMyjvKuG4ahBKKNygaQATDGUE4YY50dlbn5+Z/85J6LLrrwLz/96V27dq1ZtXb9+rW7Xtxda9QHBga+9a1v7d714rvf/e4zZ86cPTuyaeuFYxPjqYG5ufmXXnp565YL/ulrX3vu+Wcnx8fu3b17amqCUvqIJZQywyuWd3ZUjhw+9NBDD61cuXx6etL1vFRqRKXRlIulfN5vNmoFP4eIkEghLATRSuSRE2fqScyEGKuNnDh5NmjFlVxBoxFCVEoVQhjnltYagE5MTPznv//HmjVrvv/973/1n77aajWy3LSenh5tkBGCCATAYtwYI5USQmRWH3N+GhMgjDKKSNu3LcwI3czCoTQT9LdIISVASBaqbLQxiBSAUIqAmZgmOx2NMYxSrZWUUgiLMZ6mKRU8k8EaYxCAUc7asuSlIxVAA9JMyYV4fvXJvrtBSgDb3z3TiGBba0MIyRrsCSHZfNZKtSc9QqYIU1oTwmh72ANjjK/dsOXo8RP//fXvDA4OlwrFXbteOuqc/vWvf71i5bI9L790+RVXySSVsUwTc9HWbevXbhQWt2yxbv3a8fHxMAyM0X19vY7jxJHy3KLj+GOjU46d+8Lffun7P/zxipWregZ7OGMAYAmnUqlw0OVyudPqHx87Nzo+1d3ZEQZpsVwO42h+sWaM4VVTquQDmUxMTPz+7709jpMffO/773jXHzz1UHNm13jJ8+q12toLLigP9pd6euan54FbtVpNo6KCc2FLqcHQoBW3wogQQjkxBMAAEkUYC8OYIQjbVWiUBEAujZYplopdcZps3rpl9fp1nms3Gg3LiVr1kNg2Ii7Mza9ZvRoAxiemiuWSbdtaSttyjDbC4VIqS9gZmEI1RX5e5KazRTiLnFZL8LIhhGbc/ZL6wECmaG4f+r9z6TOUUiAGkBoCmWLld69dpP3YgdYaKUWaDQ9EApoAIWjQIKOp0QAaKVEGKQASkMa4FjFG1+I6EaRDdP3Xf34jqlenpmtX3PL6zfkut5C7+p0feeLnP//lN//t8huvfnDnkzB5ZrDcS5sLxyfmci4rkdZlWzf3LN/qjtRFzsjDuxfnzZHpRqpVpTX6vg++ua938PipAwRB79l33QUXrBq6gAnrkquv3nbl1omxSZnLmZxvOH1m767Xv+Mtb7Ws+dmJgpv7zhvvfM89//HI8RNOoZDrqti2Z9le1YbuXaPemUAVHSvGukmIogB0/8H969at93O5WqPuuo7UKkpDjwqpzVSzVl1dGVo5XE1T0ln5y12/vmf1nxAm6jLmhIJGxRkAcMZ4dsfB3xrnMz0kAZIpzMEgZCSSQWM0UpIkSRgljILv2Ll8Xmut0BCDaZpimlLCwIDFOFKmNRKjCBe1Wk1QlnNcROSMQZbCyCkBY4zCtsoDEYERypigQLXWjDOlFAeiDRDGsjc6QaAIlAAhBAgIQlKjOOUcSN51dZLEreZPH3ggSaOP/eFHxicntly4ddezz/zfPT8hFN/7rne/fHjfmRMjb7rj9ffe/X8LE9OHDxzMdZQ0gSSIhlYsj436/Bf/7sixo9/66U9uf93rAmNmFme7Ozo5ZUkUFlwfABKZJiZ1kDJLUCSUibmFahCFRJvuzu687+tEW8xaCFoOF3nh9HV2x2lEAChnkFXKAFbnZ4llW8xmjPm+v7Cw0Gq1HnnkkbvvvpuzrKgU0lShBqk1Y0JrbdnuR//o49ddc+1VV11VKpe10TQTlGpkjGgAg4ZlKH12/iqkjDzx4gs//80P3/z6N198xeVg2iw/agMMENBAm/lfWFw4deLkwtz8xMTU3Nzc6dNnTo2fC5utoNUIwxAABjp7Sr4HSXT2xIl6q5n9IFsv3PzSiy+3Wq0kSSjBDJ+whIiTGCybgI6jqFQqCsuSUvYsXy7TtNkISoVchnCNjo7btl0s5k+cPDk3N+d5XkGIvXv3vfjii3feeefi4uLK1atm5hdKHZXBgaGvfOUrhLAtW7ZMz03/4EffX7t+ozL6jjveUF1caLUa586dS9N4z8t7X37x+b6+viy6fHFhgTHW01FxLfHrX/zfhRde+NLu3Zm4L4iTrAYBKZmeni2XClGUaKkc4VDAufkqtQRJ9dFjZ5XRXBGDSBxOXMoYMWCq1WpPT1+tVouiBIDNTM+97/3veujBR770j/9wzXXXfuhDH5qenGqvgJQgosHsKPstpEdodpQBMgKEaDRIkDIKQLLiakKyGIy2AOo8WUMpRQBpNCNgjNGInFBjDCBmbb5IiVSamCzNBoESy7EptAvXs2DBtkUq43cZy9BGYwxdkk+Z9k68dBoQYs5ncVDIBFztw+F3/CbtUQOEELKEXbepbkaYkjLjoTOALXO78A/d+bHnXnx51drNzz7z9MTYmaeffmr7RRe+7wN3dvd07nll7/r162fnFzizwGB9sRYmcSts5XK5fD6/fft2KWV2ZqVpavmWMiZoRcJzxkbGpw/v33bZ9n37Dx48eqCr0rF8+XIAsG0bgsAo7dnOymXLwzCcn5+fa81RCsViERHTVC4uVA3oQ3t3G4VXXHtNtVq1bfvRhx7KWXzjxvU9/X0Li429e/feddddL+95Za5Rzbkl1/WFzRUaYwwYZnHL4jbkcpRnPLe2Xdso0gwanHkEaCxDQogBxh1LKSNsuvOZJ7ddfGOpZ2B+scoQNZrR0clW0OwuFear1fm5maDRsCxr4+bNg0PLEDS3RKJix7IFUAaEGSLDxHY4gmFZ3x+iMRoRCUJmuM5STAGAtWldNIjZY5E9YVk/APud5JSMBdGIkK07/y/fcB6iAYMUIEs5ZoylWio0hGXEs0EApVJCCKMiA0oyyiSIiMetwy/vX7V+ZeeGwne/8x8yrH/+8397/wPfv/RVr5uZdQ7tfmzr+h2lwWudUumm96/R49PzIycuKK4QVHr5Sv/qga2XbP/O9+/b9fwDJd/XSTNVcmjZmjtef6MAuTjX2jexq9EMLr5g2+O/ur9v1fJcIc+BxGmaNKu5Pjw5PR6BBA15ziZHjxlUKjSae5Ez/y9vef/7fv2N/bpR8NykFUtO8PiEd3q+adl0rkYdkcXbHj5ypKOne3j1yqDVEpTFKjZGebbVTJJeFC+xuHOwq+EwF0DY9lht4V9eeuhLV90+FdSFZTGNicudSHHKDaDW2gBwyhhn7dcuQxagfU3OLkOImMhUomm1WgoBla4SzOU8zq1UStuyiEHX9cOwpbW2LEclqTHAGKOCWpaThJHW2uLCGAMUGOEEALQBYwhjRptUq0bQitMoE2UlUVwul7s6OptpbFkWN+3NIFMKELIUX6CNoFRr43O+7/jxj370o8uGhuM4/uSf/anDxL/+x78vNOvrVqzaccdrXD9/8sTp5kL93e94Zxonr3/96z/84Q8fPHbkVTe9amx8fLBnYLY+7/v+d7/77enp2fd8+ENSqZaJ8o4H2jDCcsI2cSpsy6LMEjmjMUsEROBCCJu4SRiPT08Vi2Vh8/5i2bZdKRNgEEStDcMroZ3dhlRwKeWb3/KmBx56jHDObDsjy8vl4p0f+KDrWAhUamVxO40T33c5t4wxcRx/7Wv//u53/8H9Dz/yT//+7wvVxampqSiK6vV6Pp+XqdYqJYQ4jhOEMaXU8T3XdXOF/OoLNnUPDb98+PALe14mxhTzbn9/f87z6/XA8/1KpeI4bi6X6+vp3brtMiGyXCRgDHSq5mcX9uzZM3L2zDMvPL/nyZ0WowKosBgxOpRJtVp97JFpzYjNhSeytd7lnMcy7errzVleqVSyHcfL+aVSaWB46OKLLqxUKhOLC8uWLXMs++4f/PDn9/y82WxO1Bs5x9VEM8YEs9auWnnPj37i5XJzC4sdHV2UQnV+YcP6jZzzK6+88otf+rtXDuxzXHfvi0+jIRbRQ/1D504dq81NNRqNgb7e1rqNzVadU9ZsNudmphljO3c++eSTj1dK5RMnTnDGpFKxVMYYxjmltBUEru95xVKSJLmSkEnk2tZiUCOE2WATYBanns1DlbZqCx5XBTvve3kwjFIqKAeNlmX5vp8ktetedX1nZ/dHPvKRQwcOfu1r//L3f/+l//3G1z//xS8ZYzKPhzKGEUIFl0YbAhTbkmggxOjzYifMbicZ7EQpJQSQZQsogskkWySLtSdacy7QmPZpiZBBDtl4AwAkhFsWBTBKIwVOOWHZGwgZpW0EglLGmUZDMn8IMedHfvZdzqt3lsQ5kOmtsuMdlnjANkjJORrMxN+EUcpY9r8ppbIzmRCkFLTOkBHgX/7SP3zik3/OLfuZ55+3GBrUH//4x7dfcumn/vIv3vrW319sBEB5tdFwHMdxnLTZaNYb2WHUarUKhULW38QYS+M6YUIZuTA7v2zlslSnz73w3MXbL9356OM/e/jRjes3vP/975+fnDAAkdfo6ewSnAvOBwYG4qQyNTU2MzPV1dEtCJuMxmYOj7/+ta+775e/oBYfnRz/+v/+1/z05Kf+5KOvf8NbXtz78nVXXf+ze37xV5/8yzUXbIyiqFjofPrppwEgkZow2qw3HSZkFINsXXbVirm5OSVRC6q14BYHKpSSwnGUUqhRKzQGVap7enoqlUqr1YqVKhdL9XodgLiep1F5vtM60/y7z33ui1/60qZNG+cWFzP+3PGEMkZiyl0bgHDbVjLljMhUZgg0XZq4kHm3Mz8ZnGeHgRBKlh6X7J8oIRqRZ5AIIUAIZmgGOf9SAzVgjNGUZMiJUZoQIjgzUoFBDQoRNSpGmTIaDaFsqWMgM9tgO4NGQ0TR/uE3//s/vvGNubm5Sl9nT3H95z73uXMf/pP9L/6mp6f3tltufPnFXZRdBGBm6jPHDhzoLXe/+13v6eyk0zMNJ5ffN3L8F7/5xUUXbV+1vG/vsSNXXXJZb0f+7PhYfabO8159fuLCiy9//113IWG7DxygoHOO3dlZkQk6rtfXv3xmYdZybCJNd6EziKPA0UzzloXp/MQfX3DdX+++fzKud+XKab3V88q4RaxAxUC0QtSA9dGpNE1XrFiRJImME0KAMkIAVRyLRB7tMF2rVwrH4oKmUcqNGSh1fXfXk9cOrrttaN2iDKktvBiZYzOpjCU450tKW9N+XxFCOQPIjDIZSoFapcYoKRUAVVIGzaYQXEopLMfL51JpLEu0wrhaqw8MDLSaIWPCGGW0FpT6OW9ueiaN4k1r12mqjTGcccz82YwBJYpwAyQKk0YU+Y5rcbF8+cqHHnpoxarlGzZsSnRKKYd2iUF25yaGgEZkhOg2pgdrVq3+wuc+v/2Sizs7uhcbi/Ot5sWXXjJXrTmOc+zYMS9VfqXYBRoZ3/n842s3bRgc7N93eH+rXqvNz6X1FtqUC9h8wcbjh48UCPeReY7tIQNGwiRhjHEuCCEEgRqkFIwxgglCoJjP66DpOA5og6n2PO/c7LRHaW93dwx6cXGxp1gBML7vAyVJEl915eWf/ou//MWvfm0Jh2gtLNbb3V2vVxcWFhzHCcNQpZISQIQ4CowJCIFrrr621WqsX7/x5PET2YFoWRZBI6XOQnXSOGGMIRKtte04BjDVaseOHc+/9OKq5SuvvOKK+++779TpY6h0kiQUGKJOwhAII4xZltPd3d3ZWSkUCsOr1/T29qxbt+bqq67K5XI77nj1wePHN19/Tfjud9/5B++iqUYtYxlrNACQ6pRzt9pq2kKUyx1pmhJKqeUKN7d83bqhoaG169eVK5WOjo44jg3owGiC8F//8Z8vvvDC6MgZQS1ERJCWxUv5UhSG2qT1qMotO9CtoNk6sP8QELNx0+b77v3VwtxcpVSamhgvl8u5nJe2Wr7vz01N1hfmGaHHjx2hnE1PT6dKxokE1OdzMFqtFmOsf2Do6NGjQBil4AkWyzQ7dtI4op5nua4GCNOk0Wo4CffLxYnR8RVexeY01KlM0yiKuaDC9jQShYDKAKZxHCMaxxZxFBDC87lcIvEzf/35g/sPfPrTn56amnnve96fBQ9QwQmlAAiEUkSpFckMkYBZXMWSbpQgakoZLjkAzy8bhBCGYCihQJBSTgkFoEhQG60UNYhoGKOZsMZi3BDQWjOkxhiVzXKgWutsLWmvuWjQGKUwO7AxSyH8f8WwhrRFNr9ldw2SdhYSEEooAhLghGiCmegVwaAyiKi1phl2ZgyjlAtulE60ZIwZAwYV55y3GnODA13PPPNUo1G/9aYdg/39vf3Dd//kF6mC5avXnDs7Goah4ziMcxMGlJL5+YVarV4ql5Mk6R3or1QqiCC1FopIqfJOfmGu+vKuVy644AKX7X/5hZcv2n7x9ddfPzk+jgRGx8ejJPYct1TMS5kqpSil3GKrV62QcbIwtxjHMSbJyjUrT0+c7RsevO/eexng6197Wy1c/MVvfvPN735v6+at//CFL196ydV/9w9fmZycPH369LHW0S9++UsDA8t6+4fSRHEKniUmJ8b7inTHLRvrNUpQgZEW55QiQortVzQDoiSicT17fq6xODff0T3QCGKVziHi1OxMd3eHATU3Nzc4OPjd73/ntttum6suCiEyBiLUic0FaKAGQWuNigqaGsUQCCAwsvT6tV86Bu2RvASnEMjk6dpk/jNjDFKCBrPHhbDMh2qAEkBsp8YIjlpnYE4GPzACLGsI4dwY1MYwi2c7bvYFRkF7EYdMbUgAgFDWlc+/smtvd1/32vXrR86cwZxzojY6tHnjf3zty//+b/+zefOGg/v3uXZiWZOjew9w6l+9vu/sZOOPP/mXxY68JzqmZ8YW5kdu2fGaVWt6tSSX5zvqQe3EiaNIaEdHhzJh98pVn/v8384szEtQm9YOxagUJVGklI5rMnUI6bTdWhwy1621QmKACM5dWyZJIFueZa3NdxwLJwpunu066kvFLJYqg4AkVNroYxNjV1xylcdE2gqB0TiJPcOUVtKoGRqnK5e3MCkh2rGWBadVbSKYfL7wxw9/b8XbP7leFGpoBBCZpJFDHWPOF5hwxizGEUAbqbP3P8tUWBQRkAqGhiNEcYpaR1HUrKdKKamV1GZ+sVpbXEjjKEmSj971EUpplCTGGJVKQqIgCFCbmbmpTWvXGaU5t9AAaC04JQRTJRnjjhBCWOn0bDRTPXbo8PTk1M9+9tNvfOubArHRaDHfN6xNPTCTYWKo0BgkxiiUKSe00FnZsHVrgrh7/75mHFx8+WUHX95Tr1abUYiI3eXOyKj9Bw+OT08fOXBg7bp1I+fOSjAHTx1ngvs+80u50bnJjWs29PX1rBwa5JxbjMVRSqkwnCZaAkASJqVCyYAxWrrCSpUEAFeInlJJS5XGUlEpjBae5fleo9WwKOvySl5XByI2m01AbLVaGzas83wny/oihKxZs2Z2dvrQoUP1Ws1xnGq1vnHj+n/4wt8dPnLw3LlzHR0dtXr9xRd3P3j/AyeOH+/s7nZd16DKrgK+7xtjKGeUcyFsikAIk0nq+/5irZqEEU/l1jXrBju6Zs6dK1p2pbciJTq2l6okgxrDMGKMSa3Gx6bi+MwLz+5Kk4QLWsjnCSHvet/73/7u9+7bux9lfNFVVz7663u7i2UGXEvpOA5nuY7Ozre+9fdPnDhx7NixNWvWrV67vtxRKZRLtXrdsqxCsTQzMzc7O8s5JwC/+c1vXnjm6SholQvFUr6YNQ0gcAAThaFRyC3RUekI4xgp27B2w9zsrOva2y/a9qMf/HDl8hWHDx6anJzgjEZR5HAvilW9EQqLxXEcR6nUyvF8y7IoF56Ti6MgiMJKpRLHsZTJqdPnMuVzFEWZXYozAggWgcZC1fdylLMwDEulUhi2pFaF7m7Tkp7g1CgbKHH9OdlqNpL+rpJWbXYmSRIKJIoCRK0UJIo4nr9i+cp77vnZLTfdvHLl6kqlUyrNhDi/aQAlRhshRLYbgMEsmwBpe+Bxzmk2wxAZIYD/D3TMGMvq4dqtDNqgNhwIFyJJEgSANuKNqdG2bRswqZKCcUqIlpoCQZLJHoFlZB9fiqHWJkOVlraj9uxXvw2mPL9PkYwX/O1OnO02lBBCtFEUKGPMAGYi6gykxraRCbI2tiyXQ2rFV63dcPbs2X27X/rD97//nnvu2XHbLc0k2fnCc4ODg2jA9pwobimdxBGhjEvEufn5no7OarUKSp2sLWy/8vKcyGvOqCDUGADwHHtufnZ0dLSjWJpotHa/+NL8zOzf//0XDx486PuF0dHRKy7dtnK4P0xVakgqlQKQUgpOu7q6uko4Oz81NzF58ODBvfuPoFFUpp/44489uvPZ08fPXrhlzY7X3nZwZBxQJzLxu7qu6O+HJH3w5z/fuXPnvn0vr1g/sDA/2VHxL7vgglLRa9XqFrOy3U8DggYuGOGYKgPAhMiEqRZjTMsgimcMSqWQEp3K4NnnHnvLG9/aUej+2r//2wc+8MHb3/jmMyPnLMsyhoIBLoRPOCfcUCCGEEqAEkSNhmQGXwSUSttCUABD2oK5DHXR2hAEBAOUIBIBLOPxKRBGmMli15RkaAgB3fYjtat4iDK6rXHPHoP2dqu0oZQiJYiEGgDMIp9EFsAmpaSMUUJAG6kkIqpU6oRZeffPPvs3C/Wq7TnGgOBEtZJ62HBBPvGLX+0/dnh4eDifkq3XXdakWkWS5txChc3NzU2OH07T9LZX397X1zdTnZufnZdSE4PCdnKFwtT0XL0R3vOzr8zW57nNKLCFZmhZlmBUayQ2ZwQopSFJVKrBxCqMPcflttMMQq4RLc5CtY4XKDnnvnK6MtJgxXygFQUOCpnjnjlwuLvcU/ILQRxJLV1haU4hiCIqZ2w9vbpcEVSFBhltEKWaqXDtJlIj7DBJ3/eL/3j6bZ8GgJQTWzMAwwAVaIOEU8aAPP3oo47jXHPNNS2dGkRgLNGpYEKAAG0IF1QT5ShDwBBMlTpzeqRc7oiTpL+r+9LNWyanJp55ZidBncpEayO18Yu5JI6jJCl3d65YtVIBAG2jUsioRsOAciqUTC1BBkuFr33pe1Nj42tXrxkcHvr+3d9bd8H62eoUYyyVcdRMkTBuWag155wxJqViQJUx3BIKMZLadty5xYVSV8WNPJIk27dsNonMe74QIlFJtV5bM9zLOY9qcxdt3vjjH//4xReef8+m9WfHxyrlfG2xPnV2au2y9Zdd96rTczP5YqEoimDxNEk454xZaZpajl8PAkpph2DZXRAJS5UETlIZOxRqSWIJ1pMvMUJji0hj5qPmWsGTNHrmiWe9XCkMgu5KRxJLhsQRPE7CQ0eOlAqFmYmZoBEI4AxIo9Z8+eWXjx0+ksvlmiJQyvQPD8Vp4pd9W7hGa2M055ZBEidaCJYkicVANRPbdhWkhiA3aZDEZ6YnfWG1ovDZF571Cv6yZcs6OztHz4wqKSmzEVFpXSjlsvdnoZDPNLSEUqlV2ArCqPWfX/vnob7egwcOeYJu3bLxwfvu5ZbtUEfkLe7ahJBVQ8vGzkyMnZno6xoERU4fO8kt4eQ9GcYp1ct7h4cHl9WiuRNnT/3iJ79oRXHRdUsdXVrLOI0JBYUpFdwACNcq5fOAdD5pMUtomepWFUxKu/uOHzuUzznEJCppdRQLU1MzQoiGasRpSghzfc9ooJR6wrU4lzL2vJxKJSBl3GHcCcOw0Qi8XF5pGTUajJE0iSzbJsAZYwlFYlQShR0dHWgcm9kpiQt+AU0aGOMj9e0iEUgbTUtpZqTRWsaJ73pgZL2+yC0mpSSUdPV0MCoW640gCGwv/3/33X/9NVePT5zd2Hlhqg0BQglBRI6QQXdANNFAAJBQA4jZFwBBAhQIoVQpBYxRSjExRGpKCQFitOacIyVaKkYIF4IgUUbHWgLPBiBmC5JjCTSaEGILW0rJudAZZaKyLA7MOF4ChBIK7dIjYlATJBmDngFglGSGEjAk8+4iImSAM6OUGMyyPoBRQglQYIRoqShlBAgDkipJECllFAgaRAJZ9QgAUMIpIXzPrmdGTh7r6eu/7KILz5w6esdt//z08y9Oj41t3bI5jALf9/ft34tKb968NYpC23WbYQCM+o4bRdG69WtL+YLUiForrXK5XLPeGB4efPllKtNobn76n7/0dwDJez9w59Toqccfeejg4SPNZvOWG2+uB9KAtGwnNUm1XlMqLZfLnLKcl9tx46s4wrPPPnvVVVcdPLDPQnP27Nknn3ySWGLHrbetXL6qOrfgu26UJmOTJwkYIWi5WHzfB95L5NtrC5PPPPtEK6j5hdzxI3srHQXX8RF0ZoGgqFBqVIRznkjZjALbdsMgsj1XaobaDPR1zc4cA22VO8uDw0MKzUOPP/qW33vr7XfcMXLmjOAWAFBAJjiA0YgUMLtMGUTUhpA2YwGEUEYppZloniKo30aMnmfsAdri9XZaGfkdHRAsIS+ZDK9tPiO/LSKEjBZeEsQDAGgDgJwQQEMBGGFZKAwiIUCzWA9tkAKhjDGbhmHY29/PLRFEkcUFA5LImFK2rH/wVw/ef/011940fHOxWOzu6azW66Mjpw8dOrJ69epGvT402L9+w9r+/v40TcfGzlQbdUqRoBaW49i58fGpanXh+z/4TrlYqNVq2W6BiCnnqE0+n1dGZVymEAyImZuZ8t2c4xartapOUkBKjIginQv1pglFT88T14rSxMp5UZI6tnPu5EmTJtuuuSaJYsMAgNbjlmRA4qQh0rnVZZH3I2JSCvUodDldqC5WSh22sBB1d7ljZOLcfz1x38duecO4CpihaawM0YwxwglBcvzokVtvvfUv//Ivr7nmmiCOfN/XWgugRkokJE1TQghhnDNLUF3KF85Mzy7Ozh585ZUzZ86oOFpYWDh1/OjH/+RP8p5fXVgUtmNRdt+vf71nz54/+9NPGmOazaYtLEuIjPRijALQVGtGCLdsqTV37D/82Ec92xnsH2KUVIPWfLXBGONEKMBGGCDhutm0Bc+sjY7jGoJBFOoQbdv2Sm6xVLBsoYyxujoc28l7vgAipWKMCRC5XG7Z0LI4jTf+8QbU5g2vf73gvLNUOXN65NCeA4ODg9ddea2gYv3atcVikVtienq6q1is5PJRmjBKDBgOZmFxobOzs55Kl3DbtSPE1KCHzLZzSEy35TDGKFCZqrywp6dnZBDkbXd+cWZqaioTy6xcuXLLli3bt28/NHKWEJLF1QVhUxvNLfbBD78/l8u9sn/vyZMnLSGOnzjlFYof/NCd3//hj+NIQQ44F4RymWrOBedcCO7nXIsLTRSjNJCJYKzo+rETGUo915ufnzdGrV27PoqCY0eOuLZn27Y2xrbtWrPBGLNtO1M+F8olBpgoTQwHBstXLpudm777Zz9dsXJ1HEXzrYbvuYxQy2L5cgERXds+fvLkK/v354uFialJQkgURdqYvqE+E8ROdycHPTk/vvfA/mP79vlOzmI8iFoQAWSpT4I7vmcAmRDGYGa18L1iGIYWt2u1huNY+/YdGB0dl1KiNq0w5ZxbrmOMcf0ityQXIk1T2xau6xJC0jRdu3Z9kiQLCwvciGzlbYZBlMo4bSAi4UzYdqFcarVaqUw4cGU0YXRhft72XN/36vU6Y4IQpgiNklQyxggDpTnnLvVpIdeqNxCxXKzUajVjICvT5FRUq1VLOJzzrKbz3Llz/FXX53K5DGoEg+w87ocE23pmoAjt/Ze2NU0pGGOQLVF4WmttDDCqUkk5ywTGpO1Zwlgmtm0rNNk/qVRmTl8pZTvMlRBEwymhjHBgnDJjkFKKSwGT0E5NQDsDRYGANm09FQBQolEjoiE0i+06n5hHgWRnO2XZZmS0RsgkzmQpZW/pPyeEMJrVPfzWsIREIyDfvm2r6/k33nTbS7t3bbvwojgMn3r8ienp6ZmJcWYgkQkgPXXq5Lp1G5IkKhbzcasVRKFPRaLVjTtuSFpxYKRFOBCsVut5P4eIGzduHBs922wsbrv0okqlwmzr1LmRfMl76bmn3vb771g1PHzuzEjf8gEwGighjNWrQZjEHZWuWJledBph87qrrwmkuubaqxanpybHRzdtWPfE2OjRo8df9/rfa7ZCrTFM40SagufEaVJtRPuPnS3kPILuG97xRzpWjUZj0/orwqhx9tzxWrPGLBLHqWflAIhtMc6oRVil0s2EbVlWvV63LEqp9a//9A9evtLZ0ZsvlW675dannn569YY1t9x203x1ERh1fc8YQ9oiAKKoNgSIUYRkSRrmPF2hl/rGUWcx3IQTagBYO7kZgPyWUsg42fMfIyJFYIQsNXdlQrvMtkQRDTBi2siN0QCUUk4oYywbwG1XKyJjTCqFhFiUZVc7A0gQaVaFTamTy9VqNWYM4xwJSK1tx1moLi4bHHrru985NTk5NTOrQXcMde18bqfPOSXIKGzevAlBp2l6+vTxxcVF3/c9zwGjbVskSbJ79+6LL9n+rW//V6mcP336NOc8A9mKxWJG0TWbTcLAy+fSNOGceY6YisOVy5dFQYsa9F1fgomkSqjqKJQuZp1neV3mMQkimSTcsmdnZxfm5i+66KIwDlSccM4TowhqprCpUz1UhJ6i4CJDBmrNhpPzbWFFUcQpcwVbDFqDPUPfPvTc7Ve+qtv3QgdyiqfMIICKE43Q3dnpOE6z3tBaU8ETJSmCJUSqNQC4rtuKQm3akXerlg3/z9e+9suf/2x4eJhwtn71qve/710bN1ywYsWK2anpzs7OyemZJ3fufOKJJ/L5fLlYiqLIdl0ptWXZUSK5oAbQGEUoUVmeFiEMaKGzc256Jjp3zsv5Z86do5SuWbVKpipSTUJYs9UqFotKSgrE9/0kSSWilLLc0TE/O/Pyrl2XX3ppd2dnojWnIKVMVcIZc4SVKulYllISgKIGpEYrlffyd77vzjBqXXnpZSpJc4USYXxqZm5iajLJRWQpp1caLaU0xuQ9P9UqCALP88rljsVWk4GmlDpcGEIJA0SwGGGUaaMpAwIQha1SoUiBaI2NIPQ8L03TUqkEAKVSKQwDjzGZpkbpWq2GBLx87rOf++y3vvWNa264buPmTY7jAuML1frkzMKb3/zWk8dOVKuLti1arRalNE3V3Nyc4zsT04tBFHrCRQ2RSmUc9vT01lvBijVr6vXm6Lmx7p6uOI4W5xaFsPP5/MzMjExSz/OSMKSUhqaRdeEJQlNjENG2XMtxW82mxe2oFZw6ebK/v/tf//Vfx0fOjp04bfn5mYU5goZlpwHqJIrbbnICnm83FhaA29HJqSeOHRxt1SgKl7KYKhsp5cy2baQk6+SJ4kQazVhqjHEchxAiZeL7ecHtcqXSbDZ7em0AKORLUiohRJomuVxOqgQMyRcKSqnOzs5Wq1Uo5hqNBiU4NTWllIrjuFAo+L4fxFF2ikitGGOUMalUyS0mSRLEMTAKLEuUgLm5OaXKlPI0ScFEaHMUQtq27bg6kXFoHCufIuvuLDEm0jRttVoAEKeSCg6MUkNc16eCh0FEKe3p6WkFjYcffOgjH/2oAArZogkABjUaigwZYdCeplkgRjaSOWGQhSRTKhGV0goNAiGcZbRqe7IapJQyx06TFFhW2m2yBm9UCgF0Zv8jBIxhnGeAYSataUspcEnnTBAIgGqHVhpClhqKwRCgjBIA2hY+tn0oiMgJz1ydWX5HxmLRLGWBkPOyzSzpPdN1nueeSTsJhCAid3PlG2+6eXjZyp/+8r7Pfe4Le/YdGpue7untW7NqdRgEzLZK+WJ1sdZqtQhB13VB6XMjIxzpNTdcHzRbJk4loiJUomGcqlQSRpcPLzt3+tTdP/rxxz/6RzPV6pmx0Qso6err6ent8X1398svlnu6gjAslRwAiMMwbLUIY60gLpXL63pWf/bTf3HfQw+s3rD5zW96Q21xft++vRMT4wzx+muvX7lu3UNPPN3v9E3NzPm5fNH1jx040tnVfWb83PZLtmnQ556Z6O7qUtIUcz0rhtZeeOn1x07Pzc5Mbrpgg2BYKBQsXibAMgQva5Tr7JSUdp87O3LixImP//GfPPH48wbYkUOHjNE333pTNjmEEFImxhjbtjUqzjijDMAoREZJluFMDAIYQ6g2huFvifvs3seWdl/4XU86ads6EXSmsslWW0SCtK3AAgCK2chGhSZ7DCglWQZWNooRUQNmMxspECQGjaEEKdHGmLbvvB1Qnl3DALFSKkVJkuVkySTRiLbjMcu+aPu2+++/vzk194Y7XjcyMnL0yLHN69Zs335RqVQECtPTc82g5bqun/MAkKBSCmdr1ZHTJ//ui1/44J3v/c0DD7zw4kSl0pnP5x3HQQLNoGVZFhM8ThNmMVmvE0IEo7lcrlwqjp07J6W0LdfYtiEASJgl9h89fPzgMZb3IdSWYydSp2F48uTJzes3dnR1LjTr3LHSKAatXUrH4sYZXe3s7BnIVxbrtWK5RBGqjXoYBEEQ2K6TaJGkxnF9RDoF6ouP/OS/33RnKlNJOdGGUupYjmD8iWdfDMPwR3f/+NN/9Rm/sxxEoeM4URRlUsYkiRkjCEQQsBhNo/Dtv/fW+uLC/3zj65ZlUU6klOPjk4GUmsA//cs/P/vC86NjY9u2bL1o62ajUsZYlCRaa8uxiWDaaINoDFJODaLWRimlZUCAuX4+sz10dHRwSsNWM4njY4ePXH7l1VG9ZaLEEsKkMiWxUgoIDvT0LNZqp0+eemnXrptuvJECGKVQMCEECIHaSDSWZUmtEQinRNhZvZ1bW1yojo329fVxbinhKKUsLrq7u/18LpGpsO18Pp+mshWnE5PT5Y4KdVxpsKOnz3IchxLf9zUFC4kwxBitARil1aAZhmFfd48xCASRUb9cBEajKJFSIucUMOtgbjRajuMIRMviQwODQJgBVm00X9l38LkXdlHC3vrWt546NfLi7pc3bdk6UKzoJL399tuLlZLnOZ7ndXR0lEqlubm5rq6u+fn5MI4swgSzQplUqwutWr1QLP/Xd77VU+nO5XI9PV1vf9vv//gH3yeEzM7OliuVTI2VDfJm0MqCggGgUasaILYdp2nKKWHCAsLWLltxw203Wpbj+3nDeUIxYVDwCyaVrVpDamXSJI7jvr6+gu9NTU2FSYyWk8StvO2vqwwKYU8tzAmOhpEkBeF6SZI0wlaxWASONue2bWtpXM9GACGEVGAAG61mPpcbGOofOzcOWT8uo4VCQerUgOaUO7YQOa+vr69arcZxnPdzVtkKk5QRCgD5fH56dmZyfBwYdRwnDCKVpJZtpyqdmZ5jnDAhVJJQYTuOEyHKNK1Wq8PDw57nBUGgE93RNzg3PzfTqvqui74tlaHMajRa5XJ5dnY2aDSoEASRMU4pLeRzVHBAApRYXDSqi/39/a5tEQBOQaM57/nNzqds6rYh3aXIIUTkBLMvNgBoNABwS9DMzNRehhkYVJlLky/5bgEAgC11P2SZddnnjTGc88xSjNoQ1r4HtHduYijSbEBmIDdt97KABkJ/m62xVK5AskoJNICUZil4BpeowPN4ZHbSZrlP53FNXBJXA1nytBDCX9l36JLLr/6fr3/zTz/1Zz//xf89+PDDq9asHV62YmJ07Iqrrq43mwMDA50dHfVqvVDIa41bt27+2pe/8udf+NyywcEoiqRWBddXiNqoNDTNehMA+/v7t2+/BA2bmZrVWh7cu+fU8SO24Ndee+3J0yPV8DfX3rTjQj/PSKvS2eFYdrPeyOW8KAimp6ev2bhO6RQRL7vssj179tx6w3W/+Nnd1cWF2+94balUiuOQUKzXq41G7dlnn/vQu9/+d5/9i20XXnT06NHJqcm7PvaRj3ziY2dGx1JjpmYmvdlcV1fPu+/809nZWdeyero7H3304Voz6OrqWmg2OWWOa0dR1Ko3HN/r7BsqnjsLQLXBOE4LufzNN+8wSqEy3BYEiNLK87xUK8aYIpkwnlCK2W3GGHV+YziPbBDMkGFYunn9Ns57aQADQQBGDZrszDVZtjglWY/1eXc4IWSJeGAAAIwAIcSgIWgAGQJSQCB6KQtNKZVVIKVZF2Wm8wICpl25J4BqqS3KAI1S2rKsNE2l1vUouPbKa6ky27ZeSIHsfvq5i7ZecMklFxvAs2fPKqM1opfLNRoNz/OazWazXh8bHS/kyv/5H/+945brDx8+vGnTpuUrV03OzsVxHNQbvu87jKtUpgYdx8mKXSlCquOEp2hgenp6y5YtrWbYDAPXsh3LdZzc0UOHqwt1N1GoKTJKCD1x+Nialav6lw/PNxaNMUksBRBM0zqDmQ5BysO65Emjy50d9VYTOZVg4iRhghPONGASBo7ro4KhweFfHX/ljYf33rJhe1XLPBNpHD/19DOEsImJCUr5wkL12Inj1/Vca3msFjQd39OAiUwBDADRJuGE+J7TrDdWrll53Y4bvvHt71xzzTWxko5tDw0ue/jhh48ePZzL5d73vvcAwHe/8Z3XvOY1aZo2gpbv5S3LaoWhEAJBAwAnVMZpJlHRScoI1amkAM1Gw/MchzOtUh3HveXKD5/ftWntxryfy6YFF6wetIQQ64aHH3/8ya/+yz+/693v/OhdfxjHIWPEFjy7/2Vxg0qpSCkhBAVSa4VxGmU1sW4pHyVxIwx8Pz9fXejp7plfXPR8nxDsLJdr9UaQJMVyuRWG/YMDSikKEEWR4zhCiDiI8o6Tam0oEAo+Za0wiBgAJUggazmzACanp2zb1gDFYrGvr6eVpmkcISIAHRgY2H30MNVmfn6+q7tbawSk5c6BODWrVq6N0qTWbE1OzwZBoLWsR9H3v/WdnOtl7y+FJovXL5fLxphyueyXiwU37/heR1elXCpZjOdK5cuuuUoFyvMc17P/83//51XXXO0ISxqNBJglKKXtjCTOCSHZakXRUEptz7cYN0Z1dfU888KuJ5/a2d0/cHrkrO14n/izP+sY7COMnj5+sujnSp0dUkqpVRQFruM4jkMpXbN2bTByfPr4S/c8snv3nkPr1q7ULavZnC9UKtzii7VGudwxXOmilKZpWxaapuGadSvm52e5JTBMOOdSJo5nGy0NKiEEN4RxQqhGmeZ9T3BqWVxrNT09CQCO43qeFwRRd2dX9i4zxsxOz2TOqFqzQQG449i2DQkCgCUsRVIhhEGSSsk4z+dy1cXF0dFR3/d7enrCIDp16lRXX49O41ocO44nlaZKLu8fOHv2bKvZpEIwyhmnjHNEDJOYKUYZV0p19HQfOHzI87zfe8ubUyUha3UDTbMmXZqRvu2ki/bcOr+ZaMMozVQsmJWHAlFKMUIoY6wdbmAyI3zmPkrSNIt3llIyQpng2hgqGCEEtTbGZAstpwypbmcgtW30hpglOx9vf0hNe3JncKXUS6BzO42SZMyxMZpSlv0s8DslDeeNohRIlpf027n7O3nD5091vm7typ//7CcTk5P3FNxHH330kksuMaBefunZS7ZulTIBo5r11qMPPXTlZZcFQdBoNHIFv2ewP0ji3fv2+vn89ssuqYet1BhGiMW5sKwkSU6fPr1+zdq+voE4kTNTs6/e8ZoHH7ovJfDAkft27Lhp9bLBrRvWMUKyiLh8Pv/IA/dvu3CrVyhctP0STeD33vY26rrXXnvtFz7/NzamV155xdT0TK6Qm52fGz83esPV1/ztFz53zTU3jY2Nrt6w+jWvveUtb/49x/Eeeujhn/zkJ9u3Xf7Iw0+86sYbB9ctR8Imp6cbreDMmTOc0OXLl197w8179u97+eWXL9yy2ffdZ5/Z2VkurVu9et++fQ8+/Hjet++884/e9Na3rly94tKLLy36xVilgjJGqZLGsVxKKSecciZlyjn7nV/rUrsOICPtAENEJECwTQpn05og/u4Mbu+7lBCSGV6wbVHPloeMJqaEAaW41OmRzfjzkR3ng8gtBEPAGMNIJgQEIEAYSdHQ9hugfdnM8gsZEgRjcQGUKqa01r7rIWK9Xlu5bPmXvvDFb3/rG4u16s07bip0FI+NnCSI3BJxKAkhUkop1cljJxYWFpJEbt924Y9+9P2enp7TZ84asButiFKTReNKKZMortebtm0TgtVqXTBqWZBEAQC4rpvPF7t79dHjJyuFImE0lqlfqUyNT50dG88VymmYMm4bgnv2vNxVLK9cubreChQYQQho7SbQQHXGkmL9yubiokKTCiJytuAYxbFXKkRRZKTinGmtOKGBjCBVtrJpIffpn337VZ+7WBhoVmtvedObn3vuBa11qaNijKGMvf1t71w1tOwd73nX+z/0wbnGokTj+34slTESjZLaJFGcyBQoWb1+3Ze+9I/nxiY+85nPHD548Ou/+Z9dzz933bXXbt26+Z577nnHO97x1t97cxi2MldilISUMxfcbJxb3I51SjmL0ogY7CoWd7+w6+zImVe/9jW1hflAJUQrl1t+wZ8aH/vKV/5xx6239Q4PLdRrhVLREjYwEL57369//dnPfvaee+5Zs27tfHXR4oIRCohp2vaZAKJr2amSrVZLa+24riCWBmScR3HsFfMy1bML85Mz05brBHEUJ4lt2zk/59hifr4+MX5WCOH7fqlcZqDKOQe1UTKJVOIwFxCkTCSAtqymSuJYduSL+Q5PS+ULBwAcy+7u6g6CsKPS8e53/sFffP6zG9auu/322ycmJn75y1+WhwZ0KyiVSggIhAF3mHCnZ+YHB4er9fqRw8copUNDQ3EcR60gbNb7erqUNK7rKmUQdZqmMokEtxdm52Ynp/J+AREbrTpqk4RRM44/+dm/ItSq1muW07Vr165/+/KXgRDC2RIGYAvKAMBxHK2153mcczCaMOo4nms7cRx6OT+M1XU33NAMAptwJ+8rRl7et29ycnLlypUL05Py7Jn56uKVV17x2BNP3v7a1yRpOjU/O1uv0sMvXdWY+ac7XvuBhfmx6TFDgLmeg5bTUejq6oqjNFUyDEPKRLlc5pwHflCrNghhlPCenhIhpKu7o1QqtRrNgYG+RqORy3m2badpbNuCMWY7ImM6bcs1xnie1woi23E8z2s0GrZtnzlzptFqlsvlKE0QkXOWqJQLlp0hiCioQNSSGNsSURBLKYVlyTQ1ll1frCKibztJFBdc3/LFXL3KKfM878SJY416kzs2pVRpI5gQQqRpyji3bQcYDZNYCCGljKIIgGqdcsZo5vIgQBCQAJq2KOb8HvLbxRGAEioRzFIaPiJkhZTZcZfht+enmhAMKck2FtFGBymhNAP9KKWCcUopoKaUIFI0S4ctMYQQpFk0IWZzlCAsBSXRLBsrK3HC3+kJbn/M2qOXLBXTte8WRiMaguQ815sd/eeXruyngKWhwG+95VU/uvsn3V3ll3e/ODjQNzM9CYSNjpyJZMAFNGYWXMfv7+tqNmqRVEqpn/3oR5VKqeg6y1cs12iI0ZwLo7SRKpYJIjJOW2FgiHn1a2/56t9/8a1/8J6FWnX58Ipnnnr8rrs+/LnP/20QR2EUJ4bFWlbrdc8SX/uXf37TG+645prrbrvl5v1HDj39wgu5fHFiYuLtv/+2P/3Ihz/0oXcTChMTE8uXLZNSM0aSMBofHbvq8it+dvePw1jd8cY3P/bUk2u3XtD/4vAX/v6zMxPjM1MnP/jxT4yOTd7/4KN33fWRop8Lw+bo6AnfhUsu2lYpFQcGBjzP8Rx3xbKhYr6wavU6JNBV6nrTm97SOdC1efNmz3LjSArXosC0MpZlWZaVJIlG5RDHFhYFMPDb32Mb2UAEStgSCZ+x8e3UIp29hLikw2p/oAkAI1oDIRnKxCggBdCoAVim6MvyS4EAYVRLBfR3IAxAyKoGtVnytSMAcM4JBaA0yzrPPACISNvthRCmMSFEqyTz2KUyFmgbqSmQkZGR63bc8OBjD9m2qDUbY3OTKersyUqSlHM+OTlRnV9o1pvFfPFTn7zrj/7orlf27Tlx6rjr+hqJ63uGGEgUAJSLpZiJnOdzzhcXF33XsW27Vl+0OCeEpGkqpezo6MjlCmkaI2IrTrJnaK7ZLFZ6uO2kiT6y/1Cl1LHlootqrQBRMwIIyBAIo2M6wlUDxBEu5fOzMyxq9Qz2KUBKiOu6cRByRsMgsCzLcFbgVgoGg9ZQR+/J+OyDe1+4ffsVj7+yd+czz1qW5ebyjSCktmPStNUK9x89vPuP/3jP3r1/8qlPrl696uzUGLVEqiSnjBFi226aqiAKi8UiMRi3ms89s/Pk8ROlon/pJdsrldK5c+e2bdsGQCenJwCgFbVm5xaKxSLnlud5WmtDwKSJYDyOY6AkTdNWs0mUmThzJmk2VdDM5XJhEFGubMb7uvv6+/unpyc3XXThfK2KaBiQ+eqi0qZ/2dBTT+8sF4utMCwWi4yROAgPHTg4OT21Zs2a/v7+2XoTKVmxbPlMqyWl9HyfE65UykAwyxLcDiFk3LrgggvCMOzv62k2m7Ztx3EghFg2OJT3bIWmXO4ghFCgGeTnO1bkiLHFmTAMC57vuP7YxEQYhmUvp21tbE4pDcIgjmNCSKXSyTk3qK5/1bX41+l73vsuAKhWq0BJnCYWF5XOjsVadXR8grtuquTAwMATj/6mf2iwkPNmZmZe2fvyTTfdVE8y5RKiUc1Gw3V8bZBx4vkFwW1jAMBopSzbtfNu1vQ2MTvfjGIV1bdedOHk5Pjc9MwNN9zgOa40OkXNkTWb9Wz9BcRGo5FRsK1Ww7bdKI5rzQUhWKB1K4w3rV8ftlrK8YRlTUxNjk2Md5U7wkZz74GDV2zfvvv4yS1r1r3uppsfvPe+3v4eO+fNTk1ahPRAsPrUS8OEHUsly+cak4HoyZXLxWPHjtUbrSyglBAyOnp27dq1nuMLiwWhtiyno6O7Xq8lSdRoNOrNpmCEcsIYaTbrQticW6nUXPM4Ti2LmlQKIQwB5BQRoyShnHX1dO89uL/UUQmiiHPObBuUIobGSaK1yeVySqbSGItxRkCl0rJ4EDQp5ZyyRr0eBMGmjetTg2Nz00aZKAm7uroa84vT46MqSd28J6UmlOY9L+ObsxjRRKXUMNt1EiWFEH29A1nMBSVUoc5wXUREkx1mhi6pXOB3kpYJIQohVqnUmlNKADnnDneSMEZjDCWcMQBtjMkiEFLGgBNlDBjkJLOEaGCUYMY8U0oZAWN+a+3NDl+9xMuBIZmgFQEIa0PEANCW8lCdCabaI/Y8j8sE05nEBwkBYtDgErt8frlq25cZRQJGI1n6DPzOH/71b3/L83N2zqOWtoTTarUmpycvvuzKqZkpRDM3N3vDDTcsGx783Oc++7o3vHH7JRfLVnB0/77Dy1dXSmWp1erh5dShJmxpShGRUiqE6Ogo1xvVV7/m1sP7X/n+d//7kYcfvv3WV199zTWf+/svPvHsM65fzBdLLreQEc55EIX1RvXDH7rz0MHD0+Nj3csGwij62lf/6Qf3/Lzs+3fc/uq+7p4kTSfPjH30rj86PTl77NTpj3/qT//u81+em5mfGz3+pX/58hNPPPbd//36vr37li9fvqy7T2/aKqX81n//7+6XX37ne945cnL/5OS04M7yZWuefWrPM89+ZdWa1XEch3Hc29urpZRSWlysXz8cVJODhw5e03N1ruipQAthG2MIwSzyWill2zYCZ4xprQwBzrlpj12D0C70lVJmVrbzgAMits3dBuF3XqT2K5oFtGUJoxQYIQTBIArGDAFEigQMACzdpwTnmYa6HV8JBChkSHaGyxmjs9deGkUBRSayN+dvnCRboLkllEo5F5QBpywJoVGr5Tzfdz2eL9RqNWKLyYVZ1IoJQRUSA81mfWZmZnJyWicKEDau3/TD731/xfq+/fsOKmkQMYqbru/HSag081wCANOT49WFRUJILpcrFsuu607MTnqeB9qEYZht83ML857nBaCExjAMc0F4+uhxoo1reEsm58anfT9/8cUXzywsEgYWQJok3OY2F6fSeqvHL/d3NanW7R4hphutVKa2n3M81xdWEARASRAEzLbjNKZAjC2CRpArlH+89+k3brtM2C4COq4bS2koMUpz2zZK53vKdpJ+4xvfuOfHdz/y2MOrN66fnJ/VnOpEUQRGwbatRKadFe/GG65XqXzppV033Hj91NQUIZoJSGK5au2602fP5HK5UkfpxIlT58ZGe3v6v/e9733qU3/OOZdGW4xHaWzAAKOoDSq984knH3nw3ne9++2nTpzsqFRAm9GzY52dndsvuXhqfPyB+35z+x1vaCxWn3726cHBwde97nX5YtF1bGJMM44sRxijtSau7WzZuGnr1q3ZsVgqlCenp06cOlkoFgf6BwBwdnZaGW1bFkF45umn+3oHlq1YbrQiAEEQlApFAEjTtFqtImJXV0+z2aw3WpmilQETnGiJyMFDlnPzVNiWZeeo6K70dXSUNIA2GggkRlmO3YiiWMvq/Oy64aGTJ48TCk888din/vST4+PjjLEwDC/Yuo1y69zZsROnTubz+WbQ8AruRdu2uL5vC7G4MPfud7z99MjZ2kINoI2oC8EQkRFq2U6SJJwKMIRbnDHGLKGVUYls1OuVni5NYPnwMsHpBZs2/gRxfnbOs50UtSaQpspIxTnPYtoppYzzNE1jJallC8d2XRdB54vFdG4uVfKBBx980+vuWKzO58r566++Znzk7MTkFAMsd1QKhfxLu3f9/pve0qxXBwf7Dx069K73vfdn3/hJr2s64okwasUx7RV647bLY0xeeeUVrTXjFiFECEEpJGlw9szpoaEh23UIYVLKI8eOubbNOQuCQBEdRZoLqrU2gFIr23IpJa0wMYaYVBtMTRC24kQbaQhEYWw71rMvPF+t1XK5nAbURtm2k8o4KwuilEZpQhEoIdJoQtriIJ6dBZBNGX3w4P7uwcFKfy9EklMqfLd2fF6mcS5f1IDGGNeygiBwXde2bUZpK44y3C2Xy9m2TSifnJyklFLDcen0yowehFJCiAaNqAnS9rgyBACQEEStKZVoKGdIiExlImWbAwbIpBKZ2lRYnCAoo7VCyhkhVCrNGMui1qxMfoyQyesyD/H5ZfR8ocL5xVQAxfOfRYJZf0A7aAMZwNJRn31zIrMkSwC6tINlizqllEJbapNtZZmUh9C2Fvo8M539NqgtrFazkUStQtFFJpFpVMn89OS1V1ydJrpaa/7zV//5uceeOHvkcF8pb1N18203A5hW0vzhd78TNlqdla40iFpxlGoZy4RxitoYhUePnDTMedeHP3rfw08y4QBAqaNzvhEwt1iL4mrQTFOdhDJqBgTZ+MzixdfcsPHiyyYW6r1+8cF7799x4422Sf7lHz+/bKg/UbKvpz81JNZm20VbRs+eatSr9cWJF3Y+4HmeitBi1szUdBg1977y4v0P3Pv4Ew8/9tgjzz/94PLBzru/+92/+pNP3XfPTy/dsmn9mqGh4e63v/F1D/3sx/teeMpLWo//7J59zz99+KVnR04e+JcvffVfvvqlSs5/82vfEDdTSQgy5JRRIBSIZVmpSpSRmoACTI1BQtMMbgAkmRIaERGF4EvpVQAASIBSRnQ701/LNlVMlnT2BAmghjb+IpShmghCBSGcUs4YAzCGKNr+HGgGKRhJ0BAKhAFnhDOgBASlHDTVhplMly2AEZW98pQABUoNYGyUosRwRoBzblPK08SEkWS24+T82Ohms5XP53c++8To2AhCajsciGQcglb97MjpsbPjg32Dff39173q6gcf+xXJqaeeekrplHEyPLhsqH85M1y3UhcxbUpICDN81fI1K5avaQbhqZHTB48eCYJGEDRDGVGbRTIN08RQEqWJx5ygGZpEM2q9dORY2asExswsLFqUrF27dqa6kKaxTONQx4YYGScLLkwNONbKnlYa61qIru1brsvE/Ni0mpqPBW82UruUpxq0okZrbRQYjNLEpGlVhw6Q3en8npmJTWvWWMCCVguVBqVBaRIniUmbiw3L8QaXr1BoPnznHzq+l6iExokn3Kw9VGpFKTTrja2bL5gcG+/v6zFxDGHIUS9fsezIkUNPPvHQL3/6oycffricLxgDeb/wxEOP/OLue+YmphzL1sokWuskQdRh2EAV5l1Ow+b+Vw7se+ElK04PPPfC7p1PX7b9QkLw3nt/+d73vHfzBRsJqOuvvvQTd935xte+uuA7vsNBxQYVUDRIklRJqQ0gdSwQApEYSlOilg0OVmuNz33h8w5isz5n28L33TiNzoye23rRls6uytiZEZBaWJbhNNBpK42RAGMsCIIkSfxcDkEDMUBxrjp3bnLMMK3rUUex0lGulPy8w3it3hybnx2ZnhudmZxvNltSU9ubmJlvNgJCuSQYSHnra1+3ed2mm6/fAQDXXn/dLbfcQpvB5/7qM6lKDh47MtcMpMVd2/nUXZ8II/zB93+6+8UDK1duOHjomOXkbNcHENXFZjOWQSqJRQmDMIwJYVrrOI2k0Qqh4OeppqVSZeW69QMDAyqISp2VhYWFSr5UKhYVgmYMuKCU510n57uUIBqTJollWVEcIOhyPudY1HMsyiCIojRVmKqhnp7Zsen9+w7GqSbInnvuebeY1xQtwR+499dFP7dx/brRsZHLLtu+7cIt73rzH8yNVO94/bUVJnSup2HTNElEsdTkrcP7DmXpQ0CMNkkqQ4UmVyiFYRzGgRDCdV0KJO96FheGAHEc33YEIwKo0ZICIUhVqgkSBJOksdIStKEISRC2qk2MdBC2ZmZmenp6KKVBEIA2zICKYgKcGGCGoJTUGEKAUIqMIuPABXc8N19MDSoghDPCGaVQnZkxi/WS7/qWfXLfIeG45Up3mKRJIm3HUWi4bSOC1qbZaCGC1toWwhg9PTubLxU/+OEP3X3PTwSnWqYEDc+qBTlRgAlq0IYQZhgxlGpCNQXDUFGpGUmzMuxUUb2UTMmJAqSCG5OZ94AQghQV0YYiUMIYZ4xlDwMYtHi2JmkFaAAZ5QyI1hqJAWKAmPPww3mUWAJIAAMECc1QTI6EKN22vSAw017QgaIBQwgBSpjgmqACowlSzgijAAQzNzJf6pnVSA0ISpaibalBQoBlI4ADpddee93s3NzRE8dzuUIYxF19vY1G4/HHHs2Xipdffvlv7rv34KFDd37ow/c/8OCR0yPzE+MAcOL0KUB60UVbW2FToeroqizMLe4/eKDU2TE0vCxfyEk0/V093/rv/777u99cvXp5Z0d+/56XiJQr+gfOjI4yaUIWOa6d9/NKqTSWYdhqNWov7TqULE4cP3Zo5crh//mf/4rTeHRyotf0KoNTk6OTo2OnTo30Vfod6r3z996xor//9te8+pvf/04cNYVFNm5Y88EPvv+xxx4bHBx+6MFHBMN3ve+Df/t3/3DRhZf8wTveOTczj8S6/zcPfPmf/2Hna17z8jPPbb5w66/+75eFXL6p4h2vuuETH//4V77yldVr1pwdG3MdB5BmaXOUM8Y5YVSAyPTuhJBMxklZG2EwSjNCVNZixCkxiIjctgDAKEUIERZVqWGMMdbWIMBSJmV23QJiCEGKgNRkzZeEEKQEMRPHswzNZkCpAZbduuB8Sw+ARuCEcytjQbTWWmlEYISopWYP1DrTPxNC0CipNOXMGOM4bhRFlFKldBRF/d2dZ8dH7n/ggVKlfODAgcX5qmPZqDBsBQODXZdfe/GqlQN5337nO96zWJ06OzrR2dXluu7MzEwGQVuWRQTRRDMGlCKndHJyPFcs9PX1SCmllFEaUUoZZVJqQGSUzs7MOI6jU5l3HWGh41iLC1UlMQ5CxqBr9TKpTaiULTijwNAQKatla2rIAcnAsiKZGqXK5fJk9VzB4b1DPVMjYwMpqdfqRuTKXm6+ViV+zmGWQUBKUaPlWRxJI5Vffube143zlGib2UKiAcM9G1NlAaWMxdVGGEdepXDowP5f3f3TrddfPj89k8tzyxZB1GrUmz09PX/8p5+67JJL1m/e1Gw2z50da1TnDcDdP/7J2MT4zTtu6uzoEJQdP37cEVxFyS9+8pPm7MLEmTPbLrxoama6nC8EMiWGUSCzM7PHXtz36JNPpYzONBs37djRObKsXKkMr1i+7pJLGq1mb1dPpNMwjiil+Xw+5+aTNJFBbDsCCCOCKzS2bc/Pz5dKJdd25mvVnOsE9YATClwplS5buezU2TMJaKVUb3ePRWjetuvz891dXYMDPWkSEWMJiy/MzRupBOeWZQ0OD6WxNHFYLBYpoUkiT58+7XlOoVCoRa3D504vWzbUbDYbjVZnT3eaqGptYXTk1JYLt83Pz/f39o2Ojp44dfLyK69whCOlLhTL3/vRj5954fmDp08t1qpX33ozy+cu3H7x+MxYqVRihLSqtVff/trVvb2zEzOTo+dMHO/bs3ffwQMfuusPP/bxP+7t7T906NDx48fTJEmC0BiVxLExJp/PIyLWFrTWQb3mOe5iEjZbLb9UuPDCrROjZ1v1xglLOII36wGCVNIopYJmaIzp7OyMolgI0ajX4zjO5/NGJ9oYAOo4ThQEiePrVOY9f+Xq1XMLC0EQ7NixY+fOp/a+vKdvoDeX84aGB6684urjx08eP3Zk8+ZNhDFpYMWGZa0De43dLXt7Fhq7fEFdxzp39HRs0swoSBEz3aWWiS08wmB+fn5gYCCOW4goGCeUESPTVAG0yS/OucVtpREyr4tB0EbrtBEE2aEURVGz3gBKOOczqfRclzEWRREiSikZ54RAoZhvNptKKdLOo8WsnTfbyUqlUqvVkiobb6xUKU+MjiKi4/paKc1YAsCAWK4DADKVnHNCMGi2OOeWZVFqA4BMUql1TIiW8pvf/Obv/97vS42OY2ltEAG1EYJLoynllBADqFEDUEKQE4pAY6WMAcZ4ZjQSnCOA0ZDBkMYYxqyl6tWl36HSGhSlNEtkAG2AAnIOnBFKlTaEUMJo5sTNAGClVDah2VJWM1vi5vT5miYCBs6bQZdwY2xLrkjG9RnMKGSaJSBlMGX7a9vwJ4Gl2EqabVsG0SBiho9zy7Jed/vr+/v7P/rxj6WJEkLMTU9zLr77rW/mSsXb3/CGf/zHf3zb6TOHjx79wJ0fGp+eqU5Nd/T0lkrFycnJl/a8uHXLRcx26s0GYYJbdhzGM5NTQSM3NDAwcm7k99/+NqPJ29/21pznnB0dXWy1xqdmh5cNaS2REmOMNDKOwnzOszjduvmCem1+57M7h5ctu2DzxkajdtPN158ZOVWqFJ/b9WKYBrFOqrXWxNT8jh07fvzTn8m4durcqf/++n++6U1vagaNyy+/9Ojxo4889sjAwOD41NimjZt/8tN7EiVt34u1fGbX829445sOHjn4wMOPXHXtVa8cPPDw448ZZXKOWw2aFmUbNm6q9PacOHvGcRwjjWCUMk4Ey7ZYA5qKrE53iedHYgC1VoxZlFJOuUaZ0RuGZHmhbeFc9jJwQhmh7cxuY4CS9mtvCFBAMOfrLzlBBJ2VtCAQJIQBoZCJvIAR09ZeZ9Y0SgAIZPYkhOyJpJQSQVAbrU3WokM5aGkopcwYioBKA0GVpozxViNgS7WSWqtjx441m/VX3XDdhnVrFxcXH7j//nt/8UtO2S2v297ZWZmvze7d/8KffOJTp06em5ttcMvnvNEMA9/3KaWtViuOQ7+Q16BbQcsYo4x2XTeUgU1tZnEhLAATx2mik7yfS9KQMcaRyDB2LTuNYwnm5OlTR46d6ir3ayPzvkuRteotJ+8TMBo011pU8snKQmhiC4EC8SRopLFMOwd7zdTCwhO79YZhYbF8R76WJBXXUdMhSW3Lt7L7CkHUSJI4sZh1WDfWebmiX4io4Xm7r1hI42RmanLjhg0TCwutMPAdlwPnleLX/+d/v7fjVXOMUkrn5+cd100SOTcz+9m/+qu7777bKD0zNcuMmZme2fPK3tXr1/3hH35kbmaaUZokydTUFKV85+OPLc7OUSDjZ88xZdI05RqyxrqTR0+tGhoqD1otZZ54/vm161a3Gs3t112THZ2BlE4uXw0DZWRm5aSUzVcXbNvmgidpKoSglKPSlIvu7u6zZ8/29vcVS+U0DtI0dVxfG1kqla665uqzU6OFStfYyNmiVyj1dLMStFqtZrNe7qhw7o5OTpQq5aLvEcIWFxcLhUKSppbg+/bt6+3tBqBIYO3atZ7naK0rlYrrupzTcrlcLBY55w3V6ukob1h1cyJT2xGNRmPl6lXZrwsAxtLI5dZze3c/s+v5Sn8PE/aWLVte++rXHjt1av2GNadPnJ4aG/Nt64K1a1SjMT06fvM11zqONzkz29XV9cKzL5wbHb/4km3XdV172+tel8ik1WoFQdPzPNd15+fm5ufni34xy5gjhCij5xbnX//GN+byxZd2vegV8sz1nGLJ1Gq1MF6/Zt0nP/nJZrV66tSp+++/f3VHx+HDh//ojz52dmz05MmTaRB1d3e/8sor117zqs7uri99+R+Hhoa8QlFJ47teuVx+6YUXPvzBO0fOnJJSzs5ODy0f0kr19PQKYcVJLGWYy3tnz50cnTyrEGYOnzwdNvPl3PTMTKPezOJTGGN+PpckSZqmtrAatapgTCZGpthohZwCOJZBSjlzKG9vAdxCxChOKaXGSMuyKBrfsbXWIcXsre37fjZUhBCUM892FmrV8xueUopRqpTK8mQA0RCwbTsKQ8u2ETEr1gTEzDWbKDW/WANKZ2fni0XJOW8j1bZFEZIkcV1XSmm0KVdKSqk4Tmzbsm0blUYKOpXCts+HvJp2IxDNvCEMSBZor9uUqs5qhhARkBECnABQyLaFJEpTJW3Ptm07o//SNEVE27YZFWAMBUMMZgFEgAAEAYhSKgvVou1eQgAArRRQCkgJMARKKDEIWYKvAJpFXBFCkJh21xGgygy+YCgQujSnM4GtQQIma2fKepyQkEyfnY3qpdiOtjAHEZAiYZRQkhUggtKau46vNRoDf/kXf/2JT3xicHBQCMEpff/7PijBVMqlkVOnr7j8socfeHBxdiYJGhZntsUomDQO77/vvttuufXBRx7ftHnr6rWrli9fkRXCLMzPTk1NCkYOHNh3YuTcywcOXn/NNaXu3r2Hjtiuc+DIEcFYMe83Gg2tNadswpic5+V97/3v++DzOx/fs/eA4PYPvvu96669yvesJ554bM26tbe+5tbPfvYz11x704Vbt584duSyyy4rFp3jp45/91vfBg3Vav2+++5///vfWyyVL77ksonJ6fHJiUajdeON1+0/eOjZ55+pVEqzM5MU1eYLNrzw+OOHjxy88drrX3rppe7VK8dfPNfdXXnXe79y+syI5+UIIZRTLiypFSFEZ5cmRCY4pW34PuN9CSVZjj8ao4zihAKnSivOmAFEbRBRMAZAtNIW44QQ0BqXmBjajmTLEq3aox1BZ2QtJZktGDlQ2g5yA0IRgWQ6azQmk0UTQpEj1YgUGGSSLAQAKriwqdSGQFv3kJUNGDRGqkSllDIASSlPwqBcKWEanj15hGkdReGFG9YmSTTQXekqup/9zCe3bt4i8uTQkaOzs/MXX3RpR6lTp3rZxatnZ2dbURgEQQBNy7LyBT8IgoWFBQOYJUX09fUQQsYmxsE3lmVRwX0/XyrwVqvVqjdQaUZZGkbDw8MItLo4n893/uL+RygXnHMGhDlMRVIR9FNNHG6IIYRPsmQeI9ZMcl1lQwhqdHP+VFBzck4lkrVzE+Ty9fOL857lMAk6DmkcAZRlEjFLZO/GKI3ylOcJ16GsX7nG6u2ko3MdA12txdrs9HSuUir394xMT8Uq0XHUU8y7XR3HTp5qLtZKXkHGCaaqFdW6urpkGlc6SwXbm52YOjVyplFd3HHjq7ZdvE0TMjMz1Wo0U5m4jjc7O3vs2IlardbV0z03M/v4E0+894MfcCy7Xq8HRo7PTC0fGPi/u3/Gtf77r/zjls2bG81mvlCKE4mIhVyec57EMRAihNcMGq7rIiWG02pY55wnSdLd1SvjqODllDaCUlC6uVAt9/TEiZRaub5HCFu1Pj+QRvNTM0rB5q0XakDKRSRVodJh2yJKE230wMBAFEWtRpNSWikVtZaUwtmz42kaDw0NVavVWqMZJwlhkMvlLCIwkdKoXD4vVZIqZVncdd04ChKZWpynxCiVbr1oCxgihLAs3mo2L75o23v+4F1ICSCtL1bzuVx/f7/D6eGDhxyLr1g2/MLOpzatXu3b1vTUhOv6KtbcstevWfvsC88H9drIyMjCQq1QKgmLr1y1qlwpFgoF13aGevuBi7yXsyzHdV0hGOFUKUUIufzyyxcW5wghf/qpT2ZRU6jNzPxcPWisuGD9p6+8tI0EWtYFV1zqOI4jHMbYxNh4vV7v6un+xtYtQRAsxvEH3vPuf/6nr+55affi1PS3//d/ent7c7lcR0fH7OTEQrUehjFlzPFcwWF+frbVbFJBgTpEamaJOEpylscsIaUEANf1coXC1lWrWo3G/v37u7p7aotVSqxqtaEQNNHGpBRQCEEpTVUimMW5lSSJ1lgs5jUlQVgHbRzbUyq1bcE5KqUIxSgOsmzd2bm5bEoxxrK0LC2lMabVaiFmPX0kw/M8x9VaS51alo2IhlJU2hgDXDDKLIumabowP58NacZ5miRuoRBFkW3b/f39p0+fDsNQKUUJE5zLKK7XqpSLcrGk4oRSnvWvpVoRSgwlHEiiDGNZeIU2gIQxCoAaFBpiQGmdpUhRRuIk9Txf2Nx2HYUqOyGzpC2+BDJnOi8uGBrIMpqBUgMaNFBCOCOEUjBIjCZgGAIaolFzzqVWlFKZqraFV8uszpVkPmBj2lEOWdkw0AyhJIQQNAiIxFAGiIRSitpkezAjlC4ldSAlDNpncaa+JQiEZEGYJFvUwQCvN1u+7//ql78+efKk77gnjh5bsXLZ3Nzcvffeu/3SS5JWePzo4d/8+heusH/8g+9ceOG2e3/1i0IpPzGWlAr52vzcp/7kT2fnG5/7/MZXXngxlTJWCinp6enuLOR/8J3vjJ89Ezfm//Yzf3L/9u0f/NBdea/w+MOPbtp4QW93z3xrzrKs+Zk513UHBwebzWYUhDt3PvPyrt2NetDZ2fv+935gcW5y2XB/V0fFy+d2PvX05ZdfPT9x7qzn+V7xgV/9+hN//LHvPPHdnU9+6bvf/PG3v/Odxx9//KYdrxk5O3nNdTc+/OjO97z7vS+++OI73/au6Ymvbly/6ctf/vJn/uIvezq7zo6c+fEPfvh773w70dg3OLTnwL73vP8Dq9euOnbqhO96gjDCKHftIIosITIKnnMKlFNKMvPPEokLAACUoDaMMTTAGMu2VpsLTdr7bBZzoQhkQTCMMc5ZJj7KlFOEIqUMMTOGI5hMec8oYYjZiwasnd2WgR9syWtGMDOrEUBEykh20yQG8XeyPlhmG5cKCCillNJKSdSGCa61SaJYxsmyof6p0ZGnn3xk/fq1ruPKHEcZF/N+GMQ33fIa38vXarVzR2d7Kqsu23ZDGLWq89VSMX/yxFHXsym1HMdJwiiKA8p8IYRLCOUME+1wMT89F8ex47oCuIqk0CZhGBnTbDaNVJwx3/X+9atf8Tzv6htvi4P05MjYmam5gYHBoBkyxsBwqVPgjFJIo9DOOSMLE4FXKNvdqeU7lhUbrMu4l+VLttfRUZn68U4gxuaM1gMsUW47wWzNKMUcFqWJQ4EJTgUHJTVnGk1zavax8eMr/uq9L73/C80jx7tKlf7uXupYOx9+LPt9D6xas2zlipNjZxthuHPXc3fc+pqDx487th22onuf+9UrL+/58z//VBzH+/bvvfKKq/sHehOZVBfq9Wajs6Nrbn5248b1I2dGT585u3rFutGzYz/6+U+DIDh67MRDTz3e3TuwfGh49swZLqzB4eGrLr9MUr3jtltm52Y6uzqSNGWMpakihCRxXK0u2I7HGCsVyq2wiZT4+bzt2QTRzxe11khAogY0UaKGh4djmRKNtutPTEy4jl/u6KzVaznf7evuOzc6rqUilpip15thPNto2UJ0dHQkSVAqlRzEkydPaq03b948NzdXq9U2bdrc1dWhtS6UivliqVFvAaDWOiHELxQ0qHqr2WjVc7mcm3MZYxajSqVJHHqOZeVzSknPdbVUEKu+Urn3onIrCqMk9gvFSnclSRKtEtv2jx48VC4VK4XC6eNHgsVZ1813dXVNTc2EQez6Od/3d1x7vdZyoLP7yPFTQdgKwnDPi7uMMXHUTnrK4L/sUCbk/1GjtjkjiojoCCdN02KxaCizbdsYk/MLWSZPR0cHIUQZwghyzgcGBrTWWqtcLler1U4eOTw+Opb3/GW9vYOVDtu2y6WOoaGh77z0za6uDl4iC9VFFQd+oVTqW1b36jpRkYzL5cJiEhDBo2aL/H9kvWecXWd1vr2euuvp02c06tWyLctyxbhjwKYZbAcChJIQCC2QQAiBkIQkpP4DCRBCMQRCx9gUU4xtbNx7Ve8jTS+n7vrU98M+Ek7e4y/+zYxmpLP37PWste77ui1gxghxNODZuSXA5KMf+fNPfepT7ZWmsciCTvPc9YqtqibUsRorA5QQjKwUmZZaCDGfdAmlSVpEXnIpNOfcIkwptQiYxwkwoSRzHcKZjuNcCKBEg/V9P8syo3XhEeKOQxBOs6zkB6qfigGMsazAY1lLbD9ri3Mus7zoFvI8V1J2ez3H94oU5PHJVbOzs8ZasCaLkziOPcc1gLIsy6XIhThtMQJMpDEKgUFWQ4GjxcaC0QahPn5ZKSmlYIQ6jFpkFLK5zIVSGGsAiOO4uKqO41hri+pbZB0aAEyJtUZbC6Y/zMMYM7CnSAxAAFlMLAIltRAml6LIeOCIYYwB/1ZOhQBwn9FgLcIWDLYW+gpabU/5SPsdFIBFYPucYIstWCjGmqjfT1tri6c2tgQwWGO1AYQJIpQCrVUbRw4fm5iY+O53v1uploZHBldWVlaWlxuNBsb43/7fv1yw67xS4A/VG88/98x73/3uCy44b8++vaPjY3feeedDDz5CEatUB1SWlcPgrrvu2nX+eX/xF39x/fWvbjdbt33vu088/eTxw4c++MEPlnjw0T/50O+9+a1Hdu9hSp/7hje0et2BgaFf3P6z73//+3/3qb/fsGHD/OzMxMTEwYOH3/KWt2zfuu3ZJx7etmUrI5YxyhzeanU6nc6ff/Tj+/YfXFrpHJ85+aa3vOXJZ/YIwv/gfe8fXb/x3n/650uvfXkrz8sjI69/+9tf/rqbrBOGA4NXX/uqjZs3velt77j2ta9biXqlsHrDm9988a4L9h870rVw+fpN515x5eLJk27gM8IYoYCRUDnzOcEEtGGYYFrsCaBY3RcnHYap0BIhZDC4jmOMMYC01gzTQhOAEDJGF+pozrm2/U3C6a1DUcgtqNNMDgBkkaGIFHAs6K8aijNXkc8F2CA4JQGwtrDQIW2AkCKV2kBhOUf9cD0KGAFSp8R+5pT2L04zl3NrDWVoaurI5z7zb6+/8dWh7+zZc2jDpo25kr3lNuNuro2DUVivcYqFVrlIO612OQiyTDDG80wpsEJklFJGWZymruuWy2WpTWazThorpUrlUiryXq9dKpXiNAUZeZ6ntU7zzHe5EFm1XM6S5Ctf/u9aeYCysDoyEkeR53ChrJQaGVX3fKFkLLKu0tlwqTY5FvrhXNote26Wxi5l0cJKecMoN0YfnfEoMmkmXBesxgwSmbphCQixmQKClZGKYI/QPM+h5IPvnXhy/9odW6/8+Lvv++R/Wo8DxsLqWrkWd5rGwszCDLOoubyQ93oHdu+FV7/6xPTJsZHRe+/7zbf+55t+4H7/th9ecMmFhsGZm7fOLc6vzDbHxsZWmq3l5eVrrrmGc752zaZf/OKOY1PHJ1avGV+7dqXZfPOLXjQzvyCTnPnu1q1bBYUsTy5/yRU5tnPLs0ODI1meLbealNIgKM0tzw/U6oPDQ7mx1hiEse+H3W6bhTiP0vZKc+369SudlTAMhRDaGqlMt9vNpBivDYNHtm3b/uzTTy20WmvXb+DGMoetX7cmF6LZ7S0sLfaS2GUc41Kr2eaunZmZUUKOjIxoayyCqamp4YFBSlm5WkvTWEqNECqVSoCMkNIgTcAkSQJKl93QI26JByLPW1E7DMOG08iVkFox5kkpGWDEWCuLi34FUSK1aC02BweHKcVgbJqm6zdslHFy9OSJOOnKXMciaVQaGFPaaj+/dw9jzEhVKZWR77muOzBQz/PBIPDa3c7AwMCH/+zPn3jsoVq1cWL65NjYWLvdXliYY47bbnWPHz8+OzddWGYJIVNTUwjI4uIyNsA511rP6ZOFIub4ocMAgDBYY4IgOHpgT7VcufSSS9atWf3MM62R+gCVqlqu7H/uOS2klDrNJSHE424c9yBRCCRnpNdtGw1SSq2t59PZbDnONBNuniZMa8Wo0qYcBL7vz05NLy03L7/8yh/96FZQ4LjY8ynCiiKsJWiVRUkOGBmdF5tEhBBnrpRSae1wT6ocIRSUQkKYUgoRkue54zi5lFJKbYxSyvG9QrgUBKHMMnQ6DV7rYhVNEc6ynLlc53mBBTwNk8oyiYxFhKZJsnHz5lartby0RBkjtA/sMwiA4JWVFYSK3FuipLJWU0qLAS6hVBqNUGHIZKpoHI1lhGRCEAOEM2tBG4MQAoS1tbkUlBCtFbY2kwJzLLUmjCILeS6K3r2gphTkMowxpsQonef9aqqUAgyc826Weo6LtTJKI1LEDYLVFrQRWuVSAIDU2mFMW4MsYEoKyTQAIKsRIAoICrSR7TOzoL8eRqfPdqcn/IWWvu87BYOsRUCKwCVdPPYL6ZiForj3my1A9Mjhw//9ta9ddNEFpdCtVyszMzNRtzfQGFhYWLjle99/xzve8dWbb86SXFbs5Jp13A+YQWmaM+q85tWvjTrpxo0br7z66tt+fMub3/KW5vLi1IF9f/vRP//a177abrf/5u8++al/+IdNa9bfeOMbd+zYceutt37+Pz87ODgws3BCQd5caTWbTUToueecedcvf3Zrt3vmGdv+8i9+uHPnjslVY//5hf/Y/exT69a8HpDFlDzy2ONHjs296W1bseP/+I673/Pe9/3+u99zz8OPXnrNVYfnZsY2rl+Oog9+5M8HJyZueP0bqOtdedVVrTi59OorkVYvffk1nV50/Y03JDK/7tWvqIaVcq3U7XanTkxf8dKXVkrVY0enyq5DOEIYE0qk0Q5zAAARYhAqilm/+GFM0KkoG2MoIoj+1sqGMUKEYg2/rZ6YWGNMca4Cc2ofXKCo+iIsbC0C0MV36M8pLAZkwCBb0MFNcU2LogvIwCnDnC2YLMhajI1RGGOCqIEiQ8niIg0iF8UqurjRMQAgrEEja9M0UVq5lEQif9GLL6nWGt1Oa2Bw5NDBo9vO3D7dOsm1NcjMz007nlvhTrUxNDs/V6vVwEIaRYC0RVZJpa3hlFiKKHGIwzXGnFCDkTAaY1T4EyrVKsY4zTIHQxRFgC12iON5rVZLa33uOTs6cq/OTKXkpVG71hjghCKrJTIE4SyKlNE9x6h62O02HatNnnLOV5Iu5lRGSmJDOLSeO5BL4TglZRT2GAdwjV7p9sKgqpXG2hoEIGxqRMA9apE21jJaqtUWp2Y3vuS8+k83zz+1hxKiwE6sWvPim17+8I9+ubi8HI7y61/32u/c/FUdZ9xxRgYH/vLjHx8aHBkfGc1UNn3i5I4d21evnlxqrgghXd87euz48PDo2tVrVo2tZpxUyo00Fv/4T//S7Hbe9Na3aLC79+0fGRxetWGcEUoxFkoZSmNr0jimhMdJHPilwM0LkUSpVOn1Ymstc1klCGWeU0oDLwSAMAxDz0/SjDEnFwpTBASDNRbbWq3mlbyeTLTON6xZfWJp8Zmnnlw1PFqvV7Msq1arFWumTxzv9XpnX3ppt9tdWlpqHVnYsmVLO0kRwULJp557tlJvhJXq/NJSQX4wxjDqHDp0aGRsuFwu51mWpcqhTskJGCEizeNOFARBUCozyvI0l1I2e516vc6pY5U+ubw0MDAQJZHHncIBNVhvWKWVVdjhyyut2WbnovN2rt24XmkRLbSo6y21m0qqWrXu+k6vE4Vu2G53od1GCM3J3PO8ea0pYwvHT37xP/7Dcv6BD3wgyVUU57XBkV0XvihJkmNHj7/7vX+cJMns7OzwyFC5VImSeGhoaO+B/YePHkYIlcvlcrm8f//+SqXieV6n0xkeHj7n3B2rVq0CYw8eOPDkQw/t3733xPRM2SmX/TIoWw1KuISzLEMEJ0mmAFnQIk8xQQgDQkiInDDscN5pr2RYB15JZFJrTQllmAmlMEK1Wm2g0fjOt7/5xje+cdP6Dc8+84xf5kqLpJcgY5GxlFKpReiX8pQiAIypUopyFpZLaZ4ppQhmxoDR2GjNmMsYo4gTghyH5nne7fUKEvtpyF2apZwyC2C1po6DTnm6MGN9LgdjCFtCkFbWKu1xBwForSnn/dUy5wgwQogxZowuSGQqF4QUFiAlsgwhlGWZAUQ5M9YqpbJMWESsMdJoSllBt7DaGAtEAwZMTEEALASihRuXCKWtBUocsBosaCkpJYVbzNqCl9A/BzBClUUyy41UxeBXKwMgwVgMANIorTAQZSyyFowtvkwbTTlDAKTf776gnQVdlFYNGhfmZdRnYBU/kRRtzOnBizEUk0JXjiy2tp/vDtDH+JOiIbbIQN8yg/pDb2ONotdee+3tt99+/vnn7979nLV2zZo1cZyeOHFiZGTovPMu0Ept37691+utWrWKO9673vP+Sy68qBdHX//GN3ft2jU8PDwzM/PVr9687+CB9tLKGdu3fvOb//OKV1w7MNRYXln8/Gf+4/LLLjt05Lkf3vLj4v6u10JGYdX48De+fjMmbPv27T/5ye2U0ttuu+19f/TuP3z77+157snf/Pqud/3h261Wg4MDQeB1uq1MyUyJG1/72h/f8pO3vPld73rHe2uVobe97febzWWwenlmjmr7xIMP53l+/513JFGsRJYkmcLQWVoSSUIQBoyjJDFWdroridBZq9uOen/9158crJaiPB3wPUKIZUhbIzG4rmeFsmAwRhIhe8oPhhBCFmmjAYBh1i+axhTZwhhj83/mEtYiSixY1NcaWNwvmacGHQgZU2S8Gtz/pLFWY0DWItRveYuUrtNIUgzYWmMU0hj6RjJAyCKLMRTx0gWapa+0szbLc2sBtMmVtNZqqZA1oHTxedflrebyysrypq1bFUCcq4F6aXq2++wzj6xZvS6O0yRJkkxs3LhRCrF3797aUF1ooXLhhYExQJnjaoGQJQ5vdZrGGqxVmglGeIlzL6wkSZLneblciboRAHCATGSEMWGNMhpR1Ol0PIcNNgYYIdPzUwuLM8bi+crA9q1ner7PiJVa0cC1zV6PK6i6KGE6kzRALiDJGBDCOJXI4liEh5c7VmUMV6RJuokMWQu1w3IpTYWWooq9NM2qllpOEyVcjVUiKaWGYylEKsVZN73snoNHz3/jq1/0+tdsumjX8/f8+sdf/kZ1cOi5A8/bhs9Dv1yv/vLW2+574KHR2sD89OyzzzwDYNpLS6+7/pVHDx1sNSOh8sHBwcsuu2Ljxs2B5/d6vePHZ/fv+cV73vfHv/jlnRNrVmdZ1hgaLAfh888+b2w+OTreS2XAnFQq7TphUFZGe44rpQz9UrHCZIxRSzqd1sHdu33Xu+jCi1IhXMcVoBeWFjzuMOZFIpNSGqMqlUqepIHj1stlABNnsbbYpNn40MixYw8PViraltvdTgGpv+CcczjnBw4cAIZGhhsj9erw4JBD2fTCnFsOR8cn0jg5OnU8rFSNMTvPPGtxedFx/YnJVUJkxdCSEFLYARIphFWpyjudLAhKeS6njh5fs2bN5PhqAxYMSrJooFSnGodOwF3HasM411pHUVQKfbAQ57Jcb7zrve97/JGzrNV7n9k9PX1i/bp1e/fuPXHiRNRLGgMDYBClFDEks3R4eGJxYQ5jnOVJIvI77/6VtfZnP/0xZ9xxvG7UAQBCWOCXvvqVLxstOWWdTscLfEL5wPDQ9jPPHBwZmZiYKBRkq8ZXBUFAGC2VSlks77zzTsofG6g37r7jV9/46lcbfjg2PNJTPd9xM5G6nAIGC1pLiZB2XZ6nGaHYoTzJRJYJTFEu0pZoCw1UUwl5niYIoRxDxXV9TLdv3RbHvV27dn3729/+7Gf+fXCoAWBEbuIo5ZRpbTgjnHMkC7MixxiKqIYsl1IZx/GQ4yAqHMejhFsLjLFcCs/zlVIGWSklKRICjMEW0ihmjHHHxRiLNCsG9UIIemoUJ4RwHKfwAGutgzCQWZ6nAp1Cx7darTiOrQFGMSNUSEkIMRaMlpRSJaRWivruqak/sqYQV+uFpcXFlWZ9aDA3WmuNELbaCKkdzJUWWqrCSWut1qCBWExRJqVHuVQGAxaZxBQZq602pzpOa8ypgQBCha2EUGyJKtKHHMZTIbNUhI7DAINQVikltRBCKUUxK5Z9iCJki9UWUEJo3wDd/wfYPnoStDllMT1lWLJ9CTQgOBXrYOypnva3DTG8AAKBEKKADGiAfmKsNYDBIGwJEHrxxVd3u1mW6yuuvOYXv7jjNde/7vDhwwcOHvW8Ekb80IHDvV7v+PHj+/YeaLZb1tqHHrxv9erVW7dsaq4sPfXko8V8lXN++ODzzz79iDL6/vvu3bt37zVXv1QIcfXVV4+MDT7+2NO7du06cuTIwsLCwMDAueeee/TI8Xa7jbQBbfYfP3T4+DGg5Pk9+0fXbzwj67mMPnjfPZdeeomxKk0T7nqrV03e8ct7zz7rnH//9L8ODw+3WysnT57csHHzr+7+9c6zznzogftf9rKXfeN//vvGm2763je+/pcf//g/feof3LCijfHCYPXEqte95hWtVmvLli1/9J53TY5MHp5duuvnv7zkyssOTZ1wuUMx5ggLDNRSDBikRgghIGAsATBgrLEudYyx2ALGRCmFiFX99xvAWnMacXK69BYXUmmCkLWAoZgYWwTGApC+U9sQgjQQYy1gTTCyWmNMjbUIgwKMT2E7kC36X0DWnJpMM9vX2QGyyIK21lpkNepDVq1FSunirjfWGKstAqlUJnKMcZwmRUyTlmpkcOSBe39DQV91xRUUYQt87ZrN999/f8mvZyJHCI2PjjqOo0QyMjiQZJkiOFdSGg0IWZF4gQ8ARkrPdUO/ZK3VQnfbncQCIcRxPN/3O52O0oI6TAhBMcEWuwjACgeh5vwSUajM+eZNg8eOHcfIIOBpd37fs/HOiy5Js8wtVR2DjvA8LbsV1zEjjWarOdQoUTd0MyMdsNNzw5s3A8aLuw+VhkajXhbNLML4EPilMg4hJFHWQu1M+ASAZxg7llCAFOVuGDJpU8Alwvcdm6ptHLvyp19Yc+6W5X1Hv/2Xf8bP3HbWO393/1dua9Qazzz2OCgzOzt7209uy6LeuefsSnrtG2983Uqz+egTjz/1+LOf+LNP7Dt0uNlpNgYH1m1Y3+12G0MN7rI9+3Zr353rNj/wZx+khIg0S+M4sWjDpg0lz1VKYSuNRVKlODFuqUIRSvOMUgxGMwdTwleWl8MgGBsaHiiXu1FvcWUpKJdEHrd6kR+U2r1usrxYrzas0pRzC5j7QZ6KOM4psTUShkFwuHXs8IGntm7ajJFdWVxALFhYaREE1XKpUi0ttZvWoHKpnuX5iZl5z/OMQkmzt3HjxsxPhsu1TAFBeP/uvUNDA3kSE0Z938dAQu4WsDVldJZnpSDwPS+K47gXDQwMbNq2lSAMxuRpyjkPSy7GNM5ShBAjVFvR67a1NcZaRvjJqRO95YXUr9UHgueff/72H/7wFa+8/o/e/YHHHnvs7HNKvZ6Ynnk2SlJCSBB4KMeM0GavpyiRRlKPhEEFNFBmQeNSqeJQp9XyCWdFXiH0ZNRrAdaU4khESuupw/ueeOiBglJSqzWa7Vat2hgeHo7TlBAyNjZGEE663dZKc/rE8U1jY9yhadZNYhER1I06mUw91+OMZUlOEc6QETJ3KRNGagMaABBYAI+7BhTxHKWUBkwpU4Aio3GaLzVXKGOHjh9dvW7tnmefcx0HENHCunVfKAkMxUrkEjjze7lmfdco1ggDQYCptgAWG8w0JrnMCSFZLjEutEYIpMIWtDFJkhRik4BxZTTCliKkEJg+non0LTlS4wJ8a1ABPCaYJTa3hbuSEEzI0vJyYS+UAAoEZVRrC8YgDVDYMkM3izNrDGHEGIWsNSJzOD85Nf2db9z8oY9+LOrE4DpWGEQJMSBVbhXGFBmjtRUIIUqxkMIYZQxEUrqUcYTBQBallmLMqMkVc51UCsIYxqQIwNXWUIaUUoQRhlme5wiDw7C1iGGihMzzPBdKAeGOyzzfGGVzCdY6hGFAHDAFDMoQj2klCca0eMqeTjxEmiAKp4S3/a4JwFpLUNHOFoNmjfsfN4hgMLbfORe5wgUQwhAAIP1mypo+/MHS97//Dz/5yU889OA9t9xya6PR+Nd/+cdOp+U4rNKo/s+3//s973nPnXf86sixg5u2bB7ktWNHj775TW++6667lhYWP/6Xf/H1r389DMMbbrjhn//5n9es2az04tve9MYbfuem973vfX//L//yrW9+e6Xbvfq6a6kXMi9stbtj46tm56a/8pWvXHjBxY8++miappjRVqd9ww033PGznyMMZ2zd+ugDv37tjTd96u/+vlYtzc2c5G5gDDg03LRhw86dOycmJn/84x8Xoq0LLrjgJz+5/f3vfz8G+7a3vW3vvt1veMMbfvWrX42MjrqB/8pXXjczO/+mt/zevXf/+qqXXHPrrbcMDg+dc975n/70v2OMV02uOTG/QF3HcT1srNbGQcT2zzXFpBcZZLGFAjVeVN/iRR2OMLZCFzPeQlGlVZ8/BaeOS+h/c7f7pysgyOoXBCNBEQZWaO2KQXRxjRBCRUo0WLDQJ6C+4BT2QjaptsVBAMBYUFpaTAoHi1LKGpBSFqPLgtJlrQ0Cf6XVFlmWZakfrD558uSqiZGl5YVjJ44NNWLf9TZv3PD000+eccYZY+NjjLGo2+acAYBBQDGL8xSIoZRqZXuywzn3PM93vdbyCkIo8PxKpZJlibU6yzNCiOtxIaDwVcdScqYZdzitKsuXVxaE6gmVrZ1Yh/Bz1SDsJVpbEWciEwpZBKmYSXsJUp7jZCJ3OU+UlFjLPDUOd5a7qZFmrJo9c+DCrWf9zlve+uEPfZT2VGQsI4w6fG7voZGNG+e7LSkEoggo0pQaY4xSIhPYIkMtAHWwkzd7rTyZeu/3ktmF1poamp4de/VFE8vNqdvuHhgeWp6b5Zy/9uWv+OFPbt19cP/l17308//+udZSa9++fb/49V2RseX60JYzz+Gczy7MGcOExK5XeenLXlWu1xYXF0ulEkaoHIRa6+Vmm3NWhOKFoR/4zuBgEEVRp9MhmAFG1hLGGEIkiiNEcC+KnEbjxOKCtdb3fdWNarVaxYf5+fnJyUlRqfV6Pc45Y8ylTGudG/Xkk4+/6MWXJFHcinpu4O+64PxurxdH0cjgUDdKiOuMDg9qJY4dOzY5ORkEQdRLgGDH91zf3779TKGlEJlElngOA9prtVItm71Ou90eHh5eO7GmGOQIo5NelzFWDsupyhcWlwkhpVJJGamUkrnwPc8gSEXuB8Hs3Gy90cAYKaWUMp1OZ2hkOE3TXhw1l5cVxhTh3Xv2/fKnv8ik+uZ3vktdb+PGjT+/45fXXfvyl1370oWFhb1793LOZ5cWmgsrjuMwP7BapHlitOCEMwTWoO7SAsbUc9w06jqOE6e5AesEDBBR1jAWeJQ2BkeFUFILjLHjsM0bN8zMzJ08cRwhkmVZr910KBsfG8uSyHXdTORzC/Ou6/rVaqkUTGxcTSltt9sY0ajX871QY8MYI4SMjo7WGnWlFOWk3W4rY2Zn50cGh6anp/fs3o0xBqWpRbkQ27dvm5mbVUKedcb244eP7Ny5c2ZmhiDsUMY5z/PUc1ylTJpEmDCFbB+rZHJCCEKQi/74gRKklQJLMMbWQJZlWuuSHzR7nULtXCAHjDHGWLAaY6yEwJQWYFopRRAEGBEhhNYaI2yMIZy1Wi3Hc0WWF1B5pZTrurWBhlKq2W5jgy2yFgE+haQAAIZJai3CUOxlrbVJnnmYgNZRnGqtFFgXkKII51ISbI3BBGdZQjnDCAshoijnnAIgbC3GhBAKCAuRAUaI4GLfbBAQQsAYRqjBgAGUUkmSICAE9e2XSkhKaeh6cTe1oNMkF0ojTCXC1hAhMlDS9b1C0U0IoQjnSoLpP641skVsnQGErUXwgs749DP89BLx9AP5t72YReb/fn1Rbot0hn6iA0Z98SwAHRioV6vVf/7X/zc4PPKed7/vrrvu+sJ/ff4zn/k3L6z/8fvf/8pXv65RH/yXf/mXL3/p5s9//vMXXfii666//tjJ6W98+zuPP/74wNDYV27+0l//9V/HSba8vDK+atWn/vGfvv3d71x25UvWbd661Isa4xNHT5xcanUypeJcvHj7mcePHx8dGf/13XcjAq7nEUqjJB4cHpqcnPzVL37uhP6H/vxjX//q1zBlCDMDBAH8+Ee3rV699k/+5E8+9pd/+eEPfTRJkpWVFUrp+nXrBgcHAWB5udnr9Y4cPY4pq9Yb1qI1q9ddd911N3/tq2EYSqMTkUdZPr56zUc++hfDq1ZlWTa/slQk5ZFCjYcpAWxP47+L9whZUyx6MZJSYkIwxhosJdgYwwm1tgCWFclIGKAvdT59VipqaZ+D0V++I/SC8vtbGFsR6ND3sCFrLcWnQiYRwAv+yKmdRVGJ9alZdn+7YK01xhQeZWMMASStAejrTSilWvdj11zXXVpairrdyYlVU1NTWdR56VWXPfLQAjZaSlmv13ecs31gYIgzMj1zcnBw0PNKrVar0+n4pZARShhFiCCsKKVKqkh0c0Z6vW45rKRpapXmHkfWWgLGKoqotcZYI6UEgpTUWuWIYUPUytzcQDnMss5EdRXFqDI6OuAE5YA+9+iTSZIoh6goagThbBJpLathIMBA4HiMK2khYNH8MhuoVBF+7ubb3WtesmfvczvPOGMfLBJGcC67WWKEZKE/wMnyzDRHiIWOyFNtUb1civJMcU60lsYGnpcmaWiD0asvG5qcEIEjiDr+8NOj735V9NyheG4h4C445OCRw7XBgcVma9f550V5duDI4U1nbt9+0fnP7tvTWWphx2WMlSoVx3HSNPUc13G8qNvzfZdSarSUWc6YU6mWHNcvJDMIsbm5pXq97gelbrerjAZjCPHiLI+iSErpOA7DDDCplepKqeHRoVanM7+y1Ov1jh46nGTx2PBYEdKFjE3jZHFhbu3atdvPOqPZbAohSkE4OzsblCqux5VSy8vLlNJyOUyTqH9CyhJCiDKSMSfPc2vt4uKi53mOw5RSeZ4b5oTl0uTqiTTq1RpVBKQVd6JeLxdqoN4gDpNKzy0vaAPlclkZjU8FggklQxKGjAutoiQeGBw0YMFYi8B3vZGRMc44WBxy50AUtZN4uDTUjZLQCwVCY+uGfvyz2//h7/5+/YYNN/3uG37+85+3o/iMs3fMz8+vC/xSUN7z3G6MEcagtPA8z3PcbhIrVUTLSSG1FwZxJlzX1VoluUiSyHEcJToY43q9HsdxERS9KKXv+1rbgsxgrV1aWczzfGZ+RkoNAISwkYnxLMt2XHzBlVdeedGF59fKlbm5ubm5Bcdx6/V6s7lybOpEHMfPPPNclOtep4Mx3rd/b7leW7Vq8vyd5xz95rcAIUIIs4hg7HnO6lXjQeCdOHGi3WmuX7/2qquu+ulPf+q4DADSNFZKKSHK5TJjRCnlMl+IDACAmoJxS4zRFgLXk1IyTBCgpYXFQpaslBkZGdHGFBQgZACTorlFDDFjgDCmpSyUVghjpTVYBQiKhS4hZHh4uN1u93o9wEilmSKEcY4oabfbRdk2xiIEGCMFhiAwSkspi7GNMchofXoGa4wBSr9281df9vLrtpx/Tq/bo76HtEaIMCBR0isYIGmaFv8uY0BKCUI5npfkaZJGYRi6vpdmmbUGYyyzrFBgaSmQBcfhRqmC3qutRdoWTGxkwQgplFxZWkYI5VJxxwsoMVIqLaxWZV7inIO1eZ47QehxV0pFGLHWWoPMaSRH0QT3G6ffDpkRQuTU//SH4f/r4fz/K8CFSwUXDmVrwSJAhfHZWEvf+PY/3HDGOfsOz7zi+t+VxN945q7rXvu7Oy+64s577nv169+8YduOJ57d9/4/+9jazWe65YGPfexj+48eftXvvGnbOefHwgyMrnLCxujkxsuueUXcakopv/3tb28/68yzzzn3+eef//hffOzue349MFi/6847vvKVr+zYseOXv/xllmXLy8ubNm9+8aUvare6Dz74oDFmeno6SZJjR49u2b419NxdO8/9yEc+8sY3vP6C83cdPXr02muvbbU6Tzz11KtfdT1CaGBg6LLLL//GN74xMjpe9HNKKUp5FCVJnIHF9cZgWK5gSgBTIYQFPLFq9ate+7rB0bFSo9HrRZyywAuM0Zwyi8AgY7QB2md3AyoIUwAICCEI+tkHBGOEsbEaALQ1DmGFDr44aRLcj0eQVhcBCgjBad53UUxP35qnXkX6LS6A0PYFYFJ4ocQZIXOqkzZgCxVYUbxPn7AAGaMBIdC6yPlWxhirdZHYxQjBGKdpWhhIlFJSSj/wkbXTx6aogZX5xe7iXDUMzty+bdPGLSsrK91ut1KpLCwsGhMMDTaUEq32Cnd4uRJqrfM890jJcanLGca4sBz4vj8/P99aaW7durXb7eadBAAYY5SyAr/HAecI+ZyqWEupSo6OW3PH9+6bHB4weRwS1Wh4cZ6NNQaOTx3MdaaUsNxlDrNKMsas57qEgc7BKg6gMkGhWx1vlFYNHf/377Isv+OnP/3VT358zvkXVweDlSgSTmhSHXA3Uzk1UB0a6qw0exZKg/VU5JRSm5lUCUQciKOSTWaOHGTnnr1mfNWJb90+21vEZ2zc/qLzl5pL3hVntb/44+uuf+Xv3vQ7f/Cud/phaXm5OT460Vppu5VwenlBzKvNG7c0B5Z6vU6n3VRQXVOdNFo4LqVIJyJjrqNkbqQSeY4AhhqDJ2dnXMZHR0fTNC+VSoWdlxBCCCpKoBsGuVBZlpZKJYzo4sqKF/ih5x6aOt5oNIwxoevsOuusfXt3Qw6GQSrFOTt2RM3mxnXrMylylQ/XBo0xUsp1q9ecnJ4GJYeqdWOMtopgWF5cSJIkKIVSyjSNtYGSH1BKZ2dn0zQdGxvLtXIdJ/T8KM3yOH7wuac3bdrkhp7QqtOJwjAEqtvdju+7nHPKGUWEMKoFHDxwoN5oDAwN+r7farXyPA/DEBEsRXb06NHJ1WuZ72d5xpmbSyWUNlQfm5qKk6zZaS7MzG3etk0y+u73v+9HP/heK+ruvOC8T//nZ33f7+WJtbY2PLTUWlw7sGnt5k1LS0tSijxPjdbXXHNNifNWszM1dbLVas3MzzWby9xhQehTYwAjd2xUKuV5nrKQJMnA0BgntBtHhBBKKcJ907DjOMTljuOMDA2vWrVq9erVAwOD27dvX5hf+vHtP5LGHDx05LZbb/nlz35eEHTGxsY+9rGPvuSaqw8fO1EZHP7JT24/Prt4zdVXOZ7fjjt5nu87sP/Q4UMIoTTLESEoFxjpLMu4Q9esnRwZHHnqiSc/+cm/RggVER3WWtd1ixW7NtJYrZTAGDNaZPGhTOTW2jTLus2WtbbWqM/NzZ1xxhmzs7PrVq9BCK20O2AttgCEWKO11soazlwMOs9zLQT3HKWkUYZwrpTCCBVWyUKSMjMzq5TinOd5xjyPc26Vtqpg5QKyoKUhDFuMlVYIYcoJZVgrq62y1mKKEAKCqUGQC4ExnptfmF6Y24HP61KMpFbEUqUzIzHG1qIoTRBCGqyU0lorhHCA3X///ZNrVvu+X66SKIoKghQCRAAZqRBYTGnBgiWMEYRyKY2xiGBk+yqu5srKnoOHt23Z2um2rFaUYQxGW22UxBQRzgwqmFxMaF30J8U6z/7/CugpZRacLrpQpDqhU5yNU+3RKW+oBYDTbfDpjLsXVmhrre3HUlj6ihtuPHTwcLlcnZtbmGt2RifGh1ev++md99YHB1hYuuM3920862yH05lW6x3ve+/R2ZmRkTFC2EMPPlIqB/X6wP79B6+77pUf/vBHsm7z85//fK/T/u43v7lu4waj7fLy8tzcwhMP3osQevLJJ5VSoBVjrFZrxHEqhBgcHPzFL38mALZs2vzEo48gZJ9/5pkfff/7f/d3f2dlZrQ8duyo1ioTuZByZn55zeTkI488xri7as3aZjfaf/AQY7xUKuV5jhDK89xiBAR3Op0ojqWFoBSed/6Fq9dvsBSvXru22elYMAzTAsHoeF6e55hiwAhRJqzFABgDhr5JjZ6CXhWF0xgD1gIujjNYGo0wKsqh7af/FTuU/3sJiwPaC4vrqQuET02psS3cYqgI4SLGFs6z027G04FZp9V3plgqFxdSa4MQElppZZEFA7aosgghJRVirGhuiqVO8SNFnK4aGfuTd7/P5zyNO1df8eJus4WUOXniuJAaAFZWVhyHU0qEEAjhOI4QCl3XkVJmWWq1AEO1MYpQwqjPqBAKAChnhZS/EHpIKSll1tqCYYItcIpj0QNtSl7w81/cEbcW+NhQZ7ntbYChRnj8RPdkdtx6zlkXX9zrpSxSCTOSQ+xaSkBYWaFuS8Ps/IyK8nWXn4tnV6Kbf9l9/gAA3HD9637v7W+6+NKr/uMf/vaTd31Pjw3D/DJB1kFkubXEy0Gj0VjpdJIk0WCbvY61FhAhCAjncqFbRl57odf21dqP/tGORD1/x12P3nX/yMXb6+tWz9W8ue7yI/c90HDLkjhnnblzcWF51WScCVErhfUwyPIYjMBgNqybtNZqlT368P3r16/ftnkblMtCCG2s67rDjSFlVbfXq1QqnGBrtZR5roBqSgC5LscYayWow+M4rVarrsuVUp7HAPMoibpRNwi8OO5VyiEoGTrerl273KB2bObk0szU7Nzc5OgISG2RmZ+fF1EipcSUVCq1wHfn5uaqlaBcDpMkaS6vaK3DMCymcELJoaGhX//qLkrpZZddduTgIU5wUC7Nzc0tLy9v3XpmxQtEMu4wThElHJWCsNeLCSC/VOp223meNxqDBRsBITQ80PDCAIwVWS7y3HPdMAiU1g5CJdfnGIHSYPHS0hJxGGGcY6IsUOxYgp978tnNZ541M790xllnHtj7/JFjR0fHx9esW9ftdiu1ehEUv3bDulxKz3FLpZIWslwK77nnnoXFldjFJ0/ObN16xujE+PLyohBifHx8embOQ5YQ4nhBlgmjEaXcdX3PD60RYxPj2qJOr1tr1NM89zyv1qgODY1RihfnFyjDyFgt1fGpk0bps87cMTI8+NlPf/o3d98VhqEf+PVGQ4N9+1t/72///h+ufdVrulH8e295q9ZaKbll2xmLi7MUzO0/ug0BwoxrY8bGx1vNZaSN77t7ntqzdu1ajMFxnKWlJYwRdxxlDXNcpVSpVCpqsOf7FEiB70iSJMuyOE0odymlYRj6vn/06FGt9caNG//t3/7t4osuueWWW972tt8PggAjJNK8b9SxAMgU2CfXdbIkxZxhigGAUgpWCyGKnrhwbPi+nyQJRVgLmStNCGGUCimL5w6llFCMKVEaa6mNURghraxBEpBFCBekiyLd3nVdDfZz//HZ887dFQzV8yQ3hGgN1iLALMlyhHCSpK7HjTHN5nK9VmvUB5957vk777nn3e9+VxylRkvmcMdxtJBaa8IoJkRLRRgFjDDGUmljrAHLMDZgtZShH5w4efJzn/vc7//B2y65+OLZ2TmZZ1LmSRRzRmrDg1pr5nBDMBgwYDnnhUPi1JPWoFNcpNOrX/it3ej/1ugXjqBf+Ex/4fMfTvVLRfPcF/QghKylMzNT5+7aUSpV9uze22yt1Crh1q2bCKEOIS4y3aW5tL185NDBRqOxsrRcLpeXFub279+/devWleUlIUS9Uj18+HCv1xMiY4w9+8xTe/Y8L6WuVCrWWrC4213yg6BUqnS7XcZYFEXHjh3BGF911VVPP/nMWWfs+PyXv3ho/z6MsZIwPDZx8cUXh0GwtLg4PX3i0ktf7Hq8s9wdGR2++b+//aILLzpz+/ZuLw5LZa1tFEWOw4MgaLVamcgRxrt3751fWKo2Bi6//MpLr7j80suvzPN8fHwiztJCLFYA1ZQ1mNNY5pRTZQymtJjPG2uLc01f8gyoL5q3lhCiiwIM2BiDCIY+tAysBWyhwKkU2X+nzkOo7xv73xfMAEChnAawgPtUDYQtKiY8iPRTs4oe2J4+WwEAQlZbg5B9oeCr8PtaRKTURQaitdYoY5TWWitjpJTGmKIPtgg45wCQ6XjdhvWXXXLJ/ffcywhdvXp1q9PRgJI0N8aEYWitzUTejXqMMSMlpbQIby6Xy0VlJSRnjBmr01R4nmeMmZxcAwBLSysIWYcQhJCUytoCj2C1Vo7jxFEODowMDDx07z2dpcXB0XI7XrGaJ52WyGNtXS8o51qUy3WLkryniIuM1iWft/NcahVTZBlxcj22YU3lmeO7v/ZjLQ0tuaDhLe995/BwI8/z8bAGwlBp4naPTo6KLNcOLU7cFkwaJ34YWADGmDCGAlTDSgeb2MOu6T26+7767N4Ldp6/5TVXsef2H1ueHyh5zKLl49Nrz9mObvvJ0omZK978xsbwoFA5QxAwhqzpJKlD+NhIlRCkhVS52nXu+YzShcXFLBWj4yOLi516vS6NTNM0CDyMKYBpdtpKKSn10NCAlDKOU4SQ0bJWq3W60crKSq1aZhglvS4iTsh5lmVSCspolmUri0uYQNyLGA22nrk9TpPZ2dl6uVIOAyOTSqXiB4ExJs3zTtwtVcNNlY2Li4u5zvM411q7rotp39QuhEiTfGzthMcdS+y6zRuFEJnIG4MDcZrkMisF4ZYtW9I0LdDBjDoeMKDEGGO1kVKCsciCzIXv+aWxVbkUFiO3UqlXawRAKuVw7gCsWrVKapWmaa1aJaRuMERJaq09fvKEg5wwDO6+654//6u/WFhu/9XH/oICrF27dnF+vngIKqXSNEnTzGOsF8UFOkNJQRB54DcPnXn2jote+8oHH/vSXPNxz9s9vmpMay3AzTKzJIUxZmTQPXl8KvC9LI3HhkcOP3po9ZqNR6ZO1AeHciUPHD0+MDx09jlnt3rxM0/9qiiiSmSew7VUvutKKaMkASXvuevXFNNerxeEoQY7MblqYmLsy1+++bwLXwwAnU57enomjuNqtVIOSypPjh09bI0C4IRQKSXGeHx89dTJGcqY67oLCwsFDGR0dJQQ0u1Gru85jtPp9JIkIhR1ul0EkEaxtXZyYvV5F5wvhR4eGz/v/PNff+P1jUbj9a9//eOPP37DDTd8/Wv//ZMf/fSrX/0qGNvpdIpOuijk3ShSIIwxUojPfvELX/ziF59+6inqOgjjPM8ZLRJf+n0FWEiSxGhdJFgbYwqAZYGqBQAwRmqDFEGFzcIYpbW1FrDFGGul+tYeA4gSaxRlzsP3P/CFL/7XP33qUwebHZfySEhOuNFQdOfWWpFmQmSNgXoaJ9PzszfcdOPDjz1csAId7imlOp0OM4g53ChtreWcO46b5ikGsEoXDzRlNLIgpcQUHzxyuFKp3HXXXSeOHz/vvPOXV1qO5xql67WKy3ixs5dSMu4gC8XMEKMCMNx/2iKEwKLiPSkewsXTFgBO7xBfWGiLMoxOsRZ++1lUALCQecHqEE5nKGFMv/jpTyNKCWZCZoTgbrdbKpXrtYEnH35wYmx8eHj46aeffue73pG2m1/49L+EQZjmmec5+59/Oo7jMAy1lgWTBTARQjCKa7VKpVxemF8amxhfWVnZMLhpYWFhfHw8TfPzzz+/3W4vLS0sLy4NDQwfPXr0nJ07//Ad74i7vTPWb/r+92+55Ye3/e1ff/w/v/Dld73zHWPj4xOTkwShY0dPWIP/5m/+5ie33rZh3dqjR4/KXIyPj9bq1TjqdjqtkbFR13XDsLxr165PfOITF1x44WWXXbbUaxulXe6KIkYQI5UXLm9tMGCMMWdKac9xcimRRQT3d8Dk9JQYIWyxthoQYEz6JRMVOmOgfZ5nAUvpB2u80INUfAuLfzt8sNacVmZpi/ApR1IB2AKLCULmlPvIFCqs/gXsp/4CFI5vKHIatNbWFipnUxTa4guKilvUZmOMUtLlRbQiKgBs1lruuiut5h//6R8/9OD9A43K9h1nzS8tU4atQUpZZUySJMW9jhA2oF3qCiIzIZnIMaOcUcBYGm0sYAxa64IlSynllCGEtMiRRS53MCWUUiGEUhog73V6azet/emtPzj0yOMvvfQCnTSnTs5ecv7lAQLH44o7OejF2YWV2dldl77YYtuNVxpuaKiT5Wl3bqmyfqxcCpfufqz05PTTe3bjcqBy8dKXv/L3X//Wxx57Zsv29eXS0KaLdsG3LMkMDv2MWNHt4sDN0rxaqQSNerzS1HnulQOQmlgjZd4ChGPDgAbgyLKnBJlabncOHCAYD/pVOohXv/xFZ6vgs//8/xZPzjmBK7IkCBzMcB5nhbk5dD1iDWjDuZdj7ft+EATdbmSs8X0fY1qrNZTSBBlGHYTI4uKiXwoRIlJnaZ62220tZKlUcRg3VuRaY8rq9Xq9HCS9rkQoTaLlVjw6Ompya5Vu1AZD7gNAuM7fc/Dw1LFjWzduEiJrt9tPP/3k9u3b6+UapbQTR67rW2tFJl3OSqVSnotKpWatpZwxVkh+8qHhUWutXzrDc5xepxsEARi0OL9YKpXq9YFyWHIpV1q5rosQkUYjaxmhQIjBplqpYISLsyvDRBitlQaCMcbGWoyMsZYQBNZ0kkQaXSqVPJ+0o97KcssShCkVLn/2iWcw47t2nHNf8+5P/v3fnX3WrsWZo+UgbC4s2VNQ1UqlwhxOKQXPrQ01MKNayDzNGOO14eH62Pjd99w/PLpKG7vS7swvtgjlDz16++TkGr9Sw8g8/tTTreW533/rm5998rGBWpm5ML80X6/Xtck553GaeA4/uHffnj17onZreHjY911jlFbMYTyTGWjDHdrudV970w2vv+n1rU47jmPmeICRUfo73/tumotWu8sYm5gYF0IsLM4dm5958uEHmysrDuOYUGltc2UFGV2r1Y4cObJ+44apE9PlsIQpAQSO53a73SAIjEXWoFWrVvsOF1ps3759x44d5XJ57erVjzzyyImp6Ve+5tWdbnTHXXfe8oPvXXTRRX/0R3/0/ve/v9Fo9DrR29/+dt/3Hc9FQgCA1jpPUwMWYdBaEUwATJamW7dsefqppxhjaZIxxyX41BSuv7w3FGNzauwHAICtEMpYQznHGBNAQghkCtIiQpjoIgPBWgQYAIplnAXQUmVKcz/wPO8z//L/rrn8yk07zszTXEhDHa6UAgAjFSADhBDCwCJC6N59+5999umbbrqpFIRG6ThPCaNplhHqJHkWlksIIaWUlgoMpL0YY0Q1AYRMLgFjQFYpVYietm3dvjA/+9gTj7teqdFo5Gk2OjpeCkORC0IIp6xIzSlEX2Cs1cb0I6/BFugrhAgUYOjftsLwgv729Lt0ehP8wnbLov462VqLMDldsPt/ymhAiC5Nz37mM5/57699/bnnjz377JMf/OAHV69e/9rrb9y8bf1nPvNvN954ww033Piud7/zqSee/MEPv18ulw8cOFSoMRFCURQNDNSlVkEQMOacPHny0JGDFJNWq8UY239w3wUXXHDdy1/1wQ9+kLteuVyemJh4+MEHwjDM8mTvnv3Hjhy9/757x9ZMBkGpVCpdd9113/jWt7affe7ZO88fmVi9dt2GXrd5//33P/7Y09/5zvd+8rPbr7js0p07zvr2t7+9bs1qa/TmDevXTK6qVCppGg8ODn72s5/dvn37Gdu393o9keeYYD/0rTa2yKs31nVdrRTBGBMspGSEcMp0JhhCjFFjjMX4dCNrCwQVRkXsM6BTb7Ttk1AKUHjx9QV3BhXi/iLr8QW73qJR7juG7P8KoSxOlEVaJjqtozt1RYvbo98QF/05ttYSa602uthAF6cqY01BJUUIF6FDAFCsdsBoinGxWCrCcfsTJ0rjXq9Wq/3Pd7+5MHcSY5REGlnlIY4JUdIgwhillGIlBCEkSjPGXWtt1IsLzW0xdTRSFv9kSqnDXCEEAQQWECFSaoSwVtYW5mnGpJS7tp/x7Vt/fPMXvveBN1zHlWaGeowr0SmV64wDReBxHpa8XnNh775nJiY2VMq1nso6UQ+bXObknA2bm8t7mgfnZskK9jmKJCqVFhaWXvLqV+Gf38Vr7vHlheHGwCAva8alsWFb8IFKt5thl3Z7vQy073hZkqVp6iIKWoPBCBuRdkHrDFuaG9djnfkpj4ftNNHdhCleHR+ef+pYUC59/dbvj42NdLqtsFqpDw3MUpIo4Tl+yQsQsWkaR1G3Xq8Xi/ZyOez1euWwooQ8BQ6USimqWalUEsqkmWjUB3ORJlHsOl4aJ7ziFJe+XC5TjJTMQt/lnDcaTp7nAJDlUZ7JfUv7wnKl1els3Lhpampqbnb299/2FmHQzMyMQRisLQUhaAiHyp1el2ISVF2rlccdDbZcrmNAmRRpmjZX2r24Ozk5yTlnlIKxA5UGBhSUg8FKXRuLMQKjrdYUkBBypbtSrlQsZ9pqSAUAOI5joB+2Ko02WhLKLIAy2lqrldZClsJSmqWxzAkhUZr0ut3QL5XKgUHYIpSmaXNlhVD+4G/ui4TwGF1aWpo+csRz/AN79uZ5jjHmnksIQRgPDg5ajDAlzOHlcug5bhhWsjibnZpr1PDGDROYsqNHj/eiaGykcfk73rpv34FukhCCRwbr2zevnZqa8vzqWTsvJM/tFSpeu3bN2Pik4/qHDh05eewoQmiwUhkbbRCChZKbNmyZn5tLkoRS1ksTKeXw4JBfKT3x/DPn7DjXr9a1RZ1O554HH9x5/sXSQpIknHMLem5mttttb9m0+UUXnjd/8lV33nnnHXf+BhDefsa2gwf2WYPq9YHp6emlpaWXvuQahBAmJI5jJXUapUCwVuam175u6+Yt//2Nrz33zDPPPLvn2pe/dPvW7V+9+b+npqY+97nP3vyNr7/73e9+8tFHFhcX5xaWrn3py4IgmJmeq1arqyfXTs/OZFlW/EqmUkFfvYK0lpzzhx9++NChAwCAjGVF46hUn7LCued57WYTU8oY02ARJkWTaowGRhHBQkoKFhNECSMYyySDF7hji5wJrRQAuK6LAFyXZ1pTTiFW9z3wm6uuvvrJfftKQTXPcwQGMCIU5blSSgWBZ4xxHZ8gWFxcfPD+B3bu3Dk+NkIt0cZUBxvJUkcZ45dsIcpRSiFliAFAkEQRpQxhZLRyGMcYb9688ctf+saOHTtcxzcawOJWszM/P3/OOeciBdgCKozFGHHKrbWobyOxxhhSEDX6emVUfNacboL7WI5iQvm/VoTwv1+nR9X9T71A2HXaX2qtpRedf8FVV17913/zybHx8V/+8lfrNm4KKrW7Hnu4Vh+gCLc6aa8Xl6v1xVb3ve/5o3XrN9904xsuvPiCr37rqx/64w8C0PsffihwSseOHasPDTqIvOWd73jkoYf+/q/+5uvf/s7c3Nwvf/GLL37pS4DtjrMu+OQ//vV3bv2WRORDf/bhi6946eZNa352+09e+bJXbN65vRtHP/zm9+699zfOQP3Fu8677lWvnJmfO3by5C9+cvvs9Mko7c6szA4NDu7bvz8cGDo2MxNF3ZHBASmydtTFXuVv//Xfreed86KLVnodigmjjCCsiM21sgiYy40xyNhMKoowdagQgp4Og8SEYmIt0mCtNkopxlhRfY0xiBCMCQBoC8ZqwmjxjhpjEMaEYGsUQsgagzACsMWe+BSQFgHBWqkCoVXcnQjB6fqqTeG8s6hgmVqktQEAAwZjLFW/Vc37lZ4qrQiixhqljLXAmGusElle/FwBlhGKrbEInMBHCCkhlNLWWqVUkjSLwUuRVpamaRz3CCFLnRYvlTYOnP3EE48hyhljoDPAmDgYGwyAldLE4UrnnkMFQirPHcdmRoAuecTR1mAAgjAYoJgX/Pe0cDVgCDxXCYmxtdiINMnjfHJ84s47777537548dmj3JXIIZRgJEWvmxnGquBbzmjgC4eDRU5mF6Kul3TW1IdFZymr4kHm7//GT5YfeJqWPGBAmtm6F13At0zsvuvBu554oDHaWOi00oVOZfP6N1xyzX88eYe3bXUuhOyuhH45szbp9RqDA4BRkiU6k6xayqOIYwAFSScanhiLjRFZjiiLMXBiSo5X5iTh8PyBo9ev2fonf/eJMveb7eWhtRuMMQvL7eHBoSRJuu3lLImQJePjY2kaSykt6ALQXapWrAaELQLVbUWN+nCGhMjTai3IetHc/MlyKQi8MG53KwMlIZQByxkBbYSIhdZSSoeywHeVyB1GEcEjIyNCyna7q7XtdLoHDx7ced65nc6G5w7sHR4erg8MnTUxkYt0udtGUmutw3KJO1RYmWRJAT0WaWIQTM/OLC8urZ5YVXb96akTQ6MjAfMQQsXkg1JaJAdkec5cDAYVj2FppDSZzhWizAJemJsrl8thOQCALM8Jxg5laRw5oa+kYIwxyi0mBX/YtazbjQjCYVB2fW95elYpNTw8jKU6OjOdOdwlmLIga8+f/eLLiEy67Y6HbJJEDDNrsBBCmTxqtntxnOcZIURraYyhjut53tzxw0JnL3/Zdeeee+48Qm65TLV+9olHpJRrVo0fOXYYqWT75rMfvP8hLfQD99ybJGmz156dW6xU9hc6rEIsBpYj7WhNquVyp9V1HT/PZKvZHhoc1AZnqbjiypc+/PDDn/uvLwZBaW56Znxs7NLLX0wpbS4vlivh3NzJ41PHdpx9xnvf/7as3UII6XM23/T6G/bs2fv3f/cPDzzwECFs9erVzdbyw/ff97a3vDXpdrRURUYOIEjTWFlDGP3XT/8LphgDcjnP0+TE1JF23Dk2Nz00OnzyyLGAOcf3711cXKbMMRb9/I5fbVyzLvD9PM/37NtNCCukqZzzJEkwIaVSKctzkevBkRHqOq4XAIAGa4xyHEdKq5RgzNFKJVJSzgFAaIUp0VpTxowxmGECYHPpkP4Kk1iQmbAFqUMTjBGYIsmIEI4LR4frOwXeUiQyrFSefOLpO+6685zzzp+dWfC4J7EUmSKcSa19P3S8cpqmC8utnTt3Hjl2fM3ajWmmDh2d8j3mcodzTjgOXD9NEgBwXD9N+ltFlWtKfYKxUsLxfIRtu93Zvv3sP33/B49NTUkBYdlFAFmeLC0vlCo+dgiWBgMgAIxxLgVlrPCqFHQtYTSApZQSBNYaY/WphAYw/eGlQcZqoIVkt/hIUWixxbagXiKwxug+vB8BADUFuMkyQjRYwEhbDAjRfccPPXXwuanluXpeueTSF+/dd2BuZvb3/uAP/1wpPwwopZ7nZXFird29e/fg0FgusquuumpibNILwutf87r7H36Iu853v/vt795y2+5Hn/zAB/7kjw8fu/NXd3/j619//RvekKbpialjYG0v6kyMjnz8Y594/ok9551/oV+qTs3MagPT8wsvW/tqAPPoyL07zz5zfN06StnsyelNGzeIKA48d/XkxJFjh7/yX19433s/fOtPflodGHztTb/z2FNPKwtxrt77gQ/maToxPqqtiZPIcRxbTNsRxmCgn3iojDEM0yKnQkpBCC74otZaQgCB1Vqdzge01oI1iBIAsFpp3M9VVtYao621mBDMqM4VADIGGMbolAGpODcVJ6lTMxqwCLQ1CGFjDGCkje6foE7t4QuUhwYwGAqtFTK2LwHAGBnQWhfB10pp00eNm0IzqW0RM4yJ0kYpKRUUXHKAYl/iuk6rlWitldFFj16YWzD2tLZKSIvBSONSFmcpaC2EohiQ6yIAow0y1ihNCUuV9LGLqSOVoMYoKSOuA04LPUEuMko5JUgrLYUMfDcHEaVR4DnWghCp1WrzhtW/+MntX/rs17dsGAgcTjEuQhgJo1newxiPDVTQ1DIyKHC9HAATUi2Vpg4fbLZalWqpsmDmHz+gsoQBkUpCJNZduMu/7gLHcdSdD/zs4fvfcOW1de63K2jfgQPnXHbJ2C9vN9RfgTTXuZUxWMf3faUUItgJgixOugXAFhuRxdhhkZFK2pLj9qxcVRtzXTdebO6fPT4wMvDud7/nj8+6qonVzMkTEoPQc+UgrFarmcgJQV4Y9Ho9l7lSC0wJIUgIk6ap41hqqMUkijpJkoyPjCNKfOZhB8d57nvl1ZPr253IyQThTqvbq1arYHGUdldWVnpRsm7dOsocjHGurcMda63IJePcc7yFfEkIcdklF8/Ozc6cPDk0NGB1/sQTj1166eWFLYcQFHW6zHWU1nEuOOeIurPzC1mWDdZLBmypFASBN1wfiuO43et2O52F5GSBLRsZGXEcJ8vzxuAAZjbqJRhTh3FKaUB9pZTIM2NM4Ptj40MWGSET4nAJgnB3pbuS9vJB7mhAIHWcJaUwJIQKkUsLzHOxxbHIZpeX4yyVQlHXLedaSlku1a1I262FoVL44Q9+4I1vfL3USoicUWosSC0ww6BwksWUc+45WmtruTEGEBFSYkrKXunA/r3lUml2ZmZ4ZCRPku1bt+7et7cb9cbGJtrtptZIZvL+u38D8BvuuMpKozXCeGhoREoZRZHnOUopzwtULvI8Z4whQoMgAGM8xy3UlhjjgYEhg2CpueQS0lua/fEPflAMJwDMsaNHPvrRj7ztjW+8665fnZw6Pjg4WCqVXNfddsYZv/rVr2677cd/+qd/OjM9feTo0fXrN87OzhbphJiA47BWEuUy9zwPsBkdH9ZaW9DGGEq8LDe3/ODHUpjFhRXuhW9+29vL5fLZZ5+9atWqxx97rL3SdBhfu261tTYIAoNwr9fDGPuEuK6bxHGKQEpJOLv44ouLdTImDDQwzJIk45xaa4uHCSmwBhgTBFIr0BpTRimzSiOElJVKa8YJshYIVqnEGDPGlcq1VgBAGBIiL3KKMpFz4IQQZYzWenz1mqHx0aBaTrKUOTyX0hJEmGONRQi5Ls+yuNlcIRQvLy9jjO+7774LLrhgcWm+UildcN7509PTtUo1zSSlVAilVY4xpoRkqUQgAQkhDSE4TgRjXClFCa8N1A8ePcJdh1FurF1aXBkbG5uYGE/iiBFaTC6llBgTa4wFwAgXg0PC+toIbYBiBIj8H2kzQgUasZiH9j+OLGBMi2EkOtXvkmIy3W+ACzQHGMD9CbcBwIg+8cSjP7/ttuUTJ69/x8saA3Wp1Xf+55tXXPjiNevWFxPLgucAVjcajSAIAJleHGmAbifyvCDL5aXXXXLjDTcemZp+4oGHpVadTucHt/7QDwKwNgi8NE1Xr9rQbq7kIu7MZ67jtXtdb8AGlNZq9cXFpRPTs3fe/av3ffhP/vnT/3beJZfsfXz3zV/54mC9Fpb8oeH6s88+G3U7mzdsPOPss4UxTz3zzM7zzjtnx46N27ZaRtds2JSIlFoKCHmep63VWmPHEVojazEmGOP+FpYUWmQLVheD5WKEW2RKF/Zb+9uXwUUxtKZvn4Z+PpUx1lplECp2wMZoUQyHT+HLOCWAwGKA/pLWFDdZn9NtfrsG0MZgsMSeWtqjvvyu0DYgbYwxjDFlrNKaGGOMEUIA2IKojlDfmaC1xhg5jCohLVhlDDYICt4NoCiJuesYY7IsE0ISYjjnvV7EGEUIR1EM2miVy1xoIUABtiCUmJuZKZfLtVpdFyoJIVzGKCKZVI7ruxhrA7lIpFWOX8qyTFtjVI4QkloAtkIJjJCUJgOlhMzyZHRw4M6f3/HlL3z93O2TSia1UsAJw0gTal3uCJH0uu0zN07e8dS8lNIIQTCj3F89NhYisn/vnoXFRQ5Icwu+o6RhsSlv2qC3rTo5PVNt1GHbKqWUa3HHJS52l5vLF+7cddkVV/7o5z+vX7ljYaXJJ73CRCmy3At8DFBkklhA1MPpQov7HuLUFbqYfETNNqtUMKNOvXJi/6ELX3KT2yiFOm+QVZoQQojrug6neZ5yTpVSk0Nj0wuzR48eXrNmDULcGCgF5SzLDFgpEpXlxw4d3vf83ktedCmnjuNQzN1urgvEGSFFsJpcaTbjOHVdb3TVmt7Bg48/9fTOnTuNhTTN2lrXfL/d7lpri4ULpTTJumHJZWw4juMg9K649LIo6gHgLEtardbc3NyWLVtyIamxSZpbC700BWO1NYRRRDAGNL80H8cpIWRlZUVLFQTh8NBoEAQA4HoBGJInmTGQJFFscZ6no2PDUojTSs4Dhw4ONuqDw0PdqFcpV7qdTiUoDVSGDx05Uky2hRBCCEyZtdZ1qe8HeSYRQo1avSRklmUjjeFn7r03S3LHN0pITDGltNNqWWM6nfaqyfF2u40wEEY4Y9ayLEsKbSKlGGMqlLTWIkSAYFD65PGp1vKKtWhlZcV13YMHDpTLZTlrCKNR1F1aWEaEgutUBxpCKV/1PYTtdlsb4/s+wlhbEccxtkAIyaWyQkZJTBCWeW7BMMfBFg4dPoIZM8Y4jpPnOQJgjFmlpRBXXHHZ7970urvv+GWWJtVKrbCW1ev1EyenFhcXX339K15+3cueffq5xx577OjxY3ffeddZZ501ODg4PXsyzRPCaMl1lFJgQErpuu7iyjLG2MFu1O1mWUoRyvPYdVzCWKfX/PWv7lyzYf3b3/7W4YHB22699cCBA0aD74dRlgZhqJXKpDBS+YEnhTBa18oNALAWzc7OF3uuPM8JxsjYwkysjQHSF/EiC9YoTKiRirtUFDiOwBciB4I4ZUopN3C1kL1um3JCKDJGbt26bWpqqtuJDWjPC+IoAoQA0I5du0bHV73l9/9gcGy8E0d5KlzuGSBaqv5j0SiXM6tzzwt/9ctf791/YNPGLV4YZDOiPXXS90MppeuxWq2WJZk1hjH37rvv4q5z9tnneC6GHDzPNWCV1NZgzn0pVGNo8OJLLj58+EiSJGEYNpvNV7zyTcZYMFYXvDIEYKBvPwHQ0E+6e+HQ2BqMoMBoFEtCwKdwC6hPmtSnJ8t9IxO2qL9kBAykmPYXZzdjAXChokWqeOgbS2/9wW3jI6O/87rfcX1PWKuQxhQ/8fQTBw4cSJLk2WefjeO4WilhC9VqtagjzWZzYW4+jtPJiVXWGAzEaNvtRPXG4JNPPH3vvfcd2LvnvX/8/qjbsxacIDzr7POmju3/4Q9/eNOb3s4Ya7ebaxwHEeB+MLOw/MNbfvT5//zsBz7w4Ufuf/TcXRfuP3hw27ZtTz32cFhyldZCZ8ZCc2nZINi0ZfOjjz124+vfQBHeum27MUZai30XIWSUNtoyShmmSiiCkMXIKA0YIYsKsVwx1afEQYCMNYRQjC0hBLTBCCtrrNLFIRcjpIUqwqSQ6afp0sKIZhDo4p2DF/Ixir2vtioTujheIWQLOBkQjDEq4oFP8aIRgLFaW9tnS55eGJhTcZIYY22slqI4l1lUcLdIMXC21gIYra2UfSyOUgpMMTlBmcjzJGeEeoFnMsiyTEqZKxn6QZqmxphyuRzHcZ4npVJl7/PPeZxrIRkCQqwUmjJqjYyTXrfX9vxwdHSMc46V7IqcEJtEvdzloeOFnp+JtNBqeZ5XmMEopYxRrbUSklMuciFzMTEyftsPvnvHz3+2eeMqKxKfQ8njnDFrtVWaESLSXrPdGm4MTwz4J5Ms9IK2hViKuZnppBu7FntDA8nJWUsottjGYsdbX4cu2/bY928fXbU65QisXey1K6XywsGFQ3t3+0P1u+67d+u5O+786c+XfvFo6YItkEvMrEUGjOm02piSarnSXlqsDAwSIb1cucMh0RakSUGEhEfdXjfqUiDUWPC9qNl21zkrS83ADxtBWSplNGALDmVgDMMsiROLUVipGgOEMN8nIkvLlZAiaqxlEVm3Zu0TTz357LPPnn3mDjCq3W46lZrnOO1my/OdWq1adJ/GmHarWyqVRgaH9j6/+2nz5MTERGNw6MDRA91yaWxkFJBxXa61ZpwsLs4jhMCQ0ZEhoXKpcsdxOp0OALicrl+/MY5TSiki3Grpuu7w4CClFNu0YFElSRIEQdZqJ0kSlkpDlYFyuSxUroVmjPWiWKvUGJuI1HEci6C4xL7vam0JIXOtzujkWofxXqLSRBsdM+RYSabmpjzPWb/+7FwKx3HiOBYyK5VKRhWBBIhzb6XVttbWyhWtxJ79+wjloCRjTuD5QHFuVCdOMMa9Xq+ANCELvW6bscLPZqTMi1aNUoopQQTlmSTIXHjBBXPz82maH9p/oDgkZVmGlVJQWBuwsQaQbc/Nc8/NpeGcG2u543LOlVJCSASUO8wYY41xHS60cii11nqBpzFYbTihIa7kSgJG2pow9EArQogVQnWy97zvXcdOHDl4eL9f8kMncF03T5PZ6ZOe56VpevTIQc8LXIe96c2/k6aZEvnx48fn52cNAmMMpq7jcZILMNYljsx1NahUatWZqeO+SwE0AMaMGiWyuFcdGfKq7vEjh/75n/95ZHDobW99q1Z29559p9zkhFEKAGkUU0qTJFm1alW9UY06XQBYWVlCCGmpXO4UJ2Z8SvuCT0UhEUIsaKWU6/jWGKMVxiSOY8KoymRmBcPEGsMwCsLQaIkxjhM5PDyaZWLbtsahQ4fSNF81OVmr1UYmVh0/ftwYc2zquMJQrdYQJYhgWeAzLVDOtdZaKmTx4sICpbRUKgVB8Otf/9rzvO3bt/3wth9f/uJLT+LpMCy1Wi3QsGZNLQzDH952a6fTOe+880ZHR3ORU4oIYdYSkWsl7cBg3eG8tdLauH7DgQMHyqXSpg3rO+2m73pC9DHXBRyweMcKMT8AYI0pp8U0VCjFMCnqr8EGWyhMJkXtRFCIvf6XKLrQ6hatMUb9JMS+oRQZAKSLUICC4GEsve66VyVWtfPYSIUQetUrXrnSbr30Da/+5g++U6vXL7zo3FK1BACcu0mSOK5vjXEYHxsdYYTleV7yPWQsQqi5sjK3MP+pv/973/WkMkeOH7tw5y5A0IvSkfHJxaWT5XL1W9/8TqvdbC419+1+dmy0UWR6XHLRpVs3bb35i//1qle9ysGOEzj7Htx74+/ckKS939x/f5KllWo4MDxECH79639ncvUax2GgodguaLDGKooxxQSs1dJIKXMpOOeO42iwYPpUqmLGYq3JlSrWov2b7pTLyBihtUaIYIwRIkopaxCQgiRjT3+Z1n0CZa7yAuBSbAhMP6nDEqwxxoX5tQhqRcYaYpABY0xhCC461wLdKqQoTl79g2f/Z4HExV/YFtJipY0xoijMheALTtnUikZfSoEsIEIwQo7jIEq0kN2oVyqVHMdZXFlOk4xhmmVZvVp79tlnj00dv/DCC48fPyrybMum9e3lueeffWLd+tVhyLRW2sVJkigjo6h78GCPcFJ2w6BWKvuhkv5yp9XJU5957bhHDPi+TxDGAA7nkRCdVttxHKHjbrdrNUyOjd75s9vuu+P2szdMEoQgY56Pi98xMCnFjCHmcJRLibQcq/LnDnVGBgaBcOb5yFrGnVYabd+0fQ5sPj/vKahe96LmWaN50ll9xUXtpw74eQiBO6O6S712c3GxXg6Qwx/49a8ope/++J/ddevtDy2e5I0gQDiOEougVC1nQhCEw0pN5iJttRwgYGzc7biuB4jmeQ6UeJ6nkpwqgx3SbbVdQKVSiWDSkxFG1HG4Aq3BKK0BkMEUY5om6Uqrw7rR8PCg63FjVDvpJkIDtpXhoZe+8pWdTic1+ZHjs4HrDVcFQZxTkkQRsnZxcdH3fZnLxYUFI/JKtfzGG2586NGHv/bVr5x91jlXX/OSXq/X7nbqtUqRNSdkppRyHCcMy3EcI2Q7vVYSZ6VSCWPMGHO4q3LhYKqyVKl8ZnG2Wi27rpulMec8z2Qv6h08fGhgaMQvl8JymTOWmwwRtNRcxhjXao08k0tLS35Y4pwjwJigXrdnrSWUIkRKYdkYm2QZY8xQ2ux2KSYizVZPjjucriwvWmsrtao3UDcIVlZaUmc2AoxxtV5r9dqu6/qsRDgbHh0Zn1w1smptlKTPP/24JuzZ3fuoV+Iic7kjslyqzChFMVYiQ0CUEcUKRmotMIbCta/15rPPvPyKKx566KFO1MukCMMwjuMNG9b90Xvfs7KycuTIkbgdTa4af/yRRw8c3NdstxllFIHSOu9FhjEhRPGLnMt+UyuTnBBirRFp5jgOcUjU7SDHVUplIieMub7HMNcYOKdLCwvvfNcfXnrpJV/68hcoxUqJzAACo7UUedzt9Fur5sqC0vmTTz96zjm7/uJjH/nUp/7hkUce8R3XdRyFcZJEHBGHsSTupWmKKWk3m8iCUgoAh2F47tnnccftRr3a4FDo8manvWnThl/c/rPPfu5zf/ahj1BKi1penOSyLLPWIo2ow3tJb3ximDu03W4DQPH4wRQpKSmlp+ScAABKKQuAMdZSIYCCjwEF694axhj1PC2Vxx2ZC2SNUkIpwzlGQJSwgwOjZ5111tq16wkh9957b7vZ2rt/P3e9619348LCQn1o0HW9clgRqeDcVUrmuaiUG1rrX9/76ywTV1xxxcbrN99889fm5+ejTtd33GazvbCwcP9DDxmjn3/2kM/dXqfzspdeu/2Mc5TGy82V22+//eqrr+aclkolz/OsFZy7gK1REsBUK2UlZCkM3vLmN7nc6fZSXTDCCim11sVOqi99RVAs6ayF/jgaYWOsPZUxaLAlAKecwIVjyRYuo4L6DC/gIwGAtoWYq9hEGkBFfwW2sJ0iQBbRZipjneVKapFHSb7j7B2fmFwT1kqU0oceeoiXa1EUPfzww7fccosWqV8dIpgcP3L0jl/cOT198rnnnluzZk2j0RC5qZUriwsL//nF//rXT/1jnCYYU88LUmmyLGOUxll60SWXP/DIE088/uSrX/GqSqXkegFwnlm11Gm30+Sa111fn1h1dHFp3bp16SUv+uVddx49cshau27N2rgbS2OZwzdv3cIcF3Rf8Wut5Q7nGGWpwBQBoChJhVJ+GGiMol5WFDBt5KlxgTWmIEah0zeWBQ0AlFIpc4RQnzJm8amCbYH1bUIIkeJmLWy4GCghCp16wSnVMXUMAHCqT03qbLGiP03AKC6dhYJaVfTcyFoDxmpjcH+UbTVojIsVBMEWtFFCiOJ4qrVmjKFTt0vxy1YUb2MsIZhyFriBdnUWJ+122xhbK1ejTm9paWl5cemh39yf57k06siBA62V5dWTE93Wsue5E6vGii7HGGWM8TzP87w0ybXWFqPY6hPP715eXl49sfbc7WfxgOdEB12/m3QR4CSLtdZpnniep2M1v9gMQqdWq6kk/fqXvrh4fOrC7dtlkmRZQhiq1wcC3xNp6nCcp4IQlAullPEctma0Bgd6mLvUDdI8Y9TVIIORoaN7Dg5uXtVcXollrn0sdu8bnRivehW6bX17dq4U65nWMid4fNvGUc/t6rx1Yhb53nve/o6lYyf3PdrE2O11O5QxaSCPEuZwijHifHlhAUnljQ+DMYCwdRkjRCNtjMm6XQfTSKagBMcYGSCuz4TWRGKMlpvLCCHP84xFSdIDi+I45ZxnWVYbGVlYWOCcGmMsaGPZ0UNHtm7ZgimqBiUh1OLcfL0+UK64lGjOKXM8beTwYCNJssmJ8S2bNk5PT+d5nsl8x44d27Zt27179/NPP7XtrLN7na7RUCqVZmdnHYcx6hXiviAIrNXtE7NpmoZhOckzF7ki7TqcI4RcxxF5CkbXquUo6vleiC2sRK1Wq+X6PmE0CALOeW6MVqpSqY2vqbbb3V4mNdjK4JDPKaWcUsoYq1RKy8vLaafHmFPzfEJImmdupSatZiXfGFOtlYSSnW6LYlKrVZTRea7bva7WtlarM8aSXiRzNblqVZIk7eWldZNrLrzoIko/L7Jk7959SuZJZqO4Ozo+djxqtlqdWrmSJykhBKAIfQNrTAGFLaSwgBBFxA395555fu+e/Y7vce56vl+gE3tJOjU3c9111+288Pz5ublXXntd1O0oo3tJTMAWauGZmbkjhw+eccYZ9Xo9CII8ygjCcRxba6Mk9sPgueeeU0KGpcr83BwYu2ff3mazuW///unp6Vj3+vGgCP7gbW/d89xznGCjFbEYY9BGJGlS4Adyked5LqWkFFer1enZk0FY/tjHPnbvPffNLy4oaSTKjBKGsl4vCcNwdHwkipJNW7YwQl784hdfffXVf/6Rv9jz/N44TiqN+tTM7MLszAUXX9hqd0cnVr3owosOHTk8Ozvrh6VcZFprx3F838+yLItT6rD2yoq16wuoViaFAetwLoVECBkEGNPiRtKqmMnqNE0ZZaVSqdfrFQiEPE2Y74OxWiqVi1QbigmlTEqJCcOEgxV5JgeGBh0/KGMUBME111yzb9++kYnxv/mbv52dWzg5Pzs/O1cOSwlOCBApM4IQZTiO45WVlbvvvmfVxGS71Wm1VrJMLC0tnXHGGdxxHrzv/h1nntVsto5OHV89MTk7P7cwN//4U4/HcXz1NS+58+67zrtgZ7kaOI6Ti2xxen7Tho1SJoQQhnike67Lk140MTpSKgWdbqtSq+Z5RgoavDHGGM45QkgIwTknp+LetdbG2iJRSoNFxX8IAWADCCMDxp4SDPWBSadQ/YAtLgaZxWO876ZByJhCc6sLK0x/9I4N7eYZ0hpLLRJ5pHWiUau7nHKNb7nlFi3TxKCxifEgCEqlUrUy8qJLX6yNXmqudOMIIeR6vN3r3vnre3q5+PnPfuIHXntleWVlZXLtmlWTkwghzLBIkupII4q6M3OLtcGhF112+Tk7L6KB8/ef/syFV16xefMWz3EstdrkWor24sLS4uwzzzzz9HPPBq4n02xhduncc8/9+F99IteqF8euNoQwLTTn3ACkeUxssZW1WmtMeSZkZ2Epz3OfO4UhRylFUT8ABCFkrEIInVJgoWJNizHWllCEMdZFwYa+MU5hzAq3D0IawBTwAQuaYAedZi8jVFRxACAMrLUO55zQohcBAA1aI4WKQN9THqT+CoSS/vHT/PZbFfMJLbUBa61VyiIEBFFKaS407v9ca60pwJBSyka5VtCeEUKdbjfPc9/3S6WSyEQv6eV5Pj4+vm/P3ixOvva1r+0855w8i8/ZvpU36u3lhYyzPI+D0Ot0OhQTQKbIAIl6iTHGC7xjx488+sTz8ydONBqDn//sf68ZHrn2FVfUBsONq9eiwPd9nzNkKcGYaJF6FK3ZvHFpbv6O224/evBg2lpZPz6Rd7pCZH4pZByq5WrgOQSbYuJAGDY50gpJYQZDBkpSGjDPj7rdJBY4pKVGPZVm/vmjFS8Izl6/dGgGD5SWhUnrvZHxibHR0b37j1ziNnau3zITtULmrC2FZ247kxgIGb9kx86v/vSWybM2KiUBoTxPnSDg3Gk3W67rMu4YbTRFxhjCmcxyDYgErkwSWgociVItpRb1ShkATJ5Tx7cGRCaSKB0fHy3O0UGj3my2AZmw5AehxzihDm91OpVKxXPDPFMD1UZzYWVwoF4thZLql179kla7S1y8stICiy0S3KHIQq1WwWCb7XYhXm91eo7juJyffeZZcdKjBC0szi0tzA0PDo0OjzCHJ0kSpUmWqk57nlC0YcMGSnk3jkJaFiJzPEYIMVobY4JSGJYDQnlYKk9NnWwurxR6QIf55bDkO66RKpPCcbyVZvuBBx48dORYs9nsdrt/+7d/k+RZiOny8rKUslwO64MDaZL3epHDSKPeMADLrRYY63ksiqK0lwFzKaae5y4trZQqZWmN5wWEEI97YGy90ojihCHG3FKZ+ljaRx5/rDE41Gm1Qz9wdTy+ZvL4gf3HDuzzXD/LMmVNIVNCCCxgrTRjpEBsFlUZAAhlYckvfq1yKSnlvW4XAKrVaqfZ+qe//Nvbv3ebBd2Loo9+8EOved1rP/DhP/31b+5bv2l9pVKRWb5uy6ax1au63e7s4kIcx1ZZDEhkWZrnQsl6vd7sdggh3YVFAwgRvH7zlh3l8qVXXjVz4qSWSmmxZ8+ed77zHY7n3nffbxzHkcpaYxBBaZoWcY1RFCGEer2e53nlUi0sV8qVyvz8/MjQ6He++61LXnwZl3kp8NqxaLXbYOHf/uOz199wY7PZHBoeBWMtMktLS9/64fenjh6L45hyt9luMezUG1WlVLVUeujBB9/zrj+q1hsGLBBjNBhjLCBjreP7HmcdIev1+vDw6MzcAmPMAlZaAyYIg7UWMEaUAFiMiqkwkVJapfM8L6xKyBqXMWstRdgYTSkpBWGv11NCWHuqkQD71DNPv+TlL3MCf3h8bGb25K4LL3r3+9+HkJ2dnovjuF6teY4Tx7ExtlSqZFkaen7c61bGxo4dObq8uFDk0iLQGFNrbafTUUpIkSkprTYW1PTJ40mSlKvlqeljtVrl2d1Pzswe/53XvwYA0jTX2j7z9POUsM1bNuV53um0XI9jUhoarruuiygQzpI05YwWz1dCSGGFtwiMMUopfYoWTBillIK1UiuKiQGLTlGViqAcsAVauO/ztQUN4lQ+Yb/HKojE1hoEqCjkhfIawBoLCApuJhVppo0yRkVpQimPhMytjlvN1RNj1mpF6Be/+MXQdf7ove/56pe/tHnLtnPO2fXKV73mwosuklq95vrre3n8pc9+afPWM+664xcDjcbc3FynufKjH/0IMyqVsgDWiDWTo0pkUupt28/Ysu2MH9zy48Vo6U3X38hdN+pFtaD0ze9+7+CRAy9/+cuHGsPjo6OPPvqosbZcLk8vt1929cs+87n/SNK8KxLX9XKhHEallEoaDVYoySgoaRDBlHKPsqzT7XW7nPPIpEoIAKCYYEqVUlYLhJAQmdHSnAok6E9xCdGWA7IIaaUFxoAxYEIJRWAkBQxgtVJaG60lBoRwgVtFReJU4WE3VlmltXW01laDRJIgzLlEBcODwOnSWwyui3KrMlOcnopaixCyheAyU1JryvqLCowL2JY2BgCsklbIzBhttQEAz/OklFCQPjDmlBdd/sLcfKlUXrVqVbPZjLq9rVu33nXHr04eOSKznCH9+Nq1BOmd556TpT1Gca/TdV2HOgQMEjI3BlzuCiE6rW7UjV9y0YufGzxw7OhsuTp6ZHbu6OEjYwvs4R//aHhyXcFwB4AkyYzSaZq2293pI0es1YMD1bGxQZ11uMf90HcCp8K4y7jDKCCFMctlpkG7YQljKoTyORkZHkKIlErVtNvMUxmEbJAH/hlDJ5dmt61Ze6KkZroLMN/GJV/VTRx162Fp/MKzLtl+Xug6ZROY3LSThCudm6zJeze96fXPt2f/8RffK4+O9npxqVbnlC4tLRHOXNdljPWMTjoxq1AwwAnFjKpciiT1wlATSLRs+OGuNZtjbH3HBwmSoPnllTDwpbHt9orrcaQl8/mg1yhOe0rRPM8d12+2utMn90+snhgeH7dSWmssRsvLK0JaizDKkJAmTeMwDKVWDscqEQONRjdLLMWUOcenpyvVss/Z4tzsurVrW8srg/WGtTZJssXFZaUN4YwxJvI0SbIg8KIoAciEUpQpzilm2ILljhd1IqV0FEXTM3PT09O9Xq9WrTqOU61Uq7UaxljkedaLDRV53N2775BL8dlnbK3X61rmvZUFg6C90gyCkuu6rU5venZ+YGCwVK7umzshTkypXLR73fHx8dX+OOEMGZpaSLPEKE05I5RqbVrttlE29vNKpTK/sNhqtYaGBo1SaS8eHhicmZlzHGfXOTt+ftc9M7MnP/LnH3rzjdf/11e+9vDjT911592VctXxPSlzo6USmlAuVUYJBYCC55WJ3Pf9NevWPfPE01mWlWr1ImfecRyPO4oL5rrP79kNGJXDoNfr3Xrrj6697pUvfcnLK9XqI488snnTpt/c+5vQD44eOjQwMFAuBRKMSLMkirMsidOk2WwePXoUY0ww9Ho913V7vV4uhO8GaRxXgtLCcmt4ZOS1N7zuRz+6hTiMUDCgAJkky8BYYyVCSCqttfY8b3JyMvDqhFELEIbuE088cdFFF//VX37iYx//y/ZKd3x88m1vfefg6OiVL3nF4aMnKXd7J2aVMJiQXGQr7bQxNFa3oK0ZHpuggJXRxioMcPXVV3/uC//54Q/9GSKYOhwsVkpZZTBgZGwcRdaY/fsPhuX69PSs0pYQxLmT5zkmFGErcoWLFCNjpZSYIMaYFlIppY3BjCJsCWPYglaqeFB1e50CQVVYKqTRYSmI4qgdtcvVisHQGBg6MTujH7OrJ0YxoeVKqC1KkoT1eoSxLM9llqeAgtDL0njjprWbNm1Qxq5eM3n08KFDhw6cd955WZZ5nrN29ZqTM7OVcrVaqnfaESFkaGgEIcRd7+TJGUo5QmR5uel74UBj9ILzL7njjjvu+80jr3r1K9asnmg2m33FDLKYYkSxspYhkLng3MGUMMZyIQghGCMAZHXhKCEGbJZlBGPGmNF96C8gRDDq73MNyP7kAyPcp2ehU1IteyozuHghY4vjI7Kn1FvGIIwLshI9cfioNgohm+eyVqsFrp9pVXFKc4sdL/AdDyQmTSE3n3nGx//2bxdmToZB8JKXXi1kxjl/7tDBE7MLO7ef9c53vOU39/7y1a+6/qxzdn7ik39XbwwsLyxt3bSZA3zqU/84uXqVxub+B3793R98c3l55bprX3n56CUocHrdHsOEud787GyNe0snTvzVn3/onrsf+Nd/+/QnP/nXJw5NffC97//Uv3/66d27dSKNz5M019p2TNzfthKilIqN0to6jlOr+VHcy9KEc4YxSkRKwGKrlDRpZgpiFELIGEUpLaYQWZ4jRKy1OhPUNbnWlFKCcbFo18IqJYueVWsJANooiikAYESpVKYQJGur+oUPc85NmgCABqT7FGhTHLUoEANWI1NY1gG0xQgwAom0loQQZAGwxRgpm1NKGXasEQBFyddGmCSXygAiUEjwtVbM4SzknFCjdNTpAQBzHcBIGeM4DqUWAPWipNeLy4FvtSqHweSqCdB6YmTk4LFDmLJKud7ptMZGB5Mko5Rrm2ttKKWeHyqlLEJWyyQVg4OrhATfCdsilVoNDQ71emZidVCxqw3SUdSZOzCfZ7rdibTWUZo4Dh+qe7VKWRvJCVA3LGBkBJOBes3hBAFw6gkptVTcoVnSq/kktsYhaSPQMcF+ucKXYf7489vWXV02AEYMDoxMTqxe6D47tOFMZzssHj2RZ3pJdrPcak3qpdFWlK10eyHHNDfEd72gSjHpdqN/eO+fTj+395t77hs67+xeK4ps7lBbCZxEpj4NSejkyx3mlRSn1uFGGZXmgVuy1hhhkBEvGj2jXhlsdeNKyc2scZEdHxxsdzsiT2uVupRS5hIhgynihHLuCiGbzebAwMDoyODy0jwY2WkvjQwOIQClVL1ezzPJXWepuTQ60sAYCyEo5aCNlFJIWy+FHBNECTK6Vq3meZ7kWTeJw9Cv12oIoRNT091ue2RkpO+q8tno+FAx7qaY5EIJbRCmxmiHsbjTlkJkIt+7d8/8/OLY2Nj6jVtFlg016mGp1IsjZm3hHVBW96J43fo1lFKXui6jQqs4jQhxuOcAKABKMTRqJaPS1lK3uTCrFcqE8MNytVLLc4kQscZyYh3f55zXShVjpDGCWNNoVLvd6OTUVKlSHhgZxoi6zGtUaipLQZvOwvQ9e54JMAHA7ZVmdWjoD9/1+y+79uWd1tKD9z+AMcWAgiCIZGR0TjBRSmFK1q3dYDGam1uo1oekAq9UHlu3LoqiqNUlmCqwkcybnfaGMzevmVh1aO9BgvD2l565b9+et/zuG9auXbvS6QKYV7ziFZVa2ff9aiWYnzv59FNzI4NjnU5nubVcyEXTLNZaGjBpnDqU5XleBP5oZeM0C4PyiZPH3/a2N7db87Ozxz3PsQo7zLFg0iQDgGJY7paqflCilKapAEiZYoViUQjx5FPPXHn1VWtu/upffeJvduw6b+O2LQvLncXlFY1Z8bQxxCBAnusrZZY6aRHXQQBRgjFFRgsrYNVI/Ue3frfXi/0S92wgjNBCWYz9WqkzP/snf/zBK152XafT6Tabjz38iJSSEJpFsbVWgtVGnkZRAqACjgYEWYKV1gAA2njcs9YKrRhnKsuLPZdGUPivLMLa2JRYMHbmxBT1kJayVAqk8lutOHR7nDtSGMaYEiqLEndgyIqMUpylMbYesgCW+mFlYXbBSCiQ8kcPHeScX37ZZc8+8/xQpT44PIQIPnr0yNDQ0NSJE4ODgwY0Y+wlL3nJPb95CBk7PDR44sSJSy///5j673BLz7M+FL6f/rbVdt+zZ8+MZiSNRr3LsiU3YUwzpgUIxwmEhA4xAQ4BwwkkhEMSknBCThI+ki8hppsWMGCwDRg3bGQVS9ZoJE2f2X2v/pan398f75bz7X/mmuva+5q91qz3ee77V5/8p+/70V//1V/9D7/w77/kS5+67577syQ1xnDkrvYUKCDa2FbPQfTBhsgYC85TBK6kQ0QCAZAxxtvAfGs5P/KvMs6cc4IJjxEQKbRJiAQCkDbFkyDEo97YIyHt6408DiNBCgSOKukwApAQPKWUz8vZ+vq6EExKSQjL84wxFiFOZtPGNYlORCJSqdp84OXFwT/7qX8+Hs8uXbl+5dKV6IBzAZQah9GR2ayczSb/73/6D0rJH/7RH3nHO7704tVtKsXudPZd3/N909H4ueeeu/+hhzxG7exr5y92Bv26bqbz2d//tm/72Cf+8iu+7mv++EN/+vJLL7397W/9v6rmySee/Imf/uef/tzngIuAnnkaYwsLg7cOAJDzqpojopRJu3iVZTmfH7VctfatNm+KAYltUif+/229bWRaCxcxZm0UQlLKCSBQFpzx6CmlxvoWARNfNAR7H2NoFVyEMCklA70lYjgAAQAASURBVIIRIYQQLQAggRBcaCt7GQQIkUSHlDGGFCMiaXVYkYaIBGObQUopRQhHDQoQgUSqWGMtpxCc54SKRJEQkBIGRHAqFH+dWojtyR5jbKzR1gghqvkcAHq9nmN2Ppke1FWv393b2/v2b//2z3ziUx/9yEfSXD7//PPDw90f+sHvMcaEEBKV2UCCBQ8txEedd1KKhcXe1taWdWw2mxEXICKk6Reu3nj49kFwBqRSWSoSNSflEu8KoZwzCMFaG6LLk0RKyRmLEACw08mRRKG49UZIeUS0B1AqRaWiD8TjSjd/pXZFP8t7/en02v6VHXlqkziTczm6uP333/mG//KZT+3fd/viY/fIALMbu4fjw0WZ/PBv/+LCWvfLbr2XEvRSpp2inEy1cSsrKwDwPd/09z7wfR+eB28ZJBZVpsbVnMq0Ch4VyTrFcDgsVhe9qQVSF53jIGY+T9JwMH3qy+4unamC7kUlBQOCVEBetEGSfl6VreC2rkvnXHewMJvNlFKteu6BBx4oqwpjnM+rLMs4pUhIr9srmyoTOVogksVAR/Npp9PdPhytryurq4SLXCZqeWVu9fbh/vHNk4NuX0hsTGmtzQuV5UuM4Wi8Tyll5KjmGQCIpNaYJE0joZJTqw2GWFXVK6+9qp29/dzteZ7Py+ltp05TQnywUnJjTPAe0UeE5dV1Sul0NB1Xk1QlTNC80yUI83lFKa3rWgjhHcYYvbcbqyudYjAYLI6nE++cUCqE0Ov0kGMIoa6qF194YX19fWV5WS5L5z3lcmkpH03GRdFxiIzH6bzp5Pkjj7/hp//lz4QQnnzyycHy4h99+ENf/rVf9fLLL09H03/wHd+5vLp+/vz50ydPvf3tb//Upz/xR3/0R4zL++6/+8UXX/zGb/zG3d3d1y5fuXHjxtUrVxaXF9YWFy9P50CBS+4avX7s2Dd83dfY4E2pw2mPiB7j6rGNrd2d5158QVGZZOmv/sqvIoazZ88WRWG0vn79OjJ+7NixO+6443Of+9v19VUMoakqY4zK8v3hSEpOIlbaeO+lSOZ1NZlMlpaWat0gImOCMaK15pwDwRhjVRspZVEUhKLzxns3GlVt1E+MMcsKj/GVS5ff989+6sve/e7t3d0XXjzvI2RFJ2FtpbdRnAIEa2shGaXE+yhEAkAoQuuGkFJprW/c2FpdXbeorXE84cChTVhUSfKnf/qnf+c936q1zrJsf/+w2+0aYxFRSqmdYYL6xnrqW81Kq04lhMQQW+ytKIqWy6OU2kb7Vp3EefudQoiW/2RAAoDkIpHSBFBSAnjJeF3Xw8PDNE2llILx4PxsMh10e4EGwXg1m8cY19c3nNEqkUsLfXPqlu2tnem87hZ0Nq8PR6M0ycvL14HExU5/fWV1d3f3YHdvdXX127/z7//VX/3Vs8+9sDgYXL3w6s7OzuHO3iNveOT7vvPb3vTwY//Pf/nFa9e2Hnno4aWFxQ7tQIyMigiBEAKvi3AJowSOcvXRB0pIDNFbh5y33IG2DpAE2mp4ASN69NEHzuQXBT0AEDBiQEIoPWrTIUgJxdcjDNvvCeGLHHO7B3POvff87U89FaLz1imlYgTGeYvqJ6tLhBDnTFNWXthW0OFjfOItTwjObm5t/9Mf+5H77r3j2o2Lb7z/fikJ4+rY8c1HHnn4/gfvI0wgwNWrOyESAOqrhjIpsvTNb3tbXVdKqILl/uSJC5cvHzu+Wc1nv/F7H/jKd33Fxz7+CSGTH/3J9x1bWZ0Px//q5//NjcO90XTS6y4CUGf8kagqtDW9lELklDIqBBfRB6uNM/Z1xttjQMFIa6VukzLYEVzwv6/eL1qBhZASZYyREYqIrYyQC+oxcikIAsLrHR4IjDHOmUdPCIvOxxgJAsZIKbR4hXPeORMAOeeEAXqknnIqOHL6Ras7sKPiJBJbYbOzIcY2O5cFE8pYe29VmniPktNIiHOWCYGIwTtvUAjRUtbReV03VmuZJN67lgZO09RbV87miossTRvTGGOYEITRf/Xz/+bJx9948uSJq1evnr39NAA0RhMQtW4QAyUkRmCMtu9MCK4ViE7mY2c9iSRgIEyyLBlpXMm4Q4YECYZ+N2eM1WWTKRVjjJkihGRJ+vq7TZUSvU7qwREGBElEL4QIAYHTREr0GJklUvRz0COtiFF5QRI1urF17MQGcxE4XLHN/Yfjpwa9X9selZvp8mBh80y2qvXMl2R/519/9Le/5cE3jXWlkpREXOj0bCeWNM7r2Rvf+tZ//+P/4vv/+79ffujeia4KxlIQntDgrKe8n3Xq2W5ojMjTSME6syp7Ndja6JOq+62PvK2MoVcUxjaGEA4oZXI4npRV1el0nLWMsU6/k0E2HA5N3eR53oaOTSaTNs8hxJikRUBCCDW2CYDGNMZWVGTGWATsdNMkYWvri0nKrr26M9dV3u10slQxfveZOyIl06ravXGDc54kCSGkqWohBKXAOS1UyqRoy2vL2RwRPXdciGpee+um0/kLX3ix2+vdccctZTnzQW8eWycUp7Ox9z7JUsoIICFc1tY888wz3f7grnN3kkiMaRCRAGuakjHS6XTbJ0trjcEzIoHivBxPxsM0TSln89mIMlXOq8hipyjQh5WVlW6n47WnhEYTlFJXrl3tdrtaN6lKRtOZYGwymwz6/T/54z/+lm/5ls8///wjjz66mW3+zE/97GOPPbZx6sTi4uL3/uP3/umf/uno4BAZv+Pue0azOdq4sbERAjoXtLaDbk+cZMPh8GCyf4BRCGadLqtYT2b3f93XbGxsXLt6o9XXVLopDw7mdZX3+lm3t5B3R5NJo2tCyAsvfMEa0+v3JRee+ueef/7ixYuLi4PdrV0gcT6deW89HMYYrdOUsVazIRLfBhprbZ0LlDGpVFPX7MjME50znEtCyO7ejpCKc661bVe3LC2A0XlTe8rzvHP/w3e/fOliv7+wtrTmfXz9XKKYqOAcxKBS7jBiDJSwGIFRFoKjnLV9o1nWpZTO5nORMgrENhqQcsqMMUbrJ554YmFh4dKlS1evXm3qOut2YkR0XggRKSilIAXn/JFExod2OwcA5xyj1Fnbyj+tc+2ZcyR9yPN2n7POvW68JFrrRGVWu7bTUHJZzWabm5v1vAzeZUpVVR2sc8YywVtlUwtiY3DD/b3Dw4MLFy70FwaC8cuXL3/u2WfTPK+qZnd39+TGsZWVlXJeZUXemkF++7d/5yMf+cjxEye9tVprztm1mze2/mj345/8xJNPPvld3/MDf/6nH/rbzz29vLjw1V/91bv7ext5SggN0TNCI8TgguIJpRQAGSUQkUZseW4IMToPAIIyh6C4DGB8CJEAI4AEIgXapmSFI/cwAkSMocVloTUWt2HGR+swYbQVG7UVA+3whAh0OBxOJpMIAQkE9O2xmyQyLVKueKfTWVhYSNOUMkEodz7Omqq0ZnV97Z/8nz9ijHn3u971+FveNDf1v/y3P/fIE49vHRyOZpX2vqz1YHmptzDgSAjS0Wy6NxpPm0okibfezpuVYyu9NH3tpRfzTnb23O0L3e7SwuIdD9xXB/3aa6+88Q2P9xYWL1+7pqgMjfHa17VGjxAAQhSUee/rssIQMcY2lhmO7i8EiFJKSZkgjLZoQwAMMcYIESkhnDHOGAHgjEkh2g9ZdM42jW109DZ632qhvYveOu99jDFGgNA+G4CInHBOKKXUGGOM8cG64K212hhEbNM/GqPLcq6dAUaQRB9diA4xQIjOaKtrr00Iznsbo6cUOOecsejR25BwlkrlG+ONrcpmNBqNp9PJdFxWc0KghdmtNWVZaq0ppZTz9jchBKw1Vh9hXDFGHwIgsT64EK5cu76wtPRjP/6+7a3d61dvvPzyy5TSuq5i9EmScM6BOMoCoZEy8NZxroz241G5fW3LhjivGxdDvzuwTbxw6UbSSaSgmWR5KtKMdYokL0SRqzyTUmCWCkqBU0YJSsGKPOWs1bmFVpYeAX10JrhISYyglJxpXUiwpqEAPtAo8xBNE5uQcODEh3jpwvY965vLEZrL2/svX5o39YEKwPjtb3nDhY8/80//539ZKRaa6byyeqeclY0Wgcgs343Vd/2d/+NNt91bvnat1y1Kq01jm9GUCZladDF0Vpd1XYkAaFwhUnMwlYyPJ6O3nXsgyxLLMFqTci4R0ySfTqfG2iwr5vOqlYu3fFi3220n6zRNu91uKpWgLE9STqjWWghxFHTqnQ8WRNZYKLoLwROOwlZu5/IW0XjmjtvPnb2jq9SgUyR5pp3e399vpnNGU2eJ0egsAnBKZZIUUmZa69lsZpydlfN2TUEMw9HBZDK5fPnyM888o2RKCLlx45qxzdJgACQOhwchhCzLKBBjTNXUZVl6748fP76ytDydTg8P97XWMUbnTSKVYLyq5mU5m45Huq6apqnreq6rqikDcVUzG00Odva294f707pEF6vZnALJ0rSu69l88trFV27cvAYkCk4/+mcfYhiDazp5Sgipq+Zg//CBBx74ju/4jp3t7Q9/+COPP/HEytpG0R0srq4iYwejkUwSwvnzL74wr5qTt5xZXl/PO92HH3u0LMv2LR0MBnmeH1/diJQNZ5NTG5vf+i3vue+Rh07cdls5q5RSe/v786YRUqVFsb5+7Mu/8ivvvf++tN9tvD13z92PPPqozNLFtVUXg4MopTy2vp7nebBuZ2fn8GBUVk2I1LlgrQ+eIBLngna+aRrOZJrk29vbjDEA6lwAwiIS4ywAZUy0dxIB6q2rqopzury83F51R4YLEhuj9w8POr2uVMoH2+vkg16n3y1UIvIiTZJEqjxV/YT3JO0mvMOQcyCME6Nr55y11jiLhDgXKGc+BpEoQkgAlFISSjdPniD8dVc0Y63jXHDFOe92u855xji+/gWUhBAihtZq4ZyzjZFMOG0pYQQoIUQI4YyRSkl5lD7rnYsxMirOnbvrb//2c0qmy0urnHPOuVLJ3v5B3j0qWBRCtB+t1oyLlHjvx+PhY4898vKFl+pmdnC4TVn4kne+9e777qhNWZvS+OaBh+/bGw9fuXLp+t62DmFpfb1y5rmXXlxYW7HWjiaTNM9LrWdVmaTppKz+8E/+9Jd/+Zdro7vdbrff++Cf/FFjaiHYbDZhjAklnXNAoeUN22XsaIZAEIwTQlplGaVUeOTey0h4BOFReOQRuA/eH3lY4PUQ6Zb5bYMcfAzhqC2KRCSvR3kcqb1a5BIDEgQ+mc8Ywfl8vrS05GwgpCGcME6SNA3eW0JCCBBiO3o75yiX4KgzgXNqPYk6OgBvQn9twbmQyo5zwViIkc7LSVFkRaK4FAGwLEvnQhNN9KBrm0v64P33JF9gT3/yE3/wW7/5a7/8y3fddz9NpBLSM/et7/l72hghRCITtICUJEy2k5f3XnCeKBVCAADTaO99WzYAR2S2YYzRiD4iC0ctjUBojBEDBO2EEEIIiIQxBiRCiM44kdBUkRAjRBCMAiWAmCrVvl+tBopx+cVPaqsqT1WitQZKEAOhFChI2vpPgHOOBCml6EN0nnIaACAgbVNTACESJAGQtOdmq+ps93LG2OVXX+l0OsvLy5Px7Nnnn7nv4QeXlxaNd1JKQZl7HURSKmkV1MZoAKCcNU3TKqhb3GP3YL/b7XqMSMBozQi5eOnSd33/9/7n//yfv+Irv2p/76aLQUoZ0RManNfB6/bDJ4RKk3xna3s8nppGH9/YPBhOt27uFEUBEaXkjYVUJsRqRKCCae1CcO1czGJUqaCUBRdbpYaUXCmRKOlK56OVMkmSZN7ULOEhOhBogl9WmSRivZP2F4TqJKqJik1INMYZH9mSUosqGZfBg/qKO2/9va0buY+98ezc8WNamIcXTx370cd/6zd+84Ort3z1V737xt5OUuTdLI+1YYkEykah/u8/8s+e+Pp3HbC4tnlc80CUUkohtxCDM4ZF2jSNjbHf6QMNvJvCDr7z7P2RkPl8vlJ0kFNX2xAwEXJ1eU0IUVVVRC8oizGWZTkYDNqHuaqa8eFwMBg0TXN4sEcof+mll44dO3b58uVTp06c2Nzodbp7h7Nf+qVfevMTT9x57i5d1uVsdmxtvZzND6ZjTmFtddl7SxHHhwchIGMCoG11DM7FRIl2ukJEiEEmajQZHh6M+r1eUWTUs6pp9nZ2RqPR8uqK4MpHt9xfXOj3ytkMKVVKBefbS7csS8KoUiogZkmim2o8PMiyTBsSnFdKRR/a5wUJWG2UUpTSLMvmtmptLdGHNE17vYH1QJmI2g2WBr/7u7/76U9/khA8ODi4/fbbv+mbvml6fvbXH/tEWZbPPvP04eH+3t6eNfH4iZOMsT/88J+cPXv2J3/uXzLGB2tr9zzC7rjjTiW5Mabf6QrO9/b2/viPPjgcjto+05s3b0op3/T4G9c3jscYX3zxRSEE4XxeNXmnd/9DD2ed7n0PPKStXVteEfn8cDpeWl/z3o9GozzNdrd3GGFSim63E51fXBrcd/89Z86c2dw4/jd/8zdPf+azkGXeew202+2XZdkdLIzHY4rACaeCVmXFOWeUoEMHxns/m82Cj62Z5+iQdVFXZXu+xxh7S/2mMRACp0LxzEsMPnDaKmmxLGe9XufY2ppz3jlHOAKilJwFoq1OOjK44LTLcpUSaa0FQiF4wossywAiDSRPM2McInrrhBBaN8FjcLaQDGNcW1s7HA17ne7TTz+Nr0c4BXTWRk6htVEAAFISYqAIKlVtAx9tnSMAbWYFf103aqzNiqIsy7b4yFp7VGQe4/HjJyZl/dzzL57Y3Dx56hQByHv92XRc1U2312+aRqaJ8W46n4lEqSylhFHFh8PDRx99lDGinT577o7pdBoBH3v8DcPh+KWXXjLGWWsjYF4UQsqrV69mnWJlde3kyVOT4aiZztvQfinlvCpHwyEiFp1Or9cbjQ7Hk4NH8wfPv/xSmiV33nUOAKqqEqwN20211k3TMEIppYKy9lRvXaOc8wDonOVAytoiAa4EAnofAAAxUs49xvh6JQ8lBCPGGAEipS2JjD5GiAgUCKPWOiFEjKHd+AmhkcQYCW+aJssyxLB3cJBlBedcz3SSqdm0pJylaZqqBAnW2lKIaZqW2iAiB+IxFkWitUPOhSAt5amkwhiDdQECYijLeZ4XMXpGyEJRUMIDIQZDHUOzf5Ck2UNveOjsmTN333rrS5dfu+XWM9//vT/QjKZnT51+4oknruzskFRFIA4CMBaNY4xlWdaW0bYDRXv1HjkQbBNj5JS6EFonV4ghQATK2/ZmRBqjN8Z5H79YqxxjFIxJKUNsfbcxIHrnMRKgRAjBCMWIIUAkBPjRM/bFzzFjTCkFlLjoAIAyDi5SSglnlFIfQ4s0RB/bDkRsVXmUCs4JpfF1Wp4w6pyLPhDCEAIgC87/u5//t50sH8+mGyc2v/prv+ZgeMA5D9a1DGuMUQIkSdKOb2me1XXdVkE453wMWutEKiQwHA6vXr3a6XXX19e5kqPx8PDw4Gd/9md/4Rd+IQarlJrWcylVU1WMRiZyBy4G07a7GFs7pxeXulR0vnD+VddolYjh5LC3uGJMY2rIUwkQtbNZkmKk3kellLWacwkRuGKIESAqJdrZeaE/sFoTxpxzbce4EIJL0cu6hFHOOWlsMy91yYOLlKtmWtGKZHnqXVQJ256FYeMe9PKue9+wkg/6/X6SFcODgz/4rd9557d925M//KMXt7ZfvvbKbZunK2Mba5hizpilLG9y2rvtzOc/+JFf+IPf+PWn/3r97KnRdFbZGjG4aZMned7vTKu6UKk19cqJDc4hUPGp3/2jr3/7U4O8k6ps6mZE8HI6lSpVSllrlVLBAQA4a7M0bQdEa21rjwkh6LrZ3DxVN/Ub3/hGxOCsnk2n1xHPnTu3vjR4zzd9Y6O1d5oQMqvGfEI73Xxl0O0O+qPpyDQNjUADWB+A0bZ7IEllnncAYDabIGKapkD4xUtXJvPJLbfc0u92TaOn0+ne3p71fmlpCZAixk6nUxTZfF4JLqiQ7YRqtK7LKkmSrMgbo1Ol6rpWQi4OFrTWVTnLskwKZkIEACFEWVdAiUxU+wCmPKEy8zYURRcAYogcgSEBycbj8eOPP/amNz3GJUPEbr9X1zU68g1f//V1pT/5qY9nhTp37ly/tzQaTa5cu/r44493Op37HngwTdODw9HKysp8Pi/nrtfrcc63t7cppRsbG6+88srb3vqUDcYYc2xtfbh/8IXzL73yyitpUSRJEgj90qfuTlP1yuWL81dfOX5so5zNP3bxtWo6Xd84tnHyRCIkxsgpm06nZ86c+auPfvRr3/XVTzzxxM///L/OhNLzarh/sLq6miRZm/Q5mUycC5unTj722GO//YEPTA+HQAjnXKWqnZJJDIQSRLx27QYiWu+dC95HiACIXKpW5qmEPDgYZlnW7/eNMTdubGVJShhNUwngdVV7jNbpVu8jREoIYYy64Lnk3aQAYF44LgghQAgIKSEgBhUoeG8pZdHEGOPK0sKNa4eMsel4khRKca6d01oDY8vLyyGEjY2NrRs3kyQxxjDGKRDvfdARIoYQOGftAWiMgRCPsoasFZxTBK0bIYR/veFUJkdZFojY/touBkYo5dxZnySplMn+3iEQVmT5qVOnGaHj4TDLMmDUescIJZwxxmblXEgphCjHU8CYpsmzzz7z1V/zzX/5l38hRdY0TafoP/nEW1999eKlS5fqsiqyvGpmS/3BeHe/PBjdd999ztjr21tpnnmMTdOcPnlqZ2e72+3e3NleGix0+j1CcHtvP1FpDPjM555dXl5e76wNDw6Xl5fbjrIYIzKmGDPeUUoJJaHtrQMESgjQwKlzEQkgI5EAJwwATIwihBjCUQxWxAhAIoYQiAdgjDAKSAlCm/RPIsIR7AyE0LYXoG1n4HleHBzsH+HMlCEQytlkVgpCSYiUch+BAlBAwUgIodfrVNOJj+gRvG0SqayPXaG09d577XSqEgeUckFZ1NZ479u8MW1M8No47xCSLANLGmsPRrNMiSfe+pZb773r//6//9Xtt95+7fzLd9x9F88SHZwI3NpKqrQxJpOqrmvnDSGEUZEoRSk12iIi45wyFnRoKRnGmGAcMWCgET1GcMGDpwgBEVWWW2u1dQAggSMeBWVYp1s0nzEWEREiBgzBiTbuiomIEWLAcBSkJQRDJLVuKKUYMEBARIKtPjmgC5wTRrgQwhsbXUTB2ls/hEhijNEDo60yjAvWZu54AIitqSnc/+jDv/K2N0cfpJSNs6PJuCX/EIETKqUEStvVOYQAEZngAG1mCIRwNJpdu3G908k+9pd//dm/+ZuzZ8/OZpMnn3zy3e9+180b19/1tV/x8oUv/PEf/y/OJQBpA8qPBGmMEQJ1U167dq09xEMIW9tb83qcDzr5oFNOaxB4dWukYTNjDQAlPlBKW2mJEtxZDCG2VGj0QYikKAohOaW0aRrrbcp5S8YfhYoggPXakMZbrjKBJTBBwZtoFpb668c2D7a2RLcQkRFk2+PZ9pXz3ePrx556ytRjEsz5z/3tV3zlOwyaV1893+kPPvXZT378U5944vE3nb3l7Fw3SZbUWkvCvCILtxz/1z/0Y2u/1PmJD75/6Z6z9HAqVZL3+yA5IvaEXOt1OSNuMrk15pf26mGMnrHDZowu8JTlicqkaBoTQohAlVLtBiwF894fHh62QBEiLiz0ORVicXH34LBteVsY9O69997zL124ub21vHIsT3Mpi6WlY7VuDg4OFhfXBwv9TqejXW2NkcCJTBtnPfokS8F6LlPKoOUXW9WV1no8Hieis7y8fNsdt3HOm2p+cHDQNMZqJxRP0xQAsixbWllpmoYSrqR03tOE2+AjkoWFpSRJIqBIs3YQTKTinKd5trC0mCUphtgygpSzpC0RIRABnTXOBUCKSKxDSiFJEmetjQ6pb5omz1OgRCqlG3vj+k4ImAh+4/pOkmWPPPp4CBYhpElnfXXjvnvvvnTxyvb1rS+88IU0yfMizfJ8d3e3bOo3vOENnPPReEwA1jeO/fj7flIp9enPfGo2m91/332f+OuPP/WOd+7s7cYYL16+dOHCBReCLefv/pqvOX78+GOPPnpza4slspCqvzDYOzi01i4NFuaz2cLCghDiy7/8y3u9TrD+1379NyiFz372cz/+4z/+1qfefubW269cvvixj31sabAghNja2rlx48baylqaJGfPnn3mmWfK6RgolVxwIcr5HAh75plnDg6GGxvHb167rhLprU0TVYXQavGkUs7YLMti9CG4brdoD5D5fJrmmbPWxnjz5vWN42daHKI1VimuMESCBCgRTCRCGmsDRi6Zt4FQSqJJ0zQEr6tGCLG0sGidLmgvFbKpaogkSTMEMuj1bjl5CrKcU7q7u9s0lcxya611njPmjZcyAYzeo/eeCg4AsW0VjI5ShojtbWGck4kyxiBgCLHdPWLwFKGN02JAvPdbN26snb4FImGMh4Db27vj8fzMLaeztNja2jlxy4n5fB5CqKqKAbEYWiVmVZYU4R1vezsR/Pnnn2eM53nRWCs4d849+OCDa2trH/3onxMKp0/dMjw4dMaVzWz75pZ3bv3EceucdnZhZanodXpmoJS6+957qslsNp4URTE5nPngbt7cfe2Vi+985zv9IFDCx4fj7qArE0UpJQQokAhIKG3x53YPbouNbGMopSFG3VSEMOSUtkV5yIABA4ohmmBjjIIywYSPPiJiAAKMEUoIgUACIOfMWU/oUZxi8IiIlHKuZNrvD6bTadXUC4PFoihEotI8n40mujFcKi7pbD7TdVkkqt/tGRdSleuyBkYIodYExzBEQpHxEEM0pdVKqRjR+whIOaGEknlTIwEkxEOACMFolaYFlyFgxcPBzvZSt/+1X/Xu/+uf/wtgcOeD942a0saQAPHe165Saeac896GQCgAo9FoTQkTQhhnheDtVnpUUksZIlLOgAHxzGF0zoWjMGWinQsxEkLQBx9CiI5zTikgUsaY1g2lNE0VIcQYwwXzIXBCKMQQog0+xnhk4UXSekiklDFGxkggEH0AKejrHdcMiOKCI2FMOG9DGwJHW3DDRUoIZ5JRowMQI6UQghtjGaNSJg36ajw0ZR2iCzEiZZ0sV0KRiN77PMsQoNLNEZ+E4IJ3zhljWs3U5cuXkyx7/vnnP/Opj3FClWQ3rl6inP2P//7Lt57ZvPeee146//nv+t7vePDBe7e2rijBYwTvrZIcSbDWAkEppTV+NJwSwrrd7qULVxzYCrSpgit13L4BqnPlcHbi3MJoPFRKeRcIpYkkGHyeKBupEMx7HzBIISMGRpPgo1CcSwYRKIVgXfQYXBRUgWCSsw5Xh3MrEx6SVNEY9Zws9AwG56xDtA67aWdvOLv7tnPUVoFAouNwdHD3Yw+dWD9+82CvAI5VlYawfzj8zF/9VV9lx45t2ug5p4IK7mPJ/CjUP/Td3/OZLzz/4ZdfevSbv2K6X86rKpRGCjHhzZXpbnEw/aXv/hF9afhzH/rkdG15PB577WWHKSGa4ASBLMucj1VjjLNCCAYEARhjg8Hgxo0b3W43z/OqLPu9BSGEB6i15jLZPxiurazeceddmydu8QheEC9x63B7aWFxbX15dXkpeOt0dXiw6wNSwW/e3L52+cqTTz6phGxihEjTpNC6aergnIsRdOM5F2mac8kopQd7O3VZCcYDjyc3T3FJynKGiFLy7e1tAOj3F5pKc86RkmBdnueJkN57oWSpm4AxE8oY1zQmEBBCGDMBH9M0d87OxqM2sqCeTqSUjIra6hBBijS4ACTW1jFCOOd1Pc+yjAg+GY2KvKu1VSJnCVOSAZFcpEkiuSCcU2cCRSYkWVhaJJyfuOV0p9OpTc0YPXZifTScbGwcK8vy/3jPt5TzSghxOBoOh8P1Y2tFUYzG4ze/9S2CK55IwsTJM7c+8tDDV7dunDhx/J1PPTUajQ5n42yhmwnl5/UXXngxKfLTp89MR+Nutzsaj/M8p0KOt7fRh6ZpGKcrJ49/7w//E631xvLKt//Db/vc3z792MOPCCFeeeW1973vfVbrXq+3t7d35syZ+Xxqra3nZVXO3vWur0zSzh//yf96/6//2jd/8zdeevU1AogYZrMZYVDXWgjVNA0ATKdjQkiSqhAdY8TYilDuCTofk6K4fv36E09KbBNtOXchKCooEk6pQwuEBkc4lxTBBk8kQW9Fy0oQ0ut3nGlu3ryZqUTrhlO20Bk455BQIQTxxlu7cWJ5tL8fQlhfW9ufjLIsDY0NwXPOnLPgABilnHhdqbxrYgwhEEEghiwrqqohnBEAay1SQuKROccYIyllrR+Sc+8tYLxx7eax07cWWSc6n8hU9rh1UVf1yvLiZDycjSdUHCVfhhAII957wQVF2N/du/fue/7sw3++ces5H0wAzxhYa8pyDtGdPHn8jU8+8cEPfnA8mXjnTp+6ZXFpYWtnu6qqTrcw1iZ5dumVV7e4sNokScKl6PcGa2vrZVmXZVMU2fBwfGx99dKlS1cvX3vw/nsvXb36+JveFCF47zlnxrt2zkDawsgQQmht/RQIlUmb3E8IQkTGQHIpGHPO2WApJZRSxcWRT5UxBIiEYCQxAkUEBozS4GKIgQELELyLlFIuVQiBQ/QAwLiQQummSdvEc8GLNMuyzBgzqRspeCKVUirNE28DoGMSMDqHSAlLKC9dTTnx4LnkMUZrdJIkFIEFrG1NCIsEjHZSSsmVShmGyEhEDgigK5cm3e29gze/7cn36R/8tvNfOHvnffM6AJHaWQIoZe4dBggySTk96pdwzoGgnkSPgSObl1OCkKYpEix1EwJG57mgTIgIgIxDjD6GCNBMaiaYTBNPIhMCfWiMIYRkWQaUcpnFGK2nSikuGSOEEodIGhMo5T4GRpXWRgjR6BCCoSTE6J3xaZq2ImofG0IIp4wiehfrUBHGGaGcEkoZUAokAuEAICmVXNroCCGUcIiUMVZkKiIaY/Rw1rILGGmWZFrr+bRqmiZJRLffG1ezI+B9Nm0lA0JIRByNRpPZ7MaNG88++yyNGKzjQIhztpznRaZEOsjzP/jt37vzltsVF0Swi3s7w6p6YGPTTUaQK2AMfeBMEkKcCAtL6XQ6q8rmyo2b+8HOtmfEEWSUK+lrjfX80v7im+8gCZMOPQXiAhIG1MeGRhkIUvDe93o9TpmUSVv4CJRX5QwAhFSUUqddypNe3oksCMKo4CzVPTefY1aXZu3UyqP3PPzMcxe5UD0aDDhB06oSkcim3N6+eLPbWwjRLavscG9PRYA899YQBCV5pWcf/qsPP3D/Q2fvuIsQqknDgCfICSF1cL/6737x73z7t33s3/66O73aW1ykRR5ns1s2Nu+/67HveOtX3re++Qz9XJoqyVUvL6a2MTyAJU1VQyEph8abupkPaKeX9bQPjmB0IUnY8Y31mzdvlvP5yZMny6pSiTi2MPDeK5UMx8PxdCJUSinL8/zCi5+njHV7xfrKAoZYVXPjLOe80+s653Rjbzlx8tZbTnvvG69VJmxjy3qGRxk+TCSqO+jG6IMxVe1uXtyezWYYguRKKSWc1rO5EKLb7ZvGpyJhhLqqkYzVzXxWzvM8pyo16IBE31TBWsFTZzUhyBiNIZbTJqLnnGrnnbWUUufCcDjMiyIGIAy6/Y53kXNFKRWCW20Y0DzLep2iJXeOrW56H6MvlVCcc2vt+vp61VScswhQaxtCVIo2TZ10Umm0DWZWYVbkrTB1MFiYz+dlWVrvvPcL6cLGiY0kT6par6wU/W5vXpWjctZZWki4WOoNorj1UfKGgHh1d0cIUXR7ztubezuzg+Htd9yRdzpXb95IkoQTnNeVlFIcxePQwdKi95FEfOMjjzMmZuVcB/KlX/nu7Ztb44OdJ97ypp/+Fz/zEz/+Y29+5zuyLP393//9pWPH5vPpQ2949Cd/8ifP3X5bItQ//xc/M69m1noXQ0YpJSRiFAICpdoZTtnCwkJVVaTN0iFuVtYhIPgYHEipCi4u79y88ur5hx5+rLSGcgExQkRGCUBUkUWgQAFb8ymhEWigPInEc2hsAB+6vT7NOl4RRpQPNUUgQkTAEEKeZEtrq4OEvf+DfzAvx0mmgossoY4TYJwxxl/3gzDGlpdWZ7MZJzTEwCOhlFVVA6/n5gIHjJ4SKQSnggcbDUHOOYk0ciZUrm0cj8cb68dZmlhrGRc+xDxTlZ6/cvmgm+d7e3snT540ofEhzGiZZWk1m3XzQmXpaDLeOHXixu7Nv/sP/tF4PJ2P5jFAwhOSkkRl80nz0J33Hlzfppy/8MILW9s7Dz70wB133TmdTi9duswojz6cOLbR63SNs96FEMJsPp3OJhvHjlNIqnJOgTSVXj67cvHyld/63T9YX115sxA+oHPWGcs5BxIZ59Ya9AEAGOPWBgBmnKMkKi6VFDF622gE0KgNS4SSBInzlrKIhCJGQIycCa688y1ZCYxZp1vxMyEkICGRMMEhoreGUORJktjggRAhhBQiRowxICWMc4pYFAUQohKJwXury7JMZIqRMM5NbUMIQhBjXIvdZklaVVW7wpdlmYiEcsYJJ4TV2h5NPYQQwrjiAFEI0TSGcVJVVSszno4nJzY3Ll18dXX9mOCUIjLOq2aWZt3og3W+cZ5zHl1Mi5xSWtaVJKwtRUAI2hpKaXSxriqllG4sMYZLKZn0xldVGdFzIilS22hgVIcGMbSBHrPZTAjBmHhdSeEpRMa4bhwCRcSAGANyyRglzhqVJoLRRs8dQghHoj7tdKvUR0E4JW34WPQhxijTpHV/IwDlwAiJ0RsTkCKl9Kis+fUg7xgcYTTGCHCk1EcflBAiz2zwVVUzxqSUTdMIIZ1zQkhtbZFlrfb14sWLs9GIIezt7F6/ermazyjEoiio4BsbG3m++4lPfOpNb3mCIP3Fv/jdb3387QlnLhG+anQuM6QAsL+/P5lMEFFrM5nMtnf2Ll2+OtKzSAlhdG11df/KlhNsIkhV22BqIniSdZh2TaWBEgFcSuHRc86OgH2CptE+OC5TZ2NLVFvr0yIFioRHlSSNNSqVwgtTN8mi9AxE0r3w6is++N6g660tRIIYgvNXL12/ZVUd7mwX3W6WZbPZDAAE49bpuppTSlfX165eveq93R/uzZ+pbrv1bHfQtxRtdJwxQgRC/MBv/NZv/cHvX7l6dXF1zeai0+nec/r22zY2m8lkt54MBoN2AD08PFxY6JfaZEWbr9uIhOraFCrv5l2trUOYNtVC1kGPSiSnT51BJHVZEyQEaYiBc17rOk3TsqkZY1VVXX7t4p133MY4B4rG2nI+bZqGCR4RG123ceWIgRBaFFkkMJmMSCSccymTVmhtmzpGyRhr6vrajesBMU1TySQANE2zt7fHGTlxYpkQRkgghFRNzSkJIdS64ZzHGI0xlFIKEDHmeR4ilJXOssR61xruBUt9sI2pmqru9XqI0O0WPrq60dRzRlPBVW3rNE0ZY9a7RCY2BkZiSxL3er2AUSklhIgRrXejySjP86ppvPdN07Qv5M4777x27VpZVs65lZUVyXlrkSQSW5bdW8cYu379GiFk0O0zwVSinDdCsDNnzniMDI8qBLTWhNHFwaCqqr29vU6nOHvrbeH4KWB0Np0tDgbee6vN5uamoIwKrrXudDqIuLW1U8/LVCWMMZ4qwdjBcF9lMnXZX/z1JxdWFn/zdz4QCen1et/93d9z8eLFS5cuPvbYY5SzL7x6cTaavPsbvm51dfmv//IvCCHGWQpIAIJ2dV0nScIFmU8nIQTE4CiFSAgDAqg4j8FLqq5fvgqAl1957Z577hGUhRgkF9F7oG0F8VGjbCtaoQTa+d0xsMFLyhbz5IO/94cXnvt8p9ubzqs8UQigW2oWY9YpllaWkyx9/vnnAY5IKx/aUp/Q3rve+zRNKaVVVbU5BHmeN3UZQmjPQ+8cxigID0yQ0HbEYeuU5VIwxgmChxAFO37r6cPZ6Jbl05uD49PplKZSeBCSQwVKJU2j9/b2VldX5vM5em+MEUJ6H7I03z/YO3P7bYP+4t7WzeAxTYvFwWB7eyvLMhpDDFCW5S1nziwuLt5+++2/9YHffvXVV1977bXV1dXN1TVEpJRVTdPpdaumDoBLS0uHh4fT6fTli69yzqWUS0tLe+Phxz796URIIUQEBErmk7kxhglOOSOEGO8SJZEzRPQhcimM81Im6LEyjRISCEiZVLqhlFrTRBY55877GJARyjlnjEP0gIFRiNFHwLZrALGNbyFCEETknHvrKKXBBg4A3W7Xea+bxtRN4DxJkiLNa6MJIVyItjUikZJQ9MZq6xShhGCSZN5ba4+uettYQphSR+AtBHg9r/WI58uyQlvjnI/RUEqloh4dMMopabBhjO3vH7zlLW/7J//4n+ze2OoX3el4InPZ+uGaZk4JwRg5bftA41FKOEYieFu3Rwhpmqa9/5RSznnvnXMu+BklrK2aSpX0GCFCgAAhVFUlhOBKIoZ2DqTctxI4Z1rtH+WMZVnmbJiVc0KYrttGBKjmZZLIVKZScm9DCEgIqDTBEI+c7HAkbW8ha2t9kkhOqAvee8sYY5wyRl04Aj0oQoCAlLTyfWQ0xphIGZznnKNK6qrijFElWn08IvZ6vbqsdN20+udPf/rTw93969euzIej8d7BxQuvNPMZADDOQ8DpuOwu9K5cvjY8HJ/aPPElX/IlzWg6nE9fINO3q3RaTabR0v16LzpEnM0n1bw+PDxUMpnNyhhcT6ldAO5jb2Ewx/h1/+A9f/v0s5dfuTQ9+/BKJzMWXUTGoSiKxteFkAEj+pimaZooBjTGWJelc5ZJoITMp9ONzQ4ijsfj1aVFoKi17iTcOKSUJyqrrYu+2b4yu/ehe7Q5jEETJpyxKlHI2O7e5OTS4vVXXr313J2SK0JIZXRKggVgXArJJpPJ+sbGcDh0RishP/2Zv37wvkeXNjYhOrCeSjFzWqL61q/9BgcgAEZ1VTZ1bfRkMpIEZJKohYXZdLo9nU0mk82VRUZdNS+XFhattZRyQilL0/3JpCxLba0LwXdNt1tQR4UQBwfDrCiMsa9cuXTXHecASdu7kmXZaHSYqezkqRNCSsIgADZN5WNrAkTrGoKUEMyyLETnvXcegHKl0mCdEMK6um2w5oIi4s2bN6fDwyRLvXHex2Cb1meeFvnq4pIPSEhAgPl8jhgCpXVZFd0eF6IoCo+xTQvpZIn3Pk1Y0Vmbz6fee0SSZUWWZQeHe02lu93+vKwYJ0qp+bxaXl6u69qjpUilVNPpVCTSe08YF0Q657SzjLEbWzuImOd5Mx4ZY4XgxphOp+O8oZSWZdnamp9++nNpmq6srOzt7eV5Vtc1pZQLWs+avMh00ywuL7d2ACVEjHE0mw0Gg0RI451x5ujY44QnKkmSVsnICN1YP5ZIQQmtvdOlds6lLF1aWGylhc45W5ZtC2FZlpRCv9/nnM+nM1Uk2unRaEQRnHPdQZ8INjO14une/mFRFPfcfd+d5+4+GB42xg6WVrmUEOPlK9fSNE+SBGIwWrf0XiSqMa4xhguWCIlIEAnhybyeZ1kyKcs8623vHzIuuUj3trY7KpvoknPJ2roWDJRwAE//d+QDABzV41FKGWWudpGGF194wWtzx4Nnbu7uOacZY8tp0g40z37ub3/hP/yHn/zx97168bUkTbVrzfeBECKlaj2q7TTcyguEEK+7GQl5vRxXSdk6O9AbiEwmIiK22qvoI8EAAIzSNE2ff/G5ly6+/N7v/4HVXj9PVRSMeDKfTPrdfp5mjPBr166sri2phDnjScQYQ2PNYn+Q1cXe/v7Xfu3XNo3Vjb1w4VXG2Dd90zdduvTadDrNsrwxRko5nc9WVla++7u/+8/+/EOXLl0qy3I/yaSUTaOn8/nK2ioS0Fpvbd08sXnLsfXjRrtut3v9xtXr16+fPHliMpv28w7Nk5deevHgcC/LMh9D63NpJY0EoM1RSVQGQENoONJGN4SQ0lRKSc45IOWcJ5lCxICBMcYoc84F56lDRn3w0KKShBBKkXIWIxJKCYEYgXPhfaCtWQaRT+azfr+vlOKMOW0E4y74qmpkLrXWYAnjlDHmggekaZE722LhhAEiEuccI1QIBQDzybTb7TLOIMAXqxattUIoQKyautUJhxiBwGzeFFnaCqOAsIBxMp0f31j/+X//C1nedS4URZdSqE0JEFOhCERKFAAYYwjnJASgNLjQ1LU2xjmXZVlrL4shBB+bpgkh+OAQMZWpEIoQZIwBo4QQJSQAUEKkUt77SLjiouV3vfcUIEaAGFyIImUhBC5or1s0TdPUri0gSmRGEBnjiKQtJY3RtwM7YTQyAhCRAgTghFAKjakpJ1JyYIBAIoEQA8Eo2rpgQjjnrcgQQgREwgjEWFVVa9bklCRZorXGCC3GIIQYD0ecc8m4lPLZFz//O7/9gSJJVpaWL71y4bXzLxMgLR0ObVUiJXWte72O5PSZZ5453N49fecdb3/kTR+5fP5Eb+ldC7c0WkOX+zrOZ7PFxcXTp85sbW0dHgzrumaEzuomGudnmi7r/on1K8PdGL0EOqz5WiEjiY0zBYvIqHVNIiWNjCKTilNKgwum0d46AuC1aZoqSRKrnfeREx4C9rsD204hnFnjGCelaTrdvLaRM3nPvXeeP3++ky4h4qSapIn0nu2N5pP9vZfOv/joI2/CEJGSYEJgESI4C4h46sTmjWtXg9MYVJGIlz7/3EY1vf307ZJxY51Ik0k5n8+8UiIgBMG0s1wISCWNGGtNYqzn5bSc7x0Mz951d8gpuDCvykSpeV033jIMc6srqzmheZ4vr66G6ObzacG7lPPzF14+derU1WvXLrx0/qu+6qu898PJOMuybrfb73QTlUxn4+Ber7kUgrUAFhISQSkRoiMEsyyJEaqmie1/OvqiKJwzAMCYHA6H9bzsdbrzqsSANtjgvRQJEji2uBwhOO9aAZ1UilLqrD1+YjMEZJwDgNOGSRHjkV4PANr4e8plVVXTyU5rcwoOQiyHw+Hy2jKXrNtfssYnKgsBhRDjyZhS2sy1kBJiaKqq9ToToEmSFN0uAFjvozHa2jY1oqlNmqmi9bEA4ZQsLy4QQuj6Wpqm3ntjjHM073YAYPPkyS8KzlsL4ubm8eD8rJpnWcaRK6VMo4HQaG0b/vBFKzaEKLhAAoiYZVki5OjgMMsyCLFpGkrJ7u7uyspKp9PJskxQ5lzI87zSVSpVkWZXr14dDAaLi4vAaF3XkRHBpTFme3vbWp/mGQKdzcqICAhKqRBCJ8tHw30uaAjOhuic5ZwqpQjB2npGRTWvVtZ6KRBkIFM5KWsu1Ww+L8vt7/uu99rghBARY4yOM9r2hh/BaF+MGgZEQgkhygXgTBNCGM36xb0P36+dGY8O0jSdjMd5UXDOFRfHjx9fXl6+fOXySy+/otLEGNfiyW1JTNu7d+edd5ZlubW11TaZOmu9c5S3UmXRmhLbK18waa2BgCH6VuYSAdqVDkIUQH2IX/q2t0yGQ3pLKKRsQmicvrl1XZ44tdgfxOAGg8HWjeu3nN6caKObarG7pq010S8sLxnvVZa+cP7CO97xzsW1taZp/vITf/3CC88/9dQ7FteWh6MxEawp541phBBve/vbbz979urVq1rrpaWl4cGwt7hEEKbTMackanv9lYtIiRBsdTBY7HT2Dvd2bm6dPXt2ODxIE1mW5W/95gfe+4M/MJlMiqKIMQrG9axsEQLtGymclAlHUmtN27ZgAoGQRtdCiNqalBwtQoRyQTmQ6FzwztA0CQCUUkAKlBLKCCGIkVLSYsCv34kCY0QknDEGhBAKSaIU5wQJGh1CDD5Kobz3ptYAoJRiHJz1QiXRuzRNrdaE+CzLqqqi6NtrqX09rb2nvVEQyXg6zbKMU44EKGExxtarWlVNliU+eOMCoYwn4tL1ra/5+m/83Oeenc1mRlsXnRBMMhmdU0nS3qkySdsfZ4QyIbVv0jRtZV8xYnCOEEKBUCDOB4xRCqXSRMqEMZJlWcv8xxAAoNfrcSGOcq84P7J/hdD6g6MPIbgQQvTBOJ3nuSg6WZLGGPM8n9cmRk8IwRC5FISwpnGT+axIM2BAOaFUCMGD85wwQohnATkGChihDZOllDPGYoQYYyTg4pG9mAFp5QCUUk7bBmIClDbGEErb154kSVVVABCss9YeHBx86hOfnAxH+draq+dfeu38hSzL66oSUhxVmtO2RjqWswmn/aeffvp3P/JHP3z3HV92/5N/9icX/+cLn4u3uW+55+Hrl15RSnnnLrz86uVLl7z3jPJOp7O9fXPn4ACRIEDhSDLTz1341ELejxm/eTh9aKNbLHT2hvvBV0hYt+hEJBSghR8BonNWa03aCJ/oF7odxhiE6LWFSFKVMcITQbz3waMQIi/4fLvu9AoPbHt75/Zzt+/u7jrrI0SihI2hcWF7WK12eh//+Mf6/ZX77r3bWA+AJMQkyS5fvnjixObezu7iQr9X5DtbN2KM/d7y1qVXdy5ffstbnwqCO+84hcgQEQFIQGCc6+BsZYXKtXOrg4UH7r73o5/6+IULF55661ustRIopVTbhkRcW1iSQvIQfFOrJCvL0lZlr9uJQvEYN1ZWEi46nfxd7/zyg+Gh994Gv7q6GmPsdgptdKOrSAAQfHTOOWdsbOuJpEw6SaMrb21WpOPx2PqYpmkb0ksoal176zjn1tZlWfYH3YObOyJRKlPOuV6n75xbO7aKiBZNBIixdYV5TulgYUm97mt3zhRFEUJQmThyTOl6PB4rpVwwhBCuOCLWdb0wWHTBHz9+zHiX5zmlMBmOAENv0GdUMNbPsqw1BCuRNI2hlEkp67qmlLW9CFLKhYUF51yR5SH4EEILCWAkxjil2Hg8nM1mhJD5dKqUSlTaXjWcc60NIk4mE85Fr9crut3JaOyck1ICgNbNfD5bWlhkhFgfvPdMcOsdhliWZYyxk+WDwUCrBH147bXXALHX7zdNQwXLO8Xi4mJ7pABAbHEmxJvXrqdpOhgsPvDAQ0KIyWSisnQ+r9JOIdJsNBxSpLpu5lUpRRIJhGg4gUG3Jxiv6xoA5vNpkijTaIBIiTDadTodzrhSqTbx8qUrly9fljKzPgLQPBUP3H/3T/zoD3ZXT2lruWQUQgyRMUoRKEDLf8EXa3YAAkZASBgDBE4pAvmab/j6f/8L/+HmjRs8UeV0Rgip52UkcHiwl6nkqbe9bX9/39R1lmUxmpZtbP277eh//fp1730r7m1fAqWUUuKckzJRSjVlRQihnLc3h3MW2FFhK5Oy3ZWp5MLH2tnR3kGe58Px8HD/8OzZc/lyn9NbnTY3rl+97fQZDHZvf+twb391ee1gPJnNJ0WnxxiNiMbZlbW1tbVj+/uHk/F0aWmpKAql1Ac+8IEHH3jozvvurk0TAKngHqPHuLm5eebMmWvXroUQVpZWmsY0TbO0tLC3t2esBsBESefs4f6eytL11TWrzaXXXt3cPDk8OBz0FpqqPv/iy7PZbG1trbW2K8FijCFgewvM53MhZNbJMEKbpGG8IZQYpxFx3oRWgBmcdc4JIfI8hRAtBgBKKOWSRQQE9CHGGAUVwSMh1BoPSJ1tpeaBG2uVtQlTIQROaRv1aYMlnrZwLiUs+KhRpyqRMrFGt/avdmlrpwAXA+c8TdOmadrlrLXqcsWp421gDWKgnCE6Z33L2tZVmaZpItNy3gBn1tokSS5du4YEyrriTEihgKAxLpGq1oYLKRRtL0gpJeey0TovihhjVZa6MS142wK/MsgkVVJKIQRlHCghhICggnGlVHvpAiGtJ7IF7lqjahvlSChGGpwjhAYfQ+s2bq1bhJDRaCTTQkoZgkPApmm8jy3R3thGoCDeCyUYawvDoXUQHgWgHH0RQgiXIhr3v9ElSlsHXmvobu0KTHBrTbAhy7JKN60FpV1cEqWKooAQP/ShD71y/uUsTTihN69db4nAJE2bpuGUSMF9DASQIFrjCSGdTueFzzw92do7dmKTFfmt3fUP/tlf6M+/9ve+4d07u/v93sIbH1999JFHtq7fePrpz+1sbem6zrgcziYgqWAEyvrWYxv13Ay6vcr60kU+PlCcMFrEwDiAIzxGk2UpZSS4eBQlRiAGy4E7p7WOCaJzjlMWXAw2AItpIZ0JgpBuj+F2QCrTTjGfzz7z2c95HxnhRFAK6J3NsuxwXh5by9746GNSyqauvNOIkjHinDk8PDh79vaD/d1ja+vXr19njHljQ7SHe/vnL7724JNvYiwVwFikNpKQ8ASYbhrGWCa4H0+4AJQCg+sVebs/AUIqlWxz1UgMVZ0DZQ6BKbWyNm0q4w1jrDYNYTQiqXSd5hkSuHrtspBJkiRF61UNrqqP8iu8D20TeIu7JFLGGGPE2tQRw2Aw2N3fGw6H6xsb8XXMI7jgnUXEokiGwyEjtC6rTqejnY0+dPJCV/Xy8nJw3noX2dGfbXQG4azNnmWMtABj+1cAEJxjjBjiQn/AhQqAIbimaRRXeZ53ummM0fuYeB69RoKEBpnI+Xx+/fp1QDoYDDaOHQNEznmvlwSMjTFpmoQQoveNMU1dt6dEhcgpdaZps5Co4JEIbTRjLMsSrTVjJMuSNM1CCI0x3rs8z+bzudb6C1945sSJE/fee2+MMcuy1s+WqoQRWpalYMw4l+ZZjKGqSsY4IUTXzY0bN44fPx5CoAjHjx+/ePHi/ObNNEuo49P57LYzt7ZDRvtAaWdjjMvLqzFGrXVT1e2DP51Oe71eZeqXr13pFr16Xvb7fQosos/SjDHVgrVnbrv91dcu7O7tjA4PszxRggshCIr5tNS1297Zv3T5+pVrW3MdMQLnEojgnHIS//nP/Nza2qn9shJKegRBeSQhRgAKEYEBgbYjHAIhpJ3bEHFOvUDCuQSMG6trpzaPb2/dyPPUVk5rLZRcW1sZHh4G77tF58L5lwGhPetCjO1g1J7SnLNWp00AlFLR+bZFMRJCOWsDwJESH4IrdTsLame7eTciVrphgIzxGKMNDpB0O/3nPv98ttAjkjPBt3ZubqYnm7Jc6PV3JjtVPU9Vsr66trN9fXVpedDNplVdV9Dt5IlKp9OpNoYRahq9tLBYzuZAcKE/+NEf/tHf//3f/7X/+f5/9F3fubKy8swzz/R6PUTUzgNAIdOqqiIApdDpFVLKtN/Z398fHRyAZIPBUmMMWiAMbjlzWms9Ho7SNC/LcmVl7bVLl/d2dq9du/Hkk2/Ke52yLJEyQggR/CiVmZAWkvHeR0TnHCWkFVfJLEdCHGJAgBCQEYyEUBKDo5RGoBh9CAgAkbTGmaM+eKQkkiMXNSGEp2kaCXrvBaOUUw6CcY6UlFWllFJKAYA90mvQEKKUghDirVVKcC4r3SR5EjACobIVQ7UudUK8tyIRrTuoZZvm07kQSikVgo9IkkTquizyrhS8qiqIPskzJsRoNFJKheCkzLlScV5a5wMlIUQSEULkQlnnXaidd4QxQUWSJKlM21ksAhIKeZoBQSEYIQyBMMYCBu+9DTFN06xztKY75yTjiMg4CSEAiW2HI6OcsAjAgFJGKePcNLq9pNvDq2mqJJGcc6C0rJqWfmaMUC5lIhEDiwRcpIQQQglhGJwNRwSzkhIRgw+uamL0lLf50EdYU0AfvCeMvr6suHbg8N4zIIPBAAAYY6PRyBl7eHh4bHVtYWHhhRdeeOzhh1/6whd2trf7g0HR63793/mGT37i08989jPgPEDkgkFEKUVZ1kDpcy+/NtravzG6Fo2bUr9/fec3/+hjx5eWSHBa652t7ZdfvuCc6/f7BKFbdCbD+a1nTt121531vByPp3PthFJp4DszvWPIpoiRMBcgR/SUpDJxJjDGnPNNXZum8c4DIGEEKGWcC8oIpc65ptGIIc9T4w1iQI+2rro5dPLudFJb6wnQqgmUUsrpEUMD1MfKhVTboAjz3tf1LM0zIJzE+NKFl2QipOLamoDRWmuMUUpdufia8e6+Bx7Y2rqhks7G0ka36FVN2Tg/mk95NyceVSDH1k8kSmxVs0Qlt5w8WfS6dV0TBI/RNdo61+12pRDAxM2dnYPDw43N43WlKVIHhEQs68Zaq1Ra1zWlkPe6C70FxlgkoHUdY2zbzjnnjbGtyj36IHmrinQhhESmSOTly1etc0uLK84FPMrJiwDAmGCM7ezsUcrrekoICRgJo51u13u/tLqU5VlZlkKKaWMRqUplC+0Izlx0lNJqVrUfJ2tMolRZlrpplFKdoohIIrK6LgEgSZK5my8tLFlXa22rqjrYO+ScF0XGJbOW72ztLi0sqyRJ09SHACEIH6zRzmtKKaWgBC/LZndnJ03TJJGMUYKu1x1U5aQKTkrponfOkIAUgHEo8pQJqpQoy0n7zMQQm3LCOT+2sqzuu48yXs9LH9yRrI8x771gbD6fQ5I457ixIQRnbFsIQQhZWlpqmgYRq6qaz+dMCu3MxcuXd3Z2VtZWe51uXddVVQ8GgzbsSUqJDKQSZVkmQiZUthkyjNGCJHfcfjsilFkqpWxLexIpCKMhOMJYVnS//Cu++vd/9/eswTzPr1+9NhqNjPW7u/vb+4emtrwosnSQJnm/32/PQ0Ix2vrNT335xz78p7feeWtZVd1ezwfPCEfEiAjQYleIiAwIpZQBtENhJEAJCCTeByHlb/7mb775zW++cv0qIRIoWVpauuvOOz/60Y/+9E//syRJfu7nfu6uu+/e3d2dlnNKOWXUe9+2tHkMQKCtdvDe81aobSxLpLW20+l0u93Dw0NKqRDiKD8SEQiJbdb96xcJxCiSzDU6k8XlVy9/fvDM429442gyZpGlMmOM33///fPpFAGCsYNO9/rlK+fuOuettc6Uw4OF07dlSaq1RQzW6qIoik6eZdnh4eHVa1e+//u//9Of/fRH/+zPH3n00ZPHN4UQe3t7UkqMMc9zpRRhrGzKqq4ba/I8P33LrWtrq5zzF154od/v39zakVKePn1mZWV1e2vH+ypEv384vL61fXxjYzqfNcZ2W15cqRCClFLKRGutjdN1xbkMIQguI4llNV/oD2azWVPVISATvN/vc6UoYzEgUiBA24Y9a33L7DDGKFBnLSHEt3NnjJRSh5FSxrmSIQTjXJoWgBDRYyRKSULpZDIJIUghKGMtvUopNcYLRhCjc9AunD5itB7RApctk98eNDHG+XwuRdZmHrWTeF2XMXopkwAOIwKQpi4lZY2Peaqi1mvHN11TX7tyVaXJvJ4T03AmCGXsKJ8zAsGymgvW/tORU8o4oUQKoCFE3hYsQ4QQj7RObXg6AqMUGCGM2mATQZEAYVCoDENwti369m0zIABSCkgYpZQwaq2O1uZ5XpalUso5J7iKxIQQEKI1LoSQ53mMMUbf0gkAnCBE39YxRSREEtUSfuBjDDYCtsJ3Knm7WzfWt49Ze7I4F2OMrfyBY6tXBdPouq4RUUrJOZvNZp28eOnC+StXL5/Y3Lx66TLDeNvtt5+989xb3/62u++9/3u+7wd+7Ef+z4ODvZ/92Z/5x9///a9deNm7WJpq7fjm7u7oz57+TPLgGSKJDubslz158dlXP/fpZ9/7A//oM5/5zJlTp09vnmrxqL2D/U984hO33nbqgTe8YT6vptPJfDJNsm5JKQdZRfrKqNpYFQ1EliRYlxpjNEgjeBecs62IzwUfgldKRIqUs6bRTW2MbSJAp5sjBikl58FbzTAK6qr5PE1TiFqlGQIJkSBtVzeG6AFDBDWbjlIu8zy33qUYpnV5Yn31pQsvf927v+bm1tbK6qo2RlszWBhkafFXH/2LL/3yLztx/PjLz790z90PshXRhFBBlInIaU6lAuJH5cxQnhrjqwrybhuMvL+/DxGcc6Tlb7QrTQOc8aWe4jD21kE8cWzDNsZ5OxgMrt24YRp3bHWNC5Yo6YONMTrXZpGjNppyFtC3uvqE84DYVolQSvM0m0xmV69edcGfOHkyLfLZbNYufLqqpUw6RTEejwFo6yuljJgQ0zSvmpIRDgBVVRFGa10B8hjaUDjjnEsSqaR0zkEAH6BlO6y1zlhKqWDc6RqobH9LoDCbTwgwrXXZ2GA9g2R1ZQMRtdaUKAJqYWFhNpvvHww558dPnugPBoEQlDITAQC898FbwWF1dbGpa0aBUiiyrKlng0GHcyjrZtDrxRg5ioheykTr2piGEeCcAyXO2BjC1NZ51rHaJCqRKp1NJwHjapY1xoQQKIADaBfWGGPTliQAfLGNqsWHWg54aWlJSql1c/z4cWOMj4EQsrCwIKWUUrS7HWPMRKetHgz6Qoj5fO69hwhV41YHi+urK6XWq8tLWzu7CaVZljnnrNXtyVbWdX9h6dv+4Xf/P//23/3Wr//G7uEMCAEkSafL0tXuIEfKGuuId1U9dVY7Z7NcMgz1bPit7/m7n/zMZ3tZN3rECJECY9zHAAy8tUdSaEIhIqdAABBRIlGMeR8CBePdsRPH/+evvv9Lv+ydCJIRmM/nH/rQhwDi7/3e7/23//bfrly5kiTZ6tpaURQ7+wcAwDlr43oiQaWU04YSAiG6VlXEWHi9mrB9E6SUIQQuRIyRca6ddd6kSQ4A3jtKGYnBhBoRU8YunX/l3W9/p6ua3e2du2+/f07qctZIXkohvDGm0d0is1V9uLPXX+yPJmNBialKTsjheLxybGU6nfOEA0Bta5WrGODTf/s3K4PFhx98aLh/8NGPfORd73pXlqbVvMzSvLZOJiLEkGaZSpIQQnDYNA1jnBD60P0PXLx4sd/thxC2rm1dfvVyWc+7/V7R6Y7nc621lPLkyZMhAgk4H08550qI8bzM0oJwlilJhGqsSUla1/VoNKEUdrd26ro6sbrsEFlAFUlwMQZoVbcRCEUGAN4EKQUiIlIXI5CIiITSFsYPIbTRSdw51/Zcam3zPEcETomztkgSm6faWvBIffTGqzSpY0wVdZEyQo1vQWYJxgJhDtF770NsY3HKxtkQBVe1NoJxQphzQQjlfWwtcF6HIk2l4t6aLEuqGkfzcVEUk8mk0+tHSmWSah84ZyE46xwTXAiBgUDE0WwqhGBUUEpznqEFkQhtTIiB2SCZbGEEAhgIUkaAtiJQjsghMoTQaEcFE0KYECkXJkT+eiRTq8OC1/mzNgkVMUQkXKhKG6WEC1YQETCiJ1KKpnHz+RwRkyRhBI1tKKVJmlKAEDBGIAAoKSPkiH5v9Q+MmRghWKUURe6tJUAJY4jImeIMnDEUiRKZtXY6KRmFXt6hUl28eDFJJCEEbSBJTKiYHI67RWfkHWNsbXNz7fjmW9/+JVmn4wn80E++7/r166fP3f1Lv/Krpqxf+Pzzv/4r73/66c8giec/+dlveeKNdyaLh8OJgTScPf3hv/j4V33d152+9dbrWxeDi4qmVVXd3Lp2+xseeMN9D168fHmwuLy0vjqu6ohChOiYxcZduEIfOXaiG0trvU8zBUCt51IQjO3+EYE0xgghfCRBx9n4UGtNCIMQGUI3zyINta4HrHAEx82s43uTckwkIYQpmSEhPvgAPHLOCGKkBtFjpX12ONxZ3NjMe+lwOOx3N84/82whs16ah1rbqoyULK0sKpF86E/++Evf+XbKydPPfm5hcSkfKBBm73AETIluV0SRiawC01EpsTFKJWQeAJDRMyfOjCfzvfF+MehxKCL1W4eHRtdJkgx4L+91KOEmSYwxJMmbcSl0s7DYz7IkU0kEX7myaSrTIq4IQgiKqJ3lnAMngnBnLASKnCe5Mt5dunFjOBzmeX7nbbcZZ+fVLMsS50zTNJIBo/zm1tWDg2E7DRdFJoRMlfLWI5CF9eVGa61rJYQxpjFGKSVVHkIMwXlPG10H53OZSim9a1pxDZeKKnk4m1jrmagRAyFkcjBtqmqwuGi8Qe9aKIsAxBi7aZqm6WxaqqxfsDQNIYTQOicR8WBvt56MFxYWik5GKQWgMQIVknARvAOKIcYkSRBJlqS5UJRyoNg00RgDQAVLMFA4Mt7QhYWetTZJJAEWISIiF5IhIgYl2mY3EkLgTERsITffaou01SEEhlBNp4RRQgglzFo7GY4YY0WarywshRjbsqCFbr8FZihnjTWMMUKo994YS5GkMmGUFkWBtfmTP/rT5bXVWjeLS0tCiO29/SRJRNoHH6J3jMidw+Ftp46vLC0c7I37t55t5xWM3gTTVHMIkQIh3s4nHgCooAHS2jTd/sKLL7/2oz/6Q7/0//7Hm1e2+sd6kmfUQcpYhEClbJEx7awxDc2zdrlngDZGoIQCKABv3b/+N/9WN74zKObj4S233joY9La2tp597vMAcGxjc/PEBiC9fv26N1oIob1L0xwjJJKTgAhIALx3eFQmTwVjMYL1wVlPKLPOQXt8MSGEdMYiIU3TROta7XSIkakjKe7S0uBjn/3UVy0tpHlRmVmnVxwcHIxGo2NrK/1+t6xGFn0x6BxOD9KepAKapqZAJJcUCAXWT7sxRiSMImdCio5kCLXRy8vLq6ura8fWP/nJTw5Hoze+8Y39xYUm2rKpOOcyUYxwEiNLkOdCHzQEIIRw7uy5w/2DGzduME7X1jZvveXW2tQylZevXMmTlBCydePSwkBdfi3b2Fg3xgwGA0q5nZeJSqtSS4hl8CJyQlFl4sqFy2duPc7t8NrFrbO3PhIUGm6JJQSkAZ+DRIoInnNedJRxFgOEo7GQHEU2RRKtB0BKGSGRC0IlZVwl0UdjDOfc+4CIVVVLoQjjwTrBeXSxaRpBEspFymVV13VdJ1nWH3QZI0Z7RjljLECoqsr7KBLVoqwUQOs6SVRrEQaITdWwomCMuxhcE1IlIpCi05uXtfPR13We54urK1tbO1mWMcGRAGMECDHBU0LKptqbjM6cvs17f+3GjdMnRK/Xm1UVExyABgAbnRDSad3yqqTNFWOccCYSCSYA5QDovQ3WcsqYFGmMAT0ASCkpY9E7iABA61oXRdE0Fee8ahohlBDKe88Yhwjtbl1W1f7+fprk1uk2kYNS2u13WlAaABijIdjoqQNghADEENp0Xy+EQGS6MpRSBgQAm7rM89zaBiiJPujaUKoppXmWlNOZY+KTH/u4tfbc3eem85mUIpT4Z3/50dcuX2JAAOCOO+6oqupLvvQd6xvHdnb3yqbW1vQXBleuX1saLKiVlcfe+Ng3ffM3/9A/ee/p06f+4Xt/8HB/+At/771/7xd/yiymm088vDfVv/AzP/dv/s1Pry+tjw/GlsaL1y6trCw9+ba3l9ad2Dx1Y3dXa2N0YJy32EZXshLgxZv20XXGiXOOSkU8cMVYVVWm1owxiJEGQghQQuaTadvZnGXKYeAUpJQQkCGjQAl1QDqJzJnZUXKFcMM5iwQopzFGQKScW2uyRCpC5iXNkvQTH/nDd3/Le65duZjcRj9/4cKb3/qWnf09JZj3QeVZt9P/lf/xPx5//HEl8/3R+PYzt42n82f/9umve/ff6aQdrjIuWWPd/nS82OunaREwNsEzJTxA2slLXU+qufU+58z56L0TBIr+QAjRNE1RFAejoRBCJanzfj6f5lmytLjgvKv0HBFdsOPxFCImUgbEup63jEwAZACIniIAQWsaBLh+/bqL4cyZM0qp0WhEOaGUHhwctPluy4Ol0WgyHk+FEM6GNGUxQlU1aaqGw4PNkyeMaWJsHzcthFjtdpVSSIhzLk8zSql1mhVMEtGqICllRZFzzo1xFKHb7YbgtG2c1alSggpOOCIaY6SU6DGEkCRJmqbW+n5/wUY8vrxUFB1jTIyhDdgrirTIkyRJnG7STC10F6qqag3HjBUAkOed1l++vr7urbPWOvQyEZzL2WTqI3L03bxjrWURKKWdTocSThgVQhFgbZZLkiQtuAVAY2RBYAvsU0oJguSccREpM00Toldp65yOgMgoDd5PhsMxIiIIITih07IqilwmShAKXGqtKeOxhePbzHZC6rqOxi2vrao0iRRXVpchojaN5KQQvplP8s6AC1mwTjfNPv/ccwtLfVEdlmXtdcMli1ZTShhjiKjyQQwIlBW9xaQzKGub50V/U/3hx7/wwbueBE+XNwbdbteM9e7OxXvuu/PsiY0777preXn53Llzt9562nnHWasVCpwxpCQ4I6T8wgsvfuQjH0lT1dT18tqxqmrK6eR1XYsqy3pra4sA63a7e3t7jz766Guvvba7s5ekma4aAGzVv5xzIXjLIbbmyYjBe8IYCQEAIE0Sh9FjUFkaARljjlvGmKAstDHAlBMavfevnn9p/4GHpFTVfJpkWSufaKxWCZVKWdd0stR6U+l60F/YPxgbp4XM0kzVujnY3b/l7Fmg3NoGQoRAY8AWW/38iy9sbm6+5z3vefbZZ8+//PKNGzceeOCB9ZXVF198sdPpcCWVUgjonF1bXNXatEULZTK/7czpNE2VEq9eeObXf+s3D4fD+x966Eve8eV1rSmQna1DRBKjv/fee79omrXWltP5HCOVAkhw3i8sLj4ze+6Pf+5X17rNLSeW9y9fffCd7xI6TYRgjAIRTEhja8G49S7GyJl0wYUQsiyvdIPWETxKj6ZAgveIyDOhGKE6eOssYqR5RimFthsyRu89xiizlFJaNTWl1HpkNM6rRmsDlM5m0M0zpZTRLiIAIoUjP66S6aSeFFlWlmWSJGmezWYzoaS1dj6fZ0XHNCaRygWO1gsmBoNB01ScJXmed/KuEkNGaFnWeZ5DcMAFIkYfZtNyeDhO1BbnPM9zrXWSJFJKQggTjBCiq1oIxBZfiZRIyYBGPPL1c0aEEM4ZGqMSggJx1gilImME2rxsL4QihLiAMWBjDBLmMaZF3tQGkUip5uU05dKZYK09OBxdvnR1dXVNCEEyjrpxwQMlWZa09G0IOsYIkQJAhHaRiDGC9c57p6iCiBECbWXYhOqqBoDDyZQzduPqtU6nc+7cuevXri4uLHzsL/7yJ3/sfd/1j7/vnnvuSqRKsqQ94LTWmUq63a61dn3j2OOPPz6ZTSfzmbam6HZbw6UnGLzdHQ0ZIf/tf/4K97DrTdEf3Joff9v9j/3x+c+fWF156Gvf9exH/uw//n9/7Tv/4bftHtSvXrmguHjL2586KKu8MwCuKh/3h6VK8gjcGJckSSflLsIzF/bvP7aW0orywofKk6yurVJJkcXJZGJqE33Q2lWhrMtKCCE4X15cunTlKiJILiglnNPoPOEBAGZhLguacKqRNbbhnLsQpZSciVaQYlxQAkbaRCAC/F9+7JNnbz/x0gufW1rfyPO0nM2rSnf7C0XR/a//9b+eOX16bW3t5o2bWVZMx+ML51/O884Lt9x69tzdNhCGWMgkI3A4HnHJSt1wypaLgY/h+IkTkvOXX365qqoloEiAc17Py16321JfLgZj3GxWdrshz9PTt5xMpcLoorfe+0ZXIUbV1sa6GEKw2hFKEyUEVU09A6BfdGEeHBx0iqLTyaWQ08ko73Q45zdv3syyLM9zKaX3UcpkMBjMpuVg0GWctIRI01S33n4bpbTWWkqJIVBKFwcLSZIAUB9CG2mLiDLpCsmCi62fpKVLdN0Y49I8c85TTjllSDhTPBtkzrmImK9krUS5yDqdXtcY51wjeCIEbZsQ01RxzhmVztZKchf8cHxYzqbdosAFv7Ozk6ZpURRlabIss9YkSdbp9LyPSqWEMPQRgDBGOr1u0zSUMSRAGJVEOh8RgpSMt4UzjCsgnFPGSIhIGWBEQkiMDjFwTr0N1mtjDFDGhKAA1jseBOe8bVDmlEKMlAvrtMoK733R65Kq8jHw1prBGGMcQgw+tCHw8agvXDQhPPDwQ2VTxxh0XTMCJ45vaGsi5d2Vtei9d3pjce25z/7N73zgN/LuQl3biJQxRlnK0zTr9qRIGxOAyV6vj0C1x9oxkhUVUxiIIUupYiJT18fTuHeIpWYYP/mpz25fXvqLv/zY+fNfOH78+Dd94ze+973vbTl1KYQLDgJFRAo4nY69M4iy6PRHo1EwttvrMSaSJLHWTieT+WyilAoRYgiT6eib/+43/sdf/E+I8fWSabDWtoKJVojKCEWCnFDASAhvlzgppUBstCYRo3MBrffeAWhEdJZQjhEBsCiyLEmnhwcri0s7ly4xxoq86ykJglfBcUCHINNkJV+bzicB4+rqqvc2TTNtqiRJ/+ZvPnXvww/OyppzOm90JjmnzLmQ5tm5c+e2trb++E/+5PHHH19bX3/llVf+7EMfuvPOO9M0veXUqcuXL0drpJSKUfTYSY8YnJObm/u7u4u94vnnn/9P/+nfxRiE4M986pPNrPyB9/7gvGrRIF+W5f7+ftM0J06cGI/Hrb0qYUKmElwcznW5N9rf3rn2t0/f+uDaq1efec8/+olIGaPSsxi9lUnRmEZK5YIPIRDCPMYAGCPWdR0B28qK0FpEXm/04c4FIgkiKqUob3UN3MVAXu+ZAgBrLWkBNEpjW1AIJITgQpzNK0ZFnqqApm117vS6BwcHs1m5urpaZNl8Pu8WRdM0eaeQUmqt8zyv6zp4jZGEwFvSmxBYWVmazcV4f1bR6XJvcCNeISHmQhEXGFDqsaqqJElcWZ9a30hk4r3f29udUbb5xje2UfIxxkZrSqkxJljXcqUkREYpAvHBB20Zl43WlKBQ0sdIaDSIFjxqy7lEREoxURIABAVCSNWUQojg3LysvY9tq6VSoqotIQQII4T0+/12FBiNRv1Bp9/vtlGiraS5FQFZYxljNh6JnaN3gvMYYmOaNnGpFcS2Pzgt59qEyxcvLQ56o9Hkgx/84MbGxstfeOnn/9W/Pn3q1Fvf9KTTJlWynpf/6/d//5mnn+nkhVKKCWa9e/jhh30MtdaUM1t7qQQgoZTKJGkRARvCq9eumsbwJHXaFM6/9+1f+5dPP02WhLmlv3j2jqc/f/6vv/MHji+u3HHnqbd95VsrAOtIgpEQ0u12h8OhtV6lqVKcEDIyLqFye6avj+w9m9157QRlnLbUWxRKKqW8sRApxICAy4sDKWWad6qy3N3e2jy2niQJRKScueCNC66q9qM3ssBoU6aQA6E8Oh0DRhIJIOccMQAiS0PjaeP4xZcvbJ487q164A337O1uU8KzrDi2uvZT/+JnTpw48SVvf+rq1atS8iyTQPw9994xnc7/5jN/vXHyRK1dVnSqsrE+cM5TLqmPNw52ht35iszvuP32xaL38o1tdFYCbYxmHBcWFsbjcStUnM+rfqcbsrC0sAgUQwjBewRwztVV1RijEgGBoA/7BweC8+XlZcqY91FrjUiSRM3nc21MiC5NVSfPm7qp6zrPc8HYdDJZ6Pe9901V6bqu5rX3Xmu9sLCgdaPnRkjmo0MCUsr5fCqUhBhbixoilmVN2hY5zglh3ntCqDWRUlpWjeQiyfJqXkqZZFnhvUcO1mlGkKeKU9Ea+dJMee+73SLLCkKIbuxsNlMyqet6YWWAkivJE8G9985UVjetCEIxmi4uEoKtaiTGOBqNYqTD4ZAxtjBYSlSGiIRyBJ8lxVFKSZILxttgBO8tBdZ6jUjbdMuCoLxpqiwrWgMMpRThqF7a+wCMW68JghAKKNFth7y1TAgkhHIWMJblvFW9JUlKOPPOlrqKDKx1BAXnnCdSRtIGX7QKGkIIUuIwMs6v3rieFXldV4JxHUJZN91+3wGv6tlCkZ9YXo7Bv//XPsB7q/0Tp7V1EamLnMpEIPOEuSg8x4CxriKllHIWkUgQMcQQAhfJ3BgVgfNcKE4iyXknk4lMUi7YI488VpblL/1//uvv/M7vCCFWVlZ+4sd/7Kl3fAkCFYy1dt72gqybKhhbdDqEkNl0XFUMAJJUeecQMbiglHrx8y+EEJ566qkP//mfF52ec7bNAkrTtH1jY4zO6hgjb5OJgfgQnXN1RG90BHTkKO6eEAJICSFCSkI5paypq6IowNrDnZ2VTreXyPF4PJzOeoO+FlSQwqNTjEckUvJOrxsCBm+IiyrvpnnSyTtVVQZvhWQIJFYlYggRkEDjHJVideNYb3HhtcuXjDHn7r7r7Nmzzz/33IsvvrixsfHQQw+YRv/NZz+zvr7u0AMIpRQTHDEOFnqMkl99/6+EQJRKlRJFwc+/9Bwlfmmh8+L581naT9N8f/9weXmZc8koMMYmk0kkCN4DAMZQjatZOT2zttJxjTdkunXj1Ju7h4cHqq+UjcFC4Ki1Jpy1ERyEEPQxxkgp54RE4gkhCEcKwRgjE5zvjfazLOOcCyqi9UeRKBG5FAhRcaV9aKyRjAOAMQYoEC7Y6z6wCKRxPgJhjAKBSFoONc6n4zzNlJAhy6y1beKMlJJS2qZwAUSplDeaU2BZQilpbUjdLhweHp4+PbjtttteeumlTqfjgvfeSy44ocG6cjrb2rpR13V0/g//8A+/97u/r1DplWvXFhcXhVJConbWOeeDz7JMKlXXdSsiUEoRgHlVtjALZUAwuuC1DypLJeHW+FZwWFeac97rd4QkLAjXyj2ca+saETEEBxQYY8PhYVVV3W53Z/fmwcHBPffc44weD0eDhV7wNAKr65kQwrlAkBKkBGOrprbWtvHRgcbhZJzneaUbo5333vo2qoS+//3vhxD/4T/6B3neuXbt2u/89gfuuPPue+++8/xrr5y85eRStry8vDw6HArGWZs0Skie5w889FCbGmNGI0S0jU6SpDU4KaV8cIyxoij+f0S9Z6Bm11mevZ5Vd3v76XPOma7RjLqsYrlgDG6AjQuhYyDwQRJqAiSEQBLyQQxJviTUYEKzCYmNARv3JltdsmR1aXov58ypb9tt9fX92GMyv0Yz+qHRvO/eaz3PfV8XI8xay5PIMnzroZvuP3zkSxdOHDx2W35lvdrYesMDD/zgD34/jZAXFoxbv7hBKKysrNDd3YgLwzAOYL0ryypK+xEOKvhnTuwcXTgAaBvjVnDIgtbBRFGcZEldVxAQEYwS0nyQqnp6+vQZEbHFxXlZFWm2PBzrKKW2NjOd2e3dsdvJ685sDysDiTW26YYaqwWjATlKAVnPGRpW4ZlXL+05uH93XB6++dZitEuBDvqz3vtf/dV/Ozs7+21ve/twe0dQhjDEcZpk6akzJzHly6t78yqP42xna9tgKr0btAYVCp2ss7O+tXH6wuyttzIhZmdm4rvvXl9fP3L0GI+ErEtEcJwkk8mERSLmcSyiLIqVNd67fwC4N20DClQrb2TNOZ+bnaUUI+SN8ZRSrQ2hdH1rU2vJGOt1OoNev5jmBEGSZHVVX758OcuyJEka+sTu9o5xN9AHGCPjbJqmIbidna2FhaXxeBjHsTXWOSdETAjxKDDOEULGO2+NEIJw1ihrJkVOOAsBWRcIa6ylThkdgvPecs69dZwy55wQzBiVpqngnGDWBPgbe5LWFrsQQsgigTFGwSnlkyjGGLmm+ERQVdd1Xc/Ozk4mE2t9msYI+ShKuKCMsaqS29vrQkRpIkJARvu6HEdJjHxgHEOgxriqqpwLaZoCpjGmTZnNOeccRgFb07w1gpRaqZrFCY8SqzUEwIxyjKWUhNCiqrqcewTGGEKZ1lo7q+qKG8WjSBkTJXHMaOMV9QhhjJtnIDT4C4KM0SEEAhhhZL0va0kAggcpJeFxTOThpaVzZy7+i5/6hVfPXihALN7+Jg88lKXS1hiHAjSozhBMQACcNY4WpZTV1lqPG0pOqDkl3ltrVLAaOzMudxw3eS6CdYwx7+zevXvrus6L8tLl597zvvfefvud73zXu77t277tNXffmaYt75G1HmGIkwggTKdjTAihzejbNSLCJtrCGDvx6vHXvfaB/fv3X7x0qTlqBO8xId45TAgCz6kwxtwYgoYbJWRjDEKBAEYINa8ZYwxCjgALCFljOAeE0I//+I+fPX68m6WIYI2dSJPRzi7XcQreE6hrLQR3zhkNQkQoYOdCQMQYE0XRdDp97tlnxsNhu9crVM0Iqeu6Hbc8BuNMxKJaSS74yt7VyWRy+uwZZNy99923d9++Bx98ME3Te+99zcre1TzPCeBKFQ1IBFDo9gaf+9QnxuMpYoJwUUtJiUMI/c7v/M5v/OYH9uzZs7ExPnvufLvdLqu6rmQTqu10OoQyTNDOaGgxOnH8lSpYQ2Fc5jMLe0bT3UMEWHC6tgzxspaKmk7alvJGzQ9jLJjAGEspg/MhBKC0uQUBxoABMKaIYuMM5dQ4c4NpghDjzHrXvHFNkxvC4L3HGBBCwbosTgghIo6k1uiGIEgDEIRQJXXDhBuPx61WS0TJdFJEaeKcs9rxKKprRbnQVe6Nb7AgRVFkWWKMJwRqZxCn17ev93szxrtxPs2yzGOolZRSYozPnj+DEdR1+eTjj2et5OFHH7np5iOIYLPrEACLBOUMGBkPcyyYrqzWknOOObMoGK0RgA1eUMYottrEmCUJccF7AEobMoZFCAEOzRdeVUprWeSTLMvGO9vNlAYg5JPq7NmzGCNr7f3335tztrq8J5+MBeOsRVHAO9vDJEmaAnFVSQINgEY0UZEQQCmDkDfYNeFVjHFz5M/LqoFjLywsqLrcs2dxbW3t+eef/8Vf+hcHDhy4vrHx5NNPLe5d3hmPvHXbuztpK9NSISkjHO3fv391dbUZTjaHiSxJmeBxFFFCgnMEgTY6hKDAO+QyD87YAOhX3vMDn/+Nny/jUOTbdx87+Is///9cWr+SsRhql6WpiOD0yVPDnW0RJ1kclbnFCIJ1sWBqshFmZ2b2zU2nKq9cmkjjIuwQJrj59vI4anXaWxubSPuZmZnRcLyxseGco5zMzMxFMa+qQivLcVBKI+uG+WS1DbcP5Jm6bgfimG02UpTSgHBAjhAIzgIwgvELJy5pEFk6aLe7JnibF2nSff6ll7/whS/ccvPR97z7Xbu7u1naJoTFNB70F5577uuziwsr+1aTNPuTP/rgj/7QP17ef/DytbW9MwshQGnkicvn98zOzszPrW1c78/0aCTOnzy+PR5euXbt+NVrb3jgPrBESpm02mkUx5Hw3o3zcRRxZex0OuU8Cs6XZdksYpWRkRBZGud5Pi3K5oZhpUUIKWsYY40mOYQwHA4xIp1O7/SFc2VZHj582Fo7HO5gjI3STbJ3PB4PBgOpFefUezuZTIQQcRw3cuhGzEUpxUAJZsaYUtZJkjDGGv5iCGxzOAyAOq22915riTF21jbvHq0lMqGqSs7FtMiN0h4FxggmoJRqZZl3yChZyVpbwzlHgXjnylwSApPJBCFEOUuShCAAH4zzTRaEUo4pW1qeab7pnDLGhLM3XvbO2e3taQNsSdM0iqI8n9SlpJy02+2iKBBgwJQQZq1vviPGGICAMfLeI0Sb1iFCWGvjjMUYi0hM8ikAUIyVUp1OZzIaYYSWlpaG43HAYFXw3idRbJzFCFVF2Tz3ICCMEBK8VrUQ4gZHyATjHedcFwXmAoLvtFrO+DzPe612EsezqfjDP/qLv/jwxy5c24Ck1d0zP5lW1owBU+sBYdY0UkLwhBBtLCNgtXNB+uCZiBwK3ntGCQSnjAcfKHYhWAzBBWQ9tlpKKSPG4zje2tmNoihK0oU4Fhidv3Dp3/76f/gv/+W/vv71D3zLm9984ODhC5cuI3CEEO1sswBuyCfeexUkAGVcAARKbpxm7r777osXzzf2eAfeh4AwCsgF56WrUNNiBRQCAoCAUPC+udmFEABDkiSmKJohQUAIEexQQBAAwtzSopaSJslUqblOz3s/HU2iRHT6vWIyDVkSRZHDiETRcDQcDaet7sBjNre0+PDzD462dy6dv/Dmt701H+UUE0wxQghB8D408OBm6cYp279338bGxvHjx0MIb/rmb97d3X3kiSff8IY39GZnqumEkMgaH1DglNV1+fhTTyIcEHW1qjGAdeHN3/zWmfm5q1fXy8I0c8qqklpv17VaXV0eDAbGWQghOOi1O4997fGXXnp+363HHlL1AqPF+PrNC9/09Je/1Gt3uss30ywBrlknQTr0ul1jjNYaA0hVe+PjOEYENQ9kH1wIyDpngw9e02677Yy9YS7EQDnHCFFKQdZAmTHGYowAjDOEkEhERlvvnAfUaqUYY+eUVgp76pz3GLz3BEPaamHKrbUOsHY2bbfKac4Y45xDQFEUSa1dgOm0GAwGLoRaKSCk1WoF59qDTq1kUVVZqg8dOvTiiy9ijBHBsRCMEWOM1WZnZ2txfv4Hvu97//qv//rc+VOXL1984ze/KS+LoiqRt/koV0oJFs31BkpWE62K8WSKxnGUDgaD8XictRJppHU4otxaj13AgFEIhNxY0Aoh+A38qfPWCUIvrm9cKsuP/p+PaCkpxZ1Ou9sd3Hnn7Yyx0ydP/dWfv5Km6b33v3Zra2syLh94w+s7nV4761SylFKmWcw49x5Z75yuCdBvjJpVCAEx4rQxxjTXjrIst3a2u93utbWr+WTXaPm/PvQX995/b7eTfeYznx7tDn/yp/7pyePH962uHjp0aHO4ubO1vby8YrHpdDpbO1uvec1rer3ecDiklCZJIuKYMMo59959gxhwg+/qHehgLUGO4uuT0f1HbvnPP/BPPvLck6rT+oVf/rnCjjgNgzidIGUg3HHLrYtLq+fPn9VSDXozWxslZSziwQaNMS6kiQTPXTi1mb/xaM9opEIIAVN8A+ITx/FgdqbMi+FkvHZtA4GfmRkIIRgT1ngXgGBuXM6AWBCOoY3J5DV3LVx6eWhgmdJACDPOQgAE4L3jhFofGBcaya3t4Xhz6zw7d/TmfetX12e72Yc++zdXrl3+6Z/+Z3fecftwuBtCUEYHDHOz/ccffXhpefnmm27igq6vr++uXfnLP/6Db3/jt93zjrdtVBWilDC6urTIMEERWSDLZVVxQsuyOnni9Hve/Y9OXr9+be16kkSAUBYnrSgpVYkxMkFV08KYG933qrpx2rXWJnGMECrLejydNKuWOI6DB601Dmim18cEqVrmeU4IU0o9/tSTxrvbbrutllJrnaStoigCYBEn02LS7feU0SEEADIcjo0xi4t7mhNhXZfdbrcZPtvgqyJHzkdRhJDXWhIC3tvRaArBp2lWVUXEOSE8eM8555xPp1MppfehquuqUloaxhhgHKdJPi0ACCFMS+W9t1aT5o8p67gJQQeEMGGMjSf55taQktDv97MsM84jQJtbO3meb23uYIzn5+dFJyrL0jljjAnIAUYhGCmN9zxOuTJSGW2MadHWdDrFmKZpixCGAjjrg0cBboRxmglesw3z3gePGMGUMimlQqHTaStZcSArC7MvPvfi888/TwhJWtnb3/HtU5cLxouqdMFPm5kcJcaa5jLHCAlWRxGPIxE8GGcJIRRR452IU4wxYZQRhGk4uLTknNve3v727/uR7dK5qLd0aPbaxtb25pAxRr31hBACweOmzGON8Q5HQmhVo4AwAu+DswZhgOCMNQ4RGgmEEHK2rkrsAw2glSMUEYSqqkqi+MZJnRLGmHZoMDsHhCIIX//6cy+++PL8/MJtt91hnJJSrq+taVVzIbz13jmEEWAcnNdKIQhIiIDCtWvXnAuEEIypcw4QCj4gAAShKR9jgsONCG/AmN0gUCBsrUEAwYXmMw8AAVDAEKyLuTDSHTp0YHc0fuiRx27fs3dSjgb9WcoEAOzs7Kysrk4nk+HWVrO2Zxis0rKs9u47BJS0suzS+UsI4b//xCdEkhw+cLg2VjmLQmiarVmWTadTCIhjVtd1sH62P3Cd7mQyOXPmTNpuPfDAA1euXY2SJBZs89rV5cWluqoGe5bXLl+4dOEcxgAhYEq0ct/xnd/5/T/wff3BzHMvvHLp0qV2r4swopx0u50yLwYz/Xa7lec58mC9m53ds2du4XQsYi66q6ujjbNrl66kX/vaqStf6y93v/+f/BvCSRITsBg5MEq74P8vdgkHZVUzgwwoNMNKgjHB4L2lWRJbrY0xCDACbK2NoohSyrOMUmqtL8vKOmdvWIM0kJiAtdYRAoBDr5UpRikGT7izQTmLMPIITPA8jgBjzrj3vtVqVWVZliUVnEdCap1lnbKslbHNtWBalIxFGOMkooN+d+3K2mi4c8vNx86cPDXc3gkh4OCTJHnxxReD0YNO+8qF89V4rMuy1Wr95Yf/7OVXXizr+uDBg0ePHPnSF77orX7bW995Renz589TwQ8ePDg7Nzcp8vHuMAQXnLdeO0dcCHWtRBQzJpwqQBPCmDFGSpmmLeecLCtnzPr19T/7kz89uH9/nRfe6pnFhT0L8977zbWrGxsbg95MO0nOnzt/y8239Fu9s6evcMJGO2MPgQlc1UVAFlMSidh71EyenbFNER5jrEoTRxxZVBWlYCRLY2fbw+HO1vq1i+fOvO0t3+Kcu3rlAmC0tbUxMxg8/egTZ189+cb7HogOkReeesaUNQ/YE9qw/g8cOjQcDpvFWKvVaswzzYK/ee82v4UQ6vR7wrW3piMj7Wy3v+vqfRXe+shXu0TYzZGOLM3isZYISEBkVFettH3owOGnnv6arCQjN8jyjHAdDbQibjK1mH7t9O633HqPVeuBYo58VVVJksRC5DqP44RSdvny5c7MTL/fJdgbY4SIjXHLy/uMCdrRWEQSIuDpR778UrsLr7v/geev1bEKAQPhosksYMKMsQST3d3dkdqoJzJlYv3qxU9+4pNzM6sbWxePHbvlB3/4/at7l9bW17NIMM6VNVyIV15+dmnP3LGjB9euXKhUKYvyvttuVtPq1/7dr338jQ+0RcyT7ML1q3Iyufvmo9IqSSCO6OH9Bx566OErFy5GlOxb3TvZ3U1iMej1vXWTIjdWuWClkdZbWUkMlFNqjIGAKaUoOAhIGW2dS5KkuZ6igL131vqYC/Bhd2fnpZdeuvXW2zEOdaVuOnosabe2tjcopYTTEFBd14SQoihCCIWtCIWm4VoUxZ6lleChrEshRL/fBwCEMMIgpfQeJU2OgRDjraxlFEVZEhFC6rrG6MaFDzB2xtbGBucp5VJWzZGo086qqsKYUh5FUUQA35iUYowpeO+11c1xXsSR1rrX7xvjUo8xF5QEYLSQdSWl98g5lySJtyFtZZTyuq4bYNx0OqaMSCmFYCEAj6n3NkkShFrWNmxq27xrMcY8ip1zMYqb+AVCnjIcPCWEeY8oYZQRTrkxhjJSK4UhgHcB3NrlSx/58Ifvv//+L3/lwfPnz3/729+GvPPWRJx7RpJOa5rnWZSh4A3yMQYTPA9gjSmda4B0BDPCKA6oGQ2qWnZarYzz6XAXQ/jRH/ju506s3fnGt17aHlktI8Jqi0GwVqcz2h1HUVwURa2N9w5T0KpCIDx45JwnlDJmrWOMYUx1LR1BlHsCDAcPzqdJZCqAEHStrLUYULPCY4wBwdajsixCUVBKQ0DLy8sNj7ZWhkSUYdLvDVAPzQ4Ga2vXWlmitZ4WEyVN8wRQUlLOvvbM07JSTQJAaw2IIEAAIbgAGCPkKKXaqm8cdywK5MZ2EtMGo6bKCjBCADhgGxyLIudcEiff/M3ffOHK1T/+i7/krS7PcE9L76wX1AWvwO89eOD62rVOO1laWgohJHF85MhRF7DDZDTafeyxxwa9/ukTpz72kY8+cP/rHnjjN1nrLVgPHjyU01xQZpRBKHDKUEANqyuOon379pVldfHSZR5HznkpdZ4Xfj4IKhLBz5w5ZYyMYu6Md9YfPnD49InT73//+3/nd39XRKQ3aCMMZZU3OUEece/taLTLOS9Mbb3325sPPf4w4tgGT2cGk/Vzr73rDcOxpC56+MnP3/qtb3nvd33v1sWr7TCrEdZON/saTIFSAoGEAFVdN6aihlVlrW2GrLSsq4QLCIgyUVstoqguS4NJK6POmABIRIg6XBSVN8A5R+CMt4CxtT5JMs4IAQo4BIQnk9zbEJxqdYQC5K2ttNacCyG0NcD5ZGcnsiJJkk6U5LIgBExdkeC9Qw1mhVJaTso4anVaXQzkS1/8yu7OmBB44snHz5w8kaTRiROvvu51r6urcn5xUQhBogiBUUo99OXP/9qv/drZs2c/9fGPPf3003GWnj59Ionjc2fP/uiP/vj3fM/7Ll69hjnOkqwd91ywtdXWOWN1FEVlPp7pDxBhdVlx51EIhDBVVkCQ8/XZc6c/9Od/UefF5saaiJmIktrKV04ct0ozxrxHF/FlAMyEOHX+9GQyHo3G2kznF1Y2NjYAR2nSsj4wiKfSEgBnkc5rTqjxTusqBNdMVOIo0jbYEK6cPfvQVx48ffI4ociUeb/f/5Ef+ZF/9jM/XZblsVtuu/vuu8+fPb+4vAcRbJAVMQeAuiwoZU6bg/sPrC7tmZYl5dxYW9c1hJC2ehRzQqhHKEBw3uZVqap6xiPNiHbWKLm2Lvcvr26MRtvrF9tZ60o1pSYsZr1Wp6N0DQAk5oXMeZIurx68fPVZgx3GJngPmGYYj2IpA2preuX67tlrm8srqB5KghDlwup6woDRlrc5dbrf77VFKr0slUWIxjztt3nWSiurCXIkWfrclz49v7z6ve/+1u3tjVt77MS5S0osxSL21gqBMQSCkDRqPJnmeY4RQECex1rVSuvZxfT1b3rPkcP78qLeWL/eqOWstQwzWcl9+1ZnBwvHT58hwSYs1i46efr83a+7h3N76u++esePf89ffuEjw1fXDx7ay0I4evQWp8cYd2POXASj0SQElEaku7LI46RSlZSVMU4phQkLCKQ0lKbeuboyKLhWK0EI1VJ67D1w3ijOtJ0Md1kUY0qiSHjkLl27tLO12+32wTuwcOTgPkJhe3eUMqa1pZiur69HQoyHu5ziOG2VdYWBccHHeTG/uNLrDYbDcRJFEY+sN0JQa3VdKyCs0+l5XROMqiJHCKVpijElmOV57p1vdzvaWmcUdZgA1sEFEsAF6w3h1IVgANJOb6bfoxRZY6xzIqK6riA48Ngj3On1GbHGWG11JSUxRDvtIYgUsjgjhOzsjEMgnEWIkzgRhNMqL8ZFSQg4a+siF0J4TzCOKO8YpYxh/f6AkkBpY1RUjMSUYsowYBtzp4ytrGScYXANFY4STCk22gEK3roqVEIIGrAxtXOmWZ+1O52Ei5/7uZ9DnEPwl86dP3brrScunCdpBj7ggBIuqEcYg7XWGkUI0SpQzhBlWpuIMqsM9ggFUKbmmK70Zuqy+vmf+9mHHnn40sWLC3Pz3U7n7PHjUXcpTbvb1S6yFmkr69o5NxwPKaXBeQLglEUOBY4YJUYbzEgInjJwwThHAuEoaKM0466ua4wQDcoHb8INi3kIwToVMGAEWEPMhKFkWhadTgeFsD2daGURgkCwqurKOQBgjClnW53uZDLp9XokzZRRxTRXdXnz0aOnTp5U2PE0U0oZ64Bx5CxnTCuFABr0B0Y3YmgAEAIEj5z3AM0JwgPDCDMUEAreWQ2pcN4b5xImBrMzhFFdlQv9XpbGvlL9fl+laSXrAAwLkg3mLe2PJW232xxwIMIZMxjMG2MOHD507tw5ALy0sOfaxuYXv/LlB17/+qnTsYi89wQRay1mrLZaO8s59w5r7wOmWtsoyfZESVFOh8MhIWS0vZ3PzqdpS2t7+fz54L3zFCHNGB5OtwGAEPj85z73j3/sx9avXhWY4igZDoeN1OeRxx7lUbS0tJS2svlW24PfLev5rLe+vr40v7g+s79H9OF9e3q3vnnn9/XtR27dql1dU86NhUCZQATXWhNPAAJGCCFPBTXepVFijMEYPPiAcABKrXYGOQwwGg5pJEIISRQ3yyGRCKsUpdwaDYhgir1DFAIh2DmvtEaAGadxHFNMGjNBlMTj0VTa0WAwaDYx3lrfBByIz7LMKh2sE0JUSrXbvfX1tVS7mZmZ8XjsUOh0OnWtna2iKAKAl195zlodkLvv/jt3ttYffeihfQf3y7rq9XrzC3M727ta6yhuSVm+//0/8h3f8Z0f//jHX3jh5W530J+ZmZbjQtadXm9hafGprz053B1RSre3dz0m0+k0a6eXr145cuQIpVjW9fq1tXJS79+//8SJE2maxnG6srJy+x3H2u3sw3/ypxfPnJ2bnbt49oy1lnGulWKMeEwYJt1un3M+nebdbrfMC2+9EOJTn/rUu971Lg9oZzTChIk4QWiEKddae2O73e6kGgXkMKUu+NFGEXORJklz15lW9cr+/e1ur5uK+YWFpaWlfFr+5E/80zzPJ5PJ0089vbOzc89ddz360MM333Roa2uLUJq0W1IqKevVfXtrJYuiiNOUACVAtawI0JiLuqg9+KzdMsb0W13Joul0WivJGKtl7S0rlb71rjvitOWCn52dHY42n3/+uZU9K/1+P4TQbncZ4dMif81dt585e3Y0ncZRSyprjCHYxTThsUBMznRmHjyx9hOrhwQMHYaADbHYaY+JbsUtiSK1cwkT1MGtoIqlfau1r5EIGpdamlbc3c6v7cb9XFO1NXnDLYcyvfu6g3sfvjjFHDNCEs5Go1FdFeU0/4esLxcsIgSwX1pavvvue0JwV65ci6IoihPGqJRSa91td3irhUK4urEZE1ZZV4GLW1HSz6SR+frus3/3vx/4ye9dmJl5bnp8+srm2ctXe3Mzzpkkbd1+5x0AEBAGQJzz5jLqnPlGl8wbIzmnjFDvPQUskih4DwBbW1uEQNZuYeQAobKskA88jngUOed2dreabs/CwlwaJ1JKSvjaxvXpdBoAlWWZpK28KJorSJKlaRqHQIQP1jkhRCeETpZWVZGmIssya21jQDFOxmnabneNMVGSaK0JYWkrazBqdaUcCnEUeYQm+TQVkQcEKDjnWMxKVUdRhAjI2gBYQprVMkIhcMa0VdoaFFxEo1iIYI3SGgjFmHqHKGcMgDGGCeIsmkwmw53dfn/GaJ8kEQGcjyfeemutSBPOmYSKkYZ02MYUCRZRyhnBmKA4TqpKcgaYEs4p500BBlPMKDKCCkJwg0NnjCmlfQARc4Qh4NCgjDudjrImixNV1bP9waFDhwKggwcOnD9z9sMf/vDv/u7vCsa1s84QAICAyrLMsizOUiEE8hZharVmlHERSa0IxZWsdKVanXQwGDz55OO/+ZsfuHDhQr/f7w8GXIhJOeIZtSa/vp0DCEexiEVtjakVIOS98UZ1Zwday0pKisFagwVyXlOgEJooq0Xec8pwCE5Jq2U3i6wrnNcEO8wCMhCsN7UOlCBCnMe1N8a7LMsIIQ3LWkSsKApCiPPYWiO4yDrt9fX1+fn5drdz6dIlLFiWpZ1OZ+L8vffev729W5Ylo7QsCoQQw8QjCAGa9y0myFvfZG6+UZjBgJoiJcKY3pitAg4ohBAwYd4HigEBCdbJSu1ZXPru933X177+7NK+1b0rqzzL+gsLo9GoNrbf7w9mFiilDdfXoSCN7vUGeZ4XeXnLzUc+9+nPHD1y8+23Hks73Ucff/zzn/zkAw880FpZ1tYBBaV0TIjA1COHffAoeOcQAkaJVBVjrJNlg253d3f31luPzfQHeVFGEd/d3QUIgJFWtttpM8aWlvdcX1t/+umnf+AHf1AkMQWWtlpUGgAQCW+10mmRJyJhTFTSjofX+50eckhrMzffGybttckLWUk/8blP6IX28fOXV7FIcKKlxTGzxmBPIsZvdOhDCAGQD4CgYc+JWCCPMAaMCc3HEyNEu91ut9vWOedvWGxrZRCmlPKqklVVM8abazUjgC0ODJCCaVkQyQJmxpYxoYSJpilUKTkajZIsTTCuirIqyiRJwCMKeFpVRc7TNGWYaaR77W7AKODQ6rY2r1+PBcvSlnMGYzyZDN/wxtf+2q/9Kif0nnvu2d7cmJmd2bu6cuDAgTNnTj366KNFUTRU1Var9dJLL33gA//xzJkz586dXV1dzacTKigENHH2c1/83MLins3NzSuXrnQ6nby+QblKkujUq6e2trYopWkUb+3udF54fnZ+Lr9ySSlzZHhkYc+cDfaXf/mXT584+dgjj548dVxKqY3xzimFGlMJ4SILoalsdvI8SpLd0bAsi9FoNM6n/X7/5VdePHnqzFvf+tbGVDM/OyfLghDc6vQ6nVatVUTEzGDQvFGMMXsXFxi5u9fpnjt35vjx488/+/xwOHr88ccRQsdPnVxdXZVlefXKFRSCquXmxnaUJqWWmBJv/M0334wQ4lxY7ZJEtJK0Cp5zWhVlWZaU0t2y4iJu0uaMsSb5wsSiC2FUF7ffefddt9/lQB08tJ9fhW67d/HipbVrV/M8n07yw4ePzC/O2l6axBwHZLT13gvBEAplbakNNTaduf7xjaunL+tji72NyRgI4oYlMfOmgICxABw072BTyoXFPufeBUBcQIAIM4T59Z1NEnc7rfaZremF3dPfed/qkQX76tC02+3heLRxbWc0ncZxHEUJpRQz3MR6vbORzV546fittxydmxtQ2nDGvFIKAYvjWEpJqbdANBjsIE1b0zqfDrdXVhdEKl4zv7rzpS8/9Gf/470/9lPvvfetr1487pUXUXTm9MUoTtvt9t6VfSJNRuOpAouCstZjDMbYGzoNSqy13jsGQCnBhGCMp9PpE0889uY3vxkCclbaELy3zgUmouvXr1+5djnLkna7naaplqZoai1aSSm1NSKOuv0eIYRSKlXlAo1irrXGHnwI/X6/IfRqIzudTtO2b+ZatVZJksVx3IR4q7LAGIsocTYEHLz3AUOSRBRoLWvGmDImZkRq7ZEL2imlqKCyLKNYoMA4JQDgLQLkPLbNlDJJEql1IkSTzaTMhwAeGlRcYJhFEVfSOe0G3R4jtNNPg0dUMGsN8NB8YIQQ3qnRaIQQiiwngKIo6XXblGEhbqjJhBB5LaMoUtoKTq31RjtGBSAUEHbeUyDOI20MxrS5yogk8cZab733nawVvkF1/c73vOdf/ZtfVbVMs+zokZv7vX4r2zQICKGU0iRJGaN5niPvkffOBaNlK46Qs7KuWBojhLqiNb/3wPrG2s/9zM9+5pOfOnTkpqWVpXPnLyKCR5Mxieju7lqXRZz1a20oBgy+KksIFggFQgDiPFcYs+ASb5krHYuZcbVlBmMapGIstta7UCNCXHBxFBNKAHhgkdHOBwIAznvOYyUt0OC9j6PUORfH8WAwaApIjV+5+XnTwyyKIuu0R9PJ/tW9WuvNzY2qqlzwQIkJnlIqZaWdRigghP9v1DmEgJrgMDBGm18HgKY+BwCYcICAvEUBcNOFQQERErT1FDtt7n3gfk7ZdFr80i/90uHDRwqjbzl6S0BAMAVMnPMANIkywqCu64BwmqZa68Wlpd///T/Ys2dPHEUouO/+7u+OkvjZr3/trW/+5nNnzjz0+c8fOnbz/v0HA0CatmQdGBMRZd57CC7mUUOMQc6JOLZO11K1Wy0CqJiMmYiqMp+Mh03PExEKQGolr1+/nrU6169ff/bZZ4/ddtvm+uZ0WgSPlFKyKueXFoHgK1eu7Dtw+OkXnjt36UKn35uORzji00kVtzpX17O9W9tk4/Ls8hu+/IVn//HcIpslrLcUVI0xBoy8c4xS7z00+SofEEJWuwYNrY1CwfIovuHEKIpiYXFRWUO8bwqsIcB0WgCAEKLVajVMwaqqIk7jKFXWBO8pYOvMZDpijCGtGGMY+YBCEvHgAbuglPTG4oCcNnEcC85mBn1Z1cH5VrtTBZ8k8e54l3PKOOl0Wtvbm3QeEPiZmRlGw+lTx1f3rFy+fPWv/uojGDyl9NChQ88//6xSCmO0Z3lZax2C2dnZ3Ny4dvbcySbZsbF5Lc9ziijGuFby4KGbhvnk8vX12eU9zrm3fNPrLp6/sLy8XEzzF1544a1veUdZltPp9D3f/d1f+vKX1zY3eoOZNEkwZw5AG7e4uu/wzbe8/TvfRQiRWgGAqqUxmgvqnPuNf/8bjaFs//794+kUIeSM9c71+/2lpSXn3M03Hbn77ruXlpYIonVdq7rGyJdFGZzdun5NW3PowIFzp17evL45Pz9/4uTxp59+ejLcxQDaIe/9YDBgjGmphuPhof37rbV7V1fX1tZardZ4PN3d2eGEWm0C2H6/t7S0MBrtIkwxJsPhkBNKCTbOEobjNPLOSWm1mWJMq6pqD9rIhyxOKqMQJTZ4a+2g25uU25TSjetrc7NLd9xxh9Hq0qVLetZM89H5SydrJTFKBWc+IKXqgIX1DpAApsEwyeXs7PzfPn7pV7/3jpiOjYdS1hE3KWURprv1RiuLHOUoBpyEabmVttrWWuWC914Yt7Ytc59mWvRaXVVOv/rClVaSba6tr19b41FsXWiMfoLH3nvrDaVU1nVZlgQBAvrwI0/8o/e+y3hLsOGcB+S9xdLVlFLvpQ+YC8CC6aJC1madxBZV+8CBDoZ7Fg499Ov/5dDdryfH9s7NL2cE5wjtWV6lgjPGOKW70/Hly1dnDi7LWiplKMVa1oAIaqDHzsSJ4JhWUlVVFRC6cvXSwsJCHMeT0Vgb2W63A8Z1XSs9powdPXq01UqbGSnGssyruq61NTMzM0TwxmgyHo/jOO6nfYAQMGAM3oRur621JlR0u12tNSWcYsoFbSgfOGBGWVmWhJCyzCPOGeeRiJqDwrScOueSJHIuNHU1CEhXigkOBFWqIpzl+TRJoyxOKIlaafsGTT5AXk6bDgLlDCEIIWilnEeYY20dF3FA2LkwHI4Fp9ZBnpdZlmCMimLa6w2G4zFjrN/NqqoiFABct99qdRLnHEaAIGDAAEHKSrC2UqpxlTfUAecCxhQh5HBgnDTtDs45UOKci9KkeVIxxry3AKHpEWitKSFNT7Ldbg9mZkajkSyrZ5559stf+tId99579foGi1iTkalrSSlDCCFMsEcYhwAoieIoET4EAJjv9X/1X/7S//ijPz548OD+QwellB4FzHFdlAFAFjLrdGxVJq0BwiyAL8e7xAESxDmDwLOI6aqgcYyjYF2FIx4wAsKCRYQIIoRWUiRUaU+Z8FamWSyoG29vqnoaM4QAnLWYQaWqOBYBW0yhttNW0sUYb21ttVqtPM+B4ACICV5Mp01syjlb1w582N7eSuKo0+lUSmqpvfdf+sqDM/3e1taGNxYzilDw3iMEKHjAOASPUABMjHGUkl/5lV/57d/+bQTA40hrjaBR8yGMAgSPICAcPApcJILTXKr77ruv3e1sbG3OzM1/8jOf/h9/9EcvPfPsnbff0c/ag3afMdaKkmCdpThptZjgHoCnybXr16+urz3/0osmnyKEbrr5yNLKskXh1ROvriwv711ZOXn27MNf/crqvr0zcwvdbh+gSNM02ACUKFMTQlAIcRTVVeG9z7KkKpQLvgHd5Hk+Go2afnOWZVIpzCjCVClV1/VzL7547LbbpDUBsLamWdlMR2OHAuHTy5evZVG0Z3FpcWnBzi1e2Vyv6nr1wOHnz5+b2Zq+cX7fg1deFvfsSdOBqqzPdqzhcSQIBuc859z6EBCyIRAMjaCTMx6QD6EJlduGMENro4eTMRCMKbHeeQxMUG1VVVUN6JwQwBQQDpXUpayttQxjgkEQsLKysuKUMkKSKC7zoipKZ3VdFdg7QIgzQjDKp2OMcXP3klIaXVMWnFcz/a5gRFC2sme11+lfu7Kma5NPplmW3X777QsLC4zQW4/d5rS56eChy5cvHjx4cO/evUoppesQQp7nv/iLv3j4pptGw6HUuq6q8WgUQrBGK6UAY+fc8srq/J5VnrRq5U6dPUljev7S2ZNnju+Mts5fOrv34L7FlaXFucV3vfOd99x1z3x/5s5bbjeVoogywncnxcW165euro+mpTShUm53Wha1kUYnaUtZgwBEHO8Mh9qosi6TSHRb7aefePLv/vZvL128eOXiRSf1k48/8ehjD69fv/axj330i1/8fD4ZvfTCczubWwKTc+fOXb169ZXjr7z0ykunzpzkEZuZn+v2O8sre1ZWl3v97oWL57VRnXZbKwUIdTqt0yderapK19JIJTi3ShMfdFXWVZUmkQ+2VrULtlKVCW5UjHgaUcG0tzTi/dmZ2aW5Vr/tkKMMc8EizgmGLBJZJO65687drW0rNQBpMq5lVfVnerPzs6srexcX97Ra6dx8z9tiOtkWjDvnbcCMgAw6JtiaMo5oTrJPPXE24YT6kgpUyVpKTQOlmPW6A6pcUDXGodsfTEtdKV1VZVGPS0rObqhEeF8UUunKJlu77sT568t79nW7M4xGrW43IIwJK7WstHGuYY+7OEmiOJuZW7p6+drxE6fjNDPOSqUaiZgxpjn5BqNQsMoojBHnfFLVK4cOXbx4+dRLX4dIdIb2oX/97xdE23HYnOYAsLCwkEQJY2w6nsRpsrGxYYzJ8xw577RBCJVVjhBijPR6Pc55XdfGKEKgqqq1tbV9B/YrpQCHViujlDQdM8ZYq9XilI2Ho7W1taIotNaTyWRa5M65SZ4zTjqttjNWMF4VpZY1RoADkmXtwTcj2ZWVlTiO+72ZdqvVbnUZoQ1kMY0Ta20iomBdEkVpmjIq6lo1oUJKeYOA11oTQoK3lFJjrVSqKIrRcKKUyrJs/+rewWDQyhKpqhAc8sF6F0JoxPJ5WfMkZTwSQkRJRploKqyYURFFHlBeVLVSabtlgx/nUxv8tfV1hBAhZGNjK8/zvKyNc5O8rKQmhIk4wcCiKPMeEaB1XVOKGSOAXTdLUXBZGgMEACAMG2uBNO0j1FRrKOVNgrdRv4QQnLWCc0apMWZhdg758IUvfZFSKqUmhHzuc597z3ve9/KLL60u7lFV3SCf4jgWcdSEE6M0aWdZ0sqAkizLBq3OymDuF3/253/vd353YX6eEDIajdY3rl++dNVox0RMOHPGomBVnSOvGzYRJswFwIGCp8QRKz3gyGsICsAQD9p6hb2bbXWxsci6KE6MxzFPVaEo4uPt0fUr12gIh5b3FsOxL6XASBDgjGjrCBEQKNK+cZzkeb61tWWt1VLp2qjqhmKruQ03JXKllFKq2+3GXBijheDj8bgoy8M3H7n7rru8teADADQV0+YHAAIghFKM8fve97577rnHGKMb2CcgH1zTRw/BYewpp5hhbU2jUT927JgJPhA6Ket7Xnv/7//33/mZn/qpt7zlW1f2ri7sWegOuoQzHkcIAabEaDc7t9Bqd6Uyd9x59/FXT37t6a8PZuaiKDpz9mx/duau++61CF3ZuH7opsN33n3X2sb1y1ev7I52KlnXdY0ZbZJ6IQQtldUGIdz8daMAjZ4EAKSUk3waAlDCAKCRkR+96cgHPvCBQ4cO5eNJo5oACM3/rkpJZQ0QXJYV8k4pBRhRTGbnBv1+d25u7vr21s13Hfu7y7tfm6K7bjmsN09fvXi+3ZujCDAB47TWmhCo69Jabbyz3gIOGAMhWDuprcIURMxD8DQSwgGq8+n1zY2ukoP+DBBqnGMQmi+ec64oijgWSkprNWNxXddpmiZx5CYjwigEV6naxwkEZJ1rpt7OGW+RM9r6oHXodtvOYUJCCCiOhVL1aLQ7Pz8fx/FoNDp37pzW9uDBw4cOHNzeGF29ev3gwf2j0Xh1dfUrX3lwbnbWqGIymdx0001X1q489NBDhJBOp6e1FhHLR6Wz+O/+9lMf/ehH67peWVnZ2dpCCDlkkyTZ2to5e+78m+++dzTKbzp0RNVyNJ1Ya6NVcfjwwZWVlcefeEoIsbp//7WN9fF49PZvf/urr7569Ogtn/z4J8bTUdpKdra24yhijO1s7UqlxuPx+trVu+++ezQcn5ye2t7epoCllDc8xN6D95ubm4yxxcVFWVacsUceeeTSpUtLK8vtdvvIkSOf//zn+/1+q5U99eQTb3nLWy5fufrUE09ijHe2doqqFEI46zmJlKobXEkIToi48a5471966aWf+tmf3d0dPffiC9q6gYilqjljnU5naX6uIWo1tGpMYDQasSTKssx7HwBJrSIfE08JIci5JE2t9w22VBCCAS3vXd7a2mFMMMaKohyPx5SSNIu3J7v5sOy2e4SEKIr27124cGFrdzgEGqMEW1XRNEWuFhZL5ebnW8e3R8c27XIXEBVQE+3UuMhbSYvjQD3FJFPOTXNrA6/yqa3qvXuWL23mFzcU9EVt81IrraLZTrssVa3s7NziiVMnO0xo6zAlmDCHnA/EWp22W1bpye6QM9qfX/zSVx/q9Fs3HTooZRVHPM9zjLFzJhYCnJ0WdSq4AUNiYSmUyH30d//odocub4+jTmIffeHv3/fj9/7h/zuzuKBrI1VVSZ1l2Xx/JtdqY2P9KNzpva91DRCimDeSoqbeur2zWUzz/QcP5HmutW63uqurq+PhqNfvl2U5Gk8AgPMoFjHGeDLJMYaGURUcajZ5PBKEMYzR+trVZrssoiSEMJ1O8zyPoihjdDweR1E0Go2SOAPqMaaTfOqdwpgyxoq6YIx555y1aRqjgMM3TKDOOUIAEEzGIyDMWuAU2yC5oM6G8XhMMFhre53Wzs4wS1LBeHCWMlLJIi+qVhZ1srb3yDhgPJKyct7XppZShhA4p6LbBQBKsZGOMa61bIyHrVZrabETRVFVF5wwZY2UNUnjNCV5nhsdlKwFp4wKxhhnpCxzhAMh7BvPEIdQ45PxNzqBiDGMvfcAhDHRTCBwQIAJAvDOxVGqlVFKxSLa3tz6pV/4hQcffDB4yLJssjscDHq7u7tf+vwXXvva13VbrVanvbG1yWlstCGkaeEHhJA3FmNMMfk3v/SvPvepz0yn05W9q9YEpUwIEPwNTRDQBniCqnKCRTqarLcGBwDHtVJIgAuWMBIcogAB4RCQ8wYB4DICQM7W2/VOFDNdlGjsEeaSDgnG2JKjRxac4rODyKuckuV84ke729oopRWhUV5KQWhwXuM6YqyVJEVRWEAIIR8swaxBdjfrW0KINJIqtVsU7V43SZIQgnaWMfb2b/+2T3/i73ftLgaMEA7BhRCaDS9CKAQIEBIhqjLv9/uLi4sohM5gMJlMCMPgA0LYNw1ZQJSwgImzFjBFCEVZ6gE7QhwEbY1j6LVveh3B2CNUKW2dd85VZckIVdoOx5M4TrW2SdZ617ve9Z3vfNebX/+6K1euHD918uajRzeHu+PxeGZ+bs/K8ub1DczorbfftrszOnnyZL8/Mz8/n6aylWYIoSRJsiyTWoUQGBPeeyG4M7I5cTICTYk8hCAoU9asrK4eO3q0lWXf8e3f/n/+90fKaZ7GSVHV1pkoiYN32hrrXJylXqrayHbU2R0Nt7dN1m1TpcTq8l3tdO5nFx/59F9/6XOPRXF3+eYXD9x6U8xmmXAIoeB8AEwYN85iwJRgF4LWdYNgYpzggDDG2mkqqzrrtOfn5/NpYbXRSjnvEcEiizECpUy3m4YQpNQQEABRxtDG5OoDpRxBwJQnmMpaE8x4JJhWdVk1B42AUDuLXPABuTiNptMpp0IpKQTznm1t7aRp2s46xbRMksxbt7Gxsbp3zyuvvLK1tZGk0fLi4u/97u/+s5/8iXvvvb/b7Sprtrd3u91+A7eilHrnBjMzf/RHf8Q537NnT10rrS1n0ezs7OkLp7OsffbsWa11J40zTi+ePt7v9J32165eXd27ctsttzvnXnP33RcvXHrh2ecOHN6/uDI/zcc7u1vOH1K6Hk9HS8vzxWRoa04p1dZO8umFCxeGO7vFeFTUxd133JmI2ChNCcEA1ijCaAAglHLOL16+8srxEysrK+cunLfWFpPJ17/2tQsXLjLGHn744bnF+e3t7b/5xMfLcU6a4APGjFAAYJQ7a7igzfDQGAegrbX9/szFixd/8id/7LWvfd1wNPnvv/d7geJSyyiOJkXR6XZdIPkkZyKmlFVVVUxzxigAHu4MecTjOO50OhjjNE6m06k2djLJ4zguimJrY7MVR8nB6Lu+73s/+dlPf+qzn7v56MHhzrDV6mDw0/GkyPO52X4l5b6VmzbW11997iVlUNqalU57hdMorkrpmImIqDA1upKUPHI+/8F7e1Z75AFiVlrDjJEYqOdGS0BYSpQXY2nGS4t7N6fwJ3//Muks+PFIEmod6WTe6lHa7W8Nd9q9/m133HX24gVKOaFUKcUop5hJZSeTiTc2bXUiSpSEVm/m0UeemJ2dFRwlccwYCdYxQqzVIXjOI+8QFiEvJ2nW3j5+fu701hLNNm2NpvW+1f1f+8SHu+940z0/9o9yZQT1ZVmudGdnup2qGGOMKcXWWuR8gzgYDAZFXjU/lDG92ZnheJzFGULo4MGDstZMcKmNNiFrdzAKWtuyLBmhvU5f6lpbV1WSEdrkpwKgWLBpWURR5EPI89w4PRnmgnHGBMVsOppaa2dn5znnBDAQ0LoeT3aSOIs5LasqSRLnrDe+3ek0D50mAwKAOafNXqnT6RRVxQhYa602xnnvUF3XcRwnWQQAWprcTCtCEHhlpPcoShMuhDPeusDizBjrAyCCTVnVVdFqtbJICIKdcwQC4FDmoyiKGKdx3EnijBNW5rlSNSWixXmn097d3VW6Bh889e2s1bj8vEe11C4gb0IIxgcSgkYoGOsZpc4GCEGwiBKCEXjvffCs+YmxGGPkg0eBYDwtcsF4CKGTtX7mX/1rRug73/nOv/7o33Ae9fp9wIAQevjhh/8d8h//2F+/8Y1vvOOuOzd3hzxhLnhjTC2lEAL5sG9p7sN//qE//Z9/duzYsU6vf/nyZcAUCyaVooQYqSIhjLUOBcKotUYwnFfDTm8WAIOuKLiQA3LW1ZVDFiEVZXEqKMPAMkdFxuPMghkMUl35pdmZlGcjsxkQV9ISAt73tsdTVaOZwbFkzh685Rj1WsmqLotW1nbOVXW5tTvd2dkpJhMUAqI0STLOIuc0IURKySPRbHyjOCKcE8uHW1v9uTkRMTWtv+Wtbzl79mxRVrIohRDee+9tCAEwBgCEKEIIU9rEQr33s7OzS0tLVa0Ej4yVje+2yT8Fj41xGEBEqVJqbn7+4MGDtVYBoKzrJIoQ49dHoyY/xCOhrMYIslaLBIKgXlxcHE+L8STf3ti8fu3qaLS7sb2ZJPEHfuM3j91263d/z/cc2L9/WuR1Wc3NL+Z5PhwOl5aWlpaWXnjhpa2d7YMHDhtj4ji23kVR1GwuAMBaa4OLI4YUFjHPp8Mo4o0UpCpKEUf79q50W9lXv/zgzs5OVeQvPv/C8vIyQxgAGuF0Azb2xrjgEaW1d7O9vvdmWpXW+pTHaxubPcF+7Zd/a2Zx8NXHHvnspz8jBjPf/d4f3MlzIQQAtsYJ0TBnAvKOIvDGAwHWuCuck1XtHdAqL5Q2NBbGmCaBXZZlwDDc2Rztjnu9XggIY2JMrbUCgptvNUZAEMYYW+8xZVZrANDOOR14lKCAy7KkjE6nU6mKNE2lvkHqqWVZ1VUiUsbjp5585uiRIysry9/0+m/K81wpNZ3kaavet38xhGCtyfO81+1jzDavbw/z4ZW1azs7O41kuwnHW2ujiEWp+L3f/93Xv/71r33tax988EGCoCyrsq6HOzvbW5vHjh6rppN+r3386uXbbrn59KkL995xy8b2xqc+8dFaSqC03W6PdteHncRU+dratROvvHr74ZtsVQw3Nmbf8Lqzp06dO3Nyfn5+74H9w8nOgYN7D+xf5YTKSj71xJO6qo0xSRJ76xp2h7E2TdNJke9s7wZAp8+eCRgGc7PtJLXOeWd5khhvx9MJj4S0EsekoWVJpUTMm8kSEU08EkIIcRyhACiArBUlLBbi8uXLncHMtCxa3U5Z18PpaGXPcmdmkFeVSFIRR4TQJEoH7e50Oq0LCe3Qztp1Xee+6Hd7VV604iSEoLUBQtNWW4wmQOhkOsWD7u/8wR9+4uMfQaCX9qyMRyMXLAW8urTYafGA5h/66lOf+9QXiumYYIBoO2738srxJN4zWClrb7BusbaknEbFiVE1yjutNqUo7A7zbn9Ou3K0axkuPdEeAdZs0GuRpPP0qe0vPrkuu0fA7yYKMC260A6EUhZFmEC7fXX9qogTKeVg0AJMnPXBoWlVCk4YY61OFxCajsbWWBHHu1vXjx8//sY33Dcej9tp0rS8GCMlMkmBWBrbybg/N7sxGX/ht3/vW12MI5LTGowbTXehHQ2ou/TKuezo/jovvfdpmrTb7Ta2a2trDeYpSlNCiNL11taWd8gDitKk1W1JrWLOnQ1VVe3bt6+qqoBcJSXnEWeRd6YsJ620LRrjNxX9Pp+OJ0mSCCGaq2QDMAfAw9HIOCvzSStpeRQixhgT07EcDAaAmLfBBe2CL8t8ZqYv4paUMm23rLVAScQizCjDoGtJbuxBbRPpmk6nTZA7ikSRT6eTnPNoa3u32+1aY+q6TqKo1WohHwBCLcs4jafTKSFRwIADZFk6KaW2IY25VmXEOCRxv90SQnhvGSWcMsdFlkbBoyRJo7jFmDDaqlomSVzXNQpkdzgajXcppe2s5axUEhgnyNMG8QEAhDCjrfPaASDvCWchOKsd59wojREgjDAlziPvffMQaNoyziMgiHPune91uo899tjTTz3VzdqPPfWE4DGlVClFKV7du7eqqg9+8IOPPvjV//yB3/o/H/vrN3zTGze2tyghSdqilA6LKUN4ujP6g//2O4PBYGc8avxLeS0n0ynn3BqDfPDGAcZKSkJp8zBNo1jn25PJNsY4TiGdz+Z63ZnuHoodAme8YhzAB411MaoS6pzSphx7ay6eH+aFm5bEB0yjltTOBc94hHByYX1KBIR62ovD6mzb2dgYBQLa/dlb5heEuK2J5Z84cWprc8cEWVUViIhzjgBHcQIAPiBtbJJmISCtNcXo537uZ7781a+cOX1hZWXl7KmzWhtoss/IB2iWwQRj7IzJ0laRj7Isk1Kur1+L4pazzgfPOXc+OIcwJSE471CzGjBKHty3fPPNNzeCHI+QqmsgWMRRs/SUlSSEUASyrKzxQLCxFgAoZUmSPPPMM+fOnKINR97bF77+zIvPPfvN3/qW97z3fTOd3uZkaq3v9/tpnFSVvO+++65eW3/llVcW5mdXV1eFEHXNGGPWcx44wkgwgZALwRmnAVCDau+1s2o8nZubyceTT3/60+//oR868erxiIsTr7461x+INBOMW+/iOEY+GGellA5QoNgD1j4YY01ACIAIDmlrlE8eeurFlb0L7/ve7/vnP/fzF86dvrSx1ut2KGXGekAkLypKMSVEawMec8Z8CITw4BwjvKprShjdrUeowm7HXbp0xVrb7w9uvfVW8BACWlpa6vS6xjkHNmpFTEMwNk77UsppVWUZTqLEKmXqWmsd82g6nbTSWNWSEYyDvXT+svWh20mtNqpSVVUxKghnWTv1KNT1tDtoM4YrVV1duzaYnXHGc8pccJSzxoZNODt/8fyFC+fqusrreu/evZ1uL07Snd1dxpg2kgtujQUXkiR59NFHi8n03LlzczOzGxsbJKKE48FMH4Ef7ey2o4QjvL123bkyz7frcvqau25/4YWXpJSmrhdn5up8knBKATewgr0rq5PR+LN//+mvfPlL73jHO8rR5MFPf+7UqVPWOx7FS8t7Wml24tVXmzlko0JrUoKA8TQvdsbjOI4RoGb5l5e5zUvlLea8MgoAE48CskpVxKPJdNpEDaudXWNMr9NNs0wizDkDgAYbRCk3SsqqfOXl4z/w/h/+4B//z93rm6Od7fu/6XXf+ra3/umff+i1b3hDlCbD4e4AD5BAtazjNJvI6uhNB+M4dtZwzqy1taqdc7WtZ/qzWkoAIIAPre7lnF+8dH48Gt106ND3vPf7PvbJv94phof27qFMXLpyWa1dP/X87gunXnn5pRdnga8kaWnMVqUquSW9l1Nki3wwM49FVKuhLhxhjI7yPNz07ItnLl46f++9r/nYJ59777e/bmXJMBwSzoqpC7x7eTj98mOvnro2pkmG9QajQouQpj0AIAiQQ5OqQpQRzIP0uPbc47wqS1lHHNK0wzE4x7wHZRXmjGNAzrbbS8+9cPq2225LIt4M5DkjzrvIh5ChUE1aC3tS2vvCr3/gtRWWGTaqttZEjl7c2C0Rkqa4dObrR5e7LZw4b0JAC93ZyztbO6q2lfQkMMJrWSIECHlMgBFCGJNSE8DO2Kqq+rP9gJyyynkjIo5DYJycO3u51+3Oz89rrau8wEBc8ELESimrDUGAQpiOppVU091RwCFtZe00M8o0vLDxJO91uu12u1IVY0RrjRBqZT1ApCiKiHGtpUeo3e24AMY5AERioIRpbb1xAKBkTRkytoIAZW6quo7TpK5MmqaUUoJxknAI3jkjRAyIcETKsjIeBEMYYx+Iso5gH3NfVbuAfSsi7awDEDiDqjLD4dB7jzFWtWy12kIIZ7W3Tc4A1zKPKHPIJYKHdqfb7VZV1fz7mBBjNGMiiWJZ1wh8FHPvUMQJpQIDCiF45FywmGEbPADBASmtEEKMseC8x4gQAlaxQI0xHoWEtT/+kY+88uIr/YXFheWV7c2tqsy11ssrK0tLy4jg//Zf/tuepVVCxa/8q1+Zn58djUZU8BDCTUeO/vZ/+PeUkt/4jd+4dG0tTpPJcMJjzjnHmmpndW0jxjXyOATkUEaIY5QCeGPL3XG3H77lja/pz3Qm0zEW4vr17bWtcT7VIQhrcC2N98iiYKRGWCGEKGMIESs1FSlNuQ+h9rY10zbGAmG10jyOCCBLO2Otdq6WGGPKsDPWyU1KmeCo2yadFtx8+7G7Y4683dra2tyaTsfD3e1Npz3lwnvsjSOEYLDQy77z3e98/JlnzlzZSfsHC18hbzHn3iOKndEBkMfAfaA+KEqolNXS0tLMzAwhBAEBSqw1TYXEW4+s84hQKjxBCLB1ing36PRarZaaTpH3OABjHFNsrQOMOcIkoOCcB4QoMMqC98h70Caj0J6bec87v+O3fuvlejpJs8wYQygNITzylQefefKJf/S+73rf9/9QURSbG9tKOU6Ec+7mfYf2dGdPXDnzzLNfX1xcXNmzlCSZUipJskjEQIhHgTBuPdLOIUwxJbKSBpu0I9761rfGEd/a2kKIKKPzsp4ot3e2XZUGNYNHDhnJvHXauWAcGGOMqmtJEPjgjVbaO8oZj/DVjat/+Id/fPTITXfcdlsr4srIsi4Y4Q3+yHnPEG3+3r2zzjmGCITARSwSZIyh+1b2bW5udrvdlaUV51wIyEjV6XQQi733TQLFOhcL1u70MfLKuG6WTqdFWVfIu7IskXfW2mBsGoudrc2iKBbmZy9dvlBXKoqisiyNMZzQG4l5jK1RRTmtpex2Uh/scLhjjELIp2nsnCM0Boy9p62sn0+re++99z/85q//7u/917nF5aJu0IAlJYRgHBFGEMaAtTFJnHLOT509wxib1mXUSo21mBAPZnc43todIh+G07zdH0jvbz569LHHHlPW3XbHnS+//DLnvCh3rMfXrm4evungAw+84TOf+UwU8TOnTv/6r//6448+8id/8iecMoxxHMcIQynrq9euMMZmen1jmtRDY4hCASHCMSBCGgETgmCddVLWtQEcMFgUrHVOKau0tdqGGzMTxpgQotXrW2uHkwlNEgrYG+sBcc5d8FapVqsFjB0+drMJ/rWvf93Kvr3r62s/87M/VVfqf/zBHxEEw+2duq53nGNCVFXl0ZbWulbKhUApAwBMqbV2c3NzYWFhdzRUtYyiaHYwuHr1KgAAZSLi1qGk0xVZd2vz6kOP/p2+tLl17vL21vUS0DyL77I8YLDBZhgncZqrOmd0am1ejnIjsSccRER4v9+f5HK3Mi+duVTUpDXYvzY9+aFPPDybprzFIyG0rkfj/PquMVh0BjPW4xjTOI6Nd864GzIva+M4jrJYS+ms6/bbw92tKIn77QwICgDeOiGE8cZ5zwQPGAji0jgE7P/83d+++Y0PHD18SMo6SRLnDWBfEzvozFWl/LPf/PmjlYesNxkNLfIkZhqBE5SV9Vd+54/v/sWf3qqqyAcTlMJOCxRlaVVMdVkLQpXRlDGttfPWaZemKUYoSyKHXFVKq3W30ymKIuax1gRZtLW9+fLGK3Nzc51O59r6WgPEBwBCKWPMulDrEgJCCG/vDhnn0+m0Pei44IO2XPAQQl3XTNCVlRWttRDMBxtCaGeZsyF4H2yQRhGKOaUQkDOKYoIAURxBCJlIFVJaa0YFZ//3sMgj4VzQKieEIRREFEVRAhCapkMcpYwxQloz8YzzJnhgnNV1TRBwHiPv1zfXExa3221KaFnJjY2tbrdvtfHeMx4TymVtnQtC4N3RkHPKGHUYa60rqRiPKlkDwWkcJ0mCIcRR5L0P3lOKCSHO+U6nhzA0iOZmctZkgwihgMBbl4gIAIqiCM5HUdQ4XLW1HgUcUJnnn/7UZwNC/V5P1go8Dhh3ugOl7PXNnTzP5+YXJ8WkN9PPq3JyPm+329NyHEL4yw9/+IXnny2K4tKlK4PBYFoWAKC19d6TgJqKZuPJ8T4gTJUF7LysJTj3wP13ZP1sbev6S2euj6fgPEWYEMICYg3JiycZw5h7J6lmjJVlyQQ3RvMsjaKk0+8RCuvr61UhAyBrasIjTpmSzjtqtaYsAQACkLSEYtKgKlCxNTRSJpOJXb96ot8Te5Zm+/2Z2289puraeUMpdc6Nx+OIUc8h7Sw9/fUz1zdlp9c3tZubWdqEVzDiAXujHWUcBe29RcFjhtI4nUwm999/f5MqR6GBVmJv/Y3CEiGUEAQeOeQxirK4LqvZ2dlGDNPMnH1wGAHFCOPGfeNdCIARITgEhALGyEZRhqraW3f46M1/8md/+pM/9sNfe+qpVrtdVVWz65FSfvh//eVXHn7kLW97+1vf+lZj3HiSY/AIhcHczBvm+5ubmy++9Pyr29v7Dx5sVpmaKylkmsTGuHaSBR4HGziLCKOmUEdvOooxRUCsC6WSk8l4e3v74sXz9979GqV048S0zkkjGeUBGeQsJQQHhAPy3kVRRBAIQlHwlFKMQGLy8suvXrp0aWFhYW5hcTAYSDlO49RYp5SKoihrpciHJpIdbACMx+Nxk/yirazTTIwJgZtuuqksyytXrpRlOZEVcp5gLKa80+mU2lAESRRHFIUAvU5Lymo6HjljCCFpJDxy25sbeTERjK+trUkp5+bmvfeAA6XUGhuCS9M4YGhm8chDp90jANb7paXlrN2y1lZFXZaTOG4BQpxH01xS4v/Nv/nV4yde+eyXHup0uhhjpI21liBw1mKARmCplCKcJUkilbLOOedc49ZVenbPXLc/+OpXvwpMPP3cC6PR7tefez6OYxSgN5h5z/u+68ZojibXN9a/+uUHF+aX+v3+5YsXFhcXL12+OC2Lubk5zmmTEWy0IDO9bpME8d5zzpvPSrPk994HZDlvYI0hWMeFSFodh9E0z5H3VkpOqHE+4nF/ZuCQW15ebrBKW9vbSqlWu7s7HM/1B85ZzKgy2jtEBcOMjqYT7Wy339uzusIicfjw4UFn8OzZ55w0aZwFh1StjbIidv1+dzgZt7OWlCrLWi74gII3Jo7bMzOzCKHxeIwxLqqKEKqMpZTOzs9RSpE1APyzH/n4fXsXnv2bTw4sDJBoZy3pvZaKISoBCmyNC6IOgvMZFu8yd1VXIeIiagsaIwQmEbyOrly5+GPvfcCFxNRrztahu3yxQmFcoOAIAR73e/OJ84YAToFb5PNJEaeJ044wzgTnIShrJpubcSKs0gvzs1VdUPCpoOOqEoLgiNWyJoyKOLLaAGDvPG+1OHDB/bOvHM/L6siBQ088/XXK6dzczMG8l6Hdh//qo/dsSpqmO8WkTUlqkZIhEBLVEjjZOXs+f+7M237oJ65vXavKajgdHjy4/6N/+zdvfOB1AFBUFQWatLJXT57Y3Lz+7ne/25kbGyNnXVUXjfu2rlQcpwDVtWvr493xbbfdtrCwUJRlbbRHod3teO+1VA4jC8EBbmfZxvXrSZpu7e4s7FkggnX7M+PxGAMWkSCEJGnUPNGM0yjgXqdjjCGYFFVlLOKUCR6LiAEgjgkhxCjpPQMAyrGWxloXx3HwwVgkomwymThnlFIApGn7cE5VrRsraDOQDB4QQlpbZ5UQglGsAChtMgqi15od5+MuF+1WN8/z+bk9VVXFSTbc3V3as6coqhBcHCfj8VgqFSVJJVUaE22c9iF4562nGGVZhilBAVGKQyANvgohFEW8liUlESEEU8AICKUIoSYpHcA3E3VvHSOUcNKsooL3hDJrbSdOn37yieF41O50zp46wxg2Wt/xmjvf8Y53fOhDf1lW496g3+u31tdGqrJRFO3s7IzG4/m5uStXrgjK1re2AaA7M5BS+RAIACAMiNIIsyCUMmUhndeYkoiSopogog8eXl1eXt3dNc89ftVBGydR3KNesbKSUZxaH5SxDSiDx8IaBEBVrXkUewidXm8ymTjvy7Ks65qSqFISeQDKkUMRi5KEDrd3gGHvvbfKcm4qyylzJdXUU84cxbn1pLNUUvbyZRkh8+zLJ5KIBhyiOE7TlLKWYNSVdPfyqB7j7mB2OL6aivjf/pe3/fT3PL69ZQMymEXWGAQWAQBGBLNbb731iSeeOHjwoPdeKYUJaV6rjPOmQoOQ9z7ciKgTQghBAG9+85ub86XgkfEOAyYuAIIbS3pCEIBDASB453wIngAQRCJOfSjzIu20P/inf/4zP/1Tjz/+OAWw1qIQKKWM8+vrVz70Zx989KEHv/f7fmDv/gNlraRzdVUxxuaX5l/Xff3p06dfOv5Spz84fPhwQnxdGanKLGnlk7yTppyKyXQStftpnGWd9sz83KkzJ9euX9fWHLv99lOnzo5GuwEHDwFT6pwjhAAhHnmPQgNgp4TEUaS1DtYhipuiuVU6FqLBwuyOhsWFi8dPnpqfn19aWFpcXIyMyfO8QRH0Wi2lVBORawoRwQUIQJvDY1EURVF89ZGHMcatVmtxcfHTn//ct7397XvmFpy1dVHGiSjL0mpDAHsUmmVwVVVZksiq1pXEFCCgJIobBdDszHz9DRBxJGKa0iaTZYzinCdJErFWYx9SSpVlXeR1mqaUCMY0YywSCQESxWK8vW10eNM3fevHP/n59p4sWLf/0KGXXnwxhMCFMMZkWVZWFaW8OS41DxSEEHhPCO602mma3n333Z/5zGfG42nWbs3Pz1+/fr3dbnvvX3rh+el0qrU2xly5ej2O426n9cjDX8UYHbv5yObm5of+7M/XNzdaSdwc+gD5ZsZljQe4IVFutVqCRQghZx3n3HpjQ3NIBIwxwtgY47AHRighHkKv3fT2EBasrOWg1+13+jyObjp85Omnn27+FKPR6PrG+tve9rann3kGOUcFdihsbGzu3bu3KuW1a2tSaozpxubWcJw/9dTTWdpttTreI+egrhWP4hBICGCtbUIWznoASNNMsGh3eyeEAATqusaYjCZjyhkA5GXV7XYpx1ubW6dOnSgeeuSIFxR7CmiiNbMEs2QItgZc1KpAQTEALY22mmKPAgXKCAkYAsa1U1HM67Kei8zl7XVpg8hmMMsiqqhfDFhhTI0LMjjkifEBhQnyglLqrKeESaU8CpWS7XY7Fl3vPcaoKMtep3392uVDh1+bX1YYo4AcYdSjQAkTCdO1JMQbpKaTSac/5wN9/pXjH/iN397a2ryyeQ0r+79/54/LV195q8i2KIkK00u5McqKQCgVjmpjE5bum1/673/8x5+cDj/4v/7EXLX5aPIt3/zmH/uJn3zdffdHUbRvZV8WJ8roW28+evcdd3JKCykBoC4ri0IiEkKIqrWzdjwcvfzqK71e75777pVKXb5yZVLk3W6XMCqlRAjxiEkpEfKtVlrm5c7uLsZ4bm4uokRbY61tsuidVgY4ZO22tkYp5ZxJkqT5xEop4zhO0pRTQggBCNNJTiggH5xz+BvLFKXrRgNaVLW1Vo2VtRZjpJRptTqdTicERwjQlGsjlapFHDWC3jiOCaME3zhiNi9IwNQj2u72u/0ZKeX1ze1WqyVi6gKaTPJuf1Zra62LuCCABeOtVotGgjDqnQfCWlknzeIQnDe2mfo0IDAhhJTAOR2Px1KSwWBW1pYxYp123jhvhBAYASHkBhsxoObcgxBCGKIktk4Co9iQNE7OnDxTVmW7l/R6vaKY8ES8cvzVO+66fW6+f/LkyeWVhbNnX3EqiCTOp1NjTL/fb0gjexYWeSfb2NgggB0KGGNjnUGOe59P6nYnEzHJkk6Wtc6ePeN0fvimxdtuuf/K+vVnX75UVoQnCwFRwExJL8DccfvRs+fPE8IjzKXU7XYvhICoBw8uIAcAEJTz1gdvrZoWPEqMMYwn31Ai0u3hLmPMWosQYpEAIpxzyAfpDE6JD0EFJ+sCNRJfRzhvOYQp97UzAFBWYbdCCDwGwwRjaZsPqlyiwcxNs3OVT4/f8dpDD37yOKHBIwcMMObIEWetUe75559HIfxD1N8711A+mvcrJhACuWFnQB6FoIwhnL3+9a8PATVavCaoBQGFEBxqmk44oEYkDIwx7SwJxDnnwHvnmOB1XQMlH/ubv/1n//SffPLv/pZzGkIwRjd9PyGiCxfO/eEf/v7P/vN/sT0aHjx8uD8Y7Gxv61Jzzu+85+6DRw6//PIrjz/52OHDh/euHjQmKEWDRVGv3+l0lJHG6zhLj9x8M4sjzBlQ8v4f+ZGXX/r6iZdfneZjIIgwWsraA2INRYVhRgBbHUIgmGFGKaXFZIoxZox57yIhvPdGKgghS1LrfBonm9c3JjvDU8dP9Hq9vXv3TkfjLMuslNa6LMuKogSoOGXGGM45nUym/X7/6K23lGUZt7O6rrvd7lNPPXXk5sOzswPKMGfCWtvoODACabxHoShLDyhNW966EAAwxgiiJOKcT6fjwEEpSQjjPAK4kdrXWgkhgidVKTnnQkTNxDuOhbUaIcw5D4AS3BeMEYwAPCCNsCLUB2cEoU5p59zatWvNfzoiOOIJQsgDpoLf8J0x5o3FIfjgvFayKq5ckh/8H394+OABoGRtbU1btLy0uLa29pH//Ve7u7vNbZkQgjEyxkwnE/iGa7p5kbd73Xw88d4j8MiHf/hdIJgQUpVlCGHPnk5dVoSQEAIAZYCcC8ZITAhj3HtvnBUUM8Z0bbZ2tpSSNEoGvV6n07HWVs5qKdeur992x+2ryyuDweDLX/7K+SsXT58/p531xlJKpZQ3HTx04MCBjavr/q7Q7w7StHVg38FPfvLTH/3Ix+699/7RaCSlzvMcMPEO7e7uuhAOHDgwPz+LEAYACth7Px2NkfNJHCurgwtS1s65Xq/HGGtnmbdWUPKVL35po8rf9frXhyeft1bvWL3las3IRVtMGZiA6whTwEZqYNjZG8LqxAUlTYDAOWecgqOV8tKRuLtUjipvdwkQpaQEgKCR9TgQhALhDAGhggcZlJR5XsRxDBgAhTSKeu22Vqqc5lHCtdYHjx7duHpuOt7lnGutMaOUcgBwzoXgKQEh4q2d6/3ZVq4LSqkDVNXqW9/y9l05XeT973z39//rf/LDl//us3NxC+HgpcTICeeM9VHcZazzFbNz8fpx3G5/7aN/ddPNh3/2n/9sFifTqr7tNXetHNxfFNVH/tdfnjp99va77vzhH32/SOJLly5VshyPx/v37wWLqKCcMSnlaDSaTCaDQW9hYWF7NNzd3UUIdbvdLEvKssQoAICzGgWXRAmndH20226lPBI8ilRde4Sn06n3aHFxsZxO0nbqnKtryTnv9dp1XU+nhTGm3W5HIgaKUQjKyBvIQEQRxoJga71zxjodglOqLqsqr2qMMQXKGLt27crCwgJjbDQaJUkUx8I47YL1yClVG+ujKLHeWeWimHoUjLOk8Zs5TzALALqsjTEA2FpHCEGYiCSO0oQB5lwQwHneCNAYIViITEqllPbeIYfqqiYEtIRWSkejEdzwxtyQTgoWlXkBmALmDV6jqTUyJjBGlHJrbQMI+oZFAJqvsAuBEFLJuqgqwJgQUk4LjxhjUSLIR//2U+/41rfELH31lZd6vR5rC2PMeJoTRpM4nkwm3vuyzMdFgbwPODBMpDYNtMBT2uqI4Ewp6woCT/DcUvf2228fjiZf/MrzZe1Ed060ibIVQsijjOEWEnxcGiyyAIQySqWcqjpOEiM1IEQ4cdYSgittcJSmUVrXZTXNURRFjEutEIBFIRKJVJbQGLxTtSRRhBBB2BNgpqxpKwnBIG+D8954izynzKHKaIMxWOvSdr/JGTCCHVFAKPM9o8aBqbOvrJ18ufP9/2zuS3//EsOJ9w4T7x0KtinbE+89YLxv377mc0UobR59zpnm/QoQQvAAEKBhk4F3PkkyD4gJbq2ljHprHA4YE7jxPg4hBAgICHbG4BA88gSACWGQZoA1oXXlptPpf/2v/7WVxP/7r/6yqbc5551z3iOEIY7jdrd1ZWP9ma9//cDhQ3tm57VWwVpVWjDugdfcc2T/gRdeeOHZ7e07j91CAqpKvbK82Om2rq5dSVvZ3J55nsaIYoRhMDszOztbVRWmdGNro6hKBz7ttr33VVU5FJy1hFLGOQJwwYfgOGNN4LHSKgRvlbXfAKN6H6yqvHOrS3vquq7rGgMa7Q6992Ve7OzsYIwbZZn3KE1TLVWTwKDSaGm09+6WW25pjHjvete7CCfXLl+qppNWq6W1ttbLqu50Og37rZHJA4AltmH6UC7Kst7e3p2Z6U+nBaU0jkUIQUqpjG7kwWVZcs4Zi42x03wjyZI4jseTYa/XW1tbD8FESSxoSgkSEdVGam37M3OTadXqDIJ1aRQTzmZn5q5dXWOZMEbXUjc5js2tLWsMQshpRTBuWoMooCYI+oXPf/YfOubNr6D/+8M3UMaqqpp/DgExxpoul/MOOc8FFUJMxuM0Tauqao5yzjnrPEK4YQJYf+M2Zj0QApgQQQhQ4n2wzlsXIoSiOB5u7/z8L/yL1b37N4c7RVFyzgPB+/fvjxhPkkRwXlXV/Oxc/fnPamvW19eb46dSChBilDz81Yfe9KY3pXGsjT15/MQtR4998fOfbbfbWSfLsqyuS2NUFEWT6Qgh9I7veAchxDkDEDpZ1zknpex223NzM5TSSt1oClrvmg9QU9sPwF88fjJn7OJ8+7IIuZbr5VRxWlIrIHKYGORjRJ0yIk211RyI0bJ5+HtCiOCUMBwCZbQIbl3iv/rrz9xy5KaDK5214UREsQ/OGcEZYYDqSlFbS6dHOyqO0hBCt9drxE0N0akBhSYilrKI09RoxxjdXL80u3JsODEEE20UpRRQwAysc9e2r7TmUkqxc5bErLb6y1/+yn33vVYaeyWSohf/6//2+//8qZf3ru8O2wgZHDjpIId4rC19VG6/kGGc9OpxfuDQ4f/5px/6rQ/8p//0gf/4Qz/yo2//lrcU0/Lnf/7nP/2JjzsX8Ifxv/yFX/zlX/7ln/inP3HlyqWDhw9prQFzFMLGxgYE5L1P07jT60qtSqXTVjY7O+u9z/MpIaSVplVVBR8EZcGZMxcuOGOby7H1vt3qekAApN1uO61arVaapHmVc844p1LKJjI9Pz/f+IgAg3M32BRCCESoN15r65wJISAIjZYYMGRZ5AISmE+n416vMxj0KOVZljQIC+0kAADBRa0wpiln1jnOaSU1IcQjijFBGBspgRMhBI+Jcw5CaHrnSqkkSz0KAQIhmBDS7rZDCFEUBUDKmDRNQwic0IA8ISyNoyzLBI+FYDfYk3lelvns7CylUT4tCQ2EAMYUIGBMG34IJqgBbTaq6aY/3fwccADnBeeU8G/7jm//wH/+bW90gx603jGaRix+4umvv+ed33Ht+vrm1gYnN+AbQrDxeKi19t7ujIZJkkVRRDBFCOUqB4QoA2NljPw0rzDlq/v2zi7NSQPPvHJlPDFpuy9SZKzHBpAmmBCPkaXaaXx9cyPKWlIrJU1zhW3cxSEEbwPhzDlHCHUOGQ+ECZfi4LwNvpnteWPiTtf6HAKinFuvCAUgyCgXZ1m3JYbjAgEDxF0wiFqPtCGKo3bAklBA4KzV1upBv2u1NoYlHJFSyLL4z//fb/3Tf/L+5x/ZfPO/Z296y8FHv3KNMGatIiTyzGKKnZMMx4PB4K677vLeU0qdtU1orvECNuPopj6HMQ6Am3qYC7ZpEyOCnXMYIQ/gQkAYASDwqLkFe4QwEEJxAKS19tYKyoL3hEIjMp9Opn/6Fx+65577/vUv/0ulagDsUcCAkAPj3cf++m9FEidZ9twzX782N3vo0KF2u+2dZ4IrpWZmZr7rPe997sSrjz322P69+3vdWevV/OLcK6++RAgRUaK1FgLt23cgjpK8rC5euLxnZVVZWVVFq9POy9p7n7XbVVHESdJMiBljGCOlbNMVUkZRwZAnVVE23mhrHAmk1+p5b1WlACHkA0bgvEUBvPcEIUTwJC8DkDzPpZSN1ZgaY5riP0JhMplkWdboY621AEQZ5/Nya2trfn4RGaeVEzGVdd1ut5uyvPe+wJgxhhEOUZBalXUVxdFwZ9tanaQRYYRSSjkTInbBQ8BSSm/8eDymnDnnMCXgQytJd3Z3B3hGdOlwMhQyQkAwgoBYlrLhpKrKsqgrOZKRiJOkcUoQxrBWslEfM8ZkkQPGDUqaYNqMbpqSTwOsn06nzpnGpdXswJ1DzWXCeyulbva4zVapOWE0WYbJeIwQaniczcOu4d8GhLRSSqkkSZrMrafcOOONIxQEEUYaQggTrJZyOp2urKwcO3Zr2mkvLi8vLi5WeYEo297ermVZleW1q1c3r294706dOtnOWjgg8IFQ0ut2Qwg7OzvaaiaY1vL5F19++qmndtavnT194qabbhYMkkhcunh2Z2enqqpWp/3mN785WDMejwKGpaUlGywTLCJRXdecYO0M59yjUFaVEOIGTcb5iPOLl6688tKr73zjt9xz72u++pkvjQPyWZdYy4L3gCJMg9FIEGQsMQ4aXwonASHlNbeCEuG8BQxY6JFEr16e7OZ+c1qvHBhcn5SEEFs7LpDSk6lSxKWVdIja3kw7JS0eR7WUlZIehebBmkSRQd5b32t1xlXxtWee/sHvevdzzz1Rjya9Tks5G5QLyEUJz6vRdr4zs9wPNEijFLYeOZ7EZ06dpkAQQnGlx6pY3rNv/3e9+zN/9AfvcLMsOBAZNvUl7b8eVZcyEtXAAqlFgnlcV9P+3ML/+x9/+y8+9Ff33n8fInh7dyfKWp1O77ve8+4nnnjiP/+n/wQAv/rvfvXrLz7b7nYYs8aYWPDJZJKkSV4Wu6MRwpCl3SjmOzs7BJpVa63qsjmYYkzruk6TlnfOGNdqdy0EW5ter0cFxRib4JMbbGfGGPPeN9SemV7fapNlWQjBBuStQzewFYggHJxtxsWEEB+CtS44RBhgDMEYBNZZ3e930yQyxllnCSHOW6l1859EmaBUFKVEKDDOAVNtbHBI1jVyHjWvXOcqpSdF3mq1JpMxQohzzghBCBVVJYQwSt5YMDlbVRUADkE23f0qr5qDg4gTTGnwgRBiTKMWAKWMc9DpdDALTSUPAFDACEizeOSCUsJDCM0yqAnlUsox9s5bq90kFEduOfb93/t9H/zg/0w7XWOtdponaafX217fePCRJ+++//WTfDzcGW1vbZCqAuSRtwQCso5xDhCcc1qZOI6jKArIG62sVYjER2+95aZbjly4sn36fFHWCGiLJLa0njDqiROUOm2CxQEj7z0lkjBejiatdidqZ5NxTjCRVRWLpNYqBA+BUEoIo9iBRxAQYozroK2WQFgcx46x0c4OoohgUtclAh+CMdogFLSpVIgc4CjB2tSAPQPsFBUQVdbxJPbeEkGd90mSKG8oAwYW2c5k9PJv/ca/+Eff8S3/ca732b959c1v3/uWd88+8pXz1niMgSBw3npPaBzLST0zM3PHHXcAwHg8viFFAiAYee8DIoRAAOJQcCgghIzSjQe6tqZJfboGTxSC/QceMkIYI0AYvA8InHEheAyAMWnSdhjjOE3qSvGkdeb8le/5/h/uDeZ+7ud/ejLcBcAoAI3owYMHjTOb62OEIEmSKxcvnjx58p777j1w4AAKILUGQqQeHjty7MDy6nPPPffM888sryxESYIQRh51Wl0tnSRGSzs70335peOVddujqRxvxVxgxseuYIx5a6MoqsoaEwCEgvfBe0ZpCAETiKKoriTjtN1uSylxQFbbKImtdh6BR8BY1B8kRVFo5xhjhHFEcFVVAWFldJJkxgVKeFlJ2kqzBt5dyYogmI7GnU4nhPD/E/Wf4XqeV5k/vNZV7/LU3aStblmW3Euc7vQE0jswEGqAJMBQhhmYzADzH6bQextgqKFMQgmEQCCd9DhxYsd23C3ZVt/9aXe52lrvh1vh1RdJh46t/eynXNcq5/k7q7rt9Qau8WXZO3y06Jf93FirM5Q8Gg67HUwXIDjo95XWbevaVhVl2TYVAA2XBmVeGKNtnjdt672rXUshKmXyPJe57A+u9TGU/YJiym2e237wGDwQsbFF03oE1lrvTXdDar/re95y+MDyD/7gDwsh1tfXq6rZ2tpCFsDcL8rNpukuRRSCOQJeiar5t0q5+2sXTbqoFpGSUNIHD4gdIJSItM6dS0QMgCGSVJITMFFd12VZamOIKIXYzWEQpQBMwF3juDebDodDqZW1dtY4bQ0iuLZuFvPZZN7r9XKTA4JSqqrqX/2VXxuOR4137COnCCx3dnYChbquvfch+m5ZLhBrKbvHlmVZTFdgezrXq/vXrjp+dGfz0j+9/x8gxYvnn0IBW7vbL7jjeW943auX15bLsjx5zbUuxPFoGJCV1szcbe6H45FAdN4xgPMBhFjUdePcsN+PFEtpL50/V3M7bJvvfuM3/us//PM/ffozplfqEFzwIHDuGhQsk/cYSDKElFARJhBCG1UUhRQ6JE9asQT2cNP6wWtekw9Xy7ObO/VeJftSBw8iIWS57Q+GBUcZEyZIvm29CyQRtZCIQisKYdHUsjSZuLIvWV9fv3Tx7PUnj7/nrz7+kte8+tylCyhIanV563w20CduvKoKTVV7NpKjRq1GS+NLly7NZ3vRtzODsxhGk63f+LVf+4Gm/up737+EaZYWD5r6DEjgDMs8SpeIe7p8/KHHjxy/+jd/89f/4Z/e9+d//udtjGtLS5/9zKcPHNg/b+o/+fO/KIw9fPjwr/zyL7/4JS88cvzo9t5usGJpvDyfzQaDAQH3ygErIZTKdRaC65e9tm07plXnW82yAkF6F4VQuS3Kfk9oVU8maytr1mpUCIlQy+7VFz4Sede2RVHkWWa0FoiUEgAIUD4xMmQm99ERRYZktIyJpZSxDb4NzAmAIiWh5ebm5fFo2OuXWkulFGLhvG/mlVJKWyOFzcoegqrrejQaSAWL6cJ7X2RFs2gnk92lpSWJWM2ngaFtm7qujDG5tRLRVXXbttmgDwJtnkUmIbt9dpISJrNpURQpJZNnUkpEbJzPhTRSeu+11oggpZZSMmPTOEUpRkqRu2WbEMq5IESqqvl8Pu/3h6PRqCuXU2KiKCULkCAhAQSg//bf/ltVNX/+l/9PSKvyclY5EkHnK9vT6l8+fudo3MsM9paWbrv9NiP4rs9/zjVtUWTOx9a7DKWQsouratvFwQNr+/evDfeNL12af+ijDzRe5r2RztG5IERmhfLJC20Dg7QFucBu1l8be48xVKiz2XxvuphlWeZdzZBCyDBpFKSU9tFBJCJgBCsUIxVFXrcNc0IApVRUNkECQK2LRIEAer3RfDprm2jQKRTRJyFsEuQjCWtrImFkZAKEfav7pNRVVXVPpFBy0ew+53m3fN/3fY+EcMP1T3vo9N988VPpe35weNOthx6471LH/BEGCCSnDLDt9/tdm9tRXFJKSiktRNu2TDGBYARCQKGklCm6o0dPdnlrMs+ZqGO9kY+IAqUCgBg9AQjE7rg2xsQYOrZo27YgUFvtWi+UtqiZ4cLG1stf/boPXHPiv/6XH//8pz8VUzpx9FjTNN57rVR0vl0sMm22zl74+9NPHDx06GUvf/lwOJxPZ1pr16blpcFLXvbStUOH5nW1um8/SMmEB/cfGPVG03mDEh968JGnzl0oeiNWBhi2NzYPXnW1ADBKEWCHiEEGhSIl6lQLOjeLxUJqNSx7PoW6rYuikFIupvMQAjMqmWX9HnNqQ2OyXGrtQhDBu5kjorzoeR8B6sxYIkJiRZzquhYGZvVk1B9MJ3MiXl8/2F1do/6ABS+NxoiY5zYEn+tCKTVfVEopoVSIoYNAGaMRuK0rq814PJ7P51VVMSiANoUQWoeImbIAIICF5OSadrbA5JU0DYnl8RIyXDp7bmXpVqt1mQkC3pnsoRSg8vseeuLNr3/dl+/80u/87u/u7U0nizlKUMiQYmSplaHktDIcUwwkgBE4gWBGAEgxAgAiONcsLS25dkHEKaYrombEThLcrasBSAiROEWPgIDKGI3ONYEigrRloW32b/kzzCylYsYYvdKaIc2rSaFN63xI7JzLrXz727/3Ax/+4OWNncxkAFxVe01szl86G2PsDhdBHJmkNUmAKbMSs9nuzrFDh9cPrZ86dcrYfDwe7+zsPP/5d9x5550f/sgHWxdf+Pw7/uov/+zdf/mnrvVHjh3+8R9/540331w17dOf9cxBf7ioa21sIFBagcDF7q4qsV8Ue5OZVEoqxUSl1omE6ekQwnTqF3Vly3yYFyXxX/393y9CU/aL0er4O77jLf/0L/9IFqNTElRTz4UVRExKQ2KihILJBQAWBrXUjBQx2iInSuN+ed7LR86dffNtB8/uTNekz4d9znq5TiGKocopUFtFSB4BIoPVkqWgTr+WiCKVuW1itN6G5FBIq22zmJ+/kG55+QuWBh+694ufOnTTqdmlyU6I/YP9oofbPGWPSkNFwCDAR4Z094WHLl26sLS6stfUa0rNQj3fqX/x137pobe9/Ru+6d9tPnWZC62NQRB+4ZUuW99GSWB7fj7/9V/95RMnrrZETTUbX3+NKsytT7/9rnvvm+9OqtTmo0FL8f77Hrjl9qdNXC0i+MAtY2ROzufKZCav2mbhJt3OkogyY6KLmbUCVdbjuq61EiEE2y8XixkhaCWiWwi0VvcWVaOlUlKlQCxQq5wJu087SKGUjJRCCCIEIdCYrPENSIGAWZbFGLXsZC/U6xUE7KMDkLt7U6318spqBw9SQi8WsxCCEhKi6dsSJFJIgDzqlRhCbIKUqt9TzXw2m20D4ur6CpDXSrcNcVn40OZWaQNKpRBaRG9FzjGgEBaNr5vZvFJKudRmNi/zntaaOSklUTCKyOBni0pK6aMLFJQ0FLwQSmtbO9baeGqZmIkEKiWUErJX9DlBXddSysnu3srKmjEm0yZh4hi0NcyydTQarv7pH//RAw8+eP+9D3AiixhdZIHFoBCuVzk3rbxCd+bhjz/ruU+/8enPvOeuL84ubVhEIVU12UMJx685eujoPpMXk0kdvDxy+FmfvfPvh0tr0DjE5GMQ2iTCKL0mrQg8tImjVBa9cdMqKM0sJDMASuTgmhRilhUekZiYwYcgs4yYiUJulCNPKSlUedlr27b2DonzMheunfsWZC6kKa2OVWNsCUHoHqSUQkgAQktBSDE4YKYA0uj+sK/yHgFDalGAsdmKLu7/8N//19/5OwIvwPSGY0jwlX/dFj907Du//8Yfe9vFvJBt6CHsAYCQBFK+6IXP7wQWQkmiZKSMPobkhRYkEYCk1JySEEIqAS7t278qjAUJFKMklFJFACElMhMxIogOLwUMEiUoBkZEJCYEqVUEXkSvhBQCUCLENO6X2xuXx6trv/WHf/KLP/3fP/KhD16+vBmC66a20mgAsDYnIlc30929Rx746qte9aoXvPhFi8UiAm5uzno9uOrg1U+cPT3sjcuyZEu77Q4bKRQLkG4+D/Xk3OnThslhrHxjilLqudF5TI2rG4ki17ZpGq1UURSz+ZSZrNIgREsxxtDr9du2DTGZPCMXJAldmLqurTFZ3t/Z200ES6MRESkrOSbv20QUMXh2KcTxYKi2NjalVhnber4Y5P0Yo2vaixfPU4qIOBgOlVUpJUrJMBNAiDEh6Mx0N1Bmi8yoEIJrQ5ZlRVG0ddWJk5XRIaTWuTwvM9vrKh3vPYAAIRnUeGkFldy8dNna2lotJGzvbG5ubfR6veF4lGXZyng8rysBuLayemmy903f+i1/9Cd/cv6psxQjgSCBrU9GSpSojAaARFFZE12bF1arvK5rKZGIXAyIyAI2d/e0LTglKyUA9MsyhPC1zFHortU2eCaUV6T1OkYfYxwZI7VKkUMISumqqsrCyi59jiE0YePCDiBJFE2R5b0+hTTqD1aWxxfOXlgul3wZU0rzxYxjYjQUkhLSaCGljCJCIIjBCMGUdnZ2//0Pfv+v//qv8xW+DwuBzIDE3/CN3+JD+8lPfG7n4tabX/+ml7/4pYvF4uWvfMXa2n4fgpcCAJrgtTVCYNPWRum6rncnk+l8bpXp0LVr2apR2nlfOdc09eryyiDvaak5pCQSKLW7tffs257x8ue9YOPCxdDU6/vXN5o2EjNQ1uu39QIkxkBS6OQDSmQkuGIMBGY2WqNEJVQ1k5DcpErzlPpr41zB9fv8ZZ8v2ikKdL7lQBFJCLRCCyEhBgGgUCmtKQaFopf3JEjfNlmhG+dkpgLidt1+9t4HstWDTz76ZH9tmYq0ujrKx6VLNbVJWkiEyIo5GGMVpsVs8u6//ev/+KM/hqGZtw6Z60Uz3Wtvvv32b//mt/zyL/2Stf0OnIuMrllIIYh9v99rXX333XdfvHjhumuvvfvuu29/5jP27du3f/+ByUc/rousHPTnk2k/K57/gju2drdSCAhqZ2eniT4zdjgc+tYlpuFwGGJTVVWe54131lrBolt51m0LIGLiXr9PRGUv71qEkLwgNbl0oSz6QkLbVFKrNgbB0HWQROSaQESdtKLQFgHrehFjFEIkAAQIIYTgOJH33jnXeieUbBtftc3xI0eRVTVviSIyNK6VUoYQijxzrgltrF2b2aIoiqpaABEJbhfN7vbObDY/dOTo5Uubly+eP3hgP1NHXDXONxCpdU3TuLIsY8KiKJVESuB9zAvTCTJybZD9ztZWWZa+q+bbxDEtFpXNdHc4REndeRpCQETvnDUmxmikMkZHn4hIaTEaD3QlB8Nhryg70A0CUGBtMu9DYpJSVrE1efGOt3/vO97xjrzIQpgP+gMfojQaCBOjkb0U3XD/sTPnt8fD7NStt8hb/OOPPChhmHixfnhtdeXAV+8/v721iyJr6/qR0x/Ny32BTPAeBCtlbFGGSK1vUiKrdZrVtrSxaUCSRzKmDCFdUcYhppSU0ZGC1MgQhBIsRXAVam2NBI5aKuxCmQA6l3NTV3W1EMYoBUI4KxXMLh/fXzxw/z1Sj6vJyOR5ZjNARCUIQKtMKTEcj5gZgS4//lioGgg+z02QfGl++jWvesnzX/TC7cV8lAuFCVmefnz+9/9v59VvXtp3sNy85AGdFJkSmbE4n8ZXvOIV3YS/aRpE0U3ghFYhRUBSVwIMJCKmSN2u1GrTulqZTGlBiVMiiZJFJ6SjTtnKnTyaCAAZAZUUCCgFM2kEIhIoQ9sKQBaYZUWMsSjKn/m5n3/JS17y27/921lum0U1nU43d7azLNvd3UXELM8UCuea973vfQ8//PDLX/XKfWsHtvZ2BBFlZmVpLHpFM1+MhsVSb9TPy3qvOn7s8KDId3e2XN1QiFLg3uZ2bo1gCr6VQpg8Z4AUYpdR5GNQWhOCECikAErWWiVl0Su898wsweTaJkj9Qa9pmkzrwaAfKAmNImFKqSiLVFW9XgkoGu/KrEQWatjrJ+CNy5uXLmzuXzu4PF6ZzmdADBCVsq2rYwO9QV8o2UUFsBKMYLMrEoYUfN1GIjLGciIA6A2G3QMCjIDUH4yEEClGxI5hhsycZwXk+WKxSCFm/X5TLebzuVB4+PBBSNG5Jvo8pcAImVGuqXpFNm2qIyeO/fh/+c8//qP/6eixY8A0bUPRK10zL4tsb2+vLPtFkXeCYZ1ZCCStVUom4KEQTdNYpQHAcxJCUExI3Pq2KPJIQQjBkLwLWmultfdRWxVcRMSQvM2scy17FEJQgrqulFLtYj6dTr/WB8uf+omf/N7v/d62bb/lu771ri9+OSvKfl5sXd44d+asCyGzBSWfK4NWppScc0qpFH2WZawxBLeY1EpIH8MLX/yiX/n13/jMl+4aDMZd2jERLWbzxWJRZvlgMLj9ec9pnXvmS14ktEDEjc3t7YvnmAGIiyIfDoc9YwKkc+fOEdGgNxiMht6HeVVJKfOy9DEpIWOMLKBtW9+2g6LMbV63NTJ97otf+PSnP23z/P1/+dchup2dnaPHjg9ATtyiKHsxBp0X0TsmSBSFsRQ8CBRSoRApsmYRY8qUZsGc00DYc2f39EsPfOauu4/19h8c0T0PbvZ7mVIqpogatNKyC+uKwWgdU8pzm3xgYlC8vb2tMw1WzJu66BfS6JDi8tLg0cdOo1DC6LOPPfb13/7ar+ycmRMlAueDMZoiEbC1tnVOAu677uS73/s33/eOHyizfHs+l0FolXugyxtbb/2u7/jt3/nN0La9PGcGo1Wne58tpusHlppZfc21p86eOf2lL331Oc969qlT1334Ix/74//7B6YshJKIvLe7/Z3f/q1Hrrn67PmnLEjXEeyitNpoY5xziWheV1ZCl/SM/+ZZ9652dbVonAuQqGmaQb80Ss9mEwaSebFYzIQQSqJr6hijSJKlMCa/cgIKAYkSpeB8MRx2RzwTIQACIHbzWGwa3zRNCtShDLKsCCGtrx9cXtoXQugVRVXNF9XCWp0VuY+uqebT6dTmxhhdlmVKsVviam02F4uqaobjpbzsTSYzRpVA9XsDKXF3b0cpq41Obdsf5IPBCISUWgMnlKy11AbreqEFMzdASWIADnleaKUya6WUjZTBp5RSlhstDRIDo1YSEUMIEpAYkEEJCYqVlFWz6GyUiFyUWQhBKvQuaiFDICA0Wkd2DpomqBtvOKU0pBCFwN2Ni2vrhxmEFFpIbNoGGQszSoKfuDg5u7FYGpW9/debopZw1fnL7d0PbEhTmOFIWeUXhe5ntQ9+MZXWCEBCMa0cEGR5LqSKwYPIRUJBlEjlw6XQOgbMMtO6ECgBAjNZk6cQKEZgCYiYZRBBoBYMkaJSComD98BMlJL3UukUGqu0yJF3to8O1Kc//g+TnY0vffZL7//nDzx+5olLl89EothQoKS1NlKP44goFXl+2y3L15589rAsm3ohIR068W3/7pu/s2WIDEqKYVkACyF7H//A9vNfYb7h267/vV+5DwE5MsmpoBVt1b59+7pZsRISEaWUMSQAoaSJHJgRUSJIAMysXcz2rr7quBTIiayUKREwZ1olhk53dsU8gthd6p3MTQCAvCKQBgJJmBldN421hhOTIGSRPMyrRXDt17/q1Str+/7gD37/oY2tg4ePoFSz2Wz/oYMUokD03ofgRqPRQ48+8vgTZ974utc//VnP9k27s717/MTxe7/0MFBC4gOr65Jhd3Mjts1VV121ujxeXVl66qlzlPjxxx57c55ZKTshGAvRhCikkKgZMQGZPEtMMcaQEiARYkgeAFAhRECFJBgYU4yd/EIarVWGiNoYUMq3Ls/z5IPObGkzjRYB1UOPPhQjueBvu/Vpw8EQkIWSddOsLK9WVcUoM6Ov0HOMIqKO8xlCqOuFlFLA1yBQErRUKabuFAPEsuyxQO+9EpIZiKOQquiVzMyJsl6BWm1eupzlubU6y4uqrRhhbd/KZDIhir71iWlpaclktmmq3rBsGvcf/sMPPfTV+//fX/7liWtOjQRu7+3lWjnXSOTd7cu9wUiV/RCCTwmJU0qELJRMKRmlO5CWZ0IGeaUXh9aHBIngityDYorRdeN3Adi2xCL6UF+RAiZx5Q8UJcPf/u3f7uxstd494xnPeNazntM2Ps/tL//ML77tHW+/5Zbb/v7v/z7GCIjD4ZghAlLVOKFVXddKKaYAkHb3tgGgKMvf+q3fcM79z//9Mz//y7/y5IWLS8trWqm2bVGIoujlPSAUMaV50+YpMfNT587bPOta9n5vVJZl2zTz+XQ2m/nQzmazum2LopjVlU6mU62DEFrr6D0Ya7WVgsuDB9u63dmdMTOlsNRbeeihhwbLg4cffIRCJIlmMNje2/VEKKnxjlMUApgABQihkqtVnsW6kVLGREIoAUKxFAyRKM3q3Nho5ZPT+O6P3HXTkbWve+GteF8tsJuFECNIKYFQSgHIASkhKU4qk+CDlFjmNhEBqeEwU0rE6EJcLJoYsHnWs26/+upDn/jgx+/8wMePfv1tj1WbWTTW2ohRZEozp9pZo3wbhBLTavHQQw9df9vN7COxyPKisMYv6qWl8aFDh7Y293rDQQjBN3XbeES0Vl84f3Y4HD/48AOH1w9cc801i6r5wz/6o8g0Wl5hA9aYjdNPvekb3vgr/+e3Hjl72rULqBybzFNyzi3SvOk6mGqRFfl8WgEAISmlrLVd7dW2rURETiC6gHBRt03ngwyUUEkjjG9dp3M01qJWRppOhxVC8N6nlIa9fqZNJ0LWWnOKHQ1mUVedMFXbLKRaS7m8utI2HiSsr697H1KMbct13RKRj2m+vZsgaVSDUV8ppZUt+oVv2tzqLDNNHbMsO37iaq3MvK5WV1f37d9PRMDJx9gbDLVWWuuiN/DeByaFsm3bmDykK3LZ1jdSin5vOJvNrLVN0wyHQ2NMJ2Me9IaIiIKJSCrFjJ0VXgkpO7KK0jHGLnCMAbpIn36/36n6U+QU2TlnBJLQzBybKDMAJYXOOMWrTxy5dLGeV4vxUlEI2J3uZYP9TROz0jSLNgkBLHWxTJSSGEybtPnEPO8F75Md9Yk9CZq7Rli1qOd5noPQnJgSA3CWF60LANy0FSSSqJp5pVBkvUGMJqVWKltVjVRGCEREStC2rVBKZRkxEoBmQ0iJMcTIArqCDDh1ZT0AEpExUgJKpbVRvm0DQP/gwTd98/E3ffM3OBd2d3cnkxkRddGKQoheaaXE3qCvpGEUnWQOBUjWrQ8+pTLPmCDLCoCkcvrq3ee+9Im1137jiT/+7fvbtpZCS9lzLRw9fOTIkSORkslsWZad4IARQkyoBBAmFxEFQ+SYkrL79u9/29veRpGKPE+JkEEipkgg8WvgjitCrq8xFboV4JWVMDJrFCBFaJpcatSmTi1ojJHAgNGZMnJ3Mj1+8tT/+b3/+xd/9mcf+chHVlbWlpf3TWbbLbZMhIi2KIWRw/EopfTXf/3up86fe/Mb3hxmfrKYbG5vELDNswMHDy+qipDPXjg3GA8/+clPnD/7pNWqFery5ctSgFaglSCCwCwYOo6Cc62UkhGkkCklhRhZdEtu1wajVIIgpdRSXZmNJ+qCrNvge2Uv+RQSZGVPMkmbd5aqGKPVRh04dHi+WPR6PQLu4pxQKyuL7cnecDj0Ps6rBRGNhyOrM6UEAVJMPoboA2pARIqx4ykmJgBonevqdKIr/msXg1Syl2WI0LatlFIaXVXzqqqmi2kf+8PeMCTKiv68OudCiERt22qti7zsog9lLnc2tzNrg/O//bv/5yv3fPnhBx/qrAsg8IYbblheHo9GS/fcc88TTz45XFrWiK33yigKQWiRFRkkKrLSNW2upBLS1c4ImYCZMCYgIGPyEIIPlOVZSoljAMQyt4Raa518qKrK2pxRCBS7u3tf99KXv/4NbwIJANhEd25riwDjXrr+1qd95d77lVK/+As/d9999+3fv/8973nP1uYGIGpte72iX+SXL18OkIy1L3/F12em/N8/8zPXXHvKBf+N3/7WtnVN41NKHNNsMRdCxBiFVtLITBdSSilE3u9XVSVYjgejuq5THVhECjE3tnFtVc9TSlmRmyxT0sTgOh14YhIAvnW7TejnpbDIzIzQUiTvcmPqqv7QP3/ojhe9ZNgfff6zn4SU/LwNqIqix0KwQCZBFLG7Mxi6vGvRzaYQulBS288oslLSiMxoc2nvctGzr3zJDWvLA6KQSCplmuC1UimlmJIglChAC4motQ7ReReNEsAsZWYyIxI3vpm7Vhfartndau/otYcvh72T16wP7l3aOb977WY8tLp2cXuzMBZRRE4AQBRZK89hWPQaTnWzQKk5RN0rk/C5lJvT7fXVa9/0ujf9/C/+QtNULgZO6bobbvqlX/qFxPShj35k/dD6o48+Xs8XJ45e9e53vycbD/OyKE22ubc13dj4xje/+ed+45c/+qmPL62uSGaVW52X3RSu09gLIXq9Xt02JGQXDjos+s45JYSrnQQBUuSjoVKqcT6klOVl27ZS5ygkxJQVWVs3MZK2WVH2OtF+CCGl5H2UUnfa9S7tmIkASKLoXmXnXGKKBFfcg77OsixQWFoaxdgm7r5D6vX7zNx6J21W13W3ciFOZVm2dYMMArmpF01L3Yi+LMuh7CGSUiqxCC5477Is6ywDjWu7t1ldV0qilJIpCaFj9CkxAO1NKkRFLEejvs2KGMnYXGktMHXdVVfHd4UvAnbYh67e7QZUQioQTIliIGARwhVjTHeRg2IEAczB+9Sm2rm1Up458+j6ofGH/uUzL3/5Sy9cuPDE3ubXvfJVX7zngRxkoLFSVkgZQpAKrJIsvDFm0B8DRkLiGDgpWxSAM4A2M8O2cVKgEEIYFUJQGJGatnZABDGi0lICpWAzUXMAoQGE6HKipDbGNLMKlBYWovMQgs7K5CtAERmJEwS+4inoTBYA2hiClDwr5WwS3mTz2sXGJc1ElqOnmMrVtfH6ekgMAFJiSt0UEmYxzXbnSpqUUl5YpYSEIK1SCNRGkWmXopDM4KT0n/jnzW94y7X/7jtv/tPfu9NkHEIUKhw9fGR1dbWDvVx11VWdiKEjn4QYsEuWJRZCghTOuY29yUc//JHrrruuCVFIVCC71hb+7e79WnBv1zYIEMwMV5ZXAAACuue2QCnabkbIrCSEEJBIGcPM3vutnd3Xv/HN1566/g//8I83NzcPHTi0tbUVY1xeXq7qejKfoWIGtsP+F+764mRn8vo3vZGYe6MxCOlDajnOdzazQW/e1Bubm+/8rz/x3r/5m3f96Z9IazqxsFGaE2mdQYoylxQidzQurYmIEglAgUIIExMFSiml3GQm0zHGRKy0okghEYJYNLUUOgaRiLMsTzFYbbxvuytGsEBENV5aqlzbBh8oIYKU0qeIUnQlqnMOka3VUkqFQgtd+XYxmyOi1dLFeIXSonW/p6fTWVEUXZmjlEqJJKLsrHzMMYZASQnREUrbtp3NZoPBQGsdKPmmzfPilltvq+qZ1AaEJEAptcnyvemsKIrk+LGnTjOkZz/zmf/9f/3vH/6B73/2s55xYN/+7/redxw8eLAj6zrn/vH97/+xH/uxZjEXOvPOSYki8fb580VZdh/X4HwIYXV1nzFZ03oWKIRggVYZNPlsNvO1lwp96yj6xRQQOtkzrqysAWKMcW938u++6S2/+hu/OaubyOQpJmYwBlEQhK1qzlZZhnf+5E8iAALH4J5+6y066/3kT/7k+fPnjcmuPnb0+Imrf/bnf+6WW25hUnvz2ee+9OXVtTVp9Pbmdm6LxWyuNOR5HlKYL2YhJSLKyxJYkOChHq6s72NC79yljcsAsDvZs7nRWlNMFNmFmJhSBJ1R3xjftGVZapASpUvkvbs8nUf2eVGq3AqrR8PlnlKbFy5NF9X0wubP/e+f/at3/+n7/+6vrzl17cEDx/7h/R9UqKWSSWJbexYQYxQCRZYlHxQgA6yt75tMZ6g4JgckjDSkY52UNP1mZ/dbnn/L5d0dgl5df1XKI+wdMwEnIoFCJA4JQKP2KeZlJoFRgBCACj35Ss9rqlXf6EHWz8cl9UHrszsbpYHrn3HrFyZ33vlPn7zpVc9dXhm7WSUYtZGLuuqVhSBGAd0npygKRhgMBgtXocTZ1JVlngS86CUv/vlf/Dmh1ckTx7d3Jw899OBfvOevvumb/t1rX/fGM08++rKXvexjH/7IX/zJny+trdXJt2072dxcWVv+i7/5mxtvv23Szg8dOgQxsFBNCs1ivjxeGo/Hu1vbMjdt8NPpVBlpdI4gbaaF0iqlaj5PKQUXUcSV5dXGtT6SEWpRV0wIIKJPVmkgZEahpLU2hKCVCtE5Fzowcmcb884RRSl1lmUxehDYOte4thNntZ5SCh1EbDqd5nlelmVVVchcFIVrAznq9XrdtE0NBkJA8kEp+28g35RSXdcxybLfHwwGQGS1MlY9+dRTxmR5r1QCOAWUSAi9ohRKghRGyxi9BPSdDyrKsugXZcZRWWvremGzQikDEHu93mKxEIDe+24v/m87QqWUj4GZrTYpJW2kEKIDUgKhMdA5mlAKTtD1fyE2qKRv5q2P46LPCYDhnkfvynr2yNHDH/rQxz7/+U+vHTj83Ofd8cd/9K4f+qEfGewvM5szk1ai9XXwvCDq9YYJmxTJ5lm9mCsjW+cAFFA+d41QMiGmmLSQjNjOa22VAZaKQKnZzgS0yga9xDGmxAF0WRJRQhQMzaJCraWUSKyUEsoiAxCH5KVWAKyEiCFAIqE1AmDnQUyRIyWAUPuU/GS2t3Xp8qHla1KIRklpDQB4ImKKRJQYlbQSKKY8M2U2qlvXtlFJAkxoTR0D124odV3X//rpTyYS3mMifvShy5//xO5r3njzn/3Bfa5ty14xm0/279+PiEILAHjnO9/5x3/8p/N5hcZcGXACQkqdnQyYTabaCt773ve+/fu+X0mRiBgEJkwpSim7bld24mdAZhLdeIOuYKW7AxYQQGCbGEIEJXJrvXcppTzLkguOKc+tUdJ737b+mc957vHjJz70oQ//0z/+3dra/k7kH2JcX19HxNliPp3u5Vn/kYcf+bM/+7PvePtb+6MhCGFMdv8DDx46dNC37dr+/f1iwCha7zvP3mKx6KTvKDUjdA6XJIAjdRzsruTVEpk5sRBSssBMW2AWiALRZpk1BhKFEIRQN9xwAzNubW2VeZEVOSeqqnnr6kRkheiE3KoDRnbOWkQcDAazapGYjMqZuSiybnFFFGvHqa4SU2LiSCE4JcSVOM8E3nulhZAQgu+eVqWU1opSiiE473U3LkNKKQkh+kXfKssCJ5Pdsuz3er3FdFaWveF4uLe3t7u7e+jQIa11CEGZbFG3y6srGztbWWYuXtp83vNfdPrJJ7vaqW7CbDZTEnxMUupv/c5vv/nmG1/x9S9vCFdGq5xiUy/e+Z/f+dKXvlRr/Za3vOXmO25+1ate9e53v/uee+5FIbqOXAjRotRaUwhFv1fPZ8nFF7/4xa999WsWdZXn+d13f+U973nP2r59e3t7P/IjP/Jrv/Yru1UDUmQ6j01NnR5VsNUSi1FCTICbs1kKUSn1C7/+m6UxBPDyV736fX//3uXl5Te84U2BCaU4e+FSXpYb25vlcGSKcmd7WwjRNFVRZJGSC56AOCWd2RSFlqrD/F46N+8XpbV5cD4zNoTASIgco+8WM4IFRSJIsXUT53NjtVIA0OsPJ5NJ0zgCzHo9ozRKaa2RyMj0qc9+rqG0ZMR11137G7/zu7/5W7/VlUH//L4PvP4b3zxa3r8yHF/wF4VC72spZWhqIRSxt1m+fmR/PE9KaApJa5UgWUCjojL6zMZi/wCzHA8eGKzbaYxeG4kpGikBwRgtEZJMAJRlyqVGatRWTZtFPugljtCzKgppVFRYt9NhMTj71LmV0fIMcG++deI5NzzxiXtO33n/sVc8o05JWjtZzFiKwJAbazNyLuR5fvyaE7Nq1ganlSUinZkc1YMPPnjNDaduu+32e+6/d+3AwTd/67fOZrPl8XhrZ0vsieNHj33s459495+/ezwe7+zt6jIPs+mb3vjGn/ipnxquLd/5lbuGS2MFbKSKMbq2LYvhoq7q+aKDOAYKWksEVBJtVqSUQnBt2xJASBxTGgyG25PpFbcusG9dlhXMTCGh0l1Gr86sVEpK2dQ1QSImF0P3iQshaC23t/c6CCsxI1HtnQ8hz3OptbXJ2lG3PBJC5DbrLrZuAJ5ijJSaWuR5LqRg77WUw/EQQCzm9Wi0pJWpXSNtBiy0td774L3gWJgyN5qAFEJZ5hIVCCQCqRQjzObzntYcGRQaZbW23LkNCIWAGP3S8ggAYnBKqWq+iCmKK8PIK16XrqXuoCKcSGvd2UO7r0JEioxSAJIQCoUgSlIiIhd5L4SUtNDGpBQGeR6BHjj35Ze97JXbu5VP4g3f9M2LKjx59sLb3/ZWI+Tbvu8HR6sHxweumtReCeOcy/K+Nb0IqAtM0cvCMIA20rVJG8USQEJwQZtMIGo0RlBMTbu3m6oJAJb7jolyBEK64KWQUSbnnJSSORKzFEDkGRREIGBp8y5iXBCzc0qIyE5rLZUyRrVt7VuPUnTLPucpchyWctLOP/XJz37XtSfr5L1QQLEb17NAKRUAhxByYZVSFAklIgoh9bSqbG57igDRZDbT5nOf++yXv/SlpaV9k0VdZPv29jb++b277/j3L3rarbd+6a67ZDkCP9u3uiwlUiRA0an/bJZ5IiJSUhGykJKIpBQJoOz12r3tU6dOWasX3kutMBERKqU4EXYT+CvNLnbNtOd0ZQcMgEIQMAhkIbSUAiiF6Jq2Y7xTiBJEZiURRWQpc63tdDoFIV//xjcePXrob9/71xcuXMiyLCWqJ7NDhw66uslMjsTF+oGd7Z0PvP8fX/PyV0JMg6JnAIdlb5bYmnxlZW11Zd90OkUBZVYsZovdrZ1iMGwCIXU1aLTWohTee6AkUUgpVbdiJeQrZiqNxFqqKJVQygoVY1heWRMS/+X977v33nu2trZ86/btWz1+/MRrX/+6wwcOzJpqc3OzyI1RVnl/hS6rBDjf+JBpIY0y0fmUgs50QOz3+wCCCARKn2JfCuccp9hdXc4FBl5Usy7dvUOlV/UcCJVSyCCVjj4S8b8NlKyVAoRSWinJw7GUCAC94YCZXYy94RCV2t7e6Y+GWiuJmGUZSrG8urpYLLKsmMzq2aJ2EEDJAjNWJrH2IWgpmjbccuttf/nu//eN3/bd/eHg4a9+9bd+89d/4Pu/zztnMvuud73r4MGD111//Tu+//see+yxn//Zn8uy7D/96H/8pw+8/8Mf/vCP/9g7P/avH//XT3zqhS94wQc+8IGf/9mfe8YznpHAd8b/O57/3B/8wR9863e/9Zd/5efPXTrHKrd5lrpNc0qZsW3baiGlwhRi473JMioUI7QIi7axUulB+R1ve5sEWAQfItXeq0EPpOyNh5cubly6cBkRDx88EEK4cOEcC4nISslIxN4Pe8MYYrOoQCIykw957vKstNb2h72qbRiRY0qJgTC3RZSRKHLiJJiZt7a2AKBtPCOAEMNxX5W6MDlz8tEzBZPbT3/mM8V4fPzA6nBpeHE60ypvo3O+evmrXn79dUcf/Or5um4pceoEqzFKbZBFio3JTSTHOrY+Zjq3hSaillMv+hzy8xc39K03f+Huh+va3nD11Q9M3WB5qACs0ovghBAxtajlPM4SUdYvvCayFDOqsxq1AkKb5eWoN5nslkvl7taWzDHrZ3shnd+6eHD9wPCa9b1Hzk0eO7/+zJNPbFxUSoNRSmnX+rLsXzh7+TlHr7FFOZ3usJJEKEEHVs650WC4tL6ytm8ffAUuXLp44dLFo0ePXn386iLLlpfH2xcv/9ov/fKwP1osFjfcdNPxk8dXxqP/+h/+kx6Uj517cm19/7DoCQlVXSPRoXI4D6GpKoPSO3fmzBkXXZ7ng8FAArZ1IyXOFguhZJZnKP3SyjglzoqyM39ba3ObWaU3Nja6BnfY7zGC1AIE1M1CgvREm5ubx44dB4DQug7+vG/fvsWs6k41F4MLMVEKKVJMw/IK9jIF3x8t9YoSUYYQYvTRh8TUK0ulFKfYLwaY59pIAEiM2O9T4iq6unFtaIssm84qpZRVQqFq6sV42M+K3l1fvns6nT7vjheklLQ1rfet9728TM5pqQQKnzxAkFIKYQAJIMaUqioNh8Nuhw0AwKLbWxljuu1gXdcdzp2p25smrQQypBSurLqZU4zW5szU3XBKyhBdJ79CZYgBopeKZ7PdiiYnr7+qv1SSpPMbF2wxXF1fu7B56du/6y1Pv/Xkd739Pzz4xCNLB4+jVIzkQxUrn2f9GGMMYGXRDca18sCpJ4tIwRiVgoMYQmja2cbR4weOnjj5vGff9rKXvuKN3/mDSXAAAGUFC2OJmVOK1mrv246X5H0Ls7keD5x3Lipom+c993n1bHbvvfdIY3KdhRBC46NzAARCCiTS0mIUVpm8JFPcf/99hVBbxJkEpRQwcUxSSsEgGaw0gOBCq5VCFFqrELyWUBYGKlClSqkFhEQALFzTCsEOJkIVH/vY3S954eu/7Tve8OW7PxfjdlH0v+d7vqcbLTDw1yC7QikVQojBoxBZntdVBQBEKUQPAM997nOviLaMEYIFYugC4lAQMBBDx/pAYGahZLcE7vRZxMwMiQljEii00gHQt87YHFClQEYSIjohmFknYW1ezSoiuPn2266+9uTf/e3ffOUrXzly5Mh8OgtNO+4Per2eZNjb2Mbx0pnHHr9//z1GSSNw3/LK6nAcahdq/4e//4da60sXzwMAxdRW1e7u7qFjVz918bLOLEFSVoUUpdZ4xbUclcArvlaWUqsOCi2ZtVSlKRKRm9fD4fDJxx//mZ/9X/1hceDA+k3XXx29A6KzTzz8oz/0wZM33vgDP/jDg0GPYsxtpqRR5NtMm/l8vry6r2qclFKjVFaRp7ryvd5QywwRIREgCVSdpikwCCGVEt1xDMnOZ3UIocvwyo1tmibLsmw0KhEEgJLCAc2ahTFGaJVCLZQRKLU1i8XCWqtVh9xMGoRCNGU2mU1GRS8AbE/2IFAM7XXXnRIAIXqpTWYyF1uZAzOn1AihUMLCNdNq+uKXveztb/3mX/r5X3r9a177ju/7vie2N0xRFkE870UvBY2TtjEor7v2hnf9xV8AgIf072/48R/7z/+FGV70khfPZrPx0srP/MIvOB+f2p6QEplNmRJv+/7vO3Xq1G23P2MRIRuvgUDnnI8+L3ItFYVohIwxguQYiYEzIQQQEyNiaTMACClttzUzayEb1wCAQkVEy+Oxr+v5fH7s+FUhxKJfbO3uVM0cEbXURuUAMK/qjoJWZFYJJYU2xhBHH12zaBGlEAwClZJIDEAdxTDGaEEzQuUCAe9NJ6ury8srIyD2MdTtAmIyRR6VmW5Mzlw4O8p7L7zjeRqhl2VJyzHJaagdwC/83K+/9nWv1WLgA6FKQiAHttY27QJZUIgkwVFgF6NOs0U10nlEtTAGs3a70ucvzf78nz539bH1pz/t9p0Ld+6/9obdrcVUQZItsTA2zrUECiCF7AuNOiqMygiUJmKtkw3RLxagJDVUzdu1Q4ccMXt36pm3T7d3j912ff3k5uZdj/UPrGdCL7wvci1IeDYNgtjdefG3f2+minZ6NisKWxRt6/2izo2tg6/nrj8oAWj/2nVTAAEAAElEQVRvY+PJBx75/Ec/8YpXvOKO5z77r/7pA3/4p3+W2TLLst2tzbd++1t64+Hd937l3icfO3z8UL9fphAb5yOBC1Tmxdw1s9lkOBzOJnPXtkqp8cq4KDNAZGJrddXU2po8z+u6zvNcScyMbZpm0CuBLHPSWs/ne/1BXmQlACijGQRIUdetkRnFJII6tO9wqL1U2GnjGdH5mA163Z6IKFopQFrysVcUjWukls75suwbXbSOM2utzhduL7MDY5XOrFICQyAiB0nWMlLwMTChREMsfFsbawT5wopOg1lVcwBAlH4Rjlx1jW/b2aJKKaksSSmVkOBDVpQSwblGaUEUZrOJMcZaGyIolQlpUpRKFiEEoSQDUwogsIltLy8oEaUgjAEABgeAkVgIoERCCG2VlMrHYLUNwWUmFxqZsW2cUsqnBjWnAIUuWqDEcvPs9qEDy9dedUciF1ObZwOEkILM8vLcxtbhE9d/4tMf/ZEf/fH3vPefTLnf9pb6vZWqWmAiCVJkOhAlAJVpqWUKwYdYzfZgsZOjzy1de901b33bD7/067/uwMGDF306IrOX3X7dez/28eUjt8wCIAUCoSOHvekLXv0KEviRD3/QKj0w6nmv+vov3PPlnfk8L21U2aJyO7MW+8tSqQUQEYAPSlpKTtjcJ8goE9pkg95emI0P7V+4BgRIV8+rdPnyZW3kgQPrRVG4psmyTAJEJqU0oIjEiYkEMqqmjoVVmrBtABV84TOfBESRWelal6w14KvZRz/24Z/7pV88dfJdjz704G2333rNqesioAaVUjJa3n7LzZ/58j1CWQWQEDmluq5BYKAkhMDECHj6iTMMgExAMQmJAJIIJHVKK0RBzASJAaSWTBGhu9eRiGXHA0+sCJmTh2it5ZhS26AQKtdtSiIxghQAqBLHkPclETWNzwv92te/7siRYx/54IcyUyKl4Nu6rtu2KUb9djf0bO+Ld93L2nrvh6PlyXQhUU23t175khd88EP/8vijD+W9MiIB8KNfffC22243QiATAiKhEgoYtZTdh07qXAvTNE5ZJaU0UjBTQmQg51oAZCHzfu8v3vOel33dK77t27710dOPtm391LmzJtODpnrRS1/xD//wD7/0P3/mrd/53etXHRWAKqXUy4umacbjcTcQy7JMW6ME9nqDuq47rY0xJmJ0TRuBlVLexZRS0zQppW7grBGmk8lisTh69OilCxcff+LMLTfe5J376ic+efzUNXm/l/dzIVRyLSj9+OOPrS6Ph+NxSgEEEpFzTqLw3mfaRHJSgKJokTn5rY2Nze3tuXNScRJ+NBjtW9mvEGOk3BQuBkgd5TsIkVdVTSkueuH6a28AED/4H340ApiszPPCOx8pKmGamBpIDRMyCEBmVii2odVSGWP0cLDXVvOqZhTCaCWEySwyB+IXvOSlPkWfKFIyQksUhNxxxDimbnrWBk8pdY2+EKKu6455KgVKxMJmnfqaiFNKkdgoxQxHjhxpnGuapnEOBB4+fHA2mxmjY4y+bbuxoWCgEDnPAZGAvfcMiVJaLBa93iBpLMuyqeqUklU6L4qLly5lWVaYAqWoXNN4p7VUM7VoqjLPsyxzzl08e44EHjh8aOOrD184d3586rprT11/5vIlYWyeF1mejZfH1c7uP77vH4C4bVshNXFk56UygRIzMnAIoa5rpXW2UrQxRqTKV4XJEsaY64tut+ofu+O2U9dcdWj9yAH5mdAq57STiLaXtzERkckyShi18FoCExNbrRJzlAKIKbdVW2V5Pg1VvjYEjJjI9Eyycd8g9+yOvfS2h/7lzgc++Mmnv+7rJkXWUJt1POh5q7PiBXe88OzliybLyrJs21YI7Aae88Xi0ccefsPrXv+P//BP9XS+ubHx1JNP/s5v//anPv6xr371q4PxEjNfPH/2qhNXfcM3feMf//m7pov55tbOyWuvnjeLzJimblkJydTWC4kiz8xiNrda2sEgyzKlBSIyJxCiaZoiy621jWslCokCiZu2WiwWSqler/De7+zsee8PHTqUlwUzZ1nROhdilBIpJgQo+73Oks7MWW5ijATd21MMBoPZbAIARVF0bzxkoBqZ2WqVZZnSYIxRiheL6dKoLxgQWWgVk4+UUvAsUWuthIIu2TpxUy1a52QKIpdMUikMTEpKpXXbekYajvqQSt+66dxhiDHG6EN/Zfny1uUQwvraqhDGtVciXWOMmbVCcGYR0LsYGNi7RABW5f3RcDabPPL4Y/tWVpfGY+9iRwpGRASIIRiTdQu5EJIxmVQqJWaERdV0P7ULHjhVbaNQtL5WmvNCP3j6E1u7j5fFMEYSQnTDKsAkMPV6vZ26HaD5g9/7zdd8/Uv/7M//5uOf/nwjDQhkVaSUmkWlbNYxYRQwJzpyfOX2O55+zdXHX/u61xw8dCgi58PB+YuXZ2fOzl0w6/vf8fbv/uhddztOxoPqq/nMB63kuP+hj35sMBzKrAyJRBBnzpxd1B6MjQIChvu/endyPisK4UTkVGaZLs1iMc9zHVwNxF4m7YB2FqadVpPL7/idX3HMqTQwqY8eOZRSqhdVR+hLIZRlKaSEK3NdlCCFEIgggFvvXHCpdjzIPv/FLwitfIoxJWBBDELKT/7rJx555JG3f//3/dgP//Db3/52bc20qQpjCQBAdAx8JYARBTEJIZXqNLZEVNc1M+/u7jJRbi0LEYI32sZESolu0pwQ//+SK2KBV9IdmKF7kFf+JUYQiIAxRhDY5d+klCAQIwopAUiiElIyEQXul71E0CsHRw4dve666/7h79/75S/c2bbNvtU1bcSKXcoyU1UNIm5vXBz2+kph5HDk2GF99VVnHn/84sZlFjJE0lqCFLuTXUSuXa0w10IpKQSKuq7zIutmMynFyNwFV1triVInTOtkkjHG1QNrX7zrCzrTd7zguX/x7r/Y3d1+/gvueOUrvv6xBx/+q7/7W3d471u/5Vv+7n3v/+M/f9f3/ccfWVpaVtF5EqLbvkgQg9GQmfM8BwEdcwuJlNFSyratlVKRw2Q+oxCRgQgmO7tEPJ/PjxxaPXnNVdPp9OEHHvj85z57x7Of89iD933+c5+77xOf+6F3/tjw5uvOnz974MABq1W7qPavrvUHZUzJez+fzweDgfdx1kwGg4FvauecNpicW0wmc6SqapJvekoePnKo3+93G3IQmIB9txMC1FIYY1DJ0fJS07iq9Sevuf6b3/Jttzz9GU9evGiLPM3rbqLFwYEQINDHAACDotQgpADPsnU+xqi0DjGiVoACJCrRhYSnAOi8jzEqY5SSRkmj8p29veBcluVSKymlUhKCWCwWTdNKqbTWvaKYV7UnnxtLRCBF9FECRh8I2GjdnVApUtO0IaXOZVH2e2VZdiuW7n25vb09m83btp1MJkoZLaQxJs9M5+sIIfT7gxBCSNE552PY3d6JMZaDfpTUtrUjL7Ug4NliXhS5C5739mRmhsPhrK4Kbe+59yvB+dFodPz48fsvPGWBjdTOqOhDbuwTpx8DAGtM7aKyGiymEIlIaoNSKaUECFvYqq1ccKa0XiRbQMvAuVCYzm5uf9sbXrG3tzHfvdCTJgqWQ7RSzXwbFPSlYiE8gCmyiKxAICUSHLyXyqKLC4QsK+KiVYmLfi4RSFIdat/McDiGRzbHhw7vu/XE1r2PP/TZu2975Qt2w8RPJ6XO9oiGhw6s9kYpRW305uamlHJrY0Nr3e/377///qNHj974tFsdRZXZwdJ4pd2/tbX1wJnTB68+hi5eunTpLd/2lv/1M/97ZX2fMLrs97b3dpmoqeZWjjvcY6ZtB8dQjIwixmh0JoSoF01RZMhYt7XJbK/Xa73XUg2Xe0qptm5m7aITH8WYbW3tCFSHDh1RUkWCTNtuvdRlgRBTt+lHhLKXA2JMXhnzNW657Kh+EhERq6oqiqKtm8z26mYhJRZFoZQgjq1zWa7bth31BwA0reYppUyr1rkiH4QYQXAIQWuNQhS5kRKEENZqa/Pg02KxsJkO3lMKwCk5rqp5VTV50UspopSrq6sILFBtbV5eXl4WkUIEY8su2iRG3x1VdV132JxO15pi2tvb0dZESkKryXQ6my327Vs3JusW4QBia3vHmCylpKTe2T1/6NCh0WC0WMxNZgGgamqttVJlAiJqlLZdGvj29LFjh06truyfTBaAoLVysWVOgbx3rZLJh3ju/O7Xv+IVr3vDNzzwwANnHn+wbRbEohz0jc6WV1eqqooxlnmRW3vgwIH96wcm9bxum91m5nyUi9na6lpdtQVR1renTl3TTKe9pcPA3tgM+mVdVdJqWYxmTauFFMa0Qjz85FOgpdE6LWqsFxC8ZvLzbUIAm7tgRV4WFoWICHWmcdi3Z0+fk1Ivphtv/97vuP7G6x574smVQwcT03w+11p1g+JeUXTtkwtBCEHQwSKFtVZdAXYmwSkhAeJ9999PnYSKQQGHGLXUKcUPfOBfvvO730qAXd4RSBUSg2BKcW86VVJKFE0IWmshBaCwUiRghqSNjChDSEKItnWClZSSiYUQQIRIjEIAcWdEAqavGYK7O7h7J3cPWygBXYnso5KyI7SklIxUAAKAEmDkBAyYgFlSAuKuSMBbbrnptltueuyRh//h/e/79Cf+dWNjQ2u9f//+I0eOzefzr95/787u1mg8+Mr994HAw4cPH7jqSDkc+jPRWls7h1J+4Utf+O7gGBIRzdtq2Ou7tumkSIzYSSC7aLlIET0IIUJwnehYCLDWKg2T2Y624uz5p/Ke2Xzk8gP33ffC5z2vcc2x41f1i/4nP/3p177q1b//e7/36IMPPeMZz1BdVminwJIdjkTrtm18DB2jtYtMck3LzK5tXYpIjAxaytY1a6vLs8k0OnX60Uc/+IEPfP5zn7nnS192bf25T3z89OnTKYQVWf63n/ivb/3h73/jt3xL1TQI0rlGSDWbLrTWrnXNojHSEFFHuM1NkZfFk0+eObi2sra6zEosL62O8gwBEIEYCKEJNJtX0bfJE7LIrDZaAsBivij6A61sjPHa66/7zd//3Sr43njYL8udzW2hjVQqti6ENjCZ3BDwhAgZjDG5NgIEJ0ocJYphf9iRRrq8oI7jIpTOjOl2UUigpVhZWmq9r+s6xsR5UkpJrbIsn81mXWE4TwmlEEL4FFIiQUILiQBLgyFLQXAlSaZTxzBCYjZKVVVFAJ2CRhu1WCym06nWWlilEiBd8V53mUvD0Wg6nU9ms+50I065yboK46lzZ7332tquwMqyzDXN9t5OnueP3f/QdbfevDIadQLXz33xCwcOHDh48KBQYm3fPpSiQLW7N6nb6qoDh/7u7/7uOXc8/4GHH9W2pBRRsBCotTbGUnRNtZhsbC0dX3fJGSQCloUJ0RtrEIVS8vzeZFpvs+Fjx1dC1cy2d+2ybdiDkp5az4KEZEoamWKSiB6IlbYql4FskUUAYJhW86XBqJOh5VrHSDpS0/qZXyweevymFzz3E49eXFzcu+s9/3LDG14AvaKZN1rLEjLlUyxF3VQppeCcEGI+n8cYb3naLYcOHZJ1vOb4VecuXPrSnV/ADgwe49kzZzMrf+XXf+W73vbWJ88+9dSF8wcOHfzqAw8ZY5qmKYrCWlvXtZKYZ8bYfHd318XIiL1eDxGbpinyPMvy4PzyeKk/HHTbSiLKbda2rQBcW1lGXAsh7E0nvXKwsrIyGi1JqaWRMcZqUTnnY/RSysxaACCKeZ4zsHeOBWspu1xhSLBYLADJauOcs9ZSTNbapp3GGPr9sVIiJRZCNbWbz/dCCFoJpVRuMwCw1o7Gy1VVgRQh+aIoAKCazpkxzwwINFpKhCq0eWG7PrfL8c0zIzBRTEbLRIIA67r23q2s7Dt06Oh0Om1cnXzK87xtQqfBkZHKXiYFI2ghsN/r13WdwEWmPM9vvfkWwRBCKMu+tXkIXko5n8+ttU3Vusb3ev2HH3zkc5//9IkTJ9785jcDCAEQQrDWdn0YdtjzKIA1AuzWjxxYOSxRt01QGUqFQoCUiCwBYpGVTVMlQU9tnm09HTx6+MT112oQKSVjFCEQwGQ6L8tSSlHXjWvbR8+eZ4HGmLLory5lSqBr236vlySKGITVeaHFbG86r8POwqh+NhhIANc0pdKBUwKWJFRhUkrc1DKE1NQCSAAlCsoFaGcxNQuIUkups+hiIjGVTtlBCO1znnPr//zZ/08P+mK28JO50hI9WWuLotBad4EHwQfR3R5EPgWpVW4zYwzFZLTNDDVMAOBCXFpe1cZubWwDJARgLWJDH/nQh9/0Td/4lu996y233MYAQgildOQolMrzPKWUfOxORS1kIupiE1Gj961U6t777tvZ2+33+0KpxJSIlJBXpM7MgNBJnQUDIiTmr0mjWSBG5m7gIbUCIVJKfMWWJEQXoJSAYmBIQqAUmBIhamU1UEACa63WumkaY9V1N1x38603yv/+U//6iU9+4AMf+OQnP/3AQ4+2bfv1r3r1D/3Qv9/a2rn/vgdW96/v7O2ePHHy8LGj99xzjwDUQgLi9sbGfDHt5dlkUWVZ0Xnhsizz3msBCWIHpWcilAIESonMgIidSYk51fXi5MkT999/P0px8uTJb3zzNzxw3/1/9Z73sE89nS2NRhcuXZ7X8/HqytlL507WpxQgEVPZy621xmiiGALFGH2ITdN0bfViNq+qiqLvZndA3Ckzv3zXXRTD7/zO74zH40sXzk8mu8AsFCqlHnz4ISml0CoVel5N7v7CXc981nM2p5NT19/kQ4jTWW/QjzFxosVsMRqMBKEEWc9rIri8fXk62z15/Opjxw7sLOrtvb1M7285xBglCmaWKEbDXi/m0+k0IaQQfYoppU4CLqS21iImqaUxIjc2heDqWmfErKWAhKyIhja3WcYCZk3lo89QGqmu/IDMiQNKCURN0xKCMtq7qJVAVMwdxoYisRDY3Z0p0aKptZDCagAYj8cxRmttSFEI4b2fNXW/368XVfKxzPLhcBApQfe13QQvRhTYCTvn85m1mQCQiKP+AImbRSVRCKmkAO+iD6GBJgSnMyOERK2quuqXpdVKCMPMeZ51DrHheGy1/jcXqdRqNnEU4tra2hNPPDEbj48cOfzEY6ejgKWlpWc99zlNpHZRkRIktZayPxruVvNDw9Hzn3/HVx98IMuVCykmV+YWEavZLPkWKO1d3OqNB1bbzNjKt86lpEVPx8rP8lw8NLmA8qbJBT8+Ojp18sQDT11Y3nf0YjvDBBScGvaZ2GgZk9dKEVFilkJIFO28TWNzQPSeePRMNuoHTpNp1Rv0FYFUZml17Dj5vKz3dh/4108eevb11Zce396bbdx3evWGQ1XVrh457LcWUYudi5fmTdMrS4VXEv1OnjyZFcVjjz/y/Fue/dznPvddf/pnWVnu27dPW7O6uvrCl7z4Gc+47cabb/rCl+8CodYPHijynpRSgjQ6q3w1b2qmBMRVVd35xS8w4i033RRjjERSSqGFkDLGmBc9o7Gqqo5eWxTF7u5ukeXOOQjYaZFijNbmiBKE8jEG11IKEnB5eZkQBmXPaDnZ3WvdpPWu3y+11i66jr8WUoTUhbQkAVjmhTFmPp8nhqapDh482O/3YySlJBP2e+PM9upmJqXW2liTSym3draJqtxmkYKUmiHFGG2mF4tFSlIZS4TzZhpC8h611llWjAb9qp6ff+rs8vLywUPrUmWtS03dppRUUXjf1vWiKAopy1a2CdjkJqUkZT7s902WSSkXszmiuDi9WJblaDQMyUNI09nCaF2WZTWvfRvKno0p5pkJPp64+irXhieffOrWW246dfJqa61vnRDCuUYp5VuXZZk2lBJTQEgyk+rC5acm1X3PvO1NVe1RasbYBUgzo1JqMLCzZi6lsCJH1AhpZzo9t7WdImudOqOqMSY6T5ushDBKmyLv9XpCXCHML+ZNVhaeABbzqJUFtXbwyJve/Po/+f0/leWwp2w125J+XnXwOKlJKWQBbWKjUQlU0osEuYQsp0SSOTN2vthVaG48eWJra+vCxY1iPOY2aaWEVO2i0Vqvra7t+biyfmC2u1PmxcrKSmJumqazb0kpGMEIGULserLONqmEUEp2sLxBkZ87dyExeu/recXMLHGpHExcDcbubGx+5EMffeFLX1bkPQBgABcDMUOKKaUsyygkotRNBFMIymhGSkRodEKOTCYrGDGkyAJRSur8RSCueJyBkAUDADEgiI7+C4iIEpE7LjSAAOhcQAIEKsUAGqVQKqGDAAhAiYkocSJGI7GjWqaUAnmZcGeyR0SI4qbbbr/jhS/c2Ni6fOFyv99fX1/v9+2f/N8/e/ELXiJBBxfGw5FCwcFjnmGERASIn/vkp+944YsGGQsld3f2yrJXLRYdpklICQiu9UKiBCmlbFufZRlihyhWKaWmiePxsjHZmTNPvuwlL11ZXouRjh29Gjndc/99deuVMVrbMsslgSRQBEAx5nneVeghpRhjVuQZaomCYvLk6rquF7MO85EZi8RlL//BH/jxz3/m01IJrfVsuhU8nzp1aj6bXbx4HqVEKQg4xbC1mOfG3nPPPX/znr96/kte8tgjj47Hy7PpLMY4HA4pJiD+1Cc+eeLECSllVVVN0wxGQ4EqoTh9diOk2O/3Z7Vr0QOA1rptakTKOMtMPlxd8k2gFIBYKEnMbdsCtIiyFjEvC4peam21Pnr4oCduvWu9X1pZMkIZiURAAENjE5PUhhlCih2r0gcvQzcwAUjkWwcAKWL3RDnntJQphca5EELR642Lsq7rlJLWKrcZArDSQmDVctcSDQZlmRdaqqaqJpMpUUpMKEVvNAKATBspZetdWRRKSkTRzisjJRAk59fHS4OseOKJJwmSjzH4BADJ+6oNNhiUwhg7UD3XNFJKo82lS5cef/TRm2+6pdfr2SJ/4oknjJJXXXXV3t6eC2HYHyilRY9HAr5y95cR4YEv3n320gVjzIFDBzd2tmyWtRSni3lPmlndFv3eTlX/5H/7iYcff/RfP/EZbYtB2Uuxnc1m1vYZGKWkmJrdau3aI09ceEoomee9GBJRlIUBEJGaLVJ/+NcfOXhk3003X/eFu+/FU4eKcS8sqLQZJxaCtZIOEtsseK+FAYambUyRjVBffOhR37TZsJ+BXB3vR62ki5MLl57cOh325nMOr/q6l913+VzvwLLJxdY/fnHrsXPj4wcPHDnS7i1WwS4dWt9qZst5Tgl2d3cB4Nprr93e3c2ahZRyY7b3rd/71lO33vTsZz9bCn3u/FMHDx3Smd3auPSVr96/b9+6zbNq0XQ32eXLl5986kKWGyGE1cY1lUQRYxwvL9dt65zr+BtdT2ZsnlKqU5BSzhbzPO+Cbng+nwOAa10IwWRWkuz1ellZ+NAqaTKrnaPCZqPRqA1+0dRcc78/GIyGi6pyznnvi36vQ9KDQKIkBEiZBeeNyVrvbF4w4Xi03Cv7TFCWppNrDIYDgcr7fmLyPirJRGleNWVZpsQM3CFftMZFUyulUKilpaWmqQDlYJALoaTUFy5ceOqJMxzTfDZr23Z1/cDW1pNKZocOHQYAlCi6vSCkKIXSthstdpUfQWBQRH55eTyZTLa3t4Lzw34fCCOlpmmsMYvZHAGkEilEKQQnUhKFgEuXL3zikx97xctfderkiZBiVdcKr7ARlFLBe+JuHkjRhbI/rtxsZ2/7+PrTfaQu8cx7Dz54XwsZo0+m1ABSodXaBmq11kxBGyExs3nWNA1HzrJysVikSKwwcUyIUhh5pTGDlAJKwZQ049wHkvjzP//zt91y62/86m+efeJC/9BYuRR2565xZjhM8yk4Gi2vosW9rS1Z9rTWxWjY+IASUYg2tcLmB/cdf+5zXv7JT31mWhul2aU9H8Eate/goc989gv//C8ffuErX7W7vV0O+pxijPH8+fNbW1tPe9rTuhkApRS1EEJ0036fAl/5BRIBMSGmn/7pn7507pLKjJFKIhPSZDJJCDIzyYUPfuCfl/avac/X33htjDHXJglIMXgfu/8opdRdNkKI7hmQSlECqVTntVNKJAEAoAEjcdfjImCXWghIggUgMlD3GyIjAQB2QcKiswUzSKWACBiZCBCp81xJQCYUaKRJhInZOa+NTCkF3yohASDPi5RSiNS0vqq3e73+0at7rvFPnbvQtvVrXv+GRx977Mfe+WNXHT9683U3HDt6BBiEAAqEyAj4B7/3+x/60EeedvvTb33a0w8dOaxUprWu6to575wjIqW1kpo4dfmzGWSIkoi7pOoU0Bb5K1/x6j/+oz/qFf3Ny1s7m5v9fn9ntnthd6dqwvrBQ1rrc2fPPv8lL7GolTEGjKmaJsuyEFJVVcpoF6KWHRBOzGZVNzSr5gtE9IvZo48++v73/f3nP/uZ5ZUl772QoLWe+vmlS5esUSsrS9772WwhpSQhmGg0Gj3tabdPd3eOHjhw/uLG5cW58cryzvZWU1fb29u333qbb5u2roioLMvpbPueux6+5ZZbdrd3Vvet7R+vMTMIzlhKY7VWRilCjhSq4DSYsjC+haqqYqRA6QrVLiVpdWkzaTOOkSWzQCOlC355OBCIIfhEqFAgopUKEB1ASjGlRABEBAiMaJR2bQtX1hVQFHknNwCB3QBQGcOIdV2Lnuj1es45heiapshylLhYVN45Il4bLzPQ5uZmluUxpEuXL9PaWn/YJ4DpdKKE9Iwmz3pFCYghxjIvjNLT6bQsy5TS7mw27A9Go9GTTz7Z6/cTxzwvY/QM2DSNlLKtW4UiphAAMMWzZ544duTofDL1Tbu8utIuFkmqe798z+HDhyeb22W/r41MMZjc7N+/f3t7+/Of//z60YOuqh356ebG+vp6keeSIcakpN7d3NmJfGr/6oEDB4BoOBgLTJs7G0ZnoQ1EoHMrfJxsbC0fX+/We0isiswJF5kKsj6Zzbp+2tNvK406ec1+QTC/sLd68PhTexs2M4XOAzIBXVn5EKMgCYiIBjl+9Xy9Nz18y/WqzFXl66cuT3f39ja2QIIuy7Xbrj2yPL4Ymxcfv/7xR564hL7YV7rL1e79Tx58+TMv7p695oZnhAgyCiUxSbzqqqsAxMbGhlKic72fPn2amZ/9zGdNdvcuXLhAwHVdj5dH4+VlZszLIvgUfHPi1LW2yG1elINhr9fb2LgUfRj1+rPZ7LbbblOZnc+roiiMMW1dZ1lWlEWMJKRQyuzs7GSZKYqsqipGsrnxbQCUo6Wec67f7/dHQyml1hYAmHk0GmkhJ/PZ1vZuJ+7wLu5bGQlEKWVRFAoFmsyYzDknc+w2bQJV0zQYUwQ2NltZ3U+c5vO5tqYoS6317u5u0zT71tan84qZq/lCKbW5veUvXjh+5GiR2c3trbNnzx46dKBX2qIoVlbWLlzcHPT6yuimqZRiAFgajee7ExYsUH36s5+/4aabB/1RL7elyXyKIQVAMa9mZa8HAEYJEKK+kjkttNZAUUhofbOytgpCKqmdcy74/rC3tLSSojcm6yaoBCwEBh+01o1rDx5cf+ELn5/lpvY1M2urpNTtwnU58DHGXj6MobK5BW6ETBtbF3Ym/uSxrydABRLQGGMYYmaFUrFpGsGaIEmjIsdcCiQa6AwjAgoVOReaFZjMhpS89ybPhJLOh3m7l+d51uUQMCwWsxBZK0VKVB57WfZdb/ueb3jDG2+//fZLW9umX0AvWyl6qM0L3/D6+++9f7Y16a/vO3DV0b7Ov3L3vZErZMr7g8l0iiJRai9ffPz//O69ZX88XF4BTn01PndhziZs727d/LSnvfDFXxeqil3rQSjE0Xj8uTNP3nnnncePXXX48OHGtUZrF70ANEIxMxKAFEzgU5QAA6OeOn32T/7kT1cOHubkZ9M9oWUKkaXAxORiORxsblzaOX9pbXnV+6CkFChdaDle6SKMtZjQGCOQI7NWOgClyNpqiNE5B0RSSiWEJ3IpKSETA4orKMqv4aBJAhKjQBbMAMichEBilIgCkLGLSUJgAAQpBREhAwqBChMIRhYAyCACY97F0ietFQA2TSNQMXOkpJRCxPm8EkLVTV2WpZRya2fz/IWzL3rB8/q98toTJ973tzMA6kI+iBhRAcBTp8/s7ux99KMfPXHqmmOHjx4/fuLY8eNlfzCyw93pJDFNZxMAoMTWWqd9p/6JMUmp27bRUh87cuzb3/Ltn/rUp9q6GQ6Hzc62COmmkzcsDUcL7//yPX+1/8iRY9ee3F5MVVU13SpIiKiUyrKscW3TNMMyQ8Q2cV3XwfkUYtu2K+Oln/iJd979xbsAsftIo2Cl1Hw+ByHmi+mMqCzyQwcPrq2mM6ef1EoR02R379LG5UMHDr7rj//kpS992fLSMlE8cGD/h//lg/v377948fyLX/zC//E//sdgMBBC/Nmf/9Hextbb3v79L/m6l3gfMZHRMknUSgYfWx+kkbk1yDpw1KATkbImA55M58ba1tVFVgz6PZYSGTgkLVSnN5ZGEIAJKK0Q0jryHfVOADMRMiIzxcidpkZIwezalkEIJSClLhVECBEpAQqhkJl9jIgotY4xaqmyzDbzRQghUwaJM6mlhqpt2qrqyPJIHIgPHz46XlmeV7PBYBCCp5hC64koUDLGjIcDH1NAtv0yMOVZxpFmbTNcXjqm9PmL53bn0wFDCE5LUVfzYX+0sbEhpWqauqqqa04cP3XyBES4ePHS4cOH59OZYtQoLl66nCl9+vTpRx5//NSpUzfeeOP23ubS0tKZM2eeeuqpGw48LcX4+OnTV11zcq+aCyEwUWDul2WmbB1iTPy3f/d3pigR5eblS4gyhiCxkMYUg6GbzH2otze3lo+uzCZTYyzpAB7b5ALolOvHNx59y2tfJENasMut3b6wOaoOZFkWkvNtwEyGBAKVjChYtU2bF9YCXH7osXazzteWqp2Je/xsmMyaupWZLUaDlVPHzdJILML2xd2NrQtVsXkiX6rPT2560fMundl88uHTdeNSpgZLy2vl0kWR7+1t5GVJBCH5g4cPSYTFYjGb7NaUgGhSL0LwKwfWbJ71R0MAGPVGIYTd7b1EBFLtPf44oGiCq6vGmixGmkz2NIrV1dXWuTYGrQ0n4pSG/UHHj0UGKWVdz0IItrCbO9tCCApx7mfMvG//IWZ2bRgtLfV6vbZtOxGHc65ZVE4IaXTXku5bP4DMTdMwcwhhMBggohLYGYhBo0LhWwdCLK2u9EfJ+djv9ztsxfLyGIDquh4UfaMza/LubGrbtp7Mjh49euONN17a3Oggf4PB4MSJE/P5dN/6UWTY3Zv2h2OBnSCZF4uFtGo4HN5xx/Mlgo/hqjMnXPDr+w9mJj9//ny/32uij03c29sbLrneoPfQIw9fffLqXm/Qtq0ESBQRkRjqunnPe/4WhHzBC150eN++4XA0W8zqerFvde2Kq0IgMCJIKXRHQ0Qprr3+OmaOFBKzQJWSV9ZQiEppKWVIyWa6apwQSVv55PkHB+NCKbU3rzvUSQweMMWAmYU8zxNH30ByiRL7mMQVIh4JLdrojFEsMHIsezksQABnIKyxlGU+xnnTBBclYAiibWvRw8Y5IRU63H38ietPXv0//udP/vR//9Uiy5WRN9xy65e+9KVbr7kOI7//Qx/StatSPZeLFunUiaMbW5vBt1JQdKy0dt6ZctQy+OksRwF1e8cLXvDEk49E7xd787d/5/f82m/+0tJ4OG3DwOTR+Ve/4pWve/UrmWFeN9poIFZKRR+uJCgo1VltEREhAVBdL0Cqum3aZkHeAwilZYxkhWFOVb2AEL/8uTv3X3P83nvvve2ZT6/mtc2NxzSdToWVQgiUilMiwcxdzkIH1uBhv9y4eKmtm9FoVHunTSYQYiQpBQMCdEYVRgDBwAhSoATBwAIwASEKBhIokL/2gJkBsVsER0yakRiiYkZgZCBWBFJjlJzC11jIifI8F6hiJM0pREcpWpM7F8q8cK6REkmJF7z4+S972Yv7eba3u/uP739/MegnppCSzUyMPrTOZtnSaFi59p57vnTPF+4Ext5ovG/94NXXnLz+5psGo/Hy8rJWpitKfAipaYQQ1pq2bftlL8a4u71z8403ru/b9+AjD83n84uXLwyLwcaly3fe+cWt3Z1rr732Da99XQpxd2NLIYoUWlYAYHamkxiTEqiAZ3u7kZIUOqQoAGfV3uGDB7cub9z9xbvG47EPofFOWVP0SucaoqRBqiJvnK/qeObJi8+5/fZm0VzeuJwARAoP3nv/hQsXti5thnn9zv/2Uw+eeez0E0980ze++Q9+7/e/dNfn3/Wnf/jZT34qUuJExdrK+mj5xS96/mK6mEwmcf9oPB4DKwNCKdWGFjyxAK0NWs0EBBBTJIVZro2QS/1VKSUKBJ+klFGJmhMiohSQeCkrEieKSQkwWieAwImAACGQCgkCo81LoGiFSjEgYmBqmkZrLaVSQkih0DmRgFigBJe8lFJqrZTy3mW5MUWeiTKkREisQJmsl2klVOIrfq1y0AcARiihCMGnRExsrV0sFp2sP/iopRDaAsZQt5kRyaBLON2dHFhbW+rnZ8+eDSHUFTnnlDBEvG//+tJwNN3dbZvq9IMPrq+vP/zoow8+9sjb3/H9Fy+dv+eBu7MsG41GX7znC0+ePjPoDQfWZAYXT20wBw7tocMHJpc2f+ZnfmY31N41GWVzmmfaCCnm8/mw3+8Pso1HnlBoxqurly5cFIKZmIAhjwphsbuVjJCgdp+4MNy/XGqdZAhGUmSbCpUZlryFcePMI4XlwWjp5NWHvvzQY0i6SdORsRGZEydkUgxAmAiEVdCbbF8Qkzrbv5wSbG3sAcDysWNWsilt3isUm+0nLk52dgBR59l5avb8Znkwe82tt1z7TPGFr9zdYNtSzEb23MXTPtUnT55oGpci58qIxDElqTDvlZPLm0rIA/v3Tfd2yrIsy76PURmNxMxcFIW1ejabHTl25OiR9c3tHQiLnlnWy0OxOtZaNq4ChCLrOd+4prGDkRCqqYMyWhs9r6udrc1er0cu9Ww5mUyklDbrKaUY9aKpVvavW2ul1EvDrDMzjPqjGdaPnX58bf/68tpqNZu7+ZRiKvu9EGOel91ANaWojIzRRxcQlQQppExMkUKuLdXeGCmlFCAThUJlwfnhoNc0jTI6ubZdVNdddx2guLxxSUayg16ujcmsEAKAUkqJaNgfKaV8aLU2Shll+6h0iunCzk6mZNmzJ06c0NIwwO5krw51TxcH19Y8+f1HV6WUTdXecO2pflECkBRYlkWMV+jNubE33XjtubMXYrs48+h0vLqCWsYYUSTfzBmg6PWBxeXLm1LKsiwTQaIAgr33Ak2W5dPpNKU07A9I6xijUJIARCTLMQgg4CefePTI+k1AOcFCKg2kXKystSwdCBtTSomYufEtMhCzEKr1TiiVXAMARmQAKcVuwi9SJNIYYwTkTOtca69Cx9BFLuYh6uB7EUuT+zG980d+tPL97//hHyiL4f97z9988KOf8NH91E//d0QlUJ2dXQItldRZf+nsuQ0OKSohdGEURk4q64EQHKNWJiTyii9tVdGXLeZtM3v3e//u7MXzH//Y+3A0pEREVC1mmckIWCgFgN57ECCFIKLwtQjq4KIQQoJMIFRWQmx1dK0LkFAYGV0SWhKERAFiKgbDex9+8KaHH7t3efWGa071xr2KGHyUGIgikQImoSQnksLGkBKQtgKQyt7g3BOnF3XFzFqamDgCoUTk1PW/CNARzQiAEQxgZCKiDl2MKUlkJAooO6xjd0h2SUoSRUAgIiUl0tc2y5QQUTNIVMpqn6IQJFB1kDggNrYkokgpk9YFL63MeoMU4nRWtW2bok/OhRDcfA5MCUQdWxDK9HpAEBLktjx8oBeBiWNw/onTj545/dBnPvNhrfXRq44dOnDN4cOHV9f2X3311T4lFEJo1TrXxJ2Oq/rVJx621h679prNzc31q47MJnuDdumWW28aDAb719Y3N7a0VEuDZUXMSytrQHE2nzvniToxEV0RoirV6XdOXXNy1O//wNvfgULM5vMUo80ySjTb3j116pp+2fvyl+9BgNxmQUZEvPPuL5ncYJFB2xJRQ05PZs++7WnLa6uPPfaoHhZXy/VmNrn7y18M0T386CMqswdW1o6fvOYnf+L/+8Nf/Y2bb7759JNPHDhwIMsySYBSaCmZU66V1loAADAmCDEGiq13WuvxYBid71RaKZGQKARoRtW9vsCMHBEJQErBjJEYABRIRBQMUoJGabRAFCkhE2mpGUEiWq07lKMPIYYrcU9M4IKXWgopO09td4BKZelrWPnGtRKlVVpl6ormnqCqqg5vJqUE4sjEzHmRa613JntCCKmEFAIZWKts1I8AGkBKtktLIaV+Xlx/6loBEBgee+xxF/zO7t5HPvTBs48+8prXvKbIcqn1zt5eVuS33XbbU2efqBfVc5717KqqEpMQ4pZbbovOb29vf/KTn57MZ1elqz/64Y81tSuG/eF4afPcYjgeUiQknExm0mgAaheLq44emUx2Aahp6sQJOWV53gSHQjCxtIa1YJFg7utzW6PrD29OtpVnFMhGtiJoI1lkxb4jQylXxvuXi4cVQ9icLK2W0UdhRSAc9nrzdpEESymLJJrpvPrqU4Gc5BkLzMveeHU5MJVlYXN76fylRfSQyA7z4XikMluUuSTo58W7HvjXhW9XKOvbUtZhqT8+v7W1ogrngkAl9BV0MCIGH+qq7ZeDLMsEwPr6wTzPO8XcYrFw6L2PjHLz0g4znz79RGhDZvLdySL4J7MsW11ZmkxmddtkttjauWCMGg/GmS0QIJErbZFSWiwmRVGUZRl96Nx9o9ESIOZ57r3Xo15ZZIjIMbgYpJQ2yyQikD+wvq/sFVJKQck1rdFSa6l1LqXUSicOkWSkJKWUqCgQMQkhXNMqpbSWggRx8t5bnVGCBKnM8shEVAXfHjtytGmauq7LspxOp4h41VVHQ3Ap+dlsIY1eHo2JYwg+Bmd0llIqbNm0jWtcYlZKgRA700UvL9p61rh2eXn55PU3zCa7zkeG5H2cTqeHDx11WnOipdEIABQwGAaQwXsp5cuf96KUWEqsfUgCfAipY18J5V1wbbJWAYAxpiz7zMl7DyyEEIXNnXNAnBnbAYyiD9oaQKCkQIgU5xTwwvaX73jejUrnQs6UoIiU5UZKIUB3UCcpQQiVmICQiWNKzNxt8bvOppMdaa2ByLXe5Bkq6b1L3Vabk29j/P+R9d9BmqXXeSd4znnNdZ9Nn1VZvqu7q32jYRqNBuEBAnSgWXpSJEVqtJIoccmBVitKs9rYkQkNQ0NZcjQkxQhxyKEnQFIivLftDdpUl3fp87PXvPbsHzerwYnN6IjqSlOZ+X33u+c95zzP7/G+P+gUAVW/4xvTHfS//Pknf/U//noyPGFmB2fuurcyUfeOBGexT4PBkrE+1LXFKBktB+SYFlmIPhin8zwG3xpyIjtPSiiRaL66XaZpx4BTUh176NxXnnv17//8P/5//5tf2dzdObq2HiJubu1IKYs8bRsBZgwuIJFEEEDRx1SrEBgBQuQsy4bDYWOcTPRh5psSWpAPlpnTLIvRu6aBEC5euHBje3OjdzJ4LvLsvgcf+tyXv4KaEAIzoyBEFAGYfQghxnD96tX21iWQHAcGEG30LzPfNh0Rt0IsAIaAbfeL7WYYRPsxloyBvzWvZoDWlUSEhIQIrY+fmUkQAgCgkAjAiEhSCEFMAiMBipYwIQGEEDokbTyz1rrT63rvg7fdovP08y9s3bj+l3/5l88++fXRdLK9s3PlypWqajbnY0BM0xyVVEp1u/3hseMhRB/BevfaNy8//9WniChJ816vd/buu45ubNx///2nT5/W3Y08TQHADYxzzjm3trhMRCuLR8qyBIhKiO2dfSlEkqUqRlnO57lOqqqcTqdpkVMMiYQsTbzFNroghDCZjjpp8vf+0T967dWXszQjogff8EiappcuXQjW9frDt771rfc/8Ibf+d3/Ws+nKk2lVFGq0jb94cAcYN3UCWkDcXN6MPvSF+667+4NvfHAAw/9+Uc/tj3a//7v+TBHfMtbH/3h7/zwhQsX3GS2vXmLEYoiO3vXKR98SnI6mTElWmupBALEeFvDzqhQqCyXUiJAojQAEIG13kcLUkokgUSIwOA4xhhblGcTnDVtjLFOlUIC9lZI4Z0vGytRtBW0PXMREeuoE93y5GJA772JDhCEEIg4Go06nY5SejIZ5x2SJGIMQJTnxXg8no1ni8OF7d2t7e3to8ePDYfDGGOqVUTkEIuisI2Z11WWZYOFobWmrGslRKqTxjQ1otYafNBaSSlr70e2BmZiSnVy9513xADeuYfuvPsf/vJHPvKRX9rYOP7t3/GhlZUVrZMQ4+XLl7tp/sr2Tqc/GI3HdW0m45lz7trVq91On0gIB72sq5aTc+fOCZWih6ayUsqsSANjVc/X11d90wiUWzubZTkXSdrpdOaTUeMamWokEowkhXWWEHSi9m/tDE8e7XYWbSgRoWGTEi3k/VlVXZg3f/kbv/eGN75t49TR8Myz189f3li9Z84EMQLg3NSMIIhcE3oimd3acnuGjuUA0Bn2B6vLlOm6KUMq9qtZ0i1U1ku0JiZGDALHrkx1UtbjoKBIOhBlFTldXfre7/pwHQHnQYq09Y8lSbKzv7e7u31wMD527NidZ04LnSCiN/b8+fN1XRKycybNs7qutU6llNaYbl4cWTv6xFNPaZWevescAWxvb6Zpsbq2sb293SkGa+sr3tgQ2Jo6SRKdyJs3N5XAQW+IiNEHZOj1em2mnjFOEAtB0VtEBECiVkJZAzMRDXp5CI4iDLod7PUR0dpGaw0APniGSESCWaikmtcxxkQmtm5QikSq4C2D0FoHz0LS08++MJ1O3/nOdxIhoijLMvqgdUqZJKJHHnzQMdd1aa3z3i+vrVtrp+U8y7LG+snBKO922PmxH+V5nuWdJNVl06AQ1dh88+VXsyzXWg+JBGHW7TlncpkkKjWNM8bM5/NEKuccMqNOnDNSAmkZAjS1QUTJUkgWKIBkyxgpii5DLVTivW/zAMpyppS6DaFkw1WMschzbLUXRCTA2YalkkzGOxRyZ2s0N+XJ5UeYwHsrBHofCRECt5FBrZwIAJiQhJSA8/m87f45BHf7iNY0TQghVUmMzWQ2LYoixsMvREHMQShpGpcA1dN5Qzxk3L25211d764fO9jujaysbJAqZfAu+L1JjYgQMQgp0zTamgDLxoJWKEUdIrBQMolAhMEDREBG5kSEIqXgrTN7jrsrRz/7uS//o/nB7t54fe3YrLa1sX2tQwgQwnwy6fT7ACA1NXWd5zlENt4iootRE66srT7++OOf/sznxGFIl6AYQgzMnBVFVZZFpwMc3vDgvU+++NLnvv6Vn7n7zqouVaf40Ae/8zOf/SIrDj4enhJixNv4jDRNk1xO9g/a9T0iCkYGZMIY2v6XD3e6t9984JYE3ZqUCAkBGEAhCMbDR7ltWgAQsY0h4hiJiNt0B0EtxxKJPEdGFkK07ikgCLHNlkJGiG3y6WHUBzKzFKSUms5nRVHcee995+5/IBURiSaTyde/9rXxeGyMeeqppz716U9fv34TvBvv7ZbzuVKplEon2VJ/2D2y7EKUUm5tbb3ywjefefKJP/o/f29xcXHl6PrCcGlhsHDs2ImFxeU876RpxogRWCk1K6v2l5KSxpOR1lqGuhnv7+/u7adpKtDoREgS7Lgoevv7+8bUtmmyLPknv/yPv/LFLxRF4VzIsmxlZeVLX/niT/3s37zz7ruUSqTWr738yo/89E8uDoZ//Id/cPXyZaVUrlKsQ9HtYIhVsDLwwcHepdHo0x/98w988NuvbW1v39j8yC99pNkdfefb3v3hH/uhX/n//ovjp07euHHtDW98ZLi0ODXNfDYnKdJUoqDaWdDShdCqEGOIzKykyhgAwIUQvZdaeuNZCqVkHoVHDsCBg4xERKkQCBjBA3MI6GM0HGz0AUiAQCLnfWlt4MBCcAguepJSMDjvGVkoiUQoBEDgCFpoIahdngmkclYRR2fMHAARlZAt5JZQIvq9vT0hVFF0syzTWqdaNda20DHjLBExO2ttWZdbW1tFUSghlxYWkiQxzh0cHAz7fdMatRGF0N66Vl9QOw8cpJbD1cX/8Gv/6dlnn3/q6Wc7vW5VVa9euHjixImLl66cPHFMySQyrq1vaK2dtRcuvHbs+Mm6ro8dO3Z6beOv/uqvZqb5wAe/fTyfcIvXaB2reTJc6gnElYUjN69e+YVf+MU0zZy1SuvDMDIg770kHVwkQTqySQgRt555bePxB/dj41yDCouiCM6jTq6Wk6LovPDqy3/7J76XY6xGdbQGtIjeJlnXiRgYRcBovA1l/dpNWsqXjm4srq9GQie4Yat1xoK0KpDBsjPWtiLYNCuCDUwYIgupJSAKPdnaf+uxe5fTzq3xBHMFQO10ZzSd3Lp1S2v95jc9OhgMjK0n+2MU7XCMkiTTCtN0aL0riu58VpGExYWFe+65ZzytPv3Zz6ZpdubMmVu3br3hDW+8efPm7u5+pzdI07SNIIzR50UhBW5vbhljOp3OfDpr95paaxlVVVWdbrdpLMmYpp32Q0XejSE454SUiAKACWVtjHM1ShU8A1G0zfLyshDYmpi11jLRpmrq2iilKtNg5GG3S8guYgyxntUqTXb39k+ePhWYq6bOkrTb66V5Ikghiu3t7RCikFIqkWSZSnKhYlWa/f39TqejulmiaWkl3z/YWllYdMaqJKlNNavL1nqrpVpeWCKiweKClKK1CHY6PQkAAEeP5BE4z/PW9S4Ayuil1k2MHGMiJUrtvG+CzYlijFpo0hSZq6pqb+LR2xahDBABIuLhHT8hqTLtffQcW4i9dRYR20MvSldk/Vs3L072F4f64crMnfGSFDAHiPEwL1IopebzObYh8yESCSBUqg0CiNEYDiFJU2CMPgYK7cu8dU7HyAABI7Ypv8458BAjHMyma8XwL/784/MAsawWlpa7vcGrL51Pe5KBJRIihGhZa5JknGUUMcRY16g6wAxIAOgCC5JAAgB8jCQgsk+TxFWMJIBjkifTUW2n43vP3WNs3et1+t0OO4sQiVlKWVctXRUA2jxK3y0KABBK1fNp3uudO3fuz//8LzuDoRAiRs/BRxdRUOtabAvVkbXVt+T5V7/x9fd/4ANrS8uzqvr3//E/KCFb9xEejgCjzjMJwoeQqexNDz/0uc99LoSARNH5SKJdUonb9RIgtn8QQ0SI7SYXoPXRtu0uAjsAwDYuGOl2PiMwAAdGhBhBSABgjpEIIzMwEXIIAMgIMYZ2iQy3KR8QYttSt7MNInSu/U2p0+1ziLXxxpiWLtfN++983weJAAF+4Ef/xj81jULYvrX53HPPff1rXxmNRt7bCxcuPP/88zduNC2EriU0eO9DCLs7Ozvbm0SUJFkL8CIh+v1hr9fbOH5isLDY6w6SrLOwsNTmloIAaSajFBeOrKyoJMVWHU5Q1+XBeDSeTvI0kZKuXb3ylS98sdfvWWOssd31dSHwHe94x9sff3xvf/9rX/vaxYsXL126ZKryw9/13f/0l3/5K1/68m/91m9xANM0/eVhf2PNXLoKHMH6AanGleeffvpLX3vq+3/khx554L7//L/8u7e949tu3Lpx/dXX7rrzbAhu49TJ/YOD6cHBVYaFtRX00WJAlADoja2sVUImSQKENnoVgYjAhSTRzseIACEgShCIDO0RKURHkRgxAChgQMiURCkVh/biCDFIkhxBCoUkZtNZopQQInCgJIMYhZIRAJnb/InW+BuC98YSc101HEBr3ckLyrWpGyFIChVjDCF4J6J1MfJg0Lt27drS0lK3282yNNV6MpvpNOlmmVLKOZ8kSZqmZVkS4OLykpRSS5UlCUrpg5eACgUjoAIthY+MgsbjabdbeI6NdQ898sa1Yye+/NWvDPI839tbP3p0ZW2NIcQA3odMJwBUufLShUtFkbPgspy99ORTeScTmdrYOPqFr33l1NFj1jaXL57v9Hr9fr/oZEKIRMI/+Ac/f/Pm5tLy6mQyVVInSRaCS1VGSpbTmVYKBYE3SZohMdsoAClCkRYxoSBl4OAoHNjR3/zhH9jZ2x+gz4Wuq8i11SvdyUEjuKDGIbISCpQ6uH4TBQ3vPqkSdVDNKlMjso+BEUmK2ApfBadKDwYDZg6NzbX2xhVZoSozd24e5tPtg5/7+z8qF3qwtxdjxCytjavqeZIkZ8+eHQ4Wi6LY3d2LEKVWIUSp9er6+s7OdtbNjm8cAZadrLi6eaOez/q93qXLl3UiifCV868+9IaHbty8tru7u7S0lGR5mqaAUQpqsfjMPJ/XIXCvMwyh9QgJREzTVCipddreuUmoCCyEcDZMJpMYY5YVEDhClESj0URrLXXODDpPZlVdZMVoNHHOKCHTNDXGEUkIkOc5gtjZ2Rku9GOMDJCmafDsMewd7LvgV9bWEqUYgKMPgRvjikL7EJwP8/m8lXqtra1mWZ5nqbFuYWEhSRJmYObd3d1hr5MkSZoVlWlG86lpnEC8ceVahPDwg29IE1VbQwhaSQ6xruej0Sgvin5/2FqfPZKS0gWPJGII7f29TVGVUgoCIGWtkRiMdVVTWmullBxca6RJkqRpmhicCUEI0et2U5AhstRSABhrgLDIuzHGSAECG+8XVXL1xsXxVrbQv4MxFnn/cGzAng5Xh85xIKIYAQmbppZSEWAIAWKYlaWWsmmaGDjPv7W3lgyHOkpoJ6hRkQo+AKGJLjJmOomNfe6Fl/KFZc20Nix+4Ae//x//03+WyGACuhAjAgOCNQASGoNKROMAmdhjjK2YIwRPSCG2vVpQJFl0y71GS8UYdACdpbfm/utffuGd331kd3cnL7qCKJVCCRkAOsP+5UvXjG/W19dbjEmMUSmplIouJDoDgE6vC4hKiaZhpZR3TgiBgpwLSZoqIRDQufDh7/iOv/zkx7/+9Sd++Hu+e39/d3fvIEmyOvosL9rZdYjRe4+I0drZbPaJT3z8/e//wLETxz3HKDDESFIgHNInmRkYARkPi+Nh7iTcnk4zMwAjgIfXAR0QmQ8n1IhCCAEYGARgi0kBuB3kgNBqpglaKW0bZNPOp4EEASECxRhjiEiUSNUm8nGMJESSKCmlQ0x0NreW6xicjTGyQKFVAFo4evS9G8c+/P3fCwDIsWmq69eujA4mzrnXXrt47dq1J554YvPmLeccYKwrt7e31zSN846QIti6qrY2b166+BowAYj+YAmBVlZWHnr4wWvXrsl+t9PrdYbLax4gxmidqevaBciKXClVl/N+d+Ev/uzPkACYnXNrG0cffdtjO5u36rr+49/5vb29vf290cLC4tseeaOtmy9/9vM3Ll352Z/7uaMnTr788ssf/ehH97e2jx45mvS6ZjoLwUXFk5tbz1zfPj5cvPvBO/dvXs2jqeqDC9/cEuXkrQ/fe9CYq7t749ns2LFjjbHOcVYUztWapQicSiUCe+ulQq2VtYaRFJFIdYjgY6iamoi6qlMHDwBSiISEZAAEx9FFLwGJgRAyAg0iRECOAOB8zITUKABAZjFNUyEpMNfOtVcwM7eQZwAIIWopSMkgBQAd7B0kOktSpZVmpGG/TwAmBBSUZ5nJjMmMMXVa5Le2t8pyLgRpraqmCSFMJpNKyF6v38lSZt7Y2HDGQoxJkrSU1yRLm6bWWaqQJEKD4IFDCEoIb12/34fIHHg8LffGU2NMWdd3nD49HA6j9/1utzRNorS1thXovvzNUbD2yKlTUcU8zT77V5/Iup3+0sKVqxfYNc8+80RZNUtLS3u7mzHGN77pTadOnfqTP/kTGzwDTaezoiisb0PQpLWWjfHgwUd2rKUwB+OIUJw7Tqkytcu1blNQdJpUdnoQppbqpaWUNHSLpJrUygvPjEjO101VU6qnHL0Eg2H4pjuT5cF0Z78qDTF3Oh0ZvbUWIzfWDhaGQouWNuCcI0TB4Ewom4nXQjQWUZzIlu+4++75rFwYDOejyfPPP3v81MnhcDiezJBkmmfb29vGGJLCe88MUuvBwoLxFkLcH8+LrBOhHg4Wr1y5Utc1CKmTrB065Xk+XFi4fv16WVbr6+vON0oJ53ymDxNtvfddrZMkMY0DDgAgtWDmFso4n80YoN8ZYhtmgiGEoJVigPF4LETSNtPO1YE5SdLI2M0z8I4oQGQbbIttiT4YZ4lke7TniEolCNEHdpGTLFlOVlAIY8xkNhPIiJglqUqTVsPSQu5I4HhqZrOZt5VaWNASITKyjRyEjINhYUoz8pO8U1RNPZlOu93u+uLqxtoR66pUk7ONksJ6q7V27JGhv7hQVVXZlIlURKCUAOAYgZAhQBsmi4AopUA0PoQISicQQQihtVapii4KlFJRnuSefelb/yVkWUZAIbJx1kfwEJumaaxNlMiyLFhUQislMPonnz9/euPk6vrKvpsIpeu6Ds4xc2sY9d4CgE4KY2qlEklSkgDBrjEkkJmFUgDQEkZbTQYjxtJ6BrodxowcBaJnts7FGBrj+0VntL9XcRwMlsOkfOm1K7/1X393cXXVhNjUjVK6BR9rLWrbKEEhWC0pOIRgFZJtSkaBQABRInEEjAGjdshaSOec6qTelU4Tq+zqjZvLCwMfHAoRI7dxQy2Y5cTJY977/f39dkjGzE3TjEajTqfLIUjReeihh7TWrjEYOQQjtWp/zRCCqao3PPTQC/WL4/F0fXllbXntC5/7/He/932vvfzK4UY2eqG0c5Y5tp0uKZm0FMw8v3Tp0mw2W0yzQ1lcjMyBSLZfS4edaau5AmKMCOJ2AW6RkwKJgdtmGZmBD8OUXp9e02Ea8e2l8u0qTkRtE438rf8AoHUGMzMjEwIJstYppQ51XkKEEKq6ydIcQ4zBI3itJaV5CAEFhRgDYECs66ZuLESWRIhidf3sqbsSBnjk0be3Pw6HqLREhOtXz1+4cOHixcsHe/sxwsFosrOzs7m5ff3KxYODg3lVWzsuy3Jv//JLL38dAGTe7UUSt/Z2B4sLAqE/GEilk7S4futKotRovH/xtd3//omPE1E5rxcWlh5//PFgzQP331/NZ1/96lcPdg+yrJiPp9s7t3qd7vrqEY74+S9/5e577ylt8yM/9qP//Y//pLFGCVERVhgSht3J/ps27kjWhldvXX3hK9945RtPvvmRB1++8NrKkcVL11575aWrJ9/wcN1YV3hdZMaF0d6MOgSAprJCUyfv1LG0dSMRM605onVRCPIcgbA0DZHIio4/1L0zocAIRIACSYjYnoxigMCIoBBbGoskjgCOA0mpex0f2QUvleoIcfsEBwzgnIuRq6rKbkM6mfHo0aNN05AQqChVqq4bIGRE76xSSmslAIsiC8Bvecub27a4hZsjotYaGV1jQCkASFSSKZ1IWRmDiLUxN7e2+ksLQgiv0CBwjNY0iGgQ0zwDQBstCer2e977ra1NZ5rp5KCT5bv7e3tbm8ura1/+ylfKssyzJFU61cnD99+3vb29e7C7detWdziYjierq8svP/+8Katb21tCasV8MNpbX1+/9Morn//MZ5944olTx099rdvJ0xwRCeJsPkuSREgyxmadbCnrb+3ubGxsAMbFO47CSj6djmU/N8CJkLnUpS2FEHuuucXmbHegBsPFlYXt+VWeueLkiktcZedldH1KMU9NWYaUZln0TZUu9jtI3nvvbJYWXFVKqV6iUQiC6GKw1jKhJDGvK4FIiFnAftbd2t7/rg98z0vbN89/4qUf+aEf7qr0bq2ZBCAuLi52Op3d3V1B1OnmzoamadI0ZecMQJF3mDkrcsHgQphOp5tbOzsCl5dXUei8OxhPq69944n11aXTp+9ghiRJYuWEwCTpsg9EUJZli88bj8dpmjamEUKQFADsvfe+ab289bz0HMfTUZqmayurvU5R1/XK8mLT2NGotDYolQiipiqZpwCgVOKcCc63SMUQwnhSI2KadEwwQqqmacqyDCG4wCRlWVftDSjGqIRAhCRR1ps0TZkZEfq97ubmzeXBMoBn9kqqyfigpfmgIKXUwXistR4uLlbz0hk7yDtq/UiWZUoIgVInFICl1rNqrpOkrCpBpJQK0WdZVqRZDMGH0FpikiRpb4IRgQEis3UOkZkQEZCDNQ6R2+8+K8ulwZKQcjydNk3T63eKrGOMy7OOafx8Mt0fj1AIlaXWOyWk9z5Ncy11iFGr/Pqly1/82pPf9qYHWKMtG6UyrSUmIt4uqFLmUkrvgEAIFLlOsD3AgZFSdjodALDMzME5hwTeBeecAGo7v8Nqgdyeg6SUSqg0FTrEKnpOEl8HrQSlCxeubqqUEDFJlG2slsoH1+kMmqbhYKNzQQlvGwgYBKGQABFRxBh0lscYIzPEGN3cosoyaYIXwEmaZ73e1vZVCRB9jADBeamT4Hzp5lKrXGdSykTpEEKWZ16FEEKn020Tk2zdvOVNb15dXT04OCAiBCGEsFUliQVG1PKZZ54ytd3a2uLo/4e/+bc+8pGPfO1rXzl14iSRtM7lqTZ1RYhCQguMRAwCKcaYpcWFCxem02l/uEiAhBgBCMi3BfKwZH5rCYwQBRPffh8BEyJxRKLDpvlw+gyxVUMzO44SW5HaoUqLidrnBQiZGSILJABG/hZrGhFCYIhMgoiQqGWny3YQrbXSWgEAIXrPQmoCxMikpBCiamotlfe+KArvPQcQUnrvGcXmwYSYWv4JREzTtJ5OiSgfrD3y1o23Pv7eNNMCILALwYUQZuPSHq7MaH9/fz6fX7lyaX9vTzbMEtBDrKwhCHv7O1laVI07cerkzvamUHJ9fX0+GQkh146sv/3tb9/f37/rzjuGw/5jjz06XFz41X/774sQTiwv5YU6e9edZ++467kXXhiPJ+fPnz925OgD5+79o9/9XfR09913X798dWdvNxA46ben+33rd1++8siDj1x+4eWlpRV+9bwX4pnPfZVVsbq8goLybhelWOgsqMZPpxMno05F9NF7b60XiMa7SJEiWWO01iJRjfO9wTCE0FiTSxWBQYgADMCqjUSM4IklIxHD4YYBI7DnIEKQUkfBtakAhdQJkaqDK0i1uOYkSZQU1nuhpEq0t85a2zSV1InWuqO6tW2m83muE+9901QoKClyITQHTlLtY/TWtloPKWWv1/PeE4nAMVGafYgxSiRvbJok1vlMJV6potvJB73gfK4TIYT1fjSf9Xq9+XwenEvTDJkzoY0xs9mMmU+eOPY7v/2b5fgkMly7dk2AKIrul770hR/90R+ezybTg90LOztH1ze+9MXPj0aTRMn+ytJkMnnw3vuuXL4829lfPrq6t7e/ff26aZoLL7/6oe/8jl7Reftjb/8v/+W/1KbxHPMkJSUHiwNmTpLkWO/YaD6+efnqmx979L997C/+29c/8w9/7V+dlIXQCCZGRVHg3FeU6miqmfdG6pe+8c2ZMR98x7e9dPG/uoN6oIqtenfiKpVoFUADNgelTCRW1suISTTOC6mIRFnV3oe8UxCRAHYhCCkCRuvM3NpeXkTPhBS8Hxe63j/4v33X996zcfb06glvogHoD7oktU4yKfVkMkXEJNO9bnc2nkGMqdZFUQCRj3EyKxGFdU0IoTL1sZMnXGN6g2FZWUY5m5arq+urR1aSJKEoYoyDfsfaajoxkkRdV01jk0TNptN20ahkopQyxvR6ndcRQmU5U4zbW1uzqtzY2JhNRs7U3vter0sYup1UJ1ljHDO3kTPee2NqRIzsXeMQWWsdgi2KbjUva2dIquPHj1nr67pOisIFVkp670f7e1mSHl1fbQEyJGAymYxHo8FggIh1Nb/w2kGWJWvrK73+0FpLRKZxdV1LIbRInQsRSOs00TJVGkOczuZZlgnhfbCta7kxhgU1wc0O5plO8n6hpIwhKCEl47Vr10DQqROnEIJzAUKMwEgkpTSmntdVVuRAWmvpvW9MM5uV16/e2NY7J06dTLX2tvQ2dLvdNEFEuHFjs5zOUIrIPJlNQwj9fn82niZJ2kmzyE5JJVDPyskdJ87WNQAZRA0SovfGNM65NM1jjHVl0jRXSksStnbee5SAADHG1j7TDvORoLG2la+HEEOMVTlPpGJCrRV4H9nbxnXzXul8IuTV8cHcNoPeopnXnSTvdxZGs4PQet6UtjaSkLvbO6BF8Cy19saQkqyElsobG2MECRw5kaIyLsQQmqAQnICqrpK8r5M0OhKWb968ZCzUja2dTbRWSBoF6uSFl7+5NlxaWlrSWmOMzJFDSPUhj0xKGYxZWlpKbiPNTeNscFmufXBEFGPIsk7T2JXVVUS6+8zZMydPPfXEk29+w8NKyMZZYwxzTBJtrW0X6iEE71m0mznEllJsned4yH8GIuTDOouAhwHAABAiiMPHHAAkEnBEBhkJoGX+Y1t9IzAw0+3GN8bIwHBI/8aIGEKQKIGBI0uJEbHNdQghEGC7AGql1CFEAKTbNR6R2+9/CH6QIsYYAdq5nQtBJyl7r6QACFIAamIOSqJzZqFTMEMIAUF4a5F9v0ittR5lbePcVWLWxBhTLVuxm1CdXqHbY0HRXQ8u3nPPY4goi86wZSuag6kkmk3m4zBZWlr6s9/+7T//2Mf+w3/8j5WrVZr6unrkofuTjl4UyxsnT1RVdX1z66E3vmk4HG5vba2uLj/2jg+tr6wfPXPH8h2n/9O/+7cLne6XJ7Pv/6EfXFgY3Lx5a7y/t7JxZHe0DyGqfn95ZW13e9+P5xO8acaT3/md39nd2j7eGw7ydGwJFjr97sA4O8RcE6ph0q1z27CrTZJrHwJKJimMa5ASQmWCDw40Qp5oZmAhnfNJRBDEITIzIHpAZEbEBNAHD+Jw7kEE7SkchI5AHEIL4fPMk9ksAjVu3opCZvNyOBwG74GdJsKi66ypEaGsssiVNWAcZQmS8OBlXqAkG0Isaw6cSGWin0wmnbxgjiGEPM8FotZ6Pq8dgEi1tbapqixJXXCIWJm69SBmSRKkMo1FJmPcwd4OhiClDDF674SQO3t786qEGLXWkTHP88loSgz9vKelnE/GwVRSgGvMwd5oY+04CfHhH/j+o0eP/eEf/9GJo6euXrm5PSkrB+/9ge//3Oc+d+Lu+1fXVtaOrmkJD933wPd/9/c99dRzWiVHlpaMMZUxATHvFPPptJmZ/Zt7WtA/+MgvfeQX//6F3avf9oY3dwz5uXMRAWI/yRnBiUjOaakWQhyVs4O9+deefe4fPfQIRLixs1u4uQ8mzA1HURVO+lB7mw/7KlIpOZZzVDrVEpFDjKdPb8xms9lsmmZZQMQIzgVkylXGzCEYrVJU2pezR+996O7T5/bY9GXuGre0kKjYEVqNJ5OYhtls7G2YjMam30TCot+LMe6Nx1oqZsYQzHiSF5mQIks7ncXERj+ejk4vLK8Pe7NqNuz1U5Apqpv7W73BoJv2cpVxnM3nszbzx9Q+S7tpJolAJ5mztsi7cDiKZSH1QrdfpMnKkfUIPJ3Od/f20kBJkuxPm2Dd0vJykiT7+1dbLS5iqwV1iJR1c+vddDqdTqdpmpv5fHd3d3G4tLqyUNXTLEsWV/r7+5PGeCVEZD/od7XW1tokUUrI0XhU1TWgaIy7dWtr69Zmm6T02oUrZ8/dM+h1up28sTUrYWMAAYM8K6sJM6ukO7dVgNDrd/b29vI872VFcEEy5kluK5sqHVQSmdlZ551I8vFsenBw0DiztrhWulIJrZQOEBCg7QkSrYE5k4oZOHoppZl4jrRy5Ij30XsnivTYxpGqqW/evNne60ejUQghlXmMzCG2YFcpRV3Oe4WclfOhFHvzkczU3efOWTcBlzFb76OUOjqRyNS7WFfex4AePccGgKTw4AUpkMIFUEobWydK1XVtjesWnel0WlV1a6EhBqGVC340mfT7/bJuUql2q/F0WtJg48qtG9WkWRioxluk6r677v360zMviX3FptE6jb6JMgomTxCiSxVaaxiE8wGRJQEHp9JsXk5QSAVAHDhRyqMjVWSdupxWFLpLC1f2TFVOB4sLWYjRVs40KusHF05snJpPZ6NZ2e0BIioAqVXgEGOM1SyVKaYZIP3tv/Vz//D/+RGElg/HzniOHDEK1XIuuFMUgBSUef/73v2Vz3/lo5/9wrwqCylnBAJ53hgtCRnbA2VEEFo0zfzk6RN5r+98bGVUIUYSSIFDCC3ZKiAzsxLSh4CAxIgM3OrTARElIAQMyCAAIGAABkJsbUhMgBAYDiMJIyMSMEYEVNLFyMAowMGhSBt90EQo2mrOod0VA0QKABDj4WKYA0hAJGlDaHfhh8NwIZgjMYNS7X76sHNnjjFqkowACMTIHGUiA0fPQReJDMDMIk1fD+oV2M7ARVk7IUR7zGVmU86EEHJ/umut9dYe7OxJKfvD3vVrV37jf/t3l1/65vve//7f/i//5fd+//9UWZp3BusbJxzH5fVlx1j0h8b78WT23d/74d/83/7z+VdfDl6+9e2Pn7nrnn6qf/7nfx5i/PjHP/75z3/u2Kk7b2zukEgefPgNL774EkCUia69VYma2+bo6qnT5849//QzP/IjPxLG02dffIF0f7Hbr+azJB3oTi4lYeROkoRcee9d8FmRBYa6rnWSk5RNXQcABLDR29orqUGQTJTjVi9BMQZCQAT2kZkTQUIIQoohEAhEapOFYvRAREQKKQArxFzrGLiJngmdDZUxUKlEqVQn7WmP0iR3sDsaR++UUp1hn6SqndVpoqWK3lkfJ9OZjyHrdhQSEQFhnuRSyvZcFmMsur3AYT6fxxgnk8mUJ71er6rq2jSrq6utFwIAIPB8Pmsq0x8OXPA+hl6nG2Pc3r7VBjYDQp7nvSz9V//sn3/yk5/89f/8a3fcdTcGP52Wx0+f/bOP/sWb3vSm42dOmcYlnaK7MHjplZd3d3ff+OZH146sn77jzJmzdwwGg3e/+93D/iBwTBIlBW7dvLW3s1NNJxXAGAAQO4Nht9tdO3rkw9/7PUdX18f7B+99z7vuv//erfH+sZVj2NH/9v/zr3/6f/w7G/ecYhcI0IcAIWghTTBO8PmDW997/32n71zPB3plMJiUDZdVPZ8lKiegRKW+aqJxUuqUZMTAgCJJQghSEjNPZ7O6rqVKIhIfOqiDUipiNMakIuEo0Iedq7f++S/+gkMc7+6fXDuWKG240ZhOZ9PpfMYVCiHqYALHxrt+t1eWJSJ678+/8ioR3XPPPcSws7enlFZZmog0EZh3slNLq0pKj7w/Hi0vDb2E1aNHmLkJViIM+72FQRdhLYQATILIeqOUQBQx+vaM671nRp0kMUYmMtZNJrOyqT1D1inKqhFCgEATvW2CYyiSzNmmLOvgPCOUpnZujIjdQT8ZJN5HY8yJYyfXVo+02r2mqZpmOptXt25tpmmyvr7OQN77MoRU6SY2gFgUXZV6rdKFJT+ZzW9u3swgnjhxopWPKZ32depimJelrRtNOBj0vfdKCWO9s42SlOcpEZRmJqWMGI31QogkFUVn0QXnjBVCaalu7t/4i7/4i7W1teFgwDGmOjqygWPwDADG+bquV9bWPHvmiCi2d7e3NncCR62TwOyCvb65WRTF2spyY7wPMJ1OjfFZqmaTaeAopSSlCNF7v7yyzgzEpEg988wzAml5eVkIIaU0jY8RCIXWiTENCkgyAGNtROscIkpUkWM1KaVQrThOS6WUcsYqKbM0FURlVaUkAYCUjDEmUqQdiYwdlYCHEJxkrOtaSSIiT5D3upvXtj7zV3+RLayEKCCyEDLG6EyTZnnTNFKpYKzDiIjdJJtN50pLV1XDhUUPWNeNSrJovatqqAQlhcoTU9UCSQihk2Q83i3LWba4bIIpioKSrKptCL7TzXudbt7N2g2Xdw6kaJqmdSJMmhkxpunCmx99CyC02WutGsAYI6SILQOSiDkw87WrNz7wgQ9+5uOf2dvbQylCCEgQo4fb69h2ieZ9QAxm3rzv/geWlpYm07lIE4EQY2QScLsOIUFbfpz3iBgEHpY1gQKQkX0Mh60wADAgHiqoD8mkrdDqdh/8+v9zYCB+/T14W5kFSjBh22/HFsElGIBai2m7FG5n4+1XtUmAwCjEoVg6uMhtW304RT+UY7+uGkNEFIQRiEgStj+nVC0pHL1vGzyiiCEEYikESynbcDyIrJQAADnIO+d3Llnv5k0VnJ03082tG29/7E3vePDhfNj717/6b4SU3rgH3/LI+z74HZPxbDSfVk19MJkT0ZNPfO7tb3v03e95z6c++fHXXvvmnQ/ctbq+8tqr54losLT4PT/wo0997Ynx9Eu/+h9/7T//p/+0ubl53333vPj88ze3txZZofU3bl1/6/vfobO0qW3tw2g6r6qGKa29CeM9lYpxmhYQh0UnQpTRK0WZSiOgBJBp4T03lYkCEYWLIXhGQVK2nKC234gCCQCUIARkJCnIBo8IiBEQJVEAsABKSKLDxxSYBYMUIHVivevkPUDyMTbWKqUkkUAMITbW6DTtJll2ZD14XyS5RQ4hNPNSa62l9DHqNOsSNU1TTqbee+dcnudtylfwvmka732SZYgYfHSm4RAByRjrY4gxHr5yYgghcGAQEOiQdx2MnQI4Y3d2dtrmoLewYKKfWZsp/YHv/FCn0/mX//O/vPvOu06fOHPmzjuaprp+9bIp3cvnX3XB33Hu7PXr18/de/8L33zxHe95j0xTDqGsTZIke+PJfD5fXlnMk3R9dfjO975vc3v3/d/+gbvO3tntdh96+JH+0gJpdfLkyY7Wbe3f3N/fK6eqjug7733rO3/qB3/09z71sd5CZqNvDzfthS6l3J/NZMc+vLDWRbmxulyXY5LaGEMYc8ok4M61zSTRRDSbzaISaZ4477WWEZikmExmWadgZuc9oPc+MrNtLCJqKZ0LKklSopMLR777vd+xMz44vbHBIewe7Hd6BUtAon6/HxHqul5YGKBUSikJXMhCCGGtu+vc3alOtNbMcSAG7W0m0zpAANQeoN8pLm7fnI4P8vSe7cko7xSSgaN3hKmUhNiueZrGxhjH4wMhMc2KNNVpmjKH8fhgOFwUQhwcjI0LaZ4Nl1fSum5XpCbEFv3tAZVUa+tHiyz3trGNAeYQo2wPbkLkaRaAG+uUUoxsjJtMpkQkSLvg+v0+IhFhGymNKASh8c7aRiIxAaEEgP5weE+3e+c955xzRbdISeZp6pzRWjsbBv0+djveuejDztZ2mqbYTvZibI1qiBJQKK1DbJxzgaMzNREh0/Wr14jorjvu+hs/8VPOHUZtJkmyvb19MJoIIXSaRUClEh9ACBRSMvPi4iIAXLhwYWFhIc/zpmkWFoaShLU2z7Mb127UdR1j3NyahRCyLO/1egBASmHkPM8tOyKZJcmN67e6aSfPO7PaBPZp1plNppVvur3CBcfgOIa6Lq2fDgYDpaR3QQogYC3EfD6v53F/f7/dFEoptze3vPfHT55ggOi89y6GkGaZJEqy1FrLmcLgRJJIVA8/8GA3S8Hb/a297/6OD8kQ/ugv/kp2ut4ZCx5EIlIdbAApvXNKkAMvQqwnE5Wm3jRJlnznd33oC1/6UtWUFJ1rqscff3w0Gb/80nmWODfj3qDjvWfN+7sHB+P9U+vraGywXgvZLToueGOrJNPT6fS25YZGo3FRFMYYAFRJApFDhMgYGbKiG7D0zsDtCS0zI/FhaQE0ximt3/SWN22N9n/qp37qN37t13vdQRlmQuJtsiSjVEJAlnd81Zw7d04Iqq3pdTLjHSKi5xBCmiYhhKYx7USHEUOMEZEYmQ+ly3Bb7RycR4Z2c8xtxvWh/urwT4jf0k63FQ4YAQ/LZDurbn9+aHOCmen2PhigHXvDoV7rcPvMzCwJfYgBokCBzMjYPoBwu/lta/zto0BrBG9FRhyBX591h+ARIUQGYCIEYCkFIkAAZkABss1+iNwCjOWv/M//+r3f9aHaW0lad/PF5UE/zf7b//H7w373Pd/1naPxONVZ3TQ//MM/ePnq1avnLzz82FuPdjY+/7kvbu5sT+fzqnELK6vHT5zqdrsf+OC3TyaTldX1y5cv67yTpcX6keNHTxx78KE3PPzwwzc3b7zvfe978fnnG+endXVq49g73//u4ZHVBx97tLHh1MMPfvX53+4uDE8/9ugcgvLmlE6KbgcZEokGEhljZCDCpjIuxhbQ47033iillFbtdq19jGKMpq6VUiCltdYQpWkqEAOCEJIZWm2qD+Bi8DFyqxBHFu2lEGLgIJByKZkpMAtElSaHovcIMnKmlWOfkBJKk9LoY4BojFkcDEMIUgjDPK/mADgcDvv9fl1WjNDv9UKMTdPEGEnKbpYHhNbW2cnzI8tr3vvtvd3RaNSGUCJikrS3b3DOFd3OaDqez+cCME9zkWYnNo7nRVZVVR0CkvAAdfRm5t757ne98OyLu5vbC0srprHT6Zyk7nR6b37LW2dNdfc9d7387MtHBguj6fTs2bPT+Uy02FhGkHLlyBGpExDy2tbez/38L/zAj//E8urKUrdTN42U0oToY7hx66ZvzPrqCjN7RZIFFEqTqpz9jm9732989PeXV3MbeW4bqZUIIUXlnPHz5uYxs9g/cnV//57H7yvHm9d3dkOISnP0IXg2kykO+hEYhVSIrUnaWtsusYqiiACNMd77AEFr7UOQWgghlEyEIK3TyfWb3/uW93W7Q5emIbjG1EoLx3Cwt0dEqZa2aYa9vouBI6IgQiaUxlmtVZqmEDnG0LqG2nrDiAC4vbWFi3zi+LFnzr/kqxqCz5R0TZ3rwgcWiqxryrJsqjKE0F6ZJIUPPLq9cG3/NedjPZ4a43Se13WjlCYSVVVLKaVQprFplngXgje9Tsf7oHUqSbUeypbTpJSazKZEpLT23raSCEWClJYyKNBSivaHN8bE6IVAYPLBJYlKlCKRV1WFSIJQhCC1TrVOlMbQos7Be08M4EJg762LHga9fmtbJKJZWdW1USrJs64xJnhIkmzQXdgb7SVJIkg3dp4kWZIks6osimI6DUVRJCqtbDVcXCh6fa1T45wxttPp1HXdzKd5nhdFFq09ury62BvMZrNupyMGRdtJAJAAHHSKNE3run716tWLFy9euXH9xIkTC8kCK4kCX7l8YWVlJU8LZnjq2WeOnzyRpmndBAKhNMmEbGO8d9ba1uZEmPf71I49gBGJZKvBJkmJ7PV8e8k1TWOtHY1GLvhuv6uU8tZpqSxE42xis8DRR8yFmDRVU+4/ePeZjbWVC1s73aJ3+eqVbpIcynQJIQSBHEwTvABNWktnKmi3owjBNJJAKfG1r3355q1rwdhABMyDXqesJgxRCvAxtqUxSTIASBJ1m3ohvA8RmCm27+x0OiGE1gTcnn5au7w1XglZVfXi4mLR6bRkewBoPy3GCIhCiEPnEMDS0vLeaPT+D377//rv/9399z0ghLRNBdFLoTz7tjDFEA41+RGyLAMAH8Pu/n7e6WitjbXI3DSHJTMCe+fab4r+W/mD7auDDjtDbFEbsW1IAaVACRSBW1E3ExxmG/61N44IgK268LBL5tvxS7fL5+t/jX8dCIKxzZfkyG15xta/DIDEQiDGwxD62z33IXWLmQ9F8oJaFhgiMr6O22QhBQCEEAQREQUIPsYQHRKQgBCDlMqHKN/yjrctLS7YuiEldSfdvHHlN//Vr9D26Jd+5V+sH9+QiW5M/cAD933oQx/8sR/90Zeff/EHysmHv+8HGMLu1vab3/rovQ8+eP+DD/y/fvl/Mi7u7e5Xjdk52HnltfOP5KmM7uTp1Rs3Vv/oj//giSe+/trFCw+cu/fuO89dunJx9eiG7ndkv7dr6r/41CeXVOe//+VfTabzE3ecPXrs+GR3f2ltXQA555vSLHe703quVIKIANFCKE3DTZVmRdLNUtDt8xdCQGYOQRIJpbpJ4pwHwlRr49x8XiJir9fF2Kb5CmtdCI6UJKCmaZJER8AQg0QSWkI8fP7afGsgRKQAARCQBAohAZAjMQDHwCwBSVICykAkZAHQz/Kg00gQiaZViTGkaTqdTNI8a596LZUxpo3fYeasP4DbYTiM0Ot0gdA5R63EV4hgHSL2O91uXnjr8yRVSgEzIuqe0i5w9O2DUFbVnpDH7rurUiAKPapnnsL6qZNC6RAhsXb9xKkYYyLV+tpanucoSEslCTt5Maurbr/PiHmed/J8Op87jPOmGh3s9nq9S5cuPf3Us8PFhUTpLElW3vNerWXpm2G3M7ZGMO/u7WVKCgIfHItDG0BjvWK0jVEi+eTlK0/v7d3c2ykyDb2iCEomyjXGRpCm6fYHrKVzLksSwew1Ho4loN0PkHU2TZJsOJzbhhCFIu+9cwYAlBJaiViHn/nwj0/ZmXJuOUQMnaRTGntrd1sidTs5xkORpBCCAzbBe+9JKCGEcy7VCbZ0BcJEadtULEipJE3ytFMsDheC86PRKMY4Ho/7/b41tQB03vvazMvSO9cOnIWSiBgZe91u24lWTdMfLBnj9vYOhoMFnSTT8cSnWZ7n44NRt9vt5fnm9habRKdpjDwZjYkBkL33AoEkKilDCErI+XzeavkZINHaee99JKm1TlCQtTUiaqVicAjA0VsflUBJyjZ1iAERk1SWZVnN51mSJkr7eZ1kqUpV01RSaiUkITLLpioVpSiE1qm11jmT53mn03HOBe+B2UdXz2uTGgK0jdEyyYui2+u1+amT6VQpNSvnNyY3QSpmbmVTSZJI4vl0ZOrm2rUb9913n5JSSdkSiNIs01o39cw5NxwuMvPBaBQZ98ajsizXVlZOnzx57er1/fHoxIkTSZJcuHSh3+mnSSaE2N3arZr6gfvuV6lsxk3eKZqmyrKkVeUonQC0wA05mx8cehBAzKqZcyEyNc4G2wBhBO50Oy1L58zSHcaYg/G42+2mWldNXdlGKVVPJ0IIV7kG2LCfzux0Phss9dyt62vHjl68ckM4k+ZZ5QMBMkSOFqJLitQ3xvpSaCmYvPekBTeNLjqmbi5dusQQztx55vqV64790889OZlNSUFj67QzYA7OAUBUSrXx3rZupFbQ3qEkEHGMAYDbWIK6rrHVKElp6qYqm263Wzb1iRMn3vKmNz/59FNV3RAwRyZBIUQE8sYSUpHl7SsuhLDY7w46hVDyve9//yc+/hdpnrW0cClJCBGRWq0TIa2urx2Mxz66JCvaqszMkoT3FhFICrCH/m8AQEaJFLklahAyxMgR2jxgRkTHbRghMGAEJEmvC5sZIHLEQ4LHYcvOCEj0emse5e2SGdtye1g1W1BMS90HAGBqvcbIgUgcSi4iAwICMnBsXap/bQV8iAZpB92HxMzbLTK9Pht/Xep1ODwXCtjfdkwJokCt706ePXMsgMu6spxNZucv/el//s3H7rxzPNh949sf2x+Per3e/vbOd3znd/7pH/7BM098g4g++YmPP/roWzbWV1568YVqPn322WdXV1dRSBSiqus871y/tfnNb37z7Max1YUlU9sHHnjgK1/90v0PPCRV8vLLr548cfrV8+evX7t5YuPNTWNy69kENO765fP3331nhvI3/uWv/OQv/MKRc/fPZjOZp1cuXW/m5craEii01hGRt54YsjxTSgABgWBmKUSrdG9jwjgygNBSRgAfIsQoBAFAXdckZTsOjQIss0QOwA2HTApm9j4CAQmIjASxNaBJIiKKrRAAAJgDOx+ICQ0GFIKYATF66zlCYKmVC4FDFEIIJGdMqJtOmrUpXRyillII0d7j6rpJdZKmSaJkCCFySJLkyJEjELlpmmJQIKJshDEGpWyaWgkpUQjAclaFEABjlmVN0zQ+dLuFC54jzpqy6BZZlvW7vSxLT5w8fvz4xte+9o2tra2i01NSfuOLX03S1Aa/cfx40zRaKS2kD+769euEYTbeIyGI5GDQ6/f7S8MuI0QpmbnX6z3wwANAGJxfHA5fe+0145rewtA3JhIys4jh1Klj672FupxSnvRUWntrQ2g8G2bV75YNWV/6xaIOYCez6vp29DWIXOSyKSs/K/PeMocoE+Ea4xynOnHO+RjSNG0x60LJyF4KZEbTOCExS9LYeKXTC9986Qe/7Tvf+OAjr+zf6gpNSRbYR2Bi7Ha7+zu7SshTJ461CnbnnLU2ihay7621eZ6neeatU0pFgOl4PJ+O0363QzLPc+vdyWPHGcgDCKV1ljbO+8DT6RhTKQGZMS+6ZTkjSUQkSKVpniRZjLEx9XRaC2GLosjSXAgRnDuythpC8E0z7HYBom2qQacopzPb1MxorW1P0FmWKC3YHT7R3rqyLFv9y8LCwnw+TZLEOQvOHYpdFTFE650UIkYgJo5BKO2taxrDEKy1xtRKyIVBnxDNvPLeJ6lCoCRJrDGpTkKITVP1B10EZYyZTqdpmqpEj8fjEEKa5CKHvb0dF+ypU6cmkwlDZMaDgx0mtbW1lef5yspKBG6sybJEKrU/mRPRaLSvtU7TVClR5Cl0iuHKUqr0zv5e8DbLcxeDIqhDKIrhrJx7pum8HFVmPB63w60FxoVOBzeOpUpPdvdr03SzQkt9MBkfWVkd7R8YZwedLgAEjrUx3jiUseVppFpFFi44H3yR9oyz1oSiyPKOmI6n29vbABBiBAClJQpM89QY0+kUWZYqJeu6DoxSSqWUtXY46BtjZArGOgEtO9becfLkE08+3ULQwMlqPAMAgoiEztZJSq4Zx7KGVAfrpdLAfP9991588Zuzuulk2Xw2KYribW959KM7O2EWSttEQhQEGJUgrWTtDEQWEq9fvnb05J3tDV0q6V2MkV3wrasCEY0xWZa1+4KWa621jgFCjJ1OfuzYsc985jNFt2ObOoQQfBBSAKK1fmVl5Z577qmbWskEwHSL7OKrr1S1/dt/5+99/L9/LE3TGKNzDpEAgL0TgCRAp8nx48dra6SUxlkplZaqqivQ+rCWu3BIbAa03qEUgMjADCwJg8BWnZpIHVsKDLQiaoTYYrP49bM43NZOt65ihvafuW09OuyAAaGdEkNbqhGZiOJh4YRDP2r7lQCC5OtSqwgsEYHhNni0/bxvjb7b8TK2nigfmJmkQESOHENsQdlt2sfhqNwHoMPmmIjgUJ/EUkp56dWXTx4/9sxzTzeTyRc/+t+O58Ppzvb6uTOf/vyn/8W/+BdtK3Dvvff++q/9mpD6xJnTk/H4heeff9/73//sU08d7G4JhNlkfOrEyd2DzeAhQLx26eKg23/muRcXF1dI6sl8euaOu/OkKLqDr33+ixw9x6gSferuu3u9wZUXz1956cLw3ge//4d++Hd/6zeOnz3ZS9Nma2+6t+eyVKRqdXX1yMmTGsNsXhJRluXGVraqEiQGUoqEEiFwcKEsy7IsW3tMkiRWCAoixii0UkmCSrbjIMfcxlODFEpQjNHHgAI5eEQhpYTIZWOjt3maIRIEj4gcIrTIukNEC0zqKnjPAjH4xYUFH6MWUgGgIuv9rKqQOM9zxdzRure0bDkQiTxJIrQHweBD0FpnvW7Lpg0hJFJqKe3rkYhSEGBV10WWtc99r9ebHUwa14TAo9Go2+0KIYy1IUYIsa7rILA2dZplztj3vO3t/MhbKNMCwQbPAXSSfuPrXy+y/IvPPbe4tnLhyqW3PPbYjRs3bty40ev1qvms3+/nie72emmmn3n+6Z2t7eHiwjPPPru+cVSKdH93l4hOnjx5/OTJwWDwyvnzq8vLw8Wl0e5BgHDy6DFM1GhnW+Xpemfxmq04ADGwi0CECiVGxpgVWgYrolSJHu2OmrllcCybqIUW2lcNCLJVXQG2wScg2FundZrmGQiYV6WgGF1sXwBZS8H1nEqVAA2L7t/6kZ++vLVZ5CoEG42wwc/qaZb2OlmxfPeiUmo8mxAiIOgiCwSKKM/zummEyOq6fuWVV7IsI0CZptHaQx+tUk3VzOpKScp0cjAeHcymtra2MbZpiEAiXLh8uci766urdW2kxdls1u30p1BNq7kQstPpEJGP3O12O51OVVVZpphjOZ8lSjd17ZyblXPnHMRQG4sgsixTSiFy8NY0ttvv7WxtS62cc1VTpzrJUl2VM2v87u52VVXDhZWB1JV1SslukRFRGzkAQN5DCG1cOQmBSglEFoqSTKcyybIkFdpHP55N0zw5ONjTUmU6kal88cUXd3f2j504LoTo9Xq7u/vT6fSuu+7q9TrVfNbtd5i5No2PYT6fexsGg0HR6RdF0YYZEFGrnsvzPO8MEHHj6LoxJoSQJdn25tbu7u5kNn744YedbdqX7c7+AelkZ/9WL88RaefgoNvtrq8dTXQ2Gu8j4v7oIMuyVjentU6SRKdJVdfXb90cFt39/X0Xwr13n4sMOk2lVFnW8d7H6L33QhBJaa0VWqQyW0ySqi4BQAjRLbplWWqpTDic3JZlmed5J2+9/iwZO3mxurp6a2tze3dndXU1SZJer2fqipUyZWUT7HR6H/7Qh37nt36Lmya6plBKQIgggm8SpT0BcMRm9vjjb33xpZdndUMM7IObz/NERKmmk8npE8eR4a/+/C8VEBNOyzkyRBtEUSAzxQgcGaMPAZkkqbYd8D7Oq5qIhoOei8EYg3AYbdnOlmOMKpHBBalEcIdjZyFQEsq8E6Ov61pK6SO3SEXrg0okWY4xEnDw9g/+4I9+5Ed+7O2Pv/0LX/pykrYR9KFdi0qJEPxwOFxdX5/NZqyEVAkyj8fjVGnnHAC0oT7tOslaBwA+BBBtRYbAkWOrloqWPbbVFg9HzbEdJcX4rRJItxVYMUopD2sqtx9BQCAkDNxujw87VGYCAoyRsYVWfqt1bd+olUofNsqBIUQQ4hAd8v9XgCGEIJAQsC3F7XsOV9ocbxNCmIgAuN0K022hVntQbmOi5MLi4hOf+vzNV85bV2dCnb7r7AsXz7/r4Yf/5b/9N7Yx3W4XSB4/dfrtj7/j1fMXHTADvvTSSw8//PD3fe/3fP4LX5qPD7a3mmeeeer+e++b1PWfffRjmVDrKysXL1+SmYzGLC+tzcrpk7ee/sYTX7/7zrtuXL0ChOvrq9nx9a2dg4O90cL6yg//4v99MBxeG916/sXn9LCwtimbKs2UZBz0uqWtpnVFSkEMoZqnnVxnKQDo9ixmubr91jRNp9ORqdIicTJGYBucDsi3x1/GmExorbVggABCEAhhmCKxEjLEgCzgEHuWtBnLURAxIAMTCUEROCKECEnRoRjKYLjhGKMUUvgYJDWRUYhBr0fABAjRE4J1RggVYvAhAKEkGUKAVm/nmRBsdEop513TNEWn60PwMRJRmxZc1nWaphAjIXW73fl8nqb57u6+Ma7oaaF1RADjvbE6Sxvjm8bJDozn016na32oqsp7d+bOs5VpHvu2x0+urT3/9JPzkTtx6tTC8uLFi5fOnTs3HA5apa7WWdNUiPC2x9/Z63SvX7/+pje9LUmSqpwLIZaXlwPHxtqsyJumuXr56osvn19fW/mu7/gQxNBYI1dW0iRvRjNIiYVw3juOjjghkZNKhYiibBRiTMA3/bxTJQYDiGg5gq0rTSKEkOjEOZdkhU5EiFFpbawlJ9iDShUDEIFgzxF8sIRSMCqSrnGrC8tr/aXrO1tpsFAkZsYBIUvkeG+GiVpZWynLcvdgt7WBtVv2ftEhok6nEwK3qzJmrq2Z7O3tbm5ev3zp/kffmJ5NvfVZ2qE0lYHL2XwyGktAV9bOuyRJrl24JBMVvb/w2sX1tdXJfJJlGaKYzeZSSyLBzM6FXq8zK8ssUf1+4bxx1hZFFn1QSmxvb94mYIhh3jfGKSWYQ6Ilc8hTXZcVM6dpWs7rFmIlIjS2AsAsyYui6PR6SirvgjeuJiICY5xQqu1UJFJnWMQYra2SJAEBLrr98X6/2w0hNFjnIs3zlCQuLg4hYqaTp59/+rkXnjt96sytWzf6/T4iKiXuuOM0Iu/t7SiVZHnhnItAJNOiq4INkWVT1VmWqU63vZyExBCCaao0oazIZ1W5vzfq9/tGuW5/MCsrwjDd2zt69Giedp5+9mmVdZpZ5Y0bN3sBWApdIdqmGfb7vWJ9NBpduXGztzBcWl5aWV911lVVJZXqDwZlU9d1de3atSRJ1tfX5/MKAGOMQgTvjZSSJEWGJE2tdfNZHXNsnA0hZImu65pDJABjGp2nrdqrBfwaUxOyEKLT73V63ctXrwCRCT7rdqTWi8vLi0rVAJvXb+1X89lstrFxpFfkla2Xe93v+eAHf+VX/113aWU2mUOMHEIUiKb58Pd85/Tg4MWXXmWZaqkmu7tlOX/Do+944dnntjd3MPiqqmSaUKK994CUpqmxrpfnQoi6Mj44Jihn8+C8lLJxNtdJv9/f2zu4cuWKSpM288N7D5EJ0DmnlPLekpStXigCjMfjEDgCW2skCWZsrGOANMt29w6eefbZex+4x4Wy2+sxBOJ45eKl51988T3ve+8XvvTVNE2RuGkqQdAqG+qqGgyW7rvvvm9eeBUiVlU197NMp3VVJWmuteQQy7JsSXAtoisGfzjLjRBC8MxASETGO9kaRuBwzxoZMLYeokOdrFCyFe0zs7st80RCAuTbGUrhsDIiHzbPETgAHyJB2oSHv1Z8v9WwCkJGasskt0TLw6b3WzWYmRFiq6E+XPrGiEhaUfCxXVf/9VLdbuJQEABzZERUQjrnMbLc/tQnLz/z1Oljpy5d3r7nyPrm9Uv9TjrpaAgx72Tj6eTcuXNLgy5S2Nu5Kfa2mESv9yYh5XB5FVVyfP3o3t7epz7xyVcvnX/00ccG3fzypat3nb3rzY+8mT3eurW9sOCAqNfrHT924s57zq2uLr/4wjNT5289/9piv9fr97/t3e/Zun7z/PlXrm7e1EVajmY3RtuPqLRsQjHoG1vXu3VSFIVKgvPVvGxdbS54ECQTXdp51ZTtSH796BGdaUawFDUhAHSTbmAGBgc0nk6896pDgoVxPksSx0DIiRLI7bwhtmpyQpapjDEQQWSKxD4GjlEyEAMI4SOXTYnMg06H0oyjh+gDEcQY2QsSIcTIpKUglK3s3gMyAwrZPmFSSgIIzCghcjQmBEatdSRXWwsxIlFrXEFBHDgEDwDeB6ll1skB4MTpYwcHB0mShBCYMQILFG2DNZ1Or169urS0KI4L19RKJZrkrb0dz7FLcro/eeHya9s3b/zS3/2FD7/nPS+fuWPrYK8VFAxXFgqdK6UG3f5v//ZvHzm6vrGxQQR3331nVZaCFJBAIOeCi0ELef3S1dnB3uNvf4szDSELgUWa9EW6vLiyPZsJjl5HHchWFlKVSoFkRZRaSBeMd5EZwU85MLOQLtoQoJuBjcOlvvF2Opn3+p2ggGNMlQQfdJbaEITE6NgBMgctCGyjkxwY2IeVxdXalwcHt1KVhdlUSyWlZN2LCPV8tv/NvaWlpWefenZ/tL+ystLp5KdPnx72+lVd11UFACTEYDBol8394cKJYxuPvPHhVGn2ThKVe+PuoL+8tjydTmpTcQBGlErP6goS2lhb3p9MlwYLIlEJ9obD4Xw+z3sdKZUPBjAsLg27effZp59tmvL+++7ZO9ifTsf9fveFb764trZ27NixuqwEs40xRq8TNKbMs4JDKMtaCzmaTzudvC6rLNXjg1EilBCisV7meQiusU4YF9ntT8dF3kXPDDYyCMIsz5AhS5LzFy4IIe48cyLGGFsspNaz2Wx/b5Sm6ZH11aqsEIVpXFmWCwtLRIUSvc2tvcXFxdXV9aIotNbj8fjW5naWZb2e6EoZY6xnlbG21xscTA8OxlMi0lrnRdrJ8hBckeda65WVtVldzWazbtGhlZX90WhnZ+fuO+88ceIEWOucKxv3x3/2e3/wh3/8sz/7s0c2ji4MF5ngdUlLVVX1Vo2IC4PBG+57QCi5e7AnMwWELtrUBoy66CV9ki+++vLZM2fyxV7trWxEjIwRiiwLIYToiNC7BoCLIteJFKSqqmqsDTHmWRp9HB+M0jRTQrFAlehqNrXMwTiMNs/z7f39ot9fWV47duR4DC427nOf+PT+aF9Rsri8tLh6NFR87o4TDz32xqdfurK/O/nE5z+zMCzqcpbprGID0d597Fy9uvw//sIv54PO+tGT21tbEs373vvhv/pvf/r1r3w2y4pyetAdLBy/68698dj5CCiZ0TEIKW9sX0/S3qDXg2piyrlDtqG6dfU1mWY6gJmVe64a5N21XkcrKaX0MTBSHWw71G0j7yGEVOnZdKK1fvu3vfPp518gBGyzKISMMSZKNVzv7OwAkIg+uCZkfS9ziO4v//SPf+5/+Nunz/zu1SsX8kyxt0FABElAMcBgMCit3dwbd7tdLZUCZW3UaRFCLMs6Ri+llCiJyBtPRBECAR4m1gAmSiEDRggCEVrW8yELCxFREhzqngIAeOdkO8gUAjAGQCFEcAERBRIiB4gQKYRIQjhvW0mED4EAIyAgH064GQiQ2j5ZgCARYwzcloIohWDfLohjeyBoZ+N0qBrTfBvZFWIkAEZwPgAh8uEmVAICAwFBZCLgEAmwtRo75yQSCJRf//SnbWiu1OXG0uqtW1f3y+lP/p2/9+Sli+PRPMsy27jTp+6Yl/XyyhoKpZLkne/50Lve9Z6llaPW8ays3vzo2W9757t+8zf/95dfeu2OU3emSR6839vfXVpYfPmVl86cOSOFcs6dOXOm6OTXr14pJ2NEun7jxsaP37HQ7/2bf/WvmvH4x/7GT778wvO3nn1x4cjy2nDl5uXrk90D6mToo2lqSpS1lbem1+sh4mg02tjYuHr9WlXXS6srknSeU5FmzFxV87qudZokSisQCGCtF0KEGJEx1ZkBa5i9c87b0ltmVkoJQETMhGgv0ZaVAoBM1DZDESBLEiIQAJ7BWKu1LrIs+gAAhCiEblEvzKxJhhCkkMDctLFFUrQR0gLQOGeca89urU7BOSe1yrLMhNBUlRDCI3vvRERGaNuINE05RCklIMzHk3aj0ys6GLksy+jZe59peeTIkbKeG+f7/f7K2mpVVZPpfGmxjxGd8YrEcLAwILm3ufvUs88tgHz3t7//4tattbWVEELjXZpnTdM0TaO1ZoinTp36yle/vLGxcWt769x991L7MCImOlFpsrOz8+Unn6xM854PvP/cffebeQUcLcdcawdw4vSZJ548vzRcKKe7gWMqlURigY5ZS2mcC4GlEC7WIkmwcb6sLCAlGkjkSaqlMt52e4ULAWTLnAMhRHsciTEyoSRlrHWBM5VERil1bevVlXUgASyA5HCwUNc1kKyNc85XTf3aa6999atfnY5ny8uLN/s3z5w53S16UurpdJplWTt8a31TnU5nVlZKUPC2m2etK8b7mHXThaXFW9ubW1tbxzdOmND0ut3ldCnr3FEk6UpjSIjJZKZ6NJvNQghJlqVaa50vLa+44Pb3RqhkLx3W1lSl/fQnP7e3t3Pq1Km6tMc3Th07enI2Hs1Nzcx1XSNIZGqMSVV6cHCgcz2blZPJjdXV1fWjRxBFXdedXr+uzHxarqwuCVK2ae44cQoRjW2SpKOUIqJ2iR6DO350VQghhY6C67pkZqFFnnXUWuacm81KIrLGzedzIVTTNMvLy+9617s2t28pIZMkAyBrfb8/bIxbXFw0TTMZj9Mk9y4OekOpEym1bZpjJ046Z23dBKm1TqTQs2kppWSBMtE7e/tS6yNHjkxm0/F0uiDltJwCQDVqisHwp3/uZ8/ceefKyspoNAqNGw6HzjlEpDTb398nQOj1d3b3dnd25vPZww8/7KMXESpTTf007eUM4psvvfzotz1eNWY8n2VJNp/P8yRNs6RpGiEQAVxgrTWR8MEAxlbabYwpyzLVSd4p2n4RlZiV80SqYpgRoCKZZZlM9I0bNy5eOH/86EaSJBzi/fffv7OzMxnPjG8A3WBheXN764XnX846y7vzsQvhu773w7/1b//3dGlBA8ROfvnmdc9W9noWgxPQX15ANF97+smt0Wj95KnxaAQaO8Nu0c23DvbaqAMCQhTOe5HqPM9r43p5QVItLC5PJrO9vYO81+3r7OLly4Nj6wCwt7fPDJ1Op03SDSFa9NF5oSUEDt43jVk5fvTs2bPffOnPq7LsdwrrGiGElBQCe+/zTvarv/qrP/HjP97pdRkBAeaTcZbnX/jSl7/7+77vJ3/6p/7ZP/ll6zgCKKE9R0RCIe+///7t7W1vXZakrrJNcFnRsU3lDmWJ2Ol0YozGmHYlIaRAxMNkBsDAADHEGBkEEbXA7cOhbiuP5pZUGqWUwGyclVI667VWCBCCl6SCDyg4BC+UFEQhBI5RkgSA4EMMAYiIBLRTaIiICIjctlUxRvzW1hZuy6yIRIytbeqwqY0AGCO0uI/b+tDQfnqMgASIhO1yM1Kr96RDxjUzIwABxtsqMLneXxiu9G/evHl981pUcn3jaOXcH/7+nyZJ1jQWkM7cedf23v6b3vrY2XP3vPrKK1l3uLh6VMiMJI5Hs/FomqWjd7zjXW+aNcvLy8Hy0tLSwsLCcNg/cuTIcNifV/WwP3zuheev37h29szpQeeeJ7/xtXe95z1ptz/Z39dNc2RtZTLZvXD+5aOLi/Omvl5PHnrssVk5gWAPDg76/WFrR2snukVRROcR8cyZM1VdIyBEzJO8df22yhQOMbgQfXhdicfMQKjSRCvFIZjGVFVFUgghHFkpJQEGQVrr1svFkcumIiKSsrIWERtrY4wEKJGEVsE5JdqoNGaCgBBtZGalJEcQKAnQQwRixzG2s34Ik6qy1golvQ+tKuR1yKUxVpLwMTCzEKJpGmTQWkspldJKaSXIOyelzJJUCCG1Cj72ej1C3NnaHnR7a6tLKLjXLWyI+6PJYDDI87zodff2DqrZ/NjR43le1GWdJvlz33xxeXn5B9/7ISJiwtlsdvzY0YPJ+LWLlzfWj3ZWCmBqmuad73n3ZD4TSj380CNSJf0FHUKYz+ebWzf39vZu3Lhx9OixlZWVhaWlEDkrCoF4sLO1ubl9+erNd7//g7/72Y+FfsQoravSLCOlfXQM4DkGJJUotl4lOsuy2jjQSgoplWJB08lYpCrp5IG9UsqyZQhSpUopy4GIQuDIITIiaRIiAkUfCUJRdDeOHPOOI6BOshCp6PRihIODkU5zBHvq5JlH3/KYIPLe50naNFVZlvPpLNWJM9YF773v9/t1XR8cHKRp1qp+Gmen2+OWA5rNMiZgDtNyThKTVFdVKSXaKk73Z71Bv6prSYJj7HQ6eaejE9lNcyCsq3Iyn93a2h5Nxk8//VTTVA898Iazd597+8o78zwHwojagTCMVdUwh52dnaIoDg4OtEwQsSgKXSTMvLq6rpNE6ZQZB0sd59xgsHLmbBaC+9SnPrW/P3rkkUfuvvvuLNfe2263ME3TmEpKEkQrvSVmDpEkYlnW4+kUETkEImhVUSREp5db72KMOzs7i4vDNE3vvuNuIGxBzda74MOZk3ccjA4IpdbpwcFoNptrnc3mda/Xe+ihh2ZlxT70FhbTNN3f3TPGxBh39/d0XkBkpfR0Oqua5vjJU9PxeH90QEoaY7Je59HH3tpUNRHNp1MOwYVQ1nVjzd7e3mAwWDmyvrSwWFXVcq9/c2tz0BusLS7UNjDCwWgkvF8YLFbbBzb4o0eOtH5pKeVgsFDNJzGqNNXz+dxa630siqI2lWPLzGmStx7lg9lMKRVjIBJKiAicKO2cq+ZlmqYkIXhnndnZ2blw4UI9L+++6640Tay1G8dOnL0zm1WTvYOD+WxEgEmSIYhMqwC4tLDcP75OgSe+xtqA0o11QqoYws7mDRLiJ378h65fuQEY9qbjuq7yPL/r7JnrNzebyYHOCvbgOIKNxcJQZW00EzXOhyjH49nicPHOO+8az2fVeLa6vr64utbvdGWig/cEiIgRAJSKMQgtkTlyhNvpfhcvXlxaXNzc3OToow8CgQCRhDMNAG1v3frgB97/2c9/TmrV0n+Nd1ubt/70Yx/9h7/4i7/+679+sLuDpGsT0jwr8mJ3a+td73nfbFr28qKalMF52zTT6VwlmhGSRCGitZYZtU6ZD3167US6tSe1FQ6kIKR2XdhOegHajGYfONxO/IythQEAhRDeHv7VGi8YWjl49NHHQ+0OxtslHAVH5lbU3A60b8uwwv815iFiW0zj62W4/eTD2TVAAAaE1sB0uO79vy6UD+urQGpjiUNkOnQS0+3KjYAxRimE6HYGx0/mn3/6mb/7//ilP/nYn81RIcheL9/d3QVGQdKH6CP+y//lf/3MZz7z0MNvXl1fq8vqYHtPS/Xqq692u10E4YxdHC6Ypt7e2jx+/Pj6+joRoCCp1Gw+Hy4MvvniC9PpFDm85a1vPXb65HNf+cY3P/+FBdJ9omc+9ZlTSyubV27OBPz0R/7Bj/3Mz/z+n31sd3+8tbd/8vSdAtBFBvBaa6lIa72zszNcXCjyPMToPcTonXONa1SadLKOtdbW9nC4356zANrdnjWWvYshBGMF6xaVrfIcGAyCd4e4dq2150gMxJ5aPD1RopSpm8rbrlZE5L1LtXbOGePbFzwzNiEIEgDgfIgQfIQQXODoove11Vq36SUqSYDIGQMA3TQHALbeBNPtdsfjMWjtrVtcXEzTtGWseu+9C9Y6jiCFnM9nUqt+t1s1TZomZ8/eoQUygA2eMRKJTqcjlNrd3ZkcjIqi8C4aZz3A6OCgt55+5ktfvOvuu9/63ndOD0bNZCwWunNbLQz75+4443zEyEUvr4i894888kh/OFhZWbHWhhi891ISYnCufte73rG+vF43pnY2IjRNrZRaWVmBEKfT6V33nPt7P/63fvmf/5Ozb7grSXOZ6aa2CDFTaeVNphPnQvBeKFk7w5IwCs+hSFMHUWcJMwuB3rFpmqyXmBilOjxjBu/bgyZQbEEQsbFK6TRN7X45n8+LrJPnuZTSGOO9AACZKGubNNNZqpt6LqUcDodlWQaIy2sr7ZE8TdMEY13Xk8koS1Mp2JjKeZOnmbWN9V4Taa2JYG1t5ZVXXprP5977cjYtsrxpmp29SSfvTkYhcFRKtcc4jL5prAD23l+5fiN4Xl5d7fX6a0eOGNt0iu7pkycgcgihsbY25ubudl3N0fuD0V5/OGBmaEAoqus6Ao/ns6qp19fXu91+ZWyaFZERSYkiIS0IxBsffUuMYK3dn09DcPs7u/1+n2OUklZXV50z86Yusix4bhrrfUykVkoZ2zCHTidHxPF4XNc7w+Ew0frI+ioRtQY5SciAt7Y29/f3T586cXPzeqK01nkIIU0zJNUYBxAPxhMpRW2MJDEaT+azG0LQWrHmgu/0BoE5cvDep2nqgr9169bCYIAIkmQmk6qqLJnV5eXZZFoae/m1i1Nbr62taa2bxsxm84WFxWs3biCiSPSd95zrpNmtvYOqqopeN+0W8/mcIl+/fl0Icfedd2VKbVtLPhrr8iJps4XL2RwAeoO+cwGQO2kupWwa6611zmVZZowxdcMIrY9WSwkxgpQE4EJQ3kfge++959y5c7PxxDgTOJCUQHxt86YQsLA4GG1Pjhzd+OAH3vs7/8cfrR09Od7Ze+7ll8+eOvXShfOpVBWb+cGYUo3RCfTe1KfvOvv8k0++9spr66trdlqGWeW0fvHpZ2pjc5XWszmRxDzFRFnrO4OkCagoa4yNTH/4x3/6/m//UIiwvn50rsc7W7da83eeFjE49kEqZbyLHGWijDFFkoUQdJLOGzOdzbc3d5aWlk4cP37+/EudTqdpmvm8AoA01WmaTyaT559//qf/xk/96Uf/rGmapq4XB8N5XX3hs5/72Z/6yfe+652/81//a6/fZ2sAaHdr6x3vfvdb3/bYtRu30qzjgzdNw8xIYL1DRCGQWbS7WDiMo5fOBozY6phCCAwhEqJARDj0NRFxjEIoiRRiAIFtP8ohUgtWiggAiZQAIIQ03rYnZiKKAZBQCIE+AgOHyAxCtjO8wwLZ5je83tdSbIGRcBiqhAiIBNjyuYgOC+ehh5gQ6DCu6dAI1VInhWhX0BEYEEWbaNxapm7LuF4XfzFhZJC7413LtnR455se3YqRllfT1aXog3MmhADIGxsbed55+eVX19Y3fuzH/0Y5n+zv73vvX3jx2YPRblXP9nZ3H3jggUzqrVs3R+PRxsZGmqZtYzedlVVVjcfj4XB45MiRJ5544tSJY7e2tnWa3HfnXVtL/b3N61DHYWdw4bUrDz3++N/5p//IJ73zV3fXNs5s7z83mcyaar6w0JfRIeWz2UxIjDF2+70sy+ZlKaXM0rSsDCI755wL9dwIIZCJMtBaC6QiTTwDhGidkQIgyxOiJHSstbYxSDoyhhCC80qp9nglhUAABPbOVtEKQC2VsZaI+v1eCME2TTt5iMwoiBGms3kL3U7TjrWNtQ0JNI2NEZI8s7ZxwZd19S22Q4xJkgBACEyA3kdBOJ1OkzZYRitGsN5pwqqqJYnWNGadCUEAknGudBalSKUCgMq4KJVzoSznQgggShA7efHahVeX1taPrK7FGOv5jABfePHFzb0d69xLL724OOjqTIcQkMN0PMp0trDYY4R2CuecO3Xm9Hg83traWlhYSGRiqloree7sXfecvduFMJvPTN1QqjHEIk+ttZdfu0hCnDh9Iljzd3/m5z75qf/+2v7V/pHFWVNKgVImHKCf94ypEyUb6wGg6Pdm+yPdLYRODHIEyPOsbMowjXmnyISQQjsMIQQfXUu3gHZ2oSjNi9lkKlmQiMFZ4ri5dV2RsGWNDM4FBCGUrOuy2+2CD03T9HqdNFVlNambGgWNpkaB1FkqFRjjup1cCq6qedM07YuqDL7Nx83zTtNYRLU0GEKI0fk8z/d2t7Ms2d7dJyW7xJPpSGu9eevGaDwuOlmaplLKotslksvLy8AUQpQkTm4cU4l20c7n0zRRzBijY/BZKjudYTU2ebcXYxyNRmnWDTEWnUHTNFnR6Q2Gi4sLeaeX5pm1djQaM2KcTXbqOtUy0VmMMBgM0zQdTceDheVeXvQ6RQjOGEdC5XmBDHnexgelUuoQQuqVECillAL7vU6/10nTFBk4eOciAUuC6XSKAgTBoN9NU3396pVut+v8NISQZnlZlp5jlmUh+Pl8vrK2liTJl77wxfMvv/ITP/ET2/v70/mMmTt5gSiIgQkRudfprC6vOGejC60lXWiJiN1+r+h2jh/b8CGORqPJaLKQ9+q63rx87eTpUwDw3Msv9nq90ydPyUwXWiBiMKaeTJ3W5y++xhyH3S4DI0RnG2e9VYwA3vt5OV1aWrKNKetqYWGhqczMzNvmqV3Ye8Du0lLtrLo9/2xL2mg0EkpxCEDUeKe1BoFA1FgrOPoYkCjv5KaqU51BjD/54z/yR7//uzLTezdGs4NJirLa3F06djRmWX95Ze/WLd/UABHY7926semCa+rXXj0AUpKIIo/2D0KMSafLPh674/jWbBI8dXuDvOhuX9/sdRURDobLn/nc5y+9diEf9hBxf39/aX3VGmPrJs860XtNoprOVJZG510MiFDO5igoOOe9z/POB779Q//0f/rlhx9+uM0g73Q6R48ePTg4GI0m73jHO4hoMp3/2cf+/Gd+5md+67d+S0qypi50ur+59elPfvz7vvd7/viP/qgsS5QCIgPR3/5bPzutShdCKEvnnNaaAYw1WqUgWCWZ0gIEWR+FigAQvUuFQkDkVrdMRBiZg48RWpGwwMgQAGIA2ebYCUSMzhMKYnIuaK28dZFD4GitVUK2LmnnnEr0YTFmJsR23yeYUdDrgcQQ+Vv8L0Tvfdu2/vVpMxHFvwbe+mtCaGzTOgA4wu3RAiICSMZ4W7TlOSADEZEU7MPtfvr1QTcDoUR2tam2RtV7vvs7GsLO0vDli69Gb9JiICcT72LkcPG1C+PJbHtr7xOf+NRodPPBBx6+efPm5cuX3/H2x1999bXpaPz5T31qdXW11+vNqvL++x/s9/t11fhQz+dzlLS2tgYADz78UJYl58+/4r0fDocPP/rIk3/y0UxnoPTF3b33/dSPv/e7v+fy1u7e9oUHHrqfjVOMZl5tb2+vr69WNhBSf9ANHK01OtXT+fRwglrOnHNaJalKpdRtBjVE9K7p9LoAYJzJ0wwRsywTCHMfDtX5ACRFmqZt6RVI7dGMIYQQmqZp6SxSkZYKYtRStumz0fuiKMLt01NrHHTRtx64vYNbOpGJFEJoIum9tXVjbRMIYoytN6OFw9nGJEkSEXyMMlMhBGe9sY3KEiJqmqa9LIgQUWitIMYQhU4zGXTgOB6PlVLU6QrESGAjMwmd58gcY3TGdovi2JGjWwdjBSICZ1m2vrJ64+phkvz73vEOKyDpFxmIZjqv6losaeGNEIqZdSKZ2ZgmTdMQwv7+vibqdrsAcV5W7ZJGCKESTVKCC+2K+v9H1X8HWXpm553gec/rPnf9TZ+VVQWgCqaqYNp7RzbbUCJFjSiRFOVnY6ShpF3uzGilDe3siNKKo1iNqInlzmrECHE0sTvcociRWqJVN9WGbchGG/gCCgWUzUqf13z+dWf/+LJALf5ABALIykTee7/jnuf3nN/c9hSqvGib5nd/7zfbYKeDkXNBMeCRyuvGEzXL6p0eUDJUcQSC6yQVWTyfz4ExIWUEUd00ACClJCQgCh60kggguoxhjkRUl4WWCq3nQJ3tua7L4G2caERALdO0V+RVEseCs7Js19ZWkEOeL6y1Oomdp5P5bBz3B4MegRcChUCllG1rHuvGuE5p6b3v94dKRcj1bJ7PZ0ut46Kouhdo98G9fr8vpLx793Y/6y3nsy5AnrEkhBAp3bQVA2lqF+l4PB43bV0XZV2UUkGWJAI5IFOMay6EhLau4skAAJbL5fpa0sULIiKghOB7g8FwPG2aJs87SMWoqiqOpOPUe8usV1yG1hKK1cEIRlOyThCwSPAWGcdYRYIhgZ8OJzbY4IEz0CqSUtZ1OZ8XSZJwzk3TzudzpVQIQWtNkiGCFDIexW1d3b9779y5c4z8wfGy38+SLB2Oeq++ft05S0TL5fLu3btXr179yEc+/IlPfAIRjXfHt2+trq6ub24c7O0DwGQ4Lps6S9KqKiEEHSfOubMtZfDGGO99XpZN0wz7/SRJsyRqm5AXC621c+6lb3/3R3/0RxXy1jtvXaTUcDDMhOxnyes3rk9WptPReD6f93o95SEgRwSttbN2PJwg4mK5PDo5ZoztPzhAxI2NjTRNAVmSpU3TGGeTJGnblhhrre0+hkRkmibW+uwNDwwAuhu/inSaKA/s9PR00usXZfPWrVuXHtv+zA987N99+buT6fTOrduf/NQnnv/OH87KnDnKKRexBu4ilZbLWVGVzngAx7n0jIlIx3EyWy5EOjAM5Xh89+hIpRkSRyZnswUAKKXaslAcOOd1VaXTUVmWFy9eNMG8eePGYjZXSq1Opm3TCiGaqrYQmrKRUkoug3OGkXP2+y++9Gd+8if/9Rf+zauvvjydjGaz2Xg83ts7KMp6Pl/8+v/2b5599tmNczuXn7ryy//T//xzP/dzP/qjP/qlL/2HyWQSaf2vf/3XPveZH/rzf/6nf+mXfmmQ9VCIusy///3vX376XdbaJNZl3RAzAMg5dxT6SV8IgYxzlIBIxAACIj8TFb+jFiZEJPbQBXRmcOqwzeCDB+yCLEPgDBlDyTtbr/DeAgBy7AZQeAiptsZ1mqx3sg09BQzAGRJRh8Jm/9E82g3AXVFlAPgwiwnP8KvUMT+6LfWZ8/ihIvqdwhwewpu6Yy8D6KAuD8OXGGMM4YxQfSb1UlEyXFm9efTGo49f5oPB7ddfu3HzTZll8/mScxkn3Bs7Oz6VOpacH+ze+djHPnbn7q3XXnvtwx/9yOc+97nt7Vf+5b/45e2trRCAc1kUFWNsZ2fndDZr2zbOUkRczuaI7Bvf+EYIbmdn5/m9XduaP/zq109P5q6qRJb+jb/zdzefufLiS6/GjNdt9ftf+eJ4uqI5msaeHC+uv/Hm+tZarL11TmoZyyQAYLdjrGtEjKIYCEOA+Xxe1/Vg0NOJRCalVFJK633bnhn5tzY2EnS19+BDLJVHLrno1hS6n5Vl7sizQIHIBRcCCCFCS5GQ3gfGEBAjpQCgIzkjYl3X3Y2q1+tBFIqikEokSYSIddNY6wm8907EwlSNUkpKAYGcsRGXXUPHGEcKTWNUpIgRhcAYcI6MSArBGdNKMyIIgYh6aVoZK6XkIYxGY2PMbLFI40QIASwY0yAQQ25b41qnhRz2R4wrAQyUeOWVV568+GhVFgd7e5/55Kf6/eHdo/3J2noCfDUbt847wQxZZOgoxKitcLOTZZIkeV5orTljWmvjXFFUZVnGcRxHqfNkmlwEIGRJLxtMJmVTouVkzd//Jz+/srHCM22oBcHLMtdx0ljDGScGDIL33hrrvaWmMUJLlsRxXFYVAGRZBjUyxlprABlXHBG7gZJzbr0nBtZZH7zkPJJKo6jzAiB6683beVm0bT0cjl0ABjxNU6l4WeZxr59XtXNGCWSM2aZFoSb9YRalzlrk3BnT1jVjbNAblmWp457WOoTAufSeyqpZLBZlWU1WptaHoqqttUQeEdI42X2wPxz1y6Lcu7+rk3i6umK9q8tGc101OaKaTtbTJMmXS6Vka0ySJNa2TW3qup7NZhtb20qJpqo44wS+zAuFrGlMP0u993fv3+/1etPV9dFodKZhiWLVHwBArCNnWgDgDJqmCQGUFMG7O3fuB8CttdVAoS1aHgnn/Oz0eNwbBAZpmpqmBYBuB9O2bbeU7jaxIYTRZIwoumFikc/TNOWcKyH745WDB3tvv3nzypUr53f6zpmsl9VN/Z5nrxnjTk/mksH25jpnFJw7XS67K93TV68NhwNDfjgeDXp955xKYyklI0IAzlHKqLVnisimqk9PT7WUDYQ2uLZq+tlg2OsvirJyJu1lf/kv/2Ui2n+wL7QCgKasq2WRRXEJ9d7R4cra6mDcP5ydIudNUWOkuYfGt5xz76hsyrpux+Mp5/yJJyfz+Tzr9QlYWTdt22itGeez2YxzLqUyzhljiUIcx3mee+uMMQLRuOBay4i0lN75YGwss7ypGJheP/YUANWP/5mf+JUv/N5ksvbg5FQpocZ9Oy+Zkm3TBCShJRORTpPgPEPGIHjrII4dMpKSRYnnnAvtAaNkYJ0D4HnZcgVaa+vaXi8tFseT8WA6ne7t7cWJVj1+ms+llP1+//UbbxyPjy898mhZligFAxRCeutdbZjgRVUgctOa9vD4v/9//OJP/dmfvHfr7c3NTWPcMq+ttecfeTRJkqTXP53nV69cc635t//2N37mr//1X/jv/+n+g71er//227e++MUv/vE//sd/+V/+T0VV9ft9IGpbm8S6WOZtY10gT6qjwwohvffEEJAZ56XgQirkjLw72/kyBGTBE4SADIjoDIrZFbrO4UMUIDDCDipCAJ4c57KTNzPgjDEuRNu2AruJHFprBEpERM68dQCMSyTnvfdMMN9Fu/9HQy0RMUQgQkRHoTvSAtFZ+xu6vTJ1Z+CHN+GHkI2HxbX7cwJn5AMAIDHOOTHwFJxzAhAfwqgDdT0AUCCRppPhytradkUc/+Hf+/s///f+3n/5j/4hZn1YLOM4JiJrGmfMvXt3s6zHwAlUw8F0dX2rtW6RFwHo8PDw8qVLUqavv/7GuQs7x6cnVVV1x8tIyWC9EOL27Vt37t599plrt966efXq1bZtZ2W5HCbv/vRHLj16uUT+0quvr0/XFstZEo8CufF0UlQlVzBfHK9ujgbDpG2ClHKxWASAJEvjNFGRLoqCCKqqqYtaSrlcLqNIrayOPfgUFHIojW3rujFmdXX17t278+VyNBhIzuu2FULUbWucBc6apgm2DSHEWltrORIqybvsyUB11SRxHIjKZR4lMSMwTa2l6q59VVUlSZKmaRLFWiqVJJwjIh4fn1TNQgjRRbAJ5KvTle6RV5elc862hgkRC+UoWG91HPXSLEmSuq6TKPoj0V0IWkoiMMaYxkitvPfdezFSWnLRmNYFT94jkjEm0snZOziwoiry+XzYHwx7/aeeeCIG/sb119M4/uEf+ixmqb1jlGUBoYSgBW+tASnqugTkZV0qrQeD3snJbDIaEwFjQIy11hwcHhMRcul8EUIg8mmSCa0aYxwKzmUvici4dJwO1ie7s0ORaRta4tg2VZb0KtuCd03bKil9cOT9YDoNjiTy0vtI66qqhOPT1ZWiKiPGIBBDwTnvml9vLWMQADruYmgMByDybW2qukREIQSimC+Xo9GEMVaWlTRCSEEYV8WSAnElRSTKvODBdww8ay0Z41wAYGkvWc4XSZIo3eNSpmnaUQxv3bq1u7u7vr5+8dEr/8uv/qoLPjAwxlx69LG7t+8hgZTy69/5Tqz0ZrS5u7s3HA7Ho2lZVlJxa9zB3sH9u/fXNzeMEcSgXdrGdBAPrNtGF4XkaNo6iUQ+fxDHcV03VVVpF7XWxBF5KhFXy7LspCLzxamzoVPJMpS9fhpr7YIvy7KssairONZSiUVxmkSxZ7ZuWyGlY3ZWzKeDFSToJSkCevKNNd66JM6SJGGMAWAUJewMkoxp3EuymDy0deONzZv2iSee6oaMtq0jJcpyEUIoijJL+xfOn6OdHY68taasG09krY2iOEvi5XzuJQ/BW28JwAci0yZJAoHIe+ec4jyEkHLRMJ4wcenixSUE15qTcIKeFrP5oNfXcRSCe3B8KJGnWd9TMN5xwYDhaVkcHxS7e/uXr147OpwZ8FlPsYhO5ossSpxznDHOuTVBybi1TWka6wNwnC0XSilA5ryvl0sU4uT4WCk9mow7J6hA3jS1looRCOSMmDUmWAdEzlsuhavb472TZX7i6751Sur+7v7hE08+s/XI+bxtIqG+9rWvbYxGN4uGcSEGylWNs8ZWBWckGXchhOCkTB1yRDTOIRM+gHeklAbHiAkABEAGTGvlvZdSbmxstMu76+vrlAgiStM4HqbBWJamXMujg8Oj0+PhcFi3TbfF6e6dFIJSCoA54ZuyiTT/x//4H//yL/3z737n+09eufLkk08eHp889dRTAWixWPSH0907t4f9wfXr13/nd3/n/oMHAtG4lgC+/OWv/siP/IkPfehDX/naV/OyWt869yN/4k/euvkW51gs8yjLul7KOaeEkloREaIQSiFyYwwwUkoAgA8hMMsIARmXAgBYcK07g0W/o2xijHEpyHshuLVGSkkUrA3dflig7N6unPPgg5SSiJSQ3rq2bbv/+Myqy0Bx4SEQUTcmn91iiRgBcMYYI2TgITDoHv6MoDM+vSOeekdr9c7zGQCIAT6EvTsghowTdBqr7t9zhkDAAgGRJwIfugGfI4oHB/fGk2Gm5T//r//rzen0N7/8uyf7h+sXHj1dLPK8aJumNQ4Fb62T3jXGzutZ0ZZPPn751s23Xv3+d+/dufuu55756ld+/yMf/+ClJx6pW2O9ubd3P45jpYWUfLFYxDG29aJaHGlyR/dvj6JL12+8/q53vedP/qkf+7Ef+7Ev/d6X377z9nve8x7jrJJRWSx1rB555JE7d+55R1Vjdh8cbO3sMMGJKE4z5xwZ37hKCjHtD613s9lMSVidDjdWx4hnwc6zOmcMQwixjge9PgBc2N5CDhqYBUylFpJLKU/nJ01RIjAutRBivlxqrdM4DsaWebG1tVXaVinlrVVCLJbzpql7vR4gpr3Me69VdH7nAgDUpiEGUT/jgbUsBGeGw4ExrQAWx32vZT+KvfcByBij00RYn8SpVipA4JwzAAToLOUyy7rhAxEDQFlV+1XZ6/XyPF9bWZWBgg/BOSRorOneuI0xWgrnCZm0NljrOWeVrVWkVlbXuYCj5fLCZPy1b/zB3lH53Afed3lrc8HZM09f1YSOgkMoKFTGaBa1nnXnCo4UqWQxu62l7vV6nnxRld2+RSnVNA3nPE3TcW8NEZCzAJgb0zZVOKpSraBi86KMgVV54TRXoIKkytbcIiFPk4Q5CN65lorTOXAukwQJ+v1+nKUP9vZkVEilCJkH642RWjW1U0r5wKQQSJ4cGFMXRVEwTGQMJkgPKo1n1ZJJMcp6i9OZc05rrbI+Y1QUp6vjMQVXFEvTeq4VkpBSVqGVXJEL/V5Py6gpq9XRmveeS2ZcOZ8thFBl0b75xo3V1dUk1sVykWrNCV554cVxP339+vXjo9PN7XN/+K1vegq98bA0JorTwXBctw1KUdugk0gppUNgWlgfrG1FxxPnvOMyUtvuHh2Nh6Nl7ZaL8vhoHiVxrz88OjpCRK1jIqrrhhg1TUM+1EXVtRpM4IX19fF4QgxYv1/k+Ww28456/fEgTYhIaw3kvfdKqpIXcRxXy2b/6PDcua39wwej0SjS8eliybmNI5UlmSffNE3X4THGrGshkETGgQCCEtK5gIhNUzEIVdW2IaDSPOq1joqD/UGvD4x3C6fRaNTvb0Aga20yXQWBddsSY8FDJKUA0lw2df7mvXsnRwdaqg9+4AN7ewf7hwc6TXdnS99UZV1Np9Ne1geAk5MTNCSl7Pd73//udznno8mEGBhjgPx0NE6jRCl1+bHHNlZG+6dzb50GHPV7vjHgrGPAmPTBOued9ywQYyxKzrxntmoF0NGD++srq71U2+CdrZTEsiyjtO85h0Bt1Wit89O5jHQI3gfbtnWWJUXpf/Gf/ELdNH/1r/7Vd7/vfYvFggGlw/6lR3ae/87bOokb8HVeS8EZOFcRBZQ6RR3aghpjIDTApHWeoXAsWDJMaEROTDggEMgCWN9ihI4hBCDwRVsuynaNs9xW+bLMZ/NTjqi5kPL+/furK9PJyjTKEs9ZXleDrN8hsVSUOGPIccZRJwqEcMZeeuLKP/1n/+N8tvzq73/9+vU3+uOV2/d3yZv3vPu5k4Pi+OB46/z5H//Jn3jhu98zdXvp2WfuPbins/R73/ved7/73T/9Ez/x1d//Rj9KBMPaGRCi9XZeF+MklkEY55Mk0f0Egkc4o4sHaxmjSArBkRAiKRE44+goMM5DcJxxxc7Otz74Tr0cgJCh54wYMY7dYpJRcM4BUZc17MkJJTvdKxFxxrlWxJEJFjx1sK1umGFKgPMCEAIQssCgw1Ofia5Dd3JhyNBzIADfEbUYI86sdRwQ4Uyp1TUIyM7AHSEEFFwTc84xxECBAwJH8L67+IYuD4IxxkUgYp3eaJwMUEf37+4qi0+99/KDYmk5lIt5p0Fom8Z7Xzb1Y5cejeLk+Pj4+ve/N58vBFdcya9//esh+JW1zf/kp358f//w45/69P7+wWuvvba/exBF0dPXrp4en1gfALDXH/6Df/DzX/69LwHj93f3st7oBz/9mRs3bvyvv/priJhEESI60wAFzrmUmjG+Ml3r4ETLeV4U1aCfGmMiITrxurW2Q1pwhpPBSK0IUxtG4FrTyZgVc0KItjWCeFu0ZVkOBr1YRWVjuljKonIqUoPeMNVJEsUueGMMWTs7PJ6eS7L+MI0TzyjWuts2cxTraxudNU1oFTw569vGdHMJIWOMFSGfDEYJFw0FwfHC2iYitCHY7gFKhIjWWNMYFggADg4O0iyZTCYdrKPzIHVW1FgpR0TOSSmroox1NB1PQgiGgfUuUGBAcRzP5/MoihpbN9ZmWa8oCgDftu3q6lRKicg0F7Y1XgIH+Pa3v33nwd2PvP8ZUALAe+8dAwAQDGtjOg1aHMfd78dZV1XVpUuXjDGzxbwuyziOt7a2Dvb2Z7PZ5cuXkyQxTVuyhbU2SSITaFnkzjlwdm1j8/M/8Nl/+e9+5erVy7Y6DZ68d23rXLCKSUIi8IlOrLWcc3GW+CugYcui7I2Gk5Vp1TbWubTfY1wGQ845qZUxJoqiEJyzPhBxztOk19aNc4F5n8jYNS6Oo7oo8zzPq1wJwVVSVYW1VkWxI2faxvoglGKMu9YIjCxRU1bdtnmRzznnwTXe+/qo9t5GiW7b/K2bd2zbSinfeP3N3rivkrhsa+d90u/duXXr0uXHX3rpFWvpypVrWsXW2uFwrHWUpr04jlFIT0EIXlVVVZRKKYmyrusADBHLsuKcH5flZDgKBMH78WT96Pi4aUJeHFrvtdauMEmSzE6OpdZ5saDAmqoSyDc2Np688pTigIBtcHVVAYT11ZWNjTXjjVbCWluVebfHWubLLvyjbHPGqK7rNI1DcK1phoMeAHAm6royznaqe61l27ZtWzMSXglyNkmSDum1WMysbaMoKerGEYiAHX94ZXVdIL9z597iYVi9cSfe+yzLtNSc80THRZnHSlIwxyezNE2Pj48XsxMEtr+3+8J3v3NycrJ3eLBYFpOV6bVrzzDO67ZtzEnTNNbaLMs8AyllHMcvvvji1tYWMXbp0qVer6cEHt7dq+v63NbWjVt3CtOsbm5KFHVZMxfiOG5M2wUcMYIkjuumSaO4bVvfGM55Y62QSqpo/+h4NBqYulZMImJbVOiZQO6Nrdqm8SZJEhe8SqIQFBO8qJthf/iTf+6nj46OHKPj05NerzebzebLxY987of/4PlfQKXbplgsSxAqTqSb10TOGMfQA4CQ0oWWA2OIznuuJTEBjBFhr99rjSMiriJCTowRInBBNgDAYpE/+dg0y/p4chrHcbFcKCZ3d3fHo+nGxsb169dfffXVS5cuJUny6quvXr50ybSuaQqllFDKUwAGKEQseWtNvl8D0g/8wCc/89kfmM1m1trgfJb2a+N/6Mc+pySuTMcvvfTScDhansyavB6tjpdHJ7/8y7/8j/67f/KhD33oYPfB6enpj/7wj376059+/PEnPvVDnymqmigwCkoJxoghngXfIjfgtdbEzmRWQEAseBcIO2YZ58CMCxw5SoEc+ZnpJ4QQBJcAZ9Yd8iGQ715NoSQ9vBx3A2pwhACIXiBwhow9dDQhIwYQAgA4Ct1Q20l/OmPuOwOx78opEDAmeMfkChDgzEkEZ9+rOzl3X4jIiQIEood6aUQMBBDC2c/GqDstv3PkBs4IQGCkStMkXCuho/Ho+W/8XrNYsOmqo8A5Z1IYbxiju3fvpmm6t/egyZdd9tP5i+dX1lbfvHnzJ/7sn53Pljdu3PzKV77S7/dDCMfHxydHx2+/dfPZp59hgtemnc0W93b3Xnjp5YDi4z/wA+9+97tnJ8cq0ltbW3me37t378H9+6PRyDs/GPX7/T6XMoqi3d29nZ3ze4f7B3uHWqwzxiQXSknrjBQ6ktJ7D4zXpmmC54Jba3WsgeD1t99iQJcvX5oVebPMJVfD4RgYO51XzjeMMQ6sbGqATCqlVVSWlZRCCKH7mfKWetFpU9rW6KBtY5qmiaOIPHVp2NZa15qOXdCpKBnjbd10Q8OcL8dZnwvuiZCBc6FlnjN856jmjWeMWec454S8tdaF4EIoy1JL2b0J8jyPlB4Oh8YYCuHyY49Z703TOOdAyziJvbGdp3k06FtrleCn83lZVkop55xSEhETJWtryRMSRJE6OT6tmhowPHv1actYsayyKCYBjDFHECllnHPO16bO8xwApuOJUqpq6rpthBBJkjrn9vcP1tc33nrzzejq1el4/Pbbbx8zOjo4FEJcevyJvCxX1jbqMv/m89/763/lP//DF54v53mSamtaIoqEdB455zZYBsJ7L7QyjWWCZ1mqVBTHVJvaORfHMcgukZMchc7bwwjIh6ZphMBApHXMOWfQ9tLMNjbmijXe1nmstZCcCTaRIyWjEIJ1ba+feoZFVXKGcdoLISilZJLa1pD1HeJjmedCYtWUvrMAOu+9XywWeZ5zzi9evDgcDPZ2dyeTSZpEHHEymdy7t7u1sd3W5sGDB49cuKhV3DRmPB6vra0ba4nItNYbLyTGcbS6MqHpOFa6KKq2bZdFmWWZc+7k5ERKWbXNcjZXStlAURQFMqfzRRzHk0kvjmPFhfd1VTZPX7na7/cjoQIFAmhMmy8LAEizzDkTvPecccYY+fn8tLtgEXnOeQiutT6EMBimxqqiyrtjR3BFpy8VTJ2cnHDFB4NBFwzVLRKVTKxrbaDAcG9/r63qKFJCIhN8Nl+21nGtpFTx6sru3gGEgMjLqhZSSevy6nhra/N4PtNajwYTCHbc7wfXcORiMiwae3R8crh/ZExTLpZPPf7E5z7z2X/167/2ve997+qVJy888gjnfD6fdzoAxhEFr5q6n/U+9rGPffJjH2uMW5YFUbj+6quP7Fx48803hVICOSo5HQ9ZoLuHu5GMjW0CkLXWBt/1FlwKwfni9FQIobjI8xyICEOvN+h8+eTBGNfr9QaDEXWxQqFcGYwGw7FzQWrV1K1SyhhjnQGAT/zgp+q61lozLg4ODm7dvv3hD3/40fMXpMKAwTs2nGyclMvKklAxBuM9UAAQSLYFohAcMgZKOBt0KiwxIYVpXSACpLa1jDEpBUcuUYDEWEj0sLKyQox579NetrG2WrWllLIf90zTPvroo+fOnavbxrtQluW9u7tbW1tCSeMsl8oaK7XWWnf1SWuwtnXO+UCdHLppW+dD1IvbtratYbPTp9/93NVnnh2Px9/41tfn8/lkMrn++o3XXnvtz/7ZP/c3/9rPXL16Len33n79zW997Vs3b779N/73P3s0O5mMRoQkONMqllJKziA4LbkSSMiJPAcGrENYeBQIQJwrQSyIM9su73CRBEChMyd11Q+RMSCGnBgyxrqxknPpnAMgxjhAFxPeMsYCekRkHIAxREYMyIdOh9XpK89qNgGXvAt3ADgLeThjqftwdrAFAAB8GEf4sKz+UTIxAHS0Z2BdGhDr6BTdEE+hK/m8m++7akxEYn1z9cDVZVvHw97+cn44n+9snw/WZ1m2v7e3vrGhlJLIX7j19gsvvLAocs75s88++8EPfvjqk0+99dbbB8k+ejZIsyuPP/LiKy/7tc3FckGhH6Xiwf697Z2NXjxomqaf9ebzeVU2ZVkORuP5fJmXVRwneZ4rpa5evXr37r3t7W2lbOOMjFTTVlJxxlhVlSGE5XwRXbrQNM1isRiPxxyl5GeuMuMtEzhbzOI4TtOMGFgKk9UVQDheLh0CasmlXjYVIrpggjWR0saYyXBEyKxzzlrnXNO2UkpBMIwSX7YIQAQHR0esc+43jXXOGNPr9YRQxjs4a5O6UxxH5EopKSVXrLSt4logdwwsUQBobMs8s9aatkYCrXVg6Lzr4jq6h10XdyqEEIhaa44ckA3StLS2uyRIraXWy7p0znFgTVVrrWOtEXE6mWRZtlgseln/4OCABZJStt5rKRHAAZCzx/PFrXv3FvPTRx999GA540IxjgHROd9ao6LIOMu5qPO6ruuNjQ3GETnvsl845/EgunHjxtHR0YULF/6zv/pX79y+fePGjTfeeIOQtNZNWS2rernMP/ihjxBS3Zos6f2d/+K/+k//5l955OnHuG1sIMF56DInlBRCFMvSuYCCE1HdNljV1rZCaRSidaaTRRADFCJTigtmjBmNB1Vd16ZVkc7LHAkESsu51lqgSHTGrEdgkdKKd95/B5zHWttgwfpIaSR0zhED15rAmBIy4RI5AECSRGVdaS0ba0IIGlWapm+88QaekaLt3bu3t7c3OYEA1hT5/Pjk3NZ2qqM3Xn/z0e2LFx95BADjOB2PJ03TIOeIaLztD3qRUgS+10tN3Xhvp9NxXVbOuSzLurEsiqLZbLZz/hwAnMxmSvM8d6NBsrOzs7Ozs7e3t7KyIpERQ6mitm2XTcsFA4CyqhhjHY60k+/OZidxHPd6qYyTbt1VFAWPuZSyLHPOeSDZrYiapkFgUkrBsDU1CDaZjBhjxjmhJBHjXEopo0hxy5QSjOPm9pZprHPGOVNV1Xg87g36t+/eL/M811pKWbdtFqdbW1vzfNlL4zhLrLWxjpw3y9PjJIlaFmzTIoIjSNP4gx94b1U9/fLLL5/b2tre2CRgP/Tpzz/37Pvyqrz5+htb57ZHg0G+LDxQaZ0QQkoRQpgtlhK5915xwRCefPyJ6WB08+bNne3tne1zp0VeNfUgTrPhqF2WxKA0jdZaEgcAT6GqqiiKkizt9XpHB4ccGDBmrWOIQioV6b29PSakp3A6n3HOTXA+eJ/buqhP50ut9eUnnjg+Pj7DfSixyHNjTGstEQghNra3amN3drbL2YlyXuqeSjJlrWnq1jsIDLkgCExAMAY5766MQKjiBDjHANb6SJ75VDr/LgIGGzxzaRwHb31VMsastcaFQS9e5MuqLlYmUw58WS6EEMPh8MFr1ze3tj72sY9959vfvXfv3mA6no7H3Q5JCBRCmKYNYIGREIggrbXeWQYkhADuMZBWAlGWZfHoxccGk/Ha5uZHP/mp3/7CF1ZW1vbu7331q7//5376z//0X/zL29vbH/3YJ6oyL6ryF/+Hf/byq6+87wPvNcawQIqjVJzIex86slDXFKLg5BlA8BAAITDigEQUAuME4AME39EcGRJngMg8EDBkwB5aec6gIu8gOzoPCwAgl4EIkANj3fcNgUIInpNzTksFHEIIjJ9dmgXyzjlCRIwj/FG1BdYFFyJjD4++XYoDQ8aIueApUCe67sZx5GiDBQDqaFln8zGdjbyBkAE/C14EAGZDEJEUy8MHgjE5yIbnN/k3eb0sZm1D1o2How9/4IO/8v/+/1y+fPlLX/xiB/gOUfz9F15aW9t4/PITFx55LE571oX9g73X3rj+3ve+Z3f3Qb6cr6+unZyc9NPkxiuvNI35Y3/sj33jG6/3ej0GoSrKyWj45ptvTKfTjY2NfLHoBnnG4Dvf+U7btleffRoRicJwODztzZMoXixmzpmiKOMotd6dnC4CudFg2GmdBpI3jMfjFUAmOPpATWO4D20gxpiSkWMugHeuk30qHfWHWUIenHMHx0eMY7/fD8E7oTwjb72SGgBCgKKoyMO58ztKqb37u23bSqltoLapEZEcASCR7yyzRKx7b5nS8EglmCjGirat6xoFJ8mNa03bCOQsUN1U1ntPoSOP7x3sp2mqte71ep25pWNyuRBaa42zYNo4jk1rGGPgg3UuMOzKdgezRCGEEOurqwSwubnJGKvquiyLJEk4Y6TlWEX//N//9vF88ewTj5/b3rxx91acZAiMJUnZNkVRYFVKKb1v3nzjxrVr17I4bqwty7LjUfd6PUScrEy5FIt88e3vfidS2noPiK0xg2H60Y99Yv/B3nA4EkIwzh575Hx3MIvTRGmtXGtb042YWsUh+LZtlVJ1uSRPKHgXmcI4IgJXAkILhFwKqXhtTWDY2iA4r9uKCQzG16buEpo5Mh9s4MJDYEjWtrPjU+fcbDFjjCVJorV2ziJj/aijc1gmRNbrnS1aleJC1VUhhDCm0VIZ07jaAkDhl6enpycnJzqOGIeDg72iKJQSJycnKysrb7/9ttDq6tWn//3v/G7r7ObmplLq9PQ0STKiwBgIyREx6cfdSt85Y9taSEbETVv64KbTsbWWcxyNhlVVjccjgdC27fbm6nK5HG2vD3r9JInu3nkrz3OBIc0yhmqZl6en814vXlmdLJdLlKKf9gGg602JyHmq61oJWVXVvXv3iqLY3Nzc2Nqcz+d5vkiSBLHr8RBRBOcVF84ZgbJta8ZR6ng4HBZlTYEYYpE3rW0G/UFZtW+9fbuuWy2jnZ3t4XjCKCCKum2uXXkSAPb3DwEAtC6bKsuyxx+/LDnrcCWSi7r2dZUjDyh6h7NFkiTDYb9t6+BbFPrd734XY2x3f89775z/7ne/DwB3b7/1zDPPfOijHxkPhlVTj/sD61zbtiJSbWveic0IwUsutBa3bt9+7n3v6fXSF15/TWs9fuQxQFKx9DYopdIkqcraWhsnSdu2UqnatWYxj9OEMTyLIYm09z5NU8Fl27aPXHx0bW3t5OSkQ+zNjk5vvv1WXddXr149OT09Pj2O43g6nVZlLZXo9XouBO8DOb+9sb1YLDZWV97/rqsvXb8VDePKNL04tUyUrAQAFJ4FxXzwAL62HXGx204aa5FrQEEEHKUHCs4IzgHRk6uamkuuFWKanJycMMaMbay1WmsuWF4WqUqiJKmq6uDgUCl17949Y8yTV56y1t57sLs4nV3YOc9Y4AzrspICvXGBddVIddw9T466cuMQGXoKiOi9/yt/5T/923/7b/+Fv/AXlgfH/+HL/+F9H/igkvqNN28OV1f/4X/3C5f+7W8s8/mlS5eefOZaXldv3Hzz0qVLimMURVxKifwdyoIQ6ELoYmgAmA+BcQxEnY8IEcm7MwY4socQZmBn9+OAiAxYCAyIusB29Gfcx04x40MAwbyHEIADA2LE8EzMFRgSAaF35LzjTOBDnyGeDdsE4WHyAhEQBBa6PXUnbGaMATIKBOwM7Nz99rqRHQJ1198zYtfZavos10FyARQ64zAjxrswBwLBGKfGSxTDnY0SnCkaq8WHPvmx733jW/1+/9q1a7/+a7/2sz/7s6srK//iX/yLLMucDU1RxkorpRZ5EZC/fe9OaxsDxISwLqyvbfbTfjXL7925myRJ7arvfPsPv/0H37py5cqdO7cuXrx48+bN4XColOpsD1orY8zGxsZyuWyt29nZ6Y+GWZZVeX1wcLC2utoV/qa1QoYQwHsPwE5nCyISEgVimqZCiOBD1bTee+OsVFIw0RkTlZDWtVGkOedJEgmly6blDJumSbK0uz4qpY4XuSM3HA65EMa7qig556ujSdccrK6udi7evKqbppFSIqFSwphgjGmdjaIoBG9tG0cKmQiNMQSta03TkA2ylzhvQ/CeqDtqWGutd1EUccYBqAtS7FZAbdtKRMY5Y0xKGWttKXTqxzMbme+WigEQT09Ps35v//AgjZNul9jB/7z3x8fH4/F4Mh0ZBsG5B0fH4/H08UcfWVaND0Cemqbt4iZba9qitdYWVV3XNQB881t/YJzd2dlZmUx5whljy+Wiqkrv3cl81uv1pqsrFx65+PSzz7TW+eCqqtrY2vTWdaTPpqnk1vbvfelLyHljrGu90jrP87pqa9EMBgMgcN4xD4Gol/Vn+RzARZEq67KqKuIMBTAk6xwAOG+0Vlzwtm2iNNFJ3NQGEAQXZ4hsZIG8tcZ7N5lMbt++3emP+lmPMaZUtFwuy2VOISRpmiRpV++llG3buqpRkhtjGAEQSa6UkEmSVaY6OLyro2xlutK2da+fXrhw4cGDB4PJ6pT8jdtvO2Bf/OpXbt69s729BRpP5zMdR5cuPZpl2enpaQDq9zPOOROckc/LvEWcTqfW2qZtvPfIfFVVrfNA2Pmqy7yItKxLJ7na292nVTJNG+skidLFIhdScsFO52Vj7Eo0QURArFtT10fjwVhKfXh4/Pad265tLly4UBSVQLa6urq5ue0p1HU7GAzSNJ3PT09OZv1+31orBPbSrMOLMsayXuyIjo6ODg5PlYoQMY5jxphztjWtJ2qse/3GTSLKy+LRixcm476UDAJZ0wDh5vra7u5umS/TYX88GTpvyDMpZRonxjYD3ctSnab9/ZPZrXv3jDGf/PjHtdZ1WVRtXlVVv5ei9B58VRR7h7tXrlxZzgYvvvhimmZPP/20965oDSB7iAh2zoXFYtEbDiIllZT37u7mVXn54mOz2fLy5cucYZcWFxC7q/Yiz7WUmqvFfFmWZdekcuTGWS5FU50F1y+Xy2qRR1FUzhZ/8LWvr21uGNMyxpqm6U0mHz53LgTXmLYNbuPcdlPVx6eny9P5aDQ6ODiYz+dJnK6trSVJRkRJ2vvoh97/zT94frx1wTbu/Mb2zetvCGQBpHU1AwIXOhoBcMEASfBAxLkEwSWTTdsIHQOywJmH0LZF1OtjoDJYZCpoYa2VincAL5SCC8GcK02lMUqzzBizsrZy6+3bVVV1O0+lxKg/cMY6b5o6IGLjyBuLImKMWWql9EIKZ7wzIYoSKwMwBN8KFd166+0nHr300fd94Of/m5975rl3/+/+879x586d7774EkbRhz/+if/q//y3BYqD04P19fXpdPrgwYPT2SyKojSKiVhdlCyKu7Mo44CI/CzQ3jPGEAAZIgPEjiwViDNHARkRC54I2VmaIENGXeQRIguBqNtbAUJAZME6xhkHCCwgyq5yIwrgxIAF74EYEQCg9Q4RkQkg9DY45xGYEoICBSAGARk7i0EMAQGY4MGT82d0TwRGneAZ3MOp+KFAmoiIhJDvCKRZN7Q/ZHcAMAoA7EyJ1UFIxNzSzaIoXP2ujc39ZUUMJue222W5vr7aNGZR5MBAxcnf+Jt/83/5lV/hQjAgqVWaxoyxt99++8693aLK82Jh2/bedDUSPO7126bq97Oiygej/pNPv+vu3bsAcHh4iIhra2t37txBxIsXL56ens5PTxmD5XL5wY98WMfJdHUljjPBJAVkwLOsX5R1Fxu3v7+/vo7due6s3wkuhBCniQdERkkUh0CtNdY7GUeRkKZ1ECiEMOiP6qZsmtI556AY9QcMUUURQzTGFFU5Hg4HadKU5QgFBLDE+/3B/aL65je/+Z73v6upMFIRY6ypayRIdNS99M4ZD4QSI6FcF+2Qxt57V7naF4xBY9qyqEzbjtx4NB1XLsznC/AhSRLBuJRi2Bs6ClLKum3quqrr2gsZRZFA9C54IudcbtpuxEnTNE2SiIsO/VGWJTmntb7x+huj0chb1w3QnbCz1+vt7OwkSQIsZMDv3b6lk54t7n/+s5+JokhF8Wsvv3Lp0qUoTdq2yRfLjn7Q7/c3n3zixRdf6PIztFJ5vuSMdaPwcDz+/d///QsXLpw/f74TOllryQcVaRWrPF8wQm9braWUXHJ5/9adOE5N7SIe1d5N+sOyyufLYnkGRRFa68Vi0fWJxhkVKRlJxkEobr1zXc9hPecKgBV1lSSJD+QdqSiGQFrIztunOJqqiThHxEWRe+9Hk6H33npDHpRSSglykismpSQWOEdrfF1V3gYdRVVVIWKXR8sY6w0n8/ncOFhZ2xqPJ1VVYbVc7a0fHZ2sbmxubZ9/8K19Y8zxyYkz7vEnn5hOJ8fHh2urq6uTKQoupZxOp0VRnKVoGJvnuUAuuCqWJesy0hgL5Pr9/oP9Y8Yoy+KTw6NIK0aotKjremUy7XRhTdM0jTk+Pt59cAcx7vUnURS99trrW1trQgsdJwjMe6tktLW1NZyMH+zvBh/O7+x0m7FUp6eLeQhBSsW5HI+n+3vHy+XS2tbaNrl4ERiNphPXmsq0ZVlbH5RSKtK2NR0eznpT5E1vOHjs0uOPXXqcMXZ0uB8lumpqbo1SUSyjxpjFYrG2tqGiOARXLJZdMChj7MGDB865rt3ptwFCeHDn3tHx4bUnn5xMRnXjvAuPXHj0+e/84cnJEQDkeTmZDpTGZ9/z7pOTk9/8nd+eLRcXLlyQWmmtldbBNLPZrJ9lURorJa21BP71119jQkx6AwAwTYuB8nyptU6yVLYYyKU6llKVeSE4Dvq905OT8XQcQoiiZLlcWu84Rw58Mhm7uksLiDnHtqr29w+4ksaYvnNFsey2XEmSlPN8Pp+3bZsvl4vFIo6jzc1NAJjP58tlIaWcL8qrT1/x3tZFmSS9Ub/3wQ9+8Gvf+ppWMffkgwnBBesBBUBAJjyRTmIPCKjqxgitAxD5EKAlxoEB51xI3rQ1ACgupeRdMZOcOW+kkDLS3ntHgSNTceSJatMMBgPgOJ6MB9Mxc4EBmOYsCcAYIyNNwIk8co5KBAApJcduyKGOa1tVNTH29u07H/rgR77whS+UrXn/Rz9ae/9/+b/+N3/4/Levv3nziSeeqJbFufNbiHi6mF/cOb++vr62ulGXJWMsUtjN1tYbIYTxDgDIEeccAzEEBCBg5AMBeCCUAj0wDgyQiMQ7liSBIXQpgOQfwqRCCIxxxpEFZIy89xIREJAx5zwEDwAeEAC4FBQCMmacZcQEFwAQyHHOGUGXEh2AGCdigYAhAYXgOREFjthxOoCdsScBiAPzQIwY43h21qUu/fcMK41dnHGgP3JVIXNEAMS6+ykBIxDP/rEfZu+60p4Wn/kzf+p//t9+FQgODvZu3733iU9+9K/9tb/2xS/+3oc+9rHDoyMH7JM/+AO//Ru/kQ3HdVUcz06LMh/0+qk+Gfd7d+42X/nql1/8w29duvT45z7/+QuPXdrb359srWAmlVLnzp1zzr3++utlXY0mY0T0FF577TUp5flz51588YXDw0POOeM4Wy4Q5Hy2NOZeUVScC0RuvOsnA2dsvphbH+I4juN4NBohAgJrjMWAk0GvLCsGkMjIoAvGtQHyItdx1Ov1vKcoTqM49d5KIZvGSCmllItiYYyJpJrPl8Ms6Y9HAaAxNZOKAPr93rntTWeslLKuKy21bQ1DcWb/wtB9AIwznPPQUXcEcq1sWVsKKo7BORIYSMRxDJ56SaaFCt4HD9ZaCFQtq/64r+JICBFFmh5GJNVtW1fNYDCAEOqy6r5jVZQCeem6SAYdx3HTNINe75ELF4qiYBwBmVIKAAaDwZ07d3Z2djhjIVBf8t98/vmDg4P16Xp/OMiXy8FouLO13e/1+oOB83bY77/88ss337z54Q9/WEr57LPPKqW6EtKtULIs6/ezg4ODRy6ev/b0tcVi4T2d4cO8a2xbtQULrG0a15rVjVXvPQLYylhyZllCCCyNIiGT/ohLXdcdXFOUpkii1HcfA6QAPopU29YCtda6C1/iTAQX4jj2RE1rGuOiJNVcNbZBKWpTM8YAUEWJKdvlMh+MBnVdMYGxks75Xj8LwRF41DKKY4BgTKPjREgElCLiXZkXQhhj6qaJs14i+XC6kmQD54I1vq5n62ubrakHg0EvGxzvHV2++OgffvNbFMIz164Nev26rsajQZZljMu6bm17eufOrTRNx+NxbvOqLpSQTKCSAogBoBTCtGUgB2SSJEmStCiqLOtLgYxIRziZrDPG9h48iKIoTvR4OlrbmJrGVqUjkGkvm06GSiNyrqIkikRwrmmaqq4r225tbZEPzvumKJwNVdwcHZ1kWQIADIkxvrKycnxyiAgbm+tFmQOAEip4kCoZqkRKHQCCc8P+QCmxmM9jTD35o8MTF3xelb0kPbe9rrWs8kpIUZblcXWKiGVZG+PSrDefnQYO0+mqC+H4+LhsjRAizlKyUFT1MMt+7Ef/2C/+4i8e7h+sr69HWd/kzb27+89/+4Vnnrm6vb19f/fuaDS6ePHiiy+8mmTpZz//uTRN1zc3jk9OLIXJcLBYzHu9XicovX79+tbGRi+J7+3edxTWVlajJC7qCgjyPGcQUPNYaSKqitKYWRKlnCEAjAYD15g8LzjnURJ3/lpjjFCcBJZlSQJXJuve+8dGw9l8nmVZsVgopfK8YESDOA029NZSLVUd2qIo2rbp6DQhhLatnQtvvXX7Q5/42Mc+8dHnv397I+l/4w++9Zkf/Mzm6tqd+0dCk3NBMGbaliFSCIEBcGxMy4Sm4LpbZndxFCgBAFC2RZ1kvZ5KJIHJm52dK03ThOA4V8EHT8Sl6ORmMgStdV1Xly9fNsa8/PLLjz76aG8w8BQ4AeOIRAwxThJn/GxxOhgMUKruVsk5A7AUHHeCc9Z6Jxi3LBRNPVpf/W/+4c+/fef+d1548dJTT1x/84aKorIsnXN37tx56z/cODo6euqppz71qU8hsOV8zjnXUnXiYWstCux0cN57pZQQHEJAYCEAE2ccK8HQWxe8FyQ45wIYBwQACsFy1qVLwDtIKUREdDYg64jdAEQckYIHAKWV994RBB8IGSFzzgIACgEdCMMHxrlgzDnXheYBBYbIqINunJEjgw+Cc84QATrsQQhB0FmOQmDgfAeLxg7MeSbJ9oHxs7GYCxE6cCVjD/lff5QuLK594EOPsvf/jz/33/72v/2tTGXARAhwYWfr8PD45s23v/il3xuPhr/zG//uqUuP/Rf/h5+VyH/zN36DCzEcDtfXV6t8ub46sNavra0Rg+naelW3N27ekjpZ5MudnR3j2tqZ27dv5cXyzt3bg36v38vKsnzzzRvf/MY3PvnJT/aHfc/gsccv3759W3GJwGYPju7t3u0Ph0mScC7rKkpkbEob6yRJsqapNtfXAKDMl8PhMMsSVhZ12+SGk6BIaaVED6Cu28pUk+HQBV82hQs+iuI0jk3NyqZCYlVVKSEZoKttbYKQeMKAcVRRVBuXSq0YWkePPXq57O64QBxCU5sAbZZlAQgDIDAJQghWlKW1Pk3TfFH2+2ncS1nT5MtcSim5yHQax2kIzjmXpj0iKst6tlgmSUIEZVUEBlprxrE7TC7yJSIGyevggnOI2LZtJ7c2xjjTEuPMepVEcZrWeZFlGdcKgIXguRSDNGqbxrYt8wFcWNi2F/Sdg+Nmefrez3520hs8f+P6xQuPPvHEZeMcQ2CB9bPe1aeuHu4fNmXlvZ/N5pJjpHSXpee9vX//fq+XDntZP+stTuZN08Rpap0jIo0REUDrB1mGgwljUFZ5E8Lp8jRnrqfS3eMHJMjOLYGXUvam0/WVVeNNWVcGWwYcAMEjcREYWh+yNOVCVHWLKJTiTTAMqWhrKTlnQilVloVCkpFoQqlSyQwD54IWe/sn/8ef/hvrg9WTwxkDplRE3Dlg1rqKXC9KiIWqquIobRvLORecrDeccyUiZ6y3rqoq27RqlYUQemkms+j+/fvnN8dEIZDfXl3Ny0KgnU5XOzpSLPnp7IgFGmQ9Tk6wtt9Llsvi5OQkSRLB6eBwb368GE0nSZK0bT2ZTJQSACGJhJBp29p+pkKgRGFvPKyqqi7Kw+OZ3XN12Zw/d2ExXxB5nM9D8I88ejnteeJorOc8ISICbEvTloVSChjrSGGubpGxeV7pKFURFlWZ9qLRpM8YQ+De+36m5rOTm2/fblo/na5WbdXvJyISiYzni9O2Kay1Qqi6WHTiO+eoqqrxeMI4rgGcHp+4hjIdj4aptW5WFsYH5wxDtERV20ymK2VZ5nkupUzj2BkzHU84FwxRStnY1hD91F/6SwChMnWcqH6s67r+U3/yT/b7fWPsaDAhope+8/I3n//O+Z1t5+xHPvIhxkKWJrPZ7Hj/IEoiY9ooVXt7u9//ztdPdh750Ac/cm/vYG24MthcPTo4DEBC6+3tc5zDyfGhkARMcCEFYWMXOlKCKeeN1hIr8mSFyELoDjqsLGtOTAiJXHAhOecu+LXNdReCRO6ccyEwxu4/2B0PR52eXyi5urpqrZnNZnXbrK6ttI0p6kon8dHh6c//g7//Ez/1F+tqnvUGv/XvvzjMUlQSKCjJXVUonZilEUG7CJEJZ1yqMuMZIAZiDBmF4JwTijlbSxG1daUilSgQbvEjP/ajdb4ga4KOgJAMOeO10rESRV4wHxjB4nSutX7q8hNt2/q6ZYx5gE6y55wDxrjEXpZxziUX1lqOGEJQOq5Z7YG8D94T51IItbahbOsu9YbD9Y2XvvO93/5fv2CM8Zytb22+68rTi/2jm6+8cvXZZz70gfcNh0OttQsBBA8CtUxCcEjAPCjOQqDAODDeeYaIAQQC5znn4INn1F33AcADddF2wXkOjIXAHl5bERh0T8vgY8GBAjAGjCstiDzwThUVCILWuluSCc6CISUkdVlzjDjHEFwAUlpZ7wARGe82HNZawZkSAigAYTAuMKid5Qy1kAgMA7XWMYbAEQKhwDP9s6DOpNT1GYKhDQGsO+sbEBkAA+asY4x1SYXiF3/u779x++3Fg8MfOLfx4uvXgdFkMrp3716W9b/whS+sTleyXvql3/2dD37gA5//4R9eLHLvvSfo9Yd1Y4q6AZTT1alKEhlljz36+Huee898Pg8BLlx45ObNGyi5FnI2m914/Y18sXjuueeIKBCNRqOPfvSjKysr+3t708mk1+txYLOTk6IoAtBg3LfeVG0Y9kchGE8mWEWUDQa9Xi9dFPMOyDdfLpRSWgkuRXcu3d/fX1lZCdYmSdLXQ8FZYx1y0QYXQmiMadpGMF43ddtaTNDaBpBFiSZkSAAEy/k86/c5Y875JIn2HjwQUjvnIFCHio2iqIuiZEI6ZxgAA65UpBQIoeyZVh6TJK3b1rQmiiLnXFEsuZLW2tZZKaXQnCuOCFLKvYMH02kYDAbYgb8DJVEspSTvrXFNVQ8Hg1aqTuzKGDglmQ9t25oqdLot7z0K4VpLQnYH9TTrv+s973EhWOfHWXZ8cHJ8fGycvbh5zgFsb29XVVX6hYw0er6c59ZaLeW1557J8xwFT+NEa9VURW1aT24+P93du/9Y+liWxD5AKlRrLQq+WCxkpAUx1oT1reny+LQt58H7Xi9tyb394O0Hh7vrFzaiXpw3ZdFUUso4i5RSVVXlVR6AsqTnva/KhoiQIJKqNFVT1Vm/xxkG8t57ASxJ0/39/d4g40oCAEphgw+1HyZRHTx3oGR8erJ41yOP/7kf+U/efPMtrWMWCJngXcxJCEpFrbVlWSZJ1jpLRN3+QAjhvZ3PT7VU/X4/SaKyLE9OjrTWTVVGUnGgqqqyLBtPJ4hoSU8mo+U8j6IoL4recLC1tSGllELk+SLLMtO2CGx9bYVByPM8ABF415oQRXVZC+RdU9PvZ85bIhvHadM0qDEv503TFHW1OClu3XpLay2QP/HEE12nb30I1Il1fVmWzoWqqkajMWcYKV6UJQAIIR4KvkKSpcGzsiydM5PVyel8yYEpFRljbJJdfOzx0WR9b2/v7v291ckUHI+ilILz1kktGGN1Xd+//2BldfX27dvb2xcaY4Czja1NIur3ewhovW+KkjGWDXqnpzMAkFp5Ch2qJYTQGsul7A0GKMR8voyiKBv0q7YRShBRHCkpZRfThkIqrVeSzFobS0E+zGazlfW1z33200Lg9evX66ZcXZsqLbpIRESmtIBAmxsbP/WTP1mVRgpx786di4+cHw2yvf27nkJVsyzLhNRZPz45ORkOx1VVCSHSNHXWOnKLRZ5kMZfYlGVZ5iGEqqq4FFmWFMvaOGtaO5/PV6aTtm0TH3ygzpC2vb09m82MtQfHR865oszTJJtOp/fu3XvqypMq0lVZCyF6SWp9KOt6kCbWmJP8SGdTU1bL4FkceecRmYpVJ5h15HkUMRUHFywwz1gIxJApfsap8MFxFBDIB9OQ7UkVCf7YY5eWy7xpTJaBtdY5l2axD21RNCGEpjZJkvR6OjjPJVdcewqMIWficO+kk0k3pkbESMaByBgjhIBAQN45klIqzp0z3vPOpMQYk1p4Txsr4/GnPr62sfpgd18p1ev1X3rhxU9++gc/+JEPjCbjKImTJInjWEptjfWSXDBCIufcB+vp7PhJDwMHIQQpVFd0jTEAoKQ800YBee9ZIOjId1J1a15gDKirqp4xFrp9b3cpDsQYdF8CBBQgWEdEjgILDJCBwOCdUoIx5pwhIKUUILnWEBOccwTGGTIpgTwRhUBSCucdl0JzdM4FBkJw57yUMjDw1natG2NdfCHrbtvdkdQ+VGh3R2IXfLdQRHGm4CEAMXvjrUf7/aMV+Oo3vnrz3v0kTU/mM9PayfnJY4899vtf+3qap0AsX5ZFUb16/XWGcntn56lr14z3J6eLe/fuJVl/NBq9970fvnTp0vbOI5OVmsCbpu0UmK+/9sabb9wAgNWV1ccff3y5XD7Y25NSXnn88mKxQISTkyPx8H++rirggBKTLM2yjCE2plFKe6LaVCfz4+555Jyrm0ZKaRwF8CJ4LoTSWsVR1TZVVZWmVTLqshOqphRacSmWy6X3PuKyruu2tcYYQjYcDvvjIQEogNbaNE27s3nrHOc8iuO3bt+ZjsaI6K3rYoK0kkTUAYMYYyG4TunTqSUBEsZYAOoioQCZEKI2bSRYnMYAUNVVkiSTyVBKZeomSmLGmfdeIhfIATkK3fWqQvk4SwVHrlUIgTFARI0I3qPgRVV1wsLgPONMRvrM5sgFEIRA3nshRQTs+Zs3rHO9Qe+pS4+VplVKBbJ5XTigoq7qukUC73UAGk3GRADITmanzrZpGs9OTowxT7/7Gcm0A0qyLHiQyGazWQfjJfLDYb8oirqtgHA6Hl3Y2f6tL//u//2f/cJ4e2y5jwaxj1gy6WdZXzBsXd3YRkrZQW0YY0kcL+bLqij7/b4Ssq5r771QMoqitq601t7Ya9euLYvF0ekxIu+4cIoLZ6xTqJVkgTiwDz3z7o3+OFI6yfqHR4dVUWotvbH9bBAEeuvStOfPOiRmg1dKtW3rbDsYDIiIIRnbWG+UUta2kqGBkPVSG3yvn0qlGBeD0dA5t7WyuTIa3j7ac8Fe3N65/eBOUVej3iDLkrJYLmYH4B2AGE3GqpTBhaaqjm4eEdHp0anxbjydqEgmWmkVI/B+r5cXC2ttYywqLUBNJmtJFlem4Voen87byp7b3gnoO1QfEcuybGVlJc+LvK6U7hkf8vlsPBm28xZRoFBEdHxw2B/0tra2UApjnPfeenKBLcrydLkc9geXn3yiLGsWqCrztmnSRO+c22naalnkeVkIKYHjc+95Lo5TY0wIMDs9ZiiUUl2zO5vNtNYBCBD6wz4iGmOcs3ldcc5VHDGOrTWtNTb4g/v3RvVodXV1Npvdv3fnwoULi9NZr9cb9PrLPJ/NZlLqNE3jODbOdoAOlL41/n3vf1eWpN/61jf29/c3NzcvP/G4N0Fy/mDv/vbG5u7u7t6Do+FkWlWVte3B8V6WJY1pnQtvvPHGyspkOOwPhlPGqJclAOBb7wNxEfqD2DoPgJyzqi6yLOMSAcLe/u6gP0GGHNDUJs9zBFb6gnFEKWbLRfFm1Rv0dZZorZqmWVlfPZ3PT/PF9vkd4zzv6INERFQs87bK+/EWZ4DgGRmVSKDgmwY5UGC2aZ2tgSF2DhziwDkxgQKDC+R927acIQD61sRZAoFRAATmHaFULLCV6VprQgjgXEBgCEwKUT70RlZVpbVWSmmpPPdcKgQOAAcHRycnR/3+MIl6RN7attu+IjBABox3GiFC0kkMPhhzFsEbAlhrGYT+aLi6uSaEOtw9SJMk0ur6G9c//KEPXbp8ebFYxHHcXT2llPgwapAp0VlsmeAcgMB3riOt4y4Y2BjTHdq896G77wJ1az8OrINjdNvns2kyUCdf7OICIRASIGNIDBGRYaDAu4kTkTMIgKgkceTQaagJBGc+EACEIDiKLvnBh+ADY8x5T0iMMeMCMew8pwTggrfeskAy0t22uRNbeB+894KJs8U1nAVLdGrZ0HmZ/v8zg7tQJpEyOnr75vTqU+tPXXzz3v26rAjYaDgZTsYvvfQSMeCcX3ryiTffemt37/Cf/9Ivf/9733HBL+ZlnJKI4nMXHzs8PCzq5l3v+4CWqmzbLEu11sZWP/MzP/PlL3/5t3/zd7Y2Nl555ZXhcDCfz2/evImcx3H80ssvSCmTJJFC13WtZcQAJpPJ9vnzvcEgSuI8z21TjcdTgbptTJkXi9l8dXVVdhD2psnzfDKZ8EgprXWWEMf+ZHR6esojVbZtUdskioKzyLgWEoXgnJ+cnByeHoQQhr1hCCGNdBSpxXxhTBuhSLI0BEOMcS467vRgPBL37x3PjntJulwuEVFFul0uEZFxGZzz3nauIcZIxUrFqnMlueC7bBnGgIiMMVxJG7z3nivJGLPOAoCM1M7OTggBAZVUAqF1znvfeTGddyGEonLe+ziOgKNALIqlINRacymVUoIhV4oh1MF777x3wTlkPDBHRBQApDg+PTEY1kaT8Xi0MM3pbG6tXy7zbqDs/hBrbZIk1p5FXgNAHKXGGESxsbHCAFUam9aVVWWtXywWhGyQxIwx4QBQcJRb5y4SEff+wf7h3/q7f7d/YTw9t3YwO2FCDIfjum2NM5VzwVsVacbRWssAgnOcyyiKugBtKaVn0HWIiCgkSq0AQl2Xp6enw14/MGhbo5WyzrXkWQCP0DpHRLf27t472P3eiy8dLWaXHnl0Ol5B4IIzCOQb070EUkqtddM0LFDbtnEU1dSB4mCZl845KTUREDGVRMPhsLPqahW74AVyIKiqaqCy9ZXV6/fv3n+w//j2hbKo1zY3FI8oUJb2L11KjTFJ1m+t4VxyJhans/msmI4nWX9wdHoS6STNsvFwpJRaLhZK2baxzoFWqfWwdaGnT9PD06Pt8+dbQpX08uJ4/+iQSxa8f7C7r7W+dOkSco7IViYTxiCEMo7jXq+HTDx4sO9C6UIYDLPJZExEBwcHcRwLrtJeZq0ry6UxflnMXTBxlyDLojzPy7LIssTY5ujoSEfRk09eISRErOuSM6a4UnHkXACEqm7atl3bWKez0HJWlmUHeuNcGGsRsa7rWA/yPN+9d399fX17e8s0TS+Ogmnf89y7pJTBeedcWZYoeAA6mZ0eHh+trawCgHNuY2PjdLF3cnLyxvXXH3/88e3t7cPDwzffunnx0QuHe/tra2vnzp3L8/zJJ65877u/srt/kGTp1uaFV16+kWTphQsXDg4OJ5MNHUWBtBDIMeTLuWA46E+IqDKFMW3XPEdRVJa1815pwRjzIeEMm7IQQjjXhKBCYGVZxmkynkx7165VVcU51nXdFbb79+/3+wN+ttVkRVGsTVe6f4w0Xx1uPvbYI488cmHv2y/IOHXeS+QKNTIMRIEzf5ZaTgI5ERdKeqIAxIXoYIdK8OCZSJK2bhRXAZipTSKTojZ/62/9l//fX/21YpkPhmPOpUDy3u/v72XpYDqdOudc8FJK8uH6zeuIaD3EcXz+/Pn1zY0LFy5UVdWpWQM5wbRE4ZwTQiAIFNwGr6QOIRhvmJBaCOectzZOe840iLKrjmvb65zhj/+ZP/V3/k9/e/fBgw9/5CNAXkqJgndDs2DgIYQAIQQmGDHiCN32FQGhc0Ax1rkSupr9Tj7RO1piD+S8655UAAA+dFFsXUB4AIJAD4+qRGeXWgIAzrArchwYEXRxC5zzTjHFpexyaIFIS+2CY2duJRKCB0TGGApOgWF3zUWSXHbPVOTMUwghIDBkgiiEEB5GIp3Fz3vvkaOnwPBhyDA7A36983cEJhpTMoaPPXftd2+8RAw4MZQqi+Lr11/9wU9/pmna7e3tvb29xWz+ne9+/z3v/8BTV67deOvtk9n88dW1nZ0Li/myPxh6oMGgzwKkaZImCWN0fFi9+fZbn/n8Z2/eeOvLX/69Is/HK5OXX365KIr+YEBEiebdrGPNPIljIOpngxBCxyi499Ju0zSPXnh0dbLqTeud5xDn81xxFaeplDKNMq3itu6YCaIuKwCAjGIdIaJtjYij09k8jbUS0hiTKQU+NHnJpdheWw8hDLJepHXTNFpzzbkzdjGbG2eH4xERIfLBYOC9v3r16ptvvlkWZV3X586dS5Kka/Z1EgMACz6KIpSioypyzuu2KctSay2lzLJMcF43tZTSOM8QKQBHflbngEIIkgvggIgIUDvfNI2KNGppq6aua2fs5uZG1TRaaSJqW8s5B0fGGKFUAGAMkCAARV0uiNAcosb5ZZFzzilAVbk79+4ez2Z/8U/9mcBAIh9Oxvnp8v58ORgNATHRKjgvUHjrGUGXCMQZlmWZZdn21k73hi7LorN1aR1PJpOuq5BS9gc9VBKcbdo2z/OdjfV/9E/+aSsCj/XB4pQUL5rS1suuMVRSBmKWgmsMYwy5cEBKCq6FN44rzqUgx6VWdV26YBliYKFDIkgpiAgDi7hknjAwCxR7lmiNLIgk/tqL335QnKyvr37xq7/32CMXnDdKaCKA4D05gZID8615+frrOzs7DKAoCu8cEdV1G0VRJ8RoW9Pr9WIdcYlCxoF4lg6JqJjPkVoAsNYxhqlKlrOFa90wHeBFxbm01nOGbWO1EL0sbqw5OZlZ48eT4cbG1jPPvJsDtDYwgZbC0ckJSL7Il4PBYDE/DcFnScpQNK2LExX3k9XNjZPZ/PateyuTyf3bt1/43vd//Cd/Qks56PW6e4ExRgkZKVVUea/XUxxta0MwnXFosrIyHWYd4yVJojiOArHOKNw21WAwkFJa7+bLWbd7PD45EjweTic6jpB3ODasi6Lfz4b9zDTWWrs4LZMsdZa0Elnad8EjckRenyWSRUVRRFGUpknbtuR9scxNXV+7coVzLqUUIVDwSKFYzIfDIQBKKYfDISFyqdc2+N7u7qvXX1tdXQ3OP2jbW7ffWCzyra2t3/7df//MM8889dTV2eL0+vU3NtfXAgNCnhfVPbf303/hz//uv//S0cnhoD967bXrURI/9tglBnxjbS2EcHi078n2e2kURa5xeZ5rHXf3QyFk94MpFVVVxblYLGa9Xi84Pxz0AFlZ5bdv3z537jwInOXLjl7S1pUQQnLujBkOh+vTlcUyn5dlnKXO2SiKVBwRUb1sV6fru/fu/7Uf+uNv3b4bHLQmKBkRkdDKWmOdIxcAGSpJ1gHjWmtAFnwA5wE8AwDvTAiS8wAenLNUA+eMQ740kvNXXn7pzt1baRovlrPxcMIZGNP0en0pVJ7nnX350UuPIWc3btx497vffbpcfvv554ejURzHRV1FcRS8996SRx8sASDrTLEECBx1d7thwCmQs4FzybUmIq4TLRX4YLxDJRvbnOunn/jIh7/yB3/wqR/4xNrKtGkaQGYQ6rqWOkLBiTwhYw/TDxhjDBgy5r3vsLvs4V/wMMqvAzrCQ9AjIAsheAqMIFDorqddle2MTMDhnXCFEIIPHgJwzil0PWKnL+Pee+KcIWOELDACRAAKoSMJ08MUJnho+UXObfCubRGRc+a8Q8aEEN46KaQzZ30DEu8wld308o4xqfthOndol5r0jpeJESAwRBQGiafxl57/gxfuvM0EggvWmOPj4zq0d+/cGY7G6+vrL7/88gsvvLSyuvnSiy8/cflS9/A9PjqZTqdaRafzmYoj6+1yucgGPevc9rnNt27drJr63PmdH/rsZ77whX89WV3NsgwRB4NBkiQhBI7y6pUnDg4OspVsOp3mi2J7e/vk5OT666+UZYmcv/e97xcIs9Ojra0tM5+3ddNLs86x1wLvDQcSQpABnLdl6yrDBPNcDgaDtm0V4N7BnhSirQkT4kI3TRNFUaR1L43LsqzyInS5fgzruurWX90Edrh/oKM4y7IoigIFwfDpK1cPDw+TJPGejDHdM4sxklJaS468CB21BohRkiRRFEkuzlqwh69HL406pWW3KBZCMALO+VnBk8p1L7ngrbNN0aAnpXUcx1Xd5lUlte4WIFJKgNC9U51zTYAkUgyYch4Ftzag5CEEFIKQGfKz41ndmkjpa1euzesGyAuZrkwm48HojZtvNk2Vz+ambtq2PX/+fBRFSaScC10aq1Lq+OCIiJRSXGNrTBLHq6urZVF3Uo4Qwosvfn9zc11pIaTojVJi7ktf/dLqxY2j5QIFtlWFijsXuiuvc04Kbb0jICkUEaHgqDlZaErTmDaLNO9aSykImbGttSHREecCgJy1HLCuawRuW2PRRTyuK4cBpuPhKfdff/4bP/vT/9lwbRzJqK0b4ywCYwG0UgJl95G4euVK5wDuUvYIsFuNJGkvOD+dTpWQnHPrnZKRkooIGMPV8RSB+eCHCAFgbXVdcrGYzRHBmFCdHu/vHyLicDjsZUnVNoh4442bk8nKxtb60fGps1Yi90BcCGLQG/QBXNMW3jWj0YABlWXFEYfDRAiRL8tenBSzYtjvJUI9fvHi5Z1z57Y3T05OLp7fsd7VdYmIvTSuqlJJOez1iYgztNZOpqsnJydcybZtu6dDmqbe+7qq8zz3ntYm0zRKq6YJhJHO2mbRNv7cziNCyEW+5AiCYT/rCaEiJRfLWRzrKIrmp7O2tUKIOE3qqq0h98Q6Q04ax53aM41j59z89FgIMR0PnbHb62t1XXtrmjrvR5FSKo30YrEQQhCxpm0bY7uc1aZp+sPRu94zkZxXRZnn+d37US/DnXMXrl19pizLKInLqtrc2J6dni7v7at4PhlOvLGHh8f7hwc6iT/8kQ+UVV43TRyrwTArygVjTGsBILz3lriS2ntqmkZoIWWEAbu1Zzer9fuZMU3TNBoVMXLOpGm68fS5smjKIk+yNIqihyd21wGTq2UxHo6EkFqprJ9Z7wHAOet9WFlZ+Vf/6rd//dd/3Xt87Kn3v/HWHeSy8xSUtiYiVIJxIBNCCABkGTBGFAJyLiC0VQveaSHbuvWuBA5gDEgJXAAjy0Wi1cGDB9///vd/8NOfuf9gl1go60ZrSR4AgHM+GA1ns9n9+/cHg8EHPvRBIcRTOzsXHnnEOdehnaq20lL6Tr4EQAG4Et4GRKTAAgucdTFK3BrTtm2WZWkSt23LhYQAtrVRrEFzHaUnJ6ef/vQP/NaXv/TKSy/+4Cc+HpxRadxar7XsNMCOKARHlgnBJRcAzAfvvO+IsB2J4aGzNBjvEJHTWX0FAkTkDxm9f1TP3inbFM4G4YcpwowzRE7+7PIaQuhgZwI5B+YogGOBAp5F/7LAmAuBS+6BQaDAgoUADw3IgjOO4qFQHbsjMSGSP3uwAzGibgQHHwISAJEN9j+edBmDs3Tgh1/oveuEW4KIrGDX37qJjAcbEIWH0Dj3yCMXi8V8PB47a2YnpxDohRdemkxW80X++OUnrr/x+je/+c2NjY0rV6585cv/4U/82I8Vtb148fyjjz46ny+1ij/60Y8vFotAXEby//n/+h+++MUv/tZv/eZjjz3m3ZkkDKU4mc96wxH4cHBwJIR4/fXXm6YZDAbve/8Ha9Mqpcj5siyLqkqSxDjnvbW2DSWtrKwsFrMoivr9fl2WIQQpJWO8WxokMlGREkrO5/PXXnnFevee9753fTxigQbDYevM0ezUNI13tigKrbWUqmqaNI7TNE3TbFkUu/fvX7hwoW1ba22Wps7a0WjUNKazK3Rp8OQIEEIIxgRE7PY23po0SuI4ZgRdfSIKsY5CCALRIzIi770SZ/l6iAxRdt1WUVWdOEFKmUltFDFgKk7qugZkszxnCEmSsEBCyMCgaGolhLU+KAEAXAhjDZOq9VS3jbFuuVxOVqZ39/f3D4521rfjNNk/PoqiKPIhktp7f3h4eOvWrTiO+2m2Mp1OJ+O6bZIkI8Yy75VSramFZ5wLgci5SAcxABzu7XdeqTTtpWl67do1rWWkdeud9YZ7b71rm+osCJNCaC0HzpCAyLQueOzstkQkpOyaEhVFiXV1Xes4lkoG8EwogOA9DrKeUrJt26IovXPB+uDBWatRqUSEEPLFPBKyTaNBln7v+9++94nPL2az0BtESncaS9PUwIJOIsaYjlWSJICsc4J579vWVlXV6/WIaLw26KUZRy4AXQgAwBBd8N57RBYYAxZs01KUjadjY4y1tnXec0rSKOtFSkaDQY8YaKUjrZ586nHwfG9vjzE2nUw69RlAUJFmzDMiCN4RtG379q23VlZWJuOp964sbBRFgHDp8gXbGkRcXRlLhqf5cjqeWO+8sV3OWpbGvSwSQjVV3R38GGNt26ZJxBg5zwBgNpsJITpez3g8ns/nZVE1xnrviqocDAZra2shkHPu4GBfST4e9Lut9WQ62t/fv3791WvXnonjdHvnvDHGe885jydxCMFYiwhNtdRaR0pXdSU4Fwr7/QyIpMBe0q/K/OH84RvfFnl5enqaJj3n3MHhMRETUpFgHfK0MytrIZPVZDAY3Lp9h3MegAklL64/Utf12tpa0zST0fRkNq+aBoEfHR5sP7394P7u2vq6sdVw3HPH7YO9u4j4ta9+5VOf+sTlSxeN87dv3Q2EbaDW1Gmaci45jzw5a621drmcSymdS3q9dDab1aaNEqm1Ns62bdvv97mSnryOI09BasWlQMG79MZlkWute731LrndGDM7OeGcz4+Pf+mX/+XK6iYDfnv/JO6Pl4sChGrbdrq6enJyYpsaAATnATEIEcdx5SznHAGImJSSkEdZHPXSYHp121LiwVmGSAJDCCqKKxDeUdXUKlaNrRiS9URESuq6rrJ+bzDsAWO7u7shhP5omC8Wxrk4Ts+OO0J5CkqpxnRMFwIUAVopBDHmnWVaAlKkon6/37ats77rVLpshLQfc849kbXGMxyNhp///Oe/9c2vv/+556ar0+PFTMURCxQceQTmGXVlkngIZ0tcR05I4SgIJZ11HcS+M6Pyh8BkDmdpRRyAOJL33XDa7eTO7q+IQMQgBH/m0GWMAVEnpe5cTGeiaAQmOA/oveehG0KZhwCMAgZvQwgBueRKAnQ37xDII8NOIk5EEnnnX+LArLMcEBkQ+eA9ISMG3jnFRQih+yU/HOuJCDhyT4HOApHOjsSegSBLy6ZsfUjTrPLBeYdcErGjg30dJxsbW3dv3b761FOmNkcHh1/9yu/v7T5Y5MvHrzyV9dL7d+/duX3rve9978rKSlzqjY2NLM6QsCPcjoaTEEKSJFbKP/+X/sKDB7snJydpkiRJkuhobXODc17Xdfe6rq+va62dc5sb54x3ERNSSkI6OTnJl/V4ZRpJ3uVx7d2/++rrr37uc58r6+pkftzLRlIrxigwaIKblTlj0DTNSCXrjz6ikbfBnTu3XbWttVYnccbTt9588+TkxBhTFMXG+ubOzs4yz2MdMYZVVe1sn4NAZVmmaUoheO+rqkImpD6Tn3ggZwMD6KgXKLE7x1rf5ctS27aSi24XIaXoyGREhABKCIeopWyt7Vo/gWiM6d4xsdaiy38OFAskF8iFiEtAL4UMDKpFnqYpMKjr2jqrpcx6KQI4cg0FUMr6ULeNVlEcYahddbR47cabVWs+9dQzxAUC8Fi71tzdO+ACL1688OSVJ8mHWOtBr09EWfBnCZZEgRwwOer3hETyAUh0Lfz66lp34QCAWEcWgDyVy7IyzdHR0cqgN+yNj8k516DgSinjWkRUQtZ1GysVQjB10y3cvO0+0oELDj5IqSXnxlpigXMeyCshvLOn+VJKKThnAFxF4IGISS5qUxjJ0tGAGZM3ha/cDE5Ho9GyaTjnTWNM8JxgMBiJJGqrUkrZNE1rTQgBUAAAojDeqFhxziXyEEJd15FUAVGCsMFzycAHYMEDUKC6KZeny3QapmurcRwV5bJ2zayeD0Curo4RVVHWaRpziVVbr6+vQuDzan54eLjI571eL+1F3nvvnbVOoZ6O15wnF+zm5oXBsMeAI0cZiaatgPyyXhRFgSgkV8gEOFu3TTbIUtmTRlfFcjY7iaKIPJRlmecll02SJINeBsxxZMezYjE7HY/HXWyAjuJ7d+7v7j1YX1vRWvf6fSLPEZCR1rohGg56QmAnMIZ+6pxJMv3klccBwFprnRNCqI5XYAxjzLSllFIrhcwfHNxfLpdKqclk0u+l1tqiKCgOzjkpuXG2qqqi8qurqxOcSikbU49GoyROmtY2wZ3tEhHv3bsXxzEEv7u7e+f+7lNPPdHv9znndV12a6emaZzx3oU0zRiw0WjMGDs4OLpw+ZFvP//dOJHj8XA6nVrr3/3udxPR66++JrQaj6aBkIgy1nPOBA9N3RB2uU8mSRKlRF0V3nuOqJLoZHa4trmuk7jO235vlEbxPF/kdaW1Lsuy1+uxwD2R5CiUdMHbuvLet22dpumbb9z40Ac++N/+3/7h4emJZayxYCzzBIyx4Fogf7J/HLyVSoExtrXQOhm44qI1oKUMAULwKk6qulg0NUiRqgGTlpzTHHUkTbCcc29t1hs/8cRTg8Hg4PjAe6e1dt6naXrzzbdeeeWV5557bnt7+/rrr49XptPp1BjDvB8Oht57JnnH3Ut0FELgQntvGcI7rRKXknlq2xoRrW2NaRAFcuYhcCk4tCzmBBBYEARpnFVNDVxc3Dn/b371V3/hF37hZ37mZ3Q/res6BOhFmSPLOQdgLBA531pHyOM47oJ7GWPee8H5O/tbFIiCQyAWqCvF3aYaOZ5NnADgzwjMLvizpS4ih44iSRCo22OHEBgiIBCQB3LBMcal4F1lDM53eUfAMRBJrhw5xlhgcLahZATQVXbiAAwxhMAZCsGNsVpIIuh+fsaYVCoAWefAAwFJKTvFd4eb5Qy7q7n3HgW6LiUFADmKqD9yg9Yf7pe+CRSiJLbGiwB5WTXW3Xuw+60//Paf/tM/8UOf++y/+zdfePP1Fxk3g2EmOOycu7D6zHMns9l0da0qmqPTWS8ZMIeNaXuDvjHG1kYAhBCMs0cnJz/+Uz/52muvdt06Bxbp9OrT14ixtrXdkz2OdQDCQFTVSZIogYvFIhvGTIbGFLFUjDEKfmNjY9yOR6NR1u9VVZVEMSDrHNmMgyAmhUz62gUqjN08vwMATdtIhs57gYIhvPe5d//BN7559+ju959/PvvoR8Pq2v7u7t0373784x9fLpemhX5vOl/OTBukjropRGnZOtO6NpIqVVFAHxDq0sdpFiWaBHoizphE3o221lqlFMCZ2p4hcQqBmOJcIGcACrlOZLe4kFLWdZ3FMWesMqYxLRGQD54CUWAE0+GIczQhWAr7h4cbGxs6jup57a2tsFvIMMkRAYiBUIoIyqYeTQdlXpRNbYNNJumtN94w3h3fevull14Szj/17qe3N7cm8WSUpt4T48w4l1e5iiS1FoEHhj6wZVvFWVy3lSAeRUmkNQBY57r1kQve+bA0VngP4Jp2rtQkm07ePnorzrgJwXsITBBRAIYIjFMSpYvZ3FFQXC0WCyLPpeDeyyRCJhghZ8xzFpA6MSRx7gO1ZYVSAICzTjEpkHPOs3jgyUnrWaSZ9eCxaVoTfKS0EHo07Hcyn8q2mNs4jZDztq5tW3HOAVoppSPja6uztCxKr4W1tqnq6XhldTL1LAjE4J3k6Birmto5p4QWsYw5R82kt5yzBw8etGRpOJjPS85QSlkXOfg4AM2KKssyhdzXbdof9XWSV40PIYoiHXOwPk5E27aBST3URyfHk8mkqqra5lVVjYd973wiVNva4+NDKWWwzjmn2cbKZOq4QhdOZqdxkiHi2uqaD4dVVSHjRMxY1/qawNamBg5CKRHptjUBaH9//8Ijj477g8XpDIUwgZgzxdFRP4n7ad+Ypmqc1lpEOJ/Ptdab21MFaL3jQtXGCoat8+R8FEUiip21rmm1VHXZVEXtdTi0R0lWee9feumla9eu7e3tWe+GgzERjYZD03hEsbu710uzxtjvv/DCLC/e+9yzK+sb/d6wLMumacbjcZbEb1x/fXt9+vSVy01TAcM8L6uiLpaNlkpFOkkS57wk0FH8xo3rh8dHP/jxT/7pP/ljr77+WtnU3/rW87u7u9Pp9JlrV7e2tu7uPrCBCa2QCe9DoiPvXQCCwEMIo/5qCKGq6vn8tGma4XDIJBcqOz0pGWNlWQ4GZVWWVT5vCpVlWS/rU2slFz44Y0wca0RRLhdFWZiqLOfNu577YML57/72F6Noo1w2KHhoDQss2KASTRwDWa1kaBpTlxyCd8ZCaKtWqpQx9v+j6k+DbV23uz5sjKd929mtufq9dnv6c+49t9Pt0EVCQgIjFAICgSFGFpACR8bGBhxXUumcqnwg5DWVFQABAABJREFUThzhJCYBqlJF4gLsGFOYVmBxuYCQrqTbn3afs/u92tm+7dOOfHjXPibz215zz7XmmnPNdzxjjP///0OMjHPjHVMaI+OETbMWOgnWe6V847hg4ECp3O+/+n//i7/4xquv/YE/+gd2RgcfXV1A3WRC3zq5CQBVVVVVVZblr//qr73y0quj0WhbnR0c7gmGkXye5+22M6ITQrfWEJFSIs+0TLhE5AAMuItecQkIPgaKLklUjDGEDnGABAZgjBjrvWVMbNfVvcPD7/7ar/7d//q/+vxnPvVH/id/uOnNoJnqfeitMSH4QBSvV1EQPGeKC+6cAYgDwOBFuVL+ms0aY4RBbMUZpyFkY2AeMEZEgSIiImHwgRiTjEcKAIAcAYgTEoKNnjNBMXJgEYgDiz58UjWBrtVSiCwyEsgoRAwkhCQAIsRIEZFi5MgYQQghQIhATHAGOBDJhppNRBQjZwwFYxEGSlIk8gNsmHOEGHxERHKRBRSCEcMYSVzG/tl2NZvPGfD1xZXWurfNMCWe7+wsLs4//dabWsumqV5+7eUY4wfv3tcqB4Dvfve7n/3M51977bXvv/ODnZ35TjlOhBAMFWPnZ6fb7fbg4KDqO0ImZX51dcWY/vKXfqRt24cPP56Mxru7u8Z5zvl8PLPWtnVjreWSdaYnhlwK66xKEhSMMVZXVUjTfDyK3u8dHaVpulyvRqPR0eFxiL7veyLSqeCcCyG2223btllZpCrt2yZE56Mfj8ej0ejy8moYJrz+1ltf/OKXfuZnfv9qtTLeHR0dS5WgYjwRLlgugUvW9s28mOmiCBB0mugQ6roODNJUBgsQqCgKZOS9j4TWeyLy1nLELMuH3ZIQ/Bo1EQMyEYPrOlPkmScKFKP1w8lDSqml8t5HxpQQiCyE4JhPpIxIHNBRDBEWqyVKUWS55NwYMyrKIkkIoG4aIkKtGWMRwDjrfYBIBHh2cb5ZrvbG02axOhrPGMP3vv2dV27f/uyn3p5PZ8QwkUlnXCRyJhDSeDKj6I0lRC4TlUgJ1kmGOh1xoeq66Vrbmt4555xRSjHGILqt94lQivubd+/slDtv7N/81e9/c2dyq9uuHZJMdAg+IAEwINY1fZ6XXddtt1vOOWMcAIwxJvrJaOzIR0AiJji3neUMKOLAiSIg732R5hwZJwRGnHPb+q1zvrbz2e7V/Yd/4n/6R9I0vbxcOB9X22pxtdo/2M2yLEbvAiVa81xeXFw8PX82n8+5ioioGV9eLSKQkuVkNLYqGeWF4tKQR4BBVRcRBoABEkx3ZhgQGI2mk9PLq0BxPp9DiM45rnTTNOv1eroz29nZkdc2LTo6Ouqbdr1e984aZ+9fXpZ58dZrbzSma/pmIBaU41GMHpEeffRxliXk7Hy2k5b5lVkyioLxOljO2PliiVIVZUYM57u7LtLFs6fnZ5cqSefzOVBMtETmbBWLYjS4vJQeYm/9yfGNV199lTFYXlxKwX0M9WbrfeastUzU9UXXdcV4lKbpEEcQXYQAXQgBoFovyIfog5K8SLOUcwfUGssY26y2eTkKBIvFIsZq4kNRFC+99AoR7u7uX14s2rbPskKqLBKenV4kOtE6/cY3fuW//+Vf/pk/8LPPn55+6ze+W4xKIHz11VdN17bb7W/9rT9sjen7/vnzMwAInojQGZfMFAPsmtYYWyTJwe7udz5413t/fHx8dn7Rtr31/p0fvPfyqy8NebfTnfmdl1723lvje2vatgWARCqBGChorc4Xl9a43d3d0WQ8V7t9328WCyXEbDYfj8d93243GyQQTNoQXBgku972lohC8CzCtl0pJrN8VBZF0zidZ//t3/lvNrWZjGTXdd1mlRRjaw2nYLcVciRCr5Q1HRdCMM6Ydm2L3hvpmHNIzDkHRMhYREAhMgRjaqYUiGCrDhBBi4b6Uuq/9/Xv/83/+h/9jf/v//vv/J1f5ixVKawXSwAQhDeOjsbj0WuvvaqVury6ihDSjDvXqbSAKKIjwXiiJFGYT4um7owxLYQ0k0IqAhYZByJgKKUE52KMRDiMiOE6aAIYe0EawEiEN2/u/fv//i/8uT/75/83/6v/9b27L3/9G//061//+q3bJ//en/kP77z8cn1xaUMcul6ltPeOI4veRaChtA9TZSEEJwQCxq4hCoPDUCCLOKAJASMN9qIBqc4ZMmRDoPTg7EFAAP7CfQsEERE548P0918fDg+LMIYAg0MLAJFFhBfhkcCAAsPoA4UQEYW4jkGMMQ7zToZMSjnwjAEgOB8RlVKDECzGmCYJR2aNFUpSjMgYExwYAUGMkRDE+6urOobUuH67ulaMMYyeEGC9XGRFvt2u/+U///qrr7/10kuvPHr0hG/bBw8eONu/9NLdf/j3/44SMJ+MR3lelKNEyCcPHnLFI1Gep8fH+0VRfPzg6Xa7nc52rLV1047H489+7oeGNLKLxZVxjlsXfRRcOnRlPloHBwABgo8hTRJF8lq9BmCMIcbOz88PDw/zsjC9W4U1wTXmM8Q4ZBFcXV0lWm+Wm299/K27t++c3LrZmhYYc0RpltlNBUQ6yYAJIJrvHQghmGDWWyklMIzRO2evri7SIuudyUZjBsGF0HQtVwIBetsP7AwlFePgQwDJIwBjTAlBIWitOedEhMggBkRkTESKAEwI0VkbQtAqaUzXNA2FoJSaz+cckYi6rouByjKPoEOMw1mPQojeQyTT90c7u9FbjqS0IooM2SjPENCEsFwumZIDs8FT4Jyfnp4tLi6/8PZb/6Of+t0efNO2v/D6n5JcMQYIsNrWm64JQ8wsYwoF8xQ4L4oRIppoOUQlFfjoQ2ht1/f9pm4GnwkyqpoaEWOwIGTnfTkqVttqLLLf/7t+6i/93f8PR6GEhuA3y02WJb0NgOS8pxittZxzIeRw7E3TvOuaAT4YwHMmPYQYkSEyhjgYkxGRIefcU/DO8ojEWaCYBN70ZpZPHj85+5FPffHn/+AfOz+/jIRCa3RUjkc78z3OOSIF73sbtZR7e0cAQmvd2U5rlSpVFIVSKslSjqAmKvoQYrDB2N5onb77/nvT6TQvixhjnmZt1QomU5HoJEPOeh/yJN+s10qp6XTKOS/L8oP7H5WjSZHnABBCi4wulwvXm7TIEXGzXrqu/cH7eOvWrUEyygQfj8fee84xSdS1vTtG4yxyptNkuVhertZpmu7u7n748OMh25UxNvA9b925XU7GHDA437Y1Y6ytu951XdftHuwOHlmtUykEhbhZX82mEz5jiUqXbVU33Xz/yBkrohuytOrNlnPcne0wxgTj27qLIWIka+xmu5rPdmL0Z6dPCFjXdTdv3myojTHOdnbK0UgmOpoQQji5cYuIANjJjTvWuq7rkiJfLBbj6Y6WUgn+U7/rpw8Oj88uznfG07feePPjhw+Pj49705m+k5J/+9vf3q6rvEiPbhxmWVZtmyIrAaDruiFSc7lcbJHNp7OzszMhxI0bN95//8PemNc//cbP//E/xjlfrFfR+RChrtrBPcil8D7EGIdIhmCi6VsfiUnR9J2xpjE9RhrPdu7cudMZa4xBqZhOFOB4tjNITLTUVVUBU4ARI63X68ab08uzVdOkCduZzQ+0ePTsFEUqhWiJAFnf1hA8eANAXDDfGC8kChZMFwCUShKduqaLECKT4AMC50DkCTgEH4wHQE7eWGQQgaVaKh4CeecsqOLOqw++/6/+wn/+f/kT//afrFz37OGD4MLl1UV+UWybWqfJT//0Tx/VRxShKNO+Nd6RMx4R81QniQIgG/xknFufGGO8A4ugFAPB8jTtum69XJRlmb1IrRlqpPc24tBABsHZoGK5XNd/9I/98f/nX/mr77/33le/9qXjkzt3br/03/13X/+1f/XNX/7GP0u0IucIo+Dck0eAEBwTnBh5igQUQxikTIJzIhrGzeHFrndQERPAUHSHUioQAYATXPsII70ANwx2pGtB9fCVCDhIBT+pvsOKcNCsIeI13QgiIrtWLBMgIQPkjBPSNZ6YKAxrZs4I0cXAcdhUR8m5kEwI5n2MznMpAIisD4iS8eBDjBEQ2QuJNQdCRLGNQWrdVC2PGAEH428Ap6UiZIvFqu2MTPSXf/i3Apedi4dHB4qzjx9+9MEH7/z8z/3cj//kTzRN98H79zfV9saNG1Lrd979fpKm926eZEUODCM5LmBbraTQKtXGWxc9AJChPM+tNRAi48hQJGqsEpX0miBwwHFRaiWH/iDL867rsiwLIQ765L7tfKA0TfMsGRZISiki2m42eVrs7u7WbTMZTZ88eSaUnO3O2r4TQgag3d0dADg/Ozs9PZ1N52maDhZYlci2bZumiTGOx+Oq3h4cH47HY2etD2FUZgQJY4x8uD5GKQYCgTHOWYwBiZBIcEGMheBjvOYXiSHWwxglJDBMhDLea6VaY5qmAYBApNOU6BqI1DZdCKEo8ug9EAEjwTkxHgh2p7Oma621RZoGAAQKwXvyWqp333v34vxq9+Dg5p3bdVsjohJyvV4/fPDYUbx1++7letm6rjdmcX710t17TEkuJSlhTa+VFkKkQlpjlstFOhtLJhWAxEFJCIFDBPTBJYWuTTu4Jqx1SgnOueDadrZvuqfrzenifP6FckPWKzZIPBKZocDRaFRV1SBqE5wnSaK1Zoy1bet93KzWaZqqYectYoTIOcTgOEf+gvqsdRoxIgt930OImqngehuJSO7N9piLd6aHf/k//3+Ydc+4zEcpEFMyTZLEOVdvqzzPE8Vs8ENvd7h/AAy7rkEkLYasXXTONb0Zj8dssCdKwSki0vHx4aaqm6YpstwY40PYNFuOItF61bar9frj+zHLk52dqXE2diFN89dffx0Zu7y6iiEwgYLxk1s3/8pf+Ss//uM/TiHmWZnlSZpnddsEimmaO2cuLi6KogghAKOq2R4cHNhokXhvOxB8frhbdWY0mZTjEXaic77Mci1VlhYnx4cAsKkr771kHFH2xvyjf/JP7955+Utf/qKUvK63EKKU3PtQ13Uiddd1VVXN53PXm816aZr6cP9AAgOAtm2VUlmWOeMYY6jYNM9t8GWWOu+PT27E6Kt601Gc5cXR0dF6vU4SNZ5Ouq7TuqjaJpVJOcqfPX9SbRshRF230+n09q2b58vVYFKSnHvrCOirX/3qeruJfc+VfOmVlwHg7OKcMdY17cnJLbvvnjx5vLhaje9O9/byAfcJjITQaZrIItFSyUQ/O30+Ho+PDg/TIg8UVaKZ0n3fv/rKQXDOGDN8uLqugwi7O3PnbNd1PoSzs/Pj42Ni6IIHhkRRa33zxg2VpA8fPmz7jojW6/WgbO+cN80WABKdZmkaY6yq1hhDHPd39yf5+IgJb7abqrLBeu85U0qnSRqVzqzpg7ecpOs75Kw4KLu+H4wwIUTrvZAqAj/Y26u2TRdMtJ4niRKy7WryPkgJQBBCmmUq0V3XQ2vQeavykPYcdZPOWOdEas8fP7vcrB9+cB8RJzuzPM+llDGS5NIG21Td0NVJyY0xnYHe9Uop5Kzv2r63wIROkwjYW4eI1DkppevN1lO6r4kIgCvFB7QG53yYMCMiIwghNi7Op5Nbd1+5WlXj8WS9rUWS7x0dLZ9/GGMUgmmhgXFnDAEBEGdAjJAzD4RAwJkAZIifuIbwBeWXGPoX9IVrxhAgAwQWOSBF4IAIONAJP7lxzgNFBBwGV5/oDBggveD9IiJQYMgQgfFhgywiDI0TDVCkYK0QgrOBbHj9xLgU1+X8WuFFFANRBADvBnU0SsaGCBGIRCEKxoCLISA6hiCQAUAkEkDgOiu5Ik5aJ5zz4HwqhIvgnf3Upz/zH/8v/xevv/HGO+99+Bf+0//s9/6+n/nvf+nv3b//wWuvvfof/Uf/0R/4Az/75Mmznf2jbDz9x//ol45OtuPxeDSbfvjhh/deuXd1cfnf/Ld/6/j4+POf/7z3vu/7VKVSckJOREIgBpB5yiBK5OvlsmnbZ8/XbV0dHx8Xo1EIwbuglELG+r7njEUfg/fe2L5pnQt5WTpjq+CGKW5WlE3TXJydz+fzRw8eVl1TFMW4HHnrXG+Y5PV2y7nQWknO53tzrTUR1XXNOY/kAbSWMtvJpeIA8NUvfxUQ27a11scYO4QsSzhjAYdZBfhrzjIAkXNOAATrI2NCXwPPu65vmkYIXmQZ5zwCScarth1E3avVSim1u7vrgnfO2Ri4lOv12jqnlGqNIeeyLLs+wTFEYIg4LssA0HlPBCF4LSXjbLneNG2/O9uJIcQYIRJnOC3y7z14slxvUqlu376NnAmeLs4vTm7dVjpxELSUMcaq7TLGKfqnZ8+rus7zfAJjBTD4zz1FouB9WFebqm2stWenF8OrnSj16MnTRw8ePn7+/LOf+vT+bL5368Z8f48Q/ov/6q+9+tabPpqA3gYvlOhtn6Q6zZJRLD9JWzXGDHNdAJiU48uz8/FkwlEEAq0UMOqdIWQ6TSFG4xyEoLVSKgMXKEAhAIQUxA+ScbOp/8Zf+atmXbW1Qc0FoJISApnWIMRMJQrYdrOKEcqyTBOV6yxQUJKEEMHFqqkxBs65UDLGGIjWiytIlWAsMD5kdwwuFGutZqpHc/vmnU+98amvf/NfxQgigpIJIgohInAAmI6nj54+ttaOylIqFWME5J/69Gfqut3d3T0YjZJESamNMU1tVsvKGHPr9olSSVVt7t66lt9LLk6fPZdSHhwec861yuu6llLmlJq2K3SqMxkATWeBYfDEUETA5bbSafIT/8bv2p3sCMm9t0NeqTEm00mWZX3fB+sYl23XVW2zWFwS0d3btwOFYQlaberog9a6bdsszTbVujO9VmkEatbNcrMuimLv4Ea0nYleZco5Z/oWAPuuSQRPM3l6+ny5XNZ1HUKIEbSW5xfnnMtiVDIGfd9FH7I8abotk6xIR4gIyNfbar63xxgfYmEQ8ejGkfc2hEA02DiYTpNiNF0srpJMZ0lqevvgwcOdvV3nTOudtXZ9elrX9d7e3mb5SAoxmUwwQlM31lqphLeGMzYqir7v79y+bZ1LlVagiGKi1P7eXpllp8/PBWAu0jzPC523bX11ej6dTmezybNnz9q2jTTZVFWapo3rQwhm7fdG887FJCmk1kcHe31dubpiiY7GxsAY0xJD8IbLFACscDLP+raThIgMuPTGANH2/FLnpRiPAgjX26rpUWjOk+l8p/HeBW98CL2z/aCF5shFwgA5mxzc+aV/9iv/wZ//k9PdeZKPUp2dnp5uqypE0En2/e+9c3BwcHV1pWWWplopgQIiBhMiB9m1ZnBCM4XOemucVEIJKQSTHCnSznRure1bIwRHwOCikCKEAIjDLu+FetFPJsmv/+qvfus3vvf6vU8/PX2eJ/k//Sd/D1j4i/+nXyzL4vlmqfMixkikTNdJKYHAx4AIgrHhlSBAFCJYh4iDgSQADWOwcD2ZxfiCUUEQESAiDJDgABHicI1E+KRRRhTD5RojAg0GZAqEcP0/GQOCF6giQGJIMcK1pYgA6BMCJhEBEGMcuBgK7XUbxhkCAtAg0RpU2cNFewjwZ3jtYgrORQSOcpCKvXiiKDjwEClA4ELE6Ns2SMattdPdg3/33/2Fr/zwb/n8577wa7/+zdu37/6lv/SXptPp7/yJ3/ruu+/8/M///MXFxa/82q8iE0KmR0fH915+aV1tI8JnP/+5e/fuDE6Vr3zpy7du3Vsul8FFyRUFcCEURepjsG3NpXDOcGQBTJ6nSZLM53NvHUAcHp5lWQSOjDnnwMe2bfM8rzbb+XwOwCDG+Xw+TBKyMm3bthyPhmsl53w8G/WNAYA0TYP3QvIsSfrOVJuNlNJ7n+cZY2xnZya5GBgYXWNjcKvFJkmS66xjlfjeEtHpanl8fJznmURGwzYTwIcQgldCZknCkfW94UIQg67riIBzzhiLkbbXZLrUe7dYLF6MR0LXdfV2K7VOkzTEEAFGk8kw/dBaRy19JEBoTTcMSRggCmGsGy5PRFTZtiiKohzduXtvpxwBh6a3qVRKcgB6/vz5arm5fXB45+bxarMpdHrv5h1v/OXl5e07tzyQ5nx/NpXAFBflXISdvSRNyTuJEEI0EGzw5EMI1DVt27p33nm3KIq7d166ODvbm87+9j//u9/+zd/47Jd/6O4rL+9OZ5fN9vbtV/7Lv/5X33/4/mxvd4kdF4K8j5EA4/WaBwdSmPUhhhiHnb0WcnF5VS3WaZIlggvNnbFSC+8Coc8RXYzWWuQMCdM0jcJHFyUjxiVH0W/r82enVw+f7o7mSZ5wzlerTUhCmZdNVREEJLBSAKe2bYRgwdkaNlygtbYoCinSPM16a4Y0CQIw1gJnHDH6AEK0bZ/nOQAMQROB4mw2A6Kd8XS9XDnn3njl1SfLM50mHJlimoAePnlU1fV0NlZKDB/UAPi1H/1t3tgiy+u22mw2QsQsy3b39yhA01TVtrHWNk2zP93ptu1sPF2tVqvzSwIg610MXCRJlkZrXNdBjNv1cpxnUrBE5YSAnBORMXa+tyel7K0NztXrajod97179OjRfL7Heazr1jk/GpVCJZJjlmUCWcTYh15zDQBV1QzGsMH8XTd17U3Tt9B2jLHtpk6UGuWj5flitbnywd44OhaCxb7Ps1KmgjH24YfvP3jwABGn0+ne3uFkMlNaMyYYRSAXI3KO3vkIoW62j58+vXl0LKWUKinGBRDre3O1XSuVMIpC5lJKIZT3frBLjMdl1VRd36SF8N6Sp4vLy7d/6HMm+t72QgihJCGs1+vZeFLkuda6qiqlJUEEAO/98KsN/CvBOcCAFw5ZktbbynR907ZSyvGkbJqGMRZCSNO0aZoHD+8fHh5aa88uz3wIddtwJQPCarWSIM+uFvNp1nf+w/fvv/baq4CxrusI6IEAeSSyHqTOYwDXLiF6MDFQEIDeW8GRGJm+9QzUaBwZkRKMFdEGknLVWJRCJmXXNDFT5XRmg9dJ4oxTXEHb8cPJxftP//L/66///L/9x8+W2x/+4ZP1et1bo7Vs29Z0/TDtsF0cVLvOGWCIgCrJTNMG433sGGNpohHRGkvOslRzlUEkrplg12mLEQgwhoAwZEux6+nUcK0GJ1IpTLP9/nd/Y1Ot33jz1f/Zn/pjf/iP/MEvfPFHtr3RSXZtinVhuJr54GIkyVgc3E2IxNA5B0iMoacwGGcJkSgGiAx5BOAvUqXok9ypF16fiMNIGYkIEDD6YYkVQmCIMKisP3lsIEAgQoTrCk2RYnzRQ0diBAQQEYa9dXyR0UEUiWIIUQgRI+Kg0wJAwTEi43yI2GNSMC4Ecudc8I4BcikHTBMDJMLgrhlKQijJPDnnMITgHBciuPjGa6+/+sabP/uzP/sv/sW/qKtmOt1hEFeLq8cPH7x879ZoNPrud7+HiLsH+11rfAznF88P9vdcsB5oW2+Ms96Zjz76aH9/XwnZVHWWpMOIzHi33ay9CzoRZEPdNGmqGSBPMtO3nEME4lwIISWFSOSub55zPmSOd6ZfLtf7h4daa+ecjTHP07YzSutItH902Hfd/sE+APmx98Ynieps75zXWutCGu+tu84oyLJMIlgf26q1IQxNTJ5nyLlzLsRI1iLAYKYapEBSSqWECxERGID1HiKlWkcfQowAJISIQG3fxRj7tlNKaa3TNB1E8mVZSsXJB0bAOUrJGYB3DgAE50pIIoAQyQfrLWNMch6cBwDJRSIFxeB60/f9aDoRQgzEQIxUlHlr26Y3RV7mea4YIeDzs9OL1eJ3fu0r1WZdVXUBo0k5sZkfj8um2gbOIVImRZIoiiHXCSDGCEHwEGNAFiASV9Z0DNh4OksTP/3yV4jw0aNHaZq2ffdv/pE//G/+kT9cTkrkRCEeqTk5+9f/1l9XKQcWJXBPEZGk5EWW13UdKAqVuK7VWhO6trOIWjIOkZy1QgpAIoZSSuMcESquIkJVVcOkgQveOxP6oBClFtGFACg8Q8Wvlpf/7F/9yz/3x//0/YtzBBiXoxih67pttR421mmWaC11kgHAarNGpJ2dHUCsm26UiuFTMTjHuq5r25pz7jvLANGbyWTS931vzaBvB46Xiyut01RpIcRicSmEKCZjImq73oswnCpicOvlymWdAFHOZlIp25vtevPt3/zWrTs3s7JwvQMAIYT1RmvNBb73zruz2WRAlYQQjDEhxqHrVWkSrev6RmvJOW+b5ujoxuXF2XvvvTef7732+uup1m1vOKCp2w4hy1ImOWPp1dUVEc1mc+sj8iiEIIK6rolIS56n2Y3j48Gh6UOUUnMUsrxOLGn7brPZ5ONRvltSgCRJbh6jQOydWy2WNkRvIiAvirEx3RCcdHV1NZvN9/cP27bd3d3lXJ5fXFXdZjyaKh6M6fKy6E0bgnOG920XvX/8+Onx8XGI0PdWpQnjTDDMU6VVslmvhmzhLMuyJDOmr7cV18l8OvG2Z6lcbVaIeHxyEzgzXT8/Pi6yPE/TpmkjQtO2yBjj6Jzr+14pBYyleU5EzjnrXIyx2m4no3Ge5kTxyZMn1lqmxHg8rrr2GmklhEoTRDgUx4yxyaSomkZr7WNYr9dN3+3t7YXgj48PFY/TWWb68Nbbn9aF3KxWeTFGlFLJ1arOtOjaHoCBkIIlIoO+rqw3qCAr0qbahs4G8DbYvBgXOo+CWylMjJFAAmKIXEqZZoGzEEgITYz1m6C1JOP8OP/NX/n1P/On/8MnT5784PHHF4sroqDT5N69e6+99tp2uxVCEPUAUacJD4xdO2pCkfBNZTIttBZCcI5CMYzRe+saapIkYYBM8MEDlmR6iKeOgDFGJGSIQMQYS9PUef7m25/9pX/yD5eLy1t3bhajyeHh0eXV6mqzKSZj03eccx7RhpirpO5aRKAQOYehoeRaCS5cdIQADCEQIkrOAxGFCBRRCjbUTqKIKJAjxGudzb92G+St11WZMQSkAVxIg+WIGOAnmqmheUMChgwxMoaRiOGw/QVCBMaGECFAuA76ZigYJwREGOKjAa5DpAHA+8A5Z1LiQG4A4lIM6+RA6NEzighIQAwBEYkL4eN12tetW7cmk9Fqsfy9P/P7/+Af+kMhhAcPPjo4OCiKMkt1lheC8XGZrrc1lxqAKaXIU5Yo4Kzrur29Xab4pqm0liZR56enWuvZbBajda5razObzfq269pmUI+jKjtr0jSfzWbOue12q1QKDIMPKDlEYlx3bT3s5CUXeZ5rrVWiI9DVcnlw47jp2t6azvm2z9NMm8glF0KrcZZeLBezUaG4JPTRh0SqPM9jjJJxrqKwIs9S5/zyajnEkSDiAOUd3hip1WK5HMKfi6yUWuVZ0rZt3/dKybbnnPO+bfOyMF3feA9lCQAuBudBI0kpvQ9t23amH4AQ3vusyHWaEBHn2PcmSZK9+a5zLg49vuCDjURr3fb96fPniPDS3XsCkSeZ9U4i4xE4scmo8GXed2bbtlJKREhSHWNUWhPjnqIE9D6cnp5um+22bT/z2bfKSaknJQRoug4lS1PtQ6eJA1LT9lyIIU1QJTqEEDGmXEKEdVUFAmttjNFjzEFsNxvv/XicF+MJAEilELFIUqZBSTkh8a0ffPeb3//NT3/17UVoRGQcwIcIgF3Xcc4xxKZrBfn1tiXCLMuUTBQXy6tFW9fAgBj56Oo2KJVA4ETEuYgCQghSMMZ5whVjqCVngBCiwyiAQImb9+58dPa0681muUqkIsKL86sIIJWywWule+9ciFKKpmki+VSry8sFEeXFaL1a9J1N86ylmkkxKI/Oz86FUGVZRvCr1YoYTndmSZJ0Tdt29vziwho/m83yPD+/umzbGhQOukKIFGOcz+dd15yfnyZ67+r01Hsvs8S5EGN8683Xy/FoXW+8t9ZyKTXn3NiOc358fGhst26aZ8+erdfru3dv33rp7rvvvrtstthuZpMdAP7hBx8JIabTqeQsUanU4tGjj8pxcePk1ma1XC/XZZ6X49F2uehMO5/PlVKMCev9cHqo69pa671XSo3LHUSEiDGA94EJHHg4Mcbtdmv9ddGSxOvlVgjBCOumqpomK/KDmzcO3FGapkCxqjZKJyHC06fP8zxPkjTGOJvuWROqZgXAOFOdMek4AYD1dis5l1JuVuvow92bt9vWOhu2m2WEUBRFjNF7T9H2XeCcOWMTpSECR8aRXa3Xk/F4vr/z6PF5yuWH770vhCjHo4ur5fHhIcTonCvLcjQaDTkq3nuhVAghK7Mh1lsKjZxVVd01LYVw48YNb51pO8bY1dVV1dRFni4vrsbjsXG2r5t3331HCfljP/Zjzrn1eg3b7fHhIZfS+8CAhctLaxzzHoTwEEo1DggvvfbK0c2jx2dtV23TfGqaRmPMlHZNEyPESBGDAS8SHT3Fvm7qTbA9YywaA841TdsxzYWOSc4SLUFFDH2ICMxsawao06ytOw/EcwrOS6ezabpYngZjPnjvOx9+7/2D4yNCuP/g/pOnj7705S9Pp1PXuN29ue2tc44BU1KjJOf72aTI0xGCJ4qCI+fIQHgPIQSZ6Gu7P0GSJC745Wad5znEoTgBY9eFfFi49p5c37/29mcSxU2IxronF0sAlmrRdR0XnEJEhrlOrLXTcuSCa6oGARhgoBiMZS9iKIdSKjkXQpBzPkaKccAixxgZALuGKnEAiANiaGhDr1thlIzDIENmeF3/BjARAg4SKMaAwdDyBooQmbheLiNG4hEAIAIQAHIWQ0CCMERe0dAhD9pqHABHiEiITIgYo4+BiwEDMRAeRfQhAhDjg2LoesnNMAQIwYho7I//9t/+5/78/zwfjfu+d97PZrMQY9N1KGSeJOPJSAgVox+Px5zLrq48UhyemQ9FVnRdV6RZJGrW1eMnjx89enDv3r2XX37505/67GKxWNXL/Rt7v/IvfkWlajwZz+Y7fWeHNy/zqmmaxx+/z7nUWnfOGuNmo5SH6L3fbtZEmE0mQgEwoROlVEKBGEgkUiCadjsajWQ+zvO879rQ+2KaB++86VmkGAEUI4jr5UZKqbIUBW+h7xubZrrv277vTbBaaOPseDxmXDIhgnMuBoqRKz2e7TACBlwpBVxZayOy1bZWKhGMewSz2mZZMslKKYUxRgkuksTHSBSGkMvgfAhheNNCb2WS5HmBCEU+it4b45xzItG9dzz4UZZt67bvexSsnI4nRc45Bhel5CAYIpoYOSAj8NYRA6lljDFN8s1mkyiFSimtCYhMm+n8/tPzZxeLz710ZzKeL1YVST7K8jJPXAjMh1k2kUiRsGF8tdhEwiTTjz9+mCTJdJxb6BOVMkDvbNfUzjmpdSyzye6eTqQQvG3baTmiQJxzQko5Ns50Svy1v/Vf5vcOkKMiDpwHb4QWg2O47y0Fj84hTxOd1M2WM7DBEg9NXV+b6UFokbbO+Bg8jyQBRCQMIhVMiEAUI2qtY4zW9h6BOWpi4Ak7vrn/ePH0fHW6WpynaQrIVc4EVzEExsC2Fef40aNHWZZdXVzOZrNbN06qrppMJtay7aov0sRbt1xdTaZT4OyD++9HoOPDI+Tw4NHD8Xg8m+wyxftoea7q00WaqMObB9XZMlAMNlTBC5ARVd+bYPrRuECI872dvEyt6fbunCRJdnW+QmK7u7tlWVhr5pOpL8YXFxdt04zH48PDw952xrXTZLrZrBarqyE/sq27+Wz3/PLi/sMHv+cnX0ny7PDw+NGzp0+fPh3tLG7dOpnNd8pibvr4/OlpkiRpnj6/OLshZZIki4vLs4vVy3fvlaMR47jabFabdUTYbldtY+7evdsZb23jgy3yEQD3bZfkifeeiJbb6urqKlVJjPGMX0ihJ5MpD14oxbrOGZdJHbjpuk2McbNdzabzJNH7hwfDEdYbc3Zx3vZ2MpkkeaYBvfcI0ntPHpvOXV5cIWLdVBHZjaOT5erqalEdHx50Xdd2tfN+cXX2d/723/vRH/3RH/ttP+l9IARjTNU184NDiP7iYslYMSrmjy8vyiI9/8F740L/y2/88ttvv31y86aLnisZrPfWFUnqncm0rqt2dbEkAudWnPOmaSaziYmhqrYQyVhDCK+88drVcvnw/sff+973bt68+cu//MtSyvVm87Wvfe1isdKZStMUkV1cLYYw3fF4nCR6s1ql0ykAcNS267eb+uXj48+//vLz829COt12K81FPp4Y3/lAyEggRmtisEEgei8CixF4UlDwAMSEjBEiYowWuhCMiGlepPPGOIokIBCFrnUoJSEpncsoMsE7hO1yZdvLZrO+//D988XzoiiOjg7Xy+W3v/3t//HP/L6Ly4UjAsEV585YIoqenjw9vXHzRiIzQjDWueCLcoRAnEsEvbq66l1flqUQIk9S74xAwYHHGGKMyIgL7UNgjAMH421AIsZXXQ0NAQCXQmZKau2M0ZzHEIfwXUSUSvXGcMayLHPeDwkVxphIJKUMFBBRS+VCDN4igBaSSRYAIMRBThWBgNGghxLI3bUYJ3K67i0jIDDBCIgiRCCIjDEgxgki9xgJATAiMk5EyBGGJRldr4cd0gu+YeQ0gKYAGPoYYoyMcFB4MQDBOEZiCIwhALhIjDGgYZpNUgqIA/6BIERC5mMUQpCISIAYJDGBTPypf+cXhFBd161Xm6vl4vnz0zzPiywXknPAxcUixlhVddv0Jye3VJoM8/qsyLVWQGxIh5Epj6g/9fZb5bgQQlVNu1xXs9lsgkxNOXwRP/7446OjI2MMcFhv1xLZZrNSQkTrynG2v7sfQnDOkWCMMUWkklRKGYiEEEVRGNsJpdq65oKb3ld1zRhzISgZvOv7vmUMqmabZpozkQz7CYaACIwJpaSUAaIWijR676VUk8lkB1nvQppcp2NWVUUMlVJ9349Go+j8crksxwUieghpmRGl2ahs29Z5n+skhLDdbIzshOBZlo3yrDKWUdRKAYCcTSEGnaad6QEgcuyDI285orV2Pps5Y6WUjHNr7bauO6m11utqO5/v7O7uQvTWO85ZZyyXordWS+mCZ8QGyuEg7/TOlWVJISBib6z1Vkaf8Lhar6t684Uf+iKmom+t5mnvekbApABkve2jEsDYst4uV6u8KLpVO3SHQrJEKudqItxU2/39fbrOFgei6L3xjpQUA8yYAUag3vbe+yjC9z94b3cys85Hita5NNOd7RiKtu27riMixoRzrjedECwYW3d9cJ4jBwExxr7vdJEKRIhBMt2YNtc5cmmdDyEiZ5yxtm5s2yqlhjAAT2LbtChAaNGYPgDVTQcMm848e/bszddeZ4xdLRac80i42dZ5Obpz595isQgh1E334f2Pjw9vbKN/9PTJfD43PnzvO985Oz9/89Ofartwevbhm2++KaW0wfe9l0pxoW4c3VLImZaU03S8s6napnWFTk5PnzFAAWCMSVKlUzUZTYxJT09Pfe/nO9MiLYYOL0a/Xq58JCllXdeXl5fz+Xw6mz1/frbdbt9+680v/dAXjLP1ttFaKjXSqRKKL6sqLFdpmr/9+qf+5dd/pW/snduvAM/ysbi2vWGczSa7u7u2N9vtZjYdaa1DtMvVZQjh6upiXW0fP32yOzu4efNWlpdd39Rto5R6/PRpvW1ef/NVQO68TZIkK/K7k0nf901Vu+BG40maZ0JJxlRWpKbvjXcUnPNeKXV4dDRs4ZgUhCiAe2RJkiilskQ1TYuIm83GNCpJFQIXQu7uzYOPPjjv47a68r7f3Z1G8k+fPf7+D37woz/6o0VRfPrTn/n2t78rePLGG28OfUaaZORj23WcsOv63vmHjx8lScIEVpu1deHdd97f3zuMEKy1ZVkGIaMPIVCMhojSNI2RJpPJdrut6zobFQDQmb7I8kRy55wL4eDg4MbR0U//np/uuu6nf89Pl3nx/Plza23X9cMmmHPIssxa23Wdc65tG8FYBEREJXiSlUpwxtjt27cl/xaXynRNjH6I8Eyy1DkTYh/JAyNCIvSRPDIiDhAZFxylQhSCKyJkXDLGgvfddumHJixYpTUAiyGRqTStYZL3xvfW5AxP183tl1753vff/fa3v33z5s3vv/f+/uHB+eLyR37stwnJmqrmXJpgog8+BmPM0fGxd8Exn2WZdzFEN8AqpJTA2Wg0EW2dpjlj16PaGEPTN4lMVKKN6TrTK6Vs8IwAOSKit3ZUlMYYAMYAfAzRe8E4vqDyWe8RUXExIOMCUESIRALZgL90cB317EIY0qNijIwIAYKxjLHr5OqhpQFCgP+/AfSLu2IkRPREBBEQrnfYgYhIDt4ieLH5vdZOh4DX8+1htRwBhgxJzRhE9BTJR8aQczGshDljSHC9Ko4RXgjAJGcRgQjiCz8URQKGnOHQQ8OLbTMRBQDxi3/x/1qWY+9DmuezGR+gBVprLQUAtG336NGjEMK9l1/e3T+cTqc6ySJeb78ZgRBiurM7nk4YDzr1Okk+N/98VTXVtrn/ve9fLZY39g6sozs37xhj7n/48cHx/rbZmmBBSVVm9baa7+8lSbJttohYVRWX6vj4GBgbVGT6RehJkqVd1zEhdJKs1+vTi9OyLHtr8xj6niHEfDRWWsQYGed5UQzRrDzRpRBExJWEENqm5ZxrpZMk6bre+2CsH05SOkuJobW273sAECgGcAIFNxqPmqZeX13mo5JzjsG3203t1yE6xtjoYMQRnXNNA2maDGc0zllANuAciiL3PoDgzvkyz/u2K8ty0BLHGNu2HYQhm7qaSsE5W61Wo6JQiYrRI1GqVRfd0PlJde2ZiTHavpcv4NU+xt71bWc7Y8ZaPa8uHz9+KqV8/c03HESGGDvz7e9+/+V7d09ObtZtLQBbHx88fpSmed23m6ba2dm5ceMGF2h6t9pUk8lEcHb71p3L5aLr2v3Dg1zJrusklyGEPM/6rl02DRLbbLfTncl8Onvne99759H9/ZcO1u1KpFmSyBA8RUxS3XXby8vFdDq11mihBDIWKQTSUpGQMUbnSAkGGKXkyKFuW6G5YEg+OBcZ54xxirFratP3iUoEMZTCeyOUZCgist7Yi+Wi8bZUGSEKJe/evXu5XGxX65t3bjdNw6Q4vnlycnRie9O0z6bT6dMnz1WiiiK7Wi7KcdGZ/jvf/561fjKZjcfTp48/Ho/HSSq4FCnXTdcCei5kypO63nStP9iZp4lcLFfbZgMyRoDholPqMtFaKRlDyDJ54+jke9/+zqc+tTsuSxccEVVVtdlskEOMMJlMYoxN2+ukv3F8+5F/dPr0mXOunEyH7dHTx0+Oj4+zu5kLlmP6m7/xG2fPHv/hn/2ZzvmLi/PFYtH07euvvOqdRYit6ROpRqNRXUPf+UzlVVUfHR1ZZw4PT27dUp/51Od0nhHRcrka6krTtFVVHR/e0Gn2/Pnzrm8vLi7m8/md23fzshwk6Gmabje1MWYyKSNFAM94bFvXNI2UclNvOOdZViRp6pwLzkopd9J0SMtJlEDEmKdJKsoyb9teK6kUDz7evn17yB5JQHStUSp7++0v3rjxcpqmxpgf/trXyrJ88uSZC84Ys7u755xjXO7N96IPXFZV05xdXLz99ts/93M/996zB1/6wldWi6UznksmOG+rtu/76XSajlNrvfP1tq52d3e99xHi7bu3h+tjbNvWmiRJBnkt57zre3d1JRWnENbbVQhu4MdYcnmRVttGKcUYzmazruvyJAvRa61HedE2teKMMWZMd/fe7XqznU9OtNbRh6ptEINATlykSQEJOW+sbUBIBhiDhUiIIqJUKvWAKFMk1hvDQUTjuRSCM2+ak5Mbv/ALf/ov/Ke/2HtEAUgSZNg2fYZCFNnezTuB4Md/x+/+iX/jd+d5/s//+T9TWty6ffvhw4e7+3scBaLRKvUhegjEsWm66XTaWYMdIhdN3UwmE2v9drvVWndNH4E++OADLWSSqPFolBcFcBaBeYoDqHcIqCGMQogQfJJmdV2XWR4CEcNEKCJCRkNsLQzYUsYiYgBgWkKM5H1wLmIUQgDDgACRkkQPwQ8EIJREIXprh3XrIIQmhsPEmQACDd0tADAiAqTrgCwIBBQHyxEhAhIGAALg8K8ZlhgNUmoUMFy5h2/0CXUYEIghcEL/4lGIbIi2vo51JnpBeSLGIHhPCHEQV+OLJw04pGMxusYiISJwDgDirbc+BQBJkgDAdDxmAKvFcnlxOZqMptPZZDaZ7uzu7M6ttU1TpXkSaAApJ8YYrXXX9i6Gtm196DnnpnfAUEo9Go1ee+1VAJxPZhcXF511d+7cK8tSJmI2m/kQur7VKmmbRquUI2OMScUPGQquB9Z9WZbWWqHkQCDxwfZ9D4yQyFq7u7OTZFnXGcEH1Th2TctQRCAX++VmO0T7ap2GELx1iNuBHpWkajqdNFUTgdq2Q5BM8LquB7xzkmQxei30UCBTnfhgg3dSiOlkzDlfbzdSqvl87qwdjccAMBAlk0Q752KMgl9jsWKM89ms6roQQpalLoYyTRkwnqQxhu12a63NsiwY651NkkTrpOs6Y/qLs7PbN29N5aRtWyGEGZzjHIEx530cSNeMaSlDiBGo7XsXPAYvpeScayGfXT2vNttZOQ7Bfes739vfmY0n08+99ek8zyGGRGnvfVXVWVYkOrt9e9T2XaoTRJRSekfO+TwvnHNXqyXnPM2zvu8l4SgvbXDe++223mw2cJ1EA7XpjlC89+4Plt32pexeRzYAhRACRK21tTbLitnUD1IO5xxRZIxzPhw3wXpHgmmtlNa9NQCglFJKDZIFjjiI0bbbRgkxnu+Sj0isMs0oL4MJjLMQogvh+PiEXV7aqlNKWe+k4NPReHe2s662V1dXSaKapvrGN76+uLr62te+9v7771dV9bnPfe6dd96ZzWaTg4Nnz8+As8PD/bffflsplWqcTqfeWym55CJN1BBBsG7aRCgpKWKcjsrTi/PT8+fF6OXedKM0n8/3tBREZPo+SZKmqjOtPvOZzxDRertEROAiTVPk7MGDBwBwcnIymUwiDVMZfXBw1DdbFzxnEnko04LJ88vFcojUztPkK1/96sMHD7777veuFquPHz79sd/+4zePT8bjsVJqvV7H4Ix362o729+tlpXgfEjS54IlSWKtTZRu6u1ms6mrViX61snJ0CuURd703f7unIhu3ThhjIXgu76zfTcMw4sy22zWy8WCc0qU6pqKAs+SvKoqFDzGcHFxZaznnOc6EYLpNIlAfd+3bTsaTbROgUIMzLv45PHH3sfDgyMuWJKoGAmBF0XRdZ1zYTweE5H3/vnp0+Z+o5TSCd/d3V0sLhaL1d7eHsVi8GRfXJxXTT2d7vgI68X2nR/cP9rbL7JcMpEW2Xq7ccGX5RjAG2MQ+Xg6dSEQgNR6uV5PRiM3rMaBIlCgiADe+yRJqqrarPrJZGStJWTWuzRLwQ12z2tJ8Hq9mpRjIURne+9927bT6bg3XkrOBDLJUHCpEhUsOd+5SAhEjMg3DiQyJlJGPLqOIgjO8/Go2VZJXnQhcK0j494FEDIQQJp6QiGlFPr0avuf/d/+8rr3XGi0wYNx0SdcmK5zCvq6zqezOy8LAPK2//f+zH/Q9+1isdBZaoxhxKTWSZYOO34pFQyLUwAfgQNkaWGNj+S32+3z508vz6+++OUvZTq5cePGaDRq62ZwB2glh/TmEAJ5r5TyMQbXC8G996nS1trBssulDN4zBkSEgiP/xPBznSUphFBKSS4G7ZMbhvCAg2hmyP249t1yJoZODAEQOWPAcNA9ETJEJAb/Q2EbeMOMRQZIGIEIYGAZIRAFpE/qL8ah+g573UEsDf+aiwk58xSBABkwYvGTFTXiMAgP+AKDyIgGr2gcXtcQgdFQHQAZY5wRwjXHiQMCQyIIMYrVapUo7YwZj8d920rO9/f3Tk5uEOdpmiJTLoa67bXW5WTMlTRtywSPGJ4+ezwbT5RSIQLnmKjSGMM59zFILogoS7WUcrFeAAdEEkIqpbbrrda6KIqUS9PZSTriXAopkVHd1YhIggGAlLJtWynlIAclIoq+yHII0fYGIl1dXZ2cnBRpNpoUjLHgKYSQJImP1FVV1/UD4jEQDyFE56WUhCz6EDytVutyXBZp6mwkwm1VbTYbnaaMQdd10XlecAoxTVOllDWu6lqiWJYlF6KYjGOMQogxjEKMVdsgYpqmQ0AochaRBmmV1joQSc6v2dfe64JFxMXV4v79+3fu3ZnNZt57wbjMciGVDf7s7Mz2nRJyMhqv11vnnFIiS1KppBKi9z6EEIdDV4hMwqau274rRiOBIk9TD6xpOs7FD9557/z09O7d24dH+48urlabbV911tr5fM4T8cH9D6fznb3xXEa+Xa6SLC1HI2OMELJtOwA4PDxsmubq6mqxuHr55Zddb6uq2hAbrEQyUQCgddr3PWMsS9ViW7FDenL2ZLY3CyEwwa0xwBkbDNycW2c551rrSAEEcoRBiZqm2baufQzlaFQWxWq9xkDleGRtXzddROCSjcelMSZYN5CY8ySTUl6eXyVJAowpxQWTwiNaQk/Vcnvzxg1EzLKsyLKmqp89e3Z5fj4aT9/61GvvvPMOZ/ELX/icMd10Ov7c5z5zdXUxLsqbN28aZxfLy92d6ec//1nJRde3ezvHwzsrFe+6DokpqVOdeR6bpgEugsedcmY9LdfV8mqdaDHfnfEIbVc3TZMkSnKWJMo4R0TDk3fBS6mtc6ngr7zyihCi67o8z5XQlWuurq44E2miGfKry7XO0qDl4fGtjz788M3Xb73//v22bpJ8Z//43j/6x78Uffj8Zz537+a9clIOXuo8zS6uLkMIO/M9gDieJEmSrDZrH22RTYaL5nJ50RunlEoUK/MMiTgCR4zOCiDG2HZbZVkWnRcMIvnZKL9aLZ0Lk/EsGKtSPSlLa63kMsvKR48e9dZILbiSSiYOIkQAxoRKqqbjnCdJpnWaZZl3oW3b1ao6PT1t+348nhhjLp+dTafj/YOdJ88eW2sPDw+lwhCb3d35emMff/OhECzLssWC6nq7v78/mRZdX+V5Shi5wCHoe393f1u1R4cno8nOdrnyxuXjLEYajcacs+1642MYVoy7u7vIWF3Xo9FISknOZ6PMONe2bde0SZIIxjjnFIgDy7IsRmBC2a6SaWJjSNM00RkQ896nadp1HRdMSsmVqNt2tV2Xo4wrEdpuuJcpaSkY51kYWiQ2XOIjYyGESBhDgAAcmbdmu1oTgoueGBDDGBwTMrogtBZa9Z1hPBks/ueLtUxTYEiGRRYUia7r5rPxk/vvfusbv/y53/6T1WYzm004srOzs6qqxuOx5ilPNUciROdcBKazFCPpTFvjtdZda7KsEIghBCXVbDbb3d2ZTiZ//x/8g6urq+9///tf+9rXhihKqbVpTVnmXAlkMFztGQHwIccuorxOAJRSSi4gEhdIAJ4ixBet4ieBGEQUIg7I3giR4nWm4TXVBgbz0JDp69j1YJkPPuAYB9/toJZ68Y2vbxGBXSdpXNOIiGjA8HoYDEh03RlfC6tiDwNTGAGA2CeNMwrGQgiBCJAPHl8fhwiOoWBDZIgQwzCyBlKcXwMKkccY6doWTDDow4BhJESMNOgdo5hMJkmSQKSBYaKUOjg4BADUGoEDZ1pIRCzLvG1r582gfDs9ff71r//Tu7du/8RP/KSUsukMYwojRowQ6fL8bLDhz3Ymo0nZVDXnvKkrpdSoKIKnYIPSOs9LY4wx5nJ5OZ5OytHEesOJDxXXeWNsBwDDX3yZ5X3fL1drKWWWJdv1xh8ch9C5K5emqRBC6mQ4WnlrvfeJTFwMYkg4E3w8HkvFu6YlCgRhs9kYY5XSq9VmtVi2bTuazNIo67pGikjXwyGlVHQeifZm095771wipTGm3lYUgvVep2kMgRmjlAQAY83gZXLORGOGZpgBlGkmJZeMXy5Xy+Xy5q1bk9F4vVxprcskE0pJLbnjd27dHAQIjMGIj5bL5WZTOWN3pvNtW7d9T5ylacIAhJARYGAYAwCFuKqWVdN3nblxfFh3tTHmq1/88v7uPshkpFLqbZJnVdc+f/78/Xc/AMF/y2e/cOvWLcFgsjNru45Fsn2nVSKE2Gw2gHTj6HBU5PV2i4iCcUQWXdRZOvTZ2+02TVNEjow4iu12+4MP383zxMUQ4hBHcQ0VAYYYPEFEBhw4UOxMJ6UUWjVdBwy11C6GxXKJggsle2sAUErZOwtMDHMFKYUNPkZq+s7XVWSopQwxehcyzZyJ2ANHIZl++PEDYHjr1i2O7Nu/+a2+t2+89ebBwcFqdall8tmvfe7+/fsfffTRF7/4hc1mdXFxcbB3uF6vm66djMZvvfXWqChX6+WjRw9SNd3ZmRrbFUUhJeecR+86U8sk5QJ703slC51Y13OEt155ddWvOVBVby/OTkMIyNnx0cF4PF5t1kSkkhRicD4wHpVSzjmtU+9tJiUydrW4mI5nDMaLxbKqqjwtrPWd3Z6dX+ZF+tnPf54BfOVLX+6dXayXTMvf+VO/K0/04Ww3UkRkgSgGklJJLoZxkTEdBw8Mx+PxIEuBGGOk3d1950ygqHvZd70z9qOPPppOJnt7852dXe/9dDQeJrE+OtP3Ssr5ZMyY6FqT6iRRqq7relvt7Oxs+o2U0gXfNqYQ2hibZVlRFADU933f94yDd9Fa++zp85OTkxAIgQWC0WjMGFutVoiolcrS0ZtvfiqEMMy9YvRPnjwloi9+8Ytd1y2XS62Tpmm+853v7OzsCCEe1jUXQkX83ve+U2T5we7earWqbZ8kye7uLkcGAeq6nk6nbduul6u8LMrRSGv98OHDo6OjIsuqzSYQgQ8+BiJijOV5HpzrjEmSBAkRAIEBwOAOGGo2kIoxDAIRa+1kNLq6utrZ2QHGtNZsMm76LgZARO/9g/sf5eVI6ZSZHl0AH6IPgYAIgZxOtPcuRNBSS4e1b7M86W1USgVrBTIbvLcdCBnJ962VQkfyMQKDQfkRbddDkMA9gdAqJQSZjr71a7/y4z/zs2dPn4QQAKnrugcPHtw4Ojm5mWshiWHf94RA5JVSKK7bwL7v0yyJ3lrj0zQNwQ0m6W1VfeUrX2l60zb9YrHiTE6n021VN9VmXL6MjBhRXdeMMZ0mLjiuOADY4AFBcdxsVpvVdjaZ5qMsSZJoLSHwoVslgkgcMBIgotB6mHk4G3wIPJIQnAlxXaoBI1FwIfCIiAIZvVgDD0x7IooRhov2dWVFgqFbjRSvpdFDAhVFH1EOaVrshZMYBlEz+9eGyezFjyCigMOcABnDCBCuEzkQIsUhJwTx+tsADLroT9prxhh+kqQJEYgYQXwR8sUAOUMBTKw21aQcBfL5eDyf7/V9nxW5FLrvrVTSh1CWZdM0wQ0Zi0CISidSqw8+uo+Er7766q1bd5q2YowxYl3XGWNijGVZxgDeOqVUcH48KbVKz87O6nZFjExnVfCAkQRko0ynKkTPpAAXytGQ+SeapvHeOeeSRK9WyxhC2zVTPQOAYlQKIQJQ07WEoLU2zlrbqyQNIdi+H4/HkzQdpkMcse1q6blOdNuGxWI5nY7btiVqiEBrGYIkH1ofOLK8yBlSnmZSKyI6e/bcGKPFy11dR4Q0TcuyBE3r7SZRqiyK9XrT1Y0cjYSWwNBbHygkSYKISISI89mO997HYJxPy+Lkzu3ofJpmFOLqaiFmPOWcEHtjuGAuBEJnXV8k5Wgy2VRV3XbL5f0QQoh0cvd2mWWDcXPwRidZul6v274H6589e3bz5s37H99fbNZCqeMbh+erq3pTj8ZsOhoBx7OLzXwyZcafPz9jn/nCxcXZ+flpCKYYj6SA+Xi+3dTVdpMmuuu6ptoKhgM8JMsyD8Q5K8tytVoBQIzBWoOIPkCmEiW0AUfeeUHgCBlJoZyjCETXqZx8d3d3uVxuF1stpBQSOLPGDfnmSMCV6qxp23Y8HSEiUQCISAG4ZMgjotaJ896HgIIjhrZtGROjPAcPxvajdJokyf7hseLkvK+reuO3e3sHWVaMivH773344MGDu3fvLpbbSPzk5m0CkRXla2+8Kbk4OzsDYG+88RYif/78TCh5eHRie7ezO7PWIgZjLBFZY05PT4vZ5PjgEKRSih/sTin01XaZSV47YXujBB+Px1dXV1mqENF2vfe27+1isRBcJVlqrWfMG9u50AohMIYkSbI0ffr0Kefyxo0bLrgP3//wB9/7fjkeZUWWJofbar07m3pqre+caXSWMsYUp/PLJ1rrpvXe+9FoVJbj+WzWdY1imE0mMQDEiCD7rtNac6aFZAAgJJA3A3AmSfOXXnpFJ7zIUqU0ERlj8jz3IWw2lbWO8XY8Koxxm03lvW9bYBzSVMcYvbeXiwvkgks1BFj2fVeUKYTobV/m6Xq91Dqdz/aapvPeb5utUvLevbtK6dPT07aqR2V+48YNwRNrrZS6SFNjzLau+g6+8Y1/fvPmjZOTkyePTw8OjlwAzrRzIUaIAaIPmU4uzs8FYwf7e1frVZJqAGrbdjaZbtu6aRrOOedsUo5QiKZqmq6dTWbOuL7t0yyTAH3sBptNW9dZliHn0bm6bTOdWm9jjHt7e8Z0LgTN5Xa58oWv6/rw8CDG2DQNA8jzXCnFOQ8Ek8kYKJyfXebF1Bv74bsfxkBD7odExqUiRoprYzto+s56QFRJQt7UfQec3bh96/xyFSLpNHfOD00iAAghOJPe+xAsAGNSGtMDBcG4ZyFRiWA8ADoX8t353/57f/9P/Nn/eD6f19sqS9RsMv7Kl77Ytn3fNUQUGR96A4bQVFut9QBhi+TJB611Xuhqs5VaIIrhhlymOV3GRZEWk8lksVjs7e2Vd245Z548eYKIWqVJlrroVKKttUmSeO+GBvTdd981fb8sJkfHBycnJ1KI63ksomAMETmyQNE6h4LTELDMGQeQQoQQvL12ygxYOSllsIYLMQTmRyIGGF9wERCRASEMLt9hLh3petAbEYHDdUAH4ZAvCfF69xuv7wLgyAbYAwAAXWMd6EUEByInAooRB+UXYnxxkiBGDOF6sAzgYSjXNAw9AIGulV6MXuybYQiaRhRMiKbty3IUgLjUyFnT9ipNQOj1csOlsMFrrdfLFWPMe+uNBc4ihLbt79y998q9l3ZGkyIttputynWaplzJ0XR0dbkcjrTGmMvLyxhjURQEYTqd5kUawHPOoyMhWYxQbauDgwNrbYxAIfa9GVD2tuvIe4FMKL1drb33Wqk7d+7EQEzwEOK62iZZOqwVB+hp13VxtepM772P5H2wSghRZMYYa9uIihg552DgOhCNRyNnQ9M0m+0qL6ZFniWJGpeFkKzv+yePHlnvfuPb3/r85z8vtdpUoSxKnSYRUabJvtaE4L0vs5xi7PteIYlEJ5IREUYgCIBIIQYKFxcXxXTMOOdcM8EHVcLebMIina+Wu0KEvpNKcSmBIgA4imeXF9OdWTkeeeum44n3wVHM0mIIJzHGlHkRQlBS7OzsjJwLxnXBN02z2q629XY2n46nk0V95aJbbVfB26vt1sYwG6nf8Tt+ojV927bvfOv7UovO1qPRaL3aHh4eh0CdcZvtajQavf766zpJDg4OYoQQwqZaMiaIwu7OdJiprlarpu8IuKn7ruhW1TZT2noXgiMehy7Q9a0QKssS27uzs7O+b1Od9bZnmrkQhBDeey5EsJYnrMzy3huKngsBHBUIZNB1DQBDZFIlQukQQtM3Wus8z631vbVFkvJESi79wLvguqu6+/c/HhXll774JYp4fnlR192bb32WMfbo4dM7d+6MpuPVejGbzbTWm9Wl1Opg77Asxt/85jePT24cHR/ZYDVLOOdZyn20iAhE1q7ybNx3vmqMTlWIeHRwjCCjAxZhs1x55yQXwbqdnR0iWq/XmU4YImPM9K4n37a9c0ZpkWVJAOV9P8qvE4J25tO27h589FFk8dbN42mZJ0kSGXam1RKr7VIoHQMooW3dT8azdlsH8p2xzoYQwvn5qdbpS3fvScGaegs1JEWulOKMlGa9qYt8ZL0LQIzA2eBdLIqRUsl8NqvrqukaF7Fvjfd+WzXD4j8tRwShrlsEPsiXAKLznfeeCWrr5tnp0/F0dzLTyFhnOhn52dnzw929LNV5rsviaLXaCMZ3d2ZnF5fT2Yhz7kPw0c/n872deZ5pJWRvWx88UTg7PW2bnjE2mc1+7Md+vG+7yWT2+muf/vv/8B9IKV966S5VfZrq8XgaEBjwp48e7+7MOBAXGDEGGwDo7Ozs5OSknBTL5TJGHBdl0/fe+7Zunj15Ot2ZDXkAROQhDhZhRHTO5UNAR/CWfDYqq+16Xa0nk8l2vem6rqkqYFIpVddNUeSJUkMu6dnZWfRBSOW9Qwo7OzurZV3cuHm0tw8/eCqEZEzgkCEcAykekb392S8+ffR4U2+Acet6rrPg2ofPzgDQGKPTPISodG59iEDWe4kqDuYFAEsOGCaqIBdEEsEB0wCovWnTneTso+03fvnrv/Unf1xrzbkwXWt7M/xeIUQbw4Df5hzH4zHnvKoqrbXkinNOhBzZaFQMBpvFYpHmY2vbrMiHgtf1DRfYdtvtdl1kSZ7nFxcXk5MpcO6CxyCyLDPmWq9irZnOJrY1ALBerw8PDwc8H8XIhYBIFAIIAQyIIRd8sBFJhhHA9p0QYkAdMcaG0OkQgiAUhDzCkJgEA0GBrpeyBITsem49tJhuQAUDMYghXgNdCBkEh8gHURYAAMJQdwMDZDikZAx/IYCIDCEiAAwgRWDIkQFAiJEjixSHKToMFAhkADECY//aUeB6wQzXpX3ohpFRHHbDwESZZopxoZI0TZMsRaSmby7Pn1sbd3Z2hpAmznnTtUMgp+Kyb0y9rl+98/JLt++dn58/WZ2Ox+M8LwdddKrUdFys1xst5eVqqwSjAJMiH/b/l5vN8MJxxXwIDMX84KhzrjeuKLNBhSQTDQRJmY71ZLPZIDHOuW27vZ35ZDzdbDbz+d52uz0/fXbz5s2m3hRFWW3XaZqiQNe7RIqDkxsInDMkCFqriKAgS6UI3o7GpeKwXK+G8+DAxduuqpMjlyZMSvS2d4aapqHIPv7oya3bN197/dXVZjPd31VCNl3LYhBauRiQQDGWST6o4UOE4LwDpoFBCCZ6ITiGeHl+Md3dQS6artXEtFaIUJm29SKZjY/GxXa9CdZFhkQSGDpjyQMhnF1cjMblfLYjgIbdw8Xl2SjLkbN6CMxLkuCpt6b1lks5m6a2ib9xulmsVj/yhc9JAsHTQvP1dttFJOSAuNhUtjec89aH6f7Rxx9/RDxp+i1EavvAGNNlfnd/d39nN0l0jLTZVI5i1dfCxfGo0EmilOCMd72ZTaYjX15utqfdRXKB0YHjIJhFpGhR8MAVC4E4pxCc95ZBTJSy1nkkE3wIkYAAiUlgUhBZLoQA9N6zYY7qTKpTzvUws/Xojb3eJQfrRCIsBYGYB73t6/lBPh/vPL583qxC5PSpT73Jufz+hx9Wm+04zz7/Q28HZNttvX/0xv7ubtd1h3v7SiV9Z4hlh0eT+WxmjPnyl796dnH+9Pn5ZrOZTcajokx1KqVwMTRdG1EVk8OSeUbAPddSUapyrrZ9/82HDyRSDPFydcEBizy31noblCwIwDrftNtiNAIgB7ipmjxCIklK2ZhBOgdcyfGOqJp1WpZ5mZWZlkKcnj6zzZZ8ar3LsqxpmiRJZvPx06ePGBNlWTZ1l2aSMTaZzM4vF50LEJmQqe07GWWCCQVSMgFiwyqUM5ZE0ZnKdjafa6m5C2a5reqmH8141zZIYK3NkmQ8nQwKjMBDluXGGbTB2JDl5QD1ms6Sg6NmSEUVQnDOrbWIIs1GANA19Xq9Nn3rrcvLTIoYHPXOFWXpvWfosywFpKqrKCIAq6vtpq6aqoVIXd3u7u7ycYEIr7720uHBv/Xs2bO6rvu+z9Oi700qsSW/3NY//OUv5pPRRVWVQmOqOWePHz9cLM8mk0mW6Twv33nnHSHE3t7e/uH+aDJijCdpOsC4OACLwIiNktwF327rLEsloY8xT3JN3DlnW0cBGZN5PhKMlOCnp8+LogwhHBwcXFxchBB5kgZEDtwF8q0LFJ+u1z/+h/6tv/Y3/taqCiybYJ4ARSBm617E+PjyiYUuoiXHUAhgBiIzGyOUeePk5A/98Z/7P/xv/xPKU+GkVTb1oucOYlRMmq5njBVF2ZmeMUY9GSE8hDHGoFXC8mU3/cFv/Mbv/Znf124roiCEUCWPzgqtXLQsMKm4t4FF1lV1kqhUyxCsTDLnQt93XdfMZjMbHOcyL8eBC4jBdH2ep0PH4pzLVR6DJ5RpUR7IvLc2zyVg5MTIOLLeE8lEMyZffeUNY9xAPvDEGEKAKFIVQ4wuSM47CIxxwWWM4drRyzgRRSGdc1mSWmthQPoxTjEOUEJwQYTIpIBIYQBbxet8t2EmPMyVCeCFGBY5MOQYYwxAQE4yMfw4ggiMWe8QUTLOEF3weB3WwQAh+sA5QwoRh9o8bIUBADhjIcJQGYmIGB/Kc4x4nXKJOCR2sU8GzgwDASFEIBZAMBljBMYECq6zdDyZcc63zXbwIBGRtXFQ2QxrvCzLhkF3CFFpfePmieSs7bvxdLK7v7fabLquy7IEhXQxRISsLPqm14lMkuS11152zp+engag0WjkgiciHgHlICnkvje70xlRIO6T3d00TXprhqRJKTWF6JyTuzwri3fee3+1Wp2cnEgmnTOIVBRlnuej6QQAFqulEGIyGldVNZnuSMmZYFIqKXUIQSuxWlR93+d5nmTp1dWVMWYymRRFsb+/DwCMSyllsI5C9DY452az2WfefiNaP05zBqxvu4SLEKKOTHPmnF9fLTKpR2VpmpYppYUIHJabFQMcFyUiRMEPbt7giCaE8XjcdV3fmxhD3/epTmzfS6325juxs4gMmei9iyE+efwYuTg+Oc6SFBGRcQ4w7LYjEAeYjsdZkvQh9qZv+w4YU0lyMD+sVLdYLLx1X/nyb0nSRAar8jwdl5xzY4z3vshyzvlms9nl+wjwW37LV40xbdu2bdt1fYzXWtBtWzfOBOestcYYwTAfjSPR+cUVZzDdmfWd7a1B5FmS3Dg6PCrGx8fHH7/3cDqaMxam07GJvu5qkLy2PRApKW1wXAl0VggGGEO0SKCU1FL4GEK4niYR0RCypkAKFEM+uxAcGeudDc4nUnMhnfNJkrBApuu1ln3T2t6kQk0OJ1EwxYUSsphMq9U6T3TEKIW8/caJ5HK1WidKziYTHyOMxt7bQfqhpVCJ9t5fLpZ125Tj0bqunzx9Nh6Vo0lZVWtr/ZDA0DbVeDy+WlxY54RkSPGD996VnN29c4tzyYGqqmqaxho/3901xkAMUkokctYiY6lKmqaxrFdK1TV677Mkta4vs/zuvZfrun7y5FGqE8D43ofvhwgnxzfqqiHwQor1ZnG1OF+v17vzPWPEqExVkq6Wm/W2unF0JBgKlUAMeTaWXAJGAAqBEFFw0XYtcGYhznd3p/MdF2yMwBirqsoYq20CjAsppdZEtGmaYTaeiqI3pmlaZJQkybAgjDG2rc+LFCjvrWmauiiKGMNqVfX7e0mSENHOzo6UB71pnfcELFAYjUfOeyBSKhnWq4DIgRMF1xuI151o1bbds6e9NycnJ03TLJfL1199beB8p2naWUvBXl5d1X032ZltmtoDnS+uOJd5no5GI+v6H7z7zs2bN63tb9680XXmyZMnJycnJycnXW8GAjcRpUp3VZMoDUSJlAGwWW+D9yRFCIEjG+LbBkV9URTWW+R8NpttNlvv/f3794fM+c1qkWWZSAvT90KIUVE+ffr47bc/9U9+85/+H//3/+dv/ONvtE2TjI97prIZrzbQLNbEGc+c64kFJBckH4msMWcX5b17/87P/dFf/N/9BQvag4MApGNGhQ0WiadZ2btu29UgOVcMZQmORR+6HCWQTGQcZV3TOxeMMV0Xq832+PBAKWa9T5I8xti1Rms5aMSIyHQtY6yqtwx5nmbW2rqulUq890lWNKbniHmWma6p69rH+OzJEwB4681PP3v2bGishRCS8zRNBbJIJIRiUnjvY/Q9gBRSSjmghYaPtjEWEZNEYySM4TpQ6prge52DlacpKRVcSJiIMbrOABNaSuIAQC76SJETcpQDO0EoyWAgZSEiDoHzgyX3Wnv1P4APEFHESIAQgQiIDWBBgAAUQwAiQIRIgJExzoQQCOF6ffxigH293iUk5MgoEmcs+MAYCyECgGQiRgKCF/zDF2QnHweV2fDFSEQAAUCMR9PRZOxiiBCZ4C54yVmapoQmBCIi652QkiFSjMSuO+jd3V1EAgpSKyGldurq4uLW6Jb3ru39MNXRmb5191aIcLFccwYuhqIohBDnlxdwvdVGCoFzGNLjHj9+7Jw7OD5wznEuYiQplZROaM45N94RY6PxlIBdLVZ5lqRpul6vX3rppd2D/UE7F2Pc1lXXdYKry8WF4DxRiojme3tporquizEScOtCWZYM19W2UTp95bVXVZpEE7IsqesaGQKhTpPG9Hdv30qVHvTYQCAIBZeCEURyzhIREnofIoGSWirJGOOcoWDPnjwNs/newb6lYL0VgYjzYaMwbOaD8yBjkWVtME3fpzKJRN4Z61yq9eH+Add6Np7Y4IdHhRBDCEVRFJNJ6C3FsKmqQGS9k0IkShlruRK/+Zu/eXV1dTCbHx0eOgKlVKKUTBLrXK41Epyfny8Wi5u3bwkhEqU/eUoq0fl4HEKI3vV9H4guTk+11qOimE2mnGPXO2N7nWZaCi7Ucn357PR0b29vOhv7vuPTaZYlgknOBZFbbSuuBTLBESSA6XtjDAB4FyNQCA6BaS2HeY5zzjjPEVAlnNCb4J1TUnDOGSInJMY5chdCpnQIgUIc8CjMBx9iBCE5XywW3tgbB4ebVd07s3N4tLhcRsFffflloHh2eSaF6Nuuhy7LEiGZi8ZaT0TMe+Dy4vIiy8vO9J0xQvC7t28Hhk1VEQIwWm+uAGLwfbVtkyRrmmq73VrniqLIsgwgzialUkma5Iyx6OywYBuNRgDAOIToKIYQZAiBfEiydOC3DIIdyeV2u5VSrjaVp8jJJ0nS9T1ymOzuXZydrTZb23TIYTbLpQrGtEJkeTYFohDQ9XE0moQA52cXSqn5fBZDVEo5Y5VSiNC2NSISRik5Y4wBd5EQmeAqhBAhHB3s9daXeT6oTznnaZI474mIvA9MCKVHUgTnCYLpe55l3jkm2c7OzmKxWK/Xs9lsu90OuPumaYbBUtM01tpyPGJS6CTNMt70nfNxNpkKBtGHJEk602LA4EMikrZu5vO5lHLvYN/HuNlsLheLLEkI4aMHHx8dHQulNlWVJMl8vvve+/cFsjzP27Zv2/YH3/nO7Ts3AWf7BwcxFkqnOkmH2X5n+mJURqBHTx4j4qgYjUejEMJqvT6/ODs5vhFCQAhpmrg2AsOmrg4ODmxviGLb9nlZeu+RsfV2K6XMsnw8nSRJsrxaDEqI+WxnKGlaS601Ih0c7C0Wlzrf/cW/+F8oMP/kl/7+z//JPzvdf0WHSfBVszkVvADsFNcRBGfCrJ6rBH7qp37q53/+TyKa6I3pK8W0CDJ41tsrQJRJETxKLgAAAqM2BuVlwiRC2FpIWEABvZ3v7fTG9J3d2dkpy7JtWiQARqG3SZJILrwzBokhOG+KfBRjbLraRa9UIqVEzkIgzkSwPsaIkRhEANjd3Y0xTkajuq6Xqysh2XDdGEbZXddZywGilEO2/XVKBEC01oYB1xui0IqhAIyE4IIbKEMMrktjHLa5A36UMR+NYFwwwdKUAUYfSDGKMQINTeSQFBkohICD0jiESGyQWg+VOAxyKnwhkWYEhPAJQ+L6i4wNdw1Ld0T0YWitASMFREI+oJJe/FIwhGTx6wILn8i1BlclR4BIkWj4zgGvnwZnbHAJEF0X52G2LfKyaPpuiBkChkrr4LzpWuCcM2zqTkrJhYgxouBApBO5t3vS9+1ieTmZTFSivHdpnh4dHVnvkiSx3l8nyCfKW7fabIePbpIkPoYP3vtwd3d3ZzrrrBleT2NMs9k+ePK4qqrj4+Ozi/O2bcfj8aA/PDw4TtN0tVopkZZlOSqmv/7rv76zM5qOR01bXV1czvcOysk4xpgkyWg0EkJcXS4fPnmYlunJjRuScy1kqtW2rq99rsQ5l4h4cnLSti2XAgVHRK55YyxPlOsNASLnk9k0hLA1bZol1wcrJQLF4bqkpFiuV1EwTLRnIIo0UAgUWAijLG1H46zIjXPW+0hBqqRt2hhjmqYYKQLePDryPiBBaO16vd5KKVJtnfPOFdnBwd6+Q4pEHFkIYQjvHcQIy+XSdL1kPFJAzrMsy5KEMdbWNQI7O7+8urr67T/yFWv8s8sr5JQoXeb5AMMAAiS4e/dumqaBInLWtx0AlGUZgQiREKIPLoQiSXdu3wWGEcjHGJGEEIynXdc1Xb9Yrbfb7WQysdaePXvqbfD7Bx989LEWmqEIgYBx23YRKC1S6yMR48B700shDGKS5YgUQgghCCGI0NmgijRJkt5aYNgbo1gSgmMDmEMIRIzGDO8CEGilhkS9RClueW+6NFHE8PTsnAKTub64uJBSrzabf/iDdz71+qu6SIbirZTSUvW2HjgWRTEyTZ0VoyTTLtgkKcbj8YDYckRyNEqF2myXIRprewaolNput1eL1Xq9zkdjlCovitVq5b1PU/H48WMpJReoBU+SZLPddl03mY6MtZ5iWuSpSo2zw6dWcTGchF20ABBCkIrX9VYJduPGjQ8+eI9zTiG0bds2/eH+UVObxfJhMZrcvHk3RorOV5u6bztjl3mel6NSStnWzYYzncgQXIzApej7/sGDB4yx8Xh8cHi43W7zvBRC9aZngEmiQqTZeEKAQJEhc95tNhvyzlhbFIXg4hNjpFIKkUVqfaDOxiRN05Rt1tVn3/5MmmcPHz5crVaPHj169d5LddsgYlmW55cXbdse3zyx1lofpdCcRWMMSKlUst1uLy8vJdec8729vS9+8YuL1bK3hhCtdwPO9vz8PITwyksvbasqSZJnz5/vTOdHO9Oz56epzt5+461xOZ7Ndj7z2qt1Vz959nS12hgXAIBLvbg8H41G8/k8hHD//v39/f2BpzJY45gW+bgMGHWerLfbs6sLznme51KrxWp5eHgYKDIl0izrjdk2NSLWbeNCcM5Np9Phs7xaLdfL5Ww2izFyJmzXA2dpmi6WC7FYXpDYP57dfv0V8Pbq0Xe5DLKg451y1T4fTWemb1anK4b5vVu7f/Nv/s1vfvs3kukIhExz1bAglWBR9YzpaF2IfdspnRMwF0kIAQACmbMhcqkgcBGd78ZZ/upn3uScF0XRm3bw0TLOh1UCEXEpdKa6rgshMBQN9AwFCkkutr1NtZbIrTWOAoBReaK4tL3hyIRgzoWyzEejIoQhMJK8j33fG9NLxomIKIYQQtOiQCJSnIUYQgjAhRYyEJAnoXkE8t4Bu2b9Dn6kGCPC9YZ1wN3LNHHGej+w8oKSynkHL2y+PkYeIjBEZIP4CxFjpGGjjzgIoofcrOFfL2bTkQYZ1Cc1WCC7rp2fyKPwOmdqSJeM1zX2eqfLaMj/GOouMMb8QHm6DguLPgzN7bXeCokTUQzA2fUC+HpT/aJFF0yK2bj00Qmlttut955xFgGlEIMtfTQaMcYCBAbgvZ+MSqLY1s3ubC9JVQgREbruGvtjjB1sssNw3AWfZVlVVRRoCJYaPgZN01zDFwE45+PxeDweW+Odc86YUTkJPnZ9m2eFc65pGkTcGc3arn/69OnOdD7dmeR5rtaqqbuu69arbZKqYXMupTw+Pm7b9vZLt8uisL3BGL0PSkguRfRxtVgvndvdmWVZBgyttYyEUipAQA6AyLWK4TqfPcnyIZ8FGUYi7/3g8WKDOSwErnWguNiu8zQDIOQsZSIFfjTfI4513zPA4FztI4u0Xa0xRADYrNabpQoh3Ll7a16UvulJ8N44a22Z513bBy5QsuEVAwDkfFg+BO+7bc0TJVNNzhcyUVyePj8b70yVEOfnV8Z57+1Ld+8tFktjLeNkg3cQV9WWAWZZNjvYQ85MCF21FUIxxpqqds4lWdoZs1wuo7fjcjIqcgDojO1Mb4J3MSjCPM+zLEOK6eE+AAxGTOdcnqRnq6vLzSqf/v+o+tNgS9fsrg9c6xnfcc9nzPlm3rzzvTVJqhJVqpKqkEASYlR3W9ASYAsabIw7msE2HogOhx20CVlEuLsDAmPAWIGQ1GAQQpRFl0oqVVFVKtVw69Yd8+bN6Zw84x7e8RlXf3hPXtT7w/mSGXvvc/Z+3/Wstf7/37+o6j7R2cYZYMgAbdf3bYdEkYBiDN5HF210wGhQYFnbA7A0zbhUhJxLIbUiRiEEH0PCZETw3glkKLjzQ5YZDAdwJOa9k0yU0xGs3KZrRKq3Joveu2qzkYzNFgutddP1JKBarsbjsZCytc1ms2YMy/HI+5iNShfcstowIVvr0jRXQnZNIwEAebXZOOORc2siAACSsX5n/9Jse8dFms/n5WR6eHgYIyDiarPOklQnMkZ5tlpvzeZCiJOzs+3dnapqmq6ejGcKVdu2WZaFECDSsO6J5EMwEFjXNaPR5Ktf+20MNJuMWIRLly4pmdgQ5+PChiiktN60bR996G3bt12W5RGoruvJZEIUHz165LwBiJcvXx3uTZPJxBhT17X3Ps/zpqnqupVSc2RCTJBB3VbOuUjDesh1trPglVIkoPN9LlOGzAcXI+dSIJc2xhAxBqBIV69eYwyrqr569dre3v4nPvGJ8/NlZ3xR5JLz52azzrSKM5UmNiKFGEKQTAjJq6qqqibPS+KcfFhu1qtq05uOCaG17ladMWZ/fz/GOJyqo/da65s3bz48PDhZr77zxuuXLu/t7O3WVWudFVkCwKzxXND6fLWqNs8/8+x4POWcr1arLMtefPFFAGjbNi0y0/eHh4fFZJSnafTBo5uMRolSq9XKtl1AaJqmGI1aa4gIuhY4y5O877tEJaNydHp62taNlLJar3a3tzer9ZBXdnZ+Mt9aTEbj3tnd7R3NVFU1vvMs4GJOH//+2+nE8zT9wNMv/NN/+W/uvneWj7Kt7fyt3zl79qXv+blf/J9/9m/8rf/n//R3v+eDH87SEXMoVBp8E5CnaW6bRmtJZAgJyDlLQghFwvYOUEEmc69OXru/2Ms+8+mPvffwPmMMIDpnsiwbBsKMofURQvQRhdTOdzrLvI9d3+dlHqPveuMjsa7L8sQal+dlovS9u3cmo/F4PB6sgAMnPCJ0tRlWp8vlWmst8sI6m2kuOIYYOTAfgg9usNkgMgaIgg1mXQZIMQ7KWcYYIUaiC8AFIiJKZCEELsQwfHXBSSnhQkh1gVwGgDBk2CCLLCIiMiSK7EnQLxEhQ6ABNglEhIwQMSJgJMbwouZGQkSgi0YcnoyLL57h/XoMcIG9CpEQAYgxFp6wMAEuhNGACIAOAPlF0WcXvxPGGO2TITlDdtFDEwQigcNcKgID0ImMQbZtmxQlUtBaJzoborkl58Z0UnKEaPqLU7zpHSF0XReic31ouUkzLYQ4Pj7WWjOGWZIKzssi67quKIokSYZ/Nb2bjcoheTSV2sfgvc+UpETNF1OlVLWqK6jSNIVIgwnq6PDxO+/e2dnZuX7zKaH4ZrMhhGJU9tYhZ84GABju6UqKazeuG2NiCHmaWe/R+yzVvQtFXjoPdV13XWec3d/f9j4aY4I1IQSdpT4GJUXb2sl8hkPYBcAQF4wEwxDv4osY42I2ByGMMaG33lipRPQhIiZCqVQ/Oj2v+jZXCec8SdNcKorx+Pg4VdloNHrw4MHdu+8i4mQ2DQxN32dZpqVKsnRYnCgc9ISWc86Vqusq+kBEW4t552yqk2KsU8Cm6i/t7lmOmvP3jk8Ojo/KMr98/XK9aU1ndYYU0AIiAed8oG2jx+H83jQdEZXj0Xq9Pj09Ho1GW9PJvBxFgE3brasNl9I4m6fZZDROOfcAfd8KoYwxw2Hz3XffmU7nW+Pxz3/hc5XpUp4RZ4Ei5xzUBeuYBOPIbO9Eon0M6ElISQAUCZnQkkeiGAk5CzQAg0hK6WNQQnElB8JJjMTZMJTitje9s0WRhxBSpYQTVb3mTWRSJEI455quYoz1pj1drbVQl3Z2gMOkHCHyTGWn1WndtZPJZOB+D5pqlaRnp0vnXJ4WknPnXPRus6kTlahEO+e40jFAjKwsp8h5Xoh1XVnn8jzXKjlfrb31RZaPJuM0TY3p1us1MYzI6raZWJskSfShqTdZVkjBNuvlsE621gaKnKNKdN+3o9Ho8PDI1C2j6Lr+xlNPBQardQXB+8i2FlucC845Eq/rerne9H1/+PhoAC9/cDYzXQ8ATd3pRDIUm3Xdtu0QSpamKWN8U22qqkqSLNXZyclR067TVHPOGRNpmpq+t84tFgvGWNd15yenzlqazNNUM3ahZAGAGKPOUhY9RHC96bouAHnvpZTWu+l8zgCiD1IKIuIoEMAY0weIPgjGUEuKUBajMi8QsXF2sAMJwRMumr4fTBNt20ag/f394bArs8x7b4yZby3W9bqcjvf29uuufXx2ko1G915/98G9h0IIYGzYLp+cnLz00ktt15RlOcSBtG3LOY8URpPR6flpBEIpurZTWcqlxOAX29ucc875+fk5EU0mk6qqsiwboEBPXbvR933Td1euXFmv1xwQ0rSqqrIsh8Po1tbWarPebDazrQXn3LNeurA3n7z92uZTP3Tl+36fd+3i7Hgd+Z1Yy5Kz/av4wktPl/mb3/r2//4v/7d/9Yd+7A//B3/qT33n1bc/+anf8z/94/9PEpFin6mRC7YQaJqN77vofJoVpu2ETJq+AR14ksMGT5rlzVvbP/Xv/4E33n5TJztNUwnGCUKMnjEWXOScI2dCCGOsEEqneZJkXIq2uQAt5HmepPr8/FRYNp3OiajZVJPR9PL+XgTSqTLeNU3jPRGEEMMwQN7amiulvHWMaQBPREpKzrkcJqYcEXEgW3HOmQCigJxhRG8tIBKRj5HBv1M3ERGLJJFRiMPVHr1lgKbrn6x4iTE2fKne799ijBQiR36xYR2kJCHSoHG+CDDCcLENfp8o+f9H72CIA9WZD8b6GGlolGkom8TpQjdNhDECYURGMQaGIjxpgocyzPCCMRIR+EXT/u9OBhEICYAIGeMEouv7qqqcM7PFVCllYihG467tsyQfkAvOufPlaZYlgmOitbV2uTlH4Mb5pumEEMZ0QogAgcgiYlFmg+QnUTpGGqXJ0eak77phkdA0DUMhJTgXGGMQaZgISSmJIec8Ujw7OT07O9uebyORUKrIcsZYEzcvvPycUgrY4MsM3vvhXCOlRopJop98ACCEiOQhoOkdMggUN10XLCExBigEi0Bpqs+XyyLL8yQJIQTGEEgwRkDjsrTW9tYYY0bFKPhIMUKMUkr/5BGI0DPAHgCSVIcQOBOIoKUKMUZiTdO0XSvHItPKW+fZRTa7C966UIxHV5+6bqOPggUPKk+YEAzAWvvw8FGaZfuzRSIER2Zj9N67EL2zkouq2VTrzfTGDeYjCL5qqpPDdTYut0blm3fvrOvq8uXLJ+dnAiQnqDYbcAAAXIgXX3xRSW5doMFjG+NoMnHOnS+Xy7OTrdl8WhaJ0sY54GyIdRuyO4JzXVX3nHnvs6KIgJ1trbUhhNnW9vnJ8bPXr3/jO9+So5RLQWS98zJRdW+NtWKgrofABHfOMSGyRDoYTtND9hcNGYiDSR8jhBDQY4yeCQ4hRg6p1s44a62QcvAlK6U8UITonZEBvLG5SqRgdVM1vT06O1VcLBbbtuuffu5mJqQj531QSjw+Pfbkp5O5EszZEIgynRjjxuVoXE7evfPeBc5T6y995Utt1b74wku9MVyJNMu8dYzxEIJ3zqxNIM8oDohH03Xb16+/bzAritGdO3fPzr69v79/dHishN7a2kq1DCEwiokUmuer1arturQoh8Ctru21lElS3LhW+r57eP9BUZZnq+XZ8lwp9eKLLzKWAUBdt33fa6H1RDMmpOScs77vKYT1ZiWlfOrW06lOBkmElDpGr5SKMRpjpFJlmfddF4MDiJcv7fW2894XRTHA2weHnmCyLEtd6L7pDw9Pzs43Tz11fVqO1/Wq72w5HqVaex9SrQlgs6kZY7bvPcMk0SIypCiFvGAG+QjAzpeVUqrruyLLNRcMLx5t31OIQklnTIzROTCMeesoBCRYrdaj0UjrpG2bvu8TpYb+aVyUv/Tz/+Jn/x9/8//+3/w3A4ueiLZ3dyTXg77ynXfeeeONN7a2Fqv1cjgx5Hne9/2gdRgu4b29PZJys1oSkTGGCZ6mKedidb6UUmY6HY1GXdeN8hIjtZvKWoshKqUSqUzbTcpRCEEnE9P1MVLf93fu3BmPx7dv3z46Pj4+fKzSpJxOQCQBRd15ILe7lRzevb+3tUQ2Itf0ppGY0qb+yHPz+PLks79S/aW/8te+8c23Dh68O12Un/7eD3/xS7+Tp2m1fhwsOQjROwTUUnan5+V020fUuS4K6Eynsfszf+WPXntO3Hn1N5L3Ln/4uV3T2fH2Is30ar2WUkZvu6ZVmSIKSZJtNnUSY9N0yNmgIyvKvO/M8fF6MZtyzqOLbdvVdfX48PC3v/LlyWw6W8zzslRKzWYzpGCiQcGGKHtnLAWXZZm1FAmdjzQYfoABCoI4NEWBfAAiAhaZGGL9GCJDQgxPdrF4wVYGyZkLxAHIB/LBkwUikgzxoo3mHAEY+TBUzhhjDAGQGHEgQoCBFvVE0vzE/QMUB0YQwhA8SEQ4NLeI0TvGxMWwGi/i2ShGogCAnJ5Asp7kQHAa+BsIjDBEAH6xIqahX76Ye9PFSw2bnAv47pDKMAA8hJQyyxOk0phuYNEVo3E5GSfIrLWDzaCqKgp+Mh3Zvh/SoyhSkmRDmSHg1voiTXSSZ1nCIF7ev9Q0TdM0nEmKgQMwhuvlChhu1nWe52VZHh0d5Wk2moyMMQAklAwUO+sUYwBU17XiYnt7FwC6vkGGutAhhHW10j4ZluQ6keuNY0pZa8s8G1YjXdcpmXDGJvnk8OFjKSWXIrqeIlCA6DEEY61NioQxhoxJKSWiYgKVMDEg470f4LFYZLmU0gNtNistVbAu0UoIgQxVIonLEEKEWNf1wLIWifJE0XsQou0MAoyL8RDVDi744JCx8WSiVAIAZHBrb29vbzdBbAACshhjnqaC8c3xqbROCNY5Z7reAzAlkySpnEPE2dZid2s7QYRIq6q+d/ioMv31yYh8eOfuu5Ho6ds3j86OqaOnrt4qU236eHBwcOva0423D0+WWmuOWBSFAF7XdVVVSqkXX3hRAzKgYJwRIIAm4xEHCAQAYJxbrlccFBfSWntydqq1Ho/Hq9V5VdeLrdlrb7/27Te/wxPR2TaqGNExAsH5cJ9VQgZvvbOSyxBj27VCajYscoaDFwQXXYwRffDRZzqhECPFaGOiFTDWtq23fmDweu855xSjcRYoshBHacaIFuNpmWQPHt2fjSbXrlwqsnyzam49dVMy3lZ11dd5niNiCCFLkxDcsqqyJOeM1ZvaOWf6EAgmo5FKktVqVRTFrWefuX/3/rqumODNaX3r1lM+Ot/3ArkPrnd9UWScQaokxOC9v3nzZm9NmqZDbvTHP/7xv/N3/s6jh4fbi9m7b7/zzptvpYmazWZ5mjnnvI+97bZ39kKMXEkEpmTqnavXXSqVs2Eym9roH773XpHlL7/0AhlHien7fjoeSykF473vhQwBKC9GXdvWVSulFIyZ3sKAOQQamj8hGAA4bzhjPridre26rpumFjwflXlvDBFZaz3xzjml1KbtHIHkfL7Yns4Wq7bxERrTSSm11lIK7zwn2NS11nq1PHfOqURjRKl429XYBZllzvvl2UopZZ3vrCGi3vYwCWoydc5Z52zwTbWRXATnmeA+hqTIvfeSi81qNSrKyXA6PD8HoOVyubu9ffjoYZZlN/d2P/+vfvX84OCf//wv/Id/6qdOT84FijRNpk/NAKirm6efeup7vutDxXjEpOqMqVab4+Z4uVxKKa9du0ZEIQRgjHpbqARlgojHB48PDx9fu3ZNS9XbVmt9fnY2DCGjD5xzCYwjk1xszOb05GR/fx+I+rZLkkRKpZS6efNmjDGEMJlMzs/PkyQ5ee8gKfVGsO/7vg/9/N/7rv/sJ3/5xvPx+rOXL1++3PRfougm4yKb0qbfGNe99PIHGLO/+bmv7eyOXnvjnf/ir/31pJA/8z/87C/90i9N9rbrdXPz6qUrl3e/+c1vbmejx6cPQmQxgGwy5eJP/tmf+AOf+YPvPfwmpseP3v3W0/vPZlnR1t3Dhw9Hk7ENsdvUZV4IDt67vmuUEgDQ1psky0gx66NgRfDu3XfuVPPpUzduIcNMZZTHp59+2l652vbNutocHh3N5/PRaKQ5y5K0bpsQeq11oqQz0RkbABmy4AMTF6rg6CMAWFunaeqJgAJDtC4wIbVSJvhhBexjJCIkYowhUeDoY4wUtRA6S1HwarWWQsgsEciGLF0AYBQjEmMsEjHOgRH4Id53EC8hMD7MhulJwNHQhgLEoTsdujXACwQmG9IUntTIoXElBCXk8CTDYQ4AiCFDZDEOOvAYI2Pchwsu5nAsIHx/dk0RAiKSjUKIYXxNCBGJIUQgMUqF9x44k3kaCYtEK4iFEtXmzDlPwEwf8qwUahAP58650XjaNE3XVZyJIbkCAEyw0YXYhuhdWZZZkXOhlFLOOmJsOp8Pl9Ov/PK/TJP8uz70XbdfeEZr3fUNlyJJkrquOeeKBAPQOrl+5aoQou9bmWgOrG3aR48eZWmqhCTjgIgLEQJqlSohq/WKnM3zXHDVdc7KASWaVVVVt82LL7/S9z0hhuhOHj8WhNPxxDnTVvVoVHZNazlXiQ7W+xgCGR9jmmfGmLbuEDHhWeg9yKR3NiIkggMRB+69Ecgkl1uzeWettTb4oJCRECHQarXSSUYMo3VCySjQUey80eN8UO1vbc8QIPjgkJZVfffh/Refe96FEGO8dfOGDbHv7aZuvPdlOc64hEh5PuKagwtaAiA7Pj9VMr104/q/+Ne/0m/WZ9uXGmddvfrkh7+bTcrOmanKULAY4/7+vpTy8ePHjIgTHB080levttEBQJElidIUwtoYpdOACC5GRoGR8R4RBw18VpRnZ2dcioH+Y6211k7Hc4hsNhr//Fd/4bg92dnbasAKhDYExlKCEKJDRBdsHywjDLbniIFxztmTBM44rIKiA5GBUAy8DDGiQCkkAAqpTHQAwCQXQhhnpFSc8dYYFilRWgL21pV6vLHu/tG9b3/rtadvPT+ZTHzXpmnWrqpH77xnrZ3P5+PxbHm2MqYNPqnrzXDWzrIsEgKw4I3g6qkbTzVtV47HNgYQ4uDR0WgyztP0rbOz5cl5WZa3bt88eHR4cn42TkZKaSbZK8+98OWv/k7wBN6Zpq3WG621Ynyc5n/yJ/7PB48eA7rT09Oq2Rhjjk6O/8nP/+Inv+/7bty4MSpKyVW9qkYl4wlXWrrgvW0di0oLa+LRw4OXnn1hMl+sVl0IgcteCGHsmdZ6qP1SwGvf/MbZWfXRj35UCZA8aC1CcNaaQJEiqhTbth42r0KIPC/XyxWXalSUOzs7TdM5iwyzR4cHTEgfPWOcASvLEYQYY6yqmjFWpjrGuFqtJpMJAbMucI4Mo7Ddu2++afpAIY7GBRG1AmZliZwOH95XaeGMHRi0UkjGeJKVy5MzV3fjUbHZbIRQ3/zq14SQOkuee+H5nZ2dzhhE5JwvdndM1zvngGGiEy1lmedKyNu3nqmqKpC/d3QidPalL3/lc7/5hVdeeeXh42O1s29NLzjrg6Omykbj1boaFN3GtnVdE6N1vX777rtaawDIspzFiIjLs/PgPGPs8s6et67MC3LUdx0RDfuyzrVZliFiVW28dxzxmWeeGfhCi8WCCDb1hihwDk/duPrw4cPXXnvt3bv3Xnrpleeffe7Ro0d7Wzvf/s7rn//yF6u1eOezXfzsHYTvlKMJQdLVk6qF2aXsy184/p4PfDBfTF/60POSi+eevfXu3dcZiB/6gU/9ws/9oyu7mb5evPLhG//m87+2fyv7k3/6o48ePPzGF6tygl/4//7OJ37gpz756c984dd+48bNZ66NPrO3n8zLiScDGC5d3u5723Z9Xo6k1l1rGHKMwFhMRyJNF3Vd26bjKDq7zpLk5eduERGFrqpqrVIlolRJOc721B4w1ve95Lzv22Xvy6IQjMcIxoXIOHIhGUcE55y3to8x1Un0LsTIBRIIa+0QXsBBMkJvPQgYdFgUYiKFtRaJJKLzHhiTnBNjzgfGmEBW5DkAyCgYwzgQEnywgQCD4oJFZp1NlCZJwfk0TZxz3jkAHJolinHYvhEnhgyQex8AMA4pDQwZFzEScB4BEBkbmFUAhDTkr0egQBifhBgOozfLVYgBQxgWlAT+YjIvOQBgiEQ0ZEIAcYrkODqIFxWcEWeIw36TCH0EJAwhZEWaJIlzDsErpSmyGMG53lpLJAGgbXsp9TBZ8j461wkp0zQLIQBnru+brl3MpoPWjkvmoxOJmOmFECJJ1N7+/ksvvXjw4PFAuL5z505epNPp1DmntWaMiUw0pjemG82n3jkZyRjz5utv3LlzZ2t358rly2maNlVtre2s8TGUo7zvrA2mNRCIGBNcKh8weteZ1WSxyN146MWVUmmazsaTpqo704/K3FpbVdUgWi9CwblomsY6JxNN1PbWDChjHzYhhL6py7LknA9jxrZtgSNXCTBs+j4QDSnfZZotVxXnXAg1hPuGELDvm6ZZbC8ub+9IABuoccYSkPMKWAdRav38cy+0fb9eros0O+46paWBWJal8FFraYxNE624WG7WyAVqCQC6LG1juRA/+vt+ZK7Sr3zj1ePDxzs7O6PR6LRtkjwDos1yXahkVCRdiDuX9hlAa7q537p3797VS/uL+aJu6uVq1UgttWrNmgkRY4TB2x5iBLLWHh4dKaV29/eHk9bQmmitlVBbW1sjKd5++60hAyy6IBKWZ1nbO+tM29bDrR8CZ4xxKZtqw5QOEDgi4yClCJ6GZ0vTlIhcDJ4CZ1wyYayLMTJAZGzYDSspjelthBgjAvoYgouJkEmWnhycrFar5557bjwZL5er+XQmNV+ueyb5uJhWbXP2nde2txez+SRN9XQ6Pjs7897HGNebZaqzW7dvKqZcpCTV9Wq53KyLNH/hueckF0KI7/34J+q63t3dNc5eunQpHRWhMzLVs/lk2P23XX3/4SOVJDFG03UcwVuTFcX1p6/3bT1bzJumMaYzxv35P/8fleVYSikl11kxnm89ePDg5K23nrp5o8jSq5ev+Biapmnbdmd/TxdZ05veuyzLGUPGmLGdtRYgIiPnzKX9y9s78fTsOFE6SZLBtb9arcbTiRISKXrr2rYty7EQsm370XjeGXtweJLnaZZl601tvSvLcl3V1ts0TfOykFJashBBKGGMWZ8ssyybzWZnZ0ut5SBEGJV5tWnv3zvwPhpvZu0kz/OAwDgPITx69Oh8vZnNZsaY3d3dSTF58413mmqtUq2vXvnqq9+YTCbg4caNG1opmSabzWZnb5eIbG2NdZzzcVkKLquqquuKFYVg7PT8bGdnx8dgWzubLf7qf/Gf/8x//zf/2l/9Tz/3uX+zszVrXJsICQBlWXZd9+1vfztJkquXr4YQ+tas19UQpWB70zWdGmymMknTVHCdp/liseCcWxcGDxVjzBh7wVhAGOQOMUYu0Niu76RQfFQmZ6eHnCM4DM7E6Ns8O390cPc7r7/5xlsFV0WuvfdJyqrNSdOeL7bmTSeJqO+qtg6B3P/2S19HUDeeLnoLf+nPff+Nq1ckQ+/gj/6Rn/jtr3zp/r073/uxT0qmpTz50z/9h9544z276a/fXpj2jf1d9+H/y1Np7l5+8bnf+eoBOfv0zRe/9s1/m87SXXpxVVeRQlWtd/Z2EbPRZMwY6/uOMRa89xSk5G0zQKHRO1eb+sqVK1mWhegGJIBSamt3wXWyPF8HZBawqWrvvdKCMd43bapjkmYyxtYa5xwDzgUPLOo0GfzuPrphUsW4jAgRgTHknHNgjF/Mcr3zOlUxxuiCYGwQeQkhbAyenmCnGL8YksVojQ/BE0XOGRCD6CPFgFEwJhgPIUAYFrH0ZAkLMcaLnwyf5CwARBi0Wu9vfy/+DzyJdohERJxzBhhi9BAiAkUceJJPtsiM0RDZEJHiE3EzMmSBIgAwDhQvgiIGqiXGizl0jBGRAQ5JVCAeH59qrY1xw7Q2hFZIttn0kmnJVWNbrUQMMsYouTCdNX0AgDRNKcYQSHDurPHeE+dIpLW23lEXAcB7y4RwEEMMBKxer8q8gEDz7Zk3IQJdvrI/LCE2m02McVAGFUXhvQ9AItGp0rDZ3Lhx4/r16zLRjLEBBayYNsbwANZaJpBzFiECQybkoFNrjUUkjaiS5OTs7OjwME+zK1cuTYpRtd70fb9YLJIsNcZEIimlkCp477zvuk5o5X1kwCVnggvbd1rLsixdDF3XCSW11kmS+BgHff8AhhyOyQ8eHiSJYkzEGJM8y/Pcdn2RZb43TVUrpRggRwQfpFReyQ4ieKyaRjnnrb0YZWul07TIk/OzM0GYFoV1oJARQCAQQvQ+RoiByAMtzzdc4GIrP3j0+PRo+amPfDRNZI4pIqvXVdu1k6x4fHyKWoLgSsnTo+NUqls3rm+VI0/gbHAhEh+SOQJ1jg9pel1XFAUSjfM8H4+GJOY0TZqmaZp6Z2u7qqrKVoeHhyPF7z94lyNFCIQAPti+b6q+i0ZrLWXkKFBy5wKXmutk2MMNW70YIxesN3aWjfMkPT9fUYxJrglj1/aj0QgiUQxciAgwzLUGU0SM0RM553KpNnWdTlMAyEdlKgulRZIqrdIQ/f7+bgjBWl/60ns7npRDwqj3fnd/z3sPALMIg0CpNh1jrOm7LNUIpbMhT1POORH0fa8SfbI8n8/nXdN67zljAHB8fLw6Ox9QecfnZ/PpLEsSJYVkyBlU1dIDNlUbQojeE6H30foIjJeTuU7E7u5ulmVpmkwm493FvMjz0Wh0tjzt+/7Slavz+fzo+LizbWudI0qEQMQQ3WhUpGnatJUxDhFHRcme3L9ijESBc1SCI1LXdd57a70QSookSVXbdDEQF/Lk7PxqmvsY5vM5l9JHwp6UEt7aDrBtW+/deDxGpFQny7Pz48dHIYT5fJ5oTRTeeO07HNlTT906OT97/Y03UKKPIc2zZb2hADrLRVMXZVKMUiYukoims3FWZLv7e41tf/M3f3NcjD/zqR+4vLd3ttlYa1arlRDCdN1gnq4G7yLC+emZUoopRUSPDg/n8/mdN995/PjxT7z04n/1X/2X/++f/Zl/9ou/8Mf++J/4/L/+lQ+/+MFAceBmLLa33n3nzrgcLRaL8XiilBZSXiwaEY0xRZ45T33fKy2Ksjw8PAgUx+NxZzst1SCoGTwgALCpK621c76u6xjjqTtzvksT1bQbzlnwoLgQir1z707k9MIHXq5NN11MIfhqfda3tbFd0zTPPPNMUlXvPbgvMWWyS3TmHXgfjg67unLz+ULrtBjN3r37zuHB+c1nbzXt+t57j2aL5Cd/6hOJDLZZjxIyq2592AA9ro8OPXV7+9u+P/3VX/6nwY4xqZPFtK7Xe/tXraXRbO4jbtbr8Xjcm0ZqIYWK3kghpBSEYIxRQiYqPT49eefzv37t2rUkSbz30+k0L0bv3LkbQahEK6k3TX12dra7u6N04WIo89HwfYsYEZExARHqrlOJ8t5ADDqRSqih0sQYB70UY0oMhlpgnA2+IwjeDyQAGDTJiD5GdmFqgouVbaQARDFyqbw13gWKEQRBRCSGdJE8OHg1GWPW2mHTRCFyKZgUxPBJFMOgv4qMMUQgggC/i63x7x5PspKGeo1AMJCmL1TcAJwNeq0n8+r3JdMEFxIwQASMg4UpDo3270psikCMhgxjEFmRpmmaBtps6qqqkkQN4Om27WP0g/KQAYTglZCOoHOGQmzqzWDUOz8/Hj455KIoCgCIPrhIQnEldQjBByeEqOuasSHoMXBAITlE4pGHEKqqOj4+Hnb1ddNc37+cFzkhBIR1XRlnU62llKbvm7oGROeclNJ7J6XkTz6zNM2cdYgyRGIM8yT1wSIRhSA5v371Wp6nWZJmeTLIK7gUxnRd36dFTgyNd9EN4cHEiFlr4/tZV+T7xiZJkhdZmiZN09Z1nSQJEp2dnGqtOeeC8eiDQJGmaVlkm6oaj8fral2k2Wg+7duuTFKaZIiomRjuAhZiZ2zXdYvJVAkRnNvf3UsF9xECUG+NazpXt3lZaCAhhGDQuVjm5eA0D4FijLXpuMDlcskCnS6XRZ5fv3rN2LBeLrVKgCjP82XfyDwVgvd9f3p6tj2dbY1KJOisE0pu6spHksOJQSVNtTldLxljRZoN+udBcTYcL4wxFKLvzTe//vUY42/91m9VVfXDv//T33nnrXw+6n2wMQBFG4JzTmqdJElwHgIILj0SE1ynWd+3AmEQ93HObW8Ek0TojBWMD2dBlMgRjTFCKKlEGLZEiNZapdQg15JSRBcEE4xYmqa9s13Xj/MZEHjnBQ+I6LyJMSapkiK33gyOOGeD1olzbrmsnrC3+uWmGkK3lsvlKC/yPJ8uxl3X3bt37/x8xaXM8/zegwdXr17NkhSlgBiDd5vNWil19erV40ePp5ORtbZrmsv7lwBiMSqg6c5PTlOdCCFM15R5cX5+Pp/P0zwPRLeeutm01dHjA8bpqeuXtVKc865rtNZXr14d3HfeRyUTAlZVVdS6KIrpaDydjr33s8mUzxdvvvnmm2+++v3f//1KqZOTE2MMkcrzsm1byZVzPs9LrdM7d+74QNvbu8FHa+1sNiuLUYxxMhobY/r1er1cliOdSnFytt5sqr7vx2UxHZflZMSBj8q86zoAMMaYtnr48CEClJPJ4Hf6sT/0B9ab5f3795MsReRSq6dubu/s7eZlNsD0E11M52y5Whnb33/v3qXF3u/9vk+vq03nzHfu3hHIPcWiKIxzXMohJWkyGg92g2effTaEcHZ2Zq3t+z5P0zfvvPXbX/7Sz/7Mz4zyYv/ypf/oP/5PHp2dXbl587Of/exnfvD3buqqGI1cCDeevpWm2ZCojYhHjx/v7u5aYwCoqWolUCWSMcYxMaY+PXt8fn6+tbM9m81C4FVVDaKtSFTXF0pyzmTT9IxDXVecoxBKyURrbWyHiFrrLC36vr967cbHP/GJzWbTt6bMR5ylX/3KN2ezrbfeutM0dcSoSiYw70xNwXCWcCYH5crXvv6tqrab5owp3L965UMf/B5bw2995R+FeGeznm1voRR0flKPiutXbnBnonc03cPl8uCP/vhfPKsO3r2/bJvu+RdvTmYz51zbdlqnzvXIPBdU5FrIXAjWt23TNG3f3bt3b3/30vPPPvd0/nSM8Pf//j+8du3aX/gLf+H4+Pif/JNffPH5F+qqS5KkamrOOWN44sMkuxm955o7YzwS5xh8iAEGrII1TnBGFF1vQHIpBWOaiLyzUkp+MfIlIk/EicKQMwiMX2xtGUdgIXiBDAFhCA8OARCU4JEhghiEtzFGiAERGEeBbLA4QyQkiD4ME80YI8XInyA+AkWINEiy3+96ieiJoRcYY5z9u6xivOBhAUcGDAAg0gXXahBCBwRBHAGAXbh+L7y/wxr6yQkCiUUgBByimYaC8n52Yhh8wOUoM8Ywzre2poMvCBGzJFu267arhRAhuqqq0jRdLs+KomAYRCK4oE11bq3ZbDZ7O7tCCM7YEN+d6qztu9gHIRCAEqUJIBWq6bsOLrSIKgprzABSccZc3t/3MVZVde3aNUUsAjEtV+v1ZrmazWacsRhCcJ4jy4ocERljvVTeu962wcViXGqlGRmdqBCIMUCkRCaMsdVqdXJ8FEIYjYvd7R0fzHw+Z4wBw6GRGkQZx8fHjFiWZUTknJNCxMFFHWJwfrFYqEQhYvA+TZMUUAhxfnI6ygutdYxRc1FkycHhqe1NLzAvskhhMipjjE1Tc2TGmLAOTCfj0ZgicCEaYySRzrLo3d7W1gAMNdYNLC0KgVy4ee06Axr6LRvipmvuPXpUptl8sRBCWGsv7e+Yvn/qyv43v/XtVV0txvOXXnrRdv14PPbWPz461mmydWnXdH1d19NyvH25VJyHSETkOKyaTWW6um4OX/9OkeUYIhLtXr8quRBMeOujHiR8zHTGdO3Q8+1u76Q6sb35P/yRP7Zard5++MbK1GUyrZzleW6aTW2tTLOsSEMIQkBEGHQWzrm+74lQchUZaSVN3yNyhowiOGO01sZ6rbUn5+MT9AxiCMFT5FIQgnMuMDb8+pJxa60APkjJRqNRnucMpNd+OOdygVprzrGua61T50JalEQETN17cH+zqQbcz9buDhG5EELsinx09+7dna3tql4qpa5c3o/BXb1yvW3bIsv6vj8+Prr9/PPMhdq0RVFc3t177Z13VqtVXzXf9/FP3D08EEI09ebduw/qTV0W4zLP+76/duVqWWRXr1zyMXAhjk5P3vj2q01bLRaLqtkopXZ2djgOOy9xdr7KklTJhMIaMeY6gUhFlk0mI8lF8P787MwYs5jNn7p+85nbL1hrm7oblZMhfodzLMuxM1YIxaVwrtnb22s7IwRbLBYMWJ4P0PWu69x7770nhCCEKcuyNDXd42ZTXb9+fTwqX3v123W1vnLlinMOIA55DN/8+tdSnTz99NO27xDg9u1bbVu3bXvt2rVROQkuTmZj52g03TbGrM9XSaoi9MvlMloq8sxbZ629dOnSHux/+zuv5WV5dHIyn88vXbncNLWWquWciIY8lZ2dHSToe5NlWV3XEOlb3/jmix/6wIuvvPTf/3f/7eWrV1599dXXX3/91z//W3/+hVee+cRzhDCZzYSSOk2GHqipKo4syzIh+Or8PMa4Wp+nqQ6nBlkYqDimd5Oy2N3dXa+r9+7eXyy2h6CF8/NlORolWvd9DwCTWWoD994DI52mOslkUXDOsQUiDMT63jDGq7Y7Oj1zzoHDx48Prly7eu/enapaXb16/fFj8hSEgGp5Dhwlk0Cq2tgPf/dH9y5v33l0gKCMd87G1WZdr+0zN1565tnnHx/+6yTFqhKj8sob3zn4xZ9/76WXriyXy0k5R+0Zu/T9n/x990/uzncujUZiNrn08OHDPM/zPO/7Zmd74pwrYGKtDywkSaKEcM5869uvlmUphHj77bdNcFmW/eSf+KmDg4OH9w6sM9W6fvjw4L137958+pbWuhyPjOmeunEtUbJx1ve2tx0XmOd5KoWHSHjhi4UQGYNhhOCdJ+aFEAxRCjGo4hnjEaOnyBgSQwbMOh9DyPOcIYYYFRfe+eEOjwNP48JKywCBc5RqyBsmxtjgmBhyvQZCagiBSzFUdB+GBp0RAUMWMABdAKro/QL5hMiBiMFHwEE4jWwAeVxwr4b/HCEiXEC4BmMxpwsuFl10xpEwRBAXFXswAQ/JwhEhQmRwMccGwCdCaRRay8HYKhUnG3ywGU8IYTaf6EbWdW27TiBeu3yl6buqqhhjFCIS7WxtHZ0cP3r0SCtRlqXbRCmllqoNrXNBKDnQOUxnXfCEUQnlXCAKnPPW2K5tOedFlud5Png5tFRKqYslNGPeeylEkWY8grV2srtLRF3XNXVnre36xjlXFLlO5YDNYox5H4Cot0YnghzFCK+99lpd15evXRoaf0KIMfZ9j4jlOJtMJgBQ13UiVZokAx7BGAMUgKJO0jzPYTJmgrvg6roeUroAiILf215s6pYgemezJH3nnbsPHjx49rkXkixJdbLZbEzoDw4Othdbe3t7s8noeFNVdR2HeOC84IQgBCEyikhRcumjF5Jb66NzeZrWrl5tNm3baiWklMZ64ow48xB1llarddfWj/tGAZvv7b35+hvL9er29WsUoQ/+5Og0z7L51mK1Wa2OT6Vge/PFwIXxRCb6um2Y0s7H3d3dxweHmvOr+/tlXqRKZ5PxcrkcDJHkwzCDVUrnWscYd3Z2gvPz+TyRYnl6dvPq5X/x+X+BWhKCTNPW2qYzUTDJhBBCSgkUTO84vxAwh+C0TBiBFpICKanbts3LDDkDRl3XSZUwIXmAECMiV0q5YIWQCGScGcQU8MR1xzkPNoTgvPfeWMVFWRSbZZtneYyBCwQAaw1AzLJste6apinHY+T8rXfeaZs+TXNnQ4ju/Hw1mY2H6+Hu3fd+43Of//CHPrR/ZTGbzabj2TPPPNN13dbWVqYTT/Hx2UmkMDToRCGEMMS6dW3bmK7veyYFIOZ5PipGk3JqQ09SONufnFTDbYIJnmo5HhWJ5vP5NE01l4Jz7mPMUyVEMlihvHXXrt3Is3S13lxJ9SC214kcXK15nguhrPXGd13XJTq1LoYYx9MZxOC8SbLUWuu9n0wmXdfN5/MQIyKkOjs5OTk+fnzjxg2llE6TwQa62dSA8vnnn2fITG84Z6OyxBCvXLkWo18ulwNLXAgxnc8OHh/u7++FELuuCzEgYprkSZIdb04Tl3eteeeduyHGS5f3lE6Jwmw2y3iCnI2nk7ptz6r1aDT6PR/9KAKcVFXTNI8ePQKgqqq0VJcuXfLeyzQ5Wy6r1abvulQn8+mst6Zt2/Nm87f+X//jy6+8cnh89JGPfuy7Pva9f/JP//Txo0Op1fn5OaxWXIqtra1hXuKiAxBbW1scMca4XJ2pTh0fH8/n06Iolufr4diNyF0X8mx0eHg29EBKqa2tVErFOWeMlWUZqS9H2jmWpOO+71frUyklG4Kre2ONN8ZlWaZ0WrdNnuems9ab//Q//7/+uT/3H/Td2a/+yq/1JkDkn/y+H+3a1Re+8IU002kqjx6vP/axjyW5cL66/eyLm01+8HApuDZt7XzzwnOf/I//3M915mg23X7+hZcW29NvffPut771OuPO2YcEIsm7V1//9fH2jen4cqLa08dVtWq62pzQ2eUr+9GHelNT5InOhzLDOV+eVT/+4z/OGDt4+EhKmaZ5CKEsx8/cfva1117jnH/393zUmP6td9/+xre/WZZl3/dd19WmefbZZ6WUGrhOtNaaswsDLhNIHIMNjHNkF03isJep20ZJ7r0niADAJAGBj45zLpkcYHzIMDwZNxKRFOJ3jYU5DgvaSMiD4AykDCEM4uJAF4BexpgggYIH7/gTg6+UcphFRxj01XhRdeFJehLikB9MT6oyQ45IMcZAJBkfsICMMQJgBBEvxtCDHsVRZO830IAIQENCIgJEuiCL0JOcYMILpBI9KeEAMERQGOPbthvs5MP77vs+z0ql5ZC1t7e9o7UeMke1VucnS+usUErrZGdn98UXI+dccpElOs/zCEiRVKIHnELft0RcaS2ljADO9YqLTGck/WQyYYgxBGutNzZN0/lsPNxEkLEY4/bWlu1N0zSS8SLLI4fgok4TIMY5H41GSa6Ha6Dv+67vrPFap7PFeL1ZKyUZys1mM99aqCxBJrreAvIkSYMNtjfG91JxKQUiTkdFWeTDJ+29T7VOkiQCDNNXIAqdlVoONanruuC8cw4Ap7OZMUZycf/+/c997nN/5I/90UjY1C1HXhTlerlSQo1GI+udIVKjvORMELoYzvuGMZYJlTPJBBKAhxgIEVFrFQHatgXETVUJrYrpzBnTbiqh1LUrV0ZpWnd9lqaL2eR8vTTr+uxsue6aPvTXb1xdrTZ1XxPjyESW5zb6UsrJZDKMZUzwDDkTUqgkxjjOCwr+hZs3P3D7diAKhE3X9l27szU31hFegFJlogEAQ3DB+xgDULAWKGRZAhSPj4/SLJFcdMFRDAyi1jKTifcRkXrTehfTNFVKxegTwYdvp7N2eEtC8iEOxTivdRoRmqZJMu291xdTaKa0DkDOOQSmpBiYdyE4G2mUZuADB941LQNkgFqrELxOZIhxvV6nmc6z0lhjrc3LcqBdrldVlmUhgkq0lNnR8eFCzOfz2enxSV1XP/qjPwoAXdvUsu/aB5PRuCiK5Xq1ZqzrOiFEUmgf3L179/I839naXSwWaZ41fbeqNkIIa/qu2uzt7mqtm7pOUqWTHJG41MPgnXxQSm3vbkmprXNCaqUSF0M0nTEOAvPed51J05Qi9aZXiXTBluMRIjIGdV1LpbIsa9u+bfsHjw6SJBmPx8MsLoSglOAMlsuztm2JUEo5gFrzPA/enzZnDx49fOedtx4fH33kuz/63HMvtH1/cnLa993Zct0Zl2XZ6vxcS7WzvXdl78rxydlXvvKV3/t7P60Tee/evdvPvvjw4cNLly5Vnem6bnuraOpWJ2mSJKtN3fYGjs8u7V8WgmkuF7OZsZ2zoSgKF3xTt5u6Vokej8dSyKbvKcTHBwdN02RZtlgsBOMDdEkI4YJv2y5JkkRrjkwopRgstrc2m83W7qV3H95fbep11Xrvl+fn43KUQijy8s0339zd3bWlRYQYY6o0Bfj617+uhMrz3Bp/69atvb2d0/OzNC/qttvd2z0+Pi2KgjMplLp8Zd8523XdaDTKsuz8fBljTHVyfnq22Cpj8A8fPOCcJ0ky1B4pJfYOfJyWY8hZXdd93cxHkzTVyaKwoeac/+W//Fd/+k/96R/5/T/2xS9+cVPVn/nMZ77wG1+mAE3VVpsuG6Wf/sFP3L33+P57D2aTLWRqMZsxxN/+yhc3Z6u6csuqKcrxH/pjf+g7r7397IuvMM1OTh8KyJu+UXm6Pjr90m9966/89R/88r/9+l//a3/jxVde/r0/9EN13eZ5yVBxjvOZXm0qLvl6uRoV2fLs9I033hCKE9HBwQFEnExHVy5fu3P3nRjg+lM3ZKJHo/Lo6Gjn8m6WZX3b9X3vnDs7O7t/7+F8Pp+WI07QWsfAJUpLqSME5y1XKsYIxCKhj0TBc44qVYg8sgs01PBTMM6QoY/Be6HVILwSCAgQgpfInzSmJBgflq1ExJAxhkN6uPfOBR9CDJ5QEOfMxRADDKf8wRoupIgxRus8XdiHhlY60AVygJ5ArwbI0pMl8EVbHAeEBwIhECIRIFwkIUSKiBAhIl1Mk4fEYUIiJEaDERgBBvbzoLai98Mh4IkUCwZU9cOzVkouBOv6xns3sHdjjIJxa7wSYhjIxBhj9K3pczny0a3Xaxcv+v0Bq7uzs+N9RBikX5EgKCUYg9Wm11rnZdG3nbX9bDIKzudpxhSjGCmEvmmzLCuKwhiTpkln3bAPBobr9brtuqIoxuOx8bZvOo5ioMwPp6cQXCJlnuen52daJ4InRKSUODk9aq1D4MPTxhgphLIsGWO51t57qTghWGsE40qp943bnF8I4SJQjDECUSApZYTIOXfOOOdGWdGZ/uj4rJyMtNaJUsuzc2dsAKi7dlJOkEAr0Va1TLQQonfWGJOmeTkp274LIWgpx3nOYhSMNcY1pgPG0jxbL9dSSoxU1zVDjERV2zACKQREEoLP53PnfG+cEjIrU57wFPi3v/PG//LL/xSZ+O7nX3Ztf/uF5y5fvqyFtMGkeZIgD+SHM5czPoSQJTkRBaKEc4aAwUcgR9EDEhfgLGOMcd50LSJPsyzE6JyTyBIlK2e994JxzVkmxOr8/Pf98T/g9zOJ0XBR2Z6H3ucq9j547PvWBZskiWDS9oaCiz4AsDxJBzoH5xI4Q8aEVhyJkGud+OgjBBfdUFQYY5wjE9zFMMCchxqGLDIU3BEn2B1tv/Xqm//sZ/7Bi7df7qJljAkQJpgYo5B6KEtEhFwyxh4dHp4tl0olGElKHaLp+/7mzadijF3TDipQ2/er1SpNUyGEtf1isThbLYWURKQ5E0kqiZ9V67qud7a2337v3V/4x//k93zfxz/1ie87Pj4uEqkkD96uNxuU6tLWznK90loPJq4sLSBi1xlLhoi0TpVMBsPMerNM0jQY6703xgHAaFSoNAnBKaUuVkYUrLW9s0PoDUWsmlpKVZblIIkgIme6EFyWq6qq+t6eHB0j8ls3b0spGeK6bpgQzrnT09NLV67MZjMEHmMcbGFvv/12nmeT0VgiE4yfHZ+orDh8/OiZZ24PcWcX5SeE03WllLJdPxqXWZbUXRsiCCEVid60KlHOmRg9EdV1n+g8mWR905quH/iIUkoXfNN33IayLJMkEUoCQPDRU6zrerVako+Cc8HVMPi98H2a2JPdNNXx8XECgiF2XXvtxtX5dGs0Gkkpm6bx3nPOCEFKjsQPDg5W58uyLPM89941XZ3liQu2bdumqofTHBHu7e0RMG9DnudDnkTX9ZILxlhVVYmUiHi6PE9SVVVV27a7u7uc84OD+1evXpcqCYGm81nd1ULAaFz4qsnK8uF7D3/wM78ffLj51NUf+PQnPvUDH3/r7TfG4/yXfvFfrJZ9Z7p/74//iR/+4T9at4YgdK0xxljXRefffOONH/jU9/7zf/7P/tbP/o9Jun3p8k6EZjJevPrqaxhJydRBBE4yxg984Nmf/LN/cblcfuTlV3av7L31zptpMtIqH42nZ+cnRC7NEs5EXVnTt++89ebTz97av3Tp6OhouHVfurwPhJzLR4cnbdsutrfG4xIAODLJ+cBrK8uy2jSnp6cAsKlWWTFK0ixNkkk5AoqEEThY50IgCjAMfjlHLtBHJ7gCACEZA4gxMgDOBCJy4sQiMgacEQLn7GKYTEwMCcFEQykdtpacQYiAwGIEY7u+760LIZBMWKJU9BEJtJCDdI5CHGCZQ9cktHLBD1ISLthAjKAnM2ocMpAiXWip2MV0mDHGCDxc6KwABqwVDm8JxQUkHQmA8YgQYoxAgiEQMWIAQBEDPCFkOh+Gp3qC9Bo6byH5oByTWqUM0BjTNI1USioRIHobHAEiOmeM7YQQlvVCCWbQrPtoolJJnueD/AwAyrLUWlprASMRTadTgLP37j68evUahlgkaXBearVuKqgGnC8stmZZrgeflg2BkIgiUWTE59NZnhtj7XKzTqTy3rehJ6Ihjdl7S0DBWeF1nhfr8w1AK4Q4XK+d6UAywUTVNdPpVGSpUgoA+qbZGJMXadu2eZ7naTbUXUQUyCNCeMKsjjEmUllrgaInYoJTjAJkkmrnYtf6uq6zLOu8t31flmXI4mq5UaiPHh9cu3JVSil1qqRquvbs/ERprYQ+Pj7Oy6IcZo4EnrEqxN72UuvhIJZlKQBwxDSZh0jB+8l4HH0YVpWMMW+cD5wEazdV01mm8cZifnh0dHpYfeTFaz/++37ot377a2mZKQbjhLugEhAtOe89Ah+4uMgFcYGIm7ouU51nScAguAoBJCKDiDIhAiCYpKW1ztStUDIR0sTeBCZMYCog+h7liOR37rx9rzp8bvrB49OjaBuRJesWcNMHbznnUvFUji7EU6l0DjwSemD6Ii1AKWmtLZQO1ntOKhE+dIQAGJUSEQITPIBH4L43nHMhZHCeEUSCROed7xhHhQkxbjGgYAigI3IQvfNKSpLYdHWS5gFIMOa810oZYziXg+LX+U4CY4FMZ6SUUqrZRKU6aZqGM3Fl/9Lx6fGDzYaQJzJZrVb5eGxjLJLEe7+9vSjLPMuy3a0F58B7f2VnByFqIcfl6PHhYdueEvaPrFdK5cUoyQsX4XzTxEjn5+d7l3cFMs0FUIjee+NC13HGe2cYY1mWCMYTpTGCEhkSmlhLoV3kxDiCJPLOGSLKlB4VufN9VZ2dnS23FjucK4rcRru72P87f+fvbu/sPHXr6c701to8z3e2FkMUx87uFgB415u2m06nPjKl5O1bT2utkSJHphhuz6Zn9XJn9yUiZIwNEUPny01d14ud3eHC8d63bS+5VAip1vcPD3/5l3/5g6+8cvOpW5xzT1GnGZOcrD85Oj48PLx69eq1a9dXZ+em77em06zINpvN3Qf3aYihDIFC3F5sbeWj4+PjzvuDo8fDEXy9XkvGm75TSqVZVoik7to0zbe2d2aTRSJTBN7U3fn5KlE6SbLT09NAsSzL8WiayFQI0ZrGWjuZzJjgAigtZjqriWgwa80Xu95bZzwDnE6nj83RbDaTSq1XK6WUZGI0Gu3v7R2fnBTleDA+TMcT5DCezKy1Oztb3rqdyVYIASys14evfuutj37Ph//DP/8n/+Hf+8Xlqv7bf/cf/O2//XOzWfnSSzf39mazLaez6Sd/6AfXrvEQpRaJzibJzBl7enz8I3/4D5ZFdvnmM0AQ4/runXVEQDxAJIGsaVcoFaEVfIbFKC+DiJPGuyIfX7lyk3O5Xq+/8c3fvrx/JUZUPJFSYsGaevWhj3zXcrX55jdev3b18uc///k01bZ3m029s7N3/fp1Y8zrr79ePvNMnhVBwKZqmt4Joc5XVVHko+kkTfXUbZ2cHiOQ4ryuNkmSCMaji9GENEuZ4nVXc84BI3kQyEUIIQQEKYQWinnvIVKMnhggMvKRM84QggsMGV5ooJi3logklxRJMOGcE0JwhkOIOCJiZIngUnNEIk+CLpZcw5i3N4YQlFIRgZBi8BcdJ2PgCRgwhjDEMEQihi4GiCQYjzFy5AQBEUOMnkhwPnTPQ68bKBIQAYsBEQAHWkskxhgDzqIPhJzzOPxGDAmAI8ToQYBABgDBE3uy5PaBhLetddY67LpOayWl8p2PMQqeaaXW6/VyuSSi8Xjcd5ZLr1VqeseZ3N7eHuhCy+UyL3SRjwBACGGMUUpxzvMiQYRylD337C0AtloZACmEXi83gkupxPr8fLE1Xy1r05osS1brJk2BmNNaF6k+PV9xzgHQWZumKQIkWo+TsRBi09TGmKFZHLqH1fm67bskSU7OTh88vLezsxNN1FIjwaPHh0VR7OztFlmqtbLWAYCPoWpqxjBJEs05ACw3axf8kJRJRFmS4njMpUgkNz5Y76Vky7Pz1WpVFuOmayFEyTgjAk+rkzPn/O7uvnNuvhgP+R7D6CYrcin3k0zb1nrjyrJAxAi4btr1cpVluUhkvdmoJFmv18G57e3t4HxvDTI+NApSKwBItQ4hnp+fLzfrLtoR1yF4cHhW14/PzgOD6WQSGLzywQ8EBIloYpRCtdaikkqK4au5WGwzwWOMTdflKtFSOmMR0VKIgMhY3XTW2slorASr237IYZQkKcRUyNZYnWlgaOv6fHlWbO1+4etfLsoyWCe5cACrTeO9U0wU+ajve8UlBTLGhOh0njOJwfkQKXjyLlKkpmmGASnnXCm+Wa2F4llZBIrOmDRNOUPBFBERxkAxegpAHJBLEa3DEDKZUe9NXUtg1WrJCDokhCC0cDFY0yFj6/W6KAqOTCi2aRpEzFMdiIZvaSCSHG0MTd0b23ddV69X169f37m0fXzy+Ff/9a88//JL9x+8q7mYT2eRYwx8vayGoW4IdPfOva2trURlXddVTTskH/S9zYvi9u3bPjqIOF8sOOcw3Is8hRDGWcEk1xcLLfDec51s5aW3LldiGMkMHg8KUXBe1RWX2pgQfDTOHx0dSSnKvLDWasXWm7O6rs/OzmKEUTkhcgCw8T4pJp/+zA89ePhwPlvEAMWoFFLFEM7OzgY4aFEUKHg6UsF5b3wUXHK+Oj8TQiCS1tp7q6QkIu8dEZm+22w2QsksT8/OTpIkYQRJmV+o2YXojb1z59333rv37NPPPHjw4LnnnosIw5ocEfb3940xjPGu68qyHMTDbdMRohBitVnHGINzSkhCAMHnezvW2iDQGNOYLivLruuqplZGNU3bW8OBj8fjPNFEZKOVIE2027tbXdclqd7e3x7u/c45lkudpiJoomiMOTo93dnalloxxkzXF7P58fGxtXY8Hp/5pXWut0anSdf3681m4Bs/Pj1hWsosGc2nPoa2bQfNrWRp39rJZPLw3sGrr7568+bNF196/vz8/HjZBgRiyU//2f/bz/3cL3d9P1vsN02z2iw//xtfZUzHGH7qz/z0w3tHTPC9vb1xOXbOMeSE4dZTt9q6lkLv7+x+//d/+re/9nUEGxGcc+QcaC2l5FIHlvVtN5uOf+NzX/nGl9/4K//1f/be/XttZ/I8J8Lnnnthdb6sqirPUyFEmqY7e7t5XiZpvr+/P5mO/k8/8e+dnp5mZaZkEmzwPhw+fjybz3tjGOcMpFQi+CglRyaGzWXf95zYvCxDCEAhz1MfA1OybfvzZlNgHI1GKtEMECIIAD54ioA403fuvtc0zbO3n05SRY4YIAcWkTASw4u0P6IYYogxMsEh0iBOQgTOmQ2ewwVvWQiRZjCgxyIQQyQgxhAY995bjCpPOWCMkYAYIPnAGeMXSc8YnPdEQ8gaRQpPDL5w8T6GYDDgiPGJXAt+l9eIAyJHPwzUnwQU0kC0vLD54jCwRARGGIfxNgEQMIbELnKTIuCA6uSpVBFBJSqEMIh+EbHebLx1gvHtrXmSJAQMAKqq6pq+LMsyL4gIOSglslxnWfbwweFoNLrAKTi32Wz6Pg0hRPKCq6aqJJd9243LUQ0ouch0hnPs2l4wFFkeAk3HY2AiImOMtdYlWTpIGYtBG+X9eDwminW1gUjk/DAXn06nzvhBHlVV1Xqz3Nvfz7LMWYsEvemllEzwtm2NMaPRKEm0cz5N00HII4R0IYQQmBTRO8Z517bDcKCMsW3bCsDHMJgZhj8cIi4WC8HxArBC0VPM89x7q5RmyIyxSDCfz7uuq+uaCW43bjQqplvjSOR88DFu2ubx8fH+1g4PUkqZKBW9T8uSAQqtObKqa5brzcBkXkxnd+7ePT097Zp25/K16WgM1rddN84mj09ONpuagv/wh75rYy34wAANBEQ0YL2Ptmme2CTSgczAOS+SVBAKgcZGlKq1zsfYmWidFZz13jrigaJKtBAiAlGM5KNgHBGrqnJd75zrrf3aq18XqdxUK2t7nqbMsyIpyIe2N4rJEAIDyJRmTANB0/be2DwbD3xTAhiqL3DGGQ/W5anmUg7qAcaYYAyIhoMq59zH4CkywQCQAGxnhVadMdwB10UkLxSPMbR9p7X2IbRd3fc9Y6B1SiGeV+f37t3b2d1Xg/YNIMbY9n02yqvlGSEBkXMOguecl5Nx23Vt3336Mz/41p23nHO3bzwdQhhPFiyw1fpcCTGo3DOdIPJMZ+fr9WqzGaRnSZGO5TiQZwyMd8OplCPDSFryJE1DoMgg+gDIemOFVkKJru/brkulCIFi9G3bDl+2PM+tN+gphDC4dEzbpdNxCM57W2Rp11bf+tY3R6PJYrHd9z0i1zrhWq2b+tnnn53NpoiYZGnX9gDgwY1GoyH+JHgrhHDOI+J4MjLGOO+7riGissyrqm/bdjqeZZkgIu8tImothRBN0wjkEAMwxjkfqAuD7oaIPvaxj+3s73ljq7ZZzKbGOSH44Ap95plnvA+ISAxb07OKTSYTHvzly1d24z5jTAmBRJvN5mx5fnx8nBX5eDrtuo5zMRtPOOf7e3tJkpAH7z0IlpWZtZYRJHkaKGY8Y5xLUj46T944UxRFWWSMMWP64FyidaZ0mWZN11GISFiWI+fc/v5+U1XGGJVoh2i900nivI8xjkajmAUbvE4TLgVy9H2HnAvGiMJisWjbtmtN0zRlWWZ50jRNkiTr1Ubq2HTd6cnjD3/Xh3/rC7/tfOd8w1WRCGFM99SNW/PF9Bvf+MaN67eODpaTcbq/dznLMufcSdU500UXGIr/9r/7G3/5L//lL/zm58txgRT/5s/+Dz/3j/7Xr3zlKzFG4GUM9ef/93/zyY//KPEzrk+zfN8GbNt+GOcywR8fH9b1ZjQaDeRnqVOuuJT65GzpnJlOpzpNAFjTrjnDG7du5HkeQmjbfmglfXRdW5VlCQwAmA9BCZJSGWOU4KvVOXIGHLjAxfa2t7Zt2xg9R6alBOTeR2CkdWpdaOru4OBxnudXL19KUkV9GGDLkTwQZ5wjQIyADIf0VWAYKTLOgA2VjhEOdCqGjKFC5xzFIIXkyAZumpAyEjnvI2PAhY8BI6EYEpdCjOSCT5IMgo9EHBAJQwyMcc5ZjIQI8cksOoYnIUgMGeD7WYRDqWaIbPhHGmCTw24XKZIQA8Q6/O6azRgLEAcT1IUMG2GgdwjvPVcSGAyhH13XIbLVahW9z7JsPB7PxhPn3GZTlXnR1k2ep0oJay0XSB5MCByZt05IphPJOGQq67rOOde2rfc+RjBmk6a5FKgYD9DvXZ4755WUxVh3TYeIeZE457quS5KUI3NPPoBAkQu5PDs3xnRd37bt9vZWnudN09SbKtFZkmQAMLzc/fv326ba3t7WQlarlTE2z3PJ+BO0jSGiJEn6J9m6gMjhYvfQtm1vjPc+zzIpxBAwCQBD5AByNgSPz6ez2WymlOr6BqUYjUYyUa43s+1F35mT9fLk/Gxna6GUkkL54FSWgGDOucl8Fji1xqRcFlzU3iDilRvXBTJj+7aqmqZhT1Kk1svVo0ePLl+/dvv27YcHB2metaZfrlbe++2dPcVwdXrGCSez+WI6++yXv3r8+Gh/Nr925XpHnjOWAhoEruTybGWsy/J0uEsOEesMUXCMMXIcgrV4DEFrLYjW67XWuswyHwIiZrkkgK7r+tZIKR04BdIY01UtSL6um71tODw6ZKlw0XmKiJEJTIRALbuuDmCVlBjR9mYgNEmpGRNt20kpOXKppLG9EIIxYJIFH2gYQAnhgwsUB1Mc1wnARe0HesJ2d54p0XunBCfCxhuRp8u+ee3t1+uufeaZZ7z3XdN889VvzOfzum4nk9l7796ZLbaqqhpP54QQAQeFcIg+lXp/sYORnLdZliklBBdBZZNszDkS8nv37i0WO4Kr2nSmW1+6tNub1vmGM8kUpkk625p1nWm6brGYRx8IWaDIGGvbuu76GGOaagCo1xvbuyuXL3POQ/QAse/7tu9C39jgOWAIwXTIOS/KjBgfzu9DmCAiJkmS5VKpZGt7wjkP3hJlq+X5G2+86W1YrTYMlVbpbFYWReEBUy0f3H83y5LJZILIUZCUOpUsBOIIBDC4B48OH4/HZdXiZrNBxNlsAkRJkrR1k89SZMJaK4QYjUbWWoLgnJvNJ+u6f/vtt0MIL7/4fJrmRDQcfZ555plBFJKVBRHVbdv3/SC3Ns42XRtCHBVl3/fT6XTY6BtnASDJUgAIIfZ9F0LY29ndmi+OTo4f3H2vKIrbt58Zrl8bIoUYyA92oyzPVKIBwDlrreVKWmvLcjRE82ZZxgiUkIjIVIIRKETrhu2gCOEiOBUAgvUnJyfXrl3jyLnUQ9JOORkLrVAKinG2taAQN5uNMcY4471PdWKtLbJSqbH3/unbT333xz5ydnYSgu+6ZrHI3n7rrV9/9PnxNL7++tcw9vs7s6ODvA8dYxBs/8EPvvLw0eHDR48fHRy+9OILZZ4lSaZUIoRCxPvL5b2HD25evzHf2v34xz/x+uuvnZ0ef+QjH9qaL374h3/48ePHi+1ya3v3qZuXnn766c/80Mf+3j/8B4/uN+MyWOu1TpQE51yaph/4wAf6vl+vl9a4s9Wybvu9vT0uvQu+M7Y/PDo8OUaiGKO3bmdnS2kBxC5fvpwn+fHJ476tlRIci964vu+LYmQo+L63nX3v3XtDKPjlq5d2dnZ66+yAl2JyEBm1wcUYpeTIRV03t27deumll5w3Ppi29xLU8EceGhv2JPsPEYcdLQxCZYaEEENkjFGkJ8NgYgw5Z0xo7oEBDpxmRsAZoxAhUmBRCBGdh0hDp+S9Z5wZYy4CAAdfDEGIMQaSgg8lMyJcwDQuKigjhkhsCDOE912+DN5XQb//GCTTiMg4vP8MF0ASzoeXe7+lBgDGUHhPTDBA9C6MilGmkoODg9dfe23v0qUkS7uuO7Fus9mYzuzu7u/MF9YZC3HT1EKIQU9hrW2aRiV68PBIaRmKxWLR930IIU3TrusGBCuB77rGWiKirvdJktZdxRhz0fR9m6a5j54F0IkmgMODQxQsyzKm5GI6YXShKe/bFgD29vaAWNeZ89OzIQ+1yFONSL2VSTrOiwa7zXLFOd882hDDYlSOx+PT45PLly8FikSkdIKITWO6th1Ctvu+J6IBEN91nbU2yzKtUqlV39ks9WVZaq2lVsAwcKyaelAklWXJlQxAWZGX43FVVVXTxgjDCYY7d3JyIks91hkibjZ164xz3hhrrZVSHJ+cpGk6nk6YEOer1aOHD5577rkszd97797p6WmWZYyxy9euBuustV1nRkWZJIkPNhjTW+Otfe6ZZxhj3vgiTVUAxiAilmWZ+KC1JoYhBON8kSZAEIKXjBNAbXohtQ++q+skScblyBjX1u0FRJcT54xLmQxdjgPNdd13SV6AkE9dKb797W8fnj5OrxeBAhPMBBeAHPiESak4Bs8EUgDkwIVAFM7bvrfDnzeEMLB2EZEDRucJIQL01nBGyBhyDERCKRsCg+FChQg0SGYAIBJKKSnEtCiFI6Hke4f3p9fGueT3372DiAePD7/zrW+tqs2P/MiPHhw8vPn0La1TLkRvWqXTRGsvBABwlFqqRColJYVonA0uOtMrnVAIztPW1tYQH5lnheecO1vV60BeJYmxbr2py6sTnSZV17dtCzAfj8cAEAHbrkm1llwFioNzsSiKlrXAKFC0wUKIWZEyga3pGVOCYwghBkjT1FlPRNPZLMboTZ/nOYHjnAGKRKu2bYFo0ItNJ9v7e9cfs6Pt7d2dnZ2zs7P33nvv8pX9NCm/+vXf2d3dnuSX33v37mJ7xwNZFwIHQD7MeIZT6c7ernNmVW0gxvF4nOf5MAzQaSKEoIiJTlbrlZRSKEnEhJTL5XJZtS54Y7qDo8fbW7tDsLH1YfAEDgXbGOOcC9Y3vY0AnAsAVIr5GLjgTPDVZp0K5WMYynCe5wxAKZUlySAWuVHc2L98qe97Li4INuVo5KwN1g1fbGAIAWIMkksb7fL0nCOTwCkAYyyRiQ227toIJIWue9M2jRAi04mU0jl3fHxclqVANhqNXn7pleX5eb3ZKKWKLO9MLwCkVjFGXWTYG/LBGpOn2bgsBz7lKC8iRyJSiTbGPHj0UEoeQlhvNov55el3zd5+5w2dhu/+6Cuf/Vf/9s037ggtvRHjyejStZtVY7dHi099+gcQaTwdVU391jtvMyYQMUkUAIQI3/zOt6v69Ad+8HuPTt+8ce1almXf/s5X3nzzzR/7I5+ez+dn5yebyvzPf+8ff+eNr//mV774h3/s9ssfCnZlOSDjMDArpOREoSzLzhquZAhuvV6neaaU2l7MiagYlYLxuq4pOCHYeDzuum6zWsXCPz44PDk52tvbE4zPZjMkUoK11rV1Ny7L6XwRAkmdtG1fNa0SXEvxpD5RoEh0MeIKwelEhujWm15rmaZp17cWPIPIGHDijOh9pQtoqfWQL4AABPGCl4GIxIABGwQ6Q/nkjCNSJOJSeIqd6UMInHPFZYgRGEQgioGIXPCMMT7sfhkLQESRAwJnjKGPIcaIyC9m0Yjv26Jo+BkJGYULhRYFGBTST3TUT6ovRopEiMiZHLRjMUbFBRGEC/rHk0SHJ/gOkWQjYBSjF1xGHwTyMsun02me52U5ypI0WDebzJa03KzO5/O5Mf1mszbGTObzsixiJO/9fLbFJLZtO8yfiexwtOz7XmeYlaqq6q7rBgll25rgyUe3XFVEtNlstNYUfdf66XSapdp7f+/BfWQsT8phXDzMuNIscdYrpQet46MHDwAgyzIfA5dipEdyNDl69OhrX/vah7/7u65evfr22287537nd37nqWeeFkqOy9F4PO773noXQszymCRJ8J4BJkoH589OTocTw7CES9NUyuGs2F2+fFkqNMbZ3oQQfAiSSSBsqiZKedq0o9FonBfjonTOZVmeJCkA67ru9PR0gHWExhyfV+/du6vTdGdvFxG9sdvzuYc4Ho+Z4HVdB4rz+fzWrVve2rpqMp3cvH7D99YCZVkGnMlEZ+PSNiYonOWz89Oz+0eHvXevvPw8MAjGOiGUVBDBhUgEnkLomvAkF9p4zyIJIMFFH0OIUFUbFzxHRiFIoSiQc0YpNVy9XIkkSbgQzptMJ+QiS1TKtTFubzr67P27PXcFl52xUgqGKAQy5J23iMQ560w/DPm5lMY4G7yUAgEgkuQ8es8QvHNDCwJcDb2+i4ELDgxc8FJKIVmMQBSZlCxQjJEjU6nuWoMhaJ1wZGWiz5FV56v0pqqWy/Pl6vbt23mavfzyy1lZ7uzuX7/xtNIaABgTm6Z+9OjR1tZWXdfTxZwDS7I0AB2fn3ljAYkxprUWEgSgCaY1nY9xZ2dujAneZlm2mO84CMvVpqp75Kpq+nI8vXPvvbbvBzppkiQ+Bq21NT0DjgA+eCklV3wkRgTQm3bTbDiXEylDcJzz0Sj3xnJkgYAQB1ny2dlZjDFP0qbp8iw5PT5bb+rRaMIYK7ICSDoLdw7uPXXz6es3bg0i7d3d3apaT6Yj5kXxwe/e29t5+9137997zHg6ns+VUAiuNybLiojQta0WknEuQZcpcs7TNAWiEKMjYEKaGDWXTd8jF21vBm+lMQaFTNN0b29vvV5HQpVo05vBiB9jHM7lR0dHRJRlmRBCa02cpWl6fn7uvZ+OJ0qpruucsYLQBt91Xdu2169fS9IUANq2ba0Z5JCMsSRLUXFkrGoaY6yWSe+sSpOh2tV1RSGywJquJR8dhYaaNE2ji5XbVJsVIYQIxXiUaC2FSJUWQqyq1XDTPDw8uHbliuk7wXlZlgyw2VRBONsbQORKGGe9d0ooBEykGuXF+fnZoAk9Pj42Luo0OTo6Ojo6unz1ymw24UpNZts+9BSKD3zw46+98Vt/6b/+44vr/Zc+f3dvb+cbX/3W0cHRcy8+bZwBTjqV43J6crKqN6srV64g8GEsnKZ6a2fmvXddWCz23n7z4J/94q8mSWKMa7rWuJ6LEWdkqZoUU/sb9J/8p//liy98YNO04zJN0xSRKyU4548ePWIM+r4f2k0hhA82eBEZN13HGCvTtK0b33dlmQvJAOJ8Pu87H4G4ZEPL0bZtkiRSyq6pGbGd6Vwl6agYjyfTiFQ1tQdEJM7YcJhmMAQPEQRiF+3moHUla3vGIE2yQdQ/wGUHKfKg7XA+gKQhhIpz8aRfRLhYFQMhBIoIGH2IPnAupJIMwPV92xnGGETsTM8Yi4BSSsVFCEGgEEIEoBjj8NIXUmSGgwsfnrTj7wuVf3eZJCAcCioiEiDwSIGGRMYnDyJCAAIWCSPF+GQKfaEUGojicMHDev8YITpTD+WtyNN6U0sudnZ2J5Pp2WqZKI0Rz89XtjdCMBTCeBsjFUW5tbWNgq9W60HnbX13/O7J1tZWkqSWGSnlan3e9/1sNqMYl6vzvrfOufF43Lc9ZzJLtIvd6emZVum4nMxmkxBCU7Vt3RljbG/6xswXU3QhUIxcKK05ZyEEzhh5OD06Oz4+brtaa80Akix7+85bpycni/GURfrY7/n4q29853d+4Rdefvnloig++N0ffv7FFwSXztpUJ4O91Xk/bIWVlIwx8sEFP5qMBeMA4IL3IaRaddZszjdSygcPHpyeHe/s7Fy6tI+cIecMYbNeIVHfdplObG+Gvy8BDOYZ5wIiJkpF6xVDwbiNcffy5STLUq2UkFgS5zx633VdCCFQHJejoihOj4+Pj48zXezu7hpjOGcCUSDTmTbOMslHZV5Hp5Q4Pz1drlZFnj5941rrvZYqEnUxdI1RShFn4MFaG4i4lIjonCsSLZH54DkXdbuq+15KiRwiDKKGKLiSUoYYCWKM0fZtmqacgLxx1nsB6On4+FTkk89+7rPJLI0mOA8BI2PMWm/Ro3dMoAvAmNCJDCG0tu26NobAuAomAID1PkZiDIeIixAdeKjrlgmhlLTkyFOea0Qc0lH8YCrAwYmHHDBNU+g7Y0zoqZQMXHjppZemo/HZ8nz/6rUv/NsvP/fiCy/fvr1are7dP9jbuzSeyWHsCQDz+Xxra8s5lydpjHG5PLfWDAw4JaQPdrNZbTbS9R3nPGCYz+ccyUJkGNqu7m3vYjDGILLeGGv7Mk+Rs+Xq3FrrwdVtE2MM3kZnp+NZ09VCCK54DLHvLe+6pukYg0mZA1GW5MhZAFJKMSQWo4uBCwohvi/RHzyynMmd3csAkCSJMWaxveDI5vNJkmRCikgUY5Sc53nedY1I9c5s9OY7777zzjtK6+VqfXD4+Nq1a6kWXIjlcg0AzjnIsvF4TCwmaW66vu/sYL4KFFzwxBgwZr231oYQcy6klFzCKMmUNNPxZHd7hzFW5sXKDzoJ1jR109TT6TTLsq7r1ut1IhNrPSBfn5yUZUkhXtBYrUnTRCD33pMP0XklRIxRMlZkKQjhnLfWKSURcbhGhBB5miGiN33TYJ7n1tpM6eiDjZTqTE/UZrUmIo6YZRkwphFVohvbCym5kjHGYJ3p2yHUazQqU61CCInS3lrORVEU5J+MZwRvbSeRMcaI4nQy9tYxhmmaDQu7PC+SQCpJUp0MtYpzXq3WSZJQwCH1Tmv9r3/tV3/wB3/okx9P7j94+8Mfuv353/iGFolOCkBx//6DMj+/ef2pa9eudE0jpTS2Oz173Lbt/v6u0DJXYyblT/yJn/zzf/anx6WwPqT5mHrBlGeR7Vx68bs+8PKrr756+JC+9yNX+nCgUb799pvb29u7u/vW2vG4PDk5GSDBy+UaiFKlu7qhJIy3tk9OTr7w67/edd1kMmn6+urVK9s7u4+Pz5MkK6b5bHvr1u1nBWNtXQ3+7EiePBsA+L0xEUFIOZlMrO1jFJxzJaSxbpj6SikDRa2Hj6/RWjPGAcD7GILNMhWJMFKEQDEyQCLiwBmB602MkRH4gYPBEAAChCet5sVkGIZeNkb+pBPlnAtkFOPgleCDGhsv0FdP/GaklBqSki6GwwSMAOn9mfPgAx5kIfR+mO+AkKQ4sLkgEiJBYINq6/1eGeKTZ2CCM2TDTXWQkj0heVwMn5EYEYmmrThnRTnRQkSlU61NZwlxb3vHWrtebpqqvffgvaeeup4V2aarimTctu1mswlAp6enW1tbl65c8r1TSm02mxCCVNwYwzkfj0ecs7PjpZLJdDKq61prrSUBgDFdXqg159Z00+l0s152XbeYLhC4iTbNsyG2djBup0JpnVRN1fd9ohLvojMGiRbTWWf75dl5GeNsNqvrmkkxHY3//v/6v+gsvXLtatXUr3zwA03X9NZmmZxMp5wxImrbiymrd871hnwQjGuZj8fjo6OjQXucpCkgCq1SrYGxvEhn89tpmjrnuro/OTtzg6RLaSUUV7Jt2zTPVqvV+fn5rVu3Tk9Pj49OL+3tJ0I5bxERpNy+tMeFcNaKCGmivvqNbyRlnoB48ODBaDq5evUqIvZNt7ezd/3q9fWqGlxSvWm11sBZgCh1roRMiPFgMIazg4O+brb3tidZ8qDrJlpxIZoYCMH5aMBZ10suYggheCGG7GP03ivBrfcUqCzGyKhvW6EUIGmthRBSMu8DF8xa662h6Mm72rYj1FolMbhiWroQz6uzJJWap5qh8SaRypOPjDiCMz3jGgBDoM4a8oEoMAaIQStRbRqlFCEJIdq6SbTM89SQ55yB4J6iEtpHBwAhBOAouADv3lc0ROfb3pKUKWeMMYbKhbCu6kCgtd6/eq1uuqu3biV50XZGZeWHPnKzaTrGMcvlW2/fGY1GxnRf+tJvee+N6co06+sKi9w7R0S+76Rgfd//9tffvH3j5mw+mc8WeZY3y3WzqpnSEboYOh+iEAxRWGu87abTEWNsuVy2bX3/3r2t7d08zx8+eG8+HWdZsao2RZEpp2KM1Xo5KsbjcpTliTW+ado4KDIEx0hSSp1w27kQfAihLHPGWLVaz2czKXkSExd8kijnesYoRtvZLsToQt9bElq53m2cGxVlmY+4xPcO7vWh39rfGhfjV1/9Zte0WrLbt2+vlpv7Dx/keVGUZbXezCZTzrENzlMI0ceuTZIskVIgBwDnfZqmSmnnnPXOOEtEZVmO8sJ7r7VEAOt9kWVSSmd9TNOBHuV9EEIwJjabzf7+fhet9d45N5tMYiRj+qGpgkB9349GoyxPnbGBMZ6o9XrtI47SHFJIkqTtmlQqXegQnOm9NSZNU8FFtVqvVqsXnn3W9cbKoUyGbDeVyIZOy9q+6hvXrDtn01GRsVxrzYSyvVeoYoze86rvh7uBNTa6NhuPgDPnnPc+GnN0/HjA86kiW65XAhhLYBj+D85GIIvkJYeySLMs02kyGRfWu77uo+qDC4mU1G7/xZ/+2//+n/nxEJLx+NqP/P4XyvEkyUb37j/01k/Ho0f374+3tut1PZ1OQwiLxWx3dxuQkixTyF/99jdG42y+mC3PN8R4t2pkpoFj27e8Oj1e3vtj/8cfe+mDz5wtHwJLIg+Xr1y68867v/Zrv0ZEn/rUpyaTSd/3Wqc7O1t930spF/PpwcHBw/sPhBB/+I/8wS9+8Yvee092QN2tNi0w3luDHFeb9bvv3EmUunLlUqJ4qsrgwQdfVV2aFxgiRxa9VcA4CAggpHAoIkaSMkjZ9l3sjNYSAAYjRpIk1nolk+gsADDOh2o3xJNaRMlkcJ4xiH444yKXQko5aIQjEDCMHqL3FKJSOoQQnQcAgUwjN8aQ9YlSSivOuQvB9oZLgQQ0vNshaskHT2FoeRlBCJEudsJPcBkXKUYwTJKfYDGBgAasNDEAAAYckegJ3xkRBWdEMPimhmYPI3HO/FCYQ6Anrf/wOkJLVZald84g13kRiIh5xtBaW9c1l5jm6urVy33b8dnUd8YLU+TJ+UmtldqbzRfTudm00bokVVJoYNgbt1mfl6Ocq5QhlZMxY8w7k+UaEZkUQoisKB4fnQGqybQI3gVP48lMFYn3fiSLELy3oLXmXDjnPKGt201rQ8D1elOWpUhL3vVpWfYrh4o9eHhPpzrP0s50z1x65qPf+7EPvfJhH2zTNFoqyYX3XiNfr1Z1XStik/8fVf8Zq2ma3ndi13XHJ7355FNVXaGr80xPjgxLihQkiqKosJC8QYAMrO2FDcMLfxANfRAcljZgrCQY/rDSLrCQdi3JsrzrtUhpKUorisMw5JAzzQk9091VXV3x5Dc98Y6XP9ynZ+gCutBd1XXqnPc8731f4f///eczIUQTLIUYYxScS6Wcs3UdiixrmkYzLgkEgQuhbbcB6Gq1XC9XRVFcrZbjnfmjp08qVU5HY2cSLgv/zJ/9+d/6zX+rpfzsZz/dtrX3/ktf/DwirFYrxnAymUitQ4jIopSiruvWDbduvcQ5vzg9O7xxzDk3zmZZFjkSZ501JKBxXVkWUmREJDnLQWjFIQbgEGv7bFs/XW+c7d54642aEAP5TAzGpcUekWOMZaqAZLPXGgC8DwMgA3AhOusRIVe867oqy6WUIcS+a7RWdWNDCLPZLLHsKaKx3pu4Fa50fLO5GgYzGi/qCNrnMec6KJAYlcgyaYyRWSYy7R0MXed9H31ARjGCEMIDuOBAM5kr2w8uWMKAHHrTOYtZWRjrheLeOiaQc+4pCE6RHHIghMFaKVVy7iOHzrlCZ8a2huWgZJ6NNtb81m9+7eWXX7l3966UMmnyWfTjIhu8r+utYNz0w3Q8qjMteT7SzAzd/v5u3/cm+hgjMeZ6V+blvVfePDo+1FIKAU1dRwYeqd0sOVC/Y5lQAIGIjDHDMDAmNPIQ43vvfeC9ffnlalSU1Ruvz0S5pWFP7hW6kFJebdYqH+WjCkNs2n7oesaY0kJI6VzYtA3nfC7HEUAwyJQehk7JTOjs+dn5D71J1tpUSCFyrco6DNtmQAraeUQMENZdw5XEyD3Kajafci6BfelLX2r67umzZ6dnF/E6IdU7b6e7s9Z2BDAtp1byIEKyaQIxIVhnjBCSiBLVUms9WFO3LZey1DoFujgXEBkyAgAu2FRVANB1PTBkgs13pmE24oKVlM1vjJq+IyLBEKVExAggOezv7cYYBWfGemNt72NjnFBMMQ2AdV3rTEkuNqvN6nI9mVaj0cgpGSNxhl/7zX+7u7MYlZV1fWrBtdKnZ2fPnz/f2d1d7MwZh9l0ytrOGkfou8ZKKbXWHLDQmUDG50wplfQETKloHIRIjAFneZHvxB2VaeccB2a6QZal8b4sy77vU/+NjEfEEKPO87OLiySWLIriaGdXZdPadSjbciRePL662vzu44dyMr79Mz/742VxNPR+Umzy+eT87Iwo61o7ne8wKTKl2t6cX533bbO7mFvHVqvnNw8O/qP/+f/y7/xnf+v4+GZnt2dnL7L8AEs43Ju88cZrTVefn31UlC8PbZtlWZFXn/n8Z19/603GRBobEOMUuTWuKMYc4fTFycmTZ967+Wz24YfIiPYWCy2E6YZCZ0baxL1Jl8SNm0fOhkC4akwIXVFVuc4Krjlh55wLXmsdI4EfuMi6zgQgwOiGRsdSRuHIgXFCSMaE9VGAQHT9sFFSCsbJhxB8RCQExbUZAsjIGPMxcs4T6IkYEsMQIjBGMZrB5rn2zuuyQESW+uMQYiTOudY6CBERgZhxQWoRgGzwiBid58gICTlDAiLknDPBiEHqW13wcA2IROccAxRC8JgoWEgfpyQhZwAgomNMIBIF5IAMiaeAYwpEyAUnBkSRgIBjRPAupAEeJwBg5CIwJIoixkgUyyofeuu9y/NCcUkQAkkUfBgG4ExrnWhkFxdnCx+PDg+Nd3muF4vFZDJZbTehD8RkbwYfSWu92DtYLi9HkzkihtB3XTeaTpyzSivOxXq7OT09zXQ1noytN1mZjfKZlHywRpe5AoaoYxYTDIsQdJbVdV2v6+vX1yemP63X6+fPn58+PxOS7eztfuITn9hut6PR6Atf+MJ6vWZK7uzvCSEoRmNMWu6GEJyxj188G4ahGo2UUkKI7dA9e/B+rvRnP/tZIURZVsYMXIpHH3308OHDQPFzn/vcew8/6Ntu//CgN8O4Gv3kT/zErJpcnp2fn14opd774P1/9A//wf27944ODs5fnBZFsb+717bt6vIqhLB/dEgEbduMpxMfY9d0221dZLlSyhizt7fHpEBE652Ust5st+vNfD7Psix5FqP3o7JKs/F3v//+k8eP7r/yWjmdrFaruq45l2++8RZEcs4550IMKtOcM2stR6aUMsZa67RGxliEIBgCIEcWRCiq0pieMQCGyBlQ1FkmJHfBhxASUQgRfaSiqHSeEVGM/vLykgTLhNo22+mN6TZYROSME2JI6kEiIsp1hhSiv9bQtnXDSMYYtZaCcdP1eZ73XZes94yxIGPvhkCRQWZMP8pHRNcqBsYk59dmJM4ZATnvGTEtZAyBRYjBc08YwBjzxS99Ps9zBqSUcK4PBMHTdDofq/LZR4/rzVoptbo4PzzYG4+rrm4mk5FQ8urqyliTUKMc8M6dl14qJz7YTAprjBm6rutms9nR0ZFSalvXpmu2dTsMg/feGff82XMlpLXut37za/sHu1/87OeYFIorwaQIPlM5+jgMQ1kUCXQjkHHOheJ5nscYOZebTR085VlmDXChvUfOFJDftp1SKsa43mx2FgsppUBWluX1IAuZYI6EWEwXCdA5VfpsuYQQcy5nZTUMA3qvdcZkwTmPR0eCq0ePHq2urkaj0Xxnsbuz/0N/3XVDwJmS0jtft1vjHGM8SWnOz8+LohhPJ+OqIiItRCr8peBpg1uOKgDoXcizTOcZQ/QA1l0HWAFjNoSkEWFScs5Xq5WPUTA2mUwYZ4NzgMA5367WeZ6XZWGtQ8SIIKW0zhlnpjtTBALG+tZsNpvRaPSn//TPhRAIMRL4EM3QCSF0lhVlKYQQSu0dHg3WKuNLVRZZboyJQJFQJkHsx0hCHwMTfL1ed003Go26utNaa62t96UcZYkgxEWyWgHD5MpNTMpqMo4xXl1d3r51K72ptdYCi3p91hlou+3+4nBUZTdv5B/9oHv+0bP93cO2gdG45PJIyRIRAdAYExFMb5DAmD4Rnc7Pz01HksOLZxev3n3l1Zfvn56+IATmM7/e9rYb3+P708P3fnD51uujvjebld3d00lel3wHRNT3fZZlweNosei6ZjaZ6DzLi+q9979PnL/zh9+aTqcM2PNnz1er1c/+7J+UXORF0Ro7DENRFDuLvbquAaBte+MNBRccIhFyzhhwzhiQ97bzlglSSscYiEIEWq6vYkCgWGSKMYacIxeMMYjkneNcAgTkQmhFRIM1nlnGkYjTxwwsrbUNPjkhGREEYgBKyugCRwYh0rU46zqqKNXcH5+EQDHa4AkBGRprnbF5nqtMAzIfAiAxwYkhAfkYKBCX4mMkInDOkSCVLz+kSP5wJQwAXEiCj5MKrxtbhI/zCQEYxuvopOtr+4dt8vX/QBwYci60KhnjV5cr7/18vkjgza7rkAkuRc4LqRWFOJvNAKgs88G407OzEFzTNyG6y9VyNJpMJpPe+c2mbvuOqirGWBSVcxSCF5yPFgtADNYRweXl5WqzrqpKCg0YhRCKM/LOI2VKBx8igzSvkEoBAFMaBUYErRQRrZaXWmtrB+990253dnZuHN6cLeZSce/9zs6Oc77reiEEl9Jae3Z2pqQcV6MUJF7mxdUwXF5evvnmm3lRJMPZyemLV169X+oiz/NEnAfGkPGX7t19+bVXpVZ1Xf+pn/s5wdjQ9UdHR8DQx+i929ldLOZzKeW9+3eFEErKuq5NZ6uikExenp+PRqPF3i5jbBgGJtBaC4QPHjzYbrevv/56wpbqIv8hcINCHI/H0fnpaEwMiMhbq8sKKKQL+MPHHykui1FlXai7dnm1Pj443Nvb885ORmMX/Ha7JcTJqOKcQ6Su6xCZ9z6Eazn++emJGYYYYL43T/b87XZbd21ZjIqiSHIVleXIhffOeh+IhmGoqkoIBgCbzaY3g+l8LjIPvh1aEyNwBA7kQ4gBiZEPQGBsx/DahB4CcS45MIEsOJvnuSjKq8tLIQQRBudtCKLImOScCAVmWZYcU+Cjj4SSJaFWagFRoERJEZRQzhiJssrHI9ntzXYVakZGqzzLMhc855JiiAJOL84FiqZriqpcLpdtW790++ZyvVkuL4/k0c7erjX+2ckL59z9u/fG4/Fyuey6LtN61TUJfZrrbOgHxhgXypjQDUNZVvP54uLiwpnNFz/3+Y8++sg591M/+ZNvvfFmURTPX7zIqpKX48F7zrwg9N7X7XbTtIvFophUEK3zMZIXQjHGIjBEHAZDxApe1Nv1er213gNAtT+eTOUEgIg4k1meJ/IOIhprAUBKGSIBMh99X9fT8RgABAJqBdFvNq0dzHw+10W+l2ebpj2+ecMFf7B/cOPWrTQY9N5HF5gUlCJ1h0FrzaXUjHVdH2M0xqTJSqA4Ho8ZwNAbKUXS2VZFnq7wNELo+j4vMkeUxCx2MM4YXZYA5L03/eC1LstSKSURu65DxlLikJTSRtv17VTL5BFKC+C6bZeX57//+3+wu7v71R//8dYMKLgQar3elmW5ulru7e8U5QgAtM6R8bIsX33j9b7vEbHuuxCiUiq6mFZj55fndbtdjKeImOe50MrFMJvMuqYeTydSq7IsO9tLrQLFvb297XYrhEic6jQGSB9nuVlXVXV5eQnnZ4eHB2VZdl23M5+HEKpq5Jru6kqUlfr9P/r+jcOjX/qbP3t8yP/1r/79P/Xn/uRbr9391//jtwez6W07n7HxvGAMT5+3q6vlbLpgjBVF4a3Ybtch8uksG3rLgXd9nM7333/w/cPjo4vL9aSUTMHrbx1G3AjlLy7OXpw/HpV7o0nllxvv/biaSOmvCbsMk12FCE/OzoqimO3u+ffeXzX9jdt3nHOrbd07X4wnHz15lhUl98GFyLm8FsooBQApqd20nSgxXZCpYuOICWQaTO97KyQ3pte5GlcTa521xsforedCKsUs87niTGtC6YOPziGj1FOmjaMNXjIZgmeMQQzIk/LyekkskHFkIQRkLD1yyfmT3D6pYUsNMSH46CWXCBAjCSkZ5z5GcI4xBkSIQJ4oAAD4SAowusgYS+MlIopAQgr6eDj9Q4lWCjH0IanDkkoj/RYiCqDww2UZh4/DjwAjB8YgBogIRGmATYxANHVvjGuaDiBm2sYICeEUyJdlPp2N86KgGLNMN00jtFoo1W7rk9Ouabc+ZGZwXdfdunW7yrRinBEszy+Pbx0z5M8+epJlRVUI35vRdCKQFUJtXNipJpPJxAUPkbIsS5vzwVnb9saYlrAsS865c6GuaxdDlmUhhORq0Job2wMKIdlkelxVlXex7/umCaNxORi7Wa8nk0larQfAUuroA48wH01Spumtw+PDnb1hGPqmLcsSQrhxcDRYo3W23m4Q0QevtQ4xaq0j0ONHj1PZvrez0FJVVeWcyzjbNk09DAwg11kIsSiKehg4sp2dHWRkg13s7WqtKSVYcaZU5o0fevPKvVfSt5kYJbnWqCwG6ziyyGBcVpECUHQhQqQiyxmAQL5t+/PLi89/+YtVUV4tV8T4u9/7gbX2M5/6pGTQdIMu8nqz7fueMbaJ13KVaVVt69YPQ0/B2P7hB++32/bmzZuCyaHLtdbpYdJC930fAfI8H7o+wQdGo8o5f5174H3b1kyo3jrjAtOqN0OW5y5aJB4pRqIYAQKlUDCI1143lem6bYosZ4ylKD0J/JNvvvX9d9/lnJd5EYGIMMsyF2IE4kLZPknoZQwkpdJSWGudd4iAgscYOWOC8d4aEwiJCqmjj7FziklkDEAjU1xkSvNIXgJIqZ/VLx6dfrTYXfR9f/vlO33fP3nxHBFfef21+XjSNM3uzo6S0lhvrf29r3+dc0ypXLu7u/PpAjlzznV9/fDDj6rpbD6fT6ez1PCNx+PtcpkpnUl1fn7+Z37yp/dmi2W7Ho/HHmjVbAF59GEyKpHRdDrdOzxqu25bt+NCa5XnWb7crL2PWa601m3bJv9bVhbb7bbvByHE6fl5lmVCS/KhDW0I4To301rGGBfoXWyNsdammBAhRJnn6+2aK4mCuxiEEIMPXdNXk3Gz2W42m69+9av8WsYC1tphMJlUWkjgLAR/uVxOp9PpZNL1fZ5DXdfJ8bm/v7/dbrqmEULwvORCKCVjDB4jl8wNNgIG74wxeZ4zhjFGKWRiv3hrx6ORlgpiRAKIlCkdKJazBQRiwFJcDWPsxo0b3nsuBBH2vSXvry4uVldXWoq7t24zxup6Oy5HVVVJKZWQRVE025qAKaXSmASRgLMk20yiB875ZGfqjCWiqioePXoggU2n07quUciiyIwxKAXGOCsWwzDMd3YE8q7rkhWCMdZ3fVEUm82GS7Gzt9t1XZobSa0454TQ9h0Qee/X67Vzzjar/YOdp6fvIm++/rt/+MUvvPwHX3uCPne++8Y3f+/oxo3VZv3G4etaj54+fcqYODxYTMYFINc636xriqwqZ0659fZUiqzuW7v2t944+Ll/73/tQ/O13/1Xb33iczduF009PPiOUcUOMRgX8+ODVyRHrTQoZEyYzkopGWf1ui5GBVEIwS2Xy/cffFBV1Z/42Z8JISzXW611vVndGowQ4qPTk77vDw4Obhy/5LwVqFKCSApN2tnZabbrNDh0IQFjnGCMMZbLnDEBgaIPTWOiCeXeWMicc9huGyIoqxGTwlrDiBdKdTZSCAyBMaaYAIQQWfRBKgYMQwiIzMcgmEiJu/HjPIPgPGMshpBk/0SUcu+F4CE1qQy11saZYehjDGmUGCMEoEgRfBQCEJELDgAxBCAETL8i0lGPiGmdEUKE//+rFxExDb0TsPf6R7pwuLjWY+EPf+tjFTcIZISILKZfjREZAAIIF7xkkglEFNumZkyUZZlDVEJ6b51zQsoIzATyAJFBs1xxzibzxfrqsh8G58Kt23eQsaZrnPOz+Sgf6cVihpzlZeFcqEqdsJFEZLp+b7HTtx1ZH5wRQrTb7XK5YoyNRqOmaRhj1Xhab7ZE5GMoigIYROfdYOqu2W7XXDIpuVSCMcaQt13HUTCW5HWQuOFKKa21bwdjhrIs66E+PT0tiiLZWhJrRghh2vaiOy+KIssyycVmuxVC9F2XUA9FUdTb7XK5LIrCGDMuSjtYiHBxdSGEGFejqhppnWkh+74n8kiQ68x7zyQ65/Ii55y3Q6chGOeIaJHPUSIQxgjXQxIIqY/Zbl3btrPZLFfaRsMACZFxlmlle8MIWueenbyY7+2MJpP11UoIdblarrcbQrhx6/bTF+fODrDe+mBHVSW0UkpmWQYxOufLLDtp6wc/eLK7u3j0wQNEPDo4HE2rp4+fj8ejpmmA4dHRkRtsXTda58ghy7JAset6pdR6vU6OrHI0Wa3W9bYNgdzgMpCMMaUURuajC94TRwBMSRyRfIiAiHFwMcZ+aJWQg2kgUiaz3/7t39ZKFVmefCaYYcqpLNWodVZJ2ZshIuRlNhinY6SkfkdkiM65gCjYtXYj+DjYoWnrT3/y7VvHN0+Xa6WZQEYIXd+kQMwiRyXkrZvHiNjUm5MXz1KNPJtNrLV13TrnndsqIcuyXK1WR0dH4/GYADabTZaXTT94H6fT6XRHzHb3yrJcLpfeu7au276bzWaTyajKi+Ojo8fv/MFqtRJ37+V5Limu1mvvI4BjjJ1fXZZlOcr0MAzn55dCK9MPOpMoJP0wqoyRziQQ2263xnAhRIoP4VIgcIFcVwURcWQhROd8cv0Bg7IsrQ/dMKSr8eLqChYLqfPBGiLgQgEBBFIo2nV98/Aol+rRBw9uHN8UWgEA57yqqpSQ4SmGEF0Iq81mNBmnbbGUcn9/35hhubza3d1NJ3LX9U3fZaSj990waK2zPE/zEsaY915oGWNkMQohlBDO2BS+ooT01jWbTUSIAGS90KrrukChKIqdxbwdhsHanIv1emuMqfLs1o2br7388k988UvOUxuG/d3dtumAYvSBS33n9q2maV6cXFRV1XUNEc0X03QNf4wSK1wMzdClaG2l5L07d7abuus6Y1xESJ+w1DLP86ZpJBd1XXMuqrJknCOiUkpLlWWZynTyUOgs6/o+Ei3294wxm3rrnAOAoeullIM1Ss5W26snz06vLobJ5OZ/8199p900N1+6++Zbn37rE1+EmN+g1hiDIF++d3ezrNcMGOOXF8vttinyarVaSSljDEpqojialkVRnK65RXfnlXtYrdaNRXFcTfS6fvbpt25PJjOgKFTw1jfbtZQSIu3t7b148ZxzjDFeXfnxZLJY7O7tzO/cubOpt1dXV8MwiKzgUuTlKM9LzvmTZ8+d899/74MH73/46quvHh8ffaycsukSms53g7U+RuQi4wIRGeOMA2dMcsGB9Z25UY2ZZNaHxJVUSimlicgbmxe55swOVmQ6GiY4JoihjwERpZRcAAEwzn0IafVw3ZICSCWdsRyQI4YQMcWEA09ZgZzz68gEzrlSgcJ8Pk+7OYZMaem8N+Q4AwRgiAzSH0Gi9M/1DUIIEEHiH48NTnor/FihRampBUBkiIiMMKY2nCFcM0WuG2X4Y5HDeI2xTiQRYskHvLs39cEiy7fbbTBmNBo5385mM8V1jJmLVggRIFhrhVCD7fOyACCV6aOjo2EYhBAChDFmtjfvexOBMs3XzSrP8wCRS3Z+ee5jaIbWWz8ajYbeWjMgQeQwOCuEyMoiZaF0q6u6rg+Qp29J9K5tW/g4NnkYurLMq1GRnksfw8MHH+7s7CwmCxctEYsxVmXZ9/0w9F3XImGe5yA5KiEkE0XGiBhjnTNt26ZKmQleVGWgKDI11dIZK8UICeq6iT68ePFisVhoqablSGvdWxOAdnf2AEBJWfcd5xwF7/s+V5qnGCklbfS6yJExQmBCtH1PRCrTzjjv/eAs55wYWWudcxBiMaqMMZlUEKIPzhlbFEWmlYlxMIZztl2ubfCHx0dcyO22jhG44ucXV2lwffPmzeXlOVBA4EBMKZXpjIhMNxDEqiglQiZVCCF6ynRxenr6e7/3jVu3X5K6+MY3vrHZbA4ODp48efrKK6+s1uud/YPFdFZVVbOtUxB6CKHrOmttnidn8zCdzh1FRSy4mAvpXUzzn5QtQhSQEYSIiN47JaXgqIT03nOOKJizTgoRA/TGAEBZqvQtznVurVVKREQhRJZlAGCMgXjNMvMpnurjalRpSTYQgtb67OTqzR9/RQLjkl0uz7wNDKBptpnS+/v7L06efOtbfzSfT6XU+/v7motkdM7zPBhfmzbLsqLM0/tkNpst5ruBIpOMSSW4ury83Gy2h8c3FMU0oR2GQXIepMzzfBi6bddPX7pTFUXbd3Vdcw6bVV0UheDcDAMCt9FmmdJZFiNQxL7vmXfjvGqb4fFHT2/cOk6inhgCEeVFsXewa42RQiOiMVYIoXSe5cpaq4R0zm02m2u2lDGIEELomsZbmwqO2cF+BMiEkJxbH/RMOmu3602abQbnp+MJEpyenezs7KS8GABYbobFdM5DuB5aSkkEWmccYVQWDNF4DwCCc2MtIiJnFGLTtIgYIxlj09JHa82Ree+LTIFM6cWCQlB5AYCMM4SY1tjEMG1fOzO8++6785353sH+tm03dV1VVQpyLss8Ze5G7x3w6DwR+OAgIkX01vVssBeOCxxXI4B4cHAgJEtZW0JyIYS3Ni9L3zYueh8CClFVFVjPmQCAshw9efLEe3/r1g0GzBgjGF+tVqenp7PxlHzouy4VOmlBs91upVKIWFWVp1jkRVoDdwCL3V07DHmeM8YElwzCw28/P76xA/qt3/36b3z/4R/du3X3+cUHL7/6v1C6Wl26TdPsH+wNrRUqdMPGGpjPDs5OV9/85jcR6Wd+5qcZY/3QcZpaa40ZJrPpy7dfWl9t/sGv/cZkZ/Pwo6d3btIv/oWfIfcRZxSoFdLbsHn4/Q9OTk4Q8dVXX9UZ+9Y7v3/v3p2yLIOLq+Xy8ODAOde3dXA+IkquovUXL84m41FRFOTDn/iJf8cYU9f14FxaE7Rte3V1tVgsfuQCYkwgjzF2fd91HRcsVSdlKQAxCETBApGNYRiGPBOMmBQiInhv2ccNpdQQiBDIh4GAp2scEWMq3GO8niTTdRUVY0SlQghCyAjEufB0bdJL12FqhhGvARpCiBgjAQghk/QHGGZCIAHD688iBkxSaMY5IIVIIdKPRtAf546n2xMSFTf+aJGLCBwQAQmuZdIAEBEw0nV04ccz6h/9kUjAr/8zABGQSHwM72KmC8x4jEQRh2GobVuUWZ7niCCQOR+U1iiygK7ruqIoQsRIbL3apm355vQ0hMCYsHbQmQzWNE3HmeyH1jnnfEyiweiD4kJKybggAuOckKIb+tPHH61WqyzLIoZN3THGJpMJEQ1dH0LIcnXr6LCqitVqdbVcpSncy/fuIWIIDgmElMPHPzhnm80my4ur9coYM6qq3d1dKWWaVCgtEcFam95U1tqrq6v5fA4UunZot/V8Pl9Mp0RQvfJKGmolxF2pJSC6GBiBszZ10t3QTWcTyQUS5HmOnG27dhhMWRZ913nv86you9ZsassMMPTkdZ6hYEzwcZ5Lxokon2prrTFGCp6+6n4wKKV3wfghr0ocjHO+7vvBOHJ+NJ08efKkHdJCmox3WnAfQlmWIVDymAKApxgBd0cVENOqlKqopotZwKMbx0QUEe7dfxkAvvOdb7/z7Xe6rv3SV76cZwUS9G3HOR+NquQcK4qiaZrLywvORV1vN1t/6/bNHEWVaW8tADEOPO2COFIEoTi6aNNF60OpCm8dCxhTGIkP6YDOsyzG6IIvRBmCa/sOpWCM+UDEaLD9aFROpiNABCJjjLFWqOSkggiEEdLWMNMZY+xwdx+j7/qGAS+zTGv9ve98dxiGz3xOPXzw6P7rr52engqA9aYOIbx0687Xf//3XnrppbZrxtN5ayyXjAuUUsYAq3qdFxUGe35+vruzf//evUDQm8E5m25fiDEAAGNKcCLmfSSAsiyJyHmDAMhYnufeWDniWiqm5XpTn51dNNt6b29vb2f3+cmLx+dX1bhKOJ26btPRj4jGOK2Z0nnSSAvBV6vlZDIByhARpVRKLhbzCOSc01ppqdq2nY7HnPODvT0iEkoZY5yxUqtMySg4Q0zI4ourS8Z5CAGQgDGhVKZUjHGz2cwWi8HZoe3K8Wj/8DDG2Pd9ITX/eNkcARhjXd+no805m3QJMYIQyhjTbNsY/Waz0VJVeREBkkpcSCYZd94gY+ltGIGEVoFi1w9KKcWyn/wT/04aFGmtp5z3fe+932638/mCiJ6fvNidLTj4pmlNiDFGItQ6V1k52F4ptD546/b390N0AKwoS4JIyJxzyHn0vlJZ0zQcMLrYu262WBBjy+VSSr2/fziZjBgyzrAdukzqo/3DvcXu6cmJGQYDkCi5qbXa3dtLF0M6W2KM3ljv/XQ0KfM81zoG2mw2y+VyOp3eOLoP6pn1937xF27dvPH1f/L3f8OHfGcvX16d9r14fvLh02cfWsPvv3K76dzl1Xpnb/Enfvanv/zVL3zwwXu7u7t1s62bLedqMd8VQggVWuv+6I9+8C//u//hf/M3/qxAlovJ8vziU2+9uTOfuoCLWba7N8nYW2+88WaqmBnjt2/fvri4Go0mm249nU6H3q6XK50XSmYICIxVRYkAXdeRD4j48OFDADg+vqGUHIbemIFzRA4fffQR53xnZ0dKFazjnCOCUlLPp0TkrWMQnek75xgK7y0RKaWiwBCCkgoAwLvoB2/BR+59VAyQEsbYBxmklC7G6IPM8rQ7EIwHF6Xi14veGFPgnqfIfBRCsPgjnAUAEAJDxhhPlXSMhMiYTHQ5L4UQgltrGSTiFULAiBAjACNGRARKSUQOQAk4kfCcKQsHIgEjxPT77IdtMSH8cN0WMBARBk4EjGKa2BEh/TEH8/UdDBAoImIkEtZGxiAGLmWBiH3fA9Czp6fGDaNReXx8zDnnXCIx01sh2OAsAAyDbdveGWtsXxXFZrNhEIEYF5gxoYB7Y7kN1hgKg0CeZ1l0gXESyMu8mE6n6+2Gc7xcLUejkTHmYH//5o0bjLF+GHb2drMsG4YhHSIjLeu6rlfLF8+eIuJ22/RmODo6uLi4KMsSEYqi2K62WmshpFIyxri3s9tbq5RazOeSi2Zb99tmNpsxxtptk2VZLhQRWWMY8luHN955553ZdISI08kIUqp5niNibwYhJZfiarUEROMdciaBMUSUXGWKkDItS5VxxvrOBPJSau8952JUjYdhkFILNGVZYkBHDhgab1lkQghrLXAlBEvspNl0vF5vrLV5pokEImNZJkVhjCvTsTWYEIELWde1Mabv+93d3fT8Ge/yvFR5ZozhgMWoCiFgCARssD4AHd64Ibj64pe+ut7W77773bv3X97f37XWzqeTT33q7YcPH966fTPGOJ5NYoypj4neaymNGdRonGXZ6dnzTBe3bt26ujg5Ozu7d3BjPp29qJ8ExrlgjLF4jWwLHCQRQSSIzg1OoODAiYgLPhjDEBMurm1bpVSR50k9IbWKDI21lkJZ5kqp1WopM+kiJMAIIQzO2uAl44LxTAjgTEjFGQPEvm0ZY0WWtwNBZIvZ/ku37l8ur7J8+sYnP72zszs/OFheXgEwCPHr3/ymCfT88hIA9GiSKblpaoDIGNN5YV0YNtuzF49Ho4m11jjnvTfDoLQwQxciKKVMb4Dx1XKdJMoEMKlGgHEYBgJIqoWh64FhmWmGrG3bzWbrrdss15PJZHexc+bPlsvlnTt3lsslACAy0w8xwmJ/BxhXBCrLhq5L+3jGgUIQUpq+H6wty9IFPwyD0Mobp6VUQiASIusGuzw/V0plo1E3DDEBdYmEEq6Pk9355eVV3dQ3b97IlE4+EyXkZFT5GJxxLvj6/CwrKkTKtb5WCDsvhPAfNwSpP8i0tMYjojeBGEEA720IDgVLelRjrfXe2N46LMsy0zqE4ILHZMJEIIR26Ds3VFW1buosy5z3NJBSanV19ejRw/F4GiNNpxNCXG7X0UciioFJqYGAIgipyDnkSZ6s1ttNjF4I4SmMx2PkPMbonHe92Z8uyvFs8L73tuvNtm5VnnGeTmTs22E6HTOB+7u7Kf/bGFNVVd/3SkkhRgDQ90PyL3nvVZ4xY8bjcV3XWqkE8wn+ml6utZ7P585bY0wY3H//T39dKPXjf7o6vXwk1MjHjzq7a9389u3bq/Vwdrr+/gc/mM0Wxzd3dMb6Ybuzs3N4+BObTf2Nb3zjg/c/srHdWRx+5pNflJkXOt442vmb//v/w3jnw9//vbPFzvNy9FLfVIzBfFQJkMtzP6lmRVFwzrfbLWPsC1/8savVqus6JXOttbWWS9V3hpXi4uLywYMH+XR0sLd3dXU1m81evntvsbe73W7X9XZUFDLTIQQplcp0WZZ9mwzTTOUZEKXgOF1oQOidob4lRAAQQoVA1jiCOC6LbFJJrrqmBgoIZIaeoVSqcJZxRCU1MQ6RYkDBUArxwws1LS69i0KIEEgy5oyVUnrvGQFHhvCja42IOONJQXw9wuFcCOG8Z5yXZem9T1IAChFC9BGZIMaQgMXgvbfEMMUiZVIBxBASZov/aJX7Q4ZzuuAhXl/MSRzKGAe4VodFwuv7N32KIjKiEBkgRUKGhGmXzBiAGHozm82YwsH01jlne+8wODvKR9NqPDSD0gJVBLII4GxUgnsCzhhnYHvPI22XV3uLna5fr9fr+XTRD8PWOSkEAq9K7aISQmQ6bYJF2zfOhpOz9WB7H4EA225NhA6jGVrvPUOxWS67rrPWIfDj4+PV8pK8DyEaY7Is291dAMOu6/b29kIINNih7iTDMNislESMccWBySLLtXbOUYiaKWvt0PWJWb3tB4ZYVRUjaJs1Q/fSjf2L8xda5eQ017yu64ohSs4Ek4L3ZnDBcc6LTCeADiI2XY/9oPOMgLXOBedjjCGEnfH0ycV5dH53d8FS69YPV6vN3s6cMaaEuD6dnRGZJCKmBQYCAmsiBLa63AxVlue55th2bQ/IBAMO1jvizBHIXJ8/O7tcbjjHL3zm7W7TC5KMxXmhtValloFihKBzKaMAgLbvq8nk8vJSZnrb1+dXp5/9wmdS2kSm5HZTj0fjN954s+u64MP6aiMV5HnOEV0IRJQkDEWR37nzUlM7R/H2a288fvjoonEhgAkdYZV6Ha1UKiZ9cC54IVQYvOI8sd9QihicYgjAXIjICDkAB5aJxg15WfgYBReMQslVziWEWCgdCax31vVSylLqAIRMGGM6P1jAPNcY7EbJ3fHot777u//T4a+sm35SlYLx9Xp1//79l+nlEMLp6en3nj7fOdgPNjx89PDOSy+dn18UWR4G++WvfiWVzCEE421d121jUlLW6P4bzrks05dX54yxrus4k4QA5Hz0resyHqXU2+1Wcn7ZNEqpguTWm1///d8xbffVr34VNNNlIWV+enF+dXmaKx0h9EMnBa+q0afe/BQwappm6AYhRCRkXE53pnmeee+1lE3TSCkn0ykiBCAJrGkaoZRQqjdGMFZqZU3fhlhoFSkyIkCO0aKzUkudJmmIxjmVKdMP4/FEMj6djFarVVmMriut0bhztul6YMwYU5bl0FrOeykFBcG0NsYqJZGAM6QYBjO4CFleCMbKYjRYU5bIEaMPvbMuSMllWiHZ4ISSPgbJBUMRQwBggrE0PwTEEMNoMgouNE1rnAuI0YdcM/Lx/p2Xy7yIPhwf37DWng+XzdCncoED945ijBYdIQfBB+8LVfiAyPjJ8xMp+c0bR0nIraXkUoGi1g/eulxpcB6CCxQYl4Dk/KC1tr5rLRdRmDDEgMkCpLMsy/Mk9Voulxy5UDIVu4WSo6K0ZpCICBw5Msac81JKIkdERVE5F6a3R//ov/43f//v/mOh8OF7X/zr/8nfeP/9B/lit5jcVGoB6F57vXDDD9qaf/HTn2s2bW8GiPCtb/1RCKEsy09/+tP/5B//P197482333xjf7caev/ow2flDn/48F+9flz84dfe+fP/wU/1gwPio6pkxIRgAanpOxS8N4PWOkS4XG2FVLNFAd4BgMqy0Ww+DIPkaIx69dWXht4++vD99aZu23o+ncxmMylnFxcXp6cns9ns9t073nufoBkCe9NAVFrnjLHRqHTOhd4MwyCRFZPpZFQ17VYIwVB1Xeecs953VxulpJDMhyhEHmMUQhNARIucN65ljEmOxhlSKsaQMR49RU8MkTMCCN4FzrQNJLkiHzlwrmSIniOLgXz0QgjGefSRkGL0PxqVEwlkyJB8EISeEAii5F1nOdeaCSCUglkbGcTIOMaglQQKSZAVYxRCEBJiklSxECLn/BqQBYiY2M/EIgBCRABiEYiQUCCD6OM1N4sFiAEiEGPch8g55xgpRAQQkgtvHSCRD2WWj4o8heghIhHWdT1X04RrTqs4YAwiJIZnWZasKK4uL8/OzoztETECZvlo/2CilFoul03fHR4ep20lNq2LYTJb9GagEKzxTdNxzrOsQMHTuhcAQnDGmBAcB8451NtLRKpGZfBsMpkkxXeKdjg/OU1ag/F4PJheKbVaLp0P8/ncRe99bLbrqqpCCCpTyOHx0ye7u7soGATyzi+Xy/l8PlMza22RV1leEuG2qadK993QNM3uwQEAIDAEVhaVcy742JN1zm02a82lUsq0re1wtlgQi2mzuF5vNuuaQACAknw2mbadcSFynnjyLBk/pJQMGZOcI+OCXV1dMcQY46pe1b3YPdiPTHfWcil8b5L7xoWIxDjB89OTtm3uvXT76Ojoe999r1BaSB6ZiABlWWy2zbbZJj8iIjIAM1giurq6ohhLnXlrA+fDMIxGI8Hp4uI8xUnled4PXkqe66xr2jTPH08n46JYrVaDs7PZ/MnTp027yjJdFoX3HpFnWebIIaH3ngh/GDzAQTpwad9hjOEchRDOuugpRYWkMI+h61Wmg/OEwDmPKAESi5UJca120UqlsU/wDhgWRZGmQyg4BEAfOecfPH60qrfTchwhdLYnorbpvva1r33hC1/wQFlVXi0vMq5/4tOf++DDh+/8wR/8qZ/7uddevm+W27PVMuX8KC1HecEAiqJAxLrvs0wjQZZlXdetVisuFGNslGcADIk123Y04RQ8V1IpWc4no9m0H+zl1SoY+8H7D4uqtB6cMNPpNMb47rvvAsC4HDddO5lM3vvg22fn57u7u7u7u+PZlHNuXWCMcS43m+3qarm3tyel5MiIIosU8UcNaHqKjDNJ9mwoCp4bb7tuUCrLy4IorDabLMuk1mgtEuV55q1FBkKIsiyDD0qpPM+JEsQgUghIZIdBcq6UyhLpKUYheIweAQRn1rqyLJGx1XrDGMsSwldwiYwYl1r1xkQAihGQMqW896XOtJREgMjT38UE99Ya5xIjHYCkFM5ZiqHMM47MOsMQbh4fhUCMYZpjnV9chBCkEOmA5UwGT5xTiISIth+k4Bxpb2d3ubzs224ymyghgUAL0fadqhRj2JgBOGRVYa3tnYuMhRgjY3o06qzVDCACd4SIQ9shYl3XFGOe53mWBSkBoBqNrhNEBNOgKcTBGiFEXpVCCwDIWZlCcqwdhC6ZyP/P/5df/sqPf2Xv4PDlu3c7s/ng6TPf5c634ynvmtUnP/lWcGBMxzmXXJSj6vHjxxRicP7i7Pw//T/+n27fu/Xi+UXX9ESbxZ6bzvMvffWn/vH/458Syz/x9lvEvfFByVzyLCs0yNh3sW1bnWeMsUjEOCaKZKFknue9cc+evSiKbGc+ny92Z7MZENs7OKzbtqhKwbgzJvny0wW2ulpyKdJIIzkbm6ZxzhVFsVzXWZaNq1FZ5icnJw++/ZAg3Lhx4+njJ+vV9uziUmv96qv3i/E8aUKN6fM8z7LCeJdlOY8QnM+VTkl/CWlM3jtnpVSMgZTKuCHP8+DJQxSCOW+jD0IIEBwYpDvQOWISOCIwDN6ntAMhBCCGEBgghJhc0UKI3hoMqJUSXF4fxS5QiITECDhn0UfOeYiBOI8+REKuJMWY9KXX++ZEmoTrzAZKkakAkSIB8WuJFvzwZw5IQFwgEEOEeB2KhAQREcVydVVV1Xa1VEqlk0KprMqrRNJSueSSF7IkosHarusmo3GZF2lMD0ACWV4Uv/PNd+7eu7NYLPJiqvMsEm2NrRY7E86dc4yLwVhVFCOtUfCCohCc3H6RFQ8fPUpJRER0enFORFW567xRSnljBVfOOSlliC6v8r7vuZIhhG3baCEPDw+9ddZbZJBnBSJWpYgQOWd5VcYY27YVgjvnOjOUZXl445gJ7r0zw8AYl0L2w5DnuQmxyNTRrTtd14UQgifv/dCb9cXVdDp1ptFab+o6USm6oe+69saNG2VRtF2XUKXBWO/d0Pbe++XFJSIjItPbrnEMcDyp5vM5E+i9T74jzrmLnogyqfqmHUIEgK7vOzNwJaeLOXJ2dnUlpSRASB52IrIeQ7x4cX56eRacuXfzJiIc3zyalSPAsNm2gzF5kRNRdMGDpRAAMQgekSbTcaYyjiwv87Ozs1xn6/Wy79uzk1Pvfd91Cdx9cHCQVQUFMP2wXq2sd5zzUVmdnJxEjFeX68VikZXiwfsPZ5Pp3bt3H73zAPMQYoAkLiTkic2G5AbHGDPWUHBKcQBGPkghUCIRpYAsKaWLCQBpZKE225XOc+99asW4FCrP+8EOxsUYuRSAAEQ+eCTQWgvJlECwoRqXj85O3n38wRc/+dWr+iot56bT6Y/92I+lR+vFycl6c7lpl/fu3v7f/Y1fqoeOOFwtPz8fTSKxxWJRlPm23nDOd3d3T09PLy8vx9Pp8fHxYDqlFOd8s9n4EKqqctZX1UgLfXl5aQcDEInCptnMZ4uqqOpNPcrL5dmFqbuvfOUraEJrHTIhVfblr/xYvV0vl0shBHL2/MWLi8uzalSMJ3eEYM5ZKSRjLEQ62Nur68Z7DyH23o8nI62UDWEYhm4YEn6zyPLZbCaZsMb5MEjBlUhBmpmxfrNZtYNp+mY6GgshyFkuhFJCMGG9H5fjFHWecirTZp0FGpx1zo3KqiiKGIPkHBEFUgQMzhOhVMrHEJwvRoUbXGL0d02jhByXhYlRa+0gkvVEJBAJGRJQIA4YOaTpYhrqcUTGmCBOyDTXgvEYo5aKc05CCCE6O0iuUlB7SrPu+947h8AhAIGPFJGkkpIoOmPcQEWWC8FeuX9PKcU5U5JT+usYesSAeL5ec8SjgwNCBOeD80pqOzjBZJXlyXGEkay1aZiZBq0cWYpO6rquruuLi4s8z3cXi6Io8jx3sWeSpcaLc845OucYE1mZb1bbv/RX/vLNox1H0LX25HJTb1c8TvJMAhOZEg7AWZZp1Q8DAiTF0+c+97myLIe+RURv7AcfPDCdhwA7u+LR/7eZHv7g7/2t5vjwuBhddWZ9NHq95HdVJqXAxKCoKmGtTfQbQNI6izFKKevl2kew1u7v7/d9v9psGETvventYnenHI3S4L1tW8bYYrE4PDxOX7W1NhLlOit+6LwAAQAASURBVAOAyONsUiZ2znr9OMZ4wcXR0dHR0dGT54+tNcPQH988fvX11xiXV1dXea73D1+KMV5dXVhrOed5WeVZBoTRm1FRcc59sAyQc2mtVVoJDjFSRHLR+hCscxGEd14TAgDjDCU3MT1gaSnLfCDnHZcMEYVQIQQKkXPOEKMPAHTtm4pBasWRxRiB0JkhxhijJyIukAHHyHwIFJEgBucVF4muwxhKKSNCjMF7z6XggkUX/5gNCQAjAhESC8AYA4IIxAgQeNoXIxJBBGA/mmkDAyTR9y2AR4GR+dX6SmuNgk/mM+MGIppMJglCZK3t+94av6ZNGTwAVVU1mozXy1U1mfzJn/sz5+fn49mCcb5pu6QxHkxdliUShBDHkxkRIWfIKLqwrRvy3jtQMhNcRWBc8BvHtwZrhm7IdGGMiYTOWiHE5Wrpgx2PpsmYywQXQG3XCcOn40m/6WOMbd0mo/BgB6YYrC4SSvPWrVtSaMk5cnTBt/V2Np1wKax1RPT8yUld1zduHG/bJjo/nU4BGENw1k8mE8550zTWu6IoHj76sOu6/aMDRDy8ccyV7Pt+6HsAKKuqzIvtyen33/vB22+/PZ1PjbF928jxFBG32+0YRqCisQkv7gFAZ0pqjYjOeylVP9TleCS0mme7MUbGkEKEGE3f6xxSF+usgxim1Yi6vu7qSPYrn/0cIjKF/dBUVRHJDb0N0ed5vre/mxyQ1lqR6eiDEqJvu8dPHy+Xy89/8QtN1wETpmvavpNSImP9MLz/wQdFkY2qSVIxaJ11XS+EbJrWW2eCz6Ru2k3Xx65ZN+0IgATPgvMRIwrmg4+EQASI1lkWhXcOkYTkKRaaAXcuMn6tUUy2AYxIAYosZwxJkOQ8Mcu4FE3flbySWpl+YIIzxpgUUsq+qTljhKAyNazqgmS1mO+9dPTrv/MbX37zS5xgbz47OTn7v/2tv9135i//5b98eHykmCx19oXPfuGXf/mXj24c/7t/8S+tt/V7P/hg//Dg6Oi4tYOJbjQaRYYm+HxU3RqPKMTBdJzz9Xrddd3h4SEy1nXdfL7omnawthyNYowRuPFuvd34kqLAyODl117N334biQaI9WapGF8uV0Q0nU6GYdjd26u329V29enPfjFdSIwXQCwGctYjYl4WRARAdV2Px2PgLFmxhVJcCuFFakwREYD54IGxTI1CNHVdI/As50qxshx1qzVnPM9L0w+Ccc4lIqy327QbQ8SU6uicM8ZmRa6VKIqitybV+EJIxjCEQPwaa9ANPUMBDK2PaYmVNFb2+ruLUsoAAQiFEBAp+CgYJ4SP18aQZnqRIO1sASBhqDiiLgoACIm+klZ3UgyDSSl1AGidcwmhACE920KKGK0Pnohi8IJrawfrhjxT1tosy0IQnHO6JoSAMYNinIjWy+Xe/v7ycjkqyhACMu6GXjEUOQZjA6YMuyilZHlORIQQQri4uCAiwbgdTL1cv3j8pBhVR0dHWVnmH2/TrxW2jEspnAtZLiHGJ8+vhBBZoZUWIfK+v9R6Piqnw+D7pgXoAMh5YhAAoG3b1foqz3MtFSIygiKvBMmT50/yYnz5HG++dNu0383ZrTde16NpMEM82K0YK5CBc05lXMmSqkopRQht27Ztmy5m411GkGX51dWSiEajCiAyhGleBiIuhQt+sEapTChunG3bfjabhBA4xxgh7bYBIF1aQqj7r74CkR49evQv/9Wvv/rqq3/hF3+xN8Pp6WmMkXPx7e987+zsZDabGROyLJstFvv7+0nT6n0MIWRV5Zxz3qTTRqEiBO9TaBAKKTjnkci5wBhpqYiCYBwZEQXrPOOcS34N72AYQ2SUvDXAABnnHoL3kULUXAghIpGnIKUILhARRs8gMCGcS5e4YExQOv2BOJNmsFpyRxBi8J48EXJkggNgEnhLZERAEJM9KV3GSSx2DcCKH7fC18lLEQCSGRh/GDYMXLR9U4x013YyCKVUb/v1dsul0lIBxK4vZ7NZWkcZ64Ghs+Hdx+9Op9M33ng9UJzM503TSKnvv/6yMX673fJMkQ+MsUIVqbjQWeaDHYZBZTrVU0R0cnrStu3OfPHRRx8ZZz/5yU8CQyICFj35wdV9b8bjsVAqK6UQeujdcrvuuq4cjS7PLhji8vKqzPLdg71JNdo2dVVVk9l0R4pmaD568uj1V99wzq1Wq7KExe7xN7/5zZfvvzIYc35+vrOzY3qT6C2vvfZa0zSbzXZvseOcZ4wl6Px0PlNKNU1z/vT83Xe/lxyTiDieVJfLC8bYpBjrLEtT8UcPHr7//gej0Wio2xcXp9basqwIyul0XpSZt9a6QcjMOhtC0EXGpSQiKQQD6P0QkbjkLLAQQte05ANDLKUuikJqGWNsmqavm+l0Oh0X3/3WyXa1LLJsdzHbUNRZliM654pcloUKMYUEsN4YrTOdFwDEJTPDoPNs//Bg9/Bga/r1dusG03RGqGw0Hp+2L+q2G42qiCzGeHV1xRifTCapptms1kqobuhZlpmuNbYNzgbXj6vC9lZJHjEisLQhowCISNF3TZ+g/DE4Z2wIJKWG616KsixDAs558F4IkSnlySvkdjCIwAAoxHFZuRCIRa0l4+i8DyFKyRhDBBBC9H3PEIZ+uFhfBhbf+eB7WmtqaL1eE9Gf/fk/d+PWS5eXl03TXV1dvXrnzm/+m9/41h/84T/8B/+Qc57nee/tP/1//7fWmuXyajKZzHd3pJQy03mm+77Pi2wYhufPn282m4S4my8WUsq+7623PoYiy5Plvzc2UJxV5c5k/Pz5cxHppePjbVNfrdZKKXJeSqmUqqpRXdfn55eL+dR7C0KFweR5HhNfrO+llEBMajUMQ9/3XIptU2dKD5wJIcg5jgyAvHdKyESnUkLWg8kzSUABGSNs6h4AEDDLcgY4dEORZUS0vLw6OTvd3d0NFIdhyLJMKNV1nfdeCIkEqf2NMSK/JiFILjjnxjnJBeMseALGrfeE6Jxrhy5Yp3WWTtVt11ZFqZSiGJQUDMA5HwFSzIwNjiMyzuLHWlbkLDnxEg0jfUeIyMeIiC4E70KR5RDjer121tvgAZFxCeRDCMiZ975pmq7rpJRSyrLgqSao2ybLMuY5MBysyfPMGHN1taQQsyyr62Y1dFVV8UxqjnVdewyMMYe07RqllNRaCR19QEQRBSBKIYhob2+vbVtn7P7+Pgds2zYiMMY5YzGEFAtyvWsTInjvjBuGAQClyC8uLiLZ8XiMiJms3BCu+uVgTV1vjG9PTs5ef+2tssw551mh9yd7IYT1aiWl7Po+EmeAQsLTx5c//+c/95tf+1fvfu+hgoMnpw8+8cmvXp3uK02Kl4PZSMmv1isMzXx3Rwih86zrumEYVqurw8PDyWQipSCCxDG11lo7KKUsROMG4w1FzLWW155scravW15VRQghkB9sTJa/RMQTQqRX/s69u8bZv/df/Be/8s/++7/6V/9qXW939vZ2FnuvvfLqdDJ69OjRyfNni8XipZdurlYrLMvRaNSFQWlpjGFCMQBrLSIREedyGDoPXEqJzhRlFgIRkbMDL6DvjFRccqEyrTiDJC6xQWjBCCjG1PgCUfRBMm7Bm37QTKice+9DjIAQQrDGJ255oMjIEwQmeHrmP9Yzs0BgvWP8mpLrKRIRxaRdhmswJU8wq9TPXucEA2LABPaAiMABiX6U00DXqU3J2AEMkSGI7XY7X0y7rlvM5lVVNU2DnLVtHXWmtXaDP3txPlvMz87OkiNF5/rG8a3j4+MYKRIBi0VRbdumHVqllC5013URYqauvdtcyMGatm05593Qee9Ho5FzVmf5yy/fB6CbL90iom1TL5fLbjBD1y4Ws8l0J8tN1/RKohQ5UVCFoL5HLs7OzrWQDPH27dveWC2UUjrP894Musq9NY8fP+ZMbLfb09PT09PTyWRydnqhpfrDP/iD2Wy2urq6OLuYzWa788WNw6PZeBKsKxaZYLzruk29AYC8Kn/wwXvPn78IIezN5zGE9dWyLMuu2b773W9/6lOfujg9o12YTCbvP3xwfnJaVdViMTfGvv/++8VshIhZpoehf9E/n06n09FIMh4g5kWWuLVpGsM5b/o+Am3qbaA4m83qTd1uawQINu7t7FQ6G0xXlCUrKsFE3/fLzfrs6mro20998pMRwA2WZyyG2JuBok0SRCHEMNjLy0ul9N7Bfi5VYiNwKXWe98Zs1tvBmkxKKWUynEzni4Ojo9PT02cvTnNd7Ozs1HXT9l06Iolod7EznlYPHjwYjXNjTN91XdvszqbkgxbSRLLeCyYDxeAjYxCcT0oW7621FoBxJCTgQmC4dqeUZSkYl5IjxBgjBVI6C9467xlj1jlrrdTKU9B5Hn2QQvgQbD9wxgAghFBvN6O80Fr0wUnGnp2fP37xZLK72Gw2ItOvvHWzrluZZ03bdtZgWYzG0//4P/qPv/Wtbz1+8Wz/+Ghvb+8v/oW/ULd1imLsuq4oNAvUNk3XdX07VFVljUfgi/lukVeInCiOx+OqqhLVzznnnNdSciYP8upf/r/+21/7tV9/93f/4J//i1/VRLNyFCgGImNM07Raqru373rvslwZ0w/OrdaX/ZBprfM855xxxKLMGSBE2m63UmdCCCZ4cvunqdKorFKhfd2/Bk8QrAetdVmN+7bfNHUmVVmWOUCiDyJirrNvfOMbX//93/v5n//5yWxaFIVxbjKZpLuTKBozCCGE4ITc+5A0CojogmeROMcQosryGGi9rYW6DhvvvBPiWuqFkXkfipxzzkMIyDly1lljg2eMReclsqqqkv45iUtVliHnCXfad10g0loLxmKMknPjXF03GCnTeVYwZYz33rkgoQAcUtDNfDHKi95au16v6+1pWZZ5rhHT98VJKQEgEjHG8zyXwKIPR7v7xWS02qxt9Mn6xWSC6AcbQlmWSsh0UDLGBGdp8ZQ4QlprpZQSsm1bmWnOuVIKGFCIAbyUkgFGH0Jascnw+PGVUHI2p6wU5KU1Pi/F6qrTGffe+RgAg1Lq/mv3D2/uAXHJeCqJlFI7Ozt93xtjSjUWwgkVyq4qup/60z83Ho/Hf/uXf/XNz96UAsiUWiqKcTYfe29DFPV2w5W8urryMUyn0zzPiyLjnHOkGOPz58+zLNdaC8G1zoehW6027z/4QCh1+/bterOpqmo0GuVKsaqo67rvQEoJFCAiQNxsNj7PhBAaWDmaJJ/uG2998j//e//l80ePbt68+fzkRd/1G1HP5/O6rr/85S/fvfPyarV6+vjJ4fFR9KHZ1tEHrnPO5PWITghEZIA+WK1zFjlD8sEPvZVcMsBASCEKISCAJ48GkTOKHgAggkzu4aQYYsDSzg6RBRRMJNGTYDx+bBZK7JDkFI8fx306byBEyUWkqOT13hM5SxtPiRw5izF67wGJS6mEjPFHXS8jSJpoRhAY/vCuBcYwpH+/3h9TTIuY5HsCABIHB0cYxUs37mqdu6FnqDIVg7d26BhEJAImTp6fem+n02k1Kqp8tLvYaZrOGCME03kWQuBASfLgnE8qX+8tcozB+yC0zrM8JyLOkHNe13UIYTIeL5dLrdXQ9bPFHAm8C2WW7812GWM6kwyE4kVZjhBpvVy1vvfez8aT3dn88vyizPLFYnF5fvHs2bObN2/uHR48efbERHf64mS9Xv/O7/zOl770pfl8/vYnP/3hBw/+8Pe/8Qu/8AuMsGkayfjxwaG37ve//nu3bt361h9+8/4rL8cYuRAPHz7c2d9brVY3y0JKeefObWPs89MT650ss1WzrWaTV954E4Q0IX7zm9+aTqfGDOPx+MGjD1974/Vf+bV/EYGODm/evn0rkep29w/85dJZOx+NExlFSgnsR/mUnPO+a8fjMQOsV+vNeosAWmSRRevj+dVVoTUj0FpFYqv11lE8Xy+ZD29/8q2A0Pe9RN2ZHgKMpjOBrOu6zaaOMc7GUyFENI6YSGe3c67vB2PMfDyxtvRm0AudYNE3btxICy3OeabUummyPCt0JoSwxjjnnj15qjOBELfbrQt2uby6ujp/49OvsUgMOOc8Ohs4S29IjjIFrFKIRCSEMm5AYpzzwfaCOOcYrJNTGa9jeUJixCQB5+AsNSSlFEoKIUJ0EMkbK6XkgMZZhhwRre0KnfsQlJLW+0LJp9v1e48e7jSry4vlzs7ept56F4dhmE6n9+7dCYLe/vynC6FijJ8cOhfDN7/5zc1ms7OzkwQm1XjU9f2zZ08m43GMEZlYrlcvv3J/VlbbrnMhrFbrEILkvKqqVG2UecFKLhlfr1aOIEQAAOe9i7RpG6EkCs4ABGPqY5nhuCoVFyCktf18NplOpzH6rusQfJZnDDxExgCQgIKfLRapneV4Td/NtI4fPzzJkgHGMGQMCRDKssiyjDEWrFNKZVKF6JWUUuDh8dFf+2t/bWdnhzir6zqJVKWUZVlKKZFosDYthrVWiCzZMBhjwFnb9xwx03nKMnLONU1Tjqsyy/u2g4gE4JyLOdmuH01GSeiQvqHBR8EYAwQO1gdG11+IcQ458zH0dZ8OLBc8jyLG2Na1tXa7aRmgkIxzLqSsJuM8z4fBus4KxunavYlFUY1GfDKZmb4GgHE1iuS7rtNae+vKYpQs+4vdhRAisXmNcTrLcoJtoLqupZRKSilkURSMECMF70MIo3EVIiSxYaGlYLwbekT0MUSgwTiOIXhSuWiaNjhfVdV4PA4Uu7ojiuNq9Mprr56cnzVdl0vlbDDGPHr8ou06pbL79+8Tkc7y0WjCJOMCtqtt64bNZiOFWCwWiGI8mo6qSd2skTgFUYzrGy/dF+yzs/Gd//zv/Nvdo3HfI5Cv8nHbctMFH+ze7qzI8s1m03TtfD7v+15KXhSltdY7k2fl/v7+xcVFCB4AgnXDMBjv3nrrLe+9c27oeh6BIwuhllIc7u1v63V0MVf5+eWl7AYp1Xl9mVDtRDSZTGezKTDcNu3u/tGL8/O8rADlP/rH/+Rzn/vczZs3V+vmO9/53mw2i4Df+c738jy3g+madrFY3Lv/ytnZGSJWoxEAhGT9CQOgQoxS8eg9AbfBCyZjiIwRR8Y4JICS8zGlAw5dn1QaFGIM3hMJZEwJjVILmdpVJji6SESS8QQfZARayHQBewrWWgJSuRAsiVlAShnJJ1Rfer8lWYBQkkWi6Bln17dsJAJEYhEIkfGkhv6YlhVZjDHCtWM+WQI/plRCIGJiPl0oLrTOjDFaFwCs67e2HzhnnPNhGOptO9/d0zqnEAFgvVxqlRtjHj9+ure3U8U4GpfAZHQkhICIPgbGhI9eICvKzAUMhJFIcQ4Abde3Xb9Zb4QQMYbJaGytPTs5rcajw4MDHwIjMGY4PTmrqirTRfCDtbas8lE2EcgYIoV4uLd/fnr2W9/7mnNuGGzTNPcpZFn227/927dv3/7KV7769KMnk8mkaZqH738QQvjsZz5z+uL0wYMHk8mMc/zgvfc3m81rr7xCMdph+OAH7/V9v3/rxvGtm8MwhOh+67d/8603P1lm+frqKjq/t9hpmkYC5xGfPPyIiN58881xNQ4hHBwc6Fx/+OGHq836E5/+1PnlxUcfPhuNSorh2Yvnk9nOndv33nz1tYuLZeSxLEuV6fDxBjRVYQmdwwA2qzVDLPKKc+m9r7tecJJabtsemXhxerbYW3znu9/ddv10PL5z546Jse+NpyAVp0jOk4PQDU4LmSkBAETRmoFiDDEyfl0Y5kpHEzQXMsu4EKOiRMGHod9uNzePj5um2TZtnudlWbZty0MM1sfgx9PJdnMZgvMxZEVRFOWjhz94O/+M4mIYBpHL1NB77ynEfmjPT04XkzljeQiEEZXQieaPnKGH6K/TTjjnRDQMA+e8mE4LrkzwMsg8z7Ms41L0fS8zyQEZoreeEBhcN3+cS+9Nnme9swltnhXZd9/7/l/9xF/STNy+ffe99x9sri7n8zmLAaM1m2bZtrmSnLFxNVKcf+Wzn9+0zbbtVJFnea6UutqsHcTWGUScZEXbtk+ePPVHR0jQdO12u83zvBDq6vxycEYphYiZUvPxFJw3xkwmEynli+fPT05OslG53Kw9xVKrlDh0enKGiN6assylYFrozjYXp2d7e3tVXozLSit1eXmZKciLam9nZ1PXfd9rqQQXwUfnegBwnKdh9fVxIGSpuFTSB9O1QwBE4Hmeq1ynt7tphizLmr57++1PJG2a0JnUeuy9c9Z6J4To2xYArPepsdZaA5FgPAoUyIhBnueIyBCVkt675XqVZVmwDglypZNcI8+UN9ZazwTL89w4Z70fBpMglIpx430IoaoqhdzHSAjO2gCUKLLIOZcqRR96F/puEIxLLoQQTbvlynMl1+s1I6Y4G0w7DMN4MvE+Rs6si3meV9lO37eMsTKfVEW5Xq+LahJCyFUWYzTOdcHYfvA+cuTeR4zEhcqqkTHGWVdKVffDaFSmEaOSsmn76ENd10RUKzUaVRSCDyFF6nIpTD9YaxsTBRPj6URr3ZvBWjsY0w+dELKclnsHO8+enjz88HGmZbPdnl8s7718e2dxKEW2szuJEKwPpnfbun73j74VQjg4OPTeK65ns5kZjBACmfP9KAazPPMxrrPMl9n9X/6//s2Wf/+b73zw+q1P9zW07ToyP5mMbBeEEJPJZLG7k+QmiYsghIjRrzfLPCsPDw/X6zUjCIz3fT8bTyaj8enpKSM43N2LMeZCL5vV6dOrjz74UEjOGNvb2zs6PgZAJgUiNE3rvS+rSghhrMuyjCE3Icx39vq+n+2MvviVrwghmBQCQteb2Zy/dOvO0eGN8/NzPmawQ3meJxg4AvvBuz8Yj8fT2WRnvrDWMkLjh2AMIRucYUwAj5ECl9eDHxe8AsUQP97aAkQK0SOjJN7meP2zc+6HAUdpf09EHFOoLzLGXIhAJBjLpDIuxhg5YGvaQFEpwQUmkYQQAgAEshCDoOs1LgCLSMmQRESBIiEAgvCIiBQxDbojUYgRGUNi1wNrzliKQyTGGBNVVaRRtdbKmH4Y+hhjWY5CsIzh6cWptXa6OxuGANRvrjobTVVVT549Jgq65M2w0dlLQkmCGIm0EtzDMAwZk5zzXOYKXNf3ICAITkTrzVYLeeP4NopwcnKybepROUqCWGBYleOmq7XI51o2TbO9vJxNF2VZeu+aiysR6fL8YjIalXle5llW5PPRLnn/9OnT0+cn1tqXbtx59vj55eXVZ774+UlRLjdrADg4OhiG4cnzJ603oV3PpqPWtV/66heKvHrnW9+KSBfLi1/4hV+IhM+fP+eAn/nkZ778+S9/4xvfqPJisbd7/uhBMS7PL8+VUhBJcvFTP/VTL1682N/fJwTn/bPHjztjskzfunXrzbden/zCLJOaRWaHYTabeAqt6X2UwVkfQ311lWWZEnKw5uTk5O7du03TKi6kEESQpjGZkhebLVeCByRLIceu2ygIzPv3Hjx0/XA43x1l2db6nYN9AdR3nYkeiYDhaDYdhsETRecZx0DRugEALl6cj8pSS8Wk4FJwzgOINGFuVs16vY4xPHny5Pz8fDqdHuztRec5isuLE2MGgMg4ONM6b4FY7P1itNcdDIpnu6PZSVgrwJzxvjcQKC9Gp8sXP/njP/2Db78breNEPri0tDODkVKjlqPRaLXecqGM9YJn00nhgm+HVmXaXLsghHE2ess4d845cADEEDnn0TkMMYQgBILzPANifKw0C2GSqd/49m/++//eXzPNyfnFSk8nY2MUF3Wzubw6v3F4oDjvO1ONRw5pu15Za+/cvrMXiYguzq8unp/UbcNRCMLbt14aT+YxRh8jYyw4u1jMZ5OJ1tozLGeT7eVVCKE1w9ab5Wa5mM5KLV579f6vZdnTZy9+53e+/jN/8k8cHe4zBu26Wa+uIoqqququDUQXq/V0Op7tTJhG35umXY/HYxeibbqr5Zbz9sYx35lVUsDVctsjk4xrJZEzKWXoOmeHZrvWWiuV2dg7iiqic87awDmXmnVDr2IY6ZwhTEZjAECVOReFzBDBE3nnlsslEZVlaYchnVY6kwIZx3zb1HlZRoiZlAwIIirGmqGPiLnWgwGAaIMVXHMhAINiPFoIhowdskzJPNt2KfSXz0bj1DF7Yz0SEuuGfmCYBMOJdqQyjYgV55xzRtB27TAMfW84YeQUCBjXEvmw6eq241Lcvn2rHUzT9nlRMUAWASOgj82wPju98N7v7+699NJLbdM37VYp1ZiBR6F52W9760KZV8aYobURYzoCfQhKSudMrjSEGCDked63XV3XnEmKOAyu3poIlOtMMs50Zr1TkpvaScaZyiaTybbZ1m29Xq4YoOJiVI5OX7zoHw1HR8cHO4tSZ6enp7fu3L/3ikyjSJ1n1kEIYO0QQnB9d/PWS5lU09H4u99/96PnjxrXAkBVFJPRoomdCEx2ypmopZdavfbGTyz2furBe49G1RgZjMpJoNg2/WyR8yhQ8MvLS6HkfD7P8zzT+eXlJUSKGbjgdVWM57M0UFVlHvzQ1puD3T3G2K//+q+v1ldFVl6cnd+5c+cb3/hG13XT6TQrcsb5G5946+WX77766uvj6dh7f805IetbwzmGgDE6JUS9WX7m7bdtCEPbDSE+P32i8uy9B++9fPfu0fHBdr2RXCmlunqbKy20unnjWAi4uDz59h994+23PpGNSuQcI4sRlOJSqggEIIhcjDG4IKUMznPOiXkhRR+sZkIJGazjjBEBZwxD9AjXyk2GIUTGWOTIuQgh9H0vhACGMSIRccl9cFJxotAMwzUJJIayLGMkwRVRYAw9RF3m0QfAZMbwEYhdO/EYR+TIMAaPHDkwBCIIMTBEJkS6k5MiK0mkU/tOIYpAHpAhQ2PM4AZd5JUct20bnHHOjUYjziRHxrW0zgghcq0fPfpAanX//mvPnz7b3d01g3eesiwDhiHGosq5UM45AFa3nZQ8rzLGOTHs+14IVpZ5lulI7vZLd87PzpI5R+eZkLLp6qIoBtMnB6SWWmuNiFpnxb7yLgohT148v7g4Pz4+vOmPAVk/NLu7u8+fPX306FFZjX7xF//cdrt95zvf7vptlmU7Ozu3790cT4ofvPddzsWP//hX+nbYbDbrbfPeBx/2/XDn7r3Ly4v33n9wc+/gD3/n66+9/vqjDz9Exj712c9M57OHjz5kSA8ePHjl7ss7s0Wus67rPvzo0WQyefLs2dHREcUYnS+znHPujdtb7GVFUa+3WmaT+cR6HyEyxiajSgmeKVW3bVEUp6enQogvfvGLm/U2hABESDAajdJQ2hnnvbXeHkynWVEoraTkWTU3LnZdt9ms/szP/lkA8N4OfsiUChQiRgFIdK17TAB957yxhkeI3nNECpFnPNeZta6u684My+UyBa1779JI86WXXhJCrJbrxXzHDEPbtinv2lrLpdZc9H0/OHvz6GZvunE+url388FHp8W0ogiSyb5rcuEVMOG9915r2XVdjD6EIKVmBIoLCcJ11vVDnmXGGJnJpMJI6sckFyQK1jnOeQQYnNFac868jzEGYiiEAu8FIFfCexuQD96Tc3JUvPf0yYcnD7th01yYbDz+4NFH9+68zFUlQA+BZSLnGQDP101vPd26eafpjBTMGx+cm88Xy/X64ODw1o3jhFVpmsZ7zzlLzW4SnpjoFfLpfGa9h7Z58vhRIdTLrx9HgGboe2vKrPy7f/fvfu1rX5tMRsBwb7b4M7/w5/LRqCzLsiyFVlfblSyydltrpbIsY6xgyNt2TZ52dnaYEATscrkqimIymz18+GHfd0qI3d1dxpgLoeuboigIOYCVUgoupVTsmqMbm22NnHVdZ3idoGyz2YxzxjlcLpdSSimU9S6R5mIMKiu01gjQWyuEoBDLskxklfRIIAMTfPLvNkMXQsiyIg3DOedd03rjOJd9Z6wzWaaCC1oq731eFnmWOe9LXiUMDhOcc04UEwctLVa3Q5fkeGWeRx+UUkdHR5cXFzHG8Wi63m5Kmbddva23QuqsKJbL5WQyOT8//853vvPyyy9fJyBJ0dRdknGNp5Or1VJmwrdWKVWOqmEYbDcMbTedzqUU2/VSKzlb7G02m9XqKsbItLbWJDw1MGi6hmI8ONhHxGEwxvqqKn30Q98756RWhVZZngNAt6mn47FzLtd5mZcQwVu3Wq2Komy6lgkOiEKI2WxWFIUxzhiDSMkAfX56NpguSQqy3V0uRLDu/Py86zrbbLZNo5Saz+enJ2e3b9/lxnEpVqsrpYRxdmc+b9v1a69/qutMsIFJ9ttf++1bt27dun2zXm6Htp3NZn3fhxCMMefn50qo6XRqra3bLld561oAYADFaNR3QebSGftf/Tf/tfd2GAaI9NorrwPDH/uxH3v48OHe3t7e3t7u/p4P4fGHj+u6ffvtt33w0dq0IC+KjALECMggAmqp+r5v2857Xxb5J19/kwn+6MHDf/3hv/mpn/7Jqii7rgNGTLLe9AroD7/1zcVi9mNf+fJ209WtiYwrpRIe0QUrFI/OK6UicCWk555JTBbnEGOEyLkgQB8jMEaJHxlDkkYDQAAKkSJFEOxaM0HXEXxJx5AiJpNIynubEPGIqJRiHGIk7z0XSSnNAa4/LGMsUOQpigExBGJAMbW9H293EZH/SKX1xwxLyU+Myf8M+NH5hdY6CS8Z4zGAcyFGkFwAxCS4cd4g4mbbENHy6iIr8nv37sUA0dNsNgPGrfOjUSUVT7wFxpLEMeRZGWlo21YIkee50pIzQUQRQSALIUjBQ4hE1HYdcNYNveQiBJ8pkedl9HHoLWOMok+pU7PZbLNcfv/d7/6bf/WvmRSbTd33bVmWqWr+0pe+9Ku/+s9eee3V3d3dJ8+fvfnm63lZVFXVdd2omnRdh4gZz7iS3vvHT5989rOfRcT1ev3w4cM37r/yiU98Yts2Tdc6IqlVNwxVVc2LXMusqqpHDx4SgVLq+emJUvIHP3jv7bff9oH2DvZTdAlROD46ulpd7e7sUbI8cuZj4Jy7EF88e2qtvXv3bpqTFHnZmcFaq4VEoPSiIWcM2UePPtquN4Hj7aMbXApQXGutIvv2d7733/2LXxOM/Sf/q/9ZLplnzEZICEYppUTW9t3gfdLHMsaIQQhhnldpkKKlev/BBy9evNjb23M+lOPRer2ez+dlWZZloZRijG2bWgI/OTnJM922rbcunZL90OpcGWsj+XE1kVysLq8Obx39m9/6jb/zz/7LwxuHdV9Xk/Fmucl1dnVxubq6kjovyxKRpJTb9RoAIKBSCgMwzvu+v/fKfRPtYI3KJGOw7ozOMx8dMayqwlrLpQCOgaP3nnwAwDSDSisfT0FhDJ4AeAYyWDPOJ82L9X/6v/2bsTOHh8c/+ODB+dPTtz/xKWAs8YyuvxZjKAQAeO21V4kIKHBAIgwEl8urZBmsN5vpfJZ4fpzzLMuiDyGE5XKZBEScc51n6/VyMZl+9/f+8P/+n/3t9589Wq02ySShVOYp9l0HMQLF/8+v/OqP/9RPrTZrRCyrCjgG8s54yXme681mlZUF53K92k5Go6IoTk9fLJeXWVZEYNttba0p89zH2DRNnucXFxda693d3aIovfeTyaQoCq21kqLtuhcvXiTPj+vbp0+fJhfKK6+8tlgsfiieYowJIa5Wq4cPHx4fH89mM611rvXQm7Qzk5lKL7VIsD7GAsUI1yleXdcnBWyhs7quQ6A8L40xw9BNJhMpOTEsy5IxZr3r+z4Q5XmuGGeMRUhEGtG2bfpkrHXOuWZbj0ajqioZIWNMa40MAhFjnAM0bfP+D95nXO4dHIUQkr7vn/+LX3nrrbeOj483m43WOlc6NZd93xvTKymVUoyhZHq1Wj169OjevXvz+dx544Kv6zrTRVpJ1m1TlqXKJCpRVRUSIVGus1zJthsIYbAmEMVIWsih74uiUFp7iiEECJEzZox58fRksVgkow6xmOdZMwzprGeMEaFkvK5bJSRR6LouRNd1XWLRJIfPi5MTawxHZr07Oz9/6e7tVEyvVqu33vrEzmxndbWu6016jLlUgw0HRwcAcbm8nE6n6/V2PJ6Weflr//yfW2tfe+212c4iqS/T65xyVGOMT548KYpid3fXGHN2dnbjaO9XfuVXPvrwEZcsy7J79+49eP/h5fnV7bv3bt68uV1vbt68OZvNnjx5MpqM1+u1VOqzn/2sLvJhGFKVxhgblXkEBtFH76TUXChEbNuWYsyzIj2fddt89NGjGzePAODJk4+qotzbOzDGxRiHoRuGYXd3HwK4aMqyDOSLoojRW2OqovDeA/EUmhTJEwCTIgmjFHIiAiJkTCkFRBApKbMCUOLjEgDn1xWqFCKEIIRggCEE51yg4L2HCNZ4a21VVQAgVSoWKXjiAtNzm6C7MYYfvqoRKH0cwThSYIylpQp9nIAEH0cVImc/3P7iH2d1FUWRrgREHIbBOsNQpPTfoeu1ljqTikSe51mR/9E735GCHR4eInDGSBWKkLV1mxW5DQECE4INQyelDCEGogC0Xm1CCBAHJGaN4ZznRUFEQ/BaqrYZYoxcYGJsFdevNao8Sz5nJri1NkY/qqpIuGpbmWdf+MpXb9+9861v/tFyubx///4777xDREIIpfVf/Hf/0jvvvFOW5V/5n/wHl5eXiDgajd793m/dv18sFnsPHzxaTFiuZDf0gHh6ebG3t7e7t3f7zh0l5cMnj6fTaa5zZkzobRHxoJw8fv7Rw/c/mE0Xi8XCe3986+bLr7x8cnLy5ife2tnbDSE4ZxhjTbM9Ojp68PDhez/4/pe/8tX5fB5jTAloXdfduHHz8PDQOTcZjYxz26YFNsQYXfAheMEYEzyTovceIAolItBid4cYhhhNZ0OIWTW6XK5CiDvTmVT56cXpZDaNBFLr4FyMMQjmAYxz3lo7mExJIQT5sLFbIbiU8qMnj9u2vX33ThLIcC4ODw+11pPJeBgGH4OWoiiKxw8/3N3dff70CRFJwUI0Uuqzs7PFzs58Z9YMW2CBkM12FjHCnVt3MqYUSojYN63KMhcjcdy7ccCA28F4Hyg4zhEiZrnyPkYCb226w6LxgnEK0Xsaj8dt3xGSlApizLVGweqmEUUmkEX+8c6EsSSeJM2NC0pogWrYNkWRtfXm9fuvsj5srza/9o1v/Q//4l/+0l//6+cnT3WW1asLJrJUqbzy6suTamTtYLo1RGJKMy5CoE3dxhiapm7bVjCekFvpiFkvV2ktPZ/PnXPJoZsV+XJ52TXtL/3SLz19+EiWZUoZ2bu7Z4zZ2dvd3d2tqvF/+B/++5/41Nun5y+s9RBp6LrRZAwAUmstBRKrqrHxbrm8+L2vf+O1V165/+qrQmUyy1VWtG2LCGVZSs6Htn3y5Ml4PN472O+6br3dBiIpZXQ+kwoJnPcpiBcAnXO8KLlUTNjRZKoyLbVCziFGzUWghLr1N2/enE6nWZYhZ95dB4lrrX2Mw9AVReFDyIRwIbgQYqRNvYVIAIw8MQHr9VopxTkMQ8eYmE6nADHNCbYhpCEzlyLXumnqfDoPIWitGOchhrTGllLKITZ9v1tNylFlvUMlgfPWDlKgdcEYiwRVXty8detf/uv/cTydK6XKsowx/rlf+PNSccZYlmVCCNt3WmvGhBBMKWGt9dH3ba94dnV1VZbl0HUnfcuVbNs2UHQ2WGtznWmpog8UuRZyGIbgfKZkrjPrQkKmAENgLLqQnkAi6to2MkyGrklZ5nmulGrbXqksQui7LjLgUhhj6rZRQhKhZ7zrmqh0IC+U0FwVZdl1nfVWanm1ukpVsonRea+13m7ruq7T/c0B+77PCn21csBwsG62yOvtdjCPJ/OpJ/AEN27c2K7rosidc0+ePLl157ao6+Q4So1HSnnPsmw8HnvvY4xJhWccvfrKmw8efPilz3/x/0fVn8bqmqXnediz5vVO37jnM9dwaq5uNntks0VSIilRomiLpiUEVmLFsBwrjoYoyZ8AMQMnASLASIAoBhxDEhA5QiTHERxBtjWQIilRoZpkU+yppq4659SZ9tnDt7/hndb85Mfa1VLqR6OA+tF77+/93rWe+7nv675x+8b5+fkf/zd+YXWxOT095ZzfunP7//E3/+/n5+dFUb322mvz+Xz/8AAQkw+5N1dQxhhrd72uSslZCtE5l6wvm5oxNnpDPSOWdENPKZVF8cFHH2+36+VyWU+mlImiFN772WKa1ThGuZRytEPTNIkkIKiUzBeUGCBEly30MY83hMYYIqHXS1/GKeUx+hQjSVgUBU0pEITP8FXkX6ssjDEmQhImxhhFCgkjEC5JnkNSStZ4XRAAIIwSRkhCQghiQiQxXneyIcljLxBGCaWQSETk1+BK/OEZTIEAAYJ56L3+bz88gMn7Dx8zxrx3eVdPcr8jpdtdF2OsSp09ipQzwdUPPvn4eP+Qctb2nRCKUxYjMs6REq0LxTllKddwUkqVqvpx7Hd9DEEJnrcOzXQiBONSUGBCMAqk73smuNTCxUA5I4QIwfP/aYwJY86cdVdXGy5USklrWWtVVyUFwims2/6TTz757re//fnPf3673T59+vSrP/Y1pdT5xdXl5fmtW7cyNHw2m3kbttsth9SbMQH6GD598uTevXsnJycXFxd13RRSzabT733nu5UuBOMYo7X2g08+uFptbty4cf+N1w8ODkZr/tv//r97/fXX3333Xe992/dd1x8dHQHAdDpJKZGYEAhS0ve9ENxa65yr62YyaTjnV5eXUkpdVoi42W2FEJSSpqpDCLosjDHWWkZosL6eNhSJi6HtBgLACf0H/+ifvPfRR1/50R/5mZ/5me16VRSKCu5DyrlbRByG4fJqFX3Ymy8EZxkwqXTx/vvvW2feeeed+XzuQuj7XmstpRKCb7fb/LkXRbHb7X7lV35lu1794i/+4tnZqTUmp3WVUg8fPtS6PDrZD8kDYFGUnMv5fP63/tbf+i9/4/999+V7Z+1FAKSUOhesHb33NEXGGAHwxmJM42iz7dCEaPth2kxefuV+awYmRUyJQIqChpRGP1JKy0ozRkdnhRBUiiwAAQAQmpeL+cuvGIsxehsZgtScOGic9O+tXlycP3ny5D/7v/zVX/pTf/LTJ0+Xe3vvv//+Bx9/Mp/Pv/HjP364f2hNP5oeEYVgQLkZBkzkaru7Wq8RMTcJCqkJIVlLmDaTsizX6zXnvBt6JeR0OjXD4JwDSATht7/5zW9/6zucs8Vy9uGH73/jG19/8MknGay2t7eYzmdf+OKXu24YBvPSvVfu3LvHhYgxrlYrpaXW2jgnlISEycfeDEIIHwMhRLDrhvDcDK+1Pj8/Twmz4St302omCCFd/1mUlpDdrh2GoSj0crn3wxkryxve+0IIpZTWWnAe81AbA6VUALPWEs4459H5otQ+xt1up4QQXHbjYK11LiBiIdV0Og3BXa6vGKPDMDImKKVFoVKKQsg8FQnKtNb5XV83VTeMXddNJs0PY0hVUSKCjEApIQwSgPHexzha60JIwUupCDBATN4Z416cXy4We3bsKaX7+8v8rkSMQquu6zBEKSWTItv6drtd2+4EY4vF4tOHj7TU5+fn3vtc44iISmspxKRu8mA0ny1DilwKxlhVasF4dL4oVEDcDR0TgiHRWuVCCERMgOt2RxgVjEFESNfPJOXEQ2CSk3SNVxRCOGNz4w4jFDnkjm3GKCEk9z4RQiQTH3/8sZSyrmtEPDg4WK1Ws+Vivboc+rEs6/l8+d6H70kp3/3cjyCSZ0+efvDBB810cvell1JKkMcsjKO10+lUFWX++mMuc2Msp25ijBm8yhhzzsUYBZeM8N/85/+0qsqDo/3JZCKYfP7kWde1KaW95XyxWNjRfPvb333w4MEv/dIv/dPf/I3FYvETP/WTzgYmRfJBCJFiTJyWWpGMbLJeKcUYgxSQQVFUMSKnXAo9jN3Z2dl0OimVvrpat2377NnT0xfPjo+P33rrrZfuveLDGEJAiiklDNcBa4IguAror/nMiCGETJcEpBRI/kQopQiRRqRA8lmGnF6/OgAwt6ampLWKMYXPQnTBeUT0ATDfaEP03jtnlFKUUqEkoUgpYYyFELNezTnDfLLT63xgFoowJg4ECEGIWeWFHxYDf/YzXGM6soMagGMi9WSCiCE6zrn3DgBKpWeLOSHwQ2k6Kz/Hhydj363WV6N1t27dAs5j8JBQSm2tUaLMhjFrO8bEOG66YUguMsaM84xQ60PatkVZMhvrqoiRAsG8uRl7U08a4w1QHmOilBhjUkIhhHHee5+QEEJcDBM50VVhnU8pjaMFSLfv3JnOZmdnZ9PFQpXl4ydPKaUnN45v3vqcDZYL0vf94ycPp81ESHrjxq1xHHe7Tdu2d27dmE+nz548QUTJxMOPP3n69OndO3f2Dw+MMQcnJ1dXVz9+9Afeeuv152cXf/u/+jtf+MIXbt+984f/8B+ezWbGuaIoJrNZFio5523bSimrooghJQJVVVlrFouFECL7BrXWlHNnPRPeOUcQQgiz2czHQBntuu5qu6GElVpH78dxLIoyRqTAKIOnT0+37Y5Lcf+Vl1brTbttm6Zqd20iNMaIwQfrgJJKaqopY6wfh9FaJrgN/s133i4KrZR6/vx5WZbHx8f5Ccgncc4dvnjx4vT09N69e/Mf/Xzf94iECwEALngm+HJ/z4yOMRaS51wIIShlShY3b9weerfabHyKVApvHANWier06vl02hAE55yzKfrACQ8hmWEUhS6Uxgh911HO2rYtioIL4ZONKWqlpBbBecZopQsqOCHEWBs95i9SDAmlJABmsJERSoliUgBY45Z6uvro8U9/9ccfX7x450fe+ck/9AefXVywqvJIX3vrc3deezOXJZ+vN4vZlCWMMW77tt1uCCGcy+12yxiLgOM4Hh8deKSmH7IklXdF8+UCAAZvL1aXhJC6LMd+ePr82eOnTz9+8MnKdFeXq/gDZ8fBGHd2dvb73/q9t958fX1xvtzbU7K4dfde3TSqKobgQvAl50KI/EhEazgiJTRGxwhBhOl0tt1uQwiSU2AkD/1FUbzxxpu58MrYMWSQ1nUc2V9dXR0cHMxmM9IgAxIwZYR71gyyd5dzLgjJduj8rcwXjrbtMCZjTOZsU0BjRwI0hIgIu6631nLCGRAhZaaRIMXpdGrMSAgMpi+KYtc5xmg/jrvNdrFY1HWdT98QAkbknE+nk7yEI4R46zAipdRpQQhJNmipmBDWB4KAPlDCg7++XJp+VEp9/t13I5Inn37COZ/Pp4zStuu6rhPBU0qHMCKFWqvBjEzwvG5IKb148ZxL1g2707PTuq5HO9K+K8uSMnZ0dDT0fc6Ydl0nlKSBBudTiFVREkKenr7YbreDGYqiqMtaa73b7bTWTdNwzhUXxjsgpCwrM9icUXHR5YGJsVza6GOMkJByWqmi73tn/GTSAEDbtlkTrsuyLEvORNM0qiy89xTBWru/v2+Dn0/nnKlhMMaF+Wz54NHD58+f67KeNsWN40Nd1of7++v1+vzFGSPova2aKQDknD0hJHe8KsFHaziXNHcKMQ4AdVlxKQCJGey/+W/8ohDi2enThDG4oLWWUvzGP/01a+3h/sGbb775ta//mCr0g4eP3n77bV0WbdsSxojxKcEwDLluyBjCCALSLG94760dmabbrq2LejZZjKaPMd64cSOEEEMsigIA7t+/zwW1duy6rh1ajD6bQvLAKpiMIQIAgo8x5pKC+XQmqEzOeRd4oRJCbhaMJF3fbD7bwkLC6B0AMClYJvjQnMTFz54QJIxyxhBCjBhCyN+XH8Y0hODWmRiREJJBxUASIYQgICWcsggRET/jXpHrQiSaR+TrdmIAyLMvye6sfw0rTZ5ebLMEDZQRTIwxLmhKMcYElGR0pQsBQwourtfr1dWFs2Eymy4We4DUe58yvC0mpRQjmBUPpZTJNy8XnXNZPUdEwlkIXghR1+W0afKmOZ8B1juuZLCOUrDOUEoJ45ki5L1HJM651dWGM3J8sG+d8S5048CAzGazaVN149j3fT+aR48e7e3txRguLi6KUj1//nxaN8vlctpMOOfT+SIzcZSQeWM/DIP3YW8y3Ww2RVnWdR1jGsdRVyUhRAm664bBjF0/aK2F5PkP52PUusjKhlJq6FpCiNZ6tV5b65RSbbsTQuztL6TQznkpRUpICAnWZZx1DvIzwSkQxljbdzmQ02+6FOJ0PhG6IMCcc5DS99577wcPH6232z/9b//CzoS9+aKS7OzshUdSVRVNIbgAlIQYAyaIKRG03hlvjg9O5vP50HWbzcZau7e3p7XOb/Ptdrter4+PjzdXVx9++OF8Pn/11VefnZ62bavldRodMVLBEeN2NywXM0ZiURQEWP40q7L84//+n5oezrau7a0piyIY71NUhdqs19H5FBJJmEKsqoYgGGMoJ4JQ2w0vvfqKo2hJ5EJoJSx6H4OLoayL66wepy6GQqoIiAAuhoiJABWce++BMM7AOaNRKMI45+58+A//2P/wR9/90b/8H/+vf/RHvvjTf+APLg6PFntLSUWhVKLEGZvXcvlr5oOjlAY3OGMvL68+/OhjF8NXvvIla210nivtnBvaLp9qlNL5fB5CyCqFM9YZY4w5Ozu7WK3OLs6Xy+XQ9ZTSadN863d+t66K9777vdlkenzj6PjmjeX+npLF4eHhYm9f17WPUXO+t7fXdZ0xhkthjJ02k267G82wbTvnIxeUU8op7O/vD8Z9+OFHwzB88Ue+YK0FTFLKo6ODtm0BGCHABI/R5x46xOvrf/qs2S0301F+TdWnlPZ9zwkLIaiyCCG0bTuO49Pnz5yzkPDtN9+cTaaEssGai4sLYwxJpC6rvDyWWuXI2WRSAyOI+PHHn5RlWRQaSHI+cc7zgJIjdkVRpJQIgVIXxllEhITGGAypaZooKabkRoMxSc5TSADQdyNhFCiPMUpOCSRrbVk1SJiQpK7Koe/zjHWxWuX6JUao1toFb4wlhGBMVxeXxo6MwMcff/zgwQNdFq/ffy3/NTAlxuVyuZzN5lJKrbUZXVlXiHhxcZa18eB93/d53O26btpMy7pq27Ysy/l0RilVhUaAFENZVkqp4BMiUk6894RTzgUAREyM0egDAAjGLi8vdVleP4TOhRCW80XMJYa68Cm64I0x4K+3jEwKSvnqcj0Mpmka59zDh5/cu/dyUZQSIpfCGJdSiJgQkTOCiMPoI2KMOJ1OcwmBEIwCuBB2u910Oi213mw2u93u8ePHlMvptLl372UG9PHjx4lgjL4uy6oodVH5YAHg13/9109PT3/vW7//5S9/+Ytf/NKt20dKqfVuq7VGoGYYKeX5fdKUleAcABCITzF5P4xdP47WWm/tO29/LjtdBmsQUTHOmSjLEgiqQgLA5dWVcyHGyAhWRUkp5JeM9Y4xgd4XRZGxoFrrTK1KKTm0kKAUKqO4E4BgxPvcWEwwpmuUipJU8JCiYMwFTymVUjjnEbNQke+aGEJIESAhQsxfFiH1drdOIUynM+dcQpJSogwkU5RSKvIJACklmvsaYqSMAUlIyfUpm5Ag4L9qBAYK/1o98Ol6RxgdBx8jlmUpJccYch0ClyKmlL083toU0uri0jjTTKaTyWwcbYoQQvApIgFKaQgh+hBjnM/nMcaQ4m63KwSPAfMhTQlj/DrHWVUFBbK3WORwJJcihACMisS8tzaMmY3OuMh/SgBwzkmpxnHILyAXfEQotcoL4KyrdMMAQFJKu10Xo8/XqOl0WhelGUcp5dVuWxdloRUJ14aUwVofA5ecMZYj/NGHTN88PX3xnd///Vdfu+99uPfSS/V0Mo4DAATnCONS6qyzte1Way2l3O42LgTORYxR5X4WROvjOJpMuogx5o0OY0wplci17uFGEwH7vrfW+8GkgFILWVZal8G6lNI//vVfOb+8Ojw+/qN/6Mcutv2NG7fMZtW1WyZ0IpREy4oyARhjOKUYEyPgvaeCSlVyzjdXV3keWs7nRVEwQntrcn3TxdkZIWQYhtlken5+7lIEIEVRIaKUEiAVhR5MP/qoOa+rIlhDKW+q2lr7yssv/ze/+v/5c//Lv3D3rZebvdkPPnkwm81UUW77XQUyhBBddNZmOFwISUoZfXBDf7h/cOPWyenuEkoBFAlBJniipBs7XRb5B9NlETBCTBGQcR4pOOe8C0oplkN8JFIKPHISkSm5e7z+2//Hv/63/+bf/f7jB3/pL/zPjmZLUenRmv1mZuwwjuN0OmVUAED+IHJFvJTSjGO765+dPn/y/JlSSinVlAVXum1bTuje3h4hZDKZaK3HcfTWTSaTXdduNtv95Z6gLJMvKcTTF+cx4b179y7Xm+985zt7B8uiKNbr9aNHj1KKr738yte+8uWqqEdrhmEwKWT9c7vdhhQPD4+iD+1mWxa6t7a3rikrKWhTFWVZJqBt22GIIYTNeq210lJNZ02C2LWWUqK1rJo6q7LGOEQkmPLIa4zJX42U0cuCA4ASahxHimCMKct60+7Gsb/aXJVl+S/+v7/1xqv3f+IbP3653qqy2Oy2H3/0Cbpw8+bN/B7hUthgwWM9qRLGoii6YYzO102llEiUAZC2bX2MTdNkEY8xRmLM/vzPtncRQ0LE2bwRjDNCjXGCsnE0Y45kUhhHK6VEjIJT52yMabFcjsFqqX5o/0mAUkobvKSk0GXb9zk04Yx1o1mv148ffTKMo3POR7dcLCil7XbXbrYJ+N27d2eL+dHxSd/3SFl2KkEMzjkXwzUcNMX5dFYU6uJsZZw9Oj4WQlyenTPGqqYOMSrCAqZsrDXOSimtNZRSj8g5y2//ax9fSk+fPmWE7O3tOedKXRRFCQnzrten2JuRcialRBfMOCZEwkUAslvv+m6YTCZaSWNMu9m2bTd23cnJEUCqmyLG+L33vr9YLPb29p2PRVE5G4wxGd3VTCqCsN5unj59Op1Ob924eX5+HkL46KOPjDGt2RWyUKKcz+dIUgiOU6a5GHwiFF9//fXF3l5+Sptmutls7bijgqeUEmKWjghSa22wfjadSC7yqohyJgSnBMfR9n2fsWsphQQYUnLOaS4YYykBpYCILnhVVONoOOdayBg8wSQEo5whARdDQUUuQvjXJWhrrShF9F5zxYAxxiKikCw/8Ne1wYRkf2sE9J8ZbjJOPAEyylPM231kTCBi13WMUOdc3tQqXW22V5Dw6Oho6A0AWO8IIZXSSAihyKUAQHJd/ADZbBhpyktgAkDxegP9w9UvhR8CLZH7FEutypoyxjBFIB5pKuuSU+aCTzHGkAghhHHC8Pb9lwWl0UczWFbylFJMYLyLGKQoEBIiZvb3tm0TgixLZ60LLqSktQZG8lqCEGJHIxW39roVBxNqqSImREiAUhSADJC1u11GaxElCCFDu9FSSq4opY0SiOiRCEKMsflPE12gggslbt66YZ2VXBBMKSXnLXCaONlfLqy13nstFSG07brNZqOLqqoqjElS4UebyYiJJElYwdX9e688evJ4HPpmUpdSMUJ1Pbvqdhh8pHF1uWOcIyTG6enZWTWd78/ry8vLqqqi87tdSwWbzCYsIomRYEoAzaSWXHDKCCFjN+zW20To6KwxJqUwBpPvcjH59eqMMHE19BfbrRvtKy+9nIAdLhcsuJQwBIoYuQQqZKE0xKQLRgkpy3Icx7qugZDtdrtrOynV8Y0b+XfknEvGkVGttY+BS5kRSASxG/rx8qoodVFya62PVgjBONGKUYKc06IoPnz4SCnVVHXC8ODRJ3/kGz/9f/hf/cf/+f/zbz5bPfvTf/QXv/mtbz69WHHBI46I1BjjnaEhKK7nsrw6X1NP2xdn/+4v/MnvPP6AMwYxWwdJb60qtPdxqgoXbMKUa5HWbcbjTTBGSFBVVQyBJQAETghLXBEKzJ9dPv3K535sViz+yM/9zF98441hGKx3u6u1EAworjcbQtjF+crb8d6du4WkxjhgCBT70a1Wm7Isb7/00t7R4dnZ2adPHyU6r5FKoW4cH9d1zSkNIYxt55wjEhD8/nx24/BgGIarq810Nkkh/v2//9+uN5u33377n/2zfzZdzJ0zVVGGFBslN+dn1loWI6T4cz/3c9ZTxtii1FVTRUCpxTiOFAARJk3jQ6qq5uio4lIQAhcXF5tdN5vN5ss5I/T02bPdbmutWAdcrVaEEFUV+/MlQWo60+NAOUveCcouzldlWR7fvJHf/pgSJXzs+ovLy9V6fXR0lDfBqtSJ4ejNaEeZKwgBPKbLzeZqfVX7Wqvyzp073XZnvRu6kRGoqirGeHB0GEI4f7Fq2yd93yql7ty7W5U1COacKwrdcB5CkFKb0VBKnbfee4hIkGKI0+m0t6MZ+ujTpKnqoqi1IEAo04TTq82GoWAEondM8BAxJlKWpVaKltz0JtnApDq/WAkhZsuFIDImb5zTZRW9Dy5WuiikWm2uIqBxVsuCePb409Mf/OAHk8mkKorbd++6EN7/8IMxmFu3bgFA1w7OcakVo3KhJkIIzplzzscQGTu4eZzTU+3QeZKYlLrUxhjCecE5IiIFwkjmhCvBISXnPGM0X4OcczGmqqoTIBIKSLZ971KSjCul0DikyBhNjLoUBaOcczM6yUkYHfg4m06qpu667vzyYjaZFdXEjOvBDoyxk+mNjz/+GBPdXxwuZguHduzHUtOqqJjgCEAgpICJhKpSUvL19mq+nO022z/6x36WMfa9737w3/33//Dw5Hi6v7y4WC3nM0zxfHXe9/355cXZ2ekf+tmfuVhvzs8u796+PambYYzBhRjROVeWZQTnbCCEsFI7xGCt4ExrHZIL3m62W+9Rl+Wm72dCEMKCtYJTSjmh3MaYAyySi0lZUCCC6BCScxYpIZQKylLK9X0xEhkJQvIkIUFklADGQvAYsRAaE3ExpM9220VREMysVk84SylwyoESxjkjBBNm3xanLMYIKXnnKBJa8gQpAwQFZUiJca41bSTIOBncmEg0Oa6GGFOkhGaKLQBQSpAAQbABKYsUCaWME4TczomYgBBCc0zp2ooFmDDxQqrkAyCmhLlvhFIy9oPUinOulLzWopEY77wN1idMhDGFwStdUgrMhoRBSpFvDRgDJFRCWGshYR6kNKVZtmKMQbpuhHDOGWM451SIGKIzo/feGLO3t2etXa2vssF4sVgwxkgIhFKMkVLKpUCA0fuUkFICQBlj3jnIQxujgnHvHCQc2o4yIhinlJZa+5hidJRSCgQo2W13OZTtrcsXHwBICSnnt26dXF5t7tx7+c133thuu5dffqnrOvQxhDCG2NGhLMuu60bnlFKz2SwCtuN4//XXN5uNt7Zpmn4clJCz+TTmNEL20TmXlUDvvSi5GQxSYr2TSnljnz3+9ObNm5LxREApFaIfx/H27cPNMNjRJIyHhwcx4nzeuNFwIZjgOfgRoteFLrW+uLh4/733lFJAyXQ6pZxzwqbT6Ww2M86mlHx0iDiOI+E0q6mqKIwxGGPfttba56fPbt++yVgjBIsRtRIphbIsdcGklIvZMryajDGJMiDMh3R2ev7v/7t/9vOf/8Iv/alfujq9vHx6UTKmSpnQERA0JcYVhagI81vrL7txtfuDf+Drv/hzP/87/+d/GSAlyhJgApRCDF1/rV5SgRRSiGM/SC699amIZhy01pgiA0jBG4yFVM6GRLjikrPy1Zff8Ix/5Wtf+93f+5Zz7u7du1lruby8KlS5tcPq4lIKNnhbp3IcxyyNGtvv2q0PjgBlgr/55ls3b9589uxZcCGEsOu6s8vzk8MjIcRyf98YAxQ5Fbu2DWGXUiqqCgihjLz19tve++Vy+eTJk0TgC1/4wvHx8fn5+b/81m9/8ctf2u123/3ud3VZfPDRD05OTpjgUkqCcHl+/vjx45OTm+VeoZUKIQzDFjzZejc6k+dFb+3K+67rpJTGDEWl290GAEYHs9ms1MVqtSqKUkpJGI3WQSQOY0pojD0/P2+axseQTbBCSE7ZfDrdbndVVWVhZrFYLGazS+dtsn6wn3/nc3Vdr1drTLhdb7U0UgjB+MXFxXy5F2PkZak5V4VmIRRVyQT10d26fXuxmBljJNGTur6uO1Sw67q8h+aCBevGfmScWucvLi5SiIwxFGyM0ey2LIcqGY0IIKTpx9lsltlSeXwMEfthiBQIEkp5t97O6qaoCyE4I0AIDQmS9xRI37foJSHw6ssvLyfN82cvQorPnj3b39/7wYcfHswXP//zP39068YwmpjCd7/73a4dFrPZrBHjOAJA/mrXdU0BzTBQzp0PAcDHOJvNAEBrrZTyMeb/jYiEkIgYUkJEJkQ/jgCEc55Sys2b3nvORdM0GUvSte16szk6OioWC4pgYwTOGDBEUFJCiM45yiDGOJjRJw+e5tHl4OBAS62UIlgppVar1dVmffvunVdeeSWllAVIpZQA6mKQUhozXl21FFldF0f390MI200rpVzszZ89f973/enZi/uvvfLhDz6RWg3DYMfhzdfv7x3sP/n08dHxjYOjQ+9iXZTTV1/lQMaun1Sztm0JQVlISiB+lmFhnARvSq1Fni8p8T5iBCEExuhTvLi4UFKWSgkhmsVit9uRhGPfSikJxXEcEaNSihJGKXAlMYSUQAhBUoqAKXgKhDFKP0P5JkxIeEbJBxu6rsuWQ8aYtTZ3wxDOKGMCCCUU8Hp1yBiFhD9c0OTYG0RETJAdggIhJhcjAGguCyY5odF4QCyZpD7JQmcHBlz3KxCCQIEwzjL0AwBTSiTvoq/R4v9q6r12R+dAYG4uykF+pjMfMXnv42fNxowxSllKyRmfUrJu5JwzLoHQmGxCpCRyRgGSLjhJaK0lGCFFgmC6LsdSpZR50mWMM0YopYQmpcosLxeFbttuGAYp5Wy5oIInZ6nguW8qC5IkJSm4rCuhtAsBKCVCUESaEqaUh3vGGMHsFwdGQAheKfXZuhsSAgPCpcp3qny3LesqhbjZbLhjkouiKLgUCbE3TunSOW9aO5020fpZM4kxAqNDPrhG8/Txk6qpCSEhhIApptiPI0HI+VqmdV2WAND3/WazyRVsKaVGKWtt1/fjOGqtfQjNZCKEKLQO3h4fHHZD/+z5c0NoADw5Ol7Mplff/peYwtHRwcnN4/Z8HWzwKQqtjuoKkQxDV1VV9O7FZpO/kFLKejIx3vgxQEDCKWKKMc5ms1yTLgptrU1AtKYxREhp7PvgvJZCSjkMg2Tc9IZL7WzQWjfl1CUkhG7btmqaejLp+z4APdjf44V68Oz0p778B/5H/9a/8+2HH331i18f17td1zrbxwR709m466Tmh8vFr/6DfzSO9v5rL/3MH/3D7334XlmWO+uBEPSh0AopCCFKJQmQbN5RSiyXy+2u88FySiUXlADG5MZBSam5CDZQQiARyeXuweoPf+En5vXi+x99MFsu8sJsNpvFmOxoOOc3ZrPXX3pFSm7GsbeGKW0TXl6uRzfev/+Ktd45d7VaP3rwsCzr/eVhSM459+EHHzx+/Pi11167feNmSqkoioQ0OBdjIoQWVaGUzFrfuz/yuWyyfe3N17MBdbfbvfvuO6uL829+85t/5t/79yiXQgjr/dVms1gstS455zeOb07qqXPuO7//bUrpF7/4Rc6Xbbtr25YwWG+urq6uDg8PN5sx5yyNGbigmFJdl5SzelJwTg+P9odhODt/XtX1dDq3wW5WG+9tXdcMaEr4+PETrbVUyoxDpbR1njDKBN+uN2PXc0InzZQuyZMnT4qiVEKvVitKaakLIcQYh8vL4fjGiVCyLGuhVN/3xtmcfZ/NJozNX3ntfow+pYQUIMXo/dD3IYSrzWa73RFCGBPz5ZQRWlV1pQurbXbkMsZ0VQfrutEAxhACZ5IJTmIax/HJs6fHx8cZpZmpIEiJUqoqyouzc8lFXRWCc85IipED5ZwNxjjrg/fRudlsJgg52T883j9MBD7/+c+HEH7mD/30tC6H3lyurvIb8NVX7ndd512oypIzthu6GEOhlGA0hdhUdfYPhxQnReGtDSHklDMjJMboQuAJ83YcERBBCAkR86YjYQwhEADBGCNUclEqDYgMyHw6i5iC94gYKWAIotApBeccB5J3wMYM7dBOJpMQset24zhOp/NcmYcYvbdc8UQSk2IYxm7XCiGsG3e73bSeHRwcBPSTyVSKIoWYgnPGcs5n80kzabquE1rdWC5OTm4+ffqcS0kIW11cdl1nrf3c59/5sR//Rv6MIiIjNC+2AMC7SAmnuVgWgBOSSwFStDGlRORojZQSkAuhpPRFUVhrTbR7y/2ub2WhgZJtuyukKOvZbrczzjImUgre+7ouXYxC0hgsAISQ7Ogms2kwmF+eGKPxnlDKOQ9ACKSASCllWqJlY/D9NkdL6Hw+55xyzgkkjNcdXAwIChYTMkopkIyZZIyFFCllESOjDBGBcZ8yoIMyzlNKSClQLoVgjFnnXIw+uFIXACQ4z4AopVKu7yQkASKm6xqQPPgSAgjX+I1rTPT1Hph3dsw/MWXs2qxFCZMCMGU3XUrIGJNMEYQUsKo059zHBJASWu+sEtKYgVKd73qcMTP03rngYyG4C5ZIWtflOI5McsV5XVWIyARkvZoxNgxjCGEymWT3DUlRC14tF8YYQIwheOfquim1jgg+RMl5SJj3K/kiEzFyISilxhgpZSJQSOFTSinlvX1KaehHQkhTlkrLbjSEEF0UjFLCxaSqi1oLrhhjV5s1YZQJme2ICcGFYN0wGORchjEIqapJAy4cHR3VdU0IWa82qtAA4KLVnB3s7XMpQvARUzb+FEqrQocQENPVZl3kohtKOedCyfV63XXdfDY7OToWQty4caK0HvrOhAAA4zj+4Ac/iDHeu3OXURBCUsqbRg5m2Oy242A5Y0VRWeO8C9Y4Sthy/8Bac3Z+udhfFEp777MdJn+gDx48MMYeLPfaoc8NB3VTEUIohfPz8xSS4LrvrRCKIJlM5pTSrvU2jHVdI4EUgTHWNM1kMgGAbtsWwHiEe0e3/t7f+/uH5Vw4em9+ozmcWuPH0X7/+99//vhFv+lGY++9+spP/vwfWXuD/aCEdFtbiSqkoDjbBQuUbNpdM625FCGgC55hShjqsooxVIWOgF3XKakxIXFBKuG6sW7K7fPLP/sn/p0ff/0L33nvYyBht+6vc3shZudXCGFBF6Qsd1frXC42GkO4WLdtXZWIREpJgC5mM2ttBlAgAIGktb5//z4Dku2swzAwxpVSy+XSmJFylrOhAJDrDS4uLrbbLSFES4mIQ9f97M/+7E/8xE+EEO7cujWdTu/cufPi/LxtW4whxqiEzN5ArfWjR48uLy+FkI8fP97b2wvBCcZfeukla23XdYTg/v7+fNE8f/58MqmZ4EVRPHv2bOw/EUIUWnZ9H1/Eu3dfmtTT5eGEg8q7nu9///vW2vneMhLgUgzjqMoiWGO9L6py2LbZnVeWtZTy0eNPZ5NpVmiS1ruune7NjpaL5d5ev+tXq9WUTmeTGmPpIX3WyBR3uw0ics6klJyxvu8vVquu6x4/fjyfL7LMKNhSKSWlIJzSxBkhjdbGjACpqgoA2G221nhRK6WEteneS3cuLy9/9Vd/9Sd/8icZY+12W1VV0zR5vtntdsdHB2M/bJ092FtwzqNPq8uriPjs+XPB+b07d7mUPqaUIAKa4HK3HFNi2w2CEaVl8NEYgyktZst+aMdxLJSeNk3XdUPX921HEObzhTd2u93KQvHZjDBaah1jzOhBzplxPmJkjHljGZCu7wVlnLGr9Xq1WiWMi8WCc+6Mzd5MpSRGLJW21hLKIGHbtVIKLkXXdXkHLJigVYUpMc43bUcIGfpd3/dalZIzghESUUoBUIkAQMdxZITN50vvvSo0o2o+nwulaRTGDNnBOpqxYpQxFmLcbjbWOQbEDiMFdu/enZdfftka/6Of/xGkxNqRCb7tBwokpZQ7UYwxFEi32yEleY4XTGBKPsaybgDAmk4IMYxWKTX6UNc6j3+CESqVUkorycWsazshmFS8H2NEKKo61wDXdU0Qoo+EBmdddmkIwQ0QwFBoEUPyMQBJuVaAcEFj5JwniIQQykQzm4YQnA0AEBLmIgqtNQVCGaFI8/Tce6eFzHAMQTkQYr1jjAEFiNfd1flmBoSlGCEmgkgzStrHEBMnNKUEmcKRQFCWa4ohpXyWZ/s95mUqIRwo5gLCjMDKsV68dkdzIYQxxjonpcwGM0qpcw5TysN+/mlyntV7771C4jMIW0iWAgcuxj5Zt6qqyowjIURpQSBlsztSDQDT6bTre8lVSgnRxxgJ4SmlZ5dPkcCNGzem02m+pFCC7W632+2W8wVnjHGWIfjG+3HtlFJMMEgYreUZVcsYIuZqzpTFCgKU0tE5JWUiiADjMOx2bXZtQIwATaF0SNGj55wF5/f3l4lGRMIJidELpcuysJYG5xgh3ntkFCmC5ELw3XrLGGvqan9/v23bruvGcezb6/eyKqWQwmTCWcJs4d7tdv04WGsRMSMnVVGkECImSBBSIhSsNXVZDcNoV7Ysy6qqPn36BBHPzy+99xhiM6nazdb2rqr1MAwRU1EUUugsKWOCyWRW15P791/f9d0wdB/+4KPnz18czJevvPKKYGwYhrIsFZdFUX700Q9SSn3f10U5mUzGccwFgqvVKiL2XfvSvbvOmRhx167LIvfbIMREGE0pWG+HPpZlqZRUQtIQL7bbr/7413/5l3/57/3XfzdRtmhmk2n1pa98eXT28aNPKcJ73/30+N69X/i3f7G1Yz/6por70+V7zx+ocpGcvxy2VHDGGOVEKUUY9Snke+diMXfOpZQ27Y4LQRlPQAhQIqlHBEYjBkrp7eMb23b9+PzTptB7+/t9116ur05OTrhQSDBB8pguVisphXeWAeHAko379TwJ0ndDoRQjpCh0jAEAh6FHjIvZ7OQrR4QwIUTfdtba9XrDBK/LqtjfL4qCcmbM0NQlY4xZrlJara8opScnJxijMeby8nK9XpdlqbV+6623MCZnrBvG5Pzp6fPZZHK4f/D46ZO8Z1nsLUOKTVF8/vOf32w2SonJZNL2XXaUDP3W2XHX2rIsnz07lULPZrOnT14MbVdU5XI5PzjYu7i42G3XJ8eHnMmudW3Xbjab58+fhRS5FtzJy6uVYpxK0cymy+USYkIKbbcL0bdDvzxYPnz4SUil1KJt26LSy/3FdLHMxi4bvNYSMSb0IQUicpRfYAo5v5S5/zElyjlj7Pj4+P79+5kKklKKGBOiUBIBuOSIuNltCCGS0xh9EkRPS1rwhEhLOZlWPMCXv/LFoigkF2VdZbYiBm+SgwS379wUQjx9+vTZs2dt2y5nc62LzWb79Pmz5WJfCrne7AImpRSjhDCK2Z7DmHU2QSqKmhpTcFlVVd8OZhg5EePYC8ZNsBRIUdd93w9d320fPX36rN3u7ty7E51HSoSSZVlqqbJVhyIwSiFEJWUOeW5WV8vlkjNWaP3gwSfPnz57/fXXZ7PZanU1DENdlhHSOI4ppaZpCGfGWall3/c+xkY1BGEYBkEZ5zyNY6ULBnj69Ml8Pt9fzgVjjMAw7IzhdV2nlGFwtCgqSmkInbEjlWq1bdN6Kxmrm5IwjkDrSZOJh9n1WZWlMSalNPa9M7aoaqUUpVX2DzvnkCAVgqYUQnAhaK0hpfneMmLIHlImOElJUp3HG0pkTAiA3scs+5W6KIqCAlFlQSnthyFb4kNw4zg2ZdP2XTY0eR8lR8FF9IErkeemEGJK6ELw211ZlkjznEoZ4wDU50SDkN45QggkJxJVXE11Qyn1PibwALmNMhHCgZEEGGNgjHnvlZScEms9TZRSluO8lNLcA523nBrJMAw+JE5ZIjSEFEKgDChnKSVRaAIUMe/0CcaUIDFC8qGZ59sEQBE8Jo7A/v8l6AjIsjfrfN0iJdlgNgxDSik4H4InjOWLcEbHee8xESFE244xxqqsy7KMMVJGACBGT1nKnGshxDAMwXnnXO7LFELM5/NcfOZ98N7nZ7eeNIwKay1jDEnKtP3skKSUZqNaBusg4tV6K4QAkmKMR0eHVaEpgIshMG6tJQSyp4l+lnHOw/T4r+4NIcZIkVZCCK2AkqYunQ85HS8Z8+gEFaOz291uMpuHlEqlYvDDYIyzotBCq6urq0pqikRwXtfl+fmFHS0A9LtWCHF4eExIrl3zddPEGGOMwfv1ZhNjrOeTPIAu54ucB/fe10W169u8eg/OKSFTSP04NJOJMcYjLKeLb37zm9/58H1O6J/9H/+Zp6fPJdVCMkpTwJQSSCnLshyGbrfecc4Xi72s6keI3tu27yiQsiy77a6u68Vi8fHHH+uqLMvyH/7Df5in2KasEuY1BDx+9Olqcx5CeOuNN+fz6Xa7resJ5/JytT3Y2yeMeu+B0qZpCCGScyklEZz46NBPqvqP/8Gf/fTpk40ZzTCSwalClpW+uly/9PKr6932q9/42uHJYQRyfHzYKPXg9NFvfPgtPVVIg9WUAs0BtrKugBJKc/UKGbueMUYpJZw5753zSuhCKuNd8kFxpoEcF3uN1V9++0dff/dtHti23R0d33Ax7O3tMc67bpBS7i32hOA/7BHy3q/XG8ZYUdbrzQoAZrNplqQopd5ba0zXdfPZcrvdCiGWy+W3vvWtHBsrlD46OlruzRFgHEdGKSeUKZ0/R2/ddruN3vd9n7ODmXsXQjg4OFhfXZ6ePhNCXG03QqjXXr2fl0QZiFhPJhjjo0ePjBkKpff29oCkpmmG3vjQG2OcC/PlwhoPACnB7/7u73368NP791+dLxdHR0eTuqKECMXPz88LXVVVY0dzdnY2Xy5CCN/9/ne++tWv9v348YMHs8V8MpnsLeePHz6ilN66e8fZUNf16elp/so/ffr04ODgC1/4QrfuslYcMUWIQvAEaMwwnS4IIUVRpBCL4votbK2NiFVV5Rw/IYRSllHPIXjOORLI8cpxHDMOOvr8VmVMZMdJFEIAxn474Gc86kyTzeCFTb9zxi5msxjSOI7DMMymUy0VAPgYLi4u6mqSHR4hRVHkdLFs2zYBOOcEY2VZMkbtaDgXpdLJh2z367uxqqqAru/7xWKBiN2uHYZhdX6RK4astS6GZjqZz+cAJEOEyrq6zknGa7ZwbsAkjDLGtFacUQIwGOt9GMeRIKaUdrt2b29PC+lisN5udtvl/n7evBRFmd3pzoXgvDGGMvjwBx++dO/l5XIfkZRaOT8mpPnPaAZLCBFCOe8BYLtbV820rGrvPaOEU6iaZhytYJhfjBgTYyyFmHmizgz1ZBZCcCGGiJn34GJIlOb1atZ+t207m0y01ozhONoYY6avYALnXEqAyefZrq7rjHhcnV80TVNXFQBIpbhSMYbNZiMYSSnpsqYU+r5vqooQIhgnuY1GME5ZRhHkw4pRWhWlQZMPMIrXSA1KaQ6pUoJ5osVEUkqcy6znXbuOKclCMFBAREauGwkzXDakmFKqqsqHoKTIMjsASYApJTs4T5Ei5KE0725TSrKQigvBebDReaNFZsIkpIRSlgBjLmZlLK+HAYDnVTHFf5VRzhJ0wMSAJkiCkvl8Zq3dXK1zQ0BevvrsfgLw0blgreuNsUO/jgGzeDWanktBEl1vVm+/+04W6zhlWuuu66bz6WQyycz0zzR3mg91ZyxhPh+QWuu6roNzKLmLri5qDICIozeikISQG3XlnMt4EcJoby2nTAjurTPDCACTuhKcC4CAQBBCTIkkJYRzTggpmei6DmPajF13+pwxdufOHSkFY4AYCWUsiKE3SMl0uui6HgjafqBAVFGkhALos4efzmYzSAmRvHjxoqxLJWQ9qZfzmbVBCN51vfMu+Egpdfngt+7q6mrXtXfv3SuLMosNfd83TYMInAuf4tgN691Waim5uLxYUUpTAh/SyclJZ8ZuGB5++mS92X3tS19MATHEwBx4KiV3o2FMII3ZdlFNKsmkEIwgOGeNs5n/b61frVZN1XAu1uut975frbqu+8Y3vkEpHcex69r1alMolQllKULw6dGnTw4P9+eLmTVOF1Mpx227o5RWTXNwcJAfrFJrQki73hVlwSOZF5Xg/MXTZ8u9AzN6BEgxDsPQNNXQty/fvXfz6GY7dF/+6peeX5wxwbdtGyAlnxQXkIhLEQPqQkefkIAQIkFMKdXV1NjBWseQO+coZcYMjKCWkhJOYii5nOsJj2y2d1iVxY3Du8+fPw8JyqLebNuyLAFgMplUhY4xtpvdpt0BJdWkfnF1gYiHy72i0Ofn52VZNE2Tk74hxEJXV6vNZrMhjBZV+cnDB/04WO8IJ4SQwYyq13kJEkjyQMO4AYCqqjKoeb1e51AQlyoFn5/2DFfPa9L5pFmtVt9/77svv/Sqc2Ecx5s3bx4cHLz33vdevHjunWmqmpI4m80gxQ8/+N69e/du377b971zTipuR2fG8fX7r06bCVCiy+r9Dz/iQN556+2Y4Nnzcy2VMebVV189uXlzOp0wxg729ieTSdrHN19/Y7Pbnp2++Cf/8FcJIYu95fnl1Xy5qMtqu9167zP+V2vdtq2U3Hbj6mo7XywW83kiAACZ1hR9iN5zLrwPlBLB2BjCtutijIvZTHLhvY/RG2OU0loKTikS4pwLMQnGOeUskWiTj95AmM1mRck9kDyFMC0JISXjlNKQEhWMcgaUVFWtpaaEyUKVZbm3t8cp+JAAQIC8ffv22A8UARjtvVWlEkJsrq4IAk1IXPIULbNcygSw2+3qA10UctcFrfUw2tGaybT2Pux2u9lsNlvMD4+P7t+/n1LabrefPHxwcHw4nU6tcTFGRul8Pi+qcrVaXUOm6ma1WuXEWj/2m826quq6rjebjRnG5XJxsLe33W6Ns8uDfUQMmLz3fd+fn58zISaTiWDM9ENusnHOMcK5VOfnzxeLGRBcrVZ1PQnB1dNqaPuuHYPz3sWqqupa73bu8dNndVlwTjfb9bSZlFrG6KO3XABBFoKtqkoJudvtXpyfOeeKohIkXVxciEIxoQKGkJL1rtJFIOitE4RqJp5dnIYUv/WDHxweHh4dHUipJedd1+VbF8RU1/V0Od3tdimkaIdClcRHLWRyEUssy3K92S6XMroQnR/t6L2fA9R1LRgJwfV9nxnsjNCimRCEoqi89z4ELoU31gUfo1dKEXpNV84nSAghArrgU0oMiNYaPCEMgNLo878BRPDxeq5lnACi904oGTG54FMEQog1HihiTILSlDBgQsAs5YoIGGOKSSYSQkCMWqtaaI8QbAwhAFKg3CcPgJLJXG0ACYFcp4+ul70/5GHlUfgzICW3GBgyJgUKFhkRhT6+dQMAggsxxtXVlQ9OKhHz6p1xLlBrGX06P31RahmTX1aLkKIW5csvvxzQ13Xdtm3Xtd77/f39yWSqlA4hOh+UUin5fNFzxuQm7ByT4JwTRMaYDYEwNhgjhHAxuBg6MxZFITnoqsiXrNw5FZ1PLiSfKEKMUXJBAV0IFAEIoZTHGHddm1GiWcVtd/3BwcFisbBu1FrncihKqYvOjdE5B0AH0zLBCUXBeKl0AJzUTbfdLcqG+JRcVHVZVpXkXCmFiOvtjlLmU7zabkZnJWX5zuiMffzwUW/GyXQ+jvb84gwRM4NeCHF0ciMPTJn4WFQF51wICQDry3VRV9kit27XV5u1UPLey6/uNltICCyllMbBTZrZMJhhMIQzpfhsNsWQ+r7FCG3bdv0uhv3l/jI/rN774Pzl5aVxFhg1ps2CYVmWdV2dn58DpUVdzVIkhLW7jlD45OMn9166RSmkROezvc3mKgEZhnG0VggBCY2xnFBCSZIs9tC23R/5E78QAEmA37r65tHJrav1xWJv1m63fd+/9dZbv/Irv/oX/ud/8cZi9uzpY8OIjyEiQcIhInoCiSihKbAUkQD4GKx3zrmmIUJwRhJJkH3CVV05Yy0hKtBKKfRhbPuaLZ9fXjo/WMvqum6KMqS0uxrKksxmc6X0iJEyUswmsiratt1ebTQXzpm23WYOzPn5i9PTU2ut1sXJyUk/DiFF8G5WzRKBbhyAUVUWIUYquCw0E9LH5LznhE+a0kfrvV+v15yyoihms1n0PoTQDQOldLteHx3sXZy/GIbO2EEIUemiVHrXD2+8/vrTZ6fWWoLw7MnTvb3Fq6+89Pzpk0oXH7z3PS3VV77ylVvHR5zzi7PzvDCTUjJGikLRik6md6QuVNEcHR1KyhljUoof+7GvDp2xGaIb4yefPNBSzZrJWfu8nEzMYDjnb73x1uFifzKfRoKfPHxYFGVd1++///7BweFkMn3w4GGM6Y033nz46SeM8KObJ4XUjDFFRYyRAnHM2jFk/mVKGL1jUpZlmSCHflO2cMcYZ5OJc44CwZhCihijc04K1RRl13Vl3VDO2qE1weM4ZC83IIhCGWMJIImBEKCc+RggJsEK751PWQNIlJFAaS5sLpTWUs3qGgCsc7JUgZFMoPP9qJnigtoYMAJJJLtvnHNMy5wrDSE4FwikyXRSFEU3dF3b7S/3xmCUUuWk/vwXfsSFYJyjSmheZvbcMPRSirynI4TsHexVVZUnjeVymYU3znlVVWdnZ48fP75///50Pg0AyUdM6dq499prg7PDMFRFEUIwxi0WC0q5HQ0Toh36opRcSsYkUCpLlQCBoLVGMD6fNkVRxOiNHV68ePrG/deit+vVpeSs1sJHnwgCIYicEX7+4oxSenl5mcFYEftZXVdNQZWwLkQK23bjbZjP5xqBl7W11hhz+8bN52cvjg+PZrMZRiKYwBAqXVg3btetlHx9db5ah91mW+pCC+WMb5rpjYNjF7yJLtsh83lTaL1czLpde/r06Z17d6uitN7IQjLGRjMyxpjnTCoGnDFETp0bi1JF7ygwghQQCKMxehdDJTiTgoTECQkJzThyQiEmAipYB1wQQERCgQAyyghBQhLDZAkiQcgeIMhDM2WJphDidY8CyeVIgSAhjIUUQ4ycM4KBEi4Lves7QM45Dwm9d5QzyiCvzBmQhBgTAUoAMyUTAZBSjp/9kw9ipAQAeEE1Z5xzzjjt+z7GqEUhCGWCFlpKeTSa69yO934cx2qqg/Pr9dV0b7G/v++9J4wSoEJLxthuvS20Hsdxf/+griZVVTHNjffXul+KUgpOKaW0njSZck4Y7Z0VITK8NmcLKa13Q7vLixZZlBGT9QZJ8s4pLgqlCSQkiRCigQQELuVms+WcQ8Lc9bh6/qIo1DAM4zjevn27j261Wi3394AlLsh8slCc+uAZFS/Ozjfbdu/gRttb58xif04oNcZQznozMsFC8FTxupq1bRtSBG+aScmpyKtxxhgiOm+ns0kdIyMgmGRAV4PTurx796X9w8MnT57kD+Tpo8eKC6XUh99//+133yGMOjO+9sbrlHIfo6M++3G89+PYL5rFowePxxAKrfea6fnZqSh0io4x6UK4vLqQUgJgqSSmNI4mWDeO1lsXQqCMna1XWzs2ZaMKOXR9jHE77LJll3OZFy39OHLO9w4OzDAEn8qypEi11hRo3/ery246mwUffQr5khRTGPs+CGGt1VIKIeqq2ZyvAEMfw1/6j/6jBw8e/O2/81+//PbbZw8/8Wa8efPd3376L77641//zkffv//mqz/+jR/7zV//1afnL4hzY7ebCEoFbtBXXAvO0aWIQSnRte12u71z545U8ydPnhVFMVvsDbaHhIpLCpQlFlwspKCJJCd6JBAdcRipQkSgDAlDArqsiOBcS+RIIYUQhRBM0qIubXBUsNjibrfzzp0cHr3y0n1EfPr0aTOdUABkdLZczOdzisQ599Kde3mnq5Rqmib5OOx2QohmMsnZiLa3iFiXVe4uDCEQSFUtXITz8xfe2n/wrd9qt7tJVccQTD/sH9/M1lwf3XzRDKNkgmpePHz4sNtt/9E/+idNWZw+e/7u5z+37Q2hwpigte77/satk+z56rqu67qqqhihu81ljDFStbd3MJlMEGPwmBeoQ9stZvM8micfZKG7rlNKMYCjo8PBmvVqfXx8opS8uLh4/c3Xc+HEF7/8RW8dY/Tk6MYwDE1VAaWUMxd8JJEzcnW14pQlZNvduq4mPkbb5w2CxogpQQbKEkKtD1KXSAIAhRSllIXSIaYQAheCKqK14LxxzikmGeMhJRd8RRVhIkf2AaBUWjEeYxQYQLC27Z6tr6az2Wy5MCEQQqDUgbAAKSAKwRkXKSW72203HVeyqApRFQIKsCZAsOCwi4oL4yxjTBVaxhRC6Hc9hjh0PacUALiUgcQUfKFl3oVJKbWUWWquJnWw3gNIJQVjinNjXVGVLuWhAB0mVRUBsZnPkg+DGSnnMUYRmKLEALRmTIpX5YwRipI751AITinDCIJUuvRgSaJudJUuBOWCK0RUjDJBUanjw6Pt1Wbb9h4BSeq67mC5x4s6Rn/75lFRVGNwjGuEpAQHQiKgSvrs7Gw3jLdu3JhMakKQIPU+JgcsUZEgGYchER89XjuHpZTb7XZaN3fv3s0MqeA8ApFUa60LXTEKZuhjjNHh/uHeZDJZXV445w30HhLGBCCCN5QJ791ojNa6aiavzOcppUgo5SX1PiEAQcqEdQCIinldyBScYEAgloWMyQM4TFQQFRJNXUgYCqURrFAyQeCSu+AyhYIwgslRKghlKUXKIKbACU8YE4OiLK3x7Xany0IXUkiGACISD5ALDTOrUmUfLodhND56YEpWBSQcx9E5J0Ry0QNAUSrEiEgJ5zEmwjkCoYCUEsBICMuRPEogESAs4zgSpZQicEJ5AszXnIA+IcYQaMF0XTEG202bj/EQvPe+ULrUxbbbGGOW+3vTEPq+DylGF0/Pzjjni+k8pbS+urp586Z3MTtvYwjZWpZTcTlFlzegFOk4DIyxSdOkEGw/hhDqyWR7tRFaScJJAg40+hhSVKqwY6DICBVda3PT1nI5C8JLpghjXdcbMxZSxeCRkmJSWms7O15eXW6HjhCShU0hRFmWlBGbhUEfZos5U/r07AWkOJ/PrbWjMbkod7lYOGdTSpnznFIiAIzQ4PyDxw+Xy2UuzGGM7br26OhoHMeLi7PlfC9n9e7du+dCePLkyfMXp+fby6aqb929C5geP/r0yZMnP/8Lf3y1uprdvBk8OtcTzhAJIqGUO9dvrlaciqdPn3BGJ3VNIDFGEoYUAsvdCX2nBZ/NZs66bPTN2wsXPCJGQMaYt/bxajWZTJSQVVWWZZFTlVIrRJxOJ4zxzW6rlHLGKKXGcZzMZpTz6EJZVYiotQZGwxiLoqjrOgJqrfJ6vqkqADDRIyPf//b3f/onf+o3fuOf/Y3/219vJtMb+4e/8Md+7utf//rBwQGX4pOHD/7KX/krf+l/8ZdfXF1GKl5/7W0O+OD804++fdZAwX1KLLoAwzAKITgVihVNAZJqwdRyshhH2287JmhKGFIgFFmiWgqKdLPZVamUDTPdoITgTDrnfZ7RkSznM601o5QgZYQ454e2c84JXeTMeg7n/Mvf+726mf7g4YPJtL732st933fjoBivpzNy7UsgWsqmqiTnETGl9Pzp04yJns/nQkhCSFGVQvywiNPHGIEkY8AHvHl8e7Va3bv76nw+F5wTQt57772PP3n46mv3b955aRgHIcRkUmSO+uc+97mxHxjhX/vKl7IgPF3MhRCUCWvtxcXF82fny+WcUbG3fzhf7EUfIobJRNTVhBBWFFX+lk0nDWOs23U+xel8JpUCRF0WwzAQRqlkg7d2NIhQVRXj3PQjAOl2HSPUGDOfz/mMW2vLstybz73zIUWGLAFRUhCEMNp125a6opSePX1xfHxcVCUhBAhGQDO0jDEpuRKiC8ZZ5JQqxYGxEIIJARMopRaziYkRAAinlSwZISFEEqOmDBEYEMYoY0opRQEgoVaCAjAEwtjvffv3m932vlZCSeeclrIqBMacMYQUo+Ri2Uwn5cTHwKXwLlBCVKIShfPe+hgx7S32YkJCSARIBIgSVVW3bfvw009v3rxZ6TL5VFXN0I+y1Dm6zQiRnMfPWhHB2xRCN45tTECJiIpLSSkNIQjGYoxKCIjJWbuYzYuiiDHY4PPa2HsPlLhhnNaNBs4IsgRSyMnB4Xa7RcRSl5t1x5XcPzoUQlFKgdJuHCpartfry/PLk8MbXKILEQmZLvfuv/bGONq+b4tCV1UVAQkwTiFFT6VK1jZNU9cTMzrn3DAYKTkwjICjs0opIfWte3fbtu/GcdNutZCEkGZSzeYTH+M49iFFKTVACilJzabTuaAMU+jbXdv2uadLMPnFL/xI1/rnL0614nqqrbWjswxCUVcZdq258IjbXUsZmU6nOQKuyzKzeLtu1+zvGWOAkLKo2rbFQJiS4zhKySCmBFg2JaEYwXHOrLUhxtzQHEIEAgSptUNZXF/gqqqglMaEivMEwVoLiEoLIAkRKSU+XFuXIyYgAJRQSiOmvKnN5JkQYu7biAGdDSlChqFGl9FGMoacQoo/XFHHGK21lDMhBFBKrhMTSAin5Hoa5kAJo9wYY52VSgEh1lqsqhhi13WMCqVUCMGMI6esruuAjlLCuSCE7u1XABAh3bpzB2MMzu92LaN0tVoJrnLGOSSfI0YESIoJKA79yDnPOJBJ1WBK7WpzXQ9MWfI4qafGDoRSN5qs0xJGE3VKiBSjs6OU0tmRcmadE4xpqVfrdQhBcZmFqfVm21RlosiV5Eqenp+98sorx0dH8/k0uJiVMcr4aJ2U0rmw2W1PTo6kYHm9Z50LmAAgxJiXDUopRFBKc86MMc7ZzJOjlF5dXVVVVZfVhx9+eOfOnc1ms15vp810MZtLrcG53nQHh3v1clIUxaRunjz69JX797/0la9oXUynUzPmtFTikSilzOisGxEhpfTi/LTrdtYMX/rRn5KKMgq5tCq7gq8L3rkMISVCGRPXrooYOKeAxFobY6CU7nbbyWSigqyqqq7rqqkRoSoKSunZ2dl2u9VlkffTSqkEWDX12I+VLiaTSdauMzI3hKCFyAcwp1QIcX7+YrR+f7n8wud/dLtp/5P/5H8vuDw5Oflrf+2/oJVu29ZaywR/+bX7f/W/+M93u923v/O9b/3u73/u7Xf2bx+Lw+nf/+avzRhvhDaA0XjwoJSUROimrmXZbwd/taMKtJZd1yHF6XyybTteVZwLzajt3HbdHszmE1ZdjFdvvvGWY/j82XOlVF3XQjLJGQXMqYMMgWma6fVEtdSZwxwouffSy0c3TuqiXK9X2+2WUJxM6ji4sd31ZkwpZdYKRbKcTyNhXdfWde2ca9uWUnpwcEAImUyy/dI6c802JxSNGXbb/p//5m/92Fe+9pWvvsEoOB8BoJ7MX379zVu3bq03G621UGXf98z6YRiKuqqK8qd+6iecC4fHxwDgXPAx2OTHYZxMpnXdAAChdNd30+msLotx7AknhDA3mrye3+1aKbXdmavL1dnFedXU8+WSIsn1D5PFLIRgzIgp9m1fFAWLUXDOgcxm85TScrkkhOS2gLHvRyHn87kQwtpRMObNKKUcNrvt1dUo26aZrlarzXr1ta9+fbQmWCulLArlvd21u+l0qjgbhl4WE2escRYoRYQYo++8FUIWylpLCIEUfExSiFJJ53zbd0JJJYT1fhzHUmvOmYuRUhp8lEp+/Q98Y7PZUM6uJ5IUeVEESBlcywhnCAxpYFgIZWJUWtrRujEz/Qc79rPlLAOKtu0OCQkEdV311nApqrJpd70u5Gw289YLyimlu812sZjHmFJMFCCTlkulPLsGZhFgFBOJEQgplI6YOOcpxIRQKB1CYIwCF9GH3FMLMcWI0XlMaVpUTy6f6KosWWna0Y0OEcVEbbets0EIlbfvk6ZMKRACZd3otldVoaA6PbsASna73W/+8986OTi8devGYj5NKfDckRwT4zwEdDZ8BiJkw2C22zUi7u3tCaVz7Kfvh0Lpg4OD6EJRV85ZBsQ5s16vmtk0g2kREQnlnG82m9Vqvbe3d7g/X6iFEMVgRin173zzd38H6J3bd4ESoIwSwjnXiPSzQrx8qmVuUqGKlAJB5Ex66+ui2mxXDx88qIpiuZyP42h84Fzv2m5cx6IoVKFccBED5TQiSs5dSIQwxikBlr/anPN+HAotKWcXz0/X6/WdO7eWe3M3+pASYzTFdE0ChgyURoTEhchdfJ+FiAgAUUr4mD4zNkdKKWcyBmO9I4kgw4yToooCA0iJ5xZtzrN/EAAYFZLLGGLi6Yf6MyMEKU0JkSJHSnJXj1IF53wymXnrdl1HKZ1NF1mtvv5xU4ox6rJggg/96FwoKFVKpeh9sBxZVVVlWQpx0xibsW2IKOVkGIacecqjdjZn5R+9qWtIaK3lhB4eHna5M8A7IVlKqS4riAkTcs7NOETHeR7zCVFKJkBrTQLqYiiERC6C896HlFIp1bZtq6paHu1TJY5unDAg1toUUEkWIiagzjsggIR88vCB1kXbbZWQ2+1WKEkIKcsyYLq6usqTREx4cXEhhNBK7e3tEUJTipPJ5OLiouu62WzGOb9985YZTFlPlBAxpLKudruttVYqVdX1UVFkN29x/z4iGuN2204IMdoxfMb66fuekOvO0ZOTk0ePn+x2u1Lpl27fGccxw+JTSj4EAKiLkhCW5cSyLPvNLqU0Oks5SYDGGMSUo2Xex8x7y11seS+4Xa9HazebTdd1e5xrrbMHfjKb2tForRDx8vIyhHB4eJh8QMrqomSMee/W6/VisfDWMEJnVSkSOTk5/J/82T+3t3/w0muvvvTKy81y/i9+57d1WSil2osWKB3H0QX/8ScPbr38cjOb1ov5hE1cNxgzpmEwCniSgrPddksRxn6IMe7tHwitvHWJxKauY4zoA4nJ9Kb3g+O823bLycG8mI7bdraYH9048RAnxaQoFQBaa2P0iOTRo0d1XecuAcShaur8KM5ms7ZtlVKhG771L377i1/4wt2Tm+v1WmkdR0uBIxJMROmyLEtMhEk5dF1IbjGbl7rg/Jqs4q2tqmrX9UJwpZQqkFJWFAXnTKtyNj9ICauqWl1eEkJigt1ux5V8/f6rPqaiKMZxbNs2S0SjNcAoRej7vq7Kq82267oQghDSBJ984IzNpzOhZNt1wzAg5LAAeGueP38OSF956SXO+dD1z3cvMKaTo+PnL06//93vvXL/1Vu3bnlnheSIGDFt250dTSm1lNJbFxNO6oYyBpwH6wmnSilrLTIWMa3X60lTIeLq6gISnhwebK7Wjx99qrX2/oH14fLy8tatW4v5XlHooTchBISICcZ+QCRjb6inPkVkpKiq62qWEFNKBFEwlhUDpSQg5J7jUvBrQiohuTgvJyRDCEqKwRhK6Xy5QEQppbWWYqIAgjIkJEcurfXBektT23dCqdlshgBFrTGmqqo43XcxDMNQ1yVjbNu2ZV37GIngdjTNpCmUpgxSiMaMigt0JITQ94PkIltY6mmTAJKP8vpzL/LMlHFantBcMOq9Bx8pIVVROudBsgCYgieUOufGccz1xsNg2rYfRzuWVms9qZu+79urnbUOkdjBLhYLKTlJKIQCSJzQW7duWeu1Vnt7i6vN9r333kPE27dvK8HHcRRSB7QEGEYfox9MIoQgRheiFLSqm6IoCMHovaLcWktSmpTVsydPHw0PF/OlbsoftrYApQQYIEXEcTAxhbqstC59iFdXa9MPWomxy8bP5p13Pnfx4qzve6EkVWK73nzGD4iMc8W4ECLGWKtiVtd93yZjtNYpBppScl4p9cYbbxDGzi5WueBZUK50yQtBAY0xSom6nCLGFGOIkVznuzFhQIicydxEEjGllLTWRVWmlDARLgWnLESX3QmUUsYy+jByyoLzlNKEeJ3ECRERXcoVSoQKSSnzLn7GCCqy34IxRgVHSrz3jJPs6s+PK+dcCh0w5PUr8QkQM2yDUECCQAmhlI+DRcJi9N5HpQpgNAEWVemCR0KC8zkhEEIIkLRg3poUcTKZ7HadlPrs7MXe3p6QkkTMTYqfNTqBuN725uKUSb59K6Wcc8MwOOeC97vdTgnJGJsu5q0ZrtotZyxBBMLrujbDkB8C27WCa8L46fPzuq4BjDGmmU6G3pLoezMu9paU0hhT/s0BUwYNBheiD4xxXeimqteXqwiolGqamjIxDMMw2qIod7td17VaKgAybLcJsZlNKaWTSQOEAKEppSdPnty+fZsUxerqSgoxmTSr1SrrzB999JFz/vDwMMZ4eHjYbreCSyAkxliUZdM0EVL+ADbrNec8IckYLE5ASmnHfrMZtNZVVS0Wy96M1o5NPXn06HE/Dndu3NRSmbFXSuWvNyVECLHbbmNKAFRXZRZD5vPpi4tz6531PqfC+7YTSmbFeDKZWGvHfqCUtm3bFKUxZrPZZIHFGPPixdm9e/ckZbppQgh2NLvtBoDkEgsCEEOwxvR9N5/NCIK3QQld1cW8mf/jf/yrHz/45D/4c//hb33zXyRI3/7ed+7dvnO13UQfJBcRU1UUD777cSHkwd7s4OTg8PDgd/7Zr1HjORDQWpQcka03G0Jp3TS60koVCTHGGEykCN1VV5TaeBNjLCRnSAklJ/OjWkwmsnpy+vRLn3v39OxUclFN585bSgmlMAwmx7Sc821sc9QvpwmVUuv1ZhiGGC63u3VVqO985zu/+U+377zzzuH+gfe+H8dcLcWEkLpQQnjv2r4XQuTzMl+ntNZXxpxdXEits+IECbUuhFAphaqqQ4pvv/32008fm3GcTqchhBR9perN1aZtW8bYMAyEX78ICCMhhPVuIxjr+jYjVLfb7cOHDxfLvUJrbx0FIoTY7La6KhMG51zT1Cmlmzduv//+B++/98Frr9+vqmrv6Fhy3m53Q9e/fv+11998AxJiiMWkaceeMFqWZTB2t9t66+7cvEU4G4YhhPD89LSu68OjA+/9bDIBSiElZ0bnvVRcSp5CHMfReve9975fVdXNmzdDCC+9+tL5xYWQcqH2OJfOBc5VWYgQgjFWSk0phRQpYc557wfGWKbmVWVJGWNSMMasjwQxMY6IhNGUUkiJc17XtXF2MCNjLDiPVaWUooQkBACIMeimIYg2BkkZQzDW2+CNcyklHsFs+5EPp0+eXq0uSMJcFVM1s+VymVIijNrRMKDOWKlVjE5pAZBCdJUuBaOFmmJMyOhyOY8RAYETSgjpdi0RvOSSQUYRQF7/M8az6Z1SioQIISIQDBEoAUZDikggArjgN5tNXmQAIbuuq5om+zqz6VoI5dyguLhxdMyoCM5XhUYCyQfnHCGk6zqlCiEYsyR6Byn+wT/007O6Gvuu78ZmKgBJSiE4QwhaG1MKhFEh1LV7meT2eLrdbjN44PzixYsXL4bB7Lbt3VdfymRHRExAlVIhREE4o9j3nlI6ny8IIZeXl7v1+p9/5/dvndxrpvXFxcX+3nJ5sI8YuZaUcze6DJlwztEY842KMQYkSZCIkXGCEGNEytjoTIyecoaBUsIQiRuNA0gEOKMuOq1VVRTD0NnRTCYzpfhoBxctSSSH2SiDhKGsNKUUAQ6Pj/YPD8zQ/9CskwuGr51QCZEAYgIABoQgGGNJoYVgDD7TiBGztYpSmtCO4xhjJAQJJ4mkgIFzihhHbyXhPnn8rCYEkOZlUH7toHWMMUEoEoIEUl4FAyHff3pRKC0Zz5r1YE2MflLXutKEEG/sOI4AiTFGhczLLcaYoEwIEZzv+15pQSltqjrP/sYYSq/5kZxz5zLTC36Yzc03guvOZEazghRibGbTlJI3tqirGAMjxBlrhtE5pwrNCMvH9t27d9fr9YNHD1999VUpZciRKcRhGEqlhRAhhLPLi0JJQkhdNQAwDgPnvC6rpqk5Ye3Q54ByjGm32223WwacK4oRBWWDNUVVzheLnDuMIfgQvPc5LJsijuNYlaWUwnvftm1VVbmX8IMPPphMJnsHe9vtNkXUSk5m0xjjYEwI4dnDT5XSIYSDw2NKaVGVAOBiKJXu+x4AVKlCCLNmkm/QAPRv/M3/0nv/tR/90o987t3VdpXVFcx/PUrbts1HlFKqmjSS8cGa5y9Os8ijlMpKuzFjXTdVUQoh8h9/u93qUnvrFovFixcvdrvd/v4+pfTxo0er1eqnfuIns9SRhRQAYIxnIaQsizxwEELOz88ppYf7B6xQDz7+GBH/xl/76/+vv/NffeMb33jvvfd2u91f/c/+r4vFwsfQ97017unpc6XUjRs3eCE9QUHg8Qfv/2//yv/uxpu3uRYg+abvmRQhBF0oknugvSOUcoYxIgAIlSGm3PW21FUcws3JoWZ6vOyqSfNLf/p/cDw7sOOomsY5Vyh5cHAQQhjHcXmw33UdRRjHMX+dtC7Kstztds+ePSsKyRhbr7ec8+hDUZQQU1mWwzDIQjPBAaCZTkutc5mPzN9eSmOMUsr5fN73/Xq9ruumKPR1TFAq55y1djabJkBn7NXVVciSNZCU0rSZUM4yqLmoSu89YQwAhBCcMOtMNr88e/bs7OwMkFBC6rpaLpfdrj08PJRS6rIgLDcMQr7Ij+NYlhVFUFo6Z0KCzdVVqQst1XQ67ft+aHtEZFoSSgPGXDLRbXbGmKZpXPCc88z9qKrKWpvvzSElyWmpi+989/efPn18fHzMCG3Kqqqahw8ffu9737nabr74xS9//OCTV1957as/9jVGuNa663rOWUqBMWGMVbLYbq4GM+qiyNoSAyKEAAACoLSOMfoU8+xCKeWcMwLjOBpjvAs+xezeSClBijGk/aMDa12eIBeLBefMhTC2bVNUhZTdOG66nfWBMOp3JmEgjFxdXZqxz2HI5f5eirRvu7t372UAn/WOCQYAkQDG1FQVQRBCSM4IYvSOcpEIIEBKQBAEpaeXFzpXCAjhggeAsqqMtQDXvTc+BsIYp1T8cOInQMg1qCAljNZprRHReU+QEnoNKKaUnp9dWuvLsgTCt9stIaAkF4KF5BkTZVkj+pQgGzad8WdnZ0+ePX3rnXcYglIqRs+lGIzLgmdVFdZfrzC5FCkBIEkYvbcANL8zx3GUknddd3F2eXW1vn371snJURZjETGLFsGnhIEQIAlloQmh6/X61smJNcP2quVSFFXZdS2j4L1XhUwECNfOmKIosjcil1SevzibL5q8Xsy/L+ccCLvOtkUUSmZhhiIIybph4IRn0waltOs6Z62UUjKpSsY5JxRDCLnlN4tJMWGMyLmkQBDj9enLGKPXf//slLwel2MQwBBxMNeVJHmJCwBUUucDImQPU/YGBZ8YoUAJ+Yy8EZMXQkTvKRH5N0K4Xl9mWZu4QAhhQiCBlBJSSICUUq6lUlyaYYwxAiWjNTEGKbXQuaQJptMmn7tCKUJIu+sJsG7oOCN1WaUQnz+5vHnzNiXcB0iR7rZdxnFIxcdx3NvbyyJ21hUJIda7qqqy8iyUFEI478uyxBAZpSOm9XodQiiVFpxTytq2qyeT1cUF53w2mxpnD4+PDo8Pc8PubjAAEFPa7XZb3xZS5b1disgZPX32YjqdNs3k2fMnzrmrzdWkqBeLRSIQUswjYLCxqK+3IBQhkyy7tp3NZoAYfYCUOGNZ751Op2YczDBOp5M8j5ZlmZNOi8Vib29vHMfFbJELqnLAHwBWq1UxnSxn87qqACkACCX7vg8hBOKFEKMbeeRaaxdD13VNNfExSCm7rrt9+2bCUDeVj9H0I+EMAbxzhNLonE+hUnUIHgm0fcc5q6pSSpkSKqUIMOvGqig/+eQTxkRZlmWpq6rKVCxjrPdeKdX3/d5isbe3Z4ZxtboCwEybK+sKADgTKSVdqJQSZywhBu+Fkk3T2BBwjJvdbjabccn+xL/1by6Xy08efvzLf/l/c3i893f/7n9zdnb2Z/7Mn+m6Tkoxm8201iHYlBCBiqJuJvOn7z8BQef7e9bZummUIHEwklGQEIZBKGWIRUTOeQjJQvAmlLywZrixuHH17ErK0g/mF//kn0ouBeOkrgji/nJZ6sJbD4Cc8267yyfKixcvqqq+uro6OjkJKXEpD4+PUwghpf0jba09P31xsbpczOYBI6WUc5bz3Jzz4Fy+Pl5fb4EAECRk17XDMPgYdrstkKi11IVmjMYEJVcJQ7Ah0wyAEh1j3/fj0GeXB5dCSOWs55xTQiml3rnRhbIsMxhBl9XhwVEIabVavf/+B++++25RFOeXl4dHRxJwt91Op9McXTPGVFWVMZlD14YQ2rbFmLTUdV37GMumllq/ePGCO9BFAUiccyYEJLB3sI+IHOQwDNbanJt68ODB/v7+5mqjG33j6JgySMGP4zj2Q3R+bLui6Y9vHr/17luZwXn/9ddm86VzgYIfhu7y8pJyJgTbW+xzzkJ0VHCRZFmWdV1nqxpjrCgUAHgfCSGKqZQSocA4T4iMEG99CokSgj44l0BiXiJSSp8/OSvLkhDixnDxYrVYLHb9zo1GMAGUoGDIKETS9z3GkAisTs8Fo9ttu7+/f+fuS5tdOy9KSRhJGKyrc9fQ0IUQMMSmacww0jxjpCgI5ZynFAnn/ThIqSlCSjifzkxwMSUMPquOSqkUglYFISQGr7Q2wTNGARBjoII7YxgC5QwQo/Xeut1q3Y3D8Y2T6K0xRhUq8+GlFv04JEDKiIteccGl4IKUsljv2sunz/cWs6ppfETngvfeDOPNkxuQklTlOA5CsEKVg3GEMKWEc44AKM0IYdb4kDA/zN77/HSt1+vZbPLmm68bM6nL6qWXXmaMeh+uKRIpUUYwBgIJMc0m06JQjIkQghJ0MS/MSCkwF/yubxfLxccff7RYLNbbFgBC2mTS5LSZRO/6tiuF0kJeXVzOZgtJhbU2pOghCi0QUTKZkg8+EuJDCJJTpbRPDANQyrL5n3MhpbTGGbQLNdVaAiSkxHnDOVBKYowxoWCSALHWKiXyI0cIwxR+uFf9jI0BlPJctVlVVSKAlAChEZFS6kNCvOZvQEIlpBIyymhGBwjxunUwEWAxY5048zGE4HUhGWMJETBRSqkUERAJJkDCgBFKEBkSPo7GG+dtKIrCBV8UBaGUUIYhck5DTNl/b4yRIQFACAnRaaW8M4yx/eUy+USRfvzJ4xDC89NnQojFYua92WzM8eERF8I7V9d1U9Xb7ZZzPuUs+IQpeO+dczSTm0IAxiAmyfh2u5VSW+vNYO1oKOEfvf+DG7duHxwcrNfrvvPetVrLHly+0Fxt8oFddu22G23V1ErwoR+D9/P5vN3uLi8vfbA+hBu3b5a8yFeemGJKSXAlGWw2m0RSIVVZNU3TnF1cXFycpRCbpmaJOGellImg5CL6sJjNIaasady8eTMXgI/9MJtMnz99tlgshq5vmtp6d3r24ujoiHL++uuvt3asdWmGkQSIMbq2G+2waXdyceBjIJQxwV3wGMHbYKl574P3N5ur+Xx65/bN09PnRDMmZFHq0cWInjCaAvRmWC6XRyfHfd8jJS8t7rVt65xjhI7WTprZt7/97cODPVaLe/deFkJkqGd+92WYfrYmZbumlurtt9+uqvr09HmMsahKLjNThmEIAMCEyOuTbdtWdSOU9t6btq+K4td+9R+fnZ398n/yy//pf/p/AsHe/Py7V6uz3/3d3/7zf/7P+xS7YVgsFkdHx4yxYMjV6hKYGEP6D/6nf1HbsNptVFUKAh988MG//PbvjWNPi0LXclEf9uPQj6AKHT2yQAEguDglkzsnd32y7/3gu1/42tduvXULgJw9fgozd/TSvaO9fUSkCIVUmd0/2tEY41OcLZbOOVUUWXJ3zgkhkotVVcWUJBNXnC9m8yeffnrr1o3b9+4iImVw+uyZGYb5ctk0DaVEEB5SjJ9xyLtulFKenJxA8EgxpdD37Wq1IoTdvHkT0QsmKE1YleBsIhAIUs6kkB6SHwKRvBSaUkoSVlUFGL2LXApCSG/GsqyNMRjw4OCoULqZzGazGVKcTCaIuH9YUUo5pSmluq6FEM757Xab98qz6fzXf+3Xmqr+0le+7EPIf4py0hSySCQJAGuN4DySuOu2qqgSBsLJfG9uT32GWHnrl8ulUCxF7wxOJhNv3eMnj0gkhdbDk8fL5fLmrZN8oQwJH3/6tKyb4PvFYq8b2n5op9Pp3t5eU1XeJyJ4hi04a7XWgDgOwzAMAVOpVVEUjBBAYJSlEHftzrVj27bZm0IIGa0NIXcN8aKoOCftthNcehsiTWaw0QRGaELsvVOl1lXJuW+vNlKIruueP35679bt2LsPnn0fLRrnX5gndV3vNrvJZPLaZxT6iEiBBBcQQUppnZeCK0EAiGDMpASMhpQU4xhRCGGcJYxRQmKMwfm+7ZxzGJFxzgCMc8BZCpFSyjjPz0wcbeIsAUouY7QfvPf+tt0dHR1F55uypIJn3ywwypW0MZCERVU2VS0VRYxFVQFXZRm8c11vuGD9YC5fnJ2fXSz25nsH+5/FrzGEIKUmuYseFOfgvR+dtW6k/z+i/ivItiw/78T+y29/9jkn/bV1y5vurm6gu9rAEoZoOGII0ChoMNIQJEMx1Gg0oZiJkEIPClIP4zAakgqOgi8zwSCDIw04IEEySJDoBtBAo9HdaFtVXfbWdenznLPPNsuvpYeV1crHvJl5M8/Ze6+/+b7fR5j3kXMuGLd6mlfNsmlv3DwkBGUV45ht1tskU7dWGzUJITAOzjkhOI/UmMno0VrLRQ4A79//IDinpNfeVk0zygkwkVK37cI5X2SEUq6l8trMy3qelUrqoExUXm76yPOTk1PG2I1bNwmmCCEbPCE0AiipizyjOCg1cc5cjN7F7Xa7Wq0JIVVVcc4JwRCJlNp7W5Y5iyJ1rhhjQiDGKASH61lzTC0sRpExZo1P2w3vvTE2RUY6Y6ngzjsMaVcVCCAE8OHg1gfvPzR8AyEMAPB1tBEJwX3fdp+eqx829wgwDiFEjLwPPkaEgBOKEYouhuCpMZqKnFJsjCKEGKkQJ2VWByoGpbSUShkMiBCW+rwA0SprtV4umrzMvfd3nr35e1/60hvfff3Zp59tZ40ap/1lK4RYr9dHB3seoozgpM6ybNnOQ/AI4cgjoRBCiIgopdbdxkXgnCutvTGLqi7rarvtV9sNxrgbNvtH+1VVffDBw6qsGaP9ZtRUIhQEp9qqy4sLIHh3f48xhoTQ3nrvA4oI4VXf3b1310jT9x1jbN602iirRxQRBuSVMdO4HYfl7rJtW4QQpbjr1mWVV/VTj4+f1O0McjqqnhBRpVwU5/u+P7+8yEW2WCwQwRhjxmhZFqfnZ0/OjqtZgxmFjN//4D0b/LPLpRxHZQyywRMnKCOCXF1dHR8f37n3VDVrCpGNShJCVqtVjKHIMiFEUdUPT66yrLp784aREkcQNEcIIYwCN8lwpLVeLnfaulmdXcYYnbUh1yl7XGQ849wb+fJzz0RCtFaXZ5cYEMa4INyNiiLEMVHjhCMihCJCrXFtOycIYYpn8zZdrH3XtW3LCSWAEGFST0VRhOCdNxRHQHYY14PWf/8f/P1/+o/+8b/+1//6D/7gy//sn/2zv/QX/9Ldw9v//l/99p/5hT/btjtKqaefeopnGSLEx4gz3lSVlBKHyD3wqnjwnW/98R//8c9//mcEIxwTR7IibyniyKCWVUvBMMZAsHGWCcGX+aKdSym/98ZbP/hDnw7W3tjfDc5xJjbTsGfs96sKAEAREAJjzDBshch3l8ssy7quSxpyrVWMcVQSGOREuMBe/YFPMMZu372TCVbVLUKIc354cPOLX/wizcTB0aG1VhtnvMuywnuLQsCYUMqMiwlcE2PAgAjO8zx3LjDGtbEAcHl+Yb1jjJdZwcomywqKcHA+xkgQLpuCULrqNpQzXmeEkOCBx5CG3mWZRx/mn/pECCEBWwBAS0UQAu+194Kx9Fd77wjBjFHtnVfyxY+88uTJk6vVqiiKsijAh7aqg/PjqLIi50UFAC5673nKo+RZRgi5d++elBIwzvM8z3PBiNZaG8Wymoqq73tGmJnc9qq7dXRnb/em9946t1qtVquNtcGpSU22yCsnwed42I4YIedcUy8dZZdXVxjjaZooJgynDPLgjLPEeYIQQhCDc14wwXJCEF1trtbrK0y5j2G7Hdq2Jch5r603BDNjbd+ngadsZlUIQRuFAuIMZ4RtnUKU2ehFLpjgV113+95T6+9+5/HZMc8ECXB6djafz0/ePwdGjo6O6lkTffTY2xgiI703jFHKaOcsI4wh8DEQzLz3noLHkSJghBJGXfAiLxh1Yzc6Y8BjJjJMwjRNRVmenJ/XdT2fzxEA8jFQEnwAH7rNand396f/9E/6ELuhz+rCe79er7wPnPMsywLPhmEIIcznc0owx5wQYkZFMCoE9AHbSenBTtOEGC0Ws5t3nyryShqpfWjKKiIgKDKGg3PWxU2IxiirJ85IKdJRFCinfcDauTs3b2IM1logOADQXGhlIESMWV62MYbJWCGKURsKfm9vhzF2dXXlvY2ReE+vVtuvfeebh4eHLzWz4PzefMkonjcNxthHRynNMxo8UJoZY4LVh7cPvIW+7995+12t9eOHD2Y7s5KIGANmOfYQQqSEOOe094hggQjj2IEt5jMdnBylUqrve4yRlnpnZ+dqdTmb1WWdMU4j8sYZinmEoOWUJs9wTZ6KEHFS3RNCfLAxRkxJQKCMQxS74K8F0AhhhAigxKpMQ3IM2HufAgcxWBcdIcR6hwBhDBljKASgCKKr8yyEADGBVxEAJggraxEEIQR4QBiUNkII9C9/748XiwUBxAhLmEwqeF4Wfd8nDT3GwCktikxrzRh7fH6l5Xh4sLfbLhBcR0PEGCNGCdA9SYMx5pwSBMr4xLxkmCTcTFqVxxgpRdYGG4IQ9Pj4bBhlminlokhPE875+eXFOPaLxWK5Mw8hOBv+8A//EAAXRXHrxhHCcRiG5JWsqqqeNVmWOeekls45zkRRFMa409PTG4dHRVE4byilGCPnnHNeML65WiFK+nHY2dup88pai0LM8zzF8VrvttttBEjWYe9cQo9KKdfr9TiOQghCaV3XIQTrTNocaKlp6hQJ4pxvNt33lw1JJe60yfNcGt33fVEU16h678dxtFo5Y6ty5m347T/4g+1m/eM//Nmnbt8yzpazJsbojbXWb7fbLMus1d57UeRSTiEECCHGmEq5sqisMZvNBgPieVYWxXrVFUXxjW98Y3d/JyE1rrYbYwzlvCxLkXHwQSmVcdFUFSHEep9lGUIIQiCYJgdwgEgpleM4bLdP3b03TdMHjx5+9/U3d+ftx1999ezs7Pe//If/8B/+w//b/+X/2tbNl/7wSz/yYz96cXXVNE1RlAghRLDI89VqNQxTjPHRo0fr9RXn3Bn9ta997Ztf++pnP/vpk5OTy8vLnZ29rCw4wVxQRLMQAkaoLMtg3WazsdJ+85vf/OyP/eh6vW7b2U/91E81TTObtXme80zkIkMIZQmyxhkASC0jRgmYhzFJa7NxHBGCEMJ2HMCHoigJIS6E3d1dTklwHjE2bLdJVZfo82mn7qRmjKWCQAielsqMcYxRMixZbRIkTymV6qSUco8ITrthDMh7zzCbpil4m+c54xwAlDURxVk9w5RordM60BnLMDFaB4zKsrTWWO+EECiCMQYDSG0opU1TpwUVQogxNo7j48dP7ty8tVqtpmlazOdJBUkZC96fnp6283lyeCslk1wj7VMTZiRRmtMGC0K4pvZLiTH2NqlAhdfqS1/6Uj+Nzzx1F2NclvW3vvFNQhjN2f3793d39mez2c3bt5bL+Ww2q5syz+rvfve7nHOllNUGE7BKL9o55iLLst3dXW1N2grHGK02wzAmQi3PxHa7tS4Mw2CtjcERyheLnc12KIoiequUQjFgjIsqPzjcTyCqnLHL1eb+/fuEYKO0kdoYs7+/v952b3zvjXrWQIhZlt27d885xwTPsqyu6zzP5SgBoaJuAnhCMAaUC+FdQBgIIWkBQRDyPgAAI9gDnJyfp2/fXK6C84k3kOJeQowpp7aqquC9t64bemstwfjRo0dNUwshqqYuy9JbZ4wxxmRZntqscZAIoSzngufJzoAxVnpK6s5JuWG7tdrkRXVyeW6M+uQnP6kmOY7jOMpZVZdV3vcdAIQABDMPkRA0q2tC0DAMcM0TRYDZ5eWFECIXzEfEObfWxQ9TAJJtiXPmnPMxWGspxc45gJD0toyJpAp+6603v/WNbz/11FMfffmVtm3PL06NMbdu3WLsetbLqYiRIMDWGYxhHKW19uL8klKKCaIUE4K4oBFzxoTWhjEao7feXV8V1mVFoa3jlKlxShkMPgROeVEUq9Vqs91UdXHjxiHnNERv1XWUAL4mQpKIgBAS/bW0Hn+YK5zUlDHGgDxjLCTVVepfASVy5PUeN17HJaVVVIIMamvSnB7HiK9H9tcKTQAgCEdIycHIOEvItQqKUpY4mug3fvv3Hzx48OJzzwsh0qM5z3MgOETA+DoFuq7KssydUUWRqUkDQNvWVvskPYgIiiLrpzE6TwghNEVjRs658aYgPMQAACjE9BsTjL0HYywADJNKQtDtMC6Xy4uLi3ffev+pp54ihCAMZVlyTmP0LLvW4/2jf/SPfuM3fuM//y/+iyLPE7t/mqayLNMlvr+/X9e1MdoZm2X5OI4YY84ypVRAPqWhaa3TDg9jjAGVZamscTF4qS8uLsqynDczAJi04pz34+C8r6tKa53nOeccYTyOY57n/bDt+iFFGz18/Oj2zVvW2qZpvNSJSKCMYpRnWaaUWq/XVHBKaZUXSqnU8iY+NkAMIeZ5Dj4Yq999+52nbj/9zjvvffn1bxPv/+Kv/HIaHlJKtZbWW6RIgCgE4xmbpmE79mnh70PACBV51bZtsB4BeBO22y3huKoqSinCeL1ed0MPGMZxXHWb9LAmhBRFwQlVSqVJ2t7eHuc8JUUCgNM2hMAyDoCUUjcODr0NXdddrtYXV+tnnnv2S1/43e+9+eZqc/Xn/sJfeP+D9z7zyU/97he+KCqxf3gABDdlrbXGgKqmBowvL1dd1xnj2rblnF9dXQghdnYW/8Pf//vf/fY3q6Lst9tnnnkmWSZEzhmrq7rknL/79jt/8rWvf+Sll7/5jW/8+I/86OD8V7/2lb/yV/7KM889c//Bg0++9qk7d+4Y76iDJE5mjPXTGBFEhPIis9Yu23laBRljU2DANE2X65We5Hy+qOuaMBZjrMuSIKy9SyyFdN7UdZ0oARwRjLF2VhkVgsuEYIzhiAMKwzBwzgGRdPQ6551znF6LMphgSQPBKTPGeB8YY8PQJ6QMY2w2myXNP6U01Toxxu2mG8eRU1oWFRUcIQiQLBjeOYcCnF6cE0LquiqyjBCS5CWpYFfTVBXVdrullLaz2kfQzqEQMcY2eELIMI1Jo0ApzTh3wTvnhBBylEVRgA9SSmN1+vXGcWyqOhWgjx8/bmf1+fn57/3eF6u8wICqqjraP1rM5//0X/yvnPObN28/++yzs9msaZq2bYQQCJFvfvNPtl03n8/Pjk/293fX63XSguzs7X7kIx+blLHWFkWR0gYjQskTopSSUm632/39Q8KZHPrz88vFzl76SsbYcj5frS6Tnn82q4s8o5RGH8ZxOj85VUpqbRihq836T/7kT55+4bmDw8Ozy4u2nSUn/TRN8/kcIdR13c7OzqysY0B9389ms6ouMEaUkhBAWs05hxCcsQihBKIfx2mrptlsFmO0WjNCvXU+Bu/92I9FVbZtq5S6uLgQQuR5Hn3YDr1zbtv3Uk3pLa7ruixLo3Rd18vlchjGGK8x+9batm2Xy6V1LsuylGCRCa6UwoQKkU+TAkw32+7s8uwjL73orB0HyQknJPltEGOs6/pxHHeXH6pKvffeJ7NlCIFworVljGWiGIYphHBNM/Y+nSIfMiWChwgA68srjPHu7o61VqoRAIqiMEZVVZOJwlo7TVOe59LIScnZbEYBheCkHIUQzkSMKaXUGIMYZTjZgQjGaLVa2WBFxjCiCTmitc5zEaJjjEHEFJAL3keEMbZKY4S0MSJjELExhlKW8g+qqiQUxeghEIQipRShiCJgjAFwOhTTAQxwfZqm+oAQYrzmH2LOrhtFf614TZI6xuh1txmv0xQSIDLGmPJPvy8TSckcSUoJKO2Sr2+uRH1AlMQYjTHoq6+/HxB473d3d7U2OB3yEQJJYnGSkr29swT5dlYXjMcIyhqpVYjIBo8JA4Bg9DQN87atqlLQ60SI74vNMMYcU+9jUleGEAihFxcXpxfn7WyRWoSmnQPAsB339vbS1nk2qynFxpgQnVTuW9/61vHx4+XuzmuvvfalL33p5u27IQRv5e7uLmMMYhz7oSiKxWx2enoqjdnb20vXHMbYx5Blwjkn8myaJoKpVio5oACjbd8brb11BwcHnNBhGDDGhLNxHEc5JaA/YyzJNYui6IYeIJZlSQgZpokQoia5Xq8ZJvt7e8MwZFlGKE19bVVVnDH9oZdxmialZdqHaWUwQZTSaZQIgDFqrT06vPWbv/kvXn/w3stPP/ezP/1Tp5dXlDNBaEAuUkQNiQiGYSuE8OCHoc+yjHNeVVV6bTHG4KO1NoZQFEWe50opqZRzLmLIilypSSk1bMe+73MhAKCu69Q6K2MQQmn2mGhlRVHmXGCMbXBaa4qIkhIFvNlsu7HnWfHw0WNrzFe/+tWf/dnPPz5+lGW8mVWnxye3797GjHLOcUTO2LSO8h/GbVJKCWGprDFG9UOnJvm9N17///7P/58/+cM/unXnzmxWL3aWohDEs7OzswePHqwuL596+mlrbTVr/vTnf+bBg4dN0xweHpZVZax+6ZVXlrs71azh4XokU7ezGOO625yen+/s7Vqjd3Z2FouFGqe+79u2veafUIoi8t4TRsdxTLdTU9VAr339nNJEYkkFE41oGAaeZz56QiPFpN90jAlEUbJc53keIkpPMUr4W997o23b2bxNxvF+u0nlVPBgrU0Ysp2dnegDBnDOUc6naQKAtAnuu+3FxcXR0RFBKACkDGYppbUWIawneX51eePgkAuWxjPpXUOEJIMyhJhOx4CQi4EJHpwDgK7faq3zvLDWph49fWitE5U6HcCr1SrJdDHGWS6sNoSQpmmmafrOt779ta997Ud+9Ie+8pWvcM5xhJ/+yZ965ul7/+P/8j+XZfkDr/7ANE3p5E4jIqVULrI842VevPnGG1/68peMMbv7eztNxXj2wgsvdb2MMc5msxBCBN8ud7TWfd+fnZ53Xdc0zZ07d7IsA4Cvf/3rx2fnP/GnfioJ0TNOOWfb7dj3XVnmlBBKCQa02XQnJycXFxdSyvOTUyHEarM9vzr7yEc/Oip548aN/f39GCMnFCHEMnF5eTkMw9O37y2Xy/ff/2BWV4tlW9cVYKSU9ijWde21SQ+ZdCydnJyMWpZluVgsVpdXZVnWZZWe70rpLMtGOT148CBpAN95623n3A+8+urR0dH51eW628zn8wRJZoQigjnn4zglgeSDBw/efPPNT37yk1VVtfO59z4g0JNkjHnnvHXWO2t8P07dOFlrn332aUoxgqBVTAXoNE0YQwQvJ73dDnvLWvAcfxgsSyn10RFCiMCcc0aFlEopE6zb2d+LMcpBTtNEEOY8SyexNnYcx+B8nuer1YoQwgUjhFRV4b0dBpV69OOT07adBQQ8E23beusAgjOqqioIEQDHiLz33Tjs7u4G69JKyMWQwpHKshQiz68vaMI5jRFlWdZ3Wxe8j9Faj0JMsXgBAEXPeYaAIITh+iMSihBQjBGjyVgeCcIQ8bUDCgAAf/8AxhjS410bmcy9140iId77lPUbYzDOpvf92mhECYooOajgem4N6fRNCi+Mr0Mjks3J+5DiAb9/+gJG3kX09Tc/wBgLIYAQY0zGuFLKGVtUZVYWzvtxHDFB09CXuWiqOmIrpTbGzNsFY4xSnmIxvHUYxcO9PUYpCp4SEn1ACCkSMcIYwPo49aPWWgheVVWqlTxEhLAQIisyORlCSASfkEycCWMshJigHJdXnbW6aZrtdrsdeowxz4q9vT0I5vLyMkURQ4icUEpJnueT1s45wChVys7ZAHE2m01KJ3bB1I+zqiaAzi4vOOcBYlPV3tjZbPbhgCIQQjZ9b4ypZ40xJi8KAOi6jguWDry8rK6urmKMBBAAYIQQQYwxkqIgxiFYl3hSmRDpuam1SiA6hJAxVk3T4eFhootEBHlReED/5B//06vt5s/+3C88d+/eZpp8DCQCIQgYBBesd6mIoZiEEFCI3y8REkaxKIpxHBBCKMayqFLHc3JyQikpisIHG0IYt6NzrqnqaZoIIXme52VBCGFCxBhXq1WM8caNm04bKWUawyKElFJaKUboOI5Xm27v8ODd+49+65//849//GNPPfXUu/ff/aEf+uzvffELbdu07SLP86aZcc6DthjTdMYn3ogQLEaUhAzWaufM6cX5fD5//+13/rP/w3+yXV0hAMa5CS4nmVSynreUk6ZpLterH//Jnzi6feuZe8+WZWmVQQjt7+9nZZHGlYLxNIpPQDlj1dnFRZZlGWdN0+R5nnzPjLFU3RtjrLbpW4z1MUZjFcUEMZqONO89p7Qo8hCCt67Isi9/5Y+zLLv71K2yzK3VDLMYo/8w7oTzLGOZchYhHELQUmGMmeAAMYQQgyOEOGcIYQgh570xLpW8ZZ5777fDmAACqYLuuq7vt7du3ZqGIcYo8pwxnh6jadW9mLXjOAKKeVmGEBghqeSNCEEIRmkMKCJQ2lDBKWfG6FRPnJ2dhfDhesyH5DLHlHRdRxCezWYUYe8cJiT1XnmRGWOKLKeUOOelVFdXV5jioiiGYXjw4MF8PhdCSKsIYZvNZrFYLOfL62Wb91JOqdpLF8/5+en9Bx+88/57hzuzo8Obd596Ns9LFzylVEq5WLTDMKUC9/j4WE6qaRqEUFkUhBFGeYwxr2rnHMMk+TLHUXNOY3DXKmtrrbUe4jAMUz88fvTIaEcIuVqv7tx7qq5Lb3xVVWqS8/k8lWJf//rX00bwpRdePjw8XF1eOG/2D/cRQpwLIhgBcNaN/bBaray1t2/fllKeXlzIadrb2U3axv39fUJIkTEPMEm93W6Hbf99lMK3v/1tGmG5t1s1dbuY3zg66oehyHIpJSLYOQcBEiRVa/2NP/nW/v7+fLnY2dlhmfDepwRZozRBlAssldn28mqz6fv+2WefAQg+WEAMIvLeSynrporRpxGx4NhIVRQFI3QYhqLMUrlvnI0B+n5M05e2bdN4WWsbPZAPQ2kxpgBgrTXBam3T0ZWMYW+88cabb77+S7/wS1qbsixTiFa6ONu2JUyMfYcQ7B8siyxXSl2u1s45o916vd7f30/E6aqqiqJIQlHGuGBcShkhAIQsK9ZXq82wadq2bRchhOAMALgQAviMJgFEQECc8+LaVqNiQAjHVJSkIxAhzHDSZP3/0wBTzxrBE8xCdEnllybS6Ws4Ii6GELz1Ljllrk95jCBECBEAhRCChzSUTmcH5wleDanhTidxMogmtbx3ETCilNLDg4PrWB5j8qoihBijmeBZJhACJSeEgTGyXC6rIhOMR3CUqhigbmdpDhajD8FldV5VFWXUx0AwtiEECJRQHCOKYEJwzosiL5sqhRdlOc9yDgAuAGAYx8k6Dw4IjgBea4Ux9sF67ykqXPDLRc3YwjknFb5189A5p429OHuSXkQ5TcYYTpl2JkYKACb4tBtOnqgIQDE457yxHiLnbG9/10xq6Ied2RxTEjGSUvabjlK6v7fbD0MaOWKMm6Yx1mKMp3FsZrPFcu69Z4iaaMZt363Ws9mMZ8I7d3x8fHjrho9Ra1WW5YzOklUJCFJKDcNQlgWlZfpkjLEua4JQCqat65pQQil9/PjJaBTD5Pbtmwihpsi3wwjXugBsgkr2IcYYYTxjXGt7dbFqmnbsO8AIR0hnaoJkjUrOZjNs43WEnPfW+hijtJYQMhkjyjIEvxl6aU3aFPoQQggMUz1J7z0l5OL8rCyr5IdOfVI/DmWZX11dPHz0PiHxhReeu7i4+OQnfuCtN98EgBdeeGHcjJjSqihjjIHhYRgSNWbcdISgpFFCwIwxhDDvrffeGHN8ctJP42w200r5EBgVJvhi1kincizGfhhX66aqD/YOu2ko66pdLnCEoqhm8zkhJAL46Lfb7XKxyxgtigKTqmma9XptrY0RpLxOFU0gX2stBjQMQ9ozVXU1TVMlKoIwE4xzfnJyQghp9vedc946ADg5O8MYcc7kpBkjGBPCmVIGIRxj5Jx6b7dGpbRUZ0OMwYVAAtVaE4KtNiJjIUB0ziZFB8Trcvv7OgoaUyObBumLxdIYm7o9Z4xzPm3VtNZpwRExCiGenp5SSufzubWWABZFpqyNgHyMMYIxxkP0MXDOvg+W0tqoSTZNE8GrcSKEjErGGIvZLDW1RZ5jQpxzRZkjhMZxVEolV+WwnbgQxpj37n8wKdkuFnlVaWuLojLG3LlzZzZriyw3xiil8jxP8jdK6TgM2213dPvOzbtPPf/yKyTYWds2TYsI2263CSm12myqokjPr9u3bwueyWlK13yAAAAYSHR23A4xxsvLcynlfLZomoZQtF6vy6oinHlvGeMHzQEGdOfOnRijMY4QIo3WWlJEQwg3j25gQJeXl2VZvPDc848ePQKK33nvbULI88/d2Q5TgtkBoLKqEAYIsSzL5XKZpsFSyqqocQQcQU+yG/q+75fLZZZl6fFYFEU6w9Kc/2d/7ufOzk/Pzs48gsvNup63AaGtkowz7xwCTBgZx1Ere3FxcffeU4wJH9G669XZRS4EY8xaSxBt29ZZjxCq6sJaO29mDBPtnLMhIkswJYSk6A6EIgaEAW27Mc9zmCaKSZbzEIKaZFmWBBer1SoGOg4GY9xtRucNxpgQVJVlkqdwXpKUHEUQNqEUfG/vIFVd0zS9+OwzH//IK1leprVx9LEuKyGE85YQ3G833vv5rD09PnPOtIu5tZpnRb+dUi3OKJ3P56lsYpz32+3DDx5wzm/cuKGVBIBpGCGiWzfveLhmXKQTThpJMQ9J+xgjZYhxHkLoh64oCsywtdq5QAjCmKR1b4B0ZAK6TgWO1z6kiKy1lOGkmAZ8fZpSSj1AWh6ja2xWuB6bX2dOO4IwQgggXoucKDHGamuMVWmOnVSTLjiKP5xgB5TK8RACpRhVsyrGaAwhjCKC84L5iAgQ7XRZibQb5gSHAMY4DrTkVWrAldKjklVVZFkWCYkxTM4RFAMhEUIAmJQqOEM4AsA1YjNihIFibK0VjE3WCMYHqbQ1lHMA5KwJEQjGwzgKkTPOVuuurkv04cd8NnfOMcEQwjGErusIIUn1oLXO84xxrrVOjXXCNTvn8jxPlUhdlFIrwfnJk2NG6KxqrLVq0gEB+PDMM8+gCNM0pWmYMeb04mJnZyfVRHmeKzkhhKZhtFle1lW33S4WC5YJQZn0/ujoiAsBANttn84qpVRVlQAQUdjZ25mU4hRTyrt+m7GMMIopkVq7USEglLNZuzg9PhOUMZFTwYdpUOPUDxPNRZZlJcoEFixnne8xYGu9j14wHvJ8s1kBRunV8N6m2TsBzAmVw+gh1nWdgjco52PfJ5JiREg5Symdzefe+3GcIITFYsF3d531cpoAgFOmlSKIBAhFUQ5y8iHM2oUo8t/4X/7X3/nCv/vbf+fvdF2f8ZxTUWfVs6/9EGGk2q8458YHgBijz/M8K4thHI0LecEiRsY7ow3GBHCwEJqmccFPxjZt212cg7OMZ1ZrwHiaRsxYDOjy7OIHPvXpF198ORKyt7fvQ2hm80yItEsr62JSCmN+49acUtqt1oQQkbEUNb1ZdVoaQhCnrKzLDxfwoJSez+fpPokIKOeMYEYo4A9xCtamf7URsixbbdYpg6jvuozT2WLe9702jhFaNyWk4wEDQd4ozRgLFFnrpZwwJlobTpk13mrtnCuKIgJAiAgjjIn3wYbgvU2D1g+nhZpSOgyqyLLUo4zDBATPZjPGWApLcNZd6ww+XPJxLqLBlHMH9nrpRVNuYLg2X4VAMcFC6GGySg99Pw1D084261VWFJQuEUJG677vy6pIJ59xbpimxN5yzpGAMcZFVRZFnmUiyzLv3c5izilXSsUYp2HkiDhjKMLdak0ZyfOMEFLPmnYxf++99548efLpT73WNvUoZUTEaD2bzU5Pz9KA9Pj09KMf/aiU0hkXg8KEgHNSKc5olmUxgtHaGsUYmzUNRggRmLX1NIybrhNCYIxzkQFGwXkXwjSOcpryrHTYRYhp4lXwous3clQQ4jRNi8UCMLpaXTjK/sE/+H/95E/+5Gc++xrGuMiK7XarlUpitGEak3bEOWetPT57nDFe5QXGeL5cKK0vri53dnZ8jyjCWqnN5rq8Vlqb4POyWu7GoijSZDs9apq29dZwyr0xjGdK236cKBdVU6balKSZnA/OuQePHxFCXnj2Xlbk3WrlnSEQCcSqKC6ursq68j5KOaEIlEROaIy+4KwUc4QjxSQNomKMkaBhNJwKgnDwDgAIoZxzO1qlDWVQlmVaIiR4pA8RUJyxqmka5/S8Ls4owhm7c+NoGAYXDCWwXl/VZeWdM+ABo/X6ynu/s7NnlC6yMkDWdX1elgB4VBIImc/nRVE4ay8vL8/Pz5Py4+Liand3V2mZFwJjbIyjjAfvkz9eCKFVsNoIxjzECNgZn+bGqT29/uuijzG6GFxElCKGWYToQiQRxRgxRiEkKIpH11YinH5I0gahD1F3wYWIUUQIo++3xQhCRDgmNicQAECIRpy+NcTrQGuSoFs4BoQQ0k4GEr33DPPUKMcQjDHU2AmDy7JMZAmWbVmWRWO0dhTjctYAAKAgpTbGDcMkeJ5lGQNipHTG7rULCsAA6fQqQAAPGEEIGHzIRYaRjzECCpxzjFGI3n+YcGCcw4hO2iijQwgIYYTQZAPGGAENgMZRAoSkEyEREUJCAG/8drvVWh+fHR8dHYmMp8FmokxjjFOVNAxjURQJKJFIyzHEYKNxkmBkJtU0TVWUUz+6GJp5ixDyxqYFGKDonLu8vOScLxYLzrnUKs0fvHWz2QxFuLpaaWuyPMeMMsbW67XTpirLR48eUUqlVHvLHat0At4CABGUcS4QGKMQ+L2DA/Bx6PtI8HyxsNqlXkRL9ejBA2f8My88vem6frupeLa3v6N8mKaJesAYU84qUfoYMKbWWqUMpXy+ZCkM/MaNG1rrxw8fNdUsxuidK4oixEi44EJs/KYfugDAEZmGcbGzfP/992OMTz/9dPShyot21lhtLi8vGeNCCAyo77c5F9E57S2hLMmYP/LKx77xjW+9+uonqiJrqtnp8dlLz7/0J1//OmPMKLsoaq1lZIgxdi3HM0YqpZ0FRlbb3kH0HrkQIQCmQEQ253y12cQYn3numScEy37LeHZ5tckIV87uLnbGcfyRH/tTP/3TP73Y2Q+MZFmxM18ghAhmhGBMkfV+UlNdt0KIaZqMd3675ZoWWe6t44QzTIwzidT2/coMIiTtIWBkvWco5lxoqYIN6X6jlIbgEiNikgMQuHHrptdms1rngmdlQZnQLlprp1FxgXPBCOHGmLLKkzxECGGtd85nWUYQdg5lNQ8uJM9oXdU+BO0sxjgimM1bFNOpj8dxSPdwURS5EEopOakQQts0CT7KOR/HkVKaZVlWXPubE5ojSR9EnhljEtsrWJfnOWbkegCDwvrqilK6Wa8YYVVeHOztHx4ejnJyzioltZTbru+H7c2bNxFCypi6Kbuu67oOYzzLS0AxF1mWZcfHx4KxsiyRD5vNlVIqyS8uzs/TZJtRGiEapWbz+TAOGOPDw8Pg/OXl5TBMySI4TVOAcO/uvTSn2dlZppHddhySqK0sy6ZpSIxaayllt+7efffd/cODw8PD27dvO+/7vkcRDg8PEMIU4eCDHFVR5jnj9ZIPRUEIubxaX64vy7rKy1J7hyjBFDnns1IEHG7evvH0vbuA0Ze+9KUHD+8fHu0fHRzsLneO9veUdZttt+m6k5MTznlE4K2DGMuqiD5IObXLuQu+nNWz2YxizLPMGJtEGFrrvCiAYCklJ7TMcm9dEjupfpRGL9p5QGiYRoIweMiy4sUXX1xdbQAgQJy3rbfaKM04r2e7+/v7w6Q4Rz5Y67S3tmlngpFRac55DA5BLPMMAxAS80xwyuJ18IPvt1vnXF03mHIfsZLa4mE+a/KCAEbee5FljJOu6yhNs9kIAJMcko8jy4TRcTP0zhuE4OkXnkaIbDYbmjPsvPd+uWhiQBjDarVSRnvvp3GbceY92nZ9u2y5EFIaQvntO08Nw3aQMg1IAKEkv2/a5tad20kmkjYCyAWEkbPGaJ0uKhShbZvgHQTvHQEAFx24kGQThBCtLMKeEEIJdy44C0RgQgmOkBiTCNJfF2L0ECC1iKnrjdfnMUo7IERYjC6EmJLoEUIEEQBAwUUc0iwaAcIAwAFhqpVN5x0jLMaIAvbepZgHpbWzFmckibPSdU4py1kptPMYIsEEh4CsowAsFzF6o1WakhOKWSRVlQnCc0FCsIiFpq5RRM46awMWJJDoHMKUhBAFw5RggAgRMAIUARHkYogAiHLpnKDgYrBWY0TbqlFGI4IZYwFc1/UIxfRHycmenpxkWXZjf49x7lBw2NOcnF6tdvbnRS3kOCW5R8J1Jb2DUur69PUOU+Kjd95hQEaNjDDvPC+zIhMhBIM84zSvyn7TWWcDguS4EEIEhLSzpRABIqG0l1OMIS/yQU2IoL3DA2cthIhDTKO585PTpq5v3jxyzm22vQ2ec14WOYZIEMYBnNJmkhEhVubWGhcdr3KKcgIYYxcjUkafdytpDc1EM6vGdScIy0QRPGxXa6UMbTAWhNkYUbDe5oJUVbFer3U02JH9m0dlWa6vVtM07e7vaK09igJx7yKmCCCMU6+NhGt5Pc4YD84d3jzy3hOCq6IQlEeHjDK5yNtFCwB93xdVWde1clYE9v6D+2+99daf/4t/4fHjJ3/09S9Tyn/5l375jTfeeHL86JWXXrh58+D4+Hhnd6bNFmFKCJm0ghQFqIwLIUQwRtXVPAIO0YoCO6NjjCTwXslxHItcvPLSy6uT89PHJ1UNEKxyAWIYuzUV/Of/g198+OSk2Nndq5fFrGJMQESpf8RAkAeBOMVIaxm9zRhHNMEFMSaMcxRQYJgFiN12ZIwxipOoeN2tx3FaLpepaFVKMc4gwHq9xoCzPJ8mjSJcDxIRLfPCYUYwLZo2y6sYo2Bi0IOzFvtMO0yBUF477yIGApQgIo3GETLOAMB5o7wvMsEEQxEQwscfPJBSKmmklM89c48KXtQVZuQ6xjzFGFOGESGYpgWhsxZ7dNWf8Vowxrp1hyLeXe4jQiIKLM9N8AwhFDzFmHOupXIR1DjlVWmCx5QGZ0+PTxbtfNHMjHfvv//+8dnpYrF85unnjDHDZnt1dXm1XuWYP3nwuGlnySqzs7NT3CjPLi8miLIfSJ7fOLxRdT0CFAMYbRHGPoTTszOE0Ha7rauqLOqmaXDwBty4HShnOEJVz9oX6pPzMwJxb7kTMarrSmrlgqOUMsqMsd64GFHB8tXJZV2WUveLvEKEadlLqYDg20/d7bfb1eXV7nKHEapC5BnPiyJEOD4+dS4cHBzEEJQ2adxnrQ3ezsoq41nO6XbTCyF2d3ZSRzJNo9Fqs+oWi8Xnfugzjx8/3mw2b7/9dl00R0dHdZnHGCnGt/aOuq5zypZ12fd9xbJIY0iJpZkgGGk5ZnUDPuIQffAoQlWU0zQRRjdXqw6hsii69QYwss7VdT1rmqAMBcCIBojSKu/9bDZfzGvvPQHilB6mUQi22Xb+6ooLOl8suskhhAImBmkJPoIP4K2WSvumaRhGRVE4470LgbEQA0YhADaOjIOe9PUADAPSBFbbvipKrbSUMgbkvZ+3FWPUOU8I1loiIM4GJSdKKSPcGCu1KstyHBzGbpJq060pYcF7QnBqP+bLxfHpmcjydjF/cnz6ndff/MpXvnLz6ODHf/zHd5c7O4tlTrN6Z+Gcm6ZpGjuttZaqrHIgoNRUFXUwgRNKHHLaBB9FWVqrKWEY0KydaWswItaFXNC0XQIgEJCPETjwnAcbAgCKCGPsjQ0I5znRRhvvZ7PZKCfGSOqYOWEA4JGzPgbnhBBpOG1NoktqwllMAFGCAcB5hxDCmAAEQhAETzGOgI1zZZkZp8B5goXSlmcsIo8xsLQMxhhRIa2mERNBUqtKKcXeO4BICI0+IISt9yGinCFjQpZl3gchmHUBAS7LAgFMkwzBpzIQIHjkBRfWB2ddRGCtgxB8wAUXMQBgEmIMgKxxgBEhRGqNKbUubvtpHMe2mcUICGMU0TRMRZ3Lfhq6LSNcKZN2Knt7ewVnhNFhGM8vL5RSITop5b179+6vN1JKznkayvV9n0RDdV0ro5Pw7Oqqw4BmVV1VlR4l4yxGCC5YayFAVubbrlNSJlAUAORlEWJMCa/OOCmlyDLGmDHaOYdizPPc+oAw3vYd41wa3bSzvu/niwUhZLPZzKo6bR0KkRGMEg2bERKyAJigCEn8EkLgFFvtU3wbpuTNN99ECGVZNp/PKSec0qvNpXUOUVLUBeWEUaaUGobth9MhIIROfT+bzaSU0zDGGFEM1hlMEGMcBeimbZZlgqCu21htOefKSU54M5v105jzjHPGCEtqAoMMFdw4K6XM81zkWcq4NkpZa//R//Q//dqv/Zqa1Nf++OtqnF588amqFPc/eG8xa5SaDm/cvHn7jlJDBIoQMkZ57703Oc0YwSE4hqBqaoRJjIgQapVEMRCMvXNImv5q/e5bb58+eWImOaubfuoPbt/EQO7du/edb37jT//Mz964dZNXZVmWVZ2LXIQAjFOEYpZlgIKUY1U1iFAA8C7GGBmlGGNOcQCCOAcIwzQ4Z7Ms55w7Z31wWVYYY5yzl5eXGOObN2+krtdb1zS1yDOllNaGoOtFRl3XYz9WeUkIQZRoqZxzgjJQwRmHrDKDJJgBjil9JGKw1tZ1pbW+WF0mRncIAePcGGOUNsYeHx9/73vfS+zladiWTU0YpZw+/fTTEBGjVGsTJhNjtM4Yax8+eIABHR0djWP/6PRxWZbL+SIGpNUwm80oE1JNWVFgAPqhu0wIjqk3CEkpjXcRAaf005/+tJ0UAPzhV/6o33RCiHe+9/bl2fn+/p619nx1zjkfjcKUPHz0qJ3Pog8++tlyUTXV6enpNIz37j6FELp9+/Y4jv12yzmv8mJW1UqpJ0+ecMA55bvzVkopnRV5tp3Gy0eXAJBzYYOv63qxt7Ner68uLs/Pz+/duycIxQhLKUH70RogNKvKemf+7ltv37tz+/T4hIiM5ywhdter1WazSbWRh8irwjnby8kYG4JLI3qlpuB8BJ+GvfP5vK5r55wPPrF30rQAIVSWlbUGY9IP3Sc/+clXXnml6zZlWeZ5noTfVpu0CD87Psmy7OjWzcRF7/s+uFDPGoed1tpbAQ7q2Wwcx/TztTTDOFxeXiZ9nKubqqoQQspoSkgI4fLykmeCUsoYy4Sw1m43XZ7njDGKyWbbMUaSWBoHCM5fXlwAEYwxwfOyqBGOKRtxubdLCDLGROellJQQzoW1OkYUoycYZ4WICJTWiKBNd7WzWBZVEYMbxu3FxcXuzr5ROgAahimi0LatkVprnfyc3sWyLDUoynCelyFASiVxxk/DRBCmlI5Scs4xJlabtqoQIt/85tf2dg9+6sd/TBD86U9/amc5X11t3nz9O9GHzbY7Ojp6+eUXTfBeq72dRdd1281a8HxLtvP5nM9mgxyMs5uuw91qPp9rFGbzxlqTcG9poVsUBSUsRI8QmpTECEXvEQYUQgTCGAvWOe+1NWdnZ2dnZ/v7+08//bRxNgSPMdbWcMrEhwYk55y1LlkBjbMsTZ7hwwo8XIdJOGM5Z0l6HQNgjFCAB+8/VM4XWRnSttdDgCA4N8YWRcl9cD6GEKQah74XPEcIU8zAORsRstJihBCQiEgASJygEDBG1Nhobdhue0ypMR4AGCbdMHLOGUGMUI98os8zRly0ZZ4nwnPSxVjrAZDSjjAaojfOU4BuMNoYQrk2DhGMPBBCMi68tFVWDJveB+yMvnv7Vj1rnHMBwjhut/22bsqu32itp2n8gz/40vn5xQ/+4A+uVquu3yau+nxnCQS74DhnnLNpmoQQFBOEUPA+z/NRq+BdKr4YoUqaruuKMmsX8/V6PZ/Pk/VCKRWCp5hihBMFTAWFARjn2+0WETpN07KdT1q1i/lqtQIAZc3JO8c7OzvnZ2dN0xhjtFIJg5xc7Yyx4KO1VinFMx5CsMaFAIHioshchOSRn8/nlOL1ep1nmfc+q8qEXNFOJxed1nZ3d0kR3mw2Wtu6mpV5bowZpUw7/5BcbwRciO2iTZodznnGhRrluO0VYXmZZYwTxoIPyqo8z413CKEsE+2ijTEywSOCUUoXgvfeaPurf/U//NQP/uC//e0vMEx+6HOfm81m/Wb9F//cryThtJQrY1yWcUopxpEQIgjebrUBzSljgVLwDBNjNMYUhxBTVpL11mjk4PLycr3tjHPHx8cowosf++hf/Rt/7Qv//F/9zu/8zr1nn/m5X/xFTOgrr7xirSWAgJAQbAiBEKS1TjB0QinPimmaYkRlWWcZT/uLPM9HOTFGvbcYo/Rg1Vo6b4qsNEqnMZ0cxxgjpTTdh+lxSQgRghNEEl7Dx8AYiyGGEIw0lFKK8KiNt8FqFz1GCBGBjTJyND2RWcmEEFqHRAlVShVVvlgsrHRG2+22TyLhqqoAorU2y8Qw9EmeZZR57rnnGOHBgzN+moaLq0uRsaQaOzs729nZuXr7/nk428yv6rZx3szn8+eff54gTjFVWg1aCyFc8Jtth1PAi/eIEE6p1+ay6+uivLy8FEJ0IT569Hi2aC/W5wH7ZTvfXSzlOA1j13Vd2dR6GouigGiPH9031u4u9+vbd7z3q9UqGQdijIRg46yZxs1mc3jjyBiNMT65PMvzvKgKqdViMTdGn5+fr1ZXbdvevPlCgFhURdeztm2roui7rdWGYTIq5b0HjLx1lLMsyzb9dvdg3xk7bcb333//heeef/H5F7bbLQCM42gZLlmJKUUIOCBUVZSQbrM2zgtGlVLr1YpzXubFiDFlAmHknBMi01qrSfbjkMx4GOO6rjebDUBs2zbduc65LM+tteMwFEVBKY3OO20YJizLqqpG8Zp/lprp7XqjjMnznFBKKVVKzWYzjHGe55fn50WRU4Sqqq6gChA3q/V2u92f3eCU0eTPY2wKI6M4eOiHDhPI8kIIIcfp7OS0KIrFYjH6ME2T1nKxWCAU00I6BJfnGaWEMGqUIYQgHLXUIQQggELElEbksoqHENrFjOdkGvu2bTFGi8VcG3l5sWIim83mQIn1CHMxdgMQPkzTNE00yxbz+Te+8ScHezt3bt3GmG5Wa60lASq3W+99hNCH0DSNtw4Af+zjr77w7N3VepNlxa2/8Oc/+OD9q/NzDLgqcodivWjW69WT8xNjzDiOvMwCgdMnZ03TLJdL7y0gt9idbXvpILLoAZzWxlrdNC1AkOM0jqOrKiFEAj1RwXPBAUBbQxgOAax1zsVkF44xtot5usG99+k23263hBAocPKUXytjYkQEk+RTiig67xEABoJI/FDVLCgLLoZrMAs+fnyc7AzWxathQxBKhwgT1GgnmKCIcY4npRjHCHLnHAaEfKQYEc4IEDyZATD23hLCXAiAAwDoSTEmpLZSqrSJkdYRIARhkWfjNE5DX5c5JSnxAyhNddCU5zkiLABY66xzEDGmTCk96amqitVmgyMjmEFw/TgMY+CcF1kuhCiEwEKYWYsQOjjcU0Y/OXlc1eXJk5M/+spXnnnmmXEcq7oEDOAhSeHffvvt3d1dLsTl1VVRFEVZIoRmbTOOY1EURVU6YyHEIi+01sY5afR1VG3fE0KUngCj1Wa1XC6rugaEJinzPE8GU6VU1dTTNBmEOKFDP2a5KPMCEB63fdd1mNGLs3MASDuMtm3TG9l3W875IPvV6mqU06KdP/fC8zFGqbS1tmxqo3VahwshvA8uBoTpat3xrJjPF3rSiZgzSam0buZtURTeewiREVoVpZQaAFNEaclDCFM/Yoydtt7a+OECY70avPezOOOZSB25Dd5DLJs6yUEJIXoa0wYdY0Q5wwhnWZaiqFLwHCJEKQXWSymffvrZr37t21dX69lsvrfcyfMcYvTOEUoXi4VzYdIqhOCcS4ziANGnJDbCKOA0xQnOE4a1nLZdl4trbMLJxfnDR08YY+cXFz/6E3/q/v37v/Bnf+nx48e/+8V/Z6395V/5lYMbR8YHpW1Tl4QQHyA97zAGyjAAL4qCYJJ4+mk8QCkPIRitx37DBP2+rP3k5IP5fD5rqhhokq0lXTFjLPpgg3HuOjI9iaUJIRhQ2uwiTFGMwXlAiCKaaDCFyKwPgElE4GIA7zxEGzyGCKOb+tF7T+i1rSjLMqUMuPDuu+8ySqWUzrmmqbuuizEOcuKcB+vOjk+MMR956aPrdee9t9oZo6z1Qohnn3sOE6SUqppq22++8IV//zM/9/nJjE1TnZw8acpif//QKDWOw/H5GeVMCOGcc8Yqpebz+ayuMaA8z6du6OxWGjOfL7br7u333i3P86fu3Xn4rQd3bt32xqpJ7s4XGQHs9PZiGDCOatc4NymJIg3O52VBMB3HkVPy9NNPAYDStu97ypjSOmmni1mJMdaTTpLgo6OjO7duxRg/HIaRpqrnL7TbzWbY9mcnp4QQirDFkWIqt5O3brGzvHv3tg7OQcQIZXm+XC5v3bpV53zZzs+vLo0xIq8YISiC1ooRgjk/Pz2TUo7KeuuCs86YmEU56QgYsInBlWU5DEOe50m0dX55MZvN6qIZ+yH6YJxNwVBVVXnvAeGiKAjGQojd3d1Hjx4xKrSUUvcZ5zs7O13XQcR1VfdDV5bVoKUQIj3fk4ncWtt326zI2rbFEWzwiODgg8izsq5SGhXy3mgdfUiGUUDQ1g3LxKSkc0YIsX94kNxi2MfrXEithRCMEOeskck2glPX7r3vtoP3XjvLGHHOVXmxXC4HOWUZr/JiHAaj3ThIyjCljBBSN6UPeLPZsDwHQEVZCiEYY23bTtPEOV9tu/3DA0roOEpGaLDOG48jDs4pKY0xV1eXD588/thHX93b29tu1pRSisnx8XECgGw2m+2mQ4jQnFFKj45uvP/++2VZUsb/7W//u6IocMBaa4rx+uriO9+dfuKnfrIui6IoorWcZ1Kr1Wo1jiNBeBx7b+zl5VSIbD6fG2P8YKuqyrKsrcqt7BEApTiEyDkPHuQ0VVVd13UqiXBggIgPMBnVS1UKHsZJCFGWOQYE3iZPMLhwbTtK4UcIxQ9D2SmlGEHB8euvv312dnb71l1K6GQkZYQAHobh8vLi4MZBVVXrbuhjf3CwV2QZQhFHGI2N1nGR07FXiECSkBWFwDja4F1wCNPggbJcWzeO07YfkykikIkiQjEB7EkMoiCROOM8QWJnbz9h3AOCcdLOOQA8qT7PSwBszBRC4DzbbLaYIm/tOI593xVFNk3T7t5OPauZYMpa51w1a6y1gBFgOL+6eHjyeLta7+3v3r5zq+u6i4uLNNvJ8/zgQKQuJ4RQVVVd1+k+3w5DlmXWe0E5o1xJOSqZtIssGBecCw4RpIwCAGk0xGiMoR8irxMwK8uFmXTSfIUY27allE7DZJQpy3JnuXzw8KFS6uHDh1mW7e3tAcCTh4/6vr9xdFgVZVsvXQyz2Yxz3nWbpJfPs8xaG6zLhSCMWeucczFGIcS77913LhBrD/f37NijiNerLuEmKGcxRlYK1Y8IISZ413Xe+7quMcbKWKA06a7vP3zAGDs6Ogoh5HnhtPHGqQ8NatZaBzGvq77bcMSNM9tNt7+/X1VVVgjnHCOUEbK+WpVlmfwqjLIyL373j3/37t178+XOv/gX/3K1Wn3+85/XTmtnK5Fb4yNgQgiAi9Fba2KMMgCllHKWNMYhBB6o4HySejab9UOX7ud+HJLgYqunGGPU9uL09N6dOx//wR/43Gc+++u//utSymdeePFzP/YjQGhV5CEEQNQ6l1RI3+fhEYJDCAiCD945g/E1BSVGFIHG4HJRCMG8d0qpWzduxRgpEXlWpqCxtFhFCBJExRjDBA8hMMZSAmhT1Uk6MRntnOOUAkCeF5gSb10AQChSQUMIwTmlLaU0ggcE0SOMCMK4yLNxHKMLwXo9yPTenZ+fF3m+2FkeP36SsrMePnx4cHBwdX7xxhtv/Gf/5/88VTOcZ5xnROHNsA0QH58cI4SM0R88fPjZH/5sXmVSjQXkFxdX+/v7j4/Pm3ox21koZ5KQVQihoppUX2V5XZaMUC0VhJiiBXgmhmH46MdfbXcXX/jd39nb379z9+7F+Xndzk5PTx9+8L5g/KmnngIAH+H0/PzFF18OARxEKeXe3l5Z1ZMcCSF9PwghgrU55/OmSYLS5K2MMWb1oh+Hfrsdx9Fbt7+/n5dFxnky/iKEEOD1epN8WBFAjyMty3I+S9cPAFSEOmsVsmWW3/jEJ1aXVyNlTdMURcEYBRdPP3ikrdnZWW7GMUnQlVJaO4Igz/NsNiuKTOSl9c4oY6xKvc40jCkTDAFZrzrwyFpblqXIim67fvLkeBynoigE49qaqqqMMaPWIs8QEIELOwyY0n4cAWNtDVI4qfkSlz/p0hPIVjDeHszqWc0Y01JZqfph6IY+IVSKIuecYw/WGIJxKsIAIBgzWRMpUUpJZRJ6bzOMgoqcC4YJRZigGGOghCAAhKgxBoLyNozj6IJfLpdISedcUzbJ184w2a636/NVmRfGOGO62WxWlQ0XpG3bSSklnfMxODcOveAshGC02p3PtdYBQVOVJIbV5RWKeH//IAS/Xl8hCMZdGiUnY27fubt/eGBcuNx0BCFng7XurXff4ZxaazfdKESeO3+13X7wvffyqowqNE3z8rMv7u8d/vYXf+f119/8zGdee/P177z00ouXJ2c7O/vaemOcc31eFvP5cr1e54Iv2ubk5MRHN2ob1zbBDMaxN0YpNSFOg0+ULrfZbAiiAOCciwDDKAlnGSXWmmY5jzFO08QoM8YQRhkTGJC1OtgYjUYIAcEYYQBwzn//DEaJKImwtfHx40ezWTvJIcuyuhQIEUYFQm3XdWpUQuRDP8p+QAjVTWI7RkJY9BBjRN9+65HIM8ZIWZYJOzXKyXhXV/MEpB2GIQk4U8JwUYr0H2utL9erqiqGYciFuH3rkFGhtVbGOueCByklpTTP6Hq9Pj09Vcosl/NhGvf397Mss1KfnJ1Shm/fucMFK4pCSU0pHfreW9c0TV4W0zRGgodpvNqs2/y6FKWUpnPUGZtwicm3kIbAZVkigimlmFIMoJVJ+oih72ez2Xze9v0gleKCpbTREAITwnqHfFp4+53lbuLiJmIwjnB4eOiCT2vmGOOjR48QQpwykWeYkBT1lXRYd5966oNHD2dVvbO7FIwbY5yx3gdCiAsuxujc9e8PAAGClFIrh1AEFPd29r729W88evRkmKaPf/zjQSll9HYY22Y2n8/zPMcYu+AZI9ba9frq+Oz08PAwfR5jygn23vfTGCNKd2myTs2rxjmHKRrktNqsXQh5nlPOzDQBgJQy+pDEPk3TiJzrQXvvq/LafHJxdXl4cPRbv/VbdTv/xCc+8e1vf/to/+hb3/rGs88+W7cza21GGGMiL4sQnPd2kGOCihjjyjLP8zwrch+jUgoFxCh1NiAcvdHW2mGYLi9XdV2uVqv3Prh/cXy6qKq/8//429aYn/6Zn+k2m6/8wR8+88Kzf+8f/A9ZUwMVCEh6giCEKHGcZcnGlwyFmSgo5TZoNSqKmcgzF4BzXuUlJQQgIhQZJzgGKbXWdpqGcRwxo8aYYRjAu1u3biXkpPdeVEXqMAjBaTIJGLVt60Jy2EVCCBAsJ1Vk2fpqZSbJOU+mz2SWSKyVGFC6Pikmj4+fCCH29vasd5Tiuq5DACllt95McviTr30tafiPjo7efPPNGzdu/qW//L+5f/+xj5AE20VRnJycvPPOWxGjtm2yTEzTVHC2u7v79a9/fWdn5+zswlp7+/ado6Ojp5++hzBJWCVCSLfZTMMwn889wMX5+TSMRVHM5u18sdBaW2MIpVVdnp2d3X94Pzq/2Wy0VEPfb7erftNdXFwcHBzU7fzW7bv7+4e7y13jTIzx6Ogoz3PnnAu+LEulJooJpTyJt5OsNGXRfPub31nu7ix2lpTSMi+ccylrOYQwbIdxHH0I1trz8/O9vb2szPu+7/u+KEqGSd/3Z2dnRZ4tl0vE6GKx1JOkhEzTVGR5nmdSyqCdj+GrX/3q0a0bt2/frut6mqbVasV4ro2sirIsy6TJ9y5uh37W1umRnXhBzjnv4v0HH1htlstljHF/f18Z7ZwjFGmtg7bSaKXUcndJCPEhGmOUMnVdy3EKzu/u73HOt0O/u7NwxgaIqUmy1p6fnT1+/LhtZgcHB9pZrZSWalKync/nO4uIgBGalAcxRhSAM+atI4Ccc15raW1elYgSKTUAECYiAjWMSclPKWWMoAiUYYwxJowRqpRarVZa66qp5ztLQlB00Xs/9kNeVuM4dl03DaNgfDZvAXAhCoQDoTHPswCAEb26ukpNjsizxE6pinqaJotiVVU4eIoZjth7b4P33lOKj4+P1+v1H/3xV+7cuZNSb4+OjoosT9fDkydPvvzlL3/0ox89Pz3brLuMs4cPH5ZlfvfOnQjAOX/xxZf39/fb/cX/6f/4nxZZfvfubQzhR3/0R+/evff40fFsZ2fWtElga6yW4wAQ5DjynGutwYfk+mnbtkwu5ADK6KKo8jyXUocEMPfeQfy+RyjGaJyNMabe0hmb4o8IAowxI8gYgz5MLQQU0tgmwTQIAALIMvHuW+8cHx+nyTYAwowUZZUVlXOBc26VBUwiwmoay6pYLNo8F1LK67oUPHrznePtOACELMsSi8THYJyNyQ2EAkDI83xWz87PLy4vV8dPToZhuH3z1nq7zotCGjNvZi+//LLSHWNitdpcnF8lMJO19uBwD8Ugx0lKmdzfdV0znh0fH3/329+ZzWZ7h7uAUFEUe3t7Uurz8/Pvvfl6WZY//ZM/VRRZ1/cu+M3Qj0oWhKUeLsEiuq5jhGptUIyJwZtYKsmCopQKEMuydM6vV11afy535tZaBGSYRkKQUip4DxBtjF2/nZV507R931dlXVUVxJj8AxAipVRbI4RIvNm0pi3zIh3AAPDVP/7jxWJx586dJKIYx5FS4r2nGFNMlNJjP4hccM4RwpyyZB3BlFhrBC/67WZ32R4/fvJrf+1vZkX+v/9b//HTzz59cXHpvN+OE44wq9uDgwNCiHHWGJVl/GJ1dXx8/OKLL8QYvQ9nZ2fzeXt4eJQ6uWvDPmHWWhyToN9rZ2P02hpjTFYU2HrMKOdZjHEce4ZJ27bOWyW1935nZ2fSSspJMLZZd//kn/yTv/W3/lOt5Xw+Twa7ROhVysTos6xIgVyYYTWNGDHnQsSxyoskRHIQXQxOO+ecc4FTQigyRl2eXZ6cXeSFGMf+rbfeGTbr//Cv/urvf/GLf/vv/N/run708MlnP/OZ3/yX//I7b7x5slodHN7AGDNCk/SfIouAhBAwge12OwzDwf6REDlm2BsfnAdMAsC1/9s5IQRAQChSQmJAMcarq6vvZx5QSjNO8zwXjCcaJTCEr8HRpuu63d2d+XKxXq8RwjuLBca4H4c0Jmmq5uz4xIfkpCSpZ824SOm8KT8n8Y211ru7u0LkABBpYEwkMoxzLjj/4OH9kydPHj5+fOPGjW9885s/8zM/85GPfGS7HQghiZyXZBbr9dU4jru7y7quCcV9t3348CGldGexgxA6OTu9e/eu0ppgfO/evbG/HrGmAbtzFlM6bHsAKKpSlIUyCkUoskxKmUZtm3VHCdlsNlLK99579613vueM/ZEf/uGjo6PHJ8eHN29EF7t1Z729eXTDOScYny8Xzrm8LJwzohCUcmeDtZYQWuRZiBEjdPzosY/h9u3bMUaGkLTWx4gIFpjGCI8ePUl7EERR0zQIwarvutX6xu7+5fnlk4ePWJG9+olXz1dXGRez2eyaO+gDpfTq8uLRo0dNVd+5c2ez7e7fv//cc88FiCGEncVSjhOmJHU/3vvttq/LqiobDy6VDunwSwzXEBGgoLX+0u//4a1bt24e3fDBLhYLQoiepIvBe5fMGpvNxjnPOZ+mSQ4qCbsQwSJjs9nMaqOsqes6hqC19talTf/rr79+75mnOWVf//rXb9++rb25e+8eY0wIMfY9YSyx2fWkjNaVyLXWwflIMaYEEMEYS6kppQEghdA0s0oIhiN8SEvNjNJSyouLCwA4ONzLi0IaTSlJKyqrHRNcW395uWKYUELKOtuseoiIMnLjcA+QB0CbboxBW+tc8Lu7uwAwbieKcZZlvZYxuCLLOeHeRe28lFLkmVITQiTEOCrZtu35+fm1QY5xxnjGRQghL7LT09Mnj49DAAsuWNe2s4P9/ePjxzGitm3X63VR5c6GfrudzWYY4nw+q+vZw4cPq7Z65pnnMJDoIsZYquny8nyzWWGMd3YXm82GYZLuvqKoiqIoqqbr+iS7S/bURKBzGDPG0HWOL0ijk+koCfE4YTH4tJJK/UmeiySWTv7gdGynq0UwggG9/b3vrdfrrus2m81zL7zgjKZZllX11dUaA5rNZsMw1VUDAAGFsszruo4Rcc6jN+PUU0oQw6huF1JKPUlNbNXUJc/VMC13llkG1nkMoLVsq7Ktyts3b/z7f/vbSnZFxjaby+deeH5nZ+/NN9/AHHaWe/cfPOq67f7OblHkZZVLOW5XW0IQZdgbc/PmTZ7nAFBkT7fNDDCy1s7mTQhgjFWTfu+dD/b3Dl/79Ce991dX66zIrHYoAgpRGnl1dZXOofSMG/uRUlpk2Ww2S0OklCiOELq8vOSEVqKYuh6cX7TzLMumccCUcJYVWbkdujKvpBqttQwTb11d1+v1OmEKCp+nrqgoCoLw1dVVXhZnZ2ebzWZ/f985p6Waz9puu7XBt237sY99LMuyScpIMAMoisJ6K6exqWpCaYGJYFw5nVw9GK5LXauN984EPXTdwaL5e//dr//+F/89AP6lP/Pzn3j1I+eXUTuTFUKOqh+3R/iIZ2La6qKumqbyEG/cuiGlNMYURX7jxlHdlGVZTNNknEnqdmsNxsjo4KP13ks1Yow5p1kliqJw0oYQClEYY7yJWU6DCeurDc14mm0QRiNCWVH+j3/37/3qX/4rVVEGZxNJcRwHBGh3Z2cYpXVK8ExZpyfNXeRMxEhQjAEsxYRjigFpJR0gHKEsawQ4RM8ZijGKIq/rutuuvXfTNP3IT/4pBe6/+vu//vlf+Pm//tf/+n/0a3/9h376J84uugdPTp969hkmOMXEKE05iQiCB++doAwTaNs2zVohRBwpEIyBIIJdCMZZBKEoCx8ghsgomSaZzjPKGWE0uJhlWYyeEeKcAQZZloUAlBNCyEZv5DAKIb6P/h+2/ZnWSRYbEVBKj4+fRBeOV+dpKcAYa8pqPp9XRcUBKCcZFbN5k9y3GON0HlDBEomTUeGt5ZwWZTarm+0wUMZefvnllz7yysXqCgAo8Oi8c05KKccJIhKMX12sEMDRwSHMIM+LQpT7O/sPHz+2ynVdp7RuykpLRRGui9o5N42Dy0TqyxP/T1mz2XZZmXvrlFJCMM4zb/3sVuNMmFWtdRohdHhw8yOvvLRs20ePH9Dbd7ZDjyI+2Nvbv3E4jmP0YbNa7ywWxjnGqImOQtRaO+1Ojk+rqvZlhRCqqvLGjRsu+EmpD3sFMM7GgFx0zgWeZ1fnF2+++ebLL7+YvmCnnu3UM2PM4a2ju0/fExnXWt+7fScvS4SQUto4m3HhrTk8PKzrumpqrfVyf+/O0/estev1OhciL4uMC+895QxTEkKoqrrMCyUNAjDG9H3vjGGMp/64KGvrVFkWf+onfuyDDz6gDDOUGWMwRlXTWqcjikmXt7+/b5QmhKpJRm9Pjx/PZnPjzThhNUlCcEAEIUIQZoRVVeljdM596pOf7oeOEPJjP/wjeZ73aiyqclJq062wR865tP/ajn2dl1Rwq83oDEE0FzxikouMYrbZdoQQnokAPitEUeTOWEKIh6iUQhAAhSznSbtgrAbkMSE8F8F6RCDV6Ic3jqw2KIA226at9WSttU+enJSVmDVzq822XznnmODr9RpCHLf90dHN7aYb9Hh+fra/s1sU5TBMVbNY7CxDki46J4p8h+077++W1fn5udYah5BQpgmq7L1vmoYQ1o8DyqM1ZrNa7y53YkTW2iLLsyyrls3TTz9DKWWMGquqqtrZPxjUWsqe0xwD8c4RQubz5WJn+YV//ztf+cpXXnvttdVmtdlsOOeIsMViURRVDDCfz41OgU48hIAxwhGs0hhjSgjGuBBZYmESQCggQDEG8OCdB4RjRGB98N4RhDHG32d9eO+9j95HiiEistlsQgjL3d1pmoKxZlKFiwHixcXFcrlM3X9W5GVVCMGkMmkyJAThmaDZLEMZ8t4udmfTNA3DIFUoyzKAfPTwnVu3bhVFZq3nnE1+MEY9frz51A9/9h//43+8v7/76c99dndv5+L0NMtpJtjF6eNlW1QFReCHfq1GghCCELz37WyBhbg43+SVLevCOdfWLUKIcOKDVUqVmXBa/diPfuZgd+fs7LyaNZQXMcYyLwTjsusp55949RNd1/VdX9cVISQvc+fcqMdMlIDoKOU0jcmLwoTgmFtrCWfIu0kOw7hlVLBIXdQIo/ROe+vUJAFgWc/61QQ28kCxRd6689MzhJBRerW9ihFlQ7a73N1ut/3YSylXq8uDG0eiyKJSSc/5nTdfV9P0sY98dLvdlmX5/lvv7u7uUsDTMCKElFLeeo6IAOaC9Sg8Pv6g3/TP3Xvm4vRRjIFn+Te/+/psuWjbxWuf/uzF+aoscwCQk6IIV1XlgkUGGEGy31aZ2FvuXFxcRBQpZZer1WKxyPJq3W1icLnIovfeBas1xJAXJcIAmFFRUkohxDzPCWATwXs/TdtxHCHai8sO7e3xgkNAjOJgnZ7kzZs3f/M3f/PFZ5+9fevm2cnxYrFDPOm6LiKgDG+7gRGOROu8QQHNykUI3jqJKHEWrLEWRUoRoThjWdePmPFgIYB3zkSPY4xOq+BUIbL7909eeO7pVz/2yt/6j/+Tq7PVf/S//Wv/z//mvzx9+P6rL780jf3h7k6dZw4QQChqgQEFZxitrdMxRoIIoQQDiTESitykAo5ZkRujoveccCFEcBZjQVjuvcOMgw8IEUKCNS4rOCGk68ZZXeV5GQFiRIRgIAAEqllVt1USMaEYx25LhABKIBO679uqrvOCAemG/mC+vHvjtrW2LOuSZxSTTbfqNpvQNFlWTJMReQY4huhjtIQQhJJGlSCERFVvt9tJalHXf+aXfkUIodQ0jZPTjjEWbPARvHWUoCxnMYLTSI7T9mqdEUZwfOXZF7773TfO0Kmg6P57bxsr79y5+8pHP2Kc8THGDHOSs4qjiIy0VpvVaoUQbLadtXZvb98YI73nLGsaigkM4xBCQIDqory5e9TXw/3777+tpfGuqgpOeYzIxbhZbRjnCJOsLDfTmGVZgpsSjDJBKHHzWTtNE5Ql5Qwodi7EEHEASpm1jmSMAcMYc0Q1aJIJurP8jTe+a4P9zA//EKE8oNjWjTM2EcEurlaPHz/e39+/9/S9YRhQjAxja43IM2/dXnmgnVFdN00TinE5nzNCICIgmEQUEaSJ6Hq1wQQBhggOAwKEcpGRqrLGOx8DiqYbUbAxR8t5O6s/kuJ4EzhMDX1CVQOK1llnA0LEa1eIrDlqvPeEsX7oRjlmVe69x5FYq1VwdVkFQtU4Oee99y74iOJ60oMdrbUuWO8jxbRoCi3VNIxg/Kysk7tpGibAtN9KiHi+bJWaCGGzuokxUjMKUlCMpdEBAQ6RePBS57MZUHZ0eBMAIPoAERyKFqL1cprS5pKR6FSPAIBiZAljhM1IjEIIEZw3XpeVkIpFBGkdY4ztu+18Pkcomn7w2mCEMMaiEIwhCDa4UBZE5NV61W+HESE0jFvBWFvPjTEhBD+4f/Vv/s0Pfe5zRVGUWUkIuXXjyHmbag5CiMizPCsAgFAcQrBaUeQpwjwrvLY2WIYzxliaBjsfMEYBWZHlf+aXfvnk5IRyRvh5Nd8t82Kz2RRl1a23bdvM5m1eZCEExJALDkVEAXwINsSIM4yQs5ZnwkjlXBSCAniEPQSEEYKIPswfJJhSqXVarIQQQowYGSmdEPlk/DjYncW8rIQLLnqLAMZu1baLW8+/cHZ6brxDOIxDX1clJSJ4jwCmaYgxhxDoe++9O5/Pd3d3p0lyzsuyVEpxzvf3bvzmb/7mf/1f/fprr33m85//Oc45IaIu22ef3b28vPzFn/+F27dvKqWuzs6j84XgWuvlfLHddigErbVSWggRrGOMWetv37npbLi8vEQK9X0XcSCYzeYtCT5ihAR1EHmVZ0Wx3m5ni7m1Nsty5xznbLNRs3mbZXni7c3nc2Ns9CFpjrbTVk2SEFaRom5yQG4ce84zaaTwQikJGDDGENDF6ryuZpwyqVWK2+OC7rLlMAyIEmstLTOnzbvvvh1QPD49ybJsOV/s3z6kiEopL6+ujLU5FE89/fTtu3ebuh7HUVRNhOCMvXf7jlF6GkYANFnf1k1Vls7ZNOGczWYWHCXcaYuD11o9fnRcFQVhzGNom/ZrX/vGd775LWPM3VfvvvLKy998/XXvY/IFGmWD81qqvtsyfo0x0lpjBABweX7JOc8I67sh+bl5TiNgljEh0jCcMsYS41cIwRjXUimnnTYAkGawxlptTIo8S9FJlNKjo6N33nnnyZMnf/Nv/I3z03Mu8nHsnQuAI+MkxDiOE4oyrxrKkIdrbjsijDESQyiKBiGEEdXKYoxzwYZpRCh4DwRg0pP3ViulpNTGTdP0y7/8H/z3/92v/5t/+Vv/9X/531RV9Y1vf+e1z37uhedfOju/2j88IJR6ZxljMfo8YzQXIWJQses6kdJ2EaqqCiM6mk1Rl9qYFJwXAiBEvPcYBa0tZTjPc6dNalUJIYwCIehgf5kwUklp1a07IVjTznzwnDPrnVaqruuiqqRUZlKkbhbNDIfICJ1VdVPXq+3mar1qmhnGEMAra0YlEblOKMMYYkRFXQEApglx5zHGwDHG2EPc2VkmD3oIMAzDNA0pJSYEN2mTfgLGOKvK48ePX//uG/O2vXPnzgdPHl6dnu/s7Foduu7hbFZ/9KMfPbhxoyzqbtOXVV6UWcY5AASEMs4xxoQipWSMMJ+1AAAhMEIJwgTHod9IKa9WF23dDMOQ8XwcR6cNFdQGn1PqtLFKZ1nhtDaYpGvbOzcNw9j3qTcFyiOCgNHiYK91zlvPOR+HKSsLRgnx10j64AICiD5gDnkuAmezpvrFX/wFF/zufC610pNaabuzsxNCaJpZ08zatsUYa2OMsSxlB0kZERBE+r5nnKYZ2PnpmdUmz3NKmSACMPbKoUBCCLOmGYbh/PS8rqukk/feY4TzOnM2ACZKqWHbKaW0kd77xM4EAMa4BUsZxxQ7YxDBwdkYAiDYDLJpRC7qk/MThKJ3cH52leclQupDmhIax3GaZNpERAc8Z8MwzOazPM9DgHY2l9N0eXHFKGWMI4T29nb6rcSR9L6Xk1os2tmi4YIZq0NwwUdrfUQAAMiHgomAkdY6ulg1tY2xKDLvHQAggAiAMd5ut0brtm2T5D4TAiGEMHYuVEWZBnKpSWWMTHKglB4cHDDBz87OU1t5cXFx5+YtjPGtW7cxZZcXV7wfBjnt7e3FGE9OTvqhe+qpp4qy5gxJrdq2wZjGgDjBAfvg/Uc/8pHT45Pj48dFUdy9e/eVV14JgQeIAMH7FMpLEELehRCCyAsUQ5pUeR8558nVHSCmUxARnPLjQ/RHNw611rs7y9RhJ9sYoUxr5Zyb1JjnecJlWGuREARjp7VzzkpZVVV0KTkYO2cZBYQjRth7Dx4YwcapNI/Os2vJAkSPENLGRIhSjnVdtsv26urC+ApTWlZzKad1txmUvbrsNqs1YRRxyilzzmkl0wY6yzinxLlIX3np5bQyLJclpeTx4ycUsd3F3le/+lXK4M//hV9p6oWU8sEHD9u2xQA052n5//p3viuEmM9qC6FfbYwzl2dnGOOqqvK6McIkVdTrr7/+sY99LIVpZ2UmpUQUBBeYEIRiiCFlQsCHWU5lXoQQXAjjOFHGJqXysgCM+q7nnB8cHMQYU5wqQshaS2Psh6FuZ4yjGC1CMc8y7yKlRGu17ja37twMIazX3c7eTowx+lA3Zd00SkqEEEAsiiJitNluiiyHGO4//CAr8vv336OUXs7nosz39/fb2Xy73T733HOccxscpXS9Xic1aSL8IQTtcufi4sJMSsahbVsaUQiRUiq1csE7sMZa4wNyociyX/yZzxvjKKEuOOTjm9/9znazAYDPfOqTl5dX1hpEcBoWZTk3Vl2tLtpmBiHyXBBCvHeU0mkY501T1401lpel96gqcoJp13XTpNJqM4WrpFVx3w9pFBOcRygOw5BkBdoowhmiZNIqem+tzaty0urdd9//xCd+UE6aYOaC5VQQhodx++DRBRcsF3mZVSgChEjIdYY8ZngcJON5gFhlxaSmqii1ls4Zgrw1Q87rruukHDfdihBCMLs8P/mxH/nxf/vvvvh3/5v/9ld/9a/+6l/+K+8++GCQ5qWPvHrnqbubUQeMUAiFyAACQiztYAKm1wgFjH0ICCCthPMyQzgJUlCe59MgJ4CyrI03hCLvbbBACPI+WKtSxkvCKUipCEGAUQBfVBkASoFdKe0xAFjvnfPROyH46vIKR6jKUmplrTXGjNMohNhuu9lsBhCllAFFQMhD9BATXq1sSiY4UIIQwiFqrYuq1FoTQi7Xq9XlZZ7nVxdXCRLCBQMA43xUHgChgBEKVqq2mbV1rfrxy7/3+weHex88fDIMchrVrVu3Hh+fvPrqRwUVSilrvdZ6HmdW26LICSGbrvfe10URgk9bYe+9tbbrtkopkWE96bZt7aRO+/7xw4c7O4s8z1dXW8LZfD4DHJXRzqXhgQOALGYY4xA8p5xxvt52jDFWEkyIMiYVfA8ePmzbdt62ymiKSc6ZsXGapmrWeO8wxhGCc44QNk7ypZdeYoxpLffatifs9PyMUpbeBQAQQhBADiIT3FubojPlOJVlEtrIoihykSU6RC6yEKJRmn54qkUclTTeurIsMU4bCp+qRiklCtH7SDBOwGGt9Ww2U0p9CLKNmFFKqTQKMxpCcBBFzp0Ls3kLESNGVut1is+7vLzkfJg1hRACM7bdbpumCSEcn5wIIc6Pz999/71XXnklz/O2aZumWV1tpJTn5+d3bt/OWH5+fn5yfEEIsdpYH+u6vH3nxiilu/a9EBVUAD9KVRdlLnKI4LXNCA8oGGuBEeO8lir1P1rrlBVwfnLxzvferaqqbReauRBCCqDMSzGOIyGkLitMINkpo/MWAiH0xo0bSZJ28+jGZrO5OL+YNtuD/f0iy956663nX3xxd3e36zpBqGJsvV7HGJu2KTA3RkOMCChBZN62s2r2xd/5gtZyf393b293Nqu7fpPneYr7ZZhYa30MBDMAIJg65xhjmNIQQpGXqVH2MWBCEMaAUDI15VkWo/fWY4haTiHANcmOMamn4HyMngMVghEMlNIscmNjsBZjjCNwQp02iYuMMfIhuOApIUCiNz7VXoIWAOCNIxQFDzFGjBjCJDAXYzTaCcGyQrz55llrdLuYS78dhiEEd/vmLT1OGafnlyvE6QsvvCCEoAhzzjEGRhCKkTJMGWMZpwmvSghZzHfS6fL8889/6rUfRAg5G4ZBQUTOGICYurFpGpRSdVlWVaPwmPyFxtk8z8ZxHIbh7bffvnfv3quvvvriKy9XVa2USiEKi2XrYwjB5yJLl1TqwwihKKAQQm8GznmWZVKpvu/rukaErjab4w8e7R3sp8jupFhLz1+GaJ5xigPBEAKimEzKII8CIZRSQsgb331zNm+TLizLMohoHEeYxpwLo3WKLdpsNidPjvf29qzS68srlolf/uU/d3l5/omPf5xlubXWaHtwcJDsSXKcvPdVWTrn9CSjD87Yvu/v3r2LMX7jjTfq2SzlvwLBAEAQNkoTDJRxgqL3psDs//3f/90//IM/mi+XgeGf/ek//Vu/9a+quh76/m/82t/kjJEAAUVOWUrzJekayVhRFMFHbTWKsFwud5c73gc1TihEiglFEEKwVibfoXMu1T2MsaqqxnEMEFMO8TAMelRN04zjiAhJSXYIobIsJ9nvHx2EEN57+539/d27t5/qug5CXOwtQggxhLKqZlZb77kQ9axJaR9KGYwx5zzxUTFhFCNrLQKslEpRIVkurNXOaEJQXojHT4Y8K0We3b33NBP88ZPT3/2DL3/2Bz/xG//sX3jC//L/7q9/7tOvHZ+c0yyPiACmMUZKGSHIB4spDQFLY9P1gzGuyhKh6J3jlLoYrl3wBEGMGGNKIUmfJjmE6BhllGFkIsKeZ1mCAjZNfXV1lagvMWLvwzRNKb3AWgshaqlCCJizD2VuTnuHApVGJ6SDtfbg4BBC6Ptea80z0fc9pSxNsZIth3MWEbbeJT3/6emJsqYuShRBSnn8+AmlDCHouq5pZ0n2n2WZMhoAbzcdxghC7PvhD37v94si7zarH/7xn0BAjo6O7t6+/c477wDgddcppXZ29qilRtrebNWUL3eXgCKiWBntgvdKJoYGijCOY98PjAOl1Fo9jqMceyFYNas454dlExBMavQ2NLPWGCNEESNKrvQsywAjpbXSmhCCKRmnycUghHjjjTdWF5cf3L//87/wC8vlchi7uqi6YbTWUs58DAlHk+U8z8p+HL33pldVUbZ15Xysiur5p6tNP45KNu3MGWuM4YTa6EMIGJP0wmZZLii7vLwc5JRloqmqtm299z6G4AOl1Ho3DhIDQjH2fV9UlcizNBxSSnXd5vT4RFA2m7Wry6vnn38eANq2pewafJasg4wx4500OgTvnEtR85iS6J1DdhyGgN3u4bxbr5y3B4fL5XJ3u9mO45hnJedYSaO0FUJ0wxYRvL+/77yJAN/81rfSZCWEcO+pZzjLOOdt23ofYwxdP+R5zjndbLqyrgIE772Usu97zrMbBzes1QhTyrC2BgFghJTWFHOMMWPUOWe1RgDOWEbFzs7Bo0cnH3zwWClFEXnttdes3YQQGIcbN24gHIdxm7RIacqa5u3J5pdiad54/XvWWlzR+0+elGX+2uc+Syl9+OgRQohy0tDmWmRuPWPMQwwR5DRM0/Tuu2+LjB8e7j9+/Hgcx34c8n7rgj+68f8j6k+DNU3S8zws98x3/7azV51TS3dV9d6YGcwMBhQJcAEhwgaXIGUQNBUMO0hGmKZNmiJpW2H/oG1G0ApFKExGWJIdMvxDcggSIAqkBIoEAQIESGIwmJleprurums9dfbzre+Se6Z/ZDUUUT9P1Dnf9+ab+eTz3Pd17zLG8jzvOwkhBBEgCAOIhGJBeLqsM8Y88BABY51zLqM0QIAxckrDVwcHTNkJMESKiIshBuBDxBEILuqmRAghEGOMEII840BHk0LTI8izrO265BiMCVrpfYCpDrDJ5YgRQRh6HymlEEcAkPfRuwAhBiAyhpyxACEucg8RIixYLzBupiM3tB9+93f7fqjq0e3D15rxqMwLDBL9FkIIAwAgRnjR9nmeIwBWqzWl1GjX973Wtiwa523ySCGI27bPcwEAWCzn8/m8aSqE0GePHo6b+itf+UqWZSnM/OXLl+NJ88YbbwzDMAyD976sS0ZoCmujlDLBvXfGmIzwYRhSG1BKGUKQ2hpjeMEJIWVZOueUUkVRxBi7rjt7eeKcm21vpZ3LW5fgrlAr640H/uDmfgDoiy+exQCtMsa4/Zv7GONeDpzzlIIupdT+1REuhJhfXY3qBiH8nd/93aYsMYAnJycffvjhX/nf/NX9GwdWG0qp1AohnDxLyUe7nC8IIfs3Dpxzi+t5EsgkeTbAkDFOKWGMGWfTmZQUsCQAQEiEoMgyGsL/+d//P37y2cNv/87vyEFRQpngk8nk9PT07/7dv/uNb3zjqz/0lZPF1WKxIIwZa9uhH01GCKGiKKKPEMKqyCkmRpk0pNHKFnVeloWPiVNKKGFSDV3XJZ8+eZUQBZNVBkLYrVvrDBMi1Vt935+cnH7961+H0YUQECIX55chBMF5jHE2mWJOhm7QWhdlWdRlCMFIHVysipG2g9Y6AlIURUTRWhsCDMAxJkCIfd9rLUFwnFPGKQIIInJ9fX12dkY4uzi/yoq8KKqvffUbv/yPfv5f/ca/qEZbP/FTf9zB+Mb9+/OLS1GXGGOKCcaYYpjQVwihYTBKqbLMY0y18KuMEQywBxEixBnTWhKIIMHee4hfceaSgRjjV0BQHaxzTlDmjBuGIb3zyaOc7EMwxCSgTQWcdFoIQTHxPiRVfNrsllfzQcqbN29SRoZhgABRwQOINjiGacZzGCJjBCKACEGEyH4oirwb+vV6PZvNNqv1ky++yEWWYuSrqiKUCiEmW7Odnb1Hjx5dzBcUQefNDz76+Jvf/BaBSGt55+7twxuHWZaBELwPfd9jRE/PXp6fnwteAgDyXEwmE4hiPWqyIvMxptVYZNlisbi+vp5NpqvVahjkaFxACNfLzcXp2dZ0duvWYdtvtJFaRRcDF6Jqap5ny+u599Fbt7W1lcSuWZZRxtddyxibzKYUY6UUjHHajP+7X/pHN44Ov/71r12sVy4GFAHF9JVamHNCSLfZIIKFEBAi7/3Q9d7YqiwzLryxNvheSQ+iyLNcZFpr2fWA4mSxK/PCWluIzBizXC7XQ7e1tUUxBiEQQhihIUQIYdsNAID1coUhquuaMLraLGOMjFIAwPHxi81qvTWZIoQopru7uzJYjHGKH16v16ljxDlnnHvvQ/QIoUEphBDEeL1eIwTTfSCE8OTpF+1qubOzRwgpeHFxcQki0taMRiMmqLUWUYwBeuVCjD5lGjLGnLHeAQzRdDqllGZFXlRlt+mNMYLRTdeOx2OIAULIWp/GwzACF3xelZPJKN3gEYQxRkAQACDGlEMf8yzrNwMIARHCefb8+fPr6+vVfJF+JssKafrd3d2t3Zm1tm3bpmnKskzbcggh7eF5niNI2vVGKfX85FgI4ZyBEAIYN5vNwc2beZ6TGBjNKMms9SGE6GxEGCFknAUgtOvNt7/97dPzsxDC7v7e4eEhjvGNN95IppI8z1PMAaM8wKC15pyKPCMId12XcmaX683Z2dkbb76prBFCcEKHvnfGAgRfpU2UqcR9AAEAAElEQVQAwBhTUgcQXYgEgLIsU5ZX37eUs9RTdCFACDnhAAAQo7UWoIgQQpDGGAAMCETOs+D8qwMYQ4iRNkMyQGJMggfeR0q5lH30IeHtLq/nV1dXQy8FIVL2gtOnTx8bpfKyfPPtd8pRI7KqLIqMi5wzhFBE0ccQQoC//eFDzjmEcXt7W2vdt93e3p4xTmt7cXEhBLu6uiqKijEWY+qVs/V6rYyOMW7a9snTL7z3ZV6MRqOdnZ2Tk+OvvP9DN2/dQAhRip0LvewRgMnFGGNMtX+MMeW6WGsFy1LBld4r54wQoiiKBGJEGGOMR6ORker09DSJKS4uLoQQMMYQgt50ZSW2t2fPj08I46cn59o5QgjD7P79+5uugxA2TZNl2WKxQAhBChMEKji7u7s7HU9+8R/+N814PG3Gi+t5sO7mzZsP3nqz7TtCiNUGYkgpS/dINUiE0KNPP8vzfPtgDyF0fHws+yGEUBR5lmWHt46qqlpt1sMwjEYja+3Q9d46xhiBGCDiY9BqaKp8ezo13j579sL35u//g3/wj/+HX16uVltbWy9evBhX9Z/46T/+h//YT955/TVEiAMRU5wcPNWoicZPR2NCCCUEQtj3ffCAUhqBxxghBDCm1jtG+dOnT0NMjMP0Mr5yKEEI8zwHPlprCadd1zHBq6L8r/6r/3o6nT64dxcABCLcrNdN0ywWi6Obh3meBxCOj18CAPb29iinbT+gCAiilHIu8MnJCWX5zvZe168YY0YHyqBzbt32o9EohOCt7ft2Op1iRodhOD0533Tt0xfP16v2/fff39nZySj/f/xH/8HDzz759/72/4mIPC+zrek0OJcVRcq5wvCVlDGtQ6uDUirPhciY9z6E9A05TjJCSERRShmswRhHECjnhNCkQIEQAwAwhhhjQrAKLuOZ1drb4I1dLBbr9TrP87LMU07270Fi05TEBQdCXK3Wbdsm+OLdu3fn15d9p/IyBwBUVeFtUEYjTLb39jGFznkMScZ4jN5YjRBilCOK0x0rzQhOX74cuj7Lso8//sEv//Iv375z5+tf//rNm0fpij8Mw7of6qpQSg3DMKrq0WhSFJnWUg7Dl2mAHkZICc+yzDo9SB2cn8/nxhhR8LppiqIYTUabtuWcSykvLi6Cc0qpzboty5JQaJR2zr08Pr7/2usQxrZttZamt3lVbu/utG1rvFuv2jzPp6Pxot9ACLtNa609uHHz8PAwQFAURYwhOFcVZUEJBMB4v+g2RHApNYwARYgZVUYn24wzVluTZVmWZd2mD9aFEGQ/FEWBY1DWYEp4kaepXgjBKg0J0lpjShmhDBNjDESACaGcE4y5VDPF2HdDCAEj5LzHmC6u51mW3bhxA8BgnVNKWWMuLy8vLs5z8ap9jSLEGN+8cysV/amHdHFxkdr1BOEElnfBJ8akc86DmOaXlNKu61aLq/V6bYxpqoZz3q43rzi4jFJKAYQh+uC8MrqqKozxwcFB3/fGmO3t7bOXFxSTdDdQRgcQEyFus+mGoUvAtb2D/SzL2raFEANvmvGIZgIRrLVmhBKIQggueoQQ8BEhpJWCEYCIGGM26OhD0t9KKZ88efKvf/O3rLX1aPrD3/zazZs367qCGCGIEYRpKNN1XRqpGmMIwhBgAMBms3n27JnSg7WWMTqbzQghOzs7LtjooRysHMz56UnTNMaosixJxmezGaU0y7InT578t7/0j1977TVISM6IlPLu3buM0MlkgvErRi8kMb1ueVmM6ibGqKVar9eUcqlVnufOe6UUgrAsy+iDD9E6k2xmQogYUpARQcETQkIICcoECWScW2sDDDnPU29Ja00w1loSQhCkxmrGCACA8wxCmFQaykjGGACBUORssowH5yPnPIYAQrTWGmedc3JQwzAcH5/0fbter8eTUZ7njHOe51mej0cNRZgzkmUZQdhHBwCglMKPn5x77yCKk1GTVljqfTtjN+0qy7Ju6EFEbdsbo0TGjA5SmYSwGI1G8+trznlRFAcHB7PZBGMo+0HpIYA4Go0AAIMakt4haaZS795674JHAFlrE5Az0RWapvHGpquekrLv+8PDw81mc3x8rKWaTCaz7a3FYjFIiSDo+54grDfd0dFN6/SjR48ur1db2zvKGimHYZDf+ta3+r7fbDZKmq2tLcYYAIBQVFRlKjwnk/EHH3zABJ/MZt1mowY5GY3vv/Hg+OVJegkJIXVTpSWbZRmMQEvdrTfGmEGrZjy6uLiIMezu7i6XyydPnty7d286nQ5KYozzPLfWIvDqQfoYMURDryCKAIG+bzfrdVM0H33vg3Xb/uP//r87OT+7deuWUur58+cnJyfvvPnWr/zar55fXhBKXQzJOY4BLIqCUdr3/Sv/oo/OORcihgCiyDlzzhljy6I+OT2mlI5mU631erFs2x4hNB43qdCZzWbaWSmHTdfGGKuievnyZbfu6qq4cXD4wQcf7O0dAACapppNpj7YdCHAiFZNPag+hMB5lkz4TOC2bUNATdM4LxGABHMAkNYaoJieLCS43/QYY8KY1Orp0+eY0sVicePwZt/377zzzs/9g3+wd2N3sWm/+rVvXpxf/ujv+2bft0KUsl1xzj2IUspk6Uvuz2FQMUZKMaXUGKOdxYjGGIPRWZFTSk9OTqIPnHOIQZrjpljA9PdQSkNwCKGAIYSQIMowAQCsVqvr62tCkJQ6GTQF4xhjbWRiQSOCnnzx+PL8sqqqbuh3drYn4yY670E0TieA/nq50tpmZTWZbY3HI4SwMS7PBaUEQmi19t4zIWKMGMJhGNbLlXPuyZMn5+cXRVXs7+/PpluJk5plRYyxzIukKUs2sOVinf42QhEmTOkBY2StZTTL8xKAwBjDBKbd3zqXdnnM6Pb2NsY4MeidMRcXF8fHx8vFSmu9sz2t63qxWGxtT9v1RkrZlBUCGCFwfX0dY8yKfLPp1uv1aDLbbDb1eEwI2azXQ9fPZtOyrt56662u68bjSVWVEQIpJUE47fjrdkMx4ZSdnp5VTb29s9Mr6bQhhCCKCcQxRqNsstrP5/M333zTWR1CYIJLpfKqAAB0XUcIoRgPSpV1BUIUjDljMSVSa4AQAtA5ywgJIVj9KlY53fgTbPLLCgwghBhh1pqHnz96+fLlzZs3l8sVIWRvb48QXFUVQjg5d2OM3jtKKXQxLY+2l0VRVE3NBFdKWe2Y4N57YxTnVGs99H3wYDSupZTB+bqu0pewWK26roMRTKcTngmtdVLJcM53d3ejj+kzMsYwJVwIjLE1xlivlNJaLpdLjFCM8eXx6Te/+c07tw85p9LaoZfWmCwTRHCIUQDQW9u3HfDBO4cgSa59ynDqHSatX5nnv/Zrv/bw4cNRM/2Df+THEUIQgsTQhRBZa7VUX9a7sSgKa63W+vz8fH5yeevWrQj8b//2b1NKXAx933/ta1+zMPb90NTjvu0QQnmeM8aePz+ebe/s7Wxba7uu29rami8XeVHFCNp2A2Do+x4BuF6v87x8/fXXjbYx+DSeGKQkGHPOQfBlWToXqqpK1WpSpxd5SSmFBHrvldaJQ+JdMvqDNFvRWicj0KBkhAAhVOQZJgQhlNqWCKEYnPceAuK8Td01QljCXSEEggUJIpvufpSwdKhLLRmlJEIPonHWeQ9i1Mlj5H2CMyJKnPdZllFCBKWMMUJR9K82cxCi955ATGfjMcbIOg0x8t4Pw2CMCQ56H5yVLsCqrGJg1/pqtVKQACp4XddKaYrJ/t7Ba3fuOmMGO7RtizGEIBBCjNF92/oYiOCUc29t0ukkrH+CBLkYyzy3mPSbFiLY9z2MgXJe8lwOfUpnevHs+ccffxxCmEwmfd+7c2+sdd4Ow4AhUk5RDDCBjBfBxZ3Z9ve+9/23f+jdvYPbP/jBp2cXZ6PR+PbdO8+ePbNOv/Hm/fPz82gcDmA6nnRd993vfLdp6unO1rptq6YJIVTj5mp+jRnZyK4qyqzMeykRQkwIgBAEAFNMOEtyWRDCzs722cX55fVVgiV579Ugl8vFeDxOWgBOmSceQzRfL3Uvm7xSxgAMl/OV6vqPfvv73/nBh+O6efbs2Y/+6I+eX13eunP73R96v2zqr737vlJqNGoQwlKpUdMkbF633iTPuFIGU962rQuRctZUdcpORgiBiBaLVVOP8zy3MSBEKOVVRWazmbfm8vKSMbZetzbY1Gh1xq4Wq1FV727tbs92Pv744+Pjs7fffA8AAEDw3kOIjRzqotZaJ8gfY8L7CEKIMBirZ1tTZ2PXdZRAiJG3DmPureuGtmrqYegCRFVdaWWVMpdX1wAAKdXW1nYKQicIv3z+5P/9//lPf/GX/vHx8cWdu7chcDmj1hqnlZHDcr2ijMHg8zyfTadSDpSgGAGEMUVThBAicMZ7ToKUvdakrut2vYEQ1mXtY6CEKGVCeKXWDiHECJVSmCCtDKfCYpwqv171SqmsLJK1P6EoQ3R5UWBCdLD1ZJLnRVXXAQLnrHc2y/n55dmLFy/KMr9z544xamtrO69q4/x6uTzYv4GxNc72RlZ5gRiF/tVIWGuNIWKMW23rstaNPji6IfL8ejnHmIyqkbW2Ksvg43K9ynNBqEAAYYayPE9b6nK5hshrrcqy4jzzPlJKlFKD7CaTSZbn1DmWiZOTEyNlUi0wxo5Pn6fx25sP3lwulx988EFZFDGE6WystQQgeGM5FYvFAlDIiiyEAAl++uLpZLplgllsFi9OTu7cvi37YW9vr99snpydC0yrUZMhVhQFzQSB0Fsbfbi4uJiOJ188fPTs6VNCiHX+va99JbktxuMxjlhriSG2RkEQKEE3Dw8wgc4CwqhzdpB9TEYGAAAAGIJx0/gYEcHRB0qpcRYT6F3ElARnjdIQQq11jDHLskrkRZZDjNL0FGMkmCAQuRgnk/H91++l1quxdjKdjsbjGHyaN9V1c319ba3d29s9Pj7miHrvlTKTyYQwRinX2g6DckrN51dbW1vemXm/BgB0my7BK7z352enm03RVAVhoi6rLMuc1BQRRpgaVJmXWZEjBNfL1StIESUheEpYBME6H2OAMBZFtr+/u7u7e3Z6enZ2VjdlP7TrdpP7nFJaCNEqraUCBANEEMIuBEwJAN77GCHQxgxWZzGPERHMjAZCiNV6uHf/7elsD4E4dD1j7Oj2EUJQStW3/dD3IbzqwSbzeupY3L59G2FqCZxOZl/70R958uxJjNEt4PlqTjA9PzvTW+r+vddijO2mV0pdXFwxmt08uBFdnI0n3tjZZNpLRSjdPdi/urrY2tkJzsy2t4wxzvsUeEAJ01prqU/mV23bNlV95+iWKPJhGAhECMLt6Zb1HkLYDT1HLAJAOMly7r2nFDpjIYARw071pycnDx8+TDc3QogLfui7ra0t7T3hzMWAXMgE01JBCLKMJ09UBMAawzl3zlCCYvQQYpj02sFYa5FHXDAQYAzReUcIwYRgBDglAEVjHKWzEFO2ioAAJM9FjBHC6GFMTI8IEcMY/rf/5Dfuvv4a/bLPBiOEEIIAe9X6EJVSaXSaro8AxHoyoYR0y3WyVHPOndIEYUJhUZaprAAYdd0mAp/neQLOaWMgwalxXZallEO73mCMy7KE8VXP4fryCgBQVjWltJPDZrNhmKTxG4JQKpX+GAjhaDQCMV5eXl5dXTmpqqra9N2jTz/72le+dnR09Nmjh5DgG4c367peLTcJvU0oeueddx4//kJAqoxGlFjvYoyJ8goh1NF/8uFHbz54wDmfbM8wpYQi2fUeIs55jJFTFkIgCAUXTk9PiWBNVQEX+r4njAYQnz17ppQ63DnotKybsbcOOB+98wgY72IIeZ4DENPAdXG96Dftixcvm/H48bMvbtw4uLq62Nvb+wN/4MffeuMtIcSy79t2HSEIzsMQjw4PrbfKGG8ciNGb0LYt5/zi4gLguL29TTD7PUUbEzyEkGb2LgLVq4SbDsFRwa3Ssh94xiCExruufxXEuz2dSSk//uCD127fUXpQSrFMHB7ddh6AEBGMyZhPKY0ARQQp4UopYxVGVJuUWYuc0WUuYozdRi6X80HJne09ECOMQBmJKRo6vVwunQ+Q4LIuYQy3b9/+6IPv/dNf/u//2E/9T+vR+NNHj//QT/7EarHYnow3i7myA4Tw88dPpJT37t2rmjrLBAAAIIoxDtZZ69uh55wCHxBCQRkAgMg5zzMAwDCopJbPeZ4qJAwBxCCVgIQLGqAxRlvzirZNKWNssVhwyhBCfd+ny1Nqh+R5vuiXyUstpWzXy/V67Z0ZjUbHx8e/8Au/8GM/9mM//PWvn11e7O0dTJoRIURaVxRlOjzSA0okB0qR9361WhV5nmWZN3a1WimltNaEsK7ryrqBEJRlmeKPnA1VUXDOjTKLxWI8HocQzs8unz9/PpmOvPdNVR/cvJGEY9oYhvH+jRsQoaQuOT8/HbS8ded2cD4pAE4vzlPHOHoPY9Da9n3fFPmzZ09AiABBUZQAgKYeJzG/Mvrp06fJFOucjcFtNhur9Gg0WqxXMcDRZPL2O+/cunkTETKdzYzWQ9eNyurps+d5Wc9GzWqzXvXtk6dPR9PJdDp1zm7PZkQIb50eJIgxHZkxRpgyXEE01gYIAAB5nqfOB6LMh0AoIoQEY2KMgGDMKEVYa+2MZYw5YxBC0QfnHEcUM+q9t94yxqRW3jpKabrtJU1At2mj88ZYZywvcyHExdWlNi7ZwLa3t4dhcCoYo9IYy1h1+/ZtSon3fr3pF8vr2WwmhOj73ii9WCwopaPxFGO8XC6Hri+qcmdv1wa/XC5XV0sIYzf0e3s709lkd3f38vzCauuC29/dQwgN3YZgFiCklGrjHHQhRGPcaDTKs9JYdXr8om6q2XSrLArBaN8PSTylnMmyrDPGOad6FUPQgyQESSkZJZSUGOO26xNnNxM8BHd2cnp6fvL6vbuvv/6a1WY0Gi2Xq/Wmo5TG4BBCMUBrfVJuWu/KMh9PJycnZ89evDg6Oso4XSwWo1H9P/yTf/Lg3r2zs/OuHX7iJ36SQFSV5fc/+OiDjz5+9713dnd3KaV5nvdyQBgraxBC6037+PHjyXh0fn7+1ltv7e/vD4M0xpBAKYMRuBRO1XXdxcUVhqCsmzQDSgrThIl1zhmnKWcp66Kuy+hDat1bGyGEl9dXX3zxxXq9Ho1Gu9s7zjmeZ+NJQzFBCPFMUMIhISEERqAxJriYpLvWWkoxACDoPssLaXSIkDFGEI7eE0KcTZpoGCFIYYhp7xUk+ggBQM45ggDG0PoICScYJn6U1QZj/OV5CuDD5y+nWzPno9Y63Z2tNhiirCil1EprY0xSS1VVhTBwIbTrdcbZdDqlDAMAEIAZYT4CY8ygVPquIYoxhmSDQwQba7WzaViSGkHWGqNUIv5baymmnPPlcjksNxECY4yLIdnRFovFfD5PWcJJCJP0WRjj8/NzDOF4PO7lsFos79197aOPPr51904vh08++eTNN9+8uLiwxr/77rsABoTQ0dEhDvDs7GyxXqWUGAjhZDR2zgUQNqt1meWiyCezKaFMKQUB8DBCCFlKlmWMYtL3w9PHTxBBZV6gEKfT6Xyx4JyXZfn8+fNA0bgZaW1gTC4g/fz587Ztd3Z2meAAxE3XKqWeP3sxHo/PTs53dnYWqyWleHt7+8d//MczIbp2MMYYpxOmWHb9eDQ62N8dpALolU/OaK2VjTEiDBjnMcah7znLCKOpw+y9xYymNlq37hDAAcSu2xBOMsa1tloNRVFEAC4vrxljR0c3U9LL3/t7f+//95//F1tbs9u37/xf/m//162tra4dlFII4EQUghASRhPrO4Tog2IiN8YVVRmc5eLVLMoo64LHlKKIvHNSyrZdt31HCf/00089iG+89aa1dn9/F8H4N/93f0Mg8n//+//Rr//Wv7r3+oOjg5uybQnDq82myIlSatN1SccOIWzGoyzLvAOUEKWUkiYh1QiGAAAaYITAelMUBWaUYdZ1nVKKc44Q+VLDBdJZS7iQm856l8ZFqTGVHBqppZEqYu99KsIghADHxCJdXF+fnZ1dX17cvHmzKLPrq4X3PsuyCEHZ1KNmcrC3xygnnDnnrLXW+nS6eG/btkURJKVhUtSnVy9poRNG0ToHAGCZCMEH4O1gnXN5JpLeJNVey+Xy0x98cnR0lH71ZDLZ2tq6urqaLxfjZrx3sL+1vY0AttZu2pU2ZjQdxxhRhMMwEELaoX/y5LFgbDIaMy6Cd33b9UNLCDk5OTHGOB/rsj44OAggMkbbtm3bdd/31unjJy9ijARhGOLu7u5qtTq9uHz77bf/3J//2UGZCCGnTHZdDKHvhqv5IstY2TRZka83m4ggxphz1ratMbaqKkFZDAFGkGZbIs+Gru/lUDdNVhaEEIbJerVarVY5L/b29gL0gnGKgHPBRG+c1dZyzkMI6MsUufTInLHDMPgY4JfxLYzRJEgEAJRlGWMEITrnVT+UZWm8S9Khvu+Xq1VVVQAABKGgWQhhsVgMskvCe8ZYVVVKW6VUmhkDGK6uri4vL8fjceo/ee8vLi76vs+ybDKbAowef/aFMYowCkC4efPmzZs3jdZ1XWdZxgi11vSbFmMMMDbGhAi7ofXeMyYynp+fnxujDg8P8zw30VNKjVRlXmQZl1pRwXXy8xsbQgg2CMZDdMMwSCkLUSOCrfXamPV6PZmOTl+ezGYTqfo8zynhH33w4fb29p07d16eHZ+eniIArfHDMMxms6Oj22WZU0ohRhjjTdcCgJKNTWs9qpv1es0F/k/+4//Xb//274zH0yITd45uXVzPx5Pp63dfe/udt0ajUVGVIYQU56edAwBorSjFZycnxpijo6M8K40xCJAsZxBG58xsth2cXyyutdY5z621EUGI0fHJy9WmG03GQgjTm7LM00At54IQ7KxNss0kg8WEXF9fD31vrYUB0oxDCIXgjJPESGBUEEJicKmRRiChlEIEfHQhBOg1JCRC4GxABAvGtdZptkIpDQFECJKbMQQXQqAEBA8wZRgiGL0xChEWAMQQWGuHrpP9kKrJ5DqBX7w8wxgHEAHEwzBgDDMh6rrqN/Lyeg4hLOvq97anYehCCBii0bgmhDhnU6UJAIgRpOlaABFjnOJirLVFURpnvfchxlfGIUIghJiQdOQ7a3/PqyqlpC52w5BlGUBQWbO3t7fZbK6vr3kmNptNklsjAL33VVVxzp8fP9/d3QUAPHz4MGlusyL/4snjBw8eLK4XFxcXb7/1rvMmxnjv3r3Hj7/IqajHI+dc8uRkWZY0k1J1pShDCDzP87KAAG82myLLec68d0IIIcRms1kul1qbuqysd5wy5KNUg1KqGY1iCN57RYLplFdmur2lrblezPe2t+SmO79eGKMRwcrZw8PD1WYzv14uFguC8f3798uynEwm/abFmGKMBeNKd4RSQoh3lnOecSG1wpRY7xmmKSuiKArvfVL5oviln9Xo/xFeSrDVRnaSYgZhbPsuopjnuR60kn2M0SpnjLl//z4TXBtprS3KcnG9LIoi5SytNmuEUBoIJbBAcm3GGI1xAADjNOc8QhyjxwRiDAlE1npCiAsg0S0IQhfnVx//4MODmzedc7/+67/+1jvv3rt3L0afcfHF40dGql/91X/xV//6X/v2d3/3p/8nf3xxdiEoCyB6CKzZbDYb6xOgFQMADg4OEMHIo2EYiiwnhAUQESGyb4Pzr45JBDmnqUqTvQIAYIrSd0sIASA452KEMUZIXqEhUm4BgcgYQwhKC0NZE0JIw8h0W/LWaq0xQEqpsirm83lT1dPpeLXu2s06oY4msy1K6dB2CXcVQsiyIp3oWut26Ou6hA4opbx1aVxUlmVVFOnrXaxWIQTKmQteWTUoGWPwyiZRq/dOS4UJ/Pzzz5Pn9er8gnP++uuvCyGqqhJFTikFEdejpmuHlEwHI8hK4bxPaOs8yzjnUqmrq6v59fXu9o7Is2fPnkEIEt9UKVWWpVI6hJDn+f7+3mazidGnM8ZabZQ3UnWbtez7g/2bSdB7cHDwZ/7Mn+mkss5TSkGIPrjlcvkvf/O3bhzdnM1mmNKkKC7qarPZuOCDthjjO7dvJ+ZrwrbHGNfrFaYkz/PJdOacC97HGK8vr5aX1/ffeKCUSqPcsiwBRpgS63wacgEAMEKp25HUJ9qYVEihL63PAAAQojI6y0SeF6vFMlmqBBUojRJj6Ps+1TqpgNvZ2k7XLIzxsxfPAQD7+/vDMGDCEsJ2MpkghNbrtZQyxliWeV3Xchi6rvMuWmunW7P0vJLJeD6f57nI8xwh1NQ1BLgsS6PlMAzX19eTyaSsKwCAd3GxWJRl6YzVWlPKOefj8bhTXYzQaoMxBSBYb/IqBwgWTEAI+65LIv+k4Hv48CGC5ODgIEJ0Nb9O571S6rd+61/evXP01a9+rWsVAjiE4L2GKF5cnr54dqa1rut6MhoVVZVlWZ7nPtiiKJS2CKH1uo0R1lUDIXTObfrFd7/7fWs8hPDe668DANquu3fv/tnJaZoHV3UJIQxfho9F96rBoLUWlCXFHIJEOuO97fu2rus0LYrAO2ezLAcAQER4JharTTf063ULMVbroeu6W7dusYyNx2OezGmcvfotABhjhMiGYVCDJIQYGzGBiKIYAyEo0WkYoc545xyjPJ10EUUAAIQxAosQQpBYa13wSdnjQWQAMJ4lnSYAIMEVGGMReAAxAEBLlXEKAAgAIUK16WOMVhvVDxkXgrHoQ4yRKOmMGQDCIssYzSGKEGCtHEJoNhkPSlttUiyd9xYAUBV1mRecUesdJcI5Z6yjlBqnAACUUBRTOrRhhCYKIyEkIgRT4hsAGMDlcpkSarXW6RhOp3VZljY4wAnKmPfeaq+dLZvaxfD0yZO0cJ1zdV0fHx/rxfzs5DREOJ1sX15f3Lx5OAzDydnZ9u7u1mz70aNHEKD33nvvk08+0VpPJhMI4YMH94usWK/XL1686Ib+zp07qUzW1nDMbfB5XjDBpZRaWRAia5gzNpXMqXUcQiCElnXlQHRKr9tVVVU0E2km4bwHIe7t7AIfFotFp2UuMutCJOjw8Gbf9xCjXquqqqqmwYjevHlzOhkhhDjPMKJVhYZh4JyCGMqy8DEwxrzHyRBFOVPGMMasc4RTKjhECIAo8gwAEI0jhAxaaa0jBCnF01qTSKfD0EEIKcUBgjSKSAaz1WJ5eHCY53k/tIhgTMjl5eXO1u4wDIvFqqjKAAHCgJcCgEgIASFQgkNwKIKyYlJKaMOrqWoMGCBOWDLRK2sQxoRRYPR8uXTeYET7Xn744fe3d3fyXMznV2+99daTx5//83/6z3a2tn/mL/yFk/OznDDgrAWOUoEg5ghFoKdb26v5YhgGlGdlWXofIERa61xkMcbr6+uyrpBzhBAXIqYp7QszRuq6llK2mw0hJFF1vlTiRAghhCgEkGQmr4B5xmZlWRZZuuOGEIQQEEJldPJSxxgjpVmWK6WMd20/dIPEiBBGWSYahECM7pWY3/VKW6UZxwRTjNAwdMmdPB01mFEnLULII5iqQISQcc57H0A0ztZ1jQiOSgkszs7OAIilyJMOCyHIOV8sFtdXizzPs5w/adss44vF9Xg8rusaRUAAIYLHGCEGbf+Kp7hcr3wMlGIQY6pmMEKjpqEIYwDPTk4vzs6NM6PRaL1eQwgvLi7OTs5++Btfn81maeUrpUNwdTX68KPv7+/d2LQtFgw7O1iZ1/l66C6X8+vldVE01/OFMW40qiEEW9vbf/gP/2EPAmPMWvfk2dPDo6PNclWPR8149N1vfxtjjBDctJsYA+dMa/3w4cPxeDwajYdBCtFzzruuM0pH55W3H3/6ycHNA611lmV+AJhQpBGnAhNiVMcYcz5gEhPhRHtHYMojib8HHrDaWGuLLAcIIoQiBKl172jggjLGfAxlXqRhAQhxOV88aZ9UVTWdTpXRs9ks5bBhjLUxQjBrdYye51kRC4BBIodQSmldp0Z03/dN0xRZ7mNIiVvT6VRrHQJIdhIMmffRKLneLAEAUkptTeI5l1XOCDZa1k3pXYwxtm0LYQQuFkwoZQAIjBDoQ8aEVhIhlP7s1E1V0ty5/dqmXT19+jRCsLWzyxiLEGZF8cPf+JEyF107SKm9dWVZJlNsXY3eeWeWDulkWGKcGKtSnYoRTY4+ABChWA5KSrmzs/cHfnwaQsQY10URY7ycX0ujd/Z2k9ul7TohsgQhoJTSnAfnAMCMEwgRDAFBQik1Gx+CCzZ0684YA2DIqxzh2A59lmVlJqy1u7MtSm9cXl4OvfRlDRF6/vz57u6ulIMnKE1nIgAxzX04c9EnbJYxJi8EpdRFByEgBMEYEcAxwtR27rquqEoAociEUiog4I3DGLsQ0vTTOQcJJgBQRNKFJPHUXpX+MUKMEEFGu6qpIQhnL08AIk3TsIw560MIWVkMwwAxSnsRgRBPxls+hqTFd84BALXWWqrRaAQhHpQMISyWqxDcwcFBkQmEQIqPllJvNhsAEOeg69qyLCEIzjmEAcZY5DkIMQaIEQbApe0vxtj3/Xw+P7p9y3vftm1St/Z9nyyY+WzadV3f92kHtNYWeT5qmtt37lxfX5+dn1NK15tN6rn1cnjrwbvz+bJdd6N63JSjP/IHf+LgcL/turqpPvvss/nVXEo5m0xfv/uayLPxeJKL7NatW6mzDSFEKcUKIQzIZrOx3FHAuRApxM0564MHDkIIYoxbO9sIQAiRlJIylmVZcJ4Q0vZyNpt56/iUIxt+4zd/EzLyzjvvYEk553lZXF3P+74fjUbK6Kqpt7d21uv1zb3dPC8H2TJKYPAhRDUMGEKjZZZl1jsXgnGOc84zwQQ3zgEEAYJfzvNh0nmlbcKDEIPz3kUYGWPpYxllhqFHEWptAABFlXOK06YzX69QBIhgaeSmXQUQMQSDViCG66uLTBSE0EEPhFLlFSeUc4oQSRASmG6ZAfroi6IQgrsQhyGhIqO1FsKAMdy0bWLTQBSVGsaz6cnJadM077///tOnT1+7c5cR+vzJ0+PnL95+8627d+/+f3/uP8spRxh47110lNKAEItCCMEJt9bneZ58xtb6p8+f1UVZFaULzjkzaFWIbNyMlNdpjKqdd91graWMYYRCjOmFCSE4FwAACIH01gEAGCZllhulrTacYE6Zs7YoihiBcTaNKkJIDkWWQtS1NcHE7d0dxhgVQktFCMm5kGowzi8Wi9VqJSiLAL+8ejmdTrdm2zHGuq6Nt1or7wIimEAgpey1tNbWdY0wst62auiNmk7HVVVYawmCXdejEIdhECLb2dm5ODvvuv6NB29DCF2QP/Fv/+TZy5OLi7OnT59+4xs/opWdTCbluNnKdjCjoigxgM5YJvhyuexbN5mO2vVGMpquX3VdW6Wjc3oYbPDr5aprWynln/7Tf3oYhohQkefHx8epv3V5eVmWJSX50Pc3b9x4/PjzvRsHjx49mk63eq12DvZPzy8wWkCIIsQ6uLIsPIhlU1dNNQwDQnj/xsHZ2dn5xcXuwb637v3333fOueDTv1Q+3nrtzsnzl+u2res6xph8U0ZpjHFeFo8ePWrGDaZk1bUlANg5ApGV1mduvV4n/0JqdfgQIIKDUTDE5P9OnbZXIV3OiSzr2gEjWlYNRiDPswiBCz76oKNDCEkppZRN0+zu7mw2G0II5SzZojabjRACYdiMai4YIQRCACGglDTjZlh3STfgvd/e3q6L5urqCmO86jab1TqE4L2fzWY3b95UWnpPkstu3W6aeixVTxjVWqfLxvX11Wg0qprq9PTs0aNHr792f2u67YMGEdlgU5fFWtsPmxWCTHCrDeeCUoopicEjgpHHo2ZydTm/XswpF4yxjDHnXFEUwcXrxVIN/XQ2Xq6ulFLj0RQjQSlOebIQRYRQ4g2kOXTbdzHGosgIowFYbTrn3eX5VVlVAMJUHxCKGGNZkQftvHcpHU5rRVBRZDnG2EWglSGEYIIRws4Z7UzfD0PbfvrxR0VROGvLskQEIgTKpgoQeueM0oJli+s5hDgTOcOsqDMhxNHhIURovV6nlrsQwnkDIYQQEkittQ4GSgkAEYCAMUiyBhCCd5Fxoge16Tda6+CjC17kmfKGEIQAopQiAEMEFJMAg/XOO4cQMjCku3JaVOk0dc4FB1DwEEGlB2/CaDSx3gMYYCQxBAwIF4JghhDSRnrnCaV0tV5ezS+LomAcZjkPwWMEKS5DCJRibLH3vi6LoigIwjEoj7Bz0Qcsh94ZHSHQWsKYdMEhxkiJoJRSwp2xIXqlVF5lAMJhGGKMPBOHR7elHFar1dXVVaog8jy/ceMGIzSGSBFmmFBCOCbeWGC9wHRra2symTx9+nQ+n6d1qZR67fXXEUKHhzfqUXX68iTdJB49efT6g/vNK3JF/tM//dO72ztSyuSV1NZ89/vfAyECAGazWYwxGbRRRBAjlzwzAEAIGKMIwc1GKaWE4MmbPwwyxti3HYSQE0oxCdFlPGvXm9/4jd84eXH86QefFOPqr/3Nv8EzoZTaLNe9lNOd7c31Yr3eIIJXq/VyvsQYN03Tb9bGGQxRCJExlhcCYzwMwzD0RVMzhNLdiyCUVFRZ9j8a1Kx9BZqOPvSDTAYkjHFywkQfvHXeWKUUQyR1I8CXC0U6l5e5UdoPQWplvTPWAgyNMRxiSmmIDkbkfUAEJq8qCwRA7D3Qg3n1nwxGCIEo8NFhTEIAnGday0T/NoNCEAIAZD/oQfZ9712AEN64cWO9Xt+7d28ymXz00UcIER/BH/mjP3l9evrtb3/7r/+Nv3Y9nwuCiY8IAMQJAcIaXxRV0vdZa/Os9N7fvn00DAMmhAkOCc5x7oxdrRe8yIuigCFKYyPGhJBUBGg9eJ/0Pa9qz9RgjDEGDwhCCHzpvnOeC1qWZQghiYCC8wDBRDRLs5/VaoUx3t7eftX5cI4wOnSd1Wqz2fAsE4JfXV0F624c3eyGYX69QDC1+DyihFKKGU7IQ0RRujANesAAQkb293fT3nF6erper5uq8dZba7e2trIsDyEsVsu97X1CyPXlpZQdwmBra8tbE5z/9AefUMonkynFBMSQMT5oxTAriiKAWNej5XLebvqizJIEjDFGCT2fn15eXGxvbUmlnj17duPGjf/5//bPtd1AKT29uLJWcyE+/eSTnZ2duq6vL+YUMdX2+d7BuBx1y/b24e2u65pqhCHRPjAcKUbT2QQTYr2zAejBWO9S4uF4PB6NRqPRKFoHCGGCVXm+3GystYOSUmvv/fn5eSny3e296+trH0I/DH3XZaJQWnvnDm/cvDy/3NnbxRBprQmA0rrUF011c5pB+BgIJoMcGCYI4xhCggokWw6y0McAJF6tVsmdqENI96S2bYssT0YvKWXCHVtvt3a2Y4wAQDXIXGSCcQCAMqrrughiMljiV7GPjlKahhrW2vWqLfMide+Y7vM8F4z3m172w8sXx820kWqwyq9Wi7LKx7MRaZNVHac46uVy2XX9/v4+hPDNN9+sm/GgBogCZwIiaIOV1mmtndEIoRBBURRJBP57ixxioI197d7rb/G3A4hnZxdZUaS3gOc54WR3d+adpZRwzoXIvY/GSakV9rBpGinlfLnY2dl2zqUsFi6oUkrJHiFU1cVqtVovlpTSCGBR5NeLq8T/mW5taf3qkpBlWZHnxhhrQ3Deas0g5Bh55Z03WkoM0dD3xaiAKD5/9kRQFoLLsmwNX9Fs5sNQ5lWWZZgwxqBUAxM8aC/NgAgdZNcUtdRqkD0ClgmaPr7zJstF6hVDFI1RPoBgrHM2Rmithx4wxhDGAEKIoQs+xhBMwJj5YL0xlFJGmFEqxpgVhfMmQgADghDALyOSCMJpAhJDAAAmOxnFjFKKQ9BOuVXbtj3nmRCCYIwhJqJQaiAAwaqpmcCYQKk6kdF0ecIEJ8eVt35UV1IhFGORce1M9K8ix5umno6Q8d4FT+Crkg0TnOSFRunUH9fW2I313idGnTW+73sjh/Pz8+Vi8dprr02nU0IIAhAA0K03AIAYwvXlVZK/U4QBAJ1Ry+Xy6urq1q1bt46Ozs/Pq6p69uzZy5cvtZdVVd04PFitVlmWeRQop7/2a79mlLp1eKSU/J3f+Z3Dw0Mp5fHJyxD81cXlW2+9NWlGBEKaCWNMRBCE4LyGNoAYGCTRx3a9AQSlAjz5ldUgORecUE7oYrHovhRxfPjpD9br9dtvv/3d73//6MHdf+9v/c3VanV1fQ0BqKfjLMu6TcsJ5XWjrGn2m6Q78969fPlyMpmMx+NUQ6XeVwDBx7BarUajEacs1ewwAkaotjaEkHTdwzA0VQUihADkXBjvvHdp6uOtIxCbVw1/FEKgBKUODKYYRJimnkVRXF1dgT6+PH05Ho8FEfzVUtPWWi7yvMy8D9EFElHfdaOqFlRABtK5BSMihHivQYTGuBDCfL4kCIKUXGukdzECYpQa+jZ4u1534/GYc9H3fV5WIi8ur+c7Bzf+7J//d0Ve/tN/+k++9Y2v33/9Xr/ebE1nVpuIUde2kGDGWVJFdV2HMQ7RRRDG08loNPLGJmv82dnJeDRKTCgcI8KYU9b3PYQQQ0QQzrIi6W5cCBhihEBwEaHAqHDQwRitd5TyJH1knIQQnPfSaEQwpgQCoIxOimgE0WwyfUXDj9FoHWNEhDTjsVE6z3MXgnP+xo0bo6re2t25ceOoXa37vg8uAIAwwLKTGOPJZMIw897DALXW3bqr63pSjrquYzw5MQyMiFGxu7MvMlZV1WKxcM4ao1+ePE+XckHwZrMq8+wr77/79Onz3/3O9whhTz//PMve8VU1ntbe+xh8jNEak/EMjKfBWYxIXogIXy2tXg0Xl5fb29uUkLqs79597fJqkVg0CJEY3Wy2jdBno9Ho5Pg4y9kwDGVVPn3+7Pvf//5oOnn7rXfXbW+t/eN//E+o4OaXV5QQIUQ3dBBCFImggiCc5/nnn3/uvZ9MJknANbRd1wbOeeLw5GWJKW2aZlDyzs07W1tbzsf5fMnzjIjsejGvqmqQWghxY3cnAqCsyTCuipJj3slWSjmeNCHG9WadtLJZVlCKE28hdTustQhBAGIAQEoZA0y4Ai5oCEErDRCs61pLJeXQtqAoyiSPvz6/btt2f38/+iBEmhTCBNnI8yId6iGEQcrgY15UCnPvffRgPJpyNiTlvNa6AU2ZVdH77cnW+fmpyFjwjlJMMUky+yTaSoMAjHHfD4eHR8EDjLgcllmBk+YLExoRJJw6E4ZN733wPhSUM8ZWq1We54xR7x2lLPE0AojXi1VRFDs7Ozs7U0KIMW7Td8bZpi6l1igGrQ1CZL1eWutpRsu60lqGGBFBewd73nptTcaFMSY4RBBGFEopBxMyIvItUdV1O8ihb+s8vx4GihHFmFEMQAjeysHHGEMARZZrrZ21fd9jSre2toxzLOMIoYogJsj29qzdLKMzFAPGyKpdT7dnFJGyLGU/fPHFo9lsO4B4dHTkrVLWBg+cc0wIZwyjhJLaGDV0bfLTpqDJoswiQjEEOXQAAME4CBAj0nXd9XC1v7+fVLTee0pI3/eUYqc0EzQAEGM03qw2m2EYprNxGksRhAFCzpkQX0k1kyqtoGWMMfVXfPSEsBBCWZaDb13wUSlrvHMOojibTWaTKfEOdO2Gccwxm83KNClhmACSZMywKDNCUYFzp41zNngMUKQsY4zrbgAUU0o5EV45yBjMeaqM0guWTmLGmHGaCl7lmVKqX7dt1wFnb9++/eabbzJKkz4lOJ8WsXFWKRUgoIwWZbkeemPM/Pq6aZpv/ciPjEYjpdTW1pb3/sb+wdbOFsQ4z/NhGA5vH0kpL6+vHj97muf5nVu3ZD8QhN9440HfD9fX15TS6+vVwcEBY+zk5OTevXsZ42k0SyEgGAZvnz76oirLO7fvYsZ8DLKXCCGrDUKoEBkA0GrDMBZVsVgsclydnp3/w3/8j/7KX/1f/8qv/uof+xM//cZbbx2fnSIQ8yJDjGKIlssFsIFlufUOITQajY5fvsyLDCF0++4dCJAPEcQYo1+slgAARGhR1RSjrCiklN5aSrlR2nttrbXBJ55JkWUQQowJozRBeZJ1zxtjvCc8c9bCgBBCKCCSbJQQE0S0MTFGb10nWwhh0ry0bWu1EUJEIoz1CJEsyxL3zjoTnFe6LwX3xoDoXl21c+69gTiG6CGkWlmtNYKxKDIppXeGUSG1UYNMNQQA4Pbt27/6L3719ddfv3//3u9+7/vz5fLzx4//4l/8i8fHxw76f/fP/7lhuZyOx6knSQOa8GzwKoSQxLdVVVGKjXfOmehZjIBSqqR8/OSJ9348GhGEQ/AwAgwRp8xgvdlstNZlWToQCGEYkRBDCCGCCCIghDgQYUTRhxBCAABFyBjzAVhnECU8E4SQAADC2FsbEYIuQgJjDJ0cYozJLEEp8RGB4IqiYJisuxYAe//+fRiiMqEs6nE9ttq0bUsxE0x4G4J3ztgyLzabTV1WA8IgxPVyNalHOML+VZb4NAm/i6KwVn/66aeHh4eXlxd9327vzM5OXiKEeD0psuz85XEp+OL6qiyy5XL9/Omzo6ObZVkihLI8c8YZpbMs22zavC4dhhST0XgMEei6rsyLb3zjGx9++NHZ2fnt27fPz893dvaMdnLQRUUJpgg6jPFXvvKV8Xg0nTSffPJJP6xfe/NBjLG19vW7d/u+p5z/xb/8l2OAUvacZwhGrVUqoIGFGcutM1mZjcfjtuvOz88opq/dvhO0ZYXoNu3F1WVZV+PxGHAOAHjj/gPg4Xw+z6uyHfq0u2Vl4WLwCJTjBnMRYdiaTYwxxjtGeFXXRVkihID3zrmqqqZbU+dDTmlZZEoZrVVR5DFG731W5LKXAADOssTBXa0XFBOMEUCIMdY0Tdtuuq5LSjGEUKJASCkpJmm+C0MM1qUKT2trjSeEwIiMst4GyllwPjlPkogysSysNoKK5XqDAMYY60EaZ/Zv7D178jRG2Pf9bDaTUn7wwQeHh4e3b9820kIIGRNdN/S9XKyWOztbs9nMOaP0EJytqoqMYXAhBsgIDQgA0BOMN5sNQohTl+wDnRomW1NnTNtthBAhBEJhUxYeRYBiCMEab3TY2qoUJgAGgEmAgSEhjQohDKuV4FmR5916gzFWznddN51u1UX98NNHB/s3R40Y+tYZxwVHCNy5dWhc0HLAGMYYMYbr9SrJNjlldV3rTRec6+Xw7Mnj2WzGGPPWIQDbbp1lYhg2H3zvewihomp+9A/82OePv3jtwf2L6/OmqMq6pAxNR2OnBmMsr2upOggwgiQGvV60SUE5GIsAtNqcrZez2YzgFCwIGRVaDU6bJ8+eSylFXmhrs4yXzSiGIIQYhoFigiGkFEcXkhVCGd0Om8X1XKr+5v5BURTGKISQ9y5jWUj5ZiEIwfWgCSd5nocQnE1WI9C2LRFktr8NAgwuAh8i8NabQUFigzR+KPiYCep8bDeroihcNCBSAGFRVSDEGAOllGESQsgERpg454auRwQDiikhCOMQI7DBGE8Jl1p5HwABkEJGGYSQAuac6zatkSojuN7eSi9JjFEqlVpwqYdjrA3eO2NhiAQi71wMftI0u7u7jFJCyGKxSJOVvu8gRtNy4r131qll++T0YTJB3d06sMFFF7IsXywWoG2994e3DiGED9546+Tli5cvT+7de713+uWz06aqm6zU3lHG+q6TVt6a3TLOGGWMMVWRE0LW1jXjUdu21/M5QohxmmXZm2++8cWjzz/5wcd/+A/++L/4lV+pi+pgui2XqyITWVGkG1Jwvh41hBBCyGqxBNZB53fGExuCiwEziiJyzuV5prV2AOR5BgBACGKMYYyUUgCA0joNUQjGCIZgLScEUwIi9N5HhKEDjJAAYkCIcu42HaSxLtPX27eqYxkNzgvKgnMhehntuGk+/+wRhLBpRllVWWsjxtY70294xmGIITpOiDHGupBsrw8/ebS/u22tBRhRzmKMGGIQcDf03jttpHW+KmpOhewHzrKIoXPGQq9NQCgrxvw3v/NvfvCDj/7qX/6LLz777B/+F//5j//RP/oYRefNo88+vn3j1rPHz/I8Pzi4udlsIvBc5CGEoEKILkaPEOCcuhiNMUVRGhsIxlLp4+cvM5rVWw2CZNOrPGfKGGIj5zyAmBU5JADggDz03sboky+IQ+qA01oiGIO1RV5JPQAAlHXKqiwrUEyOeIAxkl2XhmqDUg5CCmIIIVmbjDE8E94HFBxCSHY94aweNWVdEYgG1YMAHXCWIMJIM6uCc0Sgph51ba+R91aKnIMYCaoE4y9fvvz4s8/qsiAgDlpFCADERZYjEK21bz14G6I4qZrtra223Wy6Ni+zQSmCUOK8jqcz68DZ+eUgNc3yy/l1FWztKhhBIfJ+aK+Xl3B9NZvNMMODltbaYP3z6+PpZPKjX//mL/7D/yary9fefqPT/Thnk9m4VzKCACjmWWGMsc6LrAwePrj/zuHhbSFE04xuHx79/H/5X758+XK1XpdNxRhmmbDaxQgFxtZo5+wA2wgjkGE0agKIWS7Ozs7m3UpqvZdtM8bGzajtO7q/h0C0zqluUJte8DyCKChzLhJOqlIE4DnBGETGiDEGOC8IgRAGHAjnWvYggDzPju7c4oQEH7w2MGJKMUfEuEABQhhZiIw2nDOj1GYxBwCVZdluVjTDGMBBq2Hoi6Isy5JnWdd1vg1lWWJChMAYE8JY13Vp0AhAzPMigBCwpwVGCGaIG6/6tmcUN6PKRy8wQxCrfhjaIWfcN1OtZTFuAAbAYD1o28oiq6bj2Wq1MsY652/cPPri8dN/9a9/m1A+25uVeS6l+o//039wdHT0Uz/1U1QwgKP2Nqa4WgAn46kcBm+CUgbDiAJq25YQgiECPpy9OO66rho1RVUWZcGESHkMwCMUgFG2HRYJySAYjcBTQbRWzkpjTNu2zrkYAGYUEUeDJ5zFGCHGjLGHDz+djKaTyQhDv1yvtdaYEgDtoNUKQkQIQqjXqsoL7/1vf/tf/+iPfCs6//Tzz46OjhCBo2lVWKGkEUWeFL4+OOoRQeTH/q0/SCAbj8f/5t/8m5yK0Wi0W4y4ic+Pj6uqykQeIeplv14sF9fzPM+89123mEwmOMDT0wtKab01wQQmzxhF+PLsou+7PM/zjCtlGBd7Bzcwosqa5EGABkAElVeUkAiDAx6C6GFEIVql7SCB9T6GTqpF1+V1AyGxXlFOrDfWOkYFgMB6p4zmkCf0MiOpNQgoEt66EACMEPjImKAUWycBAGRvZ1vpMsaIEXLGVuUYxpBxnrIHIMIQIRhg9ME6F2MkiFhrk+8N4iRpcQSAPOOd9zFo4wHFJBMMxBhDcN4TQgKISY5b1BWByDnnvF+uVnmea627rgveB+eFEN5apw1CCAI4DMM4E9ZaiFFdVUmxlUa5SYWYBqKvegKEBAiOjo6qvDg9PV31GwBA6j8kYPpqtRKCYYxvHx3d2NlFDHUJ6AhAsvoF75eL9dtvvMUY6/uhXW8QQgiA3rmsKPSmvz6/4JwLztu2VYO0Ui+urmeTqbbmxo0bf+jH/1BdVu3Qa2eHQYo8gxDGCEyaPWJcNTUjVA4KQMg5R9456wCiCMBuvaGcFUxYY2GMvdKQimBcADGACADotU3WFMFz2Q/RB+uMyLMIgDQaABBcxARDTLSUVVUZrWOAjDEAseC5d5FippShgvbdAAHo2v7unTvT6XTTts7YGEJ0PhCEAIjawnTp51DkmQDAh5CX2dW1/fTRwxs3buzMdn0IEKG+66zx1lqpBw8iRNhH18p1RD4ADGKoinJ+tdBaGxfyMiMQ/ORP/WRW8g8//egHn338h/7oH/nzf/Zn2tVaQHjr7pGUcv/m/qpdaakZY0pbCCFhglIKo6eUIwi9ktFZqyTnWfShXW+cc7zgIYWfMRJjhIhY59pFt1yvmqZhnGslKePW2oiw1xJjrJ1Oxan1wccw3ywoTS07WtcNACg6CyHkTHjvhciSuIxSigBIXsYUJ5D6wBhjAFGI0XgXLaya2lq73rRGKkY4whgG4L23ziGEoHeUkCLLhmHwEMXog/d92/WdzPMcc75eLbe3pn7otLVc5JQzllHR5NbZft3V4/F7+Xu/+Iu/aJULMCIBnLFtPwCA6lGDGb24vnrnnfdu3rx5enFutYEVXK/W/aZrJuOqqhihepDWGIqRcW6zaVerFSGk3p5mdfmzP/Nn275DjPJMYIgAAFraSVXtTcdX1/zk5OTxkydlU7/3lR+igj9//hwhtNlsvvWtb928eZNQCiHK88Ibm/Te3joIYZ7nxqpMZMv1qiiK6Wg0GU04E9baQuRrOcAI8qLY3t0dBtl1HaO0yQrWkKdPn1ZVk0hVt27dStYVzFiM0UgVINhsNrPZLM+zV9lfNjjnYETlpFBaB+dDiABAq+0wDOv1OkAghBhetdlMLvLlciW7Pq/y1+/fizEOXa9Xy+Dh548eZ1l29+5dgpl3HgNijEFJZRNCGvE6Z51z1gBCSIQBY+KM9x5MRztVbhCIXFCRZ1rrp0+eP3v2zGr3Qz/0Q+OKfnF1meV86AY9yOl40jTNxdk5IWS2vTUMcpDSWH/37t2Dg4PVarXuVjdv3iyK8r333nv33Xcnk4m1FlMKNy2IgFPcrdZR29GosdTleR6951l2eX2VrCvjZnSxuEYI+c1GGrPPhfVDCCGpbmWvOKfOGUKEMeri4sIHu7OzY4xZzufOucVi8dprrzVNgxCCECmjA4qyHwAAVVXnVfny4uTBgweUUMEKZsxyucSMjEajEF69L2VZaq0zIQghn3322e3btz0KFjgCSIDBhZCVGYTAexBjbNt+eT3f3t6uyvxnfvbPNVX5J//knxyG4ezs7NFnn3HO796+tdysu74lFIcQJluzl8+Pr+bXRZGXZamNo5TuHRys1+1qsxFCTGfbSqle6l7JTd9r51aruLN3UDdjYwymfFzXzjljFCMYEeijH5RUaoAopikGiIjxjFIe1uvJeNbLwWrT9xIRCACADjkHnIFD19dNRihInZKkAMCvFL7AB5OiMoZhGAZFCCmKTAhmrCUEQwwR4XQYhmHQGc+99wj5L3EZNon4AUAgRghAOpgRwd57qxRAr3qYie5htYnRYRij8wEAHyOmNDFI66LUWi8362Hok4UgyzIXPWaEcSpYOQyDURoACCFkhGprhmEoqnI6nTLG2vVaKd3Loes6LkTXdenRpsQkIYTIs7feeVMpM2jVTMajrYkxRvYDKooYozZyd2eLUOqdg9FrI9VmsME/f/58Ot3KD4V1gRL+xhtvGO+7xbJpmg0ElDPvvQuBUprU2iH4hBiVRlNM3nvvvdnOdtt3vRyUUn3f86pI3SerDSGk37TOufF4nHTIzvoQfBriMsa0dTYYDKDROmPceL+azzHGiUIOISQY+xgopSQE42yMse0HHAECEEZAELbBexCZ4DgEH0MSYngQlTTOuRAAAMRYgynClAWQxkbCK4kwKycViKAuG4DgK+RkhBmmnHHjbOJpaK3rpumVZEX22oP7wbosKxBCRklnXIhQaxthSNN9iJF0CkOIMOCUUoLW6zVwFlH0xuuv/9q/+OeffvyD/+T/+ff/2T/9lfnF2V//63/NxlA35c/93H/mrXn/m1+hnDhntTbrtp1MJl4pjKl2UWvLKXbOxOAwRBnjMYRh0/kYAACz7S1KKSQ42aZl18cYOWWYkqKulDXAuxCC3GyyLBNCGGcjiKnjEn0AFGvjlFL7k/FqMRc0m8/nTTNu8iqNQtJkzhgDIQQIpbZE6i4mmwcAAFMSQhi6Pk1wktooQpCVBUUUYAAQTCIySmkIceg6GCPHOKZ3ymjn3HjSaGVLRgXHFOP9/f3VZnN2fn54eANjnIksye5kr7KsdC46HSQ0fa6BD0ms9+HHHx/eus0z8dbbby8WC621tjZGMBmNZdfrQW5tzfrVBlMWEezbTuSZczbG2MlhtVm//f57Is/WXZtU7ohgzCixIcu4NnJ/f39razYaNT/3cz938vL49TcevHhxfPfu3d/6jX95/969H3r/qxdXl9JY721dlDYYawzDvOu6JDjQyk7GUyEEDAgiSDHrNn3TNH3Q0br55RXDRGs9m82083ZQvM7v3L39/e990DRN33ZJEZIgBCdnp3Vd7+ztQgg3y5W35qOPPppNZm+9/fZytUAAzBcLSqmWehgGRmh6cQBGnZSEsURTooxZY/b29gghiOBN2zJKQ4QIsqYRs9n2er1GiCCAq7pmjMEAEnoJIZRI8ozRGKNWdr1uKcU8E1VVUUyUUnmeUwiGYTi+fMkYy/Py/fe/cnp2ESDKivzw8HDQ/aBkWVdlXRJGRpNxPwx5niNMiqJIJrqyzG/c2H/4xaOPP/7BV7/61Y8//vhHf/Tf0touFoss4+vlOhOFRU6awTmbFRmmJAYAPKiqqpfDi5fH42b07MXz6XRW1XUyRnddhxD6vYj7s80F9H4Yhv39fdkPW9NZiA4BSAjZ39l9+fLl0Y2bv/VbvzUej+/fv399fV3XNctFCGG1Wr08PTm8ebS1sy2lbPtutrVFOatHddu2i8USAzgMQ9M0LOMhxOV88dWvfjXGeHZ2duPGjclsOgyD1CqCGJzHiL54+VIIMRlNKRFZLjDBzoWHn39htWqaihKUCbHebAghB/t7F9dXH378we/7fb/v5ORkPJ1yzp23hBDtrIewFKKoShqi934ymSZqU1lXhF61bWusp1wMSiupswJ5ADhnhPJetSLyEALnjJJ8Pp8jH70yRFQxBopJPZrs11UC01JMAAYIRiU1pzkkCaKKKUZK6RgBAIgxAQBgjPRDmzwOFnrv+zRUGpRGBEcICIio6zqeiaYeI9h/5zvfPbp5iFCdFyzGGEIwwUUEMYAAJnEWUkohEFkm0kMNIcQYtIZp+GykijFijLz3iSIEQnTeeO8hhpNRwxi9uLp0xqAsa9uWUhohVEYbZwMCwXkuuAsBEpwSVRGCdVnpfug3m4gg4dx7nwnRd7IqSi6EUqrr+0yItm2TDBtjbIxGCFVFubyeR+A5oYQg7wwhTFDGGNtsqNb6/fe/kmTYAMCiKNOIiGWik8N0eyttvoOS2trWyBhDjBFQXGX1cHb58OHDdr99eXF2586dpmmWYYkCopQCECEEGEKnteC8nE6NMQk9DzFOouLkBUpC/zwv6Jdlyq3DWwhBhokK3sWAIECYJFcfhMQFHxAJzq+7Pss5Dt4GjxLX21qI8dD1wyBRTDRmipBOWZkRQhc8piwJtRCAPBNJCp76EzHCyaRx1gpM03JJfWaI0JdTfEsIEVlujEtQM6U0CFEIYZxmmKRxcggBIrhp15aHjLLry8sY487OTgT+X//mv/yr/6u/QiI4O3756NGjiMm/87M/+9HHH5+dnf3Mv/Nnnj979uYbb3POvQ95ngvKEgK+n6+7rtvdniEAgwfWqb7vvfdV2SCCeSYghAAjIUSwrl2tvXVCCCm19SYrizzPVd85azMhvPfPnzw13jHBJ5Mxp8yBAEOsiuJgbw9inAvunLu6uuqG3o22AII850nD+SXYhCAMvXEE4yzLQgiJukA9QYRoraPzACOrXfraMSUwRBghADCxjBEAMQKKiZVSKl1Vlfd+Z2tblvL09Kyu67PzS+t0kWWrzXq93iRk/2jcEAWl1oRSgOBis/rTP/szBOF+aE9fvvz8s4ePn7/otXl+/AJQ+tqD+6zIeqUY42lpcc7LLP/Od75jP7LT8eT1+/cQJW3fXV5eKqMnkwkjGEN0/40Hy75FlFCIOMTWeZoJXuTKGo+iCy6E8OaDN/79v/W//+LzhxKC8XhMCP1Tf+pPffC9Dy8uLrQ1LgCRsWSGdBBu2tWmXQmeI4LzsjDOBhUBAMldmsbnRJvL6/mjTz87unEzr8rVatXLoe/7o6Mb0+mW4Mwac//B6x9/9EnTNJRSDMnWdBsguFmtR5PxZDJJQ9yHDx/u7+/jLy8di/nCGIsxfnr8khDy1jtvI4ydc8Mw5LwAAWCC7CvLCm+KUQihHxQIMVmzvPdFUQxdr7XcbFZHR0cJhpym2nVdG2MAgFmWU+SdU4QCBL0c1o5SxhgIDiAGMeaUjpvJ5fw6Mc9dDNLKrb0tpapy1EgplZKnlxdlWZZldXl1JaV8+uL53bt3o/cvXrzw3j948MAYY5UuiirJerMsq4oypvETpeNmuywzRGmAABEkEBuU8t5PRuPxeByDa/uu/hIg2HedVTrGiEFETEzHo2hNkXFvdYzx5PT4xo0b1tqsyBEk0529LOc7e3u/9Eu/VNb17u7uixcvEvVos9pMJpOkV0rAE8F5CD7hBzrWX19enZyfAYD0/NpaK/JsPJpmmTg6vC1VP5/PkygkCdedsU1VF0WVylw5qMne7tbWmHPetuvNZqO0fvriRV3X55eX5/Oru3fvvvP2e1eX8/Foul6u06M5uziHEO7u7kttCSEkQCGI93E0mkAIF4vryWyrGU9gRFlWRACrujEm3VKC9x4jMMhOCLG4nud5PmkmiX/nETVaO2DLstRSwQhgBMYYaGNeCEJChAOmpBICAND3Q84Fy0U3KK1teljeQ0q4NRFCXNd1sAHCqJ0VjHrv4ct5t1ot0nWbEPbpp5/evn1E08iXkBhgouYiGJP0wEndywFjnFi7qfyHEECICCFGKU4oxjiGQCiRUsX4JXeXEAAiwCgg4JzTvZRapSAnyvkwDF3XQQghRgSRFG85SNnUNUEIA+idG6Tc3ttFhKzXaxARCLEoCkRfeajX63U6epNWnlLSVDVCSFAmOIUYMUaccxDzV5GoIsvz/PLyknDGhEjvXlJ+LpfLRLpumoYQ0vV98vwBABinxhjO6Xq5UUrtHexfXFykxD3K+SvVt+zHzYhRaqQKHiw3axd8hhillGciQCClzMsincSEEDXIBOJJpGXvHSM0QOhigBhabaL3GCKMiZTShKi1HoZhPB0ligiOMaFNjTEXFxfO+boa9X1PKS/z4uX5qRAiwIQFBTBEZyylFFCccxGct9ZSzjyIMcaci2EY0rEagedf5smkuSlFmBGeHpkxBkZgjLNWrzdLiBCllOdF+kQpTQg4e3F2XtbVzsGNn//5n885+9t//a997+Mf/J2/83du3b79l/7SX8KMf/d3vjOumna9fO3NBzs7Oy7JYVOECMVZlg2dbtu2rsvESU4fM0IEQIAQIkoIIQghirBRmhFqvWOEKqUoZwnM2W5WBOEYICHk5OyUZ0I7izEsRJaEi3Vd1+OR1rqsX8HMvQ+htwEBlrEkOs3z3HoXIcQEDW2fcZHAh6nd5L1zziegMcGMMBpgSDctp00IgWDMGHXOOR/6roMQMkYhhEKIsiwhBM+fv1it1rPZzDlXluXl5cUXX3yxtbU9Go/LpmaMQh8BhDZ4Qrl12lu3Wi1Hddl36vLifH93j3NOObuaX29vb3dd16+7yWSCMa6qKkLgjF0sFu1qDTBKCZVFVa5Wy/39/ZOTk2EYDu/cgRg55xihDOEsyyBCytteSwgAIQQHkHFOMfHWYYwDhvPF4vLyalw3uSistcrYCKHVUggxGTcY4/PTs3W7ybIsBtiMa6WUHIY8z9ObvrW1tVq3IqO/9S9/83d/5zu///f//mCd9/7FycuDmzfefusNENHxycuzs/PDoyOM8W9/53cIIfdu379169Zms7FWN02ztTPL81yq4fj58f7+PmPs8vKyruthGObz+TAMlci/+tWvamd6KTebzYtnzzOWAQAGpZqqIggaZ8qmrpomxXomwOfW1tZ0Oi2LbLlcPn36NMb4+v17AADGWFmWapA6JV3GmKh8Is+sNQkkrgaplFptNkVRFFkOIkqEB+tDjDHLaWLMwfQ+Qmi8S1DD9XqpB/nrv/7rs9ns9u3bMUYpZZ6IH4i+fPny3r173kdKcQgBCRZcxBh3/YZSXBQ5xhghHLV1wc/n88V8tbe7DXxYrVYs4zaE6WQSfTBSJT02okQphRCcTKbAh2EYEvt2NBlba9erHkJYFNnz4xcAgG9980eWy+V6vXZKp0uO936xWCQxPyGkHdoQgguOMTaZTC8uLkbNBIS4XK9OTk7Ksmya8c7ODsbYGe29N15nXCQuCkb09PRcD/r27TsIwaR929vbo4Iqpa6vL621Xzx6tLe3p7XOOEvOqLZtR6PR1dWVUipGqK2p6zrFHgshDvYPtdbf+c53dnd3337nLaVUXmaEkASH11onDydCyFothADBp+3l6mrOGBuNRs6FPM9d8OmaNBk1yXoaY7TBckxi9BFGaXSWZRBj76L3HgIvRKakW602EKDUdUMIIQxjjBmjEAAp+6HbcM5D8PDzF5cx+rzKhmHIRBFCsE4DkCyUBIJXoD5CCCaQEEIBstYmoJK1NhGV00qCEMIYCUTJ75F+IPqYbtKYksRN1Fopo70ymFHrHUBwUCoZK30MhJDNZoM8yPNcKUUJKfNc98N6s8myjHCeiOowoLQD5oX4vbuIUiqFHlJKu65dLpfT6fStB2+kKZT3PsaopDXeKqXKLAcxggiNs4iS1DZkgicUXF1XCMAsy4J18/k8K8vxeKy1JoQgBLXWEGMAYfIdDrJfLBbNeJxlWfSWU5ZnGSfUOXd6ekqYUErlmHHOESEAQReDCz6lYoUQYgiEkKIoAIQeRAxgOikJIwjBVkpnTCZyF8Pl1RxHQAghnBVVbr3nlGAfGcStGkCICRLy9PkzCOGd26+pQR5fnozrhjHBGNPOhhCAD5yyajp21qq2xxgro1km0mmU7PmJw1dmefJHeW+1thi++s59TP1qIHt1ennKOWeMnJ6eQ4gPDg4IIZzTRFNhjI3HYx/hL/zCL/zZ/9mf2d/b+dt/6//w7W9/+2d+9s/+hf/l/+Ljjz45OTn5Qz/+B1bLeZ6VCCFKeS8HSnG6dnNOh82Q3O6vWDFlESPU1vZDm/igwzDoQeZ5nopTQBCnDEYwDIP1DgCQZRmGKM1TmODaGqVUsnuWebG3ux0h8C4249p5a70HADjniUeQQht8ijTx3hNGAQAh+Bijt/5ViOyrobmBEXpjEYSYsAABIYgxFoJ32kopYwjeuzzPEXrlE0MEc87wlx2Rk5MT5xzGhFIKMUzONIqpUooJJq0pqjr5u2QntRrKsrBanhy/nO7tF1nOCe3a1jjTNM2rRpQyapC/l23X9z0EwGojtZxOp+luXZbl1dXlZrXe2dnJxnVd1sFYhDFmNIDICLVS2egRQpyLFMXhvU94NRxgUVeb5erTTz+t83o8HlPOjLMx+kTaSq3U5KXWWhNOAQCy761Osl7GGPMhtEN3cXHRt+3to1ufffSDvuv6vn/vvfdEWVxdXb37/nsvT04RQrfu3rHenZ6ekEiaqh6G4erqyji7tTWdTMdN08QA+q5L83hCiDEmxRce7R9QSo9PTxaLxXq9efH0WVmWwcUA/Itnz2ez2e7ubtt3O/t729vbICIP3NnZ2dbWVvRhNBotl8vvfve7RVEc3T7a29unlArGlVIhwjTjTDM7ZWQaRgAA6rI6PT29Wl1STM/Pz6fjSeLpcs6zLAM+JO1eWtUpaTTPc5blxigQY9d1V1dXs9ks0ffWyxVCyAfQdd3du3eT3gVjnLTZGJIQQow+BkcJR4hE5LQxTTMWjMMIKMbX19eDHlzwlNK0JNJ0aTQdK6Wa8Tg4/+mnnz5+/Fgp9ZWvfCVxwSpRaq3r0ajv+1c06aIo8xxDlCC4afyfLnmHh4fn56f/7J//StnUBwcH063ZK2OLjd3Qt21LCNvb2wMAwAiitxDCXspUHVprpdTAg9FoZK1jDGdZMV8tj4+PjbPT6TR9PxBGRihCoMiyF8+eP3nyRXr3Exnm8np+cX51enG+u7s7nU7feOON99//ytD26Yl4768W10dHR5QTihnGONltEIFJxmGt9dYlDhWEUCkDEAw+QggJxRBCSimMAQMIAeAZo5wDbT2AhHLjfIzRAx+jL8vcO+NdBABpbbuuEzxL+KlmVFOEGcUwWgSAlNI7F6OHF4uuqopeDcbY9OrGGAnBvZQxRggS5oMwRhBCmMCgrdY6QEApBSgJRUEIIcQoOA/OQwhgiMYYgDEAALqAKdFaG+/6vqeUJuxfURTJ053neQQgPc6qqpTVahiqosSYzOfz9Xo9bkbtarVarTAmeZ4LIYqiaHvpvWeMwZh64HGxWDRNwxg7Pj5+/PgxQvDrX//6vTceeB+yTMAQrTGEIBBxAHEY+uC9oCx5c1zwjFAfA6Xk408/iTHuzLYYY5v1sm37uq5HzRhTkrqRycC+7trjk5fbOzs3b9501lhtmOCAYAqR99ZoXRTFuG4++eyRj7FpGgoQ59xqk4oMHVwEQBqV80xwzhjjQgQIAIIpJxI4F0D0CRbhffCxk6rrujor8jxnnGBCYoyUERhBcN6FQDHRWhtjnjx/tmo3hwc3BOcnF+c5F+PRiPFMaquMFiIPzhMGqyyHIDhjQ4TKaEJY3/ciz1+VBcDXdS0oS69Z9OH3QrESR81bByMwXybFXZydOecmkwkhyFp7eX4VYRjNpgCg4+OTg739Gzf2F6v5TjN78fJ5UZVM5D/49BMhxMnJ8d37d944umetX7ebtAKl1gCAPM9l2yGEMH7V3wYIhi+xcCm+GgAgpWSMpOYHyTjyEUWw2WyMdj6G8XgMIRy6HiAIMUpQ6xijEDnFhDK4aXspZdNUhOLoQ9f1V1cpmKuqx03aI05OTjAmeVk0TQ0AGLrBGFPXNQDAR08ptdpYZSCEAYIIAeUcxrBZrSHG0bgYvLW2amqMSCaEUbqsKyklEwwhtFwutdZlUXnnnHMAwmYyEox567XWXAjpNCQYBrBcLmFEwIfZbBJBoJRK7zGETurlYqG0LoqiriqCcDf0WutxM4oQXC3nGOPpeJxS5RMZsa4bxpiUQwhhMpkAgjGEyQUX0/PVxkqVhGNZlmVlYYwLMSIMpJQ5zRJoYjlftOtNojhhSjLBIIRVXqfZKiIQYRghNMZoKS/PLyhlZV6QJOMHAEKotL6+vi6LQjD+m7/269fX1/s3DurpqK7r23fuFkUBMOr7LityhND8aq61bspqNBqdnZ0xxkTGXQgxAq1V9H57tmWMubi4TKgpTulyuVRKLa6urbWci81mAyF8/PiLx58/fvfdd4UQvRwIZ2+98zbGmHO+nC8Qgtvb29fX10rpDz/88MGDB1mR7e7uMsaLLJeDTngDjGlqwAAA0qzRWjseN9Za63SSQW1vbyMA5/N52ioTkKtbd2kBuxC4oFmWNaPJ02ePF9fzu3fv9n2f6B+L1bJdrCjlZV2fX17s7u4mRx/GmFDEWSalJoQ4Z1Iyd9v2TOBmPOoGFWyAEBqtCcN5WXKK0xVpcT2fz+f7B7uM0M1mAwmejMfDMFiVCLIy1UwlE0nwbL3LRPGrv/qr7779zjAMF2cn6UNBCLe3t1OhQAiZTabd0P/8L/zXZVnmeb61tTUej41UVPAEFUgEOi2HEEJTFQGgq6u5935//0YaRmw2m3T+CSECiE+fPk1H7N7eTpkXLvjoHUIIQ9j3bYzx5OSEc1bXjXPB+rh3sP/w4efT6RQReHp6OhvNQggYwNdeey3Pc4DRs2fPrDc7W7vptmaMKesiVWwpLqV4BSfBSikhhLcuBkAoTjue1abkmVQ9ACBi1JQVIcz7gAiL0WOCtJbOGUxZjB4hVGR527YYU9UPXdeF6DhlnFNGcJ5xzjmIyDkHW2mstev1sqyaRMeN0RNCXAwxRoxojCnFOkIIMYHeGA8AAMAFn5xV6fPUTUMS6c37tFdqbRhj3lhEyTAMAEGtdZ7nWqq0k67X6/Pz852dnb29PedccOk/jqnjhxA2zj58+PDZk6eFENo559xmubp9+zZjrCxr4xylFDi7Xq/ThOPx48chhMvLy9dff/1HvvXN3b09G8Ll9dVms2nXm4Odnd3dXQLR5fwaY8ww8cYyxgBGLoZgnQfx+fPnSqkbN25Yq1EE3/nOd2a7ezs7OxCi6faWEEJJo43Msoxh0qqh7bobBwfL+bzKi7KpldGEkNQeoRTX9YgxPkgJIY7BWWsxRBjAAAGmuO07ac20GVFMGGMAovCl7ItiYpzxIBpjUATAeaesHDQACJNYFyXFJMsyTHGnJabEWksJC95HHxDB6759+PmjyWhMMb5eLXMqyqKghCvnlbF11VBKCXEEIuADDBEg4mPoe0kpdcETQlIAGcbYeyulzLLM6hRoGACKCCGeZ8G66MNgoZQ9ZxRj6IxJ7eKu21yfLyCn+0c3v/j8CQzgG1//+un5qQlW98Oz42c//MM//PDhw+dfPPuDP/b7/8P/8D/4yX/7j77x4O3RaDQMykfIGOv6Ie2G/XpNCBk1VYyeMmytjTFkRT60KoTAGCuKIkJgrQ4QBBAhxgRAM0gME5oOijybTqd9t+mHgVLKsjwt2ug8IcwDnygKgpIiz6w2MYLl9fx6vejlcHjr1tbWltZa9v1yvRmNRtu728F553wCmHPOEUHee28dY9zH0A1DOuadNd5oRLjXpm83o7ohjPIsd9oE74UQ2hhCCGUEYmyUGnppjOGMRQAiAnmeU4gBANY5yDCHUGurtTHaIUIhxkxQgAEAwFtLItRKaa05ZWlxIsEuzs+rooAUW+8DiAhAijGM4JNPPqmqamdnF0BonSGEIEIyTGmRSWcgwjgCb531ru/7hJgnhBFCUnPLGCPEK7SQ954RupwvZN/a4AGC0fuyrEbNRCkFMYowEE5FzuVGAgCWiwXFJBkaU+u1IlwFp4NbrVYIoTIvnh+/ODk95Xk2Go2qqppMJk3TCMETJO788tJqk+e5N3YymRRlHkJQxkQIMi6ur68ZIYxQjMnFxQXGuCjy9Xp9eX4RnccYP3v2DFEqhOj7DvggmJBSP37+7K1339ze3qrrum/7pmkODvYZY8fHL6+vr7e2tjCiomBFUTjniqxgVBhjpDaMsX5YhxBSyr01HmFQlmXf9+vrRQBoMplY74QQq/UCIcQ5cwAwxuaX8xSRVBRFnuc2WNtLY8xqvoAQzmYzwhmEkGAm266Xw8nZmbZmd3cXU9I0DSEIE0QJg5BSStu+jzG27RA8CHaAiECCYwSpLCCCjyYj5Fw63vq+j96Px00uMkzgIKVSimJGCBGMD7qnlA5SghjavhuUQghZ7+uySty0O4eHi8WiyPInT54kOJdzbj6fT5rpMHS9kpPJxBjjjeWULRYL48xkMqnHY0K51nq1XnDK8jyTyq/X664bRs04xYKVZTmdTfpuAAhuNpsyL7JcrJeLi4v/P1N/FmtZlp4HYmtea09nuPONGxEZGTlWZVWyiuySSAmkWxIbECTZkGFbUncLcMMQ4CcDlmcbsJ4M9IsBG902YMNoGALcarUgyG2LFtWUCZKSSIlkiayuKlZlVWVGxnzjTmfaw5rX74f/RLrjqZAZWRH3nL3X+v9vvFrOu8k5pVRJabGYuRhiDIyx0U5uck3dKVNRJpqmub67DSFYO54eHi1m89ev3wDAycnJbDZTRsfo++3w8uXL5XJpvZvP56aq9tgtA6TbjKo45ylEfMhJhpgz5YwUaI3x1lLOuRRcSSFEKYkLcM5ut7t5Oze6LkKYSnk7ScUpiqisf/nypR2nzepuuZyfn59baynlh4dHjDG6s/H29hY9FXj7oTAnM2zTC6ilSilpYZRSsQQMfMF/XiBjG5JSWjCO/y3KpLWWISRCoJQyTVOMyU1WcIVbWi5xuVxWSuPxd3t7C4yenp6i8pZyFkJYLBaI4n722Wdd02aIv/8H/+rRxcUPv/8nn379m++/92EpJVH48ssv1+t123Vt237nF3/x+PRkNp8PdjJS+ckOQx9SjD4su9nxweGm31FKF4sFWpDxw48xDsFrpX72o8+GXf/xhx+M44j9nV//+texQUVKyTkvQMbg+r4/Pz1NKe+GHoHBe2dnbdtVSm/6HSGArSx77ZKSznpFWKEEi6GiD4oLWRvGOUtEal131WStT7FuG8455TxEL5kYxxGd+yns5wxdKQLQNA2KMAllOCoRRiAXTqn3fn23pow1TfP5l0+0FJWpURyx2w1CiLqdNU3DKaCXHL+v9d2GEWqMAVY450JKAPoWKJMpJVJyCIEwwDmREJJSKQmioH6y3rqYfIxeSllK3uy23rp7J2e0sPV2d/rgAZVsMZ9fvnwx9Wk13bz7zuN/8J/833/lz//Sq/UmTJE59+ij9999912hdIx5mqZgAxRKCSEkzWYzqQXWU3IuIeUck01BKQWQtdZa7Ct7Y8xaMWOMnTwTHMU+pRStdUlQNUYq5kKMMdth5JQpzYfRSSlzjjh6743zu92T5085R0RdHh0doZteKUU5xQcefzNWnoWcOGH4vmAIX9u2fd8Pw9BUVSll1rajtSAYEJJTqoQiSqJ0jnMuGMeLjVLKGIsxhuCFEJLvf9lxMsagzrwQiuKRnLPiQms9DgO2F0fnuJKU0gyFEdb3fc4Zo51Szqjy0wgkEKK1jt5ba6um3o6Dt3a5XCqlMNYn5tL3PWMMPW5KsLo2nFEmOCEklVJiRiKtqhqcehezuXNuGKa2rZVSzaJNBMZxZAUM1+jKILSUUowxlTar1YoWmDftZrfr3VQ19WStaWojVQjBdM1qdUcKdF13dnZWShmGIeeCVrEYY8xJStnWTQjRjVPb1EhjUUqNqVDVmHO21vZj//z58wQpWPfFz548evhOpcyw69u2ffHiRdM0GQrylF/72tdcDEqpb/38twHg6dOnKcWTo+Pkg6yN1gblxOM41lVljKZA/ORG66uqSqkQBkpILmjOKYfysy++wCbgEJzWOnhvBycYWR6eci6/+PLzAoFz1nUd54ImIrRo2/b2bh1CIgRT/mPT1ZjgwTnnVFhrhVCMsbpqgBQhxHzeEVLeanGo9z64mFIKBagUKSU39JBj1VbjaI00nEnBRCmFEjDGSJ6naSoUpJSm3qtSCoEcQwzhYHlECLlbrzIU672UMvmIhlLBedu2zlkKhDE2Ovfy5cujo6OLe/emaSop97vRKCVr5V3MGeq6rqqqvG39w+uDUj4N4263g5SbppJCOB9fvny52WxKKd/4xjcOjo6lVjHGkEIppanr1WqlhOzmbSnp8vJye7uZzWYPHjzAy2uz2XjnlFLnZ/eZYM2su7m7tdYeHR/7YEsp2/Xux599dnx2ik5aTqiU8vzsDLdehNZyzt4FRKSloCEEdL0KymIIznvT1EIIUhJADt59/pOfSqkopZxJQsvi4Ojs3nlISSqeUrq9vV3drGy/I4Q0VXV0dJRTCj4C0Lqu6eXtmvN9kTvSGPg3k7XJOY/jiLIXxphRmnOOlZDOe2ttoUQLqZTinDtrOec5Jo2zm5L4PeEJaK2FDNbazWZTmcY517QVxleFEHa7Xdu2TdOEFLfb7cHBwTAMXIj5fF5KMVpjC6H37rPPfpSi//Y3vvUbv/4bP/3pT3OOLoZPP/10tpjfO7/Pley6bj6fm7oihUjGSymlZKEVIcSN0/rmtp3PFouF1noYR8YYk3tbcyEEcmFAnHObzRoAQgiqMmfHp1prjHOy3mUCMSet9WI2o5RZ737913/9nXcenhwdc8Jyzg8evYNeFM6ZUpoJPgyDtVYAjWRf8koAGHAuRdO1HKhQkgkKjGbIlFLCeCmFlCyE7Lc7QkhbtTc3N8H5xWKBvKOSHABSyYQQQinhjDAyTVNt6hLTbreLMe7G4Sc/+cnZ8QmW5EipV6sVABwenwohcvRSSqUE+hpTKhRIXdc+WIL57pQjwoEkSggBIAOjdV1rrXPOfvI5A2OEUrrbbK+urubzuVScS/6v//W/Pr+4/+F77z/74lnM5ezh/W4xB4BxswOghdHf/71/bgDe/+jDf/RP/vGnn37a6frjb3yy51qQ4kqlxLTZbBazudTKJ4+Mg1Iq+eStQw96VVWEFOwM55wzJkbXE0KOj49LKW504ziiMJZToSslBMsEnAslltmsjcENo0VEmjGCJDSeYjerGynlcrnEDxxLNjnnaEDSlcFcQxy/8L3FMFhcELXWzrntdlubyk92sVgwKVJJXElOKCkAlJACyJL6yaGPC+/1EILWComVGKPkfLValZRDipTS+fJgNpuVUlCAapjgUhBKExSlVL/eUCBtVSN1BwDD0J+cnABjIYTlcimUHKdJCEEJKSnXbbPd7d7cXM/a5vDwMKeyFwT1IwZckwghBM5I01Q4rpVSmOAxxs1mI7SqqirnPPUDsv6z5YITyjmtu7Zq6hCCH1xtKmt9SiHGKCSrqmoch7v1qq7r2tTGmM1265zrFm+vt7r2Pmit0IaA3koU3n+Vt8r3rekyxnR3d9c1NQ4EUkqUxU7T1FTN+m6VUlpv1yE479xmvaMF7Gjb5ZwQ8vr1a5IL9hmjs/H8/gW6V1Hy8/z584ODJeryDg4OEHExdYWcaD/2YYxcIlYEUnLGGGXAOXO9izkzxrA9aX23UkoNux1XfD5bDtMYQjC1LpCV1IyJnHNd11xJ59x6tdVVba11bmpNhT9sUxm8tGKMWleE0b7vtdazWYtKIiHU5B0QYrQOPhFC1ttN13W71V2/3R0dHxhjGBVMSFwPCCG73Q4RjqqqlBJ7US3nSO5ILgBgtxuQb5ZaEcZKCm/evBn67WKxwMZAO+5VGkopJBmXy+XNzY2SBnK+vL2kQGfdAtU5+DISwnKOL168UEqRUt68eWOt5ZTF6C9vVjnnruuOj4+HYXLBf/rppxf373POKSEAcHt7Kxg/PD6QUnJOb6/X0zRVVbVcLnPOlNJhu6OUSsoo55QzIUQmoJSo22Ycx8RYKeXu5jaEADG1dWOkOlgsAy3YEddUtXPOx6CUkVIarkZrnXPzriMFnHOTs7PZjHBa1wZynKbhzeXrV69ePXr0yOgqhJBSWR4eHB4fYwn9erV98/r1dr0ipaQUm6rGzy3GVEqhq35ijHnvw1s8du9uZIRStl6vvzp/F7M55r9gK3tMyTmHKdtVVWHjMSGk0sbaSRmN3yWljDFGgWCD1W69Qd/wYCdE3heLxW63A0pyzpeXl9jyu9lu33vvPZxBcs7XV1cHBwfL5QJfsM7UT588ffL0CZAsGD85OdGVscF3XZdSKqHM53OjTFNVACUTiClRSmMIyFrVdZ1L0VpTwUc7pZRKSbVpUkp933POAchmt33x4sXjx48rVVMGKFsAgASlEGCMGaVSyrPF/MmTJ7O2vb6+3q425+fnBwcH3vv5wRJbU0rKdvIhBC6oCx5Rx7ZpKOHWWqlVcL5uK6VUgpIhf3XGKSEBCH7CkGC3281mrRAiFjiYL1CmBACFEkppIThAZCT5pn64vr6WUi4WCzyVsMEXU/EODw9jjKj+oBRwH2pMg3lk0e8tUnjfkLe/gAFjDKAwwYWQ3vvoE2eSQeScB5+ur6+7rpNaTN59/vnPTk7v2X6gQJaHR/cePuin8e76JoVMWV4ujp9+8eOLe8f/0X/8f7n38P5f+W/95fPTB9fXb3ACxd0F/Qml5ORzKWV0Fk+3lBLJhDG2XW+wLVwIgfyNEAIAHE05Rq11WzcANFiH0GUpJOcotMg5G1Nzwr23kouY99AcPpYU133CKIW6MQCZMSqEQL5DSUNJ4ZzHnDIA5rSgvIsCQTiuEPiq++zu7q6kHEI4XCy7xZwwqpRMIdpxxLIH7OLknHsXqOCcc6UkHlVACX7FpIC1dhoGxphWBh9gxhgwyjkrITHON/3OeldKGXa9pIxTxjnf7bbIz6m3v46OjmPJe0RHiOC81OrN1VUsedG2xlR11QJljIr1bjeOY1XXlJCUEuaC5RJnsxkUOjorFQ0h1HWNpnaEGRQXsjJQEjpnhFZCqBxyjmlyNvrQNJVUfL3ZbHebZy9eZCiLxYIRulwuLy8vm6Z59913CSExxkU3t27Cj71t27ZtKaXb7S6VhGJApLom5/BjRwYRda1VVeUYv/jiC2PMvZPzlNLd3a21llKKRdqvX1+ud/29s/MQnR0nWgAjfVAcnlKazWanp6eHh4dU8FevXh0dHTHYp6/gLNWPQ9u2lFNGJf6H+KXEGFOJCYrfWaxRefPmjTFmGIbNZnN+fj7FSSm93W6FEnVdSynbphNC7cYB6/Yo5UD5NLmQIhV0vNvtdrv333s3BEcISTngfSmrOoSgOENBcoxRVSbnTKWKznvnBFfGGOtGlqGpDSHk+vr6nXcfhRASgppAvPfYzCOxUTTlkjJG+iPU8ZVTESgTQvgQjJZa62HYLRaLaZomO0zTlHPWUuFcXgjsdrurq6sPP/iYUkogbbc7SjjnnAta17V3Mcb44z/5wZMnT16+fPnw4cNvfOMbNzc3VWW89/Vs8eWXX/7ZP/tnSynOhaqq5vP5bDHnRH6lXMs5l702UDIqY4zWWiml997Z6ejoiDH28tlztAhyJevaYKEZQqrOOaHkdttbawXjy+WSFsisKCFRboKj8DiOl1dvBHAbYtM0bVVX2ighUikueF1XaPdgpMTob1a3P/3pTxeLhaAcgDZN88677/J9NoZPscTg7u5uXr58+eb1q5OTExQzUUoFlBJSKqUoJYVWuA+FFIXYK1ExNAOxKWwsJxkyKZQQrZTRWkpJCckJYsicc+sCl9KYihByd3erlG7btuScUmJA2rZlZH++j+OouMAFH3nTi4uL1Wq1Xq8Xi0VlTE4peI97m2A8pQwAgsHTpy/qtjk5ObHRHs4WQIkLqa5aVNJCym3TKKmtmzCO31QV9lTMZjMgZLK2rutCSfAOIHPJ5u1BtLHp2phTLkApffXq1XK5rE2VUmSEBVJogRhDXdcuhuCcmyYhJN3Sw+UBQLl3evbuw0fRh2HXV02NUwtOmtZaJQQCgEJKQgjjnFPBOacZulmDVV9KqVnTEMZSSpSLkhIBmkMMPtZde9KcSManaSKCFkkDhUKhUJJzJhQoY4oJQmjOGd7Sk3VdSyFyhmEYjBEl5UobDEtJKYFgePUSAoyxTDJC2UxwvMkIIQkKLYCaAE4pEOCcl1x8dKj+MMaEmH1KmUK7nBNKpxB30/juRx+wLIKL3o6HJ4cppaurK5LJcrkE4i9fPP3mx1/7h//FP3z9+vV/8D/4D2rT7PqecpZKTiEzxjabzVebt2R7LJHzfZt6KYQT2rbtcrnMUBCZLwRiTpKLWdsYU61u7zAqkgoOBbAzw8WAFYQA1E82pZJSKCkqpQijOQNhjAGNMccU5rPOTl5Ihis+TpPOuRS91EoohVgRjs2VNoiB40eKfh68DwhhbTvjat8aGVygUIwxEX8WALyq0bNeSgFSAGAcR5zzGOMhBFPXlDKttZGq5IyYDRUcALhWOfrZbNaEKoSwurrxjGx226aqu64DuZcEUwqQ4xRspathGKCUcRi2681yNm9MtRv6lDIBRgjJMY3eWjtVVaW1tsHJSucYC0AhfDOMACCUziFyQgVlyYccIkCuupmU0kaHcxJjjBNurS2ZWGul1HUrheTBBynE0dERBj2u1xvvPS1k3nSLxSKHpCqDnUgA4KaJ1DU6FPATBiDO+0oZiYAcQEwp5iSEvLu7q6pKCTH2PSJq4zg+e/mirqpUMhMcDVdnZ+e6ruoYhn47TSMnNMW42+0ePnwYU+KcP/n8i/Pzcy1VCvG9D95fLBaTs+/cu//ixYvgvFGaCU5TWd+tTG1MVWulFNdQwPnRx1AAXAySs+ubN3XVCiGGYTBGXVycZwKSS0Lg+PgIIHvv+2kc+yGlTAn3RjmjtVA+5tVqY2pdtw2jsNuulfpAiHq9ucMxsZRSYqiUxBgGdKlE5wtFeqAwIKQkyLHEkEvp+8i45EJtt9sYQzvrlFLgY1c3d3c3zrn5fM4ZSyk1Vc24HAZfN5X3e6M/4ogxeSGY94UxVlXN3d2dUsq7GEM+PjnMpeBNbIxp2vb92YxLwRgjmVxcXASfML/o9as3s9ms78fFwdF3jk8Xi588ePCgbZvLy0uh9WDt559//tFHH7VtG0IghGmtm6ahQJx3SqmvHq0cc8RUsjh1XVdKefLkSXDeVHoYBkJKSHm1We12uw8+en92sLi7uX316pVSalhtHjx4wIV4/frNyfnZs8uXNzc35+fnXddJqVMKOZO+76uqSjloJX76488Ojo8YTxS8d7Krm0JJgVIip4zmkLkWhLPT07MaC6QJTakMkxtH27Y1pZQSboxx1h4eHjMmSClXV1fHx0eYc0C/fPFav8W+mZSlFBc8goGopVqv16WU5XJp7SQYV1QQQrCVtlCCp0zOuR8cXqt4BsXolRaIzjVNg+llJUZ0uJecldTDMGx2W8SoQ054or169Wocx7Ozs6OjI+ectVZr/fjxYzdO/TS2bcsJV0LGGIViLrkSCl442EJPgRwfHAjOR+8IIdvttq7r7WoNpYQQHl7cz5RQSjOBlFLMiVIqtaIUjKow9DGncn19zSg1SnNCvXelFNytU0rPnn+ZUpp3M920x8cnm82maRoheA6xFBBCSUFTztIYH0NKaRiGSpscckLqqzUoc9VKkUy1lJOflFJa65Ai55wQwKW/lEIo41yOzqLaSDKqlJK1lowHLOZ+28EipaQJSikhpHEcY4xooiC0oMQX0dFZ22mtkQ8unFJKUwpoNCKM7s+4UKSUADmWTAiBlFEoKJVAk3aMMYTgfZRSSqmrWkyj3Wx2uItb54RWdVsJkDlnb93h8dE0TbfrlRvd4eFhmPpKieTjf+9v/PX/6f/yf/Lw0WMpTd1WjNCmaZbLQ6XUONjNZiOlBKCz1qCubXRjzlnrvb8LqRpMTRFCTNNUKW2MEWKfADNNk4tBa911HaUcIOOTicfTMAwhJMkVFyCEiCEDZaauQ0jDNMaQjhYLIFkpQSn4FLwPs8WcM1lycMHb4LXWCCXRgmmSBd62PWLrBr4awUVEGhhjbdsmH3C/t8mXUkopFIhzrq0aPHQK5D3ZVnLVtKUUCoCazJwzJxxP21JKJrmUkhlwQlF+oaXEe/1uvdquNzhFWe+wo4kQMmvbWTvD/Lhh19+9uRZCnN073w5927ZG17PFHIUL6BhkjMVUcMUvKeNFKKVOKdVKlpKappmmKeUghOBMAkB3MKMF8NCYz5fWx1QyFTyH2FR111SUlFIKKVA11Zs3b66v7txkY4yHy+Xi4GCz20aS2lmnKaecAgDlHOen1Wq1D2kxhuQyDkMI/vDwMOZUCCkx933PBYNcxnFczOa4KfbjuL5btW3b1fWrV69+4zf/v4TQd95552A+/+Lzz0NwjJSqqoBShKwEN/1uV9f1vfOLd955h0vx8vI1YbTrumHXv37x8sGDB4fLA12Zvt/1fZ8ZNUrXWlNK27aNJYcUCxBT6eB8STmlZKQCRrXWGVKJbLKDlAJIxpNzT/QAE4wopUrK290QY3rn8bsxhtVmg5gHdvWUTAAAMfa9zxMA5Tson4SYY05VVTFOcLYrpVy+vhKm0VqWFEpJh4eHlPIci/f+9uby5cuXlWlms9nx6UlVVTF5znkI3hhDgeDDFkKYnKWUMqrRhsApwagKoeRkB845XtXDrrfWTv0QY26aRlRScMWYsNbXtXHOXV5eKmWEELvNVmt9efkKlUbz5UIpcXR08vz58z/6oz9q2/ZX//y/s1wu+76fz+eCy2EYCgEEXIUQuLRIwfHTWK1W4zjOZi3nPLgJqORSbDabo6MDLdXd3d0wDFM/bIc+5zybLe7du+cn2zUt53waBg9gjGnaOoQgBAMAxOQpZBv89fW1FlIwaaQyTZ2hYKYYRh1DoXv6jMH+CyUcp3a8WCnlkEuMcRp2ALBe393c3OyPi2evrxH3A0ZTSoQhH8ZqU2FRLlICSOiG4DURbzeGjEjm3j+awTkXfdrLiChUTU0p7LZbzFXQUqJMf9a0IQQKNKV0c3eLSzYAHBwcSCl/65//znw+f/DgwVcZK9M0HS6WOI/j323eLay1GSJTjFHhfUAEmxBydHBIMH2aUxc8IngsQ06JFmBSEEqttYvFIkFBPArfHIxtxOiJfrfz1qFSehwHxhgeRkIySHkaxhAC44pS+rb9m202m7putK6UElTw3W5nXchQcHeXUtamUkppI0PeRxJyQgVQ3EQxzaeqqrduyySE2PUDIcynaCffNZUQrG1boxWlNISITlwE9hG1iyGnkn1MX0HHlVYueBTBpZQOFkvOeaVNKYUIxvfGBMqVKKUQ3OF85ErilE0pJbngtyDF3jSSC/5eRimNMQtarLXb7bZkkqGYupotF9PoJmf7vv/4449Xq1U/2tvbW05pXddf/vhHf+Pf/+/+7f/x/6Ku2z/9Z36Ba31yfK/WLAOpFBI58BUyRgixrmf7sutACEOTN85qKaXdOGAQqfce5wbNBSGEMtb3fSYgpURAQjAGQCil0XnKyGaz2aw2XTuvjNKVKZmkko2pJ+cKASGEpIxznlIwxoTgkOAwdSWlyDlvNhvT1Frr6LxRaOvk+ATiUYgXsBCCAkklI82spQrWcSWNMS74YRhijG3baoncdvDeEwqllKppyltvPT7DxpgYM3vbul1K4ZwyKWgBnwKXYvKureroQyVVSXm00+3t7TCNjDHnXNe0SiktlQs+xsgI/Td/8Ic//tGPvv3tbxtj5ovF3WZ9cHD46NEj55yuTFUZLoW1Y/QZuWRCiHf7EPgYY6Vr5C9SDgDQ1J2pK7THrDcbAIpMFgAkQhMUktPR0ZGSHFJmlDJCN5uNnywTqpQiMTKPMcLodhqEEPO2YZxSzheLhRDi8vKyaxpKGJLuXdv+0Xf/zc3NzZ/95T9rrR2mETLgdgi5KKVur66klGdnZ7vN7tmzZ6bSlNKLs/PNZvMHf/AHMca6q2dNO059v91lSJRLxtjiYCm5efPmTVVV88XyvffeS1C++93vfvS1j3HaG8fx9Pjk7OzMjSMAME5ihhQcPpbGGOdcIUxKmUhyk62qSgmdUqpqbZ2LyedAOWeEFpT/eO8Bcl2bUOibq9ec09PTc0LI61dvjo6OtNY3d6ujoyO825TUQihkGbUUlNKqqtClUkohpKSUjJBMiBCCkAxvglASYUJX9TRNSnAfrJEqZ8ixjOO4vlvhglFKmS3mWuuUAiEklYiiHyUk53yc+mEaLy8vGRWPHz+mlEIu291aSgmUhBBYBjTcX15eCsa2223bzF6/elUdLhYHh1pVnIuua3/8ox+1bfvxBx9//4c/ePPmzQfvv/fq1au/+Bf/4ueff/75ky8wfwO3hZ/85Cc5pp/7uZ+b+mG5XH7y6Te32+2TJ0/qtkF4g1IqqOhmdYxRSl1iijGWkpq2AoB+M43juN1utdb37t2btS1OKlOOGOmzXq/RxLxcLlNKjHKEWLz3aPBDYabiIgHhnEfnUT8rlGRSUPDWWq2rrp1TShkTOcdSCpQUUzGmBgBKAbeU/RHtA6WUU8C/wG//9m/nnOnPnr4GAKEF3iXIWuM7n1JCiwse6Og6cJMVQvR9jxIAfD1GO1XapJRiyMaYDKVuK8aYdZO1Njh/fHyMRxLkgsMLLaTve5/i7e2tMebevXsvX758+vTp9e3NRx99hOxv27YYH9++/fjW6xUDUgqUUpgUXPKyz54UKKPnnAFATN6HhD9LSZmmAqXgp6CNwfG8qqrFYomQu7fu+vYG7WLr9doYs1wu0egcnENiL8aotTZKV0pba0OIKeHPEgFK0zQpQQw5k6y1TrgEAG2ahklBCKmVrCrNOHEpVk2lpdKUS8pcSimlm5ubcRwX84O2q9tZ57233gYfN/2QE1RVNWtbyKlpmgIphJB8jjEDAKqCU0pAfCpEV3XKMNgJjz/GCJ6P4zhyQuu6ZoRW2uScB9s3TdN1nRCcSxFQiEVA8n2RNX6wOew34KrSpRRUMHLO8UvMOdvRuWmMyeMneXh0IrWxPuYcXfCpkKqq1uv1bre7f//+P/n1X/sLf+oXh+D+H//Z3/tr/+3/TtXUs+NDxcVROw8luclSSodhuH5zc3JycnRyTAgZp23f93gBVKbRWguhuBTzrl2v1yHFbjHHN0dQgrs+4QyPpBCCUlIZTSkVjAMALaRAvn5z+eLFC8YEALHj+Pjxe+cX9wiwkGLIab/xM04pNUoDwJs3bwiDo6MjoSXlDAlj3AxwmSOE0EIS5pNQiuMgznac0gyFS0UpNUrlmHDMzS5dXl7WXX16eooXLcnFB5dCJIxKrZkQSAaTArQApZwQQjiOBYnBPmNUS5UK+BR9CJQQxVmJyU9Wt7UQ4vr2GjlCKSUmYEzTaK1drVbPnj4ZN7sPP/xwmPqLi4ur2zvGmFbV8fHx/fv3+3Houq6QHH3SWjvnv/jiC9x4lFJKSEokY2SaJiGZMaZpZ23bcqkEoy74wU5SylqbfrvbDf3sYLlczJjYy/qC842pXj5/tbq9axftYrHARQ3V48Coc04LidkdbwXAdDGbO+e/gny8dXd3d7e3N1LKuq7b2Wy9XueYAGA5m+ecSQEhRIj+Jz/5iXXu9PQUAM7PzjCe/Y9/+L0Yo5aCU4qJ38vD45Cim/xsPieE2BCQfsYXP8b4yTe/gbF3Wqucs1YCUqaUWjuiiI8QkoAIoay1z1+8qKrq/PwCk7+EYMaYYdxxoRADEEy2zezu7i5EZ4xarbchOsLg0aNHbTMbRzsNY9d1P/iTH92/fx8fOSV113UE4xcoZYRKKXMGdB/EnJxzKKoaprHfbS7O7pu6Cin7jLhx5ZyjUAghWmjkRJq6nkaLmgPnHKXEVGqaBq01qquM0oQQoITQ8ur161evX5ICi8ViOV8KIZbL5eHh4evXr+0wcs4xuDul9PmTL5wLjLFMyenp+WJ5KIRMMfzWb/3W7/zWb/83/9Jfef9rHz5+9O7Ll88rpZ8+ffrxxx9Loynlk7Or1erly5fOubu7m2EYTo9PxnG8uLj45JNP3rx57WM4PDy+uLiIMUPe+2PX620I4eTkpKr0sN2ZSmnVXF5eXl5enp6enp2cllK263XTNCFl1K/NFgvTmH4YZsuF1nrc9PmthkZKyTgtBKTk2WWp9f7OwnUU19Ti67qOMU+T67pOcYbPsJIS4yNLKYQB51xKTQjJJHPOOaExxhgC+mZ3fU+fX62/4neVFri0EULc6I0xkx8R0MPrM4RAgGEUoqnUYrH4Su4vBaUE72k+ou4oeqFUpfdjFOoYCeZZplRSoZRiatpsNnPOXV9f16ZKUFarFWPs8ePHQgjOGNJvuH8DZM4YB+5irNumH3uAzKlgjAnGUXCkK0UppYkQyWNOWipFuZLSu9B07Wq7LjE9f/787u7uG1//xmw2e/Hs2Y9/9JPL68tPP/304cOHo50OT459DEwwQggFiuoDdGoxSnNMUGgJkRAScyKkEAKUsskF72PdNowJSmlOJeakKrPr+4ODg3lbGaOmaRiDnR8s26qWGNBMIOcyTVO/G9u2xZo/6x1lJYa06QdGRVNVTdMYpTklDtJutyOZMCoIoRQIHvo59EIZh2YIQoFRSonkfBxWOWcAWimtteaUccoopQUS59wYjYQCYdTHKJRkBG9fwAs1ukgIQZA8pYRCLYy52R/rmU7TkIKL0QshqraDQoHwnDzlLBUSQkwprder3/tX//Kb3/zmX/i3vvM//Nv/s+/86Z//4NE7Dx68zxqV0nTAOpC8rms7DhgIh2ZrKeVu6FNKRmlrrZJGa52BhBDaukolK6WU0Xhl5hwJAEgeY0RlFlpWEIA1leKEU8KGsb+7fbNarUomADT60HXdydlZVVUhRkppglLXdWOqcRxLguvr65TS0fHBYrnURgVCjFKUUoQfcCNMJUNInPO3ljCK4gOG5Q214UKUnCUTjFDrHRPC3fXb7XZxsGy6FhjgS8c5YwUKAcKYjxHHR3TfoiidMKGUTDkCAMmFQM5EcEohF0ZQPZ58DDFGZXg/jbthh8nebdtGHwkhKfjXr1+/fv1SCXm0mCNttOk3d3d3UmoG7OOvf+Ps7Hwcx2EalZLCaACYzxevX7+epgk/2HEcaSI5ZyEZY2y5XNZVy4RsmkZyEUqenK2MEpRlH4ESwihXDMVr0uicSo6RZfri2fOXN68ePnzYdR3KyI0xnLKcs3N+Nuv6vkedppYy+whAsF4+hDBfLrRUr1+/opTW2txs1pii6r2XjH/yySer1SaFaIu7ublxwSMY8/rlq69//LWubmwKm9X6yy9+5qbx6vUVAFw8fGe5XK5WK+vc8dnpsxfPjakuLi72/QranN47H+30/OXzT775zRTCdr3SWmfvmqZRlWqaJoTQ9z2lPGdIPqjKlExMXaWU7DgByfP5fDWscozz+ZwWwZj88vOnVavvPzgjgfrsMyRKqTZm7Kfg/cnh0XqY6rrebNdCiJgz9iS+TQret+DgjDIMu0IJYwJ1+IqLkrKUOhEaYkrZK6XwXMBVhHNe1zVAJoSgkFgJ4dyklOCCBR9jCEIIUspop6qqKGc5Z6XEq1evUsib1frk8OhP/dKfurq6qetmN/TjOAohdn1fVVXI6Tf+2W8Szjqhf/7n/y2lDP61m6r+7E9+FH08Oj9y07BarZ59+RT/FWVCCKHaFldS9PCs13dvXl/mnEuIDx89QlKAELJcHq7vVgCQoYSQSim1ro+Pj523s1m72+18TPP5fLvdorro3XcexZAAYArBe/vkyZN+u/u5n/u55cFCSimlRI0eJJimKcZY1QbVlJBTzrluG1LgJz/5ibX2O3/6T03O4otvJw+4n2glOR3HsRJG62q0TgieS6SMMSZKKaLipeBLKpGo3SNk18P0/2eVclZKpRDRP4coNop1heAZCqNcK0UZU0q56CllGDmkpBSCU8z0ytlaO44TJVwIJcW+UVwIQSmReg9f7zbbqqqUNpwxRva5bta7L7/88ujo6ODgoJQy9sM0TYKym6tr1qjZbGaUrus65+K9Exh/X1LOuVJSMG7dGEKom0YpM+3WwIVqGu9iV9XeBiCk6zpfEud8tpj3fX99fb26XUUf5m13//QiQUkpmLrKBIahx8YnlpLWWinjXUAGAm154zhKozFVbrVaOeeqpk4pCcbruu77Pvh0fn6RCjjrT0/PqxrFoqmbNU1TSykYITFDSgnTYtfrdVVrxnkIKQMlpUzTtNps2lnXdd3Bcs4JCM6gsN1uePPmzR5nLmCMUcqM45ZzzgjBI1IohbvaFG3f95JJKSUAHCznSqmUkpaSEOIjzmI5paSEpJSWkjG+O4SgdOWcQ5MYVSLF/YYnFW+MDiHh4tYPPiSwLrRd1bZ1CvHm6up2N+ScHr37cLPZ7Ha7f/xf/OMP3n30P//b/6P/3f/+//Dy5ctf+ZVfubi4qKqqqhpjjJSSEdB6//8pKNtuVgDZTgPjOufYzZr1ekUpVLpGTzlTfN7NBOPOecoZF0JJWVJuuibmFHNebdZt2wkhUEt4enIOJWkpduvVZrO6vb29uV2FkIZ+3c669z/4KMYoueq67h//f36tqqpPvv4NzBO+d35+enp6cnoqhKiqKtHinAs5MSCSi5wztgYVnwghmgsKJEOhjGGumU+BUsrJns2xdgIAyQUQHIj3DE70QVAmOBe13ieeEuqcd8FLoRljglDGhNbaWyeESinsG8lKfGtejABQCgnW5ZwLk3ac0Ce9nHe4eqYQc0y73W7Xb54+f3Z8fNT3/XI5v7u7u7m+Pj46ffjonaOjY22MT8EHyzmHwgghWuuubryP0zRRSm9vb0NI0zRRzpu2Qo3oMOwW87ngCsNkgFFjVN025S3XjQ5pEjPPhBYgnIUUr16+ms8XQPnkrKqbAokTSlKJJTjvkTgvOUsp+76vtAEKdV3P5wtrLXqLvXc5Z+u8FAKDG3VlJBd+mMJkLzd3pZTD4yM7Ts5ZSul8ueBaiULbtrXWEkYvLy9fvHjR9/177733wx/+cHlwsF6vOedG63k3uzg56/v+/OJ8uVz+8R//cVVVH338QUoppcA5HUIppTRVPez6N69eP3z4sOqqlFLJdD6fj+OI+zriSX3fC60IgNaaUrLbbK21TdfOZrMMqZQiubLWCiYwZO3Fixd3q913vvMdANjstiEErXXXtIQQzilyNJSBlNJ5v2ejhKZAvLWLgyOhZEgp5xy9r6SIGTDDjpBSSuJUeO8pFVrrhKeoNt5bxti86yDm3W6XUkCQuRAqtda6khRrZss0uWmaDg8Pb26uhBCyVseLk9Xd+vXN1e//3u99/f0PTy8uXt7dakgHB0daa0a55KKpKqWkm+zoPVdcCHL5+iXn7NWrVwyI9wG4Yox1XXNxcTFru5SR/wwpErR1IBoPKY/D8PzZy93QCyG6bjabzbqu6/u+aWpdVy+ev378/rtC8hAjISSlpKVWymx3q81m081mOefVapVSQpvrYjYPIWQoBcAYw7kIzkspq1qhMwWVE+v1ummaStcxxn0udPQKHdtNo5QgVNvgKSfGmBQ8Hj6pZEYLAGGMpZI5k5TBnv97ebtuZx0aHpBAFkJILqy3wzDc3t6iqjuFOJvNGGNCqVzKdrfZq7QyCM6995RTCoQQ4pxzkwUggivOudL7FhG85kOK2+1mctYIrStT1TWjNOE2GSMK53BGizHe3d3N2m7edgCQOEguSgH0qKWUAAoanEJ0QghI8fb29uTkxHtvjEnRpwxE8hhyGH0IoapqKnjXtXXb4EKfc+F0n0Rhd8Nms4k5LZfLu7s7SklVVZRSRkHrKqZsreVcCsFKKYyxSLKWCiWmP/jBD9tZN5/Pp2kSjGutr97c1HV9cnJGOev78fb29p13HqBrvmkrgL0P3ftQSnE2DMOgtZ7NW4yZzRlKJqvVKuR0dHTUdY2plGRUCBEZcaPz3jtr7dBTQk6PzgQVYxz6vsfASGMM5xybIrEJtWmayjSME6QbpZRA9ybUPfQEFJNGIBcpZb8bCaNY+Pj69eu2bYGSDDjP8bapco4kF60rG+x2M042tG07m3fB2eydEloZ+cWTn9V1xTn/wZ/88OOPvvbtb336f/4//sf/5Ld+92/9rb/FGDs6OmqaZrE4QNcHgZRSEJJwznL0u90QbJJSI74ntbi9u9FaC8ZTSlqbCLmEdLBY5gQueC5ZTmnsewYEDT/OOVNXTdPgRHh0ek8rITmbhn4ax9V6/ezZM13V2+369PT07N799d3ddr399NNPP/vss9/6nd86Oz0/Ojr61V/9VQDAlUIarZSKOSIpjrYNpRQT3KeoqMg5c0IZpYRSQkjIKZXMGIWvWrQpiSU1pkIIIaWEr1sKyTlXYgEApnld1yUl5zwCXz4kSmmjDb7MhDDMO+Oceu+BUeTmATItkFIKIQFASKTvt13X1UbhtY3R3Cl6PLMoY0dHR8MwYMBIP+zef//9kmG9XiulpBLDsEsp1bO5ENJNdta0wXuSac65a5ophT1hBqCUqut6t11P03SwPMIjO+fYLeZ48XPOgQKTosSkpeZAvHUZChfCSOlGWyjZ7oZUMias3Vy/mbXdaKec8/379zHVWQm53W5dcIfLA6Tz0S5SSi57wQLZqzoY22422YUc076zHMrLly8l4++881Aa7YJv69YYg0SgUPLi4uKf/tN/aozZbNalFMxXWczm8262vr07PT1FIvbZs2eU0kePHoXoAHIIIRWGK3hd1zc3N03TzJaLlJINAck7zrmqDGp3X716dbRYEgKIkJ+dnWGa8TRNz188PT05Pzk8ijEdLJZCiPly8Q/+wT84Ojv/4IMP5vO5lDqkqKXKOaMpK+ccgkNxPqpiU0o+FyXkbrOxPs4Wc2WMYIQCoQAu4PNTGCc5ZygUYO++wwg/CgS1irO2xUDcaRoopehrZ4yVUqwP0zQxwnGg/+KLL/BSDMl3VQeECiV//KM/+X/+5//5Rx9//Z2PP0xuWiwWDx8+vH//obcuhOAnK4RIBYCUUpJSops1lNKpH25vb50Lt6sVvmLHx8cnJycxJ+cCF4Dp4pRwTgUA9WNIKYXi5/P53e0KT7NhGoGU995/nxUeo6eC5pxRQhtsIIRR4jJAjDFEV9e1UnKapl/7f/2//8K/81fqthFCdF3Xb3ecc0HZNFlV6aapAEBKSXJBCQKqPXLO5K1WBhVbmCqfCXDJ8A5C/ROXggJJsSDJi4suijno7WD3MihK0CqD0fMhhdvb2xCC5CLGeHJ0LKWkBYbg7TRhjjzewdNkAUAqBSULIVKIMUaBsxYTmWTcGlFyknMWShpjalNhi+owDGM/IKMstYoxKKXxrQYAozSinUj1YxocwvSc81Kym6zW2kfHOX/16lVdVcaoSmlKitLV7XoDhFS6JhkyAaUUpcQYI4SstXHOYbNezpnBXtGNBXBtU2NAmpCSc1FKYUwApc65lIPWmkpmx0kwjnlDi8VytVlb5/xkBVfW+vfff/8P//APdWW++c1PpJTOBS7ZbDYzRlk3oUUshUgo8zb0fd80Dd6XQqhciHN+u910XbdcLqtaM8k4p4QQW5yShgJ109TWuHOz4CPhNMcIAG6yOe/1ZW3bbtcbtMniAIReeAAQaq9mJ2+jV/A3ZFcwRljr6q3ixvsYAMA0NeOyqjShpd/uFBcU2BBc348E+GKxODpc/LNf/yf/m//V//pv/nv/Xknwn/+9//Txe4/atr1e3b333nvvvffev/pXv/d3/sP/cLvdKmlOTk5CijkDrvKQC5IUGE+TSzRKSilHOyHBdrteoWiFFjDGjM5Cysv5gRDKe0s5sdP46tULzRSauT/55JNMoJvP1uv11c31xYOHBwcHnFDvXAhht9te3Vz7GAHg8PhouTxY362mfkCHjPdeN/Xp6SlaGxGeAUqklCXlvTiRMpIL5xxpY1y197Az0rOU4N3jrSMEOOdACfopSSnWDiklRnhTVd6FnHPOkFIpNKE9FB/7GPdcsqDohmL/dUFGzhH5Dvz6UtrXqxHCMtCrq6uTowOse/PeB+cppYRmqVWGkkohhOJLPU2uWTRaa299jDFYF1Ow1lprl4eHSilO6W7bLxeLrmkBwFp7u9vMmhaAUkq1VMYYF6xzjhGOvAAhhSuJ76n3nrA9zJZCFJRRQqRSOedgbc6ZZGBCNV3rY0gplJxbXWUCaKLt5jM8mqy1dhwJIcnHuq5fvnyJjGw7nxVK984l56TRnNCh73NMpwdH7azbjcPv/vN/UUqZzWbe+2bWffTRR1LK9Xr95s0bSul8PnfBf/7554zR733ve13Xffjhhznnly9frm7vPv30008++WS9XqNH7uOPP97tdrlEzvnmdrOYz+u6JkDfXF9precHy9vVXdM0GJ+EpltgdJqmUkr2vq7rsR8451VVUcqePHlydna2Xa2ur6+lVHjZc87rrv2N3/iNjz/++N79i+2mR+gSk9JTCkqZuq69t5TSUgrlLGeYpolrITgnmVBKgVK0A1RVJd4aePZJwylRygvhWC2Dh38KHvPd1uv1+fkFI6VpGi3Fan3LKROCv379up0dG2PGcTRax5DGcXTOccG4ZF3VeReubq/aunr59Mvnz59/8u1v10bvdrsQwmqzfv/997/5yacx5n43cEpHNxljbm6unj59+s47D45PDoUQlVDPXjy/vr4drW2a7uTs9Oj4NKUUk0dDDSEkOG+t3W22BwcHuqrxmZdSbrZbzMvLObdK4L27nHcppWlygDw6V4SW3bijlFo7MU7ef/99a+33vvfTu7u7FOLxweFHH3yIT1rbtqN3KDvouqZr269e8Bi9UgoSlFJcDEix+xAoA6BUKKm0gFyQaKecYfIzhoejOQgPXjqk4n0IIRQCKKtLKW23W8Y5IWQYBqUU/sEITQutYghGKdTxEs68D5OzeF0xtle77PdLzpEpdM4Nw0AJn8/nKLAKIRBGCS3OOcgFk8C2/c5bK6USSrZti3IwALi7uws+zedzYwwpMI4j4QAAs9mMAtkNfQj7dPsXz57OZ7PFYsEhKV1N3illOMN8JYFyJCNV27aSi1KKUNKn+Ob6qjYGyWwA2G63p0cnGAWeCRCCp8dediQ0B4CY4zSMlTbRBcbY9fU1k4JxSQjbrjfL5aFzbrPZ/Ny3Pz0/Py2QrAuUUiklY2S73bZtW9VGCBFDQikPfiYAQAiLoUze5hAXyxlaa4xRhLNCCqMAhaaSt9st55xwopSJIWnOEemSnMeQ+t3OTh4A7DRg5CwCgYwx1NGkkvdUREm4TJRSUoHsEuLPGQhAxhkrhFBXWpvaxkAFZ4xQgOxC9CkUcM7hcUBKuru5vnz1+u/+3b97fXk7jX2lpLW2ajvKWD9s//7f/3uyqSilfd8TwvaSolgIo8Nmy6gwpqqqhjHinVWKWTdyjCVRxgZfSvHeS8k5584F7z0n/HB5MAxDN6tevHh+c3NlhLx8ffXhhx8eHx9TwbGh78c/+uz9jz5YLJb3Ts9KId77zWblYri6evPm+urDDz+azWaQi+Li+upKSHn/nYc4bue3YUZSSmUM57yEiKeV5EJQRgCwroBJgWMiPrFfXcOMMTdZIThq+pzzOG244N1kaYGmrr33nEmpFeeyqjSyPyipBQDUxCFjhOM2/hMAIJwJylBUj98aQMYTuaqaGGNVVd66q6srdHl575vWmLra7vr1bovhl+/cf+CcY1qiQd9ItV6vvXNKyaZpbq9vrLXz5aKUkqGot8vQz774otKmrWqtK6O01EoIMdgBEmA8U3mricOorH4cQght26YQOaEoaC+UlOAoEFqIMYZJ8ezF82mazs7OWl0VSqqqIoyuNxsM/wIAkrP3HoDs+zZCCDkeHBxQzgEgl/KVlrVt2/lsVnwc7FRKGceR5FJK+d73f3jv3r2madDiYq09ODhA9d+Xz57OF+0f/uF3t9stDk+np6f/8l/+y7/21/7a2dlZCEEw/sd//MeffPL15XK5j91wHu/vabR3d3fnF/fa+eynP/1pZ2r8UjKUruuwt9vHUFVmf/IIISgHgOvr65zz4vjw+fPnzrm2bc/Oz0MIwOjJycnu9u709OxuhcJy9fTpk5OTI/Qiz2YzjJVQZl+EyphgksUYt6s1RsZ+RfcyxoRQFj0dDEomUtUh5xgDfrCMEdR50L15iVSVllJWWpeS3GSB5GEYEsij5UEppTImhoS6kFIKl3y5WGw3O+9ssFPbVN/73h99/4c/+OVf/m8IwYCRf/Ev/sV8uTw/u3jw4J2Lew8pxg9AsdaaquKCbjarGOPp4TFGmqw22xCCjwGVH3vfByWTHQ4PD4VgMfrgPYBWShJaAGC323EplTKE0FpqyGXedYQQwbiPIYRwc3fHBC+QlRJa6xAc0qyz2axp5nc3t09+9vl3/+APj46OvvOd76AyaQqBC6aFnM9aSumsaXGZxA+n7OPqsg1+NpsVAMYYMCgEKAPU0+CeQwnPOWtdYWIPzkwAQLc+It4LlCIQXUpRSrnJbrY9AJi6QeBimqZKG6G4VqqkzBgTlAqtpFS3q7vgfNd1hJBUEmMMKCFAAaCuqugDXi0l77dMxlgIoR8HbaSUkpE9mrTtd3c3N4vFAk3NQslpmna73TiORtfIqSgh9+MDJVWtS8pCCB8D45wL9vTJl6fHJ1WtaYmcc6UMMGqtl0opZfrtzjnf1Y2UMvrQtm0763xJz58/jzHMZjO0SyqlUZwyTZO3LifYw84xZtgHrxdI3jrJJLbPfv7ki8XBQdM07WzJGIsuOuceP34ck4s51I3pZjPEBgGglNS2dSmkQAbOvPXovUFoIgYYx8naodJ6Pu+0VEIyU5uQElBCc0EAJ4RgvaWUCiG51JJTTLHJOdMC3kfIxFrLaG66FkXRlFIuBB7f02BNpdBzjHKMAuC9z7EIJa21iC4SUvauu5SkMkKrVCJjjFO6urkrCZQyqNGQUg7DcH17e3N79aMf/Sjl/OWTz18+fdZUdYYy6xbHJ4d/5+/8b7/46bOHj96RUq5WG6W1lDKEWErxrgeSq8pUlc45OxcYQbEYzYBh4wonhhCcc45JFWO0k1/MZil4Luhms37y5HPrw6OH71xcXAzDUFV1Vdd//P3/Shn9tY8+evPm6uLsQggBjFprh2F3dXW1nM+OT09xfJScl1JGa0NKGIyM6gxjDFBaStGVSZPLUDjnJWVImePll1LIKUPBxwZlHSmlFCJwFpwzSgGAMnq32TEgKRWs86q0PlwupmlyzoW017sh4qe/qpf2PqWEBeyEFHyEKKWqMgBQS41hXljwopTCYqiqakJwKM/JKTnnvIvW2hzTwdHhOPXb3W42m33/B//Vcrn8c3/uz+22fQwBFcUIReScU4pusta7pmkIoy6E6m3i45/8yY+22+3Pf+vbbdUKIXRd5ZyruvbOxRirSgMlnLNpmuq6wV0zhSiEEJRxvp/qOOd22O3Wm4vzC2PMbuhX281ut5vNugcPHkzOlVKqug45xRiPjg5jjCRlQohzHuOvQwghBWOMm1xIUWs9jiMqV/C7EIzrSqO1LPqolMoJ1ttNCnEYhvPTs+vra6z5wmCEbtESQuqqffHixWeffTaOY902jx8/JpCXy6Vz7sWLF23d4DJAKY0xbLfbs+OTqqpfv36N5bjPnz+/OL/3/e9/f7lcPnz40Hu/7Xdd1x2dngxDjw16ta4IITc3N+v1+sGjd/DhwUiGyTsp5eXl5W63+/RrH3XtfL3ahZTfuvkbQghXrKqquq4BoABgMGrbzhIkADru+u122zXtntErsRSitR77QUpJaBFcCVmFnFOKKaW+7+u6xicHHzmcyN8ufBxxb+emEMKsbXfb4frq6t69e3Vdp5jbth3tKIQQQjhrb6+v3rx5/dEH7333D//gZz/9/Pj4WBl1fH4cQ2667ovPn81mi1/6pV/inOdSYoy6rqZpevHi2WQHmjmank2lEIM5OTnBJ7/r5qvVSimlpNn/4KUIrWMMKQXBWClFckEpjyFRRlDN9+bV6xgjRhQ3s26z2VhrG6Pv7u4AYLk8HJ2dzxbLg0WM8fjg0Fr7u7/7uy8vX7/3wfsPHz7MqQCAVrKrG0YB707OOScwDAPnnBAmhPApxpCrpo4xSiNRE8oIYZhwK/hXdgkAwMsuQ6GUipyzjyjeo0ppxHjX6zXJdNZ2hVDK2TA5SoFxyZRmjJRMkDjUWjfaOOeC20sAOOeci1yKs05KieloTHCWGNYa4zYcc2KcSS2AEO9dpQ1quBEtoZSi9ufq6qqbz6y1Xdd2swawJYlQ1La1bXt3c/vg4QU2qiouKKGL2dwYI7hsuxazTCdn67o2VYXXGwARWo39YK3lkqe+NF177955Sung4IAQEkK8vr6u6zqmNE7T1A9CCAIMn0XJ9kijYKIyzeZuI6Wsqur05JxwRgiz1i6XS6P0weEyRM85q3UtBAsuYiXnMDlCi3CJUiAABUrOGTNfxnHcbDacScpYjPFwOa+qijECpFBCKKWMUqpESImUfVcxAeCF58knLUspnEtCmE+eMTY5F2M0lZBSSqUYp6kUwmkuEEviUlgX7DQoIVXTpJS8iy54pRQi84SzfrerlMQ/t1A67Hrs2Mic+ZiEUJvddhzt4eFSKi6kirk6ODrMjJz3Qz/ZbrO9T2VJ+ejopG3bb3/758bJN03l7RQj77pmu93aCUzV5JxicEhnCCExiSSTwhhLkXTzGcZRhRAwCWs2W+im3gMkpUjCtrv1NE2L5dGH52dKKcr40fFJyEloVQh8/PHHD+/dp4UUShIUBgzJnrquz09P7u7uVqsVoL5MSt3UgmpcNHEYxTOulLLbbCVllDMUwAOCCpwzxqRQLOevECrIBYFfpuRX8D5yxn7ywXnO5ayZaSO5VFJGQogo2DdcEIJGUST5r/Wj4AhYSpRSYqJkzvl6u2FMIGT9NjMhKcWQHUTYhlC6WC5RPJxCzjkfLI8Q57TT+6auALKSssS022y3641SikvhnJNa2hKpEj6nqbdVVfnB4t/w448/3q43hLAERQqOmdtkmvadbpwRKIh+AZRpmiQX2mBmckZWXkpJCmhtpFT7PPZSlsvl4mBplBrcpKQupWSyV2+N45TS/lDjnCMsgfE7OeemaTrGXPBa62HXu8kidNG2rap1LhCc67fbytSj84QQxkBXanRDJinlcPfmZrfbEUI+/vrXpNBDP50enx0ujy6vXi+Xy/V2433AH+fs7CzH9NbmxzLk+XKxGftCycHxISH0+auXIafVuDu8d9o1rS+pcHrvwf1hGrf9LsdkpBaUr1arp0+fnl3cOzk/45z7ydd1XWJMUBqtpVS71bqUsrrbeBcBSF031losuiCEUEEAIASPWrxc0tXV1Xq9ppRyLo0xuCdILjJJOWY89KU2FEpKwAVxzhFCtZS0QA4xi1h3Mxt8CEFrE2PQWlPKY4yEZUIJIURKbZQQgrWN/sn67t7ZKeTCKHHecs4n7xpaMcaYkP/pf/b3/+a//9f/+3/z3/2P/k//18vLy8XB4sunX8wWB1//+idnJ8fW+u9+9w9+4Rd+4U9+/CMXwv37Dw8PDy8uHpRShnHabDaJAhNqvqxns1hKIYTcXK93m9EY421gVDjngGRr7dnpPSYkqh+UVJRSUkBwVrU0paQonx/We2S3OMJlVynbb2ihFyeHMca6NrWSMeebN1dd1z1//tynKLS6ubv92ZMvDg8P/9Jf+std21TajM7OmrqUUoCWVAojTKpcCqUklsyZtMlHvyf+GRMcQdqCfbmE8cIFh5QJJZAjRt5KKen3fvozdCufnJ0qqaUQIQRrreKaS0EYDyFcXt0oJY4PDwkhWstSirVWCDafzbSWbvKbzcY5d3h4qLXeDT2+XSjHRa6e032jA7Y9cyaVkVLK1Xa9Xa/n3Wx9t8q5TM7Ouy7nnHP5/PPP8Vjp5t3p6WlVNzlnwWSOqe/7vh8B8jAM56fHx8fHmNHhva8qQwXXWpNcpGCCslhyJEWgGSum6+ubuq5D8Dln7EQSSqaU2m5mtN7tduu7FRJsu90OI13qulZKFcIwWwcAYoxYcf/Tz3+C8rHj4+P3338fweScs2Ccc4okkPOT1EpwlVKiXGBo7dHRgWAcSGZK9P1AMuI/4W6zLZl4Hystj4+PtZY5x5QSjtuMsUgKBRZjFJQRyNM0CSoJYSHFDMmnSCmkVDjnJRbGmFaslCKV0kZxKQsB5zyllBI59NtgXV3pumoBYDeMAAB0zyCUkvq+bypdaUNowZyjUkpVa+993/dS6Kurm9msPTs/EUowykMu/RTW2800TdvdeHP9JsdEcjk4ONJackY/fP8xpRmTHNDAholajDElmdHNZjuWQgHAeysVA8iCm27WAKUFElL1Sqn5fF44ZAAhuCA0Wp9j+jd/9L3ZYokPnk8eb6Mvv/zy7Pjk/v17ShlM/quqqq4NIQQlFYyxm9Xt3d2dEoJTZozxMcwWi4OjoxgjUm6cc5QvhJRoLkJJjNRihJJcGGPSaCoF5IyqQPQIIZ3hSzJKS864lLvdjnLuJp98YAyd9xkT1HHb5pQhiI33LqKpSEKjANA5h3pLFwNqheLk6D4HIL/Vg6iqqnzyeAFTSrz3yhi8t4KLAFkLqaTEZCtd6dFaQfk0jiGEknKMkcv95W1zrOsG2SzJOGSCWlypRVU1+EiUUmKMiKwWAoSzujZC8HEccZsPIXLOo/OCcyxt6Pv+cHl0dHBIGXw1alDOcik4BsUUOOd36w3+RCQXxveCGu+95BL95VVVzWYd8oJM8NFOm9V6GsaHF/eB0ZDi5eWbd997NwM8ff5McqG18d7HVLigYz8E644ODwHgD3//Dz777LOPv/61jz7+mAA0dVebCgCMMaqSlNK7m1v0Plg7GWOkVgAEh28gZBj7EAL2kW/WW+994fRweQApC86FEBg3m0tplUFui3O+2m6UUqfnZ2/evGGEtLOOvf01jhMqra7fXJVSUGOFDKiSxk1WGc0F5ZxLpXBtffLkibV2OT8YpjFBef/dxyQVxokyetf3QohSSCkEPfoddpoBwzECzzR8zgslpRTBiJImloxwCyeU0EIIgRKQipZc2MnHGAlhk7OcS64FI2TaTQDwa//01549+Vka+ncef/D48WPn7a7vKWVVVRlTc85TKYTRV69evfPuo9PT84OjI0q51kYpialEnHOSC/7U3vtx57e7ddd1WMWolMiQpOSsKJQ1CSnxycTUYaEoGnA5k9///vdziU3TcE6P50sp5dWrl7e3t8v5opvPlDTLo2MfMgAQxm5WN8+fP//6178upfzhD3/YzebzWddUtRZSa43LHiEklqy1ziECQHAeFWqlYKoaEWhhJYQxUggQJihkKSUFvMEJ5RKL4ek//+6/kVqdnZ3hICmFCt4j/BVilFLfrjYppVnbUkq9naqqYYKXkrTWlMLQ9ylELTRVjDFmjIkuWWu1lLigyFpN06S1TiEiRoQjufeeST6Oo7d2Gsbf+a3ffvbs+eP3Pnjv8TuMseh8SlnXFedcGdU0jVAy+MgoTT5779GwlVLKxZ+fn7d107YtIQTrVVxyw2bsqlopaZq6MBpzyrloqZ4/f5ZK1lqjQBGPYMaYqWrG2N3t7e31zcnhUY7p9evXzrmLB/fHcWyapmmakAqGeRHCSkmmrr589pQrud1uv/WtTxfdbJomwSSltO1qUsAYhHEYYTSGTClngve78W518/DhQ8kZZcAEm0YLmZRSUonTNFGuc4bjw6XWmnIuJMs5YyQkBcZ4sdZKoZngMfpxHLtuvhsHzRTnNCSPLQvDMLRVq5SiJaeS27bxMTAhhBDWe855IYKWzBkjuZSUU4FhGKSuSoFcCufcumkaxllbt3VjxyHmVJvKWlsgIRo8Ts6H0s2qg4MFZSVmYFz1o7feA5Ts3TAMOQVCOd61BPLp0SFhChUTOWcASghB+JrTSAhxMWHLundRSo210IxRpYSQjJDCGJNMci4Lz1wJa0daQBGhRXV1cxtToYRQTiilq9VqHHsK5OjoiAKpukZrXWhBjDelNO56xgRVrO/7sR/cNLKC30J59/Fj0zX71ltCGWO7oc85o2OqlAKUMsaCc3jdAoAwuqSEZbe4yJK3QXTOOSE5ALgUKWWMimlyAhKhdBzHBKVtWyMNNigUkr2P+N/iFYicRc6AMivGmDQKAChlo50oANrGcshSSnywpZQ+7VFEoQTe5bFkwSWhUGLKLjZ1nVKKKQ3WcSFSDpj4wSjBmwZ/Lin3ZtOqqqwL8Db4UFJeCBhjmm52d3dHSp53M6WU9c4Fr7XE8CnEwAWXKSXOGKfMOZeh7Pp+u1ofzA/qeYPO8gJQKGGCUyCccy1FSunffPePbm9Xh4eHDx/eF5yhQns2m+VcJBdCiC+fPX3w4P7x8fEwDBkKirwokLPjkwRlctY574LTVUUYLSnf3d0xxuumu9ve3l3fVNqcHB29fvlKCSm1ms/nyuhxHPtt39bN8cFhgpJSLKVUpi2Qbm5uAErbtiFF51zbdvjh3K3vnjx9+vWvf70QePXqVUrp0aN3U4htVXvnnj758uzsDL3OmKCCV0Uz6/ByffrsWTNrh2FAIa7WehrGEOJ8PtdEmkq54BD+SSkHn+q6zhlKSfP5vOlqvK7Gcdztdq9evL66uT45P/vahx8t2lndmNFOhVFaAIBOLm2325SSMWrWtiHsM231V8EyAN57JkV0Hn+0uq5zCpQCgSwZL5z0fa+EJIQKIbp2HmN0IQJQLhkhZHu9/r3f/9e36xUn+WuP3rnZbFBXhC7Np0+fYsuQtfbo5OSdRw8++trHUOhuGJ2Ndd0SCFVVTRbjkBWqiJUyOTjOeQghxUwpxUKgQkrFubXe1I2sdM45ExCC5xxrY6bRZUJ8CNM05ZQYo5CjMs3F2Zmg5PnTJ/P5nBCSCokxlgiFELTCVlWFmaaUUoSHZ223nM05ZRgYLKUqnKDptMSUQmSM7TcEKgokqZTgVFAGjBYCTAgOBN7GSjLBcXQihIgPPvhQax2cp0AFoSWXShvCaC4l5+xtX4IXhEZrhWSVUabiQkgAoYS8vVnFkAohEYoEIqXOCZiQbStj9DbYnBNxtOs6ThlwLgE2qzUieySxTb+5vHpz7+LsbrW23vnonz19MqsrzO+tu2qfqOBjqQAKCyEtZvPMUi5xitN2XJ+enpbEt7tVDJ5yWlV1KnnbT/P5nC2llIJzXjfNZrMpKRGAfhhpLgIITSUXopTOOZcCMQbIRVdmGHplVCyZSHZw71RoVet6cXQMufhgnZ8KFMIBIMXgqQMoad4uTg4PSoi79YZzdrW50docHC4IgUKyCyGlnBMQyJTSxWLRdermOj75/IvT87O6aiFCIarQUjiMPgYQokBrKiUpZ4VRwoFIwUOGvt9prXOMlaliyMHlycWcqXOu4jwSkkriUmlKSyZKtrvJV0BqpZVWMScuJWNsmiylNJdYCUEoxyMVA3uZFDEHKTUppOQCGbQ2VdO56FVXcxesd1PAhgOZSiGSz7vm4GABUCgXMVuWPCPpeNFG5z1jTVWj6B2AQi5+stOYqIy1NqQkJbj3PsZYN8pU1RB8yVlIdnx8+OLpMxvi6elphnT95s1yuVSiCbYYo1JKoaSqppBycDFFMg09Y+zoSJpa+21PhdZG1UZ3Xbddr5DcTSkRzUUlK61dCBEKoSRnkJSWUhghjFGpdSlFCzk3RteN5JyUUkrGeoyUYgiurhRSON57UorkKgSH7Rc5p6ZpCKHAKHuboIu6U8YYzvt7Mx6jXWtILoUSIjkwIoQgjOVcmOQ8S1XRDLlAiSVQRjF5INlAKNGqijHmkAghkx8ZY5IxIMAZF61m7G16M83Ze8K5lpJkIIxGHxghWqhpP7+n9XbdNl2MMTlbGIs+3Lt/0Y/95dXVfL4QxkBOAFkag5duCDmlpCTnjATnkZedrPRhapum62ZSypIJrdRMspBjyeB8ZEwSoMF7oQRlNIQolAzTdH5y2lY1IZALtpUkoWS3mGNfcilltx5yzu8+ePfs5PxHP/4hIWWxWDx59uzJzz7/q3/1r+62GySktNYp5ZSyEGLYbLt61rUtMNiNg48hpHh3va7rmhHXzVsqRWiqlMrm9ia4qVaybaoU/Pn5+cHBYXTpxYsXdzc3Z/cv2m7unBt9aKq6rusXL15sd0i1GKm40roVHbolrZ2KD++c3T+ZHxJCIin3z86ZECVmY4xpaqXUo8fvNk3jnFNSKq7HcdyNg/BuOw0AhUtBKNRGpSBISCmkVlXDZldp00hNCGTIQkmmpAaCwq6pHwoBJVRKCTGklErVdgfHJ+188c74CMPOSIFUsq6MECJ7AMiZp0WncxaoeZZcikTNrLLeOR9KjAxI8IHymEvimPoEsJjNp2kAgLbTNnjFjRTSWjuOm6oyhVApteSCkJKjb9t60c2G7a5u6ovHjz7/F/+6t+7P/9u/fO/irB/tx5987eXLl3Vb3b/3IMYEhG03oxCq0c3RoqIFejcwxtqmKQBKqZwzZ4ySXNd1DhEYLyUCyZKKnBNA4ZUytCmF5BQppZopxXgsKcfEKOSYWc4HXVdpQwjZbrfX12+Sm66urlw/fvz+B6vVylorKxPBHx4fzbqj3TSsX19qIZum6+ZzzsTqZvX+g/doyYxTDBbMpHDCUWPFpMgpAhRCmBTCQUqhQMjMaOAMIJdCCBQBlDAaIHIpSsqVUOCzj4E+RwdVyrgRCiGw8RcIAQDvXN/3GEsphMAyMs65kJi8lSnb+4V8yLvdbjE/AIyurRSl1DmLHp6QYkrJe4/DgpQy+NR29R9974/7vl+t7l6+fLmYzf/oj7+rpPnOd76TUpovFx988MHJyek4jkLKEkouscS9hotwhsto1VRXV1eSi3fffay1Jmwv6LXjNJvNBCpIYxzHETWf/WZ7cHwUYnLOCa0Q1dFaaSEzATTVbVcbwhmXwlSVFhKjK3e7HTJ5iFpDLjnnVPI0TavVSkullHzz6vXOTp9++ukv/dIvrVYrZL8uL99c3HunJMRAeEgRKHn95lpK3c66uq69dVLKfhxSKYwxmkul9PKg0VoLydGAAQCruzWq0BVXIaSYwQVPSKkrLQgQwTlKcCkLvmw2fS6lrutZYwAy4fCWfivGGCW4HTxCCEBZSim/vVfeco15GAatpRKCc55SuLu7AYC2bdGogGhHVTXGKFUZ56yPIaXMCOeEUkpzhgzg/GSMwQT51WpTYhJaHC6XKSWE1qu2wqUtlJxCOFgsN3erL798xhjTVaOU0lJyzrum3UsWGfUpCiG04ADUOWfHiXLSdR1qEXOixqijgwOAvL96OVNKJZJJyWKfaM1SiONmkJQlVlC+oGuDwlds0hRCvhWRYkJIwKTMqmlKKVCo4DznvLlbEULm87k0glKGOLBk/KvlFRUDWHheCOCLlnORUjDGCaOo72OM5owV90DeZnSXmAQTKSUmmGnq3XrDKS8x7XaDlrgEUzQpHZ8cxhhjDIwxpVDLSjCzHZFnjK/KOVdNIzm31rrJGlPZcUJCYbFYuOCVUZRzDC9jjCnBi+QpJUF5KcW7KDjHEaRfr5YHB6dnJ3VdF0I4IUBIzjkVEIIXAgDgfYBcAIBCKYQwQkIISshpstM0zedz/ISNrJRSfd+PduJSaKlyTD5HdJ1xTgFgs9l89tlny+Xy4ODg9eUrRAIB4IP3PtBaL5dLzrm1FgrNOcfk5/MZpcx7/9PPfnL//v1u3iEIXApMo7u+vl4ul7vdrm7M8fGx1mqarLWWMqGY6OYzU1fDMBilS46EkNdvLitVl1LGqUcS6itJYIaMwjjGOAawEEKWRwdd1TDO0Xtpp+nN68uu67r5bLfZbrdbTIWsmsoY8/rNJee86TopZXCua2eM0l//9V//xV/8xcVySQkZx/Hw6AhxbMYYFpHpusohYns0cjqYFEEFP1oeEEK8dYQWBEUwvNbUlZAMpYsAtK7bcZoaXRNGmeA5p2kcKZCYU36L3xAAfNN3uw0GowpGp8nlnJum+vLpF48ePZrPluPoCwEEh2pTUUpvb28fPDj/w+/+/nf/8I++9e1PHz58UNe11qYAbdrKWrvd7RhjOYNzgQDbbXaVNm3b3q5vrbXvvPMOXkZQCAZstU3tnLu7vmKM7Xa7pmnO753GnE3dUCIAaExOCSmFyjFyTmLJ2MGKrwnm6wkhgnWqMikFP1lG6W/+5m9a5x5/8OGzZ188/uDd09PTr3308aJrXr++6vuxnc0qKZQym7sNp4xxQghJGWzwSldKKZ+i9x4T2pGFSRQAQDJhlBKSScmBsFKKYjKRnCAJIWgugrJ9K97nr98IIQTjKCuQErFpDpQkBLhxhc8ZB3zDpTQ6xhBSxCSzaRwBwHvo+/7o6KiUIhVHPA33ADxl1puNlLLkLLmQUsYcKaXb7e43fuM3uq79U9/5hV/7tV9b39783/6Tv/vX/92/8au/+qsffvjh+cW9qqoyQEpJZTqO45ub6xACULLebOqmYkJ4H3brDaX08ODg/Pysruvtdnt7e7ts503TSCmmaYJ9VGEetrvl8sDUNRo8mOBVVeGxhcaAWPKw7RljqLLjSq5v77z3sewLdgCgqqr4NiH5ydMvpeK73e7m6vrq6s3p0fFf/Mt/eein2WyG7vK+7/vdyLnE4GXC6Ha7bbq2arqXr1/FnLumQa0mJggaY8Z+OD447BadlJLxklJkjOVcxtE65xbLpbdhGCYmuHNOSlkbbZQgpHDOc0k5FcJUKSSVTAhRksbo0QZTCqBc1k2j5NI5N41usVggdYdJT2M/heSxWP7s7CznPE3TOI7j2Oec79+/j+bU09NTdAtIKaXkgx2BkpSyEjrnKChLhTFOGGMlhkLZdrsNPgFl87o1lfLeD8NO17rrWsZYzGkavVaqrWpG6PPnzy8vr5qunc/ni9kcicbogzKSCR5CIJyxkjmTe9U3J1IJwrhSSko99QNjRCnFlQRK0OzLBSulCMoAIMeUUiYp80JkVY92KiW18xkTDACo4IQQSG/PIOxDBcgx4XmKJNY0Om/trFsgQ1HV/C3gHCgFpFpKKUpKIeU0TWzvnnKEEEJIQWcwkJLAGBVSBChSciq1944QQgCKT5AghFC1FZFMMmHHiWTirROMZ/QHm6rrOin5aAch94/EnlV5S2ATQmLOwzCklIxSSqnoA6d8s9n0m633nlKaGZFSACWLg4MYk7VeKUEIZEhCqM1mI4QkwOqqWiwWSimllNaSUpIB6zoIR8baF8oIY0QIkcrerwy0BIfJminnzJkI3r9+9UYIMVt0Tb0XFq3W6/V6yyk7WCwLIxghgNOetXYa+hDC9fX1F19+WVXV8fFx3/cXZ/e6rquMYZwvl4elkNXqdrmcG2OC97vtkJMvBeq2kULf3d2No0W1o+vdxcW9xeECx1NCac4Y7GzRLyCF4JRJKUMIo50opUbpqR+maWyahjEeSy6luLC3ivXjcHhw1HVdjLGu6+SDqSul1PX1NSZeEUKU0QhCIjVOCOBbPI5jKDnGxClTXGy32xcvXlxcXByeHO/Wm/V6/eEHH2hV4SCScz45OZO14pzjQoKpqDiNJbpv7KiMoZRCIkIIXZnZvIkx9X1fV20pZBgtat9KykAJk1wIoYVklFrnqqrywd7d3XHOOZNIEjPGhmHwbnobTBu2u7Xk4t75fSn1y8s3XwHyxmjOSl3XX3755T/9L//Jn/kzf+b+/fuMCswzX283OceUAgCtqsaoyrtg9gH7oe5qnESFEFoZVM6XUigj4zjeXr3BQUob+ejx46ZpQiacK8kZZcUoLaj01gFJVKpSijEGsXT8Hksptamtt5t+V1VVdH6w0+dPvnj1+rUWfDZrq6YuKX/84YePHj4gjDPGGC3jbsCmXQw46vvxzZtrphR625RSbdsIIbx1bdu67BvTUEolF5QBSqaG0VZtJ5QUglEoOcaSMqWcc05f3G611uwtx86loBTjDBPevjEGvPqVUilnlmOhJMTMhcSUgOgTI5QwOp/PtZa7frNfkgiFQgktGTKajAkhddWUnO04+egppcZUr1+/vnfv3rzrXjz7klL4zd/+nV/+5V9+/N4HmBLnnKOc13WdPN5DebVde+9fXb7G9gjBxNXrS2PM+dkpYp7IrxhTbbdbY3TbtjlEHH+glJwKNq2ipgkTtfB/78Zhvd6cn58rLjabjdaacNZvtiEnJjgBNtqJUzaOdrfbaV2lFJxzR0cHfd+/uXr989/69sOHD621L56/opR+8MEH2kh8qqbRZShYJLAfn6Xox3G93razjnNOgWC+aM6ZFLg4OxfGBO+0lj7YUgoBlhJUphGabNc7HBfwI23bWjBCiYzJM0bwaQMG4zgIxTnVqUSlJKU0hRRj3Nytdrtd2zTb7RZ7MrTWyujtdtv3fQyZUtq0lRBiPp9ba1+9vJRaAWQAePTo8TAMv/u7v/srv/JvHy4PpJSm1i66DJlznlLe4xOlUKK4oCSjy7m4mELMnEtJiZSSc7odenT0cskJIcElSqFSmlKqlLm7u3v16tXh8emi7bTW0zQgUxhSTPBWEARosyuMEayrMqYGyEop5O1wBdzsekII41RxjGzMMUZSiGScEII+W8IZIYQJhpQtY1xKTF9hAIRzLrnY3yUANzc3Uz9dX98eHh7mBMYYY4zSe4M15zwTUEqgsIgDKXu/hES/HzqUqBKKC299CAkLl2KOdW0oFT4FzjkDApmOuxEDVUAUzrkdJ8lkjokxRjAVzlTTNC0PF13XhJxy3hevzudzTF/B2Zy9zWFIIaSUJBfTMKWU/GRXqxWKhm5urttZ9/DRIyFkzsA5TSk1WpdSGOOc8xDjYrHYO0A4Rrjs351SCiOUUuonRyigpqxkYIy6GAghpcC4640xWIuCBsrVanVwcaq4gFyqqmaC931fUu7qLqcghCiMhhQBYNjt2rbdrFZS69Vq9Vu/89uPHz8ex+nBxf2Ls/PgPRDWdR2Xuqo15zQ6P/aTtT4Xn2Jp21nMKcWijUTiY6bb2WxWtRUhJUHEc0AZHXwEAEYp5NLqKue8Gfttv1NGkQKkQPKBENI0rWnqYRqdsymlVHJKqaqq1e3KGMMIrZSeHyxni/nt7W0KcbVa6cq0XQcAlBH0/hHGyFfdVlJaayGUF8+exxgPDw+lFqoy6/W6MdVysWiqut+Nm83m6uqKS3V87+T85BQFQVqqmBMeLPjQYvZ+9AHbk6SUIdtxHCvTte0sxCiEjDFyzjLZ4ygYN9GYinPezmck21KKkialNDlvdL3b7XLOjAJKKLbbtXXjNIyzbqG17m1/cHAiuCaEEJopBchECrPeXP/gBz9YzObf/vYvjNYJIRgjMYdaiKurK0JYZbqqqkoBIQTlnPC389Y0bVbr5XK5nM1LKVTwGGPf9yGEEJy19uTkiDBaCmvqNqbAOdSm8j4nH7WUotrjefiZ4MdCCGFACyFACkZczJcLxtjry0vDxG4cUkohuOj8+++9t1jMNrstFCqlZkIinNY0TSnET97ZHaV0vV5bazebDSo2zs/Pm642po4+CCGARLyzvY+RMKlEU9WcACWFEEKZiDHSF9eb2WxGGXDOSgGgBIMSMewNp0JCyNBP3kcXfCVl1dQhxZjB+9j3vZG6a9r5YmaM7PvddrNCtVhd1ymWlEOGkkpC1fV2vSWEkEzbeaO1jiEfHh702z6XeLRc5hIpl7hyCbUvpFNG5ZwpYVIJ5xwmwn/55ZcxxqODw6rSSqmSgBMaQsSGEKXUlAMA4OGODWVKSEoZbq4AME0TAxJCYIxyzjMhm80G054hF5LLaH0hkGNC+xBQFlJa390RYIcHB/0wEgJt29aNYYwcHBwoIVNKMTktdclEabTbc601dg0N/YSIkGA8lSyE4py/vL0tKX0lTlFKSS6Ws7mqFGUgGZVShpDubrcxphCSkDCNjnN+cHDgvcebknNKicT+WkR3Qwg2ONPISi8KJM5ZKSXH7Ea33W5T9DjQaakwi+Dq6mo39F3XnZ6cc87R9JVzHsbx5ubu7OxeLJFRIaX87Ec/ms+W773/bl3XtalAkJiDEDwTQM8c4lQlEU4g55xy5ExkQqFQylkJFt8KG7xzTkqNagOtBKLfnDPGGCLAo50kESinB8jW2pBTXdep5OCLtdiTQ5QWSomEf7oRFIjWGnFcFwJ6nbEiENdZfAAIIQkKiRk5F5TLpRCdC4Iypt/2DhGq9h2IlDEmGF2v17/xX/6zR48ebzYbrauTkxNjzHI5x3V5NpuFnAjZ1zjSAvsIF1K+QqSlVJTTEMI0TAwYpbTQQimtmkozSSgUQgTlMeZ+O7jgpdamEqUUa/0wDKiyRkkBImPjOFLGpJSz5b4fJcaAGzBewPgDIhatlIrelwwl58vLS0KIc+7m9raqqo8+/rCdzVerzTAMh4eHlALL1DmHi/XR8YGpKh8cPtLoZRSMowqMAWOMuZCEZLVWhFBrXc4QguOcTmMqkATjbVszCtM0NU0NAEFSIxXSaeizE4KXmMvkfUmEUWG0Cy7GqKVyziGU9S9/73dvbm6Pj48f3n9wuFgyJtBOqqSp26rk6JyLLgYXmZK3t6uc83K5bNsWIHNB27ZmmaaUuKBGaUKAkL02CvOSSCl+so02zvneTv00ykrhp+0m98UXXxyfnhweHg7jWGJE7Ipz3vd9v+05oTmmxcEyE8Dx+u7ubhzH07OzxeFBCP6rTBWtTYaCJztkIoSQhHnvGaExJx8s4/z67ub0+JhTVukKiyhyAsaY1AZ7A6+vr5ngx8fHi8MDIQS2p2itIe8HL4zvJiQJoVKGqqq0Ns7ZEIJUXJn62bNnIYSjowNEd5RSOcR5p85Oj3MhAGSz3t2u1qaubm9WuUQl5GIx44I+efJkGAYlpPc+lfD++x8p3YQQMK9XiaqtZkpzDBW+vr5mlC8PFkxQQpOiDIA4FwgTUmrCKBDST6MgAABYfzSOo5tsYyprbTtbaq0ppUBKCCHmNE1TXRtGeE4ll6Q0YYzlxAnQlPdjrjL6qygS733TNJyJUopUoqqqcRyllJU2QogUIcbo3LRYLEqI0zQCAJBMgGtTc85t8JQCXoicS5IdSj+UUtvt9urqynt/cXHRzWYA1FuntS6QOKdaV4wxKnQKHkMdCCEFgBAy2Ile70a03iPtxDljgpUChNAYY44phGAnv9n1OQMAHB6clFJ2w9Z7Pwx9N2sOD5dKyIPFYYzee08Z4Bn3FQdWCBACjLGrq+vNZlPrRmt9en6GT54xJqeAvgsA6Pt+HMe2mQkhMpSq1lVVWWslF5ihyoCg0NxIxTn3JSB+RQp11mutYy4xRtUaIQQVDJVcOUYppZY65cwZSyl56wAAW+dyTjYEoASb75qm4USMdkop7Q2OjDImcKQ6PDiOMe52O6XUYjlDAzuqXpUylCVSyDS6UgqhhVLCGEu5pJRySmgpzggcUVoI7FxwztWm8t77GO7duycYVUJUnWhUlXOKMW63/Wq1VtIA0BjjarU6OzvDMC9rral1zEkpYYwpOeVccgIfE5OMS8YYI/sMTloS2dythl0PJKdYKKXXV5dCiJjTZr179PjdxWJBKWeMYbRpKaXv+7u7Nda9cS77vl+v1+89erduDCGEc8q14oLGkrz3UAiiVUJyQwQ+9+j/jjELrQgwyB4xz5BTzoDfXfCJC8CBqW1bvPlyzuM4llSklJXSjDHnHNYNFVIIyGly+E5qzStjQgg5ZFExCiT5SAipqwqvHCAkQSaEpJI55XuRPyTnvWIc/z5VVZFCnAsoSE48Utgr5KP3OMm6EChAKeUf/cN/NE3Tt771re1ud/HwwYMHDzihSimMO3DOYVduKaVQglqSUtCLSXH7ASicC2stNjwiGGCMyda74L13XTcrmVjrrXdCKUaK0GoYBtzsSymnp6eMkUoqSolz7vb2NqU0XyypQMsSx3eQEIIGfaAE8U/MqsN8D+ccuj6G7XDv3lndVOMwhZD6vj88POSc7nYDIcQ09Ww2k5IXAoimsAKEsZwzY5wWmlJhhOYMEYqUnHESfJr6CXF4xknwSIgIKSmhRXKB5CXXglOGVLHUam+h9oERFlJMFBjnmQCXvK5rxPA3q/U02WEYQkjz+RxS3rNdlCilFotFVendejNNIYa8s2NKqes6yYUx6uBwlnNinNBCx3GUXLRtiwkJgrJhGHTbcM7+f0W9R6/lW3YftsIO/3DCDVX3VnivX+z32N1ik5bklgyLhAWLEARpYs0s2xNP7KmhL2Bobg8MA/omAgSRtGDJkimyA5vNzv3yq3jDCf+001oe7FPtWQ1OVZ2491q/mGOCIiXnsMQspem7gtK1fQjBWbvb7VRP2rscTgEGqrLZbBjo6y+/MsYIKDvbr1fMfHd3V29rIgLUpuvOz89DiCGEeZ4fPnwoIlDgeDxqgXkeb169fu+994qk+/3u4uqB5GyMccaVUo7HY875cDj0zabvW+PsMAy+bXzX1hqMMMfW+VJKCDGFyMyVtanhwSmlm5ubSiF3XVNKYbYGaQmTMQaB2dnqrANZqh/dEqPhu9udIi1LXEKQEtabHgBCCPv9frfbXV5eXF9e+HY1zSGVbIwzxKhk2OYsTePY0LNnz0Rkc7ZNKTSNK5rHcQ4hjeMIZKx3WbOxtgGy1k7ThKjzOIlI366YOUVpmsY1vu/7YTxZEkKMFkrJKCgKqfEdkQtLRAIFzDkryCnjL+cK4rIxKSUppWaFppRqBF5RqlbDlNKq8YgoUhEsUUUBHec5l3h+fh5jRGC2dIpYPh7Pz89rYWUpJddfXCzMnMvpVlVBINJSWm8RMasQMzMv84z7qQIUVa6JRFiK5JxTyX3bHQ6H169vnHM5wbJE6zwA7Xa7Z8++AtTr64ff+vY3mbmU3BqvdOqRrQBv5VkFtBLMFX8bjlNFYud53Gw21WPzW3HT8TCGlO/v7zebTTpFmSMzA0o9UCTl/X4XluXhxaX3HkTR2yrHICJ2thTZHfar1QoQyRpmqsqaGKM3DhGRQAVySlpEcyEiyUVVQ4pZJaQ4z3Pne2stMo3jmN7YOXKSmt5QirKt/BA3TTNOR0C01jZNl1IiS9NxKkWrLHB3uC+luLYZ94e2ba8ePtrtDjnnap9na5eYlmmuY1S36s/ONn1XLZuAqn3bPX/+4tWLlwJaSrm6ulq166+efb3ZbNrGqaCqtn2XUR2TsZxCtNaB0jgvtrHO+znOhrBtW0bOWXavb0spWuT2/m4Yhvv7+9Vq9eDBg8uHV0uMAvr/t43WoosYp2kgohoN/SauRPpVW9UxRYAYSskxRmZTuU9E4CrkFXGu+S3qgAoxpzrt1XA+Iqqwc4zL/WG/Xq/PLs4qCZRSYjY5FmOMrfmmMQlojAswIXLJJ92HdWxMNWtpjIuqTsN83B9SSk/felx7hZe45JoilQuoGmMK6rTMeY5kTSUFVFWLtK4tpQBTKafCk+pn7bquXlrGmO//xV+0Tf9f/r3/4q9+8pPzB5dVR1angVJKiSdzc85ZCXNONYImpVyJg9vb+xyW6+trJTwej5WvrQ7yluwURiBofEvA4zhPy6iEmotzDg1P03R1ddV1zbIsKFrZSmeMIwhFh2lMKmyt5Tdhs9V0QEhE1piU8zSM1tr6Kd/e39XHoJKkWBmErlulEIsk733KIiKr7aa+1c45kawIkLQiz/WCV8XaPC+qtrGllCWG43HUogAApSQR59zZeh3TQqBVWjiOs7Gw7uvIVaPrnIgw4GGelmWp1GyNLH14fUVEMQZGdtYMh6nKylJKwzwxYNVFX109qNbq43G+v9sHyW3bNs62nV+ve+99jZgwRPM41b8CACBqDRWBVEoIwb75MizjnFW6VV/XCd909VXXyIW7uzsAaJxPOeScDZK11rL5+uuv7+5v2667vHp4f3//4utnxpjzB5chRSK6vLxcrzcxJVW17Krv2Rh3PB73x8Pd3Y0hfuutt1JcSinrs21FjMZxrHfYqls752LMq1VXvznIpIpAhohqrtw8jDHGWlcDTMMwLON0dXVVY3aWFMdxbNu2Ngut2q7zTS0CqvAhI+eS5nEQydfX15tNbxhe3Q6Hw0DIu/1tv/JN04zDnFJZlqlp3Xl/MS5jltKt1lIgxtj55ng8nl9c1tKFaZoAqO06VQWUJSdGYmARORyOIcdPPvt0tVpdbs5KKcRwPB5vbm42q/V6va1ak+pAI6JKhr5RZoz1+57LEpaE4CxZ5/kwjADgvBWRkGLNd6p6EcmFAK13ZDgnscakabG+8W0zzzMBGqI6Z1vHnePd7rAsSy7l/PxcEJBMzqKGCNAgiUjfdrWhwVpbIKpgzlJKEcnMDEClSCypdb5tnKoWzYSmMVZywcMcKzRXabA6zYmIcbzq+9vb29/8+tOu6y/OH6Sk87QYi03TPLw8r4nS3tsQgiBUecuJAgQoJ42JLCGrZG9sKWVZlhBS0RqbXoioXzWqiqSiGGOSAmwaVY0hVPwEUQHEeTNNU91CXrx4seq6R48e1TbsrHo8HkWkaTwZrharEGdWs9lskpRT9wgAKeaciRERj/sjpLLZbEC0xoZ474/jcJzGw3Bcdxsi2mw2SwxIknN2xtW5EpjOzs5CipUUrFVo3apPKYloLmVYgrfNNC2OzfMXX7+8efnBBx88f/FiuL/77u/+PgBY34RUyPA8z6kUZ0xNtxaRh9dX1jIRrPo2J5rnucSEACI55ziMByS6fvDw5u62aZr6qW82m6yyG0YDvNms3KkhK4UU2ZFvXRbMsUK1bMlOwwxS9vv9ElNNf+26TgCBKIuGlOrlq6re+JwjoC7LQgRN0xyPo6pu1ytjab3ujWHRLAVTycZwCEHLiVzPOUlMMSZjfdM01noAsWxUMqA9DR+MImLMqRTIWp9SMt4pSlWU1PuDwRkiAgSA3W6Xc65/xVlGMqqapbjWEaEqqOq8GyuMoaW4pjHGnD84AwC0vCzBe++IU4iWGA0lLcfd2PZdu2orrhXmpdK0yxhrpgdIqZsZv4ksmKapRiuP89R1TVYBAm9rtqKpB3F9sIhEzVXyqkWqTYjIzPMMqRjHtvFFS0WbJGsMuaRABNuL83kYUamup6nEtu1rpndKSUREsmHa7XYFcduvGrZMaKwFA/t5RCIC80ZfTfAm946Z4xLqNtA0zTzPSwyqOoV52i1vvf2kcvaMxhiDpABgqgBwntqmryx7hSJSllxitfnqqcyY53Fyzq02a2BIWfbHsRQxSDnnJcwAsOpaZpacVbVt+lJkGG/7/hRzv8Sl6zrJpaQcCSpQNM+zqm42m1pJC6CGjGaNSxjHeRgGMuzbNsyjiHjr+lULoPMSQiiKTAbncXLenK1XXde1XVO/5J6tMVxRt5rj6L11zo3jMi+LsWyMSSF2XX84HHLR1vphGFabNRkLAIbQEO/3+2kJxlBJGVByiIfD4erqSlW/+uwzQdienR0Oh2Weh2E4v7hYUux8c3Z2HktGxMN+eOedd1arVdc0wxL2x4O1dlzGOC/Wcsm5axoFjjlVYWDlMgzWXU2XZVJVAlytVtZ665qcC5rTOVw53ap9yVKk5pk7F3M+Ho/Mdp5nIl6tekccl3B3d3d+ebFarxnZGXu326uWr7784q//+q8uL8+71fr8/PL9Dz5g5HmZQhjPz8+Z7bzEpnU/+cmPL7rrzfkKrAIRAHvjd/c3JS3tassGm8bt9/tVf8bVMhOCSMkhNc4zUkmplELGHI773TRaa0NYUko5LhfnDwCgpNK0ts5niOjbpp4PxhiVYNiXoogqWZcxgKC1pFjzfBY0XB9cASnfmppnYJz1bVdULZqaE1Wl+6jg2JSUm9aJCHGZp0WVQwjDONqmXa03iFzXD0YyRCDatq1IiTGS1RiyyAnQBQBVQOBE2Vl2yFWaqgUsUOdaQ0AENcWjEJEILiEvS1z33S6Mu90yzWIdFSVj0DfOWPENK8n2vJ+XeJxG51sQyTG+uX3RGGOZUkoCCqSlSJJynIZ5ntumZ9EUIhGRRbI25bjqVnEJfu0BoPK4WqTv2rqP1qG161pr7Twv2+3Wey8AYFhUG+vY8mE4Hqep8X7FvTNOYi5Q5mWSotbaVduJCAGMOatAiIGR2m0fc04lN+tOVJNRtWycrX4DY8k2xnjSbP2GFcopTx8AEb21AhBSROa+ae/u78dxrBWeBrhxzlt7OBzqNbbf7y/Oz882l8c5bjabca5hb5YRYglJdR6nw/3u3Q/et2xUBUGn46BonTNjmC2bzWrrvT8ej8+ePZuX6GxTDyPXNug9JolxHwmc4DzPhjjVjGhxcZSmRXZGFNlUUqDkVLbb86aErmktGy1lidFYo6oOBNUAYQghzSMzJymoQGgN6Fef/ebi4iLNw3rdN41DBAEQLc7ZZVlyLpK1xAVAcorHYVytVsqlNRjL7IwJKaNStzLW8jIVELRcs9zsHKYCs3Eu5uD9m5TzUpioaALrYgwpZcA8HPYMjEp7KG3bCpSu63LIAJBzfPHixWZ13q3WKSW2ZIxhZzNgCIESlZKstWqt7dtKPXAp3eO1aiHLFYxiYADlzGAYDGcRRmK2AFJVNss0M5JAGcKoDAnEeIeIVNQiSy4WCREJkYkQtPF9DOG4H/umHZfx5ubV9fW189avWrC8xAgArNpZHyU8e/n1q9ev+77nr768vr42xnz26W+maX7r8ZPpeHznnXeH4z6GbK3NJbbeWzbT8TgAxrax1nBWyEBilyEgJts5cnaaR4OMWZqmQ+EQhtrnPQwDFLlYbV7f342HYdzv9p1DYBDMUirc17ZelO73d8YYMkiEqcRpjACUcllKLgo2KxctKZPTjCxZynEiQ5WvlVJiiWkJOSXXNqnINE2M2DU+xGO/WTn/YLfbETAqGUNxCkRIRCBl1bSGaNt2iJilsEIJSQhDTpJES35wuf3pz34sqn/re3+HVe5v7wxZEZukjHORlB9ebG2LdL5Zlvj8+fOu62r2Vuubly9f9ZtuvV6HqhLIOYR4vrUE4I0xwCmWeZxVaJpDt14pSFF5/fq2dX0pxTbWGFqtV+vtpmLCCsV616y7ek2ePb7a3+/GZT4/P9ezs5CTgJoYrfPgDCVl5qb3N/evjbNAuNvdvXr1ar3dGGPefvvtSv+1nd8fJhHIMaKCNc4y3d7ftau+sbxeXx4Ow2q7QeBSNJQyjMMUx67rOt+sVh0piUjOxTsHrp2XAUByXCRng6ZvWiLKy+y61Wq7AWbnHBGFNOcSVEJNavzoo985jsOLF6/abjWFxTPEHHPB1ze7frM2hori2cXV3e3t5ZOLqoLOOQ/DoetXzl1Yw0WEHS/xdo4vrx9cq6r3LudIBGEJNVOViKyCcfzInpM1IaZpmWPpbdcMw4AGAZmNE0VnXZijiHjvLTHDdtjvNtu1ajEOpyUo5ZgLkRERJSgp2iqxJGLGkuO8iKhY9FhQYxGnZIEM976paSenxtskzKzFjMOw2rTrs5VtekEB1FxmLd4y5hLIMqLOSyAiYlxiySX3/XqalloVqkUcQ5hizoSGSilt2xMzep50xt0YfjvdLynudrtpDsfjcRoCW2OtBcTtdkuIOceuaa2rxbHkvU8lz/PinPOulRjqWF0HnIpxAVMqucK80zITUa1DscRZIJeYSgZQVBCRtm3nsFjrUCHOy5Lierupa5BlsyzzMIw1iqiCCW/CpY1x9vmLl3e3t0+fPl33q3GenHNVy1N3Ke8bQ1S1PDFnEK0Q6ziO0zKtVisiAsIwh5xzmGLO2VharVZd14JaYwi4itQkpYwV7rYmpTyO41eff83WeN9eX18D4c3dvmJKzrnD4YAIMcbzy7OUyhdffNG2bUXt6M3z6bpmf79zxjx9+pSMaZxBEEOMlpY5pBi9dYfDoUKaANq9oUhDCE3bMlsBur29VaQQgmU6327ryquqKRXrwHqHbHLOqpqWULlqJTVI4zAYtGQY6KTWQbQitRkQAah6ZoZh+M2vfnl1dbXdbpGpFiJdPryMJXvjRIqqxpjmcQkhkIqxXPlgQTo/34qI5ioT7WssTinFe08EOeckZZ5nZGya9sRViwDAssxt2xJxpTMk5xJzqKWeClm067qUQtGTpOX29vV2u+377TiOISXRvNls2r6pQFwIMaXknK3vJCJKlgpt5ZyBoFoyYkxxjpZN0IJKxhhGNMSpRGvtdrtNUkROzQfGmKZrqzqaBfq+H8eTaBkR5xhURQAMsQgc7ncg6hvrvHfellKQeYmhFMEsWuAHP/jBo0eP3v7G01/84he/+c2v+75/++lbxpif//wXqnp/f/cP/sEfXV5ehhQvLy+rzBIRx2lBUmNtLLnGwUqSuCTjeM5LKsV5W5YkMXXtap6DcKm9iiEERtqs+mGa7o57UhzHEUQRuW/a1jeI6IwlRxU/Z+YpRCkAQCklIp7mWRCgSMMc5oWdTVIQq9CMQ4qllMbZWiAoBdBw07VasgEEkKZ1tSr0eDxW0Pjs7OzywbmAjOOoSJALI4qIIhhja6htFK29qiLSNe5f/at/9dFHH733wTdf3+9yjFUDSMb0q7Y1rnMWLNb2iDCFSqkYRs3lr3/+s/v7+//6j/6Btbam2Rtj1l2foMzjfELCmRVIEcZxBBDnmmlaStZpmqxj7721DFkAoOs66109N6rerYZuh3kxxlSt8uvbm7ZtmUzd+N8005C1tqqNljj/4he/KKWcnZ09fPjw5ubmbLO9evR4mUZEzDk3rWPmaQ673S5Lefjw4Xq93h/H8/Pz45voylo6iaKlFGeZmXOWapowhnKOormuaPMcmsZlSc45IONcU/GSElNNONnv9/WX2LWtqj5//rxpGmZMWYhommZmYmer++j+/k5Euq4T0foTqy3OIkKGuq4bhoPk0rctk3XOlRxFpBStDGA9nVRLmILvWu99SLHICWWpmVMXFxfVCb0sizHm8vKylJIDLMtEjGS4BhLnnBE1AwJAbSRcxgmrRJDIAKkWZva+RWQVyLVFt5x6aVFrhw1X6r12PNSYhOoknOfZe2vQlFKqTVxVrWU6dX5LraGzTVt1rKTgrQspxrh456pFqMaMCIqZY/Deq0oOAQCtdw3ol1/dlWQuur6oPLi8sNYO4+HBxWXTuGE8KIJxjq1JJddgv1JyfXKC4AwNQ5rCfH5+jlVopNI0zjhTseL6qkA1xMJIBrFepfM8szWllGWaNZdao1SbFJdxvLu/sdbWIJjW+ZIzFKnfyBhz33VMVDFqb13K2RhbzVgikmNU5voZlyW6tkkpDdOICCKy3+8B4LftNwCAixpjoAgUIUNAWO09OZcqMS1SLGDjfMXcvvnx79zf7/eHYVlCkqIAjeLN7X0ppWmcqr5+dXechjkEReqbtsplQ07GOkVebdZnm23XNUSEIMsU0NgUJYQAovtprhthzCmlBMzn5+eiut1uVRXJTNNimbMAltx2a2c4R0AFQjKeAUASQEmG2TobDYcUZwkOrCAogGBBREW01jR9G0IGAJHYto21thRlJEa4vLy8vLxsmsY4i4ZTiUDcNz7FXBQYybIx6zUi3t6+ds6u2j5nMYaggLc2FJEa9KhZUIw3wlpU2LIpwExN1wIgKqhIemOURMQsUknKmsDsmTQrEW1sh6jWcoxLjHG1WZ+fn4vIcZzZWsy57zf9anUc9s6xb2zTdZSCiNQcD2YGVDKUSgIEQvLeq1NECiHVviMVIRAiLiVpkUIlxgWdaXxjvVuWWUsFfpCZo0qZx5wTG84quZQ6XDIyAIRplFy2222/alPOMYacowARkQXqVuuf/OQnu91hdzg+vLpcr9dvv/32F599/nn+PKX07Nnzjz/++Ac/+MGf/umf/pN/8k/2+/1ht3/06BEopZQQAAoqCwM2TTMMg2NnvWHH63YdQhgOR1KQAofDwVq/LEutDgSAktIcAlvT9/0yhGlZnj179uDBA+vNMiwX24uQYmN9vY2GeQGAEFIWNWxZaua15hxJjICCJBEhkFySFBABBMg5E8GyLG2/rfI0a7mIMEJOwtaEEOoRVkopKsd5ahpvGl9CnMPCSKoaczbWGmOYCE1zGMb1ep1z+dkvfvXehx88ffud3e4ARN//4Y/ONuvf/d3fXa/7Vd+WGHxjlnwqw6Y1jMNAo3a++eqLL3e3t69vb37+05+9++67FdfNIWbjDsuoqmyNs/Z4PIYl3e93TdMsMVxeXr715MkXX3xhWA2hZWqcz5BqCAZbczwev/zyy4cPH149urbeN8yuaVJKYAwiXlk7z7OkvMyzrcnwyE1jc5aUStO4vm8vzs6dczc3Nz99+dfGmFXX37x6SURt2yqUGGPftNeXF5TzrPLll1/2ff/46duvXr3q+xNLTYreOKEipfyWT1FVLU4yTtPABouACBhDxphu3Q3HSXJwjT+OAyNVsG1clr4/zUbPnz9vvN+s1qSQNBMiqDKSKqDAPIw5Z++bm5sba52xNsS42Ww22+2yLKLaNl1Iqe/XjbNxjhXzRxEmMpajxjqgAIAxbqFlHI+nAlaAHPHp9fU0TVnKsiz1ORM19/f3x+P+7OzM+3Z70c/zXEoaxzolr4fxYNVZa5dhXK/X6nLbngZlzRriAmCOx9Gw3W7PyzxqkRRiIVJVZ33X9qp6N09U8rptK8NYStEo8zIAypKiaqnzLgCUAipcRNn4Uk65KFCkNoXUEkwgttZXhxGhAcSQE1vC23mpt84bvYYy86tXr2KAZVlyjjd3t0T0nW99e7XqjsejQvltJ0G1IfddE2IuJVtrc0z186tzXIzRekOItfO13r6Si0GKpaSUvLFa5OXLl5vNxrR+dzzc3929fP7i4w+/SUQxS/W3tb7xluso1LZtlSwR0Xa9Mc4mKUDYNA0jVZtH0dNUlVKunFk9RACgzEIMRRUI+1V7f39XUq4ZVUSMfFqanbGW2DCh8blEREAmAHTOxRhzzqhgrSU0qeR5DiGEr75+DgBo+Pb29nA4vPPue9Vgt1r31tpYIgOKgLX2sD+mlNq29d7Hklrv+7Yxlqy1JaYwx7iEbrWum2JdmpcQlmW52++63l1eXq7aBgEIDbPd7Y/7/f7ywTkRdU1LBFUcX7WvRRK84UtCCIKKzhSRxriS8jJOp02u7xDRewdFq/i5QsEpJRHY7/c5pqdPnx6GYwhhtd2wMWywlKKIBECAOcTanTLHcH55xgJEpsram8Y1TaOKIScAsd4555YYi+TW+epnZWudsVVTWiGZJFkR5nmpa0015qJifV2YK9clxhjRnIs2TXN/fx9jPB5HEXn89GkIgQ0yCjO6bvVbpX2FHyozBCJ1SgSAnMsyzcMweWMFhdnWwobafqMoq9XK9W0V/qhKHYxCCCHE+iOqaqyqMELEkJLk3Dg/jiMDVjKYnVWVHKMURcQHDy5+/tNf/eAvvn/58MHd7n67WTXOO2dfvHix3+/ffvvt17e33/nOdy62l//pz//f7XaLCMzm/fffjyGnVCyjb1vrnaL0m1MSQg6xSihqUlLJmY3LOZM1JaZhOKy2m67rpmma57np2pxzmRIyhRyO4zHkpAKG6MHl1cV6VUSappvCsswxpSIiznkqGjUXlTkE1OJMjcgG1hxCSkWrAzVMc9M6Y0jAGGfneaxGQUasnmn3Joki53z9+NHZ2YYs55yP+/0yzapqjE05M7O1vmta33bHcXz24mXOseu666sHUODZixd/8if/13a7/fiDD99//11DePngvAq7yJkYo7O+5Pz65StjzKZfOef+zZ/+8eFw+KM/+qNlCczc9/2wP1hrbdeoarU8HQ6Hzz777Ouvnl9eXlaI7vGT64cXlymlaZpEwDl3fnWRc2aydeOv4ErTNIdxj4hFtbbGDcNQ65NTOGX5icgwDIg4DENV4NQl5NNPP33y5Mk4jtvttm3bsKT1eh2rd0AhLeFss3348GFQXZYFEZHNNE2bzabpupSSJBGRsEx1xso5V/GgFPSNU62dIiUsqUocDvOxflet9d46a61jk3OeY6gwYUohhbDuV3kOKUbT+Pv7+5TKdrudp6UWtwPq/nBYlmW73dbF9DiNbzQclLVUb5K31hADsohYQzHmNwYBSTkDVFModV03T5OITMNxGA5PHj2y1iJzVRFVEdY4T/f398aYb7z9pL4P1f1RVKq9n7SpmnlVrSraqjgDRSJKOTrnmEyMsetb55zmRGRqAXy1Ztze3znnvHV1ExARS/zqxcv9/W3XdZ988utXr179/b//95um2V5czlOw3ocQCmRJues6Ja4OIFTom3aJCVChZIJTNbggkEFTQb/fqiVrq3ffd30LRKtlWc62PQIT6HA4Nt6TRe+dKlR/NxHlotaaepq5xotq23eNNQpgHVfSlA0ysQCXcupSFZGUkkEyxNvtVkRevnw5x1BLweqncnNzx9ZcX1+v+41Cury8PB6PVe5R9VNVg8CABU4txzln733jfMgS01gERBmQiX2RVGGlkBMZIyUfD2Mp0ver7XY7D0NN7TTGdF2nRbyxoJJydsYoQa0Bb2yDQtMwNr4DLcsykuGm8Wfnq8Px7kd/+Zff+97fff7154bk/GztvWeDJaaLiws0GGPOOVuy66b7zWefHvahaZrN9gwUq4hgXsZ5npumA+emeRmGgYjYmMM4iKj3XgENuxTLgrFvu5zl/v4uxnh2do4GG+eAVACsd2yoKGQsWUvbtCICCvf399ba1fkWBFAJCjjjDVlkal1bStIs1c3FaIhMSqUAxhwP43B2dnZ33EsBAbq5uWHm7WrdNK7p+3E8AqCzFoHbGpEXk7EnEG+9XltrASTGjMAKoIIpllNlk6jkUlPXc4nGGFA9FdEzFinGmLgELSIozKRvVH5kOKXkrSUGgw6z1AQiRgpzzDlrElZKUxqX+cGDC8yAiKqASDnkFKXWjxtDAKqlKDFmYOC+6du2NZ6YWZIsyxI5hhBqupOERIjeOlURUOecEqZycv0SoOSCUKviIjMLUSqZrdEiWQWdKSpZi0FrHDHzfj+O4/id73zn0y8+SSl88cXdul9dXl6uVquzs7Oi+s4776SUyPB//r2/++knv16W5erqumka73BZYkqhzrXTMr58+fL8/FxVXdu8fPHCGMNIvm2IrbUGQKdl9GAvzi6XZXlx/6Jd9cY4VGicN9wWFZvZOZulDMPorbs4P5+PByabOEGBznfR5DDNUKSoIhIhMHMpIKBZCiIaYmOwRqTEOdTQWWYPrDHWHAYqImRsUQ1LLBaNNc65eZ7vb+/6rjFiwjIvy5JzDiF6L8ScFTxR27YxBmfIMhm2Xevn4bjfH1+/fPnk6vL6+nrdNzkGZNZclGgcJ50UFYpJXdfVlSBJAS1/7w//wHuPSLf3nx2Px8ePHzerzhDX/EhvXdu2fdNuV+uz9ebf/tt/u96e96t2CdNq1VcmwjmHwNMyAYC1CgzH47Hve2ssMFgy4zgKQrVBnm3OJWVrPaL13s/zaMh2UFRKTFxKyln29/vr6+v3P3z/j//4j58+fXr58BIIrHfjMlRzi2GyjUslvXz5Ug0556QAQHj54vlxv3v69GnTNMEII67aNTMfD2NBWHKJRSwZ6xywizE2DtnWiug5R2m9r1eUJYacjuNgDDVkX928bjrvvVdDInmYhxzyxpjW+WW6nQcCYBIdjru+by+2q7sSSfM87BERyyleEJSwlMZgzgmYfNvsDsea0M7GZNCsogSFoOu6POphf3x5c2Otvdhux3nJWf6f//hnq1V3fn5+eXlpjCEyx+Povd+uz4hof7fz3rNhAEQERB2HkQjIcglLVdrX2yGOY9M0EhMbUi3LMq3X26b1DEqQCYEtU99O8zwdhySJEdZ9h5ZDCARsjEHD4zz9+Q++f3FxgaIplX/9r//NcRr/0T/6R1fX18sxWGvZGQCIJeewALF1TkXGZSY2KUZvLBIpooqyMykm3IdUtZ11962yQwCozt060M3zgoiERlXZUR1bqnvSOUdwWrlUFZGKCoBqEST1zmdRQxhjBgC2JsZYk6Vr9MkwDJ1vLJvjOBTQYZ5+9MMf/u2/+bc0l7u7u3EO73/4wWq1CvOyhKkaJa21cV6cc1Xs4K2blpn8qf3Q1PkHIaZTq4wK1oKg6ptmQQBQkGVZ+r5dda0xhhiql0kRKpNdUvbGngwzKaEhY2zJWs+F+kxSSqLZuFPi6G53v1qtWn/SjhWRukF2bQug9bJBYGMMAH39/NntzX3btqZpVn3PTNMyx5ytd6tuxcyspe97YqgxuZ9//rkojuP44OJys9kc9/uzzZrZppSWkJxzq7Ou3kxv8IxSJaPV5RVCcMYe7vdN0zT9KuXsnUHB2jyzxHDiYIqA4Bympmm6VV8B25wkldw2DhEb38UYS0rGEIg654qKSCZEIgIlRQKQWGKJyVpPVJNoctv6lIrICXsQkZxj0zSEWNU6MS6OTbWki4ixPIfgGo9IcQmVV7N1qDyF2hhE7bqGEMZpNsYN81SyGgFFMMZVjj8u4Xg8nq0324t1KlINb1UGXEsJQ4r1+5xzrsW6qICICaKqWrIVU7m9vQWAy8tzVwViAGS5xlAsOY/zZJGgpvkg1Gc7zrMxJqRUaZrKUDJzDeJp0dcg2Zzz/uZORG7vXv/mk0+WeQaADz/8cLtep5KHYRTVhw8fopr1ui+lfPLr3ySJ/9nv/626ytdcKt+6JKW+LlXp+/711y9evHixXm1d423X+NZZ71NYZK4YACiC79qTlDSXE47KOE2TtVZFWt94Y+/3x6LSdH3frUs1FBQ5Ho/sXHV1VXnzaf4gqEdVjCmEkJaQc67qTtd7RhLNxpglhNVqU63D3nJVk968esnM59t13/fTNJG31ZGBRGSdiHS+2azWyzwWgW7Ve+/3u7t5nna7fdutrq8fIiI7q6rD/uCsbdoeDf/ir3786NGjq6urnDOzqZSWgBaJADBPS/1fmPny8jKXhAr1VCGinE/HWgjhB3/5o7/4i7/44uuv/uE//Iff+973KoJFRIxQSjHOxRhvb2/3+8N6vX5y/SinNIxj9ZdzjX2dprZtz88e5hLv72+ZMeV4d3fjjG07//LVzZeff6Gqb7311nZ7/uWXX56fn2/Pz3Iq9Uc9LxMqAJz09t5UR6k655Y5Nq27vr7OOYMzMcZa5zwOc9+uVLFStsZwDUgXgc1mW23MORRErG2hACI5HY4759zF9qKoKhTX+GVZCM14nEREUnbOOW/Ckm5v79dnW2YlVhRarVZ1Ti2lGO/qLpRDjjk7b2rTvGE3TPM4T5uzi2VZKnL56uamglLMPM/Lq+cv1uv15cVFiSmERUV2u7uKUW/XG+eaqhjIOc/z7I1zznZdY4wDQO/aEMJx2NcAY2QiolxOvaI15oiZSznhQ9Nxspa7vrEnZYNRwnGa6kswxiQtxhhn/DAMBLherw/3u9397Se/+uRb3/oYDf/whz+c5vnq6urDjz86O7sgw4iYY2BrlpCq6Z+JUswq5RTAYhwAWGtyzqZ1Jmctb6zKImIqDTCNAFpKqtQCs0VUhFO4a05SshoiQ0yEiMiACphKISJVmJel7XwFJ2M8yWR2u521lYXG4/Fwez9577PKdDxkFd82K1794R/+4Xgcnj17dvX40dN3N8tcS7gyGQZErROld2xtiNEbk3K01pQ3cT+GTY2UykUBhNkKCiXQXCyzJa4+uZKTMWa73jDjbrdTKFWKVdM/6kFZQAuoVtxTKhiOIWUiIsPGkiga9lXdPgyD902MKQcJIQAhM3/66edd688/+KCkHEMspaz6jQLs9/vG+UePr0Cp267DvIzj6H3TtX0sOcZwvt32XZ9zNoZjXIyht588/vWvP3nn6RPjmr71jtA31nu/Pwzb1rH1zlHVvgMAgJBhY1hELJuYEwAU1W698t4bw66xOcZScgUnRSRJqQb8IomZkU9mBs2FiC83F43j2ofTOAfOAYAzPI6jgFrrRLKooqFljjEtzAyn2R+ZWSRP0wIAzBZImVBFWAGLELPBkxV7Cotfddw4zRmYMJ98tMYZAERVqQZ4UiKaQ7KMlQSp62bNax3mpevaOUWRDCDby/Vf/tWPdnf3/+y//28pBCIDhMhUhVR1k8aTYyEYU4whJJqXGRhERA0SExK5tokxhpCc8aolpuTAZSmFpeTsrQMRMvRmuBTrXdM0tQAYES0zWlu9BmwNkZnHmQzHlMZxTgo55c36bLs+2+12IYS7uzvv3d3dXdO0TdMsy+JMezgMT58+vX48//CH30fEF6+eI+LH3/5WlXXoslhrq+e4a9tPP/uCmR89eSygYJgYmNB3vd80McYcU0gLMlhrS8rTNNwf9tM09U0Poq1tgSCHGOdliQHZLDEbl0V1mqYUAwDkGJlIUpaQiYgBGREKACMAwimvA15+9sI5d3FxIbkQFUNQYrDGpJRQybCpBspV16826+FwvL3fkzX6pkOi67oQc31LA8xHqBkDXEqpPm/vm0ePu6yQtVxcXiYppZQzc76Ms2qJU3z7nW9sNps6dZVSlnlC4Gmabu9exxhzksvLy6tH1znHEAISVH1lu+5TSkQQJVVJ6Xe+/e133333+9///vPnz58/f87M1cVUQvJNk+Lk2ubB+eX9zZ0BzCmJiIqwMYbsEkKM0bjmV7/5VPWTt956y3kTS0m5qCKzffXyLoYkAk3Tfvn5V+PF9MEHH4YQWt8ewiGEUHIixJhiCCFYW0rJzqSUvGu7rltvbPWGqIoqGGMMm0y8WfeO7TiOkmnT98QAIPM8H/dDXrxzrm08tFxKAdUQZiKYpuOzZ89iDM53V9cPrLXPvn5xd3eHyLe393/jO7/7zjvvpLwUpKUUtDYXYUtAoEhRyuv7u+12G8PspFQdFgJb75a4eNemkApq49qUyrMvv3rvvfcO45BC3K42uaRSynA49N3qo48+Wua5lHJzc1PzQ6x3634TY4y5DNM9iFZorcT0v/6Lf/HRx9/85//8f7m9vV2WuN2c1dSgOu/WTAJhXqbFOVeWWGypQfGllBhzDZwoSVQFABUZAZltLNJaj6geaJmj6a0hrv7GzWYzz3Ms8V//8b9x3q9Wqydvv7VarS4vH07TpBG6pmW2jNh4C9io6jxNIsqGFSVLoVLqPMGIOMWUc62BjP6U+0oAAMbFGKZ5MMYYw/M855zbtqtzX1iSFmnbFlByTm3n85JzLsycVZqmURViEJGcTqJfVah9wPM8a5FlmdkaRDoejzmmpmnYmrbrwrIcdvuLi4umaY7jUHEM7z0SMTMCzPPsnMsxxRj6vmcFYh7jUkRVpDIfMUZRrFQcSI0HgcrYzSWBKCmAlr5tjDHTPFR5l6o2TcNMOWdFrDA4IylqKSXlQmTmOTjniMAgiMgcFhHxrnXOLVOYpqkSEi9fv+rXq/1+v+raq6sr6/h8e5Zz9q49DOPNzc397nBxceHapmjMsSxL3Gw2xIYN9W3nvS0pEYGIIGoIwZCtq7NxTERSEjMNwxBTZmebrk3T0jQNs805FyjGGDIEAK3xWSWVHEJgJq4lsoht60sSQwSKgiACFY1QQijinGPGlFJVaTKSiISQ6oBS3+SUkrVsjJnCklJQBCYbY57nmQlEMgOvVpu+71FlDkulgaMkJkLR32rRawV91AQArmmQqdSSUlXDnEux1qYYUcCQtdZIUlVd0hJjtIREFGMENqAEhPvdZC2TZefJW66lnt5Ya+2yRCKqmTPMvIxD1UVWmKeUUmu0RWSe53oHlHJqkapghjHGITdNUzTX+JqqcWVrKucawlKV1cYYRbq/v6989rrv47KczIigfd8v83gcplRkngMDa5RpHIfh8OvPfxWm+Wy7vbp6KCKlCBuz2+20wAcffLOuEfv9/psffygoiODbpnLPldNp23YaRmPM8Tj95Q9+uF2f/c7f+A4ZJAYthaSgb7SIQUqSwTIzay4pxHF/FJE4J0Q8O7uIOSxxTinFKEuMvu3apiugOefxeAAQJrfp+hSi5JMCAwBCCH7VWWtLyVXi/uzZs2GYHjx4kJeRAC2ja5vDOACbnAAFvHdt0zhnEPE3v/nVdrt9+PChqhLXi8QN07ikyMydd965ECMiT9PiDG+2q/V6LcTEDFoUwbeNqDTIJEAK47IkKfMyNc6jYkophhxjBKCf/+InOWckU3Oyrh9fXV1dNa0XAGau0T1VgWGM2e/3PmO36ucY/vw/ff/2/u7xk+tHj67X63WN7FVVQJSsxpgwL5ZZLWpVM5ANIZBhtO7ly5fzPF9envSe1phlnJyxn3766c3rl3d3d7/61a8ePXqkqu+9+8Hl5WXXdeyocX63u09LIGtEJKToGr/ddCVr2/allGmaHzx4sNmsmTksuYbg1sSY/X5/f3sXYzw/e7hadW3nVZXQkFLKgZkzQc55u97My1hhxcNu9+WXX0bA1vmU0tlmezgMr1/fgvLZ9mJ7sQEoxtI4zKokIqu1Fw2Etkpz6qAjIufn5ypZFI13lpgAX714vV1tHz68AqL/8Gf/IaX09/7gD47HAQCS5JokMaVQUs45d76pXDtZGsexb/rj8di1bdu2cQkxxq8+/6Jt2//t//jfLy43//Jf/p+//OUvz84upmnerM9CSOvVWdVnsDn5TZZlqqrSyogRcEpp068b5wAgl2iNTykLqG/bEAI7DiHEcTwex67rjHfMvO76lFLf933n5nneHw/IdrvdziHO01JSts6UmGr1uHE2Z6mJN3EJqWS2ZI0vqUguno23BodwQq4qjlQhKREppERcAcwaiAgA3jcKkHPOKdXon1IKM1X5FQsWS/VrB4Yh5jktWrRm89aDqUrgJOVxmYCwVBhLBBGtNciQY72/dZ7nrmkBYBoXRNyu+6xSD2stsoxTCGG9Xve+KQi746EAurZRQccuzCGjMmAphQCJ8bQYItT2KCYyBlbrLsZAQPUnJKBN4613IhKXkFJGRASeQyyKpwUxZ9dYsuS5zWV3vJOmtVm0qqlVFkUIaf78sxd933/15bNlin/wX/2dzdnFxbavCp3nz15+9tlnn3766dX1g/fff38c5r7vybBxTSnatF3b1fzugAqqBU7JYlqxcWe8iCBDXbsFq/WrqGLRDNUeDlQfzM5Iii37nPT29rYxFpmTFgjS9U3WbBufpJASAKCCooCgPe1qAITGGCnARKUERSBLAGqZCTkuqZQiUFIqRGaJMaW0LAtbh1CvNG1afvhgS4UUirUUE6iBararY2y9g733Mcc6vKtqVacDIKFRyEScUpKcnfMqXFJyHplcLPEwHAlQknjbLMsiUI5TYtIHFxtAJSIgZmZSSKKWmLFmdyRgyjlU1WjjWiIKIdzvd65tmJEUkpppnA0DUyYiBENEwODZONsAEBCOy9h1nWOKMSuhQF7SQmgJAFUd2xx1WsaqhFJVPH0NoWmaEEpKAYAa39/f3++G2xjj8+e3f/XDH7rWffw739yu+sb78Tg45+7v9p998uvrt59+8NE3N13f+qbb9NZ7R5xjQiYgROaYa44KAkDrm3mea/NdKWW1WtWrwrgTtMtIfdOmakTmN508S2iaxno3z3PJWlKeQ5zS7IG7zSZFefn81YMnV2E6Mtms4pyHItXeM8/z2cXZdr0tjFELZrGGQ4rH/S4vQTHnlKTAdrsd52kYhqK4Wm2N1ZVvkSmW/Mu/+unv/t53BfDq4gF7run/NTXCOWMMOW9TEVWN89K1bdM06/XaGJNyNsaQNwawZQYiFCCERWQewqtXN23bk0FmLJLIUNu2pGY4HH/5y1++vr897O9//7u/9/G3v3WMizPGkymlYJWVxey9B0uH4YAKyxI1l/vbO+ecSnbOna0uyFsCPByGMYV1169aJyQp5OPxOA6HpmmIyDhjrQ0pspJvPTLMc5As9/f3pZQHDy5v7++06OeffvbZZ5/903/63/z617++ubl5fPXo6btvP3jw4JNPPkkhWWtSycxoHa/YHIaIjo7DIIU//ujDzbZncoi4hFTHPhCtN7EiTNNSUlx1nUhmZ5FpmSMBt62f59mgmWMoKjU7E1WOQ4gxeut84+Z5rlJWZq5vdS6xsnutb9lQjIsIWIvOdcdhRiNt2x/uj86SMaZkcY23huMyphzW65UiHnfDz3/969/5+NvMXBx7NmmcmUzJaZomUgSA2oU1hxRCmKZhnuf1drNZrQeNK+Vlmg9hmIcQS3z77cfeOoMGEaewbM62MYxIDSDlnBDEkg8hDPNQa/rcqjNJAGCU1Nmm6zotwIwxp3qtWDYkMo/HX37+qVFen5+3fVdCMN6tLs64xruhAIADWpYohlNKLGCtLaSaiwPy1guhlswqcwz1bq1zRqV3s4o5bSF6iiOvv15EzDH2vTeVdVPw1iGiYQOEJaYcU4ZkFIHJWCZAS4yqIkoCSlBSnvaH+2EvotcPrzSXcRmBCRFrBQIqGGesMSIyx3leZmOp7TuD9rg/tG3bt92yLC9fvgSAhw8fllLIsCIsIRBit151XeecY+KKJ4dpASAEFpIiooS10liqWFYVAGr1R9XC4ps3wpBhQONd1T/XyMwQYklCGx5ebwAACH5JREFURDmnolIUNRcRiSG02lAyCUvTkEg+HA5ffv1MRLRI1xvfdHe73cXFxS9/+fNf/vxXv/fdv3l1dTVMyxSTEFOU17d3MRffduvNGSBfXFw4bwC5abpxDjmlZdKmcUSACjlrTomR2NIba29QVQKu5yYDWGIRLFJiyo1tcs7WmNb5JAVSIWDLvLu9v7u723S9oCTRs3YzTZOSApMSqpYK6wEpCOaca9BmFq3EOYLp+qaIAFeOH1W0SMqiSqf0K0bMp4SYWs9gRACARRREiFERgCnnaIxxb9pFSikoiJXfUEUlBCFEIhQAUCBAAnYGlBmRcio5ZzaEkJ1z6361LMuwH4Y8AkDTuPWqZ9TONyJFAEQVi4iqqGTRLAmAshRgUBUAlaJjGuuwHGOsxA+ophSqaipThiJEbrVatY2tZDmAEpJhV0qJJaeQyVsy5I0V4BOoLVr/zTp3iojqqcUSEZcYJacf//gnh/18eXn+6PFl13Xf+94H77399mdffvbNjz5Yxqlv/N3L15rLT3/2E1L4xje+sV6vGbDtOwFQ1Sy1ZAJICd+sbieXs8h6va4M8TzPRKSIKSWJb4LhiEIIr16+JKLNZlN/LHWP921DRLHE+khrrZyuk+Xf/bt/9/63Pvjbv/97t7e3qWhKySD3bdf3PRAW0JRSLnCcRsfmGMO0zK13qjrNyzQtOUnMpe974xpWTClZ68dxHOcpq1xfX19eXhpnsSAgWMvOGS2nMN4QQsqRjO37ftOvavr3Kb8355ySUQfE2SAwQBFCTFKD+HGJc8utc74Iisg0TFKgcf7DDz/82H/8p3/yJ/v93ju7XyZmxhoj/GZATCnFWGosFzMj0nq9JqKcAgA8e/YMHa263hu/WXUEEEJQ1hCWXE7a+BBCzLFpmhrz+uMf//jx0yfr9dp772yjtrx69frBg8tpmqdxub6+/tkvfnFxcf748eP93e5wOMQY+7Y/pEP9aR+G/cXFxRLzNC+e26bpGtsZdkwWgXM6ATx1caoblG9803TH/Q6ZnTcAMEzjPKXG+ZowAwgiknJZlsUQA4i33rJxtRMMquqwWgig5CylGOOWuEzDRIzGUNutrLcpJu+tYBGRvu+Z1FuXi2QpFVtdrVbGWDJ80OM33n3XO+ecO8QlSbJsUi4I1DZd6/3t7e1nn3325MkTRDg725yfb6tiYxrGRGVY5pLyw8sresBI8Pr18y/v7j764KOu617d3sQcNus+52ydr10DIcSi0vd9XIKA/tZqwUVSiLslGGO890qqqmFexFpnmJ198uQJZiDnQooMmMMCRaz3kgsTAoBRbJ0XIqNIgCJCollEFdAIKiKqJaMNSo1D0NO6q4SIaEROrvb6h4qSIWL96VYVUh3iqjpmOU7MfL7ZVoteLskokSAaIyVLSlrEWouGDLEhvnp0PY7j67t751wsOaV0tt4YYm+bXKSkTGQa25VF4hwM5MK5sQ0AfPHFF7vd7vLysqr7coiiWk6DAhhjyFEFBrOKd+1xmCQXZqqba85F69sBCKpSa+cQqNbDqdYrp35ZGbAmRWhRVU255CwKyPUxbBRVuRQpOeca9ckeY07WNy+/fFZSvrvfPbq+0ly+/PLrbu1SCk+fPn5wcXl3d3j27CsyTb/ehCgpBd+vfvof/+xb3/rWoydv3d3dsR5X685WGCQmRSY1BJVSA8lSSgFUY+hkmyGUInQKdmF4Y2loXGutBQZH7IwzxlDBaZlKKY1WwbCraqxxCZhquzOcRFtFEBlEyaAjV8ErtiaHJUkhAD4NV0VEAUABVKSIVCsgMxMZRGTGrnFZIIQwh6VkKIVCCKTGoam2+3o3SI2JZgNMJUmYIzIgIIpCteUSgmjR0/9TI8FLERExxI1zpQiBeu8sMWZaphBzACCJgQg1FxUBQhSs/3LOuUiSrABUVGoRXD1eQdAYY4zprfFNAyAphhTDcBjHeep739aOGOeYkJwTAclFFBlRUi5aVEBjQmRVVVBARKaS0jhPlc+ptE6VU1TponNyDKFkvb29/ff//v/+n/7n//Eb3/jGOIS+7z94770wzet+tV51jx49+tGPfjTP8//wz/47br0SemOZWQiQSUTBWUQCRAAkIFQUUQDtnFMRRgTErutKKW9Sjk/SQsumlLLf75nZOTfN83azaR+2zGyM2R8Op7IEhaIiKPf3h9398b333vnZz3724btvO2eMgHGegYyz3vtCIKoppQgSQiCrh/vdkuL68XVhlkJSsBQ5Hsau60QEkZcQcg4lxKL58vLy8cPrUooBi6g5p9oG75xLqaBqEkAEezIEs6rWQIbqMDQCJeZFUoYlg6KoMy6iiIhrfEonKeISpmpQFMX72zvRfP3k8T/+x//47ub2eBzCPKOqQx6HQYj7vrdApZQ5LqUkVXXsRLVq2pEp57zZrpSptQZV2PpSSkklirRNk1IiY6vYp169MaWi5dvf/naWIkWnZTk7O1NVay0BHveH1WaNTC9fvfqzP/+zD9774J0nby0xOOdVs3MuLWHYH8hgWJZnX78IS37y9uOLi4sH59d92xLxEjJIQcQCpfZbSM4FCmecYwFiVUyxGEtt2za2hwJkyXtkYKcyjmM9tFWhllJbxBSTZrHWElMpRVCt8zlz7T6pW8HhMLBxxkIIpe9X1WLq0KFqSgHZ1LYr5xrnTMgLiJKxnW9VAGodc5F5CWwsFJnG8fXLlwCaUvz+j37w3e9+d1xGVUWFolIku8bbjHPKMUaDnCRfXFw8vLxEhJTDkyePMmSIOZaiMTKTaC5FigoCK5FIiTlRQQBgIMMAAMhMjADonQWFet6lLKvVyoKZU8pSGFBKubu97Zp2263UAEgGZcc2AwgSKwDZDAVBDCgBKogCEIMHFsEopRQhMsCn9e//A0F/di+7qmQ3AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000004227.jpg'\n",
+ "# question = \"what is the colour of the man's shirt\"\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000004175.jpg'\n",
+ "# question = \"how many players are in the court?\"\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000003694.jpg'\n",
+ "# question = \"is there a basketball hoop in the image?\"\n",
+ "\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002890.jpg'\n",
+ "# question = \"what is the woman wearing black doing?\"\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002621.jpg'\n",
+ "# question = \"what does the street sign say?\"\n",
+ "\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000005540.jpg'\n",
+ "# question = \"is this a vegetarian plate?\"\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000004975.jpg'\n",
+ "# question = \"why the people are happy?\"\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000007816.jpg'\n",
+ "# question = \"what is the man doing?\"\n",
+ "\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000006748.jpg'\n",
+ "# question = \"what is the animal doing?\"\n",
+ "\n",
+ "\n",
+ "# img_path = 'results/images//phone2.png'\n",
+ "# question = \"What is on the phone screen?\"\n",
+ "\n",
+ "# img_path = 'results/images//plate.png'\n",
+ "# question = \"What can you see out the window?\"\n",
+ "\n",
+ "\n",
+ "# img_path = 'results/images//driver.png'\n",
+ "# question = \"Whom is the person texting?\"\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000003694.jpg'\n",
+ "# question = \"how many people are playing basketball?\"\n",
+ "\n",
+ "\n",
+ "\n",
+ "## Limitations \n",
+ "# img_path = 'results/images//driver.png'\n",
+ "# question = \"Whom is the person texting?\"\n",
+ "\n",
+ "\n",
+ "# img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002890.jpg'\n",
+ "# question = \"Is the woman wearing green happy?\"\n",
+ "\n",
+ "# img_path = 'results/images//plate.png'\n",
+ "# question = \"Where people are eating?\"\n",
+ "\n",
+ "\n",
+ "# instruction following \n",
+ "\n",
+ "# img_path = 'results/images/monaliza.png'\n",
+ "# question = \"Do you know who drew this painting?\"\n",
+ "\n",
+ "# img_path = 'results/images/taxi_car.png'\n",
+ "# # question = \"What is unusual about this image?\"\n",
+ "# question = \"what does the image describe?\"\n",
+ "\n",
+ "\n",
+ "# img_path = 'results/images/nuggets.png'\n",
+ "# question = \"what does the image describe?\"\n",
+ "\n",
+ "\n",
+ "img_path = '/data/mshukor/data/coco/val2014/COCO_val2014_000000002890.jpg'\n",
+ "question = \"What does the image describe in details?\"\n",
+ "\n",
+ "\n",
+ "image = Image.open(img_path)\n",
+ "\n",
+ "sample = construct_sample(image, question)\n",
+ "sample = utils.move_to_cuda(sample) if use_cuda else sample\n",
+ "sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample\n",
+ "image"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "887adb84-15a5-4366-965b-f5226bd59985",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Run eval step for open-domain VQA\n",
+ "with torch.no_grad():\n",
+ " result, scores = zero_shot_step(task, generator, models, sample)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "e5b01324-7880-4677-b33a-11c785c23065",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "What does the image describe in details? a group of people riding skis down a snow covered street\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAOPCAYAAACKPgtaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5BlZ3reCf6OP+d6mz6zKrMqywEomALQ3qE9TYukRIpGElezu9LsxmpHK0Wsi5E2NiaGE4yJ3dj/drWh0YrkaEbDkUIUTTebbINuoLsBNGyhUIUyWVnp83p7vNs/vpMX6GY7kd2iQsq3owJdWTfvPfeY73vf533e55HSNE05jdM4jdM4jdM4jdM4jdM4jdM4jdM4jdM4jdP4MYf8l30Ap3Eap3Eap3Eap3Eap3Eap3Eap3Eap3Eap/EfZ5wCT6dxGqdxGqdxGqdxGqdxGqdxGqdxGqdxGqfxE4lT4Ok0TuM0TuM0TuM0TuM0TuM0TuM0TuM0TuM0fiJxCjydxmmcxmmcxmmcxmmcxmmcxmmcxmmcxmmcxk8kToGn0ziN0ziN0ziN0ziN0ziN0ziN0ziN0ziN0/iJxCnwdBqncRqncRqncRqncRqncRqncRqncRqncRo/kTgFnk7jNE7jNE7jNE7jNE7jNE7jNE7jNE7jNE7jJxKnwNNpnMZpnMZpnMZpnMZpnMZpnMZpnMZpnMZp/ERC/VFf+Af/9p8iSQqaZvHa66/wh3/0b5DQkFDxfJs4jgBoNBr83Od+nkajztLSImEUEgQhoBCGCX/4B5+n2+sxvzRHqVzmzJmzjCc27XYf1wvwg5C9/V183+exhx9BliR2dnY4Pj7mxo03sSyTfD7HlcuXWFiYJ5ezUFUFWZFIk4Qo8DFNnWIhh6qqKIqCBGiKysa585iGiaJKaJqGZVmMx2NGoxG6rqOqKpqeR1FUDFNn694Wv/3b/z2qapDPFflf/O1f55Of/ARf/OIfcHC4T6mcR5YVUqBcKrOyvMqNN29x/fpNvvrst3iwc8DZ9Utohkl/PAVZQjMNNE1F0zTCMCSOY0r1Brppous6YRgy6A7QNI1cLoemqiiyQuR7JHGMZRpoqkohZxEnKa4X4XljXGeA5w4JAxtD06hVa/yDv/8PsKc2/+T//f+h3x/Q6/Wo15rUag2sQp4U+Na3vsVkMkHXTaIoYjqdUqlUaMw1qddrFAp59g72cV0XRZGQkAAJVdHQdYPpZIpj2+RyBVRVpdfpICGxtLREFIWMRkOCIMD3fRRdRlIkPNclTVJMQyeJY+zphHwuT71aRZJlUglsxyFNU86dO0ecJLx18xau7+P5AWYuTy5fwJ5OCcOQp59+krXVVT730z+FrmkM+z36/T4Hh/u89sYbvH3nDufPbVIulXFdlyiKiPyIjY0NPvvZz7K1tcWtW7cYj8f4vs/a2bMYusGwP2YwGHDz5k0M06RQKrK+vs7y8jLPPPMx6vUav/s//08cHR9xfHxEFIUEQcB4OGY8HGHk8qi6juM4aIrCpfObyJKMbdssrS5z4fJFGo0GpWKRZ7/yVY6OjtCtHJKUEkce1XKN9TPnkWUFSVL4xgtfZ3vnPuPxFFlWOHtmA5KYybhLmqakacr6+jrz8/OESYznebz28ivEccxcs4mqqCiKBpJESortukRJzPr6GRRV4WD/iCRN0fST18iYloVhWpw/d47FhUV+6Zd+mUKhgG3bdId9tvYfoCoKqqxw5+07dNtdBt0egefh2g66plOrVonjmDiOqVQqFItFVtaWyeXzJEj4YUinP6RWq3F2Y53BYMBwMIA0QZagWSkhk9LrdUmTBJDZ3Nzk4Ycf5ktf+hJvvfUW733ve8nn83zrW9+gWq3yC7/wCxQKBfL5/OzcxHFCkqQARFHEaDSg0+nw1ltvgQSyDFevXmVubo7f+K9/g7dv3SIIAi5dusQ/+kf/JX/w+3/Af/l/+b9Sr1apVqr87M/+LGtra9y4+RYpcOWhh9jf2+NLX/pT2q0W7eMWm5ubzM/PE8cxSQpIYFoW8wtL3Lu/xbdeeIH19XVWV1f56Ec/SqlU4jd+4zdwHIePPfNx5ucXOH/+PI899ijXrj3B1772Nba2tqjV61SqFT7ykY+QJAn7+/u8+OKL/N7v/T5/62/9TT7zmU/z+utvMBqNuXr1KoVCAcuymEwmHB7uY5omlmURxylBEPCFz3+RIAj45b/+i5imieM4DAZDWq02c/PzlEolfvM3/1teffVVul1xv+XzeSqVCmfOrLJ+7hwb585jaBppkvL1r38d3/d58umnkWSJyWTE4eEB9+9v8bd//dd55qMf4R/8H/4+t27d4n/7v/v7JEnKv/7X/5o0TTEMg6WlJZaWlrhw4QK1Wo3t7W0mkwmtVoter8etW7dQFQVTN/i5n/srPPXUk/zu//y7bD94QBiGlEplrl17kiiOmU6nbJxbZ339LK3WMYNBny/+6dewHZfz58+xvLTEe9/7NK+8/BJf/tKf8Oijj7KxscFDDz1EoVDg+PiYIAgIgohev8/O7i4HBwe0221+/dd/nUceeYQ4iojCkP5wSJqKe2w0mtDrDzl/fpNms8lXnv0KjuvyN3711yjk8zi2zXQyod/tEKcJSZry0ksvcXx8TLNeZWF+gb/6C7+AZhgEScJ4OmU4HvHKK69wcHDAL/78L1Aplfi93/99uv0enX6Ps+vrPPXUU7i2g+e6XFw9i4LM//03fwNFVfjN3/ivCeOYuw8e8NILL/KNrz/HX/npz/HY1UeRLA1VV6lXa2iaimmovH37Ll9//gV67WMmwwEf/tAHWVpcoj920A2TSxfPk7NMijkT2/GYTFym0wmOa/P29hbIEj/1sU9gGSZhFLG9u8Prb71JrVSmlCswGI8IwxArnyMFpq7DQnOOxx96hK2dB9x7cJ+L5y8w32xi5iw8z+P5F7+FKiusL62QAlGaUCoUyZsWu7u7BL7P448/immahKGPJElIkkSKRArIsowsy9leBgkA4ppJaQopSJL4WRRFJEmC7wekSCiqQpqmJEmCYegYukEKpKl4jgA0TUOSJGRJJiXN1qwUsnUoimLa7TaKorKwsIAsv9P/O7l3yI4TIEmS7/j7SUjiIP+jj5P1+7vju7//u19z8m9/nnP0vd7nJ/XaNE1Ik/jkh0iSDEj0B31cz6Ner6NpGmmczH5flmUUWRH31rvOjaIoP/SzT56FP298r+vwZ7/Tj35O/qLxzmelnDzDJz/7juPI/pukKZIkI8sKURyTpMk7x5jESIjzmEoSMRCHEUkUY+gGsizj2Dau53HYbuMHIY4rrtH83BzFvIWuqdzf2WM8mdLrdimXSjz++FVarTa379zj/v0tDg4PAJAVmZWlRRRFwXEcSqUSZ1bO0B8O6fb6hGFEHMXEcUocx0xGY0hTsXZl61On1WY4GLC8uoJpmuzt72HlLT744fcTBiGD3oAbb77F9Teuc/fuPcbjMb/2a7/KmTNrzM3P0To+5k8+/wUuXrzEB973QVrHbfr9AfsH+7ieR2OhgaopIIGq61j5PLIkI0kyFy5eoNlsYBga+Xyea489hqIouI7LYDCg3W7zP/4P/wNf/cpXyVs5ZElmOByhqArN+Sabm5t85CMfY39vj/3dPUaTMVPb5s0b14mTmEcfe4z5hQWuPPwIum6gG1ntpKrMLcyRy1mYeVHn5XImreMWb9+8SaPeoF6r0TluE/gBTz5xjUqlQr6YI4oiJpMJruviOA5zzSalUomTO0WSZHzfp9Vqc+PGDf74i19E0TQUTafebJLL59FUkyAI2Nq6R7FY4OLmea5cusgTj11FAtI45uWXXqLVbrP94AGVaoVPfPKTDAZDtrcfcPvOXXZ2dnnmmY+zuLjIt7/9bTRN43Of+2kODvb5wz/6A5548mk++KGP8Oqrr7G7u0etVsMwTHJWgSRNcF0b3/NwHRvTMDB0Hdu28X2fbu+Yfr/Piy++xPHRMTdv3kTTNAxd54knHuPs2bNsbGxQr9d57NHHcWyX119/A9MyqVTL3Ll3n739Ax555CoLCws8evUR8pYFSUQ+n2Nufg4/CPA8n25/iOO61KpFDEPHMvM4jsvOzh6KoqBpGqZpYBgalXIZSZJ488032d7e5l/+j/8TKytrfOpTn+Hu3TvcuXObixcvMj8/h2nopKQMhyPq9Qbve9/7GI9HHLeOsG0b13UJg5gwjOh2u+RyOZ544nEMw0DXdSzLxDB1Pv/5z7O1tcXjjz/GwsI873nPe5AVBcfxUFUVXdfZ2dmh0+lQLJZRFIV2r0vgB9i2Q6/fY/vBAz7ykY/wgQ98AGcywnMcdnd36Xa7PP/88xwcHXH9xltoqoZhmIhlR2J9/RyFQoEkiVBkmXzOoFgs0mw2eeutG7z99i3W1tao1WpcvLRJEAT8yZ98Ed/3kGVotVvsHexj6DqqotDp9gmjiGq1jCzLpHGMJEkokoxhmBiGQbXSoNmc4//x//x/sbi0xNu3bzMajWgdHZHL5Sjk8/i+TxzHXL58mVKphCRJdHs9nnvuOUzLotaoc+XSRc6tr3Pn7hZ7e3v8o//bP8bzPP7Gr/0aly9d5pOf+AQyEsQJ//Sf/lOeffZZXn3tFUajIcfdzg9dt39k4Knf7yPLKoYREkURhUKRKII4AjXWQIIojIiiGMdxCIIiiqIQJzHIEIfiJvE8D9/3MQ0T0zRRFWWWUEmy2BTjJCGMIzzfw9B1qrUarudhWhaqqooLK0lI2e+JDVhsHqJIl0kTUBRxY6VxjKwokCLe24uIwog4TvBcjyiMSJOUUAnRNLFAqopKoVBk/cxZXNfH9QK6nQ7372/h+T6KoqLpBhICJImiSByToqCoKrKqICkyQRyShApJmkAqiwI4SZDiiDgRxUbgByQpJHFCmqRomoaiqEhIJHEKSYwsKyiSQhInhGlE4IfESYLveSRxhKrKVKtlFLkISUo+l6fb6WDbdlZUS+JmTRPCMKAgF1FUjZyVI45iQEKRFYyaTqFYJGflCHyfQeATBRGkqTgWIE1AyshysiyJ6xxHpGlKtVpFkRVxLWUJVVOJ4ohU4FUiIZdlUpLZ9crn8xi6TpKK7zpLFyRJ/G4KlpVDkhWSBEzDIGdZBL5PmiTkswdKlrL7IU1RVZVioUi1WqXRaBBnBagEqLJCvpxDVRU6nTa+52JZJkkSYxg6EilRHBKEPmkaUyjk0E2TfM4iDAMGgwGt1jFhGBDHMYqiYFkmvi8RRRH5Qh5DN1ANA0VVqVTK4pwoMnGcEKcJURQRhAGSBJquUSjkKRYLuEFEHIV4no0qawyHQyRZQUIUS8VCAUURz0AYBJAmaJpGHMUC+PIDXMcBWSKNY0zDIAxDwiBE0iR0zcgSXAlFlknShDiKRZKWpsiShK7pSIqCnH2O7/t0O11I4eBgn3q9QalUEtc9jCFOSaSYNEmRgCSJkWSZ5twcEuKZc12X6XSKqqqomorjuKRIRElCnKSoqkKaJthTmyiKUFQFElAkCcMwkBDHlsoyiqLhOA6Hh4fIskyz2aRSqZDL5Wg257Ask+FwCIBlWbNkO0kSkiRBlmXiOBYA13DIdDoll89RKBTQdR1N01haWmIymXL37l2GwyG3br1Np90hl8sjKypRFHF4eESSJARhhCzLtFptprZNqVQmDELiMBKfL8tEQUCaQrFcQtV0HNfNAHkJy8pRLlcYDofYtk0+nyefz7O6ukalUkZVFcIwYDweo2kapVKJIAiwbZskEYmzqqqARBAE2doWZwmqxGAwwHVcTEskTEmS4nkeQRBgGCaSJFEsFoiiCFXVUBQFRVEwDJ18Pp+BdCNArE2yLJEkaXY+BaA4HA7Z29ulVqli6AalUgmARrOBLEvouorvewwGfVRVJYwiGo0GCwsL9Ho9oijK1qeT4jzC9/3ZPeM4Lr7vI8uKAPtTMAyTaqUiQLWcxfzCAlEcz0CxarXKdDql3+8z6A9QVYUkiVFVlXq9jmm5yJJEHEcCHNZ1FpeWqFZr5HJ5ptMpfhCIAiBOCEIBLHueN1u3dF1HUVSiICBJU3Rdn4GsruvS7XYol8tAiuO4BGH2fKYpo+GQ8WhEp9MRz2GSYDsOSZLQaM7RmGsKADglg/tTpBRIUtI4JgrEc53GCVIqoes6Ugqe4yABecsSwEwSky/kUTWxp8RRjG3bKIpMtVajUCpi5CzGvo0UBzRqdZI4YTgY4jgukiRRr9epVyqoiorrugRBIPbUd4UiK+i6hqqK+4fsWKVU7NFxEhPFEWEQEAQhgRZmxV+KaZpIskScJhi6jizL5HIWtUqVnCXyhDAQ5//kfs9l3y8mxfc8nOkU3/OyfCDLDNJ0dj0UVUNR1dkeISG9U5GKH5Jhw8yAqGztEDmF2G/lLKEGiOOIOHmn+P/OQjvN3iaDuCQBeMdxlN3H8p8pzCVJ+pFAlv9Y4wcBG9/rtd/vfH33v/24z9+/y3H+4Pje4FkYRgRBQBiG2bMvvXMvvvu3vwfY8+6//2XfN999XH9pxyNJ8K5jOdljojhCyWoQ+V2gXHb23gHqpJO3EfluLpdDVgKiOCGOIobDIaoMMiakoCgypWKRXM4iSRLG4zE7Dx5AmrI4P8/EnhInCYoimuOaqqHIapary2iahq7rgEQYiHuh3xWNN03TSNOEJI7J53NYlsnc3ByaprF/uE8Uhgz6A6IwZDQaYZoGZ8+ezfbxMblcDkURn2UYBssryzQaDSzLAgmCwCeXy2FYJpVymVRKGY6HWPkcCwvznCTzpWIRy7JIkpgwDGl3OqRJwng8odNus7+/T7fbFWteEiOrMo1GAykD/SeTKffv38dzXXRDR3VVVFURe5WqcOHCJrV6g1qtRpyI+lFCFcBrlqNIQJLl9q7jEAQBqqpQKBToKz3SNEFWRD1iuy5RGOJ4LnESo2qqqKH8gJSUKI45Pm7heR7TqY0X+MzNz2HlcpiWRbFcxjAsVFUXNWMcoariGKbTKYeHR+iahixJuIGo6erNBpVKBV3XkRWZKI7I5fM05+YwLRNZUSgUC+KaIhGE4hr1uj2Oj44ZDoc4jkOhUECWFTxJNM7H42GW13vY0wlJHDMcjvA8l+Gwx2Qywfd8NE1jdWWVfF7UF5cuXWZtbZWFhQUKhSKapqHpEcViEUkWn28YOpVqhWazQbNRJ4lFrZK3TNRs35MkGVVVieMI3/dwXFVcY0nD932RIykKcRxjGKKeBdFEiaIIkKjW6pQrZXRDo9lsEMch8/NNSuUSaRKTklKvN8gXCgxHI8bjEZPJVHyOolKpFiEFz/PQNBXf90mSRKyZMqiagq7r5HI5isUiuVwO13WRZRnPC1AUhSh6B5OYTA6IopiJPQXAMnPkc3kWFxYp5POQIuor18V2bCbTCf3hgMl0kuVvIr/RVB1V1fB9D0mWyFkmiiLAWtHE8jFN8cyapgUpHB0e4/telp8nGQagoMgij0pikRepmprl+hCGoah5FWbNMCREvRGLtU2SwDR08dxJ76x9wOw5AtEsK1cqqJqKoiqEYYRt24zHY2zb5ty5c4RhiKEbJEnCdDJBkRUUJGzbZjqdznK5HyV+ZODppW+/iqbplIo1gtBj8+Jlut0hg8EExdCI45Bup8PEdtjZ20XVVR5+5Ap4KWHsY09dJmObo+MDxuMJH5x7P5VqFSuXw/FDAdgoKYqa4gc+k+mEo3aLRr3BtaeepLGzw+HhIa7n4nkukqygquIhSJOUBFFoGYaJLMkEQUqlWqBareDZDmmaiM6B6zMY9EiShDQrQsWN6JIkCYULZQwrTzlfJL+xycLfmue111/jy1/5Cs8//zWuv/kaZzfWqVQqVKt1gsBnb38fVdNJVRXVNDELRfRcHtU0GU6nSIoHkoyMghQrBHFE4iezTc3pdgEZQ7cwTZNmsylAsjgm9EOiIKReq2IYBv1ehygMcacOURziOGPyeZ1S2eDhKw+xurpE+7iFazt8/bmv4bkesiKhmzqmaRDFIZPpkIXFRcqlKmdW1hiPx/R6PQqFAuvr6yIhlmVefe1VHuw8YH5hUXSPoyDbAEKxGJumWGjzMoPBgDRNeeaZZzAMg5tv3yIJUgqVIsk4xQ5cpOxca7pOmoFupmmwOL+K53mMx2PBDEkSkAWwaLsumqqxuryK47p0ez1K5TLVWhUpiZlOJdbXzrB+9iyaIoC5KIgpFgSyrJkGzfk5XnrxRfZ2uqytrFKtVrly+TKu6/DsV79EsznH8tI8SfbwdrtdnOmU0ahLmsLGuTMZip5j/+CQra17OM6UasbksQyL+flFbNsmio5ZXTnD0uIiQRSSpinLqyukacq3v/1tppMJbuQxdqf0+l2WlxepVMpsnN+gUCryyqtvMBwOaLf2scwcg/5QgKqpTLVR5uLFi6SA53q8ef0tFEVmcb6O57pMxyGjfh/PEeCHqijM1xq4rkun0yGfL1ApllEyJmAUhkhJijvJgKo0Rdd0yqUKVi5HoVjgwc4urXaHu7fvZKCDyuXLl/mVX/kVbMfBmzri+UsSIj9EyhZnwzD42MefYTgc8sI3vsnewT53797l4sWLrKysEJNimCZT28GyLNbPnyOOIu5vbVEsFSgU8hDHKJJMo9mENKHXaSNJEvl8kYODA1555RWuXr3KRz7yEc6dO4dpmhSLRUajIdevX2d5eZlisTgDk8JQJPK5XA7fd2fsncPDQy5fvsza6llq1QalYoWf+Zmf4+GHtvlH//gf8+qr1/lv/pvfJE0SzpxdZzoaMxnb/OEf/BGKovDRTzyDbhh85StfpVQs8fBDV5lOxoxHQ4IoJIwi7MEASZJ46Myj+EHArbfv0O8PkSWF5aUVrj7yKM89/3WOj484c+YMa2tn+OVf/mU8z+P+/XuMRiPeeustisUiV65c4WvPfZ1Ot0MQCHArny9CKjPoj5hMp7iuK5IKTeOVV14jCiM0XaFcLrOyskKv16Xb7bC5KVh3Fy5cQJIkSqXiDADSdYNypcbt27fZ2dkhTRMqlRK9XocgSIiigCDwcRyH62+8xnA44PHHr7G2usbDD1+hXq/zxFNPAtDr9djf36dSqVIoFBmNJ7z/Ax9ifeMcX/v6cziui2nkZonJZDKZgYWWZTEYDEmSlFKphK4bpCnMNed49OojnD9/npXlFT71qU/hOA6mac4Aqjt37vDWzZvs7u4wtSd86EMfYHV1jfe99z04rse9e/ewbZudnR0qlSo/+7mfo5AB4W+8eZ3p1GZtbQ1JkhmNJnR7A46P2xQKBc6cWadarWNZOaaTMXEUUSmXCbKE//DwgG88/zz7e/vUGw16gz6arrO3J7qBuzs7dLtd9vb2Zuue63kYhs4HPvQRlpaWSFKI4gRNBiUB4pgkCIk8wawkhsANkFOJRrmKksDhgz3OnFlleXGRII5xfI/18+cESJZ17R9s3Uc3DJ54z1Ocu3yB+bUl7r70LTzPY2PtDL7r8eqrrzOe2iiKwpPX3selzU1e/vZLHBwe4SUpxaj0LqAGTFPHMA3SNIY0RUoS4jhBIiVNUjzfx7YdRoMhUpIShSFeFCApCs2FeQxdZzwaUy4WMQyNteUVFhcW0bPk/uC4xWQ6QZUVivk8y8vLs+7/N775LW7cvMl8c04US6lgN0ZRhOuKDnylWqNaqwmAKUlBEQVU1vYiyYCiDLNCyopAAXSleL5Hq9WmUCywsrKC7/vYGSCaJAnVsgDmRIadivdDNNRkSXyW53kigTOMGTPquwGSk7+/O0H8Tzm+H8gzS7bhO0C8dzNefpJAx48L3JEkiSQVzLis/8NkMmY4GommlmmSz+VF00ZVxT2aJEiydELN+6HH8JcNQP1lxJ/5zpIsgIo0IY5DxvYUz/OwLAtN0yjm86K5lTHQTkAmGQlJEhC3qqooqopVKuG6Ht1en067zdbWFhfPn2eu2SBNY0xD58zyMoqqEvoht966yX//27/Fr/zKr/DZT3+GV994nV6vRz5fEI1uWcMyTVIpxTB1yuUitVo9a4DYjIYjbr11gzAMKRaLBL6P6zhcu/YEly5fpFyqEoQht27fZDjs8+orL8/WvquPPMZnP/NTbG9v0+/3Z5MgAI25Jp/7uZ8jn8tTLpbZfrBNf9Dj/OYmlWqFSr3GZDrm689/neWVZT7xiY+TJII9bhiCBXZwcMBwOOLZrz7LZDJhf3+fra17vHn9DcIgIokTwS4xDN73wQ8QxzGvv/4qd+/e4Zvf/AZPPvkkTzzxBFESgZRybmOd5twc/8V/8b/HME16/SF7B3vcvXcPSTbQNNHotSwLANdzOTg6YDgYMhgMuHTxIufOnaN9fMx4PMK0DBRV4d7uDoHv4wcelXKZRr2BGwRMXYcUGI1G/Hf/3f9PMKHm5lhZWeGZT3yCpYUm83N1wjAhiUWzXICSMsfHLb798rfZvr/NzVu3aNQbFPIFRpMJiirz/g9/iFKxSLVaYzSd4vgua+tnePjqVfKFIqqqcu7CBcGyQ6Y/GHP9xi0mtke/P2I0HuP5AYqiks/nSTJix97eDooioxs697e22N/dY29vj/F4TBKFKIpCuVxlaWmJj3/sE6ydWWVjY52HH36IpaVFXFeAHN1uD03TuXjxIp1+j539PerNBmtn1/jIh97PXLPB9es38DyH5eUr6JpGkiIAEE3Fc6f0useMpxaabtCoBjiOy3G7jSxJqIqCZW3QbOZJUgGWTG1Rvz/19NPUqlUazSoXL52jVq9i2zae57G3twcpXLz4EOPxhNdee43pdMp4PGZufp5avc4Tj1+lWCjwwgsvMZ3aooGX5Y/LK0tomkqlUiFJEjY3L1AsFjk6OiKOT9ZZscd2ul0GgwHPPvs1Wq02+XyeZrPJM898nLNra7z/ve8ll89BHNPv9+l22mw/uM/h4SGvvPYKrusJhmQcE4Qh8/MLVCoV2t1j0iTlkYcfxrJMNFUlDCI6rQ4LcwtcunCJ4+NjBoMBX/j8F5hMJ+QLOSzLolQqYRo5LCNHEPgEcUgjY7/GaUIQBDjTqcAvFJkwjkiDLNdQFKaOg23bqIrM3FyDlcce5eDggAcPHnACqxuGIaYekoRKpcLVxx7FcV3GkzHjyYTt7R1u3rzJYDDgf/Of/+eoisrW1hZhEHD3zl0s0yRnWuzs7LC1tYVtO0Txjxl4On9uE9tx2d09IIpD4tTHcTz8ICRJBB29UChRLpVYWlqiWq3OunuCZePj+R5IkJDS7fVIJYliuTIDOpAlkCUUTUNWVUaTKWkqcf/BAzrtNlESE8XxrKudAmEkUD1NUyFNSJCQZEhSSWw0skKcpEShQIQVRcHMuvwnXUhJkmbslcloSBwKJgLZgyLLEvmCRS5nYpo6B/v7tFotJAVUVSaXz6ObJmkq4fshE9shyN5PIyVNE/ysQ5xIErIibpYkTkhJUSRVUDSTkDBIGY8GGLpOPpdHUyRSXcVxptj2GFWVMQwLU9fwXAfH7mMaORq1KqapI0lQrZSxTIN+VyD+Z8+e4fj4mHarJaiquoprTyFOUGUwdZWcpWOZGoamEEYhnhtQLuZYWVpAkmWSKCCJQtI0gSQhjWPiMCDwQ8IwRFXkGaMqiiOiKCQMfXzfJyUhlzczNnR6khWgKgqarqHqGjopZmQJCqUfoSl6lmhpyIpK6AsWx8lIg23bgACuFubnWVxYIM3AOiTEIheJ0S5VV+m02+RzefKmhSTB8fGR6BiEAZPJCFkWFGtJlojCAEjJ5cX4oefbaLoiOvA1cb96rkM7DGYdKytnksQJnuuLEZoMRANwxhPRJMoSZcexiaMKhqZxuL/PoNuj2+ngeh4bG+s49hxJ7BMGId1uF0XRUBWVWrOEYehEUYymadRqVUHhzBdIogSSMaqqYRoWnuuRJqnozKSgqhqaqqEqgqmRLxQIo1Aw6IIAJAld1TE0UZzqmkbOsigWinienyXFKdv3t4jCgDNrq0iyzFytgW3b2LZNtVIhZ5rs7+7hez62baNrOo9cvYqsKLS7ndkYZalUplypUHBEByL0AzzfZzgeEwSCQlzM5TLKrKASn988jyTJWKboXPR6vRm9+NatWyiKQrVazbo7JeI4YXd3j3q9TqVSyTZbH0VRCEOxOZdKJSzLYnV1lUajSZwk9AdD2p0O3V4fSZaJk5Tj4xYry8s88dgTHB8e0ml1RKcjY2ylacrCwiL5fB7TsnBclyhOMUwLS5aZTG3ijB01ndocHh5iGAaPPfYY1WoV13WBrPNQKpPP5RiNRsiyRK1WI4piRqMRqqoKwFc33jVCGBPHCbIsOrGqpiHJMrlcniRJscwBsRZTKhcplUpUqlVG4xGu5+MHPkEYomUskzhJiOKYyVRcO9MSz2S73abdbjMYDFhYmCeKIvr9PlEUMhwNKRYLLC0t0GzUMUydJOv+CHaj+N9gOOD2nTssLsyzuLQk1gBVp9Fs4roeSsYCEYw+8b3G4wmu6+F5XjaGIs5RtVpFkiW6vS5bW1tEcYRu6KRpyu7uLrIsU6s1CKOIXC4nQMcoYG93j+FgSK5QQZJkSsWCYIX1+0RhiCxJFPMFTNMiiVN8P2Aymc46Z/V6nSAIZ6y0fq9P4AV0Oy1kReb85iZRFOK4NpqusrAwx/zCHPV6A1kVxz8ajQTbMBFsQ8/zs70yYWVthXq9ju26tDtdFFnGNHRq5SJJEhN4PpVKRbBAczkkRQFZRtFUypUSxUKBeq1GpSzA4+2bt2i3O4RBSC7b96IwZDwckS/kRRdX09BkmVq5gqM79Ho9PFcAKoaus7S4iCzLDMcjoiRGVhV05Bnr52TU7GRPTTMmXM6ygDRjMoOiKhTyOebn5+m2O+zv7lGda1KqlDF0g7xloUoSOVMUFBJChPKkfPQzll69UqVYKCArgrkYBgLcTdOUWq0qxopVlTRNZgm22HKy8bdU7Luzg3+H34Dnezi2jWmJNeeE1eUHPmEYYeUskT+8iw0hGAip6OTPxvrSd52Td4Akx3EJAp9CoTQr/k7+7d3AyX8ojJX/0ON7nZ8T4O77nbvvx8L5fsypk/9+v/f7i16j73WtJ9MpvV4Py7JI05Ri4Z2GgMhbMwr5v+f4fgyzHxTv/n4/bgbUO9cOTp7jH3QcSSIa217GygiCADlbiy3TRJHld95GyphmsjxjQZ4wY6a2jW07dLtdjo+P2dvbQ04Tup02ji9Yop5tkyYpo/GIXrfL6soKURSxs7PDzoMd+oM+C/MLGLqBruk4qUNw7Ak2aBBSKVcwdJ3Uigl9X9Q4JGiaSpJEyKpEuVJiYXGB8XDCeDRC0xRKpSJnzp4R+awksbS4jGWZLCzMUywW8H2x7x8dHaHICrVKhdZxC3tqs3Vvi3anjawq5Dt5ipUSni+awoP+gMODAwI/wPMF8zRNUo6Oj3Ecm0Gvx3Q6yYp7IWXRaDQpFcvs7+9DmnLu/Dlcx+GFF7+J53uEWZOp0+kwGA5wXZdCMU8+b7G3t4tuGLhewHQyIY4ikpMGTSaZMRqNBJtVlqlVq1RKJSwrR6/XA0nCtCxRqGeSL1EsWGZBGDEcjej3+ozHY7a378/YYI16nYuXLtJoNJmfn8fKmURZ/osEuq4RxzGtoxaOPaFerRBEIX4YkiQpk+mE6XQCEmzv7AqQzDxkd3eH23fvsLi4zNx8SJyK5mucvXe31xWNFVXDsnKUSiVkRcHzAkbDEcPBANe2sR2bo8MDokhMH3Xabfr9vqjB8wWWlxYpFousrq5RrdVYO3OGarWCbmbyLH6ApKgoGiDJJEiEUYyiqpSrVfI5k5xlEvgek8kYyxSTG4qqkACO55Mkoh4rFPIsLS0ytj3iJGWUNQxX11YyQFVCN3Smtk0Q+ERRSLlSQVZUhqMJru+zf3Ao8pdqFU03MjZTlThOCKMQ25nS7rSIkwRkcH2H4UhMayiqgmEY+BkTKZ/P0WyuYBi6kHdRxL+Px2P8IGA4GAiWWb4wa8x6nkcUxTQbTSRkKtUK1UpVkA1Mg2Ixj+d6HA/HeK6LJAspGQDXdbAdB00XuVVW6AmcwTREM7dcJJ/Loas6iiTPRhCTJM2YrSGypCBLCp7rE0cJEuD7IZaVxzQMwXTURb7l+j5BIO41SSKb4hA5g+f72M6Ubq8raidDxzSMWa4RRZGYNFNVBoM+tj0V8iOyjKZr5CQBXh3tH9A5blEoFqnX6zQbTZIkQVc1JuMJrx68kr23yXQ6pVQu40chWpZr/bD4kYGnD3zgg9zffsCzz36DhAjNkHHdCM+LSdIQWYa5uSYL8/Nceegh8pkeQxgFxHGE57nY9hRJEQDT9oMHeEHAmfV1sbDLshBZUWQ0Q0czdLq9Pr3+gN5wiO97eGGAHwYEoXhoU8jGVQRtXlHkmVq6NEOlFYIsuR9PJlimyea5DTRNQ1VVMSqSRNkmFNI+PkJTNVzHR1FEAZemCbVamXqzRr5Q4NmvPc9gMELWVOr1GguLdQqFEkkiM3V8Or0+tuMSxhGmlEKaYNsTJEXBysYxTNPM6HAxRUtDVWQB1IQu9kTo3TTqZaHLI8vcvXOH0XDEpcsXKRWLlIsFxqMBvc4upYLF6vICOVMnDv2Mthhz88Zb6JrOE088zo0bN3jllZfJ5S2snMlo2GUYi5G0vKWRRBaWZaCr4Dkuk8GAhWaN1eUF7t3bYjKZECexGPtIIA1DAsfB83x8PyCXF3TUwPcIw0CAB67NZDLByllUKiU81yPww9k9ZZgmhmmiGjqSqoAiEyYxtudiaiq6YWJkRch4NJ3Nptq2jed7KIpEIZ/j3PpZNjbWOT4+JgxDyMY1I99nbm6Oc6V10iSlddyifXzMdDrl1q2baJpKuSwYHO32MblcDl3XMbIHtVYrY9s2nc4xlmVQKuXFBj4/x9tv32E4GmFagqW2aCwThTGT8RQllZCCaDZWKEuI+z6JSeKI0XDIfKNB3jC4deMGe7u7ouNWKvHLv/brJGmK60452D/g1oNbmKZJLpcDljFNA8cR1NK11RVkJHRNJfJD0gRMw6JcqrC/v49ti/lvAMsQBZOmCv2vhcWFbGQmZGLbgCQowYaBKsmYuk4hX6BRq6MpKqVCEdd1efONN7h7+zaDXo9HHrnKz/zMz3J4eEjoejQzMOHbL72M49h02l2Wl5f59E99llyxwMHRIXEcM5qMmV9YYG11Dc/zcFyXw6NDRuMxrU57poG2fmYNXVfJ5XLUqlUuXjgvwAlkDg8POT4Ws+zD4ZBXX32VKIr41V/9VUqlMgsLi4xGI9588wabm5vouiHox76HJEn4vqCTV6uiKzQ3N8/S0jL7Bwd0e8e8ffsO+3v7Yg2QZPb3Drhy+SH+2l/7RW6+dZN7d+8yGo3EuhGFxHHKQw89LDpXacpgOMLxAxaqVUqlIrYbZJuCS6fX487dOzzxxBN89rOfFUndQIyClUol5hoNivk8e7u7InFYW+Po6JD9/RaarpMA+bzQl0uShCiMCIMIVVWpVGqYpoWkiA3UsnKMhhMAlpeXKRQL1Bo1jlstHNfDcT1cz0PNNO7CKMT3RSesWq1SrdWYTCbs7u6yvb3NcDjkE598hjRNefnllwlCn3b7mM3N9/OhD31wlhD6gYfj2LMi2g8CdnZ3efZrz7K+fpYLFy8RRilICufPnScIA7FWmBaVSo3j42OOjo7o9/vEcYKu6+i6nmnrGCwuLuL7Lve3txhPRtx8+ybve9/7KBaLvPTSS8iyzKOPPo7nutSqVVRFRlMVbrx5g9FoyKXLD1OvC6aX67o8ePCAabGI73rMNeYEgwyJIAjp9foUCgXOnj1LpVJlcXE5A/90bt64QbvVpt/vUigUWFxcIEkSRqMh+VyOy5cvcebMWer1BgeHh4K12WkjSQq6ppNmDEE/EGNnj1x9lPOb52m327TaHQq5HLVKmVq1TBhGuLbD0uIyq2tnKVarhFFIqspoisH8/Dz1Wo3lJQGAGobBzTff4u2bt6gvzFEtinn+IAjotTuYmk41X8RSVXRZYm1pialjs7O/i5sxeer1BiurZ7GnEx7s7BBEkdAjlNVsjFSALCL5EaBLlESEcUi1XBIjxtmoiq5r1Go1Ns+d5/bNW3zz+W/w/o99hHyxQM4wKReKqOXSuzRXEogiUGSQBKXb93xWV1YEqCVJBH7AeDQmDEJUVWXtzCory8toqkbg+0wmU5JsVH3GipFlpBm4852aSo5js394QLPZoFIpYyoKKRJTW9zLtSwhlQA5W98FE1TO6PTvAFLvLrhPWAJizXAplSoZOPa9wY7vBqJO3uc/xfhegNy7f/6DfuffNb7XuT5hVf1F3vcHfKJgDc7uGUiSlH6vz/7+/gx4WlpYnAEkgqX/znH8MDDozwMW/STiJ81AEzB18me+78n/PWFAOrbDaDImjKIZy/1EU1VVVZSTpvTJuUYWoz+pkMnwfAHajEZjDg+PZnvj4f4eOdMkJUHVVJYWFvE8j62tLQqFAteuXcP3fV566SXeePMGw9GIi5sO5SxfCUKPwbhLEguAbG1lFcvQ0RSZJI4wTR1FkbAsA0lKCCOV5nyDs+tn+MZz3+TgcB/d0ChXSrzvfe8TTaZKBXvqYE9tVldXkIDeoE+n2+Wrz34VCVhdXmF7e5vXXnsNGRlZktnZ3UGWZaxiTuSuCNmC66+/wWQyYTwe43mCQd7v9zNWaQ/Hceh0Ojz++GN8/JmP8fTT7+H8+U3++T//57RaLZ586hqdToepPcFxHWRFpj8ccO/+Fq4rpAOuLj9CoVjgxZdewDBM8vkCnh9kUi7RDHBKkoTbt2+j6zoPP3yFZrPJ2bNnOT46Znt7mxQhbRDGEbGf4gUhEimWKYCK0XDE3bv3ONjf53d/93cZj8f8w3/4D7l08SIf+9hHBVEgSbGdCVPHRkpF46JYKBKGATdvvoWua6yuLAsgWIJ7W/c5Pm7RH4n7qzvszu75g4N93nrrBhcuXGTDnnJmLaZUKqNkjYnhcChYcLk89VqdlZUVXNfDdT1efvllut0uvU4Lx7HpdtuMRiO63a4YxZUkzp5Zp9mc49Of/jTLyytcfexRketmEgFBEDCyHRJ5QL1WQ1JUUkkhSlIc10dRdRaWljA0FV1VGA4HuM6UUqkk6jRdJQgiRtMpvu8S+C5L803O5ld48/Y2w/GETr9HtVLmySceR1UEYHt03KLb7c1AwvWzG5Qdh60HO/RHY/YOD5BUlXpznkI+h5XTQJIJgoDJdEKn12Fnb4d8oUC9UWdijxhPh3jZKJthWWi+TxAGLJYWePo9T3J4eMjBwaFgJ+ZyHB0fZ40fh3w+L5q7+bwA9yQFXTO5sHmBxYUJ8/PzmKZJ3rLIWRaVUoF77Q737z/AsFR0Q+Phhx+mUq1gO1PG4wnFEoCUMamSWS6v6xpzc00K+TyWZs0amIPBQEhguG7GuswTRQm9XpcksRn0h1g5i2KhjKEpKIrIQfwgwLVdwjAgTVJSSciHiGZawtSeIKsKO7s7KIrC5c1NIUmQNXLDMJzp7O7u7uE4gu1XKJa4cOUSumlQKBb5xtef48t/+iX+3t/7e1y7dg1VVZlOpxi6zt7ODl/+0y+9A6ABC0uLpBKzBvoPix8ZeBLzfTqXLl/muHXIg937mGaBQqHAeDIgCAKGgxGGZuDYDqqsoGsqaSohSyquGzCaTPG9gDSBhYUlGo2m0DZCAIWKqqBJEoqmomga+aIo4qJEUNi87OYKo3DGfsnlcsgSpEkshKo9F03TMUxmmhyO7YgTHEfZDPJ4JowLKhI6c415yqUK9kQwVYajoRgtLJfRdI1SuYxuCMrme9/7XqIoJk5TBoMhw9GApcUVatUl0ihFQcZ3PezxhGKhgqapFCwxyynFMbHrMnU9NF1DU1WSKCLMOreSLJO3cqRxQvu4ha5paJpOHEWoikwSidfZUwdD07j2+CNUKgXKpTymqaNpCsPBAMdx6Pf7lIolSsUCxWIByzLxXIfjIx9DVlFllWq1ko0CxCSxjzMdEfguJCFKxoa6+vBDxEnM4VE2/zxxMh0sBfQURZLImYJKuL+7KwqRMESVZYr5HJVqlXqzTvu4wygeZTO+iIdeluh2+5yIQ55oJuVyeSwrR5hdw26/O5vJN3RdjNWlCUEYsL2zTZREMyHYMI6QFQVV04S+kOeLrtTOrmAWuS6j8ZhyuUy5XKHb7dBui/EZI9NEkiQJKy/m8xVFxranbN2/lxVSCvm8JfSgsjGIXrdDEATUqhVK+TyFYoE4CiFNKeXzyKpCf9BDVxVKhQLOdMqbr1/Hsiwunr9AkOmQ3b17j3yhwMee+TiddoeVlVUePHjAg+1tjo6PCaOQhWz0MXADXM+j1RoiSzKLq6ukQH80QtY1LLlA4PuQpiiqghcGHHVaOIFPbzRg72Cf8WRCrVoXxZQsilLHc4nTFM3QSOIQTVOwpxOmtk2lIorJg4M9HHvK4cH+TMTbMC9QKpd55JGHGY3HHB4d4gc+xXIR3/NZWzuDpqrIisJLL77Et1/6Nmtra5RKJc5tnCMIA85M17JZ7jH7e3sc7O9zfmOdKAy5fesm+XyeM6trrK2t8mu/9qvU6/VshrsgANBcDitnCeopMJ5M8AOfTrdDIXvmT67xxsaG6BrIihiPGo9JEcDwaDhiMBjQaDRQFYXpeIzruNy+fYfBYIgsK9RqdcIw5IWXXsT3fXr9PoZhUCgUcF2XFKjW6ywtLVGpN3Ecl9u338Z1Per1JrKicnR8zO7uLq3jY+bmmjTqDdrtDsPRCCcQ3yH46rM06jWa8036gwGj8Zjj42N03ch0mVQkCVRVxbJMIZh+4yb1egNNVYnTJNOzEYBsEAQUi0IoH4R+n64baJrOZCw0lZaWFgmCgO3tba5ff4MXX3qBKBL397mNc3iey1e//BVUTWNhYY611VU2NzeRZZkoivjCF/4Y1/Ox8gUazSbrG+s8+eSThGHI5uYmaZpiOzaO53J2/SxpmnJ4eIhtC+HGpaUlrl69yltv3eToSHSUVVXl3LlzTCZTjo6OmJ9vcmHzEabTKY7jcHR0yHgsmEhhGHLjxpvkckKXwjR1dF1D01Q8z6U/GHJ4sEcYeuTzBdbWVtnb3ePVV14hTQQLcOveFr1+jytXroi1LkseX3v1Neq1OtValWajycL8Aqoqo2lCfyKKI3RVZ5rYeK7Hi996EdfzefTxR6lVKoDMdDrlzu3buJ6X6SwYYrR4OqXb6VCrVtE1DdPQkWWJw6NDjo+O2d/fZ35xiaKu88KLL9Lr93j7zh1qlQpPX7tGqVhE1zQBgsgSjbkGq84qzaUloXUnS3hRJBJpRaZSLQsdxCQVrLZuh5dfexXLMHn88iPohok9nQhAH+hne8vKmTOomsLBwQGlQp7F+Tl0VUfTZPwgwPZcosxwJIgiwkQAzq3jFg/ub1PM53niicd58vHHWF5dRSYl8D20LEnykwBiIQfu+77QD0hi5KzZIMsyvcGAQa9P6/AIwzS4cPEC+XwegDhjQOVyuWy8W8Mwze/IaaR38RiAbK0XrMETgM5zPdJsJFyWlUzTSxGjTohRnBOdyjiKidJ3Gg7vZjSNRiOm0+lspP+dxlcye32SJN8BfJwCTz8YNPluIOMEmPpeo4k/6jn8fgyq7/VvP4gp9aN8Vvaq2XskJ+4TQKNRJ07iTN/w+7/f9/te331efpTf+YvGnwfc+vGDUe9cq+8GKk9GMzVdo1gsCn3JOGZ3b1cAEaMRxWKRtZVVwWyKIuJslRgO+gSBj6qKZkGpUECRZMIwopDPc3btDLqqiOa3Iorm27dv47kuqqrNRJDjTAflySevkcvlmIyn+IHP/fv3KZULbKyvMxlPGA7HfOP553n2q8/OwJZxBrZ0u11M0yBfyHH7zm1GkxFf/+rXOTw4xPEcarUaR0dHyLLMysoKd27f4dsvfZv1s+tUq1W6vR6dTkcYMQQBreMjVlZW+dt/+29zeHBIp9OZMWguPXSJOI55+85tbHvKq6+9QhLHmS6olNV3cgbayYRRSLVW4cKFTc5vbjK/ME+pVGRldYUojvmX//Jf0u31mExtNE2nOTePZZrEcUytVseyLMrlMqViicWFRdI0ZWqLsaHhYESz0aDZbNJqt5lMJoz6QsLgrTRBkuCrmX6l53kzNvvx8TEAw5FNsVhg4+xZZFnG1E3iMMR3XD7+0Y9imAbvefJJ5ubmIE4ACVWWUWUVRdEzkwhhUqEbJpcuX5yx5gUBUcIwTc6cOcPhcZvRZMLWg/skpJTLZVZXz5DPF7BMkySKabeOGfT6KJK4b0zTxHWEDtXWvXsM+30GmcbTCdtRlsX+Vy5viJHxNGV7+wGHh+IaLi4uMbZtaLUwt7YxTBPTEsYeYRiSyDK26wmjGyQB/nR73L19l9Uzqzx+7VEURTCVNEVCkSUUVSUFhoMhQRgymdpYlkmj0UDTdeIkQTd0TMvE8zziJOHw8AjfEzWw0DIWWrykcOvWLRzHQZIkCoUC5VKZarUu9LM0HSSJvb09JpPJTIPpoYcfJorFdE0+bwljqjTF83yqVVFju44NMhwcHtLv97Ezza84Tpibq83YTUKSoyTqwzhh/+CAvb09ms05lpaXGQ2HM+Ovk/VDVVUMw6BSLqIbKvfv32d7e5skSlBkReTZcUIYxbiOw2QyYX5ujnK5RKNRR9d0AkdM6gwGA+JMGPxEy1QcZ4xpCQZcnGkb+0GALGsgKfT6fZyMcWWYJsVySUx5nYDicZzpa7mYpk6+IORSZElmPJkQRtGM9GJZFisry8RxjG5Y6IZO3spxeHTEzZs3qVQq/MIv/AJnz54VEj2h0HnWdZ2V5RV+6rOfpdPpcNxqcXh8zHAkRObD8MfMeArDEE3TObexgRe4jG+M0fU8pmkynmSzm5MpeSuH5wrx8CROIJWQZRU/iLBtF9+PSBNoNJpUqzXSE5QQBFggyzNan6qbpEmCbduEcYgfBoRRNEtCRUIohLs8xybMZpqTNEXRNLFghyGu6+A4tuhQShKO46CqmUhd5hBi6CZJmtBKUxzHZtgbYBgGpXIRTVcplIqzEZarV6+i6wYvvPgSw9GIwaCPjM6lCyFJlCCTjQ45LiQJqiSTNwxxY4YhYRjhByFKsYieAU9pClEouraWIRbiXqeLaQq1+iSKUbOENwpDvCSlVsnz0KV1FAVkJUHTRAI86HUYDkdMJxNMwyCfz5HPiYd1MpniOC5Fw8LSDeRqGUWWkElI4xDPnRIFAaQRigSaqrCxsYGm6ciSwmQ8QUn7M6FmCVBlwZCRZZnW8RFxEpMvFFAVGd00qZRKzDfnmI6FCJmSdZ6LxaIQJWx3kGUJTVffEes2LXJWDjvTqxmMhIaUEKdWxDhlFBPFKQeHByRpIgT4FAEM6eoJ8CQWp26ny+HREf1ejzBz2csX8hQKRVqtFv2+cBExTUHLTNOUUqWYuTKYOI4QWjPNHIZuUq0Kl4kwDDMXjI7YhIoFgdrnLQJHiAAXLBNZVVElGU1RKOZz+I7Lvc5dHn30Uc6snmHsOPhhxO7uLs25OT75yY8zHA4pFIt4vs+tt2/RzUSYl5dXZvPtnudx3GrTaDY5s7xMq9NhNBphWcJJwvVccd50jSAIsccjJo5NZ9CjN+jjBwHzC4vkcvmsK+IzmkyQFZl8wUKWZVRVwXFs7OmEZrNJmia0Wy32d3d56YUXuPLQFS5dvszq6gpqtcrmhfMMhiOee+45XM+lUq3g+z6L2Siaoij8q3/1r2i323zwgx9kfX2d9773vZkZQcTe3i4HB/tsb20xGgkAKEkSrr9xnVq1SiGXY35+jsuXLzEcDplMJjMGkFhUc0K0PwgwLRM/COj1+wIsqFaRJCEovbKyiuM69AdD/CBgPBmTJEmG7k+YTCaZWL7M0cEhruuxff+BSAAUlVKpJCjXx216vR7H7RaFQoG5ubkZc65ULjO3sMCyJp69N65fxw9CavU6iqLSancEsPjgAQsLC1SrNe7dvUMcxziBGK+7d+8e733ve2jOzzGZCCfHTqeLZVkzsBUpRVFlLMtkMBhw9+49VFUIkQvnHuEWmaRptnnnWVlZodPpZEB8gSROsG0hZDk/P8fBwSG7u7vcvn2bN9+8zpm1NcqNBmurq7NCulQqUq/VWFiYZ3V1lVxOOMf81m/9NgcHR5QrVTYvXOSJa09w5coVyuUySiay6GUb7mI2yuX7Pn4GEl+5coX3vOc9jEYTJpMpg0wjS9cNJMmm3e6wvLzIhQsXuHPnDoeHImF2XYd8Psd0anPz5k1WV1e5cGHzRAqFZrNOHMd87WtfYzQaYdsTlpaWeeThh7lz+21eeuklVldXKZVK7O3uMhqNeOjyFdRs/K/davOtb3yD5eVllpeXOfOpM5w/f55mswEk7B/skSapeH2S4jkeb15/k93dPS5eukBhZUWIhLouOzsPUFXBdNQNA0038FyPYX/A2bU1CoU8miocj45bR4IF1WpRrdWRJInrb15nZ2+P0WiEhES1UiOfEw2AE+2jaq2C5y+wuLJMqVIhAvwoxPZEAlMqFWciq71ej4PDA966dZP5xhwf/8BHSZKYaZYkSpIkXGDHY9bPn0fVVNrtNmFQoV6tIssKGhp+FOIEAiySJaE/kEQJw0xIfW9nR+goXL7E5cuXmF9YwB6OiHwfybSyezRCQbSFgoztnKSCVWVZJlEcM+yOaHc67O3tsb55nsXlpRlD5GQ0wrIs1MzBFt4Bmd4pUcmKCZHEC6MIC1mWCMMQ50TsvSHEe7XM9CNN0pkGjKIoQlcyDmbsGEVRZoymJEmYTCb0ej3CMBAj5plIaBRF38GQCrMc4LuBg/8UQSf44WDGj/rv7z5/330uf9B7/Ps49yeMuJPRCUmSqFSEw6+QDngHhPxhYNe73/Pkdf++75+/3Pv13UDl9wbqVFWbNSWjTLdlMBzi2DaNeoPVlVWSVABPkvglBsMBjm1TLJbRNCGDIcsqQRSzMD+PZQhzGtIERVUZj8e8+MKLeJ43y3NtezSTCfnEpz/F2toaL7zwEq1Wi8OjQ1R1mZWlZVpKC9fxeOGbL3Dv7j2iKELTNDY3N5Ekicl0SnOuSaVa5sGDB9zdustzz32d46NjKrUqnufR7/ep1WpYlkW73eKll14UeU+S0Ol0ZqPztj3lIE3YvHCBn//5n+eVV17hzp07bG9vE0URjz56lSAI2D/cZzKZ8Pbbx5mLmoGqGCiKSrlcRtM08jkLssGVtTNrrKyuUK1WsXIWc3NzDAZDfud3fod+vw9APi9ypTgD1iqVKrVajVKpTKFQpNlo4Hk+g+EIz3GZTiaoqvi87e1t+r0e9mQq3Lgno8zgZA9VE9d3bW2Ncrk8M1QBmbnmPMvzi5m+jSGa/kHAe55+msXFBR556ApmVn9x0kCQFVRFI0qj7B4CTdNZ31ifNQ1O7q1qrUaSpOSLe3S6Xe4+2M4MkPKUSyWWl5cY9geMszG/JBb1oqZpNBoNPNcljiL2dna4dfMtOu02tuPw6KOPUqmU0TQFw7CYn2uSy+Uol8skcUq/N2Rubo7FxUUmtoMbRKiGRaFYpNFsEsViNC5OUxzPQ82kGvb2D2kdt7h1+y6FUpFatYYkpRmZI4KUmcnQeDLO9kSPQj5HtVIhSULiOELVNPTMUS5NUtqdLuPBgNbRMdVqhWKxQKkg2Mz372/huB7lShXTtCgVy5RKFQxDmIgkacLR0TH9fk+w7nI5zp0/z3DY5+jocGbElCYpQRBSLpfQNDE6JkkS7XZHiM1nEx1pCqVSOZNcCAW7MV8Q0wJxQrvT4f6DbS5cvMjc3BxvvP4GUda4OtGKFPrRRkZO0HjllVd48OABSZygZGZk4nxFQmZkOqWwcZZ6vZblvAp9p58ZzggXPtMUUi4nJhICBDIyAXIhSRREIVospmZGoxFTx6ZWr6ObBpVKmTiK8D13Ng0UhD6+76GqCqahY1kWYRgyyZqHJ6YFhmGIWkxVKRXLpIDje4yGQ1579VU++IEP8NS1J6nVBMM7CsW9r2ka8wvzXLpwgVtvv40fBOwfHjAajbIGYfQjrdI/MvAURyE5y+Cxx67ielNefEloDHWDBF3TKDSaXLl0ifm5eZaXVpAlcKYeVj4v7NNXYgy9zDe/8TJ+4FFvzFOpVlAUTTjvRBGpJNDkE1AjkdKZWFiSub1JaYqcIuw1dZ1isYiajTHJkiSOM5+nXC2xsrLE4sICt2/fpNNp87GPfIRisSjoVWlKq9US25MkYWhGJvAmYeRyrFeFCLOh65gFi8b8PLsH+3Q6XfYPD8jlcjx89WE8z+funS0mY5vf/ue/hWnlKZcqzM/N47o+aRzjOFOiIERRVAq5HIEio0gpUhwROg5e4M+6s7oiRt9cN2LsTbEnQ+I44uyZNSrlMnHkEQUJZzY2aNRLzM83mEyG9Ppt6rUalmkyGY9xHYfP/eznyBfyuK7LZDzBnkyoliucWT2DEktICQSeWDh8LxCiZsUyURiJQnw0od3qYU9EV77T7hKGQrOrXC6xsDBPfzAU7AzXJQxDTNMUhUMQEknCMrbX6xMEIYf7B/T7AyrVKqVSicuXLjGZTtnd2cH3IxznHWBOVw28vDd7QPNWLnO4S4jCgOkkZq7ZpFqpUCmXZzPJcRzjBiHzC/MsLMyzu7vL0cEhu3sHHLc6ouMUJ4RxTH8w5I0332QymQAysqKiqgaLS8uomkqxkCeMoqzoldE0g5yVI5fLz1zahPaMRKMhhMY9z2Nki2vnjifEfkCUxui6TuC5WLrO5sYG9tRm0BvS6nToDAZcffJJlpdrtFttptMp/+Sf/H/FpqZIrKyt8p/9r/6X3Ll9h263y/7eAYqiCBcL1yNJZTTdIF8qkXba2I6NJGfW3xKomkaz2cTzPJAkvMDHHg5QVJW8rtPqtDhxbTpxIvRDl+Fo8I6+QRqhKhAGLpIkUyzmCQ0NRQXdUEFKuH7jDba27/GLv/TL6LrJdDLh+PiYL3/py1zY3OSJxx5nb2+P43abq1cfJYpiTFOn0+nwz/7ZP2NxcYGHHn6I5eUlnnjicUrFEkeHh1RKJaF5ls/T7XX5F//iX/Dkk0/yzDPPcOPGDe7fv49p5ag3GkRxjG1P6XS7JEnC8vIy9+9vs7/3NvVag2KxPKOmWpZFv9/nlVdembENTuaf5xfmqDfqFItF9nZ3uf76a+zv7/Hlr36ZD33oQ1y7dm3mildv1oVzZxLPHHJyuRzlaoXdvX1a7Q4bG+cwDIOnnn4aWZIolUrcuXOH5557js0LF/jEJz/B4sICpmFSrVSJk4RcsQLABz/4Yer1GtVKA9M0SNOE5557ntFoyNLSInNzTVZWVvE8m0JRuMyIsUKxGZ24dBqahqnrWJkpQLlcnhXbo9EER3apVqv0BgPevnubmzdu8s1vfIMbb90AYG3tDBvr65TLJTzPIQh8ZLlMs9mk2+3x9a8/j2kYaKrKL/61X8JzfV546UXevnmTqT2lUChQqVTY2rpH6/iYxx59jPX1szz77LMzFpZuGLzvfe/j3r17PPfcc3z605/hr//1vy4YZb0eR0dHdLtdsdF5PrIsMzc3Rz5vsbQkgAfX9VFVDcMQ45VvvPEGhYJgQk2nE4Ig4EMf+gD5XI4rDz2E47hsbd1nrtnkM5/6JIuLC4Sh0GrzPY/5uTlMy+LWW28xHg3ZvHCecrlEvpDjy1/+U7785S/xxBOPU6vVWF5ZJI4T2q0OD7Z3uH37Disrq1y8dJn7W/fZ399n8/wFSFOuXL5MnGkWLiwszr6HZVlUinnhPiSDKkMc1bFHYzRFxdB0TE3Hdz1812Wu0WBxfo5GrSKYoFFE7Pn4jsNRu8Vhp8WVRx+lWChy/84Wu9u7uFMb0zBZXllha3uLo1aLl779bRzX5VPPfJL5uTnmmk2QEGKciDGTN2/cwPdDFhbmKRQKtBQFyzDx/FCYfRiQRJFwcYwSkjTGsR2iOBIOKdMpge9z7tw5zm6s43ke+/v7mKqwe0aSIHOIOSkQp8MB4+mEYuY6Kcsy3nTK7u4umqJy4eJFKvUqlmUIkMsTDRFFlrEyVynbtknSk2aJhIwkACblO9kxhmFSrQq309FoiGVZwqJZE6Oo6bsYSmLEP51pOJ3kEieGJcCsMXHCcpqfnxMOfkgzNq8A94Urj+/7FAqF2cgunIqLfz/h9ZMu7wnIcbL2/rjAlu/3Pt8NZv04GETCdfgdl8hyWYxpTMaT2XcSr3unyP2LfuaPM/5DHfV79/kRuisiP03SBDlJQJKIsmmDJE2Z2lOuv3kDQ9cwLZNioUA+l2NxcXEGWoFEFCX0+wNuXH9T1Aimwfxcg2KxiJIYGJbF3/ibf0PUMXHC1LYZ9PsUy2XyhTy+H/DgwQ6j0QBD1/j5X/g5wsDnztt3aLcFk0BVFBYXF/FcX4CTsXD/rVYqLC4scP78eVrtFoPBgJ/92Z9BVVSiOKZaq/Gxj32MKIp49dVXyeVyfPazn0VRFKbTCV/60p8ymUz47Gc+Qy4vnLsefvhh5hfmqFYrFAp5Ll++hGmafOhDH0JRFBaWFrl75y7PPvss733Pe3jve99L4Mf4fsBLL71Ep9Nh/2CXaq3K0+95Gt/3+Tf/5t+wsLBIpVzl+vU36HS6NObmOHf+PB/76MfY2trii1/8ItWqAJze97738/DDD1EsCtbqYDhgNJnS6XRQFZXFxUVefeVVnv3qV7Esof957YknKBQK1Os1QTxwHO7eu8vW9n2hvZckXL16VYzIzy+JxrUsc/fuXa5ff4NGo8Fjj13l2rUnaNQbwklQkt4B/9MUVZawNIVUE/ItsiKBlBIhHJzDwKffH9Jud3Adob+TIuP7AXKioKoG5UJZSM74LqqkYOkGlmYQRTF379zFcz3uKQr9fo/79+5gOza2PWV5eYXNzQ3+2i/+AmfOnKFeq6FqKromzFMURUWRNZIEdnf3uLe1DZpwJld1E9tx8XyRW5VP3LVTSYxrRRGjwQjLtPjpn/4ZSsUc+zs7M2ey5eUl8oUCiiILokfkYmgalfki+UIBGYkokYgiCDyf2A8oF/MCpFE0LE2lXMrTyFyw797dotvtYU+nWJbF+9/3Hqa2zf37DyCNyFsax60Wg+GA/mCAbbtUKhVkFDwnwJmKP5PREZCysXZePM9Zs2d+fp7hcMj29jaTyZTpdEqtJnL4YqlEoVgQpJU4ZmILGZjBYEChVOKxxx8XI3GFHMVSAYDFZaHjdG/rPtOpTRiGHB+3SNKYMIhRFY18riCcFGUV3TIo5cvoqkYUhIwGI1RZpd/tidxGFo2vMAxQ1RKlUpEoCpnawqkvFbLSJKSkkmhearrGZDolDH3ObJxFUVSm7pQ0SfA8F1VRKBbzGLqWafWKSaTP/8Hv89b16/BLv4w9tXnz+psUiyWhvR0nIGXqmam4n4fDES+88CJBEPDUtWucOXOGQqmYOUiLdSefs9jYWEfLHONbnTaKotDtdXmw84B8oThzDf5h8aMznqIAXRP2msJ2XCMMInxvSrVWImdZrK6sMj8/Rz6XFwKr0ymSpGCYOUrFCmGQkqQSYRhjGCaGYZ5MuAuh7UyI9qQInP1J3tl0ZUlG5h0q+wmL6SRBEGMLKrquUijkqdYqpGmMH3iUKyUq5QquKxK86WTyjiOXKWwQUUShXqqUZh0CXdFQNYPDVkvMuI7HRBljIszHHObbDPtjtrcfsLy8SqFQno3/RJFw9omjCEWS0DUFSEmyzkcSRSSRsPOUJRNZSlFkBAMpiYhCj8D3yVkGtWqJ4WCAqkC5XKBcLlLI5XCdMWFmw3hi+RiHMRsbGxmDZ0QUhZCCZVrUq1USPyEJY0bjoQD2YvG7qqJCKpEkEPghk/EkS7o1HNshSVMkRbCTSuUSQRhmulsZVVDVSBAsozRNM+ZJiD21cWxHjC5UBLvNNK2ZfWScMdnCIMroh0HWRclnNt06ciQRxWJ8LYrE6GexUCBnmRi6ThSGJHFMEIjxMjFaKJyIRuMJjiPGMJFkUiT8IKDb7xOFEQki8VM0DSuXR88SDzyfOE6RpJM/4t4TOlbBzD3MsupiTM2xSUhIUoT2TxRkoo8aSKAZBsV8XoB+bkBvNGLqik1AylxrHMfh3r17AvwqFbhwYZPNzfP0+wNs28FxPdJMYDEII9JsjGom0p/dt6JBI7rypmUBErph44dCUDqv62i6juf7xIkA5FRNpaDmZvagMoJeLMnMNiBVlSgWCoRhgKyCpguxy+PjQxRFWOKWyyXm5+YYjUYcHx1zZnWNSkVoTwUZ+0lRVTqdNpPJmO3tbVzPZWFxgZWVZer1Ogvzc6SxGDdQVVWM9Y5GbG9vc+bsmZnA9eHhIRcvX6FYKs0sTW3bRs/AqjAI6fV7jEZjptNppskiSkbPDzg+Ps5otQmWlROU2koF0zQolco49nQ2GnZ0fCRsXht1JtMJKSmFYoEgDGaU6CiKkBXBPrJtm9FoTKM5R0mSaNTrMyvVTqeNbds0Gg0eeeQR8rkckiRn1PoYI1fAsnIzlpYkQT6fA1IcW7h43Llzh8lkjGEYTKdTJAmiOMzYQx6eK8SSNVWbsTQ0VZ0JQwugTZsJMKcIIeX9/QPubd3jzTffFEKdMGM2CZFTZuzEUqmE5/ns7u5mTEWLT33qMwB8++WXGY1GDN+8weLSotiouh2Ojo/44Ac+QKNRF+Kkts3S0hKNeoOVlRXu3r3L66+/zmc/+1MsLy+zsCC0kzzPw3Xd2ciCWPMFDTqXy2FZORRFsF1LpRJpmjIejzEMfWafG0URFzbPMTfX5Nq1axwfHXPv7j2KxQLrG+sYuj4zLzi57xRFYdAfEIYhjUZtdp/s7uwymUyFzTQpa2dWAJhObSaTKZPJlLW1MywtLXPrzi2CwGe+KcYLyuXybO6+VCxQLOSxLAPTNDB0DV1TkUjRNRXzBPzIRrsUWcl0hmSKhQKlYgHLMJAlxNh2FGeuaw6255IzTUzdYKe3w2Q0giQVrjOqSm8wYHdvdwawn1vfoNloYuUsZEmwU6MkzgS8IY5icjnRUBpnhh1BGM7Yd0mSkmZ7npRCFIUEYYhjO0LUXxYGB5VqlfF0ih84KJlrF4iOshDtF4wEPxBCwNVqFcu0SLNx0fF4TK1apV6voxqa+J04JpXEd5MQYyBxmuBnzZ2TPVICDNPgHVVIESd6GScGFpZlzQwkTsT3xQvFCM5sXO9dhfWJltS76e8g6PrFYmnmJHMilAuZzXQczzqt312s/4cCMPyk40dhI303+PTd5+vd/333yOJ3v98PO6c/yojf9/r8Px8g9Z3HaeiGELt3ve/4nHeDUN/rWL/7s7/f+ft3jR8FOPpB3/cHfeZ3v/e/y/H90OM6ea/0ndxNytaAVJKQk0ToqKqilgiCkKOjI/L5HNVqZaaRmcvns3FrSQg0ux5pmuDYNmHgE0UB1WqJNE1wPTFet7a6iizLBH7AdDoln89TrdcoFIu89dZbDAZ9HMfGMEwWlxbp93ps3b3DZDIhDAJKpZJwtZvYmTOchqIqWJZwozJN4eCdxAkb6xvUalVsV4yYLS0u0el2hAaSprG+vs7BwQGDwYBW6xjP9zPR6WpGDFghl89hmAa6rlEo5CkUClSrVTRd4+yZsziOQ61aZX19nccee4zJxGE6mfL6668TJ6LpKssyK8vLHBwesL29zXRio+sG9+9vM7VtCsUC8wsLXL36KI7jMhqNKRSKqKpGpVphfn6eWq1KHEeMp5PZ86tpQhtnNByys7PDxsYGpWKR5ZVlatUac3Nzs2cwSRPGk7EY1QpD5ppN5ucXWFleIwwCet2OkHLY32dhYZ6FRdH0qWQu1eK2yQBesn1SkcVooSSRpMIVLcyaRn4YMBiPOWq1GY+meF5ApVQlTUFKJRTEuF4cRgSuJ0wyPAEmxlHMZDRiOrXFnjOdCrdphCbi/LzQrXroymU2NjZYXBQ5VJJE2T6ZsnFugwcPdnn55VdptTvIpik0I6NoVnuJ+1gwdWMSoeGYjZLn83nOnj1LGge4zpQgjIiShEq1hqLp5CwTMu0vXVUp5HPompYZiUCcSNnoeda4lRV0RcU0NPJ5k3q9RqlY4q3gFuPxGFmSyFkWy8uLtNodgsAjCDx836PX7dBqt/Gz+lFVNGRZIQ5j0gRkScULvBlDCJhpDRUKBWzbnrnfDYej2fimqgmJDykRbuqe7+G4DlNbgGClsmB+i9F3sYdbltCpHo3FfZSS4PvhzB07icXakSgJCjKaqqFnBi4nxk5hEBL6PjJSVnee7BfiM8JMDzVF/OzEiCd5lwGKHwZ4nstKaRXLsvCPvJlml2ToqIpJoiZZzZtH0zQO9vYIg5DDoyPsqc3+wSFLyxK1eh1JEYCllLHifU9gIUdHR5RKJVZWlqmUy6iaIAXFsSAkCJfAstCFzokmYBzHMxKGYeWQlR8z8LS3v0+aSsT3HtBqC4ennZ1DWr0OhYKBppY5v7FBo9HIOu2RcNgyCxSLdaZ2gj4NmE5dBoMxdmajrhlGpgQvCbEnRNKaRDFJInQlTMOAJMGTJLxAjPSlcYIsydzfuk/ge7jONHOnWiGVUvr9PrIC1WqFxeUl4iTmqHWM67msrawRhSaqKjPoD2ciwZqmU2nUkTUNPxRMINt1UVUdQ88RZYt/6/iYlBRN0UhiaB+1KBZLfO7n/gr7B4fs7O8gqzKNOaHjksQx/a5wKDIMDd3QsHIGYRgRJzFLpRqqKnQ/0tSn39tHkWWa9RymUcM0DR55ZJO5ZhPHnWa027PkTJ2cpWPqBoamCXe0VpvA81EVBVPX0RWVJAgo5ws8fOUKsqRAApapI5kSSRwQBAokESQR7dYRURjiBwESMtVKkXKpgKKoONMpcRTj+xHD8Yj9w31UXac+V+fcxU10Xafd7RBGEbKsCDesTiejteYY2y5BmNDpduhkukppmuJ7wkVQUzTMooWqqNTrDSzTIghC4iiilC+ILraqZKwon4KVI2ea1CtVmo0GYUUI8I6nNqVcDncy4e6dOzz/zW/R7/dJJZlKtYosydj2OGMxqYTRFMfzWS4UqTUbwkFi/I4Qta5pjMYT2u0O83NNapXKbEO0LCEYp6gKaSAWtOb8HHOLi5StHLqscPutt3BtG0NTSRyHg+FI6JolEkXLwjJNvvKnf0Kcpjz5xDWqlQqf/Pgn2Lq/xR//yR8jSxLz83M8/PAjXL70EG+9eYPhcIgfBmKkBBgOR9y9e5dKuczi4wvcuXOH8XiEoWsokkwUCHfGSknQok3DxLBMFFUlJiUMAiESHoVIEiwsLHD58mXxPCapQPAzV7VKpcJT154kTmKmrs1gKFzg7ty5J0To/6v/iuXlFT74wQ+zvrbGpQubNBpCD6laqaLKCvPLS6TAnTtv4zgOy8vLxFHM889/gxdffAlNU7l0YZP5OTHiUi6X+cTHP8Hh4QGKKrQL/DDAsEyqNUFnzefzs7nw8XiMoogxJUWVWViY46tf/QrPfvWr/NIv/RLFUpG9vV12dncYDAYsLy+xvn52lgCcObOKpmncvXuXdruFqgkW0/zCAoapM56OOToW413nzm+wGizTbQtthLv37oCUMjc/R7PZRNcNppMJk/FYCDyORty+fZtSqciHPvQBzp3boFQqcemS6DIKS+MB6WDE+voGjz/+OP1+n06nnYkRuiwuLiLJEnfv3mVr6x4vvPDNGYixsLRMo9Hk+vU3kJD58pe+TKFQ5O/8nb/Dysoyc82GYFuEQbZRTwjDAEXVMK0cYRQLIWvXYzQSmmy6rnPt2jUeffRRBoMerVabJEkpFApsbm5ydNRi+/4OG+vrVMqV2Rz5008/zd179/j8H3+BwaBPFAVcvHiRj370o1TKJZI45syZNY4Oj3j++ed57NHH+PCHP8rVq1fFeOX1N7hz5zaFQoELFy5g2zaKIrOxsU69XiNOE159/XXevnWLD7z//ayurvDUU+/h4sWLvP/972cwGLCzs8dwKETobdsBUi5eFuxc23ZJUjh3/jyj4Yher8dLL32brfv3uXr1KouLSywszBEEAYW8hWXpSHKFQqGYjSuuIUsyjzzyCJVKhUazlmkuHFIoFPjA+96Pbdvs7eyQxMKNcjIZ4zkOYRQyPz/Pww9d5rXXX+crX/kSn/nMp9ncPE+axqRJlI3bJDh+AJpGsVYDTSVMYzYvXKDebJDP51lYXCSRJCRFRrUMAtcWDjNJiiVrlKw8mqpyeHiAY7ucXVtn0BvwhT/6PN1eB9/3+M9+7W8yNzePVcwctBAOrKau0ep06fR6maishy7LWJoAdj3Pp9Xu4HueGBuPInRZpdXpIskSFy5fxHVd7t25Q7lU5sn3vIdEkri7vc3S8jKFXBl7apMEAXGaZHbnMTtHR7RbLVRdz3QWS5i6yVFLuPg4jsP83DwLy0vcvPUWu3u7PPrIVer1OlKaEicxvV5PNDSicKarNJ6IRk2hIJxtTkBXWZbZ29/n1tu3KJfF9W02mkInQREMp5PCP4zCGcAkHAnj2XucAGhJEjGdTjg+blEsFqlWqzPjCj/TQjBz1izHMgwdWZFRNQ0k6TvGAk/+/7vBrv+U490i7u+O7waW/iKA3bsBrh+mNXXy+j//5zDTvgTQdR1N02aCvCesOSMDQk5+7/sd1/fSdfpJgpc/Chj27ztOijxSZq68URQhyaJRJ8kyuq7zxOOPYzs23U6Xfq/P9TfepFarsnb2rBgHmzdFMy8FSRJapLIks7i4xOc+97NI2bMZxyJvfv7Lz9Lt9smZoolQr9eolMvMzc9z48abtDsdxpMxrutycHBAHEU8eHAfkpQ4DLly5SF++qd/lnpdFM37e4cMBgNeeeUVoaETx/S7A77w+T/G88Ro1uOPXqXRaHCh0USWZQ4ODhmNxqSJhGnlqFTK/N6//T1eefkV3vf+9wthZNdhPJ3gTMWe+uRT19AMHUVTRU7X7fDbv/PbRHFCr9unXC7xmc98hnq9zoMHD3j7bTHi/uzXvsJ0MuXhRx7m6tVH+PSnP43v+4zGI377t36HP/mTPxUSG4rCk089jaqovPzyy+zu7lIul2k0GiwuLvIHf/BHfPGLf8Lf/Tv/a+YX5jFNi3Mb53js0cfZ3n7AjRs3+fCHP0yxWGRjY51SqZRJN8hIkjJrGlzYvIhl5fj9P/i37O/v81fyeXKWxTdf+Cb9Xp/t7fvkcjkef/Ialx95hLUza6iWSZDEJKkwUEpTwaQ80XRFVgRYE4ZMPYcgDBlPhGmLosgcHR1xcLDPqD/CdTyUtRRd04mDEC8MOTrYp9fr8uD+fbbu32N3d4c0G+FaW1sThlauw9LSAj/3cz/DufPnuHT5Ipqmo2kqjUYDwxBs9zhOsudK1C+f/MQnePqp9/Cbv/nf8uKLL3JwdExi5Xjq0cdIU+E6GExtusGB2EBSGA4HeJ7PcDAirca4kymlcpHFxSbbO7u0D455/fofEsURf+Vnfor5uQZLS0uo6omxgUySQBwLD5BquUSSxBi6YCnnc5YgdWTGMOKBTNFVjQ984ANUKmWKOYtWHNHr9Hi+8y2+8fw3efvWLQb9Pp/+zGdYXlsiny9AKkbvV5YXuXLpgtgLUwHsbG9vc/bsWSxLOPFJpPS6XUajMe12m2ee+SgPP/IwnW6f41aLBw8ecKItVa/XuXr1Knt7u3Q6bTrtNlEUsr+3R87KZQQbnXK5hO97+J5PuTQPwPNff4679+7iu14mE6SiZLrJJ255y4tLzM3NUavVSNOUTrdHFAVYeYvRZER/2KPdOWY8HiFJoKrCUT4KfMbj4Wwd0w0VK2cKbWs74eDgSOjNKULiJvR8IRmkqPzVv/pXuXDhIn/8hS8ynk754z/+IrVanUtXLrN+dp0Lm5vkrZxw7JXAtm3+8A//ENf1KJdKrK6ucPXqVaEF63rClT5NqdYqqNkYpSIrkAiM5e7du/h+SD4v3CRn1/qHxI8MPOmGiev6HB4d0+8PhRtc1rEzLZNCoYBpmei6lglyigdDUVVU3SAIImzbIU2lmf6BcA2IM0ZTxlwCYTkoybMES1VUNEVBldUMZc26hXE003oS3Qwp60pGxHGUuSCEQsCsUsH1XCHmnSZIipjZVFTlJJsDKZ1tTu5gQpKmxGlCFKVEGXtEaFoJpDoMI6IwZjweo2o65XKZ8WRCfpRnOB4j+x6qohCD0FHKbKWZbdIC1cznTExTR1XkjO3jCZBKV8nnDPK5PDlLxzI1dL0ojpmIOILAT2ci1pOJAPRkSRxnFIYzO2pFltBVIfZOkhAlgfi5ImUddV2MImTnlDTB0HVUTUdVxaKuqjJJKpNIwuXDcWy0OEKLdUAIWGu60MHSMspqLi862YqqUC6XkZBpd47xfYG2i8VTsC8kyBZaTdzcQBAEIrGPYlRVRdcE+8XQ9az4E9o0YRCiaoIeezLuQ5oKIfHRMOsYqeianiVsJ5T17HJkBUQQhHh+gO8HOLYtOt0FhTRFUOGzbnwQht/RRUvTRIx2WCaqoiIlJ7O/iuippykKCCR7lmBKmWuhQuT7eEHAeDhAU2QWFpYwDYN6rUqaxLTbLXJmEUURLm9pmoKcMhlP6PdHeK7LeCQYNe8ucGTpnZGPk435xI1pdgLeVdaIkZo4G8GSZ9chlxfaPWEo5r7DrEgMwwjP9ZhORKcmiiJ2HuzguR4XNi/iOi6GYQitlzAUYqmlkpgbTmLh1ieJ0VlxPBCEPo4jdHzSJGHheI40SVlbXaPRaLC2toaVyzEcDgUQls2QW5b1zpqUCQmfjLDW63XarQ6O4+C6biYWLGXdEsE0E4wEQbMtFArZ34szgeITrRjx/KUZC0zCMMSz26jXZuJ+fmYdq2nC/WsymeB5Hu12i9FoTL/fo1arcunSpRlgdmL/6jgO0+kUP4iZa86JQjZNCQIfSRJFSXNuDiQhehrFUWZx7DGd2jTn5jP3Q4cwCHFdAaqfFMiCVSE6OydJs66L5yrI9M983yfINJh0Q8c0i8zNCSBtb2+X8Xg0W3cVRSFfyNNoNKjWqhSLJSaTyWx8rpKBgoqiZNa14v4/YXvMNecIgzAT5hajkqoqki3HcRgOhyRJps2hiuulKAqu59FuC3eXqW0zHA0pFot4nhjRnZubz3RT9gmCkOl0KkRFTYNCoYhp5RgMhgRhNDOOOOk2zZysJKG7E0YCBFIlCVUTYqBpKsa/VUWdsehs22Y8HtHv92g2mtTqNYLAx7YjSsUikizR63aFiLVlEWadqySJRVdJF1oJkiQJnZEgxPV8po5DnKQYOUswSsMAVVOxcpYYjygWCOMYJDFiFsYxnu+LLmUmiJ0kCe1uD8e2RRJBiue6WKZFIZ9naXGJ5twcfhwLF7Z36Q/5vs9kItivxUJBdP/TFN8Trju27ZC3TEAiCmMC3ydOEqQExuMx06k9A97KlSqdfo/haMzc/AIyMq7nzzSVTiy2J5MpE9umkiVysiSuj207BEFIIdtbTo5t0O/PWHjEwuUlypi0URShqdpshCLN1oY4Fvt3krFJptNJxq6qkMvlvmMvEjmNdLJMzeLdY1Di3wWzKgiE5oHoFmoYptDVONHb+G59EFkR5ip/BkzJxvlOPvc/Ndjp+wEX7+y93ykg/f3iu0GpHwUs+V6aSj9IuPsHxfdmAsF36hKJOLkvTnTCTsBRUXz+2RHAHwaOvfs13+vnP+gY/13iu5lgP473fHf8eUb2UsRzHscxQRAIXTbtHaBCaLrJeK4oLgv5vHBQjQWrfDweAyJ/t0wzy58kTNPAMt+5Hq5rg8TM7EOA9MLQ4oQd0O/12Nl5IBiisdCgjeOY6WSKrmkU83lqtRpLS0toulh7Gk0h4lwsFklJGY3GRHEMKZRL5YzNqxKGUfY8QLcn9GRkWcbzPHq9CMdxiJOY5eVl6s0GrVZHgPKhqM263R69nvgzHguTJaFBLQnpBkURBiTZGNPh4QGtVlvo0mkq8/PzzM3PU6lUhDbncDDTtjthVlUrVTRV4/79+/S6XQqFPM1mg9XVFba2thgMhnR7PQzTECPOuoZpWmi6AOXrjQaLiws0mk10XWcyFucijkX+raoqo/FY7B3j6QyASFOhkWM7ttDZAtF0TRL8IMDxPMFgiiLEKnviUCojpRJSKmFnLCHbczMX3imSLBrTruPi2Dae6+C7PtPxCEVW6HXaokE7GTAcDjg6EiCi4ziZtrDBwsICpmHQarWo12usr2+wubnJ5cuXZyxiTdMEQyprcMzu7DSlVC6RLxTZ2DhLp9vBcT0s08Cxp8IFfDwm0DUM3ZjlNqOhaChaOUsIWsei4ZNIQjg9nzWfkjCdnQckMVwOYjw1jkKiKCFNEgxdQ0IV+lqqENtOU0iVNKsbPDRVI18oUClXyOdzeK5L4AeQSkwmYybTsRiJT5KZeZWRjdZbVjpj4KVZc6rf6+F5YfZsJ5DGM0HwE+2kkzVvMpkwGo9xHGeWs8kz1nK2RkmCCi1qezEGr+sauZwp5GgkXzSHJBnbEaN6Yh+Xv6MWVLOJgiRJCMNg5vQWhuJ4dF1jPHaZTCaZDlWQNRQkwlCcYU3ViJOYOI6QJQkl00AlkyKSJEmwYiXBim02mzQaDc6eXef8+fNsnLtHq9XhqNPN3jdjagUhWEKk3nVdxpMxe/sHxHHMxvo6iqKi6TppEM4ATnjHwffEMCWMQjzXYzyZkMTJjHF2Unf9sPiRgacnn/4A9+7d5/f+7RcZjnqMxi0CLyFnWlzYvMC5c+somSuW4JFJoMgouo5uWjzY3eX669cxLZOl/DJLS0uYlsFx61jMPEoCsZMkmYJVJA6T2ciUpqtoQJLzCV0PR5niZbpF8405NE2M+pwkmmJGVaXXG/Jge5eFhQXK5TK3b72N67jML8xjWTnypSJeEOCFPpYp6HhB6OKMHK5fv45hmpw7t0mcTAmiiFKxxOrqKgC+71MqVhgNR2xt3cP1XM6cPcvZ9bNcfughfu/3f59Wu4Ui+dmcd4SUSsSRoOl5gRh3itOUUuEszXqdckWIMG/duycKf1kib5oULAPikNB3aDTqQMq927dQZZlyoYDnOfiey907d9jf3+OZZz7J4sISneMjNFWAV8QR40EfXTPQNYNWp4XvuSwuLpHPmxSLQoRsOp0CGb3YyqPrBo7jEkUhxbxBggGyKCCH3Ta26+F4Hp2VY4rFEkYuJ+Y8JdA0MZftOC7Tqc3Dj1ylUqnw8ssvMxwOhXtfkuB7wn3AcV2RFGTFhOd5DAaj2UhbsVigUCpRLtQolYqcXT9Lo17jsNXiuNNhY/0suiYWihNx7SQOcW2bYrGIYRiYpj7TYjqhrp90ElutFu12B03TESM6ExRFJorFiNOVK5dnovT7t+8wHo2oVkqUisWMFp1jfn6BfrfHg7fvcaxpqLJM7LvoEmikyKpCoZjH9jyG0wl6LoemmVxZXyOIIm7feANZ1eh3+5xZP8v/+f/0f+Sb3/oGn/+jP4REQ1MNPvWpT7B5YZNcTufe1n2uv3mDqQSTkcbm+fMsLCywvLSIqQt2RZokjIcjsdBKEo7rYLsuSqZP5QWiSDQyAJAkxZ5MOdw/nDGJlpeWqdca3Lu3Rafb49/+4R+J+9j3BbCoKNTrDZaXVjk6OqbX6XO4Lzr9SyvLOI7DYDCgVqsxvzDPUfsY1/N5z/vei2073L17j7m5OS5fvsx4NGQ8GvGFz/8ROw8e8NRT17h44QIXL1yg2ZzjU5/8NG/fvs03v/kt1tc3uHbtKer1Ooqi0MkYdqurq9n9M2BxUYhJxlHMceuYbr8DUsL5zfNYOYu9vR0kSaLVavHEE09w5swZHMcBYPP8RRbmFvmd3/qtzDXOEpt1zmJxaZFc3mLr9h3SFB566Aq6ofPit1/Cdd1M4LNBLmcyHg8Zj4f88R9/QXRZn3iCD3/4w/zdv/t3+L3f+/+z95/BkqX3eSf4O96kdzevd+Vdu2qHBgjCEyI1IggSI3EkkRQ1q1jtjHZjZyM2ZmNDsZoPs7HBiZ3ZT1pN7GjFDVKUKJIjjWgBgkCjG+3QvlyXvVXX37zp7fHn7If3ZFZ1swG2KDMRMzwRFWhU3Xszb+bJc973+T/P7/lXfOc735k1K967d49Op0vzuANxwvHREXv7uzx4cJ9Lly4xPz+Ppir0+z329vcI/IAoCrh69SrXrvwJzz37HJeffIqrV68xHo/51PPPUyqXKKdFAp12O2Ue2VimiW1aVMtVSGBne4d2p8PRUYN2u8NoNOLxxx/j7NnTXHrsEqurq/z2b/8Wt27dST9HAqz/xJNP8sSTT6QisM9LL72M47hceuwxNjc3+frXv06/36fZbvH++1d46623+OIXvsjy0hIvvPACnU5nJkp981t/RLFYYnFxcSYUvvzyy4RhyKc//WmiKKLVatHptrh27X1xji0u0u50cVwPWVVZXl5hfmGRXn/Ae++/T6/XpT/ocfnyU6ytrWLnisSSwkGjhes6uEFIdzBk7+CQhaUl5up1bt66xdaD+xSLZbERiUW0TUI4ZScTMX2W08m5Yei0Oy3u37/P22+9wXPPPc/ly0/huhPiJOLipUvEccyv/Mr/A0WW+cpXvsL+wR57B7tsbG7yta9/jVOnTlMpV9ANizgMOTho0B302drbI5vPUV2oi7KF4wH9YZ8oCtk8Iaa//ckI0zDI2hmGjkOr00G3TEqahqQq9AYDXvrBa6iywqn1DaxclpW1VTY3N6hVqzPxN5YFiF5FgGJJIrrtNrvbO2xsbGDZgj/lug43P7gp4r6STKlYoFgsceODD9jd28c0TJIk4Xsvv4KqKMxV69SqcxRKRW5t3eXm7VssVOcwJIXd3R0B1RyMhVP2+BjF0FANnWK5TLlUJghCJhOHRvMYQ9d55qmn6Q/6vP/++2zd26LRaCABtmmmC1rBLwsj0RyTy+YoFookcYKTtssNBgPefved2WTPNAzqtTlWlpep1+eEw9d1UVXRYKqoiqgcB9HulApIU+EahHDuuE7aPmWytLyIZdpous4obZeZlhhk7LSFL4nQVC11miWp9f5jhIpPumD7X+jx0Ujjo0ynKRt0+jXT9+PPG7Wb/vtUhH7UQTXd3DzK8/rzH1J6Dn2YT5UkyUwU6fV6aRtTbiaYfpR59cN+p3/fjKUfxsGabgKna6b/0IeUvq5xGgNzHZdBv49lW2RzmZTQxmxAu766ytryCufPnKHXH3B4dMze7j53794T5TeayunTp8nnctQqVabcJUkYqFBVCcs2+dznfpxut8d777xNEAQpezbEmYy4e+cOb/zgDRRVYA421zewLdEqVSmXOXXyBGvra8wv1vnWH3+bO3fv8alPvYBpWmRLBQaTMbfu3WF9dZVPf+YzPPnEE5w8eZLXXvs+d+/ewfND/CDk2o0PyGazrK6ucuP6Va5eeQ/DMPj0Zz7D859+gUKhwHvvvc9k7FDIFuh0evz2b/8Or77yMtevXxWN3vkCv/hLf4u5uTq5XI6DgwPeefttDg8PODw8SIdVGqdPn6ZYLPDFL36epaUlSBLee+9dfvNf/Atef+0Njo+P+et//W9w4cJFAB48uM9/99/+P6lWq1y+fJnPf/5zfPnLX+Y73/kO9+/f5/3332Vvf4f/6Kd/Gtf1eO/qFcbjMZlshvnFBdY3Nmi2mnT29/nDP/wmo9R5ZJoGhUKee3fv8mDrPvv7+0wmY371V3+VWm2OZ579FMVimfX1TQ4ODrj/4AGOF/Bgd4/VNTHMHE/GSGlLXxzF4lqdtvf5rp86eFTB0Rz0UWWZjGUw6vboHR+LtVgQcvvGFUbDEd9//XWGwyETZ5SuHw3m5xe4dOkSC2mz+8///M+jqirf/OYfUqlWuHDpEqVKUZgeIjF0B1kMghWV6WBDXOuiGd7ir/38f8wXvvgF/vk/+00ODg74F//8n6aJDZ1SqUy1WsH1vLTdzCCTzfHs889imBZBHNMbjxjuOSwvLXH+4iVOnz2N57msrq+iqQrHrY5AD9g2k8mY0WiMaZrCFZTPpJ9z6RFHsNjLHezuc3jYoFytsbgsUASe53P9+g16/RHFYpVBf0D7uM0Tjz85wxYMBwPmqjWKxQKra8siGiZLjEaDVESdRglHjEcj2u02nU6HRqPBoN8j8F12d/fQdIOt+/fxg4BKpUKpUOTkxibdbpeb125gWgbzc3PMz9eRZYnQT/fsSYhu6CwszBOGewI5IYGiibV3p9smiHxkWSEIhXgk0j0iBfPgwQN2d3dpHDewLJNsLjfDwzSPj9nf26Pb6TAZj8mnQp/rTLBMg3K1jOtMGI9Hs+vZ4b4o7srnctiWxeL8Au1Wk7t37/ATP/FVfvqnf5rLTz1NfX6e1dVNHmxv83/9+/83Bv0Bvuuxv7PL3oMdLqcMp/fee5+9vX2uXLmGaZrMzy8yGk9ot3tpC7SAkMvyQ+aZbhr4nkev36PVadE4bhDGEZlMhvPnzlEqlz/RtfkTC0+KoqPIKpIk3B9hECPJMoah4jgTOp02t+/cIZvNsrCwJNwWqioYP0FAr9fjuHlMHMfouoFlmRim/nDqniQzJoMiKyiyShw5JHGMkggGlCRJqQoqJpfCBime39SlkSQCGKikzzOKYnTdnDlVomg6mSSdMossbRAKTpGmqmiqSn1uHl3XsS0b1/fxgyD9/jCNbDisLa9j2RnOnz+HaVoMB/2ZoyCbEc1b/e6AMAjI5wSryNQN/MBH1RQmjoMfBoxHQ1QZQEQMVFXosMq00lIBQ1exTB3bFvW6uYyFpqqUikU63Yhev4OmqWQyGbIZsalUZEVkcrMZdE3F9z0UZGI5df6kN11SASZKOU9KOsGPIgGGnS7KbdsijhNcz0OTJay0lt6XJZIwJPQ9JFkmkSS6vT4CxKfiuh6O62LbAtY9XbDphk4Sxfi+Sy6Xp16fJz0hGI8neL6HMXFT7oxPFCeMJi5WJotu2eQLBYplwdrxfZ8gilA0FU1RGTsO/dEwtcMmsz9xHCFJkMtn8T3B5UlS108QBDMxSkqdAo9GKZLk4SI0k8nMFothJBqhnNTp504ckjAiSsHclm2hSBJyFKIqMpZhEMsw9h0URUKSEwxFRVVlCvkcYZzQabfIZG3a6ebl1KlTHB20ccYue7u7uM6EM+dOkc/nOHv2LOPhkOGwjySLxrZqTYCo79518NO2AVkWOWR56vJJWxr9KbsljsTrFAtO2KA/QE8daOW0rWN7ewfHcQjDKG12s2YATdf1CcOEXDaPJMvYVoaEhP29PbEwsExMSzRtTCYTxpMJlYqwEJfLZbLZLJIko6oaum6wuLiIBLiOy+HhIW+88QalUoliuUS73WY4HNHv9zEMg2q1mooDcTp9dJiktaZT9pIkg21b7O/v0e12CAKPXq9HksRks3lKxRKFfAHLtARzLiGduukfAtdOuUvN4wZJLKzEqqIyNzdHr9+nXC6TSd0YruvQ6/U4OjpKW9ec2SJdTp0QpVKJ5eUlajUR67l46RK9bo87d+6RzWY4OjokSRLm5+cBMbkbDoeMx2Ncx8U0DU6dOslgIFr4TFNsVubr8xQLJSrlCtlsVjjl4ph2q4Usk7amaWkTibBwh6GYjO4fHNAb9JFkmaWlJS5eukQ+J5hJrVabXq+HrovWjExGCBG2bfHBjQ84OjzC88R0qFQqzpyjpmkSxRHFgvg57XYb3/M4e+YMkiSxvLzMOIU+DvoDup0em5ub1Ot1rl+/nub2ewwG/ZlYnM1mWFtbY25uTkx/TWMmlnre1E0k3iNReyzcO8fHLRRV5bjZYjweptMzBzuT4ejoiF63S6FQQNcN4X6ciFhExrap12tIyMiykjq+1Nk5IpxrruAHyRJh5IvYXBIx6PeI4phCWvNcr88BkoiMpi6nfn8g3odA8CaOmy3a3S4HB4eUfV80JvUH6cRURlcNwbXzPPr9HoFli4Y1zycKQ9GIqsXs7+3TbLVpN9tUKxWWl5ZZXFhgrjZHNpdDN3R8xyOKYrx0w6arCkp6rgaBjzuZUCpXKOTzYgIXRnQ7HWRVo1yrC6eWLDFxHDr9PhJ9ojimPxyQy2RZml/A9322t7fptNs44wkHu3s4gyGdYxHLy+mWEKnm5pB1FVnX0DSdKIzojcb4nk8YBMLV5Xn4rhhQFArTyb8YiiTptE7TNBISjDCcOWKnDoiDwwNcVwD4p+eHrukzx2wYiApqAFXVkR8RIqI4wnMFR822H1rM4yRmNB7Npq3TP/10Mh+kfz9t2fvQ8WeoSv9riNj9uxBIpoLHdAI9ndL+mz6PHyZMTUWVaQOhpmkf67r6JE6fj/t1HxWKdF0MwUaj0Ycid1PX6KP3vI8Tdx79u0/qivq45/5xzq+PO4TQ85DROnOO/gc6PvQ+iL8Q7hZFEe6FjC0cyqqaxlmZbeKnDZOmaWL7IblsLm2K8oUAL8FwOCSOY2zLQlN1AQ1OH811xZrj6OiQwWCIaZmp86nPcDjg8HCfwPdZWV4hXyiKSvRMLnXiaxQLRSqVMrKi0B8MUDXReNrpdkHq0e31CKKQxXQwUigWyOXzaYy3jOf77Ozs4Hq+uE6aYXqeCEbS2tpa2kqcMJk4ZLJZgkCU53iei+OIddLJkyeZm6uTzxeQEPfLXC6PqqiCK5W2LZqmNRNGTcuiPj+Pbdvs7u2xu7vH/v4+a2trnDhxklMnT1GpVLh39x6tZku0JI8thsMBx40GO9vb5HI51jfW2N3dod3tMHEEE3Yw6KNpOguLCximgRf6NJpNGkcNdnbFejSfz4sWVUUWjvJuF9d18f2A3d09xuMJm5uniaMYQxdQb0VR0sb0ECsjSoNixLBCkkS7WhgId1ScgOs4ggfbF061brtFHIUkUcjB/j73728hI1ItcbqWmpurUi4XSEgoFossLi5QrdYol8uEQZw6uRQkWSZbyGOYJhPXxfb8WalWwlT0lqdn9YeSFpAQJxG5XBZJlnjiyceYn5/jqqbQ7/U5OjpGURVMS2c4GuEFPrX6PJImkygSkRTjRQEKCpoEfoph0HUVRTZJkpgoFmaSIArppW44pJSvqWspf3n6qRNR1DCMcFyP/mBAr99HlgUsu9/rpe4bl053wN7+Pn7gUSoXWVicZ2lpkeNGgyD0OTg8YDQeomqibdbO2oyGY0bjoUDVRNHMyT51HE/v54VCgXw+Ty6bE06cdEAkXNPjtNhDwrZtMtkMlmkiyRL1uTpBGAh2pefRaDQYj0epuKwKo0vqHJsO3RVFSRvVpVkTuq4LJlsUhaLYCfA1nTCMcB13NjxQpq7dJBFJHUib5UHXNJGsSjnMDxmVEoqqUpsTDsNz586ztraOLKtMJi6mZVEslTl18hTdbpdOu0O9Nkcmk+Xw8Iher89wKMTQkydPYpimwDZkcyBJxOleN0h1D8s2URQFQ9NwXY/9/X066fVI7HU07Ezm373jKQwhQSWTzTOeDIljaQYIPzjYp9U65s0336RcrvD1r/8c+XyerJUlSquEd/d2uXP3TioyZMjnc+i6ip5C/WY1xLKKpmgCxuaLxXMsy8SRaK0zdJ1sJksm5ftMLe2j9MTQdQ1V0VBVDRkFkLFMA03VZuAw0xQvomD4CKW80WgI1sz8AoVclrVPfQYA1/fpD/r4nksY+gxHIbdu3aXX63Ph/GPMz8/zN3/hP2Fne5dXXn4NWVWRVY1apUq1UuOtN99iMh5TK9ZQFRVdVfGDANd3aXdFW8/h4S5Hh8nMlVMs5lMBTMEwJFQlppC3qFULVIpZEe/RFjFNi/rcIjdv3eTBgy2KxaLgUtRqlNMaeEPXmKuW2HlwH2c8Qo4lVFmlVCgiyzKtVkvEsKY2QUU0X+UyObEB6/XSm7bO4sIiURiyv7eLoSjkSkV0WUKTJTRJiE/OcMjEdbl97z5RHCPLAmKGLNFotDBMG00TMDjDMEVkcigxP7/I05cv46cg2q37W3S6XeIEIXTEolXpsNkiUyxg5bLUFhdZXl5md38Px3HwohAlEe1IB3u7XLt2lf39PVRFgpSZ4gcuuq6zurpMt9ujc6edXrQEIDcKo1nlZKlUIkxjH66rMnFcVEVMHpaXl5AkiWazies43Lp1B8uyqFarmIqGpWoChK8qVOZq6KrMqNNC11SqlTLKQGUSOyTIIMUYugAGnz65yXA05sq1WwwGPVxvwmNPPM7f+E/+On/0+9/mxvWbvPS9F7EzFksrf4tatcI3vvENbt++xVtvvQmyxNgZc+rMaSRJYu/wAHcW+9LQVBldMlA0FSONjUVRjO/5OIEjFowkjAYjjqQjUSWrqTz++BNYls2VK1cZTyZoukGhUGRlZZV2q0OnLSYNvu/z6U9/WsT9TJO9vT2+9cffYmV1le6gTyafo1Qt02q3GQ6HaT2pycmTJyGRmIwdgkBMcX78s58jigL+6A//gDu3b/P/+m//OxYWF3nuhecZj8epaCQEjLW1NbH4SC22U+Bds9lMoz4j6vUa5XKBV155BcdxUv6SaHk7sbHJU09dJpvNYRgmErJovklt9bphiKrXOKZcLrO5ucm9e3dwXCGa5nM5zpw5gyTLnDp1aibGiAnMMVeuXKHT6eD7PqZppnE2F9edcOLEBoVCjrl6nUw2w+e/8HkG/QHf/c53GY/HXLn6PhcvXuSFF17g5s2b3L59m+3t7bSVo8PJkyf46lf/EoZh8sEHN8nn8wRBwJNPPkmpWGJ5eRkJiebxMe1Om/v37yFJyYwbkMnYdDs9PE/Ylvv9Pm+//TaDQR/dNHjq8lP87M98nUqlwmg0YmtLtLPl8/kZnyGfzyFJ8Pu//7u8+sprfOMb32B9fY0TmxtIsky5WuX4+Dh1BdbJ5/P8+q//OocHBxip+Pb444/T6/XY2dnhjTd+wFtvvs3f//t/n8985jPs7e2xvb0tgKWjESDeh5MnT/KpF57n/PlzrK6sohs62w+2CdPfYzKZiNherYplCQfOcbOJf+UqCRIHB/t02i1u37rJxsY6Fy6c58233uLdd9/ll3/5l1lbW6Nx0ODo6IjXXnud1dVVarWauNGaCqourhWVSpUkiRgOB0RhwOLiPJZtMBr18b0JYeBx8+YN4jjhwoUL1GpVnnzyCcIoYjSekCDy9p3uHUBiY2OTJE64+cEdmu0mt+/dYXFpEddzabdaTMYTVhcXyWUyuKMR3mSCH4cPq7tHIyI/Ip/LE8cxr778Knt7++zd36VerPLZT73A3FyNer1KREyQRLTbLXzHB1lF1XXy5YJgAqrKLM52KpOlVq2iKSqB77O7t0elOselx5cp5AtIErQHPbYP92k2m7Noy8riEp8uPc/e/j7vX7s6s5i/9errqJKMbBmYtoWGYF489+yz+EmEF0cMe30m4zF7O7sCYKsqJHFC4+iIiSs4BCdPnqRenyMMAjqdDrZpoaoilmxEBpquY5gmMYiFn+vy5ptv4jgOK2trzNVqPH7pMeHidBx836PfFwKnLMtks3kURRHx4jAQbspOh26ny9rammiqkyTCIKTRaJAkiRD94hjP83iwvUOz1SabFZHgtZWVmQg23UiIZftHQMv/KxCb/l0fQRr5BtJN5EOn0lR4+VHxvalg8jA6+eF/E9GRAMdxBKd06hT+cx4/SqiyLHEed7tdwjCk3+9/yPGkqupM6Pnoc/1hj/Ufgrk0Bf0/6kD7D34kCXH6eZoyB0sl0eQ6jdZOzw3fDwT4WJbJZ3NYtkW9XkdRFSRFlKskiCZsXdNQJIl8Lkd9rp7+vgmtVoujowbff+n7jCcTLl9+CkWWuH79Gvt7e9y6dYsvf/nL/MRXvsLmiVNk7Aw3P7iF4wgod7VWZnF5if5gwN179yhVyhTKZd56521arRYH+4fk8wU++9nPks1myOey2BkbRZVZ39zAzmb5h//w/814POHsuYvEkWjzNAyDpcVlPve5z3Pi5AnefOstxuNjavU6juNy48YNjo8b7O3t8vWvf43P/fjXePrpZ7DtLP/qf/rX7O/vo2kGCTC/sMBoJNYdS0tL5AsFms0GpmXMGIzf/c53ePutt7h7+w7/xX/xf+Jnv/5zjEZjOp0u/+p//JfcvXuHMAwYDkVaRFVV2u02f+knv8pjj1/kf/gnH9DutTk6OkiHRA1OnTrNU089xcRzaHe7XLt+gwcPtnn/6lUkSeLChQsiCj9R6Q+HdHpdPE/Et29c/4BMJsPK0jrVShVn4hAnCVk7S7vXZXw0wQsEkqVSnUsHcWLzHcUJEiLGNRoNcCcOx4cNRsMRBzu7DPp9Dvb3aDaPOTw8JJvPYVkWlWqNfCHPpz/zPMVigYWFBU6ePMnzzz8v9kSSxLf/5EX29vbp9nrIskyxXBFpioNDZEVKYfVAWhA0LUeRJMGVEkcae4siMjmbXCHLz//8N+j1+nzvey/x7rvv8v7V94mSAFmFRqvJxHEoz9dQTJWRP0FJAtwgRFd1LFmh2+8Thj62oaPrCp7nCFeVYTIajTg8PKSYz1Mu5MlmbQEfT4XmKA5nw+PRZEjjuMXBUYODwyNa7S5RFHPj+lWSOGJpcZ6jxjFvv/ce586d5cKF81y6dI6lpUVeH/dpNPrcuHED0zDZfrDOwuI8G5sbtFqtGcNVlmWOj48xDIO5uTnG4zFRFFEoiIKvzc1NNjY26Y+GDIfDGex/d2cHTROg9Fq1QqlcRpIgSWIuXLggQOedDr1+j7v37pLNZsVexTQwDYMp621aPiJcTgK3YFkm+XyO5ZVFdF1nb29XDKA7/RkIfTgckEQxuip4u0kkCqmsdG/Q7/QE4sIy8b0hnusjxaAkMlEQEQYRJBLnzp3n8z/+41y4cJFTp06zs7tHZ/eAjRMblMsVvvZXvsbVq1f5jd/4Dc6dOceJEyf5zne+w82bN/nsZz/LwsICX//GzwmmoC4EeVlTSRD30Wazieu6FMtFLMukWq7Q6XV5480f8GD7AUEYsri4TLVao5AvPESm/BnHJxae/ChAUiRKlRKDQQfH8chmC5SKJS5ePEMmk+GP/uhPcN02jhNQLBrML6zSanfY3rvG8fERE2cMCC4KieA0Bb5PGPhEQYAfQyiHeK5L4HtIsqj6SxIxSQyjSIg2nosf+ARhgG4KtVXRUg6DJOFHIV4Q4AbC6ZE3sqIlSBeck0ajKVp1ikUUJUKWA+oLojrRNgWjJ5aEA8ALXGGD13XKlQp2JsvCwhxSEvPg/j3arWOajTLtVpdut8/cfJ16fZ7heMzEcbAtA0UCO5sRvJ0kQVMkZFWm3e3iez6KlCArwmUjKwqGYaZ8HQk/CPGDgOF4TGY0Ik5idF0jlxNVh51+j06vS6fXS+NQZTzf5bBxgKnrZDMZKpUimq5TKpcJ/YjReJiKfiq5rE0QhGk0AUhiojAQzQu+J15jXeR2Pd8jjiOUVDiyLAvX8/B8HzlJiP1AcEaiiIW5OfwgYDx2BOdLU1E0BVmKEDnVkHa7SRxFOM6EVrq5iqKIKI6YjEcoUsLa2gqKqqLrJsPhkJ29XaqlEqamYSgquqJimSZR4BH4PoEqcvGu63Gwf0TgB2QymdTxImrshRPFxbQMLl66SLfTod1uY+iivSqbySLLEsORiAC6njtjAFiGgSIpaClrSlV0ZDkgjhPiBBJJBkkRHy1JRZY0TEucf1EguGSt3gg/jLEzBbFIjiLRVJckyLKGksDawiKxJNFuNLl/9z4kMp7jUCrkqVafRFEVrl69IepgH7/M6vIqjuMShSF7u4dYlgDnjkcOrhOgaxrTFjc1vfjpKSvH1HTUBAxVuKAy2YwQcNKmtl63xwfpzfvCufN0u11+8IM3SULR0qFIkLFNqtUyURSRzdmomkyzfcxoPKRQKoAErVabt996h52dXeIwwLKE4CTLMnfv3CUKhXMqW8yTL1fxHIfYg2effZZet8uV999jd3eH0bcH1OvzrKyssLG+wcLiAnEqcFcqldkEc9r2NRwMGY1HaeTGFTwARWVhYYl8Pi/iP4UCvd6AhLS5arZAF1GBUqmE5/m0Wm0B1vzgJu7Ew7IynFg/iWHoNJotRmOHWm2OOEnwPB9V09ENVSxkogTLFI6Uw8Mjms2WmDpoGuVKJRXhRCRQURROnTrN3t4eDx7s0Ov3GU0mtDsdWu02hUIB0zJpNI5wXFdcFwyDYrlMr9fn5gc3mZ8TDShHR0eoKYfJ8100XScII/qDIZquUyiWODpq0el2uX33Lg8ePKB1fCzirJcusbqyQqFQmE0xG41jhsMRtm2lDTrzDAcD3nrzLaqVGs8//zyapjEYDLh58wMUTbAUhoMBUejhOWMcRebJxx/n5OYGx80mh40GriecP4VCgc0TJ9FUcb2+d+8esqyQyxcolV1UVWM8GmGaJpqh0+v12X6wg+8JB8LNWzcxDJMnn3iSIPDZ29ulWq2gKBUmEzHpunV7iyAQ0OlCPs9PfPHLgtlhmJRyearFElnTImdZ5E9ukM/Z3PzgBpVSQTRoRhGhHNHtiwVuq91EVRUMw2JpaYW1tXVGoyFXr14X/Chdp91t47kuURyTzeXJ50tiuhjG+IFw8pSKeUzDJJtCpzfWV6lUi+QKWVHjHARUi0UolVAV0dhm6Lq4RpLgewH3798n9HyiKEbVFMI45uadW4yGY37uaz/NiZOb5It5huMhzQ+aZPM5MUkOQmIpwdAUcX/QNEgixhMHSZbJZMTAKJfNcHTUYDgacO7sGQrFIpViFlWG0WhAxrSoV2vEabPOfL1OIZ+n2WqSELO+tkou3dxJofisJSlHRNd1SGJu37mFoukouoah6timRRSGRGHI3HwdWZIIg4DBeMTO3i61WhVVERb4MAjJmLZgWjWPxTUtYxOFAZNRyN17dzg8PBStlbkc83N1CoXCTGwwTVPcS/xwdt+A2awZPwhod7tIQKlcSiP6Ac3mcRoXnU5ci2IoNhqLz7QsM1erkc8JKO6MbfiIKJL+159af/2F/CSOHyWaPOQ9ScRxwtFRA0VRZgKCmjqf/izxafY1pKyiKYcJZj04siKj6cI9/OjxcSLSJxVeZl+XTP87EYyZdCgYxzGOKwZnpmWljNT4w+fPxwhls/8vIC3i76SP/5of9ncfPR6NH06PacPRR3/Gvwvd6eHP+nCj4Eefw5R7Mz0kYQ/48PvxkZ+tKiqJShorkdE0HVUVcGg/cImTEE0TTonDgyMG/QEvvvg94bQuV5ibm2N+YYHtnT0ODw8ZpIUcEgmZTIZzZ8+xML/Aysoq589doFqd4/DgEMd1uXvn7qyBdTDs0eu30XUD3TBptVsMhiPajSaT8RjfdQkNkzgM6Xe6NBtHBJ5Hq9lMy0AclhaXCcOIhfn5WRGP47oMR2P29w+QJZlet4vjOASBR+u4iUSSMpiynDlzlhMnTjEcjWm1urRaLUBgM4ajkKPGMVYmy/mLj0EqgM7Nz1Msluj0BjSPj7l24yZhmPDEE5cZjxxef/0NdnZ2abVaXL12lclkzNNPP8NcfY7TZ87M4tOvvvYa165f5/rVG6iaynjsYNs2589fIJvJ0G21aHU6ovhn4qBJErWyWHMGrkPgTOg2j8laJk8+/jiKLBOFIa+/9nragAu9QY+DowOyuRyFQhHDNMhWq8yVK5iWRez7eGFA7IuURn8wQNc1dFXj4OCAfq/H/Xv3GQ+HdFptwjAgDALKlRILC3VOnTnN/ML8jHO7ubGJZZrCTaPoHDZajEcjJpMJYRhQLBYoFHLEaYFPGIaMRyNq1TK6bjz87EiQEM8SPkn6+0w/yOKzP+W1ShimyanTp1BVlfFIDGk7nS6+6zIc9Nm6e49+r0+xXMK0bdFgppkocUxk6yCZDJ0xTBJGE9EQXSlXkZIEQ1GwDYN82vYbxzFxSkuSZRXfC2ikDMdmq02xUKBarqTOoTEnT2ygKDL1Wg1FUbh56za1So311XVMwyIMYgzdwtQtxqMxgR/OUhaqIuLpEoLJJMuy4IZpGoZpCgeZqpJN25qFWN9jfq5GpVRMEy6kjqyQIPCZuB76eEwmY6EoinivIG3qEy6nQqHA3NwcSRLT6/cYDkc4ziSN2SbEccBg6NHutgmTkCAJmF+ax1RVDNMCZMIAXNel1W6TpM2Ilp1J0TIucRzNBudjZ4zrO4wdhTBKiKf3H4Q4Zlkmp06e5OyZM5w9e45SqUwYxZimRZLA9v1t4iSmVi2ztLTA2toqnU6H3/3d30U3DM5dOE+lWiWTzQqmnaGjp45xVVHF84sjNF0YdqZt96PRhEFvSKvZpt8bMBlPKBaKrK2uYqUc109yfHLhKQxAkajWKjQaBzgTH10zqJTLPPnEZUrlEr/5z3+PdjhiMvFRFIPFxXX29o+4cuVdjhoHTJwRGdNKqylj4liwkgLfJw4DwiAkSSRcZ4LveUiyOEHiUFQgTm2vjuvi+R5BFIAMkiqj6g/tzr7ni0y35xJEIYYp3Aq6IZrkDg8bVKtVarU6fhAhKwHz83Nkc6KOMQhEHXkQBzi+Q5REqLpGba7G/Pw8y0sLBJ7LvTu3Acjn8/h+yHDosLS8wtLCIlsPthj4HhnbwtA1MrksU0iknKhCGUzAdz0MU0eRZGRFTZsArfSikjCZjFMI2AjLthlNRMVzrT5PFEU0m21anQ7tbo8nnniKixcu8O67b9PtdsllM/hhkbVkFc0wKFcqtI5b9Hs9SoUcqmqRz2WIwohBbziLCUa+jytJQngKfBRVVE16nqiQVTUV3dCxbRPXNfHSxXYUi/pISVFYWZxn4rgcHjbQdR3dNAlJiEggFfWa/Q5JFAs3RjPG8V3EYguyluDPbG6uUyqV2Ng4wdHREa+++irZTBZL0zFUDV1RyVhCePI9XwBkFRV34rG/f4SiiAYDL/CRJIlCoZBOFfYpFoucPXuW27du0e/3yedyog7etsXza7ZwXBfH85AlCc8w0WQVQ5XQNbHpVVQdWfaE6JQAskwiKySyCpKGJOuYVg7LMogiGI+HNA4PME2dTKaA40xIXIfhZETgB9iGhabpbC4v0+kPuLO9TRjEtJodspZNpVjg3MXzBFHEP/+d32F1eYUvfPaLaKqGaWV477332NraolyupVBrB8fxMU0RifNcD9sysSwTTdXEhVbTiCUZzdCxMxnqiws0W012dndF21QUM+gNyOVy/NzXf5bBYMA7b75FHIS4EwdZglzWxjQFByWbE8DwRuOAieNSqpSJooRWs8XR0TFI8NTjl9jcWOfcudMEQciVd97F8zzCMKJQK1FdrHN0cIAUh3z60z9Gv9vl7bfeorF3yBtvvMKP/dhnOX/uHKdPneT0mbPsH+wzGAxYXl4WNaVBQJLESEnCKI2lbT24z3g8JklEdGZlZY25uTqbGyfo9Xq0Wi0kRQCMjRSSmCQxqqpQLgvHztHREXfv3KNULKeW+ywXH3scgFdeeYX+cER9foFut0u32yVv2Oi6SYJMHEtk7AxxHLO/f8BR45jeYEAmk6GSL2BbJooszypnz5w5i+8HNFtCFBqMhrTabZrNJufPnwfg7bfexnFcwihCM3TK1QrtdofdnV2ee/Z5FEVhd3cXXdd44okn8AMPwzAIo5Bur0e+WMK0c7h+QKvd5e2332F/f5fmcYP5uSpPP/Uk62trFAtFXnvtda5fv8HRUYPBYEi5XKJYLLC0tMjVa9d5//0rnDx5knPnzs/ckleuXcUwNPL5XFoS4DEZDyGOeO6ZyyDJ/Oqv/xoHh4fsHTTY2Njg85//PKdOn+HExqYQiW7dRpJVcvkiUSziU71uR5RZGAbtdofJeEK320OSJN5//30qlQrPPvMsnu/zYPs+kgzZXJZ2u0O/1+fK+1dwXY9yuczTly/ztb/8H9FqNtl5sE2lUKJeqQrRybZZXlumUi7w3rvzFPJFTEMniEIkBTrdFsfNJvfvb2PbNt/4+s+yMD/PyZMn+d5L3+M73/0eZ86eZX5hgeFwzGAwJEliyuUq+UJZAOEdhzCKiGOPSqlIsVhE10SkoVTI4wcBq+srNA4P2N/dZW5+nmw+x2HjiCgOMU1DLFKRaTSPubd1j6ydJWPaKGiEccyND25g6Dr/+7/3nwmRM5/j3tY9bt66xcrqKqVKGU2SUGUZVVfRdRVT13DckOFogiTJZHM5SsUCuWyGu3duEwQBjz92CduyKBWz+IHHcNgjm7FYrM8TOh7EMY+dP586zRrk83lOnzrJ5uYmS4tLuJ5LFIqooOu6gs8wHHD9xnVyuTyFfJHl5WUy2ews8jw3N0ccxxw2juiNhtzf3eHM6VMossxoLO6XS/UFkijm8OiIfD5HoZDDT6Nxt27d5O7WPX7sUy8wV6uztLAg4L9hKIR402Q4GBIGos1R4mFcSZIkPN+n1WlTLVeolMsCyh/4PNjexnEcKpUKtp0Rm7FOh9GoRRRFaKrKQn1etNx81NkkSaJy+SPHbMP9yNf9h3Cs/M91/Cinzo/6ng+JEZKovD84PBJOglIZAxFp+FGv3aNChiSJ2vQ4SUAWRTez0JgkzTaWiiLPBMsf9Tx/KFsqETDZj6oh06iarDyM1URRhOM6qLqGmbEFZywVnh5lTX009pckIvoiSaL2/JEn8rG/+5/5nB/5uVNHGTBzZE3jhw+fU/KI+PSnX5+P+9kfd3wcVP3jj0eFp+lj/OlHn7HAFAUpLQ6SJRlNT4tHZIkwDpAk4WxIkoTGwTH93oBvffOPAbH2f/zxx3nmmWe4f39biBP9vnCkJJDLZZm7VJ/FVrKZHKZp8cEHL7Ozu8POzg4Ay8uLJEmCe8VhdXWVjY0Nbt24ycHh4Sxu6bsugekRBj79Xo+DgwO67Q6lYpF8oYSqaqytbaAoCtVqVbhjOx0mE4fBaMT2zi6T8YT+oEsQ+LSaDfq9AZIEtWqFer3OhfMXOH36LO+8+y77+/szN4mmqWKIc3DA5uYmJ06c4N7t2/S6HVbW1iiWirQ6XR7s7HHl6g2WFhZ49pnn6fcHvPjiS7z33rs0Gg3u3b9LpVLhr/7Vv8rmiRNcfuZpXnzxRV566SUOD0Sj9r2tLcrlMqORQ7FU4fSps/Q6HY4PDtjeFZFxz3PQFYWFWk3s89yJcAy32ly4cIFz585RSNEAh/v7DIZDFEWi1+vw7rvvsri4xObmCU6cOMF8bY56bQ5NF+JSGIa4UkK3JxiauWyOjJ3l3u3bHDcaXL92jdFwhDsRJTW1uSrLKxucO3eWz33h85w7d45mW7R7Z7MV4hic8QhI2Nk74HB/n+PGEUtLS7M1lO8HBL5oGR6Px2yur83cI1MROk4+LDzNRKe0mEtcR8QAXNcNzp45y0J9noX6PK+//jovvfQSgecy7PW4c/smjUaBheUFisUixVKJRPdR4oi4kAUJBuMRnuejSBKWaVHIFZDiBFNVyVomhVyOMBKD80RSIOU0e77D7s4B/cGAdqfDU089wcmTJ/jBD34AccjiwmlMw6BUKBJHMflMlvnaHJtrGxi6QeCFWIaNaYhYna4Ld2kURmiqTsbOomsGcRwgKxKLS4soiorjOKnwpJHN5ykWi/iBT7fbYX19FVVVOW40iJKERBaD0XHbYeI4M6eSYTyMTiexwP9M0y/Ly8s0m0063S7D4YDJeCyg7yREsU9/MOC43SZREmI5JohCZFXBNG1AwfdiBoMhBweHZFIcjm1nME2Lg0Phipq1TTtj4jgSTYFWFk0zmcqKALZlcf7cWS6cv8D58xeEeSQIZ9HX69evkyQxzz/3LI6zxInNDe7cvcfLL7/MX/35v8YzTzxLLiciiJmsQAXYtpkOvyRRfBBKAgGRlmCRSIwGY7rdPsfHbbqdHuPRJN2fb8wcrp/k+MTCkzOZEAUhhbyYyAZBQBLHyLJEtVJmZWWZL37xM7Q7Ha5df592p4Xrebzz3ju88YM3OT5ukMQhlq2SyRkYppJa8lRUVUfRBLMISSFWDgmSECltFlAUhURJABlZUgS0TFGRZWXW0KSn08M4vRmahkEQ+BwfH9PrdATHSFIxDIvRcIxl2niujzOZMBoOUVUZZzIWOU1AShLBPfEDet0ujaMGmqIQByGryytUimV812c0HnPv7l10XWV+aY5StYidM+kPeuzv7zIYjIiimMFAcB/6PWHnVWSV4chF1YRVVtFUMrm8aM2QVWQZJBkKxSLFUpGVlRXq9TmhGk8crl2/geM4HB01cByHUrmMoqkEUUitXseybR7c3xLQ7okjxDrPJ5PJYpsZZAVcz8HQDBRNI5sXEY3JeIKqamiqimXZxDG4rofn+YRBRJzEjMcj0UbGQ+aNrAj7aJQgNrX9IYqmcfrUKYajkWimSsSNP5IioiQh8HwUWSGbzZIgzZq/fN/DMkx0VeXwuImma+lzERyhSxcvcv78BWzbFhcbRcVML9JBGrXo9/uMx0KpV1WVMBT8r62tByBJglni+IyHoiGpVBSxI1VR6Q9GhGE4ywgnUqrmJyIa4Qce9+7dSduSAiQSapWKsGGaBuV8kWq+LGo6W4cYpoxtWSSxcHf1hn20icp4PBENXapBNlsgiqNZ9DRKApBjDNtgMOrTHvS4ePYC+XwOzw+QZIUf+7EfJ/ADfuu3/yVaasuUJImVlRWWl5ewLJP6XI1+vy8qUJMEWZIIfJ9BGOC6HnEUUa/WyGazlKtV4iSm3enQ7fUYjUaC2QXMzc2hmwYvv/J9RqMRru+RuB5j12WuPsdcrUapXMIwDdGsMZkQhSGyBJYhwMxxnOB5Yqpz/YOr7B/ucOrCWRYXF/nil79Ip9Nla+s+qqamizeFbC5LsVykUMjys9/4WcbjIaNxn/FozBtvvIEkyxw3jylVRPPL7Tt30DRNbN5VFUM3sDMi3hJEIdlcbtYqcv++EKKEcOwjKwIwfnh4QLEgPotTJsLUxjuZTFI+j4A8x3HMXsqwsm2bZrPJlSvvz9rygtAHWcK0NCzboNVqks/leOa5pzl9+lS6oQhx3QmWqYscvKZBAoZpUi6XOX36NIVCgfF4zPbONndu3ebkiROYpsloNGSYRgkt0+TsmTM8uH+fo8Mjbt25TbvTodPpUCqVeOyxxzFMi1p9Ds/z2d/fB0nBtGz++Fvf4oMPbrJ3sEcY+KysLPHMM5f5uZ/7WdbXNkjimMZRg93dXcGwy2V57rnnWF1Z5fDoiCAIKBaLbGxspBb8PL1ej5s3P8DOCJ7RdGP0/ntXuH//AU89dZlyucJjFy9SLBT43vdeIQ5DTp88xcLcHAsLC2xvb9Pv92m02kiyzNnz5zk6POTmrZtYdoaVpWVazSaHh4fiOq5plIpFcrkc+/v7jEYjqtU55ucXWV5ZZW//kE6vx9rGehotVtBNnZu3PuDw8JD797bo9Xtouk6n20M3DgmTmKPGEfe27rO+vsFjuRyyIuLDh0cNJo7L2soqGTtDPldgNBrznT/5DleuXuFg/5Bnn32Oixcu8PRTz0ICrVYTz/P4l//yf6Q/6NNoHnPq1Ck2Nzew7Sz5XAFVExGaQX9Aq9Pm5u1bIraiyEiKjCor2IZoLj1qCHbiaOJQKZX5wo99lu+++D2++yffRdVEVPZLX/qSqPatVnBdjzvv3sXOZHjiiSfI5nKYpoEqC0eu77h4gc94MqHX73N01KDX788aRkEw7uIkplypEoYhh41j7IxNJpOj1x+wu7vL/t4eiqJwITpHNpvlVEmc77Ii003dvuPJmDAMMTSdKIlxQh80lcpcjXptjnqtThIn+K5HrVIhSRLKhQLtTpsbN27QHw5n/IYwjllYWCABVF0jjiJqtZpo2tzeoXncpNk4plAo8szTz1Kbq+O4Lv/Nf/MrzM8v8Nf+2l8jl8vNGmnCKMRUzBkbiiQhiAVMXsR6A46Pj0UDpecJkaMohDJVVRkMBoRhmDrF8jNRK4qjD7lUpsej7XV/cTw8/k2jWlaKUiiXS4RhQLN1TDaTpT5X+zf6uVMHWhyLwJYiK4RBSKvdmsXcDF3HSBtBH23Y+6ir6uPEkunXxlNHjoASiTNAlpDS9ZIkSWQsG08Vn0nihDgQLZvJIwyrwWAwi3hO8QiPwsdn8UHxhD70HH7U8/y45/1RkWvKdpryQFVVcO8E+0wmjhP+bfniP9rpxCObnunf/2l31Ec5WOJ1EZv6MBWeZRnGkzG9bofG8TGdToeV5VUM06TT6zKajKnO1VBVlXKxxP7+Pnfu3GFjY4O11VWeeupJ0cb1CPul1+uxt7fHwqIASq+tr1KtVVhaXkCRZVbXVnEmEw4PjphMJrz33nsEYUi1WuXZ557DztjcvXdPYCJWVhgUCpimyelTp1heWWE0HOO4Lru7u0RRzGQyodVqcuODD5AkyGezOJMJbaBSLZPN2qyurrK7u8fW1ra4d29u0u/3eevtt7l9+zbttmA5BkHAb/7mb4pm2LGIdcdBSLfdpnnc4Jlnn6VaqzHs9zg+OmTr3h12Htznynvvsby8TK1apTZXxbJN8VnMZihXSuJPuczTTz/N3NwcnVaLYX+Abhg4rstv/MZvsLm5yU/95F/m2pX3efm73xOMIs/nzNnTFAp5lpeWSDdsIvo4P898fV4wAiUpjaBl01hsZub+Pjpq8Or3X6Hb7rC0vEwmexsk2NvbYzyZ0O0I5uNoJPY6lm2le0+Zxy5eFA3eqsbC/DzPPvcslUqZWq1GvlBA0wz6vSETx8E084RByOHBvmhYDf20sv5CyhLUyBcK+J7HyRNi0BZFEaVScVZOIZotY0BwdT963suyAI7DQ2E1jEKGfXH/qdSqXHrsEnYmQ6lS4d69e1y7cYPjowZv/+BNSpUymydPUiqWmasvsH+wz3GrObt+ZUwLTZKRkwTLtigXxHohSgTnWZFk+kNRArN9/z6u6+JMJhQKedbXH6dQzOG4I1bXVlhYmE/FGojDhHyhyNLyEnv7+/z27/w2y8vLFApFAAzT4G/+wt8gSWIcx2Vubg7TMgjjkCD0Zwy1ra37gODdNZviHp+xLHKZDNvb2ziTCbVahVwux2AwIAgj4rQQZmVlWfB304FSkiRkMjae53Hnzh3h9KpW0FQNCYlet8vR4aFgRKUt3YqioGo65WqVYqVCuVojny/QHwquYxKJ64uiytgZm7n5OoHvM3Ed0Q4eTTmS6mwdkc/lRMO07wkOcuQhSTH5fJ6//bf/Fhvr6zz15FPkcnnB+0w5o/1+n36/T7vdJoljjo6OmEwc6vU6rXYbyzJpHh9z69YtPvOZz1Aul2m3O0Rp024+l6VWrQn3vqZRKhbSlr8QzxN6ysHBAdvb25iWzbPPPUexVMZL+cif9F79iYWn4WCI6zhoqoqS2n6F1U0ik7EoFQucPXuSvf0D7tzdwnEcDNPkzp077GzviOgcCZqmoOsKqipofVKqsCTIyIqOomlIikwiJQLUlgjY9GxB9sh0R5ZlAR1HsJ2miwQUFUmTZhnn9ngiYHiGiabqjEeTFDwb4HtBKs6IqlHbtsWNXHjaII7xJhM67RbddpWsnaFYKFAplUmihG63w/1791A0lVwhh2FqJMRMnDH9QR/PC4nCGN8f4TourVYnhXfrabROE5FCWUTsdMOc0fsVVfxeuq5TLJUolkq02m0c1+Xw8GiWt7UsK43eyfhBQDaXRVZksUhJRH5dAMoiDM3AsHVcZyQAcpqBosgzaKDr+uLxJdGGEFsCbBnHMZ7iiRic44EkYxpeWgGuo2l62koo4fq+iDNqGnO1Gkkc0+10hJCIRByFRHFMHEYomoyuG/hBgOOIGnnHcfB0V4BiG40Uehxg2xnq9XlUVWV+foEkEYBPRZZFfack3v/RSMQcBbtKgALDKCGOIsaTLkjiIuVMPLrtLtlsjny+MFs8uq5oHsznhA1SM3TBQBo5JCnjo90R74NlChhtpVBE1TUURca2LUrlIg8e3KPf79Fqt8jYFrqmCa6P5+FLAUEQiI2ObmCYVjpBFPC4OIiRFRnTMnEGA/r9AQkJmmHg+z6qbrC5eYJG45gX/+S75PI5qnMVMrZNLp8jl8tiWia5XFaIbG7qJkPUhYZxNLOEL84vYGVssvkcjuswajWZTASDRTyWhm4a6IbBva0tnBTI7ocBzmhEsSyinMVSETtjs7O7Q78vGrcgEQ5HRYJEEkyvCI4bR3S6Ld6/8h5hFPBjL3wGO5sR+XJiHGeCmt4c7IyFrmo89fRTBIGH7zm8/fY7fPDBLe7du0ucxFx87HFyuTzHx8dpBbpMxrbFZ17ThWspKKNqGouLi3S7XQ4PGw/z1qmjstfripuK55KxbSzLwk/jmpqmzZg1mUxmBpjtdruAcOKEYcD+vuAflctlwihAimQhAOiKAPyrRTY3N5mbmxOLhDAkjiOSOJmVK4gbkXichYUFTMtkMpnQbrU5SoUeM2XchZFgzmiaWAhN2TPtdnvWJugHPmEcoaoq+Xye4+MmvV6PQrFCGCXc+OADrl65ShiH2JbJ8mKdzRObPPXUkyiysFNPXWFxkmCbFisrK+QLBXo9wR3J5/PUasIVGoQhsiLjei6KKjZBmqahaRqdboebt26SzeVYXFzi8uXLBH5Ar9Ohlc3SabeZr1UpFAppq6QAnmu6ztzcnADsJgmGblCtVGgeH4sFclpLu7S8TDabod/vE/gB+VyeXE5UDsdJguv5rK8uY6TlCIois7u3y3HjmOPmsWh9MQxc32c4GmP0+3S7PdrtLvW6eC9UTUVWFEzLwjQsjKqJbdvIssygP+T2zVsc7B/gjB1sy2J+rs76+mbKRDxgZ2eb3/md36HT7XLcalIsFjl58iSapouoha4ShAGeL+Cqe7u7ZHJZCuXSjPdgqBrECb1BH8/z6XZ7lAoFTp84wTf/6Ftcu3YNVVPI5bJ89ctfYW1tDcM0GQyH7O3tcfLUKVaWl2dQTCW9frqOQxJFM/Gp0+0ySUXW6eLCMATzwzAtwvGI/nCIrKpksjlGo8lM/J9Ct3Vdp1qpEIQhrufipmymKTQ5l8kiyTJhEiOrChktS7FUYm6uRrvVYeKORQRakTENQwihjQYxD5u/wjAkl8sL+GcYkZBg27aYRB43OTg44PDgkPMXLlCfrwvhdjjm5Ze/z+bmJn/lr/yVGRwzTmLCWCysp3GqJBEFFFG6gfddF9/1Zo2Mc3NzZLNZCoUCURTR7XZJkgTTNGdsJ0VRPrxxTh06f3H82x8zB4umIisy2VwG13UZj0eoyidXPR4KRgIUzJRTJAnX0XA4FE5hy0prv9U/xYP6pCyl5JE/sy9PpvGwh8956nqZpD9b1Gw/jGomSTJr6n3UhTT99w+xlj7meX7cc/1RYtmjgs6j0PLp1HsqcomSmul145MJWz/qmP4uH31+jz4P8bqJjfr0+Ggk8eH3wDSeNy0wQgLf9+h0u3RSDEOlUkOSFVzPI4wiiqUSuqZTKZW4dfs2169dY2lpiUq1yvnz5zEMQ0SeU5fmxHFotlpkczlyObE+y2ZtTEvcEzc3Nxn0B8RRwtbWFkdHR9RqNYqlEmfSOHOURn9y+fzMAbe0vMzGxga7u3sk3R4AURQymYh41eHBAaWSgJbHaZtzLpulUq2wuXkibeWTMC2LWq3GxHEYPHjA0dER/XR9OB6NuHXzJqZpUq1WiYKAOAxxJmNGoyGWYWCbJrt7e3TaLXrdjhhU+yGWZVIulcjn8xiGjm1bwmWRsbEsIaosLAjXTePgUGzsGw2OGg3efudtBoMBTz15mVs3b/PKK6+mLkCF5eVFCgWx3tA0FUmRWFxc5LHHHhNFJ5YtrtVhSLlcxvd9BoMRuZxg13baXR48eEA2mxXnhCzWGbu7uwyHQ46ODkjSz0wmK4Sn+foChXyBtbUVslnxPm5sbPCVr3wF2xag9cFgyGg8xvfFYDeJBbpkPC1ACnzyF85x5sxpoiAkSRI0TcPTVMrl0gxYreka4/F4JkiHkQDfG5ouhsjiRBaa26PiapKQxNHsnJMliUwmw+LSEqZl0esPAInbt+/Q7w/Y2d5mNBqlSRCFYqk8a3y1TFOAsmWVOBBwa03VKJdFYUycxOm+PMF1PQYD4aqLwgDLNKjXa6yuLhOE4vculYri/hdDFEQMBiMM06JYLtE4anBv6x6e7zM3N0e1WqVcLvHc88/i+z53794jn8+j6RqKK4ZXYm2R0OnsC9Ekn2c4EIPYOIqxTItOu8PxcYPJeDLjJ/lhSIyEZZqUyyV81yMMgrRtNsGyTHw/oNVqUSgUWFxcnMW0x+MJ/Z5Yb0XpEG66fzdNA9O2yeRyGJaZxgOFe0vk+0BLMTn9fo/xZIzrTggfYSwDqetSXNuDUOgHcRxjmDrZbJbP/fjnWN9YZ36uThhGTCYOhimjqBKO46QFNx5JEjMajWb7zFwuRyZjMxwN2d/fJ0kSsQ92Jriuy3A4JPQrFHIFFMlA1TTktJwmCEaEoSiJ63a7tNodqpUKq6uiDTJIixk+6fGJhaf/+3/9X6OpClk7Q7N5LCr/ikXm63MM+gMODg8plYu4vsu1a9fY3R2wv79HFCVUS0WCQLgrpCQm8F18zxFTysBjf2+Xl77/JidPn2F5dU3EhEyb1kFDtC1MJiL76EVEQUwSSwRhhB+EZDIWqqoQBeHMtixJwh5dTHOZrVYLz3XRVI0wijDTRe/W1hbZrGA95TL2jAEVR6LuWJcU5qo1iGN818HSNXzHIfLEiSJEs4RTp08xcV26wwmvv/4mf/D73xTqcrlGtVIjDCOuXLmGpISYdoaMbVMoFOgPREYyTiTiRExsoyQmQUZSxEY1iEK8yRjH8wjimMXlFRzH4d7WPRJJYl6WKOTzVMsVfD9g69597IxFksSYholtW2iGnm6+NY6Pm3Q7HSqVArZtMHYm6JpOOV9KeQIjRuMx48mEWq1OpTp1KiSpGh8Lfpbj0usNMG3h8hkOxQbC932iOMa2bCzdgDDEUBSKuSyZXBHdMLn74D6B71DIF2cNAH4QMhpP8ANRX1oqV7HtDP2R+BD1uh1UVZtxcB4uHBJ00wRZbO49z+Pg4JDBYCAcTJqOrGi4ozFhGLG4MI8sy/T7PbzIYzJxCEOhqNfrojZ2CvSUJGGznKvX6Xd7jIcj8f6HEfPzc2i6Sq/dEZPJOMQZuzTbx9iayny1TKGUI4prtNrHtDswX59DVRSqcxWiMCYIQhJFIUxAUbUUZJ2gyApWMUNF0zhhWriBjxf4uBOHg8YBYRKjalpqcS7wn/8f/i7Xrl7jey+9JG5aqkoQeNi2zTj97AyHQ0hEUtg0DAzLZn19k1wuR6VWxfd9vv/aa6KpRxPq+fLqGv3+gG6nz8rn16jX5xmNJhi2zcbJUxweHvJ+yl1qtVtcuXYFLf3eJBHNEWEo4pemZZGxs1iGhqEq5LJrxEnMH//hH/LOG29wcH+H9c1Nnrr8NIfNYxqtJnEi4ikxMYYlphPtdovr17ZZWFzkG//xN3jrnXf417/3uziez/z8QiokDfmD3/99nnj8Cb7xcz/HdJiczxfIZrJkM1lc1+W42aTfH3Dt2jVGoxGDwWAmtg16YtO4srLCZOJw584dGo0GYRjy4MEDXn/99TS2F3P27Fl0XVh3u502ruNg6Dqe6yIrMormEISi3SxO4lSsF5D9IPCE0Op5FPNFLCtDEifCJRn0kWQ4cXKDra0HXHn/Cs3jY2EfPzogjuf4mZ/5GsVikTiKMHSNen2O3d0dNF3j8ceeoFQq8Y//8f+XTrvL/r6Il87PL+K4PsetNq++9irNZpt+ry82CZ7H0uI8f/tv/zIXzp9HVVWGwxGDwZDbd25z584dCoUClmnywc1b9PsDNE3j7NmznD17FtOyiBLhPKlUyliWSRAGhHGIrAlo9ee+8Hkef/JJvvXNb7N1/wEXz18gn8vx9NNPkyQJH9y4QbVU4NTmOs8++yyyLPPt771Mp9vjxs2bNI+PxbS5UuHkyZPcuXOHbqdDrVqlXq/zlS9/mUzGxnE94iRmcW+JRvOYrQf3yWSzPHX5KQxdTBEHA+Eo+s3f+he88KkX+Fv/6S9z7dp19nb32dhYp1gosryyRKWyw9zcHJVKlVKlzO7ePgcHhzjjCbZlceHcBTzX4//3T34VVVFYWV7mwrkLfOr5T5HPFbhx4wNeevllZEni+eefB0m03GRzOVbX11hZWUkXrn3iKGJ1dQWA7e1tsQnodqlWq5zcPEHWttE1XUzL4piDgwMcx8V1PAb9AZ7ngwSmqfPUE0+wurrKpYsXsWyLmzdvMplMROuKqiLFEPii2W08HhLHEVbayKjqOp7v02g0RBV0xhZRVAk002A8HvPmW2/N2pdu3t1i/6Xvc//2bQbdnoiA5PNUKgKaeuvWLTLZLOV0OlwsFmdNopZhEsUx3UEfx3XoDwZ4QcBgPKY3FlFZTRdNVPe2tuh2e9RKFerzdU6cOEEYhewfHjAXzpGxbRGv9n3u3rvH/sEB165d4+LFC3z1L/+UEBLimNF4jG6a/IP/6r+iWChQn59HUWQcz2XiOjiOw8LCArlcLuXwTbhz7x47Ozu8+dZbnNzc5MTmJmtra2mrnrgvTYWobrdLuVxmfn4eVVEf8g+kdMPPIwO1vzj+nR3CHSBcur7v0263UVVxX5hWXj/KDII/7fh5dHKryEIsHI5EQ+poNBLuxloudeyrH2o9nR4/LJ5GKm5MHVUKibg3TMWRNO7w6M9RdJU48Bg5okTAi0IqpRJ5y0qn5tGsGXPKKvro7zcVbT4uTvdxIs7HteR99Pum/z1tklpZWWE4HNLr9WY/U9eNFIb854M9PfpefZygN/33D/FFEgnRxiUcTdMBw/R3elRsi6IoVf7EEEg4oh0UWeXE5knOn7+I47r4vs/q6iqLi4ucP38eCeGgOnPuLD/5Uz9FPpfDNAxu3rrNeDLh6PAQ3xNrzGw2w+rqKtk0Mvw//et/xf7+Hs8//xwrKyuUyyXhxDlssHniBAvpY9TrdQbjEXt7gh/lez73798XHMBMhvv373N0dMT7779PqyXYMZOJw/37WyiKSi6XFQ1+wLlz51heXmZ9bRU/8Pn1X/t1tre32dnbYWllifpinbt37rC/u8dR44g4TvjJn/wqg8GAf/JPfpVyqcyzzzyLqqo0jxvkclkUeZH333sXx3X5/T/4AxRV4cc/+2MsLy9z6tQpioUCtmVz7fp1Do+OqFarM7Fna2uL996/MmvHe+LSY5zY3GR9Y5PDwyP++3/8/8GyMvS6PbKZHE89eZkTJzdZWlrkmWeeFoUhtgUk+IFPkgh0yzTmn83mZoyaKIpwxy7ZbJavfe1rWKbN3t4+KysrzM3NcfPmTTqdDvsH+xi6wZPpffOJJx5nbXWFpaVFfE+IE6PxCFXV2NjYJJNybRzHZTyezIYSTz91WXBHx0NCU+exSyKhMS2AitKmsqlQ7Lou9+/fw7JsTp48gaqJPVvgR3ieWJuGQZgK3ibz8wszsVtVZRRZFm2GvoC2Q0Ipvb+Ox2MkWaFQLPETX/0qn//CF1hdW+Pu3bt881vfotfqsLv1gDiIKOSLWKaFaRjkMtkUym+TyBL3th9Qq1bJFQsI24gsovH9Ad3BkCiOuHD+nNAGyiUMQ0fXVeIkJIweNkKGQUIQhAz6A1zXpVKtsXHiBIV8fuawe/rpp6hUyrO9RKVSxrZFYY+RNnmGYUAYRmysrzNxHA4ODuj1uvR6HSxLZ2NjlVdeeZmDgwO+850/oV6vc+nSJVRVJYgjMnaGrG0xkcCVJQb9PkEQMBwORFx/eYVSscji4iK5XA4JGPT6tI6bOBMHzwuYOA56FIEs4wU+g9GIYhCSzQR4jieaIHUxcNI1nYnr0Bv2cT2HOBbMStF0LD4T07K08Xg0uy75vkccxXzhC5/jzJnTVCoVpAS2t3fQNB3LytBqtXEch7t37zIcDvn0Z17Atix8TwzGFVXl0qVLXLx4kVdefZXXXnuFbNZmY2ODz372s3iux86DHZIwwbZsCinLs91uMxmP6fUHDIcj7ty5y72t+4xGw5mD3g9D2p0elVp1Nmj8s45PLDwd7O+jqSrFQp7JZIyuaxiGIUCcYYAzETXhqiLUWtdzabfbmKaNbWYE9wbQVDXNC8aI6JxEEHj0+91ZZCSJExRF1CjHUYwnC5tZkohay3hqj43j2a1sml2XEHGoJAVimYaJbdnIksRk4qQLXXGzcV0X27ZmcSwlnbgKqJiw36mqgq5pwr4ty5BEBL4AZKspxb5YLCCPVIYTwavq9wcpVNgUwLMoSd0JCWEoIMByOvkMoxBVM5AkmVSwJn7YdSOy4aGYsiYJKahbQ5JkFFUTWdHUmTEejnFdD1VVQBJfK8lyys4JkVPngu8HKVNE3JClFFw2XfTEibgwyLI8q5MXh2gMkGR1FruLI8FrmsYwfN8HxCRckSUCzyOJo7RhTxdNdrFohrEtMS1UVTGhTJBmr4Gq6RimhSnqFAFmU0ZN09JFlFjwJIiJhZEyvCYTEZ+TJHF+yZLEdJ1UKBRQZIXJZEwYBrMLmISYFMWpK0SSELyT1F2AxMzBI8sShUIWy7aIPE8o3yksPwyEuu/7HrouQN2DUU8wsKIQWZbQVE1M/yLBkQjCEElWUGSxGJIUBVlV0XQdK5NBT0yCKOJgPGE8GeMFolY918uLaF+5SCZrg5Skiy1xbiuyQiGfT/P5AUHgE/qeABEbBradIZvNkisUmEwmjCcCpj5talAUdTblz2SylFLXne/72JkMmq6lDrgJfuCjadoMxD1btKbT2SmoT5YkJEVGTxufWs0m7TDi1gcfiFa/M2dxJxNC30fVFDRFQGFF5bCAoodRRC6Xp1Qqc+3GDSaOw/7BAWEYsbq6ShiGHDUatFothsOh+GyrClrqvCmXSsIFGEZ4ns8wZUAJy6oym9KGYcBoNGI8HjMYDPA8b5b/ntaMStI0G27gOs5s2pykUd04jpBjwYtQFGVWyS5EQNJ2TS/9+eIz5PkBcRSBLIlWz/RmNBmPURQF27aEUKSqrK+vY9tW+lhpCjw92YulIrXanJiUTybs7+8TxzHFYlHEhoJAtMU92EmrlCXy+RzVWoX19TVK5RJRFDFIHSPdbpfhSFSwqppGGIrPnm4Y5PN5sdELhBhimgaqKmK048mYUVdMXsIgpFAsUi5XMO1X6PV6OK4Avs/Pz8/qwicTh+PjY3L5AtlsNv15KqOREMXjOEFVFGzLImNbszhToVggl8uhGzrD0ZgoEq6VwBfvZbFUIp/PMZkIkSWTzc7ex0w2w8LiItvbu2jasbiuBUKIjOOEQqGIaVmzxVwndbpZprjHRGHE0dERtmWxvrpGsVhkZXWVREqI44hG40i4AZII0zCo1+sgSWiGTjYros6j0ZgkFp/jJE7o9XpplW86oSsWU2Eymv0JfF9A+dNF8GAoYt1IMFersbq8QjabmZ1rogrbRELCS2t+YermiTBnLhwB0u73+5TLZTLZDIr6cHMXxzHjyVg4Ni2bVrvNnbt3mQyGSJJEtVajUi6Ry+WIorS1NnXX2qk4FEWRcFBpurgnB8LuPlFFw6YbiMXdyJlQyOWQkOinC9ap83iuWqPd6zAcD4nSxrHReMxoPKLXF7HcKIzQDZNSuYQ7nhB4PnE8QVUVzp8/h2VZ6QDEnwnBfhgItmQcMxiI6PZ4NGI4HDLo93FdlziOZ8OTKQB62qomIX0o8vQhkWk6tP4zhKf/JfOc/n0cyXTtlLqaZUnCNEzEVF64qKcC4Y/8OY8KSOm9bOrmmeIfNE2bCU4Phasf9rx+uOwiTf/lh0TImA05RYNV4DhMPJesbUM29yGh6NE/HxXBkvQxflQc4qNxiR8Wb/vo100f37IswWN5xPkEHwYh//mOP/2cHxWkPv5zIj0UHVx3VoUunGwf4WDxEE4fx6LN1kjva9lsTjQnpz9jyrCa3uctS3BBk0g8VrPdEawW38fzhXs+ThJUTUvbbD0ODw7Y39/DcR5LExdi/eE4TurEKLOwsEC1WuXgyhHHzWOOj4/TCngZKy1AmLa2Hh4e0u12KRQLgt+UujVWVpZFCYemYRqGYHumzvvtB9scHh2CJFyCs7X1I+sO0fprkcvmqFTKrK6uMBwMxWBXN5CARqNBp9PhwYP71Ot1Tp06yYkTJ7hw4QKaqiIhsbO7S6/fR9P01JGu4EzGNBpHFIul1HUlfm9VM4jihGKxhGEYjEZjglDEmur1OTY21lldXaVcKSPLgkcjIlSiEGc0GnF8fAyShE2GOI6IwojReEQ+l2d5eZl6vU6pVJoNmafvaT4vGopPnz7NiRObPPnkE6wsL7O4OM8o3V81W01kRWFhYWHmtI3jWDjSUkGzUCggSRJh6BOpCrmMuN9Vq9U0cjcVnkBVBVt36lpX0vNU1zThwgmn+6zp/iqZRbLEea8j6zJR+jVBeo5omiauh6m4pSjq7D514sQJ4jgmY9vC7dIf0M/26LbbUCiJaB2S2P+oYu/eHQzQDIOJ66HKMpos4TrCGBJFIZIiUyoXydg2pWKROA7TfaHYa7quix8EEMsidREESLJMLp+jVqsxNzcnSmiGQ+yMjWkKl7/gQAc4ktAY5PQ1nq5l4jgm8P1Zg7WcJiXEcFcYCHr9fsoqEwkiKfBRFDkVj9PGwCjC833iNFpmWXbaVqenorZ43acc6CiMZlemJG1dj5J49tlJ4phEimf3jDgRO/sP3S9kGTmJU5fmh92n0z3EdB2xurLCic0TqIoy23ODhK5HqTgk1ii+71OpiPTLzvbubK8yXXfphhDuDg8P0dKUj6qqQmvxPPp90czsTiZife5MaDTEkH5vb592uy1aQVPXmeMJx5jjOkRx9Imu5p9YeHrhU59iNBpx7+4dJCRqtRrZXBZV0wmjhInrsr9/wHg84bFLj3FweMibb77JaNBn1O9haAa6prO5tsrS0iKmaoIEpXyWSjHPXKXA8dEBB/uHKXPCYnVlGVVRGKUbv/39PYaTMRPPJ0jrBx3HI1RldFXcbDVVfFhFlaZPFIUsLi4QBAH/9J/+BuPxmOXlZUrFErW5LKaho0oQBh5R4OOHPhICSB2FIb1eF89zxKZVE386ox5BEFKr1zBNnWIxz3DkoGoWJzZPoukG3/3uizzYuk/gx9h2hrNnz6WtWC1arSY7Ow8YjYZ4rsvK6hqWZSMhp7E8lzhWAI0w9Gc2S0VR2NnZmZ34qqJQyJaQEhj2BqiKSta2RTtCFKCpOr4X8NZb7zDsDTAtk8XlZebq87iTEUHgMx6NUjXWElEfRSWTzWKYFpIiM5qMMSJhKRwOhzPrcJwklIoFHMeh3+vjpxvGzGxarhGFAQf7ewShiJUpqoHnC6jxYDxCVlSysoydyRBJEqUwpNvu4Dre7GJeLBRxDJOjowNM02RjY0NM0FUFd+ThTEaMRkMgoVarEIYRw9GI8XiSxqJUdF0S4GZF5tLFi4IlRkS328GZjFFVBVWV6Pc6TMZDytUKhpHBUIQA0Tg8YtDvMRr0WazXqVYqrJ9YJ5vLslKvMxqOuH/nLroiM1csEvs+e3t7FAo5Fpfm0TQJ3/eRJATnq9+fxS3H6ea4UCigGwaWpRInPu3eMVECwQFEcUQYxYwGI3zPJ0hf/8OjJplMlju37mNlLD71qedRZMFAq9UEt+nkiZOEUcjd23fY2dnh7bffxjIMTMPk4PCI3b19vry6Qi2X5cSpk/R6PdrN1iwrHEWiYS2fy7OwsMBP/MRXaDSO+KNvfpODQ1F3a6ZMjdXVVfK5HIeHhwS+T31ubhZFU1WVBNFYmMQxcqJiGSY//sJniKKIRqPBq+0O77z1FidOnWT9xCZPPfUUS0tLLNbn0VSVfr+LKsupi2CB9fUNfN9nY2OD3/rt32EycfgH/+AfUCgUOHfmDK7r8M/++T9jbW2NpaUlFubrZDOZWUSt3WzR7/UBWFxcpFKpsLm5Sa1WI/A8oki0aVy7dp3vfvd7SJLEyZMneeaZZ/jMZz6DaQrBaW1tBUVR6HW7ZLNZXnzxRSzTRFcVMqaJYZnUyiV0RaF5cICcRDSbDU6cPMFCfZ79vT3u3r1LrSper0ZDtDGtrKzQbDb5wz/8Q0qlEhcunmdhsc5gMOC1V15lMBiwMC8Wer/wi79Ip91m6/4Wh/uHjIcj8rkci4vznDt/lv29Pf7hP/yHPPbYY/zSL/0Sh4eH7O/u8sarr3L16nV8PyCfz/GzP/M11lZXydg2gedxcHDAa6+9zpUrV9ne3hExSwRU9emnn+bcuXN86UtfRNNUwtAXQq+iQgLj0Zjvfe9lhsMBnufOhOnPfvazXLh4kW/83M/R6/a4d/cufhBw8cIFCsUiS0tLvPy9F/mVX/kVPvvZz7G2tsbOwSGeH2JYNnEU02636Pd7OM6Yp556knPnzqbRPJWr164yGAzZ2toSU8z9fRYXF7n85JMkcYLn+7z5xpuomsov//LfZn6+zvrqGo7jsLe3x7vvvsObP3hLiIZpE2Yul+OZZ54hjCJeffVVut0u/f6A06dOUyyUuHv3Dv1efzbVnpuvU66UyRdyrKyuUCwWGY0HDIYDqtUK5VKFZ555jigWEMq3336Ha9euUy4WKOTzbGyu4/sut2/fBCTWNjbY3Njk5Pomb7/7Dg+2t5k4E4IgJGNmWF+Z40tf+RKN42Ne/P5LbN27hzuasLayysVz5/EmLokksbSynArkIZ7jcOP6dTY3N6hWKyRJjB8GuJ5HEEXIikqr2eL69et88Ytf4NKlixQLOSQShsM+nuexvLzMcDTi3v0t3n7nXb7/yitcvnSRE+vr/MzP/AyLiwvouhCZT5w4IQRgXUsHPQ8jbNMFl6GoqJkstm3jBgG9fo8Huzu0221Onz6NrmkcHB1iWxbPPP102jbqkMlkyOaz6IpK4Hv8yYvfZTQaIUcSc3M1fukXfomJ63D//jYLczVKpaLg1AHFQhHdEMJms9Vi68F9sWEMIw4bDeRmi9dfeRUkOHPmNKdOnmR9fR1DFzHrvb09tra20HUdwzCYn5+nWCyytrr20HmSisIPXSR/4XX693E8Ku8lsXAPV8plxuMxjUZjFi+YDgg+GkkDZuLD9O+k9Py0LBGXNw0TXdM+5LyO4wg+tKlIo2dJ/KHN0qPKVBRHYvgwdT5Nv1eSZjEfWVFFnE8TDXpBFLK3v8+de3f54o9/jmKhgKwKjlDoOjMBZSqKzH6v9DFikYz5UETnh4lJf+Zr/ZHvn/6M6cBy6gSb/v2fV0SdilaSBEki/SnBK4qi2Xs5/R1URQhMnj9h4jjsbu+QyWRYWVmZfd9UDpRSREQ2m539HInpzxNsyu3tbfb292e/k2VZGIZBJpPBsqyZ+KRrOitrK7iuy5UrVyGBcrnM/v4+N25c58GD+xweHAAJ6+sbFIslXNfjn/7Tf8Z4NKbd6vC5z32OFz79adyU2fTtb3+brftbXLlyhWw2y+XLl7lzfMzW3Xups7iCJINlG1y6dAHf9xmNBiyvrPCFz3+RwWBAP2VMPXjwgLm5OYLAp9Ppoqkazz79NKdOnMA2Tc6fO8fmxgZ/8sffZnd3l1//tV/DNE0+//nPcfbsGb70pS/x3rvv8e4776XoAY+XXn6ZVqvF+toal5++zN/9u/9bbNvGNEUrWxhGPNjZxfXE9TZOIJvNY5g2CRIrK6usrKywtrZKPp/jytVrHDUanDt3Dtd1uXX7Fnvb29z54Bara8ucOnUSRVWQZYlOt0u31+G999+nVqtx4cIFgiCg3W6ztrbGXLVKt9th6Lps3bvH0tISzz77NPMLdVZWVpBlmdFoxAsvvCBiVUsLVKsVnnjiiRQNoNDv99k/OBJMJkPn3IULswHMeDTm8KhBNpudDfRADBQVWU65ckmK8RDfI+K/k1n0NElS8HwuSyabRdNFC2s2kyVOxYd8PoufrqXDIJhB6QEWF+epVqtMm9JM00JJC7ckRSabz6W8ZDl1BfWo1Wrous5nP/NZ9vb2eO+99+i0u2zdu8/p06dZX1sT1zlVBdvGj0J2Dvboj4egKeTtDIVMliCMMEyL+soCpqmTs3MAeJ5Pp9Ph8PCAXL6AbWfYT/llc7U5dE0lV8yQKdhU67XZZ3IqAj64v8OOLFqUPc/FdcRgfNDvC7SLqj7kK6kqnU6Hb3/729Tn53nuueeoVCoArK2tEUUx5XKRXDY7SzRMOcVxFKMZRsosloiiBFVVkJQEwzSRJJnJZIKua4BJr9el0WgwGo7ww4BisYSiqIRxhALIgGVY5DJZMVw1Lay0qbrbG5DPZJmrVNnf3+PQ84T7L0kYj8V+fDQaoShijzPlFBeLRYrFEl/60pe4ePEi3W4bVRXcpiCI6A8G7B8ccHR0hGVZzM3VsNMB6etvvDEToxzHScH1Gzx28RJvvPEG17pX2d/dxzRMCoUizsTh5o2bNJsNOu0WGxsbWJbFy99/haOjBrdv3xbmgkqZTMYWBUxuhOc7vPvu27iuy//5//if/5nX9E8sPOWyOTGFB+FY0IUjxbIsPN9HGk+IIoiihNFIZFxzuTwyICPhOC6e7wt1URUNCZIkxCLd0MnlcownAa4XMRlP8FyPbjaDntrqQFQPGqbgayAh6PRpTnt6G4mTKUTwkUmNJHKY2Vw2ncqYqJpCFIr2uslEFg4ECXRDQAGDwCcMwpQTJAmLX3ozNU1DPAcgCAPGEwc/iNF0hVzOJpcrkMla6LpGkkILp3nPKTspk8mmkSgBaXddhzjOIUlS2ggipVR7MfkOfAFCn4zHOJMJvucLWPVwiGVaZDPZ2WIijmOSSEwrkjgR6nIYEqTWTvGamyiqOiP3x6mjSpZFnXyMUHDDKMQduJAIpoqiKikDRPy7osjomibcQGEK4kyE4yEMI8IonKnuURwRB6KtUEldWVE6NfeDYDY9RGI2tRNKvTxT8LPp1F24uMRkud1uE0Uh5UqZyWTCcDgU4Of0wi7LgrukKArdbgdFllNHnELGtpFl8TWSLG4CftpiVyqLBrxMLouhqiRBkPJFIiajESQxSRShShIZ2wYSFE0A8l3HRVFkfN8XsNsURDrliQmnVZguFFNumSSaBOM4xvU9okQiSiRcz8N1PeEyiyLCdJLoBzFSItFqtch6WSCmWCzNJivFYpFSuTyrIpUVhVKpRCaNewaBsA0fHR0iK0r6dUF67gnbuVjFJxwc7mOYIqPv+wLsN118WZZNJmOnkFUtFX2DmXtFLITl9NwUXCRdUVEkGSkR1wdZkgjDQMTVul1yzRbHjQaqomBqOoauCxXe9WYTkDAIqVQqnIxiFubnabc7dNptkb1f38BxnZmddzKe0Dhq0DMELDCOBENLTKUeWp5t2yafz9PvdYGEXC5HNptJrykfdmtMz8/pRDGOovQmUSROJ1iWbaHrKpqiYGoauqaip+7KyXjM9vY2w+EoZYu5ou4V8TkaDPpMnMns5qrrmigAmExSC72CrgsH2NHRkbAITyZMJiPG4xGTyRjXFc0r2VyWMAoxDINet0uz2eTo8BDPEw5Jy7Iol8ssLy1RLBbpdbsM+n0ODw+5desWd+7cwXEmaJrGSho3WF1dpVKpkMwmy0nK8xDX3cFgwM72DlEcsbg4j++JZsl+f8De7m7aFpNhPBjS6/fZ3jtE03UKhQKlUpFyuUyv1xXOGs9HVjTm6nlGg75o4uz32d3bJY7EJMkwRdRke3s7rSsOZ9NhRVGIw0hc26KIYrE0g99KCFdos9lkZ2eH4+Mmk8k4FdEVxuMxURRyeHBAlDx0d6qyTBxFBL5Hp93GcVw2NzcAaHc7GJZByROVzaVSiUKxQJxEKaDeplyuioKCOCKXy4m63kgMTRqNo1SslmbMvTAKxbU/fXxxL4wY9YYz981wOBRATUcwyjK2jWXbKKo6cyBMN9HECVEgqsKnC74gCjg+bqDpBpZpI0mCXRYEPoN+f7YJPzzYZzxxiIEgjHA9DySwLIvFhUU2T5ygUqmQzWZTvmBAv98jk81gZ+xH7jkfdlcoqoIUy0gkjB0nbQFMxYIUZDp14SbCQokkK+LeEsU4nmAEjkaiIGKxNk+1InhhiSzhhQG6pqelAxlIP/dTJ6JwF/q4rifcXoMhqiwLl6imUijkUVQR+VNkEXEAZvwyPRWjzHS6KtYgMR+VmR79f3/havrRxw97ff4skWQqLiiKnF4rRWzDdd1HoL0PxZlHxZE/9ZjpuilJz5U/7QSCj7yrPOrSmTGcHnnKM8bXzKX10JU0/RlJyiCSkNBUlUIuT9fqoquigGIK+5+JRvKHhaTZf6druqkjXVfFuflonO7jXs9/EyHq0d9run77tzm3Hz72dHX/ETD4I+629IFnr90U1C8KJFSsdP0uSdKsvVmsu0Rn5fRePhOw0rj7xHFwJs7s+mrbtqhuTz/f0+HTNL4ZhAEg/jeKQhRVJZsT7nhFVWe8t2q1MhMr4jhhOBzhuR6yIjhSnU6HZlNwGPt9cb9bXloml8tSLpWYjMbIskypVGJ1dQXTMmYOvCgSAz5FlslkbLrdDt1uZyaIdrtdPM8DwLJslpeXqVYqaSGTiD53uuLxLcuiVCqzubnBXL0OkDpDPDrtDoPBgOFojCTLXLh4kbNnzwpWUZLgeh6aZqCoGnGSEEYCLxHHCZlMhjCKcH0vfV/k2bpBVRQM3aBQyKOqCq4zoVwpc/7CeVZWlqlUKoKBI0liL5Gu25R0DTt13WezWWzbwvNEHHWaphDlEAVWV1eJkxgkibW1NUqlEiuryxSLYv0h9m3CceO4LpphoKVR8zi9jrieN8MnaLomkjcJyBLIslj3I4nnKKVitNjLqALzEcVouir2CJqOrCrpHjbdkyQJydS9qQhuaRAGyLI3+2TIaROznF7nJAzkdM8UhqFoi08/JFOniqqq2LbNhfMXKOQLdFpt+sMBnV6XTrtFxraZX+hi6Dq5YkGkP1L49fbODuVCEa9YJGdnMC0rdf0Lt1wST4V4Uu6veG8FvzJKUzaQy2cAmSiWiCLhAPNcj9FwRN/qoyrqzLE4Hk9Ew/tkgue5yLKSCr0aVsrWLJfLVMplyqUSlimMFKKtTTC/PpyWMZEVGc93iZIERQnTvb0p0D1RJESgRy5fcZyka4sxajqAEK89wsmFhCQL0VqRlfRPygCUFDLp49t2hkE2yyBtuI7jiDA0kCSxLxZro2SW7MrnCyzMizbcYrEoOLGKIlJFSkgUJ7N7WT6fI5/Pp6kff8YdjSIxRPV9n0q1QrUiIq+u6wmubCqmkyBKoWRFOLjimDCK6PX69Ho9XM/FSHTiKGI4HHBwsI/ri/3eaDiYXVf+rOMTC0/ZfAY/9JBV0dZk2halcpm5+QV6/SF+s42qmsSxw+uvv4lt25w+dW5W3f7mm2+xt7tHEIkNSqfbRU0XZtlMlqWlJXw/xvMi3r92TVSC7+1iGAaLCwtYtk29XieMfCbOSIhDYSgWnoqouk2SGMLgEfFGWGcd1yFOEi4/87SwnQUhYRDQH/QYjwZ0FJkw8JAkOH32LLqq0u4I0nsQBFimlU4VxORoMZ8nIaHT69Pt9Xj/6hUKhSIbG5tksxrlss3iYg3HGSPJGoHvcfPmfSRJJpPJkc3mqM8tzG50b/zgFdrtJpVyETVjUSqVCAOf8ahPEsUQx/Q6bVRZoptucCaTCf1uj63bdzhz5gyXL19GlmTReBKGJHFCsVAEEsIgZDgY0hsMkAQTnlqtimVajEcjotnFKUFWFSLfYzwZk0gQJhEP7t8niWM+//nPo8gKx0cNxqMR/f6QXC5HsVig1xdsjslkQpTorJXXSBKwJwLw6bouA8/HGbuYGRPFUNEMjSDy2bp/D80wMDNZZEWaLRKNdHMhSRK6qZPJ2VSrFWRZot1uEkchfuDx3nvvMhwO0Qyd8Xgs2somE0gXFLqqkS8LzsiL332RKAxZWlpAU1WWFhZnF7cgEO6ydquFYRicP3WOSqXM0vIynXaL3Qf32d/d4bjRoNVsIEmwMFfHMgzWFxeRFBkUmXa3T6vd47jRIAgC6vPCfTQ/v4CbvkZBEIgmM8vGNMSFW1EUjo+P8XwPLwhRVA3DzNBptmg2m+RyeQzDSOMpoEkacRBw3Dji6EjA/p599lnm6/OcPXtWRJ+8gF63z9Vr11EUhVOnz1JNLzzXrl1jf3+PP/7jP2Y4GjBlWhXyeSTfJ4rF4gwp4fd+73exbZuLFy+SzWU5ceIEpmnR6/bJ53LksjlMwyQMIjptwUgI/OhhDEVTUDWNwXDIeDQi9kM8TUeVVTRVI5PJEcUxfhTSbBzTbXc43D8gX8xz9sxZyuUym+sb4mK3f0gSgaqorK6ucfHCJVzPZ3t7mx/84AesLC/zn//v/jMODw95++23UWWFfr/HlfffYzIZ8+Tlp2aNhaPxWJw7moZt2zNb6t27d3EmE86fP5/CnvXZjWk63Wyk7+9qCqoupEy5U6dOsf3gPg+2toSlP86jywoZwyRriraNcrHE4f4Bv/Zrv8byygr1+ToTZ0Kz3aJUKhGFITdvfoDreZw6dQoQUY979+7x4MEDvvj5z1EqlWi3WoRhyPdefBHd0LFsk1a7yf7+Hve37gmnpqqxurzCX/7JnyIIfG7fusn7777DD37wA1RF4vSpE1QqVarVGpcuXsTzPN59911arRb7+4fcuHGDBw8eUKvVqNXm+Dv/m/+U1dU11tbXCcKQrQfblAo5ysUco9EYz/NT1toBr736KouLi3z9az+N63n0ez0+uHWL1157nV/8xb/FmVOnWVle4cYHN/jv/4d/whNPPMHzzz/P5cuXOXVik9/7vd/jvffeY3F5jbn6POfPnEaXZQgjtu5t8ft/8AeziOfGxgaqqvK9730PXdf59As/RqlUolwqMRwKoOIUcv75H/+8mHgFMbvbu7zx+hvs7uxy5/btWQz34sULFAoFbn5wg+PjBr/x4ncpFAqsra1Rn5tnrjbHaDBg0Otx+/YtMpkMf+fv/B3ubW3xj/7RP+LUmVOohsLjTzzOXL3G+voqlqWztbVFq9VKq4eFuLG0tMjFixd4/dXX2N/f46WXXiJJEkolsYh3HIdGo8Ft4/bsfF1bFxW2V9+5Qn/Q58aND7h+4wYvvvgiWdNiY32dYqmEnbGxMxlcz6O3u41pmCwuLJDLZKBaFm5LXUc3dEaTMa+++iq5XJ56rU7GttnYWKPX7fD6a69Qr9eRZYUXX/wuzWaLnb19FpaWeO6FF6hVKzx9+Sm++pe+ytNPPCkWvlGcRjUbvPbaq5w+fZpP/9hnZjHB2UZPEZtkwxSspyAUrTy79x9QKBSoFcvkzQxq6qwMw5CjVpNCsUCtXqfVaNDrdDjY3ROikx9QLpf53Oc+h6qohGFIPpdDNw3BHTEtNMNIK6ofuigSEmISRuMRw6EoBDENg7NnzpAv5Dl5chNJklJmjDLb6E2/X5ZlNEVNF6oPq4UlWfrQ48BfCE7/fo6HYkWSpINSScI0Debn5xgORQxn6giO0mHqR0WSKQT+UReQKiuQRkamTKOHAov8iJnpoXglSw+ZQg+f4aNOJIhJGUNToSlJUt6jKMhJkgQZyFk250+fIWOYyFFM1rZn02xgtvmeDh/jOJ4VBwTpkK7fFw7fUrEkYlDpOfnoufqjxKhHhbkPO48EfmIaW5kWtUxFqH9bASpJHsaYpn83HTJLsoycDramQ5vp62yaAneRL+TF1yYwHo9xHCeNHYlok6IoqUtK/OyJN6HXG7C3v89R44iJ45DNZjl3TsRyH/28Z7NZ8vk8zWaT4XDIcDxgMpmwd7BHLpvjxOYG2axNrVajUi6TAOfPnqVYKIhhWafD7Vt3sO0M8/MLdLtdvvWtb3H79u103ZdjoV7nl37hF1IYsEO1XCGOIn7qp36Kz3zm09gZMRD8rd/6Lfb29mi1WtRqNUhi9nZ3+P73X+a5555naWmZO3fuMBwO0XWden2O5597nmqlQqlYonncZH93j1dfeZWdnV3+y//y/8KZM2d4+plnCAKf7Z09Dg6PaLbb/PG3vs3WvS1K5SLr66v8vb/391hcWsQwLY6Oj3mwvc3S4jLFUon+aES712M4GpHJZKjXF8TgOi1Z6nS6DPojdMVgrl7HytiEUiQA54HPp557jueffoZSpUQ2l03FDNGorWk6Tz+dZTAQbapTd3J9riYKZnQdMx006IZBnEisrq3xla/+RLq/kFlcmCebyVKrifie73l0u1329vbw02FvplBA0jS6gyFBEDDodcVeU9cwLINMxiIOhVlAVdI4ZxpTeyRQi2nbmJZNu3OPwUC0siZIGJaNqup4fkgYCQelgOQn6JqGrmnYaQlRlHLskkQU0sRxjGHoGIaOPLv+yIRBSLfbJwhDgijEsiyqc3McHx6RzWT4hV/8m7SOm6wsLvDqG6/z2//6XyHfl+j3hOjkjMYsLy1iWxb1ao3DxhHf+c53WFiYZ3l5mWefeYa5+iKWpaNKEmHgpxicCNu2WFpaIkxxLGL/HrK/s4uvqiwuzafPMZlFU9vNJltbW/iuKxz7C4siOtk4EoiTfA7HcfB9D8kS+JtisUitVuPEiROpUFqiUCgQhhGaqmFbFoWC4E0WCiV0XUOWE/qDPs1WizCIiWKo1gTQ3HE8XMfl7t27LC8usrm5IdJI6d6m0TimWCpjZzIpysan0+0LwVQTZg9N0SCKRfuoCaahU8oXhQHBNInDECmRGI4GeL5HJpMRA8U4EqUrkwmu5xPGMZsbmzz15JMsLi5SSkH9IFA6SZJQjJLZwP7kqZNUqxVuXL+G7/s8/vjjJImICLZaTY4ah5w5c5a52hzbKVi+WCyKvZsfEpfEfUM3dAzLJFcoimKhfp/BYEAmI4aRo9GATqfJ+++9TTaXE0NQVfnE1/lPLDwdHgpg83gsmgEs22Y0HrO3t0elXCGXzXP71h0ax8f0ul08zyWXy+LYNrYtYlu5Qh7LNtBNjVgSDpggEpBwz/NJUFB0FStjkvEtwighSiLavQ76ZMR4MmYwFO1eQRDie75wAhjCDfHoB5JH7M9xHIEEhUJOTDs8ARDrdCaUigWKxQLDQZ8g8Gd5elXTUTUNO5NFkhDxpkBM1pWsSpwk3H/wgMlkTD4vNrGWmbqIHnHapDakVHWMGY0GxFGEqiiUK2WymSybm+sMBn1IYoIUJDZtzJq6mIaDEYqspPa6kGvXrpEkSQq8rVAoFGYTj8lEgMmmDCpVUUQFesYm9EOitKFA8GR8QfT3gtmUSNE0iqUSMaLdR9FE/rM/HGBoOpommt6M1PklrN4yiqpgZ+xZ+1ecJHi+mAgoioyua8SyhDqWiWMJIwX/Bb64VEZhAHEs6i3T93A0GokPpmWSy2Yo5HPouoGEmIzIhsGZ06cF9yWKcCYTHEe0rmWzmZTJI3K8mqaxvLxCFIaoqowsK6kLqECxUGBvf49ut0MURDihy/b2A4bDgaj/brc4OjwiCkLy2SyKmjYrqCqqrIjMfRQxHI/xPQH7FE1/Co7jQQKu6xFFMaZpYRiiPUlkhkezSY8sqRiaBHKEpupYlk1f1ZCSBN9ziaMQXdNSfpkOkkwkpwq7qtFtd7h+7Rqu41KpVLhw4QJxFLG4uEC73eaDD26wvLxMGIacPHWSc+fOUq4WaDaPuXPnziziGAThjIsgyzIJLkkilH3fD3D+/+z9Z6xleXrei/1WTjuHk0Pl1FWdw0xP7hnODKnAoURSuCJwryj5SsA19EWAPhgGZMMfJcCGcQ3LEAzBuoZtiZQokQokJzWnJ3VO1V256tTJYeewcvKH/9q7qptDanSla0gyV6O6u6rO2WfvFf7hfZ/n9/gBeZZTLpXRVL2YbGYyY6GeEL53oXojgpwMTdcpV6tiUJZE90ySZaQ8I0xipp4r1AOqxuHhIb1+nygSscK1qhi4z5w+QxzHPHiwhabp5DmC2xSGfPD++8L6WSScrayszOXxSSKSE/0i8XA0mtDv9+dKpkqlQhyL5AZd05Adp+hszuJsRQdLJKSM59HR86NYjM+814ZhksZpkahhFeoqsdFxHIcgihgNpzx48IDdvV1efvlzQplRTBTHx8eomkaj0eT45JiDg0MAWq0m58+fp9VqsbO9PVd4TN2pkFIPBvieO4/m1XWdMAy5ceMGuq5TLjvzzYbvC8bPF77wRcFNaDQYDgWTTJKUYvwTqrBz5wS7YXl5mVK5xGDQp9gnFV0b0TVK04w333yTvb09TNMsUnWaInWsVEKSFZYWlzg5PsF1XcrlEtOpkBQrisLh4SH1qkiMefnllzm1eYpc1gTkMsswDZ1z587ilGwkSZpD4Wc/f9a97vd7uK7LyfEJvi+61svLS1TKFcaj0TwBhFxYclaWl2k2Guzu7tDv94uOqc36ukjJ8zwPwzCo1evkeV4wDE1UReH8uXPUGnWarSa9YZ9qo4YkQ6/f46OPrzOZjHFdd17ENIp0yu2H27z+5lt86UtfYnlZWMLdqUsYBViWwRNPPMF0OuXO3XuEQUgQhUU6TixS3mQZw7YIooj33nuP8XjM+sqqYNAULK4szwUbLormG+EoCgvIdspJ5wRy2N3fKzz9AYqicXBwwNHhEd1ORyTSyGVcV3CRlpeXRULedEqWpjy4d09snBZEgIJfsKPiMOTB1hbHR0dsb+/QaDaZJSROp1NarZZYeM82cpIEkkxWzFnT6XTOOpmlcOaFaiGIQuJej+F4jDseE3oejUaDhYU2qSQsB77nz58nSZGR1UeqhqzgOSqaaFhs37rJweEh97e2aLZaLC8tUa/VsAyTcsEZS+IYWRFR2rNi0uNQ459loPu0pWv2Z392/C91fNIyNiukqKo2Dw2JC0upYIDMUpolkcCaP0pBe7zAMnudmf18pqh6/FLOFEqAUNqLf83e1qO/49G9kud/yr3wmM0sDCP6wxP8wKdSqcxB2DOGWL/fF/Yvy37MMvboHMw632maEvg+WVE4+w86s48pxB6dm3z+Hudv+1OKsP/YQwivMwQZsSjYpcKiNB6PUWRh4S223PPENEmWobDjCRu4UiTlOnOFvSzLkMN4PCbLcyRZwp26DAYD0jQV6tRmE8MwRNBAknD//v05y61Wq1Gv1zk5OWE8HjMciRTZMAzRNcFHFelTItTBNAzCMGI4HHH37j1c16XVaov0seWlOVrk7NmzQpVT8FlmRUVVVanVapw+fZo4jrl37z7NVpM4iXj3nXc5Ojqcf7Y4jmm1Wjz11FOcP3+OVqvNwcEBaZoWKZwO/W6P48Mj3n77Hfp9oWK6du1JnnjiKqtFGtrh4SHD4ZCtrS3u3L3Lw+2H+IGPbhh89rOfZWNzg5NOlxzQDEMU+qtVJEWweKwCrC3SPe15kInv+/MmYBxHjEZDJuMxfrF/tG2LhVaLtZVVavWaUOYHIeMC+2EUvBqvCA+aJXxXK1VUWexbdF2so6u1Kn4Q8Oof/RG+HzB1XRxHqNFMy8R2LKauK1SvYUCaZbTaTcIkI0oFqN513Xk6qVStzp0YhqELt0AxHwjly+MayJkqPCn2dzmqqs0VKUkk2LSzdZlgFz3Oy3l8nVnMkzMZpfR4WYv5/hOESieKY8IoJAjD4txUIMuQcrAti0ajzlNPP0V/NGDt7RXSWIwrx0dHSEjcunWbSrVCudVAlRVkSS5+SYyGQ450HanVwtTFPmWmOlQLkUpS7GeRJdI0o1yukKYJx8cdAj9g0B8SF8yrLMtot9ssLi4KtqcllEmnT59BlvK5MjmHeepeuVqdz8FSod6ZNQWEI8Mq5vt87iSacYA1VUPXlPn+UJZldE3FtizarRaVSqVQnUvFPoj59YnihMz1SNMMVdWwLIuS41CpVCmXK9iWha7pmKY1ZxlnWc50PCmKZ6JIJyGTS1kxpuXz4Kk0zZCQWVhc4OzZs9jzz1G4CpIE1/Xp9wfz8xYGIb1uFwkwDIN6vVY0yhKmrgjqisKAqNi7ZFnG0eGhgOTLCqqqIMvavGD/8Y0bdDodDg8PmE4nqOqj+SJNE9I0RlVlbFMXTOn/1IWnO3fu4Ps+w+EAyzIpl8v0+32GgwFffeVrNJstvvPt77G7s0On0xH+9zzDdhzsUhlZUWgttCjXS1hlo1DTZIRxgheETKYepu2gmzqVegnUlPHIJwwjDo8P5xLFmWw6iAI83yu4OBbudCxg1wXkOUvEBIvEvFvSaNSQkIiCiCQWm8eFhTbLq6vkZEwnEyRZAUlBN8RNXatVmEzEBnW2kTMsmzRLef+D98nznM9+9nNUyhVKTglN1YoN+GyxKSHLoOsavu8zGAxFtZac1dUlllfa2M4zuO6kKBh4pHFMEokKsFaklPV7fQI/4NnnngfgrbfeAuDcuXPCy7ywgOMIa+JkMhbAbEVYAKqVClIOW3fv4U5dPFfY/vIsw50KEG0UxIXVQaVSr1Jv1hmMhiL5x7ZIk4STrpDeNmt1LCknTmPxsKoysiqjpArlShlZVvACjyRJ8QvgsqpqWJqKmuv0RwpZluCYgv2RRhFpnpOEIWQpiiwhk0OWMuh1SdKESrVEs16n1RKdnkcWEYPPf/7zRHHEBx98wHQywXUnmJZDvVYXUZSpgLcZhsmTTz5FkiRsbW0V94fEyuo61564SvSj1xiNxkWShMcH739AtVYljAIGvR4H2zusLS2y2GxQrlVQNZVhb4AiyTiOw2gyod8fEkTxXJatKArdbgfP9Wi3XVRVFWkbhVx7Z3ubQX/AdDJB01RajQUUXUVHyGtLjsOoN0DJJQLPJSenWW+IAk7JQpJlUoQNtVSqcv/BFu+++y6vfl+oM/7u3/27NBoNLl+5xJtvvskf/eBVLl++jB94/K//h/+BF55/gQ8/ep6HD7f4x//4H9PrdkUKZBjiuiLCXtM04kSorOIkJYxikuGIJElp1JvzjbCmiefMKMDhIBaHYRQRxTFyKFOr17Adh0F/QBrHxFlKngmrqxf69AZ9TEMszg6OjoiimDsPHrC4uMiZM2fZ2Fjn2Wef5/333+fNN98GJMIwot1qYxpmAd1+lGB07ty5YjLOaS+0CMJgnmLnFywxVVVxHIdWq0UQBMIrXaRniGfKmG9EVFXF9306nc78e8WEJwbcJE1xXReAUqlMEsdMoghTN5EkaT7Z1Ot1+sOhSKL46CMODg+4cuUK586dFdJiz+Xhw4e02i0uXb7Eg60HfPDBB7RaLU6dOs1zzz/P0uIitmWJZLZud546d3x0xHQ6ISrSyizLYjqd8oMf/IDV1RW++MUvzDcO47HYzH/+8y9z9epV8RmShCRJMQyThYXFQoWS8tJLL/HCCy+wuSkWw7fv3sEwTOrN1ty+YBjCF/+9732Phw8fsry8LPhaBYgzyzLOn79AHCf81m//C/b397n25BO4ns/a+jqGaXL37l0++9ILXLlyhfNnzxGGETdu3WEyFWw70zB48YXn8QMfN3A5PDzk+PiYra0tVFXl/PnzGIbB7t4OnZMTbt+6Pd8AlWyLkm0L21yhCiiXy5w5c4YL589z7tw5fvzjH3Pnzm0qlQq2bdO+coUwDOcpWWEYsr9/wN7eHvWqgJl/+ZWvsby8zMLyAoPJkNX1VfI84/D4kOEfiXv6ueeeo9VqzRVGYRhy/fp1/uE//Ic0Gg2++MUvijliOMB1pywstPnsZ19mb3ePD9//EN/3cMMAr1CQ1qtVTNOiXK+yt7fHt7/zbdZX1nj6ySfxAp8gikQAQJoyGU+JCi6gLIHnuUXUs7Aqj8dj3n77bcbjMaVyFQmRQre/t8v2w4dInKLklJhOJ/MUQ9fzmExdut0e7739Nk8/8wxPXLkCEvSHA2QEA+Pdd9/l6OiIGzdvsbi0RBzHnJyccHBwUMjgRQqrlIMiyciysMdHYchwOKRWq7Kxsc5PfrrHcDQSIF8gTsUC+eTkBFWS0FWVr37lK6yurqKbJmEQsr21TRAE+L5PpVahVq+J3YCMiAXPc0q2xXA04Dvf+Q5Hx8fsHxzw5/7cX+DC+QusLC1hWyZREdDhuWLNUS6X58qVWTFvdsz4PLNx4U/b3P9ZAeo/7TEr/HzaNifCMh4Vn2bjcK1WQ5ZlwjhGkkFVZniE7FHT5VPFllnxJitQAzOH12OiIUDwH+bR5/M/nUe5FH8izS048Bh7SZLmCAkkig23z63bt7Btm3qzMU+PW1xcRNNEodi2LJYXl+ZqvNmhzpRPcSyCFqSpSLZ8TLX17ysSzTEO+SOW1eNWQ3G+BbLi06qp/5j7XBTvJBGwU3BIKd6L53nzcX/OF1VVms2msNbIs0J7JM6JqmJYJqZlCV5pls5ViycdESihaDrT8YRup4NZBDqcOXeWSrU6V56+8cYbc6RDq9ViYWGBk5MTRqMRvX6XnJzTp08XCAbmBbLZRng0ElzUn/70p0iSzCuvvMLy8hKXLl7gwYMH3L13j2eeeYZms8ne3t7c6jdTWrbbbcrlMicnJ/z4xz/m1JnTJGnKv/13/5bpZMIXv/QltMIaderUKS5dusTKygqWZXH79h1kWeapp54iDAPu373LjZu3eP2NN+ax67/5m7/JhYsXAcEkunXrlkjzfOstjk6OOTo+JggCqrUqv/brv8bq6io/+tGPODg8RDV0ypUKi0uLRFGM63siTXd5mXqjSblaRdV0sqLx0yrSaEPfYzoZ0+l2yfOc5pKYKzc3NtEVFV1RGU4mTCYTtra25oxBCYnRYICua1SrVRr1OrVqTbBu4xTDNCiVcloLCzx48IDf+Vf/kmq1xsLCIqurq7TbbSzLxCnZbD3cJgwD0jiiXq+xeWqTIE7xo5TjYvNdqVREQ61aKaxUoqkZhgGWYaJqP5vjl2UC3hwGIn1upp6fWeLG4/EnQkOSJPlEWuYn1LL88bljhp0R45+wgmdZRhhHuEUa5+bGBs1mg0atDoCCUIN++StfIgh93nz7TW7fvsPO9g5bzhaj0RjXc2kvLfHlX/gamqphFm4UXdPmxVZdUqmUShiaKoQDxZ7XNA2xzsozZFklyynSdyfcv/eAzskJd+/cmX/NxYsXOX36dOGoMPF9n7Issb6+ilbY3UtF8nj+iWKbaC75fsBoNMYwdFEQcWzKlQo5FMFYounQ6XRQVQ1DNwumsUEUCwi6qetUK2VOnTqFY9uPrMOP2SVnzKTYFWFUll2iUq3RajZptUX6saEJl4RlWfM1gud69Ho9hsMR02KfMJsL8lwUqIWoJiZLc2RZ4dTmKZ555hlK5XJh500KZqREp9Pl5s1brKwssbGxwfHxIcdHLo4jAncWFloohZLz+PhQKDInE2zLEUEsUczdO3eo1eqcPXu2QHroWI6NaVv80Ws/4P333hP7ckWmUp6l7yUoioymKjiWQa1a/g9qYvzchSdIkRWwbOHlVBSJLElJspw7t29hmhb9bgeZnJdeeI5yucTy8iKyqiGrKjdufMzJyRHuZJWw4mBoAsUlSzCZjLh//x6NVotytYaqKlQqFQzDJo4SLKvgBUUxcSJSwyQo1D0eWZoQR6GQPc5Sd/IiAU5VSdOYLM0IfL/wfGtIxcOs6SJRyLQcwjAhDGLSVCKMQvLMo9fv4xbE+Jlv+OHOLr4fcPbsRaE8MW0URSPLJeI4JSMEJFRNww8i4iRG0xVyyaAqVcjSjOGoz1vvvMl7H6g06jXxkBY+8Z2dPcplh5WVdQLfIwwCLEtwZQI/EFwp16VaqXL56hPous5gNMIPQzRdIwx88izFtAT8MopCPG9Kv9cVg14QoZZlZE2kviiyjKwImbRmCGbMaDxhd++ATq9bDH4S8ckJuqoxGomkME3ViIOQLPOYFtyiM8si0v7k5IQ0ScmSpIj7naKaFrKmUjZNDEUhj0IkJKqWRZgk+GGEqSgouoYqgZQm5GmMKkkst1u06zVsXScMxTkI44hQgkargabIRGFAEkeiKo9QYUiSSFLqdE7odMD1XGzH4crVq7julN3dXbYePmR3b5fDgwNGozEwY5UsUamIiTiNIqaVMpIEvu+jGSpaKpQLeZbTOekiayqnzpyh0+1xfNJhbW2VarXG/fsqQSA6LI+SVVKgSCUw9Dm41DCEmm48GlIulWm36lQrJdrNJsPJiDCOKJerQkGTK8RRysT3yFIJQzUo2xa0WwyGQ+LQ5+233qDVarO0vIhtGZw/dwZdUzg82OO3f/uf8uMfv0az1SLPc5599rn5Jq3f73N0fIwkFd3AIh3uiavX0DSN4+NjNC1EljQ6nRPGkzFIYrIxTB1VU2g0GoKlUnKYTCYMBkM8z8fzfLGY1kS6HpLEeDLB8z3CKKJRb7DYXmC56FIcFWkVv/3bv10UZgQb67Mvv0ytVpunLs44Ta7r8sYbb7CxscGVJ64UHIJpoUAUiXpaFDFxXcI4xAs8dnZ3GA77nD59mnZ7AadWxSrggrPJYdbpsAvb72g8JssEzD5HElYeTafRaBBFEYPBoFigK4XFOCtiV2N29/dJUtHJXFpaxLLFAmQ4HHHr1i3iOOb8hfPohiHsl0XXcH1jg9WVFaaTCTuPqZguXbqEosqMJyPqtTr9/oDbt+9wdNRB08Tm4oUXXiROYt597z1u3b7D7t4+cRTNiyBRFNNoCEbVwuIi29s73Lp1mzCMabcXWVoSvyqVMlmW0Wo2MUyL1sIiigy5DOPplCAMeflzn+fS5StEUcjS8jJBoQIMQpFglyYpFy5cYHV1FUWRCcN4zstJ05R33nmHGx9+WMwDBm4QEYYRxycd3OmUXudIWHt9j3azxfra+lx9srC4UCSuinOnqso8irfVbGKZFgxHgj2UCr7SqVOnUFSVvf197t2/z42bt5hMJliWRZrExfXsiwK6bRHHwlpy6sxZ1tfWuHrtKuVKmeFoTJJmnD9/njAMCIOAaqVMyXE4c/oMlWqNTucE1/UYjSZUa1W+9a1f5sKF80L1mSXkecbmxibNZpNeT1jSX/nqK4wmEzqdDuSCkZHlopuZ57PET5uV1VVeeuklXn/zTe49eIAXBKR5RqfbFcmV0ymGIZIwwzAkCIK5mvnMuXPFGCRSLQ3TpNfrE8UptlNmYWmZVquBWgDcR0VKUbvVolat8uTVazz95DU0XUcStWQUVWVpScBPn3/+OVZXVyGXME2TarWKoesCupqLJoCMRBQnTD3BMKnWqhweHzPxPN5+7z183+O5Z54ly7J5clGzVmdtZZl2s4ll27i+TxCGDAZD3nj7LcrlMmfPnJmr05CEktcPfMbjMa9+/3tM3SmmafDktWt85ZVXWF1ZxTQMEZqRpkjk882AKDbn8zHnUQbto0LHp5lBs43D4+qnPys6/ac/xDmVkaSZfewRJwnEfSdJkijMhuLep2CoGLqOUdWQZQVVfVRYeTw9bcYAy8kJwoAcY871eNxiNztmDYvZn0tQ8DtEomqeZyLxVJbRCiZnVqj1MyFdIElSur0eo/EI1/fRTANZF7b1bqcjWGqOw/LSMoZhzDcA8/sNiIq0x1kwjWWa8695/D0//nn/JKXeJ//8j6fgzc7Tfyis/E8+PqU4y3Ohbg8CXM9jNB4Lx4HjoBesNUmWiQvFJDDf4M+ux+PF4uPjY6bTKTdv3sKybK4++WTR8BXFO1mRSdME150yGAyIopDPfOYzQimrKhiGKRIxw4AojNg9OGAymXB4eIg7Fc1mgOXlZarVKo7j4LsCBbG5uUkURWxtbdHrdRn0u5imyfr6GpPxSICEFRXD0CkVG+RaTfCHojAiigL6gx43btxg6rrUG03aC4s88cRVzp45y+raqoCfmxbb29v0ej2CwMe2LU6d2mQ8HnP3zl3RsM8y1tbXOXPmLLKs0Ov26Q/E/mdvb4+9vT22th4ydV0CL+Clz7zE2TNnWVxaolRyuHT54tzqNJ5M2N7ZEWoPVeWD999nZ2eHKAwwdI2lxRaSJPg20+mEbrcjKrez50WC6XSKrmlzDhq5YPaUJJEa53leMQdpLCwsYBg6tmNhFFxgWVGK9HBhuzQ0gZE4e/oMm6dOcfmKCHyK44QHW1sYBWu4Wq1iFbY1EEVbS1eoVSvYliG4P1mKqhrIskgsziRJKFfy2fMt5ovRaPKIAaVpWKaFIomkdOUxO2pOTq1SFc9vsSdTFG1e1J4JGcTvH1ljH7cEF+YakMSfRQVvp1GrF0FZQ8IoIgjDQrkkkcszY54Izvgbf+03uf7Rx9y9d4/bd+7S7XVxA4+jbodSpYyqaZRMCzWH0PVRkZEz+Pjjj7Atm+eeeQpV1+fr4m63I1LaczBMgeL44Ws/xPcDqtUaTnHf1Ot16o0aw9GEIAx5uL2NYRosLy+Le6pWFeibJCLLU7JMrN1mQPJZyEBesJpn45NjO0QVkRYsVIcBsiRRLleKvZgOEkXqt1hLOZZNEMJ4MiJJIizLmK8tVUXBNkXSnRZFZIlgTOayRJwmeEEg3FGyRKlWxdANwTnOc/I4ww9COr0+kixRbzYJo4g0SQiiADkVybthJPi4zWaTpaUlzp47x+raalHLSOdukihOiZMEPwg4PjlhOp3iOELB1mw2ME1z7vySEFzPhfYirWabRqNBtVojCmP29vaJ4phnn3sGz/PY3dvhnXfe5oPrH9DrnqCqErpmIUsQJ+EjVV/hJosioVycqYd/nuPnLjzlZMgymKaBrmviYSMnz1J2drYFIG88RNc1rl4RgLmV1WWSLCNOU+7eucF4NMT3XOIwQFPEJhByPNfl4GBfvJ4kYdgGtm5hWwpJIjoScRThux6umxL6iWhaFkDePE3Ic/F1hq4BErk8i6VXSFIRTx5lmUg5s425bE5I5GwMw0LTA8IoIY5FlTiKQhGj7HlM3Cl2qUxNNzg8OmEynnDpwiVxcQFZVslzmTjJSLIYJBlV1UhSjzhJUDQFQ5GQVRl3MmU0GXF4eMxoNOKJK5dpFmC0NEk4PDxEVZdpNdv0+z2iMMIwTCxLRF/6gbCNNJtNTp09w3g0ptPpEBaR9kkcIZGjqDN4ciwiM8djYbVLUlLTIldUIT8uZJOyIqFp4uaeTF2OTzocHB3SbAqFzXgyRZFlJhOXcrlMq9USapYwwA9DFFmm3mxgGIZQiBVdqajY4JRkGUWWsA0dTVHwXbG5cEwHRZJIohgUGUVTUciR8kxUWjWVZq1OvVLB1FTSSIIsLbqWGTINVFkmiSPSOC4KTxJZKiBpkiQxGPQFkDzLWFhY4LMvn6Lf73NweMjBgVAvKMVgrBXw/HYhRbYsi8i2KJUcZEQnPgp0yMG2bJIko9vpUqnVWVteIYxiur0e7XablZUVRqMhw+EIz/dRFYWSU4I8FVVrSULThRzT0DV0XSWKIzx3iqkLGahji4E3iAOyPMOxHSzTJghikjhmOvFRJZXEtnEMA1PT8FwxgN/4+GMWFhaoVUvoqsLa2gqTyYRer8P3v/9dNE3la7/wTRYWFjl37vx8cdfpdNjd3yNNRMHk4OAAJInTZ84KpcxkiiyrKLJGt9fF8/1CFiuh6xqSpNNsNnAch3q9ztHxMdOpy3Q6JQgCnEoFU9NQdRGj7vkeQRAQJwmmYdBsNLBLjrh2kzG9Xp9Xv/99Dvb3OHvuDOfPn+eJq08QBgFxFM/HqZnN8/r16yiqyjPPP0c2GgmblGUhSaDqOqouombTLCVOBFB5d2ebSqVCo9HANA1s22EGRpwdMwVRvV4nimOCMMD1fCRZXFdVE123wWAg4nVVVSQO5ZCkGbkkEyUpJ53uvOPVbDYplUUayHg84ubNG6iqyi/+4i+SJImIUY5jDNNkYWGBtbU1XM8rIowFe2lldZUoiTg+OcY0LBynzM7OLlH0wS8kgQABAABJREFUgNOnz9JstXjm6jV293Z5t0hFO+l0sArbZxiK8c40LQE9rde4d/8+Dx48QLCGGjSbzeKa2mRZRqVcwbIdGo0GYegTRiL23vd8rl17kigK2dndplarERew9Rn0Ocsy1tdFsUgoaorNTLGoun3zFns722xsbFCr1anUG6RpxoMHWwSBT+BNCQIf3/dYX1vjzJkz8y6/XVhsSyUBvfd9T/A1mk2SWEDpAz9AopBsWxZLS0sMh0OOCyXO7u4uEmCaJuPxUCxMwginVKK90BYyaElmZWWVCxcvcebcGRRV5d33PyBJEtbW1vBcl+lkQrNRp1qpsLK6huM47O/vzyPHK5UKX/7yl9jYWBezbLF4Wl5eplarMxwMKZVLPPvcc1z/+GMebD+kXqtj2zZJKmDpeS4A/pZtsbC4wOXLl3nvgw84OTnBDwOSXFjbJuMx07GIKjZ0Fc/3cT2Pk25HzGeXL9NutVFkMe9OPR9dN0jSHNOyaTSarK6uoSgy3/nu9+j3e1iWRbUqrMrnz53l/Nmz9EdDPN8X/AxFptFsUC6VeeqpJ8nyjDhKMHQB2dVUTSyAeWQdSDNhmZZlmXKlQm8w4LBzwt17d4njhKeuPUmapvS7PSqVCu2FBU5tnuL0qU26gz5+GECa0e/3+PjmDTbWN3jiCdGgUQsVSFoUnnq9Lq/98DU0TePixYucO3+WF1/6LN7UE02eSIyxmvYIzp5lmaiq8WizLtZI+Sc2tZ/g+vyMwtOfHf9xxx8HfM+eaOln/L34uxkE3g+DIjp6RJ7l1Bv1mUdF4AaUP64ymL3WLHQjjCJkRUbTVSTkT0DHH//6T1/3PM/njdA8z1AVeQ6mnymnkiIIQVJkojjiuHPCZDoliEKSLEVWFaaeS7dg/KmaRsspzeG5s58z+/+0SBQNgmAOJH/83H36Pf9J9+jPuqchn8+RP/vvP/naf9Lr/WnvCWY2XFGIS4vo8yAM8Xwf2xHBQ2YRPJAVnLjxWLArZ5ameSFQZi46GwwG9Ho9drZ3qTcahR1OxzQECmJWCPR9j9FoCEhcu3YN0zSolMtCpZAkGJpYT9998JDj4xMODo7w/YDJZApItFotHNvGME2ColG7tLSI67rcu/eAbldjNOxx8eJFNjc3uHnzJp1Oh42NDSzdwimJ5vPy8tIcxbG985A8z3j48CG9fp9qrU69VufsmXNsbm7QXljAMk1Mw+Stt97i5s2bhTqsxsJCW9jxUpGanAPt9iLnz18gR2IwHLKzs1skiu9zeHDA4eHRvKh49epVPvvyZ2nUBTfn1KlNNF2nUqlwctLh3r37NBpiDXjnzm3hMkgSDF2j0agxdSdFcrDHYNDH1PRCQSiKlyKEQzCN8iwnl8TzKymKSAMDut0ulmlSP1WfM45mitNHvLMEckSSmlNibXWVyxcv8tKLL3B/fq0OgZxnnnmaUsmhUSTUpVkiGvOyTLnkEMc6sqgeC2eGJAo3M/tZluXi/ixCpYbDUQGZl6mUK1TLFVRFIcu0xzAWoklecsS6ReYRK+3xAI5Z4elnPaOf+P/iPhfBWFAplxmPx/OxK4piZF3MzTPbKhJsbm6wurTC2uo6m5u32D84YHdvl86gjzMYUKvVaLVabG5uIucQ+wGJqiHnsHe8UzRurqLrorHjui69bkeMqbKEZdmEYcwHH35IEie88MKLOI7N0tICGxvrbGxs8NM33uTh9g6TokG2uraGYZqUK2UBep8IdEuapSQFXkeWZ+mT2fz3s+WEaZmUkhKu680LT4ahY9ulIs1cneML0mJcVFQZWZaEKrz4HDOloiLLGEWqnqIoyFkuCk8SJFlGEEUkeU4uy1ilEpZlMZ5OyOKELM8I45jRRDQcK7UK8sxxlMZIsoKqi3CzKIqoVCpcunSJ9fV1Wu32nD8rlKwSaRYTp4lADgwEP/XC+XNUKhVarRa6rhfOphQkAeyv1+pza2u5VGE8mrC3dx9VU7Ftaw4Mv3HjI95443VGoz6qImNZOqJWMyWXhdJpVgQVfK4QeDy1908/fu7C03A4RFVVqpUKjUadVruJpogH57133qPf73Ph7FnqtRprKwssLi3wxBOXefhQeILTYIqSxji6ga0bTIcT0ixjMuyTRD62pRGHPoNuhzjLkGSJVrtVWMUcolBDyjOSOCQsCgQywudp6BrTyRiynFhJ5jPKaDhiX1VwbBNNVQoAm0StVmMwGBKGMVGUECcZll0iTeHWrdsEfkC9qBi2F5aoF0lcnu9z9+4D4jjFNG0cuzxXCyiKimqoBL5IQKhUS8jqMiN3QuyLSuhMHoesYpglTp0WSXSWoRUbB5usUFQEQcCNGzeLSnZOq73A4uICb739NoNBXzBYZJlUgkwWvzTLwDJNxqOwUASJBDlZKmMZpuC39AaMpy69fgdZVgqoOCiyiqEqGJZFt9/n4PiYOEsoVcokeU4axcjIhHHKYNTFmbhMvRBJEu9PdIdk9vcPMQ2xwDdNk6xUolIpo8gScVJ4Y3MBi7QK1VSjXELRdRTTZGd3l4PDIzRZwtBkSo6FaVqsLi/SrNdRJBlVklBlCcXQAYmskLmOBwOSKGZjfR3P9xmNpyItIUtJshDklKPOAYNxDy/y5kquUtXhtL4pCh9RxHQyYepPuXnnVjHpQNUpsVCvocsS2kx6KYkoWFXVWFpcoT8a8tbbbzOZTphMx6TFAlHVBA/k5LgDiIRITdcwTb1I2KiRZ2LxkmUIxV2Y0O+PuHPnPqqiiAVOLgaZaqUsEiZ8H/IYWcoJApfucUyt3qBcLrG+ukIQhBzv73JytM/R4R6aIby7lZJN2bFIMlEA+NGPfgSSQrVSFQublWVq9Trnzl9geXmVWq3OO++8w3g8hlwUYlrNBVzXZTDosbC4gK5rlEpiYPa9SRFNL8IBxMKuz/HRkVDBZRlTz0XXdZabbWzTAKnJZCLsYaHv0T05JjkQi2/ShLJtsbqygu8H/D/+yf+TJ554ghdefIH11VXarSYXL15icXGR//5v/k0ebD3gd37nd5BVhedeeB5FVVleWWF7d4fRSDDiGs0mzzz9DL7vs3+wz/7eHjsPtxkMBty/f59atVp0GgWvYDQc0Ww2aLVa1BsNKrUqH934mG63y+bm5ryjKkmygMIbFuVSFVVXUFQBLs2kHC8MsfKMZrPJ+sYGly5f4sbNmzx48ICf/OQn5HnOqc0NLMvi5s2b6IZBqVRBlkUX66Pr13lw/z6f/9zLVCsVrl27huu6/JN/8k9QNRXLMhhPJhwdn7CxcYpqtUazvYBt20iKwmg84eObtwRc1bLZ3DzFQrvNzVt3mE5dDN3g+PiYD97/UCyG+wPW11ZZWV6eF+T29naJo4jxZEoYBSIdJA4Jo4CDgyNG4zGBJ/gWl5+4KhI3C6nyjLuRZhl3799jMBjy4Xvv0e/12dvZpVKpoKsqSRJTqZY5ONxne2cbp1LDtGyWlpfpdbt89OH7JLGwTH/mRdF5XVtbxbItoijkpNPhu9/7Lnfv3eP1N97gz//5P8cT164W6YMZ+3v79PrdQkkwwDB1VlfXuHDhApVqha99/Re4ffMW3U6Hw6NDTNPkc194iSAQiUOmZSPJKuVqDbtcJk5zJu6Ed997j+lUeOkvnj/P17/6NWxbdGENS7C11tc2QIJarYpc2D/CMOTO3TtFnK5SAOUlfuu3fovFpUW++UvfJApDGpUqZ8+epdlq88Y7b3F0eMStGzepVWv8xl/9DSzT5P2Pr7O9s82g1+dOIWOPorCwjtewLYtyqUS93kAzdK5eu4oky1RKFRRZwZtOGQ5HbG09pN8boGk6QRjR6w+4fv0jJtMpWZ6jajoffnidixcu8I2vf51atUr3pMMk8AjiiNCPSJMUtQCXi0a2hKTIWI7NrDkmbDBiUylJEmGS0J+MKFXKXG02uX37NtPxmL/yl34VWZa5e+8ug8GQhw+3WFtfp728xNHJMX7go5li4aZkYpGdZCnIYNgmtmNTsmz6oyHjyZhXv/NtxqMx165do91uc/XqVTRNp3simFfkiM2AqookOyj4Ho8UJTmF1U56rAD1KQUIMLdL/FnR6X/Z45G66fFzLc9VAkkyS08Shafd3T3yHDY2T1FybFH4zgWvcFYsmi2m58UjWShx4zgWMdvFz8zyR167mc3tcfXRTKUws7aVy2XGkzFvvPcejuOwvrZGuSSCOqYTociq1+rohsHy4iKOI+wRliESKU3dEOoZ32c0GmEtLgrbYBh+wj43s+4pisLa2hrkUCu4KLPN+Z+mdPq0Kmr2Z/NNHp8EjStF427GHP306/zPPbJPv0fAKTlce/JJNL3YyKsKkiyzv7/HeCS4b7OkTVVR52ECwNzS1Gi0KJUqtBeWHjFhAMeymEwnIinZ98lSURxQiyJhkqQcHR2zv7/P7s4u586eoVar851vf4f9g0PcqYtlmDhOmTAUgUDNVovFxQVu37zJ9sNtZqm/6+urVMplVleX2djYYHV1ldu3b+O6LouLi4LHVC7NGWXTqYDkHx4e0ul0aLXatNoL82aGaNjUCIKAO7fv8HBri62tLUajES+++CK6rvMP/sE/4ODgkLfefU8oZkslPrpxgwcPH3L2zBkc2+b4WNgH79y+jWEYXL50STSus4wzp0+xurrM7s4OWZZyevMUajF/2LbF+fPnGBVN8Vs3b7K3u8u3vvUrnD93juOTY/b299jf3wMybNvk/NkzNGoN3nzrTYajEWESE/ghpm5SKZVpVKoYto2m61iGiZQj4M2yzGAwIM9FsaVer1OrV0UFVwLP8wmDAEVWcBynUFkr7O/tk6ZJwW8skeeZKFyqaqES4RPQ+vFAWOCXl5YwdQ21KNzkmbBEGYbM7t4e/d4ARVdRFJVapYquiSR0TdcQm/PZfJCSFLw4IeoQ+5mZrfvx5+zR3CKsvcISnBcJZPLcwZMjrN4gGD96DrkFy9kSuinGiySJiSXIMhnFEM+vJAYm0BSqzRqrG6usr68LLpkuWEVGJhEMxmwH92gvLbK4skSo6yItMw6I44A33/wpjlOiXqniez6j4UhA3U2De/e2CfyAr3z5S5RKZU6f3hSF5Dhh6+FDXv3BawyHI6I45umnn55bWE1ThEzFhcpRVmQRHKAbnxi/RBqd+H0SC/6R49jFmvUA13W5c+8e9XqNKxfPz23QslQkXxqmsOKFIUkcUa/WqFQrrK+vz9MrAeI4YjqZ4roucvE9OULdbdo2luNgOSVSCeI8xSwJ59YkHKM7Nisb6ywstGm2Whwe7jMYDtg72BeNwaIxn+cSZ86c4y/8hV9mc3NTjHmyTJaljKYTwiCkPxjOrY6nT22ysbbG8tKiEEjIM+HFTAEsF4DxLgvtRUpOYSV0HN566y1G4xH/9J/+U+7fv88Pf/gaw/GAyWSMJIFpaoj4Nh4p8hR53oSbqfwODg6J40cigD/t+PkVT7m4PTVVbMYcx54DzsIwxPd82q0WrWYdVZEwDZ1mo8b+now3HZHFEXIhd9Q1nbwAjiVxBHmGpirkhTrGDyMyoFwuiaKGIuLHdVWb//9MIKgW8jdp/pBmIMlIyIRRJDZTmoIiP+qCzW5WIZ0XvxRVQzcM3Kkrqq2mhVqkbc2UEZ4n7FKKLOCiqqqiyMq8Wy/LolsbhCGarmIjGD8zGLrw/As4m6YV9ipdIwq8uWSQItYwyzK63d68im+aJo5TolswePRi8kvnkmwE4FtTimpvRpTEBWleQJFNy0RRZNIsIYtEx3bOoyp8yUoBdZ1MJ2SAZuik6SyqVyLJclw/IMtB1bTi/MvF55SYTCbEoXjPYkBVCq+vLiaAMEcVIy/IMmpRPTVME7tW5eTkRDSjJAHtNA0d2xZwV8s0BJyv6PLP/M9Z0f0JfJ8kiXEKNUCepaLwlIqIW0mGwPMIQp/0YYpTKrG4sIiqKWiqg6LIxKpSbGhjfN8nSRNhXWy3addq4jor8rzqrmmqiNWUVcaeK1hckU8QBWLTA+imiW6YRJFQ3kmSjJHo5LkoMhq6RhgJcL1QEYlrEscJ4/GESqmEUyivZFUplGwislWRZXRDhVTwDqq1KpqqUHYcNFVhf98vngNRZV9dWxUTkmEQJYK9dHB4SBjG9Hp9KoXyRtU0VlZFIsnSooD7SpIs4Nh5jmGYJEmMohb3a5piWToSYgKAfL4BlyRZJPlF8XwCjeMImEnVDVAErE5TFNIkwXNd/CAgSVJUyxCfqVzG9TzuP3iAquk4pTLk4j45mySUy2UuX7lMmqXzLmav36dWq1Eul5lOp/T7PUxTxJ3XajUsy8LzPMajMaZp4bpuATV2cewSpilg6kEgIMWO4xTRsQZhGDKZiLh3WZLnKTuzbpWAG5poxaY7ToU8OMtyNMOg3qhz+swZOt0uR0dHPHjwANd1uXzpIo7j0On2sG1HMHckCVmS5ukSQZH64TglJtMpt2/fod1ucubsGaHSAsrlMo1Go4iAFsWDqesxHI6KiUyh2WyxsrLKdDrl+PiEXrdHt9vj5EREOftBgK7rIvnCEhYs3/MIiwjVHBgM+mTkZGRMpoI7Evohtu1QLpeFVc4TlmHf80gKy1K316XX7bG/ty/4Bkki7AuyUkxwWQHFDsimU5IiNhZgOBoVQQTCJlMpl2m1Wzglp1CFBkzGE05OTrj/4D6u51Eqi+TFLEvRdG3OZ0mSmP6gL7rDtsXi0hLlapWjwyOm0ylZsbBstdoMRyNOOl0kWUY39EIur4hOZ5riulP8IEBColQqs7a2hl3E6Hb7A4IgFEofXWdxsT23gz98uC2UbVGEIitUKlWiKBL2hDii1+sRhiGGblAqlSlXqhwdHfNga4t+t4djWqyvrs5l10EQIOUCmNvr97B0E7WAbZqmiaEbWI6DXXKoVCsYplmwDxNCX9ghB4MBQRhgWhbkOb4fsLe/z2AwYHllGVXVcAvLyNLSEhISQSgipoM4IvCDwqYm+Cxp0VXPAEkWPMEkTZHiGEkSQRhZnhMXc2jZEKooVVGQcthYW0eWZd588w36g4EY48lRFDG+JHFMo93CtBQkSWy8dV1HkmWC0MfQVBJNZzgc0ul12dvfJwoCnn7qaZZXVlhbXRMNi9EYVVHmsE1N0wQjougi57lS2KUfHXOI9J+yt/4PBTn//+L4WUWy/1KOP7mQkc9w15+4JjOrdJIk8+8Nw4g8y4s13Ezl9JhN7dOnRHpUVEqLsTzLM3FTz+0w0uxLC1ZTPn9Pj3NfBHha4qTXxQkCnFIJWVEwLYsoFnMzEoVKWhStS46DaRio0iOVVBRFAjlRvJc0ScUaVdMebVqLz1sqlZAleW45/Fnn8NPqrD/t3H/66+afcfYaP+fr/KlHoWTLCrt68thYoqkadtN+VAgr1BXTqbDF8ViyH1Kx3s3E9ZhxukzDwDRMmq2WaI4oRWNbEsm5kiSJ5OckQdP1TyQHBmHIcDji8OCAWrUqrudxh26ni21bYnzXVOJYbNRUVcE0DTzPYzAYzC3hpVKJaq1KvV4XoN+COzVjOmmahlLAskcjEW0+6A+Kor1KqVIVtiGEwqVaq6EbBr7vCzXXzi6DwYAwDOf3xXvvvc/R8RGHR4e0mi1a7QVRZJuMsUwD27LpdrtMp1Pc6QTHttjY2CgCfHwMw0BCYjIZz/k5crGvUhUhUhgXIOXJWIRrLC8t0W63mU6n8/TYWUqzoRtYlinew3iCrGuEhWU6SzIUZGpF80qRZbRZczvPRNO4WLNbtkVOtbBiCWtsFIm1ygw4DRD4AeQ5WqH2yPNsbqkW87BcKGRFQl0cRYRBMLfCzSVzuWC5SYpMGISMJ2M0wxDr7FYL0xCfSxQBZuNKTpLM9lXiflMLhVMcx/O10Kefk9m4JtZ4wjUxH+vmg91j1lRJfK1t26R5zizkKlWyuWIFRFFXMJIFfsZ2bBYWxHVyDBuyHG/qEkQJgScUhlEYo1sJUrH/zvKUbqdL4AVoklqwX8UYSS4xHol74emnn6bRqNNo1IjimMl4Sr/f59at25iWhW1Z1GoikMayLaGuKc5B8hgDS5Jn+07Ecy6LcTkpClRxmuE4gq+UpiJIK0oT0SwoxoIsS0mTRKxTNA1ZknEDAf42TXO+hp2t58WPyubvQVUehRMI0LyKpuvFuqMobCkKspKTZjmyqlKuVihVKpQrFQajAbovXFFBGApXTiL4SY1GnXPnzs1T7LJc/FzfF7iSwWCA67rkeS4wEq0W5bIIQUnTuJjDHjVNZlZr3xfs7JJTEsyxMCQYBdy8cYO7d+/y4YcfoBvCfTPbx8/uKYEymt1t0qPzkSTzc/LzHD934em5pz6D503Z2b2PBLTbTd5+6z1u3LhJs7HAE9fWePnzXyDLE/7Vv/ptzp8/y+Wrl3iwvcMbb77LdOrNJWBLi4usbWwQBCG9wUQUeTQNp1TCMh0GhRe1d9wjzyGJEmzbYXFxEdtwSOwEcgEJp3iYDNMAclRVLGolRSbNInx/SlyyMAydhYUlyOHBg4fs7x8RRxmTqcdJtydo7orK8soSzmhMr9dBlqHVaBKHwvq0WK9TtQxKJQdFVQRrKPbJM8gyoegJo5ggiMhziTyVsXSHQE/ohSPIc0xTSN4c2yFNYuIowJ1OkSRQJAmnVGKh1eT46IiPP/4Y0zKxbBM/8EjTGMeyUNptLl+8gFNy6B8fE6dJwQ4QlHnT0FAkkboUWDYrKytIukgMlFQJpJxSuYKum0SBABBHYUSWpMipsBGkZOS6iqQoqCmQ50RZSpJBrkrksqAUCbOkNJeHd3tDLMNgfW2VMIvpdPuUSyVkSUVTDTRVWJjiNOH45IQwTTgaDtB9HysI8OMIzTYJ0pAsyllcaoq4zMUFZEXh7oO75EUaUbVewzJs/Dhk4k3p9Xt4roemiwlxsVkDWSaXZLrdLp7nIxm2KPDkICUZWRSLRV4YsdhuU61UWF1eEbyXzgGDwYB7d+4SRjEff3ybRrVMueSgqRKyAoMffB/LMtk4dYosDjm93GJn74hOt8ugP2a04HH5ylWiMMQdTxkOh3R7XaLIJww05DxDk0rCVqfrbGyeIYwTTvwpeZKi5xKGpqHkYBoGkqZw2DkCYKnepqk3OVtyODw84v6D+8RJSJ6EKHmCqeScWlskCERyROJO2L5/n83Tp1laXmbY60MsmGxZDlv3HxAEETc+/IidB9t8/P5HnNo8xcLiIkEobH79TlcsnmyTNI4xNINpOimS4kKh4CuAfL7vQ7ExrDdqIlWkSHNQdQXd0Kk0ypQcEUd8dHyE607I84yhOyzAqhLEAg5bbzSo1uvU2wuMx2N+9/d+j7feWaHdavLg4TanNk/x2Zc+Q8mpcHrzDHGU8J0/+EPW1tZYXFrkrTdf5+T4iFZ7AVlWePU7fzRfiDilEkvLa/z09Z+yvb2NU65zanNCrVbn3tZDBoMhi0tLIkGyUsWxbBy7hG05uFMfTR2RJglhKAoLYRSyd7DH88+/wObmKfwgYNAfoCgaSZIxGk+QZZWN9VP0e8IG+tabb3Kwf4Bl2pRLFQ4Pu0RhQuh6qLJCo1pDKmwZhuXghQnfffU1PM9DNyzKlQYL7RXKL9Z56smn2d3bZ29vj+nUE7YNSeb4+AjbsHHdKVNvyovPP8+Xv/xlHm5vM5mM+Ze/968YDof0uh286RiSCMcyaDbqmIaJpulU6g0BqHWnHB0d88Mf/ZjLV65w5YkniIK7DPsD4TG3NG7f+pjJeMKNmzfwXY/pZCImTM/j2WefLWJuS1SqZVZWVjh79gyf//znuH37Nnfu3KbeaKAbJts7ewyGQ+7eusXJSYcgCFhdWeHc2bPUmy28MOLWnbvopsHli5fY2DzNf/Mbv0H13/xbvved71Gxyiy1lggCnyiK+fKXvwJINJoN0kzIqfuDIa/96Ee8+eabPHjwgCevXsW2bJpFEtuHH36I63p0Ol1sx8axbQa9Lsclh8sXz7PUbPKXf+VbYiGNTOD5fHj9Y86dPUur2eR3f/df0el2+JVv/QqOY81TVCRgb3eXt954iziKsSwH13WRJImnn34Sz/f4N//2X9NuL7C0tEK328fzIkbDCe7UY3ByQu77/OHv/A6NhQWWNja4cOY8NatC2angT31yI8XQdcqtMk6lTL3VFJuxLCPyAxEDnWbzpJKpP+Xu7kOqpRIvvfg8qgyhO2JluU17oY6s6pSrZb72ta9x5vQpEU2fiwTLaNBnMhqLtNQo5vDwmHq9TrPZBEUmk4SCejqZYJsWpq5zamMdWZLxg1A0ePyA/mBIFIZYps7G5irvvP8WJ50Of/C9P2RlZZm//t/9NZGyKskMhkMGwyEb62u0mm0MXadarvALX/4yBwcH/E//939Mu9Wi3Wpz3DnB8z3OnT1Ps9Hg2WeexbKL4rlp4tg2Ra1gzlV4sPWAo6MjXnvtNS5dvsyv/qW/XOyH5zlb80LHfxquzZ8d/3MPocHmMd7Eo83kLLa7WqlSr9WRcvA8j5s3P6ZSqXDliSuFZU58n6jZiMX0LClysb1AGIV4rkccRrhIeMXmod0UFgcRaCJoEgWiRWwJ83wOinYs0bzVVA13MuHj6x+xsLAggmJsG9Mw0BQVXdVQyxUc26ZWraAqghM5GY3wXJf+YMB4OqVUraAbBmmSYhrCBjZTZvtBQJqkVIrvf9wC+B93PFJ0USga4yTB830UTRWWdmleO/qZqqlPqzpmIR6zr8mAXILecMR4MqXf65NlGasrKyJ9trDYpGmKahgYqorvBUymU06dOk21UiGVhWVxMp4QFZstocpS5+fZ1LWimV74HfOMsmVhmxZDXdiH9w+PkCSZtbUN4cao1lldXQMk+qMxB8cnfPazL6EqCsPJCNM0SbOEIAyYuFPu3LvLzt4O3X4PZDhz9jSWZSIhFWmgEbdu3+X9D66zt3dAGMb85KdviE2wZTEcDfnggw+p12usrq7yxJUr/OI3f4mbt+7S7fXZ399HkmSWFpcZj0d8+OENDN3g+edf4q2332Rvd4fvf/+PSJKYLMs5d/Y8f/kv/SrlSoVarVak/np85zvf4c6tG+zv79Fstvhv/9vf4My5s7z44ou89tprvPbaa7z5k59y56MbrJ/eoFqvASI10NZM4iAhmAREfkQcpSysrqA7Nktry5RrZY67x6i6xmde/mzBX3R478MPGY9G/PTHP0FVVf76b/4msqJw0ulwcHjIg62HXL54kbXlZaaTMUma4JQdAYvunswtj3HBAO12uniuh4QoEru+4IHt7u5y4cIFLi4v0e12iVyX8+fPFw2gByRJgq6qlMslWq02iiyaS5puUSrLKLoBikKSpsIWpzwqUK+sLFGvi/AQ0ZQtBBrkn7r3H7eiSkiSgm3bTCZTDg8PMU0DlpcK27bApvB4IZdiUJGVAlkjkUvCciasZwWEOhcPT5pmyDlkSSaeQ01HQiaKM7LC7igKCCmTyZgoCPn1X/81ZFnh5OiEhw+3+R//x/8LAI1GE9k0kDWDZRQqNY3l9iq6JgD/tmVRrwl1vGWbaJpaCARE4aPslAmDhB/94E36gy57u1sMR0OC6Zivv/IVrl27SqlSFeq+PIM0R5oVGzVNhAsoqth3IonBQZJRDQV/OOLeg4cCoj2dUK1WMQ0DP4gAsHQTGYnhYFg0ovvkxThvOQ4A+/t7SJIkoPO2M7cvC2Wb4Eg3qiLt1iyVhSjF97FkhYquU7cMmmWTkmMhywrD4ZjAD/BHYzRdp1UXNYXdnZ3CzpdTKpeI4pD9gx2kPGdhocnq6hJnTq8LxVce0+t1i/Vnn9Fowr37D3BKNmfPnmZtbZV2uwnkQhBQsM3CqLAPyhnj0ZijwyOa1QZyLmGZFpHro8sKkyDg+vsfMhoNRSKkAoosIeVAItaFkiSJom4unidZFmPWZDTGdz1eeeWrtNvtn2vW+LkLT7ZtI0k51UoV07DIUkT3IclotZosLy1TqpQJAk90PMOIOMkABU0zyRD8ozhOSJIMTdPJchnbdtCLxKdZl8YskpECPyJJUsIgRFOFd/dx6r9gLQhPvvB/CzmaeM7zeadLQME0FEkpGBPCK6mpKnEUMRqOsCwTRZVRVVHlk2WZPMvwXK8oEEVoqoLqFMoTWcIPBDA3S3OkQnoG4sEPg4QoStA0XXyexwaLPM+KCqyQ9KVZOk8dkWVZeLILaZ+sCFtKp9MpOvQyJcdhaWERRVWEZ7+waSWxTlJUh+XiPEiyOCeKqqLp2ifk16JirBYLAhE7G4cR5AjuSy74XKYiCjlJEiErWREXKt6XsDwWA5skolPJc1zfE91EKEB7IgFGwPhElVpRFFGRL+w3QlQlroFSWPdUVViV0iwtlGOxKDwVCYaQi6jQQIDFRaSpeA1d05EU8dqmrpMnaVGgy0gywVOZJRVCThTF+L5gIMiqgqlbVMoZq6trhFOPYDjBdpxCARBDljIdT4iCkGFlIM6bqmHqwvIYxzGT6VSoHmwLy7LwAx/DFBD5NMsIwwhVCSjrwj4nKzIqCuVyiTgIyb0ATZYxNcEuUzNFJDimGaQpUp6iSqAqoKoyigRSnqHI4prapoFMjqsqRGlKGIbzGGBN05ElBcs0ySWJZqPJaDSm3xvMZZSWIdJfJEXIeVXVF4w3VS7iPqW5hSEMxLUpOSVMQ1i+ZEnc77KsoBYdLIr7U1FEmoeQluZ4rje3OZBnKKpWcBlySEU6IbKMZZi4skscJYwGQ9Ik4dat20ynLq1Gk+l0Sq1WI00THm5t4Xku3V6Xg/19RsMhiqKR53BwcCzsw7Uai0sS1VoNWVKQkDk+PkGSFDzPFxyNNPlEt1yWZSzLwjRNHj58SLlc4ty5s8RxjKqqgpEznSLLCrZdEuOZFaBqwgo0S1TUi+S8arVKpVzBsQcFEFV0KNI05eDgYH7eZkuXOBYcuRm807EsWq2W4JEV7LPxeMxgUHzeLMfzJ4IrQl6w+lQsW6guq5UKeZ5x9+5tUfgPxeZI10XKhWFocwZStVpDsVTiRExGruvieR6+J7g4YRAwGg1xXYVRr4/nuQwHA6IgJPB90dWJIhRJwtA12gttVFVlZWWJpaVFFhcXODjYR5ZloigmLTrUElIBQQ+LLmmOXKgPsizj4OgESZI4tXkKXddpNVuUy+V5N0rXNDzXJYljVFV0vaLierVaLQbDEcfHxwyHQzxXcOzqNdGBFj9XjNWKptJqNlhaWhLMK9tCKBpyyqVSoUCVSWLB1hsMB6RFAtvMSqep2lxxkGUZvu8znUxptVtUK1XBqkCwZ+JOzPbeNoZhsri4wnTq4vuRWCCGIeurq1TLZRxHJDHO+lE5Ep7nE6cpzYbgQpmWhVYAvfM8m8+j+cyGFMf4gY/v+/iBj1W8D7EXyyiXHLGo74/IgVa7TbVWE4qgNCtUjYi53FTRVZ1yqSQ2YGmRWFqohAHiJEYG4igmTTPGkylusQgWwNuUMBL3/ngyZupOUTUF0xJwchlII5HWpxYJsFox9puWSbPR4PjwkO2thyRRPOf4lUsl6kUMum3b8y64MuuiFiIREb8s5rcZyDOKIop28WP6lUfHf47KoZ+HrfNf+zFbX80UJKqqUq1W0TQxL2WpGLM1TcXQNNGplmZw8tlrMOdgPl4siQuG0jztrui+i31lYYEpxDZpmgk1dmE711WNvGj+xbEAyzpFIu7jdj9J0rAKxZUsy0X0tYw7FoEocRyjqGoxEhVKhhkjJmceCT5b23763Ij3m3/ivz/r+PTXPM69khUFz/fp9Xvzn2fbttgs8vMXux7/+WmaEmcCdeF5XhGLroikQlkhS8U4IcavBEVNi3X8jPlkiHVfmhEEYaGyeZS+N1NJiX29eK5n/8zugThOCIJwPiYIu21OGITFBj8X62tFZnFxEUPXULsaalHYCk2hNJ1Op/S6XTRdo9FsUK1W0HUdbyrm0KnrzZNTkyRBNwxGhcrZMHRc1xWpa2kqFDnFWAdCvWFZJqZpEMfRnFvjJaKwIBKfPWzbKuZ2bR6soWs6qqYK94Isi0ap61Kt1lheXuLipYusra9Tb9Qpl8uC5ykLlXcQhui+CPrI85wsyZlOXUbDEf1en16vN08dTGbvZZogSTKaKtZiURTR7/cZ9AfYtk25VKJWq5Hn+Seg2GmaFMIecX+I9DKlCAER1jVN14VKreB8zfhm/X5fvNeikCAYSNL8+zVVFXD/ggMmFTa72RA/2zOJGxTxtRI8wnPnhUJEnvObFEV+/O3+zGdr9ozOiq3T6ZQoFMFDWZaI+zYKyRFOA1mWUVTlUWO2KLTz2O+zXNjrhftXLpRdWnH/J0SRQpapmKY8L9SDeB7MQmm8tLRU8M7EXqZaq+K6HuPJGGvkYDtlao0GTqmEphUqH0kmzyWh7M8RTGXdEKoyxyZNMyaTiXAVuFPiKBbWScsmzTKq1YpI/TWMwmEhFKkz66FeqPriOCGUw4IXKq5Hmov1Q38g1q9RFM3XiLZto8gyJduZp+W5rmDO6oaBqmlzm99oPEZRFErlstijF+mCYq8jxpnZ2CblIOViFaApCmZhRcuSlDiKkaQEb+rO98USEqqsFEgREUaQxI9eL8syDE2jWaQfm6aJLBeKtGKN1u8PGI/GIvGv7BQhTpp4n7IYy8RckxOGouCmyDJxLJ6FMArxPY9Bt8doNBJjTZyI+4UcyzLJ04QsmymDH43bWSpUcXEUC4yMolKpiGTnc+fOs7K8/O8d2+E/KNUuolotc/bsK2KRvz+gVKpz7do1vvLKl1hbW4EsJZwE1GotbLtKFOWsrJzm81/8Ov/69/41d+8dcOf+Lpmk8+wLYBgOGxtnuHd/FzIZWVJRFZ2F9iJ5lrF/cEAQhGSaSp6njMcj+n0xkFXKDpWSw6xanOcgI6PJOkkqLrpslbB0m1qlSblcwvcDsjRD13XKjkOr1cCbTrn50XXqjTpWsYHQDY32YpsszXj77TcxDAPbslhYalOvN8XmPRFV9STNmEymWKmJYQtLUKnk0DnZYTAcUS6X0XWNnZ0dIQ+UZFzXZTIZz+WhrXoNwzbmg1Ka5pQrVS4/cYXheMhoPOLf/cEfEEUhv/DKV1lb2+D8xYt4nsfHtz7GLyK2syQmiZ05vLvVaGBZFoapY9sCiNw7OhFdtygkzUGVxARuGuKmOjk6QdJUNlY2uL+zw6g/oLG2Ibo+nktERG6LWNswCEkkiUiapbVoeImwtY3GIyzDoFGtocgyYRyhJNLc9gciPUBWFMq1ejGgy/NJt1qpYpoGSSKg8geHh5RKJRqNBkEY4AUhWZqQpwmDboder0cax+KBKR4+TRZyaSmHdrlCYjkMJgK6PZiMCbKUfpbglEqUymW2trcYDkd8fPsGJdvh7Oo5FhYX+OqvvULgThl2T0iTiCyN6R0c4o0ndCYh4dDneudjyuUyaytrLLTalNsN/Mjj3tZdnn32aWzLwnBMynkFp1plMpmIe3k04bg74NLlCziqzmgyQFFlTq8vMeoN2O91KFdsNto14jwlyRKsLMIPfKb9I1xJZtw3SJOMlWqZiq6iSxmqropCbJ6iSBKh4+CFEXEhe97b2+PMqTPUajX2j4+RJIXPvPwy+/v73Lv/AElR0JOEk16HsTspfOTSHEKnakWaQy4XE1nEzvZDgsDnL//lX6FUclB1jelkSn/QRy7us8lkwnQ6xbIMNF1nT94nDELu33+AqqrYtoPjiCJdpVxFVTV6vT5+FDKdnGAUFrlmrU6zXmc8HuJOpvzu7/xL8jzn2//u91lZWeELX/gcd+/e5bvf/S6u5+EHPqc21qnXaviBKLzduXMPTdNpttokSUqtWuXCuXNsrK3xwbvv8rrvc/bsWZGeheiM7+zsCNYVsLS0SBSH/P2///dRFIX//d/73xEVKXFBEHB0dEycpFiWPbcV1Ws1DMtkDsLNMyrlMmsrq3zuc59jY2ODt956C5BoLy7S6/a4/uGHrK+vcebMaZJELIoOD/Zpt9v8pW/9sogCdmx812M0HHL9ww9497332NnZJU5SfvmXfwVd17l16yaSnOP7E86fP8flixeJo4Dr1z/gySefYmGhxQfvv0scBkwmI2QZFhcXqNXEs/i9730Xy7L5W3/rbwk+kKYxmUyo1WqMBkM+fO99OoeHTAYj3nnjDSaTMePxmFarxUsvvYTZMrEMY77pq9Vr2JbNC8+/iFrAm+v1GgCj0Yjd3V3eeeddjo6OufLEVSzLnsdlx1HEcDhke3ubq9eukWUZr776KsPhkOXlZRYWFrBNc87Gmm3eJoXiajgeMRgM+OEPf8ilS5f4O3/n73D79m3u3r7JQqvJmc1TfPMb36RarXJ0dMRwOEQCytUKi4ttvvGNb/DKV74y32gGYUhv2Gc4HAqeiqaSZAmqofLee+/S7/UAWF1eKWzDJoqsEIYhU1fYDuIk4nOf+ywXL16cpzOurq7iei67u3uUS1XyOGFnd4ex63Ln1m0k4P/wv/3fsLy0JDrJJx1u33vA3tEB73/wIaWSQ61e4y/+xb9Iu92m0zkuGgwxaZaQpgmWJYqX49GE6dRld2efw8MjQs/nJAyZTsasLi2x2G6ztryGqqi8/ca/IJdkvvnn/zzVRoOx6+FPp7iTMbpl01xcZKnVxtANFFkmTVIBizVNSpUStqowMY35IrTX7xHFCXe3d0ACQy94VKbJT19/ne3dHVoLTZxqmV/4hV+gUq4IxkKxia3U67QWFjFNa95w0lSNZrNJmmV8+NF1kKC9uMArr7zC2bNn2N/fmxeR5aKbOrO3zDb8eS7+rlGvI8sSzz//PCsrK/ON/Z8d/zkef9wipxS2nEfXVSymFxcXybKMdrvNeDLho48+ol6vs7q6jG1ZKPqjlLj5q0uP0jdlRcG0LUaT8bxoJEkShi6SkHKyuY0lSQomRibUhdPJhMAPqFWrpKmAJQuGmDK30c34MvDHCz5ZmpPGCTvb20RRxLUnn6TklITFR9PQVGF3EeE0xhwN8fjxeCHo8XPz6LNKn/jvp4+Z0mg2J6qqyoP7D3j7nbe5dOkSa2trbG5sotrq3IYxS/J6/Gd8mjP1aPMv4bkuvUGXXm+A6/mcP3+RSrmMpggW4Hg0JIpCEToRxRhBwMLCAvVGA0sTCihNkgjihOFggG1blMulwpZikhWb2jTLyGWBrCBXEFUFYVvf3t2j0+1w9qywvrRbDZEce+sm/V6fTrfL57/wOc6dP4uUyyRxgq6bqJrKwpKwsNWrNV599VXeeecdvv71r7OxsY6UZ3M73NaDh/zgBz+i3W6xtLTIlStXWFlZ4eMbHzGZCDh0rVbjG9/8Oo7tUC6VGA4H/OhHP2R3b5cwCrl27UlM0+D2nY+QZZn2Qo0f/ejHvPbaD/A9Hwn4pV/6JcrlMlkWs7DQ5vSps/QHPXZ3d0TyqevS7w/J85y/+Tf/FhcvXeRrX/sqYRByeHQESCwuLPP0U0/Rbrf5yes/Zm9/r7hnDaRc4uSkw+7uHjdu32JnbxfHsalXqjy4dw+9KPRatk290Soa0zndTockSfirv/EbLC8tUa2UROpXntDrD0jSBMuxMGwDIzRQ05RGtYaqqiy22vMmjqQIjIdm6qixzuHeCYN+n/ffeZt2e4EvffHLZHnO/fsCfl6vN4pAHIlatSLOW7s9DyIglwoDW0Yci6ZXKstzBUyeP3pGjMJi9/h9PLP4/SzYPkAQiEKi4zgMh0MODw9ZXl4SfKqi2Hp/6wFRFLG5uUmpVKLZbD56hj6lFsyAKEnpdLrkOWiqSOur12tzy+V4LJA5m5vrgkEriUK3qqo0W625kwig1WrRarf49b/ya7z33vv883/+LxiOxwwnY6ySaMQ3mk0yWWXihbhBjBfGWLZFZVJidWWZll0qWGcRP339R2RZyurqKmcvnOIXLnyTvb09dnd3MewS/eGIdruJqsqFk0Y0p3VdZ6HZptfrMez3GUqiOByFMXGc4roeJ50T7t69y8rKMuvr65w/f55ms0kcxgX+wMF1p2w/fMh0OhV8pNNnaLUX+M73vsvh0RHVagVFURmPJ0yXl6iWSpRKJWzLZuq6DEZDIa6JIoJYFFDlIjm53V4kiTOOj7rIqggYOjnuoMgK7dYimqqKolQYEwYRo+EYz3NJ4xQpl1AklWajzcuf/Rxnz5xD0zTiJCJJEkzTIggiPrr+kcCqVKs0anUuX7jIeDLi4fZDVldWKJdE4EEUxfR6A8hzFEUiDAPBrI1jRqMB//yf/3N2d3dFo0RVsEs2mqlhWBrdbod+fyQYZ7KEaRjkksSoSEX1PJ9SyRHhOF99hRdfeJEvfunLtNqtnzlPfPr4uQtPu7t7VCs1lhZXcSolytUq3e4Rw1EP27KEF1ZR0DQdVdUJ/IgHW9tMxi6SopIX3BERPWrNizZRnAhQ6YyZpMjCc1lU5CVZKiZNTVS3FUVUDotJKU0S0S1NMgG9QVSik6LIoxRRizPllFBJifSrer3OeCw2R41mXQDgikjAhqLg+wHHR8eiOuq5WI4l/PdRWMg6BV9JN0wURS3UDjqGaRWfIxYk/jCad1dmJP0Z/0iWhVdVKroHs4XvTFlhGCbVqkgZSxKfIAhFMS4XSiZN04jieF5zlxCKIkWWCFPhbx72B4xHIzzPRVYE1FJSNJBEp0HKxSJdkUWHWi+VMGsVpkFIhkS1XEVTVbqDYeEJjVFkCa3w9oLoJiWSWFBJ5CTE5AWbatZxENBxdR5/Kc3/QUjKDYOSbREEtgCG+xn1Rg3Ltufyd9GBTomjCEkSEaV5JjpemqqSqSpSnqNIzP23siQWErIEVsHbCSJddETCkNQwIMuE7No08D2fJE7oWl1yGXYP9sjiiNBzUWSRrqIYFrqdU663sNOUWqGWS2UoV6u0qyW64zFBEjMYj5i6LqPxWHBaLEdUiw0hx82znKnnk+Y5qpKj6xqaoZLFIWkcEvou7mQEskQu5ZiKjKLrqI6YaOMsgzwly1PSKCCScsgNJFXcB+JzmaR5juIHJHGM53n0+n2CKGI8HIko5zzDsixOnT4FCHub6LoiullZhmmbyBJMxmMM08KySywstKnXqwyHfYLA4/DoCNu2RApDkbil6zq25RTJdfH8GVBkwWOJooQ8g0RPicIESQrR1ABNz8R9qckkpJCD57qiO1cUMOYqnzTFc11Go6FIg4xCKpUy9UYdRVWIixSjMIxRVK2QyIsudBiEDAdDsdhQVbpdwTiq1aq404ngqaUJvV6X+/fv8f4H79PrdRmPRywsiA22pmsFm0PEbatFol0uSQShCB0QVjlVbGpkhSAQnZdx0WWxLIs0TTFNkyevPcl4PMaxrblFQ1GE7Pvk+Jg4jjl9+gxBENA5OWY0HNI5OWE4EhL/SqVSFEYSPDdiZ+ch0+mEVqvB2qqwta2srFCtVoX1bjrlpHNMr9dlMhlj2zbLy8ucO3eWq1evsrOzS5Ik7O3t0u11GQyHHB0d0ev18D2RMJfluUgqWV6iVq8RRRGNRoP1jQ3B5pMk6vU6JafEwcEBR5MTxp6HaVksLy1yeHjI7s4Od+/eZTKZsLCwSK3WYG1tTajU9vcJA7FZ01QN3/eRZQnbsTm1eYpJUxRJ4yjCTYVaZnYtDMOg1+uxvb3N0ckxYRiyvr5OrVZje1swloIg4MKFi5w5fQbHsYnjmG63S7/fF0mX7RZnzp5G01UOjw7xPE8AXWtVkiRhe3cHVVWoNxpMxlNGwyGT6YQgCNjY2KDZaMw3lACj8Yi79+7hui6VSrlQuSqMRiMmE/F9lm3z1DNPc/bUWTY21hnfvi3YCyUHyzCpNxo45RJBFDHxXPqDPigytWYdGalIYtEwDR3Htgn8oIihVouEWqWYv8QC7/j4mPF4TLNRF0rTLBX2Tl1nd3eXOIwolytYlkhZMk1xL+c5xFFKTkiSZgi0g4QXhoRhQL/XxzB1SoHLZCKgvZqqYBiCt6Vk8jx5rlJyyJKEwPXp93p0jk9YXFygZJdo15qicCfJc+4BhdU7R8yLk6nLeDzio48+pt/rc+b0Gc6fv8ClS5doNBpzxmKe5ygFsPfxAuVsET9jZpimSTWvsrGxQb1WK+Za5taH/xKOxzcn/9XaAaXHSSeF0odPFjceL2qEYVjYBoQi0nEcJEkUvskfwYXhUcOM+es/el3DMERHulBRi/XNI0vNTFWYpWmxPhPrWD19BAifTCYiUbRWQ1U1siz/hCKbHKH0zqJ5uurKygp7B/t4njcvyuu6DnkulLOF1Orx+xr++D3ws5RI898/VvySfsb3wiPulaaJAJNyuSxUzMX4+Pjr/aw0rsfTuz79NSKtWigcLcvGNE2RdB3HhWVMKJl6/T4LizoVw2AydYWlzvUwDYN2q4kii42nBIUiQhQJZ2liuq4jF7DvmdpF8IEi/DAgCEJ2d3exLAt3OsGdCCWv73mQZfiex2g4YjQYEYYRruuKJkkSM51O6XQ6xFFMo14XRcEw4vqHHxCGYZES3eblz748V1SJz1kwUA19jiTQVJUwDHDdKd1ul+FwiFNyKJXrpGnMZBKyt7eLrus0Go25jWptbZVyqYwfBGR5ztr6Oo16izRNOTnu8P77H8zvhZXVVdbW1jlz5gytVpt+fyDWjL0Bw6GAICuqilMuUalUCcNAqIYKC5dTKlGp1QiDkJOjYy5cOE+tWmVpcQnD0PE9nywXnKU8F4i0tbU1HEc0l+I4AkkwZRzHfqTMzTNGwyFqcZ/JBWtJkgR4OUlTQt8niCKGI5FI7ocBSHDu3Dka9QaVqmhauJ6HUih8lOLZ0A3jE+OFYAFnggVcKNDTNCVT1T8xxfLRk/LH7/XHi8dSoU6S5AwZwXaTiuZYr9/n6PioCK4QdlwQPMvZOPRo/snnNtYc5s6N0XiMqmrUKgYz4ZZp6DiOPS9uy8UeaRY0IArT+UyqOX/fjmNz9eoTJGnKzZs38YKAfk8UK9MsxSmXqVSrYmyTIMlzkiwnSjIGwzFRHON6PhmwuraKIgsrW7lawzDN+a8szwmjiPF4gqLI+J5fqAxl4rh4jk46jEYjFpcXBZsyTAo1UIym6SwvL7O4uEi73cYpnu3A84mjmOGwT5qmnwg/2N8/4ODwiCiKsCxr3uDUdVWA0Yv1mmAfTxmORkRJTE6OXvCc7FIJ23bIc8GYiuKYNAzJgXqtXuxBBXbEtm3BLg0CJqMxk+kE3/WIwhAJaT6uV6uC7RRFEUEYEIbi/qvXa5TLYt9Vq5bxPU8kKE+ndDs93KkvLNdpVgRNSKiqOLdxEtPtdRkOB5x0TxiNhzRbrcJ9EiORY1omjiMsrCIVLxMIwwIkrhsmlUqV9Y0Nzpw5wxNXr7Fx6hRpnhVphBb/vuPnLjy9/vqbrK2tc+nSNVbXNvj857/Anbsfs71zH9MyiZOEcrmKZSeomklvMOaPfvBDypU6lWqTTJaRdY1Gkb6Q5yKOdjSZEsWi6ypiChWG0ylhGGHZJiVFxTItCngC08kYVX1UwAn9EIoJWtXE4jfNMqI4BUkWUOc4Jvc8vOkUANMUior19XXu37/P/v4epnmGVqsp3odh0G4v0u+LDna32+Xw8BBVE+k2cZoIWGqSoSgq1VqdLE8JAp9mS0wgd+/eI80SRr2TQu6Wo6oyhlFEvcYJeS4GTKVgfcRJShjFSJKwo3heQKlcor2wQK83IE0yhqMx3d6AIBSWBsdxSAurxgy0rmsi8jMKw7mk8OjwkJPOCYoqs7y6zHTiCRDedAw5tBotLMOiWq5TX1qkvb6OZtrU6weUTYckTrh5+y6T6ZRpEGBbJla1LFhJUEjPheZRBjJJQNwrlQrj0ZDx2MU0tPkDPwNBkudkcYJmWjSqVdLi5j88OiBOYq5eu0K5XCHOmBdB0iTGd6cohYwbcsgywb9CfG5VljBUpdioyyhSTqpIIFuYsQZ5hut59AZDYk0ntWOqlQpOyWF7e4/ReEoUJOx1Dtgb7GObJmXLpl6vUy6VkS0H03BwqiLRrbXSZjwasLV1j421ZS5eusTNB/c56fV4uLNNEARs7+0hSTLLqwa5qqA7FuXClnbv3j08z0XKNyjZJmXHJpiMSQKXUT9DClws00BTVWzTQLUt9FqVMIzodnt4eUIch4RxSCxJ2LUKqmmgmTayrJOXy+RIjCausJeORownLkgyWlGMdN0JTsnmy1/+EuPxZL7Y8H2fTmdIEATUszpZEnN0lFNvNKnV6ly8cI61tVVOjg8Z9Lu89fZbonPSbBTWBGHlarUW5gqDvIABOpYDmYQiKZDLpHGGm/j4XkAUpOi6UDipprCvBYFP76SDYZnYjoNVgOcb9TppmjIZDZmMhty+dRNZUTh//hxnz51jY3OD3/5n/4wbH99kPJrSbLb4G3/jv8fzAz766CM812P74Q7Ly0vYjsXO9kMODw+pVUXxpuyUSOKEhw+3ePXV7/Pw4dYcTv75z3+OSqVCpVoWSjTXJQdKlTKKppKSMxiN6A0GSJJIL2k26uiaymg04vDwkK2tLeI4xjBEUkez2eKv/tW/iixJHB8f8eqr3+cP//APqVarqKrCzVu3sCyLK1eu4Ps+P3rth3Q6J+zv7bKxeYrl5WXK5bKAEXpigfqjH75Gs9XgxRef45lnnuIzn3mJlZVVbNvhe9/9Pg8e3OfGjY8YDoeMx2MuXrjEtWvX+OpXv8oXvvAFfvzjH3NwcMAbb7yO63l0uj1hHej1KJfLVCoVVlZWWFheYuP0JpqmUqlUsG2bpaUl/ALifuHCBZaWlvhH/+gfcePGDQ4Oj6g36nzrL/5Ftra2+MM/+AMs28a2bb70pa9w+vRpkjTj+PiE73z728RRzObGZlHMFQWUVqvBN7/5DZGCCPhBQOj7TMaTwjpsUKlUuH//Pq+//jq379ymVq/z9/7e3yNNU1599VV2d3cF/PKpp/ja177Gw4c77OzscP36dfr9PvV6naWlBV555cvs7u7y/Ve/x2AwIE1TvvoLXwNJ4vXXf4LtODzxxBMMB0M6J13CQEBMP/PSZ9jc2CCKo3nBYm9vj3/3+79Pq9ViZW0NVdcJwpAHW1uMirmn3qjz137zr9OqN1hstHi4v89gNGR9bZ1Wo0Gt3kBSVXb2HrK9s8P9rfvols6la0/QPzxGlSQ0RcbQFOrVGifhCbu7u4K3uLSEphloqoAUj0Yjbt26RS7B+XPnmHpTet0O5VKJcqnEv/ne73F4cMhf+OVvsbyyQqvRxLZtdN0EpsRRynQ6JAOhXJZk9o/3mUwm7B8cCD6coRP5AUkUc+XyRWrlKpZhoqkpzUYTyzBYqNXY291le3+PnQfbPHzwgOeeeZaFZpv1pRUxv0UhQRTiRxGTYEqapJw+fQZFVTna2+fhw4f8s3/6W1QqFb7xjV/khRef56WXXsR1XaIoolwwcAxdn8vc4dEmeiYzB8TzXamwtLQkFkT/ldZt/ss/pPm/0yLcQ31M5TNr7OnFNR8MBsJGUq1imAarq6uMRkP29vbIltL5hlSWZRzHEUUYiRnUa26RKJWE0mgynhBHEbVKFUlRiqZYRpblIg2sSC2epZOpukbTa3JyckKn02FpaYn19XUmI5FcNMkm86KRLAnrjjudMhoNWVpa5vSZM/SHIkhDhNXo2LbNdDLh6OiIkuNQckrzzeXM8/OzVEZ/mg0uf6z0NG9yFl874yTOVGULC20xZicJw+GQOJmFu8h/7HtnP/dx5tTjRbJZ87VeV2i3F0T4TSoay9OpSC1O84zRZMyDrYdUaw1q1Rr7B4f0+n1GvR6OZbGxvoamaawsiXV9p9Ph+OSEqety+fJlqtUqjuPM1ViKKixCg+mE/mDA1PPwAp/r16+TpRmL7faczzdTipwcHeG5Lh99dAPP82i1WoVtN2cwGLC/v8/y8iJXLl9BlRU6xyf8w//r/408z/nbf/tvc+3ak/zN/9VnuXPnDh9//DGGoSKRC7W8rnHx0iXUIvzn6PiYrYdbHBwIDulf+Su/zunTp9jd3ePkpMNPf/pTyuUyp0+fZjKZUKlU+NKXv8zp06f53d/9PcIw4ld/9VexTBvP87h+/Tr/7//X/4dWu0Wj2eRXfuVXOH/+PE8//RR5nvH++x8QBCG+H7Czs8ve3gFZnlOuVtk8tUkSxywsLAjAuSwS8pxKhe9997s8vP+Ap69dZX1llReeew7bdphOXQ4OD/nooxtIiki8/fwvfoPz58/x/rvvcHg4odGoomkqtZqw8iwuLnJ8dMT2w22eeOIJarUaWSYStdI0JSwg+51el16/jxt4REmE63s4ls23vvWtooEoQofikxBd1aiUSiiKQEbYRTMiKdLiDN3AjwJc1xNrisICqaoqmm4gy5+8V2dziCQphXVTWDJ57L6fPW8Chj0r6kpFIUTlpNPhwdYDdEPj9OnTgitaq5LnuUj9ndvpZ98tzUHWeZ4zmfqMJ2MODk+olMu0m+35/FaplAX0fmbXLeD5kl6IACSpsLmnouiOwJ2VSiW+8c1vcPrMGRRF4fvf/z7f/vZ3mLoTKnerWGWH5ZU12u02umKSSQpJLhGlsLV7QBB4lGwDxzb54pe+gONYSOREKXhJjqQqqLpOnKa4no87dUnThPFogGGYLC0tMywanScnHcajCUsryzTqTQI/JkkExLzRqHP67BkqlfLcxgoiZGU4GHD9+sdUq1VeeukFQLgYfvLT17l9+w6f+8LnWV1dxTRNgZ+oVmg26qKpGMcEYcBJt8Pe4QGSJAp3lWqFcrnM0sqqKJimYg+fI+G6Hoqi8sKzL0Ce83B7C01VaLebDAZ9puMJR4dH9Af9AuMRIUsy1XKVK1eusLi0JK7nRKxzBd4o5eLFC4IHvL5KGIYcHu7P92m9zgAkhdVV8X6mUxfDMCiXK2RZjh94HBzsMRlP2DvYIfADzl08C8Dh4b5oWFcrKJqMUykxHo0IggDXdeeBDtVqjcuXL/PFL32Zb3zzmwICb1lsb2+zt39Aq/nv5zz93IUn09RIkog7d25TLleZTj3CICZJBNdBlkUqVa/f5/jkBMu0WVpaZeK6HJ7cRlVl1tZWWV1fpb24gBd6gIRp6SiqTJyEBKFHTk4Q+ILlI2XIUkwUiM6EGMSzIp5aQys87qJDIEEukr2QZAzTZDQWKp9tRTB+nn32WcwiYSmKIsIkIpNyFF0jQ1QDLUTq0Wg0xJ1OkGWJarUiEhwkiU6nw/rmJrphcPvWHeI4ZjSaoKoymi5TqdaQZZlarUq73cYP9gCwHYs8E0yLMA4JogA/FAUmw1OQClaR6BK5YiANQzRDQ4s0qtUqiiyLAfvgkA8//IhavcLiQnO+iFIU0aEZpwlSnhP4InqyXBHpV6VSidD1iKIAxzSwNZ3ED8jTHFPT0QuAWxInTKdTUdE1DQzLRNVSKvUqsq5hhOGcfaCbBqZukCYxeZYLhodUJK6pKpIsFbBpSJOU0XhMuVSaV9wB8jRjOp7gTT3COCKNU0xD8HOqZUH/jzPmbBxZEhOCLElkacpkPGE0HAmFTcFXUORZCkExGUhAkbqhqyrNeh3bEokHiqaTxQnIwq9dr9WI44SsSPOL/AAty0jynHGW4E+GZEku/NOJ6EIEUkyeZZQrdQzDJs9kNjZOs7y2OU+dufLEVaZTl6E7FpXvskOapbj+FMMxkDWJ6XhCGoZYiiYAcLZDs91iZaGNN5kQhyFBGEIYIPkyZDmGoqFYyty7HBYdOpIYKYhQVY2yU0XVdBRNx4sT3CQmCGMBSDQM8jQVMciqgqaoHB8dcv+euL/jJCEoQOGyBHmW4rsuZaeEKkMSR/iei6aplMpOwWzKcN0pSZLgTl0kZBr1BlmWzrvBikTBZ5PRVFVMfPmMgZYXyjUJRZKKJBEh+aw3GyRpgh/4ZKREcVgs/HWolFAVlajoUI7GIxYX22iqwvPPPc/qyhrf++4fkaYp9+7fQ5YFeyCKQg4ODlhfX2VpaZFr156k1WoRFIuNWVd7xo7qdjv0eh00Xee5556jVq1Qr9eZTKZCRSjJ2JaDZTtYRQSwLCvCU66pBEHAZDKh0zkhCHw0TZ3HuVdrNZAkfvzjH9NsNtjc3GDz1Cmee+459vb3GAyGc3vjzZu3SBORAtZsNtlYX+PsuXOsrKzy+7//++zu7rC19QDXnVKtllFVhYODfY6ODul2u6wsr1JyRJe9Vq1jmRae7omOchIzHo959913GQ4G3Lp9m8FgwGg0IstyVE2jUa9z9erV+YJ9dXWl4KYI61y31xNFql4XRRa2lJNuh/5wgGYaLK4sk6RisfbGG28I5U+1ysWLF7l48SJO0aG9c/ceR0fH5MDi0iKvfOXL3H/wgA8++IDBYMDdu3dZXV+nXC5jFemE+7u7uO4UyxLqu36/z+LSEteevMbS6jLVapX19XWOj4/Z29tDVVSuXb2GIsscHhwQRaJb5DgOhmHwuc99jitXLtNqNueqBtdzmUym9AcDdMPg9LlzuFOX99//gCwVluS11VWa9To/+tGP+IkkcfqssLhunj41TxVpNptcvnyZ3d1dAVa/dYskSVheXsb3A957/wPObJ5GV3T8ICDPMs6fP8fK0hJZnjIeu2xvbwMSzz33HP3RmOFkQjAaIz0WDa+qKp7n8tHH11lbWyNNE2zbwjQN7ty5zcHhAa2FFmmeM56OIMuplytMRiPc4QhJlmkttLl46SILi4uomkbgeXRPToR9stngJz/+Mbu7OxiWQbPVwnWn5GnGYqMlLBe1KnEQksYJjWpdQDotCzVJsc2AfrfH+2+8xdHhIYeHB6RJwtrKGsuLi7TqDeIwRNN0Go0mvUGfTr+P7wWCc1g8F++++y7dToez586xtLTI008/zeraquBTFcmwH7z/Pooi8+u/9mvYtk02Vzs82hSnhVIlThIkHiUiPX48rpb6z+H4k5Qj//92/KzPLhdcnNnfzSxoasGZ1DS9eFbEtT85OcE0TTRNm6fKzr4/iiKCIHj0GoqK53pi/soywQ0SC2OSOEYqkuhm91iWZciSTL1WKwpWMaPRmMPDI2zLxi45BL5fcGpisdEplIayXCTTASWnRBRFTKdTwjDk+Ph4rnKaFaJm71l87EdQ408f8/u4OD/5I3zN/H8EW+aT5/lxFadpmjQajXmBd6ZKebx8lWUpaaHIj+OINBFFwlKpVLD9okevL0uoRZq1JEmCXpfPXicjisS5EamkNvAIBF8ulbAtq/g+5uprx3FYXl4mjuOC2SpeO45jBoMBkqwgqxq7e3scHR9hFuqheHMDCYmVxSURSmLbglMKVGoiWe7+/QeEYSBYYYaBbds4hb3PtiwM06Df7zOdTnnmmWcK1baJpinoukqr3eTChfPkCM5KGHoEYUCep0Rxgu8HlMslnnzyKVZX1xiPx7RbC0go3L+3xclJhzCIKJdkbLOErlkois7Ozj7uNMA0HCyrJKyL0z0+fP86O7s7LCwu8PLnPse1a9fY3NykUqkwGAzIc4EnMU2TxcVFBoM+h4cHmEW675nTZ4ijSKTthn1G0yn1eoPNzU3WNzZYW10jSzM816VWqJ0DX/Aed3e22djcZG19g9APOT46QZJEYmyW5URxQhgGwh2iKOiqhmUYKJKwb3d7faI4JkpEot14PGZaqJnK1RLlSok1a1WEWJhmAesu7J6ysHGFYYhpivvXtkUhbmtri3K5zPLS8pyLJJRGBoZuzFlDef7IFjp73dnwK/77qHkx40YJi3uKghgfHqWxJei6zurqKkuLIshGLeyyM8bkzs4OlmXRbrcLNaY8v7dHY8H92T06FvD9tTVKjoPjOOiaiixL6LqGqirzApkosEnz9yBYmsLV8VhpWPw7S2k06rz88mcZDofs7u7RH/QZDwfs7m2TZDGmZeDYGYZpIicyfhSSZKkgdKoakqLhBTE5woESRDGjqU8aJZRsm0atRsmxyVKRNOfY5rzAEycxummytLxMe3GRWVq24K3arK+XhKU5TYnDiMl4LBLHFXne8BYJ60aR9Kxi2zadThco7GRpRq1WK4Dij67vbE5NkpgwCjFNSzDdyea8qhkrcuZWUlVh1ZwVyCeTMeQZds9mOBwwnU7QNMFZ63Y7Qp2kyFi2SbvdJssydnZ3Cl52imM5c9eUVjDTzIIHHccxcZwwGI4Jw1g4kEgxihTn/f197t+/z/Xr1+ep7SLp3uDo6JAsT4UK3tcIIl8kH2b5nLFaqzcoOQ4XL15mZWWVZ55+moXFJSQEIwxJpt5oUq5U/9ic8rOOn7vwZNk6aRpx69Zt2u1lJmMX3w+JIyErk+SU6TSk1+tyfHJMu71MrdbmuNvj9t1bOJbJ+sYaa+urLCy18Xxxw5iWiaJKREmIFMgkaUYQ+AIalosKWxLFcwbDrPCk65qIPZUl8auoWPu+h25aWCWbwaDHZDwumDImr3ztq1SrVXZ3d4mSmDCOyMhRdY00z4UyKhdy6OGgj+u6KLJErVrFXilxeHhIp9PhytWr1Gp13nrzHcbjMbIsYKe1WqkAiknUajXiJOHgUHiibdsmThImU1fAsMMAPxCFJ10tQIWFrNpz3flApYcRmh7OOzLbWw/FxuaD65w9s8kTl84JX7UsM51OCHyPoLAdRVEkZHN2iVLJpVQqkQTCL1qzSxiySux5JEmKqWsifUCSSGKx4cxyUXjSLZMszSjX66imSRyGxFFE4Pnohkm5UsabCmivXkhQIRWFJ0WQ8EuOzcHBEePxBL2QNeu6Tl6Ao6cTl+F4LKrNhiE64IZOpVyhXKmSFIPkbDNoFlGuaZIyHo0ZDkYCGp9maPIjC1ee5+SkRfBBUcBQFeqlMkEYIiMRxjFhnEAhO23UaiRZxmAwAnLiICTOUlIyxu6YNM+IkpQ0zUmTHE03CKWUSqnCUmsBXbfJUpmNzdM41QpHR0eCZRJlHB4dsv/269iOTaVkF8k0U0zbwLJ1JiddYk+lXa4iIWE7Dq3FRTbOnGb3wRbDXk9E0hfxlZqiUjVKWLqKYqh0+zlREuMFATE5GRKW5bC0sIJTkilXapwMh0TDIe7UE/efImTKqiwKQKqq4rlT7t+7I6ZNSfC4BLg4F4UnLyIOAyGrjcNiEBV8sySJH4vuDES0sGUJWXwqrDsz25UsiTRHTVGFpFaSChaGAMErxTWThc9SQCrLJYajIRN3QpJGqKqAsRuGjqGLrm4UhgwHPR7u7HD58iVUWeb5558niiLef+9DOp0ud+7cpVoV6TDT6ZSDgwNUTSk2qk+xsNDm7bffZjoplJKGQb1WI01Tur0Oo9EQWZZ58cXnqVQErLjb6YrFtiTP01rmhSdFPKOaqhTWijGdk2OxSNVVrl27xsLCApVaTSRo/fA1zp07y+Url9jc3EQCev0eWw8foiiCSXDr5i2xmEkiVleWefaZp7lYsDW+/e0/5OBgn52dHbIspd4Q731vb4/Dw0NOTgTvzbEd6tUG9doAy7YwPWEdTpKE0WjE22+9xYcffEC31ysKcUKZtbGxwalTp/nKV74iwKjTaVF4EpwEz/M4PD7CC3yCSIxhrVaLo+NjBoMBummwvLJCEiUM+n3eeOON+YbgySef5JVXXuHGrVvs7x9w/aOPODoq0hyXl/j6N77OT3/6Ux4+3KI/6HPr9m2WV1bmQHBZlul0uriu+4nC09LSEqVKCSSxyVlbXWM8Esyzs2fO8vRTTyHLMvv7+4WUXxSeHMfh61//OsvLSzQbIuVOURR29naFmq3fnwMWt7a2+P73vk+5XKZZb7DwzDOcP3eO//P/8f/E3u4ev/Tn/hwbpzZYWFokKBaUrVaLy5cv81u/9Vt8/PHH3Lt7F7tQ5Xq+z62PPiJLchZai/h+QJ7lXLhwgc2NddI0/f+y92fBlmX3eR/42/N09pnPne/NvDlWDjVkVWEgRhIAIRAAJUqkLDmscEvhti1F27L10B0h2e7ul5b80OG3jnCEbVGW2pIlNUVRpCmCAAECIAoo1DxkVg43pzufed7z0A9rn5NZAAjC6o62pOgTkQhUDnfY9+y11/r+3/f7GI3H7D9+zJmzu3zkIx/hzt4eDx4/Zm5b5AUEHkBVFWbzGTdvvk8QiKKAzc0NqtUKd+7e5ujoiJdefpkoTbj36AEl06JZqXF0cEjntI2iqqzUa1y+8gyNeoOT41MmozEP9u6ztbPNmd1d7j+4z/e/90ecu3BuGWcxDYPVRpN6rcbG+hppHJPFCXGekEuIMoY0wzJ9Bv0Bv/d7XxPibq/LlatX2dneZmN1jXqtLr4ORaFebzDzPHwvYDafE0ZxEXWKeeONN/B9n098/OfY3T3LRz/20WILndPtdnnw4AG//du/jaaq/PJXv4ppmj/G4FiIA0kqhPfFxlUcND/s2PjXQXz6SfG5f5VI3b8NIPKcH/9ZLH4+y4FXni+h94vot6jC1rAsg+PjY3q9HtVyRfBoshQZ9UPCUxiKYpNyuSx4ZqpCmgq3lZzJaJpATCRxIvZSur6EhmeFOFWtVOhZPeIwZjwcc3Jyyrlz53BKJbxCePLncyzTRK3W0Ao36KJtySk5REWcS8BnxVq0ub6OrhuFK7y4KoWLT5w78w+JYPDECSX+9MffC/lT13HxG09fUwDTMEWDZfFaHPZFaKE4wBXOM8G388iSdDncURSlaMR94qYyTV38e5ZmM+EwyXPiOEIthCfbKVqLZRlV09BdF8s0l1/vQiQrlUrUarUiaZAsY5NxHNNut8lyiVxWuHdvj/39fV584XkazUbhzFTZWt+gVCrRbDZFG1iWIasqaZZi2Rbz+Qxd17Bti1azQZ7X2Si+5yiKePz4MaPRiJdeegnLMpfCk6JINJt1SiWHIBBDYs+fLX+2gq8yY21tg/MXLi0jy26pRBRG7N27XxykQcplbMvF0G0UWefxo0MOD06KshubXnfAo0eP+I3f+A3KlTJr6+t89rOf5Utf+hLdbhfP8xgOB+S5iBS5rsvKygonJ8c8fOgW4GmDtdYKURjyve99l95gwOOjI55/7nl2zpzhzJkz7Gxvk6Up89mcarWKW3LpnHYIPJ+Dg322d3bY3Ngg8APaJ6fLn1GW52RJymw6Xwp4uqqRmUJITJOETrcrOEiRcGX0+/2lUNBs1WnWG2xvbok4HSxLKxbnxiRNioZDcV/blo3v+Tx48IBmsynaWlORbhEFFopgqOk6aZIU99ITTiCIUqdsQbzm6WdKAZDOBWYGKUORpGXLZBiFaLrG1tYW6+vry4awxRrj+z6dTgfbtgULrmjbW3zudrsjhnCPH2NZFl/8wi9iWyaGqgozgCwhyxqwiPBmwjAgKyiGgP+LltbCRbV8pj1xc9VrVT75iZ+j0+lw//59fvjqq/Q6HQ4PHhGnAWtra2LPlLogS6QhYs8vSciKiqRqzP2IJAVFkvF8n8FgiKrIuLZILlTKLmkaLwtPZEUYSYIoxLQtwVuybWFYmM1RFHkpxs3nc05PTwmDgCgMSKy44HTlIrJr6FiWgKcrioK8IjEaT1A1fWlcqFWrqJrKZDJmwbBbrHlxEhPFIYZpCvdrnpOkMdPppCh7qJCk4j51XfFMmE6nRFHIdDImTWNUXWU0GjKdTYqiphInJ8eF8CQil8K04vF4fx/TstENc3m/lcslFFn+kGC+WBX3D44YjyekSU6eZ6LQYD4V7N69e7z33ntF8kiI4pqmcHx6tDxPKorMbDZBVXUUVSOMIvJcNBmur2/w5a98ld3dXT7+sY/T7w9otztFKlOm3mj+zHuFn1l4Ktl1SqUS5y+cJ8fn9772G3S6bYbDAaurK5QrZZ5/4VkuXVrlP/3rZzg5PuXNN19n7s1wHYtnr19je2sLw1DxvGmxmBmUSg4bG+tcf/ZZOu0u/cFIiASKIm7OXGiwC+Vx4R6ZzmZouoppaRiGRp6nhaKrkqYRs+mYjfU1alcui0OsLLF37za27bC5sY0iyYyHI0xdp2Q7DPsDvNmcZrWGqRtMRiPyNGGl2UA3DAzLoX16ynQyYf/RY8aVMbVKFduyCKMYyzKpVsuEYcz+/iF37tyl3e7geT4L142IF0nCHaUpVCoueV6iWi5j6oZwSugaK6stokgotkkqlHzh+oIv/9KXyfOcr3396/T7HUq2RrVep164MyRJZjSZCevraqtoFBHtEZZl00s6DAZDLGRUU1RLykAUity3qplkcYgUKMJZVrLJYsHHQpbQTYNGvc58OqUbdwiDkEGckC9qpQuwQRIFKLJgJVRcl3K5QrnsIkkSzdYKqqKy/+hRYW+10XWdWq0m2grCmFzOC6FBtMShKcymM077fRGbcV1xMB6NGA1GjEdj0kTwE2zHLThSMpAikRd2ewlUAfr05zMkJBq1KpPpnDSeMp3NCeIY3RLXrOKKGNfF3bPkQUgynQIZuZQLa6sEYSSmUP3Dx0w1k3m7x3HpAMsto7xpoZgGq6urIputaZimhWlYomb8+JTJeIQ/n9FsiYiJbdk4ukG9XCWJI8ZZSrvTodfv4hqm4F1pshAoAx8ZiUQqYgVRiu2WMF2XznRCECegasiSwkmnLRR43SCMArI0plRUwisSJGHIq6+8wsbmJp/65Ke4cvkS5Jlg3/S61AqI43w2LdR88RDe3tpkOpuy/+gh7dNThv0Bqq4tJ7u6phEFAVEQ8vjhIzzPI4piqqstDMNgPB4RBCG2Y4n3qG0zmwnYcnOlTqUi3JVeUWOvaipuETdbXVvB80TLS7/fEfW1muC0lWwbyzBZa7U4OTzkD37/9zl/8TL1RoO/8Tf+c6bTGd/4xjfxfZ8HD/eQgFq9ynAg3DOQLzlVaSbiEYqiCC6NJloXQWxUv/Wtb3H37l0Mw6Lb7RdgUQFHVhXRbpbGEWkSQ474nA8eoOsa58/t0mq12C2dQ9cFs0hTRbZ8dW2dyXTO3/8H/08uX7rEtevXieKEs7vn+Nrvf4PBcMy58xfZ3NjgYx/9iLBFp6mIIyQx165fI0kS9vcP8P2AWi5h6iYlx6HsVtA1g8ePDhn0xnzrW99mf3+f8WgKucT6+jq1ar1wesokSYaqaJRLBi/+/MtLrpZbcjnYP6RaqbC+usag1+fk6Ij19XUhwLvlop0vI4sSRv0B48GQyXBEnCSEQcje3h6GrvNrv/ZrNBoNtre32T844O/++t/DKMDsl69dYW1rk9d+8CpOpUypWuHCpYt8/vOf587du3zj619HkiS2trdZWVkR0zJHMIgsy2I0GnH37l2STPBcLj1zGVmW+f1vfJ2HDx4wGo0wLZMLly4Wza0Gr73+Gvv7B+RkuOUS587tiopyZCrlKoZh8dGP5IzGwm0ZRhF3bt9FQuLX/tyvUSoVTA5FZTgY8cILN3jmmSu8+NKLSJLEt//w2/iBz7Vr11BVlf39fR4/fszJ8THPPfcc9VqNZqOFqmucu3iJKI5574NbPLh/n+PH+4yHQ7qGwTfefhNd1/nYyx8lCCNeeeUV+oMBo/GYJAqQgHfffVu08xUtri+99BKO45BlGQ8fPqDdPiFNE1RV4c7tDwjjiPawy7NXr/OJT/wc9+/tcbC/Ty6JKe03vvF1SiWXc2d36Q+67O3d4/0PbhLGEbqh8sVf+lPceOkG1WqV92/d5O79u3znW99mZ3ubG8+9wIsvvsjlS5cY9sYEUYBVchiNxvz+7/8B89mcrfNnWdleJwpDGvU6lXIZ03HQTBPVtvDShHdu30SSJLbPnllOfx8/FoBcQ9OpuC6XL13Cdmwe7x9QLru4rovtiMae/+A/+N9jmcbSZbHYaIvWGgHVFLGMfNmwuTj45vzkRrv//+tfj5fwxeQ/9hNaiirFYXABAl6IQXkRCdM0jUa9gWmYnBYDx+FoiGVZrKyskaYp1cKZ6ochTpouxa48z/F8b8ljkSRRNrAQeJ5mbQGF41ejVCrheV7Rkuou4zCWaVEtP/nvhQCxgOBrqoZhGAyGQ/I8x7bFuue67hJrsDic5PmCtyQvRabF1/T0tRHfR7a4aMvr9yFhFpbT/UU8TlGEM2VRICGai1lek8U1XziPXFcIGEmSiMOhKkpRcklcF914cg2Lr0C0I0sSlUpFCPdxRBh5TCZTNK1HHCecnpwwnU25cO4ctmUxGA4wTYtqrUqWiWTEIrZkWfaHXFWbGxuEUYIfxly7cpUL584hSUJAOLtzpnDiu2RZxmDQx/N95p7H7bt36HQ7VMtltrc3aTZXSNOU03abfq/H4eEhrVaLarWKYejU6lUqFRff9/n9r/8+9Vqde3fvUa/XqdfrHB7uMxz2OTk9IQzDZfnK5sYmlXKFjfUN7k336HeH/O7v/C7dbo/V1TW2t3fQdRNZkgoG1BjP83AcB0VRuX379pJrlqYpzz3/LBcvXuTlj3yERqPO3bu3aTQaNJsNNjc3BH9PkfF9j263Taf41e/16Pd6nB4eC/FPVii7Lpub68y9Gd/57rdRVYUXX36J+XyGomv88PU3UBSZB3fvAvBnf+XPEIYRb731hogXra6xtrpWlMsITphlWkv3UG844PT4hIPjI2RFIcshTlNmnmDcDAYDEYt2XWzTwjZNNEVGRjRrL9z2ZbfM9vY2JcdFUUQTW5blxIngc24UQyzDMAQHLkmWzLjF6wkLcOGMyZGkJ+5icb9lH7rPwjAkSZPl/1+4rOI45uHDh8xmM2r1Ko1GnWajIZrz8hxD10XzWBILp/V8zmQ6pdPpU6/XKJfLSIpCuVph1ReRx6hoDpaNvBBFnvCbnjj8xNltsVYuo4B5DsXAN1+sC1m2ZEq99NINGvU6pqHzgx98n9FgIN5jVqUQY3NMy8KyHDRdFMpESYIUBPSHE9FGmWSEoc9sNqJaqVJynMJMAlkqWtmiKCia8TTKbolzZ8+gFeL9/XsP8OceO2fPYNsmqirjOBYbG+uMRsOC0VrFdV3REl64fCzLQlJk4ZQLA2zbZnNzc+lYWlldIU5iRqMhfuAzGAyE27IACGqaSp4nJEnI3Jui6Spbm2tIkoIfCMFckmUqlSq2bRPMPcIwAFkScb1Om9l8SpZnnJ4cM5lOGY+HIEGzWcdxbJDBLbuUKy6abqAoGlEgGsnrtcqTtbX4mU2nc+YzwXITDY9Z0RI85v79PX77X/xz9vcfiR+fJEQpwcfLl4KbLAuBzy2X8L0Qb+4zm81RNY3PfvbnuXTpEh/76MdQVZX79x8ULcuinMObzen1ekRRyEdeevFPfD7/zMKTYTg4jsvaWosw9Llz9z2GwxGT6ZQwimjMG7z44ss0Gi2uX3+eN954g9/6F7+1BDZvbAhIrURKFIbFRRPQV6dUYnV1lfF4RpL0xY1aNOGQiyysVKgago8kVMcwCvGDOVkmbHGarmKpOkmaEYcBFbdUZLtVsizl/t4epmFy7ux5Yl0vHB4apmHgzcXhVkI8gOLC6uuWSqi6jm6I6XcSC7EjSzMMXcDJJDnANE1syyZJUobDEd1un263S468VIuzYhFSFGXZoiBJMiWnhK5pIq+eKdiOjSxLzOfSUmwLggBVUbhw4QJZDsN/8k8JfI979/Y4e+4cjVaLRcVsGMbEcYRhWJimiJMtxKc0yfA9n7gck2W6UMElmSiJQZaLCusEKYnRTBvdMAhm3jKqpkjCvpwXgLY4ionCCFUVn0NKgTwrpoEiUuQWgDbDMIiiuKi2VAQUPkuFHVJWMDWNJPVIkhBJFfZsWVZQVBVFE4q8N5+jqwKWnaUpfhThzT0BoctAUuQCECiJ/5aeto5KZIoMaU4URmiajmNZRGHMXBawSt/3kRQVTddwHIuK67C5tkY0mTKLEyRJTARUQ0GSJYIwYeZ5nBxNiCSPbB6jzuZo0ylempBKUpFHr1AuV8QUTjeYz2MmsynTyRRvPqNarYAhLLyGbmBpBrEEvqYxKZoNz29v41RMUEySNCHKEshyshwgI09zDNtCM0z0KCaRQmTdJEvzoiZax5akJTDO0AwURSVLBbRu/9EjUScuixanixcvCAhnGNJo1IumrVmxYIkpgGWZDAZ9+r0e08kEz/OomrUnrTxI2JZFmiYM+v2nNvzCuj3oD4miWLiVDAO37JCmEVEUYNkWdsku1piA0XgoGjhURWTVS26xDsBsPhOTGrtEbhhgW+iaSrVcZjadMp1MsOwSsqLw+c99gSiKeeutt+l02vQGPSHGVCp4vkev1y02pJZ4KOc5mqFDMeVewD8XbLO9vT3G4zHPPfc8vidiUKoibLyLydyH7boJw+GwyLGnlByX1dW1ZUHBYlNerdXpdDrcvHWTlZUVms0mu7u7aLrON7/1nWV1cK1e58aNG4zHY44OD0GCKA5ZW11lsrtbHD7EumaaYtpjGiZ5Bu3TNqd5l7t39zg+OcbzfFRVoVKuUi6XcWxHHL6TDNMw0XWdy5cuY1oWR0dHyLJMr9vDdUqUXZfTk2OGwwG1alXY83Vhi4+iCPKcOIwI/QDf84jjlCAImE1nGI0GN27cYHV1le3tbQ4Oj3jzrbfYPX+BerNJo9nEtG100xCsPU2lXriEPrj9AQ8fPmRvb4+giK4ZxXojNj9CJOt0OpiWiWnb1OsNkiTh1gcfcHR0RJqmGKZJs9mkUq6g6xqDwZDjk2MhZJYcGo06hi5iqWaxtkZJQsktc3x8jO8HdNodms0mzz33/NIpdXRwyKDfZ3t7G1VR2N7eZjgacefuHdxymc0tAbnvdDqMx2P8IGB7e5uV1gquW8ZxS7RWV9l7+IBH+7fpdXsM+wMmozGmrvP+zfdpNhp8/nOf4/D4iMePHwtrflE/LQMnp8domobnBWiaxvb2dlENnNLutIt4a4KiyHQ6bcI4ZBZ4qKrCxuZGcW/PySWJJM3Yu39fRC9WWsznM0ajIYfHRxwcH/HFL3yBq9eusr29VQBDM/qDPt/93nc5v3seGZmt7W0uXLqEFwTMfY9YkugOh7z97jtYlsW58+dZTGBt3RRuD1UDWSFXZIIwptNt06g32N7cxNBFS+Abr79O+7SNZZrUajVarRZpljEajZYHt0WN+NVnrhR8Kv1DhwMR5xb2iqxwQcnFoX+RnpDgJyWVfqpb6E9yH/2rOot+VlfTHw/C/cnA6H/dXz/R0cSTs+GPCoM/6e8vQb3Fn2WICb9SVHBrqsrhwQHT6RQ/DLAsG9suLbk+cZIQR5GIZD7FKIriGCThqFjs+xaf80OOoaeciJZl4fm+2BcUXB5N01A1DbfsisFCki7F0cVBUFUVdE1jXjjlS6WS4KUWw5+nI6SLA7ws/zgY+enrIA6fT75E8c8+LDpBwYN5Kmq0ZMcsC3TkAsGZFRF06Sk0hBD7VFV9ImDJT96HkiyJ+055IgpTuKJRpCftYZJMkqZ4no+uzwCJyWSC74vSCtOymE4mxUFatJEtRDtVVQW2YSEiANVKBT+IkGSfWhG7OT09JgwDagXXUZHlohhkxng6YTgec/vubfb39/mFz3yGSrVCqeTg+0+cOPv7+8tn++IAq+kas/mMhw8f0ul0SOKY7Z1tzuycEQOBjhjup2mKUypRz8TA3jBMdE0njhOmkxnvv3+T4+NjfvVXf5Vms4ljl5jN5pyetkXbXxBiGCaynNLpdPF9H6Vge144v8u169f4+Mc/RrtwI6+stIpnXqM4q2V0u91lA2sQ+II1NhozG0/IshTTNCipCpKuMh5PuHfvLmmWsbK6Sq8nk6YJjw72ybOM0+NDNjY2ef6553j/5k0effCYc+fOoSgypZK7jELlWY7Ek+bk2WxOb9gnGwiBuFqtk5EX7nqRIJElCcu0MHUDQ9OLvX/+RGDlCTZBpCIWjh7xvliwlBYR1SiKngqJPhUYlaSlWLNwPv04/G/htJPJcxHZXuwpF9D9xeftdrtkWUap5IhfjiMGdlkmipOKM2QYRfT7fabTGccnx0uxXDSYm5Rdd+lYj2UZtcCfoAoG8kJ4WriZFq6sH10OpKe+R3E/Lpr5MrY2N9nc2OSVV0Ss/s4DUZBycnREEsc0Wy2cWDR1yqqMLuukWUocw2zui2RDlBLHAZ43X+JXFiLe4otJ0wxJSiHPMYszwiLJEkfxcr8q1hQJwxBD7/l8thSaFpB+Ee9NkWSlEJ2K1E5heqjVRMGYXbJFmVKeL5MbC1E6L9xy5KKdNIlDIKPk2IRxwtwLxZotKZimgWWazEZjklhwnkXbXERQCJDjyYjBYEiSxkUs2sK0RDzQtIUTUpZUJGT8uUeaJMiy8iExPs8hCsW9IRVrbiblZFnKZDLm5PiIt99+izD0BZKoWN8Xa+7T5Q9Cm9AJfZEekiQJXdO5dOkyV69eZWtri9lszr17e6ysrNBqtZYR79FQMIF/ltfPLDxpioSmChCxZBpUqGAYFvVak/FkysnJCfv7jwiCOYHvc39vjzsf3KNScWk0apBm2IYheA+5OMSkccr+/j4H+4ccH7eJ4gzbqRR8nYw8i9E1ldXVVTHlkCVOTk6W04p6vY7ne8y9uYCBqWXWVtfxPZ/RcEQ0nzPq9Th75gyGYXAgq6RRzMnhAYqisrayiqaoKLnMiR8J1kqRywzDGFUVm48gCOmOOrQazWXFe5wk3Lz5Pkma0Gg00bUVKpUqs7nHbD6jXK6QpTnHp6cEQbC8QRynRMmx2Vxfo9frMZlMCH2POFTIyUjTmOFogCyB6zoiAx8FeN6UJE75vd/7PRzH5nOf/3lGgwE/+MFrdLp9PD/k/IVz7O5eQMplAs/DNB1kRSNNIQpT5nPxAIqimFxSkA2DSkso+g8e7aPFEappo+sKpiYxHg7w45hKqYKuyCi54GANh0MUWWFnZ2cJYA98bzkxlyUJVVrYoOMClD5nPp8xn0/p97oCOF2vkMQJQSgqf+d+UEyaFc5sbVNv1pEVDT+ISIuJRpqKCN+iCSaOYyZTEadcba2gazqqrJImotFKVyR0RSKLYjIoRDgFo+QUsMsc13UwLBM/CQnjCEmVkXWFUsUiVxI+uHuTkqpTsyzSKCCPY7J5KASoNKUsSbz4zEXCMGYy8Xj2oy/xwic+xRvvv8ejowNefe0HSJLMV7/8FXTdYHV1vYCapmRWhpqrlO0qjmWRx0OSKOD05ABdU3EMFUwTJY3Jo4D5OCNOYjIEmyyXBDdssRh5gU8y85jOPMI0o2y5qJosMvFZxsybk+WpgNzHKUmS0VppkJMxnT7i8aOH/Pr/8D+wurbGmTNnuPbMFV547nnOndvFMExu373DyckJr7zyCg8ePODXf/3vUnJLOKXSk+hCkqJIMnbVLhp2RCXyfDot4PI6cZJBFBElCZkE5VoZ0xCiSJLGxFnMyekxp+0T4ighSVMsyyTNMvqDHnN/yng+wnUcqpUyhwcHRGGASo4sZahSHcdxsBoN0XyVZdx+/13eefMNOsfHbG5u8R/9h3+FdrvDN7/5B/hBgB+GaKpMlqZcufIMeZ7z3e/+kYCa+wFZmgIL16JCEiekcUqpVMKf+/yPv/73aTZbXL16jTCKCIKQPMuYz6eUSyXiWg1V03BsmwsXLrFz5iyNZqtYb8Jly0YUhSiyxLPPXmc4GOKWbJI44Q+++S16PREf++U//csEQcgf/dEf4c3n7GxtUa/X2djYoNtt8+DBHrP5HNu2+eQnP0ngB6yurmIaokWp1+vxL3/3a4zHU4IgolIRTUq9Xp9SqcTly8/w4osv8oUv/CLHR0d0e73lgcEPAjrdLm+99RZpETlTVZmLl85z7vw5kmRnyemYTqdiYmcYrK6ucebMWV75/it0+wNG4wmyJPPX/7P/nJXWCru7O4KxIqtcunyZX/rKV7BsB2SZV77/CkfHx9y5e4cg8PnWt77FzuYWzz77LJ1uh5LrEiUJ7XabT3/609iWTb8rGFYvfeRlVtfWRENbcXjJM/A8n9deex3TNPnKL/8ZdnfPMpv7mJaNpMgcHh/R6XT40pe+xPb2NrIiE8URwdxDNwxUTeN73/0e9/b2sB1HRGrCCCnNhBOx2LQgSZi2zcrKCpZpUm80GI5HvPXOOyL657rs7e0xGAw4d+4cL774IteuXafslimX3GXTSxSGRFHAoN/lYP8x/+K3/jmNRgOn7JDlOd/59nfI8oySZVMpuciSxK1b7zObzXjhxRuUy+XlxkBMu4XI8s1v/gH37t1jd3e3GA5E6JrGtYuXCOYe/+Sf/hMO9g9pt9u0mi1KpRLndncxTZPTbps4T7j+wrM0Wk2ajQZXL17i4pmzWKqOrmq8+NwL7J45y9VnrqHIsii/UBTef+89sYmTJPzhlEm7z+GjR7RWV3Ceu87paZvTk2Oev/4sjUaD8WjMaDTi9v17JGmCoilsrK2zs7nNabtNu9vl8PCA6WTCV77yFSrl8vLQYFkWYRTS7naIoieTT9M0ybJ8eTinYP4tDiKSJNiJC3Fq4RKI4rgo8/jpW6j/reN3f9zrxyJU/5p+nf+fvBYHxJ/kTFsMAz8Ueysm/GmaEQbB8ppcu3aNNBV8yqhgKI3HY/b396nWalRrNQxNE0MbVV1GwsMw5Nad22iqimkYuMWBenHoe1r8qdZqPP/iDR4+fMjDhw8ZDIcgS6yvrn1osr0AeOuaTp6LVuVmq4lumnz/1VdFHKZeJwgCBoMB1IRbYuG8kGUJeALSf9p99dPERylfHAg/dBEFEmNx78ATp7OuY1qWcKP4HnGaYhr6h0DMIAY3C57T08JdqVQcWgtmziLusnCngQADT6czTk6FWHJ6esp87omotyThFo1WwhmTEycJ8/mcLM+wbRuzGPRlabp0CiuyTNkt4zgZlZpgcMmSJJ7BScJ8OqN9esrrb7xGyXHYPX+OTqfD0ckJly9d5oUXXiCNEyazGePpFEVWaDab7Ozs8KVf+iUODw44OT3l9dfeoNvrcuPG87iuuwRfW6aFpqvkZNQbDUzb4uq1aziOw/Xr1zEN0Rx3+/Yd/s7f+a8JfLGf/1Nf/EVMy+DmzVucnp6wurKC7TjsnNmi3Tmh0xa/JFmiXK5w9uwOv/bn/xyrK6ucPXMGp+RQLldY31gjjmPB3NNUZFUmDEMOD/fFtcsytra2UBSJXq/PcPhDbrzwPI16jfWNtcKxJvHa66/z1ptvcefWHY6PjvnSl3+J9Y11ev0e1UqFf+8v/SU0VUNCptVs0Wr2OL+7y4ULF0R0zvOI44jRaMTevT3SLCdPcyRdxqnVuPLMFdxSiWFvQBSGzNwptmXTqDdwSkUU1RD7qSTLiVMR7V6w0YIwZDabMZ+Lz7O9tYNhmMuygUULrmVZzGYzptPpEt6f5zlplgrOmPSk/e7p1sjFa3GvL6JMAJou2r3TonRgPvOWhQa1Wo2rz1wRRQYUA3NJRtJ1FnqMZVliqFUqoek6hmmi6bpwQxWAdBH5FeeRk9mURqPOSqslztV5jmFoxdcsnl9ZUuBIJPE5ZeVJIUNerBVPr5vkQsT+s7/yK3zk5Y/wf/s7/zV37+3xcO8B3dMO/txnY2uT8xcvYpo6hisGymEq1mVVUTENmzyFOMsI0xg/Dpn6ASmgqSJGKJjJTzGocgptIOPSxQskaYrtiJbLLE+FQyzLiOJo6eSRiu8rTVNGoyGn7Q5vvv0OWxubXL50kWazyUqrRZolSGSCWpTnxGEAmUpi6KKduChcCoKI6loV0zCxTROylJs3b6LqOpphce3adXa2ztDvDRj0B8zGYxG/y0QqSzV0JrMJj/cfk2YpbtnBLiKEzz57nStXLtNqtQT6RpHonPaYjKfIMsu0xYJ3HMcJvhcSxwmaptEvEEGHh0f0+z1++MPv0z49YTYdoesqlbLLbDZl6s2XUe3lezrNGI0mdDp9nrl0mRdvvMynP/1ZwWrbFvfH48f7+H6A5wWMx8Jhats21aoAjmdPvVd+2utnFp6EyicqvSVZvDFyA2RJYTgak6YCMu7NPfb392m328sq0iiMxCEtyZaTEnIRD/I80Rgwm84Fn0fTSVMBblYU4XZRC/ZQlj1pvxANH2KRE9DuhCTNkCRF/FkhnWZJWjS9CUEpjmOmk6lwnmiCMbQAhy+smIsH3aKxIMvERkTTdAzLQkLUo+eIBcX3hZUuy7Ll5MqxbaIoFl9jLlwmUIDoEBMuyEnThDAXeVfNEPnbJInQNR3TNMizlDTKMQ2DVM1Ikog0M9hc20JXVR6bFlGU0O50aa2sUK3WcMtlbMuG4nARRQlxnCwFPXKJNBd1l4qsCKcTolZemC6Fch9FosWiZNhiAy7LpIVjRjXE9ykibXnhlMrIMokFXXzBA0iLKfLiV5zESLKEVtjPoyQp/v4Tu6dhilhZVizySSasrqL2U0Yq3FlJAZQVFZkauqY9yf9nKVKhVIsFNwOZ4jChFGA/CV0RETTLsjB9X1CvWUwVU6LER3VcFNshi3KyNAGECi8XMHPLNFBymJNTLjlsbGzw6PSYwXTMeDwmimPCIERRVEqFaCaqR4UoRJ6Tp5lQ0hHcAkXOUWUNVZJQJBnhActhwWMo/mexoRQPOXEtsmJSstjgKZpKFgsGimAyqCSZqCFXFAGI0zWNJM3o9bqi2bHZFM4lTUPTBJPLKZhFkiRso+1OB2QJy3FQNW05kZCkhQ1ZbMLlom59IZClaQbx4p4tOBBFZDAv8uieL1hWsiRibaqqQpoSR8LR53tg6Tq6qpClCWmaFODRHHIRsRR8KLGhFPXsc+7duUMYBHzxT32RatllfW2V2WzGZDZDVcVkTio2wVoBjY2laLm5yPNcTAOQiuYP4YQcDAWkMIwi8ixHVURpQJ6m4uFdTJVkRV46qly3jKYLYPHi/kAS1d2lUgnynI31dcbjMXfv3mUBSdw9d4EkFT/r6XRauI8kVldaS+de4AdFe1cZ07RwS27xsxDX3/d9xuMxc8/HLZeXMQ5VVdnY2GR7e5szZ86IVgvPWwpPoqZVMOHSMBQsiNGQducUTdNRFJkgDMS/8z0UWcEtl1FUlSzP8QuweppmaKbO5sYWjUadLMsFzyAM0XWDjY0NUbkchnQ7XdqnpxiaDjmcnpzQqNYwDIO1tTXOz2a8f+uWqEGH4oBmiSlxvYGqafhBgFsuF062nChKmE6FE1DU11ZBkor4RsxoNGI2n7O2tsbq6mpxQE0L7oAqJmeRuK8p2mviUIByZemJWzUnR1ZlckkAiyeTCaPReFmfPpvNCIKAuGgG2tjYFHEMXVS0h1HEaDxiVoDrhZuniu/7zGYzts5s4zgC6h8nMX7gU65UsEolsTHx/WUtu9hkLICZ4nuZz+eMx+IZvmgiNU2TVqPJbO6xd/8+s+mcKE7JAUVRhaPNMPAjwYkyDJMojIiDkJLrohuGYCYWG5tqucrFixdJk4QkSkQ7Zb9PrV5DUzV63R6D/gC9iFbrmoYiS2R5vowFzaZTwXAKI2RFxrEdbFNEdL35nG63g4jI2mysr+E4JdqdTvE1y8tByOIALxUukDQVPI68iBdQbFIXmyghSP30g/nP8vqT2Ek/7WP/aETs/xtfw79tEPJFVA7+1VxgPyq+LQ6UjuMsf9/zPGZzb3lvz+dzZFlm7nlivS6eEXEiyi/6wwG6pmNbFrphYGMv91dPfqZFw6tjF6BycchauPvjWDxPUJ4cchVJJk5zSBNUtdj3FB9vcQAWTUlpsaaLfZOI/zzhluTkyyKWLBd12T9WE//UpVy4IMh//P3zNBNGKvaJYSjiIcL9ZLJotM2WX1+yjH0BH9onL9wKi0PRj74WX78kyct230WawLZMTNN44mIsfgm+j1ywtsTeMP6Re10t4oLSct+aiAOfojAbT4iTmMAX654si0GmqgiBqd6oM+j1l89WRVGxTBvLtmm1WvR6fTFICEMCPxBoCNtme3sbQDjl8ow0EwNW07RYW1unWq2ys3OGNM04PT2l2+1y//59SiUXxy7RbDUolRxee+11giDAti2QJGzbIY4jkiTGKQkYcaNRo9msU6tWqFbLorZdkph7M2RJwIvjJCZOYmZTweBauIIXmAXHcRgMJiSxj6Zr2MX+T1NVNE1HVRTiMCoaGMX+N00zZtMZji3q4qMoptvuFjHLJ+10s9msODuGjMcTJtMpEhKKrOI4LnZJ7EFNU/C2yHOqlSrlAgZumDqaLswBaZYW7F7Rtv0hhlku9tlBEJAkCZqWLh18i/f20/fSwsm3XCv+V0StF+/VxZlx0YguIeH7Pp7nF3tdIbrqura88SRJlB6JvX6xr5ZlHFsUdaT5wm0l/rJR8KoUWSaTBMh/cQ+I7y0jSUSU/EefKxKIOP1P/C6W3idx3ktz1tfWReR+9xyzucfjxwfMZ3N6nQ6madBaWaHsOtiWSLVIskwSRwXDVRbFAlkqmG9pgh8G5IjzrqrIGLomLkNxbpGLsxJ5jlNyiq9HlEc9ET3yIpWgLIVriquZJDGz2ZRHjx5jGSZ5fgFNVbEsgyAQ68PimgsQu4qmafh+QLfbFQPoohRCKdhai8ixXAyhNFVDN3TCMGQ2nxMV32+Sp5BKSIXrKUmEsUaSNRRF8HXrtSqV8qLMDBaRuCgMcJyC6ydLyzUximJ8X2ByJFlmMpnQ7/c5Pj6k2xUDyvF4RJ6nSJKKoohn5PI9Xgib4nkk3IUSMq4rGnyvXbvGhQsXhIaQJAVrLl2y+BbMwAWf72d97v7MwpOqaPiez7vvvkO9XmVrZ4Msi4U9X1ZQJI1quUkYRPz63/tvCQKPnTPrQhSKY3rdHkdHR6ytttB1rdgkp0RBxGQ85vjoCNetUHJKpFFCLmXY5TKQc3LaJvB9xqMxYegTBAGTmYdd8mg1W8iyxOnpCbOpx8HRCZoso8o6tuVSqdTQNJGRrNUbTGczDo+PGY3GHB4ccvbsWc7u7pLmGUEYMJ3NkSQZ3/dJEhXP8wgCnygKkGQBpt7c3ETXDTRdo91u8/3vfx8/8DFMg4uXLvHcs9d5T7/F0fGJqDPUdIIin9nr9sWDWZaYTkX2mjRD0zQuX7mMZYqKTss2WVtdYTwYMpYknitats7snkXTdAajMRcvnOdP/9JX+MFrP+Rffv332T84xC2X+T/81f+Yne1tvvnNbzCbzZAkGA+HhEEMiInZdB4QxguhLccti0YOraifDIJAWHR9n6k8FupzySGKxfeiKoJTFcch0+kY0xQNF4pc2E8zAbRNc3Ezp7kQGBRZQjcF3Gw+j1B0mRW3WWS1cybTGXPPI5VygiQmCH1yOUd3DCwZGtkKhmUJgLYnDl55nqGpCmVXQNe8uQdZiiqBZeo4lsl0NiOKU+JENI6piowqC46VrKrIisqZnS2q9SpHnQ4zz+Pmu20MTWVrtUZVMzB1mXQeEkaTAkYoI2cKaZYy7fXw/YhoOGM6HNEfDCi5ZTa3d1AVldl0xsnxKeVKhfXVdeIw5ig7IIkiQm9O++QYU9dYKemYuoZtmxiqggpkaUIU+pRWG9SqFQJfHFInszmSLOEWQpAsgZLL6HLO1AvJkgxvMkXRNBy3hJRl5BLopilaJzIJMpYNhud2z6IoYuMwn3u89+674v0fRThlV0xXDIM4SYiyFLdUYm19nXqjTrVWI8nALVcJCoD9cDBd1lcnaY5mmNiOKyIFXlhsTCMhQidjkT1GCIZZnjKZTgjDCMd2BevLtNAliZJrC65D6NPvdRkCeZZimwb1SkXEDqZTpuMxWZJgFO/NF5+7jmnZ/OY//x0+eP8mk2Gfs7tn+cSnPkmaiono7Tt3OT1t8+1vfZsoTsjiDMcU01HLsiiXy4SBT+iHmIaJaZhFk1FOtVoliWN++OoPCyCqiSKBoSo8OBKTziwRjRtHR0dcuXKFS5eeWTabtdsn+L5PueQiywppElOtlNne+Dj/8B/+T/z3//1/x1d/+U/z3PPPU69VSNOUzbV15vM5P3j1+7Q7u2RpSrVa5uyZc7z7zk3u33/AYDASB6UgZjqdcnh4IOpQP/MZhiMhPA2HAyaTCY5jcfnyRf7G3/jPiliSTrfb5ebNm/i+j2ma/JW/8lcoVyp8/BMf5/DwkDfeeIP3b93ka9/4GjtnzlCr1QTQtXCHrK6u8dyNF3m8v8/Xv/ktXn/tdfbu3+dzn/s861tbHBwfc3hyQrd9utwYbWxusb65wfHJKZPxlNd/8CrT6YS/9lf/KrIMRweHlAyTulvh/LnzXH/2WX74+uvcvXuP1157g53tbZ67/ixBENBoNJlOprRPO1y7+ixXr14hiRJmkym2XaJcqVJvNKg3GzRaTe7cucP+/mPev3mTyXiMWxaNhaqikMYJSZaShgFBFPGpz3yalz7yEb777W/Tbrc5PT1dsgKCMGQym5JLOZmU89a7bzMajul1u0ynE9GGGQTs7e3x3HPP8fnPf57ds7u4rku316PX7/P+++8zHo1oH5+Q5BkJOb/81a+ytrIqWuwkic9+/hcwdIP5ZMq3//Bb/I9/9+/xmZ//LC++/BKz2YzhcMgrr7xCo9HkhRduCNE4COj3+3Q6HdZW12nWxXPZcUp89Su/jK5p+N6cV197ne+/8iqf+tRn+PlfeJlGvYZtm1QqFVRVJpdy4jhhPvewdJOaW0GxTDrejN79PRGv9EOyNCWJYkquS6Nep9vtcNw+5SMbq+iWxf/03/4/8D2fr375yziOg+uU0bcVWvUGuqYKVkl/gKIoXL12lWajycVLF4iThMGgz6uvfp8fvvZD/vyv/nkuXbhIvS7Awa1WQxzzpUIMDUM0WUHKIQwi0iRD04QjIooj0QaTJoRxTJIkNJtNdF00CQKiPEOWMQ3zQ9Gjf9Nei+c+/NshOv3o60nd+IdfT3/PytNT/fyJYKUo6ofEpsWBplIRcfnVtQ38wOfy5ct8cPs2t27epGTbZHHC2uYGyDL3H4j49dHxMVIOChIf/chHWF9bE0Kq+GyiECcImM09RqMhkFGpVdjc2qDRaHJyfMRoDNWyC2hIeQEJVmRCL8T3PfIi8nbxwgXSLMd1y1jFoCFNUiHw1qpYllnw9lImMxHLWziobM3Gn4thQbnkfggWvrheHxLpikOxZVk/dv0WA+L7Dx5w//59PvPZz+CWXTRVHKbDQBzIBsPBEpRsWaLifTAcMp1OuXvvHs1mk49/7OOkcUwYBII1VDBSZVnBLTtYtolVcul2u3znO9/hpZdepOTYPP/sdVZXV+j0ekynU8bjccGRKS0dK5ryhLuVJAme56GqKm65TBTFzDyPXq/HcDhclpeYpsnaxjr/zl/8C8VQS2Z7a4vw2jWcUgnDNMnPXWA2n/PNb36LuecThgmd/oC9Bw8FDNwPuPrsc1yTJL7wuZ+n7JZJk4Ruv8cHd+4sHR5hGAJw+fIVVlZa5HnOzZu3+Nt/+2+jyAolx+GFF57lhRducP/+PR48eMBgMCCKImzb5vT0lO99748E7sJ1+Mt/+S+LZtzDA/r9Hv/kH//PqKrG2bO7wpWTpTRbK1SqNZTCUfHo0QNms1nxnFjlxgsv0Ol0ODk5RtNtLMuhubJCqVLm5q2bSEhUyxVmowk1t8LlS5dotVa4ffs2N2/dFMPrwrF/2j7lD77xTTrtDt1Ojz/67ne5d/cuuSSEA9O2sC2bF248T6VcoV5rEMQxYRJz985tZtMptmFSrVa58cLzxaBPQlGFODObTYV7qsCUbG+sCyMAoom6Uqkso3VZnpJmCa7rEgQB7XYb0zSBJ02Yrusu14VF/PpH14+n7xd44tRbDOySOOP4+JhOp8PZs2cplUrs7+/j+x7rq2u0Wq0l4iGKoifiSZYtsTOLAipFVtjc2OD49JTesEej2RQCtyKEp5Ir3usrrebya85yIaaOx2NyoNVsIkty4f4Ujs2FC3ERz30Cr0Y4glWFqHCllZwSjlvib/2tv8nDh4/4L//L/4p2u8Pjhw+ZTWfMpzNODjZotZqcv3SRarVKnmYkccKj7gNUTcVxbfxiuDmeTMR5tFRC0zQMTbTX24ZoE7RME1WRkVWlEEwk8lzEmeMkQpYVDF0XgHBFe6o0BMhZxuVm8zmyIrOysoLj2CiKjGmKJkVyUbb1zDOXkCUFXdO59f4tvvvd79HvDVAkhXAekMcpWZRSazR45to1cmTSXGI+m7O3t0e/NyCOYixdcPYm4ymz2Yxut4umKqy1VnAcAcp/863XmU3GNOpfpl6ro8lKoUdMIRe82fWNdWEokYRAPRmLFFC/L7hmJcfhjddf4/3336PbPSUIfLz5GIgpV2wxbA48IBNYIstClhXmc1/ET3Wd9bU6W1tbXLx4kd3dXba2Nmm1Wjx69Jj5XDhMK5UqV69eQ9NE0mEwGIoygrlAh7zwwnM/+jj+sdf/CseTeADP5x6GYeDNfOI0I0lS4YhQBek/SUUsJU4SnJKBbTk4tkOlWllOIJZqcuFsUBUZTRVRM6HOR6RJQpqKH1gQBORApVoh8BfZdUUAb1UNRVXQNB1ZVonjlIQUKc0YT6cYI4tqvUYuSZQKANtwOBENc95cAM8UubDJGYzHYwEXlSTBFiqso0maYsgSalETnmYplmlRckvUG3UM08Dz5wwGfY6PHWZFlbyqKOi6QaVcETnlOCqy4fMlw2qhGmqacHcJdZJiap4SRSGaquDYFo16HVlRODo+wc89kkDU9F64cJHxeMx0OuPR48ekSVJUKWYMR0PCMCJJ0uLGKkL7OSSxgGLKilh8giBAlyUMUwDhDCMVm7g8RzQoCLEqSZPllH4xJVBkGVXTkYEsyZ5MmxZOp1hMMZJExBgXN3oYCzFIVlRUXUVPdRRt4WySlll/RdXQDGMJoJzNBUxQliQMQxebEkXGNHQSOSbKCyW8cBwoKIRRAnlKksSFGp4hS6CpCooEUp6TxTF5kmDqBqYhnCla4baRCjUdRRY3BQX4ngxJytFUARQMwoggiIiihJXVNSzLYV60AK5vrAu2iCbaJrI8JUsSUhmyTCFHK+qdxfsOCVRNJU5TggJIqCqKAKZLEqQ5kizAIzISChKqJKNKMlnxs0uK6U8msfS0KbJSqOfi/RyEAUbRgqPrgtEkXEcxw+EISZEpuSWy4uePLGPZNoYhrL5qwaPQc6GiZ/mcPAdFVkGj2BRoSLJCmobESSref4UrbvF1CA/zIuqy4Dwo5Egosoyhy0iSeEDEUUSUxCgSyMhLRpVSxCil4qGdxLFwGsoSduEkHPS6GLrGg709wUwwTcgFuy2MEuIoFlw0NSX0QhIteVJwMPewbWup+ucgbL5SJphOqkqeZfS6XYLAF5XAEku2xSJyqGk63V6PbqdDp9smjiPq9TqmaRIlCVEYcXR4SBD4VMpl0jRhNpsu89limpUipRKj4ZC7d+9w/vx5dF1nMBhyetpmNJogSWJDqCgKOztn2NraYm19nfF0iufNGI9FPrvRaNJsNgWgME0ZDAZIElQqZTxvThSFQlQzDGRJKupgS8WvMuQ5YTHJlSSYzz3I4b333md/f5+b799kOp1iGib+3KPf64ufM+B7wsqfpWlhsRYFECfHJ8xnc/I0Y2tzAwnwJlNcxxGV1o6DWylTdoVTZ39/nziOqZYr9Ho9EbsNQ5HVLzg/JydtJuOJiFlkgr2QpilZntHpdnnw4GHh7hWAfFVVSWJxzXVdJwgjwtBj5nkEYUir1UKSJB4+fLgUzxRV8Pq6/S6jyZh2t8toMOTg8T5RFC1dbQt+V6NeLw5JE7pFDLvfH9DtdLh7+zbNlRZrmwJ6Wq6Ul9W9fiCcbQvQrWkIB12cxMXamy3blIT7SfAkFhGXJEkJw6hwJqg0G03yPOfk+BiAjfUNNje32N7aJgjFRt6wTEzJoFIt43sek/GkcKoaBFFENMmolssoikqUh0ymU+7evsPKygoXLlwACarVCp12WzwboghD19ne3hbNUqenyJoq9hSJqBWvNRvC7VWtUXJLqIpCr99j7+EDgjCk0WjQqNcKdofYKOuaJtarXPAigiDANkx0dQE/LuqsczGBzvOYPGEpKi023nEcA6A9FXuC/99F1H6WSeKf5Kj6SX//iUvl3xLxaTnd/umOhD9OdPtJv788aC44QEU8pVqt0mo22djYIAxCTk5OsF3BBE2zjLRwFmWJeL5HcUSW55AlgjtZuLwLv11xmC0YQECaJksgd5oK5744AErLP4+iSOyJFAWjgHTHcYKhi2FmHIVLt+NCYFnE4xavxf5s0UxqGeYygri8Dgs3IB9+n/1x75ssF/wswzTE3qA40KaFwzKORdvU4ldSxFcHw+GSVbW47jlibyMicU9xtJKUpHD0a5rGysoKAP1+nxyRZMiL/aeIB2ViT7342MX3snA+BmGAmmo4xRB6MBgwHo+ZzWa45dKHvl635JAWEfxF855ecLWE21lEqZI4IU1zEaNXVcGKVRQRz9QNGvWmiH75ftGKqBbtaVqRKFDwfJ/T0w5HR4c8fPhQMGmqVbY2NykXDWBZEdsSDBnRSp2mKZqqU2oKgLskSQwGgwLxMS6avVTx/JUlFEVdRpo8zysQGcLdt7GxQdktCxfHbM5oNKZS0zDMnN6gTxiLNV4G8iRlMh4TFFX3tmMTpQlplBFFIbPpjP2DQ44Ojzg9bROH8XKPrSoKlmMVLiohStZqognPdR2ywvUr5cIlvwBHL+6ZOI7IEvHz9DxP7D8kCUlRC+escFYtIt8LCP7inLKA8S/Yf8DyzxaO95/FqbooVAlDMbBQVZW55zEYjPA874lDkLw4RyXUGw0qlcpS6Hn6/vuwMylfOhSzNEVGOPOtYjiqKzKKrBTrhRCXwyjCK5pZBSRbKs5/SZEieVKu8OTzPblHYJFK+JH7vXDwt1oN0izhpRdv8ODhQ9586x2iIKDX6Yp0VJZRrdVEO3pJgPnTwolpaDpSjmDlpVnhii/OB0mKpipkWS72w0mCZeqiGV3ViujwIgqcAfLye9Y0jTRNlw5AWZawLJNKucLm5ia1eqOI4srL71kuzlEikaOhSCKhkaUZnucXSQdZRHALfnOeZqRxiqQKV56iqqiqhmM7xFoMaUKSQJqky7VBOANVgiAkiUUqzC5ckbVqlUVjexhESzeRpoqvNY5jkli4SdMsQyueN3PP4+TkhMePHzGbiQY9KRfrnhB8E5I4hjxHkaVl1JMcSq7LlStXaDQbbG1tFwiCJ9xCy7JIkoyg28MwhENQ8KLE9dF1fcnQ+lleP7PwpGg5aZQwm/qQK0iStlS8GvUW5bKA7mVZTtmtEIQeipRz4fx5nn/+eXbPnqFRrzObjYkioUArxSJXLtm0WnWmM4/xaMB87omHVMHkmM1mrKys8PzzzzMcDOj1+8gSxFGCohqYpkG5UgcgSSU8b854OGDiexy2T0FTWFtbY/fsWYIwpN0fokwnJORkMqAquLUKKDJ39+6jqSqbW2uUyi5upYwfBgRRSFkRlPrxdLJcrOu1Oh//xMcZj8fF9P91XnnlFcrlOrpuAjKO49BsrACienF/f59BfwC5jK4ZIAvLnaWLGyqIRDQnTWJm0wm9Xocw9JHIWWk2SbKMvfv3OD46Ye/2fT73hS/w1//Tv84//63f4gevvso/+Af/kLJb4q/+1f8IyDl85Yh50Sa2iDwqsoamGIS+AHzLGoRJzNAf0lxbpdpqkisKdpyQBAlJLDLwUnFAi8KI6ViwlZaRkjynUqugKjKhJ65PVLSvCBbTmNGgT8m1kWVYW1vD9wNu37uHbpi45QqqpuDqLk7JxrRNdNNAM3QUXSeXFYwiOikpCkfHxzzYu4+iKlQrZZGBVRXKpRqB7zMZD0HOCLMExdKRc5X5MCisrjFplmBoKrqmYmgaaRjgj0cE0wlZmrG7e5aSbdGqlLAlSIqpt6rrSJpOJstkKaRSSq5LaLJCVTWRFZhMQ45Pu/RGQz7xqc+SxDFvvf4GsiKztraK502pVl2m4x6iaSZBQrRMpFqGblhkScx0PgVZoVSpMJ7PGM+mrNWbGKqOazgkaYrvh2RyjqKClKlouYypKKBBqmmkEiKfT05KTpJnyGmCrmooklrY4mMePX6M67pFI46oGza7FsPRiON2G38eEhWtOFEcU5XArVSxnJJoUVE0ZEXFtg1iLWE4mgielqkvxUnxwJSIk5woSvH9uACwCuhimiZCVAJUXcMwBcxVlhWiKEFVJBzTxDJ0Mtui2+3ghwGqriGjIEk5qiIJay+C2eH7AUEQMh4OyeKIi+d38IOAyXTGBzff59UffJ/tnW3OXbhAs7nCSqPBaOKhyiEVt0qeDXl8+BgndMRUtt9nMh7TajWX4lOWZfjzOaZlU6nUlhHdV1/9AaPRkE984hNUyi66JtolV1fXKVeqZDm8//5Nvv+DV4iiEMs0ePnll2k1RbPlzZs3+Uf/8B+i6zpf+tIXmc097t6+zc7WDrquM5mKRrXV1grHh0f84JXv8cUv/inklz/CnTt3effd9xgOxui6zqWLF7l+/Rp/7s/9WUzLxDB1Xv3hD3jzzdfo9/tomsanP/1pLl26xGg0EhP7oyMcx+FjH/so3/72t5nNZsgyxHHIo8cP8X2fRqPO6kqLj7z0EocHh0wmE0qWaGrZOzjmg9EtfuMf/7+YTmcMhyNefukjPHvlOkf7h9y7fZexN0M3DHbPnoUsI46EiHDp4kU+uHmTt956m/lsRq1S4cqlZzB0nart0FpdZWtri0qtimEYXL58mSCM+N73voemaTy4t7fcUE0mk8JlpFIq2RweHvLg4UMxEZ17DPpDTMuiUq/xznvv8u1vf5swiqlVK0vI6HQ6xTAMavU6+wf7nJwe8+577zGZTvkLv/YXSNOUt99+u7g/QtxKmbXKGu998B5vvPUGg56Iy916/yaGrnP1yjPs7u7yhS98Ydnc9ju/+y/Z27tfHA6FIPvg/n1+97d/my996Ut85lOfxrJMvNAnCESpwhuvv0EYhxwcHhJ5Pi+/9BL1ep2555MkKXkOmmYgIdNp92i327z22mucO3eOZy5fZv/RAUdHR6iqyuqqAEaORiO+98r3qdca/IVf/YtcvX6ds+fO8Ttf+132Dw/Y2dmi2Wiwe/YsgwwmwxE5ErKm0en18YKQT//cJ6iUy3TyNnfv3uP//t/8N1y7fo1f+qUv8eKLN3jp2hX+/q//Pfbu3WO1ucLW1hYvfuRlbr7/Pv/oH/0jzl04z4XLl5gFPmme8Ytf+iKrrRWiuU+epYwnY15743X+0W/8U37hM5/hq1/9Krtnd6m4LkmcABKmaRInKXEhPPZ6Pc6d3aVar6MX7VhZJrbbhiFilkk2R5MklCwV0VRJZj6fiw1YIeqJiM9P5gf9m/T6t1F8+jAImA850552MS3Elx+N3yzUq6fjV09EEBFdUVSFarXK888/z5UrV/jd3/lfeOfdd8hVmUqtiqZrGKaBoomiGs/zRPw5CMgS8Qy1bROQCq6lvIyAWZaFXwx8er0eiqws3Q+qrJAXzuUgEODqpu0ILqdh4C1A+opAIYSBz3Q6xXVLaJpw8KepGCaK6EmybNdqt9v0ej0cy14OR5bXMS+GcoUQtKhwXxw0Fu4x4S4UwtPK2mrRgtzANC3m4zG+JyrhS65wSy/EmqPjY0bj8bJxbWdnh1qtJuIpxYDDm88K55NwKA6HI6IkJYwzHKfEn/kzv8LdO7d59913+fQnfg6Joso9TYv4vfheskIAQ8mhwHAADEcjNE2jXKvS7/e5efPm8j1w4dIFVlZaZFmOLIGqKERhyHA0KLiw+tLZ5sdxMZiICEIxVDVMi0arhVoIAjvb27glF60Y+MrIlJwy1Wq9KFox2dzYoFQq8dprr7K//5h//pv/jEq5zC/+4i+ye/Ys165e4cGD+9y99wFZKqPrYlg0n3vMZnMajSaXL1/h7Nmz7J47yyuvvMIf/uF3GAz6lEoOf/Ev/jvousFkIngvpmVh2haarnPv3j0xIDJt6vU6X/7yl+l1O7z5xuu0220ePnzEedVENy2+/8NXRYtvqYSMRC9u8/jRYw73D7BKJWzLxrRs4iTm8YP7tE9O+Re//buMhkMe3Nvj7M5ZLuxeYPfMLqurK5zZPYPtiP1/LuUfijZFvs90OMa1SpQdl2euXBYAZkUmjEIm3nwZqet0OsymMzY3t7FMq7iHxX2tqCpaca8tzifAEiougNTiPb1AFzwN6f/j1srF708mU3xfOMklScIuOZycnHL7gzts7+ywvrmBVXJQVHX5bHnm8uWngPlFE2ZxUz1Zn4QpwS7an0fDEYokUatUqNdqOI6DLGUFbgQEW0RmPJly2u5QrVawTAvDsCDPmc4FH7lerZEjnICLuGlWNOoliRDKDcN8sr7KErKqiDNFllFyTXbtTf7m3/o/8sbrb/Jf/Bf/V0ajEffv3mM2mTJo9onDiFq9zrlz5wpOnUbJsmmUq+RAMPOQVQ1keSkYCu6pvETTkOc06jUqZZeGW8Yo4sMUsTSKqJysSKiaXAxpUwxjDV3TBOfUdtAsl1q1gmYahfCUgbSICUOeS8jpE/Evy3KSKBG/LykYulmsGzlRGHJ6coLtlilXG5TdMvV6g7QlBmr7Dx4SpAFJlGFoJpsbm2IgEIfcu/uAwaBPGPrY6+vceP4Ftra2AYkojJmOp1SrZWzHQVHFkDvwI/wgYDQR+9HVtQ26nTYnx8e8/fZb/OAH38eyNAxDY6VZE85MIE8TQt9DVUUU1vc8sjRHUXTO7Jzl//xf/V+o1QWz8Dvf+Tavv/6aiL3GMesbG9jjCe++9z5hGInmyHKZSqWCZTli6Cw9eXb+Sa+fWXgyLQvHKbG6tiHUPlmhiJsy8wKCqM97779PHMdYtoWmK0hyhmlaaIoulHRJMBsyROSKvHiDqDKGrhKqKpGi0Kg3kWQx3Vmoz7ZlMegPmEyn+J5fcJJkkjgh01Sx6CsytmmgKTKmrgvCvaoxGo5IE8FCkSSp+Hg2iixjWTb1qoBD+r7P3dt3iOIIp+Ri2c5TG3cBwkvTAjioIPhS5AIw7JS4eu06w+GoaLUbMu/2MQ0bRVbJMo8oigoQtodumIRRSBpnaKqGqulLPoBtmpiGIZTiYuFLs5Q0z/ACjyRNybKEsuvw4o1nWVupMx0P2NneQFU+xtHREXEc8f1XXyXPMrrtLlmcYuomZDlB0f4gyfIyNyxo+TLlahVV1wnCECQFzTAwDYcsy/F7IjYVRzGKLEDpiwz/osUkLwRDikVaRfAIFFkWrX+u4AzN5x6dTldAmMOQXJIx4xhF1QXU3bIplVykooUkjUUtuGXqREHAaCpAb4PBkFqlDLIsHG6ajizJT7GBRKuKWkwpTd0ilmKiIESWVGzbxTBs0fhm2bgll5I5Jk4SLFURLjcJ8izBi2KyNCHPcuQ0Rc7F5EQGFCDNM6IkJk5DkswnISORZdxqBfK8EDcl7j+4z2QypVJtMuwPmFtTTE3DUBQM1UCVFPzQx1BV6pU6SRISJSHzgtEUJxkyKeTil5LlIqaWIW5+OUfTFRIpZ+x5JBLIui7cG7KMWuSSoyQmIUXWVDQMTEuo3AeHR4JTVirh+R5xmuA4DrphCB5CnkEGURgzHA0pVyo0my0GgxGBHzAeTcQBLikE1AJ8p+ta4UQST8U8y0WOOlPIctF+6briPRVFoiZZcODE1DdLcyQMcrmEphS56OEIKZdQJAVFEhWtiSI4UIvPkabivTiZzYjSmHKljGXbBL6PIps4loVlGvjenHb7lOFwSHNlHdu2xASNGN/zkCVJiCL1KmsrTTRNuCGn0ymyIlNvNMjynMFwQKVSoVqt0VpZwXEcPM9nOp0RRhFOlqHpmmidmI4xLYPNzU0cZ7HODRn0R6Lppt1GlhU2N7c4d/4cg+FwyewJw5Cd7R2SJC6A7THVWQM/DDk8PGI6nRJHMYYhrn2WCaj8+sYag+GAw8MDer0uk8lENAqWhNiYJAl/9N3vCmeX7/PMM8+wtrbGiy++SBRFSwD1aDQSP6s4plarUa3W8DxfbOhMITw1WysYhokkP3GGnT93nvX1dbbPbJHlGePJlCzLhfNVUUSuP0v54NZN9vcf0+m2xWZCVZn7Pqqu0VxdBUXm+OQE1RAg2wvnzwMwHg7IshzLNJfrZxAETCZT9h/vUymXeeedN+n2elx55hJra2tsrq8hA0eP9xl2u3iTCa1GnbXVVUqOYAlJxRTSDz1GowHt9gnNVpO19TWxACBx9dnrWLbFcDLltNsTU9epx0pjlYpdxZt7jPtDxNRSYTAY8tabbxWHoZTTdgfPE21MOSn9Xh9VUfnEJ3+OixcvYDuCt5dECePJlOFwyL1Hj9BNg/WtTcpbDq1yBduxMUyTOAjp9rqUXRFxrVbLJEnE6uoKjXod13WpVmuEYcTK6grNRoN2t02/1xclHdKIo+MjyrUKqqFhmQYbq6usr6xQrVSEK7aoRU+znDTPaVInyTIqZQdNlTjYf8h41Of8hV1WV1sAjEYjIVKOJ8RRwvr6Oo1mk5MiBm+XHBFxrFZZW19DNwyyNGU8HqEgMRmPuX3nA7q9LrtnzrC9ucXGmjjIZkWsexFnCsOAXq/LaDJk5s9I80SAnQtWhPjJSUsziYhhiel/GMTEUizWF0VEtGVxoiWXJHLkYggsYPKLn+uTc0ku9rQ/dljJyfOn/1tafpyf5Lr5UZfJn+SAyhFrX45w1khFHOvp19PT9Kc/5s/iAvrX4fXHXoMnuJPlf/7o9ZtOxcFwISpblrUwAVCQTsT+CKCIxuXCP/whx4BSRDu2d3aQZIl+TwwlNrY3KZkWZ7e2OD46pnN8QpamaKrKPBQxc1EKIonDFiyB3Gmek0tiaBeGkeAQJQlKHBPnsWhTVk0sy4YcEfuUQDdM5p7P4eGheA9rKpqhY5giHu95foFTeMJ/iqNoKf6USqWCVSLcFPzIe1ZwbYQjYOGakmTxvhqNxyRFS6ZhGFi2RZ5khH5I4Ifoqg5IqJpGtSaG1AsuVZqmBfPIx3HEcGd1dVUAlrMn92ia5SRZhqppkKR0uz3iNEMzbZKiZl5VVUzD5Pj0VDjA0pQcCcsS6+GT70XEnpIkEU5nSULWdKI05dHBIWEQLrl+C9ZjHCeiTCCH2dzD9wOiOEHTDUzbxvd9pvMZo+mMmefhuC52qUTFrWDZIqavKgvWVkoUe5hGCRWF3DYoxyVWWitF2iPFtkxKtsXJ8RFHh4dsbW5QqVSwLYssSxkMBziOzdkzZ7lzZ49ut1MA1ufU6w3K5TKXL19G03WG4zFREiMpMhsbG9TrdXbPngMJ4mRfuOu8KYoqoakS62srNGpV+oMBqqqxt7fHaDhkOBiiazpbm1ukccyg20WVJQJZZu/WHXRVpVVvMp7MQFawHQe3XCGXIAxDHqYZURgTeBFJkqNoOnGeMgnmGCWLarNOmCbEsxmj6QRJllE1lSAMmHtzTo9OGQ8nnD17lnK5TA6EUUyUxARhwGQ6XcLikWSckoNTcrALruOTOzx/ah8qomeKrNCoNwS4uTj3yYrg6IjEiHjPq4rKYkX48OuJeD2bz/E8r2CaClG4Vq2ys7PFanFtu502XsHOXLS2KrLy00cZxf3i+x5BGJDl2TKdksSJaJ/1RTu7bduomlhTFqxV8Z3nmEVZRhyHIl2BaOAMwkA0uC2c/HlOmiQs2FKLmOqCcSUXv8glJEnwIXd3d/kzv/KnuXfvHm+/9Q5pltLtdjENA9/zRPGQY1Or1ZGBwK8Ilm+eoWjaspltsf5mqVwwocQlns7nxGmKIon0gm3oIrWiCHbpeDxlMp0xmU5xS6VlS7xwZ6nomoZt6piGiqbIyMsrLlhHYrgg0BuyLJ4DYRgw92ZUqlWxhrkusizj+3Mct8z6xia241JyK9QqNVxHDL8iOcSybdI0xTS1ZUogkMTzxLZsIifEcexl0kFwk7Nls6ppWhi6zsnxiUCTIBi6jmMThRHHRwfcu3ubB/f3GI0GqKqMqgsIeVwkI+I4Ic/BsBziOCWOUhRVxy2X+Mynf57Lly+zsra6ZPhqhoms6sy9gNFoQqUq3G4bmxuCYZjGy3SKJLPkhf2sO4SfWXhySi6VSoUrV64wm83pdHsFsDrl5OSEuedxdNou4gMOkmwDGZYlhBepsOllOaR5jqaIL1LJQdNkbEsnDGKiKGVtbQvTcvC82RIy6Hk+R4fHBXsoQC7g1HEUkeoaUp6hygquY6GqZVTVII5D4jik0+lyetpmMh3jui6f+uSnmZZKKLJCuVRifXUVTdsiSRNu3brF3JtTqdcxDYMwishyhEKMRBKnGIa6jHulRbRwdW2N527c4PDomMPDI+4//AZ79x+we+YcpmERxyKPeXBwgKZpWFZJRBWjGEMz0AwDisY1x7SxCkVYAtFsl6YkmeDeCIdIyspKnY8+/wJpltM52eeZi7t87KMv8sqrr7K/f8Bv/fbvkMYJZ9Y3qJRcVut1pAy82RzTdshlUbEuSxmhF2M5Ns3VVZI8Zz73sUpClHErFchhPJ0KYHEQ4TgOlUr1QxMvSZKIA080PqQZkgKqJKPJCpqiUq5U0HStqD2dMhiORA1uEJIjY5oRliKAjaWSS7VcJSMXD5LQF5sj26U9nXDaPhVNRp0OZdcFWaY3GIpMsKwWVvZCeEJGlcXHdYwSkRQReTGqYuCW60v7dLlUIc9gNp4ShgGOImEqoCMAb4E/RyET7HFiFFlCswzxPkZk5IM4JEo8knRKIqWkikKlUUdXFRprTWaTCW+98xZuqUKjtcGoP8CbTDElCV2WsDUTTZGZeTOMcpWNlXVmszHTyQgfnyTNCMMUUhmdBCnLUPOcIgJOrmXkCmiGEJ6GnREJEuV6C0NRsTS9cKPmhHFIluWi/UMTluvZdMbtO3coV8o0Wy3iJCXNcirVCpIkc3LSJoszpEwi8AJO2m12z51na2ubbqfLfDrj8Ug0oKSZuD/iMBJRrJItql0Xj788W+boIaPZbHLu3DlGoxGj0Yhur8NsPmM6GS/hjpJcJpcVNFMIRrrWRc5lVFldthnGxJAVFulC9NI0jf5ohDxTuPHcs8jAoNtB13VWV1fxopDZbMrJ6SlxkvDFnR2arRV0QyFJQ6bTCVKeEfllzu5c5OxZ0eg4n4u2RkmSWd9YZzga82j/NoZp4pZLlCsiZ3///kMGgyGeF1CupOiGRpLG9Hpd3MLmen73HJZl8cYbb3JwcMjXv/b7GIbO5vYmFy5d5nOf/xydTofRaMTN92/izedcu3qVOI7pDwcomgqKgheE3L23JybCcYRbQGvzPMGydHbObNHpnvLBB7c4OjpiNBpxZmeHVqvFSquF53n8xm/8BqZpUq5UOHv2LCsrK1y8eLEALfpMplP6/T5BGJLmokmp3qiT5YIXpyq6mBQGAt65vrFJuVKm0WoseXAXLpyjVCoxHk6ZTibcu30bx7ZYW11h78F9Xv3B97h79wOOjg4FcF5TGUwmmI7D+s42Jycn3L1/j3KtQrPZ5MYLz7G1sUb7+BjP86lWqwIUHkX4nseg3+fWzZv48zl/+Id/QJbn/Pv//v+Ozc1NLl7YZf/xYz64dYvO0RHeeMTaM5c5d/YMtXKFku2Q5xDEATNvQrt7yuPHj/jkpz/N1vY2QRiTkvHJz36a+dyj3e5y7+49br73HtevXWN3+xymphIGAd5kWjgQ4fjohEf3H/Lo0SOODg95+eWPsrmxScWtEOUxJycnNJsNfvXXfpVGo0HJdYgjwUbrDQYcHB7y1ltvsb6xzssf+yiXL1zgIy/cII1jksK+fdo+ZdDvoSgKa6stDF1jMh6zsrJCrVZjbW0dTTe4ceN5ypUyDx8/otNuF02kHv3hgFzOCaKASqXCWrPJ1tYGtmVhaBq2ZVFvNkVFcZxQq9XRVJVmrYLve9z+4F1GoxEf//hLOI6LIkt02h2GgxHD4Zgsy9g9t0u5UuHuvXv0+33qjQbNZpPVlRYXL16iXq9z995d2uMR1WqVo9Nj/sXv/A4bGxvceO4Fnrl0mTM7Z0TJQCY2pZIE5Bm+P+Po+ICp7zELPNGIJwNFzFdSZXJJEgJD4bZUiueQ73mkSYquC2espqhARpYlZJIChagjgSgVyLNlA97i8+dZvowziNfTk8FFdCpnERP4VxF6nv43OYUzZSG25IuIyYcdPj9tcv9v0usnCVA/6bt6+hoNBgMGg8EyVmwWTDpZWhw9JBZ1Hj/6UopDmHBiSMiKypUrV9jc2uQ3f/M3mc1mbKytUq1U2N3aIpp7vDEcCN6goTMajfCKRl5FUUS8JheNsLksoeiaaCAOAzw/QJFlwigWh844JsfBtGxct4zruMiKXLS+2gwGQ+7eu4uma8vGKyu2l2739fV10aIa+IQEzJMYGSFe1Wt1welUVRHxFxdrcfGW/ylJ4EdFk5Ih1vmj0xOCMMTzAzY3NsQAI06ZjefMJ3NUSUXTRRTXLbuoxQEwThLiOMabz/E9j3qthu04nNneFjiNKFneKUmeEWUZtqKSJjlHh8ckWcbK1pbYI8ciGl8ulbn/8BG94ZAL587j2A6uW8GxFtwuITZEcSIKFXQdJBnNsPAmE24/uMtqs8nFc+eWjJ0kSQj8ENcV7u3heCrEsijBLWuUXJfDw0P6gz7HvS5hHFOp13BLLufP7BbvlxRVkVAUiclkyGw2o1ax0TUNQxOcmTSD4XDIcDjAsUzcks2jB3s8evyIl156iXK5jGNbRGHA4eE+Fy9cYHNjg/fefY+Dg0c8fHifJElpNlu0Wk1e+shLPHz0mHv37xPGCYZlcem8+DdXr17D9z16/R6j8ZDRqIeqgKFKXNg9g64b3H/wkOFozA9/+EN8z2M2mVIpl3nm8hq3b9+mc3pKybJI4oSv/e7XcByHl156WbiKNJ1yuVpEIHPhtksysjQi9BOyFHTLJsxSerMRZqVEc3OV9kkb3wsYD8eomopbK9Ppdzk8PqR3coo3mfHs89fZPrPNcDQmiEQbdVCUlgR+QBSGtJp13EqZarWCrmukSVwkRhfrXkaepSRxQr/bBSR2d3cRsPoYRc0FGzCI8OY+cRQX8UVt+e8/tOIs3JR5zmQyYTabU6/VME2DklMq7rEKJVe0W7799lscHh5y9co16vVG0eQmi/KgPCeXnzwZnnwamSSNGY5GBRogx3YcyuUyvW6P+WzGcacj9qPr6ziOg2aItU2UwwjR1bRMVEUhDJ5EB+MoYTabo+s6uqYv7/u0aHxcxF6zTDzTJFgKT4L9L1Eul3nmymX+k//kr/GHf/htPG/O7dt3OD44JI1jSqUS0/GEcrnMxYsXIcuouhXBr8xSlKLZWTcMFFWIcKksISfSEuQ/HI/Jx2NkSRQ5WZpgkhmqxjTw6XaHdPt9uv0+zz57lXK1LLAt5MLppmk4poqlC+Fp4XBa/PyEuJYQRjGKIgT4uT9nMh3RXF1hwzDRVXHWaLfbVBpNzl98Bsu0sEwbtyTKfIIgIFR13JILec5sPkKWZDTNEJSWPKdSrqLICrqpsra2VghPSrGP0AS7qeSg6Rp7ew/E3qjeoFyucP78eU5PTti7+wGvfO+7vP76D+n32xiWhmUb4rkRJyRxwtzzcZwS5XKFwWDMPAip18qsrG7wH/7Hf42dnW1WV5vL94JumKi6xXjm0e71UQrQ+sXLFwsn35CMFOnJEfspAe9Pfv3MwtO9e3dxyy5I+ZKVEMUiguUHc+IoZDIeIUkwL5m4bomNjTVarTqb2ysYpkqchKiagqyIJjpV0QR0UDOEPXQ+E3XWpk657HDaOWbuecxn3jLDHBaA0O3NDer1Gm7ZRdc1ZvOclJQoKSj5SYJhGjilKqvrK+iGzvHxCVmWcnR8RLfbJY5T7ty5y2Q04cyZM5Rct6hAz4nCiPl0xp3bH5DECUkSc+H8RZrN1lJkiZJItNKFAbPZlG63Q56n1Os1NjbWCAoSfpbmOI6oh221VsTCJ8sEUSx+hSF5nqKoGqqqEycpeRCQZoK9oSoaelFNHQUhaZrgLA7eRjEty3L8+ZQoClhrtShZNtPRlH6vz+OHD8nzjGa9xsbZHWrN+hJ8Xim7Ik+aJoJNkyToholtWkRJymwyZTadkyNcX45j45RdVFUhiAU8tzvoF4q9gq7IaLpe2G4LfgAZGbnI5JoWpqaTphmT2QxNzbFMG1nRIJeYTedMJ3MmmxMMw8QLAmRJoly1sE2LZmON2TRCoguopLlCtz9CUxQCz0OVZbxZgGkYlGwbVVNRVZFDNXSdldUWURQz90TbwPHJsZgIy6I2No4ikEBRxaGC4melqhqSbiLnKTJZkZ0FGRVJBlOzkFKZWEkggXDmYSoaFUcnDWOyHM7tnqd9esLDvXvYToWtM2dEK4ih8PjePYajKbpcIZd0XN0kSmMOOsdEwZzQnxNFPlKWoqkSuiajZAvHWr588KXkZGlOSdVQUZDijCRNmU1mJIaB4gj4oqzKOIaNIisMZ5PCTqugKgKgWS6XWV1ZodvrM5lOicMQVdVo1gR7xzQtTMuiVKuSeAEP795DzjIa1QqOpUGmC4dUkjCdTMnzhNFoSLVSxbZstrd3SNKU0WiE7/v0+yICtIgk+IFPGIn7S9cFcN8wDAzDIAwDJDLIUihYDovDX7lcRgLR0pUIS73jOKiqShQlSGlGhniAaaZFmmX0BsNiKg7RPGTu+bz5wzeo1Rs8+9xznDt7jq986Ut02m0ePXzA1auXWVtbK1gJU+YzITxNp1M0VeXq1StsbW1x9uwZZElYlvf3j8iznJLjUnJcdG0BS7Q4PT7m8PCQ13/42rJhLIkTms0GzVaDq9euUqmU6Xbb6LrOykqLdrNOn5z79/cIo4gojWk0m3zqyqf54OYHPNh7QBjGyJJS8PBSTk9POTw64vHjfTqdHvNiahvHCS+8cIOzZ85ybvc83W4XWVHY2NzkhRs3mM6mfP0bX2dnZ4dKuUKtViNNEs7snGUym9Lr93FKwjlz9+4e+/v79Lp95nOP4+Nj6vU6H/vYx9jc2uDcuV26vR6j8ZgfvvaaiE4ggPaNZpMkiTk8OhIxwffew/cCKuUKly5dptFo0u10ODo44MHePdEmpOvs7p7j4gWJSllk48+dO8fx8THv37xJq9Xi6pVrRYuRwp27d9m7fx/Lsmm2mly8eJFGo4FtOczmHvf27lFyXa49+2zhSo1JchiMJ7z55lvM5lPG0yFZmopGQlUnT3Pap238ojDD9336vT6rqy12tr8kWkp0g2994xscHx3R7nSQFYVGq4lrljCbTa5fv06lXMYsXAzv3brJZDrFMEXk4tOf+hSSooAk8+jxYzrDPg8ePKDX7fHSyy+zvrEu3vuKIqKLInjK7Q8+4OYHH9DttrFtC93QyXIo16o45TKW4+BWy2RSzur6KoZh8O3vvk0ax3zsYx+jXKnSWlnFKpUwbZu5N8ePY9o9UaOrWyZ+GAoOY5YjZWBbgtHxjW9+k9l0KgD6Uchpp8vCZNTvDwjDiJdefplqtcLFy5ewLZszkszB4QH9QZ84iTk6OmZtbZ1y2RXMOc/ju9/5Dp7ncfnSZba3t7hy5QqKonByekqtWsXUjeUWKJfE5ms4GosmIMNGFbs+0lxs8EnFMCyKYx7v73Prgzt0OgJK/Llf+AU2NzdEU5KqFhszGUkWTLkcCH0RaVw06aiKCsUGXZJkFHWxuV9YqvKCR1FwM37k9aNNQz/6ejoWt+AwPF3lPZ/NaXc7S4FXtCTpf+zH+Glup3/TXkvINR/+Xn5UaKvX6wJqbVuoqrZ08QQFk0XEzwWzIs8WXJUnboQkSZaMNEmSCIv67suXLzOdTrl16xaVSoXnnnsOy7K4fPkynW6Hb/3htzh79hy249DpdJAkiXKlIiLpRYxHkWTax236/QGmZWKaJmESCehyJpgiecFrytIUFY20EDxVTRNx/YJJo+s6juPQ7XRE0UKzKQ50EqiqhuuWl04go4idLK9T8c0unAa5+GaXrkBJnGKRZZlarVY0cxVx+kxE4U5OTtjY2EDXNTTdWTIOpWJoO5mMGU8mlFyXUrFOIsHJySm6puGWXMFwVfWiQVY4wwzd4JlnnsEPQrw4xrZtSo7DdDSiHUVL8PfBwQGaKmrEa9Uaprk4UD9pLjs9PcUPQvYePhR7wCTFm8/o9/tL+HkYhkvWz+JnLlppXewCsD6ZTOn1+tTLFTRdxykc+4PRUETsDQPdNDENjflkUjC6EoIg4vH+oWCwJhmOY7OycoFur829vductk8Jw5BnLl/BsW08z8cPPIbDEfOZz61bd/jBqz/k0aPHPPvsc9RqNT7xiU+KgZo/Z3//EW+++TrPP/8cN248j6FpOJbN8fExSZqgmgZVuUHJccnShPnc55/9s9+k3+8zmkzRNJ0zZ3bZWFtn48aNxY3GrVu3CkeUODT/zb/5fyqajc3i/ojFmSLP2NzcAoTbfzbzmM2nQmiQZSzDpFJymYxGHB8eUSlXcewSaSqg32EYYqgaa80V1moNyHI8b87Dhw+ZTGeAgNwrqiocS7JALNiWGN4rqkjPyIpo4M6zJ6L8YonVi2bhKAoJo4jBYCAGbLOpOH+Uy5iFS49CgHm6wVE4CCOSIvHRarWoNxpFS6Vw84dRSBQHPHr0iOFoiFNyuHLtGjs7Z7BtBySKVrUnbqysWNMWbcqeL9hbQRAsy25Mw0SWJNySg6Fr5JJochPNcAJGLuDopeXHzvOMLJcKsX3xLEmLIZ2IFTYagqm4GKQsXLTiLC7O2FkRu5OyJ88jSZIpl10B+i85fPe73+Odd97l3r17dLsdgjDEtmyCIKBerzMaj7EdR7icKxUMy1yuUXkmvs60GN6IsY+49gdHJ2iqAkmGbZnYhk6YRKRphK6rVCpugauZorolJEVByiUMTV+ew0WEWUWWs6WZxPM8EdHNcuIkIvB9+r0eJycnyOoAWVGpuKIhWpxJzCIurSCriuCZBT6D4QDf95iHAZkEjdZK4YATgz8kEVeUFJmdnR12d3eFK1JVGY1Gy73S3POhwCYI55rGcDjkn/zj/5mDwwPef+9d2u0Tur02hqlj2Q3iNFqmTRZnpDiO6PV6aJrB6kqLf/ff/UtcvvxMUVyQ8fjxPqVSiWazUcSGIY1j0jjC1PWC+5QKQdyxRbmSpgu9Lk1Bfnqf89NfP7PwdHx8RGlaEkppocwKx1NSQMESptNRAWo10XVhE6tUXZrNKmEUESdRAfOUigeUguO4qKpBVExxwzBA01VMy8QPA8bTMe3TLqoqmkbCKCSMQuySQ7PVxCqgYRSgxiRJBOBXSrFLFo4rqkpLbglZFofD9mmHyWRKnuccH51wdHBEHCesrq4umySiIGQyGXPv3h6yJKFrOmfP7C4dGnmeQyzgvnEsoK2j0QjdMHDLJRqNOuPRmMePDvD9gNVVGcMwqZSrpLmotlR1HUXRCENBmhe1tsLmmUWxqKeOE/FmVQpHRyyYOJahYxpPNsMZuWjfm06pN1eoVarMr87Z3z/g1s33MQ2DOEupt1o4O9v0R2P6gyEVnl44xYbFkEXULRyPCeYeXnFN6g3hVjAXrQtJzDzwGE8npFmKoetojo2qaZQrFbIkZj6ZUPDLhM0YHdmQC/EyFGwNU9jLkyIGGASCx+F4HtPZvAAUmsiSRtmtYRo98lwmRyHPFcaTuXCGBQEyMJ95QmVGwdBTdF3wDjRNo1KtimjgoUqSJPQHPUTsgeV0S5JBVuWl8IRUwM11HdIEKU/JkwTyHAlFwP0UyJQcTdaQ0pwkCNFlE8fQSeOEVJbZWN8gCkPGkwkZOfVGE89bJ5dS7u/tMfY8miULXRdCWZIl9EZ90jggi0PI0mJjKqHIEgqISb0sI+USUi4hZ6JBUNZVYSfOcrI4IfB8pDwn1nVyFFRJxbB0DM2gNxgSxTGWYQrwnaZhWzaVckW0X2QpaRwjI1F2XQzdEDEb3cCwHdIw4uTwkJLr4JZsTEMlTRRKZVvUhsYBURjjewGlkousqtQKePRi8xyGYmI1Ho+Jk5ioiG/KsoxtW2iaim3bBVwvEt9bnhUbUU1kuyUJp7C1hkWcIUtEhbwAMYuHSZqBosqopkUYBIynMzRVRdd0kjAmnAfcv7tHpdrjpRdfwm25fPSll3n77bd4+603kBANR3meC5HM95EkmcDzcctlNjY3WF9fZ211FUXWBFxU1cmLDZJpWCKuW2ykZ7MZp6cn/NEfvcLJyQlOMcF69tp1NtbXOX/uHIqqMBwOWV9fLxhcLrPplJOTY4IwRNZVNjY3uXr9KvfvPaDb7ZEUa4csq2RZwmg0otfrc3raZjgc4nk+YSiAjufPX+SZy5dptVokxUal2Wxy/dnrvP322+zt7eH7Ac1Gg4sXL6KqGqtra2hDg+lsjqGLB/BkMuHo6Ij79x8yGU84PT3l/PnzNBoN4Sy6eJEsz5l7Hvf39uh0O1ScKvV6gzM7W0wnE7r9HoeHRzy4/5BytUap5HL50jPUalVmkykHB/v8zm//Ns2VFXbO7jIaiUKIxdq8sbHBfD5nf38f23bY2t7G8z3msxk3b95kMBhw46UbtForbG5u4pZcZFnwTw6PjqhWazSaTTzPI0oS4ixj5s948513mEzHTMZDdra22dzcXEYvBv0h09lMNKKFIaPhkPPnz3P9+nVCP8DzPO7du8fdO3fQdJ2S67K2sU7JdanX67x44wbXr17j9PSUXq/Hd7//PQaDIZVqlWarxZVnrjD3fYbTKUmeMS6ahqbjMb/whc+LOJquk+U5M9+jpOoYKBweHnLn9m3a3VNc1+WZK1ewbQenVMJ2HAzLxCk5ZHlWuBolDg8PsE2Ln3v546ytb3D2/Hkm8zkz38c/PCQKAoaTKWGS0AqbhHFUAF/FpkNVVVRN45133mU8HvPnf/XPFtb1fBk5HU+mTKczPvvzn+XihQtUyiV0TcN0SiRZimXbJEnKcDgiCETVtCLLZGnK+++9j67rPP/88+zs7HBm5wzDoYhdl0sukik/4bkgIMSz2RzHEUUnqqwUm/oCXJyJfYPv+5yetnn//fe5c+cuJ6dtnnvuWba2N4SDRFWWp3CJJ0KPqP4W7jK5KDZYNAhJBZZgsWcQhotlpmu5RyuwHuK3CiHoJ4tB+XJqv/iYT4tIeZ7jB2LgJcC7blE7/qSl7CfxnH6a4PS/tRj1J8UKf1So++P+/tPfR2kZwVCWosoijraACIeFW3LhFNM1HQlxuFpwX5YftxBktre3mU6nfO1r7zOZTDh37hy6rrO1tVXUXB+zvr5JrV4nThIA0iwr2mTFWiJlEv5szrDfp77SwrQswjgiJ8eQVbI8E0DbVNSQS4oQQBdw5rxwJICAGlM496ezGXESY+TikC2iHM6yIl4vIOCL4ori6rMYaj1duS5JMrKUiT+VBccUiti5JAvY7XzOYDAoQNUR4CzZUBSsHc/zGI1GrG9sUHJdLFOIPHfv3BaRPVPAuEV8VXCpVE1D1zRxrWczHh0eoes65bLLY8MgTdLi+SrR7/eBnDAQh8mVVnPpPlyItaPRiNF4wvHRYeHYrRKFEZPJZNloJurPhTvraZi4AHQ/EQWmkynr62vCmVRyCaJIuMQtC3MBgdd0IVqnEMeiMObx4RGyBCXLotGosrW1zsNH97hz5zajkThXbRfQ38PDQ+bzOaPRhOPjU4EIuXuP/qDP5z/3Bc6cOcPP/dzHxTA1Cun2Oty/f4+f//nPcP36NcG6TDP6vR65BIoqxCJD1ej3ukynA1555RX29vZAlmm1Vji3e55Ws8nzzz+HN58zm86AnOl0iqqqtFotfuVX/jQgcXp6WpwNI/b3D+j1emxsbmAYJlvb23S7PUYT8e8XMTTHsvFncwa9HqvNVTRdZzKbEYYhfuChqRqNao2S42Aahmg5HY2Yzv3lXsVR1SJSbmKaBgVG+6n7XwwcMpIi5ly0nSHiT0iSKBlJUmYzgfI4OjoSe7k18XxVVFUIv0Vsb7EWL5rgogKLUqlUUDVtKYArEsRpQpbntDtt7t+/zwsvvsTa2jrNZquAmmeF2zJ/4oN96jmQI7hui72toihUypXFIollWRiGAZJCKixI4pmZZaiqgqJYRGG4LFSRC9FpOcQoeE6+5xEGIbVqVYg9xRlz0VAuSm2yZWOfuLbiGSY+roRtW1y8eJ7z58+L4YuicHCwz+npCWEUoWs6YRQwGg2Jkphmq0Wz1ULVVWRFFu2DOaRaWghyObkmip2y4vMPRkOyPKderlCOSyhVlzgRaSBNUyg5Nlma4s/nuJaJUuy3NUVFK1eWZSvLs1/Bi4qiSEDbC2SL53mMx2MGgwFJJuL1cVPwXVdWVtB0TQhPioysqiRZSpQkjKdj5r5HGEfIsoTrVoviI3U5uBC4G4nVtVU2NjYEo0sWTElFEZDyOAhJkqx4rwlxZzwe8c1vfpODg8fcunUTWRFdVxsbaziOzXgyIl5yDKVlUmE+91hbc2k1m3zxF3+RZ597flks0T5tkzZTmo1GEUXNyZKYNI4xNBXL0J/sHVx3+XjIMsHnlSjwBT9hmPajr59ZeFpZWUGW5WIKIJTWIBDuhAvnL1IqOdy69QFB4CMrEqauoco5Up6SpjEH+48ZDAZU6zUM06RaqaNq4pC7tbXFpz/zGe7cvc/j/SPGkwlRnHL96hWCIODWzQ8KK21CFkdEWYY3nTAaGGysNDANHde2SNMEfz4T9mLHJpcy4jgkjHyMWKdareA4NtVKFd8P2d09RxSGREHIbDZjb2+Po8NDkjjm61//OpVKhRdvvFgsX6LScDIdi5tVlrFLFrmUoekKiiqI+FkaE/oZ08mY0WjI3JsRR8lSsZ5OZ0WeNcfQTOp1jTGiaW0ymQESK60GSRzhzWYkSbbMF+d5LiB5QM2tYJgGSZYUG9YcRcrRZPjg/XeI44TdcxdpVMuossSjR4/51ne/w+bGOutrq6yd3Wb97A6d4xPmsxmzUDCE/DSjubrKum0xj0K8OMKpuKiahqJppHGE58+Lh6/gBimKQhgEJHFMzS0hSRL9QR9ZEvwuxdAxbJtRu4tXAHolSVjZFVWlVHKFC6low1IUhV6nRxjGVKs1sjzjzp277PgBFy89w2Qy5eDggDRNccslUZ+aF/0weQ6KjJ9GtId9DFVBVwX/yTRNnFIJTVUFfHc+ZzDsLzklkixWT02TkdKcOPAgCZmkIaaqYhu6kJlySTDI8pzZdI6EhGPaZGnOdOLRSHNsy2Y8Twgjj14kWhW2t7fw53NazTXmc5/vv/oqFy+c4ROf/jSe53P46BFh/5SoiJdKxaZOTxSkRCOYe6RxXKjWKs3yIrssRFdpMRVQNJJcHI021teZxQmjRGSk52FAMouJk5i8JVF23GWdsW3ZeJ7HZDJhPp1z7+5dTMtka2Od6WRCEvtEXg6JTqDmZJGBnMagG6CbpKqOrCiEU59w7uFoKq6hs352m7nvM5nNSJOA6eCEYa9DlktFq0JGtVpmd/ccn/zkJ7h77x73H9zn4GCf6XQq2hJlRXDhEGJvFPy/ufvPIMvS/LwT+x3vrjfpTWVlZpku096Ow0yPAwEMuAtSXIKgtCQjIEoRCu5GbOwH6dPqszYCVCgU5CpCJEASBEhiAIKLIWYwMxigZ6a7p70rX5WZlT5vXn/uPf4cfXjPvZXd0wCH+iJCN6K6y6S5ec173vf5P8/viYn8MRkphqmT5Q0Zat5SUiwWRKxpNCKOIzxvjCQpSGR8+OEHFItFrly5zHAw4OaNm+J+pCnNWo1GtUYQJ0iyzA9/+AqO4zAzM0MY+pBl3L1zF+GYyKhUyty9exdRw60gSxJJGInpHdBozmNZBWZn5oijRPCbOm2++93v8tprr/LNb/4emqai6xovvvg81aooSbAsiwubmwRhwPbONrbjUCgWpo2QD7bu0W63BZ9LAmSJVvuU13/yOm+9/SbvvfcetUqVlZUVZppN4jjKNxEaW1s7fPjRR7z19lsEeSPb/MI88wvzFApFkizl+RdepFqr0Trt8PjjT/LZz36eDz54n9ZpG6co2DsbG5ucttuMxj4ffPAh3/qjP8J1XZIk4W//7b+Nqqj88R//MWma8tprr3F0fEi/36NWr3P50iVmmw3G3pjOaRff93nw4L5oOlGEcD23MM+FzUs0Z2ap1+tUa1U+97mXGAwGXLywyeHRMTt7+/zgz/6M9997n9VVAaS9eu0aM7Nz3L63haZpvPfBB7iDAYqqsba2xsLCAlKWEuQNcMPBkDfefJNbt28LXkQUo0UJw7FHECe89+GHJEmK63mUyzUeu3QVNef9WIaDoVkcHx6xvb3Nj3/8Y8HuyxI2Nza5d+cuWw8e0Do5oV6t8/nPfQG74FCt1Xjy6ScFX0UXsa6jk2N+/Npr7O7toqoK59ZW+epXv4okS/ybb36T/nBIr9djY32Dp689jiJL9Pp9kijmzt07fPu7f8KVy5f5+ssvM8zjfBsXLnBubY3D4yNG4xG3796jOTvLU888TbM5w+zMHJYjQKVvvf02nXabk5MTVpZX2Li4gVMogixx8/YtPvjoIyrVKrZtU6tWUWWV3b19/LFHvz/gwYMt7t29y9ziApValSeeehpd0zg57XDaOuX1117HHY3oD4ZcunyZ69evC06HJPh47V6Pd175IQcHhzzY3uHalStcv36dZqOJpqi8+cYbHB0dMdtoMjc3x+c+8xnhhpQkCnmVuZY7e+I4IkoS3NCnO+wz8jwWFxe5tHmBgm2TRCmZJJNkKe5ATLUt02Z19Ryfk6T8gNSi2WwAol1UkiRUVQDI+/0+k5GkrumimQeJbFK0QQ6xlURoa8JtGbouaZJQrZSnB/7JZHOygf+LbpPNvfgc8ZvJ4flsM5miKNNmS8HW08WmOhMToE86gT7tJibXf/WieJ92nydsObJMvC5ywUd8vHheej3RNnV6ekqhUKBer9Pr9XBdFyNvv7IbFrIsTzl3tm1PY9xMGRcSURxRLBZotzu89dZbU4bU3PwCjlPADwIODg/FHjoIePOdd6iUypxfPScOtUnKaDCk227jhz66odPrdWjUaly79BhkGV7O+kyyDDU/+KT54fPatWsszC/gDoaYpi7cQIXC9PUXxTFFy57uY6fONz4u4nmeh6Io05bMyd+TCTajpqmEOZz84PCQLMtwHDvnCaZUahWWV5dpNOuUy8Vpq97EQSFLAqlA7h6aRlHzg6XveaLW3raxnYLgu/rCjSFc+iJ+X61UKBYLzDQbtI+Pcfs9bMtAVxU+89ILRGHID37wA7zxmNmZmZyvFTMz06RYLNFs1KlWKjSaolredhwRI5Ky6d4/CnwRWy8WIUs5OTqesgMr1Qr1el00gjYb1KoVHNsWwzNgvtHIgc0yYRDQC0PGQYAXBHj7R8iKwqULj6GpMpYpmrj2D/Z58403ePfdd7h65QrVag3XFeeD9fUN4jjhxo2bfPDhB2xtb/H1r3+djfV1nnjiCQGZH48wDIP5hVnOnVvh3LkVbNsmTVMxIAlDEaNKM4aeT7PZYHF+loODAw6Pj3nsylU2L1zk0qXHqDcaXHnsCoWCQ7VSZmjoKIpMtV6jPtPk0mOXWF5a4ubNm5AP/yuVKktLS9y9e5ft7QdTRnClVkFShAu1WCywuLQg3CqmScF2UJA5ONhHUVUSRTjzVVWlWi6L0peuiCh6eVS1kjuRJjwu0ZaoksbKNAg3OXsFQSCwGIpKmMT5YE6mUChQq9XyvbOCpqpsbGzQ7XYxTZNqtUKlWhHnnWmkTkKSxM86HA7zOYKMaZkoqiqGfUAmCxdV9/SU0cillzNRn3vuOWr1JoZhsL+/h4REtVpF11RMYxLVfvTe9AMhavV6PWRZcLoMXZ+6r8iHGooi49i2OA9MvoYs2ruzTBTg+L4/PYPp+UAiTmJMw2B+bn6a/Jg0yk6A6rIsE6XRtHVSVpWPt/xJTAXviWCWZfDss8+wubnBxYubbG9v861v/Uc67Q79fpc4DpFVmdN2C33LnMLtLctGUzXh2rVMavUa9XqdhcVFfN/DD0Na7TZRHCMlCbVKhauXLyJLCNePLAY+o5FHb+hSqzXQcwTL5KZqGrYsE8WCnaukKrIshtfkYlS/38cdDOn3+nQ7XZxCGcMypiKkOx5TTRIajQaVapVarcHD3V1OWqf03CFhEFCqlJGQCEIf4hSyGBQFp1QCWQh659fXWd/YmKapBBpDIi/jRJJgdXWVfr/Hv//3/57trQe8+uMfkiQRji1iiYoi43seYeAjSdmUvRWEEUN3wPLyEk8/9Rwvv/xlrl27zoWLFzBNA8/zSZKE/mCA49hIkuCijsdjjo+PSZKYxx67BDxyWItr50QcTadOwp91v/AzC0+GYZBmGVEYEuvixTpxyRSLTk7UtyBL8mYqpqoZWYY3Hom2DV1MbKrV2hT4ZVomjWaTw6NTLKtDEEakjFlYmMUyTYqFglDr0pG4WCJI8l5e9SkjoWsqEZlgMqWJEBEQU0dRp5oIkLGqYugWth1hmhZxGBGFIffu3cV1h1OV+WD/gCROeOzS5XwCKWBfkwOcuChxxl4vo8iT1oRkCrgTG854ukEMgiCvzwVVUzE1DVdRSZNs6jhSVU1MrTIBOZtcsKMoEoqpIotom6aSZhlSJh7nCdXfHfTxwxBDF4vY6soy7XabbreDZRkYps7C4jKO49DtdFFyTksap2SeRyEMidOEKI4J44hKzgpIc0U+iqM8TiBNF6QsSUTVpDyppg3EY6LkmxZJbN7DMEKSJtMmaWodjOJENOfJohY4imNRVVuTyRDNhuOctxEEIsudpEneTiHyx7KaT/tkiShNiAOfJJZJFOGwEo0fI6w8ghDncE9FkVE1ZbpQyoqMkok4XZZkREGGSgaaKhZ3KRe60ow4ioXjLBPtDmJTK4kKdiVDkkVdqixJYiE1BBQ0imIODg65eOE8M7OzNJozjIYu++0joiQRhAlZQp24m1SZ2A9Jwhg/DIiTmNgxhBCWO54AJFk8H+SIBsM0iFUVLYzy12OEHwqQ59gZCx6WKucbTJM0SdE1nSSJ6ff6GIaBaZq4wwFZGpOlMWkiEUcBUpYip8L2DxJREIo4UJIhJRlEMYquUbAMZFJII0ZjD98PGQ5CojjFsR0gwzQN6vUqGxsbuCOXdqct2hx9D13T8mnwJGOe1yOnKaokoSrC/aaqQvhBkjAMnTSZCL6C0aVo4j3YabdJ4phioUCWpmiaipSKulPLtNE1HT+OiZOEVuuE8dihVBI5bdsycV0BqW7MzKBq6nQSO7kIT+rhvfEoBzOKjbVt22SZWANardN8itLOm8QarK6usrIiIoi6prOwuMDx8THHx8dUa1UUVSEIfLIsFW0TYYhdsPPa2ZggDDg8OuSk1aLT6bAwvyAuiJUKcRwJ9o6m0c7FhcPDQ3RNo1qsCtirYaBoitjIzc0hyTK9fp+VlRVWVla4f/8Bw6ErOHtBMF3TwjDk5OSEO3fuUKvVqFQqbG5sYlkWH330EW4+uRwMBhwfH+M4Tg7aXCbLMrb1HdrtNg8fbiMhYRoWui6qgWu1Gs1mM3cEaCwuLjEzI9Z4+/Y9esMR7nDEoNcnyzJGoxFXr16hWCrRnGnieT6dbocwh93bjiOaSfsd4RANQvr9Pnfu3OX0tI2iiillPGk0U1Ta7Q5JmoqDhKbRbM4ycgeMRyOGAxcyidOTFkeHh9y/d48kibEKNtVyhZOTE+7fv8/+7j5fefkr+WS/QK1eY3V1NQf5ZrROWpycnrKz+5C93V1s26ZYLLK4uEC31+O9994T007f5+LGJrVqhY3NTXqDAVv37tHvx7ROTjiuVDjY22fgDnHHYzbPr1MulSiUirROT7lx+zaqYeTQVg3TtjBy+/7R0REnx8fommj70QwNWVVIspT+cPLcFZALMqZhosgyvjfC9wOiOKbb7bL9cIdMkYmzhLVza9iWxd3bx7RabXrdHkN3RH84RFM18bzmDotxzg3bPzikfdomimIkWRZg5DBk0B/QOjmh2+mwvLjE7Ixo35s0qk7qyqeHjEgAZz1fNNJGsahvL5dKSPlkNjmzh5nAxG3bpt5sEqcJpXIJp1CYHojTLCOMYnw/YOi6qLm7SdeNfCosLuxJzuhIswwpFfDlJP81qbb/ZNQDftqpc1YE+OR+7mwbnYCHRtOfRVVVnMIjd8mjCu2f/rp/2e2vetPdWQdUloloZZCXMkwcL5NG0iAICHJ+qGEYU0dOkiRk6oT7pUw/ftL6NnHT5qpN7ojK0FY1FEXl3XffzpuZxOdati1cFWk6rfvu9npISGK/IwlmSpqkpHFC6PskSYyqqViGme8lQNdUUTiTZiLyJ0k5+FihXq/jODaB56FrKqryKBIS5PFAx7DEhH4i1J15LUx+7snjpOUQ8I+7R6YPMkmaivKNvElvcg00DINSuYhtWxiGTpLGjxx6SHlluXqmQezReyXLxGF4OBySZBmSkjux0ow0ORN5k2VMU1wrigVHsCRLxbytMmFuZoYg3++MdGPaTjaJgkX5fl5RVCxbtIzZtk0SR4S+RxTHxLGIq5BlUwfJ5LUyGAxQNXU60HScQu4cU4iiGEWSMCxLfM9E7KeTNMUPArwwZOQKuPTGehPT0LEsjU7nlE6ny9HxMUdHx1y+dIXZ2Tm8sYeiqNRqdaIoptvtMRgMGI/HnDt3jieefJJLFy6Spim3bt0U7g5NcGJm52axHVGoFIYhYRBQTHPRgjxxnKb4gWhgnJmdxbIsnnjiSarVKvPz86iKaDEPAh1d18SA37JwCg6GadDrdJEkME0DVVUoFBxkRUDy+/1efv0UsTNdF2vU7OwsaRLnDhMhRvq+jyQrKLYx/Rlsy6JcLDF2BfZDkRUyVRSIWKYlgOuZAIEzFT3y933u8Jk4FFVVFRGuJJ3GUQuFAqqqEuT7mkKxSJIkOI6DZQu489k488TxlCSicEmSFRRVnrblhaF4nuM8idLt9wh8nzAMKZdKYnCj6WRIuesmy9dssU5PTLET4VMUDYgiJ8Mw8vY6eXo/ps5EQNPEe+nsRSNDZlJmMWn0nAwXJj+PoihoE9fj2UbLNBPlePnHTcQoRVHO2HSZil9n117IaDYbNJsNwjBkZmaGGzduoKoKY29EksQMBn1h15Hk6XV8UvqgqRq24wjRBqhUyozGYzxfuMjjOKHX64vm2bGHoWvCbKCJ2PFgOMLzAzFM1BI0RZzRkzjNgdiPfHF5gFKIP7lzW5Yk4XzNfzmFPLmjKOI1mGXIinB8igIDsbcS65goBJsMw4JIuGfTZOIUFYYBJKhWq9Rq1WnEWVVVETVN8lhk/nlBEHL/3l22th7Qap1gGBrlchFNFTDxJBXcOk0T0o5wvknoukGjMcOFCxe4fv06Tzz5FOVy+Qx3kmnDbxCEuXtP/H8iekZ5u+FkiDN53s/uIh69Cv/y288sPPUHY3RNpVIpiiy4JMSe1NAEyDMDQ9XwJZlOt4+mqERBDMiYhoXjlCgUfPr9AWPPY3lpEUlOcMd9Wu0Ttre3aXe6+IFo1YhiePhwHzLh/pjY/eT813AoMtLt01OSuIypGyiSTOj7QiCLoumbafJmEZWZEqqqMR6HtNst5mZnOb+2ytDtk2YxX/7Kl8iyjN//5u/T6XT44Q9/iG2LLPfG5gaVSi6wSbC3t0cQBNhWgWKhRLlQFMT4KGGm0cQb+9z46BZhkGKbIupz0mujKhqaYaCpMqoyWQSTnEMiIh9RFBLGEcgSmqFzdHwMksTy8gKlYoFavQKyRJylU4HP8z0C32dxeZ4sg93d7Vy4kmnWq3zupRc5bZ+y//Ahp50ehmXz2OYmMzNNut02WQaFQhG74AAwHI/odHssrKxgl4oMBn2iNCHwQ9BF3ECVRUTJcsRU0NRMFEkiSjLCOCYNEnrKAE0VIElF0xgFecRO10llmTBJ6fSHPNje5srVq2xevDCtN63X6/kLWsKyiuztHXFy0mXoerhDj9HIo26KaYWn+cRxJDZXWQYpZKpCqig4JQvdMtne2cEyTdbPn8fQRVwxTROyJMbLLwyaJKGqCrVSgSwVef/Eixh6I0rFAoZt4Y084iRGMxWyNKMzaBMEIZIGum1SqFRYadrMIvPBO+/SH/bp9gVU1DZM+gOXk6MOg26fcByiSRq6YnDSHaJLGY9FCbqho5smRVOnaBrsp7v00z4ekEowHAV57E4WGwHLJAIRjcsgSFKOTo4JMwm7OSMuwnGUQzFDdg/2OVJOKJSKOI5Ds9lAVRXm5ubo93t0Om3c4ZA4ConDEEWSKFiWqDaNI3qDHu1Oi3pzgVpjjk6vT4ZEpVqjVCziDdq4YUA46GOYpmAXLNTQdJ1XXn+H3qCHqYuJVqlgMXb7vPmTH7Ozu0e3fcri/DyrK0vIskQUhew9FC63VBKVxookoagqkqQIVoWhE4bBdGIAkCbisOf7Po6ioEoZnttHziLarWNUReXShQ329/fZ2drO7a428zOLyKrC3uEBSZxydHRIwbH5+te/xtb2Nru7u7jjMZZtc/HiY/n9EPHjIAiwLLGZnggWk8imlzf3PP30Mzz37DN845d/cRo/dgqFqeXb9322t7d49913+Ve//ds89fRTvPjii+zt7TEcDrl85TEWllcolUqMxmPu3r9Pp9dl/+CAkTtCkWSeeuoJ1s+f5/atW2iawssvf5mhO+SNN97g7r07HB0e8pWvfpUrj10hTVOOjo6wCw5xHFMolTjY3+fO3bt0u112Hj7k2rWrvPjCC3z00Q1OWx3++T//LR5sbfFnr/yQSxc3efrpp3n5Sy+zvr7OcDjC8zyef/55HMfh4sVNTk5O2Nre4vXXX6fT6fDLv/wN5ucXSKWMVMpIpAxNUTFti0yW8P2QkecxdF0ODw+pVCp85StfplBw2NjcpDk7z6UrV9Fz8e/bf/wtPvroQ/YPDgRktlRE01S63S7HJ0fs7u5ybnWFYsFhf3+fbrfDt7/9bY5PTvj9P/h9NtY3efrJpzg8PmIwHPLyl1+mVm9w//4Dcd1yXUaWw3A45L133+WjDz/gt8eirbTdOSFJEubnZlhYWOCFz7zEwvwiKysrlJwCN2/eZH5+jmq1KlpfNY3DnN3RHw740Y9+zJtvvsnIdSHLePqpp5FliVd//GP8IKA7GPD800/zxc9+nuNWi4E7pNlo0Gg2mVucR5UUfv1/9w94442f8M/+2T/j6eee5bFrV0mThPFozLnVc2i6xu3bt0UhQ6XMtWvXqVRrvPr6a9y5fZvRYEjBcfjv/9E/IpXgj3/wfeZm57l48THq1RpPXX+C5eUVyqUS9VoVsoxOryNcPFlKpV6jMTvLM889w7lzq/z73/sDDg8OSaIY27a5evX69EB78cIFmo067rBPv99hf3+PNM2ECNtocH5tjfZpi2/+/u8zHrqiJGN1mbW1Nb76la9iGAadble4VU0TPcsDcLJClCTcefBAxIcdm9FwTBzE+GOf0XCcQ1Zl9o4PSdOUhflFJElmHIScdrts7WyztrbGE08+SdF2ptBXz/O4ff8ufr7pXVpcYH5+Nt+gysRJfrBOU+I0zUtQ5OnhXVVVKpUKQA4YPTMt5tEh6eOV3VnO65kIRpNpu5Rb7vviNdTvo+V10ZNNcZwIO79piLVoMo3+qaayTxGX/ioLTlEST8UFMsFrjPKoWa/XE62ljQbFPOY6bRJKM9bOraGqqmDp5cLm5LGeTKMnj9lPO6tgNBoRRRHueESxWODX/s6vcfPWTV599VW2H+4Sxwkvv/wyzWaTd999lyRNWZibR8rgwYMHVMplKuUy9UZdPNVyhmGaPHblCr1elz/8wz/g+vXrfPELP0d/MMT3R9y+fVvgHOZmydKMSqGIIsmctFqiUMV2KJer6KbNabtFEAYUbAdTNjB189HrThHx7/F4jOu63Lx5E8MweOqppwRiwTDFIJmMfq+P7wcomioO3ogDmWmaubO/j6apVKsVSqUihaKD7/tTkU9TVRTTnMZ74jghzST6vT5BGKLqOt7A52B/j+bsLAu6jmlaFJwC3V4XWZJwnAKKrhIlMaoiRAHTMCkWi+w+3CGKQr7wuc9iGgbFgmDBjj2PhYV5lpeW2Xm4y/17W0SxEBvm58W1v2SbouHLE+9fTVFp1MQ+VFJE/KZYciiVi6ysrOA4DoVCgaAskglBFBMlCdWSONipkkLr9JSdhzuEUUwYx2Iw4Lq89upPsEyLv/lf/4oA3S/M83DngDfeeINOe4ihO5AphH7E/XsPSNOEn/zkJ7zz7jt85zvf5u/82q/yf/6//I/MNBcoFkuYtk0cReiGQbfX4/bdO5QqZX71V3+Vudl5LMvm5s2bBH7A6uo5CsUixXKJGzdu8Hu/93uEgXiOrly5wtzsHLOzc0iSTKvVQlUVLNsU6YaMqZvy/r379Hs9mvUG1WqFzc0NEe/VFC5cuIBhmmzv7HJ4dEQYRcRxQrFUZHZ2hvPr67zyyp/zox++wt/46/819VpDsB6zhFsP7gtn+uXLWDmDqVqtCRfuCnmbYleIwJqKosgU8/isLEvTeOTRkYgjDvpDwjBkNHaZnZllaWmJQqGAdQafMhk+ZykEfkC320WWQVUVnPxc5Pv+NIIlyzJ6vn5MRBMy2Nl5SH8w4LTXIwwCxu6Q5aVFnnz8yZw5q3B62sbzg6kAMHUW5TGziViepgJiHQQBMzMzmIaZl1xwRng6u5bnf5fHCCfylSTJuZMmm56JU01E7jTtURRbkWVkTfvYsOLRIvfxgcX0+2fSdFguRMyJQ1jNDRUp6+vnWV1dZXNzk729PX7nd36Hra0t3n77bcJQvC8s20Y3dEpl4RLqdjvousHs7izz8/O0W8cEkWBpLSwsUS4Wsa0CWSZx7+4DmvUqF9bPYdlCCNraPeS43SaTZBzbYr5ZI/AD9vcPpwVZE3E8iiKhG+Qt2KoimizFkDdAIhNraamCrouB/OzsLEsLSznztc2d23eoVGusrZ4jzRJc1yWNhUGi0ZgV7Gh3yGmrz2nrmDAM0HWNpaVFFpeWkHJnsmAySoBMt9ul1+vxj3/jN7hx40P2dsXaVirZOYw+QZZVdE1BVU1kSSYMA/wgpNMdcH59nV/5G3+Txx57jCeeeALDMAnDiDTNkGUhNJmmxQsvvkC73eG113/Cg+1tBq7L1WaDxaUldvb3Oe31OL+2hqo8QgdkufYwmV1k5AXP/4nbzyw8JUkCuiYWe1VsYmRZRlO1Rxd5BCxTUzXIBOSy3+2L6X5vwNgdI6l5TjG3JmcIkch1RzlvJCGTEjJg6I7I8ilVlCTT9KuYSAtosmjSidA0Q0ycPmE9P8suOvuzTLKqsiyhaiqGoU2V+iwVDSNhrjCHoSr4M72+uPjKDSESyWJSIufsmCgIc5UyQ82z3GoevwkCH0mSKRdFDjUKQ0LlkQVSkshBlgJSOnFRTFRokePPL9JJjKKpZJIArZGKdoYoEZO0YrGAJMkMRy2SOEWRNQxDZ6ZRxx+P6AP+eEwYCvCzIuX8gnyTouVvOPLnWFGFBVWRFZGdn6xGmbDzqbKMYxewDONjbiDySGGWiriBJCvCERPnE99c5RZ8J+Gw0vJFZ+S6ogo3E3WWhUIBTRMTqyRNhMhlmSRpkk8iHmWuJxtsmXwDLYtJhKKqeKPR1MotIZ6nTIJMkojkkESSyBIBrbYMA7KULI7I4pgsFtMUEYETQD1FkQVTLE3ISFE0hTQT/KpE1kllbQrKkyaT50w4pQLfE06MKJpugjVdR4pD4jAikWXQtPwxFip8BqIeVZbJooA0ywSjJM1Q8uljSoacN0kmSUqcQRrnFwJJxtAEcFSXtHyRCpFkidF4lF8slDwTLk9BjVma5tMAEXub2CxFdCEkjEOQMpBUNE1BUiU0qYSMiH+mWUbkh2R2hiwpqIo0/aUowlE4Ho3Y39+j1xFuFMsSDLMsZznJkgSyENpEW1SaT1nE5FRTxRRYlqQpxG+yERbvrZQ0f12Qpgx6PcFcyvlfiqYSpQle4BPGIaok2FFpEjP2IkzLolQq4hQKFAqiLCCKYvHaUjTBkCJC9n1KaWkKtEaShBVWVc+sOzKGaVKtVvF8YY91XRdZkbGdIkk+3ZhMwgCGQ5fhcMhgMJjWo5qWTZxmyIqC7wecnJxML2ZZlk55A7Is02jU8QOPo6NDwkDEBhYXFji3toqmaaSZmMJruo6q6SJmYhiMx2OOjo6Yn50jCkXUs93usL+/Lyqto4hCocjqyirNZpNyuZwL8FEe15BFG4yuU6vW6ORA0uPjE8Iw4vj4GM/zqNXqhEFIp9clCEMUVRM8tNwmH0WCuxEnMUkS4fshkiRRLIm4aKVSYTDoC9i7LItNeO4AAYT7LF9THcdGURR2drbpdnvTx3lhYWEK8EyShMD36He7DAZD4jBi0O+ztfWAg4N92u3Taa1ysSAiv416g6XlZdbOnaNYLE2riSfruKaJa0lKhpNP7ibCjWWZ6Lqo3I2TOOeHjXN4t4BLKvmmmgyOjo7JyJhfXsRQNdRUuGGnDp00pdfroyoKy6srlIolCk4BVVEY9Ad0u11OWy1OTk5otVoszs0xNzPLwsIiI2/M2PPoDwe02+2p+0FXRRuVqQtXZBiIxsBer4eiKMzPzxMGAUeHIsKdxDEzzWbuIhGQy2KxSKlYwDQNxt6IIAzIMrHZs0wL3/MZjUYEvj9lqsi6RqVWpVavoxsGmQTdfh9d17HjGAVxaHbHI8I4YjgaCYdEvnYVC0Xx76MRev41MzF2FPHKMOT45ISBO3i06ZEQw5w8Qud5HiP3UdOuJItrVxIIF0mSOzEnQ5NPtsdJuesV6VFE7qyI8UkH0k9xdvLfZxnTKX4URdO910QcmcQ/Jo2Os7Mz2LbzUweGn9XR9P9r8PinRef+oj9n+e53suYDKCjTqezEqTQRAifC4AS+rkiPYiWTdeOT3+eTwt30ccwPc2EUEefOhFKpRK1ao9FocNI6ZRAMRXW7okxfJ1maMh57tE9aJEmCbhhYtk0NiOMQwxRV7GHgE/iBcFnLj5wKk0jg4uICkppHw8KQQa9HpSwYMKqmoWciPhfHMQNzQOo4OI7zsQO3JDHFHUyENs/zkGXhchQnjLytNo6Rchi5qG4X7KU035srspS7pcRjdTYWGicJUh5JVTUtZ50IzpaoHrcIfLEGu+6I1okYEhdsh26nnbvAtEdCb+6Qn1zDJi6/SVxQUQVYuj/o57+H4+Nj+oNB7sgSUX5FFi1Xcv4ePfs4IEnCZZ/vk2VZRjfMXGTRpq+v2BMHbdEMKInHSH7EEZJkBcsU4O04ivCyjF6/N32Ln562GQyGKLKK4+QYipFHlqV4vs9JS1wvZ2ZnWFpe4ty5NVTFQFVFBC6O84ay4YjDw0Msx6FSqaKq2nTdSBLBlpJk0ZLW7/cYj0aoqhAntAmUO3fzu6OR2Ish+IyjkcvYE45hwcRJKRQLFHKm3GQdKhQLzM7O8XBvHz/wOTk5RZZlZmdmROmLJp6XMIqQFXnaZkYm4dgWhq6J90mSEucFN0bOykrTFM8f5+/X/D2rKLmLZSK3MH0/a5o+NSMoeeGQqqrTrzV5/qTcPZhmkzizMhWmoygijELi+FHr41kRWrhZIUlEIdVoNCJNEsyJO8y2mQwZFFmcqyzTFAwzWco5Q/nagnDHT8D207VL/zivb/LRU1E8v1+PvgpMXlyTIYjgO8mfuqZPzkyTwh7hyvn4mjf5OPHXUm6AEQ6iqVdLkj72ccJ1KbG4uIimaVy9ehXLsnBdl3ZHMBozKSOJY3zPQwKivCl2OOjnSAoVRRNnuTQJkUjJMUnCnZgkJEmaGy6yXCNIiPP3YxD4ObsvwjCSaWz37BBoPBavqSwVDLN+f4AiK9RqdYrFErbj5HgSUcI0KR+YuI5FukVFVzW0XHhLY5EIylJxlonzmO7k4+3JWpyXqE1c0WkKh4cH7O7t8uDBPR4+3CEKfUDw0ZRcK5gYcrI0E2VeKaIU4Nwam5sXuXLlCqur56jXGzkvKhNifyree6qiYlqiie/uvXuMPZ9SpYzjFERDXxCQpCnHJ638+07OtBK6qgrhP3+JFKzCT72mPnn7mYWnNAVdtzi3ts7IHXJyciTcLpaG5/mkSUYSiarJ5aVlojji7t37DPoDtu4/YDAcEUYxzzz3DLVyI68rFm1GURTTOu3iukIMkVIJpJhOr3NGWRb2uQgIAVOWSRUFL47RwoBMAOlRTKHo+l6AqozJsgzXHaHm9r3Jn8Wi6CBJMB6LLHyxZPPuu28RhRGzMzP5Rk6dCljvv/8+o9GIF198kYWFBc6dWyWKYm7dus2wP2LX3xMuFcMQKqcsU7AsIj9gd2eLudk5vvDZz3LvwQPeeuddGIg3papIqJqCO+yjqRKl0gqe5zEej7BsG0mWmJ2dY2amiR+FSOMRkioAjVECURAS+GOyLAUZnEoZTdM47XbJsgiyhKJjsr66jBSFZL7H/kmXYbfDKw+/j65pnD+3hlNwqNXrjP2QwWkPQ9FoVmo4OXjQMU1C08TSRT44CSPkDAzFYGVhmUq5zOH+HoHnQfxoM2gbFs1qg96wx8gbo8gScpYhGyaZrBAkCakko5kGdqFAqVIWLTFjTzSCGAYLS4tikzXooaoKi4sL1GoVwjDg4PCA8WgkIPdxTJYkub1cn1aD6qaDphv0TjvEUcxwMBDWwjDENHRs0yQLY6QopTXyIMuoXqiiqSpRocR4PGLY7yHnDroJyFhs/mNkWRwqVEdhNBxw784tkmKV1LCwHLFIVUolvIGLP/bwxmPGI5exO8QbuVx57DE2zp/n3p13cTunDHo9YssAUjQSNBJGY5HPXt+8gG4anO7tEodCpEqTTICxw5AoianXbDRTQ9cM4iBk1OnlbSYWC40m51ZXKDglZEnhR6+/SqfVJUpCHNtipl5H02SKJZtysYRtWeztibyyJClomj7dhI7DMbIq4wUjSpUGhmkRBT6mrnP16auiAcGyeP/9D/nxj15jNE5wCkWKpoHeqOAUbeI0pdvr02u3uHHjA+TJYV1OiUKT0BcX3kLBQpFlNENn7LoM+wNkTUOVJYx80zvhqWmahmmq2LaDNhyiKCLuFUYRRUfEZ259dJNKtcrG5ia27bCwtESn2+W006HT76OpKqQZSZww8kIKhSKKorK8tMza2nnub+3Q7w/o94ZIkkw2MSSQUa3XqTaaWAUHVddxSg62awvXk++xt7/LrTu3ePX113jw4AF7e3uUyyVsu8CVa9cwDRPfD1heXuXXf/0fcnR0xPb2Dq7rivrq/UPckYeqGYw9j253wIP727zy5z/GVFXqM1Vu3b7J6ekJ/9Vf/68oFYu4rsv2zhZvvfUmmxc2+bkvfpGXv/wyjz9+nd2Hu2RZxtraGrbtUCiKaW69Xuf+/fvcvn2bt998mzAQLR9JkpKkGYZp8PnPf56f+/zn+eLPfQHXddnd3WdpaRFFkfmTP/kTkiThnXfe5amnnuRLX/oimxc26XQ6/M5v/2sebG2hmhpLy8v8vb/393n33ff4X/6X/xe6plNtNHjvfQGofvnLL+OUHG7cvkEcxxweHuYHJZlnn32GjY11nnv+OS5c2OT9997npHXC22+/SbVa5fz581QrJdx6jWLRplh0eOHF5/A9nx/84E8xLYtnn3mGZ559ls989kVMS+fevXu89qMf4rou7nCMJMnYtsPO1hb/9uZNLNPAtkz+2te/zsbGOpZlIEkQhCHVWo3Hrlxlb2+fmzdvsru7z+lpByWHbn906yaaoSNrClEcMRy5PPvss3zlK18hCIS48Qe//we0T1usLC/h+wGd4xYfffghaZqyurxM0Snwf/vH/4xur8v/43/+n4k9n9/65jexTZNvfOMbBFHM0cExO/fukSQJL7z0IufW1vjKl79Cr99nOHC5c/MW7ZMTbt++Tbfb5f/0D/8PPHb5cl5znlAslBj0h7z26quosoomqzSqNUxdB1LCMODenTvs7u3x3gfvc/XadX7x53+Bf/q//D95/fVX+erLX+Fzn32Jv/U3/xZ7e3v8xm/8YxYWF9nYuE6j2aBYdBiPRYT38qULyIpKEEkc7O3zB9/8Jo89dpnr169x8cIFZpoz05rhvcMD3JHL3uFBLi5b2JqBoarsHh0yDnxKVQHyHAyHFC2bZ558Cs8bs729LcRnRebipcfQNI0H21tsP9zhu9/9LpsXNnnhhefp93u02y2SQBwQg7xAwLYdqpUqy8vLhGnMQavFaOgS5deRNEvptjsUi0U2Nzfz0gJtullXc0jyZAM/aR+bHHjO/ppsPid/nrSFpWmalwOMp5PyRqMx5Q0dHR3x9ttv0+/3GQ6H/Pxf+3nWz69PD1efjNr9/4vj6VGMK28LzJUUWZZz+HSJarU6FZwmjYKTQYCAAMsf+1qfFkc8+xx98u89z8PPBVMAd+SyvLLM+fXzfPDBh9y//4APP/yQIAh49tlnxT7t8Jid3Ye8/sYbPPnkkzz11FOi5ahcZtDpIMsS9VKFNIxYWlykWCoRJDFZLo4cHBzQ7/f58stfRpZl7t+9x8gdMRgMKRQKrK6uYmg6ZLC/f0h/0Kd1dMTs7Cz1RkPwyMjyoadMuVKmWCpiGAa+73NyckKlUqFULE1+UtJs0sAloOTnz5+fPg4TR6A4fKlTiO/EaTgB+Xe7XUqlMtVqbTpIjpIYZImlpSVsy+T46IDDg0N+8sbbfOOXfoHVlWW2tx8w6PcZuq4A8MoqgeczGrqMxx6GaTI7O0ecw63TLEXTNUajEe+++y6HR8fs7u2zvr7O/Pw8X3n5S8zNzVIuCsfxpEyoVPp4HHPCR5JlJY/Ei7OJpqnTPYcsy/iBRhhHooZcUbAKDpplsnH5InImBrdBILiyu1s7DIZD7ty/QxRGDHvDaQJidnaWmWaT1skpp1KbjY0NBgOXt996j+tPXOPv/f2/x+LyIk6xhJTJQjDMy4mOj0/Y2d3hvfc+wLQKnDu3QWvczg/BGXGc8s477+G6Q+7fu0u5UmJmdmYKqBb7jBhFFS2oB0fH0zPU4dEBB4cH3L5zj739AxRFo1qt8/jjT6DrOkkc43lCMKlWazRnZrlx8xbjscd//I/folat8T/+D/8DhXIR13MpVIpsXLrA3NIilUadNApRFZnnn36G/mDArVu3SBMxZLy4ucHC/Hw+NJAoFQTk+Oy6OrlNnpO5uTnIQNXEfRuNXcF7teyPiSPAlIMV5od7x3GoVqvMzMwwHo8Z90VJiSwrNGeaANM0TRiGAnydCR5wRsbxyQl2scDjj18XaQFFJo7ENaVcKlGWRAxKykVNsfiIqGmWweHhIZ1Oh/n5eRzHoegUpnHyjw8mmArtE0fKmZUxF2jB1A1M/RGzbSIGn702TB6Lyfo4eVgzxHs+jmPhNM4FQLFeTtbRybUq/5xMQpYF80pcz1IMw2B5eZlf//VfZzAYcHBwwI9f/TE//NGPuHnzFsfHR7iDHgCVslhzxqMBg36bO3c+ZG39vGA9eX0CUwFqyIqO5dggK3SHI/w4w/QTPC8iTaBYLGFZOv1BnzRJKRaLFAoFHMcR4ngerUvTdJpkUmSZw4MjPvjgQxynyJd+7mViWSGTFAq2EBLPnTuHruvcvnlTFNksLAr3cxCiSzKmotIfewRJwKDvIksCneJ7HqOhSxxG6JpoY6zVagSeSN24rkBajEZjfud3/hV/+oM/5eBgjzAMaNRqSBKEvjcdsItkl8RwIN63hmEwv7jI//Ef/fecW1vjiSeeIAhCPM9H18XzNhx5RJEYUmm6hl0scOP2HX7zX/xLvviln+PzX/gC9VoDwzA5aZ8yand4/Y23UBSFQqGAmRecNWr1vDlXRBMvbV7gP3X7mYUnJa+i7Pf6BIEnMty6hW2ZlApFdN1A03UB6QVs06JWqdJs1pidaeD5uwzdESfHLeI4xrINSuUSCwtLmKZDpVKj03Fx3RGKLiYDo9GIOIrxfV8s/oaA4YlspcgjTq2RmSTayGSZJGeeTA4mk02FsJflNbQ5fT9JY3zfQ1FFe5Y/9pAlmSgU2cjJxIMMsnJVQKP7fSFwpKK1JktFQ47n+UIg0yXiKModU6Lxz7YdyDJOjo8Z9HokUfgoG6kqgMiNB55PFITEUUSWiqmRoYspaZIkjD2PNEtQNeEWyiRFuIqkCUhOEi0paYpTKBCqIeHYR9E0dEm0nqRRjKlpZI5Emk/Yx65LmgpXAoq4wKS+R5jEgjeQJERhRBw9yunHcYwsyULY0bX8DUzO4UmnYrtwpGiIBhkRDJQUmVqjThQnHB4J+6TtOOJApshYto2sKILrlCT4gYeiiia2JI3p9UWeHCnFMFSyzCBLHMIwFIKEnKHIkmjPy0K6XSFY+UGAIomWH5mMEGGpDXxPtNNpGnq+AAVhRJYhrK+SnPMUEsjCR5vPfEXWFJ1MEo+LP/bw9g/wzD6JbrC0MI+uFrAtC9u2ME0DLT9Etdsttna2WJhbREaiXCqjJCGJ5xKnCSkpQegzSEOSTNjhh8MhauCTZClZHlNKs4Q4gjAR3IcgilF1lfXNTcZByN7hSV6VO8JPItQoxLQKWLaF5diEScRoLMTLUsERF4h8E5bm/C7RROgjSzKOU0RTdUzNJEskwnGI2TQo2kVOxx6+53NyfIxjWyTlMnEkDmZkEVEwwlBlFFlHJkXOUjRZxtQ1io4zddwoEkRBICp50yTnqwllXVVUKpUyciacUBNn4+QQN4naxTmjIY4TtByoqMpiIpbEKZ4X0mq1cUpF1s5v4t28Qa8/JIlTVFnC1g2CLGQ86omJYRzjeSlSEFCrVigWi7RaXZI0xcp5VWmWIiuqyPgnMVkkifYYRZkCwtvtNvfu3cW2TbrdLoPBgHq9jm3buOMxpmnSqFVzAc1E1w1KpTL1uqjDNkxRWd8fiAn67sNdWicneKMxK5sbnFtehlTAZgsFAfz/8MMP2draEqw4RRU2c0vwzizLIo4i+vn0/DSPBjx48EA4XnyfQb9PGIY4tkOl4rCyuiY4HK5LRkav32cw6ON7PoeHB3S7PTzPwzRNKpUyVl47bZkW1UqFS5cuUSgWODg5QpJga2uLk+MTZEkcsMMwxDBNyhKsri6znFvjwzDEKQh47/HxMY1GHUWRCfJDX7fXpd/vEYUhI9cVbKBuF9cdMuj3URSZK49dJopCXn31NcGfixPc4ZCjwyMODw45OjzEdV3hRszr6Gu1OlmWsn+4R71apVapsrG5zubGBkkqNp4Hh4dTBwAZDAYDHMdhcXERp+CgmzpavjnfevAAOedCFAsFMfnNGTS6rqPlr+M0zWg06pQrZezc5ekFPmvnVmkMquwfHOCNPXqdDoXFJZZXV/EDYbXO4ogw8Nnf30MzDDY2Njk6OuL9Dz+gddLitHVCs9nk4uYF4bjUNNIkQ5ZkquUKY81jJI0YDUe44yFBzpfbO9jHdV0Oj4/odDv4ns/DrR1CL2A4GFIsFKeNcxPo6yRCrqoKQeDR6zGd5Pp+gO8PuHV3i92Hu/iehzt06XW7HB0dCSZJqSgAmqGIoet6PmTyfaQ4JVVU5Dzu49g2WZbSabXJwhA5Saccvv2DA9zxCCQxQb519w7dXhfTMqexGd8bEwUSqSRDqlMplQQHxhDvJ9u2yAKfKBPsSEWWcBwH3/N48OABhq7jex4L8/OcWz1HJuVOnGkE4tG1cTKpnvBkHjklp5CR2CUAAQAASURBVB9EhmCwTDaPYRSRIRxkal6OMRGvTNOk2WxO67Yt05p+r7P//+Tv/6rc/lJGVR5JlCF3oUhM25sQjgLhapGnjvspvSgXUz75+PxFAt0nhamz4FXLEuuzpunTGE6j0SRJBAdyMBhweHiIpqg4lkOz0eSpp56iUq3SHw44Oj7GdV0UMqy8rls4HgxGoxH37t+nUhRr6qRhNU5ikiAR3J/ReBr7kyRyVodPvV5D1zX88ShvgEqnjVwTkdMyRVxjwmsaDkUDtOd7YriWu0QEh0QcdictW2o+qB2Px1MBbuIek3P2yeQxUmQFz/cJcnaelAuEEuTRP8GrOjo55bR9yv1791FleeqQPTk9xbYd1tfWpyzKcpqi5i23gZ83FCJTrVZRFIXB0MW2bZrNJgsL8ywuLlIul3Fypsw05irLKAqPGGn5cz9pBOv3+ySpiA1LjpQPIkU0RlEVpDRhMHRFbNM0RdtTmhJ4osyo2+kwHA5JsxRFkfC8EYEfMBz20HK2zdzsDE6hwKDfJwhC2u0O7U4HSZIpOEUW5heRZZVeb4CpC9fVYDAUe4v79xmNXOZm55FlmZMTwX0cjUacnpzkzdEPCXyfbqeDZYu1r1gs4jg2lu1g5HGiOBaujOFgwO7uLkN3wGA4YGF+nmq5QrlUnmJCFEUhSUS0yABOjk/o9XrcuXOH/b1d1tfXadQbKKqcD93zxm5FFUy+wKOYg+a98ZgwCNA0DT/x8XyPUd4irCiCOzZFsEyVDshzILlzLXezIMDbkiRA/5qqfUzA+aQoL8wG8ZThFAbhI8ZSHq1TFIUwDAW7OH+PT/4+jiLiMMS2bAqOjWPZuQv90VoiS4/cWfnSJc5OiXBAuqMRSZJMy38mMblP3tfJhWL6GPzU+njWefTo3z51Hc2dm590dZ75Mo/uf87pPXtf/rK18pPXH03TKBQKzM7OcvnyYyBJzM/Pc3JywsOHOwyHQ06Oj/LkS+4WkhAO606Hk9YJYRxjOkUKSYRt2fhhQH/oAgqaZgqGbAZFx8EydBJVpHGyTBFNjoYQwycwdkVRcse+4Cm3Wqd0Oh263a5g8ekmiqZTrZSwbFv8siwKjoOhmxiGmTsK86ZSVRON8nEi+Lip4L+GvnCxJ3FEqki5ICVP11RJgqOjI27dusn9+/dptVoosoxlmbnjXbxuBUutkLu8BE9KNyyefPJJVlZXObe2huM4bG/vTFvtGo0mxWJROETTFFUTrqy7d+8yGAxYXFxkaXGR5cVFRq7HoN8njWMUWaGeQ/ht284HPOB7PkmcCNbUmcjmX3b7z4KLJ0nCgwdbKIqMpilYVYt6vc783DyGYXB8dEyWQhj6NOoNnnriCZozNWZma/QGLkfHJ9y8eQvTNBkOXZaWl1hZ3qBaabJ2boOdnUNaJ6fotrgIDQcecSTUZFVVMS3xYtA1AzKJJEoQQ5dHjSJIElmWTCdOmqqjaTqKIiYeE6spZFN2zDCJ0HVxkFVlBd8POT4+JUsF5Eu01hgsLSygaRrvvvcOdzpd7t6+S7FY5OLFy6Rphh/46LqJJImN9HA4xHVHhGFIpVIhI+Ptt99i7HnEUTB9k6axTBwpuIMhmqIwymtv0yRGzfPLaZLgeR6dfg/d0zAtsdBruiWcTpKEkkMswygizVLqzQaRH9I6OEZBxrAFj8sfjykUipQ1A8ewiIKAW7duoKgqY99nZn6BxeV54tYJwXCYi2gh49EY3/NIJ1G5VMAWC7aNMQWsStMoAJnY1smSYO4ok3gCotJybWOdfn/Am+++i2EYVBs1LMdGUhQqtepUfY7iiHa/RbFYYmlmmfCOz/buA2qVMrZlUXBMHEunUrAYuSPGw54QnhTRBuEHMacnLbI0oVa0MVSVgm2TpQmx79Pv9+h1uyzMz+cXXkc0SAxGmIZBpVQkzWTCSLQkehMrtiRh6oLVYesiDpWlKYedPvtb+7SzjEjVaH79a5izM1QrZfzxiEq1zMAdAgkPtu/Tdzs8fvVJKqUyczMzjE2V1tYdFGJSYoZjn37gQyqhGSr7+3sgydTKgjWWKBlRnBIFsZhcSjDwPBxF44tf/RrjIOJ//eNv02mfcnxyTExGLGU4lQpWuUSlWUfSFHa3d/DDgIJtYBkGBUu8toLAz63DMb3+gCTNaM7OYyYpRb3EcDRmNHYpXSgyW5vlZP8Yd9jnncMDCrbF8uIc3mhMo1YU1uHxGNs0kCSVURAiJSmWruJYFjNNE9000XSDw6MDXHco3iNJMnWcmZZNvVZlprnAoNvDG48f2VzzzauqqtOo19jz8AKfRmVWiENRIipzhyNc1+fO3S2ef/FFPvOZL3B83GZnex8SBU3SqRZrDBky6N0VYM66j+uOGHs+z7/wAvVGg+//6SuMfX/KIwvjCE3X8cOIVPaQ1VCIwZrK7PwsvW6PnZ0ddna2+eEPX6FWq1Eul0VTiWHw4Y2bmIbJl1/+IvV6naWlJUzDZGV5lfPr61TrNR5sbzEYDDk6brG/v8dbb7xB66SF5464+tgVvv61r3Lr5k28sUelUqZ92ubf/tt/y2m7na/nOsViEcMQm6hSqYQ3HvNga4vxeEyn0+HB1hbvf/CBaA0qFHCHA+I45tzqOdbW1vjbv/qr7O7u8p3vfBdv7HH77h1GoxHj8Zjv/cl36XW7U7DpY1cuMzPTJPB9DF3HMk1+5Vd+hdFoxL/5/X/HafuU73znO7jDEYVCidFoxHDk0mjUKRQcXnzheZYWF5EUhSAIMSybk9Yp77z7LkEurMw0m5BlbG3dp9frE0cRvW6XTl6s0Ot1ydKIMPR55pmnkSSJf/Fb/wpvPGY4GLCzvYOExNtvv83W1lYO6XVYXVmiVCyzuLhEo14jjDyWFpdYXFjgM595ifPn19g/2KXdbnPn3j0KxRLFYpEkTTg9PWV+fo6NjQ2as01kVaFSLdE6afGjH/6QSrXKubVzefOYwulpC9cdUioWpxuzQqGAYejMzc2xtDDPwBvhDsf8wte+RhSGvP3uu3Q7Hbonp2ysrXPt8SemEaz186u4wwFvvf0Wum7ytZ//a9y5c4c333yTvb1ddncf8n/9n/4nvvFLv4RhGERRRBqL4c7ywiKe5zMcunz00Q0e7u5y6fJF/Djg9ke36XQ63Lt3j7E7JgoiXv3hj9l+sMXmY+tcvnyJ559/npXlFfr9PicnLXq9HrP+LJIM3V6Hk9OIWq2Gruu02x329vb55//8X5ClKQWnQPu0xb27KgeHB5imwcbGBsViEbsoQLDVqmgm7fX7pEFEKMmUykU006Bar+CNxmzfuUs7CHkYRlTqdSr1Oq++8Tp3791jf/8QQzf46NZNisUi1x6/yuLiAvVaDW8kWCaqJGrqV5ZX8hjRZNMNjCSiLMbQiiiyTLVS5bR1ymuvvUbg+9RrNT7/uc+zdm5tGloQEY70kcMmd9AmSYLve3i+T6lUEpGL6UFBFIfEccxgOKDd7kzjMKVyeSqyT7b6tVqN69evT18D5TxudRYk+umMouxj//5X7TY9ZslCbPjkJlhTH4F1kVM+Wfs8OdR9Umz45P8/zQ01+dwJE2oi4k5KedIsnZY0zM3Pc3J8zG/91m8hIfG1L3+Nc+fO8Yu//A3e/+hD3v/wAw6PDpGR2Fxbo5FfVxRVxbJsjk9OuHXvDl/47Oe58tgVVldXKZfLUzbT4dEhgR/kYpOHJMFwNGQ09ti8cIHA93nrzTeE8JQD70d5NDVNU5R6YwowVlUV13WRJIler/fIJaBrInaVi1tZHqOtlCuCedduT5lOqqpOHeLxhKEiKRiGSqt9SrvTod6oY+fChyxJjPN439raGvcebLN3cMAP/uzP+OC996jWqyBLPNjaYnZmliuXH6NUqlCqVKjUI+IkwtA13MFg+jyeO3eO1ukpJ6cdVlarXH7M4eLFCywszDM/N4dpGKRxxCRSJ8vCvvzJ18HErXVwdAg8EqZK5ZJg42SCyRokCSetU3Rdo1IuEQciQnS4f0Ard5n2+z0KRQdZhtGgh+/5uMOewCDoBS5d3mR9fYM0zWi12vzGb/zf6XZ6WLZDrT7D8vIaD3cfsre3x8xMHcsycV2Xvd09/vzP/5z5+Xm+9KUv4fkBd+7c5cMPP+T4+JhSqUQcx9z48CNURWZutsH8/CyVSoWZmabgclWqGLqJIonhr6aotE5a/ODP/wynYFMoFnj2mWeYn50HwDRtRORKOFxUVUd1ZP7sz1/hxz9+lT/90z/FHY349f/9P6Q50xQRaDLRGKmK9MvQdTntdZlrzqAqClsP7pOkKZVSmdMkYdhp0+sPsHQRcdJ1bdoAd/Z9OTnfSTAtfMoAEecWRS/yREg8A9oGsUZmZARRSBCKGOF4PGbQ7+P7PlmWMb+4MF1zh8Mhe3t7H+PFGYaBNxbOqFq1SqlYpGCLtrA0iaffR5aU/DHL8oIegQlJU1Fqs72zw8LCosAXlEpoqkYQBB973T0Sf7JHwlN+Ez/Tx92Zn7aGPRKWpOn/pcnfZdnUiSWryvRryFIu4PPIMQpMh78fE2vT9GMfc/Z5mnAJZ2Zm+NznPke7fUqv3+dP//R73L17l3/+//5neN4Y0xLXO8e0cAcDRq5LkESUKmUyRaZWa1AslYiSiPHYBxRsp8hso4HUbNKsVdF1FU0p5YOcR9fCyf2ZmCjW1tamP+fR0TF7e3vs7e1xeHhIsdbAKRZZWVmmUCxSypl8S4uLxFGC7z+CwE8GY7Ks5CYNH98bM3THjN0h7qAv9hiKEJJkSZ6uk6qqcOvWDX7zN3+TB1tbtFotlpfmsS2TOAynsX5dN2g2m/T7Q4YDF8cpUa5U+Af/4Nc5v7FBY36Wvb19vvvd7zEej/E8j8evP87y8ko+gFZYXFyk3W7zve99D0VR+Lmf+zmee+YZrl66xCuv/Jj9g0OKlTKOZbG2sjoVVyfXm267gz9uY+kGmvyzSUo/s/AUhsJ1pKmi4i+OMqK4QpaluCN3Ot2IooB2u41j2yiaqDWfmWlQcBx0TadcqWDbDuVSEXc44Hd/53eQZQNFsVlcWEaSdLxwRJqlzDYE2G7Q7wulvt3GHQq1XdMU0px/oykqmiL4KaI5IM/FZoJcb5gmlm0Llo30yMIuXBQxcZaSpnFOos8Iw4id7R1AolKusbqywuXLj3F0dEinc5q3IcDR4SGD/oBatQ4ImB2yjKzpWI7DzNwcq+fWBJckn2YGQUCWZhi6sDFHeUMAGXk2WqXT6YhFKk2nmdTZmVkKjkPohwSeT7cTYds284tLKKqGbAimy+QFnKVweHBMt93hg7ffY25mlutXroGsgCI4RKQJyKDoKpValThN8YKAvYN9jk7blOs1KtUqlWoVXdfpdtqQiaY0KXcHxbGwjT7c2yVJU8bDPmmSoCkyMjKKJIk60W4HdzjE9zwUSTS37D3cZTAcCkC7bVOtVbFsG0VVGQ4HBEGIU7DFpJqELJMZjXwsy+H82jqlogBGbm89YOSOyPJmvGKhQj5gAilF1RSeeuJ5qtUKpwf7GHmTShj4RJHgG5mmgZa3HpqWhaQoeN6YLE0o2CZIwlJuGrpoUMzbieI0RUoFh4qcL2UZJs2qRrfdxh0MePutN9jb3SFNJKIwws4bWEpFB4kU33MZ9Huosszyyjn8UR2/1yaNQtzhGF0WDC5Nt5BkhUGrQ5rEUwu4aBgTzhhV15AVBc8LGXs+J502fhwTSRlG0WFh7Rx+HOJHEaedLn13RBCFSKqKXXDQciu8atuUCoX88BKhKQqxIlgZQRhxeHyMqWpUKlWSVMIPYsYjj153INyHikYaKvhhzGm7A2mMLKXYhoJkyKQopBmYikyEcB+FgU9/MMQpFLBsR8RVJYVqtSIq021LuBwBQzOQMwnLtFBlNb94pHieTxwn6Nood0ZpGLpJmmZEQUSWuOiqEG1n5mYZDIZs7Wyztb3Ne+99QLlc4emnn+bB3Xu4wyG1cgXNMIQVv1ymVqkQ+j790Ofe3TtiAjjoE8Yxew93KJRKLC4vsbi4yIULF/DDUDg0wh3GYw9TNyk4DkGlgiJL6LqG7dhYlslpDoN98vHH0TSNhw8fcnJywvHxMcvLK5xbXaPb6zL2RdQtAx7u7LC3u0vr6JgoDKmWypi5s2uyJr326uu024Ib4dgO6xsbXL9+nUuXLnF4eEj79JSdnYf4nidclPn03LZtPv+5zzE/P0+9VqPfFW6o9957nw8//IDf/M3fpFwuc/nyJVrtU27evDm9KH3u858jjsQ6mqYp3/ve95ibneXc6jls285dXLpgPykquqrT6/ZIcht0EATEccS1p5/k/Pk1FhcWKBQc2p0OSDLz8/NcuniJkTvm/No55uZmSaKIKAp54vEn6fV63L13TwgTvR7lfIOwsiLEo5s3bgISjz/+OGEYIcsqR0fHbG1tY1kW6+vrlMui8r7f75MkKYtLi0RJhOsKq/7CwsLUxaVpes4ZhKE75MOPPqJ12sIwdc6fX2NhYYEf/eQ1TtttDF2nUCzwzDPP0Gg2OH/+/HSSe3p6ymAwYPPCBUrFIs1mUzh4HBEBiOIYPR8wHB0eMhqP0A2dpaUlnrh2nZmZWfyxRyZDJoFhWySkJJmALodhSLfT5fatWywszPPEL/wC6+fPY1u2aNhLU7r9LqPxOBc4TObm5oQTWVGEmNY5pdVu0e/3iZIITVdFw1ycokgy165e49z6Ks3GDLpmcPvmHYbDIc89/zyVaoUwikRjnWEwHnkMBy47Ozv4ns/Xv/q1XDzWpvDaxkxjOhDQNA27UJhGpcxajWajwbDbY+yOqNdqOMUCjmPTTTPGOWdKVVTK5TKrqys8/sQTVOt1ms1ZdE3jM7UKjuOwtLzEzEwTTVHxEUMEZPFATtgLk6jQaCz2GXIqmpU0TctZhxafeeklOp0OrZMTVFU5Q2diuqGdbnbzqTsSyLmL5OwhIUkF+y6MQzxvDJlEqVTCNMy80vnMBhqmDLOJMDXZ3J89cEzEkZ9uafqrd5vwc7MpBkuaskkmh8mzB57pn8VZ7WMTekmWPsYymX6P/LmaCHefFrGbPJelUoksy6axsjTN3RdnHt5KSQw4X/7Sy7jDIQeH+wxGQ0aB4PhcunRJ7C0HA27dvUvp8JDllRUAFhYXKbgl7ILDaDTm7r17DF1XuOFyZtLs3BzHx8fs7u3ijkakQJo9ai2L4oRSpYKm6xweHU0dYY/a9ybkOqZA/Mnj5Hk+Q3eUr8+xmIanKbouGiMr5YoAuQ+GGIaOaVmCB4KUu0iEgCrlzB1N04WrJh+sTvbnreMTNFWhUi7RaDZ47rnnmKnVKDkOcSb4RLphEkYRN2/dEoPUShXTttBNndFozGg0Znd3FySJtfXz9PtDdnZ2mJufo1Qu4hQcwRMdjRiNRmiKLIpTpgfmDBLBpxHcn0wkAmQJJW+Nmkz/ZUnO94MJnW5HgKVPTrBME392BtuyKJXL7O/u0u32aOeOp5mZBrquMRoKd7c7GiIrEoapc+eOKIKIo4ReT0SSVE3j2tXrZKT8yfe+i5U76Hu9Lv1+JoYAYcSv/MqvYFk29Xqd/nAomrTzlMLly5cpOA7LCwtomsrMTJO5+TmWV1bwvDGHR8dIikagh9y+cYter8/+3j5JmnL92lXqjTqNZp1hb8juwx3RFlop5+uKeKzu3bvH+++/x3vvvc/Ozg5f+MIXaDQaPPfsM6iayuHxIYqsoEkqSiYhJSnu0KV92mG/cIiWC56arlMrVwSrJxGttLKq0O33kCWJmWZDsJoUBSHsJ9O17ZGoIk0ZoY8cpsKVcva9Pfm3NEkZDoeMR2KgKecuUtM0px8jEjVZ3rS7KNqqc0C17/vCOWhZNBoivijYrh+Ps03SQZMm8CxNGY1G7O3tEsWC+1osFikWnCnPb/K5U+6Y+IKQ819h4ugRSaDpP59Zy86uWx9bzyZ/PvNfzjyWEybZRGhWFVWsE3nr3dm19uz3+uSQ4+z3lSaRkfx+W5aFrMg88/SzrCyvEIcxe3t7vP3OW3lJUIBlW+i6iTfySZKMna0dRsMxczPzFAolzLJF3+3j7/gULBvLMGjWSiiyKh5zKV+QJ68PKb8cZI840JP7F4QhrdOWcJ/ljW+KHmIXHcq1KsVyCc00GPsCNxSnGXGaEiWiYCROU5IsFamkPA0RpzFjT3AxFxfmmJ+fQ9d1oijitNVib2+XV175M9577z1OT45xLANreTGP7E8S5DKmaRHHoh1dNHQmvPTZz3Hx0iXmlxYxLZNOu83YdSk4NjNN4XSqVmvomkoY+AxHI779wfvEcSxc/PUaK8vLzM3MkKUZKysrVGs11JyrVXAKYp+iKRQLDtVKmZJTwBuPIR9E/Cy3/wzhKUBVFZJEwH6zRLwIsyxj5IpvFscibtDptKlWKyiqQqHoMNNsUHRsTF2nVqsJuGi5yMHBId/85h+wurrJM898joX5JRYWVjk82SdOIl589gV0TZ9Wf7/73rvEQUDL80gihVQXsFhVVlBlhThJRe1hKBRHEXmRp1GScf6gTC5uSSKcD2kSEceiojtLRTPV7u4eIJPEEhsbF7h48RLdbptutzu1Y58cn4gs5dwCkiwTRjGKrqNZFpbtoBkmK6urdDpdDvf3RaQrCMXGWtOnoMjJJtowTFRFodvpoOsalmUyHo3p90VdpG3ZItYQ+PR6Paq1CotLSyJLb2jTWJKI/6UcHR6zt7vHD3/0KteuXOXa1etiIy2LeF6axmSygOeVq1U836fd69Nrt2n3+jz34ossLC9TLpfRVDUH9jFtyTEMgzD0CaOQrdt36Xa6OJaOoWnUqxWRj5cgiHw6nTYjb0wQhth2ATmDvbwZLAxDYXGsVLBsC1VTcfPNwPz8LLKi4I48slRm5HrYVoHz5zfEIiXL3L17n+FwDEkmBIpChTCMGI89QEZVJZ57/jk2zp/nx3/2A8EgMg3SOCSOI2QJDGsCVBStWsgSg8FAuKJikSOfOBAc22I4FMyj8WgMWSZApJkA2lmGgVY0ud9uM3aHvPfO26JGOYRSqUSjXKbgOJSKBTIifG/MYNDD0HSuXHiKKPA42L7HqNfFPT2haJvYpoldKKJoBtlJlzhOkVWVNG+pMy0hPNmOjabrjMYngs/QPiXMhMPJKBZoloqMPA93PGZ/d19sfuZmURUF2ykgZyJWqeYNIb7v4/ti6h8pMSARhBFHxyc0qzWWmrOMvRBlMGI8GiPLfdIMJFklQyYIE9qdLpau4OgqtqmiqzJjPyVOMjJZRsogAELfp9PukORg+yxOUWWVerWOrmsUHIcoErwIQ9MgBVM3MXWTMAyJooggGCCFEqoyQtdFLbyYPCBAmH6AUhSRhebsLHGacdrpsLXzEM2wuHz5Iuvr69z88AanJydc2LwghKfZGbFol0t02i3i0Ofe3bskSYqqmSRZxkmrxfziIo9dfYyFhXk2Nzc5abfp9vqEYYQ39jF0g8zOSMoRuqZhWyaqJjb7D7a2SJKEX/7GLyPLMt/8/W8S52BKVdE4v7ZOt9slyTIK5TJpmrG785Ddhw85PWlhWxb1ag0zn8aRR7def/0ntNvt3GW6zNNPP8Oly5fY3Nzknbff4eHODh999BG+7zM/P4+Rv44uXRKulXPnzjE/P4/v+bRPT/nRj37E7u4uP/nJG7z44ov8o//uv+P01VNu375NvV6nXC7zpW98A9M0+Y//6x/x8OEO3//+95mfm2NzY5NqtUqhUKBYLOabRgFi7Pf6aLpBrdag1+uSxBFXrlzmheefZ6bZIEtT9vf2MWw75zZI6JrBwsI81WqFvd0dvNGYJ554gm6nS38woNUSEYNatUK1UmFzY51KpcytW7fJMrh27XHGY4/d3T0ePtzl7bff5stffpnz5y/jOA5JkvDRRx8JuzcZcRxNoevz8/MYhkmWSWLCq2lkksTAHfLRjRv4nodpGqydX+XihYv85r/+l9y6fYfnn32WRqPB+tp5ZmdnWV9f58bNm9y5e4f2aYf+oMdXvvQlms0miiRTqVRYXz/P3t4e97fuYxrCZXl8ekKv32em2mB+bp6Xv/hFPM/ntNVGMXQUQ0O3zGlrYBSL2Hqn2+Hu7Ts8dukSv/jXfoH1tfNYpklKRhCGdHM20Olpm/n5eWZmZ4miSMDA/TGt9imtzqlwEKcJpm5SK1bRFA3btLh65Srrm+dp1BuQwc7ODnGS8MwzzxDFEWNfTDB1XaPfG+C6I7bub2NbNr/0S7+EbojY8mAwYDgcsnruHNValcFgQJpmIraOcNWWSiXq9TrbWw8IQxF/nXB8Qs9jNHIhE22t5XKJlZVl3PGY2fl5xp6Pqiisr65imWbOKdDz8gLy2uP89+mkBES017kjARmXsgwzX2cAbMvipRdfZH9/n1deeQU1d92c3YSfnTJPxJGMR0wSYf0HEIeTQc57GAx7lEtlmnUhRuqann/u5KMfRS4mX+fTbhOu1CcFmbO3T4tG/Bd3myTkctFp+vPzKC4DPx0DOftzT50OE5D4Jz727Md87Fv/BQepibts8rkfuw/51yyXSpSKRV7+0pc4ODjgd3/3d1FOW3QHPTYuXBADC9/HHY24c/cehq7x3HPPUi6XmV+Yp+gWsR3Rrtk6PZ06fUX8Embm5ugPBhyfnDAcjUgypq4r3xeQ2HK5ItzZR0cUHIdyqTR1JinyIzFzEj2ZtFEO3S7tTne6f+51OiRxgqaLIdi5LCMKI9zhENNoYFv2I2dEzi6KY1HIIbiteUlMkuCdcWDt7e1hW6ZgiNQbPPPMM9SKRSzT5PjkmN6gj2lZREnMrdu3xTC7UqUx06RSr+GOPUZjj5u3boMEM/Pz9AcDHj58iGWbyMoqlm1RLBU5PDgQVemWEHPVPKI5EQbOPse6IeDOjuNM+U+aOnmPpyRxTK/X5bTdoX16QsF28EcjHNMUzvkkpdvt0e31GI1cbFvgSrIoxB0MGI9HGIZOFIXcvXuHOE7xg4jRaMzB0QEL84tcufoYJ60Tvvf97/H449fZ3Nyg1+8RBD4nR8fUqjX+xq/8LXw/YG9vnxTwc6dMmqZcvnyJhYUFLl+8IIT9RgPTMrELNrdu3eLw6JhiSXBiX3/tdVotMWRYWVnhM5/9LIvLiywsLvDH3/pjdncfYts2cRyRZclU5Lh37x7/7t/9Hr1eD9/3+bt/9+/yxBNPMDPTYOi6tDotUVQjKSiZhJxkuAOXjt5h3zDQdZXY8ynKCo7tkEkyiSxj54Pp07bgVZVKRUxJcI3EoTwVoG7pTEQ2fw4nurIkQZykJHkLKfAIBZKvG4PBgNF4NBVJJ1FORVHww2CKdlBVlcXFxSmo+6R1wmAwmApPM80Z9DMw8I/F3RDClyoJ11KaiYP7/fsPqNYqNGeaFAsFCo6D5/lEaTIVtB+xlYRwIqQbscSkSXrm+3183fqk8HSWIQhiWCWEjUefI9AHKXEYE+UJpIlYl03EuzQ749D9+O3TYnhnn59HblHBzrVsm/pTDQLfp1Fv8t5777G1tU2n22EwHGLbBQzDxPN8RmOPOErwxh4XLlxE1TQUrUl/KOLG8/UGlWKJLEuQJUjS3P4mPRIdZVnKhxdno4niPoZhQOv0VHCsU7E/koMAJ2cROyVRWjLyfEDEJyeC06NfeckWKSmJYMN5Y/r9HtevXWFtbU0IT2HE4cEhH7z/Ab/zO/+abrdDt91mYXGRaq1Gr9cTkWiE8GQYer7fO0RWRSnQU888zec//wXm5+fJgOOHDxmPRhQdh+XlFdbXN6b8qCxNcYcDvvPtb1MoOPzyL3+DtXOrXL9+bTpoW1lZAiRxbckyyJsLVV2ZvujKxRLjscfeXj68/hluP7PwpBtiGqcbuQCRqdi2KTajozG+J+IOnudhOxbVWpnZuSZIGUdHRzRnmly9dlXwKPwxC0sNdF3Btk183+PevXsUilUsu4RtlZAViXang2M7rJ0/z4WLF/jyV75Mp9PmtH3KnTu3OD45ojfo0Om1cQpWDpAsIKsKSqrkbXk5VDh81L6g6zqJIsQjzTJRFZntnQf0+z0ubl5haXGV1ZXz9PsD7t/bptft8a1vfYtGo8ZLL73E/ft36XTaqLKK4zg8+8zTpEi4fsDB4SFvvvV2PlHSxAVmPEY3TZIkww96os1AA023KGkGvi/ApY5TwDINSGMRLer1KZg2jWqNve0dDh7usr65QcEqTBeDd999l3qtytzcDLVKlWK5IizTScqFzQtYhs0btTexCgVSWSZIU0ZRSOaHyJJEybRzhlWGpqrUK1V03cQwLNpHJ4z6A4KhqAZWMwnHNCmVhRAjyTLdQZd2+5Qg8pEUCc0UbwBJFbnZII6I05gsr0pXdIl6pYxumKCq9AZ9Dg6OiIKAg/19HKeAUyigaCpO0SFOUzRFodEUjVe93mBqERQqeUqtVkWRJdzBAFJQJAVFU9EMHd/3iKKIg4N94ijg7r07JFGIIkWoikKpUhKgypFLb9jHj0MUTaWgO5QLNkkc0W2fiFa3JMH3ZGQpERsG2yIIfbHRCkZigqPqWAUHu1LnsqpQX1nG813CKOLW7ZsokkzBMDBMg3LJIYkD0jQiHI0Zqn1SycApOTzxzIuc7D7k9vANNFWBTGVu6Rzleo2j7pDhYECayaiqTrMxA3FG5vkMxx4JKV5/hKwZLC8uE2Tw0YMtMlkhlRWK5QrVeoNoHKOho2smiirTbOjoikzFMtBlifFoRJamqFJGpVTGMm167ogkjUHW8OKQbuTiKRGZI3M0OEIetZA0YcMPlQw5AwmFKJUJYwmSlFASFbFZJiKXwi0sLvxZJlGp1SlXarijEWEUMXZHuGlKt9ueXihDJcQbCQFKU1UKhSKSZU+b4DRNR5IU4jjJL5YxWm6dN1UFTZHwQ59USilWy3jBmLv3bjNyB1QqZTYubnDl8Stsbm7iDoc8/OF9fM8jS2O80QhVkqiViqLq+roA9/3Rt7/DYNDnwYMHzM3PMxwOkZCx7QJzM7Okccrh7h7eeJy3PqZIpKRxRpbA7Ewz3wBlaJrgEPX74gCxtf0Azxtz/cmnWFha5PS0RavV4uatGwwHA2ZnZnjs0mU+/9nPoVkGh0cnHB4dc3p6SqfXxR2PMEwTSYJer8crr7zC9773PaoV4fb40he/RKVc5vrjj6MbOlJuSS/k4tCg36d10qLb7bJxfp3FhQXqDVE3/i//5W/RaM7yla98lePjY3zfE8BCVeWrX/sKB/sH6IaGaZiUSyU6nQ57e3u089jfCy+8iISMrhoEfsjuw4f0ez3R7JiXBWh5A83qyiqtdps/+g9/RBCEBEEo7OBRjGMVsE2bfq+HJCksLYiIXLlYZjgY0O8NWD+/zqVLl7h3f4uRO2Y08nCHI7YfbJMmGZsbF6hWayiKNgXi/p1f+zU0TWM8HgMSp602B/sHbG3tsLy8QqVa4eikxeHRITs7u3h5W8ni/ALnzp3j1q1b3Lhxg05XcITWNzZYmJtjY32DJEnY39/n3Xff5fWfvM7Vq1eZX3iOlZVVbMvEG3vChdRp0xv0GIxHfHj7Jp1OB0vVma3V+dxnPkuxVCSMY1rdDne27nN+7TyLjTrvfvgOJ61jDNNk5I74p//0nzLoD3jxxRd5/rnnePLJJ9E0jW63i1MskmUQBCEjz6Pd7wlIt6rQap1w88ZHHBzuMxqPkBUFx3F4/IUXCP2Q0+M2zfk5ZucXCOKE+w+2GI/FNcbzRay80+vSH/Q5aZ1QqZQoFBwGwxFkEr/wi7+E4ziYpi5iPgWHOIrEoCe3lcuSTEZC4PloukYlbw303RFJkiJrQvxPwohwPCb0PGrVKo1Gk8efeIJut8erP36Vw+NjBq5LpoiDjK7IQjzKoauh54umlmKJcu6qVRSFIAw5aZ0IgogkBjCWbqApGiQpsqKgKRpzM7OUiyVmmzNUa7VPxBnEppEzbpwkTT62mZck0bjX63VxRy73HzzAMHThsMut+G7erjcRkYrFYn4IFu7PND8QnBW6JpES3/enzsRPc+/Ax2Gz/6XfJoLTRIBLM8GXPBsthE//WT52gEMcuCbu2ckB5JMC3V/EMTn7b5PbxC3wSWbKxC3RaDT42te/RrfXY//wkO2tLe4/uI+UN8tZBQddU/HCgKTXwxuNqFQqrK2usn94SErGrVu3iMKQjYsXBLfPsRl5Y6r1OsgS3V6Pw+Mjev0+Ui72LMzPEfo+hweHFAtF6rW6iMfIZ+HCgpE59sb5UCdgPBbDwygMSdOUhfkF4bxOYopFsS+cvC5t26ZarU55T5P4TaFQQJYVFFW4GjVVQ9NNkCVUVca0LJ5++ikmPo5uzi2qFooUC0VMx2YpTVjb2GDkujzc2uH45IQPfvxjipUShVKRS2vrFGwHuyDcs/fu3Wd3d5fDw0OWV5YxTRFLOzg4YPfhQ6IwYnFxAS0IGbiiwc3QDQzDmEb3zzYdCrRHLmQgTduoDV1jcWaWarFEteDgeR5bO9u8/8EHtE87nBy36HZ6NMo1Fmfm6LV7tOKQg4NdbMfmsy99ltN2m5NWi4WFBWzH4ZVXfkS/P+CxK4+xsrLM0soCsprR6bd4sHWHO3c/ZH39PJVKhZXVZbI043d/918TBCGu69Fqn3LSatGcmeGFF15gbm4Ow9C59+Aeuq6TIjE7N8NcqUyj2SRKYjIQnLDxiEKhwF//5W9QrVaZm5slTmP63TZFx2Z+dpZuv4fvj/PvN+bGrVvsHx5Sa9T5ws99gfPn17hy+TKFgo0sQZxEtHtddEkl8xOO9vbZ335IoVRC03VahkaxWODiuTUcW7R9ueMxw14fxzCQHBvHcYiiiJOTY0zTZGlhceoEmgi+Z+Nen/YePSuI9Hpd4li0pIuClF2KxRKbm5vUatVptC5NUzRV7G81VZsK+FEYCabk0GXkisfM0HXRQJYlZxhgk/sjiaIiIIxEI+POzjZZlrKxsUGpVKRSLeeMR3FmFYLQpzegnv25ZFWZ2mvP/vSfNkiYrEWSlDum/hLj6+T7RlFEmp5p9Zt8o9y9JO6HmAbI8k8L9B8fAIiPnUDJJUm4UZM4QZYV1s+vUylXqJSrvPnWm3z729+mN+jTOjqlUCxj6DpSlOAPXO7fucNwMETVjfyMrWLYOpYjuMBBFE7dZaqMcDKf+fkerfPizxNxHYT4pigKiqag6gqyqkyfv0xkOsV9RyZTZFJZAlUhi2XG44AsTdEtg77b4+DkiN6gRxgGXLx0kZdeepFCoYDruvzJd77Nzs4OuqpRLhYx8nbxCSZIliRq1RpxFNFqtZBkhWq9wUufeYlnnnmWz3z2syyvrKCbFlmWsbg4j+9XqdUqFAslNFWhVCzgOBalYoFSqUCtVqFcKrG5sT7FheT+rOlzjJQxHLm8/fY7GKbJ8tIyxWKJcrlEu9el1+2KqHThP91oB/8ZwtPHKtYlCRnxZ1mWRa1yKJhGYRhQKotGDNu2IMtwXRfLsmg2Gzzc2xWH9TgkyxIMQydNE3q9HkgGsmJiOTaaKkCAZOAUHOr1Oqurq4zHI0Yjl1KpwIOte7z51k8YjUdkUoqVppTKJXFRU5RpJbkQYpJpxG6y4cpSBV0XbVhxLFRTQzeoVqqsnVun1WpzctwRLX7Hh7z00ossLi4yHPZQZAnP83Fsh+ZMgwyFQhizd3DA/sEBSZqJDcB4TBD4+RtKTFEkSdQkqjngbhIBFJBuAxKJIEnwxx5Fp0C5WGJ3dxfPExl927RQVBV3NGT/YA/SlKLjUCtXMHJwLUCjVscf+xSKRQzTIAWSTFgBsygR9ue8YpwsFY1hlgGSgiSr9AcDet0utXKFwKtQLDgi1qip06rRKA7FZCDJY3uqKuCKsrBgJmkiKuQBWZaQM0U0K1gmhuOQZhmqrJDEKWNX8GE83xcQUFXUn2ZkWJaZb5oF2F7NIwYZGXYORg59nzRJkZGRs0kbSQxZSr/fI0ti2u0WWRLTH1RxbItyoQCyRJSIhQlZoqAXUFWNgqoS+B7dtqj2VCSJKA4JAtF+MWkTiKRYiGuAKoGqa9iOw4yqYMQRrjtg6Lo83PmQOIzoyTKNZpNSuUSMAHcHvsdY0YmTDEUzWVheJQ0jHugWspSRphKm7VAoV9AME0X1mCjsjqURegGB5xHGEVESk0QximpQKpbwhQUJZBlFEU1vtmWJaZwrRE9JUjBMHUtTKdoWaRQS+h45aiR3Wah0hq54rjOZII5wQ49YTlEsVWxQgwTLERvLVAGyCXxfIkklwjzOKsspkpShqBoSMqaikGYStpVgWzaWaRFFMWQQ5XXnw6ErHHemKQoEokgc4NIMI98cmqYhDqGykkNK0+kvXZHR8lgBZGINIsN2bJIoFq+RNKXX7/HUM0/SnGlSn22ChLBce0KMS+IYRZYwDQ3HsTm3sszYF3XzYRDQarXodbu4rouqmRi6kbMxbMJICODk8H0RCxFTmGKhgGlZuSAFjUaDLIPDwyN63S6e57Fx6SKyLOLHp6ctTk6OSeOYlYUlVlZXePKJJ9g7PuS4fcpoPBY8qvGYMAzQDQ1FE+D8/b19tne2eebpZyiXK6yfX2dhYZ7nnntO8PyyVBw0vDFZmhIGIYPBkOFwSK1eR5Ikzp1f4+HODm++/SYvvFRhdfVcXhEr2n4cx+bKpUsUCw53797OuW/isRwOhxwcHEwnXYosnE9+FjD2PKJICEqB7zMaCU6eIisC5n7a5s6duyiKimmYDAdDHMuiUa+jqgqddgdJkqhWa5imhWVaPNzZodfrUavWWFpcot3uQyYzGIwIg2gaJavVahScYs4h7KNpGleuXEFVVW7cvIGmaWRpJvhaR4eMRi5RKMDZo5HI0PcHA3p5lblt2yIK2WpND/yVSpl6vc7MzAztdpu9vT329/fZ3t7ms5/9LJsbm1QqFVRFEe4/MtzhkMFwQH84YP/okKOjI66uX6BaKrOysoxhGHT6A0bjMafdLisrMZZpMhj0OTo+QpN0PN/nrbfeomA7XLpwgXPnzjE3N59PpT3MvNHHD8NpO2Y8cTb0+xweHHB4eIDneczPz2Plri934NJt9zENC9uyGY2GDIYucbSLNImgS4Lb4o5cev0eaZYIUHmcYhoWFy5domDbHB7soaqKAMDmEbFpPIdHRQJ6pmGb4poQhSFSvu4CpKngJUVhiOM4NJoNNjY2ePOtt9l68IDBaEwQhxiOPYUZK5KI7E9q4sWQRKZQcNB1wdaIwpDBcCBYO46FpqpY+QZvMv1TZJmiU6CYQ1MnO1kxjc6mG+uzh4Asy4TzWZGnbpMsy3BHLv1+n16vS6lcxrJt9DyKF0eiwXTC1JiwIRRFyTkhZ4WtNJ9gptNylY85Av4CcWkqmHxaZuO/iNuZQ8/klrt7yH6aeZKd+b8QDT5+ABOHpkeHsel3+cQk/6dcAmc+9tMOhH/R46vk4u36xgaHR0e0u12Ojo85PjmmMTObF6zIyKpwqIdRSL/fo1goUi4W6Q36DEdmvvaMSLIURVVEA12pjJXvr9yRizseCcFYVsksC8s0ydJ0yoyxLEvs087e/2yCewimwlMUR1O+CFlGoVjA0A3iKMK0zOljMBHWrLyiO0lTAZLOXeOyJE/FNUVRyPLiGVlR0FSFWqlMEgvnVJoK2HKaZaiqhuMUUTUV07bp9/oMe0OOT1ocH4sDnWFbrMwtUCqW0A2DKI44PW1PHQMTlpVopNMY5S3XSZxAJhFGoTjQImrRJ8/hI6bO5LotHiTxvkrEuUKWKRUKmIaBrqmcnp7mYO197t6+S5pkkErMz86KQ1unxWjs0u520E2DhcUl/CDk8PAIXddF2YgrrrtXr19ncWmRSrXMyHMpl4s8eHDMwcE+zWaDYrFAsVTEG3vcun2LKBI/z+HRMYdHhywuLYqoZsFBkiR6fVGY0hgOqdVr6DlM3LIsopxtlCQpTtHh+vXrOLaFqiki7j92sUyDcrnEwB2Q5oLEYCiE8qHrUqvXuXb9Ks88/bR4vCRxmI9y0H0qaQSKjzcaMxqIZtA0d9aZpiF4fpY1bWlLonjKQtI0DbKMXq/zMb7nRPiYvEc/Jj59wmVzVowf5SDzMIpxRyNc16VYKNJoNIQrPS8cyrIMeVL8cEbXThLB/grzZm09j4kLsUA+82qRHqXY8t9EYYTn+bQ7bWzb5tzKHIWCQyGP2Ikzqwp8uuD0aeuN9Ik1cfIz/2VrPfm++OML6qOvOfliP82GmnxK9rGPEZ/yiWa8M3f/7Pr56D5//O9qtRrFQpFqpUaapnz00Q38ewHt0w4FO0NGgSQjDkJOT05QVI2ZwUAIlrYj9ApVJskSkjSZui8n30rKH9PsEz9jmmbEcTKNY05EzYk7SpIn0Wwm6vPUTpdJuXNMksgkiSgWezhd0YgTwWn0A1/ghGZnObe2Nh3u3r59m9NWC0VWMA0DVZYI8/KHSURezxtKkyTFNm3qMzNcvXadn/viF1k9d45SuUSKRJqmFAtifdZUNW+zE3FiSZJIjIQoCnFsm0KhIHiqTuGRfe6Rjy53wwfs7u9h2w7FYhlV0ymWhLDveWMhlBmPGhP/stvPLDxZuoEiyyiScMekWcZwOEJV2yzML6Auamw/3KHXSxj0XbqdPq2TDoWCiVMwODg+5OjwmOZMgzCK+P6f/jlJCgvL59H1ApZVRZIMkkxi5+EBge+jKxKapvDg3kMs26Zaq7C6usLa2jmef/4zfOlLX+G/+W9+jfHY5c6dW3S7bR7cvysOLgmADqmKnMqoyFi6TpalaKp4UUVpzGjg0Q1C5FTGMUt88MH7hFHEzvY+uqYxNz+PO+5x1Drg3tZdMjmj2WxQn2kw9AQ8/I+/+x3mZ+d54uo1TClFSUKKlkGxUODt0zbtdps4jNF0ndnZWRRFzieoAWEcoaq5DZQUQ9do1GY4Pj5ma3ubcc79uHLlCgsLC1y7fhWnUJhOyncfPmTUdzncO8B3Rxw6Dkkao2oqm5ubOI7OteuXcCyHQfsUU1FYnpmn0+4ReAGD/gBFlpAU0VyoqzJGuUS93qTVbjNwXbYf7qAdHfDcS88TJSF37txBVmRsxyZNEirlMiPXI/QjFFlFllRCPxb8LdlAlsTLLAxj4iDi+KSFUyzw1KWLSJaJG3jMVUpcXN+kWHAI/DFOsYCqa0ReQBondOQ+vX6fh3t71Ot1ZmdnCX0Rq0wRb3C7WMpbKGLGo7EAEaoyjmVwfLBPS5KI/ABT1ykXKpAmHB+eEEUhhmrgmIK14/YHJHHMIBWOnNn6LBkZSZbmNuo2QRRjWdY0hx3HCYEf0O8NkMcjJM/FLlWESKivioOQF+JNAO0ZPHz4EENT0RSF7ukesqSwurTE0uoKj7/4HMMgQK41GPU6dNodun/2CrIq0zpsIWewYJ9HRsKPPaI4JpRhZmGRUqlCf+yTKjLtQYeB5zEc9phtznDl4gVCPyDwA5IsZBy7hKfiAhwHHooEpixRLZeYbdSQU7EAJVlGjIDFJ2mGNx4y8kec9tpcuHSR609e4Ti3GR8eHpKlGUvzC5CkBANXXKxVlTCMSEggzZAlKEkamqrjWEViBni9Ie5xi/SoRex5ZElCo1FDISNJY2RZQZbVfJNkCOt+mtFozmLbNt2BgEBGYYAkS3m9cEQSh2iFCrqu0xr0QZKoJCmKrHBxbVNMXBSZ3YNDTno9bm1tc9IfIOs2pBKXHn+aLE2QSEHRkWSVXr9Hrz/g1u2byJrK5sV1Wu0OH3z4AcVSkUqlwrUnnmJufmEKJR2NRnhjT0RVTQurUM5r0BXSLENRZI6PO0iyQqfT4/i4zd7uIWvn11hdXuX06Bi3P+Du3du0Wi2GnQ6zszN89atfotlo0u61qNXKzM03OT06YOz2eTjqEUYRi0uzXLx4iV/8xV/gzTffRlUlnn76CS5cuIRpGvhBwMPdPQrFAo1mferEKBaEEHNy2kEejdEs0d518/Zd4jjmyrXrxGnKT955i/mZGRrNBu+9+y6mbrB5bg0pk9AkhQcP7vH22+/w9V/4eb7+135eiIOyhClptNptPrp3i/pCg+XVVW7fuMGdm7f4j9/6Y/70uz/g8SeeYG5+nhc//xmG3hjTNmjWG6wsLdIfDNjaeYBdtHA0h+F4SJpmnD9/HjuvQ37n3Xd47/338VO4s/OQ3//D/0C302VxYR5VU/nM50Q86sH9+1y4tMlnPvNZ/sN/+A+0Wm3effd9yuUS1UqV5597nka9yfe//33+yT/5J/i+x5NPPsnlxx5jdkYUCHz00Q1++7d/my1zC10TjX4LC0s82N5mNBqxv72NLsETV69y2jrh29/7DvtHRzilMk6hhGMXMBQDw9Cpr1Q47Zzy3o33eOONN3nlz17hqaee4oXrT/L0U89QqVY5ODklzTKCMKI/HJElWR5jMVAzhcQN+cM//ENGrsvC4hxXrl3hb/2d/w212gzDICRVFBTdoNPvMnRd3v7wfRzL4ksvfYb+YMCf/+kPePXV13j/g/f5+a9/nY31dTY31gl8n1f+/BXSNKVgWZy229y5c5vPfOZFVlaW+dGPfshpq4U7GmKYBguLizQadZYWF3nzrTd5+623+fv/7X/LY49dxtIlktjDtg3CJOWgfUqqqMwuLNPtCjj5+bVVikUHVZYwDJNS0WHkB4zikNnZWVb0JWRZtCodn7YZjcdU6k1U3eLouM2tW/d49bU3WN9YpznTZPOCiGu3Ttv4QUipUsYyTCpGCUkSArWiKkRJzM7uQ4LAJ44jyuUyM7XGo7ppWUxOU3IxORdrklA0esmKIsRumfxwDxlJfvAQIpI7HGJaJpZpEccRcZxw5/ZtAt/n8sVLFAsFynZhevid8JtGo9EjQSmKpocZ8oNgkiRCeELAn2VZxnYcsZdTfhqwOp1GT8Dbn34O+S/y9ihSI/1/KZLlTh9ZAuSpKD45vH5a5G5yy7Wu/GM/Ll49YrpMhB3xvCuKSpwkuO6AYtHh81/4LDtbO2w/2OajGze4cXxEZ9in1qgzOzcrCj9MEymDe3fvUqs3mL9yHX/sc3h8zLe+9cdUKhV+/qtfQ1U1qtUq/aHL+zdvsrS4yNLSCpokXIHDoUu/36Pb71F1q3iBj5YPloXglDAcCpZTt9fLWVoykizjOBYzi0tYhsFB64SxN2ZpcRFD14XrLJ/2a5om9tySaNsdeR5qlqLHFromY2r5sCsxufvgHv3hkPWNdWRZ5sMPPxCO9HIJ1x9jFkz64yEc77O6vIymKvi9Plqa8tyTT7I0N8/i7Bwnpy06vQ6Q4I76qDKossxgPKbebPJrv/a/5fjogG/+m9/jy1/9MteuXeOJ69dwbBtdUcSATlGEw0GS8oNyBjmrJcsjVbIi4lGSRC7mJkwatFEUojDk/tYO29tbfPe736fgOKyeO4ef16UnJAxGQ+5vbwMZm+uX+f+Q999PlqX3eSf4Od5d79JWpSnfVV1VbdENwhEgYSg6DTmkREmM4UzERIy0s1JszM5vu7F/grT702oiNJyV4a4oUqQoUgQNCBBoh0Y32pWvrKysSp/X33u82x/ec29VNyAKpLSxo5mDyCh0VmVed8573u/3+zyfJwe+9733WFhc4Es/8RVufHSDe3ffp1ZpsdhZ4aUXXmJ5aZHV5WXKJYdarcLKyjJHRwcYuk0YpBwddjEMky9/9atUKxWWFxd5/fXX+fa3v42cJZwc7JJG1ymVHNZW15i6LltbW2iayunTp9h5sMOdO7c5Oj4mimPWNjepVKrcf/hIIAFkmUa9xvLyabJUoVyuUW81kRWZ3qDH7t4+77z7fZ5/7jl+6Zd+kWpVNP/CKCAIAu7euofneSxUG9RrDdZObzB0pxwO+1y6cpm19TU0XZyHx71jkZSoGaiazrmLF0iTJ1HzURTR7Q3QNRXTsMmylDDw6bTbtJqtjymfKM7fJBPqIj8I8FyX0XiM53lkWYqqqqyvb1CuiHCTZquJ4xSNrx/SkH561XCnLvv7+9RqNZrNprgOZo0vWSrUmDlZPrP8SXMXzs7DRyRpyub6BpZlUa/XhR2w4P8qhY3wk3Kkp5tnc0GFLP2FqqVPNp9+oDmf/+DSKe5touZXZIWSU/pBm3eez7s5n2zU/8U3EAlJEgnfYq0V742qPmGNSopErVHlCz/+eS5cPM9v/MZv8I1v/CnHRz1Ggz7thTZJCg+3d/GDlFKlzqnVU9QrNYbDCb4b0qq3MTRJwK+lnDRP5vff2duVFmuzLMkkaczxSZf+YEQQxpiGQalicjIc4AWBcAhpapE0CF4ckKUxaZYTR0khdhFfZClJHNEdDRl0e4Suj2VYLC0us7G+wdrp0zx4sMXOzg7bjx4S+AG2bZEEOUESMXMHpgXj8+adu1i2zaUr13j55Zf5pV/+JdqtFo1mA0VVC/6vTJYm9AfDQqkqzudGs0aeSSRpxgcf3uDw8JBqrcHCwgLlSkUkv8eC5y3s54J51jvu4vkB169cR9NUKpUyJctEVyQWO01qFZtKpTRXhP6Hjh+58TQrEuYne5qRpBlxEVNumuacTZBmIrY4zcSFlksyfhAymbpUa3VkWWE8noKkUCo10TRDKH3QyVHJs5w4SUnjlDAQQEPDMJhMp6iajlMqUa3VqFYNWk2LuCISPWzLZjqZ4vkeliuSsyzDACTiOCk2JAUBIH8CS0viGE3VsE2bqT+dR2TOpP+6oSEr8rx4TNMUSVbRdPH9yXRKyZkUPIkM2zJRZJlZBGSWCt+6LMuoilAEqaosNqoSc5jjbAFRi8jaWbSi63nCImQaVCoVEfccBFimgaFpQimlaWRphu/7IGVkuYi0jWIB7jZ1Yx7ZqKmCqZKp2XxBneEkRQqJYPrYtk0OuIGQV7u+TxzFqKookmcQPcMwsEwBfpaQBJ9HksilnDwTm1hV1VDkiFSWmMVN5k/9T9d16tUqsqoKdhiFj7Xw2+eZmAoHBYTX932kYvM2+5LkBHl2UsuyAPHKCmmGeK7FxFlRVCRksjwjS8X3tCKOWpYE5C9NUrIkI1NzzOJuIckyuSTO7yhOUNQE3RGbeeRERGZKEsiFxLSQjpqmYFGZhk6WJOS5gHxGfiiWvSxj6gplyfHRAVbJAllGNUzsapXQnRDEMbGXIsmCM6PJ4jMggzhJyGUJ1TTRTAvdspHi4rnMrBNF516ZSWMzAd6XZSETT4pmnSxBVkA9Hack4j7TlLiwD4kJpfhdaRwTpRFxlCAhU6s2sCyH7nGPKBUQfQkBzZVkobjKZKF8yjPB4kgzCXkmeS1uWHEc4YcBeRCJzywX8HaluElmRWKiIsvkhYoxjmOiQiVT/CoUSSpUmcV7AGISAMXPJEi6jG2IRDFFVbAdhyhPRXMtEJtuXdOo1uuEYYA3nWBYNhUkkqIxE4Q+cqphGDqKIhMGAcPBgP39fTbPnifPRJqKIgv1lySJyGrLtrFthxl0cKY8C6IYiZggDIVSq2DIOE4Jz3UZj4b0u11GgyGyBJZpsVQkMiqqgllAXdNUMH3CMCAnp1qt0G43WV1dYXd3l2azUSToCD6YYIO54kafVOfr0XxzIcvIiortOKRZxkkRInHq1Gmmnsd4PKbdbCDJEoEfkEQRxycnREFAqVQCJAbDwTyldGl5BdM0cfsjPN9H0zVKlTIrp1Y4PjzEMAzcicd0PGU8nlAqV+ZTRVHIJYRhwHg8YjSZ0B8MRCRzEAAQRhFGcV8SG0CZo5MTxu6UnUePmI4F3FXVhIpTliXBLDJNypUyeS48/WEomA6WaVKr1zh16hSlkkOSxAUDLcAqYOmqoqKp6lPwZxVN09ENQ9hKkcT65fmEccx4OmG/aNQ2m00kJMIgFMWNpMzX/739fSbjMYosU6tUWWgvUC5XMEyL6XAo1l5ZLdJmFOIoZjKdIiEgvu5UMNgc26FaqdJstdA0Ez8MUREQYc+f4AceQeCjq8KSE3g+D7cfMp1MUFSVxcVF1tbWaTVbjEZDAt9DUVScms1JtztXidWqVaJIwHJdbzoPcJCQC3ukCEyo1Wo0Gg2xBj0FH/ajCE3RKJVNJuMRgR8U17VUhD5kxHFEnAi2m64oZInM2BNhFUINlJKkGZ4XcHzSxQ8CdN2gWqnQajbpNFvohs5xeCIaNVE0n1TPNs4zm75QSQgLr67pYuKeCVXvvACdXScwVzjls47EDxlBZ3lGFgtWiPi5GVciJoxCsqJoqlVFequqqnNArlw0u2bNpdlmf/4oP+TxZj8nS/IPFBz//iMnz4uJ7l8wMf//x/FD5vLMYrHn35lN1Z+uxj5RmH2ySZRlH2/CfbLY/MHC6um/e/I7f9ghiivxj5JE3HeDMETXDcq2Ta1WY3FhgUePduj3tTlU2PU8VEUoPj1XpHA2my0s06TdapFmGY92H+NOJgwGfXzPQ1M1giAoEpFOCaYeMmmS4gdPEp5nX3k+K9Apnp8ooOb3ZlkWbCZFxrZMLMPE9zyyQmklyRJBGJIU+wRVUVAUFTlLkYrCVdQD0vz6kGUJTRP73CgM5ntKz/fQdZ1y8diyBH7gQZ4RhC1UWcIdT1BkhUqlimnoWIaJoQvrfZoIF4YsiVTlMAoxLZOl5WW86ZQ8zRgPRxwfH3Nuc5NKqUSWCFtNXkCT5afUEDkz8HD+1Fv0dFd2xoTKCAsFy6DfZzKeCgC549Butzk5OcEPfNIsRSpU+YqiUK81iJOEJB0WwHWL0WjC4cEhrVabRqNOvVYrlLgTXFc0BQXc3CFLREBLEqdYpkSn06HZaLB2apWdnYcsdDoYholpWeiFvdGybfwgZDQc0u12OTw4oNfvMR6NGY/HggVWq1EulRlPpyiyhCJLVMoVTMMqYtxT/EjYwWdKIcH6lGk0GkShCJvyAo8wCBgMhmK91sTrlhUFRRcswhnAW9cVJEkoLLIsJ82mVGt1nHIVP45IYoESybN8zgqbuVqEDSwrrGPis0rTlCzPRb0ax/Mkxrg4v2fNKUURjQRJEqB9tTjXP6b6LM7b2UqbZilxGM0bYWpRN3m+eE+eVrfOfsWsiRQGAf5M3Y1U1JsiqEI0YtIfWGc+qa6c79Fm69dfYUrww5Sb88coznFR8xeOoU9YGGecqdm6+vGn/PHX/vTjfeJZ8PTC/Ek1lKqqNBpiv3r27Bm2t7cYDcYCW5GLddUPAtypx3g0xm+KOj3OQMpEurlpiAbSrP7PpSfvV04OeeE+KFTV47Go6eM4QlUUtKI5KSsqlmVhmpaoCYv7RZY/SUnMC7txloohe57lpKk4R/OscBcV/MckTtjf32dvb7cIHItJM4MkTYogFvEM40QgQ3LAsmzOnjvHhYsXuXTpmbkbbebqkhBfs3vZzEItSRLIMlKWM5lMGI8nVCpVqrVaEWwihg7ztMSn1HKKItNs1Av1l2hsBYGPqipFHaH/yPuKH7nxhKIJuW8YF2C1mEqziWba5IpCQo4fx0RJgmGbWOUSlWYdx3aE/N7LOTyeMHGzwgaxQJykDAZjbBskyaTVqlKtNTFNHc9zOel2CaNQWC2yjFxVeP/DG3zw0U0BqHUcllcWqdUqXL3yDJ32Mi+//BmyNCGOQibTMa7rcrD/iMd7xzRKFrqqoKQyfpgwHI3QVQPDsinbFVRJwaiWyPKcM2cuoKoazWaTXveEWrXOwsIi5XKVW7fu4PkepZJDrd5G04UC4E/+/Js4pRLPPn+dk96Qg+Nj6s0GumFwfHiMhCTggbqBYllUCslwHPhEkfDPK7JQ6Oi6sHj0el0G/T73tu7RHXR58VMvYjkW+4d7REnI5sYqS8tLbG5sMChSp/JcpFfc+Oi2KIz8kGq5xurpNfZ29xm7Y6ySSaniFCeVsCYkSSpA5oqPovm0OgusnlqjVK0xmU743tvvUK1U+Mkvf4X9/X2+/973xedr21QuCADlwy3BwqmWS+SpaH7pywssLXaYGGMCP8AqOSiayu1bNxiOxjiWSbtRZ33tNMf9Lt3REMtxMA2T9fV1FFmhPxrjuy5JnLD9YJsbH37E888/z+rqKq1WE03T2N7eRpKgUqmSJBmKojBxPQZRQKuALpdqDQxNYziZYhkGrYVFwRBJE9I4EguUZWOYOV4QMvUDHt+/j21b1Os1DKuEU5qlbECq6KSSxCSNSVQNtdGk1myz0u6w0x8z7I1pLHWI4phut0uSJJTKFXJFIS6mGlEUEGQJcRTzxttvsndyyMUXnkOScq69cJ0bUsLx0WM21lap1Soc7O4ThyHjxBefXeJTa3RYWFwjCAL2JmMe7DwmQ+LTX/4p6lGMrb2FO/J57/2bmKaOaRiYukWr3maiTYVFqN/FNnWWlztcOn+el194nt7JMcPBgJs3bzKdjGnUaiRZClJKnKREYcbu9h7Dkwm//Cu/wrkL5wndhP39Pfb3jjB0jYVWQzR685RMVcklmSyIydKcSRghRTFDb0qa5dRLFnkS4Ls+kBXpN2ITUDVLYj0Y9sFx0CXx97IE77z9Bnme4zglNE2lZFkYhonjlDgp7D7jiYskB7QWO4VvWtg6wyAsVAg5l5+9zOLKMrv7e0zGE95+601q9Rqf+/EvcHRwwMN7u1w6f57N9TUUWSbLUrYePGA4HjGejEjTmHarwXDQ543Xv0Ons4BlmlTLZZYWOlimjmObXLlyBbuQuN69d49Hjx6xsLCA4zhESUyW53j+hErN4Us/8QURyFARisy9vV2m0ylJkrC0tMj6+mnOnj0rivh6nf5gwGAw4NatW7z//vv4vk+tXuPChQucP3+B9bUNJuNpYTGbcuPGDf76X//rNBoN7m3dJwh9bNtEUWQ0TRER7v0+aZZSKtlcvnyJk5MTPvjgPRavXOZv/PIv8dZ33+aNN99k58E2iqIIm1Ge8U9+/Z+wtLjEX/trP0WUJXx06ybfe+cdbt66xa/9V/81Z8+eQ1ZVNNOgVCrTbnc4d+4CB7uHOKUt1k9tUqtU+OKXvki1XsWdThgN+sSBz4fvP+QPHj9G1TRUTePh9jaO49DpLJLECa9/+/X5RvBgf5+Dw0P++I//GN/3GXQHRchFlSDwefvtt4liwXcbTcbsHRwwHI8I44hT62t02m1KjkV6JDY4r3z6VS5dvsS1q9dYXFqkVq/T6/X45//8n5MDP/6lL3H23DkuX7nCw4cPOTw8RFdNTC3Bj3O6U48b29vcfrDN9oNHfPpTr/DC9ecZDga8+713WFlZIc5S3n7je9zfusvX/+Tf8ZnPfJb/5tf+G1RFWNC63R5HJyfYloPtOKwsr2KqGqP+gJ2HOzzYeoBdNVi/uMnLn30Vd+KKaapmcPv2QxynRMkuc3p5gWqlxMnRHuF0wlKjSpqkvPnGG9y5c5dvv/Y6z734Ar/4i7/ISy++SKfd5sMP32c46FOpVqhWq2yeOcfYm3Dr7m3yYrM1Ho4Y9PpESUytWufK5Wd57bXX+af/7J/zcz/3c/wff+7n6XQ6IpxAFqEF+4fHYqurqdTbFRY6HULPnUWUMplM+c63/xzTMLl8+QqSooCscL/bZTwacvPWLcIg4Gd+9mdRFJk7t26Lxnwuce7cOf7e3/27dBYEtFXThfpjodnG81x2Hz+m0+lQrVTmm6179+4xnU7Z2BDTaMeyxQAuY96UnSliZvqhmR3kaZtHXiidRLyZ2M1FYcTR4RGmKabcapEq9nh3l+FIgKatwkIqy7JQiRZN1KywM8y4OjBT+8tCkZ49SbMTdnfBWHx6Qz+bqD+9WXxiS5ltOEEYRP7X03D6T3H8MCHX7D2Z2cpmyZsz/tYM2P7DCrWnWSafbGTNjrQojI1iGNrtCjt0tztEUmR6wzGdVpPNjU3OnDtLt9fjX/yrf0l30Oc3f+tfceHsOf7GX/9FDg8POTg8ZjgSts/zZ89y9uwZmo06x8fH/N7v/I4oFFSVk8NDdra3uXT2LIZ2mixJkaQc0zJxIptKycHUtfk5k2VP7ElZmiIrCu12W1hIEEOhJBGDQc/3ebC1RZZnnD93jsD32d0VxVOlVMKybHTDwEtjpFQMM1VFLYakKaPxSHBZy2WWFxcxTYODvT2QJE6dOoVt2zTrDUgfcry/z2FP1AO6IqyBN2/cRFNVzm6eY/vhNm+++aZoDOsahq4SmCJRT6hxusiKhKoovPDC83z+s5/h63/8dV5743UWWk2Uc+eRMkiyFDfwUVUNyzBxSmJ/m+eCKfrxghuSRAyMdF0hDCOiKODhw2163R43P7qBbdv8vb/799AKptrv/d7vcffuXcxnn6XdbvPKq69imoJ96DgOzVaLO3fu8M73vscbb7zGgwcP+Af/4B9w/vx5ymWHk+Mjfvff/A79fo/DwwMWFhdptJpUnCqWYdFpdaiUq7QajWLYI7OyssqnPvUKi4tLVKo1lpYWSdIE07ZJuz12Hm6zv/uY7731FrYjUvLarQamZXF2cwNJVnj4cFuoPBSVhXYbwxC1kWkavPXW6wxHQzbPnGUymdKs1fA9j/fe+5C7d26y+/gRnu+iyDJXr1zHMEymXoAbBBye9Njd2yVJEnqDPoZpsLjQQlMVkjBiOBqz9WCbldVTnDsnkafCbierCrZlsfjMM6J5VzRH0jSlVHLEoBiR3j0Y9/F9n+NDYXefTCY0GkLlsbKyMk9PnZ33M2vprIklZKwCqowsi/0voCoqk/GEe3fvoqqiGTH7Go5HRFE0D3p5Okl0lqb+8OFDhsMhy8srAo5frT6Vrid/bE2ZrStBMVSbiRKSJJk3L/9THrP3UgghhM1wUmAFZuvhx1Wcs4aTGFR8snH0Hzpm783TP/PDmF22bfOVr3yFq1ef5f/6f/m/8d733xdWe1k01KfTKbuPHmMZIj263Wihaxr7B4eMxhPObqyjayqKIiEjhpGiUZQDqVjnMvDcKbdv3eDB1n16veNiWKPw3EufYmPzLM89+xztdpvBaESWpMiSAnKOlIvzI4szQjfA9zySAmtTKZfx3QmGpuAVw/IbN2+Q5yl/+If/jpPjYxQZUgl63WOmrst4Mha8MMNg0B8CEi+//DLPPvss/8P/8D9SKpXmSbh5/nTDTkKSFcrlKpCjqGI/EoQRqiIaXp7nkSQJL730Es1mA0VRSNJkbsV/+vxbWOwAoMgKrutxWPBjXXfK2XNn6HQ6JElMHGdoP8Kp+JdItYtFnF6pQhgGTKcpQRAwHI0wjp7A93RDpGJkWY7nuqiySJAyTJNSuUwUFjH0SVZ040SnPiwYIknK3P8okuGEzHKWohYXkdmT6YQwCkHKmEzGlByLcqlEs9Wk5DjUqxWSJBVTSlUnlkPBVFLluXIrjmJUeRYJmRLnKcePH5HlIn3MsiyqlTKB7xad0pwkjuYKIVXVBHQ6y4T6RlVBlklzcD1x0siKgmlZ1Op1srRQP8VCzVDOSoJdVEj88mIqFBWxmaqmUSqXkGVB1x8MBkynExzHFl15VREwVk1DUWRMwyDPMrwillYobRSSJCOOEx7u7DAaj0GWihMsRZY+vkmSC4ndDD4qyyJtL04TQexPUvr9Aa7rIUvKfLNWqVQKdo7YYCmSRC4XndEsIwoCkEDTVcrlErKqcjToEvgehqYhQXGRxkh5Pp9UxVFMmAbsPtrhpNcjKpRLhm7gFZHfSZICkvizGE5omkalUsWVwUekC0RJiqYboChERbJKljP/ygtF3GyarBm54CWRk+QZURILtZoiz8+DOE3JCx9unoOkqoUqKiVOhArHdV3iJCYrrF1OqYQSRiRAHAQkeU6j2YAcKo6Dpmsc7O0LxZ5l4ZRLlKpVgihmMBwTRuKGmBQLtKJpQp3h+0xdF8/zCYMAJIVBt0+UZshImLpJrVorpinZ3MKbZyky0GrUMHUNy9DJkphBv0vgu+RZgiKBJstoioQiq1RLDnGSEmgJSZowGg7od7v0mi1sy6FSqTHo9QoFQybO7hzyXNzcJSUHSeDrZElC0zWULENOJHFOpjGGbqBrOoahFdJ3xFcxeVOe8lmLeFzhWc7JUTQNRUvF71dVDNOkXK1jGBaSJiZkYRgK5YWiCfVBLqLLJ+MxmqIWoP+MOIwYDoaEQYhlmkzGY3Z2dnBsC0WWC06aYMQYamEvSBMmoxEPHz5A03XSNGE8Ggs1iaYhS1CrVtjY3MT3PXzPQ9cFtNIPAsizOay0VBZpfoeHB/OUttn1ahgCgCrJQt1lGDrD4YDt7W2Gw+G8gLItG6Vg2AyHI5IkxbItDo+OhV2nmFoPh0ORRlqyUTUNTVM56fYYDkeUyhU0VRNTTs9lOh0ThSGaptKs11g/dZqDwwNc12Wh3QFyRuMJsqryYGeHMI45vb6GUgBuZ8oSVdcL9pSwQEdhVFzDIm5bUVSOT04YjIbsPNpmNBqy+/gxaZpRq9ZEwa6qJMXGI473BJskEimf5GLy6Dj2XEmiGxqmaVCr1Ygii2arxXg8Jk6Gc3m7HwS4njeHTCZxwnA4YuvBlgA56yLhSJZlbty8wdHRMdOpi1Mq0Wy1cQq/fJKIyVWt0cB2SpQqVSRZ5fGjx5ycdEliwS/SNBXDFJOuu3fuIEmwv79HHEVcOHeejbV1lhYX8f0QPwjZ3d3F83yeufSMYBJJEook7iSqJhS5k+kUv1Allcpl1tfXcUoOg0GfPMvRVZ3haEQc+hweHtLrdXn06DGKorKyvIJTLrO5ucmp1VUWOwuChxjH7O7uMhwOiAumXBiFVCsVzp87R6nkkCYJcSy4BK1WG9O02H6wzeHhEVEYIcsKlu2QphlBEGGaBnGcMhiM0A2dVrslGrtpQrnkFE0CsbnqdBaQJImJ64lNFmJCqWkaqqIQSdI8WUhVFXHtlyu0Wk0qlbIY/MiiQSMhkujy/EmjZlZwzMCis72HoRtzKflcCZGL5MhZY2LGTpIoOBBPSfmfPtI0I8vzOY9yVkhEkWAmTqZTkizDtm1qlYp4bZI8nyZPxoLnNdt0Ly0uCe5hnn9s4w6FWp2Pf2+2fsxey9P//fT3nv7vH4UL9b/244ky4ONT+KePLMuI4og0ywjC4GP2xqd/z7+vuTRTCUhPPR7FniAthnGzx4jjmCiKxRpmKSiyKpR+TokszVg7vYZpWbhTl6PDI27fvkMSJ5imSPeaqTNkRabTbkGWUXJsXNdjXDB8qpUyqiyTxSKsIctzTMMgMg20ouAWBewTflFOoVTOBV8mh+J8fYqbIyHgx0VM/NOR75ZpzQui2Rtt6kZRWD+5X88h0Ahl/KzYDXy/UIiCYzssdjpEoY9XKBB0Q6faqIphbugRRAFJKlLOqpUqlikYS44t9lOaIpT03W6XrF5D1zSmU5dBv8/du3eJwwhFkknSlInvYZkW1UpFpNhpOrIsiq5Wq4muG1iWOVdazNQBYSgSd6NQsIoqlQq6puFOp3ieR7/fJ0lT1jfW2ThTpH4W77Oq6+imSblUJokTjo+PUVWFRqOObVsYhkaepYShSIiO45haTQzDF5cWsQ0HQzdoNZuUK2WkInwoKFSe7U6HcqUioOqu4D4eHZ8wGA6LJOgSi4sLlMslLMti/2Cf6WQyT3B1bBsQKnJJgjAMUJQiibtQYga+CPKxTJPpeMKtmzcZjwbIksxCpyOa6K02uq6T5AlplpOkQmEyv1cjmK2maYh9n6wwaU+xTYsoDFAkGUUWey1kicFggCzLlB0HVdUwDAPP85lMxszwGL1Bf86P0lSVWq1GuVzGKlSkiqLM9yKTyYQgCObNnDnwer6OiyZ8lmf4gY/nCZVXtVqdp6IK5ekTCPjTzRcxUPSEajfP5xwvy7I+th6LQUU2VzXN7n0zdets3ZmtTU83xH/Utfkv5D09/W8k4TiZcYaeVrY8eX1P1lPx///y6tin7y8/7Puzv6tUyoAQWwyHI0ajMUkai/1tkjAcDOj3enRP6timjaHrc25wFMfIsoRaMLN4sjw/UWFKQt01Ho9w3SlpHFNrtWm12ly5fIWz5y9gW1ZROwnGrJRLgmY1Ux3n+Vz1FPoeWZ4SKTm+75GkCZqm4Dj2nDXX7/UZjUbYlo0s+Uwmo7mzI45jyBHBW47D888/z6VLz1CtVj+mzp6Jq59WmSWJYEda2hP2UlIop2ahDzOloRCuPcWymv0mSbArkQrHlCbST5MkJgw1yAWHUyjGfrTP/EduPI1GU2q1KhsbmwwGA8LwEd1un8PDY7bub6GqCrZlY9ZNPNcl8gJ2th+ysLiArEi0201kWeH99z4QhU8qeC2G4ZAkGcPBiIODE8IoodGs4zgOC8traIaBokhFlzgWcHHPJQoDJt6Ebu+IPM/44IP3MAwh3b929Spf+uIXSdMcRdIoOxUMRcO0RWJUTiQaPL6HocjIuo7riSLjt373d0myjL//9/8PNJs1WvU6gTdF11Si0CdNROxq2bHRVF34J8dTdNNg5dQpRuMJvf6A/f0D+oMhrVabcrXCwsIyge9zuH/A4dERjx49prPQoVqrEkcxiizNoXV+EM0hYAuLi5Qdh+9+9y329/fY2dkhyzIsy4DcxrENJCnDc6eYholjOzx6vEua5mxuniVNM46OxGf09T/8I6F0MQwG3T6B56MqMmoBuVQ1Fc2w0DQT3bCRFYUoirAsE1lVaDfbuK7LN7/5LTRNK5IlEoJgwvLSspg05DlJHKOqMjIympSTRCGHBweUS+Kmtry8iKyqbO88wJ+6lG2bJAp5uL2Fogsbg66oqLLMydERvV6P3/+DfytgarZDq7PA4tIKh8fHPHz4iHZHdGM9X8i0o1KCZZfYqDY46R4xGPTwJ1OC0MVqWuSyjBuGZICua4XiKUVTlXlhIcvgOCaSrmBMhuSShBv6SAIagBsJKaccGCDJuIGPrKrohkWQxgynE9zAx49CvOOIKI5BAsu2WV5eFUqw4QB3MibwfdYvbVAuVwogYcZbb7zOyvIyn3rpBZoLi6ydO8+ND97n+PCAslPCNHR03UTXNMqmQxIm7D/cZjx28fyAOJeQNZ133nqbXJaRM4l2q82LL7zE3t4eu7u7JFFKFET40ymKIvHc1WeQyQncKb3jQ76994hGrULJtrFUGcU2BTxdU2nXlojSBC8MeLx3xP7BMa+/9m0ebG+zuLKKadnsPhbe9anno0gysqSgKhqypKLoKZCRxmLT3Ww1SeII352gSJCGAfVWk2q1Sq3ikKUZfTI0GRzLwLYE44niZiGsTylT10MKQuIsFzJb3UTWDar1Fq/+2I/R6Szw5tvf5fj4mH5viKoo1Ku1ovGUcufWbe7du8dzzz9Hs17nqOSQJAkfvfce5VKZtdXTfP+d73Hrxg0WF9pUKhXOnT+PpuvUyxVUZIKJLxrPwxHf+OM/4rXXvsPGxgayJHFyfIBj20xHQxavXeGv//zPsLjYYWGhw9b2A0ajEb3eCbIsUa+WcEoWjmNy69ZtPnj/Q3q9Hr7v014QGzm75GBYBnEckqYJsixx46OP+OM/+dM5vHt5eZl6o06WZfR6Pb7//ntEhQ3tzt07bG094L/6tV+j0Wxy78E9AFxfxDrbtsV3v/td7ty5y1e+8hWWlpY5Ojji4OCA48N9et0VppMB62un2Vzb4Ld+67c5PjxCNwwkRcZPYvqPdtj6X36djY0NvvTlr1CyHGzTZGFhEUWWMW0bw50QhhGjwZjHj/bw3QDLckCS8IKAP/iDP6Tf7/Ltb/8ZWZpSLtn82Gc+x0//zM/PJ39b29v0+j3efvsddE3nuWvXhNVSgsXFDqfXTuG6Lp7vc+vWHZxSiXPnziErMguLHW7fvs0777yDbTtUKhWGwyH7+/v0ej00VSXwLW7evMW/+u3f5syZTTY3NwiiCC8I+If/6P/OweEBnc4ilWqN02unURSVg4Mjur0B44nLuWcuY5kWZslmPBrx7W/9OceHh8h5LqLK3SmthRZI8Ov/r3/CdDxm49QqFy5c5H/8P/2fsR0Hy7Y5TnqMJhO++a0/Z9Af8Oyly9iGQRqGpGFEFscsrq7Q6LT47X/9r7l/7z4KCgudDl/96pfpD/q8/sZrJEurOLbN3XtHBJ7HrVsfcnR8xHfe+C6LS0v86q/9Ks+9+AJf+cpX0RQFVVaQ0oxet8trb77BaDxi8+wZEnLUvcesrZ/mc5/5LJ7rMZ1MCbwAKYdXXn6ZXr/P//w//y+EYUS1WkeWFHwvJI4SFEWl1WriBxH37j9gaXGBZ85fAClnPBiwtLSIaZpsb++AJPO1n/5ZBoMhr73xJmHgE/oem+trnD61SpIkDAYDtovmYKfT5tSp07z00st4nse0aMSFYYCmCtt5s9FEVdW5VWIymcwtdpZlUXJKlJwSWjH5nU+u04w0g+FoRBSF1Ot10XxCempzO9u8iXI+g2ITH5NlOeVqRTS0NI3xYEB/OKDb79Pr9dh+8ADTsqhXq1QrFarl0tzH8GDrAVtbW5x0T1A1jV/6L39JsAbjeG7pnyuyioHK08dsmjyDjc+GTE9PsMV98Ee15P3ne3ys0CoUDW4B7A6CgEajgW0JcP5/iPU0a0LqhiG4KLPzBVH0hFFIv98nDEM0TRNhJX6IpurUqnU0RSP0Q1RJpeJU+NIXvshJt8vv/uvf4d7Nu2x9dI/nX3iBn/iJn6BUtjEsMehVFYX1U6dp1mpEgc/Nmzd593tv89xzz3H92lVKpklQDMAUVaW10EFWJGxbFLy+7xd2YwWQhSrKNMVw+ClbeZ5n83NHUWVWV1cLm/iTotE0TCzT/FgSGDnUqlVxPuUZ5Nm8wRtFkRhIx4ILGsUxj3ce0Wg0aNUbLHY6bJ46zTfCgOGoT5onqLrCpz/7aXzf58MPPiTOY0qVEuvr62ysreFOp6RZxsrKKlPX4/bWfTzP4913v0er2WSxs8DR0SGT8Zjf+q1/jWPbGJo+3680mg1On14VTEbfF8Mb2+ZLX/oSnU6H06un5tdMXjhpRRDAsBjGaFy/do3BYMBrr73GjRs3+PM//3P+9t/5O/zK3/7bXL78DCWnxHe+8x2mriuSuFUVXTMYDkfcvXuXlZUVLl26SK1WBkSwjutOGQ4HrK2t8/zzL3D27FlWV1eJg5g8yylXylAEFnmesC6alsm58+eKgWTE1sOHnJx0ee2N14mjiEqpxHPXr/HVr34VTRNr1j/8R/+Iu/fuUqlU6HQWuHT5ioijT2I0TaHX69JstimXS3Q6HSRJcI6SOKVWrbGzs8Mff/2P+PSnP8WVZy/zuc99hk6ng+8LZo2syQRhyHgy5eGOUP5kWYqua6wsr1CtiNecJCkXzl2g1+tzeHSM4zhohoVtWURRxLfffBNJkrh8+TKNeoPK0hLbDx9y9/49kEWDszccYGgaL159jka9zsrKytx6P3VF6vns/D08PJwP6yzTEsl1xbWdZCl5lqMqClmccXJywqAvGgatVovTp0/P1xNFVVBzVQD/87xQ1ojgisOjIw4PD2g1W+Icb4k04xn0Xih8EtI0mVupZyKN2ZBi1myaNXefVgz9pzqeVlFlWTZvQjbaDXRNf8qi+4NDjR/1eLox98N+xywVFJ6kzDlOiVKpxNe+9jXW1tf5n3/913GnU9qdBcIoZmf7IUmS4no+mqahqAq5LJHmGRPPFzxgyyyaQ8Vjy0/Z1BSFJIk5PjpkOOiTJAlXrlzmi1/8Il/52s9w5ux5HjzYZjqZFKnLGXLR8FEkiRAgz8jzlCyJ6XePCSOfOPYZj8e47oRyqcxCp41l6IL/1D1hMh6zuXaV8WTC3v6eGIapKr7nM009rl+/zpkzZ/jv//u/XyiMkiJoS52/R7NbWV40g0aTCaZhUKtW5k3M8XjMZDLh5OSE0Wg8P6fynKInY1DMFZ4Sk+Tz98vQVRYX2rglh3KpjKqo+K6PaVjzcJT/0PEjN54URSGOUw4ODgRvIRedX0WW0XUdTVXIiwtTKFUi+iddkjhkMh1ysHfMYDAiDDwkKSPLEiQJZCmn2WywsrpBfzBkPJkiKwLe5/pj5FAtWDSiQaLrBppu4E4nREEwVxwZhk6epewfHIoJkCQSKTRZQdckdE1hYbmFrqukmU8YBaRJjESOriskiYKeqLSbTZIsJYlDQn+Kb+o4tsH5c2d4sHWfvb192p0FSk6ZVqNOEIQc7e8hAXEQoUgStmmxsb7B4mLA3t4B7tRlKI1EalKrKWwllQqKJm5ccSBUNqZpYZhWoZBI8XyfkuOgajrVep1cgr39A7I85/LlZzBtoSxRFCF/86SAPJdEYy4SG3CKi6Beq3Ll8hUm4zHT6YRGvUFaTpiOx/PpbpqJCEUh01NxyhXscplSsdkyDI3BcEi/3y/SjwT4W6QIBaiqMr8AoihGliBPs4LvNaVSrWKXSoRRROr79PsD8XOaTp6moqCuVmi0Wti2KXz8YUAcR5RLTrFZF8kEpmlSKpVBVvB9nyRJMAyTPM/xvYA4HuN7Pq4/xQ88HMNCs5R5oli54SCrKlGSMpti5EikQBJF5HmGkojUP9tyyAoJYlYslLPueBonQtWm64AESUqWJEIplQmwq6SIxBZNFzH17nRCmmWYhkESGmRJwnQ8IQojNF0jThJOjk/Ik4TV5UXCKKRcrdBsNMjjGAkBzMyyFFIZJRfXi2KoZJaOIuUEmQSKip+EKIZBa2WBWquBqmlIspjYpFJOLksYloGmyhi6Ll5nFKEpMk7JEVPAKMY2TQxVY+K6ZHGCqRloskzZtClbNmXbFp5f3yMnQ1JAMzSiMGUynWAaJiXbLiaHYhKVk6OqMpqqCNVbnhJI0pxlZpsmpqahSpCQkWaFgiyIkHWTUjGFlhUFwhAth8WVU2JCq8homoFpO4zHY6bTKUeHR/ieX/jCM6zi5hNFIVmWkqYJpmOjqRqHe/toukbZcQjDiF63R+KHqDmoskKn3cY0BOh1NByhqhpJMZlySg6aoWOXS8SZKDYVWUZTVOrVKqqqMB2PuH/nDn/4+79PEIbUq2U2Tp/C9RocHZ+Q5Rnlko3v+7z77rv0uv2iwSI4OM1Gk1q9Rr1ep1arcXR0zP7eHm+8/jrvvfce3W6XNE0xDIPV1VVqtdqcE9VsNun1eozHQpGp6Tp37t4VoE1XeLZn6XRxHNFsNrly5TLlckWwmRaXkBAR7mEY8P7770Mmk6VgOzYXL17k0eNHeIE/Z1Bomoo7dfn+97/PqZVVFlptUYhIEr3RgG63iyqrgmelmyiySpbmHBwcEcchpXKJpeVlfu3X/ms8d8qjnW0WFhaL90N8qYqCZZqcPnWKcqnM1atX8VyXg4M9HMehVCqLG/9EbDZNw0RTFdIsZTQUE6ZqtYrne+zv7895fooso2salUqJ06dP8elXX6XT6dButwh8n73dXfr9PlEYceHCBRzH4cHWFrZdolyucLAvUugWFpawHJPRoEe/32fc71GvVjj/lZ9kYXERp+wwGPbxfQ/HNik7Fi+89ALNRpPDo2M0XajEwoJNePHCRaaTKYPhEEmS0Jc1pu6U4+Nj3NBn72Cf/cd7DHp9bMNialkcHR4gyRIXL5xnPJnywQffJ/A94jDCD0Nsp8TnP/95ms0m7XqTLMvY3Xs8f5/DYj0+vbKKsrbG5uZm0bAQdgQvDrm/9YDD/QNAwjAtth5sEwQBrVaLyWRaAC8jJpMJ6+trlEoOrieK4lOnT6PKMndu36bRqNNo1gmKKeFMPftw5xGe56MbBqauo1arOLZTFA8ZSRJzcLCPbTucv3iRaqXCeDgSLKUsx9QNdEMnz4TVLM0zMkRxILgHY4zCZiXYDaIxmBWsNpHIVTBEJDBMc65YmjUaVEWohsmLoWrRBHJdt2g+DFFVlU67g6zIBGHAaDyi2+2i6ULxFYbhPB1YDEiyou/0RIGjG8Y81ltY7QqlTcEXQeyHZ7vRj6mvniiiCnbex2wT/3kqmv5jDqlQWeu6TqlUYsYWyQsVuud7H1OCzxqLAH7BeNnf3yeOY6q16nxDrxbqzlli72g0IopjTp06hWnZTL0QwzSRFJkoTcg8V3A/FXEvyWV45dOv0uv2eHB3i53Hj/iXv/1bnDmzzsrKEpcuXKRWrSJJgpu2vLLCcDRiccb9K/iSlmEwHI/I8gzdNBiPx4xHYxzLLlQMitgHFbZQTdOEIjEUKZeu54oUaF2bA+vr9TpJmjAYDgl8H8/zMOsm9XodwxAAYkPXUQq2SY4AFGuahmM7hVpZ/B7btilXKiRJjO/7yLLM0dERpmHgmBaSBNVShdFgSBSKxMokEcm3rWaL+ot16tUapZLgUwprUkgcxZw/e24Oc+602iwtLlKtVej3+vR74l7ZqDdBkvDDEN3QcWyLSrU2Py9kWWJ7e1uEUNzfYs6JlKSCWzsRNu6B2B83mw3yPKdSKbO8tMjFSxdYXV2hUa8J9VLgU6mUMU0Dy7ZJ45Stra25igee2D89z2Nvb5fJdMrSklB7XH7mMo1mE8cusT/Yx/d84iRG1QW/SeBGJlQq4r7d7fYYDoYcHB4xnk5otZqQ5TiGQb3eKJKaxR7+7NkzqJpQEY/GY3rdLuVymVazjq6pH1N+yrJUKKxSZFnsC4yihnFKJdrtNtOpR5Yf4/sCa6DqQlE8GI4Jg4JDW6y5chGlnKWiwWsYBtVqFUmWRUCL55KkSWGhFkqc+/fvUylX6Pd7jEai1kIGWdY4s3kG27Jot9s4tj23b80aonPOT54XCcARmqYRxeIeNWP1OCWhqhqNxwTFdQywvr5Oo9GYryEza9iMiSrJAvUwnU456Z6Qpgm1Wo1qtYplWnPlY5qJhGthdRLNzBl7StNkZvD6H6Zu+quoUX9QXZTP/5wrXJHmiahP85YoMCH5J+4pP/j7/nIqrH/fc3y6sTZT42xsbiDLMu12hyzLmU6nSJJEyXFI44R+r4c7FSy0GWN27E5Byik7NkpxXc+OmbqrMK0DMkvLK3zlqz/FK6+8wrXrz6HICt2TbsHlKpTNEoBIkMxziOOAMPAIvClBINZyVZEJgpTA9xn0Byy0O5zZPEMYBuzv7+MVKsTj42OSNKFaqTCdTosmto5paVx/7jkuXrxElgtXhKKoULgERPNMeqK4KpR6M85oms0GBnKhvhyIBqmi4Hkuvm/PP19ZUhA03PwpFdvH3ydVVTBNk6ctoa4rVHytdu0/+Ln+JRpPGnEc82Bru2gAFfYXVcaxbDRNxZtOxNRdgigMONo/4OTkEFnLOdg/YTSaUK3URWGYJ0WHLWdldYkf//HPsru3z9HRMd3+Ca7vctLvk6SimNN1k0q5QqVcoVyposoKnuIWMsAMxzKZTCc83r3P8fERt27dolmrU69UOX9ug85Ci3q7heNYJImL606I4xBJytENjTRLyNBZOy2mpknk4bkyuiJRq9U5s7HGg3s3uX/3JiXLpOo4LHcWCIKAh1saUZwSui6KplMtl1lfW0dRVH7j//0vOTg4wPcDms0WL770MsuqgC3P7CORKxpljiNuQpqm4fse7tQjrqcomka708GyLR5sP2Q4HnP1+nUM0yCNW7iuy2g8ISr8t74fzDcMiqJgGSaddpu1U2vcuHGD27dv015oYagaW1tb88bNTPqapjlIInGkUa9hFBC1hcUOh0dH3L17jyiO8HwfMiEHdD0XCqtgngswsyyLdo7r+0gSnF5bo1wRgODpdMrx0RFpmrKwsECaJIKlUdpkff0UYSxUQn7gEicBrVaDqesxGIwKia9BvV7Hchy2trYFXN4WFo/pZEqv12X38WMUTUbRFJqbZ6iUypzsH5AoCoYhAPBhkhTSXYWsuLZcX6QX6YpY5CpOmSDwmcQiLevp5lMSx2g5YrFLU4IgIk0K6HaWkGQpKkKKbBgmkDMY9DEMUzxfIySPY/q9HkmSolma2MA+2iXwXNrtBrVKiWqjztLSEqaqMhmOik67gIprmYSsqiiGiiZLWLqKm0IiyXhpgKlorJ7ZoFapI6uKeN5pSgpksoTt2JiaiqHrRIGIT7YrZZr1BqHnkgQhlXIZCYn+SZc8h5JhoZsmpl1iWvIIqgFSnhWNp1Q0nkydMA4YDAbUa1UqFRtFzpAlSAoZsaZIGLqCqWvkWYIky9i2Q7OZUbZtLE1DkXJSUtIsIogD+hMfzRZsOd22RbLEVBQF159/EU3Xmfq+uHlIMkn2mMFkwoPtB6iKLCDjaSIsbKFIGhTJdwmlcgnHNHm49QDynBdffB7fD7hz6zaeNSYNQkxVY+O04GnFcUz/pIekKJiOgySLJB5ZVZEVheNeD9fzMTQNQzfotFokccyw3+O9d0bc+OB9Xvn0q1y9do1Ou0Gapty6c4cwijAtk7t37/KNb3wDx3YolyrFhiZjcWmZpaUl2u0Wqirz+PEj7t29x1tvvjmHKgtlpMWZM2eo1WqkqZhGrq6u4hdFgq7r2I7DO+++S7UqOG2WbREEIWEYkGUpKysrXL16TUzcZIWlU0s4jk2j0cD3fb7zne8Q+BG+F/GTP/mTXLp8mX/4//hHHBwdcfb8OcGAq1R4+GCb1z54jRefe5743HmR/pLn7B7sMRgORaCBYVGyS6iK2PRuP9xhMOjzuc//mGD0/Hf/LUdHh/x/fuNfoGomvh/MZemqouBYNs9cvES73eYzn/kMjx89otc7mUcjb92/z6Dfx3ddbNNE01RiL+L46Ig4Tmg2m0wmE7a3t5lMJiRJgiormIZJs9ngmWcuCatWIcXffviAw8MDeic9FEXhhRdeYDwe881vfpNOZ4HVU6d5uL3No0ePePGVl7Eck/u3D+geHzM4OWLzpRf5G7/yKwxGQ4ajEQ/fvc/J8RGNepVOu82Xv/qTTCcuH7z3EUgyiqpQKZqIn/rUy0RRzO7DHTzXpdlsMhqP2dvbI9iOiOKI7fsPGI8m1KsVdEXhwdYWq6dWePnll/jGN77Ba699a76BXF/bpN1u87kv/Dgl28ZQFHZ2H3Pr9i0mrofr++ztPibLUv7OL/8yp1ZWWF9bZzSZcP/hQ3JZZjCd8t4HH3L3xi3K1TK27fD+Bx+i6zqnT5/m6PiE0XhCEPgMhwM67efpLHR45513iKKQCxcvcbi3x/fefJ1Lz4hp/2QyRlLEBjxJMj786CZIUK3VqNg2zUpFWHeyhCxLiaKQBw8e0G63Obt5hjyHo0MRTy5spwKM6/lu8XPiS1YU+sMhd+7cYWVlRbBtEEM3z/fQUx3DMFAUIJPEfUCSsJ0SAJPxsLCLIB6riJcXDR9RdA9HgsP4+PEujlPi9KnTpGnK1J3S7/fZ39/n1OnTlCsdbMsuLOMVMWUvrCgS+ZwpIgZTWlH8FUyMrFDayDOsAMyKiqe3/0+rt2ZNsyf2ko/b8P63cgjr1+y/frBQkyRJNKSLZtFsnQzDkPFkgqZp2LYthpqqsN7luWgojidjbt2+hed5LC8vF8OxEqZl4ZRKhdrOpzcYkKYpl69cQdU0giRDUmRQFdHgCUNKJQfd0LErDk6tzNr6Oo8ePmI4GPHeB+/z7dde48e/8Dmef+4aC50OlXIZGQldN9jY2CAIAzY2N4qELGF9c2yH8WSCHwZFo2RMv9+nUa9jGMbcfpIV92ZDN4iThKknAgdGoxG1WhXbMkXaVA7tTpsoitja3sYvAiZazRadwmqd5zmWYZLmYl+RZxK6paGqBqYhfk+apti2LYpDRHrTdDql2+1y69YtTF3HNi2kHBr1Orv7e6RZimGKdZg8Z2V5mfPnLohwoalH2RGNw/fff58wirh+/TogYPwLnQ6ryytzRda//bf/hl63y+bmWVRNI0ozPM9lPB5Rr9epVqtEoRhYfec732E0GhGH0RwPMrc8SQogzV0YZ84I9snVq1fRdRWn7HDunGBxRWFIGATUa0IFVqpU2H28xwcffMDJ8TG6Lpp2M/vtdDrlxs2PUDWNjY0Nnrl8mRdffFGkc8cJ4/GYbrfLZFrCcWxOr58miiMODw/FZ2BZ7O/tsbe3z0m/R5plnFpdEUFDskqrLezQwm6Zc+36dRYWF3nn3ffoD4bs7u1x+tQqFy+cKwDJIsVPFKui+MyytFDuiftTnufUajVWVlbo9/scHh4ShBFIEoah4Xo+3Z4A4Ver1XnzSS6aKHGh3tR1se42mw3u3b9Pt3eC62kkaYokywRRyMMPPhCsrGqVRqMhzntZRtM1nrv2HJVyGUt7ol6aW6nzonlQMKJm4PFyuUwQBPQHfcIgJApDTq+toWk6vV6P6VSs1/V6nctXnnmSAlocaQEun3HhgjDgpHvC7du3WVs7zcrKMtWKSDTu9fvEcTI/Pz3PQ9c0TEOfh7/ouiEawzPLXrF2P21Dm63Vf3ne09PWuicDCBE2IIbEacG1mqmssiwjTpP5uc8PqJUy4EdTYP1F95rZ92b4A0WR5xbES5cuiT3W6qqowx8+xHYcFheXCaKI48NDxuMxvh/MFW6D0Ygsy2jU6uiqgjZLYcuF2lU0bWREgqfK5plzvPrpz3HhwgXOnj3L9vYOj3ceoepqoSaGXMoBYZ3Pspww9HDdEdPpCM910TSZPFeFCMPzOTk+5qUXXuTK5cs82N7i+PiIyWiM60559Ogxtm0JkUGWMR6NMC0Tu1Thc5//AlevXiWKI0bjEfVagzSHJE3EgEOWxVMvrJ6yogjcjiITp5ngWysy4/GYo6NjUX9pKuPxWCSEZ1lxjolk07ywUIvP5+P2S1mWsG0Tu6gVojBmPB4Rx/F/2sZTnMUoikK5UkY3dOFxzlLIM7I0wQ8i/NBHliQa9QatZpP1zXXIc+Fv9DLyRMJ3BX+o0RKE+oXFJSRi3n33TZaWl3n26jm6vSpTd8rhcRfX9Tk66qOoGboC7mTCZDQRqWhZjqFaxQkq4dhVnr3yPHmWkGcREjJeFPPuhx+h3pLZO9yjXLZpNhwm4yF+HKFZFq2FBY4ODvE8X3jeCymjIhcpHjN59UySl0OUJBwUjRO75KBGKWGUsru3z+7BPq+8+mMsLS+zvr6GYRjcuX1XJDx0uyiqiqKqBL5PnmZEUQx5zrSYiLmTKUHoM51OROc/ywlDnyyXqFYqSCj8/u//AZVKmbVTp4iiEN+PyXORZLa0vIymacWNXqh5bMuhVq1z+7bMcDgkDSMMVcNxSui6Qb/fQ5JlyuWS8HxajuBIuK5gaUgSq6fFY5UrDmlmgSSioNMkIYojMjdDM3VhKXMcDMOgXLJRZcFFCuOUXn9YcA1CFhYWiwVXqIGqjRrGU/YpCWi2mtQaIullb3+ft976XkHoB6fkYOUOlUqXGQzTKpXYXN+g3+/TrNWZehM83yNPUnzXRZYED2R393HRQFVpNZtUC/6HaeiMhiMC36d7cISqaCwuLIqLKsmRc4UkzLA0C0kXiWKKoqDLGnEKcgqGqlEqOXQ0m1Kcc9zvCzZVIb33PA8JsRlM4oQoiukPROT9xuYatWqVUwuL5OTsbG/B6VNUK0JeKqXidSRJhOeHSIBumlglC6di0+8OyEYTlFA0EsM4JJnm7Dzcxq2NMXOJyaBP5E4xyJFMg057GfKMe/ceEIcBke9i6QaKplOqqMjF886SlFqrRZIkQolGDorYiC8vLTH0fAb9Y7buquiGyfLCMlG9xbBcIwoDTvp9VEVcV7opEsAkTSeXMoLIJ8tTTEMnNnXSWCdJEzxfqBHERCin2Wpx/aULNBoN2p0W3e4J49EYAciPuXXzI9IsYzAaousGTqlMfzhiMh4TImTSneVFclSGgy55nmIaGqkskUgQ+T6TNMU2TSQJ7t25C5JEZ2FBwOkdhyAMCcIQr0i7ygspdSKLJEXX84oEH2GpyXOESjTNGfUHZFlK2bHJpRxJlbl/5zbdo0NKlTK6LjZUyDKRBFIuUa9Ui9/hc/3qNRYWl/jMZz+DaVm8/vpr+L43Z7i8/PKneLC9zf7+gVjgVZV2uy2itUcj+oMBf/RHf4RlWSwuLrK8vEySZuzt7TEajXj11U9j2za6rtLtnbC7+5iVlVOcOrXG8dGRYP3JKo5T5tKlZ9A0jXarQZbLZMjsHx+xs7dLrUjJGHS7pJUKKwsLApy7vsaDrS0+fP8Dtre3qVWrbD0U9r6FzjJpFBJ4Lt50ynQyZmlpgZWVRc5sbNBs1Hnn3XcZDvr4fkjqBvQHYzqdNuVymffee49er8fq6iphGPL1r3+d0WjI3v5ecVMVAEpNVUnjjDCIGI0m5HlGrVYjjCJxo9cNFjodnr/+HGEY0mg0MAyDwPdJE5F6d+/ePR48eMDtWzfpD/pcv36VarXGydExsizx4gsvEIQhw+GAaqXCmTNnOL+xQa1W5Xfv3WE6nXB6/TTLy0uUSg537tzmgw8/EFG7msnFi+dptlvEeU53OODDGzdYWlpifX2dku3M122AarlMnCTsHR6gmwaf+/zn+M53vs3t2zd59tnLtFptKuUSsizj+wG3b93hg/c/JI5jzp+5UKiYYkLfo3t8RP/4AN+yIYP9vT2Ojo4I44Q4TXn22avUqhWSJKffH1GvTXB9nyyF4WCMF56IwlZT2dp+AMCVK1colUs0Gg0syyKKQirlEuQZf/7n3wJydnd30XWTy1efR9d1Ll68SLPZJI5j3nz9u+zu73H5mavousHOzs58Mu6ORhw+foxlm3OFheM4LC0t0Wq1CnZUQpolaJqN4zjzRktccPpM2ybNMvqDAUmaUqlW6XQWWFpaQqSkUUBiRWqXqqoFb1IkmaYzNUfBzuv1esiyuM9WKhUatTpRnBa2CbG529w8M08CHhfMuNkQplqtYju2SLJTVLERhKcKD4mlpSUqlYp4ryUZozgX5pNPAWxgnjj0FH3hk8wM8bufgHXzPC+mmf/7Uz2BSBucFb0zWDA5pKlQ18yaBpPxZK5ACAKfPM85c+bMvCgUyUhjxpMJUrdb2Gpa81TeR48eoWk6qlZwOrIUxzKxKhWxr4oTolAUpBgp1VKJn/rKlzl9aoV2s0mURNy8c4eF199gZ+cx586cQTcMcilDkhWuPHuV7vEJd+7eY219k1qzQRBH+AVg+eREFMKGrrO5sUGpCHRRVAVZkgWXshhepFmGWTTgTroRgSf2rufOnkFRFE66J2RZRqlcnp87WSY4JygF6ywTuY9RGBYqDm3OWvQKll6z1RL7KU3DKJhts5Q315sKjmeeEwYhb7/5XSqVCteuXSeLM7bubTEajphOpzz33PPC+qrrIEk0G3UURSHNRCrXcfeE0BdWtMePd3Fdl3MXLuKUSrScEkdHhxweHuA4TqH2NzB0nVdeeUVwU5Dw/YB+fzBXUpmmhapqDId9FEXYv2bXt2VarK6sosgKg15fpM1GITs7j+ZNtvFowsH+EZZt8swzz3B4eFDwg2p0Om1K5ZIISzoUqI4333yL06dP0+l0qDfrSIq4rhVNKBxG4zFbW1vzRG1RGIa88Nx1NEPn6PiEKIzw3QDfD5m6HqPhgOl0ymTqIisqC4tLpFmG7ZTIkekPhpiGjlGo98nh+OSYo6NDHEeEBum6Tr3RYG1tjeXlZVqdNmkmErdtpyzcHO6UMAiZjEYYus7KyhKlchHHLs14txBHcTFwHnB8fMKoYNsFxWs6f+H8XG0qM2sASk9YNYrMoNdn0OsTei7lUonNzc25xTiKojlIfMZfS5IE27bnDRitYF2K8ydlOBwSBAHNZrMYCjwJbRDOkRRV08iAk5MTwjDkuGgmnj17FsPQ8DyPOIrnfLCZkkjTNAGMLhAoWhE4MVufP6lqmtl+/6pWN3FIQDYfUMzuDTPW7XQ8wfP9uQJ31tj6q3Cc/sJn8ReotmZqX0l6yp4ny9i2xRe+8Hna7RZbW1sFyyshiSOiMGTQ63F8dES70xZ2x1zwsx7tPcY0DJEubVkYul6onySyOEbRLV5+9TMgCdFLLmvs7B0SRAmKpgm2b5YRJ7NkUNF0ytIcVRXD3Gqtjm4YBL6LGmkksWggN5sCIeI4DltbD7h9+xZBFKLphkgeVVXCMCYKBf9v+VSb5dVTLC4u0mw2SZK0UFSLGn88Hs/fk1ZL7LGAOStOJDhGNOt1Ou0WBweHPH78iIsXz1MuV2i32yJd2nWFRVSVBUxdEuFCIJrKM4XUE1ufgASL5HCZWq0sapcf4fjRG09pgqwqmLaFaRkCjJUm5GnKZDwiisWEVVNVbNuiWq3QWVggSxKSKKbvDPHdkPFQpK7ZlkmtWmFxsc144nL//m0Wl1qsrnawHBnPc9H1nOFowmQ8RJIE2DjwfEYjD9O0UVV9DvRMkhhdN1leWiEKPXx3xNT38fyA3d09/MBl0D+hUnbY3FgiRyw6kqLglMtIR8ekSYaiasizC6ro5uYwB40KxUguEvlGIyQoFEExSSoA4Pfv3efZq9dQVJV2q0WWZGzdu0+WpEwmY5RChh/FAngXF7DoIIjIs0wUeHFEGAZYliXgiEXkt2U7ZFnK2997l3a7Ra3WJM8ykkRskGVFpt6s49j23F6QRCm2bVErpiue50GcEhapfbquF1YXkRpgmBamZTEcTXA9j4OjI3JyKrWKuAnZYpohKcqTuOksJQ6TYvoqoxkiLr7RbM4hbHGaMplOiSIBmK9Wa0SRkLMqqopdslF1bW5jQ8opVyqomkrJspEkmbfld+eba90wkBWtKGZiAs/HNITVplIqo0oyJ91jBsMeUp4Th5FoPGUZvV4XTVNxbItGo45l29TqdRxHyM7dqUvvaICi6lTKddIkR1dHkKdkSYZpCtCsqRliCiArZKRIaY4qyxi6RlU3MFOJk36PJInnsNEoitE1nTwVU5ckTZh6LmEUo2ka1XKZ00tLdHtdbty+QbNRE5sf00RKs6KpKBP6Ebqmo2g6hm3jNOq4QYwaxchZgJSI3536KW4QIsUp7VIVfzIhDQLUXCTftJot4jjm4OBN4jDA0oStVpZVTENFUxWm4wmZlGGXy0RRSG8wII9ltFhAwK1SiaH7CNcdE+/lojHxzBVywDIsjo8P6PZOkBUBB6/IZSQd0HVycqIkQkIAlnVNw9A1ojAiyiIkRS6aMRKVao2r165SqVSo1YUs351Oi4U2Ynf3EWEYcNLrYdsO9WZLqHeiiDhL0RQZXV0WIQCpaPjqmk4KyHlGEonUnlqthgQ8fvwY3TBYP3tuPnkLE5HeGaUiAn6mLsgisanvdrtCRZFnaIqGruri3EPC90QktGPqoMpIZBzu7/JoZ5t2u4Xj2LQ7HTTdIJQUAYu1ROyx7wesr63z7NWrXL58mTRN+YPf/31GI8FHWFpaYvPMGfr9AQf7B/PpVKUiksfCItr4/oMtLly4wDPPPEO90WAydXn48CGe59Nud7Btq5jyxxwdHSMh02y0GPSHRFGCIquYhsXKyiqqqlCrVFANE9UweeONN3j06BH1ag3TMLl79zaGpqHJMhVHQGLv3LzNRx/dKNaAKvfu38RxHL74hSZZEhMHAVEYEIYBrVaTaqVMq9XEMg227t9n6k5JCnWh54e0221s26HfE4qRZrNJmqYcn5wQxxFB4IkYck9IgUX4hQhcmE6n8+Q7WZLwPQF/r1drbKyvE8cxpZJISozCqLB1GxwfH/Pee+/x4YfvM51M+LHP/BgLCwsM+gMcp8TG+jp7B4IP5Tg21WqVhWYTyzI5OjwgiiLOX7pAtV5DliUG/R7bW1vUSzUqpTLLyys02k2SPGfieuzu71OuVDAMQ0DXVY1qpYKqaVTrNUbjER/duEG1UuHCpQu89dYbHB0e8Nd++ms8++wVLNvG83zeeesdDg+PuHP7FmfPnuPSpUtMpxN832N39zFeEuNNxiTFMKPb6zEcDsklMTFcX19neWmZ3sERk8mU8XhKGMdkGUynQqUchBG5BMcnJyiKzMrqCrVabV7EDQYDTNMgTRNu3LjHeDwi8DyqtTpnzj+DqWmsrq6iG2KyevfuXd7/8ANsu0KlUqXf74kkuEaNyA/wRiMajRqlsrDX6LpOs9mk0WjMo9ohn0PCZVkWVuMiECIvIJzjyVgkN5ZLVGtich6n8ZwDkSaFvQNQNdEgniWgpWmKZQpr3mQymU/PZVmmXquTxEnx70TjaWFhYa5q8H2fk+MTKrUqjXody7aEErEYanzSEpcjUa/XqdfrpMVUcsZWmEGfhez/B1lEn9zQf9LKMOOMPJ3y9J9TA+ov81x/4L2Y/ZnlhcVWmTcZZUlmWiggZ8l3T0OIZzDyxcXFebPB80TBHBfhAo1Gg2q1Sr8vbNPdbhdN01hcXEbKM/IUDNumWikzGo7EvahojkpZjm0YPHftquCTZDlvff8d7m7d58atWwwHQ8rlCqWSg6TISLLC2voGvW6fvb19pu6UOE3nz8Ur1EmHh4ecKhSwmqqhFLB7SZYKULrgYBqxjq4JSG8QBoyHI9I05dzZM8iSeL2qqtFpd+bn9bxApIDi54V1rFB3qJo6B5JPJhOiKBIDC0UoEVRVnRffmm4gyUrRT5XJkpT7d+/RarV4+cVPEccJ/d6gCOCZcu1ahmlZKKpINis5NqqmCx6n6zIejxn0+0xGY3q9vuBXSRJaoaQfj0cfY+6oqoamqpw/fx5FUTB1Q1y3Jz28ggfmlMoYhsF0OkZTFa5du8Z0OuWtt97CMAQ+QCnsvJPJBNd1uXf37lzZFccJWQqXnrnE+vo6w+FABCeVSrRaLRYWFznpnvB4d59ut8ft23colUosLHQKUHHKxHWLcBsx4Dw8PMSyLDFYCcNCibWJ45TwPJ9xNmWcuERxQhCEdHt9ut0TVENHklXqjeZcCQkSrucXgUOGaC7mGcPhkMFwiFMqISsKcsGMXVhYoF6vUy6XGQwGAqqsmkRRzHg0IgpCPNdDNw1qTlUU/wXTJ8sykRxdqL0Oj464f/8+SDK5JDOZCvXhy8vLc7B3mqZzBbvvCQV8Dpx0u/i+R797QqfdZmNjY26Hm13PaZqQpOl8LZ+vCbkI6lBVgXyZDY7jOGZlZYVSqfQxW2SWi+ctKwpSIpLTJ5MJjx49YmVlhXPnzuG6gjM4S6grlSrzBpOmiXpGhCs9vTr9IKPvk+Dyvyg44oevf7PX+NQKOLshzv4+F+mVs4bcbIA3+4z+U98fPvm7ftiQ5OnGmG4YXL36LDP2nHAEPOFjTSYTBv0+nucJ1IlUNFGypEBPONRAqMkVETQWxTGyqnHuwkVxTkQJo9GY4+4AXVWQFZUsFhiVpOBCZUXQQJoK5bSum9iOIxRapHNLvuM4VKs1HEeomQ8PDrl/b4t6vYrj2Ni2SJoPo0jgDZKUWq3GqVOnaDQaYh/rBnMFWJqmuK475z1Vq+VCbSiUUOPxCNfzmEzGZGmKbdkMBgP6/R6f/vSrLC8vIcuimRSGIXIiC/yJohV9CmX+vor3XP6Bz0H8OxmwfmSF9I/eeAoClDwnS2NCPyWNAtFZlsG2TSxTZzIcEochvd4JtWqZcslh2B8w6A+QJJmS42Dookt3cnREliacPrXKZDBg+/49puMxb7/1Fq+88hKLiwuc39wkjmMWmx2RzJZIHB2dcHCYIEk5EDIcTwnDiMFgjKYZ+MGUcsmh0WzRVDUkRWX19GnBcYl9NFVCMx2Ggy5bWw8Zj322th4xHY0JwwinUsU0LfojDzdIcf0E257QH7uY5ToXnrlOnOb0x1OaC6soioyfRvR7fW7duk21Vedn/4ufY21zHU1X2dvb5fjomE6nIzz/kkTgefSnnkgEShLh+82yuRcbWaHd7rCyvMzEndAbDAWs0TTZdMqCM6HqBGHCzqMDzpzd5Lkrz3B8csh4PCRHJowS/DCEPMc0zDm53rRMTMuiWqpg6oZQZSSJSHR7OiWMnL39XXb39zEdB90w2N55WDBhDMIoZPJUp7VWq6HrOv1ejzgSUkAkkJUFDF0AzQPXZTQSqRFJkjxJujN0ZE0lAZGEpyooiQwIn3aSJnR7XQajIXGaYNk2i4uL9PpDhuP+PLlqMh0TBB63bubkaUYWx5zZ3KBceZaHWw8YDYd40ylZllG2LcRWM2M4GnH/wRa7e7sYus6p1VUMy+LMpQu40ynv3fyINI5I4pBauUTZtojDkCyO8JIYWVGwHYsoCZkEE9I+eHmMUWmjmA4ry8tEYcTBwZ4o6P2QwHXpRjGKLFNzHM6tr5NkGYkXMU5GdHOF8XRCFmZ0jwbclbaxdA1dVdm8eIUoDPjeO2/jJXAyCdg5GTD+/ocsdBap1erEkxPCMMG2TDIgCENyL8Qdj8iSCE2TGY89AdyduKRZJpJcSmVajRolx2LsuvQGIUkSE4QBaZaS5xmmaXL2mYsEYUR/MCFLxLVVaVRxqmUOD3sMu10+/N77LC2t8GOf/gy7+4+xNZtHuw/p9U+QEonYirE0QzQwkxg5z1HSFDnP0FWVbr+HFwSca7apOyU2Ny6ALLH/eIedJCKOQqQ8RyXnzKklAHZ3HxOFMlVLL5LHFHxJIZBl0iiDPOf46IBcgiyNxaa4YE2psnivcgnCICBOEsbjKXYpR9U1as0GS8tL3Lt3n/5ohGlZSAj/PoBhmEiZhK1bXLx0iWevXyOJU+I45eaNjxiPTrh2/Rp5ljEZjzAMnZIjJrlB4FOtVYV1RlEIfJ/7N+/iTl0UScY2TAzdIE1iet0T/qf/5z9GURV+8Rd/sUi5hHfeeYc/+P3fp9/vM51OuXrtGktLS4zHYzRN4+rVq+zs7BQQ8zEPH+4QhRFmwWOI44goCkmShN3dxyiKwosvvkyWw61bdyiXy1SrdWzbwfN8Hj/aFUDVwYCN8+fYPH+e/YMD9vb2UGWFeq3GL/3CL3JyfMy/+7d/IDZVjiisLl08T6NZo1Qq8dJLL+JYNp2OiGkeDvtYpsbG+irHR4ecHO1y48N3sCyLV155lUarxY997vMC7pwkbG5u0Gq1uHfvNgsLHf7LX/oldENn++EOlmkIOLApknL+7e/9HqPhkHa7jawovPXWW0WCjs50Op1v/lRV5cMPP2Q4HPLKK68Iq1OaYBgGa6dPIZGzt7dHs9FkdWWFs5tnKJXLPNh6wO7jx7z7zjt0FhZYWV3Fc13CMOJ3f/t3SJOExYUlDMuk01nkg+9/wK//T/+ECxcucu3Kc9y5e5e9rQc8OjpmYWmBX/3bf4uVpVP87V/9O0KhqWp861vfYmf7IX/jb/5NTp8+jWYZ2I7D+uYGh/v7fP3rX2dnZwdVUTizvsGVZy5zdHTAeDDg/r07KIrKp15+mU6nzeJim9/5ndf46OZH/NzP/wJnzpzh1Vdf5viky2/81m/hTqZEXshzzz3PpYsXkRWZcOoy9Vymrst33/s+rWaLK5efZTqcsHvvIe99/x0ODg/42Z/9adbW1rh+/RqKIjOZTPFcl7LjsPf4Mffu3OHcubNsrK/x3PVrmKaFF2YiSYsM0xLpUb/8y3+Tr37tr7G3t0+W5Xzty19hOBry1ve+S7VcZrHVZuPsJosLC/zmb/5L9vf2+fKXf5JWq8nBwQGqqtFoNJAlZT7kMDWVcqVKEAR8//vvMhwO2d3fY2N9g+euPUdOzknvhG9/+9sMh0M+95nPUq1WKZfLoiiAIpZZJolD0iTFMgxU28G+eElwWQKfKI65decO4/EI3/dpNZvYti2KKtelXzT2wijENEQq1c7jx0ynU6FucxzUSgVJlslnxTtPpSQV/I0gDuacyFm6TiF5EptE8iIymnkza6b8msUnS5I0Lyj/sglJ/7kdP/RVzTfSwrL75PtCBTWzD8GTBDfXdXFdl929PSbTCcvLy9i2PW8yLS4uztWvMyVQFEUEQYBT2PPv3L2NaVs02i3GkxF7+xKWaaKqGlEB9d4/PESRZUr2AePxhEq9wpmzZ7HLZcaDEYP+LXYePWJxcZGf+umfwjRMMVDJcnrDEbfv3ieMU1RVw3YcDg4PkRWZn/u5n2O5KN7JmTfT1KLxM0MKaKpCuSzYhUYswOF5JpRVWZpSb7YwDKNAQtjztEVZeaLSsx1nrgqUZNHIkItEsXq9PlcOxkXj2rZtLly4wMwy3+q0kCS4fesGR0eH7O3u43sBf/jvvs7G5iYvvvgiZ86eFc9f1zg6OhS2uChm9/GuQHzIMpZtU63XWFpcQJYkhuMRR8fHvPfhh3TaHT77mRbNZosXXngBx3GwLIs7t28y6PdRVZGUd+niRWzb5syZqihAk1QMiTWdPE8KdIYoImcqBsuyBNM1jjk+PmYwGLC/v0+SJLz66qtMpy57e/s8++yzfOlLX2R9fZ3+oE+j2SbNJCI/olKu8/M/91/w4MEW77zzLkmSsLe3R5KnhFHERx99iK4bvPrqq4ynU0qVCo1Gg4VOh+WlZaH47izgBz67jx/h+yGKZqKbOrV6BUlZpdaoCbZRlrG5eQbX83j33XdxHJu1wvUgGjQQJwlhnJIjUypViOOE995/DySJSq3KaDzi3r17fPDBB4xGI5qNDmEYsXXvrmgWKAoPHjzg+PiYV37s02ysr6MWKsJ79+4hSxLlirAyr6yu0uosUKlWn1yaEnT7Pe5v3ccyTOqVGoau06jXReKsJKGrCnESc3p1BatQmYo6RqOiV4vmigiemE6nmKbJ5ubmPDF4pqIKggDXdQVvShJhPTO11ZNmiIKuyZx0dxgOh/ROTtB1nevXrwslk6oWStcn17iui8Y2kmAOKZKwuD0dYiA4Ok+CDZ5ew+GvxniaL26fXBtnqrFiSD8txALlQs042+/OWIYiMOCHKV0+RhT8SzynTzyfj73OJyDyWYPw4sWLyLLMiy8+z/HxCUdHR2i6jqUb7O3uMhwOaXXaLIQhp9dOIyFg2Z4XEIQRvh+i6waKrM5Zv4KtlgsgfJwWjMecYKZARSGXJLL8yWefpjlRnBGFKUGYEMcZcZKTZwqeF3Ljo5vUalW++MUvoSgy3/3e2/QGfcG9UxVsx+HshfNkacbJSReQiJKMz372C3zhx79Iq9kukn8Hc/usoii02+25ck+sPzmTiUsQhpQrohFVr1bwPY/33/8+iiKzublJq9mgUimTJuI16JrK1HU5OD6m5JRxbGeeonh8fAjkRaqnjmVZTzEhxddf5rT7kRtPUvEAeSElTKNsHi1vGwayVmyE0ozQD4ijCFmiuDl7QtaeFaocSfgHJfIiVlsU1O5kShzGjIdjapUqumajqyr1akV8qElKFLr4viVUSFnG1E0JiUjSgJyU6XSMritIck3A6kwLVVOJ4whvOkSVBQDX86ZkGYxHU/J0X3CRkhTNLqHngKSQI7yRXhCSZCOyTMIwSwIOmYRIioKsqSDLJFnG1PdZWl1lbWOdSq2KIisictP30FS9sHoIMGwSx+LGXUxbZ0U9iAvftCxa7TZpnjF1XaIkQYpEIslM+STJCsPRWLCc1CKRRJJJ0ow8Fx1QiY93vwv4PrIiUjTCKJx36GVFsKdmjacwCvE8F6OIUh2OhmLTblnzid8sEQAEAV8pfk8aJ/NNrUiGKOJAiy5xkiQiVluR0S1TPLaiiomGWGGKBUZMp4MC3pkVXtwZ3FBQ/YUkUPA9UkbDobBJyiL6sVQqoWsayuzn8hxT10jTBD/wCcKAbJQRaDq6rtNqNcX7o6vkisR4OkHKRaKaXDTGkgggF+mMZKS5TpqnYuKRpcRJjJZnKIAiiYRCyzTJ0lR0kXNI4xjdMNBVDWzxuYVeSJTlRIEAt5uaSRIlDAYjqFSQbQW7XMGwLHTTRsolElS8IOakN6TRXEA3HWRliCQnWLopmotBJJRYhk5oGhiRKeKigwDXC4qpnophmUXCoUKSZQRRJJowaVQUOSmqrmGXHCRVQ/Nj4jQmSxKsgpmQ7wsZe+T1qJaqgttjOZSdMrqiQwZxlCBLMn4YkZOjqTJqnqMXlpU56E+WhaLLsmm3OmLDdLyH57l47pRKqSTsCbqKIstYmopKjmUI2LuQg6soZIQZ4j32PbLiJi8XEeWSJKb7MpCRi3M0TQtbp7jhy5I0t8ekWYqmaqiKOL8kJLI0h1xYKBcXFnnm4iXCKCUIQm7dvEkQRmLzXdzMVVVAQHMyJFmwRXRdJ0kSfM+nd3xCnCSoikKuSKhIkGdEYcDDh9uoqja3FOmayv179zg6Opo3dqvVKu12e95IKZfLBTNAJJK4roemiudvWxayLEIKJCQmkyn1eo1Ws1U0TQ8wDAPTNIXN0PMYDkf0ul329/cp1et0llcIw5AkTuZT0tOnTpOlKcPhANMUNg67AHzato1hiPAGq2A7ZGmC77vkWYqhq6RJhOdOONzfE3LgZ5+l3mhQb9SFHBiJdrtNrValWqniez6bm5tous7EdalWKqydOo1ayNWF1UoppvISk/Gk2FQ5QomZzSTniKn4YDCPYs6LaZ9Q66S40ykLCx2azcbcRiZLkuB+9ftF3K2GO80Jw4DD465QUNXKWI5NlqQMB0Pu37vPxsYZ2u0297cfEiUp4WiEbprEUUKp5LC+vk7gB3iuy2g4ZG9vjzAMBGegYFmUKxUe7exw//59wiCkXqtTr9Wplas83N5iOhmTJDGObXP61ClMy4A8ww99plMXw7QolSsgKSRpyngyIY1idN2gWW9wanmF0WSMHwRouoYUiKJN03WCwGdaTBejSKSyrq+vc/78OZrNhhhGjEYiECEH3/MZDUfYts1Cp8Pm5iaqpvHg4S5pnJClQkqvahqnTp1iOcvwPJ8gCOl02kAuGs+UsUsOZhHKEUWiSV6tVihXysIypQgQZppm4iubqZ2yuQpwprhQFIVqtcpkOpkrkXq9HkEQzAsHWRK2IYnCoiZuqaiFfUiomWPCJCbxfcaTCdMiIa3VbBUKmZgoiuYJZ7ou7j2GbhAXU/6nFRdZls03xLPmiEhKEq8lToRtw8iy+do2s9iJ48nUOE3FBFbi43yQmd3j6SSh/+0cTwU9Sx/74xOvNS/g8U+pGDIxsHiafyXulyKsZFYEzSxXuq7PI9q1Iv0pLlhGM+UACHh3nudMphMycmpFkZMliTgfZBlZkZFSSSiXE/CAjAzbsQUHBBl3NGXiTTg5PiYMRVKkoYvnS1E8DkcjTrpdFpaXUFUVPwywLYuVlRUadWEljqNoXoTMrCyze5+iKCJ8RJLIJRGvLhqZ4uxXNR1N1wsVulDOqZr25L2WJHEfy2USKS3sVOJTmXF8hDpKsNNAFNflcpkoTgijGMu2hZK8Wiss0E1hUzvp0mq2ANGsckpOkUYXiGAiRRYqiCwjTjNUXZvfC8xCHemHIbsHB8iKSjxL2m02nwCviyZtnmUkxedrGAalklNcl6JpK9aHJ5agWarWTMkyg07PVFd5nqPpOrV6XSjtXZdOp8XKyjJZnlMfNpEkiKKEMBTR5+12FcOw5lbOo6NjMjkniiO6vR6GYTKZTomTWFhFbRvLdqiWyximWYQRuQS+TxhG2Jo5dxFouoZZOAjSLBW8SkUW53/xnpHnRGHI1BUJykig6YJHNJ26DMdjbMuiUq3i+z7dbleEaYzGyJJOWKjCdU2jXKviex79fp/uSRfHcWjU6siyTPekW8D5FczidQiGU1Mo8pKEnd1dfN9jPByRl1JqpUrBgBXXnixLOI6wUs9UdLPrPIf5ejccDZ8ooovzbnYdC+seTKfTud1MU7Un6tm56iUjT8R6PBoORfp7FM15tDMl4GxtsEyrUDppH2sc/aVXtr+g4v+L/u7J4z31uNKTkIriHwlHS5LM946ze8Ucui9JZLOpyA885hPA+H/MMeMMzaHn+ZPnX61WabVarK+vk6Ypjx49EvWsLOG6U8IoYjAYiOsvScnUJ1xHEgCZOEmRJcG4E+wyMbNJ04w0EaE+WZ4XgZz5XAGY5zPmFAUjOSVOUuIoIU2zuQoqjhJc16XVarG2tsbe3i67e7uEYSDW+OL91DSNRBKPpRsmtXqD1dVTnDlzBsMwxbC1cFkEgVgPZta6JwwsCMOAMBQpvZqqokgWfqHAFaqrKpZloqlqARHPi+AUaR5gJKyDIqRENBvz+fdnn8mTz/r/R42nhY4AbcZhJBbxKCpSdlSa1TqmaVK2HeFf93zGwwlHR8c83tvl4aOH9PvDuY3BKdm8+KKYxj/33DVeUT/FL//CLzMcThiPJ7z/wXt89P0PiZMY07I4f+EC5UqZ1kKT9fVl1tYXSbKYJE149HgPz/VxpxGTicfD7V26Jy6eP6bVXKBWrROEkSgULY1arcIrrzxP6E159tIFuicndI+PebS/x9R32dl5TLPZ4Es/8ROUSjZSLvgnd+/eZWdnl6PDEzRVxbItkjRG1UXzqd5qcu3aNVZWVlhZWaFcqQibkWOCDAcHe6QFKL3ZbLG2fopyuYJpWNy6dxvP91lbWwNgf38P3dCRFJmFxUU6Cwvcu39PxDbHCaVyhU9/5rP0Trq89+73ebz7mG9+65ssryzQbNZZanewLHP+4Q5HE/wgwgtC9g73OeodE4chlmaK5pQsU23UUTUNzTRAkojSmPbSAkbJIUqFLWX34EhsmiRxomZpKmSoiornuWiqRskRNzgSMRG8f+9eYZ3SOb16ioVOh/FYJFmkBWhQVTRsu0S700FVNVzXR8pBlhRsq0SWpYx7Q7IMNFVnOpmys7NDqVIR3vCSzXTqEkUBgS8sOrPN0+O3d5m6UzRZRpEVqqUSlmWy2G4zmUwYbj8oGmiwvrZGvVbn3r0tgiBg4k8xTZ2V5QXyNCWLI6I4pNtzKTk2uqUTTaci7SkS6qxKs0JrYYH24hKJbBKm8Cd/8md4vsenX/0UrUYDx7TFjTyXiAKfOIo46fZwgwBdtZAsE11VqbQXOHvmLPtHJ+wfHWFqBqpqzAHrl555FlXRqJRqjCcDagtN1tc26HQWSJHwfJ/O4iJRHHF3a4u1c2f4az//czx8tMP2zg6PB136Jwc0nAqaoiLlOZoq1Ee6ruJYFqoEpj7jnKWcnJyQ+AHD4xNqzQ6vvPJZgsAnCEXaiOe53L79AD+KkLKYvYNH/Mmf/j6KKqMoEgvtKmVH5eC4x3A85bDXw9BVlttNSoZBw7KLFJGMs+cvYdo2URSTpOJ8mk4nHOzuoKkqpqGThT5uFOAN+siSRKVSBkMnjuOCyabQrtXQDYOTkwFT12fgu0gydDod8hxiP5qJ34gK+3AGqLrGpcuXSLOMvceP8KZT4Zs+OGQ6miCVJeyaw3/33/5dTNPiT//0TxmOhnR7Xc6fv8Dm5hlkWaQUvvnmm4wnE959/4NC6pty6tQpznQWaUqCWZZEohi9desWo9GIw70DHKfE6uopYemJI7Si2b++fgpJlrl9+6a46a6toWkaa2trHBwcMBgIttDK8jI//dM/jaZpfPDBB7iuxzOXLhcx2Tnnzp2jUqmwsbEhIur//Duomsbi8iIgoSgaN27c4PHjXa5du0693mA6GjMcDrl//wFh4BPHMb2TLg/vP6BWrlK6YItEQl3H94XN7Wd+9qcLwOgRCwtifYqSmCRJGA569NOU/b1DKpUKS8sr7O3vsr+/i6GpdJoVDBJURSX2XAbdY+7cvUO71WZlcZnDg0N2H+9ycnIyB6ZLsszJyYmwGxo6JdvGtkzK5QqWZeMHB2i6zpUrV0GC/qCH5x/z+PEuvX6fqe/RaLfQTUNMAFWFZqNFFEUcHBzR6/WZTCZ86lMvceHCBc6fP49lWQwGgyIRMKPX77H7+BE3b93i4OCAZ85fotGos7iyzGg05Hf/9e9w5fJl/vE//sdIqgqKwvUs5azn8dy169imxXQ4JfQCSlWR2mZZFp965RUuXLjIxuZmAVGVhBU1zRl0e3zjT/+Ur3z5y/zK3/oVNtfO4E8D/tk//WeMxmN+8ie+zNLSEhcvXOC7332Lb337z3j105/maz/9M3zw0R1u3/0D/tk//Q1s22RjfZ1KtUqr3aZeq9GfTNjY2KBSKROHgVj3vhZx984d/s3v/R77h4fsHRzyt/7G3+SlF19E1wX7YjwccnR0xLe+9S2GwxH93oBWq8Xy8irXrj7H8vIK+3vCXt4fDnBdl5Nej8WFRZaWlosGD7zyyitkWcr733+PMAr5/Kc/jVMqUa3X2Lr/gNdff4PLV67w8qdeJoxjJlOXS5eeQVU1ZEkR9zdVY+q59AZ93n77bdzplFq5wkJ7gZde+hS6rjEY9AGRxvXc9esEQUC72cSxbTGNl2QkRcX1PFzfAwRMXNU00jTl7t27hFFElCYiIt0wWK3XBaC+IWDPN+/cYjwacXRwyOrqKp/5zGfEpjhNaTfblEsVOq2WSDGMRNR8UISARFFEvVHHdhzR6C1k9rIk40siQnoGTn76kGSJOEno9/soskK5SG775OQcntj6/vd0SHOBmNinfTwqHGaT3Y8XPWUqlTKtdouoYMWIpr7LZDIV60C3x+7eLp4rErM2z2zQrIs9syrL2IZOteSw0GojWukylVJJKFEl8XhnVtfEniZJ8UKfqTul2WgxnkypV0ocHx/zR3/0R0gHEnuPHtOo12m2Whi6ztLSEtPplL29PV568QUMw2Bn+yF5LuF5PvVqjm05hJJCosRzpsysHtUKKK2uqeRTlzBKyXJRKMuKQpomDEdDzNDE9X3IcpQMdHJUnkDYs4LxBAV6IctI0oSkaGzJkoSh6WS5CKsRdvWcXr/P/v4BuiZs/6VSifX1TS5cuES/1+c733kN1/P5zd/8TTY2Nzi1uoJliYbR1atXMU2LRrXGYDTiztYWU9fFDXwmozG2KXhKK6dOcedf/Auy42N2D/aplBxqlTLlUolKpcyPf/4LBYw6K5SFJoWnFWaNykKNOEtjUzWBjXBdD7Nl0VlcmNdHhyfHHB4e8oWf+BIAb7/9NrZp8txz19jYWKdWq6Jqws735ptvcXLSpdfvC8j7cMjm5ga/8Au/gOe7+L7P62+9Ra/f5+LFi5RKJVzXQ1UU1tY26HQWKZdEPeL7IRN3ymg8xrQcJEU01abTKQ93dnEnYwLfp9luY9kW3YJRtLKyRLvVQAYc28bUdb7+R3/CvXtbNGp1Tq+u8syVK/R6ffb2j8S6ZxrsHx5yeHRAySlRLpWZTsR+1zJFg7DdWcC0bBZXV9jf3+fBgy3cyZRmo8HS0hKO49ButwgjYZkfFEllx8fHDIdDXn/zDWzb5is/+WWajSadjoDaC/ViSp7Lc+XZzLuWZCluYTWt1YRAYWdnh36/Xwyxak+aSpmARpNnjEZDpu6UxcUlDMMUYgFywYws9qz37m+xd7DPBx9+SJqm/MzXvkq5VCaJE4HWiBMcx8aqlJlBoGcqpk+uubPHnze/C27VJ4+/mtJp/tP/3u/m5CRZOk+LaxX3I1VVi3ZzXjiPsqfWzo8f/7GK2adf2yftfYoiGr6yLNPpdPjVX/1V/uzPvsn3vvc90lQMbaIkIYpC7t25xWjYp9VqUS6XKVcqyJKCJCsoclacL7EoA4qGugDm50Vy++xzyCF/kug3U3Omhe3edV3GIwEVT9OYJIk4OTkhCHzW1je5cOE8zz3/PA+2t3j9jdfIs4xGq0ZOznA85M+++U3hCDvpce3adb7y1a9x5dnLLC0tFKFhIuwnSURqfRiGBEEgXlO5jCwrJEnK0dExQRhg2jYlx2FpYZEwDNjdfcz62mlWVlYKZE5aqOmExU7Y+SoFu1CZN/xOnTqN4DmpBdooQ5afsv/n+Q89N/99x4/ceJpNfCzbJs9S0jhGJLVkIspdUdBNoa6Iw5AszwnCaF7ApVlKEAZomvCPq5qCpqsF00VFVzVKJTExLjs23tSkPwoIw5DhcCwS25JY/IyukpKQ5WmRFqZjGSV0zaDXHaBqBoZlIMs5cRoSJ5GQOstFakMuTjTBQBHdZ8d2SDIBnA2DgMPDQyrlEiVbQNTLJQe1UCxFYUiaJnjeFEkWxbppGHNwaRgEApJdTIvyQhmTphmSJBMnUTE1NpAkoTBSFBnxGYo4XwH6DFBVbR5fmeXZnEmiaipBKBKdXHfKcNSnVBLw1JNuD0PXaNXrqEXqR5Qk4At7HxJEcQRZTpaJTqmB6NhHcUyW56RZhqrpVKpVBqMJUZyKE1HOSdNormbK8pxUEUqYWIlxCvsRhbJNLaIkVUUR637+JIJSkRWQpblfVfj4i2juNCOXRGRxOu/CpnNOUpqIQtQqoGiqKtRMsiLPk1KSJGUynTAajSg7DoZuFJ1wBbG2CKh5lqbi+UeJgD4W3KosTciz2QQ4EzYsilmJJCEpoiB9sjCKz29mAQrTgCDOiim/eM5iuqeRp8VrzHOxSBY3AFkRRVZOhizl6JqCCBrJCQKRDigRoyoKiiwj5eAHHmmWoBsaSRLjuZPCMhURRD5RLNL1gjhkOBZRzkK5ZmM5JQzTRAYCzyVNJaQsRZMlEssQ3CVFgSxFyqFsWsiyROS6hMaUcDwmTmLSJCIKAqIwxDB1TNskDiOSPKY36olr1BTKNsu2MW2fNJdwA58wSvD8EEPRUDQdyxY8Cc20kGQF1x2hIBGVaiI1EwmyjLR4HciygLdLkJccMbEo1CmyJKEpKrpWqAniDDnwRWkhy0hZcYNPs3maT44o0mRZxrBMkjgm6ofFRDihVC6zLEmMJy4T1yXNQVZVStUKKTleFJFJEsOJKA7Kts3S8jKe73F/a0qcRCRJhOt5DEYjLMvGNA0kVUPJQTMsdF2oILQirUI2dDRdpdmos7jQQVIF92ow6JNnGbVqBbdQSSiFwmM2sRuPx2RZ9v8l7z+DbTvvM0/st3LaOZwc77kBF/cCuMgAQVIkJVISFTy2ZqbllmamSpqZcpXbH/zBH+yPdrlcU9XlGbtsl10ud7e6pVaa6ZZabIlKJCWCIkAih5vDyXHnvVdO/vCuve8FCJKQprvc7l6oA+Dce87ee6V3ve///zy/h52dHZJEsEvC0MP1PBzHIY5jhgWLII7FwzcIRBphlqX0+wPCMOTk5BTX9Qg8H3fizhggiqIIpavni7TFLGMynhBHMdvb24KfULBFwjBAUUT0MkUSTpzEkINt2RimiWka5LlgKaiOhappVEqOKDxFIZPJiOOTIxRZpl6p0et1GQ1HpGkiFnOKQprnBL5PFAtFwvQZJRQp2kzRECfxjOMC4Pkiyebk9JQ0S1FUVSRAZhmqpuG6HmdnZwyHwjpVqVZZXFwsoqhVstlz0mIw7OP5HpCLFFhFJidnPBZxzNVqhXK1jOlYgr+SplQqZcGbq1TRFIWDsw4WJk29PptwVWs1EaUrScRJjKHrxFHEwf4+vU6XJBZqt/X1deI0odvrEUZCXbqwtEipVKHfHxIEIbKs0Gy2WFha4fvff49+rw9pQmboKEWaX61aQ1YUgjAsgMMpJcchjiN6nQ6j0YDxeIiuqywvL7K0tMDC/ByDQZ84jmZqQcd2GA7HjEYjqrU6qqqSFOEafhCSpjFawVB0PZcojskLlV+Wguu6xbUkfq7ZbBKnIu47TVN0fbrAFZwn3dALJaNYGIpnjMroeEin28UPArI8p1qpUqvVqNdqiK6eUK5mWVYAlw0Mo+gOTi1oBbdQsICEulaWJOJUFOc938cLQ1rtFkvL9Rm4Octy4jik1xNpTpZtYxdfYRAQBhmqqqJn+ezZn6YpWTEePewySjxaNMrz/CPR0OI4iK7uowubhxN5hOpJ+vjr/ujt30fr3UNF+KPck/wHfkY0sx7+/FQpKxKTLPTUYDAYzGx4wiQgFiVJnMwUZYYhEt2m6VAlx0FVVVzXLazfQs2hKSq5JFTWJdueabbkYlGkKnLRgBEYhTzL8NwJd27fYnFhsVBmqDOg+Wg0QpVlLMPALoDhYRQRhsI65XpuEd+tzWx2s/0v9jfL8o8q8dKUKE4YDAY4jjODy87YZI9cL+IYFh37PCdDFAHSLEUplPOSLCPn2UfUaJqq4th2sZBLHiriC0VkuVIR0OdhyGg4pGPqmIYhQpDsMooiEmZFQdYkTgXiYhpf7/u+GJPDgKRQTDRqVbKkjWkYlEslrIIBSD6dBT5knEwLT9MCcJYKVWdcgNNzBD+lPxgwHA4ZjUYCfSCJQrAkAbKEXXJYW1ulVBIN/DwXgQJBEOG6HoMi+er05JhqtYJXQOp932M0HDIcDpGQCvuWmENN4cmapuF6XmHJEYniluOA5ON60zlvCFAICsQ1MB6NSJJEpMJZ9myckVSVrGgGpolQwRi6MZtjJ4lI2jMNDUNXcRxbjH+JULlVKhXsklMEJPhkmVCfer4/Y8AauoGu6TM22PT9oAg1Kn7GMq1ivmMUqZ5i/P74/T0tIk3vzyiKZmPj1KrUbDZnCvZpTSaOI+JCzZgkj1qrxHnOpEwUssYjBsMhE9cVTQ5dx7admdJtytxUFGXG5PsklZMoaPz4cevvqpD6+O99nJ80PV7CEhwWfybPOFSiYJbPxqOPM5h+cF9+uA3w0e9/1P78sL8TY1KGpqksLS2xuLhAq9UiTTPCIBCuJEVhPBqj6zqT8RhVVSk5JTJZEo6RJANSMddgWniCLBPVtKxwYXz8OIn3nyqGs8KxNP3/VJzDPGcyGZOmIjHZMAz6/b5gL7kulmWgaiLxLs8zxpOxUEtlKdValQsXLlCv1YvjLiNJ2az4YxgGQRCIeXJxXQk7rzSzS2uFom9qpzdNA8u2cBy7SLCcnoOHqbii4ATTwnqeS4Va7+Mw+U+6SD/d/OBTF54GoyH1RoPHr15BLTogh4f7nJ2dIhsasq5SazXFA2w8QTFN3DDErlQ5Vy4zcn0GozEoMrkkqnuWY+B5fc4mPt2zPvV6i2qlxmdefpYszXj7/ev0BkO2t3cZjyacnJwVkksLzVBQdZX19VVqtRpbF7eI4piSU0HXDSzb4bQ3YDAa4ycBeQYN1YEk5u6tm4zHA/b3t7FME9uxOH/+HHkGN2/eYDAY8n//v/xfqddrPP/sU5w/v8XnPvMSSZgyHky4c+c2YRTwYHORuTkBqzNUhSSIGA76nBwf0Z6fQ9N1PG9CksTIqoSsqCi6Tn884vD0FMMU4HCpeLgOBoMCQlgmzwVDxLItDNOcVRRv3bmNJEmMx2MMXWOu1ShgYcOi2JDy+vfeII4ifvKLX6BaqWDbFlGaMBkOyCQo18qEE/HQEhNyFUmdyrJzwjDCDyNW1taZm5unP75LmuXMLy6SpimTyZjJZIJbxIBKEqiKIuLMpxOqKMS2LM6tr2EYBpZhkiQJw9GA0PNJEhGHO1sQaBqGZSLLGlkCUaFCmVcMJCkVC15fMKtUWUbXdEq2RbnkcHx8NLP9ked4gbBkeJ6H7/nEWU6GBIqMqusgy5x2OsiyxPziopjw+z6nZ2ccHR7RbrWoOBXmm00kGSJPFBrjKMTQRTdZUjVyScYqVYTNQlYIw4hgPKabdJiMxkzCnDCRWJkX6pHT4yMURcW0SiRpQuj7TLwJvu+iWBq2reFoKoYiE0VjJClEHkTkqY9jq5ye7osFa8lCLwpPIJHlClbJpFJzeHC3R1os5JIs48HRLqkkEaY57vUPOTw8otls02y0WZhbxrYrhO4I3x3z4ME9sjhCkyTmGnXkZIGKbWPrBpPRELKMx9fXSOKE7fv3Ge6dcP+dD1BNE8U0cNOEmJz5pTbNxSb7h8dkWcqJ20ULVLSJRqNep1SusOpUBPD7xk3iMMIdhVTtOvX2Cue3zrGxvsarr36bB9sP2N6+j6Io1BwH4TNuMR4O6Hd7tBpNLMckTD3SJMFzfSQkwjBCM3TskjZLmzBNG0nS6XkecZoQ+FGxWBMJPr7vkxc6eU3XivRJmSSBJIqQcrAsi8evXmVxZZn/2//j/8l7N2/wp9/8BotLS9Tn51BKDq6Uc9DrcvjX3+Knv/hlLl96jJ/56s9ydHTE7/zeb3N6esLBwT4PdvfYOThkY2OD5eVllhaXKTWqXHmqhDse4ejGLLq4WqtSbzT43CuvcOXqVfw4pNfv889+67cAmExGXL/+IbsPtqnWBYywXBZWo9/8zd9kOBxy69Yt5ubmePrpZ9nb22N3dxc/8AmjaJa68lM/+RVkWebk8IjTs1N29nZ44okn2dw8x507t/H9gGa9gSyJxCfTEIV5TVIIXY/BsI/re5wcHxOGId/85l+iairlsjNLLwo8oZI6d24Dp1wiDGPK5QrPPPPMTDbd73e4ft0jIEHSdc6trqJpOqeDPp1eh/Hdu2xtXYAs49Vvf5ubN27y8sufYWtrE8M0mLjCClipVUWQfSGdNgwTxyljOyWiOOb6jRs0mg0uXLqAtrvDaDLmrXfe4bQrbHGO4zD2XCq+jyRLdHtdXnv9dW7dvs3JyQnr6+s898Lz2I7DeDzm7r27SJLE8tIyk4mwU6yvr3Px4kV812M8GfH2u28yNz/Hf/Hr/zmjyYS/eu3bVMoVyuUKS/NLlJ0Sk4Gwd+2d7LG8sMjK4jPkuehAJmmGZuhCmTWZsL66ysnhEf/o//X/ptPtsLSwxLlzW1y6/Bjf/e532T/YY/3iOcqVCpevPcXOvR3+0T/+TeZaTZ66+jTra+coV2tMBiO84Zif++qXURSFo5MzACqVChN3wmg04v7dezi2zRNPXKbbPeO/++/+Ia7ngSzxwvMv8PIrr2BrJu5oxMHeLnESs7q6yvLSEr/wC7/IN7/xLV799t/glCqUylVu3b7L6WmXhcV5bNtkeWkepJwbd0NyWcYulSBOSKKIP/uzP8PzJlx57CLtVovHLl3m+++8zZ/++Z/x8gsv88zTz/D1r/8JvV6XX/7l/5RavY7rumiaUNROJ05vvfUWN27e5ImnnmSuPcfTV65i6IYoiOYZSZrR7/dwx2ORLKeqVEolYY0Ss04Bv41j4jDErlREGpgkE/oB77//PqdnZ+wfHfOln/wSL3/mFdEkAO7evUen0+H69Q8oOSV+5qd/lkq5jJQzg1krsoIii4KWqqiotihQTJ+hSZLMeDKyogpQepIUryHPCkxBEOIH/myBVS6XURSFSqXyEBCM9JGC1aMqn/8Qt49DeX9YQe7RxdRU+aMWkG3f81FUTcxRSg6NRoMsy2ZJRpomkgrTLEbXNba2tjjr9XjjrbfIEmHtiMO4KNCAZZpce+KqKKaoCkmaEKURo8EYd+KRxDGQoygypyfH/Lf/7f+Zp69d4z/7lV/FqVZ4/vln+cY3vsnR0TFREKFVNZaXVxhPxvR6PVRFXHNnZ6dMxiNeeOGFQtEDU3tLVqiTfF8oRXKEFc8tLLMffPgh7XabK1euzAItcgkeceDMGjy+74uGZVHkTdMUxZRnjSIkRaTRFTD/xYUFLm5tcXB4QK/fxw9DxpMJR0dH5DnMLSxg2WLB5XkTbt3sEPg+5DnrW4e02nO89PyLyIrKwvwiw/GQ3lBYbyzT4ut/8Wds7+7S6XZFs+TBNovz8zx24TzPPvMMuiqcEsJmNG0Wpo8oBYXqw/eFnTZPhZ11MBgwmUzQdZ3jkxPeee89tnd2OD45Zm19nUqjxutvfl9wWubnuHTxIj/7sz/NWafLrTu3KTlVZFljOJrQH044Pj4tEvDOCKOIk84p5ZKNZeocHBwwnrh0u3103eTxy1dm6pRKtYZhW2zv7tHpdllaXsYplVlZ3+D05IR7996gZFuQprTbTcploYSM4wRvMkGSZNbX10XkeioUErIsFDDLI5f7D+4yHAx59pl0BuY/Pj5md3eXp568yvzWJutr65RLZTqVPkEYMjc3j2EaVGtV9g/3uX7zBnKh6LVtB9tyMHSTPGMG4xdFfhUFmVqlSrVSEUpvXafRaGAaZmGHFDbqhwBmcS/5YTSzJnueh+/7M6XoFJy8trZGqSTm59N7fzAY0O10iJKYaXjElHmkFIyze3fv8fY772KYJpqh8+S1pyg5IonaLFhR0yCCR23PQlkj5iYPmTlTysTD5oIkPVSTfFJR/ONj1o/ffjB4YjaeFXqmTqfLeDxBQkbXjRn3TaiOZGTp45/54ef4eEHp7/o8+ejrPGye5Hk+U7DFYYgkSayvr/Pkk0/yla98hbfeeou3336bldV1KuUKZ6enuJMJB7s7JFFEs9YoikaFIEQWTWyRICuKjnkm7nFFlmbXFBRNGllIEISwJCXNYiQydFXG0BXSVBUCnTRnd+8Bjm3zyssv0e11+J3f/efcvXubLEuQFVOgVzQhuAj8CFXTWF5Z4bnnn+d/9ku/hGEYpGk+sznCNK26yenpGbu7uwwGAxRF4fz5LWq1GgsLCzP2WBRF7OzsEEYh8wtzIr3d1H/I+Z9eb48qgJlBxj96reWfqHL7NNunZzxJMnEUc3R4VKQ76bgTnzhKhcpIUcXDCBnbKYEkc3x6ilJcrLIs4FmSLJHmGWEcE4Qxrhfg+QFeGOIkMUmWouU5uQSlskMuCd9ko1Gl2apjWpaAfw+6+IFHEkd47oS9nW2CMOJw/1CwKiplwiRFJsUq+FOkAUmcEgQ5igILC/OziVepVEZVVPYP90myFFlVKJUcUCS6/T4ffHidJE1YWl6k0z3DdcfkmUjoiKOYMAjxAw+p8EEHQYjreiRJVvjY1Zk/NM+KGyfPkLJcgBYlkRCHBJZpiIFHktA1DdsyMXSVJFZpN+ooqoamCFZRFMQiDUXRyZOMJIxot1vkWUav1yOJIxxnnVKpjGW1uX3rNlmUY2oGkmagqTqKos78o34YPlQgFRVTcYOJh4osSViGiLs3NI00S2byR1mWi8E5Q5FEJGqUiEE/CHx0TS/UCKngIZFDlpIEgejcuB5WVcdybNxp+l3x+nFhQxIpF66Iqq5V0U1zxuPxg4A4TbEdBySJMAoplUqUHSjZ9kdkonHhva6UyrhAGkaCYaAoAoyZ5zi28IiLTlZGkmSYuoyq6MX3wncvyzIlp0SKRC4pBFFKEAeMg5gog9WNDTRdp9M/I05TosmouKNzchlQJaIgJM1S9NxEViExMtQsE91AWcLSNQxFIZMVLE0sksLAR5JkdENBk0BNIc0z0lwsWiRZxrIt4izFG4wI8xxX1ZFzqTjmIXmSoCkyuWmysDBPGsdIxYJblqeRriqSBGmeEvgueZphaMJDLSeZ4DNpKomUIec5lqqQSiplp0QUC4VgEqckfkxgOmhaSq3eoKaqaJLKZDxmf2cH3TCo1YU1dm/vgNHYJc1gfWMLvUgWieNQKLYUlUq5jKFpogOsKGR5jl8UkxSpUCWkGX7gEUQhfpAQJekssjf0Qyh6zFkm2FtJJtRvkiT2OUlSQKJWq6KoMr1eh/mledIsZm1tlTTP2d7dYTge8+JLL2GYFu3WHGEUEkYhRyfH5DkcHx3S7/cwDZPl5VWeeOIJ0lQoDNvtNvV6XTCTun1xX8cRmq6SCYs1vu8SnYRsP3iAYZhUWw1AYmNjQ3TNyyUUVcMLIvQgRDOEckfTNer1GrZjEUahsKctL81gp6PRCM/3MY1CfYmwDa2tr5FmCfsHe8RRhOu6swnEeDxGUQRXaNotyRAck7mFeZFsatkiuSX0hTXB0On3egz9HpqsYJgqqqwgF90U3RD3Zpok9Lt9oaiKU5xGiVq5POsO51lGFIYiZeT4kAflElEYUnYcNEUmiSLee+ed4hqR0VQdVdHwfAEGLVfLrG+ucDYcMJ64RIlIJUuimLl2m5dffBHLcZCQ6PUGjMcuw+GQWgHfHfQHfPD++0jkXL78GAvzC1QrVST54UI0jCKOT47xAx/HcXAnLv1en3LJwSnZvPDCC7Tn2qytrrOzt8d4NCFLc6IwwTYc0iQlCgJyYHFhkUazVSgtZFRFQEmTNIFcQpFlhqMRZ50O23u7mKbJ5SuPU65UcF2P/YN9dnZ2KVfLVEpV3LEYO886ZximTitpsrOzA9Iune4pYejRaDaQEJbvs5Mj3g59VF1H0TWRuJalvPn2u/S6HZAV6o0mC8tLOJUyp50OVbuEoepIioImCRtgFCeMxy5+4KEbGo1GjeXlBVZXlqnWamiqSp4JqKbnelQcB3c84s6tG+hF2oyAverU6k2QVW7cvs147IqYckViMOwRRj5pJpohWZJw1ukJNZpucrB9zNnZGfuHh4KrpKiYuo6mqEwmY27fuY3tONRrDVzfxQ9DkbT0yMR52v0UCsm8eO4pKEXjRlJkSuUyaZ5j2DbtdhtVURgNh7juhP39PYajIUuLS9SqVcolwZmBgofpedy4eZ1ut0el8pM0G42ZDUlWFMSyBZjZMopJ/+xfIowjDEOCIhlSLhiDiixScA4PDtENnbl2e8aV+lFd64d2jE+zePik1/h3u4j10f2eVkp+lAJsqniSZ51h8U+OZVrF8RbPK9MyQMqRZHBsZ8YIBEgzTfDgBgNAptloIhdmuzAUwPqcvFAgiTMvVIA5siQWsbKmUK/XsCyTz37msxweHvLtb/81w4nLa2+8wYULF9g6v8XC3AIlWzDKoiTGDwMmrkun08WxS5iWjWnbxGmKF4Ro4wmmaRR8m0IFLInOeRD6lGwHQ9fxJhPcyZiKU6Jargg2jqGTTu+RgoUmSRKqLhSIIj0qR5bA9wNcdyKA+KZJjlmwQmVAhUJpOIXp1rIMp1DPijTnhCTNUOQapqGTFOprz/PI0ox6vYkqK7z//vuoqoZhWwxGQ6Fq3T9AkSTcyQTHsnjmyScJw4iTo2Nsy8LzXO7cucOg32dpaZFyWaSrGoaBUwQE+BMX1/OYuBOOj44ZjoZI00JbwVJ68GCbs06Hvb19SqUSm+ubNJtNVFXlaG9fBFY88ywL7XmQxFpAkuWprop2uyXmoWmM505wSgaVcpl2u8l4NKTT6XLu3DkURcyPup0zth/cp9Gos7Kyiu97HB8fce/eHY5PTmi1GpimydnJMZPRiGa9RqUskluzNCUo1HFTVp/gz00Trih4ZoXjgRzdFGrhG7duMhqN6HQ7GKbB1SeucumxS6yvrdJut7FMC1XRiONEqE3JyWUJVRdKmrJTouyUWFlZZm5ujvlWG8EYS2dKJWM6TyjcArkMilJwbAoFdRAEgksaJ4WqNimqFoWCI8tFk9xxkCUBe5+yazRdR1G14vsidTpOkSSFclnAnAVkOiJOhyRxgjsR1sVqrUa1XhPrXEWoGwXnTZupSqfDS85Dpcl0PThLTi8ayo+ONdMx6UdtfxtO1Ed/7GMqpOLdfM/HnUwwDWPGr4R89t/pazwcJz9aJPqkgIofVjR79P9/lLpp+h55TjHiivtMQiggq7Uqly9f5ujoiBs3bhbc0JQwCMlzODvroumW4CLL4j5TZVU8TjPIpzfvrLCSk6bie3EG8o+cidl6Pstn18v0K45CojDCKYkCpEhfj3jw4AGuO8G2TBQh2RIJn+SkcUKlVOHK5cdZWZ7C8CUo3F08UhSSJAlV03BKAr4vS+K5MZmMBZJDVYoURpfj4yNs26JarWDM0v2yR477x5VoszMmjrI0vSoetT5+9LT/bYpQn7rwpMkagRvw9htvY1mW6GgUg8HRwRlJmrCysoTjONSbbcIw4Mat29hFZKGsyDRaTdzJiDhN8f2IiRvQG4gugReGBHEkIIy+jwTU6mUqVYfl5Xl0w6BcFWomQzf5zt98h/sPtknigH7P5c7Nm0wmLsdHJzglh0azztzCPI1mk5KtoygycTImymV8TcSlP/bYBYaFRHV+fhHLstg93Ee3Tebm5pBliTyL2TnY469ffZVrTz3N41cvM5oM6XW7SCjEYYI7dhm7E3qDDnPtBebm5tnd26fT7RHHYhErKwYZKVmcImWgSQqGLCyGmayJh5TvkuYxpinUQ5qiUS3b1GpVJsMuUh7z2IXz2LbD8VGHwWDA9oMH5ElGSXfI44zA9bh65Qq6ofPaq69i2zabm+eYa89x4cIFrr/zAekkpt6u4zgWtlWaVZHDIBCFB01DlgVMUitg3FmakMTiQVRxTOQ8JfRF7HpQAJBVVRVgY0WhWnLIyRlNRmIS7PusLC1Tr9VI8pQojQEBe/bdCKtvM+x0aVZr1Bo19g72GI6HRLFQOYVBhO8FTCYTZKVDjoRTLqPqOlHRGRuNxwDCizweE4Qh9VKFsmWjqdoMXhzHMaEfYBkGc60WXXIC18U2he+60+ngeTnNZrW4QXOSRKQVYKloqonvTQjDgG7vTCjZVh2yXCZTDVw3FF5f3yUl49qLL1KuVhiGHsFoxNnZCZahUy6VQJOQUfEGY4IgRLFq5HpGbJkoqXhfTVGoWAaxZaEj0agK283heIyqKVQqOoasYqTFwKSJTrkkq7TmWnhhyNHxEcQxvqzjDvocxCG2XUU3LOyKjVUu0756lTSOCSYTSFOkNMEwDUxTR1Zlkjil0z1BlWXKJYMshyjNMewSumljBJ7gmmgqmawQ19v4QUC/28f3XdzRGE2zQTE5f2GedqtF69mXODk55nd/75/jVEosriyzfe8B72y/w8QPQFL44hd+Atsy2L93k/4wYOi6VG2L+UadNIpJkwRFM8gkhcHYRZMVWrUSiiSS68auhxsG+EFMmkG9uYCa63SPzsjyDEWWMU0Ny9bxfBFhLaEjkREGwoq1sr7MeDJhe+cu9VaVWrPGc88/w6XLj/H/+Uf/FEXRuPbMc1SrVZqtOYbDAb1+jxs3b/HGm28z7PeEUsEusbV1jl/7tV8jjhMGwzFZLorrv/Wb/4y797ZxbAOZFM2QyHOx4Dg7O+Xk5BRZUbj/YIeXP/sKjVaTz37+FWEpHbt8eP0WEy8EeUycxOzsbBPFIb/4i7+AbTtsbZ2jWq1xbnML1/WYTFx6PcEqOjg4KGKhfSzT4PkXn8c0dfEaUcjZ2Qm6bmDbJkdHR8iyzNLS0syyk5DgpyHPX32ejbV1tu/vMJlMGI76pElMEgXcS+9wcPfBQ46CZqFKCnrZxHFEx3oymtDv7NI97pAEMXOteZaWFjg7OSIMQiG3D0K6R8dEnsug36VZa3JuYx1L03CHQ/7gv/9dVF1n7dxFHNtB121OTo44PTlmfqnN3EKdYRhxctLhcG8HPwhwJxMunb/AT37hi7z/4Q22d3bZ2zmYMZ0qpQrkOYcH+/zpn/wxV69e5ee/+tUCnt0Uto1c2PGGoxE729tUKhVarRZvfP8Nth884OWXnmd5aYO/9/d+mVqjgWU5TMY+w96YydBDVfvkKZRKJaIooFKp8JPP/ySWaREnojCqqgolx0ZThZ0wSRIOjo64++ABH9y4znPPPcdXfuZnaDYbnJyc8P57H3D//n1+/ud/nmatxdH+Aft7uxwcH2DYBo12kwfvvs3pyQnb23ewLIuFpXmyJCF71+PO7j3u3L/P5oWLrGxsMr+0iClJ/P7v/feMR2MW5ttsbG7w2c+9wp17d3jz3bdZX1qlWa3PYNxhFDOZTLhz5w7dXodKxWFzc41rTz3BlStXqZQrPHjwgMGgz+07d1AUhaV2m52dHd587bvU6nWcUolLlx6jXm+wsrbB8fExf/THX2N1dZXPvPQZTk8PuXv/Fl4wATkjz1IC3+P+3bvUmi2sap1vv/Yaf/z1r7PUbtGsVrE0DUfXkSU4PDjgH//T3+Dc5jmef/Z50BQkVaFSKosY92LKFWfCSpMmiRg7FKWI2xY2P1XXWVpZYUlCpEnNz6NIEocHB2zvbHPr9k3SNOGX/qP/Ka1mi1qljITgw3ieR7fX5U++/ifcvHGDq49fplykakmS6DoiSaRIIMtk8NBKV8z6MiknjCJhm41CkjimWq1imiaGrjMajXjj+9+nXC7z1FNPiftQN2bpeDO+zw9sf9fi07/bRadP3uRHJt5i+6Su/cc7wBISjXq9iBwHWRFWsErFYX6+JQpVxesXv8RoMuHWg11MQ+fShUs4poVtWoRRQJKIOVKeZfhFYI/neQJsrJvoRoxBxuL8AqZh8rnPfJ772w/YPTrm5OSE3/jt3+Hnf/arNBttHn/sMuVyCcOycP2Abn/A2ekZD+5v02y0qTaapLKMbpcYTjzcIGJ5bg5NVWCqHilCeiaTIQuNOtVSmZ3tXYbDESuLSywuLTE/P4+c58RpIpppcVLwQmScQlGgm1Zhl4PT0zOOjo6AjDwv49g2sqqiqyqoErZpiWJXEFBySlQrVWGnApaXlgSbaHsbu9Wk0WjMbIJeYSvzJz5nZ2f8i3/5P6BpGsurKwxHI7q9HicnJ7iuy3PPPsvqygo//eWvEIYh33/9e3QHfY7PTvnrb/81p6dnXLlyhcXFRV555RXa7Tabm2WCIGT/6ITd3V0ePHjABx98wOHhIZoChqGzdeE8rufzwfs3ODk+Yfv+Nr/yP//7/PQXv4I3mTAZj3jt+NuUK2Wef/IajWaTMBQJcbpepK/JEpcunicMV2jNNQgCYQss2Q6NWo1vv/rX3Nzb59d+/b9kbW2df/bPfoPTkyM6p0dcvHiRcxtr9LsiIOFvvvNt9vb2uPbkVVRF4ub1D1BkhccuXGBubh7bMgnDgPFowN27d/F9n6tXr1KplDB0EZkuy9LM+ucFPmESUapV8H2fr//5n+G6Lv1+nxdffJGvfvWrrCwv0Wo2kRGNwMVFUXXJsoz+eMTuyTGGbWLbNstLS8y12lx75ikW5ucpmfbMxZBL0iML/nwWoOIFPiDGRlmGNEsZjgRHsFQqoReJvYqq0GhURVElyzANk0q5QpaD5wVEcUKa52i6SJqLQ2FBFayeFF03WZxfxLRMHuzs4Loeo0IxePf2HdbW1rh48SJLK8tUq1Xu3r1LFArXxzTMJSefgfNnyppif/I8F0EYRdP/42ON+LUfv7L/9MqiH67ilCQhwRoNh/R7PTY3NymVHIrA80c+00PIePbox5t9zE9n3/7028MC1/RlZUTC+/Rt5+bm+MIXvsDh4RFvvfUOkqwQhjHuxMfzIx482CXNZbYuXELXDZEoqORoTGVn+UfeLs+FXV0ovKSi4DUtxEhkiXBT5KkQoURRJJrOYch4PCKMAuYWl6hWKpRKJTzP491336HVrNGoV4iCQIRJGJZo3gYR9XKNn/7yV7h6+XEMTSXLEwSLaRq+NW32gmFZtObmybOMPM1wJy7uZMzq8gqarhNnCdFpyO1bN7l48QIXzp/Dtq3Z+XuUzfQoKHz23zz76N/N0gvlh+dBeuSUf8ri06cuPGXkKJpKq9Iu1DAiFYxUKJMkSaLdbqFqKuPRkCRNxERZEzyiNEuQspRSUVkvVSpUqlUarRZB4M+SH6IkQp1R/lMgF6kKZLOJlF94I5cW56g3miiywnAwYjyesLe7J0DkrRaWbaPpBtvbosJYLpdQFBl/4tLr9DjaPyIIQ8Ig4vigI7oAp6ckSUK9WqPVavHEk09wfHjMfOsu4/GIt956k8D3MAufvmU5VCsNNM0kiVMs3SaNUh67+Bggcf/eLmenPXq9Aaqm0Wo0hDQ+TcWkVVF47PEnKJXLdDsHJGksKqWFPcgyLSrlKpYpLpbxeMRkPOHB/W1UVePSpYsM+wM6J6fs7Oxz++59nEqVubk5NjfPQ55z585dur0e48mYs04H3dQhz0nCmHE4RFVUKtUKquWgayauHzDyvEIZFM86VlEUoSoyuSFYLM1miyw/w/MDkkTIEim6s0mWoSCL85prQgWlqSBLwi6SpaiKimGa1BpN5hbmqTfqqLpKFIeYlkGalUizlCSOmbgTXG+CH/iUq5Ui/nyMdAJREECWoSuio+uPJ8Sej5pLpElMUEgxdVWjVC4L+1KRHDOZTETxLAjIzSKVRBMwbcM0UWSFPJeIIzGouJ4rqs+y8NI7pYo4NmFEnKRMXI9Kvc3K1hxRwRbTDZMwign8kCiKkZDJMgijGFXSUHUVJVOR4hDFkJAzocBKkcg0DVmSUSQZU9OR8ofpZ1cuX0VTFeySgTvxGPaGaJaFpZc4PekThRMUTSFOUwxFRdV00aWMA4IwRNYiMlkm7IciVU3XybOUOPDJ0pgsjtFNFdVQsMslDFMjGI/I0wRdU4iimMnEL7gGosueZDlOo0Emq2RhjzwMUXMwVR3FqWAbJros8+DBXU5Oj7j2+JPohsHnv/QlQs/lO6+/ipZlOKYYGNMs4+BwB1mSOLi3Q5xE6IqGrooEnXEgOvuqpgseT5yIDoGqIGkqmqEjRQL2nOQCGq7oCmQ5YeSS5TmGrpOkOXGEAKNKsuBvkRQS6JTIk1BziUa1xv7ePsenpzz34meYn59jY2MDP4i4ffsW7fYc589fQJVlSpaNZYg0rQNVKSbDIRPf5/qdO0KlleV0Ol36vR57e7t0zk7pZgmaKtGuWWRZShj6IqFubgFN1+l2O7z+vdep1mu88PILyIpSdO3EeOk4Nq1Wk89+9nNsnd/CtpwiDSNjb2+fd9/9gAsXLnDp0mOomopTKtHtdRlNxty4dUssmJcWUVSNa08/I/gPcUy93kRRFAI/IIkTAk8w5tI0Fgmnmsto0GdQLrOz+4AoDDl/8TxxFHK4v0uaxfiBi6YvUKmW6I9GpG7GvLOEYzm02nP0ewP2Do/IJBENPxgIdaBuaJRrNsv1BrKi8txnPovnC65Ct9NjZ2+XJE0olUq05uepNZs89cxzaLrB3Xt3GQ0HjEdDWs0yui4iaGVZJfTG5GnK4cE+iiyUbSsrS7Tm5jg4PKTT7bCzvY2pq2TZyyBJQo1brTC/tEin3+Pm7VsgSwyGQ47OTiHP2bpwnm63x517d1nbWOfxK1d49umnqNfrbO/uoh2fUK3V6Q8GVCqVIoHVICiO9erKMrVaTUxGJZlMySDMycnQVA3LssnyjNF4zKuvfpuDg0OuXLnC5cuX2dzcZGdnmw8+eB8JWF5aZHlJgFr39vbpnJ0hS7C/t8vZ6cnsGl5bW0OWZd588w2h5swyrFKZ1fUNnnzqGo9fvQqSzNnpGZ1ulyxN2dw6h2VbXL9+g/FkjG1Y2JaNZdtFQqqEUyqRSxKlchnbcbBsm7n5edY31rl58wau52FbNrIssbGxyfHxEa+9/r2ZHeKpp59hY3MTSZJIs5T7D+4ThhFXrlyh1WpSr9c4PTvCdT3kFExJxTFtdNOk0hDw9eP9AzQkzq+u06hWcGyLwWCAqihsnjuHbhosLS2hmwan/Q6LS8s0W00qtkhEnUwmqAVDIckhiGKhSCl4Zq7r0uv3hdKiUL40Wy36/T53794l8AVU96mrT2LbFvVGQ3Ag82LmJknohkGpXOaFF19kfWODZquFpgt7n+/7nHbOODk9Y2//gCeeuMra2qp4bmWZkOEXaZlTCL1d2KVM0yg69YKbdvfuXdrtNlevXv2ITeJRUOh0+2g3+5HO9Q+ZJ0qzf/8dNfj/lrZPv/z55J/8tAuoaVLdNPZbmR5TxII3AxRZ6KOmPKSybWFa5gwobmg6qiqRZcbM2mVZZsG4EYUcRVbIFMjHkAJ+FDI+PiSKI37uZ7/K/Qf3ee27r+G5Lq9973tsbW0yN99meW1VhKs0mvijMWcnx7jjEYoM1VIJxzQFpy/PmfgTgiBg/2CfVrPJxQsXxdhjmCJVKQw4PjnB9Tzm5+ep1Wp44wmGpmFqGq7rMhlPKFfKGIZRJCSJYrkkS8iaUF+5gU+n1yMIAmrVWpG0VCQlz0oNiEV7JooIeZYxKJhJnU4H2xb8oVqtRrVapVKpAJCUYyzL5Nq1a8RpgqbryKqKrCpC2SlJvPziy7RaLbyCUdmaazO3uMBT165xcnpKtwBax2HEt77xTSzL5Pz580W6rZjLz7XbfOHzP0GWZ+hqoQZXFba3d/jmN/6aRqPBM9ee4YUXXmB1bY2//ta3OD4+4ie//GXac3M023MYpkmaC/5QGISQCzWPF3okacrS4gJBEHBSqJAUXWVldXU2Nz/rdHjsscsMBwO2tx8wHI3Y29vDtm2Wlpb43Oc+J4Da9boYlwt+3fzcPJZl4bket+/c5uBgn0azQbVWo94Q8emHJyfCuaEoBIEAGoNErVql3twogMhnBEFAt9tlNBrNQPtQKENg5oQQlrgcBVFcrNVqBEHAWbdDp9MRwO5yXKQOi0V2BliGjq5ps/Hq4f02VaSmlEolwZqSH7UHCc6W7/mcnp7RbrVYWlpiOBoxKezYjlwqWDkyiSzYTsPhgErBAIyTmHAYzsZ5PxDJkC+99BLlcplarUYSJwz6gxkPWXqkiC8V4/xUsDHlik5FNtOEvU9SEP24segHC1U/qCx61Br8w14HmKXYTTlClUoF27aZWdDyj76msL0p4q/ThzzBv6vd7kfvy8Oi06N/Px1fdd1gYWGBra0tnnzySe7df0C320MtCtKiKNnh9OyEWrVOo6EXNmLhopAkkVJYvNVsX6bP6KloLYrj2T7lknCaCFWecH3JkozrukRRxOb6Bqoic/PGhxwe7InxQSqOiSyYfmEUkecS1VqdheVlrj5xlcWlRZBlpEwCZJHQjUj9zPKcNE7xfJ/haCjsnJpOkiZkmWAvJ0nCyekJo9GYcrlMqVTGcUqCcfwIpP2jBcJHD26R4FpwnsTBLkbkoomSzxTXD4tQn2b7WxWedE2l0WoWFrMYKclByikZDpqm0Ww1yPOc09MTIC9kkQqqphDHEinglITcuFQSZPl6s4HvebNdTtIEiupiNi08FTq4OAwLaHSMZRro8202N7ewTAvP8xmNxkXKSEUkexUwug/ee4+joyNWV1dQiwWgkKRNxAHNZUqlE3TDIEwmqJpCGAQ4tsMLz73M0dER1XKNP//zP+W9995jYX6ecjG4mYZFuVxD10yyOCXNxAVx4dwF6s0Wv/8//CFRlNAfjHAcB3utAuRkZDNp5eOPX2Zubo633ooYjQYM+91ClRNSr9bJ0kxEkSsyk/GYIBCezfn5eV566UX2d/cY9vrs7x2yd3jIY48/jm2XWV/bxPM83nrnLU5OT0XiVq8rJrwZJFFCGARoqka9WsMwTMyaTX80Ik4zyCn4AdPCU0imqmS5hKabWHaJ8WRCnvfEzZukyEAqSQWfoIA6IvzKUzvC9GGtKBq6obOwOE9rrk21UUXVVMIoLPhPUgEdjHB9F8/3CKIAyDFNA8+dEAQemqZDlqHJCiQpwXhCEscouZAu+nkw64Q5joMEpHEEeY7runi+TxCFyJo6S7BSFQXDMFFkmTTN8WW/iLn3SOOYSqWMrmmUnAppnhGFEUEkgNFLGxXOP35Z3Ke5YE55nksURCRRIgpPKURhQsmyxUQzU5BiUHKQs5w0jEklmSyOkVVN2CF1HUVSMHQBst9YXS0eVnBwdMjJWRfbKFMqOxwddHBdT1hOJDBUES+r6xqeK+DyahKSKRKhJ1IALdtEIifLYtI4Ig4DSmUbK7NwSjZSauCNh+KhiYBnTkbjwvucEYUJKTKmapArKmkYkEUxKhKKZmCqJpZhoiky27vbSLLExtIazVaLz3z2c7z37pv81V/9GRdXltlaWiBLc8Ik4ehwlyhKONreF1yz+aaAj+tC0u+HIRXTLqTmAp6fqzKSpqDoGkjiHKZZRiqBoovCUhi55ICqSSQps8KTnEuQZORZYSLLFGIPNMOgXqly+/49dg4OePLp52i1Wqytr9Pt9rlz5y6+H7C+uoaMhGNaWI6DqmkEQYCijej2Okz8gFv37mJaNrbjcO/BfXZ3djg4PKDb7RCMh1iGTqO8SZomTFyP9bU5zp07z97+Eb1+n93DA8qVCleeuoJl2R8pPNm2Q7PZ4sUXX+aJJ65y69YtRuMRSZpxcHjEN7/5Lf4jw+CFF19EN3Rsx0O/K2wKd+7do97rceHSRSqVCleffJL9vX06nQ6NRlOoJgYjfM+bwZ7jOCo6/DAc9hiUHXZ3t4GcVz7/MmEQcHS4S5olhKGHritUKg6HJ0d4fsDK6hqOYVNvNEX6ZhiSSRK6YTIYDvE9j41zG5SqNdbPn6fRaLJ17gLb29t8+OGHnJycsX9wgCSLVI6txy6xsrrGlaee4uTklPfee088O+KYatnE1DWazQaKqjLqnTEaDjk+OsS2LRYXF9g4d55ao8l7778HEuzt72Jbhlj4SIAsUaqUmVtcoDvoM5yMUTSV0XjMydkp9VqN9c1N+sMhd+/f53/yi7/IC8+/wJXHLqMqCn/0r79GFMfMzS8yGI6oVCo4ZQGw3d8XHLerV6/SaDREimgOqZKRJDFxHNFsNrFNUwCwhyNee+01PM/n8uXLPPbYY6yvr/Puu+/wve99j2ajxuLCPIsL80iSxPcOD+l2OsiSsH+enJzwcz/3c6yvr7O5uUmSJPz+7/8uUZwwv7SEWSqxUq1y9epVnnvhBb7/xpucnZ3R7fexTIPVjXXcyYSb129g2xalkoNpCi5hmorYdMu2yQHbcWaFp1a7zfLKCn/5jW+wvb3N008/TbPRYGN9nU6nwxtvvoXjOJTLZdbW13n6mWe4e/cug8GA/YN9HNvhsccew7YtwSRBIvBC5EzCUFQBnLVtKrUqnutzcnSMhszW8iqWY6FpKqOhKGomWYZumiwuLpLkGd1Rn9X1NVqNJmXLQZYkTs+OkSVRTE6L52JWLJ4mroD6379/X4SGGDqGaVBv1Nnd3eXb3/42C/PztJpNrjx+hfm5OZAfLdKITdd1nFKJ555/XsTFN5siGSvP8QOf/f19bt66xZtvvUO1WmFhYZ4gCARcVVVnQF/LsqjX62iqJhQr4kk0WzBub2/PANGPyu0/spAoto/L8Gd/N52H8pFvyWcGiP9wtkcXcpqmFX/68Ljm5KLoNO0wS6IgK2xoOSXHwrIsyo6NpghIrI5AHMzsN4WdBB4uXIM4Jk5SYReORHqSrul85ctf5sMPP+T0+ITxeMxb77xNksX4UcDLWYpp6Mw1GpwdHdM9E9gISYJKyUaVFYIgIIpjzgYiSe2dD9/n/LktLl66JCzaukGe5QRhyMnZKVEU89TGuujoT1xk28bWdTzPoz/oo5uiKZQV40GSJMiqIhqbaYofhWSDAb7vs7WxOTtu0/2dGlyyPCPPxNWVZTnD4bDgm/ZmjE8B1xXoA03TIM9xSg5PPPkkY3fCYDhE1XV006BSqVIul3j+xRcol8p88MEHxFFIs91irj3H5uYmvX6Pfr/Pq6/+DdsPtnn99ddJ05T79+4X64w55ufnWVxcZGtri7m5OQxdICj29vaIopher8fWuS1+4Rd+ga1z51hcWOS002F7d49f+k//E1bWVinXq4WNPBL4jqJZKmsixRAJ1heWZxZaSQZFU1laXqJWqRBFEZ1uh/PnLzAaDbl3/x7j8Zj9/X22trZmn1GSJKIkYTwe4zgOJduh3ZqbzW3v3L7De++/x0995ctUqjWqdcEnO753T6Ryy/IMeSEBlXKZ8+e2iOKIt95+i7OzM/r9PpPJZDYnyXNx7iQQyJF8WnjKUCQZyzSpVCoM+gM836fX6wk7UP6QWZflkOQ5crWCWiiCprDu6Zg1/SqVHJEGGkSkaVZY8xL6/R7D0Yj9g310XWd1dZUg8BmNhqiaSB8Vyim5wCxEjEZDarUatVqNbrfL2HUZ9Pt4vgCiz8/P8/zzz8/SRsfjsQBYF9zajxRRpKkht1A4FRgSpQgomIZKfXz7YQWbT/rzTwZgf7ToNOVZ/bDXjGPBO51yAMvlMpZlfezZUJQdZmOaWNtN7ec/7DP9sM/7P0YZNf0MWZZh6Dp2W3CXr169ys7uHsPhkEZL2MrH4xH9vsXZ2SmqotJoNMjzlDSVikJlPgPTC8HFowW0olAkScR+XFg/jZmSbVp4EgUbBc/1iZOYtdVVwsDn1W/9JceHB2iqUqSEZ2K9KQmusiQpVGoNFhYXeezyZWGhk5gVeaahXaIILzAdfuAzGg+R5RqmaZBmIl0vyzOyJOPk5AzPdYvCUwnLsmeJf0LpNH2mfPwcSNMLolgTFvs/Ves+WmH6gd/98dunLjw1imhWp1zG91wmk1GxODdEalnhD06TmMj3kBUZS9eIPI8kDPFdlziOMdQ2KCpZFJEEIcHYJU0ilDwvUpw0URiKYyRZHBzbFp3Bh35xFS2ShGohmJAmIf1en8nExfNHmJYMlIV9xlJZXq5hWTnXnrqKXsjNPc9n0B9wdtbh9LRDtWxQKpXpDRP8MOCN17/Preu3uHPrvkivSRKWF5a5+vcf5+T0BM9zGY0mdLsD3n/vhlgUBD71ZoNGs0WlfIt6s8sLz7zAyuIqivIXqKrG4sKCgMypErdu3ebw8JDf/73fx7ZtKmUDiUx46J0SK4sCEJylKYEXEAQ+eZGMd+niFpZl0e0ck8QBjXqN5cV5IOe1777O++99yOde+QytVpNXXvksw9GQvYNdvMBHUmTRrc1BU3Qk4Gj/ENOyaLbbZGmKY9niwsymlP4cRRFVzTASdkDDtGg220iyQhInJGnCaDBElmMq5RJpIhKxTFOkqMiyCgipYJrnDEcjMjIUVS4UE6roiGUJkgyqKhd/J2OoGtVSmfXlVVZXVlhdXkIzRFfj5PSUIPbRVBlF0lEdi8nYxXMn9CZjwSxQlBmZ37FtypUKURQyGg1Fuka9ShiERHFEOBripSm7B0diIHMsSrUq9ZYokkZhiFEkhdiajh8E3L57V1gvNJXb925zd2+fsiN8vefOncPQNObbcwxHQ0aTCWEckwUpkqwgK6pgIcWJSDYzDEzHRJZg4nlIsoQkydhOGb1kc3B2QnKccXgq1BVRICK14yjGth1My2JuYYF6o0lKiqrrXFqcJ04yXC+kVLJot+pMPF8osDThmfcmExzHZn1tQ5zzRKTbpbnE4VmPLEmYW1jHNE0qlRL+xEUtnyBia1NkNUdVdS5fexpZ0zkcDEXxK0gKm4FKmidM/AmqLJHlGa999zWarTle+olXaLbm+OVf+VUmJ4e4pyd0ez28IKC2sIRhmTz22CXyJCGNAkhEakWcxKQUA7gii/hpIMxFmmCeJIRpSpJlgpGiyCSJSE0xLRWQ0DUFKRcQPnfiEoURzWZdACFVhTzPCLyIvOBA1coV5FWZm++/z/HhEQtzTRzL5Jvf/DYnRwccH+yztLzE2uoqmxcvUalWcWo10DQWV1ZE8mKSC6XOzh77e7scHx0yGPaJk5CLly9RdmxaVYckiTEMizCMuXXrDkhirO3sd5m4LuPhGE01aLWalEsOkFGtVFhaWqJarWGaFqdnwpYbRQnt9jw/9/O/iB9G/OPf+Kc8dukSjUad+zsP2D84oFyt4pQrBGGElSQA1BtNbKdEvdZA13XqNVEQCXyhSBkMRKrZeDzkxoe3uHXjDoPhEN0weO+DD4nCgHsPtvHDiKXlVXTdJPAjHMvBMi1W5+eQpZx/+fu/y9h16fT7uMMh3njEOImRyUmTANO22N7dZnVtnWq1Spom1OvCXpGkMaquUK6Vef7FF5Fkld/+nd8GQNd0NtbWWFtZ5tvf/AY729uoJSGzj+KY4WjIBx++j6ornDu/QZYnaJrC/FybOApJkxBVkdnZ3mY4GNFstFhdWePi+Yucnp0wGo+4d/8+nU6XWx/eQJYl7ly/yXg8ZtQfYGo67UYTVdUE7y6MmLgeYXxAuVTm6WvP4AUBQRjgWGLx16jXadTrGLpBkiQMhkP29/fY3r7P888/z9raGq999zX29vZIEhGx+0u/9EtUKmXG4xFRJNJoTF2k/P3Z1/8U1/N47733MAyTJ554gkajQavV4sKFC7Tb7UL56fPVr36VsetydNYVi4JyheOjY/74j77Ga6+9xtHRMYaq4FgWt2/eFPHgR8c063U0WeX73/s+vu9RrpQxLYvlpWVcd8KH168jIXFua4v9wwP++E/+hDCKaLaaOCUHPwj4V//qa2i6zq/92q9RbzRoNBo4lRInZ2e4vkeSpdSqVbGwCH2GwwF370xQJYUrFy9z1u4iSRJmqSwUhbFooMiaSrlawbIs1tdWqdWq+HGAoipEYYgiyzx+6THCJMKPI+Qcuqcn7IwnZJlg0kHOux+8X3D0cmr1OrV6jWg8Js1ztra2CMOQWzdvcu/0jDdf/z6WZXLp4kXObW2xuLBAtV4TXcyicyrl0qxbGxeLF8uyZgvoaVfVsmyWV1eLVFCHMAx444030DRNjMeXLmFZFu32Q0X61Bow5XGoqsbCwgL/4B/8AyzLYnFx8SPA0tk8sliY/LDJ5CctI36QQPJv0mLx7/b2kT0tjlmaTm0ozNAY0lTdNi05ShKGbrA0P4+iyIJLKHxIRSf54QJxthiSpnDdDMexQZa5c/8eo/EIJAnDMlhoN0kubPHFL/yEUJD0eui6zmA85i/+8pu0m01eePoa62srPHbpIvPtlkitRSQamaaGpiskVJEViY3NDUzL5O69e6iywlxrDtcXwS25ImM4FsvLy5QcB7t4ZsqyjO04JFmKUxLJubmmzNQFUeDhdwRnbWttgywR6hZNEUsSkSSak6QZSRIRxRFKoQgJR2PiOML3fTRN49q1azOmVrPZpOSUBEs2S5GQ0Aydc+e3ZizQJElJ0oTBaCgURJ0OvcEA3TSwHYdqpYJjWaRJgm1aaG2VL3z+87jPPsuzzzzDzu4u//Q3fgNN01hbW2NhYYGl5WUODw5oNOpce/pp8jznd37n9+n3e/zCz/0cq6trmLbJm++8Ta/7lyyuLnP+sYs05+aIs4zXv/8GUp5jqgqmZVFp1JhMJkRjj5Jlk2Upr7/1fdI0naX8lRybXhIzmIxxfZ80FVxXz3UZjycEvo9XWN9GoxGXH3+cVrPFB2+9Sb8/oFQqU6vWcMplgRXJc5557jnmlha5cuUq1VqVe/fu0+/3+f4bb2KYJu25OTzPE0XFU8Hj++Y3vkEYh9x7cB9d0/nyT/4UpXKJ77z6HQ73D1hcXGB9bZWS4yDlgmXX6/aQZBld00jjhMlkQqPZoFwps762zly7haqq+EHA8ekpecFFMnUNpwh8AFAyZXbfTYsP0zmJbTloWmFzy8G0LOoSbG1tUSmXmUwm9Hp9Ot0OWQ66IVh3YRRycHiIIstsbGwQRRG3b99k/+CAietSrlaZn2+zvLSMruu4xb0nAbqqgKHR6/cBiaV2GxRFFJqiSCjFip/VdOFAUOSHhTT40YWaT7N9UjFnWpx59H0+/l7Tnx8MBpydiWARx3FmvLGpPXb2u0jkRWNCCGLy2fj3wz7Xv43Qiodprdns7Tc21vmJn/g877//PgcHB8X1LdJxh6MRH16/TkbOytoKcRoLxRK5AM0jeEmGpovrbpZolwNK0WBQRWgR4iudJiYWn0mSJOYXFoAcRVZxJy7XP3iPMAxoNhtCVJHmhSIuZzLxKJUr/MQXvsC1a9colcvCwZFl4rkgyUVITg6I4u/h4QFJmuI4NtVKmXqtTsmxSOKYvYN93InL4eEhlUqF5557DqdUKhoZ0iNWT+kHzsujl9/M0ijDD3SbeFgME7/3Uevej9o+deHJKSJfp/7TNEsLyLiBRI4ii4jLJI5IkxhyIYdN0pQsDIXfO0nIE9ElJM3Jk5QkisgyoZRRZVnEKWcpaRojZfksGpBiUJmS/lVFJs9k4jAgjkJcdyTSMrKEPIvJ83CWllap2EgkLC62MXQD29bxXB9DVQgDn0G/h2XqlBwT19cJw4hOp0Ov22c88kQEoWWztrrKuXNb+L5PFEaEobD37e7skRZQwzhJUTWDo6NjfD9irtVC13UW5ueRJJlqpSr2QRYnLfB97ty5g6ooPH55C8PQRApeWaFWq88YS1OAuWWa6IZCvVZDlhWSOERTZarVCq1WkzhJeLC3T7fb42B9A1VVuda4JgCvUSz8qkUaQJ6BoonzNBlNSJKUUqVCLkmoRTU0y7ICfjc99hQWA+EF1g1RsBNxrBFJ2kfOHg4GfhCgKiqyrRTdP5hWWIMwwIhF/KqiygIoKYkbXZJFBLqAmqfIiIGgWq5QKZcpl0vohokkK5ydnZEX0kFFEZ9JDYQySnhtx+KhoImiplbEsyeZKJZZtkmlUmU4HIpFRSaqyYPRGMsy0UwdwzKp12piwMgzoY5SVXTTJEpSxq6LrMiUdJFOOJgc0aw1qJTLrCwtoqsiUjZOYpG0kafESVoMeOI900x42SVFQTeEdSKJAuEjzjNKtRq6ZTL2PTzPZzLxhLVw4mIZBiXLIY5T4ljEyhumSRRH6JZJa24ezw+Iki6q4uBYugBzRhGqJIOUE4YBlmVScgSsLk9T0igii2MmnuA1LK2UMRwHs1oF1cCJEsLAIwx8VFVBM0yqzTaKpglYaZYR5VEBQ9Xw/AlxFCMrEiQSJ8cnJGnOxPOpVmyWFi+zkyb43e6s81LJMxRFplmtEwchw9MAKcvIknQWkZtTcACKCVRaaIKlNCXJxMJLVgRwfVrxF9Ht4prJEmFFC4KQwA+o1wTTRyp8zkmcCLtKEmPqGpJcpnNyQr/f59mXXgHAnYwY9BMG/T5pllCv10jzHEXX0U2TDGYJR6PRCN8P6HWFzW4wGAjGWpZRb9SplBwMVUJNVPIcxuMJ4/GQcrmKphtERUxzEAj7sSw7YvEiSxiGjuM4RaJLJn53MkGRNSzLoT2/wPXrN/jwww8olUtIisx4MiEIQ0qVMrZjE0UxcSwku6ZpYhgmuiFUc61WGwnwXZeJOykWBBJpkooOuudhWCaKptPp9AhDn8FwRJJklEplZFklSVI0VUNRZMq2RRhF3L97mzCOSfKc0PeJ4wiSGPKU4aDPxB1z2u0gSRKeJxoZM8CvBLIiVJXVWh3PD7hx8yYlx2FzY5NKucTy8iKTicvu7h7VuQVUTRMq2ySm0+0wmYzJslQA7KMA2zapVStEoY+qKBweHhYR0SZlp0StWqPbOSOJYvq9Pp2zM3rdLkmc0D09Q9NEspVSpDUlSVIcUwGtD4YjHKdEuz1Ht9crgOhCbakoAnyZxELN4PkevX6P/YMDts5vUW/UuHnrJrs7uyiKTLVaZXNzkziO6fe7xbOwGLOR2NnZYTgccnR4yOLiEmtra5w7d44LFy4IILCus7+/T5qmbG6eYzAa0h+7mJZFqVTi6PCQ05NT7t+5S6/fZ2NzA9sy6Xd7Io49CEiTBBmJXrfLWeeMeqOBZYtO6WQyYXdnl2aryebmJpPJhPve/QLAbCHJMr7vcefOXdbX1/n8T/wEjWaDRrPJ/uEB/cEA1/OIo0iA6BURxuFOJvR7PeaaLeq1Kpkqk0mAopCkGYEfCBBsHKNpKqZl0p5r02q1cCNP2N6zBFmSaDWbBHGEH4WQZgwHA05OTkjS4rmY5xydnoAkFrNOpYyia2LyKIuI8MAPCHyfXrfLg/sP2Dx3jq2tLZYWF1lcWhIdb+kj83eEYF2oAOI4noVggGA4iWabhG3bNFstsjwXSUvdLo7jzJ59s/kZIEuPLi7Ef2VZplQq8fzzz88mih/fflwH+kctiUTxKWcaS/3vY+npkwG4n6Q8gE8uxz38XsxXFMqGOIdTBRT5tPDEw8VoNl3SZEwrWZqmYSEVCABvdh87tkWr2eT8+S3ssoNuGYzGE8Iw4t79+wwHQz7z3LOUSiXac21s2yZJYjJNLSyCgsNsGAZ2atNoNEiThOOTY+aabVr1JsPxGNfzSfMMRVEplcuULJG2Oz0kuq5j27aYj2laEcAgrvYkSfBcF01VqVdrRL4/O6ZZlhXF3YyoSHGME/EskmUBg46iAmOg6ywuLgKQJEnhDFAeqjMkRCJurQayXNjbBUhaOtin1+8zcV0kwLHs2XxWUxSSJJkBosulMlkm1MSyLNPr9Wb3pKIo6LpGHAX0eh2WlpbIkbhx4waSJPH8889TrpSJ4oi9/T3u3bvPl7/8U2xsbKIZBmEYsru/jypBw3Foz89jtxp4nlAUa4pCnOWcnJ2S5znNeh2rwEAITXZOXPBlXNfF973CCpkQFzZEofBZo15v0O/16Q8GlMsVjEI5K0kKiqJSazTICnu0LCscHR9zenrG/v5BMadQCxaky9HBAcP+gLPuKWEUkaQJCwsLbG5uMhwO2X7wALlQ0FTLZaa1iTiKGE/GGIZJzRIcpyRJMW2LSq1GpSog9VmWEUYRQRTOlCRTBeBUoTkbp+SHhadpap2uGSiKOisaTANVhFVVXEdB4OO6LkYRQ59lApo+Gg4pOQ6NWp3xZEznrEO328HzfZrtFuVymYWFBbI0ZTQaFomkwmKpyDJxcX1OVaVZNg0jCmfMMyHaeGiv+1Hg7U/6/m+zPVp4+lE/AxAEgbBk1mqYpvnRosQP/NZHH2b/vxrzJemjx6der3Hu3CaNRgPbssS6rfj0YRRyenbK0nCJOIlRFTEmSalEVqjPkB6mw6apGHOnBX94qI5Ki6JUlj9ch2TF87xSKQvHTJLiux6d01MUVabWqBeBVeJazhG2a0VRuHDxAmvra2L9R2EvLmxsWSZeV5Igz1Jcz0VRFEzTxDQN8WWIwIp79+4xHAwJwwBFqbNQjJHTucJHGWOfVBT8EU96CcHCkj567v82BdNPXXhqt1qCD3DnDpZp0Go0abYaVKsVdh48YDgc0uuekRVWuDxPcd2J8K/mUKtWsGxRqZZzMA0dTVWIQl9EzJumsJVMQkolGweTm7dufUQ+m6WpsNhoGuWysExdv3GD8WQCkqggr6wuQZZzdjpgYcHEsS1q1RaKZDLouSiKSDvIEhnLqrKypNGozGPZQpprOxXiJGZ9dYVSqcz58+fZ3z/g5o2b/OnXv87v/s7vcnbaASS+9KUvsbK8wpUrV+h2Oty+dQvLsUnSZGZ/WFhYwrZtXnnhpVk19WB/n9u3brM6v8DFjU3O+j2CKERXRPUzkyXSFCYTj2q5gmnbBF7IZDTh2aefptVqUqsLYGi1WiZLctIo5ej0jMFwRCoJO+Eff+1fs7N9n7fefotz58/xmc++xIfvSvTPupi2jSar5GlCEidkkk+S5Xh+SJKlREkCqkoGuJ5LGEXoui4SfBTx+sPhkNFoxGQyYXllhWqlQhbHkOdUylWiMGQ8HKNIIbI0QVNNZEnnIQtVcJIajSblcmU2cZZlGU1VibKMWzdv4U9cQtcjDUJIUpIgJnADAj8kQ5x307aZhGKxVVJlck2h1KwRKzKSrlOybSzTpN6ooakKJ2fHyJJEuSIW7EHooxsailam7FXwi6TFKEvJFAiSkEzKcD2XIApI8hxVTUhymSCK0UwDVVOxKyXsSoUF5AJsrLN/sIOiKNSbTWpVh2efvYbv+4wmE7IkEVHYikwu5fS9Cbkqs9XawDENypZBp9uh0z3DtHVM26BUKyHpKkmSQyKjZBbVeoO1hUW6/Q7Ht+8iSyLxYG1zgwR46513GI7GHB0eszQ/x/J8mzzNkXKIspgojmcxsTIQ+gH+aMLa8gpzzSa2bhPmEddv3kHRVGrtBrphYtkOcS6T5ArrG5tUajW+9/4HRElCqdki1y36k30MU8GwLVIlhVBCiUQx6tKFdcrVGrKq0e2P2N7eZnNuia/83JN861vfZHt3mzTOCTyPSNNIw5A0clFMB8e06ecZSRjSGwyQVR3NNEGCLE/Jk4w0DUmzHEnVyJJYFLv9iDzPUVGQFQXbMPGzkCiJBERTsWm0GliWyWg0JEsTciklSQM8LydJxcNo4ocgSZzsbiNrGk9cvchZp8vte/fJ5Yxau0aYhHR6XUzLRJJl7ty9hyzJ1Go1VFWlVHKIAp+z4yNkGSzLYP9wH1PXqVsWuq4VC4MMd+IhoWKaKefPn8dxHDzX5d6dO9y7f5/dnV0W5lpARqdzyquv/jU3b97g8PBAFLRqTQaDIXfuPmDijimVKrz/4XVu3L7N449f5ennLPq9MYPBgDu37+CFPoZjIksKkiRz6+5d4jjmuWefR1M1zs5OBDfu7IxKqcTm+fMsLa+QphnLqytoho4X+oyGA8rdHt0goj8YYegWumb4RbBJAAEAAElEQVSIyb8EY9fDMAw+++JnmHgup70uw8GA0WjI+XPnaNSq7D4QC6bb9+9TKVXx3DE3PrzJd179LlkeszTfIvJc9u7f5f/0f/jfU6nWuHTxMgsL81w4f55KtUIQBHzpp77Mtaef49XXX8MLfDZWFtE1me+VHer1OgsLC7z99lucHJ9SazSp1qpsrF2l1+3yD//hPywm9j4nJyfcu3uXw8MjPN/nKz/1ZYbDAffu3KHZbPLVn/0qrWaTdrvNjevX+Y1/8htcfvwK1Xqd9fUNhsMRb7/9NrqucXJ6zOHhAccnJwx6feI44q+/9S0URWbQ61Gt1bhw6TEatTpf+sIX6fY6/MVf/AXf+tY3GY9G/PzP/QKO7fDbv/lbdHpddvd2mEzGeL5LybLI6hmXL18hSWJM0+LCxYv8J//xfyyk2r7Pq6++ysHBAc1ms+AsxoxHY4529wl8H3ficnJ8TL/X5fOf/zzLKyuFLaCYDOU5K/PzLC4tsbK8wtUnrxDFMf1+n/F4zIfXr9Pv9Tg9PcE0TVRZoVypYDv2bMx57733iKOYUqkMSNy/f5979+/NJOxJkvDuu2+TxAnPP/8csixzuH/AxsYGL/70T3Owd8DZWQfbcpAUmeu3btE56/C1P/waYRCQJSnPv/QiL778EhE5Q1+kyqiyjC7LuEnCcDyiVq2xubrON//qm7zz7rv4YYhpmlx5/HFkVWXou1iWSb3aQNdUiBJajQZ5Dm+/8w5Hx0d87503mZ+f59f/F/8VlUqFWrUukso8f1aETBWx2FBy0YFWVFFIGwxGzC/MY1o2QRQShSHHh0f4QcDYc7Ftm1qtxsrKClbR+VcLa+HUmi5L0qzw9KjF4uNWOlGY/MFFz/+oBQ7/fhacPu02tS5Ou75pOm2IqTPJwNRqMz3uYRghy9Is2TF9BOiaZ4W1oqg7CWyagqpKTPwIzxNzHl3TOLexSclxCMKAkmPz3NPXeP/6dVx3glFwJm/duMlZt8tfff91ZEliaWWFLE/58IP3WVtfo9luc3p8TBRFtNttTFlldX6RW7dv8xd/+Ze88tJnqD9bY+/ggP3Dfe7eu0fJcYg8Hy9N6bouumlgFA27qmVg6oZI2S2Oi+KUsAwT23YEYzUK0WwLKc/p9Pvomk6r0YQ8JY0E8y6IHrJ15lptwVm6cAFVUdA1TVjQgoDhcCjUM3XBUMuK5vdwNEKSZDTD4PTslIOjoxmA3HEEKiQv0ByaqiGRI2UZ9VqNclmEzgSBx+/93u9wdnbGr/7qr85A0NVqhXq9xt27d7l16xbf+Ma3SNOU1bU1FubnuXjpAu+99y7/5J/8I5rtNo1GE9u20HWV999/n/F4zN7OLq1mg3PrG7TabRba81TLNcIo5Oat23ieyxOPP0EUi6Z4lKSMfJ/VjXUuXb5MEARMJi5/+qd/ShzFXLt2DV3TMHSNGzdu8Hu/93scnZxw/vx5FhYWqTeaZFnGYDjkn/7OPy+scJLgMw2HRKFg2NiWhabpVBxho3zt298p0kUNAs8jTWP2d/eIk5irTzxBq9mELGfQ73Pnzh1h5yuV+PDD61imxeLCArZjs7a+jmkaOLbD8soKK2vrRHFIt9sl9EUTw7QsaorCeV0jTVLSJKPk2J84Vgl+GIV1TzQ7Ts9OCIOQpSXxvEqSGEkSbCtxbAzSogl47fx5arUax8fH+IXd7+TkmBs3rouEuzzn8StXaM/NYdk2siThTsZCXWuawtasaQSdDt7ExS7G4ylzL4oiVFUVCauFOm/62R/yqR7l7vzdt2mD/9EywMetdZ9UJIiiGK9o1ORItOfmqddrqJo6K64I1E0y+53pmk00aQUD7OPPnH8bKqcf3I/pewrki+OUME2LJ598gtFozLsffIDn+9RqdXIJhsMhh4eH3Lx5k6WlJRqNJmlRUNILFdp0bvPolmUPGzOSJCHlUxxMSBSFMydAEHic39xEU1Ve++7fcLC/S0oCuVhrSrIs1nzFyy8sLbK+vskXv/hFFhYWZsdMLopdaZbPCmIAlmmwvrY6+yxTBvT0mEzGLlmW89JLL2OaJp4XoGkqmq7OLozpvn1caSeun6xogIhtKtx9yL8qklwLxTa5NBO0fJrtUxeeZES1LPQDtGlXo7i60yLlJQxD8jxDKT5AHEfYlo1t2dQbDRzHFqwTRRFdckV56N1Oi4exLCGrgskyHA1nE6hHb1JNFfGZOaJ66fseqqah6zqVSpkwEAWPJBVKEttyIBcd+SwTUrAsFR1GwzAwNJM4EQUYTdWE2ifPqFRKtFpNPNelUilzeHhEr9vFdb3ZwCEXUjlFkcVAWavTmmtzdtbD9TwBPnQcqpU6kiKiHclBkVXarTZzc3M05+cI4whvIpLS+v0eIOP7IaYRi8+Wis+uaRqGYRQRp4JbpGgKiq2QITgaumXjeT7tVpPT01MODvYpV0oEQVjsv1CjGKpO6HvkiEhT3TRxSiX8MCAqBpg0z9FUDdMQHAxJkpCyqRIqI46E5DktYGu27SADui7skZZlC69zAdRO0wxZVlAVETEqS+Irz4TVadoFmF5fwr6ZztQtsxE1RxTBZFlUbwt/cZoVXbI0Q/QPxXWjFDarMApJYgnXdYsOhUWWiQmHYZrouka1WkXXDU5OOsRJQpzERElCFEfk5OK6lQSryg98oqIop2jKDDquqhqGIc6P63nEiUQYBkJea1lIpiimeq5LUDC8YtuZdQdBLB50TUNXVTRFQc5FpTvPMgR4X1Tlp0wR0zLJ+kIqnGc5WgEIlCSZuLg/3WKyVSC8QJYEbDMTg0yapgSBTxQERGFAlsQi7lOWyVWFIM5FZK3vk2YZuSwXyXIpUZISRjGnp6dEaUqz2UJRxH2u6wZOySFOhWw+ScXZkTWVXIL+oI83mdA5PaFpV2HepNJo0wpCBsMzsjgm8CaQJKiqhKpIKJKEIkvIkoQfhKCklHVTdFazYt9EK0QoyXio9MtzhB1FVmYdMFWWyVQFRZ6+LsWEWQGlSO/IxP0rSxJy4e2ejEZohkGlUsbzfQHET4vrJorQp7wGWSYKI0Co/cLg0S8f29TRVFkkL0Y5YQE1NM18ZtWYPvjb7SbVahXLMBlHY05PTnAnE3RNI4kjJpMx3W4HSZaEqgkxSU6ShH6/j6zIOKUyE38iVImqimlaWFaC67qEkVAwxnGMrskoigBNKooibBBpynAyxvcF+FQ3DWqNOp7rkSYptUZDKFP8CZBTqVWZDAcC0BmFBIFfMJMk+kPBv6vXCoWYNCDPReKl7ZSoN1uMB0PyXEJTdcH3GIxwJxPiKEBVxfnKkpgwSTjc28Mdu6ytbZJGEXmWEEchvq9SrlTQNDF+BmEwe/BLklxc+wGj4ZBer4vtlDBNc5aqdHZ2JpgRmoh/FmOvipoUk8ii2GvbDu12m/n5ORYXF/nggw84PT2hPTdPlufMLy1BnuP7vkj+Gw5wJ8IakSZJYe2OSVMYj0Zomi4ioIuJ6717fXZ2tgkDXwyEuUgkPTw4Ena0OMa2bcplB8M0kWUBxc4yg3KlKkChkkSaCmXneCLYJ4ZpYhomyLLgIwYRk9GYztkZeWFxq1Wr1CplklhMPmVNWKQN06Rer1MqO9Q0MbmbTCazxDVZEqEIatFpnvJwdF0EXXieBzlUKxVMwyQMAvxiMalqQvUbeD5pmhAVXeMwDFEVhWajweHBIa7nUTcbaKrGYDRiOBgycSfEYYSUg+e6goFkm+i6iuKIBcRwOMD3hdpQUWQsy0TXhOpIjqLZJFOWZTRdcAlNwxA2nfAE07RAgn6/x2QywXEcmo0Gq6srIjlH1QmDgCSKyYpCjybpYg5ZFB/S4vme5zlRFKOoAZHvEwaBgJTOGG48VEOl6Sy56aPzpB8/Afxh3ckfxeeYQnrFn//o3/v/h+3HdWh/HEPlk19UdM8f2j9mr/Zw9p4XkdyP+vAoFouS9BHHSpIKJEKcCnWnrgtuUTa170liXJ4Wn7Ri4ScrMroqknOb9Qa94Yg4ThhPxmRpyr3tbSqlEo1KBUlWhK0rTmZd9jwXSU1IQNGgUlVVzHnCANedMHFdwabRdGHrzITCPJclZE2onx+NkpdyMRubMnqQZKHEjyMx58lzRqOxKEwXCqO0KBxFcTwrLk2PiWVZqEWYTRRFM1VJlmVUyhWM3JietI/cEXEcC7tYcV/ZliVYbZMJaZrSaDSQ8qJEWBwLMU4PGRQsqs3NLbF2MA10XRNMIlnEmW9vPyAMIxYXF4jjiE7njMFgQBD46JpKrValVHKwbRGekee5YAKpYm4vyzJpkhQplqYYc1KDVrOJH/gMh0MBS9Y0bMehVqkwHgvrT8kpoWs68/MLIlK9AJH7hQrzpFzGsmzMIi1wMOjT7XXFGi7L8F2RMj4eu2RphqEbqIqYH3uTCacnJ5TLFRGIYRgYhk673SJOEiqVCuVSmZLjUK1UabVaVKtVSo4jruUkxg8CFE1FkiWUQk1mGAamZZFmCULdIeascqHitC2LNM1IY6GSfrRQ/uiYNFWGqqoyO445OUmaIMUSURyjqgqWaYl56SPrD6EeQ1gVi1CLNE1IkljM5TWdWrUmUisRRaK4eDaIQpJQKsdxjOt5IlRLVj9SiJ8yqaZfH+fp/V3Hno9zpKbX/N9mm7KdxuNxwcXSZgXGJE1mn3Wq3voBxdkjOyrmydnsPH3c8vd3Gld/zPbor+d5LtwXmrCWr6+vcf3WLXJPIIDSLCOOYlzXpdPpUK1WKZfLoPGRR+fD15wCzaVifH/499Mmgnh+F+q2XKyNRYhEzsnJMZ3OKbIiijNpmqCgIamSmO8hMTffYmFhgVazSaVcEWP79EGQTw+uNHuEKJKMbZlF0UfsrwSFlTgprkuNWq2KLCuEYUCOjqxIM2D/D7aJHv0+Z0a955F9fuRee3gcxHdTeP6n2T514anX6YnCgKaTxgndTofhQND74zgky9LCKyyqdFEUMZlMeOzyZZ5/4UUMQ0eWJW7fvk0YhphlB92xUQwDz3Pp93ssLC7QarcYj0YMi4Ql0zB45ZVXUBRFLKx0DcuyZp1n8odpAJZlsba2JngmcUQQBXT7PRaXF1EVhfv3H4CUsbC0QufsjHv3bzE/v8jC8iLvvP0Oh4fHrK2toygK+/u7jMc1FhfmKJUsnnv2GdqtNifHp0SFXUI3VE5Oj/jTP3uTSqXGxrmLfPaLX+LLX/lp/vBf/gHvvvse33n1bxiNH3Dv/p5IcKvVqdfrvPDSZ3ns8mXW1tbYPL+JYRncvnmHvb09vva1f4U7mXB80sH1AoajMVGaoZkWg9GQXMoYTXpFpTVgrjXH6pIApzfqJVRDp1Ev8b/73/5vuHv3Hv/H/+a/YWd7m9/77d+jVq5Sr7VZXl7AcWwO9g8I/UDEMrbnePaZZ9k7PODO3bt0hwNC32N9YwNNF5GVURjSPRN2F7XZIAoCumcdTo6OGQ9HXLpwEduyIM/Rqipb6xv4ni/Ub0hEQUTZqZBbOXGUIKMw6A9Fka7XY3V1lcXFBSbDCVmUsrW5hTdxOdk5IJkWrTQdzbRYXFmhXCnz3e9/j4kfICs6SRrSHwyJopgw8Ol1BwwHY8IgwNQ1jg/2UWSZStlGVRRUVRPScllmdXWVcqPB1tZ54jjhX3/t6yJVCgmyjCSOcGwbs2YQ+mJhvr+/T57nzM+1SfOEIPSLYqRKkiXkWY5uC3XHzt4uEhKWZtJsNllZXuY0ycm8kAvntshzMCwbsozuSQdXVQhtkzxLqGgGqesSTcb0D/bxwohKvYVhmDi1OrZjEcspmq3jJCW84Yg8iVBSAWK/sHmB0/IZvh9hWA5JLpGpKhgG1UZJdAW9CaokYZo6NcfGXpjH0VSkyMVRMxRD47ELF8nyjM6gS7ff58atWxiaganpHG7viqKLJKNbFupFoZRpVmvMzbVZWVnm5s1beIMJx0fHQlUWxCBJjCYegRcwGY7Z2z7g1vldXnzmGZ54+gX+/F//Pt2TfXaOdqiUHDbXN4QtkwTLNKiUy9w9OMWPEhJJdJ4MRcayDCrlEmGcEKUuhmqgSApZKiY1reocaZYSRSG2oWObmrBwRSHeaEDsa1QqFRRFJlem0uwAw9BRZA3bckiznP2dbVTDYOvyFXw/xLIs+oMh739wnauPqxiShqobyHlGuezg+T7bOw8YDYd0zk44PjogCnzWFtrUyqWiWJKRpTlJlOC7ATIy5XKlKGaFbKyts7y8zNPXnubw8JDvvPodkjgmTWI6nRP6oy7rGys0mjV++Zd/BQmZP/uzv6Tb63N2dsr6xjnObW0RRD5RHLG7d0AU3cdzfcIwQjdUJFnIrkvlMvV6nZ/44hdw7BJ/893vcnp6xs7eLpqmUa/XWFxdZGtrk/t3H9Dv9wnTAE3RuPjYBaLQp90q8yYpNz98j7PuKYNBj1qjjqppfPO116mUq/zEK5+j15+w/eCAo5NjTs5OWVk7R729wIUrTxEFISgmeZ7z2qvfp1Gv8NWf/jLvvvsWDx7cEzwOTaNul8gDn7/82h8yv7jI/u4TrK1vsLq2hmlVhL1SlknjmHfffY+jwwN8P+D+/fv8+Z//JfV6nZWVFRFdPRrxzptvkaUply5dEilMvs9jVy7z8mc/w7379zg+PeEP/+APOT45RjMNZE1h/+iQKE1IsoywsLv6QUC/3xdK0fGYk5MjJpMRge+hqgq6qqCUHVRF4aUXX8DQde7dvYtl28zPzzEeDdnb2eF7r73O9RvXefqpp7BMm2//1V+RphmO4/DUU9f4r//LX8cp2RiWwZtvvMXJySlhLIqIpXKJs7MOv/FP/hlzC0KlVCpV2NjcEgqAJGXr/BbDfp8HN++QBCHdbodf+ZW/z89+9Wf45je+wZ27t+mddnBsm5df+QyNVovV9TWCKMKPItYXF4QC67d+i/39fa5evYq0usrmxoZgdhwfYxgGJcdhrtVG1VSiMEJCwtQssjQljEX4x3g0EpMaCVZXV5AlmfFgKFKDdB1D1VAkmU6nx937D3ip1qRmljjaPSAPYp64clWEStg2Jycn/Ivf/R1+9qs/y+OPX0ZvNgl8n3/5R3+EaZk8+fQ1UGWiOOall1/i6Wef4c6dO3ieh1oofR+/eBFVUbFNk++89hp/8/rrBK6wtlzcOs/iwgL/6//l/4pSkRgVxwm+6+EHPmEck2YpsizTbjRRZNGgCAtlcE5OqVLm4HAf152QRaJAZ5vC7rjSbMwWAG+++SZ7e3v87M/8DMvLy0jFQkt+ZCIp2Cb5zNoxm0Q+smj728BsZ7//aSeN/wFusiyaXdNesVwofUR9OC+KRik5OUqR3qYqhii0IyySsvrQzjcZjwjDCM8TyIf5hTnBivEDVN2gXq9xfn2TIPDxx2PSKKRSWSUqUsbm23NsrK3zx1//U3YfbLO9vcNwNGRnf5fLjz3Gr/3n/4VAVUwmKKqGbdqsrW2SpSnj0YjxaMy9ew9wymV+/df/KxEf/+ABZ90Ovu/z4vMvMNdqUa1ViOOYOEtJ45DYh3phGZVSUXye1kSVwpqqKhKaoqIpKuWyA3nOm99/gzCMCKMI07QwLQfX9xiNhjO1ijwr1gruqKbpyLI/Wzi7BUxXKxoEmqLSrDeK8wKVUplGtcZ4MGTUH7A4N4+mKHxw8ybNZpOnn7qGoakokrC6hnHEa997nYODA5ZWlpmL5/GDgEaryWdf+QzHJ8fs7+3h2E6RRCog/7dv3+b69Q/4jd/4Rzz51JP86q/+Co1Gg1qtxhNXr9BstlhZWhEKrWoNwxTWxMFgyMnRCfWmYN9defyKaHLIMsPhkPFkQqVaZX5xQRQxs4zj42PG4zGf/ewrGLoAQnueS+f0hIsXL86K/MPBgD/4l3+A5/sAVGtVHrt8aYak2Fh9jFqtThonyJLM0uIig36fP/gXf8jJ6Sm7OzssLCyQZ4t86UtfZOv8Of7eL/89giDg7bffpl6v8/zzz/O5z31upshUFIXhSBTejo6OCOMAVIlmvUnJLiMpCpquUTdEgl6pVJkpOATGRRFAflmo26YNtIfoFYr5oLBy6rqBputsbGwQxzGdM5Gy5wUelXKZdrtNHCWMxy6madNqz9HpdDk+OeWtt94giWOqlQqLi4s89dQ1atUalUqlmCtG9IdDAJr1Oqqqznh6kiRxcnLC9vY2K2uroqBRKn0kee9Rdt7HlaY/DPj9b3L7UQWewWDAjRs3aDQatNttNE0nTXNc1yPL0tnn13UdVSmKZzP5zCe/18eLTv929+XRcog4ni+//DKrqyu88eYbjEdD0dQrit3Hx8ckSVI0ERWqRcCWqohxS9MePk1lWdQYsiwnzx4WmtIkJY1TkjghjRNIEzRJAk2l3+sQ+D7vvvMm49EAp2oLXnMYYpgyOhqjsQvA5z73Oa5cuUqtWsPQdbI0feR6UYua18PmFICpF4X1WVM9Zzwa4bkejXpDOHBsSyTinp5gWmbRkCxjFYm3hY5p9v+CZwVTy/VHjjePphUqRZOiaJYUx//Ttp8+deFpNBiQFZX5crlEs9VkMBgwmYwL6V1edDcksqKKFycJnh8IiHSWkmUpnucjSRSEdUtUU8nRdL3oJKtCTiaJeGFNN8QDI8uFZUZWxJ+5HmmWz/gQefHzQuosoao6ILzDnif844dHR6iqwvLyEmmW4gcBaSri1wWkU0eScyQ5x7ZtUe0tVFJJnFIul1AUhTCMSLOsqJZDpVxB1w0CP+Dw4JAP3v+A4XCELCuUKhVkVacxVX/IKn6UcNztYu4fECQpXhJh2zZxnKJoBo1mm0q1JhQhkpjMGJZJnmeougmygqQU6ppMMCayPEORpKLr4oMkozoKhqlzfuucSG4LY+EzDkI8PwBZwvV94jASPvI0odPrEUYRluNgxREpQqWUBYKZlcRi8NVUFaVQXtmWNRuMpuqhwPPFQ0KWiMKQKIxmE+ESAlin63qRJCEm4JqiEYURg8GQ8UhcV/Nzc2Rxihv4hEmMauj4YcDRyTG5olDxPHTdoFqtMegPcCUJ1/PIswwZMRGXJQoLqARpiiyBKivomo5tW4JREoZFlVpIdXUtxTZNQklw/BUkVFmFVHQ64jAkjmI0VaTNaIqClOYoyCIVLc1xgzFJmmLYYn+VWXdFJoliRoMRYRAKdU5RVddUjTxNCXPB0gr8AEUGVSlmbZKEY5mAOM9T3pkkQZLGBb8oFfYwhPRUlkRCmOD0iCLYxPUFHyiNUQ3BTzA0HblQUMgSaOpUUUZxfhVIErI0IQ0ClDShrCtoqoymyMipRIaMUamgmRYUk7Zeryc6fZUyeZYLVZskI2UZnjtBkhWkLEXKU8gThuM++0d7NHdqDCcD6q0GlqnQ1zJkcgbjEaZhzI6DLBeJGkAYJyJZMhegQdu2xOCIhKSoKIpWKPAorgUZQ9NBSpHIiMhJshRVAl2WMWRRPIvSBCnPUSWFSqlCuVwlCCPCOKY/dmc+7iiKhEw3yfBdnySOybNspgzK0pQ8Fdyy0Pfodc5I4wjLMISCS5JZXl0ly1L2dg8EwysIiKNY8LoMHd3QHyZEpukMSpwkQhFhmAamLcaLIPA5OjwsFKZCzdFsCBC5pqnEiYIsyURF4lVWXN+9bldYUUslFhYWqNUE7HQycRmORkRxxNz8nIghdmw03SBOUmzHIc+hPxji+T7t+bboLk1EtKxcwNEN3WBtY51ypUpzMEFVVIIwxPV8XM/DsW3WV9dI45Sz0zM8a0KWpqiqKjr3/QEKKbpGkTSZ0Fys49gOSQJhEBF6LuNBn5PDQ6qVCu25Nk6piqLqZIlIDnInE5I4oVyuYNulgpHiUClXSGJRQBv0+9i2zdNPP0231+X2HWE5nExEatDO7g4P7t9nMBzQaDRmip39/X0O9vc5Oz0lTQQE0nYcDg8PieOYzc2Ngg2h0mw2qNVrnJ2cFEqzCEURKX2SLDMeC4ZhUkSdy0AYhCiSQqVSxTAM1tfXWVtbRdfFOSmVBacjKlSIU2aJpmrIxXOs3+8XCaMKtuOIws5Y2C1HoxGqprK5uUGWZ+zs7ZJkGU6pRMl2KJfKLC0vUSpX0E2DKEtJo4zxeEzg+TNlU6VSIUkSjo+PxThjGDPVQxxFwkKv6xi6Qbs5RxRFDEdDkCVhkUjFPTTlTcRRhKoooruv60UTKhCLJ1dwD0bDEa7rQiY4MLVmg8GwP4PzGrrO6ckp48mYOI6xbIuS5aAqKmEUicKWZRUx0hQeJ1BkASMfDQd0Ox1G/QG6pmEahrBcaBqe7z9kVykKipKh6brgyxWd4DTLyMMI3/VmTI04y0iKwpKmaRimJYpcloVhGpRLJaIoIghDxqMRp6enxT2b/sB87cexmj7JXvep4K8fE/H8wOv+O2q0++GLnvyHqrcePR6P/v4nvVaxlCwm4Q8XB9OMv6kOTbjtxFFKs4wwCjk8OhbQeNPCsYVDIAgEEiIogkOiOEaSJXzPLwpPPqYkoRVqXUVWCHyfMAw4ODggDAIG/QGmbmBoBlmaUq/WuHDhPL1+n5PjQ/rdHrdu3aJWq9IsQhokBN8zKxSckiJj2BaWbVMqlej1ekw8T/CVNJ25dpu5dhtVVYmiCD8MUNFBVUTCVXE8xb5nD6+PoqMvw8waKklgWaKxMJqMGY7HBKFgsxmGUPdMYdSe6wk8R6wXUHbBWwqCAFmWC+VGShonM+6PYVnUGy1kScZxHDEOTSHVssLy0hLlUgnXneDlOVkaMxyOGE8mhGEonAvVGhPX5a033yJJE5ZXljk5OeZgf5+j4yP6/T5PP30NgFLJwfc9ZFliY2OTzY1NDEPMeZMkxvc9DF0n1nVC3yeKAnJyjGIs1FS1cF/kpEmCF0X4QTBTOCaRUEGmaYqhG0hliVazhVzw8vIse1j4eKQIXS6X0HWNJEmxDBNFkqmWyzQbDSxT8KDGYUQUhxzs7zMaivVbo16j1RL28Xa7xea5DVaWl1FUMWb6vodRpG+bpkGlWhHoDEkuAjsEHyovFLCe57Gzv4cfBJRKJQHeznLhckgL50xRrJ1+PWQVTe/VT74nJZi5UrIsJ03SGVcnz8HzPHrdHgcHBxwdHWFaQrWqKoIDtbi0zPxcm2q1OrtWwiicBVwBxb5J4thOVX3Fl2kYhbJK+VQ2t0fHnR+2/TAG1EfG7XxWCvrYSPyD49x0myaHizEnnj37KNRiiiLPWJGyIhf7NB3xPkE381BGXrzzD/79v2mF7MOXm54DIBecpVarhWmYBfNUiAFkWSjcJ5Mxg0GPblcowR8yrabPRwkJYYmbQurFPjyyP1lGEsVEYUgYeKiKjKaaDAZ9hsM+URiQpAlpppDnFNigjCiKMQwd07TYOneOc5ubYl7/iKqI2RH84SI26ZEDHAYhvu/PxjbX9YR9WNcLSyQz+7FS2P3z4i3yjz/cH93H2bnMi1sxJ80gzYvrKkeot/KcWtn+sefrUxeednd2MC2L+YUFNjfP8ZlXPsN3v/s3vPPO20RJBOTohkjQcd0JaZYTRDF7BwckWUa308HzPFaXl5hrC1mZYehMJmNUVS0gYDaKrKLIKpqqs7CwJGKCC1tXEMcgK1hOicFoTJpDqz0vDmSWoGoao9GEOE4xrRJZmpHEKTu7B4zHY77zN9/FcWwuXbqE7weMJ2P8ICBJEuqNGqqmCCmaIrO+uY6mGURxOuMZLS8ucu7cOm6R0CeKWgG6ptHrDdjZPeBf/6uv8a/+4I9YXlmlXK2y9f/l7r+Cbcvv+07ss3LaOZ18bk59b2egGw0QSYALBEFSkSNKniqNqhzKr9LYL/PgV9XIfvJIKpflqZE0I49ESyRHIglKhACQAAE0OvfN6dyTz9k5rZz88F9739uNBtHSjC2V163TfcM+++y99lr/8Pt9v5/vxStohsH5i5fw/JDHO7vs7u1x9+13cN77ANO00BWJilPi137917FthwtXnqNRr3Hu7Danpyd0T08KaHqGouQoClglHUURMHZL18mWk3rOYNgnDEM0xSDPJf7iX/g1Dg6Pee/9W7hTl+5pjyhLMEydbrcHec5Kq01/POboRz+k0WqxsrqKpOtYrsfOzg6e52FZImVrMh4vb9KS47DSWVle6L7rMZ9MOT05wdB12q0mcRQRheESEJk1m+J7SyWq1RrVSg29kC27szm90x6B76PICs9few7SnG5/gCTLrG2s0x0NuPngPrV6g1K5wuuf+xwrK2tEQcRg0Kd32kUCLN3EMgwiQ4csJ40TbFPD1HUqpRLlcolOu83JyQmH0ylSlqMiY+miaNluNvCKyHhdVnF0C891mfs+YRCSpRnNSlXALAEZmUxWkTIJKc443BXwyvbqGrZTYnVlTXjLVR3P9bh3fA/N0FE0jSAKyQHHKTrUikqaxMzmrrBgmTqaoiKrMltra0w9j1v3HxLZISurq+RZgh+IVKrQDwhDbxnZiSQKl5bt4DglfDdgPOqS5SGQkRYw+JJpQZaKwrGiiDqXIqGoMtVKGVVRGA2GQgkyHqFrKlfWmmSZTJpJyJLYuK1fuAiazuPukP5wyIfvvs9wfY3IdVF0k2q1Ttm0yYIQdyzSz1ZXOwSmhppHTKY9+tNT7jy6iWPb/B//D/97Os06ew/vcrD7hB99//usttuc3dwkRQJFRdFNlEzCDQLIMmLPpRZW0A2DME7IZAXVtNB1E8cwybOMyWCArsjUK2XSNCZNQrwshTCgVKtjmyYlVSNJM+ZzH0kS6YpnN89w9vwFTvt9JtMZ/dEU1w84Ojxk7gUYqkGeZHgTjzQSvLvhYFAAOEVCpiHLBPMZe48f0q7XWGnWBTA9Tfnyl79MlqX883/2/2Y+n+NPxeY4jiPOXThHu9MGCbzAZzAYMRwKlk4YBkgSdNotOusrKKrEcNTjd373X2DbJba3zrPSbmG8/FIRzw1ZkhKHEb4rLKO2bTMOR9z84ENW19bIkpTr129w9swZvvvd73N4dIQfhJQrZT7/hS8gAOcBaZrS7Y/otDqsrWn8zu/8DkEQ0OmsEPgu9+49oNcboKoalUqVarXKN7/1a5y/cJEgSuh1e3z729+mN+gzGo148fkbPH/9Oh/eusX7b79LkAg74NmtTbI0ZnTaZdQ/5smu6PIkccz1a8+xurLCnZu3GaZjiGOmwwH374RUKmXWNtbZ3DpDqSyA4bPJhOl4AnnOuXPn2dzY4Ox2AaS0bQI/xHM9BoMB5XKZv/bX/hrvv/8+Dx88pN895fatW/zrf/WvuPnhh3zwwQfous6v/dqvUalU8FyXDz/8kJ/85CdcvXKV7a0t1tfXqFQrvPnmj6lWq/zmb/4mk8mEnZ0dXnrpJa5du8Z3vvMd9vb2OD48wnEcLl++zHgy4eat2xi6gWUKsHmj3uDw8BDTNPn8577AmTNn+HNf/xqz2ZTDwwMcx0JVZHzPZ9Af8r3vfp8sS3nttddpdzpsnRHK4MePH1Or1XAch7W1DZAk3n//fU6Ojnj85DFXrl7hS1/9Eu998D7f/7//gM+9/jrnLl/klRdeolat0ukIm/hgMiaPAhIyHjx6iF908ur1Omtra/T7fe7evUun0+HKlSuUHAdVlhkOBgXQ/By1WpXrN67hez4Hh0cClq/KwmpWXJvkOb1eH61YM8iywtHBMZPJREB6jw/pDvvs7R8QhmKj4JRKrKyvMJ2N6Q97NJtNGrU63/63f0R/0Me0TJr1JuutFeIkYerOMXUDXVXFRrdI5EolSOOE09MuH976kIPdffzJjIsvvsDa2hq1RgNVVXn7vffodFb43OufQ9ZkDFXFwhZFiDwnSzNmRRjK6fEJnucxnU5BkZFUhXa7TaNRZ3NlDbNQii9W1tPZjCgMGQ2H7O/uisJpklAQF4QVGH5G5fTs8WzR6VkOxyd1pz9REcX/v6ie8me+FscnRUs/8x0/Z/UvCkpPf58uzi8C1C2cGuIcK5JQRIVxyGm/x2//63+FY9ucO3OW7a1ttja2ODg8YjqdUS6XhUU7EusnckjiiCgIKKcZpiOKKlmaMi5A2f333iMIBBPUm83x5y4vvPwS169d5cbLL9Lr9/l//v1/wOnBIf/oH/0jvv71r/PX//pfp2Q7kGVFZDigSGi2xdqZraXSJIgihpMJsqJQqVa4dPEC7VYbBYiThMF4hO04SKqyLIguAiCyBTR9AfnMMuQ8R0NGLTZk25tbTGczjnqnQoHy7nvcuHGDz732GqurK9RrdT54731m0ylhEAib3EoLTdNYWVkhzwUP7uDggCAI6J52CXyf0WjE5uYmX/7Kn0MtEoaHfcETknIwdJ1vfuMbRFHEg/v3mM1mjApO0f7+Pt/45V/m6rVrrK1tsLu7y//tv/l7GIbB7v4+08mYYTFv5XnO3/97f58rV65w7+5dZrMpvV6XtbU1rly5wmgyZjYT9uXxcMyVy5eRpZz93ScEYUAGPHfjOs+/9CIl00ZTVaZF+t5Jv0cOWIYJScbodECUpSR5xkq7LdKay2Xc+ZyH9+/i2A7bW1s8eviIQX9Au9OhbFm8/NKLQoU0nglofZKxvb3JSy+/xM7ODsfHx/SOTxgMBty5e5c0TWk2mzz/0gv8+l/488vUzVa9jmUaS0v1Cy/cYDab8eDRQ+LEADIMQ9i3FbWAjFerIgBjMqHX6/Pjn7xJpV5jfX2dvd09fNfFDwKCIMAyisTNZwDdS/aNLC2LH/CUrSbGNnF5yYoCBfcuSZMCU5CSxCnd0y537tzhT//0T7n/4AG1Wo1Ktcrnv/B51tbXefnllzF0DUPTlj9jwfQyCvfHgm204DctVGWO49BstajX6h9hOT3L1vt54+7/EsdTO9RHx/MsSwsotvz0fMlC4Xty2mU8mZIVDZ56vS4a2YEnoPJF8t7HjVl59tEi0+J5kZ9BWzxb9PqEeec/9Pj4ef3ZOSylVhP7s1K5jGEYRJHgspq6QZ6mTCcj9gpsQavZolqtFQgWhSzNilAkEXKV5hkSAugvvkThJkszAs/DdWfMpmM2N9aoVSvcvvUeB/t7pFmMpIDrh6iqaLqGYUzkBmxsbLC+vs5XvvJVLl28WLxuIZoQJzQnL0DZ+TPXOMW5z/OFEkkU26bTKePxmLW1DRRF4fDwCMMwaDXbywJ8EqfkeYBt2YX1MEW05im0DRIs2E2Lfyn+nCGUpkki7qU4Ec6MLMtF8yyOqV07+ws/u09deFowO2zHRtU1skywLizHIZoKJY3vB4XtTUHVDGy7hISEN3cJ/ICoYDIYuoFe+GalIi3PMAxkJHzX4+7tO/R6PaIoElwIVcP3ffr9AWEQMhqP8YqOqmkImLAfhihxUkzuRQfI8/H9AMdxsG2bq1evoesaMjKGYbK6uoqmayL1rLDqZXm6fI40TYsY8qjw7rqomrD8RXFMFMYossLFixcYjcaomoYfhARhRJbFTMZD/ChBN0xW3DVUTefChXPYjoVhGURxLJLNopCUnJu376Cqoiuwtroi4Ih5Tq3ZplarYpoGWRoRRwGnp3tkUYhERuYIjpKhKkuAuYgKj0iSjNnMJYpCKhWHJArx3RzPneP7Mu5MMFimuiDjl0olAj9g5/ETKrWakB/qJnGUULId4iTGtWxAYjabL5k1WZqRkZIpKYsEvDRLihQonUqlVFRHc4JQdOYq9RrkIjWrVC6Ljn9PIopCoZ5DSFeF9z5BUwx0TRPdnjihe9ql2+1jGEJCOBoOCYOAalmk7PmeiNutVipkaQJ5jiIJlo+haViGSbVUJqz4BJ6HKsmEfsD9O/eI44TxcEQUx0COZZrIkkqSZARBVMC71WJTIKrOsiSjKhp5lpMlCautNo1qnUySBFzW9UhVjVQXaXqKqiCrKoqqYhRg+TAKkQDNNMhiiTiLCPMMkgRTVVAkiFORymKaFpoqkvpsy8QyHAxVI9Z1sC0h/1VkcgmR7IaIFVdUubBlqCAJ2FMaJQz7I6Q8w9JklCzHVFSUYuI/Ou0KW6skk6aQ5QpJkuF7HkgqyCpZnCJJMoEfYKo6F65cQrVM3rv54XIiGk8nBFFMq9VipdVC0jSSNGU+n2KoCivNOmGeEmUpQRQjkfHjt37KWqfDC9euoGomx4enqJLENIhJcglUTXAD4gTP94SVslJGNQz8OMYLY1w/pOSArCrFQJ5haBKaAoqUIskZsgyGppIaOqosGE5SniJLOboqZLZpFHB8sCfunzAijBMUcjRZEgvEKEbOsyJ1L2E2mzIY9jg+PiaKYuq1OnEU0Ts+YjYaQBShAqYmNphJknDvwQNkWaJcKaOoCpKsLBdaiirj+nN2dp9Qrzd54wtfxA9C4lRMjLIiUamUWV1ZYWVlFcMwODo6JfAD8kzCNG0qlTqaJuTojmOL8S0KCyhtCVVRuHD+Irqu4bkeT3Z2MA2Dw/0DprMZ22fOUm80qFUqhGGIN58jlGcqjl3CtizKThkyGA/HpEmEbZbQVIM0hVK5xurqBo4jImP7h0ccHR2yv/eE6WSCpknIUk6eJeRpDFlCq15DVmSGgx5pFBEEc+I8IcrEOa10VhmOJoRhRC5JmJZBpVqCAtw8Gg54cO8ehmlRqzcIfQ9NVbh86SKe53F4dIBpmui6TrfbJQxDkS4qIWLLybl580MePXzAdDzm/t27hL7PZDjEMg3e+NznKJVKXLl0Gcuy0A2D2WTKcDCkWhEJiaPxCEmR+exrr2FZFmmWMRgOuXf/Plvb2wBEhcpB13QsG2q1OkkqFqqPHj9i98kTTMNgY2OD7e1tNE1jf2+fKI648cLzDIcDHj56yHA0oFIpMxj0ybKUza2NIjUtQpJgpdMmz1JmU1F4i+OYXq9LkqSMhkPyPOf68zdotVuEUUyns4JumiRpxvHxCUftY+I4od1ZIQgjTk5OcX2Pue+hySqlUplGo4nrujx+vCOSHgt5ukj3E/yz7e1tkdbWbCJJMu++/z6+J+Kwny6mhHX6lVdeFupiTV92ZQXnTxHrEk2l3xfBH0GWoJoG6ysdVldX2FxdJ4tiVEUmIWP/5JjDw0N83+dzb7xGp9UWnBZJIk4TDF0Xm77ZjOFoRHc8JEkSZsORiDAulXju+g1euPEC6+vrOI7D3v4+0/GEKInQVW3JS5nOpiSJ6OJTFH2iwBeL2ThB13VWVlbY2d9j//CAer1eWIXE/JIXzQNJktA1nUqlwssvv0yn3WF9bR3TMIoF69MF+M9T6zy7cH32+EQVz7OP+1hHVFrALhar1XzBeMj/k1I9fXKh6NkO8s8pJOVP4d+f5vnFYj3HLZiPg+EQwzBYX12lgHkVG4VcxHenCaPZlOlkWhQ+DBr1BmmScnJ6ymQywfcDKpUKqqqQJGIcE2pRjXJJpJHmqQjxcd05p72eKGoMh5iGSbvVwjUtPMsiJ8d1XbQ8QwGuXb3K0dERH966yb07d/jTH/yQz732WarlskhcDQIOTo4Io4goSTA0nbJjiyZtvS5i4wsGSZIm+FFElCaUymVs26ZkO+iqhsxiMypU1PnSaihSZqMkZjqfEcYhiiKSvuqqgl1yaDfbVEtlZEVhb3efyXiCbVmEQQgIG3gY+HR7JyIYyLaXfJ7Fur1SLmMaBuPJmLnr8ujRI5qtFp3VFSqVClmWLS1haZoymYx5//33lynNlUqFV155hdW1NQzD4K23fsre3j6GYbC2tsarr77Kndu3ODk+5tKly3TaHer1OqZhsLKysuQeSbLE4eERyAI0H0YxcRJwdHTMdDpjMp0ynozpDQdUahXOnj2D1dYxTX0Z1d6o1SgutuKylakUa7k4jhkNhzy4f5/ZdMrO4x0URWZvd5e7d+/S7/eJkxh7bBeJbxppWjB74pgkjhmNhuzvH9Dr9Wg0W3Q6HeqNBgCKprKxsVG4Q1QM0yDNUsIo/EhxJc2z5X4pSYS6JCdf4lAEaF+hqSh4rkcUR+w+2cXz7oo5z7KWBYQ0FZbUxYZbVuSnvLBC1fLxAnm+UGAgkSQxSaGSti2bcrUsQhgkiX6/zwcffEAOnNne5tpzz9FsNlnbWMe0LI6OjiiXSnRaLdHMjULB0ZM+WtRfvJ8sy/B9v3DvaOiaJqDcHxtfPqng8ovUqZ/m+Ih69ee0BpZloCKJrfgjYRjR7fVIkphqtYJtW2LuUcTzyIXaN8+ygpX6zHN+gnI2KxhKi/epyIoAT/8cZem/13v7ud8jLe2Ai7F4ofDTNI2trU0m0wmPd3bIANMwSZKIJEoQvNyUPE/Js4Q0jQtVnibMV0rxM9OcAv4mjuLaVlSFcrlcMJ2Eu8H35hzsH3B0fATF9Z8rC8ueWuzjYy5fusz169cpOc7y3ElIy/O10FwJEVYxz0qLzyNf/FUxXsX4fiCcBYqw6QVBSJpmmKbHgkMqKTJkMnGaki3PqfispaKolhWXUJo+td/lCNdZVgDcQSpSdMV+SpYkPq1d9FMXnjqrKyiqglMqoRk6YRKjaBqlcoXpbEocp8zmnvDoOja6AeVKFYkcdzYX8dhRJAYX00RXNSzdwDL0JTDbdV3c+Zx33nqbJ0+ecOX6NWq1OpquM53NOD454ai4CG3bwTBMWq1WUawRnuUwirAsm7JTxvcDxuMJq6trAoZnCvuJJAtZ8/b2Nr4fMBqPMU0T23EIo0A8RpKI44jJZLa84GfzKXESMp/NiKOYIIio1eq89trnmE5nOI7DbD5nOpuz82SPwbDP1PXQDZP1jQ3anRWuPneN9Y011jc3ODo+pj8YMhmPCHyfn779znJBfu7cGeyyw/r6Omtra1y9ckXEPQcuk/GQvYNdfD8giT1ycjF5FjHTuSQLAF4c4fsBx4XFod6oEHhzZqOM+WxKFCe4cxElq0gK9Xqdra1tDg6PePR4h1c/81nW15vYlk0SJ1RLVVF48uZich9NltaPrOCZaJpCToaqygJeOBmxUnRwkcUl+vjhQ4IgxLQtsizHsmzq9TobmxvEccR0NkEqJpz9/X0hm04SATPUDWRJwBePT3pMZ3P6gwGWZVErVworUYPxeMx4OFqyRHzXJU1iVHJUWcHUdRzLol6pksUJpBmqrBLMXW4/uc3cdQkiwR/SNI2SU0KSFBGDHoSUHDE4S/LTQUGWFDRJJg5D8iRhe30D2ymxu3eA7/v4szmyohAVkb+qoaHqovCkaeJWnE8nSBJUy2ViRSKJBYQ5jmMyVUFFIYwFPL3klMglidlshq4oWJpOoBvEeowml1AUMchkEsRZRiohfp4mYIiSBLKUQyaAtt3jLooEzbKNkuZYqoaUZaSqyunJCUkUc2ZzC0WWyTOVOAmJQw9FN1A0g8ANBKRzNke3S7z00ototo3yb/8NsiaKooPBgN54xJc+81lW2x3KtSqTyZg//eEPsTSNWqtKVBSe+uMJru/zh9/5d2ysr/PNX/kWzfYa46FL9/SY46N9dENH1jRkXUeOYuajEaZhUNlYAyTcMGbuh0znPq1WUXgiRZJSTF1GlUGREhQpI5NzbF1DSk1UGWQpgzxBBixdJQxCwsBn99EDgijGcsqomo5qWegKzEYD4ixHQYE0IU9E8VnRYPfJDkmSULItQs/jaG+Xcb8HcYQmSVi6TpIJ29zb772LYRqstFpYtgmSjG0L289kNmIyndIf7tFsdVhdWydOM+JUJF8oqiwYRRubnDlzBl3XebLzhOlERAKvrG6wvr6JbTs4dkkkYeU5cSIkuqWSiDJ2XcHd63ZPuXvrLr2THpPJBEVVOfulL4tQhFqd8WRMEsXIqoaq65RLFarlCo1qgyzOGHT7ohBYqmFqFkmcU6s22d4+h1OqgqRwsP+EnZ3HPHhwBwko2zaSlJImIVkSIuUJG6sdkOCdt34qrFayJJK+fJ8z22e5eOESB/t7hEHA9uY6lmPTbImiTZJDv9tlOBqjairtTgffm6HrCi+++ELBXRpjW8JmcP/+fQ4ODjh7ZhvD0KlWK0DOD3/4A46PjhgN+rw/nXDn5k0qtSrVcplf+qVfotVq0Wy0l5OvXKxT5vN5EeHbQ1IUvvb1ryNJEgcHBxyfnPDue+9x/cYNkizDDwLmno9hmOS5TKPZIipA3rdu3eS3f/u3+St/+S/zuddf51vf+hayLPO3//bf5vDoiFdefZXT7ik3b90SCSaaSL7Mc7h8+RJJktDtdpFl2FhfI45CBv0eIllLJAoFQUC/36NcKvH6G58jThJcz2dza5vrtRo//vGP2XmyS7lUwQ8iLl+9huv57O3tE6ciBGO9vUq5UmKls0q/3+f2rTvMCkv+Ao4fFED7y5cvs7GxAUC31+MP/vAPhX0sS8XiMcsYDPokSczzN56jXBJ2l0XXVnShVcqVEoapc3ggUgbL9Rr1apmL166w1u5wfmubsmPTajeZunMe7u3w5MkTNEXlhRsvUK9V0YoOZpKlmKaBrukMR2P2Dg4Yzif4nk/36JiV1VWef/EFrl+9xrXLV5ER7MMH9+/TPTkRQRWKhjub0R/02T84YO75BFEkbPJIKLkobq20O1RrVVZWV7l17w7vvvsur776KtVqVcCFYQkLlRVFSPMtiy9/6csfWZ/lhSr8k46PQ2yVwub47Cbo44/5yALymU2K+N9HeqHi/1KxUn2mU7o4/lMEj+cLfwDPbmwWENmnj/n3fe2z2ZzZfMb9Bw+o1qqsrq4uuVuLVKgg9AkjAZ0ejkYoskzJdljprDIcDtnb2yMMoyL1cxFWImz9hqFhWxYlp8RsNhMctNmE4WjEwZFQSY1GI9bX1ti49hye6+F5HmkmmqhWKsaSV196GUPT+fa3v42mqORJxsbqKlcuXWI4HDEaj3nw8AF+6BOnKZZhUKuUsUoVOp0OE1UoskEijGOm7owkTag16timRcUpYeo6MhJxlhTwcxkJwUeRZNF086OQ0WyMNBONu067iWXWqNcEz+y1V17hrbff5ft/8kOiWIQXPX/jBrVKtQhnmPHgwb3C8u0smwfj8Zg0SXnuuefIs4yDw0Pm8zk3b97k8tUrNNsCfC0QF7Eo3kQhg36fH/3oRwCYpsmXv/xlXnvtNUzbJgxD/uiP/oiDg0NKpRLnzp3ja1/7mli7/+SnvPTiy7zyyis0G01UVWVtbY0sTYnCiP2DA27fuU2r0xFx6sUGcefJLtPJhNF4xNHJMTfv3qLdbnL96lUa9RqqWibNBI5krdUmB4I4JJckckmm4jhYhsG9e/fpnpzyJ3/yJ6Jo6c2XFt7JZMJkMmE0GqHrOv1eH8MwKFcrItTHD3j06BHz+ZyTk1Mmkyn/2W/+VS5evMi1555DUVWG4xGappKmCZIsoekqcRwRhznlwlKXLjAbQVCklKeFmgK0Z5RDEhKNmsFkLPYP9+/d5/at23z2M5/h3LlzorgkC/D8YuyRFBlZVZZFH0n66L27gPkvUCuAKIAlyXJ/2VppLYOMTk5O+PGPf8zzzz/PtWvX+OYv/zIrq6sMxyOmsxmPHz+m3WpTKZUZjcdifWDbBYOqtCy2SYhmYOD7Sxuhputouo6u60IVlOcfYe89W3h6dtz9RWPNpx2LFia4p8+bL/coi5+3HNKznCAIOTw+olIusbqyQqnkoOsaeVEeWJSaFp/lx5VaH39di/XE4jGGYaDJGs/OHP+hc8InjcmL+WuhiFMUZRmQIIKNdC5cPE8QBTx8JJJyTUMjyBOCNIVcNJ5zErIsIU5CFEWENSAh9ngZ4vUXhSdJzgslV4aqqtTrdQxDQ9cVjg/36fdPefT4Ed3uKbV6BVXVyKWFPVMhTTLCIOKF51/kK1/5CuVSSczfQm5bfAG59NFilyQhFSB8Wc6X85jvB0ynMzzPJQzDokgrFYWoGE3Txb5P05AUBUlGiF4KFIF4d9LyOhWlJASzL82WKr3F77MsQ9N0MSYUbqtFAfbTHJ+68NReXSHLxcByfHpKbzDA8z2SLEPVdAwL7IK54JRskjgmywQaQZElgjgCWWZ1Y53NM9tU61XCMODWzZtsbW3z4osvYDkOtu9TrTcoj8a02m1q9RpBFKIbBhcvX8LzfDzPF8wZVROeYlWhlFfEGyp8t0HgYxgajUYV150TRSF5lqIqCpapk2XxUqKcZiLdIU0ygihCVTXOX7ggFshRyHQyZTQcUKlcpdNZwzIdfN9nf28P151zcnqI57m47hBVVWi1ylSr14jjhPsPd5i7Lnduvsdjw+TR/XvopoVp2chpQqPscGZrgxyJu3cfMplMODw6YjydcevuXQ6Oj6lWKjx4+JhqpUq7VUdTFc5fvMrcHXN0+Jhclpl5HkmWo4URs8I2UzJMSqrO9lmdUrlMp9Ph/bffRUpTDo97xFFC2XHIs1wwlQomR7Va4wtf+AKqqjEaDDF0g1qlRrvVxg8Cjk6PCYOYwXDM2TNn2NhYZ+fxY6aTCbIqFal2Gqoqk6oSmq6AnFGp1jAMnb3dJxAGOKUS1WqFWq2GaZpF2lpa+NDLaKqKY1tYloGjachphjse06hUaL78MvcfPOLk9JS55zENQ9IoRlFker3u8gZe8JviIlI7ymLiwOdYgjxN2VpdI08SpCwnDH2RFGTZWIZJpmlkeS4sUjkcnJySRCGypqEXUfcL3kij2RIyVlllOh4yHvXxQ58kTahXy9QqJbwwxA8CTrvHqLqOads4tiMSRiLBIVMKSXp/0BOg7iTG0BQkVWUWBCLyt7CQWKYtZPFqwQMxLQwzJEkzvKlPFqfC6hWnGIqKrqioBVNG0XXyPBSDraKQpAqpLHgLSsEWUJCKuGKFVrshBh85RVIkOmtNdFXF1HTG3oypN0dJZPI0xw8SJjOPo+4x/VGfJE0I/ZD5ZI5lmbT1Bg/3d9k9OqLTERJQu+xgmTq1aon5fA5zDytTAQPJgsSP+W//H/8t9WqDjdVtGqjIhsnR8QHj0ZArV6+gahpvvf0uQRjQHQ2QJAVZUanUG6xvnUWXcvIkJQxdFCmj4WhkSYw3Hy/jdUslkWQWhD6uF+H7olho2CaKkmHoEqVSDU3TCYJYJGGpErZh4Fy9xGTusnt8gmHIWLZGGod4sxmlgjXleS6T8ZjT7ongJrSbVOoVnLItJM2Kymg8JgnFxqRULnP9xnVm85mwEyUJSZayub1Fq9Xh6OSYvYN9RqMxspLhOIYoLioK0+kURVFYW1tjZWVNxLrLKpPJEIkcw9Ap22V0w+DGc88xd+fc/PCOiKxud1BlhSSKqZbLOJaNO3dJ44RHd+/RPzll2OsTRSGT6YRytYJtmYwGPdzJhHazgaEq9PtdLMvk3PY2+zsmnjdDViWsksVh94ijwQl3HtznYH+f0XhCs15n++xZUgke7e8y8eZEqeA86ZrK1vY2iqpglSz6vQGHByc0mis0WivMXR93PmM8m6IoEnZZ8KaSFGRVQ1Y09p/scHx4gKYqNMtVzp09g6Yqyy65aZoMBn3GoyHBSgtFESk5qiYma6fksH1ue8nWSLIU3/epNxpohs7v/cHvoRs629tnCXyfcrWCZuii6JJlDAYD/uW//JdFEcFkPJ2yffYsc9fjnffeQ5ZVNjY2WV9bR1Fk/vXvf5v9vV2+//3vkucZv/qrv8r58+cxDINxYXn+zd/8TSRJbAZkRUJWFWqNOvV6DccsIcsyx8fHQgodhfS6p7z99k/ptFf4yle+zLvvvseT3T3u3btXsPVS2p02aZbRbDZ5bmUFy7LRdQN/7jEYDEmzjNF4woOHj5iMx4z6I0zTwLIsBv0Bp8kpb73zNvP5nHNnzxHFEZou7DBra2ucO3eOjY0N2u02AHfu3KHfFymMkiwRRzGlkkO5VGJlpS2sNJ0VHMfB9wOxIdc0prMZo9GY2WSKLiv80ue/gKYbfHj7FqQZvZNTLE0jz8+w8+ARP/nJj+isrmDaNrWGaGrN3LngnxXATdMwGAyHTKZTvvv977HzZIfLV65Qr9V4+RvfoFatsr6yBincvX2H2VTY5nRdZ21tDcM0MQyDuw/uI0lFeqQX4HsBo/EERZH5+le/RK1SwbKKkAtd4+rVa2iGwebGJppSbGzyHFUVi/ZFCp6UCxDs3HUL+DqcP38eVVUF40aRRRJiwfd7tri0WLx/fMH+LPQWPmpdkRYr0eWS9M9SAX3Utvaf4vFniZgW6/7/sOfN8TxXKJAdB8uyybJcYBAW3X9FQVFUVC3DLpXQDIOv1Ztoqgp5xnAw4NHDh1y+fJVOoZgRTBXQNY1yqUwYBhwfHzIYDJlMJtx7+BDX97h6/TqaqpHGMbVKle2NTVF4mE7Y3d9nNp+xVhVhGQezKZtbG/zv/rf/GybjCYPBkO985zs8fPyI119/nXqjzvmzZwsGqozrzun3e3h+SC6P2Vxbp1qp4Pk+buAznk+QAUPTRaS9bpDFCV4QoeiCL5hJgmvlBr5Yu0sS1XIZUxMqcQmhLlVURaT3IjZq29vbfPnLKnv7e4xGQ0qlMoZpEgchlXKFz372ddy5KPJub2+zubnJbD4XjDnExvnrX/86SZriByK04Ac/+MEzn5u41u/dUQkCn6tXr1CtVtlY26BSqzIcDrn9wz9lOBpx6dJlLl++QpIINf/f/bt/l6ODQ1zXxXEcVjodtCJ+fqFOMAyDTqeDpCjkktjQTaZiPp/NZkg5vPzKy1yaX+LipfOsr68zdae8+eZPyLKMcrmMoev48xlIkKQJpmlTLld49949jo6OODw8wnM9sV42DWYzc2kL0zRRBGm1mjiOswwKms1n7O8f8O0/+AM2NjZ59bOvLVWp5XKF+XzOd7/73SWu4dz5c3zly18WSn1gNJkQBiGGZWKa5nLdfunSpaX1TCkS0BdjiKqIwjt5Tr1W48UXX2Q2nXN0eISuakiZSDiduyLoZpFql0uQy5LwrSK4s4uC97OF88WtKxR1CkoueHlBGPD2228TFViBw6Mj1tbWeOXll3nhheeJk4TDo2OiRKhdtrfPYJmmSBhVVEqlEo7jFGni+tMCWPHDsiwTjCpJcAllRXmqUHlmjPgIl6n4tXjAs2lx/0scT5sBz7KxxPyaI1JtB4MBg5EIDtM0nZWVDpquifR5VTQoZEm8z2ebER+dU54WsoRgI2YwGCxT/KrVKpqqFYEL//MVsZ8MLf+Ykmw5r4miW6PRoNlokBTNMcHCTUDKCAKPyWSM57qEoY9h2AJDkaXIMuR5odRTVVKeFnuQQNFEAz/LFGr1Gq1mnSdPHvNkb580B8O0BF9VFk4kMojThEatztrKGpcvXuLC+QsiBZ5CHItIy16q+ooC11JVmAp32cJGV6lWcV2PIAyp1mpUazXKpTKqqnLhwjnyXEKSiiTRItVOmGiEy0OWM5BYJhADFHBpcglQ5II9BUqWCXtlUbzM0oRet8t0Ml3yvq9e2vyFn+GnLjyVqiK1Iiyqv4PBYNlhkFUNHQEwFjemAUjISoCqyOJLE9Xfaq1GrV7Hcmy8wGNnd5dSpYJhWeSSTC7JmLaD5TiUKhUsxxEgrKJTPZnOQJ4sBzVV11BkBcsuusxAmgjQl6aJuM4oCggCXwB8NRVN11BCcSJFFyrB933CIGLuh8KXbImKvaarJIlgByFJVCpVyIW6RYB/fUbjIWHoE0YuTqmEUzKoVuqoil6k08HjRx+SpnB8cESr3WFjcwvdtLB1g82NDVTDYDicIkkSx6enQup8eECv38c0TU5OepRLZS5eOEejXuPatQvohsZgdEyeZvh+SI6ElgqLUpqkKI5IHrDLJdrtNhcvXmTY7XGwu0uvP0bOJRzHJs0y5nMXz/Pp9Xo0W20uXbrE8fEJo9EYTdXQVZ1KuYqiaqiqTp5LBEFEqVQWKqmDA6IkRo1FYpSiysgZKBIoqkwu5Vi2geOUkFUBj19sVBzHFqDjOF4ueE3TxDQMqtUyZCmaIjy3wdyltbLCysZGUSyLmLtzwiBYDmdJHGFaFpVKhTiKRAJGIoDOeZyQJzCdTCk7DmkifqaUIzo4cYJlGMiKilwW195sNieKYobjCUahJFA0DUXThGdYlnDKJaF+UQ3SNML1p8SJkDA3603hG/ZkkjRiPp+iGwZIYGgauaaSRJEA71o2SZYz91yxIJIkFE0kXoVBSBJGkKZICNuUGBxkFFVDVlVUXUcrZK5Zmgm4ZpKiFFBzWZKRZQVZUchyAeTOitS2vKiyLx+HiKlXVZlKpUROTuj5SDJUqiUs06Hi1Im7R0zCAEkVA2UUZ/hBxGQ2Ze67pHlOnCQEXohR0goVzgFBEOLHEaah45g6piUAvbEfEucShqSSyznoMnEU871/933Onr3A1q9fxirXkHWVg5NjZp7P2sY6lWqVnSe7jMYj+uMRkqSgqDqdtRLrm1u4/S6RNyeJAiQZTMMizmMmgYciOyiKtYSb+oFHFIWkaYymqxi2hqzkqJpMtWxTKlUYDkaEQYSsgKoLboQxHHHYPUFTZXRdIUsTIt8XXICiID735kxmU2zLpN6o4ZQcTMuk0aijazrzuUsQBszdOaWyYBNlh4cMhkMRl5pltNptWq02/eGAXq+H67mYloZmlJFkEak9m82QZZlqVRR211Y3mM9dDg6OsEwhNZZlGdPQKZdXmc1nvPljkSpUKZWJw5CJZWMaJoauo8oKaZ7QPTllPhNQbshFcdTQybOE2XSCgkSlXEKVYX93B00WkHJdV4mTCFmVMCydwXhIEEUcnZzS7fcJghBJUWi220wmE04HffwwJMszZtMppmmwtrmGYVs49QqSqjObh9ilMqblYNkOaZoynfZRVZlqvQq5sIbKsoYkKwx6PcIo5Ny5S5RKDvV6jdFoRBRFS5bffD4XKoFC6q9qylIhaFoGjUJ+HwQBs+lcJDDZQsL/9rtvY9sOqqZhmhZO2cGwzOWi0nVd7t69i6pqnD1/HlmWWV1dI4pjdnf30FSdarVGq93GdV1++tbbPHnymA8++IAbN67z2mufxbEdkfLquqiqxhtvvEEUxxyfHAuFpi4aDY1Gk2a9gSqrTCcTfM9DQhQ/d3Z2WF1d5blr17hzRxRPDvf3GU8mOHZpOS84Tokz29uIdoLE5vomjuXwcGeH2czl+PgYdz7Hdz0MRcMs6fSmA0aTCTtPnhCGIa+8+ipZljGdzajVajQaDba2t7lw/rywXgchh4eHDEdDFFVBKcDEuq5TqVaoVaqUnRKVahVd1/G8SSEZV5jPXY6PTwg8H01RuXrlCtVanSe7T3CLwow7nxMnCd2TE+5+eAsVmc5KB8u20U2DIArRwgBZU1FlGU1WmUynHBwecvfeXXZ2djiztY21sipk8ZZNybA4PDrm6PiYXq+H7/s0GiL9qFqrEkYRp90u1UqVZquNrIzIMnEdq6rC5sYmrWYTCbGRDMKQjQ2x0a3X60iSvNwQiwV/Ti6JzRbAfO4yGPQ5OTkB4MyZM0XCcIySq6hq/lSqX2wcPq5sWqgEPqnjnqZPbQtPa05PlU75UuW0NHDwtDe+9OD9Rzs+bpH7JOvcz/xeEu9gsSl81rGSLzvOi294+v2L957lOWEobEaWZWEYZlF4ylns2aTC6iDnCqYl0go7tRae79PrdXHnM3rdHi++8BIrnQ6KVhQdpXy5np3PZ/T6fYb9PuPJhOOTY8Ik4Y0vfolatYYmyZi6QcUuC4aoaXB0elLcz44IDVEV2p02Vy5d4sMPb/LDH/4pt2/f4cHjx1y5epWVlQ4r7Q4SYOgqJ6cnnJ4c4YUBYZJz+cJF2p0Ow/FQNGfdabFOFAlfuqrhBaLpZ2mO2OxKOSmZ2NyDCHcxLSq2Q1bYiVVNsCVFYJGEJMs0Wy2ccnVpQ7FtG0MX6dqGrrOxscFp95TxZEyr1eLcuXN4vlCVHR0cIssyly5eJE4S+sMRH374IXfu3FnuIZTCShOHIaZpsLm5wdrqGpcuXqY/HDAsvufktMtv/MZv0Gw2AfjpT3/K7//+72NoImBHU1UsSxSvxSZOXC6yolIuV9BNi8l8xsyd4/k+k+mUXq+PbZlcuXyFLEtYWW2J9bjnsleooS5dvES5VMLzveU1XC5VUGWFR48e8sHNm4wGI/Is57OfeQVd15EksCyLdrNFqyW+1tfFGilHcIn29vaEvXA25YJtcf3GDSxLJMM+3nnMcDDk7t27S75evVajVq2RJDFRHBL4PnPXJU2fKmFMUyBMkiQmDKOl7Wlx4yiFWoM8x7Edzp09y4N7DwQEXVUhE7gJPwjQFBmTHFmyyWWJVHpmhMmfqk2AgjVU3ONFuXGxOc7znCiM2Hm8w3w+ZzoWwRPNZpNz585x7do17j98zHw6QVYVdMOg1WqLsTlJPxI0sVCHLFU/hUoyTUXokoRQd0nLG/7pGLL4vmeLQDzznp4t9n/SGPbzjl9UqPok052YX1ImU5Gwm6YpmqYWqYxFkI0kLO2LfcjTwtOz1rdn7Y3itQh0hisYxIUSEZ6ZZxbP8u+hKP1FqjDRMHhGSVZ8j5inoFwqUS6Xhb09EVZnUcwR15vrugSBTxSGFBcNeZ6RZdJy7SbLgockXre4yhRFhjxHVmQc26JaLpMkCb1CSa7p2lJhDKJgmsQJjVqDlU6HtbU1VlcEj3V5QimK4ZL8ketlUQCMY1F4Oj4+Eeo7TScorMGlslMAy0XQiWVaAoniC9VkLj1N5MsKq2BWvN8kSZdFShQZlAX3SewDxQt7qgpOk5g4jhkOevS6PdxnxoJfdHzqwtOjh4+WUYCqotKoNYjjGM/1hJRRN8izjDDwmU3GeJ5Hrzuk5JhUyhaKqmCbFg/uP2Y29Th3/gqDUcDDx8dMpjEn3RnDwYDJZEwSRZTsOtE8IjYiylaV/mDAex+8v7yYnr9xnbWVFXq9HmkS0el0CiBYzmg8ZDAQnRHL1IVdBaHqycKMMImQNYV6q87g4ZjHO3u8+MILdFotvvO979EfTNjd3cG2bRqNBsfHx+wdHnGp32cyEzfqfD5nMJ6iaxpRlJKigOUwDRNGbp8cnUpJ5uL582yvb3J+e1vYPrKcwWjM8ckBw8kU1/O51D+lUq2jydBulNGeu8hkMuH4+JhA0/A1nZV6HVuXefvNnxDHMd/9I5PVtSaf//zzjAZ9jg8Pabea6JUyzXoNWZIwNK0oKs0ZDQfs76pEcUC1UaXVamPoZa5cvkilKhKfptMpd+/fwTAM9vceYVkOG2sdDg6PSJIMu2zTXGny3PVLnHZPuHf/Dp7n8/jxA0ajIb7nkWeRSJFLUlRZwdJNwnnIlBGGYhD5CaphYlZyvCTET0I0XQNZxk9j5mHAxHPJZbDiCFWXmfkew7lPEPrI0yHT0MWNXLI0olGrYGhnycmpNcQGu1qpkaQ5YZgK/6mUEwehiKgsksxs28C2bWTTQY4SJCvAMTTRlSkmszBKkPOcimkSyQo+BcRNljjt98jzjHa9jpRLnB6dCF6TYVIp21x//gV2Hj1m2O/TG3YLJZGMZaq8+PwVcS0kGYomChpzd06W5Vy5eg3TsvCigPlsRu/kBF2R0VWJpCyR2gLALksKZ7a38YKQB7t7BEnG3I+xHAe9XMcG0ihkOJsyjSIC08IPhLw7DjwSf46sayiqiWPaRJKCoSiomeBJ5UlMlsaQ6+SSLBI98gzTMpFziW5viGUHxHnOxJ3izj00xUA1NGRLwa5aXL9yHV01KZcq2FUHvW2imhayqlGvuviqR5rHzL2AUXdG2XFIOm3q9TqdrQ1Oj0+Zzmb0h2PURMa21vEDn3/+z/57Ll66xAvPv8Dm5jlKlRqJLDMLAjrrazQ6ba5oBicnJwKOSYBqJcS5S5TMaDgWuiKTp5BmMpJqYZoVqtUGWpFCYhk2YRQTZBlplpFESSF5T/ATiSyIMWtNTFlmMpkSpjma75PHMbamoUo5aRyQhBqyMEiT5cLSmPo+G80WrVaTc2fOolsGmqlTrlUxDJ2XG3WSOKE3nhBEEX/65k+JoogoCvHDmDSD8+cv0Gg0eO+dt9jb20Mio+yU2FjZZNgf8+b4bfwwQJEFUyhHXhZ3wjiiPxownc+4//BBIZvVyFJhLZSklNGwx97uE27evMmLL71Cs9lk6+w2sqLQajWErDZNcF2Pfq/Hzdsf0hsM+NVf+RbXrl5DVWTSJCJOYk5OT/k3f/RHTGdTXvjMZ9k6e55qo8nOkydMphM6zQYly6BkWZiWSZKnBIHHbDqmUalh6QaDXp8giLDsMrKqMBm7NJodtrfOcf/eA95+711q1SrlcpnX3/gykPP48eMilTQjiT2SOCEIhRJ3OveIDo/4H/7pP2U6nZEUnU6QKZdq5B2ZVz/zBs1mkzffepOMnFKlieefcnzcL6THGUEYI5Hw5o/fBHLCIMCxbUxD48KFs1y7dg3bdtA0jcP9I/r9Pge7e1RrNX71m99EVhTiYnErSxJv/vgnHB8fc+fmh0ynU/7Nv/lD0jSl3W7zwgsv8a1f+XXefvst9vb2aTRbpFlOTsZkOuHNt35Kq9Xmq1/9ajFHufj7ByRRxP3799B1g7/xN/5GUaQ6QVMN+v0Rjx4+4d7dB1y8cEUkX2oaTqkEqcTjRzvcvX2XKBHMDk3XyfKMBw8eFmyRkGq1wqUrlyg5NuWSwzycM5wktDsNkjTFckwmkykPnzyiUq+yee4cM8/j/Zs3efDgPrPZjJWVFdorK7TaHVxvzmnvhGqlQrVWYXv7LI1akySG6cQjjlOyPCeIEo67fe7v7GGbBhvbZzAMHUXKOLuxhud5KKrEZNTn9/7g94jTmC98/atFDHHO6cEBhmHQrNap1mrIisLB0SH3Hzzk8PCQfr/Hq69+hldeepV2s4WqqHz3O98TsdpxRK1coVaucvnyZWq1GrZtoSiiMZGz6JiKzvj6ygphKNSBElB2RHy8WPRJaKqwqeqGyXQyYzgYUitXBLBW1chzEUqAImLFD09O2N19wnvvvQd5zquf+QyGaQrrsSyupeUKnI/KeJ5dvD/LTBELXrHAXygViu8oetXiWlvY67XCSrXYiEjP/Pc/duEJfv7GbaHyeraLHKeCDyqrqlD6QmFzeOb7eFpSW9jmFraIyXBA4AVC7WbbQqkky4KfI8lkBWtOpBGr6KpMu2IUavM5vdGA+zuPKbeafO2b3+Dc9hlqldJThYelC/bmkx12njzh1u1bXL5wifNnL3LtuRuomk6lXiOIInZ2d/A9j9l0xkqrxUqzzfbGBiutFtvrq2i6Tr1eF2sdWebchfN845e/we/9wR/w9jvv8g//4T+k0Wzyt/7W36LdakGasGUYtFot7u084dHeAaqhISkS+7tP8H2fVrtBSTdo1OrIisJwPiEsEviski3ORZaiSgq1cqngYcpLR4kki2LB4nKVFaEaSrOUOIvx84gz57fZ2l6nbAlFwnQqFEPvvP82cZogGypJluB5LuP+CN/zmE/nJGnCW+O3UVUN27EJPZ88TTk4OWHuuty4cZ16vU6jXsO0LBrNBoZuMnV9PvjgFrdufojrzmjWKly+eB5dN/j2H/whvdMuL73wEhcvXODatat8+MEHfOc7f8Rf+st/iXPnznLt2nNkWcbJyYlQx6YpWS7A87pmYJs2YRDR6/b5yY/folYpcfH8FkmSEScJcSysau+88z4ApbItmHaKRL83YG/vgLWNDVrtDqurazi2xYsvvECSJLzz1ruATIZEpV7n7MUL6JouUjYlSaQ8hxHtRou/9pt/nVarRalU4uj4iP6gT7kk0sBeeukl3Pmc3d1dRqMh73/wHo1GjXq9xsb6mmhcmQZynou0XsS9pSoKWsl5pnC9ULqIInomgW4YtBtNzmxvc/XqVXJgGnh4rieCbIYDsdEno91qsbG+IRAruiHSzwvb5rKQLgn4dy6JtdZ7733A3t4eu7u7pFnGxpZADFiGtSyiN5oNkCU2N9ZEsXNhHysCHURxQUF9Ru0jlE4LGo44wjBkNBqhqCq6KlKbZSTSVBRQZeXpVvvnFU9EkScvGg4/r+j06Rg6ovCyKGSJs58vaoBZKhrEYcijBw+AnGuXL9NuNUWAkSSjqZpItC7YrE+tbIsCz0I9uwClI86GJKzBlWoNpbC5GYYprFiSJOaQLCXPizTqT3F8EmvvWau0xEKtW7zOQraqaKoYPzOJRrNFq9lBV0ySUKjUJUVGt0tMpi6j0ZTdx3vkiUS52kJSdTIEzyhPk+K+k1FyGUW8gGXzQfB+cxzDoGyZhN6M/ukRcRKJ+TJPC7yLIRLlY59S2WJja4NytYxm6MvgBUVSniqccqFEknOJPJchhzhNGQxHQtGZpURpgh9G+EFReHI61KpVoZjOxf0hS2A7mkB5ZBlSKlRchq4JVMFi7lcV0jQjTVLmvocXBMznrggzGY3wfZ9BtycarrMpvh/gF8ENXlF0ynP4z//X/9kv/Ew/deFpPp2SZTlRHGPbNuVSiSSOSaIYxxEdXrKUNEnxPBffC4tFvxg4FHlh/5ihaQbTict87hOGKYPhhPzBYwaDHtPJmI21dcplAbn23QAyiSiM6feFlU3TVDRVpVRy6J12SZNE3CiqSpYKoFhSeNkVVcUwVCQpZzoTF1KaiQ9UN3WQBBfKME0qtWpBsBcyWoBarYokyaIj7rvM5zPSTPicsywlzRSyHJBkVF0nTgLCSFhwQERJU8qwbJMkTYmSFKSc4WhInieEocd40CeJYyqVChISjmkQBzpmwf1J45gsiUkTEeHtuh6+F5CmEWTPE4UJs5lLyXGwTANN00ER3SIxPkgkcYrnemRZjm4Y2LYDmUatXqNeq7G2tophaOztm8RJwmQyEoOrBUkSEccpfuihGyrVSpskCVlb7XB4eMxoPBZgSNNA1xXIM/wwQsrFYJClGXEYE4cxiR4LCaymUbw08blJkMYZGYWkVhIDZUouviRJOEmlvOgQ+8JOY5kYuoYkS1RqZUzTpFFv4vsR44lXSAkhUVSRCpgLRY/tFEDJHHJJRlIUATQvOjRZlhdTpFBtyRLI5IViSCKNY9IsXQ7K89kMWVFRrZhK2aFSqaKqqgBSk5LLEipCdaQZGkmcEEqxUCwhLG6SLGEaJpZpksmiA6cpCposoRaL4lSRCFWR/OjYNlkuFsFRFJHPPWTdRDVlNNNGVVWm4xEJEkEYEcWJGC+zjCyJkTUVCQFbz2UZRRYe34/2sQVnZbFQV2Sl6EoFyLKEG3hEUUSWZSiGWsSGi2KfKsuoivAVq7qGYqgYlomqGsLKGItiTpbERGFAqCp4vk+j1cKpVLBmU+I0wvQM4iRFUy3c+Zz9g13qjTpRHKPpBk6pgiSr5JKEXSqRpTmmbjGbzgWPKk+J4oAkDcmyGF21MBRFdKMzyBEAb1XRCouoAKdrekIeiwVgFLliUkMUj0lS9JKBqmpks7lgORTxxqqioKlq4fXX0IoI6DxNhU2y4JU5lk2lVCZXJSgg8ILXZpLpGW6ckWQzPH9AmgogvawoKAUsU9d0To6P6Pe6Avq5SMyIwkLB6AnbQjFBTiZTsaAt0iWFXWBGGEZYBXdM10WH3XMTwihgNpsRFUVH2yqjGzqWbSNJEHhJsXHI8T1XxMtPp3iui649tUJHUUy3PxBWq7V1nHIZSZbxfR9vPkeSRKpQvVEHctF5ikLSOBaTuqoUHUSJOE4gFROjrorX4vkep6cnqJqKaZmYhcUlisXCS9UM4iQjStIlqNvzA6IkIR4OCx6BeP40TdF1g1KpQqlUwSmV0XSTOImJ4gQ/iJjPPbEYVWR0zUCWJUYjAeRWZPHZq6pCueSwurpSFJ50JsMJ08mELE1RJEks9DSdDAH4DMOA6XTC6ckxlmkJMH2/h+3YnDm7TafTodVqoygaQRDieh6arqNqKrO5YMtUazVM08IPQmQlJPA8AtfF9wMURaPVaguO02BEEIScnvaYzeaEYYRtO1TK5aU1IwpFRPZkOiYIQ8I4plKtICsK09kUWRKx5XZRMDRMA1VTSdKEKAyxbUtsNySxAHfdOUmWYjkOo+GQ2XjCweERnueyuraGruv4vo+iKFQqZUrlMk7JwXHKOKUSWSRigBefkxuIjrvn+5RLDuUCxCxLUC2XUBUJ1xfMg5nrUa1Vaa10RNKXJ+LG5Vx04fM0Z+bN6PcH7B3s0+v2mEwnrLVXcCwLyzAJo4j9g32SLCUlx9AN2g2NUqlErVYTFmZFxjStJRg9y7OCY2iRZxm1aqVonol1RxzHRTdZWXY1g0As6EzdLPZHousaBSFSkXy3CCaJk/hpl7KYSxcd9I+nGsFHNz1/VrLQz3TdJWGTStNkqUxWNU1wG/OPCIH+Z1sp/n9xLLr0i01NmmaiziRJYi0nF0vjHMH1yJ9RPfG0eCW2iEK15/s+RslG03XsojiSFviAJElQEbDtxc81VJ00FcnIYRgxnc8xbZtKvYZuaEslxaLjHccRs6loenpBgKJqlCtVGk0R/BMmMUEYEEYhXuAzm09p1kRKU61aISu4kJquY9iOSDmKYlqmCGf58NYtnjzZ5eHOI3r9Pv3BEMM0cQwD3TBxbJvD3kBcYwVweD6bEQQ+a6ttdE0VlposxQ/DZYFyIR4jl5CRkVXx3p5uoZ9VmxV/JS8KmgXMNk0wLQNdtnF0E4mcJA5xPZfReAiyjGbopLlYp2RpQhoLJ4NfbJQcp8Tm5qZIuXJKHB+fMJ/Pl9wep1zCsizKlTJRmNAfDBiORozHEyoVh1pVFIKTOGZvfw/f89ne2ubCxYtce+4a7777Nrt7uxweHWHZFptbW4BEEAYCEJ5lBZ9FWirPAaIo5vDoiCRucu7MhgjGCUIcp4StOfSDvlChhDE5EVEUcHJywpPdXZrtDtVqlXLZwXFEwTOKIlRNQy7SllVdxy6QGovPIwex+Qa2t89g22K9GCcxnu+JkBFVFfsXIElFune/30dRhFuh7DhF2I8Ei3tkUTiRFcGbzZ/WvhdF21ySyMmQFRlTLlwPpRJ+GJIXHNg8y8ScG0V4oYdt2+JeyJ4NTXj6BZBJ4g9RGBJGEQcHBzx+vEOv10PTdS5euoSiKERBiGGIxrNhmkXjbcE9FT8/SZPl2KgqAj2RJElhO1y8EZYDnwjX8oWyTdcLdcriTf+cAjg/aztbKIg+PlYV/8pC1fUJT/bMk3z0r54NfVg8V5IkRFHEfDbFMAwa9RqlUklYymR5adF++ro+KWjho39ePFySBRdXUcXa/ymInWUD9j/0+Ojr+PjziIEmz4pGyzM9ENuyxdiniPkxiRNUWUeRVeLYIwoC5jOX+dQt6ha52MfkeVEvkJByCSWXkXMKVd1CiSQJx4kkFW6rgMBzkVVZMHYLTawiLxRMGbZt0263MEwTSZbJ0wWb7KMFzYVaUGDLxfMs7gNd15FkmSAMSdKiGaQKR0mWpIW1sXjej3CixLlL04QslYjSGGGbE3vrOIqZzufMXJfpZEoQiGA333PpnnQJAp/pdEoYhPiBj+/5RHG0DBL4NMenLjzFYSQsaZ6PoaoYmsY8SQg9j/WVFcrlMqPhAC8K8WZzKuUyL16/hqKBpMKwP8ZzPcIgZjSc8oMf/BhFVbl0+Rqj0ZCd3T0kUmRVptqoUC453Lt3H9u26WxuMp1NyYpqZpo/rbyGkU8QBkymI3RDxzRMchIkOcMwVZySiVkUmBwvIMty4jgRnnldp1Gvs729RRwH9HonRRRimd7pMVHgsbG+Qtkx2VzvMOx3eeftN/niF79I7cwG3dMDYY8yJRRFp4TNVJ4zy0V8o1OtoGgCuOXJCZoEJV1j9cwav/SVL3BycsqgP+Ttt96l393nZDcUhQQU1tc3+PO/+mvsHxxycHTESbdLtz/g+RdfRJIkfvLjnzCajPnBD37MbDplOBgwn7rUqmUC30dRVF64cYOS47DeFvDWNMpQ0DE1h7V1iKOI2bzPYHDE9/743xAEAfP5TEjzZYn3RmNcV/AKFFnmg/d+KtL/DJtqrcra2gqGrnP+zBnObm0vJx3XdXnvnXfI01ykEioChGhoOo5poSKKMI1qnUa1gW07BElM7IdU6w0Mx6Hi2Oi6KooGac7G1iamoXPm7IZIRUoi4lBAti3TIsszDo4PGEzGPHqyy3gy5/RkgBiocyp2CUPXcUwDQ9eLRYRIU1ykqTimiaaqPHnyhCgIaVTrSHnGaDYR0F/XpVmt4RhlyvU6kiT4ZVHoc3p4hKoolGyHqqrhl2qkYY4s6WxurGMaOknkM52MeXzrDqZpUSlVUE0DVTe4cekiqmEwGJwy33d5+PghsizhGCZl00Y1bVIgy2UqpTpasXjTNIVOq0oYJPh+yGTUY+YOuXxuG9usMh0PyLIUx7JRFZU4iIllTyyacxHDHca+sEDpEqqkYpYtUUQ0NbI4JEwCdEUTNpQ4LhL8IPZdjnYnyKpGrVym3exgmjbHwy6nx4f83v/0uwwnU1RZQdN0DN2g1WxRqtQIxhMUUk5Gp8jkdFotJGTCeUQUJMRxhixrGIbNxmYJsdmE0UijOzihN+zykzd/gm5bGKbJ9vnzlEslIi9nNpnx5OEeaRpz9eJVPHfGh2+/h6MpmKooDCiyjB94hFFIEEfFQn0OlRKyqmCUbOQk5fSkSxQnJLIItYhSIdVVJSgpCrJpgqIRJYI/FsQxkm7Q2dziwrXnsJ0yuqbT3T9iNp0ycXdFYp+UMgk9jgddIf1NYpSiAyFJgutSrbWoVSpcvXqFx48f8+DBfc6dOUutVmM8GnN6csp7773PfD4XUfOSxHg6pVKyqZYdaNYxdJPt9U2yLOdP/uQHSLJMuVJZptIFrkdCzvbWOiWnhKyKzf/R8TFz16WzckSSJpz2Ttkoihwnp6LQVXJs6s0W589f5KVXIqIo4t133+P99z7g13/9L9Bqd/jcL32V/mDAO+++U3RJVyFNODo4ond8zGg0ZDjqkWUZhqoR+B7j4RBD0zF0ndPjY/I859z588iKzNtv/1RsfFMKhoBCpVrl2uXLouEQRXz7238AQJblbG1v8epnX+Xg4IDDw0N6/R6u6zHaeUypVOKLX/wiYRix8/gJYRjR7/ao1mp0Om0e3L8HEkxGI1zX5cP338dzhR2v025RqTe5du0q9XqtSEjzuHT5wtJfrxa25G5XpE394Ac/YG9vn9u3b7O6usqDBw/odDqsr2/QPT3h8OCA27dvsrOzw5e/9GUqlTIXLlzgzNkz/MZv/AaGbrDz+CFxFOE4Dicnp/QHAyqVCpqu8/wLL3N62uUf/5N/ymc/+xrXn3+B7uEBM33C9pmYMAz5l7/9u4L9YRjcvnWH4XCIZZq89OLz9Pt9ptMRrWYLCTg+PmBtbZWXXnyBMC6SXYuNnG1ZSEhYtkWSJOzv7hcSb4PbN2+xt7/H+QsXsR2H8XDEeDgSXeAMkjDi8YMHPLh/n62tLdZXV6mUygyGA/7JP/nHnD13jr/4F/+isAo2G6RJhue5WIaJqqtYikW31+ett94hI6fWKNFZadFpdTAsA0mRWdlYpd/v8d6tD2i1Wrzyyiu4rst8PufW7ducnp7yS5//PJ12h+5Jj17vNt/74z9m5s6YzKZomoamqrjGFCWHS+cu4Hked2/fZn1zky988ZdYabdpt5rs7Dzh9p07TGeCEfbFX/oiaZIzGA7QdR3LFIpvRVOpGlWSNOXx/gHT+YzTkxMc26bdapPEMXEk5Ot5ngv1TGKgJhF+4NPr9gRzT9VYXV3l3LlzfOVLX0RWZErlElmaoanacsH6cbbTx49PKkYtfr+AieZ5jlSotjzXZToTNpUsywRXSjHIyT5SfOJZe8CnTLn5/8bxZ733hapZFEVTgiAgTlP8LKVi2xjlqrB/ZWnRCCuW/4UKgiwniWLm7pxZESePBJYpGlqT8RhVUSg7JabTKf1+H8My0Q0Dx7HQNY1c05EUGc0yUTSVPE3Z39vl8cOHXL96jXa7zXg4IIlj5EwUuuIkYXt7mxdefgnLsNA0nZ29XTzfKzg7EiuNFuc2t2jWG2jFpnn5vjUBufVi8Z6n3oQ0F6lLv/qtX+Hrf+5r/IN/8Pe5e/cu/+f/6r9ifWODv/E3/wta7Tbra2vIqk7JKRfJwkI5kMQx7dYKumHgecLi5oc+9WqNcqWKouqAjKIsrJ2JYIwUSomFWuJZ22eeFsUoSSIOI2ajCZMkhizjzMYmuq7jBqEoVgBB4DOajLl8Xow5ckfBclzefO8tDg4PuXXrJufPn2dr+6/w3HNXeOXVl/jt3/kdPvjwQ55/4Tqrqys8fPgIWYZKucRbd9/ht37rX/Dc1at88Uu/xHPXrlIpV3jn7bd5+Ogx/+y3fovnn3+e//K//D9Rq1aoVqv82p//dT7zmc9w2uvx3gc3OT7tsbKywhtvvCHYRrJE4AcEobAWJ0lMvVKmZBqsd9qsb67z2uc+y/7+ATs7T3jttdfZ3jrDdDwiTRJ0XeXo8IB//a//FTeev87XvvF1zp+/yNr6Oh++/wHT6ZTpVOA6VlY7RRoeREmMGwRQqCo0RWXmznn3g/dJ04zOyuryfl9fW6PZqLO/d8CgLzg9k8mE/f19sizj9KTLeDzmyZNdrAKN8NJLL1GpVATHK0kIwxBNFanUQn0pFxvSfLHnfWpfUhSCMGA0GdNe6VCr1Wg1m9SrVc5sb+EHASe9LpVKBd2yUVShhFsUNZWCpSRLEkEYMp0JW+Tt27d55+13GY8n/M2/+Tc5c/YM22fPcHx0zHf+7R9x5swZLly4IBpCk5lQV6UisXGRwKfpGrphkCSCVRZHsWheKwqKomDb9rIA7bou/X6fTqfDxsYamiaazooiGlqL498HJv6zxzOVLunj/5I/fUhWNCGKsTd/WiZZNjj63RPGkwlpnmGYBmvr60Wj/Ckc+uOv8+nrlZZ7vYUF7dlxVqSyiZ+dLZhAH3vvP+/9/1n//jOPX9rXhL1rGeoiy4VSKRNzFzKrnTbudEbFKRH5AaEbQSqhSBo6umg2ezHexGM+8SBTsUqqKATKErmSkytCRJDxNDcwimNMQ6dWrzLsd3n44B7HJycEYUDFrKDqQmmUShk50hJ2fu36c3zzW7/C6uoKeZZCnhXNDdGwkhdVujwjzxfnXzCz2q02zWbO1tYWJ6dd7j14QK1Wo1arISkacZIzGo0BaNTrxEnCeD4WUHFVIU1SkjThaP+A2WzGyeGRQIDMXcJQ7HOTKCSNIxFaAqiyuOYdx6JWtdnaWMHQNQxdX6r1575XNAZ/8fGpC09ZmqIqKp2VDqVSCcs0l5N3FEUEgb+U9i0uBF1TBfdFERdckqZF0Sei1+sJpUsuOn+qpqFrBrqmFJ1TDc0wyXKJ3b09kjRB1w00TVkmgAnwoajQxkmEJOXIskQUh0RxSJxEhdRRX6bfCGaWApIYMEzTpFarkReDh2i+yKIDHYQEfoCqqLRbLRRFJU0SIb8sNj1icbWAMFti4RhFYkCUoUBjoOiimq7qKqapU7JtagW/aKXdQCFjMJoShBGTqUfo+4R+gK7rNBsNeoOh8KLOZyiqSqnsYBsaUi5hWzZqW8GyTCRJwTQFsDQKYzx8skR0AWbzGYN+n+FwQBQFZGmKpuvLyrfvB8znc0zTxHFKAsYdhsKGo8jERVUz8ALSLMEwNDRNR9W0Aj6r02qtCvjl4RHu3MWbz8lzkf4WxQlhEBLHYtJot9pLKDcsqswKiqqR5jlRlBAEHkEYs7a6iqap2LaN7wv+ThTHRJHoiqRpijt3CcKQ2cxlMp0znc1YFJ7yJBOcndQmiSNURUAAlwBWWSKLY8FOmbvEcUytWgNJKEkSVUgts1xEklccC11VSIqIUdsUtgM1zwg9l1G/hzefEwUByKLLJ2cpmmFRqdaXSiBFlpGhuK5lwtEcfz4j8j0UWSFBJlONoisrwNKSqpFKMJ9NSfK0ULkZmJZEkCck5MiKiqLpVBsNMuQCqJc905l++otCYZZJOZkkkasKmSyR5umy8ajKEqosIy2ibaUcKc/IkxgkYf9I45hUiZDJSdKMfq/LzPNFgUBRUdWng1SSJkSx4G+psogJV2UVVRLqoMlwjDd3iaMQtegKyIqMqquiEKppRGmMrZexHFtcw/O56Ai7LmmWI6sFE8OfMpu6qCUTjcKjj7DCZEXAQJImxElMGIUgQYZEXPCU0jxHBK4W6jhVQVY1kjRDiuJCiSeDJGOYFu1ShVKlIjhhqoas6aiGgarpRElClKYFY0ukf8i5UNdlSUJKTpREhUJUAAct2yYKA6H+UURXOc+FXzyOn25UFUXFsixM0ywUTCqGYWJoOpIks762TpbnqJpKybGxLYtarYptW0USqYYXCNZYpVIplE0Snu8xHA5oNFuFLHjRPaPg3AVLBWoURYzHI45PjkmznFLRMaVQiAZhQDCbEXguvW6X8XiI686QJQmtVEaRZBzLQtd0kSpSdJxMq4ClauI+S6QiIcoPaLRalMsiGjtNU4ajEXkuOHELCfx8PicIA6IwIo4S0iQVnZ3JtIh9zoiLa6jklJCB6XRKlmdCkoxDWKtBljMcDkACVVWIohDPdQl8n7CA/sdJzHzucnJ6yoMHD8RckItCmKzItNptGs2m6L5Ggh/45PEO9+7dJUkSKuWysAVLiGhyp0TJKS1ZAa12E03X6Pd7RGHE3HVxEMmz0+lcxOhGEdPplF5/wGw8IYclcDoIAk5Pu4J3MZ2ysb6O4zjUqlUAWq2msHr2uui6RrVaYTyZEAYBuqYhSRKNel0oBpOUMAjJs5xBPyAIRTdMkYWqoFKpoKgqcRRhaDqQE/gevicYWbVajXarxWg4pNftEkYiuUrTDHTdQNdNojwokrDEPXvU7TMcjUgzwX40bQPTEnxJwRlI8HyPOE2wHXsJvg3DsIhZFww807JQNY2dnR0mkwl5sQG3bZtatUqpVKJsO0voOIhiUKnkUG80KFfKmEX8dxRHPHz0CE3TePGFF0GSGA6HGIZBaIdFGIpKlgr1hh/4YuxTNfGlCCUpao5WJCZpqrJ8zwC6oaPJovDk2DalUqmQy0tPlSWFYnfZE/45C/l/H37I4rsW9rIFJPvZbcB/Khqnj7+vnwdV/8j3gLDhxhHTwEeTZPJy9amy4RN0XNJCpYaA9CqKLDYVmoosK7hxTJam+EogGKXFhjmOY3wPYi3G1A2hSpckzMJ2NJ5OmEZThgV3zp3PkPKcermKLCtourxMbYrThAyIYpHe5agKuqYJNa3tUCmVl3KQxXtOMhGFPZ2JwJ0oSdAToWITaXkOly5eIEsT3nzrHQb9Ph/evMnm5haqqhEU68E0EWlt5XJFJBqnKbHrMpnNClWuRhhFQgGqKGSathw78lwuFBgfPX5GZbe0UIk1mOt7REHI3HUx0xRZVbBsW6TsTaaEYY/xeMzu3n7B7IxFaIAl1viWJdYJ5XKZSqWCqmnLooE7d9E0jThOeHD/AafdUxRFoV6vsbW1ycrKigiDKNLhVFUoiqKCzamoCrVanTRNmfsBruczGA6RZJlut4thGBiGIdwgvk+SxKiKzNrqiri2JIlWu0Wj0WQ4GqMbBkEQMp6MheI4TQkjn7nnEicJhmmyvraG49hI5MsiiKbrkAseGElKnorxXjgsBDxYVVTmsxleEYhQr9eXrFXTMkjThMAPRTMLqdhwCgWU67rEcUQYqqSpTZwk7O3t45QcKuVKUZSRl59nXsidnvLQis+ajxW4JREWIV6/eIxlWmLTWyjssoXKsFiDCqVhQJwkzOciaXs6mzIYDPE8EfhRqdZYXV2l2WwJKxt5wQ8T83eaij3OQkn0keLnMz/v2d8vEu0Wj10qoYrXahjGMwX3jyZlfprj5zGeCgcZC6YcLDRQ+UcVWPkzJ7o46fkzj8tzCoW0aFjahWNJWYyVS5XrL3rhT1/nUkGq5Mt5YqEGevbfn76/n1Xefvz4sxhQ+bMSuk94yOI0hGFYIIFcwsAvVJkKYZSJ+TbPUYr9nzufMx4NmU0mwkJqO+TKQtmUibA0qSjmSRTzrHhTYi0YMRgO8H2ftFBdybJUOH9ESFWWZWiGQbUmrkvTNJ6Ks4q55iNNHJ7+nSi2ClWzUqig8zzHcz1qtTqWaYmxzHXpdrtkWcbc8wijiMFIFJ4UTRW4lTih3+viuS7D3kJRKdAYYRgh50K9r2qidqJrGqqq4jiLZEd76eyQCzu4Fiv8bKbtJx+fuvAUJTErzQbf+MY3CMOA8XiE58+ZTsccHR2IgbOA7mVZRhhGjMdTVENBM1SRfuH6pKlMEMW4Dx8SRTGD0ZiNjTWeu36VkmMJ65ShosgSl69eYzye8Du/+69YXV3hjTc+h2nqwlqFhDubU7JtTE0V3JoQfH/OcNinP+yjqjoSYjI2DANVMZBUCcsskSQRrjejUqlRKdfY33vCoNvFnQZCNj0PkTKXo/1TTNPk1Zc+w2g8xvVcsUGZzYrKrlQwYQzq5WqxQZdQFYk0iUiKq8opm6KoleekachsFpNnEZah8sXPf4YsyXj8ZJ+T0y7f/+Mfc3Kwx2gw4rkbz/PyCy/y3gcfcHhyzJ/+8E/QdZ033vg8tUqJdqNCq9lgdXWFk+NDxqMhG6traKrKzqPH9E57DHp9Tk9PuX//PnEUCCB2nqCoCi+//AqmYaJrOr7r0+8N2NrYZn1lEzlXsXSHOI1BgsZqkyRJGAyGTCdj+r0BSRKTZAlbW1t0Vjp89atfFT5q0+LB/Qf84R9+G8cR1rNuf8B0PGM4HGM6Dq997vOsrKwiKSJlMEkhTiBJck6GPQLfo9/rYug6X/rSF/HcOU+ePMaduQyGA3q9AZPplG63RxTHOGUhH5/PPfwgxvMDZMExJ/IjFFkmqVcwNA13PsdxLDqtphiEp9PlAJnGIoK10WpiGDprnQ5zzy1Sg3z64z6d5nnq5TLzyQRbMWhfvkgShrjjKdP+CftPHjMLApIsZ3VzHUnTQTaotMtcuHyD6XhI9+SQNI3JsoQk8cgyn3nviNAPqKo6WZaTzEJS1QI7x3OnBJGPZYiu9tHhY2ynxObZ85RrDWqtVQ77fYbTCZlmkCg6L732Bn4Y88HdB6RxDHlCRkouCxsj5KimSSbL+FlKqkCiKwSkZH5EzbIxDQPT0FFlmTgSqkGkHFXJcXSZKBFF2q4XoCgqtU4VTZK5f7RHmFAUxWxKpTJ5luG7c04HXXqDLkkSYRsGtmpQKVVpN1c4ODrkwwfvIskpkpxj1yqohoFdKqObOpvbZ0VcrWmxde4MnU6bncePGI1G7D5+gqKorK9vifQVVSY8PWYwnqNmGbKdkjdEJyRLE9IkJolColDDCwP8WCRmBVFCmkOmGaRIhGmKBMiqjuWUsR2HmesRj2ei6KOqlA2DWqvF+avPMZq79EdjwlRGtzJyzUAyLUbzOXEaUa6WUGSFwPOoVypUHAc/DojiiNl0IjYHIwFFdn1vCWVOoxjf9ZeR8oZh4Ps+rutiWRYXLlxAIUeVcnRDqME0TaXZbPGlL3+F8XjM/fv3hXdfkTh//iyapjGbT0UM+P172LbDjRvPc3h4SBj57O3vku5llGpVJE2hXsRFZ0j0BiM+uHmb1ZU2a6sdoiQkTmP+6Dv/llKpxKuf+SxxmhBFHienE44OnjAZDZlPxzy6dw93NqNRr4nCh1Oi0Wiyfv26sEj4PnEhIa5UKsWm/iXiKMbzPKbzGcPxmFarTbvdJs8FNHU4GJGlGaqqcXR4zP17D4RFSZYJgpAszaiVK5CkfP8730PTNKr1GpPJlEF/iKFqqIrMcDxGkiU+8+qrVKsV6s0m77//Hv/iX+yiKqDpMu+//y6+51MqeBZBFIou6njG7dt3+N3f/Z/41V/9NV566WXWNtYpVys8//wLlCtlNjc3OTk54e2fvsXv//7v873vfY+/+lf/Ki996UX29vbwfZ9qtYxp6oxGAzorK6yurXP9xg10Xee3futfsH+wz3g0BkmiVqujagamXWIwGPL97/8xtz+8yWwy5dXPvMLq6iqffeVV3n33Hf7Rf/ffie5yq0WzUadSKfH665+lXhfpL6PRiB/96Ed02i1WVzqcnhyz8/gR5y9eoNloUa9W8VyPR492hM1WUXjn3bd5882f8Oe+8lWuXr3K5sYGjUaDs2fPsre3x62bN5GyjOODAwLPRVeFKnd1dZW/83f+DqfdU86c2WJtfW1pfQQKG4RgwozHE/7ZP/8tFE3lxvPXMW0Du2RQq4nz9M67H9If9MikHNMweOXVV0nTjH6/z+PHOzx69JhyucyZM+fEprDf4/d+5/dotFr88rd+hTRLCaOACxcusLa2hjudEXg+jx49wvU8ts5ss7a5KSyHqkIQhSi6iqIp/Pbv/A5BEHD9xg00VWVvdxdd18XivgDTdk+7Yi21uYlTKnHm+S0MTSi1s0QUwW3bQlMVscmMY7wgoGxZrHc6KHKROCrLywUfFIt/hC16CUItIKKLjdLiWBSPnlUjfbw4Aywfs9jH5JIAutfr9QLMLEOeCXv2p7Tw/cc4/qyCW57nZGmK64miyd7xMdnmFhudlWVRKCdbuDiWh6KomJaKH0Uomo9tWxiGjmPbkOcMoogwiukPB5TKZVY21pgXFs+T4yF5lmFds9B1YQ9rtVpsrqyxd7DP7v4+H965zWn3lEpRBL305QsYpklKzmm/y93336XZaFIpl8mlHKdks7W5KQocRSJisf1nAYLPQcCt53Nu3XuAosg0G4VyWxEqAVPX+Ct/+S8xnU75b/7e3+fhox3+7n/9f+Xa9ev8hb/0F6nV61SrVdz5nDSKefHFl8jzjKPjY7q9Hjdv3+L8+Qtcv/E8vf6AOApFRLvt0Gk0C9u0Ury2Z1R1xWZ0oZ5YbFyzNMU2TPSWyYPxhOFoSJIm2LbN+fPnaXc6XLh4kcePHvOjH/+I997/gO9//49pd0SD/MzmBmfOnOG1115brl0N06LRkgiCgPF4zI/+9Md0Oh3eeOMNDg4O+Lv/9f9FqAm/8iU++5nP8Pz1G0Lx53l0T3vMZy6f/8IXsCybP/6TP+GFF56n1qhhOTZNqYVmlZjO5vz4Rz/itNfn8OiYWrXKymoHdz4n8D0q5TIlx+Hzn/88pVIJedHIyXJsw0aRNf7d977HeDKh2WogKxLDQY/Q95mOx6xvbbC+usZ4PKZ3csrq2jpOqUSlLBwPRycnyHmOJkt0+116oz5pkggVjiyTRDFxltKu13n99deRZYksf8pLeu655wDwvIDuaRe3SMru9/sYho5h6gL9IEn8j//8t0iShFdeeYW11VVeevFFZFlFUTSR5pqmyzEiQ2zIFUUhSVOCICSXJAzbRNU1ZFVh7npoikqz3oBcwg8DZFXFCELIxDWhGTpkEkcnx/S6PX70o58QLgDLpRK1Wp1v/PI32djcxDRFUNTBwSGnJ2JDLhqfIXEUIkmSSF7TtOW1KKLhU9EUk5WiyCx+6aZRFLFEMcDzPPJcFP8Mw0DTtI+NMYjm90cKLz9P8bSopBSlomfG5RwKccezRXDp6dj0cTFU9rSCkaaZaNQo4rl29/eZzWZcuHCBarW6tKYtrMB5Lni2i+LTx4tAkiQXVmAB6U4LC7zMU9uhpqjIhrBNPh17C5Xa0qr2s2fgz2qKPC1KUyTMIQpH0oK6tVBiCWbW4cEBg8GAnQePOT46pmSaBI6N58+Q5QxFBhSxL3+885DDowOq7Qar6+vUmjXR/JVk0iwmSYUTQZaVZWFPkkTfXVFkprMJDx89ZDwZL63byDKaLJPECd1+H8cp0Wm32djY5NLFi8u5WVVVyPOnhdji+hAQ+Jw0yxmPx2RZRqvdIc8zptM5k8mU8XjCmTNnabXavPX2W+wfHLC7u0sUReiWged5HJ+cICkqiqIym80Ig4BawZS1DBHk1aw3qBS1krLlULasIgVTQypsrGmSkKYJUeSLNfhUWK3jOML13ELo84uPT114Mi0LTdcJI+FFP+12mbkuSZ6JwSTPmRWb8zNnz5JnOePpFEWTUTWFPJewLAtZVkGi4HjERFFInCSkacZs5uLOPTY21rCsEmtrNVZWQsjFyR/2x7TbTRrVuvDgZwg5pyQLlk8RUV0uhdQqdSRk3LlHVI1RZFUkmyERhRFJKpLfkjglTTLiKF7yjyRZodEQAN0gCLBtS6iiio6orgm4napqZHmGHwQYmomqK+i6WhTOBNpPkQTgLCs+EBmpSAsTvB+RRBORxDFZnqBpChsbqyCr6EaJwHe5d+cWuiqxtbYCaUxOjjeboMs5WdUmSxMB+i2YIJOBsFednpwShxFxFCErEpcuXRDJbVHEaDgoOCopETGarGFoJo5ZIklS+r0+hmGyurbOYDQgjCI8X3QGSuUSYRiRZT6yIqHm6rJz9OabP8WxHdI0o1qr8Nz1awW/JMYulSk7ZV45s025XqPebKNb9hK6nufCn5ulOf1un/FowOnxEZqiUpIUwjDg9PSIJEnJM1AVFcswcWwHPY7RdYMkSZHlEEXO0FRV2ADIio3nAj4n/s7QRcytWnTkbdtBU1W6p12SNGU8m2JGBrlpoxsGm1tbHJ8cMxwNmLlzpCxDQSjeKBhIuQSGqVFTbWRXJkxSJiPRgcmQsWwbWVGFJ1bXMVRTJMdpChIZ1UoFU9dRFI80Ed1JXc2R8ghLV9AUU3B48pw0ilEVhSwR/JQoP2E4mjCeuyiKjoRKkskoqk6r1cKdTRn1u4DwAltOGc0wkHIZKZMo22UUKRcWg6Kja5kWZackdEJZiuf6SBJUKoUqI8tAEde1ViiayBJkRaLdrOPHMPbEuRagXaVIUrOwDJtxGBKFCZ4fYFulJRdJ1dXCLpJjqgqqLJGFIVmSIyUpGRFxltM9OmA+GdI9PSEMQ9ZW2miaQaVSEomToyESUKtUkYiICsZSVizMNUXBsa1lapukSEgyGChkSGSaTpLlxOkipSYnyyTiOCXwI8IwglxYSmzLZDqecvf2bfw0x08y5m6EblqYukacJhi2iRzLkGUgZUh5ThQGzPOMKCs4TkjoiophOgRhSBAERGHIeDRGVTRAJs9ENymOYrJUKDfzXEhs11batBo1dMNCVlSOjo8ZT6foliXSSwwh/03ShDCKSLMMz/cJgnDZscyzFMsSCTVxmpDlsLa2yspKhxyJPBMdHF3XOX/+PJqqEMcppmFRLVcF+0GWufnBe4Ih0KhTrazQbDY4OTyk3+1yun9I6IVsrG1QLguYqWVZSKpGknv4USzEeEh0T3ti/JSE5NcwTVqOQ3t9k3K5jGUa9Lq9JaQ/yzLmszmaqlGv1gvwsiHmgzDC82cEhZdfwMcTFFleJmwWyy0UWWF1dQVJlrh58wNOT49pNutUqxUcx2GkDAtlkiVUIL74bGazmVDxGkK5Y5oWjUYDy7KWHdLbt2/T6/Z48uSJKNK9+iqWZTGfzxkOB+TApUsXaTWbH1FMjMYjAIZDEcahqCqB53Gwf4AfhIzHIpkvCkM2NtbJV1dxHIcoDHn77bc42N9nZWWFZrPJ6uoK7XaLer1GrValVhPMmBywnRKmZaPrQoGsqCq+75PnObOZSxwnOI6N7/uMJ+Nl4TPNM7rdLucvnBdsoigiz3PK5fIykto0TSzLYjKdCiCrYdBsNjl/6RwrK2uCG2UYhXVMxKsPBgNGwxGWZaCbBrZtEkY+B3unuBOPkl1mPBa2yEwWaTUiuhvSOKVWrfLKSy+LcxMLpRg5XL12DU3X6XW7okgahwXvAg529/FcVywONZVmu4lh6mIDHMckRRpiGIZcvnx5qaoydL1INhMMk0qlIsIsZKE+bTZamJZJqbBAa5pGXKhagzAgiiTiQk1hmxaqphY8lacx3lmW8fjxY4IgYH19XXBLLOvPtHP8mV3kT1jwZ1lGXABMsywThQ3TRC/sKD/7vc88938Cdaefrx54en4kSTBJVFVFyiWkZdO/iJeWFt11UcRJ02xZJMgQDB1JEh3o6XRCngn1qa5LZIrYvPlBINZ4qdikJUnM/sEBOTCeTilZNqvNNkfHJ+zu74vUuZUOG60Ojm0znc0w4gi7XMY0TFr1Bo16g3K5vOxOm7qBqqgfYVEt2CQgkWYp+wcHjKcT4iDAKDk06nUkIEoSpt0uURiiF8r+F158iVZnBT9OMCyLD957n60z22xsbuLNZliFbVBTnxZDF8oPpeiSK5KEIj9l56RZTprELBQmSmHj/PhnJFR8grKpFpu7Rr0m/r7YVLquSxRGaKqKaRhcvniJYaPJZDKhXK1gWRZra2uYulFsDOdMpwfMZy69Xp80zTFNG98LmM1cFFnDMCxKTplyWaRTappKksRMpzOhigTsUonVzS00XSj9B6Mhf/KDH5Bnojm1trFNvV7n0uVLZGmKY1mUyiUajXpxDSTYlo1lGgUPSGwwJRDrplaTSxcvYBg6g8GA3b0n+IGPqkgYhsGVK1dottu4UUCQJUSSuEeTRDRMZVmm3W4zm83o9XrYJQfbKuYnJObTKbkiwmk6nY4IJJAgy5WlQmSR3uZ5PkmWsbW9RRiGhGEg7oti552mKaomCkyPHz+m3+8zm07ptDtsbW4+TT4vLHHkojgeFGnSQoUvoSliDe657nLjLXhlEQtLnWkYYr0URxydnOB5HifF/6v1GhJSwdlTlsWNMAyRZZkoCjk9PWE+n1Kr16hUyliWVayfPlqIl2XBlcyRUfIikawAl3+0+CLcPt1ulyiKqFYrBSOT5fl5ekn/AtvYx46P29IWz7DQCT7L3luMTc++LvKCpVSogqTiPozjWJzTollULZS9Rf4bCzHS4mk/qTK0UH8t7HbPWqrl4jwuPodFeMWzx8JmKUlKcUk8LT4/O14/O1d9PA1wUVhfFGjIEczdolYWBAFBEPDmm2/y6OFD5FxmPpsvi1KLoIx8SRHOCjZtxnA8QLMMvMDDzDMkvXh8niPnSrGD5yPvX4htBKMzSRJUTcDvF+dZkiSSJKVcKnH16jU67TaKqhZK+Gz5UQrnBEt5W47EdD7F9TyG/WHhzMiI40QUUk9POT054Z5pMHfnPHz4kMFwSFhw5fIgJ8/E2kst2J3VSoU8yyiXnCUvW1NVHEukJQurKcRJiOtlyIFwlOV5Rl7MXX7B9g3DgDAMiOOIKI6W6uxfdHzqwlO5VkMzTYaTMaenJ9x7cE9Us7MURRFI4sF4RKVc4Y03vkCv1+NHP/rRspvSaraoVutEkRggZ76IoY5TEd3oByGT8RR37rKyukWl1uGF55/Htiy+/MWvcevWTf7H/9c/xTEdahfq6IqBlIlJVUYWi3xdp1qroSgaea4wGU0Zj6Y063VUWSEOBUTLzSDLBfDRnXnMZy6BF0Em4ZRE4kalXC5sI2ParSbtdltEQ7outm0X0HKTKIqYTOcYuolmKBixip0aCKddhl1UNL0wEjdmQcdXZRVV0cgUGI8HeJ6LF7gomsyN56+haga64fDWW+/wgz/+Lt/8lW9x7vJFTFUWiXrHR6T+nE6jROAZ+PMZp8eH7Dx6yP37IilIQsLQdVpFbOjrr79eWHMiPnzvQ3qnPeIoJYkDdMXAMaFRb+H7Pg8fPOalV19h++wZ7ty5y3A05LTXRddVtrbX8b2QjElRTBAj1WQy4Z/84/8ex3H483/h12m1W3zjm/8rHj7c4fatu9Q7K6ysrPNLX/sKnWIzlCYp0/GUOBGLuTzNyeKU/Z1d9vd2Odx7AlnG8eMdyHPiJKTeaIiIXcvG0HRURRPFyzwjCEN8LyTXJbIkJ84Skkyou1RZXiZeIEmUKiUuX77MwcEBSZKwubFFuVzhTe9NRuMRJ/0ehm6QVutsbm1y9do14ixlOBnRHQyYKCO2V1dRVZUkDkmSmEzKqFRtHMdgNHaZewH7Rwf4YUyEglMq4yUxpqljWSZ2rULZsQnnc7I4Yn19jTgK6fV6gvkRh8hShpz6VG0DRXXE9Z3lyLnoQMeBz3g2YxLsMXJDvDBBlkzyTMP1M0zT4MKF8xwfHXB88AT+P9T917NlaXreif2+5d3255x9XJ6TPstkVbWpqu7qRht0owGQAAGSIQIEEKMJhqiROBei/gFJF6OriZDuxImQFOJQo9FQNCA5MIJpNNo3Gt1V1eW60pvjzfZrL+908a29M7O7APZETAypVZGV7pyd26z1re993+f5PRXYlkOvs4LtenJBy6HfXaXMUso0AV3K5ZuNNmu9Hok/I4kipuMpmq6xsb4urYl5jqGqlELDNm00VWWe+yiKxtVLl5knJY+OZ7iOTGTRVBVN12k3uuRJyXAwJKoSxtMpjttAswxM18JuOlRJhCgL2pZsWk1mc8q8gkyQU5GJitsHj4niCKGA6zp85Rd/Gcu2CeKEg4MDjvb3cByb7c0NRkd7REFAliQYVChUmIaGabTQNVl4qLqGoinYQgOhkKkqaV6QZnLaVJUlRV4RhSnzWUgUxVAVMvRAVTkbDLn9zW/jtLs0eqvoholmGGzvbqMbOs1uiySOiGezelqjEvo+87KgUhVQBDrSBrqyukIQRmS1nWo0GFKVdeFTK7DiMKbIC5qtJkVRsL+/z+7uBS5dv46hm2RZzp/8yZ+Q5RnnoyHdXpfd3V3SOCVKY5JcRh7PZjPSNMW2LUzDJE0Tmg2P55+/ITc7QuHFF1+ku9Lj0aM9giBkPp+zsbHBq6++xsH+PvuP92i6TZQ1gWsZ+P6Mf/vvfpeNjQ1+53d+h5deeonPfOYz3PrwFo8ePOLuh3dJo5yXX3iZdruFZlvShpTFhFnOJAhwTQtNKNy7e48kjrFdh3a3w7UbN9i6sMvlqzeYjsfMZlNu3brL4PwcKsjzkvF4wHp/nSsXr9JsNmk0GoxGE/yZz1++9T3CMKDT6cp0tjTFMHQsu4vtWCiqlEkbhs6VK1c4Pz/j3/6b38V1HS5d2qXb7dJqtRgNBmRZSrfbldDe+Rzfn3N0eMzqWp9eb4V2q0Oz0artXjFnZ2ecnZ7x3e98h9lsxmg04qWXXuIrX/kK9+7d4+TkhL29PVrtFm985g0sy5LNqqoiCAKOjo7wfZ9Hjx8yHA7p9/vMZiXv/uhtsjwnjlMZdKDpfPITn6DT6XB4eMjpyQm/+6//FY5lcfPmTdbWVtnYWKfR8LBti5XVFdrtNv2NPoqu0Wp1cb0mpmVj2Q6WbTGZTCiKgqOjE3Rd54UXXmA4HHLn7ikrKz2uX7/G7du3uXXnNjdffolOnjOdTknTlNXVVbrdrrSwNRrEcSzT44ZDOt0um1ubfOnLX8AybTTNxPM8LNNCUWSB8/jxjxgNh6z1V3FcaVW//+CMt99+i3ajg+c0iNKYvMwpkAX+o0ePMDSDhu3xqdde51OvfYpvf+c7PHz0iOFwjGVZ/M1f/RWGwyFf+/rXSGoLdxDMOT1d5ft/8X3mvs+Xv/xler0ea+t9sjzn8f5jBqdnDM8H9Ho9bNvmK1/5CkWec3Zyguu67OzsYFkWlmXR7/dpt9tLNompmVK2X6ekCiFDPPIyxw8iWfypstm0stZ70uQRSMhoVZHlGd/59rc5Pz/nl37pl1hZWcGtLTdFUSwLgKcLhsUm/qNUQB/VpCqKgiAMGU7G0vLpeViGia6qLKfydRFCvXEWtUpqsZn+j+34KVWXqmDbNkmSoglVlhXlIl2qBssKQSUkYzTJZHhMlhcUgGZZVFVBlmWcD0dUZcXq6hqmoqAjrbeT2RTyAvJS2qaSlHfefx9/Pmdvf5/+yiqvPP8iH9y+xQe3P+QTr36S6zs7vHjlBqqAt978IYZpsuPYNBsN2s0WrU5HWnB5AuquqoqkyGv3vECpk/mqCrKs4Efvvsd4POZCfwO702Fn+wKT2ZSzwYAP78k0R0OoeK7L3/lbv0qapvTXN3jr7bf5t//97/HKJz5OkiZYumz2rPRk88s0TNkorht4qqLiOi6KQKqlVZUSqZAIg/lSVWIaJqahPsOWEbVFRdq8pMVKKSu2t7bY3NzkdHhOFMcMh0MEYKgarVaLz33mswShDNWoFMmZ6TRaS8bV8fEJD+7vMRxOmPqBHI62OoRhgqrOJafVbbGzc5mtze06vVVhHvjcf3CP8/MBQlXprazwysc+LhNJi5wf/OAv+da3v0mv06HTbvEbv/nbbG5ssbm5IUM/VEWy3mxbXju6jlIX3FEUkmbZ8lq1DINLuztc3Nnh+OIuZ2fn/J//4nscHh5w4/nnWOmv88Uv/zxxljKYz0iLnEIXBHGEQGDUn8Hly5druPYDGs0Gq72VpWr4zq3bZFrG9ZdeotFoYBgSuCyAMAiXsegVcHp+Sp4XPP/ii6RpwnzuM/dnzP0ZCEGe57RbLWZC8Pbbb5OlchD30ksv8fmf+xxXrlxha2tLXkN1EEGR5/j+rF6H5JDH0HTCeUgSJcvmwsyfE6cJZSlt4s1Gg8D3CcKIt958i5OTU+bzOa7rcvOVl2k2m/R6PcbjMdPplLi+17bbbeI45t69u2iaxvb2Jv2aJ+VPZ0RRtDz3Fo07w9CW62RZK06ett1VZYXQVMIw5N69e3Q6Hfr9VWzbYqHkq89m/sdYBReKwCdaqJ9ey1h8xaLJW4sdFk01oapM/Rkz36cCTNNkdXUVqwasl1RL7AiVXOuefvwnqXtyAJbn+bK5JH8WINQa8WBKHI360wMK+ZiyuffktT37Wp9eD54+nm48PW32XgQsqaqCYejM53NOTk74F//yX/LNb3yDz73xczi2U78nFQUlSlVQklOQU4oS09RRNTg6OyQTJVdnEzzXq5tZNWgeDVBqVVglcR1lTlnmBEEg67Y8wzSNWsFUoAvp0FqkE3/pi1/k0sWLqEKRNWNZIpAMOG059JSCtbKsOBsMOTk9ZXAqLXHD4QTf9/nRj36E7/uSufb44bIBXFUV3V7tSsgLTMOgVw91Hceh0ZAhXFo9wCpyOVTK87IOnipI4oBZFC4/5/l8Vjf2BHkuHQdCyCZtlv/sDafF8bPDxbOM6XTKe++9RxzHFHmJEEo96ZaMnSzLybKcKI6xbIeXX3mFyWTMZDyqvaQOipqSptK65XoNLl29zs7OLi+8+BK6JoGe21vbNBtNTMuT8baKysraJq+9/hk67QZ5KWh1Vum2mpycHBBFAUEUECUxUTKStr55TFmAoUopmW1ZxFFCkReUuUzDGAzOqNtWrPVWMAyNpJQ+Sk2VUL2TsyPCOCAI5xRVjqIJjk6OKIpCWnlKhaPjQ+I4xDA0gmDOfB7QabWwbRtNUWVRqsjY7GDuo+o6umFimhaWZTOeDtE0gytXr5JlOScnZ7huk/X1LVzb4rnrVxGKxnh4jqmr5IbGwaMzhmen7O89ZmWlw9ZmnzgKUITgxvVraJrGxd2Ly41vs9lkbW2Nvb3HnJweM52MmfszySYQylIe2us1iGID2zEYTwaEt0PcpofdcMmqAqEomI5HkkNWQRqGZFmKbUmGxYWdHXTD4MGDB/R6Ha7fuMwLzz/Hiy/cpNVZw3FbWF6DKMtIprPaJytl/AiBbTs4js1LN2+yvdHnbqu+2fjSCqfpBkVZEUYRWS6bmPMwJMtzFFWTNynTpKwEqZZTFpVUIRmSGdNutdA1DUNVUFSNyVSyrcqiYjKZEoYxiqLKqVdbFvNn4wloOobtois6Vy5cwp+OKLKUME1Jinw5yRGqRp6XhGEClbyhNkwdS1Vxmm0UVSObjsnnCoGuMB0MpGdXUdBUlQuba9iNNhtei/lsxunR4RJ8vtDA5rVX2NSFnMYWMVpZYFUFVpmTFRmDo0NmwzFKXmKYBkIvmftTqqyQ1lPbJfRjfD+myFKKLCOLE6qiQAN0RW4Ki9qGIFlOFWtrqwgqwvkcpSpl4p6qgqJBrdgRokBFw7Ud0jKVikDLpKrEMnIzz+VnY5sWalViKgrxfMb9u7eI0pA8ixG59BqnSYppmmxubpGkGWfDqUxXKnIJaa1KirJCCJ0kyShLGE0nVFTs7G7h+zNm/lg2EiwHy5RJiEWR1pD1ClE38pSqQhQVQTQnywuisiTJS8ZBJtM6VBXLsmXKj9fAsl1UIbcCRZHjODYvvPg8TquD0+nVPDk5tYiTiJOTI7IkoYhCjE6X7mqfPM8oihw/imQap1DJaw92mmaUWSbVWTUPRlUlm2CRTFeVFZZhEkcx52cDLl26xPrGJhsbG+iGgddwCaOQ6WxESYZmCHTdQNcNXNdB03Qmkylpmi3XAreOLRYIaXnLc1qex/bGJi2vxWg85vvf+0vOTk/57ne+QxgnhFFCd32DnctXuHTxAmkSE2ZSoXk+nnE6mnA2mpKj4bQ63HjxJbxWh6Ozc47PzikUaLSarG9tcPHKNZ5/8SVG5wPC+ZxX6sZNt9dDKAoFJUmacXiwz907tzk8OJBJZVRomiJtiIaGbUk/uuNIpeDB/mOOj4/Z3t7GtEza7Q6+73Pv3j1a7TadXo/zwTn+3Gd9fQPLNnnw8AGnpycMhqP6Bp0v2VoLpZnrulKVOxoRBPKG7XkeFy9epKwqTk5OmE7HTKYTvva1rxFFEYYu05Q8z5ONK13n7OyM/f19Ot0O/fU+ruuSJAl37t4jzwuZulcXd5/4xCcoioLbt25BWdBsN5cWtbOzAZPhgLWVLlvb23z7W9/g4YMHnJ2ecHF3l5deuimnXbqGZZnohs6f/fnXqKqKn/vc58iLEsUwKBH4QcjWhQusrq3VsuqM8XhCFEUMBgOZ5uN53Lh+g1deeYVWq8X+wQFxPQ2ugOFgsATUdrtdojgGIfjBD39ImqZcunRJ2v46KzKtRShUVSk5dnlOmqQ8frTHdDphY2sdRVQ8evQQ0zD4wue/yL079znYP2DqTykouXz1MqZpUGQFG/0NPv7Sx/Bcl9PTUwaDAZPxmFa3gxCCr/7JnyCEYKO/ThDOmU6nGIqKKCtuXLsGVcVWnbo3GY6wbIuN1TWatkt/VSpSjDrJDGTM+4Lb43kerXYbIYRUwdX7GVHb5PI8J04T/MCXE/4kpdmUVl5dVdHq5KunuTeLAbcintiS0kVCHk+sIvD0dPmjlU9/na2hKArm8zlZLpW1QiyYLBJ4Whsb6iKhjseuC+pnvB//Ex4/qXD6WVhWilBqpRhsb2zScD3CUO7n9HpyXc/dqYqCYD6XvMosq7UfYpk8u7LSQxEKmmYQJQmng9MntomiRBQV3W6Xsqo4m4wApJVBVUirAq/dYvfyJba3L0i1jmlA3cjSDLku64qGrqoYikZZFHXKEnIIleecjs4pi5KyKOk0WnQaLfIip8hzemsruE2PFy5dodFsSuZUnDCbByRZQVkpWJ6L02gQpxmqovL888/hug6ubTNPYk5OjjFrldMfDoe4rsuNGzeogIsXdmh6DeIopNdp47muvN9lmfw8yoooimt1jyKVWk8xcZ6oGuRnU9ZwWwFEcbzkpCiKgmGaUMp7dxLHDM8HxGlCmiaohgwUOni0v5z4n52fc3B4KPEYtSJmdXWV6VTuLd9//32KoqC/tsZ6v8/a6ipZmrG/f8D3vvsX7B8cSueHaXLr1o9RVBVFU1nfWOe3f/u35WsSgjxLGQ3O2N7elkPnSK6ZURShqdK2JYRUhbUaDVRDr3mPKaPRCM0w0A2Dx0cyEMPrNNm1r/D5L/48/f4aO5sXyKuSJEuJ6xh1x7IwDBPTkDYw13Gwat6T53qs99fJ65S40XBIWRQ0vAau4ywVqVVRLhP/glAmoZ6eniIUlStXeqg103BrawvbukyayRTfcPsCaZry/HPPMR6PuXvnDkII3nv/PR48fIBlSeVZo9lgd/cilmViOZJHqwqVrc1NskKqN2e+z2gypqpKmq0GQRhydHzMdDplcHLGcHiO789AKGxtb9Nb6WFbFu2uHCCVZYldq7tarSaWaaJpKmWR489mNJtNNjc3abfbEpFi2+i6Lms17UmzaSkoEk9EPwv1zmJtjeKIIJSNul6vS6fTWSrF5Ln85DF+8vir1uWPOp79mmWL+Zk17plmer0OK4tGEVDWNrqDw0OOjo5wa/u3pqgydK+Ue9hSPPuEl0ojpNJMrvNi2WxaqHmk3U6gaAplWZAkCYamo6tPQhxEfU9YNNH+Kv7g079f/Psf1YhaDjvkoy4Dl6qqfjlCcOPGc1RlxRc+9wUc22Z9vc+jvT0Ov3FGWQnyoqIopMsDTYFKYTbxMQybKAgxVAPhSLXYQjFYlnLwW1WVROdkmQz4Gg05PjkiSRMMQ5NNvPq6UiqwDZNOq83F3V1arTagIBQNQSkFIHnOZCrVc0EYcj4Ycnxygj/3655LQVWVPHz8aGlFdl1HcpdMo7b1u/U9q26UaSrKIrFdVaXqLQpJwzllIdmmMt2uJM0yyrwgz3LyIiUvpEMkzyUzsyhy8kx+T14U8jxQFUxTcp5Nw/iZw0T+BzWekiRhMBjUcCl3KadLkpgszygKaQ2K4hjP87jx3PPs7z0iiSNsx8ayZbxyJeQPx3V47rnnuXjpMjdfeoX+6hrdTlc2C0pZyAkBiqbR7a3xysdeJY4C4mhOo9Fhtd/Hn88pChhOfKnAqiIZAx3GqEJB14zlNEZTpUUkyzKiYMbJ0SENt0XDa9HrdGi3WwzmI4o6BawSJWkWEychYRRQCVA0hbPjU6IoZrXfRykkPDBOYnTLJJxLUGFVlrTLEteyEZWMFs/LnMCfoxkGhl3iuC6e50rouaqxs7NDlmVMJlNaLY+dC5vs7mwDgm998zs8fryPaZoYqsJ0PGI8mXB8dk5/rcuFC32ZSNHrsrt7kV6vy2c+83PYtv1MsbS3/5jzwTmz2ZQwmEs4e53qZlkmnXYLOzWwHIPTwZD58QGvv/FZGs0W49lUepxtByVKKSpBGCcE8xlV5eE4Djs7mwghePzoIVkW89zzV7hy5QrP3XgRoTlUis7e6TFBLD3jqqLgGdbSLGtaJrZl4N64ThptoVEyODvjg/ffpULygsoKolhaNPMyJ6hBrYZhA6AbJkVRStWCUFFLRTb6DINmU3q5RVUiFI2ZPyeKE6oKptMZiw2063r0u2v4QcDD/QNKBKpmsNHrsrO5zeM8w/dnRFmGKARqLTfVNY2izMnDFKUGwXqGTqVDf61HmmUcnZ2TVSVZJSPf86LCaTRxPZcLly5heS4dTUMxzjg5G2DYHo2GRx7FskGUhZRljmGotfQ/QS0rzKrCoEAvcyZnJxSlgo6KbmgUIpZe66LAtF1cp8nJ+RA/DHFsjarMyZNUvi+63BAaui4VKFGIVoPGV3pdiixjMhmhKwLTNFA0FaFqJLGEnKKVqIBjWcyTkihOcLJMXtN5SanU3fWiwtYNVEoMRSEJ5uzNxuiWgWbqqPV0Ik1SdN1gvb9OECfMYynxLOMcoy4M0qxECI00ycmygvF4jGHobG9vcP9BiH86o6FoWPXmzNQ10lhQIKREvpQKqMVNOJoHxEnKLE6Ii5JRUqKrEtwqFANNF9iOlKbqqkKRZ4xGZ9iOw4WNDexWB6fdlaDFvOCtt484Hw4Ynp+RpylkGSteg3azsZwqRElCVr+OsigY+8M6yVPeXBeS2EXjKS+KJwoKw2A29Tk8OOLk+Izz8xFra30sW8dxHYoyx59PyIsElJJup0e325MKJ1NGveepnGAZuo5jy+QlASRJTBiGeI4stDc3NE5Ozvj+d7/PaDDk4f2H6I6L4Ta4dPUqF3cu8OonP05VlgymM85OT3n46BGDyYzzyYwMgek2uXTtBpbb4M3vfVvCTrOE7Z0dNncvsr1zkcuXL/H+u+9yfnpGr92RG4fNTebBnDv37pGkKcdHR3zw/vvcuX2LnZ2dej2VSTqGrmKZOo5jYZoGuq5xfHLEvQf3+ZWbv8JaX0ZR7+/v8/aP3sJrNmg0m9y5e5tHjx+xvrGOaRo83nvEcb35NU05VVqsp0Z9s7Usq167J8SRhGF7nsuFCxek7fn0lNF4wNnZGV/96ldRFIXPf/7zkkfRakvYraYxGAw4PDrk45/4GP1+H9t28OcB9x88XKYWrff79Lpdfu3Xfg3XdXhw7y5ZltLwnDo90mI8HDKfTeh2ZZLg3uOH3Llzi9FwwOVLF7lx4zpRFOL7M0zLQtVUvvf9v2A8mdBZ6eF6TRRNp6jADyIu1FPi2WxKmiTLaO0//MM/JIkTPNfjyuXL/NxnP0uaZ9iuK5N+RiN0w2A0GnF0dISqqmxsbEgZOPDuu+8yGo24fv06nU6XVqONrkuLtO/Pmfs+SZwSRTGHB4fMgzmXruyQFzkHj/e5du06r7/2KQ73jjg+PmYwHlAJuHbjGrZlk8c56/0+r7/2GkdHxxweHDIajZjNZmxub5FlOd/59rfpdbv80t/4ZaZTnSyO0RQZm3z10mVs22ZtbY00yzg7O8PQddZ6KxSdLkVZLm3zKysrqIrKtH6P/JlPq9liZWVlCbh3XRehPyk48kJOSk/OTsnqQq7T7dBsNWVRgCzWn1geniiLlKeaLItzsqrKurBVfqog+cnj6cLloyxpRSFTy0okkHix6aYqkVNf+bWyiFLqpqdsRv2HOv6q1/vXFXgL0LyialRrcpgTRhGK6mIYCjJqQh5lWUpQbZoRJonkFaka6CpC1+h0VtE1nTCMmEchg+FQKlksC5HLAmRzcxPDNNHu3kIoCrphoOgaWVXitRps2QYbmxv01/oYQqXMCzpdabe1TBtT1bBUnUKRvJs6EAmhKGR5zmA8Ik0zkjhFFSptTw7QiqKg2+tRUXHt6mUUVWWeZDKxN4xI84JSKJiOi+26pKkEjl+5fIm1lRW2Nzb4xve+y3d+8JcYqrTCH+3v4dg2zYZHp9tla2MDVdVI4gjTWKPTbjM4PZX7grqAjKNENl402fB7+vN5UmA+9XnVEo8kTgiiUCozFAXNMGThFKekccooGsoQlbLAdKSC/taHd0jTlI2NDUbjMafnZ0vVSqvVotfrkaUyWv7OnTuYpslKr8fqygq9Tpfj4xNOTk558623eXD/AZ98/TWcsuT+eISiqliOxac+9Wm+8IUvMJlMCIKAg0ePmIyGXL58ESEE02m6fP+fVhdqmrYMX6iKkjjNODk7w3YdHM/l4PSYR4d7OO0mK7bD62+8Qa/doeE4Sx1N4AfEUQymbIItFDuqIvlhVBWObbO2usr5+TnBPGA6mVBVFZ7rYtk2URxJC2ieSyut4zCejPH9GcPBEMOUQ3JFUYgMg/X1dTY31uVAqm4oCqRa4/DwkDzLGAwG3Ll7lyAISJKE5557jn6/j+U4dLtd3GZfJmWhsd7vY1o2ZyenjEfjZSOwUsGf+5ycnaJUggNUTk4Omc4mvPb6p+lvrPPKKy9jGIbk8kYy2MI0TVzXZaXbwbYt4jgmmMt7iee6rK+vLxtElm3JpkX9vi3B5cs+f63qfMpOpipSoRdFEWEU1uoPyYn66WZ+DYv+CIXpR61Pf916/bTqaXGVPL3GL9djRYoJlFqtVS5Cv6qSk5MT7t+/z2uvvkqv20WtVS+ibi4t3CDPNMWErJsXyjxd0RGKIpWWdTNOKolKRKVSlHIQovzU4KFObFs2mZ96l6pnLeAfZc8DfqpB/dQjywG4eEoNhuDqtWs0my0+/Zk3sC3JLNJMiz/7xjcpS8gLiXYpC3lPA4HvzzFM2XhyTAdKUDUVXdXr2X9BUa9nqlAo84xg7jOZjDg7O0VVkME48klAKZEalmHQbraWwprFMweFNEuIwoiDw2Pm8zmD0Yi79+7z3vvvY1kmhqHTqDmi5+fn6JrOha0tGSLR9JbhBf1+H8dxGE8mlKUMngJqe7f8MZvNiaKQJImW61JRFGRpQp4VpHFKJUpKIe2DeZ1UWRQFcSjVgaoqG1qKqqBpndrB4zyjsP7rjp+58TQ8PUfTNbb6G7VnFPJcqiRcy6HhNmR8YwXvvfMOpmXR6XQoiwzXs1A1mWo0HMiJcDCP0DWbKEwosgpDM8jSTG7WWi0M0yQrJD/pwePH6LrG+oUd/uJ73+Hb3/wGh8cn7O5e4PVXP0H/wkXyD2+R5RkogvFwgD/fw23KNCA5KYk5Pj2hqkpazQaOY7F9YZ1Wo0Or0SXPU87OT8hVKds7Dwdkec4LN1+kyAseHxxw6dIl1vp9RuMpFQq7Fy9RVRWqbqJpOo7XpNORC9V8NuV8PKbV6Uo+xeHpEvaZzyOy8ZB5OMOxbfYf7xEGEXkm5dqPHz8mCAJc16Xf32B1bY3eWpfpfMo3vvEtgiBg+9IFnnOfY211jW63Tb+/SrfbkpBbZEfa9+dMaiBjq9Via2ub9Y1NrgUBg6MzRudDVld7KIpgOpsQxXMmkyFeq02n22My95lHIffu38O0HdxGizTNuHf/IVmaoygKm1tb2PZl2QEuC87Oz8jSlOl0QpYn/Nmf/Tl37z7g7p179Dcu0mitcDw+J81zur2elPzpOlpZoukaQRQwmY7Qq5yqyHEbHkmaoNWsjO0LF0nShDCOGU9GxHGK0/CogCCIyLKcJE4J4wg/CqGSNtBYSSnLitl8LhU/moZPwOHRMaKsMAxrCUJ0XVcuYkWJpelc2blIWZQEY5/H0zkHQuA1HVrtLpoqpcPT0VDe8BoueRyTpSFa3WVGVSXAdDbFMHSu72yR5jlhklAKyRKKi4KSkgd370gJc1yQ5QVJImh1m9i9TZJgRp7GdDtNqionTSLSNGE2m1FkOUWa0HYM2k2LlQ5kBcTZjKJQ0B2Lbq/Hzs4uSZKTpBmNPEexdNbXuxRFxnB8LqdepkahFARpgG0qVEJbQgSzQjZqDFVBVxV0VaUoS/JKylxV1SAHFBTiICapuWBFWZDmqUxjtB10W6fSK6LIRytyKBzarSbrG1uESUKYxliuiyIE51OftILKsun317n+yVf54L13+P53v0uaymS8SpG+5Hkak6Yp9x884NKlXT7xyY8zDyPOh2NEklKWixuewNB00iolTjK0BfC0lCBZxzQlHNEwmIYJ0+G55AykCVGeY0UhzWYL07KwdRVFVDTaTaI04ce3fkyrt0p7bYOV1RWp9jQM1lodPvP66yRJwr27t1GKkrsP7qMJBQ3po1aoaLQdeQ2rSEtHUZL4c2Yzn+vPP8/29jaPHj+W6WGqwDQtHMemv9bDNjX86ZS//N73uX71Ct2tTforKzimQZyEGIZBw7YJfZ/ZaMKBdoCq6uiaQbfV4cLuDkVZcHx8BFRcv3aN7//lX7K/t8e3v/UtHj58yMHhIQiFC9tbeN4NVro9hnOf4XzO1oUNmp0m3/vhD0iSFKfTZcN2MJttemurxFXJ2+/+iLu3bnH7ww+ZjMekYQQVWLYDFYwGQ5I45tGjx+RZSlmUnI+GlGXJj957F38+l00MKnRRYSgVL1y/QrMlU3VG4wFlnTR1dLLH/h/scWF3l63tCzRXmrzgPs+LN1/EMAy++rU/YzKZYFgW48mYN9/6IaqmceO557h46RK2bfOHf/iHpGnG5z//eQxdTr4WAM3xeEwYhownE4Si0G63cTddNja26HZ7+DOfH739DqenZwilwjRN/vE//scoisJ4LHlExyfHHJ+eLKf6vV6PT3/6DTqdLm+99RZ7+/t87/t/wUs3X+KXfvlvcPnSJfpra6ytrhDHEY7jMJ8XjIYjbNum0YBPfPzjfPELX+Dk6Ig7t2+xv/cYTVX4z/6zf0i32+Ps7HQp2d/e2ZUJK45LFMdsb28zD0Lee+82ZVlIjp8mN0d7jx8xHo24c+cuWZbR6XS4fv06L77wIqZpcnh0yGA4Yur7rNZJQodHR8ymU3o9GU7xwQcfYFkWumGw3u+zsrJCmqWcnp3xgx+8haaraJrc3GiKBkJu9L1GAxQJBXY9l0996lNMxlN+79/9HmenZ/R6PVbWVtENnbXeGoZh4Joek9GUf/bP/htGoyHD4UiC7Nttjg4P0XWN3/lPfhu9tupPpmMm0ymbW5v019e4cuVKHRUun8Pq+iqmadJqtpYKNF2TTZnj42OKoqDpSeuRu+6SZRnHx8eYpkm73V5OkwejgdzQxQlCEax1e7UKUZcqRBTEouO8dGuIpSVmsfn70pe+RJIk9HpdTNN4ajoslhaL/6FHUUieFshURVVVUXVdqmuREeELCwqV5F6yYFPAU8/wP+7joxpzlSqY+T6D0YDtrU0UfQVdkXHtFCUqgrXVVcpSpm3m9bDVn00Ig4AgDLAsC8M06HY6PH/jueXQNo1j8jTjbCB5da7j4Lkur3/sEzKZKwxwHQdV1+k2WtiawXQyYTad8YO330TTdTYvbNNpNFlp9fA8G9s2UTR1WeSpikKz3WIymXI6GDCPQtJMpizbtkWv3SEIA374ozep5CQV3bRZ660SzAKyKEVXVFQEpmUwmY35w9//vWVaErW9dv/hQ6bjMZ1Oh4bnodTpbd///g+48dxzfPwTn6jj3KtahVAyHo9RNZV+f1UWlkKqeBfqD3i6sKw5Qgu+FgLTMhGqQlYXoY5lSSh3IZuB4+FIpjNlGUVdbHd7bYoiRzcU+usrrPa/wOnpKUdHhzV/yObll16kAv78a1/j7PSI2x9+QBjO2L24JZvVh4dcv3aNjfUNTgfnFEXBL/zil2XDXtdZXV2rmTIJSZxi6BpVWXJ6fIJlWXTbbUmTKcqan6Jw9+5dxuMx9+/dQ9M0eisreK7LRr8vYchHh6h5Qb/dQckKVEXl8NFjZt6IVrNFKaCoKsy6KC3TBJFKxZWmadiGSZEXTKc+g7MBh/uHnA/OmPs+6/0+lmmha3KIMhqP65RuTaZyhRGGaeB6Hi/cfJEoivnBD/+StdVVXn7pJlbd8DN0QybslqUcgNZq1i9+8YuEUSQhxjXwezgakcQxX//61zFMg/5mn9XuKld3r2DbNv2VHpsb6xS1ZScIAib+BH/uc3R0xEq7y8raBjs7r+M0XNptqVb95je/ia4bXLt2bXn+uI4jlYG19Wh/b5/B4BzPdWm1WjS8BiCZQJqqPcNuWti8FvvKNE2kza56EtrQbrdJ05Rbt24RRRG91RW8RhNF0WreTYaqas88pl4nOj5RVP31zflFk2mxTi1+Xj7m4v91I+fpx5O2uZJiETShqpydnXN8fIIQKjs7u2xtbtHptFlYpWXDYPHvwGJ8IFNwE6q62btUQJVVrZaRn5eqPmG1KYoUMiyaENVTr4FaoSvfS+2Z17f49U8OQhZpxQtb3/I9WtwNf7q/hWU7dLo9LuxewnGbnJxJW65myrW5SCU7Ws0FSiUh41WekBeCMssJ51M+/PH7bKxvoAtBs9mi2WgSpTFZkUNZoSkq3U6HcD7n7p2HHB4ckqYxpmmgKtIyt1B56YZBs9lhc3OTra0L+L7PO++8x+3bdxgMh6R17T+ZTCjKUgbugew5rK3QajYp85w8z2h6Mrzr+edu1PXfBN+fcHI8J89iyR4dTyiKHFPX6nOiIsulIy2OpOgjLzPKqqzdJwVZkrJwl1d1tott2Wi2RuHKPYVMJ1eXA1ehCIkT0XQsy1omWv77jp+58RRHETY2ruPUTzarQXkFui2767quk6YpBwcH6LpOEse4roXbsOrJnYz2XFibiqIkjlMZSVrIdIA0TdENnYoK1bRBKMzDCNd1sD2PKMnYPzym1elQIPj0Zz5Ds93Fa3bI8kzGrKcZmmmimxa6YZKXOVWe12A8asuWSqvVoNmQP87PTgmCAM2xqAQEYYiqqqyu9RmNRgyPjkEI6Yk2TbQ0o9FooigKK705RQWV0LAtE9sy8Wcz5mFEkqVUwCyYI5AR32VekmQx/hySRC7QURgzHo1rS+NM3gSGQ1zPo5W1UTUFw9QYT8cEQcjzN19gfa3PjWvXabdb9HodGg0XyzKZ+/4y+SmOZHR2VcHm5pYk1tfTdajqqGnBZFpHs6cJluuiahJ4KhOv5sRpTrOzgpKXzGY+VLLzb1kW7U6HJIrIUgm2jSOpQArmAft7+xS1uiUrVHpxzsifUADNVksuMnUUsappFLHkNKEiUzlMA8My0XQN07JpdzrMg4C8qpbAQsd1EcqTJDKh5ktPs6iUJVyzrCrSfAF5lzfpKIyk9U57kkShaSqaKv2xCtBuNAiDiFkwI85SyjzHck1M1UKtVXSUgFBQdB2SVKpUhIKqaqAolHlOHEdoqkK74ZFmKboiQNNBVZmEIUmWMR0PyfKSJMwRqo5uOVSKgWK6UEeNa7oOFHIzUyF98iJHUGEZKrppoBsKSV4RDH1KIdAxME1TQimDGD+IMPwZaZHKNMAiRzd1yhxUXSqpsjytk04Wq5FcEClLVEWgPiWZLcoCXVNr+4ecfhdZQZlLeGRVrxmKokjQuKaCKqQ/usioshRLEay2Woz9GVWZYxuGTJ8rp2R5TloUKIbB2sYGDx8+ICskY24RZ6yoClEqJwcyhniThtfAshw0zUSkUiZalmUN/VNQC6W+00o7hbzxUVtLBKWqEeUVeVlS1FOhAgljVQ2TUghURUdXFWzLJExiBsMBpaqjOQ26vS6qpmLqOqoNl3cuEicRk/GQaOYTjMZolUCtkFwKVZFwayHQYpkcQj2VyvMM25Kg4jv37jIcDgDQdWlXMHUNxzKYTAMODw6JghDKCs9xoSpRRIWiKlBUxGGEP5sj93kK29s7GJ7OymqPKAw53N9HCEGn06GqKmbTGft7e5Jp8OABnudx7eo1+mtrXL54if2zE6rTEyxLpxIyNSWOYza3LmB7Om2hYNo2SZ5zeHzEh7dvcXDwmDAI8GwPU5cyYU3TiKOIJJVR0o7j1AqCmCRJONiTsOfpeIJKiSYKup0OrXYL15XT8+FQJm8oily7Ts7OMRyDVq+N7dm4DXfJxDo8PCSMIixbxlf7M5/NzU16NRNDCMHBwSGapvLqq5+UoNnpmKKQcvI4jmvFQIiu62xubtLpdNnelkrVue9zenLK3v4+ruewstLj9ddfB+D73/++VLvVj5UkCaqm0Wy1WFlZxXEc7t69y9HRMYPBAKFIe8Hu7i79fp+qyEkTGXud5zlUEtaapSmdboeLuxf5xje/wb179/BnMxzH4ZOvviqbuYMBum5gmCZeo8HK6iov1vHgRVWSpDnBfE6eZQhRoaqQ5wlHR4eMhkMeP16kR26ytbXFzZs3GY5GnJ2dkaQJeV7guh6qqrK395gkSTBNkzzPGY9GtNptvBqCq2oygj6OY46PT1A1gaYJGg2PptdACI28rDAsA6uS6lhN1+n1epydnvPhjz/EME0ZC+44NdDdqNV7BpPxhP3HMsXH9312dnYwTYMoDFEUhxdvvkhV2yFLKoIwQCgC13NptVs0W03iWKo0Wl1pm1tAvotcFmxVWTGdTMmyjEYdPe66LjN/Vtu2pBU9q6eLUX2PTNMUy7LwHFcyYCyLepNSw12p1cBP7a+fqll2d3frLy+Wm/a/itn0Vx1Pb/QXm/woilAUhUajIfcBhkFR5pRl8UTZVP87shj4iH/raczJf+Djr7KlLP+8rhIqRRBnKcPJmEazgeM6eJZVK3xKFCGkpbIuKJJE7l+DuUJZK1DzvMA0LAxF0G61iONYNq7KUlrN4piyLHFsC9uyuXhhh9ncJzmIMS0b27ExdQOBIE0zwjhiMBqh6hpW0wNA10wMS8cR8nqohKCs7demZaHpoWyOFQVZnmPVSlnbskjThP3zcxmmYzi0OyqtVg/Hkvt7U9fR6oGSP/d574P3SeKYqoILly6x2e8zOT8nCUM0VbKc0jRjOpny4OFDOt2ubACl0qpRlHLgGsexBOB32k+K7584X58UnNR/Vn82lVT8CkVBZDkIUfPfFEkbyAuEolLV+zz5e0GjTjquqgrLtun2eigKhOF82Wze3NqorUOCLIsZDM45Oz/j9PSU87MzBoMBnU6HbrfHYDxC01QuXryIZdu1+kqtk6IkysPQZTNmwQ5qtVqoioquK8t1IM+l0nEwGCwT0hTA3tikSDNG50NUVaHlekR+SFlV+NMZeVbIolQolAq0dAVNNST7snY2KE+9j0VeEIYR49GYyXhCGAZLVhvUqWyR3ANbwHw+ZzqZ0l9fxzZNNFNy/U7e+RGuY9PtdKgKmb6pqfK6X7y/ZZVh2za7u7vEScI8CJbryYcfflireY+oqAiSkCiIadoyVMSqcSie65LnGUlS4EfzZU2oKIKG57K5tUlvdUW+f2HI0dExhmFwYWdnyfLSFiByUZEXBePRiMl4gl3by3Rdr6+LbNm4edrKtVCQyoZxSl6fvwt72eLvBwO5/2o2m1iWWSt/JPsNniQ0Lh5fqUH6z6p7pJH0r1JB/VRj/KOaT0/99PQat2g8VYDv+xwfH8tGaLdLs9GUzKM8XzbVnv7+st7rLliCgLS2UquP6n9j8b5JvIGomy3iJ5pEC0tc9WwT6mc4PuqeJtcNPrLpJFVbde2l6TSaLYoSZpMpZSF5R1p9fYqigjoQQAGqspCPVxU1Z/cU0zAIgzmWaVI4toRpZxmaEAhdsuvyPOf4+JjJdFI7bxb2wifPV7poXBzHwbIsTk/PODw64vadu3JgVbFcIxVFQTetpSKzv7ZGp90iWDRyExl4trLSxfdn+P6EOAqZTEZ4nktR5MxmksWpKVICVlUsVdGLpmq5+K+Q3ME8zRDIAChRyTXEMixMU2JSFEXBcWw0TSbfPVHEyTrcfMoy/e87fna4uCc3kf5shsRIiOVFhRAUVUUcSLubYRkURc5gcEIYOYSxQ7uVS5mwJT/4ra0GFYIH9+9J5UaWMJ3KNJ48y7Asm//kP/0HrK6t8dJLL5KmKePxmO2dHf7W3/47FEWGEPDjW/fpdkb0VjexLBOv1eLipas8/8JLvPujH3H//n0+/rEX6HaaeK0V4ihkMDxD01S8dhdF0YmyBD+cM5vPaBsyPjEMZOdwrb9OnKTEaUaWVxSlwHYalJUgmMukkpOjU6a+z+n5iJdfuslLL71AHMWcnZ6TZzmWbdHrdGm1mlzc3UXV5AJ2584t6eFuerTbbbYv7DAPQh7s7XN8es7RyTnp1/6cNMvo9VZwPZe/+/f+Tp3oEVIWBbfu3sK2LTzPYUH6z7MMKnA9yQfZ29uj2WxydHTIeDxmPBmTFTmNdgvbcdA1jS11B5CeUD8IefzogJW1DS7uXgfdIC9L9g+OKYqcyzuXOD074c7tW5yeHGGaFs1GcylfdRyH1d4KUEefqgZxFHN4sM9wNEZvuBi2RZonGLlk9BimTsfs0Go3KMsCQ5SUWcp4PKBC3rwVRWN4PkSoCq7tYF24AALW1jfQdYPJ1KfIi3oSKRMTx8Mx/mRGFIdS0VR3dyfTKSudLpubm/izGbPJeLmgjSehlFHKy1A2jwDH1jE6Hpquc3h8SBSFrHY6NFyXS9evkxYFk2BOVeSUVKimTLXKKYnquMk0z+h22uR5SpaEuGYD25F20DRTOT3xEZpK99IGaQWzLCUrAw7PDxieDQmDUKYlqgq9bgtTb7C+3SPPE9IsYjIbMQ3mzIKYJM3xwwwUFWGonA/P+PD2HXYvXuLmyy9xcnbI4PwUVwfbMnilBkhOxyOyKCQLfLI4IakU+s0Glir9wWWVkwiFsigJs4hKVahUBa2SC5AqVBShoWkGul5iGDLFbzA8x9JNRCEjUF3bZm1lBeKYqubiRFFEWRVouqDMZSrV1Z0t0rzkm3/yR6Ql5IqBpQqamoFm2WiagreyglA1Dvcek0QRjlDwz4b8xZ9/h73jEyI/RS9l82U8HpNbBp2mjWJZKJr0RFdVRV5Lk/OqAkWh2WyguC6XFZXpdMr56RlxmiKEyjyO0Q2d7fVVPMfG89pyIpumGKbJysoqzXYbt9lkfWsLfzrjG9/85lI9dvniZV772x/n3bff4s6HH8ppX1URzH2yPOPk+FgW1CsrNBseqmHSajexHLPmwgSEUYTrOFy+tIuuqqhC8MO33+Hw6Ig/+P3f49133uaNz7xBs9Hi5FimYPzw1pu4rovrugwHY+I4QUGQpjHrw3UURWWtv4bvzxkNx8sUtsl0gmGavP7aJ/FcD02pCPwpDx/c5Xw4YDQ45/GtD4njFN8PEIpKEcQIoZBlGTPTYOrYHN1/wODgkI89/zwNz2M0kXav565dJwwCTk6O2apBsvsHe4wGp9y5fYsiz7i8e4mLWxtc3Nnh8aOHfPjBeySxTNXY3Hge13OJk4CZ73NycgKqwsbmOs+/8Byvvf4pfvzhLc7Pz/nTP/sTojBmOBrSbDZ48cUXaLXbMtGtnnAOByOSJOVXf+VvoigqjmMzmUyYBzGlH1JVJY7r4DYa5HlOp93h137t15nNfN566y3Ozwecnp7xuc99gV/7tV9jfaOP57p0u13OBwMmkwlr/T6f+/wXl5u8vb09xqMx3/jmtyiKnLV+n/76Ol/60pdwHIfvfOc73L51i2ajyc6FLRzb5o3P/pxknug6e/t7vPOjd/jGN7/NH0d/xje++XWOjw7pdDpsbG7x8U98Uk7aHz6i1W7TdDx8P+Dg4Ii333yT0XDEPJgzHo157/0PSFKZWtJpN2m1PNb7fVqtNr/2q79Kt9djd/cSpmWRlxWW7bDaX6ffXyfNcrYvbGPoBlkSc3R4yJ0Pb+F5Hmv9NV5+5RWuXbvGxsYmlmmyf3RYF0hTZvOA6WTMtWtX2Nnp8eMPb3F2dobtOXTXVnjhxReYTif8/u//EXfv3uXtt37E7/z27/DlX/gyYRgSBHO+9c1vyP1EELK21ueTr72KXm86//APfo8fvvUDfuM3foPdnR1MR6Y9es0mcRJz594drl6/QlbkfHjnNkVZclArJN544w2EENJiIoMpmfs+URhx5+4dNE3j2vVrWLZDhcAwbTq9VaaTCccnZ4SxLEa319fxHBfP9Z4taOp0RaHIdDVgyYOSjaifbKA8sSAsJvLV0868Z772p5tRPzlNH4/HdcjAE/aJLLRSqaZQtWWD/q+ClC+On7Xx9T/V8ZOckCfvV0VeKy00XSeMY/YO9tk/OEBVFX75S1/mwtYWiqJSVRLuXuQFaZ6TpSlZmrG60kNT+yR5TlFVZGXJ3Pe5d/cutuPQardpNKSVN02lCnil06XMC072D0nzDFPVcHQD17DxpzNmMx/bc1l3HX7xb/4NikLyCKfTKT9+cIeX9Ru0m55MNCtyzs7OqQS47SYbK2ustXtUWcFkMqHb62KpFpqiYuqGHCLWLMuqqBifn7O1tsqV3QuYpkqep3zne9/g/Pwcy7bY3Nrm+vXn5JrRbvHFz34WVQh+79/99xwcHPCHf/CHqLpOb2WN/cNj/j//8l9x7eoVNjfW2Vjv49gyxVarlYNCSHuPEAqKKupz9sl5qizP+UoOsxSBoRgYgBApeVEwm0k0gqpraKbOzqVdprMZ8/l82eBxXZuiLgw1XcP1JIPx5s0XuH3nDicnx3zr298kzzK2NjfZ3Njg5os3+eDHH/CP/tF/TsNr4nkNfv3Xf53r167zxmc+he04dFY6Egx/sM/9+w+5c+cen/jYJ7m4u8vFS1cwTb12HEz406/+Kaura1y5em2Z8ra+vk6j0WBrcxMhFDnkKEoe3nvA4fERZ2fnPPfC8/RWVzgbjQmDgKyqUPKc8WxGt9tle2sLw9DQdA3FlnbQRUqgAJqNJs899xxxkvDWOz8imM8pioJPfPLjOA2Ps8E5aZYxmczQNRXT0CkLyUhaXZWDj3uPHjEP5jiei2lblFWJIpDYkvoT0jTZgNJ0mfKd5Tn7h4e89957yyHJZz79BqqqEEcRk+mUt959m9PjE/6vX/82zVaLVrPN5s4FHNflg/ffJwolW7a30uMXfv5LrK/12d3aZjgZcXJ6wr179wijiCvXruK5Xm2pS5iMxxi6hue5UFUkScyHH35AEAS88vFP0O125T48TeXgSDfQaxXawjIvzz/Jf2q1WoRxRBzHy2GGrulERCRJguu6XLp0iVazBdS8NqUeGFY8Y698su7I9+3Z42ddK5+17i0aPSCkSgVkMAKgqhVBGHJyesr9B/e5ffcOn/vc57h27Rq6YZIWBWUhGxGz2Uw2YBSFtEY/uJ6sdYo8l69JVaVdtlb5GrqGrtfKl8XTFzK3HeQ9SDapFg0YabVTPyLFcvnqfkLxtEBJ/GQ6Xm2AhEogljdKiWCZzGacnQ04Ox/guQ16vTUu7l6GqmI8GnKwf4CpKaCCtowwrSQPSVExNBBqyWgyoNVqUFYZWR4TJSGjiWRI93urUuWlCvz5jLfffpOj40PysiArCpSykMPrqiJL5KChKAvOh0PefPst7t9/yINHe5imxc6lSzi1y0atQzvKesihKAqizJlPxzx8cJ8wCuumcc6Ht94nDAKGoyGz6Yy572MYJsF8ThLHy6YylRRZLBLr5LAzp1IkZ6/dbstkXU3H0E0c0wYhE8UXjVqlTibVaoGGbEhKrvfiU1Q0wc96y/+ZG09aPYXPi3yZplXWU7miLKEsavVBKRtTtbQrzTK0NCOOUwRKLc0T6LpGUZSkacR4MmJv7xG+70tJrx9gmCZ7jx9RVSW7Fy9BVRFFEbZtc+HCBYLAr6cqGWEUs2lKhpRpWJRFgWHEoOgUlYLlNGi0uqiKThAGzPw5iJKiXHRoS1DkByM3J7ILragqpimtYAhIMxmdrGkqpmmSJglxHDGbTSWPYj6nyDOMmsWi1fwrRRES5mY7TyImFSH5AIqC23TQNRPN0CGUEZ1FUaJqOkVZkecFmq5hOw7b29vomvRSh2HEJJigGxqKqpAkCXmWyQK0PoGFWCQ1SPp8ksbEcbS8+Zd1d1vG3EugdBhnVCVoqoZhWFSqQpnKpB+qCq/bo+F6rKz06jhyCUbM8wJNlWD2sixRhIKqyAS2JE5QtIC8rGg4Blqly+ZLJlUDqq6hGQYKErwY+HPiYI4/nUmJd1VR5DnzOqZcM3TZaFUFaZxQ5pLGT1XVIDiBaWjkcUqZFWiaIhcxKsq8IFQU3IaL12iQJLFUwWkyEjjN5OKnqypUUOaFTDE0TCzHwbAM1DO1vvgkZDTKUvKyJF8stIqou+9lnfojf8i47IiqlBGeZZGRZzK+njJHqRccXQGhKLiaTHXKspgizyjynDTPUBTBPDTJDR2tnr7rpoNhpZL1lAvKKkNVSypkekIcR0wmY1aDNfI0w3Mceu02SRhRpintXlueN7U8V9MNFKHWPmVAQRbl9Y+qlOA8ueORi45QgELUNx2Wa0RVlchLSyqLykr+napqoGry6yvptRZUqIpYeqNd00RVc5JgzjxOmSY5a+0WnZUuuq6h6SqWYVAKQRQEJHEsGylxzODsnCiMQEigtqGybJovbuByAlmQZBlVndAozehiufZ1u22gIpjPybKCLC9Js5SiLAjDEEVAUTbkTXPhsVfk9EBRVXTTQtMjprMZZVFg2zZCSEmyompUok63QqAqglL6E+oUvVyyzxpNFFUhjmPCKCJOEozamrO2uoqmSi5Nv7/GdD5nPvdlatj5AM/z0DUDTdUo8pI0yVAV6dsWsNxUDYdDhKgn+XUSp21ZtFrtJcy4v7aG4zhUZUmSSKVjMJ+TpxlJGBHHCboqIcrz6UyGK+gGVVFQZBlVXiIqaDdbrPR6NJrtZcLKUBEUhzlZlpAkEWkkf5RZSlUUqKJCVwW2ZaBr8twUNaRWcmZqNYp4Uojruo6hG5iGgec4RK7H2emAIAjQdW352i3LpNlskiwgtoX08puGWX/2AfM6tc51HRzHo9FwZYIJgmazAcimxGw2oyxLXNdla2uTK1cuL6XpJycnDEfD2oYg442VZSqMTN6cTKdAxZWrVynKkqIqKctKAqoVCZ/3XJu80WCt31+mMlaVYDafMxlPmU19kiRFVXU8r4njuIRhhO/PmU5nlJUAITcj49GIg4MDZlMJ847jCNc2UURJmSdkacJ8VpJ1u0CFacr3sygLgiBkPJ1J5l59T16kNBmGjud5GKaB7/vSCuh6rPRW2NzcZL2/jqZrHJ2eAMjmUK0SzrJc3uOmE0aTIZs7F7BsizCO8ech05lPUVQ0Gk0cz8OyHMnSGg2Jo5iyKGWx32jgeO7S5mZaFq7nSZj5Sm8ZrKEoylLtU5QlQpFA8CSVTCtVVSXnom48KfV/SZrKuPNaVRLMA+IoIY4T+W+qgnkYEoQhZSUBvrquYRpShbqoOaQVv5LMueqJTUNdAGU/cqPOz7zZk1//0Q2oRWLTAgdgWVYNeZcVlCir5UR7cTz7GHLP9B/6+FlYKYtjWeAIsVTCPvVIS4ZNmspB3sKaWpYSxOoHc7mJT1NMQ1ol4yyvg3ak5SuJE1RVbvYN06iV5lJh4DkueR2+IBb3p5pFORxPiJKEdUfCrJvNlmx21ZHzRa2c8n1fJvoWBWESo2oqjfreY6o6QTonjGMaWY5ulKj12pimOYgCXU1lem6c0m43abeaRLFPnEQcHcv0zP76Or3eKisrq3KPrZus9FZwLIvNrS3SNOPO3ftUeSGVwVFEmMScnZ8vm6ae57K+2pcx48+cs1V9Wv/1584zRWcp9wlFKTlOeVVSqCroyMGXrtUqMGkVWdQcck9SYejKsmAuipLDw0OSJOH568/J+1RVYRom/syn6Ulrlm3ZmJa02Fq2DJRI06S2Qk6ZzWYkNQBYUVU0zZDKM00jThKCMFzeExa2Idu25P2wqqiKgjiKmQ7HpFmG5zVwvQaO68kQkaLAMOXjpWkKVFimiarJ4lerzZaCJ83ghfIkyzJ8XwKKFxyfEkiydFk4Lgp+vV6TzKcSCnVNDlAXFnOtBunzk2uJEIhKuhcWSg+1Hog0Gw1M06Ro5DVHa4U4kLak2WzGYDhCNU063Q5JrQjstFqsdKXio9fr0mw2GE3HxInku1ZVRacj2Y9y/SqWw2OoyNKUKIxkIZ4kdDodms3m8jkv1BkLq+ezjU9lWahrdc2maVptK2bZVFKEsizOJR9JQVErqcZ5qonys4LE/6pz/8l6JhaXzU9dMvXTWv5aKHLgNxqNiKJoaafUdV3uKYqSLE1I6nVE02Qa3YI5WhTF0lWytAjCM69HgsZ/EhQuGx2LAcVPvZ76/9VP/+HyWAxZlmwn9dnG09Mvtqqq+vsV8iJnPg8IgpAwjHDcBqqmY5hW7TiyMY0aOC+qZ96zZdNLURCqsnweeVXKNaZWvi3qvjhOGI/HDEdDhqMRQRQ+qRtqlbKsa+Q6JRRVNsx9nzhJpOrVdbAdF9uy5MBJVDWTOa25TClRliDKkjgKZRPLtsjSiulEBjctVIHy++R9pyzlurr4vOSapC8bo1qpU6nSru+47rLpZOomju3IT0dIdqyqasvaRDwVdlKSU5SLAIhquf/+WY6fvfFkaSwsNZVQUQUUyElRHgd1JK2JqkGRFpRqhbBUCiCOCsp8ykzxSZKoPmFLFFVDNwUnp3v8+NZ7NJttXMfDn82pior/5p/+U3Z2dvnN3/otEDDxfVZ6q1zavShrwqpkcD6UkxtH8j1mY5+T0xPuP3pAnClsbF9lc/sq6+trqAiiMEA3XQbnp9x/cItWw6PVbNDuSXXCaDAiy3MaDXfJgrJtC9M2ORueEqURaysruF6b8eCc0XDE/Xs/RigartPCNjRMTeXC5jqOqTEdT7AtixevP0deFBw8PmQeBkz9KZ7nsLl5gf76GqqmcefOfY5Ojjk4OmT7wi4/97kvsrq6Qq+3QpbEVGWB7dgURY6qCMaTCUEcsHtll1c/+QkeP3rI8Pycy5cv4zoOoT+nKEpuvvCCnF46Fh9++GOi0CfLY+bhDH2ioakaeVagqTq27aGrFpvrF8jzkrOTU/woIIoiHj+UKUId1+Pmczf4rd/8n/H48R57+4e8+ebbnJycoukgKDlMczy3wfbmDkEQy+SjosAuM2yalErBdDYmDOcE/hzXa9Dp9kiikDgM+fM/+v+y9/AhFBmUBRQZeVYQxRlCURGqSpyGZHlCEMgblaHbaLqO47m4nkOn25bdclHR6Uhu2M7ODpqqEYUhpqbT9TxEVRH6Pt1OG8eRrCchBK12kzAIuHv3Pk7TZaXfxzJNDN3AMDSiIGAwHTMLQ/74W1+n3Wxx7eIVudkyNcI4IooiRJZhUmHZsok0OD3Asm28hstkMiJO0iW+VA5eC04Oj2l1u1y+fIV5HDOPYlZck8JUGPsT4jTm4d4pZSFXl/7aBru7V9i8sEbDsxmN5wRBxL1HjwjCgGkwIquBt/HM5+j+Yz73mU/zq5//Iv/kv/onPDw9YWVzjVJUxGlI03VZ2biAXRSYZck8jAmKgjyVTcu8ylERLDI8BDWAT9PJsoQyLQnDiDCMiJMYR5McomarRafTI8xuM5yHKHmBWlZoqFSl3AgqCCxFoyRHUGKpBbomuHyhhx8lnPkRKw2X1Za98EiQRhFxXjKd+uRZhqsqBOGcKIlRHYdGx2O14eHpOh1RolcFcRbVDTuDwPc5H45oNJtYjo2qGyAE02CG7ri88PwNgiDkwtYmB0cnnJ6dE0UJRZ5xsH+Aa1u0HJM8yWg4DVQUIj8iTXKKoqJSNCrNoFJ0eTqnJXuP9pkPx4zGQ4IkWiavrXd6VGWJQkUQydjo6y+8yIuvfJz9kxPe+/EHPHj4kDAM+fgrN7lx7RqffePT5FlG6M+4fvMFSkXlX//Lf8W9u/f5p//1P2NtdZXf+q3fYmNrhxKV46MjDo8O2drapNfr8qlPvYaiqfybP/h9JpMJk/GUy5ev8ImPf5LnX3iR1bV1glAOBF6o15P333sH3/cZjYZouoNmOmxs7mIaJlsbG6Rpyp9+9avYlsVLL7+MbhiSv9NfZzAc0en16W9s8HNvvI6qKDzaf0SSBCRZzI9//D5v/vD7NCwbS9N54eJlFAX8YM5JHDAcnjIeTfHDiK3NLXorXcIoloOFmVTerq6uyZTVKGZ8PuLx/UdsrG2ws73LD996W9qE64j7/f3aijXz68Z/QaPRQBGC7//F9wmDUKZ8hSHD8YRf/uVf4otf/HmSRF4P3V6XKIz45//8nxOGIVEU8bnPfZ6/+Td/he3tbTzP4//4X/wXfPD+BxRlieXYbO3s8Gj/bX733/5b7FqCnWeyOd5qNOn31/nsZz/H+eCcr3/jz1EVFdu0cBwH27Y5PRswGI6Z+gFCQBwnPHz0iFu37y/VEb/6t36dbqfL/v4+WZ7x//x//b/xZz6P9/bIspQslUoWVVFqCX6DmzdvcuXyJX79b/0NyrIgTRMODw84PT/FqROD3l4wYlCJ05zZvFaUFjlew8NxbOb+HIGg0+lyfHTMo0ePpFJrZ4dLFy9y+eIloiRmOp1y59YtGdv90kukSQfHcZnOfL71ne+yf/iIeTDjynNX0QyFf/GvfhcqWF/tc/nKdX7z7/99oijmzbfe5r/6J/8XHj16yG/95m/w8suv8Cu/+qsMxyPe+eAD7ty5w53bd/jSz3+R3/z7v8nl3R0s0yJJE4J5QZkmkOcygUbXadg2Z8fHhFHE9SuXcV2XPI5q9pS0DBuGxXw+RzdNPv3pT5PnOd/5zvc4PTvjw9u3WOuvsbO7S7vdxvM8di9dotls0PVcVEWhQKbolgIKUVGqTxJbjdry5Cr2Us38k8Xl07DVJ4d4ppB61sL0xLrwtEpqOp3KBvpTk/6FCkvAM7yOZw7xVLHzH5nC6SebbD+pznpa7ZWkcnCWpwWuZbO7u8NwMFyqarKsQBGyaE+KnMFowJ37knOW5RkvXn2efm+NeTAnLwrCOCJLU5p1ctzp0TGdXhev1UStORlCCDTDoLu9JW09aUrT82i4Hm+9+x6PHj/ms94XaLVbZPMIVQg8zUA02hg7OoOzAY/v3ydIIlAUrl27SsNsoFUKeZoxnwdMZjOm/kymygqZrBSHER988CFJnGCockhqahqrq21sp893/+JNHu894s0fvcl6f53/zX/+vyVLck6PBsRxzNgf4RoWzWaDX/zKLzKd+jhuk72Dfd589x16KytsbG7K4UcU8eaP3sbQNP7WL/8yW5ubqBe25WCufAK21bQnU3VANhHqiZc831laGeezmbTythrkRcFgPCKsGzvNVouG5zEcT2Tj2WlQlSXj0RRFVcmLijCUA4Tz8wHj8Yy/+N4PiMKQl154mYYnP68XXrjJf/o/d3jp5Ze4fu36EpL93vvvoWkq61t9zs7P+fH7H2CYFi+98CKO4xAEIScnp7iOw1p/DbGmcu3aDWazGe+++y6NRgPPden31zANg9HgvE4KTZlMfB7vHfHpT3+av/ELX6GiIM0SgnlIFERcunhxaVtLkjaKCkKRBaJAQan3QtRN6zAKOTg4IM0y0tpWpqoa83mAqtVKKVWh2WrKlERNpdVs4bkulZAw6gsXLtBqtxlNJ5KBNxrR8Fx0161bB/UQkoq8KhDIQV6/3+fjH/84nXZ7yQDLs4wkijF1gy/83M/Jde/v/Sb/7X/3z/nv/sW/5GQ4wHEcXnruOS5sbfG3//avY9oWeVlg6DKlcDEEuHr1Ko7tsLuzS5Zl3H/4EEUotOo0cV3VODrb5/z8jDiQvNXtrS08ryFVjrXCuCzkYHhxLBLrlkrI2jq7sMrJ4Y6sgxd1gudK5Eqa5vXgS1uurYbx7GCgqhbt64WqZ/Hj2TXrSZub5fN55msXa9czCx71gF4OEzVDx5/MeOdteU1+8hOfRFVVjo6OandKxXQyIY5jppMJnXab7a0tyTOspGV3waZSFGXJ9dGEZLdRlcvm0qJBJOoGkV5zwBaNmr/yeOrNKamWQ9/F0D7NZbKmUUOyF18jnvreogYiCQFBGLF/eECS5KCoVCgUZcVoNEEIgW3aOG4Dx20RZ5LXJBSBEAphkgE5RtPDsGxaKyvorss8zTHyAhOwGx6GZTIcD4mCkMO9fU5Ojtk/PKCqCizbxjB12WCvrwtFkYxE23FRdYM0L1hb32C1v4Htumi6TjCbEUURpydHpGlCEgekSUISR5RJSpXltHsdmp5DGsuEubBOnMvyDCEErusubZ2WaaOoCp2VHpqmY5v2sukoFo0xVQokLFvuLyhlMqBlSGsdtT1PDlrqBLxS4iAs24ZSqsbSIiEvChzDWl4//77jZ2881RLuUsiul6prUMfp5YWMA08TeSIYmklOTpGVqKqcKFdVKWVotacyiKN6AVCIk5gsT4jjEAEkaQxlhR/MOB+c8s67b6FqkvMgYdkTNE1S+/3pTEZntluyS69qFGWB53kyQQaB7Tioqo6oKlTNwHXbJElGu70qE49smzCSE1tF12SqIgpFBVkuoVqmYVLmOeHcJzBNcsMgz3NUVWF1bRVV1XGdJm7dGHIdh7JsE4chCJhOx7Wir0JTVWzLQaCQJhmPHx+R5TkH+4fMahltf22VzY1+zThRyNO66VcVKAo4jkVWuLRbTQxNJ45i0iQlSTOCIJQsgTBEIL3whqHhODa2bS9l9JqiypQsRaVMcygLqjyVSV+VoBCibogINMNkc2sbgSBKUkZTn8OjY6b+nJKKRqtJXhREkU9Z5GiKPMmrKifPS6hyosAHUaKUm+hCIKgoy4IoDmQSXBYzm0yYT6eMhucEcx/TkOBWUcl0Q7dh1CoSDTWCJFWIoxSqCsvSEUIlTWI0VSEOwmX3OYrjOirWRdNUAn+OrqgEE4vRcEgYRaiaQpLFVGUNtq3VX0lWoCYpfhASJwmqoki5bpZiOy5C02mGAbbtUAoFz7Zp2AahPyeNEzTLQqj1pESRkaOqYaEZNkYpQGjkdaGYVQVlKc+7KEqZjKZkiqBUleWCqwOVEHTqSU9VVqhlzmw0IM8TpqFFVWmUikq3t4LtupRqQZYVpElOHMaMqzF5WaJbNldv3MBrNTkdnYMAz/EwVJ08y0nKQqYjqAqaquDakvUxn/tURUmWVwi1QpSlnDYqipxIUpKWBQWgGQYIhTQpQKiopoFtOdimzXw6oiwK0BQqtaIsM/IiJSsyyDMEUk2HqmDqOlleoIsSVUhVlFB0GUlqWlR6idfwJGshSSjLCkGBKmTiCgiKsqKQ4RfkeYlQSor6JicLPQ1VqMubRp7nGKpKp7eC7SaoukWY5IRxSp5PKHLJu9IUgaEqFLXSTS7OFqq2gO7Wmw1KyjInylKqMoMyJ8tTKfMVAgWB0DQUKmzHIS1L8lmF02iwvrXF4dl5HUSQoSBYX1tjbXUVx3WlJFoIciFIq4pr15+n0ejw6OEjdF3n3v0HOK5soIZJwsT30QyTEsHB0REgyLMKy/K4cmWNjfUNGbmraVRUJGlCUfvQpXpPQiIty0bVTRTDkGBoXcX1HKzCZG11BdOyaHfa9SRUQVGlsmQynqArKo8e7yFExaO9RxweHjCdjKmKAkUIPNel4bgYNZPOqWQaGoqoAY6LyaROHMtrsqxArRk7ZVHi2BllUXJ6ciotgKrCyfExURRjWSYg6nVQFvELH7xpWfIcquHKmmmg2zbNbo/1zS063R6+Lyfdx0eSEVhWAt2wMCybJMt5+Ogx48kU0zQIwwhV0xBVha4ZGJqJZzv0Ol1m0ynHgwGOI9fmeVViaAqPH9xn5s9IoggQJCKiKgrmsxkVUtq/mOJOZ1OKoqDd6Swl7mmSMhmP8WdT0jRl7s8Io5AknKOoKrYlwfK6rrO1tUWr1aLV7mDZNnEYkSQxs7nPwf4BhwcHXKjtEIPRmLKsMC2bPC9J4mRZzLcaLr1eF8c20RTBeO6TpgntmsXleQ3SNON8OGQymTKdTrl37yFFkdNotTBNC9e2yNOEWFEwDYM8s5iOJ8z9gDSO8VyP3QsX8FwH2zR5/PARjx7t0Wo2uHHtGtevXWVrawPfn0m2SK1qaDSbrK6usrbWZ6FOW4RxKKpKu9Ph6tWreI0meV4gUNBVg4bbxHYcKe1HQdd0qbJDwbZsFlqgPM8Jw4AoDEjiiHA+ZzoZs7a6wkqvK5vLuian44tNeb2xz8uSrCgIa/in3myhqOJJuVHVY+6lwOCpZtJTe7XFpvzZiXOtXHoiVJDPty7m01Tal9xa6SCVKs8WP0//C4t64ak595Nf/UfWgPrrjkUhqCoKaGCi4HkSFaCrGo2Gh6IIoiSqtxJCwrzrwlIzdDTDkN9fFkRRSJbn6KYMy4niWA5ny4K0tmGoqiLXeaiLIQMBkosTBvIxsqQG3maQ5+iaSlWWhFFIXuSoFRi6SmGZCE3iLsqskNb4KGbm+xwcHspEMttenlcq8v68utqTDfIgRFEEQhUMBgO5r0ah1WjR66xgWy7Hp2dQCtIsZx6G+MGcldUeXuWhaBq2a3Pl0iVcV6oK0zyTLJRIqryTOtF27/CQJE2xbJtWs8nqyoo8T5+y0VQ1FLwsZUNlebrXe2epDJMNE13TKaqSNE3IC8l9kip9ObkvRE5QW01cz0PV5P4vjuRAzJ/7zOdzXnzhhbqB4JIXOY8eP4IKNjc22NjYYGNzg+lkKtPRQgsEKELDdRpcvHipVoFDFEckaYquC4o8w/WcOglM6juqsmA0HHB+dspxHWzQbrWwbQfHdalQ8EYzuU+3TLI8pShyLNsmy3P8uS/PF8vC1HUJVi/rBsrT17sQKNTJroaOUBW0QqrAFE1FN3TZVK73OE9frVLB8kTtIXQVw5AsLEVVyIqCOElRhFJbk2o7EAuDlVxgDF2n4XnYlrUMXwDJ4kQgP0NFRVEkWH1zcxNV19BNg0aziet5GPXzTPKM+XzOZDSWg1xFodlo4rky5WvBMtNNnabXwDKlUjOIIqbzOYqmSS5vbalbnEdKbWcueXrNerpJLTnEC5i2VHwK/Pmc+TxYsu8knBw5LKyV60vRy081nf66xehZ1dKT5/Lk10/9KSU/DeJe/D7NMo7PTjg5PZE2QV1nZaW3fA90TTqYPM+V3CNVqXmo1hKmbi5eWx2uoCoLpdOTW9GTZyOeem51M7Sud5ZvghBL5eizr1IsG4GLJnNRFM+8n8u70VMq1SfvWa2eqiSn2J8FZLmsTUwrXOQFSfWdJu/zjVaTcg5xOKvV8dTp0RVFVpKrOUkUk0YxaRyTRBFJjZKpygJ/MmE6nXJ4sM94PKIsc4SCdGrUzhalZiEWlQzO2tjcZHV1VfYGasWmIirKIiNJI9JUikuqIidPE5IkJoojyApECULI6wUhE9lNU6AbFRZg6GZtL9Zlz0WvGZf1eW8apkzfrT9PsWg8PXUfr2DJLi0KqbAvawV0kiRyv6lpUmCgq1RVQZ6LGiiuPmUV/PcfP3PjyVC0pYxMqCro6tIXOx4OyeKU2TxGUzVWVlZI0pQ4zDBMi0a7yXw+J45jMmQXNK0bMWUhTyRNU4jjgCgKKMtKytrzkOPzff7pP/u/4Tguq2sbKKqBohiYlomm67iOgW1bHJ7u0+10uXbpOo1mg+vXr2BoOrqm1QuUQpaklKWg213HshrYdouSnErkzPZipqGP40mmwWwSE6UlfpBSVgqtRoNw7jObTcmCEEM38JpNvIbH6298WnrnVR3HcUjiiE63Q7vbYjabEAZzfvzhe9i2w9rqJo7t0F+1OD45ZjAY8q3v/ZCz8yGaAq1Wg49/7GWuXL3CzReuMRwOGQ4HUlKdZQili27odLoNbNtAFbJb++jBI87Pz5lOpyRxJheWssQyDdbX17BMHdd2aDaadNptPMcjNkNaXgNFEczSBKqcMguJ4oR5GGO6DXTTxrI9GpbNy6+9wdyf873vfo+jwZA333uXTqdNq9XkwsUL7F7a5faHH5LEMQ3HlhdzmVDkKUWekmcR8UxHvXYZR0ggXV6WTOczsjiWSpz9PU6Pj0giKUXUTAdVUcljgePYrK6tSFuJrkn1ThRhmydkec7q2ippmnF0eEwWR8ynUKkSGHqwd0gURgxOT9FUwWQ8RCDQNRNBhSJAOQdFAV230TWD1iwiz3ImQYIf54z8iLLIKIqMqpL2x+efe1HyfPqb0hoSxaysbHJj9wJ37t7l7PwMu6vJKMooRFFV3EYDSzewLAvblTf+sPadT2aB3EAWOeOxz2B4m+ZWn+bWGmUcSQh4WWKpGle3VhAKFGXO6WjK3u33mSoqoapx/dINeu0uV65dJy8KzH0Xf+IzPDknDlN8/5yB77NWlvzd3/r7jIYD/k//5X+Jogh2N3YI/BmT0QAFaW9aX+lhOQ5b/TXyJOHxvXskYUKUpghRoajSWmkoKmVekomCpMzINIHTbpHHGf4kpUBBd2zWVtYgr3h//yFkCS1HBx3KMiYMfeZBsLR/KhNpr3R0kzLL0YsEtZSQeMOy0SwHpdHARbBdwGw24/DhY6hAFbJhaVkWSZqTVxm2raFRkWYFFDlKmaBrOt12C123URWdOIkoipyiktPYCxcvkxewGiZUqkmJShTnpGlOQ9NoOjYty5SW46rAckx6az1sx0RVZANMVDmQkecRs+lMquYSm4Zp4VqWZIqVgqqOKm10WqQKFOMxnX6fGzdf5v0P7jCfzBFZgaPrvPj8c1y6dBG74VIhMBsNjk9OmYyn/Nqv/11cp8Ef/dEf8+DBA/71v/s9Xrz5Iv/gH/4DFMumUHWyJGEWpPzxH3+Noijob+5y6eIOv/RLv0CaxsznMx4+eshoPGQ0Gi0nZo5jk2YZhmnS7nTIK0FWCZluKXIcR4KrP/Hax9ANk7UNGV0v5f6C+XzOnQ9v81DX+PDuLYoyZzQYEIVzJqMBm+vrbKyvc/nSZTrtNidHx+RZxlqrDfWGO09goI7RNCkHHk9nhFGAoWvYls3W+haapqNpOidnZ3zw3gecnJ8zDwJp71VV+v0+7Xabixcv4niSvxGEAXGaIOYBFYJGp4vbqXBcl17NNdrd2WVtYwuh6IyLEX/61d9nHsx5+ZWP4boOXsPj9PSU//v/479ebtouXLjAlWvXEZX0ynuex3pvlZdvPM+fffVP+ODNH3Ll6mXsVpPjvUNODx4RjIeysNUN0jQljmUwR1VWWK5No9Vi9+JFKuDs/BxN1bh58yYU0nrw9g/f5Oz0hCgKEVQ4tklZlmRpzPr6Otvb27S7Pbxmk5de+hiNZosozQhmM26/d4uz0YDHR/t8+M57PLp3n1/7u7/Ozu4Ojx4+oqTiwvY2iqpiaNIqpGk6L964ysXdXTRNI4oi9h8/ZDYd8+LNF7ly9SrdlVXOh2NOh2OODo8YDIb8yZ/+OXmWMTw74+qVK3z+859HE8ghUJnj23Pu3bpPnueYQrC9tsqXPv9ZxuMR+/t7fP+73+HrX/8m/8t/+L/glVde5o03PkWSJPzZn3+dR3t7/PCdd7h0+QqvfOzjXLp8hfX1DU4OD8izjHa7jaJo6LbJlRvXaPU6uI6LP4/QdBtdd+h11jFNgySO0NBxTYcKFSpBt9WlbBScn58ymUyIo4CySLENjSJLGA/OWPnUa7z04gtLe26aSmDrgptkKCpxJtNYR8MxURzTcVqy+FKU2uO1KMafKJgWkvpFlVPVG/xny5SPYC/UXx/HMZPpZDmxtl0Hy7Qoi6yGtMrvf7Zk+v+PxtJfx5968vfydVumsbRHOK5Bp9MizSU7KY1ihpMRqiIwDJ21lTUcy8ZzGxi2jeW6NCwHpSyYTIaESUKj0SRJUs6G56i6jmE7xHmOmqZYmiZhtnXDq2nbUBYM84Tj03MGg3OyPKbbbaBmCSKJ8Jotwiji6OgUVVEwNZ1Oo8Far4OqapRlxfBsyDxMUQvBw709vv697/Laa6/x6quvEvkBYTDC0CR24dOf/iSTyZQPb9+WRU0l+PH7P+bN7/+Az37mM+xu7qJpFlN/zh/80VfptDpcvHCR08E556MBm9sb9JSKKI1RVIXPfvozcric5fz5t77O7/7evyEKQ7I0ZW17B0XV+fZffh/Htrn94AEvPv88X/nSL6AqGprKMpVPMl3KxQckwzAqoJJKaIQE3iNA1XXyMieIAgQCz/Noek3aXgsTjSxNOR+PEIpge2cb0zCl1TqKCOOIs/MzxuMR/+h//b9ic3OT999/jzt37/Inf/rH3Lh+na/8/JfZ2dlhY3uL/vo6ZR3ckKQpZ8MB3e4ar776Gvt7+zx48ID3796WqXfZVbqtFlWVUSHZiRUFhqFy/95tHt5/wP17D6jKiv/d/+F/z9b2Nq1uj8lkjGGarK11UYRMzTJUndX+GoqhcffhPTzbYWNljVajgQJkmYRIK3pFpdShvEJI+52h0e11ZFx8WSFU+X62m01sy6LKcwoh39MSKBVRF5xljeeQhXOq61iOiaprpHlB7gf40zmNhoNpGjiOI5UwsCxWTU2n1+5I67SqUpYFUMnwphqbUVFSKRUXL13kC1/4AlGeUlYlm6trtNttoihBpBnzLOL85Iyjxwc4LQ/bc1jrrdD0GszCkKhGhziWyfb6+lL0NZhOODw/R3cdvEYTVaiIUg4Tl+FDsKxjZRPryfpQlSU1AUPWqfU5un9wxGw2w/E8XM9D11XZbABUdUFoWJTy4iMc0otG0UfZ78Qzap76mTzzfctfVk8aMfK514MMXSOYz/jzb3wTf+6TZAlew+XKpYsEgawzPE8GYBirq3WvUNpREbWVqh6S8lRja/Fcyqp85nk8rcCVT71CiBKhKShChv7Iv5CrXlnv3WUjT1k2pCirpaUryzN5Hi6a/HXHqlp8jXjqXVEURFVRlBlxGDE4G5LkFVlREWcFtmXVLhUdw1YRpsrmzgXK40MG/kTWfkJIoHYFSRCTxRlZUmKgEaxN0PMcJYqwXAehKBztP+bs9JQff/A+WZbKQbgqQ1HyIiXPSyzLlnbHMsd0bF59/TV2ti+wubbGfO4TBHPCJCDJUkYjmQaviYqCkqzG+PhhgKmamJqBUA2EZqCUoBoKLcdB1Q0MU6IwvEZT4nbyArXeN9i6+YQhWZbSxi/kHV1VFRZpo4t0wiTPawREQpalyzUgCAIZtra6hqXoOLaJECVZnmAJnarSsU3jf3y4uPSs1l3VsnzCcakqGbmnasyymexdViWaqtBseChCIQwCyqJAVRR0VacQUr5fj64BQQFLj6BSd+TiOEY3DFzHYX29z8de+RhhlDAPYo5PThgOfDqdFqElfantVocyV+j2uvRr4GxZlFy7eoVWq4WpaxRVwXTmE8eSRdJsuTRbLvv7j4mjBM/2UFQoy3A5LU6TBNMwiZhTFhXdTldCQTUpRU+iiCCTHdJGo0WjjllXVZVObxXHa3B+fo6Sl6BqnA1HHB2fECcJSZqyublBf71Pw3PkhaZJps90OiFJ4p/qmldlRVFVNbgul5ZFXaPV9mrVj3z/XEtO4qJojqJUqJqgKFMaTY+KkjiNCaIQVVFIMtmschyHUqgkRUWcpsyTDEfRQTekP9ayeO21V4njiCCQ0/M4jihqud/q6gq6pnFhcwN/NuP+vTukWUoSh/KGZ5joQkGtBBqyk+5oOrNsjj8eEfk+WRTjGDLu1a478GEylc2e0ROv9SLOWjK45PmSZfJ5FIVk76yu92n3urJYL0EXCgqgIzf8ru1AJRPbGk2ZCojQAUFZZigUNBw5BTYti3ngE+WJLCaBOAwos4yiKAnnIadnAzqOR3+1zzwtCDPIC0FVKZSYoGhUikWh6KRohMGcOIowTQPFsGmu1TDXrCIKY6bDKZZt0m61mMURaZLgddpoQkh1TVmSpyUN2+PaRZthnOHnBX3XxTE0jh4/kDL+aI6pKlzY2WQ0njAcT3j/vXc4PTvmF7/yZWzb5tXXX2c6mXB6fg5lLjlapQTkzfyEJK6wrQhNUfD6W7h5CVnJNJwyC6cMgphpmDKNEgpVQ89yskpCxxVRoWny5l2UJbrQsFQDFZWqlFOrsqok60jT0S2LNE6lx7lODLNdB1EJVMWgrGSKYa4kqKUivdyGzsbmJo1mkyxJ5ZRsMsarJ23RPKBMUhqqg6EIWXLUcmrLtHAbHkUuu/7T2YS8zOlsbNDptHEaLYIkJQ0TMHQM1wZFRvLmKORU5EJQIFWcWV5I/tEwQyiiTgWqpCquVqyIej3VDQO34UlijBDESVI/hylhmmLZLvMw4sHjRzw+2Ofw5BjLsWi3WnS6XRRN4/bd+zRbLVZX11A1E1UzOTw8QghFsqBMk8uXrmEaDm/+4EeMxiOGw0HNRYPtnYtoquRRZGnEaDQgSWJ8f8bp6RmnJ3Xqp64zHA5JMxltn5cFs/kUVbfQDAuv4WHoGnfv3pb2V8uWU/AkktdrnqIqkrMRRz5JBK6jo2sqK80Gc1GR+LIRPRqcc2DoTGcT/PkcRVHwOi3yomQ6mZJkMboC4XwKVUqWRFAWZHFOVBaMxkOEUKBSGM9mBGHIxuYGep3Soaoq7VZ7qXKRrIkhs1nIbDbHthvYlsXG+haGobO6tkZRlkzGEwJfNs5GwyFBEJBnKbqmMptOSOKQKJrjz6ZUZU5eSeVfmkaoKsRhjCIU4tDHMi1S10XTFNZWV1hbWaHRbFDkEgAZhSG2ELTbHXLTwDFNaUlBkfaJomT/0SM0w8DSdcIw4uzkVDIGFQVDh16vQa+7C0IwnUwkly6J8RoNdMNE12X8797jfXTjFMtxydKETFPQbZtut8eXfvEXMX5V5+bNF2k0m1S6TpzENFst3JrZpGsyBbXTXQXVwPEaqIZNs9OjQOFiXmHaDnsH+8vmiQS6d/iNv/d3EQJ2trawbIs4SYjTlDQvEKqOppvMpjPKquLVT36SdqvN7Vu3efjwIe+88yNUXefnPv85tncuYFgmf/JnX2U+n/P48R6qpvOZN96g11tldWUVu1YvG7WyMEnTWvmk0vBamKaDpqioQqXT7qJpGo5joekalmXIhDKh4M/mTP2AuT8jSSQ7sapKbjx3gzzPee6559FqhtjayhpZKu9NmqKS1xtpFUGeSQhonGUkWYqu6QhbDvkKyiW3pKyk7Uh5yia22MA/vUl4ukwQAqIoJM8LbEcm0eT5oshQSLKUNMtkmplhPrHXPd204UnRxU/8K/+xtaB+1sSkhaIBnijE5PdLJaWpC+IwJgwCyb9QZXEpCkEcJohK0G51CKKI89NzIk3DVFRct0Gj1aHheUwmE+4/eIhuW2AahHUyXNuyUIRKkqaoqoqpm2R5zsz3ob4mNASiqjg+PuH8fMCl69ckDy7PcC0b23FwPQfbtqSyMc3Yiw9IkpRJMGc8neBZFk3Hoe26lGlKWeYoqiwyZ7M5RVmyc2EHf+ozGY1ptVt0Wi28hodt26ytrWE7LqBimRZ5nmGZJr12h9lkyuMiXzbrL6xtkecVfjinv7HOL/7SL3JyeMR4NGIwnRP4PqquUOSFVDg+eIAQX6PTbtFpt9jc2KDhetKqU8mkOkRdE9QfT1UrF5TaV6NUoAkF15RppoqiomuKbBCaBooqMNKYsiqZBXPi4YDB+YAPP/wx777zIyhLNFVl7/FjgvmcO3fvsr+/T1GWGKZFd20FVVMJ53OSKCHPcuIklkxbpJXt4aM5JycnnA0HNFwXx7ZZWVnBtixZZyQJg8FAqkxUlatXrrF7YZeXbr5ClmWcnw2YTn3QJE/IMo2a96eQ5wVVBSsrK+imQVEUyxRSVdOIo1iukVmGa5uoqljy9RzXW3Jig1BayE1bqiLCMEIgmYRlWTIPI6lo0lTSXKr0FlbcMI6ZzKaMBkNcx6XpNGjYDl7DwTA01KfYO2X5xNq6ZNkur8kn9t7F1yya2qoq49lncbhUVQNLtdPJ6SlllrOyskKz28JpuJimHKCcn50RhCFhGBKaFvMgkDxiVeDPfGbTKdsbm/S63af4pbLmXKjDBNTMKNloEoqCaehkeYY/D0izhDTPKMoKtapIYxkq1fIaeI6zXAkXQPyScrme/PS6uVyBluvVk7X2IxpM9e+fWPSe1aAuGk6LX1dVxWgw4Pz8nNFwgOu4vP7JV9ne2oIKTMOseT51Y7FuIonlgz5ZE5fPfTHYkE/4qedXPfV9T46FoAQKyppZVNV/8YSt+mQw8JNA8WpZ21bPNECfeeWVVEdKwLhsaAkhLZRZljGZ+kxmc1zPxbQsqjrFcDyeEIahVPKrKmmSYChmbX+WSlRpq5YKSF3TiMIAtaqo8hwUaSNc6a2gCoWjwyOCcE4wn9XsuYVqUF3yanVNx7Ft+v1VPM8migKJmAnm+FFAnKbkaUKeZqSBbNZXRYEmFGzDRBWSsWS7Dq7rSvvegj+taeg1k00VoKs1EbKqoChJyrhu9EqQfFnKn6uqrJVrFXEcI4RMpQPJe9V1jbJ0lm/2gonnOA6GYS6vXdl0XFjWy48WSH/E8TM3npT6hJCNa3kHKKsSUSk4tg22TeTP5UlW5GiaRqvVJIxCyUDQ68mdpqMUClEWUFUVqqpTVbLw1HVpw6jqSVsYxdiVYKXbZffCDp/7zGc4PT3j4OiY/ccPODncoyrX0Q2Tg4MjGl6LNIW1tVXCOGY8HhMEAY1mE90wcHptlEJhPJmSJDFpErPWX2FzYwtVaERBgrrSQatlqEkSMxwOUAWYhoVAochLVnur9Hq9ZdrB+GSM7/ucnZ3T6a7Q7SU4rodpWWxurlMUOYcnZyh5iVB1jk7P+NZ3vofbkHG9N2++yMpKl/W1VeI45P0P3iVOAkajc2SM4VPS9nJxUUvocFlm6ELBMBQsqwUIafkoS9a6HfI6HStJI+IkRAhBs+1RiZIwiZiHc1RFJckSFE3DaTQoFY24KJmMpszCiJ7poJoWpm3RbDS4cfUqwXzOYHDGrdsfcv/+PWZJhACeu3adlV6Pl2/eZG/vMXfvfkiapQRRSK/VxrVsdKGiIdArUct/Dfw8ZzYaEfs+RRzTaLZxXU9aaJKUk1hu7JM4XjaeTLu+8AxpDQjDcOm7zvOcKIq40mhw+dIlzo/OKFNpmxJUmDVIveM1ZQpdaBZcMQABAABJREFUkbGx1qfVbpLlkGUZZ+dHCFHSbpiYpoVlO5RZRBqWEmCOkI0yTQNFYz6dcrS/T6fVob8ZM40K5mlFmQOV+P9R91/PlqX5eSb2fMu77ffxJn1WZpY3XW0AEN1omCA5AEEOMQMOGNKM/gppQroeRfBCl5JibqQJDkUySA5AkEMM0AABtKs25V1WpT/+bG+Wt7r41tmZhS5yeiKoELkR2RWBPHnO2Wsv833v732fF12zqBQdFJsChbhUGS5CJpMx29vbeLZDZ01awqtSMB/NWCyWOI5Nr9Mmnk1JwpBmr4umKCynU4q8II9LOp0Wmxt9zsdzZsuAfquBUFXuvneXJIlxmw06/R77V/cQTyoW/py33/4xeVHwxuuvcunSJX7pl3+Z+/fv8c//2T/Fc2y67SbkEiA+ncVAjGY1aTRcNncuYagqpqKSHTxieBBy7oeUaU6cV6AbNNOcChWtEiA0FF3e2IuixFCk8KRVKnmlUBQVRQWFUFANA0MRxFFdMV8JDMOQlbUlaIpBVSpEaQ5lgkgrjG6FoZvs7vSJoogkSzk9PeFkeEpBgaopRHFIHAS0bZVSU5H4/Yoyz1E0Da/RwPcjkjxmMp9QFDlXbj1Hr9vFbbdIFj4JM4RhYLgOlQJ5mZGjkVGRoZCjUFZqDUYOajE0l20pFbiOS1XUkFfkhMW0TLxmc+VsWMxmRFHE2XAEmobtesx9n08//4x7jx5ycHzI1ct7rG326a31EYrCBx9/wuXLl1nb2ELVDTTd5uHjR4R+QBxnGIbFrVsvMJ/P+N5f/IBKFNKyi0DXDN54/et4nscHH/yYJAk4Pz8lrqGTpyenHB+fUhQFpmUyHA7JixzHc8jShKU/x/NaNA2TTktOU//nt35IEPi8/NrrsvggDiXMMstRRYVlaAzHS4o0ZaPdwHIdmt0OM0XgT6dkccwgkGBn27ZBU3Fch13rCmWSMPLnpGmErlYEiwn+okIz5DQ/jmOyVFrqi7Iiy0riNCPJMu689CI7e3voloOqaBi6TqfT5dat23z88cc8enLEbLZkNpuztbWLbXms95s0Gg2uXr3K0ckxb7/3NidHx5ydnrJcSBj33t4elmVJl6AqYwhlmaNQkBUpVVWSpiGCgvF4TFWCZRg4tk3caKJrKjvbW2xtbtBoNMiLvOaWLKWrrN4klEWBZdqoqsb5cEiSpDy8fx/Xdbl69SrT0YgHn9/FsR0c28IyBe1Wl1deeQ0hBB9+/AlxLMHXruuhGQaabqIIjXuf36coCnb39lB0jUxXMRoem6bBL33zl3ntK2+gKQppHBMlCdPZjBxY6/d58c7zMrKn6URpSl6UOI0OVlnS6a2jmw6O12I2m/Lw0SMURTaoXrt2hb29PX7j17+FoRtoqsn5+Tnvv/8+UZwSpzlC0dANi+lsgaYqvPzSK+RZxts//Snvvvsuf/qnf8pv/vbf4pvf/ja7O9tUZcm/+P3fZzqd4LlNXnjxRX7t279aQ+dVbMOiSHNMQ0dVBH4Uk+UFQqg0Gh6u65FnGWVe0Ou3MetNn6IouI5bx+lipvMFB0fHHB8fsVgssC2TTqfFb/zar+K5Hla9kAOIoog0TrAsS0JG1QJRgVbJ83U0m1LUi3LD0LFUi0oVK4GqqiqKSt43nl2sq6rKFyfSF39XfmFaGccxitZdwYblgFmQpBlZnmNZMv5U1ot5pZ5OV+Uzm6ifmc7/7Os/lpjd/1rD3sUGSP7d6qugEqhCQdNVRnHGYrJgrdfHsizZZFhUxIEsq+i3+ywWB5wen6FUJbqq8Mbrb9Btt2k4NpQVi+UCixLNcyEMyZOUqttDURTiWngydDk4nc/nuJ5Lr9+nYTmoFXznj/+YOE5ob6zLuHOWyjZEz6PdaeN6LkWWEwYhy1AynYI4osxymrYUnToNjzAKSPMUVQiyrGQ6mWHZNlcuX+X46IjJaEy/26XVaNJoNjAti63NLVphhEAWARVFjmtbNFyH2WTC8OyMdr9Du93i0s4+RZ4ynk3Y3t3mpddf5tMPP+LJo8f86Z//JcvZjE6/S1WWzOZzprMZn3z6KVevXuHypX1sV8bNVEVunC7g+gAXbH1RyeIfVdosUCo5SGzazqrERFc1FEVgWgZ6qREHAUmaMl8uOD454a0f/4iP3/+A9376U27fuMnu9g73PvuMY9flo7ufMplMJCPFselvbqCoCsv5nOVCAqrDOurVaLfwg4AnddRmPB5xeW+ffrdHu92mqioePXnMfD7nyZMntJpSXLt9+w77e/tQQRRG/JN/8k84GwyYLufs7GzzjW98XR4DoVKRUVKxvrGB12wwGAywLItGq1m75EOCSOIfKD00TV1x2oSqk9XCUxhFnA3OabVaOI7DcukjhEKv3yPNMvwgwAFM1yHJslrok0PhyXTCZDZlMBjQbrXpdXp0mk26nQ5FebGBvRBynjZsXlxXMlF8Udj09FqUbegKFayEpyRJJLD/ohVa08jikOOTY/rtLntbO3T6HbxGAw2FNEk4PTsjCAPyosAyDBbLJZZtohs68/mM+WzGN77yJpubm6uYn1KL62VZ1qUkgiyOyPJihdkwTSk8LZZz8rJY8Yx1dOI4Jk8z1npdGo67El8UcRF/40LN5t8dPHoqMv2sWL7Ko32pa/NZl5MUKCUI/KIkY3B2xtnZGaPBkO7NDn/tF35x9X5t06qFNylklUXxBbFAXmNf1k729PdVkI4yqgszCjx7uVYVFMWFK+ppacNTrt7TYp+L8+OvwtcvhKdnn28Xh+npcXg6lJGfqzzh0jRhMh5xeHzG1WtXJW/S98mzlMlEtl66rrsC9euGhmLoGHUkNMtyFEXQqoeovr+kzDLyJEE3DTyhsLGxied6HB4cMJkq+MuZFC2p0BQpyOZ5SVmBYZh4rsvW9gaGpuMHC5b+guVyyWy5qK/fiiLLWMzn9WdSoSkKrmXLuCcC13NotZpSZFJVVFVH1VTZJllWlEWFpshW8QtTRphn5FlGFITkuUQiZWlCUeSrz0WWnei0Wq16n2Whqlrd4irj0hef0QWmR54J1EM4UQuA5Ze4+7789b/J8VRVFWme0mg06K+vs1jOWfo+yzCiLAo0VQNVKmiapmFiogkFz3bQdElTXy6XUFXSnVSWJElaAwbL1QWkqtrK8ZSlGWkU02n1qEo5+bUth08/+ZTB2TmO3UA3TTS9AqHy8PETzkcjDk9OJTNFVfngo085Ox+xtbGOotbA8zRjeD7ENAx0zWBjbRtTt3j04C7LxYzB8Jxut82dN18jjkKWsxme40BeYFkmpmmg1bWdrXaT2WyGZRv4QcTR0RO2dnZR9bqyUVXxmh7DwZD/9z/8f9Hwmjz/wi22d7bp9Xu4roOmKYTRgjAIqMjRdJVGsyFtwWEk86OqQlUVVKV8KBiaTqvRlpd3UWFbDqZp1o1UCUEoq5u9RnM1FZ0vlsyXC9nCkcTSxaBpGKqcdhyenJBmBXEi2y5M06wfkjE/eust6YoyTVRVQVUVup0uu3/tm3JhnWZMRmPOziZE4XsoQvCVN36J88EZx8dHoMAiymi2+/TXtomLol7oKrTaPS5ducba2jpREKDVbWpREFEVFbZpktctU0WeE1NRVkWdYZVZ8DiO68x7gRCype7k7JRFHHF4csxyvkShwNTlBM8yLdmGViqUhTw3wzikrOSkxq7tirpp1s6JCtexZRxPk86yMJC18e12m1bD5frVy3iexTyYEERz4niJKEFVVCyvQVkVnJ4fY1kGnuugiALPNckTHz+PiOcjqqokyjKqrMQsK4aPDxidnRIsfbIsZT6ZousGpm6gIFBVk5PpgkfDc4QMbJGPhghNQ7MsCiGYByGJECSKQhhEWJaF67WI04x/850/ZXtni29965us72xz8/Yt5tMJZ4MBLbeJazl0Og6iUljOffxlwGQ6q+PbFZqh0d/awzEsNFVltgzIK1A8GTcIplOaboPeWocsSjg5OCbJCoRu4jTb5LGORopQLPJCkzWdhcDyWthuC9eWYDzNstDUFCsuSNKMxXhGb2Mbz20Q+CFBJJt0iqIgjxNMRWOj3aVlOtilgioEuqFz7eZNTF3n4OFD2eylZpSoZEVBEEf4YYjjuigC8iQjjRLyNKcsoVI16QT0fXQBnmliagqGqqFUGrowcA2HxA84evSQjY1tut019LqKOEkS2SRTyLY813FxXA/L86BuZtENgzhJWfoJ/c0Or735NYSmk6US8Cd5FB6O47FcBAhFgVLh4f0DHtw7YHHRDhosKYuSza1tNFUnzQqyLEUA3U6XXq+DHwRkWca9B/cwDYNWq4HrOghKTFNH11rs7GwRRgF3P73LbBpABQ3X4/kXnqcoMpb+gvnCZzb3iZMETdPY3d9nMpnwve99n82tbf6z3/pbRIsFg+GAo5NjDg6fEPs+VVHw2f37NBoez928Trvb5ddu3iSIAsIowvEcdMOQm/Wy5PTsvBZOUp5/8WW+9sZrnJ+fM51NiRJZIZvXdb/tToc8LwijRGZohYKqGySVYHByQpmXmIbJvfsP+c6f/hnz+ZzJZMruzg5Xrlzl5o2b2I7N6ckZJyfH/PjHb7FcLhlORqRJWi8++/Vxa6IbsjXEdmz6az3J+Al98ky2Uc6mI7moQXL3up0Wy8WCjz96RKvZYGtzHV3XqKqSa1cuk2YZjx49RlFURoMBzUaDdqvNxsYmruty8PgJp+fnzJeSc3j/s88kazFNKJKIeKmxudlHWCaHTw6pgCTJcd0mN27ucHZ2zsHhCZ3uOuubG7z0yssYhkEUhxRVRSoEulCwVRU/CPmzP/9z6RiyLC5du85mknA2HhH4Af/6j/+E3d09Ll+6jKbrKKrKcDohiROOT08Zj8ccHBzQ6/W4ceM5gmBJmsb0+z3W1nqoiqBCDrS8ZoPrz93i9PSU/PSUVqsFwLWr11jM5/yjf/g/EkURg7MzfN9no7+GrqlEoc93v/sX+Esfx3Ho9nq88sprdNodFvM5qqKiKSqeYyEUAz+QkOF7Dx+i6QZbmzuEYUwS5xi6bDNK04yyLFgsF5JNVpYsFz5HR6e8/c47vPPee/T7fdrtFq+8+lXW+n1KBGGS1BuZciUYyoW3XKyPxmOKIsdEpaKS1e+mhWmYTJcLkjStW7uk26ikIilL1LJEE3KNJN1J5RecBnLTJ5+BcmEpN4RlVZIV0lGqGRZpmjJfzuVzznURqkpeyEbiC4dJbTnhS3Yh/9G//n0C2F8Fi682csj2vgukRKPhINQ+SZqRBCme41CUJaeDUyzbobe+xvbmGq5rsfR9sjQnyXOWUYRjWximyc7WNoUQVEWJYRs4jovh2OiWiSWkY9mvGWhyXWliGCaO42JqOm9+7Rv4vs/h0RFlKSfdKALDssiLktCXsbEwitB1k06rw/7+PgcHB7z1wQ9IsoQnhwe02nL4enhwQBRFRHmG67iEy4AiL+i0uyAEyzDgdDDEtiz6/T5FVnDw6DG247CxtUm/36Xb6XD3k0+YJgmbm1u02i3JeS1zdENjNpsxHI/wvCavv/4Ge5cuMZvP+eFbP2Q0GnPvk0/wPI+NrS382Zxj5Yi/TFJc18NzHQzdoNmQwGYFQbfXZX1jHVXU7aWr3U2Fril02+16F6Qwm885H57jua5saZ1L8Pjp+TllWfLynefpuB7b6+tcuXSZtX4fXddX7YTdToevfOUrWJbJB+++y63nbnHl0mU++PgTjk9PMOpyhxuOy3w85aN336fT77K/v49lWURpxNt/9g7LpV8XLtlcu3adtf4a+/v7uLZNWZTkeUGaZbS7PXTL4lajQZ5nfPzJp5imzdbWtnyW2BbULg7f91GFhDzrdXN2XjO0DNPENk1cx0MoAtUwyIqc07NTVFXlyqXLTCYTZpMpN27cwLJtHh0cPOXqKAqGZeLaLq5lyehYWaJpGp7r8dz1GxLOXhWSTyczvVRcxHCrlRFGrr+V+k99z6slmKcpSkFVX6NRHDOdzxlPJiz9Jfnlq1DJ72saJttbO3Rbbdb6fVRdq4cArKKqjuPSX+vjOQ6e58n9zfmAwUCiRxrNBq1WCz8K0VRVlnjkGWmaPo3YVRXKRZuwIkjLklIINNPA0aVDyDbNOtJVUFJi2CZaHdGt6uOlKNK1LoHr5c8YQH7W3VSxUlaf+Zp/l3D+rLtpVTBRizOydT3io48/Iopivvmtb7GxsVFHCitEeRF1K57+/GedTOIiwVc9/UzlFz3zv1BdDCXERWPbxaBi9ct+wTkrLoQJcXGZPhX+pMglHzoVlXT753mN2VBWx+Hp+33GPVefQ9KIITUK0zTo9Xo8rqHfpqHT73W4++mnLBZzvIZJHPh4jSam5YBQUBQNVdUoSmrx5OJnKji2w/bWFnq9dtA1naoCtc76pUlKVreeapqKaRl1O7EgTAKEEFy5cp393V08xyJY+jx59JgszWSZRZ5DUTCfzSnyoi4sMWm1mpT1sEmeS5AkCZPJhF6vVzuQVNJEDrjzTELw4/gCOC4NGJbtoihCDu0V86KoWz7jFXmNSZ6W/DzmizkHh4fohommG5wcHROFIXv7u7RbLa7fuCaPVSHPIVVV5PutKkxTci9/ntf/BuGpdgdcLOqbTeIooipKkkgu+M26eSDLZYZTL3QUoWAZGqomYeSiPp9dx5UbxCynLC6AgheKuYTQ5llOVmb4syWL2ZKqBMdyaLgNXMtBU3V03cQwbIQigWqjyYTZcsloMsNzXRzH5snBEYtlQBTJ6XnTc0lSaaOcL3xmsyXNRhvP9fj4g/cZDafMphM816LXbbGYQ+QvMQx9xZbSdA0NedFbliXhsfGSKDplsZjTW1ujrEryUp4AuqERhAE//umPeeWlV3jllZe5fPUyG5sbJFFImiYMhwviRNr1FVXBtEx5IZZFbV9VVtNMIVQpZhiWhDmmKaoi7XfUJP84zSQPwLRW9sUoTphO5xIgVkNFq6rC1HUZ71mGFJWgKAVcXGhAmqacPnxEVZYYmorjOHQ6LXq921y5cpUoiomimPFwir9cMpsu6fV6vHDnDopqEkYZgT8nKVMM28VxG+T1pELVwHZcemvrsgUmSQhqMHfoR5RVhaFJlTXPMspKwjp1owbl6cbqJlzV/yeEQNXkQmS8WDCZz0ijhNDUqEwDr+mh65qEdlYS3h2nMVmUIRS5qO96tqy9Nk3pnMiLlUXV0HWoKhazBYhcRgYtE9MwUUydMPJJkpAsi5HeqApNl80XC39OXlpoGghRYhkqZZ6QpiVRkJAVBcskwtIM2qbLfDxmHvqUQCUEUZygGybdbh9DN7BNk8XM52RwSsuR10a+XEhItaajlCVxEJD6ASkVqlDRVA3TtCkqlY8+/ZTBdMQ3f+WbOJ7L2uYGcRTh+wGO4SAsBdt2UFAYDIay6nOaU1JSUrC1vc1Gt0en3ZXv31mQ5gWFUKkKKPMMXVNpNposkogoDNFUG6FqGJaDUlUoOVRCoygFeSnPP9N00DUN25axVaGpqCgYRkqYZCz8gO6GwLRsgjQhjXKWgQ9IF5GmKLS8BraqoxYVClKIXtvYwjR0Dg+OKLMcoRiUKORFSZxlRGkq/72qUuQleVbUgiagShB8FMmWIcvQ0YWcMggEipA11nmSMpuM2dncpeU1UWyTosylUKpqVKV8WJuGITkIhkmRp4ic2qaukiQ5hmFz7dpNpvMZw+l49cA1TRNTN/B9ycIqspLhcMyTgyPiOCBJY4oyR1VVmq0mlmWTZzJfr6oKDc9jfW0NTVPxA+lwUlWVF+5cwzQNyrJYTeM7nRbr630+/aQkCkOqmgGxtblJVZX4QYOiOGY8npEXOUVV0ul2yfKCBw8fkRUVqq5TVBWL5ZKlL/+IvICqZDybkdXgXa/Z4Nad2yz9JQvfxzQN+ewQCkEY8fjgqH64lmxu7/CL3/oV7j98wOnpKdPZrK6VrTAMnV6vT5qlLJaBPMa6wcnZOfPFnMViSZamGLrFeDzmvffek3Fa0+bmjZvs711ic3MLTdM4PDhiPB7zkx//WDJIBBi6ganrNFyPhudhmPKeYdgGzYbL5voafrBE06DIcvIs43xwShAGNNwmwjKxbYvpZMzp6RGuc51Wq1k/xEs6nTZFUTIejknTlGC5xDGtetjQoN1uk6Upi9mMwXCwquh2XdnmmaQpKVCudRAVTCZTygrSLKfVMtje2mUyWTCbLxCKgtdscOeFOzQaHk8OHpPlBbnQsHSdhmnx/icf8fnDByRXUjrdLvu7e5RlwSwKGY7GfPTpXfIKmt0unutimhZFHYGYzGcMx2OeHB7iuC4bm5uMhoL5XLa02o5NVeRQyaW6bhh0ez1m83l9LUtAbafdJolivvfd7xFHIWWR49g2nVYbXVVJ05gHD+4zmUzY2t5hfX2TO3eehwrCIEBTVXRVWy28wyhitphzeHyI63j0extQFRRFLIcCdYS/KCW4XQo7GpPJjKPjE+7dv8+HH3zIK6++QrvdYm9vj/X1NekES1JytZBwzlxa9y8W0lVZ4S+XZHmGocgonm3ZWKbc+M3rZrRnx4dVBVlZrpwdF5uNL7YGiacrtWc25xUVlahWcWYFIUWLMMSy5EYaIWTZhFCeAYs/E4fgr8ZCvvz183zN/y9f/66f/eURvGfiK/XfK/XEv6zk+gtVxR8MSJIEr+FQVdLFVFKxJtZoeC6uazOcGARhLCHecUxelBJW32wRZSl+msoomKFT1TFvS9MpChmxy/IM3ZDubV03MAwTy7C4cvUqi+WSzx89oChLWrWbRlHr9XGSESYxcZLKf2NZbG1uMhwMGIykM3U8GXPruZt0Om0ePnog+Ymajuc1MBSdRqNJu92RUPwkQSyXpFnG9vYOmqoxnUyoqhJd02h4HmtrPR5ZFooiW8RazVZdZV+i6xqL5ZLBcMQLd+6wu7vH9RvX8QOfe3fvsphMmY5GUJZsbmzIQWtVykGWKgd4tm2ztraGpsq4cKkKWv0OhqoBKpqQTmGqEkUReK48f4WqMBgOGQ4HFEUXwzAIohA/8JmMRivXqq3rNFyXne1t2q0Wp6enRHFEVVU0Gw3e/MpXOD8/59NPPuLS3j6GaTKeTzk8PaHZ6tDKC3nclwHnJ6d4DY92u01ZFmRpyv0HDxiNxqyvr7O+vs7a2jobGxtsbm1RZjlFJpuo8jzHazSwHIf9vT3OBufce/sB++MxS9+n3WrJZ3FVkReFLACo+UQXDnDNX4KoUBUNXTOwbAuEIKtdCvPFgm67Q6/TlSU6QSBj2JrGaDJBEYJOqy1dujVOwrZsyU2qChnpsUy2NjZJshS/3p88c8E9FVdqi5O8BzwtMpCXZO3UvHA/KWKlZGR5ThjVcblQFiNdxLw0XafVatNqtmg0PLI8Jy8L6dgsSxmL0zTW19cx62FsMhoxHI1WPCPbkoVK0/mcQpPr+byQwt+FWH8hQF0M6POioKRC0eT+zrMdVEWR65tSDsw1w0AzdCmaVE/vIULImKw0LpVfuCd9maj0xfvRhbv04vt98d+uvv8z92UhJHc5CQP8wOfk9BQhBL/2679Gs9Gs7+eiFgGLL/z81e8m6iOuUBfrfPH3ugB4r3QqLprnngLqhXimCOOZ3/Ppd6tWEbsLHArPfE1VSYE1TVNc2/kZUPVTjeypMCTgGXmvWjl3hFAIAh9VU7Btk9lsymg0oqxaFFm6gnALodRioeSQPdtwqIAcKjZbcu8AqIq2ciBXVUWWphSZFJ4uoO3IQ0iRS5d0p92m025jqBrzLGU0HMjPAwVR7+njUHLK3FYX13Xp9foUVUlelPX5VTEayVbRdruNqsr7bZalq6RPnucEQSSbVrOsdkXJki/D0tE0FVVT0FRZPKCoympvfyFs+2HI2fkZlu1imDYPHz1mMZ/LgjZN6jiqqpLXjEpVVepjVhf0/IeGi0exrNHrdfuoqs5wOGY+XxCGEZomH5ZVJRXy9Y2NZ+oopeUrz3OKrJCLHOSHVBQFeW2rVBQFTZdvzPNkhjkMQ7IkI45zuRkt6kaBYMnjwxMOjs9odDdRVEeKJIZCr9ejqhcO82XIcDxjOpcbGNeRi7u1fp9uu8X+7i7t3hqNVpfZbEIYRFy9fouNrW2Oju/h2DpHJwdEfsh8NscPfOI4oazkAnC2mFBVFZZpk+c5nVYPU2+ws3UFp9EEReEPf//fMJtPUYXAsWz+93/vf8fe3i43b94kSUKGx8dQX8S6Klu1Ij/GXwTM53KDtFwu6wpt6dIRQtR584TJZMxkOmUwHLK9s0O73eH+/Xskccxzz91EV1VmkwDbtmm327LSvuHRaXXIwoSm10IoCkmcSiVXUTF1C8O0iZKUNMvlSaJAu+ECAkWYZFnK0eE5x8cD/uxP/xLXk3yk3Z0d+mv9Oi9aMZyNyMhpr7VZ311DM1QenhxwNh1x9do1NEujyAqZ6y9Uur01HMvkwWefE2YhSZWQk+LYJmahYRo6pm1hOzaT6YwgDJnX7I/VSV1fALqmMZjOmCyXWJYESxq6bOgajCe0m0263R4Nz8PzPCbTMWEYoNcRicCPUJQcK5c33bJW6cuyJMoioGJza0NuaEyTi2zzPPSZDc9Io5gyK1AUuaFaLBaYpsG1G9fJ4pgoWKIWOUpZ4OmGbFzQdEpREQkPUVaoWUGr0ULTe8R5JltFsoJKKBhqQa/f4NU33uDxwSHVJypVLjc7s/l4ZdGsELgNmzRNmA9PMRQDXTEglw15lqZTLH3+h//nfy8fAmWJAty6eYfZeMzJ6RG9dgtDU8nTBYqAhuNSFIIkKRmdnHB2ckxWi5XXrl+n1Wqze2lHXsOZZG/dO7pHp9Ol6TUoURFqgaoXsv0nClGUjGVUyZpgVVCSk5Ul43mApqv0N9Yl1F/pEBQ5+WyGZlu47RZd16USgsF4QBSGjIdDTE1nZ2ePwdkZh4dHVIqGadmohoeqm+TCJS0KsihA18GyIc4EaaFguS6GblBhoWoO7bV1RJKw1BTE5ypBEuG4Hq5uksehPDZRRBrGhP6S7vY6a3vbrG3t0Or2CdOEJM2ZjOdMpnOCJEFoKnaUYC59KlUliUKKPMc1bTTLot1psb+/y9e/+iY/+NFbvPveO4gip93wMATE/pK/+M6fyPtHJcjSjCRKcRsm/aZHf30Tx/Xob2ySFwVPDh7jeQZ7+7cIlgEHTx5i1ZGsh48e4Ps+p4eP6PW6vPLKywhRUVY5VVmws9Vna6OLrpQcPLpHGgc0bJuyLFgul1iex+7WNp1OD8O0ODo+oyjh1vMvsbW9jW66GFaM47X5pW/9Ki+/8joqJaKqyKpKckJ2tknimCfnQwleDIJVY05aT3R01cZsejiuw2A44x//k9+XMMQsXT1A57MZAvA8l+FwwGeff14332kroeP1V1/Btm1mswWmrnLU7/Liiy/xi7/wi0RRTJIm/OSnP2a+mPOTt39KFAUopmzTabpNTEMuclVNTn9ms0AufEydNE1pNDwmkzFnZ6cr90yn06HT7WDbLmVe8ODBfaqy4MqVS6xv9PGajlx8Rz7f+c53UFWVF194mSRNOT075XRwzsHxEYPxWC5MqFhbX+POC89TliXT6RjP81hf6/P40UMZAZv7iEpje2uHJEv56MN3mQwm2IaDguDll15C1VXORwMOTo9pRS00x8LRDJpui7woiNNEOneihH67y9raOg8eP+Tk5JQ/+IN/iWXbXLp0iTRL+ezzz2g25MDn+TsvYOgN0rr21/M8Wq0WvV6fzz//jI8/+pi1tQ1GwwkvPn9Hcj4WCw4Pj3jrrR/z8OFDHjx4QLspIduffPwxYRjQara4cf0qv/Hrv8Z0Mubw4JDNtTVsReOFW7dJ0hRUDd0wuXfvHromW148z0NzNaIsIfcrfvDOj+ViNM3Jspy7n3+KadjYpkMYyLXCMrApq4L333+X8XjCvfsPMUybTqdPr9vnd//u77C3v0en28FfBoRhJBdulsnWzjZFXpBlGYYheXajk6N6sRjImOdaF8sw8SyH4WTM4fERii5t/w3TwjQM4jwnSmJGkzGWruMYBpqqrVy3F+spufau6gWhulqgezXnAk1nGYa8/dOfoiiShdlG4Dj1eVeFdNstVEV/Go+pd47/sUTo/kO9nnJDvrgRLBQBKFRCkOYpYZRyeHCM7/u0vDaartHo9EiyjPc/vXuRNsE2bDRFFi9QVcT+UtaUT6ZkVUlOyflpyMlJyds/egtNUfnrv/KreK5LkqeSh4dK2/Ho99YIo5jpYoFrO1iWzQvPv1DjHM45PTtlNp9S1AORF154gc3NddqejIFGccT25ibf/o1fZT6bsVgsJBC4qnj15ZcJw4ifvv8hSSKHjmtrfV544Xne+vGPOT445fr1a5iOTRiGFEXB/v6ehM5bFqeDcw7Pjljf3OTK1evYtk1VSji467i0Gk3yvOTR40PuP3zMcDzh9gu3MU2d5194np2dbW7dvs3x0REffPghtm1jWRJjoBsGSRihmwbj6YxGs8ne3h6j+Zzi4UOUSqAKwbX9Szi2LaOPIMuOLrRSVUUzDMazKVVV0Wg02Gw0uHXthvx8i2I1gNINnTCJ+eyzzwiCgDdef52tzS2uXblKnmdkZcHDx4+Ik4RbN25y+9ZtBoMRURTx/kcfUFUVX/2FrxNGIR999BEvPf8Cly5f5b/+b/4PpDXztaqP++npKY8ePeL5O3e4evkKn332GbPZnKvXrmDbNpf293n05AmPDh/z8MEDHt67z6uvvcrOzg6TxZy8KNjc2sKxLGazGWWzgWWZTKZjHh8cUGQZrWaTna1tydorSyxFpeV45FnO+XhIkCVkouJsOMALA0hzLMdhrd/Ha7dwPDmMFVXF+fk5QSQxJZqmYXo6i8BntJhJURwQQkXhIo777D1IrISTiz+KqCWJ+nOSooPceGuqimUY7O/uUlQlvV4Xz/MwdF0OmDWtjlBlqKqCoelMxhPCUDajm6aJ6ziykVgRnJ2f8e6773LlylVeeeVVGo3WymlV1MJwuXoP8r6WJLKVVTct8iJnMR6tXDmOIZ0i09mUpb/kyePHCEXlK195E9u2SYsc8azg/owb58tEnp8Vn55G0S7WcvLrpFAErKDnF8e4rJ0wRSmTRkIIPvzwQ05OTtjc2qJZt9OahlEf66eCj1Ce+fkXghPPDBjEUw7TxddU8Iwj6Kk4UyHfpyhl/7mqaWRZzmg0rp3pEVcuX8a1pVuULxlMVBW1TiDXeGVZomiqbACuv/TZuN7qXl2U9e+t1sekoN3u8PrrrxOnOZVQWMxnvPvO2/Q6HVrNBoapcHZywjvvvsdgMMC2HKhYGTGqqsI0LAzDQtV0CUevlNqkoFHkFVlWsFhMmE7HnJ6dSLeqbaEoshyhrM95w9ClW304xLEtPvvkY5I4QRRSrCuqkiSQzua1tQ0Mw6DRaMkom2pAXdTjuS6GaTJbLMnjiCwrEKJAiJzxeMLjx4/o9/t0Oh22t7fRdZ0kkeVcRSmFpeFwSJLIprwwjqXjeTEnz+VwmgqKC8Gxqthpduitr3NHUUjTlMuX9mk0GjIhUkrhWFE1NARFIY+bUFTEf2jHE4pUxD2vQVmVpGm2+mPbGoqqkWcpAIZpSrthVSFEDsjaYgmC1kBR5IlUK7UKpdzsqvJkk9NpjSSJyVV50udFQRBG+GHAYrmUFa1AXtSqIApCkRdmhQKVSlFWJGnGfLlEDRXm8zmGrhPFMUVRsLO9Q15WZEVJkuYkaUG7I6NvSTqnqjIWywVFVtQLOXmyp1lGkiT49bRGVm5CUVQoiophKFSlvJjGoymz2YRep43ZtNjf22NjY4NWs8FknBDnGYqqy+icbqAqKlEYr0DZIIUU05SuKl3VqCqIY1l/nBcFSZoShBFRHOOkqWymqKQNVdQCn8zLarVDxqrtunKyhhDEUQrItiVD1zFNQ0aecjkdVqgwDV3eaEqVNJVAyyD0iaOQdqeD13DZ3tlC1VU0Q6MoJGcpK2VWXTWlYyyIQtJcTn1QqKHSyIeQoaFbppwKVqW0cBcFKvKz1TQV27JoNZukaU5ZVkRRTJZnq6pQVZVuME3V6jhnjGOa9Y1AQFEQJxIYiJA3S9OS4MU8SzEMnaqsCLIcoSjoRXVh8KyFpwqqukrekJvPC8WeqqLIsxpAKKNRKPIyK0qZ+dV0XcLjNANRllDlaChoQkU3BJUAVReUeU5RRlimbGVTM4W0kM1oRQWKqFAV0E0NwzKwLYc0DsnKnDxLa9VbR9TOlapIEUWOrho4hk6lSFiiJqBKU44eP6mFX9kO0+p0CBYLZFtNhCgVNFWWBFiGQpELlKIkiyOiOMJPckoEW1tb2JaFKAsEJUJUpHnCwvflQtM0QdWgyhGikpWiQrZVKKqCUAVCle6usp6CVJSggIKCYaropoGh6wghAd+6ZaJqGm7iXczqEYqCqmpkRY4fhThOE03VSdKcshSkeUVRCYSqUyBIsoKiEqBqqLpsEhNCrc9+KR6WlPVDv0RTFBRVo1JkjE8pS0RVAwV1A6fRQDcthKqBkC1RaZqTZjklkNUOxCCMUDSNNImhLDF1U7pQGi6uKyGeeZbIyXNZYBk6SlVRZhnL2Uzecw0TRahYuoqpCgwFPMusowsqUCJEjqoZ2LZBFPikSVzntSuyLCHLYkQBYRAxGo3QdXkvc1wbx/GwLQNNU/CXC2aWyXg0IssyptMpa5ub2LazWmimSUqeF3XbRksuMhUFVdHo99fpdrqolXQ8hYm0vJuWTRBEDEfjFc+N8mJyKBeunuPV8EaN2XTGbDqXkxxVPlOKvGA6mQCQxjGDswFHTw7Qanhrf60HZZtOu0Wz2Vqx/DY3NuSfzU0eP3nCYrHg6Fg6nY5PjijLgv5aD0VTVhPS1SKwlJXeZVVSUKJHEculT5KkKIpWPxuKupJaRdcNkiKW/BdDp9lsYFoGal1PXVEynU1X/AlVVVF1nSTLiJOU8XRKVpRyGtxus7O7Ix1qusCtq8p1Q5dOWYR8DghBVVQESx9NURkPh1iOjeU6BHXzzWAwIK1rwCurQnUFaSmFJ3mvMzE0DVXIZ+l0OiXwA0zTpNPpYNTRXwmzTonCABDEkWzjbDYauLWgK1AoipLl0mc6nbGYL1G1iNPzcx4+eMjHH33E+eCc8WhEmeeYhsHZ6SlplnL50iW2tja5cvUypqkznU4wdA3KCtuUpRRpJYdZcRxT1dEUpQaDRklCkEQMx2Omsxn9ZhtN0+rJnXRRFEVOkkAYByRpwvn5kMFgyGef3aPV7mCYNuu9Lpd3d+n2+ziOQ5rK+vPlckGW27TjiCyT0UezsNB1fRUHlc1Tai0gSdZYXlemt9odDF1HuxBdCwkdT5MUDUGl689MkcVqigz8DJOpqio0TQdFYRkl+H7AcDTCtix6/f7qeZkVpWykXMXQntkY1S6rpxumL2OA/Mfx+nng4l/c+Dx9L2UlJ/hZnpIkOcsgJAwiFsslvh8QRBFWJe/neZwwmy8ohZz3ax0Nw9Qo84KiLIjimDSWgnhZr23KOgIxHo+pipJJ3SaUU1CW0nVuaBqGqjFLUoIoku5XIei024iq4uzkBD9dMl/MnoqPisA0dIxmgzRJiaII0zRZW19DKIKiKmschU632yWOYxzngeSuqiqWZdJqNtF0jbyQax61Ls5RVJVevye/VtMIwpAg9Nna2MXxPLJE8kJMVcFQVayaASKELMkQvk+cxKiaQrsjeWmtdhuAR48eoWqqdJKkGWV9T0vTlCBKSNMUx3Xxw4DJbCJh4opKp9mqnYMFZVVvwmv3RZqmq/RDURS0mnJI0O12ybKU6WyGUARaPTCQ15xPHIayTt62WS7lQL2sKkZjuYG+desOLa9Bs9FAIDhJTtB1jU6zTUFJGIcyjmXZeK0uVQWL2ZwojphO5PNsOp2S53kdpY/xA5/dzi6NRoNGw6PZlE7W6XjCdDJhPB5jWhZhkiAUQa/XwzAM6bgpJYstyyXw/KIggToRkSUplCWWaZIWOVmRcxGHk0ManbKQTcSe42Jb0t2vCEU+E1PJAWy0BKqqYWoaahJL3EV9n6AWkyTfBS5K76uLmO4XLkxq3empu0XUOpSqKLJIyLapqOS9r4aTK1X5NOJVVqBKzEiSpKtmWl3X67V+QRjI4zwej7l69Sq7O7srUHvxrNhUScFM1GJYXosOuin/LkkSgJWDQwjJ6VsslzUXyJCxWF0nL3IUat7NxT3o57xBXjhEn3WoPlVRn37NU52odhpdlPHU53xRFEwmEyaTCXuXLtHrynNFVVXKongqLq2iVl+8B37xg7r4f4mn/60/swvn6+o4Xnymzzx3iqKsEzARQRDIKNpfeb+r91I93VdlmfwMVu6zi1zY6pkkXxfD/7QW3nXDrqN6GQhBs9mk3W7T7XYJg4AkifDcFpZpUolMcuZmMvVj6AZVJREuArn/MOqYWVnI464oinRfagaCAnLZzhyGIXESU5YFlmpA/T6qqqKkdmQJIduIo0jyQDPpTJJPWPlZKoqC1/CwTBvLdhA1+6wSonbJWliWhabpKEq2+gzKsiTLc7n/zfLVsbxwRFcVhKE0y8znC+IkJo4iwlgOVmezGVmWY5qGbAYUco1s1OkA07awbFsyz2wbw5RuSoRYNQmKUv47KUYq/NXY6L/r9XMLT5vb2ziOw97+PovFgrPzM5IkZTqZQ0/FtARJlpEWBaPpDNu2aLebCE1FaApBJB9AriE3DlVRouoavX6fKIyYL5agSAVc0eSDr6hyyqpANRTG8xF//oO/xDANdNNg69IudruBH6TMlnMJ2CoKkijCcjy8ZhfPbeB5TapKWiOjIGSRhAzHY4bjMXEcs721xfbmlnQUmSbXr17HMlTWNjsMh8e89+4P2N7a5sVXX+STjz/Ff3zAwyeH6CdnhHEg63BbLaIgZHw+YjJbMJkvcdwGhmlz87nnaDWbsko5iTl49Ei2XaUpDc+h4Zlouo0QioxHxCn3790HBOINlZ3tPdrtTn3BVUwmY4IgZDSeoqoqm1u72G4T22uxtblNp9Phxo1bUnGvwWKB25Qnj2bRbirYhosqPiCOMgwzQwhFOpt0nU67Ky/8ut5ZLQQVUjFveDZ5XjAcT1AUhf56g1ZmkmUNvIaHrus8Prgvm9aKgkajwd7+PsPxkEePH+N5TRzb5cqVK5iOw8nhObqh47jygaOgMR0vGZyNmU6WBH7KfBaSJQlaUUphQtMwdJNup8/V6zcxLZM/+c53OD8/J0kyFAUM3awvBqjyiiorqbKcSlHBkNHBrH4Yl1VBEkcsZ6CWFZ4pOUV5VZCkSd06o8kFaQ1kq7Ic2zbQNZU8TUijkCAM5c2gEhSKhtdos5hMibMM25ECn9NokKQpH939nJ2tLW6/8AJnT54wOT8jqqCooFJMFFVBt3TyNCGLUvwwYRmEZLX4oaChChXKitPjE/7hP/pHWKqFpzooeYZSZBhFgVqWCFUuLhxNQbgum5bF5WvXuHz9Gp8+fMLZaMKTx7L5rtPrk2UFg8EYTVhsrzW4snWVy/1tRuf3yLOQna2+bBQsBGol0BsOce6RZjlhDmlZEQ3OORyeMzh8RJzljJZzZJZa5fFkiiZU1tY30A0dq6rkotjo0W012dvZli0RYUCVZVKgI0OrNPRcijylqNhsd+mYHpP5gk9H73P5+Ts0Om1a/S6m6xAFIcvFgs8fPyAvSry1Plu9Pp5t8+57PyLLcoajGS3X5saNSwTLGYPZObbn0m638CwDXVXRVIU4D/jo/XeZRhEHoyHz4QhHNVgs52RBiKuCZpl0XQvH0MkKsBsNCjSmYUhcChnNlMo4qm5gNZrEcczj4xNGkymuZdHvdrFsi9lyiWWavPDybUxX5ff/8J/x07ff5qOP3qVpWTRdE8oMUSpsr3cxDUMuXBtN+r0en9/9hIMnjyijBMtx8fodVEOn5dnEScInn3xIw2uxvrXB8eERs+kMS1Po7+3xm7/5n3N+PuAf/5P/keduXucXvvFVms2GbPNSVKIwZD6doSsai8mEyXTKp598Qrvbpd3rcfP2bbq9PsdHR4RRjOV6GJpGFEQkYSJr5Ov2izBOiKOQj9/+gPl0yunxsayrjmNM05DNMmlGRcX169fp99d486tvMhgM+F/++H9hNB5xPhzQaTfxXBtdk/n6siixbQv30iX0KqPl6DiOLd2eTZemZ7O7vU2n18OyHS5fucIv/dIv8+DBQ/7gD/6Az+/d4/T0VH6+WUpWZJiWrKWdz+c8fvAEoxbor1y+TLPRJIrl5MpVVKbTOePJlJdefJFvfevb3PvsM05PTgjTiDTNCYM5URQync1ot5v0zV7tsMgwHRvdNLhy7QpxnPDx53dxHJe1jU32vQaNZpMPP/iQjz/7lF/4xjdYX1+n02qSZRluw5Gfz3JOkkqu1dVrl9je3OLho0fMZjM0kREuxnz47o/kwkhRWIQRWVny+P4jur0+umXRbrd44fnbJHmGH4Wst7v8wte/hh8GPLz3OaPTM5qOw//tv/u/ghBEcbRqCPze9/+c+w/v8Uf/6l8SRjGf3b1Hu93hl37pr9Fpd8nSlNu3brO7s4tlmxRFyT//57/P6ekJ3/mTP2I2mzMajXjt9df4+ptvsrm1iWWaPHp4jzRN+Xt/73dwHIeHjx4wOD9nPBmiqnKR+ujgCX4Y0qohvzdv3Kg3Mhrr62usra/zvR9+n4dPHhHHEc1mk1delRyo7e1NlHrxdH5+xmg04g//p3/F0dExm1tbVBWsra2zvrHO1WtX2Fpbo9vrkGUJs1mE0/DquEBCmiXcuxcRhiHL5bJ2dti8+OKLtNsdslw210SLJaWZolTIWL6u0u906TRblFlBEAeMggVFnqPX0dwLMOpqg3AR86ieTixX8QUhBx1FCj/5yQ+ZL5a0Wi3W+n1u33wOTdfQdVm1XOdFZOyrBq0iyp9ZC/6n/voytwHIaITvBzx68oR33/+AtChIi5Ksdme8d/djHNum2+3I6XE9wCzKEq3dw7NtWpcuodRohdlizuFphVnDZZteE9uyOWh3mC8XfP8nP8Q0TW7evEm31WZ/e5eiKJmP5BR7PJOuH9exubK7SxYlJEHE+WTI8eCUr3/t69y5fQdLVUlrqHSWZ4SpbDsr04JrV67yxhtvyBZeVWWrtyajTJZLEsekdWIhTBKa7Tb7ly/heK4cMreadFSNzY0N5v6Sk+E5bbNDu9PhfDDg8FBG1XVNY2t7Q3LVMlkGsL29g+046JbJaDRmMp1gtxrYTY8yL7l09Sp/+2//bY6ODjk5PuGtH/6Ik+MTojrmdDYYEtfD3TCO8OMQx3JwXYff+93f5dq1q1y5coUkSbh773OSOCaMIjY3N+j312QsT1ERcUqSlxzkOX4Ycnx2Qrj08edLFGljR1dUsGyOz075+LNP+cv/7i/Y2Njg1q1bvP3O2zx+fMDVq9fYWN/gb/71v8HO1iZuw2M0HvH5vc94+cUX+bu//bcZDAfMF0umx8fkeYGmKGRZjh/4CAT9Xg/HtlEEnJ+fcXx8TK/XxTB0hqMxqqbx5ptvUqQZeZpxfHzM/Xv3qBQF07bo93pYhkmr2cKyLIpCpi3a7S7tRpOmI+8/YRjy8NFDgiBgY2u9TpYUZHGEUpa0PA/LshhPRjTwuLS7A5pOoSqUUUKYpOiqhmvbNFwP0zCxTJMgSYjihDBOCOJ4JWxI58mzrWTFKsK2eq2KyaSjUFWUldvGtiw67TbB2SlhHJGnct2nCtl2nqcZlVGiKRJnUJZIrlkS0+12sW0LRRHcv/+IP/mTP2E4GDAZjem22lze2yfwA2bZlCD0pSmuFts1TQq3qiLbfIUQtFv6iiWmqopEI5g6lapwcn7G+dkZOzs7NBsNDFUW1CgoXKhoFeVqrwAVungWjl19gVv07OtpJO2ZOB3PijwAok7bQJbJAbBpmNy9e5dHjx8xGAwAePWll+h1e5iqthKtlFpgr77IeUdy4X+2jUwIam6TeCp8XTTgwSo6ftFu9ux7yvOc+XwhuWl5Lt2W1G6tZ86LZ11McRzhB0uazWYNt37qnLnAxCiKiqbpzOcTFosFnz94RBjF3HruDpqm4YcLCfL2WnIoOZ4wm4/JspRXX3kD13VZ+nMCP0DRVGzHRlMVpvMpQRizt7eH53nouklZFExGE5peE89p1Ow9HU2TbuDHTx5LzquhUZZSsCrr60w6fxRKpGnDtEwM06QoIYhjTodDdF0iNvZ292m32nQ6PYSi4PshaZYRhRGWbdNoNGk2W9i2Tafdw9Bt9HowXZRg2x57+1cAmM193nn/QxbLBWtra+RZwccf30UIsXI9W7aN53l4zTZb27uoqobl2qtIXl6Lap1uB9MyuffogSw1cB2JFXK2ayE3I0tyijyV7ich7Snls5T5f8/r5xaesjynEoJGs4miqmR5wXy+ZOmHq9hcUSuTZS08pHXWME1SikrmcS+qFdPazaNo2lMbYH2SZVkmp9dFbbtTBFES8eTwMa7r4HguSRYhVMjyhCIv0Q1pyysKGTWq6vyvBMfJa0YoKqoqnT95ljOaTKRjJoxZX1uj2WxydjbANDSicEkUZRiGg65bNVCrIkkykjQHoeA4Xn0RKYRRwtHpgDBOieKMdtel3e7Safflxs2WVe1JWuIHCZPpAkVIN4iixPXGXCFNM6oSsjRnPl/WE3OFoobmDodDwjBiMpmhaTKj6vshcZQymy3I85JWo4GqqoSLec1xitFUHdMsVjnqOElli1hZIURJUVWIqpIuo7ygLBPyvJY6CvnfIs+oqhLDQObZa7W00WjhOC6qpjGZTEAR9Dt9aZ1OUpIkI01ylIaKaZq0mg0aXoOykPbKosil2KJJl1scxSSJ/PntTocizQjn8/q8KomThKXvY9g2JaBpOqZpkWcXn/mFHfVifiBWsU7T9OR5VhSYpkWSpig1M0CpfRW6pqNrGq2m/HxNQ5OZ7/JCUa4QVUlVCqpCwhZ1VaWsOVAycyez3YqQEShFKLLZDHl+B2HAaDImK0sMx5UPJCGIi1K6y0qNoizJi2oFqEWX4o1S1g4GAUWR489nqHYLvdmgrEHTKfK9u55bO8Bkna+j67iOjaarVGVOmcVYqoJWqZS5jFvqpgGqSlIU9NptPFMnDs6I/Kx29lSQycU4AlRKNAGWpqCWFXFSkOcl/jIjryp0RSrkiqpSxBlJnpDEMqroOK5kNZQ5humAUMkLSNICDaV+wOkIFNK0QKgXj+dq1bDlByFRGKBbJkLXyLMMowZC6pqO7RhohoFrywrV+WQmrzNYOY8KkAtVoYKQoHE54SlIspTQ98myDK0CU9OwTYtlJSjyUrK3ihJq18CFK65CUJQVeVWiFDlFUWJaFkZsIWoXi2nb6LUTRq4ManePomA6NoqqEoQhaZZL4bXOo1f1ZlNTn+aqJWMikYs2FCk8JzHL2QTVMHBaEvYeRRG27aGoUuDXNI2qkhyaLJPX+EUkej6bY1s2juPSaXXoduWgYKEvCGrXlBCg6xqObeEvFrI2viqxDB3PcbDq+vo0jgl9n8V8Rhj6qEpFVciyhsLzcBybiJI4LNA1ySsKRVjfwxKSNKIsM8oqpygyDEOl2/awLR1dFVRlSlGAqmqURc5oPCIIfCoqWu0mm5ubNJstGo0GpmVTCYUwimS9fOUzHk9YLJeyKCFJ5Wd7wZsoIU9z0nrSKixQNZUoklPXspLcFb22tkdhTBTHhGEECAzDJEoTyrIizSRYUjcMKSAIISdXcYSmSgeazNMXJKGMuG9ubdfuzQRFUzBtG6/ZxHYcBsMheZ7JxUCWEcdxXf9crJx6URQSR6GEeFcleRrXC3/Z6JPmBdPhQLKJyoqhK92Tqqah6irRdM7EcVkulyRJQpQm4LqEgS/dDXFCZtlQFDWbL2Q0HMn2PNtBVzVOj0+oipJW3eDo2BaT6QQ/8Dk8OmAyHqMoyqodrtvp0Ot15IbLstjb211V/6aZtIoLRbCxtYnneOimies1UDTpInNdF5A2+mUypywliHM0HLCcL7AMU7Lr6uKIIs8J4pjlwmc6nTKfz9E0jUajwfr6uvzdbIu19XX2dnfxHBvN1KRrtyzl8c8zJpMJqqbSVmVDbqPe6JmmZABKTqB0tOZaQVmULJZLGeuwHcw6SueHEWmeI6RRgeKvtEaVKzeAWE3Eq9XA/KnzII4Twkja66kq+r0unU5bOvBq7qas1oY0kfGgqixRFaUWuCq+MOX+97z+U4nkfXHzJzeEeZGzWC6YzefMZjNsz6Phuqi6BAhPRiMC06TXaWNoslgmCAKSMEaICl1TsWu3f1qkcp1Qr+skwsDAsWwcxyEvcuI0wawZW5Yh/11Rb7KyLJVcqdqlQimdIGtrayxCnyiKqMoSrXZ65llGCfJ8qTe3cRRDJQHNco2tcLHv1FSNQtUoNY0wjjg5OVk1ol1sOH3fX3HR/MBnPB7R8Bp4nlcLANLZkKoKURwjVJUolvcVz2tg2iaaYSBEgSLANHXp0IhTbNui1W6RZpJNOhqOaTQadVQnwzQsyYebTQniCDsMZJGKovLg/gOi2qGkqKp0WgrJ+jQNE1GBockUQVVW5FlG7JfkZUGz2cJQdUzNRBMCypInB08IgkCWy9TxLdu26XV7rG8sSFLpnprPZ4zHI7I8I6rdRb1OF13VCJYBaZpRVBW2bcvEQb3uFEKKHYYunY1plqJp2ooNe1EoUdVuiaKUTizTNGk2mizrCL7v+/K6RLZLXeyTzJobqdTOmbyQjru8kOU7y4UsE1oulgTLpfxdDAPd0FE0lTIvEaJYGV8u3r9uyHWwbEGT501ZyuOYFzlqcSGqrDzmzzgxn32Jn/HxPHuXUOr7jKap9V6yfOpOQq6hlQsWUFXVLre6xVCXcabA9xmPhjx69AjPcdjf35MlKULU/LEK0zBWwodSu+FlPE/FhFU8sKxFeEVRsepji5Bt4fPFgt3tHRoXhU0XriDx9A2ujkAFK5rzX7nvfNn9tHrmqHzBj7RyBlGnLWSUL45jJpOQ88GA88EA13WxbRvTtCT3sywuTG6rZ738OdXTH/Cso+nZn1rJ543cyly4eGrfufL0fKgVqafi0gVEvqIW91SZFrr47uKL772sqpU4dSFWXjTZVdVf9X7J3y9NU4IgYDZfyOdaLtEjUZxSVgLTymtXn3T1RFHIfC5jZePJiNlsJl3HyLbsi3uZ4zg0Gg3ZsC0ULNOq177OSjTT9foelsoY4dOWvnJ1XJU6abQS5YCiqogzubbSTAPLkhFqz2vgeh6GaVKWFUmaSofSYommS/ajpukIoaDrJqZZYFk2QiAbolUNwzBX+9uqkvteVdURQsV2HCR0XZ4Xlll/P0VdxebSJEMoOWmakSSyyVrVVNS6JTOO6vcpP/xnnI61K6tu6JYtlf+Bhafj8zMqVaG/vsGmqnHt2g3a3S6dfp/HTx6xWC5WcSmhqWSFFHaiMCTwfRqNBpZjrwB5y0AS3w3DoCjKp5unvGA2m8kbaJ5CBZphMJuP+N4P/pRmu0mr3cJ2XHTdYL6MUNBY63Uoi4okVKGqyLOYi8aFvI5KmaaJpjn017rEUczjxwd8ntwnS1Oef/55NjY2eOsHP0JUBZ4r6LQ9bt54DsvUWcwjJpMFo/EEx2vhNlyef+F5hIDj4xMePjrlhz/9kF5vk35/i1df/2VuPneLyWREnmeMxgnLRcR0UbHwp5yczqiqnIqCOJwhKNnb2ycIQprNNlla8vFHd1eqchTHpFnKeDStc5k6uq7huk69sIxIM9kOuNbroWsa0/EIUVW4ro1jO7Rabc7PB4xGQ0bDCQWCtCjlSVwV5FlJuZwTxzFBGErLoaZJ0REoShlDW19zmUynPHn8hFu37nDj+hVM0wEUKOSF8df/xm9xPhjxZ3/+XXw/h8pic2ubS5e2ef72cziOzcHjx+R5RlnEGIZFo9EkDJaEgY+/XJCmMd/4xtcRCN750U9ZLBYMx2OOz885G42xHFtGjBSFTqdHWckbiKj5FlkNr1M1jTiNKaqcG/0buI6DqErSJGY0m2DpBo4hYc2GprOxsY5jW6yv9WrbfEQcxfhFSqpUKKKkTGK5iKsqNF1no7dOluUsfJ9lkpCEEaoAy9CZjocYhskLLz5PGFscnRxyeHjAhx9/wMsvvcj1a9dI45gsTRkcn0BZ0hEeZZqSpSmqAqoisFwHzTQo4ly2EGgqegF6kWOrgqZrkyQVaSqIqjmVgGvXrqCqCuOjExquy9bWFpkmOBmecHL4iPOzc3Y6stHm/tk5iu2yfvkqimJxFvncefl5XrhxnTyeMjh+TB74ZHlBGhUITaBYgjKvqPISoRnoQsW2NJQ8Z7xcYpoWl7a3oYKyFIyGY5axTxDElKhcunoFTVFJgpAyz5lMY8ZTn+lsznq7jWOZKLrcLI9nIZomsCyFNMlJ4xx/NmM2XzAbj8nLknIyQVNUGoaF0WzjaibttR6NTpvx6aguKgjI8pxGtw8Cjs6G2IaO2+zXMbGKYB5AVWJ74Comzdkcw7a51F/HilKMtGB+PCKsZKNEKiScL4hTJpMZbdfDKqASCpWqEEQRRZbTX9tAUTUeHx/SaLVZ63VQykqKeVUpHQqGhW45KKaDosvFYaPZZmNjG5IMipKygKIQVEJC0aezGdPJhMMnTxBZQcdto2oKZZly8uSESii0+psUikJaUUOTc7rdDg3P4/jghNCP+e73/i22bfMLv/B1xqMx3/veD3nzza9yy2nx0ktvsLm+x+//T/+C8WjC/v4euq6xvbPB9es3uXHjBt//wQ85PDrm5dfeoNXp4DU6WLZDGUcsJ2OOHz/iBz/8PnfvfsLVK/tsrK/xn/2N38SxbWbTCcdHh7z3zjtsbm1ISO5wiL/0mc4mJIOQB4f3JBS5oXPl2g2u7O0wnUrB6PxsQJwkuK5HEEa89dMfoWoqtudy+eZNvvnNX6Hf7+M4LqXQmfs+H3x8l+OjY9575z06nQ6bm5t4bhPWxApOulzMKPOS2XAmIxylFBDb7Q6j6YTBeMj29g6u59Lt9YnjiCAMODg4JFgG9DodXLfBIgjIi0qKUQI2NrcwdClayQ1vUbu2VNK8oBSS+ba2sck3f+Xb/PhHP+I7f/onrG9ucOelF9jclnD3P/jDP6AsCu7cfo4iz4nCiCDwiZOI8XQqG+aG54RhgGWoCNTVRFMVAl1Y5EXF/OyEyekxR0enhEnMLAq4tLPLy3ee5/D0lLPRANd2cB2Xb3z969i2zf/w0YfYls1af52dnR12d3c5enzI8GTI40dPUBSFX/nVbzMYDPjv/x//d7761a/yX/7u79YL2oLv/uWfcXBwQFVBo+HxW7/5N0EIkiRhbW1NQnk3N3Ech9/6rd+Uk87798jznDAMee65m3ztq7/B+XDMdDpnfW9XNjQZBmVRMJ/PGY9HPLx/jygMiKKQRlMOSp67fQvH9ZhNpiwXC8bjIQ8fPuD999+j0Wjiuh6vvvoy7XaH7Z1dRB0x7PW63HzuBoPROcPRAE93UYTC2fk5k8mYd999h1arzde/8Q02ttbZ2d1FrTc7Zi1MaKqBUA0U02U8GfPg/gM2Nta5tCmd5ZUCM39Bnme03CYRglm2wC4suU76knajL6Q1kJ+vIhROTs+ZTKdYuk7L8/jKa6/WDvGSqqwoygpNlW4C2bCWoimy4rzb7fy8S8T/pF5P2+yepmKiOOLzR/c5OzsniHyef+F5nr/zPE2vQRxF/IN/8A+oBLz6/G2cRhNzZ4vHTx4xmQ7ls17X6bTbICoeHx0QxnEdJVNRKyFbkXQN27JAwO6lfVzX5dLeZco0I57P5WarlJHJioJOp4XnusRxjOs4fPtXfgXlu3/JOx9+QBpFJEFAKFRSTSNMYirAcWzG44rh+QDbsmi4cu2t6gqjqRy6DAdDBOA6FoeHh/zkJz/BazVxXMnxLMqKjz+5S5FnqJrCYDjg8/uf89KdF3n+1m0ajoupGyxmc+K0YBGGZFUFmoapG2xsbqDqUrQwFQVVEZg1/24QD0iTlOF4TLvTYW//Ei+/+qp0ymcFSZLINqUoYjmbkxU5SZ5xeHDE2fmAf/bP/xlBGOLaLpevXuX1V17HdV2azSZHR4ecn53SdBvomsZ8PiWNExZhwNraOr/8jV9ctcoZmkqRZfz5d/+Se/fvoeka7Xab3/qt32JzfYNrl6/wta99nUIR/Jt//a958vgJb731A3RDRzNM9vf2+fVv/gr379/nD37/D9i/fpX+5ga3b9zEsW3CIJDD1TxbRcIuounrmxs02y3WNzcwTZOyKIkXcw4PD5lPZ8wnU77yla+ws7vLO++9y3Q+4/79+whAQ1k9q0zHrgU7uebNy4KsyAlTGRWzHYeHDx7wwXvvc3Z2RpKm/NIv/zLNVpNevIZt24wHI0zXwWy6WJqGYRrYDUfunWqWUJxmpFm2EgriVGJViqJA1ZQ6/i4Fz2KlfiurQa1SVquIHfWQW8hpL2p9r3FdF1G7KeJYDmmEEBimxChUVUVWVuS1eUFRFSzbpsxzHt57wEcffsRbb/2Av/97v8d/8Tu/Q5HlBP5CxvdMnX53U4oaqrKqn7/YXyn18GCx8EnShLIoMHSNbqcjzVpVxXAw4ujohJdeeomN9XX5fcSFwC9LGy423qqQ3DFFXDh3nuEifYnj6WfvTxeppmfcRFVFluUIoWBZhmyufOtHnA3k/f13f/e/4OaNGwTLkNl8gWlJ4dA0TC6g6UIqP6tnxgrMvRKgLiLHpYzw1fFgkO3sqqahK1LAph6IV1UFhRRyLhrpZYTXqQdAtnz/shGAIpexPEXVyIsUP1iiKAqO40gX3YVoVh81+fafuueWyyXn5wOGoylJVlAJnUrRCZOUEgU7y4nimCD0OT46ZDwe0fRkwc7h0WOWS8lNtk2Thuug1kOgTrdDf22Ns5Mhuq6yeXmDS/v7bGxs4gc+fuDXQqfCbDZlPB6R53LAkOVKjQpRJatale3cMl1TECUJg+kMy7bZ2N+j2+rQbnXk76VLPnAUxQwGIxaLBefnAyzDpH+7V+M9pKCt6zq9XpeyLBmPJcdX1w0UtUSUGuubW3S6PXb39tA0jZ2dS2R5TpokdfRPZRn4RHHMaDxeCWh5npMkidxjD4e88OIdrt+8TuD7lIUsE9J1WXRQFVA+032iraKu5TOLkH//6+cWnsIoIohClsESz/Voeg00TWb7NF3HsEzJlFAU0iytH+ZyvmIYRv2L6ytukbyOqtqdJBXDspALgYtFlWvLiWWapNJZoWtUeU7k+9JFompQqSgapFlCVdb1jkji+4X7pcplhj5NEspcRVOl0ifZF/LMvgDSVnkOZcF0HBKHbfZ2+mRxQiBKgiAgzwscx6XhNZhNZWTio48+JAhi3njjK7hem0ajI+s9PQ9NU2SLTlVg2TZxnKIosnrRsnUMQ2UyOiVLIoRikKQ+o/GcOM4xLQfLNDFMfaUo7+1uS6VeN6QVVJdTdz8I8QPpZGo0ZCNAFBh1jbOMqRmmLpvgVIU0TQjCsM7uq2i19dR1XfSaK3Bxok/nc/K8QClLyAvSIKVKSgxhUiYlwTzAr0LKolwBtT987z0WS59wuUCUBZ7j0Go2aLXaq/yp7ToURQ6KqFkzCvP5guPjE6nmagZJUUgxaHsbp9lE1Nlqy7JxXBfDNCjLkjiOmc4XJFnEMghWk41KCCzHJkujGggvle9uS0LcLMtCFQplVRHX1ZiT2ZQoNtGoUOtWizzJ5AJCEaimUbdnFXWrnl5P73IKIciEQpQVpFlImsjpnZw8LYmShKqo0DWDhtckSwsm4xmWbSE0AzSTqsiJs5KqqCjq3K1p6FCp5BnoQgcFwjRDFNA2HBq2g+NZ6HpFlihMpgp5kTKfjaXlOwpJFEHgLzGaLp7p4mgqtiIQlXQvNVybQlEJp1MqNMpK59H9+yhpgtPssK2qHN7/hKwswFAlh0kVsumDEk1UiPoBXiAjCrqQwnFVCigqTMemEIL17XUsx8EPfahAKUsMVaPpNDEdi/5Gn3A+I4gjwsUCQYXX9DAMl/7mGmmSE4UJ8zQl12QUMs0y1jc3sUyLjuMxHo84Pz9nEYVwckoeJORpSpal9WROMszi2KcsbFSlQq1z2Zom3U+aoWJYOq1mg1LRSC+y9UKwubdDt98jnk8wFIHd7ZIFEfgRpufSajexHTk5JMuACi2TkwQhBK7rsrOzS7hcEvk+s+mELElxswxV09ja2iNKYg4On7CYL0niBEtIuKbrONiWWTM+qOPL0kGolCCQDUMoYKiqhNFrGoWQi8Nmo8nGxgb+wieJYhq3mpK5Ey0lI6MeEFTAw0ePmU7nsjFTUXEbTTRdpdNfwzINNF3F8VzSvCAv5USyKOSCVdckWLsqC4LA5/z8FNsyuXJ5n6997atsbW4gNEFOQXeti1ChKGVE2Pd9qEo0TSGJI4pcNohoisJaV0YMozAiiTOKVPKMFGS8QdN07ty+Q6PVYmN7m93dfaI45eHDJ2RZzni2YOn7fPbZZ8RRTLvdotfrstbvMRoOmU4nlLUov7W1RZZlnJ2dSRdoXU9fVtKZkOc5i+WcosxpNhuUZYFpGlRlge8v0FRBliUrV1kQ+CiKStPz0A0dwzBASKdTnEhIel5U2LbDK6/codFocv/efblxSBJ6PVnfPRoNCAKfdqspLb2lZGap4mnaXlVVFFVjGUSEQYhrWZRVSZam8tlQs+ZUTcNxJFDTNE3KCnJFwTFMRAnbGxusb6yj1w676XjMTFFIkWwGwzBptpqEoaxnl7BhOXGeTadkWcqNGzdYX1+jyDMePnrI8fExRV7Q63aZTqcUecbSlw6qPC+kIKLrqz9CUUjSjE8+vUur2eSrX/sa/X6fJCsI4wQ/imjV9/U4ioijiNOTYwbnZzx89KBmRZRywmjomIaJbVr1gkwuuzudLrdv38a2HUzTotVqoWoKH330IZZlcvv2bRzHYj6dMp9Nmc2neLYrHUq+bEq8fPky3U6X/R3JbzENo16grwbEKEJa8/1YWusNy8IyZaQlyVKKpEQ36/ZcVUUphNwkKEKKRLXgdFFFLUGiJUkiN4QCyXlQhHRMBkFIq9nAcWRTqKooFHV8YhXFUASWaaIqkjWm15PWZx1P/67X/z+dTj/PRu7LXvL4PTtPl4Jgq9nh8r5A1wym0zmD8yFxFLG1s0NRFDx48JBev8+169eQWaBqxahRVLn+PTk7Yzga8eDBA7qtDrvr29iWg6rrVEKg6TpNx8MypbNHBSzHXkVhNtbXsT2HVqOBpqqEiyVVVdLVe3Q6Ha5euUKRFRw8OeDazZt4lkERyc+pyGWtu9vwcFwXx3FIkoQ4jHFbDTRNw3OdVauxrmv0+z15nWkaCnIjdnZ2Rpal2I6FqqncuX2b3Z0dWo0mDaFQVBVGzYVSLbNuBTWxDRPHsqm9wJi6gaZKJ0NKRuCHciBQQuHJ3zUvpXNcKALd0Omv9cmyjHarJR1ARUG71WJvb5ezsxPOzwe89+67nJ2d4bou6+vr2LaNQKDrRu1Ql0NI07HZ63RotVvoikaYhCx9n+lksmqgvq2p3HruORrNBmsb69iWTXbhXgbJlxKCMPBxcLly7Rpr632yMidMImbLBbt1q18UhfL5tVgiANOQzmvLtFZDXcs0V1E1ed6p0mXV66EioCg5ePKEo8ND2SaapmxvbdPwPLbWN8nzjPOzc3mEFbi6f4lOq4XTbKCpGk3XYzFfcHD8hCAMsRsee+4VuakH4iRld3sbSzdQNJX5cs7s7JiW5+HaNl6jgW7oNeBZcsJUTaNdr9/9MMTUZVOWdERJLlRZSseVrktWTPX04lo5bhAgSrFyeF+4XIqaWXOxdhe1e0Q36vNSVRgPBkymM0Z1w+/ezi5pnvP555+TJglvvvkmVy5fxnNd0iSVjekX7NAL8UUoCCGf7UVdoqDWLnLJyspXa7QsS5kMx0zGY6IwxDQMbMdFMwyG40ktpJW1q1FZDRhsS7JxuHCErYDhX37PunAzVUBVSbepIp5tLVVWgk6e5wwGA46Oj3nw8AGNZpPLly+TpinngwFRGFNRYVnmSmhS6tTDRQbEcWzJQKxb0yV3UDJLNV17GuVG7uLFxX9rvqm8dz4Vx6iU1TNACDlgkfE0UzbBrd5zVXMsRS3+1bzUmi30bDxTuttqtlRZrphPVf13WV6QZFIElUxgSLKM+UJG9u7cuc3uziZ5mrC/dxlN0xiOrnB4dMSf/dm/pSxy5vMZZc1CWy6XIASL5RzTMHFdF8u0pMuwbq8vq4o8SYijiCSJ6/NUviehyHPrwiV28YwByWnu93rYjovtujRcD9dxqcqSIAw4Px0QxzFlVWI7Drt7u3R6XXRdq+9DsmFSuTj2sHICXgi+ChJhlOcFcRhRAUfHp2RZXrsj5fGOk4Qsz2ouVImisFqnm4ZBq9Fgf3eP7c0t0igmCiM67TaObcuYdn0eFsWFU7L+3BWxOs//114/t/C0CH3sxYLBcICqKmxsrNcblATDMnAVjziNpf02Dmv7tkBXJaz4QsS4sMorFydWfXOvimJ1k5IntkKn2QEqhoMzVFXFcRwZU5ovyYo5FdDvr6GrKlHky0hamVOUGmVVoAtp80vLjDLLpQtFVdHquIGhG6uIzHg0Yjad4tomlAWjsyPmm2vcvLJHWWZkach8NiXPM7rtNv1ujydPnnBycsx3/uSPuX3nBX7nd/8+ZaVSVio7Ozt4nsfGxjqqKqQ9N4poNNoomlRFNzf7tNoNDh7eYzad8PDeQ+JkxMHBKbZlkaUF3W6bTqeFZZlYtsVrr7xMq9VCMwyoSsoyw/cDZgvpxloufRpuQ9oYs4g0SUiTFNPUaDZdfN9msTSJ45jZbIZZLxYcx8K2JWcmSRI8x5EilK6ThBFhHqGWFaQ5fpiTZyUNvUnm54xOpEqbpimmbVOUBX/46b9AKCqW7WFZDv1Ok7Ven7W1dahdGo1W6wvW04qKs/MhH39yl729PdqtFoswwnUEV289RxiGeJ02rVabbre3ygMvFgum0ymf3btPNJ9zfH6+sjIbhoHXbLJY5ORZwvHpKQ3XlRXchommNmWmPpFsmTzLyckxdBVbCJqNBtevXycOZfzGsS0s02BRZKRFiarIBcXG5iZJmoFmkFcqYZgxj+eEQUCvv4ZpWgzOBiRZRpmVOKZDt9MjTQoODk64dPkyjuugmi5ZmuInqRwSKDqu5eLWkM0syXDdBqKC+TJAKSs2nTaNZpNm16FMNPLE5HSgEsYZp0ePUQEjhzJLQMC2s0+v0aRrWcS6RlVmIFTWOx2WYcrB4RF5AVkh+PFsyv1POvytv/nX6V1/jnuPHhJUCY6jrlyXaZGT5QWWRBiRVQVZWUjREIFm2pQllFmB3WxheB7XbsnmnB/88C3SJKXjNuh1OqxtbdBsNXA9m+/9xb9lMDplODhHKLDn7dHxuly5eYM4TvGXIblhYIwnLHM5Kd3b36fVbNFrtfjko485HZxzNhgyHE9Za7VxLAvTRNZak5FlMbPZiML10JQSU5NwYscy0TQF3TZwPYeNjXWWccr5ZE5WluTAjRefx7FtHn92lyrPaK51yeZzxCLA63bZ2Nx4moMvcpRMkGepnIILObV87rnnODx4wlkmodGzqeT+mLbNzede4OjoiO9+9/ucnw1YLhbYjRa2Y9Jtt7AtC0XXVguAsijIs5SKlIoM0zZRVQXPsqiEgmea5CiIsmJ9bY0bN25wcnyKv/R54cYdhFD47o++x9JfslwuSNIERdV4+933GA6GfOtb32ZtbY3u+gaO67B/5SqOY2FaBmVesvRD8hJQNdIsJ03zevojo8Lz6YTHDx+wvbPJ83du8Hu/91+xvb3Fv/qj/5kwDdjdv8HG9gY3n7vGOz/5Ke+9/Q6WqaNrgsiXU7Eqy7BNk0u7uwRLn+G5ZPWlaQqlQBEqYRDTbHf4xW/+Anv7+7zw8is8fPiYR4+e8MF7H3B8fMLdz+8SRiFCCDY2NnjzzTfp93psbGzw4YcfcHh0gOu4NDyP556T954nB09kIQIVZZGTZSlpJiG4o9E5YejQbsuNnW1b5HnG0p+TphGGptPotFBVwXQyxTAMdne2sUwLx7EkP0BXOTo+IYrlEKLRbPN3f+e/5PjomH/6T/8p48mYNE3Z393llZdf5B//f/4RZycnXL60iwLEoSy70FWBpoAqqBd/FtP5At/3sbc88iJjHkQS4B5F9Pt9GqZBu9ui2ZCRRMf16PW3OT065rOPP+H5W8+xf+UySZIQhiF/9Ed/RBCFdDbWybIMRRE0mh4dv01RFOiqzlqvT1EUHB48wXEcvv3tb8lK7CzhrR9+nz//8z/nt3/7t7lx/Rrvv/8+WZZyfHqyiq93+3003Vj9SfOC6WLBX/zld3nxxRf5b//P/xeCIOD09JTJbM5kNqPZaksOxOSU2WTK53c/5fjkmI8++YBms0mr1WJ3dw/btqWN3nZwHEu2HYUhVy5d5pVXXlktcCc15Pff/Jt/Sbfb5Zvf/EXyLOfo4AnD6ZDRbEynKcHqk/EYgDe/8gZr/TVu37xNVsj22ShOSLNsZZvXhEJRZAwncgPVaErLvW3ZTCdDgjii15IV8kpWEOeCQsgNjgSiXkyq5UIvpyTLCxbLpRSS6iiJoqgSibD0ufPcDVrNBlq9/lJVhaoSFHWsTgghI/Bf4qb6qxyP/9Rfz7JWLiI2QlGxTBfPbXHl0nWm0xkHT464f/8+URTyyquvkCQxf/EXf8Hly5e5evkaVQZVUmEZFl6jgVAFSZhx9/P7HB0d8uF773Pt0hVczUbVdYp602WYFr2mbBQeTMY0HJed9XUushI3Gg55VVKUBXGccHp0RFbkbCuCjc0N3nz9DR49eMD773/A5v4ejV5ntbHIqhRVVemu9en0urTbbQ4ePWY5X9BoNdBti7VulyDwOT0/xfM8dna2CfyAJI5REeRpxoNHD4mTmH6/y43r1/nlX/pFTNXAVHV0x0LVNdTrV8jynMPzwSr65FoWnm0TJzFZLtdMuqbJEp6iWt3/qhKarabkr9ZlOpoqh6Drm+tcQKABKKsVqmN9rc/du5/xf/xv/0/YjoNb36NbrVbtRrWJwlCiFRwD13W4c+0mmqoCgsAPODk95Sdv/5QnBwc8d/06r732GjevX5VReMtk6fuMRhOyNCNLUygKDEVhuVhgmQavvfYKumHiJyGzYMnUX1ABlmEynUzr590MXdNZX1vD1A1s02SUyzhns9nENGsWKVLkbTZbXDVNRl4D27T4zh//MXc/vcsiCLEdh82/uUmn1eGN117n888/5/vf/z6T2Qw/DBDfFOTKPuvrG5i6yXqnx3w04b133sFquPS2N9jZ36fV7pD4Acsg4CuvvIqqKMxmMwYnB7z93rtsbGzQ6/W4vH9pdb8UQpCXMra3tbFFGidM5ws6rSamaQCy4MX3fYqiJKsZi7phPOOAEF+8n4in0TJxUXBQg9KFqqDo9fpSlbFy6eoQHB4ecvfze6RljmXbvPbKyyRJwls/+CE7uzv8V7/7u+zv7eE6LpZhyo2yXpf7ZJkElNf6S1mWZEVOUZYYyHtqGEd1EYgcBIVhyKeffspH73+Iqms0vAbNZhPdNPn80SPyPJdMN0UO9izTxDQMtjY26+9x8T5lEPHL9PkLaHdZlquCA0FFJdQVSFtVpaBlqCpxHPHgwSM++fRT3nnvPX7t136N119/ncVixmg8lm4wRQolaZrKyGwt7MiSGcHm5ia6rjObzWRRlu+jajqGZdFsNiUHyPNWRQFyz16t+FWqIlDVp7E4lAtUjhRCXNfFMAxM05JIGETdPF6h1oUraSbRKWUt7Ni2XV/q5cqR+qxRRVTPNJEiSPOcKEnxo5gCOQNIk4TAD1jfWOf6tatc2d+m02rIuVxZEsURP/7Jj/np2z9lPBwwGgzQdSnEDwfnjMYj4jij0+7QarWwHZs8z2SrnaGTxomM5foL2YCuS/e4ql4MgZQ6rfVUQK2qCtM0uXzpMo7rYToOhiYB+qOzIfPpnJ/85CekWcrN27dp99psb+/SbjbRTMlnFHlVt8/VXCzk81kRCpoieb8VFXmakYQR8+mMOE54/90PSNOUChlRTGqWmaIocihmmnS6LQzDwHEkQ6/bbrO7t8fm1iZr3T5JkrC9uYVpmlIvUZ9GDmWUWGJfLhA3P8/r5xaeDEMnSWM++uhDHj18yEcffsTx8RHn5+egSii449j1xRpQlQVVVdSMmuopB6pmp1h1Zb1AOibSSjqjNE2vb2CFjBmpKg1XTn0c0yZTCzK1JK9k4tSzG2iGQZomKIqO47pomo6myk1eEscUmbR2uraDpsmsfVkWiKpEsaxafLHQNJUs9kGpuLS/x/bmGutraxRFTBxraNoemxs9iiJhNDpnOhlTVQVvfuU11je2iKKAKMqJohzX9iTXx5ROFX/hkxcFluNJ8ctQ8cOYII4JooIKk+2dyxSFysbGLo2Gy/Vrl7m0v8Pu7hbT6YgkjanKhCTxKSvJgTB1k0RNUVHIk4zID6gKqUpGUYymquztX5LgsLKi0+vjNVsMTwaUScb2xobk3sxnxEXBvJIguaosSSrIVY2226DtNnBcjzwvmE5nZEqGhsBQBaLM0QSgKbiWDkJHiI684QqVoswJ/RmiKjB1HUq5oEqyuL6xFkRRzGKxJIljGq5H4PtkaSoZT4W0YA+HQz744AO63R4b65s4jnwghWFIlmdcuXaN/StXeLksCcOQ2XxKGIREUYSuqVSFgi4EZZpz+PAxrmOy1m3SdFzc3hqnp2cs8yW9bgfT0JmejZnNQh49OiIKQ6IwkdnnomZiqSqqqZNR8uDgMUmWM18GZGmBYWi4DRdFV1EtHdXS6az3iOKYRbCsG6yU+mZdsZzNiIMAkedoVUlYOySqKidIFNR6EVpVJfPlXDIcqlSKqKrK3F8wfhCy3unT9Jo0231QdShSNFWl3Wti2A52q8NkFnB2/iGT0YKqVPFcD8O2aLbWCZMU23QZLxacj6cUIifIY+4dHjKYTilQUVWdKgnQNAPLcmU9qyqoSjmhsYRkmNjoiERGlMpSTmLTXN4Em7ZHr9fj+pVrzOcLBmdnXDReaAMFVZOcgRvXb7Dd75PnGUVVEPsBn334CULREEKjzAos3WS6mBAFEZ+8/wFuo8HG+jpxlvL6V77CaDRiMpkSLKUjQVNkfEDT5EOwt9bGMaSAYioamiL5V1laEmQRSZHz8QcfkhSwjHMmkxGLuWz0UhSFaLlAEQpC15kvQvw4YzqbMzo5YXN7m0arib9cSHdMmZPlKXEYsphOOT0+gQr66+v0xiNUXaPdaODYNuenJxw+ecT9e5+RJxGaKLBMcGxBWcakSUYayvrWoixkY6Vl4TRtDM0j8n2iOKPpNSiBOFiimiatVps0iTk6PObs9EwKErX7b31jnY3NTUzTYLmU3CPprlQ5PjliOpvywosv4TU8wjhDM216zR6WaUuBI0zR3QazICQpYf/qdVTdoKzkg0nTdDyvSbvT5fD4iIW/kKJLoTKdTMjTlHC5ZDQcEQYhqnAlO6VuzBuNxk8bibKCNMmZjOf4QcCd27el6yaJKSp4cnDI6fmADz/5jOVCbr4HZwOiIGR7Yx3d0Ll05XINUi6YTAZMpkPSNKTTbcqMv21RiQLNVNi9tPu0nVWVrpDNzXU0TUfX5eQ3TiJyP8P3lzi2TcNzuX71ChsbG3xy9zOm8xmdTgvTMrFMg7LMmUzG2LaFaZkkaYaiaPzqr/46a2sbnJ6c8eD+Az7/9C637tziN37917Adg8ePHrGYTYlDnzj0pEu1XkznaYrnuKibW7z2yqtcuXqdTrtNFMdYjqw1jmtb9Ww2w3M9TNNERU5bz8ZzzGVMgc7ZaMjB8IywyDg8OkJRFbKiYLKYkyQxWZGjKConmsrg9IyDR4+ZTuS1MZnNEAIuXb5Es+Wxsd5nPBlz97NPKMuCW889RxTGDM5H3Ln9ArZj09/cqKt+FxQVfPTJp5wNhriOi1A01tc3efPNr7G1vc2TgyNOT0749O5dZvM5QRBw+PCJdBfU3LJGw2Nra4OcW7zwwou8+NJLsh0GheFoxOHRMZPRAFXVaDTbuJ5Ls9UmjALiJGbpz4migEbDxnVNHj64R1lULGZLZospy+WMLIjRNB3XsnFdl8t7l7Asi+l0iqpraIaBppcUAoZ1s5WjmRR5QeRHuK5Db72Hbuj4eSIdKZaNpRskccxP3nmbKImJiwyrEOz1NlbNVkJV5aRVkUM2TTck0yZOSBIZm2s1a15Wt4NlmTV25KmL6YL7dbFHvOBZyE3A0zXgl7ma/mNjOn1Zfflf/bsvVnLnNZ8rZzQa8v4nH9Jutdnd3iXNUxRFsL+/gyIE+3vbZFnG7OUX0TSNT+9+TFGUbGxv4CcRT06P6TSalGXJa6+8wtXLV7h86QpFmjHzl2RUzH2f527dpNPtoArJs1Fqbkvx9DeVz/q6Sr4ydSzPoRKC47NThBA8d+MGk+mYs/GQvCip8kqKBEiXY0mFORxK10aekWQJYRzy8LPP5XpjIZ2thm2SJAmz2ZTlfCF5Vcjz6OWXXyaKIibTEZZp4nkuGioqKoiKsswl85GKhu1I4QvJXtRVBUwdXVcoyoI0yjg5l1Gv7sYalmlJQLOuE4cRKgJV02U6oJTNsNTPtfqQyHrxsmT/0j6WY/P3//7f5/TsjD/9zp9wcnKEamj0+j3ZmqdJTpWpaoi85OFjGbF5cnjIYrFgvlhw7/PPGQyGiDyn3WqymE8pyoLBcEi73WFrawdDU9EUOUhuNDxOTo4py5I/+tf/mkuXL/PL3/oVomvXqISg3e1SVBWe68pYVJygKiq6pq2Ay8vFkiAIWV/fwPM8uZbOMuIwRtM1bNeh6TVw9y1eeullWs02ce2Adl2XNE25/+ABaZpy8+ZNPvnsLtP5jOPDY8lG9SMEMBoPWS4XtNfXuHT5EleuXKlTERE//MFblEVZ3xfadFstemt9Xn7lFfL6elj4S+lkrxuyZ75PlmfEsWxQK/OC2XRGmWV4DU9uPsuavVSXhwgE1Uo8lE7omgwjBaCai7Rq+NQ0VE1fcW7KCtI45ezsDE1I0eXJ4SEnZ2e8/uYb9Ps9zk/PGA2GuI5Dv9fj0v4lXNddMXyEIgjDkLKqMDVNill1uzSKIh0aFUznM5K6Yl5GolurDfpiueTo9IRXXn2Vnd2dlZCy0V+T92DgAiR8wfeJ0pScSgLRxQXcW6xKML7sHqWs2DlV7cyS5g2QUcYsy3n0+DGnp6d8//s/wHJs/s7f+Tv/X+r+9EeyLE/PxJ67r7ab+Roee0RmRu5Za9beXdXd1SR7uA0pDSlAgDAiP0rQnyDpm4ARJMx8mREGhARxJDR7m2lOdbO7OdVVXVlVWbnvGXv47m673X09+nCueWY1yUEJGIAcKwRyqchwd7N7zz3n/b3v8/LUU0+xu7tDv99thDAJtzZ0nbxxjssknVznAXzXlxHgnkZVlXQ7HRRFDis8z8dxHSxbFi013w66+pl4uP4cpZTLBU9QQUby1gUY/6aLSf61ruuGvwm2LRtfFRS5z69L0lQ6d23bvogbqooqW8F1A9t2cFyPSpH8rTX7V1UUbNvi9PSUjydj/oc/X1BkCZoim2DLKufw8JDJ+JQsSTB0VcYsRUVeZFAqDcs55fTsBMsy0LRrZEVOVsjzdbRaEQYBSRxjuzpK8xyRZS0aQjR8KiETFN1uj82NTZ6+cZs4Tdg/OsK2bWzLJmsQK0kqr9Fe4zw9ODuiUmravY5schSqbE1uRDrpeFIvDBar1YoojFjOFwRBgOd4KKj0uv2LdMXakWU7kjNp2zaKqpBlCYqiNM7sisV8hmWaVGXF40ePiOMYyzDpdjv0B4MLJqbkcJcygqkqFEX1Kw+nfmXhyTB0ijzn3r17a68beVPh6XfbWLZNp9eRDogsabLBNVUtqGp5Q67VWwDTMH/pzy+VUrYn2DZJLGF6ZVFKy74t4aS2YVGqUKpQN64ux3JRNJU4z9ENBb9tS8ujIgGPWZoD0nLumJa0gGo6lbQIYGiykt11XQxDZ5qtUKjZ2dlhZ2tEv9elKGISs6LdcmSz3HxFEKwIwyWapvH8s89gWA5ZEhOuEpbLmEF/iGVa9HtdFCCJY1BULNtrwF0qq2BJlESIskJVTEabfYoChqMd+t0WVy5f5emnbnLz1lXu3f2I2XxCLQryPEJRSlRsDNtHUzQUoVDmJVmSXWwW87zAcA0ZFWm4Wu1uF8/z+HTwIdF8ybDXR1VgPhlT5TVhUaBrEoJYlBWFotJpd7AsG7/TkTWmUYyuKGiKkItRVTUxKwXblFEiy9Ipa0GWV0SxbPdRRI1haNRVSVVVF3G1sixYLZecnpxRZBmu47AK5IQ+DEOEgDTLOD4748NPPmE4GLFYBg2zSyfLMgzD4KWXXqLVatHtdRlPJK/j9OSUajxG1zTqxoFHVXN+fEyv02bYcvG6DlujDRazOVEQ0mm3sU2L84MpSZySJmfUoqKuZA12LeqLaYxq6JSi5uDkmLysiLMCx7BwTRvHs1FMHdXQUS2NVq+NFhvoli4fDsq6lhKiQD4cWraNKmqqMpcLjVIR5ylKVWFq0n4bxjGVqMhNAaqG0AVBHDA5i/HtNoO+g9/qgqKRBUtMQ6c73MSwHYxWm8m9hzy5/whTA0NXcVwXv+WzvbFJlpeSP6LCbDWnoiSpcvZPT/EcF4GsFhVJhoqGhUmlCipVVrwKIbAUCbq00BCFYDVfyU1pWcvmJhV8y2HYHXBl7zJn1jlPHj++aMEoq5yqKrhz4wbDzU3q4YAsSTg4OqCIEx7PHuK4Pp7flhEyzaBMc6I04cHdezLCFwQMRyOeefYO8+mMxXzO/Qf3mM9nKBVoKqiajO96bgtT1TE1AwMdQ9Eo85SyKgjyhDjPqe/fp1YMCsUgCBaEYUAYhRRliWPbWKaFaloEUUKUlwSrgNn5GVtbm7iO3UxBCqqqpCwL8iwlXAVMzsd0+h06vS7dXhdFEXT9Nq7jMD4/4+T4kIMnj/Edg7ZvY5kKtqUg6oyihjCOKKuKrCho+S0c28R2TXzfZbVaECcxG33JrgpnE2xDxfdsijzl7PSM8/MxURRh6tLdt3f1Br7fYjQaEQSBZCyFIXESc3BwCNMJv/X979Nqtzk+O8WtFRyvQ6fbo9Ppcb5YUWs6n3zyCUleomo6qm5QFbKQQdN0XNfFb7U5PT1jOp1gOzaogtVySRJFLKdzlrMFWZLhWja6qmFbDlVVMZ8vpfW/qlAUDUXRWQQxy8WS0eYWl/b2CJKIxXLJux98SBhGzOYLNFVCRKtCAje3tgb0Bj2++upXiOOITz75mOViyXQ+oygzOh1fRshNi5oSTVfZ2N6gLEqKTH5+RZYxGAzwW750dVUFk4kEmo8n52wMh/S7bfb2drl18xYffPQhwWopI5i2g22ZxEnEcrWUm/y6oiorDMPkq199lW63zy9+8Rb7+/sc7O/zta+9yt/47d/m9V/8lHv37xKHkoOXpwmKYWBqhiz4qCq8BpT5zNNP89xzL7C3t0daFGRlRY1s0JxMZ5yPxxIgq6iMT08IlkseH5ygazGmZTOezzhbzJjP5+gouJ6HoqmsooCyKElC+axO8ozzk1MO2k8oazlgOjk7RdN1dve2MQyNXq/D0fEh7733Lp12l2vXrpHEOfNywSsvf4HhxojR7vaFi2l/f5/Hjx4xmc5xHZfr16/T7fZ59rkXcByHw8NjHty/z1tvvUPRREOzOEEVcPP6NTzPodX1MCwd07P42je+xvd+8zc5eHLAeDzl4aPXOD0+5eMPP8CxHa7fuI3jefitBfPFlCBcEqcrRF3itzxc1+Jg/wkIhSIrCRseYaxEaJrGreu36Hf77GztyGaus1Mcz6dtO6i6joZgvloSRTGeYckmu7yg5Xn0ez3iIiUssoYFpGGoGkGe89ZH71PkBW3XY9TqUuT5xaRebSIolq2jNHwJ6RzICVbyGXr92nV6vR4d30JbxxWaqbLaRE/WU2Zl3cK0Fp5qecD4HALkl17/roamf5+vfzsIfS20yajJ+vfImnXZ5DNfLLj/6AE7Wzv0en2oajRdZWd7C8e22docNeDmW0ymEx4+esDm5hbb2ztEWUIyztEEuLbDM7efIi9Lrt24wcP7D3nnrbdJ85zVKuDll19iYzAiD1eU60p3JFh8fUgXdRODtUxQdGzXIctyziZjNgdDru7t8f4nH1PrMvIgyop2q33BsEnSVDapIsjLnLwRn8anZ+QNlsD1PS5fv0KWpWRZQrgMyOIU03TwfJ/bt24TJzFvv7PCtExcx0apFbnXpKIWFULIHkjfktG0rMjQFUXuC1WDGp0szknSlMOzUxRV4dLOLq7t0PFblHlGliQNRFeXxT1N3lDwOeEJpFghBFvbW/QGff7W7/wOb771Jn/03/4hYRyyubfLs889S2fQQ2iAUGRjXVlzMD3m6PiYn/3idcq8oCoKzo5PCJYrDAXmLZ9lsCQKQz748ENu37rNt77Vou17mK7LxsaITrdDmqfMJhN+8qMfkSUJf/fv/F2qSwLNsuR9VAsc10VXFKKlHEhpqkpZVqxWgSxCSVIMw8R1PU5PzwjDkOl4hue5bNsWvuvi9l1u33qKTrtL2TB31vujg4MDup0OV69e5aBp0Bufj4kjGamthWAyG2OaJp1ej6tXr/OFl17mgw8+JJgHvP/u+4RRxLMvvMDe3i7dboduv0d3OOD45JjJdEoUS76hENKpMlstG+h3fXH+W61WVLnce+uGLvd/NRf7QAEXvLnmrmtEqXVBTHPlK8qFQ3MNl8/zvMEn5EynUxm1qgQnp2dMplN2dnbY27vEB2++xeT8HNdx6HW7bG9vyz1kWTZuHZUkTajrGsPzUVGoqFlnq9dr3SoMiOKYOIqa+6Z7sX6EccT5dEK72+HylSsX8cNB0zYOUBayibCsKipRkxUlZV1jGXIvrDUlA4ryWeRP/dw6q8BFRb0sEV/H1j5rj6uqkidP9nn06BFvvvkmX/7qV/jud7/XcJTci2IYeaaVQ+2iKIii6ML0sY7u6c3P4NqyUbwSDYhcKNiOg2nLs5WqKBfTB01vvqsmol2LGrURpRr9TkYnG/fSmmv2S+2GfFa6E8cJhmnQavkS4I4UcKTAmQLged6FdqA0nCdN02RU3rbIBc2fV5PlGVbTFjedTvjw3Xd5/703OTs9xtBtCd9HOpDn8xmaqqDraiOh1RLBoQBCoyhyptMJg35Pin5lQZRExMGKcLUijiLSNMH12khuVYmiajLuJuQvkKUC7VabQX/IlUuXOTo+Zj6Z4vs+wq8ospyyKMibFuJ2t0NWFpwdH+K1fKqGIaao8txZiVoWETXXhtbE40QtyNKUKAgJVwFVUaEbBp12B9OyGA6HF/HHVtvHcexmgFtydHRIVZWYukYQBMynK0zdpCpq9h/vE4YhV69cwdR1hoNhI5BKc4qo64tIbF030dZf4fUrC0+oogFRluiaISvrNUW2IhQlaRUzPj6TbxAyj6npJnVZyv9GV7BtA0URcgFr1DHZ4CFbz0yjRNcqLNNB0wziJCTNNFzbwzIVDFuVYhIpiiLJ7MsopRaQFhmGmYJRYZkejtXB9my8tkeWlpRlxWQ5R1U0Wl4HyzLwvQ5RFBKFIXlWoKoqwSzBsTR2dwf0Bx5xOWUVREzGM4b9DXyvxXsfvM5iPuNv/+3fwTQM7t9/hJaW2EWJobtsbg4IgyVZmtLrS7vq5au7FKVgFUqo1/HxKecTOZV4+fnnGQ4GWK7L5qVL/P1/9A/RdYWWb6PpKgfTKWFZU2kmquFJTgAqYZRzfHyPNEuJ4ojR1oi9a1eaRriKdDdB11QMR6Ftt7l2bVeCCxdz4mhFEK+YzsbSBdaA6Nq+L5u5ylIupmXObJJIJkQxQgiBSQlKRaUKDE3B1KUaWFIRzMaoqoLrehiKio6KYek4qofr6hiWghAWCDAaqGJRZOiqXKDiOGR8ntPvdFFUlYd3H+I4Dq986Qu88OxzvPz8i3z68Se8/+77bGxsYLUs8rIiywvee/sdLNui1+vTbre4ff0WwWLFkyjCs1v0/R4vv/ACqqrw4N49ijzj8PyMsqqgqlhOZ0SLJePjc2zLRkXBNHQsy8BxLPyWQxQGpEm0XkPJg1AOO4oKVYAjBB1Xp9P2SOKAIgkpE5U01jlvYO1XLl1isVxydn7exFBdsiSjKErmqzmGobN7aUseEkRFlWXUaY7leZiGQZJklFWFo1ioQFRkFFWNjsZytQLtGNNz6XgO+3FEpeqYfpsszzl9/ISkyHCHXbI8I68rDuYFVhgSBo9AERQipxYppqNR1Dl5IhhsdhkOBgQu5FFIeFogFEGVr6AQaGWN0TgfdVFiqBUtvSYTOXG2oKgFhagxdHmYnwYrrNWKre1LGKbLvbtPqIscra5RKgW9Etz9+B73UNja2sZzXG4//TxpHHN2fESZ5YSzCXnz5+bpSlqpm9jEZDIjjBIm0xl5klAkCbPxhCRO6Lc9FAWC8RJN1/B8B8O1sVwfR7fQFZX7J8ekacxgc8RgY5MvfO0rqIaF0EzOT0+ZjM954+dvsJzOsLpdqGu0PEbLQpR0RpaYLCOfx48fMZ9PyMsSUZSE8yVpGOPYLn6rRafbZXJ+zr27n6BpKu12m5u3bwIqP3n9p0zGZ3S6Nj3XZdjyGHY6tHxfrrN1jZEV6JqC59ugqizjnHkwpqpqkjCgrkoyAulmunITw9KxLJ08i4jCFf1Oh62NPnVVEMUB77zzJqZlMdoYsbW1xa2nb3Dl2h5/M8354b/+IceHx/z856/h+y1e/sIXqaqan7/xJnuXLrO3d4XrV29w8/pt6rImTRNMx6QWFbP5jGCxolhljJ+cUwU5iilQNQW35WEYOi3Xpe35PP/0s2SrmKPHhziuJ/lRFcRxzIMnB5i6wcZwg6ouyKuUL7/6KleuXEFVVZZhxF/97DWiOKJGYbS5watf/xrz2Zz5bMaTh48JVis0cwvdtMirGqHqdDpDwigjijJU3cFrexRZRp6VvP3Gu/IRaJhoqmR9+L7PoCej4FEQkOWZFI69FoP+gDvPPMtwMJSw8k6feRATxzmKovOd73wPQzc4OTnB9Tt0ByNWqxWrMORv/K2/zdVrNzg7n/H++5/y//7n/w2u6/AP/vE/5vqNGzzZP+Ltt9/nww/f5/bNZ3Asi+OjIxzP5dnnnqOqBVlekmYFeV5yuorIPv6Eo5MTwijm7HwsW+mimCQKicKAOFiRpynaug20Eui6xlGZI6qSp65d5vz0jPl0guWoWIbFqCsnmoNenySOOT87pyhK0mBO3jj7up7NcLTB3/87f4+irPizf/WvWQYrPK+N58lo2dZWC8O0ODk9Zv9on/O/mNAfDHjmmWcYDfvYhsGHH3zAh6envP/OWxim3EyhwAfvvkme5WRJTKfbxvO6VGWFruk8c+dZdF1nupiz1d3h1WvX0E2Dn/3kLT766EOOj4958OABeZaxd3WP7c1NvvKlr5ImKcvFCkOtcS2D5UpHUPP07aewLIs8y4nTlMViSbfbZ+/KDfxOWwJwhYJQNcIwIStyzhZLuiiYnksaxmRJQjBfsAxWHEYRum6wORgxCVaUjx6zikJWUUCyCCmzgpbvk6Qp4TJG1DVmqfHk4JTaeE9C7ivpvjMNg+eeexbD0EmTmJPjYz56/wNuXr/OzRtXGPQ6OI5FJQR1zUXLkBQOFNlIg5z8Su1DfK6M6bPmvP85vD5fXb5+fSY4fQYTLys5EI2zTLp0PQmq/l//o3+Ebdl0/DZVKQdkCqKB33oUZYnr+6jzBcv5kjKvWM2XBFlKUVXsbm3T7XR44cXnKcuK89NTFGpu3LjGeDwmCIOGq6Fgez6WqHF8H6GqFFVJsW7fVZtDGxqGojLo9FiFIbPlgkWwwp069Nodnr15m3C+5CAreP6lF1FVlcnZmCyO6bZbJFHEdDZlb3uHZ27cIowioijkk48+YhUEvPfeuxcHh+eevsOdp55me0dyRN/84H2iOMJv+1i2RZoVMmanaeh1U7HevKGmrSGyWpaGGNIHkcQJSZaxShKyosDzfSzDoOu1JKdmPG6m8IoUawyDMImoRY2e5WiaiqHKdl/p0swpqxI1kwfEp+88Q6fXIYliHjx8yB/+f36X068dMvvCmFavK7mZXoaCIAxWlGVGu+Vzee8KN67fpCoKqqJi0fCCrlzdZT6bQV0xGo5QRY1m6Biuzfh4wWq5Iowyikqlt7lLJlR+9NOfsbm5yY29yxyenrAKAzQxxNR1dN0gzzIOj47k1afIhk0VBV1RMBSFfquLWis8Cfdly6xmsFyFnJ6eUyHo9Hu4rivbRTWNLMuYTSbUCixWK7Y2N/nql77EU3eexvNc3nrrHcIwwFA0LM3AMS0m4zFvvf0WQlEYbPS5cfM6YRhhmxaaUCnTQg6DHI+820dTVJ482SdLU+xrJqZp0rZdkjRlEa2a961kMj6lpuapKpe8mkqQphmT2RTbsRse1Qb9blc6fkCWrSggGkFRRSICiqzANizanmRM2baJUGQV/d7uLqvFkvlkytM3r3Pz+hVG3TZlHPOnf/IDijzn5ZdeZmfvklwDVFlwlZUldS3QDdlcZlpWk1iQXOEa6UjRNIOO38IyTCxNwvGH/T6r5YqH9+5TVxU7uztsb2+xsTGSaQVFwdbtz9YYS2Jb1oKb0jQBlrVsLU3yDNMwZTlQEyP7rGeugbJXDR+zlm2YmqJKAauScO88L2h1e9x+xuHK9Rv0BwM00yTJS7IivFjzTKuSjaSqjMm5rseFl+rzorwCiiIungUNGbBh/KmfuZs06cIS9RqHs455A01UNCrL5mctLmDUmqZh6mu2lIKq6NQIwiSmrCo020Q3DZlYKgriNEPXVHTNotOWDigVpUFFKxdoj/39fd5//wPGUSKnx3EkC6XCBGHUKIpNNAs4PxsTBwFVltJut9ENE+oKXddJooSizEmadUbTZNxV1w38bp9Wq832lcvY7Q7n88WF4+nkfMx0PCEraoSiU1Y0jmNTvsNCuTB+7Ozuygh92yPLE37609f46KOP+YM//AO+853v8PWvfwNcB01R2BxtkCQpH737PoYpY7mObmHqFlmRUhYFCiqaqksXXC0F4SzPieMY1/ck089vk2Y5o+FAxiJVi7IsCZOU8+mMKApRkI5S/WIIJZmkGxsjLNvk5u1bdNpdWq02V65dkRH8tuRirssCDFXH1A1qvcRQNXRFxdJ0auV/auFJyqHraxNVV1ErDa2W4C9RVmS1rFJVTV0CqxUNKJuLWlxYB4VQqFUFUYnPqseFdEzUtbgAuyWpVGpz3ZIEfCEoREFeZ9Kx0NyMdQ15VVBTkmZSS9dUF93QMUxd3tAIyecQFZa5Zo/ogLQwrhsUqEFTdTzfwnF0KpGTlxlJlpNkJZpeM5stWCzmbGyOMA2Lu3cfUeYFqDW+b+HYFmGUS3dQEuO4Nl2zC6oE0sZJwng2YzKdEgShzHgbFoqmYXsu12/doK5Lqjonz1LSLKFWNRTDpEalquUykhUVy9WKoizIy5xN32MwHLFarsgbKCTUKKrAsnUG/Q55ErGoCqpaui/SLMGoDTRVwdCleloVjXKPQBE1WRID4HuuhJlRoytIYKQqFzRdU1CESpbJmnrFlO1MiqKjNsq3sc5tIyVyU9EplZIsTeSCaegoCKqywPR8dN3gaP+YLEllDfegzY1r11lMZryVZvKwrygoQrYhTicTGSnMC0xdp+V5mLoBQsK8HdthY2MT3dBZBiuC1YLpWUxR1RRF1bT81GRpcaGurxdovWkQzLOYNGmswuvbsAZRSrixrqhYTeRQU0FUJVlRo6gacRThOA7dXq9xy0jItap9Vr+ZFQVCBd0wMQ0NU1eIBURZDqqKomkXTQ+GqgPSRSQQGJomM91RyLAj4ZCq46BqOprtUBclYRRRCoFmW6i6nCTEpUpW1Zh1gK6BZsmfTEZPa6q6wDA1bM+i7rTQNIVw5kCdg5LLhpKqRtUUVAUMRaBqAltrcut1EwcT0nqMLojzjDjL6I82Kcoax/HJiahSCVpVVZXxfE6aFTheF1Uz8TxfVgE7NlVZUBS5PExRg6hQqCkL+T7J1quIJE0o05Qqz4jDiKIo0NQuKpDFObqhY1sOolZRFEM6dFSVohJkpQBFw7RshqMBmmmBZlIVGVWRoSFBg3VRIAwNpSpQ6wKtLhCVnDInSYSuKWiGDg3UuSrlNMKybfyWz9nZMcvF4gJE3Ov1yIuSo5NjomCBZWm4tkGrARAbhknd9JEoQkFV5fdYVnLSFscpWZIj6gKFmiDNqTWDHa+FoStoakVVZqRRzHAwpN3tMJtNZKvi+RhN10izGM93cRybzc1NHNvh9PAYXVX5yx/9FUvH5eVXvkiSJOwf7KNpBrbt0uv06HY6dNodWaWrq5R5QRxHpEkqXZlxSmzElGQoWuOSs0xMRaW2ZbW4aVoYpoHtuDiej5OVFJVgFUR4jottuxRVRVVkbO3scOvpp7l//z6LIOD45JQsz+gPB5JFdeWyZP3lGYoKVSXXKFQFVAnUtB0XVdXJ0gLLNdANk6ooKfOCyfkEAfidDoauYesaWkdyDNaNIHVVoWmaZCO0WmxtbtIfDNjY2CJNU5argLKu0XWTzc1tVFXjfDxF1XUszSVJC1Qt4+q1m9y58yx/+cOf8PjJPh9+9BHXrl/jxu1beK7HdDZjPl+wWgWMhpt0Oh1Ozs5B03HbHQQqVilQoxQlzZjMlyzCkJOzc8Iw4uhIrqdxGFCkCXkasxhPSMLwgsvQbnWodY1llWPbNt1Wm9V8Jp//ogZqHFOyAfu9DrGpk0QRcRwTFjmKUqMpglZLinNbW1vMZgvpmFMUfK91Ae/2Wj6mYbJcLQnCkAcP7pFmCTduXEMBHNuSzLvVikAsMQwDx7IoioKzsxNZvGBZ2KZBp+1T12AYJv1BH1CZrQIcx2d7e4+z81P2jw559PAJxyfH0sWlqwxGQza3ttjZ3mQxW5DFMa5lUTeuXEWBjeEmuq4zW8zkwKGU5Sau6+P6LQzbIpwuqMqY6XRGVhTMVytQFCzLJFmFpFFMuFoRhgHzYIVpGPieT6lAjmC5WrFaLVlOpNvP89wGOVCiCMhEzmK1grNzijyjLAvKssAyTS5d2cMyTbI4YrVaMp9PgWv0uh0cx8TQ5RovBJ/Lzynrnd3n3EHil/66LkL/9+1i+h97/dvEpl+qKf8cy+mz13rPKaNEmm7gmyY3GleEpjRg37oma8QpFPlu6LrRtGxBkeVEImQaLEnyHLNp/imaNaFsinYc10Y3NPl1qZvnvoaCjKVVQlBUNWVVyVIOVW+q2BthxrLJGlZHVVXS0WSadNsdgvmCNIxkvEhXKPIMhMB3XeIkJgxDXNthNBzitXyCwOXgyWNWYcB4fC7jGpaFbVtsbIzodiUrKQpXJGlKqysZIHmeo1uSZaOsDwLy8mj2MMpFdBEh677TLCdMZSTXtixs08LSDeqqIs1k65+qyQMpioQ9y+h4U6+ua/JyFfLfl5XkwSqqSqvdQmGHr375K2RJyp/+9z/g8Mm+5Lhdu0Kn16VlGPKckKUgBN1Om52dbZ566ikJz0fh/t1PydKUrc0tLNNkd2cHx3Gpq0reIppKlkvXFoqKYdn0hhuousnj/QMs02Z3a5u6Ki8+b1WRpUJ54zgRCii6jMgYhn7hHJFQX126gBpGV5ZnhHEsgcaOg+d7F0U4cZywWi4BKMoC13OxTJOtzQ0s15EJgqLEMuR7beoGWZpwdn5Gp9tF0zXabVkMZZsmRgOR1prSEseyyR0XIWryUvJ1NFVFNw3qUpZXiLqmLksWywVJkbGzsyMdNkIhTmJmizluLiPd/W5XxsYubs0mpvW5e1HU8j5cM4FVVW0iZpJD53suWRRDLej3eziug6lpxHHEo0cP0TSN7w6/S6vTWn+JJn4lW75VVbuAfssGtkaIrmtUXUNRVAxNp9ZratvBNE1sy2ZRzZmMxwgh6PV6+L6P60jnNdA0gTY/g6qC9rmfCdHseesm4lWhajV1w9ST13dz5mzEqrIskd9efXHczvKiaRUXlEWJYVpYjsNwMJTMMwFFVjSgZxnPq5BcTVOTn52haqhNM7ayXsuV9Tq5dheuQ3Pq2nTJGmItFcPPCfhKc9MrTbudgKysyBsdQBFSqFeV9XND/qqbM36SZlSiRtGlS1emSOT5XFNtGbts2vHWX1OeGRssSRBwPh5TaBqGZVPnOULTEEWBECp1VlIkGWmcUBYFoq7QNBVdl1EpQzewDFM6zOuqGbjI71dTVVxHRuZdv4Wq64RNVLMSgjBOWAaBdKcqGrVQpOsLdW0EBGR0tNVu0+3KFFiSJjx58oQnTx5zuH9AHIZYhoGoSqpSb66rmtV8juN6DF0fQzPQVHlRrbnXqiofC7XCxTqZF1I4dhybTiFw8hLP9yjKCsOURTFFUUi8QhBQNwNFXZU/r+NY6KqUhk3TotvrNXFL6Zo3DYlZuhAr4QJqrmmabM9FOviUX3K3/btfv7LwJBryfKvbpSwk8HAdHXFcR3KVdFmpF8YxUFMbGllRkGYJYqUQJqm09WsatisX9jKqMVQF1ZBZzbTMJOvJ0kGVN2wUxWRpRpbn5EVClifohoOmmWiaPDBYjolA5o5VJUFTImkZNC1afgfTtNi9tA0I0iRBEBEmObWocByLupKgrpe+9BKdtg1CZuy7nR6G7mIZPj977Rd88vGnXLu2y40blyUXQ9PZ2t5iuphyeLpPPxeUwkDVbFTT4OH+PvrJMdUHHwAqKDpFJXA8l8ut6xLUvrOJ13KZTOQ0OopC4jhiPp9x8/o17jzzFJPxCcFqwQfvvUOWpWxtDBt2Tx/dkNZ813XQ1IrlYnrBn1FVBcvWMDSVVRKh2ia97Q2GoxHL2QpNNRCVIE8LirQgCRM5jdGk9dU0LEpDtgKWhVQzy7LCtC26nRaz6ZzZbMpw0MfttNhyNqnritlkRt7UOPaHQ0bb21iWS5yWlM3GyNQsxudn/Nm/+hNUamxLZTwes5jNMKklGFcpKeOA1/7iR1y9do1Bqwco9DdGqLZJRo3VcjHqiioQ6JqOYWmE8Yp79z7Bsk3uPPs8h48eswxD7t57wHA44Nvf/jWquiJYLWk5Hm3P54MPP+D09JTR5iaqIjj6+GOSOOJ8tsJbOqxCuYgoqkYQBtRVzd7eLqqiMlvM5RRDA9sz8ds+TsvFyBKOHxxRCejvbBPmOcd372KaBru7uxfW283RSE5EjBskScK9B/cYDgc8/8JzpNkBq7Mxq1UAdYWtqhi6hmnIKYIQGooNSkdOS8oiBkVavr/5W99HKCqrIALdxogK4tWKVRDw3Be/xGhrkwf3PiEJA5QwBiEf9o6p0XMUimxBnCYcfvqQbBHx9JdfJM8zzlZzNFWl57rMj86JlueUVY6qC/rDTtPKAXFRomYZlapSqxqREBRKTZAnBHmK1XbxNEF3a8D0vOR8csRWv8NGr4fXbpFlObPZOYvZKYvzR+iOidlvgeFgdyx6nR6O7aI/esRsvuDuw0d0jR4vv/g0SZJyNp5ysJxycnpCEaWoQuHmlauS41SdUqugKCZZIZgHCYlZYeomL3756wgheOvdN4n3j9n4+H2E0MgyhSSOieOYsswxTGQchwJEH8uwGHQHWI6DolQ8/cwzXL9xg48+vsdiscT2WqRljWHZbO/s8pVXv8poY8DO/jZ/+Zc/5t6DR7z69a+hGybJfE6ZhjiqhqsbOIZFlVfEdUKeZ1JcCwIUVZOihmHgGibtfgdd1SmrjKoqmc1XZGHF+dERrmvR6XmEi4DxZMbVy7fotbqcHZ8QLkOi+YIsz3jy8CHTs3Nm5xN2dncZbYy4cfs6O5e2+eGPfsTR8QH/3X/7+0RxwsnpGR9sbLGxtc1oMKTltWRddKeNoRhkRcb52ZjZfEaYBjx/6Rmefvo2+8ePqKqS73z9OyiKysd3P+HTBw/5w//+B2xsbHDzhRfYu3QZ3/f58IMPKUpo+R1u3rzFP/2n/5SkypknEafHJ/z49Z/zw7/4C8bjc3a2dxiMRow2N3FbLc6mEw5Ojnm8/5h5HJDUktNl2SZ7e3tUpYzRikc14/Mz/HYH23OxTRPLtjFMOTUq8oy6VKk0lV4l0DWDfk8eCq5ev4rv+/LQVlVEUUS73cF1Xd5++20+/fRTOp0Bw9Eu739wl7qumEwm1EJa82/cuM6Xv/o1TNvl+PSMN95+k0ePHmOYsrVwNj/n9CwjjhNuPfcUX/rmV9hqeEjxL37KyeEBHz942OxIFOIoJU0y2baiqbie01S7g2UY9HyfpBbEWU1ltTAqjSSKyaMcQ1GpFYiKhGF/gO/77Ozssbmxzfn5OWmSoFg6GTVn4zm6brKxd+1io91tu7iOTW8woqwE/5f/7D+jqmsc12N7Z4dbt25JsHmacnRyTJpl7F3ew++26A66rFYrfvCDH5CnOUWW85Uvf5nf+N732BiNUFWV07MzlssFjx49JAxDlsslnfaAUX8HRdFQNY08E9SiRFcMlosVb771BkfHhxwdHRBES8oy54UXn6I/GPDFV76GIuD+g32SOCEMEspaxTBdNkZy0tfrbuB5LjeuP0WapsyWM87HU57sH3D8izdYLpccPnpMmRd0Wm0cz6W/MaKuK4qiJA5C8jRtxFCPrSt7pGXGX732E3y/xdbWtozvhhFRJGMuWZ6jqSqj4VA6JyandMqUvK7IctlMY5qyLfjNX7xBVZacnx6zu7XDb/7Gb7E12qDlt0GRn4uuaZSldB8auk633ZF7u4brKA8ivyxAfXZw+J/vS4i6MeasnQWVPGzqGr1OV0Jns5TlasXdhw+xDBPPcdne3KTf6xPHS+IkYfr4MbUQmLZNt9/ja1//ukQ36CafPLjPdDHnpca9Pur10VSNzcGQ995/n5///Od0Oh02NjYoqwYCX0OapRwcPcH3fHY3t1FVFVtVKdOUEoHa8hv3gkLX93n+5lNNpEmQxBFnZye89Ys3SJOEVq/N9vY2169cbQ6lgtbZCe6Zz3K5JFityIqCKArZPz5kPpuTxwlXb9/mC6+8wvbWDqqq88d//C+ZzmZsbG6yt73DCy+/TF7k7B8dsjXcwBoOWccv12DZuomSR1GEoRuUXiVFpKoiDmSk8MrNm9iGCZXkufZ7fbIsJc9yVssVsS6dC3ozYFOaVjClWcMc18UWguVySRxG3P/kHrqmc/P2LfyWz9Xr1/iTP/0T/p//7J/x3e//Jjdv3+bat34N09B5vH/AcDjgN7/3vcbRoWG7tqyHd0xWccC//ssf4/sev/N3/i6Hh4e89957VLqK0HSKQrIyv/rqq3ieh+/77O/v86//4l/z/ltv87ui5qUvvsLVa9dk7EwRfHTvE6qqYnM0ot/rs721RdUIaIWmcBosODk9QlSCL33xCwRhwKd3P2Y02uDqtSsXjamzmWxP29neYY1fsywTz/OYz+fESczv/9EfslguiIKQbqfLb/7GbyAERFHYNFhlfPjeeywXS6L5AtfxePrGDQaDPoN+T4rpeYGh6bT9Fq9++auSDWPZDVtHEEQRqqlTFyVVUXI0OWU6maApGpZpUWRyqBbHMe22vBZdTzaTr5vRPpOGP2tB03Qd07KIz1OWyxVVXkh5SkBd1YRh3DTV6vT7Q7r9Lp/cvcfR4SHT6ZRer8fGxgadjlzPqlK2zRZ5Tl3X+J4nXZ6iEYwa/tda1BVAsFqQpCmDwRDLtlBUycn6xS9+wfWr1/jGF7/ERqeHVgtUVQMh41WieeaVdU3RsIxRlKbhr0ZB/t4SjSIrWCXTZmBQIRAXDqy6llFKpWnJrquqaZ0sKBvEB0gBQVEUsrMTyrIiz8sLgahaY2xc2VRoGMaF+GPqBqZh0PJ9HNNCVxV5NtQlq1JTPlPNalFTV3UTf1Oom8G2NI/IQafEn6tEcUqWF5wGEUUtaLleYwaoKRDoheQQqgZMJhLrMJ5OMQyDK1evo9aCNJJR9ZbjoGmyJU7UEgmwdl3pukaSZoRRRCUqPN9hONrCsV2C1RJR15SFbDfO44I4jNAEOKpOpZnky4BCUylUuW/bu7TLeDYmTAM0Q71ACclng4yEJmFEkWQEsznD0QaD4ZAkTZgt5whVoJkait48G0VNXUru6GAwpN3psD3awLJM3n33XQxdJ5otGY1G/O//D/877jz7LDduXeeTTz8lmkfU1JiWwe7eHrbt4rU6+I1TTVWkkGValoy26So0yA5FAcdxWK0WHB2t2H9yTBhG7F7aQQCPHh/K4eveHttbfVznDq4jAfjdThvTMDEMvXFPZaRZRhDJPdXZ+TlPHj8hCAN6vS7D4ZDvfe97klnXQN/XbZNcNPr9T+x4klllucAgciBb37uNZU+y2kChcdZ99k2saedCPqCoP5s00ahkepPjlO0i8t+pDTBVCMkzkBlneZNWZSmbsoSBpgm0WmMtq1dVRVklCFFTFjIaKGpJllcVBUV6eagrKd9puirznprOcNCh03bI6yl1LZvvUrVsOAAxUbjCdW/R7XXJm2iQ49rYmY1umJKlFAZACopOmmegKARxhGFYdLoDNN1E00055bcsTMtE01TSNCNNU4qioiwFVQWaZuI4Pq12T9q9PV8umKoEmWmGjmFomJa04NW1tIZfiNpCUOQFeS5z00JRMCxpn7VMA72xhJqm0UwyaoQqc9qqKpqsqnxkrJX+qpLVt6qqomuarG2nAQsikDNxqW5XVXWR+a3rmiRKWC1XFHmJWivM5zPyNMV1TNq+TxwGJKYuhb+qwNRVClERBStWiznT6YQ0jdEMaQdFlVBD0dwEeqOiCyAvSyzHxXQ8wmUg246CQML/srzZNGkIVaNWNSy/hT8oaI2GaIpCPJtihSG1ock2u1ZL2k3rGkcoTc1mQ/cvKxQVTE1O2Kgbu6uuy1hUWRMniVTswxDPdXFsm6qSU47akfFUt2l2UBRV5qCbNqSylnXpSlVJYLmqUDeTPykwStepguQBiKKgygsp7oqKRbNZK0p5ECqahoMsSxF1CaIiKyX83W33UAwbVTUI44woSlktV+iGQS1A1Q0Mz0NDoTJMhG2hui6GUaLrnzV0SCieglmr1Ir8lRYVeVWRJLHkE9XyZ/A7LQnqrdcOyRrT0FCFjop0XVWFQDWki6xu1hKha6iWiao105Nm8iqQMPYiz2X2vigxDRPT+Mw5ZejS4aQ0LYtVmlJXgtIQ2I4reRmqbOMJVivqWiPPFbIsJ88yNE29aHVR1c+5AhpgvpyYKqiq0TyoZZuRaaaA0lTYu/i+T7vVluysuiZNM+mOSlOqvMAwZVWqpqrNoK5uMvvrDYmgyPOL9dbUdUxDw9At6lonMpJm6iioy5I8TamKAlXI/y6LE7lpLAqUqoKyokgzgsWC06OjZo0Q+L500aFAkeeMz89lg5mqUFcFaRwyrkoCa8Fg1L+o0EYImdlXBH7bp93x6XRbiOOKvMzkuqxq6IZBkmY82T9A0TS8VhtFVbEsG9fxaLUytnd22NzeotPrUSznpLMJs+mEk+NjgtWSLEnQG8ZfkWXEQchUVYnDgLospQPSkfXguqbTavnNEKWUz5RKMueKIsfUpVVdN+Q9rGsatm3R8tsMBkMGw5G8B9ecnKbOXnIVEixLtqWFYchisaDbHaHrOvPZjKIsWS6X0g1qGVimRbvdocgLVuWKNE0pywLTsrEdB8dx5NQqTVFUFdO0mM8XRFFImibEccJivpQ7/FohS3LZZmo70l1nGigILFv+favVQhQ1cRDj+S0ZIyoyQGA7pjwgpRqW42JYNqYtp9aKJjcdpmlS1TXL1Qrd0mh3e7IkpCrZ2tmm122Tl4LVKuDg8BBN17l56/YFN0LUNWUlW4ySNKUsS8kraEpHFrNZA+hUpEu028V15SHGsqwLfoduGM2AyWwYMQWiKFgul9R1TZok1HWFaRlkmWwglG2tHTY3t+h2e2iaTp7lBEEIQkYTkqxZd5spdBhGVGVFlsomwyiKSeKELM1I45g0jiVw3pDPXl3TaHmyxr4uZSlEVUlXbV3VVFlGVuScn56StmJs3ZARxTwnSxPSXFY267oOogfUF85xXVGI8owkSdD1NkLUTMZjEDUq8hmyMRzheT6qqslIXTMxL0tZraw2Aw+xPgpeuIWUX/rHXxae/t0C1L9PR9S/Gav7t/9/n3+tRRMap3Hd1FBneQ4CTN2Q7CRANBP55WolAbCNI99xHRzbbtoRHYIwvFg7NFVD1zUUZNPQfD5nMBgwGAxIs4zpfIaKRl7kZHmGqRsUeY5lWhi6RlaU0i0hRGMuUNAVHU/TKZvG0DW/RTcMLCGbmTVVpdfuYNoWtuOyNpcsl0vZOmxZ5Ll0SABYpoXruHTaHfKiYDKbcnRywmKxkEy1pglWxqFyeaAvCsmsWYcwBRd777UjKyskHHh9v6sK6KqGpkrGp6qoGJpGrekIvW72DAJNk8/1tYCFq1CVkvsi+Y8VURiSpilpksq1wDTp9vtcv3FDQrs9r2k8Pef07BzHtqkruZffGAwlCy7L5V6prqTrStdIsgzHdekPhgRRhO26gEKeZbKQwNMYDAZy/dD1BsAr15rlcsHlq1fYGG2QN6VI2Xo4lCZ0RI3jOPLnBHIhwbxlJWHqF+/f2vljaAihs06KiMZkIt0zBRamZJwaOqqmMJtNmUwmDPqSOWgYxgVPV1dVVNNq6tarJr5UEy5Xspxm3WKJ0kSfdBxHMrf0RgCqqjUmwZT75YbV6Hme5BWaFlVeXtTOm6YpWUiq+lk8S/BLbesXP1PDsCrLSrp7xPoOlV83jCTH0mrOSrpuMJvNGE8mDEeyAMpvGrqki7Fq4OI0A9CGpyQa16OyFp2kEC0+l7rRjcZAIYR0t5kmru/T7fVRNBnfg7XQKoWnGulWzKtKVsojhaeqriWIHymglQ3Ptqwky3Hd5F2V1QXDS22Ep/U6XZZl43ZRGsemFJmK5s/I8/LCzbVujatSiTAoivLCpWIaJlZVoTU/m6mpDQtZxi0VfU2aa9bHzy/nv/xouPgHASRJShgnpGlODZSmBaqKoaoXzrO1s1Q+/2Qxi67rGA2UmrqWbiNNW5s810bKi1fdFFKVZYnve2xubdLvDjB1i9UyoqiKppBBXkdVWcgURi3Q6hq1qiR3tjHJWIY8+yprK15zb62vRZrEh2UY2IZFy/fptuWzNkkTBKL5rGlcQErDca0wTZOW37oQPJM4pjJMTNvEa3kMR0NaLR/TMpG3orznNU0KYLquXXxuF86z5vNfo0Tqz57czVBFQdVUTMvALmVLsqIodDs+ruvSaXs4joPrulJ30CXHWdPUi+tsFQbEScJ8uSQvCvKiYLaYEwaBbP7zZTGaqkt32V+/KNaNjL/K61cWnhzDbrKHDgoqeV40gGWk86ksqGsTRVVxHLsRHmQrh677eI6PaZrESUJVVixTaRdVm8O53kDlyrKUFi5Vo1LlhWma0iJe1zWGrmNanmRYFBl1VqGqOjUFlm3Q63bI0pIwyEjjglSERKtlE4OQi1O/20czDBRk+YWigu/ZeI7NlStDXNfk7t0DStvAdz3OT8659/GHOKbOnWduc+XKJXr9LoeHhxiGSac3wHRtvLbP48eHfPrpx5ydz4njjI3NLQRw//EThsMR3/zWd/D9Nn67i1EZTU0sCEUwmy/IshzDsLFsn53dLn5rQK1YbGzsoW7t0esNiKOA4+Mn5FlGlkrGVVmWiMY22O628FouRVGRZxnT2QShKjihh2FZ6JaJZRs4tiFdNpqG742om8ls2QgT60VPQusEaROJK6qCSqmpF+D5HqPRkJOTE+Znc7IqBwUcU4LYqyYn73oey8WCs+mcN998m/F4zOnhEcNBn+//1ne5ceMaX3z5RX762l/x1ptvMJ/NyNKUQcejqgTzVcxqNeYnP/kfCJOEvEzwDQ/L1plOV5Rlhe+1MHQT3XAwHQ+v26PT7eK3fK5fv0kUBPzBv/hdPn3wgAeHB811Z9Dv9xkOBvRHQzauXOXa7Vt4nsdzL3+RPM2YTqdYho7n2Bw8fsz45ITtfg9L13j46ceslnPm4xme6zBstSDLWZ6do5Y1Ldtha9QnSBI+/fQuoGAZBkmcEsXxxcY4iiJcx2Fv5xK6pnPr1lOswoCf//xNVKVGUxU67Ra2oWFRQV0RhisMVafjt4EaIUpsVX6e+XRKPJnx3ltvE2UZk8USQ9Np2R5pnpLmKT/+wR9RiZq9wQBdNzjPSnZ39vjGF76KkuWIMOTnb7xOHWccHh9yNBuze/sGfqvFzvZV4iTgYD7GHvXobG+wYWjYouLhR+8TxyGFLjf1jm1Sl4KqEIRhDmnJ0aMnRHHKjRs3sB2H67dvUIuce5++RxivGJcRrmGiqxobXRdD09je6FNkJfPxglmecZ4mpBn47YzJfEUUZQyGG2iGzjsffUQWpaxmK6q0oKO4XH/mJoPRkJt7VynznNl4TNU4hYIoZBEGMgpgWmzvbuN7LjubWwhqVrMlKAY1ZrNOFbQ7bUxLl0DoJs+eRDnj8zPcIqelqTx6+IQkrpjOF1RVzWi4gYIq+UFJShoniEquazeuXmHQafPg3j2SSLbeKaLE8HRpcwdUTUHTNfK8RtMUer02WVEyma8oaxnT2Bpu0O/1aLe8C0C2qqi0/RZxEnF2eIxp2WwMBowPDxgfHlOUUqT0DQtH1fEMkyovePzpp6RhwHwyIc8yVF2XUSpdYbmYcmn3El/98leo1ZqKirOTU5JkgW3WuK6G61iEgcpytaA36PCtX3uVq1cv0R44HJ0dcH5+zp07L9D2O3jtNigqx0cnTCczPnz/IyzVwnnGYWtzi53tHb7xrW+i6ToPj/Z57a9+zB//4R9gGyambrA3HHJre4c8y4jHEx5+8CG6ruO4Nr1ej61ul22/jaIoWH6L0dYm2zvbnJye8ujJE5arFZ7jIOqKPI6bymCNTrcNQooJV69d46tffZXtnR02RiPeevttjo+PeO21n8p2zaJAbxqIbty4jhAQxylCKOR5DGHJdDojSVJm8wVbW1vcuXMHUzfJk5wn+wcURYHr+mxsbLGYB1y/eoMvfeFrPNnfpy4/Zf/+IR+98zFvv/UGQbCk222jqSqWqlAjQaGuJ+Pizz/3MoP+iDAJqEWFpkLL99jZ2eHe3Xscj8959rln2dm9dNHYc3h0QJplJJF0TOm6jPBWVcX3/+7fY3dnB0WBk9MT/qv/x3+F025z85mnmEwmnJ2ecef5F7hx/Tr/9X/9z3jw4CFhnNBut/B9nzAIePutN6VwWldkmSxROD05kSKSYRIuV4iqZmtzm53tHXRN5/T0lNdff508z+l2uwRBwP2HD+n3e+xd3sPzLSoR8/DhPRaLFUKozfTYYmd3l72rl6mqCk0xeP6F59na3gIESZLw1jvvkGc5SlFx7ep1XnzhRe7eu8vB4SH3798jCAIO95+QZzn37n0qhxymweUrV7hy+TKXNzcxLu3ywnPP0Wm3cXwH23bo93tkeUGcphweHzOZTZmOpRv5/OgJs9mMhx99SLvdpgwW9Pt9ut0uqywij0IZYRY66XKKoqn0+x7bm0OuXt7jvQ8WLKYTNjZH2LbFR++/x3Aw4D/5+/+Qfq/HxnAEyJpzVAk9Hk/OpWjQDGZAti2hNPNsIRpXwGdC0/8/Fcn/Ib0++1mkg3f9ktwQ7ZdOVkIIyqKS7vWtLQxdx7FsNNMgK3Js1wFVYTKZUBQFhmU2+6EUy7FpdztYpoEoC177q7+i5be4eeUKVDqHh0ccHBxwcnTMN77+dV599VV+8tPXOD8fy32g63J1b0fW2i/njIZDfL9LucwpsrI59MnImYKCWiuUioau6sRRxHg85m/8zb9Ju93iz//Vn/HBBx/wk9deY3tnmxdefJHFfMFiseDho4cEQcCrX/4KjmXR8TvYukXbbTHsDynLmnc+fIcnRwdMxhNs2+bFl16k2+kyP5+S5RmagCROmMxn9DtdHEsKUghQahnXsh2HoioZT87p9vq02kPSPJNcuSCiNJr3s4l8emvIeC3BuVmeEScxDx48wHEd9q5cIUsSkjDk7PSU5WKB1rQ5bWxuY9k2UZogVOmC/3v/4D/mW7/2HX7vd/8FP/vxT/j4o3uMhiN+63u/juf4kjtqGpi6xnS1JIxjLNuiPxiwfWmPVquFZrhs717hG67H8dER4/Mxm1ubtNpttna3qMqSj959n/lsxqXdHYo84+goZP/RYygrNvt9/JaP59iswpCPPv2EUtRcvn4N17KxdFM2KVYFQctnFQa8/cm7uLbLlct7knUVBhdXbLvdunB9VFXBfDbFMg263TZFmVJVOToCU1X57d/6Pp7ncXR0RFnklEXO5uYmm1tb9FotgmDFaz/5KYv5gv/vP//n6KaJ223TbrUY9vq88NILXL95o4mAcSEapGn2mWBtqiimyfPPv8DTZcn1q1cxDYPDPKfdaXOnewdFVeUQ3bYpTROVxh0nmtN0JQun0FSyLGe5CqRIX1X4rTatdgdFVYmCFfcf3GfUH3B5exfbsinLkk8//ZTT01P+yT/5p2xubnBpbw9VaRocs5Q0TeXh3jTltSbqC8FJbZwRQkBeFNI5allohoHtyoFjWpSMtrb4je//Nnarje23mFU10/myMT3UFFmGgoKmGRSFFDPXAtZ6OF81biFRSxh3LaoLIaFufo8QQsbtGjFYURTKuiSv5Fp9EXm7GD7KoT7ruJMp3UxriHccxxR5TamUUthQoDBKCrMgyzI54DF0DF2n3+lhGgaubcpnvaLI4qMmvSQFFpVmlHshnFa1FBkODg85OTunOxpiWhZZVKOYVoNakF8DUZKnCU7T5Hv58l7TCqw3n8Nfj0ILdOOzNXsdLS7KAjR4+eWX+fKXv0KwioiimA8//IQszEmKlLoCUankaYoSpShRjBontEybluvz/BdeIs4yPrl/H+oCqKgpqYTSGFA08jwFUbOzvcHWxhY3rt6k2+nQarf5sz/7U87PThF1gaYKaQZQFTn0SgviOKfd7nHl8lV2tralkUYo9Hpd/t4/+DskccrhwSHDjQFZnsrrQ2lMMWpJkqQUZU1RCTrd7sV7I4XFmqoum2blEkVTqUtBURSMRgOuXtvjxRdelugNU5pZdE1iR5IkJo4ToihiMZPOs7PTM8IgYH//UA66smy9LDPcGNEbDFBUhU6/R7vXlSxLRzogi2Z4IU0m8r7KG4fmr/L6lYWnMi9l3rCJeSIkC0k1VeqylNbDqkKpazTDaB7ocmKpolAVFUVdQCVQBOiqfqEwIkBFwtRQ1UYJ1UgaOJztOI1bqgYqBDW6Jm+BupaOBVHVcjFDLjJVmUubIyp1XSBESZ6pqMqaB6PJVKaoQdS0Wz36vTampaGpAsMwEMBitmQ+WzCfzbBMh9FwgCIEWSKBX4VRoummnMbkBUWWkSUpWSKjDmEQQDMdKrKC44MjbHeB689lG5ZlY+oC17E5PT1tpu/yZ+52uuiaTlGUDHptHMfCdeVimqQxWZqSRBFFkVLkEQKBCvL9V1UWq1BahA2Zm66b6YoqkFEt00BpapTrdauSqEAR6Ibks4i6cTE1GWIU+dlVdU0QhsitnMyGtloqaibzsIqqU1dy050XJbUiM8amotJp+ZR5xvz8/EJ5NXT5PWZZxnK1unCHGJqcPNqFbEML44BSSKtxVRYkcYyoapQaRFlTUV5UsZYIlsEKTddwLZuqKKVDzJIguLXVdl3fnVcl88WcrK5kxWetUVUVaZriuS79TgehSkeQ3xtiGxp+b4BQNfp5iqFrVKpBWtZkeUIpQFU0BoMhTpaRpmWTOZeAxUrUFIUEmLquR1nXRInM9helBCA6lkWRJ+RpSkKFKFR0W0dXFBzbRkOlrmStsabr1GVNXmSotUTIKWWGXhf4ptbkvUsUQ8FQDUxDPjw8x0JVdexcUCQpDx48ZNTrsjscMNzaYjsKmTx5RBInnJ2cURYVly5fRtUUltGSIIiYhgnmxpCua9Pa2MFKE5bBUk6Aywxd0XBtEyepKYvGGlyWzKdTLMchKQo5WZQjT6q8eRioFZaqyZacspQOQ13HqytahkmdpESVoM4L1LpuKkwVHMvC1kxc06FMS6q8xHEcFBSm0yl100aXF5LDVhYZ1CV1pVKVEAVzKDOUusTQNRzLRTNtdMtjMpmwClakWS5LCRTJcOoPeoDAMGU+vSpqFCHdooqQEM1wFRCFwcW1O5tOL34VeY6oa5aLxrnTtEv2ui6+52DoKqahN3w6DyFqRFGj6QY7Xkc+BATURcEyCFA1DcuqEZUAVW6URFVKOKyioNY1VZ5Kvp2qypR/XaEJgaVplJVcS7MoZjmdcewcYlg2Tz/zNNvbKx49kHyFw8NDti9ts3tpF0PXSeIE13Nla0ZZk2cFSZQCFZkKqmbQ6Q74whe+zHy+oKprxrMx+08OODk+wtR1RFWSxhGL+Yz5fMrlK1fRDY3T8Rl5kZPkGcv5jG7Lpy5L6YKrSsBgY3NEHMUcnxwhpPEOU1NxDOl6EaLGsSw818OyLVRVJYoi6qqSwqProJsmSZFR1hXtboeW53P18hVa7TYCOD4+5vj4mMPDQ+bzebMZqEiSBNd1abfbGIZJkZdkWSodfsEC27ZxLAPL0HEdm8FwSKvlsZjPWC0X2I6LoqoEywVpHGPq0gL++NEjHj18xL1PP5XlD1UlG1w6PW4/dQtN1+RzJ8uJ4hjDMDFMi1u3bzEabTCdT6lFjeuYcqPpuvjtFo7nUKuCrExZRfKaWYQhqqIyGm1I12CRE0YRy+WSx4+fEIQheZYymYxZLJbkWc7D+/fRVI12q0UYSJbUWmC7eV2Ky2teThQGF1wLx3PRDVtyIpKU8ekpiqKysbFBq2kLbLVa9Ho9BLI9yDDNBoC/wfbWFrdu3cRoXKBnZ2PyvCCMEhQUPE8eJKIgxDRMtjY3cWz59YIgIAwDVqsVdVnh6Caz+ZSPP/6I49MTJtMpQtRYponnurRbLXz/ZcnhqUt2dnfZ3tnGtSwsy2T30g6e52HZJoZh4PseShyT5RJqLKMNJkmc4Kiydv18MqHl+4wGffr9Pr1ujySVrr2qrlAUqIscU7PotLu0PRe74Vw5tk1Z5OQq9Pt9RsMRvZ4UBPIsa+zvCrWiUFW1rBWvKvr9PlbTKizjHk0LlRC/NFn/VSJ2/6E4nf7668Il8vnfXzeBH+Uzd/2aO2KYBq6q0KNGUzXphlWUxhUsf/X7fQTQ63YBKAvJ3jo7PaPIc3RdJwgCyjy/EKneffc9Judjel3JiHFsm06nQ1GWmIaN6zp02m2KomQVrFiFEaquS3apgCzPqUSN1eyp66adKi9LOt0ely9foT+ULpy9S3vMZjMOj4/xg5AkTaTY2gx3NU3j9PT0ombdME2GgwGapnN2dk4UhFRFye72Dt1uV66PDW+vbOJAy9WSRbDCMS0cy27eT3ndyLYpyYLK0rSJrYDvutI5YJmgSA5QVVaUWY5jy7apujkLrA+rmiaZM1meI4SM5rXbbQxdx9DkwHAw6KMbBpppEiUxYRyi6hrdbpduR0ZVxueyKTkIgsZ1+9n1WuQFSZKyWoUS3Nxq4bkeaZYB0G63Wc4XhNbqgrWS5RnUgpbvXwD4pYhU4TgOWZZxfHJMK5SQ7KqsqLKCKi8RtdzvUcNqJcuH0iRBVBWO4+LazkW1vG4arJbS+arp0iGiNq5b0zTl1zk+4uTkmPFENpOO+rKMQW+YRmiSmWoYTcyq3UI3dEYbG6iqxvh8goZcOwxdJ89z9g8OCOOIfr+P4zj0W210zUA19AtnGPJTlzH0unGrCYFtO+h1RSlq2ayZptKVqWrYlhyIrpcUKaYozfsnuVRinYBpBKKykNGlusG8+L7HZDZnvlwwm81I01SK9b3eZ+6jxjFlmCaapstY3Jppp8iAaHPkRAhkRK6sZFwAhThJQZH3dpLlKJpOVhRkwapp8RIXzp0iz6XrthGeJG+4SfKIxp1WFxdrK801vnbHF0UpXeoNA0s0a5IQ8r/Lq/LiObl2aK7ZYWmafsYTQjq6dEO205ZVJdMxjoOm6RimSSHkYLEqJP+pNgwKXUfTQgxdJyttDFXF1NQL7pjSOHnWTaiSe/vZc6GuhXQPWZJ7mlOhNkmVaSXZg7KlPiLPkovYWJrn8gxUS9fUegqiCHEhXuR5JpNLTcPdeDKR+6puh8uXLuN7Le4e32MynpLGifzckTD3JMtluqcoMTUNGnad53skTXthFkdUZdFwr2Q6S6AikAwzVZNiUafbkc9xVSFNEsoiR9QleiNeKvybT0rbtmm120RJQpalMpWjKKxWIWmSEkYxVS3ddaqqNYkw+V4UeYGiaM21+1kD4meyy+fSTpqGEII4SSjKjOVqia6ZqKqOaUq2cZ5nFEV+Ed9PG9d3Wch2vxro9vtyENg05mmGIQ0bnRZpklLV9YXLvLmKm3STfK1ZT67n/Y8+kz//+pWFpyRMEBWIPvKvlZC2R0OnyDOq5gIRAqzP5UUVAapQSNOYuvkBdF3HaiBtURShKKAZqlRAFRXPtFFVlfNkDIrC7o6cTuaFfNOyLMW2tEY91xE1sgqxVFBrQV0UFHmMYdjomtFAIgVFUqCJAkX0UYWCKjREXVBXOZd2Oly5cgnLQtYn+y2EENy794jHDx9x8GSf559/nqtXr7BYLJhFEZbroGoqq9WyEW8E0WJFGsVUeYEoS1azFaquM2gPKMuKN372C1RNRzdNDFM6ju7fu4rnu4RhTJIkHB+dMRgMuX37KR6bT7BMk1s3r7MxGvL8c7fo2haW7ZGlCeFiwXR6yslphCIqFFXIFoOq5vj8HETN7pbMmtZ1jVILNCFwbBPPt4jCiLIsiGNphUyyGNMwsB1Lbr5UjTAMm4OV3GCYpkEQhpxNzonCGM+Vmx7f91lEK7I8J1hFJGnBdL5kGMeUtbQatyyLF+7cJghCtKrAtm00VaHMc1arFQeHx3zy6X2uXr1Kt9vFNi25mGuqbEiJVjiejOqsFiHL2RzbdDFUjSJNyVEoiChFTS4qxmenzGczbt28SafdwW3JNiXHdS8O9lkmXU3ju5/K67HJaStCRhI7nS6j0Ygrly+zORww2N6jNxxgmTo7RUUSR/R3d4mikOnknCxckQUrVMdDs2xu3bhGBRS5jNslWYqiScB+XMjIRLfXp1YUxvOZFHGLGte22dve5uT4gMX5KZlSoasKxtaIluswGkqX2nI6Q1dtHNNlFS+JowjXK9E1jY4paNsmu6MOeVkQJym6ZqJrDq7jysXEtCjKGlEsWM5m/OEf/B7f+M63ufOll7hV57T7He6eHTM+nfPxBx9y+coVvvSlr7AMXZbxiscfP+TjN98n/8ZXuXz1Cs+++FW0uubuG2+wWs1YLBf02h0GvR5VaaCSSnFU1Dx6+EBW6CoKq+kUy7TQihyRF1RZQakoeG0fQ6hkixW6qtH3ZOuJXzicTufMw1MU08AE4jxDt0wubW7iuT5tv0MYxcRxSrAKSOOY9+7dRwOu7O4QRSHnp0fUisBQQalT6rLg/PixZPxoOlarzai/gdfp0BptsHrjDSYPpgTzOWWW4bseLbfFrdu3OD075eH+Q2rVoMxrLN2i4/qsZkuyPGH/8Ijlck6WJMymE+5/epejo33Oz04vHDNBEFCVJZ7r0ut43LyyhaEIDGps38awLDyvD3XN6dE5TqvN9edfwTAdTMPhJz/+S957723SssJ1HFzTRFcUyjhG11S6ni8fNHlOlWbUZSlZDIpKmmeyscU0qVWVUtVIVwHBfMHp2Sl+u83/6n/zn1JWFf/id3+fxw8f8YMf/ID/+B/+A77/23+DKAqamIWOplvEcUGwSplNVsRxQBIHvPDSy+xdvsnXv/ldhBD8l//lf8G9+3f5o9//QxQBg06LKJKsm6PDJ1iWznd/67vohsEf/PHvM51OCYKAUbfDV155if39fSaTCUkSoqqCF1/6JkEQ8NEn72ObOv1Oi67v0rJNovmEJEnYu35Tri+uh6JqLBYLqqKk7fls7e3S6fV456P3yZKES3t73Lpxg3/8v/xHPHmyzw9/9CPeeOMN3n333YvoRb/fxbZtlsslruvyzDPPYBomeZ4RrFbMpmMoY1q+x3PPvUCr1aY/GGFYFpbt8NOf/oy333qHp59+mm63y3Q6oyxrbNNiOZ3wL//oD7l/7x4ffCDbyjY3N7l1/QaD4YDv/eb30DSNk9NTprMZR8cntDtdWu0O3/jG19jc3JJgbyHY3togSWJOT0+YLmcMzwckZczh+QGH42PKSjCdrdgcbvDKC6+QJAnT6ZT7Dx7w6aefcO/+XQTi4rAtahlPfOeNN/nKl7/CN7/xDR4/eMS777zLo0ePAYX/5H/xOxRFwVtvvcFyPmd8ftY0yag8NbxDp9tlFQTMlkt+9tPXuHbtOr/zt/4j4jgmiiJ2dra5efMWri83Nqenp8wXC9yWz40bN3jllVco8lQ63RIZl3n06AmapnHp0i6KonB0eMDVq1e5fv0pkiRhNh7z+PEjgmDFbDLGMAzc3pBPP/2UP/mTP5GRE8Ngc7RBv9/jxo3rbG1t8c1vflMy705PsBwLy7Xptls4loXRbGIV8ZkgUxQZi8UU1/Hotdtc3rkkN4TJbWbTaQN1ttkYjei027R9+WfN5jPyQgoep6eneI7N9Uu7uG4LxzAYdDsUeUYcrMgSnReee57tzS02hiPyNGM+naFbskUpKwvysmA6m6JrunQomOvh4Dpq0sRydL1xOf1y5A7+WvziP+hXs0X/666mqkJtQLtFUTalLHKg1vKlMNinJ/dyQrBYLAiCgMlkQlmWPPvssziO0+xZ5ID0nXff5c233m5KKiyWiwWLuuKjjz5iMh7ze7/3e1y6tMezzz3PxnCIbVncunWL3UuXSOIU27S4tHOJ6WzGwckJQZpyMp0w6PXxXIdVEKDrGqNuX0Zsspy0KIiKnOs3bnD9xg0My0JVFX79177L4dEh/6//5p8TRBFhHKMi8ByHXr+Hoqm8/c7bVEXJ9qVddnZ2eOVLX+Tup3f5xetvAODqNt/+2je5dOkSbb+Nrut0+33qhUK+mHN8cszp+Sn9Todet/uZgNBM/T3PI89zVmFIu9ulhWDQ78nYk6ISJwknh/sy/p6VdNptaLWpVflnuK6Lpkr2VoUgimN8x6bb6rO9KQH/lm5JTpOuUlETFwXRYczB0REt18O1Ha7sXabMC/67P/6XTE5POTo8ZGM0QCgqtago6po4kUyh/YNDqqrmzjN3ME2L5WyO6zt0+12SIKTOcioFuRbOpjiWxY3r12RbWZZx5dpVbj51m8PH+yxmM95592083+M7X/sWrmHx4KO7kJXUeUWUxVSi5v4nn7BaLvF92Ri4t7OLaZg4hn3BkDo9PuH4+Jh+v4/reeiajmVL9+50OuHTux/z8OFDjo+PefWVL7K7vYNa19RFju960mFTl7iu3Oe57gAQPBNKp9wqfJP+cMBXv/Yq8+mMwyf7/OxnP+Pk9IQ7d+6wubHBi88+T6/X49LlPYQCRm5eiLa2aiOANJMty71ej7KuCJKYbLlkuVxCVZOnGaPBALUZ8kiIcwOzFjSsohQQF4fpqqokPyiTsU7PcRgOB/zs9df5+S9+wcHBgeSE9ft02h3mi3kjVJS0Wi38VrvhLak0mqH06whBVTexIARZUZHllYwPonA6mUrhI8su3F7hQnJOdVW22a2ZTHmeS3fJ2nhQlpSVFJ7kOqpQ1CUgJIBaWbut5N+njTgrY+Ny3Vq3vJdVSVGVJElyEcFbO6WyLGMymcgIatNqlqbphWjpN2zJvZ1dfM+n3xuQZ1LQWbfN6aaBqskWYE3XsRwb25AFC67j4Fi2FAt1CY+W4orWrK6SgVTXNZ1OG0VVOJseU8Y5lSv3lqtViOu6dLtdTk5OmE6n+L6PYZjNZ6xQlRWIBjzfKIGLxZwojjg7OyOJY6JgxXQ65f333+eZZ57h69/4Ot/59nfodfv85Q//kvv37vP8U89h2rZ8b8qC8WpJGIbUaYrn2LR9g+dfuINm6LzxxuuswlCWclU5pqk3LYvSkaYgqKsKU9e5fGWPXreP3/JYLpYs5kvSKEStZQucokJZ5qzB5/KDhU63w8bmBh9+/BGT6RR0naKuee+DjyR2Ik4pyxrPb6MbFoqiU6NQVoI4TlE1A8dxsEx5vyiqNOTUKBJmrskIrGVbBEHAdD5jNh2zmM8QQgUhC02KIufJ40eNZpJJUd806XYlPLzf79Nqd3ju+RcwLRvdMrEdB7/duhCYHjx4wHK5xHEcTNuWwiuCshGcFVVtUA4m3mAg0QC/wutXFp5+/de+S1EWrKIQVVmrZylREGFaUqDQ1aZur5YtF5ZuoCsquqJRmlWjnJnyAkmzpnVAqrOybUoqumEYIZuOJPujKpsWomaTJOr1hA7KvEAICYxTRS2jK2WBpWlN21aFZ0umh2Wo+L7L5b0hvufT6/ZJ40Q2z1k2VV6SKLL9QlU14ijmcHwIAp5//gV6vS51XV0sjIvZHN3QGYyGGIaJZdqsVhHtRUAUZTJ/q2moqoGm6miWwcC0yXNJmK/LmpKS1SokKwrCMCLPZAZ4uQp48PAhrmPjOjaGqRNGEYoqaLd8RsMhuuHS6RnolonT8jk+fsJ0PiaIMuqqxnU9TF2n2+sjqoo8TSVYroE21uv7vXFsrFtWZKNFhVA0NCEbvopKXMDvTE1H1Qz8VgfLkO11QSCnRpgGqmaiaBleq821Gw6Xr1xja+cStSL5T3qTD792/Sq6JjcraxC863q0Wm1M00ZVdUStoKDhu22ECJnNl2iehud4iBJM3USRjno0VVYSr8KA7qDPzcvXWI4GBMulnEAUOUpjv6/LXEYGi1QyHTTotzxa9rrpQyFNcwzDoN910EXK+OQx0fKME9tm33XRNJXJ+TllWSANhwqKZmL3BrQHA9nMZ9oYni+bB1otNMvErX2SPCVMIvKypCiri597OpvKA9QywDENyjhAFCnDTgvbNGQDTlEQRzHCb6MgZMtMXZPHEgzvOQ56A+uP44wKUAWYlk1/c5siy8nTjCStSNMaxZUrpudYGIaOYVkkyxl//ic/oOu3cH2PF59+mu3BgEcn50zGEyaTMXmRY2LgGS5dr0O2jJkcnvDOMsTUNVpeh65polsqoipZRRFpllKVOfkqwKjBu2RhWCZRUaABVSHvZ0XVpcNHVSiqCqGA7fmgKERKTVaXFEVOu+Xieg7LNCUpCtRKIPKKPMpoux0GwxGz5QMOTg5ZTecUaYqry+mraahUlk7Ld0iLjDTP0E0Lw9SxLMnC0YWcMhqaiaoZcjKmaQhNwzAs1Fq2ioRByMHREatgJZs2FAOhaOiaiqoplFVOWWaYpsxw50WOqil0uh0UdY9ut8M7777DMlhhGCaKEFimhmVoWJqKrWvYmkpZ1uRlAk1LjygrqIBaRkh03WK0ucW1m7dYLOZM53Ny08Q1TbYHPZlLF7WsuTV0oiInL2qSOJSsLddFtmesf+lotoViGIyXS1RVR1dUKiEbv/KioKhqprMFjx/ts7E1ot9vM18EZLmMHZ6fnbJYzEjTmCJPeP3115lOJ3zhi1+i2+1yaecSdVlx7ZqseU6ihGs3b7G1tcULL73E5tYWr//iF7IJMi+4tLvLF155hflkzOnBAVGaMV2suPXULTnZ6rRJi4K0KNF0ORHP65ogicnrCqGq2K5sVYtjKfYDjSU54fjomPF0yqA/4HLL58tf+hKO7fDnf/ZnjCcTDvafoGsaN65fvyhwkEDTgjBYkXTaaJpKkkRMJhGddounbj9FVaTomkpVCQQKrVabxXLF3XsPaLVafOc73+bylcvYts2P/vJHBEFAECwadkWP0WiDb37r23zxi1/g6rWraLqObhoYrk0UxxydnTKbzTg7P2c2X2DoJsvVHM9zSVNZ4+27LlmWMptNWC3n5HHU8MIq5vMVRV6hKAYijPirH/+5TEWUFfFyiqtrzYZLQR+NJK+orul2e1y7fg3fa5FmJUmSkaYZ3U4XRVGZzWYkScxkPMYyTW7fui0t5rUU7bMsxfNbeJ7Pzs4Oo9EIx3Uoq5IkTTk+OaEoS4YjGR+7f/8BAhhtbKAbBufjCacnJ8ymU9KswG912NjcQtd0ev0eLb/FYDjAsW10XeH4eJ+zszMePXpIkiag6Ph+C32os7W5zaA/JMlkBXzb9xsngkMcJ/zZn/8FqqGj21YDRs64/fRtNjZGDNptzMYRUJQlYZIQFxWqaXM2nhJHCZ1+H83QCRdzqrLkzgsv4zg23W6HrHnfrly/yVUFsixlFQSESYZh27IARdWxbQvbkg2Xp+NzFFXl8qU9Nkcb5JmEkpdVia5Y6LpBVpWAQqctOXKqql4cHtbK0vpAJCeWNZ+H//7bXv8ht9zRuAvWStkvu7nkBJkGWE0lAyRRmqCpKrYhD4yaomEaOrYlIaxVJePUmqJgNNy6PM8wNI1Ou0Wr20E3dKaTMUEQ8P7771EWJU899RSdTgdNV/n44084ODyU7a66we3bT9HyfQTSoTHo90kzOZWOkoSsLFks55iaRs/vYGg6mqohKEiLgnC1IokTbM/FNEyG7S627WBbch/V6XSxdQNLMxgv5ggUXnn5Czi2zcbGiE6nw3A4YrFccenqZQ4ODhnPZyzCAC9Y8fjwANu26Xd6uI7Lpa1tlssFRVnxeH+fPMu5fuUqTnMgURQFq2GtoUBZVWRZhm2aqKp0YtRCRtvX7o0Lfl7jyjd0+R4PBwPSPGeVRlSVbAFTVR3DMBGVoBSS3ZrlBeeTc6azGVEco0rSOXeevcPVq1dJ0pTpbMZbb79JWRW89PJLdLrSyXB6PmH/4ADLtrF82ea8CEP2Hz9he3ubp599mrRxkaqWgaYp0rFqy9arqhaohoG5WqFoKl7LRwjBYjFlMVvw05//HEM3GG5s0O500FCa90ZpGmgLdnpd6VxXNKilCCOEkAwsw5RC2HJFFMV4nk+aJiyXK4IgJI4TPK/F3t5lnr5zh73dSziuR1lWLAI5LM7yjFZRXMSiVsslB4dHrFYrWThgmQxGQ+kq7XaxXJtOr8vupV081+Pxk8c82d/nw08/wXIcWr0unudJsPliIV113b5cW1WdNM+ZzxfSXYYUsk3TasqJSgzToKpr0ixtREtZZd/ptEmLvLlnBVUjupRl2bTHpjx69IgnTx5zcnzE1atXGY1GKIrarHeyMMCyHFTNoBI0HLMaRUiW3ZqtlGd5wwyS4mOWF6RFTllX8lxW1dLIUIsGkF9C1Zw5FSmgym9TUFcleXMerMqyaZyWzW2i4Ro1PhX5PwV5JtQ0wpXkrq3Xp/U5dx3jjZNYsieb1EVZlrJgK89ZLBdS6CoKsiynLAuuXLlKt9fF9h1UXePg9BDHdonSRDa/WjaqrqEqGkVZQqWi1qBWEoxeGiWUgryoiPQUz7UxDQPHtiQPqhG/NE3l5PSM/YNDPvroY05PT0iSgKoqyLICXTfodnu0Ox1GwyH7Bwecn53RwJBQFY26romi5HPsUvkeSKEtJ0ml4BaFAVEUkcQxvW6XL3/xS+i6zqNHj7j/8AGP9/d55flXcF2XPAsaD5KMOOZlTn/QxnN15ouJdCqnMWpd0XZdyhTUUp6P1jwlFAXXdXBcWcZimgae7zGbzaQoFkWkaYquq3zWaUhzzyoX+BZdN6hruXeq6xpN0xn0NwCI7RjLcilLgaoY6LqJaVjUlUwDaJrBun1QxlMb5rIimxM1TZfn2VqRX6MSaJqBZTsUhbzWdnYvoSoKpmEhoGGuaVJktOS+YP3nr6IYoliaNZr2O9eTLXmPHz8mDEO2tuR+ah39hLXzqcY0pYPebWKqv8rrVxaefvv7v810OuW1n/9M2uLzjGAZMJ8t6I/62LaFrsnseyVqFFRp09UNTM2grGWe1TSlYr5YriStH7nhp5myq5qcPhdFQafXa9hPDQh6PZ2rqoubNU0SEGB3WiiiJo0SQGAbOlUp1UvfkVNF21bodFpcu7JBv99nd3uP1WLFcr7CsizKrKCqisY6LGHf9+895OaNa7zyyisEqwVxHF5MCOezGaZlsrW9iec6dDp9VquIxXzFbB4QJylacyGpqo5hWrTaLZbLJUmaIqqaGqkOq0lKGIbSmltJkOVkOqXle7Rb8sA9XyxZBQH9fp+vvzrE9xz8dpdOv8cWu0wXC1b7B8RxSF3X9DsdfNdl0B8QhQHhcoHwfQltVKR6Wjc3m6YbqIqKaUCapk0FrDw4l7WE52VFKQ+lmoRqt9td1EapXi4DUEIG21somoGqG/iuT78/4OqN6+zuXWYVBaR5SrutSat1WYAQ+J4EoJmWhef7dLtdLNNGU3TqmoZP06EsaoqsREPDs300dHIrJw1kTMYwNOoqJw7mXLq0yYvPPUUaJqRhwkcff8x0OgWqhunQWO3LCtsycWwLr9OSdZqWjUAwm00wDIPRwGO5WnF2dHAx0QBpsQ7CGBSFdrtDq9Nha2eXdq/NqN/B9VvolkUcp0RxgtdpY5UFmqFKlTpcUpQlZVHheh7tToeD0xOCYMXi7ARb08gXNsN+l81+j5bvY+g6+48fEicp1aBEVxQsQ6cqS9IoxLYdHNuiVhUKURNmGXlVQwV9x2ewfYnFdE6azUniWEZXEBiGTsdtWhpNm8cnJ/zxW2/w7V//dZ5/4UW+8NxzLGcLPr7/+4zPBGdnJxiagSUM2pbPoNUjX4acBxF3Eznt+N43v01H7zLoeIzHpxyeHJBkOUVZki0DqgraloPp2NR1gIa0OAtNQ9UMTMvE1hWSNKIuBbrtUCIIi4SiLiiLjG6/j+t6PDo9owoFagkiq0hXKepIZ7SxyQeffMzj/ccsz8fUWc5zTz+F71mYpoaodTotF8KKNIvRNQXLlIc7yzRR8kpGLzQTTTOoVbWpzlUxLYsalXC+IKhrHu/vU9UVpm1TC51aGPIBpUFZ5RRVjmVLl2heSDh5t9+lP+giqop333+P+XJJu93B1DQcQ5dML03FNUw802QRBORJSlbJe6dWdEQlqEsBQkXTTDa2d9AsnZ+99hPGkymlZSJ8D293C4EgyRJM3ZQxzuaBE0YxiqbR6w8kALasMQwT23boDoe47Tbl3bukZSnjzJWQEZS8oKgEk8mc+/cfsbG1xWA4Yr6KybKM1eKEs9MTZrMJZZlTi4Kf/OQn/OS11xiPZ9y4cYOvfOkFOq0W7z31PsfHJ9x/8JBbzzzDt771bZ6+c4dWy+f//H/6P3Kw/4TRcMC1K1f5J//b/5Sf/PjH/N7v/guCJOV8vuDLoxGXrl3D63RYRhFJLuHcqmFQ1BVFHJHXNWgqjivF7jAMieMYmudQHMecT8cUVcX3/sb3uX7zJq+++iqT8Zj//P/6f5NTSiEYDoc88/RTzOdzkiSRsNs0YbVa0Y8jVAXCMODo6Ihhf8Du9g7HR4dkWUZZCepaxfc7HB2f8fZb7/Drv/5rfO3rrzIY9BGi5rXXfkycyBiYbcuJ9fUbN3nmzh2+95u/wTPP3uH47IQwjhhPz4mWc54cHzKfzpmcjSmygrIoeO3nP6asC3od2bJV5xJ+nMQhvW6bUb9HHEWkScqD+4/J0pzN0Q6BoXL05BMc26HltzA0A8808B1HromtLgBVDTdv3eK3f+d3uH//AR99/AlxmpFmOf3BAEVROR+fE64Czs/OuHb1Knfu3CFNY9I04e7du4RRxK1n7tBqtbh8+TIbm5s4rkuaZWi6xsHhASenp1y5cgWAd957n16/x7e/8x2EEByfnPDB+x/y+NFjrl69jN/qoGoGuqYx6A/Y2dnmhRefZzqZMJ2MOTx8zCeffMyjR48oy4qdnWuYmomuGWxvjdjZ2eHk/IzpfIamyOiBbUv3yQ//8od0hwOeevZZzk9OGZ+cSgFaM+m6LbgQngomq0BuOi2H4/P77D854PLN6ziuy3h8Ttvz+dqXvoLr2niuw8NHT5g/2ef5p59iczQkSVLGkzEf338go8mVFEQcW8bsbMtmMZuDAlcvX2HYHxCtVs01VjVcGAMlz1BQ6Xa6mE1kZw3hlfGHz6bpVVUjW+CaeMVfE5j+gxacmtc61rIW09ZurnXjlPwHBYSKUBX5HE9iDE3FwJaxNF0KT7UtYd9CCNn0C+iq0kSIMwxDp9/rsrErG7ySOOb0+IQ/+9M/pd1u861vfBOBoChL3n//Pc7OxxeQ8Reff4FOqy2jQYbJcDBkOpuTxBLYWxHz8NFDTN3ghdt3MNfPIJGSFgXjyZTZeIrXkeUAm72hFJ4cB9/36PX6tF0P3/H4+P49hICvfuVVNkcjep02qqZRqwphmjKPQp4cH3E2HTNdzrF9l9lqQbvVotvuyn1kp8P+4SFlWfHw0WPG4zHbm1sSml1VqArYa/C/qjYQ7wxLl0mGsirlGcAyqXQNoemyeUvTJLxb1zB0HUVX2BxtsAoDFlFAVdWUVS2ZbbpJViQyHq5pZFnGyckpk+lEutVrAXXNF196mV6nCwp89NFH/N//i/+cIAr56te/wfUbN3A7XU7Oxty7/5AvvvIyvW6XsiiYTSa8+frrPP3M01y+vEcSJWRJhqVrGJaKY7t4novrteS9resNJFjBb7cxDYvpZMxyMefTT+4xGo34zd/4Pr1uD1VRsQzzov07r0q6/R6u45AEkWyXrgrqi2SBhW07HB4eUtc17XaHLMuYzxesVgFJnNJud9je2eG5F17gyt4e87k8I1SnUtiK4oQsl8LT48dP2H/yhPliIQdGdYVhmYyaRmUNBdd3GYwGsnyiFvzipz9jsVgwns3Z2tnmpS9+ge3tbfxWi/liwXw+w1Dkft625IBjNp1L7IeqYBgGdiNMlkUlG/+qijAK5fqkarKdu9MhTBIanD9VVRJFESBotVokacrdu3d5/OgRx0eHfOvb3+bWrdugKKRZTlnVGIaOZbuyAKOW9/363q9rOTjP85wwDCmbBrKkaUuPs5SyqigbQPVaMKiqCkvXZWRLE6AqaEaD1W9KskqKi9+rqEoz8A1k/K+sL2Jy67XJNGUUO1jMSRK5T1rfK0ojXgRBwHK5vPjvpKM7YRmsyIuiaVUuyRv+LsBoOKTf72G3XCpR8/jTh1imRZjGDHsDRoMhhmWhNVFCIUCT1XGQFpSmSV2CqghURZAVnjwXC4Gh6VgNjBpV5ej4hJ///HV++MMfcu/ePSxdoS5Ljo9Pabc7vPTyKwwGA7a3ty9ceUEQNK18cm2YTReoClimfnGeX/8slmOhKJJ9u/4ch8MhX//61/nkk0+4d+8ed+/d5/DoqEkA+KzyaO3TpRIleZXT7W8w6Ps8OXgiGx7TGE1Rabs+qShRkoY9dgE0Vy6EVU2XsG6/5VFVJfP5jDAMSZIU2zZRFMndkwixGkVRL1pmpfAkKMu6KU0wGI22AQidCMvyKAuBougYuo1pOtS1gqLp6IaJoqgXUVQh1ogyrREAdYQiDT51JagrgaabOG4LYqmVXLl6Ddu26LR7mJbJoGkEVhrmU1mWTKdT6eKcz6WeE4ZMplOe7D9hc3OD4aDP4eEhSZLI6KbrXjj51tfy+np2XfeikOBXef3KwtM777yDbhq8+OKLLFdLjs9OcT0f2zklyRLiOKbb7QGwXC5km4ECaZETZ5m0AVoGfqcjb9bTYyoEtmXJm1VVaHU7dDuyXSOKImzLQNN0BHJDlDf1mJ//oeVeQsFYc4wawLaiQpmnFHmBaQzxXRPDUDB1TbY31TWOaRAqgrJMUSmhNri0fZlaCH7x+i8IggDXdRrnlcpyFTAenzEcjmi1pQ1ZIIjDiDzLCaOUSlSMtjZ4sH/IKg7pmG0UTaUQSBZWEpMUuSRVVRWKEP8/7v70x7YsP8/Enr3Wnvc+84kT042IO+UdcrqZlZnFYrEGFsUm2RJFSSQlmXJbht2AYaNtyG3A9iej/wZ/kCUDrQHd6G7JJEWKZKtJilVFFmtgVWZl5Xgz7zzEPJx5z6M/rB1RRUptVcOAIfkAgcx7b+TNiDh7r73W+3vf56VnOVi2TZrlSF0d+JRaXqgJkmlwenbGeDLhgw8+xHFsTk7OGA4HXLl6mV6vzcqww/rGDq7jc3S4RxwGxOGSPM1ZLpYUeaZiHY6L7flowqQoNc4mCzW57smL5oe6qtGEhRAWQhrYroZhVehWihQS3/eJk4TZYt5k/U2iOKGoapKsQMiaotbQqlrlbXPVQpaXNUleUSHQNEF3MEQK5dDZ39/n61/7KpPxRD0ATQW8yzNVG3l2OCFOU3zHoS4KZpMxa80D8MHdeyzjmCgKqeqKfruDUWvMj0442T9ifHKGruusdDqMZxOqWvE1yqIgCkPyJCIO5gr8aJj4pmJO9Zpsr5anGHWBb4pGRBRNzBP6ngvNpKWq4XT3OWd7cF8D03XRTZNWp6ea/SwHLBuhawwGQ157/XWePHrC4cEhSZJyeHhMkmXUmoK2tyyTUbeFJQRZFGF3urQ8n3JtUzFWTscYUtJt+VBXVGVNXqgHkWaZ1LVGXmlklUZZQBAXjKcBy2XMMslACpAWshLUaclRMcG2LFZti2G7xctblxnv7vON0zP+0he/yPXRiDdefonpcsG3/+RPsR2HVrsDWcJovYcpa6RWs5rblHXN93/wNrZjsTLq49g+L1x/mUUYE6UZuTRx/DZ37rwOQvDhvbvk/ZztK1cpg4AyjEjqSgkqhqQAnh8fU9YVWaE4RbZucHR6RlYe4fQG9F0fYXhkRcnh6RlBmnI6GXN4sI9R1PimAVJg6BqaVlGWGUWZkWQJVV0jdYMkL4nLmDQ/xdANBq0O0qnRpKYmJkFCVWkYhsM0HJNHEaOVPrZlURegMGoC23Fx/DaGbVCJitX1EZ1+h2UQEacxeVEgDJ3eoE+wXBAkMZqUmLaF325h6gK7jDAtJVwZpo7luLSEgeXkTE6OKYuCdr+LtGyOx6e0qwrpOgqUPp8zWlul3WpRTM8UsylNlCMwDDD6fWzbYTgcUrTbjIOlavZrmgDDIMI0TGw7UW4A02Q5m1EAH7/3PllZUhc5ugDb1tnde0789Riv45NVqq1H6hpFEZHmS5J0ztVrV/jMW6+TZzl5nrP7/BnPdx8TxwuGwxX+l//p/4bpbMbDJ485PDjkX//xH/P1P/kTqrLi/qcPKIqctbV1llHCn737Ho929ynQ0HQDw7K5cuU6Vy5f5gfff5/JeML1qzewLQvH8S8mYZP5kqIoubSzw+b2NnEcs1wuCYOgsc4rtpHre/zMV77C+uYmv/Wb/4Ljo2PCOMY0DDq+j6nrZGlKHEVkec6dO3cAsG2TbrdLlmVEYchiNqXf7WDbFv2VIVVVs7Kyhm07zIOIF27e5nOf/wLnLYy/87v/iv39fcpKcOPmS3zhC1+g2+2ysrracCQKPv7kE9774H0ePXrAMlhSFOrr2NvbRQqdbstl/fo6w/6Ae48fMp/PcF2HqiwZnxzjeBaXVvsN+8NkejZlPl0wGgwwpM7qaIQmNbJKbYjzLKHVc+m0u1i2qwo1uj0M02wi4yZ/9s6f8Xx3V4k5ZU5dK8etLnWCcEmt1dy8fZuVlQGmbTKejRmfnVJqoFsmQbi8EAUW8wUfvP9+IwDoFxO/MFRO6DAMsSyLNEk4ODjk008/5ejogNl0wsqoi+87rG+sYpmmOthTcffuXe7fu8enn9xjNp9hGi6v3XkL13W5fv0GlqWcrpqoOT495OO7H/N89zlvvfEmK8Mem5fWWS1HaIbA8T1GmxvYtkVZl0RlxuHkFMcyaLkew16PKEl4vrdLt9NhtDJiMZ3z/NFjWt0OVb8CoVEKmIVLxnMVLzg6Oubk5ATHsVgsFrTaLYSu89bnPochdVZ6fXRdohs65eMnzOdz3vzMZ2h3OhiGQVmW6IaJ1A0c1yPLC6bTKdKQ2JaBZ9pqItloL6pCu/5z+6nzhsZzqHj9Q+PQfzAvTajv67y57UfdXGEYEoQhdXPYkE2UfzabKcdt4yZzPRW98zyPqlKT3bw5wJe5AqjapsX62jrdTofpcsF8NmNjXd13bd9nuVjw/PlzPN+nP+hz59U7GIbJ9773Pfae73J0cAB1zWh1RJTG7B3sY1sO6+vrzMMl82DJD37wA+qq4ic/8yb9Tg/PUtyWjuszMS00KTg7O8M0Fty5fRvD1JFCJ0tzTo9OOamOqMsK27a5srPDRx99xF2NxlFYMg9D9g/2efT4MUkY4eomo26fYafHvQf3Wczm9Ls9up0O6ysrXL56Gavl8ezJE8Ig4PD4mDTLGA2GitVUVspRNVyhKNT151p2w8wSjYO8fzFE1oVUrWtNpOfcRXkOam57vnJINUD8shF7tLJkOp8xXywYT8YAbO9sMej06LU7+C0faUg+97nPsrW1ye7hHlle8K/+4A+489od0rKg2+3x5ptvcu3KZVqeSgesDvpoZUEUx3z9q19jtLJCv9ejMlQ72/37D9AAz3JUvMT3mc0XaJpgbWMD27Jpt1rMZlPe//BDauC9ux9RCnjhpdssgoA4jGj5LTQheOed7yOEYHV1Ddd26LQ6LJYBcZIynSp+5t7eAVDz8suvUNc0BQE6vV5fDecsC4RGVpWczaeMJ1Oe7j7HtCyGw4EainotdV07Dq+//gZlWfLbv/M7nB6fcvfju3iui+e4indXVQyGQzzfo99RRQ4PHj1iGUZ8+OGHPHn8GN/3MZv2uizLyM2sWT9AN5Sg6DgOmqYRhCG9dgfdMIjiRDmDoxjXceh2WqxoGqbr0O73iJKY8fGpulfjSEUEWy0ODw/54N0fcGlrhxdffpVX77xOv98nLyuqvFCRuTwhihUTTTmVqotypKqqSLOcsihIk7QRM2rVDldW6p9VSZqlqpG4KImiiOl0eiEAlGXRCAzq2s2yhCzLiaJQpWtQTteyLFjOFyraZqoSq6qqKIqcNEl+JIat4m9RqESkNEkuxLq0cT7qjcMkSZQwdt50ed6qd178VGvw4NNPOdzfw/v0LrqpnC3tdofCb3MY7XG4u8eVK1cZDldotzvouqEg4WVT8pHnilXXxODzQsHNx5MJulQpE8WHtKk1wWhtjTfeeoudy5eZn54RLgN0TbHYdja3mM1mfPeb36bIFYqnbRoIy0QKQVlW+JqGEBqmqavYc14ghEQTGqZtU1QF0XLOymDA53/qp/jM63cQWs0PfvB9/uiP/ogkS+gPh8RFTrWY8fDBA+IkIYhT2u0WwzfusJjsMX54SLRYQFXR8XxqNNJSCTfnnK8C8A0Hx3botJUO0W63abXbtDsdirLk5PSEOEuoBejNAFkxn1STnpAS37cZ9IesjtaQmqDKC1quh2e7pIkqT5vPFhRFhWU55HlBGEXkRUlZ1xjNAEhrRCIhfihAgcKVZbm6jjVNlad4njJr6LpgPlPN5VUFQRDzdHdfYXI+uadinGWBEOqcf3JyQpqoAhkhBaatSoh2dna4euUyW5c2ufPKq4pr2FPPgPNEikDDdlwsU7XRu46NIeWPvVf4sYWnp8+e0R/0uf7CC1iOQ1HXRFFMkqSkJylpmuG6LpoG88Xs4ubIG1VWt0wFL7NN9SDXamqtVg+cxsLnuA7tTgfTskjS5KLtrqo16jpvAGD1n1PchNB+pIpRaxYGDV1qaFpNVRUqsmMaGLJGF4K6LKGq0aWG0GrqWkHMq7LGc13KqmYyHhMnCbZtqcVDaI1aHrK+voHv+5RVRZHnZJmya9ZxhmnZtDot9SAo8x9S3xtBp86yJjqkUVYVlDVC6hiGpWDtosa2bUBNJEVzES5DdTDaf77f1E47rK2vU0mdS/kI17PxW11afgvKisV8xlGsGrOSWLnAdN1QziZpgCapKk0t1HmBa6fqfahRVcDN56AJpGEh9Fo5oHSJ43iKvJ+XOKamrH+aoEbVe2qyburuoaxrtbhVNUXzISqQmobr+ehS4NkW8/mc73znO3T8Fr7rKZaREFRaTVEWhEtlDXZME42KNIqwLJNut4PUpZoqNs44z3aRQDRbMD0+4WT/kI3tLVzPZbFQDT+uaZFrGrkU5GlBHIXooHD0Wo0hNTTbhLpGKwt0rcYxpZpYGbrinNVQWQpWqusmYZwwX8yJ4pgojtFtG2mabGxt47genq2YYEJqDPoDdq7uUGaFAr2FCUmiWgWE1LFsC9u28DwXsowyy9CFhm1a9Dod4sjk2ekJhq7TabWajbS6puq6UIq7plEiKIGi0kizkmWgHs5JXqCbipNAqR6MiySi1FR7hWuZmN0+j44OOF3M4ctfot3rsrWxBvs13/3wQxzPY7SxxtD3GfTb6HWGrEuMyiJOUh4+fILpuWiexXq3T78/QvdSnCKn0nRcv8XG+iWKqsR59gTP8+kNhiwrCJOMokqpKTFMdV/Pg7DhtVV4joNmWgRRyDwMubKyhuO3qCqDIIo4OTgkiCImsylVlmLUGpphoBkSKRTKr67VZqMoCyrUfZiWJVlekKSqkdN1WngqeUJd1w0QUkNIVX+eJhGet4ljO2qCXpbUFRdwYaErpoTX8jAdm6xUUYOyrhBCYjsOi8WcqKlolbp67y1dYOYpuq6BUFlqKXVsx0A3a8bHp5QlWI5LrRssohBh27SyhDRTU7x2p0vL95nGSwUBbdpH0yShKlWLk+G6YNvENaTNBi0vcpIkvmi1rOOYStPIihKk5OjwgKKq0eoaQ5e4rs1iOWcynXF4dMja5jqe7yOkIC8S8jyhKBP6ww6vvf4qeZ6RJikP7t/j8OCItbUNTMvljTc/yyIK6a6t8oe//wfcf/iQ8dEJcRBi6iqeC4IoSXn49Bnj2Rxp2eimhWlZ9Acr9LoDnj3bI1gsGA1Xm2aP83pajbyEtCjoDwYMh0NOFjOSJCaJ48Y1adDv9+gPh1y9epV+v88Pvv8ux8fH2LZ9AZoGmrVfOfhGoxGmaXJ4tK8qy3P1c46jCA0wLVOJtJpGp9dXddt5weWVEV/5ylcUP+nBfT786C737t3jM5/5DOsbl/jil75Cf9CjP+izt3/AkydPefTBI54/f8aD+58QBkt0qTpniiKn5bdwWi021kZcvXKVZbBEahqmoVPkKUtdw3VMRsOBchIUarqbphmrgwGe6zLod0BAkqdEUcQ8nV9Yzi3bVc7dbhvTsrBdh2UQ8ujJIw6PDjk8OcQyDUxDp9VqoRtSRZIMk5VVBQxHCJI0ZREEIDQMyyTLswumRhzHHB0eNZu+9oUQopgY6nmWxDFRGHF6csL9e/eI4qV6DqcJVVXSanlNHM0kjhNOTk54+PARH370kfoZuS7r65fo9/vcvn0LqFnO52o9WS44Ozvh8HAftDfwPIdOr42UKmKnWyZup6WcAOMzsrJgHiyZLRSAtttuk2Ypk+m0aZeRKjY3nxOHIY7ngBAgNNJcTeDPK+znywVnkwkaYFhK1Nu+fBnbMBm0u2R5RpTGVHVNlmW8tPMSa6tr6A0b5RxKKqUkm8+J4xjfUELpOZtIlbTQiEsqcvej7Tl/scmurlVE5N83AepH94F/8fdUW9KPfp8AtQLPBwGalGhS4OoKwpokCaKuMapSoRsME8u20XUFVK2qiizJlUDc4CF0XafdatHpdFSMPE5YXRlhGAaDXp/9vT0ePXykYu/AxsY6q6M13v3+9wmWS+azGb7vs7K2QpbnTGdTVkcWfqtFkERURcnhwQFZlnM2myJ1A0MqNpdtKKFUSEkSxWQyA61GSPXel4UqqUiSmDSJWRmt4Hse77/7A8IgxPZs0ixjPJtxeHTEs6fPWOn16Le7OKaFpRuEQUiSpsyDpXIpUdPv9/HbHSbjMWEYMVssEUKyMhioPWBVYegGvu8zmUwuHAvn0HopJJ5pNe+GeoZAEyMB8rS44NxQV81gWlWzVwr9e+FQiOJYgYLTFMex6Q16jPpDBt0ehpAIobGzs43f8nj99dd5/OQpf/bOuzi+x9r6Outra6yurrIyHCqujWHQch3KPOXe/Ye8//6HuI7D+sYGaVWQFTmnJ6cKKl2D53msr6+TpCmaJmi12+oAiKDVarN/dMwiWLJ/eMDGpc0LZtV8NlPRNCl5/4P3KcoSw7KoOjWdVpc4SVkG4UWsJwiCJuKkI6XeuEY0HMf9Iai6LEnyjGUUMg+WTOYzBYj3fWzHwdAVYNy2bG7euNkIL79NEAQc7O/TaXfo93qkDVjd9Vz6/T6XRuuEYUheVjx9/oxPHtxjrOuYus6lnR16ffXfmLpBnmcX98a5C6LMc7I8u7g300w9M5Msw7QsdNPA9T00U8f2PZI0I5wHCopcFAhd4loecZqxu3/A9Ru3ePXVV1lbX8c0TcazKXlRkBcFVanq7LNCDbbqCxFTgarTXDVxKTyLWjPKJsGgzilVwyIuKfOCxXzO8dFRM5CrSdOkEZ+KJvWixKL5bK5KnTSNLE3J8pzlfEFZFjiuAxqUZX4xqDp/zp2vVWEYUhYFWZo1QowqVCrL6oLJdD4UUCKsUAMZ+CFrp64Zn54wnYxhV8OybXYuX8bQJFkcE0UxQRDSbrXVHsZxkUJQFypBVGYZpRDkZYne7JnyIlfG0Eq5/lOvwDZNilIllNrdLleuXmW0OuLg8TMW0zlJGCvBsttjNp6wv7tHu+Xiuw6+6yhwuVDlDn5zrjZNnbQBXwtdRxOKQZUVOaemwaDf4803P8PW1iZ5nvLs6WPeffcd3O6AdqdP2lxjZ6cnZHlBUda0fJfhoMvp8WNOz86QeTOsbrVVaUOUqnifpl28/0JKTMPEdVxcx8WxbRzHwWl41IvlkrwsqAWIZihWFPlFjNOyTFzHw/dbtFvti0Ihx1K8JgVNV4UG52D2sqzI0qw5t/3Is038MGr3w+euphhlZUlVqqIMpQWokgrHcSgLSZKklGVNmmaMJ2qotQgCdV5JU4wm+nx8dESe5bTbvopUDwd4nkun12FzY5PtrW0sy0JKeVEcUTZRYCkElmXiex62rSKZ/1P2Bz+28PS9d9/Bsiw+/OQu7W6XldURJTXtbhfbc9F1yVe+8mXKquSP/vUfMp3NOD07aejrOuPpGDETTGZjhNBwfeeCcu86Lp12G8OUhNECz7fRjfPct7JiaqImKwSaMBSMOFWLnGWprGJeZJRFRRzFtFoenXZPZc/rknbHw3ZUJEUIHYlFWWgsFxFC0+h120rg0TSePVGZxsP9XVzP5aUXX6fb6VBTcuXaFbYuX2Yxn7MIQ5CKP1RkkBcZcRIwHI3w2z7bl7cRhsXZJCFKYlzfUfG2qkbTddyWT5ykFHlBGMcUZckyCKjr6uLAp5oa1KZQbZZ9Lm1vU5UlT5894/D4mOf7u6yvrbCztcmdV17mys4ON268SF0VPOm1WS5mHB8/u7BwHh6dsrd/wjKIMCyLlZURaZqyDCJ0KfFdj7JS6n4Uq8mA0fCfTMOkrriwp5ZlSdBsuJTwBLv7ewips765Safb5eqVq/idNotgiVaDYzgURUZBjeXazWKdQQ2+7TabHp35eMy8PqOuSoTQWB11oYk56aaNYdk8f/SQux98wM7OVTY3NtWBNk44OT6BUmM5C5FCp9ftIoSgLApEpQa+ogZLN9HbqgXIdRSsu+X7WEJHoGEKW2W4kxjfaDFY6WFbBqauWA5xHBHHKmqney6jls3VSzeYnk4YH58h/BbCdnDabfKq4v33P1DsLdvime/x4O6nKuNdlbx4+xatdps4z5lNp7z7Z98iSFKe7O7T8z0GLZ8kTVgupghNw5Aa7U6XNE159HwXv9uiP+oRBxFZklJHNbUmcDsdLDSySlJXcHx8rL55WbPMY6qsJMdA1Bq1MIjLimdnp0hNIBG0+j5u1+N3//XvI3SdK+uX6QyG6A1HyqBm49IGt268wN2P3+Xk5JCO0JC6xus3rhIkKc8fPmLcOuF574TX3niLF69ex/J9dMNkfzIhyzOk4yLTVEXHhKTWJGmeoxUpWZwjhWCl3VXsCAplS88SBsM+K+trtPptEJKDoxlhFEIR4TotVld7qoa0rqiiEPIcITSqugRdokmJFMrhhqiJw4giL/F8R8WCNZ1a6Bi2ieX5mH6P44MD7KZ9J5OC+XxOVZRc3d5htlxysL+P4/notsUyDNWmMEmJ4oS7d+8zXyzodfpoaBzs7/PeD97lk08+4fjoUE0UyhxhmGqqKFWbRpXXRHHOaHOLrtfmyZMnxGWJZuholoGm65zNphwcnzIajbh+80WCxYwkComtPfSqpOW5iDimLguCxZzjqrpo9pyEMUVVYzu22kT3u2oDlcYXpTAbWzu0Ox1W11fJioIwWrC+NuQnPvs6733wKe9/8Cnb21e5fftVwjhmOp3y4METxmdn9PsjXKdNUWhYVgvP6/Gf/5/+L0ipkySqifKf/fqv83x3l7fffRsdwdbqOiLOWSLo93tIXfL06VNmywXCNnnx5i3+V//r/5TBYIW3336bKEl5trfP0ckpZVGwublFFEccnRyrQgHfQ1oWtqmzurHGyuoKB2fHhMslk7Mz1kYrXH3pNq++dodLO9t87Y/+kIPDQ3afPyXLckxLJy9SgmCBYaqc/HQ6ZTaf81u//dvYjq2eFbXG2ekp8+WSNC8Yjla5efs2UZZQFCVxnKmJdavN4ckh/+if/CPu37/PkyeP8dttvvjln+aNN97Ecz3++Ot/yiKYsXfwmPHZGSdHxyrWQs3lrW3s0YDTkxMcx+b6jRvMZ0v29g4JFxHhMiaLYvIgZB4FmIbOnZdeAQ3SIiNeKMjmcH3EaGONumlRS6ocXei0Wz1arR6j0SVsz8X2HF5+9Q6e7/Ebv/mbnJyesljMkVJg22pjVeYFltfF9xw21lcxTYuj41OKvOD0+ITx2Rn7e5IoCimKgp3LO7iex3g8VvyR57usra3x1mfvcHJ8wu6z51y7dp12q83jR49YzBc8evSEp1Jn9/kehmHgOR4v3rrN6miF/f19Pr17HyoVJ3v69DF6cxCWhs4rd17h7t1Peb6/R5rnjEYr7Oxs0u93uf3STY5PjnnyNOfLP/0FvvwzX+TS+iYt36OqcgxDcvXaDkEccTQ+xTI0ttZXCJOYxUnI3DQos5i6UizMvEjY3XvG/v5zVjdW+Gu/+kss4pCiSGi12nR9j631VZ4/Tzk72MP3W6xsX6LTctENDcMUGIbih+lajWkIDk/O+PTRQxzf5bXXX+fll16m1+1hGQq4LE1JmqRM57MGXKvj205zXyvWyV8IzyGEvGBm8hf/9N8zsel/yuv8wPajwpTXsBnVt6phmComZW9fVo2oqEFXnKo4G0KVmuRFznI2R2iCQV+5BS3bavaNYFs2K70hg15ftQX3YLQyZGdnh/fef4+vf/3rOK7LYDjkrc++ya3FDbIsZTqdsF1coihTkjxl//iAo/Ep07MxYRDw6o3bZHnON/70TxitjHj9zutoZQ15gUbN6toKqytDdCmbA1jO+voaWZrx/NlTbMfGdmyCxZKgXnJyfEJVlbz04i38Vpt2t8t4OuHg6Ijx6ZjlYsk3vvNtDEPn5VdeYTQacev6CyopkGaEcUIYJ7xw/SZXr15nd/cZR+NTVldGDXvMvHB4pFlGlMRkRU5ZKbC7eqmDd/4jg1WBgvLHUUCeFxSo6IrnOsrVNJthXrqE5zgcHh2pw1td4boOn/+Jn6BCNcuZutE0caoWr8OjA4IwYDRaZT4PEFXNRz94j4ef3uOv/uIv8pnPvI5YX1WxyoZ5tL1zGaFbVJpOXhY8fv6cs/GYrMi5fu06SZLwta9/TSU8hMR1Hdp+iyRJODs742x6BsDf/JVf4eT4mH/5L3+b3ceP+W/+6/+Kbq9Lq9PhxVsv4rouGw/Xmc6m3P/0AZc2L3Hl0mWOjo7Y398niiLKouALX/gCvu9hGDrj8ZLnz583gy2f4+NDJpMJQRwyWl3Fsl2qumZtbYPRcMjVnaukcczu7i69bp92q43r+yRpSm+4QlkWHOzt07nV4ub1azzdfc7J2SlREKqShHaXJIoJF0scy+b1V1/FdVw81+NsMmZ2OmbvwWOoVQV7q91hfXtLRc/qSh1yNZvJfEFVlQot0TSPRemY07MxlmNjOhZCV8Dr6zdfUIg2ce5yK7n94stsblyi0+1iOh6Pn++RJCmLYKkOwk0ESMW4lCNE141m368aZ5M4VkDuPFdIk6Lg9PSM+WLOdDa74EllacL+3i5prJAjURAQRcFFJK6uSi7aQJtkyjlcukbZaM5ZXdo586aucV2HbreH49hYlsXhwaEqOrm0hWPbtFqeAn83rY66lLTbHRzXpdPpYpqq7OhclJjPFxwfHxNGIVEcM22E3udPn5JM5tybzmm1Ooz3juh0e/T6Pd7+1jeJ40SlBgyTmzdu0B8MuPHCDWzXxbZahMGCOI4YrAxxXAfLcqlrWIYhUZIQJSka0O8P2dzcUDict96iaAS38XjMRx98wOWb13nptZfZ2tpgdXVAmaVUZYlohgJ5rsDcEnXvlZWC9Wd5xsnpGXmR8wt/5RdYW9/gp3/6Kzx79ox/+k//Kd/85rd48vgpr7zUxa01nnxyF93Q8S0LzXaQ0mDv6WPe/rNHOKRYlkWvv4IupAJjNwmcCmUaODdOxHGKVgl816fT6uA6LrZlY0idsiiJQ3U/UqOKVeqKGo2iqgnjhG5vhavXXqDV7lBWNWEUE8UJN164znBlRe3rqfBcC8tsYovNWnjOpZrNI6q6YsTqxTNLaCreTeO4Mw2TUivVQAiJLk2KoiIIQt57731OTk55883PqOKz+RyExmg0uhA8bcfBNAxuXnsBIQT9fhe/5bO1vY3j2Hi+27gqSj748APOzsZ4DSj+p37y87ieS6/bwbFtXNvBsU0MQzRFZSW21f13Ppt/bOEpSRPSXCnVgyzFcmwAbMduLk4T1/PIixz93CGUZ6oyUArKomr4T8q+5zqOUutRYHDDkEp0ybPGbtjArjVN3WgNDFJDuZQ0oaFVWvM5UObKvfCjGyjTMJDSxDB0dCkpmxwmmlDQ1EpxEExDb96UmulkzHIRYOgSz7Hp9drKUl+VmJaNIw3VOlVV6IZU7Qi1cvicT9U1TU1Dup0O42na1JWri7yqy4appCNEAZpaADNNuwCXX1SDNtnWqlG1hRDYjq3smVP1QE+zmDyLqfKc0WCFtt/GGql6VNNy0A01taJWjRF5VpJlCiJWo+B/ZQN9rFHKJiomr2pOC9XKIKtKQcmpG5hd2UTOFERS11UTTl4U0EwZ6hr8VktNyyrF/dKFckHVda0qRJtJfV2WCuKs61imSZGqRaoscqQUaALFphAautDQhSCYLzgdT7h54za9bpc8z4mMiMVsAUAUKjClbLgW5xZG6voC9CekQaVX1GaFbdlYto0s1SYIeQ69U0BByzCxdANTF+iahqRGVKUC5lU5hrBoOyaFbZCZBrrnIl0Pu9MmyUuVIc8KDE0Q1gFlniMNBXwzdIlr29iuj0Cj0+mRxSF1HCAMJSwUpapml6KZLBqGsonWNWUNVa1qNjWpk1eNY84wgMbGXlfKaqkpa2VdKYxsCdQaoEnKWjXDGVJNtUzLwNQk+/v7ZGXF9tplDMum2+8jUNeqbpi4rQ7SdsAwKIoMoQk6nqPCyUVGmsTMgyVhEpPkuWqfLCvicKEg1Q0gEk1DSgPTssmSuXqoayVSaFiGiSYFlSgpipK8KDEcF92yGmBnSV5mFKWCvQutRheaYkkIDaqKWuqUDefr/L6Suspq6wiWiepFFI3LIstzNU1DTSEMXVc1ylXZOAtUNXWeZwitccyhjm/aj9hkszRrQKUpZVFg6AZlUTIdTzg7OeXk6Jgiz9GFaCqjJVKoQ2JZlGR1TlWpiVSptjdNLr2+YLkkacRysWBltIrrty/WESF0RK3cnlIomGNdVuRZimg2SlmaUNRNoYOuIU2DvKqaBouyid+C1AUN4gpTV9HA3mDAcNCj1+vQ6XRotdqEcUpRVCSJ4hZsbGzQHwyxLOUWqmpBu91VG7DDU8Io5JO7d9nd2+Xxw0e8cOUq25e3iecL6jzHMtSELw5DhBAc7R9w4+o11karbG9vcXp2SlGWzObzpplPYLsOeZE310WB3ljHDWmoSIouqSoV5U2zBNM0GK2usLo2YjRa4ejogEcPHlKVhYLECwV6LAoFLVcYZjXtOj07xbJtPN9HLxQUWxOCdqdDp9tTh5Rg0Ux/1XMjimMm4zHPd58zHo9Js5RVz6XX66FpECcxe8/3GE+Ouf/oI4LlkuV8QctxcG0bz7XxPY/55AzLNBj0upS5im+fX99CAykUf6GWAsd2KKqSsHG05UWBaVmYlkmRpYrvc96kommqFEPXsSwb07SbDL/GeDzm+PiYYLHAtk36g566h4Sm/v9VqYQsahzbIiorTqdTZek2dcpKWUYNXce6iJar6aumacppbBhNfF45iyfjCbPZnLpUtvT5bE6326Xf6zPoDxiNVnny5CnTyYyz0zFlWbK3t49pWgwGfUzbxnZUxCiMIqazGaZlUtcVUko838Ocm4BqpvFaPp7jKqewVG5f27KIUlUTLqWg024RJzFJmlKWBVmWcXp2SpylaBoX1fLbG5cY9PuEjx6SJimuaeGaFlQVVVGoavm+ybDXB+08RpGhaSgLOwq8GoQhs+WCluvRbqlmUstUopMSllQcKc1zpFR7IF2X6ELtr6jPpaUfVZTOeU4//J3zCXvzqz/3ef++vf6i86n+4R/8G1+xruvYKIajWvvVgdXQVaEDVUWapar0oywoslqJJ3nGfLlEaortZ1v2xd4TDQzdQDoSyzSV8NS0DrXabXb3dgHV/rUMlrRafhMVTYnCgMViroogxmdIw0Q3DJJYHXI21tYpyoLT2ZjlcsEiWGAJHQt1PUqpo6MOqefPs26nw3Qy4eTkmE63gzQkptSVy9xVLpnBcEin02EwWKHdatNut3liPONIHPPw0QOqquTNt96i7fu0fE8dKhfLht+W0x32MUyTvf1d8rxgGaqhqd2UB/1ovPFinWmAtnXNxfqEEGhVRS3OK+V/CHEWQrtwq5ZNHChOEpJMHU7PD+KdTltxb5K4ga9DEIakScJyMSNNM9rtDsPBgI31dcZnY/aeP+fw4IDTS5ukV3aofFc9tzVN7Wdcj/5gwGQ+I1osmM7nJHHMzvYVyrImTjKcLKMsK4Sm1gXlaMgalq3B6uoqVBWObRGHIY8ePGBtc4OVQrWW6bqO73nK4Xl8RtxVrMEwVK1esnHVdZrYj9E459JmrRFCXOBHgiDEshe0UI435dRQB+doGbBYLDBN5eJT5UYZnW6XJIkJA8VI9VwVnTn/e6UQlF6Luq4aULFBy2/R7XTotDvkeUZVlkyzU/IsZzKWFGVJeyt08OAAAQAASURBVNBHN3S82r+4F7M8pyhyigbqXVQVdVFS5jmlBrUU6DUXA24NBWCvqpI8V8+oldVV5VbJc6YNcD2KIs7h/KopVVdCU1Gg64UyJeRKMIoCJWpmaUreOK+Oj4+ZzWaMJ2PFFW61yNKUw/19ylxxEsMgII6CC0MAqEihaZrKTWyZzbmyaTXV6gsUR3nuVJKSVqvFcDjEbAD8URhhmiZXLl+m1Wqp9EYTrzqPwbc7qqGu1+tjWZYSnpr1bjabMRwMCIKAMI44Pj5mMV+QhqoNNokT0iRhfHqmhv6myaQR2hR/WMc2TeIopNdp0+p06UlJGCqgtzSUU3cwXEEISdHEE+tKMWFNQ7Us2raFJlpQ1/QGfWzP5enTp7RbLdZXR2xvbTBaHZBGoQKoN/d4WeZQg6gEFeqcpXSGHM3QKYqSldGI4XBIp9Mlju9x9+O7nByfKLNCVSFqyNMErVbnfK1pyUtT1Vhpt0xM20TXVcSvyLLmrKTW/1rTqPnhh9AE3W6XTqejijigiWtmJEnSuH3UGkPDR6ZW65NhmvT6fQzTukj51Gg4Df9IXTfKLaTOo+d/iXJDaI0uIJuk1/ne55xZeP5wu3gqN887TdManaAkzbKLmLKU53+fbNZ9lSxzXRfLsvAcFRceDPr4vs/m9haWaWDbFlEYqAgpGmXDhFKgfOVaPXf/qz2aEhLTNCXPM6D773xm/9jC0yuvv0qappycnRHEIR/d/ZgrV640tastNKHx+3/w+yyDJdPZhDRL0W0DQzewdKMRVaofbiaLDNEIUHVRMDs7UwcuIS9yq7bjgCYuFnPdMCi0kiovVPRF1OTNxVsVaqLS7fWAmul0Qaft4fsOluVg2xYpCuhb1TmIEtPSAElZGSxmEWGQcPeDD6jrkv/oZ3+Gbq/DyuqAxSLgdDwBdDRNqaambWNZJmmaEsaneI7L5sYlVVt8dobnOqyvrXFwFFDVGZbpUNUVSaLarIQU6FKnljRAcxXzUBeSRNcFjqOqjYVQF3YUJeowKjRWVlcIgyV7z54xOT1l98kznj55yqA/4Pbt6/S6bXptiyRZ8nx/j3AZMJtMWBms0++NCIOAMFwQhAuqsqTd8bFNi36n14DyKqJIxSTSRoUuSlUxmmc1hmnQ7XZVnq6uqdSeltFoRJSmfPDRh0RJzE/85OewHAvDNiiTnDIvMVGH5jJR1tU4CojDAK2uabfarK2uQllSlSVnZyfqAHZwSFXVUGsYhoVl2kxPzkijiI7nsTLoswwDDEOnZoOjw0PuPfwUx3axbZuWO1QVlZGysMuGJ5ClqknDMhyypGBZRrRcF10KMJRAkVc5dV5CWJDFIDXUYVgTGI5NXVdUWUaxmHOWxeRJhqUVDIcdWmtrbN95g0rolLpNGiXIrCSJAsLFlCAKWKQzPnr/fVzPY+faTTzP55f+xq9SFilpMOd0/zln+7tEaUwaBQSzGQArq+v0vB6jrS2i+ZLp7hnD0YjR+jqHszPCNCaMQqpaQ9MdTNOh1x2S5Rl5lmEbXpPvramoCGMl9hV5jq6BITSk1FQ00GtT5DXzIMbvdPmbf+vXePz4EV/92ldZPQtZG+f0V1/A725w9Om7JHFIR0Z0TI3Xr14iLmqCvOSP/4d/xW/881/H767gtzr81JufQ+qS49MjpKnjeA7DwRBzZYWHd+fMoykrXQ/btJCuYnC1HYfatqhdl5PplEUQsNg/adhBygasOwZZqTYWvt9SdcRCRe2SKqWsa2bzOQDtlo/teHheC+3pM7SqRNQVZZJwcHJGFsdMX32ZQlPQ83A+YTE7wzRNRLtDkSom0vHuLlJKrm6uo3c6VLWmJo8rQ+7evU9dSX7yrc9xenrGn37jGxztH/Fnf/odzk6OEHnOsN3BcWy219eRQHByQqVV1IaglCWVzHj67Am1EBRVhmnrxEmEbRis9PuYwiAPMjTNJKt02v1VfL/Lof4hVXOQ1YXGsNtBbw7SOiVUJcdpSFZWiG4fIXVqTQNdIiyTPApJspSHTx5hH1hcDpYIKUiXC+JlxfT0iNVhh1/+5f+Yq1c20PWa58+ecHpyRq/X48YLL/Dln/4yrU6XzmDAu+++x/1PH/DP/rtfZ3x6ynKmNvXHJ0fYtk232+XnvvLT/Nrf+TX+63/yT3jne9/j3qefEoYRuhAsT2Pe2d+jbxjcuf4Cr7/8Ep/9zOv8xr/4Fzx8+Ag08DyH0eoKjmORJCHL5YLTgz16vS69Xo/lcoE+NpVTtlTCod/yuHr9KmhwcnLM6fEJy8WM2zdeACEI0kTBJJvBxjmbo93pEIbK+Zg24k1VVdy4cYNXX32V7e0ter0+h8cnxHHMK6/c4eDgkH/wD/4Bs9mU6WzC3/7bf4tf/MX/Ld/73vd49vQp//D/8X8njmMubV6CuiKNQwbdLjeuXFUCvaGzurmKrkvqPcjqnGWypJYlvVGbVsfF8UxW11awLFX1XuQF+3tHJGnKZDFF6hLDlMznE/Iiw7ddxXjbWKcoCvZPjhvGj+DqzhWG7S7f/KM/5uz0jNMn+5gavHnrFRzXodVqkaQpcRIznpxwdHpKMJ3Tbnf53E99gcPDI37vt3+XXr/Hlcs7F1Pdg+d7CCmYzGbUwM2bN7Esi+dPnzEYDLn6hS/wySf3ePjgEQ/u3wdN48tf+mm63S6DwQqWrdyqNRrBIuL0eMzh4QGH+4cAVBTUwLPdXbq9Hr1ej7wssBybo+NjxZHp9vH8LlGUs1jEnE3mpEVFGGXEboLnely7fB3DMJmM54xnUybjBavDAaNLOwRBQhKm2KZHVdb8yTe+ieO6vPjyi1ReTVmU9PsrtFot5mdTFrM5X/zMT2EYBt9/+12C5RLf9riyfZmXX36R77z9Ns8O95kvQ7rtDp955RVm8zl/8q1vExc5JaCbNrbrMZ5MiMKI7e1LoMFsrgorADxPiQay1qjLilqrmlahH/Kbzjew/zZo+P/Y7//7/1KHCo0mH1jXF/t2KSTSklA1nyO0BhCrDgm1kMrN6rocnZwwns/Jm+jO8ckZVVmyWCzpdrvsXN6+EJ+7no9rqfiUBqR5qgYVpsnNW7f4O//Jf8KD+/f56le/ys2bN2m1WszmM87Gpzw/eMaTJ0/442/8KTdu3+bGSy+ytbnFYHuLF69cQwrB3U8/IclSTo6PuLy9w61btzkZnzFdLMijmDKHWuvi+S6vvvIS3//+9/nud7/D5tYWl7a3ePPOa1za2ORzP/kTWJatWtnKkjCIWBuNuLyzTctr0ev22H3+lMUixtENbMNER+Po9JTvff8dWn4Hv9XBbfuYtsXK6ohwGfDe+++zMhjwE2+8pUqFLFPBfIuc2XxOHCdsrq4pOC3N0LGuyQrFzRLSRBfqgFRWFWld/rkDO1JyeHTI/fv3uXTpEr1+j3anTV1XzOdz8jwnThLa7Ta26/Le++/x7NkzpKHTaXf48ue/xOuvvsav/NLf4Nd/89f5x//kH/Ptb32Djz5+D69tc+vWLdaGqxR5yenxMVGcYJom/cEAv9vhk3v32Nvbg1riuA6v3nmNbqfN2toabc+n4/s8P9hjtphz48pVNRBYzIjSmK0r2zx68JC7777P3tOntNst+m6Ly1eusLq6immaPH7wmCQMWSxnfHrvE7721a/z1ptvsrOzw9nZCUkS8eqrr5IkCb7vM5/POTk55q233uL27dt4roumaRwcn1BVFa5rYwip4MHjMc+f77G6OsLzPP7snbcpq4rP/tTnmZ6d8faffpNguQQUdDpNUibFGNOyWO0PsW2bra0txtMJT58/x1tdZ3vzEjeuXQNN4+MPP1Kx47Mzojjmu9/5M67feEEJW3GiRKCmSTutFNakrAVSF9iWCVI10y3CUMXm4pyqibeVtRp8VWVJVeTEaU6WlURN411VqsGv1NV+RvFxS+qyZLlckMQxZycnxHHEZDImiWMW0xnLhYq6lqWCiKe5iuMVaYzQBK7jqlZL26Ltu/Q7bTqdDpZt4dgOruty7YXr+L5Pr99TbYeOS1mqc+65wJrEsRpojUbNwR+ePXvG3t4eb775JqZp8tf/+l9nMBhgGIaK9GYZhmlgmYrddX4fnK/b56+qYQsps0VFsAyJ45iP733K0ckx3/nWt9nb3eW9d3/AbDrh6ZPHDIdD+q0WWxvrlFXN/Xt3+eRuybe+9Q12Ll/m1TuvqeFFXfHs688pypK/+bd/jeFwBcN0KIqSRRBCXaFRMZmO1TBS01SM1vNxPY9f/tVfvThLCA3CuKCqJBUaaRGrOGOpXD7nEc2yqmi323htn6GSgbhy5SpU8MmnD/jOt7/L7/zW75FnOYP2gKoqyIqYy9uXsGyLs+WE2XjG/pN9DE3y0s1b+OQYdcHp6ZQiV82kRVWS5DlFXYOQSqwpSy4NRmyurvNzP/dzrK2vIzWNNE6YjMccHx2xu7uLRKPf7mCbNkJqyqlVlICg1+tz89YtHE81CRqOg9/uYHkupmNhmII8r6hR531N1KCVoFVIqeH5Ltvbl3Ebd5Ht2CRN5LQsqwtBP0uzRgjKKasmHVUqftQrL78ML2tcvXpZPe90QZ4rHITn+7Q6bTzXxbEcrl29SqfTZjQcousSpGjO/gV5RwnLK4PhhTFA1yXD/gDbsVVDri4xDEEUxaRJytHRgVrnNzf+nU/oH1t4unbtGovFkmUQKq5TGl/UMOeFisJ4nk9VV5yeHVMUhVL0KrXx0poNj4bKo0opsEwFYs3znCSKqcqK9NyiqAn1+edNJI2NEioqACEQUokH59MrteVopill1bgn9ItJoGxu/CJPVcNSWZBlaVPbmVHXhZrqC0m73cb3vOagUTdMFImgRpdCwd3yvMmiK6Xeth3KuKLOUoQAXdcwDA0j19C08uK/1aTKZhqGrpw3QtCAXAD1d53/npoY/VBl15rvIc8zFR1rVPa6rlkGIVUN/p6nWi+GPnWdoesWtl3iez7tdpt+t8uJbRPpumpoqdSkmrokipaIi0ynRAoT29Sb6tFYEfSFhqCmLgv19aOieVUNjucp5VYINaWejOkNergtlzLNqeqSWmtyyVJApdqxasBxXZWbLSuVzy4rNKkjDRMhTYXFEOrhohtq2pXlBZPpFGma9IYDhGGomEFjYZS6xLZslY0tCrQGjCbUBYkUGkVZkJflD5VbqVFIAVqhKlLrqtm7VkRpQllkyAYmKISGVmuqxrdWNk4NDcOyGiFVVZZWzcWp6zodv01kSKoiJc5T6iwhz1WrxWw2bZyCGnVZkKcJcVEQVzWO7WFLQZKpB27RtCrIC56WRhAnFJpGWYEQBlRK/YYC9BJDg0qDUmgXqnqpqepYLr4n5fYpUcyvqlIsH02riZMAaeqUWUqZq8hbGiUsZjMMz8ByfXTToSyK5tAKpi4oqTBrcEWNr9VU0YKkKjg+2scwDOIkwih1pKxw/DaO6yEMi0pa2H4b2zQv+GO265PUKlZbJClVllNnKXVeoGsobpzrUuQ5URhgWRaa5iq+lhBo5Q8jrEJoTYZZa9wFAktK8qqiqkEaOpoUJHGCadvkdUnViL+qklxlriUNi0lqCF3do2VV4/s+w+EK3e4JaII8U64b23XQhGjAggVoAtfz8HxP/VzrqnFPqWORLiW6aRHnGVlZYpu64rUUygWnWtwyZe3WoK4rykqVMuRFhVbW6FKtN7qmDkdVWamflS6wbQfykjBOELJAWqZqJ9V0dGlh6hqGNBGaftECFy2XFHVNBuysbnL52nVanS7SMPB8nyzLKfI1fN8njGIWYcST58/55O5dnj55ytHBPovZnDSOFRuhcYmkScx4fMbu82ckaYxhGdy4dZM8y5mOJywXS/b295hMpuzt7XL95gv02wMlLp2eUFXq55ckccM4ScjTlCLPlWNWCE5Pz0iLgsV8QRInqolEGkghmE9nSmjPVV2669hqAFJmlEVNkWdkChSGFJpqctItqloJ2Vqt4blqKtRuKzZQWaoNd5YXPHn6jKOjQ4IwpKpr2m011TQNk8V8wcnJCWEYkKYZy+USx7bo9wdIXRLHScNKEYzHE2zHYrCygtkMLYqyIEkT5osp9plFmiXUdUUUh+RZjmXZFGWBoavrpCpKigb2XsiSUtbUtaBGqDUBrZmoqfjAbDpjMh7jNRXunu8rMLehN7w0A8uym5KPZsLmOE08w8EyDTgnHzZMmKpWEVc08F2Hqiwoi5xguaSuKoLlgiJL2VhfxzQtOu02jm1DXSkBP1yoCXZekOcJUhdUlRJf0JRzNysKwoaVkkQxeZpR12qad3R4RFVWrK2tKW7NbIZuGFiWdXFIl037lmzuoSIvGgdGStAwFBaLJVKXtDsdfN+n02qzDALm4ZzFwqauFNfNsm3KUk0QZ7MZUmisra/R6bQxTav5UJGlIs85OxsznozZ39/Hafm0+j1MUzXTioZVlKRp46KLlNvPVgwgqQm0JhZy/gNR7yqcNwX/h/76H/se/pxfS1P/onS0Zq3+C9HCPyexNW48x7LUWtrsZ6UUOK6LbhqkDbvMMA0MQ1fO7GaKrf3IvsxxHNbW1jg8PFSRuCSBqubk+Ji6rlhZHdLyW1y9fJlhf6CcQY2z8mwyRheK41FWNbPlkiiMWSwDVeAgBWldQdOqVWuNaxCwTJOqLAiDZeMM6ihHt5QkmTq8JGmiBjWmyXgyYW9/H8u2GZiKSWc7DlGSkJeqrdVybGzbRBcaAmi5HqKqOW32UctgqeJ9toVpmDi2fYFlOGeLgUZZlURJjJCK8dr4D1RdtxBUtXbhAijKkjhKiKKYOI7RGw6ipnEBhi4aR32e5URE5GVOLaDf79Pr9vA9t2G3eFy9coU7r77Ks73n7O/vs7u7R6vVZtAbKOD6ckFVKdeSqVvUGoxGQ4oix28ppkm/36PTadNpt/FdF9/18FyXLEuZTScs53PKWrW3FXnR7P0M5Zo3TA729smyjMFgSFXkeI4FVcnRwQFhsETqKoZTlqppVQrF3THPHQmROrq1Wi3WVtcwDIO6rhjPZuRFeREzqyrFcrRdhzCOidOUJEmQuk6v06VIEqqqIIkjptMJQgi6nQ5xkihhMo7RpYHreSRZhut6WLatHDlN6VKr02mYdYIwjsmFwLKUs6rI1IG40EpqNNIiV8JTw3mtKo06U2e4LM8b8adQQ+E8p6zV+3suPC2DmChJm2Y61YqOpiE0Lth2Van2x7PpmDgMOTs9U4LTYkaSJCznC7Lm52A0AxBTl2iGpD3s4zg2w+EKrm2rJmnDUDy3dls5fy0Lx7HZ2tnBcVza7YZ3aNsXjetaI3irPY3AsiyCMGB8dqrcZFKn0+3SarXoDYa0uwpgXRSqocZu8DN1sxadJ1+yLLvYV6MpHI1seGaWaVMUOUmZ0e2piOTKcEhdViwWcxazOUWh8CgIxTZKk0QlXwyDKAg53NsHoZ4RJ8fH5EXBowf3WcznrK5tKheQkKi7n4smQImGEBVCptQIPK9xMWmCoq6gSTzV6uCnzu9aRVXQnLs1New2bAzTwvVaCCFxXZ/ZdMZHH3/M4ydPmc5mdFptOu0Ow8GQfq/XOLtSptMxwSIgy1NEXSLqkqLOoSoa9mqpzgAazd5DFUVoNRhS5/LOZa7uXKbVbmNZKuWkzhDRRcvg+Zqrzt3axRnQMHQVpex0MHSdqiywLatxF9kYhnlhztAaHeR8LdSgSWepxI9AI00SDN1oPq/+cx8/yvw6P8tKIVQBg9E8yZqZi+tYVJYqZ2h3OnR7fTzXwbZsur0Ovudj25aK22uKYZvlam9mmMpxd85JE5pilZ67qM8TAOfcqiCIiOP4x3pm/9jC01/7xV9md2+Xk5MJ84WaqqmD8ozlfIFlWXzpi18kDAP+8T9+QJGoL7QoFPjLdR1004CiBClwPZtev8dLL7/IbDrjYO+A6XRGsAzwXF8BSpuHUG4Y1JoSKSpNo4ImD2yQJ6m6oJrBVporOJ6maUhDx3JsqoabZBkCXUK4nGObkihQrQWTyQTbttF1wdrmAEM38DwXKXXFyYgztAocWwE600w1tR2dnJFmKh5jmRaO36KoVbuCVuQgMjy3uTyrACEknmeApiJRumGoSFstlHCQN2B0q6kfLUvSBg7ZbavIn24I8qJg/2APqoper4Nl2TiuR5oVzBYhH370AENKBgOHfs/n9VeuYxkCS2qsDFYYdPukszNEllDHCVmaAhVxFLK7e0qn02VlZYjveDiWT6/ToQY+uf9A2V51myxNCBZTTNNC102CYEFZVlwbjcBvsRitIuqa7373O7z62h22trdIkpgsyak0le33PJcyqpgHS5CS9e0d8jTnZDJTGdqqwnFtTMOir/voho7rK8ugEIJKMzCmM7713bfxO23+d//H/wNZlvHRg/ukVYntOgx6A4a9IVEYECxC6ixDaJqCNiOQQjKfB8ynU1xXcX2yRG+EgxSBwJYuSA0h4Wx8ynh6Qr83xLEcXGEgUTWXdQ1lAZblKgiv1CHNONs7IS5qjvb28Hyfl166zXI+Q7cEiYRIqzBsB4TGg0d3KasCUap8uN6ABquyYuvKLTZHq5gHB8RRRLCcUaclIhpTlTU4Hg/3D5nN59y4eZNWq0OwVIe4JI0w6xrZ1KlKHUxTIoQkSCOKIoMiQWoC27SphCBGIPMaQYnhSPSqYjzbZ7Y4JlhMmM1DTM0iGI95fv8uWy/dpjXo4fdXKEyTYjaDuqDW1NTDteEnrm3hCpNPj3eZRCEfvvdnGJbD9vYWZV4ThwW+cwO3s4lw++AWDLau4uqC5bM9pNBxRmuMnz3j4aefYEgNKcAuc8y6RjMMpGHj+i2OT475dPc5jmuiyQ66qQ5ioqigKpG5Eht1Q6esS8JogaFB27Y5DUJKNIaXNvH9FrPTMegCd3VA7eiYbZflfEESxJR5gXAEbtdHQ0UztLJAy0tWV9e5ffs2SV5wdHzMO997hyAOWN3coMpzkiwj1zRqw6C/sU6n22b3k0/RsozNlnLeCa3G81za3T4nh4eUccTmxhqGqXMwWTJLUo7nSxzLpeO2QBRodcx8oR6aQZhgVRW+0ybPUuJ5QkZORoHTaWPbNpsbHss44wf3HlJrgnavi2U5qj7acWk5gm4z5TibH6kJ4vEJGZJEt3j5J7f43Ff+MrbtIKXkpdfuqMnp2ZijoyN+9/d/nwf37vGD779D3WyuLq2v47oOdscnL200XYGlDw52+a3f+g2++71v4zZumv/zf/5/pdVq8c//2W9y7949nuwf8HRvj69+44+xfJf+cMjD+/f5+MMPGPR6ZLrOsydPWC7m7O/t/nBTWlVkWc7bb38fy3bU4e54Qq89wDIs0jDhk08+Zm/3OVWWMui08D1bOR9TSZTFzBZz4tBA6Dqe38a1XdbWL5HnBd/73vfwfI/tS9vYlgPQiEgK0B4mCf/NP/j7xFGE53rsbG5w/fp1Wu0eDx8+4zvf/h4ff/wRw5Uh7ZZkuQzodNr8xOd/ko8//pjvv/02RakilE+ePmV1NOLv/t3/BYah8/TpE8IwYnfvGePJCY7j0G/3kULy8NE9iiLnys5lXMdhsLbCbDZnMp6SJWqqlmoFWl0SRgr0bWhmM4CwKLKSyWTG6dmY6XzO66/dwfWci9hqWuWUqDVrZW1dxevLGtdx8F2P0cqQN994rXGYFeh6jZQlrm0AGsvppAHCJnTaXdqey727H/Hw0WPWV1VM81d/+W/S7fZ4/PgxQbDk2dMHnJye8HzvmeJ2lCXbOzuMVtsUTR12luWkWUYRpMwnE8bHpywWAXmWs7GxgVbV/N7v/i6Xr1zhL//lv8zR0TH37j1ASkmn3WZre5vRaKSmgQI6gx7LJKLIUk5PT5lMJ9x79Ijj42OKsmZlOORnfu5n8RwXzzR578P3+fjuBxx2urRcj1avxWB1yMH4iDRJOTk54uqVK3z5S19CSEleFgyHfXRdIKqaLM340z/5E07HZ9x9+Cl3Xn+Dz7z5JmEYkmUZfq+DbVkcj8eqSTFY0u/12VxbUzHnSjlAERpqXPTDLez5oY1/i3DzH6bTSb3ODwQXvz4X2P7Ct1RfRB2aXzeRhqpQMZyO59Ntdzg8PGRRVbQ8F9MyufXSLbI04+xM8fSG/QGyri5A2TU1ut7sB/JCrZ++z3I+R2oaR/sHzKYz3nn7bTqdDp994+/ymTtv8Hd+7X/O3sEBe/v7JFnO0cEh3/rjbyCF5Cs//TOgSYJ5xPNij/ksYHV9SLffJkBNvNMopCxLjg8PqaqC27duEAQh4+NT2u02m1uXePLkKWEUEmYK+CylxDBNrIXF73/1j/jmn36TX/zFX+SF69e5dusmuqGze3SIJgSvvHoHUzcwdYklDfSiZGuwQtpqEzXukQdPH7E2WmVrc5OW5yGF4OGzp+RFzuWNSyB1KikI04TD0xM67TbtVpuqGYjpho6OhqFBSU1WFcznCx4/eExR5aDVtH2PbstnuliQZDlhVqgIpO2xWM4IgjmGa7F59RJ/6Se/TLfVgVIlIqSEL33xC7z88kv83/6L/4J3f+93+drX/pjDo2OuXL1KVVU8Pdil226ztbmB5yk4ty6+xHyxJG8Gi6Zh0PZ9Njc2sS0Tx7IwdI1pu8Vv/ta/4PDgsNln6niOT53DztYV1tbX6A96fPOb32Q2m/ELP/9zdDsdttZHLMOAb3ztj6iF4Pr1KxiWJIgWRCGUeYouNFzHpj/sU6F4OCvDEVubl5CmSVGVnM0XCvZtWhdx+fagh9v2+e73vsf+3h43bt6k326zNhhSJRFCKzgdH/Pue+9y/foNXrvzGp/cu8dsPuf5/iGO47K9vY1uO9RCqqSDbhBnGVVd4XW7OJ0O127dUqzaMCSKExbzQDXLlTVJkjVuIHWHFFp5cXDO00QJNEJFnXRdb+KDC/JcQbmrSg2jj87OmM7nHB0ckCYxpmmhUVPmjUsqLyhyFfk5Oz1R+/5lcOGOKstS3dudjhIle108z6WuazzP46/8lb/K2toa165do9PpsLKygqbVaJwjO9RZrdY00OQPI6M0xojqh3FmFdsULJcLPvzoYz76+CP+4Pf/kOFwyGAw4PK1F1jf2CBHY7wMOTpWbuQwCrm6tUWn3W70co0gionThOPjEzXoFOIiRu/YtmpTbLdwXZtXbt8C4Euf/zyz2ZwnT5/x3e9+l2984xt8//vf5+HjxxdxP9Oy6Xa63L71IvPZlB98920aFU8N2euS//a//q8YDIb87M/9PBvrG9y8dRupS4QuWS5D0iyjRoOyJpmFaCLmbLJsRFIbXVepCa1pBHQsF0MTaKImT3PqXGKZFpZlYrsOumFgW22klPh+hwf3H/L3//7f5+jwkHmw4MrVK7xw7Tp3XnoV3/N49/vvMptOOT48wLRN/H6X5XJGtJjjVTUWYEqwpMDTVcN8VutQVMSzALvdwm21+JVf/mVee/UOru9dtINnaa64mfv7PHn+DN+3sSz9fGpBTYUuBZ2Wx2jYZ+fSOlGYEMcpg24HUwr67T6u7ZLmpRKgpYWm6SphV2sITdL2fBVnTFKyMOY0Sdi8tMmw1yNrzC9lpUwuruupxkQxxZASS5fKZKBpHJ0cEyUx07ndYGsEvt/h0vY2/f6Q4XCk3hPDoGwGtHGaoGkCXTeIo4TZeI7dcrBdG8eWypxRFGhajaErFIhpSvK8JEkK5vNAgfiPJxdD6X/X68cWnr7x9a8zmU6Znp2pKUlVEcwXFFkOZYWu63zSaVEUBaY0kI6Hbgg0JELTSZJY1YDqGlJD0dKFJAxVe0MURZRlqUCDUiJkw6tpct7nDCXRMEqqslKuhablqmzs5bquqjwtS7XRSSkBlYEMkhhD1/FdB13qOLZN7nmUhZoqpLFqBbJs1UoEXIgcRpO9FFJimBYVgjhOSLPsAgTnGAax0KAs8SwLx7TYWl8jilMWQUYUJRwfHmKYFrbjUpZQljVVA+au6lotbE18UKNWYDGp7HJ1XSJz0SzgSvk0HRtNKLCkEBLb0rEM1SrUbbfotVv0ul2oSvJEAV2zvGEYVLXi+wjVTCVNk7wqcRwHIaSi7ecFZsNBqEvFb1KMLeXukKbEtExkIinritls2kwgKlzHYnVthO3ahGmkct1SKleQBgjlZrI9nyBMCKOEIlctb1JT10ETK6UWWtNAALrUMS2TldVVWu0OyZPHlGXF40dPMS2Trc1LUBTsPX5CkiSkSYTQwDB0sowLN4RomDe6ruM4Dp7nYVkWjmsjNI04DtTUv1CKdLvdJog6ZFmKZ7pYuoUszwHNSv2t0EjznKJcolk6BTX6QDWh5XlO1GSxsyQhKxT3qSyVdVhoNUmieFyWprgeWlFjCRV5SqOY6XjKMohI04SsoplG+QgEAolmm7SjHrXQWEYRwlSsoDxKWEQxRXIKtg62RJo6tmGgF7pyhBmqvUI3TbLmAa030yRNqGvRd2xAQJ4iqxxXQhItOT7OaW+sIG1JqzukMG1Oj4/QyhzXUC0cUupodU1V5nR9F2lK5mlAXaUsl3MMU2JYkigImE3O1NpSayyTHByT7qV1iqLk0eNHBHPlFHAdG8vUlaOjLCjqGlFViKrG1k36nS6ihuV8jtHqoJsmRaacd6amK+dbTbOu6Liei5QGpWWR12qdoq45G59RmQJn1CNLlTPHcRxkrVGkOY5tYjs2eZGRLlMsrca2DOI4ZjKZY+gmnXaXyztXGE/GBFFEWOSE4RIhVItMliUslzVJHKFXJbrRRtdAq3IsaeA5Lo6rIhJpXV2wp2zb5vL6JZI4IZgF1GWFpRvM84A0iSiqDK0qmCUheVawyAtKUVHJmqyuMagRloOj22xfuUpeVpRoKuKVJVi6idR1gmChnJXREk2DrZ3LWK0u3ugSw9Eap6djguWSJImZTKZEYcj+7h6L+YL9vT267Q6/9Fd/iYPdXc5OT6mrkrQo0Co1pa/zElmBbRhIoMoyFmlKGic8f/6M0WiNW7dv0e130S2DbrfD6toITUqOT07JigIhJZbtqMm+ritnpGU37hWTtbV1hsMhL9y8hZCSe598ghQao5Uhg36fTkeJa1VVNlMdQRzHVJXiVYFGu90mK0qyZnoYJymu16KqlIPO0CVW00jZ6XQ4ONjnbDzm4ePHnI3VNLyua8xOl5XhkJdffJEojNjf28NxHDY2NllfX0PTFEvJsh3Gkxmj0Rr/0c//x5ydnrJcLtVmupZ87+13Fe+tyJC6xZ3X3iSJVdtTp9tTbmS/RRLHxElCVddoTaWxZdtESUpZVKxvbOK6HrPFAikl/cZmHQYRZTljvggoywrTsIiTRLFtLL3hcORkWUGW5ngtVx0ghXItHx4cMJ8vmM/mZHlClqdcvXqVjY11Tk/PWCwXip8AuJ6P5TjUmsbaxgbtXo/hYFUdToFlGBBEAVESKeZdlhKGYRN1cPBcB9dxiGPFY7BtW1U3u35THV1zfHxKFEaqnbSuGE/G9Ad9dF3S6bTZ3t5iZ+cyOzs7JEnC0dERlmVRo1glh0eHHB4eoEvFYphOJoRByNalS6ytrpFECeEyIJwvmM8XrK2uMej1afst/HYLXTeUC0ITrKyuolsW+8fHRFFEFMfkiar0th2HvK45XcyodclnXn+Dza1tBAqAWjs1SRQThSGL2Ryhafh+C9uxG9ejcmRezFe1C6/Tn9vb/ajI9KPciH/bn/+H8vqL3Kd/83v4twtucO6qVgPCGi5YQvPFAiEl89mMoihJkoQkToiiCAN1XrNME00IFfdp/v6iyMkz5S5Ks0x9NPGHxXLJex+8z6WtS1iOjWM77GxvU5RqWOpbqpJ+bTRiESyBmjhNKGZTHM9E1wVnp2dEQcCjB4+wLYvt7S02mnv5gw8+5OTjj9nb26Pb7V0gK7LlUjGnlkvKorwQs3d2diiKgvFkwvHJCYahczYeNwyaLqaUmFKq/VlzHUkpGa2MWAZLjo6PcWybXqejEAaWdeGuTdOscRdbykGZlxS5gj1rRUWhCQyhg9ZwyoqcRRSQZhmtThvT1NFNnbzIWAZLdCmxbUHRDKUpFX+mKip0qYNo+CR53jhCNfKyAKmpYculTW5cv870bMy9u5/w1T/6KpZtsQwCsjShLnL6/QGdbhddSNq+j2la1FWt7u8g5JOP7yogr+synUxUhNvQ6Q/7DHp95eYqa8bjMdPZmHanxaWtS7z55pssFnPm8zlRGNButS/iLIZlYdo2vU4b1/OgqvFcTyVDGuB1HCfNXl7xmsQ5yzDLyNKUNEkJlwHTyZgwDAkC1RTX63VxbXUoTaII6pr1jS16vSFCN8nLmihJMSwbz6/QNImQOlGckGQZNRA1z5C0aXRNM8WxPRuPKcpSnaUyxeNqEJLqLNHsKauqvhhY1FVFEkUkcazOfkIxcaqqaiKGiXKPlSVVUTKZzZS7dDYjz3NMQ2/cRRVlXl4M0eu6Um6euqLTbiGlalm1bZtOp8Pa2hqXLl1ScbwkxnU9Wq0WL730Er1ej5WVlYtGs3M2j2pXbegioBIqtWrDq0oFt6fh6AkhSNKED9/5gCBQJR6O4/DTP/MVug2z69L2Nu12V6VDCtWQF8cxy6VqSB0v5uoe0zSyTDUOnzfqmoah9KGGvWUYxkXj3flYQdclnueyvr7KKy+/hGlItrc2OTo64uREPQNPz8bousFsOmW5mBOGoUrVSIE0JLowG87VkmePH7Gcz4jCgP5wyHBlhTTNyItStZ2h+KxS6lhmjVZXiLqmMhQ6Rv0MNXJZIkQFVWMisUw0Qwddv0g3tTyXsih4/913ufvBh8TLgLWVFV66eYONtXX6vT7HJ4fsphmnJ4ekSYwuwZAaplZht1ustDyqIIA0oy4yNGoqrSZvxNEa6PZ63HrlFS5fu8alzS1c16NsGuNcx2mclkvSNKEocqjNJuGjAPN5rpBBvt+i3W7T7fYo8glRlGLbLtSC4XCErkuiOEQKiWUaqmih4chqmlAuWC1Hl8pJOFod4fm+uraqhjMslVxTVhVFXipuWlVCwxJttXy6gx5FWTJcUfuZMs+wLItub4DjKLaTaID3WuMoFZpGXdUkaazc8JahnnkN/7Ks6oY9pmGYihd5Xn6WpimLxZyzszMePnjAbDYDfvXf+Xz+sYWnf/Jf/pcXz2vdNLAci/HJibJTpkooGR8fY1kmjmlheh6ua2PZLpbt8ejxA4KzBY5ro2mGOrRJyWQyYT5TCzA0sRddqlrFxvFkCEFNTiqEgmRKxd2pGrX5vA5aCO0CzHa+yEi9ebPKkslkgmWarK2MME2LdquNoauK0YcPHzCbTrl+4wae7xMn6k3wXe+iSlA31JTbNAS1kOoBlWX0ej1MQ8e3LQJNQysKuj1lU+54PaI448mTA/aiQ57cv4/vtxmsrFAWynJaaWrXYnsemq5T5U0kSJPoUgNdJ0ljqvgc6K02NLppYLd90iQjDhM6rTae49HybBzLYHOtz6DfYXVllXC54Hg+I4oidCkIs5SoKMlqDU3qtLt96rrCa7eom0x1tAzI4gQKBV8t83NBrFKAYVNguia252AmIUVVcHi8DzWYtkWn7XLz5nVMz2EWzihrSa2bpEmKVlcgDAxT0uoNGU+WTGYL5dypoeOpDXqeqwpjYagoVFaWmFJiu566oaXOyXTGdD7n7be/z/r6Gl/6wufJ4oQ/C2ICa4EtxYVNNkkjijwjDJaqEakRm2TDEnAcxZiRQjCZTMiShHCxwLYthoMBeZYhaolvWOiaRh6HTcsFSnxC5eqzLCajwM4S/EsFtTBUTf0i5eGjRxhSYEqp8rN5ThoG1GVJAehC4Dk2OgK91HBMZe0NZnOi6YJlFKsYlKHjuxadlXUsw8Q2bNbEJmWd8uEHnzKfzekM2shSkAQlSRASjkPcgaM+Oi1cy8MsLKSmU2lq021aNlkYkiSx4gBJiV6rmMGw3aKqIFxEGFVOy4DFYsLJcUxnvYduwdWd25RJwqfvfBM9z3FdH8O20E2XOo9Jq5hRt02PmtN5RJBlTCbHOE22eTGdUqYFaRijlXA2DymE4IU7Nznc2+d73/x92q7DsN2m02nR9jzGE1WJHUYZoi7R8hLPtNle32QRBUxOTmmZDpZhkiYxVVXje6qViKpG6ALDNOgYFnUFblmS1zVxrqKge/u7JHWO2W8RxxGaVuO3fXA90jjGMU3clq/AjEmEqVV4vsN8vmD3+QG24zDs27Rea3N4dMju/h7hcs58MWUw6NHptgmjgGUwIwyXOFJimAZ6XUOSY+smHa9F1E2odElYxFR5Rgm0Wm1u3XmNx48e8/bjZ9Tbl3FNhyI7Ig7nZFVMUeUcLSfkBSyyHGnU6BISSvRaQdp90+HOzjWiJGP34IhgMWMxOUG4LrpucXY2J01Skjqm2+3y6uuvs759jVtv/BR7J8c8fvyYT+7e5ejwiMPdfRazGZ98/DFSSFZWVvilv/ZL/Gf/+/+Mr33tq7z77vd59/33mIzHkGZQltSFYou1bBtHN9BrjZPTM9Ii55233+Ha9Rf4Sz/3c2hC8MW/9NMkiTr0LRcLHj97RlaUGKaF77fxfR/bsSnLEr+lfu37Ptev3+DSpUt89otfJC8K7t39GF1Kdra3uLS5wWg0wnFsoL4AeS4WCwUnjRI8z2M0GjGdz8nmCxWNLQqEPAdQq5iT49p0um1GoyHf/d53efudd3j//feZz+c4joPv+bi2w9bmJX7qJz/PN77xDX7w7rt0uz16vT4bG+tAzbNnzyiKgufP9vnCF77Az//8z/PBBx/w7NkzPv30U87OTvn13/wdLMvg5s2bvPrKy/zsz/4sjx8/Ynf3OcNeF6HBYDhiPpuxDCLiOCGJUxzHxfNbTGdL8qJU7Jl2m3/5O7+H4zi8+NJLnJ6ccnw8Jo6npGmGLgSO6zGfzYnjmMGwS1mWxHFMEqckSYptG0jbxNBN6lrj3qf3mM/nHOzvk2YJaZ7wxhtv8MYbb/Lf/6t/xdHxMUEUYlk2nZ5iitSa4Mbt21y+cgXX8ZHS4Nmz55xOzjibjhXYti7JciU89bpdRisr9DpdzIZnpWkanU73ooZcCIkmJJb1iPFYxUrKquT4eMxwZYBh6qyujXj11Vd45ZVX2NnZ4f3331f7BsuiLEum8xmnZ6c8ePRITWkNi+ODY5I05ZWXX2Fzc5N333+Pk+NjPrn7Eeub67xw/Qaj0YhOA4oF2N3doyhKuoMBURzx0f17HOzvc3R4xOWNS/S7XYYbFlldsT8Zc2ljg7/6i3+NvFANme12B9u2efDwPovFnGCxxPd9drZ3mjKUqolPc+6855yIesF4atw+/yaC+/+TYPP/P6+/GDU8/151Xe1B81IxVNRAIef4VLkNBsMBQtMospzAXqqorZAYUlcYAO3PRz2TLGURLJgvFiyDgLgp6imqkmA25ff/8A+4dfs23cGAra0tbty4gdFE0OKXkwZWbbJ/cABaTRSHJMs5tqWjVRW7T59zenLCO++8w+rqKn/v7/09hpeHrK6uslgs+fa3v83du3eJk5TXX/8Mtu2QJSnT8ZgHzWFhPB6ztb3Dm2++ydnZGc+fP+fRo1UM02CxWLC5ucm169cxhcBohjU0MXMhBNvb2xweHvLRRx8pLpPv0+v11BBT06gKNVxDCFq2pSb4RUmWFaRxSl6psl1dV0OwLM8JopD902M8z2d1bZV+v4frORwf7BEESzYvbWNLHd1WEeckjNXwr1RV5RKdKAgxENjDIVVVk2QZZV0hDMGtmy8QBUu+853v8Pj+PQ4O9hmurPDqZ17D0nWOnu9y6dIWa2vrdHs9uq02q6trlEXJw/sPODg+4d1338X3fdqtFsv5nCSNafXajNZGvHz7Reqq4vjomLLKefQ4oT/ocvPWDe7ceYUkTvh//sN/yGKx4PLly8od5Tp4vo/f8hmurCh8SVVhmiZxErNYLphOpyyXS8WXjSIlSFalilk1opQSp2JmsxlHx0ccHh3x2c9+lsuXL9Np+Zi6ZD6fUpYVL9x8sRnW+CR5yWSxxHI8TMclz1WxyHSxpMgVHDxdLplMp8wWgSouQqE2xuNT8jxv0BnK/Xcety6aJrnFYnHBVSqLgjzLCRZLwiC4GPJ3+ooz++z5E5aLBUcHh81AOieKIrLGrQegCyXy6Lp+gWwxDB3TVK1/5zHXdrvN9es3WFtb45VXXuHatWu8+OKLfOtb3+LBgwdsbGzQ7Xa5c+eOev40UaYLARuayNsPWzKlVCKJEBppoZxWyv2kSgtmizn/7T/7Z8RxzOXLl3nllVf5W/+zX7uIKpUNS3cymZGkMUmkGvTm0wmnjoXtu+hSKrFCN9ClZNDtYRgGruOcazQX68z511nmiTqn6eDYJpc219lYG/GTn3uLxWJBEAR8/et/wvNnz/mTP/kG8/mSw6ZFMQiCxvwhGIyGWLbFYrkgXC746IP3ME2LD1yPl15+hVfvvKYKvzSNRaTaj1teG9MwkTVQFNR5jmHoVIaO0FVJGKj3DKFi4tJT5gmkTt38eb/TZjmf8we/+3s8fvSIdLnkjZdf5ld+5W8QxzFRFPHPf+M3ePL0iXI0GQa9TgfLklhUrK4MGQ0GnO7tEc5mLKdTFW/XauI842wyRbZ91tbX+YVf+AW+9JWfwbNdpJAsFjNAo+W3ybOC5XJOkkSKxUyt1v5cNXXGcaSKCHp9hoMVRqNVgmVMVS3wvTau02J7a4eiyPn47ofYto3nehf7ESF0hCaJolgVrmiCoetw9do1ajQl6jXik64rnEKWF0rYTVU7IUIyHK1weWcH1/cwTBPPtxWft5mvlCVqrW0EzLIsELJJhkmpCiKCpRINXWW+sB2bKIooyhLH0tF1iWMr4b0olMgbRyFnJyfs7u7x9tvfVa3pP8brxxaepCmVHcvQGyipgdAVr6Auq4v8fJ7nZEVGkgqiJGIwkPitDr1uDyE0wihQ9cBSRwPCIKQsSlzXRdOUOymKYsIwotUIQ1KoWJSeZg1AOKcuq4b50lQsUTdtGepiqMoCQ4Jp6EhhqhYmy0KXkiiOmc3mHBwcNpbFxvWgCVzXbcCLRZM9p8kZF8iyQJTyoiXP8120EJUJr5WNUAiB3+6oBsA8x3J8jEonTAKiJKSsKrKiIE7SC9upar8SFGlMVcgGNq6+5/NpW1aklE0LCJp24b7ShPociX5Re5r5Cog3fPEy/W5b1W9rGo7jkKQJURwwm02VlTWL0WpYLheUZaGq6FGb0SzOKPOKJK/QK0FaqMeJKCqKsqYqNcJlQhzlWKaDbbkEYUJdg+U4uO0uQjeoEZS54iRRa6qlR0M1yCQxxwf7TManJFGknDuawDKUI22ZZRcANcV8kgTNQpIkKUVRsrOzzVXT4GQ2u2AHdAd9PveFz7MYn7GcT9EEFzn48zrS8/aP8wfZZDJpmitqdV1rAqEb6LaFZhoUQhIXJYs4harGaFoSqCqQqk1OM020KoOiptZqapqWHAqCMEA3TDq9nmpQKVUMQsVAVXNdugwpq5ogKbBNnZbnYGoWnqGTJ5maEKYxRV0hNYcgini2t49umBimxfaVDVZWV7mcC+bzBScnB+RU9EdrhFZEnk6Is4zF0QJRH7HwA3TNVKKtpWFIEFLDsAwcz1WuK8CWElNoiCxDAB3bwJOCtiE5muSUeUAymzO3Tql2bmB4FqtXbpDMZ5yenCLSHLlcYutgSHCFsis7zQM4SHPqNEFGEabt4EqPza11pDTILQlaxQcffUSVxNy6to1eV+hVTZ2EBEmILDJsajRdtQmtrg1ZhhGHpxlhXVGmMePxKUEQkGs1hqEE57IsCYIlNhrStNGFYnVE8zPCJGG6UE7MuizJ0owsTpGaxHN90jxqnB45ZZ7x+MkTAGzLxbFcHNNC6krQOz47oShKpAYnx0c8eHCfNA5VK4quYxsWJTlFocCrVDVlrRgGta5xOD7hcD5r2FM1tqUjhU7LtbENizgISMKQLI7JyoxMK+kPVrAth8m9DyHX6Hk2RSEaEbFGygoty0mLEH/lEm6nx9rV28yWC/aXU+pUp0ByeDYlSzO21lcZrq6wcXkL12/hDzbZPZnwjX/0j5jOZsymU8UKKnKmp6ckScxg0FHtPS2bLI95/uwx1AWroyGf/4m3LqbGwXLBbDppwKAVWaHaBOvGufHOu+/w6NkTjmdjRqtr3HrxRTRNYDs+R0ennJxN+MIXv8ybb77F9GyCZZlcu3qZKAgZDocUhXIWHp0cM5vPmcQBNTQb+IQkiXn+/BlhMCdLUy5dukSr1UIIwWw2J0lSppMZmlAA8aJQVkzbtpClztHxIZZl8+KLt9jZ2eGLX/oSWZ7xwYcf8eTJE46PjxmtrDBaGWLoBsPBCl/4whexLItv/PEf84P3fsCD+/epm816kkS4rsvKygp5njOfL1guF9y/f4/9/T3GkzNs12a0OuIN542LBjuhG+imRRSnnJ4qKCY1bO9codpS4FwhBK7jsFgsGE9naLrEb7d49PgxjuuwsblBp9thfXOVZTDjdHKM47j4bYd+t4Nl6k20Oufs7AjZOIIhgzplfHbCbKpzaXOracNTm+ayLPE8n43uBkVZ8fTZc8aTKVle8NnP/SSWbVNpmnLcNdXtyzDi4OiUJE44ODhqhMY5WZYQhQuiKMT1HHrdrmr4WS4pJlPKSg1LYhmQFwVRFGNalmqcKTJ0XXBwcEBZlozWRrQ7LQzTIE5i9vf3cV2XOI558uRpM8Wr1XXcbjWuioJaN0EI7rx2Rx0QqTkdn3F6fExVFLz66qusrY7Y3t5WIuk8YH6maruPxqdN01OBaZp4nkev26MqKwajFXzP49nz5yRpyvbmJUYrqxS1+hpank6RpsyikDxNEZrGlStXFCfMNAHlrj2vqk+aGvA0SRBC0Ov1LlrwoP5z4gv8m2LT/y9FqL/oQfpx/o//33xd/4b4xPmvG96h1Bq2jsnq6iphGLK3u6vcNqbJ+OyUjz7MubS5Rb/Xo6hUO+90MiaOI8aT8YVYORyusHN5m+FwQJ7l3L59W3GWopjpbMr/65//c26/+CIvvfQSN2/eYDAcMluoCJtt2xweHfLu999lbX2Nay+8gG2aFKmK5B0eHqivvao5Ojzk6PCQ7373u+zt7TNaWUXqBlEU8Xv//e+RZTl5pgpGlkHA+vo6b735lmIoJQlFnqFpqoK71W5Rlmp/njUMwXMu03njNEBdVbiuy62bt8iyjGfPn1/sU1VrkkdaFOTLgDBRceX5ZAqlcidrlXLm+b5PnmU8ePQIoUs6vQ5lUXF2dqZgvlVBFEYURc54PMYwLUzH4/T4mLsf3WW1ca7WS42szC+cBTXqXjANU7XdLZe02x2uXr2K4zhMJxP+9DvfJgpCXnzpRfqtDlubl9B1nSCKyIoC3TBUrKiumS/nRGmMMBSztZaCWy+/RLfTZrqcNJGzJVJIOt0u7U4Hx3Eoi5LlYsE4Uy236+vr+L5PsFhS1RVVXdLtdqnLktlkpoxcqP3K2WTKsqksr6qasqhwXFddJ9OpivqurF6IH0maspjP2dreIQgCXnjhBVZWVrBMUzmXl4uGo6Sudk3qBGFEEMYUjTiU54pFp/bFqmV6uVwqOHcYEKcpcRg2biwV/10GC1SDpkrCSCEoi5KqKpvK9Zw0ScmzjDiM1RnHUG3haZYhmz3hcqkaj+MoVveipmHpEks62LaNYZr0ez11HtP1Zh1VLuNOp83Kygqu512UNmVpjuf5lGXNyckpRfEhd+9+wuPHj7EsG9C4e/cTxW0z9CbyZannhmXi2o5qAW84xGVRNc4PVX6lUV80nX/163/E3t4euqFzabjFl778JTqdLuPxmDzLFG9SgZoQUlIUBbZhUjuuaooWyvlflooPtj5aRRg6UZqgFzl1w/oxDIX5EIq6qwQzIRVv9keA1MrUoeM6HlIafPazP8GNF27Q6w3Y3dvjm3/6LcVl1DaZLxaEYUCRpWotQDkJp2dnzd8nydKEk6ND2g03bhFECCHZ3t6h5bfQRuvohvr67NqmwqTKFHfZqWiGQBVCakhDUGqCXMvRHBs0jZPJlOl4zHg6Ji9zLl/eIYoC/vD3/weKvKDMC2SRs97tki+XaEVJuVxSJgZVljFPUrKzM5IoIk9T5lNVEqGZqjjilc+8wfbNG9x64zNsbF9GCJM4zpr3tUaX6ucWLJfcu/cpk8kYIZXeIIVQql6pGHNS6vR6fRzHPTdeUtVqL1aXFbNFgKZBtz+g5fmsjkb4fouyrEizjCRNabXbGKbBaHUVIQVPnj6l0+0yGA4V87hhIVdVww/TNPKyRDcN2u0OfruN0biyy1INp7RGdVICquJSSylAq6ga6HBV1Rfw8CiOlPBkVURnIVVd0Wq1sCwVy9Qbp1RRFASL5QUn7eHDB3z88cfoumRlZfhjPXd/bOFJGEp5NW2r4WUIDGGoXKvq9SZvXEJ5WaCUqBrf7ygxxvcQUiNuHCK6VDGXKI4uLPGapqqaZ7O5gqihLlBh6JSlqjGkRkG1oVmMlPvofPNRNUC3LIlp+S6+72FZOhJ5Uf2XZCnLMGA8nlxY86lBa6B4tm03rgYFEK4acGNZqkMfF6KFTZ7nzMZL8jwjyxJWV1dZW1tjPJ2SpimO30Y3JEkWk2SJssmVJWmWN673Gh0dQUWZQ1lqZHl2UfMoZLuxezZRvEbhE1I5whCqSt0QgvFiqSJIpY0pSrotl07LpSoLNFRV+nwRsVjMWAYL4jhoFhaIQpWDXgRLhKYgqmVeKshfUVNSk1fq56GXFWWpILRJrDa16xsbuJ5HrSnAue23cLwWmjAAQVWqCx3A0GUj9qlKd9VspbhOeqMCm7rEsQzCxnZdn8cPK4uosQ4fHZ8QJQl/6/XXGIxWmP3gBwqkm8R4LZ+X77zKxz/4PmfH++hSYBbGBVD7HBR63iRRFAXz+Zzlckmr06ZVV+i6qTZapq4igppGUlREaY6haZRSNA8GNUWWuoZu6miFQEvPpxG1cjqVBVGc4AqdVrsDVUmZJmoaVBS4ptPUnldUeU5clYjSQrN1DOpGoCmp84wyV61sta6T5TmLZaCYZ6bF+rUt/MGQtUrizBfsnxyS19DpD9A0m+UsJwqmTIMIU0xIwxjPUYueo9tIXQXUZRMXqsoSKhXdMjWos1htAGwbzZQI1yBJFiyWNelyyUJalHWBZbv0N7eY6SYn+0eIIkNUOb5j4lgGIlLFAbYuyCtJFiZUmkCmKa1SccBWRgNafpfjJCIIFzy895CubfLS9iWKKCINAtJlQJIkF9W2UtdwLZ3VXgdDaMxmU3QqqjxjMZ8j9Aiv20X8v7n7z2fLsvw8D3y2t8efe6436bNcZlZ1d3VVN0CAILoBghJEEHQCJTI0nODX0cxE8K8YjShRmqC+UZwhNQMSIAkSQIMwDaBttakul7Yy8+b19vjtzdrzYe17qxqAwCZjyIngicjIqrzm3HvMXmu9v/d9XkOtgX+pbJrUTUwhM8yaqpPG0uk2Ho4BBcfxKLKCLJbcL8d2yYOUqpJiYFpkHERTXMem3+9jmZZs4tM0KgVGkwlJHGObBsPRkL29XUxNpeU68mCj6+Q1JPYCVC9EQVkL6+PphOFkJqM0toOpNTFMDcdyMXVTCk5JQplmFGVBoVQ0Wx1cy8MxbBAFDdukLHUoNTSlQlMFaTQiFymGqeM2fQZrm6iTIerHJpgGpaIznkkW3rWrmwyWF3nt3uuSpxFVnOwe82u/8RtkYUgeRgyWBniey2wyohQl7VYD3ZDR2CyLODjYpRIFvW6bzY018qJgODxH0RTm4ZyygCoXl4L/hbj+5OMnaC8MTqcTbty8ycbVK9iWi2VYREnKeDrj7t27uI7Dd779bTRVZWNziziMcGyHyWTCdDplOBqRpil7p0eouoyMyJKIjJPTYw72d1hdXmZhYYFut1tv7izCMKLIhYxS5imiEqiqiu3YGEJwcrqH5/lcuXqF27dv8+abn+O999/nvfc/4ODwkPF4zNXNTTzPRUFjZWWFz332M+zs7PDNb36Tjz/+mIP9PTkB1DSqStDpdFhfX5eb7zgmDAN2dl5wcnbCZDqp48EuyyvLJEnCwcGBdOVqGkmaMZ5MGZ6fQyX48z/zMziOLaMTqrSRR0nKdD6XbZ+2zf7hAaZpcvPWSyws9Oj22uimxjQYY7smXsNmYdDBsS2K/ZgoypiMR1imQbvVQqkKFApm0zl5LlhaXMJxnBrgqtZtSy4rK6sIUXF0fMJsHlKWFS+/+iqmZfHw8ZO6fj0nShKCKGLv4IDxaMz5+ZA0zSjrtXYyPkfXVVzHptHwaTVbDM+HEshu2ei6TqKqRHHM+fkQy3GwXYeqUjAMjfF4SClKrt24SsP3UTSFOIk5PT3FdV3yPOfw4JDpbEZRZNiOzTXP+1R5iSwyuHnzJktLy5RCMB6PGQ9HtbvuOgu9HiuLi+zu7jGdT5iMpYg5iqZkhZzgd7tdFno9ms0mAI12C8uyOPnohCzLuX3rNt1ujxIwNA1HNxmP5e9Z5DmaKl9Pcg+lIIQ8KOq6joaMB6Zpynw2Q1NVWq2WLG5RLmJ3n4hP8pDyJ9/+Q7Tc/clht/+4t8vf6dM/TD1IVeuDoW4YdLtdFEXhYHcP0zBot5ocHx9zdHREWQjyosSybXRdNrBNJmO2t59zPhxycHTIT/3UT3H79i2KmuW5sLAAVcX49Jyvff3r/K//6B8xncq9b6vTxvV95sH88v1wPjzn4ydP8FyXQbdXF/cUjIYjzs/Oa3eEyvB8yGQ65emzp9JV1+6gKrJ96Bvf+Caz+Yx+SzonTNPk5dsv8fbn3+LBw4fs7O4iCgn77XY79Pp9DMO4jEnphkFZP2aKWlsuKrk3dWybrc1Ndvb22D3Yp9Pt0mhKAHdRlkwnIUUhIytBEBDNA6y69RohnQSu65LmObt7ezSaDVbWVplMZ8xmMzzfRdc1Ge/Jc6bTKZbt0DYsRsMRD+/fx/vMG2xtbhBmMWRclhNVdZxe13UJzQ5DXNeVkauVVYbDIf/yX/0aSRyTxSmWabG8usZsNiUMZV29BJ1LJ2WYSIC5ZugoutyHb169wtbWJk8+fshsLl2Ihm7Q7/bxfQklF0IQ1QUGSZLQ7/dxbJuPHz8hy+XaogCmbjAcjQmjiFIBzTQI6vjwJ3FZGRlstJrM5wEoOe12R5aX1APV+Xx+WQI1WFyk4fuIsiRNU87Pz0nTlKJGblCjT5I0ldfZUsKsL577Czrc+dkZZ6dnzGPZdjuqxZRKlDVcfShB8kJgGrosY6rh2HEcU+Q5cRCSphnhPKTX69Hr9Tg+PmY+n5OkdRy8dhzpui6LekxLVrhrOo1ayFvf2MAyJQqg1WqyvLLEYDBgYWGBtfU1/EZD4lyCkMePnl5e30b1erK9/YK9vX02t65g2Q5htHs5kLYsC8/z8BqyqU1TZbFEnstYqlJBKUqyNJEt5YZWC9mlHJQ9e8bqyjpLy0vce/11kjjl/OycYDYnCsM6dqrR6XRQVRXLkDEuIQS6qpKlMnpXliWLCwsoikKSp+Sl3Dsbho6iyIG1qklY9oWRoaqgzIr655FxKlVR60GQxUsvtcmyDMfxePz4CR9+eB9D02j6HgeHB5xUJWEcUpSFPAeIktl0Ks/3RcF8NuVob4/B0hJ+o8E8iCU8X9PJul18z0c3NHSz5iEpFXlRyp9FNdA0iWxRNVlupda8L7Pev4yncig2DwOgYnVtlfH5Od/59rdlQVQF/X6HfsNnFkpGrQhDSl1HFCXz6YyZKNEM2dAchSFZnlNZBr1GixsvvcIbX3ibP/sXfo6z4ZjpTIqoZT0criop1kRRxIsX20xnkzpRpVwOdKpKrZE3Oq1WW5aLiaqOYkohV6EkqF14jUaLVrNFr7eAbTuSG5rnZHkuI7CeS3+wQBiGPH/+HEVXWVxeQs8LykKTjDIhJPxdkftjy7BpdzpSYLXMmgUl2ZYoXDpSDcO4BNLL97G45JMlSUyapsRpjK7pVEguaZyEWPYWjmvLFJoqhaeyLC4Zk2mSsLu7y+NHj1haWsLvtH+kNfdHFp4AKqVC0eTfBSVGLUCJsqIqBXkl2wk0XUepWUzjyYRgNicv8kv7seu6lwyL8/Nz4jhhPg8oipiiKGvxR6qHSZaRzueShZMXKAI0tJo7A7ojm71arWbt2AmwDBPfcfE9Tx7gSkGBVCE1VcPxXPoLC9y4fZtnH3/MBx9+RKvZoNVuUwq5KJ2cnGBaFktLSyiajuU4aLpOVVWyqaIsL9s/VtfXGY1HPHu+TavXx3R8vFKgZymlUlFpFetbG+QV5N//ELUsyEtBmifkRYZWSXXV8TzZpuN6XDTxhXFMnGSXF6B2p42u6bL9QIBSQpYkpFGMY+q0Vxb5Cz/zk6ytLmIbFVE05+GDD2Ubi2NJS2cSk6axrP4WJUql1NybCkM3MQ3Z5hPMA9I8JQgj2ehjSuh5muRSuFF1UEHVVOIwJc8q0lJgWBYLi8s0Wk2EUNDQMXTr0krruzaaqpIlMWkUcXp8jFLBzetXLhvibNtGUaHdacgq+CjAMEy8houpSYutpiqkWcbTRw84Pmrx2iu3mQdz/tWv/Qv6vR7Xr1zFNAwGC4syo1sKFha6AJycnBDFMenh4eWiaBgGzVaT2VTGSJqtNkVZMJmOCdOcvFKJiwLDtakMUEydl16+h6ZqjM4nZHlKnEXYlomttXB8H9N2pHApFPxWg15/gZsv3SaLI2bDIYfHB7IlUFfRNZV2y0OtKhqmAaIgzyKyRCONJBzP9kwaTZs0L9g+PMRvNLl751XCJGE4m/Pgg/d4/93vkSZ5bYdMME0Dtazod9usLi0TJzFxGmPrGkpVcf/xE4LROcpJialrtDwXy3VwfA/XNOViXxQYQqCUsqGSLEFTFSxNY6nlYemLbJ9MOD0b07q/TLvfo93o0rU8zGaThqnSsXSyNKHIUmbnE5I4Qa00EAl5EaAZGpblkWQ5p6Mhg+4ynpMxPjtmOh4y2dnDaPrQ66IVBRayPVBoGmldyZoWgnw+59HTJ+SiQqgVhm3ht5pojo9u2gyWluUB4viESlSoukkQJ4yjkI3VNToteYg1dYtOq4uoKvK6mXBn+zmDwYBOp8PZ3jHj0Yjz01M0VWFrbbG26gb0liravk+v26Lbb3F4tEuczPjwvUcMh0OaDRffcejXG8UwjHBbPpblkrf7aKKgSApUU8d2HBy7wHNzmo6DbVqQZORpQVgoqKZJd9BnFM2xBh06/UUWOyscHp8wGQ2J0xy9FCAqsiRkdD7GbzRpNptyMSl1ktmcrNjn/va/Iq8EhWLgtxZwr7W59+YXabaadHwblYqv/uE7TOcBJ+czur0ef+uv/w0Gi30Gi32eP3vKyckJX//61wiDOctLC8RxzIsXL5jPJjx58pg3P/8mt19+mTfe+Cytdpubr71KEAQMT8/kZisISBPZVDIcDoniuHba6li+h2lZvPe9d0kTyc0LavHxm9MJALvPtynLkkcPH8hJzjwgTVOyNGVra4ul5RWu3rxOmqb85m/8Op7rcu/OaxwfHrD9/CmHR4eMxyPiOEHTdB49eowoK1rtLp1Ok06vfTkFzWu2w/lwRLvT5m/9rb8pnQX/+l/zve9/n6997eusrK5x994buJaJqRu0Wi08z+Px48ecnJwwm80uN8uqKtvy0lQylJ4/e0pcc+Gm0xFxEkgWolJxdHRAKQTdeuP+F//izwMKz58/5+DggPPzYX0ttxhP58yCiNFYTpHTLIFKsLS6ysnJCeejEQuDRbxmg7uv3yMMA/7JP/nfqKqKO3fuYRpy8x9EEXEcyUNloyEBnFnK2XAsxVanQRgVQMby8irNZosnH39MhcLWlS3a3S5LK2sYlolm6Hz282+R5wWPP34mm6QseXAHwZPHT/nWt7+D7/nSyVNVWIYOmoLvWiz1O5LRp8k4/vj8DM+2MDWN4fmwhjvnVEDL9zk+PeX44Skvv/oqi8tL/PzP/2d4vs/du3cQouIrv/Gbsi2pzMmzlDRJGI+HMrLcbqGiMJtNSZME2zJ49aWXuPPaHXyvgaqovPO97zObzdBR0RSFKIl58PAR3/7GNxlOxsyCgNH5GCEEt1++Rb/TZeXVV2k1miwtLDCeTBlPJ3xw/yPOh0NuXrtOp9Xm6uZVWcxi6kTzgNPxIWmaUpYFy0uLuK5Lw3NrniVUaFycTxVFwXUdLNvErYUpvW76LUWJUrfifDpWQn34gT9diPpP7VZRSUZL7RKoKimAO5ZVs1R0up02N69dw7EsGp7PdDJhPB6zf3TEzs42Z6fHGLqO59goKKyvrXHr1i1a7TbLyyt0uz0Ojo4Iw4id3X0UFCxV5Y03PsP/8g/+Fx4+eszDx4/4gz/4Qz788D7Xr1/DsiwODg5JkoSf/fLP8NLt23zm3j3KmgMVhiGj0Yj1jXUUFMaTMYZhsr62wePHT6SofSTj3jdv3qTdanH3lVdRFIUgDHEch+fPnpGlCQ1fTuQ1Xafp+TimRZrK8oE8S9CFQJNIS1S0WsBEtlrpBpqrsrQ4AA1293b44MP3+exnPkOz0WQ0GpEXBbom6+rvvnYH13FwHFtO9akwLQszsdm8sinPAZZNoyFLhTrttoSR1421Z0Mpvp6ejYijiFs3b9LrdlGB4dkZ02DO9SvXMF2XyXRa811dijoi8nz7GQf7+/zCL/wiN19+iZ/4iZ/k6OiQX/uVX+XNt99mbX2DTqfDysoKo9GQOI4JggDTNLl9+zZplrGyvlYXeEQ8efaMF3t7bG6ssLG2ia7KlIiqKJwcn0o3qmFimDZLy2soCpcDz+FoyjwMKOZTZmFMEO7x8iuvsrS8gt3w0E0T1/Nl8ZHtMJvPOR+O8Ntt7j95gopMi4RhSFkKyrNz2Tie5zKmVhScno+ohODjJ48Znp/z7g/exfM8XnvtDr1+n5WVFfb29jk7O+Xs/JwolAOni8HHxbA2mAfM53MqtaKqBMF8jihKNE1qDFUlKGqxW1Pla6QUJaJmzmmaiuc49Dodbl2/cQnitjY2KHI5/DZMk1dfe1VG41559TL5YZlWPTAUKKpKu92umb4mpShJsuyy/dBv9Wi3OxydPCCOMq5evUqj4bO2tsY73/kOv/3bv4Pv+9y6fZvbt28zGAxqxyj1upaRJAmz6YzJeMz33vkOYRiy0JdxcN/3MXQd27EuBZkPP3yfvb09Oq02P/5jP87LL72G43oc7B1KQdC28RxXuoTrJjPXderI3QgA3azbC02TohT1umjW1+4aaI4giiOmswxVkY+x73sYholiqFQC0jSXLGPHlM2ARXkpjm3v7HF0dMQ//F//EePRGFSdvCzr5zvHMEzefO1Vms0mZ+enhEEgC1eETIxkmXx+jw8PJLRfle2A3wtmmJZFo9VB1VVUQ+f6tWusrq3JlkzLQUHB0A101azF4AsGoYJSQWoaVFWJblv8zb/9f6RIM+JgzsHeHh8/esj4fMh8OsNMUtREsNSV57uDg13SMGYyHKEbBrppYPg+hmNz46236PT7fPaLX6Dd7bG4vEll6GzvHDAaTwnCCMuQzh7DMVF1A1EpzOYBz59vM58HWLYFimzyKytR8+kqLNvlxq2bdBcWyPOSvCjJRSkbrhUdy7FkHDONOT0/5ez8DN3SWVldRtVVKqXi4cOHkmcWzTFNi16vR7t2l4ezkrQWnRVFQZSSP7q0vEyr2WRleQXbMjFMnTIv5PsgzepzrYxDp2l8ydOTDcuCNE2kcWY6pQJ007xk7y0sdOl22zQ8B9+xpFOqqkiijCCIGI3GvP/e+3znnXdqFIFDs9W5ZJD9224/svBUSbgPP9QCcjEp+yErtlLb6OTinaUpQZJRF8rj+g66buA48gc0DIMsk7bDi4VUvoh1eaEqC5I0vYSIX0Ti5P5ccn9UVb10HyVpLGM0to2maj9ko74gGuiGgWXb+A2frMg5Pj2h0ZSqtqqol8q8qGSznKIomKb1yQWptshruo6pafR6XQmOTFOKsqRSFAzTBE2t7W4KriftoRcXX5DV11mRoZXyd9JMQ37tZaROlbZCkdVQPhk3E+oFVF1alEVRUGQpftOn5Xusr6+wtrrE8aFsMBmNhliWiaI2yS/aH0rp4qICtaooiqLGQSifwNTr2seyLGprp02lCrKykmKJpsqDayXhkTkFZQV6haxcNU0UVOmgUjXJTtA0LMNCVWAWjYjCkCSKsC0b33WpBLK9sCop81JGvVRps9U0BVPXKEwD2zKlbbMomE7GJGnKnc++TpYlHB0eoIiK9aUVdN2g0WySnWfkRS5zsnXutSgK0iLlAlpv1JC+PJegRttxKGrboqrF0uZclrLyV6tQdBWv2cTQDKIop4or4mSOpipopomuSXdBWUkV3HIcHM/Fa/joqkIeS8CtUk8EUBQJ0FQUPNemSBPCZE5Z5ogyx9Qt2XJmmugaKGWOrpR0mi6qIggjGJ2NGI7GFLl8v/meD5pGVRTotk2z5eN6NkXRwFRVRFmi6hqFKMmSmExX0So5AVMNA1uTvDUJ7C7RkNyQqixQKglnd00DRfHZPpwSBhHnwzOEptBpDbB8E901aBoaHUsniUNpsxY6hDF2BXGlUs+W0VRdLrZJIsXqsiRPYrI4QiQJpWlQphlKVcnNrqZRKQpJkVNWFYUQCJETTSZohonmOOimjCFqpoVmmtKSKkQNdFel/TpPSdKULC/kc2/ZaIqMFBSlYB6nRHlKMJvRabcvD2soClmeo2sqmm7WxQflJUTQMnQJwERQ5BlHRwfMZjMsQ6/rVh3y+j6rCsmgsV20MpeHIGRcwTB0+f10HUvXKFMJSC/VFFGWGKaObpmojoVh29iWI220eU4pBGotrpZFRpoEOI4FiiR/ysa2lLJU2D+doNoW/fVFNBNUu2J96wqLy0vE0xHz2ZTt3X1GozGTIMbzfK5tbbF5dYuNaxuycEDXabaagKDh+3KlECXz2ZwkzXjp1VeoFDBsC7fhs3FlizTNWOgvkMQxwWzKfDpjPpuBqmKHIb7fQNM1hAJpmnKwty9ZFkF8CVHOUimmJGlCVjeGFXlOlmaX64dhGLTasoo3jGSxha5puK53yYkIgpIkjvH9poRHjycoqPgNyQvyXA+v2ajbT+QUyvU9ut0u6+tr7O3t8+LFC/b39zk5OWVj8woLgwFK3UZzMeE8OT1lOJQHmkbDx/N8yTgBJlPZ8hbHYT2xnTN3bWYzKcKomibFtDzHsm06nTYrKytMxlNe7OwQ1vxB1/WxHZcsLyDLJSQ2iQnCOY5j47qOFFbLEs/3aLZaeLXT4smTj1lYWODmjRtys1KWshShqvB9X9Z0O3LTnCQzDMPGNB0MI6QUYNtOPdkDVdNottqXjj3NlLxEx2tSFAXPXrwgy3IWB0uotZMimAccHR6xOFiUlm/T/CR2r2s0PAddVzE0nTSJiaNINrZoMg4h9xKy2MC0TERZkkRR/bUeiyty47a8vMx4POHoo/vSVVrJ11gUhsQ1627BkM6PNJHvN9u26Xe7bKytkcQpURQzHo2YzmYsdnsIIZjNZozOhhzv7xOmKUmeMZvP6v2Eie95LC4MaHgeraZcmy+A1fPZjH6vx9LCIp1WG6FUBJlsa4qTSPKbAN/3aTR8DF0ecuswfL3Xke8L3dDRK8kguljfL94zUmv6YdHpk4/9h2U//Shup09/zn+coN8P36OifMLBuDj8rq+vYVsWvu3QbjXpdbsMJxPOhkPKUpax+K6DZVo0fI+FwYD1jXVUTSYEkiQjCELZkFZBpml0Om1uvXSbyXTGg0ePODo8Yng+pNWUgOnz0zOoYHNzk9WVFXrdrjzg1G5zv9HgpZdeIk1Tvve97wFKHR+Sr+Wzs3MM02Bra4tup8Pi0hK6rl8erqNIJg90Xfuk8cow0FWVpKoFuape+6tKOv/rSKJaQ8RURUHVdVzXpdvt8Oz5M45PjplNp+iqRhDK1j3LNGh4Pv1eD9M0MHT9MkJeKaCXBq12G6OOd5imieu62LaNZZpgyOt0dT4kSVJOTs4wdF1Gqxy5h0zihCgI5WNUloRRiGUYWIZx2XAWhSHT2QzX92i3O2xsbpIkMR++9wHrG5uMR2PaLVk5nqUpqiLPM7qm0e10ycsCRVXlwU1RmU3nTKYzrmxKSLHneDIJkmfYrovjuuiGhaJouJ6PaRh1oZBOo9UGTaOgokgziiyn0+2ztr6B126im7LF2zQM2n6TeRjgNRpEacLZcIjneLKheC6b99I4kU1wQsj9bJaTZilpmvLRRx9xfHzMD37wHp1Oh8FgQFmW6KrK4b4UJI6PjwnCgOFQukzjKJJOeFWtSypiDFND1RR5KBai5pIpGJpet9CVCKWS6Y3a0aLV5U/tVpter8eVK1skcUwSy8FwWVa4noft2Ny+/RKbGxu89dZb2JZ1mUYxDFOWUdUOWr3eS4VxxPlwxNnZOVleYloOpmWTpDlZXrA0GNBs+DSbTRm7Pz7m5ZdfZnl5mW63S7vdxrKk8FQUkluYFzllKllU5+fnjMdjuV/wPECeX4syJ04SwjhiZ2eXnZ0XvPWFt1leWeHK1asoKJydnkkHlevK38W0pCNVUy/5gVEUomoanudgmTLmV9UOmizPLt0uMqFRUlSCLM9RqgJQMC0LVA1Vrbk+okJRKypkKVMpBDoaKLK0ZH//gI/u3ydOUgYLi5IxG0eomorvN1ldXaXX61FVAss0SdMYqgpD1zkfjkhiGWUrhcC2HFRVvfwdJpOJDEKpUrBX1bp8yRc4ticLV2shU6nUuphJXn/kGiNjmteu36QsC6ajIZphkKQpluNiOSPEaIyS5jRdjzSNGU5GZGlCGQsU00S1baxGA7vhs3z9Oksrq7z2+bfw/Sae0+R8OuHg7JRZEBKGMYovz9yKqqFommTCpRnj8YQ8zzAMCT8XF0sFSu2eNul0u5fnxbL6JBml1OiSC7dkWZRkeUaWZyh1bEtUFePJhOl0wtHJEc1mE9/zEEKeNak+KU+7iMermornu7ieh+tK3pcQZX0fBWmaSLFXSPxRFAUSFZKmiErGaCUvLWcynaCoKo1mi6IsyZKMhX4Hz7GxDAND02rXqORpx1HCcDhiZ3eX+/cf0GzKQarvN/C8/x8LT1QloqzIMrlpcmyHOIoJ4jmu7WIYBr12m6qiVt0L0ixBVVQc25HigapgmgamblJmEpB1fHyKaZr0en3m85AojJkHAaJMcZtNNF0DIajKijIXUi01JDNCURSm00ltLc8vLwRpmnI4m9Pv92h3JNDTskxOkpCiEqiqThgnPNvZ5Ww0JitLFpaWuH79mmy6y3PZrFPJNop2u8PCQLZ2RFFMFMsMtOdJZ9J8PqfIMlq+Rx7HHO3vs7Q8oNduUZY5YRTzfHhONBlJ6LCp0fEdTK0kSaEsKoRAbnKjWNaEWhau16As5AvJqB1e07MjFEXB8x300qbUVSwV3JbD+uoC/X6HDz54l/d/UHB0tItpGty4voltycaUPCvJsxxVd8grA0NVJHh9GtS57ArfLTFQ0KlwTR3blmp7kM6pBJiqJt95pZDWQ93A8RxUTSc8G1FmGbPzcwxVwd9Yk5FABVy3gW05nJ+eMB6P+NpXf484jtANk7COQ1xseqMorCctEZqqstht02g2qRwLRVNxWi3ahoGqqDx49JjJeMT3vv0Omq7z+bufRVVUguGUdqfL2somX//aH3J2fo5lnaKpGlmaywYNx6kt50YdxVQZjccSZBgEUFU4hgFpxvToWAoAuoatKqhC8N73v4+marS9NnmWkM/mlLou45WJ3JA4zjLCdOgvLGBYFg8ePcS1TJqWKZsWilI6sjQFrZCV5EIHIRQqQ8FwTFzfQysFiijIZxEIwSsbSxSV4NEPvoWuajiqzssLbYzVJUajCWmWoRo6hRCMDrY5reC+UOqGL4sbV6/Q7Xb4sZ/4MaIkZffFc5SqomE5jMYjjvYOyRyL1DJotH3ZdmBLW3waZ6BI1pdjWTScBhsrCXbLZjoOSAuVQecM23GxXZ/n+8fsPX/BlRtrLK8s8ObPvY3n+rx48JjdvX12xr+FikKVlYiiotAgmoWEmoVrGejtJu1rN1FFycHxENey8GwXoRhUCgRVRiYqkuoTllir1WR5c4v88IB5fkKcpOShVOtVVaPpNTANE8f1cbQGHQ2Ozk559mKbz7z2Oq1Gk+l8xjwMmZ4PKShli9D5GbPZjBs3b3L39df5+te+RhgGBEVBr9vlxrWbtHs9KlVhOpmQpzl5FFMkCYe7+8RJjOO5VKKsN3Amtu1wcHREludcX17DMw1sPcNQVQzdoOGBpctqU4WKqpBhcr0oqIKQ8719xqfnRHFMkCbM84RWu4WhwFMNyjRjFs5JUwkjFCKnSAIJH09SitEA3Xe5ceslOosDbn/mNcbDIUd7e0SUfHywy2/86j9jd/s5qqazsDDgL//1v4ZWweP793lxsIf9URPLMDEbLV57/XPEUYhSliwqcPPWKzTbbfqLA4bjMe9/+JDf/De/T5qmdJpNKdIqKkmSMJ1OaDWbtBpNnj19ymQ8YXNjA9O0SKKIMAw5PjpifWuLWy+/xO7uLuPhiF/8xV9gfW2N2WzGyckxv/M7/4Yokg7PRqNBs9Hkzr07rKyuMByOGY/G9HsDRFnw/e9+n2A+JU1yUgQKcFKvTQ2/SZEX7O3uc3x8zM7uCxRNtm4ato1umPR6HWaTKf/kH/9jkkRu8G/dus2NGy9hWJL1pYgK09BZ37rCaDTk9/71r8vXTTCXEH9dY6G/gOe5eJ6D70vYfhgE2IaF7Thoik4lpBt2bWWNoizZ3dslT3O++fVvk6Yp48mENM3ptOQBU0JWXeIkYTSZUhQ5CgoHhyeMRkOuXbvK1avX+cVf/EUaDZ9f/uV/ysnxEVSCqiykqJPEpGmCBpfXSE3TaLa6oBiMJwF+o8Pi8gqd3oBSlAzHY6ZBQH9xiSzPmIwnCBSOzs5ZXl6h2Wjz4UcfMhqNMEwb3bAYnp1fDrLWV9Z44949jo+Omc9nMhRWCNJIxvWnZ6d02i2WFgdkaUYUhjQbrXoybpJnGYcHBziOQ7fX47VXX+VLX/oSjueiGjrPnj8jTRLef/c92p02t27fZjKZcnxywqMHD5nP5rVjyOW1V15FURU+/OhDPM/ltZdfwWt4nIzP+ebXvsHB3gHXbt1isDxgdj5if3+Xr379q2yurvHS9Zv0Fxdptts0a9eCZmpUVKRJTFhzBz96cJ+PPvyQV19+hZ986y0W11apgPvPHyHyElVUNFsNtq5uYJomhm7Um3oVUclGJbnBryETtXCiKXLzUKpys3yxgdU1/XK9vRCaPi0s/acMFv9TbxfszdrJE8YxWZFzZXNTrht+A6hIM+km7vW6vHHvLjduXMexLUxDp+E1UC9YkrqOYVh88OFHPH3+nPfee58wjPjSl75Mlqb88m/+aylmdLvcvnWLv/lLf4Nf+dVf5cP3PuC733oHVVVZWVlhbX2dn/yzPwm6xvH5OaISEkOgKZiug9dsoEayXXg8nbD7Yod+v8/P//zP83u/93s8397mt8ZfwTQM/uU//xe8/PLL/J2/83fY2Fin2Wzwzne/y6PHT9jb27ssk9FVBdvQ5bCr0eTi9VMiD0xxIoV/S9VqBIfkvi7YDq+9dpelpWXeeecdppMp/aUVOWD0PHzPw3VsyrIgSWKKqqIUJWfDc4QQDAZ9OWBWwHVsbM/BNk2qUnB4eCgbILOU8+E5f/DV3+XOa3f5xf/iF+qW7AClkryrb3zjG5imSafZwnVseu02Qgj8ZpPV9XUU3eDw8IjxeMwrL7+M77oc7R8SBxG/+v/5Ff7MT/w4fO6zbG1t0LzSkG2UqkQNzOcBcRDRa/e4unmN0WhEGEakWcnpcEq3o9atdoKFpVV+6st/HlFVhGVJx/dxPI8oDHE7HT77Yz9W4z40HMvCtWzJIgUKpaIQFVkWE52f892976LWbNcgCokSORRNkoSjg0MZs6mqy0BeEsXEUXzZdHp0cECSJDimiSJKHt7/gCxNicKIOIpI0pSyuBg2S9i7WuZkecoskuKhKAW6YqMqOgvdtox5otQCSsSNm7d5/Y03UFUdTdVYXV+X65Ar4cetVoNOp83a2jqnJ6ecnpzy+MkThqMR/YU+juPS7nWxbZvz0Vg2zrY72PV+fTSdyPh5EqOpKqZlEkUxo9EEXTdYXVtD0zSiSLq2KiHY3NpgPB7xK7/6K+zt79HutPj859/kc597Uw7khWA2m6IbOu22BNl3e21pClBVrl7ZIkkzWu22HIIJwenpKe++9wMODw7Y2XnB25//PF/+8s+wsbGB53rougkK9NtdGcfTtVrDrchy6SSUYpdsXKuq8rIpHeQTqFBJwRVASCHpgn0pKlE37BakeU6QRCiZfN05to2qqLV5AjRDCoVlUfLuu9/n4aNHUtAqc8bjIUWWkcYRX/ziF7l79x6qVlGKgs6kzcJCn7/4X/znuHUxym/85m/yL/7lr102rCdpDCW0mjIC2ev0mM/nnJ2f8+gH7/L8wX1e/+ybLK+sYmoWhmkSxTme5zBY6JMXOXkm+aC6LjnKqqLyNIgunWKLm1dYuXbjclga1uVPQc06/Mx0hKjZZLKkTGdtY4t2p0uj00PRNMIgYnI6YT49oFQqCiriJCdNc2ZEWFYhz2mmSRynBEHIdDqlLCVPTasdjH6rSVVVFFVJq9O4fE1Mwyl5maFoFdIaKojzCIA4Sy4HeetrqyiqdLZHUYiiVPiey91XX6PZbLKxucHiwgBTN9A0BUWtJKJGVbFsaboQZUkah2w/f4ZSD03SJKnb5pJLeL2qKOiG5IjleX45WNA0HdOApt9E02V81bIsXNdjbXnA0qDHRZu9pumUlYzuvXjxgn/4D/+fhEGI7Xi89PKrbGxssLK8jG3bP9IS+yMLT584RarL6fEF4f/C+VQKuWHXNJUKDaWUWXFVUS9jyVWFnDbU7QRJIgn8lilBuoYua5iLeppCnaW9sGPKjYGcuCiVtHqWQmaWFVW6YqrawSMq8amNlKwjVBVVvknriSYKeL6H7TiYlnXZlHeRa88vHAOanChSR+AuLKMXIE9d12k1m6iqQhTOKYsOCkI6diqZZ9WUCl2VMTFdA02V/3YxnVQqAVRUZU5VqlSFrLM3DSn0KFSolYKqgqUrWLqCUVsVDVPFcy081yKOQrIskTlgU8f3PXRNQv5UU8PUTVzXw3U8yjipwX+ifvwNFCR3SLKLFOk0UyUUvNJAEfrF/qxWd2V9aSUERZGjKQqWaWIaJqoqGTdCVMRRTJpk7O3tMTw74+zslCLPaTYkUDLPP2mrkGptKUn/yItrkmVMg0Dad1WNwrLRVU06XUrB6ekZvu+zsbFFlqaE07lkSykqruvjN5oIAVVVXrrfLiCZn75ZlnSuZDVIUlMUqlJQ5gWWqsr6UlVBUSrCJERBwVR01ErgWI5cFBSFssgpRI5XM7lMy0TTNZIsRVcqcl2+now616wokBcy/hhnBiLPEfUZQtTuNkUIRP3c2LZNWuQUSYSi6aBbGE6JrYFnGRgqlIpArxQ6DZ9YgMihyHNmsxmz+QzD1Ck0Hajqg62K73pyOlmUlFkmeVKilBGO2rmo1u9JIWSES6nAMQ380uIojigETCZjWlVFq9VFVTVyoTCaBAgVBotjmlnJNIyJ0qwG7F88D4r87woqUUmonWGgWY5syihzykohKwUlcvHVTBtDN0jjqN50yYVH03QM3cQwLMr6cDUPAsmGc/36/uQGS7NkvjkvCslbyFKCOCLOMlRdh1LyukqRkucCw7RotNqs15NS13Fot9osrqxJV5WikWY5VRURBOFlLrqsnS/ApyCTkGWphA3GEZowMK1KtnuqhoSvVpVc+FSF4lPtIDKmqdfihU5R5kRphGOZaL6HCuSlIE4S8kxOFcuyohQVtu9jew2s3gKa18b0G+imKW2/wZzh8Jy4hm+PhmfE4Zz1K9cYLC3SW1ggTxLi2YwwCgnKXELyFYUwisikqo5Sv8ZFzULL0pxgHnJ6fMI8CJjakqfQ63URokLTDFzXp93pUpSCWRBAzSfwHLcGHlosr6yw0Oux++IF0+lYVtJWFWurq1jmBZNlTBjKeESj2cBxHblhD2RcQFNVEGq98ZTw5qqS1+2LDPzF33mW19NEWWOfFTlLq6t4rivdvVnG06eSqxLFCaZpYzvuJYDecx1pAa+LIUQl4wKWbSNKuSlIsxRd17Bts2ZrpHWzp3ztRVEkBy+6jmM7tas4I9FkvEA6Wkvpgi1LWSde126XtVuzKHIpSmsajUaTlZVVtrY2qaqK2Szg9OyM+Xxec0kseW2v/wg5WiPLMkzLotNsUikq/nSO5Tiouk7Hb6DpBicnxxRFQaPZriP4hnRs1nsJCbWUkWC/2USUJZOzYV3c4V1OfRUqypqrQVVRlaV8jqpPHLqi5pAE8wBd12sQp7jkdHRr7oShGyRJQh4WBPO5dF/quTykBAFJnFDmEsQdRSGtVhvHseXv/ylOIcB8NqeoBNP6ECQdxBIObxoGDd+n1WrR6/dpNBq4roz427YlHdJZwnw+I80y5lEoCz5EievYNJsNhJCQ/XkwR60Umo6LaRryNVzHAi4Olxfr9w+bdqqLK2m9B5Lu64ubcvlZf/z2x0Wn/7jeoz/pdvET/Lvc+58mnv1RqPrFJrWSH6Q+9V1+H8d20C4YbEJIV3Dthmo0GpiWhWOZdfuPjVI7z6r62xWl3HdK97z8frqm0Wq1LuP+tu3Q7XZZWV5iPB4xHslopl7vR4fDoYRGz2Zoteg4nc0oi4LtF9vSLRfMEULQajXp9/v0+z1WV1fJ8xzXdbiIZM3nc54/f8ba+hqNZuMylqEoEpMhHw1FRsZqUUku97I0RQi5plRCoFqW3GPqGkVRkuZS3JYuFYfUybBMWe5yfnaG77oENXxbURWKIicvi08az8qSSq1QNf3yucmyjLzKZDNXGJIJmYawTBNVQTq34ogoii/XmiKTRUQzFMqiqF0kot7bF4hSMJlMSFMbz3NZ6Pe5fuMG83nA4eEB+7u7LA4WWOj38FyXqL7GRvExQRhyfHLKYLGSzb2GiecppHlOXpTEaSbPPlUFqorfbJJkqQR2A0VdNFQAri9jy1VZoRsGiqYTx/KMFCQheVEQpynz6ZRnjx9jmIYEvtclHMPxiCiKOD06oSgK6ciu3zRZkpAmkheUZxnz2VQOsw2DPE0Yj85Jopj5fC4P/2VR77EVFFMiMixTxzBUbMu4hBW32k0cVxY76JpOnqbEsWTk9fo9VlZWsW3JFNq6epVGo4GiaRiGSbvdxvc9+r2e5KPlJYYhxRXPb+B5nnSdaxppltVOdJmIQZGCZ5zEl8mZC+C3piqy1c4yCYN57V636jNpRRRF7O7vUQnBlatX6C/08Tzvcu2Mk1CutXlWA8sNDN3A0Az5GsxzWYCR55yeScdyGMegKjSbTRYGA1ZXVmW7qmlRlp9Ed5XaFVgq8uysKhcnxPosVb/35P9/cm2qTanySq5eXPGlm0i+SaXzTrp1q8v7UTXpMlNqEf3iWqgo4Pte3QTbJ44T2d5pyjXL83w0XSfJQunWs+3LohPf82g1mrSaLTRNo9WSLrE0SySEPpeiZ55nFHmGKHKK+oVo1CzTs9NjUFTyEtK0iec5l3qCWlCfMeT7V+Sy6VLRdWxdx67ZjVLklq85NQ4RRUGr1+XT65SiKPQXV/AbTTTLpihKpsG55LeGkWzkM3SCIGQ2meD5PmXp1uUJGnGcyAbgJKFEoOm6NMFU1WWSSYqJ0uWp61LcKUoZd8vqxyRJIioqgiigkfj18yQuVqH6d5Uss1arSaPRxHXc+romnWJVJRD185tmskkyyySTqiwu2uYrsjp1VZQ5lZCajKZKwfGPDpUqIQ0vuq5LTrRu4NgOnVYLz3WlI7P+fasKsjRlZ2eXg4MD5rMZjuPS7/dZXl5mMBjg+f4lyP/fdvuRhadOt0dRFszDOVlRkNf1l5Z7kXssODmfoaoqvV4PrZJRpEpIxpIQJSIX5FlGlqVsb29TCkE0l5DByWhEo9HE83xURS6Cpi5ZBJUqJx/6xaY5TS8ja1UNzBpPJ2iaSrPhU1HV1lQpKmRZClQ0fV+6mM7PKfOChufTajRpvvIKzVZT8nxG0u3SaDTIMnlAT2t6ewUYtVooIW5yoqgbKr1eh5WlBY6Ojjg6OqbdtFDJqATkRclCt8V8OsWxVCyjQlczFJEgighKFbUC15ALvG4oKFVOGU7o93v0u13CUALMm80Ohq6jaLKhw3eaaJpsqWr5Fg3PxPdMVE3l3r1XZa2oa5BEMdPxmHarR7PR4da1Eb7t8fTBA6IkwVCkqrww6BNHEeF8hqFJ+G4YyorN5bUVFFUjjT6x/U2nU+bBnKqsQJWNgb5hcu3WLVzPlzG8XHJQnj16yunJCV//w99nPBrS77bRNJVwMsS1bZo12V83dIqyIYUsUcgoR5wzjxKOHj2ps6olTt2G4TUaVKrKw0dPWFld4c/81J/j7OSMk5NzyuGIaRhz4/ZL3Hr5FZ49fUwUhhLGrcoLeV7kpGly6cpbXFxEVTV29/apyhJdhbLKEWmC67i0DEdWqaoVhZWSZimHhy8Y9Be4+9JrTIMZ49mUeB6RJgkNv4He7DCKAxRdw7AMsrLgbDRE1TR6vT5octO3dzqiyHPG8xmGpuIZGkGYYikBlirZIVopZIdFkqEjaJkWoqwokpRpfspMA89vYzoG02BMs9HkJ976CXLNZYrLO+98g++883WiOMKyDOIsRzcMNq5s4Xku7f6AMIyxDRudCrWecBVlSUGBVik4mkkJJFQUaYqWZjRUHc1yefR8h6gUlOmcq1vXuHfzHsaqgWl4fP3rv8/jxw/49e5XsC0TNZfCtGKrtY1exdBNNM3ANBwMw8JWc7JKMK0kDLXXsKUzJoqI04S8LLnx0m0c12F3f5eyKDEUWUGbzudYqka/1UY3JLfj46fPLgWeqizQFQVbc7F0i26vje1a7B7sUeQ5x+MRluNx5dpthuMhBy9OsWwXy1KI0oquavELf/WXaLXbbKxtkmUZo/MRZ+dnnJ6eMI0yyjLi4dNnnBwfU6KgmxaO41CVBcFsKrceilxctErw5P77mIrC+qBPp9HAXVwiC0OiYEp3oSubGKuKUoDqeLgLHbauX6GwDA5HE7I8Zv/kBZ+5dQ+v3UZDI4szTo+HCAFpqmBYLpZi8uqbb7K8sY65eosMg4ePnnM8OuMbv/x1jvf2efHoMWkcUaQJV9cGXLt7m5/7K/8lfqtDkMkp2mBrmcl4xmQ04wcPH3JycsJweIYQgl63TVEUjEYjeaBaWsZvNHFsh5ZpY7qwt7tLo9ngM/fuMVhcYuvaNZaWllgYDDg5H3J0esb1l1/mytYWX/j8m7SaTXrdDsfHx2w/f8F3v/MdHtz/iK985Te5eeMm/5f/63/L2voqh0cHfPTRRzx48IDBYEC/35eiWBjy/NlzRsOhFFAMg26nTeo6hLYF9XbQq0HSJ6dn5FmBqmm0O22u37jGi50d9g8P+MJbb3Pr1m0++OgDjo6P+L3f+z0ZJ7EcadlWVHTDxDQt3njjDZqNRs2+ULl1+6YUDBSF89NThsNzOcmLInmwqwQPHj28rJK+2Dg0m008z8N1bVRVI41DLEMOHoQw0DWFk+MDjo/3iaMIx3FZWBxgGAZLS0ucn5/z4sUOd+/d4c03P8frr7/O4mCRv/f3/h5PP/6YUhQ0fI9XXnq1HuLkWJaOrjty7S0FcZZg2BbXbtwkSVNanZ4EVCYJr955naWlZf67/+7/xoudF/T7fVrtNteu3WBhsMjGxgYvdnZ59uwZtmWxsrzMwqDPbDbjB9/+LguDBe7eeZUoDNh99ozT09OaI1KgKCoNz8O2TFpNH89zMXWDPC+ZzUOePdsmTVIMXafZbHL3zj2WV1Z46eWXeP+DD/j2t7/NcDwiThOWlpfwPJ92r00apXzlN34L13NpttuoCrRbTa5flwemj588BsBzXERR8vz581q8n3PtylVuXL3K+fEJKAori0usrq/xl/7aX8ayLGzLYmdvj4OzI9qDPpapU6SCOMs4HQ45PT3h2bOnrK6u8vIrL2E4FpNozvjogCRNGU+m9Do9rty4XotxxuW0W1fk0UKrwZ9cRKGhdtxw+e+aIp3HQsjD0KdFmU8OJT/896c3x5/c/tN0QikooEiwf1mW8gCiqLLZqjIvXWEaCqjyfX3hFmv6HuBdfi8Jn69QFU3GF/KMRqPB1tYWb775eXlgrhQ0TeXttz9HMA84PDiUVe7AL/2NX7pEM8yDgD/82tfZ293jn/3yPyVJEuIkYWF5kXa3S6/bRQG+9a1vQVVx7epVXrp9i7/21/9qLXpnbG5uoqBw/fo1iiLn9776Ve4/uM9/+3/+P/Hn/txP80v/1X/N+XCIqqqsr6zium4NpFUwa6ZOkZcUoqQQQsJty5KT41NEWbC0OMCxbRzP5eD4iI+fPbuMKP7cfyadEru7u2xvb/O//fqvc/XqFTRNYWtrk/X1NcazsSxfcW3yvGB3dxfbtllZWiYXBWlREk2nJEHI4fERYRwRxDJa+3M/9xeIgpDf/u3fwnZlUUKW5liGzeLSAFGWPNt+jut5mK7DeDji7PSU3e0XjIcj8iSl2WqyubHBzdu3eONzn+V3f+d3+X/8z/+ANI158PABSZpy5coVPrz/EWfn53z44X1QwHFcrt+8yUsvv8zVq1fp9/tkUUReFBwPJbPnAvhfUmG6DramMYtjxmFIGAQoikLTbxAGAQd7+8ymU6aTqRTIhODZ86cEwZwwDJmMRzz66D6GIQXobl8C3I9PDomj8BLSbhjSmS7K8nJwn2WZxAAoKlQwD0aIquL0hMvCqCIvEEWJ4Troio7IM/S60bHX73Pl2tXL5u9r12VL3kUca3t7m8PDQ9555x3pgFhfY2V1hV6/LyHgts3O7g6qqrG4vEye5RwdnzAcjZnOA7Zf7PBiZwfHa9LpVhKNUAqyrMAw5piWjWEoqBocHR+QZRnXrl6XrVuqimG4+J5DWRTkecG7777LcDjkyz/9JRrNBodHBzz++DHvf/ABX/7Sl/gvf+mXmM8DzscjFno9NFVlOhuTJAlBENBo+CwuDqgqeUz2XBejyPneuz/gxc4O//Sf/yqNRoN7r9/jzp273LtzF892sExTgsdzibEApFlCXEgq8nqqG/rFhYdCSDPGhYhRVfLfVEWCxIWQLYEyeiUb9S5eW6YqBR0diatRTRlVV5HDTaW6WAuk80NTFf7KX/4FZrM5W1sbHB8f8/HTpyz0B1y9eoPnL7b51nffIc8TNE3l3p3X6LRbCAFliXSxaTIy+cUv/hi3bt7CdXTm8xn/+P/1TxiPxxwfHtbG5YrlXofB4iKfef0O/YUBf/9//gdMpjOWllcZLC0ShLfptDu0O21QTLRKJ80zFEXFtGQCKZrMUZQAVR3VwpOGXTOyrKYsSmh7nmQRGxp5lteDqJDx2YgglSLS0Ys9VEWl1WxIV1RR8PjhI559/DFXrlxhcXGRz3zmdXRNZ+fwgOMj6YZ0fAfHd0nrAVOcJACyWc4wWVpaIssL5qF0FwZBwNHRIWmakGbSJXh6cs7w7IQgmKKpb7O8vCRd84aBbmiARrfXwfcblw21F9eOLMsIE5m0Gs2nXIDJEdIIJIVm5XIQZZoyvaPVeJuLYaVpSjOIglKXNBSSVWYamLpB0/dZXVrCMjUQ1WX7bZYXHB0e8ff++/87aZoxWFzgM298li984YuXw4LxWL53fpTbjyw8lWVZuw90yjpLqCHfVF4NWRNcWAjrWsJKTuFUTaWW5DDqybyoBKIsKEvZvmJZJr7v0mw0OB9KlkGepVw4ikQpc62yGji/VH7FhfupVuGlvVxF0yQATdam+pd2SZCuKkPXa1aDiVXbo+VkXk4Ry7q2UNN0KlGRJAni4o1umtJpcJG3vFAQqwseQG2v1nXyXAI8LyZGuqGhqCBEUbuwNBkxugyOChCSRK9rGrpSSbeUCmgKpqGiawp5mWMaNisrC6R161eeJURRQKvdwrZsPMdBUSrmU1l9mGWyAcdzXWzbxNRVsjQmjSM0VUPTVXRDx7ItKuGhIWFveR1jlHupirx23Ci1hc1QdQxVh3qaoek6SZqhmRmaZV6gALAMHc+16Pc6GGqF79oSEi9khtjUNDRFQa1AR0EoCmXt9DA12YSnqhpF3SAjqUDKJRfFMCR0fWdnhyROJGNKUxHInDmKQpykxElMmWfYlonrueRpSpoKWaGpyel5JUQ9JZCuLkVTMR0boVSkaYKOCqrMTQMYlkFFxWw+l1OxLEermyq0etohKoGhmbRabZIwYF5zHopcLjAyy10CKv3BIlolULOkjkRAWT+QF2whVddljr4QMhykaZSUVKWEy6mq5JzIKu0UxfNwGy1M25G8ANuRdfBGgaqpUoDLUpIkxrAMFpeXcYoUs8zrzLMEulPJ912pSHKbQLYtmppOhU7TMlDynKSeLATzObqmsby0yOrKKsFsjq5J8eyiXUnR5TUiSRMcTccydNIiJ0piSlUgKoVK06k0OekRirxf23FwNQ0hZFxREQJFSPhyVeaUWUpV5ChViS6VRVxbsrIsx67rfpEtg1kmxT7bJq8ySl1j0RygaIZ0vwnZ3COEIIlizk/P0FSdpaUldENac/OiIC9kXWmFIrkKWcIsmDMPA5mz16QVWgg5DVXqaZacCFdotiUvzIpCLkqCWIIBBRBnGWUEcVZQCsjzGYWus/Nih7OTM5JZQGRNMdHYtZ5jqRpRKcg1g1K38Fyftd6A1tIi7aUl7MUlYsPjxc4LZlHC4/sfM5/NOD07Jo9jeq02YSVIRcFyd4G1pVU2VtcxPZ/d43PyqkSUFmmWMRrLCvGiqBlcClg1B49Wk26zSafVpNFs4jgulmUQ1q0h8yDg6fNnBFGEahokWUoQRYwmY+I0JS8LhAK6ZYGuEeUpo+mU/cMDVF1jaXkJRVGZBwHf/e73cD3ZWFSUJWma0ev36HS7JEkq/6SygVVeu+VhPMszkiRGVeRGLcsyFAUZZ1IUVFW6oWbTKYZhsDiQhy2oGI2GjEcjCQ3VdRoNnzhNiaKE5ZVlBoNFHMciz1Ie3P/oMlKoqRqWZV3WV5umhWHotNodyU1RNcpSUIlSTl5NQ3KLavu5qqgsDhZklW9de13kGe1Wiytbm4RBQp5JmK6wLDzfp9fr8uqrr7C1tUWv3+fo6JijwyPpxrAshNAxTQtNs+p4vGx5Lcvk8jHQUFFUnSwvSdOCJM0RAlTdRCC5dn5d2KFq0onnN3xAVqMfHR6wt79PpyMnpkeH+yRxQqfTpttp4/s+YTBjOp1QlSWmoUPt2nVd5zIWLSrJMUszyWgbDBYxDcmIsUwTwzSI4ojt7ReMx2OoYGtzS7YsFjmgEEey1ES6nCWbybZtbMemQkaA/IZPWQrGE9kmuDAYSG6L75PmBWejEaqmY9sOnV6XZquJgoIQVR2nsGg1ZKRUAUzDBBROTk85PTnh7OyMwWCA63mkRU4eCSzbxrJsXNvF9yWrT6mdKJ+4cuS+ofbn1GsDl1PKHzb8fPL5l1/w6X/71Le8NJdf/uOn2U7Vpz7v312E+sTj/cdvn/iz/rSvv/jc/3C3i6nwhetHphRrh0F1acGv//eTx+ZCiLq0+F8IfIqKcrHWKUoN1ZXDL1GW5EVeO15TJtMJoubjyah8ieM69Bd63HntNWazKePRGMXUKYqc+WyGgsJCv4/rOty9c4fNjXU6nY4c0tXRWlXRaDYblGXJtWtXmQdzXNfl/Pycb37jG+SFdBx5jjz0HB0dE8cJ7Xb7shimKuWATDd0VE3HMk2KXJGJA0XBSjOKQp4VLMfGsizZAKUoeK7HoL/AG2+8jm3bnJ2dYdkWiiqZqK7rgqJQ5BIHodec17Isa66q5OkNhyNm8zlCA8uyWFocMNJHjOqiojhN6PcWcF2Pdj1QHoSL0rFQs1lURbo9VUWl3engeW6dYtDoL/RZXFpidX0VVVHrVsIjTNtG0XW8RpO1jQ3yem+lmwZlVRGncp0fz+bkRXH52ijyvG5Q1ms4c8F4MiGOE2azOYauY66tE0chwWzK0eEB+/v7l210JyfHpElMnmcEQUBZ5oCAWDCfqBRZRhKG5FmKRr03qqNjoijlgVM3pIPi4lyhqTiOrG5XVA1N1zAN8zLNIlvsFHrdPp7vs76+jtfw6XZ7NFtNWq0Wg8Einu+TJDFRFHF0csJ4OsWwTApRMplOaXc7NIuc0XiErht1DOqiWVqpUzPSVaHpsj3yYqCvKAq2ZdHptGXLnGlIFaUqa3yKhWkal9dUTVVrJuOYyWSCaUpnleu6KIrC9vY248mEzc1NFgYDHNshy/LaZS1jTK7joeuGZLXVj1dZlsSFbI0dT8Y8efKEyXTK9WvX6HQ6XL96jaXFRRzHke4cRfnh6+6FmM8nEV5QUOtWNGpBKM8yKVCVoj4u186my4stNVuNy+sPSPZOVSCvUfW5uCwFQSjTIbZtQyGTSVlSt0rWhSxra6v4vo+qquR5yeHRIbP5jKIopOvMluD0LM8vz/FJHeeS6SUp0ruudECtra/T6XapgCiKJM/UdkjSjJ3dXcaTKWWRU4mS0dkZVSXwfJf5bMpk2qLd7uA47id4gpovJB1ict9DHaXLkfs2kWlUoiJStcuzuIyDlqSJLAkJplOCIGDvxQsc28ZzryFESZ4DlZAt6raJ61g4tuRBHh/L8iD581pcnL0umsgBLFNiS3RNnvVF7TIvawG3LCQzKU1Tzk5OKPOcdqtFliRy4FynttQazJUkKZqmEycpQRgymc6YzufMw1CeY+GH1hhZ4ibbTFVFlcmUqrpct6tSfl5RlJ+4xGqmrKpqGIbkNBu6QbPh43sulqWjUEmHWC3ETqZTDg4OLpmonXYLVYXpdEwUyQhvHNWu7x/h9iMLT0mSoKgKpmWTZil5nSHUNCEvLo0mjjetrZYnVFBf8OQfiQW6IO/raJoiBYQ8xXGkGLG4KNuiRqMzojAgzQuoX0RZKmnqF2qAYUnAqoRvy2icpqrS/qZqqLo8hIzHIxYGfZq6jlFfdD3XwTQMyizHaTbodTu4loWuKDT8BkVRMBlPUQTYtk0ppB3XcV3JXnLd+kWbyamjpsspcJJRAbZr43ouru8TBjGFyECRTBDHtVBVyIoEVQPbNqkKGaXK0pSqlDlf1TCwDQNdqaDI0ZUKTVcwDQVVrQjDAKff5vV7L7G3t8fjxyPm8xFZHrC02KPTacjYXRixu70jn2xdin6dTgvPNrC0ivlkxHw2Z2FhgGHqGKaOZRk0mw2KNKfMS9JcbkiSTMYdgovJSp0fdS0by3ZA04gbAt22OBuek5WlbOgToFYK/W6bVsNCre4RzGdMz8+oSllfSUX9u8spDRfRvTihqsC1XekUaTSk8i4gmAdkaYpTC0Ltbou8zPnt3/1tFvoDrmxehToemZUFVS4YjUdEwRxNqbCsNgv9PrOZvBjatomh6yRxhBACVZNv4KwQOKZJo+WQBQmj2RjTMlA1hYIcVGh2GlQlPH+xA4pcXCxDtttomoKoSvKywDF01tY3ODk44GTvkDBICIIYq+FQAWFW4Lsed+6+QRGFDHd3MBEoSvXJhUdTMFQNw3ao0pQ4ztEsE92xEYW0zcbzuYTPqwJFTzg8PMZfMukuN7HdJrbTpLewTLvVQFUEZVlwMh2S5xlKBU2/wZ037lFMR5ThnGo2oswzDE1HRU5jCkWh0OTrUQFszcYydDZ6DcZJzN48ZjQas7e3x/rWJq/euoVWVWytbnB2+II4DupWsIIoiYiSmNFsysAyMawO8zgky1Ns35YHHcumUgS5EBLYDiwuLNBsNhlNhswnMSKJoRIIZFyzAMosgzxHM+QEoNtqUFYVpn/hyJPxvTTIsT0X37HBcdFUjc7qMkGY8OH9ZwhR0O90ODsbMRmNeHT/AQd7h9iOzcJgkSyRoFAhIIozqFTCOGY6n3A6POdsNCQvCzRNTmoUISiREVZD1zFceU1TDQtFCDQNsqriZDzBUMHUNMbzgGouyFSDQkAwPkU7OmVnOCROCubzGGYp2XnI/tOn5CLjPMtQbR/hthjcuMKf+9KfpbWxSXNjkwePd9jbP+af/8avsrfzgoNHL1CFSsvrcHV9hTdfvcPpwQumo1PuXX+Vrc2rvHzzVYShcT6bkijSrjudz3m2/ZQsSTANjZbnoKkqg1ZbMgEdi263y9LKMrbrYFhW/djM+P573+f0/IRf/83fZGEw4KXtZ3R7fdqdLo+ePGE4HTMLA+ZRSFxkJPOcyd6EBx9+xHe+9W1Mx+bNt96iLEum8yn/49//H9nc3OTv/t2/y+tvfIZf+IVfZHd3t75OPuH09ExyCEWBYciG1DiOmc/mnJ+fywpoXaMsZYTa99x6gwdFnvH82TM2Nje5ceM6tmUSzGc8evCQ8/NzOm0JWhwMBhwcHTGdTbj3+h0+//m3ePzwIYcHh/zqr/wzsjxndXVVOm7aHQleTzJ8vymdEVdkm9VF3FdVod1q0e10OT05ZjabYtbtZHdfuyOvU6mMVIRBwJXNDfqfeYOvfe3rHBweMp2OcFyX/kKf9fU1rl//GQzTwDBNfvVXfoX333ufmzdvsrm5yXQ6rV0OkuXYaHqcn58Sx0V9AEVWIqsOo3FIEIQcn4xpNHxarUYdiZ6zcWULt+EzGg5ptJosLg0Yng/54L0f8PDhQ3Z3d7lz5zVarSaPnzxA1w3u3f1s7fLtcHSwx/HJkXQlN3xMQ27wGg3pRLuIIQZhySyYE0QhP/7jP86VrStsbm4ShRFf+8M/ZH9/n69//Zt4vk+j0eDnfvbPc+PmDX7zt77C4dExR4enGKbBYHGB8XTK0fExm5sbNFsNya5QKm7dukUUx9x/+IDNrSvcufs6WVmQ5hm/8zu/y87OLndfuUuz1Wbr5nV0TWMynkpehWXQ9HwWuj1s00IR4HsNJpMJ9x88YDg84+z4mOvXr9NsNDgaDkmyjNdfeZV2o0nD9cmFYJwk6JVAQbaRUlvwLzajFw6TT/OZ6pT8pchUXYpIFVX1SfQCfjh6Vs9TEMhru6p8ut3u4nv8+zfe/Umi0/+/bxeC2EWF+8XtUnS6+Lz6sf+jmttFLOHiqy7QDIqqomo6Ve1sCMMAIUqWlpYQZcnR0QGTyYTDowPCKCKMIvon8sDvNxty2GkZ3LhxnZ/78pc5OzlhZ3uHhx8/YefggMlojKIo/MSP/RgbG+t86UtfujwwXxxKLn6uC/7JW59/E8ex+drXvsbu7i7/09//H7h67QbLKytcvXoVQcX3332XXrfHvXv38DyXRsMnzTOyIseypNu822rLg8l8RpzmVKpGlpdYpk2326PRaBClKVGa4Xs+nRtt7t29y/2HD/jNr3yF0WTM3sEeX3j7iywtLTKZTMjIpPCkG4gK0jwniiXXUkHlxYtdTs/PGKws0u10uHb1Ko5tc3J8zOn5OaPJmHt33+DKlSuUeUZRFHS6faI4ZjQZYxiWRC9sSQ7XQq+LrmmMxkMqBQZLA27cusEXf/zH+eijj3j27BkfPnzILI65c/cua1sN7n3uc0wmE54/fy75LpbBeD5jFoWcnp1TFCWddhtRlkzHIzzPo9frUdYxnKePHzMcDhkOh3ieR9OxCeZzhqdHPHrwId979/uyrKgoMFU5NLcsWWvfaDh1NLOU+/fREFWXRS+y3ERGIMtSUGS1gGDK9dd13brh2ua1117DdhxsWwqNtl3HmBSFjz/+mCRJePutLzIYDLhx6yZpmjEcjVlYWGAwWLiMIf3+7/8++wf7vPuDd6moaLUbzMKAJ8+fYjgWumWyu78PwMbGRh2p+2EXpaqC53m0Wy2JutA1dE2j3W5x585rlEVBlqQkmSydWVpclkJR3aJVZBmGYeD7Pvv7+2xvb7O0tCRBzY0G0+mUP/ja1/E9ny996Utsbm4C1L+zgapL0aK/sFADoJPaJWIShTFhEPKVr/wWDx8/Yjqb0+v3+Nt/+2/T7/cYLCyQFwVpmlFRUSmidopclDx8IkRJmPxFLX15eX2phCCOIkrTosxLsEBTdEpRyFh5jXWR6BFp5pAuF5U8yyjyQjp4FIVCQJrk7O7u4zgOS0tL5HlOnueMhucE8xkPHz4E4Gd/9mdRVY3r127wjW99i//3L/9TOp0WzWaTra0tWs0GZ6cnIASmaaAoMJ1OieOESsBsNmM4HLK2sojveXzu829hGAYbm5vs7u3x0f2P2NnZ4eTkhH/z27+Nrut4jk/Dddl+ts3w7ITpZITlOtiuw/WbN1kYLNJfXMSyHYQitcayLDE0HUu3UDSBomlkhRSjyHNQFMLxDFGUFFmOocs9dZLJUqnx0THDs3N+8M1v0ltYYG1jA1EWZFmCqassdNssLnRZHHTotD0m4zH3P/qAnRfblJmMDCLEZcur1ENUmq0WDb8hG96rjDIvZDlAmiHykioXpFHKbDbh6ePHLA4GtDyPOAikbUeUVGWBoRsURcnwfEQcpaAa0umGwtHxMdPplHa3i2lZdcyPy9IuaaSRAmyaSmGxKIq6QKxCUWQpmWU7WLbFdB4ShCEtv3UZ17dth9WVJTzPwbYNiW9IMx49fszR0RHPnj1jPB5TFBnNZpf19VWyLOa9977HeDwmjmMp2mo/mqT0IwtPWZyAoqDpubQAVmAbJqZpE0znpFFCkcm8sVY7fCzToBISonaRM82yhKrSsTyvzssrCFEQxyGOa7G0NGB3t0mSxMxCGW+zTRtME9epZMyvkBR/RVUp64lIVZaXG7CyLC+5TJYu20UMXScJQgxdp9duUQnBdDKh22ri2650Q5SidiCo+H6DUgjyUl5QwjDCMG1sR7t8UvMsQ1EUPM8lz2TdrKLoaJpBFMZo6hTTcLEMHdcusU0XBRVdM7Atm5QcqgKhSQOmqCQMTNSsIyl6yZymbDKSjXwoCpbjUIiCnb3nCCHYvLKBUR+YijxjOh5RJDIiGEcyE6rrJcfHJwhRsn94yMn5iBJZo+g3ZGvUeCInzKIsUcoKRUCRyeeBQgK5XUs6iwpRouo6mq5SaWWdjY4RiiDPYirhY9tG7VYr0DFQ9Ior164RRyHvz2fEUUSapOiajm3ITLQiBJWoM7SqWU9cBZUoyDMZsyxFzcmyDSxDRghankshZJ1lFgU8f/IYy/MwHJeNtVU81+HlV14miUOmo3NMXSOoq9urqrysOL0A5nXNBlGccnR0irDqrKxaoTsSyloIIZsZFBXbsqnKT9hURSEbA6X4Izeyti3z8hewula7w/h0iK6ZVEKpnVU6RSU4OjrGrEosXUevSnQEpmuiGhrBdEpRCjTbwlRVbNeTV2eR41sOutdgNgtka44qMBR5uC7ylMn0DNMyWFtdp93ysW2TKJzL7HpeECUp4WRKu9OhKHM8VcH2PPQiQ0kS0mCKtAkbVIqGhi7vWqnI1RyhCBzTJStVKIdkacR4NqExaTMZzbFsi4WlPpPRAXEiGx9MzcCxWlj1Y2/qsgUuTkISFJIqk+0fvoNaZIThlKoUqJpBFCUUuSCIQoo8oypqPg9QUEgwbB0PKMpc5sdVyLOck4M9LMOk12jJRkPTkK6ROMbWTHRFQyQpeRyTxlMADFNDV0pMDYo0JAkhCsZErkkSz7EsG8t0KQ0VYWkoZYZIIkxFwTMNrGYThYowCHAti8HCAKVuvZgnIUWa0jQtTE3BsTRMzcDTbRA5VZFdvgbCHIqywjcbFEIQpQlJmhFmCevtFmtbVynVnEoR3Lx6+3Lj2mw2GCWw/eHHTL77EU+ePOPk5JTZwRkNxeTP//RPYxkWumKztNRna2sdoQmCPKGxvERzZZlZWSKoML0G0+CM59vb7O3tc3x8yp3XXmNpsMi8jj7fun5DRlVMWXdcioIgDImmM3Z2XjAPAm7duk0UJ+zu7qJpGseHR4SzgPH5EFWUdBtNjvb3UauKa1e26HTa9Pp9vIYPmsrofMJsOuVzn/0szWaTxw8f4jea7O3vY1my5Ww+D6Q923ZwHbdukwvptTuUVSWjDPO53FAocjhQFLJZUNcl30E2iQlUTcF2bBq+z6PHjwjDkPFIVlUv9PtUwOnpCb7n1lXiPvP5lOPDQ06Pj+h22ohSYJsWVg3C3tzcxHEcOp0ulm3X19KCyXRGVVHXKMs/48mcYB5i1AfKYB7gODZbV64wzIYMhxPm84jn27vs7x8QhgGDxUX6/T4v3b6FWQta2y+22dndZT4PWFyUsTOj5saoqnrpimy02oRxhB3Hl4yyJEvrgYys21brmLKqaozHE4K6JUsyllxZ4/34MUmcEEcRy0uL9Lpdmg0PTVdZGgywbJvllSWqquLjp0+YzqS7SK2jBoYhQbXT2YyiyAnDUNZOOzbNRgvX8yVY/fFjHj/5mLIoCGZzyrLCbzTo9Xr0ej2ePn3G7u4eHz9+ShRHNJstbMfGbzSlq0iTsNq0/l1LIdjd30dTNa7fuInfaHB4dCS5ZmFEq9nmpds+d+7cpd1uMZsFiLIgngdohoZmSseBqRsSrmqaHOztcXxyQlWWbKxt8MW33ubKlSt0Oz0c16MUAs/1UDWdTMiWHFszMNTa1X3h96mbZ/+4Y0mt/78ej1effM6FKPUnNdRdiC8XQtOFZiWRtsqf+DU/6q36I3//yZ/zv//RH8UN9e9z++Ospz/9Yxeurz/6eF44OORNPk+iqvucFQXHc+l0O7SaTUxDZzobk6UZ02CGbhrcun2LLJXT8dlsKvdudVzCtmyqqmJnbw9NUVjdWOPpi23iMGRleYl2q82dO6+x0F+4fHVoqlK78j/5XVRVJU0T7t9/zO7uLkuLi1y5ssXP/+c/T1CDpQ1DJwgC/vBrX8MwDD56cJ+NjQ3eeP11HN/D8VyoJFfHtExKIUiylDTPEEjHRrvdlnw2ReH4+IQ8z7m+uoFua1TINsbNrU3Oz8959Ogxa6vraJqOYznomkGa5kBCMJcsp6qqaDaamE2NbrdDIQrW1tcYLC4ihPzYS7dvk3zwPgdHhzx4+IDhcMjtWzcvnStUFXmSIvICBbmXVjWV7d0diiLHdWwqpeLpk4+phODzn/scRSZLCybjMVUFL7/8CoZu0Gl3sUxLsnFqBs5FJGoyHBMEAaPTU9JEtix7rkun0yaKIuI44unTp7J4JMuwLIvJ8QlJHHNycsTxyTHBbFI7gSAVFaoCVSmTBwoVzYZPp93G0g0MVePk/JwkSTBNORi/cuUK8/mcvb19tja3uHr1Kqtra7TbLclh1TQGS4u14OSQJilRFNLv9fH9Bi929hiOJowmU2zXx/UbFGJOEMWokwlFBWWRUeY53W4bw9Twmy5hGHF2dkaz2aTX72GZFrPJDCEqGYeqY1E7uy8QpaAqKlRVka8X28YwdFzHwbEsgvkMXVM5PNhnPpsxPDun0e7geh6aXpdLzQJURRbmVGHM2fmIp89f8PHT53R6C5iWw/7hEcPhOfN5gO/5LC0vIyp4vv2CMJQcLVldb2EZ8rViGLLN9uGDRxwcHnJ8fEKcZqxvbPKZhQHtdltenxWNNEnle+tS3BdkZR2Fq1NBikINey4u3V6XzciVjDra9ifsPlWVXGRVUaT0fxGfvohU1a6bvObAVlTEaUacpnzzm9/h/HzI3v4erWaL6zeuE0cxYRhyfn5KGAY0Gw1sy+arv/81oiji6ZOnjCZj2u0Wy8srLCz0MS3Z2GfbJo5jyz1Inf654JQOFhbY2NjAaTQRomQym2FZNlWlsLqyxuJgkWA+JwwDCY8fDtnd2yMIQoQiSIuM8XiIMpOOsygM8RqNSzfd6uoGjuPQbDWpDBMVBUFJWWnomhSeqlTGETGMOt4sAeplnqOaOqZmEEcBk8mQw6M9ojRie/s5Dd+j1fBZ6Hbp+h79bgffdQmDgLPTMx49esjpyTG+52EaOlUlkxSX13skE1m6xXKyNCWJkzqebZNnOcFsznQyZj6bMZ9MWV1aYmtjk06rXfOT5fXywsUkEyTyudYME9f1abRaVKqCWifF1Eqjqi7YT1J8vOCQSheT1EakMVdGaE1TuhCDMAJFxXZcHF9y1FpNH9exsWyLeTBnb2+b8XjKdBJwcnoi91mWRavdZnVtFdM0mM9niLKQKbQklmVcNaPsR7n9OwhPUrxQNAVUCRC3dQvXdgmmM/I8xzYk70lTpLPIrusP0yytN6UKaSpr/1qNBrquoWkqQpREcYDr2iyvLNLptpgHc87GEypR4TuenNwoGlUUyQpJRbnckBZ1NEpa8qQvRFQVlmViWya2ZWPqBqMowjIMbMMkiROmownlyqrkNggJGrx4czcaPqKCvCwYjcdEYUSj2UJVtUsIY5ZlGLq8UMZkBFWGqmjomkEYxhS5YGkgm548R8G2XLng6TqO7SLKmLKo6pGk3FxeACgVRa0FFglPd+rMp25KALLp2uSiYPvFx6yurnH12vXabqdwdnrMNJiTxwlpmhPHSX2/JcfHR4zHZ+zu73N6fk6Bgm7ZeM0GRS4rQ/M0JUsTLE3HUGUUUNM0KDNUNBxTI1MERSFQDNBMlUoR9WOSoFWCPEuoqgLHlpGGUinRVJnfXV/foMhTPvroQ4ogJIoSXNvBtQ0k26QESqpKQVNNqAQKBZXIydOYspKxNbOOnhi18NRRXIqyJM5zJqMpu4fPafQX8Htd1laXcD2HV++8Qp6mPH/8kDiKmM9mlLmsW1drq+6Fhb7he2hKwLMwoSwkXM6zpCMsi7Oa4yAXF9tyEPWkJMsqyrKQDq5606AZGo5jo2gKk8kEVUC708V1PQzdrFtdQNV1ClFxcHhA2zJZ9VzUShYk2J6DZhuMJvKQq9s2qm5gOR5lkSCKGL/RwvdalElJXEagqhiqhq4oFHlCNDnBNHXW1zfR9QoomU7HJIlsMonCkLPjI4IooFBhbWEB12/i5AWgMT05QVQldstHUxR0IU1lQoFSKahUgWt6FKUO5RFZGjKejvHHbbrDKaZrMvD7vHgm2+gUDUxNp+34WHW9s6XrUJVEtaXXLBMs28JfWkFEEJ4lGJqGZcj32awIyIuEqhKY6sXiDKUopCNSVRGqrDOtqECpyMuc3b0dmp5P1/MwNBPfsaUQmWV4roSzF3FCHoUk0QxdVzE1G0MpsXXI05BE5ETzEZFrkiYzdK3C9DxZDlCqKGVGGYdYKniWiW5bZGnG2fAcd2HAYHEJgaBEMN4PCJOUdtfHsEx838Q1Lbp2iywOSaKARr+N6TroYUaZCywfwiRierpPkqaEWYzf6bBx7TqoAk1XWF1bRjcNolIQhwlnJ1M++PAR773/PjtPnzAZnrGxssbK8jI//+d/Ftf1SVNBo92ku9jnaHTK7tkJjeUVGqurTAopTJtug7Q44emzZ+zs7nF8fMpf+AtbfPazn+X09ARd1/js629cTlKPj4/YfvGc09GYo5NTfvD+B0RRxF/+q39NOluLnMl4wvHBIeP6um07Dt1mU7brzedcv3aVrStXuHnrFn6jgWroDCcTDg8P+YVf/EtcvXKFOJZNSzu7e3WsQMcwTAzDxLFdXNfj/PyMIJjRaTZrBtWQNElI0xTDUDF0tQZlCnRdqw+Rctqo6/K97Ps+3/jWt3i+/Rzqw9RCf4EgDHjx4jkvv/wKn33z8ximwWw64fBgj7OTUwa9Xj0kUbBNC9uyubK1xcbm5uUa8+jRI8IwZjSeQQWGYZLnFXkmGA1nhEGAWceCz8/O6Ha73LvXYzKeMzyfMJlNmQcBeRqi6yqdVpvV5RVefvkl4jjhxc4uDx8+5Hd+93d57dU7rK6s4vseIGMHiqqi6jqmbdNotZgFM4JwLg+WWVXDsTOsyfjSkaVpMmY+HI3Ii4JKVNiWRem5xFHMo4cP0DUd07BYXV1lYWGBs9Nj4jhkZWkR1/NZXlnm5OSER08eo4KEIdctQIZhyPVtKJ3Vs9kM13Uk1HVxkVanw/7eHs+n2+zu7GPoBrdv3qwhqC0WFhZYXl7mBz/4AQcHB0RRhGlZ3HtjE9f38HwP07ZwfZc0TUgSCXrP8pzd3R2azTavvHaHJE04ODxgPBozHk24cfs2i0vLvP7665iGybsfvUcchsTzOYouCz0UASoqTqOB7Ti89/4HUqwsBVubm/zCX/pLUtisKtlko6okhXRzp6VARcHRDekOFpUMmV/s8epYSu3c/yHH0yeaUx3Trk9Bn26yu4xrXDAzL05KXIg9sjziT7p9Ogbyxz/4p2wo/z00pEtH0g9JbX/yHf7bRKr/XbHpwplwYfn6Ez5fVWtoeM1nkyLfHxXk5OdIFIT82V3PRTM02s0GqqLw7OlTwjBkGgYsLgx4+aWXL4sB3n33XYLZjLQS6KZJt7dAmqZs77xgdWWFmzduoBsGURCyfvcum5sbkjHjeT9UDPNpN9tFlCxNM979/vcJgoCV5SXeeOMz/Nmf+nN8/Zvf4P6DB5yenjMajfj9P/gD4jim1Wrx+uuv43oeW9eu4rdbMvJTlFg1QDlO5WE0zlKafoNOW0ZvKuCoFmk3F5awTYtKgOf5XLl6lcOjIx48fMT16zewbYdrW9dkSUiaUYqK+TwATaHSVNl06vrSOVQJNjY2WOj3KYWgUXP/nu+8II5jPvroI15426xvrmE6lkwzCUEeXwhPyLigrvHsxTZBMOfWjesy8pjELA4WefvzbzIaDjk5PuHw5JTxaEyeSeh0p92pIcxGHWNUKHJZ2jAZjjg7OyNLY4L5nOdPn+I4Nu1Wk9FoxHQyYae+T8eWzuD33/lOXR4Rgqag6MpliiPPJDyYUnIGDcuk3Whw7coWTc/HtR3e++AjhuMxjiPdtj/901/m9PSUd955h8997k3efvsL3Lhxg95CnzAMKEuZJlHryPbZ6Sm7OztcvX6DpcVlvvJbv00QxpwPx3iNJrbrE0QpsyAkLUpmUYyOQFMqev0ug6UFXr37KqenZ3zzG99iMBiwtbXFeDRiOplimTaGZtJpdihFyUcPPpTYD8ej2WjRabdxbAtdl4kU2zI5OzujLHL2HJOT42O2n29z4/bLrKxtYBgSSzCZTGQ8st8jjmNGoxEfP33O44+fcff1z2DaDk+fPeX4+IggCEFRWVpe4ezsnKfPtplNpcC7uLiI7/ks9HrYto1lNRkNx3z3u9/jowcPePLxU37qp36KGzdu8GNf+AINv0EcxyiVQhInElOiS/6SEJCLvBajzPo9KAuv5JBGRsbMup0dqNvf3UsMjKbVAwVVlYPdujxCrV2UAGVZEEY1r1bXmaURo/GYf/Gv/jU7L3Y5Pj5mYWGBu3fvMp/PGY/HnJ6dEMcRP/vln6HdavGD97/KyfEJ737/B6yuLXPnziusra2ytrbGZDokSxNsy8Sp93BZKgvBRFmiaxqLi4tcuXIFzZaFLePJFMfJKcuK9bU1blyXrnBNVfhnv/orfHT/Po8eP2I6m1IpkBcZo7GMuhd5yd7uDoqqsri4JJEkd2O6vS6mcQXsEk1TKZHw76qSj0dVgaJpqIaGitz/53lOnmX4TgPN0AmjgMl4yMHhPrNwzrPnz9hYXaHXatDpd+tESwOrdh6enp7w8P590jii4fsIrU7i1DHpi+v9xVqd5zlpmpHEKaoiBwV5mhHMZpyfnxMEc2aTCbqqce3KFTrtthzkCMnruihquyiTAkWWFfgNmkWOauiXBSZK9claL9cclUpIFIuqaiiKhqJJjpOuGeiGgeM4TKYT5sEMw7SwbAvHk4zMtbUVLENH1+Hk9JAPPnyPg/1TTk6Gl4VFS0sDXNdB1STUfD6fkKWyvVlVJJInS+I/dc399O1HFp4cz0VVNUzLrAHfCXleEEWyKtCyLDodSZUfDocgKvIkRxQlCEVeTGwT3/fRVI08i0nShDzP8DyX5eUVHFe6eKazGaPxiKqUApMoM1BVVB10Q0HLZbObWlVYuoFWycpQBJRqITlFhimroMOQ+XSKisA0dQzTIMkz8qpEswxUywDDIIlkq5qi6VI9rV0vRZ1HVajI04QknKNrKrppUqRSndY1C00pEGWMY5k4Vv9yizSZTqQI57qYtlRmVVVD1QwULQNNrbPcn6iVmmpgWRYoUgSpLmJWSoVlWgDkaYylGvTbSzScNhqydUtUAs/2sU37UvBq+63LzalhaGiawv7eIaoCjinzrLPJRG56NZVGu4VrD8iTlCLLmE4nZIWgqTQwTYOW7xIlKVkpWVv5BZvE1Ll1+zaaYaKZFopuoNsW83HA+fAEx/YwTYusgigr+fjFPnEQstzrg66R1OD4LJe2Wc3QsFVpBTQ0yVASgFrJtrsqL8gLELmspo4S6cqzTJOVQYeN1QHD8ZzpeMz2x9uMzqe8cucVEAqzMMBUFTY3VoiCmHAWEoYxk0mIqgs0XQW1jaIb3L59kyzLSZJEWmhRcWwVpapQan06GMnFtdPqySaHPCOOA4QQOLYGBszmc1A0dM3C1E0s3QRdQ3MM4nBOmqbopdyyZlFEXGTMq4ymY+HaFmUUkkaCPIqogFkwQ5QlQTLHtg2arS5FWTKejSiKHFXRMCwP03Ip64OJXlaUaUwYTeg0fUxDo8hTsjSmSDJMTWdjbYMSOD85Y3o2xtQ1Xt28Qq+7wFZ/QBKGPH/8CMMQNJo6lmFhmhbzOCQvMxaWVmmLirMsJEoLHn30EXEQo6k6N29fr9sxmsyMGScnp5iGQftKBwufroB5EHB6dEx/0KfdapAlBSIRHOzsYVDQsAW6omGoMJ8GBGFEs9WQm5E8o1JAM3TZXpmlqJqEEVIIqkohFxVlBaZuoikaeZqjOAquYREUU/I4xl1YxHVc8jinIQSbbZsoVwhSja7fYqnVZvvokHky48n2DqMgZrG3QpmUiEJDKCVCUYiSkiDMibOSvFLo9xeIo4ij0zNms4C93X0a3TZes0Gn3cdzM8n1qSCMM0QOZh4xC+ZM51PUWYCiaqi6harq2I6Dattcfek13FaT5uKAXn+ZRkuydRRgOA6Zz+a898GHTMYjTvYPSYI5aTBnreFypbXF4tIAy3X4N7/zVWzXpddfoBAlaZmxt/2C8XiO7zfpdfu8ODgmShOCKGDv2Tbb9x+TRnN6bY/R6TFPHjyQQmZZ8OzRQ7I8Iwjm+J5Hu9VmPJ6QxQkri8tomsa9115FVCUH+y8QZc7OixdUpQkiI8tl+4imqkThhK999XfY372G13CYjYes9ns8N3SyOOQPv/pVHt9/QLvRpNls0ul0JCdA17hELyoCIQoWBn0s22AWzrAsk61rm7KxRBRkSSKnZXVFuGk6RHHM0+0dNjfXeevzn0UIwf7eNnE0R1NgaWkNx3E4ORliWDqv3b3H+uYmzW6Xj58+5+jwhCDJsfwmV65exXFdWn4DTdPRNZ3xdMq777/HaDi8nLDneX7p8I3iVDICa+Cxpqj0u110XWMWBHjNBs12G83UGc8mDBYHvPTKS9x9/S6DwQDTNEnTlN/+3d9jOBzy/Pk2S0uL/B/+m/+G4fk5QRAyn+dYls3bb7/FbDblm9/8Fo2Gz+HhorSuazrCsNBQSS3ZznXt6hZRnHB4dMTJ2SlPn8mWrFarLduikoRgNiVPU6qiQFU1LEMjDueclZKT4FiO5NDFOd9957s4tsO9115n+8Vznj1/hu95WJbJ6egcBSlyW57DYkNGMwaDAVGSMp7OyYoK2/H5xb/yl7EtS7Y4zWccHR8xnA4JkjntfpvOoEuWybZAoZaMJuc83f6YRt0EFsWy1W59fY1Wq8W1a9dQVJXDoz2KUsJrt65u8NnPf45Oq4Nl2TzffkoYxzx59pSykCUMftOn7bRxG9J5PZmOyc6O+fDxAwxN5ye++OMsLy9TpAVGLZIeHx0RRRHNbgfTlA20F+wmLmeicn/xQwpOzR+SETr1Ylf6qY9xORm9GNxdfL2oxT21ZmrkF7H3SqCpCvqnxaw/cr//XvpS9ad98N/vdvFz/Nu+7adFpB8WoKpLLk/1Qxwn9ZIbgkLdPqygKNol11RVKlRA1BqUptRNvmVOnCbM40iWtagaT7dfkCYxZqXScHzWVzfQdZ3ZNCBOE6I0YXltndXVdSogzTKebD/HMk1ev3ePPM/Z29tDVWBpacCdu69x5epVdENGc2oahWzNqkTtupYi0Iv9Pc7OTjk7P6fVbvNnfvqnWegvUAHXbtygO1ggCWPSNOHH3nqL07MzvvWdbxOGc/6n/+G/5+0f/zO8+fYXuLK1RafTwdRkK93WyjqKqmA5kld30QxbFAVllCCilDCJ0UwD3TawHYv19VVee/VlDEPl9OSI8egcU9fxfZ9rVzcvXUmGaaFbNkmSEs4DhqMRs9kcHZWqKDk82JNudU0jTxM6Tb8e2OZ8+OFHmJbNbDIlrwtFup0uy4sLhHFIHIe0Gj4N1+H2jZvYtoVSCcajEf/mK/8KU9f58k//Wf7Fv/w1Do6OOD8+pExjPvjed2R0bzym3enQ7XZ5/nyb09NT9nZ3iKOIC0h9GidMhhk7zySeRJQllmlgtFrkdVtnXpbousFgcRHD1NFNXUbnNI211TUM3eDk+BTbsdnc3JS1547NxsYaS4uL/NhP/iSg8uzZNnGcsLt3QBiEtFpdGs0Ort/k9HzI6XDE9otnqIrC22+/jabppGlOFCfM5oFs4VVUbr/yMqZj/3+5+7Ng3bbzPA975ph99/er32v3zek7gABIgABESnJRtCW6HDm2LEVyVLzThZJy5UqXTqmSSukiZTtJxXFSldhSZImULZohKYIAifYA5+AcnGb33eqbv+9mP+fIxZjr3wckxUAVqZzKX7VwzsZeZ62/mXOMb3zf+z4vT589IykS+v0Tsjyj0wk4PTvl0aNTdja3aIVNWu02GhonR+csF0t6nTVsy2E5X6JrOmHYZHNjA98PleICuLR1RUXJL5c8ffqU8WjMo0ePGI1GK8fBZDLl9OyM+w/u1wNelQTe8EzanZ4CSesKlO44Lufn53zw4x+zsbHO/+Tf/TXu3LqB79p8+P57DIdDfuELX+DKlSv4tk3ZaCC3Nsh6bcqyYqPeIyeTCc+fP+Gb3/omuhD4ns8vfOmL/Opf+hUu7+7SarVoNoKaK6UamrquUsclrNRMtlDnNKHp9TpTrdiMaaaUSYZpodUW3EpK8iKrBzgqTEsqy4QaENQWr7KsVoKEqtJw3YAsz0mihP/un/53fHr3Hs+f7BPHCe1mB4Hg2ZMnVEVBmee8cec2vV6XtW6bqqpIl0uqLKfTaNJptGgFDVphSLMR0O+fMJtPFRhfq3AaHtkk53RwyjKNMG0T3/PwXY9PH9xjMBpSlhlIiyRdMJmMOD4+5t69e+w9f05RZbTaTf4X/8u/S5bmfPLxfZ4+fcp3vvNH2K5NI/DJ8kw5jZKYWVVx7+OfYDs29+9+TG9jnd0rl2m1OwRBg4bXwNBVsIhSG5Y116jC0g1s1+Tw+VPG4xHv//AHnJ2d4QYuRZnz3ve/TfbGq2xthFhGG8sRSKGRFwU/fPd7PH36hGUyqQdeHmr6pdbSSlYgFZd5sYiYz5bMJnPKosRzPWaTGaPhkPP+OYPhgKzIKKViPedZzmQ8Jklidc3IAkmOphUIXeLYAsdWsHjbMJWiUTMwpEHghGp/q6+pi+GKakhqLwDyGuhVqe4XTeGIBsshRVHWZzWFlLEFiCLneG+PKFry9NkTZrMp/UGfMi8wTY1LO1uEgU+Zq/6IqHLyZEm/f7J6Dq7jKPWo/GyG7p/9+JkbT6Zto+u6SlRKlTriAkJn1nR5x3PUpEWIGnpcIiv15CzLxHMdmmEDIQT9/kLFACJrb26I0HXyPCOOlRxVaEqGKWWpDvn1JqfrgouSyRAChI5WQ+qqskSruVJZmq+aZFlqqaaLoStJcFWhWybCVAeTkoqsLDA0FWsvLuKj6+hDTZOURUaWJriuWx8C1KFBaHpdExYYho1hOuSFaibFcYxuCLxQJaEJoamDYx1RS92xlRIFINe0OhrdrL9He1Hn1YucpoEmJYYw8L0GtuUiEEip3m8FLjXr56fjuZ6yH8lKeYOFtgINmoZOKRV0TmgautDwHJt2q0U0n5MIjfFU2ZSq2qZkWjpGoZ5/iQLMmZqGbpqsra8jDItJrKwYCI2izFkuFximhak55JUkyQv6owl5mnJpcwdNQF4VZGVOWmToloGhg6WbKK66ev5lVdaFlVSfDUpdVMmKIo2VaskyCH2H3voaWZIx6Y8YDYbEac61W7fQNSUXNT2HZjNESEGZVUymCxaLJbotMU0dz/WxbZv1jXXmszlZmtVFqHrfdA0oc2WrWCaYmoljOUhdRxoGVamac0JIJApyjKZTpAUGOhiaUrvpmvL+5xl6JdGQVHlGoZWkWYm0dSzDZVk3aquiQAJJqiYPaZFgCxPbd4nmEUme1sB9gWG46LpNUUm0ooQ0p8zzml+j4nFlqYDEZVEoMG+zyXwZMZ9MmaQpRVGyu71LYNnsbmwSzWbkDx4puT0SKXQ0w6IoluR5iRe4SCHohA3KfMreyTGeF7C+0acsruLaLq7jYtsOZVZRyAophJKWuj6z6YzFbM76hooel7mC6U9nU1xT0mjWkw0U+D5JEhrtsI5yrg8gQjVsi7LA1OrkvLK2bEp1xDB1E10Tqwmxoau41CrPMU0dyzKo5hFmVdJ2TZCSSQSe79IJHY76J5RFxvlgSCkF0XyBQAdhI2wdzRYUlSQvoKhUVprluAokLSFJUsbjCZbn4TcFju1h6BZ5ndSnVSVakROXCcs4ZRanVJEKXAgDgWkLdMPA8wLWtrdZ297k8q0bpFlJnqtEpaqC8WhO//ycex/fZTTsc3y4R9O2aDo23W6HVhDQaocUaPzk0SMcz+e2Lpgv5/RHA9JlQlWCZbs4jstiMmO2nDOdzxme9RmenGM5gtBzSOKI8XCIpgnSNOXho0+Zz2cM+udcuXyF1155jTROkGVJIwjxPJftrQ2KsqTdbjKop5yVoUElVGGeK5tPlsY8efSAsip4ee9Vsjgl9FxMoVGVBc+fPWM6GvO5t97BEDqWZak13jJfpH/U9u4wDKlkyWI+w7QN2t2WSozUYDaeEC0XCGGq5q3lkGQls2WMMEyuXr/Gwd4eR2cnpKlK8QiDANt2lfXKarB96RKdXhfHc1kuE07Ph1SFskx31tdpNJusd7pQScq84LR/zv7BAU+fPGY6VkoYrWYZplnOeDpTkcNSEvohruOq2GjLIs4S8qJAGKIG+Ura3TbXrl/jiz//81za3eXw8JDj42PuP3jA2dkZz58/Z2NjnTdef4MPP/ygnoKrtfXSpR1OTwVn58fMZi55ltDrdmk3W3VCktqjHMui1Wyq5plpEEURxyfH9NZ6tNsaWZoSxxFJFFHWsF213GlkcUyRpgRhQ8V6ZyVpmnJ8dsbm5hYv3XmJo5NjoijGdV3FcIjVoSUIlCVQWRPbdNd65OcDZstEqbRMi1dfew3XsTk4PFCx7INT4jRivpxy+cpVWu2OYqAUBePxmChecnZ+BgJ6az3VCEszXNej3W6zublBXuQcnRxRSZVI1Om2uXHzOq7pgIQfHx4wGI4475+jIQg9H7eSGIaJ7bp4nsNyPmc2nTIYj2g3W1y7fp1GEKokzlrVvZwvGE/GWJ6rrldNqUqV3k6paLWf6v18xgL3Jyo3ufrflUGs/t6Vckey+ufFTyjra62qv9fQP/uTX/zyP6vp9Nnf+6/+l//mH3+q6mn1RlwAWtV7/1nQr9pbazujlFRSRZZL7eL9UgYbiSSvSpI8Z5HEBLaLMDQGoxGL+Zwra5u4tsvG+gZ5ljGZzFgkKq3t6s4O7UaTPCuYLebE9+9hWRY7OzucHB+zv7cHmka73WZ7Z4ednR2KIleNwpX9kroRWanDioT+YMB5v6+Uxa7L7ZdfxhA6lZR0ul2a3Xa9WUnefOU1jo6POOuf8eknn/Dej36I32jSaHeV3ck0afo+pq7TbbbQTQPbc5gt54ynU2WtLoqVYjvJUow0wc4sNKHhuS69Xpfd5Q6ffvop89mc0WsDdF2jEQaAYrvYloXjeIzGI2bzKVEck2UpVVGQxQn9LF3xjYo8I/A94jSlkhUnp6eAxng4UvWvBmEYEIY+aRYjywKnji1f6/VwHYeyyOmfnfLg/l1ef+Mtbty8hfd7NmWWMBn2SZYLHj16VMN/J6xvbLC9s8OHH/6Eg4ND4mih1BGoet2xbKVsm45rzqpKLtMdmzhOViwWx3Xp9TrYtontKMC1pmncunWrDpJQ569bN29RlgVpmtDt9djZ3eHll1/H8wIc57ucnp7y0cf3SLMc23FrPIdgNl+QpDHPn+9hGDpf+OIXkFVFFMXqK1Z2/bzIWdvYIMlSPvjJh0gqJpNRjYyA5XzC8eEevu1g6SaNRgtNg8loSp5nuI6HQCNaRliWhW3ZNJsqMEJZ2QVhoMIXJuMJg/6Avb292v4eK9dKJYnjhOlsysnZCY1GSHeti2nquLZBI/TQDYvJZEZRs2aTOOHk5ISbN67z5htvEIQ+eZ5xdHjAbDbj67/4i+zs7GAZir1aNRu1Al5Z/TQ0zs5OOO+f8e67P2BjY4O333yLG9ev8frrr6/g4S9YbvqKq6eYW3W6mPhMiMBq3VAwcaErBW1Zu2ukpkbXlVSsU1MaqzR21Zj46TVKoTwq8lqoYJk2cZKyXEZ89MFHvPvDH1GWOoZh0VrrARVJFNX1smR7Y4Pr169SFCVRHGEKoZq9nkfgefiui+s6dYhOQZIoppbjueiWTqVVzJZzijJXCeSGqsVPT04575+hIdF1KMucKF4yHA558OABH330EXdevsnm1gZf++pXqUqJkBZZkiFLiSl0fNdB01QYR1lkJGXB2UkGQkPTNbbnlxCGshiqM6eBbdlkdTiTGqRIyrJCd10cw2Q46HO4v8/e8+eMJ2NMyyRNUg72nrK12SFO5hShD0Kt3UWW8fjxI/b2npLlMUIYoIu67yRfDCXqvSBNM+I4IYpiFRRjmhR5zmKxYLGYs1gu0HQ1ANBqt9SFu0R9viVSFoCqvQxDwzTUWqYLgVHXBAKhmjtCKHtdfX2trrvaUXaxK69EWVLZDheLpepZGAaGUDw4TVZUecp4MmE4HPLxRx+T5Tl5UeI6Jq5t0mqFtFstRv1zyrwCWX82SaSYYrpRP28dXYqfeTv/mRtPF5sYlaTZaHBpZ5vjkxPO+33CRojU4GzQV/5GTyXsZFmGJQxcQxCEAUHg0V3roAtBnExwfYuNrR5VJekPz8jLmIPDZ5wPzyiqnO2dXQzdUGqTLGO2WCI1Dcu2kWgUVUkp6wKpLmiFrpIRbNdB6BpVaeG4HrbjYhoq/Wpv/4Bms8XVq1dotjqYlo1uWAijVMW7pjY8ITRcz1MwxaW9SqjyUh/bsmm3u8pnPB2T5xmW6zDoj+kPxmxtbRMGIVSKBzWZLUjSnEajpX6XEC9iKW3QjQpd1+riT8dzXVrNllJAGWK1YWl1V9GybFzPpdlqYjkWWZmpiamhg1RlT1mo9yevlUTz+RTXU4Axz7HptUPi4YBcVoSOrZgYiwXTPCeLYnzHJXR9smaXNE+ZTxcKhr0siNOM6XyxAl53JVSaRpKnJIs5f/Cd73Pp8hV66+tUVUHDbxAGAa7rMB71GQ6GCqomFOgQWVJkBZ7n4vsehq4m7GvNDpqE2XAAmsS0DJWIWHe3kZIojlTh7gjKSpIuYnQpmAmT0PO5cf0qe2dDzk8P+fbv/x6mIbDIKaKIB1mKKSxM3cS2TarCIdNU4yZLYoSsqGyHeLFg2D+n22riNAI818UQGv2zY4o8R6AzX8yZLx5iCoFZ2040Q+f54z1K28cSDo1mi1duvbyKan768AGD/jm2aeC6DnMxR0qpmnSWoZI8KoiXkWoYGja+46rFL1dgOgpJkVcs05Kwu86a4zHoD0iihGWWUyxT0mdD4hzGCVy5cZ2XX32Va1cv43suH91/xCwaIaRJXgqWy5QgaLC9c5nheMRsvuDjhw+5/+wZ5Ze/TLfV4s/9tb/G+PSYpx/+mMU8JpvMV4yX5/v7K3WVrWkYGlRFxnI54/Bon0JmbG5ts76+ycuvvM5yueDp88fKs15V5JqGZtscH50x7E/43Nufw3FszvrHFHlCls6RUqUAeo0Olt8krTIleS4KNFmRxEs1gdV1NTkwLQQllCVdYRKYUDWa5FXJYDZGt3Wc0EXKAkdoTAanzA2d6WRaFxRQZCnJfI7Zu0a7s8ZWe4hRCvb6A8o448nJEeF8Tmu5xLFNXMek1/Bp3rrMaHRCf5jwyd1PKcsC07GUbFgvyfKIdD5hOBqzjCL6wyGmrvPK5UvEZcJ4cY7TDOnsbHH56nW6a2usb2zjegFetweaSiSZL5c8enjM04cPOdrfZzAYkEQxebxAIPEtnXVHY+flq2x0umx2utg1TPTw/IzZMqbIlmxe3eFv/bV/n8Vywen5GWWhJMC6IXi695xoOWfYP+fb3/42/bMz5mnETnONSxsbvPrK61y9foPNrXXSJML65ymL2ZRsa42tnUvcuHOdWRSzjBM++eRjZvOYOE0wDIP17hqL9Tnb25tsbm6wubHOYNhnuVgwGo3Ji4LpbMrB3h5/+Pu/j+s4eK6LlBW9dodXXn6JRtjg0aNHPHv+jLPBOetbm9x86Y76Xsfj5VdeJr16lbOTQ7RKQlFhCZN4mSCrkqrM0SR4XsiNGzcJG01s1yfJMq7ducO1a9d583Nf5v6Tff7w3fcoC7UOPXr+FD8IuHX7loJjd1u4tkWRpnzu7bd58/W3+O3/4bc4PTvl/fffV5YzoZOlCdF8zmii7HFVUWDrBq12E6HrJHmG70larVClPeUFlmmh6zrn56dUlSQIfM76p/y3/+0/5vqN6/y9v/f3Vhbtb37jm5z3+3z44YckcYzvKzn/qy+/wpPHT/hf/6f/KV/72tf44s99iWazSSUrfvz+B4xGQ7rtXp3So3N6esbh/gHLpQpe2NrcRFYl9+7dxbYtNtY6mDr4nkW3FWIJyXIyUiEYroMVuAS+z2w65fT0eNXk2NzawrQsPvnkE/KipLu2wWg84gfv/oC8yLl24wbrG+v4nqcYYIbOL//yL0Nd7KZpynl/xNbODq++8UZt5ZHce3CfNEkoshSJZGNjg/F4xGg04unTp6A9JwhUpHKeK5DxZ2G7juNRlpJ33vkcOzs7fPrpJwhd5+d//stKRSd0RsMR7/3wPb78xZ9nY32DKIoYT8akaUKv2+Pnv/RFLmxsjudiWgaPDh8wm0752pe/QqPZpLINIgrKZFk38QXdjQ3CThtMQaFJhosZtmHS9AKQAilrf/OfUuZpP92RqsvQF3/30+DxiosOliaUSirLUspKkhfKVmCa5s88xfz/h4dqOQnQLkLPJbJmV+i1glTWwJWyKlV0vRBIBKWsGIxGlGVFK2yqoWIFvuMRuD6j8wFnkwFFmmOZFlu7u/ieR5LnJGlKlClgre/7yma2jDg5OSGKYzbW1gmDAKTG/fsP+If/8L/hK1/5Cr/0y79Ep6OcBurgoYYs1Ackpa43iOKYRRTxk598SJwk/Opf/it0ul0sobOMlG31Qq1xkZBkWRa9jU3+53/rP+bpkye8+frrfPTRp/xf/ov/Iz/6/NtcuX6Vv/4//Q/Z3trCcV0qKYmSiMViyWw8o9Vo0G43+MWvfZUkSfjhe++RZSoMZrFYMBj0KauCqioRCJphk5OTE87P+hwdHdPr9fj85z+vlFPVnCdPH3F0fESzGWI7Fr/1W/+cqixwHRtdV3iPK9euce3GdTXcKSums4jZdMbDe3dJ4pgkiajyjO2NDRphSLPZqG3NS+bzKY5jcfnyZYbDPpph0un1uHr9GlevXWMwHPObv/nPlCq/5r8VZYG4exdd11kuY7Isp9HwEUKwWCjFuyZhY2OdV199ldlsynK5wHFcHMfh1Vdfw7Ydlbza7XDnzu2afSv47ve+w+HhAV/76tdZW19n77UDlSC3WDIYDjg9PWdjY4PlWsJoNGK+mPPo8X2qquLXfu1XefrsGb/zO7/LTz76Mc/3n/Laa6+wsbnBq6/dRhc6pyeHjEdjfvij95Wy17RIooj7d++im4ZKjdYEi9mCP/j9P2AZLTg6PCSKI+I45vToDMd2ePnlV3Acl8lkqtRueUGSqEj5W7dvcmlnh/FkyDJaEEeq8XShULp//y5CCJrNJltbW+q9TTIWconruviBz83bt9nYWGf38iV2NtbptJtESUoym9Pv9+vrV9mvb926xeXdXdbWevzwR++yv7+PaZrsXtqtIfk+SZIgdJVmqOs6Ukq+8Qff4ODggIcPH+J5Hr/+67/OxsYG169dx/dcPE/V3GWZ18N/ga5bq1VDqZ6MFwrTP9bTFkI5JEDiOS6mYSl7UpqClCRxRFQnhjmOjS50QIBQTQt1vRUkSaQUVbaDEMq98uknn/L++x/w9PEz5pMFmm7Q7Tp89Rd/niuXd3n7rdc5Ozvj+OiIyWTK+WDMa6+9RqvV4pf//F9kb+85//f/x/+N3to6G5e2CRsNxZlCJYzrQJlk7D96znw2I41i2s0mr7zyEk/3nnJ8esKP3vsReZ7z9V/6Gu12m3arw2g04e6nD9ja2eK1N16l3WnheirhbjKesn/4nGUasXX9GqIq0Kuchukg9YppHCshAqBJDVEJnj/b4+DZPmGjRRA0ePNz77C+vs5GbwPbtOr3V1MqUQGaVrF3sM/DBw84OTkmiWM6vS5YJpZlUJY5s8mE9d4Gtu2yt6dq5t/657/FaDRA09QZLU3TuuFUYVhKdV7IkrIsmM4njKYDzgfHhEGDZqNJFM8Yjc/JsoiqyEjqYfHa5gbr25usb29iui5xlhNlGVGWkRQ5aAJX0ykRpFVBJktyJMLUsR0Lw7DQNI0kUWKANFWiH7eugZEVcS0KsmyLsqwYDYfqfkwzXNfF8zymkyVFkTMUkjSJefcHqtYKGw103cDyHXShbPdplhMnqWJpo4K2PD/ktdffVIr8LMPQTYVBqhnZP8vjZ248lWW9yRoGnuvR6XQYjkZA7WOvC10hBKZrgqwoq2rV/aWWDpYXiWVIDEOn0WiQJAmz2YJlpFKs0ixV8FrbUqDBPK/lhSWaUB1hat+8Vk8DdUMR/YXQEPpFZK0AqewSWv0ly5IoignCBkHYWDWxLqZ4n+0kXhRk6mcKFTUqqWMvWUFYQRVxeVEoa0ReKM8mqO6srKhiyHNlZVhJ5ernKGqfb1lc6OGBi0JHsGIxaDU0TdNQMGTTxLAMFckrK9DUa714nuo95wUkPc8xChOjMlWcvGmi19H0pqErwn5VURYFeZYhLbtWzRgKYBwtqSiIc400z1kmqqiXQFiUOHUXv5KyjleMmE6nuI5KzLBME8MQZElMEi0xxAWnop7WCvFillrbAnTDQJPqt2gotZhWqSmFqO1jev3+6bqh4tOLsu7oJ2jCwLItdAFUBeNBH9syuby1BppkMp3jux6+I2q4uEFeqFhTTSqVRJHnFHmuYjILlQ6hpPiCqpIqjtXQKEtJnmdgGAjNQBgGQhPMpnMKs0D4LUzdVADBmqOiC+2nWBsXKUJS+8w1/BmLg0D5iiXq+Wm1z7mqIM1KPAlS10HXwVTRo7KUZFlGnJbMF+q9MUxLpRy4nnodtepO1okozVaLjbU1ZQMtSiYTFZs5GI3RDZPtS5ew/BA7aFClKXmWrj5LxRQDy7TxXY9Op4XvewhdYxktGY9HdNs9PN/GDwOMiU7xuCQvS0qpbAGmZVOmBXmlNnrTsnBch4yKRazVjhOJ1ISaKFQKsmgYBlrdQBDaRcNWVwVGWYCssDSlkrQ0QSFLkiIlzlKiNFFFsAZVnlGVGmmmfMuu5aDwdor7U1UQOB55ELI/nJInEZPZjAoN0zCRhYmoLCxb2Qpc18GxbUbTiQo+qO0QUpMIKnRZIoucMldwWer7WxggKwjbHVqb6/S2tumtrRE2O5i2g24rdeUiWjAcjjk6POLs+IT+6SnDwYA4jiiWcxxTp7uzgWvZhA1PedtbjRU/IMsKkizDtAxcz6Hdbq1i66VUkNzpNGI6XxDHMfEyYnDeZzadKRWqYWAaFpZpYdk2YRhimzqOZVLaFo4WEAYevu+QlSVZUdSFnErM1HVD2XVNq07dcWm2WhR5ioHGcr5EVhVpUbBcLjg+OiIMAhqNBmlSq47CkGazyZNHTyjnJZqu5NPbu5ewDBPDN7FsB8eyVmoF07DQhU5RMwHSNFY2WMvEMEws20YYOo7ucuXqVba2t/HDJhUa82WklEeWUQ9AKnzfx/c9HMemqirmszme18QyFGhXVhXL5RKkpMxyiiwjjSKWcUSeZej15O7C5qfVUzwdMGzFDnBdlcSjrOAlvu9jGAb94YDLVy6zvr7OYDhgNppxdHTEwcEhz589pypLbt64jm7reJ7HZDxhNBxRlUqJpWmaiksvVBrWxsYGWaaYDlmm3p8sS2vpv9qr5vMZVeXhB26toLQwBGiyVDDcqsR1lLzbtmsQZ5mvlKMXdUNVF3ZVVZFmGbP5HNu1CcIA13WxbKfery2VIJllHB+fkBclaZajCzWsUcDfgslkzHKxgKpSU3LXrvdFWfNjqhfsL8vEsq1ayWyQ5zmmaeL7yhqu6zpxkiq1WqeLYVigacymC5I4IVpGRFGkFHWaOvwbhrHi7aiDqvqaTWcs5kuuXL1O2GyuBmdoKlwiK3N008QxdNKaE1LV/Ech5UqteVGrwEWt9y8xmv0p/7d2wXhCglSq26pS169qWKr6TB08/+y2k/bH/u3PgoO/eE4XcIrPPr+fvbn1x1lPL57Bv1qD7I9D1i8OLZKKsrZUVCtWkqaAxlCHDFzI1LXVy5AS8kIBV4uihFpxK4SaNOd5ThInGEbtEHBddMNgMpsSRRGTyQTbUZDXC0baaDImTVOCMMSxbAWsXSwZDIZYts3m1haWZdX13h9XpakiUNME8/mC0WTEcrlcqZvCMCRLUpWKVZboUg1vKzQQklLK+tB+CQ2VZnV8dEaZf8rhwQFJltDv9wmDgNBTfLgsy0mTVDV5DBMdjbDZQBhqjU1TxXtVteEMyzKxbFPVxWiURUUhE+bzGZZlMZ1OFUdJmPT7fc7Ozmpch1LSV2WJlBZZlrHMc7I8Q+g6DV/ZU6PoRWz5RVJynmUkSawsbcKsY9+nnJ+fo6HRajQpq0oF7piGsjdVyjZ3fn6u2D71PVTVKlqhK7arUnGtYdaD4jzLSZOETqfLK6+8wmDQV2vTUqnzu92ucnsInbW1Hrdu3aIocrIsJQhCBS73fQI/IAgCkJLpeFqjOQRJkjKdqCRO5STpKxWC0OpGIjXcecn29iZB4Cslt1ZydnrCcDhi0D/HdT1azSbTieLZbmxtqkAcyyJJEvb3D2q2ywLDMGiGzZWaLoqilfJCOV6ULTVOYqXsqAf5ZVHUqlqlNL2w/Dq2jeM4xHFcM2oEGhq2ZWNYSoHfbDZpNpq4nodhWpSLSFnWkrh2yMRoGnQ6nXrvLTk7PWN/f1+Bzrs9ms0mlmURRdHqfk4Slcx3dHTE4eEhWZbRbre5efMmvW6PjY2N+l6v/lhqJTXrR1lqXzT0a/GAJv/kGVxT9btRN64ulDsX1u2LIAh1HtRW5+qqtmyWpdon9c8MECTKcVLkKnBLrSvKybG7u8P2zladpqiEIMtYKdsMy8L1fTa2NomSJY6ruD+mbSPqZlzdJ1MWKolKjMsLsjRDSnUGXS5Vo7koCoSuGoqGYRJFMWmtOmy2mlza3aXRVFznfl/Z0Pr9Pkka0+q0KaMlVbRA11Ria5oVCK0k40JlWpJnOVmSkiY5i9mSje0TKlnhGDUP1MmUCscwVy6TlRpIq/sQNblb01DimDRdnSGHwwFHh0ecn52zWM7wfbuuUcoXe2ytaJMXZ2upruU4ibEsm/zinFgWK+VsUajUukarSRCGdTKdoChf7LeVOt3WYRQamq5D/XtqcBUSFbpVVepayGvWdVmqQKuqKms1XaFSvYtCKSqrF/By4MX1lBfESaLuXylp6eqcpAuBbmgYumJQFUVdn9V7pmGYhI1QMa3SVLEPJCDqC+ZnePzMjafZZEKz2WJnZ4d2R0nP54sF09mMOE9JshS/5jdlhVpsJ5MxlmlgWSZSFkTRgtPjE5AVmihoNkNarV2S1EEIkzzPyFJ14EMK0jwhLVLGkyGVlJhW7Vknw7IdVRCKAr0UuF64KvqEppFkGVVZIKtSKaOqEiE1ClmRFjmmbXHp8i6O47CMY9KioKwkZl3QXTQzLiJNAXXgC0OePX3KfDzE9Vx87yI6+5iHT5/Sbna5decOmibIy5LzYZ80zdANgyhKabY7pFlOkqoISN0w1IQNjThN1IdcqAJG13Ucx8CxjdVF0x/00YXOlauXaDQbCPHiAxe6hm7qLBcRZVniuypqNMliFR3uWBi2iWEaWJaBbelKFqmDZamOvWHqmKaBaZukeUFeLEmykiyvmCwSlknK6fgQTdfVIqVp6ALCZhvHA9Ny8YIWf/Ev/EUqKXn+5CnXrl3myu5NNKGkhfF0QjKdstlpk+U54/EI17EIfI/5dMpiNsOoizVTKB/3LE/URU9JmqrN5gJO73seluniewFFUcFsRhTHHPbPFZDdNOm2AjoNn6PDEwLb45f+3C9zcnbCN775DWIvoQjz+lAeko5TqqokcF2QktHZGXma0Qp8kjhmOZ+hVQW+62DaNoZpomkCSwhCw8I1XTzLJS8SsiLn7OyUVDPYvNWgzBKO95/h+wGNVpPQ99nZ2mEymhDHMXlVAhVpmZFVUKEORWHgsYwisjzDr4sqWahGbxAEZBVMxnMm0yUIgWWbmIZJZ70HQsPLloSFhp8Isqrk7oOH5GVJsxGCrmO5LrPxQB2+lwuu7O7whbde5+6ngr0yw4hbRFHMj7/9HcUzuXuP3Z1LvPXVX15ZMvYeP2A87BMNB+hobOxc4koQ8oX1DeKsYJmmLOdzxsM+4pZO2GiiGZAU2apwKTXwggDPCxCZREg46Z9iTnVsy6SUkOaQ5AVkhZrQlwWNdojjhXQbAZqsKJZLhKYpK65UZXgSzyllQWgKdClYLCKiMmMhCrTZlFyDjtQINIFTryORkGjCwHdDpBTkRUK0mPHg8TOubW1yaXOb0+GAeZbxbO85rWYTipzAMckcCzP0ELbJxtYGrXaL3StXmI7H3P/JT9B0MDWTlm6y5YbQLPBsG8O0cVyXSzdvs76+zvUbt3AbLdxGm/l8SbSM+dF7dxmOR+ydHjKdTjh4/lQxdIqC3Us7bKyvcePKqxi64OjhQ/Sq4sbWprq3TQWsXE6mFBjkleR8vCQuCq68/BJhb413P/iIbrvLxtomoBqT33/vmxydnOK5LvPpjGQRY2iCjbV1hGXRjyMeP33GYhGznEyoioyj4yPyPMF1LaIiI8kyhsMh5/0RsgLbdpUNtE7kSJKUg6MTms0WsizZ7K5Bu0uVZczmM86nU6Llgkd372LZDq7nMRiNiSIFwez12liWQX865uNPP+LajRvohsGrr77K+toaVBV5WbJ/eMzpySm7O9t1cR4zHg45Pz1RRZhtIyuB6/n0J2N662v8lb/yawRhg9liimlZrG9ssbW1RRAESAmu63H1+g2CMMDzGzx7tseDBw+YThfEcYrnO/TWmpiORZZmnJ+cEAQ+165cYpnEREnC+Xmf5SLiZNBHouEEAWkcMz4/4/LlXW7cvM6NGzdYX18nSfP6QCRJ0pSz8zNmizm/+y9+jw8++ID79++ztbGJ53ncvnkDQ9fpdDoUddrb7Zs3+XNf/SpRFPH+e+9x9+5dTMPg7/ydv0Oj2STLM374ox/xz/7Zb7C9vc3OpUtoskLTVPS1rEom4zFFnhDHKrlmPl/gmQJTC/FcC8fSuXH9MnlecHx0QiULms0GYUOl0GmaOrT9yl/6FZZRzLs//BGagDDsKfWR5yoFxXzJK/WUVgiDfv+Ub37rO7SaTba3tjg5PGJ4fqaarUmiAjLyjGnNLtQ0Wds+LJp+oNJoTBPHdbnzystEUcyjx09IMwUIvn3nDts7O3zyyad8/MknNFstwkYLxw0RQpAVFZ3OGqZu8P77HzCfz9m4tM2VK1fI8hxd0zg+OFTsjrLg+OSE0WjEZDDEEDru52w80yaaznFabbY2e0yWC/rTMXbd7CIr0DVNTSKF4tlIoYHQ/0SjRjVSf7pmuyg2Rb0GlpWqukWdhviiV6GpaPRaeajrCvB7MVi7mNT/a3/8S3pl/6M96vc0y0uWUUyWZ+RFge+qBrwpDCU0k0oNZhj1+1gVVCgLhGXYCAoVo52n9KcTNfSra+KizLh65QqNMMCoYDIY8b0P3mU8HnNyfMLNGze5deMWcawGHp/cu0dVlfyFr/05hNDZ399HVhW3b93m2rXrXLp8WV0bwApoDtQnAUAdsL7/gx/w4NFDtra3CBoNzsdjRpMpMs1pddr0NjdUGjWoA5FUSXWFruNZNlsb2/yFP9/j5vVb/KVf+RX+8//Df8EP/vDbXN7e4eWXX+Y/+g//GmgwGo0Z9Yecn57y4NO7LJdLrt65RRAGCmJr2WxsrLNcLjk/P8eum9L7e/vM53PW1tbV9eeHTKcTfud3fhvTVI2JR0+ecH5+Tq/XpdPt8Lf+1v+MbrfLWqfL3t4e7733Q5Ik5cHde3zlq7/I+sYG4+GIMvT48i98SX3EqIbMydEx5+eqrj7Y3+e83+fo4Eil7V25wqXdHX7xF7/KbDbnW3/4R3z3e9/j448+oV0HwkSROmzHcczu7i43b95kY2OTVrvN22+9hee5PH36lOFwyP379/nqV7/K3/7bf5vBYMhoNOI/+8/+c+7fv8/ZWR9N0/nSl75Eu91mY2OLe/fu8vHHHzGfLTANl3t3H/D0yXMePHighj5xSq/X5dXX3uDk5IgHDx+xXKrhwHw+Bw0+/PATfN9nraeUnsPhiA9//BMePXhMHKvnXhQ5jUaDl+7cwbFtXNdlNJ4wHg+5fuMqQRBy/eo1Tk5OePf773Lz5k3+nV/9y1y+fJnLl3eJoyVJEvPw0ROSJMHzgppJ59Ef9Dk43Gdzc4Mg8Ah8laC11lMK7bKEjY0NPve5t1kuFiwWC3784x9zfn5Op9PBdT1MyyLLcxbTOUWWMx1PeOnOLbSdLeL6DDWbzZGy4vLlS9iWhevYlEXGRz/5Cd///vd5vvec/+Q/+V9x4/p1LNtGF4IwDImThOVyyTe+8Q0+/vhjhsMhruvyd//u32VtbU3Zu4Esz1Y2zguRAbwQA1w8LppSF6rBn07/1OprT11/mqGrrDspySupUuHTVCltbUepbPKcJM0UdkBW6LrCszRa7ZrxqGxbeVbwhS98nrfffpPxaIxpmtx++SaXLl3iF7788+zt7fP3/zf/O9qtDr21NQXG767VkPick/4pJydHzOMULyvIyooozdCjmDwrKIsKAw3fdrh17TrPn+/x3bNzRuMpo8mE3cuX6XQ6/Oqv/qpqFE9mPDvb49GTx7z9ztv8u//er6Gbqgl7aWcXWVX8o//m/8nDhw/5wbvfp9db450332Zydsr49ASzKBGVZMNvkpclR5MRSZmzkBm2Y+CFLpRQVTkffPA+umVyffcKgefTbXYImw02tjfRhIamC27eusbNG1egKjk7PeX8rK/41GlKGscsF2qgaegG737/B3z66T3KssTzfDzPWd3jF2dNxUDUqSoNicDzAkzTZrmIKbOK5SyiyEtCv4FluugiQpYxbuDz5ptvcOXaFaQGZSXJigIlmBeYlsIJJFmO40On2101viskWZmRzFOV+q4JqrIiSSKSJGI2m9X3c4Fpm2hCYzQ6UsonYWE7Dp1ea3VdhmEDXWhkSUzgB/zqr/7bpGlKf9AnimKmsylh2KbZbqLVDLgsrygrgR806oGoieNaOG5ItIzI0ly5zD5zj/xZj5+58VSVVd1Bi9EmGlVZMZ8v1NS6qGHPsgZvlWoqpHEh765ZHbJCliWGobO1sY7tWExnc5CK4C60mt+k6chKW3UZL+oT5axS06iyVHwoar/9i9erENRVVWKaCvxtmuYKmvnZRcM0TaVuKuvJ0GffNG3149ANxZOwLAUTtx2HsqxU+hwalrVQVjvLUt1iJGWR15NDpcYKgpBKihqch4IdrwoG9QtN00bTCtLa2w1KVWWYBrLurBZFjtQvAhcBAUVZkOXlint0way5aJ5pQihWRKX+XFSVSsewrLpQkWryWnd0VSdXInRAE5i2jdR1hGFgWBC2jBpwbKy6u1UFZaXh1KlRuqXkw/PFnKIomC9mBIGLaRjEywXL+Qy3blzleYptGYpZYprYtkWVF1RFTpLEL7hWQkHldUNB7mshHWmaURQlpumoCaWuIohN00I3TXTDoOH5CAR98xxkxXg6Jc1yWs02mqxZXBpYpolikdSSdaRKukPZyOII0lr6qqEiizWh19MHjaKskJaGZphURVpP8tXUOormFHlGOp/heh5hs8lyOcesuSSVXdFut0CWmKZSMhVlufK8CzTl+RVqIlRqLyYwArU5yovNsJRUWkmR5bVcV6485VoNOSwLNb0o8xJZSXTdpNQK8rxkNl9wfHpKluW4jkuv2yP1UzSpFFhJFDObzxmMxgRhSBAEeEGDPMux0dQ0TOhUQiBMiyxKGI0nLGvQcBTH2I6LhlaDSItVJLNjO9imQ16mFGVJKR1MYRI2m2SOQ56p0IA4yV4AJtFq9YTEEDpeECrlXpop/7cm0B0HIU2kYSqPuWWhFbJOxNTr79NXSRmyAtu0V0w227JoBQGTGBZxrBSEhvKml5pGsoxYaIKJMyRzLDLPouUYeI69sqy4fgiVgvhatkmjGRI2mwSNBhu2TasqWZMapmUTdtbQbZ95nDGO+xSnA2bTOfEi4nB/j/lsxnioUkp0KsXQ8zzWOm1ajQa+59eeewMhS5AaKoZVoAsD3bSYLyKWcVp70CGrPeuzaEnQaGHWUNckVuB+oQtm8ynz+YQyT7BNg16nRSElhSwp8owsS6hvIoqqrOX3ZQ3ozwCBZTnISqk8LtY5p+ZRFIWySchKUsoSWZaYhl6vvwKZVWraIwR6pteJlBq+7xOGoeICou675WLB/t4el3d3lX3EVhL3IGzgzmYkWYaGapz6QcCl3ctUNUfO830cx4XxiCSK2d/fw/M8XC9gPptgW5ZSRBYFrVZHNYSFIFpGTMYjhqMRRVEym82YTmdcC1U0sDAEVBW2rVJ8LmzDQgPf8zB0A10IxSCqShVuUQ9DLMuiKEriOGFzawuhGzx/9pwoWipWURQRRzHj8Zg8y1f+e6tOhMuylDxXitYLptN8PmcyGTMaDhBC5/Hjx+xcusSdl16i025jWUrB1u12sUwDDcl4MqYsilrVkxPHMUmSkucZSRwT6bpiQZbq9ZdlRZql6IZJZ62LEEatjI0BjUazhSYUe8txHZUAZqiDoeJavGiYnJ+dMRoNa8WrVFNYTSKLjDROyBM15aNUcceyfg9NXTEhQj/Asm3yokSgMZ1OWS6VOjfPlTJY6DqNRpNhDdoU4iJJR7KMYvqDAUWm4sSj5ZLFfEYr6WBYJq06ock0zRqwnDMeKdBqt9GiGTZwLFspgG0LyzAoi7KGH8crNuPFdXBhffrs42Ii/cI2VyuCL2qci6riM4ejiybTRdOJeu3Ni2yVUmjWSUtCU3wScVEL/Yx9p5p29LN980+9oH/pD/z/6vEvTa/7lzyHi0k2qLoiiiOQKtTFtSzFZuQzyob6SWq18skyFBfuorbLC6XWV82/OhlJypWNyTQMxZurJFma0QwbeI5DISVZWWBaJhombm2vL6sKw7RottorFVWU54BqBot6Aq6h1tQLpWJa34vdbo+woaLPSyRGDbC2DENdPxLQSrRKHbrLUl+pBlzHYW19DTS4eeNGbZs9xXZsRrMJju2ovddz6XY66rUj62tZVxHuloXveT+lUtd1oerjOklQKVfaZFnKdDqtld8KHG5Zamhqmrp6XUlCHEVoGnQ7Hc77A+ZzpUSMo4jxaMRsOqPIlerA930W8yWLxQIv8DFMFdDRarWxatuKbhg1X1XxeBaLJXGsEk/VOqSsTu22y9raGteuXVMKmd4ajUaDmzdv4jiqWTYcDinKgnanw2w+xzBMWu0OzWYT3w/qZtGCs7MzlRZWqeTpfr+vGg2NBuPxeNXQUOzEZGVPWyxU06LV6lFJydHREbKSNFtKsdxsNut9w16dYRqhgq8PB0MEgtl0itZsEgQhnXaHTrvDWm+NIAi4ffsWjmPzyccf1yrQYPXlOjZZlvHo8TOlwNKVgnU2myGlpN1uKxh3s0kYhpimpRQmSJWsZduEodo/olgNy/Msr9VQJaZlvVD9lEpts6zrzjhR1/RiMcc0TbqdTp0EV7G/d8LB/gFlVdJud7BtG11Xa2whleru9OyUg8NDxmPVrLly5QrNZpNOp0MQBKtDelmWKxeHUs38dOLlZ5Ukf+bCUq8TF3/UkMptIupk9qJQip5M2W6VjSldKZsu9p6zU8Vnm88W6kxeVisQuePaXNpVvLdGo8GDB4/Y39vn4OAYy/a5EjQAiSZQbgfHUtxh3SSKU9IsX72mqlJKnSIv0IRSvgihU5UVi8VSnX80jTAIaxWwqtvOzwdK0Y2GZVmEjQZoah/KkpQ4Tth7vsfhwQFFnlGkCdlsil4WhK6NWVSIqiJLSwyp0bJt4lIgi4pKU8nCsgZ7Z5k6Dw+HA6LFgiSKCBchWZmqAYppsLm2juc63Lx5k26ng6zuMp1OWEYzVYPXqZzRcsl0OmE2G6ObcuUiknVdfMGWlspCtPpINU2dv2ezGall41gpVaUU5BfhHUJTTppGI8Sx7dX1jaQGzhvIWsHoBwFhEBIGAaZpqjNMnpFmKXESUZYVpmGtVFoX144mFIJI6Or8LoQAw8RzPWzbrlWx6lo16jOTrBP5hFDoBtdxqaqKOLEwDcWIvlgHLy5xXTexHZtWS4lG0jQjTXKEqNQ5Q+g/01b7r8R4iuOY58+fE8cJk8kMx7WxHJMsSSllubIg6bWNwbbUC7YsmyyJSMoc3/cJ/AZf/cWvM5tN+Z3f+R067S6XL1/D8JVt7PBgwKJMkBUIXWCaZp2UodIyis/IzExDpZ6VxYsDDLUsvdlp0em0aTYbWJalbFK86E6vPPuVShzAMF6klFwAJTUNPwhot1qrm3JtbY2skXJ6espkMub8/BzdMLi8u0scZ0yn09XvsCwLy7G5desljo9Pef+DT9B1C9vxSPJMNXwqNZ1qtjoURcl0PMU07RpC6NJseqrAjdI64luSpglF4aHpGvEyZjoZ4zkOjmkp+bJprS5+qUFZ6ghdcQjiJMawbdwgpNIEeVkRX3jWxYV8MMewXUzbw7UdirJilKS4hsHtncvkRckyShmNxkzGE0oMilKj292k3ekgdV0p3M6OyPKYBw8+5dWXX6G5vs7Z8QnHh0c0A58sMzk5P8OrN2pLCJq+x3BwThLHzCZDTMOgETbQDQWx9Vwb3WjVFpCMs5MT8rwgS3MM08SwbDzXw3M9pC7QdMFuZw1LGJyenrJIEr7x3W/TbbV5+413ONh/xrOnDykqH9ux0Kgw6zhTwzTpdNy66QnTyZjFYs4yWrJYzOl1uwpKDeQ1sE8TFo4rSIuCJE8xbZOiguOjPeIoZnR6im6aWLYqXJqtpgJeBgE3Wlcoi4z+2RFanhJHMbEwSHV1IDANQ7FApFSNJikpCwW1d2x/NaWOo4gizhgnAypdo3A10kqwzE16YUiv18MyDKo8J11E5FFK6DdYojMox9x/9IzxeML1K9fY3tjg6u5NDF2vPfURp2ennJ6ecXB8wptvvsnrr79Op7tOGLbwbZ0sS/n00SPkIiIeTVR8+/0HiKrE0DS2tq5i6BaGp7OMIiazJYv5lMmoz9bGJn5vjcFkQJKktLdbhK2Qmy+9TJ5mnDeOOT08ZDGd0W6G+K7DdDZVzTANAt9n+9JlppMJg/EhjuNi2yZeu4FhChbLmFzTcXtdqiRmPp/gOj6NoIVdSvQKsrxAaJJ20EFqglRqBH5AtxXyYL/P6XDE2bCP69r0el2cJOPR8ZRkMiMaDXE8GzdweCsM6bTXSIwEXZisbW0rS5nn0+52uHnjGtvdHmutNreabRzXY+PSLoXUeHR0Rv/snG99+0c8ff6Eh48fQpajlSW9VgPLNBCGphJ53niFy9s7vHLrDrNFzDJKmEULllFEmoPMKyaLDMuW2K6gFbqE3TZPj084Pj7BcF0sYXC4d0CUpGxfu04Xidtq0H/6jLPjExqtAEzJuz/4LqP+OUk0Yn17ky+9eYeTk3OOTs7QKahESdBrqoaerlNUkMYZi1nMcDDDdgK2tlo8f3JAnCjbguPY9DbWaDSbL4qfslQpYHGMaegEvosfO6SkyCznYotzHQvXsdjZ2uLS9k4dAaurdLIo4tvf+iZXdnf5ype/QqfTQWiCV15/Hctz+ejDD9CFRrfd5PZLd3jtlVc5OjhgPBpx7dp1BaPMMybTCf/ov/6vsSyDIPDI8grftRkPh4yHI27fvEOr1SKOU46ODvnWt77J7u4ut27dInm+z2A45JVX7tBpt0myBEPorPfWyJKE0aCvGnSyYmN9Dcd2iJcxyyji0bNnaFSEDR/PVweHg4ND9g8O+bkvfYlWq8Uf/tEf1nyKx5iGieepCfOlnR1arSZefeDIsoz9/X0VwCFhODgHWXJYF+Cz2ZQsy/gH/+Af8HNf+AL/5//yv+Ty5StsbW5z5cpVrl2/RqvdRMqK3/yN36DIMj73zjtMJmPu371bW8pyRsMx0Xy5ghgPRiM1LHBdtrd3uH3nDs+e7XF8fMpgOFKpfYliENy+fRPbVhbc+WLJvJbxSymJlguyNOHBvYfkec725gaahGS5QMsNpGFgazq6aSs7gTBp9TZqCXqG4zg4jsP6+gae7zMYDFksl7z7g3eJk4T5YomUSjFi6Abr6xtUVUWSxDXrSiPPMg4P9/nDb3+bdrNFp9liuVxQFDnnZye4vs/tO7dwHRffcRmNxyzmMw7297l3/z5/+2/8x9y5dZt2o4nrOXTW1pBVxXQ6ZTqbqAAF20HYNr4XqCFDzXXUhKjHalLF0PHCZl7WHCJhmPXhRtkhNV5M3y+mkWWdyoYmWMwXDIaD1WGq3Wrhup5Si8sKxYv8N/xQc7//0R+qWa0O97ppMF/MOT8/pxE28FwHz7FUEW+ooImVxUYIdBQLJQxCNc2uSmRVkFeFSnz2A87ThGSekcwWRFKjtals6F/4uS8oG8xySWC7+LbD/tkpy1nM9s4OjmXTabXIsoy+odNoNrl0WSXe9ft9hsMhVVXx6quvYhoK8q/rOrZtM5lOGI/HIDQ6nQ6vvvIaYSPk6d4zdKHRabVohAFOfd1ICYYwyGvep9A02nUz3DQMumtdOus9/qP/4D/gS2+/w//+v/w/8fTZU/7cr/xbbG9usdtZZ73bw7Ztjs5PGc2mOIaFbZpc2t5SboQkwXM9er0eWaoUhr3eAtM0mEwmmKbJK6+8pBgq06mC9M5nXNrd5dqVXTqdDpZl8clHP1kdmNrtFleuXCGOlWr05PiY6WTCRx/+hMFgwHw2o9FocuP6TU5PTzk4OGD36mW6vR7Xrl7Hth16vR6madYDZI3pdKYQIMuIok7ETZJEKQjaTd5++21+/dd/XalBd3bUgFtcxJ7AW2+9xXgyYffKZUajMf/9f/9bvPTSy1y+fIXtnV2iKGU2nXK4POLo6BDf91hb6zEajRgMBkqlu77O+++/T5qmvPXWW8RxzGAwwLZtNjc3aTabZFnG53/u5wmDkH/6G79Bnue89tqrxHHM+flpbXO2laWmLHnrrbfQdZ3vfuf7nJwe8+GH73P9+g3W1jZ47bXXuXqRWGhZvP7aazx+/JgPP/iQTqezanbOZnM6nTaeH7CMYsaTKZat2F2PHz/m0u4lXnrpNjs72/R6XTzPpywrPvzwI5Cwu7uLZRnohqCsCuIkYjqbMhqPGI/HNbswQAMWtW1Q13VG4zFRvR6nacrx8RHdToc7t26SJgmnZyf86Ifv8pu/+Zv86r/97/D5z/8cRVnSHw4QAqIo4uDwgO985zv89m//Nr/0S7/EW2+9xRe+8IWVGjjP85X1fIVSkaywF5VUoUZa9dOL1mfRK3/SxitX91dVHyZMw6hreDXIHo1GZHlOo9VEyoKqzAgbLWzHRdctFosl3/yD73BwcMCPf/xBfYYVJElMXuR85Stf5qtf/wobm1v0+0P+/t//37Ksg2Fu3X6Vl199k37/jGW0YGNrmzAM8DyPJC04P58QhG0uGBAVcgUtdyyTJM1Jk5z5fMnp6TmW7RAGTW7cuMnVa9f46KMPOTs9470ffYjjurz62it0e2vYroOpK47o0cERR4dHfP873+P87JTNzS5EEU9/9B6bmz12N3uIUg0aB0d9zKLgZrtDXOWcLCfM05hRvERDWRVNYVBWkqPDvVVTxbIsAt8nCIK6cXqbra1t/sqv/WUEOr/xT36Dp0+fcN4/w3OVIjCJEw4PDxkMz5nORvR6TYTQSJKFctmYAtPU1SApLSnKCq0eHlRlwXIx5/neUxzbwXd8mg3VaNXFi+a647isrXXxPJd4GamGHmBbDq7tEccxlmlx/eo12p0Ol3Z2kFIB+mezOZPJhMViQVmU+K5SFjb8hrL2lRFho4EfhkTLJVme02wrlvZ6p4emaSvXlqwHnKBQRlJW5HmGbho0m83VgNxxHHRNx7aUs2yxmFNJDdNy6XZ7vPba65ydnXN0dEyWllQVSjz0r1vxpAlRJ5SpKUyv11HTaFkpwKumVBeUFVKTaqqvachSMXJ0ITB0S7E8TIuN9Q0812V9bR3fD1Xcc5aS5amSwzea2JYHGthWjl6UCK1AyoyiSFTXE6Xe0dDQa/mLrCSWoeM4DqapiOsXYLCqlpqbhokhdMoiR9ONmuGmgV6DO39q4WBV7F2kChmmgaglmwravUAYOr7jkqclVVmsPrBlsqw5PC88wEIXGJZSYa1S66oL5Y7q+GPbdaf+AiaqmnC2oxbE2WyC77uEQUhVFsxrPlIlld9XVpLlcqmYGvXPzPJMtWi1Czi5r9gSlUTWRavnX0z0VGM3STNsw0KiIUwTqWnEcbSKX1YddI0gDGm22qR5RhTHOEGAaVm0Ox2WywmLeawKOqEKGENX7CZd0wh8n6ooOD48JHBdPMdWhyVDV++RlKRRhC4ElWWiWybSNJB5gVZWuJaNKXSqoqCoqtX0RTcMikJSAFNjhq0b+KFHqWsc94doUiAvS1zHURO6Sk3QLM0ABEVRKsaVpZJJXM+jLFUHOs9SSglCGAhdpyxKhK7jeh5FVTCaDiiLmKoqCBsdHGFCViiopBAqAjXNSNOI6bREaAriOxmllEVOtIxwhWp2uI6LZVoKxFle+G1VbKgmK3ShVBNRtMCxnVrJp7rplu1QIknzGNdvsnbpMkmeMzg/x9Kkeq8dm8x1ycpMMY4uIrUrqVQbWU7WS3Atm6LI0LQK17UQaUYZp5wfH/FxWdYTu4rdS9sYlkFrfQOEgemGbG7uoGkGZ6fHzKeTusC0uHPpDq4XsL17Tv9EZzY4w6DCEhIoKGRGnEZ1gswCDYlh2xiWhTCNWm2hwHpC01bQvelsTpSkoOuK35SlFFqFaRmr5IbVDV6UCCkxhKAsCpKyRBYZQkMlommCpFTNSEodQ6gEt7zIkYmk0WxjeQXW+YK8KomTBAwNvTCZTZeM3ClCN9ANnfl8QYXGS6+9TrvVYnf3Eg3fx/E8DNej1HTe/+RjZvMFT/cOieYL5sMhMlmy3vDRUfdMpxFiGYp3p5sGVVEwHI64Wz5QMPBCYgaumhrWh1On3ULXBZUGo8WCUaTiuy3bpNEIqaTG+eEpeg+u716h4flMhkrtU5Yly2jJbDrh7PiEaDahE3iEjo0sMgytwjM1Rv0TJvMxtqPk1ToarmmhSwXpXcznGGmGpuvIMkdQMR4OVr5023XY2NzANAwWszlCqklOmicY6HRbyvKZpTkSyLJMRfr6PkhJtFyuDhq+7yFlxWgUc3J0zN1PP+H1116n1WrSbrfodbuqIZPGnJ+fc2lnhzAMQdOIk4SDw0Nl0+12ayimmnpPJjOkVOvo9WvXaLaaIAvmszF5kZElKqK7FYa0wga+4+GYNr12j/XuGmf9M4o4YzIc1e+PzTKJKNOU0fmZUkzUkFbXEDS8Jq12j52dHa5cvVon8+mcHJ+wt7fH3t4es+mMtV6PRhiyvrbOfK6a4/FySZnn2I4aZNy6dZOqrFaspiRN8AIPwzTo9roU9XWU5Sm/9y9+l+Pj45rPptYsKUETOp7nk+qGsvtJjaDRYsPzCIOAyWhEtFhiWC6abuL5Prbj0Gy3sV2XwWiMYVmsb27S7qrC6MJiU9TqjOOTEzzPp9frMptOSdKUQf8cpKTMU2TN0rEtC89xQVbkWU4cq2FEFCVqOi1LDMNQhXKjQaPZxLAsiropalg2rVYHL89wvQA/CGi223iez2AwIIqXlGWB0EOqquDs/JTxeESeZ8hKBZB0e101pHAUL0pKxfpLpGQ+ndI/73Pl8mU2NjfZ2FjHtm2EZVBpsJjNiZOYyXRKnKUkeUawXCJ0Hc9yVhyRUoNSU4mnnz3uSClr5a1eMx1rhW1VrSb0F+uc4hICaJSVUqAVRbEKLrmw2ani9GI6/2K6/+IXv+CX/IkD1p/SQPpZNEd//D/7N2Ds+xOPP65UuEisU8yVHN/3WF9fq3ECOlGi0iN1TV8p8ay6TlNsj5JlzdTQDJ2yLGkFIbZt4bsestPBsyza7Rau44BQeAxLNxGmBq7EMa26PlLN83a7hWPZCKGR5xnD0ZAsz2g0VBpkVVW1IlxjPp+r1K2yxKobYmVZESepUvt4Po5t4dg23U4HoWkEnl+rQCt+6oisSRxbKToX0RLXVozOSkoKWbG5tYUmVaNyHi95vreHrgmub11CN02o9yXTNGsFs1KSq3sjVwoCJFmWksYJWZqSpSmDfl9ZgeczzvvnFHlBp9XmyqVLK8bWxRTwwp6fp6puWy4WfPrJpzx89IjFfE6j0cR1Pba3tqk2NrFsG8f1uHRpl/X1DdprXfwgIEkyqrKkPxjSbDa4fv0GWZYwn084Ojzm00/vspgvVo2lZqPBL//5P89LL91hd3cXPwhWbg9Namg136cocpWWt7aGoZuUhVLqnpycYNs2a2s9wsAnTmKODg+ACtd18H2PVusmcRzz7NkzdF0pn5rNBp7ncvnyJXZ2tlhbWyOOFUun3z+j3z/HNHUMUzVz8iIliZcIDSzLUPymaMnBQRvbdvA8h62tTRz352vGUsLHn3zCg4cPWF9fp9FocOfOS0gkW1vKvvTRxx/xyiuv0O60OTs7I89V41ATAs/3qGSFaSleXqPZBE3UyX3q3rJtxToUuiBJE5VS+BnmkmkaBGGA49oMBn2klLiOjR/4NJstPN/FtC36/T5RFHFpe4dut1M3pUa8/9575HnOnTt3eOmll7jz0kv01taoKskHH/yYyXSqVGFS8rWvfY033niDa9eurax1Fw38oqhdJ5+xyuVFoRpHVQmaWnPVnxWrSpNQVuqAL2pXwsUyqhRU6t9F/XNfMKHUX9i2jeuozx9ZIqXas8ui4Lvf/QGHh0d877s/YDqdMp7McBybRjOk1wxVGqMs6Q+HCMNhOJqwiCI0IdjcXMcNbJI0Is0SsjxDsag1NdiOEsq8wNQNOq02gedh2xaT6YzT8z63blzHDxo4vs/61hbvfP7nFPdMSuViiO5ydnbOdDqr+YgWslLn7DAI1bksz/nkw494cO8BWlYQWDahY2Oj4eYSrSiI53Mcy1T1dTOgyBXixQTalo0FGJUkK0qysmJRs5Z1XTUEZc2dTJIIyzQobIvTs1PiNOGlOy/j+wHdtR7jyRhQ7py13gaT6YSzszOyPEY3QDcVIrcqlPJJr8/pFUoBRVVSk/AwDBNNq0iTCFkWyLIgzxKEbpCkEZISTUjQ1H5RlvU5HMXPu2A1XfBO+/0LNI9JGDZoNtvYllJiKva0xDZtTMPEdhx19qw5UculUqJVVaWUm/U5k/qavWikFpU6L1U1f1qWFVUpawGMGmaVZUkSJ6sE3fPzPgDb29uYpo0QOkVRsFwsFF9M/qzqP/X4mRtPwlAw5LwsaYQhvW6nnpLOCDwPoesqCrMGTCMlOhpVDSf2fQfbMdGFgW057GxfIo6XXLt6Fa2OrJ7VHW/PdfHcAMf2qSTkFpRGhVkUVOWCtCpWcsCqBj1ahr4qggzLJAx8LLMm89ZQwapSUzzHVnDnMs8RgC4MhFCNs7LSfqroufg9ZQ0XrKoKz3HRbQG9HovFgtF4jIND4PlEixhZFHhNB8dxSbNEFX2VhLprrhsGpmWhG3oNp1SyvihaKuVOloHv1bBTddGoZrtK7KuqkuHgnEYjoNNuURUZE91YyUOzPEPLNabTyaoDmRcFaaYkiKZhYtsumtSRiFo5qOIavdClKhVQLImVvE+zHTTdQJgWRVkym07QhImmW7U6TKPd6bC2sU4Ux0hNw/Q8TNtmzV9HDEqi5QRd6OrzNx0cy6bMMnQh6DQajMYj9p494cruJbztbcLAR2g+aArm3t8/QdPAshW8uHJsVXRLSeh66kZJM/JKUpJgmCaW6xBnBUlRoGc5jmkQtpqUhsHBx4/QpLp5fN9jZ3uTw9MjJrM5hheAJld2Hlc3lBVqY4M8S0niiDSOaxumWUekliraPnCYz2cMx+c4lo5lmbS7bTQnwIhzZFlhbG4yGg45Pj4mjhfMFyOVsCQMFpOIMs8pihi7EdJubtCwTFzTYBnNyfNcMRzU6ERd77pOlKbMowhoIoSnrmeh4/sBeVUyGk/prge88eabfPTxJzx+9Am+KdDbTZq+h1aWHPVPKYpildpUSY2T0zOOiyOi+jNpNgKE0AgDF0OTlFHF4dMn3P/0U9KqQtN1fk7/ebpra1zavYoQSgnXaq9x8+YdfvCD7/Iwijjv9ymriq9v/hKaEEznCTpw9PAeliax9Qq0XIFGl3PQDU7OR7iOTcO3MR0b3TJV0mSUY1lmHadcEFUJ5/0hUlYIw2A2n7OIlqR5gWPZaIagkp9tPBV140k11pMaogxAbcfNygJT0yl1Q23QYcB4uSTOU65dv0FRVnjPj1jEBbMkAUvHLBwGgwlVYXDp6hUMy2Iw6GM7Nl/8ytcIw5B2u00lVCKkAOIo4n/4gz/g6GCfw6fPcAyDjUaDTqvBre01bMfENA1C18PUDdUUy3POxhP2RxM+/fQ+DdvHdzyuvXIHJ/SpDB3NMAg2NpCyIooXnJ+dcHZ2QsNViS0bnTZFUfHxp4+wSnj7pddYRhFnR8csl0vKqmTZ703ZAAEAAElEQVQ2GdM/P2P/6VPIM37upRu0PJcijjFkQWBpPDx4ynC+4OT0GN/z2W61cW0XISsoSqbjMfVihiwzDCpOj4+Jkhiv2cINfa5evYJelEyGY7qdJo7nkS9yDKGx2WgyXyyZzOYkWU4Sx2xvbrKzs0NVlEzGE46OjojjmJdffpk8y0mihKdPnvD9736XtW4Hz3NYW++RJDGe5xBHc44ODrhz+zZBGFJUFZPZjP3DQwzL5C/8hT9fS6pzTk9OOTk6qaNpTd5+8w1u3rrJD37wfYajCVmWkGUFW+trbKytsdbp0vRDAsdnZ2Obzc1NZuMp82zC2cExrUZId2ebNI7Io5jz0TFpkuA7Kro5CDy662u8/OYX2NzaYnd3l95aF9d1+I3f+A0eP3rEvbv3sC2Ld955h+3tbW7fusWHH37IvXv3mBYKuOl6Lu1Oh8997h2klEynU05OTjg8PKTVbuF5KjCkqiR3794jTVP+q//rf0Wz2WRzcxNNCOIkpihLTGHSaLWJooh5FEMF3bUNrl+7xu2bt/jed77LkydPsN0QNOj1evhBwNbONuPJmIOjY7a2ttja2aXZaOHYDq1WizzLePL4EcfHxzx+/JiXX36Z3Uu3ORYak8mEo4M98iyn4flQliSLBU6zSei3WS5i4noIlCQq3hg00jwjCALCZot2p8fG5jrT2Zy4bkqbjsP21o5qxOQZO7u73LrzEoPBgMOjQ6CsU6Y0yqpgf1/FMldVDpqaOG9tbBAGAaWmDp9RkpDkORkxg0Gfo8NDvvTlL3Pn5ZcpY6VY1m2TspIMBwNGkzH7R4cYtoVhW7i+B0Kj2WygC2WBqpDkSEzAqpXYqz1A0zAulE+fAYQLTaliL0KOLwpLYaih22w2Q6IOg0EQqMj2uhYxV32nuvFU1yn/So9/BYve/y88LppJRaHswo1GSK/XZTqdkqUZi2W0KrCrStlgwzCkoWksFuq6G41Giq/ZCHFth/VOR+EDTIvQcSirAqfmk+YyR0rFF9E1oVKJNYGhCUxDMQ1brRaObSuQdJpwcnKMZVm0Wi0sy1rZOqqqYjQa1XwkX9nFdJ28VLwqy1ahDY5l4Tk2W5ubyjGgGwj5QkEn68sKKkLfJctyFZoRSJphg7TMScqcS1evsLa2ztbWFsXxEffv3cPQBF//0i8ghKCCVcK057o4prmyLqVpWluHC6LlsrYHR0TLiMODQyaTCcPhoAbmVmxfu8pbb7zBk2dPOe/3VyBdIRSgeT6dkaYpy+WSH//4Az69e4+nT57S663x9a9/nU6nS7PZJM9zptM56+vrbO/sqOEHGg8fPmQ0GvF8f4/dS5e4dfsO49GAp08iHj18xO/97u8h66aJYRj0ej3++t/462xtbXFp55Jab+IIs2bxGLoJkhW0d3triyAIcV2Pk5NTnjx5guM47FzaQWgwmUx4+vghZZGxcCxu3rzJ7du3+cY3vsGTJ0+4ffs2vV6PbrcDgGWZXLlylZ2dHfXexTEf/uQjRqMxQehhWTZJsiRazpnPpzXfTufs7Jjz83PKUrGdNje32dha58uXfpHDw0Pu373Hx9//Ps/3nnHlyhU2Nzf5m3/zb6JpGlevX+Xw8JA/+vYf4noOt27f5GD/kPF4Qpwk6KZB2Gyi6Tpe4BM2G7TabYqiYLZYAksAXN9XvCJDMJ/MODw4wK6bt6ZpYLs2rU4by7T45ONPcByba9evqkFRT3H/hKFz//595rMZn3v7HdV4EoKT42N+93d+h+3tbb78C7/Al774RW7cvIUETs/O+P1vfIPz83POzs74+te/zt/4G3+Dbg3Zz/N8xcm5eAhdDb4vLFNpzRMF1Zg3auVjeRE2wAs3jWEocYKpi9W5VNnmYMV80tQCeaGc9DyPMAxoN5so3W1JmhUsFhH/+B//Yz744EP2nh9iGCZb2zv01np4Qcj1G1fZ2dnm8ZNH7B0ekGQa04ni3LY7LW7cuUrY9JgvxyxjxZssSklZShazec3QynBMi821DRxHrTf9wZBn+/u89vobNDpdgmaTK5bNv/Urv8p4PGY0GvHee+9xcHCgEprLi2AtxZ00TbVOLedz8iTlO9/6Q370vXfRs4Ku59PxPCw0nFxCXjAfjjA6TSzPpb3WoSwrTg/OMJCs2x6pbtIUOpMoZlEkxElKVpVYrQaaYYClU2Y5yTLGtW2qPGN/7xkc6ly/eYuN9U02t7aYztTg0Pca7Oxc4fDwkAcP7pFlSywbTEsFiilhgVI8KYddiZQFyLrxpGlYpkDXKpJ4QZHpZMmSNM3J84IoniEp0HQJWkVRqvADhReQ2LZZJxUm6LpGnlfs7e3heh7zaMG1q9dWQ88KWYcLqEVaFzq27WIUJpouag7mfKUMbLYV02k+UQw0DVaBB2WhAOQXSnIdFNahVKFkF0m/aZIQLZXifG9vH8uyuHbteh2QJkiTjMl4srIAf9aC+v/p8TM3nqSmpmW6LpTnE8iKnDiNcX0PyzLQcNQN5LjkWaZ8j1lKmmU4noFEJ88VLPz/9Tu/jaZJlssFINBEwjJakGUJluWu0r5kVSfhgdpwzTaNRpPxeEwcxQi9ngjmBbou8LwXnkbLNLFMk7KskFLxGIpcHVbSNCbPFSdKyqoG7uVYjgJkKTWX+rvPRhCDaoRodVMNFCSvKivOz/vkebFKn8iyVDVKLIswDAlmCyzLWqmYlF9VydQuOsSyrJinCUWeIzTURNdTDTRNA8/xlHUgjcizlKdPngKSMFS+UM91iJYReZ6zXCxWnvSLIqMoCtIkRpcmWZqznC9ZzBaYCIRuIMyoTk7yEVpev84KQYVr2yyimOPDEwzTwgtCsiJH1wXNdsjaRpdGowGaxtHJAa7rsLmxThCEmJcuoxs282XCcDxmOBoTOo7ij1g2gevRajSp6ghIz7ExDKE4GkWhuChAISt0WWEgieuJbbfbxTAMpjVLpJCyTjFEpfdJpYxZljl5GiM1na/9wpdwLJvxfEaRRRTJEkM3aAYNmmETwzCQRUmcpsyOjxlPxgyHQ7IkQTcMgjBUnvH6mtIAWXeJATzPRZOqcJrOZmhZheGGCFPDQuJEDqZtUZJTVhp5XlBoJWmeKRC+LojznNPBgKoRYjUCdNvCsXWiJFZ2GU1D1w1s10EagqzKKKqMRVLVG7zBZDEjLwrKomQxnbP/5Bl5ktJtd0jzjNFkjLAEfsvnanCFZRRhn5j4jksrDMmWEUWSUCzmLJIIV6r7rKwKdClpBQ7tZgNNN0lkRV5JHj54hHz0hO7aE7rddV56+XVarRadbpfrg3OkBs8ePmY8GfPJx5/S7HTY3N5GpgmL05fQUZ10KDFNQZkr/3ua5Vi2jeWFBJ0u6zsRo6NDlssF6+tr2LbDaKJk2orHUFIWOUKT+J6tPPWywjFMylJSxDFFkiCLHKRSLxiGgSFRKg+hkh8lFVqeoVUaRSmwDMUNS4tMNX1OzynRCJshhYD+YoYRJyTCIGsVZJWaEusoOarreHRabU5OTvnOt74Nlo40BUWckCcxpwd7pPMpbUej2/B56dplDF2oxhglVV6wzFM0TSA0A6nrNFtNdFOlT1qmhWkZeKGDH3qEvk2aJpwcPVP3UFUgtIrNtR4UynY1GIwwHZe/8u//e+zsXlEcryRhPJmQ1VOavb09jg4PCE2LMAi5dfkGtmVh6oJKi0kQ/NyXfpGw3UHTlBT+yaefUhU5lq5j+y6ubbGIFiRpSkmO4zm8fPsWtu/z+OiQNEtxfY+269NyPSaTIeOxKpg0TUmTNU3g+yFFOSeJl2ioKOjRaKSahGle87ksQt9jrdtmOZty96OP+eIXv8DGxiaUFaau0262MITAs2wm4zH/5J/+U2WvXdvgi1/+ioLaPn7IYjFnNB6wiCJMx6ERNmiETTY3t+l115iMx5yenlDkmRoyVJLDZ08YnJwwHo6wtIJ7H33I8X4Ly3NwLFMV25aFblq0uz38VougMaYsS95+6206nQ6Xrl7BcjzsoMVkPGF/f5/vfve7DIcDTo6PiKKIa1evIjSN6XjM5to6670ud27dJPA8+ueKHdLudjBNkw8/+KBOiVQpUePxiPl8hmmatNttfN8jCHx0XRAnCaJuuB0dHrC3t1fzrFo0my103WB/74C13hpvvfUm169f59bNWxwcnrBMMq5cvYyu6zx9+lRZpL0AoRtYlmo0hWGIUafIffd731OQ2fmUOE7qfVIxDKJlxGw6VYlcRUngKiWQ49okacze3jMs28MwbcJ2m6YQtNsdGs0mL738EovFnP3DfQrg+Pwc03awfB83bJCkGffv38NxHa5dv4FpWpyenhLHMWVRcvPWNcIwIEli4iTh+PgYy7G5fecWhjCQVOwf7EMl2djZxHFdPNdhPpvz6NEjpISdnZ0VN0SllVX4hmpgNy0XWUlOzs6wbQfbd/F9H8/z0CqQhSoa0yLjPJrRcnzWLlgdtbL8YrC14hOt/qmtvi5CV8qyZDafU5TlivWn1E4qIENeeMovDks/o3T+X/r4KXnWn/WNF1aUz37TZ4BLnzmw/Sl//NfzkJIiz+rCPEcXLrZpq5SzsgTU+6eK/BnHJyc0Wy21H1eKk2hbJkKzCOukybLISauSLEsRhrLiyJqs+aIhiBr25Ur1mWtweHDIyfkZ165dw7FtDufPODs7497du7z88st87p3P4Xoutm0rFXRVvUjbVTJ9NFR63HA4IPA9vFYLw1S8Sv1CSVepNKwLhZvQVK0vhCDwfFI9JY5jJBV5oeplQ+ggQLcMPvfOO7Q7HZ4+fIxewSdv3afX7bK2tk4cJ8wnUx58/ClZmnJ5Z3t1qFGqxGg1JY+iiDSNkTVXZTpVlrtOp0OWZRwcHKiaQErm0zlFWXB4dISmaXRabdI0Y7FY4Achd+7codls4fs+WV4wX8zrhnTKZDJhb28f8f6PefWNN9je2aHVbuPWqtm1Xg9DF5yenPCNb3yD/f391XWpacqu6Hked+/e5dNPP6F/3icrcrK8WHG+hFRs0KoqVdPf99B1A8O0VJ2Xl5yenLBYLJiORyRJTJLGBKaP41rs7T/nydPHJElCp9smLzLG4yEffvgBRW0/TLOMre0tLtiWJycnHB0dq2vCsmi320wmY54+ecL29jaXLkk2Njbpdnvs7x/Q7w8JwxaGaTGbL7Btlxu3brF9aYc0TTg6PCSKlvyjf/QPsW2b9fV1bLsOgKoTOueLOZPZVPFlapVTWRbYtkVR5IzGQ/p9lXy7sbGF7we02x3SNOHdd9/F9322trYUMD2KEELHshzKoqDQhIKBG8r2qdR/TQbDEbP5XNmcW22VOicl3//+9/nxj9/n2fPnvPraa3z1a18jCEJGoxG/87u/x8nJCcvlkm63yxtvvMHt27dxXZe05ildqAb1Om1a6GooncUxpmnV66Oqt0E1JC6Yg+Iza9bF8F+vG1ar+cDqUF7z4IS2mhtcBFi1Wq06qOQCXK7zR3/4LT766GMeP3xIliR87eu/SLvT5cbNm5SVUi4XecHe3gG6MGm1uvieS7RcsFhMMS1lxdOExA9dBsM+SbLA80waoUueqjo7iSPGoyH7z5+vUtLeeutNXnvtVV579VV83+f+g4ecnZ3x4Yc/Ucw7x8XQDdqtNm7gkSQJn3x0F8PUuXxll263Cwg+/OAjfvLjDzh8vkeRxDQcVwXc5IU6v5iWSqWuJHGkzr62XaJRo3Q0A9PQcfWAjrFGO1FNJ382YZ6ljPKUoiwoCmWBsy2TssiYzabkVYXUNH747g/odtd4583PoRuCy5d3CcOA5TLi6PiIR48fkeUJpikoygIdvW7oS6Xoq+HuspLISqVnXzCipNQYjcb4fkCz0UBTUCiyvCTLC2zHwQ18vCBkfWuLW7du0+51Sep7aDqbqL6FY7N7+RKtdodrN27ge0EdpqauhySu+VGGhRQSUM32wWBQJ2/KVXLjeDSqudyKd13VCj513ar1/uKaNGuWpsIJgCbAKszVkEBKSafdwbSUwnZRc1Oj5ZIwCJQDoU4K/deueLp4rKj9XECtMzX5MxSQ0tB1Wo1GvZgsSTNJUShZOqiu32KR8e4Pf4DjOHQ7LaQUVJVQqV5FjrWSmKvJUlkUanpimDUzyiKJE9IkxdR1kJCnSj1jmSrS2zRVHLZhmAoAW8mV5E8BVlXsoXK6KYtGmiY0NBCGQV4zDi4+nM8uJmmq1BCGpgq3drvNfLbgZHCKbSuORFWp12qZpopE9TycOh2F2tf74qv21us6pRAqyaBUHlBDVxHasirQkASBr5oZE9UtPT05odEIabdbtJpNgjBAN4wVWLGo0/HMOp49zRLSJEGnJEsKkliBg2PdQhOCSoDWEPheSE2WQJYVUquBaXHCeDjGsm0VZS80hCEIQo9Wu4Hv+6RZzmBPxez2el0cx6UZ+gjNIIoTprMFs9mcwLIQGFiGjmvbhEFAVRbMplMEIZZlkixV6oCmq2SeSirbY1Uru1RT08VxHNK8jgWuKsXqqioMoRhPRZkoL3mW43oBb7z+MkmccHR8TJHGlFmMKXQsx1PpjLrBYq7AjePxmOnMYDKeEHgenuvgup6KRp/PqKpKyd6lVJ+bANuxKLOEsiyJ4hhNChphE0M3sDQwbUtZNgu14V00V7NSdaFNU5CVBeP5DM8yaPkujmtg6CZanqippFQJGbbnUsgCKzWUDDUvcPUAzdRZThe1RLgiiWL6J6cUQDNskBcJaZYgDBVd2/Y6LJeRUlzYLi0/IBU6ua4TTUYkUU7umEhD1PBHE9fz8IImnt8gBeIs4+P732U8m+M3j7h85RrXbtxGN0za7S5bW9tkWcrdjz9hMh7zfO+A7VLy6ltvItOY+ZWrjAbHTIdnK9aWAu/mZFlBWYFuO7hBSKvbZXJ2SlYUeH5A4PtM5nOqqgZUlgVFnqJbQhUO9bRaF8rjUGUZMs+UdLa2rBi6yvbxgwDdUJYK1WCuqHIoCw3D0LANDcc0KMuS8WhMJVSBGRUZeaUgkZnIyItSqRCkrNkxJpZl43s+09GY7/3Rd9E8E80xSKczyjRFZjG6LGnagvWmx7XtdWVJSBIWaUxa5MR5ARVowsRyXMJOh0pKlnGi1j5Tx7ZNHMfEdU3KPGY4OEPTlOIh9H0azQbRIiJLUqbzOQ3D4Mtf/xrtbo9KViRpxnyxoNQkeVVyenrKyeERgWmx1mhyaX0biWQRLagQZFLjziuvcfP2S8wnC4b9AR//8H3SJMZzLDTLxBMaaZ4yX87RhcRyDHZ3dtBti48fPyTPM8x6or/d6TGbjlgulkRppAYCDZXq4boe84VKXtEQmIbJfDajKBTI/GJDdR3VGE2iiOfTGZPRWHGlJFi6QSMIMQ2dhudxen7G3fv3efudz3Pr1h0+/8Uv4bouf/Tdb9Pvn1FJlfJi2TaNRou13jqtVocgaDCfzRkOBsiyQNfUPjQdjVkuIzzXwbZM9p4+xnE9Xn/nLWzbwnFsrNo26joNDNvC8VTh+XO/8GUu7VzipddepSglo+mCjz/6CZ9+8jHf++53efDgAa1mA9/zuHHjGmVZcnp8TFXkhL7Ppe1tAk+xeiaTCZ2Wmj7fv38P0zLp9HpMpzU3oCxXRbRpmrius/L+o0nFL+qfMx5N6NRT90ajgZQag8GIdrvL9Ru3uHr1KrtXrtJd36R5PuCNtz6HZZmcng+UssO0CS27nv67NSi9IElTpc6aTjBqG+GFJaOsI4+VHSdbKXB0XUN3bObzGePhkM7aJg3XI3A9HMfl5q07bG5t8tWvf5W9veeMF1PGkwmT8YT1jU0cx8Z1fLRoyWg8oiXb9HprxEnCcDhcydI3Nzfpdjs8ffqYPEvp98/Z2Npgd/cSy/mS5XzJef+MeBkRNEMMw6DRaDApJhzs7bO2vs7u5asvrBx1CItuqLCCpu6wXC6VKsZRAGDXdXFsZ8WfrKSC/o+nEywEWthY7c0VKsJc7XjaqldTyQqB+CmryEXdtowipFR1zkVNpeuGajxVJcqw96IZcVH//GmPFxa7P840efFYDe3+jCaU+s9eKAc++2M0Tb0o7Y81mv71953U/l2V5Yr7aRkKDXDxuACqFkXJcDhUvCyhqSAbQ8exTEzdwHMcZfUsCopC1SuW62AaOvVGhI62esWyqmr4saoJz8/OODw4oNNqkdg2x/uHnJ2dcXR4yO1bt7hyefen3hBZWy3yPCdJktX7mKQJs9mUbrtFq9VSiAPUwfnCqnYBQ9dQTaeLJqVrOypvuQ5rKMpc2VPrQ7owBHfu3EHXDb7/7g8xhM7jZ08ppaTZbpMksbK/ffop0+mUZLnEcVRi43K5ZDgcYlpqOKzWn7J+SaoR5dXNoDzPOTs9VYEBlarVozjm/v37mIbBS3deIssUd8jzvFXypWEYFGVBFCckUUIcx4xGI6bTGePJlM7aGmvr6/i+j+/7tJpNGmGIpqn06Pd//D7n5+erZgJAs9nEdV329/fp9895990fUFaSSlIHB0koaiW6oZonnW6HZrPF2sYmruth2w6nZ6eMBkP2nj+jKgvanQZoHpZlsre3x9Onz7h+/Tq9Xo+yLFgscwbDAVmWMZ3NaDSbjMYjbNtBCJ3hcMjJyclqXU1TxQza3z+slSdttre3cByXjz++W1v0MtI0I45ibMdhe+cS7XYL3/f4xr/4PZ48ecy3vvUHeJ7HX/2rf1U1UstSwY7ThCiOVUjMSrFk1ucunaLMmc2mnJwcc3Z2Vp/pdNbXTZbLJffu3ePy5Su8+uqr9M/PmU6nCKECgcqyQghVX6rwjQrdMPADn8PDIwbnfXq9HkEQ0G63mEymfPzxxzx8+IjBYECj0eD1119nMpkxGo341je/ycnJKbuXd9ja2uLzn/883W4X27aJY3Voduuz2YVSSSFIVOiQUoqqptQFU0+dg4W6g8WLxeriOtGFXq+f6g6/UJsqNIni9oFSoWY1XzcIAjzXqxc/DRB88vGn/P6/+H3OTk/RDYM333qTnZ0d7rzyslLpPd/j/KzPaDRmfWMd3w9wHBVaEidLnMRW51UNHNeikgVZFmFbOq5ropDIFXmWspjP6Z+psJo0zXjjrTdY31in3W6TZRkP7t7j2bNnvPfee+xs77B76TKWadNqtvFbIcvlgmW0oF202drapNFsUJYlDx8+4g+/9Uf0T8+oshyvqRpPoigRGpiWSVlIiqokSzKyVFIVmgrAqc/cpmXguB5BGBKmGWmWo9kmsyhiOThVa3ZR1Uo0nbIsWGYZUlOBS/fu3aPVPuP2zTsgNDY21vE8b8VMOzw6wHZAN1RinKapZmpWh40YgKHpq6GirhnouoFpqrCX+XyBYVhomg5ahaZVFGVJUZT4oYXjONiuS6vT4er167iOQ1rkRElMFEfYjmqybmxtsra+zo0bN+ownlQ1u6Qky3JVq2k6upRUVcZiuWAwGKx6HUIoJvZ4pNiZhq76H3mWKpugrFYhaRd2T1Gv/arpCkJXohpZliuXV9hQtY2UUt0zSUpVlriuSxzHFIXad8qfUfX0MzeeLgqni4tY05SSptlsEsUxcZrQCEKkBuP5lKqssF2HgoqSCnSVcKTXQDVN6ApYPZ5RlBV5VlJWGWWlEtqEMPC9BmVRMp4OMQyTQBageRimwHEtwsonrfkjQtcwLAOvtqjZloeum4BAN9QEYrJYUGQZhmFh246auBoCXRfkeYIKmhO1pzpEolJJNHHhl1dpS1WdspPXfkq9KKg0ieGY6mKaZWxtbRIEAdOZkqJdpE8EQUCW5xRFji40bMsgL0rFZipKLFOwuaHgjKPRgLL0qaSHIVRTz/cLhBA0GioVw3NDhDDqGPKj+vBgACqpTtSFcJqmDIdD2q0mG+trJMuMaBGxsbGGa1t0mx2KsmQeRVSVZDQaU5V1HHOaIcoKaRoEfsA777xNnGZMo4jFYk48izBMi7DVwjB0NEOnt9ajKAqePn3M5d0dtq9f4fDwjP75kEUck9UchEpWjAcDKlnh2Raj8YLZbEazEeI6Hp6pJnpRFKELHcuxV4yjPMvJ4oTZeEJq2xRJtvLZX8wVLcNEtwyiXJKXOgKBVlU8f/AAKQSlprGIY6bTCd0gwHNsxuMZui7wPRVxaccKZmjbFmkaE0cLus02tmEwrtVHQtq1tFYlP5R5hZAq9rTR6qK5AQkaeT1NiJKEeaQO/XlRsdZrYxgmo8kzNTVyPRqNkOtbm1hlQZxnoJcYhkDTdXQkeZpBLlnOFdzWFia2K0AIqrxOiDN1XNvE9FrYfoug22ORZizSDNOxqah4/uwpWZoRhg0EGq2gQ+h5tBshotmEsmQxa5MnCdFiTgl0e+sYusA0VY5RmiwxDItQF/zCGy8zXy55enTC5PyIf/pP/hFB2KTZ6vD2W2/w0u077GxtUpYlzfY6nu/T6XSwhYYuK54+UItyIAR6mjCfzImjHK/ZR9NKet0G49GI0+NjirLA9T1Ozk4RQifKc1zX49qV6yTRgnH/nKxMyKtMBRBIDSNTtrZut4OXemi2iWnaRFGKkVeISuLYuYoRrxdrQwpKDSohyfOUNC3oNhp0WzpH/QmlpuF3W0gBfhDQCVr0mv9v3v7zWbYsT8/DnrW9SZ95/D3m2vK3XFe76ZrpnumZBgYEMBiJgAB8gqQIApAggFSE9A8wFIEIKfRJhCCCDAokQyRnQEiDoTA9Buierq42VV3+3jLXHm8yT/rtzdKHtTNv9XAAlkRAGXGjblSdOibP3muv9f7e93l7tOt1XNMkjxOSUqKbBmES8+777/Pg4QOCcIKd6ViBxrpl4tV9VupriielKeFtMhjg2CZNx8TQS9JCQ5Y2ZQlJqph689mUJM7QS9Val0jB+x98pJyX8wkakq7nqjpwrcQxBbZWkGo5hVHS2+zSXl2jeWWVXMLPPnqXKI4Jy4jPHnzG4eEBs9EZdRteuH6Vpu8TRWPSPGMWzZnPQ6J5zkl/hNa8oN3pYZQdLE8B71u+S73VpruyilWr0Upj0jDAMg0e3v8Uy3Gp2Q7xPOTdt98hvnYd43rJ2uoqqysdPrj7IWEUMZvPkFKgoy3rv+s1n16nq4S5IIAqRhnM51imydWdXUajMZPJDM/1qPs1XnjuOcbjCacnx5ycHPPR40cgdLZ3rvLqa1/l5VdexTAdhuMpp+fnjEZDWk3V7LazvY1lOJi6zU9/+jY//tFPGA5GGJrJ6tq6an6ZzrFtWTFNIqJ4hmZGNETJ7s1rOI7Lxu4OrVab7e1dWr0ezU6Hy+GQKIrJs4Lj4YTv/sN/RByGhJMp52dnnBwfYWiC555+Ctex1bAiiSmLgrrncnx4yP/jv/wvqdfVEOD85IwgCDA0E8u2uHr1KkEQcHx4hJQS31MMlGazycN79580AZkWs1IyHU3on18wGo+ZzeecHB1h6AZ//i/8BTWtTTPW1tZptNo8fLzPWz97h+9/7/s8evCA2XyKY9vcv6+m9++++w43blzntddeYzxWXAWriq/8+b/4F0BCHEecn59z58OPmEymPHz4mKvXr/PiSy/z3jvvEoYB6+urS9v4YjhUa7RwvRrTmQJw5pRcjkf84I03ePT4EW+8+cMlw7pVNSB9dOcDgnnI6uoavd6KYjam6RKcW6/XOXh8wMnhEf3BObqh87WvfRXDMEmjVEVskpCVtVVsy+TmzevYjsPFRZ/5TDVptZotnnnmGdA10ixhY3Mdx3ao+z5pmvDgcJ80z9na3aHX6dBtt6t2GK1q3Ck4658TpwkiTNG8HFGJ4VKW6JqK2yo2pQShM51MODg+pOb7+J6vnlWWxeV4rAYzpoksJXn1XA2CYAmgdyxLCfMV7+jzL/EnlZ9/Iy/5J/75efHq38bX+1e/NE3DdTxs21Uu7c+B2kG5ygwh6LZb1HyP1ZWeqgo3DUyhoQtNtfQWOceXffIiR5SSVr3BandluY/Uq+dKKVDELl1TvMlMcHbe5/T8jIvBgDRJqPsKkjufzvDrNW7euMHO7k4ViVT7oDJXTcme65JqOuPxmDwvVHw0STBNU8XLNjfVdLvif2lCQ+qySkRW77kKNjz5IzR1eJGCMElxHQfHNIhzNeR78eWXWVld5c03f8TlaMT/+f/4f+L6jRu88MIL1GwFFr7oXxAEAQ8ePaTX7XD79os4rkOSxownYy4uJly7do1mU7HVZrPZcpi3trbGydERn969S3dlhVqjXrUa22xv7+LYNju7e5ycnPLg4WNe+/KXuX37NhcXF4RhVO2V6/zmX/pNFUe8HHJ4dMzjx/vcvHmTZrPJm2/+kPF4zEq3i21ZPLz3KW//7G3u3buHrpu0Ox1mVYzlhdu3WVtT/KN2u8VTT92iVqtTbzQJA3VgX7RQGqaG63lsbG1UB0OLLFOH0eGXXmN0ecl/9p/9IyaTEb1uG7/mA7C1dYXV1TWGwyGnp6fLxrXrN64ThiGffPIptm3z4MEDTo7P6PcHJElGp9PlmWeeXfJgms0BeVqwfWWbtbVNZrOQ4WjK17/+DUzTxPM9DMMkSVOyPCeKQqJwjm2bvPbal/jSl15lZ+cK0+mUk5OTpavjo4/usL9/yOuvv85rX3oFz/XI85zPPvuEfr/P3Y/vsLOzTbNZZ22lx9rKCltb2/h+TXFl8oJGo41hWIzHE6QU1BtNPL9GnGQYloleCeKdTpsvfelVTFMnCGZMpxOmkxHXru3R7nQYjobKBfzmm2xtbfL3//7fx/d9fvzjH/PGG29yfHzCjRs3ePXVV3n6mVvLZ4YSOVVSZMG0KYqCQf8SiRoMV6sCoBxLjmVhVMPISuNHfo7hpAoglJFBtUYq3IUQomrGXgwFVDxPCNUeHoRzyqLAsVUxlLa8++CrX/saK6trREmsMBBJwkX/nLv/9BMcx6Feb2DZFr1ej7XVdfyaj66VzKY2ruthGiZ5VpKlOVmSY1smtbpHEE4Q5BwdHTAYXGBbFlubG3z1q6+p9yLPefDwAY8f3mcwGJDnBYauq/SGENy8eYNvf/vbqqVXE/zop29xcnLKL3/rW1y9epVvf/uXOT494x//5/8Fv//d3+dnb/2MtmHSqtdwDeXe1w0DU9OgauYzTZ1i0TIdZxTk6swtYKqVNGQLq+5Qa9boWg7Nbos4TamdNricTbjz+JHiPDkOeVmSlzmmYVXNbRpJGPIHf/Bdar7P9u46rU6DoizUMCHOFetO0yiKyuAgs6pRt1ROxbykSHNkLtEsB1FqKMyUjuM1MS0fodl4NQ+BxuVwTlkEpIlq6dOESRTGPH60T6/bo12xJNfW1vnWt77F2toqm5tbqnzIdji/uOD87JzxaEw4DxXXVtMpMtVkN5lNiaOYMAxpV02ZeZYR5IUSMFGBTV3XcK1O5YYtn8Q9P8cYk2VJniVYmolpqkbiLElJc4WbMSq2dJzFkICsIqkCSVEo7q/n21/4kf3FGU+apmJvpbooFSALTNMkimPKXAlMQpbkaVXnqmuKKWSZICAvCmxTWdSE0ClLiOKELC9Ik+yJUlgKNFFi6qoCNs2UoJCm6sYsSsVdsEyTRCgbsBCqttCoVGl1w2tIqSrSQTGa8rKsxCUDwzTV5FTjiZpd2WUt04IKgic0oTg+aUohCopSIEpJUQGKF1MroQnyijWkGwau5zGdTVkAFcuyVIDGUtmWRWWh05Q/FykLNCFxXQdNaGRpSpoapIkOhlFBwpTgZ1auLk3XAU3ldeczkiSmVq9h6ErYs0zF9yiKYsl4atQbkE/JkhTbsXFcB8d1yPOCNC8q10C2XFWLUjEAZKEmD71ej+k8IFrygDRM28KunF5CL/FrvrIBji7JspVKtEkYT6akeY6kUlilJE3iagJso1VZUVnZxU3DRGo6qZ4u68SLqqJ9MZFNk1TVAEuJJtWGbFlvrOuYhklWpuo6MQzKEoLJRL2nrktWFGRFSYFAopFnGUUu8Dx3yeTSdWWbLYqCvKpg14WAUkGTizxTE2TLIM9Uy+ICoujYLsJ2CfOiqoZVWegszxXYXaoIlmVZasNfwQoN06JWr1OGc4o0oSjUjS5A1WuX6popswxKiSFUXFIYCqhdlsoWrxt69Xt28T2fVApIC9VqICRxrBp1BAaWYeCadjX11FQUSEhk6ZMYOtPpFIREaAZCV5l1iQLj6Sj1fKVRwzN1+oMBsyRlOOgzHA7h8JDd7S2u7e5y5coVDMtCShPDsrAtC+p1uuvrXJyfYLk+VhJX7/ecvIAkDkkSlySOSKKIKAqhmpjElSU01w0coWG7HmVRYJimumeLsprwSrI8QxcC27aRmoZb5Gi6oVoRdbXwClSFbJkrJotADao1TZDnJXmWUqs3MCwbXahbxbEUuNW21UO/5tewLQtD1yjznEJoaIZBmqaMxxdcDi/JsgQbHROdpu/QcGzW68qFk4uSolDRWNfQsHSHXGoIoSNLsbRwZ5IqGlQqMaaK14xHI7I0wdfBNg1sw0DTUYKWBposoCxAlrQ6LTorXXTHJglj+sNL8kIJ4oPBBQeHj7CTFE/X6Lbq+I5DmsUkWUqcRhWUUyfOcoIkxRdQ6Bra51x9pmEoO76uoecWs0KxtYaXlziup+79PGc2nTGfzwmCgLVeC8dS8ek0UxtkpFDishAVf0dN4cNIrVvKoaDuI13Tqfs14jAmNELSJCEMQ9ZW1hCoqZZhmhimiev61Bstut0ezVabOEmYzubMqwOFZarGlJWVHkUGRS45PTplMqkAqchlJW2eFlWMSSdOBFmeYjg1/EaDVm9FAVRrdVrtDle2dmh2u9RbLXTbZTqbsf/wMReDSz746CPC2Yx4MiWOQsL5nJVeT0HQS+XMSBPFm/NdlyRNOdg/YGVlhXa7TTgPiKOYOFLtgbVaiyROiaNYtZ/aFr7vU6/VefTwEVEUUfNVLMyxbYo8J4li5Q7mCcOi2+mi6TrdbhfP90mzjIt+n/v373N0fMRFv8/p6SmO4zCdTpXDYdCn0+mg6+oemE6n1Bp1PN1je3sbwzDU+oLg8PBIbZrznEajydraGu2Osns3GioyZFTFIEKA59exHZe8LEmqpqwsz4jikNPTE0ajMWYVb6QSaSbjMWEYsbV5Bc/3FNcgSYmiWK2dhkEcxwgkcRTj+x5rq+ukWcZoNCZOlLhfr9Vo+DW8Kp47m82IoqiKySsHRlA5FQ1T7YdkUZBEMWeDPpZt0Wi3qdVrNBv1yh6vDjeFLAmr6L1Zia0LPIC6vp84ghaiQZplFcdCuVeatTqmVAfMvCjwPA8pJDLPlweuWKhJr20aKr67iGt9Ye3nfwzM6eehpHI58V9ETn7+9UUEsC9i+f+TYHQhhLqmlOIClbAtkdX7W7FdKte9X/ORlWRjSDXMkECSpWSlamDWpPpczqIaXiqHmpQSqVXsrjxTZSNpwjSYczkaIWFZkGMahuJHeh5b6xs0q+ZPUV0Hi9+VoZsUhorgl6Uq+1gwaxzXpebXllayRcxPVlkgyRNofWU6Wk7EFUtQkGQZlmkhgKIsyWVJp9uhLAqubG6RpCkf3/9M7WHygs3VNVqNBmWh2EfzYI5tW6qUA4lpmVXkT7HSLMtUcx6pmqMXroOyLAnCkEb1s7iehxCCtVQ1BjabLSaTGYZp0Wy2WN/YACGYzeZLzun29jaGrrPSW8F2HKSEdruNbdvM5zPGoyF13yMOQ/YfP2R//zHT2Yx6rYHnqWIZ27LY3t5mbW1VOTAcm1arSbfbY2VllWCunhNGBSMWmsD1HDa2qkhcIZnPQ8Iwpu76NGo1ajWfJFGuWNNQZwzHcWk2m8znc8IwBNReudlqYjs27XYbTdMYDoecnZ9zdnpOu93BdV1qtRquq1qYG42MXm+lcuXWmc3mhGHM3t5VPM9jNpsph2SFBcnzjDQxsS2T7StXqPk+165eo9/v8/HHHyOEoNFoMJlMODo65tVXXsG2TOr1GkmaEIYBYTgnSxPyTBUleY6jhPZaDdf1CMO4Kl+y0TVdgd1LFWNdRNzUH8XVMU1LQdTjkOl0pIoeNKHOLI7N2dkZw+Elk+mEa9evcvv27cox9pBHjx5xcXHBy6+8ypUrW1y9ukeWZfT7/eW9b5rKtZIkCWWhBIZSSqjECtWS/rk1pcKvIFEuwc+dNbTFvSMEsEiyqLVs4TYV1ecpq7VEIknSRKUzDB1Dr5pHq3W51Wyxvb2D0AVJmvLhnY+Yzmbcv3+f1ZVVms0Wlmlh6FK1ttoOskzQdXUWXjiZZbk4O2oYhk6WZySJSjyApNvp0O20abeaS1bTeDTkcF818grU/ZKnKVYVy9/e3qbeqKHrOh99/Am12oxbt26yd3WPjY0NDo+Pufvxx+zvH9LvD2itramSEw0MTWCaOjqaEpqEKqnSqvdHFkV13lUu0IRcRTzzFBcXTRd4jo1p6HRqdVWSIdVZVVZ7lPJza50mBEWec3h4yOpKl5vXt6uioXQp0i9cZlIKtQ5VQPyFIxUUF0vpIOo8kBUlmqZjmBa6YSE0HcOwKo3BXOoQi2KtIi+ZTWfU/TqyLKnV6qz0Vri6t6f2OK02pYQozcjTnPlsTjgPiaMYTzMQhiDOMrIsIwxDiryo0AmqubLMlbHBtmxVBleWmKaB57lqUZeliu+VEknFripyygIoNDRdOabKymSjeGzKCASySpIUFGlWlW48Wb91U2klX+T1hYWn6VS5QBzbUqquUCDeNE0xbFOBsjXIpWqVEtWNpRs6jVaL2WxCGEUYDRfDsNFNhzzPmMymFHlJnktFlDcEjmuiaQbng0tA4nk1yrJgMpmoQ18uKzAWlFJQSKHYPnlJkuYYRlHZNVUsg2oCIVAXAEZVFxlFFbMK4iQhTVM0Taes4nSarpr8FlBNld0sVW2g0GjU6gBVY1xGnKXMgjmz6ZwkTygoGE/HlEVJd3VDPYiqh15eKMEgCQK0Ui0OcTwHCZ5Tw7AM3IU1u1wsXhq6ZqIJnSwtSYycMIzwax6+43NweMDp2Qn1eh2r2ph3Ox2uXr3KoN9nNLrEcVXsb3g5JIjnBOGM2VzFxWzbod3tkKRq8x2FMVmaUXNsNMPgYqgsfWueT63uselYXL1xDdt12dm9hl9rcjG4oCxLruzscDnoc3z0iCwPycuI8/4Zj/Yfk2YJhqXT6rTQypIyCnBdl2arTaPZZB7HXPb7jIb7rDYVRNOqlHWE2ngsOF5RFFHmBUXVfiIlBFGoHEqOov/ruk5RpmhlibBNylISUjANI06OT+isrnD11tOQJFDk1AwbypLB5SUIsB2TLEkZj2f4jkOj7mNoKujQatRJ45jRZEi9VqPbXiWYzpklidrjlWDrLlJ3mfUvleBYZgRhDphYroGmSQpRkGQxJmr6mUUJ8XTO5OISRxbYpYS0QGo5usocIkqh4gBoSAQFAnIUNCJXl01eZMpqmWj4LY3exjqz41OCyzErm5vUaj4f37mrDvrhnFGk6t2b9RorvRaOqWOZuuKqCEGpScI05v6Dh3iOTbflY/sejudydnFCHIZYlS355at71LorbD3zPD99731+/4//mN/9f/8z/uAPv8srr77K+voGTz/7Eq1Wm063hV9vUOu0GU4njGYzDDTm0mBQRuqBkiUkwYTB8SFZGtHwbaQB5BYlah0IC0lcSt698zG6lFiU1FtNek1fsaqSlMOTY4qioNNoIkybTned2XTGYDDhF778FW7sXeXR43tMJ2Mu+n1EKWnYPoZt4ngOWSqVWJmlanORZ2qzEMWYEtZbHZqNNrVWE9Mz0KySIs+QhSQpCsajEe+/+zOC+Zg8C+m2Omy3m2z1OtRsG60soMywZEGpSWzLwNMMnFKnyAxELokTJd66rk8SRTw+PqDu11ntrKBbJrqpo5UueapTJgmaUA1Khmni1zySKGI2DZhOAkop+OYv/grrO3ucngyZTufkKQRBzGQ24fTRCaf3Dnh6bZVew8fSNJAl02i+tAv7jTat9TYb6+t0Gg2OHz9iMhkhjYK4DPnk0UNuWk+x+/RV0lxFEIfH5yRRxEqthleroft1PMvka1//MlpR0r8coJcZNddhe3OLOMs4uxyRJRlFmmCbatI3m815cP8RrXYT13a4efMGUkq1QUeQpZnituQ5/+S3f5t/8f3v8Tf/1t9G13Xeef89ut0O/9v/3f8ehJp2fXb/Ab/12/8Ez/OUi2oc4DouX3nlNWzbQpQwHAwY9C85PztnPpsxmw4Uh6Lj0251efGVl9XgQ2hsbW3Q7XXZuvE0bkOBMNMkQZ5fUOoGF5MpP37vAw4ODvjw/ffon5+ThaFyJuiqzWo+nbG9tcWLzz2L56i205+8+WOm4zHdXpdWq83TzzxNkiZMplNGozHHR6fMpsoBlIYpZVYyvhwidMHGxgZFnpPlGZ9+8glJnKBrBhL44L0PWFtf4zvf+VXm8zlnZ+c4rovtOOxevUq73SWOIuZByKB/zv7BY9762VskSVKBvef4vsve1V1c16V/cYYsVWQumM+5vOwzmYwJggDbc8mKnMFoiCxLTo9P6HZ7/K2/9bcJgoD5bMZwOOLg8AjXr2F7PrV2S8HupzPlCjg7rQ44NltbVzBNiw8+eI8sy2g2mpimzmuvvopp6JiGgW1ZRNMpnUadTqPBraduMhqP+e3f/m3l8KjYkJZp8PWvfZV2u8X9+/cQQsM0bAaDEe+//yHCAGEIXNvC1HXuP7hPHMX88Idv0qg3ef31X6TV6ai9hKZh2zYf3vmQYD4nnoZM5jM+fHSPvd09Xv/GNxhMxkRpQq1WxzJNosmMNM8oNIHXqLPRWVHR46qhxtB1JT7yBAC+eJVIsiInThOSLMcw1eFu8X2UZUmeleiaiTAl5+fnzGdTXnjuOexmo4ob/H/hcvq8zvM/wqj0RRkR/zZeC5anitwp1gWCKrIoEZpeOYyUcCKlGq5qmkYhJIUEHTB0gyvrmyDB0Z5E9eZBQBiF+I6LqRsYjqq4f+/OXYIwYDabqlmfJvj617/OSqfNxdkZ52enXFxesNLtcWVrQ7HPimz5lpt6BaAvSkzNYOfKNlEcM54p6PZkMlH13dWgDKr4nJSQq6ggmq6QBp93m2kapmmz0u0xmk44PD1ltd1RMNqqUj7KMtxmk7/z9/4us+mU46Nj/vBf/BH/5J/+t7Tbaj/31/7aX2V9fY2f/OhHnJ2d8Q//4T9ka2uLV199mRdu32ZlpcfhwQGDwYB79+6jCcELL7zIeDzhgw8+xHFcvva1r2M6DrZj8/ov/iLtTof+xQVhFZ9b21jn1S+9RglcjiY8f/slPM/lt/6b/5rT01PeevunrK6scnXvGutr64CKC9u2zSsvvUgURWxvbfHZZ5/xf/uH/xFpnlNrNAijiPFswq/+6nd45umn+ct/5d+l1+uSZSmDQZ+P79yl1Wjh2g7ddgfLsgElHPQv+xRlwfn5uXKYaQanp+cMBkPmkylB1bxnGBq1msdkOuXup6pRbn19g+eee55GvcEP33yDR48ece/+PZqtFrdu3mIymXHv3n12d67x8ktf4uDgEZPphH/5L/8Ax3F5/vnbNOp1fuEbX8VzPVzPYx5MyfIEREGWx5xfnOC6Llev3+Dw4ICPPvqAtVUVrZpOxhi6zmw+QxM6r77yKkUhSZKUH/zgj/nBD97gt3/rt/ijP/wDXv+lX2JtbZVnn75F+dQNXnrxBZIkJoojTocjsjRlfW0D17Y4PjphNguqJnOHLFVNXv3+gMvLy2pwpA7uZ+cXGKZJLkv6gwGffvYpO1ubPH3rFr2VFdI04w//8A+Zz+d861vfwnUc3njjDd566y3ee+89/upf/Wvcvv0S129cx7RMLkeXlEgFbK7EuSiKqkGDEh42r2yBUK12i9iqpgkMXTAcKhfiAl3S6/aUwLPgEVcHemBZ6pSmirsmNG0paFdYvmWUfDAYIKTEsixMy6IoCk7OTjk4POT+w0f0+wOFf8ly7t9/yOXlJfc/vU+33ePVl17l8OiA8/Nz8iQiQZJnGdE0pkgyhKfaKW3bxrZcZGmQJoKyMNFNnxvXb7FzZYcXbz9LHIXcufs+J8cnXJxf8IPvf5/pZMrf/Pf+Jr3eimpwn885Oj2j1+2QpgmffnbMdD4nzXPW1tf5n/zFP4fv+4ThnPPzc+7fe8DlaERa5KpZTUos08S1TTorHZIwYtS/RNclui6hcqIVKCHKMA20oqCME+LRiNPZjMNSrbWGZaMZOrbtY+eSrVaXSRJzEc2Rula11KsBpCVUI9x0PKLmWdiuwTyacu/BPaazqWqFlRpIHU0oDl5ZVsMHQdVIV6IbOrohiLIYkScYRYbr+XTaPVzbRTcrMSvLSZKQUuZsX9lic3MT3/GwNAsyiaNbtLwmf/ZXfo2iyGi3O2iaYDoaE8eqlfv44ICTx/u02j3WVjdUyifLODg9wjAMdvZ2cRwH3/MoctXmThVHVrMIBQ7XKzFT0zR0TSfNMkoKcqm4hIo7WVT7CklWiEpX1dTnKSUlChqfxLESJpMY2zTVcM23MQyPrHJhf5HXF4eLy+pBW2Vb1eKqLF+mbS5vNCpoNgs7oaZhVNndxQOtKEvSTAGPy6pRTdMFlm1gWQaabiBlxb0RylWV5wIpk4qdVFS5R2Vl1LWSQuQgnjCAltZhUU3N1GBHvYllscxjSynV9GcxMazU66JQGzoNHSlQNmpUFWY1K6ryx8rtsWBA2bZF6Su2RhwF6JpAQyPPEmSRY1uWakur1NVlU0yljC/cUXo15VpyqqT6OqVUES5tIaYJxSVI4gjLNGnU6mojVJRE4axqKFiA7pSLo6icN1Iu3im53GRqulgq/ZpYuCckiGpCJ5S4WCLQdYFtq6murhsgxTKPqmuqmUXF1SAIAsbjEcPLywr4XJVbVQuDLNXEzbEsNMNgMhyRlJCkCn5putYTp1hlXdWEYruESU4hC9JCfa5ZGKmqSgS2BYYpyQul+ouKYeCYFolZoFe/z7L6/WlCoEsBRUFZVIufblJqSoFXEwMTKUuKUsHfBSXaRF1gRaoUH0PTlFiCYlFJPUUTOoYBhqZjRObSBWJZGo6tXEa6rlPkOWVekqUpcRCoyYCpowvU91vd3NVQXLnydIFhCjUJrx6CRVlW95dcxjOSLCbPlftOHcKc5SZUFjlZnqqGFkMQhSbCsaA0yAzlKjFMlXFP8pRCFsRphuVV7X4VTFEXElMXOIZO3XPZWN9gdfWUTqdLGEZEUcLZ6RlpmuF4TVqtEcgMv16j0esihYbletiuTxGn6NUDWl3jOnmWognVAhJXdaQlyo0RhTF5XpBHOaamvgfNNjEcG1u30B0DQ7eQZUqWq4O90ARZURJlGRmCwjAxvRpmlpEWhRIsK+jk4n5ZbjQoVV5dQpFlyCLHFBrdTpur169XwPecOMjJyxTKkjSOmc/mZKmajtq2heu5S5G0LHOgQJMlmpRoVY06Uqo1iKotVN2W6owglBtLN3Q0TQI5jm0iDZ2oUF6+vCzVgq9pqi20kJi2i2HatLurNFtd9g9PiaOYrJq29M8viMMQvQTHsLBNmySprPlZRl4UFCWQ55RpQhpHpGGETFPIMvJMuVYNU7lXJuMJURiRxAlpEpMmMbPphLzIsYsSXUqubKyThRFpFFMUJUEYgaUgyL7nkWgJZaSAoIbQydOcMAyo1f0lPJfqeheLqaUASamq0tOU0WiEbhgURYlpOayvbZBmOUGoWELDy0vGoyFJkmBZJs1Gg82NDbI8YzQaEgYBk+lEOf0MHa9Wx3VtNq/s0Gp1WNnYVNyPUlJvd/EabXTbRWIwvBwTVLE1IRQf5uDggOPjIwYXZ4wvBxiAqet4fo1MhyIx8T23Er3VhqpWU88ZvZoQ66aBIculsBDFqj3F0LVqmqqT5eqZ6dgOuqemy3GcMs9DGp02pqUcDSurK9SbTUzbRgqB4zhYluIuhWHAw4cPCaOIOI6J44jZPFw2pdR8D63mo+uCslCT1bzIlMMSySyYI5HV57TQNZ3zs3PKoiSJU5I4YT4PFIckTpnNZirqoqvGryiO1PUXx6RZhiwlcRxXv9cxlmWSVPHDPEswNBvTcJfCUzCbkWYZWZKgG08qjcMwwDTVPbhwRS0cdWnlWJ5MJwTBnLzIFZfJsnEcD9t1GU+mzGdzFZm3LNbXN3E8BWDNpHKKz4NQCbthQhAq8S4IQ8IoXsafhNBITVM9i4SGrqnptW1Zy7VgoQepyWUJmnJrSxT4tF6rIVBT8vFkQhwnCnVQ8UuUwKaquvNMFSuYlvlkYrnYEqmB5tL1uWQ5fU5pUmFrFqepn9s3iuoTff7jn+y11EeUlWPn884jFnGAf8Ve9N/U60//XMqxoL7lynn1uf9CtSVa/Exi+VHLbRyOqQQIg8oFP4vpX14ynU3pNFVTnZO7BFFEnKrNvKFpZHlOlqi2O4FgHgYEUYjne/g1b3l/fr5BaBHzqTY4mIahSkoqR9vCqVH9VCx/AcsfiM85np60Omd5tnTRFXlBEIZMDANdgrAM0DWiRE2+bcdGiCYC2N3e5uquKiqZz2ZEQUASxQgU+8ayLGzbwqwc3Z1uj4cPHzKdztCq67zRaJDlqsik0WiyutJjOB4TRTGu59NoNBmPJuhphhCqVKjRbDIYXDIaT5jPZ0o8SDOiKOTevfuEYUSn0yPNUwzTWF7r3W6XOI6ZzmYMRyMm0xloAtf31ZpjmrTbLVZWV2hUJT5FkRNHIbpuUJYlcRxXzZAWEkGeF4r/EkdMxhNVoOPVMCruYDCZKPdAWSABy3HwioJWu41hWtUgPFNpkCwnjhOyYkhRwX2Tyg3uOBatVoOLvk0UG7ieYsTV6z6e76r9miYpyqwq8rGq2KBA0xTTRhNqX4yUlVND4/zsnDzPqdfr2Lau9sKAZaqmxa2tTVUUNVJ7eqPa65vVmqhrKu0SR0kVU1IOwDAMyfKMbrerECSzOcE8IAoDisrRZppmFae00HSNNE3JCnWm9NzKQRqEjMdjTk5OSbOUTrerxNbxiLwo6PV6rK6usrq2Uu0JqvONpqPrmgJFy/KJIwVRQdJNqBwySElW7R+e3BtKwMjzsjIu6OiGtoxzLVeMyiS5aLzTKqFaOWfU1yty1fiuCY1SKldfHCsGb3/QZzwecXp6ysnpGVtbV5apmzTLQWjVz1K1mRZFlczRyKO8chV+ftFS34dlmniOi2kYaEIQJ+rr5ZXINplMmE2nzGZTwlBxj/2aR7PVIE0zDNMkyTIcx65Yyeocr1xXOkLTyfKc4HK4dP36vkujWcd1bCzTwLbNJ64a1az15BkjP7fmyydrq+KySoo0VWieUi7ZX5Yw0UtJw1L7nmmikyFJyxK0xd5ZOU2FisZQFCVZGhKFU5I0RujiSfSseucWv0Ox+C4W62y1/0YIRKFEG0HVgKfrZElClqbkFUN6d3ubK1e2WV9dwXXU/em5Lqau47suZWmrlE2hhmlpxV1Dgut6y5IVTQg01NcwDUM9QyxlwEjJKpe0OgwsHGMSxRdbnAVLoYwyKs2gnn95llUuPuXIzSvGITyB6CNKpFDvhZBP7gWVuoCikCpZJvT//uP0T3l9YeFpAV5TkDitmpilJHGEbVug64hqEVVgLWWNk0g0w2B1dR3HcTg5PmMeqFYQIRTHwLGVBb7T6VCv1zk/P2UezNEMJZjYroNRKEivWkRKSqlEGNe1Kar4ndAFUlQeOAFCL9EMgVbl2FWjW0oUhsRBrKy8hnJ0hJpBho5ZKZppEqlDtK4WQN3UQVcLSJpnCnBdKhV6OLykLEtajSYbq6u4jsXg7JzjB33W1tYwTJP5uE8c57SadYpCMp5EGLqDbdfI4hiJxDBUfe3leEpbCNbW16jVfRoNn+HggjCMabeaCMfBc118z6HuWgTBjMHJETdv3eJrr77KvQcql/vTu3eZjsdMvz4lCmPKTBLMQobakCLNlQBimliOTaNVR9d08kLFZihLZX+2jerAXGA3a4DGNIoqJVltWDUk0Swg8iK0UkPIkmg2wjIkzz57iyLLuX9/n08+usvHH96l47vUPJsyCSnSjPlsQp6l6LqgVq/RrXsknQ4z02YyCgjjAt23yNKEyeUQr4ox6YYFQmcaZaR5wUyqatejo0NM08T3Peq1Or7rLw/xRhV3XF9ZpVHLMF2XSRxxcPCYK+tbtBpN9CxHZjlW6KJrGr6logoil7iWg2VaREkISFa7HWTuEgcRRZ5zfHBMzbVp+A5RmpOUkpPzQ6Tj0964hu04NOou+481Ls4Pafl1GrU6rV4HhIqYpGVGnuREs5DLNMNZaeGutrArPlpRLfYpsVIcqrhkzfeeVHnOp6ptLy0rx59ONJ/x8WcfE8U5uswxdQ3bMpVrsJSYokDIoqpULpF5jiktXKFTJDlSLxUEE0GWFQp0GQTUtS4Nv42xBnkaYZFBWRIGAWWe4tTrXL/5DL+quVxejtRk76N3ufPhHX74wx/gei7b27vsXb3Gl778NZIkxq61aK3lCsa5v0+ahFycnpIlbda7PWr1Oq12k4f37jGaq/svSzIePnxEmubq4S6Uwt9oNmk0Gjz/zNN0Wl1WegVRGDG4HFCKFGHHjMOAYRLw6fkFgemzs7HFSneNTx/dRZTgrLQo8pwwichlodZXrUTXS3rdBmleMgxmJElGmcR85bVX+Z//e3+Tt99+jwcPH/OTt95mMpngmRbZPFCsOc3Ab3TxW6vY7R5ZnhBGGbnMEBS4lTBeIinIyEgRRokhIC0TkqJEZDrogu3NNUzLxnJ14iQgS2O2167gWh5Hh6ckaco8ycg1DSsviEtJIgTbN2+xur5Fe30Py2+ShPcJZ2OmkyGPH9zj3Z+9jatpbPVWWe2t0vBcHp+cU1Ji+A660DF1m5OzCy7G90jzjK2NLfaubONZLm9cDNA1wfNPPcs0CPjB936AY9tYpkkQzinKnJPjI2zTwnF91jbW+cVXXiRNU5Ik4d33PuLo9BzHsbEdm+u7e4RRxKPikDQfQ1KQhCEzHfxGDS3TOT09pywKsjim0aixvtZDmwgKCm6/8Bx7V69x/8ED4jRlbX2T9bVNTN1lOr7k9PiU2XhCGkXcufsRURhw6+ZVbly7yte++hUePnzAJ5/c4eTkiJPTU7Z39mg0W9QaTVbXVvmf/rt/GTSNy9GU6WzGeDLhMog4fnzC4O27xFHEdDRkMh7x8d0P0A0Nz7NoNdU6sFp32Whs0+20sW0Ly7NJ44TpYEy9XsezNYIwIs1yvvz1L1NKuPvxx0gh6I8v1WClKAjikGkwZaXZwnc9up2mEv/Kpjpiaho7e3tcu3GTH/34Rzze3+fZ555hdW2V1770JUpKjs+OqPU67N28QVTVdr/11lucnp5ydHyMYZjcfOppNf1tN0hiBcC/fvMq3W6bxw8PGF5ecnR4gNA1NnavoDsmj48O2dncYmd7B9tySOKE3/qt/5ayLHn99W/w8N4jfvd3/jt8T0F/S0o0TXDrqVtouuDOnTsqrmFaeK7LU7t7nF5ccDke8847b1MWBbvbW7gNj5rnqGf02ekSgvvJp58y6PdVPMX3KQ2DoizorSj2k2EY1HwbzzYZjwYE4ZQPP3qPJE1oddqYpkl3tUW72abVaLOzt4frefzO7/4u49GI3b1rXLt6jRdffGnZDHNyfs50NCOIUpJS0u710F2X5vkZZQH7x8estbuIpuTioo+UkldeeAHHtsmyDEtTLatC19E1fdlglxQpqupdCUp5WdJsNnmxcZvH+/scHh1y/8EjsiLnlZdeollvkGcZuqHjN3xGl0MuL/usr63QbFxTzTXIBdqETG2z0ash4iIyAijhGzUMoRJZhWDZNLw4NIASyH7eFbXYzKOqvasYtIJam9XG/4vXM///+loIT8vBqfqXPIn/PYmTL34AXa84L9XmvEQNLzUEWcWX802LrMiZxiH94SWHJyc8+OwepxVzptVq0XJ9NEPH8R163TbrzQ6ffHSHj+/c5U6a8qDmczkZYTsO3/7mt2j4tZ+T4vTl91wNWxezXyDPVDNsmedYhoH6UPUkkdXP/eR3pQ5mgsrxpWkUZUl/NEKWJZ5uM55Muej3OT87RRYFaxvreL7PLJgrASUrcCyLbrPNN7/1S3znO7/Gf/wf/8f80R/9Eb//z3+Per3OzvY2VzY3+bO//mcVS6UsqTXaOH6dw+NzPrv3kG/8wi/Q7XTodDpohsnu1V12d3Z56tbT/Ff/9X/Fz955l2+8/k1cx+fDD+8SxzG2bbO2XmN9Y5PReMpkMuF3f/d3mc9naGjEUcz//R//5+xe3WMahjSbDVqtJsQqtXH1+g1msxn/4X/4f2B/fx/bq5OXGVESVw2eTdbX12i3W8yDOYapSilcx2NlZZUsy3n48CGmaeC6NugGUtNwvBqzMObOnXusr63y9M0mN65exXMd3vrpW+RZzGB4SZImXHvqFjvXb/Arv/Yd7nz8MR98+CGX770HJRWY3mc6m5CkfaLwLTrtNuvr63ieiWlKar6Nobf55i/+Es1mi9X1VS6HA+5+cqeKohsYlkWn2+bdd9+hKHJ+8fVfwPM88izG9xyuX7/K2toajUaD/+aHb3J2ds5f/Iu/ga5b3PnoLpqm3P9P3brOL3z9NX7wxg/Z31dr/GQ85s03fkSz2eT27dvsXd3jpRdv89GdOxxkB8yCkALB8fkpvl/j27/8TfYfP+Z7f/RHy3p3HYldiXyO53LjqZs4jsPFoA9ScuXKFVZW12g02vyz3/1dPrt3jw/u3lUXvaaA9WenZ/z5f+fP8ff+/f8AUJHQ+w/vI4RgfXUTvWIugSRPCxoNf8kvBqqSH4lt6OjCwhBQIiiBWqOFL1kOOfYPj9EEWLZJvV6n1WotYdh5puJbWamSMmr9zsmSRHGHdIMgVHD2TnuFOIn58O4dZrMpj/cf4Zg2ru3y1k9+yscff8rf+/f/A9Y3Nvjsswe4jsP2zg6u53LWP2M0HjEPA3b9XZrNFsPRkCCJwNCQmmpSzbKUNIlYW+mwudqh2/Qo84z33vopx8cnvPPuu3S7bXavXiEvcur1Gp1eG9u1KLVC7f1XOzQ6LTorPRzXZTQa4bsuzXodS7cIg4jvff+NCvGhEQRzXrn9PM2azdZGl0Zc4BSShmdTFhnn5+dQqLZnrRQINDVYF1XbpgRZKgC5ZzuUpaQsJK6t3uOiMjkQqZTFNbfGVDdxJJzFc87jOZqp3GpZGiOFwG+4mLbJdDhnPB5zdnbObDrEMjUMXUPThDKSVKsl1RDEqHAOZVYqUacsq49R7vskCvFth5rjEUxmBNMpaRjhex5//S//FW7cuM6169eq6KZggbEZXc6YzwPGVVNlEKoSHdO2aXbabGxf4cH9R1ycX9BuNjENk6tb2+iGjqPrFGnCKAhV7HPhYpUgi0IVcBUFQmhkma6SQfmiPENWoqUkjAKEANe1KEookrRCywilfRiaGmKUJboUFLmJIczqPtKYTGKyrKC3sqpwMV/g9YWFJ7s6LDQaDSXgpMkyz1hU2VjbttE0NVFdFIEIIciqQ4SqkQSha2RpVQeu68sdymw+J6/qfsMoUiBMVAxO1zQF35MSWSr2iHIZKcaQZVuKv1JkZLnKQJqWtrQzylI5QBa1gZpWuQYKjVJ/sulYzLDMisWUJCmSyq5Wjbs0oZwPeZ6rCE2VUTYqG7/rOJimRaonSlmEJ9bNChInRNXSVqg+GsWT0tF09X3muarHLStXl2YoVkoUqUazZr2JqG7uLE2VE6eygHqeR61Wo9ftYTsK7hqFEdPplF6nUzEClOpbFlBkymYqhFZ9HkGpC0q9cgc5LsI0yDP1swipV4B1NRVebMwkChJXohgDQihHkDRMHFvxChb5MylVW5KUJZaj6t8RkqJUrhvL0nFdi+lkVk1TwTQsWq0Ohq5ccYVUGeA4zYnznFRXvDDNdsmRTKKYOJdM5jGOoWNoAlugYojTMVLTcR2HKM/QSsjTlCSO8TR9OT3QNA00tRBGkXLc2JaalgkkRVWPbZjqPUmiFMcy1PC3st43aj54dXRDXTdRnJDmOWiCtMiJ0pi6LDB0A9/3VHNLGYCAjBKpC4xKXF1cyxIlwgpdgyKnrCb4eVaoa63IlbujKNAwcDQFPxUCHMfCsh1c38VyLcVaMA3KPFENPbaFZugUslTKt5QYCHQh1IIhFoXQygkYhiEXFxdkeYSUBe26mrS5uoZVa4BpYPse7W6HvCyQosSxbELdoJA5WZowuDhH1xQPq9GsU6/X8H1XsY1sGy2MKApJkRUEUYRm6pihSVYWCtybphSyZGdvlzTNGY+nitkSp2RlTpylXE4mFEgMy8TTdLoC1bAWzzB0Hdd2GA+H5JnEoMTSBWo7rjGLc1SHlEGhGRSiIM5VRNJyfGwbHAwSGZLmM07PL/jgw4+YTCcYhmrsybKEeZoQRgFoJbZl0vU9PEPHKHNkllAUOZajowsNszoUqYYqtY4tzm+apmFIgS6UEy4XOhTKTRUHEXGSUK4INN2gFFXrlVDrTRQmJHFGmha0Ol02r1xhHk6J8hhZKobZ8HLAfDahKFJst0bD87BsA8PQaDR8CkqkroQ9W7ewDMVrm0wmGKaCWLuWT6PTpshSwjhEaIJOt41r2Woqn4akaYGmW+RSYzCcoJk2F/0hWZ6SpSmzeUgcpziug5SSfv+CNFGV50KAZerqvU0T8iJFF+aymcswVT1snESUZY6mC3orPTa3Nvnk3kPCKKa3soLn1+hfDphOZ8RJShCEzOdzHMvGtW2ee+55VldWODw55ej0jP7gkrXNLW498xytdhfLdhhPppSl4P0PPiTNMs4vLoiiiCAIlmLwaKyiL0kwJ89SGnWXbrfD3t62ctYIQf/0lCgIq4aQgqTIMIRGp9tFaBpxkmKYFpajmjWLssSylDixiNSklbug1+3S8OvYpslwPAahuHFoKgJo2jZbV67w/O3brKyt4XgOhmlycnZOEAZ8/PFdPNel224ThiFxFDEaTkiTjG6ng2GZGKaGVvEJdU1imZpy4KYqbu9YDs8986yCfVJiGiYCQRzFTMYTymKs2mmrwVa95lPkGXXPVy2NsxlbV1TleaPeRNM1rl+7jqYJal4Nz3Vp+HWyD95jPB2zs7WlYnKWoiFFYYAsJJpQf59OJ2hC0mzU2Vhfxa/XaK/0KKWkUfPJqti87TropkFSuSkbzSZplmFZdhULb9Fud2i3Oniej2YYanofhHS6HXzfZzQZkyQJwTxgOp+TZRmddpumbGIbqn782aefwfU9up0u7YZq1YqzhDhNOD0/wzYt0gpSnSQJqa5YKAvWVl6JH6lUrAfLNMmLkiRNGE0mnPf7FFKxGspMRdILXe1F0iAgjuOKRabihQtRouprQpOoKbRA8YAQCri6sPZUnBKkcoMvxv2iEpXk53ZViCfuqM9rUIv2H9WuKDAXXM2FOPVv6PWkpvxf+0HqW/3Xfdyf+JjlzyMq9mL17M/SjIvLAef9C07OTnFsm6s7O1CWStwOI0zLot5rk6YZ49mMcTBnEs7x0gZW6bK5sblsuzJNE4QCvyv3LdX3sXAllctvb7HXVSDjsvqWn4iGovqLrH5fasDB8lAuAFPTVYQdqVz/us5sPmc2mxJE6nvXDQ3TtFhbWcGzHXzfxXM8ar7PrZs3uLwccHFxwWQ6Joy6OKHLZDLBr9VotFoABEEIQmA7Dt1ul1arRRiGqn1UaNi2Q6PRZHt7l+l0TpKmXF4O1SAoDHn8+DEnJyccH5/w+PFjjo6OVG18FOFYtuLPXZyjaYL33n2XjfV1tq5sYluq2ODRo0eMRxMOD/YZDgZICYZmYJkG169e48bNG2xd2cL3fR49fozrOKysrJIXOYZjkwRzZsGMw9MT5nHIxsYmlm1jmmo/t7G5TqOmqtHDUHEGPc+n112lXm9iJgmtVhfXcUnTnNXeGq++7PDJJ5/R7/dpNpuYpslKr6d4bGFAvdZgY30TpOBycMloNFZJicod8ejRIy4vBxwdHiuunGmSpyVlUdJoNHBdh2azhWmaqvY9zZjN5qysrFZrnKeauB0H23bwPJ8oDhlcDrFsWw2Iuz2kFOzv75PnOevrG9i2zfHxMWGoPlYCtXqDWr1OrVZnZ2cHw7SIkgjN0NjY2li6rLI0R2g6fr2OZdusrW9ULi0H3XYw6nWyNOP09JT333+fTz/7jDzLVCNhW5VB1Gs1NjcUBy2OI7Iso16roek6rutWwhPkeUZWMSO1NMU0qj19JawXFT8RQVWGpZEmGXmh2i6FadKo11V6plTXYRzHOI4qabAtp2piX9yfyjlimFVrnqaRpClhFDGZKTZvKXw0zWBraxvPcfFdjyvbO0wmc+V2yjKCICCK4+V5NMsyVQITBur5kCbqHJAkFGmGqeusdHt0Ox3arRYX52fMZ1PSWA3KJ7MZ8zAkCCO6K106nR6Xgz7TeLZMLLXbHbrdHq5XYzab0x9cYloWlq3+6LqhmlfzjMHwkjiKiIJAOYAMgec5rK52ERdjRJSQxooZuViDFsmaxTNjsY6qZMGTs6lYmJIWr+o8vvg9SZTgVXcc5kXKLDUQUkXOEbp6fmmSOI44PDwkDEOmlWvdNI3KKF8lcNQ3thxM/Pf+Wa2VjmMvtRFN09R5v5QIobGzs0O322FjY4Nut6v4xEVJmqrfWRwljCoXZ1YJRJ7vVzqJcr+OxmPFpK0K0hAS3VB4oKJQnOAoSZZru6ZXKapSteHmFaanyFUSZ5EsUl9DvdmqQVg5pZGSUhQYxqJRsGoWThO0SrgSOkhr8WQWao8ThJXb2vxXPzc/9/rCwtMCWre+scFsNuP8/BzDsMDR1CGhsmUauo5hSMDEcSCJlMNIVi0VQtcxLYPJNFs++EQmoLoB1YMoIM9zXN/FkCXjyYRGo87m+gbBfE4wmyvhCbAtpWBLoaCucaoyuZZh4rjKNp+mKXmWkWc5EonnKREkTVN1MWuCQkpkFUUDgef5JEnCcDjCSpVt2XYcLNtUeVBQlrosW1pUTdOswMIunudT5iVhFCthSRNEVYtHklQbwbIgzRQUWQrQTROtApeleU4QRjSaddA0LNtBAuPJFDtKWF1ZB0rO+xc4to3nemiGmoQ2Gg0Mw+CZZ59hMpnwve99D01oOKbFrRs32N3d5fTUQUiDIpEkYYYsBELXsExbEYPKAiF1ClHQbnTQbZNiMicvSyRCxceqzaeu60sL4yK6RlEidIFpqKYu36/RbDSwLMUCKyiI0wRT02i0GirapysIbxFm6pBrugwGJUUhEVLD93w6VzrLA10Qp0RZyjSOidOs+po6Xq/HfD7n8vKSJJqQpRntmodrGdQcE1PXuZzNabZabO/uEWc5jhaSBiGzLMfttDEMHX1xbWmSOI0Zj4fYpsBzDUxDoKETxwGylFiOSV5kJGlMkqvNvyhLLARrG+to9RYnCSRZxng6ZhaEIDTmSUyUJdR7DXzTo9fp4Fo2Z0WOVuakFAhbx/Js9cBIkiUsz3EthJTIREVOijghLSW5lISxitRlSY5hWvi6jmYaYJrYro/t1Wh3Wzi+j1NzsaY26TwGXeA0PBVvk6WylOY5jmVjagZmJTbKyt1oGyaX/QGHB4cYjo3l2NiN69T9Oq16h9rKKqVt4bZrrIlVhF5imNBptpBJRooCBp6fHTO4OOPex3d55ZWXeeH282xsbuCYJq7vq4lZAVmSczkZEWUJURoT5xlaxWzRNY1f+uY3ybKCD9//kOFwxNnZGQUlSZ7w6OQIZ+hy+9ZTNNs+G1ubjCcjPrv/Ma5pYdQanBwcMJl+zHw0pF7zqpy3xtl4jm1a+K5DpkkyXTCOS/SsYLvbUqB0NyPhkvnBKW+98x7nwynPPfs0q6s9ZJGQJSGD2ZQwChF6ScOz2Ou1qJkadhqShzPKMqfd6GGZJqIUS6G9KEvyNFMsDiEwdRNdSBzdJK8ellGaEeRzJqOQMEjJdoCGQS4KcnJ0oVFkBdNRQJLlJFnB5vY2z9x+joPTA8I4BmmRJRH7jx4wHl6iC0mz6bHe7eJa6rpfWVtHIhnPVTbeMWzmYcjItLgY9BmFAV/95uvUG3W2b+4x7g842z9kfWODmzdvYukGuhCE4YTJJFdOqyTj4eE+l7OIFG05BT3v94nCmN5qF4A7H30IgO810FBNGrnMiKKELI1AFAihyidqNRchJNPpmCxPMC2Nvau7PPPsM7zz3ofM5gGvfOk1EBqf3L9HWaqc/OVoyMX5Bd3uCisrPX79z/0GeZHxe9/95xweHnD/4QH/i//ld/hrf/2vM5uruNTv/d7vcXR0xD/6R/8J4/GI89Mj5YiQSmQ1DYNYKnCpgaDdavHql17mxRdf5Dt/5s9wenrK2dkZf/DPv8vp8Sl5nqHpGqWU9Ho9bj9/ndFoTL8/YGNjg1arpSJZaYrruORZztnJGcF8zng44vr169y6cRNd18nznJ/89G2iOKHT66lhj27wZdvm6Wef4eYzT5HmGT/60Y85PTvl+2+8wenxKT9+46c0mw2ubG0SxxFpmtBq1qnVPF5+6WUs22Q4vlTrTBqjaeA6GmEwJ00zhNTotrp88/VvMZ5O+P4P38AybSzdZDyaMOwPGQ/HpElKp9OlVTWu+p5LniQqZnBywlM3v8Wzzz7H5URBl19++VV836fb6WCZNo7tMJvPODp4xC99/Wv0ej0+eP9dRqMRx2cnmKZFs95k0L9QLrXtLbY213n22WdoNJv47VUkajI8mkw4H1xQa9QVgydJMMuSvavXl+2qjUaDzc1NWp0OzXYHIQRRFHE5vCSYz9nZ2aHm17j/8CHT6ZTRaITje9iuw9Vr1/A8n/l0hhCCl15+iVJKNWV2PHzHJUhCwjTigzsfoQmN3d1dCsfFFjq5Jkl1SR5nlHmB7igeigQc02Kz0yNJEs76Fzw63OfjB/e4trNLs95ApjlZGJOiEcYRx/1zap5Ho1ZXkUddJy8Uy8HQ1AZSV7QNpKZqqUsgrUSiRVyjRKJVkcBFDJnKSFN+XnRaCEmVUrMQbNJMweDzNKnihagIurnc3f4Pvj5fef+ve31efFqgFhZ/B6r8ulhCeX9eInvyOf7kv12QtmxRxXKkJAwDPnt4n9PzMx4fHPDN177G7VtP8+abP+Ls/JyIAsfzeLpeYxolXFz0OTg/5WwypLW2Qtsw+eqrX6HdalWDPEFVm6We+1LhEkQVb8izWBWraJo6bFWuojTLKkiuQEolFBpSgEbVrKdiVrJ6X/TK8Fa3HLKyIChy0DVcx+H05IT9wyOGwyFpmnL92h7ra2u8evslap6LU+2BHcfhG7/4DXav7vKf/Kf/KfsHBwxHIzUIM3T2rl7j6o2bpGlKvz/AMC063R47u7u4jsPbb73FdDYjLyWW7dLudPnKV77K3t5VJpMJj0ePkVIym075/e9+lziOlQN7MmE+ny95XY5lgZDEScKw3+fi/IynnnqK559/Xp1HhODtt35G/6LPwcGBQhBYDrZrU6u5/OI3vsGv/7k/R5IkhFHEG2+8QZZnXL12jU63y96Na1zOJ5yPhxxfXqDpgu9869usra7ieBaW06beeJk4ipnPAobDEVEQsL62Sa3WZGNjhyiOubK5R5rEnJ0e89xzz/HCCy/yH/2Df8Dx4Smd3R6dToenbl1nPp/x/vvvsbW5w/PP3ub+/fvc+/QBp+cnSClJX0tJ04w/fuMHTCZjBoM+tuvguC5nJ2ekScrf+Bt/g729PVZ7K6RZRr9/yXwecnR0zMbGJrbtsLq2iq4bNBpNHMch2yg4Oj7i8Z075LmK7Wxv77K3d43vfvf3mc/n/N2/+02iKOLNN99kMpkyGo/5jd/8Tb7x+uusr2/SarW4srNDGEU83H+Moeu8+tXXlu2bQYVJ8GsNEIJbt55W92spqfsurYbHnY/u8ODBQ37nd36HTz79lC995cu0W21uXr9BrebTrNfY2dmpGE5qH7C6uoJhmJiWs3RhBkFAmimsRJyomKRpmpiGMhykWbZcE0xDxzItglmwjFSatkuv2yZOYgaDPoPBgLOzM9oVyH1nZwfPNHFMXQ1pCwmGjmm6SBTnaRZHXE4mHJyckKYJ29oWq6urfOW5r+J5Lr7ncTmaUm+00HSD0VgNEuI4pt1pImVJksTMZlOGwyHT8RhT04jmAXEQkkUxrmnz9M1b3Lh6nb2dXT775GPufnxX7d/LkiwrmEUhaZnj1+vcuPkUs9mc0egxcZIhhM7u3jV2d/dAaOzvH3B0fILr+dQbDSWGA2mRM4tCjk6PuRz0eXj/M1Z6HfZ2d6j5Dt32NoN5RBSGTIbjCqZuqDVNK5Zuy8UvaOEqTbNcuWr5nDmkLCkUZ0eJQxVOJK2wA716g7QoSeKMUZEQlSmaNFQ6RBeMxmMujs9ZNNjbtoVjW5SyKiDLcxBCNcZWwv3yVbLk5Om6TqPRxHU9fN9H13WSLFXYFsPkq195jatXr3L9+nVa7TbwJPqumGYK5VCWJY1WC9t1aLVbFKWKcZ5fXHB0coypG7iejdChpKiYTYI0i4mThFkYKhNMUWDbtirIWKQXhbGMeBqaKtrSlgVs6j33fLd6zKrnSZ5ny1RCWapisjAMyLJU4X50ZXqQUl3XYRjQ719wcnbyhWPwX1h4yqvpwsmJ+uSO4ywf3PO5ikyYhnJPeL6vqh+jCGnJ6qJSU7oF+b9W8yunVLaEtS1elmVVnCI1uTYNUzXJjMeq6S3PljWVURSqCzRV7B/LspRi77hQQhInlaKq4fmuOkgDWZ5zfnFOs9mg0Wgo15Rlo6qJF1lgA9t2EAKyLEfTlVimgHHlMnJo6AZCN1S1daHeJ9dzMQyT+w8fUBQFO1evIoWFpo3I8pDZTFl22+0Ws3lAlubKBl3lMouyJMsL8kIJPY7rYlkmURghgJOzU+p1n+0rV5YciLKUzOeBumkMnShSdbLPP/88WZIyn82YTKd8dOcjBBppniyV4ul0vGwglIWgzNUNDTCbTRCxQZaVlAik0JfKrVm54OyqhlnTNSg0sqLEQENYGnGcEMcZ0+mcIEzwHBuhmcRpToogXxDy9RzPd3FNmzhRgDan5lPkJfMoJpeg26piutR1/GYDVwguJlPiXPFFzGoxcBwP16spnlVR4loGugZxMCPJcsJgTiwlGJZqRECQRKotrearqUUhJa5ts76+gZCSUb9PnufMp3PaTR/TNCizDIFydlFK8goePMlSaoaJY1YVrEIynk2IkpRoFpIkCY7tAgVQVtbMgHA+I00zbNtGLzSMPFGTgbzAFjq6XsVKAUMs9uUqAqoLSSaVFdQyzYrrUqLpOmWeMx4O2T84xXRcTMdjFM6pNRtkaYyhCbLltKdUjjeU0882DAwBBiVlmiM0JTjpSEQBbtOFlsc8SclKVVk8n4XMJjHOPGSIAsJ7Xo0sTkkCBfV3PHVozIsC07ZJk4w4jBlcTnj8+Jim36DTarG+vYNmOXxw9xMSWdDIWrQdm9W1NaauSxgEzGaBcr8lqtXs2vVrNJp9FuBdgaCzsoLremqiM7qk22yDkOzt7BIEc2bTKWn1/8dRSFmk1D0Dx3bo9tbVAy/PoRAUmmq6QkrmUYCeJYxnc6QsuHl9lzjLeXDvY9ZW2zQaqnrb0HTOLi8q94/ENXVWfA9bFliUJIYCGuqyhKIgS5WbcGG21ISo3CqCUpZkRYlMY8rlKa+gSBJsx8SwbMUiiuZkobqGLMsiTTMm84CN7W22dvdoraxRCINwljGbhcTpjMHpBaeHR2Rpgo7A0gwlADoujmFQlOqgHCUplmHhWBqra+s0O+tchgFpxToLZwHRNKJISxr1No7rU2IQRClFmiEKTcEW8xRR5Pi2jS4LJsNL4jgiSSLKQmAZBtE8QGjQqNXQDZN6rcV4PFYOK1vHtEzFuQI8VzXmuI5dPUglzWaTZrtNv9/nzp07XJydkmWKjaemkKodU3FJpszmU1rtFnme8/7776PpGpbt8swzL/CV175Gq93jRz9+i48+/Ijz83Mu+mfEUYRtaHSbder2rrInZzl5puzNZTxDCslKu0O9XqNMEk6PjnjzjR8QV2wj3/XZ2tzCcdQUKi1yNE3j0aOHRHFEEITEcaiarnSDspTMJmOSOIYix7VMnJUurm2SpzGDmZqQGpbJervNr37nzzAcjfjJW2/z8NEjvvvd7zKdz4jimNlc2b7v37tXcUl0Vle6PPPMU8ymivngeQrw6zoeaEoIzlL1vVuGgWaZyFJZyTUhyPOMu3fuMByNeHD/Pp1uVzmjUa6LZrOJQGBVjo57Dx/SarZ49ctf5vH+Pn6jQaPdQjMNVtfXlcNGE6R5RpjEnPf7DPoDpmFId3WDvZtPsbW5QSFgeDnE9mvESUIcxdQ7PbYdj1tP36TX63IxuODw/Jw0u0+aZcyDkEKWFEi2tq7Q7RWUUsNxJN1ur5oUWvh+g1qtzWg05fD4RLVjSsna6hpyZQW/Vkc3TGbTGW7Np9XtkKQJWZ6TpxmJpthbcRxzeLCP63l0e120okRmGTXPV9wwUzErNF1XLbm+ry5wXRAQkMbJMjqSJCl5LhkNRwyHQ/b3H1OzXb70/ItsbGzg+75iY8Uhtu9h2BbtThvXcvAdxaFSriVtuSdY7LOzIidJs2UBi207mIaCZqtWXuVjWjgNERIpF+Np8STaVa1hi5hgWe0fwzAkThLcyiVimE+YoV9Id1rE/z4/Dv9TNsB/0sW0ECeW/60SlD7/UQuh6k8TtmTFtFIHoypql2dkacbZxTlxmrDW6eKaFi2vRpom3Pn0E7prqzR7PT78+C7D4Yg/+P6/ZLW3wvNPPc0zTz3N0zduklbw8MPTY8bzKevdnhpWUiqem6GaV0E9C8rK3aRYoAWapuH7tapBMlvuJfOiVL8rUzkCRVntz1Hu3kW0uywlQaoc+xkSz/O4uXcVx7ZptJp88vEnTCYTXrz9Ipvr67QbzarQRiNNE2bTCaenJ5yenbJ7dQe/4fP4wT7nF+cMxyMmszmyOvhpmsbKygpXNreUC8cwWN/YoNXpsLq2RqvVYjKZcnp6yv7+PoeHh8ymU05PTxiPx0RRoPaYUUyrqVh816/foNNp02zUiaKIt995m9l8xngy5sH9+8ym0+rgq3F6ckoURriOo9ioccrqSo/nnnsaXWjsP3xEt9fDc1xu3rihmjZbTcIw5F/+0b9YXoO7e7v0VrogS0bDIZPqa7RabSTgeu6STWnaFnEUE0URcZwovqPQaLXaOI6Kfq10V9jZ3sXUTYosI5jOiaMYTWr0z/v89Cc/xdAN2s0Wg8GAMIp4cP8B9UaDV155hf6FetbNgjmX/SFbW1doNhqEQcj+/gHHR6fVoTJCN3RefvlVrmxt43s1QLHJsjyHOGU4GmKaJi+9/Aq1mk+tVquwK4LXX/9FJpMJjx49plar8Wu/9h0ePnzE+x98wP7jx4RhyP7jfTrdLjs7O4pnVatjLlqqEQRxQpwqZmQZqjPdZDJBAK6phmGT4SU//OGbvPOzn9Hrdvn6177KX/iN36C70lNN29MJd+7cwXUcNjc2VRpGiKV7I8/Siu2TLs+wy3tfiGWD2cIlKISoPodai0zLQGJViRl13tI1fdkyueC/akLn4OCQNE159OgBlmly9dp1Op02m1sbxHFKlKS8/8EHHBweMpsFmKb6HpM44fHjA8XqNHXaKz2+8gtfxzBNJpMpUhPksiDNMtIsJckSLMei1Wmxsr7K+toaG6trPPPsM7S6HTzPo9ls8OjRQz797GMuB33KPOdLr76C67jcufMxFKWK9jkefr1JEKUcn15w89bTrK2t0u2qfXMYxdTrdZ597jnq9TpxktDv9wmCkA8+fJ/BYMDR0QFFlrG5vkajWVfDcU05zMIwIAxmFEWO4hQq95kmq5VMPBkCFEsm05Ohgvp9qN+FFFBWa6/QlQu0yKtzkTRwNYOGaTORGbnMMav2W/ISrWqsVeggEyGqtl6eCEqL60Kq6ckydaMtnjdlWTGZphRFSa3exPVMGs0mURiTpCn1ZotWp6Oc02nKyZlywStGW4oUgnpLNfTalbHkYjCoOKQquVVbpLwkZEWGzCUipXov9OV1vHBAm6ZVgdKrJ5muom9CUukETwSnxcswDKRU53n1ni9IsnrF7SyWf4piwX5aAMslhqlhmjphHKj14gu8vrDwpOxWCspaqymbpXK6CLIsI8s0DMPCtmwaTeUWypIUYQp0TSfLqir56oau1XzSNFtavRe/bGA5fQvjUFntBBXUdbS0iZmVyBGFURVjKyquj18BP12kVEwnx1EbGc9zq8pM9Uu96J+DkFi2haGbWJbBAksuKjiebdnqzS9yJQ6VqBrDosB1XbWw6UpFNHSNIi+I8ox6rYnraUwmU5I05ZkXXkRiousGeZ4zm02pNzxqtRZxkpHnJVT5+1KqB3+a5xWcTuA4HpqQlciWcnJ2xqZYZ2NjU/FMUhXLmwchtmOiG4aCu9k2zz//PNPplMP9fWbzKXc/nrC+voGpm9UmsWQ6nVZwYg1NmGiYy0jbbDYFTaewbRA6CK1qIswxTbNq0bMUHFOog3GRVzA0oeKBQRAxnQaEYYLs6KAZRIlaKLI0qy5iMDwXz7JIgpAkTXB8jzwvGQ4npEWBblkKvK7r1Bt1TMfBOjxCRBF5lmPaDo16A4RGu3yyUdSEpCxzjg72SfOASRAooSQr8B2XmusRRXPSPCNK2gqkLiWmabK6uk4ax9i2o4Sn2Zx2w8cyDOJKeHIsG0PoiFIwyxKmeYrvqCYo01Cwu8lsQhAlxNMQUTkhSpkhy5xgOoWyIAxiSgm2baHlAqPM0BQJGkvoWIZyzkGJoZhvgIqS6KA4a0WB6ZgITacw1XtQ5AWj4Yg79x9hWA6G7TBLI1rdDlkSP3GqoSq8S6kOIIauYZkGpgBdlpRZjNA1VYsqSvRC4vo+ru9x1L9kEkQML4eAjuuEaMMxYjpl+8oON2/cJItT4iBGNzRsz8auuWpS7NaYjqfMpzHD4RRdP2F3e5darcn6lSsI02T6s7dJpYrR2o7Dyuoalmkzt13Ozi4U6DhJsSybq9f28HyXMFLW9izNWFlZwfN87r3/PmWWIvKcVqvJ7vY2o9EQAxWftUyDyTwkjiU1r4ft+mxsrhNFIcPhEDJBmSoXXJ7nzKM5uq4zGg3xajWuX9vl03v3ePTgE556+jobm2us9no4ls0b7/xE5e81iWPqdF0XI0/QM9WimQsNrSxB5mRpga4JdNNQhzaeCE+FLMnKnCypbhxNVxHkLMP26uiOy2is4giuaWGaJpZmkpQ5k3nAM6urvPy1r9JaXaNAJ5ynzEYRs3DG4OyCs6MTLNOgXvcxdQPbtCrhySTOFWMoTlJAxbZWV1dptdd4cHLCOAjI05wyVZwyJTy1sB2fUuiEUUo0C6DQsISFzFJEWVBzLTXFHg2VCBLM6LRXcV1/ad2u1+rYtkOz0SUKI6Ikoub4mJZRWdolrqOmPgqyrUDtXq2G69e4uOgzHE3pX6iJVxqHCJxKJEkJ5qrlczabKtGqKPjggw9xXZeV9TWeeuppfvlbv8ybb77Jj370E/75f/fPePTwARtba9RqHhurq9i1Br6zQpqkJFHCdDIlDEKyTMWGN3ptHMehSGLOjg4Z9C/w/Dqu6+O7HjXXV2I1EKYxwXzGo8cPl2vZ6XRGEsdYVSW1VYneoszxHJua52FZBnkScdG/YDoPlVt5c4Nf//Vf59N79/jp2z9TEZPxmNPzM2bzOXt7ewghePjgIVma4TgmKytdnnn6KS4vB0wmajhhmAaOo1pp8zQnjTOSMEU4GqauIUvlrBBCI0tTHnz2gMFwyMMHD8nznI2NdcUX1HSazZaC0doOSZpw/+EjnnnmGV760pfwm01006TWbIKu0V1dQdN1+v0+SZ4RxBEHx4d88P4HyKKku7rO7rUb7O3tgmFweXlJqat/Pn68T73TpbO2zq3nnqPb63Ln//kpx0cnnJ9cEgYRg+GQWqNOu9tFYKBpFrphI9FxXL8q0DDxPCU8HR4f88lndysAr61cDo6LX6urSEya0Gg12dvb4/z8nPF4TJ6lIJWYFEUhd+58RK/Xw3UdyHJKM6XWqNFsNvAcV8WFs1SxgDwXU9MwdR2RFQR5gaHpSAlpWpCXGaMw5vzsjIOHj7l58ybXr1+n2e1gmAbvfvwReZLQ1cAwLVp2G1s3sHWz2sQ+2VAuhoo5kOQFsyBkOp0yn89Z7a3g+z5UezFNq0SboqjQFbISrwRSjScqgLiEiv8kBdWEuSSMIqIoolbBiY3KSfX/j9fPsZ0qvsgT5Uk5nj4vTi0B6DzxQolKdEIKgjwjiAMeHO5jmga7V7boNZtcWV3l408/4+GjR3zrW79Cu93m7qefMRqOeeOdH/PCM8/y6u0Xubq9zd6VbX720fscn51ydHaCO3Fp1erYpkVRFpiWWQ2zlGCUF+USNi6Xh2YlPGmavhSesqKgzKtGRKv6IQsVq1xEjEoW8byCMKlQEbqg7nqsrW+q+2Olx3g0RgjBiy/cZnNjA1tTvBBkyXw25eLinNOzE87OT9nZ26G3tsJbP36b2WzO+WDAaDIhKwpqtRq+7/PVL3+F7e1tmo0GAGvr6woerOvkWcF4POHk+IRHjx5x984dLi8vefTowXJwnaaKN7t9ZYu9vT1+9Vd/jatXr7Gy0mU4GhLGAY8eP+bw6JDpZMLjRw+XooKQ6vC1trZBnhdMp3PqtRovPPc8utB4/PARjXqDZqPBjevXFU+yKBjev8cf/8vvsbaxzvbODmurq9y8dYtgPGI0HvLw4WMcx+Gpp2xs28H1XGzboSwkZV4SRbGK3qUppm6iWRZStrFt1bjW7fbY2d4hmM9Utfp0riIvCAYXfR4/fMizzzzL3t4epm5R5AEPHz5iY2uDv/T6b3J8dMzFxYAgiBgORrz80svcuHGdy8GQ4XDMbBYsD/Q3b97kpRdfwfMcFblBU0DwLKcoJKPxmFarxTPPPrt0heiaul++8Y3XGY1GfPe732Vvb4+//te/Tav1M87OzznYP+CD9z/g4cPH9FZW+NrXvsbaxjpPv3gbw1BlPnmWV461nLIoSYuSIi8ZjVSznub7xGHAfDrhx2/+iO9971/wta9/jes3bvCbf+kv4noeh8fHjEdD7t69y+7OjsJD6DoY+rKIKK2SAfP5HNd1FT9wcd9QDVwr8SkvCnTdwNCelMpYlvmkwEUoY4Su6zQbTSxTRafDQAmJjx/vc35+wR/+wXfxfZ9f/dVf5fr1a2xtbZIkKdPpjA8+/JBPPvmUnZ1dWs0WmqYTxTGPH+2TyYKMghdvv8hzW1cUt1IISg1yWZLmGUn+RHjqdDusrK+yubXFRncVgeDlL73KaDTi8f4+P3vnbX70ozfZ3dlmY22NV156mW6nw+BiQBSEuLaD6/h4foMwTjk97/NLv/RLvPD8s3S7PRzHZR5E+LU6zzz7LGEYEgQBJ6en9C8u+OjD9xlcDhiPx9R8n6dvXsd1bVzXJk/TZXnHfD7HlGBompK6F8PzpfMSFfeqTCcL0b8sSyWaVDrBwnUqBeiaSiplZYYuBLoER9OpGxZarpGXYFRrpajaPTXDwLKtCpKuEltq7V/AtMVybX9ib108B6qlsyiYzWaAKhMwDJNGs8F4NEYPDerVsFPXlfD0+OCAOE5UYY2ttJJ6q4Xne8uCgouBMjcskEC1Wk0ltvKcOEmqQoJymbAyTPPnBFRDN6u4dzUUMVQhzCIls8DkLyKFAKapnM55katn2fIhqFHkcolvKfKigogrsW8hCpqmjmFqZLn62b7I6wsLT0KoaZWh6chSkkQRmq4aAVQLUkYUhKqOteZDoSySSRgRhqHKg+tG5WJiKULZloGuCSgl9UYDv+ZXF0LG2fnpkmmTFyWpLHFsG9ex1cOyUBZvDR1ZqjfNMi3yLOdyMMT1TBzHxPdrWJbJoFIT4zii3WmyvrmJoSsoXafdxXU9prMJWZmTlwWartFoNhU3KsuWLSHz+XzZ+KDr+rIu2TRMlRvOMoIwQKIhdAPdlMyDOUla4NdrTKZziqIgCOZESaBYTiVLC6ttu5imhUDVGealxBQCzdBZWV0jS1OmE+Veev+DD2m32qz2eiRZhsgzBUIXgnanA8DFxQWWaXLjxo3lJHAwuORiMEAzNbymT6uh8spRHCKkjpAGeZZTpCmm62DYGt1Ol6yUnPfHWKbJ1pVtur0etZpPEM7J8kzVjQslHtZqHpubm9y5c5f33vuA6WSGa9qsdLrUaj5JGFSbC1UPrhsaSZLRHwwp8qJiFUjSrFANSklCkqVVw4uPnAmM2KTTbuI4NicXfWSZcXpyRFY1gWiGiaYbROGcNE0Jg6C6piSlzBnP57iOS71Rx/YcclmCqROXOXlWEueQFFBqFqbfwLdNHNNAGBppIajVmyAlSRwjNQ275hMHEi1NSOKEWQnJyRmF41H3azQabfxdl+ODfT698xH1uofnu9S9OoKS/mBIHKfkhaRmGqx6juJFJAkyL0CWCoInNEReVPWZJYgCpEaRJqRxxkqrgWXbDEdTldW2BK12mxdu15cxqyLLGA0uGZ6fk0QxaRSQFerfa56DWzkHXcejSKtcNoUSK8scURToeUkRRsRpRtMy8U2T4SRQ9/C0TxGbZEWAJQpsDYLpBF3k3Lixp5x2s7HiOUxGGCKlXjfodDxWV5uYekGRhSALXNfm5VdeJstSyrxgNplxdnKuFHqp2FAaagqcZzmT0YQ8zWj6dfBqICX9o2PiKEJLQxzDwNYl8XzC3Y+G6LrA0DVWug3a7Rqf3X/MPIy4OB9QFhLtpkGRC4IgQWDiey2aDRWzUQ1wMednA1rtktV1WOms8tJzBnWvThKltOpt1FxctT8uvldK5VBTsduMJM8Ik0t03aBWa4CmRKa8KMiLHE2WoBuUukYpNcKyQNOr9gshsdMMx3Ox/Rrrq+toQmc0VOyfMC0phEaz02R75wrPPfc0k3nEbD6lPxxzObhk0D+nPxjguQ7r62vcunkdoywU362QSAOarQ6lLDFdnyROGA7HDEZTpPYQ06/jeT6epcQy33OIhCTJE+zq3upsrGNs6tyJQpIiY3tzA8d2uHHLYjwZc3C8z+buNu1Om3pdtfw8fvyYKAxI05ggThjPjoiThGZnBdNSjhC/3sIyTeKHh0iZMB6Nq9ZNlzCIGY5mnJ6PMEyLW7du0KjXadZcddgYjXlw7x7vf/ihmuw1fF5+9SV2d3dZ7a0tY0iTyZh/8H/9v3B2esL52RmeY3B1Z4vNjVUajTo3b1xTzZRFyfnZBePxCU69idfq0EzbGIbg+rXrZFnGgwePMG0Lv6GxsdVle2eX9999j37/As/zKMuCs8EFnutwZXtHPTOLEvOKOpgf7B8QhmHVvGexubWlmA9hiO25eLUa3/6Vb+P6dYajIUII/viPv8+DBw84ePyQZqtNFATMA8VWXO10WF1b5Ve+9U3CYM7dux8gS8n7H/yMyWTMfD6n2VTRi9lsgu/7vPzSa/T7fd5/510018J1m4xnY+JhH99WzS07ezvsXtvl1S+/Ugn7MaKqno5jBcKPxwOiOOH0/IJZGHJ6rqaDYRhy55NPsW1LbWoE1Os1FePc2WY0GjGbT7h+7SYbG1u8/e77vPXOu/R6yln15a9+g/l8zo1bZyxaXOfBlAePDnh0cMSgP8D1fHTTBEOj2Wyqqu445mj/MWsrPXzL5rI/UI2p84DTizMeHjxCE5LV3gpBEDCajxgNh/h+DUPT8VwXsbWl2uU0jfXVVdZ6Pcpc8RI+uXefyWSiylMch3q7SRbGjGcT6s0GddfH0gyiOOLR4QGnRyd8/w//Bc16jV6njVExqNIkrTblBvMg4JN7nyGEwDYtxuGck8EFg3CqXK9FiZBwenqq2oBcB1GWUJQKluy6qg1JSqxqoup4nlrLswzPU9yXZqOBY1no1Qa3KJTnUtNVU1RRlkvAOJXTSQlkqrE3CAJG43EFK9fwfY9Wq4HvuFVTpfYnt5//1l6fdzFJWTEwqgP1sh25+hn+NBcVqHNJnKRkWc75xRlRHOPVXcajMf+v3/kd1ldXuX71Gpvr66yvr2MKjXAyY3VtlYKSq/1TtjY2aLYa5EXBef+CXrtDu9Gsqn9hEswQUiBKQaNeV4U+VaxRNZpq6LalgLJptnTMK0aOSZHnREHAx3c/JkkSOr0uNb/G5toaSZYRpjH1Rg3HcYmCkCRJGY5GFKXifUTTOZf9Ppbr0mm1uX79Oo16nXffe5f79+7x8u3bxFHEweNHS5Hx5s1bPP/CbQ6PD5kHAX/3f/N3OT074/d+/7toCOazGbIs1fN8OmMyGnNxdkaWZYzHY+bzGadnp1z2h5yf9Xn48D4XF+eEYUCeZyRJgm1bbG5usLuzx0svv8zuzg6bm1vU6nVMUxXSNJpN/vb/6n/NxcUF737wPsdHRxw83mdjY4NGvcFnn91jPBpzfHyi9rCOTbvTYefqLqAOn/WmOpv0vBXKUoki1/eu8hv/zp+vwPgln314lwcff8rVq9ep1+s8/9yLIARJnLK/f8TDhw/Z27vK1tYVep0OjWaNRsMnCCHNArRSU7HxJGQ8HSPJMUzB8dFBFVHqYpoGpmVg6AAF+wcPueifUWu02N3do7uiYOiD/gVSSp577nnKEsbj6XJo/frr36BWr5NlJZeDS9555x3Oz8/5p//0n9LptKnXa9y4cYOnnnqq4hPGS4HQNE2GwyHn5+fs7l6h026zvX2FyWTCD37wx4xGl/yzf/Y7uJ7Lt7/9K6qFLc3YPzokjhOOjw8ZDC95dHxMs9FkY31d8aRcl6Ray1xXCdA3rinR7eDRI+589AE/+dGb7Gzv8Hf+zt/h9ksvsbq2SrPdJs8VY7dWq3Pt6nW63VWFJqnWe+XkAARYlkm300ZUjXBGBSOO4njZbrpg+xqGYghrQqKjIypHqGWo4Xte5JSyIC9AN3Tq9Tp3PrrLvc/u8f57HzCZTqnVGmxtbnLz5k2klPzohz9SAujxMaeHR+hSpRUmo0v+i3/8JmXlVvR8H79eo1tr0vYb9I+OOTk44OzRPmma0Ll+ja3eKl9/9bXKNaiTJin9kzM+ff8O0+mUu59+wrQSga9e3eOv/s/+Cld3d1ld6bGy0iNNUk6OTwhmAbduPsXqyipJktFudbhx/QbXr99gb+8ahmktmUZpmjC4HHB5ecngos+HH37Ayckx8+kIQ5Zc3d7EcVxs08R3fDrNNheDC8JgiqYbahBfefRLrVBpDimXHMGyUGecRUpp8VoI44uByJOWd0kpFHfZsR0EAikL9bsX1fpeXQcIgaOr311ZOZ2SJFlqDJqug4QkS9XXrCLsRSmrpnexdB8ZVQN1rdbA9TwMQxlKJtW5fDyZcHR8jGlZPNrfxzBVW2KtXmdtY72KGAqiJGY6mzMYDEjShaPYptvtLL9mFMYqBWM6CutTiXFKhFPtckq8U8zXJ7wsQSl+/jm8oPwJDcpy0dANUCW4ikJxkqshSxiHS1RRWZZLbqqmiSpNkGNaJn7NpxbWlvfT/9DriwtPVC0YmtpsZFmGIaWqpSxKyrJQlYCZuWz4oJQUWU4SxejVja7qf6liZRJjUQNcllUrhFp0VNW4oRT5KpcuK1uwrunLjLuGpiqGK6yArmmKrZSEGIaHZWlY1hNVsCwLslzF8ur1OnmWkaZKpdM0Tbk9yrJSMKtKz7xKQBbFUu3P87y6MFTcTq8uCColUeXqBYZpIoUgThKyTCorZmUBzfIMWamIUqoLAZRoY5pKqANBWShSwmJByqrK5yxNOT+/QBMarVZL0fhlies56LqOX6uRZxmz2Yx2q0Wr1VpO+C76A4IwrCKGFl7NJ88z0jxFSA1KnTLNyItcRX+EUHC+XFkMNcdWLUueh23bZLmyyeqGjmEoWKBpWtRqddI05/j4lCSKMXUd13bVNDeKKGGZOTVNgzxPSNJk6aYrinJp85NS1UAKXcN0LEQaU8gC13MwTIPhZEKa5YTzuarHnc8xTAfNMJlMRqRJojQaAbZtIEpJnKZIAZZtYzg2JZIYJTCmRUmSFyRZQSk0LMfDdm0c20JmEXlZKFivlISRaknUTRM91tEQSqWWkAYBshRYTQ/b81jp9hj2zwnmMxzHBFSMcgFnzYucYB5jeg56zVeT5yyvKjIljq6pjy2UHfXJH7WJK/McU9NxTFMJwdUP7XgOG50a8zBiHsaEaUoUhETzgDSKKfNUbaKKAlGqw4JyOJhKeJIl+oLhUarvRStR7JAsw67XcA2TUAtAFGRZRClNskQnnE0YXvYpsgxkQaPZxDB0iiyizFJ0SixD4Ps2vmfiuQbInDxNkLLEskx293aZzaacHh2RhAmT0RTHsdF1A10zMHS1VpSFmiaWRYnvVvllCQcP9xldXrLSdDFMDUNIkjTh4vKSes2n1azjew6aoWNbOmEoCYIA11Wuu7JQwrBlqjpYz3fRdY2L8wFpWhBGCbabkKc5nuNhrzmYhkWSpFDX0DR1P0MlHFJFVKo1Q0XYSsI4UdOOeh0poJCSvCzIihyjNBCiBF1DopPmGbom8CwDrVAxY8swMXWDdquDaToE85SijNW01DBp1Ww63Ta9lS6z8FjZf4OA6WxWcWoCPM+j1+uws7vN+KJPMBkvwYmmaYEQeFJQ5iVxmBBkMWGWsLV7lbrVxKyiIK7nUZQFQTKnFGBYlrIlOy6G5yKSiHavR6PeoFHvcHp+Sn8yZHVjg+2dbWr1FrpuMhiPyClVFEqmREmEROD6NWX7E2AYFoZpkuUFZVFUUWADwzDJ5hHT6YxcBhimxSsv32al18W1LeZZQDCdMBxccHy4T6vTpd1uc+XKViU8rSLLktFoxNHhIT/+0ZtkWUKepZiGTqfVoNNs0Gw2WF9dAQRBFDMcTshlqZxing+Fi2lotFod5sGcME6wJJhugeW4dLo90jxnNJmSV0UCl6Mh0KFeb1QMqoJGvYFt2Vxc9InjBAmYlkWj2aziJBM03cCt+dy8eZPuyir37t9nOp3y6OEDDg/2mc9mWJZFUvOhLDE1Dd916bU7fPXLX2Y+nxKFI87PLtjfP2A+nxNFEYapxAU1MDBYXV0jS3OKokTTDGzbIx33mc5miFLiOg69To+a77O6vsrZ+Tn3H9xfboHyPCVHVO9HrCrbp1MODw4xLQvbspZOk/7gAgFcv6FiC0JTUfsoCvDrNTa3rvDjn/yY8WiE7XrYjsfa+hb1KFQA+yIjz3OG90YMLlVtehhFtFsr4KrDQ7PZoNVsEMwD5tMIDVVGEYXKRh6EIWmmxLOtjXW21leZT+eEQUgwD9GFmuIvnMCmaZLnOTXHxbEsoiBAlgXBfEYYBsqJaFuYlkUSVqUAeYFWTYU1oZHEMZeXAz786EN6nQ5bG+u0V3t4jXrVXFbiuB6j6ZgH+49pNursbu+Qy5IwiQnzFDStmjILwiBQ+xJdUGYq/qfpOiWSZBFD0TQV17Ystf+QctkK6Doqakf1PFKudA10gSwWj6Ofj6cJZLWvUu6GyXSiHAWGSbPZoFbzMYX2ZNPMz4tCf9pL/om/PfHs8rmJNT/3uf60z/n5/7bYiKt2ebn4AD7/f33e7aQeu5I4SVWd+2RCnCQYvkWapdy/dw+Kkp3NKzQ7Hfx6gySMSeKEeq1GknVYW1mh2+7g+R4SSRCGStyzbdA18jzn9OJCHUqlwM2dJ9mPyu2MEAhNVwexKg5RaGVVh60KfsIg4OzsTInVeUan1abTaBJmCdM4xHRsFXnPMtIkUddiqQ6HSZETpymrpkmz1WKl10MDHj14wMgccuPqVYJgzuHRkYJR+x7be7usr28wHI8pS8kzN5/l8OCQ7//x9wEI50FlkpJMJ2Nc2+b8/Jw4Vk6g0WjIvfufcXpyzuH+Ef3BBbPZFNdVUHDHcfBrNbrdLjdv3eSXf/mXWVtbo9PtMp/NieOE4TDBcV2ee+45JtMJnZUVPv3kE3zPZ3dnl3a7TZYXnJyccnJ6itA0fM/Dr9fwfL+C6Et000CrHAhSSsIgoNvu4Lsek8lEOUseP2Y8nlDzW2iayd7VHqUsOT8/ZTQa89ln9/A8XzX2/X+I+8+my7L0PBO71tp+7+PP6036zPK+0d6gAYIg/EyERMp9IhWKkCL0afQT+BdGHzQhzUxIxIgjcsgZECDQADEgmo121SifWZX+9eZ4s71Z+rD2easaBEgwQhE6FRmVkZmvO3vvtdbzPPd93bKH7Vi4vkNRZmR5gomFMASFKkhSbcc1TUm4nDOfzerzkc9GY508NzAMWC7nzOYz7rS7BEFAq9nEdR0W8zkIbQNrtVo0Gg1QkGUZW9tbOm3bsDk+PuHBg08ZjcY8ffqE7e1N1tbW+Na3vkWv1+PDDz8mTVPMWomI0J9jsVzo/d1zWV9fw7YtbNsiDEM+/vgjXn7lZV57/TWdwIkgyVIGwyFxrEHWJxcDer0eVNDtdqGrQdmrdUZKQafdIE8jBsMLnh885eNPPuCN11/nG9/4BndffIFWq0WJoowilALbduj1+jVvx6wbTxVpulKQGDqp27J1vaW0cGFls63Ksv6lw7JErWoyJSipVxJZK2J0baLqta66GgpdXFzw6NEjnj59SpKkvPX223S7XRqNBsPBkEefPeKzh5/x9PkzQIe/CFVp9etHH+lQLMtiba3P5sYms9GYcDZnMZ2ynE4pkgShFA3Xo9fqsLu5jW1r+9+jR4+Zjac8eviIy8ElP/3LnxHFEVEccvv2Ld56801uXNun1+3V+0DMYq55jL1uD8/zNYy92WR3d4+N9Q19beAq/CFNU6azKYPLS05PTjg+OuD05ITA0+qhXreDbdlXKnnfDRBIjcJBardKjReplF5bhPp8UVV1oJGsbdx/XSDEqvFUlRXVCj5ugGnr4UZRhyysFKxCfb5em0KD3UtDXu1Hf3VPWNnWDDTOaeVa00IQXXMZta3SDwJc162ZzYo0SUlSHaa2Whemsxlu7Y6ybZtms0mpFJWqmM+XNbB9qIc7nof0DII6wVShKHJddxhSIhFayfcFJdjq59V7p97jV3V+rsq6XlvFf9Xvp6Lm9CqNIlUVq2CJqiwoSv01stodpmp1lK7LNS6rrM8Fhmli12eDv+3rb914SsJQJwM4LkIaUFV0Wi06nS7NwCdJdCKSY5tsba4znU45PTlGCqk9wwqKJNcXQMorCNfKK1kUJWmScHF6fnUhLWnieg79bg/HcWk2myzmM2bTKYbUb67neFSm0oWyYaFyDaMuy5LpdMp8oWi1G8Dnksq0lqwZhoHrOVhmh9FgxNHRMe1eC8M0OD451s2bOmVMg9hyyrLUG4dhaHlonjMajbAs6wpQp+nwmrv08iuvkucFZ+dnLJcJF5czQHHj5k3G0wvmixlSVghRUhQ5Qki2NrcJfI9ut42Uivlshmm0MaVgOV+AUuzv7WEa2j44m834n//sz8iLDJTiu7/0Xba3t7l9+zZhGPLZgwfa4ih188h1XXZ29uh21vj4vQck0YLFZI6QEsd0KUsoS4VtOZiGg+26WJZDmWmza6vdoSwzTs9OWd/o0+l1qQq9+OoJR6WTjoTg6OSUs4tLhuMxeRxjFgXTwSV5HNDrtVEKojDBkAJTSp1oYZta5lvkPH9+TJ7lNBst7U2tf8VhTLPZotFqMV+GSAW37t6mVIoozbgcDJhFC5SsUKJucBomhSqQQsPnLdPAcxykZZKWxZXnfzaaEacJcZwxD0OkbdHwA/bv3mN4fsrxYIBvgWVAlC4xpNAHcUAVOZZtstHrMRqNmEcRL7/2JcxGmw8OzpDmEiMvEEXO3vYmeVEwG0+wKggCn1/8zi+xWC75kz/6U8q8ZBGGOLLENCq6rSaebZPFEWQlLgpD6MVAmhLDEFimxDYks8GAuWGQZRVKSrBMDDeg3e3hN0s6ecHp2RnzLMd1XBzTotMMiJOUk4tLiiTj8mJAz/VRzRZBuwVVwXJyccWuMYTE9hyKenGKFkvdxDMUlm/RaXpY7S6tOy8ymUdcDicUZUpZ5dx/+IA8y+m12ni+x2uvvKqbLFXBaDTi8PkzyiSn1WrT6vZotdt85Vvf4enjJ/zuxw+oSkFZClzPxzItptNQN8KkhRAmWRrhOR5baxscHh5yenpCmkUIWVJmEaUoIYswlaLt2lRZzPh8wdrGGkGzwY29Hdb7KQcHpyRRxJ//xQ/Yv3add77yVdIsI81Snj57zmw2wzJspN/k2p0XSdKUn773MVs7O+xd22c0mXE+HPL+ex+RJCnkJb5l64av72G0GqSLgrRQiIaPXXnM1QwlJYUpAf1MKaUN5rann0e/9DDKiiQKsWyHdr+PLBSiV3B4dsHh0+eYlkez0WA4OicvC9rrG1y/dZNvfOcX6fZ6XJxNOD2+5PzyksOTIwaXF5w+f0yr1eTv/cbfZWNjjd39bX7yFyOOnpxSlCme43I0OKcqK831MUyatkez20c0AtprG/jNFkajg+3YvPXt73J2csL3/+TfsN3o8uJLb15Nr1796tcoy5Lvfuc7dNpdmo0OR8cH+Du7RHHIKIno7HZoBE0uZ3OWy5Cvfe3LNPwGQdDk+bMDPvnkPvP5lDhacnJ2hhSCNNPqjJs3b+uDZxZ/bsN2A1zPp9PtEbR0WtD84pI//3ffZ21tnX/wD/5XvPn221y/cZODo2OePHnC//DP/gdmszmj4YiiSMnKkPX+Gr2NbS7PNNvJc31c22Mx04l4Tw6eIU2Lnd0dvEYD23Y4OzpkMYuI51p1aaKtuWmUEM6XzCdTHGnS8RsEro9hGWysr6EUXA5mOi3WMGg0LUw7oNFex/E7vPXWW1RVycHzA+bxhCfHZ7zw+lt8/TvfwbFtFtGCf/29f81sNuP69ev4zYBv/+K3uHnzJnfv3tVWnLzg9PSEB59+wunZsS6uoiWmafHCiy/qcBHf12tNzQEqi5IPP/pLBoMB83DK/o1d7rxwnVzGYCiKOGExTXgwHGCZJu1Om/F4wsnJCZvr6/Q63ZoRJFFZglkV7HQ6ZFnGMgqxHZ2oNBgNdeMrXNJutfk73/1lFBUPH33GbD5nPJ7w9pcK2v0uv/Qrv6Sl6EIQhiHf+5PvcXR0xHt/+R5VVaJUSbujFSN7u7tc39/n9dde13adRKcCpUlCFGgrYa/XoN32cHOTUim6/RazxZzTs4jbN6/z1V/4Kv/d7/4ul6fnvPLqq6ytr9WW35RlrO1pk/GY7Y1Nuu0Wy/mcsihZ39pge38Xx3XIioKjoyMsaWBYFj/60Y9YzuakpU4+dQIPoeDt199gbX2dnb0d+v0ezUYDpXQk/NnlJZsbG9zZu06z2WRra0PbiIQkrdOd5mGIEIL+3nWkISkNoVPrANMwMQxJVTcxghXbxNCHW9/3NCtFGvWATbOG9MS6ngyXmtthWuYVxymMFmRpynw+RwjdiLYti1s3b2r+YlXhuY5OXEUglB4O1if9f6/oWL3+wy2p//DrqhlWH97/aoGjarvZ6t6sTSBURXn1sRpMazKvuZlPDg4ZTcZUaQZCYfraNvytX/wO7VYbr6mtiVkUkyUpZVHQaDXwAo/9zXV6/T67m5ojqKpKJ38ahj57SgNne7dmOOmGb0mJpjBetcCoqRS1TT+nqgrSOGI8HPLjH/+IVqvJtWvX2dzaYDyZc3ZxweVwQLPTprvWZzabkUSxripMydrGOpZhsNZqkxYFiyTGtW0sKdjZ2qTfadNuNkjTlEfPnmEaBtdu37lqJj17dsRnnz7mJz/5CfP5jFs3bxKGIY1Gg9FozJNHT3QilOPw47/4IQDz2UwPdsuSsshJkphms02308d1HSpVcuvWDTY2NvjFX/ouQggOD55z49ZNdvb3ddrZZ5/y1ltvs7G5gRs0kFJyeHqKbdu8/uZb3L5zl2995xd5+uQJFxeX7F2/wdrGFm++8w7SMHE9j9F4yH/3z/853V6XTqfNMk1YX1vXTFUpmc+mBEGDm3du1w1PxV/84C94+Oghv/d7v0el4Dd+/TdYW19ja3uLra1tvvnNb9aIkYTheIiqKja3NnA9h9PTYza3t3n97bfIM53G6wc+/X6f/evXSOKYe3dv0Ww0WFtfYzqZcHp2imXbSMPg3Z99wHsfvM+3v/0NWq0Go/GQy8shn3zykP39Pd566w3SLOb8/JT/6r/6v9FsNPn2t3+J+XyhE4nzlE6nxVe/9lXefutNNje3AMX777/PYjFnMBoxb7cxLIOtnS1eee0VNjfW8H2PweCSy8sLHNdmNpvw8cePsR2LWzdvaHtQWfKdb3+DVqvFeDxhNJ7y05+9z3w05i+Ojtnc2GBjY4Ot7W3anTaB62BIwccff8yD+/f5J//P/4bXX3uVf/yP/zG7u9fo99c4Pj2Bs1Nu374DQl65BEzHpawgjvWgrapKHN/TIgKjftbrIlqyytgUeK62QUqhU7oWM11nWZaFpEKVBUIYV0IDIUStYtGvn/7kp/zxH3+PTx98xuXlgN/49d9kd2+fTq/LYjHnv/mv/1sG5xccPn2qk+fyjH5/jaARUIQLXCn5zje/TpZnJHHCO++8wze++U0ePPiUf/nP/xlr6+u0Gg3+L//Ff0EjCLh77y55XvDpp5/x4MEDnj59ptNVpeTs6JDJZMLRs6fcuXuX/8M/+ke89PJL3Lt3j3C55PD4GIDFYonfbpKUBY8PnxNXBY1uhy9/+cv85m/+Orals00ffvYpaZIymU0YjUc8ffqE46Mjjg4PaTYDbty4xlq3jeNogDtKUJVaXeZ6DlQVSaQDofIwoulZSKGxFpY0cBy3dhMVV02l1Vq8soMBmEbNeKq0qtYQQgtPapFLFIW1vVsgTEnQDOgVCVSKRVlQipLcsBCibjJW1c99fg0VB8/zWI0sykppBZCseVJSs/GUErohpQRCmJ+7lAwD3/c1b6reVzY2N3E9lyw7JY5CHg4G5LWDIYpjyqpkY2MD13Fp18FgtmlT1kIX08gopRa7lLVCTO8/FlWpyNIUVelG6kqAI2uFcZRG+txTFKyCP1YNWYGupU3LrmtrefVs5LX6ChSWZeL43ueNqaoizzPNwTYtAj/TbptaMfi3ef2tG0+w+oHkla9/9Y0YhoFlmhS59mG6rodtRbUMuO4w1x03p14oFUpvLmVZ32glZal9hLKWeQu0dMw0TGzLwnUcEsNEfOE/y7JRhtIWGvEFNZSpgWZFmZMmCenKn1svHGVZkGUZtm3iOHYtA8/I8gxTGbUKoSSOY+r2OGma6EjkXh/LsnTkdakTp4y6S7p6aPRyJgj8oAZuaQVMGIZYloPnNzAWK6bU6iAkP4/jpYaHVVp1VOQFhaXToITQjQ7T1DHICqHj5MsChKqbPxlBHUG+XC7rh+hzD7Pv+1iGrRsyqwdIaXmhpE44kfXCrLiSRCMkjm2TpAV5nWxnSIlhGZ/LHyvNCEizjPliQZIkWtandMpTmiaYpgTaV9MGIWSdkiOvphFaAKZB77bt6HtP6qhT/VBqFlZRlJSqolFPqEqhgYJXvC6hpx1CWbqbXjeeDGMlpdRNRdPQE5EV+LYqC9I0ZTQZY5kmvr+F5ThI06SoMqqqpEIrTnQtphcrU0osUbM3ylLbLQ1THyILDTekqnAsnaBRFujrm5e0Wm0MQ0f5ivrnLKpKQ8OlQNTsl9V5U9WSyvqUXne99eejKOuiQKDKUqcF2TbCqJDG6r1WOK6DQCdXCqmVZ6IsUZVWfuVFge1YtZVipa6ifk4lZfnzxYEh9fdi2Zae0G1skBYD8mxMiX7OF4sFSZxgG5aWhFZgmBLTcrRicRkxXyxBGDS6fQzLodPp4vuBjjvPC4qywjJtPN9HVUJDC2s2m5Qejm1jWjrCNIwSHStdR78rVYIqMZA4lkmWFXUKYEJuGdimQeXYGmyd5QxHIzq9nlbW2BbC0nlPaVFgOz6WIZG2RTatmCzmtNM+SgjSPCNJYubzGUmaYRkGUlhUVDoW3ZDkEjKhJwdSCGQ9OSjqiXa1UssKocHiQoDQz4Jl6pRNVaor245ONSpJ0wTLNKhUgTQEfkuDjnf2rmko9VLzCPJUH/DjOCJNExQBrZaenKL0s1zUE2+BqK01Astx8RyXdqOFbDaRrQamFyCkSZikpGVFVlWUQmC5LpbrYDt2DchOQApM0yYvFWleYucFRQXSsknnMyazObP5gqrSitGs0NfXchzanS7N9gQ/8Inipb6H6rXXq6dQZb2GZ7lWdGhJtJ4OCmkgDRPLdrFdF9f36fa13W19fYNWu830w485Pj7m+fPnzOdzZtM5jmPQbDu13PnzaedKmRnHMWEUsVgsrmKkTSlBVRoYriqyKKkPFNonX1Ua+GvUEfKG0EB1y7Lwmj5pmjMazTBMk8q0CBeRLjKFxLIdHNfTkzshsRyPbm+NoNnCcTzGkxGTyZjhcEgcxximiWuaeL5Lp9um2WzoOHNASA0qXiwWKFVdTT97/T6u616FfgB676tK0lqR6AUurudguxaNRkAraXIxm5PGMaIqKQwDgSIKl5SFTmRTVUWZ51QIiiylKEpEKaEsUGUBZaktebUUvt/rs7GxwfXr18nyjJPTUyolqJSeHKdZqvkDUqfMaeDtMw4PD3n69KlGoUmBUlu0Wg1cx8V1bIIg0JPv+lBX5NoybloaxAkKIcE2TIJmC8s2ydJE2+n4XGm9sbHO+sYGhmnotaaqyNKUxWJB09drRBhqe7nZ9CiVbiqntRrFrdWKs9mMyXCE5TlYjq2Lc9PE7/TorvXo93t02x0C39cx1nkOXGKZFts7upjpdbuafVmWiKrCABLTQhiSZiPQ8eBUGAiMlcIIPdkXUtSqAEWcJfrsVlVg6ubUSgFUVdXVPrBqf1T13lDUSZwrm95KIb5qcvmud3X+M+TqO1h9E3xhDP43HET/mtcVI+QL/+w/pUG1Ujutzg1VWSssK93g0d/n6ovrK786O2S5vo5lluopu6v5oOu9Pq6tp8Gq0qoOITQnxigFlmnT7fVotVq4tqvPFFWp2Tb1uoEQeKbFKnRGoceosv71c29drdzIs4wo0s+17/s13De6UvGblkWWZyzjCK8R6BRVRA3Z/ULRVyuLZFlQCJBK6YCNuvhZ4SbOzi7wPJ0+V5YlRVaQJHPmsznhMiRaaqhuWZZsbm5SVYqL80vtGhCC0XBYq5wmVGWp49rr80O322V3d1fD6wXs7Gyxtr7GnTt3UKoiipZ4nk+SJswXc4ajEUmW1A0Cg1Ip4jTFsEz8ILia0J+enl39DL4f0Ov3sR0bLwj49LNP+fj+xzopGsV0Oq3B0XrQV5UFRq0Gdx0Hx7ZZ21hnMpsixWckScxwONBBMHWikluHECRJQp5nCCFotdua7xLHKKDZajGbTEmSRA+CXZdWu4XrunS6PXzP1eojy8KybXr9PkGzyU/efY/5fMZyudADSNuqbUQ5ruuyvr7OcjkjSSIuLjUP8/z8nCRJEULRaDR0cvj2FptbmwSBT5Zm5HlGmmpYcpZnFGWB7dh0uh1cz60tRjl5ntUMJEkURcymUy4vLzDqwKJ2u0Wv12NaiwY6rRZSKaLFnPl0Qp6l+txJxcbaGrmAw4NDzs/OyLOcdrvNy6+8jOsEGJbNpIY650WhmUkLHZCx4vMotVLpFLhCXtmWvrgmiC9YsYTU66AhjSs4v6ifgaJQIDXLZpV2WZYlURJfOWCGwwGj4QjQVvBev0+v19Wq0zjm/Oyc6WhEFIZQlQilsKTANjQeQxkGrmPhOBbNRoOtrU12drZ5+PAhYbRk09jSSXd1urzjOCzDkOOTUw6Ojnh+cMD+/jWCIKgZjA7dbpetrS3u3bvHxvo6UhrkRUFcc5XLssS0TL1fqerK/dLr99jb22U8GhCFC4bDAWEYMh6PmUwnDAcDfZ5NYvq9Ns1GQKvdqlPQaveOUPVZQdeERZ7V+4V2Limh0NMJcXUtVnvp1fpd1zOoL6zt6nOrnQ4tY+UbqD+vrokMKbFNk8CytVI5L8hVRWmon+MH/lW106ruFnUdChWlrJVxUnDV66/vsTwvsGrVVF2uXjmh8jyvxSkZcsWhS1OSOKaoKso6jMM0DBpBgOf5NBqN+iyif+6yKHXdqHSw0crGrN9bUafZaQ5bVVZ174Art1hRq5VUWVz9vFWlM1h1E0+iVElV1YpooRtQVa3+1X0eWVvsdK2uG0za6ieRtXLZ0E6Iv2lz/iuvv3Xjqd3uoD19JY5j4fu+jo2+uECgL2YQBJimief5OE6oFRGOhWU62I4GInq+j5C6kEizjOl8dtV5NKSJlAbL5bKe8uvJSRolFJlmV6iywnVcVKXBZL1uT8vwB0OEkDSbrSvP63h8yXwxZTAYEYYhG+sbukhTisViwePHj7l+bZ9mELC+vkar1eLZwROEFHzlK18hS1MeP3pMVXt5j4+PGQ1HvPnW26z1166kcxtbm7i2Q6vR1DdWlupGjdIHDYRga3OTslQMLz+m1e7ie82rRaDM9APYarVIkpRHjx7RajZI022aDY9G4JFEEWWe0djcQErB5XCkF4yyZG2tz+3bN3WykylZzGY8fvwY17FZzOd8fP8+t2/f5vU338Aw9XVo2B6VVdAIXNKGz0a/rxkm8ymGMLFsmzzNKKqcaD4DKXG9Jqbj4vse0lBUlZ4oRNGSTrtbN4cEeZ4RRnOybMlkMiVOEjqdHvFwTFoUhHFMSYU5GtfXQ9L2PDrdHucXZwxHl4gabL597RqGNElj3Uk1BMRJTJSEDEcTRtM5aVlqCG1vg6osWSwj4iRFlSBsEKak3W0hFMwnU6SQrK31SZKE0eUllgILwe7WFg03YH9tkzTLOLs8J05Tjp48wRGSe7fvsL+/z97OJp99/D6zyZROoK2lSbjANAwc14FKUlYSLAmVxXgyxsk1D0QJhaDQbJ8so+X6WK0O0SIkmi6YTmbkeU6304VMQ6dtaeBZtra1FSWWMBGGRCrtlc4LhSn0BOdKUlofXEtMCmCeJDhFgW/bkBcopdlEaZKxubeL49jYSmEulrSWS0wUrtTBAefn52z0utimQZbkmFLgGQ6GIdBDWQOlTLxmB9O2dQxyWdaQ9IBr1+4QxgZCDLANibJM2p0ulh0xmi85H0358P4jmkHAZr9PtIyIw5yJk5Djsu+1ML0mo+GM8WRGmGW0HYe1jU2+8uWvcv36Df4f//X/nfOzM4Rl0+6vcfv2DcajIU8eP2YwnzNeLMikQjkWFQVIhSkUpiHxbJ/cNkktk/l4wuDsHLfdA2nhe3rKeja+5LNHGdNwzAsvvcSNW7fxmz55VbC2vo6UuqiMsoikTAjzkEWyoCgzhFRsbK1RVYrpaEySxsyWBbkqGaUxSZGToWg6NpZp0XI9qqpgES6xTIOg2dKJWHnOItf23CTT17DjNcnzguOHT2m126xvbtLqdti1bebhjPliyvpGn6DV4uarr7G1ew3p+0yGE4aDMXmu8GyPIsnI4xSvodfnk8MjLk4khoTFaErX7UAuyMqSzvoavY11vvGL38E0DFRRUihFXimeHBwzGE14/OQZYbTk8eFjOq0m77z5Gu1Wk4vzA/7y3Z/x+NEjun2tOPrT3/t9hDBoNjsoVVJWKdPphNl0wgc//hm2VUPCheL7f/bndNod7t55iVIV7OxtU1b6gL1/4zqNRoO7pVaJ/ujdn2CaBq2mz961a1zf2+Pw8ITpfMZsmeI2YPvaNms7+7z51W8SLhfMJhN+/NOf8fzZP+MnP/4ps+mM9Y0NbMdhe2+HRuCy1m0xHo14+ugJaZpQqYrTi1O8ucsy6ZAXBYYpME29BMyGOgL5q1//Cs1mg4/e/4Dlcsl8PtP2SlXR7bbZ39/ng3d/RhLHbK6t6YO9YZEVKeF4Uh9oTB4/+JQwDLl19w6e7/Mn3/sehmnS7fV48403+Uf/8B9xfHzM+++9zx/84b/m8OiQnZ0tdq/t89LLL5EXBYPLC84vzjk6PuLJk6dMp1N++7d/mxdevIfv+YzHE37yo5/S621w5/aLfPzJRzx+8ph+r4dhmjx4oNODfvVXfxUhbnDvhXtI02C2nLO3u8vu9jb/r3d/xmgw4J033tCFbpHTa7dZ63S0Ja1STGu2QRiFpFnGeLKobaUlQaNJ0GwiDUFvrc8//If/e+7cu8srr71OXhbcfvFlDNPAdhwePX7ED37wA549fcpivrgqgB4++IwoiljOF3S7HXqdDkVWMpssaDY8RCk4fHhIkiScXpzTaAR0ex1s18Z3feZhRCXGSMOg3+/ztV/4Wm1d0ml9/+yf/r9BKV597VW+/o2v019bIytLXdTXEFvDMPBdB6TAbzTI8pxPPv2M0WjMxx98wO7OLl/60pcIV80GAZ1eh2/9ynfp9ro6uEQJ3Epoi60hNfRWSEZTnZ718NPPCIKAe9++o9VeUUxeWwvTLKEsSpyGrwtlz9OTzqpCVAqpdMpvWVXkZYGSejATxxGPnz+hygvIC3Z3d9jc3NRBBgqWC60K8H2/TssxSdOEKI6ZLObESYxv29iGycb6ugbw+hqcXFUVrmUjHHGlfK+ULkAMcwU4/+vPov+xZtIXjXHiP3oQ1p2ucjWBTlKsGtg6nc9ZzOeEUQRKcffOHa0m+kKjzjA1t+TW9evsbG3x4NFnpHnGxsYWnVabm7u7GjeRJAwmE6bJkr3tHWzLYvTpZxiGQf/6Gr7nYa/sinVxW1WfK5okq4GPtpboIkeXamIFSFfqar8eTyYcHh3S7/f5nd/5LabTGXGckCQ6sv76rRvkZcVoPmV3Y507+9coK93YOh0PWIQhp0fH+K5Lp9HUAx0EYRQShksuLi6I45jt7W3KquLj+5/Q6/fZu36t5nIWmKZGLdy+dYc0Sej1OzRbTX7zt3+Lo6Mj3n33XVzHw7EdfvyjH3N0eMinSYpSihdffolbt27xd//u36Hb7bG2ptlKRVnws79894r/JqWk2e4yHI959Ae/j+/7vPTKyzQ7bZQhGY80266/sU5ZKZZhyMXlBScnJyzmC2zHY3PLx7RMdvf3CYKA/voa7XaLNFwyHA6YTqeMByPSMOZf/Y//AoDXXnuNa9eu0em06XX7OL013n7rbV579VXefOttRqMx7733l3z44V/yT/7Jh+zu7vLqq68SNAKdYtnv0+l0efGFlxmNxnz66QMM08FxPBaLU54+eY7ruHiNJvs3bmmFXLtDHIV8+v6HJIn++V95/S2+9KUv89FH96+aSVEUce/ePd5+6y3+l/+Lv1/fGop+v4frOjx69IjxeMIH77+HaZlcv77Hnbt3eOftd3RitKr0mrlccnp6xmQ6xfN9ms2AVqtBWRaMRgOW84lWSVYVjuOwtt4nSWP8wOX45JB/+T/+C37913+d1177MlG0ZDwe8bu/+7t4rss/+Pv/a217Ho/4n//sz/jeH/0eN2/eYmNjgyRaUpWKf/pP/3v6/R7/p//j/5k7d25z7dot8kI3tDeF1PvYeMTl5YAf/OiHBL7P3vYOlm1huw5xElFVFVadmi5rSeDKhKsbBxllWdZOCom09eCy3++T10PDom5udLsOlmWRZQXjyYzv/fEfMh6POD8/Y2tzi+9+9ztsb+/SarX46U/e5d2f/oQfvftTAK5t77B+9zZffvMNBhcXTEZD1tb7OK7D+eUli2jJ0dkpO7t7fOcXfxm/EXB0dsrW/g79zXXW1jdQSvHBhx9wcXHJRx99SFkplJA4jkPQ6/DCG6+xs72DrfQgK68UvV6Pey+8wGIx48Gnn14JFnqdDo5tY1kmjUbA3Tu3efnlV/jOd75FnqWMxyMODp4xHg359MF9ZrMpp6dn5EVGnuW0Wg1233oD17b0mbXdQ5qmbnwKQbOp64PFclL/mmKbAsNzqbJcWyNNF1kpsiS9OtuATqtTlXZq+L6vewBJiqrUVV8AVYtfWA2GBJ7rUCkoSkUlJZWU3Gj3SbwW07PnpHlBYpeYhsCXZi3WKK8aXPp7MLSDQeqBfWUoDKOsO2OCNMooixLbs0HBxfkFftDAtlxaLYHnBiRxwmKx4OjoiDAM+f73/x2+7xOHMX797NuOg2XroZdtO7p2FlJjZ6TEMh0Wi4WuKeKIKFoSRzFVWeoGUW31W6mYsjQny4urRpxru3XKokQKE8vwtEDEWDWrSmxX/5yVlnChys9h7tTigZXN7iqEo6qg1OuJYehUQMNYXPVq1OcCsv/g6z8h1W7VTfv8UJBlueY+mDrRbTUFWywWWimExLYdfL+BEJoRlec6Jjav5bQrqZusU+pk/SCZpnnVec6LHAQ4roMSAlkJ8lxdbUQoMC3dWbdszdwpakhgx2ijVEWSpFcSSddxsW0HyzRZAS+VqpCyZkSpisV8rqd0Vxu8xLUdnYRQe11brRZCSM1eMWoZes1lQGrwV5IkVwcos04gEuiCHoWOxBZlzXdaybhrmV8dTahjH21s29Rqn0JPEh3h4Hkevu/ryZNpIAxBliaYhUGr0UAKQafTQQjB8ckJnufj+i5GSyErRZ5re0GWpXU6YFZT6s3amlAhK1GrE7RhNk1ioKIR+Ija7x54AWbNrjJq1YlWK1U6oS/Xi42Qhn5v6slEhV78kzTVKgjAsV09dZMSVSlKpQ/yhlzJWxWqrBCWvl6WoSHucRLXEenaB930A5QpUUL7aam4WkA0aPXzpIqqnkyZhtT3smHQ8BykUCSxQZ6mXF5c0u+2aDZamKb1c8o7s57aFmmGgQkYuLaNNEyScEleCozeJtI0r94frWDRShbbdRAIFos5WZZT1R5jyzCwpIElJaosKTIwrtRGJtQHVIWgVLUEFMHqdtLx4ECtrMjyVKeqXIHlFFmuJZWGUTPOaluXqK0OKwWiTgpzkSiyrMA0JQITgcSo+UVVpZ+VlSQzzTLG4zFhuNTcnSKhqhKk0ADc3NRqBkOCoEKVGY4pMAMPVRbEdRKG53pURYllWqyt6ZSNNMswTD3F7HS6RPXUMMsz5ou5bnCqCqREWhYql1QIPMfDczQHyTAMhDTIM1WDJRUgcRwP03YwHRd76TJYzJFCEoUhk/EE3z8nDHXKzHKx0KmcCj357PexbYs4isjzlKosaTdt3Xh3HYRQxJlWfmZVhTJMpO2CYaGkiTSgyiEtKpSQuEpQIVFCp0HqIAOpN18EqtAbc2xpObOqwLFcFnEKCnZv3KTRbuMEARUwHo+JwoiqyEnikHC50EyfOMQxLEwk8WKJ7ehUkm5/jbW1dcaDMVmWUyCIs5zT8wsMIVBFTpzmWhk2mRPFKQ3XxzZNeq02ge9pmOx8wXw6g0qxubaOlIqqKMmjpVZJJknNhhO4UmA0GxjSRKBVjApFmWUkYcjw8gIkVLJiPl8wXyxqaTCsb2wQNBoMh0MMQ+I3XNq9Ho7naSaUtOh0e7RaHUBSlBVpnjMcjjg6POT4+JiL83NMKWkEPo5tYpmaJajKkjSuOTxC4Nh2fa8X5HlKmsZUlW5oCrRqIktSkighyVLcyqXVbSMtgyiNUEWJKCuyKifOYpRE/10Sk+QZaZGRpxkSDYam0mqgssxZLmaUZY5p2zp50jTIspTLi3PGdcKMaWlWmO04gGA4GlEU+RXYevVrNQEtikIzXrKMOIpYzGcMBgOdvGRZRIlm2a2trWv7nedrdUWSaJ+/YdQDJGi32pR1AiVCkMdRvZ4YqDJHlZprJg39DLu+r5vXloXrBzTaLZrtDkoYmJbN5s42XhBoVkiScHZ+fjWZO3j2nLPTM85PzgiXSyzbIksziixHVArbtDCFRFRgSRPLNDEwoIRwEVJWJQ2/gWValEXFchGi1BJpGLiehxSS5SLk9M4pnXabtf4aRV4wGAzY3Nqm3e2SZBnz5YK8qigLrbQr60NbpbTCO4n1BLSqp5a+64NSjEYjHNfFdh2arRaeraX2cZoS+D6GaeBIDXmtahtbWavTZrMZWc3EHE3GOo1WiHoSWpAXOZWqME0PpRRhFAKQV1XN41wpjBU5WmFTOfr/juOAaSGdSp+thA5vKKrPLcCGaWqVU30uSWoriVJ6mmvZ1tV5y5CGPvN9weYmr4RKf7Wl9HmD52+lXvqiFPgLH6+PcPXn+kI3S6nPk+CqSp/pRuMxlm3jex5hqJuhRX0OS9K0nrTXn1tKilIXJYbUqv9WSwPCO+0OrYZW1aUqIRHiKjEurwpEpRUYhqFVBkJK4izDlKvIcPFzP4qutbTiFVbg3fpdq/9dWbNFF7WyqNVq02g08YOANM31/qw0U1MrNPM6kTrXqjmhzw6ubVNVFd06rbgoC4q0JIxCJpMx0+lUB40IQbhckqQZ/X6fdrtdF2xa5WBausjd2NggTVOieEFaK1s6nQ43b90i8AM812M2nRIEPkHgIw2DV159lZ2dbfb295FSkmbplfWk2Wxi2zbDwVCrjkwLIaRmeNbP2I2b+mzneTrJOgpDivqcn2c5nudhG9YVv8wwNN9Nr5MKyzRpBg3iMCSNY3qdDq1Wi+2tbbIsJVwuGVxe8vjRIzrtIYPukKosatWFoNkMuLa/h2VKnj97CqpiVIcbVUppzMFC83VM02J7e5e1/hqmYVIWJWEYaZ5inaytLIs0zQjjmHl93mi12iyXEQcHh8RJgmma7O7u0ev12NnZpdNp43keaZqQJCnn5+dQn/ls2ybLEsrSJEmTq1qrUrqw1InjKXGsVT3ra2u4nsNsOqUqtWLcsW0sU9c02gZKzSdau4K/J0lCnMR1AR1rh4nrUFYFhiFptVs0mw2CwGM8HhGGS7qdHiAYj0eam7i1hR8ExIlWX2VFrnEqSp8vdbKhxHUcWq0WnuteOXNWz7mqdOKmqNUqP7ds1I6LL64RuiFVoM/FJqahS+Usy/nk/n0GgyHD4ZAkSXBdnVjo+x7z+Yz5bEa4XFKWBe12E0NK2u0WjmnWz/wqOU0ne8ZpTJZltWKwx81bN7FdFwSkSUpUM6yyLOOzTz9lPJ4wn81ptdtsbe/UoVwNtre2WVtbw66V2HGa4TcCnUAm9TnXsm1sy7pSL9+4fq1WvUnWN9a0+GAxYzGbcnZ2xmQ8Yj6fEUUhZVkghca7NIKAVqulVZeCq6Ax0D9TnqdkuULFep0xDKkZW6YOFaFWLKlaIbuqzfXfrdZrcfV8or4wRKjvNa14EjoITMmVhE2r0Eut/DQARxr4hkVelaT1/b/aE7R1UrFK0FydhxA6mR2Evvb12msYJarSStWV3c3z/HoN0jW7Zel1Z6W61vWN1Eq1usFkSAPLMLFNS7tvhO6fZKk+s8ckhGGoG595rl0Gq+bY6r2+apbJul6uq1Gh+cpSSoRR129Sc5fNuoEk68aVqFX2SinqSvFzBRn1QKh2cwnQvG2lA0Wo//1K0fw3DYr+utffuvEULmMMw8DzPJSS5LlW6yzCEN9zwNLdtzTPePz4SZ1AYxA0mmxubtU3b8R4NNZy4/qgm6TxVWNldSN1u10MwyCurW3hYknDaNBqt8mzjDzL9OG4yJnV7IBmS6eyeJ7HcrlkPB6zs7NBr7/P06dPiaKQNMkwDINer896v8/G+jqWaTCfz64emsD3ybKUTz78CNuy6LY7gPbyXt+7zv5ORZwmLOZz9vb2MU2zlo8aOj1MGHXMoY1CcHx8Sp7ntFotDGmwsbZOlpfMZjP99QKfeRZR1tGlSilaLe2XXUUquq5Lt9fGc20W8xlpkrBcLrFtm+3NLfzAww98ikorszbW13WU77XrJHGM4zgcHx/z+3/wB2zWYMGXbt+i4bpMpiPGkyFS6ZjGOE3odCz8hothQm5JsBVCSrymQ1ZUDE4v6HbaXL+2h1AVl+dnOKato3nNmkPiBZRViW07qEpvunlZYrguludheS62pyXgs9GENE3J0oR2q8Xezh5xHJPlOeEyJC9ywnipJevtDqrMqPIUv93EbzSoLJtcKS4uL0nTlHC+wDYtbu5dYxzOmEULoli/x/oAqwgXCyzTYKPf1SBkWWGZAtsyyaMYJSq2ei2S1MMUBvFiyY9/+CO+/vWvsr+7h+sGWJZOVzSlpOE6ZEnKYjLBtnV87ma7g2XbfHp4TioG7PV62I5DoxGwXM5RUpKiyKqczY0elmFyeHyoY+KjCN+Q+J6Lb9t40qBMUpKyxHNcLRd3dSFR1YVMlSvKSqKESVEBqiLNC71g+jZVWTCbTpCGhZSmlrtKuLi4wDAEG502cZKS5gnKEJimxHJ8Asel4ft4to1vQJ4mTMZjbMuh5TevILF5VlFmGVVpgBKURcp4OOEnP/kR82VCmodMZ+dE8Yxec52G52MKPTHrNV0sKfCsiqAT4DseT88GTIdTDp4+JglDXr15m167wzu/8AuMxxPOLy8Ikxik5Obt27Q6LSoqhtMx58MzLbc1LBzfp9ntkkwSqrxgfWOTtuvg1wfWCslsXjCazrAdH6/RZHNrl6DRxAlcposFcaWI04QoiXn2+CkHzw4xTAshJZenF1i2zf7eNVpBi7fffIvJdMrw4pI0TyirQjetPY9Os0Hm2pSi0HDnQmE5Pl7QRFSKUumxfyVgkZTYpcS0qTcaC8fWqoVGYKMqiBehtjVECUVZERc5rUYf320zLSKEZfCdX/sdgnaTjz57wCwMGX/4AQ3Pp+l7jAYnnJ2dcnz6jOVsxks7NzErg8nFkN7mOutbW7zw0ovsXtvnT//kTzk5OWVelozOL/jg0weIssQsKibzBZP5gus3b7O+scWvfPeXaTWb3L1xjShcMh5dcnx6yqMnT/l7v/zL/N3vfJdPPnif0eASu5mSphmLxRzTMvClx+a25j6EYUKS5pycn2nwsZCUScLTTx9QCEUuKo6PTxmPp/R6PWzb4ctf+Qau6/Hiy6/qyHalLc5hGLKxYyEwePXV12l12lwMBoxGQ+7fv8/Dh5/x4fvvIasKCbxw9za+5zGZjMjyjDCOWMYhi8EQz3NpN5pYtrZjLZczyjwlCnVR4NQKxSxKNcRzEfLk4JBu2OXWjWvEccQ0mqPSlDxJmYQznp0eUBjgNn2OL881K+rwGd2gwWs379S1aEUzcDAMxdnJEZZt8e1f+iU8z6MsS44Pn/GDf/dvaTWbBI0GL7/8Eq8ar3JwcEAcR3z/+9+vLfCCvb09bt68gVJoi2AYcnJyim07TMcThsMLomjJaDJiY1Nb3B4+fkKaZvznv/M7dDodiizn+OSY+/cfsr2zw7Xr1yjrBv8rL79KuNTrbBhFzJZh3dyqyBPdFNrZ0QfnVqdN0Gxy7c5dNjY3ufviS3T7fTr9PpXSg69nz54zGY/5wY9/zGg04smTJ4wnEy4uLwgsB9ewSBI9FfRqmGfD1UVbaWtuZJFkNLt9ms0GWabTeMeTEa1Wi9deeY3ZYsZgOODw+IjBYIDnuRiGjhbvdnuEs5DXXnud3/j132Q5Dzk+PubFl1/h5u3bPH3+nLwqsR1XDxcMk6TmK60ikE/OT0mShFa7Q7DlsdHuMq5jwPsb6/Q31nntS19lb2uLDx7ep6hK7ty+TSto0OisIQBZQVoVZEXO8ckJw+GQqtSNgZ+89zMajQb9Xh+hdOJpaQiEIelZFiorORoOdeOobgytAiQM06ASot6/PWzL4sbeNUwpseu1EiFYRhPiJCZNMlCQFzoKejAYXB3og4a2u7ZqSLZrOz/HUjLroR+KK8VOVSce/7VA2Sulwn/8tWoM/Yf+fVXbHPTvdcNsOp1y//79OqWnoS2Otq17TEIymUyuUA3aputcHcqrUttnbt64gWlZbPTWsE1dsMakxHlOoasl5uFCFwG2Zqa6rk9eFlzOpjQ8j4bnYa3YJbV+K6/fD2Ho4BKj0rbYqlZCKaWDUpZhxPnFJd1uly996RdI0pQ4SbBdF2EYdHt9lIKjo2OWUcRoPsUU6OK5tvD0W202O11u9DcoyoJ5HDKaTDg40k35s7Mz3n7zLTbW1zl49hylFN/8+td1crVpkqqELE/pdro0goDr1/ZJ4ph/9Qf/E5PZmN29HXw/4Ktf+xq9TpdOu83e3i6j4VDbMH2PF198kaIsGU8nPHr0iI8++ogs03adV155Bcuy+MG/+yG24/D2l97RjB7b4fDwkPPzc15++UU6rSYtv0kYxXxy/xOUUniex9bWFndv3aYRBDi2zTKKKEqdYp1mGcPRiDxL6TRbVEWOY5q8+drr7O3t8cbrr3I5GPCv/+APGF4O+PjDj3AdD9/z6waB4ld+/Ve5dm2f3/j1X2M0HOKYJienpzx58oitnV2yPOf54REKuH3jNv1en29/+zu4rn5OdDrWjMV8jmEY7GxtYUiDw8MDZrMpo9GE/f09Xn75FR49fsKf/dvvc35xgmmZ/Nqv/xa7u7u0moFOBTw7ZbFYsFgs+OEPf8zp6Sm/9Vu/RbPZRKmSJMk4OTmh2WxytHtEq9XC932iKGY2XTCb6f3s7TffZjC44N2f/YS1tT5r62sEfoDjOPR6PT2oiBMc2+WNN95gMLjk6OiI6XTC82fPGAwG5HnBCy+8iOd5nJ6d0Wo12dhY5/qNa7zxxuv86Z/+Gc+fP+fT+5/Wz53BzZs32N/fp6wqDo+OWYZzkiSi3elhWRZxllNWJdubG6ytrXH79k36vQ6m1Eyg0oAiT0GVUAOrV02fq2LdkFdNB4C8yJlMx3ofdxx8P6DRaJAkKZPJlP/yv/y/cnFxwb0X7rC5ucmbb375SnzxR3/4R3z80Se8/tqb9Pt9fuWXvosUgjxJmE9nXJ6eEcYhWZkRJTGyyJjMZyjg1t17vPXW2/zdX/1VLgYDjk6OOT095eDZgQ5Lms/5g9//fQzT5LXXXuOlu/f4zd/6LZrNFn6joVk9hoGSkKQJB0eHpKokyjKkZdPu9gk8B9e2CHytxP3t3/gNVvSM0WzK8dkRRwcHnJ2ecPD0CfPZlKJOeWs09PXWsPqAZiMgiSOdgl0jYqhVZMs4JMtS4jgiSWKCho8Z50gFhmWjyoo4SuoG1ApU/UWrmLY1J1FytafIGkVTCQ0VF7U/L89rxEYtZCmKgiwryPMSz/awpcGW7+PlkoNyoYHhUjebbdsmihLSNMe23TqtzqyTDVMNEPf9uj8gwJGYRkUzaGlQeEer9l3PAyCKIprNJs1mkwcPHrBYLGi3WmxtbePY3lW4xqr5tNqlqlIznKbTKUmSMlssrlSveo8B26lVTPV7s+KMOa5DXhTkRVHvGhrF83kSYEVZ5JhSq6mkYVCpEsM0tcqvVtjmIteNvlLby0ulcTk6aVB/Pdus+ct5rtX+VXUVPPPX7dt/0+tv3XjS8ZImluNAJZCV9oSalolp2bWE28eyLNIsQxomm1tbOLZDnudXnJ4oTojjGNdzqdAe3ar2O7qOh20YFPWfrUyfeVmQFRlREmkJHhWqNrjriZNWUKk45uzynDIvarWOPljolAOppwKGeZVwNx6P2dhYo9frEoY6Ar5TpweNqiEgyNIM19WLz+rl1dO8laS/LCukqDu59UMSRZFOxjMkpuniey55VuA6Llkeav+9gZ4oiohSlVo1Ir4gFV9dRAFpklAW+nBU5Dm+710drjXnqKBUWiZrO5pjkiSJnoSaJr1+j5deeknbFxoBi2XIbDqjqBTCMCgqrUyqEBQK8lIRpzlJnFBJzUVKsowkLVjMZnRaTdbX167MXQLdrbVxMAyJYzs6/SINtSx6GWKqCsc2MQUYVFh1k9qkwlAlhqoQRQ5ZiihzTFXiGRJbWFjSw5IGZlVgo/AMSbJYkCYx7a0tXMdlY3OD5XKp4fOlVjHZhqEThSwXpdBxkwrIc83QNASua+N7DsKQ5FVOWqRURYHrWliOwGsExNMFo9mM0XTGcDZn59p1emtdnn/6MUmUaBicEkjTQUkDPSvRBez25hqZNEmzBCyDltFE1oyZvNI8hOVygWOYeLaDVBDaEUqVRFlCWhjklbZICssgVxVVVeALPWHqBgFJqpkOWa7T1YKGhhNbQiFMA6fdJLVsZnkGRYWQBUVVUgkt31eltkgWRY4SdQJCfVDrNFskcUIeJ/Q6AYYpKScTClWRliW2IbEM/bBKwPM1WyxOtbUN26DTbRN01tgXW1Qq5/jgiHAZoidwmpMhLIkSFoZl4Xh1M1VI4jhiPp8yGF9SlAXtVos4ShDA5fk5jx5+xnQyJo4iXM8EofRCazs4bv29xLFWU1oOQgnKvGS6CLU0V0gM2+barVu4QQvb9sCwSLKcRRISJQmO4xCnKYvFkp3dXdY3N0lTPSk+PDwGBIHfwPVcvNpy3Gm3yUqfstQqvDLLcKRJUZUoJciygtl0iePYOLZF0/OuIPWVAVLaSGkiTVsXiKvDUQVhGFHWG4QyDZq9Lq7v0Wg1kUoDHvOiIMtT7j+4T6vXBaWhg6VQhHGs2QOXl1xcXurr5rr4HZ3as5yOGc0mpAcleZVzfnHO+ckJy+kcy/eQVNiWgWWbBKaJEhVKFXS7TXq9Vp3WWHD49CnLxYzFZIISgpvXr+P6HnGWMlksGC8WFEqRKUWUpuSVibQMxtMpRVkgpAVC4noO0hQso6hmq5V6ApwlWJZJr9tBKYjCmCePnxE0mjTbbXzfY63b0oyKNKOqJAKD4XjM6fkZH330EdPphJPjI0aDAVWW4rma/VNVOVmmoMyRVYEtFEiFsgSB79BsNkiThCIvMJQBKESl2QB5VbDMEpJkyGKxJE5Sjp4fMRyMGB5f6OlYWSIKMJBkccpiMiOLYvIkI1osSKIIR5oYQpLkGUVZkhU5YaKbjL/wja/RX+vT7feJ4pjHnz0kXC6J0hTLcTCyDK+ssC2H27dua39+rX6pyhLf83BMm8D1EJVicHFJUZQksVasGEISBAGbG5t0ul0ajSaNoIEpU2zLpixKHj58RBSFrK1pq7pl2ZxfXLKczzg5PSOJYwypkKbJ5u4OrVZb22byElUq1tZrm5Hr6MQbr4kyLJ4fn3J8OcS0bYbDEYuFjtVezheMBgPCxZLzszPKqkCWJabjYLsmjWZPc5yqijRLmZwPtZI30+ERlmUhhzAPtZ1VAI7nIizFdK4t+Vka4VqSXrtOrDHNOqkrYLmccXp2xAcfvcd8MaPX67G2vsba+hrzJCKNQi4uL68Ute1Wk/X19ZoJoZhHC2zP4dr2HrZlY0rJaDzC9jxsz8X2XYLAx3P1WqAKfZjL8pzBaEgcJyyXEReDSybzGbP5TIcdJCmO69B31/HrBD0pNHtwBfiN45iyKDg7PkYIidMIaAZataZhYyAMUUNbdSNouVhqLqdvEic6Lfb54QGL5ZL1/pqe4Nb8lG63U/M+LSzbwrRMbFtf1xXE44uH06vJat2Q0YWEqpU3/FXRz9/ceVJf+M1K0SB+/u/+PZbH6nv4gs3C8zx2dnf0PmZIXNfFsqyrCX1RFBT155SlZlDqVEIX2zK1Dc7UKlrbMBErV0CSsKw5ao7rsghDirLALCoqS6stK6WHe3rooJVHqzdACKXTaVfvgaLm/tUKjUqR5wWHB0ekWUqn26VVD730Oq9DcIqiJIwTEALTdfGEoFOWeJajFeSAIXTpYgiJMgEp8PBolyXbG5vYtmZSCcNgOptrhYVts95f04WMIfWAynOIwojB8JJWo0lZ5Fi2RVWVPHv+nPWNDW612triJPTZI8syNvc2aDSaWI5DslhwcXnJ4dEhjx495IUXXmB3d5dut0dZaIWa4zhc29tnPBmznC9wbM2rvP/JJyzmc37hS1+h3Wxy49p1XSxlGeEy5PGjR1zb36fX7TKfzbQiK42JopjT8zPiZUipKiazGWdnpwxGQ/xmgzBagoC333mHombSJklCEukiO88Lnj17zuXlJecnZ6CgVQODO502/Y0NOr0ecarTr549ecbBwXOeP3/K2toaL7xwD5Ti1q0bTKczkjip77ucNE9xPYc333qT9bU1dnd3GQyGSCnqpO2c8XiM52mA/3IZcXl5iRAa9NztdshzzWDNskwzc4X+vk9PT3jvvfcwDAND6pj4oihxXfeqlrBsm1u3blFVJeFyqZWrStdIURRzdnaGUhVbmxvImhc0Ho95+vSpDqFqtthYX0chGI2nKAT9tXUM08JxPfb29vQwfWsbpeDhw8caYmxI0iIjjBZYlonrtlks5xRFiTQtiizTjVPXvVo3hdBMLbNW2sjaOnRlmUpToji5ct20222kYVDUTNOiLDEtS3Mha4j4dDpjPB5z69Yt1tfX2b+2ixDw5MkTXW9W5VWzrdNpsbmxTplnGiSd5UynE549f05Rn7Pb/Q5Bs8Ebb7+JaTmsrW/hB01+8IMfMp7NGI5HnJ9fEsYxuzu7dHs9LNvG81zu3rvLtev79Hodzi8GPHz8SAsWXBfH1/y8+XRGuIyIw5Q4CgmXS27duM76mmY2SgPiVJ9fwijicjjk+eEBx4eHXJyfMZqMSeMY39Mppn7g62FCs4kQelil6mFBnsSUVcVyMdPKv7K4wu+snBMFM/JSc4IVJQUFQum1TSexGVfyTc295AsWL+qaZNWcEleuDRSoqqJIMyq08lMaElsYOhxDQNN29VoWR5RKXDV0tNJPaL6Y+HwIoZTS9nTbpdGo6zVpIEVIlhX4vo9t25+n2/n+lYV8VXdLKXAdh16vS7fboSwFRq55zyuLapom5FlGnCaUdVOqUgrH0YMeIQVFoQPTVthDQ36eXGeYuo4UlUJIxSrVTn1BfaZn2bK+t/Oaw1zWyqnaAVRVZOnKxgil0iKW1R5a5Fr1W9WBICt+F2hHlh4kVYgvQgf/A6+/fapdkmFaCsevZdKyhpE5Dpat/Yp+nSAxn89pNT2uX7tOGIYsFwukYWC7LmEYMV8saNcNxLzIyZSCFKShN/Es15M007VAQlZmyEyyWM51soph6OJYCvKqXkjzjCpNGE0nuLZD0/Ovmk/tdgvP8xiPJpiGQbfbQSnF6ekZnU6bdrvNcrEgiWN2r29iGiZZnJCmOuHG9zzarRZS6gtVoWXzZ+eXKKV0sVcrN0A/ZMvFgjhOaDabukvcbFAWCt/zmC9CFos5jU6A63soMaYoC6RhgRRXYO2V+W4VsYsqGQwGCODGtes0GroZtqLJl0rHI5qBj2maLBcLDc02TTY3t7h95w55UZIXJYfPnzIeDigUSNMmr3SjocSgqARpUbGIEsJliO3bmEKyTBKiKGE6HrO/t8PuznYNLqtI4ow0TnRXVVh4rkdZVsRhRLhYspjP6XkuvmNjSqUbT0IhhMKixMLAqkpEnlDGpW5sAralJ6UYFlQlVVboho4huZxOCNOU1nof32uxtbHJeDLh8ZPH2kZYZtimiWNZSNtBGCa27aLKknAy0cC1SjfxOp0m0hRkRUaSJaiyJGi4CNOiIS2G8yUX4zGngyH94Zi3XnuRwLH47JOPWM5DGl6AVBLD9lBSUUi9GEpVcvP6dQrT4i+HUwoDzWcyTEzDJk4j4iJllme4pkm/v0ZuO0znS6o0YpGEtDNJVtpYgZ5CL5YhoqpoCYXn2GysbWmGQ5SRZjmLMMZvNTBtB2mC6dj01vtMi4phlFKRUylBXuaUQiGoEBU6baPIdBMBqJSgEQSs9dc4ePKUPE3Z212ncG0KqYsGo8wRGNpqhpZtBg1fL36yRHkO+A5Bs0+zu0l/vYsfOPzuP/lvuRxf4AoNVNU2S5vSszFsG9f3aTZbYFgsoyWgOLk8wnM9up0Oi9kSQ0iODg+Zz2bM57MaytrUkOSyRDraI77qylu2DikQlaBIciYXA/KqIkVw895dXnz1FYJmF8v2+ezhY6bTKcPhKUVV4bgeaj5nNpvz4suv8MKLLzIcjphO53z44X3SNNWg4kaDnhB6g15fp1SVXisOD8mShMD1tIXUgCTNieKlbnS4Dg2viW37uoCpBKbhYJgW0nI078FxyZKEPM2YThfkRY7d8JGWRXdrk1azSb/XZT5JWMxi0jxjnkT8xY9+SH99nTfeehvDsCgNmM1mzGYzDo5PGJydYiJxg4BgvUuaJYTjMyajBenpIQcHz/BclyrVDei17U0sy6TZ8PBsm34jwHVNXFuwvdVjfauP65tkScqDD99nPpmQhzE3XrjL67/wDkHQYLJYcj4ZM5iMCFyXolLM4hinMBGmIEwizgcX9PvrBEEDL3CxKpN5OKOoIbNpljCbzmi32wT9AIFgvljy/vsf0e50ef3Nt2i2e+zs3ayl9xLfb4ES/Js//UOePXvCH/6rf0W4XJInMZZh6Glgt0W71aQsEqKspCpSRFXhiQplCjAkrZZLr9vi4iwlSXJMpfcGo9KR5mmVMxiNOL8caPsqMJnNoYIkXNJut3j7nTe1vVdJsmXMbDghXoTkUcxiOiNLUxq2TpwMs4QoSVhGEWmeI0yTX/3t3+TOvbt8/PEnPHn6hE8ePoTaRmFlGTJNaeYF0pW88vIrNBsNfM+hLAuSJGY6mTAajSg9H6ngyaOnjEYjTk5O8D2fl158kU67y/VrN3B9D8ux6bQ6xGaMaVjEUcJf/uV7NFtNXnzpBZ1YZtscHh5q1tJkUk9LK/oba3z1tW9w5+493n7nHQwMDCGvkmDzMidOUp4eDxiMRty//ynLUNtsP/n4Y05PT7k4OqLMMjpBE1WWJOGSTqfN5sY6nm0QNBw2NzdxHJvpdMJkMmE01SpYPdG0cV2XeTTV1mHTwPNc7t29g2EoLoen5GlGGscErknL7+K4LpZts76xCVIyX0x4flCSFDFSSba2ttje2WF7Z4ezyYhFEnF8ckISx+RJyquvvsIbb7yuuVVFQZhrBdS923dp+A1arQbD8YjO+hrLJCZKE5qNJoHr4TqaCyWkJE1TJpNLBsMxJ2cXfPzRRxwdHXH99i38RkBRlXTbbTrNFkEQ4Lsepq3BsdVoTJXlLJdLwiji8ePHOLbD9u4eDcslsF3yUjOehBCYQmKgJfTTyQTPCzBNl/Fkymg84oOPPmI8mfC1r3yFTkvbqxzHZnNTJ/O4rlsfeD8fxP3ca9UDqpsoq+JB913kVf/oP/n1hQ/63FLz89aKVSCOttbUH1ZbrRqNBnfu3r2yCNm2jWVZV0yM2XRGVZT1tLmAPKfdaeMHPo6hlc9lDX21FHXYgG46zRYLvEBjEU6H5yzDJVuNNqXtEKeZtjwYJhgGSmhLuFy9dwrkKn1JUAN0658BQUVFlhd89tlDpJS8+c7b9XNlU5QVi+XyaphbzhcIw8AJfGzXITAsLMeuzyr62pt1+VKZBgYGDdvCtR3aQYO98hppVfLh+x8wGA75hTffpNvp0G63rybsRVVSlDkffvghxyeHrK2taVuy5xKGIZ88uM/tLNOpo7VVNgo1U6i/tkan08EwtePh4PCQzx4+5IMP3udLX3qHt956kyJXTKfaXiqE4N7du5ydnTEaDAk8zTL58Q9/yIfvv89br73N9sYWvU6XZbjk9Pycg4MDnj59iikEtmkwHFyyXC65GFwyn895dnigE6aabS6Gl3z2+BGvnZ5g+x5JEuP7Ht/9O7+si62q4vjomINnB8RxTJwk/Oy9v2Q6m2EAO1vb/L1f/bvs7+/TarVoddv4jQYlMJsv+OM//h7Pnz1nPBxz7+5dfue3f4uNjQ1ef+0VPvvsIZeXA7JCNyqSNKHf6/Ktb34Tz/PxvYCjoyNs29J2ySzl+PgUIXQc+2Q64/j4mH6/R3+tx/b2Dr7fRClIkhTf91CqYjyZ8PRpyPNnz1kuI9I04513vkSn0yUIGti2pcMyGgGvv/46z58/4/nzZ0hpoSpBHGgHxrNnz7Ati7V+DyF04/by8pLLy0u++91fYnt7m52dHcIw5pMHT6mQXLuuEIaJ43ncvXeX69evc+3aNX2f3L9PmiVIU1KEGfPFjJ2dLTrtDsfHJ0xnM7pdbcvzPI/ADwg8D8uyEIDvu6D0fqdWUpr6mY/jmMFgqLESQhA0GjVwP//cIm0Y+s+lAcBwOGQwGPDWW28hBDRbDY6ODvne9/6INIlJkpjjoyMW8wUb62vs7+3y6af6bIhSXF5ecP/+fTzfxfNc9q0btPpd3nznHZrNFpblc3x8yr/4l79HnKXEubb0G1Jy684dpNSDoFa7xVtvvcGtW7fo93u8+7Of8Rc//BF7e/u02h36G+sIIZjPF3r4mBUM6+TB4lvfQgpJv9fDNE1miwVhFHJ5ecnp+TkPHz/h9PiIwcUFeRYjULSaOtG219PJks1Gg8VizmI+wzIMDClIE81lno+HKMC1bD08bgZX69QMyOoAIKUqcpVhKKF/SeOqmbGCtws0ukIrSqurtULW/2WVDn+gVs7mSUolBaXUoWOWYZFXOpmu7frYhclJMiOt9OCtrHTI2MoGKISuvXUaom48mYZJu925SqtXShJHuq63LItCVViWSavRoqz3+JX93agZVZubm6xvrDOdhBRWiWXZV0P+IteKouF4RF4UV+6vZqulVciWSZZW5HlFmRdXjTlR409kjQqpxcisbnKlI8Io6qGJRJKXOWkSUxS5Rsus7Ix1DyGNk3qPNFBoALnraqV4lms0Qqo0Csg0P98/LcvS4RlUtZL4P/76Wzee7rxwmzwvWCwXFGVFpbTfGrTSpSwKprUUOYo1P+QIfRHTLKEsdYex0w5ot3wdI1mWzGZzAj+g2+2xrH3AGsYDUa69x1SgCp0QU+YFpqGJ9a5pEkXJVSoQSrMVhA2WbdZSsRTTMjBMiRc65HnB0fERjcBjY72nO7muR7vRwkD7PUtRsr6xzmKx5PDwUN+Mec7aWp9Wu40hNKOn1+nUTKEMS5r4vl+n1Ch8L8A0bPIsR1XQ61sEjYCdvQ3CZEn2dEmeGtrOJCSeZWJILVtXeQqmQFKRZdrWl2cxShX0e10t/2z4WLZJUaX4jkO322KxXJKkifY0K4UyBKru9JdlQRSGmIaFZ5q88uLLZGnGk0+PCMOMtKo0KH2tS1VKwkVGmlaUJdiWrRPCComFgdf09ZRYmAhTgiHxbH3TDQaXWJbJ+u42lTSwnCYIgyxLEL6LZVraj1tJqkIgMWk02hi19NWyXX2Qrg97cay5ClYNHEUYWK6H4Xq0TRM7y4jDGOSM3t4+rucTeAF5ljENQ+1Dt23yMNQ2pkonFPiWqQvEJMFKJHFoUGV6EcqLHCkEputosGsB22td0mu7LKdD3v3JX+BaBptr69x+4RXCxZTR6ZGemrpayVeiuAxjzGXC3T0LbI94eUaS5JxaZ8yWc6RjYioDCwPDshHSYJGWVErhN1vg2khHfx8FkBUShaSqTFRZcjkYEfoJpukTRQkJCsN1CFAIy9KAPQRlpYhnc5Rh0XJcciHJpcQyDa0+cx1MIWn4PkaSINUSVZVkRclgMoFKsX1jD8eyGM4m5FlG4DlYhoVnBxRlynKZ1UD4EkPGtTKnIpzNOTofYjfbuN0+167v0+13SJMcVUmWWVQ3qxpIII1yZswo4hxpWjR9j3gyIQ3nPPrkPp1uj/1bN2kEDreu72irXBbp47eqOLu4JAg87t25ie+5BH5Au9mg3WyynI8JlxlL36Xpeey9+iamaWOYHqbjMF4qjgdHJGnCdDSiyFJMIfFch0avh6oqBqMZw8GI9376Mxxbc76u727XyWmKJNHTw82NDdrNBrbtIaQkmoxZCq74KtIyaTebbF7bZzoeM5/Nubg4Y2bbtBqa+2LZJkIozZASAt91abZaSCFJipw4TRGmoTkBiwWyqjAFLGcJYZji2JKuE3Dt5nWCRpPB+aU+OLSbRMsZJwdPGQ8vieKQW/fuEPgepinJ4hKZFzQtm41mW3MGAdN3MKSBWSqgoFQVhmvR6q7rZLokY3w5ZD5ZEM9CqBS247K2sUnL99nY3aHdbhEmMZPljI3NTbrdbs0cKelubdPwfTY21nBME8swmE+mxGHEfDajrEp2dvaxHYeg2eJicMHB0SHLUCvilAAn95DSoixSBCXhfMazR4+Zz+bMZjPm8wVxFHNydEwcRextbpN1YpbzEbZl4jk21/b3WV9bu0rlevTwIaXKcf0GVVmQZynRIqTKK05PTonCmHsvvEgQBFiOZg36DZ84zYjihN7aGo1Gg8FwRBRHTEYTTNNkfX2dXq/P7t4ulmlhGgZ5nKHKitfffB3TMGg2G5RVRZLlWhZtSHpr6zRbLUaXAy7Pznn3Zz9jMpno4IBaOVHlGWkISTBHiowf/sWfIYXEdX0tWa8VyI7jkGU6FeXuvTvcUbdxHZt2u8OLL7+GMPSJ5sGDBzx98pTBYEiRr1KMbPyGT4Xi4eMnbG7rJozXaNBfX9dKENvmq1//Bu1Oh7WNDVzPYzAOdYJiHPPs2RMW8xmGUQcZXI5r+0aXeDLU4Q9FzJpn09zfQVUVtmGQZxmTicIPHCxbanaIbXF0cECapsxmU6qqZHtzizRLWS6WtNsdOp22nh4K2NjcxLFthNT8jNlspmOd8wLf97QlwDApFBwcHyMNAz8ImC8WfPbZZ3z9G9/iq1/7JstlyMcffcRP3/0xw9GI4fklhmHQaTahyEmTiCiKiJOEZ08eM1vMuTg4xbFsAj8AKalMgWla2KbJs6MjTk7POTw506pTN6AsSubTKcvFkqLI+dKX3uFb3/g6ldRTzXkY0m41uX79mmZ4GGY9DZWoTDMoh8s5juvynW98C9uy8RsBvucReAFRnpIWOWnNZ1qEoVaKocgWM6ajEUmqh3GvvfgSpmWxu7OD6ziaH2Ea9XupU3JWngnJ5+wUVrCmLyqZhE7TVeipt045+ryD9B8T7n/x7z8XPqkr3of+Ep//K92E+vc/q2GYSEMhK3TEt2HVxYZOKFzB0D9PU9INwbKsCOcLKs/FsnQoyyo1yZDaKq9oIw3JPFwwn88RpcKVNi2/RSto0fLdKw6YYUgMpfirg+PP87hW1jrqSDvJaDYmDEPWt9a1IqnVxLYsZFHQ8n3k9hZpUZAXJfPFAoB24FPkOdMwQhoaMeDaFp5j1w2kColxNfg0DAPbcVlGC2ZJiBf49NFNoiAISEttJy3yQqsApGRrbQvHdIlKrTRyGi0qaVEgKZTg+fExYZIQpalOPvU8Ts4vGE5mGIbBeDxiPl+yvb3Hr/6938R0fB49O2RzbR1hSFqtJlDxox//kDiKiMIF7WaTu7du8fT5U5I44tPP7hMnIffu3cWxTZqBy3w65IP3fkqaLHjybAfP93Echzu3blCWJXvbOgioLHX5trO9TZqmPHz4EMvSnLLL80uajQY7OzuUZUl/vU+708G2NUphOpkQRjEIwUefPcT1PBrNJp1Oh2azyd7+HpZl8Z1vfZvXX32NKIywbZswifns8SM+un8f27J1glynA+g1qlM3+ZIk4fTkmKrM6XXbVEVBuAwpi4T5bMQPf3TGeDzmydPHvPHGm9y6e5esEDTbMd1ehzzPePz8EXma0W61rxK4+v0utm1TFCnT2ZCiTHClSasVgIDLwYDZfEGS5uwEPr2uRkS4lsNrL71CmsQsx3O2tjb56pe+zE/ffZcnTx/TarXo9fucXV5QlhX3XrjF5sYG+3u7TEZDzoMWo/MR4TzG91vYTsDO9h7tdo/lMmYWRkzCkG1lEjhNWkEblGRrc5M4STg5eaDPL45JkmnBgFkzlXSjGUxLP7eV1IN9YZhQ6mG9jqXPP28gxhHHRyf86Ec/5u69F7h56zamY+MHAccnR4zHYz59+CnSkGzt7ZKnKVms7cemYeH5HoZlMpoutbtFVUjT4YVXXuPGjevs7+2yd20fPwg4OTnnSXzIdLpgOp9zdnFJsxmw3ulwdnbGIgzJ05hut8t//p/9Do7rsrG+zrOnz/jjP/pjjo5OOL+44ODJcwzTpNFqALq5phPJLKJa8fSNL/8CrcAjXMxYzCqePXvCbDrl8OiQwXDE0ckJcRwBJbs7OwS+TlqzTBPbsZGGvKr7pZRENYOoKDMqVeE1G/qsKA2kZVLUqbQiryAvUXlBUqeq6dJUXwtZK5kqVafcy7opsmq4GxqoLaTUKW8VV+KEwtTN/pUwZJX4liulm+kIlGmAMGlYFrIsWCjdjFSiukp7d1dgb0vzME27oqDi5OyEvd19NjY3sS2PLM11c6wqieJYO5vMsWZUS0kYLlks5iRxhOs6JKkOdYjjqLYB5pSVVtWtavVmt6uTFWtWoF+jE/KioMxzikyHC6naHbZSPK32tyzX+CFVqattVqE5kEKAIQRloXmPlmFqS2a9s0ihGbiO5ek/UwoMhTDUFYLIUZq3VZU1FxHN5jRsgZVpNb5RlvD/68bT9s4WYRQxX860tausIwSV/n1ZlkRhiJSCLEvryOSCShVUVXFFkO/3+ziOZuCkaU4SpbSbbXa2djg8PmI6nSI1N5eslnXpnpKiyAutoigEnq1jhtMko6yNTUrVsb+gJ32qIsszbNuvIY56ejUaDCmLFmv9Tm2/sfFdD1U3xxDomFOlriJEkzQhaAS062mMQNBoNEiTjDCMUJWeNJe1H9KxdSLRKB5T1QBVxxV0ex08z6IsU8o8p8wKTCFQhu6qlyhUlUOlo0XLPCOJBVE0R6mS/d0dmjV/wLAkZZVjmFplkqQxSVJdXRdE7WGWoo5sTWj4Ettw2NnZxTBMHDdASZO8zHBMi1anQzhPmS4i8lwnzawgaIaSGBi4vodp23rBkCbSsLBsSaUKFocLzMzEclzMQoG0UErUgE5xBQum0iA5KSSeq9VpVVkgTRPbcREyRxaFhiyWFRbWlR9bGhp+7kuBkeekcar74FIf/Lw6XjxMEpQ0EJYiSjXPI08zLNPEW+ujUFpxV8N0VVliCHkVMyrrLrdlKLrNgHyjz8HZKYdHY65fu43AZmv3GvGyxfHBUz1Bt0wqVVFUJcskosorrqFTiLIkoyRjbE1I0xhpSYzCwKyktiNIkzgvUAhsz9N/L3NMs24gKYEoBaABrbPlkjyvaDRjsjzTC61t4UihY4CFREkNHU/DCOX5BH6bxJAaFm9ITEH9M5p4tkdZ6MValbphNVuGUFW8+NJdOq0m7//0WCt3bAvbdPAcl/kyJ05KDAukIXFkViugFEkcc/r8FNEYY07GCFORFilZmoMSpHmKaRi0Gw2qvKSIE8Iqpkhz2v0+rmMjK71Ynx0dk2cZm3s7OLbJ5lqX+XxBFMX6MF5VTCZTQNHtfM4WafgeQeCzGF+SxTEZoFyX/v4NXMfHd9pMFwtG0yln5wNmsxHkKQaKbqOhVT3tFlGS0+r0WS4WjAeX7G5v0QwCNvpd8rJgNBuTZgnLKKPTamEZBn5t1/B9j7zImE7HKKVwcHAdm+2dbZI4YjQcMptnRIaBKSvNDLD0vZgkWu5cqUpLqR0Hb+ajpFZfZllGliRINIw+ijUzybYlnmOztbWB5bicPD1GNQJ6vRZZvGR4ec5yPidNUzZ3tmi3mgzPzqAskWWJ7/qstTtkaUKRZ3iWjWGYFEpRFfXmI01cv4HrLrFth8V8SZZNyONcq1wdfY9sb27Q7ukklfFsynQ+pdPqYFsWudJsq1a/T6vVYnd3G99x8R2XJw8+ZXB+wXg41sDbbp9Gs8nG9haOZ5PmMc8Pj4inIY7nIaWBqgpd/FYlcbgkDkNOT045Pzvj4PA5s9kUUzm4jsPN2/uUecJI5Ni2gefYbK+vsbW5RVEp4jjh8cPHVEpgOC5kGSJNyTMNOF3Ml0RxTNBs0O12NbfF91jfqO1VCG7cus3a2hoPnz1mOptyeT6gKEoEBjt7+7z++pu6mZNlPP7sIfP5nJ0dHWm9sbZGnGacD8faChkE3Lp9m16/x5//+Z9zdHTExx9+RFkUtNttLfdWGhqtypKqzMiykmdPD8izAscJsEwb1wnY2Nxie3tHBxEIwd7eLo1GwPX9fbr9Ne6+/Cqj0ZiDg+eMhiM++ugj4jCiUtrG1mq1uHn7Flmec3ZxjhP4rG9u1hHgbaRp0Wi1+Pq3f4mg0SDNc8IwYjSdMZuOWcyn/PkPfsDZ6QmBr1mAs+mc7a0tum+/RbqYMh+eYxQlTdugF3RrAGlVR5InuJ6DaRtYloFlGIxHQyaTCfP5XBeTd+5o+KyQrPV7rK+vk9aS8uv71zAtk7OLM4qyJAzDWoKvtO1NSpSUFEoxmuhUQcu2mYzHPHr8mF/4yte4fvMmB8+fM7gc8OTRI8aTCWWigeBms4kqC9I4Ig51AXJ5ecHlcMBBeoApDRpug2anzcbuNs1GE8s3OT2/IMtzJvMppjSYtRdacbNYkqcpqIp7d+5w4/p1zgfnhFHEaDah2WiwvrampfilnthLIYi9WHMilgss2+bley9hmZbGFdTDmELq2Og4jfXeGWnrRFkXMIvBUDc+heDO7Vus9bXFSjd1dAFAPTEuq1Lv1UJcJcDVZ9z6/1/4s/qULL4oR+Dn+Ux/k/pJ/C1kUX8dVPzf/4aogd7aem/VVjnD0Ere1XnKqxENn3+0VhVEyxBhSCohMExteVD1M2VZFr7wEabBIloSRxGUurnlOwG+6+PXoN+rcxt6Zv3Fd0Gu7Id14wmlEEpPtefLBYtwSbPTJnBdGr6ne1Jlhe84OK5DXBRkRUG0YqDZNimadSIMzQSxLA3dr+qzvdSaq5oJJxGWQaEUUZZiOw52HQrguC7zZKmtbHGMa9pYtken1cVzGxyNB2Rqie36VEiysqJANzGElAjDoBJg2jbj2RwplghgsViQJBn9/jp3777AIlxycTmk2+liSEnge+RFwcPPPq1DfaAR+Piuw9n5CUkac3R8iDTgzu0bGAZ4rkUSLzk+eo4wFKPJkBs3btDv99lY62NbNpu9HmEUM50usG2Lzc1NHnz6gOFwSLPZBKWYT6dXaptWq0mr02Jnd5dOt0sWR0wnU2bLJZPZnPsPH2JaFn7QoD2d02w2abU7dLsdXnrpJbLaCjufzzk8PuJiMODs7Jw7t26xXg8ZpJQ0J1OaDc2yjaOY6XSCQNFs+CilB/N5nrEM5zx99pTZfMbZxSX3XngJz2/Q7mjldqfbJoojwlgr+9e7PeI4Js8y2q0mzVaTMIyIkxClSgwTPN8hjhPGkwnLMCTLc2zHodkMKPMSx7K5vrfPdDLh5PCIXrvLl97+Ek8fP+FBoi2RrudxcHSEYUhu3b7N+to6/V6XZtDAtRzKvCJNchw3wDMkvd4aQdDUkPMkJUwzlJJYhovvNVAKOt0ucj5juZyTpDGGaZDEKWmk8Qg6PIY6Ft7Q1k4ldc6QYVw9S1WpKKqCy4tLkjhGSMnp2Rn3P32A5fqs7+zUHyOZTMYcHR3y/R98n+2dbX71136NIklJwphmc0CapLoBbUiiJGMZJYDCdFz2b9zglVdf44V792h3Oyjg4/sPOTu/4ODwkDTLSdIM39NMUFWWJLHGC7iuzZe//As6lMLzOTs54/f+x99j1c2PYo13sR0dwLQKBGk0Gp+zgoocz7X1uSiOODvWTbRnT54wnc90IItlYpgma/0+3U7nc1C7UHVohW4OSSlrtldMIQqEhLbX1BZvperaQ6EqhSgrqPlBeZECYBkr1pZCUdf5dbiRrMOaKlXpRr+UGpJu6KF7VYetrOx4CgHCqIO9JCWKoqpwlcRUAmVILCSuoVElqixQotJYDqVDTipRYQgwbBMpdJJsnueMJ2O2axala3kUecl4MqFIS/JMBxItw+WVWilNUpI41qFdeaqbQllGliZaqJJnVyFOFdp63m1ohdOKw+RYNkkS67Uhz/V5s9CMuzzXCe9SSl33lBVZXceumIN6p1B1npa4YhNWVYV0DQzTuLK9r2yEjuNccaWkBdIUOgyhqrAqUX/tUlvPqwqxsrGaNtLIkUaO+rmd+29+/a0bT1QlUlV4tk2WZxosWXeSg9oHK6W6aiCUVOTFKrlEp9sZhuSll17C97WkMMvmJHGs4dyGSbhcglK4rodpmZSVlisvZjM812NrQ0PKZ9MJ+3vX2NzYYHMzIwxD/vK99ymKAqfmcziOQ5HlLGZzqiLHqiHdK0BWEsc8efKE/d1doihisVyyXGj/tmFqarxhGFy/fp3JZMLl5SWT6QTLsdnc3NIwMcNEmCZeGpBVOc+eP6HRbNJoNInjhDItSbKUSimmszl5XjKdzpCGzf7eDWaLiPF4rruIUt8AhjJxPQ/TsnTkoe3QbrfxPFsnM9RTeNuyWEElV1Y7zZX44sEIDb82TT3JLfKrKeBkMKTICvIwRBYlDVcftJPlnGgZEy4iDEPg1GlJlmXSbrXwURSBBqd/9PEn9NfW6Xb7BC0fw5SsrfVQSnFxccrR0Sl//Md/yunREZYpiZIlVKlmetgWUZ5gSAEUFIUunvNBwng6pBk0cGybdqcJQFlo5VOJIklDwkVMJQwqBItljEgiTk8PkYbJzZs3dRJTmiEQJGlOGOqHOE31fRuGIa5t0fI9TMvBslwagfbGj8djLU8dTXRHPU1BSIJWQLBo4CcZ5xcn5EVK+42XELZNaRhaaSAMDV/Lcv3uS60WwLQRomY/FJUuDMoKW0ikaWNLLXCfz+eUSmFaEllkmElEqxngeS62qa9Fo7eOUhVnhxlCSObzGWmWEicRlmNj2xbCEChRkea6421KiWXa+K0Osp7qUwjKTCdwIQyktOpIU90gNA2TqlDEUcrh4QmTho+QNrYjUUKQVIoonFGoElyTrCqgKvBEnYxEielYbG5vMcsyxtMpD+9/yuHTZyxn8zrtrVNfjxhTCFzLotlo0mwELOKY2WJBmqaUlU6YWCyXHB4eI1HIqmK5DEmSDGHpKNU8z1jMZnz44cfs7mzz8otaidJqtag2dqiKnHfe+jK2afD40wdQldimwTKKmC8X2JZFw9RFgQmIosQtK/quS+/lF3n5K1/nT/74j/nRX/wF2xsSy3BIamBykmQURYmBLl6cWoJq2TadXk9PnuLoKn64As4vLjFMk+3dHVzLQKKYjIeoqqLh+fUmUjGdT1mGCyzT0jYhy9KHgUohpcBxXYQhCbMEKQUNz2Gzt06j0+KN114FYbC8GGNbpp4UlRWiLHGlgWHY5IslYVGwGA/IkkTDqf2acYOgEAaB5eiURcfWBwNLWw0uPvuM08GA08GAr3/729y8e4c7d1+kKEr+8A//kOViweHgkvj4kDCOtDXbtDhWZ1BBkWWURUGcRDiuQ7vTwnH1Gn7t+jU29nawGi7hcsH9hw90gqejpzb7124SRjl5pnjnnS+xtraOZTqUZcXB82eEYchoNGI0GjEejUmSCCkFf+dXfpWtrS2u7+9xcXHOv/23Y5bRksFoiGFahHEICLIs15blokAKg0a7xeb+NW7evMn+/rWra16WBUkac3DwHKHAbrY0dy1OeH56zulowvODo3pIURHHCaenZzx8csi7739Ms9kkCAKen4+YRwWzgws6nQ7XXnyLnV6Pb+zsECcJURjywYfv8/z7P+InP/whURTy1tvvsLG+zosv3GOVDFNWJaqscGwDKWD0xpg0y4jTlKLUbMXrt25x595dBpcDwjBkd3sb3/No+joy+8H9T3j+/Bnvv/c+aZrw+muv8PTJY+Io5sW7t7Fsm7OTQ2zHYXOtx/7mGjd2t4jmU9Ikor/Wx/N8Dp58ynIZ8tGHH5MmCWma4FgmhiE4/PRT5vMpr37rW+zu7vHOV79JuAw5OHjGbLbk0aOnmlnkaBudbVskSUKz02bv+rUrefcKrLqzu8v6xjplWZEX2irmOA67+7sY0iBJE1xPQ0TPLzSw/uDgUJ87PK9W3RSMhhMGlYaqB40Gr7/xJgCj8Zj1rW12r10nCBo8+OQ+H3z4AZcXl3T7Pfb3r/HSnbvkWcbJ8TGz+Zwf/PBHvPHKK7x05y6D0zPcHH784QdYtsPeO9cJfB9LCk6PjxhPpxyfnBCGES+98ALdbpc4iWg2Grz60os4to1XF1RJljBfLIniSKdwWg7j+RzXtPBtB1PoQc0KPNppNpFSMh5PSbOU4XREVZZURck8jUjyTCuSgSLJsS2b3sY63VaHaxvbWLapBz6+j2GZP68kqs8bq0bWla3tryqM/ppz6Yr19P/f1+caIyE+Z4uspvsruG1RFIzGI8JQB+U0GhokO55MyeqESdOQNE1bN6Msg8l0wvnFBbY0CSyH3NZMJ+nZCMdCCV1glUV5lTC5OqdBrXOqkwCl1AUDqrpSdR0eHjIYDtjZ0cwZzcfSRZ0e/gscQ2JYBo1GQBzFPHryGFFbQWzHwXYdojgmiiLyLEMAzWYTUSf3CWkgTZNkEZGOl3T8AN+peYlFhSFNJssJH7z3ATsbm9zcv44fBLRaTfxWQJjE5FHEbAbL+YwkiriMYxzbxnfcq6TQvZs7WKbFZDTCdx3Wul1cXzfcqW0jnucRxdGVmt+2bDa2Nrl95w6DuvH8919+CVVV/Mmf/BuePH3GfLZgc3OTF+7d5c0336bX61PUNvgPP/yIR4+ekKcF/W6PG9dvMp0vODg95s6t27z5+hucHp8wHgy5df0G7Xabdr/LweEh/9O//n2ajQaddou1bh/fc3n05DGWafG/+d/9b3Fsl5deeEHzGMuKDz/6mPff/Rkfv/cBpm1y4+Z1gkaDfr9Ps93hG9dvXF33k6NjppMJw+GQNE159vwZnXaH7Z1t1vp9fvG73+Xdd98lTlN2927guA0ePnyK67m4rs2d2y/ya7/+O5iWxcnJOc+ePmM2m/PVr30F27bZ2d7DELC10auZowZRqJmsH338IWEY8hu/8Zs1A3fByekpP3v33asndTwc4NoOb735JlVZcf/BAyzP4/q9O+zeuM761hZbe7ts7e7w53/+5/zsZz/j9p07ekCSFywmMx7nj7h//wEffPARwjBZ39rED3xAp6L6jku+DLEqWG+0mU+nPM4Kemt9Nq1NlCiRCDzbJXA8Gq6Pa9rkrk8YhcRpTBgtUUoReP5VKpiqcQirBPU4SogjHbAhpWR3Z4feWp9rN64jpOTh/ft87/d/n0cPH3J4cIDt2Pzar/4avX6fzfVNzo5PuLi45PDwiIuzc+I4w7E9vvqVr9Sokw3G4zEHz58xW874/g++z/HJMWmW8Y1vfpvt3R1sz2E2m3NxcclwMODo4BmvvvYaX/7yl3nnnS/heR7//bv/H05PT/js4UMUsHP7huZa2Q4HBwfM53NUoZUvJlrAsUxi7t69y8svv0y712U4HvPZZw8YjUY8ePAJcRyTxDGe53Hr9k38IMDzPJq1DX6lyqmKijRLiJZL8iKnyHOEUno/sl3NShIGolKovKIyBKUE03NQAizPo4oznKpOnqPeDsSK+yeuhhJaaKObVtSsQqUqqqJAlfrPy1p947gOCCiLkkrllLler0wpSfOSuFTM5ilRkfP/5e1Pn2XLzvNO7LfnKec8eebhnjtW1a0BhUJhJAlIpCjKlNSkRIpSd8hq2Q61HeG/RXaEHe2WIxThbvWXlkiJJERKokgCJAoEMVQBNVfd+dwzDzln7nnv5Q/vzrxVICmBssKJqCjUvWfIca+1nvd5fk8/TEml2lbEdB00u7rGKkH/mGmGZWnU602iKCYKE0zdwjZtnJpLWZScX12R5QWdbncJoS+KgjzLcF2HVqvFeDyU0rEsJ44irirAfpplVZtjA8cThtpizbEtqzKJhMxnM3HqT2aEUUwSR8v2yUXRmwbLgYWmCRvKMAxha+k6ebmIhj9b38yqXXax5pXV2cowdIqyJC/kvujoGJqOpikwRKjTlJiBykIca5TCf1rE0xfr5X/u9hMLT3mWSd60Ak9qn7D9SoPLgnGklgOtsiyeQbl0ME3J0QeBsImUUst63cWCp5TUGlqWhVFKll6q/8yqitCgKKTi0nFcHFfo/EtQWCV0aZpebUpL8kwEF9eRib1t2+RFJvb3KJKDbS4Rp7IU62VRSF1srVYTMLEujRfT2YzOSoGUrlbOcEOTPH84w3JsAmqLv12+oRck+DhJUUrDdX0m04gszdENtczHg7hG0ASSpukyNTN0+bAu7IeqUpIXKubiuUf7xJxsoeYvXGALV1WRE85D0iiVqkdNBCbT0IV7VBSgCrQqSyvRR4VpyWvZsKUKMk4SklQUXbew0Q0T13Org1XIeDzk+OiIaD6VGnkdsiIjVzaGMiiUuMN0SmlY0xRZnlLkGXYFe/N8D13XSJAqXFUqSlWQ5ylS92VU+69SAN2OuFtmM8mmFkoqzYuiJC+kblgpRZFlULrUfY/FBc8wLamMRqMoKthadRGwXQffkVYH3/Pl8Y0Gy59n2g4aiiTLq4NoubR+RlFMaeRorthQNaVE/c8LpFhOW7ZCFLm0GxS5hlFkkGaoQmFoOkalXPuBB0rhuDZlrkhTcWylaYJpW/L+qd59RWXbL0Ha7UwLvVRoFNXHd+HZ1yuwXCWAQpVtFyvqfD4HVVCWArBTaBSqIC0yWT2M6n1ZiopfopZV4rV6jXg2hzhmNp0yn07lcVefa1WWxGkoUT3bXFYIT6OwqrStrkGV9VQ2xgqtqtNNkgRLN0HTl8r+oD8g+ETTjOs61BtNUCVBUEcrC6bjIWWe4VoSDw7nc5xWC9cJ8C0TA5l4GEph6zp+q0Xz1m3e/OFbYJhUwv+yqjbPclkMlfZsKl0tKK7rUhQFnueT57k4Q7OM4WiEbRoVyNLF0GAwuPpEdl1EhLyQKlhdE45Wvd4Q+HD1addNsc5mRYGldAzNoNVq0lnt0Ww0JMJb5dazJKHMM7SyxNINDFORJwkppYisRYHn2lIEoAvTyDBNLEPH0jWcqhLYNHWSJCWcTMjimFJBs9tlY2eH3vo6cSLvRwydQoMoTRiMRjRqDTRPZzYekyUZWpZR5DnzcIZlW8wnE2zXxnJseqs9Wu02Qb1GSUmUJBiWSRRHaLqB6wXUG03aUUq3u0K306UolDhr+pdMp7MqsjEhjGZV4YBFq91gpddlZXWFJItxPI8omhNGMbP5TK5XQJ7naLpWVdQbMjFe6dHurdJdWwfk/XZ8fESYJoRxgm5ZJFlOGCdMZjOmYQxonJ9dkiQJvu8TRwmj4RCFxsXlJe12m2arRZxlYFqESYaTFui2h1tr0F1bZ9DvM5mHnF/2efj4MadnZ5R5gecFwnbo9pb1wHkuFbc6Au/c2KqJNTyOSdKE8WxKrdnArQXY0ylJlqOZFugmSVoQxyFn56ecnZ1yfnZKs9mi220zHnWIvYj1tVU0TeP07AQdqAc+vufi2hYa0vLl2g6OZTK4vJCp6v17AlbNMgLfE4B7mmLrBs2gxkq7w7XdfS6vLjk4OJApdJZT2OWy7RFNYl2u57G+sU6aJszmM/kMajqe72EXDrquEUURV1dXOLpATpcTvwqGPZuF1aZbYhmmYS7bbpRKlsBn07Jot7uUqhRhx3VZ6fXQDZPhaEQ4D8myjG6ny8pKl729PaaTCaenpyR5RhpHWKZFq9Gk6Qu/KU0TlK7heA6WbaGjkWcZ85nwEOdhCKWUUyRpjF+4uLaDX7k3J5MJ4XzObD4nTmIc3yfNMsbTKZntoBUKw5QK5flsJtdv2wIFURQSRhH90RBVFKiiYBTOidKEdqOJZVpkcSJDK8PAc11a7Ta2Y2FZ5icmqj+mI1XXKxAxSf/0337i6z7x/6sv0dSnv/ZTDqUfZ0T9+I/5c9xMi2nuJ3/On+96xr5ULgABAABJREFU+vNdUZ90IH0SRK6UWjYTjccTLMum0WiQpAlhHGEUmRRBWDIRzkudWRwxC+d0aw0822EWJ+RlgVExPBa/+8cf86fuOyI+5Xn5LP5WnSWksj5egmRL9cnXRQRAQ9NQGpiGCIaz+RzLsiueksDfi1Jg2WmSoBAQuq7r5GWJpitMTSNPUrIwxgzqOJYjSYSiWMYOZ7MZYa0h17kgwLIMAsPF0DXqQUCephIpzjKSJBXHQCF797IsCarYWxyGEje3LHTDwLBMHMPENAzQdYGzW1b1+ggYfqW3SpxnzJOYnd09LNPk9/7j7zOeTHly8JRSwY3r12m12niet3SKZVnOZDxl0B9g6GbV2J1IFTpQq9XwXfn8LcqJtnd2GU0m9EdDprMpo+GA6WiM73qcnZ0R1Gr4nkej0cRzXDlwJikfGoZEx6dT0GB1fVVKl8JwWX4Q+AFBEDAaDJmOJ9XeTv6J44jRaEKz0aRWr4tI4AdsbGxgOx6zeUiSZvjBOq12h+efv0u/3+fy8orxeEK/P2Bege5t08a2DRrNhjAkfZ/BYMBoNCJNJcnh+z6+L3uWOArp96/wPJ8g8JdOCtd1K3ekFBUFQYDtOuSqwHYd6o0GJycnaJrG9evX5fVPUlSJxD8nE2bzGY2mMPUM0wQlTYuWaZIlCUqVmJom8OVSsbK6QhB4jMbihJaouomuSZvoIrKbF9L+qVSJnVni3ilLTMvGsq2l8DSfhVUJluxJvWr4DxqXV5dcXV3y6OFDHt6/z9XlpQwZtneoNxuY1Rk2SRKg4gtZNo7rsbraw7Yter1ViiLHtEzGZ2POzk45Pj6mKEsc18avGgId18HzXLJUDvErKytcu3ZNSrrSnPOLCw6PT7j/8CGdlS7716/juJ78Ts9Fj0Jh+Kiy2oZKoYjtOqys9sjynMv+1bK19ezivGIZiSgtjXU1fN+vYopy3ZFrj7iy4ziq1tICQzMwDB3LEjesXn76kqwWTiVLBvPCEBQoff6JM/InrlafvtwvnRTCIFZqcTGU/2YROdOg1IpKl5BzsqbEsZPlCiwbzTAoojkFBUoVsp2o9tPqE7+/rErChO9XLN9XcrxeRKyFEVVzHEknmGIEyQrZX1iWVcHIZRBYFmVl/qjA3pqITJ7jYFpWpX2Ie6ksCtI0FW5znpNnKVmaSJKsKJZC1eK5KxGdQEdfsqgEHm+QF5I0WqwDIDqApskKLWKbJMYWLYFS+AFKaahSqwT/Kgavnr0kSi1einLplCr/awtPx0+Plx8uXdepBwFJksgFahYKYNKVB91ut8nznDAMsSwdw5AMvWEYnJ9fYJoGJycnmKbFZz7zMpPplPPzS7I8oyzy6lBjkCUFhgLP8dDRGI/HlGVJrVaj3+8TxRHXr9/A9Xw8x4VSEYcRlmkSxwmrvQ6tVp3pZESWppT5DEM32NnZJcsSZrMxeZZxfHxMt9Olu7JCnERLB5FWtfp4vs/Wzjb3Hjzg3ffeQ+k6rbY04WV5LnBIpdBQ9AcD+sMhjXoTx3YErKgb1Ot1plOx288q+NjC+aA0yXrO5yFZkjKPBHS7aPsC8DxP4oKWKQ1zcUypCixHNoK2bWOaFqaRisW+2jglScLFxQXNZpO9nR36F1ccHh7hWS6qUAS+R9luUvMtYWdZFq7lUg/qXPX7zGZTJhNFmiVYtkfQbPP8Cy/QbrXZWl3n8vKS/qCPGWrYhUW9Ji0GaVJxt7SS9Y1VVpo36fcvmc2m6JoCQ8N0LQxdQ+XQCAIatdqSsXF+ds75VZ8908R1HcwKMkdZ4Os6huNQKIGobW7tgmHwdDIh1EOoiz01y1MW7TC2JZv7JJJ6zrrvo2swGY0xlMIxdHzHwarYRJoCSzcplMRES0qUVrDS6bDe2+LpyRP6V6c8fPSIWhBw+4WXOT8940dv/ZBGzafVqLHS7lKv1elu7pADP3jnQ0hzAsujiBIm/ZHkgg0dPHGRmJpOlhecnV7gGTqrvkue5KRxhm0YGJaBbcm/VzfXScKE8WAmwkSa4yGQ0jjPyMsSDJk2xHlOnqTksxkpukQQNR1dM9BMk1LTuJqMKMqSeruFpYGt62hJjJZnpHkuwtFwiK5ptOoNNE1hGhp5UZAvYrFQRQ0hjOZots/q6iZBJ6edZlxdXjKdTJbXlTQWK+lsMqV0HALDlAttHNFttVgxOlwOh8zDkIPDY/xajReef4EilzrP09MzRqMxQb2FaVqsrHTI0phR/4J333mH7333u+zs7bG5vc3G9g6apvG9H3ybZDbBzRKaXsD26gZRGDKbzvADE9sxMDWFKgsm8xSVxyThnJZlsr63xd3XXmYcz+g/PuLw9JTnX36FrMj54ME9ijzHNiymsylXwysKXSNQiqBWx/UDNMNgOBzy4QcfyIEhDKnXAmq+z/N3btNpt7h28yZllhMNhszDOaPxkFq9LtWthnz+p6MRZV7i+XWUrlMoAQkmqiSPMlRe8lP/u7/B9Tu3OLnoc3HZ54OP7mPo0GoHDC8v0VVBt1nD1HXiQZ9EA99y0S0NyyjR8wJtNqRhWtiuIbFppYRpUh3IDEMnsE1eeukuX1jfpbHa5Xw44rd+9//BoN8nHE9YW1vlZ3/ur7IQdKNpSDgL+fq//R1Ojo/Z7khNfFZk2KZDvdVcvj+e3H/ExdEJG5ub2I7N5z//RfKyZBTFqAJUoXH37mf46Z/u8OTJY+7de8DJ8THT6YSnT58um4Isax/LshgOByRJwtPDRwxHl+SFDB2ev3uXw4MDoihBMy3SspDDD/DSKy9j2w6W6VNvt+htb/Lw4UO++c0/Jk1S8ixnXLHPkjTGc10OHz1hOpsxHI2ZTGbEUYxn6riOw507t2XTFI1l02bbDM4mXBw/5ktf+Sk2NjY5O7/CNC3SaM7jh/d4660/5UdvvcV3/uTblWPUZnujBwq+++0/QtN1/sPvBCilUZaQpIm0y5oanu/zS7/8S2xtbfPc3ZcYDoe89977fP97P+Tf/JuvMx2L8zhPYhFpHYfA99jYWsOyLDa3d6S9y7L5lV/5e3Q6HRzXJY6i5WvleSKGP3n0iPsffMjh00Pi3V1c1yFLEvIsp+3ZFLZGnumE0YzhJOWv/7W/Sq/XI4xizs7P+b//0/8blm3RaNTZ2Njkr//1X2AymRDHEVEUk+cxnW6bXm+FF196idPTU+7f+5hmo0WtVufe/ftyYCyl4bXVakkbT9UC67keJ6cnDIZDFArLsfnyl79MWYnrUp/t011Zod5oMA8jOVibJmWe49fqaJrGeDan1kzIVcmv/J2/w8bqGqbjkCQx733wHqdnZzx4+IDnX3iBL37xZ9lYXcP1AvAc8F16q6vCIClLzFLhAi9cv8HnXnoFzTJA00jDmDiOODh4yjlHHH34gIyChJzZdE4SxdSaTUzLJC8VpmnSbLXwXZdWEJBnKUWWcXh0xHQ2I2i1qAU17t66Azrori0iv2kxPc0okpj9a9dZ6XTwbRe9impLU50pB/6S5fRUFbI3MfVq+FMNvpbRjE/cluLOn7O3/MnM+X/52ydFo79IdPrU/fiEwLT4nh8XrkzTZHV1lSCo4dgSo9Y0rYqRFASOFIAYpUahSpIoptNqs7O5Rc1ycHST5KMPmcxmtOtNAt8DlJQM2FLQoVi0ET373YZhMB6P+fj+PWzbxvN9As/DsWy2N7fprazS7nZwHEfE7yrmqBuCWjBMCxOdPIookpRWs00QBOzu7hJVzuJ2s0Gz5TEejuTQU4lBSpNBg+VaRGHI5ckZgeVgaAYlYFomXs2j1Wjx+c9/nizNuBqPyCkIoxlJKnXsr9y9y3Q6Q+U5s9mM0XBMs16n024znUyI06pJ0/WoXbtGlqXMZ1MBgh8+Za23SrvRpLvWw/VddvekvCivmnzH4wnj8ZTxZMrZxQW+5/Pzv/ALjIYjvvfd72HZ55ydX8jhzDLxvRqO7XH3hReZhyH7e9dwXJfhdMb5xSVPD56SxCn37z9kfXOL1bUNfuff/S6O6/J/2tllrbfGf/O3/jbvvfsuP3zzLXqdFdbW13nu+edwXZcnDx/hOh6NelN4a6bJzVs3qDXqjGdTNE3jp778U8RxzG/+m3/DYDDg4uqc9bUNNje26Ha71Go1Nje25Czi14mikA8++JAnTw54++13abaa3Lz9HD/9Mz9LWZb8j//j/5P5fM7K6hpbWzvcvHkL3xfA89HREdPZlLfffhuAYf+KXq/Li3efp9ls0u12uHXrNqDR7w958uQJBwdPmUymvPjiXYm51xrs7+9z48YNXn31s6ytrfP2O+9wfnHBcDxC0zU83ef+40c8PHhClsbs7O7y8b17hGHI1tYWjWaDB08OcByXVruDV69z5+5dBsOhtKwpaZRr97rYvsv55QVxljKL56ytrWPbFkJyUJydnDGbTqkFAZZpMZtVbLosE1arrrO62sPQDWzTZBli1aXgJ46lQEkGpHVeuPsSqizI84z79+7xe7/3e5wcH3J+fsrzt+7w83/1r3JxcYnjubTqDZI45YP7j4ijCN8N+LW/9/fZ3triS1/5Eo1Ggwf37nN6dsq/+de/LsUdJ8f0+wMmkzH//T/+x7xw9wVOzy45OHzKm2/9QFxH+9d5/uf+Ci+/+BKOI+vq//z/+V+4/+ABH92/h+XYvP6FL+EHPvVWg/OLS85OT5iFIWmRMxwOKPL8mcCgaRwdHfHWW2/xzjtvo2lwdnpCnmesrfVoNOr0uiLk1YMA0zRQhcSt8zwjTTPyPGM+m0I1MPZcB8+rVcJxUcVzK+EIDdOxUJaJ6ZqSZAljwigkjiNqmlGxc3NyShJSLCUsSV0z5DqVi4Bh6iYKSNKiMnpo0m5umRSIczTLqnIGEwzNxNGFW5lmOcNoTobOL/3j/wNWrc7/9u/+HReX5xw+vV8JRNUgRYNGvYFpmaRxho6O53hYuo2JCJBXFe4hzwtm8/mnIoeu61DkmSBP0oQ8idGqiDIKXMthb2d3GX+zLWu5dqhC9ppJkjDo99E0STBYprlsW/SCyo1dOVoXrqbFEMSsmI6mWYlksmJVppxn7rBPtrhmeSL78UQcrpYtTcVJmizZjHmaCZ+7WguyPAcl1gLLNCURZRh4jkOZp+T6M2fVf+r2EwtPUkVdkqYC95ZGA6ACcou7qHJalzKFsCyJ/diVaKAUhOFcDthVO12WZ2RZVjGjyuUCX5ZllWssKkeLWoowlmWTFTlRFMlkkIU6KW6Rpa1MW0ypZFO0eNK1KnvfrGpO4ziWC1ZWkGQiTDiuK6wEXUdHga7hVK04URShG7I5XNLlNQ1T10jilDhOsO0UTTMqBdJaPl5d09B1qes1TQOlhGVVLFhW8n6RaWLl3pLaRIlZ6bo4mhYsioWjSlxelaWueg2SJCaO5c2lVUp8ludMJlPcFQ/LtdFNAzQqZVSvom9aVd1evdErd5Xke3Ourq6wDBNtfaN6HFKlKO4Uc5nNLQqpvE0rtpZhGDJF0wR2lhcFZQGqKLAthdJ0dMNCw5D8taaTZQW6UYAmFyDhiwn4EV0gub4foJsWXpKQFSXTyZg4jjB0Ua+LUgQrlCLwfQxdp1WvUeQZ8WyCpqrqTk3+MXQBpqsqk6wtlythLRiaRKkKXSeKIizLZm1tjdksxDBs9Co2lxeKNC9wfR8MU5x+SqMW+ORpXDlWVDXd8bBth7wUp1R2copZiQmFWrrMQcnrqhc6RXW4Yul+k3+r6nBg6BqFtshBy+GgLASYl1UXW8OocsJKphplWVQXFvlaQ5Xo1XTV0EBbuO6KvPqz6pmp3nvy/lXVz1LinDIMbE3H1WViuchla1BF6J7FQvXqQpxnGY4vNlTbNEkMA1PXKPOC6WQiDqZ6nclkRpoK0FR+jvxPXIZ5NQ2OiKIIdPnMJnFEliQEpjikNKUwdQPXtrEMXXLemlRWa6qkLOVaE6cyqQ5qNVbX17h8csQsCtEMHd8LuHnrFuE8ZDIc4XgutuMI3Bek8lQXgVg3DKKqclWsqRp6tUDkeYGmPZu0L2y8UquaYer68n0vL8izOLMqc/K8RDdNLNuk3mxQbzQ4HB0yD0UkT4qUNJuRhqG8j00dyzDJ4wRNKXzLkuttmVIUOUUcYTolJja271ZAQakXNkyramOSiXSe5/SvrshVycXJKZPRCKMsyMKQaDbB9XxqXoBrWASeT7PVYDIdY/sOugYNUya4vudVzk25ZhmGVa0lLrahk5Zyv5IorYYf0twyGo0ZDoYkVTWtaRrYlrjn0KjaPMqqOjYhNHT6/T5m9Rx3ul2uXb9Or9uiXguYTcYURUlQq6NKmM1m5ChKXWM8GBKH4VI4LdIEVRRYmoauFGkUCk8sisiiiDSKQQeVpcynUyzbpNmoyaHetuUzrmlsb26wubVFGMakacbZ6QlJEnPZP+fq4ow0CnFNA800sGyZspV5glIQlyVJKhvGBRNhbWWDdreDHwQYpsFsOmM6njAdT7g6v+Do4ClFnlftpLJRD3wX13MFBu66+J6PaUhl7ub2Du12mzRNJcLjemRZRlTFdJQqhc0SSSlGGlukSSIbG9PCdS0s02Q6s4niiHqjhh/4jGdT5tGc4fAKx3YwdHm9sjxF08CyTNLUrD4TJkWpuOoPmM3mqFIjy3JZ6/KKQSDLqAyGophJJXbbtk2aZsSJRL5NwxRnMRqOI+2SrusKS831iNOMolTLuJqm69VU3KIW1Fjpdmm129SbTZmsp2L5twxpkq3X65RKcX5xwcX5BbM4AsOg0Wzi2DbdTofA8Wh4AUGtJoJG4KEbBtPxRNq+5nN5bymdeRYRJuly4uo4DrbjMK/2JI7jyBBqEZEoCnzfR9N13MpNkqYpVKUgtuNIpHbkEsYRtm2LyLpw/lYRL7UUklR1lUUOcHzKXiN/t/zSJTL8E3/7CRFIY5ELW+77/nK3//zX/+V/5l98k1iIoAtcx6FWq8l+TNdxPRc0CFwP0zQhE8achYFjSsuvpiArZU+UJanE3w1THofSls/jwgOwfHqQdTIvC5IsE+dvUWDqBrZpCXZBE75WnheEcYKp67LWCm4LV3/mODB0DdeR9/hiX7qIumiaJg48XdZGiczLvSiKgrzI5TqKQmkCr9WVghJM06LVbMm1QA9RaCR5RhhFKKXwgxqoklazSRLHUvYwnjCZTLAsi3q9vkRHSD25CACaJvvxJE0YTsZ49Rq6odNsNjEMg1F/BLC8z2bFejF0g5WVHo4jQq/t2JyendFut+l2u9XBUfZGpmHKZwaYTCcVT1CKfMqypNFoLiPupSoZjUbkRS7Oo6Amwrsmrq92p0ujXsexbWzTrkRbeTWDWsCKWmGeRFXluvA/dcRZkMbp8txzdXUlhU1VAmQ2mxHHAipeNE3ZtkOj0WRtbRVd19nd2xP2kwZJmjIej5hMxkynE2zbotlsLAHFniucQ3GNGJimLVD1PMN1PWq1OqriHB4dndDvDxYhF4qiJIxjJrMZo4m8hmmWCfNFlxbOMJwvB+UgZ5bJdIJhmbi+j2lacl1ZitVy3jKqKFCWSdlBlMTolkGj1aRer1MLAnGnoiSxkqbiGHJdgVJXqS3DMNAQB5RRgZ9VdS3XqxbmsnoudKWjypLpZEIUhVxeXHBwcMBwOJS9qG1XjqA6w+FQYrdZjqEb9FZ6slfKC3a2t1ldW6Xf73N1dcXjRw+5uLzg8uKcwXDIcDhAqZJ6vUYQyPV4PBkzmU5pNZu0Wi329vbodrvYts1wOGA8nnB8fMLF5SW6buA6LvVaDd0wiMOY2WTKeCDFXoHnMdGFYaU/u6AQRxGD/qCKYumE8zmg5EzruFLCZIn5QK/cNFmakmaCQSiKQpqiK7FGHMIGhS7FJGpxcF3Uq+nGsqEdpdBKtdybL/DUenU+N3QDrQQEuST72XIxBNArB44mTMJPDAW06rxWKmnlLlQpX6dy0rwgyQvqKyu4jSbXbt/C8Dz8WoA1tiqNAiTpIWkAGbBY5HpRpbhMHNulXmvge0GVqhI2k23ZFIYUrC0EKADDEAblImWla1pVEuCAkkj58ppefW9ZliLwVM2jhmFgL/jCloXt2HK9lQe+FJ4M06RESbPdwsBQOVspK3KWknNcmmbVIrbQK6REqyhKkiRdJq6KohANpVrWVSGvn5jKNMqF8UmBoWvLRkB5T0hC5ie5/cTCU5LKHZLDtbTIGBXomWrRUsogy2A4mor1dWUNxzZxHIvxeEwURZyfX2JZFtvb28znc9595+1qomIubfBZllMq6PcHqFIR1HzyAsI4xvNcgsAXpTqKePDoAZqm4dc8bNcimsvE2bYcsjRjPB5XVjIdP6gJgHg8pt1ucufWc1IVOp/z5MlTwnmIYWrU6nV+5qtfxTQNprOpMKCmU1ZXV9nZ3eXegwdcXl3x4ksv4TgOWVZIhM90ODs7ZzwOGZVTQjtha2sTz/Pl8G1Z1Go+cVKjHUozRZKkXFzNSZOkEnCoDloWjuPhOh6O4+HY0oCnlLwFVS7FkppuASZlAZouULiiVORJysnZGXkui5Nl2YDOeDzl8OiY/Zu36a2tob71BmGRMBnMMHQN37axDJnuG4ZM6C3DxDIsGvUGg+mMf/U//y/cff55jF/8m3i+T6vVIklD8jwlSWWjmWYFs/mMs7MzBlc6Z8cmG+sbtFsdfFcgZqcnx6LMaxpxXJDn4Hs+ruPSaPXwgox5XBAlkUT4qijkgkVQr9fxAhvPreMGATfaLS6vLvnTb31b2h18nyiMKZKEpALH3rp1i1qtRrteZzwa8PDeR7i2ie9YuLaJYxk0Aoc01Uimc3GVmdL64tsO0TxiFs9oBQF6s0YcRti2y9rGDobhcXl7jEoTVBZzNRhxMRiyf/clGq02d+48h67pNOt1Ls7PQOWMp1OiOGJnd4d2p0ucpJxfXvLxo8ekhWKWKZJSp9RMEQHLgqOjA4oyl5iX0tER4Y9CUaQFRZLj1wRoOgsjdF2j4buUtkOmSqIoYhiFoJW4vkua5QLHR6fIC8LZGC3PMbKMui2qdt0y8T0XzbNluhHP0AwTz3ZQmokyLTIKgeUVAqUXQUQ2zYoFn0JipzVfsshJJhc53/PxbAvXMlF5RjjL8DzhZJiawjMNes0GeTTn9//Dv+czn/0sP/0zXwXNxPNrnJ6dE81DUMJBsy0RiXu9HmEc8dFHH1KUObqC9cCl1WrjVjHEq9EA2zRxPAdUQZ6WmI5eCZEFWRpxeH5G2ulgHx/hBj7PvfA8b//pm1wMRyRlxubmDv/o//iPePL4Cf/qX/4r1tfX2N7ZpsiexS7LKteeFwXT+RzXcVhdX6dXQRxLYDiWmlpdKbq+LJStbov+oM/l+ZlwDzyPVrslsYC8lOptzSQJ54TTOdd299ja3GR1fRU/8JlOp8xmU4Kay+XFkHvvvs9qu81at4NlaJi6kjY2XWO7JZGd08GE2WzGeDTGd2SDenf3RTrdLn7gYzsuzfYK8yTldDTm448e8OEPfp9ZOCfLU5pBQE3X0LKM6fEh//5f/m9sX7vG7bt32b1+g939bb74M19k7+wa09EATWk0ghqGbmDoJpZpSTyp3ZHpfqMBmsZoPMXTNVrtDc7Pz7i6PODdd98ny1KZ4mUpN/b3WGm32d7clIO0aXLw9ClPjw5lc6Dr3LhxnUwz+PC99wlqNXb2BPr5S7/8y6xV8cSLy3NGwyF//K1v8/TpU77xjW+Sxwkqybh79y537twhTWKJZasSpUryPK/iwCWeruEqWK3VKYqCk/NT0jTh9OyYXq/HF7/4RbFkmwa99XVWequ88OJL1Ot1hoMRj58c8PXf+k2SJEapnNVul7/2ta8xuLpiPp2SJCL0bPWkiajRaHF6fsaH947Z37/Ozt4e//Cf/A/ceeEuZ8enXF1c8Yf/8T8w6g85Pznl9FTs/tu723S7HTa3Nmi1mrz40l16Gxu89NnXq4hFJNEEw6qE4ZLT02MypRGnOf2rPgdPHpMXMhmN53K/Tk5PZK+Dwvd9tra22Fhf58bN68zmc6JYxNzjy3NOz05J05S6b5HlKSdHTzi/POfs/Ixr+/t0ul2azQaGYWKaNmenl3z7jT+l2+mwvbXF6ck5cRKhaVolnpiEUcjjR48kulyWbG5usrW1xWAwJElSVnvrGIbB++99QBAEPPfcc9WEEIaDEePxhLAa3CyirGUp7q7V1VU+89LLfOn1z3M5GvL04pTTy4tqHbe4deMmf+Ov/w0eHjzmzR+9zdvvvMPTw6e8/NqrtDsdrt26Sbfd5me+9FPU/IBaUCOJY+IkxvI8DNNkfWcHgM++9lnKoiBPMy6HVxxdnDIZTojDiJ3da9iuI3B31+Xm7du4liUQ1TQhS1NxS5smYZoShSEP7z9AFRp2PaDRbLO9sVG1Jsp2MIojpvMZIBNox3Go1yo+SsUOqnbZ1Wa2+m+lCVOoilmXZYmmGcsB4J+5Pcs3yH8uYnp/QbTuL/r2xe3/V+fUJ0WqRaxuMdH+9O/QcFyH1Wofo5Si3hCB0aniX+PpjLIoCZSPbuqQK85GA4aTMU+fHpLFCcarYBuGNDmhqgiD3Ae9inSAAHrDOCIrcjzfYzqdcX55ReB6rHQ68p5NU4F1axqBJ3zMwPVQRU5ZFKyu9fB9D9e20DXwTQfLsipnv1YBiAWwXwtqmKYMEkolBSxZnjEajYjTWBqXHRPDszFsU5oMS7BNi2a3RgEUSjEY9cX5Ox2TRFI173s+N69fZ3B1xZ/+6Z9wcXHO6ekpP/MzP8P29jZhGFJMxvi+S5qlXPYvabTbXLt9ix+89QMePLxHlGc0anWuXbvOdDplMHkb05HIYxyGqDSn1+kS1GqYrs2aWmdzc5MH9+/z9d/+LT732mvs7OzQ70sEu98fEMcJG1sZeR5xcHDA1uYWv/iLf2sZcev1ehiGwee/+AXG4zFvvfUWruvSarVYX1vn1VdfJUtSTs/P+dJP/TQ7O7usr/RAKaL5jHkYMpyMaHfatHtd/vT73+Pw8Ii9rR0Cz+f29RtsrW2wu73D2toa6xsb/Iv/9V/wwx/9iK985SvUajUeP36M53ncunWLZrPJzZs3WV1dpd1uU6sHWJbJf/ff/QNOTk75nd/5t9y//zGz2YThcMBwOODOrdvs720zHo8oihzbtrEshyjMcJ2cNFHcu3ePo6NDslTR7UjBxWg04v/9z/75Ms1ydHjKZDzn4OQMvxZgGwZpkhCHIa7rYusWcRYyG40rXq5cM4uy4Jvf+mP2ru3zd//eP6DIC4ajMSdHZ/Qv+yhNw3NdGrX6Mr4e+B6bG6vcfuF5PvP6a9hKx1IaGDpRHDMYSnLk2v41Vror+LVASoTSDKrjepYllFlOpimSNGU0HksUzhEch6HpZGnObDrlP/z7f8/BwQF/8idvUKvV2Nra4uVXXmZ3Z5NoFhLNI05Pz1Aotvf3uH3nDr/6a7+6FA6Pj4+4uDznf/pn/y+ePHnM8OIc27bZ3dsljUOicM7Lr7zCc88/R1EWfPjhR7z/3ntYts2v/t1fYX1jndu3bvPuu+/yH37v9/jOd/6UR48eEwQ1XNfh1ZdfkfXNsrnqX3Fw8JSzs1MGgz6vvf46nU6HbDwjDOdSsFUIEziczjhOD7l+/RqtVotoMgUUq90enucKu1PXMQytArEjTZFhKMxYDYkC2jaNen15jV4gbsSwpKMsE003wDDJikwa8vICVzMIbAfDcUniCFSJZUiMven6FGFKFiZoSiJyJlaV7NJFcDLEvWmYOmQZZZ5iWVKSlOciNE0nIVGSMZ7F5JZJaVv8t7/2a3zuK1/ms1/4ItP5jPav/0sGpoHKq+E8JnkekxfC8LRMm8wssSwbz/NYW13n1q3nuLq8on/Vp7Rk0L7heGR5xlX/UgbCphgu6r7PqN9nNpuJSFe1F3e7XS4uLuW5KkuiMCSOYnFs5jmOIw3q7XYb13XpdrtL557SwDBNojgmL4oqVqiRlYUYE1gYPUBlOZoS/BEK0ur1n1b8bCqhXcDwzwaxiyH3Yu2jzKEsqPkBjmPhuj6aBnEssdeyLCqNwkI3SixLpygTsuy/suPJdh2MwhRWTBW0NG1xNFWjIJm+liWlKpbKmWFomIWxrOJbTBmksjMXR4A4tOXF0xc5+gLbsZeg1BKZ+KApKauv3D7SlgZRHFPkhUBVEU5SXpSQpnKArBpKMqWYzefYtkmUxHi+LB5FXmBZNkkaoxT0+31s22aRfXRdAZLqmo7ruJRlyWgwxPU82q2O5NsnM3RNp9VsSmViXpAmaVWRKNNpuyLXo6R6Nk3Tpdrp2CZl5QTRqjfAwjUEBkauLfOUKGEILHOWaNi2i6EbKNTSYaRrOr7vVZPpXEDH7fYyv+y5EkEI01gicCDNNFWziaZpxElKqSDNMgxDZ3tzk067zaJFUC2V4BLTkIvUdJaQZqKG5xSkGsRRTGjOUblwu5r1hjyWQlw7s1koUNhMJvBSnymPLc0W2VFpPLBtAZznFbDdSTNoeku3j9gNpa1FcyGJpTkkyzKiMKRMU+bTiUy/I7HbBr6PbZnymuQ5nudRUqBVMQZN09GNUlRtJa6rWTqjQOPJwSFJnOLVGkz7l0zGE0odDNtCNy00XaffvwQ0yjwjTiJM28R2LApKVtbW2NzcotFsMZ5MmKcZ0WxKPJng5injMMa1XSzdpMwlmqkbJqhnnx8RSqQC2NQqdxZAUVIkGRi52GANA8uyZYEAcYQp4QRphQDm9LKUQgFMjMr1p1FiGRqlEuCcqUumW2nVZLu6LpRUmd+ipMxyiigiQSOunD1BENBq1bFMg8lsThzFzEYZhS7TAsPQsU0pc9ZVgYVCGTrNWo0kL5gkGUkUMxxIbErTdYLAr7L6UwzToN5qkOUZYTRfTtTyVCa2sSpRi4ZETSPToSgtSqXE8WToFBV4T2kmmmHh1usoTWPcH3F2esLF+bkIes0ag0Efz/cY9PskaUp3ZRXdsBgOR+RZsWzaLFUpzqMsp9kUV81qryeV5IYhk+Qqtqipkul8Tq3m0+l2iOOImethmfJ6iHPKJEpDSnQ0Uzb/eZqx0utx+/nnMSybMI4rt6SFKnJ0pfAdC0sHikwm1pqOY4JlaERpLO6OIsdyHTqrPbrtFXFoNLpkpsswzNDCnNE0IUoTriZjoukYR5fGjLJ0aNVcLMPErMSYWRgSTyYcP3lCicZkNiOOxJVYq9XRNZ3A88nzkiROWF3fYGtzmwJxLA6nU+IkkQ1qFXkZDof0+32JVZUFcRxLRfhoTBD4Vcy5csMkKWEYo1du18Bv0G63aXXkWuh4LlEc8/DRYy4vL3Edt2JETTk7O6tiAptE0xnzwQhD18jThCIXZ1gYztE1RND0PJqNJk+fHnJ51SdJ5HpSazYxLJPt7R3W19e5/fyLlRNLmCIHT49JMtn0vPPuuwwGQ7orHVzXoddtEYUh8+mUnd1tAt/ng/ffYzIeMZ2H1HWD1bV1bM9Hs1x2d/fY3NpiNpnz8P4jnj56wmgwYDwckqUxtZrP3rUdNrbW2dzepNluYTu2NPJtbuD5AQdPnxKGIaPhkCCo4bkeF+fnAqANZRN9fHLCeDRiNBrR662wtr7HyfEx49F4uaFxXZeVlRU++/rnaTYbdLsdDg6ecDkYkCSxRBTjmCROiGaRXKPjCF2DtbVV9vevsbq6xsX5FXGcCFMpz1npdvAqx1WaJKRJQrvTxrIsJpMRSSUC+V5Avdmg2+nSbLRoNjsyAGg2KYqCy/Or5X5ksfHSNV2GYUVEmqSEoxBN0/BqAa7jsLWxiet5hEksrrskYTgckqQpnaDOLI75+MF9Li4vieZzNlfX6Dbb3L51h1qjLi1kQYBbgWEN08SwLKzK9V2UJbqhlpt7VSpypdBNE98PJAbeKAh8XyJweY6WpERhBE6J6TokSSoRED/AsW1ypchtG9f3yMsFl6FYAkvF/i+R/aQSHQxdgyyhnOY49jM31SLKrwFK01lYIZ55zf58AWnJh/oxkWf59yyG2n+xjPRf4mL6ScWsn+R7lu55NJQme15xzn66fU7XNSxD2niVXk2UUeimUbXYLqb38vV/9ncumCYK0xCnQ6fdqRg7NRrNJrZtEwQBummQlcIpXex/Pc+jLHLKPK9gssLjKPKcOJH9jdmsk+YFs+kUu3IxlK7EewxdFzeTaZEXBUWe43sevV4X1xNmpxykFIUmEQyUQjMNdMvCsh18vxSIrmURqSmWJQPr7soKr776qjj7ZlMePHzAeDKm2+0S+D5J5Qa2bBtNk4GYbbkEtTpxkqJpc5oNadzK85wSJa1QlrTzaZom7ZuJMIGyXNw4vV6PwXDIN775TTbW12k0GmxubBCnqYjmsUSUZ+Gcq0GfZqPJysoKhqZT5iX7e9cYDkd8eO9jSiAoC1bX1lhfX2cyGpPGMf3RCGXI77ItC6dwUZUTIVcFaZGzurJCnqacnp7gWDY6UBQZo9GQeuXGt0wT33WpBzXq9Tqddgff9+i0O2jA2ekpo8EQ27HpdNo47kJMTHEchyAIpGnVNLBti1arSRAEXF6ek2VZ1VgmTKtFCcdkMmE2m3NxcUmaJmxtbYmQfksie+vr60uxtdQ1kiSh3mlXXDyQRm8bDY00yejW69TrNV57zSUMQx48eghKYzYay89b6XFgPyKNE0zbRlNUrVnyntc1jSzNiKOI2WRK3amul5WDaVE8I6iJhMlkSp4J31DMEeJmK0v1zGWe5ziWiCjDwYDJdMrjh48Z9Ac8efJEINBVgdPqygr1Wg3TspjN54xHY7q9FTzP5/r16zQadQGGj0YMrq64vLyU1lxTZ3Wth5FLzDRLYlTlMltfX+PWrVvcf/CQ8XjCzs4O9XqTdqtNOAv5wz/8Bo8fPeLjex+TJCn1el2YnpYlLMw04yq6FM7fbEaZi/tR5QVFlqHpsuaura0RhiHHx8fYlk29gtivrvboX12SZ9myydKqXJMSsS2X7Wmy15KmNWWJW1nTtE8LFqaUPEnruLk8fy3+0UwT7FKa7oocQ4lrVhrXDWzTITcAQ6HyglIV4pyq3LMGizOdtkwwlaUijmJxeZomStOxGi0sw6RlurjtFl6nzfb1G9SaHUbDEf3BgNlYRPBnSSQR31E5diVGpmmOZTk0my1q9bq0SHsevu8zi2Ip8qoev23bGEa1FuoyANYqF1+9XqfZalXDrILpbFqlsgqyJCVLU3E12VKko+u6NIzatrjFUGRFQRTHzMOQeRhSlAWW46BpGvM4kgRLkQvKSNcr97qSRJKmkSODfhZrNAqj4lkapsQMJVUm50IpVdMpspSySHFdB9u2qnSWOJ+q40ylTShh9WWZNNab/5WFJ78hNaJ+o05Steu4gY/ve8vp0HQ8kYUIedOGYYgqXbEYZ4vmp4SyVLiuOFgWYLoF78iybKIkpsiF/C72zLE4B8qSKAnRpgILXdhgi6JgMBqK08G0KFSBVsX40jSnFoj92bBMsiJnMBxQqpxOv8nqao/t3R3qjSZhGHFyekKaJDx8+BDf96smHZtWM6igzwWtRgPHtjk8OMT3fTbXNphOZpyenNBut9nZ2ubk5ESYTrM5ZV5gmxaqKPBcr2oLK0gqwSOJYvIsJ3B80PmU8JSmaWWxXZD9RYAxDGkWK0ux0ynkAGcaJpPJGFXGuI6PYRqsrq6KyhonBPUGu9f2sW2XPC9oNBskcUyZRlAUspEsS7IiFdC6UkynM3TDYC0McWs1vvJFyS+busS0FnWPpSrwXGmkiMIBcSSV4ygwtOr9EcVYloXrurzw3B1MwyCJY4bDIcfHx8znYvlsNBoCk7cMVKmIY7FcG6aOWVkXJV6Rcnh4jOnY9G7skecFruMtXXiu62F4GmkVxZhOp8IMmc7JslQiMIWiSDN838MyDWbzEErF2tYmipJRVIJmAAaWCZqrESUJaZLTHw9gOGIaFjSbLba3drg6P+fw+JRWr0PD97A9FwyNjz7+iLIo2VxfxzB1LMfCVT66Y7N/6ybP3XmBz73+OcpS8eoXvsTTgwPe/P73ePLeOxy89w6B3cIxPCgk/mZ7NkppZEmJbmiYBpgamJrC0TR0DeyyukCkCYZmYbQQ27BlCVdJaeRCHscwbfSiEOtsBavXDR3bNCWOWORSMW6BgYaudLQFeI5yKYoWLCalOXmZEg9HpJpGogn8bqXbZXNjFds2OT47ZzwcchKHmKogdx0C26PuuTg6GKrA0cG0DBqdDvMkJR9OiKZTHj98hOk4GLZNd0Ws88dPIxzH4cb1G1wNrnjwcIyuSwNEEcdkaS5QWBRZ4IpV1K5cNoZFo17HdxxyQCmdQnexPJ/2xgbKsjk/POG9d9/m/r2P8WyLze11Dg6eMBz22dvdxrRsdq5d4+L8nIePDqBqolws4kYFU9/Z2qHb7bC7u8NkNGI6nRDHsYBdlaIscsLRFN3Qabc7Ikhl6bLi2/M9NM3gcjihRMe1fYnXxgn7N27y1Z/9Oc7OT+kPR3iOh+/65HGCiWK13cDSQGUheXXSazbrmAYMpyPSoiAuUlqtDqtrm9y4+QIbW7s8OjllNJlyenpMPJ8xuzwnyyLSZIZt27QDAfDbponnCojVs2ziKOHs9JzxcMQ7R8c8OTrC77RxXB/Lsum0V8S6bZrMZjOuhiM29vb46s/+LA8eP+b84pK3733M1eUlp4cnZGlKFicUhUSrPd/Fti2p9U1TDo+O6LRb7O9fI8vk9Q7nEeE8rvL4Gr3uBtf29/nClz9PnIhz9snBAd/69rfJkowiy5lOxgIcNTTq9Rpf+MLrTAYDDh8+wvNsZrMxRSmb3KOjQ0zTYmt3h42NTV5++RXyP/pjfvDDHzKeTEjShLufeY219U0+8+pn2dra4stf/imSSrD4xh9+kz/5k++QZCJkvP/++/iBz9//B3+f69f3+PIXX+M//t7v8Ru/8Rv83F/7K3z+c5/nn/2z/4mPP4p4enyG0iz2bz2Hrlu8/FlFr7dKq93hR+++w+nZd3jy6CFZmuDbJkHgs7m1yvbONnv71+j0eriBz8MnT8iLku3964zGE77xjW9weXnJ8fExq70erVaLN954g7OzM3rdFdmEqpIsTZjPpjx/93l+/ud/nj/+9rd48PAhRSG28ZWVVW7dus2v/cN/RJ6lzKYTDo6OOT49Q1cKVRREc2lxOXxyKOt2nnLj5k1u37nN57/wJTY2N/md3/ldRqMBx0fnNBoNXnrppeWBKY5DkjSm27lOEAScHB8xn88J/Bpra2u89NJLlVvK4tq167Tb7eVBazwaL5mUMgU3sSrH5GgoDVxPnzzBMAyu3bhOw6/x0gt3MR2b06tL0khEs9PTU5IspXa7ztXwinfe+iGOZVNzPb742uvcunmb5koLDJ17h0/RdQ3b8dFNkwIkIgtyCM6yZeQ2noZVdLkkVxD4NYJuTyqXo5QwiphP56CFXJydUwsCymaT6XjEbCL17Yt9mmmaNNtt4iRhGs3JUhHxdbQlvNxzPcZRJPsyTSMKY9IopNFoyM/SNUzdoqgac4wF2qCKLMj+pHLsVJvUxSFFxA/1Z/6tLSICLMJ8//+/fUoAU59o5uMT95VP3+dn37tMPsvBSIkY5XkeBYpUFWBIlMjxZYCAqVPK0ln9bPn+T7oJFjfbEmRFvV5HaKJgKCkO6FkWacV0TLOMUok7od1pUWQ5RZaJa6FyGydJQn80ptlosru1yTgZcXF2Tr0mMefA8ySGXR1GTZADaZbTaTVZ6bTANFEapKk0B5ul7AWneY4TeHiNOp7n4/k+nu2SxQkD/awCFitu3Nhna/t/z3e/913efOstvvlH38QwTP7W3/pF1tfXmc5nKFVSa9RRymA2CakFdTbWt7i6uCScR2yubaIUIj4UJZYt5TC2Y1VnkJRZHIojIorRDZ1XXnmFP/7jP+af//N/zv/wT/4Jf+VrX+OVV7qkec4HH37AdDYhyVIu+lfEWcoXPvc6Ozs7nB6ekIQxn33lswxGQ3743rukZUE9S3n57ot87jOvcnZ8wqA/4D/+yRt8/OQJL7zwArbj4PqBcOPaba6GV4zGI164c5u1Xpc3/vjblGXJK3dfZDaf8ujhA2zLpNtp06zX2NnaZG97h1arRa1qmd3d3eXi4oK3f/gjRqMRs9mUVqdFvVHjc5/7PIZh0Gg06PV63LlzhygKiaIQz3XRgMlkQhIn3Lp5C5TGVX9MkiSMRiMuLy+ZzWbcu3eP6XRKENTo9Xr8zb/5t+l2u+zu7nJ6Km7Zx0cHjGcTWs22QIWVCPaBHzDUh8RRQre9wvWb+9y4cZ04ifnv//E/5vjwmKOfe8LNmzd5/vm73HvnfZJ5iIGObjmUaYYCfMfDMkyyOGF0NeDwyQFb6xtY7Q6242AaBrNQHCNRFC15OmUhA7xWsyXv56pY4qrflxhjmmEGOo2gxkfvf8BHH33Eb/z6v+b4+IROtwUKbMum225z68Z1TEfe6yfnZ1xdXvHSi6+wtbXFV7/6VS4vz/n93/89PnjvXd78/veXIv4v/erf5fkX7nDysMNkPOLJwQEKaDZq3Lp1k89//vN897vf56OPP+b/8n/+v7KxsYll2Lz55pv803/6T0mzlLwouHPnDnfu3ME0peX87PSUyXjC48ePn12TyhLf9ciTmHA6RUOA+K+88gpnZ2ccHR3h+z4bGxtc37/OxuY6T588ZjqdSpTLtnFsW9IkYUxY8YakHAxJvVSR3MW1b4G10XUdx3DIKgOEUbmiTXSUrsiNAt0RgYmioExSnOqCmeoahmHhGT65ZWBYGlERUqi8SuxpWMh7Stf1pVCfKVBFyXQ0I84zVKuFFfh0Nrborqyxf+MO2zdvsn3rJl7gYxgGD+494vjwKedHx8xGY1xXBtUSvU/QMh3PD6jV6sRxhu/5bGxs0qg3MU0TPwgolWJ6fCKuzLIATc7cWjV80A0dqxoq6LrO6toaW1tbkuxIJcmSJIm4TJEo5Pq6xPGXwl8hz2mhRHSK04TBeMxoPGY6n0kEuNOhLEvG4zGLmKxVMaPiSDATniNwcUxxpOqVI0tTCtf3cGwRqXVNr8qaBB9jGIJBSpOQPI0rw425jAV+cs1bGDTCUMD8ru2Iu/cnuP3EwtN0NpKpmG2jm+B6Np7v4PsuYRSRFzme56CUTZ4vFHeZnCwyyUEQVA+g5N7H95fuJCoFPc1SsrwQh01ZVguxbJZ0paN9gpi+VB3t8hMbF3nhpA3OwPMcHFuXJp2igkSXJZ1OB993KUp5YWfzOaZl0mjUKcp1prMp77/7rggRjk2n1abZbAq7Io6rBgKX46MT4ijm8uIK3dBZX+9VrQyaKMmWSRRF1e/skiQpjx8fMByMCOcRqtSwTadq69MrJxOyQGgaabJgwFDVsgsPQKmSOJaM+GAwlGFjUS4br9JMCPmmbaKyktOTE5IkYT6dLe2Sl2fnqKIkGs8o4rRqEDRxTBNNM9A0ifHkRcnN23fw/AC/3sDxfDrrG3iuKyKaZWGYBlEcokqF5/uoUjGbzpnPI+H8VBu4xf3TVIkqcpIoorRMNBS2ZdKoB0s1NstkAhXUapIhNUWEm05HGKbATrWKW2A7FqYj7UBu6dHpdiWKGYYoA0pdx7QdHM0gr1rZas0Wjm1R8z0MFAYKy3ZJ0pJS6aApsrJAaRITU9WuuEBRagqvVsNFIzc1oiTl9PwUL/C5+dwtLL1Ep0SzdUzH4vLqCsMwcCuhNC9yqHL9YTRnOpvz7Tfe4OOP7/PxvXvYjkta5FiWxRe+9EX21lY42dthcvSQaHwlLCTdxDSEtUNRkBtQGgWlllOQk6sMvSyJ0xhVlri2sHkcLyBHkSpFhsY8yykNQyailgVFjmbb5HFOkqbknofSDeJF42TlBli0IuhKlymHbqCKCmiuyaFkms7QbZluzrOMUSyRxzBJsQyFbVukaVJFbGVDmhc5RZFTFtLIZWngGAY5BVE4xzRMrm1ukAJHTw/Y3LtGu2K1lUUuXCVdZx6F5HmB47iVA2vRzJHiaeBYJmvdNgqdOJd2DlM3oKwmbGVOXuRMJzOYhwzLDLe9Qn1DY627Qv0zLqdHh8zGE2zDIE9SfviDN9F0k0zp1IM6m+tb1AIPyzI5Pz8Xu/1wSJom0qDnOHJ9UKVEG6rWPsd2sU0Ly7YwTJOjoyOSKKTMCqk31SGchxLBCOeU6GSFAKUNw+Ds/IJ33/uAq6tLojgizEomozHRLIIS2q0OeRKTpTG+X8N3XIJmA12DaNTHD2rsrG+JKFloPDk65ujsitl8Rp6lWHmCZZQEDY+iMEjTitlnWaRxTBolzGfC1PEcnyIvibMCJ6izs7bB3vPPs7azzWQicZ4X7r5MUZZ8fO9jUqXj1GOenpzwB9/4Jh9//DEXF+f0qymkaxuYmkGZlzI91xxpuUwTcYFqYBpSE763t4dhWnKARmMwHOM4wvDRbZs4z3jw+DEKaU1rtJrcuHGDh/ceMri4EvaXpqOVBeQ5yXwGZUmjKXFH13U5OTthOptS6tLc9+DxAcPJjLTUMF2fX/ibf5u8EvC7axv4QcBKt4cC/uiP/khiagcHPHjwkIMnB7ieje3Y/Pxf+1lWV1f54uc/R5Yk/MHv/gEP7j1Az3Xuf/SIMpfnbf/GHT786GMazSZbN66T5wXTeYhZ8yhsjVavi+HarG2uC9uuUceyTBxHGEtPz88ZxQm263Dw9ClRHHN6fkYSp1ycnZBnOZ1GjelowOXpMfFsgq0pAtci8H067XbF8FBsrK0SRxFZnEJZ8rWf+Rm63RXQRcj57ve+z2DQ5+jokI8+eJ8njx/j2RaWaeC5DisrPXa29uT6blsVD0Fx797HPH78iMPDp0ynM5qtGrZlcnZ6SBRFTKbTilcgXJQoitje3q54PDa6pjEYDKr2z4zBYIjv13BdF4B2R5hV4Vw23FEU8/jxE+bzuXBLDIOXX36Z1dUer372s3S7XVqNJv3hgNOjY54eHEg19aMHaLpG3XYxDYP97V063S7rGxv0Oitousbl+QVJljG4EudeNJrRbjTY2tjA0MWhm5clFBp5KsBWy7YoC2FeWraD5djYhoWh61imQD41xDHe6bTlsOUHaCgsy0Q3DZLKdTgPI07OzrEsk063g6npjAZDLs8vGE3GbG9s4jguhSopUdiGgeV51DxX3Ce6OGKpuB9axXDS+QSfQ5NB2AKGClSGqE+LObL1+4TziT8bn3sm9fy5f/kT3z4Z43v2O/9TP1ChlP5jX//sfsrjKavBvS5uH4R1pAFeNZUuNWGJ2JpJywuwlIZaicWhZhgUWvXcafpyDeTHIoeL50VVvBSW03/5O8PQsTVpTZyFIcenp1CW8lmvasXltZBpul0UNGvSKH10dERRlHTaHWq1AK+qmDcMswLSavL+SVL6wyHNIKAZBGiWhULj8uwCFDS39yoHGKRpRtQf4LpyYE3n4kS1HVs+245NEcdEccjGxgZf/MIX5TOcZQyHQ8IwZNDvkxcF89mUtbVNdrb38G0X5RSMDYM0zbisCoZMzWA+m3P/wQMMU8dr1MnLgizOhIuKYprEoEpa7SZ3797FMAyiKOKNN95gfWODoFbj9q3bFGXB1XDI4eEh77/3AeQlF2cXBJ6PbdkkRcZ0NsNzPUaTEd/90z/FsxxuXtsHTcOvBezu7jGdz/nWG9+m1+3y+mc+U0VfysoZYrC5uUGr3eLo4JA4ipfFQY16g1oQEPg+jXqdVrOBY5vYtslqr4vrujQbdYnjL1zuus7KSpd6o8H9+w+I45jTk1Pq9TpnZxf4novve9y6cYNut8sXPv8llFL0VnpomsbaRsZsOmMwHHByesT777/PSrfLtf1dXn7lRbrdLtvbO+i6ThSHlKrAtA2i+Yxxf4B+A1zHZWNjgzRN+fD+fVRRsra+web2Njs7e6x0e0ThnL2tXeazOW9+93tQlrz66mcxTUvOTbaFZpv4TUlC5GVJq1bjtdc+R73VoN5uYVo2UZqS5DlhGJFEgijpdVfwXDlLoRad4xphGHF0ekpRtayKKNfk6OiIN771bd5++20eP35Cv3+Faeq88MILGIbBxdkZtmPz4MED9m5cY3t9my9/+SuCiQjqlGXBb/zr32A47PP48UOm4yHttnDAbNthZ2eHlZUVTh89JMszkixlfX2TF158if29fVzH40tf/BK7u9c4Oz3n8Okxh08POT8/pxbUqjXQxrbtqvFQ3E79/oAwnIOhLZtAbVvaJ8M0Ia1MF2lR8N4HH5KmKZ1ej26vR2eli9KQmHsak5U5XuDjOLYM87J0OfgU7IvgJoQLWyyvowsuq17hccpSVakLHUPp6FX6QXizwjsqk5SsKCVdsWDNlaCSlDAdLsu5TLE3VawpDVOXsqXBaEIGJCgM08IwLa5/9nPUmy28nXXceoON3V1c16fmN4lVwdNq/1IWUuARRimFYVHqRsUjlmv2s6Zbo0JiQJrnDEdj0rQgzSQpk1bNc5Zl4ds+umFIKqtykVqWiWPbGJZFUSpc38f1fQbjEY7jgibQ8Fqtvryu264rPGNdWFZZkZMnBcl4JEOhRFrjqaKOn2xardXqS97kgvHs2rKnsU1pA9Vte7nULRJKy/SOtoDPy7UprxhTRVGQxtKiVyoqN6N8b5ELRgV0aZD3DTxPdB3KT63W/8nbTyw8zeYTmUpbDXRDw3UtXNfG9Rzm4Ywiz6j5kgNMEnBdEaWiMCKKY4IgwLJkKh3HMQ8fPkI3dOqN2nJRlWlNRpJUsFNVSnWy6wpEGW35wBb5R3kBn21m8qKQNzeaUP/rPoOrC9JUQHUaWmU/1cWemSTMwjmtRgvXcTFtAW4/PTyUjOf62tJdNR6PieOYZrPFAuKdJgn9qz6tdpPNrfUlQd6qFov5PFoqhUmS8vTpEVEUE0USn7NMB8dylrWLGgrXceXxVfWJIG86z3eFmVPkAkhOM8ajMUWWkcYxZWV71gwBwG1ublAqxdVwwGw6ZXDVZ3Njg/X1dQYXl5JZnswo4gRdSTWqbdrohoVh2syjGN0w2L9+k1a7TX88xnE91tZWMXUDQ9OWwtNig+a5PkVRSFV1GMkE1NCqKJiALTWloCxIoghVCo/Dsgzq9aCCYGtMpmJLDBoBpq1jGyZFmTAPJ0ulehFTsBwb25VaSgdotzuMRiPGkylKaZQ6mJaDZljMZ8I8CppN2s0Gu1tbUiUfhSRhKJWV6GgaZKqQC9MnNn4L4SnwA0zTQdkajCec33vC9u4u+zeuY6gSioJZMicpUq4GfVSpcG17CQnVlIapif13PB7x3e9+F92wefe992k0m+zf2OfWrVt85StfYbi5wdX+Nb71b6c8vjrHM3UMTa8qPEGzIDGlTrSo/lkIT0kWg9LwPAfDsrBdjxSwlCJTGlEmlbeYJso0UZYFlkWRaMRZTq5A6TpxllGWBYFlLluL9Ep8MmwTw7QoM9DKEk13KrdTiWsadDsd9DAkLBXTwYDZaIxGiu1YGLZNqQp0Y/H5rUCGZYFexfkc00ArFeMoxK/V2d5Y4/DsgieHh/Q2NvA8WXiLQse2LVSpCKOIrChwXI+yzCnKvGLwZBg6uLbJSqdNXsBgGqOjY1BdgLOMKItJs4zJbEZaFITDK9obKUaty0qvQ7u9RzgeMR+PsQ2DLM1490dvUyiNUrd5+aWXee7Wc6yudqvqYZ3+YMDlpcSFZrMZvu8RxzFUi1lRTawDTw7WDc8iz1JpANU0LF1HMwXUGM7nZIXwuko04kwiepZlcnFxyfsffMR4NCRNUwzXJ5rNicMYx9ZpNlpMJzLldLwatXoTv9EQx8JsgltvcuuFlxgMxhwen3N2fMZ4NMQzNGxDZ60Z4Bg6bt2lLC3SzBQ7tWFwGYdEcchgMqVQCt+vAQZFodOqN+ld2+fFVz7L/u3bPHn0hDwreP1LXyGMY56cnGJlBU5Q4+j0jEePn/DBe+9yeXFBq17Dcx1WeyvkhkmcKBzTxHN8ZrMpUZKgqRJdA9M08H2PnZ0d/FoNzw+4uOjz4IEwMlzXRbckTvT44ADbtqg3A+qVo+PpowMm4wnNWoBlGJRFDlklPKFRqwtM1nEc5lHI1XBAENQo0HlyeMzVcMI8LXjxxZf4qz/9NRxH4kl5KRuvLEm4vLzkjTfe4PCpHHDiKgawstKm2+3wV772M1y7do1bt27wwbsf8Me//0eEYYheGDy6/5jhYMKv/re/Rm+1R3djC9O22bi2RxhF0O9jWBalodPqdWm0W6ysrAibqNelrIZBH3z4Ph+//QR/OsOyLI6OD5lNp1xdXqEDDd8n8APazSaXp8ccHBzIBkvXCVyLZt3n2s4WXjVVDoKANEnI0gRVlHz5i19i//oNBqMpZ+fnfOtbb3Dw9CkffPABk9GQ+XRKsx7gey7Xr12j2+nw4gsvEQQBjWadR48fcf/BfR4+eMBkMmYwHIOmsbu7S1kWnJ0dkaYCmEc30DSDfr9PkiQ8//zz1X2q0+/3uXfvHpPJlMl0xvHxCZZlc21vn1q9RrvbkJhfKCUEs9mce/fucXx8TL1ep9vt8iu/8ivcvn2br33tq5RlyXQ25/j4mMMnB7z5gx9weHTE4fkJrutye3uX3kqPvZ1dtq/tceO5O0TTOXEYcXlxyXQ6Yzibk5cFZ0XG1to6q60Ouudg2lWDnAb5vIo6eA6FLm06hmlg2hZmCboCwywriK6871vtFq7j4FoOpqHh2JYcRHKBzk+mU84vL2k1m9zY3yeah0yHI/pXl/SHQ3GPoMirggld13Ftm7rvSRlItTGVA8dCV1LLKbdexZrlTz8NGl/cPuki+pQQpX0SRP5fpjL9RTG8P9tuJwO8v+imVWLqj/84bfmIqwNA9Ri1Z+oQAJ7tUCL7BV0TgHTD9fE0E1YEVI9hUCiWkF1N06v7VAlPckcWd1ewClWcffnnGhiaHJgajYZM5SdjNJQ4/lwPy3GfiVSWha0UhmaSxAknxyc0W3J9WOxzTV0DRdVGp6FVE/vBcIRvWtj1hqz3GkxGIzm4XdvH0E0KpUiiiMl8RqNWx3MckjCmzHMsxxYIrWWh4pgoClld7bG3u8dgOGBaOW2SJOHcdckyYbRqmsn+tRt4toOWl9i6SaZkX5WlKaZuEs7nPHz8iK3tLdY21hgPB6RpQstpoANpKgJFs9nkueefY2dnh+/8yZ/w4Qcf8Pzdu2xubvL665/HcR0m4Yz5dMajBw+YTaYcPHnKiy+KAHNVtaJ6nsf5+Rk//MGb7G5uMxyNcB0HPwjY3t7majDgjT/6IzbW1vjMiy+iTGmpLpCD99raOqB4srvDZDxGr7AQ9VqNwA/wXI96LaBRr2NVTcaNZgfHcanVAlzXkT21Lnvqblfi8N/+9ncYDIZcXghL98GDR2xubLC9tcnezh6+H3DtmjS8xmGCpoPjWZydnZGkEefnp7zzzo/4lV/5Fe7cucPdu8/TbrdZXV1jMp1yeHRIXmYYpk48D5kNx+gKPMdlfX2di8sL3vvgA1Z7Pa7t7rGxscnW1jbtRoPQtNjd2ubk6IQfvfkW7VZ76QJ3PBfdttAsA79ekwFtWeDXAj7zmVfRTYNSV0RxQlRxt2azOUkicaWVdkdcfTy7pszmIVGc8PDxY/K84Pa+uGFrtTrHRz/g67/923z88T1OTk4Jaj7tTpvnnnsOyzTxHJvJeMyTJ09Y39mg1W6z88IOgS+N6oeHT/m3v/N1ptMJeZbSqHm0Ww1cz8f3A7a2tmi3WuK8yzPSLKPT7fKlL32Zza0dHNvhc6+9zq1bU77+9d/l4MkB3/rWt7Asi/XVdWr1GvVGnShZwOSlhGs4Gso51njmLLEcca9EWUqZxFJOlOd8+PHHBEHAxsYG7ZUu7ZUuJSI8SVFOLnwny2IezmQtjeOle2ZhxZTUSsFCViiqAiQp+ciq87bcdDR0pUkeaxERz3PyVBxchZISKQ0Ns1CURUqUpliWWbUVKombGVXcXdNJs5TRZEJYKmalwm+18NyAay9/lr3r+3RuX6PWarGzv4/KS5J5zAf373H/wX1G/RFpnLC3vkkUpxS6SanLkFqVn44MLoQnpYRRPBpPiJOsivY+W9dM06RWry+HrZJoSHBsC69C8hRK4bgeruczmoxx3RRN05eu1cV6ZFmyPitNW6ZEojhmMBg8E4GyTEQrx3n2POs6tZq/BJBLPFJhm1YVL5XHYjkOSvEpUUmVZbWEaMv1S6lnsHOQa3+WppRKVaKcXiUxFkMRHcd2l25CpRRR9Eyv+M/dfmLhqVEJR42qwi+JY7IkJixLyixDFVIpvWiMK4piacUqyoLBcCjuF8PAsh1a7TaqciKgaeimiWM5mJaNoYtdT7jlld08TkiikdTCmiY5OWWpsAxR+1ynivdlIXkm1svJRFvWQapSBB15giIUJXqqlsyZs7NzojBmc3uTIAj46Z/+aZJEmjds28ZzXZJYFuI0FZjYjRs3mc9Dzs4vUCh2dreIojmTyZSVbpf1tXW+//03GY1GQpcvFdevX2M4HHN+0acsoCwUs1CHQtr6ijwnmkyxbYtOp0Wr0aAW1HAsG0vTMS2D0jAogprwpjyPlW6XjfU1RsOhbDYCH8d1WV9bJUkSLi7PJVsLWKaBa1ts3LqFVsKTalNvVpC2+TxE0w10QyqadcvivQ8+wHRsVlZXaVZNJ4uNT1nIBtX3fGzH4ejpIZPpjHv3PmbQH7C5uUmWzsmSKbZjVnE2qWA0TB1VFsynEUWZgyoqBXfBwErpX14I5NyWTcv+/h5F9QFKsoI0z3GrOgTN0CkzxXQ2I06ST9U653lOlheEUciipW8+mzObzPBdWwDKloXtOJRapdQDlmHR6W4QhhGTyVR4Y2VJGEZYVsH6ygp1z+e4e0w4vuK3f+PXqeaLjOczojSif9VHFQVFnAlo1dLRdR/L9tjb3WZve4cokkayuEiYjfscfBRx/OAe3/6DP6DXadNrt9Esk43dHSaXZ5UwWQljWU6eleS5tOgZWY6g5GGepKDADzy0PEdLYlLdoNAWQqOFURQYgFOxKGxdB91AGSYUJVmUYli+wAeLEhMD17VZNNCkcUxRhhTVwmRZOgYarUYdM/BRiDulUQuIHIfMNKn7Aa5rk6MLEL0ETF1EREfs8tPZlMl0jOOIcNNut7BtR5hR4ZxwNhNIXxzh+i5KEx6cKhV5UUrLTqst239VcHX8FIoMleuURkmeFihdx3Z18iQjjhLqvo9j2diGjnJKVl0fzTIxmi30eguj26Y/7PPo6SO0iqtzlJ5QlFCr1SkUpIWG73vUaj5REhOlEeg6ru/R6XRB0zg6PGSlt8LKSpdbN26wvb3Fb//mb/HgwQNOzs4wddhd6+A5DmurPZI4EqEWWLR+6sDGao8oSTm5vGJze4fnX3gRt1bDcoAiJovnDEdDwmnIfDxBr3uYRhvbreEqA6vWRTkBbz84JEkiag4k+Zg3v/NdsjQliiPKJMXXMmq2i2NZeJ4LZcHVSN7XWpljuTVMx6OzvkvXNLhVq+P6PrvXb+H5NWqNDqVhUlgWuusQ6zp+r0ucJPz7b/wB/X6f733nO8ynU2ZDEdOLLCOPQmqeI+UKBhRZSJ6mFPMpkR6RzkPiVOzLWZaK02T/Gs1Wix+89Sa+H9BotVldW+Xv/dqv8vu///scHh5y6+4dag2XjfV1cafaJh99+CFvfv8HqLxgc6OH59hoSjEa9ImiGQ/u3ycIaqx0eyRRJAJLqbB0C9f2qTeavPzyZ+mu9Li2fwPLsilLjY8/fsjl5Tkf33/IZDJhPptRFAVZmtLtdPnlX/4lzs5Oubi4oD+4Eij2k6dcXQ34zd/6baaDAfNxH9O2abVqRPGc9CIlyVJM1+Ozr3+BQpXEeUaj2WV9c5d5GBJVPIIoCgnjkP6gz9e//nXKQjhS5xfnnJ4co1SBKgum4wF5lqLKEs9xqVs2SThnkAlvTmUpNd/HsW1MTZPhQRzS7bR55RWBnlqOzeHhIXEY89u/+VsYpsnFlRzWZvM5tXqNL37h9ao9U/HqZ16h3W5xfHxMEicMpzMOT0+5OD9lMBwwGPS589xtnr/7PKcnp8RRTJqlpIXCsCyagQiJ1/ZvsLa2yeHhU2azGSenp+R5zng8Xq6R129cp93uEIYRWVYx/MqSy4sLxqMRjx49Iopi5vOIbneFGzdusLMjLX5Brcbl1SX/4l/8r8zDkP5wQFFNcO/cvsPnPvMqQbOB7/tcv7aH67l4QYDje+R5xuXVJVcXF3z7u99lMByxsSWOrOFkzLwCuG5sbrC+sYZm6Ni6Da5sRAeTsXAhUnGSu3iMp3OyOJZGyiwTZhAao9EI3/NRQdX4lMT4uo5hVSwJz8NxZQM7Gg6hKDF1A9/3ScsChQzIxpMJOhq+MtAME7sacqRlSZwklKrE92vo1dcbYjXE0qTOWVifFfsIltEEU3+25VwCvP+ccN3iT/4L5adPfOcnLFef/Io/R6BaOoyWItWnI3V/nmC2nEAvfp4mYpSu6Uvm4YK1OBiOGA1G+PUAv+Ywm4xkv6zpAnAPan/mPi7up67rCKVjcR+qniOllqKSpWs0awGvvPQieV4QhSFZnDDTdDrdDrZtczUYkecZW6trNBp1mu0GWZYzmYy5urokzwt6KyvYtl3FjA2Ceo3xZMLh4SF112VjdRXbkgYxVSqSKOX05BRNE95SkiZEcczw6lK4IKUMGzOVLgU7EehKDh4/YTqd8fzd51ntrfD973+PKI547vkXKEvhyCZJwscffsj62iqtdpPb7m1mYch7H35AHEmDp+d6dFodsiTj9PiUZqNB3a/jWgZ5nosz0zCo1eoEgbBuGo0G04lEih8/esQHH3zA9s4Ov/i3fpGdrW3+zt/+b7joDxiOx1yNhkRFhue6uLbDa698hs3eKmWSkIQRv/Hrv8Frn/8cu3t7mKWibtnc3L9Gkef8y9/4dZrNJqtrq1WTbcZKu4PruDz/3AtMxmO++yffkb17zWc2n3Dv/kfMwhmGZTCdTYCSrrlCnmdMJiNOT08YjwfUajXW1lb4wuuvsdLrMbjqM51McT/nM5+HXFxcLGHQv/u7v0uaJnS7KwRBjb2dXVrtJteu71bnmRv8w3/4D/m5n/s59vf38X2fw6Mjzi4upPhkMOTevXtcXV1xdXXFzZs3+cLrn6dWry8j42WpuHv3RVAwj2KGozHnF5cM+wPiKGJ7Zw80nbd++BYHx0/54Ts/Is4Trt28zvHFOfMkYpZIbM6pBdi+L23Xlolpm1wNR/T7Qy6vLgnnc+yqXVLTtIrR9Eia72o1glod1/O4fes5cYGdnnJ5dcn7773H2ekZFxeXvPjiS/zUT/007773DkmacHF5Ka4/1+W5rU32r/0Ca1sbrKz1eOv7b3FydMLJySm6ofNrv/ZrhPM5Tx4/JI0jkiisWLcwGU9J05x33vuQJIm5fuM2d557gedeeJF5GHHw9Ig//MM/5OHDx3z4wcekacr+/j6O49BoNISvpuvkuUmRF3z84UdEccT6xjqarpNkMnCZRyFFkZOFCVkhjDdTk8hUr9cDYDwe01tdwfd9LMusrhmiNkRRJI18RYFh6NRq0rQrg9wcUBVcXJM1uzrflwryqlVbUS7P7JpSlEoMHTLwNymUhspKTNvBDgIc30crFfFsLtcuqyQrS7IoJspT0iInquKWpuXh1evc+NKXaW+ss7p/DbdK3qiioJ/HvPUHfyBNmuOpiF2Fot7tUF9ps9rrUavVWe30KtdzQpLGSDm0wMqLUqPIS/r9K8IwxKiaGfv9vsTUNJ2NzU3W19eZhxF5USxb5STmW5AmghDSdSk/qdUbrK6uyZq+uVGlmqpWXsuirM6RSZYSpwlhJNzKOI4xTZPuysry+h9X8byFwCOsJWFjyZKkkaqMvMjFuVa5lDRNQ5uHyzVkadZRzxry5F/yeHzfr8QoqNfrGEYbz3MxLaNqIdfkbKtJm92iOXQ8HjOfh1VKKf+JVuifWHgKPK+qGzShlJhOmedkSqGqCvY0SWQhNa3qUFpKzEGJUp1lGfV6XeqrLYeyLEiSWNZrXSJ1ju3gOF4Fxi4rNTEl0zMoFLqpYRqWQKQpBWilaTJt0csKPFZW1rgEQxfIsQhZxmJFr6rL5Yk3TZNwHjIajumtCuV/b2+P8XjM48cPieOYyXQqT7umVzleg253Bcuacv/BI3FuKciynCRJsG0b3w8q8GyI6vdxHJdms0WaFVjDCYUOpV5WFaDaEuBVlgWaJuqpbdtYplGxl6T5xNC0pbLp2haB59FqNCnSFFUW+NXm0nUceW2qQ6ptieBjVvR82xAwfJZn6LbAldMiRytK2ZDawmkZDIeg6zS7XdnsLHY6qpr8lUrsfqXOaDimPxhIDj+KaTRqhLOMIlVVHe2iseqTAMgEaaAQx4KAA7XKPRfLBi/PMev16vlLiZOYrIjJ8qomUtdkI4S4Zp7xEeQ1FohqTpZnS9BglqWkcUy72cBs6fiui1tFUIpCIHuGCY7tk6aFiGxKNn95JqBu33ExNGjVPIok4qP332Olt0pvdY1CKfKiYDaZUOY5Dga6IU1BqpRYUL1ex3N8puOQOElJRhF5mjCJ5rJxuOxz48YNbt28gVuWuEHAdGBW1ZuygVPFokJcRymNCqu1bFAD2fjnZYFZFDLH0I3KgaajlRm60oQPpYu9tdR1ck0YHWUhdaW60qQWVZMIUqFKAdbmmQDhK++3ZZaiiDsOejUR0DXhVJiGgWnoVQ20jQwAKzBl9RnVTWnLjJOQIs8wTAfLlM2loRuUSUJRwfmSJCaKIizXqibE8p4sKyC8QOgLyjJDr+DloEOpyLMC3RKhrEgK8ixBUy6WLrFTXQPP17EcF3d1jcKvkTYbXAwuuBz06QR1gqD+LPJZWWzLtMS2pM0zTKTuV9Nlwfb8AHs+J8kkuug4Dqtrq9y4cb2qb3aZh3N0VZI2AzxLIk3iEAyX72fKAk3XqQU+aCKw+77H3t4ucZ6R5DmakDqZTyeEs5Ayz1CFIy41w8S0bDTDotQMLkcTiTKu1CmKiGQ2rxamAlPXJQZkaFimVLAXRU6GPNeaUpi6hWkH+J0Gtu/TWluj1mhy5+5LBPUmre4a8zRhNA/pT0ZM5jNyXSNH8cHHH3F5fsHTp09J5iHJZEaZ56gix3JNbMvAMqXVE1WiqQJdFWhKR0NVcQOtitpVrg/X5eT0FMd1ac5m3Lhxk729fb75R99kMpuQ5wlQ4Ptivy/KgtFwwL2PP2J3e5tep4ttSsVy5FjEcc5oOEKVCNOiLKpps45jSzTFdT3292/QW11jd+8648mEfr/P2ekZTw6e8M7b79DvD5jNZtiWyepqj431dZ577ja+7+I6FlmeiGgUhkRRxHe/+z30Iqfr2nieQ9BsMg7nFEom56Zl0en2SLOMo5NTDNOmXm+RZSXhPK42GwnTvGA4GPDDt35IWZb4Xo35fMZ0MiZNQrI0JU/moEp818XWhCKZpxl5KswMyzTwXQfXcasIC0v7ue8HuJ6D7bjUa3V8z+fevXvM53OuBkOZ0NVrNBo1dne3qzVb55VXX6XT6ZLmBf2rPoP+EZf9Pg8ePRSbeZoQ1GpsbG5SVBDkq35fwJ6Oje97NJsNtnd22NvbZzqbilNxMhGw6ok0CO7u7rC2tsr29i7D4bASZRK5foQhs9mM6XRKkqQkSUqn0+b69Rvs7e1Rr4s1fjyecO/+fabTCZf9Pu12h3a7Q2+lx+7WJlu7uwSBT6NRE76RoS/XgCgKmUwnwgkZDGitrKDpRhXbceiPhjQ7LQoUlmZU1wuTUpVSa50LKkBpGrplSSPgPMSvik4WPpw0STB0adBNs4w0y7GKAgwD3RS3iWXb6IaAeU1Nx9L1ZcsTaBRV/bIBqFzKNRbRLhDH9WJdQdcoi7KqztaXDiFVRRgMTdbkUqkfk5ae3apLv0S1PiEI/WVEpz8rWz37/38ZsPhfFkL+TDz75H2oNvZaFT+stkxJHDObTWk067i2wziao1RJaZjohvEsplBt/j8pPC0epIa2fHTL+GD1J7omYOe1Xo/ZbM7lxRVZXpArpPrdtAijiKIsBERtmgT4TKZT5uGc2WxGFAnXYyHKGoaBnWXEScx0PiPJssrJVrnbkEn4fD5H07RKeEpJ0kRElizHwAClSIuEopTYimUauI7N1eUll5eXPPfcHXzfW3L77EVUsWoLHQ76dNpNdENKAWzHQaPiYCmFYZgEXkAYh8yjkFa9iWO7WAYYmi4Adl1iUIuBZLvVpigKvvmNb9C/6vPkyRNG4zFf+9rXCHyPF55/Ae3ePWZRRJQm5DNBAei6zkqni64Ut67f4PT8nI8++ojd69fora+hKYVjmKyurDAcDnn/ow/pdDokuRz6NBRaCTXfZ2drGw2NOE5IUwFDJ2lCOSnIc+GahqEc0JutppQajUeMx0PiOKLdbtFsNlhbW2VtbY2VbgfHtllZWZVG7zStSpLgyZMnnJ2d0my2qddqhLM5vd4KlmPQ7XbZ2Njgzp073Lp1iyAIyPOC+w8fQrUWzeazJQfq7OyM11/9HHdu36Hf71dO0Rm6brC2ukYURUwnE5KqvCfMc9I0odfrEScxeVkwnk04eHpAkmY0Wg1O+hekUUaa55iGCOVmxb6RahtIspwwihiNxhJBq65nAHES06/WBl3X8bwA3dapBTU0NAbDIU8PnvK9732fIpf9/MrKCvv7+xwdHzKejMXNqUr8ms/q6ip3nruD5ToYpsXR4REffvAhl5d9Op02v/TLf1uc50nEaDBgWCwwMRBFCVlecnF1haHrrK6u0en2CGp1+oMRp6envPee8KWuLvvYtsPu7i6OIwUORQXzrz72jEYjwjDk+vV9TNvEiKUtNMkq1mWRk2W5uI8McakEQUCWZUynU2mttmyBQ1fXboUgayRtU1YlWGZ19nrmvlwkWoq0WDpaVeVmUovrla5VjafV0L6UyJ9hmrJuVCkkdF3SFaWiUCJiaKZBkYkzKikUaQGRpJaxdQMvqLF6/Tob+9e4/uIL2K6PYdk8+OgDxuMBDx88YHjV5/jhI1Bg6ga3X7rL7eAujmlQCzxc18ayTbI8pag+V1p1ZtSq86xgcRRBvYmu62TVGasoClaLQjAehl49DLn+LVhXWV5gVa4j3ZDyK3GtNajV6lVLXlhhH545x4qypCwK5qEIT1mW4ek6fhBAdX3TDZ00NcjzYjl01jQdqwL6l6Wcz1RV3lYuvgZNBsPVOrX4+YtbWXF8tcpLYlavM4DjuriOh+e7y7KGxZ5N3gMydFCFDFfkup391xeenr/5HPP5nCdPHmOaFjWvXlnocnRlYuoGniONFUEgNjRdN1FKVDCzUhFlMl1Np02JVyVpShhHxFGKUhNcN8A0LWxTNjnT6WTZihf4Fs2gvhQXLEs+pKPBSICcanFYLqDaMAW1mlj5LFs20JaNKqXtYzqecnZ6TrPZkojWcMBoiDQetVrcunUHELuhbQvEK1fiJtnZ3cMbDJhF3+LqasCTx0c4jkuj3uHtd95nNBySZCmW6+B6csCJ05h5NGUyG2JbLoYhTRxKycbPthWrq6tV3h/msylZEmFUCq3v2ZimSeD7FFlGNJ/hmCbNeo31tVVu3tjn3scfc3V+zuDqAjTwHJtOs0GzIRlkQ9eZx3NCTaez2aO0YDgYUPMb3N3ZoyzEMaI0HaXp5KXCsEx2r+3iuJ5cDKuDdqkEbh5HCXESMby85PLikuPDpyiqlifLRA98NCBJcrJMDjH1eh1VQpKkgBDza4FDo9bAdbwldD7PCyaDCVppEUcZYRQzm88xLAvXC/BrdZyq3cf1XPb3r3F2eka/f1VxpXSiKCLLCxzTQNcMgppPnqZMRwNcAzLPob6+RqfV5PL8lOl0yty2sEybZJ5TFBmaEmaNZbkk0QyVJIzPLtE0uL29wWV/zEf3D9je3OLuKy8xmY+Zh3PeffMHzEZjVJZjWS4ra+tkRcrV5SV5LSV1Yy5Opf2qtd7E0H3UbE7Lddjs9giThPfeexdXz7C0kqZlYXsBtuuj8owkCfFtF6flYdsulmVDLu1ygVejzHPiyQzTrVO3LXRVosoMT5UElGRahqmVOLYGmo7jGhSxhiLHtg0C30HTSsoyR2lyMJnNJjLVzgt0w8Q1TXIl0x5TAZoiyVJSBbPLC0rTpDAtyjJDUYiwlxu4fo08LzBtBzSdNM9JkpTI0Kg3GtKaqXRA1PU8zRj3ByThDNcyefrkCeeDAa+9/hqtVpN2u02RF+RZied5dHsrjMdDpuOYJNdJSpt6s05gGUyHFzieQ6PbxtALUAlWPsdIM0zHRdN0snlOnpTkxhVrq2vc+OpX8Faa2O066XBGPAuJ8pJUQa/ZpChK1DzEdEywdbIoJ84SlKZhWjaNVpM4jXFchzhJeHp0SJolfHzvIwzL5ObtW9IoE4cUmTSm6Ya0JxVUAENLGGgqy8miCJXn1AOfJA75+OFH2PU2pl+jt7NLJ8s5OHmDJInZ2VjDtoB4RDodM5+NySeXmIbDdsOgrAVE8wuyUqEwKdAo0Cg1XZqzdIea4XJj5wZ+rc6e5zKfzbk8PWNr/yY7N25S2galrlMq0NC5SCE97TP88DHD0YjLywuuLs6ZDIeMpwPiMOT08QFpFJMmqRw0Kk5fqUq0vEQ3LDY31gl8j6o/BX17m/X1La7t3eDk7JSrfp83f/gWs7m0GJZAoQpOT0948603MS2D6zf2sR0D1zVxzBJdJVydnzKeTLl37z4X52e4jonnmniegYbCsRw+9/rPMZ+FvPHGt0nTlMOjJwSBAGOvX9/Hsm3effcjri6vODk+5vjklG9881tcXl5xenq6nG71Wm3WO10Ru0wD2zbp9TpkyZStjQ47myv81E99Acu2WVvfZDQa8/7777O6usIv/LWfxQ0CvCCg1e0R1Ou0Oj00XefRwVOSOCGNEw4ePuH48JCjp4ecn57h+CYKxcN790mThJrroqERzuaYhk4vcJmplEQVBK11HMdmpdtF03WyQmKnWZJwff867c++JpO9osRyLPK84Pz8iscHR/zm13+Xl15+hc++9hoX4zHKc7BqHg3P4cbzt7EtC9exWV1dZW93k48+usfBwVMOnjxFofHee+9LNKZVxzR01jbX6K2ssNrrAYqrqysur/rkecH+/k00XZzHuqFjmAbn55ccn5xxdXVFURS89tprWJY0HxqGxPWnswk/+tGbDIZDZtMp77z7HkopvvrVr9Jducnzzz9Pu91hbW1dYtyWzZtvvcX9Bw9IshTXddnbv0ZvfZW9G/tcv3ad/b19OZDFIacfvYdlW+zv7mAaBpQK3/MJ6jVqvs/WxiY//eUvE8URW1tShHF0dEi9UWdlfY1GvY6rm+ilQitLacQyDPTOCuPplEf9PnEUMY1C6rZLu9uVCGgcMw9nOK5DEPikWcaTw6cy9Q8C8rIkT9PKreixtbONVoKrGxLXQ2G7Li6KWl2+J/B9DKDhBRjAZFK5thGbvWlqVUOxwnJsmX6aJoUqmMfxsyFAJbqk1QHH0OXAtIiy/fhN+wRO4Se9/dkf9ewPftytBM8cS39es15RFixaDRd/vhhiLSOEP/Z9uq6TI+utUSiJu6UROhqe4aAoKTQoLB2t7mLXhMFlesLsEI6GoB8WHMzF4/oUaFxb8Dg+/Qwt2gWN6rpXlhD4/v+Xtf9usi1Lzzux39reHJ/npDfXVd265burvUMDYA8MSc1oNKA0CsaERElfQAp9CX0CcahQBCNGjDEkwKEZmO4GQKBRqO7y1WVvVV2T96Y7/pzt7dIfa2dWdTcaaDJmR2TdysyTx+69zPs+z+/BP9hXlgoJZV0rO29ZIFHWbrNJNep2u7TabdIsI89LwjAgzTM2R4pFt1ivkMDB4SFOq0VQlKynU8UuHQ3ZQDAabJBlKePJmLouSZKI7Z1dOt0e77z7U9arNR3Xo9XyOTo6ZDGfcf/ep7iOzdHhAYYuKLOMl77wBcI4ZrVY4noeBweHKhk3L7h7/xN++tH7XL92g06nw29+9zuMJ1P+/R/+Ma1Oh267SxYnpIuQ0/qUpedy58lbOL6D1+pQ1cq2MpvNuLi4oNdVPLR//I//G9I05cMPPmQdBvzB7/8BN2/c5Gtf+xqG67B//YiPPv6YyXTKh++9h6mbhPMlB3t7/KN/9Hv85V+/zPyHP2S1XPH4+BFbgw06HZ/d/R0WywVpGhPHCZ/e/ZiW5+HZDvOzCSC594mCRLudDosw4I23XufFF17k2eefVamlwZL3PngXy7Lo9NqEYcSPf/wKNNa8oswpyoy7d9/n/PwRUbRgvV5z794n9PsDXnjhOS7G55yfn/GlL7+I636d8XjCarXmz//iz6iqCut/ttja3OTo6IgnnniCg4MDnnjiNq1WiztPPYtu6Ozs7GAYFtPpgqKoSdOCXn9Au9vh7Z++w+NHj7n3yT3shv3qOA7boy22N7fY2txhsZxj2jb/4H/7X3Bxfs4iWJJmOf/m3/wbNjaGbAyGxOsQWRToZY2pQct28W0X27S4mE65/+iYjt9mczDEMi3iJOH+g/sqXY+a3uaQr337G7RcH8/1OD8bc352zssvv8J0NmM6n1CVJTdv3lKNT8tiOp3y8PiYw6MjhqMh3/ut79Fq+WhC8vDBQ37/93+fMIqI4phwHSIQ/JP/0/+ZTqfDg3sPubg44+233yYOI6IgwPMba/9khmGaOF6HQb/Pl7/2DdIk5Z/+03/G++9/wCeffIpumDiuxzPP7WJbFu22TxRHPHh4jzTJyJKM4WhEq+1z69ZN9VkXOVEcMp/P0HQdx7TxbcUEfnj8mDSMaA2HeLZLt9UhTRPiIERHqS7TKCFNE7IwpixzdFSz2dZ1ZfUqMjUKC5o0sybxTo00zX6sRDd0XMu5Ko5XdQUSKqH2hr7hYTgWpudSxhnROuTk9JT5yTm6YSoFW7eF6dp4nRZaBaICv9tnw2/z/Fe+TG8wwGu30XQNzRDMphNe+fM/Zz2ZEs2XnN5/QByEGK6Fpgl2+h1My8LzPPY6Lfplxdvf/z7z5RJ30CPOMtaLC+qqwPVslaBeFti2iee7aLquGnpCo9Vq89zzzyNRtrNWq41hGvT6PdxGhHPp6gKB63q0Wi16vR6GZVNJ6A0GDDc3lTqsrJTIoygI4+iq8aXpuqqZtFpXATumadJqtRreZEKSpMRxRJ4qdVXZJNfVpbIIimZfVBYljusqBIuhUkkd3WzWSIZCaUiJ2/KaWoPiQBmmfnWbWtZUZdXMoYI8T0mjRLlammJonmeqJlOrmkyeZY0Qov6lVvefP37lwtNlpetSRmzoBkXzYqvm5FM2EBV3WNWSvCivCkSX8iyhNRN+8ZnEWtN0DMOkLGp1MhQ5VV2hi8/Dyz7zFmqaho6BJpSUu64V3KuqVDS4BKqmu3CpdNL1z+IENaCCpmqrKre2bWGbFlkaK4l4E9fpOs7VJK98jpeTver2FkWpqO+1ZLUO8FwFT48jNdnYrqPiFBvOk6WrTk1VlZRa0XQGL6uUl4l1OqqKWFGKhmxlaOhSUBTNBV6pTlDeKD7iKCbxlOezKEv1ftQq0tdo7DGDgerw1FWlOmxCNAA0H20dIHQDhE5NRdl0MRFqIaVJGjWarbytho5u6EptU9VXi0XRxGBmTSc8zzNkVdEgNFX3s6qamEfF8iqrsuEcaFe+ddM0MZr3RBMCs4mLrKvPknOklEq5UpYYZYmha6DrSM/DdlTkKlI2VhLlOb6k+fc6HeIoJFzM1EVTlo3kVMUCC2QDyYOqUMtKQ9cwNA1DCAoklaxIoxjD0PAcSxXYUAWaLM8xTYuWD6auIH2mof6euqYqVNJKKgxEKUmikKIo0WQHXSq4na4Z2JZJmiYUWYoQJZUmaekGUm+k/o3tUUnxVUqBrCVoik+hazpSqymSkryJ186FiuauqwJZV0q2r0FVl0ptpy5kqkrJ+A1NbQYqWSmgFOo9R6r3SBcKBkitFr6iUcEJNRAouKCUTclADYjVJQutWTQbTaKC0FRpoayVVc62bPK8QtZK2ltUauATgOfYKkZ9uVBQ45aP7biq8FSliCZKV9N00HTqGqqybjodqMKOoUFVoskaU4BBjSZrNJQVKE8LNLPCKHI0TSVCuL6n2EVJSZkpoPplZKmKsXawHdW5Elqz+1LtavV5NYO6aKSqWZazXofUVY2uGyrmGtQEgiDLlXKhLKsrkCPNmJvnSsHnuT6262HYDuj6VVphWUuyoqCqa1rdDjolsoygKhBlASIDKXFcD6kJgiJHFxqO10IYJpg2wrQRpkWn08P32/gbW3itNmarBfaaeVggnRa5ZpHXtQptSFSBQqsUCP307Jz1asV8PmU9mxGtV0znY9I4JprOoZbYjo3QDDTXajpRGq5r4zgWvW4X13aoq7zxwNQ4jvosLrlNl2qNNMvQDQPf9wnDkCgKCYOAYL1GSgVj1hCIZkOexTHL2Yw8TbBNA1NXCi9Z1Vfnq2mq+9M1jSSpcVyPdqdHu9PFNAylFk1Tzi/OqSrJbL5kuVyynM8bPiH02h0Mx8JzbAxDUwXFqmC9nOM3LKrtnW3anQ5eq0ONwPNbdPsDdq9da/iDJt3+Bp7fIm4WJccPH5ImKWWWs5rPOTs5YT4eEy4XZJlJTcXk/AxZ14xuXFf8liTFMEwcw6DQdTB0XEsFTxiaTlVLkiimrpRSVNcNFRwhpVJ7XnY3obFzT5nN5yxWa8paYlo2/cEGmhAMBwOEgLKxRAbrNYvZjOl4TBjGgEYSRc37pIJBdMPAcV3anTbLher2Kim7sqyqgAPVOc/yokl+Ta74Xq7nYJkmZVU2iXCSLEtZhwFRFBInEWmaqIRI11XKU8ej0+3SarcoCmXLjqKIOEnw2y06nTZbW1tNU01wsL/P7u4u5+Nz1mHAdHIBqSBOh5iNTVkIgWkZalzVBJZpUFWmspTr4Htuw4VQRYCiKJTiWKoxViIxNB1TV18Vaj7SPB3LsYmzjDTLiKIIibyKl1+sVhimid9qKYVrw4+4DHfRhUDXDWRVkpdKPWk0SvXLTihSFV1kKQEFwxafSzYqylLZtU3zit9YVU0HtpHmy+a2Zals9HUzr35WKWrGxssx8nM/+vnjbyoU/cIhfvZ/Lu/qZ++y+cnP3Iea42TzR5ed/Mun+fMLann1Vz/3HIV6/VEcq3WyrdZytZSqWec06yddx9IU16Nq5lF5eb/i8r4/s/xdPanLit7V85c/86vLr0voLFJ9X8QJRVU26rIm7EUT1LVS/JtCoOk6pqXm17IsGyVoTV2WCKFCb0zTBE0jjmPyPFdroiYuHAG2a5OXOYZpKBaZpVT1NTW6aWBZNr7vk6YJtu0o9Y9oAMZlqWxGhsFisSRPU+Iobs5VpZora1UYEwJGgz6mcbmu/+xzks1+oCiKhvlaN+tr2ewvCvJM8Wx0TafTauE6LqPNEQj49N49ZrMZp2enaIZO2/fodTuUZcHpYxVWdHp2iuc6yOZ96fcHV7zXUa/XpDtJ5S7o9TF0ZZmqy4qoiLBM5VhIUxUJLxtFwmq1pqprfF+pJotSFcuEpuM4bsOHjDAbtqphGFi2Q5EXxFFMWaiNaRInbAwEm5ubZFnCcjFT0PKWr/AhpoGmqaZvFKkkNMMwruw2lu3Q6XQoa4llWyTN82y1O/QHG+RFid/y1bXfQPGLssQoq8/tEdVYUTVAY8M02NjYQErJ3v4BZ2dn3Lt3D6NRq7mWjed6mLpxZekRQiVEZg0L1bMcdM/DNk2qqlRKaF1FwFuGgWab1GVNsA54/PiEi/MLHj8+YblaEkRrBALbUBxTlYJoYpWNzXl7G6fhhSZxSBiGLFcr0jQhTTO1djBtur0OrusyGY+ZTWdkudqvomlouoGmGxRFSS0FtuVg2y6WZRMEEdPJlPF4wsXFBds7u/h+C8/3MA2DrMhJ0pSkOe/DIML1PeUSMQ10XVztmZTaUHy2Btd0HMtCujXdThff9+k2lj0lujCwTYs4DMnSVJ2Lzf7w0l0ipGwsvKpYLaXxmZVYqJRS9XOluFHXvRrbqqpo5u+G3ySUIqYqldOiqGuEZWH6HrbtYjoOrd0Rlu/hdTuICqjA89u4nk9/a5t2Tykcy6IgCFasZnPm5+csz84JZ3OW5+fkSUp/cwPdsrAaUYYtBFpVUqUJ4XzGfDxGBkvSqqSulE5f+9xcdalgulyaV5UKPWu1Lq/BUhWlqkYVZirHlWIyq7+1LZXGrukqhb0oVDiUbdvked6kxynBjbLbqqYNjfLqkqtlNuPCpWsrTVNln8s/s9pdhnYITTTjvAoX0XQNx1HCg0urpq1b6E1zTsqauq6wLQvbNjFNS71uXd1f3SiwFMNR7eGSNKUs86boVTbooowkiagrtdaXZX3FyvpVdcq/cuHp448/xjAMtrZ2rt6UJM1YrdfkZUktazRLbR5jWTRSsgpNSjQpcT0X2zLp9rpoms5qtVZRfGmuokZHW2SJihNfrZaUWYrd2sA0FBsmTVMWi5Ua4IpCvWGaRimhqCVpUSAleJ5HXZcEqyndto1ttZGyoixrcqEsV7IulE0wL/Bsl53NrasBbGN4C5Cs12vVASoyBoMNdnZ2OTk5ZTqZ0e/bVEXFn//Zn1MUJdeOrpPlGQ8fPyZLVbTy7Sef5Nlnn6VuOk3vf/A+rVaLw4MjwiDEEBpJGJHlOWEQUZUVWRwDPxuj22m3cR2HbrerNldNsSVOSqoiI40DhDSoKp033vwpcRzx5O0b9PsdNocK3rdcrmh5Ppub28hG6Gc6bWop6Ay2yAoIApXq8/IrbxJFynrgt3ws22K2WmDZFoNhn63tbbYHA+VWqivKNKYsM2zXwnJMOp0ulueBoREFIevHMaahwHGOo+SzRZ5SVCXz+QxkTZHHqrtrutRlTp7EVyylLFMb446vIGyIEs818dw+89mcYLFkuVjitlsc3nkC3TCZVzXtTpvN4ehqk6FrAs3U2d3dotvt8sTNJzg7PWUxPlc20Tzl0cMHXJwqnsVoY0inSR8oyhxNGOi6TZFllGmMKSs0UTGfL9ANne3dHTrtNk/e3Gc6OeX3//W/5CsvfYG9nW0sAb6ps9PtkRYFD+5/rAZnNCbzpSrylKrAlkxM6loynYyVsrDVwnYcdgYDyjKjrkqiLCUrVKVeEzXCtJBlDVXBIgxIioKNjR6WZVLpgqKEJMxYVGPuZ29h+g6m7zBfTgmiEE1TSsXpekFd1BRBQRpWhImkLipM1ORRo6EZbYSsKdME27RotzroQqILSaXb1EInSBULy0AlCmKqBWyeJBjCxHPbZAXkVUFZrSnynI7jYlsWrU4bjYqcGjQHXXPJkjVFkZNWSTORlfgtl8FoyMnFmOV6zWIyBU3n6OgJBU+WU2phEEcZAgvH61GnFdk6JG6BXps4pkWdFyxncywBnmfhWAaWoVHWmUoIGy+xHJveyKVIQx6fnhKuE0Rt0u72sC2LNMsJ1yGu3aLba3P9+hEH+/tsb26TJRl5kpOVFUVZs1gsVUR7WNDxB3zh2S+jm2ose+ftN5lNpxzs7CvmlqhIs5RP759S5hllniMqk8oRVFIV3JeTJY7nc3T9FteevsPz3/oGxw8ec35ywfvv32U2mzKbrvAsk829PcokZHYSYWHTczu02x1sy1aF6yxnESgI5nNf/RYbm9ts7x/R29qlPRhiem3QDdZRTJYXBFFMVdskfsRPPnjA+E9fo8hDqjIlWM2RVUXLcUmimJPjhximwLG1Jp5XZ/zwEUmcst3v0/IVkNNpebT6XbqDPr1+j41WF9e0mE6mxGnCfLUiCEPOzs6YrmLuHh+TJilplnE+mRFGEZ9+ep+Dg33+wT/4+zw8fsh6ueLi/JwffP/7hMuArt/BLA20TMN2NBwEvg6ma+PrfXzDQi9rsqwgCBP+6N//IaZlsn+wh2FYWKbL4Y1b7B5d597HdxlfnFPXkuVyyb/+1/8az3HZ3d5m0O9y47mbvPXuezw4fsxZpWMZJtePtnEcE9s2uKgl75U1veEm3eGQ7es3GB4cUEkNp6zZuXaTzb1d2nuHrBYrJuMJr739AavFksn4nHC95sEnHxIGAbPJmJ3tbZ65/RTXd0d88c4tPrr/MbP5jO1hG9u2ePGFp0jihOP7j9F11UCicnFMHdswqMuaTz96QBLHLKcT/I5Pf7TB6emZskc2CyaBhm1abG/vsrW9y/UbT9Dqqa6ia/m0nQ4vvvgstmPz8d0POD095ZVXfqJSZsqa5WJJFEZ85SsvsbOzzQtPfRdN1wnTnNVqxfHxMdPJjCqvWK9Xjf1tgOM6GKZJmmWczSZMp1NOTk/otDzaLY/f/q3fZmt7i5/+9F2iSFmHVOGpulpE27aOabX57d/5e7iux/7+EbWEIAx55/33uH//AZPJjPU64ObNGxzsH/D//H/839nc3OSyYHxps9R0wcZoQJpmjH/wfeIwRlaNSFNWRFFAHIfEaUqSJrz1zpssliv29g5xPU8pNFHz3GSxYJ0kauNcVRzfu48mBF947jlMw+Dm3gFhkrKIIlWobLf59ONPOD894+MPPmFjMEB8RRIsAu5+/DFI6PhtDM8BTXDeRKU/uv+AXrfLC88+y2IVM55NcWyblucxnc4Q2oJVEKryRlZjmTquo9Pq9fA8l3i+Ik0zapFiGgabgwGGBmZTDKn0ZgMmdGpNLeTXcYKh67juJei68aGpFY+y0lwqi4TO1e7nlxz/MZa8y7rNz9aqftGcJ5uyjfycna15QldFtJ/5U9mY6iRotbKdoWlkVcn9Tx6qdcHODmXDABn0+hxs7+PZasGvV5VqSOk/vwz/xaKasr5wVUjS1Q+vbq5UB581cUBt2C93U1GZEeQJum2rwjpqXX75QiQSUwPD1HE2h9SyVjaissTWBa6u4eqCtu+xMehxevaI6WTCaKiKy4+OH9Drdblz52lVhF3OSdOci/E5rm1hbmwwGm2qoCAEg40RG/0hxw8f8vjxCUGQIqWB5bjUjnq3z85O+NGP/oKbt27wzHPP8OTtm/S7fV5++WU++eQjHty/i5SS0YaP62gsVzPKusTyXDrdNq5rM2kgvav1WhVULIuyKHBdTwUOZQvefvtNsixjOBxi2RbXrx/x4fvv8//9Z/+U3/rt3+Lb3/k23/zyl2h12vz1wR6PHh3zgx/8gHv37nL/waccHl7jP/vPfpsf/eivePedDzg83MPD5+Ufv4xlWjx1+/ZVZP2f/+mf8cYbb/Cf/2/+Cw6Pjnh8dspyueT8g/dZBSFRklPUIEyLqKhZpTmjnQNGwxEvfeUbXJxf8Oqrb1FWJQIYbe3w5O07dPy2QqDkgroyGI62OTq6wUtfeInNjQ2GvR4PH9zjwdkpy/USTdf5r/6rf0iWZTx4cHxlGXr/g3d47fUfEyYJCMETt59isLHBU3dus7m5za0nbnP99hPousHA97B1jaeeuk2n3ebdd9/Fth02tzfJi5x1EvDo9DFRFnPz+g26nQ5lUeHYLt/9zt/j9dd+wus/+Qk9v0XZ7fKVL3+N3f1D3HabdbAmrzKiPGK2nrEOV+RJQhqHpIZGGoWUeUbXsei1fbb6fbI0Zzqd8eMf/5jXXnudl1/5MRcX5zz//Au4rksUBATBmpOTkwaYvsn3vvc9nn/+eQ4PDxEC/uT7f8zx8TGvvPIy29vbvPji8xzs77Ozs8Mbb7zJZDLm3fffIkszfvSjl7Esi939vSsnSVWr8UDZliTDjRGWZfHRR5+gawZbW3sEYQJCZ7g5UkrcYM1iteT40SOE0PBcl6IOWIVL6rOK2WKqrqGGjdr2PEZbI5bLFWen51fJlbdu3aTV6XB0eA3P9fA8l/FkTFpE7G5tcmN7hzemE+bzOUVZK7WLbWOYBmlcIIWy6dE0N7MsJc+FCrXQdWxHFYrrGkzDwjLtJkikJIvWqkFl2wgEZaWRZDnrOCGKU5Is56nvfJu22+LWrScZDPrcun0bw3bQHFfZ3tOUs9PHLJdzLh4f8+mnH/Duq6+yns8ZHz9io9tlf3MTWRbYVcWw26Zu+3TaHTRdp9YERZIRXcwYJylJFCDLnI5n89H5CWGWYlq6qk1UOVUjaCnKnFqW+O0uuq6xWi8wDKVo8mybbrvNchmwmC8VmkQo63JdS1zbxbZser0eEkmRxKwXc+bjCwwhcAyT8ckJZVmxWgWAsvd5voczHFzxtPQrhhLkacp0PGEdrFkuluiaji50fM/DNExsRxXYnJanQrY852qesHQTHY0qyxVOqNKbiaoiSSPiOKSuCpKoZJEvKIqS1Tr8zD4v1QxYS9X8urQlm4ZQ6A5RYBg6o2GHqqgoCiUKkFKyWi1/xsr3tx2/cuEpzTIsCS3tM6mvZZn4vo/bdHSKukQKpSSiiQbWGomfdilZlpeKiLrpclRUZdV0ly87NU2XqK6opYZj2dS1hW1bSg0klPytriukpl9dGJegSiEEmm6ApqlEMimRNVRN59m0bSTKE6x4N4qcn+U1Wa7iJOM4JklTlvPF1fMbn49ZLFc4toNtOxiNP9VzXQUFjxKlbKKp9tZVow5SSWC6aeD6Pu1Oj97GkLKsKasae7ZoeBa56tTkueJjlQWOoyCOrueqmM3m/U+SmLq2aPkmvf6A4WgTyzaJYgVw9Tyfza1tqqoiijKSJOfhw0ckaapi102HuobHD49ZLpeE6zVZllNXTeqXbaIJ9RkYuupq2pYDaEymM0xLpRqqqrmqpqrFXSNZb3hIpqE+r6IsFKvC0BvmFhi6oXhBuofRVGg1TalGhFBFi0sQuCabzmmRAxpCCqVUqlS8T13VzKczLMdBExq+57O9tc3J2QlBFKCrnE7yIieKIs7OzgnDkF5fAdz73S51qZLbyqr8jLUlJXVZNBwupVjSLZOyFJQlVyl9aazAz/1OhyJOyaOUOIyIg5BWq4UpBGVRQF3R9T2qoqRMiyt/tGUpfljZKFi0RlKfNRLHPMtwHQvLMChL9ZhlUWA0neuqzMkbbtClZ1ctPlUv1HJdWv0B/vXrFKKmkDWdVqaKlrUCC7ZbXcq8pI4hswss26WUgjAtMGyBKbjiOmiaDkJ1sIUq/4Oo0DTQZQW1Qo1bAlqOQ1aDqGqyOKOoamW91bWr7qtANJwcD1EXiFq9D3lRUJaFeo6GhmganJZtNdHzBkaqkWQxVhw2fDQN0zARCPJMMQOKQvGoKi7t5gLTtlXXt2kXX/bohVDcIEMDy1SDLojGT60UH1mSYRtq4qob+WuWpqSJSZqmRFHMarUmCiOSOEFruhCmYVwtSuq6JMsS9Fq9F5epEkGaYAC6Z4KUmLoOukGtK0VkXddU1IofFkdYns/RjRsMNoZUZY2lG7QdlyrLSIIQUVdQayRJiMwzdF2jrhUcME4S0izDdjxc22bbsBltbXN4+xn8Thevu4HpdcCwWUcJWV5w//iYOI5YLZes1wEXFxfMxlNm4wl1mVLXBWUaowlJVbXQipyWCaalYdsmnU4L1/NIo4Qsy3nyxg1avk+n00EzdYRjUsuKdRBQJzmW0JjOZqRpxjqOSLPsyu8ua5XmV5eVKnAbJkkUk6UZvufjOWqyTuKEcXlBsA5Up9s0sV0X12+T5nnDDbCx3UrJlS2TME4V86coMWybXn+ortFCEsUp44sx0+mUxXKppPK+T5FX+K5Lp+U3yiYDpFJ5OpaF41gMN0d0Oi02NnpIoVOh43V7eJ0epu2SZAVFqQIM0iQhCgLG52PG5xc8Oj7m/PSU9WqJa9vYlsHR4SFxFGLpgkGvh2Vb1HVJnETIskRHNoxGjdlEAYR1TWI2ts3SVIqcOFEd8zxTxRrXU5Js0zAps5xguVZpXEh8vwWmSm5V6uacLI1ZLSVVXiOk4MOPLAxD5/69T1guFtSlKlipBBuL0sqpyookSZjPFyBgHeVkeY5l2iAhTTP6g42GU6KqB2maIjSNg/0DFbxhO2RpRFnmjCcTirJkMpkoKXvTTVQA2ss5xkDXGs6h5eD6bcIwZDyZqHNOKh6hbVl0Wh3arTZJnBKGEZbtNKkx5hXqUAjFpPM8T6WLtTtUVcFkPlWd5273qmjRbrWpqloxdiwLTdfJ85zZbEa321VdZSGoq4p1FCJqyToMaXkeHb9FkqvxUEgwNcXR8xyHlu/jei7CNBruUqVYkKYJtbxi4VwqhC9V6HVdk+e5Sm9s1lCaELTbLWQlKbMKW1MqTFAg8apWXXG9Uak25Rf1XwHaJf9HCIpaqdjzorxSNTV65V9U8giUZOjq979a9/QXj79ZDSUv1ye/RCz1edWVvPr+c7/mkhd16SH82Ue8olhJeZX8FydJozpQ3WzLVN1ppRr4nAbr5xRc8uo/nz3CLxTOmucgP9NGXU38ZVGSpIkK6zFNFfJTVVim2azJPv8+q/u7VAXpmoYulAuhqmWTCK2+qGtMXaftepSdDm2/RVVXnGcJZqLYY5qm0e/0iLSIREuhP6Cua1qNnaQoSxW2UpQEcUwQhVjLJWlRsLWzhe047O7tY9suURDiOi5JkjRhRRW2rdKUHMchyzJWqzW6bhGGEZqm02qpRDDHtpg1asnxeIzv+xweHmHoBoZuNqqtDMtSPKk8z9F1nf39fdIk4fz0hFrWfHrvHp1ej2E+pN/vIus9nnzySaqyJE5itWeoK3zfp9/vc352QRzHuI6HoRsEQUC302HQ7dHpKBzAcrlEN5QN2nM9rl27RlkU+A3bJYpiWq0W29s7tP0W3V6v4dJWzWek47g2ruvhuC5Sqs+8LEulZkGS56qIv1qtWC1XLBZLFosluqmr9fH2NnlekCQpaZqRJCmtdoeqqrn/8CFhHDG+OCdJIjzfJUlSDNPCNEwMw2TtezimiQQ63Q7PPf8chmGyu7tDFEcYqxWmbSEFRElMjSSIQsqiYRc143GapiyWCwRChTglCXEUKfZQs9cxDYOtzU1arhpjV8sVaRrTbrdwHIfZdMZ0NuPuRx/z3nvv8+mn96jrSqWPmYZSuFcljuNw8+ZNtjY32T84YDBQ5+aHH35IkiTMZjOCICAMQ8pSBVBcqlGTJGa9XuO6HmVZIsSlm8TFdT183+fs7Ix1EHDL93FsG9tRjRKlJlX7Vt0wVEPZUvvZOImIE6WQNE0Tz/Uo2m3KPMP1VHFBXI6rDZvTdT2EZmBaDsFyRRyGVLXiCaoUvQyikrLI8GxbqfB9D6tJuWy3WmpP2jhU5NUw3AQjCNFw+S7T3gxVFhH1zygmkzQhjkLOzs7Ji5x2v4/v+uxsbOG1BV0JeaX2uQO/i2cr/IUquAXk8zmrIFKW/qJgfH7KerVgcXFGtFqTzueUQYBZlmh5QZ2mykssFZpFE1rjpaFJ0VPMpLJhPAvklYJI8ZIall59OaIrtWXdjPW6oanE4sbppFAyze80HU0hnjANZU0sS/V9XZUUDfA9SxPKolBJfkWOrqEU/aaF0JSlzbJtTEO5R2jU2EjQDaUiU8mKDqXvo2uqieO5KphL15s9soSqLMmS9Gr+TasYaiibwlNRNY0KDYoiI89TtZdFoQrKSu3ZhNCvlFONiUa5XXSlaBTUSFlRlBLDUPuYKlcuGsNQTpvLAtqvcvxHFJ4KJNoVEKuqa7q9HqNNC8u2QcB4OiHNUsIoxNRVdKmq4mnEcUiRFRRZTqVppHHSgE8rUiEIL8HfoNLnTFUEqmVFu9NCaEJtYnQdTYf1fEkYKs6PECouXg3MBcL2cFodhGFRSHVCakIipAJrt/o9oiBkHqzIZUUhK5arJXEUEi9X1GWF4zjEScLjx4+pK0lV1xR5QVVV2LrBcGPI9nDYLBg0sjBmPVvT7XUYDAYURcFysWQwHKCbOk7Lp9XtMtjcpBQGhbBw3DamZXPy8AHr5ZKHDx8SBgGL1Zo0TQiCNY7nsqEN6fZ7jEZDOr6PQFUXDUPQaVsMR1vs7h1SFBVlVTGfT9AEPP/CF0mTjNkk4vjRY37ww5c5PTvj/OICKpVkVJUFAoltWbiOzaDfw+y42LZDGMekRUGns02r3WU03KKW8Nqrb9Dv97l+/Rq2Y2JbLkmZqAJBpeSBWVYghGBjo08YKXBrGAjIMmVrtEzarTaWZWAamrpok/gKcnqVIKMJ6rIiXgWURU4cJurzqJRMWEqwbRchdN55/W3anQ53nnmareGIo50Dkjzj+PRE2WR0nclsRp6e8frrbzMaDnj+uafZ6PXY6PWYnJ+xXi1ZLZbIusZqCjhFlmIaOrZt0fJ9PLdDFEVX8My8KJicT+h0OuwfHlBNF6yyGavpHK0o2d3bQ5YV7//4x9iWxfO3bjKfL3j86ATLcTBtG8cwERJmq4C6rum22ioyNggbn2/C7Sdv0R0OFJi6LsmiBEyDXssjzDLiJETYluKANcW7oipBE2xsb3N05xm++vf/cx4+fsSDR8d03SFBELIKJggN9o6ukycZZ5xhWDZS00jyhMfLmI2+T0s3MDWBgaCyLIQQpGXRwMlLbKNSYNtKFfCqosRwXEbDDSIpWFeC5SpilSaMvMaOZmpNtxYM06bT7UOZIcuMrCjI05Q0ixGaoDNoK0tTUmC5Do7v4kYuTp2zDufklBwdXse2PDzHpUwLwnVCWhSkeUFSSXLDQAoDTbdp9/sKHp0kCFTxTJE6Suwmnt3suwjTopYaSA1DM0jjlPlsQce3kFVBlZeUWc56pZRZiBLDsNE1k8VMgYx3dnewbJt+p0UWB5gWpOma48efYjsOpmUpnpPQ+OSTTxF1xZ0be7iWxWa3R5glBJmuOjvUpHVJWuZczCb0t7f57u/+Fqsg4uHDR7R0i8PhkNezjGK5wBEVel3z+NF9XMug51sQFxS55PHpGWGS8NI3v8loc5sn955gZ/+Qb//Gr7OOEsbTBau0YHK+4MP33+f84pyXX/4LlosZy/EFmqyxBdRlRl1l2A08vt9tKbacLrAck1vDfYRmgG6yubNHZzDgYG+fWkq+++u/jmVZTMZjlsGas8mYk7NTTs/OyJYBZapse2r2F5iWSn4RtaAsRJMCpjPodrFNi2C5JloFivXguJi6wWqxZL1eM5vO1cTu+3Q2Rww3txGOR/tEJdWojWENdcXJZEKYxJiuT2cw4voTdwjWEY+PT/jg/Y+YL+ZEYUBZFoz6fYa9DfY2czzXZXtrk7wsmk2JRBeC0faAjdEGX/vON9nd3eO5557Hb3fp9EcUUpBLeHB8n9PTibJtTCZcPHpIuJjjGCb37n3CB++/x2I5oygyfu+//N9x8+ZNnn/uOfIs5/333iOJI8L1mul0zMNHD9CqChvJqNsjSRJe+cu/wvM8Do/2le3Fc6hrxdQ6fvSYJE6uFtL7hzebRafGarlkcTEhyRIQcPPJW5i6i2XpxEnMYjFWfIBaMpsFBGHCH/zPc/IsI40TOp02zzx9h263zcagx+RizGKu0u7Oz8555+2fkmYFUVIxGo149rk7lKXi+X3r177DrVs3+fGPX1GJSpMp29vb/PZv/S55phTDf/aXf8ab77zJn/3ZX6rrSAPHsdnd3aHb6XLr5hMYhpLDd7sbeK5Py+8CcLEYswxC3njzLdqtNlujbTYHI5Bw88Ytut0er776On67xcGN6zieq7hNjoPvuqqwXRZsbu+AEFy7do3xxQWvvPwyTzzxBM8+e0QQBGrznBaEUYzuuiCUdWK5XHJycsLNmzfVote20XSddRBQZBmPz07YHI3Y2dlhEYeEUchWUeKgsTMa4Rsm0XKF2/bR2y76ysI2DHzHod9SRbUsy7B0HdsylTXlqkGkit+GAE1K9H4f3/fYGe6TpRkPP76HbStl22yxZDGZI3UNYei0/JYKm2kW6KVUGxezsX4LAUmqbOdJEiMtu7Hifw5s2qh1kBI0o3G3yV8o+vxtxy8Ubf6TC1Z/i4Xvl/9B8y9X1aJLO1tZlixnc6Wu2B7hOw6WoVOXFaVUC/ifUVL93PHL7Hw/8/BXxTSNWjTQYCmJ4pjTkzM63S7tbkelL+UFbV/ZlDRNISnqur6y6xelsruZze+9VhuimMX6hOVqzWy5Zj/LsYTg+t4BB5vbmK5DGIW8+8F75HXFw8eP2Nnc5trOgTrv0pSqeay8UsE78/mcdRAwmUw4PT3l/Pyci9Uc1/PobQ4ZDYc8/cyzREHIkzeeZDy74PTiMa7tkyUFm5s7bG/v4fs2Z2dnfP8Hf8rm5hrbbnNwcMDOzi6bmxvohs57H3zI+fk5H330ETdu3OSlL35ZJYoWBenjR2RZxtHRNQA++OA9ut0u3/rWt3jpi1/ke3/vN/g3/+7f8m///b/j+PEjDg4O+N73fpMb16/x/PPP8uDBQ37wgx+SxCEXF6dcOzrg2rUj/vIv/5K6rvkn/+SfUJUlP/nJKxwdHrK9ucPh4RGapvP666+zWq343ve+x87ODt/69rd4/fXXefen7yKE4PHjx4q19OST5EmK3qRsTaYT4jim2+2wublJt9vF8zyipUpLTdKYNIspi5qL8wveeustjh8+4P79e4zH58RxzLPPP8P2zg43bjxJWZUYptW4HCKefPJJdnZ2+MM//mM+vfcpb7ypwiiC1QrX83n7rbeuLD/b2zv0+wO+9Y1vsrm9zf/l//Z/RdaSOFIJqqfn5yoySMDx2UkzDiToQmPgd8nyDMdxWK6WrFcrvvaNEIDzszMWq6Wy8QHz2ZytzS2evn2HxXzJarni3v37rNYr/uE//PsYhsHrb7zOT9/5Kf/23/57Vqs1QRDytW98nb39fZJENXDKMmd/b5/f+Z3f5caNG9y+fZs33nyTjz/+mH/+z/855+fn/MZvfJda1jiOQ6ulmgZZnnN6esqnn36q9oO1wo6MRiNcz6PT6bK1tc3+/j7Hx4+4d+8ev/u7v8vW1hbvvPOeSpjb3GSxWHJyeoYQMBwOmuS4isnFuVL09ga4jku322fQ7bC3vYnpuAhDZzabUeQFRmNT89o99q8N2N3b48evvMJP336HxXpNEMdoho5l6JAmCCHotzw6vQ7esE93NGIjzdBKtSc2ddXcLGvV/BWAZSpFTVEUSKkwDpp+GXylxCF6Y2+cTCecnp7w2hs/JU4ybj71JNePrvPVL3+H4XDE5vYOpmNjmCZlmFCmGdOLMYvFgh/85Mc8unefN17+a1Xs1jTyOKQulAPC1DRcTWNDM9jfP1BYnDRT1lQpEUIpOi9xIZWEuqw+c+NkOWgC3WzQMGXTXAE1VireDnlVNnZXMC2Tzf4W3U4P2eyfZJZCA/yuS1VktlwXJARBBHVJHK0JgoDFYkGwWlIVKVGwIlwtsAYDLMumM+qhNwEfVV1R1dVVQX25WFDX9VWww8ZwSL/Tpdrcoqqhlgo3I4AsS6jKgmgdUJQFSZpSNUD3KAiVcKVUjY+8rDAMHd9zsEwDy9KvrN5lpSyT3V5XFTw97wocbptm40KyEEIjCFdkWcpyNVGKPl1nnQXMJjN6vT6u66nEWv0Xpqi/8fiVC0+GaWI0vuKyLK8UOkIIBhsbOI7NcLBxVf2v65pwHWAZloqVruSV51Nq9VXHx3Hs5su5iv+tLn2suqq6TqYzVRisQQilEqkqlVxQFqrAoZRAqjhk6DlFmiv4Vq1dyePqUqVSJGWtvItFRRiETCZT1qslWZpio2NZJrpuYhk1bb9LGEYEwYp+v0+73SaOEs6LCyUbrmpWq7WSpd48vPINSyRlkRKsVw25viCJY04enfDw+IT33r9Lrz+k1eqgyQrHthkNh3Q7bfq9rvJRxhG2rZK/Ls4vCFZLOu02uibImyS4E2rcB+d4799vuBuCqsxURLhmk8QJr7/+JpPJlMePHuN6Lk/dfoLNwQaOZXL/3qfEUUQYrJUPWNcwdIEuJJ5tqcHftHFtk/VySV6obnIUBqRJzM7uNpubIzQhMHSdR8ePODs7w3UspFTeZM9T3XZXMzA1HV2oBVdZVortY5sUeUGW5cwXS9ZBeCVBbHc7apCzLdA1HCHIs5Iqy6mQFLKm2/KwXBdpKFD7+fkFeZ6TRAnj8RhDN9TGtQbTMNEcjbqsEEIyHl+QRiHhaokhwHVsMsdSiRJCSQ0931UJT2XR+HIFWZaRpqlKHbQsHMfFsu1G+ZIQhwFr10YTks29LSzbprs5RFQVq9WKqizotVuUAmpZoQm12HMtnaoWQIVrG7ScAVEcE0c2tqEj6lqlFVY6RRI3rKwahIZp21Sa+BkmmmmaSCmoBCzDgLuffszF+ILJeIxlmAz7PSyjwnZtvvLSVwCN1XxJkmWESczk5ITVZMKjTz9kPA+46bdV6lzjv9eFuk4FqntX1ZViOQmVYKjrZjMxKMaS6opL0jxFUmGZLSopCeMYTTdYrQIcU+AYGlrd8JgESoWkgayUf7qoE6IsJ4oTxTAKQwoJWRJj6SZdv0tMQhYleJ6D23LxfBfLVul3dVkSR6GC4qI13XsBmlJFlRVQ1yRljq7p2IZDWUqWiyWmbrI12sTSK4qGC+TYNqPREMPUEQh63R7Xrl3H1E0WywUVkrooqJAIXcNtYPhBFGG6Lo7v43c7SE1jsDlCViXCdcmlJI9ibN9he6OPWUs0WVMsZoDGF1/6Eke3nkCzTIq6IgojsjpClDXTyZTVYsnOzia2ZaDpypJ8crFS3XfH48WvfJ1Wr8/Bk7ex/RZhYRJnJT/+8WvM5nNOT86uGGiPHj5gvVxAvMIXJV7fxzJ02q5DXaRUZaY2QkDbd3Esi41eF73hHgjdQjNcHMfDMCwQGlme8dobr1HXNbPZnChJWASqO7tcrvCEhiU0ul0VCR2lKUJIijRBNIBQFWGsFE+OZasoXylZrFYEUaQUjCiGheOoBsViOccZOyraFsmTd57m4vyUR8cPKcsMWZf0B322tjbp9vpomsGHH37EehVwfnpBHEckaYJAjRG246AhmIzHSunnOmi1jWa7fPUb3+LLwGDYxW/53HzqDo7rMQ1jxkFM+eiMLC/Ji5LpZKKYVOGa1WpJmAbUomJ6cUpdpAz7bXxXpUTduHbE7tYWD+8/IAxCTh6fUDcMv3UQqvfPMrBNk729A6SUGKZNXauxLctzymrNdDonCCOE0LAdm7IqyIqEJIsb9poBKMWhUSq1hGWpeR0hsG2Xzc0tlTBkmuj6YwxjyfVrR5iGSd2M8522T5YljC/OiYKAosi4uFCW+yKv0A2T3Z0t9vb3uH37Nicnj3n06BEXFzNMy+XTe8esVit63S55XvHqq68RhaEq4p8+AinZHG1i2zZ+y8f3fa5fu06/32dvb58wjFiHIQ8fPSYKY5bLlepc65J1sMZzHJUkaxoEcaLWA7ZFr9dlZ28XwzKVKqwuqYXEFALPtDCFhm5abAwGlGXF6emZSldCrW3zqmIZBCwWS7KqphaC9VJZtPv9Pp7n0vI9qqpkuVgw2FAKr+FwSFWWtNoqFlwK0AwD23GIs4TZYg66jum5FJpE1BVxplgsnuddpdtWskIzdcJVrlLBOm1836VuUjU3Bn1lGTBVBz7LMz768CPVfDENdNNQiVJ5rooJtWJgUKkERL/XbTqdau6hYTzJhklSlSWO42JfQmoby9hVReVzxR5Jo5iHK8j2zx//66TU/ccXp36ZQkle/Veq5oSus7u93bBtdJX4aFlX6VGX7Bp56Z3Tfslq/fNuxL/ptVzKFC5vS1MAbPiLl2r5oigaHomg5XrYlnXFZEU0wHKUak9Z+C5VEEJF2RsGtuPRH2xQ1TWT6VTdnxA4vofv+Tx96zZ5UVAkGePzC8JloFh1rqsSHhsWjWWaDAcb2E0qXdpYUOtGTTxvHAZFojiOjuPQ7/fRDEGS5jx69BhQdu0XXnyO0aji2rXrGLrFcrmiljBfrDg96yo1ZqV4SYcHR/h+i/v376trw/PUKdhgPy7VEEJTKmBd1xmONnnhhS9gmBbBOmB8MeGD9z9iMOizt7NDv9vjG1/7OpPJlOPjYzrdHqblXCnW0zRr2LOSOE6ZTKfYjsPB4REPj4+pqoq7dz9iMhljORZRFHLr1i2quubx4xNMy8a2HMbjKUkc8/5775PECZ7n0e122djYwDRNpbLIFXh4Z2ebKIq5OB+r8WS5oJY1nU6HqqrwWymGYSPRMEyHOF1z/8ExjuPS7fbUmI7g5o2bdLtdfNcnimPSLMU0LSzdQG82r1VesJotePWVH+O5Lr1+H8exaXe7mJZFf3OkuDIN1FiPY8osVy4YXWcwGPDss89x/PAhJ48eU0sFve/1eirNM1NsG00IkiTh4uICXTNotdvcvHmL5XLBJx9/QlmVLBYL2u02v/d7v8fdux/zySefXrkgbt68ge97fOWlF7FMizzPePDgAZPJhIcPH3JxcUGn08EwDHb39qjKkvH4QiUMR4lSmWgapqGURpallGb9/oBOt8e1a9eagCjJwcE+miaYTMYsl0uyXCW9Hx8fs16vmYwvsCwLyzLIM8VTy9KELM1YoRGINZPxpCnsKKeCbpqKM1tLwiCkKAr8lsd0UhKEa+azCcgCmeZITUNkKTomjq7GmzrNsWWNb5mk4YrpxSnzyRm6rhFnR1imCgeiufZNU0HFL/cRlwXqqqwbR0hNEESsg4DVKiDLSl76wpdxHI/rT9yi1+miS4NgGZLED5jNZ6zWa4y8RFQVsiyJwpAHH37AejajrQtMQ1duDlzqysTRdHQhMFHzgKib5NZGDVzVFZqh9vVVVaomTq3WgZfp9XVdkxYlWaUSYYuyVGOtuiNVQDMMyqIGqVIO61rS7fbpdnvYjmIau65LnlUUWUkU1BSVRNTNWNzYpIWu43htBppJpzcgjBN6gyH9jRF+q4WuNcmATTpt1fCWECqJdHM0UuOp7VDVFcFyRZbnildqOmiGQZ4oXrKuCaSsKXKVElo2r18XAs91qW3V4BECdJ1mby6UQkxT+3ShaUqFDBhajZAFWbymLCuKIldFSKGYuLJWrGZdF2wMuspSmBfoQse2bCzTwjIsSsvBbFwZf9fxKxeeLmG5umFQk5Km6qsoCjzPw7FttkablFVJlsQEQcBsNsP1fDyv1bwAGjCpiuAVmqZAoK6L7/skUaQkgw1HwnYd6rpgNps34LuWUkc0lhRNU5HAALZlUVc1WZqhoZHpKXVeoUsVFyyEoChyyrqiLHPSNKUsSlbLNaePT4njiKos2N/cxbUbz6St0+sNybKKOLrgxvUNrl27xscff0wQnNP222RZxv3797l+/ZBf/41vk2YZSZqwXK1IspQ8T6gawHIUhNz7+FPee/8jXn7lNXZ3DhgON3niiWt02i12d3YQQmDbNnWlToDx+Rnj8QWPHj6kKHK63TaWYWDqBnlesFitydKCNC2u5Pv9XgvXdTg/uSCOYt568y3iOCGOY7705Zf44ksv8sXnnmfQ6/Enf/SHnJ2c8MnHd9EEOIaugHOixnJsBRw3LQzTYj6dEMUJF2enSCTHxw94oXqeTruloIS64OGDB5ydneE1LAfTMjAtg1bLx8wr9LKJP0fZykpdwdqSBJIkJVksyfJcAS8ti6MGMmt7NnptoVs2aDFZWVJISV7XeJ02rW4Xy3GJk5SHD48ZTyY8ePiQbqdDy/epy5pKVmrBY4Nj6pRFwcmjR8xME9eyuHHtiOGgR545VEWBEDW6oSvGWJISBoFK2tKEAvvGMRsj5eF2HIeqqsjSnDiOCNYLbFNTdlBdx277DPd2SFZrpqdnuJbFoK+i0cMsRWgOpq7hOQZVVZGmGb7rMdoYEoYRYRjhWCZUJa5jI2uTdB1Q1KiBU+hYrktWFBS1utaQYFkWdQ2FrJksZszfep2okRI/dfNJhoMBLVej0+3y67/2m3h+i6qqQNeQhsYbr73Jhx98xN179xhPVtTbW+i6AslqAnTxmQ+4KpXMtUYghI5t2qDbVGVFJaGsNVV40iBOY4rSoN1qUdaSVRhS1+DaCzZ6Hl7HRW8A6kIDoUkMXV5FfadFTJznhFlGUhYkeY6dlyRxiO+69LttNGC9XOJ3XNyWT7vjsZhZCKkKT0GwwjZtWm6ngV/qSFFSU5GXNXVZE+Yplm4ysFzyoia4mGCZFge7e5RZQBTq2KaJ7zjs7+1Q1RXrYKm6tnfuNJOSRpDEKjRB1ghdw2u3EbrOMgjob23i9zrkdY3u2GyHexR5jnAEWZwQBgEHG332j66h5wUyz1kEIaYJ3/nubzDa20WaOnlZEq5DsjghixNOz86YTqY89eQtPM8hTkLWccLjx6dsbW6xu7PDt7732zzzwhfAb5MWFW//9C7j8YQf/+QHnJ+e8PDeJ+iaREMSLKZUZc7ORo+WbTPY2MD3XDYGXao8pcgSVRSuamzTwjINBv0eCEFe1WiGi2G1cG0fXbOQaMRpypt/+kPCKGS9DhRMtaqoioq6lBxujvC7bTZHGxi6ztnFhZJlxyGG66E3xd6yLLGbonKcJtRIJrMZy9WKvJHFW5aF53vUdc1kOlYbcsNgOBzx4he/yCuvpPz1Ky+TJAFlmfOb3/0Oe7t77O3uM5nM+Jf/0x+wXK5ZzBbomprMO53O1UamqiomE5UkarkupmZgofPlr3yZm7duYVkCoQtKzWAdRXz48afMpnNOH5+QhjFpnFLnJVVZMJlfkGQxq3hJUaVcnKqggf1tpbI1TZOnbz9Jt9vj9//VHzCdzpnNZti2Q6vVYrlYM5stoNfGNAyuXb+J53ls7+wzm0+5+8kHxGlKlmWcnl2wWgVXjJPlakadlUTxSqXLmjaSCtPUqWpTFahslaApUNyeXn9Ap9NRQNpSQXW/861fY2NjA10YJEnM2ckx9+99wt0PHjToGcnjRyfEUUK/P6LX73Pz+gE3bt7kiy++SJqmfPDhXY6PTwnCjHff/ZgsTfn2t75Bmub84Ac/ZDabcn5+xmCjT7fb4WDvkOFwyOb2Dt1uj9u3n6LVatHt97n/4D7xvXt8+PEn3L17lzfeeJ0kSTja26Hb7bK/f4DvediGwSSJmc8X2LbFxnDA9ZvXqeqajx/cI8l1clniGgY9x8OyVWLt9nCTOEn46fvvsQ7WSKFRSUiLgvF8wenZ+ZX1ZDxRjau9vV2QNUm3Q12qwmOrpewjuzs7ICX9fh/f96kFyq7fUpvBMAwZDIeYvktGTVnlhElEVdd0Wm1838P1HDA09KJAC9cYus5Gv49j29SywvMcLGsT23IwdIO8sVy++drr2LbNl196SVm1gCRLWa/XrOKYoq4wpEC22+wMBghdp6wlsi6RZY3QJUKHvFALft/zlO0PuKyWXEFSm+8uayhVU5zRGkvHLzv+NmXTr1ackj93P+Ln/v0b7vfK1Pbzj92YHaTE1A2Ojg6vfnNpO7zESxhGY6sv1YZB+2XP93PFuc//9koNXour21w2xGRjnZSgzhlUCI6sFVC+22pjWyayLJTFXNOuGpaGbiA0/WqzeVmY0g0Tt9XC8lzKquTk9FSt+R2HgTbAc1xeeuGLzKZT3nnnHWYXU5bBmmeff57Dw6Or5ywAx7JpbwzpJDGu6yqgcpYSBMqCdTEes5wvORGP6HW6PHHjOo47YmM04vXX3+T+/fvUFXQ6Hb7z7W/huz5PPfUM8/mCi/MJ5xdjyqrGb3m4js21w0N63T4bgyFpmvLee++xu7vL4eEhNPb+6WxGURQq+l3TWQchvW6XzdEW3/zGt3j++Rf4F//iX3D37l1ef/V1RqMR/e/2GA42eP6Z5/ijP/kTfvRXLzPa3MJvtRrGj0UURAoXUknCKObx6RmHh4ccHG3y4MF9ijzj7bffwrItLFvZsZ595hk+/Ogu773/ARuDIW2/zcnjE87Oznj9tZ/QarX46pe+zGBjwObmZrN2VoWLqqo4OjokjmOWyyVVXTKdTVSRZ7iB03CtVHqVhmG5pNmC996/y7Vr1zg8uoluqEbO03eeRkrJrRu3mM1m/OQnP0FKqeZQTwV6LOZLlssZ7771NnmRY3sug+GQZ158nltPPsELN19UKpWyUb8LjSJKQAoMw2Bzc4uvfu3rRGHMez99j7pWhfDhaIjQhEpqzTKVwh2ELGcL9g8OGQ5HPPfccywWc/7lv/ofCYIAwzD44hdf4v/wv/+v+f73f8Cf/dmf89FHH3F2espv/sZ3uXnjBl/64hc4Pz/nj7//J9y79ymnp+cUhXKxjEYjXNflxvWbZHnG+cU5ruuzXofKMmeZ2LZDu9XBdVxarTaHh0eMRps8/fTTTGcTzs7PeOKJWxwdHfLuu++yWC5J0hgp4e7du8RRxHw+Z2PQp9ftEkcBSZqQxjFpkpJEMWmaKyZvy6fb7eC4HqZt43kthBCslkts26bd8ognCYvVgiyJoMqQSY5EoKUxpubSdS3KrCSOI5yqomNbRMs5Z8f3mUzPMC2DML1NW/NxLQOJRv1zhSeFTGlYSEXJZdhXEIasgxXz+Yo0Lfit7/09Dg+ucXTjOnmS8vjT+ywmc8azCW+++QYff3yXNhqObrC7NaQsCu5+8jG2EGzYFq5t49gWtWcrNWxRqAZEEyYlL5vQmkYulVNH1y00NOpKjWUl9ZVd7dJGHqcpURPAUZQlpmld2Ql1XVLXAq3SVAGnVMrv/mBDpbG7XlPk7ZAmOUmSE6c5ZV5RX9ZXdOX8EIaBb/t0exobZxfEac5wa5fh1h6WaSDrmrQJZIhjNUfXSNrtthpHez0s08K2bRaLBe+ffEAQBARBgNftYTke04sxZZ7T77SVYvUSjK4ry6dpWbgtVyUmOw6mqdH1VOM/zxUcvCqLq/1akqr3yNRrqqogimKSJGG9XqtAo7xgvQ7I8wJD09X6avebihudqIa853g4loNt2SAvAeN/9/ErF56EJqilSuvQdZ2t7W0mkwnLxYIwDDEMk29969uAbAoPPrefvEMUxQRhxHI5JykyiqJUCQS2dXVyGIZBp9MmSxOKqriK1XYdHwlooklbqcA0LVzHJApDsiJDQ9lP+r0NpKxxbAfP8ei1uzimRZ6kxNElcb9G13V83wMJuZmwu7XDs888SxQGqlNeFJRVSbBeq1jrvU38nkd/s4ehG0wXY5546iamaXFxfk4QhvTDHoZjMJmNaXe6bG5tMtrcUp7eoiTLCy7GEyzLZjjcpi4q1vMlmtDRyoRgPqXKIjzPpywr7k+mUCsZ+sX5OePxBf1uF99rsTnYQtc0xhcX5EWGJmqGwx7dTh+/5WM7NpPxGVkec3FxgqxrdrZH9Pt9jo4O2NnZYnNrRF7EnF+EaDp4vkO/11MqH6lwPXUpiaKAoqroDYe4jsOg32Fj2KfV7zRyckm/10cXEscyqaVkOZ8zn04bRZGgyquGhl/SMR1VvNQEuq5SZOq6ajpy6rMZ9PuYpklZqaS/yWQCmlDVZ8vCd1tqYaprjDZH6KaJ5/uYponfaWN7HujqwkuzrIkRVakPUkridaCKmqaBa9mM+n2KNCVPE2RZUBY5RjPQLtcrNF0nKxUDw223KGXFMliCJjFsg6ouSLOKdbBuFlgajiHYG3QVELCuufvuu7iey+H2Dvg1eVWh5TmZEFAWWEi0UiXMURdo1LiWhk5JHK6Io4goitD1FprmkGYKRN7b6IKUFLKioqYC0rIgzXM6vS66ZaNV6nwOwwBLQLvfhSqHKuf87JjFXBUnhaZzfP7/ot3psLO3w2Bjg82dHdrtNl/92tcZP77Pyb27yItHRGmCtASGbuJaLpVUyTw1CSUV+eUivC6hyCjDkEhYRMJGaBau3UYIVbnPypKirvFaLXq9Pnv725iUagNTV0rhZZkIIanyHF1qDLptgiRR6ZOGiSfhfLWiSsoG8u0rcKCQoNc4LZPuwGNzZ5MsjYhOjkFIDnf2MHULIUwqKYmzXHUIdIFtuAhNUmhrlVK2WFFhkFsu/e4Aq2Uqq4mu4XseRZazXq3Ii4z5cs744oLz83N6/R6tTotXXn2NxXKNZZnkBaxWMY7Twm/3AYMkzlgslgRB0KhGa2RlIqVGreusgojj4xNsXUOTkmWYYLsu+0/cxu91OT+bkaUVm6NtHj56wCRa0h72wdSoEeSVRLdcNnfbHD3xBFvbO+zs7GK1B5xMFrz6/b9gPJ3y8N4D4jBkNZuSJRF1tMayDSxTozfqqOhdAY5lMOq20A2dqlJqxTTJKUtlm8zKAk9YPHP9NkVZcvzoMWGQsFzP2DuCvmE2EdUTjg520XSNME4Io5jpfIYsVFpG27ExAUsINCQyzxBVjWsaGBoUdc5ssWC1DlUxT2gEcUgr6+B6Hl6rhd9uEUcRZV2qcE1olErgujaGoZOkMZ7ncuPGDdarOVmWsLuzS7/b4/VXX2d8MWExm2HbNneeuoWQJYKaF774ZUabW0znS5arFf3NEQc3bvCVb/8auu0iTIdetw2WRaFrhFHEH/zrf8V6vaYqK/I8JYlDqrKgLis828O1HX79u79GJUveePtVBZWvayzbxGu1WS2WBOuI//Dn/wHLsrl371OKosC2bIoi5fx8xcH+Pi994Yvolo7QBOPVGictuPXEbW5Zz/CNX/91Hj9+xIP7D9g9G7NeBxhNSopla8iqIksi8qIkyTLsbhfLtlVSpGlydP0mfqvFoL+h7K9lAehkacmgN8DQNO5+9B5lUbKYL6iKQoVKFDntlnelHt7fOwIEd55+Dl3XOR2f8Mn9u7z34btomsFo2CNYTghXMw73NrEdh/3DPVqtFt/47reIk5jVeq0mLWBztInreKrJVVa88dY7RGHIbDrl+PgBD48fIqjRkHzjy19QRYFmXeG7LiCJwjW7u1tcv37Iw4efcnb+mCSP8VstHNsmThMenJ8h9zNMBI7nohsGYRQTJQlBuKaWFZubm2hCcH52RpakmJpOtA6oqpq9nR10XWcxm14pJM2GnzKfzpiMx4oz1RS1qqpiOp0iNI29rS0Wi4VK3AtUCMpiMce0TJLFknC5Zj6fEkWqO54XOXlZYjs2IMnDkDRLOTk9URYHXaPbAc1xmS8U4yTPEiXNdyxKWTFZzMnKEstxcKmxa0mn06bl+UgEVVESJslVkMgyCoizVFkRgJ1mk1zXdZNg2yws1UJCXZFXFgrxS9VO/+scV2WVv+Hnv5xR8bc/I/E5ux1XVsbGO3il+OFzDAxNv6KT/Kcdn3u8yy6+0HR000IzVLJk1aS6GabZNG1L8lxiG0Zj0fus4Jfliq9WlSUCQafbQbFWa6pCrSu6bZ92y2OxWLAM1ziOg+95dP02rVaL27dvM1+vGM/nBEnCB598Qq/TxXUchhsDBLBcLFUSsRRsD0Z4hk0QRWSNyp+6wjItFvMpf/zxR3htn1ZXpRC3W60GsVDx1ltvYRgmnuvj77U4OrjGZDJltljQavnYtn2VEtXtdul0OvR6PSzLIssyOp0O3W6Xk5MTlsslmi4o8pL1eo2u67T8NnmhOLPf+c6v89yzL/L6a69yenLOP/tv/z8cHh7yG7/xG9QVfOmLXyIrSoqyxHNdsiTlf/wf/nt83+fGzZsUecFkMuH8/Jy6rtnb2eab3/wmt5+6rdI2Vyumkxkn5xeNla5LFEWMx2Nu3brF/t4eq+UC13U5un4NKSWf3n/A3u4uo80Ru/v7+J6P7Vicnp5y794ntNtt7tx5mmvXrnPjxg3u33vAeDzh/Q8+YLFc8vDBQ2bzOUUpkVKlIN6//5AwDPj2t77NaDgkTQuKvMLQVXN1p4HlV2WJYSiF63PPPqs2vral9gCTGT+ZTHnlRy8z6Pfpdjrcuf0Uuzu7HGzvNteKRprGrJc92t0ueVVy7/49+hsbfOGLX8A0t9gYDhluDNkcbaliiK6RZAUnZ6e8+upPmE4muJ5Ht9dje2eHvf19wijCbgr6h4cHmKbJjRs3kEj+3//tP2U6mfLJp/fY2Biwu7tLGKrU0rPzc1brgHsPHuDYDteu31RWqFRF2iMlzzzzLK7rcv/+Q4TQOTw8YmNjg263Q1FmxHHAg4cTxuMxi/mUMAqpGjuTlGCYgk7bA1kShoo9VhQ5w40+UoLr+mR5wWq5ZrVeMZ1NlfpQKCaX63o8cesWjuPgODZJmhJFEavFjDBY88Rwmw2/zZbVxtFNrFpSawa67eKaNrpmoOcSI6nZbg9wW2qvbNsOujTIC2XbCqLoir8sUYnHhmHieT6e5zEYDK/sWvPFQjFMa7j/ycf88Ad/AnVNx3LQTR3dMmg7FnvDDYr5QqmxsgxdwP5wgMxziBPqXJLXikNXSzU/N0MaUlNpeyBUWJmuYQm1J0BWCKGrVFWhNXZAta8sc+WO0kxDIVvEZ/cDisOMlBiahjBNlQhnmDx+/JggCNW8rmtI2VZhakmiApFkjdMgfqqyUhxJyyDPM8IwReoSr+Pj+i6mpeoCVVmhSZV+t7W9g6ZrDRtZPaflcqUS22VNmiqVnOt5Kt3X8zEsm6zlUZYWG6MRjm01dQwFAi/KkrIqleNESvI8IUsrwlmsEiGXi6vC0+WYmGYKsA6KlWUaygJYFmqe91stXNdXjWTLVmOq41EUqtAn0UDTlTLTcSmqAlmVv9LU9SsXni4nqLzI8T2PXrdHEChKe5oq293+/r5S7FjKp3jr1hOcn19QVWes1ysFzK4qBa0yPpPDKZWPpYoLjnP1c8tyLs88BVhuIuo9zyPPCsqiwtAlhmHQ8lpKWqZpeI5Ht9NR3tW8IM5iqrrEMDRlETBMZFVh6Ca9bo/93X3CcE2SJIwn5+RRQZwltEyN7qCD3/Ho9juML8asVyue3X2GXq9HGK8pZUF30MWwDVbBGr/dxvNbuI6PYZiK6J9mZGmBbdtsDjdYbo7Y294iWK1J4oQoWFHmKTrKwnVyfNwAzEwm4zHTyZSO38Y2HDp+ByEEp8UpVVVjGIJer8XhgVqM27ZFFM7I85AwVEkyvX6XGzcO+cbXv4plKmXH+GJCEAQIIbEsE9dzKTIVm0itOntpE+3Z7Q/QNUHLV5agzd2dZs1TN9H19RVsLY5jolANXJqmUZc1RV6SZSmdjqOiQXWlqrosPJWl8thqmobv+7Tb7QaCnjM/W1CWSs3leR625VyltbQ6LTy/hWgWUZZtYznK9lAUBdPplDLNKLNcDf7UZHGqOjctD9M12ej1CVZLyjRRFtGyRAnPJXGaqtNPSAUq9n3yLFU2TqTadNcVdV0oe6CmqeegCzbanrKfyZqz40dYjsONvQNM01YWjEpVoZGVSgOqSmStIG5CKP4D1ORZQp4lFEVCVdnUUlddK12n3esi65ooiihlTYmydaRlQS2Eir/WymYwS8C2qIsMWeZQFyyXM5CSJM1Js4JXXnubdrfD088+xf7+IbeiJ3n2hZc4ODzi6eefpeNbnE0ek+UFpm0hNB1DVx0KWddUpMr+2Czs9bpS0L0sI9MEuW6BMDFNByEKhICyqqmkxHQsXN+l2+1QJQFVminLhlQwUyEkslQQdNdzKOuKOEkxDRup6UyXAUVRkUQJaStVzwkJOpi2htey6A96hOsNxg8+RaPG8xT8M89pNmgVJgJDaI2NCCqhU9UQxDGVaVOs1/iOB35b2VClg2NZGLpOmkRq4l6vWS6XzGYz9g/3aXXayFdfI0lTdMNspPcZVQW25SGlIE0VzysIAqomsUbx+gUYBnGWUU9nOLaNoWukZYWpGQx2djAsh0efPkCroeV3KGTNIlrjtH0M06AWGrUE23XpDfoc3bjOaGuLza1toiRnPFvy45+8xqNHj5idPqYuC7SqVElVOmi6iWmYDNp9XMukTGIsQ6PtqnM5awrLeV6qtD3ZJKHYgvZgkyzLKR+dEyQ5F9Mpvc0tOlI1KM7H57z0wrO02i2iNGOxWCgLd1kjqgpHgCEExuW+riyUks82kQLKuiSIAmaLBZplXiWeFWWJ1cwplq3sdwiBFJ/BjQUqIEPTBVmW4tg2u7u7OLZBEoV02h1M0+KTjz9hfDEhCkJ812F3dxNZFYi65Jln7rB3cI2fvPEWaVHS6nbZ2Nrixu2nMBwfzXZJojV5mlBJWIYJP/qrV1ivVowGAzRNoomyAWUKPMfGsk1uP/kEaHBy+pBwvSZaL9SCy7Kpqpooivnggw8BWMxnGKaB77lkWcFqueDZZ57jhRe+QCZLsiLj7bfeJSlqeqNNhsMNDo8O+OD9D5DCxGv1Cdaq2CCAjUGXIk+ZnJ0QRpEqDLdbeJ0OtquiofvDEb7n0en01EIkDJC1IM8rPNdFo1Lqh+mUx8ePkLLGtS06nTbD4Qaj4ZDhaEQt1Wv6yle/TpbnjP/0gpOzE958402evvM0zz37HLPJjCRJuHHzFt3+gP6gz2hzk2defJ6iqpQteL0mSWJs00agsVysWS4WfPzJp5yfnvLh++9xevqYs9MT7jx1i53tLZ68cQPHtllOVqpTp2tkRUGcpezsbrG5tcWrr76qlEWbKpXr+o0b1GXBfDql4/l02y3cWqkI1oFK0UvSpGFJdRFCsFwsKfIcXdPI4pSqrjjY3wYkF+fn2LZDr9vHbkJLHjx4wGq1otvrqSKMplFLSRRFtNttet0uSRyTxDF5mpLEMVEYYlkmRRiTNY0KpeoumgVp2XRe1YI5zwuCJMQ2TVzbUeBSyyAI16zWa2RVowvU+CFrVmFAUZXopoFdW0jAc11cxwGpinxpmiJcF8uxCZOExXpFlmQKxm4Yqosumw3F5wowVyoiebkI/kzp9J/Ma/r5PxOf+8XVff7tiqlfeOzP2wN/7rkJAZ+B0f8mW1yj+lE3vCqwSX756/yb7uMXbns1nomr56Fdxms3qqqiUJsN0YyXhayxDQMQV+EjAEVjAymyHCFUorJQD0hd1eocNjp47RYX0wlBFBJEKv2w1ViQdnd3sTwPaZqcnl+wmM6QUqnYtjdHqvkXRQhAFxr9doeu77MOI9Is4dGjY4qiwNA1FnHI+++/R3fQZ7i1iWM7OLbCWyAlD+4/xPVcNje3abfabGwMVdBKXdFqta6gzMAV3H0wGFxhEtrtNnajmI2iSAUb6SZJkuK6ak1UlDVSCm7fvkNVlLz/3vucPj7lRz/6S27dusXR0XVsx+Ho8IjxdMo6CBWuIUn48SuvsDHc4OatW1R1RRRFnJ6eMp/PefIf/R5P3LrFLaksY3/x5/+BdRDw6NEjHMdt9jgZQRBw7do1AHZ2drEbpfFisWB6fk6v12OjrhlsDNnYGKDrgnWwZjw+p66VSnV7e4unn36aLMvJ84I4jtVYezFmHYZNzV6gCZ3pdM7jk8d84+vfwvNauI53xVB1HI/RaEut8aMIXVfX9O7u7lXzNwgDPrl3j7PzMx48fMj+/j5bW1vcunaDlufR63QRQiMtCrJUAbh9XwkMLsYXPHhwn69+7auKndRWqbvtThevQbJ8+uCYi/GYDz78gMlkwp07TzEY9Ll27Rrdbo8kU/iLwWCDg4M9Op0OpmkyvrjgBz/8IcvFgjhOeeaZZ3jqqTtIqcJllFMlZTyZ0u/3uXbtkCAIOD8/pyoLZFVxcHjIzvYup6fngGA4HNLr9bBtFRpgmjpxFDKbTojCNVmmYOzqHCwxdPBcSyU0Jyl5llBVFe2Weu/anT5FUeJ7PnmR8fhENX6qqiZtdeh2SjY2NnAchyLP0YRGkReEUcRyucTa3Kfvt+mbDpamq2xooaNZNpZhogkdUUi0rKbV9/B8H9uwMHQLgUFdVBRl2ezni8+aAJqJQM3TrXZHAe/bHVqtNqtVQBRFfPj2O1ycnvIf/vSHmLrOnRu36Pa6DDYHuKbBoNNmMVd7OVEUGKbOoO2TR4IoDJFlTVFVVFK5nXRdJcdejreVkI3tWD0nXdeppWI7CfQG+yFQ8hKlvJFVpYZkTY2RygSi7kc24xooZpVAKeINw2A+n1OWFftJ0oRqoKDthQo5kkLhMjRNhStpmoZmaFRZRZREoEls18K0DDRDI4gCqqLCNV0c16HT6zUhQ4a6FrOMRTS/whep16/scIZpqkATQ+E8KsNowsNcBr2uCtwqS6IkJkkVqqguyyuwebScE0ch08lY2X5LVYcwDFMhSqqaqlJF5E67g9AURsX1fVzPwzAdkELtfz0Xw7Qoq/oqoOkSlm6YpgpIqn9uzvolx69eeGo+IN/3GQ2HHB0eqXSnPGdztMXGYAPDtAHo9jaIoojX33gbXdcwbRPHsSlKV6mcZI0mNYpCSbnCMGQynzWLpIp2k1RT5gW6ZjDaGGJaZgNe69JtPjgBzOZz0iRhuZhTlSWW3iEvCi4mZ7ieijrUDIGumfT7fcX7keokL8qK5WrN6dk5SZpQFDlJWqDpFrfvPKseQ7co0oIwztgYbrG7s08UZ6zXJ5ycXmBbNr/127/DdLbgvfc+5GL2KW/89B6GpiMlnJyckOcF7mUEouOwmC8ZX1yowSfPSR8VDdBOvT+X3doszen1ezzz7DMUecFivcKfz/A9jzvPPYvQJFJkbG1uc3hwxKNHj5jOp3zpK1/CdR2icM16teKD9z8kSWPWwRpNV6ldi2BNFMZMlnPWyxWnF+eIGmxTFXharQ5xnpOXFa7r4Xk+NKlr63WAZVv4LY8iV/5y19nFdVyuHx4g6oqfvvMehmHgd7uUeU4SRVijEd1BD9e2QEqm4wuKQqlMijy/SvnSNMUU812Hw719VbxIM4QmSCOV3lDXksnJGVVVE2YZhm3z3Fe/jOurqqxjW7RdhxRBKjSyJKEqSpwmgXC5XFHmBZ5tUWQpmqbKTUjVBdRNk63tHcUEixNWyzXT8UTxrzRxJZ93bBvd0Ol2PXRNx9QNpK9eX5HVFIWKA8/Xa9584y3a3TZPfuFF0uWK4OwMyhpRlRS1Amj3e0OEppGl6VUSg+d72K7y+dZAnEbN1dtAXA2NKM1ZzhfUGtSGxmy1JohVWplpWvQ6A6I046M331EJa6aJ1/IxbYveRhuEYGM0Issz7t/7iEcP7vHGX/81Pxj9Ee1un3bXwRQ1RqeLsE3KOmaZxExmAYZlY9gWssihrmi1fDShUSU5htBxWy08r0e3NeSjOGA1jeh4NpZh4HgelVSMlSpLKKM1W70Wo44HhUr0M5vuimNYqlOglzi6pGXomK6DbjnI7Zokz3l4/x5BGLJ3dBN0je5gRCU15vMlt554hr3dm/zhx5+SBktWUY6mqYKT8ntrSKFYE6swUWmKhoPQDUo0iqIki0Iuzk5ZzmZodUWZ52hC4vsOwtTQChB1zePHx/zVX/2I/+bmP+bFZ5/l8fEJx48e8ckn9yjTFJkX5GHEejplPZ+CJomjkLosabseGoIqinF1nd5ok6LIKfKc02MFRP0v/4//NYc3b1Bogslswrvvv0dd1lBL3nj9r7n74XtcO7pGt9PF8X0GgwG/9p3vgKYRpSkPT0750U9e5cGn95lNZqwXS2RVsT/qKoh+p6XOMSlZTsaEyyVlR1IbGlKzyGsYT+YqVr4pbJmGhWM5CE1jtlyzDlZ8//s/VHHq6xWmZbK7u8HTd25w88kn+cM//l+Yz2Y88/RTDDYGLKOEd999n7/4i5fZ7PfY6vcxqDEbULRqlCpWiWmZJGVOGEYIvcZvO5i2idCNK4uI49poAsJAAcANXYVL1EJQ1RplJaikIC9Vgl6n1+Olra8yn05ZLVf80Z/8JRdnZ5wcP6IsCzRNsA4CHty/x0a/x6DX4dVXX+ONd94D3aKUkq29Pdq9Hovlko8+eY033v4p88kF4XpF3XBUnji6huvYDPs9Vus5p6cPee6F53nqzlPUFWRZxu///u+zWMzJ8xRNE1iWznodEUc5ruOxd9BT0ENgNBpSlAWr9Yq8LtAsjbRMWARznFYXw/KwfY8wDPkf/tX/hGVadNq9Jvklx7EtbNdlONqgqko++vAj0jgii9aqUKAZSspelkRzxQyZjicIoCordEPHcRxlcRtt8vY7b3F6csJg0Gc4GqFpsmH91BwcHPD0M89iN53WdqeD0HV+/OZbyFry3O2XONi6ydbGIc++8AIvfPFFtZiUipOSJgkPHzzkvfc+5r////0rylylpUZZSJInJHFEUTQhJlVJniaYho7vujz71E1+/Rtfpt32MQ2D8dm5amYJnTTLmM3nlLJWdlhZEK0XbHQ79LttPv3oA6bnp3TaCjj7G7/2Le7du8ef/tkPcDylrtg7OETTdMJwTafTYbSpLAVZmik1dV2qQqdms7O1RbBe8xfvfYDjOGxubnPzxk32t/dYzObKmqJpiFolm3qex9bWFhLFxUGq5BvDtNBqlYJNVSvLkGUy2N0iKnM+OX7AaGOI77hKuVKphbMUyk7VarfZHm0ynk45OT9jPJsiJXzzm9+g3VYqlizLiJOErMhI8xTbUoVoqUFOSVRm5HlGnESkRco6CZhMzlmv13T7Q1XgNw00Q/+sbvM5C9mlPF8Tgl9t2fq3H3/jffyyGtMvKVD9TFHpP+L+FLvpc7dpCm1X6F6pNkZSStAui0V/96v+7C7lFfdJINSSRSpVUl4p9pa8ZImk2VXSkDrvNOJlRNkkMMsmBcvzPDqdDrZlYeoa0aVlQlYYmmDY7zFfzJlO1qwMDa2s2BttYe4dEMQRs3DN6XyG6zhsDUcYpsm1nT1822O1Djg+O+F8fMH04hzPddnZ2sZ1XDqtVlOMk8T3PiEPU4ajDdXEKnJarUNu3bpOGCesgpAkTsizjLLMkbVsvs8J1xE7OztsDAaEqyXnJyeMRiMcx2WxWhInKtXu6OiI3/md32katDbvvPMOjx49otvtMhgMKMuSVqvFzvYumqaxXKp48LIsGV9cUFc1//Af/C7r9Yq9vR2yLOOnP32HJEmI4oRnnnuO3b1djvb3iSPl8tA0jcVyxpNPPslXvvZVXn/9dT768EMqWbMOAwxdWZu+8pWv8PD4EVGSXaWqPXXnDvt7e7z33nvEccwTTzxBmia88sorbG5u8swzz/D8889z69Yt8iJnHYbMZhMeHh8jNI1ev8vt20/SbvusVkvef/89PvzwI1566QtYlsWj4weUZcnNm9fpdFrM5xNu3LzGM88+hd/2WK6XvP3Tdzg5PeX+g4fcvHWT7d0dOp0O7U6LP/mjP+KjDz/ihz9Uc/z+/j6dbpfrR9d45umn8dstHj16xHg84V/8d/8dRVGwvbWtbnPrJnt7uzz3zLM89czTfOXrX+f0/IzxdMI3v/0thqMRo81N2u026yBkNp+TJBH/yx/+CW++9RZ37jzFi1/4Il/58pewLIswDBVfDmUxHY1GPHjwkOVywZtvvslqtaIsKg4Pr/Hccy8QJTEf37tPFMUK7L0xbJw3XVzXQ9NNojjh3v2HfOH553j26Tu0/A5xnNBudxq7ksKN/Lt/+waz+ZTJ5IIoDshzlWTZ77jcfuppyrLkwYOH5FlGVhaURUKaJuiagWmYjTUMgnCNYZgMNvrUVNiOxb0HD1ksl7zw4vNsjjYxDIM8zVjP5jiawfO3n+YDBEWcYZo2mm7i2ya2qVFUBbWuU5kGwtBJqIhlRVgVxNMYN0nYnq5x/BrL9DAth82tLoNBn063Q7/Xw7IVKkMIDduySZKU+XzO3bsfc3pyyr1P7zObzfBdA02Dg+t7DLo9vvTci6R5yipaY7omvvSYi5osT4mTGD3XiPMUUVWYltUkatZqbJMKxSJkI2+oVeH7kg0sa2W/E7oacC9L77ommmatVOIBCav1imWakGQZFSrkRSmCMkBHw2iSs0tMw8BzHRA2pqExn82bBHsb28owTR3btEBqmLrifjmm2uvVdQm1elxZVlRZQRJG5EnC3uY2hm7QanfJi4LZYk4QhkRRRJGp8Jluu43fanNrd5eiKJjN56zWK2bzBVmWI2RNXRYALFdzTs9i7t69q1L4HKdh1Dap2bpSVmmahmHYdHo2vd6GSvM0DLWHEqJJ+K5Js6zZa6r1XJ7mLMOQ0+mMNM4RQucLX/gClu1SVDVlLZXYQ9dB18irEi1PSYuMsnmOf9fxKxeeLplKslGm2E1UpOO4OI5zBVYWQtDt9pASgiDEMB1c18FxHYqyoK5VVL2slaxMSgU5zVflZxOwL69kbMJQPAvf8xgMBriui2NbtPxWAwHXiKKIaL1CQ+I6NlESkWSR8j5aatGsaUJFY+o6ZVWhNz74PFeblzRLKMqCNM2bCqihlA7riCgKWa0CtK4CzC0WK9I0ZbUKaLVko8zSWIdqIszz4mpBdXZ2TlWVjDYG6LpBkqSs1iuCBhJXliVBEFGWFYmVKpaV65M3lezBcEC312M+n5OlKVmRY1Ymjmcr+DoajutgOaoAgibY3Nqk2+syHV+oBYqmNtRSqK5WVRXqPS9L8rIkKwvSLOMy0l4i1CJR00Bo2I6L6/pKGggKLKYr+aiUSu0ipGI32Zai4V9+vqLx7knZKFCEYt4gJRIFnFfxztUVv6solKJHGBquY1NXJlqlkhTLslTAS00jzWKyNCdMYgzbJsszTMfG1RVAzTIMCr1QiYjNIkvTBLUQ5EVJVqj3QUiJYZqAul3dLN4cx1VKjiSnqDOyNKM2tea+9eZ11Ag0bFMNRKpbq6Mh0aVARyk28qpmuVigGTpup4MuQSYJ6XpBFmWgSXS0ZiAVV90GwzAQUkOrpVI1lRVFpQzGeVVhNnA6KYRi2ZhqQCiqGkSFjep8GrqFrFOidYjlutiuUGB+XcMSKPura4EsSNOYOq+o0orFYoHleNy8fY2276rXXZvUmaCsKqI0xRECDA1NosCR6KpwUkmlnms6FKKB7udVgcRG0/SGq6BRlgVJXbJC0nd0RNtGygpkBbXWsDCaLwGGJjA1xW/ThaDt2Oia4Px8jGFZREmM7boYjoOUygrW7wzw3Q6W36LMEvJKYqAIfELX0Az9SuJbFpKqlmiaDkLxS2pZK8h8E6BQJClFpgCiIBGaSoTQdY04ijk7O6Wua9rtFqPhBnEc8cndj5FVhW0aij3XQOtLqaCLoq4RtUTImirLMB2HtucTx5IyS2kiLtjd32fv4EB1u1Zr4jgmiRV3bDaZECwXOE/epj/o02r3GAyHDLe3SbOMVZQwWyy4d/8+9z75mPl4SttxcW2blmvjuA5+y2v2TZJgYTRJIijgrDK9keaFev9NS22KpHr9WqNoLIqS2WSiruu6wDQ1HNug1XLodHyMxovfarXodntojoqGjuKYqtVWGyZdw9Q1dENvZNKy8bVryFJSFBkIMM0GDi8uiTGf28iq1cjVcZnOIn/Ojm47ynKcxilRmHBycs7xw2N0JLpuYDsWhmkqeKymoRsmi9WKSgZs7SpZv6br5EXOeHzOw/v3+ODdd1jOJsRhQI0aS7e//HW6LZ9+r4smKuKow97uDrdu3WKxWDGfz3l0fMxkPKbX7WDZFobhUVQFBSUtv4Pn+aRxhETit9vq+skzLn1MEkkQBRQYIHRVPIgjHj8+aaJ5W7iu2/A6bBxXAbnLsqQoK7K8IMky1QEzlMpSioQoSaiqEttSoRdFUTQJOB79fg/bsUiShPliwdb2lmL/CVXwKKua0fYOO3sHzTmk0RmodJ/8wUOEhH5/AyF02p0ZrXYXv9VBCkGNJIoz0qxgPJ4wuRjzwU/fo8xUQTYrU/I6IwwDioZpowlwLJNut0O/02Kj1+VgfxdNQF1VpIniHnq2rebtLKWoVEJdsFxgGTrdXh9TN5iulqpOICscx2Zrc8SjR8dEUUicqHm73ekqpp6s0TQVnJLUFWVVNOcuaoFo6CrkQgiSOFbwzjRrnkOGoTUWO01B5LMsw7FVAIsKdlGx75ZloTXnolJISpUErAks16GoK1ZRwKDba35fKyl9E/6iriN1P3mesVor255pmGxsbOD7LTVuN9eRlOrvdd3BNA1qIamkStOpmvm9KAvSMm+4M4maVywVI32p9vn549Jid/lYsuls/1LR0uX3v4yL9Hce8mf++bkn8zkf4Ocf+7Nx5Rce6ufVSpf2us8/gPjcv5fjjgTEZ+qnv/tZX2o1L+9LFeGblZRaX0vQDJ2yOY8t02ysKJ9FXV/yWi675VVVAVLZLoWJoes0+XhKFWqqpFJBrZqAeY7ruPh+iyTPyIuCsOGWtNMU11KqTb9JftIuFGR+Pl+Qeym9bherUSBpjbJBN9WGSDd0xTfNEzzHY3d3l/lyhWaY6JpGLJQroKxL1aguSsoyottpU+T5VYMGqVAVRaESFc/OzvA8jziOMU0T27abNfyKTqeD4zhEUYRhGLiuKtLmeX61Hl2t1tRVyZNPXGcw6HPnzlNMp1MePnxAFEVMZ7PG2prT6njommB7e4u8eXxJTafTxvMU8B+hVGAKO6GsgL1eQL/fVylXyyV2kzS1XC4Jw5AbN2+qdNHFgsFgQL/fp9fr0e12Ob+4IIwj1uuAKI4xLfW3/X5f2fvzjOVywXw+5UtfegnXdfnoow+ppaTT72MYak7v9jqMhgpbsg7XzJcL9fhNQd+wTFptn42NAaZpUlUVYRRRFgVBGGCYBmVZYFkWo9GI5XLFerVu/l0RRzHtdvtyScfN69exnf8/a//ZLFuWn3div7W9S3/y+OvOdXWrqsu1qUY7AA2QAIghQZAAh8NhzEgh6pvoG+iFghMaxYRGUkgcchhDiI2GabT3Xd7cuv54nz5z+72WXqx9TlV3ozE9FLPiRlXdk+dknszce6/1/J/n97isrq3y/nvvMZ/PmM5nRLVTCWAynepI2WTE7t4eu7t7vPrqqywvL7O8vIJpGuR5DgoW88Ule1jz/455/PgxcRyzurJCEIb0l5eRp6ecnp9fMp5sV7eze76vW4ZtG9O06v1si42NTWS9Vms2tRMwTVNGw3MeP3rIdDZhOhujVAlI2s0GQeDR77XJ8pz9PV3woxtzS2RVYtXrJNPUq86iKDFME9ux8D2fRtS4dCpGUUCjEaGqkirPkVmGH3i0Gk06YcQwCHDqY8QyBZYhqApZB4a0OygvC3IlKQS4holhWdiOh+v6+G6E53tEzUA3qnXadSzVrkU9iSlM4li3rZ+dnrK7s8PjJ485Pztn68Y6YRQQNkIarQbNdgMWMElnCEuvIS7WkxdxuLKqMJVCWCaG1OddqeTPnU/1mvPivFe7M+u/0wDsj4cV+qvq4tSIAIqiJM0yKilrT8HFtUzp+wq9B1VK1XvYOjljO/Uetr6+GuLSfWzW11vQCauLlke91VXagGBZGELvB13HxbQ0gykrCxZJzCJeMF/MQUodc3O0O9+yLCqp9PXSMDEskypJqPIM07J0E6IsWSQLtne3cRyHdrtZu0EdPNfRjw2109jEFKYuBnCc2gVaO1zrNmNRliiFXl/WaKDpbMFkNiZLSkzD0nu1uohHm52My+ukrNcFF39+nduvLTyNRiOEEJdsgUpK0iyl3WmT1Sre+x9+QLfb5be++tvaoTMekaYxaTLn4KCtc+HTEUkSc3h4hG073L17lzhJGE+mFGWhF9A1LC/PtAoZJyHNVsjVa5u8/977vPP225fAzY3NdSzLpJIFQehz69ZNkiSpLygRfuBzdn5Gnue0GxGe69FoNBmcD5iPpxRZzmigM7JJmjIazEjSjO8Of0BRFhS5jm0URc7F8sN2HC0y1Bb4H37vDYShoWbdbodut4uUWiX+4m+8RhgGLPWWcRwH1wt442dv8Zf7f41SJsqw8QILhKDdbmNZFhiCajxhMRhSohCOjd8KcSIHK7DIyXj7/tuXB1+7dcST7QNu3driM5/7POsbKwihePPtdxmPJ4TtJbor66xt3uD8/Jjh4JSshKISuH6EX1QIx0KWFWmZY1UZbpmTFDlZWXL1+hYbm1ewHbe2yjsIA6oSLNPFCmxGoxFnZ2c1tO8Qx9Vg7bPzYwBajYDxdMhiMSX09Ym9GQRYpqE3Ahevp9RT20tovOthCnG5lsty3fLTaLVxTB1VjLodTNe9dNOZloHtWHiewzxNSauCuNA2RupYmLBNlGmQVhXtRkSn1UBVFbMkoSq1jbXjhrimS7fZgWYL+hVZllLkGZ1mVAtsOhbl2ualHT0vc8oyx/NCfN+m24rwsoJprnkpB2fn3L2xxR/8/h/wjf/4Z7z5ox+wstLFdWz2Dna1i8C0aLfbXL12jeFozHA4ZDybk+YFUVPzVmynhe8FLHV7GOKMeC6pDK3TNJodXNtBlgVFUTFfpCANVrs9JDpyNDg9IS1SPFsLso5rYHsOa6tLWMLCEo7+XaqSw4MdDAHXvBBHKUSlT9K2Z2A5YJuKyI+wDZM4jsnLEplk+rEVqGiOnMfEiyGoFEM0MIVuzLpoMHRsm0YQYhmCsshxDDANkzIvNEwQheO6+H6EtAwqRzCfxWTFhLDdwPIssnTKZAJ7e89oL/VZ2dikKhSUFdIvMQ2TKzevs+g2KFRJ0Gxw7dpVikK3i5BrtlCV5HrzPSuoVEWVLXRjSxRo63cQcnhwSJJqPkCe52xsXccPA3r9JcqqZGdnh8PDQ87OzggaPu1uk3k8xjBKXn31ebrdjt4IWyaGaTCbTIkXMc8ePSVLYkSesrK8zOpSm5OznMmk4Dc++xlW+itEUchgOOD73/sRwjS5fv0G73/4Ad/7wfdoCIPnrt7mH/z+H3LnxRform+QFwUPP3rA4f4B7779Nof7+xzu72IqyXK3ydWVNQJP5/LzMmd3e0c3udgWSpY0m5GeklSVPg8KLU47nk+r02Y4GDIdDHHyFMu2aAYOpunju8FlbCUrM5L5iOHglOPjtp6QoJjOZzTaLZZWV2l222BAIQuSLKG70qfVCMHStvK8KjFMC8N2kKkW+oVU2IaJLbQ1W7s/KrI4xhKCteUVzf6YzolneuJfFtphaaKIfI/NK5v6+M1yfvqTn/DWG28xGY/pdrv84R/8Hq7jcH5+iuM4RFFYx0srzDgFDD796qukWcJ/96//hvfeyvnpD75LlmbEccxKr0NzeeNSfHn8/k8Imy2MV16jv9znU5/+R2xubNLpLvPWG+/x6MEjiiTHMWxc08ESJpRlLWwaOLbCthRPj/fJspzbd5+n0+nywkuf1hvQqmR3d4c333ufs6Nz4vmCRTxBCEG73cH1I5qBT6fbobfUo9/vEEVBLTqVvPrZ1zg7P+Wtt35MnmYUs4zZ3oR4NtcxW9vh9/7g77O0vEx/ZZUkSTk9PeWVl1/m869/nvPBlKwyuPP8S7RbTRAVnufRX16j2WjT6/UZT2bMFzG9fg8/8Lj9wqfI84y9vR2O9h7zH/7y/8vbH7zN97//HbafPWM4GJAsFqg6PiJqXkOaJiwWM9pBRM/z2VzT7Xqu4+pNrWVqbt362mUD1His1yBxnlIo3TgXRSGf/dxnODw65PHjx4zOzpiPx/paXzt3A2+F5+7ewY8iCiR3bt9mc3WND+7f5/j0lHffehPbdnj51VfodrsIFKPRgIePHtFudwiCkEppkfbk6Ig0SbiysUkQhKysrLK7s8PPfvozXnjxRVb6feI4pqoqDnb3yPt9rm1sYhgmhuPgL+nGqGf7e0yLBGUIsiLj4c42YSOi2+2SlyXTWBe9UEpOJgPiJOF8OELV18lkseDk5IThaMRsPqPVaBH4AXGcIKXCrQKUVESur91beY7j2DiuTSYLykohsDEdi26vy3CiI8ZpHFMVJb7nEYQBQN3uW2IKgTJMLoJmF1F737Quhy6qFlQ+6Yz6z3n7Twzw/eqfd+FCqhuU1UWE7XJXVIvi2v6kBZkLIeg/8TFlzQdBCN02NxhQVrpAxTItPEfDaj1Xt9hJJWk064KeksuNlFE7r6xaHPR9/7LgpyhzFvEcwxSsr6/h1u29lmlhKsHV/pqOB5knZEXByckJldRDwqV2h0YY8fqnXiHPC9778ANm8xnf//4P2LiywauvvaqHpq5Dd3WZoN1ge/sp0/mE7adP6feW2NzcZGN9g62t2+RFRpal/OB7P+T87IwkTi4jnrZt02w+pSwLlpeXuL51g1a7TavbYjadYpkGUir+7D/8B27cuMGdO3fodjq8+uqrl+ylN998k7W1VV548XkakS7oOTk95XyYMFtMSOKYnb09mo0Gv/v3fockiTk5PubR48fcv3+f9z94h299+xt85tXXWFpa4tVXX2I8mfLDH/8IqSR5UXB6espkoksboijCsU3yLGP3YIeq0tFtVMXp0SEH+/ski5jhcHjpijo7P+PNt98gCENdIjEe8+DBA/YOD1nEMYFrY1kmW1s3uH7jGquryyh05DJJYhaLeV0oYHP//vukWUqn2+XV117lC1/8LI2mLjZ474MPOB8MScsEYQsMxyCrMk7Pjpkvxhwe73NyckJRFPzxP/nHBGHAYDRiZ3eH/8t//6+JGg2W+n1efuklbm7d5Ld/+zdxLZtvf/Nb7O/v8+//3b+l1Wrzjb/+K7rdLteuXePNN3/K4fEBBzWDczwek+c5j588ZTabMhoPAMUrr7zMveef4+qVKzpKb9vcunWL7WfbfP1rX2dnZ4f9/X3yPEPKiqtXr17GfaVS/PinP6HRbHL16lXyvCAvCj766COqquTTn36NbrdLu9Wi1+1y69YWd2/d4uaN67ocpirZ2FhhMh7zox/9kJPjQ46Odul22rx47w6np8fM5hM21le0KNjwWSwkFhWFkHWRgBZIyjJHyoogDBDCpJQJUuq25WQ+J5suUEUBSrL/5BHzkxOWm008y2LVcgiFpKsqnNUlrgcWDdvBMyWuUSAqxXR0jhQGyvEYnp9xtL/Looghcnjt859hc3OTr/zO79ButVlq9MiriiTLOTs7YTQc8OjRU6bTKffvv0+WJjXXSQulVVliu9DphNg2fOm3vkSjEfH++x+SlyX7R4cIyyRoNInjlEWaI4SN6/i0ml1M04DYQVYFFDmWYWAJg8VsWg9ztYBR1WYWy9Kt2YWSYOjzrGHW59paOJIK5CeCx0bdvKmdOfrce4H4MYRHlusSJ9s2cT2bONbNvs+/eJtGo0VnqacREIsFWZZTVfXAUkGaalRIYen9n1SyHtbl9Pp9Nq5scGPrBuvrG+zu7rIYjTl/+EBfA6ViaanHxsY6vU6PwPexLIvpdMKff/3PNSbCc+kvL7N1a4tn9z9gfHbOxpWrBFGEGwYooWOJQehx48Y17cxyHJAVSKmL1MqM0WhKlufE86Q+3+t4HMDTZ0+YLebkpS5AKIpSi2WmRaUkFYrQC2lGLR19bTYRpqpff4VUugBNIcHUMe68yn+ta9evLTx5nl//l8L3fdrtNnlekGVTQFBVJfv7e8znMzzPR9VMAqU0TNz3XYoiIC9TBBAGoQaF+379RuZ6olbp2kgp9MK+LGGxmDOdegwG58xm08vprVKS4XCAaZrMFzMqWep4QlGQpgme52A7tq5JrCoW8zlFlmNgkMQxRV6QJQmL2YzZdEaaJhp2bgjCwKesbEpXq+66FU/zEmxbC08ajq7IHR3DsByDpV6HleU+UmmW1cryEr7v0YjC2j2hJwtlWdXgOF1ZK0ADkUsNBytKPZFCiDpeZKAwcT2dGZbTkrKqNIvB7NDuNImiAM93QWgFUhj6ey1HN2aYVl1rbpi1aAKu65K7PmHUQJYVptCE/ErpHKdSOt9aVhWeqZ0stqNrK8uyxDD1AqootGsqTnT1qmXbKKl07SV1s0utHJeVhmNfAANREkNWeuJlmpjmhTqunVIVBgZQKUUhZe0+0SeZi4ppy7awHM2v0HyL5JLzIwyDqBEhg4r5dEZVVjie9zFwUylKqYUUYZhamFG60cE0dOvehbMJKWsGVO3aqrQLQ9dj6vdP1NXFAq2iu46OyKUVGFIyG09ZzBakaYkfNlhaWcO0FGWloekGuvpdGIZ+j5VCCAPP9TEtt/78mUgJslLISiHQtkqQCKGfS1lq9wwIDMvCsQxs9GQRwySVCVIVWKBjY1muP5K1s0RS1fWpOjNsoCgtV7M/hIlpKExbT0hN4+O+HyH0tkHWcQLbdqjqaKxjOXiuR1kUJBK8hlfXtqKBhkWJkpr/cOmUqxfxOo+sXV96YF9P0QXYlokQBo5tgpIMzs8Qlk2nv4xjChzPAySqUrQ6bUwhyc5OSUtJIRVS6QtUif7cC8vCFgZKRkilqDCxHQdDaC5QEGrYY+IlWDUMv6z0RdL1PIq55iCMx2MGw6GOjkYRYRgilMIxDQLfu5xUq6KGJrqOnlYXBU59PkzThKIskQLCVpNuv09eSYo0wzT1MW0YBoHns9Ttstbq0G+2WF5ZI2q0yPKc8WTKo8ePOT065vT4mCxe4FkWriGwTQPftXEdEwyTshTafWVbWIYAw6AyBIapSwEsQ182KikppSTJ6yZFoKhKKiS26+jpna3vK6tKm3Hq9/FiswnURQK6RdN29Pn2ovbVti09WZV6go8wal6bXl5c1IQbQtSVtfrcZhoG8WJBkWtHTiOKEAiSOKEodI1xWZY0ooZ25aAjbtPpjPOzM05OTui0O/S6HZ67dw/Pczk77WE7DmEUkcQJaZLUDacThoMz8jyjyHRkO7UEtmnRa0XaRWZbKEvHNQdprB0jVYHnuqyurCEMi+FozMHhEQdHh3VM3KmvGyCsj4+FxWJ+Gf1zXR1vL4qK2XRBUZWkWVK74BKUlFiGQavRwLItet0ehjDJs5TZZIysCrJ0jhe4FIWGcQZhgzAKWL9yhcV0yngwxFSCwHEZDkc6imyY+hhFH9+tVgfLcknTgm5vievXt4gaLbwgIIx8DMMkLyoWSYIxmTCbx7ppNYs13LrVIs8znj59yuHRIWmaMJ1OGJyfkixmVHmKQQVCYtXXRMt2UbIgTQS2ZeA6Fs1mhOf5+H6gnb7oa1xVVpcOjyIvNIPMMMEW2K5JEIY4nqv5Kn6gr0WGgWVZmhnS6dJsNCmKEqssMZR27pqWpVliNQQcoR3BSZIwm0xIkxShwK6FgDROtbs5TkiTmKw+hrPa7v5J58sFX0JR4ddup7KqyPNCx+ZkxflgwOnZGbN6Kt1RWoRt+AFJlukGuk4f4YNlmAgEs5nmQa20+9imqSGySk8xdW12pduBhYHtetqBkmU1n1MPgYx6CCfQ13WUvn5dTIhtR0cQLMvEunQC/7Jj6OL6qzcOH8+sf1GM+eT/X2o5fwf/6e9uw6uVn1+6i5bCxCe/X/3i96pf/usLJ9fHuKTLr1+I7hfxj4+DIb/42/xvuH1yxH/5Fx9P5PX12Lh8akbNPkHptkmlatC5qPkmF0bR+v0x6/tMJhOKsqgBydoJYBgGSP1eVUpSFZKyKjGFjp/4jktRlmRFTpzEFEVB5IWgFK7rUpQ5pm0hpWQ2n5FkelCh2w9zfX43TSqpWMQJ+weHrCyv0mxq547veayurmCZFqcnA92unWXkRc54MmaRxJdNeW6W0YgizBoRUlUSwzBJ04Td3V2dgLAtzaiTFWGoI7NJEiOEpsIo9POOGhGWpZtjkyzVTqY0ZTKdkddOoKVe72PXQlmRpLpMwXVdbMsCpY9pAZrVaJl1BLnEsm08ITBsG8fRjNLZdKpdpbl2OBaF5hu2amdlkujNZJIkmKZJs9EgcG0dyVG6STtOYmSFXgsKA8/3yTJdw+4HHmYdy1FKspjPsB09BBOG0DxWx8bzXTrdDo7rMJmMGY90YdB0NqlfIX3EGobAtmyiIMQyDNI4ZjIeMzg/Z9ztEvg+USNiaXmJGzW3ajGfYwihXd+l3iuenB7rsocwxHV1SZBhCmzHxHV09Gm53yeMQqaTCVWl+VknxyckSaLZtElCVWlOkV9v7IMgQCqlnbyCy9cwqUsRXNeh2+3Q6bTxXbd2+oFVMyCz+to+GgwYjYeMRwOSZIHvuYSBTxQGDEyBqioaUUSr2SCt26+pHTVQpwKEQSUVlarqhne0BVtWKKnh7UVegFKYhsA1DHzTILAMPENgqxKrKjCyDA+IHBtLKYTS+0dDGLhhA8NxcFpt2ktLNBtNbmxtgWVz/eZN+ktLKDRfdFSOSLKcWRyzv7fLyckR0+mYJImZz6aUZaFxB9g4joWSQq9LhC5pCQKfMIp0lAvtcDRrd5A2E5R1eZLSxVP1uVAIA2XW+63aLXPJwlMf/7cwPnbCijoV8kunzvqULoTQjiclPr6u1D/nwl2qHUz1OU9oMUbWCBfHceskl49l6UKMizSQYRggQMpKP16lnZXCEJSyJE1jLCvANA2KsiDLU9I0Ji8zbNvCEQaWZWrno+OwWMxZzGe6AGUw5MMPP8CynbpAQGpchCF0Iuhi1Vuft21bR+dMw2A6GZPEiTZp1KJmVZW1U7EkTVIdtTP1ekUYBotYsyCNCzwF+ncx66ZTU2g2nmVbl/s7pSr9R8o6kaL3igIuEx+/zu3XFp62trZQUk9Ann/+eb761a/yZ3/2Z7zz9tuEUYhpmjx6/AAhjMssqm1ZXLmyzvVrV7Adk063iWEK8kZOs9HSv6wwMAwLIQxGI6VrxIW6bD4pioydnW0ODw948uQxruvS63cRQr/R7777LnmeX1avf3D/A2zTxrEdVlb6dDpt3apWlYwGY5RShJ5PURQsFgsCx8ExTCbTMXmRcf3GFu12m62tG1iWiZSKKAppt9tMZjPdRFCWlGXB6cn5ZWtCEi84Oz1ibW2V9bW1S9EkzfQGJ44TFos5B0dnnJ4ck9UnU8MUelOpJNlwgJSSNNVKuDCMS4CfIQykIej2OvoCmC9I05j5YsTN2xv84z/6fcbDEYv5nMlUA0y7vSaOY+qMqGmQFwWm0BWIvhtqQa4o8GwHQ9WgdylZJCmzeawzoAj2jw4plOTFF17SC2zXIY4XLOZzXM/GdSzSoiBOEyazGYskodXsXB7o2hJd0GpGBL5HFscYQujPjWFQFhl6PVPVlkGXUkrN4spLKqkogExWLLIMrARlWsRJTJ7lOLaJaXi0Wi2KsuTRo0fkia4plShcz+XGtev4vs9bb7xFkiT4rouQCllVzBcJeVaw0l8ibIRMx/rEnySaZ+E3Gto5lFf6pOQ6JPM5VZ6DKhBKIaTU0SBbA479GoIpy4Km7xF4YBs5cVGy/9FTiuGC+dmUa1fW+f0/+qd8/xt/yenRIUtLfSxLO4CqSnJ8fAxCRydWN6/geT5Hx6dkWUa2SJFZBaWiKAp8NyCvcgpZMhvPQUGjqRuXGr0WpgG2pWiEDaIwonsaMplPUElFkeccD04plSIZzyikIq8kVb20CC0H2zBrscMgcDxMS6FsiWcKPFOQZwWprHBsA8OyyLIEO/DoXb9BYbqkpoPMJYEV8vTxQ9Iswfa1C6EsFUmWM0hylhshgReRzMe6ytO06+O9QuYZ5WSOkhpibXsepucQBB5SKFaXukySnPffepvNrSnNbodrG2tsrC4zHWng4/U7W0xHbb6/u884GyOFReDZhIHDItafhajRwotc1tfXEIZBpQSxqpgUOZ7r0u12qUqF70dsbF5lPBkxnk3xXI+ldo/pPGY4HvHRo0f019Z4/qVPsdGIuPv8PZI4xjENppMJJyfHDEcDprMpW9e38L2AXFUUSBqeR1HkPHnymNwQlLaJ02vjry1zOJ1SKcVLL3+aoig4OT/j2voVbv+z62xdu8n62gYZFYs84Zvf/Et2drb5y6//ORQFoWGx3u9z88YNqkKzZ0wLUCWmsHAMk4btEgQerVaD8WTIvErxHJPAc2lFTcpKcnx6yjjPOJ6McEwTx3dZJDFlWmF5AcICZRnIqiLJYhQCx/ExDQeFCcpEKUPDCgG/EWJ7ulDCdVxajSa+52HbJsPpmKSebBuGrvrV6SXdDiKEgWt7mKZFr90kcB0O9g40qByDrZu36PWX+cu/+CuePn3KaDSk0Yy4+9xdTNPi6Fi3EO7s7PDw4UP2D/b5wz/8A155+RX+4T/6hwR+wHQ2xXZc/EaTwdk5g9MBb771f+KnP/kR+9uPMQ2BpUoajYC11RX6Sz3WVpY5Pj5hMp7g2AaOYSKqHKoCS0G70eLm1l3efu9d3r//Id/83rfZ293hd7/8JTqNJqJQFGXGPNNxg/l8zuPHD4njmM985nXa7S5lJRicnfPGz95mNB5xfHLC+voaKyt97tzcot1q0u11cGwdg97fP+Db3/kug+GQ8/Nz8lK7+jSrrsUf/fE/Zm1jgz/95/+cg51d3nvzbZbaLVphxE9+8hPOzwdUlWQ8njKYzul2lrh16znm84LvfOfH3Lhxm1de+yxPt59SVhXXbtzl7OyMr33ta5imSRAE9fto8MZPf8L5+RlB4NcslQGGgFYYYhuKLJly7+51Ws0IW+jP0vngXIvQCoaDEYfCohH5hIHH2uY6jWaLRtQCBHGs64GfPtnF8xx838OyTRzLoRlGmJbF2pUrKCBZxLhByOa1a3rhKoR2VkcRd+89jxcEPH78hO5yn607d5jMZpycnoBt0VleImi1KIuS/YND7JNTBieneK7LWneJTrtLGIQMDs6Yz2eYUjKdTnn08BFBGDGbxayurvLKK69gmCZJknDjxg2iKKLbaVJV8pKHOZlMmE2mzOdz3rj/HifnZzx5+Ihms8mL955nvbfMrc1rvPXOOzy4/yG3+ut4/RVWesuYxpDd3T3WVld48cu/qduTzs/rQpiS+WTGghkNP6LRLAmi6LJdy7RNLNvSwwwpcTCxDIvA8bTr7XyAMATNZpPQ81CyInA9bAyseuFfmWbNRzS0M0ZJipplaEmpIfufWHf+olD1n8f5dGE7+lVf/nUe5eflI0MYFymQWmi6eKR68yOreq1bh7mFhhr/Wg/1K24XjykBwzBpNXTxTBiGehAYJ5eRE7NWl5RSKCGwamHqgotD/bwl6jJC9e5771MpxdVr1xCGjek4qDQnW8RkQYSyLU5OTyiLgsCwCYOQrZVrum0rjnn7g/fY2d+j0+ng+wErK8u0l9r0VzWz8NmzZxr5UGigrjAEa6vaFRmETc6HQ95649/xhc//Bn+/vUSjEeKFIb/5ld8kjhN+/KOfcn4+pNjZIS8Ltvd3iJNEP35e0Gq1+coXf4Ner8f+/j6tVosXXniBN954g69//Wusra3RbreJGg1cz+Wrv/NbmKbJ7u6ujtSYgv7KKsvLy/SXlqnKioPDQ86HY549fcbx8RFvvfkGfhAQhiF/8qf/JXfu3Oa73/kuR4eHvPnmG5imxdbWLdbX17l9+/ZlLGd5eRnLsjk+PUUpydr6mnYFFwXvvfMuk8kE0AJVnmWYhuD999/HNE2ee+55yqrg6fYzTPSA5g/+8A+5cu0qZRrz7OkTzs/OsQyLD9+/j1RQVeD7Edev3+Lg8BDDFLz22qvo2aCFQvKjH/yQrds3WdtYZ3VtjZW1NZ482SYIQqKoSZ6mPHn0mO1nT9jZecbKxiZRq807H7yPbVp0my3aYcS//JP/ksFwwMHREQfPdvjw7Xf5G9+l0Wzwj/7RP+Lu83f5P/6r/wMPHz7iz//863z40Yd89NF9bMdkeWmJH//gh+xvHPDf/Df/irDRqOvhHbzAxXccbFNf/+M45pvf/Ca7u7t8+9vfZm11jU+/+mlarRZxHDOdTsiylHixQEnJjevXKaVkOB7h+x6OY3F4uM/e3h737t1jfX2dF194jjAIWMznujk9mXN2csR4eMpsNmWxmPOTH/+Q+WyGZRv4vse9e7c0JN332K4KFvMZ66srLC31efONN5jPF1SlvNijY5oWjuMSx7HeGy4Weo1ZVWBaYNoURcY8maNUhWdb3F5fY7O3RCf0kXnG+OQEWeYkaYKUBZbSexaJICkUfhRw9cYtmv0lNu7eob++wcqVq7z2md+gqCSTqXa4vvne+4xHY062D4jjBbPZlJ3dZ5ycHHH16ibtdovllT5B4NNb6uLYNp7ncHp6xtHRMUWZkWaL+nNk4rmudhtdRqshzzOSxYw8jqnimNlAl6FIy0SYCsMyyOKEdBFj1axVU2geoGHV+BFDYCiNmbiMZNclA5fxuXpsYFIjOSoo85IsyxCOAYbea1+0eVKDsRUasaK0Eo/v+/hBgOeH2vGvwHZcQsMhLXIKmV/u2Uul29g9xybNZ5wODillGyUKtvefUFQxo9EA3/N5/rl7+L5PFIZMpzOm0xnf/s53ePrkKT/76c8YnA/YPdjn5q1b/IvNf4kQ4DoWpq2fe5anGKmBsExUpeOcnmOTxQnf+ea3+OEPfkin08bzXCxHGzjcoGZLOx6NqEGr2cL1u/i+SxgGGKZgeVUzqAwEhmlhW3r/XSlJVYFjuwgkVZkhjJKqzCjLFFnpWKlWCSSObWIYzq917fq1hafxeIJtWzSbTRxHT1ld16XRjLD0rgXH0WyfeDHjohK30fCZtBv6wxuGjMcT0iQhTXNtk83yy9ynZZoEvo+sSpSUlw4dx9HOgItsupTa9ieEnrZq9pDmeEgpUfWHqlJQVPrn2JaFHwYopXAdF2GZFFVJo9mg11/Cj/REcWW1T7PRoNHQ6vhsNqMobfIywzDB9R0cZVMUFpUqkYVkHs+ZTqYcnpyTl5JFktFu6dw46uOqUj8Q9Jf7dI5OiJoBUpnaBquHK5pjIo3abaPhdZalVUqBAKnIkhzh2vQ6PeZzm9lkTLrIGJ2PkVWFazukeUJZFbi2ReW5NEIfSyhm4yGyynEdk6LQbinb0sDdPMv1ZAtBkuQs5gkCE9fza7eVIk4XlLKgUjrS5oc+QigqFH7gY9p645IkKVndiiCl0iq3FBhCw/Qqy9aOGKkwDT150Aqqdj9kuYatX0BlhandHI5XYVoOpmnXoDk9QyxyrfxXuRaBQtdDFCVZ7aKpCl2Rq6cPCWVZ4LfaWh2WiqosqGoIrGkYKKkXdfqkp2uGZVVoq21ZIKuiZmsIHNPV1sYshVrBlwrdhlL/U6iSUkody1MK17R0pGpnl26/y6oX0OouU+Qli/m4dgRq0LzjuJcL9CxLqGRJnum4kGu7WrArY2RVgSrwPYvAtJlOF5RFSZLOMS0b13b0hCXXdkpVSWRZalePDYawaTQaqHpToIV9k6zMKSuJ7zn4toNnO1go0qrQDjQlMUoFlcK2XCzDwxAVVVGSFxLbtOmvrJNiMK+g29Hw9KVumzSJuXbrBkVRstReIZvNSAcDGg2XPK8QhoXlKFB1AyISlEBSUkooSshlRYUkrHyEaSCUgZACWUryNGc+W5DUEH/DsnADn8gJsByHqNfHrCSG5ej60NBjPJoymU30tMF1sFSBQhDnksyAhaE4PjomTnPyrKIsKm7eusV0OuXdR/cJwwabV64SJyn7B0ecn53z7OlTbt99TrdR+BGLWcz9B49A6c9QFLUIggghNKug0+2S+z4iWWghMMtZuXqFtRs36K2uI7wAp5BUUmG5Pqbj0avhgo5tUdkWg/mMw5NDhqMh9999h7PTE1wlaTUb3FxbxzNNPBTSFCjDuLQioypMA80zcmyUaYChSxZMS//B0Be+SmrQrW3oc4hpmXgi1Jw0YZFVkuF0WjsEqeHGUsOW4wRDlth1W4lRX/A9T094qrIkjROqMkRJ7apzbYd2q4PAwHY8Cq8kDCIcz8OxXVw30Augi4VJfVmslELW1a/3XniRjSvX8AKL7lIXZZhklSTJK6aLlMF4RiVM/EYDv9HA8l32j09wHIc009esrCg4OT7h9PiE8XisG1iEFp5938OyDObxDGsEQpVUUhA2Ghq+rwRLS30a7Q791RVMx+H45ISd7R0eP3iILAoi32MyGWEIxfXNa7p4IgmwJxMUJs5kQZpWpGnBfL5gMp7qoYJREfo2/V4bZM7g7ATTkIwmIYPREN/3WOkvY5gm955/jsFgwPlZV7+fQjCZTXAcF9/zsUyLIlM0Gj1eePEVAtfFtS1uTef0JxNubN1EKsXDp88oK1W3nWg+3mg0ZJEsmE6mlGXJR/c/YnA+4OjgEMvW0771tVXa3S7NyCdZuMwmI6qqInIt+ks97t27w2gwYDg4o0hTUsvE9DyqqmI2nWHaNv3l1VqEhCgKCXyfqzdu0Wg0OD4+Jcsz0iTFsC02r21eGIwZjUakaaKj76YF6Fh4kmbMFjGjyYxms0Ho+5fH33AywZjPmcYJS4MhEpMkiUkS7ZyWUuLaDqpSHB4c6Gtq0sN3XQI/4NGjJ8RxwmAwIi8KgtDTjbBFyWw2I822mc3mDGt3pO04IARhGLC/b5FnKaPhiDjPWGQp8XROuog52j9kMptSSc0hC1w9qXVcD9vR7thKKvKiRJkGpjC08zLQ2IHYjOvzvXYbu46LKQxarSae55OnGWmaEWcZkRXgWI4+H0tF4OjIfJUWFElGkqRYlmaUFFI3DlmWhWPbl1k07ZLTmwT5yWl03RBEPa2vJZxfxifB/39qDeJXfvt/auTtYjoPP+/CuuAvXUzVEb/odvq7b/9rjq5L91XdpmfXTXUCgWWYOLajr/Xqojvv4qsfv7ba2fPzL4hSIAzNNyvKkjQrMG2F5Tgo08Sw9brUsSx81yNDMJsvyKoSLOOydCgIQzY2NmhEkXay1s/ZtizKIqfMc2zDxPXDOsINstDuu/7SMkjYN/Y5Oj7hJz/+CS9+6nk2r2xg1gy0/vIKEsH23p5+nQ2B6dg4AuIsgZmGqluGQVWWTKcTtre3kVJy8+ZNfN/Htm0Gg0GdQijxfZ9uzZ0zTd3mJSvqxsqEs7MBRZ5jGSaGYWFaDlHUpN/vYxgWSZITBhHdbo+VVc0bOjo6ZjabcVY3prVarcvGyzAKtfvGdXQUu3YyJmlCr9cjiiLdyOc4jEZDqqri6OQE27bwPZd+t0e33SEMAxzLIit1Gc7hwSGBHxBFEcPRhMFgjB8GhI0GSTqnlIrech/Hdmn4LY0TqAoMw+J8MKJZSRAG0+mcNEkpspLFPOb89IwszXBth831DZbX1siTlKoomU9nRGHI+uqaHqRnekgZhbqlzUDw/tvvcrCzy2QwZDFf0Gm3sU2LNE1xnAjbMi9Fo/F4RCWlLqCRFZKKZL5AVZInT54wGo3Y29sjjmOu1Y1zGxsbTKdTDg8P63OOwHYcfZ5SkjSNOT05xnFsXHed5eU+pmlw8+YWa6urhL6PbVsYAsoyZz6b6mbpPKUsNUNMyhLLEoShR6vZZHNjnflsxmBwjm1ZLPV6BL5mLgkMDGHi+wFFOdciVFVRVRIQOgVT84aseg1nmhA2ApbWV5hmc+J0UTeOp+SWqfdKrouwHGwvpO25CM/B93Sz5NL6Oo7vY0cNDNdmUhakp8ecTifMEw3aHp2f6s/zeEiapKT5jCyPybMFnmvS7TSJQh/fc2g1detespijPM1sNgyzdgO7uK6n11x1UzkKlLYcQd3QrTmVZl2ooPdCZVlgC4vAdzGKEmxbi2dSYlri8jyv0KLdJReaC/dSvedXXDqmVO2YpI4WI7QzWejYTX3eU1RK+3RM06pNDgrbcXEcl9FoQiUFjh8ShAGBZWuzSaXdaarS71UlBWmaoWyJcG1Moc+5nuPhux69VoflpT6OZaIqxenxoTbk2G7Njit59PABH37wIUWe4bo2rVaDRvQxgkZJzd/D4FIDUUrWDcg+nuNhmzamYdXrT5+oEWLaFqZt4kWBTg5YLp4f4vghluNj2h6W62MrQOikgxB1esK0sYwKQ1XY1gVQXeoBtZB1+kfV72F++RyV1OzuX+f2awtPO3u7tFstNtY3cB2HLMsIw4C1tVUW8wVFntNpNynLglm94MzzHNcz8WMQKewAAQAASURBVH2L23ducv36dT768EMm4xHzha40HQxG+L5Ps9nSrUgtl+lkRF5VOI6PbTuXFaij4VBDdJMZvu9h2w5Ro4VhiEurelmWut7PsVGmSaEUrqsvMLbrIeoLdJZmGKbJysYaN+/c0lR6oVjqdXTLj+vqqMx0RFok5DLDdT0cRzeCmaVJnC3I8xJ1AGdnAz744BGB7xEEPp968XnWVlZoRJG2rHoBfmSxurHJeDZl6eF90qwgz0tKmdUTCQchDKrK0213sQZH25aDgUCVitloiopCtm5cZTAcsPtkj9HplMcfPmVjY4Vut0U8m5FnKb7r6Itut4kpJCfHe7SbIc1GwLwsKGWBa1lkhubLFIVE1KLFaDQlCEMajQaO5yJMwWQ2xDAtwMILfNq9FkkSk6YJzU4by7RY29ikKCVPn+xQFDoSddHeIISFYzlIu6ytwJr3EEQ+VZ0zTaucTBS1G05HzlzbobO0pGM6eUmWZqRximWaFIZBkmRUErJ5jOM4LLe7DCXMhxNkodtdDvcPkFIyrvPyzUZDOwAMi8loxDgeMp8tyLMcz7G1IOdotXueLJCVrqKcTcYkizn9Xo8w8Al8H6RkWhRQA+EqCVlZIUy9sIurtK7jVAhMmm7IYDbn0c4em7dusOV4rF3bIgwafPdvvkGRZaytrVw6TtIsIU4XTCYDKllpYRdohUsYQiKL5FL9b0YdwmaDssiYVxnT6Rhh2bRCX8Nl84TFfIGtTExL24iFa6Jck77Xp6okeVYiMagwmJSSqixpugFNPyBybKqqYDBeaKuloaNiVlWxstwmDBqkiwVlkbJIKiLT59qt55jnBcN5zKc+9RJXrlxh5/FHpMmC1atXUUowGsw43t3l/ptvMTneY3p+SODb2JZDmqaXFx19GdJg9TivSIqCQiqajQjLslGlgFIgSpM8LhicDug2G3SaWkjwPI9+v01zvmD5+h4yTnDLgkbTZ6kX8fTZNsenx2TzkZ5izBuUEs4nOdK1oRFwdHJOqWCpt0qz2ebzn/8NkiTh8eE+3V6fl156mcUi4cHDJ+xsbyPLki9/+bfotLo0wg578RFf/9rfsL62yksvvcjq2irdXofdnafM5zOuXLlCmWXsPnlMUZQUScrNW3f5L/7kTzgcTRnHCaG0tEDq6vrypc61+rWRnB2fsL3zhDd//CMO9nZ560ffR+Y5W+ur3L52hb//pS9xtLvL/vY2QkgwBZUFlUDHBgxB2AgQlkVlCLAcDNvHsgNM26OqxfKyqjANg4bjaICkbeJFPsK0mScZ8zxnMRng2hb9bltH3NKc+XTGfDTBkAWuKfVE3tBMsygKsW2TIs+YjEYsdSJCz8W1HX0eiLpICXlR6VisYdDtLRE1GqRJRpJmCNNEGXoyRFkPIKQkKyVf/b3fp99fZp6OUCgyZRAnKZOk4Hwac3A2QjgevdU1/HYLadv86O136kmlzfn5OU+ePGZ/f5+jw0OMdEYY+ISBg22ZOJ5Nmiacnp0wOD9l1zC4c+9FVtc2mZycIWTB1s1l2kvLbN29S1HBex9+yJtvvMHPfvRj2i2PtV6X/f1t5nGHz33p8/oYWGScnQ4wzGNm84I8N5hOY+bTmJ2dx9i2xfUbV+i1u9hXV3n06BE7T5+wd7iDsCwc06URNfnsa59mY32N3/u9v6djoIMBjWYXx/F4+713SdKETruDbToMT2PW1lb4zKd/gzTR8eVGb5m8yNm6fp3xeMyHj55SlBLLdjArheFUPNt+xnw+xTJ14cgPd3/MZDJmd3sbxzUJI5fNlS6bqz2GV9bxTHjjYBdZVdy+ucUrL7/Ev/gX/5y//qu/4s+/9udMRyPSxQLV61FVkv3DY9qdDp96eYN2p0e70yMImvh+xKuffo0gDHjwP/8bhsMBRZGztr7Gq6++zGI+Zzafs3d8yP7hPqsrazRMm6LUXMHxbMZgMOTo6IjbYUCv2WA+i5mmOfn2DlmW8/TZNkv9ZU5OhrTaDVqtRu0aETRbIQUFH314HyEEVzY2cWwb13H45t98i/ff/4B2t1dHlhStZpNXXnqF2XjC/uEhnq8jgkFUsykH53iuy2QyYjGbc3p0TGkblK5NtUhRqd6MSKkwIy02NaImYRjhBAFBGNEIG1SVZJEk2q2MwcryCktLSwSOz9zWsFHT1EBUJ2zgOi7ra+sgBGcnOsY3SxOiMCRwfZSSyFLRDfTQ8XwwJpnPmc1muK6Dr3wSmVMJies6hL4WDFF6Wi3R8bpKaRaQqGGtOmqntAiuuFzE/jrg7f8ctzow97/p/p9UsS4idcAlR+NC9DFN8+Nv/F95kF8lOIlffCx1EXLSN6cueUApLMPE9n0dV6/qDdiFAMbHotXfklbRzjLD4uq1LRZxzP7xoY4Y246OXTi6nTl0PWSrzWwxZ+fogKqq2B+eaVyDYbK2ssrtO7dxbAtZVTzd3aMsSzzbwpCKKs1pdbp0amxHUVbMkxjDMLh5/Ra+G/D4yTaPnzzjrZ+8yX/7v/+XrKz0cRwP27K4cWMLx/V4+913kYBpW/iugwucnQ5YJCm+p9tzszTm7GzO48dPuHPnDl/96lcZDAaMx2Pef/99RqMRB0s9+v0+r7/+Orbl4HsRApsil+ztHTIYDDk+PMIyTW7dvEEQNGk2OqytbrK1tUWRSw72j2g2W0RhRKvdY2d3lx/8+3/PbDZjOp3y6quvcu/ePaIoQgjY3NzEtk1dbpQXGHUMfDabEAS3WVlZuYQjHx8fMpnO+PCjBywv97l54zpLd+5y7+5zdJpNTCBeLBicD/jwg/u0mx3W1tYYDCfs7u3zymuvsbq6xnsfvktZ5Fy5eo1Oq8vV9ZsoJGVV8PYH7/Bk+wndeYxhWhwdnZKnOSaC8WDIztNtPM+h3+vz2kuvcPvOHU6OjhkOBnzn29/RTox2G9uxsCyDjY01qqri5PCI0XDE1/79/0JZlaytr3Lz1h2+/JXfwvd8iizHNAS2bREv5oyGA3a2t2m1OzQ7XSzbwHJNFtM5i9mCf/Nv/j8cHh5w584dlvt9fusrv0m/v8z16zc4Ozvjww8/RNblNmEQ4HkeRZ4xGg158NF9wjAgCF7i7t07ALzw/PN0Ox2akRZBharIkpjzsxOOj/c5PTsmCgNsy9IlKV5Et9NiebnPiy88x7vvvMs7bz2j3W6z3O/TiBq4joNlOTiOwvctFouU4XCkOX2GFpksy7yM4bmuo1lUpqC30qN7bZPj4QmnZyfMJ1MmGJh1o1gVRhhRE7/Tp7u+Tqu/zJXNGzTbbTo3+mAajIZTTs/P+ODRA4aPThkcHbN/tM9wNGRyfIJAcfvuTTzfxfZcEBmClNXlDlc2lvF9t441dpFSi31R1KDZamMYJrbtEoQNFBqJcJFaudCylZAgJK5n02gEZK5NZhkYQg8lsjTFNgPaXptEKiwpmc1mZEWuywyEoVe0dRurfp1qsdwwdAlUPazQTZglwjQRpk4qUZY6MmZZGKbGslyYIQpZYRg2pu3oGLmUGp8RhOzuHxCOp3hhA8M0WbI9kjQmzQrKvEIWEtfT4tEkHiIdCwIfx7JpBA2aUZNOs83W1RvcunmTyVTzj7/33e+Q5zlFWdHpdGg2m/zoB9/nZz/9GV/84hfpdpZpNiNW11dxHRNDKMqyuETufPK8bxgGrah1KXRFQUir2WJtfY1Ot4NhWxi2hd9qAAZIgWu7eI6HE4aYto0bNpGGTYUBygBD79ElJsJQWEIP0zzXQ6mSqszryJ1ECN3kV+QpqtKGClVVqPI/M1zcc1zKQseYTk5OePr0GePRUNsZ04yqKqkqrVYKw8KyTSzLZj5Lefxol5XlZ+SZpCwVpmkzGh1R5IW2cFU5cTKjdg4zXWhVuOvrXHWSalaFHwaaxO865HlOnOoNvRB6AldVFXmW6Vxy5VIFAfUgBEMohNCuGikrHMem118iy3IeP3mG73u4roPr+eSlgkWqI0BKkJeKOC1BaMZE6No4tsVyf5WiKPH9AMuwQdaluQIODw442N9jfW0N3w9oNBrMZnOePH7K4dERw7Mx1KCyotCtMI4O4usJaqWwLPuy4QI0zyOuGzIueDJ+4IGhmKczsrJNqSSGZWIp5zIf22y1WCzmHJ2e4AfXCKI2eTHWrCQqijJjPB6CEjQaTTwb2pELRoWqUtrNiF6vi98IUQjyTDOWsqykKBVSGuztHZGmKSdn58wWMVGzQZbrqlthKoSlSIucaawp+4YwiRcZRaY/tGVeYJsmQRjgBT5lWVFJSV5UIATT6Uw3s2Awj2NmszlBFBF1OpwOBihgMpnSbDRYW13FNizKLEcNhhSVZjohNN9CScnZ6ak+QZZV3S5Y0G43aTUjZF4gq4rRYKydGK4LSmAJm26ri2i26bQiXNtG5hkSReC59YmxqjkLBk7NPqqKCmk5+J0WWVZxej7DMaAZuDx78pg4j3nthRfZfO42V/eeMB0OmU0mlHmKLQTK0HbHNMnI04zA9HVGfJYja46XIQ1sKTBLgZFJIsvCDlwit0sFFMkcyzKJPBehBEKKS2aMLZw6M62z17m6aFsB39TuQZmlZCg8PFASzzCplKAUuqUuTkuiqsQUFcKxMaTE9DzyqmBv+zGHgwGPDw559Og+7Vb7Ml65svOUIAhY6i6DUdJe7YJZIHyLaj4kzxLdUoPECz0s08QzLRxT4jmStNBuMs/VThzbcfCUQRsPA8XJ/gFpPGd3b4fnnn+Opf5SLdLBCy/d43h3h7e+9Q0m7Yh80WHj6iabN7YYHe5RpDGuoxsQLbPC9gLCdhsriDC9gG5nGcdx+dmbbzIcDhien9Frt1lZXWZ5ZZnl/hLxImFnd59nT5/pSlgDPM8mjDyKKmf/YI+8TInnc9IkAwXTyZQ4XnB4fs7VK1f53b/399m8vsUsLYmTgjwu8b1AN1J5PgodORqPRpweH7H37CnHB/sMTk5I5nP6zSaOKVjr97CQfHT/PlWe4QQucTInz3KKFDAMnLCBUoo8S3VroGnieQ6mgPliQryY6GNESmy7hv4b+kRWlZISA2RFb6mNVIrDKkZVFdPZHNu0cH2PsBXR6DXxXQ8bi/lkzng4ZjAYsZgnmMLCrsHaKEElwbQdpKwYDM6xLIdWp8skXjCezkFYZJluJM3zgkrXmGo3jNJOjN2dXXZ29/GDkLKqaHb1wv/o6Eiz6oQkWcw5PTpkMZtRFSWL6YLZeIZhWiRpxv7BAWfHhzx5eB+qCh9Ju9vCsw2otBsqyVP8MODVmzf161FUOF6TeVyQKwsnCPnCV36HsNFE2C6724/47ne+y2w0pOkoOp6N69iUmUk6nfP1//jntJptNteu4bouW9evc3x4RJ4lGKKD6zqsrq5paKSwcd2AVqvNnTs2a2tXWL2yQRBGxHGKaZj0eku0222EHRB1HOywg2U7eopYO1ye7B/hWC7NMObw8ID33n9XQ4iFqO3ViqPDA+LFgsVsSpakfO+7KWmm2RpnpyfMZzOcmoVomJrzsNxtcOvOLV7//GdJk5jjo0MWswmois999jVc22G5v0y32+H+/Y84PTtHIZjO5lSVZDKNcVyX5198mU6ny1J/lbPzM5KzAWkxwphN+OAjD8/zyPIM0zLxgyamaTIYjAnDkPWNDq+8Jrm+dZMwbGtQalFAJfFqt4PjOLRaXSzLxTQLLbSfD0jSlOlkgu8FZEmO0/PotpY5PT1lNptzdKAj0Nc2r5HnObPJnNXVFa5eucYrr7yqmWFLmk1y7domSkqOT07I8gTbEhR5qo+7uv2xzFKSsuBo/4AsTUnimMoQlLFAVAoqSZbmmpeWpQSWw9nJMVEjJAx1y2B/eZlFmnJ0ekajEZIXBbLUk9tCaAE/zQpcWzf5+I6HYQgePn6s22qUbsK1DIuq0uiAdquF73vkSpFkKcfjgRan5jMQDfwgIHA9DEvzgwpZEiex5t85rub4CO0ONk3NA9FOGKN2O2nxo0RQL9h0OK52P4PmFmn/zsfuqUs2yN96qyWVT3CRfh6VVEtGCu2Y/xW3j9vtfsEldPn1X/Ud9f0uRaWL5/IJx9Ev6U3i5//zE18XP/fkP2ZsfPJrGj2l2SiqHthcRO+Mix8p6lrti+ejdCzPEoKwbortL/V029FizqO9PQ4PD3nphRdY6S/XfMMS3/EAcG33ciMo0DzPwHMxLJuV3rL+rFYFvuvRajTqZASkc33+KIoKBRydHCFRfP4Lv8H58QnH+/u8d/8+T3Z3eP7uPRqNJnlWMhqPKHLdHLeIF9y99xw3btzgB9OfMBoN2d55RrvZ4PkX7pHn2r0lhODwQJ+/sizl85/7LFJJRtMJKMWTJw+18zMMuOBICqFdtGurPWzLJghc8tyns9RFmIbezE90tOv2nZs0Gg3WNlZpd1q0202yNCOJE7a3t3n40X1cy2RvZ4kwjAjCgKtXrxCGui0uijTgu6oq4iRhPl9oREgjxDZN+t0OS+0W7WaEaQmyQiccijJne2eHs8E5n3rpJVbWVtjd3+Pw6JDz81P29nZI0oTpZIrt2KysbRIFEbnMuRhaeZ5PK2qz/XibLM24euUaQgiGg3NSx8L3HJaWevT7PWzbJI7nxMmCNEtr14uO0Hqez/LKKp7nYTs2W1u3SdOU1fUrjMZDdveekWQpb7/7NnmZs3XrJlkak8SpZgQjKYqYODYoqozBYMDh8SFVUSJLyc0b13jx3l1efvklLWo+fszZ0QFnh/sMTo9ohh5lnnIxqMyKguPjE8qq5O7du9y4fuPSGOB5HtPJmO3hOfffe5uqLCiLjOl0wunJEQaS1aWuBimrim5bp35azQZIxf37D9je3uHsfMiVK9e5fu0683nKbJpg2z5VCbP5gjRJKfOyXjd93DRp1iiJOCkoK73vdP0AL4xYXVqh6Td46eXPsrm8wp27dzBdh9TSbXi2qdEepmkzSqecHYwYP3yLNE0Yng9ZZCmD+ZTQ8+l2ejy8/xHHz/boNRo0GxGbV69h2TZpWlBmI5J0iOk4eI4NpokUgkrqFIdpuQjDpChzyipHKu1aKsoCKQyEaePWKR8sgUJSFRmqKkFWSFkiVQm2ZiGKCqqqZLHQLDjQgv1FydSFSKQb5+omuUs6u1GL+UI/BkI7m4TAqLm40jDA1Kwn09LN7qLSjk9Z6niyaVj4vo7blZVuanY9V8fbTK3HSCQYEtMGwzYwKvOSC2Xb+hxZ5iVZkhLPFzSuXmV9dY2D/QOm4zFvvf0WcTwnT2PCRsTy2gqRHxI4Hs0gIvJDilIyixOOT8+wgwB1wTGtAelmfWwJQ18jzZoLrdnJWgR0vQDb9rAsF9+vXU+GjRAGmAaO4+J4nm63lxWW6+AKiePo+5jGxXq+viYJE2FaGJalm6pNjbQQokRgXDIzK1khVaWB8b+mpPTrC0+uS57rXLaqc+GtRoMoii4FJ1lPqAxD15NblslsuuDocMDa6i6yElS18KRt+AW+71FVBWla6miEUizSRAOGLQvTMknTVMc4Ah/TtrFdRzen5JnmF1GT9quKNE5wyxIh0Mo1tfBkXFylNZnerdvtsjRjZ2eXpaUeUaTb0ooKslyLWpUyKCoQWYlpSQxTIYSFbZksdft602KYBK5PIwjJ85wsy3jzrTc4OT0hTVMajSa9bp+D/UO+9h+/jlJcThgtw6SUJRUaLq6FJy0qmZZNnhdMpxOiKMB1HKazEVKWteAGfuAhDEiyWMeiVIUwLUylgyaGaWA1HeIk5mxwzubmJl7YwI4TrCJHUpGXOdPpGMswaUY+rqWwQ4cky6hkSiMK6HRaCFfb9osyRypIUh3PKys4OjpmNBpxPhixiBOiRgMjSZnP51p4MhVpWaBSg6YfYIga8G4ILLQoaJsGjUZIq9MmzXS143QWU5QVs9lcZ2ltR7OkFjNay3063S7TJCbNMmb1Zqfb7mAKgzRJWKQZs3iBH/gI08KLAvIkZXg+oMwL8jjBcZ1LsHEjilhMJmRFzmQ81dDBjt5AWUIQRQ18z6EZuFiGYDQ4RSmF5zj6fSlyDTq2DTzTwjIMClmiTJOllWUWi4Sz0yGOoWj6Lnu72zzae8Zrr73K6o3rbNy4iu2aPDg8pMozAsvGCXyc0EcWkjwp6DQjbMMgXSzAFBiBi6G0KGeUIHJJaJl4houwA/Ky4HQ0xMaj0YiQUoPTi0JSVQpL6BOKlPoyLZQuOzcN8OqTXZVn5LKitASmELiGSYmBUpK4gkVeksgSlwrX0s1LpueSVyWHe9s82N3hjY8+wjadOn63TBgELHWa9HpdPvPpTyOBxlIbaSqE5zDaSSkSLTwZQmG5TRzDwhcWyoBKKPxCHwuOY1Fh6kYrTNquwyLNODs65vj0CGkKwlaIZQuq1CAIA+7cvUWZTni2/5hs3sTMe3zmS7/L1Zt3efeH32UyOAM1RwmwjIrAtVhqtwl7fYJ2l1ZrCSnhL//i6xwdHTGejpBVSW+px9JSl16vx/HxKYPhmN2d3ToyC65jEwT6vHd8coSUuuTA910MU4uss9mUs/GYWy+8yG//4T8kzUtmcUqaFBRpSdhrYjsOwrFIs4zhcMT+9g7333ufxx+9z8HOUwLHxbVsVjsNosBlpdemzHKePHpEu9Ok02lRxJJFllGUEsO0cFttkJK8LDU4XhjgOFhCMJgMKbIU21J60WNrGG+9pQGp7emgaHeaGKbBYHRKFifMpzFRFBI1XPzIJ2yFuLaDJQzmszmT8ZTxcEKySLEMG9uwcS6iDkphWw6yUAyHQ90CtraGEjCdx6AM8rQgrz8LlVLacl3HsLIs5/x8wGA4YuPqNdwgoNnVm57T01MAojAkSxYMTk+pKi0eL6YL5pM5QSMiXsx59PABJ4e7PPvoPVaXluh3uyy1lwgDn7Mz3eqUFhntoMfzn3qJLC2Zz1Om4xnxIqFQNn7Q5NOvfxnbsfnowX2ODw745l/+OZsrS6z1ezRdC9e1mZkmk/mC73zz26wsr+F83ufqtatsrm/gOTZFnmKaOhLZd5freHaF6/q0W126nT6mZfHiS5+i0+twcnquyx/iVC8+TBfPbxA5LmVVkhcF2B45BseHp1jCpBelzOYTzs5OaEQNwiCi0dDcgzQZkecZcTwnTXOePnlKmsWkacz56Tnz2RzfdfBclxvXr+IHAf1ek5dfvMef/PEf89d//Vf85Kc/ZrGYgap45eWXaUQNfD8iSRIePXrM+bkeKMwXOiItmdJstvjiV75Ku9Oh1W4zmc9Ji1y3jRY5pZQ4jkOW55iWWUOBLcbjGY1mh+WVdcKooRtOhUeeFzx7/AhhlLieBte2221c18cyHc0/kSXD0YgkjpnP5zQbuk3RNl1aUYej/ROm4xnbO9soJblz5y7z+ZyPPvoIy7RZW1unKEpWlpdZWlqi1Wrx+c9/lslkzL/5t/+TjiLYBos4IU5S2u0G1NPEQilOj48pC70mqGquhGXamIapJ6h5QZ7nTCyH8/MzVtdXCXyPZqtJt9clSTPmSapBtrJClqUun0CR19H20PfxXJdWu0lVlXzwox9RVBWtpR6WYWGbDkoqsizH83wajQaFksR5xtlENx3PF4vLqnjf0YM8DKGFp0yDkJVhfMIBfdFWq8sFLhbVFxFZWV9fZCUx0HBu86LF+VfwkbQO83dE1C7//Yn7/OL9Fb/0wy/kob9VYFL6Z/ych6iO+VxWbmggXR2905P7y7jbL//En3uGn/A51f9/AZP6+OuX7ivx8X3VJ75ZXQbsaubTxfOq44Bl7RwQSmAJLT75rgZlS0MxnU6ZjUc8efKEn775FqZhkSQZvV5Pr81tPRQKPc1qK4oCA1GfS00cy2aps0RZFiziGZZp4Do2s9mU+XxGXubEaYxCCxfT0ZBOr8ern36Nw709gsDju9//Po+fPuH3fidmbXkFQwnSNNU/cz7n+PCI1156hXs37/DOO+9ykmbs7e+QLy9z8/YtDGFSFJLdnR2ePHpMVepmqi986QtEUci777/H+WDAw0cPMUwTN3BJk4Qiy7m5dYtup8tyfxXHcbFdh6DwaXc7qEoymU548lTHv1Y2lmm0G/RX+gS+z+c+9xldnJKX/Ot//a/54fe/h1CKZrNFWUlarRZf+cpXWN9Y4+qVzUuHjlKKLMtYLBZIqQgCH9s06bWbdFoNWo0I04S8TLXwVJjs7e8xGg157t5ztNttDo+OODs/ZTQecHh0QJImJElGs91mqb+m9xST4eUnzHUcoiDiYHuf8WjEa596Bc91iacjXMfE81x6vQ6bmxtYpkESz0mTpGbW1kMGJXUBle/TarfraG8DEFy7cZuDgz3+w5/9O+bzOfcf3Mf3fa5du8azZ0+JxzFuXWRVlClJopjNxjx8+Ig33nxLRzMdm3/yT/6YO7dv8/rnPsfpyTHf/Zu/RlWSA98HwyAKPBYLuy4ugbIomY5HRFHIrVu3uHr1Cv3eEhvra7RaTb71N99gf2+Px48eUFUFgWfrhvV0wfLSEr1uh/PhQLejN5v4vk8Yhpq5+Ogx+3sHjEYTwrDJ5uY1dnf2WCwWmpdjSZJ4QJbmVEWFbdqapyN0DM80bKSCNItJkpThaEwzzGllipXeMv71iOc//Vmublzh9S98AStwWRiVZiclMel0RjZf8PTpY87Pz3nvrbeZjMYMTk5QlokR+ty6eZsrq5tk0wVnu0dceXmJpXaP9fVNMEzOT0fMpjFpXhKiI6vUzvFKCVAmlq2Fp7LMqWoRqax0E67CQJgWjuuiZIUwBUhJlRdaeFIVSpUaTG3VEOqMGgwfX55uDaEFNS06SWreuBY8dDuNdpMKgWHadQpGawDC0Gc1UUmkAVII3cBWN/Gpi9Ojuohw67isYzuYlq3XinmBHxlaeLK0CFMpCUJh1DwqwzL1YBMN3xYoqqKiSHPSOCYKAlb7yxwfHfEsifnaf/waKMkL924SRD5Ly0t4hoOjTCI/IPQCirIirzQnsdnp1sMP/RpelEYIQ7OeDEPUZR0XNlYD07JxHC06WaZu/jYtC2HoC6USBo7t6EivlJSywnQsbMPVLcEfX0XqK4cAYSFM87J1W7t4TX31EKaOOdaik6qFp1/XnPxrC0+2YyEMCKNQx16kIowiGo0G7bYGWglDt7Ps7u7qvCXQarfodttIVXI+OCWMQjrdLq+8+grT6ZSd7R2kkhjSxPU8HMdlpb+BaZrMpjMW8wXT2RzP1c0Kaaon2LJSOHVW8uKDaRgC23WxagBtWUmSLCOSAZaiVlJV3dqSIquKXrfLlSsbOpcb+ExmE+ZzzbMSQuCYBkpVFFlMYQksISlyD2E7uK6NIdBNCknKfDKj3W6xsbpCqxWxiGOmszlZVnB0ckScJdx5/i7T6YzhcIwCCnTjjSUgS+aae1DqyvKihDS3yXKHlahLoxEymp6R5iVpFlPKEj/wcFy7bhjQE7XpbKpFnbLA93yuXb/BYpGgMCgq3UKV5hlxmnB2dsbZ2TlFUVBQMBwOqUdkeGFA4IdkWcpsOsVrNhGGge9ZHBwc8t577zMcDhlPJti1aq+kwnU98roFx/M83WqQ5Vh+SOjYrK/08WyH4ekJyArbMWohRC9YiiwjXaQURYlrmjimiedeRAIM/Nwh9DSkfCQV8XxBVhScV+fECx07u1Bjy6LAMUxUUeqY3mJBnmaYlcJzHZZabTzfxfddTKGYTsdkizlIycpSr876G1RFwSLPSJMZpiGYRzpTr6oCZEVZ6A23UvrQtFBkVUFeCZTUU8fh6Rl5JQlaAZ6ChhI08oKskrzx45+xvb3Lb3z2SxRJgiptRmenPN3dZuPKBpvLS/TX1rQIk1cIWeEZPqUsSNLpJZulkglJmmGgsA2ghjD7ysAoJMV0phfzSuI5NoZtkuYLSimJ0/hyclxViqJQNKIGS90mR/uHzJIEmUYEvs/a6gppmpINR3R9n5Vmk+lozOT0nEYQYRgm0rGYlznnjx+SIdi6cZMizZFFRafd0g2MVAwHZ/zl17+GZbu4fkCn3aHVamL1e2SOwe7wlDRNaj6bgwoiTNvEdCz9XleK8XBEVimyPMf2Aq5du8VkOsM6POJ0cM5kNMLIS3xhYZUVIi3IJwtWWkv8i3/6X3P87AkHDz7iB9/6Ee+8+ZBIKIRUzGYLcimRdkBndYNPffqzjBcJ0zjhBz/4PudnA8ajIShJFAbkeca7777H8clp3SCpL6LvvvsuBwcHCKFI05Sr167he3pz6NWVwOeDc6bzOcfnGkb4v/tv/xXXb94Ew6KQBWlRYvsuhm2T5QmLeMZgOOD8/Jy333yL0fmAk/1DqFJ67Sa/+9u/w8ryMu+88SPKItVwWARm6FMIwSzNwbLxggCz1O2PVn3lsFFYSmIqyWhwzng8ohn6tII2nSjU8eay0Nya4ZDeyhq91TVu3X2BdrfHT370Yz0lHc4xlKAXtLEME5kWnB4ck+UFs8WCooYs+8MBxydHzOYTPN/FcmwwBF7gE0UNkkJz44pK0mi1+dwXvkTj0RMWBZyfnnJ8csoXvvglomaDv/rmN/RxYggc2yb0A6b2FCEEZ8fHWjjJFti2xWK+QADpfI4lYOv6FXa2txmcn/Lj732b+40GtmNfNiG5tsnW1Wu0ogaNMKTMK2b5gjJXIA0cw6dIKp4926OSuk0IDKzA496dO/T7y5Si4uDgiP/Xv/l/c35ywo2bN2mFPn7gcXw2QEnJ8y+9RBA1+IrtUVaKLC24/9F9vvf979Jqt/j8F7/ErdtbmKbJz958A98P+dzrr1OWFYt5TJZlJEXBJEmoJiZPdnaYTCbs7x/oxbhUdDpter0es8lEO+wO9rX93bYoEByOz0iSBdPpGFus4NmKRx89I0lilMqxbYter8fm+hq3b9/jyZPHfPTgPje3bhJFEVs3t2i1WqyvrxH4Ab1Oh7PTM/5v/9f/gXffeZcnjx6zvNynEUWcHk8ZmAviVDch7ezt6GmeafP6F75Af3mFTreHaVlkecHB8QH/8S+/hu1odqMXuvjCRZmKQpa6Ycc08DyfKGqy3F+nLAoefvSAk5ND5osZnfaSnhbbCs9wEGYDWem21izLmM1n7Ozsas5jUdJqtfnH//if6Ah61OSd99/i3/+Hf8t0NiPPMoRhEAQB3X6bPM+pVM6jJw/YPdhGVhVVVfG9H55RVRXf+tY3AMFgOKDVbvG5z73OYqGbMKNGhGPbnJ0c641iPK+bfGONEbBtdG5ATzsd08QJfUyh2N5+xvLqMkrpa1KWpZpxaZoo2yDPCkajEYEfIIoKU2qRYTqfMpxWHJwfU5QFw/EI13Fp+7pZyvV8GmFIEPiYpqDIM/KiJEkSyiyjKgpUWZLHCfPxhMj1CByXPM3QBct6yo/Qk1sDocs3lNS/iqmn6qJe2l60Fkml3d2WUXM9BFC7pS4WyR/rRnWM7OcloJ+7fSwxfdJNJP62v/07b78obV0U5amf+9ovylUXj/HzXquLh1eXrCh1KYZdikU/Byz/5Sf6yUf45CMqfuE51Q9RflJcU2BUilJp1oky6nY8oRtM22aIa1nYjsPVo2NOTs9pNBvYrkPD1+1MZkPHbcIopKwkeVFSST0NH4yHCAS24SAryWKx0DEkw8RxPFotzcCppG6UlUqRZZohOT4bUKY5jSDkhXv3WF5Z5tnOM/YO9vjqb/02DbNFYVQYtsF8MWc0HXH/wYesriwRRT5Pn2yzv3tIvMiJogbdbg8hBK1Wi6rSbXb3799HCMjKnCD0+dKXv8SDBw/49re/w82tLa5cucLpyRlHhyeM1qa0Wm1u3bnN8nKfzSub9duleO65O5olWqScnZ3RajRZzOecn57Vjj3wfZfbt2/S7nSxLJvd3T0Gg3MGowFrq8s8efICIPln/+xPWFrq47oeP/jBD5nP5iyv9EmSmLOzI6TUrsNuR7dobz99RrxIEBgEflRzZCTnZwNubt3k9dc/z4cf3ufs7IxrN7boLS2RxHPyVDCdjClLzZx5+OAhz55tkxY5Xhhg2jaFrDg4OMYwDW7euoNtW0wmc+Ikx7YsVlbWsEyHoqiwbYc7d+4C2s2SZinzoxkPHn6X+XxOr7tEVVXcvfM8RVGQ5TnTyZTpbMq95z6FZZlcubKBZeuY32w25/DwCNO0uH51i7t3brGxvkaepzx99oz1tTVGo5EuKKkkSZ7T7vRotTscnpwymYyJUERRg6/85ldYWlri9s2bXLQBPnn8mKos+fa3vsXhwQGGkPp1ba8TBB2iRoAptNt3ub+i97TNFqZlUhYFs+mM3e1d8rxgubcClWA8nPH0yQ6LxYIbN64TeD5RECFWTHw/0sxWKTk9079fMRwjTJNmq8XVG9f53d9/jtW1ddY3NgmiCNd1MISJkoofvvNTjagZnrOYTpmenVEuYsokocxSUIpr7R6J6THfPQBh4AcBzSAgDHxsx9LiiW0gbM3qVZWkzFMMJEHo02jqPf2F4HERE240GpfrV+14t3VTm635QlVZsvNsG9s26dy7e8nXFFy0VAvNaqokSmk3vSxLJvFIs4wtq25OpW4SrxlK9TlRypqaq7QYc1GMUMlSn/MtfU2UEirQgxVZkZUllalFdlnjXy7Oh4ahj0nPCyikAmGgpKyLtyqqTA+F8ySjSHOE5JKfB3p/hJQIVREEIa1WC8/3ME3B2dkJ8/mMTqdFEATcff4FGu0WluNQ5bpdMU5S4lTzgU3TxKx5qY5tY1tW7crSLjDq370qC8qq0K7AMmc2n5KmSd0KqVMfqva4WpbmM5eyBCoECts2sDFYGCCFHiIbhnHZUqwkNTdQUEmpOX95geOUmK6OMaZZrrmSloVpWnUT6s+XVfxdt1/f8VTX+eZ5XiuRerLoOA6tdpsojPD8gCTRAE2pNNTbsQ1s20AJxWwxx/M9HNel39etDnt7+3W9tsLDwDIdGmETy7YZDSc6BpIXmIZJkRVkaU6aXKjrpr5Q1h8Yw1CfqBe36jYHWU+VjNomJusPa4XKtErXaES06w/HeDKsYwy6Icm2bW05lxVK6jhhWeR6fqT0XK4sC8oi19BBy6QRRfhRQFlVPH22w3Q6ZTAaYVoGaxtrCMtiPNP1x0pq+BpAWpSXNYUKdHywLCjLHNsx8XwXIbTKmOUa6mXb1s/xA5RSJEnCfLHQTTGWjefp11zUFZ55UWhnQCVJ04w0y/TCSeqNu1BarAhrJk5VSfI8x66qyxaNLEs4PDzg9PSUwWBIFEaXoDlTCLKiRFa6slpVGioslMQEfMfWHC1bOxIsy0Cp2jVXA9yqskSWJY6tN++WeWEjF1iWPjBlWZLGsZ76FsXlB//k7KyGHVt6Uqx0A4KUElVqqLqSmoPQiCL8QDd4KakttlVVYACB72kRptQV8WVZUMgKZIUhlOZ3WDoOUFS1Km5o67hSivJCWVcGKN2aJIXA9ixQhp4umhZ5KTk8OGA0m/E7v/P3cDoGq1evk5clswf3ycoSJQRBFOmfM55QFQWCEoqSsiqwsTAtUKqkLBWOqZsiVSURlcRSuua1SDIQ+nNr2iaWYRLLUh/bRapfX9uG+r1wbJMoCpBVpZv0XH3Mu7UV3JASz7IJw4jRaMR8OscS9ebI86ikZLKY40VNljo95pMZWc1ecF0XmSekacL5yalmlLQ1Y63daeF6LiL3awAjFFmBoQSFXeqJh6X05ksJ0jghKfTvbiEIQp+iLPF93ciQJQkyL6CUGEK3N5ZZQeAFvPD8pyBOOXjwhPOzMWeDmFurfXzHoiiEjo+5LrYXELXaTNOCLMs5OTnh6PCIPM8QQukNe56zt7fPeDThsrpVCI6OjrQjz9EX2KWlJZqtJivLK3pFiiJOEw2Jth2iZotXX32NTr9PqXRJQl7q31uYBvF8QhLHHB7scXJ0wtOHD4lnmp3UbHi0Gj43b25x9coVHnz4DosqryHiJoZtUQFJngO6wtk2qI8zA5TkEt2vVC0EL+g2QnzXxbVtPbESkImUMssxTYuo2Wbj6jX6K6v84Ls/YDaeUyWFLojwHX1s1McBpnkZiysrLRBnaaKrpS3NPxCGLmWwHZs4T6kqfTw5ns/65hUG0wXtTofzszPiJKG/3GdpuX9p1RYCDFOLTxcQz9lsyvD8TLdxeq52dCGo8gLbMukv9Tg+2KcsUg73dhk4enElpSSLF3jNJs2wgee4GMIkz4rL8xsKDEyqQjIZTagUlFJhux6u67G0sszq+hpxlnJ6fsa777+PCXS6XSLPJXBtDQrPC7q9Pr2lPlG7y3Q258mzbSazCc92tvnsyue4cvUqS/1l7YCRCmGZrG5sMpvNmScZWVURpynj2Yy8qjgfDhmNRhydHNexrYRep81sPGQ0HOioZ7wApWg2GkgUcZaS5Sl5tqCqEpQMmU9HTKdTDFNPtVdXVui029y5c4fFYs7OzjZra+usrC7z2mc+TbfXo9Pp4LourbDBcPgD3vjZm+w83ebk6JhOs4sITebzFKUkw9GA0WTE8fGpdg62Omxevcq169fp9fpIJfnw/n0msykPHmvWyVb7Jpap652V1M4Ox3U0oNPQkX/fDxiNBoyGQ87PTpnNp1RFief5NLttTEvg4mpWZN20lWZpzXZIsS2PIIy4eesWlm0jq4rJdMT7H75b8yeg0+lgGIrpbKKvGapuiTtcENQg4939HRaLmPFQCzthENBqtVha6uN5cx1NsU1AMZtNmM8XNdQ2I17MsR0HV/naEgR4bqC5II6JIWA4HDCbTijrinjqhaVp1WwlWUfLi1xfC+sYW5ImLNKYrK41L8oC13EIHK8WnjRU1vd9QFEUOVmSkaUpZVGgKr2WUlJRZHoNYZsWZVUgUfVg8OOmI1k79MqqQpkCDL2REEJeup4u7ldWFYbQbXhc/PnEeqdeGPzqxNrl7ZddRb98+wWR6JNsjb/tp3/SOEXNEfn5cN0vPGL988QviGPiE/9W/PxT+4TodPkz/xZX1ie//eKRf14I+/he8ufNUQj9xJFKUSiFoVTtygDHskEYSNOk02mz1O3qTaKs6tIHG89xdJtv4FNWEquoiJNFLT5kSKVwKKkqSRwnVJX+XoR+tXw/0EMa/evWrWUJJ6dndQmORb/fxwsDnj59qsHVjqWdNd0OWZ7hBR5xGnN0ckgQhniey+6zZ1RVRavVodPJCIIQJRWO4yCViZQl5+dnFEVB2AhpeE02NjbY29tnNBzDlqDRaDEZzYgXMaPRGKUgyzI8z6PTbl9+rgPfI4kT7j/6iDzXDNssy0gWOmZq1hv5bq+HbTuaNVPkJGnKeDYhjmd4rkF/eYWrV6/S6XSwbQ0cBj0osCx9jEmp3YtmPVwZDkeMRxMEAsuyPo4pSUWv1+Pu3bs8ffpUc/oaEe1WkyyNQUGeZeR5QZpmjMdjhsMhpqk312meUZUlizghDEPanS55npHnGVmaYxgGK8trmIZVD4YtwjCiKAriuCBNUmazGXu7u0wmExzLwfM8VlfXdLlUmlHmFcPhmN5Kj1arydbNW1RVxfb2LoPBkJPjU/r9ZVZXNrh+7TpbW9f58MMPiOOYyVS3vRqGWYuWYNo2nu8jlSIvcixLC6I3b91iqddjc/MKo+GA05NjFrMpi/mc7WfPOD4+ZqnbunxNoyhkZWWZNNZr1NANtdBv2wDkRaYdafMYx3HptHXxSRKnLOYxcZxgmZpDadRA/GbTJC9y8qLQjmyE3hOYJo1Wk5XVVZ5/8UVW1tZZu3KFwPWwLIujoyMmkwnPtp8xm04YHB8TjydMT06RaYrKMwLXxXddriyt47gClRcYtqnXbPU6RphG7QICYWgnpjZj6MG5bVu4rnvpuLtYvwpEvRcsKMsMJeXHUcGa0VdVFePxCN/zdHunlB+L5bWorvfi2rFjGiZSlZd8ZmqxRNTxsfob6/OfuowM65+haqh4zQYUFxbYC4ePLr2qpP4jpdLnXCmRdRuyFnIUhhBYpkGl5OX5R0ml94yV1NH0sqIqNWfKqKNvAI6tC9WQBrZt4zgOVg1aT5KYOI4JgoBGIyIIQxxXI1+k0tyqojZHXLxG+nXRYp8hPhHsvry+qTqGqPebUla69EpWl7/LxfsBquZuCUDfXwh0pM64qObSf2cIaqdZPdOqzRKax6jXt5XUQyKJTswodJGPPv9dhLd/vduvLTx9+YtfZDwe8dZbb+tcX6WzgUads7Rsm5deehnHcbl95x6bm5t8+Stf5t133+KnP/sRb775Jrs7Ozx9+gzLsnn++ecxDJutm7c5Oz1nd2ePspAkccF0MkcInf0Pwwavv/5FptMpjx89oiwq6nIrfZGt9Efbsqx6M2rpBZ0f4LkeluliW7rdRaEwDFlXB2pb32QyYrGY0mk3WF1ZYn1lmTRNWSxmmJagEfnYjo3ruvqEURYcHexR5DlFXn4M+zItglZEWuTsnxzheB6WbXH1+hUQBvc+9SmU1LWmb775Fqcnp1pZRGBZ2qLa6/Yoy5LRSDf8VFI3o2W5rm+8qGEtioLDoyNsy6YRRJimQ5F/fEAdHh8zmU55+aWXaDabVDX3qd3tUpQlxycnhJ5Dp9ujv7yCYVoMB2NUpfDrKWWapDSbbdqdLp7jY5k2VCBqy+H66jJf/a0v6yYF1+W73/0eu7t7TMZTHQMEzTxJEm2DFIJkMUfkCe+OzrFMi+WernVsNhvM59pSaxoCz3MwlKAsKhYz7cKxPEtP4SwbB4FrGIjajpnFCUVZ0unq5sTu0hKj4Yid7V1EpUWGoNHAsSxWun2yNGFweopA4jkmrm1iWwLfDbEsg6mhqIqCIovr9azAMiGK/FojqF1BUrJISnT7oJ74eb6LrLRoptv/BHZ9mMmqQBlgOqLezGd02n3CsMmP7n/Ek2e7/J//u/+e69eu8l//8R/x9MF9RtMB8WLBz955h8989nU2NjY53NtnPplwsHOMgaQVhFieB74HpQQpyfISWenNgRZ2dZxmkSa4vofru4i8xFJgGRambWGZpj7xGgKlBBKBsFyyCvxOFytqsLKqmWWq2cKwXLxSkktJkuVEy2s0VwyidgthmszzkobjcK3dxjAtTNNmb/eAYTUk8kJcz2WaJHiWx92bdzSLCsXp4JyD02PatoNvmFy58zxGfZwVZUGSLChkRZ5VtIIIz3I4P9smmS9IK8V4POP+k20836fdaiKrAssSPNvboVSS1176LL5rUgiFFwZ0V1b48sYmX/zd3+fBzh5HZ0OKyRBRldz51B3youTw+IyDsyH/w//j/4lh2RiWxb3nn+PVV17m23/zDd2UlWcc7B+wvbOvmRCYOI5uC9zZ2cFxHH7jN16nv9zn9p07rG9scOfOHe3MK+uIGGCY+iRuSEGcpewdHJHmOWmeM5uMWcxnvPOTn3B2csqzx48wBPTabVq9Ju5qD9sQ2JaBzDMmQ22xXyzml+UFynaZzOcs5jPC0NdCX6uL53p0Wy2SJGEyiVHSpCw1RL3T7lGkCVlaUnr6824Jl8BV9Lp9GlET23bZG55zkmcksgLLAiXIypL92Yi1lT43r+nYlWlbZEIRU3HtxjWuXr/G7Zs3GZ2eo8oCJ2rQbDURpkle6tID0/FwgwaOF2BYNl7o0+62aHdb5HnK+sYqyyvLRI0AhKCscn2MezZClaTJnJOjffIs5vnn7rG0tIQf6IHKfD6n226zdeMaShZYtuD4+JgsTrn33B2uXbvGH/3RH/H+ex/wP/2b/5nFfE4Sx7QbAb7v0uu0ME2DNE0ASR7HHJ8O2D04oqjAsBxe++xnqGTJn/3Z/8LTx0948uAha6sr3Kx/9+vXrrKIdVFHJeF8tuBbP/4ZwjBotFu89rnP8qf/1X+lHaRlwbe/+U1OTnScO4kTfvDd7zGfzzk+PeXo8Iizs3P6PR0F9Dwf13XYunIVuwZe7+xs88F775JlKbIqaDcbWJZVl0gYuL5uRgsCi8B3MAzFK69+Ctu2KcoMx3FYX99keXmN5eVlwjACjFq0ybixtcVSv8+7H77P6fEJ7775Ns8eP+bdN94gdH2WltoEoY1lC7IiJi8KxqMpnXaXT//RZ3juuee49/xzPHz0gKP9A/7y63/BYrEgjAKKouDujeusrqywdeM6J4Mh4+mUKNACj2kKlKyYz6fMZlMODvZ11DOKuHXnFgrJGz97iyRJWFtfJWo0WF3Z4Pj4hLfeepvNjTX6/SX+4B/8Ae12hyubWxRlyeMnTwgjn7W1ZX73d36bL7z+Wfb295hNZwRBQLyI+da3vokQur2w2WxybX39cgF/785tLNtGSF1ZHy+0m+nH3/8hs/mM+WLGhVxQ1RzHMAjrAR4ISsosodls4QcBRV4AkmYjqp/fQ/rLSzx++ADbcbl37zlG45F2Jp6fkecFG+urtFpNTk9PmM4mlGXO7t4ORydHtLsdfD/g2pUrNBtNektdSqWdBEZuogyFLAuqsuTk5Iw0y5gnCUEQcPvaNbIsIU1iCqmbzbwo0E0+1BtTYZBkGWeLiXaK5xn9bg/f85hncxBo+LqpBcOsyFks5nRaLWzXBWS9QbgQSuTlgv0STl7HFC5ibL8o28AvizEXtChxERv+WxbRf1dfz69uoPu7Hlt8QmPSz12qXxSufsVP/BWZhr/1WXzyrhevDaIe2tabLRMsYWMLWCQJaVkyK0vNuPQ8DGHgmBY3Nq/iCYv7Dz9i9+kTur8VYppd/bmoMs7jqS6RKHI8W4O9wyCkKAveff8+cayxCHpTp0HaRZHT7XTrVlMNDr9ocwtbIXEeM4znNFsN2r0upmmSZRmDs3OubGzwO1/+Co+fPCKeTRiMz3m2/4xbd2/TajYJQp94FvPDH/6Qfr+vG7NMnY5wHQfT9IjjBWmasYhTlGExnaf0llb4vd/7Pfr9FbrtHq9/+nV8z+frf/EXnBwd8+jxI4QwsGyLRqNBq9HkxRdfZH19na3rN6gqPaQfjUa889bbZGlKmiR4nke31+XRo0fMZnM2r6wTRhErq6u6yn77Ge+9/yGz2YybN2/R7y9z+/Ydup0ut2/f4uRYg7zH4xHf+MY3OD054ebNm5RFPZRxHLIs5/33P+TVV1/lT//0n3F6esr9Dz5kNBwipeT61at0e10ePriPZVqsLC3rEp4kZX1tnXZbnwOyLON//L//j1RS8rnPfgbP9ciyQotLkYOBgawU3//+DynKkmtXr+P7Hn/913+tBzzDAUEQ4Ps+r7z6Mq1Wi16vj23ZWLbD8fER7777Hg8ePOBb3/oWX/zSF7l5c4utLUVZVDx6+JgwjPiDP/gHunQhCC9bCF9++RVc12E8nrBIMjav39DNzgKSOOHZzjaVlHS7Xf7Zn/5Trly9ytVrNzg7PeWv/vov2NvZ4emjR8zGY5LFgsVijqwqxrLCMU2aUcRSr8vmxhr7+/uMJ+e0vA6OYzMZjymKgjTJKLOSqxtXWFleYfPKFaazGYPBMZ966R6u4+C6IYPBgKfPdhgMhxwcn+A42ghw9/m7vLK6yuc+/zrdbpd+v09RlkzmM57ubPP1b/012XhGGackwxF5kjI6OcNE0fJ8mmH4/2Ptz5oly870TOxZa+15++x+5hNzZCYykYlMjAWgBgCsIotFqpvWV5K1SfoNupCZfoKMF1J3/wFJZNNkbFGmbhNR1SxWkcViDZiRABI5xDyciDizz77nvZYu1naPyEQNkFm72cmMiHOOz77Wt77vfZ+X1wdb+L4dzkVda686u5hycnbGL+/dZefaIW8efJ2426EShtLUFLrcpM4VRUZd1aTLOUWWAdhmsuczm882Z3DP9eh022Rpwnhi9yzrPLLrb5nnCG2Yz+ZgjE1EzXOyLG3wLJqisEONbrdr36dZave/ZIVUIKSwNkQpqOsKo8F1rdKrqioakSuiAdVJYew5Rdu1uSpLlJS40qU0hsxUlMJQCyxHEJCV3jRny6ognWaskhWu49EbjPCDEFPV1FVFWViBSSuMqfKSuqia1D2DDOyOURRW9dfr9VguZ431157V45a1+YdhyHw+4//xL/4lt15/je/8/j/C0wpVW2GM1jbxWTRcKyGEtfAJYYc6jd/Qc20fAmF3Ka3N5vrDMCCMfNtLEOAouVFQCQxG2MfsuI1t7pWBSlXVGGWgGe7IJmHWaPuaCCUtisb3QQpMozy2Qz0PgYPR1jIqeCVE4++4/PpWO9dO6qVsJGGNjUQbmwhjLXBpAwMDz/PZGm0xGAw3C5lyXGqdYKqKNM0beZ1nE3Ec63MtS3sIk1LS6XYZDofcvv2aVVMsVozHl1zmVrorjGjm8i+HROKVjXUt0bP+UNV0YcE0PHwwVlqPttNBbDMNY6jropHz1WAcHCUxxkFIQa4ktZCA3hQcWtfUZYFGU5kaLQUeBj8IrOpIuQiprKKr3bbFe1FRVxothf0wGRq2k1WrCF3bzqdsImrzvElDsFGlogkq17Wx6Xil7UxKqXAdt4lV9m3qjVK0WjEGWK6WhP7AvpGDgKBJ/TPS2ElMpZGqxA8j4tjeVymsYsA0bWbf9ej3e/R6fdqtDu/HLTvBsu9mDPbDVJa2eJFS2udaGMpm2mVM13ZgVdM1N1bhVWQ5ujYIY6ex6zh2KV7+WTTdXSkEvmvhaAKB63psbW1bhdXxMXVRUucFyvVwXNuld5R9LztKNu+BirIwRKFnk+481zIP9JrL0EhOHWfz+DdcM6PtfZJWgaccxz5+YdVmINFFvVG3bRqm2loqbbfcYKoaXRScX5wTtSJWRY7wXHYODjg9PmaxWpFXNWlZUQtJLRVpUeEIA9KxElGzLphf8hzqJp7XylQbX7Rd5alqez8Dv3n+avt5royxHmYhqWuDzkuU44JykJ6PVop5UlAVFSU2ObLUBt91kK6L8gOQkqqoUMYKrIypqSpNXRV2Uc9zJFBkNmYXz7eNpboiyRJWWUbQ7eL6AY4fWJh6XVEJQZUlrJMIRBNpbBdvQztuIYqCF+OzJppW4roOrueyWCw5v7ggy1LCKMJvHmtuDH4QEgUxw6JGBxFTZSjzjMpxKCrLQcnynCRNCSJbtLZaLVpRjGrUNFpr8rxgvljhegG+FzZrnGwUeYYsy22ogrATkiiKrcqwrIh8z9piPGshnpyPKaqaVZKQZpm1xp6eMBuPOX52xOTigmQ+IfA8gq0hcRzSabctC0VAmecs5vNG9WnIixIpJXUtbIQsbCLN/SCwUE8h0UZQG8sBEULZRBnHpUgzqlI3m719rbSBMIpxlIOpa9IkJTN2w/I8l9JzKauSrMopqpJK1ziu3SyVUo31w262YRDge95mvViDhAEc5eB7hna7TRBaNSlYDiDC2mukUvawEsfWx16W1HWFFFbhWhQFSZLgeh51VYEB3/UsK8fNN7baVrtN3GrheR5lWYCUOJ7LYDhkuDVitL2NkJKqrsnrijrVxHGI41gVl5TKHjSylCxN8aMWYRxR1RayPL68YLVaMRoOG9h3n6jVxgtDG0MvhFXKpCl5UeB4ro26D3xa7Rbjy0vmsxmT8ZjpZIKUklwpxuc2gWx8fs5yPm8KuwWmrnAdB+F7dDtdvGb6GTVNGs+z8dFxaG1UdWXTq9rddqP2rQiCmMCPGG2NCIKQ5XKGchRRK8b1XIqyQGNQrh38BL5PmqZMp1OeP3/ByfExR8+OGE/GGGMI45BBr89g2CdutUjzzAZs+D5BGNrXoN0ijmObaDudMJmMWa1WCGEQUjRcIhclQGiDrq1KQwlJXZXW6lNX2Imhle+3WjHKsfu67weUVW3XxwZIWjfKTiFsmMfW1jaj0ZYNB1kumUwn5EWKHzi4UhHHEYP+AN/zUULYdbyukULiOg6B79OOW+RFTlVVRGFEEITUJRvQcpZlTKeTTUKsUqKZ+jbTTylwlY1P1xrq2tjnALMpwh3XoW4izFerJePxmN5wQCe2VqiyLBslVMX2cItWHL+cutZNcWuMZRmuGRKsJ+I1VVWS5wJMjdF1o4JYUhR2b/ACnyiOkMqGVqw/27KZ9gsj7GuDwGhNVhQUtQ2GsHu82OAZpK5tVSdEs8eaxl5nrRQvW0kv2yyvNlzWjZu1+uelKOrTzZpPNYvW+/Ir/2Yju/9+68Cv/Mhne0J/ZzeoScIzn/33V3/0158k/82XX/39Tz9ftiKWAlsHWMlRs5ZJHM9DCYMyhigM2RqNuP9AUZWFtYJmqd1wmqSp2mirZHNNo2SzNtOqiSSv119VRVnVlHVNXpYIKa2SSSrKssLzPFpxRZpY6zC6hSMVvW4XXWuWiwVJktCOI/q9Hrs7OxS6YpkmOMpaVozWDfjWHmYnkwlhkzxdq7pxEJgG5J1jkMymcxzlcuPGzaYGqgmjiG67Q6fdJs8z0jyjKEvm8zllUZKnGc+fP6eqKsI4tFb0BiieZbk9QBoIQ8tHa7dtiMfOzg6dbpf9gwNOT0548vAheV6wXKw4PT2jKCq2t7fxXI/5fEFelDacpRmWqEbZ7rhy81pXtf2erjWDwZCTk9NmQJFvzjR1VbFaLW0cu+NgfHsITnPrgHCUopKqsTrZc4Hb7BtBEBAEvlU81jmzmW02Hh5eQQjJfL6gKOxZxfN9wihka2uLwWBAHLdtjeNavpfrOpRVyWKxIE2TjfrFNGtZEISEjZ1zbftyHJdWq43neRwdPWe5WOI4LlqqJhDBsrG6Xeuc2d3ZYdDvk6YJk8mYo6MjXjx/ztnJCelySZFneI7b2Ltsfe+6lkPnOg51Xdn3WbuzYRDVteRlpqRBOQo/8GBpKOuSuBUShRFVLZta27J32+0ucatF1Gqxf3DI7t4evb7dA13XNtqnkwnnZ6c8f/aEapZgkhyR5uiyRKepVaPFLXzHwVMOgefjhwHKcTECkga0X1YWpB9FkT3frSVCjepIwEY5ZxUz9lyslN27XrLk7O9ZjpJVIxltqMpqU7uZxiGxvn4addK6vrRf9ry0WXfWT99aqWo0QiqUY8HrWttzbaN3Yh3cZd/l68fRqLI+tSNYRVGlazsskJvFfXN7prk/dV1RV/bsWFfVBt1jVW+OTTF0GrvbWrL1ynpt9zfRfK6sM8gOQ+z5SUoL9RZCMh6P2V4sN6qitWX81X3ppbLplfW5UXWtH9tG0dpsPOt62SqP2CibxPo2sP2F9X19+bv2rGhvUzZ1tHj5EgqzqUM2wR3ilddAWF7juv7WjbLs17n82o2nTz75hDRNKcsSz/OIorWcMuG4fMHJ6QmffHIHraGsam7fvk2WZZRVQRi2uXrlJoEfW7p/nnN2cdEsaA5CuRxevcpisSBZrWy6Shjx29/+Njeu3+Sf/ON/TJalPDt6xh//8R/z3e9+t3kCBZ6r7IG1rDfdQq3z5mBSI8RaRaBwcanrijy1h9+6KhmNBmyNBhhTM5tNEcYQ+C7DwRWWqyUPHj4gDEPyvMPW1ha9Xg/29qnrmvPz8w3872I84eGTR3R7XXq9HnmZ4zguq9Vy0xlstdocHl6zAO1ulxfPTxiPJ7axI+1C5iiHdrfTSGVrCzxvt5hNFywXK+unVRLfC1BKUeSaurLQ4en2glarw60bryMwdNvWi1yXJVEUcvPWDU5OTnhx/JxWGOF7AWHYJggLisKycjxHYFspitFom2vXbyAc29ioSt00seybMPQDAt8CWWUTHxxFkS1mSxuPm2RF06wUxE6EkA5REGweh8DY2EttpfmTizGXZxe0oha+59NpNioaK5BUigyDLgtCP8QLQm5fv0lZ1xydXzDa3uYf/8Ef8PDhI6RyufPhhzx5cYycTpFK0el0rGx7ZxeF3aCWyxlFkeLfukE7Duh02tRVRbZYNNZHveksF3lBVZaURUZdVfieYw/Fvmsbswik8nCER7fbx/N8Hj56TJJlSGkLbKcUqNouwJeTMReTGb0ooh23CLptssWM//a/+2+4ce0qv/tP/gl3P7nDnQ8/4uj0jAfPXjAajTDAvCjwpKCnJaIUqAQwVvHkOfZ+VVUNZUVepoStFvujLdI0J80y8qJA5xVbwz6+6zFbzq0NI8vsYu0I5rMFSVYQd3t4nsdslZGN5xyfnKIclyBu0hNcB5ICKUp01EEIw4vTc8q8QGd509nX5NRUGJLFDEcoyiIHDMdSbVgflTBoAVvtDtJ1mWUFprYqj7IsWCUFoe8TRTHaDSmEIjcC6Yd881vfJikK1A9/hB8GDLZGSMeGHZwen3B+es7VvatkeYbXCVllOQ+fnWCKEvKKW597nS/cusmLhx0uz8/4D3/2H5heXjJ5ccrVG9f5ja99DSfwcTwfZRo5bZqQpClpUWKAuNVCNqkTdVWRG0MQ2NSfn//8Zzx50mO1WnF+fo42gmXTWAqjGOk4ZHlpN2ENZV2yyhLOz884PT3mo/d/wvHRU0ya4ArB2zcOCaOQTr9HfzBk5+AAZUAaOD8/YbVK6Pe6xFFgeQJlTZrkdHsdtnf3KMscg6a/vY3vBzx++ITlasUsyei6Pr24TZ6llFnGPM2oy4KRVFS15unRM9qdDleu34DasDq9oESg4phuHBFKwUIJ2ww5ec7pyTHZfM5v/eY3Obxxk1HcYiYvuX/vPrUxvPv132g4IRFSSfKiACNwpUsUeyhHcbB3SLvT4fLykuVyCcBqueLi4pL5fM5gMODmzVv2MD+boZtkuTTJmM8XFnZclRw9OaIqakI/QkiBo7ymCSbwwxad7pDDq5IizxiPp2j9kH//J3/K7u4u/8f/0/+Bx4+f8PTpEX/2Z//RMg0vrVpTVBWem5EVNZWuGQw7/P4f/BPeee89xvMZdz75BFNrbl6/wT/+vT8A7DRvOp/xyf2HPH7ymPl8huPYAv+dd9+10m00F6en/M/37vH44SMuz8/pdXv0opj5ZEpWVpwfHTFbzHhxcmItaIdv0O73rLzbGKIo4ubNq1RVxXg85vr1axweHrCzs0Mrjrl37y5pmrI1GBLFEaPtEWmaMp/PENJBCEWv10cqxceffEBVV+RVxflkzMVsyXg+pTfqc/v2Lfb39vijf/tdLsdj7ty/izHQ7bTY2hqxMxqyu7PNaDjgjTffIG7F/PyDX5AkGTuHVyjKgifHz5imM+48usPdu3e5PD+nP+wx2B6QrFYIY/A8hyxNOHr6lCQt0HmN9grKWnN+eY5B0+5EDAYjrl+/RX/Qp9fv8cnHHzOeTHjvy18B4PTkGcbAfDZDScnVwyvs7uwzGu7Q6/Rxlcsf/7v/mYuLCx4/fUKtK0DTimJaUYvr16/T7XY5fv6cNE15750vopQijmOCMCCOYp48fcLF+QWrRYrr+QhASUkQeBTZinQ1Jwh8ep0R/Z61GedZTlVXZGmKDHy2hwOWScJ0viDLUlarJXGr1TSNA4RSBEHQwNnvsZvss1OVtNsdfN/nj777b9G15jf/979Bq9VCuQ6z1ZTFcs729hZbW1Z5pI3hxdEzpn6A7zoYIakwzKYVpq6JowgpJfP5DKkUr926iR+EOL5HPwrZ3t7Cdy1XSiLQVcUyy3GEouvH1FVFWmZ4vkfYiixM2XVJyswyJeoKqpIsW9uwws0UVjVHJgF/h7LfVs5NSPCvZQAwzYHipfpoffnVf/mVy+bg8OsV3Z++4ZdttL89ke9/ucsm6nxzchKNvc5ahZUBX7k4WrDIZhgp8VshRVlTpBlxK+bq1pDTyzPC0OfiwtpWDw4OabXa7G7vkhU5yzRBOAqk4Oz0lDzLONjbRWtNlhW2ke77myF2kecUecbHH35MulphaotqKAprlXJdF78GHcd865u/RZpl/OT9n7JaLPjae19kezDin/3T/5IHjx/x9MUzBp0uwhg++MFPqaqKf/gPf4/5YsGHv/yYra0R+/v7rJrm6vmlVQSenV8ipeLsfM7bb3+O3//93+dHP/wRv/zgA3zfZ9Af8IUvvmfVJbFVsnz44YdcXlrO4r/5N/+G07Mz3vvie4xGIw73D3Ach8PDQ3rdHvu7e3i+i+MoXn/9dYqiYLS9je/7RFHEk06X50cvGAx3qK7X3L9/n6dPfsn3v/cjpJTs7+9zcHDAd77zHd586wtEUcju7i7D4YCz81OWiyWPHz8hTW26aJqmpEnOo4dP+Ku//AFBFOAHHh9//DFxHAPQClsMhyO8po7/93/6H/j4448b1o7g29/5FkpaZEPgeezv77E1HDIcDPnpT3/G+dm55XnVNUlilY/dboe33nqLN996E+U0wz/HQ0pF1YDcPMcQxR6jrT5bW0NGW0O0qVmu5pSV5XmGkUdd5zy4f8cmcnk+3/zmN7l9+zWEEKyWCT97/wNWyaqx1mkb1FSWKMfjH/z2b3PlyiGddovL8zO++90/4uzslMePH1HnOVWe0e90CL0RrVaElIL5bEI7DAh9F4UhWyWcnZzx4MEjwiAk9H0ODvbQRnN8fMLpacqzkyeUJkPLEkQzMJMaLTVJWlEYaPcHvPnuF/nyV36D7Z0dBqMheZ6ySlb8x//4p4wvL1ksLKtnNptRVzl1UbDf6dMf9Li+e4DvulxcXCAdh/bWiOViyeXZBWVZE1Dy4sUxiywhbc7Ru8MBe6MR2/0hjuuhswJZGVwjcaXCkdJiDnSNdqzqUQKBH9DpdJrwrtymixcFWWZDu3rdHmmSslwuMUbjehanYqQhjtsEQdj0CgrK0rqjbMPJ2uZmzT6brFbUlR3IVrUFjwcNgqPdaqFrzaNHT5qAAqdpprxiJtZ2eOi6DlpItLYjDG0gryqWZY5WoBwXYeywn6q2DLmqtGl3ShGEIYEfkOU5ZVXT6/VpRREH+/u0220838X3XYLAtQPMynKWpLTnSa0rlqs509mUy8tLqlLjez5lWZFlBb4fEAQxg8GIfn9At9tFFBqd1fi+fbyisetatbay1sNGhFKDHX7nJUJYLp7WdnCl5FoAYwHfCG2/ZI2REiMbR5qkwU1IqqqmagZySrp4QdykDytrfy1KO9gSFqauXIUWGk2NkK5tNJmm2RqGmyFsmlrO1K9z+bUbT+fn1gdtYw8FjpNvpHNVZbv5aVpgDLiux2w24d69O0SxjfaNwpDhcMThlauUZcn7P/sZaZpSlIVtGEnJ7t4uYRDQ7faI45i9vX063S7aGMIo5tatW1y5csjW1hazmZVqK8c+hE+pndaKFKM33dI1Jd8Yq/6pq4osy/A8j9HIckHyvCAOrKd2/SYYDAabbmJeFCyWC1zXgq695g1T65rA9/Eche86+K6L1yTyraeodZ2BEJxdnLFYLtBoamMZBwjbSTZNZ7hqOsdVVW2SAtc+W8BC9JIEJRW1UzVvGsH56XlTqPk4roOaLXA9lzgKkSiiIMZoWC0SlHKJohZ+4yEu8gKtLbC9rOpmg1Aox0W5Np3GNG+qqvnwCrEGilnQnO8HZHkBWjTKA8m2UKRZaheZRmGy1pvVtd5Mv9bxu46UVmHQKL2KskBWpX2BG7J/VZUblpLEpoSJSpKmCbPZjOOTY4qiYHt7m3S5tGqM5j2QJgm11lZJIAXStSww00y9qnL9nFtwmlVDlc3Ut0JJgfI8hA6oa/t3KS0/qTYGU9dN9KdiNZuTSklV5kDdQO8livX0F3QzxA1cZSM0y4K6glWyYjadcTGe4rgBh1dvbBhAy+WcoijoDnqoJuVo/f+11dnIBsTqWKklroNugNDCkQRRRLGs0aVNRKJRmxlT4zqNnBLwHQfhW1i6aF4rqhKvec9av7ZECTttwhiKLLeyWcfBaVRWdeNlVmgqoQmU06jP7CHMkdYXbZSk1DWVqTFFSbFK0Vlh1XLNhF7X2NTDWiNaitDzceIItJXVmmbK0+l22N/ZYzgckZUFP//gl4wnU8aXYzzX48rNG9RakyUpHhLfcRmfX7BczHh2/x6z8ZgySZB1TeS7KDTJckHcTDHWRbNufORCys1Bwr6nLVxVSdtEEFJYTlae28W/rCjywm7iyQrluLiIxn5QkS1XLFcLTs9PGY8vuLw8Zza+pMpShq2IyPfotVs4roOuSvI8YbmcEfsRvutt1ApWAWU3Flc6hF6E6znUTfqnlIokTSmrGiMNQgmkq/BCn1a3jdYVeZ6iXIUQjk2uEWy4Matkia88AuURuz6uH7IyAmEgiiOQgmE+RGHtzUEQ0en22N3eJVnZxzoeT/jwg1/y9PHTl9BhsKkpZYmWBlEIlnVCWde0J2OSVWIVrA1A33U8fD+wVlBje7Bx3KK/1+diPOXk7JzK1GR5weX4Es/zODg8sKmWvmct1mlCXVlFpjBgakNdVKzmS+5+fIf5dNbscS43bt7i6bNn1lYtlX0u69raK1vtJobWYWt3jyCKyc7PmS9XZHmB1nBxcbFRdUxnU2aLuY1crmqEgUqW5ElCZjTZasVisWA2nbKaz9FlZS2VSuEoO4DpdFpoUxKGHoN+l93dbZTnYgwcHx+zWgakN25SlgXTydjy/bKsCUmoSFaWZTERU4qiJIxiqroEZKPUq8jzEoRguVxZqXpeWHj3zj6mUT8/e/aMxWzGbD6nrmr2dvZwXYd+r4fv2WCIsuFcPH9+jFSKF89PyLKcWlvVw2IxJ80GaG3XpCC0U3alVCOBB99zwGjSLCFZ5WR5SafdwVfKFndCELUCPC8gS0vSJMfzMhzX2yip6qpGSZeyLJnP5iip2N8/4OqVa+zu7nFxcblRJNV1xZXDAxu2sZjhOC6VNiyWK5vEtVxSZLlN9KortDEkacJsPmMynbJKLOPPcRyksfuW743wXJd+r4vrKHvIdpRNDvUcnFpulLey+d0gCgmJQNDUNFjMQLMuFUXJ0dEzolaLrZ2dTYJcHFtrXpqsUEoSqxar5YKT42M63TZhGFhrRFVvmiB5mlklS6Ms9kKfVhzb1C/XRSqHTqsNUpAsV8SRPZzJRoFMA4Qt6wqNJlOWn6XLCuV5+I6LEcZapyvLnnRrtal1pLCx1Wst75q1pMR6WvvZSlW8HEg3E+FGMLX5/qftd+bl733q/79yrZ/66Ve/83Le/rf+0N95zWZzn/6Xu7y0UvCZe/dSDbZutAtj2XtW+WTTBYVj1SoIUEY0hyC1SZbaGo1wBKySpeV8CFu7eUphXBetgyZtMkdXNdLYFGwhJHlebtQra0ZIrpwNx6loty0nuLEUy2afdaR9TxVVSa2tOjIvCn70ox+xvbPD9Rs3qGpNVVn7ipKSwWBIludMZ3PqqmJnZwchBGfn54yGQ1qtFleuXLH7cFZQNergoihZrpZW8Srg/OKcJEnY2dklbsW02m1czyNuxfYMMRyyXCwb26dsXBu2Pl6tElvbKmeD1Shye+5ZLpYbhq3n+dy4eWP9cafb6zKbTZnPFzY9W0h83+fZs2dEUWgdDMZQFAWrxN7XbrfL1tYWBwcHRHHM2fm5dYssl2zvbDPaGuG4NmTE8zwcx6OqNGW1Yj6f27Cg6dRyYT2vsYt5BJ6PkpL5dEqZZ0zGl6TpCsdxqKqSutbErZhup8toa0S312vcFjVVrRHCDtKK5rx4thizWCxxmnPSurnouu6G8bU+3LbbtpkRRTFKKdI0o8hzlqtVk6BYkeVTOt0OV65cxVESR0oC32cxn3Pvk0+YzaZcnp1RZhmjfp90sWBZlcRBw9nrtFFSUGQJTvP6FIUdMruuS7vdsec+2XwOjMAydiqyPEUqRbffx/F8HMej0x/aWqTlErW6lLWh2+sTRBGL1ZJFsuLs7MSek+/eZbGYU1cFZu1QqCsMluEbBj6eZz8fSkmKBpeyWq6YjKe0gpDIDTi9HDNLlmTp0oYqxTFRp02r20HXVpyxVi+t10YpJXKtKG1WI91wAG1aakkUWT6SNtoqb8Ng8zp9OtxhfdatmqCAjdTUnl+tpNIOw5VVqGttbWn2sMJGtJDn1vWyVuZs1Dy8vK11KqreqJ+atd+8VPLXWlPTWLM1G9eOae6X/JRDqvmdJtAiyzM8z7duBa0tu5cG8F1XWHWYC8aeZaUQ+J7fNI+s22UdAmI//wqlVKOGEghpNuu0Nhq0xbfoV9lYsmEnmbU6SlkFcaOUMliFqV4n1mJANCraV8zh6/OvvVKzUS+t6wbZ3DfbH5Evf3cjwLIN403zTzTg8bJseKpi02P5dS6/duPp3r17TWHj4bouRWEPT3Wj3DDGsFwlKOWws7PLZHrJn//nP+PmjZu8dvt1Ou0OW6MtvvHNb4K0U/Dj42OeHD3dPCFf+spX+MpXvsLt27eJ4xZ379ynrjUnZ+cc7O/x1a99hWfPn3H37j1+9KMfcX5+bid3joMjX3oLtbFMm9rUGKxixVp9SsCqD8qiYD6f04pbvP76G4zHlyyXKwa9Lr7vk+cZQRjw+c9/nuVyyWQyYTK1cNZut0sQBPb/hCjXJuht9Xp0uz263Q7KtR3+NMso64pVkjGbz3j67IijZy/Iq4JCV1ToJoK8eUGMxi/sZl3kuZXXt2LcZiMQWAvJ+fkZEkHo2+hRIQyr+ZxHUcjh1SvErZgwDImiiKtXr9ouctSmzg2X51PCsMX29i7T8ZTpdMZ8sWwAubJhAtVUGhAOUdRCKcUyWVkrVCP3tCkENoEkilr0+wNm8wXaGOI4ZtCAHx89eswnn9wlrzVOrXF1DbUgzwskFhqtyxqpBVEUEgaB9Y4KwXg8tg2fpkjSTSHqOsoGO2ptAW9YsGqSZ/zxn/wJB/sHfO5zn+PG9esURUFeFKRpyp/92Z9xeXHBZDIh8D284QChHBzHpSxqkiQDYRcZN/CoSkGSplYmqjWdVos4jBCtEKM1eZZQVxVFnlHWNknIUT6OCji9fEqWJkT9Dm7gWUULElEZtJDkgPIUwnORtd1sJ4vZBkp+cXrO977/E958402+9o1v0e5GCKH5V//qXzCZrnjtzdcos5TTp08xWiBNjZJYhdk6stQ44Fi7RlFrzqaXDPpD+qMBaZlRFBmT2RglJVpbOH4Uh+jaUFWaqBMhlGshxVmOMAIP2O3FaOFQCq+J9naohMbUNclshlKKQadD4Hr0wpiyKCjSlFmZkdYlnrJSVKHsQhq4nm0kKmGtZWmKXq6YThdUuZWv1g0s2FU+02XCLFmyu6fp9XtEuzsIqThfLKirml6vx+H+IV985z2u3brJ/uEB//z/+t/wgx/9mMf3H7CYznj7C+9aAOV8Rbc3YH+4zfd/+Ffcv3+HJ3fuUOUZt65fZei7uPs71BIe3fuEvSvX2FL7RL0BjlLUCCojcHzbjCxyG8FcZAUgN9NKz3NJE1ssrW2YVVltIJntdtdOMIymyBIe3b/H06dP+eEPv9dcZ0o7dIl9jzdv36DfblnVXpFzMr4kzZZczsdc2bvC1nALqQSuoxBa42AIo4goajEY7HB2fsbp2QlxJ8J1PV4cv0AqRdSO8aWPX/h0hh12r+xS1hmL1ZQoDhDGx/UVxki6/S55WXD0/AmHwz22tg7YH2wR9fucPT6izmv6wyE9A4PhDulyyXI6ZTTaYW//Cl96+0sM2iMenR/x5MlT7vzf/u+kq4QszYgdHxNCluVIIagXNUVZcHxySqfXw0hIiwpdGdAShUMr7tLtDmm1ehgUZVmzv3+V3/6t38YLI8pa88m9u0ymEx4+fsgqXXJ47YBer8duf5fFYsbzo6fkaYKrHMq0IFummKJmNh/zHz6+SxDF9Ifb/K//6/8N/+y/+i+J223OLs5I8gSja6Sx065Bt08Ud2i1u6RFRVqWXE4XTCZTFvM5RZbz0S8/setyu02aWwWi5yg85SIx6LzgxZNHNir86LmdOuY53XaHbhTR8nyUI8l8h3Y75rXb17kYt6hMzq3XrnPj5g0uz8dMJlM+eP99hJRc2d8jLwqePj3i9OSUFy+OeeONN9je3mY+Xza2+Yw4bnFzviQIPKI44PTknIuLMWmWU+saL7BDgWcvXnDz5i1u3X4dIWCxmPEnH/yC5XzB7/zOtzk8POTbv/Nty/qIrBV0NBrwp//hT/nRj37IX3//R8xnc7I0p6wq0nzZhJjk3L59E61v0253GAy6m0mgrq19O45jFvMZ04spk8mU1TJle3ubMLRAcsd1QShWq5Sjp6fM5gnd6Ypev0W30+Gv/uqvWS5X7O8eUpclz46ec+3qdT7/7tt8/vPvcHBwhX/+z//PfPTRh+zsDtnZ2ebb3/4Ws9mc+/fvM1+mzFcpJ+fnlEXRNLIq8ixFa9skz/KUJFmhpE2oMVMbXe5qQ6fVYnvYp99usTPsWWtmZnEFdZHbSagrCFxrlbPx3A7dfq+xrcTcv/fArpUYhFK0Wx2WyxU/+MEPaXe7vPb6G4RBiOd53LhxneViwdGTJ/R6Pa5fv87J8+f87Mc/5s2332LvYI+zszPKsmTQG+K7Hqv5YtMk2NnfZ3dnh7jTQgjB7GIMUrKztcV8seDRg8fsbG/RbbVoMlwwxtrM87LAAKWuSNMEnaa4UUTL88hNxaoqmKdLdFUTSRsO47jupvC2GmxBtYaoKmczaFxf1qol+08vD1f2e7BuEq2n5p9u9Hy6ASX+BklV0+rilVL8V9pWr17TZ3/3b/sbyJdR34D8zHdfvZ2/61p+9bY/+xMv/76ulvX635sBYoUdKOC4Vt2vbbqrlg5ObK1IRZ7z2u3bqNu3+OWHvyTPMxsY4zo2/U45RF7As+MXLCYTZKnxHJ+Dnb0NVLuqLAPMHvQMgW/TjwfdHkpK+p1OM9SDoqzIypKjx0+4OD/n+ZMTlknC9u4OlxeX/F/+2/+Or3zlK/zX/9v/Hcen55ydXeIqn1YU8ebn32U+n/GTn/yE3d1dvvWdb/PBBx/wwx/+kN/6zW+yu7vL259/uxly1kznc7Lc2kg/+uQjposZnu/z4MED8izj8OoVBoMBTuBRlRWtTodrV65w+8ZNbly/yYMHDzk6OrK1YqdLkiQ8fvwEY7QdUDbv0WHfqgstn8XW7O1Oh3/we79nm2yOtQX7vstikbBcLvn5T9/n0aNH/PEf/zGOowjDgCtXrrC7u8Ng0KfVbvH222+zvbPNixfH+H7AB7/8gMdPnzKdz7lx8xbvvPM2p+dnVHVFq9UmCEOWq4SLiwuePXvG3bt3OTk54caNG0RRhBQQBQFvvfkmJ8fH/PhHP2Qytkm+n3/nXfrDLZI0wWjDQaOevXr1KspR5GXRWOhSWq0OTpNIOp9N+Pn7PyKKQra3d23zSSniqEWn3QMsVqGuawI/4NatW3S7XQaDAVVtePb8BbPplDRJN7avRw8f88Uvf5Hf/d3fY9jv0e20+JM//mN+9pP3+Vf//b9gOZ/zlS++x/bWFu+9+R4vnj3lwV2b/ttttxkNBtYemS5xXctxUkrQ6cT0ej1ef+0Nm3DnOEgl0LWh1gV5mTFfzok7Ld58+23CuIsfxLheiOO4dLoDlHL4HRxOTs+4c+8eP//5z/j444/46MNfcHlxjmhCona3RxZovr1FVgjSvCaMfNqdGITlm2Z5zsV4wi8+vmPPG0bTb/doRS3uv3jGeDknKVd4nsutq9fp7u2yfXjAfLJgfD62zZzauiLQ4DWWOrlu4gsoipzlcmmtnXlBt9NBKAGN86PXG3BxMUYIi67RRm+WlixNkNIODHUjKNlYwZRCKNU0UR2iMCQXkCdWuW6b0pb5liZ2qAhsUtdomj626QSOsut53mAjBGIjhLCWy5qiLMlMjURZIVDZrPuNiEEIaw+utN6sw2VVscpSTpu9MAztoAzAaMvOLQVobRuBa7ui53n0+wPi2Ao6pHAwRjaPw9rlncZ2roRAKMeuu8baFoXWZE1arGmagVJJpLADXyVto9iKQVyEsi6RSleUdUlRZWhTY4QdIRg0RtjBVK01jnEw6CYYSNpGoHyZXLgW3MBLC+Z6HMGaq6WEfS80zoHVakG73WocWy/tf3/f5dduPLXbnc2f5boYaOxV6zvb7tgYdfshKagWJRcX50RR2LyBFN2e9d3mWWq5AVm+6YzW2iCVi+v6CKm4c+cOq2TF3u4eFxdnZGnCvXv3rBSxYYVYS+SnH6zWFm6IMY1Nax3D2xQOgk3n2mAla4vFguVywf7+Lr5oCpyKTcHkBT5uVW486sWGRC+b4sh2HpVjpXvLpYWlBmFI4Ph2OlrX+EXJueehq5JOHOM7HkWjbLKbk5XLWwaJ3iQ0hVFIK44RprYJN0sbwT4ajjaFuuu6SCWYTsbM5zOSJMV1XZ4dPW+SyEKePn3K2cklP//ZLzg/O+P89IzZZEqv30NXuolFrahqC7qsGsi5UJZzQi2pdG2fP+VsvvKiYNWoieq6thHUVYnTsHA+97k38ISV/G31eniOoloukNh4ziLLyLPMTisaELWUklYrRjcLpQHqxk/azDKpqxJdlQgMu7vbVAYePLjP5HLM5OKSSlvPt5LKerXTlKKyhYxyLKcsCAOc0KfWmsViiXLsezXotFHKAYRVp2Q5eVGiZI4u7XQC8zLpQEiJdF3biFGKdjsm9F3cOAAlmw0aqABj8BoeFFVlLadC0XUUeVWTLxOKJGF8ecn9e/dYzBbcun2DXr/D3t4+QeCznE2o8gLHizBGsypSy29RjoXwG7OZJgjlgqkxGFZJQtUcijQ2oU/Jl3W60bqB61lrm2kiRpW0TDT7vl9DCFXDG6lwpLaLnjIIqa1SptBMypK6KCjSjFoJHCGom6ZrWlQIIQn9yKrJlJ0IRnGLUhbUZY1SdipuXIkjHQInAtcho6YyhmWaUpZWhXc5m+MoRRzEJKsVH338EeP5lKPnzyiKoimma/wgIM9yUAo/tJPdJE25cfMGW7sDTJEyvbzEcezncW9vhxrI0JR5ztPHT8h2cpRyGutxRFHbDWOtJPJc27T1/KCRoieUZYVA0G63qeuKp0+fslgtSbOMRbtDVZZ8cvcOk/GYo/sPWC7mtAOfXNTkVPTaLdpxiJQ2RnZTzGrb8OgOhiTJisfLFUq4oJsUCyORgC5LkvkMRxgGvQ41NVWRkealZdC5dgo9HAxRUnFxdr75agfWelM1yZBlWTVcHavWqwTMkoREShZJQpKlhHlokw3nK6o8pzSGZyen+HfucrGck2lt4+ndDqOdHc5PT/kw/YCiLDi7OCMIPPzAModMc6i0FiUf5XoozyOKfFxPkWUrVqs5nqcIAg8hSybTS77/w7/m8ZOHpNkKY2wYwGIxxXEFL46fk+UJypEUZU7cjjg5rVis5mhq3MClv21VKe+EX7CQfMfH9TyeHD0jz2scJ0CWFUVVMJ+vkCJjPkuBE0CQNqlBl00TfdDtQcsQ+/GmQbGWaE2nc6qqJAp8XKUIA8v7Uq5D5Lu0ux1acUwY+MRtC1vt9DsoJZnNp6RpiuM4jMdjal2zmi9JVynDfh+lJPPpxMaiHx4gMeR52kAxkw0U0+7FJY8f3cfzXILQo8gryqKiKizLqdfdQkpBGIR0u33OT86oi4pBb4C6ISmLgtuvv85oNLLg3lVCkqxY4wSOjp5QNeu25zpcPbyCAMaTCyv/r2sO9vYYdPu0Wi0836fWVkVw4/pNtLHrWKvTZTDaYrFYkqYZe/tXCMOYs8sxZVlaNtoqY3w5o92Oabdjbt++bpOiGmV6mqQkTbNbOYqt7REPHzzgg5//kovzC6vaqWsW8xk//cmPMQbKokICoe9ias8ORkxNiWZVl+imTgh8j3Y7Yn/vgF6vz8OHD5hPZ6ymU6qqaFgSisDzqIoM6rqBHivL2ZCWo5BlGdnKrh9JnuEoZ4M6yLKMyWSCVLZZk+c5i+WSxWLFapVQVTWeJ/Bdj8oLCKPQpkY9ecx8uSBqxWhtpfK9bhclFe12FykVEkUYBHTabQbDIa12i/OLC5IkIYgilOsxnc1I0swCUaVE15pCV1hWiosAFJK8KjidTtFlRV0U1KVNUz0+v2CVpQTKBlwoV224j67r2uhqaesOoEm3+3R9+lIZzqYmNZsG1Ks/aTb//ZudbeKVn3rF/vbZq3nl+y95GfYH/2Zl06cvm+sSv/IHPntLf1sp/+qtfrph9unre1WRsE6XWl+pENb+L6SixtbSm3q0qpAIfOmAtgrktZK6dB20lHRHA9I0ZbJcsCoKcmMB165nQbRRFDX7oSBJEqTMNolIhmbC39hwhADH92w0e3OUlEJR6pokz5CeS9xtc/v119Fa4/s+F+cXzM/tIfhP/uRP0cIq6osnT3Edq8azwTuC2XzFRx/doa4Nb3/+Haqq4sHDh7Qbpt+t126yXCWcnp5ZZp9yGPQHtKKWtbAmSZO2Zxs16wTp1SphsVyytb3VqIgciqJgOBwyHA7p93ukacJisdi8MovFsmFkWVvc8elJg3Pwabc7dDqdDZPF83yqquLho3tkacZXv/olix0oCnzfI0lWrJIlSilWqxVKKYbDIUEQ0m63uHrtCtporly7Qn844MXpCXle0G43ShIpmU6nfPjRRziuy+uvv05ZFKwWC167eYNut7tJ8aq15srVq7zzhbfZ3tnH9S0vyypjIgyGo2dHJGnCYrmg27Vp4WlqU2kvx2OSZEWySvFcH9f1UcoyRuO4Rbfbw3U8dK0JgxghHC4uxsznS05PziwGRAjL1lSKTqdtFd9GM+j3WS0WPH/6mMlkzCe//JCT4xcMuz3aQYCpK/JkxfTygirLiIMAr8F95Lm19y0WC+JWbN8TcQvXC1itTnhx/IxwGuD5LqtkG20MFxdL8lywvXONnZ3r7Oxep9aCWhtOTy/I8pwsu0NRlEync87PL3j46BGXlxdMJmMcKeh3O024kSIOG2tzXVtWYFWjsDXvPM8pioIHx8fN2hsiioIyy1izpnzXoeX7BMqe0fPpgmKeICtroXWEBG3QtUaKhoFmXgo1dKN2saFQGcvliqIobZKq7zbOJrNJEHdd1zap60+zQj3fA0zz3nVJsI1m3/OQYWST2B27V1Vl0ah5GkVP0zyqKpsUu05Mk1I2ApK1YMsCs9dqoM06adY9Eqs8dByFJ+xg0gaJ2iaVEfZcXdU1oZS4nkea5VDaZpnruoRh2Kg+xUY/5Pv2LL9OcbPWMmOTbg2Nc6Bq1HpOowyzIQ72s28ZlMZYzppVtAX2syPF5gGs0TtVXaObocnablpra5XTwjIgN000pRoQsk0tbfpLzVUaEBptrEVQbfbGNcOxcYRZ8mujoLL8RdHwnzZPcvP8r/cQqzosqJpE3F/n8ms3nnq9vp3gNeT7deNJNYR0IQStIGSdRlcWFVmWWyq9sbY261vUBEFEmqwoi5wsTe0TKwRVZTBIhHLRGn728/cZj8dcu3aNTqfD48ePeXD/PheXl3bq6rubSMhXtdB1baPhDRrHUWyS/uQrMmwpUa6LxqbGTWdTprPJxvq2brjIzEbM+0FAUdrGU1XXmKKw0Z3SfmCMEFSmRjqKMIo4O79gPl9weOWKbWw41pKTlxUvwmN0VdHr2CSoVZZQNmAzIYRtUhUlwugm4lATxxH9fhdhKsoiJ1lMiKOIGzcOSFYJ8/mSWtv7fHl5SZqmPH1iJy9R1LI2nkaGX5YVP/j+D2i3IjBW6D0ajqhrTZ6WGJMhm4P8uqsuANfzkNpC22x0qoUOO45LlmUslsuNdW65XOJnFng3Go0s82u1oi5Kru3v4TmSJ3fvUGbWi543nvS1fclrJIudTgcB1HmFxlBhqLSNodSlVWapqkA6DleuHHI5m/GzX36M57rcjdugFDQFiOM4LFZL8rIgKQpc30MqSRj4tAKf1WLGfJ7geBLfcxkNBhYQG0YWZLlKyIocYzRVnmHqmtBzG8i59XZLx2kaTw6h2wFj0ApKXXM5uaCqNNSCwPVpB7GV1ZYlXuSiXEWAS5qVnI8nFGXNZVlzcXbOLz/4kLL6LW7evM7Vq1cZDgf8xX/6T1RFSStokxUrVumS2JUgHPK8RNcat4Hqu8pDmAqkZrFaMZmMUQJUE0OulB2CCBrgflWS5yllbRcgL4hRymm8wfbiOS5RYKHxuklGMEDlaFsA6oKyqpkn+QbyHkY2UjSrc8q64mI6ByRxVDYsAEWv36PV7pCKxALKaWS6vsRVLi2vhfYUK11SGc0iSUiTjKKsmC8XtKKYt994i/l8xqOHD2g/7NHqdEnLiuFwSFnmhFFMmuaNEs1Gx66SFZ9763MMt3qcHz/n6NFDRF4QhgE3rl+nwrAqC+48eMSjp8/Im8fj+wGtVovJfGYtm2WFIyVu4Fp4ctzh5OTEMu+KGoG0HLii4P79+w100cbYZ0nC+z/9Cecnp5w9fkwY+OzsjMgUpNIw7HfptlsIbBSz9Fy7lRpDFATsbm1z7/5Dnj17zv7uIXEQWUAxBmEMVZGzyArCOGJ72OdicskiSZnP5hghiVs2UGC0vUOaJBw/P+b4+THnx8cEVw6JPJ+qqJrUHluAKOlaBZ+A8XKByTKmywVFnhNn1lJ1MZnaQAAMj54dMUlWXEwW5HVNq92m3+/x9W98g3v37vLk0SMmFxfMxmOGwwHtTpvQtZwXJQWOq4ii0FoqgVY7xPMUq2TOfD7B8x00PkjDxeUpv/jgfZbLJavVym68yjCdj6nqnKfPHrNMFkjHqnk73TaVLpnOJ2ih8UOPq7euMRqO+Pxbb1GWNYtlgkZw9/4DvDBCqgAoqaqa84slZWH5DIvFnNlsuomcj1ptq7C9fgvP8ygGVnV7fn6+GaBcXp6zXCzYGg4IAh8p2tS6wvEtNL3T7RD6Pp7rEPpWBbu7u02apdy7f5eiLHEch7OzU46ePUUX1uKwu71lE+vGY4ajIa+9eRulIC9Sjo6OmEwmeE3DI4pj0nTJxdkZypF4vkO73SOOOlSlhbBvDQdEccQVFHle8eLoOUIKdra22d3bxfVcPv/OO0RRzIO795hOxjx69JDZfMrF5Rn9Xpd2O0ZJiEKfd7/weTzX4/nTIws6FdDptOn1uoSxhaMmWYofBHzla1+nKAruPXhgQauetUnahJmAsqz56O49JpMJl5eXZGnOYrYiCgPiOKQdBXhSIbRtyK6WFsaapimu67Czs80Pv/eHfO+vf7BRKmhdM5tOeHD/Lr1en+vXbiIdh9D3ENSUrgQqBHUTOW2B3d3ugN3dXb785S9z88ZN/ugPC57oivnFOVVZ4CqF57iEvke2klDXhE16jWhk8EEQ4gjJVEwpi5T5yu6z/ipgsVxQ5IUNdwhChsNt6iRnNl0wny2YzxeUpeU5+I6P9mvarTbL1Yr79x4ym88tzkBrVsslN69fb8C9EdoY0szadw729mm3WkRhwC9++SEnZ6d87q3P44chF5c2hdcLfMtxqWqqJoY9blm1tBKCuqw4Pj/FQdKSbsMAKXh6dMR4NuWNK1fxosg2v6UFzHquberrphlpLa1r1VJz4GjsCevDS3PCaPAFn+lRiVfgrJtK9uXF/I0/+0oTZ9MyWRfif/+E9+VPiL/z3xv3zt/adhKf+n3ZTLXX3/l12l32wLA+cwjYMJ9QirXBYpnZoSna4DZqZFFVmCSndiXaVWS6QklFb2eEv0p48uIFGrhMEpvy1ungKUWr1aKorB1jsVjYQ25doxyLZqia+mLNNnEbiLQNrrBDqLwsWCQrpOfQHvS5MRoRBAHtMOLi7Jx0vuTDjz7mf/of/yduvHaLw2tXeTp9Rl1p3nnz881h1mE6XfLjn/yMz7/1Jl/96tf4+S/e59Hjjwgjn53dXT7/9jvkRcHHH3+MwFpLe50evu8zHA5ZLpfNMDzh9PSkOQwL5vM5l+MxOzvbXL92DSEkq9WKYWPlOzw8YDwec3T0tDlIC376059adWFhWTk/+9nPSNOENFuyu7trGVSrFWVZcuXKFVzX5fz8nO3tbX73d3+X+XzOyckJ4/GY2WzGyckZaZpy9+5d+v0Bv/Wbv00URRYs7d1md3+fm7duMRwOqRsey3p9UVJyMb7k/Z//jK9+9au88cYb/PiHP2S2WLK3t0e/37fhC1i71WtvvM7XvvoVytqQJBmtdsumjcYxRhvuP77PyckJT58+5d133+XmzZssFkuSJOXho8dUZUnoObRaXTw3QEmr/m61OvT7Q1w3sNa9uI1AcHpy3qSopSjPxfFcvvDW2/S6lqfbbrcZDYe0O22mkzF//dd/zQ9/8H3qLMNoze72FkoI8mRJulhwcfwCtKYVhnhKIY0mSxLKsrT8IUc119vB80PmywWPnz60gHXXZbkqEdLh/GwOKPb3X+Pg8HUODl5jPJkwX8x59uyYs/NzHj68z2Qy4d69B4zHY46Pj+l0LLe3323T6wzptiOUEOjKWlBNVWGqGlNopFE40uV8uWC6XPDJ0ROEgYOtbVjZEJ51syLyXKQJcGorXFhcTsmnC2SpUbXAQYGGutIoqXBkk7bdWKaM1o11siJJ0oYJWjaBHz6r1ZLaWN4TGBsMpl5ehzZWIBEEvl2hpLDAcwxlVRH4Pn5suc6OkniuS9UM9gWyUfvTYE+s5VVKZ6OYstgj++9rlMJamWrWXScjmqO+PTO4rouvwMVFGEFNTd38bFGUVHVlbeO+z2KVoI39u9cIJoIgtPuAYNNYk1JSV/Y+2s+RrR210ZtUYq01rmOH0kUDzAc7qFBSUmmLLXJdjyiOabVbTYiGlVVIx6qZiqpssDYSzw/w/ID5ck5RVU26XNOwU45VUClphwMSjO1JvTJn0PbxNZ970TSeqgZCv37NhBSbPdUOBDaRXhgjXjb+mmu1Z8WMqnwJZ//7Lr924+nw8Ap5nnN+buVnRVFY3koTTyqURDbdrrqqcT2fwWCLqi44vTjFcz1cx2M8meCoBScnxwRhxH/xv/qnDEcj9g8OefbiBX/9vb/kcnyOH/ikqxXpcsn7P/0JjlKEfsBytWSxsIWX6/sNl0Y3Xs1mCxeWU6KNpmg8iOsNVxtNkiRUZWET7AQUZUGr3cJxlY3D3tDcP02cD0MrWS+ahKokSTapc7WuWWYpeV2hJXQGfbwwZLqYwgJaUUwct7h65ZCzkzNaYczlxZT5fEXUsfHiNprSvshpZqG2AK7nNp1PjTBmQ+wv64qyKvDDgN3YpmPVdcWNGzdwHZf66+toRg+vORzP50sWiwWn5yek6Yq97R10XXPnkzvkeUGRV1b54Lm0uh36o2HTea2g0s2Evtp4su/du8vR0RFPnz6myFIODw4AeHF8TJblvHj2nOVixXy+QJYVQtesLs9xpEDpEs9RDEejDa8r8H1cz7cT3iyzHwSAGvsp8qy0VhuryjG1wa0rHM/l4GCPsB3z/PQUJRWRF5BVNXldc35+tkkuqjZsG4njek16hUu328O0a/LCShZPz85sikXDmAjCCNexcZTtYIASkCwXzfQpazgHCscBFzZRo/sH13DDgJ6+zSpJePHiGEqbUGfLZ0lWaqSpkI2ea3vUJ8lLxsuk4RYY7nzyMZcXF9x+7Rauq9jbvcJyvuD8+QlCVniOjysdXOFYxQdQF6VtGgpFLcFRLrmoKJAIUyNqQ5nn6MqqBw3m5UElCHENTQ/cSimFY9lMXuABgjxPEcbY5Dq5/gQ2B7WmEYMRONLBa0VkRckyz8iLHOk6vPfFrxHFLcK4a73lVclga0hv2OOTDz/m8uwC6pqyLDg9eoarHAbtDqs8I8+SzWc0aFQwnTjEaMODh/eoG1WOCDxk6NPrDHAclyfPn7JcLXj8+DGtbovh/oiqEuSl4fnZKdN8AZ5P0O2TXJyxyDLuPn5q08VCn26/z5vtNkbbBKebN66SpBkPnzxmPp+TrBZ0ul0GvT5f/NKXOTi8wo9+9BMmkwkIy53QBs7Ozvn5L35hZa3GcP/eHTzHZXx5Tl1mtNqhVbYEPrHvYNohpq5YTKeQW0B/K7apYlev38KLI4x0yIqSxWq1USp6gYcwhtC10l5TaowuSRYFpsrxpGFn0Kc2cHl8ztSZMrucbda+YXfAqNNnNZ9yeTFBjYZN49ltNumAvCx5cXpClBc4fmAh+lKRpragE5mFyBsBWZawSFyePn7IYrYgjFzCMGA6mWCM4fbtWwSffwvf8zBlha5qzi8v7HQ5ywnyjEWy2ihZhQNRO2Rvf5e9gz0+enDXpte5HnmRMxmPrQKx1bJqj4ZnppRj4+i1tko4bFrf5958i6s3brC9tb2xh2EgTVOWacr5bGobWcuEi3Or/kizBDA27rZJ1PNcj27cYZxZReqw02c0HHL18AAhBM9evKDbbdPutJhOJ8zncwLfoywK6trua0VdIaSg1e8ihSQtCvLS2g/3d/eo0PzkZz9vJk4VaZYxXy4aRkeEVnbvK4VAOg7DvV08z+P47IxOp8c3vv5N3n03ocgLVsslxhi6vR5ZlvPk2fNmqKN58423uHH9FkdHz1iuVgRNAeZ7IYEvaMVdojgibkV89MknPH1yxMMHT/Bcj8+98TlcP+C1N94gz1OSdG7jfhvFlNGGN956k16vz1e/+Vt271VrflHNfD4ny3N2PI8gjOiOtqnrmmvC7r3KcSjzgqqsrDpSQ7vfp64qpLSKpsnljLt3PuHenU9Ypism8wlXr1re5INHD9neGvK7v/stqqrihz/8IU+PnrBK5qxl/dVJgsHyVKaTKQ+qB8RxRBzbCa4jJZHnEnoOo/4bYIxtoNUGXWmOHj5idjFmd7DFVnfAGzdew1GK7dEITE1dFQSeS7/bpSwLlnlqVVVS0R8MQBuGgy5+HuK3WixWC+azCa0oQrRaNt1TuYBBKokfBqRZztnpOW9+rsZzHWbzBbPZDC3s/r5/eJW8rFk9fc729g7bW1t4XkRdw9Nnz1Cux/buHpUQnE0mJHluY5s7bbYdRVaXpMuK2XIJWFCr47r4qU+3FRN6vq2J8gylDZ5yuLp3gOe6tIKI+WLO0YsX5EmC0oZ+p0cUhhRlhetKolaIUs5mICeF2qjL9Wansf8Ryu7Ra+aInWWKT9Vv68tnrWuv/llj+NXLZ9tP9nbEZ/7172/92N/6bONr3ft5ten0t5vkXv3bqw2xv+s2X/lN0bTN1sowY3+irrVNrBKCOiso8oyiYbfO5nNiL2DUaqMdiXZsba2LmipNkbXm7ZuvkeUFk8UCtzLoVUHU7RJHIUWzv7nrV2hjwVEbzudytaJMU1Rz+I3j0B6QgNDx6AfxOnYPR0h0WbEoF0il+I1vfJ3tnR1acYuD/X22d7Y5v7gkSTKq2h6qR6MRi+WCFyfHfPTxx5ycHnN4sM8X3nmPF89PePHimLq2iIjt7R0cqXCVw/1793j85Am6YcZi7GDu4w8/ZDDo8+abb5Gs5nz80S/xXBcpJHfvPWA+X7BYLuj1enz5y18mjmPanbZV9EnJe++9S1kWBJ7PZDyhLHOOX7zg7t1PGA4GvPXmW9y9+wnnFxeURY7nObz99lskq4T//l/+y0161DptfH9vzzbg8xyAX/zifdZ82dHWFts7OyzmE1xHcPvmdbQxNukty7j/8AFFWfL666/jeR6XlzaoI0szO2QxgpPTE5SSfOO3foe9vV2M8nj25DFnZ2f4ftAAlC3Hst/tUuY5yWpJt9MmjkKcJlW71W5Ztb+0XJ3LiwvSJAGsmiQMw4ahozeqk+s3rrFYLBlfjrly/SrDrS18x8HUmtPTE6qqxHUcHj26x3e/+4TlfM5queDN115n0O9x9uIFVZ4TxS2rpGzOAGWRo10XgQvYJsn+4RWCKOTZ8Snm5ISirinrgivXbjLoj2i1Oty89TnKUvPXf/VDlquExTLhw4/uUVR/yKNHDzi/OMMPbAJ86DmIbpvrV/YZ9TsMe52NOkRZiCRFbpWva4ttbQxCKtzAJ68qJosFP/rwF5xNxoynEzpxi3a/T4FhdXlGpAyxJ8AVCC3xAp+6rKiXC4ySqMCjShKWRUZharSAvCrJqgKDRmAaFalFmYBAm0Zo0Fiw1umOQlRUtbZhA6VtUBVlTpaldiBfVejawRhja37PwVMujhCsioIqTQEf0wwjbNPZa7hCNqlaCjZ8NNM0kqy2RDQpjrbvoGmYTAirYqqNTZNVDlKXVoRSVZS6Ud4K0SST11RFgTHaNoEqG+ChpCLwfF577XVGoy36PXteEDgI4SCFdaXY56fcpK0qRxGGoVU9aet68n0P3eB9gtAnLzzy3Dak/NCnzguq2vJ6p9MxabJCOqrhQ1tulDR2rVNS2LRYYRl8ZeO8ElJiEBRVbVOqheXpOo6PaGx+eV41zS4rjnjJXrSq7SKrcJR1VtkBhHWklHlFnhc4wkEKZYfNvsa4TRPM84EVeV5SFhWeU+O6NmDr17n8/6F46pGmKYvFHGPMJvayru10Uq0BYkJQo/Fc63e8GJ8xnc/oNNLtxWKBQDCdTtkNQt55+/PcuHmLt995h//nv/7XfP8H30NTE4UhZZFRljnPjo5sPHJZoRyboBVGEZ7rUlZ5I9VVzUZqDzdSygYuVr/iO7Sy6KIs0I2vVgibHBUEPq6rLOwcGxu7thKuL55nuUMyz63driiQUhKG4YaUXzYRjmEc4foe48djyrKwB78wZDDo0em0CX2fNEm4ODtn290hEMGmg6trTVnYD3UcRxbmXddobZBNR7TW9rGVVUkc+7RbnQZaXHF4aBNGer2+hZlh72O32+HycsJ4POGnPys5O6/Z2tqiKgqyNCVNM8pK4/uW8h8EAVEck6SWS2Ma36fWFaBwHMX5+Rm//OUHdpqlNf1eD6kU88WSsqyYTqeUpQUABsJCqqdljiNhd9DDb8XE7badbOU5nmsVVGmyoipL1qp6ZWwymRQea1CaBThbGaMQhl6/i1GSVjtCGkngeFRZTl5XLJcLiiwjCENb+Nh1tpmQ2qLVRrxL5gvLzZkv5whjcKQiDEJaccuK5oQgCCMcpVglSypjyKvaxrYr0EJgpJXcSqkI2l3ibo9O6DObLxgvE4okpaiWOIAUkrI2CLSVQApJOw7twjrNLfyx1JwcH7OYL9je2abdbtPpDtAV5PkzXBd818ERCoUgdD2kkBSV1aY61hBlF/QGFmsaCaa1dRocxx7atLCxpq7j2J9DUJRN9LWQyAY8WlcVWZGjsDHZGNk0n8DomnS1xCCsLzlwUIHHKstIEpt4ERBx4+Ztuv0hftShrApWacJge0Rv1OfJ8xPMbIHOc6rCMJlMcZRtmJW1Vb05UqKExHV8HOUQtmOSLOPFi+cgJK7rkxUZfpnh+y5REGG0TW44OzulqAs6Wx1EJaCEyXzOqsowjoMXxayUoqhrzscT/DAkMoao3aIXR4zPL8mynOGgT1wUnF9a1ouUkiiMGA6H3Lp9m9uvvcbx8Qme5yEbsHGtNdPZjIcPHzYSYs3JC8/aBFvWdugHDoHvWu6P4+IqaTepNCMxmspxLbDU9egPR6AcNLIpDKqmwLebrRIG33MtgJ2aosjJixSjKxwhiFoRdW04eXGBNpCuMgsVDUK2hgO67TZ3p1NWq4Sykd5b25ljG8V5TpYktmFn2ExVyqqgKkpYf5YVVGVBlmdcXpwxuZgStwJcVzGZjNna3uK1N15je3ubra0tnj85YnJ5SZKmLFcramMoa02SpZvGk8Hg+i7dfpder0tR5BYM6ftgDGVR4EYxYRA09iDV7F/GMkyE5QVVVU2WFezs7uEFPrdu3yJutTZW7Dt37rDKMmbLBeOLMdPxmIf37jMZj6nryjYArx4igDzLGfSHtHpDVrMFOYpWENqiMW5Z/qC2m3XcWJ2qqqIVWxXqeHLRJG4ubIppFFq7b1FgdG2VicIWqU+fP0PXmuFgQFFWrJIc1w1wnAAjrbTBGIP0XDr9PrrWzBYLDvb3uXb1WrNHwMX5OXVd0+/3Wa4SamFfv7LKuXnrFm+/9QUc1x5MVukc00jhHcfDcyPanRadbocPPvyQy4tL7t9/gKNcrl69zjCKGA63Mbqkquy+XpUFtbZpWtt7u2xt7bC7f62x2xqWS3t449lzmM9ptTuEYYTjBUij6fYHNuBAKaq8svVBY9sY7WxZHlI3JktzxhcTtC55+uQRtbbr1t7VA3StefDoPu1um29+8xt8+OFH/Kc//3OmszFal5u9P0nsgU414NlJObYTalOjWi0c37Prr2sByUIIyqpiOVswGU+YXIyZXU5584036Xa71Ht1Y2kuKbKUIl3hSIkThkyyhCxNydIcpRStOEY5Dq0oRHoeIghYJUvyLGMwaOF6PnUTBmJ0M2zyPPI8ZzyeWKaGlCRpxmK5Qno+3W6Xnd19nj8/Js1yPC+g2+2jXI+6rrmcTPGDkINrN9AG5qsVla7JqwIn8Ik9a+krStvkltIW32VVUVRlEy4SM0tXFFWJbySOVAy6VkESxzHTxZzxdEJdVrhCEgcRYRCSzWfgsLHp2eGmYrNp86phDlg3mJoprG6aKWtw7Kb3ZF4RKIlXGjKvfv+VxtCrf/jVppJoGkb28PGrSqVfvZhXvz51m5+1zX2a8/TyR1/qm9aP++Vt/h2tp8/c+bXbDuwhT+tmfTAWk26qGl1U5FVhhzdViWyB1xuhlcAo0UDDNVVa2Cb4aJtVmpIlmYXk5iWOEDb4oxk4+FIhX7kvhnXAjCZZLqmLghIQRuOp1sbG6CkFXoBwJKaxXOqqpqjsAPTGzRv4nkeVlwx6fXqdDu3QJmg/evYcA/R6Xaq6Js8LTk5OOT55wZXDQ/b2Drj/4B6LxZx+f8BotMXroy1814LvZ7M59+7eswgD12E0GoE2nJ2c4ChJ4HtMJxMuzs+bSHnN06fPmc3mPH5qWWqttgWYD0dDGyCgFN3uFWsFbHe4OD/nZ+//lCxNrHMkbrG7vcOTJ48w2sKaBYK93T2ePn3K9/76e3ieR6/bYzga0uv16HW6dLpdprMpq9WKp0dPm+TLFa+//jrtdsxibuunfr+L59k65PJyzMXlJcYY9vf3AVitVmSZtXYlaUatDSenp2xv7/D27dfw/QCN5PzykufPX+A47gZGLgT4nk8UhrRb1hLuuQ5CCnzj0e127ODSUcxnC148P2kUNOA0ChGDdbEoZTlWo60RrutSlSUHB4dcuXaVyYVVBifJkqqwh/vjF8/5q7/8C7rtFp12m+Ggz5WDA+YX56RFQdzcP4y1TtdluXF80KAyur0+wlFcTiZkRc58tWR3f5ednX32dg/pdvvcvP050jTnRz/+CJKKvFzy4viU5WrFJ3c+5PT0BZ978zV63Q7dVhtXhdSDPnHgE3guk8nEJsXCRnFipMR1HAxYB5CUONKl1DWrLOPx82ccX5xbzEAYEsQxMllSUFNLg3bs5xIlbKCIsHYrIyXSc6mFPZ9WRqMFVLpx7jTSx/W5Zg2sNgaUskEytilhm0T2zP/yq2gCBMqytJzYRowijFXPuE0ogETaJlBZWu6oMWjH7le2mWRvcy0gWeN8dK0bbpO17lmotk1c043ySa8VT3YpRjXwbYO1j9VGYxxbCwspEI29DGjus62rlLQq8t2dXQbDEWEYbyx1EoWUVp1l7YnNGtrUuY7jNAlzNMpNB21qal3huiGOo+zrjMb13I2KOssz0iShLHIcrILMaeoxQWODbtRb66C0NYB8/VpV62ArYS3TQirAqjGrUiOVQEmHNeQcY890dWWoK5tmb+yTb4c4RloYfVFZFVNZ28Cf5rWAl9dnw57WafcvOdt/3+XXbjx9/PHHuK5Lv2+bGUnTpQZwlEMUxfyjf/SPCMKAp0+eNaqoiloL5suMLKtRUnF2dolEWL6KgT//8z9jsZyzf7iL48Bo2OUXP/sxq9WKg9EeB7t7HOztMZlOefj4oU1cqyqq2r6ItdbouiZvkm6kWhPkvU1KAljpmGloZZ7nYYxC1w7KVUBjDcImNLmOQxT6rEsCq44Rm6QFv1kcdb2yL3xV4Xkeezu7BJ7HarkkDGMC38K9s0yQZCnLdMkqS6hMjRt6eFGAHwdUlabIKoIgbNI7fAIPOu0Sz40x2iHPa9KsoNe1iTLKccmLiqOnJ2xtjQj8mG6318QpJ+R5SrfbtgVwmZLPl1xOT7m8HDOZTOj3OwwHPbrtTtNM1Pi+y87uEKlchOOS5iknp8fWkiYFui4bVUpOEHq0WiGjrT6HV/aYTSKyPOf8/NQWK3mBMBAEEY7jNgkFFQKNJ4z9wJuasipYpraILoqi4QNYnz/rdDlpGUBlXTHPEuqqpKxKKzCXgiRLKExNtJizXC5IVgs86eL5ArRtCPU6beo4slyJuqZSkjxNePjgPpHrELsON2/cYDQcEEYRjuega3tYDvxGXmk088WSNE3Jehb+qryA0AsIWi3quiLPctK6ZpGmDLb3iOI2v3x6ghFndPpDkBB0RnQGish1Wc3npMsVSZpQ1RVC+VaWPplbRphyCT2JkIoKQ5Yu+cH3vocfBBzuHxD6Ad/8za8zuTzh5MVDdFFQVAVKZbYZ3DSVal4W68oDT7m4bmBBc6VVJdmFXWymH/Ay0UZIB8dolukKo2qU6+MIBy8MrFzfGLLKKu6q2jZKI+k18FB7QE6FZlykzNM5e8Mh21vbfP4Lb9Pu9lmm9jDorxaEnRbCd4g6Lbr9DqvTMzwpeP3wkKoqSPIEV4BqmE9KSHRdUlFRGR/hQH+rh6McAi9imaw4evSIs+NTlOOS1hWVNpxcTOhNumiv4uredW5dvc0sXzCbL0F6hHGX0c03cFwHv9NjPBnz5NkT8qdHlqnWyNSd01Nru8UeGKqipN1qc/P6TcIwoKgKWp0WldE4rk9da+4/fMDx6QllXREFPoHvEXiOtTa5DlrXJEVOWeWUyZK9rW12dvdo+T5lVTK+vCBPc06SlGC2IEcSdrp0RkNG27t4bkArjNDasFqtwNSY0EMikEawShfM5zParYjQ96xa1cDOqI8REs/3rXrB93EU5PmKbi8mCBTLbIFyHLqDPqsk5eGzR4z6Q3ZHQz73xXcZbO/wg7/8KxazKZHvUUhB6WHtEe0Y5buIuiR0DEUkuXK4j+dZLkCep3z/B9+j07Gci73tXTrdNt/8rd/GANP5jOVqycd377JKM5arhPHFmDzLKSuJ67W4duU1iqpka2ub8rWSL733dc5Pz7g4P8cNfJTjEHcipLIT93a7TeDGZHWO0BVHj46YTmd87z9/jyLPeXr0hKKRT9tioiBwfXzH5+aVfdxrV7h54wbtToe9w31enBzzZ3/+n9jd3+Zzb77B65+7RVmWfPThxzz74Dl/9ZPv2ULc9/F8jyiMNsDP7dEI3/NJ5kvqumLUHbCWquuipEgzrlw5pN/vk6YZeZ5x9fpNhsMBv/3bv8NkOuPxk6MGYr7g9u3rdLptFosFSikODg5YrRKeP3/BMi/5+OEjwjDGDwL2Dq7ieR6LxZIoaPF7/+gmp6cn3H9wj+fHF1yMv9dY2nIeP31o18EsZ3trh3fe+SIf//hj7t27R7KcU5clv/2Nb9LtD+j2eoRRTLc3pCxy0mRBlmnSJCdsbSGVw4NnFxydLXDuPGa5XHD84jnL5YLlck7geSihOD+/oKpqur2eZQs6DmVdNsERK6sqG+0QhjbS23Vdgiig3+tx9co1br7+Bv2tIf1eROC71jqdpFy/dQXf9/npz97n8ePHXFye89bbn+Nb3/5NlosldVkhpWtXz9ra9/3AI00SsnRFmqVUuqLXtzyq1974HEmScP/+ffqjEQeH10gWCXmW8fToOdXDx3iOsk3RMoe6wtQlURQShQFFbptyW6MhjmuT+8oiJ01raqlwpWJnMKTXaqGFrUvmq4RaQ5Xm1LVlRDx+8pizi1Nuv34DIyHRNfg+O7v7dNsdhp0BFJqTZ8e0f/t3uPXGm1a1ma7w4hZx3KLX7jUFcspiseDk9JR1KyQvc4RUdLpd4rjF9tYWrTCiHUesZnOOLiYs8hQjIN7dQRgoFismlxMu57NGKZhzde+QVtSiFoKsqum3u03i0dpWYV5a6Rpre61rW+81amRoGiyGxr5lkIpPKZblZg9k0+n5rPrpb8vk+awSaT0Qe7V5JcyrP/GZRpB42b561Tz38vbNp5pP+uWvYfh0I8rqpsSv3PfPtp4+28x6eT9e/qwGhDB27zIGYaDf6tCOYlBWef/k6BnLLOPR7AJdVOiyIg7tYWq6WqJNzUoXuJ7H/vWrXF6OOT45ZZatcF2H61eu0Wq1qAWbRGPbJLR2SCkVTuCiaofJdILjOoy2RpbBCWghMUKyKnKKPMfUVrEeh3Yoe+/JI4o8Z7C/xYcf/JJ7d+6yc7hPq9vh6o0DgiAgbnUYj8f0R3YwURQF0+mMn/zkp9y+9QZKKR4/eczR0Qk//8Un7O/t8tZrr5EsEwLXZzCw1mchDH4c8a1v/Q5VVfHxR78kjmKGg/4G4v/el7+CEJLxZMx8PufRo8fEccR0OqHbaeNGNmylririKCLPM548eUJVVnz9q79BVVT8yb//U05Oj1mtEq4e3sB3Az784GPGl5cM+0N6vT77+wcMR0O63W6D21hsEvPKPKcsCsoy58c//iF/8Zd/zsHBIf1+j+2tHeI4Znd3l15/wJe+9B5ZljOfL3j+/Dnn5+fs7R+Q5zkff3IHz/ftAMbA89MLwigiDEM+/PATHty5w61bt9ja3iLwAy4vzvmrv/zLBn7us1rOuLywnKbFYsHHH39MEAR84xu/QeAHbG31CEOXui6IIp9ut02arqjqAqkMQlqId7fXotdv0xt0EBI8z6Xb7fBP/+D3EQKKPOO129fZ2R40WIwl44tTFpML8mSFEgbPsUyh2WyK73l0Wx2iKCYIA4pakxUF9548pjbQ6ne4efs2//R3/yGj0S79/hZhECGl5Pj4hKNnR/ynv/hToiji3Xe/QJ6lzBdnvPP51/jm199jf98q0FbTKbPZjIvjFyxnU85Pz2wqt9GgLSNTuBZY7niebaxIhZQW6Cw8gXChF0eUaQuT17SFiyvtMNLzA4SQ6MomdWd5jqnAaIMfB3ihTeKra71pENV1jeO5uIFFzdQYu480TY2iKEFkDcvJikxAb5i4ZVk3jSmF67poXbNOeqtLaxN0hEQXFau8wFQ1nlK4ysUo+5l2pKLb6bJcLLg8u8B1rYOm4iVn0rKRRIOfcRrbtKCuzcaiawDT2PUwbFAX65T0utb2On2bVpelVqiiBEhXNfxEy6C8/dqbbG/vEIUxjnTIsgLP82nFLaqiJksL8rygahw/liFlqGrN2cUFSZri+x5RHNJqx5bDWhekqwVZsmywQJaRJURT/7muZZStWZ80djyEHRJXFVWVU5YZVVVQ1wrlyJfPV6NyX65S5ouE+SLB9xNc3yYAe45LXdnGfhiGmEoSRlbc4UofLQWOtGv5uiGmHAmxdTKMhhZ477o+IClLm2ycJJl1xhibUt1qdZjNppTly2Hd33X5tRtPk8mUKAoZDAafit4TQqKUg+t6HBwe0ml3kMJlPl9wenqG46yjBW2nsK4t7LnWmjTLeP78OTt7uxwfv6AocsIgIEsTFvMZzs4hrVZMf9DHD3xOzm3RI6SwUZdrkJWQeJ4CTKN+srubFPZguJ541XXdWAds51RipXnrTh/C3i+hm0nS+vz9yshMvyLbE1JaxY2x1xP4/oYMv/41++YoN2Dhqmo+tI59AwklbWFVa2vdEdZHuZaur+0fVdNpllJhk/rsc5lmOVWtkUoRBCGtlvVbF2XNOvqxKO2HJS9LsjyhqguioGWnOr5HntnJomhSC5Xr4XgWuFwUhY1Rl7Jh0ejN86IcuYFBB2GAlIrZfNFEycpmgmEn0FVZoUWNEdqe0BvJcl3X1FW9sW2CbfJJ5YC0JdIaMmqE7VBXzSRsHSm5ecEbiFtdVtSObDzCdpIgtLVj6qpuXhvRAJ+XaMdBNx3pTaHWTPOlkDZdx9DE+9o0liRNqbVV5lkQrAtVCZWN7tQYtFCUQnIxn1NWmlK4OK7C9ezjcYIAkpRayqa4cvDCGF3XyCTBcQWxtNY+oRSLJCUvS+azGV6WsbO1QxRKOr0ueWajwI22HeqqLjHCyiZpincDmEa26UoH17Ny4FpXoF8ZKIv1Iq43HXBhmlmwNiAamLqQ0Ehi0Xb6UGsL2TfGNuxqbSiMQXkebhjiBD4y83DDAD8Kidotgjhikc0toJC1kq/a3OeyLDF1Tb/bJc8zyirbTLY913rVszzHoBs1nsZ37ZoUhQFJaicKZVXbSYjvWVVPVuIlDsv5ArOrabdbLCubKuU4LsIzuI08Vzl2ilRUNUmSkiRLOlGMcF2yMrNFdNO0M03SYqfTQSplNyrXwfM9lHKpqozpZNJYmyxDxnWU5W0JexwRzVomDRgJSoCrFE4QoLXLfOZQlAVlXiKVBX4XRcEqzcBA4PmsLbJFWYLRFAqrqpBOUyzUjcwa0DXCCMLQt7fesJSsTa8JTmgKDZpgBtnw57Isxegaz3PptNv0ez08r/HxOwpdWXqI4wjCoEnkkBKnWT/W8bxVVbJMSy4aePF8MacTt2jFLWuFdly8IEBNPZ6fn2EXEkUYtfD9mFoL8qIijFo4VYWSLk7oEfkxRVayWib4UYjreXQHXauyzGyzO00y8jwnz3KW8wXT8YTxeMxqteT+/XvUdUUrbuEFLmHbt+BM1yH2AyI/4NrVK/T7fXYPD6wlGggCn36/v4kILivLkLiYXCCVZDAc4iSK5WKOIxSOlLSjELQmz1Ib4dux0766LNFVBVrjSIXnukynU/KitAerOKbT7VIbaHdmLJcp2ixptTsb0CxY2zVYdWvVMAGjqMQPQtq9Hl6tGc9mBL7PaDiy761Sk5iMvKg3PIgkSUlWKwv4bnUQUrBKE07PTwmUJPBc9vZ26A9HuJ4HWKtikWckq5Q0yUjTAhwXdMWLF6cIIdCNte7F82cURUaRZwx7fQLf5+z0jDwvWMxXTVMpJC9ykjQhyxLKKqeuDFHcoipKXM/F9T3qsqbb7iGlZDgcEYUKpexk3wjDYNjHGJjP5+R53kBrO2xtb9Npd9C1xnMtv9Lap63rezabMJtCZWpMyQb+ud6zi7LC90LCMKYqNFWpyTLLKvHUOh9NI4xGGFubCNHwMpoGl6MUeVE276EKHAccgasUwvNJi7ypa2js57YtYUHDSxaLGZdjewAuGy5EO24RBgGm0hsmo+v5hHGLVZYxbfZwgw2Q0FLgVHYds4BoO9nMihyngX8HvlU5BL6H57pMioLFcklpdMOrsBPzNTtkPB5v9mbP9TbDPINBSauQ0M0+gjFoYWzzxc5INnsDr7CdNiHSaxWRaaxtrzSZmqvY/Gk93W8KyU93b35V5vS36IpsS8m8Wot89pc+2wUyL29iPTmnuc/ilR9/9f+v3q2XhI2/qfn08jc2aXnm1e+/vFab5WSbT+trd10XB9cG8xiB0yjpVmVOlWaUSY4AfM8lK3IqXZGbmiiMiNsdamw60yqz9tRBv2/twnHUhGGwqUlUM7yx7wPX1pgb+LjdU7WAWkDdHJKtQsMmPtE4DxCCVqdNbbRNoptH1BJuXr1Gp92h3ekCpgF9N1zRLN9Ysn3fRyAp8pTp7BIHwXavT5Hbw2cYhHaIVGR4rsfO9g6z+ZQXL57hKId+p0MQ+lbpvDXCdT16/R4XFxccv3iBMZrlctEozLRVMDvWRlo17FwB9Ls9zs7POT87Yz6dkxeFbSDlJYvFnGSVNAOcNsPRiOFgSKfT4dJcQJ7hel6jTDE4jkO/1yfPMmbTKVII5rMpRV4QxzF5k6R685a1Biul8D2PKAwZjUb2jFVb+5SQ9vObZdlG2bRaLZlOJyBogOp2LZ7P57TbMd1um7IoWSwWjMeXTKdTnj07Io5jm/SpFFHcso0RrXFclyDwSbNkIxLQWtvUxDAkbMDUsjlzKOGwvb2FEHB5eUGv1+XwygEXp2dcGk2Z2npZISzTSCmMVhuWWBhFSOVQGyirurEsGZASLwjpdHvsHRwQRz3CsG2tVHXNyekpz58/Z7GY4bqSMHTRdQamptNpsb01otNuoaSiShK8tb2rLMlSK9hYKzRZM9c2CsrPfspBC6yqXyqMNLjSQrM3fOVm3dLaukAKYxEe9mesUtQ0+7bWZhO0tVZMbvrlzQHAWm/rxs5pNu+ndcKoVejb9UJJ1TSFrF133QyyyqU1HPvVVcxsHr9lSlpu7Fots+YHrW/baNGw1MxLtdrmq3mG1nvBWq3aPK8051/9coF/6YBqnjfRhPNoowkCnyiO7X6jdZMQLpskwyaVtrlvzVVg93rbrFtbwpWjNsFnNOeZTV9i3Wpo1GVrRZndvz+1SDd9gbpZI6pmteYzq7+90nU10biBkcJyEh3pNur6EoxECIUjvWbPDpE4hH6IctRGmSiU3U9d1yMMQgIvsIOO5v1lm2GWCSab86lag+r137xDfvbyazeeLi7GhGGI61n1R7vdsy+IdKxtJgjZP7jO4eEh3/zNb/Po8SP+3b/7Y4RUtMIWrmcP3a2OtS784he/IFklfHT3Acdnl/z0/Q843N9ne2vEe59/lyLPcZVHr9fjm7/5mzx7/ozVasU7X3iXL37py/zbf/v/5YMPPmAymaKU4u2336auK54/f858Pmd8cYEubfKM18jXzqZT6rqm1YobKwhIZZstVVVu0oOU41DRbG5NN9JazYx9YbV91ynHszwPoDZ2kWy12uzt7zOZzlgkK4KohVAu48mCNKsocgM4VsYnbWwoCoyC6TwBIfGDnKLIWKSzBkJWUVYlSDCyRtcVy9QqvPxeRNTtMtzbYzQY0IojTi8sjK+o7WL64uQM13WIopDhaMTOzg4vjo6ZTqZsj7YQ2i4geZ5zeXHOzt4ee/vb9Acd4naIEVCbmqyqkOKljbCsa16cnPLhRx9z7doN+qMRbhDZLrPWFo5oNNPZnMvLc0ZxhAlcRFWjmiQ1YUAObOqCQiN1jaj1hsdU1xUlhqyw0amR776UazcngO5wizCO2Rlu0+hIMcqAp+h5Ni7+6fMXJFlG0UDcC13jSoHvebgChDRUVU6WrhifntmGm+fhehKlGwlpWRI4Lm7UYjazhXwYRQRhwM7uHjgObujQDnyCIOD+0TPOHz5itkowRrBYLuxBPVkRt2IGgx7L5YosyRh1B7Rbbd78wjs4rsN4fNF4iG3zr8hz7ty5Q3aZsrd/QBS3iTodKulw73iMyGv6gyHzizOSxZLc1CgJw04PpRSlttYcLQW+4+I7LlVdUmv7nt+s180otyxL8ry0jWOpqCrbMMZ1UJ6P3+5RlpW15GjbBEoK6z3WgOcFXL19jVprJvMFo70d9q9d5fjinMlsznK+oPY8zqZz5HzFh5/cIUszVsmK4XBAr9fjyf2HnLx4zuXxC6LA561vfYu6yAieOKRpQpKuGA77tOKY87NT8iyjXC3QdY1IM7y2Q7cVIYAwCnGk5VLN5nNqrRmMYlzfp1hkKAOtTouezhGuJPQ8VosFP/3zvyRPE5CGKI7ZHQ6pOx10VdHvDfBcj+PxBWluI2iFkEhjCAKPzqCNFpplmmy2jHS5ZDqZ8vj+XZI0wRM16Jyy1OSJbRAFfmAl1cqh32lz+/AQzxhMtiD0fRxPkQ+7pEXIbLak0+3x9htv8uz0hA9++lN0kmPygng0xA1sIo40GpMXBI5DO/RohSGtVmgTMbVGVAVCSDrdDss84/7xc4bb21zZ38JkJSarmC9TdFXx9d/8BgAfffghdVbScyMcI0mSnMn5GIktdpTvYZSkNjV5siDyFa7qsr27S7s/4IP7j6gXK/Iio6oLlknKYrkkWeUUacFyuqDtBiSzOecnp0Rxixuvv8mNG9u89d43iEI7WTJNwXNyesqP3v8FwlUs0pS/+Ku/RklpLUrCJgRtbffp9LuEQURZlZyPH7E4mfP9F8dNSqNniwppaMUxnuty4+pVlJBsD4bsXTngrffeZjqZMp/NOD87oyxywk5Mq9+xk/HnzxlfTqkr6HWGPD16xtnZOekqIXAd/vF3vmNhlFXF5eUFTx8/JqkKyqokmY9RjtrAX/NiaYvGPN9Yn188e8zzp48ZT2doY9jd22FyecYnH31EXtppVJrZfWNra4CQDoeHVyjLkvff/ylPHj/ie3/1nxmNttjb2QUj0drw//nX/y+yLMXxJXGrxdVrt1jOF1ycnPKdf/AdvvLVt3n8+BHTaUq33bENjDhktLPN9uEWXwjeYedgC6eucQTsXLuCGwSs0pyz82f84R/+j3YAUdR0ux3iOOb88pJVsuL05NQCqn2fKI4Ybg04PDzg6pu3GXR7hJ7PzmBAWdUMtndxmsNilqSs5nOC0Mfz3E10sd9M/Fzf43J8yZ/+4R8SBAFB4FNWBcbYRnan0+bdL36Jsix5dvScq9eus7d/yNnZOb/86B5vvPYmo60h29vbeJ6L5zmcnp3w0Ye/pKgqhO/SdvtgDI5ymc1X/A//w/8brTWBF9CKW8w7S9IkpcwLWu0unW6Pyfgc3/d44/YtTF1RpCs7cBF2yFdVSy4uzuzww3E31nKwxeMiz0mLkovFikobelvbuJ5CaXuYd5TD6fkZk/GY50+e0446TE/OCHyfa7u7rJKEn7z/I+bJnGtv3MRvBayyFT/+/g94+vQpw9GIvYMD3vj8mwRSELkGT2okGtOwJUpdI4wiDn08BeliSp5IZnPF+cy+rqPOEM/1GI8nLJdLHt29h0LgO4qDa1fY2d/lk48/4fHTh3z5S1/BdXwW2QqURAYuXtOQUNghEFjZjERS15pVkeG6lg1Z1pqq1rhKbSwb6zp+HTBtC/9Pfw/zakPm12Q3mU+X/lp8Fu+9VjcZ1ue89S+8VC81h7fmVjcHwE8po9bWl8+0lNYHmJdX+ymkhOAVi+HmkWGHWgICqdBArjWl0dTUBMLBFZalZbDqJCUdtroDcmpSY5gtFozPL1gs5/iuR1Lammq5WuC5DoPjY8qyIC9SJtMJq2TJybltNnzna7/ZWN3N5oAZ+D6uH9CPOnT9Fp50rDo6L5GlZRSmmU2OC4KAKGrjetayp8sSx/e5eeUKqmEydYOIL3/hPb773T/k7s8+5Muf/wJBEJAnGclixWK2YDKZcjke87k332BnZ5uPP/yIuqr4znf+AUWe87Of/JR0Puc//8c/o781ZGd/j34c4zkuqbTg4XarQ5pmZFnBYr6w6ufQQ0U+d+5YOPne3j79bof/4p/8AU+ePeP9X7xv2bhVzVfefY+97R3C0KcoMtrdiCotKJYLRFUQupKj5ZTLyZifvy/pdjpc3T/ApSKOXHb3t3jr3bfoRB3iMOaLX37Xgq+XC05OTnj4+BGv3Xqd/+qf/TOOX7zg6NkRP//5zzk+OWE0HOG4Do+PnnL/4WP+/D9/H891CYOA3/jab/DeF94ljFpI5ZAVKfP5jF988FOqQiPrmP3hAbdvvcaf9TsIJZjML6koKX6QIRDcfP0W/V6f3e0dHj9+zOMP7/Li5DlJuqLVb9Pr9hDSpawMi+XKWjQLy2Dqj7ZYpQVSpZSVZDZLuXvnAe2ODSDpdvt0WzHlyoZ4TBYzZos5f/Gj7+EIQTsIERpEUuBWEomHF4ZWtR6FtFyXgxs3NgfmZ8fHXJxeMF8tEUrxjd/5DnsH+3ztN7+JRpMWGR/e+ZDjZy+IwjZaG/7oj75Lmqz46pfeJQoD6iwhdD2inX10pTk/veDR44dgNLujXcq6xgtCEJLlMiHwfZt+iGfT1rTz/6Ptv34kS9M0T+z3HS1MC1ehdaSozKoslVXV3ds1M90zC/T09uxekIPdS4LAEgT4V5DggiC4WN7tDAksQGJ3BHc4snu6uqq7q0tnpaisVBGRoTzCw5VpcfQ5Hy/e4xaRJbpryKElAhkebm523OzYd97vfZ/n96BzgzhLpBnvWKhK5u6pW4CRE61i4mWE6zsYvkWjG+IsbYo4xWiA59oYyqSqDIpckqo9t8KxKiylKdKU9UzS4A3bIq5KorKQwUJZCZ7GNrFcG8uwRCmqZJ2Xpp2FiVP7vzR5mbGOVzKIazgb616pNJiGDEgNQNukkwmrImMWx2RRzMBxULaN0wgx45iiLHEMUXyVxZlaqZK1U7QXaFWIc6KAM6azaUkTO68qNAaYcnzKqK2URSZBF3VavFWrpMuyQmclpSop8wrP92m2HbzABaPi2eEBnU6Pl26/gu0Ic9jzPbIip6gKGegWOZWuyEuxiYrAQtf4ihLLUFiOjeW5OJ6LXeYoZWErm4blUqiIosrA1BhObaOrKopKy59SrJHLLGGVJazzBGWZmI5NNBLL/HyxxPU8uv0+Ozu7rFdrdgZDep0u3W5X2MWGRVGWYjUNGzSaArb3XJetzpCqLHEdV5RtWSbDK11t2HFxElEVJck6ospylG+TpxFZEmFZ0O40MAxNmkcoo8K0f9XF8pdv/0GMJ9OSCN8zyrxM1lTtEYc0zcjzEtfz6XR6XL16lU67Q6/TJWxK82k6mwh0uG6C2rZFmqYcHR5hmzIZdxwL3/dkQpim7D/ZZzQaUZ5Bws/kwlpTVeWmswjU8CxpDqn66+dU/BpsWF+1zy7UZzwS6T6KPzTL89pX6T/vRtbX9VKLh1X8ooosTclrq4phqFr1JMdk2yItDAMf27KI1tGGcn+mljorCiRRr8IqjY20XICdVg0xf6EYUpIq57gipRQJZUFVlWRFTppJpLJZx1GedfnFY25sJtdK1b93XdSVNRDbqRMcLMvcQNyksym8KNOyKQrxzMdRShKnOLZIEXWl5UNnStHo2JbwgrQmKyoanottGvX7KJ3UsylvWVspzfo9O/O2lrUnd9MRLyuUZW6US0UpVk7xC9cdYKXqKXBOnuVkWV77gjVGPRX2XBdTV5i6rFU8ElupUOR1Z980ZSFWtYKqMm2iOqXxLJ5YJIZKPLMIqFBsAAq3lsOGYVC/7yJbLapaNG+aFFpijEcTkZqvVmtJW/AlzlOZJo7n4gWexGVSbV6TolKy0LkelWGSa41RySzTcT1Mw6RMBSRIpTfg5yyJyfMc15HXrNDCW1H1+WAaxiYdQhli0XIdiZJXpkmVi5omKyWpxnAcXNfD8TyZ/vsBRaXxS7AdH6UsPDeg0ZAGrmVapKlI9Af9Aev1Wqyhac745JQsSTf2hbLSxHGCLnIwLCqNSIK1TOUbQYhtWqzW8abjT1WRpQmKCteq1ToYLGvlnthdKtbLJZPxmMPDA5HzlwVhGEqcfRiQpQmz8SllXuB7NfRU1XGttsX27i5plnF4eMhqtRKlgGXj+wHCx8o3a02WpjJpTFPQmjAMatWgokjFomh48tm2TUOa5pYFuTQmTFNRalEfYoDre3iBj1dHv1qWRapS8qrCdh3cIEDHGp3nZFmKBZiGh2kZGLasC2VVUmoByssUxsKvGXdJkqDSCoqSNC+oioISUXL2t7aYT6YsZ0tZWytJh1ktl1CrQM+UqZZlSRM1LySu1nUxLAtligFGay3KO7RMXrSWVE8FloIkWlEWOceHB/iNFl0NSnUJW6EUPVnOs4MD5ssFnX6PLMvwAr8uUOQ1tEyTIi9Yr9aMR1PSRK47Wb1mha0GW4MhpiUKzyIvyLOcwHOpigLXdrBthyKvME0b3wtJEkmmG42nWLbLjRs+nh/guh5xHPP06VPGoxHr1ZIw8HEsYdmVeQ5lRZnlmIZCmwZgbaaUdq2cNQ2TsmYBKTwcWyCVRc2nMHRNNyxLonhNnpdkaU4Wp2R5QRonYmOOE+FqnZywXi4IPA/PtrGUxCdXeYmqSlRVUaYFuZkQrVfoUrhTSZJwcnKM53kMh1ugkZTXqsBxPIJGg1Y9mTfKAkNrTNNBWIA2nhfQ7w+IVmtWyxWW4+J4PnvnzlEUBbZpkcQxURzXCT8lSZywmM+xUOSOS7RaUZQVcbTGcQtMQ5GlCfF6jWObmJ4r5aqGrC7iNRW6KoU14sqkL8vSWpVrglacno43kddFUZDX17Wq1LW0PGU6m0k0s2OKMirP5BpUF+ai9hTFNIgy1/NcFJooXlNVBcrUKFNYFX7g4lgWaZqI8tpQzye6NUvRMFzhpOXZprZ5seEgQkXh3cVRJMm1tnBCtCENGN9zSdOU5XIpE8ratpAXOQdHz1iuV1iuQ1bkrNZiIy+ynG67Q6/Vlml9mRPFEYZl0mw3WcXZ85Qi15XPi5J0G0tJxLbnuKDrghzFeHRKHCeYloXvOLQbDUzLkpRkhUBf6+ZaFCeYjkXg2Zvf9Dko/Dmg+4xdVJYVcZpumiVgvqCE/hW3+lufHTDLY6sX7vPrHuFXznTrIdGv+ufPPOmvPZ6/flL8S8qnF+pY+fI3mDS/OEnXetMUk3NOU5n6uRWOuuY1qGHFGTqPcUyTZuDjux62bVEZYFkFVKUgKlyPyrYJXEem9EqTZSnxes3x6SkNP5RAAS0byDNujBJYXw0cL5nOJF3M9X3ymldYliWqKGrGC5T1dVVp+WwURoFl27Q7omYtS/nsFnlO6DfwPA/bklquKkvyLCVNEgEba4PJeISuSgJfft9VWRCvI1DgAJXrgSGMyzOrTK/Xp6pKZssF/WpHVNZBWNd9rqzjlkkQBGwNthiNRyySBet1xGy5xJtMNxzUsiwoTLAcm7DZIGw2iPIUraCo5PuVFneDVqK0LHRJqYUV6Lo284XUwkatKGm125trsDD3LNmrKFFoVmXKbLok8D0cy2Q+m3F0dIgfNKXB1m7iug7djnChbMukyHNWyyVJnJDn2Ubxbxr1wKk0qYqKaB1T5JLiC2KpbDUbNBsS1lEWBUld+9tWnV6mauQDZ+eD1Jy6qljVyinXdSjzDLRmNpsxW8yJojWh6+G7rljvsgwb2c812y0sW1I0yzwnW5U1m9LB9gO6WxZdYwfHddk9f55ur1evKQmT+YQsSbAMWMwnooyO1hi6Ym97C9MyyNO03nuY0vQ2DGxDYNmOY1OWBVqLgrXZbOI50ngylOw1bcvehCYYhpI9YwVKC0zbMCS0wXFcvNDD9dzPrG9n7pu6Q7P5tzNHiqqtyWma1Z9pSWGXFUT2y1UhsGrTMuoBiKpB0QKmVlA7UiSlW9A1tSKo/p3RbI7r7Oi0YsMirur9VFmK+mu1WpFmKdYLzKPN6qPYBB88X/x0/Rxnz/Bio71mPb240IGEGJyNGuo1D62fs6yev4iC8CkKXFeEA7YtoVOWKTxj25J9uGkY5IUM7TeTi1rdlaVZ7WIwNipW07Q2f+R1qtfbWmlVVs+zUj8rZJLzV/5YG96USH7rvTqyVx8OhlRFxc7WNo0wrJ04BpaS+hFD7HmGgqooyJWiyHMReNSKtjRNajRKRW4J9mO5lJrIdx2pUwJXVKqmgdYGSomaq6qeO8l+k9tv3Hj6+jfeZLVa8emnDzapdmcvpu16YJg8frxPWWqCsEm31+d/+Q//K+bTKdPxhAuXLhI2Qv67/+6/5fR0TBwnKGVy+fI5FosFJycnTKYn8L7mza99ha2tLeJlzNHxMf/vf/kvsR2b3qCPe/cT0jzl4OAJUbwmjtYoFEfPDlBKkaWxFPU8/1BYllWfNNLskKl2RV5km9/v7IKEElnfbDbD933CsCGKp1Jj1lPzrCjQ1Da6qmAyG5EnKWe0+KosMRU4poDgFBB6lyjygsOn+4xOjolWa/JUileqs42XNC/yXIot32vQbLVot1sEgS82Ca0AQy4UjkWv2wYqjo8PMVRFUaTM51OWyyUPHnxKGIbs7e3h+x6tRoM0icnSmLz2uYs0roaj1XJH07RwbRfXcnAsG21I/1msNg6D/pA0TSX5IsrIkpyTwxNmY+E2WKbJufPnsZQidD1UCxzLIpotWa0SLp2/QLMRsJ5PME2DvKhIs5I4zVFGQlVBt9vF831sx6bSmigSwHmSZcS1XcENAizDYjKZ4EQxFy5fkQ/bC7/LcrkiSxLm8wVRnGI5wqtyLYfQ8+i121RZSpEkWJaHY3tcOHeRoiy49/gBldb4QYhCo15gTqhaIWbbkoy4mgtstywqsR4GAc1mC9NysNwQx/HY2dlBa80qWpNkCeskwg0bVGVFvFhzOpvxyR//KaWucFwBMV64eE4SoCyDZreL12gwnk6IsgTTlWaD4/uYjoVJk3zsssLA0ZLE0O7vYBkG5cmxxHymCabp4JgG4/mS1WLJcHurvjDLxcc2bSzbwLXt2j4g0wUMk9agL42ySpOVJfNVzDqJWScJN15+meH2NufOX8I0LU5HIygrul4DTIPT0QRtGPhuSHO7iW3ZrOYrtra3+S/+6B8wnc64f/8+P33rLd7/2Xv4rkOv3SVfi9Lmow/vYFsmvmcxW6WMRnNajTZNv8HuznlQikcHB0RJQopFVhQcP3tWy7R9HNcGw6QsUkneNBpEScSzoxNWywWPHz9ie2+P7mDA1772NYIgYDke8+TBQx79/EPW4xnRdE6z3SZoNjEsC23C7/69v4syDL73ve9LEwSF4wf0e0Nm6yXrKNqoJReLBcvlkizLaDRChsMBSRKRZjFJFFGUJX4Y4DkOLhrPMknjCF1kVEXKPF3KlEfJOdjpDWh1uti+S6ff48q1qzw7PGIynrBz9TKdboeDR4+IFwuWoxE2AZ4jqinLMTBtaZAuZyvyoiQvwXUCbl+7zXK14vjRAY7lYCmTRX18jw6P2N7Z4Xf+7t/j00/ucPf+I/yihKJifHLKarWGQoD2J6MxVCXtbhcNjGcLhnmBqhOwbMcWFhlAVeHYFoNehzJLKYucYa/F9rDDkydPmZysePftnwgcebDF9sVLXLp1m+V4ynq+4JOPPyFar7l24ybDnW2+8dvfoKpK4nVEmYkF9enBUyaTCT956x1WqxWubbGzs8PX33yT115/na9/42u16k+KhixNefftnzI6PeXu3U+YLhYcff9H7OzsMhxs8ejRAQ8fPmK5zLh27Sr/yTd/n+H2HhcuXuLw8JCPPvwfGAz6tNstrl27DBq+9af/njRJaQXhhglg2Q0s26bZbGLbNsvlEoAg8IWFs1rjOh7tZpu1GZOZGbYpKUrdsIkCfMMiywpiUqpVTLJckiyXrKZznmQpy+WCux+8TxgE/J3f+WbNZpPUqiRJOLf7eUBzeHiIMg1arQbtVputwYC7n37KP/2n7/K//q//N7z08svsP9pnPJ7w9jvvonHYGpzHwofcrtWqFWlWoHNNo9Gld3mXr7zxDZ48fcLPP/wAP5DP5N/+3W+yvbXN4/ufcnx0xHf/4i+ZLWaMJiP2Hz7mzkcf02m28B1XEtm0prc1JAhDtgZbzKZTjp8dcu7iBQbbW5KspBTTOiExCAJ6vR5fffMrm8bN06dPWS6XbO/skuc5/+yf/yuKPMfzPdbrNbPZnGtXrrK3u8t0NmU6m3JyclJb+ytcxyJs+JhIsAHI65hkMVprbt++JUB422Q2m3B8ckyr1ZTAlCKiQrF3bos8TfnkzgcEnsdWX1JSDTRZuqbIEzrdHQzDYH//idj/mm2BhyqL0pDP7nQdkeY5B/uPsGybre1tSc4yTZqNgF6/R5rGHB49w7QtvCCgVJrxfMpP3n4bvxXS6nU5GY8kirks6Laa/P7vfJPhcEi32eV4dMz9g6ecO3+BG1ev8uGHn7Cexlw8d54g8HFsG7QmS1M816XbaNFvdVHKYB1HzBcL3v3pW9iOyxff+BKDQZ9z5/b45M4n/OyDD9kaDOn3hlQa1uuYk9GIRqNBr9vb1FSYdXCNfmG7oMC0rTr0ZklQs2f4Nck6v9z6Ub/wjV+vcvpr2zpnw8MzVdIvNL02m6FfUkU9//4vPv6Lj/fiv73481W9dfzsfZ435375oPXGXrOuCgwUDgZVCeQlpaVq97Kc0wWgDYXXCimWFdU0ZrfVpbV7HiyJ7U6TFK01lin233bQoEa8czgbM1nOeXznLsv5nO//+McEQcjtmzcFU6E1jiXNYLtOqHQDjyTL+PDuXVzXZWdvD99xCVyPKInJl4sNEuBsE7terWpLSkWjEcoQJvRxGj6np6c4ts2tN2/hei5P9vdJ45iZZXJ48JTx6JibN65jKMW/+pf/HN/3+cbXvo7r2ZiWwZOHjzh+5xmXbl6nO+izd/kirmejy4puu8vXv/ENfvbhB/z0vbe5fOMmg3af/rWhDCiynOV6xf39R2wPtvhfvPFl3nn7HT7+6GMmixWT1Zpnh0cs53NOTyfScGk3CHttthrnqQKH3myKqjSmUsRVIZtd12aVxTw+fEKv1aXdaGF7Bq7jcO/TTxmNRsJpQbOO1jUza0gQBJimsPJc1+XGrdskSQrlI9rtFttbQz755EP+6q/+AqUs/LDBH/zh32c4HPCFN74ojaJ1xPHJiP3HBzx4+JjJZE6n1ePc3h7nzp0niiLu3/uUw8khD+4+pN1uM+wNZfCbJ+ye28b3fCg1SRoTpwmUJf1OG0tBkaWYGiylMIFGEHDj2lVG41OePn3CbDbBcV2+9PrrNBsN7ty7xzpeY5ealuezOxxy/OAR8+Wc0BPG7pVb17Ecm3feeY/ReMzDRw9ptlp0+z2+/ObXuHHrNp///BdoNFo8fvKE8XjMX/zld0mSRODsVy/y+ku3+cu/+Cv2H++z1W3Rabd443OvEMcRd+7cxaiH1+2gSRCGqEEXwzRoNBpMJlPSOKYRBLz68ktYli1YktmCLMuFo2lZm6TYs1ArXWmpDUyxiNu2S7vfotVqkmeFsPxMG2Va6Lrpp5TCMhW2KVgDx3UwLJOsKJguV2RlibJMDGVjKhsDAwpIlwmOb2P6DlYtwAgbPoZhCgxcaUl8B+xKVFKmsuoBrElQW/ktw6xxE2eol4IsjYnjFYoK01SkSUSeRWJpNU263RZFnpOmcT3sPhMlIAO2WoBxttKpeh9eFHnN8rPQosV9Pnyof8a1TUqjDk0oC6oiF/ueZW3WwrLSlGnObL7Esl2uXLlCrzfA8zwsy8ayHHLXoywqsjSlrEqKOKIsik1KnjTXI+azBWVRYVkOVKDLOt3PdvA8D9O0SNKcvCgpK02ayZ5WkkaN58pXQwJCgrBBGLRo+DEGNlRnQUopVAoTm8AJ+cLnv0gjbEDNippMxsKeNiWN0MoswRtFK5aLGWVREi2XFHkhDaiqkhRTpMVwNhCYz2eC0bC/xHAwwN8ZYhiKZlO4oVEUiVDENGuBy18zYHnh9hs3nk5P6zjr9bruDJZYVoVhVijTrruh8qKlWU46nvL04JDlYs5yNqfd7RA2QrEWxQlXLl+uIcSFKF3KEtd1cBxhiJRVuRnraWQzHwTBxk+apSlxFNcnqWK5XCBNG4mqVEbdac1zkdsVVT2Uki6y1iVladQwshIBkpuiWKmq+qSpKHIBGZqmkPiFw1D3ik3pzlNJMkEc1WqmQpQBuqynyEpRFRm61KJksCxRjth1KpUloDBCmVaahni/szyVtKMy33Rjy8Kuj7EELXC0sqhYryKidYxbQ8Bs22V37zxhEBCGDUylSJMMNNi2pFUVWVX7UzNW6zVZlhE0GijE95qmKRiKvJQJie8H5GnG/v4+i/mco6MjxqMRjlN3hQ1pVgBMx2NRVWWZXED8AN+UVK1GUzZcVeZhmyau71HpEjsSzkNW5CRZglaaJJdFOM+LzYdB1wtLtUn2KyHPiNOELJdEnTN2FkoKKc/3MCybsNHEUIoiS/FdB8/3qUyTql6I0qLEDx2sSpoURQWrOME2TRzrufLMcjw0JkHgAxCnNefHlXNqOZ8TryPSLEPL7EUWUaP2LCMKN4XYPYNmKEWzkkmj4zo4rkOW5cRlLud0PfG1LRutIVqtSOMEO84YDNrs7G2hlJZJ2WiMznImyyW2ZeIEPoZloKsCZUiqhTINbNfG9XxJEsxyqqIirpLap2xvvN6W46FMk7hOFltnKWmSo6gk3cUTu+pqveLJ0yeYlrC9sixnMZ1TaokCdVxX7Ky1ynAyGfNkv0W0XhLHMePxmKNnT8iSWJQT9UXDMBToCsOwcP2Adk9hOx4FJseTJVFaogzFai3NEcc2UVQUdapfVYr81gCaQUBZVXimSWWY+KZFHsUcP3tGkqRMxmN6rRbtdhvTMgnDgGarKYVuIVMCdMlsNmEZrXjnpz9FKYOnT56wWCyEBWQ5VIWuFYExeZbXbJyIOI43fm6JRD2z0dQTmvqPWZWYKGylUI6D4ZhkZUFRFiRRDJTohtiwTk5OWKcpuqpk6txqs5hMSaKYwPXxOxZBXmLpivligR+6+IZMcKk0eZKQZQWJZWN5ENoWhevS9IP64pTR64pt07Etkiji/fd+Rrxec/ull2k1QzqNBqPpjMnxsazhZUleVBR5zmwe1wBDh7wUNV6e5sRRzGQ2xzAUSSYpZ2VZysRPmeS5Jk1LWq0uzVaXS9dui+LNsLCbTYqyFIWR5fCFN76A1pr+YIAfBBRpwmQ84sHdT2VKowziLKXIUqoiQ+mKdrtJI/SpqoLFYsaTJ/ukNY/pyZMnrFZLFrNZPQ0qyTLhczn19Gh3d4dmq8WNGzfZ2tri4NkRJ6cjDENgmHkmiWKu4+DWE/dbt26RJimqZmYsF3NpILsVOzu7tJotzuDB3W6X1XLJYj6Xz6ntkOdL1utIBhxnhYVp1vBbRVmUNJshlmWymM+p0DRCjyJLaYQevueiywLTEshkFK2YTCcUZYYyDOIowjBNnNUao9SoQlKkmo0Gjx89JI4jnu5LgEi/38P3XE6ODnnw6X3ufPRJrUhQtLuScHoGNpcgiyWj8RjTtrAdmx+7Lr1OlyyKWa9XKKXodXvsnZOmUJZnxKu1KBcNRVEWlGVOmkQsljPyPMF1JbbZts06dbUiiSPyIme5nLNYzJjPZjLBdGQyb1s249GYLMtEvdFssbu7w2w6raf3imi9AoJaRV2hdVkXzQZFmeDZPq7jU7ygNEbJeu47Lts7WzTaLZqdDt1ulzAMhbeY58yOT8QuHEWYtWpXWH6yZsZRxHq5wjBN0iTBtmyqQIp90zKxtbA6Ws0Qy7ZqNaSJa1ty7tRN3CDwmM0mRHGE7wc4liWqi8VC6pdaHVwVJUWaEfg+rmHhOTZFmnL3449ZpzIkG4/HJGnOaDyW8w8ZUgVeIIrbWqGXJTlZEZEXpQSqrNeEQUgYhvR6PTSKx0+fMp5OiZJENl2+L9dPw6Df7wlzp55MK9gonjRyfRR1t6wtWmscx6mjqK1avf3i7de3jZ6rnc6+Un/NT/y6x/lVjaZf9/1f3f46axf9dc/y4vc2R3zWnFIvpvH9mrQ79fwnBaEi1g6gVgNLCIiBiAvOmt++52E7Np1mE2VAnCe4hiuWagBD4Xii4BM1jkYrk8APqRTk584TtbtMZzMqrTk4OsTzfFF/+IEwHpdLsiTHzhJRyCKAXV2UlCqnQMk1Ks82r9KZ2j1P881AMEuF03nt6lV63Q7LxYJDpYjjGNM02NvdJUlixuNTtrYGNFtN0jgizVI63TaGUjx58pgwaLC9NWQ1m7FczEmzlMlsyvJuQrPVJPR8mq0mve6AwWDIhfMXyZKMZweHdLsDlK14/GSfNMvquHhRcrmeR7vbYTybkqUZZhhiWjZlUVIpSdwuFnNRTldi906jGAPwPVdsM3lKWRSsFnO6jRae66CQkKPT0xPGkzFZnorlMU2YTqaMxyPW6zWGMtjb26PZbLA93Ga1XHHkHtYKW83O9oB+r01eaFAGjx8+5OT4iF6/TRiG9Ht9PN+jETa5euUyuqpwXZcszTg4eEocxcxmM+lxIlxK13bQZUkWpxwfHtNutTm/e4HFcsH08PCFzashSeV5SpJExEmEMjSj0Snr9QoQ5k2RZZycnrCYCzMqqa/NZZKSRxHHJyfkZYHXCAlbTU4mY1Hz2C47585z9eYtwqYksPaHW1i2w4NHD6nKio8/+YTVcsl0ckqr2eTqxT2agUuarpnNRkwmJwz7PRqhRxyvSOIEpUvKvCBPMzLfw7Et1tGKqhJe4Xod4bou8/mC0emIRkNs5mc1X1WWFLBJSbcsq05vd7BNC9OQFMkojvEyn6KQ/WpVVaRZLsrjsgTEmUCtFDrj8ZqWfE7PnCFlKQxe0zAEU1CeKQ7VRrVk1C4atNStlpYwjDM0jWGcJdIJ40/21M8ttGdpckVVqxLPmEYKTEMeX9fhD2fMKE1FtVnORAFs1AKCs4RLKhDhT51wZ9QSKKVQWhxTZa3gES5Vremqu/uqVj1VVQmGgNy1FgWXiFRsSQ2scRdn4RRiNqrqMARjsx+XEAxd9xjKWr0ngTGWWauUtLAh0zSTtOl6fT07Rl1pylqBLTgAb8OR3iS36zNmtYlru9iGSRInlLmkMwah7B/LPKOsmXFVVWJoUYsWtUJNGIqiUB6PR5sUbupjwlCyhtfXIy1yUkElOXa9X2HDizRtG8O05HXkszytv+72Gzee7t8XpdNisdi8EKbtYNkOlu1SlNJ5VMokTlKOT475yVtvkUQR6XrNzt4u3V6X0WjEcrnki298iSha884770hkX1HQ6Hfp9buYliVFnKkwbbEbhY2QbrdLEEiyQBInLOeLuouvGI9Hm2MVe5RI5+I4Jk0zLMtEV3Ki27ZNVRqURokuNVma4bq2XBzSRDaoUuFIFLdtCwcqz2oJvHRkLdOgNBVoTZ5mLGZz4sGaIhNJZ5VnqNIGNFkSoTFwnZDA92gEAZ7rY9vuRrIeNqShUOSaJE1IsoS8yElTsUmkaUrm2FIkFrlY2EybIiuI1zHNsIltuSgsgqDFK6+8ju95LBdzkihiOZ/h+y6+F9BstFCI/zNKYsbTKQDNdnsDXFutV6zjaGOBunTpEkma8uHHn3D47Bl3P7mDoQxC38dzHGzLxrVtsizj4OnTjRw5CAJazSaNMMR1XXzHwlAakwLHMmh0mhgmpGksDcUswYgUcRZvgG227X3m/TUMQyxCuSYrSiqlWK5WJEmC53kCsC9LgWk7Nq1uG5TBoL+FQrGcTXEskyAMwC9RZUFlGkR5St/zxN9sSmrAZLaUeNimg2dJw9DxSkwrp9PrSsE4n2HUcPbFYs7p0QlRlpOXJV4usvAoaguwU0FZVaR5hm2KGq/Ta+PYNoOtPqCwbAFmz+Zz5rMpi/mMIAhwHZdWq4nCYDSeyufQsNkedrn+8i2GezusFis+fe99ZqcjHp8c4zs2t69epkwdVFVQKUiKDMu18I2AsNXCMCxmy1UdjxrXAEubPMnIipyuH2DZJifTCVGSMFkuJc3S9fE9C890SZOI9DRj/Ol9TMvm1q2XWK9W3LtzZ5Om0Ww28AOvnjSUnIxGaK35k3/nCjzacSWtw7ZZJ9QXjFLkv/UUoNnu0OtvYdsudz75hP2DZzimUQ9qMxzHotNpYhgVWVZD8YqKKssxrIphtyMXsUJjWhax7zNbrzk5Pubp/j6mZRPN5gy3tnj186/SajfZ3tkiWq9ZrVagC5SuODw8YhlFfPzxx3I1NKXZ0O/38V2PIs2JVxHL5ZIkSUnTlNl8wWq5loZeXZ2VLwBSzVqtYCqFpUXi7xkmjmfjuDZRKjyE2WROWZToVk5UrZiv7oNlYTgOTT+k6YXcf/iQOEn47a99jWY/gHaH2fiUh/c+pl20ZWpdKSzDIF6sSNKMtesQoHFMC9MPcJTJeDxmsV5x+cplGq0WFYr5fM5ffOc7XLt6nT/4gz/Edkwsx+RP/vhPufPoIWEQYtVFQxRnPHv6lCAI6Ha7ZHkFyiSOEhbTJclaGh22620Ama5l49kOcVywWmXs7Z2nPxjwjd/5XYqy4snhMcfzKU8mp/SGQ1phg1s3rtNsNkjTmOViwScffcz9Dz/kT/7Nv6HRaNBsNti9eB4/DDFUhedaXDi/S6PRIM1iDp7tEyUrZvM5i+WSf/fv/i2j0YiXXr5Np93m/N4uUbJidPqMokiI4gUvvfIa29u7XLtxC6UMPvrkDkeHhyhDtk5ag2e7NMOGpJaFIb/7zW+Spymnxyc8fPCAhw8eigIoCOi0u5w7d25j0blw4SLT2YTxbErQaOK4LnGSMpnOMFRtVc8yDM+jEUrQQVUJKBMUT0+PefTkMZ2mj+fabA06GIZ49xuNFp7vMZmPebj/gP6yJw3oVYplyUZ0oaccaU13OOTczi5vv/WWQMQPj+j2evyX/+V/hTIMPr37Cd/7y+/ynW/9mUDpHZsvvPEGjuPw1k9+QpammMqg2WwxGAwFbK417/74xzi2w9WLVwQy7zmcP3eer775pljMLYt3336bp0+fsF6JMuvZ0TOSJKIsc1zLot0KaDQ8fN8VgHmWso6WxFHEZDKRWmG5JgxDms0mb7zxJXZ3d3nw4AFpljHoDRgOh3zhC69zePiMe/fuMptNmUxOUapfp89IcMMiiSirgsWipNXs0WoaxGksDEYkVdcwDTqex5XrN2WQUJUMh0OazSZpnrNcLPi3/+x/YjafsVqtsAxDinvTxTAtojhhPl/in44lQXgVSVBDo8Q0RXnsGAqjMtnq9UhrbiFAWG9O0zTDc2zazZCnhweso5iLFy+jdMX+40eMJmMBgVsWJooyy8nTjHazhWrIhnG1mPO9v/gLvIZPd7fP/qN9ojRjFUVoVG1XtGg1WoSuSzsMmM0WnI4njGYTFusV61jSGYf9Pt1un729PZ48O+Cdn79PEscUWYbluIRhg7wosWyLS3u7UlPVVmvjBaWQWEQ0SS6pYFmaYVsWjUYD33VxLUvsYp+pfz/LY5Lbr57M/qKq6Df5mc+4Pn7NTRwZv9q/t5nky1z+r3+gFx/v1z3SC8/x4utwpsQSVUC9OcxLXNvGc1ySoqAoZYBcViWn4zGGodjd28H1HFqDAaPFlMlyRk838Wxhu2Aa2L6HZdQbFkPUUI2wQeD59No9ijxn9OSAk/GI7//sbbq9Htev38DyPVqDHs/mY8aLCWQaU4Nv2DiGLY2nSpPmBUkUkWQp1Rmnt1ZNZVm2wVJkcUKeJHz1S1/Gsiz+0T/6R5ycnPDmm28S+AG3bt4gzxJOjp7x8ku3OXdulz/+43/LaHTKlcsXWa1WvP/z97h98zZfeO11kmhNnETMoojxcsH+swNa7Rbb29ucd2wud7pcvHgZ23Y5eXbIhyefcOPGbWzb4e2fvYdpWbz26muYhslqHeF6Hlvb20xmU9I4wQ9C2bTmJVoXJDEsVysWixV7Fy7QbreZpmIrazaEj7tOIsosZTo65eLOLq1GUFtyc/afPGYykYZ6kkas1yv29x9x586dGuiveO1zn2M43MJxXE5PRzx+8AjXtkCX3L51nd2dbRbLmPlixZ/8+2+xWq8JGwFXr13jd7/5Tfq9ATvbO3xl+hX2dvdI05T1as2dOx8LjzTJaYQh3XYHz3UIPI8yy1nNFzzZn7Czs8vf/lu/R5ZlHB0eMp/NaveAJWt4smaxnLFczojjJQ8eigXdqtEIVVnw+NEjiiLn3r06+CMIyLKMqG7YoTXNfof+YMCnjx9Qlprt4QWu37jBf/af/xGe7+P6Hnfu3uXJwVP+6nvf4/DZAe/89C0UFRd3t3nj85/n6298jtPRMaPRCceH+xw9e8y1S3t0WiGT0SlFnkFVkCUZcZziuQ6GgoODfaI4QiO2/TAMOTo65v2fvc/e3jl2dnZxHBfDMKXBU7uIJJDJwQtC3MDFthwsrVku10xmM5zQw/d8TC1Jdqs4JkkzCeBBhnUgFtdSyBkS7qGkkZTnBXle1BxAkzKrqPIKpU0J1aoqDCSEJo1j8rwgSWOcytkoG8O6qVKWGtuS/aRl1XwmLXzeoigoKMnKFK0rTKNGxRiqVuQqTNcSm1chQTfU1jON3oR0nQlNgBqcrdFntlxloAyolIlGkDK6EstbUVvQ9QvoFXW28tWCBcOUIZRYACV4xfdFqOEHPlRimbcMMYvqeu9vmKac51kugQhVSZbl0scoSzzPo93q4NgupjLrdLqK1ToiSVK0VhLCVMrvVFV107EONWk1Wxv12xkTTpd6MzAL/YC1tWI1XxDHMQ+SpO5JKLJMEDBBEGAoyNMVyhAe9Zn7q9Vq4bouBwf7JElCoyHBPbblCJbCsTFtq2ZKCTbICwK8wAfToEQTpRLw5PoBVo3NKLOM8gyi/jfcfuPG0872DqZp4Qc+65UUdIvliiiK6fX6bO/sMBgOabZbxGfsGM/FdSyMVoPj40PefTcnL1La7SZf+fIXmc8XHDx5QlHkjE5PxHuYZrQbYi+788ld5vNF7UvMWcymwj2xzLrT7tRsBEN4Kro+6YpCmBWoOoFFkuJ0VTvVtEzmPMcV9UteiELCNPBdD11VpFlKVVZMTkc0W02CQZ8SjS7PPkQmFgptWnTbbYxKs54vcWwbAwg8r17MJWYyzwpM08LxLTzXo9Fo4LoOVu2ZVkrRbbRAKVarGAU1m8gkNQ3SOCGJYxq+C1WFXXOH8kRSeHzXZW9nh/MXLrBarYiiiNFoRBiGuLYl0ei+RxgGhIHHfHGHw8OjjQJjuLUlfBnTJM8LFosF3X6PIAw2i8liMacocsLAJfAdbNuoF5mcvDBBi9+zKAos26hVYVAUKeuVLC5Z7rLS8okrU4HtOpb4TQ3LwtLSpQ4aDVzHFqVBBcqQ44rjqPbGaozan3yW8LBYzInTRLrplRT8pmFgWBar1axOB9KgxRrnmCZx4EoXHhjU8dV3H3wqnWtD02gGbA23SJOExWxCWjfY4pUU1LYhXfAiS6RArjJ818Lf2WadJiRZznwds17nHD17Kt5y1yMvc6hTDqs0ZZwk0tUv5D1o1EVGVeTYpkhZW2GI67gUdXLZoNmkLEqxJzw94Ed/9UO2t/fodHts710h8LukBVRlzuFshW/btAa7zJdz5ss5RakAiwQDSxkYvi+d9tr+lNXWxjRLsVcrLEsk5rZh0gkbdZGuSTIB2ffCBl4YUiFJEJ5jk1sCAg0CD9dxNhDgOE2gUPQ6rbpBKYueY7sbdcqZq8Kskx9sy0YDRyfHnD9/kQuXL9MbbpEkKbPxKavlgjsf/4x1nNbpFVBpRZLlxGlJmmX1Y8tFZme4hZemZJUmo2KexDQaTcIg5OqlS7Q7bfYf7xOtlhQW4Ah8ETRFnuKaCuU5OLZHpWG2jrA9l1avx9bOFr1Bj9PFZJNMIcmVchGVqZGx4bKdNcsxatSsoXADgWLmWS6easuCUqMqcA0bw/O4fuUaeaV5cHhIWWrKLEOnwuwJbBfPtFnPl5RxgipSlGlx+eZN2SBbwnPSGuJcIOO9nSFBs4HfaUgss6HxipDSgpPxKaPJiO2tHShzXMdhMpvyZ9/9cz73+uf43Ouv8cbXv86lm7cpswJDGbTbLdI04ejoGY1Gg263S6fbxQ8CvvL13+LGy6+ytTUgL0v295+SFcJV6nW79DodWmET33XxwwDDsvjxhx8TpSlHozFplpImMeODY6gq7n38MbZlkmUxSRxzdPCM1XzOzqBHfzhgMOzjt5pgmhimMIqmswkYmq3dIa7v4oce7W67jg1OGY/HFIXwlCaTCbZlcuP2dS5cuMS58+fZ3jlPEDaJohXT2Zwf/OB7TKdTRqfHKDTDrQFhq4FpW+w/eYoyFINen8D3uXzlCs1Wi2a7LWrWSsD8p+Mx6zimKAqWn3wsKtqyYjFfsl6uybMM33NFvWOaJHlGVuYsoiWgUBqSRKzUlm3RC7rcvnEFUykOnz5GLP8C6D8dnzLYGtIf9lHItfBg/xmGMvAdgVpXRYmqCoo0pkxjKHIund9jMBjQCgMc16HTaXF+b5vd7QHDwYBWq8Wg38WyLL725lfIkoTlZEaR5aTrlagdwoCyEntvkUWsi5R0mrGYTzk+PqLRatJstajKknanzZWrlzAMg9lsSpIkTKdTmmFIv9uVAjwR5khVFjJpb7W4fvUqy8WS/SdPatVNg/Pndtna3mEyGbNeramKjNHxIX/xnRNs2ybwbIrARemchw8+JU1Sej0Zet24cb1Od1uxtbXLcLhTp8CI6kMhzEfDMDg9GbNerZjP5gRhiOtKw70oMizLpdMZQCVrb5qVGGaFYWqG27sEQZNer4dlWezsnifPc9brCPICrRLSoiCvJ+VlpfFdh6rSxFG8YeeUpaTPGErSPxuBj2UYPLx/XyyEp2POX7zIhe1dzu/s0m63eXjnHsvFgp99+HOazSZf/e1vkOUpq2TFcnnCcjLj5u3bDAZDht0erm0zXyxYWxbLSGyK4/EEFLiuR5SsMAyDneE2ru9zdHLC0ckpp6MxgecRhg3ZFJWFQGJLVadwCmvCUoZ8FotCor5z4ZScKcUl0lpYkoZh1Il2v9i++QUVU/0X/QtNoM8yn3759ll6yS9/8xexUr9q+PvZYxDl/NlxfFZ9dfb3v+5oXijytX4hVe+Fe73wby9a90wEK4EliXFZWVEi1rozDmrTD1CG2GdEzSasSa0UaVmCURCGASiD2WKOY9l0wlbNnVMslktWq9XGzt0dDHACny/kGVGScLD/BN/16LS7DFs9Wm5IXiuW3LrxrbWm4Uvtk+Wi/D8ZjYXdVFbYts3W1hZZlhNFayaTMfPZlCLPsUyLLM9JkoRvf+fP2R4OuX3zNqPRiGfPnhGGPtPphOVyKYE4RYnvB7z2+ufJk5w//pN/jxv49HZ3ePXceYIg4PjkhHUU89GdOzx8vM+dO/e4duUKt67fYHo64Wh1wv2HD2h32ly/KhY+o9Q8e3rAe6fvMZ/NWC0WHOw/kTTYXBQHL718E13mqCpjNpvjWQ6B42BWmjLLKYuCdC3KoHwdURkQrRSP7t0jmS0Im200kNSoi+HeHsNBH9sySOKI0+NjHNshbLeIlktOipLJZIqhTF59+RVOTw95vH+f8cmzenDXx7ZdXrp5g6IoWScRaRzxrT/9E/r9Pv3+gE6rzc7uAMNQxEnCYjVmtdQkUcRiMWU1nzKbnOK5HrPpiLxIsCxFWWbc+/Qe+/v73Ll7lyRL2Noe0u60CBuhqEpMg263i2kaddJYhdYVrm1jmxbL9ZI8z0VBqaVZaRoWRV7Qardptducu3yVXr/H7qUr2JbNoLeNaVv8/IMPOB2fcnj4jPliThzH2JZBsxnQ7zaBinbbx7Yr1qsJq9Wc5XqJF3oMtvtcuHyBXq+LZZmUpY/j+8xnc4rxFD/08RsBi/Wa2Wy2cZd0uz18v07RKyuiKKmbHbUdrk57NAywHVOsW6cpZqdD4DjC1zVM0jghT9PnDSrfFSGDHzC15myS2bU0oQwlip8qL0jXMbooMBHlD1pj2iZGblIZdWpkeaY6MmpL23Pu1lkKsfCkRHV6ljie1eiWPC82AUOmZeI79Z7ijNuFqJiUgjzN64VJYRiWBHmVZ4l5ogM9c3lUNeakqirO0saretXcqKUQtebmmoALCDc4J5OGmlU7IWqWsWVZgrpB0W536HX7+J6P47gUmYDE8zJHK+E166qiLAr5Peo5goGouHzfo9Pp1AxkiyzLJMH2DJqONMtt2675yaIQNQ2TTqdD2GiQFQWh70uCcVlioNFVQVVmFFlCkVrkSUyZJ1iGphF49NpNxpMx05nwgS3LxPNtbMvEaEqgkjIMSY91XZqtJq7rMp1OsGyLbrcnji7D3DTWDKduPNmyt7Z9D2VblEiQhnmWnlnWYSOGQQkU/7EVT8PBFkEQcP7iBcbjCY8ePqYonrBcLOm022xvb9PpdQkbIYvliqzIsR0H1zbxHYvx+JTx+ISiyGi2Ql555WWmkwk/+H6P+Xwml9GiokhzmkGDTqtTWwzke2VZslwscB0H3xP1i1PHNMvG1ZMTMM/qWEcAVcvka/lhBdqo//2sk6mMTYKaUgrXEV6BrkpRFizm8gbSF9iZlih5Sxly8TZM2s0GVZ4T+GKlQIPruIBDtF5RFhJBqBCyvus4BEEgm09T1TYq8FwBSQv/qpZg5jm5IUDaLEmpCkkssEwTA0WR5Vi+NJ62hkMuXrjA3bt3iaKI6XRCkedsDYeyqXddXM/D932WqyVHx0ekiYB1e73eRpVSloWkiw36ktpQiNxyvVpSVRWh7+F7DrZlkJY5ZZVTFKk0nqqKshQvr8glNXmRkWYCES2KnDyL0WUJZUrqOPieI9Yry8RUGsNS+IFfvx6aoqwoK0WVa6I0FfWLadZyXl3HXSpW6xVpltXQd72RhhqmRZqlrFZrAYyXmvUiwjEN8kg8zbZl0mo3KbTP46f75HnG9fPnaIUeuzsDTo5POHw6I68bT2kUoauStSnPAXXhVymarTatVodlHBNlGbPVkjhJiOII07IIwiaqBqdXuqLQEj9clSVUwhszlRIAaFliGQaB59Pwhf0zXizRlWZrp0eW5STLJZOjE0bjU77ytQbbW+fpDfbwvA6HownReslouaLXajHsDCjilHkyRmm5sKQoSeVxPUyrxHJdqjwnz7MNqH69XosKwjCxDBM38MjLgiRLKPOMJEmwTIPQd8EwUYaFY5k1JF7he6LUsh1hreV5hjZK2s2GTPBde3Mx1XUe9lmT8Kz7r5RJlMSMRiP2Llxka3eXZrOD63ncv3uHk+ND7t79iCSKSc8sHJ5PlhdkeSqqC0NhmRaNAJqtFk6WsUoSFmmC4Vg0mw267Q7nd3cJGw0++ckPBLJcN57swkapijJPcWuFWzMMKcqK5XKFZ9ts72zRH/ZoddtYliUy+qr8TKyqVTPlzoChoDdKSkHNSePJRHzupWWibVtemwocw8Z1PS7snWedZTw4PKqfQ1NECWWS1QWLSbJakxsKpUuarZBzFy4TpxFRItJ7XVYkZUleVbQGPYJmiNfy0ZHCrHI8AnAM9j99SBbHdJstqISVt1wt+PE7bzG8sMeX221efv11qkozH89RwN7eHnmRMxqfCrel12MynbJcLHjti19Ea7h67RpRHPG97/+QJE1J05zd3V12d3ZqDpGmqErWccx7H33IYr1mNJ/jogiUwWw6Yb1ckiQxZZlT5ilFnhEtlrQbIed2ttjb3Wb33C6F0iRFjmFoijJnsZzhBQ6WY+F4Np7vit2t1cbzXKaTKR998AGLxYLTk2OGwx6Xr17m1q3bXLt+A89vgjL46MM7HB4e8O577xBFa5Su6Pd6DLaG0jRzbI4ePyNNU6pKsz0csnPuHL3BgK2dbebzOcvlkvl8zmQ6JU5E4Xp6eophGASuyzpZ14WMxE67nodhKtIsoywLojTBdRwaQcg6jlitV3T6W7RaTa5dvYouSx7fvydNftMizjLWScLLr77K7t4uq/mK9WrN6GSM0uA5ttjgtUZVJWWaUGYpqiw4t32e4XCL0HMIwhAvDNjeGjAc9Lh+5QrDQZ8caaJfu3qJLE44fLjP6PiEp4/3Rd3cbhKlicj/s4SsKpnM5yR5zs9+/j794YDh1hY3b9xge2eHa9evE4aBxIPP59y/f59ut8v53XPcuXeX+dMntTW4kslsGPK5V19lMh5TlQWBHxAEIVvDAf1el0YjpCxy0lXCdLng0f4DLl26yCuvvkLhu2hd8OypMD9u3ryJY+9w+fJl8jxjOptw7vwFzp2/gBf4osRsih339PiU+XTOo4ePGR2f8uzpM1GD1xNH0zLot1yarQ6u7ZEmCdFygVVU2KWm1xvS6Q5oNhobtfV8PufTu/fEcq41SZYJa7IOefEch6IoWa7X0s4wFFUpSnJTiYLJd10sQ3HwZJ/5fMFyNse6aLA73GJnMKTZapFnGZPJhE8+vcelS5f4nb/zt5hMxnx67y66rIiXK66cu8D1GzeJ45i8fk6AmWmwmC+YTid02x18z6s3LzAYDEEZnE4mjCcTZvMFvusRBmHdeJIoc12WEuxCrVyXAo8slxokTmI00G61MA0LZckE/azuOmNAfbYHc2Zm+2wb5zcrkT97/1/R2/n1t19sRP2Kr+p4Efn7L/rozqxxv9AQe/6wYlORv4ry/hcPcGNR+cxTa7GxKahMgwpFVpVUz902AISuL9PyeqNnmAplGaAM8qqEQtHxJPX4eDrCsV0CL8RWJqbWrFYrTsZjwiCUFKW9PZqtFqYyefjkMffvP2A43CZNMzphC6tpkNSQeMt1yLOM9XyB7/m0221A2COL1Uqi4XMJrdje3mG1Xm1wFycnJ1IXmyZlWRAnMT/60Y+4fOkyezt7zKZTRqenOI7NfDEnipLaLiOMqMuXr/DBzz/kr773fV770hu89NqrvPHFL7K3s8tsMmP/6RP+r/+3/54krtNw//4f8nd+63d5x3yXdRSzf/CUfhJz6/oNqDSz0ZjjZ0e89e7bROsVSRQzOzmlzARV0O60uXrtClWRE8+n2IYpzTvbkQZslgsDJ04oi5wiScirkrwqeFZWLE5HNDp9DMuSuse22d4a0m13MJQ0oyajEef2ztEMQ+L1mmi54t69+wyHQz7/2usk8ZLjw2cC0I5X3Lr5Eltb27z22pdRpsXTo2c8PXjKOz9+h2ZbMAR/9/d/n729m/i+T5IkPHoUyD5AlaIOny8Y14nipmOiDIVtGZRlzqPHj3j06DGPHj+i1+8xGPZptpr4gVeH2RhyrhgSZlTkGVmWYpsWnm0zTmUg2ul0UEAWSypvlhf0t7bZu3CenfMX6HS77O3sEgQBnVaX4+Njvv/D7/PBhx/w1k/fwnVsHMfmS1/8Ao1GQLsdSp3U8LAtTRzNWEcLVtEKL3DpDbrsnt+l026zXq/RQNhsUqJZrNe4gYS9rJOY6WJO4AYYhkUQhHieNCTKqiJNRTCAAi/wNpZ5w5QGT7pOWCxiWp6LW4f9GIaAzPM0x6ph0a4r++HAlcfAgKrQlPVnf9N4KkrSOIZCcBNKC03IsAyUZVIpSWYvazeTAMvrPZxRC/pNCaI6C3yqtNjDLcuiKHKyVGyyZSl8J9O08Fxno16qPdMS4IUmT5OaC2RhGLIvKLVYqKUbrzZNLrHj/eL6KotVpc9CEWTgYBgmJha2qiBPKaqKQuWYSBiari15qrbRoUArg1azTafT3VjdyqKqxSwSemOaElZS1ogUUVLJtcZQ4Lou7XYb1/UkSTzPpUFeD00MyxSESR12Y9ZAfdM0xBHUapImoprTZYGuStnHVgVVmVPmOUWekdd7LlNpXNel0+0yX0xYr+c02y0Z+nt1Y9J16yVf49V7/1arheM4NJohypB9kFnb6zbvkW2BbeL5LpZpYbuOqJpgY7GjLKkQxWul1P9/Gk/Xrt8iCHwuXrrIzRuKN7/6Nb797W/zk5/8BMM0yLKEk+MjJpMx9x88JC/Ed+o6NrlrM+j38T2PTqdLEsf8q3/5r5jPZnx67y7j0ZgiK4hWa3RZgK7wXYcrFy/RCEI+/OBDKDWGH/DySy/xzW9+k29/+8/55JM73H/wgCRN8Q0bBZgVmGaFYWYbC4vWWlQkzYakPdg2RZ6xXC/pduWCJqkQLmWSooBev0ucJkRpzGq94s69u+xu79DtdonXYt8zTeErrRYrFIq983sEYUhep2GcdTyLoiBNq7qGMKlQlLoiK2TxbDVDTEPx4P4DSWFoNQk8lwvndknijDTJcW0p0hoNT4qzJAHbwlAFrqNoNj3iaM7R0T5lFWMYBaPxEYvVhPlyhGkoTAUP7otn/fHjJyRJwt7Lu5Rlyc9+9j6WbXHh4kV2dnY5f/Einu9huzZBIGls06nAwHv9DqYFDx8+YLGQxpL4QcELxIM8nS8o8pwsL+S1dRzStKCq1OZE7re3RLVVFKySmGi5rFPwbEwzwnFyyiKX4kwZuJ7HxYsXKbUkus3mYr0I7Aa2ZdNqhKxjU5paaAzDxHccXMcldD10XtEIGpK+0epgaLDr1CNdljjKxFEGw24PXVW0Gk1M0+T4+BitNRcvX5SLqGFQFXkNtlyidYVl22gqiqpgsVqyXseYrosyTbwgAMuiqkR5l+fCNauKkrDZwA8CskJ4ODqv0GXJYhnViYbSrLQMBWVOmZV02j6UFavpMQD9lkuc56yzjI/ffYeHn9yju7VL2GzypTe/Sp6nfHr3Y05PRvyLb/0F28M+29vnpXlpKNZZSplERKs1nXaLV1+6RVUUwvi48wmrp0+olHS1jdoH3Wi0SIuMIla4hkllOYxGE07Hc9ZxRqk1n957UPvQU/lZx8YsZbFdRVJEmWYuyYmlTxjahH6TyWTMdDrbwM5v3byN40gkd5xkJEXJJ/fuCkTTNLFMk5s3b9Hrd/lf/df/W0ajEd/+029RFbkko8VrzHiNYYk33bRMStvicDZhHUU8OnzGMk0oDFCujRV4ZLrE1iXb5/dYLRecPnmKaWnMOtnFNk08S3zYjmWTqQLPtdjd3eK3fucboBT3Ht1j/+k+h4eHmKbwsjzXRVclcbJC12rIXq+Lt7ddS7dzzp/fo9Vssru1zWo648knd8m0TKTTIiMvCwzXA8vm7sOHrJKYg8NnNJottre2WVSaSOe0ex18P6TdaFAWBadHh8RJymg6o93vcvHCeTrtDpZp8tH9x4xGY5qnIxpxjM4rLNMSALZlk3s+5qWKPJaENEOZ3Lp6HScMCPp9RpMp/5f/83/L7/7O3+L69RucO3cBwzCZzGYkWco8ySisDOKUdaXJbZve+T1M02KZ56SlZufSJQF6Llbc+/RT/uxb38IzTUwFSRKTFwVREouNFk0axUSrFWZZoaoKy5C1/ea1K9LAVDJAKMuS3b3z3Lh+nZ9//BEnRyckcUqeZSyXa4IwIkky4iQjinNWqxTLyrl54xUsy+K1V99gsVxw9+4dKl2CCWlpcXQy5/Gj9xmPx7z3rkyzLRM6rQaOI8XFKlqye36HrZ0tdnb2KMuSk6Mjjk9G/LP/1/9Mu9Vib2eb+WLBYiXJY5WuSPOUNEvJC1GWBaGPaQoj4Sx9M46EYzQajUUpVhQEvk+72SLLhPGR58csZwseb+1gmQaUBkpL0z7wfcJGk8VsQbxOaDVaWIbFuZ1tijKj0jmtVki/tccyjoiShF67iUaxWizJ04wf/fBHnLt4gTe+8lUcL8QLWxhWgCag02vRaDf4/BdeFwVDljKbTDh59oyT02MmswkHB0/Jo4xKZ1imyd7WQKyEswWryZTjg0P6nS6tZpP/8f/5PxJHEY0wpCgKFrM5lm3jeT6tVpNGI+Dixcv4nsfpyQlJkvD+e++RZfmGRdLptvn2t7/F6ckpqygCrWk3WhSFcKOqqsBxTK5dv0oQNnA9n8lkiuO4tFpt2t0+cRyxXMeMJzPmizXT6YQojiWtMkl49vQpZV5g1pYPo5LBWVlJHWJaJstuG9dxpPFSaWzHJ80KoniO49iYpsE6TSAVpXOaphiW2AKymi3hWhZxklBpaLbEPmwqizhNWKyWxFGM44iF2bJtTk+OcWybZqtNv9ej1e5w9do1tgZDhv0BYS25Ny2LvXN7bO1s1+4whaMtvvT6F/mtr/8OzXZbGgT1xLgZhNKsuvMJ3V6PnZ0diqok1QWXL13Gd+W1W8cJi+WKRqPJV7/8FRzDwDElISzOUuI0xjRNQr8+ZscmyTPWaUy8jsjznE5TimbfdjebmecWMvnvOeHpb+4S/dJe5jctiH+Dx/qb7nM216/qLzYpc3/DUWw2CC8W+WcqAYGB/MofUlArbutzEsh0ncyIQamF0ZEXGUrr2sKlqGpLW1IW2J5Htz/g9PSUeD5nEcfCPKlKsjjj4UyU4HlZD9zSlJev36TdaJDEMWVRUJUlzbDJjavXmY0n/OWffYeXb96Sc7DVQCvFfLXk9OSUD3/2PpoKBbRaTXzPJy9KNJLKlhQZxuNHLJYLjo4O6XU6fOXCm4xPT0mimK+8+SbL5ZLv/9X3mc/mvPfee2gM3nzzGwyGfVqtFls7Q/I851//63/DdL5CmS6m4/PKG19gNJnyx//mjzErg5s3b/DqK69y/cZ1/sF/+gdMJxOeHTzl/qf3+N//N/8H9nb3eOXmTZqNJqrSPLxzj5PjY/7sO38mapAsZ2d7yPa5HZLZhEW8ooxWrHXOnQ8X2JZYzYLQp9O+grIdWWvXa6L1GmUYNJpN9s7tcjI65eGTx7ieQ6PVYGs4wLKdDVt1tVjwyWTKuz/9KZPJhDyJefZkn9HREfmlhCAIuXR+D98POXx6wPGzQyajEb1Ok72dIfPphMlozOGzE1zXI2w3ieOIfq/FOorYfzziX/zP/5xWs8XNW7fodnvcfum2DNS04uTomP3HjxmPRpJM6kitFKcp6zjmz7/95yxXS7I05crly7z5ta8xHGxRFRpDWZjKrNNmpR4uy4K8yCiSHN9xQRmYlsNsscJ1XfZ2z9Htdjl3/jzD3R0GW0NRgJcVk6NTPp084Ls/+A7L5YLZbIptW9y4fgkqafwm64gsilgvVpKW2q1IS01awWQ25+nBAa1Oh+HWFr3BALTmhz/6sdR0NTYlbDdFLd4IMS0HjcFyvca0bCr9XO0iLhyI05gsT3Fcq04Pr8AoyQoTx7EY9LsCxy5zdJlDWeBgY2lNkiQSFJVI0rMF9HtdXN/jcH+fIisxDWkaOI5LWRQsFzOKIsMwwDA1hikCe9NWODVM37IcLMvBNG1MU9Kjy3rwl9V7ManFcjneWvKTFwV5VeL5Ho7rivW7EMdLkqSs64RDSlBIE83xA1mPSrGb6ZoTfZaMJtiZorbXnaHD2aSJnzW4KoCzRD40hq6gFG7SGb7Ctm0MNGkcU5ZnjORSOJ+tDo1mi9dee5VLV65i2hZlVaDM2v6sFTYWGJow8NGVJgoC8jwT3mmcsZjPyLNUXEy2NFmX6yXzxYz+oM+Fixf43735Rba3dtjZ2yHNEoqTDKNu7C/mU5JkzenpKaahhQmd21RpKk0tx6bZCAiCgMnolCSNyXNBCBkKbMvEc2267SaNZoNmMxT+VCFpc6Yl3OgoigTZ4nm0Om0s16EykAGGeq5yqwBdlqRZjmlIurXruhjKRGtFmsi5gK5V1pUgi6o6af1vuv3GjaczCVkYhARBQLPZ5P333ycIA+leZgKfVIbB0fEhALbrUBY2VSlx6a7r02y20JXm3r17LJcLkli6pIaSmMGzeD+0xve8jfVNVxqFQafd4dKlS+zu7DA6HfHo0WOqUp8RxySislZZaK0piqJuXChcx6nBac+94WdshLM4zKwqUQjcuULjei5JErNYLRn0BziOQ7yON53hqqpIk1QA0aGkRuRFIZP7JBWFTR1tr5TI2VAC6CqriqIsNuC1+WwhhVcjwLLFdlTmFamW10diS00qpZ+DtqsS0wDXscjyhOVyjqLCshRJGpHlkijg1Nan0fiUyXhEFK/RaBrNBkVeEEVrfD8gCEOa7Ra9fh8tFBo8R/y9q9US27Hodju0ms2NVfB5NKUU1oYWfk9WFMSxFMamaZHnBWiF5TmYhoXr+RhQLwaaOEkR8YciOYv+rAWVhgGWLUoo8e8KeLqqlWqGKVLCLC/qRapWkhuGgMFNawMIt0wLx6wj28tCOslaYnmpNL7rAiKtBEUURbiuR6PZrOWVCrRTQ9xisfTZpvh2K02Rpegixa+B67bjUCmDshKgXJ7VocUabMvGc32sJKaotEgslaIoqhqepzC0xJ6eWSgCx4aqYrqciyXGa1JUYOiSyckJaXZMrhU9XfJq72XQFSenx5xOZhycjglbLc45kvJmGDBPYoleL0u0YRC22+iipEhTLNdDG+ZGTlmhZMNh2xRKY+Q2ZqmxKs1yHcvmKRVLY1EJj8T1PYqyICsKJBzPqCHSGil/kXRHLRD/sqhI4oQ0y+WzUr+ZZzJejTCGlvMZuiowlGJne5t2q8WVq9dpNDuEzZ+Sp3GdBpdT5fK7KMtCmaKYS/KcKMuIspS8Eh5YpURynNcMpk5td1mcnIrMNC+xTJGxmjUAUZ1tzlyHZqvBufPnOB2NePbskOVKfNiuKxDBM1aVDGsEcuj5Lu12i2i9IlMQBAFhGBK2W5J8qRRlpcmLkiwvKKoS1/ExLJvZYsEyjllHa5moGXLR06YSgLNr4weBJH0qRVFWRHFCU4PjBTQ6HWzHQTsumVIkSYpt2RRpjumaWI4FtqyPrWaT3HaIZgKBbjYaNHs9ti5d4smzZ7z99jtcu3yDQW/I1mAbwzBZriOSNCHOclSaYSYJaZ5TlBVBfV5NJlPyvMB2Xdn4OCnT6YQ7n3xC6NjYhqobvJogDLEdGy8MyKqCLEsITAvXtrCVwrVt2k1hFxm2KEVXyyWe5xOGTXSpSaJkc43J0pQ8E6tzVUGel2RZQZoVBEGDRqPJYLDNarUkK0pW6xWz5Zy8hMVyzYOHjzl48oSHDx6Q5xmDQR/blkJHFGiFrOWOy3Cwg0Ixm0xZLlc8ePiQne1tet0OaZ6JxQg2sE0U2I5I8V3PRdc2ZlVvJLNa3SsAdzk3LFPsu0rJeogy0JWo8QRUKpd8TYlpWliuS7SOyPMltmFv5Pt5Aes4wXJM2p0meVUQpwme46KUyXK5kpTWoyP8ZlPWW9PEclxMy8U0XWw3wPOatLtDmqFPw3WIVyt2dna4d+8O7CvGkxFplqDrDXDD94QvkWQs5wtmozF5mqHLint37jIejxn0+jLlTgSGbpgWl69cxHcdfNej1WjKYEZrHj18hGGomo/n4DgOB0+fcvfu3XrD4NIIfJQBQRjgeS6mJUOqbq/P3rlzBEFDzocwxHYcsqLAtJw6LCDh6OhYuGDzGVG05un+YwwNTVfSuBp+sFETq1qta5qK3JNEOLOOTc6ybBPoYStLuINlyWwxFzWsqaCUKHjTtmVaWysCfdelArKsIKtTaoqiEHaUK1aNOFpTWDatdgfX9egEAb1ud5OkuAHAmiatVpsgCETVlOYYmAwHW+yeP8dstRSumHm2QZD6bz6dEYai0ipzgby2mi1C36/ho8Ku9P1A6otcNlMgYOQ0T7Eqk/IsSKMyyYucLE3JMkkitSwL13Y2/Lj6o8AZXPrFf5PbLzdhftFi9/yu/+GNqvoF+Bt/7uxnf/GeZ8f+mceuv97Y5M6sePrF3+pXHesLzaezZtxnmlPP/6/q5ylqVZlSevMaFkWB0hrrjDNSVRJyUxWyea4ZmnGakdQbk0YQoMuSaJ0QpzGrJCIr8jp5r2bGpGk9jMwxDIN2q838yYLDw2fsDrbwHVfWOUMRrSMWywUno1PiJCZOInrdHs1GgzBoYDsOhmWTZBmn45FwNUcj+n1Rma7r9Wmws0XYaIh1piw4Oj6h027T6/fpdns0m00uX7kmTfqiDntYrjFMi93z5zkdjdl/vM+TJ09oNBq89NJLBH7A7WvXGXVGGLri0ePHfPrwPp12i729nY0TYTGdc/DkKR999BGu49BttVFa49m2hCE4JrrMyZOS5WqG67mgO9hNG9/zMByXClUr+k0cV5wS/V6fVbSmqmSdt22bwBderGEYlHlJlqQsl0sODg6gEpdGmeekZUkSxzi2LU4I02Y+nW4GCa7j0mm1mU8XrFZrViupfXc5R4Um9D2iSNLEHy9XMsizbfb2Em7dvkWr2aLTrIHnqg6FQYtFU2viTADLJyfHVJUmDEJ2tne5ce0GgR/WQRmWYB00FEUpe4g6ZCl0JezB8wKKqqKM1li2S7c/YG9vj9svv0yr0yZstRmPJ6yWKybjGQdPD/jp22+RpjGWZbC7vcPO1oA8zcWKlYrjIM9ysIVVrDEoKs06TpjN5+zt7dHtdPA8lzhOODw8pCgrWp02/f6AVqeN7Ti1tUyUqEVR1jUrzz/T9X6pKgqqOp1NvHGaslIUZY5jmbiWLQwjLQobUylJuDbUc5tTWUBVoRD0TInUmbosa5WU7GsrLYlsla6eq5lky1xDvM9S4C1RJBliqVO1qkhsbqU4T2rl/lmNohRU9d7EtOT55P5i0y9KccFofUZaUrXyyaJCBvBsrMcvDBJqa924O1r1AAEAAElEQVSLJuSz13FjvdNavG71kmdADRPX6KoStZYSZ5PBc/i5Omvy106jRqPJYDhgOByglOzNlfF8DGBohalFZebUIRZKV5j1+Z1n0iS1LBnma6WFz5xnG+bmzVvSlHbq6/GZ+0EpRZYmlIU0sKL1Eqqy7ntI012sjpbs/+th6lkNq+phpGkYuK6DV2MYlDLIyvwzPQ8ZgMlrZ9k29tl7Ux/Hi+fn2f11HfhT1U1apVX9vsjPVGcqt9o59pvcfuPGE0gU+NOnT/B9j1a7xWq9YGs4oMgzTk+O+Bf//BNs1+XmSy+R5znPDp7WQDCDc7sX2N7do9VsM5mM+af/5H/CdWz+8I/+iMePHvHuO2/TajZoNAKSOOLhwwf88EdvsVqtcVwf3w9oNJs8ffqMf/8n32axiOj1hoBBUZSASObKqj6l6s1tnsu0UymN6zmAlsSHqtiYNLWi5ss4TPKMosypZlNc3+PG7VscHR+xfvCQxXLF0fGpWKEcWxI7dMUqSVC6wopBGRaGKbJvwzTZ2t4VoLSWzXoYtlisI1DmpnGFUihTOvgA67VMjdI0wbZ8bDNgvV4zmRgMBgGWadDqtNFVyXK1Imw2sG1H4g3jaONxHteWlgcPHuD7Pv1ej2tXLvOVL32Zt376M05Px6LyKkuSLMPxPIKwgWk5EoVdq5iKPKYsC4HbOQ69bp8sq1DKkg2GJYybLK8wM6H754WWRKqsoihSkrjAd1Nc20bpBmWesx8taTQa3Lh2jTxL6fa6nByfcDIaYzg2hi1x4VVVsl4v0POKZ0eHklBhmvhByGAwlIZXPU0wTZMsqz24NuRZjqGsTSf3dCQQ+sDxcB2blh9smFGr9YqiKmQiYChmC4Eem7ZNQU6uYuIoIk0SkW0aBoN+XxR/eYrOU0lCrDKKNEWv15hFQbvdRhsmyzgHFLbp4jkeDT/Esk0My6Szs01Ripy6KuUie+ZrL+okLqOW5ZuuI+kMpklWirpMGeC7iiwpSPKUu3fex3jkkBULBoMBN2/fZGt3i70LFxg9O2J/f58gdLFtk7IQgHu70yMv4Xs/fEuacVlGUWQE3T6O54GC2XSGkaQU9UaiQtcMs1zAnllBM5BoeD9sUFQly2iNriqSOKZpN2TSPxjI5jlLUUoacKWuGE+ED9LpdRmdjomThI/ufIhjO/h+iGlZ7G4P6815LRtG88Mf/YDvff97/Nm3voNlWuhK7KgaW6xArsXuuYui8Fgt0GiCRkCW5/S3BhydnvL06IiTw0Oe7T/lyuXLtHodvvG1r5GmKZ/0Bxw83ufjn/2c3rDHcNDn6PAZq9WSOE4wbYsLly+zt3ce3/aIlxEHj59ApWm32xvI8XwxoyhzLMfCsCQC1jBMHEfsplVZMTo9ZTGfc3x0SisI+PwX3iBerVgvlywnMesk4fyV64Rhg/U6JtPQDhqUScqTTz+ltDSlobn38C6GMnntlc/hOi7NXocsFZvSaDLm3ffeY7i1TdhosNUf0uv2sTybRhAwGJ4jjiLGowW252DaNou0pCg0l269RJpkvPuzn9Noj7lYVJycTMmTkn/zr/8t3/n2n/Pyy6/SarXwwxDX82kPeswmM3j6jCSOydKE/cePmU9nPL57H9e2efXVV7BtC9uwKKZzhkHAoNfFc12Ojo+wbIuvfPVNzp0/xxtf/hLKtsAysLTCKCvufPwRpycnvPPOOxyPT5nPZ7i2TcMPOHi8TxmnkJdsdwdsdUdMTZPRZIyh4Pr165QVJFnBKo4oUTz+q79Ca7hw8ZyAJ5sNKkMRpTnz2YKDxTN+/IMfcfDkKX/w9/9Tzu3tce3KVeIkZv/pk01xNh5PuX/vMdeu3qbX77Fer+n2+ti2Tb/XZWdvj606jeVn70nk8872FmHYYG93l6zImUwnEuwxnWEgEvqes4Pn+fzRbbne3r9/H8sw8RyHTqtFqxHS3R5iWjbv/OQd4iji3JVrJEnEaHzCcr1icXLKaDwlWkc8efoU33XodAK0gjjPMB2fqARtubh+U4YFhkmWS6Xnhw0qZXAynrBOErBN+tt9zm3t8fBgn4PDA54cPiEIfHa3t9je3uLqlcu8Nvwan/vaV/mLP/0W+w8e8uCTT0jTFBWWNHyP9qV2XdzB+Z1dzu/sMWx3qOIEV4tyoyo1w+GQi1euMhod8fGHH22YjFeuXMU2pbwZDrd44403mM/nTGcztra2MU2T6zdvMhgM+PwXvrBp9s5mU46Oj3j4+Ck///AOzw6PSdOM4dYOyio4OBxhGgbNVo/A9/E9j8tXrorCu0jJs5TTZ8+YjUc8+PgTbMPAs+xNyVxUMoW1XAulSpazCbZjE/gBmhxNyWo1R2vZ0GhdMZ0J5DkMApRpYCm3tkGA7chGYWt7SJ4XTGZTlIlcx4162GMYmJWAVyutKXSFiaYyDRq9LpeuXePd997j4cOHLNbr+rw7R1UU/JP/4f9Bp9fn0rXrzKIV+uiwTsVRUGmiKOJn77+P43l84Utf5PT0lB//4AfcunGdnZ1tslim8tPFksVqxej0FN/3KLOEhu9LUlchTBADsYWUeSHcvuPjmo1XsjPcot9r4jjOJvzkrElSIb+XZdv1mv83K5d+XXn8H2q/e/H2657zVzWcXry9iGM9u98v5vL90mPqF9VRLzzzr2hSvXhsZ5sLUynKoqBIYkotjEvP87Bsh0mt1k/WoghUdR2oDUVpGJSGQeAH2Mrk3qMHVLqi2biCY1m4ts36NGY0m9AMQgLPZzqfEcUR6XxFnKaczCcYysS1HDrtFs1Gg4PREQ8On+C7wni0MHB8j6/+1jdYzKaMR6f1sSiGgwFBEDIYDJjOZnz3r75LFNUJkWh0nhO4HluDoQRZoHj11VdZLBacHB5zenpKmiTs7u3R6/U4GYtyut/rs1quefLoKReuXOIrX/kyaZKymi85Pj6WcJDZjO3hkN/9+je4dvkyX3zjCzzcf8y9B/f56Ocf8OEHH3Lp4kU8zyNaS1re669/gVYYMuz1ePDpXb7/l9/l9Tde57XXXuXp44fE6xXJfE40g/HJKQYGhjLpDAa4nseDB59imSZ/8Pu/h0Jz/96njEdjDp4cSFBQs4WJgWNa6LLaKHlbzTY3f/cW0WpNtFpz8cIFOu02x8cnaK0ZDgfM50vefvd91tGC3d1d/CCg0orLl68CkCQCrp5PxvhhwHCrT7PRYHd3hyTJKYqKqtTs7z/lv/k//p9otVp87pVXuX3rNl/6yptcu36LxWLBw0ePOR2NeP+jeyjg9//277G7t8utl17i4sWLXLhwgcViwXS8YG/nHL4b8uTxU5YLaehblonv+nzpS1/l5ZdeZplE5GVBqSuCIOTGtetUZUmcJLzz3vvcf/CQOx99wuj0lHKVoNBc3ruI5zq0W03hlpkGh9MJ8+mUZlPcDZ7h0gybXLl4jXa3RZoUTMcznj055PbN21y8cIEsSVgtFhjKoBF4XNg9LwMLwLVMfNdBFwU6z2m1WjSbTWRGoMnLgqoqQAmrSBmKJE2wShPXdyiKjOUywzZibLWmakm9PBz0CT0f2zLpdjo0GiFB4OM7LqqqSOOYVRTJNbgosVC4totj100OpUi1RlsGhmtheTama6OrkjxNWM1m+GGDRtisAeUGRS4DLQFPCwvUtGwarSamZdZ2QYXnuWR5KUNpLbZAz3bJdEm0inEsm163S74uqUxRPuV5QaGERWVUz5NLz7pBhiFrmFFb7jasKSVp4FUdOmUqSZfXShp2L3KXDDS6lD1KpjNRBjkuZlWhVInrBfhBAz8M8QKfaiNG0XVQlPt8jdaQFzKsc11XOFWFNOUMZeB6LlmRYCcWlaqkxq/DUQ6eHfDs6IB3P3ibSxcv8ZUvv0m8jrBNS5qdudQNOLawcF2nFpRIOBfaIM8q4iSt05JNDGVhmR6W5WFaLmUJSZyTJAWuWxI2rPpYpQYSZZXwpPKsYDqdM5nMSLOMRrMhSbmOW4f7VNjKwLIMDFtjKJPQCwlcH6MSdaxvuZsBqePIEGhdrSlq/tXfdPuNG09xIhvu0egUz3dJM4FYtjutWp2QsljMsR2HIhdPcp5nG9mkYYjS5Kx36QchzUbIhQsXsSyLNE1phD6+72EYEivqeD4NZbG1tUWz0WA4HNJudyjLSiKHa0L8mTTvrDMrz/Bcfl0hRYpRdzCl6wtW3Zl+3r0z0EqkhWmeYdYRgq7j4nk+ZVmyWq3odjrYtT/zLNZSUYnaStUE/dqXaznCrtEVm8mFYZovRBjWMLg6+lFrKGooaJqlKBxs83mnFoT/YtkWRQ5ZkZOfdZXTDJUr7Nrve6bGFuaVKMZEdSbRqMuVyHep1VSW7eAHIZZtC7y7Pk6jFjmeSTCFyF/VsZ4GtuOKskyLJU7itI1Np/X5JFGKGMuysG2Br+VFTpKlAmQPG7TaKVrLe1NWFSVVLcGkloGL+qssK1xXfL+V/JKkWUZRFLXaoKpfW4m6RElHv6w74VnN1crsfPMBt+vCVRmioqrO1HCWROFmabqZvppaiSe5ZndRd59FmSdpCKo+LkPXstEiR5RvFiWVNC6rEpXX/J9Kph7a0DVkTxRtIoGvyCthl5WVFu97oyXTmqzAMDSWpWmEFqbpkyzn5GnKcjGvP1MGnU6XIOhwp9TMTkc1T0feZ8swqVyZMCXRWlgCeY5ti2WIehNXaA1VSZymsvmxFKpOW7AsASeqWhrveS55WRJn9X15flF4ftMbm0FVleS5/N00TfGTK2lOiUfZBzQGAp6tygrXEzlxlo6IogQKYb91mm1RyZmKUhsoJJ0BXaFqppIuc0w0Dc8jdF18y2ae5UR1JPBsNqMqK2zLZjjcIo0T+ltb2IFPrsF0XZyqgtqeYrueQPCzHCqFbbnYFpIuUn/OLcvaFCDU6q9KVxS5qBPKopBocMeV16VO4MiLgjRNxWagIWw0aDSbrKMYyzTpdXvCnjMM4iolrXIsS6YeZ4lbZ4BeQ8lENo4jFrYAn03TxjakCVnkZV0clGRpTqFB5SWL5Voi7ouKQiMqPg1FWRE2GpzbO1evTwZJmmBGJoZliSpxaojqLc8o6xTT1XROvFyJPBoospQyz4gLiYj1HFE2GDVc3qhDHUQ1qvB8n7DdwlYGRgWn4xGFruj0e2Ao4mSNYzkEvicR9rMpeS3b9zyXViXQ752dHba3t5kvV6xOR5uJUBTHFKU09z3Po9EIxRa8XDI6EeVoURT4gc+Vy1e4cOE83U4HNVPo8vk1JVpFTKcSaa0MWYd832fQ74uNWVc49frTbLVI0gTqRnm31yNJU1ZJQgNRjtbDUWnuej794VBA5Os1jiWNtkYQEPoeQaeDVmA4NqQWWBZuELLl7FIcPuN0MiWvob1VKetQlucgAmSyvGQdxURxQpwkohpUqr6GyvXNtq3NeZzVzeqiTEnTmDiJKXRGtHbk/a1KGq0GnXabIAxod7r0hysWowl5ltRMB7lemIZZK3FknQgDn2YjRFWCEhWmnM9wMGA8Pma1WBD4PgCL+RyUotFo0my2CMIGk+mM+WIh60O3y87ODv3BgDBs4Pk+fhAymU6ZzxfM5nOWy3WtBitYLpcUeVEX4cIFKfOcIk1JC/m9TFMuuFYNZLZrxatpnE1wJQlXo8Q6DVRlQVUoyiKv1d6lANKrqh4+nE2VRSlZVWfNCb1RiEqks7x3Z+puy7LEspmm2K4ttZchbLmykgmnZdugJETidDTiydMDDGXgBB5pnEgNlwqqwHFdlGFS1rHTSilWqxWr1WqTyFMWEnWeJYkAWMtKVFZVtUmcNU2DqizEIovGVJDp+hpXabRlSSLS2eYCNmk8ZwBxEKWzvEZlfVExzl6VX7httAafud585r7ql7/3624vwrr/f7l9pjH0i1wmfv1hPG+q1ffa/OgvHpf+hedRv3xXBaaSGibNJaHJsJ2ay2hIvSIeGHksidFEGQrPcXGVSTMIKOr3SSOWGNuyaIahpNq5HgoldUpRkBc5eVlgWxJAYmoTy6ywEousKITRqcEoxU4dVsKR8T0fp64xup0OXu2EyLOUdX0OojWGMmoVudg1syhCV1ITSOy7SZIkjEcjXN9DGQbdXmcT9qEUpElClog6KwwCtre3CcMQwzDY399nvVrx2ksv0el2GWxvEaUJURLzbP8p8+mM1XJFtBbFl2EY9Pt9AtfF933yomC+WGAaJoEfyHqujI0lxrKsWlUAWSJukCxN0bZFVRboSmxWWZqhSw0VGIia4axO1hqxF6MIw4YoyJOUXr/P1nCL0Xhaq1+kcbteryjKHNu2QRlUlRaurTIwjRIsJAwi8AmDgLLUREmK63p4nkGr3SbPc1ariCIv2X/ylEajyd65cxhK4Xo+vf4Aw7LZ3TuHZZpcv3mDnd1drl67Rqvm0pSV1ChKmZiWjeN6hE2N7/s119BhZ3eXwfY2QZZSlOIsOWuCrFYrjo+PePzoEfuPH3F8+Iz5ZIatFa5t4dshnuPh217NzqlQZYUuSinSUJhK0t4816EqSkanI1ardR1AJQOCqqw+U6c5tjRm7FqNpNCC4igKnJohdQbJ1tWZZaxmKWlqJezzj+0ZR8hQOWVZUFYm1dl6aJuba4F1Nmy35PpLVaFraLZR772MWrl05rAp6+FDVcmxnO2T0GCZFr7vYxjW8/UDVe/ljOd7uro2MWvLoK4turrSm8R7BXKdLiUIK/A8EsehsHLy2gVUKVE5G5s1SW32Arr+/9mCt3EWGAp1dg08E4SqsxXxRcVUvemq17+qVjCd1ZG2I4FbZ4Bv44Xrhww1zpr7Z538eg2tRQ+u69bPpckzc/Maop5D1M8adlmakhcZs9UUx7aZTsZQPT/OqpJ1E63rYxRFGvX/NeKUOfuzWc+NX6iLa571WZAaWmyGIEMq0xAsidaast4LaK3rxzHr63r9/tVqN63VRthhvNBnkUuPnGcv7u3Uf2zF0937n5ClKePJGMe2CX2fc3t7vPLyLZ4dHLFYLFivV1Qa5uMxhmkSej6D/pCtrV06rSZJnPCTn77Fcrnkt/+T32UwGPK5V17ht36nSacr0/gsS3nwqUjqh+du4Loev/X1rzMc9Ll08QKPHj7m/qf3+af/5J/wzjvvUVQVrh9srGfV2Qa+fmOUaUoxXRZYhjQ+ABzHphH62LYlUNqqkqhH26GoNHEsTa3FbIltOVy5dIXj42OeHRww6HZphg15Y0oBgHmey7DXE4ioYdYgYVlZ8iInTVJsx8V1fQyl8DxPohxLzSpOMPMSVTeL8vLMhmRSlZLk4vkerXZbmkoGmK5FoUviVclilXA6XmDZIsVUhlDzdQme43Pl0nXCIGDQ6xG4TeJVjuP4tFqdjUKr2x8wGG5x/sJlDFNkpkHYxA9EYYXWhI2OeDiVJslKJpMFvufR7fZZ1cDHIBCejGs7GChMw6oLRxPPNnFsk71z23iey3gyIkkS3nrnbXa3d7h96xY3bt1kMBzywx98n4ODp8RxhGko+t0uCuroWZFrL1cRy1WE7dgYpkWSPgFlsLO1QxzHzBcL8qwkzRIqrTBth6DVoCxL8jilSFOSJOXczg7nz+3RbPi4jiVA+DynWEcYpcaqFHkuMfZKKTylqIocnZecPK7tka1QzqE0xbMdvFaDqpKmWDqbkhQFBydjcg1V7aN2bE+aILqi1KIwc1xZJMpSmktWnZJoIPHSuihRyqXZaHLr1S+jNcznK8o8psjXXO0MCfwmP/vgQ6bzOZZyyZKSw2cjbt1+ld///T/gz//sW+jC4IMP3ubk+JBmzc3ICykgq7pRKbHU0rgxlSRRlMqiKHOSWv3WbEhSVLfn4foLoijm6OgIjIjBzhambdLSoSyVhoGNgc4KZsuldMfrC6TjOjiOLdPwSjYejmdhWEEN67NxXJOyyBifjAWqnuRcuXqNXqfH7o7AE3WeoMuC9fRIrMGdNkmpKaqKp4/uiwT5+d5WLCftLo1Ks+MHrAyLOC95+62f8un9+6RZxu7eOV57/QvsXbjMS6+9zo9+8EPef+89bt28xaV+j2azRZZlfHLnLtN5zNNHR3h2gy+89mXu3L/L4fFhPX3w6PX6rNdr7t+/VzMdAtIkY5SNGJ2OKYuCz73yObqdLsk64vTomB/96McUWUaepfhhQNAI2d7ZodFs8ujBQxzH4Zu//VsMtoacv3ien3/8AQ8ePeTS5Su4nscPf/BDjk/GLGZzmoHP3vYWTd8nS0O56EUxs9WEvCxJdInreqSLpL74GMxOJyzWa54c7JOkKYtFRLPR5PLVawSNBr3+gJvXb9Ht9YTlYBiMx2PSJGUdxcymUz58910Wsznj0Yhep0uz0eTKlUt0b97i5su30Frz8NFDnj074KMPPsAyTZp94cLMoiXrOnL4R+++g/nzn/PH3/4OF65c4dYrr9BqhPi+RxwtwbH5e3/0h6RxzN0PP4CiwCw1x8dHHB0fsYjX5GVBq93lwqVLfPUb3+D8xYt8+c03ee/nP+f+o0d0en28wGMw7FGWJWmaUFYFpqU4eLrPD777Vzx69JCnT5/ye3/7b3H79i3+sz/6QzzX48+//R0ePnjA9773PSzDwrYdjo+PWSzmHJ88o9Vu85Uvf5l2q8XLL7/MfD5jf3+fCxcu0Ot2+dqbbxInCd/+1p8Rrde88sqrOJ6P12yxd+Ei24O+JNtkGfP5kqIsma3XoBSD3XNsDQdcu3KF6ekps8mETx4+Yr5aoV0XSymOT0+4dOki/+Dv/R5//u1v8/TZsSQNdjpcurCH69iMxkdorQj9BmlccO/uA6aLOatozUsvvyQR38s5juNwsRHS73c4f2GHd9/RHB/u86mjmI+eUiD2O992SOIlb9+9wwfve/zge9/n1u3bXLx0iWanx+f6Q774+heZz6b85V/+GcvlitnJWOx8lWY0HhM0Q/Yu7NHptjh+8oQiz3Edi+2dPjduXuHRo7ss5nN2dnZQSvGjH79Fs93m937/7+I4DotVxP1Hj3n3vXe4evUal66c49qNGziOy9vv/EyKwzzj+PiIR48f0u8NaDVboiwtCz5+72fyGve7SOOjIlnHpHHMOokoqoJ+v4NpKNbzObZh0PZ8sScbZs3rKrBcF8u28OuisgB0mRMv87rhIpvvSssU27Is+t1ePcyAJC1I6qGJUuCHPsowePzkMUVZSZPRMnEMg/liyXK14nb3Np1uB7Me/CV5hqtCesMtlqsVb731Fu+++y6ffnqfN7/2NTqdDj/88Y9pNRr81td/m7DVotnv18W6DNzyPOedn71LmqRcvXSZ5WLBD//yu7TbLXa2hugyZzI5YTydkOUFhutgOy5XLpxjNp1w8OQJq0YDPww2HEzbFF6X7/i4rku/3REgauBjm8K9Mi0pWZM0rT+bKa7ritVrs2H5bBvmr2vkvHgTt0c93PuP1GD6//am+VXPfzZMrf+q1aae/TV9pxe+fJ70p7QiR4aDLT9kEo05OToW1ZNl0QoDysAniiRFrchqJmVZEviOqFgNE0sZXNrZJstS7u3vE0eiCB/2+rx+8yVKAyoF8XwtSoK2RhUu255s2Bthk8l4zHw649bla4RBwHg2ZbVe83D/EeOjGR/e+5heu8t2f4uXXr7NpQsXsQ1FEsd897vflbXBtmkFAX4Y8OrLL/P6a6+xmM6Io4jlOqLIMhaLBVVZsre7y3Kx4PT0BMcTLufNW9cIAp8siUjjNWWR8XT/EePJKefOn+f3fv/v0Gw2yPOMf/yP/zFRFHF8csRrr73GP/yH/5Bmo8mlcxe48J+fJ81S/u///T/m8ePHNOp19cqVK0TrNaPJhHWakleaxWyBZ7nYrodbVhh6Srvd4uqNa3iOy/+Ht/9ssiXJ0zuxn4eHjjgytbiq6pYWXa3F9AwGmLEBIYjFGs1oxjUabUEY+Q2434VmNNi+4S4NXM5CWmOXAAYjunt6pqu7S1ddUVekFiePDB3uzhcemVXd6NlpkDCe7mtVdTPvzZN5Tni4P//n+T2hF/Lw6RPOLi/whINuFH/6x3+CKyVt3dBWNaP+iH4yIA17Vqw2Cunadu7Fconr+8xXOReTK87Ozvjq17/J2vYOsx//xDZahYHdt6u6EzgMTaMRjmK5nKJaG88ajob8/u//Pq1WzFcLTk7e54Off8Qrr7/Gzu4uv/Vb38fzAwaDNc7Pz3nw2We8994H/JN/8t/yt37v9/ja17/Gd7/3W6xvbPJ7f/B3cByHNI1vzjarVcbZ5Kl1c+BwMV+wXCwJ0wG37r3I97//XeIwIIoC6FAq4yjCGM3jxw85OT7mn/53/z0nJyc8evyQJI6Io4hR2mPjzi79MEYgbIPpsmK+qvA9jzDwiB0fkfQJPB8E1EIjjUKolqNnR3z48YcYRPd+jUmTmNVqhRCws7PVHeIrvDRgOExxXUPTFGTZgiJfEid7JEmA5wocYcC0YFQXY2puDBFCCCSyExxstAtth9VaK54/e8pitmBvf5cg8O2w0JEMkh6DwYDBeMSiqqnqBi/w7RnR9yxXVXoYBHXTkhcVWVayWmbkqxzVaoSQ9JIBmxubvPDiXabTOYv50hZwdSVWDg6u9BE41FWDJ32GgyGqNSyXGRqXurZRxbayrfIYbSPnUULP8ZhdriirhjpbobSNjotutbZClmU6XbuZAFRnEhHCgOPgIL+0qHUrfScquVIgsYwn0eHGhRBdEq8TbRyD5wX0koEVbFzXmk+Mga5N0XUtkke1115VB2McpPBwPYEQLlu7uzZGWFdcXJyTrTLLPTQWbu65PoNen0G/z+XZJUVWcHl2RhyEHDx9wmAwppf2uXasarDOXcA4DtLzEa6LFte/b7gOCNrPEQjXRXatiXGckKZ9giDG80LaxgCaKLamAykc297u2CIPtCbohPggCKwZxPdt/CvAumFVQ1nWAFh0U9cmqLXFz/gWbeC61lxiWkVbN7/R/e03Fp5Oz05o25bVakEaJ8RhQN3U5HnObHbFYrGk3+tjjGG5WHaqqlVRwzDk2bMnXE0nXF1NqOuavCxYZRmXV1M01rIvHI8gdFlb38EPUipsdEp6PgpB1bQEUcTm9jZvvP0W0vP4y3f/ktlsRl1XgCXvG+3QIixD6br60BGdE8dGpCyXyHR5V4nW+gb6jAHXkTe2b+lYV0/kB1R+QJHluKJrW6gsZT70LavHYMUGhVWCVds1VklrH7yGb30BmXM6D4dAdNfU9XOyOePuzwhu3ElGgOism1XbWNeTaiwITgoM2jaJRZGtoNdWnVwslkRBRBLFNHVjbfjYqbzT8T9c16NVdlKaFxcYDEWeo5Wy/I8wYGNzDYSdOqrOyWEzoPZQ73gug0GPpmmpq5rrXZArLZy6Vdo6lzrwXa8/QLoei2VGnKxwfWvdREg2NrZsm4IxttmjqgCBlC7QTUmNQCtD2TE/ROe8uVZ8XcejMIWdujUNxljBQQqHoFPtl4sFrjA4OkQYm6c23ebeEXQcBPs9uI5AaesD06pBGEEgXVpaWsDFIIWd5nKjCktcYTk9WVMjhMRxciLfw/fcziVkaGvROQe+uICvYdaeYxkqjdIUVcN8uUIISaMMRjjg+hR1S6MytLYKd13V1sEzX3B2ds6DBw+ZLRb4SUxvOKRRFUncw+lyxgKBJ+3hwjGyg8xp6qa1rSSdC0VrhZTSsqWUgVYjpIfrG4xjXS6rvLAirOmacbr3tLBBRUBZK6yxsRnVGtrWWKdN23SDVoe6anGk7rgeBs/zwdjrvKlqVvM5dVHQ1jVCtYDGkWBQ1kVhNL4jyNqatm0Y9HtIx7HtSUZRFzmOMfTCiFG/T2usk3CxWnJ+cYHnWw6O6pqX4iRlY2Mb6fooLRiM11FaszZdIIXk+PQc6XpIz2PZNSkGQYjrejeTlbZVN7+MULTGullcR9J2zB5HSsI4YnNn295cjbYOE9+nqivauWK+mON7HlfzKW7s0ytHaMdC/sdrY5IkZWtrG+lI5pMryqJg1rV86bbF9X0rPK+PMAiKpiUIQ9a2NvD9gCCKiKdTksWC8eYaANubWwR+SBjH3WTSt46b+YKiLqmbhtl81nFtNMv5gsV8QV3ZqO1wMGBjfZ22bZhOr3j48BGNajk8eE6WrfADy7iIwpBemqC0Ilqs7CHIgNEtTWOYTSc8ffLYOku69VVKyWoxB6NpjCYMQ4ZxgpIOThjiz2ZUTc3Wzi36gyFJb2BZWcsVBofx2jpN3XJxMbmJatWdU+fi/JznT55wfHhIVZYkccxL9+/z1ptv0dQNy/mCTz61cT+r1Tc0dYsnDXHosVrMqaqSw4PnzHs9VosFeZ4xvbpCCEGWZXbz2zlstNI8fPAQIwTLsqKYr1hNZ3jSTqNXWU7VNKyOT21zS6s4Ox0yvbrCNA1atTRNa1+jnofIc6bzGfFlzNHhMcI43Ltzj6vLc/I8I/Q8ojDgzt4+BkGLR5nlLGZz4ijAD1zW1sb0+n2Oj45o2xa3Yzo4xk44UZpstcIVgOfhej5Jr08cxbxy/yVWWcb0asbxwSFlUfL6a68QjUZ2Uhj4BGmKdlzcICbu9+nlJTLwyKuCLF+RFyuKKkc6kvH6CMcVXFyeEQQ+e3u79Ad9PN8ny3P8MGQ4GlLVDSenp8zmC4qu/cj1PBaLJUKsmF5d0dQWjNnUtY2Daxtx9hwHx/OQ1n7YVYPYe2+rW5qmJvVccFx87BTdNRqpDVK3OMYBo6C1PCNXeHiOxTUJY+y6KgSe6+G47s3eRGOIgggpHcrSOj61oovlOmhtWYZRFCE91zpQhW3WaVpFW9U2wpfERFFEGNo4vO6iU0pr8izDtBrdaHzXZzQYcu0m2ru1z6DXYzgeIX17fV+XiDjCurzXxmPquqaua7I8Z76YE8UBnudSlDlllZNlGa1WOKqhLAuKLGOxWHA1mSA9SZwmN4cb1/FwHWlZZZ6HJzuOnrZNt9KR3X3BWH6QNnZY1/ErOh/BjdP75vElEcn+vvnSh4R1Kotf/v2/6vFXMSx+Sej6dXylX/188UXbnPnS8xNfEs7++uGxscJo9z38qnPq+tiE+ZLoBDevoSMELvYwIhzbCqxUy3A0xPc8ms5hJoW8iWkGfoAnXVzHwQEWizllWaG1wpWSQb+P63nkTU1rtC2CaRu0MURBSOD7BK5tuvKDkDixXJ/BcEAvSSxfLUloWuvI7SUJTd1wdnbG82fPUU3L5toYYzRSOoSh5SM2SlFWJbP5jPPLC+quPGI+n5PlOVEQ4vc8RoNhN5y2OIOqLEiTmMGgd8NelNLyYPtpim5bZtMpG5trjEYDXn/zdWazOUVVcn55wSeffkqapPTS1J41HIcXXrpPlCRM5ws86dq9vrR7orppKcqK+WJl76FRiBPCxLUDYNd1qauaYpVTV7boKO64pheXlwSezyDt4bpWpL1ms83mcwyGMIosnH25YpXlXE6uKKoK6fms8pzLq2nHrxTUrS1vWd9cYz6fcTlZEkQBrueDkRjPMBwOO9HNMv4mkylZVlrnvVI0bUOWZXh1c3NG2NndZbVaMZ/NWC4XPH78mDhNWVvfYDRet+eSyOsQHxVl21iOWFvTtoqjszPyLMcLQ9wwoNGaSisc1ZLlK6qypqwKyrLk80cPmF1NWa2WYDTDfs++n41CGNWJPK11aBiFNtZ5By1CtDgSwsiz7cxdI2rbtsxmc5bLFXVVE6UpcZogHNs857rWhV2WhXX/JAkGQ9PUVNctrapBG+tgvT6P2a2fuXEkXUdsHWGFgWsR4svquSOlvd66JrTrWLHpzkN5lpGXBUVthXghBIPREM+VxF1ZRFHYfX0aJwx7fTwpiKPIRsk6V4vuzsuqbWybGvY6MNoOGeCawypwpYdqFVmW22KcIKQ/XKepG54/fmxZu2WF8GyTapmX1GX3q3tPO45ACdN9/4BRXTJAYaWWL1nA+GI9vWYyO44985lrV5Pp1nGjv2BiObZ53v7Yv3CgawNV3RDFXoeCCC27sWkoihK/H+EIiTK6c/bYyJ/pXiPN9Rndup+u+UlCOF2D3/V/W3eYMPa5pElKHIadMGXPvs51bP36PtCdO1ujabVNuSCsrnH965o9de1ybpUtlrlm53mui3Q6wU2bjiVlEzZa2OTVLzmfOo3EmKpzTTnde89FuvLGAfWF7awTyoxNnrjCXg/WsPaf2fH08acf2BfOwPbWFttbGyyXC7LVik8/+5TVasXf/N3fAwR/+mc/pihKyrJiejVhsZjwyacfAILewNafP332jMvJFYtVxcb6BpOrFZvrG4xGI3b277PnOGzeuU+eZxwdPme+zJjNlqyvjXnplVe4ffcOy8WC/+a/+b/wwQfv29ppKRmOhoCmaRx7YeZWMfU8F7QFbQVh2HFpLMjTDwLqVpEVJU1l7cVxklhQeFnjRSFpFNH2B3jCYXpxwdXZGbu7u1R1RbFckAQhSdKjqm0bUds2NlbSARl7vT6OkDSN3SBGYWg3m9jqeaSLcLR1CQkJQqJbK141qsJgVV0jHIxjQILCVowndUnV1qBbhDBssoEfuIyGfVSjkMJhNp1z8PQZQmkiz2e1WJGtcqvQConARTgu0vHI8hWT6Yynz55ydn7O44cPqKqK1159mf1b+/zB3/59e7EJbGa5MpSVbSxxhAWz37q9R9u0FFlGXVWURYkxVmBbrXLKSuJ5Lmkv5vatu6xWGU8PjriaLUmTY+bzFY4b8fZXvo6UDg8+/pCisDe+JEnppX0cobqYpI0glF3Dj3FE11wAoRsSRTHz+ZyqrFiuVrjSZWPvFlEQMIhiy+N49Jj97S3bCpDGuN2FJoTAFQ5IBx9pIcZSoh2r8Fa6xZMO/dACZHVlGyYkLYGQtk3QjyiV4sT3aNqG+fyKRmma1rC7tUkUDfEdu0DlpaJqFLPF0nIW8pw4ComjkP29PRvFySvKaklWfo7vByRJH9+XBIHP0cWE5TKDukUgmC/mZGWB8TwurxZ8/MnnhGlIOEy59dIdNvfG+E5IXdZ88vHHCAThIL6x6eZ5TllV1MpGWwZJr2tIFFRty6qsqCsFdYnnBbhxAH5EU9ccXUxsbWfStz83x7/hbbluiDEOtartuay1NxnH0RRlY6Na0gqz2XIFGFSjiKKI4XBkOVhNS7FcMr+8RLcNVpRycF1JmoSgFdlyShJGJEFItqxpVcnm+j6+5zOfL6irmtX0ijhKGQxGGM9nsF7wydFzZqsFj589oahrbu3esTn5tmE83mT4jXWOj49ZrErWdvcJowgRJJwcnfCzd3+BxmLTHVPjoOj3hziOw3Q6tfDqyjZalGUFXW1qkqT4nsd8tkC3hl4/Ybi+xvb+DnEQEAcB2WpFWZScXl4wX8x5fvDMgoPbivXZNmftCqE14SBhfWeLtfEaX6sbjg4OefbgIcvplIvnzwg8y+MYb2/RGw55+c1XiZKU1TK34v6tfXqDIaP1Dc7Oz5jOZrz+8iuMBkOEgaIsePrsGas852q+4OLknMvjcx49ecTl1QQtBNKVrI/HNHXD1eUV/bTH7s42b775Ordv3+ZP/+xPODw65MGTZxRFQVXm7O1u87WvfYV+r0e/l9JPUzzP7Ta8Gc8OnqO1xvM8ZlfnPD14wmI6pchWrI3X7DQQTdLr8fobr7O/u8f2/ftsajuxPzo6JssLXnv1bYIwZLZcMl9VfPjpQ6SUvPrqm7z3iw94/uwh927dIQpDJleWF/Xpp59wdnLM488+5fad27xy/0X+9h/8Ad/+9rf4oz/6Iz777BP++T//Q3zP5bWXX6IuC4psydoowBlHfPDoc1YXJUWeEXheNy2ytbcPHjzoNsRd3LrbEDx++BjX8+n1R7SNZcfdvn2LtbUxjTGUVc2Hn37KMsuYzRZ4niSOAl6+/yJ3b99m7959hoMxceJzNbnk2eEBF5eXlKuKWzs7/N7v/B7v/uUPOXz+ObEUDKKQr3zlK+A4XM7nnByf8Chfsrm9RW8w4JXXXyGMYj56/z2auiXwfTxHoqsWWo00gul0ynI5x/FDwihmtLbB7v4uv/87v897v3iPH/zrH/DpBx+RlQXrm2v010as2orc0fQ3NhlJl16S3mymVvmSeb7i4OSQ1WJGPpuxNl7jxZdfYJnn/OXP/4KttU2+973vWuhxUVrYfhKztbPDwdERH3z0Maenp5RVg3BcXM/n4aPPqSsbuxEGwsDHdxz2t3dsk9xqxdpojAxD5qHlNI1j3x4igMIoCq1Z31wnSmLmqxl1XZKpBpRCqrobKYHT1EiliGRI4EHgWNB/kxf4QUAcJ3Qk1JuJ5mA4xBjD8fIYrbu9ge/R7wfkuXWRrK2NCcKAxWpJqw1RkpJlJVlZWUD62pjx2ph+v8+qKGiUQgJNXXN6fEIapwzToWW8DdeoVEtR1fyv/8Hfp9dLkdqwWmVcTqZkqyV5niGFwPM8vvr22zRty5/+2Q85Oz/j4mrCYNTHCzwuzk9ZLma4QYCQVszKs5yDpwdWxFItcS9mZ3+XyPc7doTdB5VVY5lqrgta0xQFge8jXcl8trTAVmMj+2kXgWq7piMhflk+uhZw/ioD0zUg94tI419HV/pPf1zHEBA3/qSbg8mXf++Xntf1n/krPtZlQm4wElyLT7/6udeCnPll+LonrYM5FILQcwlCn/OLc7Is45tf/Rq9KEZH9nBh1Bfg4eufo4uFI3/88AFZnjMej0mTlJ2tLSbzOU/OTm6i4/0oJfR81kfDDr5rkQe11rieS384YHtrizSO2VJbqFZx7/YtmrqmyAv+7M9/zA9+8m95/vQpg16f73/3O4zHI9J+ih/5BGnE6dk5Dx4/5uMHnzFbLRn3R7jS5fnz5yil2NvZZWN9nVdffZU33nid73732/yb/+kHPHjwGVuba2xtbvIXgYvrCgLfZWNtxMsvv8KDhw95+NmnvP7mq7xw/wX+0T/+R5yenfGH/+M/58nBc/7pH/4PfP973+f3/9bvW56Q0vydv/f3WS5X/I//z//BDrr9AOGWGMchK2sm8yUHx6fUdcs33n4TE6cc+UcI1wPg7OyUo+cHeHGM4/usb6xT1RUPP/qUNI7ZeONt4kjT7zf4QYgRgqfPnlHWJa+/+TZJ0/D42QFlfUVWVAz6QwaDIUenF8yXOWWrcfyAslWEYczrb77Og4cPePT0MYPRmKQ3AGMjiy+/eA9HCM7Pz7m8mvD506dMpys8N6KpWrLlkseP7L1zejUlTmK+//3vk+c58/mUhw8f8u///b/lT3/0Q5I05W/87u+ztbvD6195AyFEh+gQaAeWHcz83Q8+oKpqvvH1r+GEIc/OTgh8l8D3ODs952oy5YP33uPy4pyjp0/wPZeXX3yRjbUxL794h/PTEy7Oz0BVNGVDoSobExIGY1qqOqdpHaraOq+iIOb08Rl5npP0UkTl8PTZc4qyAEcyGA7Z2tm2++GyIO1F+LXLxcU5YRixtb2F1i2L1QyNLZ+p2wplGprGQqNdTyCljSRdg6CNYw//nuvas2BXpKOVAsdBSIcgCOw5ZTCwvGRH2joeY8izjNOTE8LQw/UtrsZBcOfFFwhDnziwOIKryRSJYG9rmySQVHXB1vomw8EQR7gYY/EJRWlxOXXdIIR9XgLI8wIpbQlLGITEYUpVNBwfndi9yHiDr7zzdYwxHDx+TFuXLBcr+sMea+tjDi8vubq6ZDGd0CxW+L6HKwTKKBvXcjqHTdPexLdu1k7xxdpttLZlCF30ulZNF1HTGC3ACIzRCH19FvDsWcyAaRrrXZIuyhiWiznbScLaxiZBGBEEIauVFWaHg3Vc10PV1c3NxDFWkDGmsVD7DrrtXJtYBLiei+vFyE6gNNpwXfwX+gG392+xsbFJEiWkSZ9+2rfxVuiENgfhSowQVE2D19S4TWM1Ct/DD1y8QOLYqZVNUtUVeVmwzFYsV0uk45BE4c29RXcIHN3apneBYW19nTiJOT49oSxKvMC35R/aNpS6rkuYJPhRhN8qGwF0pS0IkI4tYQJabRt2vdDH9WyU/z+78ORKr7uB2kP+KiuoihlVZeMUbau5uLCQviSOCDyPNo5AtZwen3R8IEmZV7iex3y2JO0PAInRLVEY4Hsunu9SViUGw8nkgrIsWWW2hUG6Ac35FZPZgigMwGjeeucdeoMBH7z3HnmeUxQFqrHTfOO4ICVN1VIXNcYohIC2UXieSxTGtI1iMrkiSezkLU5CMBrf71wf1/R/x2CkAOmgHQsunyzmGK0ZDEckvR6Oa4FjBssF8oSPri1PoW5bpCNwXUAKZAcXFi4gNAbFdRvbdXuZNq1VW7sNlQDbTmUc4jChLpuuVrOmqVvSJCYKA6IwxXMj2taAcBiv20ZBKSVJr4fCWCaN6zG7mlLVFWEgCXwHpUs8D/qDkK3tMX7goNqcpql54cU7jEZDVvMZi9nURnd6KUGaWAVaQFnXNEqR5xWqaanLyqr+1xepFHjSTjbbokK0msovoGu4UKq1jWVdi9XJxQVxErN5a5/13R1u33+Rpmyoy4oiy+0/qxLQpP0+rVasssweDoSHMdp+f2EIWCeLMVAUOWhF6Do0usUIY9sCMVR1SQ2oqsYRAt8azfAcO9k3StmmtI5tIDCouka3LVIDrW0qEZ5v2/zaDC1dXrr/EpMsY2XsYTKKUvppQhKG1HVpmQpVZpch6eK5BoKQMAiIQh/paIypcekWk2JF09ZUrkErCUoiRUsUScrWTiHDwE7Em6pG1YpyWRIXMXGZ0FYKtEtR17SqZXNr66a2VhuFowSeb3lc11DXpqgw0iHp9wkdSW8sWSyWLJZLjKltHGV9vWsktBveVjcoDa0WtNpOT/xA4gUhemWzxk1bISW4XoTbOrjKujqEEJ2YbB/aQF7XtkGhO7wMRz2qssBohdfFVR2ugagWwN5WBa3WaCM4Op9Y/pFjIX1hr4/rBdAB9kIcBskAtyq5upjgIjk7PWUwHLK2uYkrXRzHJa9s28njx4+J44TxaIzYtYyI84sLTs5OqdsaoxV+ZfkmrgTfE3guCBR1aaOkbherdKXg8vKMq6tLsrLC9336/R57uzvc3ttnuLmL7/k8PzljtcxZ749oVMP5xSWLvOD8YkovConDgGJWEEYxddOSrTLCdEBvtM54MGQwGjAcDYkHfbwwpDGaWhvawAHHY57VzLIznh2e3jR+Pn1yyDMOefTwIVmWMZtNqZuGvKpYzOYsZrNO4C0J/BCpPZrCcteMUqyWC+oiJ05CijLDC332bu+zf2vfilOTC6QraYqSyyzj4kSzNh4RxzHSlbgSosDtWmI0jtB4DsSRjysTwsjHdT07OW1qTs/OWK0yzi8m9NM+vbRHOhiwNVqnVC3FasV0PrflEqslvh8QBgFtWyMdOD09RCvN8dEB2WrFxfkZVVEwGNg6+o2NDaJr2HbX2DQeDgh8j0G/zwpNmS0s08oY0jDAd122xyM7lbJ9vRgh8D0L77ftrpDnOaqVRNK2vwSOQIQhThTiCqiKnLKuqaoaVytS36W/bRtZhNE0ecbZ0SFlWRFEMX7g0bYt927fwREOVVNStRWVabj14j3WttbJV0uatuXnH3xG0zTMVgvquqIVgqyoafSCd//y5yitOT4+ZTAccfvuPXr9AZPZnEYZknTA1uaYfi9luLaOHwYEQWiFwuWUqinwQkmsQxwPnjz6jNViyt7tfdqmYT6dEIaRjc4EPr044uLsiIuLc7bW11kfDjgwBtf37UElLyjzAj0Cx/U4OjomL0p++3d+l/5gwMHBIQ8fPeKTjz9ma3OTb33962ysjXENlMslRZ5bzpgAlLWOR0mEqgVGgidtfD1JItqmttXgriTwvW6oZJjOp8xXc/yurdV1fRpVscoywiAgjiICPyIQkNU1q7qhNhb+Gaep5cIpzTJbsswymk4EGWUZrpSWy6HswSAWCVES23bhKKbMS6qqxnN9XOy9dTgMGa1t2J99aEUt13NRwsFTClm1IBwcIwiDiMFwyKPPn3BxccnGziYozcfvf0gcRQzS1Do1WsVyuWS5XDAaDkEIfvruu9ZRm9nyiDiOOneVbZDUxjBb2veU4zjUlUK6AeP1TXZ2dy3cebiGtTGCJ6370u/2MZ7nW/dA27JcrmCVMVstUUbbqb7n4UjZiTdfqEuq4y3aJiNxw/b8ssPo2glkmZzX3EFxYzj41cdf52IyX/q8m8/4kqvp1/1912LQl91I/NK/f8mp9StfrQsEfhG7+yue0bWbSnTRvOuPtUrfcLKuD9dNa98Xrda2rc61IZVSNwitkbpzMBmDayyfTErr9I+iGNf3KVvbXqvalqbjJOWNoXVdXGGd/mEY4gc+/SSh8X2apqUqK5rKCk1ta9tKtVLotiWKQ+6/eJd8mbFazPjzv/iJZe71e0RxxMb6BlubW4RRRK/fJ0kTysIOQuM0wfM8dvZ3iKOYVZGhhSFOE/rDIf3hkKurGY4j2d/ZwxOSoyfPSeOEqq66qI/gs08/Y7lc8uobr7O9s8s777zDbDbn/PycTz79lNUqY3t7m+FwyHA4IAwC3njrDabTKQ8fPSSOY27dvsVquSAMPapVxnQ2pawrojDk3t17aN0yvZpRVjWO6+GFAW4Y0BqFUpLAte3MUjpoNEVt3aC94QAONU1d4rn2niIdh0YpsjxjZ2ebe/duc35+xsnxAb00xY9DyiJDqxrfdwiThDv37tl4sXQQxsGgePr8KUq1LOZTirLqQlcghSEKLfJhe2sbV7rMpiuCMLDlMXHMzs4W0+mU84sL6+o3hs8++YjjowMml2eM1tbYv32LKIoJo4hMGIQw7O5uW6aS72J0y3IxZ9rYZMnx0THTyQRVF/SSkNdffZkoCrl7+xYYjWoq2qZmOZ8hkwTp+zRK23SD9HCReFFyI8ZOJjPKumK8sc12EOB0wqjveST9IVt7+wgBdWXdy03d0jYK1dg6BEe6BEF0c4bLshKtcsqiQjWaOIqJowgpbFvzapXj+7aB8Dpx43gS4TloYTqOkdM1mLng2PWsbGsqVZPKlMBz8YMA6XoYIfCkJPY8LooJqzyn0S1JHHH31q5dyzxB2VRMF1fkheW3CtdF+oEd7gpo2pq6rqxz1jhI18P1XBAWUSKlxIs0DZqzyTnCc9i/c4s333qb119/nb29fVTb8ubbbzG5POfk6DkikPT1kLIoKRYr2sY6Hy2jE2Rr3UutArTAMV3UUNh2eviivU4p80WTXnfqkp5d3xXWEKOvG+CEi9YtlVa0ThdfwyCMQBk7BJGOYLWY8/nnj9nfv024GTEaDthYX8N1LafYkXRCoE32aG1bL8u6AmW/lhf4eF0pV56vyFYZSinbOMu1A8sG5aQb2CY/I25MbdJx8VwfR8jOCRUgXd+Kkp37mGuO0pdYW650SaKYNEkY9fvs7+wgMfR79iyerTK00biBj+huao4USNfBSDBSYKzWhTb2+vB8/0bkq9uKpmgpqtw68qQd6MuOay20se3gwqG7y9I2Nhnzmzx+Y+HJd4PuBibQWjBfZFxdTpjPZtiMpuT09KxzOCQ2QCbg7PKSk8NzeklK4AcoM7MXvefR76opjW6Jw4A4CghDv6sOb3l6fEjdNEgce4B2W84vZ2TZip3tdXq9hHe+8Q3u3LtHVVacnZ7y8LMHqLpFNS1GSoSGpmoo84ovKmMVaZqwNhxTNxVZNmF3Z9sqz6ldRLpSRjC2alILbf3xrkRLSaMUlzO7CR2PbfxAuNdqoBV2HFd2lnBN1bS4rkC4BqSDG3g4noPjCoy4hmfbWkmFjTdp03bqr9Mpv3ZCIIQkiVPyVUFRFJRVRdMogiC2AOmoh+/55EWG57lsbGzQ71ekaWqFAGOByb7rcTWZUFUlYehakUmXeIFkEEVId53RKMH3LYTwlVdexHNdFrMrZpMJi+mM0PeQvdRu3B0oa2vDvbyYoxqFbhWe6+C7Ei+wXADf9Wy9bjHH1A6lZ1uzemnKbDZjsViQFznaGA5OT1lbG/OVr7xBmqYMh0POjk44fPKc+eUVuVhRVhUCQX/UtzGVLLOQSWlBqk1VEodWwMnLgrquKfIMo1vCQNLqxqq1nfBUVCVojSobW43pGHzPJQg8MAqtWmtJVeqmRaGpSowyuBraqqGtCkxscDzDqq3wopi3X32Nq+WKo+mSQX/Azs4ujgVBcTm/Ii9zECuEMLbWFCtIxJFPEgdIacDUuNiMeF3UmMal8FuUlFBJZBCSJB5VpjC0xGEPIR2q0gqBVrTr0VQ9fNfDcVxWxdJm1vd2Kcuco5NDjFKgDXFkgYxhHCOM4Hx+BNIljFLCJCHu93n+/DnT2Zymi41sbW3ZiURdU5QFF5NzWscglHVyaK3Z3FjD9zyqtsRU1qLs+xLPc1DKRamW60zxYDgAIZjPFyhjuhZJm8NfXx8xHg1ZLecW5gioVlGsVhjHwQhBrRrquqHRBmXg2ckFwrHXRRKG9AY9BA4aWxUdSY9hb4R0Mg5ODtC14vToiDAI2ByvESYpfhhyfjWhaBoefPaAJEn4gz/4AwaDPv1BygcffMDJ6aGFqbYtXpnjuRJfgu86BJ4DnfAU+B74nj08unBxfkJelHz29Bg/CNhcX6dsNMP1be5t7bGxvsG/+3f/geWiYGu4xjJf8eTJQ5pa0Vaa7Y0x40GfX7z7Pi2Gndt3CIKQqD9ma3ubt7/yDtu39tm5vY/wJK0x/OQv/4LV1Yza82mAdlUyvZpwdnTE3dv32Nna4cHBE66urvjBD/4V8/kc2VEhHUdSNgVlWxC5AYH0CVJrcm5Ky4+wQOHC8tN0w+TqkhdeeYmd/R3eevE+RmuePXvG+fk5Dx8/4mpyydXVhJ2dbYbDAfv7u7hSEgUedQtV2yAdY2NLSYRObAGEEA4qb1Gq5fjkxHINsoLb+3e4tX+b7/72b7O1v8/Z6RlFXnA1m96US0RRRBzHtE2NlHB0dMByPufzRw+purpl3/MYDUesr6+zublpvyaOtdg3LRtra4RddbaqS+aObdZUjaIXW5v13sZ6x+pQNMoye4IwIAh9XEciDEyxAFMTBfbAqB2CMCSMIlpt46HXUF0PRRx6bG5t0DYNRV5QFRln8ylnx8d2euq4pL0e73zt65R1xcnpMaWqKFTJ7ZfukyYJv3j3Z5ydnPHBTz8gyzOyYkl/2Gdje4s6rzCrgqefP2ExX9BohR8m3H3xPsbA4fEJjdKkgyG3b99jZ3uTuy/cw/M8nh8e4rouk+kleZXhRy6pDAkah8effcyzxw/oJX8TRzjMJhf0en3YWCcOInppSr6Yc3Z0yPe+823CIGAxt3uO+XJlndV5iTKA63N4ck5eFPxv/rf/FWEY8pOf/IRPPvqEjz74kDt/53/Fb333OyynU/Iso1wsyZZLiuXCrvMqwJcOvpvSSIFyDK4r8F1JL43Jc8Pl+Tm+70Evteu/hMl0QlXX3L59Gz8IcF2fumpZZBVCBqR+jB/5SM/l8vAZRVmihE8cxWxtbKKUoigrLqYzjs5OqbWt315bLomjiK21DZTSrLLc8jukjfm70mW2sOtu0MG/HWn3VZu7e0RJTBCFLFYrG1F3PFqlkKLpIuoQhRHD0ZjZ7Bc8fPSY4doIlOG9v/wZQeBza2+PMIlJ+imLxZzZbMZgYNfjH/3ozymLgjt37oCBXpoQx5bJl6R9cFyOz6c29uj7aK1x/ZCd3Vt873vfw3Ut/1F1NcyBbx2AaZpavqHjoHWFUjV5tqBqapZFjnAd1rc38f0AIe1UXmtNpy91oHKN10Wnrs1AN86gTqgyiC/i8DYn0MVffr1z6K97/FXOpevHr9eHzC9/lvgCTvsf/Y034lf3UXHjpfolR9eXn+t1LOOXFDUjaFSDUZqyaZCey2A4socGYSvki6omdWPAFrEASASVaqlVi2MApXG74VqcpDhSUtQ1VXNdUV/TlBWYiqrDWfhBwGBgBahBmtgG5EYxmUzI8pzJdErT2gi8jcsI4iTi1Vfu8+lHn3B0ecGHH39EoxQvvfYqu9s73Nq7xWg05sUXX6Q1ila3PHv8hNViyWhji36/z+7tfbRSLOcLXNclShMGoxHD8RqXE8tWvH3rFo6BxWRKEqcUZWkr4qXkow8/5Nmzp7z5zjusb2zyjW98i6dPn3J0dMIHH33En/3oR/zdv/t3+crbb5MmMYHv85V33ubho0f80Z/+B1566SW++rV38KTD5sYaP/zjP+ZqMiEvS+I45v6LLzK9mvDZZx9T1zWu71vHQRxSVQWqaYhcj9BzcV2JMoqsLnADn8HaGNC0VYnrSeiQFrppKKqcpBfz4v27PHzwMY8ePuI73/k2SRxwfn5O3XgEcUicJrxw/75l9DQNUtgo3aPPn9jDdp7jeT5xlNryBAFJFDHo9dnf3cN1PQ6PTrsSAJ/19TV29nZ4/Pgxjx8/JgoChBB8/MH7CCF48Okn3H/5JQa9FF9Kgn6K4xikY7hze88WsQgHrRrm0yWL+YzLy3OOnj9jOrng1t4eo/6Ae7dvkaYp25sbLOZzjo8OaeqK+XRKLCWBEDcoijR0kZ6LFyc0yuIcLs+vOLu85G//g7fZ2t2z9/FWUZclvUGfrd0tTo4OOT897kSnlqZStI0GITv2aGgLYJqKVWY5Z3lW0TaKJLZDAkdYhMJylRGEEX4ncrmui/AcHE+iu6Y7x5G4vkvg+yAEjVYUbU2pajzXul+CIML1fYwU+K5L4vks8xVnkyvml5cM0x77G1toDXiCoi2YTC9RXYu0cF3cwLeMIyHsALupKMqK0A/tXrQr33LdAOlJPGx5yMnlGY4vufvCXd756tf42le/huc6lGXJV77+VT5//JAPP/0AGflstooyL8gWS1TT2jVI2oGybC1bqdWmc7zahANCIKQVnkQXKbdDY43GdKu1wQslQkKtLHxb1MoKIcJFaUWpFC224flaoRedwdWVgsV8xvHJCWnaY3Nzi7XxmO3NTUBguni36lAgjWpv4rxlUSK7Qi7pefhhSJL2KIqCLCvQXxKedBc3tl/TRzge2nzBdJJS2tID4dqmOs+5EZ60+CJCfu2GFp3Q40rXRifTHuPBAKEVgzTuWsYVWWYZulEXEXUcB0/aOL92BVqCce1wTaORwhCE9h6tlKJuSurOsONKF+kKPE92hg4B2nQRQmkTU8ax1039n1l4+i/+i/+S6XTKz372Lq3SXF1NaY0h7PXsAS5O2FhbQ0qXtmnY2triq199hx//+U/4D3/yJ5hG0WpNbzBASMk8z1FakVcli9WCi8k5vYGFWVd1RdU0XF2e0zQNrvRsjjqKacqcfLXg8kKzWnicnByS5zn3XrjLvXt3+e3v/zazqwknx4dcTScslgsc6dEqw3g8RKmWo+NDZvMFx8en3Lq1y+3b+0jpU9UtStfWrofpKpttS1oQBJRVg1KKzc1NhIDPHz+mLGqWjuU0BbEFbLdK2U2VIwjDuGMgaYSxL5grHELPtxEupQkcW7vY6Na+UZVCIO2UUilarewmQzrgyBuLphsErG+ss76+znhtjSiJcTzZObPADwMc6VC3LVoI/CQmW63IsxVRGhHGIXlRIEvJcDSi1+vb1i1hN3JxFBKGAYHn4QjB/RdeIM8y3v2Ln7KYz/A9a4WvyhIB+F1sxILRDU1bs1pmNzyBKLLTEN9ofFdSlgVh6BOFPlob6nyF78Cwl7A27CMch7YumZyf8pMfL4miiMFobJsnHId0NCIZDNi//wJe4DPe3mQ6m7PIf9xtehoWeUbWwUu10jRNg3AESRQT+gGe9DB+AHFsDw2+Txz1QWvOz85p64ZFkdlGizAgTSLiMMLBBa06lpNVg21SQKBFizINbugjggBdtVQSnl2csCgKaqlQHuBbN16rai6mlyxWCysQKY1RBseAFBJPg1O1yLLFNQ5BEOJEDm1gXRJSOAilEXVj2/AciatsVrrMl7h+wGh9rVtQQTt24Vnf32IwHBIEIcZosumUpq0ZbaxzeXbO8fNnlIVtUFlkq04UtcLRyeUJ3twjuIpYLle4DjRdM9H0agICqqrqctM5spF4tXtTIXs1mdwIqVprlLZVuNPp1G50yorrycbl5BLh2O9bqZasLPAcge8IVlFEIByasrRMm9ZuqHXddOA8D9cBzxFs9i1g92pVUHeQ+mXT2Khs0qPf699Mteo8oy1LhlGMozU/e/895nmGn6b0h0OSXh/HdRmvr3XTd59lltE2ddeeZqetaRojMOSrJXVRUWnLoHr55ZdpmpqiyG+clQ6WXfbmO2/j+z5f/WZGkiTdhqhmOrvkn/3L/xd5nnF1eoqQhvHtHdakw/jle+RZwXK+ZNgfkiYp461NW7wgHFzfZ31jg7ppOF8sOfroQ5r3f0GZ5dRFyeefPiDPcoxwCQKf0bh347K8ODthMZtxMZlQVhXf+PY3kdIhDjwuLyd89ukDfHeMLz102yIEvPDCXcIopKkr6qpkNRU4DHEdh9feeov9O3f54JNPeHT2MfnFGUkSs729jXQ38QOXKAwIo4Ass4fmycUFVVWy6kDaQRBQNAXFIiNOE5Jrx5kQfHL2KY502L+7g+8H+F7AfLbg8SefkkYRl8cnhEmK40iSKKZuGrLVikzZiZbRpjtAB5S+jxASKV2iMLKuU93QH6TcvrPP4dEhi8WCv/jJT7g4P2PQt6K/bjWBFzAejlGtXf+PLs7tBqapEcZOEZWx7ZVX0yvKurRT2a65SSnFwcEhrnTpp32qtqTN267pxFAUK6q6xhEa35f0exbir/o9qso6YYqqolUa6QZIR/DwwQNczyOMIsqy5uTknLwoiaOQZNjnThITpYllKI2GdtOlW6aXV8xnMwI3oG1aXnr1FW7ducP29g6Xl5ecHh9zNbkiW2UcnZ6SlRmXsykIwfHJCUZbRlvbNJ0L1raVusJF4vD5g8/xfJ/xeI0kSZHS5cnTp5yenHJ6corWkOW2BMSRduK7vrlBHNlyg7Ky68ztO7fsJsuX5PmShw8/wxjFH/zt32djY42Dg6dkqyV1VeL5krQfY7Cx1zgOEUIxm9rGz6aueTid4UjJSy++yJqzQW84sLXbYUiv1yNNe6yKgrptSdMeQRCysb5JWZScPD8mSVOGwxFCWtvsS4sprWrtGpIm7O3vW8aRIzg9PuX09JRVkdGqlp3dHeIwZpSmTM7O+dlP/oJVtuTsYtJlsYS9b/dThuMxRVHw6YOH7Gi4ffcFXCFBQ51XFEWB9DxU3fDRB+8zHq/xrW99m7ptefToM6azC7Sp2NndZH9/H5QiSWJeuHuXvCy5mM5o2obpfIp6Yg/js+UcRwrGG2MAwiRASIfT81ML740s9Btt+SdxGPDCnduMx2PKIicIQoRvrwNjDBeX5wgh2NSbtEqRZRl5npPnOX4Y4Pkeg5FFNTg4mFajVHPjanKwkTAb2OjagLCRgE5fujY1WTZSx+W47jP6FQnoP/vjJl73pYeFCneCEn91vO5X/8yv+7t/9eO/Tiy7bh82YCfW0h5ur9sKAz+g6NrUoti2vkV+YHlQQkBRoKqabJXRNg29NLXcQm1QukVjiP2AaGMLb8fFlZazYoxhUZWUVcXz02OCicfxxSnZMiNfZlRlZZmDrhUH0l6C6Kby/dGQ8cYaezt71FXNPMso65rFygrPf/LDHxLHMaO1EZvbW4w31qw43zYcHh0ijh2eP3vGaDTkxXv3yLKMIssZj8a89cabPHv6Oc+ePOWrb71NWZRoozk5PmT2764YjUeM+j2upldMixXv/viHbG/vcP+lV1jr9bi7u8vZ+TknxyccPH3Kp+9/wPPvfouNzU129/aIela0PT475g//+R8ShSGB73H/1ZfQzT1K1XA+m1C1JUIbbt+5y2Qy4XIyodcfkPT7TGdXtI2mbBQqKzg7O6doGuIoQTUti+mMumos80Z1zWm6ZTjo89rua/SSlKOjI3r9Pi+8eA+EQ1XX4AjCKGBve4vjoyM+f/7sJh4ZeJ5te3Zd/Dgm6ViQnhvYghtNVzcvODw8BgTT6Yw4SRDC4cHDR/zRH/8Hoijkd37nd3jrrbdJ0x6fffYZR0fH/Pt/9x94f/U+x4envPHWG7z+5hsoA8YIotCiGj79+GNbynF2TBgFJEnE+mjA1tqQtmnJsxU//em7uK7L5vo6qmkpiwJjJPu37jGKbcST1romj68uwRF4UdilSgz7t2/z0quvcmt/H9f3+fMf/RAh4NWXX6bIFjz9fIHRmn6/TxhGSMdjNluwXC6Jo5QwiDFG0NQteV5a91+Y0O8NaRvDclkg5YpeWhAEIS+99BJ7+/tsb+9QlLltCa7rjiXsW+apVijHoZVt5yYR3R7Z3NyX7IHfQWsQQtpGOj8mCSvcprLuFNfyfoIgoCgKjo+PMapFSofT0xOENPjeDkorwjC0zmTXo6pqslVBUZTdgmL1omyZo43Gkx6vvfkGr778KqEf8fDTBxwdP2e5XHB6dMh8PmWUpiRBgDIK6bmEcUS7KuwZrLQlTUJasV+ILjmiDcpY7qtwLLvMlV3zmtCdWAOe0Fa4qDoBR9sn6cvA3guMwBEN0nHQqkK1ikD4OAIc3dr7grE8RN8PCTzfNvy1GtUqdNutjzg4wvJ6xXUE0lhDjXXgWwYhWlOXBa4UDAY9fN/vBim2UTmOI9uEqFuUaVFoGtVSNfVNTC6YXuEFPviuLSKTHkkUMxoMWS0zy0tuWkyWs+j4ba22jeGzxZynz59xcPicu3fv0O8P2N7dto3Ynbu1qqvOgQtlUdG2ivOzCxaLBYNB356L5OzmBig9F+lJBALXtQwyKZxOcDK2xMARlpdnNBpNFMe/9t706x6/sfD05ltvc3JyfGMrXeUrXN/HCwJGa2sMB0PGwyHCccizjO29Xb7+7W9zOpnw7vvvk80W1EWJ5wdIz8Wpqs7i11CUBfOFjVdl+YqiKm095tJO8zxpM6FtU1NXJWWe4QhFIR0uzi9o25rN9XV6acruzh6TiwvWxmOeHTzl7OwUP7Atb/3+kKapMcaqs1m2Ynd3h+FghHR9WmVoWrtoc11l3zY3ddMWfiZI09RWzGMhwUVRIj2fsrSAurZtbdVkZ5l0tEFrS4dH2wpJz5Ed9KwTLoSL7mBrSqvO3ubadjHTck20/2Ji5yA9jyRNSdKEOIlvrJFG2JiR9Kya3WoLnfMCH700FHVFL00teLzr5o6TxIIOO8K/MZajIqUkDkI812VjbY2Jgfl8TpEXthpaa1TTWItjV7FpOkuk0hYeaLRVnLWxVeZF4KFdSdvWaC3xXGlveLXl+vi+R5wmONLlfHJBntdcTS7xg5D+bM5wMGRttIYf+HiuZw8gacJ4awMvviSMEzAOujE0SrEqc6qiRLUKz/Nuankt1NTBlR7hNfxZSoIwsvwEIWiMjTg0SmMMNrInPBwpEI7GFRYceN1I6DjgtBLTSPC6X9qgHLhazlnVNcoxN40vrdHUqmWVr1h08UI0CG0tlZ4jkUbgKIPTaqTU+InbAeK6SEFXtao68KpxJLKzd5Z1hXAEUeDbKYKQFE1N3tZEvYTh+pjxaA2jDcdao1SL44youlbHurHNG62yGeGoAxwus4U94K2WaG1wRNcYaZR1tRhNVddfRPe0g9FWxHWFS57nmC6vDXa9a1VrmVJleQOR1wayLO9qiddtwcF8QeBKjOdSZQVVkKOVbf9QlT3UOsogHWtNF12Cut8dDI0MKMqKydUVTduQ1xWOI4njGNU2qKalrWt0UxMHAY1SHB0fEcQRe6cnlG3LQCmEFPa6Ce11Y6chBYvl0grmvkfk2ZtTuVrYEoC6wvc91tfXKcsCKb9girRVDcJhZ3fP3gwcK9Tv3b3Ho0eP+fTTz/jswSccHh2wu7HBaDAgWRsRpwn7acpysWJyObEbojDhhfsvkfb7TKYzpOexf/c25+cXPDs54/LqkovJBauLKeVyxeTgmKaq8UIrSKtqzdYnpymL+YxWTZnMZhgDX/vGV+j3UgZJxPNnzzk6OCANEnphSlnkaKPY3tkiikNWixl14eI3JYEXkEYxL9+7x92X7vPe++9xeXpGtZoyGg3Z3d0ijgLE+pjt7S22tzZ5fvCcq8mEk8NDVssVrbKHE1d0btayxklSfNcnjRK73pUV0vMYplYYGAxGfDL/hMnpKcfPntFWFTu37hJGMX4U4rStreMGuzHtwI/XVbu2vlgS+CHGKJQqSdOYjQ0LZZ1MJjx98jmL+Yxbu9t4rkfbqq4yO0Ep01UmO6jG/rt2NJ7v43Tx77IsmM5n+K5H4Pmsra2BcMhyGzPvD3pd22ODdF0be21r2rbGcewELwqDG3h9WboEQY1ZGOqmwfU8tIGri0viNCVNrcg6m8+pm+oGzp30UuJeShLF3L11hzzPmcymBH5gnQ2hFaW++93vsb27S78/4Go6Y7Fc2kObMqyyDI1iVVih6Oz0lKauqYqCJI4ZD4bd4d9u4BwhuLyYEEYRu3u7+H6IMYKrqykPHz3CEbakpGkVTmM3jlK6JGmP9bV1dnb2ePLkKfPFGWtrY6I4BhRFkXNxeUEvTXnzzdepy5LLywvqqkCp1r7OjkcQ2CFR4HudGFzSNC1No7i8miAch699/WtEcUyQxNZN63msbW6ytrFBUde2EdSRBGHIi/deoiwqksEmcZzQ7w86q75hXJdoDL1hj6SXcPvOHYLAJwoCLk7PuDg9Y7Fc0KiGvf09ojAi8TyOnx9wcnDM4fEBp5fntghFG0bjdYLQRoy0MSwWS4bj8ouqa6Vpqoa6rIk7KOzp6Qm+57G+tsbp2Slnp8dUVY50BaNRn83NNVxX0ksSbt/Z42JyxWSxQGnbIje5mnSCZEPkhyS9xLp0hAWezuczhqMRkRfeVI3XVYErJVubmwRBQFUUSEfiuZ49gAhYLBYYY0jilKquuJxckhcFWZYxGo9JeylxZBt8HPvFUNqA4yCFexOZE9f7pO6+YoHqNsJy4xEydgN9/d+/PvD2mz1+CRT+1zijft3Hv6gD//Wfc/Nf14LRX7u5/8IFdf1XXf8R2/x8XaojcFzXDmqUXa981+tKIZR1nTjWoe4IgesIvLLC0fZeVVUVvXW7F26axj4/pQg8nzDySXspYRQigVYr9GRCM9fMlwuEgPlyzuxqynK6wLQKBxiPRhaQncYIHHDsPXYwGBAHIb7nU7UteVXx0Ucfc3R0zNNnzwnDgNFihhv49EdDO6h1HFYLy3E8yHIbV9/fJ88ypldT+l3r1Pu/+DnLxZyXX3iRurG4gOVywenpIcHrr7K1ucZEtZRVybPHj1B1xVfefJvN8Zj79+5yfHzCs9GYB598wkfvv89g2GN/tWRrdwe3A/yfnZ9x+Okhd+7cZndnm82tLTxXcnF6RlYVaN0SBxEbgyGrvABnShDGJGmPvCgovYpWa0zTWpi7sE1rqlXkeY5W2jpB7HYeYwxxFHH71i2M0cymU6IoxPM2bJumapHdoLiXxAijmU4m6G4Q2IaBbd0NQoSUCN+3Iq3j0oYhWukOUAyLxRKltGUBuR7GwPn5Be+++zO+//3f4qWXXuKb3/wmo9GYXq9HknzKD/7Vv2FyecXTJ0+RUjIYDEjSHkEYMYhTlIGzk2MuL8959vRzNjbXuXVrl+HGJv1ej4vzc1ZFwcHBIQDZYmWRAI6D77qsrW0SSQ/PkdDYZtpVVaKMQaqmA3oL9u/cYXdnh16aUjU1x0eHuFLy2sv3aeqaZb4kTXukSWpxM8Kx7Y1Fie9Zd6tSthCnLGuSuEcUhMRxSp5XVHVDUVaUVY2ULuvr62xv77C3v898PqMocs7Pz+3+oDNkmi5arZRCCWtYuDZGXgPQHeF0ESo6tp282TugLdbFctkcXOnQNBa0j9G4rmSxXJAuE9p2A6PtPtz+cqlKK4a1qu2iXXbxaGrLSPZ9n52tbd5+620+++QzDo6O+OiT95nPZ1TLJVq1JEGI77kYoy0g3fcx0kWIhra1ZVmu64MwCA1C2G/QGNU1uFnRQ4ovEsIag81BGBxjMK3BaNHBr8XNmZxuoCAcB5TBaIX0bGEUHc5G49hSGi/oWFaiW7++AJhLx7Pequ5cbrp4nd0PXke47XNuu6bZKAxvzjRSOnieLRdohTWVaG1FGmX0TSlX27Z2/RQ21m+MNRN4rkfQrXmu61E3LW1rh6NVbcsb6rYlLwouryYcHh2xubVBf9AnTW2ctChraGrKyu4/lOpK1IzpWkiLDheh0Lrs7h5dy3jg4bke+KaTPy1nC3PdxGjvm6YDt18Lbr/J4zcWnqaTKQ6S3/6t3+bZ8+e89/77Ngte2jpMz/O5/9JLqFbx4cefYBzJ0+cHeH7Am2++yePPHnJ+dsbZ2TnSddl/4S5BGIIxXE0mXJycIrTGNA04Dk3b8uzzx5RVhS9tvMHRmqPDQ549f8765hpJErPKVvaNhuD45JQf/ejPeeHuPb769W/w/b/xu0RxRBxHSFd2rhdF3VQ2z5plRKFP1NWKVmXJdHZKrUu0si+CdCVNq8jnC/sm8H2mU9tC1O8PKNycs9NTlNaMx2tcXl5yOZkwHo+J48S+GFgYr8DBlU2X3RS0rbqJP5m2az8TEsezbz6jwMHBczzqoiRbLumnIa4TkMYRum4RWna1pyV1lSME+L7AJAlRGN0cbB3HbpZxsDZrFNL12L+1Z1tpstyCeZvGNrA5EpR1fLVNjXYkZZZRZjlFVlCXtb0Qu82bdAQIw2o5o2lts4AjJXGS2CXD2JrLtq3tZe+4BL7lttTVypL1Vd0JLoJmpRHSIXYlaZAyGN1BGSiahsnpBY8+eYzne0jXZTAaEUQhw/UxSmnCKObW3m1euH2XB08f8+zowNqas5zp1ZSmbjg5v8T3XHpxxHg4ZH1rF3RDXlQ0zQTHEaxvruP7Hr1ej3xlNyu1MkxmS5yuhc4VBs91GKSRfW/VJUILwiBBIDHK0AtjjONQ1S2yaUkcl3I65+HlnCQMCX0P3whi6bGsSzAQuT6+dEn8AAeFY5SN+3kuuixvrJpoA21rVXghOvC8QQYu2gBtQ9uUfP7gUzvRFYJVVbGsKqaXEwaDAf2hPazd2d0jz0oePPqMMsuRfkRbljRNDcIq/XEYWAVcYhexusERoIXBWH4jq6VttYziBKUlQugbu2cUhgSBjzFW4CzLEsdxGA6HN40iymharezNWBviJOrgkBrf99jc2CTyPJLABwOz6ZReGuFJy0kSxuBhXTG9NCUvcopKM59cgXAYbW4TRxGzxRzpOvQHPbTSnE/O0bhoBG3HZur3BjZHHycIo3ny6CECSJOkE4HtZk83LfPZlMuLSz799BPKqqIqK+JI4ns2ie57Et0Kijzn47PT7pp07WQzSXh2+ZSyKPnos4f00x5JILl3/yW+vnuP/miHl1//Kr/3t/8eZZnz/PET6rpmuL3LYDDk/t0XmM6nHJ0ek61yiqzkg0ePybOcZ0+eolpFP7HxgavpFemgbxvABgaVJLx8/yXiMGRnb4+mqTk/O+bs/IwHDz7FEW6Xubfr7Md//mPiIGBvY522qnllNKJSLZVa4jgtAliuZmgTMx4NaaIA07E7ZqsFp+fHOIHE0Q2x73A1mXB+fs5HH3+GIx0837thZYxHY3zfJysqpBfwW7/9u5RVxeNHnxNFikGvpiwqVtmp5TdISZWXRBHErk/qBwyjiEEY0A98sumE4zLn80efIz2f3f09irLk4OiYjc1N9m/fIhwMiMLIxnSbBtezkaA4iYnjkMEw5uvf/Dq//Te+z0fvf8LB80NOT05YzmeM+z2M0mTzFVEckqYRqyynKCowjm1kROB6LuPxCI1hpFuSfo/+YshqsaSpap4fHgKCpN8jTVO2drZtG9jVFNFYkazf7wOwWq3wfcvyqSoLCLUHTI1uDaoxtHVOGEa88+brtFqxWC3shk7A+UlO3TQcHh4xGAz4zre/h+O6fPT4CY4r8X2fO6+8zmtfjbl76zbD/oDeoI8jJY3R4HnEwyGvfeUrvPTq6yjTgNFEcdRVQT9juVhwenzExvoGL9y9S7Zc2UhCWaKNsVw4bfjks6c2gra1Q5Ku8b3v/U16/ZQw8FG6ZTab8f5Hj+ilKZvbt2n0Faui4ZNPP+Hw8JB/+A//Ibu7e/zwh3/Gcrlkd2+LnZ0dvvrOO7z707/gFz//kNu39+n3+5ydnVBXFbRWMJlczQijmF6vj3EacBUvvbpHfzDkO3/jDxgOh3h+SNPU5EVGv98n7fU4OTtjlWeESULdNPz5z3/BbDrl4MlzBr0e6+MxRyfHXE2vqLuGoHTQJ4ojdra2caWdnja15YgEcYTnuTz47HOauuHg6VOSKOberdsEgyEb+3tcXV2RZfY5SOlycHyC1pZ56fs+BwdHBIHlJJ2fXZLlBVGcWyfV9i53bt/hhXt3OT454sMPP+C1t97gt27f5tatPaI44OzshMvLU54dPCHPS66mc8Iw5O233+DJ06fkWcbf/3t/lzhJrIutrnFdSbYqLKC2aQg8n9PjI7KVBaG3Vc352RltawcML7/8Cnfu3mU2nVAUJc+ePUNrbblxecHJyTG+5+EHAVHgMx4MCRwXV4OnLJuiLCsc37eHmO7Q4EkHt2sE/qsesnNEOebmpH7DTfpfeohf/YyOEWU5Iv//eFxDwsV/5GzSHWD9Gs77y89HfOlQq9BKWw6p5yNcG83yBwNUknA+uaBpG+vAND6h51sEgbKRzkj6jPp9lFZMlwtaoxitjW3bYF7cfMUsz8nKEuHaPV3g+YzSPnd3b6F1a5vwcHAdl5PzM4qiJJYjEJrL2RWD/oAX9+4SJQlxmlKschaLjAePHzGdznj6/BkCwd/63b/J4eEhP3/vF4RhRBRGvP3GW4yHIyaTKdPplJ/85C+oipKf/PjPCXyf0A8IXA9hrEMxCkKOT04p8pyd/T0MCuEokjSlUQ13X7iDcBw7rMlzev0/ZWd3j7fefJter88rr7zCP/7H/5jpdMYv3vuA+STjg59/DAK++sbXeZo8oZiX3N29y4v37nVMSs23v3mP1XLB//t//p/QbUvgujTKNq/tOZIwTnnxpTHLxYL3//IX7Gxt8V//o/+azx495E9+9CNWSxup2Vhfx9veopeklFXNIE4ZpD1GgyHT2RXT2Yz19XWiOGY6nyKEw0uvvUpd5Pz83b/g4NlzTo8O2N7eYn19bM9ixqBb2xQddA1owhEkSUwUR9Y5VdW89PIewnE4OD6laVpOT08xxnD3zj12d/YYj9f5F//iX5LnOft7t2jrljdeeYXnBwd88OGHHHz+OUkQ8K1vfZu1tU3qVcZqPie7mqLyknGvR+L7oBR12VDIhsBLcHo+uzsK3/d44e5d+96MItqqoilLzk9OWC6XCGVwpMOrX3mHsrEDx+3NDW7t7hH4trnxRz/+IfPFnJdffhE/8KjqzEaQPEOr6o4fbLEIba1pa01VNrRtxtHhGXVdUpY5qoE4irl//1Vu366pVWHXxaLkajbj4PAIbQR5XqFNe9OmLoQg8GPrqFZWhFWNsS3GrofvBgRewNp4nX5vQN12Ao4RVixpFdqW+CFaWwiglaGuGpbzJapRBEGENgrpOkRxjzjp4wcxWVbx7Nkhe/u77O3f5v79WwyHIx589oDlcmmFZ+kwHg6s8OR5fPjeL/j5X/6U93/xC44Oj2jaEkfAOEnp9ayTN/R9Wz7SDfC0sg1snu/duCztQmWH86huiA8Y7XxpFOAgpWdFD91ijGNdZsKgpKE1lo1Vd6gaY0A5DsLxiIIejoDEDRBGkOcFBkEkJWXdMFvNiKOE/d1b9JIeoRdQdwxdazSxz0Arbc/GGFxHIIyhbRsuLpZMr66sa01ZxANG40AH2J+zWMxp2pYWRRDHSCmJ4ojBaMjrb7yBUYY33niDtNfDi0PSXo+qqLg4OWd6PuHs4oL5cknTGOtIa1rqVlFUFY50UBhmywVHJyd4H3ocHBzc8A8dN7i5p17H/r7zne/y4v0XGQ3HKKVs67V0aBtFtsq4uppycHjAyclJ1/Lrs5wtibyI1r1ulu9eGyGQruVVVl2D+m/y+I2Fp8uLC4TjEMcJYWAn/KazMNaVhZxqZQ+O88WCy8mEg4MDlsslgR+QpilVUTK9mlr3wmiM67lUTUNdVSzncy7Oz4nDED8M0UazXC6oqgrXsZGuKAiYXk06x9M6URTegCPDMKRVisVyQV6WGARxYltder0ermtdFmCswNI2VEVB24FolRKAix9EGAyVrm1Dm++idUWrFIEARzoWAo2tQG5cz97IOyVQdw6gpmqoZW0PzFjujBVgLNHrui7SuoRcXOl+sZEQtrqyMQpJl6t0rOnStJabJIW1FFproJ1YgUY4nWJldMcf6lRxukr7L29KBPhBZ2nsoHoY0W2ubB4Wus0KVmRomtp+zW6TI6WthjTCWu5Ua/P9120xwrnGdmpQdOqodcdIx7GcGK1wMPieVaiF1pi2xmgH6Th4jkPk+TTawsvaumG1XCI7R1ZrDL7vUzb2Jom2XzdJEtIkJU1Ty/8JAuviqWuKvLQAakBIiev7VHmDahraxuC6kiSJCIKANE3QSuPIJa2qUW2LFPYVtJhjqJS202WlcR0P3/VRVmDvNrkOum4wTYujNU2jaKqWSEqbt5YS3/Nw2hpjbPOF04H2hLCWT6d7/a4tn3aFtj8vIUXHczBgNNftPAKNUTZnrbHCU1ba1qOry0uqomSxXBHHKcM4Jcsz5vMlUkCcdNPMuiHPF2itOrCkwJcOrbF1msL22HfAxi9eX9/3urywjT580VZhq0ivoxHXjTmOY29E19WxYNlqnvyiohQHfNe3LQ+ej1Z2MqO1ZbAJ0bWGCGmrR0X3bteaum7s/U0p6wiUNqedJAllWVJntYVLCgfZgfh83wNHWoaWgflsRr5aUZWFnbZ315fRmiLLKbKMIs9pu4ID1WhahL1pQsfI02RZZmOtJsRoO6HxPDs90xqqpqEqMsbLnEYZ/DBmHCWkvR51XTGbzK0TLIgQXoBwPIxwaQzkVcMyyzk9O2c2m3N4eERbNwTSZt/rprbV172ehQW6rhXok5gkjalK+94zWlFXHSjctfFWgaFaLqCQlL51cw1Cj0WlqKsGz3XAcajrAilBJxFGd42cxjZxXNv5hbHXUF3bm9kysw1f/WGfsrS8hLUNlzjtMVhbw3Ndtnf3WK0yDo/OSFpD2xqKqqBu7XWpm7Z7/R07mQE7qZd2Yo9WqKbiarIExyEIfMq6YjGbkSQxTW0LBTzftphprW4OdtKxG4aNrQ3Ga2OGwwFgqKqCqiqp69o6QNuWoihwPQeIrEDbKguKNF9+z9uIri9DqraxxQdKU7suVWWdhq7rEUYhw9HYWq25wnEk0pGkaQ8hBFVZddePC6am+RLgUXTMCNVaQTCJI+qmZrXUtjWubSnznKpuaNtzyqIiW+U4rsfVfI4fBCSJIOk5+FFE2h/QGw6RXQx8sVqRlyUIhzhNCUcBVZWjVEsQ+ijVkvZ6aK0Jw4gwioji2DqKWoXXjTPT/gClNM7lFCEt+D/t9RgM+haG63tcXJ6jAcexzs1WGYqiQilDVdUIITq4dcDx8TGrbMV4ba0bOlnBxzbPeDcx9qZpQYnuAKBJej79wYiqaWmVZnNzm+FoTJz28aMU6XpoIa3zynExxqEoa5arHCNts9DZ+TnTqwnnF2dUZY7RDefnJ1xOLmlqu76nWZ8wDGmyzFauu17XlqNJeime74OGsih5/Ogx4/GY3d1dcBzCKCZOuwNhGCGEoF4tEcIeCoVwqOu6uwfYw2FZlnbqbARpkhIEoY1C1zV1UzMejbhz5za9nm2RNEZTVhVZZm3+bdOQJDFJHOG7ktqVbG5uEEURBwcHNHVtm3xr22DrShftK+qqsoOL7hpyHFvPPZ/PKUr7PsmyjNVqRVEUaK0t4zHPmc+m9Ho9K6C5HqHv4znWqWCn19iiD339y7p5vND/wrnNlxxEnUjEtdNJXN8v/9NFo980UvCrj1+dCH/ZLSW+9HvdJ/9S/O6XG4N+OZj36ybNv/pb1/FDQ8fE0s7Nz8QRAukKy5jrOKVlWYIxRH5g97YYPMcOUjzpo9BMV3bIJLsGQuW69kzQNOjG7mVl0LFi+OJrOdLF8S1oPIxq/CCg0YogtjXvqq5uooltY4XKbLmiyHLm0xmz2YyyKEnimN2dHcqyJI4i0IYyzxEIfM+nn/ZQrSIMAqqyZD6fk0QxTipomuYGdt42DfP5gqauiZMEg8KIBikdlFb2cOXaw1XTap4+e4bShv29W12zld1vSmkZR8s24/johCAIGA6HxFFKL+kRBRYsvZjNaZraAoV93zZrY0uI6taujcoAjsQPQsKwJQgj0n6fW7duc3ZxSdvYe6nruvSSsCtcsidvvzvwX/MLbfzYJwxDzNzu06TnYko7KCwLW87iSkkY+LS1Lc9pryvlO3dD0zY4jhUSXM8WKRjsGQEEWpsu+aG7n1fFfD7n2bNnLJdL1sbrGK1J4si68NGgNaZV+K5H5NufTbZcYjqmYhytEYS+LeMwVlARwp6bbJTeCiNuNyRRdW1jSGXBKs8IXA9PesjAt8Nvo5GeR9rvUVcVeVlyOblkvpjzwvAevu9RNzVCYhm8GFrVdt+jvZKMgaZprn/cNpmibaOqVgavc6m0Wc11dUEXZqCuG3sWFdevjXUbOdd73C6a2unh3XnApklc1w7bzS+tDddntm7tsJaem7WlqS3Tz57vujOn6yFdD9ucZT/P9wKGgxEbm1tsrG9ydmqHBKL7XxD4N07Ry8sLjg+PePzIGkqiyLPuOc9DqRBHdmdW0e3BjenKDLrn0WE2xM2zp7NlCkQXbbte5ew55/o7tD2xGoHu4nfXH7r+mWhjB+EIget6GOlgS8wMCNmtQc6NgycKQ4aDAa50bxylpmvIu3aaGW1uWITAzT3HYkEKqqrC6BZjVLdu2XOG/TMaIegYrl865xvDoD9gc3OTjY0Na9LwXIIwxGh7lmxMbYc2bdtdh91ZqTtvXfOwPM/rHEdWyLz+GbtSdgKUXQtaren3B6yN12yTLoKtrU0cR9LWLavliiRJqcqKfJXbc3YHFDedvmG0HX44wrk5q3mu1zmq1H90H/p1j99YePqn//3/gyRJuHfvHvPlAtO0tEVBVZasZjNoW9772c9o6pqL42Mujo749L33SJKUtNfn7Tff5vvf/h5PPn+C0pqvfONrZHnGuz//OXVRsLi64qd//mN++uMfsr27Q5wkaEdiMOhGcfj0Cf/23/yAN996i3e++jX+wX/5D3nzrTfJCpuTzfOcq6srPvjgAw6eH/Lf/t//O5IkJYxidnd2u0haShAGbK6t3bz4VVlQlyW3b99hfWeH3iClLJccHn6G5zpsbaxZiyIXpGlKFEX2cKg0bdPi+i6j9TUGvT5pGBLs7LKzscliuaKuakyrbnzOQghw6ICKDX5k2TvbW3sEfmg3Xt1Bvmkasg6SLaXDrZ09tjc3WM4nZEVB7DhUiyXLyRWDKERqGAxS4iRk3OsRBsGNHd0oexhzjcF3HCLfRsUUhtnM1mc2rcL17EbWOk8sIE04Dp5r3S7L5ZLVcgVYu2YYhozHI7Y2N5gvpxRVgcJ0F6td8JarFQKDcCByHQLpYNoW7QhC1yGQksT3CAPbhHF1OWF+NbPBXeFghG0JO5gukK5HEMUMfJ94f5dWgTLQGIWuG6an55RVxcXFJU/7D3n08SdoB4wUbGxuWojc9g5hFJH2epyfn/GLn9n33zzPKJYr2qrCk46dmqLIXcnsakLbtlTdAq4B1wsQjkNZFZSNoprnuI5D4AV4QYgfRmRFYZlSjZ3qz4uSom3IioIk7bO1s2sbj4KASmhknqE8iWoVqjYUSrFcLRj2Y8b9BBxBaxSyE4B8r8stB9I28gk6Yc4KdEprisaKpL3AA2EPbJ2rFVG1VM2SZ4+f0LaKD/7yXbuxeeEuW1tb3L51myQM8KTkX/+rf8bp0SGpMYS+R9CLEW0DdcVgNGYwHHF5NSMrSvRggBAO480tVlnGZDrHde0NdrXMWS5WOJ5lBkSR5eYsVit8z74HHEfieUF3Y9fEcYJtIJmgrhvyVENTlaRJSBh0B3fV4GiNJyVB5FGphmI2uWFG2TYjwWePPsORkv5obN0kW1ssl0vm8zmuH4CU1EZTVg1+EtnnKT0WyyXHh0f4fkBVN8xmM6rKbh59P2B3awvXlbz9+usslkvmsxlNU9Cqirwq7GZMSoIgoN8f0DatZcStchAO3/zmd1lfX2dvd4/Fcsm/+Ff/immlcYd/xHA8ZjRe4xfv/pTD589p2xbX87h1/z5Gaf7k3/4xx2cnPHj6iLYoUaUVQa6rVI3W6KbG9TziKKJcLVleubTdTe3pp5/ZatY6R0pBLw7opQkvvbDP9vom48GIKs9o6pLZ5QloRRTUuI7Ed100dgqYro9w45DjszMmFxUnTz7HdSRJGKKUodWatfEG927f5y9/8guyVY1jPMbDAd/+zuvs7u/x+ttv4/k+buBz684tBsOBdaRWdlrpTafs1Q0egli6tqQiCvnX/+yfcfD8OVubm/iBz2I5x3Md1kZ9lKrRpmJtvEva73N1ZUsqDh4/xAsC1kd9XKG5ujhjZ3ud0SBFOqDahtVqicDCk0fjIV/75jdJBz1OL865nEyYdiUTURySRBHa16i6IYxDpC/xAxvjzi5PaVXL3f09HCmZTicMxiN2dvYo65LZYs5rr71OL01ZLJasVis+/vQBvd6Qb3zrO3z88cdcTmZsb20x6A8YdmJNVX5gm46U00VaXWuBBnp9y+oq8hJHOFxcnON28PzTk1NOjo7Y3tllc7jJex++z+f5I67OzukNR+zdexFHupZP1O2AVd3gCMHerVv4oW2CvL5XJWGEjmLbwYHD7HJGXVXURQ0KkjilbRQHhyf2ANcoNra2SHt97t67RxxHfPd3fqdz/nbCgjEs5va1evzkEWVZ8F/97/93AKxWGUWRcX55xmuvvcre3u/h+z6Hh4e8/+EHlGXJ22+/zcnxCf/6X/4rfuu3vsc//j/9n/n88SMml5ckSR+Ex/n5HM/zWdvc5tXXXuVb3/kWbavQ2rCxtYuUkp+//wGXl5d8/OnHdjodBPTjhH4U84sPfsHZ+RnrG2uEYUAYeNRVyeLiHIoYWS/ou4Lh9pD5fIZqFcO+b8WThY0+bg43OZ9ccXE14fzAMqN6aR9HOIRSkS0u+Pd/9INumy7Y3t5mPB4xGo86QK1tF33w+BHj8RovvHj/5vCjjJ14DkdreN2BYzpb8H/9v/0TgjDg7a+8w5tvvcVrr79mxSkMm1t7LBYLprMlvbjH9u1NLi4vODk4IgkjeklKtliymM747ONPqOsa3Sqq0gpPUgucRBCEoY29Dgasr6/z1a++w+HhIdPphKLIuZxc8OTzJ8znC8IoAiG5vDgny1ZMry7p9xI2N0YM+ylpEhNHtiHR83yatqUoC6qmIpuXFGVJ1dTsr2+RRLEd4BljAdrdumsn2QZPWgGrVqprWrJDHof/5ccvyz3/vz9+SXQS4tf+3X+VKPZlZtSX/2m+9PEvf8xgRR9zc7A1iO4Q0SqF70pcKTq3uy17iKKI3iuvWWyEdEHbFqpGtVaUcCUoxSJbWUahgNlqyeXFhR3iSEk6tg2EbWVbIT/66CM21td49ZVXaNE4rsN4OEQ6knsv3MMRDgcHBxRlwQeffMLk4pKzkzOSKO4cFB6BI7mzt0+/1+PO3j53b93mb37/t/n8yeccHBzwL//wn9E0NS+98hped88Lfb9z8DfMplObADCGMAioq4oP3/8Ax3G4c+c2V1eXPDt4xtraGsPhkJOLxzRNS38wpiobfvBv/mfWNzZ5+uyYpq4pq4rz81OyPOdr73yTtNfnB//mB3iex9tvvwXA/fsvU7eKzx484L2f/4zp9Io7t/fY293h//CP/o80dc3ZyTHvffABP//Fe6zKklVesFhk1FXF/VdfZWdri7pVTGcznn7+lJdffYXR9g4ITasNR6cnKKUZDAZorXnw2WdsbW/x2muv2X29UmRZTpZlHJ2cEHouO+Oxjah5HqEf4AqHposBaW3dG0I6rLKck7ML/MCaA755/yW2d/b42c9+zmKxBCEIowjhOMwXcx4/fsgHH7xP09Tcu3ePjfUNXOmgHCjyOa7U3Lq1zde/9hW+/9u/za29O4RhxJ/88R9zeXnJaLTGxsY677zzFc4uznj67ClBGOB6LvPpqsOlLLmqSj57+DGB7zPo9ZheTWzjblmAMbz26iv4+Dz62XPywhaKLJZLlNacnhwzn07RUiB8n08ePrClCvs7JGnMYDBAVRrVtMRJxHA0oK4bVquMyeSKza0t3nzzTebzKRcXZxwfnXAwPcQRdljq+IK0l7I/HrHX3OKtLL9xuM7nc9q25c6tW0gpmU5n9mxYt4ShjasuliuUsuKfKz07IK3qrpjBDgKlK/BD1zaTew5lVxzhBRHS9WlqjWoMWgmQsuMnuRgjKPMazwv52le/wTtffYe/8/f+PmEQ4Loe89mCwI/I8iW0hiQKWS0XHB4ecPD8Oc+ePiVNItZefYFhv08YhAxHQ/vcfGnjc6qlrUrKIqNuG5RRRF0KR3fDEem5tnFNeqBtDEx0olxtNEaDUjYJhZQoK1faga3R1lABuHQsrLbFCI0RijAJ8TyXs9MLWqXpDYbWrVRVBL5HFCbcuX2Hl156CYRkucrtYItOfOr2UY1qqeq6E5Y0eZbRtjYNNJ8vePbsGb7vEkehPbeANWX4PuM1G4e/dfuO3de6PtOrGbOrGVEYsrOzc7PePTs64tadW/z9f/APiLpGcy0EYRzz6quvEscJT5484WoyYTK5JO2lDMdrfOOb3+Lll14iiWPCIGB9fY0giEh6Q7zAJ0qSG3Gq37mtwYqDcRSBsYKoAFzHYfat7zKfrXj8+CHL1ZK93X3CILBFKFlBU9YkUcJ4tEav17fOWR7954eL53mGMZqrqwl10+B5LoN+n0Gvh3CEBcguFijV4jqOZbEsFxbEGSc2QtO2pGlqnTAdNyNJEoo8w3EciiKnLks7hS4KvDjBkdbpU1Uly8WCurYgUL+bljSq7VwEhqTLgi+GGcPRWhcrmSHdgDgribKcIAioq9YqpFpbCHVd4bgRWVET+5YRYyccFoR8XWXYtoqyqmzsxFgWk9HddMH3kK6t9nW6STpYhxRgXUHdJkBKYUUADU3TWjdKq21W2xiEdGgb6wKQHTcp8H2bQ84XNrPqSAuVNteTP8uOcqXs8r3WDtjp5zeTeMuysM9NKYWRnRtKukhHYnFM1pGCuLY72lrHqq4pqpLVakVdV3iehUVfb3QcYV1VrrSTh1YZXNe16rBSIK+3zZ27vVNPnW6T1DY1bWPfJ15k1WHdfW0L8gZX2DyvdFxK3VpALWAc0bUDQBGFSEdQlAUKjRYQBCFtq3CDkLiu8MLAgmpdl7iX0u+lNL0eumlwjF3QnNZOYJui7F47B9+3C35d1ehad2BYF7+bQlRNi5QK17UV6uZL7gspJaZpyYsSL4is6m80tA1V21IrdaOuV01r879NQ9N4qKbFS2Ni30MVBaLbEFz7565/pu61+t8d3iR20iB015jR5Y59bYHuqrE/Q60VTV3TNFaIKIqS+XxB4K8RxzF37twljSOa6Qy0piw6hV8rXMchCgLb5KBt/E8LQ1lWNLW9PlVXB369mXF9g3SV5Wo59rtoW8WqE1tdz8N1reukaVrazilzPe24/n5a5aKNY9uJjOWKCWHZXlq1NI2FtQu3448BorU8qLosKBzBcj6nKAvrRsA64KRjoXrXfBC/u2ayPGMyvUJ4HovFgrZpGY3GhFHIoAMPg6FqahwpkdrtXGD29+3VaH+1ykZFNjZDNjY2efGFF9ja3AIhKMoS6foUZc3TJ09IJhPS/jmTywlN3RAnCdJ1uTw/oylKZidnXM1n1HmOKssbgcABPMAIQ4PGFYYw8MC0VHmG39X2ho6N9y7KEiMF2hNIIiLPRWhFU5XorsmxM9NhhEGZlrJ7jZMoIk5j3CTGW8xQApzGljQs88L+PKTHbLHk5OwML45Y29nmTtoj7fW4/8qrbGxucevuPTzfw/U8/MCnrBumsxmr5crGfPLCXn+AoWZtc4PhaMju3h5Ga85PT/E8l+FwQJzEGAxKtdS15Qq6riTwXZrGcuaEI264fo4wmC5e3NQVTV1htJ3iGN1iMAjHukgW8wVlVXWAfIVRCqXb7v3iEQR2wrxaFtRNTVnVHdyXG/5KWZZcXl4yny8o8qKb1AcksRX/26YhzzLOzy/I8wLXszZ1bUzH+dF27XbtNNQPQtK0363JhmU2p2mqm2sqDELAwlARgjAI2dnZZWtri1q15EXO+uYGfhgTBRGNbqmqirCLbR2enFLk1pkWJQlhGtO01rXiSxcncYjjCN/zwHEoypKiLvHDwIKh/YAoTlitMsqyZG1zizTtMd7ctCygOrestqZjeXkuWZEzX8zJ8sI6bpUGQcejs18viGwMvqor8qJgbc0y1OzaoRDCwXV9/CCi1xvQNsrGHx0Pb1GTJAn7t2+zsbVFkqZMpzNWWUZ7cozWmqPD50xnU1bLueVr1T66KqlWS4osQzUNRrXo1nL9pBBEoWUjYix/xRGCwPPQjsR3rP+jVS0oEEbgux5JGNk4QGPfT0hhWRlCgIC2c88VRc5iIRGOdYhaBqWiamqMgLhzPhmEBYW6ruVCaH0DXs6KHOm7+IFPVVXMZjOSNO2+vwaMjXN6jmsHjMsls+mU8fo6URxxNbmi7hzQ1xP2oCvs8P2ge21ilDE4rgvCMj3ruqasSvu9YyfgrmuHENpoloslxmgGwz5pz7Inm7ZhuVraIpPOMdi0LYvlkkq1FE1NUZZWYAtjQtcDaT3NdnJ9PXkXN9eevvYQCdE1xF27ir4k//yqQ+n6839DlsX/V48v/d2/yVf5VfeV6f6OX3JLfenvvDZFGGNjd9cuJN2N911p2Vtt09K6tixHfunPaWFj9qpzyFy7eO2E3V6zYRTeCE++Z5majrHJhCRNieIYz7elQYHroRt7uNatXUNvnALQXTtOFy2yKYJrMmRbNyyXy5vJu+lA8qpV1FXN1WRCENiSHd8LCP0eFxcXTLpyk6osLcuocw5a9pXE9TyiMLZtZI2izCuatmFrM6SRFnzvezMuLy7wPPu1Z9MZFxfnjIdruJ5PnmX4gcdiPrOf43lk2ZI8zyjKjKapuLw8x3Hg6PiQNE7Y3Nri3iqjVprt7R3SXo8iK7vBZ818seDZ82dMp1PLj5H2a5dVgdIKH6dzbzY4UlrHlO8zGAx59uwZk6sJs+mMprFNqq5jW7V8z+9q3R1bH98xhrSy109V1WhtCIIQhGN5e9f7/NYmIeIkRWvN2dkZebbCvykO0ASBrWqfL+ZURUFVl2htHU29Xsr62rpNJAgLwK/ruhOWS3voryqyPMP1XPzQsoEQBj+w/x7UIVIIqrpCui69Xp/ccexZyU49bbTTc9nY2iIIAxarFWXHyjFGYkS393NdXNfuP6Uj7RlCKxCmQ5l4+L6HBZQrixVxhG2l9SRCCoqsQGuDG0lcT944VjzP6850zk2pgj1HSUTnwnejsHtPeRZTgSKOY1ynS6WI7mLE7ndNxy26ThoYDI6UjMYjkjS15oMuiWD/b78P6VisQRLHrI1tSVVVlCxmM8qqYrmYW+SEsXxX1e2br3mISWJbZ6MgZDQY4gc+QRhYt09rGXGmczlpbTpnkkBpu6d2HNmdW7pnLzSiS5KIm+/oS07PTii3BW/CtvV2IhSIGycO3Z8xGHumUXZ/RudEMtpQNzVRlJL0UpIkIY4Ta2TQGiFkF2SwAp42tlHPYB0/WtmYW9tYpMB182WSpGysj3E9z7YN+35XUmOd623d2tVMds41KVksFpyfn1u2bVWxXC0pytImN1z7+niei9t0xUzCpid0V0rjeR6DwcCid7a3icIAz/MYDYd4foAfJUjXxtXt+9a2FUrXimu2+Muupo5jRTxPStK0j+uG5GXOIMtI0x5SSsqiwHU9oigmTXoM+gMbc+80BE96v8Ed6z9BeLKxmZanT5+Qpinr6+vs7++zubnJT999l4vzc0zbIqVkYzyiaVvyLLM/+DDg5PSY+WzK3bv3iKKY88kEAdy7dw/fdVlMp9RlSdM0HXHfoTcYE4Qho9EIbTQI246S5TmTyYTT01NmiwVKqW4BVPT7A954c4233vkGf/bDH/HBBx9xMV3gzDO0sYfVMIzs4TrPb6x+v/jwIVEY8K2vvshoENmDjyso69K2wgGzxYKmqS3rwfOsrVLrzt4f4vouumsWS3spaQ9byWo0gdM1tzWqo+knNHXLxemExWSBEI7dNHaLAte33G4xisKA7e1tTFuh2ppeklhgaBgjhUvTCRVKaa63G9Zma4UuYxqK0vJKRqMRs9WCsijpxX1cx7dvrC4/6rkuXhB2Nx5lL2xtWHZ1t48+fwwGkiTGGM1ytew2kXZhdVyPsRMTRRVCSFZZxnK5wnS1BA72AqrLwgpJwlDmGdPLgiIrqPKS8WhsIxpCdLwrZf+pbf1m2xqquqStKqIkwQ8DNrY3MQiyvR3ysmSeZVxOrpjOFzw/OLTWe+EQxTEvv/aqfQ51zf0XXuC1V14mkC6u41Asl2SrJR+9+1Oy1YrVYobn+UT/H9b+7MmSLM/vwz7u5/jud7+xZuSeWUvX0j3V2/Q0ZtBDTGOIEWQEMIRMMlKgDGZ8k2R6lBlIvUl60Z8gySSQBCHSQA5IgABBTM/0THdXd/Va+5KVa2Tsd7/Xdz9+9HA8omp6BkCbEdcsu7IjIiNuRFw/fs739/1+voHPoN8jjiPefvttFosFL95/gTgyzUrL5YrDw2ekeUFSZKY1T0pcP8SyBE2gyOdzTi7mlEjCYYHOMxqtOV/MyIocpzIxvIv1BpoGu2nwtSKoKgY72+xvjThv2SSiNgwkm8a4BGwbz7LR0qYWrqkgVbWZTqYptufjeL7Z4Pshs9maNC8JwxAhzHUhXZckSVguVnz80Sf82pe+yL17d/lb//7fxhU2//D/+f/i4vSU84sLpA2BZ+MISRzFWPqCqizJkpxKKWbLhAYQtssmTVisl1eHbsdxEVJSK31lR1+vVpycnLC7u8P21hbdnhFyfvbTH7NZmyiJLSSOr6gti9q2cB0QVkMUeti2RVqUlDWt464kTxM63S5Rt4OQ5qYtPZe8KDk/OUJrzTNbtodcB1sKLCHQ0kXaNmme4/jQj0LUdMJkNmGVJzw5OqSuFY50uHn7FjcODvjy175CUeQ8PzpinSUoNMLxEMIlLypooa1VrSmKms0mZTad8Y1vfJNvfetb/NZv/ibj0Zg//KPvoBrNzv515vMZf/KdPyKvK3JV8fU3vsKdm7e5ff8udV3xj/7Bf8F6PqNerQniiOvDIUXgUlYFtlJGRFXmhpnLBj8MGG71yNOExeSE+9dvM+4P2XMD8jzn8YVLQ43rQNfxCLCZnpzxPHvaiq4WllVjCxDaCLCb1YbxcIu97W2cnRFWFJBIm7Ks8BuzIX/v3Xfpdrpsj7f5yfvv8uP33+OVr77BC9/4Mr/zW9+m3xsSd7utrd1sVF3P4Qff+x4PH37Kj998k7OzUz768GM6cYdXX3uVIkvZrJd4vsvW9pi/8u2/wma15r/+L/8hQgi+/OUvU1clq+WcLE+Zz2dUVY5lawb9Dq4jmM7mNHXOZrUgCDw6kU+Zp8wnZyxmF6yWMyyUETnrgixNmC2WCCEo8oL1ek1dVeRZSp4mbJIVvusRRgG9fo/heMDZ+QWz+QXz2YpG66s12nEl5xcX/ORnP6VSmkbD3tY+kR/huwGFLEgWSx6uVkzmM+IootPCZrOsYGYvjHPRFvh+SBjFdHs9dnb2rmz2f/Td73B8esy923fohTHXb9w0zpiPPsFxHW7cus1f+Z1v8/rrX6RUpumo0+sxnc/5/g9+zMVkwtHJMQf71zg4OODRg095/vw5g/GIPhD1u6RZxunpKb7r4QcBB7dvMxgNryJTT54+Jo4jXn/1Nbq9HsPhkMPD55ydn+P6gXEbjbdYLhf8j//0v7tqM9vb3WV/f5fHT59yfn7Ocm2atN597wNc16Hb7TAcDrmzu4tlWUznMzabDUopfu+v/R6bTcKPfvQjgiDijS9/jV5/yMXFjNHWPrv7N3H8Tw1cHYfd3V3+6u9+u+VRWDx89ICPPvqIw6fPSNLkSkgcj8dgaVRTUaQ5SaEYDbtsbw/Z3h4jhGC9XoPWbA2GrRhVUpcFVVHhezHSFkhMxNYUmgjyQtOLh4z729jqMXO9wPPCdgAmCPyAreGIxWbN+XzGdDrh6bOnBmDquly/cYNambi7F3hs726TZDlplhF1IpRuOD0/o25M3bwtbKJejBu4YMHHn3zMs8Nn3L33AlEUGUSC5/HSS1/g7PiEj959l5PTEy4mE751/YCdnR2+853vkGUZ165dR/oSYVlEYUy30yVJE8qyojscoNGcnZ2xWK549Ogxx8fHnJ2fc+PmTXzfZzQaG4BvHJNlGY8fPqLT7fDKa18g7sR0Oh0miynPjp+znC8pi5IszdrvRZFkKfP1iqIywtrQC4juuziBh7baQL11GfUz7aFKKSql2/IAUO1h59/kaDJRDn3lYv+f+/iLRKPPi0X6lz72cmv4FwlSl26nS3bKZfTmUhi6jF1py7jddWMapqRjqtXrukI1iiAIELbN9OIC3TZ9Oo7ElQ6NbdMIKPKSqqoI/QCAJEnMoMsxTa+jrfHV19btPtRxHKrRiG6nYxyinkc0HBG4HtPpnM0m4dnjJ8ahXJU4rsOwPyDyI7ZH20ynE9brzVXld5q2sbv5/IoPaSL4kp3tLcqy5OjwGbZtc//+fYb9Pnfu3OG73/0uv3j7bXrdLnEc85t/6TfZGpuDd63MULrX7dMLY1arFevNmjIx+/j97R3qSvGLSpGtEy5OTrh//x4vvfQiDz/+iJPnz/ng3XexbIv7919AWoLT42dGJHIdLs7PmM9n+IHLcBhzenLMyckzPv30fb72tV/n//C//z/xyuuvE8Zdnj0/Yj6bMzm/4Pz8jE8fPUarmtOj59R1xf7eHt1uBykEi82arCjYGo9pasVkOiEMI7Z3Iwb9PgfXDvgn/+Sf8sMf/ZDh0Li4fv3Xv0bguXiNIhEpuqGN9xihra6rq8HyJp0ThBG3b91hOl8wWyyNmGE1+L5LrUIGgz4Xkwnff/N77O7ucvfuXe7fv8f+/h4ff/gRy+WS9997lzzLWK5WJvLvOPT6A/auHZAXpWnZdgTahkdPHjKZXyA8m4uLC54ePuPll16g2w+Rro2LJOqMzbBb3mWz2XB+dsbtO3fZ2drm6Plz1qt1WxNvzoaD0ZDX3vgSzw8P+fTBA1zPpR9uM5nPTLR6d58oDBiNRjiuQNgOUKJUSVUX1E1FtxdR1SWOI6iqgtPTI6S0iSKPwbALlubB5BGbTYLtGtPEzs6ueR2VJWEQ4LouURQaIacVb4WwCQKP4XCEqtvUSfs+iaTMc8o8wXEctA21NrX3laqodd0KthWN1eBFHq988VXCfg+0wtLGJ6SaBmpTkO65kvF4wO7OLl9+46ucnZ7x1g+/zwcffsDjJ4/Z3h4ThiHdjiltWS2M+WQ0HOE5DqNh/8qd3O/3EUKw2WyuHNDCFTS6MUiORmPZJvJVlCWiddpopVCVaZKvaHCsz5riwEQTLWgHyw2UJiJqORLaRs6yqa8YTBrAbtdBrZhPJyR1ieeZYZjQJga8Wm2IOn32Dq4xHI+JOl3W67R1S10uqOYMXdUmPdIAVW1aiWfzmVn/XCPEbm9vc+f2LV577RX6/QGz+YJOp8vu/jWkLUk2KQ8+eUAUd9i7ts/29jbD4ZD333uPN3/wJv3BAMd1EaFpKreE4YC6gYvjSmRhkyYbqrJgvpizXC4pioIgCLh//z7j4ZBBf4DriJaTZbVuX0WtTCRQSCOqGqC5QtXmp1uX7c+6aTEpGoR0CaKYF1542dzz6sqIeKUiDDscXLvB9vYO+/v7TKczVqsVoRfRRL/aQOZXFp56w/7VhMRxHCpV0dC0rRMBnW7niowfhSF5aSYElrBQWpEVxj0iHAcn8FmvV4YZ5QbEvS7Xbtzg1u1bSMtiOp+SpAmnZxcURXF1cfb6PVSjWktrQlkVPPz0UzZJQuD7NE1DlmbkZUWSl+RZSr/fQyPAsrEum160mc7Y0uSxPcelLmvyvGK9TnGkZuSZCWNZldi23SqAKVXlXN3IhRRQa8NrcQQVisZARVCNRquGNM/QWtPpRFgWWJVqm2ZKbt+4xTe/UZFn7USjMhbKwcjUgqsGZtMJ8/mcIOrgeD6266IAZdnYjkt3MCCIY2zpUGubUmmyojJAZOEYTpBttaydyjRUSAlYrRJtLmwpJbaUV9nQptHmYtPatHa1kbfLbLelTR2lZdtXLhatNVpbqLohSVLKSmFb4LkOOg4RylzA6pLF0E4uabO7pjXDTAKaxiwkRW1cBqJ1ZKi6aT9OELYTBtsRuI6g14mpVM20rbO3pYXjOXi+R1MUNFVNmeeouubo6aHJVdsWj7UmXa3odToEvofnmMlZb7xF0OkSdrpUZUGRmcY1mgZXSGLfJ12vqMviKm8fxxGeI/BdaVxxteFcWEIaCKrnEnYiwjgkDKN2Q6iw5pZhdbU5cN1oBBDYksAWhJaNUIqmLEEp7KbBFfZVi88lNNQwGuyrKYIvBY5tgXBAutjCxpceOC7a8ojKGqhompo8zVGlBse0H9VVzenpCUoZQHngufRGwyuQe56sWU/PSfKC6XxBpRqEdBhvbaE0rHNT5V7WNQqotKYsTUNk0zresvY1FYQRVV3jeB5plnN6fm6qnIMA2bY72HbLhrItLN2g6wbPkcRhiG0ZxprnuobR45j/0rrO8rwwHCzLvIZsrel1OtS1osgrfKfdCFzmxIWk1jDbrBCWzWg4YLPZMBj0r1x4WilqDevlglWnY4TzsqKpjXssy1KEZbL7rutjC8l8PqesaqRw8LyAOO6Y6vXjY77/ve/jui5v/fgt5osl89mKssgNRN1S1E1DFPh04oBHDz9hvVqRLmboIiN2JZEr6TmS3JKUQkEFVtMgXRvdaHKhiSKf3V7Mxoa1bhAo6ipHiwbbtegFHo0WWFaNpSrS1YKqqNBlRVmbn32vH+NIgSccLGFTWhWBGxhWVt1QJTndoIuMHfZHu2w2axzHI01SNqsV3Z5xIk1nFyRlyrA3xvcDsry4anM5ONjn2v4eDx98zJNHj5idn5GtVgyiEM+RbCYTM/GUgk8/fcB0NmU8GGBj0Ws3QetNQr/X5fWbN5leTDg6NMDuNElNLt1xSLMMLAvPtsjzjGSzIQgCtNZt9r/LerkEaMVZn0FvYNoRG83h4SHPHj/FAsIgQLbtlkrVbDZLqjojzxJsyyIMPVSj2WzW2JYmGo/o9XrcsG+x2iQkScZisUTVikG/T1WW7O5sYUlBZzhAtBZ9cw2VJKWJUBqXnsU6WdOohrIsjGNQCG7cus3u/gGB7+K5hqNSqcqALt2AoBNRacUq3XB0dkJeFvhByHy+4JNPPqRWDY4jSNOEiwsDUb2c/EpHMBj2CUIfjQH/T2YTclXhPw8IQsNLVGjWScLP33mbOIrp9/tMp1OWrWOsaTRR3DFlAgiisEM37pEmKe++/R6rpREbrh/cxHUcqqpACkEYmYGP1nbrvKlN5bUQqPYgaguJ63l0Ol1Wqw3L1cfs7+3T6XTw/ZC+JVgnxmX147feMlvdpuHZs6dMLs7xXIkrO2iU4SDqtg0vCsntkkKXLQzcwE/rxrThNqohKXIC3yPu9VhMp6RlSt1oHCHpRj5aaaqmpGoclK4pKkVVW2irQTqmBVTVDU1jI22LqspRdQmNQgob33WM01pI1uuVaR5tnStm32Lh+55p7sxSbCkRjcVqmeAHPqPuENu2TFOiMC7tMPDwfZfZrKSqK46Pj7g4PWMym7FJDdeuKCuKssR1ParKNCP6ns+g16OsKubLBVVpWI+bPEFbEMcxQoirhtKd7d32eW9QLaPv7PSUWin29/eNqDgYIKRANw1xFBP4IclyQ9loXCnxLAfpOrhSUlc1O+MtwsgcgI0Twux9XNvs/6qq/ox7aWz37bQcrhSdzz+MzfnPu5v+54hOl3ar9u9/Rmj6VT+H/vyn+SURTOvPIniXf2hFrJazotHYroOlzeG1qbWJvFlmAi6FxHI0ncikE9I0IfQDIselaBpKbQ7FjWpwhWml1J5vRPXaNNe6jnMlfJmb/WWTnqAfd6jKgmS5YjWbG1ZKUVFWFUlVoHSDF/jt6zEEbVFVik6/jxeGLOdzyiKnKAtczyXudzHn0oYoDAl93zj7auP6SdOUo+NjVNNw6/Ztrh0c8Jd+8zdNgqIoKIuCphWyTOnDEFWWFJuErG1ldKQ0DNPWId7rxtS14vTkiE4cMhz0uHHjgCDweOutH5OmGd04xrZtZpNJuz82zhHfcdnf2SMIfQa97tVeYbVY8o//4A8Yb++ytbeLsB201jx58piL8/OrhkDP9yE3rxZziKxaZl7d7mltXNcl7nS4du2ANM/5xdvvohrN1tYOcRwTxx0818PSsFisWSzWrJYbg35wXNPYJkxkWwjBqNPBcV08P0CrGZvVhpPjYyzbYjAc0u31SLOcTjfmG9/4Br7vE8cRSbLh6dMnZJmBDruui7BtdvcPWCyWbI6PsWwz6F6nGWmeG3C2qoCGWlVskjUNik4notOJ6cQ9pDSx2TjuGJeddDg/O2O1WDGbzplezJhOJhRFzt7eLq7nXDmAirKgqk076v61a2xtbfHxAxMpMmxbA8JvmoZ0ndA0Nbb8zElWVabh0Pc9oiik240B49TzPIcg8NCYgqV+d0iv18X3PZZLc+93pCDw/c+4kFstb/RzFfW1MgJJx+/gOi5neU6y2WBZpnzHljae79Hpdo0DzLawpUA4DhrTIpmWGVbhtTzDGrQykTYJltXQNBXLxZwiz5jPZkwuLnjy6DGnZ6fMZjP6fQMKv+QoX3KMARzHI47MPVtjAN+qbcZsbN0yi+02QdMKSJaFhW2GO/alN8s4oYzj1Ea1a9Ulj+6SEczVkmncU5Q1lqPbVE7L8msTJGWjSFTJWhUoC4TjcMnz04353K7n0+312dvfxwsCc4bV5rxbK9Wur61g3779cv1stCYMQ+qqNq5kzNpWFMXVz9H3XOaLBcvFgiKvKPKCsigJwwYpJJ7rEQbmDBi28TjhmMZwrZurtEuZFyZm2TJvlVJXLMTt7R22trbb0hOPuhUV7baJ8PJ7uXTFawzm5/K8btmi/TlbXI48Pu/7bVqHWGsLxhbGSWgKHEKiMDRONg2WJeh1eriO9yvdwn5l4Wl7f8dEWWpTqZumKUVdUuuauNfBkjZlliOEYLw1JkkT0iLDkhZ1U7HJKvKiQPguXhSQzSbGit2J6Y9G9Pp9Xn7xBW5ev84v3vkFh4eH/OM/+MekSUpdV7iuw87uDrUqefzkIavVgrIs+OnPfsLpyRlxFOE6DnEYcT6d8uTwObv7B+zubJMVNaoBPwhRTcNyuTDCk7DpRF06cZfz03PSJGGxXGNbFeNxH2jIiwzXCRiNeuR5QFHkBp5XG5dV0WgWizm2tCh0bVgBjk1dVFSqMtWxWjMYdNEaysI2YkSV82uvf4kvvfYGh0fPSRLT/BJFEV947VWwbMqq5uc//znvvPMOnf4AGYTYnpkwlZaN5fts7e7iBR7C96mxScsGNyuoGk2/Yy44bVlUTUOSZ3hBaFgH2FzWK9qWjXRdE9kQxoJXKwM61Y0iigc4jmQxm+E4Lr7vYWHhtxD4+lIRbpXtqqqZz+ZoQDqmNTAKfTaLBWVWUiuFagR+K1SirZbr46JkjXbMhZfnOctkjQaiKKBRmrpUuK5H4Ad0OyGWLciqEulKxqM+myRltVqghY3lu3ihR2xBszKv42S9Jk9SHi5WSCkJw5BnDx9RVSW7uzv0Bz1u3bpJt9tl/+AGwrJoyorzkyOefvoJ6+WKVGtC18UXXWaTC0CTdDqEUch4NMSxbBzLYnMJ7a1qLCHx20hIfzygPxrS6/eNbbJWHB8foyuFEsJshrXGsWw60qUrXXrSwS5L6jSBssRWtanBtMzSUVUlZVnjOALHEtA2S0Vtg4QrXGrLJsdGRCF+3KU3kDSNTVGvyfKERx89NJthIaExE9FHjx7y8OED3nn3bTqdmH/3W3+ZODLMpaMnj/nFD6csNglpZUQzxw/YvXYd25acTmdkRcFqkyBcH8cPWa5WJGmKagxIeZ2kCMel0zPtceFiyXI+5+joGCklw8EAzzecJWm38YCmRpcKXVdEnsuo22WTrKhVTdQePB0paTwP1/NIs4x1krS3P3BtY1HfHW9TFCXTyYxeFDMc9CmK3Ew4bElRKdLZAl+6XNvfQynFyck1Vps1myShbBpUrbg4PcUVgtXCtInVRUmepm3U2EXYDv1+j0Y3PD86NaD7tp7edVxWqxUfvP8Bf/SdP2K1WvHk6RPAYm/vOnEUsjXq4mSAVTHsx/R7Hf6n7/yPnBw9x9msCR2H8WhIHPh0XUnhOBRaozINyiJwXCygKCx6vYgbW0MWrmQuLCwUebZGSwGuxSgOaVSFasw6t1zOsCzROjJrbFtwbXsL3/MRlsBRLtqBTtij2+uzWa3YrFL2r91iOBjz1S99laquuHfvJd5+++d894+/w41b1zm4ccD3fvYW0+WCo+enVJXi448f0ChTNPDNb/w63/j613n7Jz/l6PCQ5WQCWnNrd5u6qpgfPyfud+mNR/zsx29xdHrK66+8yvZoi+sH1xFScHZ+wd7uHt/+9u+yXq44OjwyLKXFiiCIcFXDar0BCzrCMlEif95G6Qq63Q6OI7m4MHXH0pHEccze7jWapkLVBR+8/wHvvv02Bztjup0Y1zG17nVZsFrNSLMNZdUgpU2vG6EazXw2QyvF9Wv79AYDbt+/z/OjE45Pzji/uODo8Dm3btwg8D3u3rmNG3jEwx6bTWIieXlGnmcslyvqWuEFPpWu8Gc+SbJhMpkQBAFhGPKX//K32du7xsOHD0jzlKzKSKuc2lIIXxIPOmzKlOcXJ3z/rR8ymc3BMjXkDz/8gJ29PV546WUWiynT6TlZnmALsIWF67ns7e2BpdnZ3eL54SHPnjxh/sGGvKx45bVX6HY72LbNcrHg3XffxXMvgb81qlYcHh6RJAlg0e8P+NZvfot+v894POb73/tTvvvHf8zWeEy/1+e13/oSo9GIxWKGbt3LRZGTpglpUpAXKXfvbpuGyKdPSTITTQyCkF5/wIMHn/LJJw946aWX2d3d5d69e3T7Q6pGcXx8xH/zj/7rFoZtooW+5/HS/Xt0OzGL5QLdKGxVEQQu40GXtchYI+j0ujiuy2q9MmtHGxVZr5fs7u4yGI+ZL5asswJpG6Bxr9/FFlDUKY6yqbRxRFVliaJCejZVXVzFDCxdkaSOGcSpGt9xcKXAD0MATi7OUI1GuC6qUWzSlCAIiOOIoshZrpds7Wwb4elogXAGDEd98txE513POMj6/S6e5/G0LkmShOdHh8xnC45PT9vNuSbNcpIkI+50aTQcHx/T7XYZDcckaWqiT7aZ1E+WU2zb5stvvGFcadMpjnS4d/ceUkpmkxl2O7z69NNPcRyH3/qt3yLuRHR7poUzzVLGQyNOX5ycUWYFcRTguS6DwYD5coHE5t79u1y/cZ1re9cIwpDisqLaM8UzWW7aeEybqIttiyt4rCU+Lyb9UtTt34ZY1D4uo3qff/yyy+rqc37+6/7yQ3/+Az8Tn/5Ch9TlR13CYQEReGZwkpmhmSoaoiA0AHdH4Ng24+GQsqxYL5aIrsbt9cjKoo2ZlKAaPFvgOhJXuBRlyWKzQgoj1AhaFIBtnljVaCxbEnW6TKdTjs8nnE4uuJhPCeMY6biGnykl/X6XwPXohCGNhrQoGfW2EFKyTjcU6YasyJGew/b+DlIYx92w16fX6WK7kqYVJo6Pj/in/+yfkeYZv/blN3j5lS/wla99lbfe/CGPHj4kSVOq0tTN9/o99vf3yTYbZrUiy12KwsHz2naowrRdb42GTKZTHn76CbbV4Lk2b3zlDXb3fpvVYsnx0QnjwZA0TXlweESSbths1ty+dYvrB9d44e49trbG1HVFlmU8efKIJ0+f8n//v/7fuHnvLndffJGvfeVr7O/t8/Of/ZTJZEK31yHwPAaDPss5rJZLqtqIwEVZUlYV0nOxLMOEGW9t8dLLX+Dtd97hZz//U+I45oUXXkRr4zL3vZAySzk7vWA6mTCZzNjZ2iLyQmQQGde4qvCDgHv3X6BWik2WUVeK2cWUB588YLFa8Ju/9S183+cXv3ib8XjEX/u9v8ZsNuX4+IgHDz7h+PiI8XCrXY9MYc3uzj7PDg95cngMwsH1AorqgvUmuSoLMSJDxWozR0rJeGvAaDRmNNpuI0gu29s7hlsnBA8ffMrR0yM++OADPv74Y6raiO9B62C6dm0PW9hX91ANvPjSy7z++utoy+L45ITZxQVaaXwnIEk3LCZz/MgliDyUbsjLgs1qzSbZEMUh/UGX7e0ReZ6y3qwIQo+mqTFNSort7S16/T6dTszF+TmL2ZTQ97F7fdbrDWmacOvWrSt4vWVblLUBSudZYcSybsR6vWQ+nRF1fSpdI1xJGEdsbRux3RamEMXxXBpbUzYVs/WSWtpETosUoMEWAsexsK0GVRecnj5nuVjy7jvvslmtWM7nCMcM5e6/cAvPEwhpBpeX5gILG9fx8V2fvMgp65KsMrHpUDhY2ChZI2yHtvIKI/cYY4Hvmjhe1SZ8tN3iJy4jvPqz8gdbmDgexlyHZevWgaQQ2vAnG9tYQLVtUSvNpqlYlhnTIsONTHoJZQQSXStsyyaKY7a2d7hz974RIysDpG90Q6OqqxW5aTRK07osjWlCA/1+H1Ur5tNZi7/UrFcrDp8+I45Cqqrk5PiYxXzJ+blxjrrCRfcaPNclDAK6HePYHo/HZoBmQVJmZl2uKhMr10a5cz+Hx0k2a9Bw5/Zdbt64wdbWttFksgy73atbbQt1rdsCA+mamHtVXf0eA8/cA42giNEutJEJtTZR6s8/bCkZjoyT1cbElLM0RWtTvDMeb/3bh4uPR8a6upjPrt52dnbGYrG4UuPWyQatoW4VO8u2aXRDUZmK+dqq+fThA/wg5Gw2I447jLa3KdKU1WzOYrliNM74yle+yhu/9gaOLXl++Jyf/fynNKpGXGb2sXjrrR8ymU547513WK1WjIdDAj+g7g84e/6chx99QOA6DHtdpGUm9XWRgmUx6MWG0bFaYbWoMs+V0HhGdRY2jdWYfK0FTZsxvsxyVnVJkRes5htAMxoP8aOwzX2brLTVClthHBpnR1m0VtaaTnfIaLBHtzskCDqsNuurukPpOAxGIzSGi3Nw6w5f/+ZvsrU9wg983DCkKHPQiixJcRxj11S64eDmbXZ2tpnPL6jrElpHgsaotHWj8W2BdDxc16NRDevNpr3AGmzbtDhxuVBYBrqZZymbVc1Pf/xjZrMpvuteaaO2Zaj6VV0avo4wNwHDjahYrzdEUUinE1N4Lk1TUbcsClsZXkqSZQjLxsY4Q6TtELUwNC3MRs/zvHYBskzdcp5RNQqlNcKRuNplcnFGlpdYjUIbcJT52agaS5vlz0T9zOZG2Da2atgaDBkM+mDMXpyfnjK9uODo6RGOlHSjCGnB/vXrBI6DKwTzyTlZsjE3mcbYjW0akuXMTEscFyns1jop0G3TUFlXWLaFahRZkePaxlp66bwrahOZtFWD77mM+30iy8D2VFlQZRa0U++6bJlajkA3NbUq8RzjcnOEmZ7ULUerKQukF9Dvdsg8n0zYZJmB3G/yhLLMCUPDBfE8j2SzYTVfEIQBnu8xGPYJw4D3PvyQOIq5eesWQa/PF974Cuv1hs0mYTZfkOdrzhdrLCGIuj2j3Dc1tarMZkJYuL5LVZqfgVkwc2bzuWGaSUm33yOKQrIs47QsrmzIWJqmrsnThNjz6Y9G+I6DritCz6PRDllRGLts257huC6iqqC025Y+QZXlCCHp9fpkWc56nYDW5FmKVhVCKzpxjGpgGPp4lsXk/IIsSQh9jyxNoTHCoLYhWW9Yzhcs5zPTNqFqfMdl0OtjsF22gW62N6wsz8xrp52sTKdTFnNjn61VzetffJU4jtkab1GWOYvpBEGNZ8OnH7/H6dEzKHKujUf8xm9/C9+V2KqiSDOS5Qq3VoR1Q+00aNHgOuYQ6EsLx2pYnZ9iWzbDMCQpS/K6IGvMGiDyBGlDFDp0QgfbiqlKY83VbawrkBZWU7JJMqRwGI8GWI7DLC158uiQ6WxOvsq46HRZXpwZh6Rjs1nP8HwDyJxOZ6znGzaLNaflI1zH44WDfeqqIkszzg8P+c5sSl2W2Lqi2zWx3rw2lfCN1ORVAYslo+GI3mCIZdnMl0vjSGsaZusVrhfw8aePkG7Aq6//Gt//4Q84Pb/gd3/3DWxb8PjZEUmakOUlXSx8PzQxknJBFEVEYcztW3eupnn7e/u8cPceTx5/ypPnz0g3G+qyMoUE0obGODIdIQzPR7kI20QYJtOFqckej3EcwSeffEJvOGT3+gHXb97klde/xLtvv8PF2TlpnpEXOb1+jFASq2nMOiGladts41XSca42Q2Z500RlYZogbYtHTx5xPpmYCWyjKMoabQm6gxG1tjg5u+Bs8j3zur1s2ZE2UjTsbI1whcXF6XE7lLCxG4VjQbJcsPIc1vMpq/WKjz/+mOV8zmI6JwhCIs9jdXpKOp2Q5wV5ntOkGVVesMkMRxGtGYUBozDA83yklDx79DGHbRtOliW89MJtRsMxnThmOj0j2SyQrqTIC84vzgxP0HOwhEUYRwaem6VXkbsbN260bXo+N2/fZDAastc6nharJWVZMp3P8HyPb//V38WRRrSuSrOODLpdbMtCPX5oikjKgiTNaS5mqNqUW9RKQVWxWi4pyqJ19Jr7TpomTKcTHEewvTUiTcxaY7WoDk8KpAW6rlCqomrMRLuxaHlcUBYlwpYIxyOwBFI4rFoWhJm4WkhbouqSxWyBsAS+Z7hxo9EI15H0OzFWY5g4ZVGQZRlJ6/wbDkZsj3fY2d7G9/y2yGHSNjM6DEcDtra2efbsGScnJ9SqotGKa9f22N3ZZndnG8OXtCmLnPl0Rrdjpvw2No1qOD40seblaonrOkRhxHhrTNwfsGrZndevX8eyLJ49O6TX7SKta9hSEIcxVVlTFmtU3SClw8G1AzpxzO72FnlZcG9zj/6gR6fbxQsCGrsFJDcKlRctX8Ru2RhGznMcp53Mt1H+1iH0eeHnihnSCjtXgtOleNQ6iH5J8bl63595/JIQdPVm3bRT59ak9LmP+nwU7/POq8v2q8uJ9L+KOXUpal0KaE07ILSq9nuzLdCXrY6VGS5j+KCXB8ZaafKyYrlJWWQJyyzFsQTSsliuVgjbplam+SsvCzbJhpPTE7PvtiysS/5o4CMdSRQGbMqcytKMt8eMd7boxh1c16WqjLip2ml7phRZWZBkKbPlomWEFUgpiDsRUtocHR2aw5wfGGTDdErYjXE9j5s3bzAcDriYTajqmu/94HuMx2N2trexhcXB9QOkEKRJQtMoVsslH37wgXE5CRvLcXCCAL8qTWqgqU17dpqQ1xVO4LMpcp4eH7N7foD0fe7cf4Gw0+Odd9+lrmq6wxGD7W2kNIfBeZJxMV+hbYcg8HGDmC9/7Td48eVXefXV1417xIKd7a0Wug5aVWhtXDVplpBmplghSUOE59Dpdhi4Lvfu3SPPCz7+6GMawP/FLxBS8tWvfQ3P83Ecl/FoRByFXD+4xtnJKcfPnlM1MFuueeHFl3nxpZexLMNFfHb4lCzL+PFPf4ofBAxGYxzXZXtnh+s3rrOzv0scR2gsNkkCts1yuWQ+n3NxccHe3j63b93Cdbyr1uwsy3j8+AmL5Yput0e/P2AwHHF6ftGCncHSGs+RSMumzgu0UGgpiIKI8WjbCB5lyS9+/jaWZTMc9Dk9OaUsS9CN+d1pCyEF+3s7bG2N6YQRy/WKjx9+ihSSXhTz8Xvvc/joCY+ePr7iFFqu1/LmFG5gUh1V3SCli+f5PF8esV6tcT2XMAyIogDLbqibgjRLTVKmLW3Z29uh0zH3kLqq2WxMg2cYrul2u0RRxOHz5whh0+l0aNAkadq6XIzTuK4rg8OwbMJeQLfXo1bGXasAS0qE5xFEHbqNwHM9xttbXLtxE43FxcWEPM1xhAvSsA6FJbC1RZUXZGnKarHCkYIbBweEYUgQBnSiCEtrwxIWhlmoVGO4rW1aRTouCBu3TRN42qapFVYDtpBUpeEgW7YwTCe7oW4MXxJhI2wLQcsqBhrbOJrK2ggkdV62wg5XjkzbtnBsp00wWTTK7CUsZUSi+vJUb1ntWvYZe7ATdbBsG20JPM8nb3EJjuNflUc57WtVSsckNlpOJHAFdacxDtFerwuNwvd8GtWwWCzYGo95/dVXWc3nrYDUNeaMSoFlOIeXTXd1XVKWuQHFtzxn1/GIwxitGrJNSl4bXnC318NzPW7fvoPrety6eYtOt3N1P7Psz9jMl8kNw6uy2tIygePaV05ZW8j2/G5ftQheGg4s0R6GL+9FtpEO6+byHK2pG4W2bfPvpTDsv19xFPMrC0/dbo8sTVnMZ1dcpNlsRlEU7O/vEwQBaZaZyFhdXkUZlDbtb5a2sbA5fH6IEJJVXjAeK/PirBWL5dJUM2c5X//a1xgPR+Rpzgfvv8ebb36fosxxXWOhV0rz/vvvcXJ6yuNHj6iKEl2VxGGEg2Z6ccrxs8fcvHGdprqOED7CskmL3IDnekOEpVkvG5Mb1Y05NHimltNsPgxTCstk5pu6xBZmI6CUoihz5vMZjuOws3sbW9pkWdZaCd3LgD1+YKoRjdKoqRvww4jd/Wvs7h4wGIwNx8hqFUdo7YbQaIu7L76MUor5YkaapXhhZASMMiVZr1Ft1G+92bC9e8C9+/f44IN3WK8WWMIBS6N1TWO+I7AN4NdxPOpasV6tDTTQ9duJmGo3O/aV6lwWBckm4cMPPyRNNkSuY56f8U+aDU7LLpHSxhYgHYeirEmSFM9zr0CxdS1R2vAVRKMRVUVelLjSwXdcw4hyDJTXcRya1pLpOqYiWViC5WrFerMhKTJKVdPpdLBsWMxmFK0V2rzejP1aXUJMaX+l2sJts9NW09DvdLh98ybz+Ywk3bCczYzte5Pjey57OzvsbG1x68Z1OmFI4Lo0dYmFplEVulE4wqKuS9JkBV6ApRu8IEQ6DpYtUVikZQu6tW2U1sYB6HpI4eAIgSMkefs6kdrCkw7dOMatc6wqR1UVVQ40NVbToKoShLmRaG0gh58HB6JBagtlGYu44/l0whAtHArbRqmSsqjJ0tyIVn7QVmQ6NEqxWa9wXEkoAuJOjO97PH78xBwa9vYJg4hb91/k6OiYXJ1QTues0ozzCzPlvvfCC2BZKFVTt6wpbMuw0BqNro31sygKVqsVWhuxKIojpBBMLy7I89RsvqQENI1WVGWBE4UMez08IUEpfN9FW7BJkra23kyAXM9rIZumhtzzPFalieCEcccsxp5pciryHGkppK3p+A7aknQ8D8uyWM7mFFluLLG2Daox7T8a8jRjs1qzWi6vmpNcx6HX6ZAVNbXS+J6Pbdt0ez1j/082V+L0er0iTdK28lxy/4X7bG+P6fc6TC4umE1PsWlwbc3hk0fUtWLYGzAebfGXfuM38D2H+eyci9NTDj/N0ZmxAFdCoG0L6bRrmms2Bcl8Rtzp0un0KaqCpi4pLIVqFF6dIx1J6AWmaTLwSNOcIi9bAKbZZBiG34o47tLrdclsyTItOT2+4PT4CKE1Qejz7OlDwijk2o1rZOkaz5OUbRNIuk7JlinTZUq/2+XlO7coy4rFYsnZ2SmfvHfKjevX6Pd7RJH5ua42azOZkppSldTrhp39fXrDIUdHx6RZRlHVlFXN2XTKYDjm8dNDLOFy5+59/vTNN5kv19y4dYcgDOj/6feptWY9m9JoY8FO07SNzXbwfQPfVsq8TsejMTeuHXD09DHzyZQizVCVKW0wr4fG/F5tM/VX0gjBdm2iw1VZEcchjVI8ffqUrCwJ+z1eeOkVXn39S2w2Gyzg0YNPUXVF2PFxW5HGBmTL+9O+xd17dwjDiE0LppzPFqimISyjFiiqOT4+RsgL9vZ3EEJQVjXasok6PVarFcvlgqOTE9brNa+99jLdXgcscETDeNgjL0pmk3OCwIhDlm5wbItssybxXdLNmovTU957+23qoqQuSq5fOyAMfJLpDNWYBqamLQNoNBSZqWm3sBgMBleT8LKqePTsKVmesV6vuXHjOjdv3WDQH+L7AbPZhHmjGW9vmUbCwydEUchoNCSMYlzPp6wryroiyzPQpv1NSAfHddmNdzm4fp1Op4uUDu+9/z6r1YpNsmY8HvLVr3yFOArpxTGLxZxks26b2nJOT09pVEOel+RlTV6ukNJFCvdqymegwflnLiVLUxQ5q+XC8GwGPerKOEysdm/hSFNkoBtz/dWNMjBbNJ5jBjyqbExLkpB4tsCXDnmWkWsNqkFbFtISlA0kqzVcVlY3GkcabmEUhlTKuJOrsmo5STm9Xo9ep0e/1zeMCOkYh9RiTl4UJkbT7bO/f53VesXR8dEV+Hk8GiGFZGdnmzzNmE5mqKpis17jex6e52Jj0SiYXkxRqiZJN3ieR1WUDPp9PNc1Qliec/3mDZpG8+mDh5R5we54RBBHBGHAJknJsqLdYzhsbe8w7Pe4sb9nIgTtzwELCttELiplBitZ68T3gqB1WxvgsC1sHGmi0HVjrlvdAlwv9zSX22it9S/F8fTV//6yY+lf6Yb6i9hQlwcEPmuo++XP9+c/zdWz+jNf7eq5WJ/7uMv/cymqta4nq33NWrYN7d/r2gzRGtscRBpMFFE1DUVZs06Nc3idboj9EEtKNhvDSb10vFdasVqvmM3nBnxt2VCbPWU46OH6HjWKtMypLc2oPzAupbhjBm9lRVlWnC9m5jouC/LKRFUmi6nBajgSKW1E4NO06I3QD1C9Hsl6hY3NoBgRd2JufuEVRqMBL09e5umzp7z5ox+xv7tHlqVsj8fs7u1gAaul4QClacLjRw/pDwbs7u1iSYF0XRzfx1I1VdO0z6ukbjRuGJBXFWeTCefTKVG3y/7167h+yH//P/wzNPDFL36RTqdDv9/n+OSY6XTCbLnBEi5jIfHDmPsvvowUFl/98hs8OzriyfNDhoMBnU6MsEC3EOlG1RRlbv4UBVmeIXOX0dYO3X6fa9cOWC6XbJINeVFg2YKXv/AKr7z6KrZtoMb37tyh2+kyHg14FMb4QQS2IC0Kuv0BN2/fAUtTlgWT+Yx1kvLRJ58wGA4N8sN1GYyGbO/usLu3i+f5FG2zn90y7larFYvFgusH17l181ZbCqFINilKNZyenVNVNVHcMXuRbg/XNQ6MywvHEQIBqKIC0WApie/69Ht9JtMZSZnxyccP0Fpz/eCaaRG+Ep7aWJcjGI8GbI1H2Apm0ymHT56ys7XN+Pp1nj16zHy+IClysGB3awu0NjFiVeF6HkoraqWxbYkUjhGPkuSq/MTzXRpdUVaOESWAquV5jodDojgmSwtUrciynDTNSJKEXssw/ejBR2ituReF2Bihw5MOnnTJ84y8yPB9H89xifohYRS1JRHmmsMW2I6L54fUyqbX77G9u8PWzh6r9ZrFw0cUeYkUpnDBuAON2KOqmqpl5gX9HrvbO3R7HVMA4HtY6FbwsVthuDbFJJjYrC0E0raQnsG0yFrT2DW6VijbQpU1hmxjhBXLMmka2qi+jYVj2cbNpC2UZcSnohVbVKk+E1aE2S97QuLYEm3bNJiBaYuAptGWcShZNtimXKPRVmu2cAnD2CByhGGuFUVJskmRzpqqrNp0DQjhGDdQew8xhgzdiscC1bpp4ziiLgs816Uqc5JNyqDf5+7dO7z77jssFnPiKKQsK1KdtXpCbTBFrbhbVRWOY2LBtuPgSIfAC8izjDQryOqKWjc0bSv2tf0Doijizp07Bh3S1J+t5e3PWCnzMxOWYRia5lZzxry6F7V3D/tyIKIBW6Mb2wzGbOvKEQzGVWZSUOa5XLpnacWnxjKDz1/l8SsLT0dPDynynIvzC+z2RTMeDPE8kzMVwubCcaiqmuVsiet59Pq9Vu5oKPMCVSmKrEJIBy/u4LkuW8MRdV5QFTXHz4+py4rt8RYH1/a5ceMG6Ib7L9xjMjnn7Ozk6tt6+ugRJ8+PeOONr+B7Pp989AHr+Yyjp49JkjWeC4vpKY8++YCDG3cJwpg8XaNUw2Y9bxu9FOm6ocpTisxAwfOBxPMa6loax4xSxiKIZSJ2qiKOIoIgIE9Mc5QQZkIrsZHaxm4sltMFSZrSH3SNc8dqhRph8fGjR/zJmz8jjkeEYZfBzhZ+EOC3rIg4jvH9gG7c/axdQThEcZ9Od9CiCxrS9Yph1OPx02dMp58QeB1Gw116vSN0A8I2UNP57AIsG8fxsLBplFFuXdc1jQhatzB1k721bQOMU3U7le6P6YYR436fJdCUubGwy5b+b0FRGpCcJUzTgC0lVtuSl5cl682KhgbpmaYLR0h2RgN81yHwTSOF2WRXVHXFctkghE1el+aCt922Cc9cUL7rkVclqJq4Y15Lm9WaLC9I1mu8yOTYXUvgYFNrI+jZ7cVRtRXLjivMzTxNcSzo+gE39/awW7hmo83FnqyXvP/BqlW8JYNuhNvr0aQbtALPM5HCXhy1h5+SotCUpc16naMasCLzPO/fukOW5awupuRC4liCbJ2ga8X+aMvAPqVLlWeczSbE1ES6RtghkevgeUbBznLTZKI3JZYwsD6LhjJP0ZaZVkq7jRa4AmmDKgsyXbLWsFgUBjhva5zGJklMNHCVJTS1iYTkeUbdlLjHkiiOubZ3gFINf/LH3yUMQ8bjLe7eu8vvvPFlpC1QquZHb/6Q8/NzHnz6aZul11hC4AVuC8GvKW19KYUaNluRtxvYGl3W1JZF3InodEKqsqSocnPoDnx2R7eJXZ8o8KGqKLLMNK1Z5oZfK0WaF7ieZyDkgPB9Sg2qrNjkBcKqmKyWoDXxYECZJRTpGtc30QFV5WhtE3supQ1n0wuk4zIYjTifTEjShF6vb+K2RUWSpzx+8rjdsO7R6ffwogBjvTOCk+u5fOnLXzROO8uiyDKS9YoHDz7h8NkztndMO9u3fvtbSCn55NNPkH5C0BmRZxdspguqtlkNBzIr55/9i++zu7fLV77xFeLhNa7feoEPfvR9Hn/wzlXboapMM6dwpJn+SBtdV2SbFWWWUBclZVPiBiFf//bvocqSpw8/IstyZssp/bhHr9djMVtQViWNNsBRL4jxwhgvjJgvl5wv5sSu5Pp4TJPnJFWOdmzyZE25XCIdl52gixfECD/A1QKpwI9cGl3z4Qfv0el02dnZpRMH3Lp5QJ4lplmldW0Fvo9tC1zPYz5bcnZ2wUuvv8bLr77K1379G0jHxbIds87nOScnJ/y///P/ki+8+CIvv3Cf/+3f/Y9xPYevfvWrrNYrRv/dPyUpSrKTU9K0YJPkCOEQhD7S8QHBZHKOappWVLTwpGQ2mfDRhx8YBpfvmWpy3RD6AZaGIjNRUjRIS2BLh+3xmLrlsDmezyuvvMJys+GnP/sFq6Tg0bMjtFLEvT5hJ6bIM9LMxFItzPCiKEvTeKk1z49O8IOAsjKw6G6vZ4D9tWKzWZMlKTvb24RRB1s41KpiNp9SVcY1EAQB+3vbHOztIGybmzeu4wjBo0cP8CKf+2/c5/HTp/zkpz+jPzLxN8PBEtjSMnuA0ZDFYsZiMefVl7/AG1/8ElQ1TV1z+Pw5y/WK2fSCKI557fXX8Ntyg9l0ynq9ZmvLRDAcRxpm2XKBpmHUjaAumJye8PSREVsPrl/HcT0+eO89Ot2Yb37zN8iLjNV6yc/f/gVPHj/j/gv3GAwGDIdDXMehrCs8KfA8h7PzC87OzonjGMdxWW02NLqhN+igrYafvfNzPMfB9wzjrlGKZL2hLEqmyxVC2Ny4e5e6bf+7mEyYnh5z+9ZtBp2Yg1u3KauS2WSKEDZxFJnP5/rm4Ng0bA930U1Dstmg0ThxBzfw8bpdkumUzWptGmCBFMvEwTtmKDQ/O8G6dLk0mjgIzYS3MQ1eNDAejXBcDxvBarkCzZWjyBI+VV0TujGhEyFwsBuBVhaPHz7l8OlzDg6uobTi008fGWjsYEiW5ZydnKKbhmG/j601yXLNez9/27R69vsMh0Pu3bmP1w6Qnh8fc3Z62jbuRNy/fx/daC4uzvGDgG6/x87ONoNen/OzC3Jd4HuGrSaEwHEcwjCiKGuWpxecnp+z2qwJI9NCFI8GOEHAvMjNFL6uaXQbBaxrykoxvbgAoN/tIYRjJv2Oue9oDL9T2jbSFnhtK23Vjtetzwk2f8Zp9Ev7Yv1Lb/m8Q8n6pX/7y4/L91ltVOTPft5/tfh0Ce3+M2/Dagt4aCN6XHGdPv+RqoWMe41pGWwsjSMdXNs0I9a1YpWZqvk4CKktzXKzYpUmzLMNQRjQHfRpyoq8qhDaDLmiTgdb2FhCsNysOZtcsDUc4XW6uIER96xGs5xMefsnP7kaMm12d0i3Uh62jZ9J2g6vqwqlavKiwBUST7h40kX5ith1sbRmtjony1LO5xN2tnfY29rmk48+5smjx3hhgJCSf4SF47rsHVyjVorrN2/gCMlsseClF1/i7u07HB0+YzGbc3JywnK55PT0lP1rB3hBRJFnFGXBxXRKWVa4fkQUx3zr3/mr1HXNer1mOp9xMZnwox//nO+/+Rb/i7/673L9+jX+0//0P+Hk5IR/+Yd/yMXknLKsrnhmH330IWFgqtRdx+Enb/2Ifq/DrRvX6A4G3Lt7h8B3KYuM5WLBcjHHdQV2GOD1YuJOjKoqRODRoHn19dfY3d3j+PkR0+mUYX+A43oGGXHtGvdfeJGzs3M264RPHz4CNFVuHI1//ff/FuvVisnFhEbVLPOUn//ip8xnM4LAw+1EfONbv0kcddja3uH07Bx9dkaaZRwfH/PhBx9h2YJXX3mFoix5++232d7e4jd+45uURcmzZ4d89NFHZFnKF1/7EmVZMV9M8Xyfre09PN+A7Y2zXeAIB4EgWWVI28JB0I27DMMBy/mETx68y6NHT1iv12hdIqVDVWbkyYrF9ILI97l/9y5SCqQUrOZLkuWa6fEZQkq+/sU3CIOAOIqwK0XkeJxMLsirgjTdkGYBCI0XeQzE2LBXVcPDR0948uQZW+Mxcdzl7bffRmvFw4cP8TwHtxVfLjlbl9fhpWXHEZI4jCiLkouLKUnaDvkC0yS63mzMv5cto7VReEGALQSTyQV5mhFlMcNxyfXb901BzmTOzniL0SBnOluS5xVf/uqX2dnbZZ2WJGmF1i6ODIiCLrmuaBSoCiwkBwc36ffHNLWNJxw6vk9WZkwv5rh+QKMtqkq3A9biiknbaCPgL1YL8iKn3x3gSAdd1qbVulZ4oU/U69BUtdljpilNXiBdGwuNThSVasjqGqtqsGqN9jxwJH6vi+t5DKIOGotCVRSqZFPmbIoSyhqFBULg9jo4QhLaHsVmzeLsOZUtcMLQtLxbNnWRQVWSalP444RdZrMFjX5EnpcMNgnz+QINvPFrb2A7sFktqWojBKpLllG7vOZlAVrTizuGMViWaKU+a+TTmqaqqMvSNEI3Cs+XhLFPr99FqYrJ9IJur8fBwQGHh4fUdU1/vNW2kwt8x4MwxtENyrYYjbbo9rp04xghDLdLNYqqLrGEAbcrbZ6n7Rp+k9Cfu5+07KdLIU9fllC0wpN96bq1DUrBsjECE5ioY7sfaZQBljcYPpd0HVNKQ/NvP2q3aW3pZV7gug7SNwyEMAzxXFOn5zoupTRQSWWbhjVttcpebZTSsmwQ0iXs9XGlg+e6JhYApEnK5GLC+fk5nuext71Fr9djOByQZenn77Js1issbHrdDp24w4d1TZ6lZJsNSte4jqTIU5bzCQfXb+I6NoKGuqnIkhLLbp1JTUVVmEylbkBrA2HTTWPOjJe/NYzaV1UVQdDBsi08z23j9daVG8dqrX95lpMlCYNB19RmthOtxrJZrlZ89MkDXO8M143Yu3mdqBMTBAFu2/AVRzHjYYXnmljcZbwijMI2DmBylv3BEP/swsSzbIHjeHiumU7rujYCRZYZxdcLzfNrdPucravNiWx5S0Z0MtHEpvVo+56LI+yreFrTbnRso4ChrUuLX2vNs4zYYRmSp2lWKwuwW1ufbZRr3/fxW8HLwthrTfW5AUMqZVEpY7U0z8UA24WUV8A4Y/EXCCEpi5KyKKmrGqdRiFapvxS1Pr+bMxN4y1TC1zVllreuEpth14iFKjd8sbppyIuKTWYa6BrADw6InADhuNDWQUvbwhVAYbLxjapBWwY+3lg4foO02lbF3IDjtGVElqqq0E1DN4rwggA/DFkt5swnZ5S6xtOmpl3aRtSrtYIS42xQCts2rjJdmQNTa88zi0+7WlrafK+10hSNaQUsS4Xjttb62riJNus10jbT4KZRlKUiS1NjAx2b6u3zszO8IKRsNDfv3mUwGrG9vYPnuCxXK6JOhyeHh8YO3C7Idms5u3zNXYEFAVWbNhndLmhoTRT4SGm3lfamyEAKQRzHBMJk4pt2MlIr1bZZWMZVUVVoYSPqmgaTFW/anLpSGm3rqwO79FzqMkeZLBm2EO1U30B8KyBNU6KOJIojbCGoavNvHUeSF6ZIYbFa4fptXFcKHM/BQmJbwjjGAp/tnS1836fb6ZKnKevlZ26Qm7duMBqPuHHrNkopHj55CrZEWxKlMLZly0w2rMaiLmoePzmkbOBVZRH5Ed04xoti01ykFOgGrcz1eLkZsi1TLVxVJU2toFHousbS0BltUZcl3tkpabMgXa2JA2PZNeUS7c3FMjchpxXGjXi7IfZdOo7DpjSRuLwoUDpHrRPiTo9wGOLZDtJxr65L2dYKz2YzLMtid3eHMAxwnC7TiSJLG4Rt1qamMXHkKArZrDctQNrG9TzG29uEQQS2pNFQqobZfMEnDz5l0DPNPq9/6XX29/fY3dtr3W4+tnSMG1UpyrK8Ev6ddo1JW5ijlM4VzDVJNsznM3SjcF0zpNBa40rHgNwp24Pl5WTJMPFU64hyHIf+oE9alkwnE4LwOUpb7GxtG1edlNjSsBls21j3y8o4Vcq6pm60aZCpazQWXltTrrUmae38VV0jpcT3PHRj4pJ5nqN1015HEePxGGlJpBAMuj3zfdTauAZGQybzGdIx7hBsC+kY95CQAimlEY2kg6pr4ijk4OAam9ncxFKDwEzzpCTwfba3t/H9tlWTBm1pgijA8zzAVCmrtszDlQIaTVUUrJYL8rxgb28PKSWr5QLf99jb22U2n7HaLJlOpzx69JjBoI+Ugu1tI+BXdYmsBZqGJNlwfnFG0lZ96/aQIGWAUjXz+QwhzNe+jDsl64SqLUTwpUcQhdRKoYWFvTCFCpctZ34YImuH9Wpt4OdhZERGIakKc+1ctoAtlwsTi+zGCMfFltKsXbW6ah+rlWFGOq75+abJphWeLIRjmIxN2/batJDTMAiwbHM9lUVJstlQ5IZbJx2JVgb8KoWDsIwrVtWKTbahrirDmkCzWW2QjjT3r8ocsGkaQt9H2ALdaGbTKVmWU2SZuc8KE/GL48g4ZpMNnSg2hQTdHgBFkZuhWsewpC6b2BptNsagr0pqbFtQ1wVpmrFcr1muV/QGQ6K4g+v72I5xCNdtcYpqFEor1mlBUZas1uYg1427gFkDtWXKJuq6biflbdGMZdiKTbu2Xbq9/7x7qRVy9OflnMttz7/Op/RLj78ghvf5xN5VPO6XP4bPCVKfF58+526yMPsaPnfooP1+rj6m0WC3LX+Xe0HV0OiaqjY/0yYw61VZVTSUpHWBG3gEvk9WKypdt/sL08B02Qh7WThjC9u0QTqucZUVJVVZcXZ6ihCSKIpIkgQ/NGUGWZ6TFeZeb7hfNXmWEQcxXuxcVX27jovVmKSCUkZ0bZRCCklZFiyXC+yWDTqfL/F9nzCOcH2fThxTV6aZSkhhgN3tXukyipi17dqX0XIpHCzLDFuqSqG1xXhrG6WUcftUFbP5gul0znK5YJMk7Gxv8/prr9Hv9/jeD75Hkmy4uDg35x3XZbNZUxU5cRQhbIvVYsGg38URYDuS4dbIxLUqA9q+bJy6/L3bwjYFEm2yZNA3YvuHH3zIcrkwiQHXM/vSNm3QNA1FkTNdrynLgmyzZry1xcuvvEpZFGxtbfP48SOOj55zen7GZDLhxo0DIt9je3sbz/fxoxAv8HFc1wi1VcVkMkEIySuvvgbrNZPJhH6/T6/b4+z0lMViwfHxMUmScP/eCxRlQV5kOJ5LGAXmMNs0V259qz1HmD1fWwDleviuT5YknJ+fMJmckqYZvW4P17FRlWHz1VWJ6zg4YWDOqVKgKkVeZZyenNLtdrh27Rqu6+IIQeB6VIGPIwVlbVFWJVVVtMNSG9dzUXaDqhTr5RKlFNcPDpCOQQYkiWS1WtPpRLiug25oz1fiiplrW6K9PE30T7VNkVjmfur7HkKYdVYIGyEck2BoME4by2KdbEjWG5Sj8ULjeCrrmjwvKIqKslRUlSmgiTtdwqhDWRq2secHxHGP4XBEpgoaW+N6Aa7r0+0NCcIOVdFgaY3UMFvMqDeN4ZMK57O9X2NWPyEljdIt3qNuiz0UNvYVfF83GldrpG2MCFpD1QoWaLPmaG1RY1FYElto08Ds+ti+iz8aE0QRo/4YLEjrirTM0PmGep3QZAVICUISDnv4jktfBuQX5xSnz2kss+e327hvU9coS1GVDo22QNaUuWFVJ2mK6yVMZ7N2H2d+FkVRUNeKsjL3CNoUCegW32Kg8OYc3cb9rpZk3UL/q6vfYRCG5k/gg21RVCWDlik3m80oy7LVM2J8z6UWohWhLBrb4DoMNiDAsiyq0ghPtTL7OVuYJAaYYYbdOsku7yhXz+3q/MWVKHq5/mFdDjYu7xeX53LzOWzb/uzshhm8WLZ5XTuui2iuvuC/9vErC0+z+RQpHXZ2Dbyz1x9wfjHh+fE5g8EAP/C5ccMcmC7Ozsnz3CjS0gZpU9YWVWPRFCWBL7h3/SZb4202kymyaTjYv0aaJSyXSz744EPOz8954d5d0mRDt9cnzXJ604lZiKsSYVoHmZwdk6wCLKum24+5e+8WWWrAq1VVMZ1MONgdcvvOHSaTDkmacHx8iuO69Ho9iqJoeU8JVVWyM9yj1/OwlY1tCRzHQK1Vy2OxLEEUmSaFRj9GN41pufF8Ai9inWxYrCas0zVFleM6ksAzdnJsm8ANTKtYLclryJKGINqQJQWz2aIF/wW47UFCCGHqlAPPANZ3zOY9DEMCVzLu+BR1QV5tWCxnTC7O8V2PfrfHfLFA6aJtLAEs2S4gBVWeUuYZVgPSkvhuiJSmTv4ycielAbspS5OWBY+ePGO9WTMaD5CWjaA9BAubRtrU2mor483hSgoLz7WQlkKXGcp20JbAlRq70UxnE0LfZ3u8bSqmbbt1Cah2MRY0qYVqGmxLm4OOH5LlmdmENwZuma0TClFQNEYZdkJzYWdZirYaROCikxxVa+rGosFCCAtladYqQ07P0KsVo25MJ/RR/RAcm830BFsIxuNtnEEPxw95fnrK2XTGo4ePcYTgm298icARrC6OUXVOXSaErkscjlgtE8qy5pWXX0G4HoerNYsk5b0P3kVYEld6V9WXKjeK+cHeDn4YkOQFstcluHWLYjqhmE2olaZsGtNsh6brBq3zoF0/ahMV0HbTsiwMuLzR0NQapQoatSJtGtJGIWyJH9qURWbicKICVxNGLkppqqqh60eEfsAw6OHYkg8/fA/LFuzduk6WFzw/PeFf/NF3+PHPf86/9+/9DV5++RV++6/+deq65rVf+zpHz5/z1ls/4vnRIY8fP2ynJQ111ZiblzI3INVU6EZTFTVlWVBVJUXo4bmSwA2xHRuo0HXNcrqgCgJ0GOL5AW4UkxYpTa3ojMfkZcn89JS6brAq0+ggbElVKKymIQwMT6LXHdDUNelyhWgEvhOibEmqBZvcVLRWlqJUmtV8Tq/b59aNOzx5cogQDqquKErIy5TGUqRNgXJsuuMReZaSbjakZUbdgOxGlGXBR2+9het6XD+4QafTYTAY8qW/9Nt8+VvfNmKtZbFWNmmaYsk+m+SY99/5EInCCxxC38N1pWGxNJrnJ485Pn/GJw8+4M7tm3zpi6/hdId88bf+Cu//4sfML84ILN3yNiQNUNYV0nZxbBtHeMS2R2ELiqLi//ff/AG3797jP/o7f5fHH33IT//0Tzg/OeTRowdcO9imM/QpqgIaCCxJZNV0rIqRrahEw92vvsZwZ4c8TVnNl/zJv/wO6yRjWjUsNzkXiyWvfOEV9ra2TBuLJ3GkD01DWpScH0+YnM0Yb221f4bs7l3HdSVVXfHk8SN0VdJUJaHnsr895u2f/Zi33vohcdgzBQW2xG4PNkWWM4pC3nvnbX7285/x+3/z9/nCK6/y9MkR09mUs5MJ6San1+1hW7BczDg42OX6jeu4rkNe5GzenlFXFWEkOD1/znff/D6PD59Q1QVRx8V1QmpVUFYSPzbMvaxO0DSUlSLLTQ1t2QKxK0sTupLR9hbrJCGSDtl8xlGWkVyc47keRWHiaLYNju0Qxx02aUJemBi7DaSbFVWZs7uzx3hrzBtffJ2T01PKomQ2m5EkCVm+Qrqw2Wwoq5IyL3nhxRf42//+3ybuxMRxzB/8wT/m5794m48fP6OsKo5Pz+jEHfzoMX4Q8bu/8zd580dv8j/86I+4dfMWvd6AreGAra0xkRvRC7vsbW0xvZjwh3/4hywWhjH4v/lf/Yfs7Owxnc2NI2vQZb3ZMJnNGG9v0+n1OD58zmZ1RLZeUhUFnShqI+AJ27sxWzu73L57D8/zsC2JajQ0NoPBEMdyyTYFR09PcKXkxs19vvDKC+zt7aIbRVUmXJxPcKTLaj7j6PCQs6PnBEGI45i2Uykl1WZDXVeslouW7SDJsoyqakVIz2O8PUaj+fiTD+l2u1y/ccCw0+O1+69wdnbG9GxiDsBtC44WRrS6ZCbUVUmjGnZ3d3GkZJMVWBYM+i5N2bC8mCOUxbA3NIUUbfMMjSCOelRVRVG0U0a0sd7XRbtJVKBKbCGIuhFFWbHerBDSwvMcvMDDtTykbRzpelJgUROFHlWVc3K6NJtU4OOPPkIpxTDq4gcBXmORrxJmiyWe59Lv9Di4dp3haMjetWtMJhP++3/yTzidTTmdT64mqTL2uHn/Fpt1yjxLWOW5iTp0e9gSSnKeHM3I8pwkyWkaOLs4x5EOWyPTlDjdLCjLmrpRhH6AtCVfevU1xqMRrutQVyWr5QLVGCZQWdeUteLxsyckScLe9g6h7xrmY1Whi4JKKyqtrmJoyjONvRVGeN4kSStGmgO9bJ1Q5gbbbobtzyQm27Lbvfyfdzb98tsuIw0muWDRMrevPvVf5I1qR3l/9vN+7m2fF6guv5x9eXC3PjtgXIpOgedR1zWbjREWe93eFYLAFQLdmOa0siqp0oy6LHGlRZbmrFYrrveHXOsMmDeQCeOCFlKAFBRlwfxiQicM+MYXf41OHBuh1RE0aFarDZYjuHXzjilZGQ6plCIrKqaTKclmw8HBNaI4YmtrRJkXzM/PyaqKpExp2kFQp9vFEZK60Qzqmus3bxOGIa4f8pu/9dv8O7/9O2Sp2c9XdU2e5xw+PzKiqwJXuthOwIfvvM/Djx5wbW+fQW/Af/R3/nekWUqaZXTjLtvjbbq9LlEcc35xxnK54Ps/+AHPHs2YTy5Ik5STkzOKsqAoCl68c5fRaMj3/uR7fP9Pv8fv/bW/xtbWmP/L3/t7fP/7P+A/+8//C3zfw/M8ru3t0evEXNsZE4UBW4MeF5MLfvHee7z/4QdkRcH1mzfo9fsMd7bpb42IgpCqqji/mLJZr1lOp/zaG2/w4osvMZ8umE6XfPrpA/I8J447qFoxOzvnze/+ER++/TMcxxgE3v/gY5RSvP7FV4Gad376Yx5++pCf/vSnV46sfq/L9niEcAxzaTqdtIP3topdNdy8eYvd3V3u3LpPmqZ8/P6HhnGkFI8+/YRnTx4ayLwQeL5AOhEff/oBaZpSFyWelGyPB4SRS2NVprBDVVRVATTsH1xjd3eH3/jmN5jNp5ycHvPs8JDN+2tu3rrB/niHre0RZZHz8NOH1GXOeGdAUZQURUme5khbcP/ePRrV8MGHH3L2/Bm/ePARB3t73L15s20sa1DafP10syEMXWoUZZYzn10YYaeuuXfvBUbDIa7nUaxWVEqjLYEf9LAsSZ7BxfmSkxNz/xz0h+zu3UBKyWL1mLQsWSVr4jgmDCLjKGlq8kzhSMGg3zXnxcAzq7zWbBYrsqzko2eHrDYJ1/QBpR3w7OiU2cI0JlVKk1WKwd4OlhRsygyxmtNPtxj0B7zy8su8+oUv8Nvf/hbSMXFA1QoGfhTQiWL+xt86QOuGui6Zz+es12tcz7saAqimIdkkbTGDYxiGTdPeJyuENEJhOl9SVgWbLDWDeFsyny6ZLlZkaQ2yQPQ6+EHA7niHeDBgdOsmnU6HbtzBjwJc32O/ZU0N4g5osx4VZWnKMNYrsjRBC4ktBHHXOJ4iW/Inf/pd3v1/fEpZFzRFAbY0Fh4FjW2RW7ZJVKzPuXf/Pl944UWk62NJwWoxN5D+ssS2bBaLBUqZBnYpHaRwUFSAwmpbboVtXHrS9aExbxfSQWNzdDLl6bMzhuMBw9GQV7/8FYLAJwpCpDBn0P/g7/yH2BY8e/qMqqrodnt0uz1u3rxFUZSkSUZtS5QlqOqKzSbn2eGxKXEbD03SJgywpRGehDB3EqsVySzdGGFICOoWWq7boclnglJ7LxEtR0tYV4OVyySJLVsBsTGJocvGvLqqzPCraXBsAUL8BXexP//4lYWnuq3qdD0X1zOLp6nirUnTFKUUnU4Hx3GJougKVmgh2zpGo8CptlrV9zyksNms1+0vGoo8N/nw6RQLKK4fmMmJZab1whZoW6FtgRMEOFIShqZ21XUkrueytTVms0muXBQaTRwHhIGLI8F1bPq9CNd16XRCCldQuALbKqlrSRx6BJ4006cGbEugtJl4Wu2UXwhjqSzL0uQdL6fYroOdGYCl3bozbNE6Da5+u585pCwkGglYNA1XC7pqCsq6oazVlXPI8ySOI6mVwnNdPN8j8j3qUZfJbMaitQgP+iNoKhpdmU2IsNvn0Cqelsa0e+nL2CaYlyrN5bva91mWjY0R3aratBKWZdVWfmpUVWFria0FlxWY7bdoNllt3Es1mrpucAIH6fr4AhzLKMrCsv+MM+CSQdBobeyYXCqxrSrbvpaa1kFmXW78+CzjeqnENs0l88i6Alaab8xMZ7E12CY7X9Vle9M1LhE0NLVxGQnLOI08KQhcl8h3Wa7WlKomKwssZBt50FSVQtJg2fqKpyFsiRDGVVGWFavlGs/1kbHEaoVFKW1qbTLgdaNZpwmqLFHtRFc1+irXrVHmUGoB2mTZtTaNk9puaCyNaEUMu93ZGuehBQ3oS9eKa6aIWgij2F/WpEthGCTaRgiJtAWuME03ljKH58D1UbWCpiFZrSnzgsePHhtXSK1wpEOn02W8tc2Nm7coq5Kzs7MrtklZVNSVYr02IEUuIehNc8WoahrDJNGOmTJLaZprrnbql9wK2zbOg6bBFxLHs+l0++2UpTHW0cuJcqNRTYPVtjbSXGbYjWvPiGDGnaCbBs91jFOzbdcEC2GbQ4l5jbTuyPZ1ezl9v/xTt60YaZahtebk9AzXdfH9kLKqTezYNdDPNEvN9wtkacbZ6Rmz6YwiTxGuwA0cPM9EZF3PvJ6EtFB1xWI+5SIKOD4+ph/6RJ6D3+kQq4omTcyhxJImWmsocmi04TZh4Sgoa8VqPmO9WFBUDV7UZf/WXVSRUSQrbDRa1aiyAG3huRIbja0bZKNwtEa214qtNdKy6He6+EHEKIiptKbUCifwQdhY7cbhcmGUn3OGVlVNkqYESWB+xwQ0jTIf3xhHaV3X2G35wWqTUGaFuc7s1gGZxaA1wtLG/bpes9msSZINyWbNdDolz7LWteQAUBQZoHHaZhetG+IooqpKHGniKLP5nLzIsWwL15XY2kFXZsNe1bWZVracHm2ZNVg4FtQGYGxLsxm6hFm60lyHNhbCshHCJgxDY9dualzHxXU9PKXwAuN20hrCKDbOTKWNkKtBSpcojvHaTaPVvrZ7PeM4GY622N8/IO720E3DYrFivliyWCzBtlGNqfu1NCzmc3pNnyiMsLRZ3U0VryIIgqtWzctIumr/eL6Pb3s4noctJFlWoGmomrqNajbGIWELyqJgvVqTbzZopXDag74qahzXodftGmC05zGdzMnznLIoyPOM9XpDVVa4rsegP8AWNqPhkH6vR5Fn5JjyhbIsuDjPqMqSKAzbNjPDdGukxO32sFrWo7AFnusaB6bWRGFo+FauZxqkCuNkC4MIgUQgmM2mNLqhrMz7gsA0a1q23VZjq9Y5YYTfummwW/ewlI4RyeoSYQuCwMGyS6qWKWZdtdS0O8DP3Sd16wy9mraiEbYFNC3c1nBGpGtKRppaoVTLl2qryouiIElSQj/Add0rt1Xgm++5adsHdaNxHY9OHONIx9zr2zXT933z+bU2B7mmIfQ8HNchLyojttYKqMjyHMe1saRjJvZlceV2Uk2DgyZoIdRFkVNWNUVRI9qvYyblhpdWFAWr5dI4roWkUobrZNyqum0m9FtB/7KZqKasq6t92GVVdlXXVy6oX46x/bnH5Tbilz5Ofz6i9ys+/kJn01/w5dov8Nk/+txnuAKg//K7Pv/v2udlC4HdZkZ0oykLU0TgStmePAw2QNiWYUNoTSeKsTRkiXGYpmkCgOs4bQW8bYSq0uAqHCHwItMoa0nRcjpNrbnvBwxHIzzfpzfokxXG5RRHMdKyGfR6hFGbolAKIQVNYcoJLveVnuvhOi5BYAonfM/wW4IgaF3uMBqPDbAXizRL2SSmxcz3/as256ZWVyK9EJJOp0MQBoRFjuca57LjefhhwHi8RRiGHBwcsFgsWK3XFK0jqWwBzao2MSMDhK45Oz/DcSR37t5hODTxuSzLKKuSMPAJwwDb0lhaISxTAhJ3YtI8Z7lc4rZxtm6viye9VvipKUszpJOuYaGGQUCSpuRl2aYNjLNQ1TVlUbCYl6TJgig0zYHStsw1bGmyLOXp48ccHR0ynV6Y697zEMI25xfbuN6N61cbhIc0v0fD/TNCZp5lzGZTyrJAq5qqaiia2jiLpGgd7xZFmlK050XbtgjDANk6642YYXg1UgqiOCSOI+MowaQIQCPt1sliWzhSoBvH3L8tA7R2/Qq/VkhLtGfEkCIv0BgXaZIm7c9HUev6qr3rcuggZbsvsSyaummj6SWB79Ptds0QpyhwHInrOEhh2FmOY9zOVWkwHq7rmD06+iph4fueOUO7pv3Nsgwb0mkdxLZtyhhoz06O62NZLvvXDhiUNTdv3WQ8GrG1vU1VVSxfXXLrxg32d/eoDVeDTrd75YrRbeu4xiQGPM88z1WWUFeKbFEYF/ueWTOrpsGWDm4QIFvO0SVMWzq12XK3jllpgW07qEa1v6OGwAkoqxInXWNrw/Hd2t0nrxS9eEiVl7iRYa1ujbaIB33GnysAEdIkDhACBSyTBN007dqiWlasomo06ApUTZrYCMumBJI0NZDt9sho1j4jxBi2rtnDFG3hSZ7nyKbBEoJa1Wbv0fIWq6sGuDYFhNXunZVpQbXMvt44JGuEDa5jWuLKssJxPaI4Zntnm+F4zO7ODo7j4NgCg521GPV7eK55DZVVhdUydpMsNXqAbqhVjdKqHcjX7WvPuXLlXp71Lvd6XLpdLVrguHG02s3nTLKX77+8i1w6nezP3m5uE9Zn/x+MmaGNa1/yqS6LYoT9mVP83/T4lYWny+Yc13VNu5xWSEcQhC5nZyfUVU1/0CUMIwaDHnVdkSYJXujjOwLfEWhps84zQOG0EZpHDz+9unE+e/aM09NTyjxnd3eXX//qlxFWYKzuRUlTV9gWeK7DtWt7jIZDvvbVN4yiPDcV0q+88jLL5YLT0xN2dncYj0bs7Y/BKjk7P8ay4JVXXzItPo25WHTrDrHQREGAZUGSJW0zjdkAbjYbut0uvXbaUlUlF+fnNE3D7q6JR4SBS1WZP5buoJRq2xwEWDZNGx3QaPzAx/N7uG6XoBtguzbbnnd1U1RKUVe1Yd6ohqrKAc352SlK1WRZhiMkvTDk9PQ5T59+ysVkw5s/+gX3795kOOhw+06PIAzpdmNsSyJsELbGtjTC9wyTZ5nQqIa0rLBbEcZxJJ7rmJynBUmyYbVa0miFZYMnHNIiY3I+wXGkyVI7Np6wsW2JAgphqnMrZVPWDUlT88rBLtd295BNRV3kPPrkQ6pcsb9t2uksocjKnDxLqRqFEPLK4odl7P0qy037luvR1OZF74chwnGgLNF5Tj7PcS3wggCtNE2lKFRNpmtwBA6SbhSApWlEjW9LhO1Qu5Jc2NieZw5GlgONRVVUNHVDnecMQ4+t7gFPjk9YbjZ876dv4UjJjZ1drLqm3iikvUHYK2bzNXle4UdnCNfnYrZgtlozO1sQRyEuFsHWkKjv0ysj0iTh+z/6CWWlyKsCgcZF05E2PWmT1jVJXWFrBbomLQukZRFKl6qsTRuXBY1lMeqP2qYo87ors4rGEtTSw85yKE08z3J8IjdCVUZdF5Zh2Vy2UEitgRpPWkS+R3f/ACyBhYsrauxORF5V5EXKf/UP/j55WdLt9hmPt/gbf+Nvsruzy+///u/zzrvv0un18Vuey2I2YbVa8tYPf3wl+OlGA4puJyYMAtarBWWZk2UZnusxHI7MhKFuCHwP3/dQSrWV2zmq0XgxxJ0+L73yRU5OT3nv/fexpcQkd8yk52w6MWKTlESeSy8MaagpCmOptipwWuF4vL3NdJPw9tEp09mUk7NjtFYM+wPKPKPKK4QWSCRUFptlwicPHpm1o1ZXh+ZnT56yXq/58KOPcB2HZLkiCiO63S5np6dMLiYcPj8kyzJu3b4NWvH0wSeganxH04l8+p0I13NM02LXgNHdwDEbFdVQ5Ak/+JM/otft0u12+MrXv0h/2OWdt35Bvk6hapBNicPaiK6WGSaATVBWWE3JgJrNyXP+s7//D/ja17/B//o//j/y/ve+w8O3f8Lhez9l/fyctCwQrku030VjBPimqLDTksOPPuXwyTOmZxOEEHzl619j7+Yt3vid3+Hw7Iz3Hj1kNpsxWS6xXQ/fCSnrwsRxBl3iToetnR0mFxdcTC549OQRVV1xcHBAHEdsjcbkWcqTZ8/BMo4g35P4bp8g8BFCmgOxBUIa4TfNCwJZIzsugQ+NzvgX//xfcnZ6RpIssCxFHAVUdcVqvWSz3pCsU9yBR+jHfOPr3yTPC3NAsR1mkwl1VROGAUIrlCNJNmvqpuL04hTLNlXBqtFgC4bDPq4bcHh2QaUUUTxAAx989AlZmhJ1u/SHI3q9Pnu7e0RxjGXRxhgucB2HTtwjjHr0R5p1mlPWitdefwPHcfnjP/pjpssSJ3xIGATcuHmP1SpltU6Jw5h+p8c3//K32NreYf/mLabTGW+/+w4//clP+OGbb5Iul9RlwRdeeIF+t8dL+wcURc7Rs0ecCZtHrksY+PzWb3yV58+PWE5PGXzhRUaDDlpVJJsVz58/59fe2OK1L77G7Tt3GAyGPPjkIe+8/zH/8B/+V5RlyWDY48UXX+DXf/1rxrHrO6zmS85Pz3DaJs5O6IOuUXXBsN/lhRfuUquGoqh4/4P3uDifUBQV3V6frCwZjoa8/sUvURamfGF3b4cwCEzMM8+QlsujR4/5wfd/yGuvvc5vffNbnJ6eslwueHb4DNeV3H/hDmVZ0OiK4WDI/v611mZfMxqNkdLh6PiYqk7wnJBOPGB35zplZUQwvxsQ1CFZlSOw2bu+j7CF2dhnGZvNhu3xmG7cYTKdkuYF4+1tHCnpdLsUeU5RFsRxTCfuUBQlVVWzWBgHdFnVVJVp09JNbcolhImQq7qmqQ0DzNKWaTstCjbrJa4UuNKhH/SRrsPR+ZGBzEpB09ScnZ2Q5wVpknHjxi0zde52sS3DN1RKsVptEFIyHI7Y29tja2uLLM94fnjM2+++Q6VqvvKVrxJGIb1+j+lkyunpqTn0WzbbYwdbCIosY5EVPH78hNHWkDt3b+LIiG4cGFFKQxhE+L5LL/bM979akSQpm03C9s4unW6PR08e4z6X7O5sk6QpH338EZ4f0OkavpklBKPBAHs85uDgAFc61EVhhC3dkGY562TTbsptosCIqknb7itah8ZlffWlEHc5LPz820S7L74Ek/857pL1ZxlPzef+fhkx/Dc99F/090vYyOV/LoWnX+I56c/94fI52iaiFcYRWZZzeHjIoN9nZ2vLuN4si06nB2i66jLeL1gs5jwNA2brFYc/fosvvPgyW+MxWZlTlBkXFxdIIehHnat2o4UqqXWJqtoYdxDSGfZ5fTS64njVreD38q07WFrjhwFlXfLg8aemNCfPmS+WnF9MGXT7xFFEt9MlDENUXWPbNsPWAef5Lj9884e88/bb/P7f/JvcuXuPKAoMO2W0aw6729ucnZ3y/PnzFnxf8wf/7X/LdDrli198rW30CsmqgrPlks5mRRxH3Ll9m1vX9vn6X/oNZrMZ/9//z99nvV4zGo15/OgRFxcXvPfuuziOw2hvC9f3ePeD93n89AnPT4+4dfMmf+8/+T/zz//5P+PNH/wA37eRQnH47CFNVfKxKtm/foO//nu/xwcffcTb777H86MjDp8d8tWvfRVXunz84BPDznFcOt0+t+7coTcaUTQNx6fPSbOM27eusdls+JM/+i5CCPq9Hio1TiLP9fH9kL/+v/wb9Pt9Hj19zPHxCf/0+z8iDEOGoyG3btxie2ubjz76kPOLc3Z3d9BNw2wyIQwjdnd2GY3GjMZbuIHHar3kX/7h/8T52Rk0Gs9x6Hc7BL5PHHdJkw35etOKmSZ2VhYG6SClYGtrjOcZMHPRpjB818XqdLlxbY+qKvnT737XOF6qgjs3brPz6jbPT445n0xwAhfP87j/0kuUZcUmza44cHdu3SaOYn76wx+xXD5HCkEniuh2Iva2dxj2epxNzlmvl9i2IIoiBoM+W9tbxHHHxEgdH7IcVRb0opBRt8vDjz9kuVyyMx7S7/cIHJtuJ6Tf73P4xEPaGiEaoGa1vEAISZUndEOfV1580TTStcKbEDaDwcCkO2ojiEwmC1zPx/ND7t65z+7OHv/B332R3mjIvXt3zRnclibK1Zo2LG1xMpsYHEhuGsbzyhS1vP/uuzx69IgHHz9ga2tEpxMbR1dVcnT0nCgI+cKLL6AtgWps4k6HMAwJwwjHca9cn3meUddGkDHvD6/Wvcg3eIJrt++jLc06WRveU1Fy/YVXcAIfR1tYjWaVJFR1RZqlbftaw8VkwsPDx5yenLBarVBVTZHnPHnwKVVZ0FQ1vu/TieJ2+NVQZhtUVZFfiqx50dL7NMIye/hLvIcXhGDbpHVFVVRskhWPHn/KOlkzGI6Iu10s26bTjU3hkVUazEvbyFcpjdIVohVyfNelrmo+/OQTFrMFZxfn9Hsxnc6ATZJwcXHBK6+8zL17d3jt9S8QRTHdqN8O2TWWNM6iLEuoipK42yHNMj785AGr1ZrTyYw4iun1+6bApizpDwb4nk+32yEIQ4bdyDidLik36CtcjhmAaqQrueRCGvB9W+ykmyvn0yXTWUjrczeay/se7cCxvhKelaooy9zghNKUS+SNaVT/nMnmX/P4lYUn13OxbJtNYqCYnm+iX91uF1UrqrIiSRLKqsTGoq4rgsBMwlRdtTc1kMJQ1s9OTxBSkmU5juMQ+IHhAKHJ85QkWVMURduEsDGxgSzDcx1836XbiRkO++0PRjMeGdC5IwVxFLK1NWJ7e8xwOGw/n8J1hdlYSKPL1boF9dJcAcKbRhmXi93S4NuqRrRxYQhhSPeNauh0umhtGjuMipqBbvBcw8G5zGVf2rq1ZSbDdV1SlClCRgjpUZQ2lhbtC8K4j7Rlo20T97Nsq2U5NAgJWBLpmPpiIV1s4YAlqeq2dScvKAqPpuHKGmkhPmcLb9r4oDZeOtso8mVl2CUWGtvW7GyN6XZiyiynzAt8z8XWGlfY1ELguGbyqRrQZYNlGZB8rRqSJANsdveutY4ewdbuLr1Bn61+H61qppMLmrpilSQEnkMU+uZnZGmQwjAD2qmAELKtzvYML6wyzUVVbdgOKLOIX7JH5GVrXXtRSNfF0yBsBxvMc7c02rYJXI/IC3ClREjBKk0RtmH72EChKnPAREC7mMVhgC1sFGZDOV8ndMKIvVt3sZsaoUu8TkZRVvidLtiSbt9COy67ZWkatXodgihEOB790Ygw7pJVM/KihEIiLPCETSAFniPQXkRle6DAsiRBHLU17q6JOPq5saPWNdO8QlYa13PRjSbbJDSWjRYFaVVTVzU4nrm5YtMok9GWQiIMssZE9BojCrpSEHoSavN6VlWBo2p8C7zAoxMFJMmavC7IszWrhc0nH3/AbHpBlqWcnBwDppWlsS12dnYYjUasFmuyLMWipCwrGpWiakWeFeRFaRo0mhqtLdZJSieM2NneRrQqflmW6LomiGI0lmkQVJrVOiNNC6paUdUKqVr3oLTRGNdTWqSga1zLWHmNS64G3eCK1oWiFZZWWMrE9Cyt6cQddnZ3OX5+aNhztqkoLQsTZSqygro2jifdaBzHYTGbk6QJwjKW5Pl0RrZJyDZrzs7OmE2mZJu1iQefn4LWKFUZR5EwUYVS1ahCU1Q1VbPEsizyrMACPNtGWtAJA9CKZLPm9PyCvK6I+iNcr0N2PjXrm2phgsJ8Da1rdF0jtGYcBTQSkvMTjh494Oc//Qnasth/+RUcV5AspkwnF2g0YRxj24J1VZLWJaWqIMtoqor5coXnB3R3dhheu8Z49xrLUuH7J9ji/8/anz5JlqXnndjvnLvf67t77BG5V1bWXl29ojegG80NNHLARZwZiZJpZmQykw3/Bn2RmUz6JrMZ6RMlDcdkIoQhbSiMQAAE2AAavaGX2rqqsior9yVW393vfu49+nBuRFU1B2TLTF4WlplREeEe7tfPec/7Ps/vWaKBMDQTzeVsjSUEnU4bp0kW1QKq2qjH8rxgOpuTZvmFus91faPkdCx0WaGrysTbV8ooQDDiSFU11oDSxNlWSlE1PMA8T3FsiVI1eZEBhr3UbrcZDAaGzafBdQOkdACz/k/OxmRxiqglo+EIW8Lhs2dm7fdDLFsSCkjTnDjOjG21qGi3Ohde/zw1hzUpJGErwvc9A9iO16R5ZiLKlWk+BL5PK/ApVEVWlIwnM9ZJiuuE2I5r+DvAh+/fZv9gj5c3XuTmzefZ2tk28nU/wPF81knCO2+/zdnpGe+/9wumJ8e0HIdo0EMC25sbRmHUbhtlkcpJ0pRVvGoSZQS+b6a1tmOiwVfxirJSdLpdhqMNtnd3WSzWnJ3NeP+DD5hMpvQHA2zbYmdnm1bU4vT42ByQdY1rSzaGA5bzBWVZslzm1LomCHyyLOXw8CmuG4Cw6Pf7CGGxXidI2+bo+Ag/DOh0OuSZiyoK2s2h1MBqjdLG9Tz2L11id2+f7d0dEBCEgeENCk2e5UhLcvXqVUCQJEkz1dOMx2NqrZnP55RK4Qc+eZ5z585HNLpafN9ne3ubLM0p8qZBaRk2TJIkxPGaejjA9Vy63Y4JQCgK7IZzqOsKq1EW5FnGah2bda25jrMsRZWlOWgLfcFq0411yxKSdhSZlJ+qQgrRsGMkZZ6TZzmVrpsaovl+TM1yoSRqFKZZloGmifTWeJ5nDgEqZjabUdc166YWW6/WJmXIdbGFRZ7kWMKi1+kxn89IkhV+aA6Gvm8OMDvbm7S7Ji1yuVoRxzH9/oAgCAlDk6JkFGSaummE2I598eE0SrL5YsF6vWKxWBCWJY7j0u6Y196oDK2mCWMScau6Is8zsiw19pBmuh34gWGqNbXCuWqvOt8vPtVM+uUGj/6l5tG54unTqXh/1e3fp476d77vU1+mP/OXT1slPpXAh6lXLzge4lOfb/7uOA6qMKr4vChYrFZEQYjveRc/XsgGNyvA9TyGgyF5dkwWp5ycnpAVOcPhAM9x8T3fXPOeR9FwX4SQ2FrgSBvZKFotaSGRpFnK8dnJRX1GVRmm2/jU1HPC8JaWiyXrdUyWZMieuVZn0xnz+ZzpdGpUIrZtGk+5R601QRSxjg38X8hN6romyTPKqsJZLlmu1qyTBN9xEGhc36jzTk6OaXc6XO1eRSUJ07Mz6rKgrkoe3LvHse8zPh2RZqlRrjg27tamCZXptE39Ule4gQ9CkCYx8XrNnQ8/QtQ1e9vbREHAtatXUFnKej4HVWFj1GPUmsVigef5XLl8hdl8zmq9Ng0jzzcMK1WTFwVdy6LT7SKkRZbn9LoD2q2aPEvIkhzfM6qSfm9InKyI4xVbWzsMBiPqSjOfr3jy+Bnz+ZwwChgOhxzs7yOEYDIZG9SGtMgzYwnudbvYlk2epkzGY+L1mo2tTTzfY3s0InAck/SlTfqqJaHWFYNh3yR+KdXwITVKgh/4uE3adV0pkjimahwGYFik08nYrMPKpPTqynApszyjrEwI0Xg8MXYwaZnQgm6PVtuksknbRlWKx48f8/TJE6QQhEFAFIW0oxa2ZTV1VoV0zs9Hxs2RphlZlqNKhW3ZRGFEFIaEUYjrmKRaVRYUWUaSxPi+Zyx7jfK+3ekYNVoUGBVUaex/aZaTFyVlqRBSN2poB9uyoQbLstna3iPqdOn0++zt7DPoD0xYjR+wWK7QuiZdm+ZNkWfUhdkbxsslaZFTpUYdaHu+OY9rjagq6jLn9PiIs1NBb9gzdYrv4diCxXyKFha1sClVTpr6LJdGNX2e1JwkaaN0qS5YjedNoMiL8DyfpEwoa8V4MsYBfCTStZGOSWQV2lzjRVGwWq+hrpC6ZjydMJ5MyPIMVSpUUVJkGfnk1PQPtIAyR9fGZUFdo2JTL1dleRGaUEuoLagxbhdjPzNnSY2Aojb1smfsjOv1ila3i5BGZV+UpXkda/M+A7Ass2dqTCqvqAVO7aAx+4xlW9iOQ61r4iQGNL7vsb29ZZxgnTae6wFGsZWnGYUqKFXBOl5R5Dl5WZCkKU+fPCJJMxarBCmg1W4R+C524DPqm8H9uaLdbaDe52u8UUB9asv4pb3rs9vKhYbpgvksqk/2CaHPv8/8WVV1YzlvBDRl2XyoC35sVX/iXPoP3X7lxlOrYwqmo5MTer0efhgQRiG9fo+tLSP7u3PnDnmeE3oGoDkc9YnThDiJcSzbyNg9M0l65+23Lqw0vV6Pra0tyqIg8B2SeMXMEiwWc5RSnJ2eMD47ZTqZMRr26PdabGwM2dvboSwyKiF47tpVY8dD0+u22NweMBwO6XQ6vP3OW8znswu4KboyMvOsMBJETIElLIssKxAYSS6YJ1hX9UX6iS0tUzgqxeXLl6lroxooy4L5bILrebRa4YX39cI2JqW537okzdcsV+PmQq5YE4Fl7FgG0uk2tjIHu5ERnwMUg8gBBJFSOJak4zvEaY4fnmE7pkDPi4osL6mURjoSzzPpWkIbC1VVVeSlIiuUUbZgknFW6xUPHz0gTxOyZM3Xv/pVtkYjFmcT4sWSQbuN8lxajo3wXdJ2mzxT5LlJW6qUMkWHUowXawajDT73xhdoddp0+j1kVeBI+LUv/Rqu7XB8esbk9IjD06f0ui2CyKWWmtoC23fxPB9Tpkgcx8iKe/2usVqkGbP5lDiJKcoMKokftfG0Qxj4RlJs21iqRgJRK8INQ0RlvK2iNod6i5pOt0u310coBVXF4emZkU1jmo2LPMWxJF5tUdUKVdps9PpYtkPUWrFYx3x0/yE3bw75/Lf/BmQppAl5XVHUFacnE/KipGXbZEXBcHcH23HwAp+4zMmrkp3dfWzLxgmPiJOUxWphDgWegy8lvhRo2yKWgjo1j2djdxfPsXFti6IqkCplOZmyWqx4cjpDFYphpwN1xXx6an4fyyKVNtl5rGbpUdbWhVTSkTaO55DlBUmaoYuCula0fId+K0AtY6pCka5zNBW1gO6gS3vQRxUJjqhQQlBkS/7NH/0PuK5HtzOg0+maJrAw8MRXvvlNBsMhlw4uMZtM+OC9t1nMF6hckaYZ82xJmmVUVUUYgG2XpHnOlcsHPPfiS6Rpwmo5R8QJIs/pDjYQ0ma1TklSxez+Y9brFVmuEFYB57Jux0E4BuQ4X89JLZsyS7AFOGgKlVGrgshrY0lBVSbURYpUCquucYRgd3eH0fY2J+MTVmcpYRBRaVivEyzLI12npGlCksTMmwnAfD5HVYpWM6k9evoUC2NLmzee+lYrwvcczp4+QQijADIMsJpCaxapSXCqK02WmZQpWws8x2bYDhn2e+wdHHB8csxkOuXNn7+L32rx7e/8LWwh+XDxc2MXLMB2NLaoDZBTKeq0wJGSK3sDkqzgzqO7/Pz4KT/44V/wj/6L/5xv/+2/jZV9G5Wl3H/3XdaLGfPJEevlnOPjZyR5QqIyWEONxfF4RtSH0Y3n2bxxk97WAdE8xsI0wdGS4bCPLQQnh/eRUnDQ2sfxTPpa1TAEqtrYJZ88O0FIyXgyo9ftcvXyFWzXxXZdssWKIk6ZrRbkZYFSRWMTMRYny3bIk4IyL8mSnCIrUCpD1wVh4JEkFSfzuYm8bvfZ39vnueee4+nTQxPMYBtr5NbmHmenJ9y5fZsiTxBKcPPaTQaDHj9VPyHPM4ajLbwmdOP0ZEyaHJHGirpS7F+7TNhq4bkOp/kxd+/eZXNzkxdffNFMMW3JoyePiNcJrmMsWIvlgn63QztwWK1i5rMld+494OR0wl/++KfYrsve3gGqLPnp93/IN775Db7+la/w5a98mSs3rrFMcuI05e2f/Zz7d+/z3/3zf85iOmF+esJz16/x+vM38UNzCNje2yMIItwwoCwKRhsDHj56xNl7Z6YQyzO6nQ5BGOJ4HmVVcXhyTF6WXL3+HM/deoEXXnqF/+f/45/zkx//lPsP72PbFr/927/NzvY2t24+z50Pb/OD7/0Z08kpq+Wcb//Gt7h26YC//PHPmK+WTCYndDptLl2+zGRyxvEPjjm4dIV+f8jNW8+DkBwfjw0P5Z136A0GjDY3WS9XZEnCBHs8JAABAABJREFUYLRJu92iKAqQFsv1mla3y7e/89c4ODjg8qVL9IcD4jjmVlmSpgkff/gBw+GQb37jN7h79y4//elPL6yK9+/fJ45jgshMeC9fvszp6Snf/4vv0e60aXfafOc73+HSpUusVzGnJyfcvn0b27bZ2NggSRJWiyU721t4vsNguIcQgtPDYwSadjtqEmptijwnWa85OTklSVJ2dnZwHJvlYmZCIYoSz3VwfY8K3UQyC2zLpr+9TVFVHM9mOLbNztY2aZKSJjFYAts11lwpjerlPFjE9wO6XR/Hsc1hYGWK+enZFMdxTEMtT1mslpydnWFZFkmSUDZx0lEU4UgHVSjGp2O63S4Hu/scPzvi8cPHbO4O6PU69HotwiDk+tXLDeBbc3Z2wrOnj7l+7Sq7u3sUZcpqueD2nQ/w/JC9/cs4ro10IvzAsO1aDUD/yaOHLOZzTk+Pabc72LbNaDRie3OTsuEI1pWiAqJWiyRNWU6XLNdrFqtVY5XKydOMVqvFlf0DpJQmlKJpCp1fA59uOJ3fzOBaN+rKv9pe8B9KtvtlhRL/nn//8jdq/UtfZdzkVJ8CvJ7jCM4DPc4/F7g+WtXYrmOem+WSg7295gB9Piw1oGSllGmGXLrCcrYiix/zi/ffR9gWf/dv/k163R5CC7QUCN8lW69JkjVt4RNIh8jzTBPUMc+hKhSHx0e8+c5bBKGB5epmOPDs6VNcz+XXvvpVtIbDp4ckSUYSp7iXXTqdLh99+BGLxZw4iU0DM143+AkfYdlcuXad47MzpvMFL774EkJKnh4emYFFo6iYz2f0Om1832NrexPbFrz99tuMRgNefOkWZ6cnPLp7h3Rzk3ww4OePfshyubxInX755ZcZDodcvnzZDOKqiuMGpP3wwROWyxVnpWI8HvOjd9/m6PET6jzn0sE+3/n1X+cPf+/3OHz8iIPtTaIgYNhuobTg/fff5+DSZb721a9ycnLCfDqn0zJK4Farw0qvmE6nbFpmkJulKfPVklde+jxR0OIP//B/YDGfs7mxS6fdYW9vj8PDp+RZxRuf+wo3bz7Pu+9+wOHRMd//3o/xA48XX3meSweXeP75W/zoBz/kg/c/YDQaEQQBq+UK33O5ceUaq9WKJ0+eMJlMmU6nfPUrX+HK5ct89QufRyCMBXG54OHjhyhVkhcpL7/6Es/dfI7HT5+wWq9Zxyn2IqA/PqHVjrAdizxLmU3GqNKod3RVkSYxTx/cJwx89g/20VVFoWG5nFNWJVmRU5Qlzz4+Npbb5YrnnrvJt3/zO7TaLcIoIslSxus1f/a9P+P48IiD3R26HfOcuJaFbRnKWq0qbKdBwZQVWZoxGU/Js4w0TojCgKjXM0qvwYBOp0OSxDxZLlBlQbvdQloW7U6HrCgoSsXO3j79fo+trQ3iOCHNMhbLJccnZyRpZobLokZaZqDqOC6u7bO7u8/rn/81Ng/22LlygMn3kxS6Is5Tbv/0Q5aLOc8ePSCJY9bLBdkqJk9SStFAn7Mc3/O5fvMm3X6P3YN92r5LZFvcvvMRp5MzvvDlL7CxOeTG1QPT5BuP0UKC7bJeTQEoCtOcP19z16uY8+RBE/Bks2pQOZHtmqF1y2cdx9y/f49eFLHTG7JcL0nSmNAybMr5ZEKR58SrNbbWBEKTpilJlnLp0iX6/T5UNbIsiVZTJIJWGOLqkkClBm9T14zzjLxUtCwLPJc6ClirnNNkiWr+892gwQIZpQ9lhSMEYa9LURqF+zZ7BGHI8vTMhFToGlHXrJP4M/uAbRnUjdYmyU0KQdQyCqyo1UKVCafjU6QlGA4HjEYbGMKHse5lmWlEj8/OmEzGTGcTlsslWZYxm8/JsoyzyRQhLfwgIvQdbLHJ3tYOw36fjY0NPN/Hso2q/9y2XzR4js9sD83QQDRW7PPG0Sd7kWhshEZ4A1BV5zge833iU19TKfN9JvTBDKjyBr1zzgGz5C9nvP7Vt1+58VSWJmrVJCPkzGazxg/beECBqGWI7a7lkOeF6Wzm58R7sytW59R1YTUEf5e6iWU0ih/jyVzHkr/8y5/geS5Xrlyh2+3gOhbdbpt+v0O318HzXFRZXMiI87xgPD5juDHkYHCJ1WrNYrHAsiy63a6RDtoOqqyM59yyL7hHlrSbSaK+6LqfPxbLknie+0sTMQVohJAmIafWJHFOrSVC2ghhYdsuugk1F1IitVEF9fstnr95CSEChPDQtoUWgqLMzXlJFaaA0KCqmCo9L34EVW0aTwbrYEEtcG2LTtRCCklZlKyWSwSK1aqN51mGxUOTWuAYRVCtEqqiwLUcpCMJfR/XtnFtSZ4mpPGareGIVhBy/OyQo6eHqLxA1BqrqvAdl8EooNMd0WoPsDBKjsOTY4qqRHo+g+GI52+9ZHzzrZCnD+6xmE0M78LxuPH8LVqtkMX0BGlZJnkD3aQ21VS1xrGNcikvKsoqpVAVZVEYv6tSIK1msajI6zWlqsjLilrUiAoTg4k2B1FVkyzjJrnGWCstTHKGdDwi28azbLrtDnVdsV7HRqKoLaQ2rfQsq0i1IqvWSMsmyUvyoqJCcDye8G9/8BeM2m022h1k4KMtySTPKIqSyOtgRRGbrTatVotev4+SBnoXeYZfMdy8YuTnGHZQVZmERs92CGwHC8HRkycmgWjYNQsBGkdqfKvG36/ZVRVnz05RecG1gwNsS5Cs56yWC44PD1nmOau8QPsBOC6e44PWJOsVqlTkmeFuOI5HlqXkWcF4MqbOU7yqwtLg2dLAUWuBXdfIoqAf+Ihuh0RVxiqJYW/UdU0URezu7rNaJ2RpzltvvWMW8rJECsGVy9fQB2aBnM5mzOcLXM/Ddl12trZRZcnb77yJEDYff/gxQmgEFUls/PZVqZDCYjpfo+qaWkiy3CR4reM1q2SBO3OMklFLQj9kOOhjIbCUwrVtfNemWBg1ne2HF6lLtlvRbbXRykzPNnb36I9G+L6JbG7gUUaR59qEQYDjWPi+S5kXlM3vSK1JGj7AbDym3WrRGQ544dZX2N3Z4eTkmHVs1J3nCsckWXNyctKsNVyswWa6aJqqjhOw0W3TCVx8FKN2QOQMWCSKOit4cu9Ow5dRYEEtjDIw8Gx0A5/3gsjAAWuNb9lc3Rqx1jCvBbd/8hNOj8/Y3j4gitq0/C7hdo/BwWXKIuXScsbh3Q85/PhDlqucrFBce+N1hlvbXL15i83tXQSCeB1zdHjEyfER89kEG0G3FbG7u2fYagiyLGO5XJMkKUJa9AcD+ghk0yitVInn+WbjrBRFofADl3bgM9rbRAPrZG0OGY5t+HR5wXK+YL1csVhMePxYMp1OWDQpNYZdZ9KKXNewiRzXw/P9BqCZsVytuHfvAVkckyUx69WCJF7x9Mkz1qsVSZI1CqUVQq6p6zOksBgNN1gtVqRpwzLKc2PrK3IG/T6+55LEK3QdInwPSY1jC7a3RtRVxWoxNTbYLMUPPPbbe3SHfdI8Z5XmCGlx5co1kiTFdSVhJ+B4coLzOCCucm7f/pjTkzNuv/ce6+WC0aCLb2tEGWNZNav1jDiTWLZNf2uIbwV4kY/l2thxwmBji5u3qmY2pknSlLxQnJ6N8YOQ/mhIUWks1+PodMyPf/omruPx4q3nGQ67RvpeK46ePeXOB7eJlwuyeI1rSQbdNlVVolTB5z//OdI05eN7d3Ach063y2q9Il2vqGpQVc39+w/QwMbmNpejy2xubXHp8mWEFBwdH/P0yVOeHR8RhCFbWxvkeY7je5RlycnZCZPphPfee4+iyFGVmcCromByekoSJ3z4wYccHR2yXCzwPAMeL/KcSpXQTN7j1QrV8D5c28URNrd/8QGPHzxGAJ1Wm2G/b9K20gRRKyLfocjWjM+OeXBvgSoVnuWbhCuBCfnQNdQmYfKcKWgJLj6EECCNWrkoS/NJKYzSpOFfWrWJ7M6KktVqhuu4REGE5wcI2yJLTbPI80xqaq/bMwoEVTWqOZO8aEkLL/ARmDSlPC+aBqzhn6hGxu86pvg+OTkxqpIkoSgK8obJI6WkyEridWp4amFGu9WmpkLVCs+12NoakSQrjk+eNUwqxcGlK43qIG1+b3GRAnVyemIaZIs5UkiuX79OFLVMwI3vkmWpYeVVlWGjOQ6ubZHnGaUqTBrldEKSpQbg3iSuhkFApWtmy8VFypZt20ghmojqTxRK539WF/Y10djE//0qp1++nSvhxWc/+dmfY6RVn/3G88fBr17of/bQAZWukbZFt9ejbAZ5pVIsVquLCbZtW8hGbS6EoNI1G5sbvKwFDw6fsE4SxvM5eVWha8Ng9GsHz7LphJFJskOzyI2CMK9KhNY4QpKlCVVZ4jkdY81yPCwhGXS7F7+f7Tjs7O03KXSK0eYGUauFH/qoKmJzZ7NxMFgoXaHSxKho221UYYa+9x88oKprxtOxWVc6HVRVXvBPpBQMBn1Es7+uVytuf/A+69WawHMIPYfQd2mFPloVJElCngqS9ZLlYsqbb/7U2I6iyADOXZeDSweAwHVfoyxKvv2dbxMEPt1uh0sH+2xujHj1jTcYjIbMTo4pakFvc5tFknD69BDXD/GDCD8I2dndo9PtEfghQRBRqZo8KhgOR1y6dJnDw2dMJhMD7C4VR8eHrFcrBr0e63jF3Xt36XZbvPb6KyxXC979xTvcf/CEJEl58cUXcByLVhiwXq/44P33UWXJ9tYWw8EAx3YYj88MesNzWa8069US25KMhkNWqyUPHz64sKG2221UpWi3W+Z9mFQcHT0zoVHLpeHgOC5lWVycv4LA1FDnyb62beO4Dn4QsLu/h+95dHt90iyBteEe5XmB5Ti0g5Dnnn8R1/Pw/YCyVBwdHePNPDzfoDiKLGV7a5NW4DPo9pBCMJtO8ByX0POMqtNxmU2nqIZT3Ot12N3aYrVakq1X5HlqVPzLOYNBj9FoiNYVdz++Y9aCcwaftIyYAEnU6uKHbe4+fEpRlLhBi/5omys3IIpaBGGEHzg4rk2/38dzPaKog225eG7A8dER733wLlLViFoTtduA5uTwEFWWiErhNY3/2nGp222k5yCkQCUptmWzEYX0ux2u7G6zOjvjaRji2TY2gk6rRbfVNSovaRnbnLSQlnn+bce5aFY4tuFfDjqdi4a71fCLo8Dsr+0wRArBOkuR+Bzs79CLWmwPhjx7WJIv5uTZGq0UssjxGp6jBXhCE0hJJwgYttq0/YDVegVVhe8Yh4olBLoySvUoivCCCC0siqK84OImyiQSZmV+sV7ruqJSJVUj8HHOuZdSEkWRER10u0RhyHAwAgTTyRTXden1eheYnSiKTCpxVaPryiSWN6zgqqqYziYMui32r1yh1TSjxpMzsiwjSc0wJ85isjRluViQ5RlFngHg+T77+/tIKbll2TiOSxi16XR6DAYD2q0OQRAgHZcagVLGUIg0rGMsC84dKsr0V+pG3CpFbdwr9acs37Xh+1WqvmA2CdEkX1uGMXpxZG4UfHVlvt+2JKqsKAtFWVTmsWjR/Exjaf9Vbr9y4+lcRqq1Js8zE33deAuDwG8mAdEFYKqeL4njuNnca2phgM1laeS9nhdgWcYGVumaxXJhFEuWBY0q50c/+iGDwYBv/fo32dzcwHUkYeTTaoV0u1083yNLjUTT8zyyPOXxk0c4noHfHR0dMpmMGQz7tFoRUdgCIM9zw6+xnQvo9rmsWshza50ptQ0rRGLZ0sDxq6rxpVfNxW1ky2VeEie5Aa85LlLY2LYADLBYSkmtBVLWDAdtAv8qcVyQ5RVCG37RfGHYRoWCSpv4SgPL1OZnWjZK2WaChY3GQdc2TtN4Ek3jyRyoMpbLPkHgYMlz8HfdREza1KpCFUaSa9suUcPe2d/ZIksT0vWa7Y1N03h6esiDu3cps8JwnKraTKq6A27cepWr118g8gLQ8M77v6CsSnYuH9DvDbh6+SqOa8DoP8gz0ngNwsJyXJ679QKB7/H+2z9B2haWY6EFlJVqgNp1w6ARxGVBlVUsFitKZcCpnu9iOzaFMk2oIi3MZL6sqEWFVMZSVVObqGCliBtLh7abNybaqM08j6Ddxm6g81prsjQz8GktEbWFEA5JZuxsIjXeXy0tc39IjsZnPPzeCbeu3eClGzdpjYbYgc84zyiKAlv2icKI4WiD4XDEzu4eduBjeS6iAV1XeY6QgqAdmkjo9QrH9XA9H9/2QcPbb77FarXC8W00mlyVRJ5NJ3AJ2h1cP+DwwRNUXvDGyy8T+A6qTHj6+BFv/uQv8WYz5GxG7bgI2yaMTHKEJSCJU5bLGMu28TyPZCHIsoLxeEwRrxgFLr5t0w0ipIa6Eji6QhQ5fd/Hl5J5mpKVCl0Lagx0Nora7O1f4tmzY4p8ys9/+hbr9ZrRcMjW5ibf+ubX6HQ69Pt9nj074vjkhNHWJu1uh5vPPc96teLkbMxyOuHDDz4yzKNOSJysGrmxkfZPxwsqDdL1qbRp3qyTFXG2RhRgYbG/v0voR4yGG2hVkS6WeIFHGPos4jWlTrD9EDcMEKXCdjX9Vpu0VDx88IDexgb9wQA/9LGcpvGExrYkruMQhQFa+9S6YrVYkiYJVhO5Gq/Nv6fjMY4lCcM9vvH1r/Gt3/gWf/H97/Hs2VMDs8xzZpMJx8dHPHv8xEzwMdPnqjLyZKk1Wmps4bHZaxM4Eo+CsBMgehGPHo9ZxTmPP/oIy3Po9jvGVttAjQPXo0hTFBAFLRzLhqrCs202djaYZzn+OuX9H/2IR//6T3j1K99m9/I1vvGtb9HZGHLlypZZW6qc2/0+SiuyJyfk65Trr73K3uXLXLv1Iq2wDZUgXsU8ffKMyekhq/mUnY1toqjN/v4BRZFTFAVxHDMeT5CWjWU79Ho9giAkaqZux0dHOLbZtlRVUqmCTm9Ir9VhtLuL4/uMZ1MQxspXpCnL2Yzx6Qm2I5jPz1inC6bTCavlmqIoKFXVTPckrmeioh3XxQ98qrpivU5YLJa89fbbuFLQDTyWixmz6ZQo8JjP2iRxhgZm82VjGVuyt7vH1UtX0apGFSXLxcIAvMsWZZEzGg4RQhOvV0gBtiWQ1Li2YHd7g0op7t/5EFUWpFlKe7PN7u4u7U4H1/c5Ojml1pobz91ivlgS5yvCbsjh+JhMVBzPxvzxH/wJ9+/e59H9ewSey3e+9Q26kUudLbBtzWo9pagUCMHl8jptq4vX8pFlhbUIGGy6dIejiwnX/YcPWC6XnJxN8IMEN2pTVBrpehwen3J8NuXGwQEvv/wSV5MD8iJnPB5z+OwZ//aPvku/0+bS7hatyKjCalVQFjlf/do3TbM79Jsoc02uKqrFklqbAcLde3epteby1Wtsbm5x5dp1M1EUmmdHh7zzi18gLYHne3z+82/g+R5O4JMWOUfHR5wcn3JyfEIQGoUPtUZojaxhtVjiWA6r1ZLVYknRNJ7KIqeuKpMAU1Wsl0vKPCcMAgLXw5EO773zHmma8s1vfp1O1GI0GJDEMbPpBNexCEOPIl0zPi358PYHpHHCzWsv0mm38SzTQBVaQ12hK2X4FJbAlmAJA+yvpXHFV7oiLyos18ESlolNt22qqkZKk7AbJymz8YyNjQ1a3Ra254ElWYsULSWeHxKFLfrdPqt1zHyxJE1TlFJsbe3geR5BGKKUYrU275EsM0iE84YdGN6nEILjI6MmUcpYZlbLJVmaYklJnhWgBeOzMVkrQ0pQtSIvU1zPZnt7RJwsWa7maG0aX9euXWO9XvPw4UMzkLJtYzesFR/f/Zg4jrGlxWg45LVXXyUMQ6IooihKsiRmuVxQlOUF/Nh3HfLC2J/jeM10MjFWO6CuVGPB8ckL01g4bzxFYfhZRdKnrHTnYRKiadI0sKWLr/sP3T79NeJTf+pf/n79GceE+Tp9Phr91H1CM13/pZ/9Kdvfp5tZqja1YK/XI0/NQbVUimK5xHWNWjwMQ4QlLxgvZaXY3NxkZ3ObpMypTk44nc9Y5hm9Vhsfj6Dy8G0HL7JJyoK8Klk3Dcl0vcYC2r5PmqbUqsJ3XQbdLsNOn8AzFrVCKY7OTrEdl72Dg4ZRImhFLRPM0dgpb9y4Rq1rTk5PzWtfFHS6XfqDAYv5gjRJuPvgHkVeoGplGkOei6qUGTBLwz0ZDgfYlkRKWK1XvPfee/iuRzsICH0TJtNthYhaEa8WlFnNejXn6bNnfPdP/5TRxgY7uzu88uqrHFw64OCSSf68fv0aQRgQtVucnZ1y//49Lu3tsbkxYrVcMtra4rt/+AcUWtPf2iU5Oeb0bIztmMGHH4Ts7u/T7fTNYTRoUVfaNOGGG1y+dIXVas14PCGO1yQIDo8OydKEXrdDsk44Ozvj137tS3zujdd58813ePLkKdPJEtf1+PrXv4qUsFiOmc3m3L1zl82NTXZ3d+l3zFAziddYlsT3XECzWi3pdnp0Ol1WyyWT8Rnz+Rzbtnn55ZfxPJdWK2oYhTlPnz3l/oP7nNvUhxubFI3F07YsgiDAtqzPNJ5sxyGIAgbdbVzHMV+zdqjqmkKVZHlBOwjpdHt87evfZGNjk8uXr/DWW2/xO7/zO+bwbEuqPKNWJTs7W4itTTzbZblc8uDBfaLAR0dtRA2e6zKbjEnSFNc+wAL2dneYjB0mJydMpgsWiynLxYw0GbExGiIFzVlVNKFGFkJYhkUrbKJ2Dz9s8fH9j9EaOp0BAyfEa/W5cuUqe/sH9PrtpiHZxfd9+v0hk8mUd995n/dvv8d3/+QPqNMMUdXs7+3hui7zyRjfdbm0u0vU6bA5HGIhsYUgaEdYtk0ex6bJEgSMel2u7u1w9vQZ3SDEt20cKem2OnTbXTQ1wjLKHSkltjSMpyAMOF9eTKK7wHX8i9fg/LycZRFKKVNbanj29Cm+a5hX3Xabzf6Q+GzMrKyI5wuqLMP3HGxp4TtuE+wDlm1hOTaDjmmyJMsFolIEjml6SWEwCnmu6PS6dLodXOlQZgVneUFaKVRRXLDALMuEgJ27qpoVEtcyG6mWkigM6fb69LomQMV1AmoN0/EY3w/YPTBBAicnJwS+qRnKvDQpqkqhm+erVhWTyZjNYY8b167TbrVQSnF4dMRsNmUyOSUrMlbJiqI0e6lrmzNxt90lCAJ2d3ZoRW329vbx/YB2q3ux11SNxa+qmvTWsjQaJSmM1c8x/YO6MnuwGYI04VLNaOI8NEMIYc7CdU11PsSuKoNBsk3vxrLtC+uiKusLO6VAILQRspS5QpWVaV7VIKXBSXxWw/tX337lxlOaptSVkSGWtunyWbbhDEmBAVxq08X2XN8AuJqJcd1Q6ZWqCCJzgSulmoQfC10JxLmkq7nITRKeUUit4pitzS2+9rWvkMRr1usls/mE6WxGnmYXBUEQhrzx+c8jpOT+/fsoVWLbtpkW+H6TEmMmfhcvagM2DgNTwOWN9/9colZX9Sd+SW028vMXC0zTSjdWOsf3cFwX23WwlZHB53mOVCVuA9fzXA+0QFcVgddBYOE08bxp3qUsFavYNDfiJCPLNVlREIbGR1oUCqUK4iSnKATT1DKALxLWi5giKzh441W2tka0It+kLsm68WXWKFWS1qaItoUwjCBLQF2iioqkzI1vtqpYLFfkecF8uWIVm9c/VYrJyTEvf/HL/NZv/0M6/S2i3gi/6YrLtpkcjjY2GkaONIF0WvPCrefZ3d7k/fc/Ik0yrl/ap98f0Ov2CVzLcJpqiaNtVFyQ5RBUhumgywKT5VgTei5uJ2ok4TWeY5hO3cAkhZ1N56ZwCEPWaW1gaElMmprpdV3VlBoO9vf5xte+xnK9ZLaYMzk54SSOee3WDaLQp9vz0VWNVUuTZGbb1MIGq24SmyzyLMOW8ML+hrnOK4VMVzx6700Ky6ISAqUlIFmdzkALqkoTtdr0BgNsz0U6NtnSTNJLapAgHNOwUbXCc1w810Mqjahq8jilUqVJ4BIa4TTcIl3T6nTxw5BklSCBeGl4I+PZhLIoyMsaGXXZDDt0RyOCVsTGxoax9pQGbjidLkyjK4x4eP9jTo8OcXWGpSs8FFVZcjxbUKYp+XJJu92i3WpR5KVRHlUVjoZI2uSVZrFOePb4MbXSSOkghc2LL7xomrrSKOV+/OOfEIQ+vV4XVZkEv6DTQtgWf/zHf0SWpWxtDrm0vcHA85lNzzg9foosFbIssFSBtGz6kUdZa1KlcFyLKOgQdX3Kqs/saEGRFGRJidAJk9OpUW0VCttyqQOHoNVHOAFxAZVW7I1GaDcnmsbE8wXHx2MWszl5ktAKfIbdLqv5HF2WCF2bqUyekBcZaZ4yO52wXq44Pj0x/vUmetQPPISA5XLJ93/wAx4/fsx7773HbD5jNBzRakVc3ttjc3OTm7duGf95s47Yto1rWZRFxsfvvYMrIGy3oCpJ8hSyHIFm1A0YtgNOlivyNOMsX+JKSdtxSMuMcp5CrbFtz/Du6spEi6uaRVyDlmz4Lq/vDnlu1GNx+jEn44f88dE9vDCiPRqxubPNC6++SHu4x3f+3j9mNluSpBm1BUEUmPV6ueT06IT7dz9iPh0j6pp2GBl1Yh5z/94Dal2zubFJ4EfsbHnkhYnPXa3WrFZrekWBbdtEQYiuaxbzOUJokJpHiyc80prOk2c4rkdtnxeEFraQuJZFp7fJxtY+vUEP1/PY3blCXUPU6rBcLrnz8V2yoiArMuaLBUcnRxwdHTGfL3jrrbcN30BoLl2/wm9+86t8+MFt7t75mNA3bJNaCGzH4eqNa/h+QBhFhlGQpmCDsKHT6lJruPfgHq1WyNd+/RuosiBerZjNZszmC05OTskbzo7ruGyMRri2g6MkRWzAo4+eHZEVBWcnZ9iWzWCwheP7fOHLX+F0POatd35hiouq5t5Hd1gvl9y4csD29jZf/spXUKrg9OYNHMco9I6OjlguF0ynUxbLJfcfPERrSVk6XL16lS996SscHx0xPjvD9QKKMmfUyL5bnQ55XnD58hVW6zXL1YrFYs7k5BilC2zH4uBgj52dba5cuspqPmN6ekKarpgv1+BMWOcl797+kE63x6uf+wKLxZwHD++zsb1Npz9gp2m2be3uYVkWO7v7xHHMH/2bP8S2LfzAY71esrk1otNp4fkegor1cs69+/dxHZe9nW0+9+orbG5s8u7bb/P06VMe3r9Pkef0um2USnn27CF7u3u8/vq3ePjwISfHx3Q7pqCOWtFFAqQUFhYWuqpReW72JWqePXtKp91mtDFC93sM+x2KPCPLkyZhS7O/t4sqFUIKwy8rCrQ2Kuq6YfKEkVEpJUlGrWtUWWBJccFKScuCdhTghQFZZQ7ceZ6jEUYlEbbY2dmnKAyHwbEdLMchCCJqDaHfohV2GPRGVApm0wXD/tCovJpku+VyiZCS/mBAr99nZ3eHRw8f8OzpU/qDAVEYGqWirrl/9x5SCqKoRZoaGLjWFZYlUUWFrgqWyzWu4zMcbLBar1ks14CpreqGO7W1vYPjukzHS5Yrcz32BwPD9mrSnjY3N6mrGt8PcG2Hs7MJvr+mFYUNl1BTljl1pcjTmiJLWM3nDUvFpshTksQ00zTg2Baua+DZSZoym04N50hrkwzYHFzOFVDnzRyTflQ3qiN9YWs4v/1y8+mvYkU1//NTfKbP3hrnw8Xff/l23mgyaaCfcK0ubrVJ1qRJk75QSwlTu9pCgucjhCTLMqP2dV0sKVmuDE9G1kbh4Ng2trAu0ucQcP/xY0ql6PV79Dpdrh1cJgwCWlGI5dr4VXWxZld5jqg1sq7otNrsbG7R7rRotSKSxYpktcIPQqqyZD6eorVpClRao+qKR48fkSQJvX7XYDySmFKZVDJpSyInJE0TDg8PTaKh7zPo91itV3x89y7tdotev02WpsTrGFErUtdlfHLMarWk0zKR7v1+jzAM6XTaLBYLjj46NcFCwwG2bxhYWBZ+GHLpyhU6nQ69Xo/jo2POTs/48Q9+ihCS4WiI6/uErZZRVwm4cf06+/t7PHj2lFW85tt/67fwPZ/hYEDth+w8fISwbI5Pz1gsV5Sl4uxsjGXZPH36DM9zefnlV9nZ3iHPSzY2tvCDgI/v3GEyHtPuhrQ7AUErYDDqc/PWcwxHfaaLCat4QVak7O7v4Louh8dPUapktZiTxMYSPOr1cSyLjz76kKIouHXreVSl+OGPf0SeZfiBcS+0uy22tkfYtk0SJ2R5zsOHD3Ecm9FwQBD47O3sMZ/NWK/WJGmGqAQtN0BUsFgsKUpFp92l1x/Q7fVJkgzNiqzISbKMIIyopcQCUqVYZTnz+Yw0y/ibn3uDS5cvY9kWT5895V//f/41p6enHB8dc+nSPnu7O7zzs59ydnLEZq+HJSRnq5S6qk1kfSui3+5wcnrKKl4jpQkU6LQjojBAFQUSTTsKSNYOaymYjMd4nsd6HbNcmsfveD62GyBtFy1srj13i9HWPpev3CCKWtx86VUsyyLwAmNbrSoD7Haci2Hbz372JnG8Zj6bkSQp8/mM5dkJB4M+lza3GLTMNVtXCtHvAWZgEglBIMRFelwVJyiBcaYIgS0lZWOjLfLcqPsbVZNp1Oa4rt1wnExITV1VDV/wnAlkGHtCSPK6aDjAMY7jGEVwYdLAl4slQoBn2VgIY1muNEVdowCkJAwisD2oTaOjahLKbUArk1oYL2OKrCSLzVpkCeuiIaktTe1q1ss169UapEmEr6RAKc1sOieTBnBvC5M5qyuTlo0nG8GGOVcVaYrX8Ozm0ylpknH12nMEQciTp4cUuWJ7pzbhHJ0ulrTIEoM4cYMAu9kDlKoQaFpByGgw4ODggLOzMT/5yU94/OQZcZLiuIZxvDnYvlDIhmFIGARsjDaIoqgBuTv4QYgQkiSvmkQ6k/aqNZSqukhh1cKwprSq0AUXqiTdJLKfs/OEaVBcKHKbjcdsDc3Pq1TViG8apaltNb0PQeD7CPFpdpTEc02aY5wkrFfxxe7k2Pb//xVPSikDxi4bpY8EB5OIZJUmblGKAtvW2JZjfJC2fXEHdaWp6xLHdbEsC1VVjeREGuZO80J+2oduGlGKJEkIgoDXXnudyfiM09Nj1uulgXkWJQJt2Aeuy97eHrPFnMOjI4LAM8Bxx0RIZplpPIWR/Snvo7kPAU0SS6Ns/mT8xIWV/vwFayKlzzfv5gEboKUlG+WWpNaSUilELcx0UBp4c21XKMfCc3xcy8V1BEJoSqUpygrPlaSZhWPVxFaFJaEdWTiOTSwVRVGTJzmqqikKc9h1bE1ZGA9pFLoM+m0T0+iYzqdqLi7TCFRobbrItpQmOlfXpsj9VByxAb2VVBqjCpIWhaoYz+ZIx+OFl15FuAHYAe65bdEzkeidTgdVlMTzpXl6tGZz00h4f/Tjn3F2OubGlct4romDdSSgBUJLLCzqsqKsSipXNRGjZQM30zi2RxgEJs5WlabBJSAMQiyrxJYrbMvGc13S3Pi4qU3yly1tsGuU1vR6A15//Q0eP3tC/fA+Z48eMz8bU127jB0G+J5tbHmlaZDYtsS2JY628DyT+lYVNRJNNzLR7VWpmM5nTKZTFkVBXtW0extYtstKrchzxWK+wvV8onYL23OxHIvl2dgkKdkNWFmY94ewBJ7tmMZerpBVTTdqIcEwjqTGDVwypYiLkla3YyaCtca2bFzHHMKfnZ3heR69Xo/Q8wn9gN5gSKfbZXtnG9/z8CzbKObma/wwImp3zUSm1ydfjamKDKFysiRhvEgo65QyzykdB2Vb1EWNqGqcxh9c2Q6VNo2q5XyOUpp+f0S71WVrZwvP9ymzlNVqyf27d/F8j+W6h+cHuH5AkqYg4PaHH1AWBdevXGbQanNlY4vHEhbjE5RlgO+W0FhC47s2sqrJlMKybHzfxRMutdCk05wq06iyopAlyTox7DZh0QTDYTs+vrRNLLCuEI6PrSWe76E1rNdr0iSlyDM8x6UVhaxnM6hrk3hBTVHkJGnMKlmxWM5YzZcsl3PT+G7krJ5rJohpmnL//n2Ojo4ueDLF1ZLRaMTNq9eIWi1avY5pxOQ5rXYbP/AJPJc8TYjnE+o8x/EdVA5VE2dMpRi0A2xpM18vKcuCeB1T+x4dv0dZVuR5iW+bKNcK412vagMZVlWNZztEjkfUcdAIfnH/MctVzOT0mNryIOpx6cZ1wm6bl198gUvP3WKrSeQaT47RuiKO18TrNffufczx0TOyeI1nSVzbQddQKMViuQStGQ1N0pfv+ghhIpfT2BwuHMfBc12iIERpA4QW0kBMV6sVaZaymK9wHBev2wUpUVVN4Hp0Wx3anT4b21u0WxGu65r7cl02NneZzmZoYXE6PuPw+IiyUsRpwjqJWayXPHn2hFJVbG/tsLG1wcuvvXwBPi9Ss0YWdY3ne2xubdPpdtnY2uLk8JDHDx8gbYnt2XR7PcMCSxJc3+Xg0iXKMmcxm5GXJbP50iSq5CWTyYzA99neGOFKG0sLylyxWq05mYwNp2a+JPAD8qzACyO2dnaYLpY8ffqMtOE+LCZjdF2xORpwsLfD7t6uUXO0WliWWdO0EDiey3Q6NYlqSoFwEE6HS5evMNrYJIlT4nVCv2f2if2DA1zfNN9VqQiDiLMm7W98eMh8Msb1TSR2r98n8AOuXbnG08eP+bAsKVXOOl5fANNPxmMqJDdfeAktJNJ+Sui4RG1Bu9ul1Wpx0B/iuh626xGnKR999BGuaxNFxobS63UYDPp4nrHvZ1nKZHzGoN+n17nEc9dv8NJLLzI9PWMxmTbViyYIjHJnvV7gupe5euUys+mE05NjAt9HSovANxPgslRIBJawTGpxXZmkTSmNok3X7B/sYVuSwHNYr1fUWjWy/5pup9PwMsomEc3AUmv9SbCI43rY2jSllSoNULWJ+K6riqKqwLKwXZd8naDK0gy4LJsgCAnCiE63x2QyYTqdNU0Dx1imNDi2i+t4+F6AY7sGcB8Yi1JRFhdN33PQ/vb2Fs/fukWSxJydnZomQ7fL3v4ulVIcHx6aBK1+12AT5nOEEGZC3CjG8qxAKYXrBYg4JUtVU+vpi4NF4IdYts3Z6YTVak2WZdRVfaGKB0zqnpREYQtd1cSrtcEe6E/UR5Uy6nylzcAtTTIc16Xd7TRpwUZReq5YF0KQJDFxkpI08d3nMfHnQ8ZzhdN5as+59VQ3eIjzSOvPcqD0xSHglxtRn24+/XLT6dNNqs82nsRFLQVQ/dLPEhf//tT98NmkOxpkwwXHo2G2uJ5HqRRlkxSHEORF3qQmKhzLwfe8hnMq8YOArtbEqzXrJKbWRrEdD0e4jm2+RgjTrDvnjYQRWinKLCMKIzZGo4tU5HS5piwKPM8M+/LU1Oq+4zbXfMlkNmUxn7G1vUG73eLk5JSyLJu62qTk5VnOOs2MjdW1CaPwwmJpWSb0qChysizFtSVUiul0QrxaGci8ZREFEWEU0up2OB2POTk7I4giwshhGI4AY3kPo4jh8Dw92GU+nxPHMSfHRoEVtiJsx8GPWnTabYajAdKSqLridDymLEtee/V1WpFJ0motV/SHQ5I0I0lS8sLspVmWIYRkNpvT6/XY3jYJj+cIA9fz+NniJxwePcXzjAvA9Vw6vS6XLl2i1iXrOCYvC+q6otNt47oeZ+MT8iwjXiybuPommENrJpMJaZryxuc/R55nPHr0CMuyGAwGeL6HH/j0+32CwKcoSlarNXfvfIxtWXRaBsTdabUpswJVGHUEGKREVTXcWyHNkCaMiFotM5y3LVRdUTS8WFHbeHVtQuyFoFA1RakaldkuRVlydnbGj370wwsllRQQ+j5JvGY6HjMMA4Rls1wskdKi1TEg7CgyCiGtNZZt4eA0aj+TMCe0CdUx16hN1rCk5gvj5rFsB8fz8YIQxw2Qlsvm5g7DDRgOtwnCiMFoZCyrUlycJZM0JU1NWnMcJzx48IDx2RmPHz4wilJdEQnoRyFXd3fZ29jk8OkT8iwl9AMqpYwdXIClNZaZv5l0YV2bxy4kdalQZUmWmffxOe8NYa5Bg4sxdmLHcVDCnPErZWpB06wQSGkZRYtWRrmYmgae9jRlYUQKukkYtqURGhTanDHV+d4mhEl4FzaqMMnutTAgelEbG6/B+Jg04LIwyn7HsZFILGHqfKRgtV6RpClOFCFtYwOuwVjuHInlmnXKEdLw/s7XQKHR0tjRysIggNCaJEnIMrPfRVHUKK7N7y+FRRgYN09ZlDh+gGPbaK0Ma6pB7niOSxRG9Ho90jRlsVgwnUwpSkVv2Me2XXrtPrbj4HourVaLVqvF5uYmURQhpNWs1wLVNP+QAiG5SJM7D8Qwi6lAoI04oXnudF1fDEDEuYX7fC9pmlfnwRgCLvhN+lNhDud7oqGH1Ei7CVmS9fmPwbIlQeBRqhJpnctswbblRYDZf+j2KzeeOp0OSqmGyyRxbAtVKVRRY1Gja4lAkWeKs9MpILBth8FgwGg0Yr5YkqQJ4/EZaZoaSrw2By/ZeC6N+qjGsoziab1ekWUp773/LqvVHMcW7Oxss7O7w2hiQGAffvA+VVVx5coVI0VcLCmLgnZkJIytVoSUkBcZda2M1Uzqi9dDVZpaV1S6pKqbF0zKBiJm7FTnnScDFTfx7UaKHV0UTWm25uTslEHVw7ZBWhJXWqZ7XAtsaVKACqURtcSVHrIWaCoKaVMDk/GMWpvEpnbXZzAaXTBfwjDEcVyktNB18yZTirxIL2JSv/8XP+LOR0u2Njvsbg+QtqKuS9IiRQoLx3FBG+uf63lUto3tu1iWjZTWRfFr0r8cihqU1vyD//R/eiFbPDk65g9+7/cZ7l9lleVYtUA6GicKsSxJlppD4OHhUxzboRt1EMJurgcLx5YMBwOyNOPnb79Jul6BFyJtCa6L9EtkobEsw+PJLA+tKxbN9FcgKISgFII0M+qsoqwMTM0rKVWNljaVFuR5RRxnrJYxL730Gv3ekLKRKs8WC65fv85zz73Ac7de5FsC/m//l/+an0xnTGZLirwgVzEGvCawpY1juybyV9fIdA1o7Co3UmQnMNexa9OLNrixNyIDCiArBarWrPOKNC9wvLpRfub0+h3a3S6uNHGgg40tpGVR1Ca1bz6fIpRClDk7gx6dICBwbCM93QwumlMgQFsUqjQLV6Wo6oLDj94Dy8JrtalVzslqidRGrv/2W28108RGlZjnZtmSktHmNvsHl7ly7QqXnrtB4NzCsSy6nRZlWXF8OsapClo65+z4mLOTU8rEwMD9METVNY9OT1kmCaU3o9ZQVDlHx085rJ9w78EdZKO281yX7d0t9vf3efn1Vzg+OeH47JTvff/POD09wbM0gefhi5JVu0eZKza2tvk7r77EbHLCejljMp6wXq/58M490jwnVTWirElyk1hi2RadXseAh7MEKSrQOZ4XsjkcEicJR4dPsBwHYVuIWpFrzTvvvYMQEst1CQKXbickSZY8efyIVhSyv7vL2ckJjuNy64XnUVXF0eETwwXIU8rCXB+9Xtek9TSLf1krkIK8LEgnGVUDks7zgjv37vHg0SM+uv0Blm2KyFprKg29fo8witje3jbyd+ngRB5V4NPbbrM1GrJezEhXS5bjCassY/PyVVpZyvjDD6m0jbIi3MAhdB1m4xPSeEXoOjhIMgWuZRO1HRSQYa6nmprdy322dZ+ygDRXPD095tk7J/zTd3/MzZdf49bLr/HCK6+wtb1DJzD249/7/d/nwYMH/Mm/+WM6XsB2u0tZl5SiZve55/CjiF6/w2q14sH9BybhI8uNNbrVapJ8Ssanp6iyxLFsWq2I/b09VJmTZwmeayGlhytqpM7R6aLx3zssljMe3vmI7OWXcCKP995/j/VyieN5+EHAtWs3CcKQa9ef49XPvUFv0KPda+MHHsPNIcvlkv6gD0KysbFJr9flLE54+Ytf5uvf+hv86Z98l4f3HyCWMxzHRjg+Sa649/AJ49NTjk7GXD64wuubG3zla79O1G7zo69/jeOjQ77/45+wv7fH5954g9e/+FWCICBex2RpxpNHD5mMx/zsL3+CIwQ7vb455J2OmccxRV3z2//wP2H/0mV6vT6np6f8v3/3XzGZjFkenXDzuee4cuUyq7Xh3vX6XZQW/Ml3/xRpSWxLksQx8XrFq6+8zOuvfZG33nyTLMv54he+RJIV/Pzd9/nLH/+I3/tX/z2dVpsoDBtbS86Va1fMxFAKKmWij8/Ozjg+PibNjO3wb/3W32J/f5/BcJs8y7n74AFhEPC1b3+bJ48fcTY+5Tf/+l9nY2ubn/3sHY4Oj/nf/e//DwwHA1579RXOzk45OTnFcR5gOzaDwYBer8dXv/6NhjuhydKUPEl48eUdLl+9imVLtK4Zn51S6bpJTmzT7Xa5e/cuv3j3Pf7sT7/L0ydP+Mf/+H/GwcEBg363Obz8iCTL+f4PfkCSJoStyAwejCnLNGh8F0toqsolaoVErZDBVpeiKJjOFyyTJT9766dEYcTezi5CSjq9AafHJywXc3Z2dvD9ENsvDYzVNQeJUtVIz8ULJMvFkizLqaWNHZgkPHRNWeSooiCvKnKlcEplGjJS0B8OKVXFeDbFyzLK2kjyXddM15GC+w8eoFTNq6+8Zh7vdIptWVzaP2C5WnJ8dGQU6EIY2/NgwBtf/AJaGytju9vhtTc+Zw67jkNNjRd6/Nbf/lskScLR0RFFkTOdWuzt7RJFEW+9/Q5xkiAdzTpd8eO//DHz+ZLDwyPCMCIIAzY2hliWxYOH9ynLksOjQ4IgZH/vMkma8P77t7lx8wYbm5vYjmmUt8LIHAb6pWmWZaamFFI0wNucg4MDHMelFamLOrbbbnNpf49Hjx6zWCwZn5xCVePtO2R5dgFX11rT6/VM46VRqebnlhPXNU0n/cmHdF1zMGpun54w/3KC3V/VhPp3PHV/1e18CNps+7+covcJNJYmXlsaxqDWRiFUVZTNEO/T95jnOXlukiwBM4zyPKTrNU5CTVyYREDXsggjn9/40pfRlbkGl6sV77z9FlsbG1za22djNKLTbpOURVNjaMq8YDoZo2rDgbQbnkw7COi1W+hKY9sW2/u7LGZz7t35mHm8YrpesDEasb29RZLGlKogjAyHcTAcmvqlNFHpZV5SNyiMQb+L61psbA5xXdOQLoucNF5z48ol9nZ26LUippMpP/7hj8jKBKEhS1OKtEDWklFvgw/evU1V1fxv/st/wqVLB2xtbfLRnTv87u/+Cx48eMCbb7578VyHgQm4idot6romjpcUacxiNmY1n3H3zm0OD4/Is4yPPrhNt9vj2vUbBEHAF7/81SZR0yRDl2XJaLDBYrHgd373d1nHa5bLJdvb2+zs7PGLX/yCOx/f4ec/f5ejo2fcvHmVIAjw/QjPi3DdiOl0zHhyRr+3yaC/Q5aVrNYZUrpIUVErzaX9S9y8eZPHjx9z9+5dXv/ca0RRxIMH95jP51iWoNUK2dwc0e326HZ7rJZLppMJYRDhux7/4B/+T0BDUeQmUn62oBICv9vhxssv0+l22dnZIcsL+pcO2NnZJQwjOu0Oo/4A/wWfvf3LvPPue+RlxXy1xslyiqpiZ3uHz3/py/S7XVphhLAEs9mMf/bf/DPSJGFva4etrU1u3rzBm2++ye/+zu/gCtgcjdjc2EQIwdlkZeq8e0fsb+8Quj7DjRH90QDp2ixXK6azOX4YEmcJ63jNZDbHCbvsX9/guZc/z87ODrP5kqqq+eI3/hpRq8XWzi6O4+E4/gXDNElyxtMV77//PvP5jI8++pA8S0nTmPV6fRE6URZFk9Tucelgl6pSrNYL7FpDbZpUi8UCKSS+65kBv2XjDhyKsmR8OqYdRES+QddIaRhTGkGuKkotkEGA9AMsz0MJTVYVWI6F4zkIqam1Ii8VQkhs371YDwplmiuiND9XWBKlSyoUlbDQ0iZTKXme03NbWMIGy7DnXGkCnIo8Ji9T8irHt4363MelrCumZYzUNUqfN8s1kdfBCzz0qnE/2aCpyYuE84a5FBrfd0yCnZnWmMaW7yEsc+ZCCIRlUSuFqhQilyZ9GgulKoq8ME2zsiIvcuqGvxr6IXu7uwhhmKQCjINLmMdnCYlumE6qVIAkS9KLdbcqFVcuX2E02gBhmmK2ZxlbqeNdqJikkMbJIyRZXpFma/O7SGOOq86T5qSARrV1vo6fr+VVXWMJgSNNMuL5+nOuIgaMDdQ8bRdpgefNTYERawvLNP6yNCHPEtarBXWtqStIs9js6U2jXCnFamlCBpbLlWHxumaodb6N/Z//T//H/+AW9is3ns55R1JKrKbZUtd1o6DRCKEbODgXzQvHcRvw48DArqRkPp81UxXTiKmqCiyTXHZ+P+d8paoyk6vVcsnZ2Sl3797FsiSD4QAwaS5aNy94VTfTLDOxCcPARJ66Lkobj6I+b83x6dhbI0/TjW3rvKA4nz+ZRJC68bp+AuMyscTWZ17squkiK6VwbJNQ9+lp1blySgijfBLadAuVqlG6pqzMDMuyzYTSTN3KBjDtGGuE7SKEgYFXtaIoXHw/ohV1GfS7tNsh7VZIFAXUOkdVgrIqkMJqvPoSXRtYr8b8KaR5ExjOhOlyn3fHhbTZ3tsjDCPKUmG7AfvXrtPf2KSqNXVZQq1JpcaSgiQ2i+p0vsR3fWwslONQuw61shCYN4stJcvcsJnCdsdIGF2bjuUQtLuNbLwpqOrapBZo8/y7rmsmO4EBkCtVgZBE7S5VXSN9EzPuBxG1FDiex5Wr1xkNN1klBqI5yDIO9vdpdTt4QYDre2xs79AfbeAEAcK2kbVjrgchqBGGZVJXiLpCliYNsapzsCxUWWJLE8nqOJZJm2usdsukpFAVSmtqLHzfJCxUlcbzbMLQw/ObppbnIiwLXWoKI1FDVBVWpYgci27g4TaLu9bOJ5BMYWEJmyTThgGiodQmJl5YFh4RZaXJcvNYqrIiKUuKqiLNjSVjtVyAEDiuS5xmFKom6kRE7QgRhmjXpawFlbAQboBrh3RDm7jUOKlCuGa63Wq3qeqaqCjRns9A2k3jRFNmZvGS0izKUtR4vk+706HT69Lr98lUQV6X5GXOdDahF7jIWhnovWUzXcyJ2gHCdnCCEK+uiMoabAe/1UZJi2SdoKoatU7xowDLdggCDylgXqZQKSpVgPbwXIs8g7pWVEUFpcCyBELXlImB6rbDANe1CTyXSpnnynNdMzVrIlXbXRNDXyuFKgvK3EyatK4ahsSnLBo1F2tRqcqGNWQ2SRUnAMTLuVErODZYRiKd5WmTzGkO1f1uCxAkhcKvNEpYVNKhslySCgqliYII33ZodbpYlkNtuVheiNcKqGcT8rrGF5JaWJRVDQJ8fW41rqh0RUWNG5jYdVfWSF3jUFLGKcezhQEYWw5eFJKXJZe2N6grRVYUJEnKZDJFtjooN0DrEmRNXZUICVtbW4RByONHjy9Ax5Zt+DUIkyxZV5VRf1Q1lfKMorQyq6pJp7GwMRM0XRkbd11X5j7QOI5NEAbE6zWnJ6cm3tf38fyIwWBIrz8w1rF2+wIs3e50DDMhNxOwdruL7dgs4oStzT02dnYRlkmALEtFrWuWy5WJ5lUV6zihVNXFOistC8uy6fX7zOZzjo5P8IOQLC8ZDANGm1v4gWk85U0TGMtMZJXQCEvieh5d20FbNsONTTq9Pst1zGQy4+TomDzPCFyXXqfNxsaITrdnAJG6plQlJ6enSGkmVuvlkuVySRKnZv9UGl0LXDegKGvyLGW9MhwP17ZpRZG5flXFbDrFdhwzoS5LknjNarmiKs3UFWEglEVekmclaZqzXsdIIak74IURnf6QrZ19tnd26d17ymQy5/jktDl0JUZdJARJkjQHS0VRmPcKmOTZSimENsmko40NqspES6/Xa6qqpt8fGACr1oZ9NJkhbZtuv8/B5ctcuXyFVhTiuD67u09ImxReMw0W1No0HbLKqF1cx6HWjcrJlliOxJc+tmuzjNeoShEnKQhBlucGbu25WLaDZbkoVZMXyhSWUlM2ANcaaWoEIVDaDHyElAjbxgsCKlWSZZm5lmwbVZm4Z60UVjPkq6FJgjxPhDQfjWOCLEuplAGJVlVFvF5jNayJqqooihzPCszv6boXrJ+iLA0zKQzpdDtG8a1rkjShqly2t7aMOrmusB2bdsfYlVrtNp7vkhUZtmOD0KziNXGybphRLl7lNSlFFXGcGp5UnuIHPlHUuhj2ifPBlWXUB74XIABbGot/mqamkVI3BXapmrqrqSq1wSZIIfBdz9RdpbmWjF2kugjWMEPQxv6ojGqgbphIQsqL+k81Snn+RxRNiE+UR02V+Rkr3mcq63MHXPOXX+Y/6WZ6fa5earRS55Xsv9PU+rRz4NMOgos7a9Rb5w0scfF4Tf2ulFnL0GZtDRzvosF1fhiyLVPfdL0QgUDV6qJhkqYp09mMqOGgVZVpkKrK8GHOh2N5pXClQFsSYRsFX5HlIIVJqJOSdRIzn884nZ7R73bwXPeirta1OXQaFZrAkjXSlbi2S7KOqVSJ4zi4nmcg1pZFXVdG1RSGRIGxu4RBSOonFzyYsiiQCFJhYQuLTtRGlRVJmlIWJSAZjTaYzZdsbW1zNp4AhuFKjVHCuOZ+lVLUcWze27Xh48Yrw07Ksoxnh09ZrVd0+n1GA8O7PLfJeH5IVdX0Oj0QgtHIWPCNFdeos5IsYzqdNQOLHIHVALp9ai2YzRYmnVhDGLXxvYD5fNmkUQkkgsx1CYKAVrvdrBMZ/V6P/qDHnTu3ieO1sfc7RhEkEJSNTbgsCsIwwnIcWu22ObCuBWQZqq6xXRfPsfGiEDcI0FIibZtWq41tm1S0MAjwPR/bdQ13p9tltV6zWq2QUlBXNW7TYNzd2qbf6fLs+Bl5nrGYz1FlQRD4Jn0uCMjTlOOjI7ZHA3y3hWVZCEyAhpCNoqQ0Kcm2ZyMsaZhafvPa246x6bseUbuNG3VwWx36oy26/Q2EHVLrGtf1TABOkxpelBVJkrJeJwY5EMc8fviA2XTKw/v3ieMVq+XcpNylKXmaoOua7a0tLNHGFo1gwbKwJBjcsLkmhcAk9AqjrLRcw/VTpaJ2K9OYsAx8HSEvFDsa0JYFjYqxaurwCzbdp07Forl/k8ReY3JTdbMWYGy7mPtB0Ni+KmpdXawP5gxtbFu1rinLAlWZZreW53oco9qsdXOG4rwWBi1BWA08WgrjPjqvmYVJHjTNJ8M9ulB0CoG0TDhYpbVpbAjz/RrjUhK1phaiUalywTlSZYmqDAdYAK5r9hSjBDLDDJrewPliWVfN64KxpTmOUYSGzfU7HA5xXN+cc2xtVGXCutiQam2aQ0VZmcFubVApF6pWgUFJNINqkybWnIebmkE1ybJSSmopqRpw+oWaCcxziLmOyrwgz3JUVZq6vqovUkurqiYri0/uT5h6ZLGck2Ups8nEuJ+qisViwaNHD1mvY1aNUtR2nIv+z69y+5UbT5PTU9NFFGCFEYEfIpCg8yaMpcKxJZ7nc/nyNTSQ5yW7e3tcvnRwseltb++SFzmrlbF/VFXZXHMm/pq6Mkl1WoM2Xdi6Lnn65BEfffgBr77yCk+fPLmwxW3v7FLkGW+//Q6tVsStmzfpdruMhj2yPCMvc+qq/kzEbHXe4GmgdmbC1STjqZK6Mta98ylPrZsXR1UX0m9pfyIpMyDGiNFoEyk0cZzQaZmpoGfbaG2AXuZNYopXN7QpC4UqFLPF7CIZwHEcfD9EqZJkuTCWn6JA1RqdSwoSXNfl8sEVLFtSixrX9fG8iNdeeYVuq8uVS5fZ2tzEcmVjOTBFfFYUVEpQKROdqMsCYbkXBZWoTZfavKk0w9GQdqeDtl2SomQynSP8gH/0X/yvcGwXR7oslgtW8cpMdYqMeLkkzwqm8xWWZROGJj48cB18aWFpwfTkDF2W3Lh+FSktclVeSOBvvXCTa9evMlssiLOUZ8cnWNLi5qUb1HXNer0iTVLiOObgYJ9+r2+mw1WNZZtufaVram2I/BKFRc3WaBvLsvm3f/Hn1LrmC1/4QiOZNHL5sqz5td/4Fleev0kdL1FFznQ8N/LzumK9WjIdj1mPJ6TzBR41FppSpViWZLUscRzXpAxZGsuqCcLI2CHSnLKqqYRG6Bo/sBFIhLBptUKCMMDzTZFyenZMqRTz9YosTVnNlwxcl4Hv0gYGtqQqksaLnWNJ2RzQKxAllq6IpGApNUpK9g52kY3VMhUKv65ZFjmrLGV3a4eg3cEOWuSF4uM7H1CqCqQkyxLef+8dPrr9HpYlaXsm9dB2XRAWFSbO9/kXXjSTFstHBh5SCLxuDykFm2GHXdvmc62IdrdHfzhqUhMstkYjHEvy9PFD5vMF9+6aUICjszP2Dg743Be/QJqkjHp9ju5/hKwUPjVFvOKj2Zz3PnyXsigYDod0ux1ee/01Ll25zvDq85ydTfj+93/IeHzGs2dHXL92nWF/m34/xLY1i/kJabKmzpbYlEg1ohu5tKJN7j54yOlkTLdjitx+p43ruoRRiKpqtkYFqig4fPaMGzefM5DD0IQrRJ0WXuCzvbXF+PSEdL4gjWOyPEdaZtMplQGeq6rClhLPs5t1z0TNmsav4aN02gG+59JutwmjiFarxWw2NRyVyTHFykUUPaqqZtlYWmVjg/BcjyytkELS3vZpj4b85nPPM5utuXPvGf6gz3BjwGwxI81Tuv0RjrBZVDGKmkrV1LlCVSVCmkLMymtj7XQ0lRR4XZ+OA3vUFLNTPvrpgjsfvYfTbvH1X/saly9f5u//9j9gcjZhs7/Nw48+5KM3f0677RGELnc/+AVeGPLXf+vvsbm1zWQy4fHjJzx8/IQ0y5hOJkTtFp7n0R+Ya8ooDy1z0KxKLAG+ZyBKdjPZKbOSLM8Zz+bs7B/w9d/4DV569TVuvfQSp0+fcvTkCWfjE2qtOT09ZWNzC1VVrOKY6WLGrRdvsX+wz7XrVxkMR6Spsbh9dOceWkosz6PIJUlS873v/QVv/vQn+K4ptn7+sx8TtTrs7V0ykMioywfvfchf/uDH/PPf+RcgJVtbG6zXa27f/ohHj57y/gd3ePmVl3nu5vN8/PFd1us1X/nSF3FbHS5du0aSxkyTJc89f4NXXniZ/ctX6Pb6/Ovv/lt++NZP+f53/5y6UuyMNrl8sMeNG1fxogDhSS7tXsFzQ45Pj5jPZ4zHU6rKHDoqpVCq5M//4ns4P7QR2tipf2/y+6yTNbfvfcjn3/gC/9n/8n/LaLhBr9tjPBkzXyz48+99jyxL2dgcsVwsuH/vLl/64he4eeM5nhwfczad8ud/9hfkWc7XvvpVfN9HSrh39z4PH97npVde4fr15zg+nlCWcPP6dUa9HuOTY85OT/nzP/0z3njjc/yNv/7XuH37NkfHxxwembjyp0+fIqXk5Rdfbpq/IbdeeomDK1dMymWRs39g0rCSJOX09Izbtz+k3epwcP06/+n//H/BpUsHPHn6hDRJmc8TOp0R/9l//r/mwYP7vPPum9y/d5/x0SFZkVCWBfPpBAF02m18z6fVjlitFXG6vog47nS6tNsarQWVqjg8PjMWm8GAa9dvEgYBP/7hj5iMH9Hu9XBchyRL8FyPVhgSFxn5ukALsH3PFPm2jXRdiqpitlrheC6bm5vMFjOm8ymh7eA5DqHvg5R0+138IKDT6XB4eMjJ2SlO5ONbIUFg2EVR5FJVGffuPTV7lu+BNFPZjY0NXM9jOpuRJik/+MEPGW6MOLh6hd3tbTZGQ95++y2Oj094+vQxVVVx+8MPUUoRr9ccXLrEN771Gzi2Gdps3d/EDVyGG30cxwEh8UMXy7HptDu0oohaF+TFmqIsEFJw+co+nXaPYX9At9Nlb28f13fI4oxCFriuy9Zoy9SGlRkwrOPkgkVRVRqQTMYzEIL1KjaFv+00DaWaNE5YL1dNyIxLnpfEccJ0MmEkRoTbAbquSeKE+cLUAVtbWzhNU6ooClN0BwFBGPBpPumnG0FgzgvnDaNfbj1dNKP+x/4nXBzK5Kf+pxb6wjFnFv3PHkiAiybKefNQnjeNmg8pbQRgCdnYz0qksPE8c5DJ84z3fvELLCG5dvkyrVaLQa9P32sTOJ+oIpQlqIU5SGx123xjc8Cjhw/5xe33mSznDEZDtoYjHNdlkRuLjuV5WELgC0G706HVaqGynDJXJGlGoUpKbeLQCxTT2YSHH3/MzmjE9sYGe9s7uI7Lu++9T5bnfPzxXTzPp91uMxoMGXR7JHptBpJYOJZHvzekKHOWyzWX9g+4fuUqVVGQJCbKfDafG3VbY63M04wyzrl8+QrbO7vUqmY8nfDP/tv/ls3NLf7Lf/JP8IOAv/+P/mNe/ugjXn7tde7du8vZ6RlFmSIEBK0upVK4Wclg0OfgYJ92FBD6PtvbW6RJYgIiasU6XpkDedO4sm2bIAxxfQ8/8Ljcu8R/9V//VziOTbvdJs0yjk5POR2PGc/mtDttbFtcKIU3Njd5/OgJ//Jf/iu+8IXP8aUvf5Fup0fgB406QZPEC+L1imePu+RZxptvv01R5LR7XTrdLq1W23DAbMnmyFgK0ZrDw0MW8wWj3S06vQ697S1A8N0f/JCqqnE9nzAMaHV7bG1v0u11ePvtd5hMp43qrmK5WBNGEZubI9qtNp12my996Uvs7O7y+muvcOP6VZ49e0aSpExnc4TWrBYLTgXEqwWHR8+Ik5i/99t/xww+1ivWyzl/9Id/yKPHj4x1OjZJf+N2xyR8tlt4YUB30KcqS54eHzJdLIiTlG6/RxRFvPTa59ja2WZz74But8No0Ae7wYm4HpZlM9gyYQfv3/6Q+fwxz54+pVIlqix59OCRuQYae1uZL/Fch83NbXSRMk1SPCkJWi1a25v4vstoOMCSktl0jGPZdKIIy5LGLtaoiqWQCFFjCxtLWCZNuYTCKbC0RJcltuUibEmhqwtbla41FUbpmKX5hX34PMGuUjmWbdJ8aZo6ZWma8Y7j4rqWSe1sGh1CCrq9jmnal1kT5uFiuR5YllFLao3lGkVWOjGoBZXn5KICLRBZSaV1I87Q2BYXVrGyqsgLw5lDSkrToWlStm3cIKBKU1RRUBcKjcB2PCxpoaWkrEtWWQ6hsfaJpq7O8mYQ4Zjml+97aK1ZxkvK0jxfru8QRD6zowUgGAwGJqyqMKmfaZayMdwg8EOidge3LMmTgsAP2dra4tatW3zzm9+8EKMY+Zex4SPAGEaFEdk0djnXs3G0jec5pkFWm+GIJSWqUpSlCTOr6qqxPddkSUJeFMznc5QyA5M0S8myJq23sXTquiZvOI9JmpDEMevV6mJAkOfmesjS3EDjS9U092zchlc9nRoEzLDfNU18x6TaqrLE81w8d4Dn+ea1lNavLNr9/0HxRBOtagCGZTNVOp9GGY+iuEiLc1yXbs+nFZk0onNvKFpjNUojKY1sWcoGeiYwpHjLwrIE0CiRGqo6GlarNYeHh7QaVodo7jPPcwN/rusLTkZVmUaPFEY+LoUpSCpVGwWQ5zTKC/O5oijNFKVRdqFpeEiNj9+yzOOUn/Uymu6pplIarMa32vhSJYqaT0+xPmFXFUVOkRlo9jlvwwC+DLDMsgS+5+E6xmcpEKjSdEdPTk7RGPi0bbs4ts9sMifPSx4/esJ8vgCpGz+mj2XZTUSmpixqqkpT1wKT0WziEM30yKKuQNcmVj7LctP9FMKoiaRhgiRpynQ8vZhgliprWFmG3xIFJp7TdRzspmOMNIWn7TlYuqRQCj9w2NzYZbUySoRVnDGZLsjKAqU0wnaQlgOOh66MxLMSFrW0yCtNWiqwbOOFbZ5b3VSgUkiENvjPComuNHGaoXRFnKf4wjfTz0pj1YLecAi2pEiWVEVBe7jdAMMrlosFrd4Js9YJq+mUlmthC0jWc7SucG27YWm4SEsjrBptu9TCQlWglEZJKJUmzUpsy8F1RaN8qqi0aY4maUrexKeXRXmhvpPoJsmsork00Y3tWdRV8ztqqAx40GoWNqcpeqkrHF3jCo0ttPk+y8hnL6wkloVV19TCNJLLIqfGxHpXWlPbtlEJCUktHOLZhMPHD3A9D7dJPUEI4tUSKQVlURiwYhDSXqxYx4lRSTgO1BrfdclLRamMBVFbTTqItJGWw5XLV4x/PVtRxGvqUoHURLZFXNZkRYYqcoo8N4fS1Ro/bIEt2dnfJeq0aHVaBg5oWyRJiq5LwxvQxlImtSBPUuMVt21zGC/NOmDWNXO9F6pENVBEVZYUVUGZ5SjHxZZmXSiKojnMq2ZT8bDzHNmwM+q6vjgsWNLYlV3HMbYAp6bf61JVTZKjAEFlEl+0WW/TJKUqS0StsTBpV9anp9bNVF+rGm1VSGlkufPFiqquDfBaVeRlwWK5RGtlkoUcF60ME6XUJVKCZzlm46yrxmNeIy2zaaraKDZ0Eyfr2TalxkyzV0vyIufRvbtUecbx516nruHG889hU5EtZ1R5TFVmZOuYPC94+vQpCEmapRRl8Yk6tZnC17WJFBZIbNfsM1mWYVE3bDhzGJO2oYtZlsa2Na7jMRiOeP7FF3EchyePH1NkmbGJhD6V1riuQxgG5sDte9RCs1qtePToEaPNUZOq5WBZjknxEIYLMBlPcKWNUgW+5yAxkGkDU/YwAg9FmWeUuWGCnaeRnJ3WhtuhoW6SwJaLJbPZjFYUEUUtwijCsS1uPv+8SURJ1+zv7jPc2SHJcxbPnvHk0SMOHz8hXa2MIikMmwaPRZ4VZEWBI308L6UoMhAw6PdJk4Tlcm4SGFsBaRKzSlKjIBOSOEvJ8rxJMzF772K5JE0z4iQhSTPCho9RazNldVyP/mDI5StXOZlOyNKELE3JkpSz41OjQA49hNaMRkPKouTo6AjX9eh2OvS7HcqyYHt7C6FrxifH5FnKyfExUgj6TbphEEZsbW4ihUmU8X2vUR3azKdzTk+OSJPEKJW0UXDlWYElbMOPmC0aYH3M3bv3zcQ8zYmikDRLmE4nSGnhBUb95pYOqiqxLQO3Flobe2FlVIt1DbZdI4RuJogm5cXELpvibrFYGHtIGOE6ruFOurYp5FzHDJB0o9iuSqSwLphQtTYKJq1rw7uwJLrWeK6LkDCIWriWbb6mNu95z/cZDPs8e/aMyXTKaGcbLwzwXBuEwPddqqoiaJpbRZETRqZprnXdTDZN4yLO0otGmGMbHo+QkjCMaLU7VKrEdmxKZdLLsiyjKItPrXcSyzLFqtZQo7Edm62tTcPetGyKshnouaZ4dR0f23Koa3Bdj9CJLqa0qjSpeovZglrXzOcG4WDwDYaJcZ78aSDnmjTNDHPKcrDt5v0sLYSQZGlGHMdEUcskN36KK6VrU7cmSUqpzpW6EppBZFmWWLaNXdqmHrTP1Tefun2mr6Qv1GefFI/nzSfjKNAXnz63kPDJn598y8W/xWc+/4m9QjSHi4vUonObRvP4qupTqiphHAxSSqzaukh67nV7jQLANJrSNEErRe2UZpAiJbUtDYsE837sRG0G3T6bow0saZHGCUmQ4tcG+qulqVmFFFiOjW2Z+83SzEC/4xilSjM0TlLKrKAqS7SqLupK3/FMc0baWMLUkapUZGnGarmEqmY+m5EXBdJxLlKoLWnT6rXwPB9VVSRJbMIfNMaB0KhAXNelVlUTgZ6wjJdIW+IFHmqmWK6XvPveLxhubLB3cEC33+PGczcIwoDZbMbJ8bE5CKYpdQVhEOE5PkILqqKi0JlRP7geoeejEWTrGFc60BOoUlEWhmlV1WaRiZpQJs/zjMpUGS7LxuYmN58v6bYjiixl/2CXVitic3OXsqgYDUc4jkuaZFRqan5PYSGFwHUFWoMXBOS5SZRttVqEYcDZ2SnT6ZgkiVFliRQGjVKruqmRFPY5G6wy8eqnZ2fYtsulSwOCMCQMW6xWaxbLpQnnqM+j2wW9fp9Op23UPs25anx2RlEUzBdzs1Y3DB7bkqRJwuGzZ5wdHxmkR55Ra5OKqPUnYgXPM04Rvwn9MI4VQVVr1nEMQuB5nrmOXIeo2yMrC3Z29+h0O1y7dp1ur4sbhGhhEae5QbGQkWVGvQMGEfPRx3dYzOccHz7FdWzjVqhyIlciS00toNfq4biGBZo2/DiTLC4JfJ8w9BHoxgJagg1l2aSNyUax2qiDzlnIyEaVIgW264AQqNoMwiUaKXSjrNfQMAT1Oc+nUTWaevFcDdNwhDB7V11pqI0aTmJdnHXNmmnOVZZl40LDSmpq3qZHgDlVNlxcC0sIpAZ0Ra2NkwA0FqY+tYWgwqAkZLM8GlWUUR2d2/BkU28K+Ynu0wiQdKO44sKVBUb9q5um1TlLz1jYjFK0qs0AQQiJ7dioqrxgu0rLIC6qqqKqKyz73DFk9nYD0ZZkeU5Rls3PMAmMnzzP5nEWRUFVm+CmPM9Zr5LmFxXN834uRG1S6Rq1aVVVprHU1GHn6XJlVlCWBYvFslnfNXluQPX1xR7SCGYK8/iVKsmznLJQZn3HBGZhCcLAoH4C3fRLpHURkgZQKWUsy46D5zqUygDmDdC8xnVcsw8277df5fYrN57O38i+71MWJfPp/MLz5/kBtmN+ESksVKkZDvu88tqrLGZTZpMzjo+OeXb4jHY7wsCuC6Q07BMhhIkrrpvEJ99HCMFqOTdPXmmggxsHI8qi4L333mM0GtFut9naNNGWBvRVkWUG9rqcL+n2OrRaEUgLS2jQxj+ZZSVSOgR+iyJXZHZOlhVkWW4SPSwLy3HMi1rkF3DJKIrwPRMFez7d0tqA0LK0YDmLCUMXO/KwpYNjewhRIuqa83e7lKCqgjQrmM8WJHHCYNjF83wsC0BR5App2YStkDCICIKwsRLWLBdr5vMFf/gnf0q8XrNerRr7nIVlOwhh8ZO//Dl5kZPkMd1ul6985Uvs7e1x8/lbJOuceJ2jtDIHu7qR9xfqwh5ZqwJdK6bjGZPxjFa3cyFXVkpx98F9ZmcTDh88NlY0NIPRgKgVsre9h+d6CGk3qwDoMkeXGX6nh+X6zPIVzKc8PTpmtLHJV37jN/n4zl3e+cWHPH1ySF3mbO/u0mq3sIIQx3X5WD8kLwpm06mh8SvF0+MjhBDsbG3juS55ml1M+hzPJQhD4qwgyxW7vRmWEHxw7y5ZmbOuM/Z39/jC62/gCBNHurN3if7uLkqUWJZkZ7BpOulKs1osGZ+d8ezoCePJGTujHp5jcfTgPslqyezokKpU1GWJtiXaFuRxTpmX5POCvIBUwDotOTpdEEYhvZ6Dk+TUVkKS58RFxng+JS8VRWU8uG7g4tgWtgWCAuqcwDdFpOeaQkBlOWVVGu82FhILJ/CwLYnKUtOIUiUO4CHwLAMTLOqKqsgpl2vK0sAl67oyPIZKITR0A5+277HT7xJ6DhZGTVZqWK4n3P6LD3CCACcIyCrzvecKNKHMYSxrJhi2F+CEIY7nsX9wmU63y5XLe1RVxbMnp+zs7bB39Qp5WTOZLvjmN76N/y2bP2qHPHv0gA/fepco9Hnu+iWWccx04SA9D61r/ugP/oCkKHjtC19gc2eLb/61XycMAtphyC/efpfbH3zA3Q/vsZhOcWWN79hsDAdYQnB2fIrj+bh+QJGV1JVAWi7S9tBIilIxzyakeWGe5yQjTQsWZxOqrMBvolunZxOK0hSMQmt6wyHaksh1zLNnR+R5QbsTYDs2gecThSHtKMKRksK2uHnjOq2WUTdlec6Hd+6SJAmL1ZJyPKPIU3qtiND3aLk+oe/Tcl004Eq7mWK52LrG0jU6tKm05uOP7mBZFvPFmjTPGc8mPH48J1nMeWF/h61ul/XkjKIsWMoK3/cZhm2T/pjbpGlOmRfmsboOq9RwFxQWCIfAdnCFxBOSstSodcKP//iP8aKANF1z6+WX+Pv/8X/CK6+/wBtfeJWf/umf8dHbb5OtTlgmCf/iX/4LA0b2fdarNVKA53m02q0LFuBqFSOlwPd8VKVYL1dEvkM3ChqLs8YNW0jbwcXHdmssr8tLr3yOv/sP/yH/3T//f/Hf/1//77ha021FDHf6SNvCcSOuXX+Ov/43vkOS5cyXS37/D36fn/z0p3R7fQ4OLhFFHQK/xhIuVVVQVAn37t7m/ofv0YkcXnv5OSZnjygKsy/0+z772z3m0wVnJ6eIStEJPfZ6W9S15p33fkFRlPQ7rUbi75FnKZOzM/723/k7XLt6lbPTYyxL8p3f/BbSaayTacI6jvlv/uk/5S/+7M+YH55QFwVbnR7dfo9LB/sIy+J0Mider03aqXMHy7bY2d6h1Wrza1/8EidHx/zohz9iNBxy5dIBd+59xPHJMU+OD8mLgqBteILtdovVes1Pf/4zjo9OmZxNiTptgjDi1gu3QAgePHhAURQErQ67B1d4+bXP8cff/RPeeetniKrCt10ef3wP13No91q88NIt/qP/6Lf4oz/6E/7kj/4Q13FxbJudrSHb29v81t/5u+xujrDqiidPHvO7P/sJv/7r3+KF55/nC1/+MsPRJlvbO5Rlydn4BKcp9n7+szd58y9/zs9//jMmkzGtVqsJU+gTRW02Rps8ePiQBw8f8v+l7U9/LE3PND/s97z7cvZzYs99qb2KZDXJ5tIkp7vZPSN5dsAafdDiAYwxhJH9wRa8APYfYQgWZMiwBRiQDMESZjRLd0/P9MImu8mu4lJkLVlZuUZGZKxnf/ft8Yf7jVPssST3BzmAJFnFzMiIE+95luu+rt81PZ/R6/f4gz/6I+bzKY4pXJkgCLhz5zbvvPM2k60txpMxIBelwPdJkoRPP/6ELE1J0hTLlFbfphSI6nop62hVykE1DAPWyyUvXxwJp6GqGY/G9LpdDNfAskw6nU4rbkTUdUZd5WjzahhWo5uKLFljKMV4PCDJctZxzNbOmP6gx829A0yl+PMf/ogsz7HCkEG/z5tvvsEHH/yCjz/5lJ1r+3QHXbq9EMsyGQw7mIbJoNdhOptzdn5Jr9dlOBpxcTknzwuKupZ1b7Xm+OSUn338IXfv3OHm9RvcuXObO3fvsX9wIDGqquD4+JhHjx/z8vRE7P3t4TvNKhosLqdLNA15mXPj+k2+9O67LGZzVsslRlJTVwq3haw2jUVTmyRxyngyYmt7i+n0csNGqeua6fmMJEk5On6J67l0uiGWY2HaRtvoWHNxMW2ZoRa00//JZEK/O8D3AlzH4+zsnDhJwDDlPLVaU22Vm7POarViNpN1fdyyhDCMTURPGpsLuv0envLkMvRLzqJf/vjXUwhX/6+6yrr90u+4uihdOZv01eflczHqSnW6EqGa9mJqW/ZGsL+6EOqWASKIDE1RSfxKGWDbIr5fCadtDpy93T10XZMnCevVipdHL7hq3vF7HSzPxXNdbMMgMB08x6Hf7zK4d5/X797j408+4ejlS2YYBGHAG6+8ChrOzi5QpontedimSVM1nJ2eMbucksWxMLXqiuV8TnY5p0kLXNtmazjm2u4BgeujNYz6QzIvIC/k8hdHMfPLKUWeE0URTV1z4/ZdBMy9ZGtriy9+4V1m0ymfPX5CulpS5hnj4YBev4fdDngHg4GwlNKIpyfPObw4ojsY4PZ9dsxdojjhP/7P/i/cvXOXv/O3/y7Xrl/n2298myAIMAyDP/mDP+XZ0+f8s3/2T6mrmv3dA5RuWF8sWdUF1CWjoZQg7A3G5GXJxdEJ5p6ie+8NaQZdLPmD7/0hz54/47d+67fo9/o8evyIwWDA17/+dXZ2d7lx4xZ/5Td+k8FwQLZaoeuayWQAKJaLhOfPDxn0xpydn/LZw8fMWxdjHCW4rsOXv/IF4UEFIavVmiiOuXvvLrdu3+K//q/+Xxw+f8ZoNMCxbXzPR6EorBwF+J4nTX/9PvPZjMVixaPPnrC3v8/rr72B1UKf/8Xv/x4//dlP+cpXvszW1gSlFGEY8sprr7K3u8trr77Gxfk55+fn/OQnP+H4+Jjz83OUYXDv3j1cx8GxbU6Ojzg8POTk5CXL5YLX33yd0WjIcNDDVApdVgz6fd55502UoYQzWNcYKCzXoyorHj1+jOd53L57h9t37/KVL31JzqO+x5379+n2+vh+hyzPeHb8nIvzc54//YAszsiTnMOjY+HCXV6Q5ynraEldFRRZzJ3bN3nj1Vd4/dYuo/59Lk7PqJuGG6+8Qllrjl6cUGTZJgKH0hL37AQsljN5n9aKstAURQRGDaqm77iErktdVRhao1pbd1YWNBZ4vZAqz0iLAo2BpTR2m8bIyxJVFRhNhWpqqGuoxUGkGxEdNQZVA00mQ8i6kCiqZVqY2FhYWEoiioZtbBJCvuvjdhyiRUS0iDCQMiffc1sgdo3lOoShx8p1iNBQ1eJ0ag0/NhpLGfhKXFp5VWNpjQ0YdQ1VuYGiS2GXwrUtslZYMtSVmN+glXzPjmHScURYLVsEQl1LZFCjKBppmzfQ6EKcPoPhgE6vyzoSgVkDtuPS6wvXWhlGu0YG1BUkWQFIO/nZxSVNVWEaIm5ytfa3Al9dN8znM+I44fTkjKMXx3zwwc9FOLct8nbIA+J2SpKkZaRFIvwphYAuZPqgkLKpKzOPaZqtW02G5G4gmJkroLqpDRy7TU14HQadIUEQiGlHSSFap9trnc9+u6fIMFErsB1rMyQ3DWm0S9OE8/MzkjgmiWKuVD/Htv/HF55EzZMKXYU4ZKL1miRO6A+G2LYjfJNGM18shAtQ5BSlOBLiJIHWKWOaJtvbO6KGmiZpkrJaLVv3mWYYhjiOzWIl8LWiLNqp9JCqFNZD2jY/jMYjfM/B9XzKqubTB5+Jot1uAr4v9c9aa6lZVoiS3tRkSURVFG1+Ul5zz27bX5oG1dreRNmi3e2vmlDkINOgRfWtK4LQxfdlosmV06UW3oJRF9I00R1QFGJvaxob18sZjPqte0vUWtfxNyr0ehVxfnbC+fkFSZLiugF1o+kPtugPtvBcqUkOwx6W7WIYFs+fP2W9XrFczjFNgzTOefL4Oc+eHrOzvcdksoNpG62LysBQFt1eSFVVRHFMURTkRd5aLxVnp+Ku8lwPlEGhociyTdOXCGomTa2ZzxdYpoXdTskaNDTSsmWkFdowWS6WxFEqufko4fmTp0SrFePxkNnlBYtoxeXskjhPuH33Hq7vkMRr8lwgorZp4XkuSRJTFiWz+UwOW82VUtzg1tLsUKQ5RV5wXhQ0VU20WFDUJcvLKWat+VCZ0ixo2NQmAqwzpDrZbmQx9VwP07YYjsdYrs3W7i7DXohjmgx6I/IsI1nM20lVge1YWJ5NGmUUecFquqQoKwo0UZLy4uXx5pDpeh6WbWObNkksDJQkzZgv15v2nbjWGFXNbJ1gKfBtsIy2MaaRyYbGwDIdEX8NUzhR7QKolML2xCZdao0qShpdCf+mLmlp4y2zraZuuWJVLeA9q2kwBx0C22d7e4u6qjh5eQK2whx1UJaFMk3hP6GpPZu60cRpQdZ+38oSp6Btyq9ouaTMMlSVoVAkacX0wuSzTx6ws7PNZGsLswbPcdm6fhvT8Xn54hiqkun5pVi6G/AsE8t1uLUzIc4ylqfHlPEa11BMJlvcuHELy3GY7OyyWsRYlks0v6CsG5ZJIVGdoIMzGNAfj1GLBfl8IaKEbWM6PsowCM0aHafEeY0yFVppirqiqEqcNmqTZRmGYTIajanai0kY9jAthzhOxfGpGmQsociynMvLaQs6LFDKIgjW9AZyeAx8cUgEgUuRZeRpiiprqkLL34Wm43pt1KLNgTelbDgoTEem0VvbPZpGE0VTyqrGVhXUBWWR4YQh3a1txts7FEXOh08ekFcVi3iJqhWq1AJ8NQ20khx62jq4at2glYFyQpqqoqxruVCYJp1OAKbJpx8/IE0LtrYP6He7jMa7vP7uV5js7jP57AHT2YzDlyekWUa6jimLNmfevkOs9sIkkyyF67jUdUPhlXieS+AHFJVMIu227v5iucL3Q9760ruMtrZ5+uQJ56cnROsFo06vddmaNA0s53OePn7EP/0n/y3bu7scXLtOr9NhZ2uL5XyBa7l88Yv7eLaD7zqky5jzyxPSKCKPYpospilzsniO1hWWZZDnJVVR4HsOu7sTDp8fMrucYjsOru/x6iv3ieOYFy+OqPKCrFGcn50TJRmz1YrduqZxPLTWnFzMSNKMs/MLlqsV8/mMRw8/Y7Vc8vobr9ELQ1zTwnVd+i1jbLFak0QruXxpeV59y6ZIUoxS4kODbpemrjg7PWU+nROt1jiGieV5dP2ARovzCzRbWxOxmqcpl5cSuf/qV38Fz/NZzC9ZLGrmlxFPHn3GDxwb27J5/fU3+ezBY6JVRFLEZJVBoXMWyyVJknDz5nVczyGOpc2qyBLKKmc2m+LYNr/y1V9h/+YBN05vYvseJ7NzkjKj0xSsErmY/eyDDyiLkrIseP70OaenpwzHY7Z3d9jb3cVQiiiKWyagjW0plKpZLi/J8ohex8U2B+gixbVtBsMhoW2TrddE8RWHSGIvajxGoTg4uCZi8HLR8qYqnJYl2bSTa7u9dEltskev18G0TFbRmgaNaVu4rhzomrLEBELXh6pBl7JvbUSFqmJ2OcN1HQb9Pp3AksFco4mXK85NG8sQ50EDUvXdNup4rsvNm9cZDYeEvoCYlVLkRYmhhL9VFOI4vWrNlCplmzwu0bU4r5UWF3eZF8RRxHR6SVnkeK4LyFqUpSlJFJOFXaqiJM+LFmZaUBcl82glHLxeF2pYzpf4rkf/oItjm2jd8PjZIUVZCnPRtjFMaVabz2fS/HR5sXExmC2EtTfoAJqyzFpHtY1rOyLWtu1MrusId2g6Y9DvSWtVyx8pikKKRNKMqqrxfA/LEodWlsm/S9JMeFm1cIqqohCQdSlYgrqq8YOAxmnar09tBPNq0yb1+a+/0NysWhBsO+bXLbdEqysX1H+XeNWO+1qd6splcHVpuGoMcxz5+TRNI1P5qsKxpdHZ2mAGGuEzlTLFV4b6PNinEP6q6+B1QgbbW3JU1hrDErt1miakjSZTJrZlEWdJu3ZrskIcYdPZjPlyyajXx/d8Op2QWksMRDdgWDV5mpIlCav5nLqqMBWyxlbiQLBbBmnTyJmkbjTL1ZK6rgnDUKbtgO9IhMZ2HMqq3NSRN1pYiqv1mryQuvlOr4dJj27gizupvVRnVywnTcsjNanznLooSddr2YerimS14slnD5ldXHD07Bl37txhPBqzvTXCNg2+/OV3mV5ecvjsKUo3mIbGtcAxFXWd09TySltK49kmVZ5w+OwRtitR9L2dLQwa3nnrLTrdDi8On5GsV3z4s5/xYjjk+fNndLpdYSyhsS2Tvf399ixScXlxSZTEDMcjdvd3iZOYvChI4xTLNLl7+6a4zQpxsO5fu0a/18WwbPYOZIhhGMLEybIMbdTYWrOME2bTOb2dHSwvZGdnj9F4h+UywTRMnj59gus4uJ5LlgmKIs9zyrLiK1/5Cr3+gNF4RLfTpcHEcgPC/pDb919ltL1LXYnTX7V3LQOYTS9YLWf4novv7zAaDOiEHXn/1Q1FmpGmOReXc05Oz0iSlO3tbbrdHvvXb+A4Dvt37+J6HpOtCfu7u1y/fkPWbOD4+CXV4QtxhVQFUbJmeilNc7qWM9Cg4zHobmPqhDw32dvuoFqHkePYRNES1A6u76FMC3TVYloK4mhFmsbUVYEbBPieR5aLm6qp5X1u2C3X1rhqSrVFADJMieu2d1Thu4rxwVQGRSOFSU2SYVgmXc8F06A2BDJuNEhKwTZpWgeYYaq2iONz7qhhGLi+hWOJM7Rp5ExpW+I0MpSsuZ7jsI4jppdTppczojii27aNmu3BTdWgTBPTcTBNMUQoQ0HrwKRdX3R9BRdXmKZNXbXNdrU4hgxDSkTq9h7d0EibsaXQtSkt6IZNow08wwYaKoRhhWHQ1IAWhmCDJDeUFuZSXV8VMYCpTOI4AUOaYe1GU9XiNqoaSaQ06La1XlHmEhktcmmdNV1Lnps4YrVakyYJaSr7y/nFhbQuz4WpqUwxZdRNW6Jlgt2mt8KwS1VX9PNU9AClMG0TwzRb1hPYlr1xukqj5+ecZttxP+c2g6wvlohmV0Bzx5b4tUZeB98XTq1l2+0m88s8avlXUjxWQ6UpmpbXZRpoSzQEpRS1Uv/jR+0sx6XbH/Da62/ieQGeF2ymFPt713Bdl48+/gWL5ZLT81Oyw5T33/shftih0+2hlMYwTVbrJbZj884Xv4Bt26RpytnZGdHJqTA8LJNOv0ev1+X8ckFDTJ5FWNaAg4MdUYTzmo8+ecDldMa9V1+R6X/YYzad8uMPfkqv12trCgVsLhG/mlG/K0JMmqLrkrjN7qs2AmMoReB6WKZcImlqLGVQKw1GC1DXFcrQKC0WtLoWKKZpmfQHwlZxHQ+tDKn+rCrqpkKVNa5vs7W9S5pWrFYpQUfs6N1+VyqDywrHdtia7FDkJetlxNHhz/nwF5/xs5/9nMvLS+6/+jqj0Yg79+4zHg+5c/cGOzu7XLt+A9vxUYbJ++/9iIuzM87PTlnO5zx88ClPnz7jxz/+Cb/123+VX/+N36RjB9imtNyZhsV4PGEdRbw8O5NDVVVhWaJgPnv2jCROcEw5YHeHAyzbEhhh+9CZpkFTaU5OTgG9sRxeWWuVUuR5SVlWRNGqbSCpWS3W/PynP8UPA65d2yNNI07PC6LzUxzH5q133iIIAg6Pj8SqmGS43R7dMCRpp/p5nmGY0vpgKAWNxKEUBnmaUKQp0/VKai4vL6ibhrltsTqfcvjoMX4Q4AcdPN+TBUCJ3bpKKzqdDltbWwRBwHh7i4Mb14WbYAo3YdMg02jq9rDaCX06oU8Up62Fed1aKDVxFHH04jmL+ZzzM2nqqsqKreGENJVJ1HK5oimPBbCYxdRoEjRdd0VZZASqxrFMRqMBhjKhBsM0sS1X4gotu0yqNisM08ANQ4x20TeSlLouMKscozJQpouylCzuVUlV5ZRVTdlUJEmBRmHuDum4Jq+9cp8iTVkeHRG6FtcmY6pKU5aygWul8IKQUsPhYs0qK0itGEtZuKZL2PKs1qsFq6Li8ug5tu0wGG+RxitOj15w/5VXqO7kXJ7PcFyfd95+k8m1Wzx69AnzkxMOHz+hEwYMez0GjsSFhvduESUJ/+oHf8bLqub42VNu37uPbTqYlsO1W3eoK5Nub8qDn8ekSczFKqHTswh2h/j719i6dQvj8DnJ0QuUbWN7HpbXw3Isuh0LZS9ZpRlGloGpyasCsyzwWsB4mqR0Ol2u7V9jtZLolG27Lb+sJo4jptOpHN4biKOEi+RSpjJVw2wua+P29jZBELI12cGyTSwHijQnS1LOX5wSLdZE65imLBh6HsqyaAyF0rUIT4aNaVj4joHlWQwnO6RZyqNHj9GNwjM91k1BWeZ4/QHD67e4c+MWRZ7z0dFzkmjJaXGBW1v4jYPjOdiuNDmVTUVc5JR1LSBvw8YIfOo4Js9i/MDCtk0mvktWFPzkvZ/w6OFTppcR3/zWt/hbf+fvcu3OfVzX5oOfvcfL4yO+9/v/ivOXJzw4+5gizWXv0yLqW45AG33XxVQGgR9St4eIju/TC0PSLKIoMjzLom40JxeX7O57fOu7v0VZ5vzkz9/n+dMnxOslk14Xz3eoFVRFydnJCY8fPeb3/sXv85vf/S3+rX/732Y8HHL31m1m5xdkUcJ3f/03aWpN1/e5ODvh+ZMnXJ6dMb+4QNWFcNtsE8c26fUDPC8lSxMGgwHXrg15/NmnPH/+lE6vy5a/w69+9SvMZnMOnx0KTFmnnE9nFErxnfNzdpIY0/Woioqjx4ecvDjivT8VZtnZ+RnLxZSqLPjWd77F3du3iRYL8jxnvVpwcXFBFi2IFnMWy5W0qmqN3YDruJw9PyIIAnYmE2bzOY+Oj7m4OCeK1gyGPTzPZdDpEqUZL6YnKAU3b96gaipKXfLRJ79gvVozHvYYjyesllPKPGUxm/KT9/6cj3/2U955912+9Wvf4fJiRpwKgLKua1jDZGfC5eUlb731Or/127/O06dPmE4veP/996l0wdHRC+6/cp/f/O5visAUrfhnv/u7PHr8hC+s5zjdgKypOTx8wT//vd/n8vyC05MTiTAYBn/v7/1PefXVV3n9tVco85wfv/+eRGe1xnUNbLNhMTtDo9nbGWEaI5LpJb7nc7B/gEaRLBYcHx1xOb0k7Pbw/QBLmXS7Xe7ff0Uq08/OuJxOmc3n+GFAEAb4HYHvjwZ9aSdar7EsG8d2ubi4ZLacEYYd4Y34PuiGJIpxbIde2MGsNaqoZDrbOl7ysuL09Ixer8fWeBvfd/EDl5cvXzK9nLGaL7Ftm36/D6bJ8ekZruNyfHREGAa8885b7O/u0umKU62qapIkAy0MziTL2kFeKgKd72E7Jqv1mqauMJEoloGizgui1YqXumbme9y8cQPLNIlWa9bLNav5il7Yo8xKolUs0eBaIkunJ6cEYcje9j661Jy+eMkbb7zBvbt3OTjYwzAUzw//C6IsoT9sweaOSZLGLFcLfv7zD3j+/BlbW1t4nkcQBHS7HW7duUUUybqKalBo3LCD67gtF0XauC4uL1nMZ2xvTbBsUzg+mTRoWqZNmqQ0WtPpdbEdmzwXHlAUx5R1hWlZlHWDUUlEq6qkWhwNSivCTge3FSClgMfcsKCumo+vRKkN+Lv9z+YqW8Iv/Xf7uv93fVy5ya7qctBX7qq2EaluUIZU1ZelxDKqsmyBwT6WZeK4tvBLcinEaUqBJVuWzcZHoNuLv+sQ+i6d8XAjtGVJQpHnLGZzijyXZjvYCGVX36PluBw/eUqWZQSOw/Zki7fefIM4TVlfzlCGiENpnJDGMfPzc6qixHUsoiQmLVKausI1zA3/VSLZJecX55iGydZ4QlPXOKaFF/g4nsflYk6apVS1ps7l7JXlOecXF6A1pmUxHg7oBgGqrlktFnLpzQri1ZqqrjHaOL5rO2RJSlkWrGdz8rLEBbLlkp+///4mjfDrv/HrvP7GG7xy/1Vu3bhGv9fho48+4gd/8ocoGnzfZtTv0O/4VHUiznzTxlbQ9W3ydM2Hv3ifW/fucfeVV3n13h1u7u/x27/5G3i+zw+//z2Oj474wUcfYbo2TjcUFmOjGU9GdLod7tx7Fdf3sSyHsihI1zHvvvsuX/nKV2iU4KKLJBfUgeWQpDEvXh6yNZlw88YNnj55wsnLY155/S32r9/k9PSU9XrN7PCQStU4DVwsVjw9fEE43sZ0Ovzq14Sru7t7jReHh/zBv/qXhIHPeDQkS2MC32sr63N+/Te+y3i8xWq1FiRKWWI6Pt2Rwxf3rgm/bWss+/Z7PyJLE6o84/DwCYv5Bbdu3WFnZ4/tbYnqzqcz8qxkuYqZTec8f34osR/b4tU33uLGzZvcvXOXydY2X/3mN3Fd5+pNhG4EoRGt17z3L3+foxcveHH4FIVmPBqwWs54eXyI5/r4ns83v/F19nZ3CKyUsiiYbI02Ue8nT5/x8Sef0uh7uIHfFg7VFGUuovfsgvV6QVXl2HaXTjckjmNWq5puN2yB8FK41TQ1tmHjWi62JcUUgp1uMJW85xtdYWBuilfyoqRssSjBgYdhmtRFjVYGViNRm8qVc6LWCNrFlrRLXWuarJEyMD9o8S4W69WKuqzwXSl0gDZiZztcXJzz8OFnrFYrqqpk79q+NN43CMS7AcOwMD0fw3IwMFtoeENVSCGVhUmjNHldtSgYj7KsKYqaqtRoLetm3dSUVYFdV1S6FpyNbQAOaAvXtDGoCE0PQ1dUqkYbJtq20LWsG1rJoLRs29zEsVRL8UrTYBgmy1VEWtRs77g4bRFCWclw+Sr1ZFkiwKVpQ1HUZGmBUg2eK/HP6WLO86fPOTs943K6IE5Szs/OKUsp33Bdl26n10br2Ky53Z44Lt12mNNoadM1DEXQ7i1XX4O4v9ryHaChablSptzHW7GJq+GFYWBZNnUj3OOr/aNuG3sd0/oL+wpao9pWxaKNzJdS7o6mBcYrQcc0lvx98nQ2f3ED+x/Sk/5SvwsEUBXHHB8fc+vWbe7evYMCEUtcC8NUeL5Hp6nZNXbIs5TVyqOqKtI0Jgg9bFtUNjmUrSTuU5TkeUZVFa0NGC4uLlivV1RVBkiDynK15tMHn+F5HXxPGtaqquLH7/2EIPTZ3xlj24p3v/Q6g8GInd29Ftqm0XVFWRWcnZ1iWRZh285TVRVJmhInCZ2ONEVkeY5hiEBylRc1BD4lHCtlbEDBRUuV7/U7wgKxbZkQKC1sqEbTGIqmUcRJRVasieLH9PpjxuNdLFvas4x28bicX3KymvK9P/4heVaQptL8Mtnd46//7Ts4rsve/j5h2GE8nrQHRRfX9cgqTalLlNFwcP0Wk+097r2SUuY5X/3Vr/HZZ484uHGT0WjMxeUUN/DxHIc0y8jybJMDtQ1TwDGNxnWEVn/v/n2aupEJjWnhdQOKoiRJUuqypqwrPKuFlFvGBmiHghrdZlYBU5Rly7WpaYiXCWZp4vgOURpxfnlGXmZMtkekqbSMfPzJR/i+T6/fA2qSeI2pwDalIc/3bNIso6oETm+ZFr7rUlUFq+Vs0wrYH/UZqAGNIQt7fzDAa9vUTMvCsGyBxhsmWS6TzueHhziuy3K9IgxCBr2eHKyUwN8MJY66q1ZDWQxcFiu5CGZ5Tl3VjCYjbMsiL3IM12Hv+nV2r13j1TcF2FeX1abZZzZfkKQZl7OpVBvHCaquMOqKQJfYTcX89JgsXnNxcSaRNk+h65KmyqlWksk3kQlgdaX0z2dgWWjHISoqGmWRJQUUDb2eiWUY7G31SPOC+TrBtDS2Dduhz9Bz6Qz7KM9nledURY5pIU4nJ8SyFKZrECWJNLMlBY1SOK5H1/HYD/s0ZUNT1LiujWUZ9PpdeX+0kVvTVBRlThwnfPrgY46Pjwh7ffwgZDE/pxt4vPMrX2Z6dspPm4ZqHXF+MZPJKw1gYNSa2zduERcli7piNl/w4x+9J5Mey+TazgF37t9i72ALy1TsbE9wPA+v28PvdAm7PR48/EQOtKY0PaXxCpUZkCniOKEqCpmo9/viAmoqLMNEa7i8uCCJE2in0Y5jb9qVtiYTup1QDlKVcAJs26bX65G31a5VVZLnOZeXl9jWksVsgWkpTAccy8G1HDrdkF6nQ6/v4NjCV6q1cPDyNCNdR4QdD9/3iC8kstOYBo3W+IZPGPhsDUeYWhEnGYfn58TKYOf2fcYHO/y9f+cfoOsS2yi5PDnn6PEhF9Nzlqs5dV1hYdDvDzawySQpmc1WaDS+ZzPsdfEDD2UalHWNaVtUDRwfPuFP/6RiennOtWsHbG1vMeh32NvZ52/9nb/D7PKS7//R9zg8POSDD36O1wkJel1p8ELTVKU4NC2F0RgYFpR1ySpJWK9XpFmMV+Qo02J7d5e9g31cz+fo+Ijf+Z3fZbWY4XgB5xdTLs6naMOg1g2rdUReljQNnJyc8qMfvSf7WDfk8aNHlGXJD77/PXrdHluTEWHH4/qNfeFnGQpdVzR1xezyjDSOODt5SZ6lfPzxQ4bDIVtbW+S1pjsccTGfs4hjTqczPM/jy1/7VUbDEQd7B/zJn/0Z7//kp5wfHvJZ4HNycs56tebZ48ckUczicsru3i7f/rVvcOvWDba2JvQ7HSzTIOj3GPs+N258kyzLWK5WrNcRUZKQp3LpjNYrVosFP3nvPeqoxvEccYyWOUppOVgq4SKsk4Q0y6DWHD59zj/9x/+U4WTMZLTNt//Kr6OBbneA63jcvXEHW9mcvzwjK8WdjGth+hZf+cZXeSt7W6a2rSV8NBpxcLCPZRrMVxFBb4AbhnynP8S0bPau3aE/6JMbFnbYY+iHbG9fYz6P+d4ffR9TGXSDDvPZjKcffwhNQ8dS9MfbdAZ91uslDx9+wqef/II0TTl8/kz4jIZM3T3foyiLlqlXA4YIx5bFKkk37VsVDbbv0R8N8X2fZbwmyhIW0VIcJEWJ5Vhs725jGIgLo53UH8fi3FuvV/h+QK/bI44i8jSjE4SgG14cvUA3DbZpEXhS3CBNenJ01ArqqqCpS1xH2AqWYRJHMZfTC/IsxzTFhW5ZFkmakqbZ5+w1y6JuGrK8YDafkxUFg6E403d294jWEadnTwEYDAdUdcV8saCne6gWbOp6Ljdu3my5SBbz5ZzlfEpTFZS5T7G1RWUYXJydE0cRg0Ef3xcHpjIVhiVuiqIusVwbx3dwQ4+yrjmfX9J8+jEvz0+YTCaYlsWLsxOSLCWlZtDrcWP/ANsQrtX169ekeavTwfd9Dg72UYaiKAWC2+/3KStxv3U6Id1OT0SvqiTNZHo8mUyoy4rjwxes5guKLKMpK+qiZHpxIcwNGpQG15aGteVsgeN5GBgsZnMM0yCOIgHnZime67VDtgbTMMkziSLJRFkuOFojLFRlIIN445eYn+3HFXulHdJdNUupvzBFVq3j4XOOigZhuGhp86N1ODe1sLpoRUzLFHZiXVbUZUWZF3KBbdobEAhLVSlsS5AZGt2KUzlXbc4KtTkDWbZNp9NFByG9TtgOYYXzlaYpYSfEdT3eDQKyPOP46IhVkhAMpB3UCbxN45XtWji+zWI5J40i4ZDpBj/wyNOEqq64mF7w/PApuj2HTybyPAvzUp4307awHGGnVU1FdLkkzzKMRuFZLqPeUAYZnku8XrGYLbg8lQFtlUuE6PbNO8JxQxPHa5IkwTAKlDJxXA/b8RiPA7q9HvsH13n69BkPP/uMH/zghzx8+JiD/R8zHAx550tf4t4r9/kP/uF/yLOnj/nFz35Mk2fMzufY2oAQ+nsjbMdmqBRlVRFnOVka8dMf/znTizlFUfLe+z+iPxjQ63Vxbt/i3u07TJdzjs5O6Ay7BEHAZHsiMHJXOJyzy0vyNCdeCXT7g5/+mBu3bzEcjzYMOUsbrQNon6DToWwMtnYPGIwm3H/1NaqqJFqvKdq7nxgDbD7++GM+/vhjDg6uMRqO8DyHPM/46KMPOT09YR2t6PU7bO/ucv/VVwg7AePJNt1eH0zFMloxX0XialKKNM/Ii1xERUPx6ce/YHZ5wff/5I/JshTd1JRlwY279/nKr36dV155jV63i2maRKtImsmqivPzCx4+fMjW9jZbW1vsH+zT6/fZ2t7Gcdz2a1vz4sUh69WKxWLO9OKC9XJJksSgG64d7OM6Fr5n47sGZREThj6dMMAPLAyzYXdvW4qxmgrTNukNhvT6C7r9Aaso4vnhEVoZhN0uw9EOQViwdy1CK5vFKsG2LIq6liZgRdvGpqT5XUkDrmmYmIaiqSvKIkdq7hR5I5d71YoFjdY4tk0n8MmSFN00WMqUe5YGqoosTcT8YJvUWtyPZZ5T5TnaEnNFEHZAa6qiYJ2maN1ICZZtyX2uqmmaksaU+OJ6teL87JQwDAn7vXbonmKZLpZhYDkWhmVimgZ1XYmrznEE/9Ha2FTbuFZpsCwbz/epcmFGqSu2ciNuW8exhdG7lKIIVzlkWhqXi6am1DUNJTUVZV2CYUHToHSDpTRaNRhKY9qOROCqGss2cVwT3/Nx22GGH4SMRyPB21QNlmEx6A2F8VdWWLacqUV1EWRJVUlj7/HxS37+iw9ZLqQp2PZ8RkHI1vausG49V9Y916WuhM105Uy6+tlLRJXPIVdoLNvBtD53PGktjFjP9wSNUkvrMlq1n0/KpCSNLeu/JKxEELxiZtW1tJcui7Ldf/TnEfFGQ62FS9o6nJShsGyDsiyJonXrgqKFlNfixPrXGYf/PR9/aeGpbvlJFxcXXLt2nZ2dbWbTKfPprAViN1i2hee72I5JnvtYtslisSBKZgShQPFE0a1IklhUuLrZ1NnKhmywWCzEQdNUaKQqMklSXrx4yXg0YTw2N06Tzx5+hm1bDLpfYjLqc+vOLYajCTu7+78EVZN683kat61x3kbxy7KMKIrwPBcXV6ZYSmCfhmHgWFZrWTPaCZTaCE8ajTIUfuC3zXAWuq2XbJqGWouTSitFmtVUVcLZWcqtWwHXDvq4gYXtGBRpRl7nxFHB2emU73//h2JVr2pef+MNXnvjdb74pS+xt79Pf9DftKfVVU2UyMQyr0pUU6OUZry9K+DiFuxmGnD95m20Mrm4uORyOmW3aTAsk2wt7QtJHG0mc5ZhwFV9qusx2drGNC3yTIQ203dYryOyoqCsxAKpDbWBVWvVtNwBvbGS100jEGZTDgdGXZEVOYahyEuBrq3Xa/r9Hr1+F8NUFEXB88PneJ7LO2+/DbqhKFLyzCJzHAzV4DoWSVq1lnax55qmR1WWpFkhRloFk94Y3/fBkCie5/mEnQ7bbSNHoz+v5V2uVsRJwouXx5imSVmVdMKQJI43NcsgQtNwMGinAeD7PqPRiNlsxuXlJWVZAhD2u5iOTdlIhG/Y2yIMAnq9Xis8CehV2mQayqpmnUY0dQu6Lgt0WZAu5uRxxOOPP2R6ccZlUlBXBYZlUOcxRZIT5ylZnOAaUjtcNw2lboiqAsN1cTo98rpBGxZFXqGzin7YwbVMvH6Am9kkRYPZQv63RgN2+h18X4FrE5cFdVlgmGKlxfQEzK1MdFZSNhW6rtFKYQUehmljOz5FmpPHGYYFhgmu66GUQVlaoIV9VlclcSQR0boRRlLY6ZAmK/Z2t/m7f+Ov0RsOeXJ8xOzZC1ZHJ3SjANdpoe7KZG97V1r7ppeso5j5xQNKW1HbJtf399nd26Y7GBB2Qu7eu40yLUollmS0wXhrh25/uKnUbiqJDlSpJi8EeGnbFq7ntTb0RizCtQCYi6LY8GKCIEA3JgDeoE9Q+JycvOQq/mBZVtuUYpIZiiouWwGqktdEz1GGxnA0/V6fYW/IuD+i6wd0ey6WqTDSVCIxVUORZaxmc7QKacwScgNdK7JGbNXjXkDPCzkYTViuI058n4vFgllR8m2t2B+M+bW33sW1TVy75uGDT9Hmn7N+2HCerLHbaUin0wGkdjnPG9IkwfNsPF8cbZ2OsKAaNLZrM1+tefjkkNVyxuPHj3jttde5eeMm3/r2rzE5OODWF96WyWMUYbkOnz76DD8M8MNwE/msmgpbmXJIM0CZUnaQ5DlRlpEkCXnTYDsuk91rTLa2sGyb+WLBe+//mGGvS7/XZXZ2IewjswVQKtVOgRTT2ZxPPvmEV197le3dbVarBYv5nA9/8QF7u3t84Z0vsLU94vXgVcaTMYPRYBPPePTwE6YX5/z0vfc5PjriwYPPiJOcomyoUYSDAcvlknw+59HhCw4ODvi1b3+HWzdv8vYbb3F6fsZPf/ITZqenvDBNfv7hx0wvL/n0408wlKIThty6eZ2333yD3/jNX+eVV1/hT3/wp0wvL7F9n8FkzBe//GUZYmhNkmakeU6RluRZwacPPuTw2TN+9MMftsOgVA77VdmuZeIOabQUHGR5AQ2cn5zxZ+s/42tf/wbXDm6ws7+P6/u4foBp2OxMdimykq2tbRbxmnm8RjkmhmPwypuv4tgO4/GWxN/DLnVVU5RyMVqulvQH4rK6fusOrufT3doDIK0rXMfFt236gzGD3pg//f73WS0WDMMORZpwefyCbqfDeDRia9RntLdLkqxZruY8f/KYOI5ZrpYYSppkB4MBg8FA4t911VY0g+/5AERZRqMbqqZGmwZu4NPpd/E8j8vLKVVVUl1WUiXvitjR7/dZr1fkRSaMjKpitVyRZwI67vV6GAg8uSoKgZM3DeeXF+i6YdDtYQCFX/yFiSZaCh50U+M6Fo5tYSpFlmZcXF4KoNy2WzakyXy5IM1zKcVsLy8aKMqKVRRR1g17e7uEHXGBV1VNFMeEYUin22W9XpOkKY7rtKJVhe/4HFw7wHMdfMfh409TTk+OpLiiqSmyDID5bEaWpnS7HRxXok4oeY9WWt67lmNhOzamY1EkCbP1gnUS8eL4Bf3BENO2OZ9PqeqarBb+5A213wLDpW0vDEMsyxFOy+07FGXOk6dPMQyDMAxZR9Ks63keYRgym80oWzFfa02v16Ouai7OzkmiiKoQaHVdlawWEq/2fA+lZbBVFgXROqJvWmjLZr1cgYJ1G9eKEmFoXsUgDKUkPtMIcFUgJIaIO0jhwdXHlfNJIkVttKHRsrYp1Toyms+JufwyC4p2xvz5lFprLRDu9vJQVRV5i7UwDHn+LcsiybLPXdrImeeXxS6qCsey2jp0JJ5fFJ/D1E2zLVERMdn1fUzDYGdnm7IoMc3ZZm/wfZ9ur8fe/h5ZnvPRg09YxhFbFxfSGLY9oc4badl0TGzHIopXrJdLvNzFciy80JeKd12zWi04Oz+l0nIZu3v3Pq4jgPyrHJIypFbdtE3MyqTMC4qswEDhmDa9sEu306HX7fIsionXMS+PjpnPZlRlTegF7O3sYtoWWCYvXx6T5/lm6OzYEtMeTbYZDIdcu3ad45cnzGYLkuQTXPcxo/6And0d3vzCF9jd2+PuvXu898M/4+jpM2ZnJ0SrhLR1PvqhnBMsx6SuGzpFzuOnz/ns8RNWq5iqanjw4GPGkwm+7zHo99jb2eXR0yecXpwxGPQYTyaMJxNcz6Uoa3H2z2ekccJ6vuLZk0es1yu+8rWvcePWTfxQBuVUmvF4i+u37mHbFnlZ0+kNCTxBhpimsdkfnE1xU8VoPKHb69MNQ7k3uQ5xnPDixSHT6SVVVeK6LpOtCW+//Ra3b99iMBpjOQ7LKCZKYtZxjFLCzsnzgiRN0LW0i3/w05/w4vCQP/7jP245Noobt27y2uuv89qbb/PFL70r6QbDIE/EIW1aFqenJ/SGI+7cucOtW7c2z37Q6VCUBQ8efsLLl8f85Mfvc3Z2Jjyp0xOi1Yq7t28zGY959f4dwsDDMjSGqomTAd2uT7cT4LoGymwYjvuUZcl0OsWwLMJul7DXp9vrkaQ5RXnJZDTBDzv0+mPhw20tSfOSwfCyBUHnuIEnhVj6c4FYKQPDFMCznC9rqroSQLdSlC0c+yr2VjeNIGtw0S3q5ur3WhpULefCuqkxbLMVm2WfqqsKlMRmQ9enKHLiNCbPMsqiYGs8FmSK1lLsUImZwjRMkiRmPp/R7XbohCI653mB65go28K1TIy2LKtpKsqyQDnCUKtVu961YlulZYjtug66LCV6rAWKjgYMhW2a1LUmizN8V1qkNZkIT1pT6ZqGmkZXVHWBMiSlJEEwTaPkLuraFnUDSa0352+nLfDyPBki9Lo9HMcVRphpEYbCYSzMYsMu056iLpo2li0x9dlszrNnz6kriQmOt4TXujXZwfc9hoO+aCWG0bbR1RvgfhTFbbGQrGEi4Og2CCrMJdkXxNFqtkUDdV2hCy3OR61RWvaLqm3PVi1CpShkuKqbX9J0mqsSjkjW/nY/ME0Tat2Wa+RyDlESz3R9V4SndYxlS2FZXlTkWY7vS/ncX+bjLy08maZJVVWcHB/juy6dMODRZ484PDxsL96KOEnQaFzPIQh8bty8TqMrzi9PqeqCqjKxLLnQvXhxiOu69HoDtG5a58jnrRsCz6raFgCHTqfHzRs3aJqaOF3yzjuvEYQhv/8v/hVaN3zn136N3Z0x+3tDyqKtZS1K6rrAcy0s0yOK5JBxfHxMGAaMx2OqJkQr+ZoNQ7GKIzSabreDMqGhbA3N4uJRSqOUtJiYlieKX2FgmQrHMgSQXjc0lXzt3fYHdXp8jGm6jEfXMBXMLi54eviY07MTXhy+IMsyJhOJdP36d3+b4WjEwfUb9Pp9ut2eMHS0wfl8LdOmdiplKbsVJ622AaGmWEu1sK6KNoPcYPk+v/Fbv81PfvITkg8+IC1yLudzzk9OmE2n/Nn3v89oOOQbX/sq+wcH3Ll9iyjJyIqy5bmANoQfkMUxTVPT7XYxVIxGgPCOY7cLjVD4ZUInTSHKMKARW3BVVui6aRucQt55620WywUvXhxKVrSsuXHtBrbj8OmnD6irivl0uvm9eZaTJRmWZctFqxFyv+OJzd0yDGzbIwxCMDTa0Hi+i2Ea1LomSmMePnrE/sEB127elMXHccR5UlWMx2O63S5xllIU0vZhGAZBEEjziW0JBUFrprMZZVkyn883rSNKSb7Yti1s2+LZi8O2gruLoRSrKJJLw+WUIsupypJO2JH6Ulv+DuWaFHVFkqV0fJ/uYEBUNqS1wf2vfYfXFHzrr/9diipnES8o8pwsTbk8PWM5m+NbjsRE24xyVknLVZSmnJyec3J2xsX5jDRJyUtN3ZTEyZIsL4hWGWVRk+c1l1YFqsQvTGzbJCszDBqqwKdoGpL1AlO1pQJNhbYttkcjGuDJ2SlJUTLPKwLXpxd0WC4XJGmMYYl9d3trGwUk0ZK6qgg8myRrKKuSXugzHg9449W7jCcT4qKhu7XH3/l3/j4vPvmER+//mBeffcJnj59y49r1tpkpILQdBkVF4ZRkdkatoFGajz/4OY8+eUDVCO/tzp3bAuxfxwRhl253wOFnjzErseQ2hsJq89CDwKcBhsOGtCjIy5KyFAFyezIRDpQfkCQJz58+YWt7m739PTrdHp7rS84/jsnzrGWpWBvRQmCGDuPAwzQMHNeRBqIGtK6pdY5CUTc5q9WMNF4RZQ6WZeBpjeO6jHYmaNtkmaUUpqIpSzwnQGEwPZ+hGoVdK6zSZG5NCZXJa9f2mUUZSVbw3/xn/zmW67F7sM94e8JbX36LwWDEF777XV751a+Qxmt+/sff4+LoBRcvj1BoRuM+pesQ9h1MFKopuTw7YXqh2NndkaIGIPRcru9tE8UJi+WUj3/+Ex59+jHPHz9iazLhy9/8Kv1+j1ffeIPdgwPuv/46L14ec/zymE8fPGB6ccGg08HtOAL41Q2GZTAeTdjd2acoBMj47Nlzmgb+zb/xt3Fcn/d//BMWyzXf+vZfESaaoeh84V25PFhG29YWsVguefT0KUEYUpYl3W6HGwfX+Lf/3r9FksR89OFHPHjwEQ8+/lC4F7bDZDxhNBxh2zYKePnyGN00bG9v88W9a3zrN36TJEqIViupuK1rSi01xpOdbYajEW+/9RZnJ6f843/2z/nw409Yrdb86Z98H9f3qCq5HO5sb+F7HlvjEcNhnzRN+ee/87v8s3/+Ozz49CFRFOM6Anr94OefiXvTMFlFEXGS8NprrzAY9Fku1mhM3nz7LeqyxETjuQ6GgqoupbmtXU+XkbSljAdd4QU4BqdnR1Q/LVitIwC+/O6vbNasuqnZOthmYmzTGIpe4GPWkMQR67rh/OhiYy1PkpTVakW0WpEkMYN+D9dzcR2bqtFMVzFlVVIUBf1+n8FgwM72Djeu3cL4uqKqSg52t+XrrlIW8xlnZy9ZzlY8/fBjgm6IZdsMBwMm4xF+8Grb6GVQFi1LrdHUyqDJa6qmZFrKWWEdRdy+c5tf+dIX2Nqa0Ov1ePToEZfTKfPZCq3l57tarXjy+DOu37iOYTgs5lHLdxM5wLFDmspA1wk0NoZ2ccwGZZvEyxQAT7nYnsXOeAvbsjG1NLACNFoEh529Pbl0ty15F/NL6rqm0+kIj0cZm1beNClI05ysKHA9n5u3bpPkBVGS0+v3ROi3bNK84OGjx+RZTn80wvN83CCgahqUZRKn0lYTrSPyNOXDn38ANDRNie047OzuyKDNMPnFz39BnmWslkvCIOD63j5xknD8/Lnw8UyTSbdL09ScnJ5RxQlHnz0SfqVuyBq5bM3PLtGA3w1xbRvfNMmjiI8++kUb19fCa+n3ODsREPHh4XMZHOYZYRgwHPbFqeS4fPbwMzmsa93uzTMMpfBsicjbhoXvOISeS5nnKK3x/GAjqDRVzXq5Jk8y6qIkixOaqsJ1xH3V1LXstefnDPsD9vb2KIuCi/Pzloth0LjCBMnLcsMcvTIu/bJYBJ8zmjQCHm6aum2QttCKDbLgSlS6+rNVWdJUFY4j7K4kiqQFTSnqqiJvhUEAzxUQuGkYMuwtKymTWC430PGqLKmbBreNC+r2a7NMizLLWCyW4iqrKrYmE3zfZz6bYRomk6EMa/r9AYA4AluO1NXF5jtf+yZF2/KYakhsaUkMLZOzLCWP1jS18CfzErIqY54sKfIcL/Do9rsMhgMwxY11dHwIWmMokyIXB3633yfs9fB8H9O02N2fbJ6BTj8AU8u5+/SEXreD7zvs39gn7Pp8+ulHxIUiLiKaHGGK5hmu67JaS6TIsiysloGTpRlPnjyhrmpu3bqF7/vYts06XnO+mPKf/xf/TyZbW7zzzhcY9Hr8r/+3/zt+9IMf8OEHPwMqbNvk4OZNTBOePnyAgaLjegS6pqM0mZL16Re/+Bm+H6AbGAwGdPs9zi/OefjgAQf7e9y+cYOPP/qYNEv5G3/zb2GZFlbRcPziiBenD3Fdm73BgJOnz7g8OeELX3qXTrdLnhU8PD3lj3/3d3AcGz8IMFvuLuoq6ltILHE8odfvs7u3TxiG3Hv1NXa3t+h0OiIeVBX/i3/4v5RmTQVBGNLr9fD8ANt1aJQiqzWFVpQY1EAax6xWSyxDYRqKKosp8owfv/ce52dn3Lh+g739Pb7+a9+k2+/RGw7Z3tolKyuS1lkY+lKY4DiOFGzcuoEXeKzjNU+fPWU2nXF0fEwcr5men7BcLXhx+IL1esVisaDb6bE1mfCtb/4ao9GY99/7c2zb4q0336DTnfCld/dRRoMyhEmWzdZ4XoBSHn53i/5ozO71+3TH17j9yhd48OABZ2cXfOWbv87u7i6GaXN+ccF8+TMWqzVRmsg+VBb4gYttmuhN/EmYQ3UFWBplKizPIQxCqjhB1Q2ukiQDjbRDVnUlw3xXHEaNrlnGsbimlCGlF2mMthSdUZ9rNw4wdEO/0yGwZQ/SdUN8seByfsmzly+YjMcM+3IvF0xEIYKu/MXUdYnvufLzD0Ns2/o8BttoGu3ghS5lmVOsctI0oaoKmloQNFfrQtv3jqfBUdKCV+iStM7AbMAQccTQEl1WpjTUN4ZJocGwLSxtkJaFMKpsE11W5LXgRQxtYbeCifChNE1RgZISrbpuWK9jfH+FUhZhbyDYGMPEQFGUNQYVpSksP0Mb0qRpGjSeoshFkHcclxs39vnCl77Ed/7Kd4jihCzPcT2JULquK38GJVHCMrvaCORu3TQoS9yw5WbobIjYXxSolmtYtyJVkQqjzvMcaQDNMuEpVhWmYQliJi9a/EDdMgctirIiz4WNalm2NEPWNbotUDFN4SQLe8oUd5fRMgiRfcUyTAxbMej1yUthObq2IwOAf83E+z/08ZcWngwlB/U0S5nP5xy9eMHJyUvOz8/aaalMWpVp0GgXz7MJwwDXc1uIWUNdVxubsTTDieAkzSO/pJTpX9psr2q0LYdOp0uSrImTmOGoz/b2DsNRn6aq2N/bZXdnwtZEGhqyLKWpS4oiQymZ6DqOTVlWJGkuiqkGq81KWu2Up25qGt3m23XD5xUiLT2/zb3TxvCaRhw0AoXTqAYMLVWUShmYKMqmIV6vsGyfQa8iiSIu9DmHz57z/PAZR0cvKcsSx5WGies3brK9u8fd+/cxbRvTslguV6SZHCy1FhXUNEwc00O3CnJVSx5T0ACausgAjakg9H3GW1uEnQ6W3eb7y4I4SVgulyJ+JQmL+VwYM75PXtWUtSipumnQGG3LYNXmXeUgploLuNEKYk1jUJV6Ax0X5oEhn6uqNxBwy7RwHZd+TyYIdltXCVoqxYOAwPPJspQ0TvAdj36vS6SksWAzzXMcyUW7AmhTjVR/2pYDZoM2aPPFAnvP85zZfE6n12urMeXrlnilaitrLXq9LkmSsl4uNwfDzQ2qrRbNsowsy1itVvKGsiyJb3l+O61V8jzamUDrDZlGmqbAq6+Ep6KUBSxwBT7rmC55kRMlMbZl4aOolEltOXS3duTn2Q8p64LL1WUbWa3ob5+ymM0J7FZ4ajO6RV2QJAmz+RzDDWlMm1rb2OuIbq+DaUhW2LAKKu2QZQVKpSjLoKKhqKGhZr0uMJUI0YVuSMscy2gwDbuNGxp4nicut6oiz3NhoCkD7Ycygc4yTMdCa4erSU/Z1uHatoXZ/hwUWqCZtollGsRpQc8LOLh+A50V5MsVs/MTpuenlLU4xdpRCpZp0VjyWl7NDmbTKWVZkpcVtuPQtPbZ+WxJp9un3x8SL+bCqzBlcqCF8NdOWBQWmkprqkYO77qR94Ft2zSdkKqUCbtUktdYponrOjSNTLWuLhCWbYEWhwnIlNtxHGzbIghkimxpRd2U5KUSFlhRUukc6oqi0DSNgamQaIHnYrsOOBYVdevM0hgK8rpC1VCVUtlbpAW2qegHPk3RYJWaz54+JS1rXp4cM9nfRfVd7ty5y3j/Gr3JNqPxhJc7jyiSjMuTEwHTt9M1x7VQdYOqNWmWtfyUgcSSLRPbtAgDr730V6wXc6qmgaLmYjCkO5ap+NbWFpOtLbr9AbbvUTUNx0fHrJZLdOtKRKlN3MNxXbrDAboJxWmyTmg03L5zl7Jq+NkvPibPM4ajCbquQFeMJ1uEQSgidNMQdhNcP+ByvkAZirIocWybbrfL9vYWeZby4MEDsixhPp1RVDV51TAcDBn0BnLwsizm8zmWbTOebOMFHW7evsN6tWYxm2NdxfLattTJzja+H+B4PlGS8ODhQy6nsw3QO80yhsMRbtscFAQ+W+PhpgH25OSE+XzOk2cvSJIU25LI1WqdYJoWpmWzXq+J0wTX89jb26FKE4qyJAxDcUaUJa7r4HkuvieWbeELtO+dFnDaKNXa83PSRKKERVly68Z1yiLH9oTZ1ul1UJYcDpu8IE1SslSAsov5uq0NVqRpynol4PMsSSmyXJqLXJssz3n0/EUL7S4Yj0aMJxM6Xki/22cynqCA/f09LEuBUXJ+7lM2BXlSkCxjdFWDYeB5AY7rMBgOxSqiYb1aU2S5rBGN7BM0Cq2vgMomnhcyGk2YTHYYDHo8ffpcWnGqRmDhfkiaiFBV5KUUA5RS1+7YjvD0LEciAoY0jCplYpk2WGzWY0tZEp+1vbbk43M2Ql2LS9dxHSzbAWWQpSnL1VLWhc0++blgUVW1uI/bqmfP9/E8H8/zsNv6eWHR1CwWKzS0sSFHyi1cF62EQSgV2SVNXTOfTanrkqJM2d3bpz+UiLqmjRYnCQaKwPPxXU8GGWkqddpK4Tk2aLudWNdEi6U05IaBxPebhjgVZlIQ+q1AbNDUFatVvhFZtra2cGxn49ZbLpYCzldiLOr3u7KPmybz2ZI8LwiDQOJfUYRlmphBS8AwrI2jt65KSiDwA0xlbBrhkjglz3I50JelOGCrCt20w5yyJEszaW+yLIHc5wWW5UisE3E+ZWWBoRTa9zcH8w3jSUvzkN6E8tiwva7ibEqUrM2zcbV/NE2zielbpkzhy9bFoJXa7ENXe0vTugdMw0RhSMxDSx26tuT1uHI1NW1jc3MFHLYFzp4mCVmekRcFQcvwTFMBVed5sXFV2bazOUMJ2zOXRsHxmDROuDg7w1CQRo7cESyJ00XrlUzw2xhs1VSkZbZhWIpAZmI5DrXWLBYLqqrGaC9acZRg2BamI6wU0zHw3ICyLJgvoNESS1nHEeeXF/i+S6/bIewElGWOVnKZT4tM2njTbBOLb2phYUm0TxyJVV1SxnLJHQ4HrXvZoGhKyqrk6PiIdSLg5TdefY3bd+5ydiLMpNV6jtY1jueh65IsjrEN2R8cpQgsC8cwyJVmuZiTxAmu6+G4ci7MMoH5KyDwPFbLJavlkl7bvB04LpaGPIpwzR6+ZTNfLSkXDU1ZypmoromWSz796OfYjkMQhu3dRlG0jlCNgNrH2zuMRmPSLOfGjRv0+/3N3aQqSwzL4sbNW1iWie85rbgsF+msqMhLuaSv4lhE/lVEHEfMZ1NxWLkuZZ6QRGtOT2UYfv/+fUajEffae5CyTKq6YrFYUBTybNf9CtuycRyHNEtpdEMURyRpzOHhc05Pz3j02WdE0ZpkPZPGw7WUVlmmQbfTYTQac/36DYbDIT/84Q/RusZ2fDrdLpOtEY0uaXTJYi4DXssJME0L24OwO8LvDPA7A4YTOD4552K2ZDCeMNraIY5iwCBOUjFDlIXgP5q6Za7VXDWDb9YErWm0SY2wh2zLopGITevgQdwsrXsWo71/tYOPspSzmYOU/NQCXMJ2bTzfww98cSwaJq7tUNYFy1XEarFiPpvR63Tbe/rnIrnStAMctbnnyN7yObtOoambiqo25P2rNUXdtO/p9g7Z6PZzN9RVg6HB0vI9ScKrkQhja/TUVetmbO/dIohrKt2gTLlfU8k5XdybxuaKpjVtMkm1An4bLTa0nP/qhqquKa/WvfZeqts1VjcClW/qBhp5DQx11bAnwO+6roVROxwy2dpib/+AxWol+6LptAMi2jidAMuLttxA1mwR+69+9mXrMDQMibQVRYEyBBZe1+KQyrMclDjXqqqiyHNp090IT0qg57pGUWOaBrblytk/z7Fad3vVxuiu9Bvjl/YZiXwaoCwhB+rPHVFG+7VXdU1TN9iO0xqT6v/vCPl/z8dfWnhSIE6SMCDPUx49+pSLiwtWqwX9dmrpeCIirVYLLMugKDJ6vQ737t5lNp2yXq8Iw3DTFNM0DfP5QlTe1mb+yxbgumoV4FImlSALWZqm7cKj+a3v/jqOZdHrBpRFxvOnYteuqpqz00suLy/odHv4gc+d2/dQhsHF5ZQ0y3h++JLBsM9wOEEpEUrGY5eqrlnNlxKj8wQYapgGljJAGdS1iD+mKkEJUFrZFthy2HOdEFP56Frx6cPPOD8/54Mff0yWlzT8FLDQysGyDWzH4le+/FV2dna598orhJ0OnX6fqtF89MlneGGA5wdkmSzcV79WqxVZmssBDNHHRD2tcT0HyzSxLQPHMumH7UXWMDh++RJp/WitjU1FJ/D4W3/rr1OWBSenL/HDgN6wz2hrm739HabzNXlRUdYCqtV1vVmUqiwnjxOWZbWZPCgFTVO19sxYDsVlxenLU5aLJUEYSptGlmJpg5OjE6aXF5wenrCzs8NkMsaqFTqr2J/ssV6vefTkM9arBMuUi1I36Eo2PC9F4DMNdCnws6bR1EpTV5pG1TSG3uTaz88vWK/XKAXROuLjjz8mDDt0Op12IbVFnLMsbt+4RVkWLJdLDEOmgtPpJavliuFwiOM4G3jojesCHZd41VWTTEFV16wXwgW5PL9oHS0yeTQtcc4ZyiBax+3/Fl6aE9jE0YrT02N8L8T3AgZbOwSdHlFZkmvNIl2iDDBshRN06Ax8tnf35Qql5CpjgWxQXC38NWmSkqYJ6yiiyAsa5IBoW8Itmy8jZpcXnL084ujlCy6nF9LalyVUFydUZUlZ1ZgGDBxFENqEoUfdujT8IqdqGrqWCa5DhoGuay4uL7Fdi8nOFuPxGNuymc2FY5BnmVy0+30Mx8XyPI4On/Ps8UOePfmMwXDCF7/+V5hMtphfrplMhnzrb/5tXnnnbWYnx/zuP/5HPDw6pmrOaZSitCzKpiGvSwJbIjvzOCXNcnb3D0Rsbs/0Pd8kWl5wcvQcW4FtKq7fv0MQ+MyXkTzPVUOUxFzOZ1iui2HbREksrkz9nCAIuXZwHc8PCDrhJn4RRRFZlnNxcUYcx5imSb/f59r1a6yjiPPzC+pGBLAklb9rMOjjeS7DQZ8qb0jiFarSqLph1B/SDUKGwx6mqUgWK3FGRSlNklHnJVVVSDthLhZ0fxBiKQPbAjtQuL5FUdXUZcm97Qme43Fnf8IyTvjw02ecfzrlv3z8MZbl4Do+d+/d4/qNG/yNf/Ov8ZXf+A4//tPvcX70gg//5Ps0aEadjrgOdY3hyAYUJRl5qRlvb6OMGivNGfX69MIO6ygiSVOKNOIsXvM7/2RKfzjg2ZOn3Lp1my9/5av82te/yW//1l/l2ZOnnLx8yf/j//afcfLyJT/80fugNXVVcnY25aRt/PJch69+4xvs7+1z4+ZNTs/OOb0438ReaSS21AkDHFtEDs91efPNt/GCkFdeeZWXJy95+vQZuoF+v9fuRZpfefdd0iwjzzIeP3nGD/7sR0zPz8njlLffeIOdrS12x0PKquYP/tXvY5gWveGQr/3qr/Ld3/hNdidb9LtdSsMgSlP+8A//gGfPn/PHf/RHzKYzzk9PJEp39z6/+vWvcfPWLb717W/T6/eoW75VlUXESUoUx9iBg98NiPOU2XTKJx9+QpHn/OJn77UVvGLBR0OVR+zs7tELPKo858njT3Eti8lwCECn22dv/xqu57JarqiqCu81j/lizo9/+h5ZnpPkJb/6la/w7e98hz/6wz+Wkov79xlOxvj9LoYpEcjT4xOOXxzx+NETZtM5uzt7oBSfPnhIEAS8+eabjLe3eeW115jPp6xXK1xHOBJbkxFRlDBbiPNR2iFHjMYjDp894enjR/T7fRzHZTGfkaYxL46es7+/wyuv3OOrX/4Gg96Ajz/8BRcXF5ycvCSLEl5MFwJ5LUriRHiOmFKGce3aNWk92r9Gr9fl4GCfdQuqfu/9H/Hy+FgiCobBjZvX6XY7HBwccOf2Td56/TVmiymzxYxOx2E4DBmPJiKqOD7LxYIizwh8D9dTYt1vbPIspa4qCiXO2PU6wXMcwsDHUDamWXM5OyfJUpKyxLJtif61dwyRv2sawT1IW5mhKJtKIqMNrFZrHj15zHQ2pawrzi/O5ZCtxVqfxBlBELC7v7dx5W5tjTEMxdGLQ+K4gbqNzOkKQ8lAwHMdQt8j7HZpGs3p6Sl5lvHul34F27K5vJxiWRbXD66R5TlVXYEhB/Td/X2SNOHk5IQ7e7t87etfb0s6TH7x4YdcXk4xLHmOXMfE9Vx6LX/RMm0CXxxDvU4H2xLgc17krNfLlnESts7nqhWFUgLfxzRNgsCX6GIj0/oC5OLXNOK4sGx2dnbo9nqMt7cpioInTx9xfn7JYr7g+vXrBL4nF6u6ZDWfkbSFNednZ/zig5+zPZnQ7XYZj0NQiheHh8JfcRzqqmoHnXIbkkly23DXMpQMw2gZk+L4v7oIWbYtbI22aU8GtvK1V4U4nqqqalmk0mQVrdcizi2XDIdDBoMR6ygmy3MCT9xqtOB1w5BBUb/f32AEFos5WZYRRzFpnHDy8mXLKPEpqpKirpjPZhjKYNATN93Tp083n8c0TcaTiZS12BaPHj1iHUWcXQoD8fnLYyxLcXzucu/ubW52r/PTD37KL372AaaWJmkLWxiCbdOviclyucS79Jlsb+M4DsPBoD1j1nS7HSbjMddu3GR3b5+8KOUeUFZMpzl//ufvM+gPUJh0Oh2+/OWvMej18ByHRw8/oSgawu6Aqip5/PQ5tmngmCZ5nlEU4jTOi4LBYISmZr2aE3Y77O4dMCxLsqxgNpuRZRnf+NVfpdvrUdNwenbKP/p//1f8/NZtnn/6GV/56pf5B//hf8DHDz7m/PyMT378Hsl8Rn6+IHQdtLbYdjt0b9zFtI44X60Iun1c32eytYPjOFzOphjK4N6tWxgNnB6/ZH4+JYpi5hdzLMvi2bNnvHx5zHq1wDYVoesQLRaUdcX2aMDu3g4nJ2cYkyFfeOeNVviQy6YyDGbzOVpr3nr7LVzXE1G7qllfnPLToxf8KC+IypxKN2xt7xAEIdtbu1RVzWK+oKorylJEO92+38qq4sXLY6qqwjVEuOgPekxGQ8bDAR/+/OecvDzmxfPnFEXB4fOnZFmCaRlczqYcnbxk2OsT+sFmf5Pkh6znRVGQxImIpFnaRsMacb8ZBo5hsXd9l3feeYed3V0Orl1jNl+SJBmvvfYG3W6P/+h//zqmadHpdanrirLMCQOPwHfbtrUG1/U3KY66acgLuXN5nkfQHWDaHh9/8gnPDw/J04yL83OePnnMbHbJcjGTPc+1yPOEusqxHYnVXZkvtEaYr2WFVWvcRtG0AkhVFphKYUtFG9QyzCh1iVEqbG1TllAXBRfrJRPX4XZvwDwvMBuD87MLHj99xhe/+BYDQ+F0u6zzKe9/8glVXWBYNo7vEXQ7KFM4mL7tb0Rf07SwXQfLtqSYy5RG1UG/j2kaRPGaUjfM40iYa5aYDhxbBh9VU+A5LnWtiZIEU0Fjm3jakzt4WaLzAtcPMAyTChFAkyxCWaYwQwvBuwz7YxzXJwhDiqpiNpvjGDWe66FNs3WQNjQNYIlTTDWqReYYWLZNYFp0OnL/a+qGNE1ZLBYi3noBpqFkgI8UCMjnE/Gr0TV5keH5NqPxkDAMRLtQJqYh369AwmXAUuZlW7ZRbAYIRVVQ1zKgvyri2IhmvyQCbcojWhcvQFGYIoQp2iFiC3FXil63C0BTp0jyyCREhIIrN3LeCTZGGvk7jM/duLCJ9ykUtFB20zClWbQsRWMwZfit0JjW58LV/6+Pv3yrXXuRqipR7JIE6rrCNNXGzSSqmN5snMvlkjzLN+1fdV1vrGedjuQmoyjGsiyCICDLsjZHbguUrKqpgVqLoFIUxcbZMb2cY1kOW5Mx3U4obpaqIorjTctEVVVoFLbrCJPFlJp5zxdredXIAyyHyzY3bxgYqtnU4DaOkOVNwxQnVl2jERq8ZRmY2kJpZ8PIKMqCsqgp85SyaDg7u2Q2WwImTVMRJQkak0YXhL0Ay7EpK01WVMwXK9KiJGut0FGS4vkBru9TldUmY11WFcvFgizNWcyXG1dG0bosXE++HmFDmORxIKwnBVmW4jg2tik2504Y4loWgeeSpgmnJzJpbdoDkuf5OG5BraWGubkKirYHX1HNbWlwqWtcx2knuCY1tAptwnK5aidwWqyh7SJ7VWsMwkhybFtea+RRcmwH3/PpduUQulgsUANxGpiV1eaB2Tx3oDAMLSKOIfXAcpYTJfzKKm0o8/OJnWXJIdiSDaDIc8yq2jggyrwApSgNgzzNKPJ8o1pbrQ3SdV2cdtKn60amhoBpyEG4ruqNu4Wrr1lrGi2OMmmfunKIKZzKJI7WxOuIupTpQNAb4HgFSRK3B9QS01R4voN2wDBslGVjmAZatSBS9Xmt5pXybrk+QbeH30kkX5+VKKUY9H2qRtONcwbDIYN+j7DfYXw5ZnF+TrpacrqYk5c1TZnjOCahZeMZCgfdNquplgXUYCuwlEScmpZj4fs+XuDhOuKuSBJ5PZu6xtFi8XQ9FwyLbL2iyhvidYRSFtOLS5RWDLsDAVpWA4LBENMy2bt1h8awOHl5KmyOJJEWi6bBxsBRhrDQ2oUdtMQsaHAtk1QBdSWbm2FgKhGanavntLlaU2qU1UizhmFiWgjQV2s830fluVhn2wvE1Xs2jhPiOL56RMVV2TRo3U5X2qmq1GSLQFgXOXVRoEuBejumiWuYuIZ8P6YyqG2BZunWEVW0k8WmabDtGpSB6TpY7XtBGVKLqpsGGsmUO7ZBJ3TQqibwHbK0Ic2iNiq0wnMd6naCa5jgdzr0hiM63T5plhIlKabdcjVsG61MsrykKBusVUSjG/IskymZ65DnNmVRUitZR6uiIF5HHD5/jmM7LO7NQYnLdTQc4zour7zyGp7nc3Z6QpFnJEmKWqzQli0iUa/HeLzFzu4ep2dnHL88aUsrqr8QbYmSZOMsaLRmFa1BI1PSJCXLc4rWwXKVYQ+7XUzbwbJkkt7UNXVZUZU5ZZFRFhm6riRmXZUkacpqveL0+g1m0ymDbo9et8dytWK2WPD06VOePX3G4fPn5K1D7Io3t7Wzw3h7C9f3MG2bpqpa6LGi1lA1DZ1eD8Oyqeqa/qDP5blwq3QlINIsSWSCaEC0XGBZJvT7GAqGwyG+6zEejdrLqsmg38fzPJbdBVVVYpriZPWDEGVYoHJc28E25PKbFyW27eK6Pq7jkRcFs/mM5XIp7UW5RFGbdr3JihytFMv1Gtf3sByBElu2SVUW0DSs1mupMwb8wGc8HsuBMAy5zKfkWUrUwm2LzJXnbh2xWgYsZks6QQ/f74iV33HZ2tqRaWCWkWdyzsAwqbXGcm1sx2a8vS115GGAHwaE3VBYYpFNXmTMl3MCP5ABTfs+lcpi4efFmYBiXcdr3YoOlmlLQ4/l4Pshrutg2+5m2tvUMsU2TbedgkLVSDUzSmHbUuhhlnLJgUoqoJXCVGZbiazQLdOhqkpoW2tcTxPUEpdJkkQm3+25qChLsjxt17HPgdO2beG6toi5dSUReS1nGzQorWi0QjUGRZaxXizbP0978RO33RW83WgdKbrIKZsaTPnnvu+jTJOiekHVSMNxozVFJXGRRtf4nrAym7pCN+JAN67YJkVJqaVJri7r1tFaSyxCGZs9VWkZuBhXnCSu3PridNZ1g7b1ZtDZaFmDr5idVS1nzc06jLhxi5ZHqWuIIgEuWy3/s2kdzI7jSHtRyw7V7X5WV+KQahznL1wormrMq7r+iwfxX+I66fagdXV+Lsty88tEXpuivYhcteAZhpxtrqCvwGYabZkWltlgthHZLMs2otiV0P7L62XTXnR0o2mchrwoSLJUHAAgrB3UhqNFK7Y5rktZyfO3Xq+J4xhl26R5TpZnqFxT5OJcW/Z7AMIsybLWadC+31Bc1XuXlbBE0iSVu0HrpJBzmI3juqA1SZRsnARlKbHIMi/EMVyU0IBj2tRlTVZlLBcrlssVV+1MeV6AbWIp2nSBbh3qVusqEfaJX/t4riOXQbMUpJeC0A/oBCFxkWAoaOqK+XzGw88ecO3WNa7duoEXhgwmEzq9vly258s2DlyitWrjfLKWmEoiPsPBkEY3TOdz8izDs+X7LfKiHYw6VHUDRoPlOLi+T6ffw23fe1vbW+KOdsVprpC7zVU7llJq04ocRRFVJd+TocBonShNWVCkiZxnqoJS14IosR1ml7PWoXNV965YLRfEcYw2xCFxfvqSpq4JHGmDsy3IPIfc9zY/z263R54Lt3E+n3F8dMRiuWB+eYmqKqog34i0TWWitbhA0jRluVq1DKUC35dz5tZohOt60Gh2dna5c/c+48mYre0dMBxsO8J2XWzXpTcYyr1Pacq6IskkNSLnuJqm0eR5vTnHFWVFFCc4ro3nuVxcXDCbTnkZ+viuK67n5ZIiz6jKgqauaBpFUwu/SRsKg6sB9FXUWt5bSitaVJEMj7WsSU3L/Pnl9UKjcDtdQFGkEVlecjGfY4/6GFfPEYYYN7KcWmsaFJWW5vUoS7FMhR+0jXhaY2qNoYFWZBPnkNyRtVLUWtZxq3XNGurzlIBuxYyr9fkKon217ill4Hs+tmUQuDaWbcka1YDC2LweRgsgVwYYSlA3pqHbO03bvmaozdpvIMVPDQjLUV+9RHIYUY3eLLHSBnq13Er64MrNWplmu+eLtnEFsK/TBmUqtDZbPUMiaY4ja8OVAylL082dRzcVTaMpC9lfr57zX2btXX0YhpRzNe1rpIw2cbW53io5z+krsYg20aVah7XRGjEseW7V1c7SsvwwN0klW12t+S2wvr0Ty51UHvCrZ1K1ZVWGkvyIaYjZwzRaR5fSbRTzLyc+/aWFp06nQ5qmXJxf4rg2Yehj2RbD0YA4juVQoxtMyyIMA/I842c/+ym2LTZI2YjB83z6/T737t1jvV5zcXHJeDzmzp07Ans7P6fb7WFZFvF6RVHmNC2D4mJ6SbSKWa8y/vAPfgho/v1//99iNByQtq0I09lcprRphud77BzscePGDfwgZDqfy/fS74GtiPOIvM45vTwlDANhFLUP1BVIUaFxbJMw9CmynDzJRMW1DLqdLrZtEwQBeVGyWiccHh5x+PyYp49eMJsuqcoa23G4++qr5HnF4fE5KAdluHihh+PavP+zD0mznDwv8IOAV157tQVxCnfKaIUapRRlIZPENE5aq6DGtESNlktT2U6yFK4tFmrXMnEsi8Cx2RqP2J1M8AIPy7Z48403ME2DwPcoioL5fIbr+/hhSKfXJ+x0wXBIs5xodUhVVlLbrhSGMuh3e4z6A45fHpEkCc54sGEENE1DWYnT6aMPP+Tu3btcu3ZAEAQ0TcPTp88wTXmQR+MRO7s7pGkqz4oSWLlt2wxHQ27dv83JyxP+7E//lDt37rC1vU3YCQGIkrb+1jTlTdAKTI7ttXZgWxaPuuZg/yZRFBFHGYayaKoGA7GT60aT5wXrtVS9xrGwO2az2WYiebWQrhdLCtdlb29PppGt0FQVogR7jkPgeSil6Pf6f8FeX9UtoNZxiKKINE2Zty12futOM5cGeZaSxxm26aICRRqtaMqCy6pCozFtE9s0CV0X03GwXLnMSJ2m1R5GRGRThtleeCxsy8IyLVZrOcSdvjhEqYY33r6D7Qa4gwnXx7u89to7OGaNoWpOjo44f3nCf/kf/59ZvDyizo4JHZfJaERe1eRZiu/IM+VbBkWlcRqN3W6inufieSHbu9v0+j0uj89YL5ccHR5T1zXdXoDjuijLpBt0GFouPc+lTGOqvEArk+effsZ6OsczLc4vTvn00UPuv3af3f19/r1/+L8iW6/5v/9f/1MeP33Chz/9sYC/lUkedkmDkEUckeY5q2hJUdjEdUHoueyOx9g9hXdVJKAUdZZTNJqh61FriKu8jXd50ojWaPr9oYDVUXRCEQ5evnzJp59+ytbONgcHB7IRa81iMWe1EnZOlmYcHh5uJsxXh2ejBQraloVqNKuXpwI4LEt6nZBRt4NvmTh1TZNmGLZJr9Oh0Zo4TYRjsFqglIkyDJxW6LdcWR8MFA016WpFbSgaA9Z5RN6kaLPB9jXXXrlFtyhgtYQGzApW8zkfHb/g4Ycf0B/0+Af/87/P9s4u3/z2d/no44/4b/7JP2Znf5u9azuYrgOW5uT8hCRJSR8/wzQVYcdjMOizPZlgKonT9HvSTNMZjciKgh+/9z6np2dyeFYGYPLd736Xe/fu8X/4P/6fuLy85D/9T/4Tnj9/xi8++IDV2QXH52fcv3cf3w+5dfMOe/v7/G/+o/+Is7NzXD/A8z1u9G4Kx6gqOTs9IU5i9vf2sSyLTx4+IFqvOTo8kqGDZTGdzzg9v+D69Rv4XojjLShqSFcJRdlg1Jp+J2TUC4CS9XpGU8sF7vU74rb6wY/ep8lzTo+P+Oa3vs39+/f5wz/5Hs8Pn/On3/s+eSoDgF6vy+TWDe698gq37tyhPxpSNjX/6J/8t2RZTllUm7XHb9fld77wNtevX6cT+ORZxh+8+XukSYRjaI5fvOCjX3wgRx7dMF1EvDxco/d22dvb49/9n/192etsh6vqXVp3pKKmLguOX7zg5OyM89WaOi9o8hJVGXz64UM++vAh57Mp/0bZ0GiLPK54/OQpv/d7v0ev32MwGhD2eoS9Hnv7+zRNQ+fwOWmS8NOf/YRbt28TdEK2JmP2r+3x6aefcH55wfs/fo88L+gPx7x6/RX+jX/jr5Em8kwbFsxnBi+evyDPC7pht+Wu9Tg/OuOjn/2C7mhM0O2xvT1hNBryP/kbf5PBYIBtmCxXK46OXnL08pij45cMRn3CMODazRsoBZ89+Jj5ek72LKMTdrh26zonF6es04jRcIhpmBwdHeHO54Td3mZvM02PreH1TfwmjysynROpkrpqmIwOcByBlhZ5LmwtMwAF3UGHuq6YXlySVyXxasWg36M/HKJsc9MM1miN135+UxkCTTWhqlPKlktlmuIOE/C+geN6rNdriQZZJko1NHXBaj5DayRu6nv4nk+v22U47PP06RPOz8/J4gjdNIR+0P6dSlrQsoLjJ4d8vPoIL+xgOQ6D3kBYLv0ehmniN8ITLOuadRvjH+0d0BkMODg44OzsjPd++jPOpzM+e/KU+XwqF8r5lKZp+MY3voFt2zx+/BlpJg1I6LYVrhAY62opbVhbkwmuaRG6HqaGZBVtzkie7aJcaVzWSHQlzzIuLy9lku37pFlC1ZSYtoVp25RNxTpdsz6K6PX6bG1Jc1XVVCyWM+JkzY3b18mLnCdPH+H7Addv3mI8HrK1NeL6wQGDwYCPHzwQ+PgvcfzqqqLI8s0F/+psnmUijOe5XKQtW4ZGhlKYrfvrSnDK2zhFkiREUcRisWB3a4dBb8DF9JK8KFr4usVgNKKsa+I0JczkEo5loxuTuBHgeKerSJKY58+fMx6PN6xMifBVGIjb3zJM9nb3NueXy9mUlycvcVthxLUd6k6HwWBAHEU8e/q0HS47rKNI4k9tnGOyc0BV1p8P77KEMs05f3nCvdt3uXPjFn/yh3/Icr6gLAQwH/idNu5YUWQFcRQTx0nLOPFkMBB08HsBW6Mtnj59xtGLP6M/GEh0WIsoNu72GXR7uKZFneYszy9FEEtiPvjZT1jMZ9RlIRepGmlPNaS12Pc9bNehqmt0I5fLKIrwWxREmqZE65XgHiyDqiyJ44jHzx+T5ilvv/MGJy9f8ju//894fvqC7/3oz/jtv/5vcvPmDX5r8jeJpjPe+/0/IFnOmM5OaTBoMKi0gWE6VKXwZV69+woXl5f84R/+kUSplAzny7JivL3LsIHGtDBcn3tvvsV4b4/eZESWJKRJzG//1d/m3v17vHjxgovZVBoni5I819Lw3A3pdDt4nst0OiVNYh4++KQ1BkgawHd9As/Ec0Jujg6wPIfnz4+4PHvJn3zvh9y4cZ2//+/9u4zHI7a2tviX/+JfcPjpR7i+izIMgqZCGeDZDa6qoEzRVY6uK+7fu8+d23eZT2fMZlP+1e//rjTOxTHdXpft4YDhYEA37LB/cEAYBPi+T5ykPPj0IWmScHZyIu1kvs/Ng+tsTbb4a3/tr9HrDzifrhmPJ7z77peYzqecnJ2wTjLSsiSvSqwyp2iEqzOdnrNcLTk/P5XCl7wUXITWTKfz1gRRtEJQy/5F8/DTB5ydnXLvzi0cx+Hxo2eYhsnB/j4WChOo84K0KPAsC9s28BxJQFyhXDRaBo3KxNYGtgazdTyVzVXTunCy6sagdhxwHHZu38PzA9774z/idDbjBx/+nDdsxTcsE9Oy8U0HVUNZ1tSmSWUqZssF8/WKUmtxre1toyyLZRTRDQNcw0CbJo1hkFcVNmA0NkVrNHBacdMy7fa1kK/N9Xzh9bnC/zGUKeVSSvhzjuvy2s1X8HyfXqfL2ckJpy9fohsD1/E3A3irHe47zpU4qrE9D8s0ycqKNI1JmoaqETeSoUXUqHUb69MyDL8So7i6uxpKXHmVxGKrqmxFwYqqyqlKiR43dUORla1gVDOPFuRlwXAwoa4bhqMh/V4Xx3Go6orlas7JySmz2Rw/6AiSpJRYqKHsX54pAGxMIl5bymGaJk2jKfJy83Nu2oGQDLjBtm2ATWtrnosmYVlmy9uVWB7t55NhQiu+AVrJM2ZasrcKq1YA7o0W0V+Zlgwdr7A4lolCHLpKGbjKoqktatfkym6kzP8/OJ5s26KupKb0yq1ydVm6+oau/tn3/Y01WKpdZTKlbGl3MZTB9PKSJEnRdUOR56xWYrF3HYdrB9cIw5CjF4ckcSR1kkAURa3rBvqDAYHvs72zx2RrhyD0KMuCsFvgh9BvFN1ehyAMGY6G2I6NskI04DoeQVjR7Y6JojVRtJbNxbakUrauCENpWCiKHMe1MC2F49lYtrnhMawWKXUdk2VnJGnGbL5sRY2EIPSxLRGlPM9le3+HxSrixckFWZ6T5hlhU+JULllRSMVlXaHKnPliITGs9vBhmGZ7gDTEplfXcpBtGqqq2Tx0AscuW9Ms8mcAVVd4jsMgDBl0uxtXkoEomKp9UDUax/uc+3AFXE1TcZopRbtAyoeWdxMY0qJjWKZMWQ1FEAaUWcViKW0x+9f2GW+N6Q1FVKzrirAnr5Hj2+2Ex6KmFiC4aih1heVZssg2FaZlMBwNUQpm8xnDwQA/8Km1R9WyuZSSBkLbtnEdl6JsyLJcJqIKBv0+jmULGLdtbLg6/BVl3h4u5M3VCTsbF9ZV45/RCk9XE76rVoKmrtu2ArH3NnW9OWDW7aHN3LgGq43CbpgGtmNL9bAn7AvLNLExKMoQ1/NwPA/X93Asu/2ZtW2XVQV1Q94oVFFhZIUcHrXe5G4tS3LGlmlvhCfdfs0SSS05n52jm4rBiU/YGTAY+9RoasPgfD4ljldcnJ+zXiy5/frrzPpdHi0uqU2x7Dda2CJlVdFoje/4mzXhqo5ZKQvtCkOkamHs0TqmbieyhiGtLkmSEijZKK9cBlb791AVRIsZn376EWG3S3c4wPc8mYDv7WACb3zhiwy2t2kci/l8wdnpGb1un27YpUKTFRlhGOLaFgEegevSCXw0iqKqN3npLEtRTY3bNhY29ecNFHlZiLuvqjEtES/ruiZJkraFxURryMtSJs5aGBW241DkORo2n6u6mqS0jVhKSS22YZq4li3NgbZM003DlAmIQqZljcI25f3Y1DaB5RDaHpUSNo808aiWC6BQ2sA0LGzHRTUVhS5pKkWtJIpqYGDSYDTQlLX8O9vB8XzqGqoiJ1nHPPj4U3YmW9ya7OH3e/i9DpgmSVZSV8K8y4qcsq6wHQvDEHdsUeQkSUJVliiQ6JTrUZsGuhDRfD6f8/DhQ65mWtvb2wLJfv01XN/nK1/7Gtu7uxRFCQaYtsnbb73Nndt3mM3mXE5nnJycMJ3OCMKOHGx6faJYmBIoCDoBnucIf6TIKVp4ptrsZWoz3cMQ50/VaBo9YzAa8aVfeZc8jSmymHS9Io7X6FriNGip/n377TelopiG05Njqqrk0eNPOT09habEd2UI0B8M2Nnbgabi9OSIk9NjtJa9TmuN5/jYjgthhzwvmM3nDEdDQBH6PkWecXZ+SV2WTIY9tnb2+HpvQNLWgDePnrJax4wnI4ajoVQc2w5Bt0ua5cKyycVpnEYr8izl5YsXrNZrccV6Bsp2pb3KtrFdcTMYSlFXJfPpJbPLS9I4xrZMXNdu96YKo2lb2uoSR4Hl2mTRiscPPuGi1yUMQkzLoBOEdIIOlpHj2A5KQ5okTC8vubg4YzwcsrOzRZYmLBdLcUmpBt9z6A16dHoBnf6IoNPDcURUf/z0KZ7riTtICzcp7PW4YTvs7m7R6YSs1mtWyyWfPfyMwPd54803qcqSi7NzolVEkQtU1DQsaY8zTKazebtn1BhaYWLg+4FE4tr3cRwnLZ+yEdu/1iRxJO62RhwCpmtsHDni0pVpdJIkNC0fitbm7rQOK1MZ1Frqoqu6pqprHM8VgaNumSHKwLLr1nUMaE2aJERxBLrlazSN8CHKkvVySZbGXF5csJjPRBRu3TsgPwdq4XOZlo3jeW1LTkHoyKAjass3rvbgGrnIup5Hv9uj44ebembHssnTjOMXL6SSvCqxlDQhOZaFZZioRqOrmjzLpXa6aqTFSSuKXBwxRS6OojzLBErrCVPINAyyJCHLcgajoezZQYChFBcX5y0Xo5RpuFItq8PYTLuveIN5nrc11fWGmblerSiqshWBPbrdDq7jiKsvS4kiiyyTaFZZFpvzUtM0ZHlGUHW4gqUrpTeDh7KsUIbxOUvzX5uC0+4X0ia0Jk4SsiwljmMswyKOIoqywDJNGsduuZuawPdBN8TRGrvXx7QtiiJvjyU1i8WCs7MzqrLctCRZtiXOoEpYOnUr+pRlseE8GSgc28FrkwudjvA4rXbofBUnCcOAbrdDoyWuOuh2qYMA++5d1qsVl+dnWEqRxjGGFlf+zvYugReICFoUxFnW+pAkHnOFPDBaLpqBcLnqqmI+n5MmKU1dk6cpTVVh2XKO6PW7BIGPriuyqiRJhEGpaAh8j7rqoNBYpkEYBK0ruOJqiF8UNXmRg1aUZUWaZhLJHgwpqpp1JK7+KIqIVyvqsiBaLMiLnLopsIBRt0u6WvH88SN+/uMfMz074971mxjA3q2bZMmYeDVgvlgxmy+Z7O/Taxouz6foBtI4JU8zEZ0sm17YwfN8aaGsKqqqwbYdTNNiHUtzXJxmbE0mbG+9xmg8RgNPnjwhjmPu376LY1hMzy6oq5L1akVZZFi2iQn4rkuRppRtnKaupBQoiiKiKOK2ZzMIPK4dHDAeTTD/P6z96bNl2Xneif3W2vPeZ77zzbnmCUABqCJQAEUSZA+kJocky7I6ortty2Fb3+xQOPxP+INsf3Y72o5W0KFWS24LJCWKIEEABDEVqlCouXK8mXe+Zz573mv5w7vPyWK7LcMRPhEZmVmV99xzz9l7rfW+7/P8Hu2xNdpiOBxQlSUP7t1jNplimoZ+t0cYhizCVRs8VNM0JZfnZ4RBQK/XF3eFH5CFIUEQCNPK97h+7ZoMLiOf4WBIr9vj4uKSs6YhThKstfh+wPXrNzg4lIZUHMWMhiOSJEE7LllWsFqt8HyPy6sLPv3sU979xbsb5t7Jk8cSFNKyb2bzMVmaMl/MKPOCsigJwxBHaa6uxtKMallojuvQNBV1VXF5cU62WlBlBdooslVKEASEQUhV5Lja3ShpTG2pK0NdGqwDjitrtue4LRpErHxl3VAbS21kzVBG1nmFAseh0ZpaKa7SFaooOB5fMU5X9PZ38Hsdxos5RVniOe5GFek6Dq7jghXel9sy1BzXJYxiup2krTNsq2JSbeKrsFSNWUuJZNDtuC7Yp2uX60gAk6malkstKhy3fX9BnDXKWhbTCVlb5ysra6O1rUVOGgtglbiUmoa8tqAa8hoaNE4ci0Bht8s4XTK+OKZuKmFKt2qrtX1s3a/QWvZuz8reWZYFSZLQ6/flrO2uk+sBzOYzE0WT8HJN62wBwzqBsGgt5nbdjFS04gpRJCmExbV+5rWNbp2MLirPvxoi8bS3ojZnhXX6res42LYn4zhivVOIOrr1y7XP235YtM+j2Chc1+FwSiu0dXBQ2NaOLWcQu6llldaC3GpfI1pqi/apf1XB06/eeArDAKWg0403/+3zoC2QTdZ3XYmtbQRWmqUp6WpFGEjXczqeMr4cs5zPRWpc18xbHkLgB8RhxFe//BUODg74wQ9+wMXFBXmRU5alxFfiopXPCy+8wM1bN3nti6+zu7tDXedUVY0fjYjCDv3ONsPRkG6vS5pnNKbmoJUg53lJHEdsb4+4f+8e9+/dxfcdHEdR5kuMqYjjmDRdcnJ6RBA6eN6AJElwHJe6gDKv+PjuA64uxrz3y4+YzeacXV5y7XCXa9d2uXPnBts7I+48c4sg9FllBQ8eHvPOex8znc94cjqhN+yRdBIBMzsa3w1QjsPF+EoudyMKMqc9lGn1tLFhrSxCRVXgONJ4qtq4d5GKt8qNqmY1n9FNYg63tznc3SUKQrELWoNppKgu8hS0kuLCD/C8gNliSTWeUa0P4Aq052CUdEZN00hMpTW4gY9vG5Z5itdUdIZd8lXBvUcP2d7e5mvffIuwbdytpwVbe5IK1RkkrGGWsR8SGoFZVnXJsGWRzOcz0Jbnnn9WUoXu3+ULX3iNne4WXuRsZOMAruOLRS+IODsbMx7PCAKRGF+/eYuqqjg/O98A/ooiZz6Hy8tLlsslcRzT6XR44fnnCVvG1/rmXy8Od+/eZbFYblgMn4+jXMMC1zafz7MU1of2IJCUPcd1iNyIpJPIRKjbwdUOoXJbGJ2laiqqusRUFaZuRL5vDcssFflz1rSLfkNe5ZR1hR/Fcu04AhH0XWlcuI7HbD5nvpgzGA3wfJd7D++S5yl5tWB394BXwx7G82ncgp+8/XM++fRjlmmK57n8rd/760xOj/nlL34OylBZKI2laAxFk+NoTSfuYdvpUF3JgcYaRRjEnDw5pihyFtPl5rryPA/P9Wlqw3g8EUuk41AWOVVR0AlDHKUwTc747Jy//Nn32dnd5/r1WyzHE473Dli99jI7uzv8jb/796jKgq9/8Bbv/uI9vv2Hf8hguEW/N2RrPqIqczQunnbYikJC16ETeDjOgqpuSNtDlUdDFfokoVBV1olYwsCYMVkuZKLhehS5NLOuHd4gzVKSbgelFct0RVMI62z9eY/HVQtKVBv5bZbllIXYTR1HUWQ5TuDLBNtpEzNppcUarGOpTYNqlMSso4nwyKIuu50hS2vIbIP2XHA0DhrHaLRx8byATtIlzZfUeY6tZB1xVQ/QqCrF5BX5LMOLIryeRzLcojNQLM7OKLOUb//rP+T69ev84//F/5Le/g57d65RZhWTSUrRRm8v0xSw7O5sYW1DupyTpSsumxrX8XBdn2uH1+l0e9w7PmoPFTUnp6ccPTlmndp1enbG9es3+E//p/8Tnnn2Gf6zf/Q/4/HREcPRFnEUMhh0eeutb/Lccy/wT//pP+Xtt3/G/Xv3Wa5EAdEfDAA4OTnm5OSYF19+nu2dLTqdWKyXRSZN8G4HY6QodDwX13NlkqM1g60tlOtRPTzi1jPP8Nvf+i2OHz3g+Oghf/Hd73B2ckHqSwz9bLHg2o2b/MO/8T/m7Pych4+O+PTTj3j77Z/ywafvs1ot2RuMGHb7vPjscwxGQ/YO9nnvww947xc/5fhYhhjXDg7odnvcuXUb1emh4g4XZ+ccPXnMYrHk7t5dXNelLEree+ddQt/ntdde5QuvvcZ/8Nvf4uHD+xw9PqK0/4bTk2Oef/EFRqMRqyLHiyJ2ul2ulksenZ9yeXHBYjbn0d3PWMymXJyd4ns+1w6u4bWDiGTQIxn2GYxGNAjvscxSPvnwfc7Oz1swLCgM06tzstWS+0Yk2f1ej44f0On0OT+/4E9/9lPqWtbLf/gP/yG3bt1icv0OyzSlrBtsbXjy6Ii7dz/ls88+4R//4/8Vb775JnVZ8OjRIz799DNsU6O8hFvXbvDiCy/Q726RRF3uPrzH5fiKf/3tP5RoaNNwcHDA66+/zo1rN3j5tRu88MxteknC/+2//C/58P33+eM//CNu37nNX/vGX+Pk5ISPPvqI4+NjFtM53biDThyG/S2qquLBvQeUZUWeF0RBQBwGjEYjoigCoCgK7t97iLVW0syShH6/z9XVJcvFfDPVrGy5SUTUWrWq8ILlcrkJO5FCW0nalNJoFGmeUuZikS6rkmEwxPdlr26ahsYaHK2EY9Y2maaTMePJhEGvLwEeTU1dFOSrJefzOZPJhNl8Sp5n7O3t4rVps1VVcXJygqtdIj8i7nQIO10ms6moaJTYZ87OzjYcF+2IavDGzZtsb2+zM5TUvtVqSZ0XdMKYbLHk3Z/9nN3dHUZbwqzzPJfIkZRF1yhs2ZDOV+R5SZ7l9Ho9giCgzDOqsmbhexhjRJ1clnius2GHjq8uyfKcg8N9ut0uw+GQk9MTHj16gG0B09ACqz0H13Nk/24EPpvl+cY2WtfVphB5cvwYYw39fpfRaIv93R20djBNw9X4iul8xmq1IM8luRRFG+TSMFss6PTEUra2va0tkFlegBIVLY3EYG+aK+sBTpukd3F+QVHk5EWOtppslTGdjYXzpBCmlMBR2RmNWpfCGd0kxvMS5vMZZVkym1lOTk745KOPGAwGTMZj9vb2GAwGAibPcz788EOstexu77BYLDg5OcH3peHU73XpdDoc7O/T6XQYjUZtwpPHdDphPL7i1q2b7O/vU9XCBnWti+e4DL/4RU6Oj3nvF+8ymY6ZzaZUWYHrOLzy8qtkacaff/97zFcZJyfnxHEswGPl4LkhvZ4oCfKNfTsiTVOOn5xQ1w2e521CXzrdBNdzOTjYlXS+Kme1WrFYLMR2HEUcHO6xVUrUued5dLsd5tMZZyenm1pnsUiFDaolCn06XXDtuub6jds4bkBR1Hz26V2Ojh5zbUvCXybHJ5RViaEh8jxefeZZHhwd8f5nn/Hw7l36oxH/2X/6n3P9+nVe/drXQFsqm/Peu+9x9fN3ePH2M/S7A77zb/4dy/mCi9MzFos5oXbpdXvsH+zTHw7ww4BslZJnBUkUoVyHo+MnXF1dcnpywhtvvsHf+zt/h6NHDzg9PeFPv/Md8izjN9/6JnVZcfLwIfP5nIvpVNLHbM3BwR5b/S4PH17JfW0tSitWWnPv/n0ePHxA2E3oDwd85StfYTgcsbO1Q1VWXJ5f8ot33uF7f/ZdGaAYw63rN9ja2mI8GZMXGdPpBWcX53zyyWe4rig2O0lCFEUsPA/f8+n3B2xvb/Hrb32DoshYLGccXrtJbzDk93///86jR4/o9XoMh0O+/JU3eOWVV/id3/kd4igmDKKNavTtt99mPD7n5PSMq6sE05R850+/w3/zL/5rRqMRSRwzubqiyFsrrjWYuhLlodZkZUZeFmyPRoRByGQ8pambTahMHMesVivm8zlJEhNHIaZsUI6hzksC12PQ60HTEHiRBDeYhqposE0p51HPJYqlieh5Po6yaGXJm5pFnlM2ZqOEAbHfeX5AGAcUWpMZy/HxE5Z5zrt3P8VYw0u/9lX6oyF3nzzGxSHww1YVCoHnE/kBTdHg4xC5HoHn4Xguw9GQ3d0drq4uZZ1vxQVV09BYoCipTQPtUMdaaSLR2rS01fheAHVDk1XY2qKUI6ndWupUay2B75MuFhzff9AOAAs8z8V1HOrGoNpzBkpj0eRFwywryRtDZSw5BlyXmzuSLvjqq1/k6OSYo+WCfLWQRMZAAPhrjIXU2g7KAceR66xpFYy7u7vsHxxQFBVtAS03vxWVkEHStouyoJlNaOqGssxpmrhNzmtEpWyM7C2tE8n11vB15ymvSf1VW3PQKp7yPN+k161r/La/g9sOo9bNJGFP+3j+55pW60aW8mjJS6wTE8Wy/bSOlQagbc8uSpwGrJlW0LQ9HYWiropW+eSC1Rj5n1Lbtkpjw3//0OS/7/ErN55mi7n47NtupWygIodVSiYgUSTgVtNOctbFuKN1S1AvCQKZ3skPYLGBL3L0QCZ3SsEv3n2HTz75mCePjynLkm5HGlllVOB7IYEf8ZWvfplXXnmFZ599gTCOuHfvHmlaM1tUuL5H3BvRKJdFVtEYhbEOdSn0+qurMd1uFz9MMMoj7gzRWoq+a4fXcB3FajVnOh2zXJUo7bNYWObzc1bLJeOrsdgg8prVMmWZTRhu93n9q68yGHQY9BPiJMT3XebzMWqhKRuZpI1GQ/ISpouSKIoJ2oQYhcIPBTiKdtpmBiKvVw7GysQP5cpNA2hHYhjXd7/vh+A9TUjQiNrMd116ccxwOBQOjVIyXbMNa+ettaIUch2XPC+YL1bkpUCkfTeQBobjYFGb9LymaVrKvSaKI/zAI81WNNZwenZGlmb4gY8X+DJta2rKumzvHcsqTfF9T/g2xor6pVUcKO2gLaRZ3k6ddLtgaNzAJ+okPHp8xPHZKfsHe9IYbRtEZVlRlQ1ZWmKsJUkSlBbFkSQhOHR6CWVZUTc1vV6X3d1dtne2qap6ozY4PTsjDEMGgwFrn3cYCs8jTmLxMTsa5WiiKNxMJQM/wA+81hP+NLXM0eIbXlsC1mDytXUDYDaZAArdTgnWPl+tgM/dTxpNN+mImsbq1gNuCE1MbRtM231ecwuwhqZqqPIcZSqiwKUuhUPmeQ5axwwH29jG8u5PfywLitJMl3PcOGR/NKSTxAz396iqAhV3oMogrwR06HgbxZmqReZJI6DQMIpwXIeqrnFdV+wmRlMWJZPpBJSompRWYAzKGBxruXZ4gKc1s8sLbF0TRx6h38GqPbTrkS/GqPIAv6l4cO8up2en4CjiMKQbD3j22Rf4D39XcXlxyeRqwmwyZTmfknSGhIFPN/BQVuHT0DigfIeKhtxU6NDHjyJorXSBr1m1MH+lNP3egGWaY4qKmzduMhgM6HS6m3QdqxReEMh9qDSm3UCLUhpPcSS2Ta/lo2Etpp2wVlVFYQyrUqKJFZZ+LGkksR8QBB51JUqqbLkSpVIjh6StrS38qmBVV8ymMxZ1za4b4LqaxhQ4ccxwZwiThrxc4Toenuviey61hYKKtClYrlJCA64XkEQdojDE74+owojxasJ8ueDffedPKPIUX4vfv2xqmkoS/YJA1nJra7RSdLvdNvDAo6paK7Pr4vl+y75pUFrjOFKYO1omONPxFVVV8vO3f8p0ekUYCtfim9/8Bk1d0dQlH3/8Me+88wvefvttHj064vr1A4qyZDadkkQhvqvpdRLs7g5R4KOMYTK+oq5rPFejwgDP9UizTDhD1rRsnIqylKmPdjWD4YBur0uQxCyyjKMnx5S1JYq73Llzh9HWiFe++CW6/QHbe/ucnF/w2d3PKPOcqiyJQ5/QH9CNYqLQR2FYLWY8zFNMVbI3GjHq9jHG4rmeNGQdRVWknJ88JMsyIg+WswuaagUouXZMjcVhuVzw0UcfMZ1M6PW7JEnCb/3W74j1I12ySlP+/M//nDAM2d3bZzyecH55yWwyI1utmF5dUFcVSSQTZ2MaVmlJMZ8SdTt0h30sDU1TMZlckuchRZnhOIrd3S2qoiSfT2mKDJoKV4lVS5uGKk85X8wwjeH6/i5Oa9V5cvSQi4sznhyfUtU12vfxPE1ZFsRxzOGhAL/v3b/Pk+NjJtMpt27d2qhdnjw+4snRI4bDbbqdAX4kB7g49PC9DlHSwfcDTh8dMT274NP3P+Tjg32SOObRoyOyLOPm9et045j3f/EOeVGgbUMnDlG2h7KGusjp9QfUnsNirvEcnyQK6HQSOp2EPM+YzjPh+5iGpBu06o+uDH9MgbUV0NDrdltLv8XWtey9am13tJtpqGk5Q1VVc3R0hO/7jAZDyloYda4rDXFr1Sb+WGmN0+7+q+WS5WLOYj4jCkO2R0PiKNlYrQPf3yh5m9rgahffDySsg6zddxX9wVDAtrXFthAb5Tgty8nFcTVlkcv+5jg0RUmR5pwePWF+NWE8uMRxHLKVDCAdBVEYEPjuxvJZ1WVbzM9w2pRh7bhESYLvF3itGtoag9eeG9NshaMdOj0JAkmzjNAKucZzPRq35vTkhHS1Ynd3h27bJJnNZsxmMzzXx28jpeuyIotTwiiiP+xRFhVnxyekWSaWuUEfqzUnJydorRltD9FaM5lMWkuIWNmjOCLLRG3luDKMzYtMrvV2nS+KYlPQGGPBPnUNKEQdbVqLtCQbla0Sy7TnbK9VitXkWYatG8q8EBZJVWEdBxcoyoLZ+Eom41gC1yH0PfJ0RZYJpiFPU3zXlaFO3XB2csrF2Tn9nthJkyimqiomkzHLxYLlfNYGr0jxmGc552dnLOZzARxXFZPpeJPoWpQFq9WSk9Njyqpka2sXz3WZL6cs5jO077ahPA4XV5I4Np8tcB2XV15+jaqp+UKWMZ/NmEzGG6vifL4ERFnrumIJsdaIYlw77YBNYs+jVhEznU0l+amqSbOULM9YHC3kvTXC+Apa5UBRVSgLWzu77dnY4gUBdV0RJx3quuHx4xMODg9YpSv6gx6v9V7j3r3POD07ZpUtMbaW/U2BxWy4KsPBAMd18JIELwz5yx/9BVufbfPmm7/GYDhg99oeezdu8iXXZ3u4JQrBqmA8ueL84oyyKAh9H2saZrMZbuAJxFlZfFeTrZbU1nB2ckK/1+Nv/vW/yeH+IcePj/nxj37M3XufUdcNYRQznk5xtGK0N8Q6hmU+p1yJ+kNSdj22RyNRshsrTKyqoB93ee7WM7z4/Eu88OIrbG/vAorv/+CHTCdTHh89Zjoek7WszTRLWaQpUaeDG4Topma+kCCLwXCA57kUZd4OzA1FmYu6TCuqpmY8FVh5UVSkeYGb5URxws7uHl/60uscHBzwta+/JbB5Yzk6esxsOuPq8orFfMF77/2Csiy5fv0QxzYspldErubZWzfodkSJ1fF8UVEb2mHpFGukrvJclzAIGfaHEjZlwBpLp9MBpOEeBj6DwUBEH0qRrqRB7nmyjze11EqdJBEOYp5tBtKO66Idh6ppMMg66ythow53d7m2d8BqsWI+m/OXf/YnNHXFbn/A3u4uw60dnjx+wqPTMy5WKasiZzmb4Qc+ZV6QLVMm4wmdKKEbdzeKlLIqKaoC1wEc4Sgb5NyjtdooY5tWDeS2+8a6lljzftYsXd/3W8WgqE6VbXsrRorLpg1bsm3Tpa5LTo8fUxQFaZPjOIrIC3GVI8reNi1+ssypgcrxsK6L6m9xsLNLdzjk2q2bdAd99q9fp9PpcrB3wHvv/5L37t0jqwzZZE4UeTh+gNemNJaFuEScdeqs42JsjbGyHivE3q203jDjTGNAuyhHM+gPiOMYcCjyguMnkvKLElh5EEX4eUlVS+pee4BnU2QrhXaeNuza4hDVqqGEzSQ8YtOyY9esw7WkSNRma5WRRSF1Je1zWiXhWmrjTZLmkdlIoFS7X8te2tTmrzS0pHkkNacy8j10q5Rbq6RQwoRCu0+FVf+dZLx/3+NXbjxNZ7NNYb1+rKXCvV4Pr4VAu63sc/3/FAKgzrOCsqwYDIb4nt8S0G077fOIo3DzYbz77jvkeYHnBoRhyPXr10BBXZfEcUIn6fKVL7/OG2/+GvvXrlM1hl9+eI/ZqmKyqOgNPeLuiCxPSdMC7YrULc3EI398dsmgqOkNtmisS5j0oZ0U3r7zAnEUML66IorOOD4Ziypr3vDg/hknx0948PAeWZZy7XBf4nrzGXeevcbv/t5v4roK11EsFnPyPGM8HlNWNWhJQBuNRqS54WK8IoojgjCkauQAGsURSul26isbFkjSmUQ+Pz2kSMKewcUVfkkbA+6ubZCtOBlraaKYXhJvJjwgzy1xnnKgwcpXeI6kqV2Mx2SFpLINB1sEQSiJbVYiIdcQNmkkOIRRKGDupiTPM05PL6STGwZi+/JcsiynKoV1YKxlla6om6CVmAtgdd2IEUAmZJmomIJA1GA4Gi/wiUm4d+8e4/GYN998g62tkWwEFpHBVg1l2RBH7fS2LtGaTURk0u3g5BnL5ZJev8v1G9fEgqQ09+8/YD6fc3Z+JtDwwN9AorXjEIQhURJDy2DQjiZKIkkcbBqCMKTb64j1omk2N6xtoa6eZ9qozGIjsVzL/MVqIRYsR4u3OfA9ghYQrduGkHI0ke/LAtQCVZWxWEfAfmmRUjXS5JBcW0NdVxRphuM6xIHLqkgpygLPcwjDgNFgm9lkyjs/+ZGA97HsHF5jsL3DwbXrDAcDBrt7AgpNEtSihjxrCwNJX8JaVNNAY2SBRxOFIcpxqZtaYLuug9YeZVEynU2Bp15k0zQoa9DWcO1gn163y4fLOWXeMOr69K1Lp+dzNV1wfjVGlxm+qfjs3l0qoNGa/Z0dvvryazx7p8+1Z5/lxz/8S34+/inT8ZSrizN29j2MiSm6EcpCgaLRFnxNpQx5U+IEPn4cgSfx06HSWDNlNp3THY3o9HtMZo/Ji5Lr12+ws7VNt9NjNpuzWqU4nkfcsZIuqBXKOkBNUZQoFHEk0luvbdQroCoFKl6XJQWKVZWiWltMuDXACUNi3yeJY5bLlLquSZcrsT7g4HoBw+EQt8jwy5zT4wsWixVbvS3wjTSeFAy2BxRlynQqUGLPlSIUY8htRVZL48laReBH9OMeSRjTHWiasmBRrli2jad+N+bmwTYlgBFGUF2VhJEovGxToz2PbqcrzSSlmdVLqqrEcR1pPBuDacymeHUcB9+TAITpdMLl1RU///nPGE+uODg85NrhIW994+vMJhPOz0759h/8ET/+8U/54IMPyLKU119/FWMN9+/XBH6I52j63Q5R4BP5Pso00tCqJR7bc2V9raqSqi6kIa8VVV2CAsfz0Y7DYNgXIGoUsUhTjo5PqA3ESY9nX3iJW3fu8Lf/3t/FAKcXl9Q/+TGf3f0M11ocBcOdEUHoE2mPKPDANiwWK2bzOd1ul/3tLQY9ScucjKdUTQOOIitSzidjXM8j8n2Ws0umV63nH4XvRWA9VqsFZ2enfO/73+cb3/wmX/3qV/mN3/gWo+GQP/zDb/PJp5/wve99D2stw+GQNM1YrlJWy6VE9LaKhVdfeYkwDGlsI0mO0zFb+zvsUMshramYji8popCizHFcxe7OFlfn5yyvZjRFDm30uKNAt8EgF+fnDIdDrl+7RpL0CMKI9z/6iKvJmCwvUY4m6Q+IoqCVvseE4XWWiyX37t7jyZNjsizjlZdfoa4q7t+7x9HRIz7+6EO2tvfoD0a8/vrrDIZDksjHcSIOD64xny95fPSY+XzBfL5gMBgQRRGB76Gw3Lp+g6ap+eUv3iGOY/r9Pp0oIPQc8rygLg1x5NM0DoEnhW0UxfSHPXqDHnfv3mW2GJOmKUprdnd2iKKYQX9IlmWsFgssDUpber2YKIyoiqptPFnQGquFJ6kVMnFvrQFlVfLo8RFJHG/2TYvGcbx2ILVuPLmtIlKBtSwXCxbzOcvFnDgM6CZxa7uW/SLwfVHyKAfbfn2gJIa5qQ1pmhMEAf3+kDwvmS+WG2m9cjTKOAIi1pp0uZQmehhSlhVZmpHOFwAkPUk9zFeigPRchyD0N/Htvu9T1mJJnkxn+L5HEET4gU+n28f3clzHpWmbGa7nYDHCkwwCBltD6romL4o2dtpp17Sa0+MTsjTly199nW434WBvnzzNWM4XDAcjfN9lMS9ojCVPMlFZJF0u0kvOT05bRbQVu5jjtIofj2s3rklTfDpFKTmrJJ0OfuCTpilFUdDt97FY8jwjjES1ZoyRBOR2Uvx5G8VGTd0We+v/bhqxYFtjJL3I98gzUbIXJqMuig2KoqkqjOviYmmKgunVFWEUEEUhvusQeC5FlrKcS9GfpysCz8XVGlvXnF2NxUJ15w6dTockislVxvHJE7H4LWZ4rkMUhVSl7GPnZbnZw8qqZDy+FFVUGFLkOcvVgocPH5BmKcaVaPgmLzF1jfI0ynPAc7mYTJhejbkKx4wGQ771m98iSmKCOOLjjz/mF794hzAU26qAr2sJIXJF/R0EgbB9wpDQD+gkHYGchxFFWTKdzmQg2droszzn5OSE2WzGaDRqv75Vty+XDPtDDvYOWu6OYXd/F8dx2N7epapreoO7hGHIKl1ycHDAjRvX+Yu/+B6+77HKV9SmRHtui7uwOK2VezDo0+v3wHOojOFHP/ohUZIQdRNu3rnD9s3r7F6/wd71m4TapS5K8rLgajrm/OIcDYS+T9MmMoax8KdcBdrVpOmCrCi5ODvjcG+fv/nX/waX52c8fnTEj370Y9775S/oxgm9bo/xZEKchAx3RxRNgTPWmLTZDId9z2NrNKIsKybjifC5Vjn9pMfh7gEvPP8yL7zwCkEUMR5P+PPv/YDj42Pu3b1Lr9Nhe2vEMhOl2DJd0Sly4jhBFy7zxZzGGAbDPp4vFlBj6k3jKS9zUIqqbhhPp4A4QNKswPMLaYD6Pl976y1u377Dr//6r5OlGWenpzx6dMTHH33EowePmIwnfPLxxwSBz50b+zi2ZjG5JHQ1z926SRhEeJ5PL4yoS7FmFXnBCcIiaqqampBaGUYDUbY6rfNoe3ubqrWk+kFIGMeslnKmTlcZqKxNDRUrqKP0RkmaZVm7duiW5+ZIXWUNRoOjXRQuw90dDp9/lulkQX1yws8/+Igyy3j59m2CMCaOEqYXV3zyi1/y5HJMWhT0BxHdQZ8qy8m0g9EKveXQ6fQ2gKF148kJPayG2krAg1ZtmJajN46ksiywniH0wg1eBCsDcKcVHvie8Itc19mAxJUFbVULy24oSkOjwG1r+ZMnjzEYamVIgpAwCHGNRltFWQvUe7IqKCwUviXqx/RGuxy+/AVuPfMsv/Gb3+Tw2jWGO7uipnJcTBAx+LPvcj6ekRcNKBfXD2W9aWqyZRtw1TSCd1FiszYt0LvFuqOUg+8HUotRbYY6fbffKpEUy4VYnMu6Fiuh6xPGCUFWUlVmA2FX66wsobEInLyRKv2p5U63tk0PVPNXcBxS8+u2PyK1Mkidp1X7Z/PUloel5Y61nQDVJvmtA1LaJpbTNuybVum0rrmtqFA2oR3KIucEeVXSMFMySFfKwSAcKGetyPoVHr9y4ylNV+2F2LLaLW3hJCaQpjFcXFwiWhb5AY21Gxr/OjEly1bUVSkSWNcljkLxy/c6FC0I8fBgH2ufprHcvXtPgGVBSL/fYI3mBz/4EQ8fnfCFL79BGMVcTZc0xtLbGpFVBe999EuZcDTCBrLWcH5+LgW946Jch5PzM3l9xnJ68oTFfM6DB3dpqpIPP/yIqqqFH1AU5GlGr5dw8/aLvPm1b+C5mg8+ehfT1HzljdfZ3tpCOS7LNCXLxMdsjQVH4j6NVuha4yc+1lWkVYFnO3ja3YQBVo1cNWUh8claOe1E7SlXyfX05w4pUNeWppFJX1XVG3vX2pbZ1DWrxQK1s8X1g70N00C1KhnVWiV73Q5RFLO1tcW7v3iPzz7+jIdHR1yNJzz/0kv0en3xKocB29s77QHWUreRqaulvHbHk+7sxfk5nu+zs7OL58phvdeRicB8vqDICzwnxHdDPCfEKEOj5OJ3tMZpGRM2bFkMnlD6O92BKOWMpdcbsVwtuLq64vJqysH+vkjf24PzfLqg2+2IOsk27TQ1AGWZz6e4nsv+wR6O63B1NSZsvcKD4ZA4SUSq6Too18HXPqGjqa1hMp9hEBl9lucim20kIRFHUZta7FJrH/VmMRCVCo5s6nEUSSMJRdMmnMW+JArW7Q2ujADdqjyn1q36oo1iLnPhBTUKsVhWrY0LSJKI2PNwfDmMq3Vn2qyXVhjUFXVVki7lsHx+eiKLqQHHC4nCGNfxUWVNnaVkSnH3g084f3if4OoKt0wpXWkUKQy1lWt+sZxRtpyftKyYZbkkeVgBlnqehxeEGKmBqJuaxWKO7zqEnk82n3GZLckWM0mLosH3FI7O0Y0hrEqGvsYf9Qh8S16tOD1+zKqs2d2/RlPUkFvibkxve8BLL7zIqy+9xNsvvsCjR4/40z//PpePj1lOL9nud3jx1gE6z3GzjK5yIEygaMhVjq0hCkN2t3awWpM3Teupp530eHzjrW+wt7PH2ekp0+lEVETtr3W60tV4TJqlm/U0y3PWUaVJkuBqh6tLsVF4roenNdoVbayua/Hym7YgtRbPcdBA0zahYydgvkr57Oycw2ef49kXX+GLb34Tz3Fo8pSmyEkvToldzfGjI8oqI+kENNaQk+MjYPWkgq7R9IMAraGuV0wmDWk64dr2Np1OzLP922RpxsmDE3zlUuc1rlZ0koCqWAmTBQE9au2iLNRFjXUsuKKwUonGDx28QDZVjW4TR2TPCByXThxzsLuLH/gsJlfcKwt++qMfcnp4DVUWrNKU6WzKkydPuLq64rUvfAHf9xiPzyS903NRGLLlolXgNiymK4yV4ACldRvJbVkshVHU73aIwgDPc0QNpS2T2RXWChvK0Q7z2YK9g2u89Ru/yfX9ffq9LsOtbRzH5Z0PPuXo6BHf+ZN/x+NHD1BKSfHnu4yGMnTJ55Kgd5Q/afdLscgM+n2KNGM1m5PlJbU11NpirWKrM2Rvf5/rN67zo5/8hHtP7gtrSTvUKscbWPZHI+rBgL2dLU4eP+Sff/Yx3/vud+n3Brzy8ou8+PxL/O/+yf+WLF1xdXnJgwcP+PTTT3mwSsnLkm9+4y329/a4eeMGjbFcTCdUjx+zeHjEg88espwsmU5mKMfhi1/5MkEQcvbHf0ydlzRlia4toRPghy4WSzdJhG9gGkLXIdzfJ4ojIk/juxbPMWyPungePHlyQlnnrKZXnNiKn9maazducOPmDbIsJ01z7t0/oqorfncwQinFYrkkL3Mm8wl3nnmWw8NrXL9xjSgKKZsM0xgaWxPFAbdu38T3A3w/YDKZkLYMqaossUaUv54XUVWWi8sJvi8qmzQvqOqa+uEjfN9na2dvo8azCmbzJUq7RHGH0dYOrutKcbJWsVoZvHWSDpEf0O/2hfcRCtB0tVpilUU7iiIrybNUlL3aERVlHNOUFYHv041iiqpmVeQ42sXRUFW1NHtyYYlcv3F9Y8uKwhCtRAHc1DWz1ax9TZpglVHXljwvCLygtf42XNvbww98sjynXKXMl+lGjdyYGmNNq1x0KfIM13EYDvpg2aT8hGFAFEe4nsdiPqVIS6pC2HeR36EuChbzGUWeEyUJ12/epNvtSPKrEZtLXTUsFkum0wmTqyv6bfKiHH0kTQml2uQ+SS5uTM0yXUmyZ1NT1TIEu7q4bBXhvihPeNrQ8T1fzkrW0pQVq9kCU9YkYUSa5xSVqKeVatozkDxHGMUkSYdut0e322WVpownEy4uLyjLiihJJB0sTdGusGPKqsSklk7SwfGcTQKe8NJqFosFTlv0yRnfUhUlZVGwWiwpygLTiD14MZ9xsLfP1nDEZDwmzzPuf/oJjuOwu7PDcjHn7Mlj9g8OGPW6XJ2fMp+MyVYLmqqgKApWywWXFxeMRoZet9cqFCxnx6fMw4A7z9whiSOi0Ofs7JT5eCxqOc9n2QZlbG1toZDzsxRfDv1+j729XZqmZjaZsL+3J8VdkZNnFltWzGczTo+PRaW+LlSVJi8Kzi4u+Nd/9AcyzE6EkXpweMhg0CcIQ977xS/bwUhJFEXs7+9vcAiLxZxJOxDVSomNvapYtNzUTieBpkDbmv2dEfvbA5JWuXJ6eoYxBtfzSJcLHj9+JCm8kYQAOY7DoyePW1TDBa7r8uTkiJ3tbe492ONyfI4XOFjHUiG2G1c79DpdyqJgNl8QhC6e7wpWRDu8dOcWTWP54Cc/ZXJyjmMdhltbbG1tsQLq9ozX6XV58+tvYqqKT9//gMYaGg39bkLsunS7MU1jWMyndAdD/sk/+d/gOi6PHx/xg+9/nz//7neJkpBnn3+Bi8tzclNjPYfKQjpJuRovuLiYEYUR27t9ssJQjueYpqasSi5nM3Z29vjyW99kb3+fvf09lOtx9OAhf/7973N6espnn93FGsONa9fodhKGgwG9bkJRFBweHjAabbXW05KyLfS9lh3U2AZjG4ypKcqcsirEwqM1RdXQ7fUYDIa89tqr3Lx5k7e++U2slTTo6WTM/+n/+H8QbtjFJavlkmy5Ynx5RV2WfPPrbzIcDOnEPS6vLvnpT3+8cW14nofryNnYdV1u33pGalW3tS4Bq9VK2KNxhzDwCfb2wEgauuc77F/bQzsujutyNb3i/OpSmJ6ex80b1+h1u7i+Js1LprMxSSdhe2fEbCYMsLRIcVwZ3itHgWNpbENRW97+6EM+OTlhscxEmYxG+xGV45Frh5UDZehgOj5NKqwnx/eI4pjb126gfI8MSeg1rahFRCviLNDK4Dq0amy5xj23TWlToKzB1A1GaYwj6sCqaiT0xoLvuoS+xypd0rSJbQ4Opm7agZvc29YYHF/Ota4WFX/gCteuMZBnFbPZhEY5WKXRYYIfJbz8W19iuL3Nc6++wnBrm92DA3r9AUm3w/bODlEUtSmKUhNrpfC1S+i6xJ4LpqaqRNVqjJGBH6IyDqOYTreH0i6O4zEZT7FGMRhu4ytH+KxKLNl1Lb0E1b6Jul3rgiDAdR1JlDetY2e9prmuMCZVs+E4KdrhTdtzWrdpqqZNeLYGtMINfIGbVxVmo3aSOl+5a7VU22PBorT7V8VVaz5WKyzR2mmbW3bTTNLKFXSubV+fJ66VpjFrvNPm+9IOSsxa5ICSfc31hDmGFe7Y/78bT2ulk11fuUbk3p7nt9MbyPMWqolhnZbjOmIBWXsZq3r9PNJZDQJfwHFB2ALyFEncwXFc8jJnuVwymYzR2m3T7nx8P+ThgyNmsxWdwS7d/oD5YoV2HfpJwipLubq62qR0aEcWt5PjYywwGm6htOLq6koAqo7D+cUllxfn1FVOlqa8994v8T2fGzduUGQ5y/mCwXDEzu4hr33hZaLI5/jsCGMqXnr5RXzPxypFUVUsViluC/pC69Y9ZlGuxgs8lKuoTLOJtAQNqnVSWUvT2M3FonUbn9x2M7WjNnwYqyxN69+0iMdUmjKbq466KsmylLru43ru5sCm0C38TL5PEPgt0C+iqmouzy94+OARJ2enBHHCcCTsiW6nS7/XR7c/X2MaOeAbuXF6fgetlAC9lUQ/6lZ66fsBruMyncypK4PnBpI8pz1RnDnmcz+z/pwfFpTbxkRq+b6OkuSEPM84OTljuVySJJKShYHVMmU+XwgQr2U6uK5mNp+hFMLiUbGozLQiyzOUK+9NHMf4gd9aH1VrtZFFZs1vkAaeI51lC7URObxVT0GgulV4sL5/jd1YUz8vr1f2abSmdaWzXCuRWpqqoSpKWZikG4k18nWmNhgFtRJeRFWUKGPR1tKJQzzt4Lk+ynVQng9aXjNtXLFjLaauCP2ApqrIWzi2RMtGBHFHmicWtLGYuuby7JzJ2TlOukKbEuMqlDIobTEGjLIUTU1ZNxilMEjzszZgGpmSYBV+JDYct42Mr6oSbT1wXMq8ospq5vM52nG4vr+D73hgajANTlMTKYUbBmgMZZWxmE1ZZCXT8QRTGaq0ZDAagKN45pnb3Lx5jbqs6A9G/ODHP2M6nTKbTghUgylG2KJEFSU+msjxobHUZQOUuK7cG50kYTQasSxyVmUp0yzf5/at2+zt7rGYzwh8UdDI1F02OWMMRVnItLtdl+umblOjXDzXI2yTINeTJNd1RK5sRCCrlJIWRSt1XcMGrZL11fddqlnF1WTMvuPQHW3zwu3b9JKYy5PHZMsFY2WwecZiOUfrBtdVsqFag7E11oDXWDyDpJloscoVVSaA1GCPuB8T6ZjVKuXq+FI8+AY04DlK9ty2ebTeoKyltQYqFKJq9ByN5zs43lMIslpPW5TBURrf9dgaDkiSmE8fPiTPMh7cu0ud5+wOh9TWUFQVWS42p+3tbZIk5vT0iDzP5P00lrKQKZdFoMR1LeBJV3kEvkddyyrsuc6mMepojXZk7SkKmb724hjbQFkULQw15LVXXmF7e4uyqpkvlnzwo5/wwfsf8N3vfg9la1ytcdvrJAhCAs+ndMTimmVLHNdt+V9yUF3kc/JVSmUE0lwokfp3goRRb8C1/UN8x6VMM1ylUa6hbAxNGeO7mtD16XQiTk9O+PSzz/js0/t0un1u37zJ9tYWX/riqywXc+7fu4upaqZXV1ydX1JmGXdu3+HmjZtsjUZkZcGyqdGt9XpyOabKCvIsxw9D9g8PCXxZH62xmLqRNFHHbdU7yATT0VRFhqtcwq6H57u4Wkk0MoY4CrC24dJ3MKamrAqW8xmPHhp6/T5eG3JRFBWTyZTGGPwgwnUd4jghShLiJGG0NWL/YJdeT5guQSDR9lVd4miPTjdhOBgxHI64f59NSo3YnaXAkUCNkjwvUMpBO1A3RoI/ZjOiKGZ7d789xMnUuKpKsXd5Ab3+sLWvtcOCch1z7xD4AXi+7IGeJyrI9RlN0cKljTxfJdwE3xNGX7/blRAO1xMOQ2vP0kpR1jV1U5PnMuiII0kUXrUqJDlXNdR2naK2TuZqcF1RzErhZTHWodeX4n55/EQGWe2gwmkVAFVdEUUhjuMKQBtLGAStmqfGcbTwSqIQPwiYT6+oyhzT1DjKw1GKsm2MacdFOQ5JkjAcbTEdj6mqajN1bcqKPBMmT6fT+Stg2PWfm6ZpQzQcyhaEbVr1sKiHKnkvWnv7mku6tlAIN0PWH1PX5GkueALPo6xqAek2MhUOw0Du1XbgmnS69AcDhsMhq6MjSZxbrTbDOKzsy8aYzWs11mIT+/TvcuiTZmGeS2Nrk0RkN9iKqiypSwm8aepakoy0JgoDFo4D1opNv1Ucp6wW2IMAAQAASURBVOmKxXzG9tYIRymWsznGWsoskzW/rkUB3YZpmLpp7RptAEgLIw7DgMBzWC0XrQVa42qHRSHnoH6/h9ZKmpCeR6dNeIrjmNlsSpZlDIdDHMfh8uqCuq5QtaHIUibjseAmomhj4agbCYM5PjmR6zlJuHnzBlvbIzrdLlGLiqjrpg2EUIRhhDENRZGRtkxZ7cg1NJ3M5PNoaqIopJMEKAwaS5xEbepkRNPUHLfKO60VaZYxnc3o9ft0uh1BhLTWx6qqmU3nKKWYz6ek6ZLFak5epASBJ4oGBcYawCHwAuqyoipLHFdJKrZSeJ7D7mhInhU8vH+EMvBo75C6rPFdDxeoi2ITFrO3v0dV5Dy+FwpPxdGEvo/naNnHWqh7EHh8/a2vcXVxyTs/e4e79+7yzrvv8MavvcHO3i7j2Vhss65DA6xWOatVQZqXJEmPJOlR5AWmqEAJTLq2EHY63H7+efYPD9jf3+fh/QdcnF/wzs/e5vjkRCzOccLe3h6dJKHX6+J5LnUtDULf93B9sZ3S1oy2rQVNy1tdBx8Ys3Y/iB0qCGN6gxH7B9e4ffsOw+EAay0/+9lPOTme8hc/+AHz+YzpZCrnXkdS0R2luH3zOjvbu6RZwXK+4u5n9/EDjziJN44Np00f9cIA13qESSRqZ0dSu5rGbiy/XuBjTMNsMcXRHt1et/28pYjPigy0Q2gNURQSxSGOK6mRaSbWzMGwT5pJk7wxNRiL8JzF32SEVMHR6QnN+TlZJkpS274fjXaotaJUlsbVELoYT2NqwX/4nsdoMKDRmipborQS/AZtQ8FaaT5hpVnjuq0TQQszuN3D1zYka0SNb1osgm3TztYJxWUlyfPGWhzxick+1dZvFrvhQTtt4wks2kgtWjcVy6yi9hXWdUiimGg45ObLr3D95k2+9s232N7eZv/ggM9vnBYwtd2UWLp9PdLgkpRo09SYupKBbWtRb6ykwwVBgOeFuF5AluUoNafbGwESSCKJ8rrl/xlU+3rXe5DnSbNurY59+kJkT1eObp1LsqevH+KCkD9baIUH0kjSLYjdWNsy/zSfbwCtRR/rOn9dH6zrbKzFtA0mea/k68VRALYRgcDT/dTK8NeRYA+skgaV5ulDia3fmva80iqktKNFJWZtq4LiV3r8yo2nKO60dijZpISN02c0GrFYLKiqin53gOs6dDodyqpivljQ63cY9Hs8fPSIyWRCGAX4nofjOWhXoz2XVZ4zXSzIVivyvGA0GhHHMcPhCM8P6PSOsRYcV7FczlguZ+zubtPrRtT5gkmx4kc/+gllVeOFMY2RA1Kb5URZCMwsDMQj/mH5PkpZXEfRNDVNXbFczjabeZIk/OZvfJPBYMDe3h6r5YrxeMLXvvYmL774PD/72Y/58NNjyqppGUWQlxmz+RhTy0TQNlYiHhuJc0QZfK3ZGib0uwFJqLBVQbZY4YfCUBJNngUt/lPfj9AOImVrUwxEhq2kyDeGxlS0fsbWp2lxnHXhZ/DdgF7ngBvXrnH91k2iKCavG5Epax/fl0SGjz7+kPOzS979xftkZUVWVegooL+zzfnVBfPlnGfvPCfNH1/86liwlcSJ9gZDOVxjcZ2QL33xDbnAXJcqbzg+OiXuJPiBz3giYLY7zzzXdowDXE8RRkm7uDWbzuka1mbsUyvOWhrptkDRL3/5y+R5ztHREU1dk3QSDgZ7vPjy86SrjDwTYKIxDZ989illWbBcLgjDgMl8xrPPPMsLz79It9chCALSNKOschbpChQEYZveEnSxSmIo19PKdcRq1V5j1hhqXbecIqddCKRLbpp1gtvaZqo3KXpPF1NpTkmDDaxuOTgtfHzdrDLGtAU1xK6LG/h4USTd7/ZQba0hb2pJI8svWafCmEYO06PhUBq/oxF+r8+zB7dJ4pjeaMDVbMzx5SlllmPqhi++/jpJGPDnf/TfcnL6KbmzJIpCgp19dBCjvQhjNMaKWi3SmmcVHJQl29MlYRTSiSN0mwxosTSmYfHcc6yWS54cPSLPMqbz+ed80UYaGieGueuQezLldz0lnmyrKLJ7ouaaTaGs+O4f/wGeH7K3vcdoOOLatet8duOQ3WsHPHfnDm+88Qb/+xdf5Oz0hP/mn/1fSacTPvv0iKaqaUphKzXQJpIp6ixjUZZ8kOfUpqFoarIipygrvvbmV9jd32e01Ud70FDjBi47e7sMhwO2drZZrJZkWc6wPyT0Aq4ml6AsUezLOprnTCcrkbFXJVZrXC2ToVBX6Mbi1BBpB1+7bXGeki9Xkspja3BdmrhHtUpJlznv/uwdPvj0Ps/cuMmw32d/f58kiTl8+XVMU1KmM84++YCTD39JJ9L4nmbuZTTWMk9nzNKci8WS3mjI3uiQ3b0ho60eX3jldbqdPp9+8BF1cYETKDpxxM2Da9x7+Ii7D54gfVoHt1lvlpamqSjqTJQiroMfBvhOQBzFdOKYLJ+xSqdUdUXTtAZjnYHSFA+fiGLSleHBX37vuwxHW1xcXvH1t77Bf/x7v0ecdLl1+xZ/+O0/4OT4CUkcibWh3ZDXUytHOwQ6IVBwfdDBcTRFXuFqh+uH18jynNUqI45itBb7ndKaXn8om7sWUKTfdUiMwMjvPTnmg0/vce+Tzzg/O+P7f/ZnLOZTytWCMPQJ4pCsKEmLHPyITrfLS1/4IlrBfDZtD30Oy8WCDz/+RGwkVd2y+DSVMQSeR2AtRw8/4/LyBFPm3L5+iOOLBfj88oqz0xN+//d/n+3dbW4/e4deL+LrX/sql5djsiznv/4Xv08Uxbzw4kuMRiNu3rrJsy9/gedf/RKLuaTZGWMo8oLv/eWPWKUpy2zF2ekpq9UC11EobfBcTRz6mKqiApnQBR5JJ6ZQViDjizlVkXE5u0SjCNtiOvQ9fONhlCWvq5bJp0jimDe/+ms0TcPleMzleMJn9x9xeG3Capm2Co0cx0jqzWJ2hdaa6WTM1dkZx48esTXsk8QB6WqBRvHk+ESaFosVTds42N3dY293j9lMbPCuMiRRgB8meJ5PJ44pioJslVKbhqo2REmfIGqTLI3hw48+bhunLmEYE4YRZW4xRlEXQGMpy0zOaijq2lI1kMQdQt/nciKsGd91cB2HTqffFls1cZIQRyHT2YSiLBhPLvBcjyhu2TbpnKKoqLKCwUBYE2meUlaQ5xZsTZouGY/H3Lt3n8FgSK/fx+JJMpvSGERRoBxQXrvPaJdRZ0TgByxXKybTKavVCt/3uXHtUBS9ZcF4PCbNVjIN15ogkqHjZDpG6dYm6zn4gUtV55RlinIgiEPctXJbWzzfo9vr4bgyYX346BFn5+diQ1aKJIpJkpidvW1GowG3bt/aJMv5oU9Vlcxnc+qqZrWYE4QhSdKhyjLSLKMTh+2QSNJ7p9Mx1lryLKeqSgbDXutAr1GubffTkqyoOTnLCMOQpNMlSmIMsEwz8jQVmKp2CIKQKAjpRDHL2YzLs1NmswWrNKMpBUo86Evqsh/I2a5IM+F/hD5ua5OczeZUra1pDSm2ymI1GxVI3O0QRCEaRZ5lNHVJ6PkkQcj4asxitiBdrcBaXnrpZbIs49133qEqpbk+Gc+JY+Eu1XXNeDoGpdg/PGR3Z4+v/1qXy4tLPvnoI3w/ELh2r0MURpimYbVccXl5Tpbl7B8eopUmS9M2va9kNpuRJB1u3LyF0zJaHx8d8/bb73L71m12d3cJfOFwYeY4yqM/7BDHQ4aDfU5OnnB2esJqviBLU4aDIboj15ajRQUynk757p//gF6vRxgFLBcLXM/lG299QyzBdcXRo0e89+47bfEJg34Pz/cxTYPnuuzs70sKXxJTlCV5XrJcrViuVvT6UjzuX78l6sROh8VyzsXVGZ1OQhxFAkCvckZD4XuNhj3yPGcymbGYz1mtVuzt7nPn9jMsplNJpt3ax/M8+v0ey8WcMPEZX5xx/uQckw5J4pi9/T2cKGIU+sxXK374x/9PDm/c5sbt5xgMR7iez2q6YHY54dv/8o8kAKlOCUKfJAlFAaF9lqmgFW5ev06n1+f7f/pnPHjwkL/4wfcZDAb8o3/0nzNtG4EHu3tEUUwSdEmzlAdt6urutUNcpcnqqsU0wLA/otfv8R+99BKdbo/eaJvv//DH/Oztt7m+c0Av6fDcMy9y4/ptVlmK67p0e70N/2c2u+JqfMl4MieJY17/8hfRFm4c3mI+n3FxeU4W5oRRTpaWeE5NHPepKgXqCaPtLX77t38LpRysgVFfkoz/8Nv/mocPHvCjH/2QLE1xlGKYxNzeP2Q6mTCbzggHA4LAp5PEVHXOd/7dvyXLMq5fO5BGexvepJXiooWLf/rxJ5imIS+Klu0UPB0kehrtJMyXGVVVMlsuSDoJna1t5osF4/GEfn/EcLgtg11Hy+uNIjzt0VQN0/EMV7vUZUOn02EwHAhsXGSXGOTsrhwXfJ9Hd+9zcXFFJ4nxXY/nnrkGFnJTUeoaMIRuRD8YETCjqGs8a/E0RN2I3BiKVUPYNChTE/kO3ShEs25qO4CL63sEYUCSRHiOK8PE1rYcRQmO41CWBSABVEYpyqYmr+VX0knwMSzmK7RSWK2pjSiOacMz4iAiaJ8nLwpOxucY5WH9Hr2tfa6/sMVLX/oShzdv8PpXv8pwNKLf6+H7Pp2kg3YcmtpglTR2tW3rKVwRByjwXI8k6aBdn7KxGKtBeTS2kuZZVSMNK0kcrMuGrd1dkk6HbhKJ/dsTUUZZ5XjKww8jHOviWENT1RsWq+sqDvZ3BV/TWGxt2qZOjaVGK7dlKDsoK0pPWItuZNiFlbrP085GwAPS4HGsMOLUJtG+bZ557UC7rtu+oLB0P5+Ep9d6B+nvtXZ6UWnVSmEacagoy6YRvOERO2pTj4oev1VrKYWHaZMWK6wSJpjSUvcq/dQy/v/t8Ss3nlzX28SwK0csImtw2rpzFoQBgR/Q7w82oFbP8wmjiMAP/ookTqZRbTxhWW6Sneq63qhl4lggigI6FTl6VdbUa592lnJ1eY6xMG1ZSk6QUjcyOfVciRbNVnKo7vd6YEWOa61YhKpamCR1I1H0fpvoFobymo2xItHtdgjCENf1WCxXTKdzgan7rQWmEWCussLgMSJXkD+ztr7JlCPwPaLQ36hBwJeD1dqD2RZMciGZTXeZVj2gFDSNaqWppj3irh9q85s1AjUcjXr0h32STkdA761vlLaRVeQFF+cXPHnyhE8++RQ/igi73Q27yTRi4ZMITmdjH1pHRtu2S6u1pq5EORGF8UalVZcNRV5K4kGqybN842Gt65pVI6BQ13WlEWjq1i9KK98UnpTWGuu4cigzBoUPLsStRc513U0iS+D7okhxPWrXbOwGVVVSlCVZnmGsIVgJDLSu69Y+qnAckbt7vodtI0zXUlysEWCu0i2YsoXS/ZWbXm7w/+5NaNe3smVjQzVWkiBEgbb+N5JaIV1q2tQAvelNrb/XWgnpaAccp/XrSiNr1RawTSMT8VW6ai8h4UPUtTSkwihitUo3B3Pf9SRO0zSURUae5dRVTZZmaGOEG7JaUWqN5/sQd8GLsG5IntfkjcUNYhzPJXA0pqyIa00niRgOukhChWqTPQydKCFLV9RlSZquCIJQGBhat3HGltjVBFpseK6jcF255m27QBsLw36fsK7JZyvp1itpyhZFxipbMV8uNk3Ea/0eYehz7eZNZlHIwlrqvKByCupCroW6alBUeEqutbyeS1KfIwqBJPa4cf06127cQDu6DVqQaN0gCvGCtbJBtxMJ3UbkKpQWL3zdTveqsqQoqtaXLRG6TQMNDbYRK7BcJ2vdDhJj2iqmnBboKND7DhWQphmTyRRTN3R6fZTjktcWzw2It3aJB+d0+iMip8FzxJ9tGosT+DilxQtDOp0+O9u7bG/3GQ27+GEE2iHLq40VzAsCdvf2OL0c07QTLq2UaF5bWa4F+buST00ubYFqup4nfnJX0+32sCi04xJHEXEYSgPdIpHXpuZifMl8Pufk+ITJZEJVVQyHA27fuomjFVmWtvHAesOLcn23fd/XTAJpdmgFy9kKrV18z2wsz5Ju106plMJz3bbRScvfURSFqHCePDlhOpnxycefcHl2xpOjI6ypiIKAIBCFS1kJF682hro2m89ZaUdss9qRUIPViqIsMY3BNw1KCWOhQUDni0XFbLGgKkukwa8x7WZfNzWT6QQ38Fgulxvgp3CMG07PznFdn6jTJStKwjih2+3S6/UYbW2hFFycnZO3E/a6aciznGYTCCDTrThJ6A/6eJ7bxhS317bnoV0X5coh1tqadJ6CtURRiHZlqqy03qSvoRS65bQkSYy1iC1mJemIVateqatKODa2QVmBimutqcoSUzdoIG8hxGVeiMUmTSnyQtbBWiLrw7ZhMJ/NyPO8nVa2P1u7HzqOSxCEmDyTMARPDrV1qw4tylIO1k6D63g0rt+usw1lIZ8d7X0qya+y3q8F6lXTUFYVrlbgSNMHbVCNpN6AwfODzXClaRqMK79nWY5C9iXXc3DdVjqvkOIm8LGYFsRbSFJQWco0FSXrtRL1unYdWZ/aO3R9f5RlIYovJAba91zKSp5Thj9tgIRiY29qmloCDto9yBi5fkzTWhW0TFOx8r3tWmXVHnaXC2nOr+OhTTsgdB0H3/VI4piizKnqCsfRGCN2vlIpikKu0bqqqCqxpdkoaIsmUaatlkuADfxda6dVHxnWm6ixwiWsjEChLbZVhqsNd0mUkMLBMMZQlQVFnpNnorTJVpkc5NumouM4aEQRWFUVru9j2+sDK8rJsi5xXWnIPz24y/ui2vdAe1IUWmsIA2nYdztd6tpQVTV5lgOWMApZYwia9jyaZ6J+q9qzwGq5koGvEntiFASkyyV1JYxQCbCSa2K1XGKsYdn+HoYRRZ6T5elmiCbFq1wbjrUo7ZBlORfnF+xs725eh20HcBoX1/XRSgYBV5cXG6aVVq0ayBEVqOPIGpZmOcvlCqUVdS02Sll/ZE9pWlaagPMdvPa8ZBtRHZo2sGIdQ74+ZNV1Q9EmVLqepECpllnjtNeiKHZbRU7LYlwr52ivjcoYTFHhH4T0+0Pm45molgJRONRNjdKKOI5Iw5A8CAQh4HrY9h4JfZfl0pDPZyzGV4yjLnmWo12XqiwknXI6E6VO1welqOqKqqqp3AY/CPC1TxTHKODuZ3c5OnrE6ekpcRzR6SSSKJdluJ7YRfMsJ02lWauwuNrBa0MHet0ejuOQJB2xCccJytEsVkvOzi+4/+AhkQ5xcen1B1gs3nyGdoR3ppWDVpogmuC6AXletmWJFLFRGJNl2aZGUGhRzhrwvKBVhvpEUcT29jarZcrVxZjpdEIchxw9esiD+/c4PTnGNA3bWyO0VniOg+OIWrnb6craUeWkuWEyGUsq5XAg12Vdt+oRwboURcFiuXjK1bGWpk0Mdxw52zmeg2dEsRo2NUEU4foB2kmxsKmBbTuUdl23ZSHJ+ifq1ILVaiUWTqXRni8uB9M2R4wVLEHrHFnOF2gMNggYjTpYoMjbYC9a25d2cZ22qW3lnOV6DqqyrXKzpqlrYSp76xQ02AQYtYoZ13E39UVbtm7qe6lznpaYa1WfMZYkTtBaMfUmm890PXMXpIaiqEVpUzeWSmmcuIMfJMSDPXYOD9m5dsjzr77K9Vu3eOm11+j3+zjrmsdIzSROn80SKg0dZTfqobU4Yd3Eses6Afl62nOHagO86rrerLO+7wv38XOKMEGXKNZhS6Z1Hsj+B4HvS8JmllO2tQOs0+DkXVCb/d9uXmNburVtnTWHSb6HtdC0rrH1f1NaVFbymUkQCUptztLy9W1qHZt+FrpVKBnD5t+saxDVGqOUbteytT/vr9Stn//z072ftbqr/RfrtfhXFDz9/6B4akFb2oKfiJTWGMNkMhHostYMhkM6nQ57e3tcXl5KnHNRUpU1nU4XrR0mkwl5lrbwLcV0OttAtJIkptPrczWZUJwW3L/3gCAIODg4pG4MabpaazP59NNPePjwgRxiPJ+9gxsEYUTciVmuFixWKUkS0u12UKoWTlO+pKkl2tvRDoHn4+HheS5hd4Tv+SS9bVzP57337lFkKefnp1y/cZ2XX36R7/35D/nRX/6YyeQCheFrb76Bo+Ho6C7wuQhcNL6/Ti7LpRGWZ4DFQdHvdrl14zoXlwtm8wxXBbhKURUloNppfYNpKuqmpDYlTQ3WKlx33TCym+4oVrhaspkrtCdNm9UqZWs04I033qDf7zMYDWRalaU4BGAUk4tLppMxP/vxj5nNltAYbN1gy4rI94hDH6U1oR+wvy3pMKqQxkWWpW3x5JBO5+TaIc1SKbKaGj8IGA6GOI74Uu999hnjK4nt9X2Pv/zBDwCL63r4gU8YR1KUmIakI42+ra0hCsViPBfpdRxvbtJlsdw0egAO9w4Yj8f87Kc/JYojtra2ZGLT6XFxek6eZ9x65iZ10/DL8QTrgu/5XF5c8nb2c27fvsP29hZbW9sMBwmvvuiQpimXlxd4jks/6WzuB9+XaW/RLjZZlpEXBYvlkqQT0+12KItWuq1aRpeSZktV12hkslljaBD48FMJpaU29eYgrrSD47jUbQyr7/v4rsvu7g4AZVny5Ogxn3z8MbPplOViydnZCVmWCZRdywIlTd2cdLUiXaX0Ol0CP4RQfpY/K6Vz7nmavBKVhuf5uK7Hj//0B4SejzY1q7TgKjyk6fYZbd/CNGIP/eUnH3A1nvDm66/RTWLKrGZVFFzNplS2QvtavNaNwPN9P+D1118nCEPeePMtaZ64nqi3PI+0EOtftpigrWWn28NUJdlMQMue72+KUzdOsI7DVVlglMLxfdmULQx2tuhtDVlVOZ8dPWKyELvl7/29v4tjGlSWcnV2ztnjY97++bs8ePiQ88tLbGO4c+1Q7qXlEuW46CDg2Ref59adZ3jj61+XpsvZGVmeE0Qdwk4Pv5PQuA7LomCZ5ayyjMlsTp5mVHWD54taIq1TimpBWTdUzbql1HA1neEoCEQpjG0gcz1sGJDoDn4YEyVDtOOSdGNcFF7T8Ox1j/hLPrlRFFZhshSahuVyyXQ642c/fZfnX3iev/V3/javPfsKg7/9P+Lo3kdMLs5YzaZkVQV5ySCriG4suX3zJq+/+hpFNqfIl3z47i+5HE/54ONPhdVXLnj2mef5j/7W38IfbTHFcHV1RbpasWpExu2hcL2AuB9v4okdx0F5LiqI0GFCd7RH0Bnxxtdv0O/12N97miY0nUzF/mIbiiKnMxywSjMeP3zAn/3xH3Py8CHf+u3f5q033+TowQNu3brJH/3bPyZdpZJc2O2ym+xIHL3Sm+a5r33qquTs+JyyrAXSbC21sVydXbCczuh2OgSuT1Nm2MZQVwLaTNOUDz/8iE8+/YyTJ8fMZ3Ouzk5pqorAdxgNd3jpxefJ8pzlainNQitJpKau+cGffhcshGEor8XzRAytIAk7LUNHpPl1mtI0DUtHM1ssmEym0pwyhpu3bhFGkUzVez0GwwF+EFAVJR998CHj8ZjBUIIhmrrBcSxNXXH//l2+973v4rsege/zxptf5datm+R5jtYOv/u7v8fV1RXf+ZM/wXNcOnFC4Ivd9JVXXuHg8JAb12+zXK2gETAxtSVwfXpJj+HBAaHn8sH771MWJc888xxhFBBHAYvFnMurS+EfKrEN2SKjaSPkwzgkCP3WdiDHy7IqyPMU2kCMyfgKx3Upq5z+oMtrr73CdDrnFz/7xaag29qWqPvQjzCuofEMgSeRzw8fPuL8/ILnn3+epNNBFQVFljO5vKDb7bG1NSIrUtJ0xWh71KqaawKj6Sa+WI+talWbKYvlVQtqHxNHMS88/wJN0zC+ugIrh6xssSCzltBxiLsdOp0YpaAuK4IgpDvcIl2tyNKU7a0DdNsEKqtSuCXpiourK+48c5tXXnuVIs8pipJZLk2BF7/wCq4rAR5hJ6K3NSAvC+anT0iSDoEfcHj9EEB4hmHE7s4es9mMq6srsTE20lhyHEfYjJ7LarlgPB5zdHQk6o8kJgz8dj+SQqbbSTYH/cViwWw2a601PhqNwZCtRCEzn8+Jo5jBcCQqU2tYLhagFDdu3CAKA3xXuGCr+YIojkjihHRVk6cp8+kUi+Vgf5+iKFurWMnFhXDT8rxoE24VQRhT1xWf3b1PFIZsbW1RFBXLVdqerZ8e+J8OBxRlVTCbTUmzjKwo8YMQz/Pp93oEYUC6XLFaLHjy+Ijt7W22t7e5f/+I05Oz1hKWYKqGtFmRFYUMX0M521RFQa/XRSnLYj6lbhq2RiMCxyMJopa/Kc1Va4WT5joug/6AptOlm3TY3dnl5o0bTCczFvMFb1+es5jPmM+EMfbSSy9yfn7GJx99xNXVBXVV4HiCEVgu53ieh6LG9326SZeq3KYoVhS52PmWyynzmeHRwwegFGEcEUUh/X6Py/MzTo+P2d7eppsI8wbT8PH775N0Oty4dZOqFPveYjHn8vKS6XSK21pGfc8DW+NoCH1ZfwLfZ9jvE/lrJqLBd+Vc6WpFv5MQBR79fp8oDLmaXFEUOf/mD79NGIbcunGTnZ1d/uF/8p9Io87R/Pztt3ny5AlPTk6xRlR2vtfaVWs5v+ZlQVXVwlmzhiLL0QrCIKCsStI03Qw014yn08dnNE3DfLlinf4ELUQYD8cJ+fCTT7k4P6ebxBIuogy7u7vcuXOHnd3dVuUvQ9Z3f/aTFvLu4CnFS9euUWmX2fkpP/npX3IxHTMaDuhtxWwfjOj3+9y6fYOzkxPuffYJ2aIm9JZ85a2vsnu4RxgnPH5yzH/1z/4ZdV0TxzEffvQR73/4wUbRsLd3QJ6X/OWPfijK+VbBUxQFb/7am7z8ysv82td+jcFgwPsfvM+T4yd8+4//sI1fh6Io2dvdIupE6MBj79qhKNnPjnE9n63tHQb9AdtbO9x89IjzszNOjh9jTM3etes0dc2joyd4foAbhCSdHsPRCC8IQes2NUyxt7fLzvYOvW6Xj97/iD/49h+wv7/LYNhjMZ9RVSWHB3ut+sQhXWX88qNftnuVz+tf/RJ7e3t8/y++LwmUoewHSb9LY6QRm2WyjjqeQ5SEbO9tEQYhW6Mhnufie54MlLF0OxKIMRqN8DwXgzQz6rqm3+8xGg1ZLpYUeS5NKkdTWwnpcQMfN/BwXJcsLyiriaR6h4Jz8QMfbTVlWZLmKdo4WGVFceOFAi3PCgZRD8/zSIKAyPPxEXtVYwxxrwuBiyoWYMHzfZqi5OLigqYqUUbcMnGSSNmI3YQArK8N1/WwSlAweVmStVbcteLFWEtdlSitiKIQGaTXvPrCyyRxQrOSAXJR5tKMCAJyrRk3NQ/Px9RlzWhnl+H2Nt/83b/Ns88+w6+/9Rbd4ZDucIgXhGjXbVNBLWVZoZBmEkqQJ9KwsTiOB9ZSFhUoReA4tF2e1urWDj0t7Wco0G3d2uodx8XxfPwgaIM0+nQ6XUniw+D7gfCqqgbqp5Bt7Sg8x0MZ+XarxZLx5RW+53H9xnX8wKfX6VFW1WaAoJU4QXTLhxSrvxE3FKLgksG1K/2Qpsao9WBEztJByzmu63qTUKcdhaudVvRAG9pGm5QN2l0342S9qWtxyWjdBna1DcW1aMKubZJKgVY4bROqrrL267Sk6q29oMbgtmgc21ietqP+/Y9fufG0tvwJeMwnCkOKoqQ0ZRtpKlPXLM+YTCfMF3PKspSEJ9ehLCXaPghDvNbbbpu2+wgt28fFdVziWLy36XK18cevgcqe524YKCgo8qJtdFS4jUddSWIGTYOnNZHvscC2Co6i7WavFS0+GxaV56Mdl6KqhE9jKsoiJ8/lEHL85IlMYzRUVYrnOayWS8LAkw63qbFUm8MM8LQ72bYCFdJR9j2XIPBwNGAbtFU4yqFpFSmudtEt8EwpizYCEbYWnHULuO1Orjup1uqNOkoiIW07ifNJs2yTZtcYSR8JHBeNFu5DVTEcDEniLju7B0znC66mU/wowHEEgh2FEa68YOGktOwBRyksUiStJ0PWCmysaWrSbEVtpDvvhwFxEtPtSaR0XhbtBFKabZ7jYOqKpq6oyxKtIF0uUSiKdkJtw7C1aEhIpGVtRZUudhQEbI+2ZOphwVQVRZa1EwhFFITUTdPGg3pEYYzjeDS1ZTqdUdcNWVbgea7IRatK4J7LJVdXV6Lca1kg8DR5YH2drqeiWFEiKVe3iW1QrSeZLfdLr+OpjRS14kEW6W/zOUA/LbNCpieyEdZ1zXg8Jssyzk7PmIyvGF9etsBEl+FwQL/XpdPptlHbiqIsWCyWFEUh6sJCFkY/DEArGlvIRKS1CA3oU5SS2nB1cYY1htjR4ktvjETWz2Zy/RkLpsLThjpdUlJTWcjTjOl4Ql3KfVkXVStXFcnoZ/fuEbZW03VsbRhJ2mNRS1NvMZujrTS9MZKO4WtLhMZqV9q5SmOtEosUwmZp/ahcXl4xmc8oVhVV1TBfLnE9F1uV+Frj2wbremwdHHBjtkD5AZPpnKxYgu+TJDHbN2/heB5O4LN3eMhgexvt+VTGUtQNRd1QGYNVWpRBQFbKWlI3klJYN01ru9QYA1EcE4exeLitKCOttbitxdDXayWjZtTvsD3oMtzq000iRCXpEnQjlKlplku04xG7MW5jCGpLpcDUJbUxoISno7CMLy+pPY/Sc0lxqaMudaOwVU0U1NioZsdJiBKx8thaFA3dTpfaCOjUYhivpswWSx4+OSbsdvnKm7/GdDYjyzKqvNyA7D3PbQcP7fRGSbpkf2uPMEm4+dwLNI1lZ2uXXrfD7s4W6/SUpDdo1ZJtrG8cyBRwsWQw6NMd9NCupmpq7jz3DF4Y8Ojxk7aYHqO0FpB7u16EQQi+TLddL2Bv/4DGWLG+LJZcTab4QUAUxZLKph1MY1pljWK1WPHg/n0e3X/E8aPHTCcT8jwTzoYXMOh15N7rSyPIAn4QihqzLCnyggeOR5alrBYLKqDMM8JWIbXemxzXRRkN2gHtYLXG8wPiTgeVCdMqL8sWkimJsGJVbNqUupymFsuy57pcu3aNKI7Z3d3h6mpMWRayzlYljx4+ZLVaYhqJJB8Nt2iahq2tbWnwLxZsbe+wv7fHjdu32d7ZoUFR1s0GSIkFz/VJkg6u64FWxEkXP6hJur32oC5zvBZ1B8iaL4cWQ21rlCoxRkI96roiXa1k324akjhGeAIG20jSl+uIWqqpLY7yhMmgRSkjoFSPppE0ySAMCKNI7A3G0FhDURRiyTGmLb4ysmyFtQ2e55BnKUWhKCtR23Q7MaZuqPKS2tQt269Ba4u1DcZWNE3VKp9E8ey6DgpXGgpFIXZS48s63whrpyxlTbVI2oxM113c0sP1Z7iVt2E0WivrW9XUrQpS4fmhfFariSAAghCLxlKhWlJoEidoR1MUFY522tciLBXXVTiObaf7mqaRn6NueUJuy27y2+aAUjLtVa1qSRhFAq1eH37sWo2tZA/0POGo+EGA24YlNC1Uda2itqahrsrNWSZdrZj7c6qqoK7X4RmW1Wq1UWGvD8yOU7YHY9OyemSa36yDP5TC9QT+XlZVG3jTqr2MxnEs2hGFm2nV52DxPRc/8HHaxMA8z3Acpz24synai7zA93wCP6AsConT/txkmPZ1rpYLslzOxAoJGlFAulptXAR1IyqeuqpRVuEFQpR1HFHEZnkmKhPPFQYJMB6P5X2ta6xp8HxhZxZFgWucNvFQVLaTqytWiwUzT2yVCottauq6ZNnauLXjtSr2klIrSdyt5d5cq1dNq8hMV0vAslosKIt88/+qshBFmqPxHY31fcLAI0tTxpeXEsgxmVJkGXUlSiaAshZGJsiZEivFWNPUwqJRIXEUEwQhSdv4FEWQKN17gwEoTVas2Uoudd2wWq02CVBVXbVnQVE2ua1dNAp9XEej7bqQanEZVkJc6kYUdsJUkv29qeVaDnxfLLhRLDZLLRQM7TqUdYXJoahrtre28cOI/nCEHwQoU+GiCJVDU0itEvge/W6Xfr9LFIa4rqZupJEwm8/Iy5qd7QH7O4fs7O3T7fV5cnLG+eUle/v7aMdhOBhsgjVA6pGqlEK9MQ1RGHHr+o2N+uPg8IAojlm1A4+zs1MuLy4o8gxrjJxPMTgYfF8GBWFrIT30ruP7AcPRFlEYEccJu7u7hEFIEMg6PNraFvh3C+5fW46UktrI8/wWeuww6A9AwaeffMLp6QllKU3mqiw3yn5J2a6ZTKdUZUVeFnR7Xba2tjFYFqsVy3TFKsvEPmZl3bQCMMEqBUq3qZPyfoRhuKlRwiCgriuqusbxHJS21E0JGFS7hlW17FlKWaqqJM9T3LbB4DjC9lFtvRknyUaOIulvkkpa10273soZ0bYdE600rnZpGqk31kpBreWalGagrNto1aqB2iFmu8+qlhnk+z7GGsqq3DRipIaxcs6vhEe3Xtuclvm0lrkorWmJPq2KxmxqPQmFcqXmUdKcaOqG2tSUjQHPZ/vwGoEf8uzzLzLa2eHlL73OjWvX2Lt+SBgnhEmCVS2iYa2qaWs9o+znat3Ncrp5Hz+/xq6dQM3n1vDNz9D+vlYkqzVb93O/dKua8l1RFppG1Eeucmi0CEDWylQRRok9EoQJppVGw4bxzLoPYOXzVqzdAGv5mNrcm+vAIf05VZlWdoNbklZ3uyr9v1nbpA57qjeDtVVujebZJN+ta9F2/5af3WwUy0oDRhi9n3u69p5r33z7VM2tUIKN+fx+9+95/MqNJ4yoIfwgJIpi8VzqFBRiZdCK6XxKXdfce3CPIi9YzJbMFwtOzk6J45ggDNnb2cXRmuPjJxhjRJbsSuRk4Ae4rsf16zdwtMPDB/fFjtf+QI7j4IXeZvrqOA7jqwmNsZR5JrL8ddOiqoldl0EUcdk0VFnKfC6RwN1enzCI6HT6m8SvqgVJXp4di+y4lex2ujGT8SVHD+/iugIaC0OHJAnZ7sdsb2/xzJ1blFXObDaWy8K2iqTN4iZvoXY0YRQTRyFx6OFqA6bExcUnxFIDmtALcVwPzw+BBkvDOpPRtMkyZVGDNSj1tHknneYCjYM1Mhku8pSPP/6UWzdvyCQ3y1ksU0LHRXsuy8WCxhi+/tbX6HR67O5d40++86f883/xLxlsDfF9j52RTLe0QlgPVbpZzNag09qKdxZHGioeDmVdcnI+IQhFHn54/ZBrN6+zt7OL67okvW67kRSEQUA36TCZjJnNprimgTznarFoyf2aKIoxcSzTFdeVZK/PSRrrumKr3+Nbv/5NFosF5+fn5FnBZHGBqxVhHNNLOtRNQydM6HS67Gztyk1o4ejomDRLqaqyjRV/BYD5ZMp8MuXJoyN2dncZDgYbrlmn09kAB11XkriUUlRFReCHuKEnyTkoitZeZkzd3uBmI9u/ODunLAq2trZaSbj4eddSdWMMh4eHdDsdLi8vWSwWfPDB+zx69Ijv/umfMRz0Odjf57nnnuXw8JDD/X26XVEfer4nCTvLFWdn55vD7Ts/f4fTkxM6XQEpLlYrgjBge3eHUdJnr7fNh59+xIOjh/zoL3/A1cUZYVFJk7ATsiwW3B2f4Xsaz3XoOIruMKC8ekIz0eiww2y65O5H9zfA0TItqIsa4zYYZfjuD74v8uwkwXdlo+/3BxIkELigFbPZGIVhq9/D9UO8qE+nm9Dr94ja68BcTIRRY5GktrraNMuPj59wdnpKlhfS4EPS6PYP9glDn24S8sorr/DV17/M9s07ZGnO+3fvcTqfo/o9Dp97lr/1d/6HwmLzPMbTKdPFgmlRMDu/IKtqysYyzwsqFL3BkNl8wXQ2o8xKqrKhqGqqqkEpB2s1eVlz68YNvvTqFxgMtul2B1LEGiOpO1i8loviuC5eEuF14vWRgnwuaSAqdiizFbPH96i1i+9FBEUBpYAa67rkaj4jCjyeu/kidWP4yV98f92TY+f6NTr9AXW/B0BiLbE19A9rZuNLfv7Ln7M3HDHq9Xjl1S+gPRcniXny+IjjJ0d8+Mld/ov/6vf5H/z9v8f/+h/9z1HtoWkxXVCVEhvsui69Xr+FhUqTqG5qTk5PyIqC3/3Cl1Fo6qLGdx3iqJU7Y2nqdgDjtH+vcmk2hDFVq4Sp64pHp8f8tW/9FmEQcvvObT777DP+1b/6V0ynU87OT1kHTWyNRnSTLttqi16vz2+98kWCMKLT6fKLX77PX/zFD9nZP+Dg+o1NfHdRSFMgiiLOn5zwR//q21xeXTKeTPADSYC5feuQJIkZtTD0nZ0tbty8xbPPPs/u3gG93oCryZTFfME7b/+Eo4cP+Hf/9t9Q5iuqbMVoNCKKhqL0cRRuGMoBIKxQjsIJArZ6Pa6FIZPJlOVyJevAcsWrr76KMYYnT56Q5xLI4Xke3U5CJ0kYDIb8xm9+i+FoSBTH3L9/nwf3724OGj/84feZjCeEYUSv16cqara2d3jt1S/w8Scf88mnn/Ktl1/mW7/92yS9Pq7nMU9zrmZLwqSLcjJMVRInHUbDEdPZhHmaMto9wHddtnYPqKuS05NjsrTCGNUezhT9ThfPdZkvltRFRdoqcgPfJVsteXz0iLAFkt84vIbrSvy7MZJW4LsOcdBhd2sf34s2zZSqlgCIbq9HVhRMphNG2yO2tndI+l3yIufdd3/BZDERVooxVFXOfF6SruZiKewmPHj0kFWatnaVDtf3d8nSFbPxFWVdUDZla0H0RTGjLYvlRA6WyhJ4DnEYtek7Lh9//DHL5RLfM21ajiQzZatcJrCuB0qjHZfBaIAxDVmZEcQB2ncIwpDFMiXNMhnc2FZBqHyKouTRoxOU0sRRnyiUQ+C6GTQcbREEPp4btHvB2UZFHLZQ/SAUcO6jR8LcW66Wkuq5u03QWoSaNuhiOBCLzeXlJcvFgrPTMzqdDr1eT+yIxqC1K5abJEArxdZwtK6GKOuSuiw26ihbV1S5oc5T6rohL0pR6GYZuztbdHtiDQW4f0+SjgeDQZtUq9tGk4Djy7IkDMONxWptF+l2e/SHQ87OzlgsFm0oCihHFJFeKE1pkHNt7GoGA0ki1FrRVCXzxYzR1hY3b94ky1LGkyuW8wVZmpNEHTpxl/lsjuuLSsdtm6C6tYA8efKYqirJsow4jhh0e2RZxpNHR3Q6HbrdjtReSuOiaXyfMAjaYq9hMhnz6aefMuj3SaKYOA5JVy4ffvg+AN1OF6xhOOi3jcOMqpLhreM62Kbil+/9grIoWCwWjEYjDvb2ydKVvI7HT6jrmpdefhnXdVkuU8oiYz6borAMej08rTF1RbZa0hhJUyuKFK2VgO6xmLqgylM5HwLnc1HCRYHH/c8+40+/8x1p2BUFgefieu7mmroaX7ZWr0Q+HwXYhiL3SZKEznDIm2/+Gp7vs1plPHz0iD/50+/Q6XZJOh2+8Y1v8MbBAW9M5sxmU372059wcXHBg0ePRMHkeRuVx/ZoizDw8ZOYMPTZ2d5u8QIFq/Y9kURZQ71267RDtdPzC5bLFcvFiq985av0en1u3bpDvz/AcyXQJk58yrLiajbdsMB+49d/k8PRDq995Q3KPGV8foopS5q0ZDmesJzOeO7ZZ+n0exgjSvdsmTG+OOenP/0xjusThDEvfelL/NZv/g5WwXK14k/++b+kqmv+7j/4B3SSTqsyC9ozqChI/h//7b/k8vKCJIm5c+cOf//v/wPCULhoDx/c5+T0hB+0KqEP33+fssiJAp84iRgNBlyen3M5n9DpxGztbtMbdOn0etx+5o64TuKE5WLFZDzhmeefI/B80lSSvru9hEePHnJ8fiohPa7wzoyFIIzodnq4rSrN2obzsxP+i//L/xnXFY7gcDhgZ2uLk7ombSH6s9mM9977gDiO2d/bZWf/gNe+8BqPjh7x6YP7TOcL8qqibiyeNVh3sVkTjAXteezsSaOuKnLCMKA/HBBHIb1OwjJdkWaZYGHqgtOTORZw/Za1g5X6sSqZzq6YTyVkxnUcllnIoGm46TjEnQ67B4dURSk1ZmvTqsqaqhI+n1K0SbAKW4OrPQI/pDFy7o6DuFXgGmgsy/kCrJHh09RQNhXh54fh2iFOOnT7fUZb21R1w3g6lbAipagbS16WjKcT/DCkrGrCIGJrtM2T6JiiKNGuI9Zs/VcbJOu91hpLWZQUusQYhTWaurbMlyuuJmPSssFLenzrW/8hzz37PP/Bf/w3GAyHeJEvzFZHsDuVedogDfxAAj+0DGSNaetdo1pFUosb0U/5Q7TWv6oqxYZaS1KiFWAVazs5QG0Mysrgpmr5d3me47o+3U6I7wd0ki5VJWcS15W9eZ3sum4YyeBC4/sBcZTQ63Spm1pCUFwPFDR1C1q3CtXQNm1ENU37TLplOOs2qMdq3eJYpHelVMvtNVYQuG1zbD2gXZsPm/pp83D9flhjaXFY7UO154Jq83WbxlurC8NKY0tCJyy+H8hw36xFBla0L/KjoUCGnc1f+Ub/Hx+/cuOpLEtJMtOaPM/aiYxsCL4vEsJ1uklZlFRVRTfubA4ZbpvQ4ntykQyGfbBtUoDn4rdcA2ttK5cVz2VVycRiXYRba2TaUFUbyRpAlq3wmgrtiES9SHNOj0+Zz+YsVivqWtgJUsj5GKVIi1ySVXQth77AxQ8dlCPcCOVYUJK+53neZgo4Gm0z6Hfp9hLCyCPLFxjTtMoW+VBNy2USxZpYPNDCcAh8l0Gvw0Xo4bsWRzVoGnxHWAhJ6FE1Dcv5FXmxoihWBO0EvteLcR2FtnXriW429hVHuUSByB+bxrK3u81wOOS1V14h6SRyqM9zqrISnoijsQpJVopCrILL8RUW2N3fZWdvh16/T6/bJWi939ZasrJoP/sGrzGiCLCFTJHaJsnTrrootvKmveCV4sKIBzZbpVRlyWq1oIojXC2qLd/3N1a2VSaTF1c5pKahqorW62vECtPKBWm/t+s69Ls9tIKd7S0eP37CdDbB8yXBwBqDRtIUoyik2+m0UxeHTpJQ1XWbvlJzfnaOsYYsSzdpR51Oh73dXdbJdVmW4bgufvv5C68sI8sy+r0WLOgHMolvF0itnyYq5K1FT7cL6HAwwHVdkdq39956UTg+OmK5WHJxeS5x4FcSF/vFL7zKzu4uN2/dYDQa0et2ZWpqDfPVEruypGnrp3cUp+enXF6KfSOIQ4aDAUEQcKfTwQ8C4l4XXVlMYVikKeP5jNsvPMuNO9fJ7j+AusL1ZRGqa4sxFbYu2saxS6+dWk6LDGUruv24Zb2FkkKnDMoTKbEqZIFzNWgMNBXZckZTZASRpIFQZrIYr1aUq4zl1ZSiE1PMOlA3IiGuWraK51GZhukaSt9Y0uWSNF3RtKwkaxRUNfOrMXUSEzgOx49PoIE0K1ilGbNVSuNoFmXONEsZL+aolRbLb5GTlyVxkuB6UiQq1bBapZRFSRhENImIYQvPF8XcZI62kLcQZ7l/pHlrjW3DGOYUZUGVCWdA2XbapCXNUjsK1XZi5pOCurbo2EGZGiebs6wNk1IAiE3dYJpCijBTE3geblbhyNiWNMtZ5RmT8SluEGFcUX96taE2DYsmp8hSstWc6eUlnSghfPgItOLx8WOxT2hNVVYcn5zxy19+yGjv++zs7tHpdFhj6RprUE1DtVpt9pKqTVW6msvks54vAYVjtfDkqgzXlTXT0aLsctw2lteWhEHI9qjlZQUJyinBGBZZRWU0127dIUy60gycTbm8uCBNV2TpapPM1OvKAfdyPKaqG5ZtZPLhtWscHh6yt7fHu+++y/n5OfcfPJCo5dt3uLy8IF0tUViSKCSMfIJAmjxRHOI4iizLuH//PpPJjCdPTuj3R8RxB1wJonA9n939A775136d8eUFx0cP0Er4P/sjaYhp16UoK2YrsWhboGpqKHJczyPpdFiuVsIWqkTBsr29LYpa32e5XJJmKdcPD+n3h8wmY1bLBWjF2ekZdSVK5SDwuXXjBtf291llOaD48KMP6feOpZlwfg6OxgsCwiRBt0rQ0hhKI8lKDZCXJZ1eh52dHaKuJKsVeY6jHQbbW5imQbuOsBlXC1GbNA2YBmsagb8DvqOJwphet08cxfieT1WUFHXFdDwjimNuXL9BWZZcnJ9T1CVZVdHEito3TKaT9kAsTMDpbEJV16yylKLImc+nhGGEdh2Ggx7Wdtnb26OpJZGtqRspMIqCshBeVOj7hL4vxVcUoKyhk8QsMkOZlfi+DB2MkclvUzfUVc10MpNBBFDVpTAiTIN2xM7lGAel5OvqWthCTlOBqmmMR11F1E3FdHKF0or9vR2iKCEOQsq8QDWWyI9wHIflbEndNCRRIvtxY1uVuJaiU6mNIunkRIq+spS0qbWCN89z8kK4SHEco7ViuZKzTV1X/y/W/vTZtuNM88N+mWteez7zcEeMBAjONZAldld1S12yS2pb/mBLDlnRdvifctjRoVBoiLAiLCvaanWrrZKqayIJTiAAYsbFne+Z9jysMTP94c29L0ofLDrChwESAO+9Z5+918qV+bzP83sIowDrAuqmwhrLeHKDc47VckHdSNtdFEe79qKXgo/2exJLWUus0niAb9PURHGIbpUgAEKp82492wvEESRO5GJ3yNjiHZqm8aqEuJR0IC2SYRCKy95acf5oRVGWcp15/mIcx1Je4tzudW4ZUEEY4pqGpmmoa/989hNeZwymqSmLDWUlEcIwCsg7Kb1+h04n53p8TRBqev3ezh3snKWpA9pWXlccizt6Pp8zn895/Pgxe3sj6npPIrRxRJrEmFaxXq2E0bRcUle1HGoXSxbTGXVZvdwnWENVFt7BZHfOdGsMDkeSyL4qCkKCVBEGAf1ejzwXmLgcWuTgWGw2wi8pS4nBppm4r42lqWvqupLBmXenmbalWC9p2hbnr9tysybLcnHSKU1TlzxTsFjMyLOMNImxtuuHqIIw2N5/0h4YiXtda79eJR5tUHq3teLy6oblcsVgIA7TzabgV7/6NZ3OZ9y5dYcwCHj1tdc5OTnl5PR4N5W/urxiuViAUlR1w7JYC7PFP9eK9cYPSQT/4KwTJ1YQcHp6wpGxnJyeUtctdd1wdHSIwrE3GhIGmvVGnHrPXkx3DpMoitgbpVxdXrBazIkChXPSaJilGadH5/RPTjnZlAx8dPqjjz5gs1kzGoxIsg7Kx9nOb9/l9TffJO3mfPjhR1xeXTHc2yeMQrr9PqPhiNOTE/TXSpbW6zWz+ZzJdMrh0QE60Dx78ZSmlvbHZ8+eyvNytaQuSyLkfBDJIsZmscDUFaFWjAZ9jg/2CRQUqwXv/eqXwhZMUjbrDcvFipOTE/ZGI7k3lSaMtAjhPh2x/UspRZKkpLm4V3UAw8EQheONN96Uhs26pW0tk+mctrXoIGI0OqTXG9Ht7bG3t8crr9yn1+uTZl36/SEgn23btqTJFtPBzhlr/GE+imKcc1wXBWVVs1ytaZsGa1qquqLy7kScxI2cT9EorX181GFaKdJo81QSXz6p45yl2Kw94mL1NZ6t2blFQeJyYsDSOzeP8U4050WkNIm9KONIvfu0qRs26xWLxYLlasmoI8aMMAolRl5VxHHM/sEBB4eH7B8c4Jyc6dm6e2JJHVjrvCt45FEAIbgt99Lt3j/n/zn2PK5ff/A+WLh8cYlSim435/DomNNbt3lHKZQKeOsbb3N4eMRg0CVNQrwRV1y73omkNS8dX/7IKBiCYPfP3vhEVQsTerVaYlppdHz48CEvLp6z2ayJI3mWCY5FDCHbL3GCR15QkeeJ8S5qGYQk4kKzUuwlr0KjdYhSYoRofRFOEEb0hwM6vS5hFHkpp90ZTrZOK812D+tewsBf/hJ5RnpzwtbJBuKydGydRi81ma32sWNqif3IP/fxwpOcM3S4bUqVN3HrhPMnTP/fDrWlkStAOYwvzwqjEBDGtnXSdOl84dffeQ38bl+/s/Ak6rSAOKXVqaTb7YpTIRaAeDfLv/YhysZh+0K2/277dXh4QKA1URhJ/jpJWC6XbDYbn48Vu59875KtgayqDKZtRbAKxI6ulGazXhA1MpGry5LNqmAynlI3DaODfZIsI80yaXOLE4w1FMVa+Dmh1MAmcUTaCQkbi20l7uIwBGFAmqas1w113TAY9Dk6PmT/YESaRCxXUy+qpTsFUpxoPiYYqB28EGdI04j9vT4XnZg0wgtPLWEUE0UBvU7CfDFnNnnBZHrJbH7D3t4+nU6XYe82aZzgdCsqcW3kgRwrOmkMJMyXK1pluXv7nPPzW/zRj37IYrHgwcOv2GwKiUi1tRxClSKKQ+Iso64anj97SusMd+/d5ez8lNHeiKoocVZUz7ZpqavGi4QQhzFt2Oxa3rbMo/V6LQ0XvR5ULWZdYZzDOMfsegxKMqZ1XTMe39Drd8XerLVMX7JUpqI319RVRRYEbNY1y+WSoizZlAUnR8cMBwO2MLy6rkmTBHd0zHA45OzsmGfPnjIeX5PnuXDJWkMQhuRZKm6A/oAoTojihCyTTfynn33GZDrhyeOHHgypWa2kLeju3bvSPuO/3xZE2LTJ7ia8urri6uqK05MzBoOBB02HDIbiFki9+2c4HDLZVktrqeY8PjwkSRJWHogqUQVZSH72N3/LB++/z/X1Ja1p6Xa7HB0d8g/+5O9zdusW919/lboWK/LNzQ1lWVJM5H+fPntGv9/n/Pycz7/6kl/84he88cYbHB8ecbC3z2g45I233yaME6wOuH5xybMvHzKez3h+c8Wf/Js/Zn/Y56s//x9oVwsCU9I2lrKwLNcz1puSfhaTpZq9bo6xlsnyGo1ldNgnikRMDLWlCq1Mi5QiLOQ9i8PAl34ayuWcVdPQ6eQS640CokCj146yLLmZTEiylEU3Z7NcUhUFkfUT626X0hheLObUraGsWzppRifNBG4caFwLDZp522KrmmG3y1dffsVvP/yY6XzBcrPhZrHABiGTYkO+mPPs6sqLQyuCKCSIIo7imDyKCaOYum5ZzBcYY/xGOyRNU4qsoCpLNtMFGuVbGncGfhRawPd2xYuLCxarBYuJCJ9Vq3y7UYstN9hyQ9TU6KZhfL2gblpUFtJJI+6OelwtNzy4mVMYqB2AQSnI+h16aYqazuhGAaM0YD6bcDkZMy8NRevQSQelAsLKUrY1l/VSrOZZQhKmhDpis1lh25Y8lUlfFAbUTcOTp8/525/8jIvxlO9+//uc375Nf7RHGMdyPTlHvVjupnDbavDlcklZllzdXOMcdLMeq9WCq8vnpElEmsZ08gFxnHp+ngJl6XV7GGLybpfeoIeKUpSz3CwK4qjl7qtv8srrb/Ht7/8eq+WCm6sLbm6uGd9cM5mM2aw3rFcbik3Bw4ePubq+5rcffcTrr7/B97//A+7dv8/t27f5z//z/5z33nuPzz77jF6vxx//8R/z4vkz1usVURQyHPTIcuFJDAZ9kiTG2pbFYs6XX37l2QJKoJ9hzOnd+4z29vnhH/we53fu8q1vf5NHD77k3Z/+hOvrK2bTCYenJ5ydnVO3htVqzbPLGxl4OEdb15RVRbfTI++I8FRVFUVZkWcZZ6fnHBwccPv2bb58IHDZV++/yqA/4NPPP2O9XrMuNqw3G+qyJO52yNOU1+7fZ9Dr8+XDR4zHE371y18Qxwk347E0DAYBYZKQdDpYLSys0hoqZ3ChplGOVV1x3ulwdvc2TVPTtg3TibSJHR4fo5Ri7/BAgMzFmnKzoSwLri5esNmsBUweBEQqwFrF/l5Nr9snTVKmS2HqXF5cMxqNeOO1N1itV/zmvfco1iXr5YK6NKRpzdMnT1ivl37pFNfxdr+mPXD+1u07DIcjjo6E53F+ensnMm02G5bLJavVSg7cWhNnGZ08o5Nl9PKcSGuaqk9jG9bFmsQzIprGHyD8JP7i4jmj4VCA2P7wb6zEw6pKOCBZ2sHYlrKq0Y2w/IyVYVyvymiamqvLFwyGA775zbfQKkK5kM1yzaZ1dDtdgjBkPpkBMOgMPCR3JaD3UOD6aCWckKrkwYMHKKXodDoSfYtjptMp6/XKT5ADTk6Ew3h1dYmxhqouPdBcXntd10xnk11EJwxDur2OL3QJdn9pP3k1jaFpG+bLuY+JVrvJedQIu8JaiT3leb4rngmCgDgTUWSzWvsJsAhOQRBQ+ci7c9KSqkMBUodByGKxwFhD5PeRq816J4pJGU7KxgOOA4+LaFpDHGuCUESoqqooS/k1qfwxuLalqSqWywWNB87HcUi/32E0GpBlGc9ePCVJYvb2RiyWSxarBVUlP69EJmWfo7Xm5uaaq6srPv/8M05PT2mahr29PTqdDiZLaXEsqpKmaVgvVz6GlXDx/AXT8Zi2bXyLsew9y2LjD8nuazHIkrZt6XY7uwa9bdKg28np97o7K08UBdS1Y7lceNZYQ6fTIUsHtHVDa2s2ZUHdNLvDa5ZnWAOr5Xz3eVxfLmjblv29A9I0JUtlaj4Z39DUDaNh38P9QzabDa0vEoKSqijlUO+jc1EU7VzT87lcQ5eXF9R1yxefP6DT7XF8fMJ4OmE6m/Hr996jKEr+g//tv8+t81t861vflvvQbT/Tkvd+/WsePXzEfDalKDdcXVwShQF2y/JbSyR/y13ZxrryTpdX7t8nzTIRsQNx4MdxjMJytL9PJ0t59LRkuVrx+QNxfItj8ozD/QO++uJLVqsl+3v7xHFInIZ0+kPuv/22wL8jGZK3bcsvf/ErJuMF9++9Tppl3L7/Kq9/4xv8/g9/CAQY63jvgw/54osHfOu77zAcDun1h+wdHHDv1Vdp65a6FL5aY1qurm+4uLzi+7/3XQgUn3z+CZcvLvjqiy+Z3NywXCwY9aSFc9DtEkQh1jSYumLhhwZxoDk+GHH7/ISr6ysmsxl/+9OfSvmCF+7Ksubtt9/m3r17pLnEIsMooNhI6YQ1sq5s475JlpF3eqyWa7RT7O8fMBgMODjcZzKecPHikvl0xmx244fTKUdHR3Q6HU5OTrh16xbf+c53ePDVA756+JC9vSOyrEsYSdv20eEJxhiWy+VuHTB+cA5QVzXPnz+nrGqm0znrOPSlPOIoicPQi0bSyrxdn9IkkcF3XZNn2a7swlopAHFYz2CbsZjP6HZ7dPIupXeIpGnqUTW+zVtZTCiixg7Ob6yUriQZWZagA8jSlEAJR3ixnDOZjFmsV7w6uL0bKIC0YSZJwsnZKee3bnFxcSkGglI4TEEUkaXy6611dLpdDo8OyTs50Szy+1W7EzbcNrplIEky0jTnX//NXzGbzenlPTE77H+Ts/NzXnntde7evcvxyclLZ5IfpFtrxETgVZIt5FyxFZ78PlmJQ5qvp8qAciG8zUePHlEUG5bLBR999BEPH37FerMiTSNJujnrUyR8Dd0jqYdOR9rCm1ZcZ8Zaur0uYRCxWhbsGui8+KQCjdbIc9qjjpI05ujkhMFw6IUn+Y+4JJ3UbKIIeCnSfJ0tuNU2tntjY8xusCLN581LZ+42LuivjV08zwstUuTxteihFQSNCKsiIOKjcuKkUttjphettiKYxWFpA4+A8b+/brbCU7Mb2Gxf++8qOsH/D8JTWdfEOLphB+vkApGcbs3aW9EGgz6Bb47YikrWR4q2alvTyIaj3+8LdBpLVWxYLuYUZeGttwUKWCzntM3LHL4ORDGMImkXa70SqLQWQUkrkjjEuYTGWmKXAYqs0yMIQ5rW0mLFxugCUVz9G7darlgrma4FgWYxHaOVppNmNFVFtdmQ5Rmj0ZBX77/CyenRTiVvW+E5EMhlpHEYvB/X29CiQGydxlnSOORwb8C9OydkcUBZa6qq5bPPPqZpW9I0Fr5FuSGK4fSoTydPSJIAbTe4ukY5Q4giiDRgsG1NGEqkinYNxtBN+wSu4cvPPkFpTSdJSEJNL09R1vr8/5o4Cul1uyzdmvVqzXI+ZzoeEwWKarPGtMJhiMPUX3zNTjl1raPVzU69r4oKax1JmBDFMWmcYVojoG1nfTOOXFNVUQgHbLmkqUqKzWb3/23bwAoPZTdfs0aDvLX9Xo+Dg4Md8KzwAo6xjvlySeEbmg5PjqRRUSt+/ot3CYKAfn9IFAREYQDO0lQleSrNi8dHB/R7soncCmQXFxd88cUXLBZz3nvvN1xdXVLXNefn53S7MukHdu03/WGfKBQwd6fn60ibivVmydP5nKqqKYuC8c2Y+WxOsSlw1vHTv/pLmTL4a7GTdeh0O3Q6HT764AOePHrI7dvnDEcjvvXOOwyHA87OT9FhyHQ8IU0S0iiml3eIdMDNZIw1lrPTU+aLBT/5yU+oq4rXXnmVb739TU5Ojlmtl0yLJZ98/DHrouDRs6e41oAxHBzv8+OTH/Otb36HLAx40PwPFMsCXc1wLgBStHEEFiKliVWI9g8ljNhMN5uaOBaMeq+fszfq++YquSa2rY1RFJIlCUGoiKzwWtASp0k0JM6QxiHDoz2ibVV9HtI0HQZ5n0CHTIuSVdNQhYbGOmqn0MahLKzLNY21RIR08g6vvf6qwGt7HeKyIohCXn3tdfK8y5//j3/OeDLGNS2Tyyv+x//2v8NYR9U0vPbGG9y5dw+zqWmcpj8YoNKUQa8vE8WZxEsH/T62MTRl9XfiHtsHxYsXz5lPpigVgtKsizV1U2PrAmUtyctoOt00pp8nHB4e0EkibkZTmsYQd1LSQLMXRaThkuXasAhgE7ATcpM0pxPF5GnOXifhlYMeR6Mut46HGKOxTizc1mkupmuuVwvmzwqiOCRLE/q9EXnWo17NCJ3hO6/eRSl4eHlDUdSsFhtcseHxxx8zu7wgyzv0RnvikulKbt9Y53Pvmrosaavat/VZNnWBMY7WKOq6Yr1eEASaMFB0si5RGGO9wxYNaZrz8cEJed6h0+uSpglxEtHt9kjThCcnx2RZSr/XJQoD+vvH6Cij0x1iXYhzE6qiIYkdd27f2W1Y7965y5tvvMmzJ0/4zz77jJ/89d/w8OFD5vMZxWrJ+7/6FevViiSNSNOENE3I85Q4FkcG1IRRSBRn7B8c+YNdzPhmwmq15sWjrxi/eM74xVOGwwFvvfUWURTxznd/f8euuLy84P0PPuLixSVNUxMGiixPOTg68FHylqJsWCwWvo1TrOBBEBAlCVXd8OzZcxaLJcZYPvv0E88Sks3CdDqjKAvWywWdNCFLEs5Pzzg5OcEhNfDOCWT01vktrsbXfPnVV/z1X/0lF1eX/PDHP+b49ISqEkF1tVmDgtOzE66uL3n08AGJglhpOt0OURhRjCWCbqxlNp1w8eIFW4bPcrmgaaQpbm9vnz/90z+lrGueXrzg6uqai6srfvDdH3Dr7JyyKEizlNHhEUXTUjQNQZJy2OliW7HrHxweMRgOGd9c07bNjkFhcYRKnDDFaoNtLWoyJY4TtBOQcZwkEmGrxG0ahqEwDYxhs95QVxUfvL/Zfa5xGLM/OpDnrtJUbYvWAYOh1KB3J1OSLCeII0xpMc5JXHfLyFFK9g4o0lSa3JRShKFCa8eLF0+xxnB6ckKcJExuJtLi2Uo8II0CslSe+dfjsXerhBRVyWq18OJCThynBGEg11jT7AYnYRiK8Ht1JfwkBfv7AlMvig1VVUkjoT+kNW2L9bGjLc8QhFUXhiFpIpG5JEl3+wG3ZRUqyRAkWUIYR4Rp5MGq8jNba8l72S6WprRs2mMPCpYv2UMaa0iSZNdS1hqJ1vktCVVV0mpp/AuDgCgSB1VZVWRZTp5nOwf9ItAY24qwFgQkSbyLXkiLXEwcSdRzOZ+JyJKlZEnC/miPxUocPlmWEgSah48eEIQB1rVUdcHDhw8oypL5YsVgMKDT6YqTwLt3tgJKa1ruv/oKCpjP5+R5Jq2YHm49HY/F6V9XYA1RoEnjiCxNuLicUGw2hFoTRNHOfdQ0wvcKtLgWnLW7mnvTWqpyIyJ6KAyruql2jvUwDFksZkRRzN7enrjqVstdzEIGZaFvcRLRy9mWpm3o+MbMshRHG21LtZY9qQ4CtJLp+/agKyzYtXC3fIuxOPxD+v3+DrchbDS4ffsOcSy/d73eMJlMWW8K6qYVjlJruHvnDtY5vvj8Mx49fMivf/1LKRHKEvJOh263y2j/gIPDY7CWtm24evECa1o0sFzMub66gK8dzAS7I+/NbD6H+YLWGJarNYvlkuPjY3q9HsV6w2q14ue/+hU60Ny7+wpZmgqLrq65ubpi0Osy7HVFqNAS2VmMp/zsL/+1MCGtI847qCCkRtM/OOb269/AGiOujhfXfPLRZ1y8EPf6w68eUZYVR4fHjPaGRFHIarXit7/9LcPegEF/yGeffMJXD76ik2ccHOzx6NFXpBcx/SxjvVyxmkzJNHRGA44PDkjjmGKzEUZXXeNwHjcS4Yj48Dfv8fDLB5R1RVlVTK9eyHrQ6RAHIXm/w/jqBfPJFfOVxGfTTMR00zaEgcJGocQI/feROGxPCjWWM8bjMb/96AOyLKfXG7B/cEQchj7+aEgTGRj3+gOWqxV/9dd/zdSLj7PZxLNhQ9/iV7DebHj65AlHR0fcvn2b8XjKer32qQ3LnTt3kSyXRWsIA2mfbKuKxrUYZbA2oG1aLjxC5uzWOW3TiJvFipDVNtKS3fPivlaCSamK4mUzuJIWx9Y0aKd3rOQgEIeKjgN0KCK4dgGhUtRlQYAlyiSBYzEEoSJJIrp5gnONb+4VAT7yzcqobTujRKWSJCVNMhFU3LYtTcSYsiwYj8eypu6SRsIKAi/yG4cxYJ0wfqM4pT9Q/OB7P+Ds9IwffO8HdHs9BsMReaeDVYrSM/rCwDd0a6QF3qkd58v6lnBZfyXXWpYFN9c3LFdLJtOpdyBav740zKdTrDEEgWI2nVKV0gIZaO/1cw7rX7tGeweXpW4a1GZDHMuzNwhlILApCoKgxeDQgegYW3i3QxxyjWuprSXpdAiDgKISFq51bsePlOeRYhtla1yzi/s5fCRga00CnHIY5Wic8cVOImZvStlrbUsJOp3OjmX4P+VT4RtNt2UfdSOFZZV3kGotqZy2kXV7+yWOTIGZa+V8mtGRJilhGBEpwfcURSlirX/5+IijQsDoOzjV/8zX7yw8NW0rwo9WO6hVXde01rBarsTy19Qe/CfujW7ekQeJbXdTproufbtRn8DbEOu6FDXeQ9zKUurdi83Giw3eaouAFMUS77OWpvU3rcC6o1BjXEiYCcsgDCPCMMEpTbncgIHIk+QFnCZvflkUGGPY29tD64CybCSSFSTUlbSWDYd9Dvb3ODk94fTkEK1aDxIVmpOzIjZtD4tb9pAQ+DVYi2kdcRSQJwnHh3vEoeZ6vGI6XXJ5+UTqbgNZkKIo4OhoxMFwKKDbQIMpcUqhlQBxdZDsplo6sAREYApoLUmkwDY8ffKQXm/A4eERKKkKdq1EHZytiKKILMsoi4qqKNis1iznC6JA0ZTF7hqIw0SYWCry9kGBnn99QarKGpyvdw5ko28aQ1M3tE4qjLcbxqoqpUq+lFjGernCKanLbNsWnCNOU8IwQCdmp856FyBZljEYDHxWW9rxtq4KsWIvcAqGo+FuevTJxx+hlOZ73/2+txsqf6B7WZc78vHC/cN99NcYGPP5nKIoefToEfP5DGMMBwcHwhzodlGIKBfGIZ1eR3LhjQhROtCslnNWqxVPnz5mcnPD82fPmdxMmM8XtHUrEDsnC2aWZWRpymgwZG9PbMRPHz9icnPDO998i9vnZ3zvu9/xU+uY2XLJ5XhMMByRhDFxGGEjqRN2zjHa32M6nfLZp59yfnbG7Vu3uH/3HifHx/zmsw9YLlcsbmbcjMf86oP36PW6HOyNuPfa65zcOufe3fuopsW1UG8qVLFCBwlhHKOtQzsI0YQqkOyyReB0xkrFNRYdKdJ+j0G3S9m2VN7Cbj0IPAg1QSSVtbKICgQyDCDSitgKM6WfZQSJHF6qRGNMy9H+sYBhL2/QZUnXVbQoGhXSFhVtWVNtasq6JosyuoHi9PSEOInl3lUiCr/26qucnd3i/d+8R7Fa4VrDcjrn5tElTimc0hzuHxLcuYerG4zSRKMAHScS1axrP2GKydKMVbiUzf7XYifbO2Y6mfDlzVge3k7t1o4kgEg5+lhCpaXm+GDEsJ9xvt9nNOjSjQJprenkREqTt46qdvTTNTZ2uMhHoHVIFKZkgbDGulnO6WjEqJ9StjkREaEKGCQ5rYUPsyl6oomuZf2JI3nQ9fpDbGhJleN7r9/fTY3Wq4J5GPNiMuP55RWPH3xJay2d0Yg4SckHg511PAwCoiCkLgraqqGTZARhgFGGxhhmS2lXMbZFaXmG5bHYvWsfUXRaE8YJefcJaZrR6XToD3rC5NkbkeUZ4+mcXq/D7VvnjIZD+sMRQRCTpR3GNzPKomETLdFoBoMh3U6Hk/NTTo6OuX3rNv/sn/0z3n33XT757Ufc3NygA2jriqcPH4pDNApI05g8T8jzTGJWxtI4RxBGhGFMvz8gSRLSNGU5X9DUJdVKNrgPH3zOcLRHFKXcuXuXd779hnxWQci/+G/+GU+eveCLTz8HZ3nj1dvEQc6w35cISl2z3ow9XFlgpHVd07ZGnHdNw2q5YrPeYI3l2YunVGXJ8fGxxFC8k6cuS5y1JGHEcDDg6PCQ2WwuwyLj0EHAwd4eq9WC1XLBbz/8gIdPHnPnlfsMRkNpXPMNf2kSMxoN+eTyBb99/32GUUw3irjrW/cWW6ezUlxcXvLlF196iHVA48WhOIkY7R3w1jvfom0No6Mjfv6LX/LJZ19w9/4r/OHv/6G43gJNmIYQXFK3hjzNGAxHwthZrxkMBoC0UNa1ZgvNtFacwWEQ0dYtpt34aHZEJ++TZRndXg+l9W7yHEWRlCJY551ahunNNZ2OQHPDJCFOM38gFtiBQpF3uoDaAYZ1EIKusTiiJCIMQmlq9m6hQAfC7fCT9TCQ6e54OsE5OD09BQfL+RLTSIxvy0WK4wCUpio2UjMfx77xbkOchDgSwkgTxiHlUlwvcSxCztY5tFqtiOKQKArp9SS+/vz5U+q68r9W9nzGx7ZkCBjsouPCKhFcQuIPgmVZehe09TsgEZ6iJCZ0jshGu+hAXUlMX9rjxF2CQvZAcUiytRqBd4xKHF/5fYQxLVVT71xWbdtgvFNYa4mT7fZIWmL22wOV1nIwaNsGhUO5WKDRbbNz40vkV7HZrFFKkWfyOrudDqXHDsSJFMFcXr3AAQcHBzRNxdXVBXXTUhQ1nU7HQ2ujXcuaaVtmszlZnnFycsJsOpPDU13JgdRHg8tiQ9tIMce2KCUKpRGzKgrW6xXdPEMBfubjnWjR7n1y26gMCtNayqJiMp5I9EhrnI9ZbJ1Qs9mMNLVkWYoxVgZ7vvlPay0NT7uKb9/G29QEukuv2yUOQuo6YjVf0GyvGx3sxEURPuXwWJalHI4CcZPEnieWbkuMGrMbdh4eHpKmKc+evaAsK++crTDWEXqh7vDggDAK+eyTz0Q0rmuiOKLf73J4dMTp2RlvvvkWZ6dn5FmGwjE+O6cqS5aLBZPJDRa5tmQ9YHd4d9axWq2p6prlesXV1TUvXlzw2muvcXR4hGkalqsVX3z+BYPhkO9///fIspQ8S7nwMfXToyO6ebY71BZlTbFc8uzBFxRVTVFWxL0hYZoT5T0GgxEHJ2dsNgWbTz5nPJnz+OFTPvlYHB7LTUOcZAyHQ4bDIVVdUhQF19fXcObodXo8efyYTz7+iDSOod/j6vqSEFhFEdbIHj3vdenmOYfDAWmS8KIUgcc0gjEJ4nB3uHn0QFi+YRThFBS1nCXS7VrSSbm6uWY6m/P0+QtW6wLjHGmacPf8DK2UOIKsNNbu+D6ptLBOpi2zxZIvvvyKW7duc3xyztnJMaPBgKurKwrPXYp9Ic1kMubBgy+9cNwwm06p64rDw0PCUAqKVp792uv1BLZtDMVGyjq01jLE1Yi72xmcazFNQ+sdWlaOdFRlxc31Nb1+j8Ojwx1aRRg4FtMatFLkSer5cOCsxMHqWtJDW06xtRKDDbyre4tVINSo8OV5W6No65omUOhYCUQbWcPiKCSLQ9rGlz+Af955kQuPFrIi3oZBRBTFPka21UDE7bptH22aZpfgkce3ZBK2fFDrEKaTk3hlnKR84623uHPnLt/9/vc9ekbTWouxssdz1oCW1xj4yJyy/m+0cIyMcZRltYviLxYLHj96zPXNDU+eP6NuG8EOWLkf26oiCBT9Xpf1Zk3ji8wCHezikfJf3k3lhSA5Y1beTeSNLYGmrCvCwKJ1BF7M3z77LFt3raW1ljgR0apqRLuQSKI32+zazOV7ttZ47I7eCZ0K/TKuhsPgaJ2lamvQELiIyuNbtvF1cf/r3WezFQbldbV+H6GFSWcaERuNvx7CmLIsdqIi2+/sHWjygcgZ3IIwGnUE0sNOVTfCmfIlTtt9HUoaB7H/fxaeUGK+2lqkkyxF1TWqbmidbB436zXaT6+01syjubfTtRzs79HtdHz1LhQbAX2HQUhTl7SmJk0TulGH2Wwq1vdAVMgs7XzNXiaTnNFwSJqm3NzcYIwliWMPUF5R+41DGAXoMKasC5/H9LV/yMYpDCQDqrTUYpqmpa1ktJGnfbAtbVXhTE2oLa/eP+Ptt9+g2wlpmjVZGqFQ0uLjLEW5Jk1TsU428lqNj6RZ59AoIu0h4aZlbzRgOOhxcgbT6ZKf/eyXVF7Jdy1YrejmPU5PzpiNl5SrinK+IggUg34u8C9Wu4umjmN0EGGbkrYxfPLhb0BpoiTnrbff5v6dP6WsS6qqJNYJKgwpnENbg2pbbF1TFSvGVxd8+eknXOapZJYbaajSgUQB4jTdfR7WOaxjdyjYhYh0QJzE9Pp9Aadp5SMzApAOgoBunmLTmNhD2+M49NbrgG3FY+sFxtZsY4uaprYYUxCGKWneo9/riYU7nvpKaEXTNFRVhfOVlPfu3pH8fqC5urzmp+++y+nJKVptmykM/UGfvJPz1tvfYDDoUjTNbmM7Gg35zne+7XkeEcvlguVyyd/8zd/gnGM6ne4m5Ftg+s1YYj1RLLDEp48f+4rsiuFgwOnRMa+e3abT6TKdTGmaloPDffI85/joiLIqmY4nUuu82XD33h1Oz07QWnN1fc1/9V//1z6SGov9FbELt23DYDCUiWmcUNYV7777c8Iw5M3X3+C73/kO3/32d3YW/F//6pdMJhPundyjN+jzv/n3/3cMej32R0NQIVqFJGFOWS5ZlSWbqqJnDYFuCXVDEoFyIdoabFUThAmhC9BWo4zG1QodRUQ6p20V603Del2xXpesV9KWkngAeuMZQ601hBpCDbWxxDpguLcHzrKsK+rVhmpWy0NaKVbVBaBZVQ3rpqEoGlZlzWy94aA/ZK8/4vD0jDBNuXvrNlEYsdgsmDyd8tnnnwsAP8+4c/ceewf79HpdBv0ek/EFe6M9/vR//Y+JYmm+jNKMqi4Z7Y3odLuYRmrFv/H661xeXbGcz2nqmhdPn5DEKQf7+zRFSRonXFy8EHG9lnrYbrdLXUuxQRTJdP7e+RGhgtX4BmqDrgxtaZnPNkw7S5k8rFa+vVPab7JuF5sqTKYxThhPm7oS51zWwUUxdaypCsdmFrBpCtZ1gTKyobGDHkYpZusZi2JJaaxsBCzMFwvWRc0wsKRJQL2aEIWaQQZ7nT7fuH3KB189YmUL1NJQ1YbU1QStpZ2UPrNuyPKcrNdDtS2Jhn/j97/FcDjkF7/6GePJjKv5NQ5FEAe8+sp9Xrl3l2IlTpPVckFdV0yXK8pqxfPrMd1OxnDQ4/JxQ2tanPcKd/pDsjzn5PSU09MTvvHWNzg+PuHo6Ig7r7zKK2+8gWuFMyEtpQ3LxZwHDx/wL//lv+DnP/8Fn3/xBavVkjhNeO21Vzg5PuaPfvRDvvzyS/78f/hzwkgRxRpjYwI0SnprKUrh3xgL8/mCq6srVusVQRDwne9/m9Foj9HBvt9kBoxvLvhP/5OfMxyNGA6HvP32W/y9H/+RF5lKLp4/Yz6f8fTJI1arNcvlSsp1vSspSTLOzs7o9wcMh0OeP3vGh+//hk6nS56LeJ0nKffv3kP7+HpViWCUZxlt1fD//pf/ncRP6gaHlG8o4NmDh1yPb6jWawKtCJQjdIZEw5OLC54+esyvf/pT9vdGDNKEb775Jj/+wz8gdFLxbI1ALvcP9giDEB2I86RuBORZ1zWjvSFxHO0On3/903eJk5jB/ggbBKg04fl4zKcPH7K3v4/D8eXDL7i4eMG6aSCMyJoWnaZ0klR4kVHM//K73yPPMno9iTTM5zPm8wWLxZyjwyPSNOWD9z+gKArSLCOMY5yC0d4e/eGQpqpom5r1YuV5kiJiRGGwEy2WyxXLdbF7ro329kjSVFwmYcRgKE4R4UDEJF40DbSmWjVAQJZlu5a4MNQEYUC3I7GH0WjfN3AplssVV5cv5HmL49AzF8u6pmlarsbXOODw6Ii0k5P1uyJCFhuyXhelFZPtNNhvUrcHC+0n5ArNdDojDEPAl4cgh7iqqun1utLweXBInnd2h5QnT556uK5hsylEwIylEbKqS1rTUjfGQ9g7X+NdbHt9ZAqcZzkOWK1XHtUgDI9trX0QBCyXEtkd+Ih962M63bwj/D4ZZ+9+RoU0ITsccRignIgjYRTJv7fSrpzmInR08o6PErSe71RTBsXuEBMGobQrGsuzJ09ZlwVlIczTLQC3bVuePhVQ+L37r5CmOaNRTJ7lKOdYLpaAcDOk7dkX90SR4B6SiNl4zHo+RxtLFAZcvhDm2sWLC9krhS8PQ84aAiXMD+GRvqzdNsZSNhscThhrVSXR7lbEu1dffY2T0xPu3bvLar2S+OvVNeu1REW3ezClFFma0LStsE/860bJUDXx7V912bJeLbm0jm6nQ5bGLKaGxjchh1HMoC+tf5PJRNg93rVpjKEf9MHjOrZC+xa6PxgOOT4+5vFjEUWrqmaxWO4YNr2eFCn0+32ev3jGdLzhzTfeoNPpcHpywnQ65aOPfotyjsV8zn/z//pnLJYrzs9usbe3x9/7ox+xf3TMK6+9vnPcPnr8mOfPn7+MhV9ds9kUTBcLbm5u+OTTT9ie34ajA+698hrDoV9zFmvCMKKf9Sk2Kx49fcZms6Au1zx58oA0SfhH//AfkcYpTx89owoUA7dGRxE6ivnlh5/x1Vdfcv+b38XaPl89fiROEK2ZLZYs55/z/PkLlsslf/wP/xG3797j4OAAi2U6ndHv9fj2O+/gjGU+G/P5px/x/nu/5PbtUwadnF4W0e9kvHnnFoF3Yz948CUXL54zzyKqNCNJQ1Axy8WcWCV0ktzvRwuKlTSOjvYF/P/WN7+JA2bLuXCh4ojFco7G8cM/+H26/T6HR6esVkt+8jd/jbEGFYiImSQJRVEynU4xZkJdVTx+/AiH44//+E945ZVXeOedb5FEGq3genzFYjlnOp2Dczx//pTpdMrjxw/pdHI6eSZs2j3BPJi24eGzx1RVTRxpHn71JV9+8SlbK9t0NvPRTkjSBNM2GNvStBV5lNLdP5TGdI8Tcc7uYno7t4kDa5xvOBSg9ZYl2+l0maQpzgkbB2t2rldhmEmTmYhIstY5tf1zrQi6zpJnKWma+NZr+UtssNajKhxVWVAUwvOtGxFhwiD08bsYrTWTyQTrWo6PTpCVXxrr8zxnOpmwWa+ZjCdUVUWv1yMMQ4mSO7EqxYn8TJtNwXQy5x/+8b/JweEh3//e98jzXJo0ffw0UBLXVzrFAYGSIcZ8tmG1XHB9eUFVN5RNzWK5pihLJpMxVVlJeYGPqA+GQ07PZA8fxhFJGBHqgNRz2bQ3LLStlcGl3rKZ2H1OCu1dPZo4jH2boXDhokiKC6SNMtjJI6WHqJu2Fdao9j1uSuGUNNPW64qy2jadyzWgAhFlnBdqpeFS2jPDIPIimAhZbWO8RiDPqUG3g/IFLFEQ0n4tHv3s2bOdxiJMT/mz5OeSJ6pzno8Y+2ZQI627xhRkWUgnT4SrhyJJY/+z4K9rw6asqaoGvWU8eS5i5JNHSmnZ9yKi27aFdWsQ/Z/7+p2FJ7WdDJmXMGutRDBwVtQ146tVrf+B2rYVDc9tAXJI7SMSswJwkd3Zmrcbu61Cq7UsSmEU+Nyn8wqr21XzbkWKba6xrmsaa2hMQ9w2mLD1EDILOhWbsTVCYvcTMe0nlUorrJEFJNCB3NimIgwUUR4zGnY5PBgABtOWWCOvMwwDTOto6wbn4Y1aCTBtG6nEyQZLGnmdt5FLrC/JI7Er+vrKnbXR8wyiMMZZfFa7QmvI0wStwdj6pW0Phw68qmwNi8UUYyGK1hTrhVQmN0Lz18Qo5GYVm7TU1bZ1TblZs17McU1JHYU0dfXyYgsC0jyXz8751j7kEKQ8HB3/c0dxTFUXuxa1NMmJowRnWsJQFgxRXWXjFfoJSBCEEPiqRucwVtEaiSRotb0Wdgngl4JAkhJ44UnpAItCaYcKYDAceovxgbihFnOSJGEymQh7yljqpiJbZ9y9d5s4iWQq7a//KJKGmiROhNOUipuhLMtdO0wYBDjrqIqCstgwvrlmvVrtJssXT59indTQ6n6fYa/HydER+3v79PIubdtyduuMTrfD0eEh09mMsiho2oYNjv39PVnAEeigPDx8/WcYEcYx6/Waqiypm5Y8zxkNR7sN0/7+Hvfu3+Pg4JD9/X0uXrxgMZ8zvRkzn8/QZ6/Q6Xa5ffce/W6X0aDPZlVRlTW7psYgAK29K8ICLVr7Kb3bVnbiH1Den+6Qa00HNI3BWtn8NnVDW8uCZcNAHtpWPovWWu9sUz4rLdNyY6RquGxlcQwjgcXWTQkOWhdgrLB1JGYQkCYpvW6PZNAjzlMODg7AOW5urpnPp1xfXZPnKXWvy2q1YFOsCUNNnES0tVioj0+PyfIOaZYxX65YbTbg65etMWgV0h/0qaqKQb/PbDZlsdiQxClJLIeOuqxeCug+Ex2GoYiqfvoeaE2eZUQa6mWMdQ1Uzt//hroW2K1tBXzZ1IYwkAamMInQaQylwTbiHAJHkLQYG8iEzLSYqqKtK5q6AiPVrmUWYZVvmjIt1ikvcEjttLEKm4ot2zQVAZpQWdI4YG/QpdtJieOQMFAYBaGzBNaAa1HGYuqGIAqIbIbGorTi+GDEweEBH0YBoTK4ppLpiY5Io4Bhv4M2LYFrMUlIgGETa9rG0VQb2shha+0hvxWbosQ6R2+9Is1ybFtTlxsUUkueJAmdTodOr0cU9GSjh2O9XjFfzLi6ueaDDz/g0ePH3IzHxGFEnmfcunWLs/Mzbt2+xXgyxrSNj61skxi+YtiviQJpVDRty2q9BgdpmnBydsbJ8QmDkVRcTzzw+6sHX7C/v89qb49vfuNN9vf36Q16u+aby4sXXFw8x1jLer0mihNpP0O+fxCEu4h7XVVyL3uGQRSFREFIlmeywY9j7zgWsaGpa168eMFkMkEHEVEci0tHaUwpG+0oCCTGoxRJGJKE4lrbLBfMx2PSMMQZQ56mHB4cgJVWnvV6JVHlvCOtMFoOkFGSsFmvKcuK49MjsiyjKApurq/52U/eJe92iDoZtWlxSrFcb7iZTsm6UlZyM50yXSxo/cCgqhvPE9IEUUyUpRwcHdHr9RgOBmyKgjBOUEGEVZrR/iGdPCfNvqQxZufGbn0UKIoktm/jiKas0cjntx2O1LWwBmvf2mitIo63ldKBHOyNJUkzdpsxJc8qietAaxyB0p4LKZPwMJTBi/IV451OV9wV63K3/hpnscoRxDFpnkv5immp29Y/dwVzECcpVdNQVhVlXeGUotgIymAbkduJM7vNqvOv3fi9l1jzg8ARhvZl+3CS7lrwlHo5eRWmmcQ5UAFEErGVf1boICROUtkke86Ecs5PVV8yOKRavN0JK9vXGgSBiGV+yquUom3anStJeHj+sMaWtSmiXuAnxUqB8fwMqTPf7gO17Gu1Biv7v9pteRsGAn9I1B5K3Brm87m8x021i47iP+q23b6Pch+maU6gg50D2BpDGIXi+LPbvQ67mFy1KcBJgUEYBswmExaLBZeXF8RRRJZsG/uUQI69OwenBRy+5YO0En+T/bTsLQ2GppY9WJ532N8/4PadO8xmU1arFUVR4pzzkUn5HLZOrW2NvfEtocG2bR1ESlTKC0lrD0KOZF/ZNn4zpXbD46oq/Wdtdm4//bWoxvbzj2MB+EaROKBms5nst8LQO2VeRj+38WfTNlRlQbfTYTQacXJy7M8fAlCuypLnz19wcXkpDYplyaYsyfIcpTVZnjMY9FmsN6w3BdbJ9Zt3SlAB642sKdZCHCfiaMo70gw6HJI1NXt7e+ICqxrqoqRYrmhaKfxojbSU9XpdsiQjCmTKFsQBSZ6R5B20aylXS9q6pm1qlsuFOC2MoSlrqnVB07YkacrZ+Rl3790liEQM1koiQt1Ol9lkzOTmmul0zGI+Rd86IQ4CnHbkScKw190V+jx/+pimFq7Z9j3VWkRN5891WEEohDpAJYlEK7t9Dg+PZK9aFuhQE4WhHPud5eDwgKOjY27duc94fMPPfqJlWOQ32MqLEU1TU1cymFgul2RZyuH5Gfv7BwyHQ6ypaBsZnCyWCy9UtSgc8/mc6+tr2maAwtLJUojl/FLXFYv5fBcjXS2X3Nzc7FhIm80KHWiKYiNxKmf8dVqRRSJK4yziCZH7dQu9Z3fXq5cHb/+Dab9HjCJxuirvRtqdq5V6+Rdu92xWXgTYnkCsF5nCIJDEz67o3v2dZ4xSyD7PynpkvQNLXou4VEVE8oP57UHKyRoZRdGuUKH2vKGXbn1pUMdpf/YPdmUcd27f4fz8FvsHR2itqIqNb2CT55Z1jtbK0MQZS9O0LCYr5vMZl5dXFFVFUdUs1yI8jW9ufApmidKCG+gNhnT7fdI8J0oTsiiR5vm8Iy2qztDr9V7+TLx0c8mBUZy3Cu0jjeK+3A5hRAQM/boagNu6u3xLoHNe3NvmmLyX1w8b5B7ZgtilpGGbBtq+x+D+ThrN+SGJiIeyj9wOIdwujffyGtJas1mvaTxfLIlicNnuGgoCzZazrRSEArmSgVVrMK3E8bUKPABfovtKb0U0YYqZ1vg9rv8z/doe+Ot9q5copdBfi1t/Pb73/+3rdxae0mwL+pZJsTOWxHMudCbsn/VGmot6niHQGEOoY0IPUtxOeNq2ZbNey8Zj+9APQqqypiprkiQlThJWS4naVVWBVnKRALumDeeEwJ+kTnhPjaE1hqppKMqKVbRGByFl3WKcotMfoIOQxTLw16Ej8i0q26hDnIhCWBUTlDOkEZydHPDaK+fcPh8RBhXL5Yy6qVnOQpIk5fTknGKz4Wo+9ReViGjyt1YqB62/8L2YFIYRbVNRVw0qzHG2IYwkz1tVIqSFoTSePHjwFdXG0DaGthEhrGnlQGzbWuq2A42yEk+JdIAKFZ1MgH537tzn7q1zAgxxqFFJjPEP/CiU39uakqpas5xPME1JHgeMejndToY1kl21xk/mQu0b3SqSNCNJU8q6pm0r6kqyuQZBTRWzm5cbXCs3M24LfJUbKs9TwigiTmJ0GOw23loH9Ab93Y0ShjF5J8d4W/xiPuXy4jlKi03fKQcBstmV9dFnhxXPLy5k0xhF7O3v89ZbbxGGEZPZ1Du5AtblCucsFzcvyPKcb7z1Tfr9AcfHx9R1zWw2YzGfs16tOT07I0tT/q0/+QdoHXD3zh3/aya8ePqMp7MZ/axDL8k8lDXk+9/6Jv1+n/v374rVPk6oq4amMRwfC8fj6OQI65xU/z56xL/8V/+Ko+NjTk5P+M73vs/Z2Tnb0kutNcvVigdffSV1plXNN/z0abPe7Ca2qda8+dbbnJ6d8t3vfofJzTX/7J//N3z68SfcXF2T2IC3Tl7nz/7030XFMdfLBeNyzXxS0PiDSNbNaOuS+996i3E/5dHfPieoDZmOhN0TxLRaGq5WTvLRNlFgNEEMhIbG1YzH12w2G9y6xTUW1XrR0Wh063BVjRh0FaaqaJylsSIo2RaMhcYAKiRJcpwWW6jR0pyRZR0iwPa67B0ecu/V13Flg6sanl1fslyu+PlPf0ZVltxcXZEmMT94502ursc8e3HFR7/9kMV6xapcEcQBQRxQNhW//fxjbt+5y1tn7zBeL5itFgw3K1QkG/IEcfEdHR3xx3/8x3z42w+ZvyecnbpuSJKUXrfP/uEhRbmhMfLQt/7BZa2l2JRUuuTFs2dkUUBfOWygqBOIY0caQ+xqokZDqDBKU1c1cdrh/vE9TFLwwu2zfPCA9dVz4jQQ5lAo7WCRDkiUIrN+nWxbdJCidURlWlogUQGpjkh1TuTkEBZHkTg5MBinaKzFNYbFYkadVNJuV5UkThFbcAa6TpEGIXtbZ4I14jJIEqq2pnWWUIswhXLoQJGnEhWrijUPvviU8c0zbCNtQqnnnZwcDmlGln6/R5aG9DoROjiUe/z5Jc46fvSjv0en10fHGV8+eMD/47/4z/jmd77DW9/6Fifnp3R6PWELaPmem82a58+e8sF7v+GnP/0pQRDS6/c5Ojri5PiYf/J//j8B8Fd/9Zd8+dWXEnFME44O9ncMkMY2sl71BlgHZdlQtw0KLZPo/X1+8Ic/otPt8t//d/+C2XTCaj6mqgqGqUbVK5Y3Jf/pf/x/xamAb33/97h15w5/9r/69/iOVvzJn/wDfv7uu/zFX/zFznXw6NEjNpsNz549o5PnvHL/PnVdMRz0cKZhPrnh3t079Hs9xuMbilJiwnEUM9rbF57fckknl6jwphJQcJpnHB8e8cMf/AFPnz/jNx/+hihJiLOE1+/f587JKR/a9wiM5WAw4njvgPOjE97/5Xv80//L/42sNyJOOwwHEj++vr4Ssa5tCQNZ97bxU3EJJVgPcr588ZzeoMfl9SWXNzes12seP32KtYrjs3MGwz5vfOMNsjzho9++LxDw1Ya6rWid4Qff/wGdXpe/+unf0jbCXCrWG8bjG/I8p5N3uBlPiKKIJxcvaNuGTq8D/sB0fX3N06dPee2VVzg9OeHGN4fev38XrRTj8YT1eiURzFAOa9a2FIW4XJTSNNbQ6XS4deuWj18YXjyfM51OJZoZBLja0el0ODjYZzy+4dGjR+ztjxjtjXj67CllVXJ2foswilmt1oRByGtvvcWmKlmsV3zze9/nlVde4efvvsvm+pqDk1OJnLUtRd3QzhcslwtWqzVPnr2QqWXw8mCUJCmj4d4OZLotysjznCiMUVoRRZCmGYNBn5OTEy4vhSfzxRcSZ9mWv5RlSRCEZFkOqB1Uv20NcZgRJiHDg32SNKXX77Feb5hOJsxnM1aLhRdBFZVvwpXBnRIGqN9Qb/99FIYiijae+SZ2cnEvKk2gFQTCo1gsFrRKUXsn3P5oj7IsWa/WGLPAWkeeZmRJKq1zjYFGxL3WGNptdbb/3lkqn13TNFJwcnlJWTeUdS2H0CBgOBrQ6w24/8qrJElKJxdGXRxGrNcikNumFQdWFImIsCmolGY1W/Dkq4d8+eUXXhSHxw++EHHJiAOo2GyEGeOMd4Vb2qbCtA2L+YwoCjk5OUUQFgLRLsuKfr8vvJDNWiDl6zWtaUhnKZ3rDoPnA66vr+XwfnXFptiw8XtsYxxZlpF2c9rWUiHChlJbQaJhvVoShSGj0Yhis2G5mmNMwzyOmS1mtHVLFEkb43q5lD1XFJHEIVondDrCY41CiUWmabyL+AQ6JASUs5i25tNPP+b6+pr7r74iB2YfJRUBYS2t215cvLi44PLyit/85j05jHvhbzFvOTk64vz0jPNbt0iSmL/6y7+gKAsmkwl53mFvtM/x8TH7+/tsNhsAfvijP/J4g4z1esXz58+9IBvy3nvv8cWXX7AuNzhnWSyWLOZzPvrNbzg82Of+vdus146ysrz+jTc5ONin28lompbx9Iq2WKLKFToK6QQdTg8PMAbmVxcUqxXn56fUTcuThw8pNgWr1Yq/9w9+zPd+8B163SGVKemmXQbDvjjYFnO++PQT3vvlL/jluz9jPhlzuj8kjzWBqXn+7BmTQDG7fM7+3h5npyciwGjFer2krgqyrLM7K2w2BVV1LU7bNOeb3/0+B0dHUgZgLQ+fiDv34ZMH9Pt9Dg8PWKzWbKqa1jhaq1gs15RVy+HpGavVksV8RtMaNmVBGAa+UMYIBw9DXRZcX16wnM958NkXjMeXzBdTPvzwI6bTOVVR74Q8Y1pMW/lmsJYvP/+MsiwEnB2GpHlOmooLVqkhSRJJRNO0fPe73ybPMmmGW8y3gSycM2JMcNBUlZgrTIsKFCdnpztem3UOpQOSNMU6iYoB1I0h9iJzlETC+IvEHb2NSSWJCAoi3oojyFpDWxtwzpdiiFhStzWq1f7kLr8jCELCOELHIaoJdpHnPM+JVrLmFKVEL3u9Pmdn5wSRIQxjcWe1IlRFYciwP6A18jNuNhtQjtZIw5reCg2BpjEy4Lpz5w69XodXX3mV07NzFivhlG42a5R1aKe4vh4zm82YeFTJZDxFmsoj0A4XWKJQeFSHR0d0u13M66+DEjxDGIXknXwnmtWNIAYsjsYalmtJT0VaCX8YL+i0VhIROtgBvuXgpNBhSBhKYUFZNVRV44uxGpIoQmtpFdZa2EWK2IujDcZaaYVtGswWCRPFaOS55FoD1hIHglgp6lo4aaUMfeI8Yr1e+ZZ5MXWMRkMZOvmBSqDFINM2DdrKsy3ywmXpo8NxHEPUor7m8EXJM0FcWi1N7YvZvPaAczx9+pzpdCqRW/DYhnbXdLter7n/2uvcvvcKf/AHf8DxwT7rzQZTN0RaoxFxTSPvbRR4TrIx/K6I8d9ZeNpmCo0QxbxDxuBsiPI3hdDfIYwEKt46u/vAxWLf0Dbt38kkekmPUL0k2QfeNRNsJ1JBgExKtpCzlzWTW3K/MaJIBgCN2O0cLdo6f5Eim19nUcrDFvEqoDMCHQ8MKkmQusQG7eGUaRLS7WSkSUQUaEKtMVqmbYFuJPKCgDBlCtcQx+EOmCZ/3nYu7nYXVqvkQtiqijK5Dnb2O+scVVWxWi9pSrwbS1rWjLUCAfOqspMKvpdinhIbXpoKO2DQH8hn57a/Xu1+rUDWIYwCur0uaRL7qktxIwWBIgCMkgjF1uIp1kVfd+k/S+1jhcpJphbl5PeAd2l8rc3AIfXJAXJDG6lGFhie9uwmYXNEoUz5m1acDevNWiaXSqaLaEVRVf5yCrxCbQl05Btrgt2fHScJt27f9jb8ly08682Kuq1l4h0GrNcbKXpB7aCX24dwU1VolGSmnWE+m9G2DcV6LVbksmTQ75NmKWmSEMUhe6Mh/V6Po+PjXe5XhzW6bsl7Xe8Qk+aqy6tL1psNg+GQ/YMDjk9O6PcH0h7j99sOR9K29Hp9TG4wxrK3t0ev2yPPCt88NKM1LXGakvsJ+WQy5fGjx6x8bKE/2Gc4HAnToJZYk2nFWtq2LcYa8iLFmca3YIQYK6PO1jqiQMRCg8RYS9PSWkttGlq35fWIxdRZJ2q6kVpm5S8gJ7YocR94dV2i31Zsr0pRNo0sbFqcb2gFgSjv2ouTUSJNH7kRyK3yB5pqtWa9WrFarZhOJcpr6oYoTTkcDiiWawJnWc7nXF9eUFSS/d7WOW8XZeuvgbZt2RQbafrs9vl6XXKSpYz29tg/OKQupYq3qmpaY+j2egRRwGLl8+LWii3dCevEWjkwBC6AKEAjB0bt7djimHBSqOBAKxHRy6qmLOWgYbY2br81CYOYMJB10jq3Ywo45YVZHfhf+dJl5ozDKS+KOSO8A+s/IwIipciDhETHJIRETqOtIkRj/DQF+zKm0VqLDkOCUIF56bbYlkMoJfdg5OMyzlrKTSGRHKWJothXtSsCLeJ37KOJQSDNpmmS4BxEcUiv2+HWvVcpy5I4ClnM5zz66gFN24j7sSuMhyjUFEXB1dUVs9mMsixJ05woCrh1fs6dO3fY29unKDbM53M26424NPwavv3ck8QzZ7zTojUtQRCSd7s7p9/V1RXxbMb4+pr1aoFtKlzToJ0lBGKtmKzXVHXLs6dPccCTx0/o5hmdUJF3Oty6c4e2kQaWsqxYLBbMZlOstcxn091Tpm1rTGsoio1vIpMp8mq98hXIqd/4lGR5ShTIOolS1E1N1Qi/sdvv8fobbzCeTlislrvJnjWy4UrjmE6eMfTPl8vLS7qlIctLullMGAaUmzW2bQm0sLI2qyV+L0SxWcvnGuideOCMZeXbKq0xVEXJei1DrTAMxREYhZRlga0NykDrapyS9qBQa2FhNA11Jcyryc2YdtCiUTv3y2q1xHowtcA65VnT7UpTnPlabLptZBO6bedVajvNlusToGlqqS/WWja+HnAaRjHOWqqyopNl8jOGArDdbNYURUHd1NIS1ohg2bQtVdNgHNRtA0qjwgBbSaV7aw3GiXNQhwF5nlE3DevV+uW+arsfAHn2+am68QeepnnphNnyI9rWoFRD3sm8K0hWkWJT7CJa0pzakMQitndyHwtQgTB2otgDhA04jUNg1m1jaGpxELVGnE1tYwgTP2hSwhnSfuL/9enpyzaiYLc+4PdJzlrfVhuwLXCwX/s9Wy7P9qBnWuN5HNbHCvHTcCcHS+f8Gurvcdkq7Q5e2z2AOKpkH2RaAa4KUy8iUIG4dRuDM8JgW69WFEXhHcBgIn8vtXLAqEtpc6uKUtZ8pXC29Wuy3Tm5tnGI7fc3ZjttNzince5lTfsWQAt+O6al9SiKQlCO1WrJZDrmxYsOs9mc1XrFerOhqiu2s/223e57ttN5cUegvQvayVnAbt0f/lqT5iMPBneWwLuYrbUETqJ/WgtHsPFIBeedVP7l+s9A7jP895F7T76XDgJ6fSmVsNZS1bIuaR9zqiopu9lsVgTe8anwQwfftKaQRrLJdEJZFCyXC4rNRloR/Xu72WxwwHC0Jwf6SKLSw+Fwx+va39+jrAq63S7WWIajIc4aZjdXNG1NURZsig1lsZFWY+/GrMqC1jYYZ+XwaqFpDApFoAOSMCHNUgb9Hk1r2RsNqTsder5de+9gD60knpWkyY7htlwu+eLzz3n25AnT8Zgk1HT6PWKtUc4ROFDW0dSNNJFuz2dNS02J8c4+a+UzTdKM4eiALO+Q5R2OTs/oD4cYYzF1LXHiLOfg8Fj2THXDcG+P7mDI6dkt9vYPiOJUGjx1iFKBPK2UuNOdv7bDQJrjAq2oq4rLiwuSOCFLc2bzMcvVEmccSRSTxrmsrXVJ09bUpcT2oijGOkfTtDiz8WKJ80gDuefDKCLwaRvrXTibzQYBnHdlP19IJLyq5SDv7BZ0b/6OcUIrRRhpqire7fOUUsK0i4QVhF9nt/uw7XnX2q1bBJx2O8bdToDXAa1nK+PXty2PzXk3qdJamm+t8AxxTgb2wctz+5brswVPyz3m487erOL83kb554FCBDKrDRJTU7vPyZiWOInIOznWGsqy4PLqSqL8xUYcNRYmkymLxYJ1UVA1DVUrQlYUJ+KCTyUeH8cJnW5X4tj+5wwiaWZNMmEpOWvRxqKVrBEWZG/p/6E1PrKmtwxnv/7789J2XXH+OR2GIbFVmMAzktoti+5lnE7vXGkaa9Ru//eSH+jdaj6x4KylrVsqXaC1RO13oaTt2cbIc7SqSo88yQhDcffK/iTYmaW25/mX0XQIlCaJYsqq5ObmmrquqevGI7uEn2zaVkw7WkujpDfZPH/2lMuLS5Kt8LRay6DFi0/r1ZrhaJ+T03NhCUYSUXd+/dbb908+Ec/r0rT+Ofq7fP3OwtM2UlJV9e7DaLySl2WZwNLSBBVo4jyVH8L/ME0rTRnL5UoeytvNmPMQaSUehygOvftEfqQ4jnBA3ulQlTWz2WI3AZM2DegPBoRhRN0I40MFIW62YLaqgAAI0B623jYFoQ3Js1wy3GGEay3ONJjVBoMjHIREYUASG0KlGOQxeRwQIJvsbqdDFATUTc3N9YS2brm5Fsvm2Zmo+Kv1UmInYSgPWg0au3MNhV4ltIG088VJSmMUeZqTxCmKjaiqdcVi2VLVa+rSYg30exIZaJzEXZRfLODrm7MIAojCiNFgjz/8gx+htaZYVR5cF5AkPr9ag9KOKA7ZP9jjB7//PTbrJb9571dU9QZFTZyE3v4p1vnlqtrdzFXTYqlE3LN43pXyFk1xhEWRgI035Zq6qURg8ge2INCkcSJcBVPtctPWT05vLl+AUuS9Pg5H07YCYiwrvvnOWxwcDmlsTbFc8/TFc5TS9AdDHxEIybKUbrfH3t6IINBcX9+Qd3v8/u/9EOccRVHuFprHzx6zWC741rffIU4SPnz/I54/fcbFxQVnZ2e89dZb9Ho931yyZjaZ8tlnn7FZrVgtF9I4kOcsNxuWmw1vvP0Wb7zxOsPBYGdZFilPHCd12xD3OuSR1M63xvDuL3/Fzc01n3z8Cbdu3+I/+j/+E/YPDtjb2+fm5obpYoHzQu54MkFpzWD/QBr+Rns7i2S/3wcFn372mTQgZSmr5YJf/eKXfPn5Fzz44gu+993v8PY33mJvtI8ONL/84Jc0Tc2m2LBYLZnOZlRtRWNbBllCrDXhbEW1KcGlWKdoTSDVv0lCZQyNtaw2G6qm4XI5o2id5LCjiH6c0SYVQWOZV9IIQyJcsJKGJMro9PqeJ6NIfRTVViXaWS4XM3kIdVJ5qDlHnGdESUze6/vmSkfrIHaK5XrNT372LovrMavJzLcqSvthoDUnwz1OR/u8cXYbiprZ5SWTF8+5vrokHwwIo4hetys8EwvtpmR6fUOxXGGrmqsXF8wmM958801QGcZJFrrT6/Lqm28wPNznJ3/9t3zx2RdMb6R6/M79+5RVwVePv6ApK+pC7Tgv4+tras++0UZRW0cURORpRpxEEIe0QUClAhIdie4WprQW3v/0t3x+s+CDR1e0sSIfBNhGLOOdtEMWxdS2ojCWZVtRKoNJAqln1xFhFHnxWGy21brEZAFB5rDlmqquiFWKi1N6dOjHKaP9PmEQkWU5F2pOUClSYsJQNlbrsuJqvsA4R2Ph8HiPO4OMwhoR40yLsQ4VpARRRpKkZBkkccQ2PpxlXeIk4+T0EK0V45sLqqqi2RTEQQc6KWUlNbhhnOLQPHr6gqw34j/43/+HvPnWeyyWGz744H3+4l/997zx5jc4Pj3l9370IzqDIWcnZzRlzReffs50PCVLcxG7LPzZv/1nvPPOO4Q6ZDFbcnVxxWK2QDsNxmGbFrRMJI8Oj3FK8fj5BWXVsNnUDPpDTk/PefzwMY8ePuWv//VfYpqa/WGXXifnztkp6+WCq8mYXrfH3v4+URCz2lQ8/vxzvvrsc371i1+zv7/HW2+8xutvvMk//sf/3m4I9PlnnzG+ueH9937NdDrhyZNHRIEmSyXKVpUFRbkmCmPSLKNtLVc3N+Dg8uLKwyZDATOHIXm/i9KaFxcXTGdzik3J93/v+/yH/9H/gX/6H/9T/vwv/pwHD75gMOhRlhtwhl6vy+HBIa++8goffPC+RHJwZDi+cV+moUfdhCgMOD4+ZHwz5vGjJ0znM5arFYuZtOL1Bz16nR6vv/oWVVtzs5hg6orAOcr1itV8Rqw1eZJg2giM4eLZM9qywbWOTicmzUI+/OUvyLKMH/3wj4SH8OQZhWkplytipSmUJsJhopDrZ09p2pbD/T3SLCNOY77x1pucnf9DLp6/YHJ9Q93UFFXBZDKWGm1nSZKY/f092eg7Jw2pYcyjJ08wxnBycCocwPmCQb9PfzAC6yjXa3rntxj0exhTUFYVv3n/lztUQN00zJdL7y5LaWwj7CRnsG3FZDHhZjLhxeUlg9GATbGmbivyPCVJI9arNeObK+I49uu/NDMNh0PiOGY6nVDXtTTTNC0XFxcSRxwORWwLAq6vr3HO8cbeG0SxuE4uL6/46d/+hH6/T7fbRaNIk5Q7t+/6w3vCar3m+fML7xI54fnz50xnM4zBDzueSFFHrwP4aHvVAppeb0CWpWwru42VfWNZCiDf+niXAxole5zAlzTsDoDWSQQjFBHTaruL6W2LcObzxU7wNl5ALLyTZbsGCwtE1p44S4i986YxLUkoe9aqrNFBQLfTJzYtSdtQboTt1kl7JFHC+GpKEAZknY7f0NdsVhKDFxh7IO1OWkSgysGUCfWmIHSQ6JAgDPw6KCKd0viorG+H9nvztpEoVprKwKysCqq6pmk8OFeDcVLkkaQRqYoYDnus12sePXnE84vnfPzJx4RRLOKzk+hFN5ND/Xq99gOMkLZpwNqd06OuS3+oFXB94REaeadD4QdwRlQ7fyjxcQ0nUOA8TejkKdc312yKkqyT4xwY38YUBLJXzrMYZw11VXLr1hnDUZ8oTkmSlFdefYWyLJlO5zth+PBwnzROeP78irpud/HDQEmzYhB16XV7xHHC4yePWK3XEg9ME15/7T5XV9d88eUDJpMxX3zZYbkUltQ//2//OWVV8eLFC95++y3+yT/5J+R5TpZlvPPdd/jhv/GHmMpRFiW9Toeryxf8uhOxnE359POP2SyX1GXJP/j7P+Zgb4+PPvmYdbHGhBaVxWjdpzCKerpkvtxQlDWvfvttjs7O+cMf/gE6CHnnnW+SpLnsiXWDU4Y875AkCYcHR9RVw+effM6vf/EL/ov/5D+mm8X0Oyl3zk8Y9XusF0vauuFotCfctW5G17sVy3XBYjoXdAKw2mwIopjD09vcee1V/s0/+zP2D48YHRzy5KunTG4mfPzJpzRNw+37r9Lrdzk5PeKjjz7kb3/yN/yjf+tP+f73f8Bwbx8dhDx68pxHDx9RlA1l1WAsBFFM1unsijGG/eHO4Xx9dckv3v05w8GQ48NjgjBChyFvvvE23U6Xs7NbAMzmM6aTMY+ffEXeScmyhDiMPEz8kk1R8uLyMUor0jTm6OiI8/NzwjAGp/j88y92gPG9vT2+863vMh7f8Nn1BKXWu0KDQCnKuqLxCQjrHMoXEOV5LrHeIOT2rTvESUySSfumtIRpdBRj/bkpjuV+qEs5U8dhIAkZ97VYcxyTZRl1JWiHKJW2cGMbnHE0Pi4XhAFVW7MqN2ycpqpKojiSNm8lAp64uRasFkuSTBMF4qKJAmllbZuW1WJBlkmjZqg0jVISlUViy1oHhFsnWOA4PNrn1p0znjx5xKPHj3jvtx9TVBW1seLS0aEIN1qzd3zAXj7i/PW7xL6QJAoikigRV6MOqIpKBhZaWEy1T09smkoEY7/qhTqgVb6x1okRpawbiqqmaQ1ZlpDlqRd0t3Fe59E8FoORYWWaMxikIoIpRV2WaId/7SL2yHDXw7dbg7KOzDMWjXG0TUNVbkjCiE6asZxOWc8XXF1sQCmOTs8kRh/GBGGMDmKMU1S1YVNVNG1DO77xvF5BuKSdDG2lkEMwJoE00QNpkqDSlKOjI37961/xX/6X/3eurq64uRmTJPGuYMNaQ1s29Po97t69x97+iIODfX71y1/x8OHD3fPDWsEEZGlO3Qg+4N4rrxBqR6TxLieHdg5lDcpaESqNqJWBAhVoqq37+Hf4+t0ZT37Sscuj6m24W+xtyhjCOEQ72WhYJ9BBazUGw3YI1zSGFkPTGl8N2PV/psDLZXIjk5btzyDgLV9vDOCg8ROY2UxAdm5Lh9fSlBNEW9CzESAY0FYNLnTozBFqSCOFCjXKKmplwFmORjI9SbS4MgLn5GGdp1ikfUIpRRhF5N2O5xc4WgxVK+0HaE1rHaqVCRTu5exOspR4FgHAS76AZGnVy1ioQ9hGFbSN9ZMyjVYhUSBoL6u2jAY8UA2cN7wpPKwuTuQmblvRTJX2iUznYXPKsxVamlIy6NpniWXSpBDzmjCqojBim3PeAsWtk89PXqO8B05JG6LSmiC0Egl0njXjGyysczTmZXvC1vmildhbIw8RCBygxCJpI9lUzqZTHj96SpJl8kCJYnGY+UxuWzdMypbZeMZ6uSQIAl48f4FWmqO9Q4yRxoTBYMBwbyTtdk3NcjYnTiQ/HAYBTVlRrtcsZzM/oRKxyllLHAYEvQ6jYX/3M5Rtg1uLSFbVNXVrsCixrCo820E2o2XZIO+YdwW2hijJuP/aqxweHpLkGa2xzJdLqrYR4KCfEkVxwrblwDlHUZU7N5GsDOJiMabh8nIqufjVguHekG9/59vcvXuX/b094jSTSVO7BhXQcdI2FucZphUrc98vhFdXH9GWFUkc4DS4QNE64fNUxtA6h9aShQ5RclhMM5JQJqxhpInSiKzNCCNptdFa0+nk9LtdsjylKUsq33ajtaKTxARhRC9NJbaYJbjWYNuWxhrqosAFIlrXZUXVGqaVYV2UTOcL2qr204hQmGFrWWwbZ2htA9WaTgTH+z3GZcOqbanbisZJtCyME5nOBtLYl6YZvaEjiLfNIJLBL+tamh0Qh04n73B8fERdllgfL55NxtRNjUZ4YGVZE4cy1QmjCHBEYUiowSEV0pWV9yiKBCIY+CmOTOY9Gy+KCLUmVI4Wfy9qWW9qUxHp7RRNIqyhU8ROGG9aWVzr2y/8oqtCYaM5JRNYrKXbSxlmHVg32MpBbVCRRduIozDl7f1DYX9gqZHPZr7eiEsqTugPe+wP9rgwjpl/3U474jQijEOqSiqbq6al183p9nPiICYMAqpa3BlNC3UtgnGSpgQ6oqXCGes5L4rxdMrl9Q3PL6+wKL7x1ls8f/4c59cMUDx5+JDNcolqW549fcL4aky5KcUyrQLiROzqYRRRFhWb9Yb1eiOvI1CoMEBHkTALNGyKSlwW/hkpLqOC6+srprMJi9UcrSFKpAI98bXnzjlPnQwgDIjimNQ5+qbjW5o0rq24vrxEK0VZFuR5lzhJQCsGeyO+9b3vsVmvuHP/DlpJXGW5WLBerZjP5lSVxNd1ELB/dCKHtPFUJr3WSZOkn7BprYRllyQkqWxirBPXg1jPQ8IowaFBB+S9LnESUTcVSkOep+hA0bqWR48fkyQRs/GNVK9bWfPCNKGvh2RdAUKjoNvtEEcJ62rDerNhfHNDbcS5PJuOscawmN3Q76ZoZel3Orz9jW+wmC2Yj2d0uylZFoOV51NdVrhIomPGGE5OjjDWsinWdHu5OHW6PWlA8m7pJEnp9wecHJ/w9PETLi4vma+WtHXFarP27roAa3w0zT9pm7pCOdkQNm3LfDEnjhP6/QF1U7NerxgMBty7f49Ov4uKQtpagKLbSFCSxHQ7Gf3BgMbItT7a3wOlmExnflLtGA0HdLpdkjhmtVwyn82knS8SbkeaZsI88u1eQShRBeESZlLukebesVnS60oDmfacqzRNd9Nx61vQkjjh5PSEMBB3oTjbFUWxkVa+QOrN1+s1eacjwyUnPBBjJRZhbOthuXKfJnGEbSvaWvYr1kN3d054ZG+xmz4riUm0bbvb12z3o1JeIu2mVSVwYHzLmnXWx6Rkj7R1Am25Ga0XrmS/JW6GIAh2RSRYty0+lmmzFkel1gFKg6tbieDYdvdnWN9eZa0cJAKlyNOEcr2iaWoUDhuGJHEuDqq6pnWOOlBYz/7ZinBhEAJy+FNfZ4M473RQ+KZpX6/d2l18I45jnKt3jqVWNTsuTRCHxHFKv9+X+nd/HWqldq1JshcXfozz711rGuqmRIcK6WCyu3iHtdKqtEPGezfI1sFEIPtO6+TOwSDPzKKgaqQ9rihK2e95J5pSCuOM55S9ZDQZY+n4z2i9WknrtlbEcQREwpnyZ4kwCOl2c+9ikBr1YlUIf8Y73wQhIQPSJErIs5xBv+dLGnLf2t1Q1hV5kxKFAYN+n+urK0lfNC3Hx0f0+32yRBioURJzcHzMj/7ox8xnE65ePOPZ48eMLy+pm4bJbMZsPqMsC5yCXt7h/Ow2ARrtFBezDcumxSpkKO4PpToKCYOYJMpoXEXrGuIgRBl4/ugx89mc9372cx5/9RVZGDDsdjncH6FQrNYbNpsC2xpxHDnHuljL5xGAjiKGe/skSUoQhJxEEXmnyytvvsXx+Tn90T5FY1g8fcGnn37C9YsLnl9cisskVKSzjOlszIvLSxyKFxcXfPTxx8J205r1puTqSqLX+PddWXDGCTcy0LS++c05SxzFHB4e0cm75HmXxWpJuVoQJzG1L08BabvcFGu0hrquMKYWDl0YMp/PaVtDmqRS3tDt0O8PGAwGrJdLSut2Lu/WNtJgWq1pqhLXtJi6po7ELSfpi1D2nnVL2xg0WvaTnptUlLLeRFHMnhrs3KTOWrIklZXEKe+4liY75ZA10vOHwkjuAWsNdVvh2gaCkEAFBDrE6q1jcNuKptBBRBDEuz9fe/HGtC1NLZwxYxqsEl6uQhGE0qDn3EsXupyD2h0nyrQtzsm5ExzOOHCCtqjKmtVyTcCEQIccHR74gYzyaR+94+n1B33iJPbPJe35X7KHtaamdaIlGGPYLnbObTlKHjDihwzKOqwcTdGOXQLLmu1z5KXTc+t6hS1jWgaHeJdXEid0Ol0CFeCMrC1am505wpj25WvxjjJlkTbGYuO5ZOUugin3q7AYrbXMFzMxbTQN/V6fTjcnDDRJGLJ0jqquefroCUopzu/dYajgQAeowOC0rJlbh7jyZ2ZJlPvPfvtcUOzaZh0OZTXE3tkXSjpACqcin+oJcQqqskEFAWGaYrzAJvvIULhPzr0832/Xdu/wUlrL+27t7v38Xb5+91Y7n6PfXujbmwlgXciDrj/sEKiAYlOgA00cx7TG4WjFpucCqroWV4u19Hpd7t49kg1DXVKWhQeeyZtsPFutKKqXmyLrgaKVHEzH0xkKRd7rsq17JAhIsojNauMnDxlhoFmvCwG89XtEAeQZxEFEpAOKtTQNvH73lH6/x2RfWAQ3N9d0ehm9UZ/GWibzBYNhjyRN2UsFvrhYLGhpmRdrsaMFIXVraK31XCq1Yy2Dkg2rMR6CLFyC0Is828VCrnRoG2hq48FjCkVMqGNSfwitrfczIg1NQSiinLU+xqIE8m2cw6lKLmSlaP11kmUdtBZBsNgUzCYTqqIiDOVwlIRy8LTOE/lVQJhJO4FxVmz71mDVtl5TlOQgCD2fa4NB4JxyAI2o2gaPDBVxsJIbe3tt6VDv/j4OZaEOEPttnMcUVU0Sxzx99JT5dMWdu3fpD3qcnZ8I2K6RhoH1pmR8PWU+XdIbDgjCkCdPnogTrZFI09XVJW++/Rbf7L1DVW7YLJc8fvCAJE7p9Uc0aY1rDZvFkqvnz3ny5AlXV1ecnJ7S7XQYDPv0el1eff111us1T58+pbGG6XTOerVhPJnhtBxYlqsFkWdM1XXNZrNhuZDq88rfQ2mvx+jgiB/++Idiu24N08WC1YsLOp3Ub6zkoTQYDP37BnVTczUpwUi+2I6FtYWGTbXiN7/9jQfeBXzv29/he9/+DrRyHy43G+qmoqfXuDZBtxFhlhL2cgJrCJyl2+9RFwX/4t1f06yWdLKANoAqgbKpsHVLbUSM7OYZkdKkWqYpWdaHUA4YYRKQBglRHGFqw/jqhiiKuH16TpYm9Lo515sN89mcshW48Cv37tLtdDk9OyaIQtpQ0xQl1XrNYnLDcr0kKyT6WC6mrMqKh9M1PmpNP0vodnJsGNA6x3i6wRrD2tYU9Zp2ccUgtrxx95jPL8e0ixXztqRtFGENOowJ0oQgiglURH+0R7a/jw58/CJQNKZhVaxRgcY5RRTGdDpd3nzjDc6Oj7Cm4fmz5/zml+9hnaU/GtHWlsV8RZalpGlMmMqEPSMkwuGs5MjbciUPyChGOz/t8eDbujUkcUw369BNKzpJRO0aGtsShwk6UGzqOcpFqExcDVGYoI0lNP6+pcFVIuSb1oMzU4uOFQQhtpHNxtFwyK1uH3ezpmoclAaVJdh9eDXp8uorrxFnCToMmVUFRdNws5gSRhF7+yMIQ2wc8qGxPDYtoZwRyPspyTqSiuqmpXLwer/H4ckxVBWubZktFjRGYOJF6ZjN1uR5jyRIaF1DawxJlNBax8PHz2kJ+Nkvf8VoNOJP/uE/4OHDB/zt3/wV11eX3FxfY5pa2o9u3eLm5obHXz0iyzK63S6hrzrWfjq2WCyZTudMJws2RSkRyCQhSHO515zlejIXEQVxBug0YDKZcHl5yWKxoCwrXr11Tr+TM0gTHwerMM6g4ggXh5goJMwS8iigP5CmTpTEKJ8+fshnn33CalNwen6L/YNDfvz3/x5n5+f80R//fcIwoKlLHwVtmdyMmU6nvPu3P+HyxYU4NHp9vv97P+Dm5oZ33/0Zy+WSxULWpDAMpWEoDDg9EXZFv9clSSKWyyWbTUlTG+K0Q6c7gCBChRHD/T3iPGW+nAKG4aBL3TrKtuRvfvoTaaXyB8LhsM/+wT5n5+eMulKJHmrZR6RxTFGWfPrlA6bjKc8fPyFOM5I8Z7GYEYZPefH4AZ1IMTrY4/Rgn3/33/kznjx8xMcffESv2yXLUhF5jWXpm9X2DvbpD3rsHezx8NFjHj56xP7BPnEcc3JyKtE2Y0iso9vpc3hwzL279/jLv/jXfPLJJzRtLcOWJJJYYSejqcW9go8/aDRJnNDrdqnrhk+//FKalXodimJFU2w4v3XGN0ff5GoyZr1ZU45byrLxU1hNJ085Otzj5OSY2WJB2xrefPVVtNZ8+sXnlFVFVVXcOrvFnbuv8OjRIy4vL3ny5AllWTIajQjDkMFgsGuUiquKsKok4hqFdHt9lNJkWUbbNCyXS7rdLv1+31eQtwwHA9q2Zb1coYNg55565dX7TMZTptOZjyo4rq9vfPuc9U7kgjAK6XQ71E0tm9pWuBnGSSw+0Io0ieh1O9i2oq42tKamqu1OoNAESFtagAplm7tlOy0XC3GNBy+3rjoI0GEgh5ayJIz8MMYamqZlNpsRRTF5nkuU2UP7oyiSQ493U1lradqSPO7Q63eEb9iaXeOXwhFoRd5NwYExIjquFnOU3/Ab02BaRV2VIlJmKZ08p9/tsZ7PaZsKaxoBYe8PUCjmkyWm0WAbnKmIIodzgiWI0tiLN+3LePL2EKK2290Qa+Xw7ZyhrlriOKbb7eLcSmLeTSNFAdt7XUVkWcSt84zlYsF4ciMREixpLPuVbTRnG31sbUtVFxTFCkvjDzIJTjuMFTivatnFLmUfGGFtK4J8EmGdo67NjrfUrtdsqsoXABnWZblznYCT79k2glEAkiyjqmqKouL4JMNay/Pnz4iTmE63S5qmxHHMZDIR9hgZqXcHOGep6g3rqysuLy+oy0qaBq0jCWPiQODkWZyyNxjibgmrLcsymsZgrKVuapQO6PXknvnqwQNePL/g6dNn7O/v0+/3uXv/LoPhgHv373Pn/D6/94MfsJzPuHj+lJ/89V/z4W/eY1lu+OrRQy4vr2ga4bUc7h/xvR/+iNCFaBNwsS5YuJbaGjZViY5i8n6f/U6KrSztuqHVIQZD6BRtVfPe3/6MJw8f8q/+xT8nDgLO9vY4Pz/j/PyMhw8f8OLqmrqq0ShGQ+H5TMc3pEnCsliS5jm3Rnv0u/tkWYfb91/h8OiYP/ijH9E4y2y94v2PPuH9Dz/mvZ/+FS+ePCROUqIo5vLq+c5Rnuc5/X6fX/zq1/z03Z9T1zKwPz8/l+axugBnCHUAFmwlzcVZFFGUEj82xtDt9njnne+I4KJCrsbXPH76kPVmuWPMKS+WRlFImgobuCg3vHbvFXrdLuObG3COKIhJspT9o0MODvY5PT3m2iloDLGOMMpQNCvKas1sesl6ucZWDXWAPNt6PdIkBmtwxlEWFXUmHEfTtGxMy3w5ZzqbUJbXhDrkDX2XNJZhlmsN/W53d2+EoZQDhGGAtYbZbOPPf5pEaaIkpjYN62KFKWUoFikRHW0QEHghTCuNcnJWSpMO2oJSgY/ZSdN1td6wmS1o2goXGAJCQqWJk4Aw1j76J8pB27YiRtctpjE0Ve3FeOEfC5ZT3PKLuTRtzsZret0+P/p7f0iadbBBTOscjXVsgXXaySGxXhcSAyvXtKql0g3GRzyNF7n93JSYULQAHK1paWxDiKB5CKXoKEJEPdPUnu9lPM7F7OJ124hhkkhRV91awUkYR57mjPp7EuM2SKGQ+58MKnyTjCBhDAHSjrqYjAXGbUWQV6HCBo5GWVwoZQ5PL57T1A3Vas35rVucnJ+QRDJIv5nDqtjwV3/5l5i25U/+nf8FBJpXwlASGkGNVS9Lyhwed+S0P9uHdLpdukVB3Tbk3a60qDdefDO1wP8HPfqDPsPhgMFoyGA+Iul0QCnGkxmBDugPhyznisVyShgJr8xpTYOjwdKCIHrwDqggQHvmVtO2f2dI8z/39bsLT/olHV0rSaQ23gIdBJooCogj4Vw0bSMNTNVamApBSH8wpJN3iOOEbd19nqecnJyyXC0Z31wTe2ZAUZSY1tLr9sS6H8feel3KD+hFKKWUZ6fIA2EremilxS6HIlQ+FuEskQ4Ig1Ashj7utm3r0duHudaEkVQjO2D+YMFgNJQD+krstuvNUiqfBwPCUDLmdd2y8k0kWLHjS4uJt3vrcJehVT6/q7Q0SnmgkijEPo8l1P3wa3WdvLwR7I7Nv5sIBiGeMeJBnDrk7PyM4+MzQOBfyudE4eU0S2tpzCqrmqIsWa2kbahtDdZFqCDwVcEWZ50chjxjSirM5YZo/bVhrAUMyquGDmirinVZS120Fl4SuN0U0xpDp9Nlf3+P1Uqga6nPpOJdGG0tP1dVlljrCLVmPpv4Q52wkPZGfYl7Iq00cRSRZxm2cfS7Ugm67PflPbCWUGuGfurx8W8/ZLPZ0DYNX335JcZYut2+2D5NSxyF9Ltd9kd7KODOrVv0fJxNHoDSULQ3OiCOEk4OD7lz7z6jvRFlVWNMy8nxEQ6oSwG+yQGgxVlHlmYyFRgOBbZrHFpLY0q/J9BspcURtliscdbR6w1FrFSyGGljyPw0/OrqkvVmzXQyoW0bbp2ekec5e3t7DPp9FqulvLcOWguokCzpQKxQNsJqjWks4+srNos5R+enouJojdWaSbGBUKODTNhKYUCSJQKGRxqOhgcppYFx5ST21TTEUUqWd0iGiYijjVxB0irYsi5L4jzn+CwmiBLCMGRv2CONAupiQ7tsmK1WKGPRxhA0NV2lCY1BK02/16ebtWxUwqaqWa5LWmsFlOojYCEOFWhypUhx6LYldg7rNLf7I0Zpn88mY1Z1jdUhxrRcX10wH0959MVXdPdGdIYDgkhiEndv3ybsdEWojSLCQGOtovU6uPHOReOFP6w4DEWpdTRVjTUtTlkCBcPOgFBrIhRWaWzboLSwnMRWvOUCKDqdXISoSpruAidcunC7tqDIs4zUt+dteRvWT3PwLkulFKGyRLEhDJGmJWtwtmWYZfTDlPMg5riF1eUVummJdUxVBpTV0redBZggQKmALI7JtKKfD4miiH7cIQgiQh2R9E85Dzt0dIypBTqtnWWQJxQmQDsHzrCZLwmdRVuLqxsCpRkdjCjWmmKREAV617KknNQBayd1wvPplM8/+5S3vvEm3/vW2/zB7/8e8+mE37z/AZdXV0ymY5bLBYvFnLIqxVoeBSjtqKoNZbXhX//l/8hnn3/CYDCQBkkrU/UsTWmahul0uhsmbBmHaZbhkPbXOInFlbXZgKqp20bcbl1puArAb6g1xWqDMeLkMsZIY2sYknVyCAK6gx46DsHzxm5ubiQKMptzcXEpz92mJktSer0ee8MR5+f3GO19znK5oigryqri8dOntE3Lydk56UxEwfW2yQo8x0Ci9XEUsF4XoDTL5ZLhcIiz8hol6q4YDUZEYcz11ZiqakiznFHelc+816UsCxbzufBVfOX6zc01bSs1zacnJ+RZTlWWIvAEmjxP2D/ax1q51puqpqkVaEUYR/QHA5bP1/zsb3/Ki+cXPHr4mH6/S55nbFZSv7yFKV+Or7w7G7I85Vvf/hYKKMqC9UYiFMcHB3S7MkyaTKb8/Be/oihrjk9OUUrGjEkUEQUhSZpiDFTtwvM3lHBE0IxnlzjnODs5YTgccO/OHSkuCUMWyyWPHj/kejymLCtUI2yRvNNBa2nuLMqS+WLFbLakrCrWv34fgHWxFodrFDEZTyhLaQRNopjTkxOapmG1XgvDa7UiiiKyPGMymTCZTBgMBvIcTITncnH54iWnyIljRQpdYpI2QTfaOw7E0VLVJfPZlPl8wnK5IM8y3zAn7aRlWcmEVcNqteDJk0fCgUljup19jDFcX197JoairgquNkvf5CdMImOcb3dzVG0ljI4w8HscYbUImyckCBR53hEXgRKuh7QSacJQU5Y1StWEYSSRe+9UA3ZD0+1hJPPskKZpcJqvuX2scJfq2nMgNc6Jq2q1XPpJs/bYACulRK1jvVpQBeHu1zR1xTJJWOY588WMpqm9w7xlNpt6vqT8udPZeNe4t50+Squc2sVrd1FBY2n94Kj2LUTCdHL+9ct0OklStA4oisLz9mRYXBbVjlEWxzHDwYjY81SaphV+qQqE+2jr3aEiDCLSKCMkRFmNqa3nwsj+1jSydjsnz+NABdStsHFs9HJmHocRURbtXOLb930bFRGmn6ASio3sS8WxWJBmGU3bcn19TZKkvPrqa7uGpS1/TPYkMU3Z4lzEaDQUBtB4I/eHv4a3ERrn2LUv7yDKaKqioq6Eu7kFGudZzsHduywWC549fYyjZTjsUtcbrq7XrAuJK81nE7Is4ze//CVpmtDtZPQGfX74b/yY46MDkiTi3tOnlN7hHQQB73/8KbZ2mMpyPZ2DjhiNDjg4OKKT5UQ6pFoXBASkScxivWBVLPngF+9x9eKCLz7/jPVqRX84IEsSBqMBjW14fvGMxXJOXZfSPh0GqCSkE2XyZ/c7DPeGDIZ7dHo9jJUBmnWKi5sb/qv/53/FarXi4uqKy8sbLq9uWE6v0QZM1aAstFVNlmWcnN+i3++ytzfi008/5enVBbfv3GW0f8Dv/8EfslqtuXxxSVm1LFcFo5EiTXNGe/scHB1xeXVJWZU0TS1MzvGMo8NjTm8dE3wK5abgB//W9zg8OOTdd99luVwym0zpdjuk8SF1WbNZrlkuFmjn6KQZURCiI7ne6rJkMr6hKjesFkuqokRHIanOWE+X2NbgDOLqCUJ6vR6Dvb7EcbfxKy1x4zgSTk5d11RNRaADut0eWtVoHZB3OjIstoqwrIR/bD1nrxZeWaplkK8jicURaFprJYponIgMWjiqWxqUaQ22/f9Q9uc/m23peR52rWFP7/yNNdeZz+mBPbCbg2jJpG1JjqVEVgTkH0iUIA6S/yJA8kOAwFAMBLBjIANsCI5CGzEiWANlkk2yJbbInk93n7FOzfWN77jntVZ+eNZ+vyIChK1qVDfZXeerd9h77We47+uOyXUu2oqDjwB+YRUNfWVwN4rlEKHQaZqSZqnYsWLqZB2VvaNiTJ7l5CNxJYDf96vGGGxU+TvXkxc5k+mEjz9+hNaWt95/g2I0ous9PmgcmtFkRFbkYpv2ga7u9tZpZbSoqK3GKCsuChRd71CA1fKdhZhc6EOPMjYueGUpYZOEvmtZbTZUVbVXWKnB3hvC/nwQtwhoK6pPm8afJTk6BIhq4USYhgFcUCgv798Bjqi4NeJS0MagdU6aybNEOJKGPNVUdc3PP/wZbVMzyQpms6ko/YP0z1pBai2TuBQZFYVw6JSSeUv8fgeeH7BfhAzJ4LIgicPCrt8rj7wXrmRqE7E2931Uw4bXnicAIYpEmog+kutNR7buMP9R+rXcukEFGwaXkiB81MD5+0t+/fJWuwHuF/9qgTrLw64osnhoy03YtQKpq6qKIs9Ji4LpbMbhwSEHB4fypTaVTPlPjgHF5cUFaZKhsoym7nBI6stA56/reg9d80FSjbIsp2pa2rbl1atXkXEESgeUl3QAmajHLf4wbFLir5ehkxY6O9EmEeHJo8mYsq5YbdZUdRUZVRuJnN0VZHkm273xmPligdqVrFYbiBGYSmVoo+mbVi5mIzbBAQYnDzf2MskBpq2VvrHUaRN/nN/b9YYNnfwYmXpqzT4BRppTjzaWW3fuc3JySw4gOdr2V0yIiSgikw60rcCJB9J+77zcpNrQ+6hSw6OUASsNbNO2+xvcxcFT61y8mN1+E9E0LXXVkifCz7KJ2Rc98p6CQNBv3eFleElV1mRpSpamUfoZKJ0Mb7qmASXWxOvVkrKSonixOOAb3/hqbB7lu02t8HGU0zJ4Sizz6Sza/MI+xWG9XfPixTNpVpKEx4++YLfdUsRUwMViQWI0k/GIg8UcozX37t6VBmiziwecwtqUxeKIk6MjEguzxYI0zfj8iyf44Dk5PqbrOh4/eUKSChunbQTYOrCwDo+OYkxpS0jEspVlBUYbyqakaWuqUq7Hw8NjrJFBj1YyUpxHDsf55Tl12/Dq1SusMbz3ztscHx/z5ptvcr285nq5FHi3UqRKhkd5Nooqi5Sm6+nahouzC86fPyNYI8y1OHi6bkqsTxjnOWmM+szHM2ySUpZbeS2TObrueHW23ENdF9mEcT5icbgABeVqR9O2eC9WUN8EJqMJkyORQ2dZjg09uI5uecl2s+HV8+dkxjJKEpLMkgmdHqPheDGj9oG1ylhud1SNpJ3s2g7Vy9llVcAqTaEVWQDtHBbIA9ybHeB1wvl6jasbGqPxrufq4pxyW3F1vuT+m29y59490iwhyzNuHx0xynMym5BaaYy0k0VPCOyhj72XLQEQbVYC6+valqZ1ccuvUZOFbPC0xSlF3zWx6BCZ7XCvaRSjUYEOwp/yXYcmRH6dIXTRE14U5MbQbyt6J0PjmweIRhkZvgcVSBIJEwgxQCL4jnk+5+5kyh2dctzBo0ExNJbBq18HJlmOynKIMP7jxRF5njM5OpBrPSnIlGWkUmZTzcPxgmcq4XoYPBGYjVKsN9GS49itNxTWyHarbTCp5fBwQpkornJJS+2HTQuQWIPygbapWa2WfPbJJ9y/c5u7d27xrW99E63gerVktV6xjBal5y8CSZJEpZMBPE1bUdcNf/Inf8RsNuOrX/3qfqtljCK1MjBerVYMUcNFMUKncUsUAqrvxK6XZxJuoAS22/QWbWUBYlwQizWiEt7uSoHaO894NhWr30j4idMixyQWZQybrfzZR4++4Oz8Yi8l77qOg4NDHtx7wLd+9YBbt+4zmx9QjM+p2o6663n2/AVFUXB663aU8nvKnUDGBR4Mm80unru9BCwA2+1GbDneywKok1TV2XQW096uZfCUjzg9PWUynTCZjiSVzgvwN8tkgXR1dYHSHm2gGL3BYj7l4rxBqYC1Ktr1jtjtKnbbkm6Q/SuFSRMm0yl93/O9P/0el5fXnJ1fslhMGU9GrJZLXN9z+/ZtsZxFiXleFHzwwZd4//0P+OLRIy4vLqnqEqU009mMyWRKmuVcXS/56ONPqOuG09PbJIlYEOuyQilJg2uajq73GCXDsK5zuNBxfiGchm98/eucHJ/w4J6kZWVZyp9//895/OQxl5dXdF3PwWwqi5EIZu17SeJdb7as1gJ4vvzk86gkl6ZnsVhwfbXkxfNXHB0dCW/w9BTnHR998glNU7Ner8myDOd6Vssll5eXvPvuuxRFAcCOHWdnUitlWSaqaI0opLKC3kmwSNPWsTAVZfCqb9hsVmw2K9LUYExG34slRqLIjXAEd2tWa0k7ms/GzGZiQV+vrhmS9XZ1zeXlBcVIWCIhyLMBiNdXgzGWTOUEJTxRH61sOkZgF8UIm1i0tfuaZVDhNxEXYG0SbVtmf4+oiDUY/q7ReCz35lquZx3vVeccXd/twfNKWQZI72673S8oXS8NUXCO4B3VdoNSmt1O7qHddiOsliyLyb8dSgd6p1iuJA3pYDqjbXtWMZUuSewen9DHz2Ww0w/cKqnZOsFaRMtu398sKX2sebMso4gqob5vxEICNHUjiotckhnTOHSxRpSaXedI0xRNiEMn+Z1oi07kWhpsKQBayC8yDIvBIWmaYWxc/LoIhFei2xfMxjhCcdv9+5UwD6k1iqLg6OiIlV3TdT3OyXA2y3O6vuf58+ccHBzw1ltvyfey23F1dcVuV+4RBI2vAM98MaOuK66uFEliZYgQwcvD55ckRfzs49gvQFPXtG3Hrir3EeZGaQ4WM7q2Zr1eorVmNhvz6tUrVqsVz57JtVjuNri+58XzVzx4cJ+vff1X+OY3v8kHH3zAnTt3yPOMly9fUpYll+eXPH/+nO9//8+py4Z619DTo03C4uCI46MTRpksmcrNmjzLSYqCvm3ZLVd894/+iF98+HOWyyvSNOW9999hPCqYzads1yuurs+pyhLXdWTjESaz6DxhNJ7x9q23mB8uOLp9zPHt28wPDrhardmVFY+/eMLZqzO++8d/wMX5OU8ffYHrpSU5Ol4wGuX0nbg3XNeTTiwP797hcDHn1skRX3z0czaXZxx+7Wu89fAhv/mbf4WLyyv+yT/7Pdxqy25X44Miy0csDg45Pj7herXcL1LKcsfZqxccLhYcHy/QCpqq4htf+zpvv/02P/3Rj1leXXN1cQHec3J0TNe0lNuS3XqDRVFkEqwzWswoy5LnT59RVTsuL87jYh9mszk2TeBquFblqtbWMp5MOT4+3l8nA2g6y4S3NAgpdrsd2hjG4wnBC1i6GI+EBdQHkkwGXK7t6b3DR8i2zdIYEhHve61wPtwMnpDwFZQ8i4bBs3c3QwmxOsmQxXUO13sGdnLwYutuWlFRaqVJ0nTP8HOuFwtt27ArS5IkI8s1WV6QpglNI9w2pbUoO5ObMzLPM0bjEY+ePqFpWn7j/FuMioJqVyJy1ZTDkyNUmO1Vg30nyxybGAxKhhzKoDUQUTSeqAa2qQxpQhClGaJ0UomV+jbI2ej6js12QxUVkwNY/EbsId9Z3K6hE3kuSE0lDC6lJHBn4Ij5psN7idwRsYIskR1g43DG2ASrJFwmS7OoRBWOnTGWru345KOPqMuKB3fvcvvO7fgs8jEcSxRvk/EIHxchWZruXzsuDhdfu/ZkMSFsqa7r6OPiIXiPa3vw7K3SbdPSZWJPl7AZmaMMQ7kBmRMQ2Hnv3L6nH+z3w3fPYPsj7J+ng1oYBSoKRX6ZX7/84Cm+4QFImmUZWjd0bUeRF6RJKpt772kHxUwfmM8WPHj4gIODA/K84PGTJ9RVjUA6M1brNVeXFzx58kQ+9CylFwkGm/WKNs+YTEY4L4W+yLokuto5z3g6ZTKZMB6PKcuKFy9eRs++IssK0iTHOZmw5maIY+xJuhv/qdEGmyYEfzNVbjtJmShGOdPZhMPjQybTifg5u4be9ZyfnbNMluJPNpbDgwO2mzXbzYZRkaNVQpImoirZK5/ERw+RaYUXrgeGvBiRZqII897TRamzxI3LUKrteupWgOwyBY+cid6TWpFerq6vgJYsH5EVY3oHXS+KkkxH9kMQqXPXtjjvpDFpWorxmKwoMGlKD9QDtF3pCLtUtE6m8ZtdHX2eg28fskyiS9MsxRgbOQOyzax3JX3XkqbJfvBmtCKdyba5rKT5GVRvTWQVBA8hDg2GZaBSgXGWkdmEw8Mjjk9O+ODddylGI7ZlyXq75fLiWjYdI82t02PSPOf8/AylUj54/31CkFSXYpxTjAveeutNDuZzcD0vX7zgxz/9KSFaQp89fcTPPvwRNibgffHoF1hr6V0gzTLu3r0bk2t2JFaTJZokbhsvlyuUNrx6+QK0oqzqmwM8pnbpCL9cXl6hCLR9LSyeRJQPon7IMYmhrHa43vHkyWPSNGE0yqLKxXD24hkv+p7/9nf/G148e843vvkN5keHpIkk5j19JmlZSZLsFYvBSEFojHCMlBW47VTNuH1wgHaey53wRDa7ltop7rz9AUZbsiSLag9N7TxVCNjpDKsULhH5+uGtBBW3Mak1GK05v7igqSWhUGstWyITlXtKUdcN5+ef0DQNie/IreHtk0MSDfMio7AJ4zSLdrdB+qvJnKOsa149fcY2wga1jskUnRTRJpXNVa8UPTFlUZiOqMRhjWE+zujoeHa9Jc8XfOm99xmPZ0xnCy7Pr1her3n/rXc4vXXCB7/yFSaTKfl4Ru89ry4vAUmF65xY2FarNVdXV6KSITBTgb7vIpNN3LKCthOpuup70iLDowja4tH0wjbEOUiSAYbYYlHk1mK1Rofo0Qcssk23sSFzvcdZYYQFBWhN3bW4LrCYTkmUJu3cPimOEOibmuMk5f3ZAcXLDWHbsrApwVhSY2KioCL1AVU1sXGwtOs13WbD9cU5ymhsnjKxGQdJgR2POR3ljCvL2sOP6w7rHPnBGN07bOfwXcdlecXUWDKtSScFRim2V1dsNluW6zUmTVk4J3YTrQmR15GnCalRVNs1r14840c//AF93/Hue+8wHo8JIZClgzLNR46dbIy6IINGkJS4crcVvopWNE0lHK1UvPJFISpFrTWj8SRaWGSRYPSQpKnJ8hEBzeHpCZNRAVbO1s53lM6z63pu3b3L6a3bfPVrv8LJySn5SH52H5k4eVJQVhXb7Y7r1ZqyrBmNx6I8cZ0U1M+fs1wu+f0//H2+/4PvMx1POX/1Au97/s5/+Hc5PjmmKEY8ffqUP/zOH1LttpTbLVdX12y3Ow4O5JzwMb1QG8Xp6S3u339IVTWUZcXHH33Earniz//1n1GWJUVecHh4yDvvvE2SFHQ91E2HSRrquqXrBHwrm1XhLY7zMYRAud3xs59+SJZmZGkqCVKuJU0tk9kRDx6MKLIRH330McvVirppuVquZEBXNQQP9+/f55vf+hZplmGTlKaqgcCd27eYjMfcuXs7Pp9EVZoXBdtNiVaWw4OTaOEv8M5xdXHJ+cUFT58+kYbeOY6PDknShO16gzGaST5iMVswHU+kKa1qusgz+vXf+A2m0xnvvvkm282GP/nOdzg8OeLu/XukacqDBw9IdMJut6NphWVzPJvJZn+3xaFoOsdoMqUYTxmNZqKSTITvNhpPcFlPnsXilMAypqlOxmOs1lRliUJYSO+/9x6/+Zu/yWQ6QWvND37wfcqy5PD4IBbGhmI0ZjKdst2VXC2vBadgNEfHR5GjuJRtdJZy+/ZtHj58SFmWdF3H8clRhIRLGt+u3GFCICTslYTH1RFplnJ6chJTesUiPICou64lyxJJLpVTE5tIIvAAg02SJC5W1L7Bulpe7RXisogLe/jqwcEhSZLscQzL9UrqjCxlkI6PRgVpmkY+hSMxhhBiUlp8LVobaWp8D70XhphCeGZe44MXppFWpPH5HbzD41BxoGetpBo716J1IEkNVSVA83v37pLYhL5uAeJwMIa2xLQja28a20HtJPW33KceZDAfwAfhbQzcsqZtI+cqoI2VMypGcg//kgZb2om2bmj29XsvAHet9rwrrWRJKMOwED+j2ATtWWXR/sTQBwdBMoSevo/phUgyVN92aJQwlcbjPfOx7zuur5dcXV3z9PlzBmaUDKDh+fOXtG3L3/5b/0MmkylKa16+eMyff//7ZGkWa+4hydCx3W344z/+DtPplLt37+yVcLvtjqZp5BmmNGW1pWkreldTVw3r9ZY8yxiPCo6PD7HWUjc1CsXPfvITLq+uuDq/iPHzck2r+Pwdj8b8rf/gb1GVFf/0n/4z6qbhB9//Ib/4xccUo4J7d+8xmQo/alSMePjwDW7fvc/fe/tdXrw84/mzl0xnY4pRwf0Hb1AUIy4vr6jKHc+ffcHy8ppXL8/oKmERFcrzlfce0jkBGR8eHe6/F2sNeZ5zdHRMnufcfyhWwHfef4/gFeurirqpeH52waNnL2jbjlcvz9hudrx88YKmqanrLYvplPu/9ZtMp3OmswVHiwV5nnFxeQUKHrzxkO1mxc9/8kMeqUBqoNxueXjnlNXVBR91HfXvyoJxPB2z3e3ovKMYjTi9dYvF4RHT+YLJZErbtBwcHDKbzHjnzbeZTabiTIm90/Pnz0W5GG3csuBuePnypaSderi8vBb+kJKUy92zpxKusNlyeHjA7dunnF9esdluSdqOPM/51rd+jTxLyIsM52Rpp7Wm75wk8gJNI+nBfbSu3rp1i225IVlbSYRshP+ntWIym2GMYXm9ompbVput9HReVDNaa3rXo4LeL6isMSL0iMiSxFjqEF07WSbLrQ5SY9EhCieiiCJRhiyTwfxkMiVLc7pGFLEX11f44MnTjLbvqJqaYUwQYJ+a65yocbbbLX3fMx7naC0qJK96tHMkacp8MZeE6yDDkbZp+OTjn5EmVhY1WFAZX1ZfZj4p6JtG+mAtCrCmbmm7lnK3QzmPcoEuSFBMPdxTVSM9iutpXE/ZNbzx9pvcunuHzOQYZWjqmuurK370wx/w6PNPhWMVbpRako4uz426rmPNZqmaiuV6yXg6ZTSZkCUjTJLgpPwRhZzzuK7HR+udsgkGS5IVKNejdLR0R7ROnJaIPdxYsiRlPpkxznLu3L3F4eGCxEoCok0MXd/SVOV++J5GF1aIgySC9MhYg9EmCk3k2Sh2RBHX2DjbUDcH7yBJwihNkY/2wqBdWXJ9vWQ0nUW1lqj4jJEeKgQZvqV5Fp/Dr/1IFSRVPC5vgpI+RwaigzDpL//1y1vtuJEpD8R9F2MlE5uQWEsb5agh2kCMtgLinc3I8hxtNOvVmvV6vfdbaq1YLpdsNlsGINgQj922DSoqnNzeahejhpsGrQ2TqFLJ8/wvgNYgRrNbTWg9Hom61drIlDgWi3tOQzzEiJO8PkLKZBMoUL9RUYBSbLeigrq6uKRtRA46Go0Zj8fUZSkXTOxkTbTICDBU7QcnIA9lH3xUKMjk1kR2gUwTb77EYcAjTCVPJAfLlDb4OGiUKWzvAiBpeWkq6WPeC5MgxO9xGKgOHtZBZifJJolMgfefA7KpMkbk1L001E3bI72V2v/cXGuUsdhUbFJplslWX+n9dN7YOHiK6gy5NiL/K8YYd12/n/QSkAQ/FT+/WCil1mKNWIkmoxHT8VhSUZSiqoWPY5QAe8eTOFCzMmg8Pj6O0DhRcrmoSDo9Oebo8IBt3O6KdLviaq8omjIZj/ZbeG2MNC6tFLnD1jJLbhrPbVXLYMlGmapWBCU2qizLI/xdDqsq2YgKxjWxsE5iDL1lcTgnKzKapsL1LtoALH0vW5U8SSm3O8rtjs8/+pgXz1/wq9/8JlkiG5W+71iu15KakOdo7/FKRfGuTLJFviopB8YmHC4OGGc55eefswpr2s7hgmY6O5TNpJZiPKjAdrel7lomthD5KgqMFPxG/k+xJTjHZiNb/Rsrg5HERSUbJ+c7rq6u2G42JKFjkqe8eThDE8gSS55YRmkCSopg7QV8b4IjdC3b9ZrKe7q4EVHGEpwoIbEWjIpo1BDPHfAOGZDhKVLDqLMELyqi2XTG7Tv3ePOd9/j4w49w7RfcuXWbe/fvcev0NllR4JWR4UC5izct1I1ch1VdU1aVPPgUYlMNolQLKg6d4q++7yVNJKTxsBeJsI+bbB9AGXkIiX1CoZM0NmcyXBO4uGEIgwAV/9kIp4+S4773dEFSRIaH0JBCEoJMuSbGcpLlJNUKNiWFtoSoztJRfq2dR7keYxMM4FpJedrUlTyoUkuX5Oh0xIGHTBmyJpCiGXtNjtynQUlzIcmVFVZbGXJNCzTQlBV1VVF3zT4tVcGNrNoHEmMkfaYqWV5f8eTJY46Ojjg+PiLLMpRChnFxwL9/aPrhWpCzu2lq2rbm7MzFZk9UR1qLMiCN95XSmjTCGl97WsZmkL11JMsL0rwAJc8EZUHbBJ1mTOcHnN65y5d/5es8fPhQ4qAJbKsdRhtGcfC02e64ul6y3ZX7jVXTycDv8vKSpml48uQxj3rZhqbWMJtJYt69+w+YTGbsShlgtbWoq7pemlWjrfy93qO0EqvLaMRkMpGkmzTj6vKSpm549vQpdd1wdHTMeDwhz0doY+k6R9v12LaLFqCeNE3oe4FRGytsHYLYmy4vLtBoDg8PAPCu3yfkHhwccHRwxMXFpShQXE9Z19RNS9f1aBSL+YL33n8vboMNrhP5+q3TE2azKW+//ZYsVuqKpmlpmgZrRd0zPhijlaZpG2EUVaXwbi4uGWCk89g4tG0bo5PFRj+bzajLiiap2LU1jsDde/dYzA9YzBeU2y1fPPqcuqnICsECjEfCi/G9o+5qgSWnAqhHGXwQS26eF2JLtZL26oLbhw+IfUmGRoqoyOg60iwV7IG+SXs7Pj7mvffeY73dsN1suLg4p6pr3jt6V36W1hSjEXlRsFytWG83sjRKEtIsjc10BxiclefcQcQOhBBibLvC9WKBatpmf94476iqkl2Z44Pn6EgUA1Jgc7Nc6yUJdOCZyb08KJT8vu7U8X6li8DwuoSYsjTYXH0IEASqnecxfhvwLtZL3NRd1sj7rJ3DO39TE4XhvLypeaW+klQ54qICQqyrROFuY0KUC8NmOuzrFaVCxEDI/z8Eq4zHIxJruS5rYABnu/0Qo+t6lIpLg5jKNHAaJSrdoQf7NmC7XiKt+z4qoNy+RjfGxiCZIZY77NX18q5kSOG6Xmw8TiC6hoFFo0XZNQDg4z+oohTfudeWV3EYLyqlyPcMal/jmPgagvdSZxgZjCRpSt8PiYYNXddSt42kneYjXMQubDdip33zzbcoioLHj5+yXm959lQUUIvFYs8LUwSc6/niizNu3brFW2+9RZYJU2mndnF4YGWg2Ij9EOXFvuI6tM7JMrENp2nKditW57OobmobwX+0XRf5WQmJ7RmNCt5++x2JJl8ccH19zcuXYiFru4579+4ym864c/cOhwdHHB2dMBpPePOtt0myEZiUk5MjSSs+OUUpzePHj7m+uubZ46c8ffKUj37xESmBRAVunx5yOJugEhNr0jyqIWTRa8yUw8MjJpMpd+/d5+DggHfeeY+q6qjKL9hUJVerNVeXl6xXa67OLym3Ja9eySJ/vpgwm0556523ODo+4fD4hGm0/k2mrwgB3njzDZ4/e8zV1SWuqfB9zWw2Yzoe07YN7XJJ++mnoKXpNom4QNIsYzqbkhU5Nk3FZpmkFMUIMzYcHxxKTePcvq1dbyR1OYQQVZAxpbupIxxayzXUCGTcB8/1VlIPfSPChdl0xnpXUjb13ip0+/Yd0sTQVrt4j5lYO3mxl2qiNU0GJNoYptMpQXmaLqY4+qG/lKW01uLs6OPzy2oT7wET6zoZmg/3jtKyjB56qmHQMCToaWuxXgYRA25FPDKS+2aNhElkWRa5czKELiupGZL433WvpX6CsICnsxm7bUnVVaLQ7Dom07EsbxBoqnMOHfs2wbvcQLivry+wRtOUNQqLUhl19QYqeILv8c6hgixBy/WOarfj+uoC1XtwntZ1wnVzYgEs11s5J4KncR1l1zJfTDk4PiAvMhmItR1lueP5s6dcXV3G5YL8lrcmvZsPYkHUJqC1pXc9u2ong7+ojLWJFUHIUGPH3pc4eBE1kChjhyeKDwHfy3tDdCLyTURRS56mOKOZTscU8TUPv0M86yUFPoaMRZsdIVbq0SGl1WsuqWGwFKK6KvbYrz+79j9DqX2PpZScy1VdkxQjWVoM19AwOwky3DL7RWrYO678oB6L37uKd2SIzxBZhfzlv37pwdPADphOpySJjUWHPIi6Ti7Q7abEWsuDhw9IUxnW7ModP//5z2gjVPz48JjDw0O22zXO9ZHtlPDuu+9Q1xVtI55EEwGIPng++fhj2raj70UK1vfij1+tVjx/8QpjDAeHB1LcjQt6r+iCouk6Kb4TgU/WjUcDRic4I1NErxBwlpKbp+5aqqaRCMneyaESAhfn53twYZ4Vkh5jUuq64uXLV8xnM8ZFTp6lnBwfU9UldVUxm0nMe2KlKOmGRnHY1HlP07U0jSShuJhoY40hLxK6NqYneIdSniTJpMBGy7/UcDNYeg+u87z//peZzQ94/0tfZjKZCYhTBUajkUztg6JpO1zfMh7lAtCt6mgJcgI1e+27d3FaHIKNhdlwK0NqU7IskUQniEltDZvNFqNNZKdIWkjXtTilRLqoNIk1BO+5jvGtWWLoO7FpqmhZHKDq2liJP95V0WdsMDYj0ZpXL59zdXXBf/27/4jbd+/wrV/7da4uL/j+D77Pl97/Em+9+TZJloAWWKfRmqBlsOdUoOlbNrsNm2pLXuY8ffmcJ8+f03TycGm9J7WWPEtIrMaoQOcafNcLW6xKWGWarutYrzdSfMSIWJukbK4keVEHj1UeFyTNbFuW+4apjnDxybRgNB7x4I37OCdpWfVmTd00fPTpz/C+4+6tO2RpGvkDNcvlFc73ONfTVvK6fvuv/RVOTk64/+aboDWX6zVBixyy6lrSumE2nVCMRyRBPvdnz5/TdT1N7WRY0jZcvDxnvVxhtfBzZtMZmVY8f/yIyWTCnbv3JBnSKi6ePubs8oLTowXWGKq2Z1M1PDlfkaUJoyKlrmqB8zYtvfdoL1fS5dWVwOutbFgzm6CcZ1IUzEZTitRQt1vh/2iPtgqbG9qmpe9bdC+bH0OH61qS1NA6jfLsJbbeSIpa27XoHnb01BZCfMiDx7cd2gUOVUKSFqzGU9q65fd/77/na9/+Nvff/zJ//W//Le7fvoNOE4JSvLy+ZLXe0tYdTd2w2ux4+sUjPv/0U/peFJrbzQajNZPJGK2gyFJwHbWNMak+7JOgZNAkD/Lgh/GY3JFBK7xSrLZb8IFJkYHWVF2DU5DlBbqvwbVRwuWpdyVea4pYuKkkiQmKPSpNsCqhbERB0jZNPHMC0yzjdFJwzxbcdgpvLCFJyJUBHTCJNLkGBYI5wyNFkk4MwSos8pzAaCrf87LZcvmqxp5b7jQV2XTC3zl+nyfFiv/HF3/Mst7xtNqQa0NhLFWiqK3YCxMXGDWe3itG05EA6l3Axg1MlmXYAOPRiKrt+MmPf8zy+oq6Kvnt3/kd7t27x+JgweLwiIuXL/bNnDSTN+w9aRIDaRKLQDwKJ7+ViUWKJkklcQp1UzzqXlE1DZdXV6zXG7bLjXAkmppX2jAej7hzfMLhwYKvfPnLjCYTposFq82GzXbHH/zBn1DX/4Lr6yux8USlq9aaXVkK8+J6RbkrxX4UZd4mEatTCIG7d27t1byZkRCKf/Af/wOKouDbv/EbnJ6e8vf//v9C0nvqkt/75/+cn//sZ9RlTVmWJFkmtkMVWK2WfP75p3Rdy8HBAYk1uL7j2bOngOLXfu3b3Llzl5OTE0IIvHjxgkBg0ky5PL/G9R3TiUTKX10uyYsc7wOz6ZQ8G+2LrIvza2k0my1ogz27ZHm4YnW04eXLV6xXa7pWLATbzZau6zk8Oebk1im3b99mtxN7pFWi1Lu8vOD66oIXz59yfnHOz3/xc5pGrFOT8ZQ8L3j33feYTCZMxxldC/WuZ7O85ovPPuPWrVMODxdMR4VwZjYpXdfx9PFjksQyGhW88857vPXNb+EQZsf5xTmffvoJ/8X//bvUVUnf1ZxfX/LJo88k7aoY0bc9Whvee+89tNZst7tolwq43tMpB7QY4wVfYBLSPMX5nrqucF0ndpkslcbCGHTfEbxDEQR+3nW0bU2WJRwczvnhD3/Io0ePIATGRUGIW1CxmWnqumY0GolaUcvC6YsvvrgZRDjPZe959UpsPLdOTxmP5/tBa9u2EhOtBXQ6mwvEHODq4oK+72ligEiS5BwdFZye3qGsSqqmIvYGES3gaaqa3vVUTY1NGpI2iQOSIMqoIA2mNZbJdCJWkr7Zq8mfPX8GQRoprTWLxQzn3R6g7pxju91QVeV+iNZ1Ma3YJvtF3PDn81wUMsMiNAw4haDo+5amaSXsRSv6tt8zi4YmYFgWdl2L6/vIGMo5OTqSa2C1xjc9Qxqe8KrEEja8voHbJH+3nHdpKqpyE2vJVbsmeM9kPJXnXe/pO7EM5pmcVVVdY63hwf27EAK7nSx/mqYRZllkqgovqo/1nnhMQuuFa1LcBAtVtUCgO9+RhARvvKg1jGACEmA0n8R6L4kDsT42MmLX8c6x3e1QZcl2txN8x2jEQX7I4dERIAiJJE3ZVSXzgwVt0/Kd73wHgdzLwP3OnTvxMzGxX+hJUiVcrt2OYiMhEc+fP+PRoy+Yz+cSVd82Yjfqe2wiYP7pdMz4fhGHbobzV6/YbXes1muxtSDXypfe/4DRaMxoMpaa2gcWBwcUxYgnT59jtOav/42/wc9//jP+6Dvf4dbJMaMiZzaZkCYJ7WbF8+U1H/3kh0ymM+7ee5OvfPMbfP3b3+ZoccioGMnyqm0p8pynZck//73fo96VNFXFG7ducevgkBcvn1BVO4o4cG3altF4zPHpKV//5jf5xrd+lavrNZvNln/53X/Jarkm+d3/lqqqef7iOXmRM51PCEFsOH/9f/A3OT095bNPPhM+mGu4d+8e3/71X6PtHE3X8S//6I958vgxx8cnGGt5/qf/kvVqSTAJxTynyEXduV1v+eBr73J8eocPvvZNlqslv/u7/092uw2LxZijkwW37pzEe7LiarlmV7ek+QQCVHXPernk8vyc1a5E5znbuuF6vWG5WdP0Hbfvy7P9wf0HXFxecnV1RVvVqBD46le+QjEq2HUtdbQ1Hh8dcOf2KW+/9wHaWs7OzqnrmvV2gzWKcWap25qXZ6+YTHJGeYFNRN2nlSQSl6Vc+/P5lF21YbvdUle1MMEii7aP93uWiSXx7OUr7ty+w+HxEevVirZuyDNRFLqo5lRBo0xMAUfSoU10iFRNJTgYhOUprGNxwvRx2eSUiCZsIstJsYu2tH2PVoIgqbtW7qkkw5iEzgfaKO5o204WzJFL2rseiwz3+t6zXF1RljtcZBRZrUmUJFhPR5Kq2mQJWmcYO2I0G2OzlImR1/ns0RNePnvB7/2//z80mw3ddo0NChskES6oQB16AjHpUGsKm7DrWtZNzVFuuXcwJX9rQV4UvFpdcXV1wS9+8SHb7YbDw4XsGeI5LdbjKGpRhjzNOL51m/V2y8uXL/nKV77GG2++IZWsEgV5gIgeUXSuJ0SxinNeYPje4Z18XlVVstttWb/zdlzpSi0o9mRRgvWuo+mamODucK6j7VsRXkQxAkM6tbXxOpPz2Oue4JX0AR66po39+GAhNPux49CXh/3/bhAuoiXLClE/2wTnwSayBNxFNnUI0hsxCGci109UVdEhEucXYpjQ4sTSGmMUfX/Dov7Lfv3Sgyfhffj9xkR4SvGD8X5wt6G1+EfTLCHNEjZb8V4PDImD+YHwjoJ4vvvgSdOELEtpm/q1TQVxIx1o6mZPlrdKVEt938ukEotXOiqgbrydsvyOUY1KyP8ev98Sx2HhfmYnzV7Yb5sExq2kuNMyVEhiBLaOg6PRaBRfp44gr3r/4K7rMj68PTqS/VW8AfYytdc/YPUXPu69pG6Ycg5pBzfJd4Oya5hAKnrv8aFnNp9zdHSMTRIC0HRSmOqokpB4SlH5aCOTy65rBXambxLlhtc0TI2FS3OjllDxfxuk2xphPPkICfXax0YuvAZIC3R9j/dxg+YHMLxGY2McZthPrVV8ASq+V1EZ3aiftJbCwteO58+e4VzP3fsPOD8/Z71eEwiMxqO9n98mdi9v9UG+i7ZtWW/WnJ2d0bUNq7Uo2qxNUEoKvgHy1vc9XSvfpY2HhSbQNw2u7wi9HFpeKXzfE5QWKY2XOE2n5XD1fYeLvAeUp+9EhrrbuSEfVN5zlFom2rDa7qjKDVOb0qYpfdNSVRXX56/wweGVj4MnSaZZzCYoAn3fUu22BK3RaULXdNS6wUc1gnVyoFxfLwVWVzvqrqVsai4uL1gvV9w5uUWRpZgswdeapixJrRELQYxNxfdo77AhYELAty1dVbPdbHB5hsZTlTJc7uIoRSOb/rapsUYRgkCXdbR86MhoseaG82GMQRlhEolHWSyYGrF8DrZPgnj1HfIZD3/eBxdnmi6meTCM7EVlpxyp1hTGkpuEvuu5Xl5zfnnJi7NX3Ll1myTPaGPs+PnFJbuypFxXtG3LbrfjxbMXvHj6HBd6nHe0TQPBY81wo/ubv3S4/Yf/aVg87GNh/f68FFtmTCHxEjSgCZHXpTFJQqocqQ7kJpUhqLEkQ6NibTwXB/WTBh1TM6I9IcSHTmESTsczZial8IpWa5wVFZ+c9fGlevHGBw3eCQuEYWM3AAl9wCkZaje9Q9MyXq0YO898OqHWObeTKU3b86Rf4a3GmRCFnYoexMYQJOBAhi03jy8VB3ZEe45WPWXTsFytePLkSVTZiqVzsVhwGTk3ohYI+zj0v3D26ps4d/Yn9s2pLSop4tZ2gP46fIwv10pTZAWMPZlNmE6mjIoRWZKR2BRrU4wROGXfO8pdyYtnz1mvVhFmLpwVoiKuqmUwtFyuJDk2FqM2saRpwvxgTp4XjMfTm9h0RAX06sVLlNYcHB0RvOf992XospjPuHP7Dsvra54+eUZd1X/hmdS0DcvlEmOEyTIaFahYeCsFo9GIoijk2UhkBTYNtk7FcuBkcDEwMwg3/JnhjQ28GmEVSMHtekdbN9EO00bYqNqrsmxUKfR9T7mTFKSmbvaDrLat47YPri7POT97RRNBnCEqidu2lUZfnE4s5nOKOLwzRlRsWSbFWdt1NHWNazu0Hu35HjYRDo6KSpW266jbFh8Ck+lMFLbW7FUh2lrSJGU2mwOwXm+BWGeY5DXFiNqDp3VkfnRdS9iHjbxePajXNps3zX3wnq4TG+ZutxNlepqQxjQkFQemN0EjUVb/utLYSFFLVIVKQ+/onQy1iTXUACQ1xmKTlDzLMMayXq2FRxI/8xAVqFme72Hxw/mmoiradUOctt/fg85LXWGiwkmWbcPmVZqBYRPb1e2eYyfpPAkB//9Tsw7vMerAGQY63stzfl/Y74v5WOcOW95wU6v6qF4HWQSmaSoqh76H+IwKUbEj9mcbN9J+X8i/bg+7WU7efMdq/+/sQewM/9y+ZlJRZR/2tfQQqaxQ0kARG4j9WSefiYrvTRthyfj9xn34O7wkcpkYjDM8p6Q7kds7Wi8C8n1KSrFYOIYwncFGGcEqUq/Hi0Mg43ImZ1nOqBjHZ3bYK7vG4zFJYlmulrjesdttUUpF+LN67TuT9+m9I82yaMcV9EXTtvFaNCSJWIGXy2tARXVqzmQy2jsCuq6laaR28U6ULibNhLM2nTKdzdlsdzRdx8nxCVleUO52pGnGyekJ0+lMzhRryZOEIrEkiYmD0I5ys6JrGvoOjm+fslpdk8QI9q6X4WFd12w3W169fIVRilFx48TwPtC0HYmVwVuRF4yKEePxRJS6NqHrHbuqZrVac3l5SV01e4A3zJjORnSxfp3MJxyfnrDZlVTljs1mxWQ2Yzqfs15v2VU1l9fXvDh7RTYakaYpy+U1bdMwXSwkoXhckO2E4TlbHDGZzYVVRqCqSrpWMAhd17LZblAmIU0zOjeoiSx917PebCgrsbaNJ1NObt0iy/N9CNSk6yjGkqJ3cutUGIqJpdxIyvjR8TGj8Zip6ynLEhVEoDBYaY1NxGbfdlRdSZoYJqMFgRDZaOL6kLNIBj4Dq3N/AAz3Ia/930ECmQjSIwYf5D0rTZbmpEkJUbEdolo7KCWSmSB1lCSB6v19mkccTVvt9vd3GGq3MAhhRK3oX6sdh77WGC1L6767eQa/dqa41/q0MOhY4vsyxsRQg36v+lRBOmgdByVJ5Ph2ThT0JmIbxEEBxjnW19dcvXrF2ePHdOUO3dVYr7AesUUoRU2PVyHWrgab5nRtS12VhKaRgKD4d+/7yEYGyNaauKwdzsi4VOTG3jgohl8/5/UAcA+i3FGvuZPkcIx/F3EeEs8khXDH+q6LX7782zAzGc7n/fex/2T9zfk3HN+vq4/26iV182MZzvW/ePYPzw4Me9Xxvoff/5jhuSm1obV2D0cf+HuD0klH5fTrY4l9FTzU4fG5KarX4Rn6y02efunBU6INGmjrijrCMLMsp8hSORS8Y344J7EJdduwq0rqJn4ZvmcyKtDasl4vY4Mn9oXpdIxSgXK3oS53tFWFVRqf2L06ejwe46NaaDQaMxpPOLs4p6wq3n//SyRJyqeffRY3fR1BWVAJ8a4VGK/3cZoqvKOu9/RO0q1EUinWlyYWzkWakSYZB/NDRsUYhSR0WG1EkYOkKNnxhPfeeZfdbsvjx085Pj7iJMY17xuREGTKGF/HcFEYbVDIA9Mmfq+oEsSAyPeMgWJkyfKReNNVsk/MQ0MfJH3EGkO13VG3Lcenp9y5c49nz59HC55lPBpxdLCAYdAmxxN98NRdw9PnT0mM5dbhqdjSsgyNfCZ59O3X2514XZMMrQLWEKe+ft+FSqGFNAfWkKbi21+tVuzv/jAcxjJUGWUGlaWoXCxZWkPfisc1ibZLH/+BJBXLi2z35SaYTyf44Hn29AmPnzzmT/70eyRZQTGZMRqNuHv3NsvthrqumExGKBSr1QprLaNRzuXlBd/73vf4V9/9E4L3jPIcaywP779FXde8evmSsm4o/YatFbbNg3u3mc4W4scNAdd1mKAZpdKE2SyVRrlrmU3GaGNZXVzITR2TFIrEChuoKCjLmqZpeHX+ktK1VOs1qc2Y2Zyj41MOFwv+9E+2fHF2zqff/VcE51hMprIl3W2ZLqYc3TpiGwI1LR//6Pt88fHPmR0eoW1CUIY0yxmNp+zKml1VcXZ+Jj77sscaw+m9E9IkpUhzeQAkirfefMBs9iv8+7/z7zAvCv7R//k/5snlU7rrV5TNiivbYqwMQ+4WlnsP7nCyOCAAn728oG9kW6DQJEmByjWZyegT+T5TlRCcoyxL0iRhMs73SR1ZnmCthtDi+4DvNGkicmDlnQwslUclmtl4jlWG3WZN7xx121G1PVUrzYUKQApoSEhEXWW0uACaHrxCeehUB8oxSiRudpJYSWz0HT/6xU/4wRef8pW3P+Cdh29zMJthreHJ8xdstltePntJ1/V0fS/WC6vZbtY0Tc1kMpbnSJCNeFk6mrqi7SoZQcWBMBp0BOQH1xF8j/MtfR/oghf+zWSC8hEu6HoImjwtMFlgNJtyYqdMjGKcjEiTjPHRgkRrJnVH0TVsNyuCNqBNbNCUsIdCQG1KtPOkXc9bkwP+/Xe/xv3OMe892yKjH4beQQaashmR2N2+85hoZ/RaSUKJiqkqdStwQmvwWhOUYvP8KVYZHrYd+XjK/+ZX/z3+9dkXlD/9Yy5CzVWomZoJeZJKQmlQpGhsmqGOj0ltjkC+5DQrK5G5W5swGhlGM1FZfv+HP+Cb3/4WVd3w3vvv44AvPvucrluzWCxw3lGW232RkmXCTGvbFhiaoQFIPKSD1Gil2e5KvPM8fOMNtDFst1u8DywmU+7dusN8Ot9zER/cv0+aWJ589jlVWfLTH/6Qy6tLHj95QpZlpGkqg2PnZLCRJBR5ileBmoai0IyKGWmqaOoRt09vYa3h5cuX9M7hmw6TFUyLGBKAYrta0lY1J8dHNG3Ln33vT/nwJz/iT//Vd/mNX/91/u2/9lf59re/xVe/+hX+0T/6XZ4/f75X0iSppawqPv38M770wQe8+eZD3n33PaxNuH//Lm3bxaGT8BTieoxduRP7SSt8BjlrDffv34vFoGMItGirGh8VEImJtvYsZz6b03Sezaak6wNoK7HH8wVf+dKX6buOs/MLXr56xYcffsiosOSZYTadirq4lzNtsViQ2cCbD+/Qdj1t11MUE9Isx/mazabj2eMrHj58yP/47/49prMZz188Z74Q1sji8AilNZ988hl1XXH37l0e3rrNX/8b/x4vXp7xg5/8iKqs6XvHwaEsfP6j//X/CqWgaxpReuY5r16diTUkFnanR8c0dc3ZqwtJdD08itYosR8Nw045K0Qxt10vSdOMIhvtbWvAvtm2xuwDWbIs4/p6yY9/9FO6rovJdjl5lnPn3l3aruPy6mpfBFdxU1/VNUZrPvjgA6kpdiVJkpIXo71t6+XLl1xcXpLEQfZ4PKZpWkEm7HZcrda88cYbHB6MhUcSv3PnPFXT0HQdTddxfHzEweFiP0AZQNNnry5IrGE2G9HUwlPZbCRReDKZYIxhFIt8pRRaebTS+/qpTERFJr976lrtIbpZJjZz4Ut1EQ6u5OfGhnXADgz3YPACAfY3UyBC3H4n1pKnM1G1lqWkWGViE+26jrOzM3n+AGmSoGJoitGGZ0+eSh0Xm9MQ7W3Be7SRpde+v90HKFjwnqqSJUfX9/shojXJfnkCsWG1KVYnJDbZWz/atuVHP/qRsIbu3SMvCuYHCzarNVVZYRKDVZYsm0il6Po9gFhbg4ppcCEEsiyJSXgmWjmUDA/7FpskKG3YrtfS4Dl5D8ZaGYMps9/wj8cTSfCdz/AhcH5+TgiBzW4X68iEPJdBy2Qyous6Xr54gVKaO3dPcb3f88Occ4xGOa53vDp/gU0MX//aN7h9+zZf/erX0NqyWm8ZFTlZlvPtb/8qSZLwT/7JfwfA4eExWWrIM8vl5SXL5RIQx4BWOoLnJVRpNh2TFzk2MaxXS5bLFQ/v3iPTmrPLa0bjMQ8fPmA0KhiPRoS+p1yuuDUZM8sydJGhzZT337jDcl3y+eNXfOf3/im///v/nHu373N4cMTXvvmrFKMRz58/55NPPuHJk2e89fab/Mo3v8EiHzNOMxabuyTFjIPFAScnx/zOv/s7hBDYlls++ewz/rP//P/K2cUFu7Lk9PCQ6WLCrtwwX0z4K7/5G0zmU+ZHC374kx/z6MljXlydo0cFPjX43rIsd6jzM37281/w7OkLnj59zg9+/BNevHyOThPGo4K27VgcHPBrv/VvyaBnPOXg6JDJdMqjzz/n8vKK/+4f/2Mury5YL5dSK3U93//zP+ezzx7x9/7e/4T3v/RlUIJB0Nayvr7mJz/8IXdu3+adt9/mzS+/h0kt0/GELMv4t/7qb8mgIQR2ZcnV9TVvvPGGvPfNhr7tb+zSvaNuakbFmPV6ybOXL3n54iXL62suzi/p+o6DoyknJ4e88eZd0qsU3wqDaLVacZTMyfKUyXQsw7nJGGM16/WS3jUURSaIkAB1XWOUQKgtCus9Fgm1GaUZ8/GEaVHgXC8L776VQY1RoENkogbSxFAUCeVGkxc53/r2t/DO8d0/+g4meLZ5Sus6gtFgDcEY+lZCHzYbSfy2VlIzd7sdx/M54zynfPpYlrK9xzvQKiEEYVm5Xvi/ar8c8mgVyLMEBVRRfCL2xx7Xd4DD6ECWZmAU5abFJpYsIT7zEkInfd2Pvvc9Xj1+zKgvKcYJJ4dH+KYnNF2ckStaFXDImZ0Yyzwbs6kb0kRz5/iQO7dPcX3LdrtiMso5nE85OjxgtQys1tdoIyqcthf1TpZaEYwoi1awXUt64Ww8Yb1c8fnnn3NyeouiGDMaJSgV8KEj0BPohNenFeIbVrioDLpz65Qra3jx/Cn9oBaKtVDXN7R9I2xkFQN9lCwmBueCCx7nnSxWXpsXmCRBRWapj8NDmQoIG5rY+/Z9vxf2tG0rrNdoPXXO4XeSBtr0PbZrsU0tvODJmOliTpplOGRolRhD14o1dTSdkqaptOtRARXikkTOfifLxAH/41ysQ14byP7/+fVvxHgiIB5NRZS0DmlpYa8OSpIEbTRd31FW1f4GGjbHXZQi+8hQ6toEZzTeyOBiiDSV5j2BOHUOTm7oQfoHknCSpOl+gzf4bpUOexjlsDmSQlxUJNZYSRWKD2IdZeEhbtS0Uux2O7x3+2hFE6GM+0Vj3AIpJdGUTSN+5a6L7zumHuy3WHHYMmw02X9yN8oGm1jZ5MYtnPM+MgJkkhhCkIvUyYWqIvdoUDwNk9zLywtCUDgnE9w0LcTWFjwBvVeSCd+jp207qqrCJ+l+NkQIUdV0s0HSMZ7TD1wsO6gCDFkhDK9+vZXI+tTut5MSphdL3MCefL9nzQyX1156Mii8hu9OXu8wwd7/a5jwv6bU8N7TOY9Jsn3ctdGavm1o6loKtyCWImsNi/k88slayu2Grm1hPpciUTn6pkV58TYHH3BdL8DoXtRsYWhIgzhejTEEAn3XxrepUMkAjO/xnadryiitjEmRTsC7IUJOFbBaLtEY8AbXNIS2ZbdZ0dUleIcOXjbtBKwG7R2hqVFdh3Y99XZNW0txrW2CSXOSNKMpG8q6pqwbuqomdL28VqepdjtC7iSdLU3Joi3RuZ5PP/6ITEG5vMbXNblRJPJBghdpvVFWGFxtIxui+DqVksFAH3q8aHNxriW4IKlRiKoFFfaMjIDIPnsHWnuCUSQmlQG4G76PyPd5bcPZdX1UG0zRfcD0Itc1KEjlmm7LFk0gSaUJDIitCBVwOFzwGAxGB+ZZQlBw7VoqL9vV85fPUW3HwWxGkiRcXF1TVTWr62uxqjpPniWQJbRtTds2dK2NzeRg6Rru/XBzDshtIkkrgNJ+f5fEjmLPjpNrWyNRuyLT7nonKZ9e4ayidQ2+c4TUkGpD4iEL0qgEpQlK71Myg5OfmVjNfDziS/fv8+bREcc2IW/dPjFPK4V7jYsmTKx4KHrkTNJqAHrJYGt/vxPPMGGLDSqK682aifcsZnNO04xv3rrPz9dnlJsLdO9B9eg0YJRs1oL3uK7DkxASGQYN6ZwySLvRMPS9Y7cr2Wy2rNcrxuMxpyen8lDVr0eUE9UlElM92FwkRUqurUEVMjBkilEhSgfnGY0KsfYoLdHFdSuLCWtFedI2LJdXGK3ZbJbUVUW1W1PvNjTlhjzRFEmB6hR9AKMDSnmClAVR0SK/jdZ/IYZeLNqyyOm7lrrc7TkRGml4s7TDe0kFFbad4vPPPmM6mTCfz2LC7AlJklBFq1PT1hRFwcnJjOPjExYHB3Jf6ajiiUEfXSeF7l7eTyB44eeBx7mOJNGMxqPYsPdRSWTBJ3ijaOtGtqrKktiUyWhKKGuqttx/D66XtKw8y8jzjCS1tLWjb1vMyEZgvMJoUTNqpcmzBB8cidGEIA1KXVc0bcud23ewSULdtMIE7HvmB4d87evf4PDoiOlUUpA2mw02zTgYjfmNv/Jb3Lt3l4OjYzZlTb5ay7O2d69tdkUqH5Sid5LSFoJE0W+qEk/NKC3o+24P9BSmT0fb9nu12sD8qauKtmvwvqfvNDU1k4k0XjZJohokFoSK/bO97/uIOJCaoSwrurbDvDrf1y9aS6qlbLsd81hwBi8pnN4PhbG8vq7vQAVJiovMo65rY60kSpnedWw2a8BT16UotWLtJtwi6LqW66Wi7er9wKLv+/g5NEBC3zoISlSB2qJUH9OPLEm0vXgvCp4oEpCapu3ETh0HcsPASBiaoh4QW6FBFzomC9m/sCkeEnkHe0nwDueHszguDo3IfPZKB8W+MN/tdvQRUO9joWK0ZgCXe+cjU0jH7+tGcSklkpdkZiPA2EF9NKjhBtW9Gc6w4bWpQZ0VE/BC3EkHUR3ubRyxbhlqSb8/N8NeTdvtYriNl1rdB4fqbhg0ShHtypBECLqLwUBK6ZisJcxG/Gt8kvg6h7NUoOpqf70ODZjcD00McsghhPgsben6lrIs9+o0edM3nBa8vLYkWucWiwWz+TzG22fy+rynjYrANE1jYJImTTOc67i+XtE2wr7rENfA4GKQVK+ezXolUP1Vwmp1RVmWnL18zjorePnqFZPplFt3TkkTy6989Ss8/fxzzl+8EHWXMQScKISdxyoYjzLqvqNyHa9ePOPq7II8z5lOZzRdR9u0TCZTfAi8urjAHou66Y2330Fp4chNp1PS8YSmqanans6H/eIxoDg4OpIU4qIgTTKSYsR4Nufk1m1Ozs/Z1Q1ZWqDQtHVL23b7JXnXif07L0Y8ePiQ+cGc9959h9GooO8lSGI6m6NNQufh5dkl7uU5L54+pSp3PLh3j8ODBcE7Li8vefJYLNtpmpFk0suNJxMZPnWO0XjE/GDO4mDOfDGndYJb2W42lLsdrhVL23a7pWkaNrstLtppRREjIVUhwHZXyjXWtdS18DZd3wnqIN6jSqsoRjAkWSLP9SSJNb7f89mGlDSxwYuIwMbzfzg/tFKkVuDgg2Mi9HKeb9ZrJpMxeZYJA6vraNp2XwgqxMI2nHGDerBpa4IbkAzs71cf1e9ueA9KUA3O9fH+lt/WGtIsjWpXGZ4PgQUmOmKsNaiQslM3StrXU8y8E7WT9AZOAqrczfBEBbV3ibjIPvLO0XeOvhM+c9+2pEaRmFi5R6WkjgIGrYaaSzFwjOUMCnusy00dHRVF0W3zmsTn5jyP50MIHq9ECUwAaxNRTUfbZAieuqkxzkaFl/x3OqrOfFStSv/n6DtJKvV9T/Bx7jCcwbEvHJRGg/oLNQSbWZwL9F0P6i8yVl9XMg3n5Y19Tu17ppv+PzKZosPAeSfJifHzGgJWBqu5j2po4nOXECTZOgLCB4VdvPAJEbczMGmHmYNCoYbXhY41wV/+699o8OSjT308HnFwuKCqhKtAfAhPJhNJDlHQdi2b7ZrMJuSRB6VUbBr6PjZkCu9agVCnKUWeM47y0DTNmC3mOO958eJFLCh6OrdjW1WS9mJvbvIsS4XEX5VYDIlW0myiSG0chlVS1I2KgiLPZJOuTARfS+TkADl89NnnWGu5fesWWSabEaWGFCQTHzzuZuCWpqR5RlXX1C8rbp2eMplMWW82UgD0Is8dhlGD1Ns5J4BCF8jzlDzPCAO0UvVYq7HaRFBgjC31wqpQqTCHtNWgEUi3tfz5n/0ZSmkePHiH8XjKwdEp1mi6fo42KUpZST1perTylOWO9XrNKC/wrt//VlbdQMuQAZsDWmPQwWJ7K9BsYzm9LfLX+rPPabuOYjKWm887TGqw3uI62eYpIwdGmlgZDMW1Xt+LZ9gosQwoxD4VAvS+jwWwp3cdfa8BA0Gscj5Kc7PUMMoybJJJnK9S4Hq26xXrzYYsF9/ubrNmOh7x9ptv8YPFD6B31LuastxheofVN0BPHUQnprQ0GE3rqOuaxBp8nAo752QYkEj8aFNX9E6g7/loTJoXKA5o24bnZy/pe0fX98wPFkymM0ajCTZJmI7HOOf4/NNPqcqG9XLL4XzO4XzO+uIFTbllMSrIkoRRnoksX3fgW3bn57h4TjXlFhcCZ8+egzGkk2kcQBWSbtYHDg6OmM0WbLJS7GC7DSY4zHzGdJxzcnLE5WrDqxcv+cf/1X/F9uKcbx/OsL7ncCQw/6Rt0U6hrMaHFo9iW5YydGsduu+wGhw9u76SQtoadhdbXNthZgfRMgF9cOyaUh7mSrFe73B9x61pTlrkzIsxJkCIMFalQJmA0lEmHBzb7Q6H4eEbb9JpS6MSCpuSmwRtJYXo0edf0LYNRa5I0gxnUlToQXU0qqMNPQmieHrjYMxB01H2DaUPZM5z9ewLnn/6MZPRiNQmUR6tCMrggV4p2r4TqXhf4/uWuhosFWFvbdBaYlz9XmYrDUPXtlijUbnaDxoG+6HrW7q2RumATaTIDsFTdy3r3Zbziyu6VNFbCJ0Cr+BlQmYN90djzHTE9NaBFCku0JalPDhNKqDMLOVgOudXv/JtDuqeW1vhSzTVDuUClkDlavp4Hxogkc4I7cGm8nOUht57msiiskpUTj7e530I5ImAoT4/e8Y4zZkbzf35hP/o1/8a//WH32e1XFLuOpzpSUYFqdYoOtlCXixhHsizMSG4/fBLti+iZsX3VHXDZrPj7OyML754xHw2I3+3YDKbcnl1Sdt3e9m4tSmj0YhJVHwOrBcVkz763jMaWRaLBQcHB8znc5qmIYTA7Vu3SVNpXHa7HU+fPkXFrdfVxSXbzYaf/mwrXISuxyhFnhh8WzJNNXeOZty+dZvrOMSs+w6vHH2o9wm10kArFB6jFOvVEtf3McUUZrMJ5cbRlrt9CMjp8Sn5ZIQPPd51EBxt3XFR1fzh+Tl/+Id/yK/8yld58OAB3/rWr1EUBT/+8U+5vLris88/4cGDh/z2b/828/mMyWTK0fHxTcHierbbNWlqWa4meCfKZqmLepTqCcoJYN2mHB7OAWmyxT6rCeMC1/e8ev6CvvckNiNPc06Ob+EuLlhud9HmUlOWW+qqJM0SxqMRBwcL6l1JVzecHB1ycjyH2ITv8GRpyvHhgtV6w9XlVXQDKV69fEFZNXzrm7/GZDrlo48/4XK15rPHTzm5fZf/6d//X/Lg4UMODg/4P/0n/wmfP3nG0a27vPP22/xv/3f/e+qm4dGjR8JZtJauljjjzWaDD56Ly6u4Yd7SNw1tWVNEhtKjLx6zLUs2tzdk0fYWgqTTlWVJVVX7SPn5TPiS11dXco3rQNnu6NZbbt2+zdHJMU3XYmoTh1Qe3TS0bU9V1YzGAt9vmpayrFheXcfhUc/B4QFf+vKXSJOMLM/YrqVh++CDD5hMJvziF7/Y20KUVmzKDXVVUzcy9FoczvbDjTLGiM8WU7F0dD1Pn32Bc47MyiKvj3y58NqQ7fET4ceMRqO9qtAYw2g0JrEpzU62r3lRoEgg9ECCwpLnZr/xFetHR9fJ2blcLWnbmuPj46iGkKFsno/3tdeokCTmg4MDtNZcXl7K63LdfuiURECv957eQ9d2KIVsz2P4Rtt2NM2gVpA0vq7rePbsGQr2oTda6z3QXJRKEm0NRKbTa0OZQEyOE6ut1oYeYWskxu6HTwM3STAW0foSf85wdtkI7+5bef6MRiNQOUEJukJYNHFh1/cxIbmn61pevXoVU9HsfthNXPjlWYG1yZ5ndXAwwznBalibkKY2xreLPc/ohHyU7N+v0YYkyfYw8BcvXrJabdjutgQkOawsS87PXzGZjFnMZ/vG6/r6mr7v9kDpvu8ZjUYcHh4ynU4Zjyf7geOmXJOmKXfu3eXo6ITZbE6aCWeuqmrquuIXH31Elor9NcsyxuMxZy9f8vEvPub0+JjDg0OaqqXtanZlRQiBosjY7ba8evWCqqmp6nrPl/red8/xzrPc7ZgtFvjQ88EHX+J//j/7+/zf/vP/Cx/+6Ef4d98mSRLqWlhU5WaDThMePjil6XrqtuNf/6vv8/TJC54+esTi4JAvf+3r0Dvefe99zi/P+f0//A6/9Zu/yfTwgL/zt/9HvPHwDZqupawrvnj6BRfLJZ8/eUoIijsP3uB2FA3cvn2LYjRicXDAZrPjpz/7mPzgmLc/+DLeJBwf3+bOyT2yNOfp5VOapqbICrJUBleHh8csDk741q/9KqMi5969O2R5RvCKzXbHZ188Ybna8uL8ku9+97v87Gc/o0gMp8dH/IP/4/+Bosj5/e/8Ed/73vf4+Ycf8/Y7C95//wOOj08YTyfcvXeXqhblXTHJmEwLFrMZp8dH/Pxnv+Dp02eU5Zamrnn54gXr1ZpPP/1U2FyzCev1hs1my8MH95nNpvRtR9s0PH36HJsmHB4fs1jMOD46oMhSiqPDvU16Pp8ymY4xcQB2+84tZrOpKEj6noab4SOxlsvzlKbNKLKMnamENRoVqLPxGKUUr9qWLsLOz1+dUZc1X/nKl5lNDhnfu0/btnzx5LHci71Hx7PHOUfV1MJN0/DkyWOpHVOLSROIg+suXjNN16NTg0kMvZME9rqpojrdSSLvOBcuXOcjX1DcNlmWRtZuhkKzWi1pnN8P8LuuE7tbXUHwZFlC14pVs2oqml5siRqEg9T1dKGirSqasqauW8ptTd91hOCZ5tLj1XWFj0slExepPqa1g9i0q6ambBuqvmXbNqybmoNiRpKkbNcVbdtIWmys1+Ixuh8EBs8+2U45j3cKm4gyuGtb1usVfX8H7z3Ly4vImI6LhJiOZ42m6Xv6ztHUDX3XsdlsWK+WdG0N8Tkj39XgLELYutqQjyYkeYFSFmMzbJrTtj27ssYkEsSVJsITHJZFYRhcmWHB4PdDHxPPdgm+yei92w+oyqaV55l3eCW9gvcuzmwkMX65XGKsZbfboZRiXOT0XUfTVLJEtCYKI8S1gpcFF5EfarQEnai4+FFG3cz8/pJfv/TgSdLW5ELo+p5NHKj4CLUMAVarFUmSMJ6MCd7HGG95JcOHOGwkptNx/Mk3zKSBOdD1PQHFZrOl6zvW6zVJknD33t2o1qgwkeNydn4mX5T3+wlgCEEk1ErUTcEL0Hm/cY8XefAhqnFEpqwCbHdCuc/yPPqRJUayquu9BcsH9o0OQO+F8j+eTKiriqYq6eJkMUkTtDPUbbdnHQwF1vAtGSvw74HpAzCwCAR8KbDbQdUREolpHFRMMmUWfpGxlu22xHuBzk6nE+7euS1bpchhsEkqyTlac3w8Z7fdSPfrBL4miSM3iqKulyl/CGKdUXFzZ22y37BVZRVlpoMcT/5z2AJqrUFLEozwi2SqrVHRUxyTHuRL2isWJBlu0EYNU18Rfwx1mjUWr0WaKY17B2iMFS7Hbrej3JVUVSnDqCTZJzW9rmIoRgVaiZxdK3B9GycC8qUowBpAG8yQMrAv9uK1RE+aGBJTMCxS6s7RNbXEZvY9XduitCbPs73FxhixS45zSU5MrOXcX/Lk+jG0La6u6XZrQt8Q8oTgFW1TidXOtXsAIcRBmXfoECiyFJtmzI4PUTZBJSl13dE0PSbTKAN5bvFe4TpIU8tonDMaFRRFxpGxjMZj6BzVektfpBgdYkGrSZVsufesNLlS9oPFYbgof8bj8DJNNwaMp2kbCNC5NgKSJSnMGDmIvRXgX9hDhGRwPXxeHknRbMoKPFhtMShRSaYaWyRkacYozTGpvNb79+UCOlpM0E3NxfkFkyJlPpni2h26bzG9oLa8D+TK8GA2Z9M7srZjGTlLJjEENUDAxfY6DKH60NE4TdfUdJ1YZrU26Cglfl1pM+j+Qtz0WC1ARdnSSIFjlCY1Bq0CBCfw/T0rR7ghAw8mSSwmNdStsPGyJN+DgxVRUeU83gUya0mMgLw10NQNqock2RHKlmpd0lYlrm1Rrfydve+iRNjHpszHrX2g9DKUwBgIQWTYQeDdXiu8EYmx0qIAVEFhUQTX8+LiBbNuzmlqeSuf8u+89RW+d/6E59V6r15MlMFFmyB6SL668ZsPTZvzHqWk6U2ThO16zZPHj3nzrbdFDh6VN31vYvGYRw5IKttWJwBZNfDLFODFWjMZj7Ex7GAAEJ+fn0WGnsCat7utQDqblt1uKw1eaDEaThcLMmsprAHfsjUe71ratqR3Ld73wgYLwsySp01M/opbQO9FETjcC8YI9yqSXCCI/bFtpbktq5KuFyuE1kYYO/H5k2W5QGafv2A2m/Hlr3yVtmt5+OZDsizj6nrJcrXGGMu7zpNlOe+99wF1VbJYLOLgwMR0Vh0Hd2m0LHVs1iu8c1xfX8VgkoQssSQ2wSQSca/v3KGpWy4vlmy3W87Pz9ntdvIcQVgX4AlK9p0+9JGbFvaKiabtmU4m2GhfsokFZLMonJNAkgp7pu96mrZlbiy/9Vu/hXOODz/8UJrmJOPbv/5rvP3Ou8xmc9599z2+8uUvM51O+d6f/Tm73Y7nz59x/uol5+ev2K53NHXDblfig8emSYwvP6CpKqrNllObUozG3L//kK7vKGK633w+jZ+b5eXLl7x69Wr/7L93736sATzb7YaLyzMKx/f5AAEAAElEQVSKYszseE7vRDGwWq9p23YfgiKLGbdP2mrbjvF4LDVSJ+q546hs6ztHVS3p+m4f57xcLveyfe88ysoQJi/yCDvVeCeJdaLkFgW68k7YeUNVFxWpxghjbjQe43wQuLUx5FlGYuU/J5OJcLQaWSC1dSOQaicLtyq+HuccZVVijCHzct1I6l7czsbaaTyeUBQ5eS5R6DLoFNVMXdUCxO56al3vuaVt2+D6nqqNnNE41BqGODd8KE2aFXHo5faWPhsAA21dE4KwSWBwnyoZvDtH50W1DsPASUXVVoiqKh9rLLmTey+WF2mAJB1ZefXaVhwGssygipLaS5QLQ8x2XTe4zmGayF0ystHP0lyGwDaJLFUZbqdpzle+/FVZIscmpm1rAYbbBB0tFW3borSiKMZ0nXCIjJbELZPKn+naProZ0n1N3vdirx+YZMPwre/EbpNYS5FnzGeixtRqqC8UhwcHUTkpyVdVVcVkRKKFskXHNGltpDf46c8+5PDgSAawy2smkzHWyvc5m04xxkSVWs/l+SXr5Zqu6dhtSzQKgqLIpT4MBGFOFp7xaERZlezKMqoXFaGX56HJMpSxfPrxp8ymc+q64eGbb/FXf/t3mE4KeuDo8AjXt7x4+oSAB5fhmpq2KpnPpvh70nQqq/n6r34Tm+a89ytfY7tdc7W84N133uX+/ft4Ak9fPOPzLx5RNw1OBcpdCVq4htPRmIODBUVesFmvaZqGzz57TNO2aBR9K8E4Rmmmkylt0+J6x2w6pbKGs1cv8H1PkcWU7AC77QpjNNfLK7TSrNdblqs1H336eeRSeZbXVyRWc+f2LU6Pj/n4k49xzvH973+f589fMF/MCcFzfX3FZrumqkq00ZJ0N52ilaLcbHj8+DF/+i+/y+XFFbvtjvfefYf5dMbTx0/EHpSljMYjTo5PmE6nNE3DuChk4e4dQ4K1wguPrxNeELEXbJqYbFpW9O2U6WjENtlIHRkC1oqlVBv2goEQht5Gapm6rvZsvdip4Vy/V9cprUjThMlEvouqrri8uoxJu4rjoxOatmW72cqiq/OgLSZJ8eWOrutZr7d7vqWKy3FRq+i9QlNHTtLgtNnz7rQRPq4euMEBm2gJidHSd3nnOD464WBxyMXFmQz44rlsrZXn22voAWM0SZJw78F92rYTTmBU/mR5xnQyI8+zyM42GJMwmcxpR2u28dozSkKAQoAgRQ/KRnZu20e1UIpROt6LgeClb06i4reP9lfnAntGT+RHSs8ZHTWx7va+J0lziqLAeU8ZE7a7vqNpG0x8jqrXnmXOSXKq0krUvbymkEssaI17TZWlo6tFEj+Jql0TjQvR0aS0JDejYqkvHLy9yv61ZHv2n7nMYgb3V9vJ6+4jB3toKJSGgfElrYS8JxnyyXWP9lFBFxfCXUvXCgzdhZtlhjYa5SLyJkhNauL3P6TqDcO2X+bXLz14skkqh31U2zRNFeV5dv8FX5xfYqNNzkf/u47TgUEOOx5PydKUo8MDQghU9W4PZEWJ57HphMBfNcK9ubq64uT0lLfefpuz83NevHrJYEV7+vwZ3geOj4/3k7jgAr3rYjqPpff9vpggBFznpAhzYf/QtiZBK8VqvaJuJJHMaCuDl65nuy1JbEqamb3sTPoRGZQpY5jPF/RdzypGSXd9T5JlGO/ZlJW8huihTJKEIQYzsRbhOd7QzGRDlsgF1bnYgEoxEXwgT1OM1dRts5dlDxBB5y6i7FXij99+6w1pCusGHeGfo9GEkBU8fPCQzXoFXlgsVhlMhMAGH/AqiNScmF6l9X5wlth0b23ZbregVBysDQ1hlASqwfJoUMHHwwE5cFSUhFux5gUfxEaFyCmtGnRr3c3F+JpCRBptAXnWXRPl02JtMNpSlTu2mzXb7YZduWMymZJl6b5hGpRKaZoynYzJUxsfRpIiGIZiOv591pgoq9UyfIpnnDZxOh8gTxPydARRKfHs5RlN1VJtt3TOScRrIZ7/8Wgk7AAt9s/JaEKSWI4PD2l2NdfnF7SbLfV6RUJHogNhkhN0iN+9JMpgpMhUIFBCLzL7okgpJmPu3LsN1uKMYb2t2G6rCOkOFMYSgqapA3mRMp2NmUwLxkXOYjHGYzAe6vWWfjYiSbRcs9qQ6jj0UwEX4sekJKo5tylZ24n1RQeCDgQlzY+xFu3Zb2ubtiEf5aRFKge5NWSqEPiiF46RGgZPXS+R4joOXr2jqnbgITWWJkgBapQhn0iTPS7GJEWBtpb5bEGeJjy8e5fzF8/502cvuLeYcOv0BLVOSasdZteiek/oWwpteGdxxLLtyKpKHjJZQo88ZFzZRB+1DIeN1oROFFhNK2kjxqh4XqYAccssH5hsMIgD7WgF1hoVetnaIMlteZIg+DexMIYQCJ1DaY3NU1FAWYPKMlSRUm/qva0pT1MJZkCg984FfO8FGG8tY20JvWO1rQi6w/glblexWW5wsXjRrUd5T4dsxl20M7i+pfeBPm7NnfdkiTQLiWcPzPVa4YKETxhjcG2H8pCahOB6Hr94zEl5wKFO+OBwwZt33+DZ99c8ra7ROqanmITeBrA2BkJIMbk/GgYVhPMYLWd6kaesV0s++egj7t69y2QyQWxqPV0nQ+fReBzBywnERkierzJkBGns0jRlPp1JExgbrbZtuV4uGaDZg/3j4uKCV69eMcA6s0wxKlLeun+LUZZRaI13NcYGeldTlhu6rqb3kmLax+emUlYSTPUAKVV4j7AVoyIhTRNGRS7Na99Hu4FYnfresd1t8QGOj48ZjcYcHB7tVXfb7Zaqqvnss884Ojrmb/zN/4DReMSu2vHZZ5/xZ3/2Z2w28meSNOfWrVt84xvfFBl96COnxZBY4ZodHR0wX8xpqlo+n1pUdWevXu6Lbl2IajOL18Kto2O2mx0vnp3R98v9kiMgQ31jQuQkSMqjcz11WUqDWkwIKKq64+R4xKgoGCziAWE4joqRZBMGeQ71vaiCjLH89b/5N3j06BH/6X/6n8m2fL1luyupm46Dg0NOTk751re+yWq14h/+w3/IarVkubxmeXXB6uqS8/MLttsdddPupf6np6f81m/+JlW5Y71aMj84wiY57717G2Mt1+cXWGu5e/f2nlsDsFwu90X+2++8s49Ff/nyOY8ePWIyWXD7zh2qquLFq1dcX1/jvRe1s9aS+uscbdfTNJJWNp3Omc0WdJ18V7/xG7/Bbrfj5z//OZdXl5xfnHFwcMBkMuHs7AxjZOAzwOmTJGE6GZMmliZNuLq6Emv+vsyMnMPKRaVQiqRxBqyxZFnKfHEoyqTeYeKGthuP6XvhTyVJwvJKhl4XFxd0usP3N/aOJEJQm76R7awfA0ESTBMZ9MWLhvlsjo7nrZwHLVmWMRoVtI2oXFwcDuw2a4ExF8We9aajDaKLIPXBqid1T0KejyK0fS3D5XaAyooFGCLPSQ4N4dPFa65zrQTNRKjyMFDqI7NwD76NqIHOORSeLJGE57ZrozWFm0UkYlPxMZBksAMlSQTx24Syqmi6hhAcWhuSvCCxCXle7BvWHSWul0FckRf8+q//Jkki3/dms+Hy8pLJeMpkPKFtZRglTDtRTNR1xXa7lWvA2L1yb+3Wco1GNSwotpstm81G7sNS0rC1UpKqpBT5eExiDYm1ci291kAdHp5grWGzXUXFqSdJRKEgjXKD1tIc23j//On3vsdivmB5vUQrxXw+pRjlZFnCqCgg1gxN3XB1cUW13eFax2a1pi4rDg4WjIsJ8+kElAw8h4XlbieOgeH500S7oDEpq/WGn/7kpxwsDtlstrz3wZd48MYbfPjjH7BZXnN6+xauaXj66afC9+o7+rqkXq84OTrk8OiU5+dnJHnCb/32v83R8SkBLdgG15AXY5Ik4/vf/9d8/ukj/vs/+H1653jn/fcFBG8ti8Mj7t+5x5c/+IDDg0P+6I/+mKdPn/Ljn/wcrRR3bt+ia1quLq5QKOazGeW2wjvP4cEBO5vwiw9/IuettvHvh121kWsKGUA+efKMi8srfvbRJxSjEfP5Qp5Lecbbb73J8dEh3//BD7i6uuL3/+CPCAQOj45w3vHy5QsZPu02TKYzMpuxWCzQSnF9ecFHv/gF/83v/r/Is4KiGPGr3/gGt26d8md/+qd41zOdjDk4POTBg/txIR1YL1diad9uxXlhZR9mlLBXq60woFzvqMpSagYb6BYts8mMK3tNWYmVL01TbKLROuwHniFuDc3AUCq3kWkc9suSm+G1uDmKImc+n3FycsxqvWK5WjKbCYv2/r2H7ModZVXhAzSNA2WxaY4L0HQ9y+Wa0XhEWqSCNol9tdVSkydpgtZBVENBhtyddzd9pn598AQ2NfF9yZCi73pOjo955513+dnPfsr5xSvquqLrJEFv+CwG14+xhjRPeeedd0TtpJFFhNaMipyTk0PGRS6DJyNDtPnimHa94bJusEqRRzadCoPgQZA3gUBoOzCWJNMkWouDJSi8CzIEzzJZfvSOtpW6TwKz5HHgg9RKr23Fo11QrNjj8ZjeeUkkbBqyVhIJrZXnqJTbUosNHD2tNUkmKabaGIwV5I828vwd6r1hadnHpYXWFoXBe8Rx4L3Yxm0q78kHsSSj5fdehCEWeiJDyUR1c+8lmbpuW5q2jVgVHQHt7Jf9IQoyJDm339sf8XF57RxBQd9L2Erb1HR9i4vPcOFRy2LbDwIe7/fqW2sMzhjcL6l2gn8TxZNNURpyk0sTlWiqsqKuatksa8PdO3dEbhwkhi9NBKJorMZogURbI1PDy6trbGKZTcd7n6hANTVNI1DdyXhMlhXM5gu01jx58oRdVcrD1xgCA6vIiTTTGKbTKX3raSuBXaFu/I5ByVROGY0yBhXVS67r4wVk6boebTS3TmUwVm622MTifaB34qMV1saNB9KH6ME1lmI0ZuE9u7KiLCsOj4+izDuP3AW3H2YRpMlUSiaykggQI7pRUSHhompI/luN3quEdND7lAiPgNFV2zEej7A25cH9+xwcijUiSXNOTmZxCAT/6rvf48kXj3j7zbt437O8WmIPDkmswB6N0vtGwne9pGDJkxUdwXMDX8D5GwCvFGpBmkql5BBwDpyXaa4SNknwgabpMFqRpQP3Kl65Su/Te3rcXnUkf1YUCV3XQYw5F+WVWAKtiZsx58UD7np0Yjg4PmTUTknznCTLmB8sSGzC5dUV26rEK+hcLwmAXU9wjtYBQTgpwjoQhYcVNBMhBDarNSiBbGotsHTXB1rvSPMR1ljGo4Leiay1ixuKQdougEVhoGAVs6MDptMpp7dO6Tzk4z/BoHBdzzg3jBLNJJXUIK2MyD13a6wC69g/WLI8iZ+/QbUdF4++wBuDT5II3e44ODkly3K869DaMjs9ZDQeUxQjdtsdF69eERAfcrvdUmiNtgFlkQ2FEm6T1IMqplI5siQBZehVT9t01FVHalIKMxJPuQ84m4JJGI+mMdmwxlhNahISLeq3rmlxfUduhGbl4/WjrYD1XZS9aWtQVkOEl/quZ3m1ol2u6c8uybQl02KLUVqjE3kI/2y6kICDOw9I5yO6YkpQFl1M0QtRTfSbFbge37V0KtB5x66qWJabG4lp06N89KVH1aYk58kD31gd05fkGlNaY7SoBUWVM6j5XJQCB7EF2Zv0n+A8rm0j3yt6vyPXTGvNKM9JbSVFuusJvWY+n0NQmEx4Z23T0hnh9IU+QO8JSqCvdVdjAtxdHItlrm7p65qyLnFO7nHdOwFKKhc3cnHbruX+1BoSa7BeCxjSQx/krDT74WQg9C3aG5IQ/ew4aZyShGXX8pNXz7idGE5mC37t4B5TnfK527IsK0rjaNqOXVOTjnOxvcS/QwbQiuN4Tusko6krrFWiuLm6pG1qlApkeUYxLkTplCTkRRY5OCVZmmGsieyiFqVkgVGMxoQAFxcXUnzG9CmlNePx+Ia11XXsyhKbJTJIjRyIsVbkiYWml4IoE5XtnjloTLSweBIULgRqPE3Xsd2t9wVJ1zn63kclRiAojVaWPBuL4sF5ilxA0m++8xbT+Yy6c6C02I2QlLS2bajrhsXBAV3b88UXj/ni0WP+y//iv+T01ilf/9VvsNnscL1EtC/mB9y6dZuTkxOClxTX7XYd7eINeZ5z+/Ztjg6PGI/HXMfnXZGPJTW175Hdi2O12lCVNbPpjCLPuX10G01CU5VoY2jHoz23wvcdQ/UYkCFmYgzHh9LMnZ2dcXSyYJFOafoO6yzT+RQQq6MLjmyUCcepqiUYw2qurs6ZTEbUuw2JhnfeeoPVas311ZKzl8/5kz/8AxYHC2yS8MM//x5lVfLs2TNhp1Qlvu+YjEbM3n4HZQyTyQxrU/JU4PRpkjAZTTg6PuHO3XscHR+TJeleidF0LZ9+/rko1FTg6upKFKDxDPnpT38aG9st2lju33/IwfERk6kEUvS9BBk0jQz4hJPk9s8UpTRJmsliYz9c8Xzx+LE0RFpzenrKnbu394pzayXxraxKlFJkRc6uKtmsl0wmU0ajMffu3pdmKtwUtNvtlhcvXmC0JUszptlMUu2uLmO6lBTly6s1aZbiJzJcy9IC13l835LYDDtKGd2f0vcdZV1JtxAikFprej8sN1wsyl0sxkUdOGx1cWLR11qTZRIxv16vqes61rMaS1Rda0E1OO+oW7sfHgckcGL4bNJUFDur1TqqHSUFOM/zAWMpKv/I6yAEiLy+vu/2HCXZ2Iv9cEjjVEqTFYWoqLXeK7xkKaVlURqC1K1x8Wms8K4GAK2LHJk2Kqm0VnTlTqDulSw+79wWS3DTihJDYejanrqqCR7SNJPUzKpms9lFNWPGZKIxOuPgYMF8Ieqdvu/270uG+C2Lo7kA4Stho1XrStRxQVKOrU1IkkwsMbGevGnUROmXZRlvvyXBLs9fvMBFhookkMnn2rYty+UK7x2joojWGIHEz2azOKRSjKZT2qgUSZOU7XYTlyU9RZGRpuIeGOrP8XjM3dt32W02XJ2dxe9jSDYN0YUhybVihxHmjYtnbpKmZNMpOrEUyZj54SmHh3fJRyP+6T//fb781Q946+03+BX7TZpqR9isKZuawlqUMaTGUCQpvijY9IouwJd/9euc3r2LnRSQWRKdsb2+4urlSz757BFPnj3no08+YrPdcOv0lPl8zrsP3+H87Jwf/fCHJMFyOD/gk08/w5hH/LN/9k8kkKLrydKE7fKCzfKMTz/6CVUlyo9f+erXOVwccn0hqto3Hj5gOptx//4Dzs4ueHV2Ee9DxXK5Yrfb8ezFC+qm5ejogMRaskRRZJY8T+ldS1WX9K5nU5YYq2KicE/TVvShp3ctAVlCamUwyjIuJty/+5A7t+9zcnyb6WzCeDzi7OKMzXbNrtrhgmM8GQvzr5UwgqapqSth2nV9H3s0UYv3bY1VDqc9oFFGUTWSmnd6ekCepKyXK66vr7m4uuLW7VPhDls5d6qqZLfdUu52NLWoJo3W5FlGU7nXFE9S+2mlBY4/KpjNZWm13myiCkqzKyvatgf9HGMNRycnewfKarujdYGykiFNYpP9ot35QB8cKijSmJLpnEdFRqD003LPKMD3ku44nkzQiqiKFXWLMZBmltF4xIcffsiPfvRjXrx4tk8ZD0EwO4OUJkA8v2QBXG53tG1HNp/s+Wp1U7FcX3F8eEJQHpPkmMSz3VXsdhWKaIOLLCVHiIygWAurQJInaKXpQk/re9rQoxJFOkpiSG5AmwSTJBiboF0v1m7f0/eOrMj2akjvvaR7R/uePDsbTCLq4y4ua9KsIMuyvZI6eLGPu76n6SQxta7qfQ0YYD9TsImNfYahd/IsSpLBxRGVoNqikAWi6z195/Y9lCxxYr+phoRSAYprrW8W1eo1dZES7pIj8sdCHLwhCaUmikVCdImp2Dt453BK7Z+x+HgGW0ueF4zGY7EzKyK7VhaiQFT5xcTPXkJbnObmNf0lv37pwZM2Bm0UeZ6QJJYsly/K78oI6jYcLA4wxrBaXaOQlBod44Ql5tMS4kRws92S5xmHhwdoLRYtYyxaGapKHrraWIo85+DokO12w9PnT+lcT+d6rBoghzKRabuOVClG4xGt6nFduAFt4WPUrWyRlB7iYHUEn4kk3FhD7zpsfOA751ivVhHAdgPt1Cbsm0wIe3WPViIRnRC4uDinrirG0ykoTZKkGOPxvpXX5GQ7NfCTZKtr9huhAV43+MmUEsn2AFIeihhtjFDvvReYpQ9idxyNOT4+Zjqd0/eONJPoawE2tnz80cf88M+/z6vnt8SP37S4mRMivh4uVrFPqD4Cogcpdxw8SUqAwkeVhzay6XI4+shK0ErtITbRmAbxs+y9A6vROmHgqAzDp8HhJtLvKLLWikQn9NH/Kld5iINPGShqZKvR9Y62FUuQMorJdErmnEzljSEfFQQf2JY72ijvHqSLwbkIV41bRaVi0prcnGi/n6jXdQ3BiwXP6Ciphz540giBztIUHZlO+yl6HJgORRdKDq9iMmZ6sODew4e8eHFGlhcwWGqUIbNWuGlWJuUtisojg6cAJkToaBIjMeMWfHV+RtAWn2W03tP4AEdHWKNxTr676XxBURRkScr6+ponT55Imlrr6KuaTMlmROmwl+a64PbyUN/3uK4nKLFBOQQo2LU9qVOkOt3D7YjQ1CItZEjdmfhMC3tJrY+8EK/TqICT1lsZuS+cD2grhboyYjcN8UDdlTt2nWfbifpLuRh1rRSmEB5HkYw4OTnlq9/8JmqU0OoEMoVKcoKRlLceoKnxfUePqF6aGCBglUYHRRrj2JU1EiUdBomrnGFameE2FstGvMpvrFzxqo/X/LDp0Gg8MrAN3uPowXt0fB3SwPi9PdRoHR8o0oBMiwnWJLQ6oLzfBxPsVYWD1DZAX7UopTmYHUZb5QrXtlRdQ98Hufbj9l0rkTp3jch591JtJYNPlGy9XFRpaohncQSAO/kcjE7kLIvPvWAMpetZra+ZVCfc7z1vjw/JVcLjq0+oupY20TKw9dG+YU2EiIq1GG2YTSNk00oqYtfVeO/YbtZRyRSwSUKapTEQw8aACLHbEFlNLqa3Omf3PvoAbDabvcUuH432P8dYi4u266qtMYnECduYNDICcm1EUakl4Q/YFwZaa2xiZCuLpLFKQ+civJu47VNx8B2vZ22xJiHLRiIyd4HFbM5sNuONN9/k8PgIZdPIpcmom4blas12K6qDkR/Rd46PP/qEq+trLi7+hPsP7vPgjYdUZUUIitFozHg8ZjKeUOQF1qa0upP7DbGvp4koScfjMXmeC5BWRUVqPMuDh75z+M5Rq4bEpFhtyfMRfStSb+XlOezieR28219DKqpptdHMJlPKXcl6vWa2GMuZEyQcIB+NIXhWqwqUJ8tTmraVZC4jUvntbsNqdU1dliiCpNEmCdYYNuslVxcXPHjjIUmS8KMf/YC2bZlMJEG161o5i/Ocg+MTRpMpp6d3yfOC2WhEVVY8e/oUm6ZkRc5svqAYFSiv9ururus4vziLdq0mwmDdHh3w+MkTkpgap1AcHsrQKc1SGd54T7Eq9laleArtLViDytjG5LAkTfF1w8XFpZw5SjGbzzg6OtynpIWYHuyibF8ZTVPWrK4uSWzKbDpnPo9pOF4Gn8Jm1Lx88TJa8FMm46nYNF+eUVUlSVqIAq+S6zhJU6xJSEwSwxQC1iSYxJIXBXVd0fZNfJ2iOlRKEVwcxsctrrzRG/C+qOHCfugkw7Rkr6wZFAiDLRk3qKYtyql9ZLiPQQ6BaJHWBmsSQvDsqm1UtknNliRWkhljAzqwNwiynHGup+37uEBU+wWei4NrVKyRowpeIMINLobbGG3ouzK+llgneYfSsm3XIbJHRbZAG9+j0pa2a2nqJg7JpA7K84LVaruvyfpOmJVKizqwaRoAmqbFJjI4tzZlPLJMZ3PmiwOyWtSWEuogzbhzPePpiM16zfV1YLleUdYlbSeqEbXVWJtQFJLIqmINvQfoxveXJAlHR0fsdjsuLi7oQ6BzjiyVBrEPci5XcTg6mUwY+FhZlsUlrzSEk8mEtuvlzwBNU9N1nZz1riVNEqpo25/PF+RFzu07t9mNRtjg9/yruqlou1aUY03NarXaK15lcZDI9WshKUYkec4kn5LalIcPJrx49Yqf/PRn3Hl4j2w85sH0DULX8ujHP4zhB5IWmGhNZi0+zdi6Dk/g7hsPuPvgISoxkvZGEJvW2QU//uGP+MEPf8Tj589wwfN3/85/yMnxLW4dnrC5WnH+8oyT4xOqqtrbiT788KdcnJ/z8P4DEgNtvWO9XnF2/orlaklV1Ty8d5/FbEq5q9FKcXiwYHFwyOnpKevNdn/eaK0pq4r1ZsPV9RKUYj6fyxJWBVKrSa3Gu46ma+h7UWpkeRqHlk6UFr7D+R6CFxSFMiQqIbEp8+mCxfyQw4Nj5gcyeNpsNzJIbiTJNisybGJxrqeKQ88+poK5/WATQNQurgffazCSvDg4S7IsJbGWqizZbXdsttuoKjZoI+dL1zVyHbUtXdOKyikEcfjE2l7ssXK2iILS7IHuIX5/YpdTNG0rPchSMZ5MuHXrtqAQOo+Oym7n/H4oYI2lCxKi45B60Op43ngPSmz5EsQgPQDIwtHGZxZxgdO7TmoWrfbg8c8/f8QXjx4znY6jfV/OOrENmjh4EoUl8T22TUNTtzCb7F9H17WU1VZUnkpSCo311E1HXbcM4VhBKbwiYjikHhYlO5hE0C998HLfBwdGiY039vfKyPms439CwAfonWcUkR1DuFNZlsP6Ch/FACZJ9ylwfe+waUaaZXtrsLilBFHR9S1t37GLA/3EWAYJqtQnMXBLG1wnzgJjLNoMg8CBmawJQcVaPfZQDP1+7PmH/kDW7jIP4AYuPgwGZAgltkodny1Df/o6xmj/swcllfdxdsG+55ZhqcWmCVmeSf8fv+sBrTH89ft6PqqvvAiOf6lfv/Tgabu+pigKbh0f4oOjbVoG4PTdu/eYTiZkaR6Li2TPLSirks1qw+HigCyztE4KSRN6+rrn5dMvZEsQQcnypTnwjvPzc8aTCQ/eeAhKQI39bktb14xHBePxhC9/8B4+BH74gx/R1Q3bzqN1Sp6OCDGpKvgEh8ErhVaButqRGk9T5yRGkySarm1o6kCWKxJj4sUgSpYklTSUpqkkNnMs/Ce0FAo+KDQe5UqyVJOnI3a7FOcaSSFQgfFoIt7lCFRTKJnGD75+FNp4tI6MJDzOS1pM8DEfKN6QffDxC5bCy2hFajPWzYaqLFlvaibjiuMjAZw/ffKCJ1885osvHiHyCc9nH3/IZn1BtStIzJR7d25xenJCksp2P9HCXem8QIDF0y+e4k21kwFStKBoE+WEoUMbjU0sB6OFTIbbhmA1vdWozkMfcPFGGI/G4kfW0AdF1XYYpQQwHq2HOrIO8MlePmiVFfuW94SgWCwWWGtYbTYyzAqQWhttHJbOBYwWJdn5yzMZ/HWOo6Mj3n77HY6PTpiNZzTbklY1HBwtUATOXjyXgk4NPBktSXIqUIxzJvMJvW9om5rlcikg1IMjslFONs5pG4Ebn11f0/U9xaRAGcNoNsKYjCTJOZoccXJ4wuhkQTrKcXGbp50mTwsOj0+5OnvJxdU5s2QKSSHWM6+p216KJytRpkYptPcor2lcT9Ca2XRB8D1uvSPJMw7GBXXQ1AG25Zat95zM5yIV9eA7T113fPLJF/yL3/sX8dD13DGB2SwBIwqXVJsoD9U0fSvnQdCkSYrNMoHIltI8hsiBV5qYcqhoSwEeLutL2SbnKWkm23nXOpxrxaZgNUE70I7UgHZQu7iN1hrd+z3MkWS4RyzJyDJykDgZBBIC1sqEp6pKguvoQ8lufcXLzz/hWdfQtxXTkSSNaC12hzRNUXGw21mLmU2ZBUerNU1dy6CCG1YTcVuRZjlZke0jaZ2TyHiTRoUjIeLlbhrFwTHWKFEx9SpH+5a8b9AJOBMgTVBZRujaONiSgV3dSwS49oq6c9SqxgWD1bKVzpOE+7dOmGcZybig325x/1/W/uzpsiw984R+a609nvkbffYID48hJ+WgeagqdQ3Wpu6auimsKRqavsAaaCiugOa+L+APKGhoM8yaCwwzLhgM2opWIUFVl0rKkpRKKVMZOcXk7hHu/s1n3GcPa+DiXXt/rsKwSsz4Um6piHQ/fs4+e6/1rvd9nt/Tbmk9KGV4dHhIqRLUzlLvKs7PL6KaStL9TAh0TqbbphCWUGocOkASFJ2z2NCB6pM2pXkiiSBy+HXeSzR3HxufeHycugegi4epLMk4u7hks605Pjzi/XLOlw9PuVKW9PgQ6wObXSMDkDylrirauqEJApY0mahu27bFtg1tXUujMMu4Xi8Zr+akOiVVGVcX1ywO5rz7zlPGZcmkHLFcrdjttri2ZVft2G5XNK3D+5LUJMzGI1GPdR0OmZzV3pEEgzIpQYNWOb5TNLuOVjuUUaRlisk1aTGKhQ50HbSdl1/W01pRM10vN7TW0aFJ85y7996m3tfstrvBNn54cMioLHn69KkonLKM7WbDxfkF1ntW2y3f/vYficJ4uaLpOupGWINdZxnyFOO5z8UJ5ng2oelq/unv/i6nd+7wlS+9J1YDk/Cf/1//L7x+/ZqmacjznHfffcr9u3d57+m7bNdbvnjxBVeXN9Rtw8XFGXVd07UNfRx8sBbfNkMBrZzHth2vXr5kv98zmy9EMdg66qZhXzdMZgsm0ykPHr3N6d0H1DbQBhgdLDg2mnw65tH9+5weH5NmYn/e1Xt55vOcIskpyzFJeoMLKffve+aLijIvsNby8aefsdvtePb8BZPJlLefPKGqKpq25c6dUybTCb/+l36NNBGexL7ac3NzLYrvqpLDuRYlzH6/w9sZu13F+dWlWLzGYz5/8YKmrplMZhRZzsFiyna34Uc/+JDJdML9h/fZVbvYHLN4H0giO6HYZHHIA1fLKz59/nywZxwujjg6OObs7IwQYDKeMpseMJ8dcnOz5Mc/+DGHh4fkecFmtyUQmIzHg0XAu8B6teHlq1csl0tG4xFpkjKezEiThFE2Aquo84597Tk7v+H6ZoNSwsMMcdAl6ql7JGlGlubcv/eA2XxGXVlWq5UoCYuSb/zie3gvjVQf09SKySTavVIBc78+E9ZE08qhPtXxQCX2fBS4Vlgq1lphPDpRPHkP1a5CEvoOMCFg95LuhHUczhfMFzM667HWc3l1KfwiJ+qxumnJ84LZfCKDIeejMgPatiYAaZqLUifIFFrHetER2EdWVp7lxKMErXM0XTso2tNE1mzvxTbqo+031N0wcFMocp1gQiABJiNRAHZdizaZfHedI1gn1i4fBKqNJCmmiTTwVsslq9WKIjaZlqsb9GbFrtoIXH1xjN9bdrsq3n8NJ3eOmM9nHJ9KeMK/+PYfsVquuTq7Zn4wZb6YRisgYgXUinGMt5/PZsxnM95+8g6PHj3GOgGtbzdbrq5u6NmGaSb7fZZlZGk6QI47a1mt1/zBt79NWZYcHB6wvLlhuV4yO1iwmM84Pz+jaxomo7Go1ZJ0sNuIhW83qNPOX19hkoQP3n0v1tztcEA8OTlhNpvStU1Uqch/6qamdS0YuL6+4ubmehgS2q7DaM3D+w9FvZXnZGlGluV0Ue2fjGeYNGU0LhiPRzx4cI/RYkRHx09++mN+8tFP+Pf/vX+Xt996h9//3d/m8vMXWFeR6ZzUBmyQhODVzTlX2x0Hn57S7Gv+cDKjqmo+/P4P2a03bK5vaJsG5S1ffvqEsiyZz8eA5bPnH3Nx9Zo0Ubx89YJ1tebp03c5PDzkt37r38B2LQGBBReZYbVacnJ+zueff8H19Q3zgyPG4wk3VzfsdzuWH92QZRkf/uB7XJyfc35+zle//nXu3r3D+dlrVHCYWN8liRbrdZZwcXHBdrNmMh0zHo/4O3/rb2KM4aOPP+LjTz7i937/v6RzVtYC53Ct5fr6hqZuWC1X7LZbzl+9Jk1T/u7f/btstkvqumI6m9K2Df/iD7+Nd44H9+4yn885PT2l3u9Zr9fMpzOKUY4KfXMcCI4kWlfTNMekeVSdS8KgiefBotCkWc9DC5hE9kaCRpFgtCTerVYr/tE/+m1msymLxVyS2RJIck2SKpqmInhYrZdcL685uzrn4OCQ+UhcPCjFKCuGhkvbNlxcXpIYRZoo7t054e7xKe/cv4dWcHx6CMB+WRGSBJPnpKkmN2Bsg2r26FxjCOQhJUPsrnXbcHmzZFM1TFpPE2sN33p842hri+ukuVHtaq6uVhws5swmE0YjUYz2dq6m2+BdTZEL2sM7z2xSYAuBmgcHqc7JTE6WFGRZSlpIjdd2HhsabLDCitMyeJRBa0yuI2AQAYazYhuUIIGWYD2hdYTWDew7giYEHZtDFudblPJkWaDtKjrXYDt5becDJk0ZT6YYnbCrKrJSghKm4wnT8ZRqv8fWDW21H5LZDZoiy1EmJXeBLBmLaMV2OBuVvy6mBHqNIcUr4VoRPCooEQtojQ8W13M8CXglKatZKuw8rQQrErySgW9Ur7a2wwdP48TOmaIwHkGCuGil85H3GnE5bSuDS0U/2DfR7SW/tEnQMbVRm0RKQevQSnhUTis6rQhGoxLBliilyGNPQGmDzizG674d8TP9/MyNJ+8sIU5oQowADBGUXZYFo/E4sjyisgAwsQvr4oIsUoDeqy2Wm6begwpkeSppal5aZlorGicd8aLIcV6SK5q2FnWU1mRpGkGDkX3hRIGhk4BJI3hYjqhRXRSVBr3SxHvpnhpF13i8dXhnBp+pjjC4NDHoGNEcrMO5dPCREj+tyNgkwjlJjEyuk0SUP11kHsWEGBHUxS7lm4oXFbhtZsaTaJQMR3EPfeTtIJsgiAEjgoNDCDR1jVaJJK+lGW3bsFmt+OLz52gV4nVwTMcleZ6SpUmEfSY4f5vW0MugTSYWSUmRk252UEq4UEq6nPL5+2hMie1V3qOtRWmP0gJID8oPHdjRRAoHaztMVEuoaDfqO7kq2hlVbKUGoqXJaJSS95plaYS1h2EKqo1078UCaIYisv/v7XbLbCZJTWVZRhioeIwlxUUmAM7K9QoqNk2CXH/x9+qY4CWqIuflbkNLRLWNsndrZVPVcToQTN9QE2ZNkRaS5DPKxZEbJSBaG/KyBKNoOnkWRGYvNi7nHcFbTLT1arwYMYOwpnxcBRSgvMMET0rAKYUFWifTWJ30U/E0Nuhgt6t4+eoMgihc7pwuSIpc5DgqPm/xueo5HImWa43R0pSKoL3+wetZFCgBcndtx77ay5qiZeEDTfAObH+PD/OJXgsXpz8GE3oxnSjL+o6lMgaTxGaUMgQZBJMmoixsaqKf2uO7lnq7oa0r9tUW2g4bAe8SGDAVW4m3ElUeJbN5muK6TpRwOq5tEQQoKo+UvChFoRWk2eWjtFop/iI0MD63QwNABZw8XtJUC6IaGnzeupfjDhhFfJwW6jjREIVJtMS1HanSJFkmqXOJHBQJfVxrIEszcpXSrdZ0TSOcDKVEURTXJRWfP3RUaZqA8qDiZ5Fhm6xXsV1MiNZgpU3seathn3DxMKnpI2B9VLtpCZFoOo4nc8al4bQYYxJHWxS0HlxIYiNT+nUuhAGSKO8lRLWSHOJtJxa9ummpWxma6KBkuh/g4OCA2WTKwbRP67LCobGd3LexAatUjME2RpSRcdIUv/i+uyrNtKhuCdqDV/jcxLVb2EMyQeINz3+EZEb5svOBJCsoihEHiyM2ZiMFVGSe9Hw4GfpIuqbWfYHXQduyq/c0bcvLszNJ+NtVw/piEmGC9Wqr6VRUKklqcM7y6uUX5HmGVk8iFD/w+YvnAyB2MV/w7tN34hTPiHy96aj3NVWzZ7vd0TS1DJq0lhRZLeB8HQ/lfcFWVVWUvacQhz79/ZmmKXlZUhQlaZbTdlHaTSDNM2Z6HsMiRqAsIbhB2WaiiiDL5TqWo5b53MZIdSQVcLViu92x21VMJlMWi4U8p/sqQvsNd+7cocgL2q5ju9lGtYqOXC9Rr263m5hGBlUlB3kfPCZNWK9WrNdrqmpPWZTMJiXeOrbrjVgB4vMitZaPiiND0J6WPglT0VpP3cY6zHsmo2m0EuiBVaiU2Ljs+QU3N0tA4PkeL5wGHy3KQcf32wzvV/bMlLIoSWNzME1SsqzAe6jrVjABCLxYFNYyVZ7NZnENl0mt0QlZXpDlDdtdBUqLRTBGUNte0RbXFLTUE03X4DorVmJ9W/cQZMjVlz8h3j/9PdQr0nsrlbMWS1Tj+k5UNoRY57hov7gFsvdq0L5+GeqwyKkTrosMxFQcdvRJpX091idPCjhWxdrtjVhspAaQusZFB6moTp2XyXcIEvOto4I1aHEDKAXeyfNqtCEo2ecF3xAn61pUyWmakKU5aZqTJNkwDJCGs6ezjdQiwQ3T7F5ttFjMOThckGWGzoJzLW2zZ7vZ0HUV6/UVaSYsxqaT9Najo2OxvClNkRei/h+N0FpRVXuSJGW7rSKTRu52o29tIH0d4axYZJbLJYuDA+7cvSu1VBxKJ2kWk5eaqCzr056IKrIQgyWEr1LvG8pSc/fkDs4LxFrHJKj5fMF8Pqfe7yJYVwZlTdPSdtIAbtsm2hRjwpQPMXFMkq5HYwHjp2nGbldJkp8VF0SbNKSpwVoZEqVGcfbqguubJfuqFg6VScBEa3rwBCv3YIhNsrraUe927DYbzl695Pp6yZ/88R9h2w7fWeaTCeNyxHwyZjydSPKg6odEjiTRwjnqWu7eu8d8Nufw6BBFoO0aeR5MDPsA9k0Lykj4UJICct9vNmuUUmy3K5Y316yWNxA8RS4hR721GBVhw5HP1XVt5IA50jTh9OSYNMtZrVecX57JecjJc+atKNz7FLrV8oab62s+/fRjHtx/wP137xJCRwiO2WxK02ZD3RBCGIJEepWKsHdStJd6NUkzgrfo0MU6TEeXSRqVJb3TRKGNPC/9WVXpEF+3twjKM991HdfX12gj+ycwhFzFA9mgCm27NioZ/QCBVoohnd1HFmZd78kyCdUpzJgkzSBM0UpU3T7up8aYgamcZWlMk/ODmlX3YBYlFux9XdNaSUaXqk/O8t6FwdWjopOga21MnkxJYlBCiwxPre3iQLE/giqyLBkajxJ+IMqe/hnVWgkTMLLoPG+sj335BLfDMIYS4DaQBxX/JcOQVr3xn6Fm8A7RCsj/Lw17F/sV8t0kaUqvDpb7QJpbolqTGtpbSWDXQcfmjyYhuhe8whmHU2Kv7lVIvcUXelZTzzuWdPr+3uyVRoNSSf9LyqQBiB6FSqgBFO+Djyp/NXznvKFyJn73twRrBmXZGw0G+b39vdr/M+r2NeIZL3D7Z/tP1v/40H9zaji//Cw/P3Pjab5YEELgxYsX0pUMt/LF7bYiRMC47TqW65XIp2PqSVEUNM2erm1iOo1cQGMMo/FYph5Zznazo6r2zOdzynLEycGI+XzOndMjnDvgYDHjk08+oa1rijTHKMPZq/Mox5fD03g8wVmwTYsTkx1ta+PiBInRTMoxRZ6RxelTog1pKjeU+B+9QM/ynMVUOptdZ+X3JgblPb7rSCLQ0/neDiMLUwgwGk1QynB9fQ3shlhd74O8RpJKMFOAgCN4HSN5NcRDdpLowVIhjbJbeVzv4VXx33VNy2Q8ZjKZsF7t2G6W/Kf/6f+Sk5MTfuEXfhGTWB4/OqFPCfqVX/om08mU5fKK7XbLRz/5CNe1jIuS9XJJlmhCkDQxrQLgRKngPTpNBGzmWlx8t33yyH4vk+YuRgwnWYqyDhopWIP3FOMx49GYb3zzGxDg7PVriixjPhmxvL5kvbyRjTVK+wB06A+rjizLyfI0wnGlcdU2Dc2+FjsRgSwXOOHx8TGnp6f84Ac/YLlc8vDBg6jEa8TPf/++MAEUMfFkTWY0eZZycHyAd5Z6LYDeprPEviibbUUIsK8bAor5nVNMUNS1xI2qS0fwogq6uzggSRJGo4K6a3l1dYM2GS7zVNWWbbXGbzSZLzmcH1OkGda3BOPJJjk6TZBwq8gb8B3KeqhbjNKMspHcF7ZP1EuESeQd7W6NAo4Pp3gF+3rLPmj2GPLTU9LFIdP5nOlozKMHj0V2HBzj2Zgsz2JTSxa9trMENEFpkf8GYR5JfHJKiN7ixnXCZombs0kMDk/dNWgvm4TrHLa1ca+Qg6dSivF4JKoyo2kbS+dFSZUow956aC2b9Z5iBKM0EwiebQlB0iHK+SFFokl9lM56OzQjbScLdmoSlIHUJJRZwtgEDucTiuMFsR8lKWSdx7lOVA6NFcm/8mxqiRUPCDDQYeUAEBM/RuMRk9mU6XzOKC9JteH5589vgbxx4xfpsJUUQkBpaXL64OTaeeFgpCY2zp0idA4bJ0/BOox2GO8plKFIAsXIkKYFM5PTEbAh0FpPgzAxytEYdI6ycvDMVUqiE1QHrWu5uDnDti1ZkQpXKioFgovqp3iw9IBTGqsCexViw68n0IGKLDttElAKZ2XatW96S5A0ZrQCFZt6LpU9JGlaGqBViqvNiqAUX398j2tt+T989D1uqoqbzZ7D+Zw7J0cEF9frVMIOfvTRx1jnGI0kOTXLCrrWsbrZUlcdXetpG0mjwsNivuCXf/lX8c7S1jXLzZptVcnn9JCmhahPlEb5gGsbfA/9TQw6SZiVJTpN2TcdGkeqA0n/fcbkRXSBR7Fab8hMQpYkWO8xaY4Hmq6l3otd+q2332Y2X/DBV7+BNobOWc7Oz3n5xRfDnlxXkqb2u7/7Ozhr0USWRFHStWIBuHPnhIPJiLaess9TdLRoq/7QZzTj8Ygsz+VArxTGd1jbsNpu2e5u+PjjH3F4eMR0Nqeq1ozKnNevX3N4MOO3futvsNvu+INv/x5/9md/yne+8x3efvsdFocHXKoLvPXsq4rxeMyDtx5SFDmjomC7EXWu9R7tHVZBFzxVZBWV4zGTImO6mLPvGlara9bra1bLBa9ffcGzzz7jB9/7AQeLBY8fPaLZN5y3r8kKGRJV1Zaus1R1zWQ6w6uEYjLm6eEx6/WaXVXx0Uc/Zb3bcvbqLKa4OaaTCW89fsyPfvxjzl6vubm8wnvPd//4O0PDfb3e8PLVS/qSa7vd0batrHXGsFgcxEN9YDafkxYJh6eHnNw95vnz5+zXO35u9j5JrpjOxhgF66sr8izjZDKXtcd6prMpWmvZT5TUA84HuiLQ1A1X2x0XL1+hlGIym5EXBc63LNc3fPbsM66urrnZ3nC9uURrzTvvvINOM86vzuS9a0VZjpiMxxRlwZ38lKdPnzKZTKUpF5ln2oykPttu2e0qFotDRqOSLHuAtY7Lywu6ruPm+irypSwvv/h8GPqAIjGK7WbNP/l//g7GGLI8FZ5kmlCs8qiAk2bLYjLBWoHHay0Bln1x7K2kn03GY3zw7HY7IEQArthftQ4kmeJ6eUmfcSJhAi2vLl4j0eB+wBIIw7PFaM0oTwmuY3V9MTxneSbx4/3r13VNkgq70Xd+SCdKlcZERXvXSW0UtMYYxXhcSvpS8Og4LFQmQSmPt3ZIOuoPP1kqau22bgiEmEpqyLOUtm3ZbnakaYExOc7usdZhrRxeXBx4rTdih9NG7GdJkoi6JzimkxTnPGfnV2htmM4m/NIv/SbvvfsOTVvRdS3Lm0tmZc7/8L//36VtOpbXG7773e/w/e/9KWmeo42kNZsk4cGDh1hrWd0sub645Aff/z6jckRRFnzpgy9x+PAQ5TS7quLm5oamrqm2UhfnRT40TKtNRV3XrLYbNDKs0MGgSLEO6sby/PPXbNZr7t+7h7Oe9epGWGbjCWWRkaQJm80O6xxvv/0ep6en/OZv/g1en53xO7/7O4BDqQ7vz7m6XLHbbgaeH4iqrt6t2dxckCQJJyenAy9ou5W00j6KPNtsaduWum6o9jVN27GqdrS2w7aNDIOCwJKTJGGz29N0ln/2T/4Zy6sb/vW//fdYXV/yv/1P/iGbes9udY0yCehEVMTOUqSGTMPZi2e8fPma7//pd7lzcsx7777D0eEBs+mUpvPs2oZtuyefjvnGN77Js0/EMtXajtZZNqsVr4GLV68geB4/fojWmtY2zOdzvvKVr/Do4WP2+5qyLOmC5+D0hHIqNuaq2rK8uYzDfU1Vi8XuYH5AmuR4r2itvGdjBHY9m0xRIfDkyRMePXzEhx/+kNVqzT/5J/+U5fqGelejjCIxhvVqzeXFJQ/uP8L7QFPtWF5d8sknP+Xs9Us+/eRjslTCCp688w6no5J33nnCzfU1L1+/ZheVjtY5Do+PKCOjpt7tqNuG5XaD0YrpKKcLAd+2ZJMp+WiCyVKwkiTrkMF2591gtTMmDgyDZ7fdslqtuL5Zcu/eXb7187+ItRJDj9JkWR4j6j3T6QLvQ0xJz+gnY3Jej4Oy2KSSVFCDJuCspnGGy+sb9ruG5c05WWZ4fOcO49GYRw8eUhjDJEnAZCTlmPz5c9R2S5LlmCSjc54uiizqphEEiJUG7mgk+05rHXXb0bRSw+Z5TlmUjEZjcS/oJKpuIE1yQgCjG7xT1HsLpGTpiLzcS0MKYR4Ley8KEJSIFrpO6i7nesC1OFxMiDWj1sOguR8qOOdkvfR9KmBGlkW0QVBoF0iVIlUKHSQAS5tEai4XbWFK1KNBBZzrCNaybxpGozGz2ZzRZEKWl8KytZbRZCrv26Q4iOFaHvDoGFgja7YjMbJWl0VOlqWxhyDDQbyEVLV1A5kEZADCh/OONDX4YOlsK7ZFHUiSaCRSLt4fcmbBBUzsySkXBrxEH2QTnEcHyJOMJEtJ0PjUMXEl41FJkafUtaPrGry39CEtogITl5Aaztv9epVhtATbKCfc5s1yJUPLPmRLG/b7mrbt6MN1fpafn53xpDV9fDRR/dFPSnuvs3RWbYyU7PUvvS9dgLsmTpJ6PlOvlrCdpW07mrolTGWqfO/uKYv5gvGojOCvNE73IvPEWrabLdbJDYAR6jze47VD60S4Dx6I9g4BnPcwVz2k7onU05JkWbTaWYJL0CTS4fYOo9MY/+qGL36YaYWe7SJdwKFbHJNV+jjevumoYgNOEvLkdRJjBuXO0PXljS9TRVXU8PfGnxA7rX9BJRTY7jaUo4LOtmijmM4m9MKQ4+MjZtMZ3omdTzr8IU523HADStPex8Ioqp36z9ovEKrvVEdFT4TLBQLaibLCKI1XCqdUvNklBheCqCsIWJsOSrNeZaDMX5xEiBJIx4c8fncR7miMARVj2uN1aduW3a5iX0liiUSPJ7TNmqqqWK2WVNV+mFyHEGKEqkebTD53iA12pQZej3N+YDYppeTw7uW9EJO2Ei2pj1mU2BtEHSLJN6J+6OM7Cy/RlSaCAX1s6adJPCBC34EUxZOXBa7/nPRddO8JShZrowLeifQ/NbED7iyoFKUMiU7+AldC4J0JqcliIXh73/loLeh/2X7C7D2JEf2Ci8szSBpir6aRS9ff9AoVwlBoahUnlkbF6HC5k0SsJNBkkxh0kkZ2VIJKM8rJlKPTE5bLK3bVBtdGBWNnaToX7XX9FMLJPR5kwRZVpYqQ+JhEpMEoaYaEEGibRjY9b+IFkImKD34A36s4eU5HeWzMdaRZyng8YTQSSPs0pnjO1iu01myrSiJZlRqiaENs7AxXKw48enWZV7HpEVdUHcIwZe8hg23bxaJPgO9ei6rN0XOvoqpEGSidSJY9A7vEOVF8trYb+EyS/iGbWvAeHWHuxGmN98TDlBMFixKulwpqYBz0N6jYYHxcy2KhFaddOq5zIlgSPpOP99y+2bOrUk7UKZ1WqLbDNy1NXdOVhbBV4gIZvLDZ5GDX13R6GA7YPumrlvSovMg5uXPK8ckps/lcLHt9rHLdSEqKdTEGuOcUpvE1PT7KuweGXQjDM6m1gEXTLBksiukb8b/9PdAzAXrg99BcFsqmHGAbz3qzYbW8iQWtfGSBm+5ZxUFPnmZAIM/zwbqglQxbUqOxiREOluoh0mGYRBdZGpUsouAospTFg/vxe/ZieQ2OLEspy4I8v+UiyME4GVhCKBWni0bYhhPNaFQOe39nLSZJGY0n5BEM7IN878KS1KRZGp+HgN13eCtsQmdlEquBpm6odjvWyxWjPCVPDcHHOOn4nXRdR13tWa9WZHlHnncSud52wpwMok7y3jMajUApYV+t16zXa5HTex/3KrH7V1VF1zaYCITv1Ug+7uPeWyB+r97RdRL3nefpkByjFCRpwmQiQHhnO4IxKOMJndhRVXwe2qaNa0Uh7BQkQa6JNZfUZnbg3lgn65Ds/WP5fCFENlQegfmSLikKt5RC60FpYa0b1DECgY2R1wqMUUOSWJLMpJ7QMSQg9Gu9JOR4Z8mibVkUvoGuawleOGZpYjBKDSk7Ttv4nIlVVgCzBqNvp7DE5DYdZcj9lLi/DpK2JHdOUaa3aikVUEqUOEprvBVbnnBLegVqECV7HPQNE2jeUDziRQ2tFUar4fX799grUIets6/3tBqU9s7pyBx9c0Iehs/Rr+khvKGm7FUBQd6rs5YkCaIwMSl90A6xXuzVX/1hoA+1IQ5LhBnraIIdlE5FnlEUGavVBdVuy3a9JIzGqOAGIL8EzkiqrzJ6qFmNUjik/m+bVtg7VthRq9UqNgSkQTcZT8RmExmrzb6JnDrzhvpB9gbb2UEB1v+zisyceBCJn0dUeWkmjcQk7UA5UWYpzcXFBVeXl+x2VVTCOrELF7k0nlpZF4wxzCYT9vuaqtozHo/JsogVCGFIOQyhkvs+abAR5t90sl841+GHXx7ftrIOokhQeKW5ODvn2fQZb7/1AHTKnYdvUVc7QlNT7Rt2+5qsGLNYGCbjGUU+YrevcdYzn82ZTmeMRmPyoiTNc1bbJdbVwt0NsgekmRx0EyPAY2stVbVjv99HZIScezbrDRpFkeXsdhV13YjKNIuHWHcLR87zgrZtMG0yKNVUVELIOSnWYUrqvP5sUtc1m82GzWbHzc0y8kPb4QxpjI4DZGFKJalhVJaMRiVlUaCVis0/TdPUXFycU45GJElKXhSxflICOm4lzXMymZDENMze1qZNwmg0xlkZfNqYUGcS4TwOyhJ3ewh/U7GotRamY2yWjkYlx8fHrNcrqmoX91R5/kLPiCXyDftn/V9SnvR3vI7nQ3quJ4ILqPd7GVq6JLpyPA7kl5akMWmLxF9v1OnhjWdJGEY2NuejcCE2vd7sF/Sft19Te66cKN/jn9OislU9WqGvuEJ/vWLggXuj5gt/4ePeLmr0Th81/LsBPzE05m61NrfqoPhuvRvqneBFnUYUvWgjZ1jd//W6f63opIj8Jq1Epeqc+5fW06G8RGjmYfgXKn5nA8dLCesY5FzRhz7oN3ol+l/63kM8UwjOuedExYWeXm8UL0EYjgRyJeJ16c9L/Wv3tXe/b2sVVbmxIabUX+SK9mzA3hUW5JMOfObgZVCSaEMRuVdZlpFoWf9TY273l/9/N576Q3kPOMuKLMaDG6q6ZldVAk7zfojizbNCCgpvh9fJcrGpqUa+9KqqhoJhu95T7RoWs450nvCbf+k3WBwsaLuO5WrJ5UWNs5Ls1NQ1tnODdWA6mYl0VRuM8qhgGU1k4rJcrWmalqpqRPKfFRRZLrDYeChtajl03Dl6yGQypt5VuK7Dde3QlJpOSibjEfV+FzefmDSCi4tVQCm58U2SkCs4PDwcVDvEAl2aHypO4cTKobWiLAuKIgdicybKv2XDvn1m+q4qwUeOPaCgjcR9ZTRZkXNwuBi80KPxiKOTQ/IsIcsM42wkkfSJJssSFospRVYyGZUYrajrijSVAsNbSWFyNsrSrbBNAJR5Y8FUUI5GBB9o91J4eFdjjGFcjtibmi4Wx7vdjj/8w29DELnqKKrLiiwhTxNhwThLmhRid1B6WLyLomA2m1HvBfAn4N3AfDbDes+22om9qap4/tkzgkpYrVaE4AWUbT2vz87YVXucC3z0049omw6FpAyuNzsUUO9zALrWybXSGXlsInmvqaM32iiFzgAvnIkkFeDoZDwhz/L4QHraqqKta2xTgzGkiaLq9txslyzMMUWRk2QJOjUCRVcwSnMKY0iVQjmL7xq8awhapK0hOLpmL83B4Amuk/skS0iMikkUoL0ZmkImkWtcJhm5zuRA3jZY15KXOYfHx0ynY7k/Y6/LOj2kNKgQcLbXusZTsAnUzmFDICvkM7sIQOzT9dIsJ9QWvOPk9BStFfudHPrCGykJsglrAQRrmI5yJlmOzsfozDPWhidf+hLf/Plv8Sff+y6fPvuE/fkNXd1SXS7Zdpa29cJ0MwIqbruWJAj0sWqRqPYMtPOsvcUWOb7MCUmOx3B2JQloh/MxeZYzHh+hgo/FkkFjYppGxr3799HGsN5sSNOUyXwqyRhFwd3TO0wmE7IiZ7lc8v3vfx/vHVmWURQlWVZQbbfsqz3eRhl33IBMYsAqWjSZkuZBpgy5VvjM4L0U/53rWN6suLypubqp2LsNjXfkUUHAuCB4xdnZBeNJR1BTnOvoXGCSFORFyX7d4OqG2nZ0VpozNkrfXSwCbCtFt7Zx06WHGnpMlpJksRERAmWWy0TEi+XJdW5oGsuhiqjikyTIEMSP7jXo1Ag3L8D1zTXVZsP9p49YFCknJsPqhusg0HhcNyja9l1LCHBydCDNYtXLsxW7qqbuWpY3K64urhiNRjx48IAPvvoV7t2/x/xggfOO9spxcXHN8+efc71c0nVdXDNzZpOFsCGyXNJTnGVf72k7S9fI3y3BC6JqHY1KFos5q41AUKezGbPxGBpJFEvzHOsDJsnwQdG0TiZ5xgg8dbvlxRevWW+3PI9K474xK4VRtBgQpLk5lyZnWWQkWmETQ5roaGOWJMeDgznGJORlwXq9ZrlckmhDnkmqn4+Tk3t37/Fv/71/m7ZtWa/XXN/csFqvCXhG4xJjDJPJhO9+97scHR3xc1//OgFZy+t9S7Xdk6eSrPfgwT1CCGw3GzbbLfvdjidPnnD/3n1UYvABrq6vaaxjupiTJAnj8YhttWO727HZboS/U1V4Z7l35w6X5+cYJcy+l5+94Mmje9w9PRaLbWI4PDwgTTRbF9gu11y+vh4semlWkGQZp6enaK05j/fD20+eUtc1v/8H/4Lnz59xcXHOYrEgTVOq3Y40TaMau+Do6IA8Mmp6Ze7NzU0s6tVg9VQKdpsVozxB5YZmv6Gua5y35HnK2289Yr/dsl4u6epAaFuWVze0TSsBKkrx8uw1RVlw/9GDvsJkHw9y9x88oCgLdvs9zXbLarthPB7z/gfvs6/2VPuK5y9esKsqTk7uxPdcUBQFp6d3JDzJ+6iYcbx8dUnXdYxHI9qu5fXrMyajgtOjBQpFWRS8eP4ZVVXxzjvvUBTC/zDGkGcZo1IPdr43h3EhKFSRcnK4GA40k8mE0WjEarWKzKfIp1CiYt5XWzn4l0Vs8Gms64cTPtZTEfydpEMC3Ha7JYTA48ePyWLcdpqmjMcl08mM+WyO0Qnew/f+7Lssb27YbJYowmCb0JErYoxht9tJU9ZZUq2YLqb0SZVBK7xRqJjaLID2QGZkb1R9ym6s9TrbYV03HBi00qRJhk76Ia0hEAMUsLeT5SSRSbtzEuJho+1PG6azeRyYdfGe6wHsch92nWW93uC95/T0lCLPybMElzhCELV/liUsby75+Kctf/wvfo/lzRVHhwtG4zGb1TVda9ls9ixvVqTGIHDeeCgKQbgotofjK0Z5wbaqWK1W/PF3viP74mTOdDLl6TvvDsPjn/zkJ3z68SfS0C8KiRZHM1WGLMvZbATkPp3O8N6zqyoOFoeMRxNM/H4m0zlFUYpST+u4d+bCEdRwfvGa/9X/+j8ZDt3rzZrl6oaTkxMmkwn7nUC3ry+vGI8nfOUrX2a/3bJabsQumubs65r9vmZXyeds2yaq4DtGoxHjsViiiixjMh8PDUtCIHQWHYQT01lHZx0fffhDnn3yKft9xb37d/k7f/+/xX5b8fmz5/zJd7/Lh3/0xzx89D4Hh0e8/c5TtDH8+Q/+nCKb81u/9beGc0CW55AaXr6OqXZvP5RhRRQJ1HXNdD5nfrCgqiquLq8AT5ZnTCaSXvzFs+c868S6t1xv2NcN/8bf+ps8fPyITGV0bct+tyNJDI8ePeTsIsUqz3g8FvxJ07DZbLg4OxPgcpqSFxlGl9T7Pdv1hg///Ac8/+wZZ+cXbDY7Pn/+OQdHc9597+2BueW6jmq7pa335HnB6ekxznd8/etfY7cV2PfFxQXr9ZovXr/CJIb5fM5sumAxWYjtEsXV9Q3Pnj9nPp9LY98LAiUvRkzHI95+8jaXF1e8evma9XrDbl9TRtu6UpJyvtvtxeWSpSgVsK4lSUdkJuX+wwdM5wuyvOTR48e8++57fPrpJ7x69Zq2ddhOLPQBaKJKcretBL6tNEon6EQEElKhGMEapLciBWKTwlmxfuI9ygdRQPrAcrtllKYcjEZcrjZcb7ZUTUvjPfu2pe7a6DiIFsPYSNtXYpn1QVIxsyyNjD6xwlnb0bYNTSMq2/68GgL41qN1QppmkWuWRaGEikNKUXD5OGzRtaGq9tHmJsBtgYALh1FY2rGaUdJQcqFv2sVGXxLB3EZFRpc0SMwbTZy6rodwjK5rMUkM0gku/nmG80qaJaAl0d51olwcjSb0bq22bSEYjAWjZOAjyXBJHPB0+OBIjI64F6lpQcQmWSr8U+ecMEa7jqIoKQqp60ySSJAFYvP3kliFSTQm1RKWZBj41KgQ+Y5G3FEeEmXkvnlz4KLF7ho6S+c8OsuG2lBFta+Pv5JEU44KijzDRGthiE0pb6GzHUkcdvvO4ejI05Q8SZgWJXmesVjMhY+dGFzkS71pOfxX/fzMjaf9vh5UEUkqvn8Iw0FDaZFW9kwGYR0ldMETbN9w0UMXcPBV6mRoaj14cD8WBhOm0wkQ4kR3zXK1YrVc0dbCHgne45QjSeShEG+3FRmZNNppO5GwtV03gP8Iju1uR5KA91MUEgOuo+0gns3j9Cp2EGNXMziP7W679BI12Xc04yEnPnjSmdXD9RvUOYPyqedO9X9L7HjGYjO8ofJRbzSdGN6Tjg+8pCgZI9YYjyRpKRPwQbGvG158/pKTk2MWBwe4oGgtuGYHsUnYPyRFVjCdzYZJgkJu9GDeUC+82XlVouAJSrgUct17v+nt9E0p8E4KlJ5moZAHHYhpZA7bdVglD4sUXLc+a+f7+0zR2U6SpdpWUs+8PIR9kkkafc994SgKKXkQ+3+eTqYsFgecnEj8rEjRxb5XFhKHPZuKnL+q9hRpxqQciYQyuAicV4REk2rNpMgI3tO2ffdalGIDGwAGXkjfHVdabGgmTaj3Nclmw8HiUOxtKBKlSXUSuTfxouswTDhC3/QhRsUSZa4+ECyEOKXSSpFoScnyntgojNMJf2vbDPG+T2MSl4kxpz23QqYaMuXoN0kXWT3OObyWCaSPvK8kSdGmi5OwqHixDpxnOp1RlAXNWPgJPn7HtrPDpEwlAq8qs4Q8SZA8W7FerG3HR69e40djjt95l+y+gK59mnF+fcOLP/i2FMIEitGEsZliggDYH86O0drQ1TWZCsySQJlnjIqMbDwnyQsmx8dY24Fr6NqO5fWO1lkab6mahn3XkSmDyTQPHj6mLApulkth9NhOoIRBs9/XhABpkjEaiRKqrqNVS4nEPE1SXOZogyjt6CfW1uMsOKtwXmGdpqoqRpmirSVFwuYZJk1Y3LmLmgeSE2iCx4bAZDQmzXKyxYQQPNXNDYdeYb1B6ZzMJJjcoENgv9/RVTX7WlQltgtihSMZ1E/WiyrJDEtBTDRTkMRNq0/bq20nzRl6L7qOqK94EItrWQCsLJuk6CGxzytwStGFgFaeZl9ByDhNRzRpx8feiSVRSVNexam+94EQBwGd9Vjn6TqPC2ASxa7aslovmS/mTP2U+WJBXsjB3QcYjSeMpzOmszmjqQCGq90aDeyqPY1uqZIGY6T4aa2wOdrWSjMoyFrYx9q3EZoLwjrRARblmMT0cbsyLS9SaVTKtbdYF+mESTowkobr5aTJ3O8H3guQU5672ykiRL6E7yNvO6q2Q2tD6xy7as++btm3LaZp2e1rJPEvZ7vd8aMf/RiQSelkOuXttw5Z3qzYbnYy5Y+R7N4H6roVW2KWYzsZwpjE4L3j+voG4vQ2TQwHBwcS054mAlN3soflRc7R8VE8NEVVWl5EdYMcwpMkHVICZT1VWI3ch97hLGjv2Dd1vM9kUFaOcyYmQZtUgJpxem+dpWpqdJqIEiaEWC/INDzNMsbjEXfv3gWCDMriRF4bPUj/lVLUdY21HdPJhLquef3qVZy2KlwzgSInN4agDZvVEjcac3RwwE0IXF1cYHIpTCezGc45kkIYJpPFjDTPIDECZM4LvILRdEIxHg3TfGJN4YOopLQ2jEcTDhaHFHkZp5INzorlYbXaRNaIjoV7N9RvaZahtGY8HpNnCT1XUgHzxZzRWAD53nuBWzsBZAtvMRuU6cMzGaRJNB6PkSSrnr3RDgO3ruvou9JGa8qyHPaggaHhZZpuo2JIa0OWZZTlKB40J1xfLWm7jslkJgmTTY3zgV1V07aO1WpLnon66eZmxWazJTjhR0nMtaSoqUgi61WTxKQ6GayKMgti5DUy5Y4SyDiERJJJo/pAEYbnGJSks8ZDypv1nzZ6UBJmiRxYevajJAxJvd3ZFl9DlomqzCQSz900+wh5TlBKhpppYmQPsR1NHcAncU920XYo/KsiSwVBYTSJUpgQcE2DQjMqC9bLFW3XooKkhXgPaDXs4SoOEVyQ5kaSSQKjNpE9ZzuuVzf07JM0S7n74B7j0TjaW2TAOCOQF7mwAZUleAsYUXCmMnTxMeJ7X+8xZs3N8oY+xauLdSHB0XYd5+dnKKXI8xzbyf26Wa9pozLLOUefjui9iwNSsc4550WdWZRxre8wqfBQUytDJJNlJGk2KDZvD2ABZbJYOYFyHuM9rXcEJY2312ev2e32TKdTTo5PmCwOKGczVJLgYlNPKSXrUtdRd20UzsgQUWlRmuVZxgfvvc/R8TEvXrzg1atX7Os95XgE8drXXUOWKEyWMI77m/IeE5DDpkDDorVccX55xfXVFR999DGjsuDu3VO8h8XBIePpjKIc0bQd213FerMleE9ZlnI/eBcb8Yb33nuf45MTVr/3e2xiKl7wPibROZzt6NqGtq1p4/PVtA2EwHQ2ixiMJav1ms1mQz4qJbp+HYd95RhJX0yFV5nlorjb76n3dXRVyAHe6IRROeJwcShBJEZT5FJ3FXlOkedMRiXz6YTjgwOmcYBMCEPiZ7/eBe8iH0gwLLGPMNTYaSprp0TRe9wbPEfdS1UQTIvtD66oQU3fq3rgVjnZN1f7oW/TNhL0gPDrsiwbgjB8vLbSFEkZjwoJl1C3HDqjpZ5PjI5nYfnVp97F0ykqJlh2XSO8OzxKebQWJRRK47ycJ52PfOWYrmdMghVTxxvnocgBHdRZPjZc1AAv7dVXfd+gF7+oyB+Sc1CEfSphiepE412AXvEZ60EAjYliqxDPy548y5jPZozKgiyVQVJQjp5dmfQNMy2qb3wgyUQt3dR7nO1VuDqKSmRQ0Ke9Egcw/dnzLzh44nuRdNT+zJoMSjS5AreMZ2m8yTVr2pbO9vUl9J6IXq3kgyB4nLVDUyjEe8K2LV3byv5dN/Iaka2pglz+RGkmoxF5WTC41xBnVlnkGB0VXqmK+2Cfyvev/vmZG0/r9ZYsSzk+PhQfeprStI0csuLFLuP0SxoKoh5xThgreYyc3mzXeH872c3znK7taOqab3zz6/z8N78l0vAI9quqLa9evWK5WvPq5St2222U5Hq86wQoiqKqW2xM5EqShCIv2FY7meR52bS9A+sc++0aheXu3QVJIvwBkxoSorzfB5KegSFPO0GJcqLeV4xGI0ySUHf1sJkprUmMivajKGVUepiG6thE6Rt1/cNsjEDOZGHRQ0Opj5rUWt5f/B3/H7/PB/FjpnkuLBbr0EmGctDaQLve8fzzM95//z2evPu+yIH3HfX6GttIMoHY0XaMR1NO7pwyXywoinLYoE2ihkmrtL5VvDlDLDwCLtj4DMWmQSA2EORAgJfHIlGaJHa2nZXDU5ZIQeFcR9tIUsB0PCZNEjmkex8jqEFpPcSleidNriwrYle+QRtDWcqmlGYZRV5QFsXQ3Etjes6d07vcvXuPr375q3zx+Uum0ylFkZOmKcdHh4xGBUeHB3TWcnF9xWI65d7RCdv1kmq3AS0LZeINeWI4no9xzlLtPa1zdN5jXUtPwdNKU6Y5mfOkxgxpZGmWUowKNssVTV3z6OFDUq3I0OQqITeZQOk0IiE18VAe+kIVlHL97YSPcbW+taCE/WG0ZERoL0Vxb3nsi4PEyDWRe0uR5Tl5JtN8mc77W4ktGqNTilwUEk3XUte1yK/LEpVE5hmKNC9IGokUtdbhOotvLcoGTo5PODg6FF6O93SujZPEVmTQncOkvUUDUXxlOcooTDri882WH3/3z/jKL3yLd77xLd4+OmVajpkfH/LDn/yEf/Lhh9TbHV3bcnhwxPHBATpuzD/3jV8mSVJePPuM0DWktiHLDHmWcHTvAZPFAdPFnEDgs09+ysvPX/KDj/6p2NBCTB7znqlOKUaar3316xwcHHB5ecn1zTUff/IJPVz65noFLDk+PmY2zVjMj9joDdfX1wKATVJ8Lsq64EWNF4Io51rf4F2g6UCJBZyjG0NmG7o24JWG2YRZueDxB18mKaaY8gCfaIIxHJ+cMpqMmZ+e0HYNP/3RD9m9fM3qz39MNkoYjVOydYuuOjbra6pNxW6zBx8wXmGUIdUJLlg6Z+m8AK9DtIH1zncLGO9IWjfYU5pGQiCIk5BxUWJQGAW3SHS5Z7tYZ8wQpZP1Hmc0TitaJbvUerUkbwveLRbQOf6Fa0VRp2KEudJyDwVhTHTOywSwbtlu94wmU8bTGavVNSbR3Ll/lzwvODw+Is0yLq9vyNOcxdEJJ3fvsm9ajk9P0Erxow+/z2695uryMirSYDqeiCrEiqpvv6/Fym0M1lqaphnsGtbK83B9fU2dZ5w+XZBEfktTN9R1zXg6YTqdcnF2QbXbYV1AGcNkPidNDLPpdBjQ7GP8sqy30uz2EUzuXVQiBjmgd84SOkXddlT7PRfLdWwcZzSRTZKXezya5XINQF6OeX1xwf/tP/9HjEYjDg4O+Gt/9a/yrW/+PM8+fcHZqwt22xqtUrKsJATN9c2KprWkaUGXSaiAaRK6uuOTTz9BAeNxyd07d3jrrbdEIZAkbHaSHpekKXmec3p8yHq14vnz55gkYTotuLy6ou068iynyAsSI9O9JKp1VRDQcRc8vovq6s1WDsFKkZcF4+mcw8MTDg6O6WKz6+rqivV6zWa3QxmJKrexqSGHhMBoPOL45IRf+IVfoKoqfuf/8Y9RCkpKRkqR5hmHB4dkWcZms8Z2lrcfv8X15SUf/+iHon7TGjudQFEwTXMSFzh7+YqDg0O+9rWvifKjrsnzgqwsmB4ckCQp+67FhcDpfCwHDaMZzeccHR5zdOcEay03NzfUdR33EylmvfOsV2tm0znTyQyjEpqmYblc0XXSsK7rjtVqS5pnFGXJ1dUVVVXx4MEDxuMx0+lULJbGELxFBUlOQ8Gjxw/l86631HUj8GDn4tCvjIML2Uvruh5CDrRORU1e12y3W7oIGb9z5w5lWQrzq+vY7arI/yyHPQGITai+CS6H07IcMRqNWSwWPH36lIcPH/L552dsNxUeUX3s4nNWVRXbzY7NZst0NCFLM15+/oKu6zg8WpDpBBCwftO0eAdZBgq51zxy6NztdmIHLEqSRJqF/QBPRW6GRMLLsEmGKhInnplkUEOkqQzDdlU97L3aGKmPojU5yUVV0NT1EF7hFajEUDd77G7D0eEJaaLJMk0TLNvdSg6f6UR6ZV6hC/m7mrqiBTqdDAmzPli870iMYj6bcDCbQFczzjIybVCdJS9GjA7mcp/sdyRZjkoSPGBcwHphxJgkIjmcYzKVIaaOFtu6rtm3NZ8+/2ywrNy9e5evvP1VrPU46xhVlShmy5IQxCrb2hrnGhQyEMsyQwiG7VZ4UJeXl4O9qlcV9Gqv7WYVQf3SyDw8PMTaFkVgeXMtTf9C1pQsy6SpFcSGt95sGU+mtBPH6ekxWZGD0dRNI40TqexwQZTgaSoKY9+r/CCqrxJxLOCRKiuQxfv697/9+zRNx3j8/+IXf/mX+Q//B/+Aw7t3Obx7F9Bs65qLy0u5fo3cw5c31/F1Je0xANo5DhYL/vq/9lcxScJ/9p/9Z7x6+Yr1ekM5HuOco25qqqYiyyckZcbi+AjZXqWBVWQp9WZHh6JIUxJt+OSTT3nx/Dn//J//PgfzOV/64APuv/WQe48fcXB8wmQyY7uvuVouubyS9zm3M0yiSXaGtu3Ispy//tf/Bk/fe5cf//THrDdrbHR65HlKVXXU9Z79vqKqdtQxkXSzEaXr0fERr1+f8fnLL1gul1T7PcfmDhmKzepC9oUH0jQosoLxaMx8NqNrW9bLFbuN8P6UF9WZwbCYLJiVM4KOwzMnX5rBMZ9MODk4pDqpePLwESdHJ4zHU7bbLU1T09Tyq46Wa6VEqZllKQThXEpNYihLSQHrYmqm80HYS52TkA2tCV6wG7aRBrsxBhWHKzoq54amU2IwWSJBMbGZsN/vub65RgVRmo/KkYRJRHdKU9dMxmNG45LDxYLToyM+0prGOxmiGE2eZ2R5gkkUSaIwJoYKtHtC6uNww+B8R1Vtadu9WMqVQxkvwxznqbv9wCYLgDEJSZKRmIwGe2tDRAZTROeQMIwdJEbCa/StUEPUw7dnZ1E8JTglo7g+nU0lBh1SkkwhJitH5528bt/sQaODxzg3rMuz0Yj7p6cU5QStDavVVgbnUWkqatM4+NPSFCrLMd571ssVXdvdKo+MEQ5ZmuJjw6cfvEh4kwwv+kZVL9LIskyankVxy4qKJbI02ESR1vcOfPBU+4q6abBeGKKG3vAoFrsQHPtqR9d2ZFkmQTpA17TUuwqT5egkYbvZEpwD60iTRJpKKFJtODo4YL6YD42yNDpTbNdF0YOIivpQkZ/152duPE1jAlnbtoMFrLMiHXbxAdput4hFqZaLmsnqmxiZjHVWImWhZxnBPkp0u7ZjebPk1atXQpbXcLZdyZeSlxwdZ0xmM84vLnh9ds5uL53xfV3Hqa7sy31agPUOlEInBlqh8WsjN3WSBJLof+7TTEQVcxujLmllRrrGXmxfppWOpdzMKnZ5+yn/gNkXhU+v0IkSwv5/lC/QoJAp7psD6nCrfeqbm1FWHui1AiGqIbyL0xnrSUcps+mMfd3QNC3Hh8eEAE/efgfnAy+/+ILddss//u3f5uHDhzx4cI/xeEI6m6GVY6s1bdtRVXtuliv2+wZ0gjYi1ewn7N4KlPbw8IjOWeq2oWobsXPF6+6ddNHLCBtPojzcOZlYgSLXBo+GJHZgraUoM04ODhD7opdCoq7x4fZm7icWTvUcIPkO5osFeVQ0uRBoug4BSDrpfAfFdr3BOsuTJ0/EHhCnvH/y3e9ycXHBaDTi3v37TKcTysg3Wq1XUlA2LRu3wu5rttsd+3rPnZMDxmUhiRPe8/LyGkUgid93rhO09WAbdJpgdJD0rx4YJa16EpNSZAV5lK1+9OOfMp8vOJ4cQYB8VDKeTZkeLNBJnwKk47QxqsMGNRz4RJN4aewFJRNQR3iDIaRolaO2HYmBkEpDqectOGvp2iayLyQNiVzUYEppkasr8GkavwNNkqUEo0SK5BXWtnK/pgVJmnJweMRsseD4zin7VUW3lwPvzdW12A/ahpvldQTTtgQnCqkuyHuelgVFktBmuTSiElGaNJ3j2U8+Yb3a8L3Vlkwbvvqtb6DTlP/wv/3f4aOPP+Gf/8EfoEOg3lRkZYHWipdffIFWitXyBuUtGR5dyy28bixZec79x4+Yzmf88q//Zep9zVvvvM9mu2W5XvHi+QtevZIpZdNYXjz/nN1uL5LacsLpnXv0hDSZqArzBYIo2lTCernGdY5dt4sWBRujWBFmRZZSTk6i1FfUokZrjo8nLEY57b6TzWg8J6QJP369ArUDdU0HWBVIko8lAc/004893XrN/tUrRtOCyXTEW75gHlKaTtNYcEkiUHHrUDiM8wLiVBCMJmiwcdHq4YQ+OELQODQ6TtESpYeiCSXFuUfhENuX1iYqBCCJ85RWiWInxOQYp3wE6zuW6yWjrmRxdMjxaMrp/ACdZWy7jgQlCkEtFvDZZIJODDrNuL6+4bNPnwszKATOLy7Y7HYcH55IsMVkxIhAMR5JUZcmPHz8mPnigPligbUdn37yEbvtjs46irLg4OggHn5l4q4ULOYzxuMx4/FYEiFfvmRU5EzHE7JM2ITCIUoZlSOC8+zajTR+kyQyvCBPU0JRUseI9PV6LfeFc3JPhdviwzppsoxGY4o8FwtRVH4Ku6BPQ4scBt2zkyQ9rByNmM5mpGki+2BU2wXEftW1LZPJRJQk0ynlaBQPqvKdd7ZjtVpRxwPf5eUl5+fn0YZih8lomklschpj0y+vLrm+vkIpRVU3+BC4e/8e3gU+fvEMYwwnxyfs64b9vqFrHW3j5E5RCbdJZBadaMb5iNnBnMXhoSTJeUs+GuG8Z3l9TVF4snLC9fUNm03F+cUlu6oiTVNRFsVEpixNOTk+5s7pKW2EHycmwTvPp598Sl3vaWp5njfr9WBXm0XFbNt2bDZrnr94jneOJ+88RSFMprIoCShmizlFU7Lb7DA6oakb0jTj3oMH1E3D5fKGvNiTplLvKODy5krqCRWwXYsKfrAW2K6L9qsWF5V2fU3R7htWNyvhwZTSTGrbls8+ez6AslGeLEsYj3KK3KBwtM2OLTZO1F20ibnh3pCJvKHsB3DxMLbZ7hkpAdWPxiNRgkU1hjCoHKv1UhSgWSKsLm3Y7/c0TSOfxfdSaqL1Wn4prUnSlNF4jDGGohQkQQ9Xvby8oq4bPv30U9armq51ZEVKZztenb2SdSZyYx49vM98Etl70zIqmEQNtF2vUVqJoiKqV3xMeDEqFa6RzyBAYztscCQhJlzGxpwxourz3tO29TDRT5IsNqliAm4nDblsqDk1aZLKYOoNVogLYrdQiQwz26hAldTRnlUqjQlnrRwcTIIiRMabrLveB5SJPMfISAnKi6VTx4MskKcZRZqDl0Tqpm4AQ5K1qIA0aPIMbRI650WVFBURIIei/v7quk7AwP1eQBAVhZeb6ebmhqZpWMwXZHkukO+u5ebmWt5nmrBZ3XBzfclkMpFBdUyszHPBZcxmM4qiYDKZDG6EoihJUklnVLG2SbOM6WQSFWh+GAoLBF/H9MaUxXxBvd+zvrlhOp0yHo+ZTCckacJqvcZaGxldalBJ9movpVSs7RjuYxVZb951JEZjtMLFtOOrq6XUdMpw//593n5wnyJJeOvhQ9pGzlqydoRoSW3Z7aUxm2YpTWyCCVOy5OrqmuV6zedfvOTq8opdVXF5eYV1jl1T0dmO7XbNerPh/PKC/WotLg6VoNNEasDOSkJf1/KNb36LL3/lq/zaL/8K49GYu6en5JOSYlwwnx1ikoQvf/UrzA8OGE3EpTIejVktl1ycn5HnArW/uLrCZCnbXYVJU37uG1+jKFLaeH6wTlinTSNDiKwoyPJiKGxPTu5w994D3nnnXbI8Yx9ZjPWuIk0SFvMFwVmW1zfU1Z7gPKk2ZElKozTWi9Xb245XX+RMJzP5M1rqmJeXZ9jO8uTxA4q8ZLfZcnNzw9nZa+7cO6DaHYMXDui+2rPb9XWbfNneuzioD1GN7NE6JkMBSWIoipzpbEKaiiBDYaTxkJiY/EtkBt1y63p+rosp1kQblgtyDki0iTVFgQ6B0LUxHd5Fu4oXu0lkTzrb0TU11nUDE8k7J2qzpo1cy0BAk2a5qPwisB1uHTs9l6t3+/RrtaTYScNGoeL1gD5BUAQCMvB23kvdFlXd3vV4BG6vm5G1sa9hevWriepTT+8ACcPwjS4mHap4jleCiQFRm4kvqEU4WtB2DdW+EouaMrFhpmPTUNZhG1WRJtVRSaqiM0rq87IYiZK87eLfrWKN4umsI3W3zMAQFb2ZSairPavlkuVyGfeLli4mzPfnK2U0Kr4vr1RMDdexTpMmuXcyFEm8WBPbVuGdHSx4aZIxKsf4ReDk9A7OB+ZHR5gkpdpVAt0vRzx69JCv/9zX+NVf/VUePrjHeFREzE/ckyU+NDbNbs+UPU8MIPkZVE8/c+NpMhkNlqxb9pCNDQVpAiTxS2pjIdp7MHuFkrVS5PRqHecEPuidx1nParXm7OyMo0PhKlxeXqG15t79exR5wWgyxqQZddvh1RK/g2YrHlIdlUMq+kCcdwIn7jdwwnDzJipCfUPAO4t1rUyIYhytipI9iS3v7RqdSDutIXcRWhY/r/ND6GCExcapvXODHaIXOfVKKAbxbc9/YpBZgoKg6MGQIUgrSppRMXbWB1Q/FTPCEwpBwN4Hi4w0zXj36buyOHYdz58/5w+//T1+5Vd/haPDA04Wd5iOx1i7jzYMSQBardfUTQvomLqisU0d5aWBLE+ZLxY0XUvYbWmcwzf18Pa9daDF+5kaQ6Y1XdvSdPa2IaoMGNCJyOj3TUuepBwsFnRdS2dbbiop8pMsF2ualjQ1tEb5XlYp13I2m1GWMh1t2pYqJs2p3l6JYrfd0bSNxPxmcq9sdxWffvaM5XJJWZacnp6yWMzxXUvbNJxfvMK2kiC3dRXXNk5PW8vJ0SF5VlAWOV3T8Pz8gtQoZmVBmaXkxuBtQ/DCPNBExVJ4o/kUiPDxnHEhkNkfffpT5rMbfvGrPy9N17KgmIwZz2eodn3b1FEaF2wsLiV5UAFBa4KSJl3P5fLBy+fQ8p122tHojpHoJuU6ouJzaOMBQBb4LMtFEYWo06xz2LjRBETJZZKUEGXG3otHPqAwSUAnKfPZnOOjY+7fvc8yXVHFSWVdy9Sk3ld8HifPXdfJExAUVSPMsjtHC8oso8sKaVoocEFCAz43z7i4uOTTP/9Q0irali995Sv8u//ev88f/uEf8eKzF1xfXrC8vsakOdbA69evIlS8xSjIk9umm7tZykKfpegk4evf+gWKouAr3/gm19fXvHz5ku/80XdQ5s/57NNn7Ks9X7x8TdM6nrzzhKIYcXRyRyx3zlHvdnH6LaEB8+lCbB1KS7FV7+kL8qEZmaRk+ZjRwQPyImM8lYj7JEs4XJTMi4RmK01ZWx6wbVo+eflSeEyNpfaW1juqSuwzy/UKYzSnp0dgO9x2w6ydsHCWwzxjonNaq2idwptELGxBDgfKB7mnIstEgOBx8yHaJ/umCHoAuJs4JVJxWud64ChESwNitwuQxuZyJxGfaB/k71HSSPVBsd6uca7j8d37HOI5nS/Y6sDOOowHHRTTcU6a5xyenFCUJdPFAeUXLzk/v6JnIl1dXaFubgheMetaZseHmFTk9tpolDHcuXefe/eFQbPfV+RFKWmPzjHNMo5PTthsRPLvIlh9OhlzsDjg8OCA5WrF5cUFZV4wHY+ZTieMRiXjaOEtjaGtG2zXEryPgxaNCsR9Sa5X21l22y0+EAuiMFgZgSHYoByVjMsR0+kM27U0EZb9ZuMpTkCk2RJEqVqOSqbT6dDE6CXbPsiBt2kalFJMp1NGI5miqlhQ+eCxThotTdtijOHm5obLy0u8txGqKbuCNBlEzm+tpJ81MZnROk+Spty5e4pzls8++5TDg0MefO0hV9dLNps9XSd2STDSeBqk96LGLUc5k/mU6cEBTolKIi+FPSIwf8W0s1S7mra1/PSjj7m6vubBgwcC146NpzRJhiTUl59/zuuXr4QFZD2fv3hBXQtTsK5rdrstd+/eI88KxpMJo1IaGNvNlma/ZzKZ8OjxYxm1hDDwCKezGbazPPv8FUon1E2LSVNO797li5cvWV5ekjWNHJIPD9AKttsNbYR1eydMQZm+N+QRa+Cj4qbeC+8w+MDWbwkBRk/HlPOS45MD6rqWZOC2jjWNxrucssgwpohDQIu1DTqmCInV4bbhGeL+kxeFKCWqSmzSVppVWZ5RlJJW5oPDWkPbKqwTvk6WZUwmE9IkIzFJZCh1t1PVVAD4bwZ+KK0xScI4Nh+Ojg7xXlQRy+WS6+sbXr58GXko0oqezCd0tuPF5y/I8pSDwwWL2YwH9+4wm04p8pyDgznWispqvV5zdXUp0OCiEMgrARX3aoHWShS3c2LhMkHLGhADqoRfYpjNZjhnWa3scJASJkoCoUM7T9NEa2N8/pNUgjSMVqQxxMA6SWa+hTCbwV6hlNj8TATSdq3sl0We01vp42M/1J99bHxqZBDiokopTU2EzEKWpORphu06sZY1HaiWpBHlmQDpM5QxeCz0eIiowu7TqGxkUcl7BbSYs8WiJPvdcrnk5uZG6u8spbMt+33F+fk5SZIwnU5lPb28pGkaiqIYDrbj8ZQ8L1gs5hwdH/P40eOoAFeRxVby4MFbpIkkAUpDqsAkEkPfX9Ph/BJhy/IZ3kyPjodNrYdm/4DB6JmFb5yVlBNVRjweiCrYdrRdTZbcclPxAa1SvA9Ue+HJ5EXC/bt3+dY3vsFms5GaNQ7p67qm52CmUSGx3W7Z7/ccHJ+itOE73/0Oz54/4+zigs1qLTbTpWdX7WLTAnbVlvV2y9X1NTaybL0BEtnLXbQvNl3Hl7/6VebzOQ/u3KPIMsqiYN/WVI0E8rSd5em77zJbLJjMpijErvbss2es1+shgezq+prWduyqCpMkvP/eU5qmYrm8pLOtqJRbSRZMkmSwFGuTkCU5R0cn3L17n7feeszx8REff/oJ681GlBtas5hM2azXXJyvaPY1xCZImqSiLAqBqtpi24bzxKCV4fjwWK4JntVqRVM3fPn9dynygt22Yr1ccXl5wXp1n3pfD4q2uq7ZV/s44JGmjndxaOpj4ySyfvvjuCR5ZkwmY9LERHv87T1CHFi/GTAwHAujkMEFcX0ELVZWYu2fpSmjokAHT7Bd3CfkfQn3VbisWoG3lq5phNsb33sfgNG10XHiAgRRRWdZTlVVQ4NNwp/0UFeYaM/rBwQ6MUODSRpFERIeFT7a6AG74b2EMiRJTM4LnhCVPiEOIExs8vQuroEzHdlScVYWrfYChX/TsidgeROFIIIhGSx76NgsatnXFW0nttCsGKMTUYGBirZdR9s2lFk5KCp7lUkP3ddKXsv52yaXjUNc/0bjaRgamIS2adhutmzXG0E3tO3Q0JTP2sPc43UjLuhaDYqt3vrpvSNoHVnDsu72CalZmsn+kSQcn5wQlObo6GRQJWdZyt2TE771rW/yd//O32axmDObTeltfkMIW7zg2hjR2vTNp9gEBPUzNZV+5sYTcLsAR9mfqx1106KVsGoW9xZkWYZzHbaTxct2nSTIIEyGrpM3J7JkJQBy7/GJKKJWqxvm8wllWXLn7h0pOLKU2naszs44v7zg6uaaal/TWcvB4oAAbHc11jnaTope2ecEShZ3o1voeZEOns1e0mwGqW2KSVI8iNVhMqGuK9zWstpssDc3vDMaUZSjODUJtI1MMoo8oyfTC1tSRdhkT8s38SELA4RSQMWxQdf7O2Oj6k1Ap++ld0FWIhffc55kGDSusVyfXXB9fcN777/P8fEJbz28hwLKXPPWwzu8++SBpNmVCZPRiPF4wvVNRdc5rAtok7A4OJQut7+FR+ejEgh0nSPPC0azCe1qzXq3pW6bCKSVU6S1gaA8rrNyIMwSTJCbUSyChtqKSi3Ew5YxhrpuePn69bDRp3lJVowYjSYoFE1bD9XTaDKlLEuOj46ZjMfs9w1NU/Pqiy9oWuFzlGXJaCxyyDrKt52z/Ml3/hjvAy/PzknTjNl8McDpPvv0E64vL1FxytvWdWxIyEGr84G333nKw4eP+Td/67d4+623KIqC9WrFP/sv/wkvv/iCH/3gzyl2e4qw5mg6YpTn2OBwLtAhzLG0LHCJpnEWjCEpC9q4+zx68pTReMSy3lK5hnySs28bXr26IBtlTIqSlJyEhDbKlRstWrJERa+0h84GUeYnskD2CU7OOrxOCInCW7EwmrggpVmOUoZ9VTOdzvnqV3+OrrNikTt7SdvuSRfTwbcuQj+ZIHg8eAFC5zqlc56byyuuW8vLzZ7Vas3V5Y28nnUkqUxpg7fRciFQ3rIshOPhPNNE7IhFKkqRyWSC6zq2m6VAP5OUbn2FrW6YpeC15vvf+UPOvvicoAyLo0P+g//ef8A/++f/lD/8o2/z/LMv2Kw3ZHEN050lSxNm4zFZbJT26UQ/+qPv8NM//R7Pf/wRbz99yt/9+3+fw4Mjiqzg+3/65yyXK3a7HW3bkeYFo8mEeeTT+I3Yd6pmL/H2ec50MsU7x8Xrc6pdRXCBNMko5gWnpyccHR2Iwi3L+LVf+zUW8zmL2QRjFEkCQScEkxJsDc6Sa4PWCSGf0TnHZrvm449+zHf+6A9IQoJTmicP7lNkOVmWk+U5R6eHaDyqa0miNdt9+Izlq3NsvSfYDkucgHkrCkMDQQk7zfoOH7yo+pQiRRKSlEkIGEKc4KEU47KU9bWpxW6kxJ7bb17ON8I0AIySg5IyCcoFjPc4DU46kNL8rxs6r7DrHXfuH/Pf+Nd/lY1WLFVA20Cwjp/88EOuL6/47p/+AJOmvPX2E4L3vPXWU87PL7m4vCTL5eBycXlF3ba8/d77aJ1EObenVR1Xl2fstlvu379Pmqb80i/9Ep+/eM4Xzz4TNpd3zGcTFospLz9/QbXb8vnzT1ldX+AePEQpzduPHvD6dUJTVWRGY0JgvVrjnScNHqMUs+mEuq3x2w5vW/b7XVSx2Jgspjg+Oaazlu22EtViVCY5L7Jo4Zl07MKOs3NPlhiKNKULogQRu49C4VDeooIThUOWopWkj223G6pdJek+2tDUe2n042jbms1mRWdblIam3VPVWwKOvEh5+53HjMoRJjFsd0uev0hYrSvqpiZLBYgsBTBY18nzRUqZ55RFznYn4SLz+Zy2adhXe143r6nrlulswXy24MnbT7DOk6YShKCTlOM7p/z1v/HXefXqC54//4w0zRiNJ5Ex1XFxccF2u6Xa1ux3Ldv1nkePHvH07bc4e/WK1fU1WAfGoYwC73FtR1c3NLsK7SFPUrp9zd5JcmeRpNw9OY2H6o5xKWDs3/4vPmS72ZAXOYfHRzx48ABA1NgxOrooCsrJaOBgWpPgnOcnH33EZDrm5PSYqqlpunbgUV5fXDAalfzGL/8K1zdXfPc732F7eU232gwcvt6m3rmOBDiYjmhbKxBkZ2mt5er6nKbds1xdEUJgOjTKxIp2c3XDbD5jPCq5f+8BaZpwfn4mQy2dELQw6qRwFmX7er0WJlOsW8qy5P6DB6IkXW9o2pY0cjDEetZRN23kiomS7ejokGJWUsXUpvlC6sfpdCqsDjTlqGQ0Gg3N0Xove7WA3Du2253Y75yPyZkBvMNoGI8KlCoI/g5Hx4d87SsfUGQJRZbwycc/5Ob6ineevsd0NufBvcecX1zy8Sc/orOOttWYNHLE4ne22WwF6u2llhvPJjE8x5HlmdiSIxNluVoDohAPsU5s2g6FNPacl0NQYhLm0dbYWYt2YqyQ+HCYFmVsFuzofEcTVTpZ0iMaYrIUwkPr2o7tthJoea9ktFbUQlnWl3QYFQb7lZZFmfPzc7p6z7ZqcCRkZZ/ypVhv97y6uGFfNzL4iwVpEq0nrhOOzGw8oUhyykz2cd91MVlMxwMl+LbDWbn39vs9dd1wdXGOiSq6LEs5mM85Pb3DN7/5rZiO5ZhMxhRFwWg0FkXgeEISAclZljEqR7cHm6gaG40naGMGpqKONp4+STT+n2hu3xjUhyBuB0msUnS+TwS+bQz4IOmCqFv1vTSwiBaavoSW+ivTJaY/H6gk/u9x4GBEnXdR1TRtKzboth0S10AUbX3CtG47TNXEQAhNt1rLAGRxwAeTCe9+6UtcnJ/zow9/wIff/wE/+N6fk48KTGqo9zV5ljMbzehUQj4uWd+seP78BeVkyumD+0wPDignU1oC19str86/z8FsztuPH/GDH37Ihz/8kKura6qdqKhMmvDwwQMWizlP3nqb1XLFr//6b/DDH/6Q58+e8Ud/+EfUTcPr1+dAQAePNqC0JwQlUHktjpTZ/IDZbMbNzZI01eTjCV//xjf58pe/wmgkVl6LZ7vd8Wu/+iso7/n0Jz/lk48+5vmnH4vjoiwlAdI6jg6OOJgdkE6mpGnK0XxB27R8/OwZdbentQ3L1UbOIbajdQ6ShLQsmC5mjCZTikJ4r961wm60Yi31gSEFOBDYNzVt07HdbnDORnVuYL/fU+12bLdrptMZeZ6htUMpj0kEF+CNDHx8aOlcQLUB6yXfWtAhqTSeQpDmhDKEtFc1RUaPc/Q0yKaVwfdoVFCWOXmZk2WJpIkmOjac01tQeJIRfAKksSGq8B4B/6uAdRofLE0r6uMsLVEqJYTewaOxnaQ82s6SJHKG7JnAfYvIeYt3HqPFUnbbOPEok8SwGWly2bZBodBGxWdYlr0AUcmlyJOETCdDOmpi+iugZCAQAqM8R6GwXYvzjtp1GKPQScKu3nO9vOHx43cYT6YEpUiSjH27pxeNmMwwykYx9VRYX955siwnBC923TQBhFfcp2Y2TSM4mqi+6geMbd1QbXc8ffsdTo9P2FQ78iJnOp1KuqKKSqLYd1GJwVtH0NL0cc7S1TVf/uAD/qf/0f+ENEtvB5jxLEkQvmdRFhwdHUeVmaWu5R7ebGQwdf/+fcbjEcdHhxwcLDg9PUVpYcrtqgrrPIvFgXC6fIjMYNFyEwRn0DuQBuvNv+Ln/6fGE9wCsxVExZDQZk3QEfJYQMgGRYPcbsL5SNIkcgDEe6qVIU3khlD9hXJyAE1SQ5qVol6KhbZIMZtBXuqcpxxnKGWo9i0q2omIsi/VD4ffkG4rbqcVQ0JQ6JO3erB3/++IUxgp8NuulVjLHhCOBhzOugiTixGPQTayAYgZ/mI8r0x9bn2n/fVUKibE8f/ly+vVU0R7n4qE+xBwnWW/q9is15R5zmI2ZT4do7XG2iOm44L5bCRNBqMj7D3aFiKUu4e5SqHFoEwQuSKSNBU9uB6BitoIkRtGPiFu4/0/x8mWCoLq7CWK/VQ2xO6pD4G6aSODKZGpWpJSlCNpxKl++ikWkdlsJtyc2Zyzs3MB50b7penlmWkyyBe9l+/p/Oycpmn5/PVrptMZ4/FkUPCtlkvOzl5jlEwHUpPIPWkdyhhMknLn7j3e++ADvvqNb/H06buU5YjlzQ1fnF/hdc5PP3mOr9e0TYMP0Y4ZnHznXjYnkyTCsAkejBI7UWzITucHFGXO3rY0rkMlGmsdu12NzVIIiYw8QlxcA0MCXuz1i5PPx8ZTPyHQYs0Lzg/fVd84It67Wt125PMs4/DwUOJ1q5o9Ym8ZphbcPjv9JEQ2GJnCehdom4Z637Lbbuk6R9va/k4nz4wADOOEzTkJCkjTVCJjkQJOANzCBUvTFLwU0iYRBpFralzrKRKRoV6fn9E0LX/y3T/hmz//8/z6X/nLPPviUz774hOeP/uc3W7Hnpg85r2kW2qFzlLSPMMgk5rl2Rl123H56pzl9Q1/7d/8m4xGI+bTmagAopJOKZmi5mWJThK8UihjCEoKkjzNSE1KHg/Esi7W+CBJZNPphDt3Trl7964UTEXJ1772cxwcLCiLBKU8CotVKU6non5oaqZFSWISQjoB4I5vadqKjz76AS5onNI8iNyryXhGXuTMTw8wgPEWbAttyxc/fsFuV8mBKoYTuAiKjZTCKKMNwxSYuLmJ9VVixYOSxlM/9dBpKv/eyvqke7sISCM2TqX64l8WGlmzdZSc9wm9YikWC4BtWsZJyr133mGlFZc+kASFcp7XL1+zXm25uBLI7GJxxHg85vj4lN2u5vp6GRshCCQ6JkX1gGxrLd4Fbq6vub66ljTDyYiDwwOq3VbUCDHJIy9y0jzlKk+p99A1NbVWbNdrinLEbLFgs16TZ6moCa1lHxORMgJ5ljIdz/DeRnSeH1JOepim0prRqKRpO6q6liRTT3z2ggwptML23EDvoSgoczlg9sMD3Z/4omWICBwGYkx8bAD2kva4y6gorW5jsUavUkNewySa+XzKeDImTVImkxFpqvER6Gu0ivdKiJN6S0gk7j5NErFp1Q0oRZGJZdk6G5lxliTJODg4YjqdgpJYChsnh6PRmMeP36Jpal68eEaE4GFMivdQVTXVbi8JQ8FKolCA2Wwmtua4195GEEst42JCoQqRBxhZjybu3XmWDGtemiTU+z3PPnvGxcUFX/nql5nOpownk5ietcFaUXEmeU5mDElUjY2nM+r9nqurS5RR3MsysjyXZOCqpguW/b4iTQz3794lUdLU951YUpJoOUv7zyG6f/Jol+n5fSF49vVeBhRtg44JhsKGtNGe56MlQjEqx+R5zk1yTWdtvH/MUDRrran3tdjr3lDEGZOQ59nA2oFAZ2+RCp21A7BdOdmLvReQuUnk9bN4DbI8RylN8MizNF/QxXSntmtFkbHf03UdVVUNquFYdcV1SkkAgDGMxyWH8xmP7t3FuwbX1ezWV5y/esbjR/dI9Jj5dEy12+JcR59ipUwqSvpYzHRW7GOa24OgtQrfhZiwlsoIJtYcSgtcGCfPkYpwJxen/VJPK7IesNxzM5yHINaW1CSgYOdlDWzj8FQsK2rYg5QSq1jwAWcdQctz4iLPrE9cijs/Wjl6xUT/s93scG1L14hiOdVi93DWU7cdN8vVsH/3Mp9+J8AFlBa1FF7qijY2TnRcyoML0jjvbGS6+Gj1sWz2FT0LNjEFh4eH3Lt3j3ffFWtVmmWMRiPyvGA6mZKmGWVZxsbQGzVyrHkG4G5i/kIJHSMbhv8/7uLDPzPUNCoG6PRnB7lfdaIldRYGJlxfsSslseM+rp3xKyQKyaQJCREfoeKJXA+lc2dhu2/YNzVVvcd6JzZLLy/UxPRmQs+AdfQhRa5u0ECaF0zncx49fsjZ69cE73j54qXgT+Igr3/ey6LEeOESdt6x3lfMT045vnuHcjzGpKmottuOi/ML2q5jcbDg2YsX/Nn3/pzXr16x2+04vXuHw8MDDg4PODk54f6DBxweHnN6cofVcsXV5RVn52es1itZ70PgOtyQ5ynjaSH1QrRrhiBWzjzLh/NUmmZMJ4VY1IPHe0tZlPgQeO+9dwnOcfX6LNpvo7NFZ8O9XWQ5QSlmWl57Pl9weXnFarNhV2+p2z3eQ26MqFSCoAXQhvQNMUJwHYOtKA7YQtxnfVTr+HhW9X3TURsCHW3bDWvjeGRRKjpklFhUlY6OBQSf4oPGeRNfO8Rm6e3BPsS/Mx6m5FQY1dB9neVjXdCfqZKkX8NV3C7j3hFVRxIwpKWZEHrxg6hulAblFSGIWEO+s1TOwOE2MMFbcS+Jaopb5VbodYFhuH7i/OnVT9KI10YECj5q6L3zseYQ91HfeIoNCAhBwpeUhH8RGyNBqXgWl78ziQIPr+SX6qschWBjmoYkTSjKQpor2kjNE39fGkNN+vfZn0W1fiN1tHdXxfNtr9gtimJoTPVcJx/dY/PZjMlkzKGVBn2WyYCnv7febF7f1slyD9b7mvl8xpc+eE/SavP89g8MNyC42Kjs67aeBHV1dQ0ovva1rzGdTjg4mNMn1HdWwOVN09B2lslkJmtV6GtAeS+x8njjS/nZfn7mxlNPhVcmNg4IlOOCciQX1BjDdrumrivGo9EQrTqdTplMJjx+/Ij5fMaffPePWS5v5KCjAtbYCBNuOT4+5stf/oC7d0/Ii4yL62vqfcNmu2E2m/Plr3wFpSW2/Oz8krquQW0JaLbbndTU2qCUkcjKfsoeD8V5molVJ4gdaLutSFKxE3kPTdNxVV8L5X4xpYspUsKpSCiKXIoS21HXFTqqSHo/q0infdz0ZFvTOol/xtJHnCqlJV0jypB7KXKfyBEIaKMpivQWphnl1cKxgiSTgk05T1PvuXEWazvyPOXBQ5GkBjyd7QjBUhQpRS4wQYKwIlarG1bLG3a7DeNJQZ6n7Pc7rOtiMoD83bvdHpCY1Grf8ZOf/JC6bWjafWz0qXgwUSwOpLA/mE7pGomo1YBBo4JEO9JD8epG5M/jksPDAx4+lCjY3nLlfaALsjCOxlNGZcnR0RF101Dv93zy7BnOeU6OjilKgcBK82YmDT6taLuWq6srLi+vaNuGhw8f8vitQ/6r/85/jYPDQx48fMT3v/99/uS73+HZpx+hjWJUliLP9QISdlrxwQcf8Ou/8Rt8/Rvf4t13P6ABXly+5smTd5gcH/Abf/kv8Yu//Av8nb/3d/jow+/zk+9/l89/+AMuz18znZWkqSGoNE44ZDMIqTAjvFKQysGqsZ7QWpbVltVmxdX5BcF5DueHdFpx3Xny1Y5JkXK6mEGwdM0G66QI0kZSHVLp49KJb0YWSCOecJ+ktCohMzl5UuCsSKab1lKMxhyf3sH/4Id89vw5Z6/PWS1X3E8C89QQNHgVCEFkxVK2BdK4RoTgxWaZJNw3BXpb8dm+xavAvtnHRD9N3UgDGi8+c+c6yrJkMknxJkqR2xacRYcUFTxtt4fgmIwKNAGNJU9i1KkMg5hOp+xax+/+zu/w05/+lE+ffcpf/s2/zP/sP/6f83/+P/6f+P73vs9v//Zvs14uGRUlZZYyzg2ZUeQ48iQlSeTatq3YV1599BP+R//gH/Brv/4b/Lv/zX+Ptx8/5q//tX+Njz/+lH1d84u/8kskScLv/8Hvg1KizHIOvKSudcHygw8/ZLVa8eEPf0jTNqgQePruU37zr/xGL8jk+vqaar/jH/0X//c4HY7gRSzepHidkaVxWqWlQKitYTqZ8KWnT7hz9zH/4//oP6aqtzTNnkQleOv48U9+Stu1NEgB3dqGdFeT7vY0u5a2seyspbEdvotQ3AijtQS6tpNkjDQRNkiaYgmsWlHw2U5SQILuEw0h23UiAw/CeSuVptCasUnIk5JMa1yfyOGFk9H4ToCOo0IKiBDI0pTEaJTxOK1Zbza8/vFPePG/+YLPXcPH3Z5333qH+yd3CV5xeHTKwwdviSogL7lz5z7f+Po3ePLkKRcXF/zxd77Dy1cvMakkDWVZjtGarmm5XK64vrjipz/9iNevz/jen/2ZJMGMc1TwvP/+e9w9PeFLH7zHarNivVlz9959Tk5O+M1f+w1UgH/8j3+Xohwxmh9QTGbcefiY559+yuXFhTQgEsMHbz9mlGdkmWZfB+pa7AeFKSjLAu8D27oSLpYCjMJkGq81TnuMFxVCkgpQutnXGK3JJ2PSLGE8GUlQQ1cP+5EUxJLIFFDQOaYTQ5ZO+dVf+TKHh0e8fv062llK2rbl4uosps+lUkBrzZOnT+mc4+ziXGw4tmMEjCcjslximZUPYD35JENrxWa9huCxRguPayTKnzTLyNLInIp1htEJ+VgmdNZZPv30E9CGJMu4WV5zvDlCKwNBs6tagk+YjI64vFpxebPh2bNnbDYbUc2mCYvFAVkmVoS0yFlu12SjgoPTE+4+fECWplS7DXmRxWmuwLK1MSwWh/y1v/ZXOT465Hvf+zM22w2bzSryqhK2u4rlcsnJ8RGLxYzNes319TV/+qd/SlGWMQlPhk4Xl1d45zg6PpYQC51gg6fznvVuy/MXz9lF+xxEPEEMRbm+vqZpW+7du8eoKJiOJ0NTKcmEtafTVJgndctyueLTz55x59597ty5wz5CiYt8TJpkUWFcc71ccXx0zHvvfWmw7l2c38jgJ5uhVcvV9SV5LpNY21qs65jPDzhODKvNmq5rh/fcMwEPD6cD12m9XsewGfkss+l8KMqPjk55+OgtvvnNXyDPcwEHVxVffPEFVbVntdlydn4BSlHXe6ztoipcUxTC95nOZjhrJWnMKIo8Zb3Z0XUtF5fnKALdviJxLZ9MMhJlSVRL6rccTzV+f8XmsuN53fH64orry0tGo5Eku0X2Wr0XNb1Ckyb5wGMMQQOSbtvZgLUtfcJuVpSDwr1pG1xnSYzUyUmhhvsihMDN6oY+vUnRe0oUKE1eFhHcKsqA7XYrNuKiiA0EPxxsAtA0DXUtbLV+QJOmOdZ3VLXHtnIAyXI5yHkcRiVonXB1s6RrW4n+1ga32b1xgPIkZUnXdPJZckmqqnYVKMV8LuvWcrlku9myWq+4c+cOhwcHqNgAe/nyJfu6Zr3dcHx8zJe+9CUWiwWz2YwnT55Is+n+A/K8IE0ltn0ymUjnPNbGfUMyAK3zqHg2NHG41qsnhhTtAbg09MreaOzLxtsHMvTJey6IkkK+g6iK0sJaEat5PMgp4llDFFRt14o1MtZedBKsJAMdUfCKbcZE+5MMUa13nF9dUG12LM+v3vg75b9tHAS1bQOomHoldU8/RLdxCEGwdM7x6bPn1FXFbH7AeDyJipYEdIIyKWle8uD+Y64uzvji7ILjoyO+/q1f5Fu/8Mu8+/77fPT5C1bbLZeffBabBIrqi4oXz57zz3/v9/j93/tnWOcxScI77z7lrcdv8Zt/5V/DOcdHH3/MbrNls1yjdcLTp+/xt//230VrxT/8X/xDXnz+gs9fPGcyHfMguTMkwm03O1Jzw3a9JjMCN+/alpura16+esVnn37Gfr+jaWpex/1neS3r6rOPPsJ7x71H99ntdlTVnsliTlmUXF9esdvt+OTl54zKEe+89QSF5vj4lImd0vkWawX+rNMc6xWr9Y71dsemqtntG/Z1Q17m5CahnExoXSDoWtAv1okiThmOT+9RZCVpZhiNBbvgL65EAb+P9jyJtkNnUpOLEyHQWWnIt51lVKYUZcG+61huNqS2JteawqTy/ftAgiI30lRSiaAYkkzWrTRNKIqCNEmx1sqZMk1wUXlZ1S3Vvma9XrPf19FynkCAum7YbDa0XYcbxBnSwEDJeuJsE1U/iuCjDczJcMA6R2IysrRgXI7RShI4XQj4aBcUH34KweJt2ytEpNHkg6QnEUgTE4M1FIlPMGmCjumXqTFRSd1gXUPAgvYSBBHiWTk+9W1Tx2Z4jYoCi7br2K426PuKSTkaeHZpFpEIRUFvTe7XHq86gg6kWYmzjvXyRlAaIZBoGfykiQSNHSxmzGcT/ut//98hzzNO7h3HNMEO7zrwHdeXV9RNw72HDyhHo0HpdWtVdKhWeFwmTQY73vXVFX/2h3/MqCw4PT5itdmw2W3j9xVIlazvu3099BgWizmHRwf88Ic/5PzsnP/Kv/33eP/99zlYzBiNR0OCoVIBpQxZVoLe4YLl6mZJlmUcxuZUPO5DZJNKs0r2syz7V7eVfvbG09BMYdgkizwfOnRKQdc0BO8x0+kQHdgXB+WoJM/zwe6j4xsW5U8gTVJRFCwWpJHq3jTN0OWXYqMgTdNBreS9j9NeHz2oiiwxUsgGmeCpfrAAtyl1BDnsWjfExoN6w3sap7shSGKMZkjy6yeJXdeRm95/GmXEQdgZMs2SX0rruEGpoXgwRkkD741r2U+fZBIdbhVQup9qxW5i/DD9tFZF2GsbI1bTNIkJgtnA4OqTAHRihqh6UXt5hrjdNEEbFRs+Mi3zvj/89loauW7WdgTvSLS6ZWXHzVIbgYBOZnMBNK43+BgtrgioIBMhr4SjlRU5p3fvsFgsmC8WUXq9R5skcmGEFZYnmjLeH8lOCqK6kSYV6tbL2yu3fBDWh0mSOCmTaUivpjo6OuLo6IiTk2MODuaMIyg1BAamFNHjb/KUyWTK0dExSZJSNzVnyxWdc5LaoA277QZFoChyismYYr5ApxmOfkqhoupKeEse0Fk6TOgkocKQxtfrpz/4wHQy4/6DB0zzhNwoVLujVYG2dRg8PToqhF5NxtC5NvG+6aeCg6RcqUEl0G8sIU7NkwgOr+uGar9nt6vws0KaokruQfm9saQLwvWR1x/qJlJza18LChx+qP5EIu5iqkWcfoYwFFJ9Yh9xekMQCatSgSQVMHVwfSqHETWIkgmntpaq2nJ+cc5PfvQjvvKVrxAcPHz4ENt1fO9735eEpGovnzcx0T4WIAKz+7SPREFlWz779BPu3bvPi+fP2FdV5Fyk6K4TIGoELQukVPhGJj7LzjnW6zXL5ZJ9hBNnMbFPuAHyWZMkodEtX7z8gq7t8J1Y21yweJ3gdcpkVIiKxhh8gHXVSdyvkrTEd5++T1EWoDz7zY7druJmvWJXVSTbRJ5jb5m0jmnr4/Q5CHxWKTDyHVst8b6t93gd8EYR4pouk97AJnisj3JwHQb/PEGScrSSdEajFKXWFECtFROvKAATJ7emL7S9rIgiJlMYpSjynDRLpSEWFK3taOtAuwrUoWXnRXlhrTD4ilAwGU/wwQ+w79FoxHw+w3uHSbSobePQoF9WnbXU1Z7lzZL1asVmtaLabtBGMx2XZFnCbFRELmFDVe3ZVZWoAE3CaDRGK8NkNpcoepOS5gXleEKal+gkQ/vwhuo1DADeXl0rB4c4LIn7T3+Y6dd9dTtcjJOxW9Wh6aeZ/bMTf+TRjPtNiBHEzsehmKIox8zmc9abLVonwrDx/VQzIYvTZ0nnE7u0pBWHnhEMqIGpIQktXVzTEPByCATVn8iQQ2+v1IqfoWcIqchgdE1D2zZ4pUgih6JPywlBkh+7zrHfd+hUDpLL5Yr1es14PB4+s0IN6yEo4aOUhSictZYBjlaR29PGVrpM2pEVgTTPyLoMXYl1qo3g5K5rJY2mLGgj3Hm33eGdxBQnkXnR1xvOWpxNyQrZj/NS0n3bqOAWELUfFJXWOa4jgNkDaINJM3wPso0qVW0SUqXRJmXctIynU9IskwNr0w11kjxffTS1KLeT5LaxUdcNxtgYiS7qiDSNN2TUc+jInchSqdN65btYO2U6LOrtfrp7y7FMk5gcHNXA3kliqiTWyRS4qir20VLX13lSx/SvE1k8uk/+lThzF2QN6nEH/SMgasmOdr8H49BJR4IlMwHlO3Adrm0ItovPkAxHghe1c8/aTBLhaWV5MQzc++vS13F9QExvk/BxMu4DYkmI7214Hr2j6wt+Yr2K2DlU6NXof5H9oiLj4xZWKyqLvg43iSYEjVd22Iyd61VGt9xR6GHBcbgZQbjGeRyKru3eeCZ7m5rmlmh6qxLScVhkI/vVdp1EqgcfmWFiGStHJeV4xN27d3ny5AkHh4ccLA54+u5Tjg6POD49Fc6df6NZpCJ0OD74XWS0eCJLCalBNf24V/7jo/2pX1v61xq4YSEql6IV2MRa6PbA+sYiqhjWhV7l0rNnnJemftNI2JJ9o/FEiAq0+Bl0kqK1JzhRXSsjYO1dJdxL29kBND+kFgfi0La/oUOswUQVK+tpGHCxzkn4QPCyB84Xc45Pjtk1tbCujJFQnMjnHE+mnNy5x7sffMDDx485PrnDJy9fivVTKdCGLEmotlsuX59xcX7O9eUVWTmiHMnAVBtDkedU0Qa7vL7h8uySthY7oNEm2oHSCMRP0crIGSPEZyi6L7pW9sX+TNW2LZvVmlcvX7JaL6mqHbt6Dwo++eQTgvfcXF+RJgmTUYnzEnzRA4/75887P7y+0b3Cp69bIpw6KgSFrZOQpJkwguJroRVZXlCUFpSkiVsrCidljAC5y5I8TykKWUN7W22AqPK5XTvE6SPnqLbpSJKMw8MD5rMDDg6OOL+4YbXe4tcCTDdKDUEkUcDSb8DDvS5sNTc8n71gAdTwOW+fkR603z/Jt6qtQM91uv3z4oJROCdDLG0kmd45sVP72EAyRhw1JnLT3mj7RsVn/8T2z1h8jofDSHTbvFHIqL4BfPtHIHB7ZifWUUahnJIX6zlrMfktxFAAowwqiOVXBWLaXEzWC717I2ZmDWeQ+G4V8ffeikwkgVCYzUbLmaRqKzprZbgWBPWC1oI6iGek9WrJar2W5N22JRuVf4E9N/CoQr+vxPvYOrq2pXKOyxB4fXHO+dVlbzgiVdLP2O2Fv2yMYV9X+OC4iunbaSYps1mWCgYpKpxvlz1FZx1129JZ4We52ZSgNTreD/25MgSG5+hn+fmZG0/7tiZ4P8Q4AxwdH/PgwQO2mzVNved8vcanKYdHR9hOJMvHJ6fcuXOP9fqG169ecXZ2QVVVnBwd4F1gs94xm8+5c3rK/QcPuHv/LtfXF+x2W158/hylFG+//Tbj8Zim3VPXlaiQoly3h5cFL1PC8WhKHaGiWZaiYmaSUZosTeSeiUR/7xxGZRRZPhQXRSmgzTxP8cFxcXHJfDHl9PQYrYV2X9c11lpG4xEmSXHWyybmFV57vNLiY403pzSE5OZ7k4sgJy2xAiiM2AuT2HQgqh2C8HOC+NWiOkJOTCoqH6yTxk42KsjGJSpNRDq73EUrhdyyITb8NIrxSJKWDg8PSBLNuCwwGjbbJdY25FmCszXOtWS5QF1D8KSp4e7siC7CyKt9zb5pMFEaWHcNWVnw5IP3aZuWfDzl9atXfP78hdgbkOaUSRIWx4c8evyIf+vf+rciUPKM1XLJerNhGsHmxOLAKM9sNuPew4c0dU2137O6uWFf7cnznLZtWW830g1eLQV26hxf+erP8Zf+0l/hk08+4ubmhqqqaGL6zWa7waSJSB7nc4xJBihmCIbWQpEn3Jkfo0h4fXbJt//4T3l9diGTKxWbDFqRmEBqFEWSkE3G5JMJPisYzxZo5bCdTCt3+4azixX5fMbk9ATVtOjOMhsvyIuSaTkR2f4oRbWa3XzLe2+/x8HhIXffuU8xLvjP/3f/e15/8imfffhDxgk8uTdF9D/q/03Zn8XYluXpfdhvrbXnM8WJOeLOeXOeK7OqOru6q7pbYpMm1SSbgwySsgXIFqgHP9iy+GAIEAwYAug3AzRssGlYA0iKNCmq5a5usSlTZI+soWvKOfPevHPcmCPOvOe9lx/+65ybpAGyfBv5UNW3IiPi7L3Wf/i+3yfpC1aaPqMNcTeW7WCe0bhLsLaybS+bFq+2LsHQc0mOSyunPDbaSHRr0u3SSQIZmGoEkFgjaZJNTVtVKC2fmXX+96aQ/167ywBPQcPqnVBKo1wkcGMbWsSTvNwEB76HWR3yNdgG7Sl0FFLlJUXaEBoP4/vkZS6quzKn1bBzdZvFPOdf/OF3OHx6wm/+xm/zv/2P/zd889//Jt21TT779DP+zn/5X6CqiiQJUG0DdUWaZzRNRpblKGB3c42objgraj77+CP+z//5f8761hb94ZDP7t5lMp1xOZ8SxRG+FxKFIU1RCgvNjyhsRV5XXIwvGI9GBKFP62loW05Pj/nDf/EH3HruJlevXKHb76GN4Xd/7/eZXF7iVZKalDW1gOJbzU6vRz+OCDsdaiz3Dg9p24bf8wyvvvIGn398h69942u88tpLPLhznycPH/H3/8H/i/OLCxrb0A1CdvsDXtvZ5/Wdq1RzuVSs8VBGYTp9cltzls2YVwXjMqObJMRhB42mbSzHl2OKuqFwxXSrlFPcWXwrilJTyRC4oJbFsZG0C08rBo2l2yquhD36XsC10MdXikD7tGVNOp9hkhgvjti4ts9gOGB2dk6Z5kzP5ySdDX7+1a9w3NHc7Gm2Bmv04y7z0YQ0Tdnb28IYj5u3niOKImazCU1TEYUetq2oyhxjfKzbMC6TwSbjMUeHh6SzObauOT+/pK4rkk4oA2gkOvaPfvDD1QA2iiOSOOLjO/fY2drhV//nf4ksL3j09AgVdDHRgNsmZvfKLabjE6oiJc1S5rOSMp2CEntJEHj4viHLSsqqQbuI9oPDpyijCGP/2aDMNR3aJVQJB0yimz3PiPLCNsjxqbHKgPJA+ygjhVVjFWWjySrL+WhKg8flZC5FuZF468k4ZX24w/bWFZTymYzn3Lv3kE8/u8tkMhdGAx5to0gXOZ4J2FjfIvRjijx322lZRikgCHzHVZRIemshLUqxHteN2L6aFqUbKYKUwo98JtMpbT6nqnPatqKqauq6xbaGs9MxP/7Rhzz//G32ruwS+wmVXzPoDvCMJpvOybViYTQbw3XWBgPWBwOasmI2GQOKqBvRKJhnKe1i4b4XixeH/NY/+W2sbXnrrTcIkwQvXzCZjDk8OiT0fELPd+yZEI00SWu9vjB7spxkMGBzY2t17wahqGXwBc66u7u1Yt207lmcp1OKvCQIhe/3e9/9rjRMTU2302PQm7tEyJb14bqAoDF0e31efPFF6qbh64uMDz/6mE8/+4xFmtFay3A4RGlLUZa01tLtxmT5nHv371BWYrsLAklEywqnlls2JQ1EgaSULhYzpnVFkkR0k4j9vX3SNOX46BijBLzaibsYY+Q5UNmzrbvS+EFAHCXMpnM+Hn/KD3/4Y+GULWYSEFIUbiDohphRRBzHeJ4BB9oWlmjDuUukHQwGTCdTiiLH82Xou7e7g21bjouK0AuIfZ8k0HR8w1y3lG1BYqAbGPr9Lsoqbly5jvF8orjDbD5nOpnQG/RJwmQFB0+SDkVRMp1OVg5W7YbCyxTiRZY9W4K5xs+2LUZDWy0tr2JrLxsBq3vaw7gac+mKXWSpSzU1RHGMDhx4HQiTiMDzmM6n1OPG/X4EcO65976ua4qqoM3lC3Y6HfwgoNPrSEM/m6FURalrjB/QiWJhpbYNaeXUUb7vBnIG5SNKFCxlLdZZzxNO0JINGDQRcdNlkWVkRcHZ+TkoxXtff4+r167xzW9+k431dfavXFktwHxn9WlsS+l4TMsBUYN17EFnvUHa1MAXpqr29LK/lKbNR870qgUdYC0U5XKbL0gN7RkMstQsHMxXqVrskZ4MVFdQEcuX7ObSXNWtMGpVa1eM0CxLKcuKygUA6Uaa3baW81x/ybblK/mes8mEqipJZyPA0O0PkQbaNbNaxmoWx5VxLELrQMrLuHfZ31sXQtFSFSWdJOHalSuU3/gGg16ff/iP/lvufvwxt197he5wyMHZKbEf8Kf/7F/ghedf4N2vfpWzswvOzkdcnI1YLBa8+/WvE8UxRZFz784dfvDFH3J+fESxmLG7t8/m9g6LNOXk5Jh7D+4xny/47LPP+OLOF3zw4/dds674/ve/j+/7TCZjup0eb73+DlVdkBUzUW8ZAdqHfkiRF2SLFGyDbWvKIiNLF8xnM548ecLZ2SlJt4vxDBfnJwS+z87GOos05/TshNl8xnyxoFWK4dqQbq9P3O3hxyFYhcGQzlPmswXTbEJapqAMgR/Sj3uonU2GL9yiLFpu3RyzNhyKHbEW5dn65ha9wTpaewwGXabzjLqBOOmgvYAWzWyRkRcVB0+fMp1MCcOYOCyIwxTPBICmrRVNqyDwaeqGk5MJL774Mn/5r/wvuX7jOrdu3eTv/71/wHf+xXf44Pf+GW2V4ysPozw8a9CN1Nh1XVM1NVlVMCtSjk9OCaOELM/JV0l1jWNSCZPVeFLXh1FEnhdMZ3NB45gWZSzas3iewvNhMc9khmMilonj0+mU01NJmrx27ToffvgpF+eXDNYTCccxEPqR+2zljJAEYEueCedviJFlr5awAdvKMNZaVkN063rXtpZ3SX9p0NrYWgQGTUndVuAQDZ5vKK3Yuj3k67QuSlx7WoagaGorCeCmVagGdC28UGUs2IYqzTFGlJcCPX8GjJ9Mx1RVDW1L4HnEvTWiwKfIMhmAdhK+/93vcXBwwMHBIf21Pr/wy99kd3ub2zdvSZiDUXz04ft89uln+EnM5vY2/+5f+Stsbm4yGAxEzNOUxGFEHEYUTUVb1dimIfR9bl69zmwy4fz0hDt3PufO/S8IO7HMFupa5iLakCQx29tb4hTKc1555RXejRP++C//MW7fvr0S1CzDFIxnKGupZY7PzhmNRoRhRBxFkiQaBCSujlmmUzdO8SaDJ//fOE/6qQdPRhvxJtsK3/MIowjf82jrmrIoKIuCOI6JotAlobRO3VRTlgXzuRwcYbiMKJTpqecbut2EnZ1tgsAjz1IWsxmLdEGvK8opz/yr/klWKSdxEgOKLBPbFu7BaJqa1oo/3glBqGzrsCVycdet+EdFNl07NYCW6bWSBkpUOstDXYvn3qmj6qp2Q53VClqUGSI5QTt1j7vx3N/VK7j4covXtBatRF4nmw43ZW5dnHDrLtsvX8Z1TdOIpUm5LV+WSyTmZ5/e5ezskq2tDZEca73yoS5Ht8oY2fq78aYfCACyrKRp0U6uWFYV2vgY82yv1LSWqmkpypqybqjqVjZSbkNTlzUXFxcCm+z3MFoLMLRt3BRaNiSDNQGZ+b5PmlqyLKdFfNhVVdM2ldgX2xbV1hR5LhyQWjYa8+mUIi/ctlSgn9a6yGlXzFhrKesSPIMfhyRG43m+eGTzgouLC4pCinzZgMhPuRz61k3LfLHg/PKCx48eMZvPwbb0OgIqXCwWlEXJeDEhiUL89TXmswnj2ZR2sYDWij1JK4Kki5/06W9dAc/DhgGB59NUwkHwtBJGRFOTpaIh39reYWNjyMbmBlvbu0SdiDe/8i57mzs8too2nbHIR+il4kEplBL+Q2MtupEC11pRArbGgPGFX4FapZAtmS7KrXKNdlHNykLbyOddt8yzmtKAUQ0Gja88sOLRt0o9g+A7hZ2kW8rvsmHlrH52sKxejyVf6pnyQRsjapi6kQ05zn8uDEVR2linunCbK+3JNF7TgGppVcvleESL4v3336dpa/Z2d9DAa6++Sj6bMJ3N6UYhg06PRVbQ2grtOV6I2ywngRzO89kEtJJkl/mMpirpdxMGgzXW1zdRKDfQ1pKYWVfUdUUUhHSSjqShuAIgy3JOTk/QWrFwDW9ZlJRZJioRmdKhbYOtEY5GG6FaH9vUKGslIc22VEXO2dkJn3zyIZ1BCKqCtmFzfcirL77EwdEhH3z8IV7ToDqSoKg8TUrFyObMvVZg3rohrxvGTUXWNOTWolvH91LyfS+spcJijXkmGbKy5V+ez3a5PW7EmtkCtbUCe2yhsuC3FWkLXt0Qa03f+GAM1llLaFrS+RwNFFkum9BWGFSmbbB1S5VbUj9DtYqsLCmbhjhJxNbiHry6aUgXKbPZlKqusU7dUlUVpePUyGZV+Cn9vkStW9uQ5ymtrcG2eA7OWxalW9YpjC7JUDx+8oRFmtEdDqkbS1VXeIHPWhLT7wtYfjrbpCoyqvmcMkuZnJ8yn0mSlvErjFdhjEdkfPKqlsh19z6UpbN/ILL8tsE1S3opInJNEasliqzZeTZFbpdKQ6dQaCrKIuXi/IwsTZnP55KY5IcC+s4y2rYRa5hnhOESBERhhNYerP7dkj5jEQZTnheki5SiLKjckEM2tWbFY1B6mfTq7jpEsdTpdZzVfUDmFgzCBVR0Oh3iOOLy8oLpbEocR3S7HQYDYZjJPdPFGM36cM3xqpZb9JIojOgmHaqyEgtY3aCNJkwiPCMJWmkqiy3fD4j8gE4nZpkkVdcVk/EEpTW3bj4nw59GCunZfE6apoAs5Nq2Jc9z4jh25/JSRWtlm1wB1sPEHq2WhlG7wAAludqi0lWK2imwtTH4RoYAjeMYiTJA0bSS6DpbLBxgek5RligjNkWFpB/GUSRQ5EYswMsttOdpl8gGqJa6LpwSz1I3EsEexTGhjRxDxRfls23Ic0+YT1Ullijj2Cz4eL5H2AZOzee24U4hHvies2FJEtNSed3v94AvPcdtA9a4xKj22QLPWgdZdzZyNwTJF6n8jK2AdlGi0GmspW4tZdug3ELFIlHreZFT1jJ80Y5tVDvgN+iVwtQ2LfP5/EvJQ24w56LvRBVjnYrDsYbcplycU/bZ/ei4I7VTOLeuSddOQYVShFGMMZ4sfJVyUexu0ejJ1/FcAp5W+ku8FGfrUlLNqNWz165SjOu6ARcH7nm+qIWdmsrYZ1aPpq6o25ba1hj3nK4WRM4O2rpUq7ppqJzCPQgk2fD5518k6XR4/Y032NndZW9/X9IJ49gdTcvo8Yb50o7klLOtbeVzaBrXBzi1G4o0LdwZLKwsozW2lf9t5riFXiAx50sFkdYa3WhU7ZwHSiC6rV2GMICta6d6aFd1Se0YT3UtYPh62di1rNg9ddPKo+p6nxVmxSWmep5EmwvyQAbRRokdOa5isBqlApbuAs99z0tZi+dLAl5due+laV0SokddNk594T6TpbqnqhkMh7z40kvs7e1x8PQpdVGQLebC8oxCtoc32dzZIUpi8rLkYjSiqCqquuX8/AJrWx4+uM/J4SGj0YjB2pA3v/Iut194keHGBvN0zmw64+DJAUpptre3OTk6ZgmFt61lni6Io4i9/X3iOGZruElZ5kxmIy4uL7gcXbpnsl5hSUA59WtAp9NhfX2dg6dPJF2sjVmyajxPLNXaYUrOzs65uLhgd3ePjfUNVCOfW91WFHnJfLagqmqsthjfEBCQ5yW1rghDOU+KPHcx9RW+Z+gmMUVV0pTCasyLSlSfobdStRV5SVlMAVksRmEovNIvKTaVYsWeWyrdBadiCUNJSN3Y3CROOtQWur0eW1tboI2zMiknpHD16bKvtGD8gDBJuHLlKvvXr+HFPhhF7VLsWFrurZxBxv1+tTESstPvc2X/Krs7jzk9ORGucVlJv+3Obe2+316vR5x02dndZWNzg83NTeq6ZjYb09pWVFnGo6/XUGr579NotIg0LFi1VMg4bdZSGOXUWF9uE9ybxJcb+hZNs5SHt6JslRRVOTOaVu4vrduV+lEtv4Q098LIbGthBy6/B+Sw9tyizC4Tw5UopwQk30hBpeWemc0z0iyTXtgtFSySvJsXC/xMk2cL6qoUNa1VVHWL8X2COHIqs6UriBWMfcmK/vL/tW7w7Ac+aCV1VlXS1BWB6RHFMYEnM5j5YuHuW0Wv22Vv9wp7uztsbKyzNlzDeIbZYiE9n+chV5EiyyvSskL7HnEnQbVSX6aLBapt6cYhbdtS5A1FVVHXDbnD4ww60b/6wf3//PmpB0+xH1Ormiqv6Hd67O3vApbZZMzl+TllWXLr1g063S5xElLVJUVZSaOuFCcnJ8xmM7a2tiRV6PSY1kKnl7B/ZZc333oVbMPx0wNOT0+oqopX33yLIAiYz2doHDlfidTXCwIirdne3kJpzSLPRfKqGupWQG7ywQS0WpQZZS3ckSgwVBrKpsZq8AKPBpFvVHWFV8omRBlD6HkYoK1qjFUEJnBQN8jmC0l0iQIwBnxhqtS4S01rV/S7l8PB3MqyolpkaCM2t6pqV1Nh3zcoJXa+umYVJR0E0sQ3tqapW7I0RSslMZoatGk5Px9xfHTKB+/fIUli/sr/4i+wvi6MizhOGEQD6fpUi/Z9tBdSlg1l1RInCaBJ85S6FQ9/WVcudSh2E1pL08I8q1ikOaPJTOIim6WCRaFjj2ye85M/+iE7O9t85Stvs/Pm6+zv75Pn8oLUDpYYBjEAizTl/OKSp4dH9LpijTk5PmI+m3F+eiYxwWUh8s5CLDWe77uCVRhBxhiGwyG+VlRZtbLlFWXO0+MD0rbEJj6bW1v4xsfTPos047PP78oGsD/AC3y3TXRKKwVlWfDkYMzJ2QkPHtzjxZde4uaNG7zwwgt0u13u3LnD+fkZB4/uoDc32Ny8zb17X3Dnzh2GcYdOGKC7XaIgYH1ryOb2Dl/5+s9wdn7Bg4ePsQrKrEC3LUZZFlVK2TSM5zmbww1ef/NNev0O/X6X/mBAFMf8B/+r/4gizfid3/4t7n/8Ef/T3/tvSEzLemQcE8cjbyvxjecVShk0Aa32qL0QGwSYIMTXmtC2aBoUDUZbjLIY2xIaTS8OuVQWVeXMc0mpqfMSbRtUldGPQ/aGfYzno/2AgobaLoekmiCICVpJQSuA2q5EfnKxIAWySF09FHoFBVUKjC9e67pOaVuFIoDa0uSVwGabhqpp8NuGtnaqijAUYPlijjKWcNhhPBtzdnbK3/i//g329nf5tV/7Nb72zlsEtHz4wx/x9//L/5oXbt1g57kbnF2cYGcTMHIxFarFGsVWp0NWV8zqgpPjAxaPJJ45ThLeee01rl2/zo3btxmPp3z22ecsZjPm05kkSNQ1OxvbrHX6pNM5hc2pWstsOuf45IjPPv1c7K2I3H/Y7RF7Hn4ghXRUKuqypipqOqFHEgcYLbaOG9ub5GXJ+WTM6dFT7t+/z4NHn/Lc87f4X//lf5+3vv4uL736Mp/evcN//H/4axjVst5P6A4i/EHIicm5V49oooBWK4omI69KLrIFqpXQiKqs0a0Fl/Y5w4LWJHEo33PdUmtJVdStzGSWYFqb19S2pXbC7bqFqYKZVoxsgVcXHDQNQxPwdnebwPfwO6HEE+cFB/ceYbDEYYTWmtqCV2fksxHjacnTJuOiPxA1ihIQdH+4hqc1TSm2Ke15nJye8/jhI2ZZBqFHkZVkacpsPCHzU/K8lEFBkrC3u0Mchjx62GcyGfHk4BFaK7a2N6nLimyerpQNdSGfyx9+57vEcczZeEy332M43GBnb4+r166zt7vHYDggq3PquqKYZ8zHUx5+8jkff/ABn3z+jykKqPKWK9ev0OkkVI3FovGUR1m35GW9apzKoqWqLVCzjCxutNwVnm5pAivsBasE6Fu3ojSsW8o0R3ma0A+pqwXTas7Z6SF13bJMek3iHo1rsMuypNuLiZKQMPTY3tpiOpny6aef45lAuA/aECYdGqWZpjlHx2eMLy4xvphf6saifYGy+8bga2/FMEiL3Kl6G0yg2bu2SyfpcO3KDU5Pzzg+PsbzfFTTsu94Wp99/gllUbK1PeTmratcXryKH/gYY7h6dQ+wDNb6LvXNZzFfcHJ0wvraBlsbO4zHU+7ff4Dv+0RxzHC4TidKuHXjJk8Pn3J8fEwnien3+uzvbqO1ZjKZMJlMuHvnC1559VV+9Vf/Ihfn55yfnfNPfvu3+eLuFwShz9ragHe/+nWM0UynE0n1LSpQwreonZW9bloCP6Abd1HWoHWA8RqM3+L5Ab61DIaS8rajZTnT7fdI53Nmo5HUEJVEkFeOq5HnBXlZMZvPODk9RSlNp9cl6YIxHtvbu0RhiDcaSVz6ZCSpRqG/gqPKQqyhKCQYRnhQMy7OT+j3BvS60ghFUcjT4yeUVckknVAUJZP5HL/wCfMFvSohCgPCyCeKJGxmmTwHkqYoNvch4/GILMuYTEKCwOfFl56nKiouzy65HI1ErVlaYf85YnNdlYRhwNraQADlRhGGAbZtOTo+IE3nbG2u43s+rVMDZ60MUUpbYcOYUEGFoS1r5pfnLIoW7Ucy6G1ayrqhqGusNijjU1YVZZkyurwQaHnSWbVDZV3Q2MalvGl84+N8INJ4aYUTCwuQWylCP3KLk+UgvEG1Gmu0LL+0Ybi5je/5HBwcAook6chQd57j6xbfKDqdvkuMrp2KKRXLo+/Tamj0ErisBF9RVaueTns+QRSRJIkMCWxL6In9M/B8iqLg4OCAqhLQbLfTpxN3oZY7t2lEjZxnBXVdk6UFi3nGZLpgbbjF9vYev/Lv/Blu3rzBc89fxw8CUAJNzp0Kw1rIy5Kyqjg6PSUvc5fg5obueUWeFWxsbNLtdvHcQnE6nToroiR8BqEEeFR1zcXpGXmeMxiuE0cx2zs7GM/gec9q8qXlcGlt6XQ62NZSVLmLpK9W0fB5WVJXDdPpwkXHs6pHlxbIKIpEhUUlSg4jNvpVelgQ4HsGz8HhxZbfxbYtSadDVTUUefUsJfhLTiSlFHEQAtBUrRvUta5ZNORpSlPVlFWFRQIDsrTgkjHbO3u8/vobfPTxx2RpxqeffcxpUWA0DDeGvPb6m8RBQAucXpzzxcP7LLKComr5/nd/wNHhAf/o7/9doijiypUrvPdz3+S9b/w8zz93jW4S8Tf/1t/i5PiI7333+1y/fp1f+qVfoi4rPvjgA3EYFIVwceKAn//FX2B/b5e3Xn6FIs85H13y7W9/m9/8rd8iiroEQUxRFpR1JfefH9LrGq7sX8X3Ax4/eci9exVGQWAMSRgyGAy4/fwLbG5ucu3aNT7/7HPu3vmCr371q2xvb/PwwQNm0ylKa87Oz3l6ckQcR3S6CYNOH7AcHDzFthWbWwO6vZjT01POz0+YTc6J/Nvs72xxfHJCsVhwdHDEZLagoeV6eYU3XnueqigYXYyZTGdkeUHsJwz6fb7ylgQV5VlKVeVobfF9QxT5TqQgPQZKs7m9xfbuLls7OxRNwxePnxB1O9y6fQtrPBZFTdNofE8TKFHMtp70xKZRJL0eupvwi3/6T3L12lWSrT4qUOTTGXWvj6pb6rahQNIzvVbOGD8IWFvr8dzN5/j5936JMquwTUPb5MwnixUfLAx8skxTFhW3b7/Aiy+9zNvvfJVr167x9junPHzwkP/2v/9HZFlKGBiu22vs7m+hldTmPh6h9QmswbOKihqNDMRWNjktg5fG9djGDVsEK2CftdMoau3TWFDWg0ZTpgVNW+MHAXVbO0h8g3IiDvkeJByg1i0S4KfImoJxNmOblsYoGgN+YOgOe3IX5oU7LZ1tvRaWlPYtum5ZzBc8PTxka2eXrGgpKzkXwzgk6UZ4vkXpkmIxoS7WMdqjri2LrGZ9a5frjWUyPafX6xB6niTGNY04B2QTJMs7NMZq6qKiqRp04NNqy6JIadoKzyi2NzZZ39hkZ/8KTVPz2acfCvLCGK5duc433vt5vvLOW9y4cY2mLSmqjCcHT1HKsLGxjWc0gd9wMZtysZgzGAwYbmwwPbugLksuT0+xawP2tjeZz1MmkznTNCUrS+ZpTt203Njf+jfOk37qwZPAoy1BJEDkZWqNUsiBGwRymeQF5+cSs1kUJTCjqgqSJKLX7xJHsVxQWUEUhdy6dYter8fFxQV1LVM7ORS6jC4vwQ1qkqQmjBLKUqZrsglWpGmOAK7kEa3Kxm2ClVw0vkdRV6Ic0D4KqKtahg++FAlt6wj7xgMn5W0aiaYeDAa0bcPl5YgoileJMEtGR9MId8Z4njiJmsZFXiu3SRfZsGecFjtYDpg8UVkpJ2/3QoIwwvdDVv755WRay4R3ycHB4jZqrHzgIAycthWVRF1XPHzwkHQx58UXXhBYpvGoG+FQtFUh0nfk59ze3KYoSmazBW1VExpv9Y+nPDTigW1bmKdzWqDX6+L7AZ4vkk3fD9jb3SUMBeIehhLlnmU5h4eHzGZzsixjvpiv1GKttS61bc5odEno+/i+KN+qsqSqJJFuObUlUKtLnCBwP6vzpi7VZk4RlmcZZVlQ1RWdJAHPMJ/OiYKIG89fI89yjk6OKcuCsi5XvJWqKiUxyPgiW/cNa2sD9vf3uH7tGvv7+y5GEzY3t6TA73RJYhma9QdDNjZ3uLa/z8ZgjY3hgDAMiLo9ojghVZpp3XCZZvi+L/aFqsFWDWEYEXoB3Vj80ZPJDC/w6fQVWVnTUNLvgRdGPP/qa4R+wNN79xifPOX04AFdLyA2AaXWwh3IK6wtUY2i0R6lV6K7fVQQrRgUsi0VRVRRVpydX7K1vcuf+dU/x/n5ObPJlEEiQGjSBUU65+TJA7LFnNPxJUHdyP/PuCSsVgZPjd9QWos1SyG8S+Jo29VmYcllWMo2ln5whdsuuPG/SOTdpqSxqzQ1tWLaPOO+2dYlXSBbyzCMCHVIUzeML8f8w3/wD9nZ2WGt22d7b583vvYucegzLktGswWT8WylMoiKFoXGNsJR6SUhpZ2S1ZKs0uv2GA7X6fb65IWkfyWdZFVUoFNUUTDJphJdrTVmCYttK7dRERVm4Bk8bfBDH6PA1gK0jYKYRjcEXoPn+4gfQ/hyRil8peh2evhBhfGl8bh3/xE/+PH7TCYpV2/eZLi+yV/88/8u84sLZkfHPDm74GIy5fFoxLhtadOCFkvVSrKYcuD4xikFrPPCy5UvjdRStVJ58mF6SrmEwlY2SshmSYGo0NxyK/CXnAdZJyhbUWjDQ3K6ymPD9wlQBFY7q4WwEYwyYDRGezLsSlOm4zPOjs+otabfH5DECbeeu47xJZFqli44fXrI00ePOXzylKIsCYxPbnPyIuPRo4fCZNKauhKbj6cttAm+7xHH0ohK475DN+mw1uvz+PFjnj59yiLLqJqKwPclVQRLmeecngqYu9mtyNKFNH6hQHw9LyROumzu7vO69hgM1rg8P2F8eYYfd2mNR9lAYzWDtW38MKC/trY631rXjXQ6HaxtefL4EXmeMZ/NqatKLF9FLveTGwwNhkP8KCat7SqJtGnq1eZ+mWa5Ui+6jZvxRKpttKKuK4ktTxKxgNhlco7jxlhRa9rV11/ejdLYLVPNamerA+E9og2ekXNwbW2DTtKhPxhyfj5ivsjJsxKLWBk6nR6Ls1NOjk/4/ne/izEet28/x3QqKmkJBKglCcv3IBR7sRcIfHs6m0nKlzFsbW87BliXOJavDZrJZMrt527z/O3nV0mUd+7clQSnrR084/PFF/fwPI9Ot8NX3nmHGzdvrn4/3W6P2WzGw4ePpIF3ywCtNYuFqMripIMFJrOpNLeOIRnFMZ26S1gLhzCOI/c1u+zt73Hy9IjHdctkPKHJK8JAzoGsbmirmvlkIks3Y1hf31gpAbBwdn6Kta0o0mkJQpHE17VgEbCGqhQmi6IljmOuX7tOXdcs0pTFPCVdLLg4F6WFZzSeFzrbUYttalG9atmyV7al9USdMZlMnK21dunHCZPJhKLIVwOGwaCP53uUpQznwjCi1+ujlBZ2TtuQu79vtBEI/3zBMuWtqoQtJGD5kCzPqLwaFRjSquDBk6fEoSYOlEv+01ykM5TO6fY2xF7gtrd1I4ogYzyqUlSNcqDhVPuKJZPQIvwngyfsGKUF1OsUTm3b0DQlpcNDiOJf09iCJevD0wbtu/RA5e4AIxZULARhQF3VTKZjsKJe01oGeHIiqFU6bxgGLpCmdjBjV1G2lrIQlZvvBY5l5VHkJXmWEwSB1MRu8YanMMan1xtQliWel60g2q1T9XtODabdoKvX7UqAjlbs7O3ywosvsra5jh9HHF+O5dxQTjVf1xSFLImzTJKq0zyjdj+H8Md8yrKmqpb8MWF2St0uivSyLJnVKfVyoGYhzwV8nGWFq2tKvNajbY1L0mtWw9YqL2jbltF4Kop524ric7FYwezts5tvpeoFxELurM6eLwtgYwJ3P4ryT1K6vRXPESV3atu0aLOsEzTagIQCWlGDLHmTS3afe4+1loGBmC/k63nGkwWe79G2oQxjtXYcNkWe53zlna9IXPp3tmnbFt8LaBpJu0znUw4Xcz777GM+++Rjdq7coN/rEBgo0h4bg46YNsoFVT4jT2fEUcTm1hZvv/025+cXBGFEVdf87u/9Hh99/DHj8YR+v89wuE5VC//q8EjQAHtbYjGezKZkZYHVosBWniavK7KqQNhpLY2yVLahrEs63R47O7s0rdwh77zzFmEYcnp2xuVoxJMnBzw9eMrR0TG9fp/xZCw6Ga2ZOxD+tWvXuHJln1vP3WI0umQ6m3I5GpMuUvKiEGtv1KFtWybTKZPphOlsQl2XiNUXPE8UbEFgUNgl/54g8ES927a0rYD467KiLitsI33iv8TlQpSsuOS4k9Njfut/+LYMo63l+OCA0cU5yaBLf9Bj77kbtFXF5/fuCNcvjuV8rGqKLCdrKs7PR0RJl+2yobXKwfp9lNbSe3oeVV2TLjKeHsgQ7qvv/gy3n3+BIAq4fuMGVV3w4Qc/4vLyguEwQFtFXbUkcZeXXnyZF158iZdffo3h2hCjPfZ29wB49ZWXKYuCTiei1+8RRhHGF+VVUzeORfeMZbys/UW49UzitExxW6miVwMopwxWkq635DYtmW9WXjhZZFu1+l23ODW4kZqyLaXHG6ytoZUWFlktlj/f8/CMJ7ZeK5zmtpFBe+l4dYEvaUZlKbXJcDik05UU+SXPaYm5kX41JIo6+EHsWLktrS2p6pSynlM3Oa1dCjykd5Plg/s9OBs3Wu6CNFNcjkaEUcS7X/0ar77+OnmRs7W9S5x0SIuSxWJBnudEYcjV/Su89tprXL9xnW6vB1qzWFQssoLLyQzP+PQGQgw3VsmCqGrxtSH0A6IkJsNycnFO0dQk/T5pmjOfLUSp2Ejisre8J/8Nf/7/GDxJikMYBWijyItcttOeR6fTkc1r3ZJWGZPxzMlPS9mcqYYXX3yRnZ0d8rxgPk9ZpDlRFPPSSy+RZxlHR8eUpWyE33zjddbWBtx/9FgGXManqmo63R5FUVJVtSTOtjCbLZAdkge2oSgr2bAuX7LAQ2XiH/V8kRtXRUkUGHw/cA+wwOSM0U4SKTBGHfqsra1zeXnJ+fEJ29vbJEmCQYDeWZYivI1Got61FO9t43JU3UBIa432BL6qTeh+o5LSVdcVYZTgeRFRlOAH0WroJKDM5eDJriIql5erSKiBxjqbmTCltJam/e6dO6SLOa+9/DKB5+MbQ1NDU1W0VUZrazQtoe+xv7fPeDTm9OiUtqqIjEfk+URegKd9Jw+01JXYFOJOwvrmJoO1If3+gH5/QKfT5bXXXiNJYtq2YTGfc3x8zHw+5+jokIuLEbPZjNPTU7Iso0gzB3St8TxDFPpucGaJw2AFZl0VckYR+JJEFQQBvhHbRp7nbltnXRqCDBcX8wVFnlNXFcPeFn4YcnJwTBPXXL9+jfF4zNOjp1QuoaGqSgA3UKwJOh4G2aRubm7w8ssvcePGTXZ298gcNHFnZ5cwCOn1BnS7fTpJj+Fwi6xoefG1V7lyZZ+NrQ2CKESFAUVZcX424rIoOZun0vgYn1nZ0BYNSRwSGA/PpThfXoyIOgmDVtFkFXnZMhw2dOKYV956m+HGBheXF7z//e/w0d3P2UwUAy+kxqNuGkazBXVVYythj9XGo+uHdPsDGiQSWLsUSNzg6ejklCtXr/PNX/q3V8PVQGtoGsbHh1ycnfLD7/4B9774gjvfOSbRlsRYkkDjGyW2MAxKNxS2FTC1FdxqiyQ/gscKmM+XLmEtgD6xKdQ0FrRqwQi7QbVgK3knBFy+lNAr2lYAyK21wstQ8rLEYUSYROT5gtHliL/1a/8Pruzv89f+93+NvWvX+NovfpOTw0OePn7C+WTO+GIiFlmliAOxPwVBSNwLGKwNSauaeVGQdHtuyLhJvz9gukglenQZrmCMVCNaU5yekmbpyk4il4ukNGFllNCJQrExh4E0CfMS3zPEYYwNpDnzwhBrDNYVMAbZ/PWNT1U3JEnF+WTC0+MzfnfwXR4fnPCrm9usb2zyH/4H/yEfv/8B//Bv/x3uHZ1wen5ChfAzbF5im5aGVqCKVgZijVI0raWhRa/UaHYFsW61JE96gGeVwMZlHSzHn+8YbU7tZjR0w4AkilbBC9SGnJbPydjQAZ72GFhFZM1ShI1WwixTgY9vPPwaqvGCyZNjDmdjxnnG3tVrDDc2uHnrOsYPMJ7P+OyM9z/6iNOnR5wdHTPcGhLGIVmbkmUpX3xxlyAM6fa6riER1RBtjR8Y4lasVsYY9vf3uXHtOm+8+hq/87u/y+XlJbPFnCIvGG6sk8QxRmmKPOdyPGbQ71MVOfPphLoq6W1u4PmB8Cxizfb+VW499zx//E/8Cf7w93+XP/qj760axryCujUMN7bY2FjnpZeeX/HnAjfkHw7XqOuKP/yD3+f4+IiPnx5TFj4Gu1KDtlZs1cONDZKqZlFZsjxnNp+L+qOoMe6crcsGNC5sQy4Zud8TFzwhKpMk6bhNnHWDplYaW9tia2dZR+4ipSAMfYxWK4tP6Xgrcp80aF/jmYAojBkOt+h0uqytbaD0E6bTBYs0Rzt+Y6874ODggMODQ37zN3+Ld7/yLn/6V36FL+7dExVPUTjOj8BsxTLV4AUBRVUxGo+pmwY/CNjf36fX6xMEEUnSlchgFKPRmPX1DV577XXOT884Pz/n6cEhZVXx6muvo5Tiow8/5ubNG9y8dYNv/PzP4fs+48vRCo59cTni8zt36Xa7bG5sSFPveZyenVHXFXv7V0UBOB6TJAlra2ti9zbCaGnbhm03GOv1uqyvr/Pyyy9zN/6MxfmIcpaR13OiWBQPZZ7TVBXzNEVpRewHXN3d5bnnnsPzfKq64td/69vMF3P33xkZZtSVJP2oEExLWQiPKQxDup2E1195mZaWtMj49OPPuDg/ZTa9QCvFzedu4gc+iyzFYKERnltTQaVBNTWYirppubi4kJowy+n3B/h+wOXlJU1Ts7a2RhzHbGysi82lyFFWIN5rvgzyJrOJDJLcfWSMobUtk8n0X6pTrbMMhEqxyFJRvUURiyzj6dFTup2YfjdZNWKXoylWaa5cHaKwUrOWBVkuHDjP+BR5sRqYKaVJ4s7KfgnCVDJabBnGKZ6WVhptlCy/soq8FEWS1jLwKCpZqCWhj9YG43srW2Dk3vHl8CiKQxZtw8XlBd1uj/XhBlWdU9YlrQvgwTFQ4jiiLEuXBLiEo8u7WBYCDA/8Bs9TmMCQphnTyZjhcEi320XZRhhToQx+1taGFEWB74tyrSiL1TDEOIaLUXoV5JLlBdoY9q9d5dU332C4tYmJQh4fH6+Gvm1rqaqa+XTOfDYnTQWsHYbhCpru+6LUXw4B81yGEWEYYzxnn2wsi0XOfD7n8uICz/PxvWD1vqVZTmMliMZvrdxldU1dlauwovlCVDmXl2MZDBrNYp4yuhi7gZIhDAN836e/Nlidj8YYYfOFmjAwaG1RqsEPE4zxZEDkahxjjCyNcMsDpy5TjZF7UmlhLHoa4+Z+TSPhIr7vwMVucaOUsz15ZgU2N8vhXxh8aSjqOFVW1Kvv/ew3+Oa3vsX65iaXl5cEQUjTNAIEPz/h6aP7fPD+D/noww/55b19hsM+dRJgq5T97SF5ltJUC8rFmMXknCgK2Nza5md/9huMRmOeHh1ycHDAP/2f/imnJ2ecn1+ws7PL9evXefL0CUWR8+DBA+bzOTvbW1jbskjnLIpUBk++RgWGvClJK3nehGbYUrQVWV3QGwzYv3KNx48fUjctP/Pez1LXFb/+3/93TMYTxqORS7VLQcHOzg4vv/wySmtmzqHy/PPP89bbb/Gz3/gGd+58zpMnj/n4409YLFIyZ48OwjVa2zCajBiNR1yOLl3olCxS/MDgxwFRFKBUi9aCpwgjH+0pyqyktTVVWVOVlVjO2xbP+M8A43JgCcbEYQEODp7w4ccfSUiHH3J6ekKaznnx9m2u7O9z/eXnmYxGjNKFWJ+TBJSoYIpFRlrmPD08RQcxt4qK1iqiOMF36b3LAWhVVsxmcx4+fMyNGzf4k3/yV9jbv0oQBtx+/jZb2xt8/vmnzObCYDZoqsoyGAy4fv0GL730Cq+8+vrqWbty5Sq9Xpfj46/QNDXDtT55WTDLUhk86Wd2Wm2Es2af/RZk+IRbOS+n8VJhONGFcueqgMu18lbpua0LtWkBqxXKaAdg956pJhGGbOPAUW1e0O31WR8O0dqQZ5lTIzf4nu8GTxLsYLRYWctSrJp13RCFkfRLhZyF29vb9Pt9h+2xDhWzZNX6RGFMHA8Iw8RxdBtaSsp6TlFOKauUpk3wA1FlLjEiEiQhtkTrAmaCOETNFGfnZ9y8eYOf/7lvsLm5yfr6Or7jVf/4w484OzunrloGgz5vvP4aN65f57nbzxEnMY2F6aJiOsu5uJwRBAHbu5VYgq3C1hbKBl8ZQt+n7nSomobjiwsmixQdhJRuYaGVnE9xEH+pdvzX//nprXbOh1hXJWWZU5aFQFF93ylw5ALQ2rC1JelfnueDU+/MZjOshcVcAHzr60PCMOSzz+7K5lsrkk7CMI5Z39hifX2d4eY+bduS5QVFUTIezSmLmsCPmC+mZHlBfy1BG0PdyhZGQHs1jRUq/7K3VUjKFhZaFL7x6CYdjBEg8/LvtXVNhWU0mtA2DcO+sHw6nQ6ttaRpRrxMQOPZ5qNpLUVRf0mRtJIHUNclTx6foo1Pt7e+UmkUVUbdVrTmDN8LOT27YDyZrrbOQeBRVY1ME50Xdsnu0FoaMU95ZGXGbDJnb3uXK7vXuHnzFkmSsFiM6XRiUSApS1OV1EVOlWVUno/2W+qqkljJecZsOqcsStJ5ymR0ibIt3SR2iXUaPwhJegHXb73AYLjG7t4+VSOMp6oSBtPv/e7vUpUVabaQDVaaus16SZ5JCt3yBRfotMYonzD06SQxnhEfvPsl0lrZ5kV+4JIUSqoiF5h1GEoan/tdt0phjXbJh5LAsizqsZBnUqBURcnBk8f4fsDLL7/M6dkpRyfHjo+k2NhYw/c8AU074GuWpUwmE0nKc4dL3TRMplNmiwVhGOP5AXUrNsjx+QU/+N73+InvEcQR2hN2Tb8/4IUXXqJMc3yloW6oC0lG6na7KyZIxTPr1YcffsD/8D/+tnzexmNva5Mw8LHUGKUItOG5N97mpbffpiykSMaT967IMmhbiTH3A4Ik4cHhEQ8OD6lQzIuSHOFLlUsJuPEpFEzLUrb1USSAUQVeGNDf2WV9Z5fnHzygv3uD4wd3OX18n14nJPYNVd5QW8iVT1tZ6kr4LZHnYbXBGut80iyvGuE5ecaB7iratqalwVoItAxYWwQ+2NqlFdVtdI3w58SLLrDyumoo84p0nlKrmkIXBIEhDCK072OVx/s/+YC1jXWu336Rtc1ttvevcrJzhenZORVy8De5PLOLdIb2PSoLZd1SVg1b2ztc2b8CxqOsa7KyWKkGAcI4IWok0SaIIvyylOJTAbU7m9pngQFpnj+DpMrEmbJpKaZT93cUa4FPYDRlVVC3DWleuHQx4euUdY3WmrV+n8PDQybjCWmRcvv2bf6j/+ivspjf4tbLLzL7MGP08D5BGKBdoAFaeCPWWlTlfn63KcdaudQVKN+TDa1yCjQrsv+8EbUlToXZqqWiTtSnRmk8ZbC+plQNRZ6JOtWKt7401sXhWq4RkXghsfLxgVopaiy2KImiBl/7xH5AJ4pYVwN8txDIFws++ehDYUIM1+l0+/zZP/Ur3P3sc+7dvUuaLyjKnIm1LsGkxSgIQ2+VzOV5Bm0UZ6dnpIuFWHis5cMPP+TB/ft88P6HbG1t8sf/Z3+SyXTMYrHgszufs1gs+OSTT0SN53t89P77PHrwAAlSUQy3t1gbDvnWN38R3/MZnY9IFwsm4zE7O5v8yp/7iygr7Lnf+H9/m9FoTBAkrK1tcu3aDeHyuKROrTVRHGKM5ld/9c9xfn7G7vYO/X6Xq1d2ufP55zx8cJ9WN6TVjE64RhQEPP/iTWHdNHL211VJEHgYz7iUuJrj41MWi4VYhJRFG+1UypJYdHl5QVEUKzuO71hsYoJvJco5DiXFBVn6WCWLIO0K1eXl6HkC280zAfrfuXOXbrdHU7VkWU6v1ydNhTXVNjXWNnQ7YuMqi5Injx/x+7/3OxhjCH3DzvYmTVOzyFMHSB8tr062NjdRqqWpSoos5ez0hDRd0Out0et1CQKfqqo4Pz/n8vKS0eiSn/zkJzx9+pTZbEbbthwfHUrhazRte5U4SZjPBaJ+fHRMulhwfn7OZDJxy5iEOI5XzXSSxNRNgPGMS4AVkPf04AlGyyB9kc7FklkUJEnC9evXODo84ic//jFNKZ9Zb32NzlqfJI5QWpHMu8KC1EgjOR6xKFOeHB+I3ay1rA26dHsRGxsDSdqcTGibkrauxLasFEHgEYbLIJSSw6ND6rYiKxYM1jq8+9W3GV1eUOS5BGp4iudv3WQynVEVFfPZnIuLETduXGVtbUDZWBnGOyVM4Pnu9yxK5raVoZRSivF4hFKQFxlGe8SBKIg7nQ5dN4DzfYkHD5yqJ8vz1ZJxNp+RLlKUFeXo/u6eDNfaCjUccP3qFbE6GY90kVEUFd2+KMxrLBorXA/PEEaRDG0aYRjRNrTGYoxA8ktX2ywHHPL8KzxXSFaFpAlpI0pB2zT4SmP8AN/z3eDGc2pQi++se5VL1YqjUPhOntR5YRwxGPTp9Xr4QUgcJdSNJKKdnp4KdyZNpS50CYGwBPoLZLxtG8JQanKxhAmvzihhcEZRJBBgx9lZbu/zPMMYQ7fbcYqdZV9oqQthlc4mUxrbklei7Eo6XZTxqJqWaTrHlAUXFyOmsylPnjzFM4Yoip1tzaU4WuFqecYjDCPaqqZqFkALqiHLFXVTUta5sJmKylloWuJIloPLd72upEnMmwpvYTDaI4pCOt2u1KNVRZrlGK2Fh1YUnJ6e0VorisBWYsGtbalr6XkAFtlClF29PlEUkSQxVdnIQHXQJ44FhK+dqtmyVDbJAgrXETVVQ9u0VFUmrJSioMhyJqMpcRKTdDsrdlleFbRtQ55mYMEznksglEFm5RiSWmtSx+WTZY1yfFdRnB4eHgLCEtrd3WNrewvjeVxeXPLJhx/xB//8f+Tu53c4PjrC1hWh53Fw7zHnJ4fExpJ0Q8KgS5vPefD5J/yzIODDDz5gkWYuHGDBweNHfPLhhy6dOifwDVub6/zMz7yL7/v8/u/9PieHT/mv/6v/yvGONFmWsrWx7liOGZ5RhKG4Gpq6Ia1Kkk7C3t4eWMVwuC5WLGu5ceOmfH55Se76xGvXrrG7u8srr77KxuYG8/mctmn5mffeo2lq8jzni3v3+fjTzzg+OuRydMHZ+YV8NtqAdtwvhaSf+h4tyrHLqlX4jacl+dg3RpT7TYNRoDyD8n1xb3jC4fV9X3qlonRLctxgosUiYoeyyki6Xd5++01u37rNSy++xH/36/8dP/rxjzg8PSavSy4mE7I0pWoairImzXKsZTVwqKuaOOzQ66yxu7nP6fCUMIwE3N80JEnCxuYmr73xBkWWc+36Dba2trl6/RZRGDEZTZjNp8znc67sXcVTssBJ05SPPvwYpTXvv/8R3/nO99ja3qbb7UmCei118vnpKXVVUhUFXhwS9jpsbO6y7Xo9ZbRTgNbUTYWyopZdDrK/JHpyJYJTLDXWAawdaLxuVgzYpqppqsapASV4QsLDahngLMMdnBpKWeFsLYe5/V6PXq/PjevX2djYoigEybN0tdR1SxCIM8SiRbHdiruik3TdO25pa5fU2zg+Xd3Q1o7NaRUWg1VGnjGFCD+ces73PLFpI0njWptnai0rLCzrauqszGlsy3BjgytXr/HKK69xObrk0eMn5IUodpvaotA8efKU+XzBtatXuXK1Iu6ETOcz0ouCs4sZWVqAllTdO198TrrIGF2M3TNrSGLH8m6sJFCimc4WfPTJZ6yvrbO1ucViOqcqcuJ1Yav+NH9+6sGTH/g0TU1VCUhNJPqtU+bIpng6XeB5Pjs7zzzMSgmAtihK2nbGbLqgbVv6/R5Kac4vLomjiF6vQxDE9AdrJEmPpNNjfX0bqxSTyURUR+cjbCsPRNtaylKSb5R2UEVYsSOW0cFfElWsJs3LjYHIUFtnzZNrom1bqC1pmhIGIkX3PI8oEmBWUZbESbKCKS8nT21raataBh4IJNn9yyjLhuPjc7TxWa9l06aMXg2ewmiK74fMZguxDjpPqzGGunYRkKuB1vLLGvkHTVu35FnO1Ss7bG3t8u6779Lr9Xhw/3NQ1sW7KwEWf+mfVslQpSxL5vOcNM2xrVzaeZqilCYMfErXOARhTKfX5eZzt1hf32D/yhUuxxPG0ymj0Zi0LPnss88ljnw2lZfFWrf5ARwYz3cQS+NSCLRWRL5HEgkxP/CD1WazqkqUksRCZSXevWkaWioCI3555ablsuF5Fg+N0itrSIkAf8tSQHsX5+esb2xy9fp18jLn9PwU5SSg3Y5ETGZFhrUCBlxususvJa40jfzeC5fMpLWhblqKoiRbpJwcH8nX0BqrFVZrruxf5cbVG7R1LXmLLvVElC6i5NJKgRXLQGA8jo6e8ge//wcyeNKazbUBvjHkVc7GxgZf++pXeeHFF/jKO29zenLKeDxG+55M1psaDYRaiuluvw/f+x4H4zE1irZuqJSl1oravUva84RBlGV0lCbyPBqtUcYQ9PpE/T7bu3uE/XWmmQwmxqMRSTcm8T0Kv6JuLQ0aUzmAKQqNkd+DhbZdKp/kg1NYB8A3Ev2NkoZ1pS1fSnHlXVhGmVpnaZN/1Oodad0lZWuLjJIbt3EI0VGENh5Pnjyl1ZrnXn+VuNNlONygF3SYbY7IW4kgzyYzsjTl5OxQBi+BD87m0e12GawNsSgqZyEqq4osF9tCEAR4gY/X+BhflAnaaFQrP49YQnxcrUOe5c7q1uC5l6axUtSKPNkN37SmbnIZGC/mAqFWxsFwG5K4QxRGjCdjLi8vGc9GpNmCfr/HxtYG6ztbeHcj0qJEex6hWSqLFI1WDo7owiFaKwB6Id9K0/GvFNHGCrC3qGsMysnOZfDZtFYsBE4BZrTBGmn00lLsrQZ5PyprsVoawDXjU7vNVYiiXEbAOxCn58ISAt8n0UAbUFlLVeScHB2JFcUqhmvrvPHqa+jG0pQVh0dPGE+WCh1R6Shl8T0jcHVkqybA9znz+XyVSHp8fOyer/v88V/+ZV586SXyPCNNFxyfnsjw4eAAz/MYDAbMJlMePnjAfJ5RliUb21ts7Wzz2suvkSQdRqMRp2dnPHjwgD+x/8u89uZbaBR5lvH9P/oxKJ+6tsRxQq83WEFtl0MMNISBzwsv3GYyHjMaXbKxPuT27VuUZcn5+TmNzSjqnES3hKGhP9ySBEstgQxtUxOGgTszJaFpvphS1c4G5MC9bStR94vFgtlstrIlG6PxjHaxw04NZ2TQiHKRw3VL6+yyLIeRrnXV7rmoSuGTHB+f0O/nDPpDqqomiZNVeMRSvp64EBPbtoxGI+7eucP+/h6bmxtEvQ4WS36aUzY10+kUpRSBF9C2NdoobFtTlyXz2YSmqTHGd4M0UTzP53P32c94+Oghjx89JssylILpZCKA9UTSQj3fJz2/ZDqdcXp6xnw+5/TkhLqu6HZ7xE5VsVQ+hGGI30qhLbHphryQkIsoDAmDUAIryoLZVIDeg36PNMt4eP8Bw8GA7c0tOp2O/P0ocAWa/G79OGI0HjPL5uRVwfnoUmw4QJyEGB3T6yYURcFk3Dg7gNxxtZUzzRixYjRtzXg6pm5KsmLK/t5Vtrd2CQPNbDojTedoZdne2sT3fA6jI2aTKfPpFKMU3U7CPK+wiO1eKyn6JdmwXm2jl7DuNF1grSXN5vgmoJv0WVtbE6VJ1COKQmeFq92CYolUkLuzKEvSNBOLhVKsDdYI45BFOiUMQ/r9tVUKXdOMqOqUMPJWqsoWSRLzPFHjFkVJVQpTs3X1l3L1YO1SkaW+MW7oymqw2lSVNP+NvDu0Ev7hudAT49RRcsZWkrrs+e7uavGNR+B7LoHNo5PEoDTdbg+lpXlpmoq6qbm4vKSxLUVZSspxXa9YicYYh3WQJtf3ZfDke8bBsmXLHQexS+0zlE6dURQF1rbkeUYURYRhVxiodSlNswudsK1FWWEZTtM5QRTTc6q2FkjzHKVLUSVdjrj3xT2CIGRtbU0i142kmhmj0bWEFAQoqUXrEpeHQtMIMqMocvm8WqnpI1c3LRU8Td2wqGW5WeQFpZYeoizFltS4xrcsSpRSjkOUu+W4JYpiZ6PyqSv5u0UhjNGiKlzS4vL35VFXNXle0usjP4cvNskv1ydLS5wreBz8XhapdS3DkMVsztnZGf21gWMoRoBH6VT70+kEZSHwA1dnSEpVWZb0ez2M5zEajeRsVnLGeNq4Za5H6ZJ/l0PGKIpp2prpZMLh0wM+/egjjo8OmU6m0Db4RjEZXTAdXeIrS+AZ+r2Eusg4fvqERhm6B0+dElDcHhdnZ5ydHD9THgYe/V6Hd95+m263y/e+8x3GoxHf++73MJ6EQWxtbbK1tSkJZWUhqnC3hBR7eSv2/MGAupLwi6eHT2mbhl6vv4Kot027ssS/9NLLPP/88wzWBnz66WdAzc1bN8kzYZY9OTjgw48+YjIRhZRWyg0MpV+tmgYL+EGA1kawFMvew50FRsmg2VMSlmBbUfMorWmNOGiW/DCt5e+I9XWp0pHzz7qvmRcF/UGfq1eu8MYbr/GNn/0G3//B9/nok4+4GF1itSIrC0mTRBaNWV7QWIvx5SxprSUMEjpxl57jsflBKIsSawmDkG6nK4mSjeXlV16l1+/T7fWpy4rxaMR8MSNL5/S6PdhqSbOM+XTBwZMD8qKgsXKPhVHExsaGJGV6yrGEPMqi4OLsnP7GkM2r++RlIeIF/aVe3WFhlJXQGuv6ALsUV4CY69Sytne2utZi3TJAGfk7MvBpV+evMZ7rD6Sff7bkVq4/X4qqlHvfIwaDARvrG6wP1zk7PUchoQ1tK5woY8TuF1jQRvrS1kIQRpLmuRxItu2qX7et1KsiVFKSLuwGSyJaaVmGIizDRwQboh0+aDnel9sJmV9Jb9y2dHtdhuvr7O3vM55MuLi4ZDyZUVY1m5vbWAvTyRzP8ygKefeNp0mzlIvRhMk0pyxrSWwsKy6Ojjk7ueD+vcfsbG2wuTEkSzM5Ax0eoWks80XqwsN8dnf23Symkt+/Xq7O//V/furB03Q6RWtNGEYrpo7vC5SybQV+/d7Lr+L7gUuxmzMalWxubrCzs8VS+dRJRBV14/pN1tbWuHXrFmm64PLycmUXOzw85+x8wvqGDLKUApTH7edfZG24ydb2Hs1PfkL19Cm4A69pxd9tzFLy20Up8f27GRRlUcpgQhuaquby4pJeP6bXS6jrym2US9ovTRvLukYbQ7/fpygF4rkcdkVhhMRaawfOtY574EPTOouGJ3GNfozFkNeaqpEEmrIpaWwNekToB5SugcTzRIpcN6540K5HcglkSq0Ai5PpmLIsCfyQd955l3feeZfpdEqeF3S6PbQC3w9luNftEfh7boIphcV3f/wB4/EY4/z5r7/1Bo8f9qibmrOzM+bzGXtXr9Ht9dna3xdbQpAwGY24e/cOZ5eXjMZjJAlGmibP87hyVeBmi0Xqip6G9eEGcZJwcnhInmco6+watqWqFFmaYesGG7jD2QoYV+wShUuRWTaMOBtdKcl+WvJgZMBlpaHxPIqiYDwa09tcp9sN2d7epi5rnjx5StPCjVu36CSSmDEY9Ol2O27LJaksWE2aFZRVTZZnTGdTxuMxZS3Pqu+KjzTLACsvpFHs7W/z2vrLdDoJnZ4kDezs79PvDbh+9TqffPQxJ4+fEPohYRJR1wVZPsf2+zRYxuNLhsM1rt28yWujlymyjKdPnkojZRvKouDg4DFZuuDWjVvcfv4Ftnev4Edd+hsLJyxl9ftQjSVJxM6w8fAJnd4ak/mCsiyJ8OkQEjYeURDS767x5MFj/vk/+afyzNcNQeA5GKYUMd0kJtBixdy5fpON3V3aIsfWFXVRESUJb//s13ly+JTwv/91Hjx4yJ3P7pJ01gjjBFvOaZsao5HGx3EhgiBE14pGC1jbtsJbaFRDFpUYq2Rg55hqSvuARLXWTU2ez7FKk0QJe1eus3fzJvPJnMV8wbXr10i6XY5GlwCsr20xncz4h3/n7/O1r32VX/yFb9F9+10Cz+fe08cURcnucJM8S/ni/udsbG7x3PO3+dt/9+/yG9/+Np9+dod7Dx5z9cYtdnZ2iOOODB7LQuCoWCbTCYvFgvPRJYvFQgqHomAxm/LSSy/yrW/+PEkSE4Y+d+7c5eLigoODJ8ymM54eHOBrRX/QpSoKqiLHtA2+bYgcN4JOQlHXTLOCwPdIOjFlXol1YnNI0k24fmWP525eocxnnJ085aOPPuDs5AQPhW4sqm4psTQ01GnjGixp6gLFKolOBx54GusbbGuZzlK0sngGmsZCo1xcr1yXSq5ZPAyxjtx73pBly62flU2QlSZDNS2tgQzFcZPSUvGC32HDiLLRKEUettSRIW0q8raipCRrSxZ1RbaQs+cr777J9tYWL95+gcvxhG//xq8TBQE7W+sYr2Ww1uX8/Jw0TVfbt6qq8DxDHEvgQVmVbG9vs7a2xsnxKYO1NX7hF3+J0eWIu1/c5aNPPuX7P/ghL7zwAjs72/ylv/zvobXm+9/9LrPZjNFoxPb2NleuXuX9H/+Ehw8fMpmMuDg65L/4tf8768MN3njjTeIk4d23XuPR/bv82kfvs7GxSa/b40//yp9iMU/523/773L37me8/8EPSDodev0+N27cYH045O4Xd8myjOFwwGBtwMsvvcDOzg63n7vJT95/n8zxCBQtSdISBh47W1cloatltQ1PkpAgDOh1RTXT721yeHjId6o/ZH24ThJ35L30PIqykuZeG4znu6G6LFK0Z9C+nIWj0dgpm+S89rSiKUv63Q5xGK2KybIsMG1LFARiad5YI4piFA3dTkwY+MwXE2EAji+Yzka8+ebraA1vvvkqvufR7/bxPU06n1I1Ncpobly/ArBKV43DmFdefoVXXnmVP/jd3xFwsAJNy2w2Zjq7ZDq7xHiwf2Wbokh59PgBx8cHnJ0fkWczwjCk14u5+dxzvPez7zEeT/nkw494enDAeDxx9hWf977+NYIwRCl4+OABn37yEXt7ewyHa6yv9UUtuxyq01KXBbPJmGRrm7VeF09ZstxweHhIU1Vc3d8HFOuDPpdn5zy5f5/BoE/SSUSdRMv56BylNf3hOpejSw4PnuD7Ib4XcH52TlUWvPjibbqDAZ0gQjUtprV0uj2SbofTszOm0yknp6dYFBtbW/hxxGBrg7YpSFIP2zRcnJ1SOCbOfDGjrArKMsfahjiOiKIAP/BIOgndbpdZekGeZzx9+hSAQa+/WqqJLVLSkD3XaIrieN0NRRrm6ZzJfCKKIq1YW1sTJqJrDK1SqLIgy+RdjqKIi+NLqrISFpzSXLhkriNzRFXUlEUtwylAG43xDf3uGnXdMJ7NRD0XBKKsW4/J84K2ad1nKoaQwPcZDAZ4vkcQ+BR5KhybppJFmS+NZxD4q1SrMsupCllMWGvpJh1RwihFkeWcpC4gxzWhfhDQc9yrdLGQNLDtbebzlPF4QpYVYlttFb2kR2DEOjmZTMSW21SrpjcIhGmadLvy+1eGwAvodvdIs5T5fEYQSKIXhO5clBrHeIrW1izSmQTEFDXHx8ek6ULqpv4a73zlXbq9HsP1dYabm2zt7OFHIdp4PDp4zGK+oM4LOn7AG6+8LNyjlSNCEYQCME46wg3t9/uiADSGKIroJLFjWLWcnJyQZRmLxYIoCrlx9TpVVTGfL1xqnBFeixVrelXXHB0e0pQl44sL4W2GgQwGlMbrdLBxTCdKVkMgaxtQskjxjUccysJYFB4RG+vbhGFEt9ujTVo3qMsYnY9ZpMWKaQey6PaMcawXsfFUhSj/J9MpeZ5zcXHhkqpF0ViVOfO6grbl448/ZDGfEwUBeZ5xdHQkfMm+WIOtRWrBLGVtff1ZerUbYlZlSVWKEqjf7/P5J58ymU745PPP6CYJr7/8CpvrA/6T/91/wm9++9v80ff/iEAbbFUTeT7GWg4Pjwk8Q54XTNOc6aLgzbiLF0Z88tGHzOZzZrMZnaTDr/7ZP0O312NtsCZDrsDn+9/9LmVZ8ODeXSajSzY3t9jd3eGtN19nNB4xHl9SZClVUTjEyDNlrFKK0WTMydExZ2fnzKZzXnvtNYwx/PW//teZzWY0Vct7732Dv/Dn/wKPnzzm4MkTfvM3/zGXl5e88NKLdDtdPvv0DrPplPv376OM5vbtF9xCo2E8HqG1kh4lDlaLjsa2Ls1d0CxYRKHdCtNGK03kh+gWyixHOQan9DIufbwWu51tWnxjaBtZJhpPBsjKsS57PVm4f/DBB5ydnfHxxx/zB3/wBzx6+Jif+7mf4/nnn+dnvvYzZLMFx/efMDm/5M79B6RZStHW9Nf6JMM+b773VfauXOXek0ecjC5Y296SlHIcZ6moSMcz8sWC756cy6Do4pw0XTCbjfEc4wgl3LjHjw+YTKbceyj2RrGAGQnfiqR2eOXFW/S7HULlU+Q547MLeoOB2MWTroODy7DONjKg8TwPbVuUEmt+vcQzWOUYsLI4VoBn5Xft+6IGwkqCduMSHzWWUMsClbqhqSpJMzey4PHky4FLhGxqEYk8UyInTMZjmqqhqUEbyBfZEqhG2y4Z6KKU6nb7NHXNyckxdVXRVCVN3eAZQ1s3lHm+ApovFxS+LwEPddXSVIq29qgLQ5VrqANUE2KI0IiLrHVJukEQfGlYJmm5dV2TJAme0aTzBUWWU5eVLH0VPH78CGvhz/3qv0N/0OPG9au0TcW/+M7vkxWSRo+OMMZjc7PP5UXFp59+wtODp9z59C5/7Jf/GM+9cJswjiiKgi/u3uP84oI7H33Kyekpn3/+Obeff4Hjw2Oeu/Uc29tbWN9Q0vxU86SfnvHkpLt26TF2iqblB+d5Hltbm/h+wOnpiRQSgVjUhsN1skwm874f4Hk+/X6f9fUNrly5ysXFJYtF5oCoJYssR+cFnp/g+b5EzfseURw79VFMEicOMoiLZFyetQ5ErB0N3g2d5HuXUs+44qFp6pXHtpF1twONi1Ru6TNdqqjqpqEWcrJAuDyDtQKFo302lRRQnIM2G4M2MpRZJvI1LVSNpWralUpBqwZ3lq3+xatoeXeJLL8fOYw11m25lIZORzYHe/t7zBcL6rpyPnPluAMCj26txlqJzEVrib7Ocjruwu6vrdHt9YiSRDzkTn4eRKHI0I2iKksWiznn5+ecX1xwMRoRBCLnrOpK1GRBQF0LdFFeWksQBsTOGrDSRDu/om1bOaSNoamb1TbUzYqdfNhNVK0kHyw3Sr7bUIpyZvnxLIHTy9hxATB2Oh0KlcvGdi3FruSZ4Qo2KQOu5cRdZB5N05IXpcTdl+XqANbKLB8uueSrym17RJq+trZGv98nihO2N7dEOdc2wi9qKpQG31tyPWrQotYrq5LGCgA2iSP6nS4XQUCqBfLetFIgZWlGlmZUTv2njYfnByg35ddGrWSfnh/iBxG+J5wZ5YoWZcUmoKwoxgLjUWaiHJHiVqCKKFay7TgMWev2ubKzy9pwwNbuNuenp2SLBUEIvcGAWy++gOnEXLl2jdHl5F+S0Tq7svvdsdoMrib+dimvkfdGG0MYd1BNS13On0ln3XagsdBagaFqz8PvdtjY2ODatWuMOyOm4yk7u7t0ul1mVbnivGRZxunhMYvpXHzKSUKSdNhqCuqm4drWPnmeklYpV65c5c233mL3n/1zgiBkPJ6tWF+44lJr80wa6/gLq/9skc8XKIqCTqfDSy+9xGDQp9NJCIKI09MTjPE4Ozvj8PAQpZXEKNc1DQIT97QM5hSQRCFe49PgZMTGo6LCti1h6NPtJmxubbC21iddzJmMx5yenpIuFrJlcXHRVomjbgkQX0aeayUf1hImLmBEufTbpYIFizYegQM3LiHvyoJqxSqrnNy4bUW6XNeNC6dwsFa36WqVDPAX1IyUZdFG9HSLrxzMXGkaBWVTUVv5vYsE2VK3AkVfqhyHa2ss0oz5bIru9YlCYWgFfrBig4l9WTZwIOoAlDDynilVpEna3t4hDCPmacoXd+9yfn7O5tb2KgK52+lyeX7JdDrh7Oycq1evcvv2c8wmU4qiYDGbkC3mPH38mHQ258r+Hut2g0Gvy3Q84ujoiDzLGA7X+eo778oG0fec5ekpcZzQmXScBbvg6OhQFEjzCdvFNi+++Dxt21I65W0QhjR1ibUQhQlx3CUMYqyFtMjAKClIG2hqi7Uazxg2N7coy4peVzbjy7N0BfC3EtUuCxd5thsrLKkgDIniWFJS3b2slRTrxjar/51dplu6jbbnyXsc+B5GK2erEzWaZzTGE3tpWZX0+j3W1mTYpqzYiWzb0NQ1i3SOBbZ3t1dKZc/I4ClJpGbo9Xr0B30H4DV4gbfirsVxyHC4hqVlOp2Q5SmVsyPGSUR/0Gcw6NHv97i8HDG6uGAymTCfTSmLHM8z9HpdkqRD4Pucn56uCm1si9HSaFe13BMSEIAM3gJfLNRJIolFjRTQWsngYHNjg3w2p3F281IrbFNibUM6m6GNIYpjiiwXfqLfUnsNs8lEljRlRVM3lIVLwqsaVCS2K4C6rimKEqvUaqgjDYDcq01d09ZSoXieWam4lgobUWXKENLzfcIolPPCim1v2Qi3biu8tNotm/Ll/RsEgUvWKylawTq0TYNiqcgyVJVwwpQxbiMsj5uoxGu3MKkx9bOkPoAszckWOZ2kQ+gHKCM8O+MUT61To8nP6BNFoeOuNXhGmqemXsaia3eO4BQsQk1USmztfPkKc+eI1J1S3zQuwAJtnJrx2TCtLEuatiUIA5rGxyrhOC0ZZnmeSXx7KQNzzxhap8ys65rGKQqW75e1Uupro2WgozTG1wShT9V4KzaHta0EISicomypXpUh8ZfVVEoZBoM1Nje3uHLtGoO1Nba2d1jf2GBrZ5fZYkGaZRRpznw6oy4rwBK59GBRyTj+FBYNtE1NoxR5ljq1luPDGU/UblXFYjYX2P1iQVPV5GlGXuRMJxN8TxiAS8aRMYa2qlg4lWZrW5I4okmSVQ+z7GuqShYQi/mMpqlomnLl6jCeLygAoX+zmC+o3Psk9kZNukhlCVxVzlIkd5/nGWoHim9rgZpXlfxvxSYkAGq5g0SFlmeZpHs1DSdHx0wnE3rdhCxLefrkiSghB/3VUuD05JjpdEJVV4RhSBTLcL9tGtJFSrZYMOj38bTm8vKCi4sL7n/xBb1Ol43ugPVel6tXrrO7s8/mxpYoYuuawA8IggjjBZjAI4hi/Nril63jz/UoS4fUcM3wa6+9RrfbpdfrM5/PnUX7kizP8YxxzMCQ/b19rl2/TtPWXF6eiwryy7YO9y5Icqs03EUhydiDwQDPMzx+/Jh0kbK/t8fG+gY3b97k8vKSLMs5Pjrh6PiY3f0rKGXI5qlbCk3o9bt0Ol2UEidLWZZu4dxQFBUgLGFW761aDSqW75R2KeXLuPvVg+SUNq2rwS3Phg+i+nRDtdW9uuSUiuBgOpk6BbJidDkmTzP63T4bww1Xr2nCKMZqzSxN5RwxWtS0RmECj8o2nJ4cczkeiVLfDXHbuqXMCiajMbPxWN6n+Zwnjx+R5QvSxcyp+UK6vR5KK46XwVBpKjWi1qBrqDVlKQO0qtzHthHKQe7bpsEYQZ0sfxalpM9YigeWP7tWoowXnpP7Ta5qwn+Z/bSsV6UrXJ384M4PC+AELK1t0Dhlses3Vev6TSs9ZVXVqwGnJHeW4tJCydJOe2hPP1NdycmH0QaMs0s6iLhi+RwsQ45ad1a6JYdz/ohyC2g1tBrVes5yKMESEu5gn/XA7ixb3SBLxZ2W76t0y+yiKCjynMIp0wM/YP/2DTqdmCDwGU/nXIzOqJqWxkK3t04UJy7AxCNLU4o8XwW8rW+sI2ESwigr84LFfM50NOb0+JT14TrT6RQURLEowOsvvbv/uj8/9eApiGLapmE8mRCFAZ1OdwWYDYOAKIwYDtfES3z0hE435q2919ja3GJ3Z4cf/ujHPHlygOf5hGHEeDIBNA8fPubg4Akff/wR3W6HOE7o9jqEQUBWLGgWDUdHR6RZxng8WV3g3V6f1159lS8ePGSRpsRxIlLNuqaqatJFgTE+ga9XHkvPiOWMxuIHAf1+byVVlw2VR1k49VItqWvL5KBlTGvdyINkLRhvKQWtUbpFUYMTXWujMUoRBp5Mc+sctGxZIi/Ci0LSfEFVlQzX1wmDgMezJxRlSbu0MXpKhlNlg7OFspyjNbaRuN98yo2bt3jl5VfZ3tuhsS2zxYzxbAJWikov6DBbpDx4fMjh0yOOjk94442X2dgYsrG1xXB9na3NDbEeAp4fEHe7dAZrVCjKuuZydMmdL+7S1C261URJh8FwKJBv32c6m1NVNUZLzGfdVM6eUayOh7OLMyazibCTbIuntLyM7bIJXJ4crIY/SRKjgLJM8Y2h66Bu1kK2kOS7ZRpLg8iXm6peHUZRFDHor6Gtpq1atrd2mU/nfPjwfcIoYTqdURYVWhmKrGQ+XVA7jhOILNszmjzPOTw84vq1G9R1zXgypaxkGl2VFRub6wS+RxQFjC7Pefr0CfPphCiMnOSzYZ5lNG1L1dR4Dh4YdWPWoyG+0RKj6ZqyCpjnOQfHJzx89IR7n38hRY3nUbQlZdsQdrooz+fs9IJH9x/y0Y9+LMOxukZ7HsrZkWR2YMk7Hahb0vEMVdSE1uBpsT3ltiZsK1TtkZUFSSfh9s1bDHpiF3ny6CGz6ZTRxQXpfMHDO3eJAp/TXpdv/Fu/xM2vvMkHH33MvS/u8eqLL9BdX8NqzXB9g2+893O0ZcvDuw9kg305cZeys99Y4SD4fkmRl3KAlqU8S1qzub7Dxvo63/rmNzk5Ouaf/dZvU7m41MDvEngRhc1QXsBX3nmXpJPgRxFht0NvY0jgeSRRRG/QwwsCJg4CPAgSAs/n1tXrzC5H/H/+h99mUaS0WP7Un/sz7O7uMVpMmM/nTLOMjbpGG4+6bsiygu2dXfr9Addu3GBjc1NUocqBYQNJOdva3XFnhmYyGjGPYybjCUeHhwRhzLXrN7lx4zr7+3t87Wfeo65rLkcT7n1xl//Tf/afMh2PqfNclHFdTa/To5/0WDRzrLb0Ntbxw4i4v8bJ2Rn3Hj2gFyV0/Q7r/TWG60PeePst1odDfvjB+/zgRz/kg48+pG1AhyFBv0sYBhTTCaqtiZIIozWR9qnqkqwoaLRAxn237fGVQYeGte0NCQfIc7pJj26nT4UM5xfzOXVRUU5mtHXDdDF3FmODtQqFwWukECnbWrZXLh2PBqamZqZrhuTQWPYqiYS1gaJoSk6mlxR1Ta/bo2xC2qaibSWt6v2PP+b04oLt3T3WNjf5c3/hL/L+Bx/w4Ycfks2mFHnmANdS7IGmKErCMJQkOscOy9OcPC8YjcaUZc0Pf/Bjbty8yZ/91T/P+fk5FxcXHB4ekqYpf/CH32N9OORnvvY1BoMBW9ubxFEkUd7bu7zyymf8rb/5f2M6HnPj+g2stfzhP/8dgjAg6Xa5desW169eA61IZ2P+xt/4v6CN4dZzz7O9t8H6Zo8njx9z7+7n3P/iDkprUUf1emys36Spav7RP/hHxFHM2tqAMAp5992vcufTz8nSjF/4+X+bbq/P06NTjg6P+fGPf4LvewRhQFnk1E2N73t0el2+9c1vMeiuceP6Tfq9vmyyrRVmWRTT6/WIOwl+KNanRZ7hz6ZEnZjnXnqBV155HaMlIU1ZSxyFpPM5D+/fW20HW6cILltn9YlDsZ5kGVVeoFtJfBtPppJI5T1jcGVZRllV+EFAukiZTM/pJjFREHD/4WPGkzGf3v2COI65cmVfmlE/oNMbMBhu8vX3vsGLL7/Cj370I6q65ivvvsONGzd444038f2ANM1J05Tj4xOapqXT6fLKSy+xubnJq6+/zunpKX/n7/wdUdRoQ+h5JJsbXN3fQ2vN/Xtf0Ek67O/tkUQhL774PKcnJ3z69ADjSVNvkTTbrc0t9rY2+drbbzNfzFksFly/sicg8uMjsizn4w8/YGt7ixdfehGKHJMJN7FtG6pSAkpsnoLn49UNfmvxrUZXFpqGYTKgibpcnI0YXU55cP8RS6v4vJ+RZiVnp5dMplM63Q5+EGCt8Djv3PkCWxW02YKNjS3Whuusr2/g+z7dboemaZinmQCa64aqEUtCp99juLXFeJ7SWsv6cEhZitVdFPFiazNaUqGUtbR1CcYAHkHgkXQi2rrjFlEy7FjyskCen8bBZ3GFPUrR6payLXlw8IQoimgw+GFE0kkoq1MW+Zid3X02NjapK7GV5bksFNfXhxhP2GVREKAUThFZUpfFqimumoa8KGTo43myKHIWJ4UkKWIt9dQNf9pWOB5BgOea16IVvp3vyZAr6fXcAM4nyyWVcjadivrLcXvu3btHt9tjuLa+GlTKQKihzJ+B4ZdNizbLlKSGsmooZguMNqz1umR5zmQyQTs7VlGIki2Oo9VQprUtXiPfz2gydSp1w9e//h7bOzt86xe+xfrGBt3eQBRqi5S8rPji3n0ZeGQ5o+NzRuMxn975hLZtWVtbk4Ws1hRF4axiMgg+v7hgsUg5OTkFxFUhm11FmmVUZbli3AW+79huomxfOMtm2zSroUAQRe7nE9tiEHj4fkAYBKvGtiprqrpmPBpTVRV5kcswJStWDrkojvECn26nK3YsqxxcXAbVGxtD9vb3WBsM0G65vrEp70no7FrGaIpc0vuiUNgp3W6XpB/RT7qk2ZzzixPGl+ccPHwoioeq5s7HHzOdjJGdowymHo3HHJ+c8NWvfp2XX3oZD4u2LY/uf0Gn2+WrX/0qvuejtOLi7JwmTzk5PODi5EgYkL0u3/zGNyiynMPHj9GthVazsX2NP/Vn/138IOFyNGVr9wr9tSFJf0AnidnZ2cbzfXzf55W33mGwsUnU6TGdTPnZn/kZdnZ3efW1V0W5fXjI977/Pe7cu89LL77AtZ1dXnnlVayF2SJ3DJmQ45MTRuMpfuAJn0fJIkNrVoiKTq/P/rUbrK9vivLbiBrnm9/6JrSW9eE6VVXxN//mr/Ho0SOePHlKnMTcunmby8sxlxdjyiwFhOGVZTnzxYFbzmtn9y35ncMDAt9je3tIVRYEQSw8XwVNVUtQgOPTdTsJYeCT5ylKQbfXo7YNjbUkjvUVhAFeJq4gLASe7/rlUFhQWjsRAdR1A24JPuivs7d3lUFvQORHzKYLHj064Nd+7f9Jnuc8efQQ2hYdGuIoJvB9Zk3BIk359V//h+jApzGK6XjCk3uPuXnjBvv7L7CYzXl47yG/+e1vc356ws3rVwXzkM4Jo4i93T3hrQFb6xt4ns/TziFtU7NJjzAMWRsOMb6H5xtG4xFlUbIxFFD37voueZajrGJrY5NBty+MwbpBu+EMbYttLLYBNE716Vo21+AuSTXGOGucRQYyKDk7/KWqT9w0Sytx2wrDkabBALLPksEl1oroxBPQv7WyAJ5MplxcXLC3exXPM8zmKUqJY0YbD2NDliMnUUu1KxSMdkziuB+QxDEgg3vf9yhLscL6vmA3tK7R1CjbSmp04xH5XTrxAGXnhEFE4Bs8l1Yq/FHBTXhuWGmsYtDpYVq4PJuTzudMxiOOjw959PA+Dx89Zj5f8MKLL9GJQ7ANlxfnfPzRhywWKbP5nIvxJWmR8cZbr7O3t8frr76MsXBl9xq7m7u8+9bb/Py3vslbb73OvXsPGI9HvPrqy0zGU+588qlbknns7uzw5utvSEhLv8d4PqWuq59qnvRTD56AZ9No56H3fV/842278k03LSwWc/EQh+GKm7CUkS79wJOxHPJaa/I8E6kWMs2bTMZoo+n2O1gapvMJVVkJ48R5N/M8R9e1fB+ej0U75ZOGQEMiljc3HJTvWbuJpPqyeMhxoNyEFeTl8ByTRTZlMp0Wibik4FkUnpPOKeWjGmhsLXPY0JQASQABAABJREFU1mI85aS8S+aJvFzyAolixyiJHl5ORr+sIJNvxPLsuwKUgw4r5VgfhihKiCOJhLYIl6BpZdK+lEvO5jMmkzGHR4ccn5w4NUWPosgkicEP8ZzP1Cw3lGXtOMGGIpeteZ7mUgQ2suHzgmC1eRQ7oDB6FFBW1TMOj/txSlfktbZdzgJXn/nyJ11NuZXiX5lF/cvPIcrxR6Q4aty/Zzm9tlYOByxOfu2hjEE7VYPItmuJK0Z8wQDLSHFgpVLxjAeWL4EBLWEYyoVkW1DCOjGuyGttQ1nmFHngCmqRrWfpQqCAVUkcJ/g9g1bLw9VtJpGfQ7nDWDgFOfPZdLV9q7Sk7nlGQ9swG485ePyID378I8q6pmpaOTSVWQF9FYrYeZmfPHhAOpliPN9tu10qhBWAnfFk+9k0DYvFnCJLWcxnZNmCuixEVtpU1LWVoIGqoKorkiRmbbjG2nCNbrfLIk3J0hyUDKBeeOklDg+fcDm6WME381w4EsrKMLk/GDKbTqmqhn5fYJ1b65tsbKyzu38NhWFzd5dFnpHmOa0y5HVNXjdo1ZKXIq+1ZYlfFizqksVsTrbIsJ6H5/vkaUpVVkwnE0lrxJJmGecXZ8yzlNrWPH3yBNtadrZ3MEYzmUy4uLjg5PiE+Uxglb1uj/X1dVBKmoTZTOxbTUtTN1S6IghCwkDSfsqiYDqerDgBddO4lCMtyhItxdROEJGlKVevXuNIaQ4ePcJg5TnUGqs01Zf5EaiVR1wrIzHMtERhSC/pMOgPiJNEtsRp6uwtCZ1Oj66DKs9mU3lunPWt0XYlml2pmNAIeAMMkhwpSSUtDZZWWUwYiKIlMDRVJdD6vGA+GqOtqAuUcqkmS3Dv8nhz6juUEt6StpRYnN5OzoFGzk5tNL4JSAJFZcBTFt+EtHXD+voGUZRwdnpO1qto0ERRzLVr17k8PWE+naCUlu2dMqvCb7nV0i7auK5r590X9arY8CyXl5cuNEGSx5a/H1EbNMwXC8qDgu3tbbqdLsPhkL39fcIwYunvF1+8MEaaWtKtoigkd+oM0V/I9+H7HsN+n3xjgzxb2mwyyjwnM4aZe46XQQhFXqxsdL7nY0M5n3zPsDFcYzwaMZtN8B3HJC+kyfV8Q15kPH36hKoqmc5mVFVNGAQoFHVVuxj6Z3fV8rxuXZMbBAGRHxN4AabXw2hFN45Ju3Oy+Zwiz8jSxQo+qxwcasl9kCFDQ+EJb3AJ+FyykOaLlMlszmyRUlU1ZSmR7IP+gKTbZ2tnj7jbI45j4iTmypWrLobcYtGcX0rU9E6SsHt8SlEWJHEHaxUnJ2csFhlBEHFxfsnFxQWdpEu/t8Zzzz1Pt9NlsUiZTIRpmMQJnTgBp4iuyqWqp4G2pSiGeJ5hfX2dLF1QOqVK0whU1ChFXZXglhtFnjO6vGR3Z4d+v0+v2wWncmnqRoInjKYsC3BR63UtZ/GSFSG1uDyHWit061RLSuC4rIC28qzHbpEmyxGL7wfEUUwn6Yiiu2ndwK9ZLfWqql4pFVFqxTxZ1ijWgvFFJb3kNGLtsx21kyd9eQu8VAK1bUvlGVrrue3w8s23rjmrVwtPbZbMTtlqt9adJ8rStMLw8X2fbiKx3v1BX0InClHNJZ2E6UTUQXUt6Y5JEtLUwvnKvRxPm5Wyushzp5D3VvWu6NdwqW4+ZSXKpFYJQLhpGmHteL4MTIxZPY+uMBWRBKKA8vBXVsSlsqjVwklrHDy4rqpVAu9Sub+sZ0SxZJ6dSUgqqcJgjGJJO5GEOFnwhUaWwVW9oCxFKe95LvpdGZRRq4Wx74WEfsTG1hYbW5tYpSiqGlPI8CvNZWg7m81XdrK6rrFNQ7ZIKatKeoFWlrmiDLZkqdikLy8vyfNcNumw+llaC3Vd0TbtqvbyjMLahsYNX5u6lI1/UYCVcJa425MlXxCImr3SVH5JVUmyV11LymZViUWxdvzaum4pymY1eCqrWtR0lTD22han8DOk6YzZbEyeL+j3+lhlML7P3mRvVX992V5aliVxGBEEAZubm4RhQBiGlFXhuHvCD8tSZ6GpRI0T+pKIXRu1sgu2tUC920bCeozWBJ5Hv9slL3JOjo+5PL/g8vzCceWkb9Pa4AW+KBnKUqD2VhElHfwwcEgFTbebYG1L7LhQw/U1wkAGd53BGsp4dPtrGC/kytUbbGxuECdd2ssR49mc1irCOEEZAXRnefkMFdK2zGezVaKY50s9LGe1q/GV1OZL1VPl1BdbmxJgNVnfIM8LFosF8/mC8/MLJpOps23JHbWE0NeVQKONh7Oi1is3xFJ9WRQldVUxutSOTRms3t22UrRA4xQ1SyZaXQvmoalrWX5bsY1VlQw0q6VKcOkUco3NUsFinEVsmSHVVLXwaKsK4/lEcSwJkLO51BZlwXg6JQoD+r0uyvewnpa6V8F8NkUZjfU98kUq6iNtiMMQ21rKonAMv5YwDjFGoXRNFMYkSced4+IesFatWHq9Thc/9AkDT6z1mpVdvSwkxd4id3XcSSSlVWtRgDUtNLhAF9dnO4fKcmAkysflme5+Q8uBlFONGmdNlF5eirbGfXbKaBlNLa3ErWNJujrZLvt+JXdl28qAU4KjphIWEUaO9+g96yWxq3PKjQLknrFiuW6bxi3Dyi/Vgq0kbPqBGy4u+9l25bRS7u4UdW9OWeSru65devuse06UcudCu1J3p4sF6Xzunn2xuoZhgB8EXL12heFwjf5gQFkKHilOUsKow/HpGeen52L99DwZnEUxuzt72LbBM5bQD5jPZu5ckb5EKVjfXKduG/KqYHd31y1eJBjKvbo/1Z+fevAkTbwl8MPVpdjtdllbG3D4VGKPL0cXtG3L48cPWR+uc3V/j8V8Rp4vyPMFnoF+v4vWhk8/+9jZr0Lee+89/vK/95f54MMPuHv3Dj/84QfM5zNuPneFwNNcXJzQ6/V55dUXmU5mjMdTvrj/kMvLMVeu3qAz6JLm1eqh19rDNz6T2ZjFYrZ6cMVaorBWr4ZXQaBA+SxTsqy1aM/QHwyIoojJbIZnzAr06Ichi0wsWhsb6wSBbOfKqqBdOIJ90+AHwlcAhbaK2A9praSYta08bMZKQZDOZxTGEPkyNTW+bHclpvNZcbY8sI3WLBYLfH+Na9eeZzjcAkLm8wJjLmlbCIKITqdDnmXcufspx8dH3Ln7GU1jaRv40Q8viIOAX/jmz9NJEtKZSCwH3R5VUXF+dkG6KGhyy+VImmVfa7SFvK2YTKacXlyKssaIvUAKFklFOTk5ASR6VJRajn1jc4zSYtNQ8kK3jZv0u9euVeAHHlrp1WcC0NqWospXTSIKTGDIygJVlc/SuYDKJT7UZYWnhd1iAp+yqMgzaaSsZcXhiuPERVlbZweVtCGlFFEYs4TrLtkB165J9Ojjx08EeonYQowxYBuqOqNtQlRrCBUoz5AMBgKLrguxxBmIPEUYaKytJQLdVmI5CX380McLPIp8wcXpMdqlNDaBRGzGGmyR8eTuZzy88xH/5B//IyTjRaGswOk87TlvtMjwrdvgd7s9Xnj5FdlqKLDtsmjV9Ad9Dp484fDwKYcHj7m8OMMzCqMVkUv48jo+fuDjJQGzbM6Tp495+eUXeP21V9jd2EBrzcP7j5nMFxyeXHLt1vO88dZX+Bd/+Dt8/vnH9DoDQPHwwSPquiEMQzY2RCp9//59njx5zBtvvsPe3h69nlhrXn7jbXavXKe2isOjIx49ecz5yRlnkwmzhYQW/PiTT7Bty2wyRfkeXieUArOqWdvYJIpi2lzOsvnlmCAM6a+v4RVz/IVH28rn++1f/3W2t7f5T/+z/yNGaz799HOODo+5ODnnwb37tHXN1atXuHrtOou5HPz37t0X64gnjUndNGxubordeDBAW8sXd+4wm80AmM/nPHr0iN2dbZr6ChfnFxRlwd6Vq+zs7vCL//Yv86Mf/IAf/fgndJOEtV6XEkPWwrgQ9lYzWeBnFbNClAeeCUnzGVmZMxwMuLazx87GFl4Y8OjgCZm73Da3N7l565ZYP5Xi+PCIPM3RtZI1URxgqhZTNW5waqkCOYi0S+1QkzlWK1ojoMu8Llm7tkc87NHv70kzfjFldj5i/oFs7pUVmKHShjIvsarFUwoDqNqifUT14Flaz1JZTQ7UnsZTCl3W+KGi3++TBR6bgcfO1hDV7zI7vYTG8sqLL5AuFvzh7/y+JJjGIf/WH/tj/Ok//ef58Mc/4NHDB3x69z7TRYYyPkpLCmbjggGSKCaIfM5PL8jSHGMMa2sD3nnnHQ6ePuXv/72/J5suz+Ov/tW/yuuvv85PfvITZrMZ9x895OnBAb/7z3+HP/En/gR/+S/9JXo9SbLsD9YxXsTleI7WirjbY9AfsLe7y8bGFnHSZZ6dU9YNb779Nkprjk9P8RTsbW5w89oVfukXv8WPf/RjHj58yJPHTzkdj5ldjllfX+erX/3qKgXs+PiYR4dH+IEm7nQ5Oz8C1fCzP/seQdDy7d8YUZeKqhQrX9O0tI2hKCb8xm/8A6qqYT4v2NzcYG/3CtPZlNl8zny+YJGmUty581ZpsZNoZcBqiqKiLluu/X8p+7Nmy9L7zA/7vWtea8/7zCfnysyaMFQBKLAAAmiSYEtkk92tliKaksPDnb6CLV1ZH8C6lLutaDss66LbirZss7vVaoniAIIESAAF1ICac84zn7PnNa/1vr74v3tn0VKEoIzIQKGGPOfsvfY7PP/n+T3XDugkCb1uh7os6UQReZayXMx58vQpJ6encrgwhtxWvxfFmrVoGI3GXLt+m4urS2mdupjgh88YjXd4/PgZl5cLuShUDf3hDnfu3uWrb71NFIdsb20RRiH9Xo+iKJhezXj69Bnvf/AJ3/jmW1y7do3uYIc8zzg/Pubpk2Pe/cUv8Xxp1Hr06BkPHzzkd3/nd7h39x6/+Zu/yXQ65R/9o3/EcrUkLxpCz+DEygp+DSfHJzS2gWk4HDAYdBkMBhwe3mfQ7zKbTPjo44+Yz+e4dlqbpysWnsv5acynn3zMZ59/zv27d9nd3uHa4SGz2Uwmna7L1tY2zx9+zqOnD+j3u8RxRF5I1CKKI1w/QCNCwHy5EneNH2yEk1bbUg/PF0dfWdBXLnGnh+9PcZ2MfnfAYNDn2vVrKCVtxJVyyOuapmpZzJcUZSVNwo00G47HY1xPXBDKkfhlGIZ0Oh3mizkXF+fkRYYxZlOe4bDGNbgiMBlNnues42Qi1qwP7GrzM7hrJEC/L83J1nEdhqE0fdVyqK+Kgraq8R2Pu7fv0ev32dnd4erwgssb50RRhOM4XF1dsUxTezCP2e1uc3J8wqeffLIRfu6+9BLdpMvV1SVaa3q9HmDxE9rF6JZhd0jkh1xdXcjQrWkwNqaWRAm9/oCmbQXwaoVK5UgkpUyX1G1NNi/pdvUmehOGIaHlSmVlYUUSEZyWizl1U9K2Fb4v/05VlSKQJ4m4pmuBD+d5wWg0Jo4TWqOpm5rzszN832M8HpMkPcbjEWlWskoLirLB8zxGw6F1F0GnGzMYbrM1HjMejdna3SGMY/7qnXdo25b9g4ONULVcLKVsJIwFmK5FBG3rhnSx5OjpM6azKUcnx4yGI4bDkVwmbZTX8zyG4+3Na2wQV8N2Z0AUhlYIcEiSWN7rssR1FL7nMZlcMZvNKPJCBkf7+/i+b4U5OcN5Fvw8z2Xfruxeun5tfd8nihIGbixJfiXD9HU8Vv4dGUrnecp8fkVZ5TambsiLBtf1uHnzJsYYZrOZ3CHs5+6L8dK7d+8I6/all0g6CYNxH2UMvSRmdn4u3DjXJRwMeOml2xg088WM/f1dXrpzhyIvefroEXUrr8HB3q6co27d4L333uP//f/659J4mOc2FurQtA2u57Gzu0MSJ4z6W/hxxHh3D8cXVMGo3yFJQq5fl+bOpN8XEdNofNfBdx0++ewh508fkfTGDEYeu9duEYYhF7MVnz54yl/86K8Zjoa8/PpXaOqSq/mSX777Pgq4e/s2ZZEznVzy/MkTmjyH0MeRqQzoFscolOPRiTvMr+ZcnV1ycX5Mtlrwve98h8PDa1R5yZPHT/iTP/5j6lqGyHEcs7W1ZSOAUjKhFES2pTAvii/EhGt7qRb3cxR1qKqSx0+eMxz2uX7jkCjuECcddFtC5VC3Na3RJL0ufhSRlxXLVcZkOkd5UqCznK8IgoLL6Zx0taJuNa7jEgSRnDWseO/Ys76MhgViv1iscKNLdBTghAHbe/sibFQVs4XcxYxu2d7bobc9oqor8qaidqB1Fb5uJXejHLRy6Mcx/Y4MIB07JN3e36Uz6PDa17+M68B8egHGxdUBURQRBCHz6YLVckWayx5z88Z1tNEURUqdSwS6TFPquuHo+QmLeUYn7hP4AcOtLeJuxzqQGtqyQteapiw3QwcZ6De0tZQkNLrF9wTM71mjhjZ2/GlkIB6FMb5Fviht7ICnpGprvCjAKCMt4jZ6l+e5TeIgIwLb1Ou6Lg0trca20C7Z2tqRYbZRRHHC1npIYMX9pmlRyrEmCxESh8MRs9mEzz59yO6urFnrwq7BcESrDfPFEm0Qp6uWsoZWN3ieoixzlss5J6fPadoCoyswwYYNRiufA1c5FHVNaUsIZtMpz549w/ddTk+POT095vz8lG99+9e5dfs23/r2t0g6HeaLVDiYvYTlImc6TXn85BlPHv01naTD3s4uvuMR9Ad851vfo65yimLJbDHnRz/8EdeuXaPf7XB0/JymafjaW1/H80UMnUymXFxcou29Ufb1X+3Xryw8iXVVqiEVbPLISimiKN5UuLZtI5NWX/gKjs2L+4Gof71ez170Y6pKDplpmnFxcYFuWzqdDk3TslymfPzRx7iuuwGbr6ci4/GY7fkShUOeZcKHqmUx7XR7NG1FXUilo25fZPZRckgOvADHVRRlSUeHAiujsU4XkTR93xPGkW5tBlU4M4HrUTct2ujN1K9pGtDge6Gd5gno2tgmqDVkVbctWbaibhqKqsL15CHOaW00zwctLAOxYElGfN2yBMrWGmqr5Io98+zskvOzKVvbI3q9Dv2+uBjaRiZyg14PRYvnarEQKpe6LFD2INg0DaenZ2htePzkGScnp9KwVZa0dY2r1nXowogKlINyJOok+4TebMgg1sY4FpiwTB9baG0Gdj1CYq0aW11QKRzPsxZOD8cKSO2G9dHiGtdmrGVS53jui8wwWOeCsTWl0iJzfnHORx99yO1XXqY/GqKMPJs7O9skScxsNsO3DWSu88Lpg33GFcKyWUOIryZXPHnyBIMhThKuLi9sC1JKW9dElk/hBwFhFBJGIdjDsDxeCs84FoLvbKaztWlRtLIwOsbGzFxpBokjur0EXVcY3eDFkajorUbX4vbR+PiOJ9ZkHEEyGTbCk4iZrUBXXVBojGnQpsboBrSHq2SCIVbYZgO9vTo/o9eJ8T2PKpX3WBtNW3josuLR5w/I89LCFhXj/gAch2makeYFF9M5W6MR+7u7GG3Y2d5la2sH3wsYj3dQjqLb6dHr9djd3WF3b49791/m5q2bDAaDDWC0MQY/ibnz8suM9vc4uH2L5WxOvkq5uDynKkuiUCbWy9kcPwpJhgPqRngKo60xURShS/m8uo5DEEX0RiIINrqlG8f4vsdnn33OcpXyp3/yp3i+x2uvvkpVlpydnZGuVnZat+Lq6oqyqVGOQ1WUG35GVVUUZcF507yoqK5rkiimikXMSNMVDx8+IIlDsmzFbDanbhpOzy7Is4zJdMrK5uqrpiHNC/p1TdC2lHVDUzeUTU2tNctC4ol5VRIEPmEUkKUpJydn/PQn7+D4HpPVnPPLKzqDPnGvS9BN0NYx2D/YwR10UJ6sk8Z1cDW4jbSHNk0jrADXIe50ZHLvOfaZEteGaVuK6Yomq8gvJRatqoZisdpMi1ol9bGuJ1Mz02p0UQnrw64JTd1a9wI0nqF1BD6OAmPdSXVRymF5PGZqNIv5nGyxxFMOSdLBczx6/T7zxZKT4xM+/uhj4jjh6vSIxXwOypZA2LVn3UppDMKSsFn5thVocqtb3nvvXeaLheTpq5K6bviLH/45z589o7Hx2d3dXZIkwRjDJ598wj//5/+cmzdvMhqN+LW33+b27dsslktpDi2yjfDU7fXodDq4gU9ZVRyfnKKNptvvoaua88tL27opF5YbN25Iw8gqZbFYkWYpDx8+pNuzLjxga3ubshahcZmm+MGM84sLVumSKAqsM6eVfcZojJY111UOxoUokrhAksQsVgvbJmXF70bcDG1Tg5YJWVPXzKczVgvLP6lLOkmMg0E3DWWeSQtgmjKbz8mLnLpprJjgYYx4Yjzfo9/vSwR8d5fFckmW5+S2waljD9Hj8VgOg0bRSRK7X8o+o2119bSZslwsOTk6ZbVc4Xsex0fHLBYL4f2VJR9//AlN0xCFEVEcEQSGwWDE4eE1MIp0lTGZTMmznJ3dPUbjLTkb1LI/xnGE57kkibTFHR8/J8szFqsVRVUym89QQBBHvHT3HmVZMJte0jS1cG8UBEFAp9dlNB6xSlPOzs7o9Xo4rstiubKw7QY/COz7K9DgwPNRygdH2H5xFBMG4UbUWTvTUNLAp+wUS+l1I5wrBRmeuzkfgVj9hT+lcFz5HSUh3W6P0jpuVukS3/fZ29sjMYp+r89sNpdLdhBs+FqObYs1BstEsQcFYyQmoaUKw1HiyGmbBuM4uMqz0227r2u9GTqtK62LqsJ1XTxPGohaLU6XMPBp64oyy5hNJuTpivlkIhyTPN2cyxbLOVVZ4fkBdVVyfHREWZZsbW1JhN/zcF2PvMw3F1bP8+V7daXlqq5q6rLE1bZVVynqNa/GUVR5wcrIz7YxhilwfXfjvPc8GWC6jkNtLy7Ca6twXQ8/FHeFchzb/uqR5UuKUp4dUCyXGdDiVjVStKIIrLtFmiAjccwaTRIGlGXBdDbDdT2Gw5F1+0jlehCE4Lh4fsBwPKaqShaLJYtVSqsNnUEfP47EFaegrCt0KaUai/mC2WRKFAhTD21oqppur0cQBgxHQ3bzPXb39+h0Zd1bZYKdMAaCMOD6jVtUdc3l1SWB523iSb4FZyuU5Y3WLFYr+Vq9AGzbcxx3rKNAOKir1UrieWFAXhYUy7nErZUiShJ55muJM6r11UjZincFvUHPRh6FE9VUVsiqa3GUOS6+64q447Y4SpzvIqbnxFFEkCSkaUWRF/L5AhzH0Ol2SbMVYRQSd2KiICQKQi5Oz1ktFrRNg+s6XF1dUtUlJ6fHlo2lSFc5eVbQaIHaj8djfM+n1+2xv3/A66+9zrOnz3j29KlgNzxP3KnOeggvbJ3J5IpffvgBW7u7DIYjPFfT6JqLq0vivMO25fQ0WkuBkuU5BkHAaDhEKTg/O92sMfP5jMI6RzqdDtlKUxqBqFdlSV3kKKPRbY1pW/o9aTlvm4amrmjrGmJpMCvzAgfodbqEh9domm0ePnzI48dPeOedd6Q8oWk20Ou6bTBlQW0d2QZZd/Q6imWMdYe5m0bstQtUhueaIIxQrk/daKpaU1Uty1XOcrEiy+U5rVtDoxGnWKfH7sF1Gq1pjCZJBsRxws1bd7i8uKSsGjzH0IYiQMlvwbEo68ZZixme59Hv99jf32NycsZqNsPzHMtnk2FyHHWIg0DOInVF2VYbR1XdtLgYOmFIqw2u7+J44hJyPXfD4DW6JYliYajFHXmmWuzwT+OFHpGO2N3fp8hzZssV9abdu7FCuLgt9XRBmlc43gOSOGE4HNHf3aXbk9RC4HkY3dh9YO2SRhqT7feNkvVTqkfVF/YIiS4rs7b/IK01GtntbRRXoorYv24Ev7C+p1u305oHvXZxrRtMtdGkWUqUpoy3RZBFrZ134sZu6locTJskkzAp6yqh1+sQhoF8Pfs6l1VJVuTSgGrdV0EQ0uv1uPSFaeZ6iqQT8c1fe4u9vT0GwyFBGOFVjaQxjCEIJVLsuS5hGHDz1i22t7cZj4bs7e6wv3/Al77csLW1zZ279xhvbdFoQ5ZXFFVDXlQsV0smV3POz64YDkd87Wtf56U7d9nf25eUVGtsycScydUZYRQxGgzoJh38wOf46Igsz+l0pShrZJNUk8mE58+fS1S1lrv6r/LrVxaeXFdEp163S2VbRNaRqF6vx4t2oIrAHoD6/b41oEgldByXbG9t4wcBV1czsixnuUqZzeZ8/PHHEikYjWhbmE4X/PEf/xmeJ9A0ow3TyYSdnT12d/dQuAz6E975+XvM5ksMEMeJWIbLmizNaI1sJO66ItcRe3acRJi2IsuX9JvkBdDLSj7KgcC2s6wtZo5xCX2pRm6N2Vg0jdaUdYXjuIRB8sKNg/13XIkjYDR1JfnxvMhJs4xuNyGKI/JM1OlBfwhtjWNt9Lo1X/hwyPsgi6nUdsp0peL58yd8/tkj+v2EXi/hd//O3+batUOaUmrYrx3scevGAX7wuuRIvZDLi3OyLKUqW5aLFZ9+/oDpZMqzZ0dEYUgSSzSobRqSuIO7tpwDvuNKpafjUNY1lbWSrn8rFP2BNONVdbWBezo2zrdeeNpGbPQKZXlEUokbhAGmkarvppV2AEeBEyg7vZIDqG8z/hsIm5b4kjCe5DD36MEDjk6O+e044pbniu0+DLlz5zYGODk5YXt3h73BvrVFO5v8rtYNawDxuuXi2dOnLJcrsjyn3+9z9Py5hXyviMIQLGA8ThI6vS7dJKFcZdYppUErAtfB8Rw838UobUHJDZoW5WipXXZcqZQNfHr9Ltt7WxTzOU0llauu66KLirqpWTkaLwjxbewD5UAtllbfsRBYz900tkikErSpqZuCqI1AuwSOXRCaBl1VtFXB/OqCs+fPUDvbREFAlsmhPQwCjHKY4HL8/BTFT1jO59RlRRzHKNelRNFoQ1lr9vb2uHXzJteuH3Dr+m2u3bxJt9dnPJZJ7NbWtj3ku5tLRmOnlMt0RdO2pHVNlHR449felouV5+JYS+qDRw9ZLhZkyyVVWbCazukOBmwfHAhstW3Z2hoSRSFlXoKB0Avxw4Bk2GexWjJdTLlz4yaDbp9//I//MZ9++in/6B/9Y+7du8f/4T/+3/PJR5/wb/7Vv2Y+m6GbVlofs4zJQsTL1++/Knl716PMC+aLOUcW7Lu3t4fv+wz7fdAtZ4HHdHrFz376E46eP2Vne4u6Frhsrz+g1ZqLqwsurq5olSK3UPveoI8XBsIAaRqCuqZpCq6ms7Vvm/3tLbaGA64mU07PLvjrX7wLjiLsd2iNZutwn+7OGL/fIatLyqZl57W7bK8X+9agy2YTD8jzXOILGlzPY/fuLfwkwo196jQnv5gyOzljdnzK6viKKstpSuFjdLpdsUI3mnXlhu97eJEcgjGGxfkUbT+zuhXbtq7BuFAlUDkK3Vjh1ndpjCFbrgh2trl27RonTx7y5OyEerIkCUKSpEMn6XLt8BpZ/oBHDx8xXy75xfvvcbA1EritFR0BGxuXBiZjYJWuKG1kpG1beoM+dVPxL/7lH5LEMePRmMnlJZdXl/xfHz0gDEP+7d/9O9y+fYevfOUrlEVBHMf81V/9Ff/0n/5Tfv/3f59vvvUW//AP/oDt7S3ee+895vM5p6en9Ho99vb2SNOULMuIooi6rvmT/8s/pixLfu/v/R7L2YzPHz5ktVqxWq14++23+dKXv0ynK4Drd999n9l8zrPnzxmNx9y4eZNXX32Vl166y9HxEas0ZTKbU5QV3c8+4fT8lP6gK1DeLMOxEV9BFDp0ogijXDodl+FwSK/f5ez8lDRLEYaBoq4KqsKRAYbWdKKYKi84fv6cx4+eMJ3OmF6ek0QRs6tLlFJ0ktgCrEvhqNSlbcwM8cMI5bYYBUEkh92Dg0MOD6/x/PiI+lIiJUVRsL29Tdu03LhxA0e5RGGE57tWyKmolWK1WKC1ZrlccnF+wWeffs7W1jbb2zt8/OGHLJZLvv7WN2ialj/9kz8jjmPeeustPF/4RtcPb7C3s09T15yenvPg80f4vs+rr74mB6/xiAeff8ajBw8Yjrbo9bpcv35Ilmf8V//VP2O+WnE5uSJLUxbzOffv3+f69eu8+vqXCAKfd3/xU6aTK54+eSrV6b0Ou3t7OK7LZDohy3P2Dw8ZjMasPv3MwnUrkjjh1q1bnJ0eM5tN2R4LZ7FpwfNDhr0+88VKuDKeZ3/LpcXzIwwWBu7IIM3zfcI4EiFYKPAYWrJMGsKkjl3h+oreoMvO7i7HxyessoLJ5IooCkmiCBU5+G7IYjYnsM7tTpIQ2nOU57nSZGSFLWNFJ7SiaWq71iiUVpSFFJToTXxY4hK6ledUa0NZVnJZyHNse/XGHeUqRSeOqYuCpZnxXD+mqioWiwVB6BPGAZltoQMRwcfjMUWe8uDzI/b29rh//z6j0Yhut8tHH33E1dUVKwtsjUIR1EBcq1makZkV2q+kxdN1KKt6c8mp8oLFdGaZIS6NFlEqSiI8z6MThQRBQK/XpygqirxkPp+LIz+S2vKbN2/iOA5+KF8/SbpMpx7OSpqmtTZU9YUArLWy8bJQODOBuM/CMCTwQ3w/YDAacHJyzEcf/fc4jsfu3p6NrtYkSVdYdxrCqMNLL93n/OKck9MLFqsl2rQMdsZE/Q5xJ7axopo0zzg+FRD2bDLdXK47SYLv+WzvbRMGIePx2IqhwmtRrsOjx4+ZzWdoO9D78le+wmw+5/0PPmDQ7bE9Gm/OeevzZJ5mVE3B2cUV/V6POOnSageDR6/Xxfc9VpmsGScnJyRJwuG1a8wnE45PT+j3ByRJQn843DSWtbbtuWkkKrUu1BCYtcfR0RFF0ZDnhYXON3ieSxgmdLty+fxiG5tc0Gs8r8NoPKSuS5aLksVsQlWWnJ+f4noen3zSQymDRrM12mJ3a4cizWmbhuFgQBD4pPmcxXLOx598hOv6hEHMaikcrca6eg4ODlCOy2i0xSsvB/ze3/l9fvBnP+D89JzBoC9ns/XgFyPneqN5+uwxH3/+GW+8+TXu3X+ZqhkQhQHTxYxOp0O7dtBoszkXAPR6XeIgpCpLPv3kY5RSJN0u5+fnlGWJ73sMBj3auiRdwenJMZOrKz4uC3rdDvs7WyRRyN72NrPlgqaqqGyMvNsz6KZmNV/g4rC3vcNofJcoCvhn/+yf8dlnn/HxR58AsH9wKIkHpSjrkizPNsOsIAjAcagbwXy0RqOUB64VFu2ZXRuD6/so16WDOO+yoiEratKs4vJyznR6xXyR4bgeRWUoG6iNQ2+0y73uDqs0pahK4ihiOBjy5tff5tHDB2RFja9akqAh9APLJ5N1eX1p1EZvGKF7e7u8+uornD97zuT8nCDycR2HOPDwfZ/93T1aDOliRdFWlLrGKIXr+WRlhacUW52OCPjLBY7nyr3Wl/8+CSMcA52oK5HVuqJuK8qmRKkWDUSdgCAOuPfKK0wnU370ox+RpgVZWki5j7Gij1KY5QVGGT5/csxgMOT1119n/9Yttnd3GfT7JFFIrWVt1Eacn4I6MDIgQYpNpIhDxJ61Km+0CPyO0bgKjCO/rfwsRUlKGhddX4aHZVWR56kYCtYxMNl45O7ZNhJjDAMBmxthSrqBz51794XtbPdCjAza6qq0BRiejah59JIOroK9vV26vQ5GiyHCC3yWacp0NqOqG/ncKNcyP3c5OT6mbkqCwGM4HvAH//4fcO3wkK2tPUBR1y1RuBSh0PLwgjbAD3xu3botLl9fvo8w9Hn9y18Wc05ZU9WWQdysKGpNmq44Oznh5PiYZ0+ecvPGdd5486t8861fYzgc8PmDJ6RpznQy4/z8lAcPP+Prb7zBK3fv0el2qJqGjz/+mMl0ws7eHr3BgLKuOTk55dnRc64mE6IwZGu0RRiEv5Ke9CsLT1VZoFuPMPAFtNjUdnq5IgwDXDcQxUvD/v4+g8GAoihIVynL5YqyqAmDmDyvKMsW3SqqqmVyNcP3AuK4w2DQI05iHMel2+3S7cSgBAC2WhWcnV3SNtKKdHh4yCuvvMobb36NxWLJX/zoRyyXK64uz+QgoiXepTF4nqjwdV0Q+D7+oIcKHIJAHvrSWm2/yK5obWtZGKzzxa0AJNsW3/PwfbWx3LWtTN+aVnLxriv2a4PBUQZcQ6cf44U+fqHpDxOU2pYInWMIvFhApW5AkUkUrcWq8AaMlq9lT2w2jyYHN20KmianLFOGw12uXz9gOOyRxKG4jIzBNGKvrouWNoDWV9RlS102PH7ynMl0xvH5hCiM+PZ3/xa6qWmqgudPnjC5uqQNZKraGiOiBuJ4+WLDSVVJw4ox0oAVhYG8+muV2i4UGFGmjTH4riwIyvKFiqq0rCRoqwptAaoYeZ8wxnIB5KVYf/2N28q2AHquK1MoG4m7dvsWi8WMjz76kJs3buF7PmWeE8Ux460RQeBvhFQRP2x7TS3Op3WDTxAElFXJZHLFxx9/RBCEpKuVbazQBJYf5LsuPa9DW2jSOrdTJccS/xUoYU0p40LrYBqFZwJ8AhwtExBahdIuygko6obJcolqGxygaW0C3vNloufKs67qRoLiSqFr4YwYV/K3fiTia2LFUTQQKLRn8BzwMBb6W6PQ+L5nW6A6xJ0OnV6XOAwJ45C101GeBYfAEydgNxLmV5hEGKVIq5LBYMgrr7zK1tY2u7v7RJ0ufhgTdTrS1qYNeVFwdHKyWWvWAqY19VFWJRppzXKWLpPZlCgKiZKE0Npy3cCnNxpy48Z1qrzk+eOnxLZRM7U8mbXLprH1F51AsvuyXkjTRFXW5F7JYGub0c6M99/7Jdkq5b/8L/4fDPtDvvnWW8wmU549fcZkMsFZLNi/dihxwMGAdJXy3rvvSrNXJ2E8GOKOlDg525b5ZMJiMcPoliLPuDg/Yz6b8MjzpOJUORxeu4bruixXczAN3/7mW3TjmH6S8NLtO4xHQz7+6CPKquall++D47IoMh4/fcJ7H3xAlHTwgg7XXn+NYNTHdBPwXFToU5qGRVsQdmO8bkK3NXSMoahtdbCyWfa63XBbTJqhbD0sSlGORzSei1IG5QyJXrvBaLGis1hRL1J0UWHyElM36FVOnWbEx2eUaUaxWOK0oCuNiX0cz6Wz60CrcVvhqKWrlSzgjfCdCleBdnCMI414jsRou3VDxzi4ZUWbptRFTqk10+WUQX/A197+OsO9LRoPbt25zc1bN7l8/ozZ5aXYu61AHAT+5rlrmmYzdVxPucoiJwgj7t+/SxhYV0no0+t2uHb9On0LXp1NJ/yrf/EvCcOQ3/zN3+T4+JjHjx9TlSV/+Zd/gdEN49GIxWrJarXkydMn9Ht9Dg4Pefr0GcdHx+zv7xOGwtzz4ojpxRVNU7O9v8/Y8vFGuzt4ccStu/c4vNVwePPWhlfhOtIo1h/08SKf3YNDxk2L40j7W7fXY5gPOTw8pCoKyrxgejUlS+UwjY01OY4USKwjSY6Np+i2eQG+dBx6nYQo8GnrmtDzGPf7XCQRWSqxlzTwSaxTYR2/8n2fspJJ7enJGdqsYZ0ax3Wp6pLTsxOuJld88uknPHv+TC79gUe3m5DEIb6nhK2yWLCcL+n3e3SSePO972xvo3XL2dkZi/mS87MLssWc1XzKbD6nbhvaWtrN/s7v/S6LxYKjo2fcuHmT23dusbJcuGkmBRbzxZwwDGQfbSqWqzn9fp9vfevbLJZzcWsAYRjyjbfeQjmKQb9PUeSslitxL3keF1dXBIHPy6+9SlHkDEYjdKuZzmd4QcDe4SGukmPZk6fPxP1S10ymM37yk58yuzjh4vkjMOJUEzi0gzaKTrfP4fWEOIxsXGnMYDQiLVKquqYoanQrbmrf9Qi6Pp7nbqz/KCMOdddBI803xhiMMnieS56nXFyc4biKXq/DfObjOIrlckFTt1xezri6uqJIM/I0I8+kRWq1XFFWpXA3ksBesgS4vW4t2rBOlIPxjQU3ywS5KiqKUhrV1mJxluc0bcNqlVkOhqyxYRSiERh3lMS26MGlrDSr1YouXZkoOyHKPpNKKdKFNLBlWUZRiJtxNpuxWqUWuJ1w7/59fNcjTpJNG1TbtPiuT21a2jpH2bpWL3LByDnJQ2DU0nDsAj4orIvJIQwDG+dKmU5mTKdzptOZDIl82bfPzs9EJAzFdTYcju151BbbKEUQxBDAcDDcCHZhFBGFEW3bkKdLnl0+AqW4cfsWqzRla3vEcNQn6cQyWfccqqYiaAOu37iBchw+/uQjmqZhMOyze7DH7t4O/cGAIAwJ6hqnrikrEQ/7/R5RGDKww7F1lFJmrwYch7QthPdiz5B101DpgjAJeOXVV3FdlyePH5LnOaHv0u3GjLYGMgCpKhyjwHXoB33COKTRNcPBkBuH1/nkk0+5nFxRz6YoFK1pcT2PV15/DW1Fq/5oRHc4YHt7h26vR1mIiOl7EkvN80KGxHkhDifdkua5cIAw+GFAfziUkpEiY32g8gIPx3doa9uqZZu6/MCjNS3zxZymbQjCgCiOcS3kGCUOwzAMGAyGHBzsc/PaTSaXV2SrjLapWa1KsmJlv55wj8IoBFzCMEYbQQSsViuOj474wQ9+wHg85qW7d3n48CFb29uS4nCEyYJStoURVqslWZYzXy44eb5FFPiE4T0Cb0CZF3SiiOu7O7Sttu7anHk25+JShtd72zuURcmP/uIHMpTNpKBFO7A96pOEHh++/z5np6dkyxmmrXADj8a0zJZzHHdA3AkxcsRHK8vj8RyUFnaRtFK7/PVPfsLTJ485Pj6maVp2dveEF2YdMWtmoOt7MlAx0uysFLRG47gOnbhrjRLirP5iN1pt28hQLk2rSbOcJ4+PqfKGr371Vb7ylTe5/dJXaA3s7G4zGgy4c/OQomzJskr2FWPY39vH9zx+8pOf8/TJE3qdAb7r2rbTAFe5cndsWuo2p9Ga5Sq1MXPNxekJx48esppNaauS+WyCNobVcmmbGy03LvCpypy8LNBFjW4aiqLGcTXz2ZKiLMiKnMKyWC8uC9pWM1+taJua2Wwha/hiIQJqFFkThkNg2YdXVyl52bBMC6q6RgUeDo44lJWs3p4Sc0TrOFRG8+T4mM5HHzEYD3jt5Ze5deMmvdgKs0ruK60WPIlScoc0vNgTPNe1lcrrMi85kwVxJOum70NrXfhq/R3LHVA3rW3BjqUJ2Vm3k4Mp9UbkQ7U4bUvc6UpL5HBAfzhgb3+XOE5obHRT4WwaoP3At7xMYfGtAeKFPR+HkQ9LIyUFhdw7wigiShI8LxQUQVGKVjGdiMAXJ/T7Y+Kkz2wukRKlHPwgZH9/b3MvyvIcow1xEotbzhVOaV6W6FbcvlfTGWmWc3p+QZblnF7K8GuNS4k6Ht1Bh+6gy8NHz1DqOc+PjkTLyVZ0u11+/bvfIfFDJpMJV9Op8KeqiizN+NnPfsb1Gze5dfM23U6X7a1tzk7POFmdELgBpvurQZ5+dcZTVWJ0S12HNhfbbJxPSRIThiF1KRnpnZ0dgeVVFbPpnNOTM7o9qZRfg6q1VjS1YbFY4TgeQXBEsbvNcDjAcz26HZm6aK1JVwV5VnF1OcVoRdsavvLlr/Lqq6+ys7fParXi/OKMx0+e8PzoGY7yCLxILlFK7JcOUFViR3UsUMtVEl1Y25rXEFlR9tsNU2DtwKjrmla1JN2OrYiUCckamN3SECgjFdVqXRMLyjUkvQgvbPF8aQ3pdLqUldiLe9EQ1wnEzhkuLAzaHvrWl2LLeJIV0sLSjEabCq0r2rZiMOxy7fo+/V6HOAxoyhZjQcdtKxZWU7vgezRVQ101PD8+5uJywuV0wY3rfd78+ltkyxmzq3Ouzk9pmgqtG7QRdhBGPuBftL4Dm4tDbeGLnveiptZ+krAsONpG/rvQt6A9+1pXdU3gu9S1oqlLTNtgtHWc4VnlubXAK2eT28cuD/K/2GmMQNgObMvGO++9x+ToOd1OhzhKMFVLnEgDVGtzt1h3nOMq1q0/IrKIIOX7vnwALeBXfiy1aVjxPZdstWJ3OGY02qKsSvK2xo0EMNcYYYA5ysXgooyDaRWmUbh4eMpHadkkVavAuCjlU9Qt8ywjVhA44iJCyeKsXZfKlWfNrRsRgxwBFKINysYdfQcLgQslptBq8EF7BlfJQiC25xqFXDTiOCaKI2nnShKSOMKYmDUMUF5vhyQMiH2fJApomhY3CTGAly64eXOff+u3v0N/MGY43CKvoGwVZS0QfG2MLMTpSmzQ9j3VdnKgbPwCpXADXz6HZU2n26E/6NMJI0I/wHFdkjji1p2XqPKCIi0JopD+YIhWjoCzLdixUfbP24jEa+AtAiv2KrrDIf3xmKvLCafHp5R1wd/67vf4je98j/fefY8gCDifTmm05tXXX2Nra5t+r89iNuezTz/l4PCQm8ktBr0unTjGKAS6upiTLpfigCxL5vOZhYjmlHUj7KNKDqFVlbO9NeZrb3yF7dGIvdEW91+6y3g4YtjpUpQlb3zzm+KAMg0/+qsf8+joCVHcxYsS9r7yOv2XbhBe20MFPjWGjJpLndIoTaM0ER4uDl5ViU1cidCrGv3i/VilGDtVNcZQex61MZiqIuwmJPs7hI3GqVtIS1TZ4GQlOitZPjmmtMOF9OwS0ooW5ALse6goJIkjHKPwWkW2XJHmubhvdEsNFAoMUkMskNCWoijp1g2JcvCaFqoK0zbo1mGZLukOe7z++pfojAekTcnrX3qdV197hb/87/+IMl2iG2GqhVEoBRlrl11jbLxZDoZNW1NWJVEccevWDXxPYsBhENDtdnnzzTfZ3t7hybOnTKdTfvzBj3nllVf4D//D/5Dz83Nu3LjO//BH/wMffvghRbpiOOjTGw7I84zPH3xOb9BnOp/x3nvv8/FHH/Py/ZcZj6UhMwwDlvM5XuAz2t2RNqbQxtXDiJ39sbiFrPMzCAKyLBPGSZlTlCWjuG+be8B1FXES0Ov32dvboy5tHL0Rd63v+xgURZ7jWO5dEMraJQMZhdYNbVPJGuE4dOKY0BfhyXdd+t0unThiEXgsFsI2Gdy4QWhZPJ1Oh8FgIE7YumYynW84DAIoV1RVzcXlxQaa2TQtnu9JC1ISEYU+rqsoypSL81OePnrC7o6cHeZzYWDcvnGDttU8efKEsijJ0pwiXZEtF/YC4tKWBdGwz/e+910eP37ML37xc3Z2dxgM+ptGqaapbXHAgrqOUK4MwhbLJV/9ylf58pe+wocf/ZLLywtarfF9ny99+UviTrFtW3mek+dyeJvO5wSBz5ff+BZKQRhFXJxf8OjBI0ajMYPBUADYVcXp5w/Ii5x+b8ByKbb25fSC+cURW+Mh/W6HVZpaALeL64obJgwlaid8qQPOr85Zpil5KpBy13XxfJfYVsoXZWGFJ4tU2ECoZTItgwiXsiwoypLhaEzSEdYG2pCmK/K84PzsjPl0SpELUybPctI0Jc0keql8Nuem9RR77ZBWRqLPAMYTQLbv+8LvKCtpA2sa/FD2lrwUcWC1SoUX5by41AnPqiWIQmkj8+RGK/DYEGUcXMfHdXw6scRiz+fnpFlKUQj8WS4OxWawFccxB/v7uI5LkWakdU2e5zg4IjzpkopWLjOOOK4UMjSUynDXFsc4wkNzFI6/Zm4F0sScpUwmE05Pz5lOZ+R5gTXi43guYRgyGA4ZDIakWY4fhHh+gOcLM8jzAzzXYzAYImiHRiD7ccxiNqMqUp4/e0TbaoJOCChGo4HlhYWWnWLLgHTDzu42RVny3vvv0+l2Obx2yN17d3n1S69tChYk5oeNVSm63Q6q1xXxzfNQjjQCN00j/BStydtK4pVtQ5pK0YDnesRxxKuvvUzban78o7+kbRr6/T5JEtIbdtCqpTENTisMy07cIU4iXFcxGo65fv2GuCPbhjIvaJsGLxSx/dZLd8jynEePHtMfiNN67+CQ/mDA0fNjYfvZ+0aWSdTaT1N76SpZzaYbIHsQBoy3t2nbhuXSlzWiETFlXUhkWrNp7vUCD21aFqsFaCPtbXGI67u2gVCzWMxxnJDhcMDe3i43btzAxWHqTLm6OCfPci6vLqlbaWN1XYnIem6AjsBYaPHxyQnnFxf85Cc/4ctf/jJvvvkme/v7jMYj6qoW0LQnAwZaZVtCUxa2sfji9Jg4DLh+/Rqm06XWNabR7G2NKcuKKiuYlyXz6YxnTx4zn01IPI8iz/nFz37K6ekpR0dH7B7sc+ulO0x2t+nEAZ998hEnR0fUeSbxKj+gRTNfLUm6McYVgWCNpDAOKE/JYNa6zlxc3nv/A/78z/6Uw8NDkqTDaGuLpmmYzmcYbVBaUhGuJ+25wAZT0mjBb8SdRN7XrNm46NZlR01jxXDLl63rkqPjM2aTJd///m/xta+/wd1XKuq6Ic1T+r0uN2/dJMtKFosM5YkT/+6duzR1wx//0Z9w/Pw5SdITVlcYWh6iQ6MF2VK3Ir6mdq9rGs3s8pKL588pVitM27CqJLKV5hmB65F4PlES0/V6tGVNnZVQNfa+JyJElhWUdWnb2OX3ciHCYFbkGCNil1KwWKzoJB06cc/aiRyioCtFNo0mL2vSokQbYSitpZ719c5TltXnKiptODk/wws9/MAj9Hz6nS6dA3EmY51960IjtSnRsskVsy6XshNiR6GNjYWHoaBYPBccjbF3ZQWWD2Y2bXOB59IiYrFyHInqGZvkw2zOt1EcMRgN6fUF9zHekhTGapm9GNKvU3522C6cPjFclFZ80nb/l/twQ1nKPpLYAZ7ryJC7KEpWacp8sQClCIOYTrdPGHW5mpzK3TgMGQy6jLf6m0F8EEjz77qpHMR8UVY1dSnGj7OLS+aLBU+fHzNfLHjw6DFZlrKYT7lxfZ+X7lwn6cUk3YSnz04s5uiEuimp25zXXnudr33965w8fc758Ql5kcuQp6opipKPPv4Yg8JzPTpJQjsa8ejhY46PT7h2cF2co7/Cr19ZeIrjULLmnjQPKAxRINbd5WzBCrPJxLeB/LFBEKA8l1YpmbyOt/mrH/+E5XLFwcE1bt+6zTe+/g2u3bjOq6++QtKJCUOPP//hn/Pk6RN++d7HZFnGoN8jCALiJGSxXHA5mZAVFT/665/yd//e7zMej/jN3/xbnJ9fsL97yNHRcz578CmOCnCUT+xJ05KjW0xb8fzJY+IoZDTsoozGUf6mlUzR4jkiWhgtIkfTNNJoIuFywlgWj9ZojDL4kY/WoGqJe9VlteEyGQ2Octkab1sHgWOZBw6tDjFa04v6eI5vGScVnidV5q2uBW5oDx8GNk1wrTYo5dLt9Hn7W9f5nd/5HcbjMd1uF8eBtCgIXMnDi6ovok/cDxkMenz2s4c8e3bE6ckZCvgHv/dvsb29xa3rY548Tnm2TGlaB8/rMhgM8X2f2VxYE0prPBSh56NaETg8LwBrxQWoG7NxgzWtoWlAmkaM3QzAC4SH4xrJjAeePF8AYRizrt4EaI3dfPz1h07R1jWtFrCZgPrWLRguZVVTNVJ33IliXr5/j6IsSTri+FmVOWkaMJ/OJRaXdAijiCAO2NnZwlHw5NETaSBStgWjaRmORvR6PdJVZttQBLC6NRpitKauS5xA4cQCEKzaigTZaJzNbAVR813Pvuct6AalW+FJAXld4hUZxWoJTUvo+bi6lXryUF6nqmlQpsFrDK6Si0MQShxUh97Gwqscha4r2cTrFuO4OK6H0g6qAWNcNLbWVTkWUG7XWyV1tusa0aKUSlo/EHusY4zUy1pGksbQlmJbrkpNVUNuPMpVwWV6RlHUNLWWxgu7eGut0ZVErVzb5LVm+RiQqakji51RGsc1BMrFN45Mw7OCR48fUVcVlxcTfNcjL3IGoY8fhdTTmsVyQRxKdW5V1NJc1ncxroN0kRgcFIHnEfkBxWJFnRW89Y1vSC28B8vVkj/6wR/z+dOH5E1JHIcEfsCd69fZ3t4m6XXBMbz19lv0ul2G/QFPHj3g8vKc5WqFUorbt26hHEVRZty4cYM3vvpV8iyjyHM++OCXLJdLvvvr3yGOY2bzBXGnw971Q7H2eh6XrmJeZeR3DinRvNPTuKEh6PYJ/u3v8G+9/RpOq3C0g94b0MYBx2VOVRXkTb2JvzZoamT6s7Ygi4xom7GUPJdN26KVjxM6REpZTps8DyUFeasozpci/FSVncJrPN/D63p037xPF4fr3/8O1WROcXLB9PkJy8tLzo9PJDeehLiBjxoPMVcRXlbQrlLaLGdRZmhdc+xB7vhs+RFGwUWZsz8a8srX3uTGt75O4TmsylImn46wgk6urljmGb2B7B80hqDbIx5voXwXbVpx7Fp+SF3XlLol8F0B6UfSymI0tI1hOc/Y3d3j7kt3OTk54fTsnHfeeY+yqtje3iIIQr7yxpvcunUTL/DZP9xne2eLnb0driaX6KZEt6247xyHt3/tLfI8Zzqdc9Tv040iijxntVrxG7/1Wxxeu8bXv/F10lXG55894MnzZ3z06WPuvfwy+50xVaOoqoInD9+nLEvquqQ/GHJwcMCTB094+uQp52dnlGXB3uEB460xb739TVQYc+Pl1+glCf1ul6uLC9J0xeGhOO0ePX7MdDrl0YNHdHsd/CC0rUQOeZqTLVckQUC/mzDo9/F9j9l8SlnleD5sbY1s65SD1prJZGrbmrQ0/OmW/mDAsN/n9u3bElUuUvK8oMhLsiwnTTMc1yGKY/I8BwNFXpCuVkznM/KiEEfROCNbLuknHRLHI0OhW83k4krifVFC5Id0wphWtyynE8qmpjWGP/sf/ojt3T3+3T/4X+EHAVtbWyRJB90aVssVl5eXnF+eW+fOHN/3ieNQLtF5zvTyig/ef5/5bEpZlYzHI7m827a/dYW2TN3FMn/v5fvs7O5w796X8F2X7bEAxF+6e8r5+TkXl5dsbe1IK3C3J8/HZMLW9hZvfeMtltMJV2enG27Tcjanqkp0Ke7f50ennJ1fkJc5V7MJ2lFM51PyvMDUDVEQcOf2TQGRu4FtTF2imxbfdYh9ReI5GJQtQWnwPYUfhnR7fZKkR1rIhN1YdmFdVeRpxtXFBZP5hFmx4Go55XI+YZXm4nKvWgwuZSMulyLLhfvp+YRRjOc4zOYz62Ju8VyfpEG4E+mKIIjwg4iyajBVYxuEIIxjOQ0Y8EIfLwxQjgdq3QAKtdEYTxH3E/w4BM8lXUq7JzbGUBuD4/sMxmOipIPWSAGIrxhvjXFdh48+/oi6rul3uriOQ9LvblzWjnatc6/AGENeSetsFISsWx+rWi7+g15PBllWAGibhsV8xuMnT1ksVyxWK7QyBHHwNwZrbdOSLlOW8xVPHj0V0cpxOTg4IEk6hFZkqltN09Rk6QqUQxjF7B0eEvg+d1++T5ZnvP/hhxgDSadLY2CyTMHz6A6G7Ozu4Qc+f/6DPycIfL7ypde4efMmb37tTYq2YbFaUdYVjdHWiayIOxLhcn2PvChYZSlhEhFGEdmZAJ6N4+D6PoM4oSgKlvMFaV5zdTXn3r27jLfG/PKTz0jTjOkyJY5jhlu7+GFCntUY5eHHHVZ1TVlVTC4vpempalgUJceXV6yqmsNbt+kkXVzX5Wp2QVVV/OKXHxBGEVsHe+JyCz2WxYq8LZln0pqd1SnGyGWubVoap0GFCt8PGPtjMIZhr48ClssV2jSEvkMSJbhez8aZHNLZCrRhPB5RVRVnZ6cURUGWp+KoDz26QR9HKbqdjhWkp+zu7vH7v/v7DAcDBv0hg36P+WzGz3+WUzUVjuvhCPCGsqip6ymBFfSjKCFyE27dkj3r8eOnbG9vo7Wm3+9x89YNPnj/A85OT4kicdg1tvVZ7iktvV7C+dkp09mU23fu0Intmhn4HB2d8vTpM/74j/+Y09MzTs/PaNsaTctHv/yAuqqZTq/o9Tr89t/+PmmeMZ/P+Msf/hClFG+++SZvvPE1Xn/tdebzGf/1f/3/ZTabMJmcU1QNyywH18X3IlxXROEkTPCpScMAOz9lNN5i//AGGsUqK9FZLqdqhSBQ6lraIRuPIAhtgiEQ0aAVp26WZZJwaa0Lz4gDVDlQa2kma1G4gUvgB1RFxmU650//7Ac8Pzrmt//2v814NGaZrXAdh8liRZ4VLJe5RIGN5vPPPmE+n/HLX8r+MJte4TiKqW2DU0pJDNnzZF3t9bh26z4g/Lrx9pitvV1uv/QyYRBS2uKFIJLh02A4Io5jOv2+MObqBhmJKSp7lvN8YXCWVUmv22Mw6HN6csZsNmc2m9Lqln63Q13XTCYTZrMpz05O6Q+GdDs9Pnn0mPl8wbvvvc9qtSTu9Gh1ayH72t5dbADHNreZ2uaeMZwfHZFOpzz45FOGgyGv378vBSOTKZExeMjdtvUUqjUoLW3FCsiq0raKC3VNuy4oEZOU0Xh1idfWuLokLVYsi5zSnl81rn0OKvxA2hl9i1FoVA2uwncDgjAkjBICL8YxLp2oRy/u05QNFcJgq5ua3Dbo1nXDcpXaJmq5p9ZVRVHkLLOMxSplOk+ZL1OyvOCVV1/l9u3b5FmKg8ODjx9wMbhkdjVlOZsx6PVw/TFhGLJYZShvQdTtSCze81ChR6k16XJFaaO9SimSTpd1y2PbGrRRKM8jUA7XDg/Y2RqTLZd0Qp+Xb98gDGVIGoY+Yegzn82Ynp1y9Pghy+WKqq6I4ojbN26wO9rGMWI0WqUrlB2gbW1t0e12+fKXv8x4a4t+r0e302F7PGZ7PCLLcy7OLsjz9FfSk35l4Una1Fzr8HjRSOIox1YEC5Ee1MZBsJ7wGKUIooik0yHNCxbLFdeuuXS7Pe7du8+Nmzd4+eWXieIA33c5On4ODnz2ySOqqiIIZPrb7STM5lJZ/vDRI07Ozvm1t98ijAK2trdwHJdrB5cURcbzowBFiFIBrrUd+55DU7eslinolmG/g9FyKHDtz7lWT80LcIC4dL4Q6RK3h9ho1/Z0FHjaTvKaBseRZcBYhlEcRQIk+4KDCkREScIIz/VRjiJJoo2qilIo9cIGupGXWTutRNTa293ltddes7Zmh+nkSlhbnqjLWOFYuQ5e6BEmPmmecTWVg14njrl35xaDYY8k8fE8Rd00NsPr2km7L/Bts7ZH2gphx6HFiCDkOGDkwFpUNZtGSC15YHnZrHxsgaOOo6zwJAyxNTzcse19yr4NutU2b+9i3ey0Vo1TsKmsXQtPjiOLo1LigBoPRzS6JS8LqqresKfqsiaOkDYFWwspF06F5zrWoSQuu6bV+J5Pt9NFt+A6JWBENPOlGbFtSrn4uqCVRhuBxa+fKxT2ORJLMF981pBFBOvyaXRLXRaYtsVVDkqJg85zxVFWNyIPKW2sONniOli32dq1ZVshtJZctm5wfGczZUazyWuvK1zWENS1y24NnBXArbgGfUv3UzgW2ijMAKMQu6sWF0VVtSzTAq0qmtZQlTVt3dLtdPF8iWpgpN1HWQfi+kFfTwzldbOwfm0skFEsta2160+uZAI7GA4lChVFaDsp1rCxQGuN5Q2tpyrY6b7Abdc19EZrXBR37twRsOpyhuO6XE0npHlGo1s8zyMKQ7pJQpKIdT6KQ7Z3tvBdD9dRLJZzTk9FYImiiN3dbQGltzV3XrrD61/6kq00Lqnqmulkwksv3SGOE6bTBW4U0Nke0QKtMqxcRUtLNe5RuXAZghMaurGPO97j4NXbtEWNrhpmqqHQDctSOABZU2FaDVVDg6Gx4H+NxlMiOXn2+TOuuFJbo8CRQgJvzQtDoVoNnqbVLVVWoqsKU5UUbUODxvPlMxGN+6gwotMbES9Skt1tdCfCdEMubV2r8Rx04NEOYkxVoaIQSpkuV01NRsvCifEdxY7j0mDIdIUTR4z397h5uEs0GrCoBa5+/OyI1WrJydmZcLACifeURYVRDsoP5DNqNE1VyToThmAEbNyK/cK6LuQZXg8NPC8gSbpEUYcoFHFwOp0ShhG9vsv2ngBzDWKhjkYBUSfiRnGdq8tTijxjMV8QhxF3bt3h/OycMv+ETqdDr9sF5ODZH47Y2dvn1p27zKczzk8vcZxTlmkhRRdeiEYurZeXV2TpkjRdsbdfMR6PWMwXXF1MePb0iTQy6UZey7IkiiK6wxGjwYDt8Yhuv0dVVdy8eVNKQlxFeBpzenoqMSDXE0HaKHEBVTWe6xFYu7m4VStxxyhIkgQQNmPT1FxdXcnUtWnIS7mUSmtszGg0tPXnxor88ueVlRyG/EBcL0YbmqrZ1Da3uhULexSRxDGBdaK5dgAhzWguoX3vTRCQZhlZWVJXFXXT8PzZM/KioLDT326ng+s4ZGkq1dXLpdjly5yiyPE9j0G/KxyYqqKuanE6tVK0UtXV3+AOCv/FF+ZRp0OceIy2ttnbP2Q8lOiL70f0+iPiTg+NYrFKGdjhRtLtkuc5rudyeHiNr775BqvZgsn5BVVTUzcN06uJNLgVJelyyYOHn5MXpTQdFTl+JoJeVVa4GBwHBr0Ojh9SIY2GZSGCqELhO/K7Vgq1BrxasTkKY3q9Pnkl4rLv+TJFBtqmIc8zirKgrCuKSkDTbdNKDKDV8lsbmqalrMTd6TjiSFfrYVFVSRTCBz9oqGqZ6Hp+aF0IcrGrKuHvRDZ6Z+xZrTXSUuu50uLaGo1uRSBxN5NyRVnXZHlBUlYyLAVwXKJYhFajZNDh+S6dTgfHUcwsMDnwPcIgopPE9udr5ayAVK23tr1OUAoyAJIISWsByHJGce1Zp25byqJgOp2Q2ZII1xX3kTK2WAFsFXpFnhcsV5ltrhJhpN+vGSjbWKgF3GuQ86bvB1JekCT0Bz1W6ZIPPvwQraXUptWarChQjgDyg1CaBy/OBXB/cLjPzVvXufPSbZ6enjI9P6WyQwyNDF9dXxAFQRj+DbC6DAFkiOVY13icJOKObzR13VLXLUEYESUdLq+mLJdLGiPR+ihOcByPqmrQSvYi47i0wCJNJVZjY3y6XQlYezhkNBzj+z5Zk9MsF1ydzugPBhx2O4JScBz5DLUNVVOJk6jlxRnfaLTS4Mq5MvFFHB2PRrStCIX6C+7wMAzBlZ/VUXIfiKMYz5Vnpa5rGt2ikMG9HwZ4rkvS7eAWIlh1ez1evnd/48yuBn2Uo/BDOzh3XBxH2xIMQ13V4uZDAPi+LyKU1i3T6ZT5fEFVVwSh3I8MmuVqSdsGOArqqsaxCAnHdYQjZZ0Yq+WCIktxXJe6qpjN5pydnfHw4QOePXvO0dERcSfCDzw5i1knxmA44O49GczMZzPOz85YLJf8+q9/l1u37/CNb36Tq8srfvCDv6CuKi4uzmQ9qBscT8p01lN2F4fWgrhFwRcnSBx3xIXRNFRNKbFV21jXtI09a9vxtHKsO8e6arSmLLVdk4wt1zD4Fhjd8gJA7djnTZuWqi54/vwIcPjOdwp63R5YMTmzA5M0LWjamqapePD5J0wml1xcSlFM1dR2QO5uzpiuH4ig3x/S6Xa5eesOIHyipJMQJ11uv/QSuzs7VGkOxsgQLQroDvqEcUKn1xP2ndb4ji9Qe7nBYizqxLQvEDL93pDpdLYBhButqaqSKO5gcDg9uwTHxzgul5MpZ2fnnJ6dUVWVDFabRlo716KQves32CCKLWRylCFPU9LFgrPTM5TjspxOGfV6lHkuAqpCypAcJF/JGuEhQqheu5OUotU2cWPxNqapoZXfrcXauH5ggzW2nsuYzfV3fRf/4n7mOPKZ8RwPB5fQD4mCSBzgnrYJI7nzSBpKkDt1XeM4ktIRqL0mCCzOp2mt2cRhf28PYzTzyYSqrFjOM3IvY7lYoFAM+gOCWMR5bdtGk25XsAaeK6Yd5GtIWkvWImMvk+s1HiV8RBxNFIXoJGbQ7xJHATevH244omKeaHhQViznM9qmxLSFREDDkO3RFr1OV+RLe+8LAh9jPMajISjFzVu3ieKYJI7lvu0otne2MNrwTpYza2f8Kr9+9VY7m1OvLcfHaCjzAtXKG+O6Lrdu3cHzPJ4dH6Ecy3LSDq4T8uzpMRfnV7x87z5SMbqwsNQFP/3pX/Pf/Xf/mvv373LjxnXGwxGDN/qcPT9mtVrS70X0ez0ODg+4uJxydn7FOz9/l5Ojp3z04S+5ODvh0aMn5HnBapGxtb3Nf/AP/zdcXU2ZTue8//67TCZTdnd3IUzQjWLY73FwsEMYOAShw3KxosiKDUyw0R6aAN9PcB1fmqnW0GkLwPWt4GSMwXNc3CSkLAtbJ93SKojiWCIKRirJq6K0Lia1eW1zk+M4Na7nUdrYH0i8SwDLIjDI2UoOOGmaYkwLNMRxwrVr1+l2ujJh0xrdtrRNa/P1rbTuhD6h54JpWcynLBcTfvM3vstw0MdxDat0wSqfk5c5g9EQDazSjCzPUQ4Mx0Np2Cor0jynzlOU5xGFgbXvygdPaU3kqE30zvM8PGNoyhpdN7IoaKSJUClhH/kQ+uIcM46hrGoUAjLHgNY1aEeMk0aLldkynhQ+2tGbjUYbRVm15GXDKs2Yz+ck/R6u7/H42TOyLKcpaqIwptPr4vreBijeti2np6cokBhOK41kIk9o6qpgtVoIlLLfs3bLktPjY3zXpdvtoFtNnmaYVltelAgcvm0UqRtxajV20VJKSYudUrRVjev5jEcjFIrZdEq6Sqmqhl7oE/segR8KX4xChDdj89Y4tC00jbF2XkVtBR0/CNBIzl02HGM3WGFu1Y3GIAfhqqowSCV2EASEno/vCmTWtwds127oysgkQh40eW4DC4BvqwVPHz3iv/y//d/pD4eMt6XJTg70L+JBrutKE5MnEyblKJlW261indvXxuD5vtTrzudUVcX27i69Xo/79+9TNQ2LdEkDwsFJIiog6vfYUYfEvo8rH1jRPu2GBMIXcXxPnD4Kbt65xc7BLq++/AplWfLJhx9xcLDP669/if/s//yf8eEHH6FchVbw7PiIq9mUvCzJs4zLqytmsymTyQQPCKOYv//v/AOuXbvO7du3xCI+GnJ8fMyP/uLHHB4esruzy29877cApCUin5GMhhRoHiymNOMOzU6XOg7QgYvxPVqlmNPQNho9v8BMWmk51IZKa5Tvy7NXi3MzTvpyCYq1iMTui5pyZdYHM/u/ColYuQ51VcsUuG5EKGo12lF4oU9bScOcTL4cvG4X33NtW13L6adPOW4bfllV4CpU4JKMfYLtlxhfG9NbrFi880u5BNQFrd9S78U4TY4/h7qVFpqroEHhcz+IUMrGGHoJajxk3rZcTaaSRy9KqBvc1iFWPhU+Sjs8fviUB5884vjshIk9CKyFJtdxGI/Hm+nVarVguczw/QDX8cC0DAYDvv/973NxccEf/8kfEUXCj/nOr38bx3X5yx//mJPzM45OjplMJty+fZtOR4Czq9WKosjROESdHnfuvsKgP+Cl23f4+c9/wY9/+nNeevllbt29x+cPHjFfLPjZz37OZw8ecnR6iqNcqrKhOxjy67/+HW7eusV4ayzxD9Oyd7hPnvWYTS+pqoJ33/05nbjL177xBq996WWqpma6XOL4Pidn5yRJwmAwYDqd8uFHH3H92jWG/QE//uk7LJZLHj56iG5a+oMxcacna0RrKOtWhEhclONSlBUf/PIjtrbGHB7u47kBTQNbox12t4QXo41mNBAA9v7OLk+ePuW9995nZ7hD5Ifs7ezJWhv6VGVF5EWcX17yyYPPJQrr+5SFNEHlmbCDAtcnDmJ6SY9VtMDzAvK6Ii8KvDii3002Mdp1s1YUhpSFWOIn0ylpljFfLqnbhp/91V8SRRF379zg6OiI/+LHP9iAka9dv87uzpC8KOTfuXcXBTR1w8nJKaenZ3R7XfwgYDqfSpVyKS7YJI7Z3t5ha2uXV159jRs3bvDVN94QZ1Uo/EpvFDIYjNnfO+D+3Vcoq4rAuqaaVva3yv69YX+APmhp79U0yGdAWxiro1vOTk/5V//yD5mUOVfzFVFvgOf5DLpD2qhhOp+SFhXPj88EWt2NyFKJXqSZCN8twlYJvBjluLihS5MtyS8uMMmAcOwTEmJ8xavfvivi+nROXTTktTibXe3htz5B6zPsDSmykuP0mKaSJk6FQxxLo2CazvGcgDAISFcSyYqiANfz6XS6uJ6PH0iZwmK1tGUt0jwZ2DZakOHN5eUFz58/Z3t7m529HdJ0xWK52PAoq7rGr2uqtmGRSotoXlX4fkDSjfGDiE7Sodfrk3T6dDod4iiSKENdMd46AOD64SHGOtvzbM5yvmRnd5dOt4O7WshZoqnksueFBJ5vC3JkCuc5ch5YM0PLsiLPS9JUWC/GKHu5A2ddemPPQE2TA+IEbFo74A1j8COmiyVlo9nZK9jf2+PVb32b4XDAYNjn9PSILEvp9Lt0+h2++53vcHl5yaeffUaZ5aSzBQf7hwwOrvHuL35OmqV8/Zvf4PrNG3z7+79Bg+a9Jw+YziZMZ1PSNLUXMLnQxnFMg6bMUrKypGk0T589pyxLhsMxvV6f8XiE53q4ymVyOeH9999na2uLO3fu4Lgeq5UMdPww4P4r4vTwo4iqrVnlS6qqpmlbukmCr1yeXHxOWUiJxXh7hzt3X6Kuxf3RoinzlKPnz6mrktu3bxPFEY51WK8Hcuvv37GRQLBxUK2ljdgO3/rjAWEYUbUNWZFxalt067Ki1+sx6PdZrlbCtV3mGK25nJ7L0Nt1qXRNi6HKM3QmbigvCHE8nyBS7O0dcP3mLe698ioffvgh7773rtTNY8B1CeNEnIE6oON0LM7C2xSyyEAbrq4mFEXOfDbn0faY999/D99z+fbbb/PZxx9xcvScJAql0S4I5YRl5Iy1bulCKR58/hlZmvL2t76N7/t88MF7tG3Ld7/7HX74wx/y5MljptMMz/f49//hP+Tw8JBOnGxey5PTE7a3t/ngl7/k2fPnGGOYz2b84E//DIBvvf027777c955568JAp9er4vjeGAcFosVQTijk1yKqFE18hmKQtI05fT8hCROZOBvI41FUdoBaIvvKYljuRpDbcU2vRnEVnVlY1OAlsFtHcYb3m+rNY0R935jWnpJzN7gGkYpLq8m/Of/5J9I5L3fFSGrKFC2TXEyuWK1XHB+cUxVl3SSLlEYcXjzOgf7+7z88n1u3rzJNcsFFWab7B+dTp/5fM7nDz5nOl9wNZ1xeOMWL9+7B5bN53gW5r0ewrsejm/Ps+toobLGCCPDZ+3KnVY5Dvs3Dtk53JcBpDVFaIsUqMqaMiv4+Tvv8uFHH/H40TMePnyI54d4XkhTriHZPkatjRh64yVQRuG5tinYaLzAkfbXVu4aD589w1UwCBwiz8V0EnyjCBsR+7TStI2YBW5cf4koDKXNOcs4Pj3DUy6xF1EUJefTCWVW0FQte1tb6Ds13/q1bzKdTri4PJeisXhIWeQ0TU26ErZVVdU0dUuez+h0uzR1I26wbo9+t0u3m0jyxhWmU+C4RJ4VdT1fkCquZ/cmEYxBnqNev8d4NOJwZ2tTiCX3b2PXb3A9hzDwaLVA7lGOFXgieZ4dWe/tNR8wjId91EDOYSAYXwAVOVaPXTdxwhoF/b3vfNs27Mn6E4SBdV8bvvzGG7z6pdf57ve+J8+BTQo5no/r+Xi+z/2X73H33h0RcI2hab4pf74fyPO3Nk44ooDp1jAeDqnr6n9CPfof//qVhSf7GkiUyiqdGDYT8HXu2LWLoVKKqqqIwpj9vYPNDxf6Yj32XBetWybTCcvlgouLc4LAoywLbt+5RRRFjIZ94tAjihx63Q79boflMpXok4Wbn52eUhY5F+fnMjEragbDEUnSoSxq2kZbx0prG+qUFWZEnAEb0VqrfGtKv7VQK0fy5K7rYLS7NuvIG21evOHy36+dN2rjYFnHndZZN2P/Wq3/P9CqVqZTxvmCKotVlV+89uL8kNd6XeObppmtNDzm8GAfbzjaODdM2wqZ31jpGEVdV+QpYFp8z6HTiUmSiA0M0VooPV8ejUbLQu1XLkHkv/hR7OV0HW8Tuds+DzZPq77w91wUrf3ejZ1HtK1kdF2jaRxXpqiBABeN3SjWz5uDWpdiiWvFWPaTo0TtVTK5w0i+udXiwpGsbUmkOwJkDIVxlK9yG5WrN9yJ9ZSkrhsUxjLA1jE+RBhqpRkujmI8z5FMr73ArtcKbYU/hWzmm0+I48hGJ6uRROyQ12et0IuJTuFZKyd2mtTUNa3r0DqOre+1b8QXnsC1r0oWC7V5Vr7g47PWVSvp2IdrPSFYLyhr4OuaNbbOXK8nNevXau0yWwMG/8ZnAXH/FUXJ5WxOmmbCLgoiAfPZiEMYhHYqK6Bb35fGsbXYZOz3YZD31fMDOkmXyjZE+n5AHEV0Oh0SYyjqdfOErVjVLZ7vkyQJngHVynRENuUXH831+7D+mnES4wY+O3u75FlGFMf0+0MODw7odXsC9AWatmEym7JK003r1mKxIM1SyqpiMB4zGgzY3z9gd3fXuhIVnhdQFhXHx6cEfkjoRwwGfRzHZbFYooH+7i6OY6jaljxyyCJF6xta14DSaCBdxwLqCtO0mLqhVg6NI64wR4l46zhKGg+NAaNQriOuQ2XXHL2O3cmauNlUlCPOBFdapZR9zZTWcjH1jIiaroN2HRzfB89F6xqNoW6EV5OuluC70LjoJCEOQ5xOhOsowu0xblmiI4VuG0zHxwTiTFjHVNK2JXJbSrsAu64ncTnPodItZSPcp6os8ayFPghCEVmGQ5bzJatiIby75gufO2Msz0eE5/VDIQcFWTPXkyZ5pgx1U5E4icShbAS91++hHKkpruuahw8fsbU1Ymd7Ww4G9mAqAqpCGyTe6rj4Qbj5GB9cu0Z/NCLPS1bLFZ9+8ilx0mE02iLp9hj3pH7c38BlNUmnA8pQVYnsc01DFIdEUYAXuJbnJuUQWZYDitjyFrMsp66kdrooK/KiFBFaG2mPsd+rlGdo68iU+I4fhBsQs+cFKMeVuENRganpdBJcz6Hb7UmcMYqJwmgD8S2LkrIsAEMn2cONXQb9vnxuBn2BF4cR+VI4RuJq0NYhqcmzjLqscYycyzWGOBRWjet7dh90N3w+hXCEyqqS80ldo1yHyeXF5jmpyoLVckESx3hhRBwFdDoxVVPiuMKZwICj5YC8dtUqBUWeUTcNcSjr0bXDQ7a3tzk4OODw2iF7+/t0e12CMKC1R4TWyLqrPJ/ID4g38yi5JBlj6GAvyJ6Pq3yCKBInD2YTjXWVoTGaazducjGdcuPmTUajMUnSJWtXtHWDQdFqw3KVEbUtTugI22kzZAiJo4gwDCgbmdp2ki5VW6NdB6XWzm8Brnb7fXzXocpy4jimNxhS1g2LZUrbaBFLuz2GRcXpyamdvhtcz7cu9hCt5Ws7yiGKEuq6tjuSi+t7+Fpbh1mNoZFJNeJ88H0f3/dty5a004VhSBjJEEOaURsrNMi5ptEtZSV8MeG05PhNQ5iEeGsnshV6XNfDD0KW05Q8zxDHo0cQxuhWWHOu61l3krQdYSPrfmAv9wbLgAw2a4tua4xuN27BtaO7rhvbEC6ucS21TwC07RpdoK1T3AV7+XMcBy/wSOIu3U6HXq9Dv9+RkplEQPzGtDRtRVlmspfbVl3PdXFdn8CPaJuadCnxoSROuHnzJgfXD/GigCLPmKULsjKnsTwwZR1NylWWDaVtm1TOKk3JspyqrhggjJXWDi/KvGQxn1MWItD2bPQQrNtEKTrdjjjqHEVTt2RluQEPF3lBU1bClDWGfn9Ar9ej00nIiwKNIVtlFLmsLZ4nRSlBEGzWfKwIYfQLN0jTNC/+Wd1QF6UFwss/93yPVSqNxq22bmwrIq73CBGaFK09azeOg2sEy+F6rrgV7ADN832atsVoQ5QkwiMLAlqtSdOMTqeD57q2Ya/elOk4vru5H7S2FImmljW1zKnKQtrzlguOnj/j8OCAg4N9tra22N7epswycbtZJ5G2LhWQz7znGBbzuTRjWizIYjEniqWRa3d3l53dHVbpEuUorl27xvXr16lLEVKLoqCum42QF/gBvW6XOEl4/uyZhfXHuK7LtWvX6HZta7b9DOR5QZ7nVFWFwrHvu7h6WvtZ1tbN8mK1ZLNXr1+bpm1xtKGsStugzeYs7Tgy7F07Nte8WgHCy91GGERyMXddl7puMCZnvljgug6j8UBKYrICx3FxXU9csmWB5zqEYZfr12/Q7fTY299jf3+fl1++x40bNzg4OKTb7RDYfdF1PYIwwvU9ktMTVnkpZ4NQ+KrrUghrBrNwCBn1rn9uvTnMru8T9n+VjU4bUK4kWhyzPqvb18+0qK7CGSs++OCjDSQ+L0r6fmjdPtXGEbi+Tyhl0Rj2c8tmCV2/Fw7KMSj7PmBaAkcA46luSZRL4gUYJb60Ok1tK7nCcWVgpB2HuLOk2+0xGg4JAuH4VYXw/5pa7luONYHUVS0sKY2Ni695vYpebwAo+o2cm/qDAdcODtjfP+DwYJ/haMRoOJA0hnVfa91u3IRJFBF4gT3beBYXIjce33I51eZnt/coyVaCctZH6s0zu/69fifWKJ31M7zWStzNcw00UrzkrJmI5sX7KF/K4Pc6Itpau+xaIFMGoiRZ73JfeP8NtdU8tAEviMTFu9Z57PfcmvW5xb7fa61EG0bj0eZO+z/361cWnkwLBnvx0HJRCYOAfr/PaiVg4Ol0Shwn7O7sUZYV52dXvPHmN3jrm7/OdDphsVjywx/+gPlsxtb2iCzL+OEPf0C322V7e5t33nmHy8sL7r98n92dHd7+xlfwfZez82OU0qTpkudPH/Peu7/k6uKSsqj4y7/8S5Ik5nD/Glob5vMFnuvjOXLZTGKB14ZBwHQ63dSw1lWKowq2d4ZsbQ8JfJfAS2iNbFRtVdHWFZgGoxsbn1O4oU8Y+Hiuaw9J4Hti/6uLwoIlpUXEGC1ZU6VQjohxYeBtHqh1s0ur1o0yAZ4nMSpViSNo/UhK9lVh1tZTI+T8+azhJ3/9Dj/6yx/zd373d/jG179OEgeEgcdqMUVrvZk814VmcnVJVVV0OgG3bx+wWF5RlksG/QF+KMC6oKhEWXckijOfz8jzFUGQgY1Ori/0xj6RdV1jkBrf9f9vdUvdrqdirnWyiChiMBR1LfXDWg6kSmv2urtsbW9RZAVVWZMuFihj6HViiZgFHlVVUhYNfuRvIIugSPOCRhuKsqKy1fRZnjOdzXCjkE6vx9e+9jWWq5Q/+jd/xGQ248mTJxweCmRSpkc+yjRgtBzWjTzzjnJwPCjSjGyZEvshniMWReN7cqhBAPZtJFNY15PmOonBGcv9cgBpc2taia15vidtUXWF73i4uORlYWGiA1zHZblaUecpgetuwMPaRhjXIotuHRzHx/OiDSx/nUWWzVrT6MYq2xv1FNf15eKoXF70Q4h41DQNRVnaqKqP8aXVznXk0uw6nlw2EdeMsgdr3bYoXdOUObPLKbOrK54/figRNNdlDS5zLMS5sNGqtbPJgBWQlJ0U24VYJEFALpp/9+//ffxv/hovv/oKnW6XTrcrh5OmoSoL8jQljGN63S7VYkWdF7IR0Qpw3FgGmrGTTqsqR3GMa4GMqzTj6dGxxPjCgCSMSKKIRZ6xKjLe/eUHmFazmsysI7Ll+p2bfPVrX+VrX/oKN69d34Cf33vvfUAx7I949uwpv/jFuxw/P2Vra0tYWVrgv+OtLV59/csEg4jZyOHKK3nkV6gsg6WmqCvaRtPkkjf37Ubo9WRiH8cJWduIvb8U6GTVSuuhaRrqWtMYvYnItnUtvBLdbg7R8vltpTXQcXFcH8dFxCFtMHVNEISMxgL4bJrGHjprak+hHRfGQBFQmJa6LKkmS4qzK1Tbkgx6xFHM3e//OqrVXJ0esZhccUKNvlpiPIVqDDRwXKQsdMNhm9PzIwa9AV4YkuqavK4pG3Fj0WqyVYbjuGxtb3MQHZJ0OpwenXB2ckKjNWVVEgQBhSuX0zRNefjwEb7nEgRSW9yJu8wXC5mwd7qUZc1PfvpT4iTi1ddeodPpkiQdPvv0Acvlkt/6rd+i2+3Rti2ffvop/+n/6T/lS1/6Em+//TZf/epXuHHjJlfzS7Ii4+c/f48oiri8XLBcLnjp7ss8evyYo6Mj/v7f/3vcuHGT//a//Tc8fPiQf/X/+UP2Dg/5/u//HnvDa7z68qvMp1OW8xnXrh/guIq6TYmzgCBWbI+3uH3jJh9//AkPHzyiKMVh8sorr9Fqzc9+8S5ZlBG4AYHnMeyO0K0hW+VsDbcZ9MbESY/FbM6TTz9nsUgpa01ZSeSp1aDcgFvXb9LtdvDDBC+IiZIejhvQNJr3f/E+pydnvPHGVxiPR+zt71IUJT//+S9wXY9XX32Nsiz5/POHvP/+exRFwf/uf/u/pj/oE0URW1tjXnbvs7e3z97eAT/6i7/g2bNnhEGI0TLQmlxe8fOf/AxdN3hGEQQubuCzu7Vt40LiVJ1cXmGqmroVYHUS+ARb27QjTScS1szRgwc4nkvc7+J6Hq/ev0scRkRBwM7uNq7ncXx2SlbkPHn2VFwqWU6dlwSy2dG0LZfnZ/hBwN/+7d/itdde59/5B/+uHGBdl6ppqXVL3jSk8ykqsiDjNLNrdYvvey+GLlpTF3LZ9hxxhva7PTxP1n9xzTZy+FWKQCmGozH/3j/8A7713e/x3d/4LZ48fszTJ0/52V//hKurKW4oEZ3j43M6vYQgCXAMdKOAvVsHDEdDDnf7uK7DZw/OcGOXGweH1IOEVdRiYp95uWJV17StQXkeXuARxwGH1w75jeEu77//AYvsJ0xWK54cn3D/5Ve5fbvi0aPHlGVJ20K322F3d5dbt25zeHjIhx9+xGRyxXh7j7Is+Oyzz4Xn40egXHA8Gm1k37ItraPREMeVi0G322W8NeLatWtsb2/zR3/0Rzx9+lTiQ64AWZ1WKsLzomCxFFGkbluyxVKa5ZKEprHxGyAMI5Kki3I8nh+fcnk1QSnodDrgBihalOMzGG4xGm3RNpqyaMjSEozm4HAX3bbMZ1MIQgI7oMJoFtmKtmnY2R6hjaGpW4yBNM0FMeB7dggoFwejoSwqKxh5m+GQ0SJgeb5hOEj4e7//O4yGA5I4wHMUvpsxn15wcrRilWWUdcXHH59S1Q2nx1eAYv9wn9Foi72dff7Nv/nveP+99/mDP/gDXnn1Ff7W938D7Sg+evIZqzxjuloKLyWQkoC1G1Zb8avOcuaLOcfHpzx98pTt7R36/QEODnVZ8dGTJ8xmMz7/5HMcx6WTJIwGI3a2dzGOXPQXq6W8p72uHRK3ZEXGxdUVO1tbdOOEd3/yU2aTKZ5R7O/v87u//3s0RjPPUlo0RV1ydPyM+XTG4cEBUSTAfewAy3XEWZDnOXXT0Ot28T2P46Mj6loiLWVekC6WRLZgZWtnG2MMz58/J89zkk6C5/QIbdNgGIZs7+zguI5tgnrRdnVxdYkfBHSHg41Lqd8b4Loup0dHoA1boxFRHDNfLanaFi8MGQxHREHAZDLh6Plzri4vLRcq2ZQdrcHDrZEkimcZqZ6nuLg45V//N/+Kv/3bv80rL9/nW7/2a+xt7/CHf/gvmE3nDPrCq6LVEmPUBt9z8X2Pk+PnLBZzlDI4LkwvJhwk13jp/j0c3+PG7Vs8eviALF3xta9/nSSO+X/+03/GarWibVs+/vhj/vonf02/P6DfH/L1r32d27du8R//R/8RR0dHlFXFG29+lf/jf/Kf8P777/Lee+9xOZlSLVZcnJ2jjOLw4DquK/elsqyoygqjFWHQwWiHRhtMIziQMAjsQFEE5qLSNNkKrWUgZbTGVXKe9H0X133BlXUdl7oWUdOPxNERetL6V7WSTlgul6RZgVIOdV2hFCyWUzFApKtNnPjw4JC97S1+8/t/ixs3r/PmG28xHA7ZP9jfONPWwoT8tTSTrQWAttEb56MbBOA4NEBm4+Wby76NsJq1+MNaJDBg3M1QQynHisLWeIEIaZ5VsLTAd0WQCDw6ScDDR4/54V/8BfPlCi8I0QjmomwkUr4RmsBiTZyNMF7VjfB7fU/c6lVhh8wujhcAhlXbkumKZVOy2xuyv39IFISEvs9nH33E1WSGH57Q6/e5ff8uw36feGuL6zeu8/Jrr7J/+yb9OObq6JjZdMb5+RXPnx/z/i9+wSrLyItcSpGSiM0MHpdOt8v3vvsbbG9tcevGDTzfxw987t27x7Vr19jZ2SWK16gbK/LYKytqDTF/UfwlZgJ38+a9ED+xQ5p2c9cHuVY1uqUp641Aai891qzj4KoXxVab2a+xg3LLO/Y9SVop5O4iIriI37rVKGswQCkcz32xj4gKKYVTBhk6mS86ntyN46o1Gt00GwPIWkhrtd6wltcweInMO8SdeGNm+J/79b+I8STAzGbjapFn98VUZpWmVHWDX5YypchzlJLssjaSTc7zjOlsShj5NHVD9IVWoTXjJQoTojDm/OKSMPTp2kXa8wPCKCbpdOl2M5lyatm4Hdcl6cTs7e3T6/XZGu8QxTG+FzDe2hLrss28sj2mk0Ts7I4wpmaxWBH6IiYpGwp1lMF1wHcdq7pvvG/SYPdiOCaMmC+q7///r/0X/oZZX6CtTOm4Dka34jNYT5DWi8sLUdE+28pW0hqpCfZlkitViEay5euHwU5hlDK0jVSHC4urkeaEuhQ4YNug23W1Z0NeSHZaMp6SHXU9mSi2tsLZoISXYyznSgOWo7WGqtZNY+sy146BjbZqhXG1gdSD/IyubQQpcrHcb+AGiHtGKzBtC1qcHH/TeYd9heTP8dwW104qPNdG3NpG1FzPY2//QGDVyBRXsrrGii0yCVt/QMEuAEpgfRiN4yqCwGM8HlMUBes88Jq50EkSmQA17cZv5CjJKUtEcv08rONNm4dLJgT254iiED+Q1jZl5XJjXTn6C4va2rG3eY0dYTgZ1s/Emtxkv4xVt9euvi+6S9ZQXMdx1tqUXbReOKW0lvpao83GLYWxmXIjf+15LmHgkSTh5s1xLRdO1lDrzNPgOeKAlDp7u4g2ImauP3me44ozo6rEgdTt0U0S4iCgSFNxrtjvUYOdsNa0nkfrytRRK1H8wQYD11Nxo+Xzs3ZVIL48z3ElZmgZFgappe8kHZZ5Jl/DFUj+9vYWnucRRxHXb93g9r2XGAz6AJyfn5OlGUfPjnAcl7ZsKfOSbtKRn71pmVxNqKqS7e1tAaWfnlOtAoq5Az2HuO/SoNCOg+94eK4hSKQiOQglc+0oB6fR6KqmrUsa3eKUIoYVZS4bSd1Sa01tWlxfWCKuwT4v1vllHT+6aamVNHbKe7fZekUIt9NhjMZTSrL7RlNXpQVKy2fJd128ICBWiqZwaeuKTpwQxxFuFOFg6IxHqMCldTTlrKY8W9HMU0wp7qnWGAo06JqiSPn06WO8v/ghZSsCWTZP0U1DEkT0+j3ub70KDsLvcASIH4Y+URRuPge+79NJEra3tjfrVNs04ii1rlJtBA493hrbSmpDXhSkWY7jKpKOADozy9NpmoZr1w5xXYcj26SZ5zle5KON1HUbLEcPATdv7+wQhCH7h4fs7O3x0v17+GHA0fERYZJQ1RWTyRWPHz0kW62oyxJDQxgFdLodgtDDdaA/GNDr99ja3iYvSopcBMrlckFV1fieSxxFDPo9meqXFYvZnGyVsr2zSxgG1qW5npbafcDazXv9Hk1VW8dJQBjKQW2VpmgDcdIljGP8MJQLWFXh+hIZabTY78M4smtuTRhFGGC+ktjb2cXFxo1SlzV1UUlzmLWBO54rrJgoYDAckM7mZNMFISHKCZjNpqSrJXESoXXLcrlAVkHL7HFd4e4gl1pxtrrSNpMX0t6ZhKClbbPMCzw/2Dg7tVHUVctqmVOXJU1VU9nnI+706A8G3L57n73D6zQG2rpFlw21bmm0tnumwvPaTQSsbRvqpqZqXFzLOBLXhRz0W2MwjUPe1ITKbMo0XNfDU/LX4m6Uz9hoOOL27duEQcRgMCRbpXR7PZ4dPSbPcupaYhVZrvEUhJ5HN/YYJD5Ki6iE0Xiuw1a/T+m1qCImdxwK3RD6nkDLz88IPYXfNAyihPHOLdLZnOPnz8izjGfPnrG9NbbVz65tm1WUVcVsPqc3nVpoeMBgOBbR3fPY3tkhSWJ29vaYTWdk+SWu5xE5DsPhUNq8fJemkVY0rTWe71PVNYvlkuVyxSpNiaMIlHzO1g6ium4oymozSZb9Rpxxvi9rd5JIRNYPfLslyz65dtKhwPOlLU03NW3T2PNUg+95uK4iiWMZKtYVcRTKc4cB4+Baroln+Up1KyUO671czgniplt/38raO4y2rEujNoMeT4mZtBMHRIFLmS+pMDgId6ypK5Rp8ewFygVMKy7FQb9PVZV8/ughXhhw++5L3Lhzi/3rhxSN1MOXlThZXNc6epRD09SYRgZTxn6PeZaxWqXSpheGNHVNuloyHg5xlWI+m4nTqaro9frs7e7R7XZRjto4hIs830S8MUbYOI5Dr9OlygvKVM6nnusy6A+Iux3my4VwHJuaIs/JViswhiDwGQwGG9acMXIJrapahpdVJe9dJS67JI5pg4CmaSymmc1z2zayF4S+j9KGwLO16naQppSiqEo5Y+h1Bby8Z1+MxBmgaVuKIsdRjkV2eIxHIzqdDnXT2LhgvTmb1VVFtR7MIaUf6zbtzflPDmibS7LjeFb4nDGfz1ksFgxHI27fMfT7fZbLpTj7lTj55Qoj645CBsdFWXB5eWnPPCFt23JyeoLjOty4eVOckXlO27RMpzMuLi6ZzWZkWcpytaLfH+AHIdoYPv/sM9LVijiO5ZK/u8Pt27dJ4oS20SzmCxwUcRQT+LK3OMrFdz38yKMqSwrLdZLh3Aueq5wk5XmRM6wI903dWBcz1l0fyLuqDI7jWdeZsGTLWphHwtYVo8X6s+hsDBfCM9PW7dq0NZ7rMBoNGfSHbI23uXXrFru7u3z1ja+yu7vD4eEBSadLp9vbJBs2yZK1E8kKCoJksc5HbayooaxTU9O0+kW6BEfgH8ZY54pGrVlw9plo125cXghPjt0vMDZ1oqVoJ/J9yqpgMb/i/PyMy6srQJyl67uGUmoTpFCOFAM59r6qtFyIlaNeuHbsOd5z1ykouUNUdUaLfG9121I0NZ7vE7oug60xXuizvbtLGMcUTQWNomobVlnKdDFjUOzQs+tSURSCMigLkiTBD0O2vG0Ggz6D4YDReEScJDiuT5J0eOOrbzLoD9jf2xG3queyv7/PaDQijqWYaX33NlYRdF5c/f/mfQgkebK5xdrXH7NZa15IivJP1kPdvyk8feG/XP+5X7j3r3EgG/SIMpv1Za0jqC/8+X/jTzRf+DPX74n9D5RRwjxdO7TWtiZlf0b5AHyB9cgmsmnt3n/j55Kr5v/Uz/U//vW/oNUuFvW4XLN05AGrGuHBtMDZ+eXmIXUcF98LqNuWMI7Y8qXu/GpyxdNnj2nakk6nw/Xr1zYsoCTp4jg+d+7cZzwa8eMf/xlJEvLv/nv/ANd1yfOcrZ0Dbt2ucLyQznTGYpUKKyYMuXbtOr/9/e/LogSgPIxWnF+eWw6DIvB9xqMhnU6Hra0t3n33HX7xi58xGHSI4pDEV7iEBJ4h9BVR5NG2CtcRWGirNVVbobSy1l0sNFBZa7W1SP+NR/HFYrCuote6lYOM55FnApBWDjiezZx/QUl58SwJaMxxZOKXdBJ6vQF5lrJaLen1e/ieXOC1tnwho8hsU9Ll5YWNNHkCDyxy+lGE8qWmvqka8nRBXWEz5HLhjuOIwPfIywatoeXFQmiUOKN8T1TtRrfUbUOai6V73XToui6VKjFGi0jlKAIPeXh1Yy9E4aaKOQ4j2fTtz15XFa2NOxojIpvEJaVBS1nhw1VKrPYKmqqWg2SngzYCrF2tUjw/4GvfeEss37OZRHnybDNRKIoS3TaEvr8RPRxHJiQS+YAoCun2uty9d5cszfj5z3+Osf9er9tlb3ePq4sLslVqYeh2k9R6s9HAi3y1sR/edaTEc1yiIKDfFwt5FEd4gOc4KNcDx6XVZgO9V45sAuuq0jXYf11B37b1RlRYL6q6lYMtdjFpjcCi15Zz105klBU8tY2oGiONIGuRyvNkE1+DGjXrCupQ7Pyht96tNp+HOhcIXxiKCFC3DVVVscrSzfPSVDLRk8Od1LuXVcnlZMLhzg5379/n7s2b7G2NuDg7o2pqesMBru/j2qhD5fuyiLZy0dXKMNrdxkGhGxFbi6KQSZ/nQqtpqwrTSANjHITUccJw0BeuhjYknQ7b29tcTq9o6wo3DOl3Er7ypdcZj0bcvHGD7d0ddvf2ODk+ZnI14Re/eJeryyvOjk6Jooj6TkkYhLx06/Zms7g4PWe+mLE93qIta95/5xfSSAi4t/c4uHfAfL9H0Q/pujGOcnC7Ma7jEuGhq5omLyhXJcUyI6sy6rYhaA1N3TBbzjeT9MpIq926NGIQJXIRc1wrOMs6YppW2C9tS7TmcfnBZr1rm5ZVlhN6njSOtC2qaUkXM+q6Emi5gY7rEMU9OlFElqZUZcnW1ogwisCXBqrxrRuMabnx2l3OiDlf1Cw+f0pZzuWzomBlGuZVzXmW8u6f/vf867/64aaFcTFbopTiK1/9Ci/dv8fdr96n1AWz2ZSyylCeoduNGPY7YAXyTqfD9WvX+M6vf4fKxkSurq5YLpcEtlHt/OIKLwz56ptvkmUrjp494ej5Eccnp7z22mvsH445Pz8lzwsuLyd0u13+7t/7uzx8+JD33n+Pp0+e0O12+eavf5vhaESalyjHE1HHdfHCkNe+/GVGoxF37r5Ev9/nN77/WyyXS770xld5fnzEX7/zMz766IJ3f/pTAlciMsnnCYNhj9/+ne8TBj7LeZ9OHJN0u9y9f4/DGzco0oJ0mfKH//K/YbVKOTg4ZHdnmzs3b3J6csrR1RWLxYKqrhlvbZNEXYkjti3KQi5lD0jo9Xpcu36Dfq8vgkwQ0O31QTkcn5zStIad3QMOrk/RyuXxwwc0dc0yS+l25TPjRxFRkkhEwHW4fusmVVVwdHpMXTc8fvIU3/XodweoVmEqTV1UhG6AH4X4cYSXhPS3Rrz2+qs8+PBjnn/6OT09IKHD06dPLFembye9tRUABPTtuh5J3MH3AyuwQDfqULUNs9XKxl5DFpOprN24hInwf5TroRyfqiqYXC3Jq5KiKmVP9X1u3r7NzVu3ePt73yeKIh4+PaauW6qqJggDifx2etJ858kFStfCD8ryXC6txmxiyGtkgYuhbkGXGR0T4TkeUeDjey6uFamwMVhaw6A7oPtKn1dfeR2D4datOzz4/DP+yX/+nzG9vKSsGnB8riY1467HoB8yTjy2u7BczCgqgc7Ggc+dg/8fZX/6a1mWpvdhv7X2vM98zx3jxpQxZGbkVJU1V5Hu6mZPpEgJEi0blm1C/ibAAmzAMGAItr/5nzBa9hcbMCxRgEiRMqhuqdliq2vuGnKuzIwhI+LeuNOZz9nzXv7wrr3vjSySKp5CVmTGPfcMe1jrfZ/3GQ7YrF08c8b5uiBLcoadIVQOn/3ip7im5Kv37nNwc5d3vvM9ep5Llqz4yU/+mg9+9R7Xrx0wbOURgFYslkuOX5xwfj5lOPyCt95+m5v7B5ydneOHBQ+GW/R6Ha4f7vPhhx/y7PmRyFrDkAdvvkkURTx/LoyM+XxBEIYo7XD84oQkecyTp085Pz9nPB6jLbMFhC2UpCnr9QbX9QhCSY3T2iEKArqdDjvbY8bjMYeH19COlMeO44iUrdsliiMMEEYhW/0+i9mc2XRKVRUUeUa3GxMEPqPhAAV047C1VXBEPUy68Si0wXNdTF6QJJlICY2VOjkudS1DsiLPpR5wpbGuyxzlSOpmIzcKFEQKQheoUp4/+RxjSrQyRFFMGMX4GmFTOz6pm+MqRRwGHF474Kc//yX/zZ//c/7gD/+I3/3jP+Rb3/02g+GAh48/Z5OmIodV0AnDdtg3n8/JskwGRHVNlkltdX56iue4HB7sizHx+TkHOzt4SvHi+Jj1eo3re4x3dnjz7bdRWoY5p6dnzOYzaiPDaEdfo7LAYhhEbPW3+PD99zl69lz8zra2eOXuHVCKX3z4PlEYMRwMmJyeMTk/J3AcOqMR165dw3VdXrw4towPRbJec3Z21tYiFxcXaK35yle+gtaa+XwuLABHizG0lXArYDwYggHPXhtGIea/RcHJ5JzlakUv6giolOctI087UmNluUSsb5YCjqXrhKA/4JXbr7C7s0ueZmw2G1arFWVZgAkk3CBL8DzHAh6SJqm1yEGlbpT6V7lO29waY5hMJhwdHfHo0SPu37/P3Xv3+LM//TPW6xWnp2dopejFYcteMJUMlouixGwSPvzoI64dHvLVr36NNMv5qx/8gLffeYe3v/IO7+p3oTb86pe/4OkXT3n48BGnp6c8f/6cvb093n77K5yenzFfLPjP/+E/pBPHvPP229x+5TZ//3/677FcLPj8s8+5OL/g8aMn3H7lFcbb22yNthj0hgSeTxiGREHIxcUF5+szkiQhyy5DHBznEuAT0E9RllLv5llOXVUEgUhyh4M+VVWz3iS4XkAQxXi+sKDy5YIs28jwtBbQ3/N8oriDa613BOi5hBLquqTTG3Dvzit88xvf5nd/5/e4c/cOO7u7aNcO3JVNU2vWaTu8AG0tQyQ0QytwXZ+qEnuKsqrRrtQIEo5TURSlNXSW/rY0In/HNLJDbXvFyvafRoCySnpSUxsc1RAExB+oqnIC36Pb7/L0yQt+9fNf8NHHH/HF06eMRtv0BzHz+UJYo3aApBQtGaHpNZVkDaE86c8qO5jUjivs4UACm+q6ZjIVlm+lNWlRMlkvUa5D2Im5/eBVojiib038P3rvPbI0Jc9zNmXKvErwt3p0t4es1pIkdzGdkqQp12/eIO502DvY5/r16xxev843vvENDg+v4weR7SEiaxHycm/eMAfLsmwlbG2f9hskHnX5l9b83NhOUSvpo5p+Tryc7RVTy7HzPI9Gnicvf0kCaJhUbkNAgfZ5Ta9njGUfVdKvKt1YolwSPBpQuqoqCwLKdaOv9GBGeTQMtsYyyWCsvFT+zlFOy/Cy27dlfymMsgyoBo278lX/xx6/NfCU5Vn75o7j4HseqTXrPDi4RqfbxXN9kiTl409+LYaN4y61MWySDWWRk27WhHFIty/Fl+u5hFEoMcqrlK2tLbqdy0nI7Tv3hbJXOkRxj8PDV/C8LkoFnJxNSbJz4lj04ctVwrPnR/zFf/8viOPQmjw32njD3v4+b7z5uqD0aUIcd9jZ2SHNcrK8ROsapWrKdAXKMJnMqQyMxqP2BDaQYUMvbCdSphSDZy5plA0YWNmL12kvwKuotzzHcV1hGDTTEnvBSSEi6WplKYuH68hUbn9/n8FwwM7OHljD7b29bWqF+L3UFWWZyVRXK7rdDnEcsVqtxJjcMoUCPyAKInzXk4VVQZln5DbpRqvGy0eJL5e2srPagK7apq+5yQI/xLWGmVenMpcor0xTJcVAEj6aWGC3paFeUgwb1FdZs1fXtelxFTiOaplGxsjza2OEDVBVBBaQaiSNVLUUbY6L6/gUeUGSpmw5msGgT7fbFV29grqsAAEIC5uqVBnR4zfnuEk5qKzs1BhD6Evc9mw2l1h5V5gySmvKsmqvh4Zx1Jo7W4Sxqit0XbZJSZ7nWinBmDxJqCtJpzJY4zhbuDULiLCG8iv632ZBa7LbQNLx7HFwZTImRVmD6Bt832cwGDAYDCyLok8cBriu08oC5TzIlNdzXSot8em5ndjNFktZrBoAy/6DUniBXPPKeqYoZdDGxbemzWEY0ETdOjYJxPN8kixlXWZEvYggDugNe2xtb6F8lzTLmC0XVMkGo7SVt63shNxjMp1RFJImFwQhqhAJbV7kaOXje27rB2LnfxZoqy2oB5WpGI5H3Ll3h5qSxWIhQNN4zHe+/S07HS2ZzWb8/Kc/teCcYXu8RRyF+DYhLvA86qpkPp8JjXu9xnEU29vbDAYDPN/j6OwYhUgcx+Me+5nGZIY6q1gXKZUxOHki13xRUuUF5SalsNdkXpdUxkrtTE1K3fppOU2QYllSqYrUdXCNi7GS4LK8yp6UQrZlbFyZ6DY/L0ppvNJCpuSOldyqQtYQx3VQgUcdByjHoHOPwrUpmXlGXdek52tcDaHjoEd9Rt94QJ5lkhS1TimrimmZUmFY5zkd1yVwJIChrGtMJUlZ4+0xo9FQUiyThNOTE1bTOevZgpPjE6aTCWVREgQhrz94wLWDaxxcu8b5+RnT2cxOGzVBEIq/UVWxWC746KOP6HRitrd3SFLZN1ardVsIi5eQZcYZw3A44NX790WjrzXPnj7l6OhIgJHRiJu3b1GWJZtkQ35ScHZxzvl0QtyJGY/HAMS9mJ3dbV5/9T7z8wnT03OePf2C6XTC7sEueZ7w2a8/lal+kTPo99Fo8TssChazOUmScO+1uxK+sVyzSTccHT+nKktG2yPOpxdM5hOSPMEvQ8qqtKlczV5myPOM9WbNcimhIDvbks6YlwWhG9Dr9Viv18xmMxaLBUmy5o0337D3lEjGZ9MpVVmKQafnEoYDZrML8gLCMKTX99ka71CVwgZMVms++eTXXFxciCGsVni+R2EZQmVdgQY/EBZCmeWMB0OUgjAS41yJ91XoWLc+RsbI+lvkqRTjjqwPw3DE3v4+r9x5hUf156Qb8RkxSuN1RYb/4viEZJ2QJAndXoeDvR3u3r/Hzo78ub2zw+5ogOd59KJAvIBK2Qe0o8VQ2HHwbYEeu66w63oC9tft1PJqSqus8541Ng1cF1cLoCtTBFoPB6OEUZHlhfg7Yti7to9yFbduvUJV1vz604dovybs9/BDheNDVebk6yVlnlIVNVUNabbh9MVTTLnErQpcVeG6SgYJxiUMHPza0Pc9gqJg9ew5+XSKrnKUrsE1FDZ1aLy9LU1jXtAfDLh+42a7B05mU7IyF1ab5zKdTkEZsqzg4OA6vf6Qh59/zsXFBY8ePrbJViKF2z+4Rqfboa4Nq5Vcf2VZW2sDx/rQ+RR5znK6oLQMJWWgVpUwRUzNZrWkLqUB7HQ6Mmi110kYRXSKnE6nYwcliizLmU5nkvDoenR6PcIoBmo8V94XI0myTbMmNZ4hKwoBlJSiqCtenJ4wn89pYu2LPBfWbV3jamlsXCUeIt1OTOM5WeYFpqrphyGdQEJA4iBkb3dX9ntToWyjWZYitYgC8SjZG22zShJ+/IMfklY1X//613nrnbd59fXXyOuS89mUwkiqmxcKa6UytZVe1LiubwNiCkmvzXIxjleKOI4ZDYeyPmQZnudQVjlb4xFe4HN+MSUvcqt8CFuDeNfWZr7vi4dTUZAmG1bzJVVeMz27INskDPp9ok7EbLWkrEXOGAUhJi+YXVwwn04ZbY2Joog8z1pvJGGQh+2AoaqkaT48PMRxHLJMnrtcLvF8X5gSyD04mUwAxbAn/o5ZkrVDuoaNW5XCKInCCM/1CDyPqpZ7UVQSNZt8zWa1Ig4jSXJ2ZOAV+j6mqjg/PaPMcjphROT7hL7P9nhMmmy4OD8Txptj5T1KCbfbNI2wBO4opXB83w6TCyaTCY8fP+bw2iHDwZC9g2ssVitOzyeyt9bi4VeUBdpxW0ZDVRuePn2K0prvfC8iKwvOJxNOTs8YH7+gF8X4rse1w+sMBiPKomS5WjGbzXBcSVP84Y9/xPnFhCiOGW1t8drrr7Ozs83z50dM7efabDbEcYxSwlJv6tWqFADc86RBztJUAkiqDGh8h2zYFVKL5/b+lnvZ4Lia0BdWU7rZyHPSlLrKKYsE15EheD90ceMhURhQVxWrxUp6u8rWiKYE7WO0I/6YQJplYti9f8Dh4SE3bt6i0+2DdijqGqNqMMKYLqqqWaobQmtbj1eFsPr80KOoa5IsIy0KUvtdwLKtaklxplZo3HYQ3LyQMaX0jM21oOyfL3Xy9WXPZgxVWeNQUxY1s+mchw8/Yzq5oCwy1qsFjuOSp3L9tobipsZU4ulZ255IWwaVo2jtKhTKAmLNcMSgTI0j6VpQQZrmnEym5EVJmhcMi4wojZlnGUVR8PzkFGMMnU6HvEbIDzh4QcTW9g5h3OHmK3cpq1qUS0HAYDikP+gzGAzYPzig2xNCS5vOber2XtWOtr5y0qdgP770rPJ8rV9mF9mGxR7NKxQljDUMv6pAuQRGW99j+RAtEUCYcKattRq6U21ZiC1yoBqVGe17tr7UtmOpjHnp59pamtRc7j8toPUbrKsrCpoGg2h/1tKq5HXat9DtddxgT7/N47cGnhoPFsdRLcNoNpuxWq14/cEbXL9+nW63x2Qy48c//WuiKOYgkJjA1XopTUmyIe5EDIbiJ+QHPkEYkmY5aZZx55Ud7rxyj93dPYIg4N5rb2GMISs1QTjgtdffIYwGuF7Mz3/5AZs059poB8/zWCzmTCYzPv7oY7a2hlw73CdLC8qy5rXX3+Dg2iG//wd/RBgGfPbZp0RRzN7ePgYHrQOWqwlJsuLi5Bl5mnB2MSOvarZ3d9oLUDwYHGsoqSkKaZiM5LDSxNc2RmB1baisjMp5ifHRXFT2JLguylIu66ox+rMXvRKqb57Ld4mCgE4cc3h4je2dXW7eukUcR3Q6EYvFlM16RVZkVGVBXeUI/VaJ/GJrzJMnT1gsFrapV4RBJPRW15ei13VIVjlZKiwsGzCGoxWe42DQGMeRuNtSpE2VuaRchmEo5yyTaOTNZtOaPTfSuiauVKJlrQGs9a4SOre9fE0tbkNKJJjacXE9n6q81LNrC3bUMj4Au4EqJfptrUSvqqoaHKtH9Vx8z2ezUWzSBO1ohsMB/X5fTCqDgLosSfNUDCJzAfIaIA11mYYiksJKClIDYRBQ5iWTyZTQlxSEBhzK8rz97o2O9ypdWq6ZirLWVJVor33fo9vrMt7eZjq5IE3WpGVOVWs6YYA2jkAkyqB0TVUXYj5nHy19336G2k5VHYcWgKsqQfqtxb4FJH2Gw6H8MxpZfyORxZZFQbJZSfx5qS5NXi1os0oSkizjYjrFcV0GgxHKKDQic5FjJ1d4rZr42hpH+QTaodcXELCRdjVGiI7W+OmGdZ0R9TuE3ZDBqM94Z0w86LLeJBz98gWbTUpRViJ7iyIcV7T1j598QZJmjHe2GSgNWSEylyLDczVKhQIw2iIBaItT15rEF3XJeGebVx+8hu85JKsVX/3qVzg8vMbv//7vs1wuZUr/xRf88C//kv3D6wy3ttjd20UBsRdSFiV1VbNarpheXPDFs2ecnJ7w1ttvW9rvkKIqeXryHGUU3ajDzmKPw1SzSQ2pX3KWrUirEl0YsrLgbLOgynLKTSpGlLWAvRgokw1ojTvsEAQhfuBh/ckpbDGTehptKtwrjp1XTbUdK0sp65rcrk6OjX3WWkvyWLqhtJuv53kijSyE+ag9D8KAquNDoHGqiqIQhh1FQZamnDw/JtQOwyiiOxqwdfOA5dEZ2WpNlWSUZcVFIUDbJsuIo4iO55NSoOoCbf2x9vd22d7ZpqxKFssFX3zxBdOTM+ZnF6wWKzbrjZV5h7z9zjvs7+9zeOM6SZrIkKSqAI0fRtQoyqpiPp/z81/+gvt373Lvu98hLyQJ8ujoiM1mw+3bt/E8D98Xk/y6LhmPRuyOx3ZKm/H+Rx+zWK3wA5/dvT2ms9cEcEtTlqsl642cpyAI+J3f+R36/R5xN7bGwSEvnj7nGYoP3/sln33yMTUlWZ7w4Ycfio+JbVJ816eoSvEdmpxT5DlvvP0GeV7wox/+mE264umzJ4zHY3Z3d/nw1x9xPpuwThPCIhZfC1NZaa+sIWmesVqvmM2ECfTaa68SRhGr9Qo/DOgPB7x48YLJZCJyt/WKP/iDv8VwOOSD93/Fcj7n5ORUZDhhwM7ODv1+n2fPZYoaxzGj0Yh79x+wXK548ugJH773Ph988CF5nrfgtRf4FGVOXmQUZQEWZMLUlGkm0oY4AiVpuzMjYGsQRsRxTBRFLJcrAeGqUgItHE8i6Ud9Dq9f59XXX2c+mXJ+ckqa5pQ1DEdD0jzn+fMjiqygzksOD/a4f/c2f/iHf4vXXn+d119/nSiO5fNaoEgKT9pCtWrWMtWsLxZIuDKBFe++pgDkikz9sllRzb/Y+kLZormipqgr1mmK5Z6yd3jAaHfM3XuvkqUFv/rgY9y6Ihr08b0K1y0p85R0uaGsjCSj1pokW3H87DGRVxI7GZ7S+L7GjV2U8ohCl6hSjEKfoCiYP3pCen4GRYbSNcqHssqpTcXu7i6r1YqjFyeMtka88eBNXpyecHZ+ztnFOdP5jDt37uBoxXQ+k2suybl+/SY3bt7gv1j8F3zx9Dln57/G8zy+9rWv0e326XR7oGQvXa3WnJ9fUJQVWrt2r3HwPEiTnOlk2hpAU9WWESzr4Go+J0sS8iJjZ2eHKIooioqiLEWCVdd0u5cm2FmWs5ovhJXh+wRRhNKadLO0ShgtNhCmpjFxNXbdzPKCPC8wWpFXFUfHx6xWq5YRUFspYJN2q5QU6p3Q59rejrAMypIqy6GqGUQh3SAgdD06UURwcEhtBBTJrM8QtUSCd8IIhaLc3uXzR4/5F//8L3jz3a/xN//gD3j361/jzv37fPboM/FaogbXwdOeTNtL2S9NXeO5IoUqCklrzlIBnhzHodORoe7+/h4Kw+npKevNhu2dbfwwZDJbkOUZZxfnDKwxuAIZqkY+nudSZDlplrJZr5ldzLg4mZBuNiKljsVu42Q5I01T5rMpHS+gXqVMLy6YTWdsb+8QxzFZlrVNY/PZiqIgyzJyKyHc3xf/nadPn7LZSApyp9MlCiN7D2rOzk4kpObuPTxXTKRzK/VRjka5YgKutUMn6hAGEthTVSWbzYa8yEkyMUVfL5bEnoDdxnHwXZfQ96nLitPjF+RJSj+OicOAMPDZ39uhLDIuzk+pTSXsBdsHNmbY2l5jZZM06AcSCFEUnJ+d8emnn/LOO19Fa5fD69dJsoxfvf+BHTJAUYqPn+spxBZUrsXHT56gXVf8p5YrTs8vGL44oTcYMh4M6XY6vP7aa8RRxBsP3hAwrq65uLjg+PiYh0+e8P4HH9Lt9dnd2+ett98m8H0+++wzzk5Pefjwc1arlUguUZTWt8rUpq2TmgCfdJNQ5ClllWJMBFw1vJZ9uihyqqLAlBV+IKzQKJAh2GKxpCpLYailUjNrahytePXOLUb9HttbW5RlyckLsUaYT5ds8pS8yFBuKObcnRiDmNwr7XBw7ZDrN25y89Ytylok5bk1Jq8RVkheVK1CQBgrDblAwk1c16FD3AJPSZaSZpmw3miUMlVrvq/t75pKlAPGDshM3UQ3WSaNfatL307bD9ietcpLtNEUuWEymfLZp58wuTijKnKWi5kdFjvSGTiSzl5XpaQgOrplBfnak+e62lrGNJuZSAFNw7wxtpZWIl9N8oz1as0mTVltNqyKjLjTQbtTiiLnyfEJYRBwszegMIpNXmK0gx/EbO/vo1A8ePAmYRQBUqfKvnu53jbH2Vigra4ryqoQJquyA1LbXwjgciVER10O3+rWrsRgbxKMNdPWluDQWHY0gI8cAnmxZqiv5DDI++pLVlMDPslnV/bauRL0pIV91IJdTQBVQ2ZRl0wnZQkjrgWGqI1tjxsbHt3WF1cBJ7k2roBmdUNWaI4SlhV1aedz1S7mN8hh/4rHv1GqXQMA5HlBkmV04g7j7R32Dw7pD0b86Ic/Zr5YcHBwDcdxSdOMp188xfd/wv7+PnEcScx6VZFlmZ3qgOf5XLt2QBAKrXQ6u8B1PdabBMf12Ak7TKZz/uv/33/D7t4urz54wPf+5t9kON7mo48/YTJb4LlSXIZxQL8/pNMZEkVysYdxRFGW/Jf/5T8ly3IePXnE/t4uX3v3q3TiDt/6zt+whZ8hS1eUZc56vcDUFUZVZFlKslmzXi/IlmsGfQh8zzbuBkeL4WNtHOsZU9tJhBhMyyJuUEpS3NBSQMtUoTGB1i29XiLm3bYAlU3TMoQcATsePXrMdD5jk27Y39/lxvXr5FlGWebibUDAZr2kriswFXVthIlSSkMik0CXNJVEhiCUKFTHSMpMr9fF812LtlqfK9MYVIvHlaTHGUpj0MYRbyIjF7Vv5XsNW6zRrDdAkSyU4q/gKpn0lXkBrgbXwZ6OFvGXVCgoCkdkXwbrE2QobbKHTIjlppB0DUHNa2OIA4nmFU211OuO69Hv96mqipOTE/I8x3Vc0iqVJJFSwCZBloWNVRpDUQnFtazr9rut1yKpcw2oOMTzxFvK8wK8JoUEoUmnmXwnx3HwXBfXtT47WszTHe1QWrZKmiVUdYl2FOeTc87Pzgg9F9912RkOgZo8z1CBh9KupRX7ZLncXw3bytGOMGNKAVXKohIGVlXZwlimEYrapgcqHKXZJAkX0ykKQ+B5whKoZBqllcJ1NWUm5uAbayydVRV+EPM7v/+32dvb56tfeVdMzhvWTG0IAgFv3SZpBmGtNYi81tjoZWU3U9kYqqoiKSTaPLKN5Cbd2JQtn9fu3yfPC7IslwjtLBctv+tQZcIC2d3aot/rYfIS7ci92JiCB66Hox2ionNJGXYcxuMt4igiz3M832U4HPDGGw+oixLP0cynM/75X/wFZ2dn/Pyvf87F6TmqVhw/f87z4+fUlQ0SKCp7/Kp2AnH7zi3eeudNbr/yCt1u18a9r4ldn+HWiHsPHuBply8ePWJQ7jMYdZmyIalTTldLyqLEbDI7RqtRyhHttpaEHT/qYIAiq9gsZ8yeHInWXzt0RgP8OKJIS9A1tRZzcdcR0/i6tmsW2I0XfJsQVuRVu1EVVUGpFK7nCavLblN6MLREUQF5z4/OiaOYMAjoxTGuoynSJWEc0R+MJKEvyzC+S+45dL7xOvraFif/6C8oz2bk1uDTVx51aVhtNlR2PdgajoniGMc41HlNlRYM4z7vvvEO8VcDIjfgH/2jf8wH73+A63r4XkA37lLmBe+99x5Pnz7j6PiEfr9P1OmQzefWB0NZqa2EOqSJpKnUZclr91/F930uJueUZc54a4RSijTZcHZ6ytHzI26/ckvSzfZ26HU6XEwuWM9mfPyr9xhtjTjYP2C4L8bWaBskUZcUaUKn22HQ6XB9b487N25QfPUd3nn7DU5PT8WOwtFEnbidMEdRSL/Xt1NxxdZgRF0WXDu8LnR5A0VeUJZFO5Xb290GU+NgWC8WPPpMItZVXVOVuYRdINPf9XrFarkAcasjSRObdiq+g+PtbW6s14z6PbaGAzpxROB5ZK5cF9km4fj5EbOLCb7vs1ovxeC/KFgtlnz43vtkecFisaTT7/HmV97h7OyMNEtbwMBFU+Ulp2cnOIHHq195k3ydUKYp69Wa+Xwq3mK2bnEcB1MrKyVPJG0rl+aE2rDcrPHqEtXxJXxBKzzfJ4gj4k4H1wLuQRjyne9+i53xDq/dfZXd3R12d3fY2duj2+sy22RMVgnnF+eyDua5BfUrFsslmyShFiQPpcQzLYwiWfe1tpP6iigIZR9KEpskWQvo7vk4vo8TRgSesOtu3b6J7/t88vFnFFWJFwacn1/w8OFDtsdjtkZDUBIIcOfe63hezA9+/lPwXVb5hNCL8cIORZ2wSQviYYjvunQTlygIwDUkdcmyTDFhlyjskJuKIi/Z5DlpnvPh2THdOGW0FTKrMypH0et22M2GPHv2jJMXp0wmU2n48oLj4yMZpFlvI0mEcjg5eUEYBty5+wqmqnnyxRPWyYblaslbb73Fm2++wS9/+SsmkwmfffYZruuyvbON67l4voupxYvGdwOMB924i9aa5WqNo13L0pHIbi8U1l1VCmNEK0UYBFw7OMTRHo8ff8F4vC1rQRhTFDWudvFcn26nJ/5FpaRsrZMEXUrCETYp7MXFhCxLmZyf4zoSWrA9HjPo97l1/zXKsuCzzz/l/PyC9WZDUVayR9e2wbGNz872Fq7nUCQpYRgQBh51pSkx1LhQ1cyXc9Iq5//9//n/EkQhg60R3U6H8fY2vU6HXrdDpaBG/FSKvOTh02dsipLv/c7v8MY7X+Eb3/gGcRQzO58QOh5ut4/jaoqi5GI2RWlN7IVUVFRO3d5fo8GIsig4cj0mFxOeP32GqzSB7xHHEb7vM53PSdKE/mDLeq2csLW1xa1bt1gsFpycSHMZxxGdWOR8q+WK84tzPvzwQ3qdHjt7O2gxvmK9WjOdzzlfznBdl4PtHUxRka1ThoMh29s7OL7LKk3amroBoT7//HPW67WwNnd2GAwGLQu1tuyaW7duW28fBZ4Mbsfb2+IHphV5WbLK5N5svDFNUZKs1+R5zuN1htbaAtCKMAqlTixzijRD1YZet0unE3OyOibPRM5YFjlZkpOmCWm64fbtGwwGPWslIRWkabLr257Msv1tf+b5vrAQbB3u+h4GRZ6LJ05RFuxfOyDNM1zfpShy8qpqJb4osVAR82BIkoTFfM7x0RGVgfv37+P7PkfHx/S7PbzA58mzZziOQ+QHVsUSEXY67Ozt8e/9/b/Pd773XXxX9oi/+sEPcRzNwcE+W9tbxJ23QSnm87llTpfCDEFAO6UgjiOSNOXR48csFnOxq6hKqsqyshG2WVlWVEUhQ07HbT0ns9UShcGjIo5cep0enSig14kIPQH+9sfbhEEgqonaY3TzgCzP2SQbNmnBJiv44sU5i9WGzbJEOQ7dbo/FYsE//kf/GNfxefutrxD3+vhhSJnLUK1px7Vu0vnEhsZpgAtjKOparjUDURhx/fp1lqsli+VS6rCixNUaPM8CH9JDGmNkgNEwqFybktmAGvaHjUedMUZAUlvbY6DWIhutjdid9DtdXr9/n0G3T2Wkb02SlLIqyYusZTwV1jc4z3PKsiLdJNaMuknIbphAsrenSlt2qaGsyhboOLh2jXe/8XXGwyHj4ZC6FK+7KI7xfI/e/2JIp9Nlf3+/taC5eec2e/v7MngyCj+OQV8aqteFBcZUY7nT3i04rhJ2VqOWeelhuARhTHsvNOoHlGq/lqmlFnaU9PcYg4O68t9cqnVoGGDyGZRSNjHYDpgM4MjzGmLCpe+XPU+mJZJdPlQze7qkGumWFWUhsub17fqguAp2NV/7ymBEXfEi5gr+oBsZ5+X11ng8t9/x3+DxbwQ8yYfXFKVIlEajMdvbO/R6PTwv4MkXT1mv19y79yoYodHNZjMeP34kpqV63JrDYcRIerlaMhwM6fW6KAVJshFpi+OQVhCECu26LGZzPvvsM77diXl7923u3ruPQfPRx5+ySVKGA5v4EmhpSMMOaDFq9q1B2q9+9QHz+YKnR8+4dfMGe3t7vP7aA27fuUdkzbqVlvjE+XzCer3ixYvnbNZLwGW9Tkizmk5hcB1phLUGV9vDb7RQbmvr/g+toealtE4WeAECLOOFxhfLsgvcRsp3eXEK5V4unqquODs/Iy8y/MAjjgPKck82tqIg8CWmXNv0O2O9IxoJRWXld1o7YgZfFPbSkZvCc0UC6drfb/z8m89yaUx9abxZ2YQwjGzUl3LE5ueXEeaNObFQZA0o3VJrtU2eqFGtoR9gJVDKslHq9rO0SL+daIGws6qyFsq69R1yPU8o3cp+D6yRfSgJcMvlUhg8WrXNghjy1bZJF18pU15OHpppU10biX41kDvCemg2GNcRGZpR4FoD82ZC06T9ad1I0S7jiVHS6Bel+D9pR7Ner7mYTIh8oXHHgS/sMDvyUEqATs/3yIu8/b2maa4qQ6Ub5LtuY2qxwFP7OvbaVUoSpFbrFVpZT4rS+gsgTCftiFFwXVUkqUjsdBAQdQc8eOsr3L1zl9/9/u/Jtag0qU2AimIfz3MIolCOg3OZVFcUOUUhpptaXaY5uErb61amcWVd8fz5EbPZlJ7v4boe1w4OKIqSLMtJNlI0eZ6H53rUZUVZ1QxtJD2B6PjjflcioFcrkXtoTRiFcq4UOI5m0O8ThmKw6Xs+vV6XYDBA1Yaz0xM2mw0Xn37K0fEx7733Pq7S+NplvpyyStYsl2KCGwWhTC3KCt/3iaIOu7s73Lp9m93dXVzP4/jkBUmSEHk+g/6A67duMDu94OLojNudHgMCQj9Dm5TlfEaVlwRpjdEyccLT4MjGq7WD78gxzLKEbLVh/uIMx3VxPA8/CPH9gJISoxWoUsyAA0nIKGyDIWvUZbSwUqr1msDIeauUwnfd9hhqJabQzb1dbxLW8zWB9tFeROCHEpltJLGp0+2LXHI2QykpiqLb1/C2e0z+xc+plxvKtMJR4Pk+dVmTpCnasug6nS6duENZVORJRrLa0IlidkdjDnb32dve4S/+/F9QV1gzYY/ADyjLimfPn3N6dsZiuRTZuO+13oNggVjdHMecIi+oyor9vV0GgyHzxYyyKsW0u6pYrVYsFnOePX/KwbU9gsBne2uLThSxWS1Rdc3s/JxOGNKNImH59boYMYSzUuOayPOI4pit0YjAdQk8j9u3bslacHFOmmXklZVXWG8013VxPB/HdenFEXVVsruzI/uIEVnMJtmw2WxYr9eMRyM0EqRRFQWLyZQ8z+hGEdS1ndBJsS+mvFk7+8qLrB0qeL5Hp9the3tMN5LkR88a72slwHpVlqyyjM1yiULJVNqXezNLUiYXc/GuM5Is2ev3KSqRvygFpqpxkEHFar2i1+mwt7dLOl2QLq3Ub74QBqfWhGGI44jkSesCpVILSlet905a5lQORFaS0yQOOXZ98oMA7bmEccy1Gze4c/sOf+M7f6Nl3KR5RlGVzJZrkjTl+dELkjRhtVxZsKXk7PxcTJDbnjHHdR36/QGu1njaochyijxn2O0ReD6r5VKSVctKPL3CCC+O8btdwtAnCny2d7cxWvH0xRFpnuFHMcfHx7z/4QfcvH6dw3SfJi59a2uXsjTEfQGP0nJFZXy061OkGZSGjufjRT4+wmJFK/KqZlUUhCEErkedCvBUVBV1WXA0n9GrNaqXsK5y8rrG91ziIGBycUFZiQxOa0UYxqRZyun5KUEQWnN6KXizLMXzXA4O9lkvVzw6v8Cbi4T161//OoeHh6RpxhdfPOHRw89BiSwuCAMZ3DguYRDheR5lWVmDYo0yG0CjtUtVFyINsSxOU9mmwoCjXbrdPsbAxfmEfm+A53q4WqQ6GKmSfD9A2fqhKEQa52DQpiYIfAFHkg2b9YbJfC71VBDS6w9Bu/SHPaq64sWPfsjJyYlIsarK1gC1rVFkP4/iiMD3WdcVnm9l+9Yns9JiMLxJNyzThA8/+xzH8zi4foPxeMyttOLa/h5B2CEvbVJSkpKlGaeTCa4XcPvOXa7fuMHOzg6r9ZrpxYX4t2iFrz1qU5GuNmjXRXdiOV42mlyj6EQxtV/RCWOWzoIsSUg2G9arZet5uk42ZGnGzk5AXYusttPpsDXeYrVasVwu6cQRnTimF8eUZcHZySmL2YLTFyf41316vV7LYH/05AthiK6XxHFMv9MlX6fMyzWD4YDh1ojpZkVW5JSV1BdhGLLZbDg7O2sT53Z3d4njuFVuDAYDSWkdjaiKgnSdSPiJ49KxPqEG8XTNbR3kaUdAuKqmzHKyJCFdJtR1TZIkeJ7H1nho6+ZKZJ4IozwKQ2uJUQijplasFyvyQthYjtZEodQLxjQyJ2ztLKtI01M0D6klLxUV2pGBY96wvIqCXr/PaGskCXgKy4JRVmIndbW2QSpZkrS+h51+n/39fRbLpSSE1xLqNJlOwRjGoy3CKMSPZAjY7ff5yrvv8lX1LrPJlOlkwo9/9COMMezu7RKEIb1el36/h+/7koRt02nruqaqSwyyr2R5xun5mZjPm6sAgRyEZnBoqroFspthalXkaGr8wKUTuOyOuoz6XbZHfZGoei6DqI+jHbEhweD0IxkSlzGbpGKTVFxMFyyXS/I0Q7sewdYWaZLyyye/4t13v85sPscLQ4IoEjmX3Uuk1rf3tKENPWo+e610ayDt+754IXqu3ZNd6kqG6i5c8W5W9ncvmVPNoyqlhnAsENUoQmRvE2lhGyCibV1Djec59Hs9bt64wWg4oqzFqmY2n4l6JVljF0GyJBU/Xuu/NLPBDQ3gUdOgoY3/VN2mvDWDPMdx2N3b4+vf/Cbj0Rbj0RaLyZQsTekP+nR6PV7/yjv0ej22x9vURUmZ5fhxiGuDHwDKumwBt8YKQqMxjsgOWwzMsoCMLbDMyzdRAy+1f16q4uz9oQTpaQEdmkTxq/+tWkJE6w/cgDIW+LlEcF4+b5en1XqJNZ/3ylNEVatAXUrqRGslr9l4Q1cWPLiyMsjLt+hV892//PaX/6uNuWRXXfms5sp/C8NLvfQKv83jtwaeVsuNnR4UeL7PsD9iNNhi0N/ik08+pyhK9vauEUcx3/jGN9pN+fz8lJPTY/70n/0z1psNk8mEKAr59/6dfxelFI8fP2Y+m/H5Z79ms0lIU5FQhEHIjbt36XX7qDIjTTNWyymnJ0c8fvwZrqvY398VI0LXFTaLKZnOZwwHIw72r1FUGTUl9+7dpdPpY/DYbBLuvnqXw+vX+OrXv8agP6Qyhs8fPWK9XnPrldsEYUhpPPxowK27fbRF4BfzCevVgvn0nCRZcXbyjLLIweS4vkfYiaSRt+7uBiOyDaOoK9MWtCibTIJlRtX2YrBAU2WlUp4nKGNzsyoUWZaQ5xnPnpUE4R2+8pW36Pf7+IHH5PE5R8+eoa1x5e2b1/E9j6KQ5qEqK/IsJ90k0lD7Lo7vCD1SXUFa7cJY1oY0L8lLYYYUNsrPcz0BykyNsQu+AByuBYKkONFK0YklHSYIAlbW0DrwPPu9ZJpbFuJrlJMLAwW/NYVtFui6Fs+lIhcJRVEUxHGE5/lg5KZyHGuSXjZ0VnmPGkH6HRttjQUu0IogCom7Mf1BV1gxdcVkckGySdCuxvNc+r0eYRDQCUNenJ4xmc2E1luVDEYjwjBi2B+QpylVkZNsRDc86PYJgqBd9B3XRVUVWVaIvNB1KIrSMtUqiqomSTMcxy7Q0Eo2ojAUNL0y1KUBTzPoD4jjkF4nZLVcMp1eAGIob2qRafqub9lUDq6rCIKQJCtIskJSWVwXapkUbTZrTF0TeD7L5ZLZbMZkOuP8YspkMgWkIQ58n93tbVzHJej1xGDPwL0H1xhtbfE3/9bvsb27y87+Ab7no/0A1/VwfQ/XiA5Z6RqlDIV8YnytaSicRilwHGrrNaCtpr60oKZ2PFxX4WnN9Rs32ds/EBBM2UXfyGIvYGXZLsqlldDFva6dQNkxgqPpdDqMtrbEDFspxtUuGEPo+WBq9scSq+4HPq/euce13T0+eP89zs/OQDs4no8ua0bDMV9992u42sV1XM4uTlmuFiRJall5tBJA3wuIoojt7R2GwyFPnz9nvV7jRxF73R69MAYFTz/5HG00HT9kM19SpDnXt3w6yuPZ2Yq1qVgFHlEQ0+310XGMDgMc7aCMoZwvSbOc2ekpoOjtjHCDADcISOqC1cW59URROKrC9zxJpPF8oiAQY8uqIikK66UkhZDnynSfStJ0NEqm0rWRgrou2VzMSJOEyZkkU3U9n9Dx8R2P1XojvnBdaT5nmzXUiCFuEBCEPsrZxdQVo/84ZP3FMZ/9v/4p1XKDSnPWVUqSLBiPt4njPuvlgvl0ysOnIg/oDvsEnk8chPS7PXpxjyfHR8wWCwLfpxvFwiqpJTq28c6LopiqMpydnDCdTjFlifZdqjxjenHOhx++z2q1YpNscFyHwbDPK7dvATIR3mw2PHnyhG9961scHh5SliIfGA238DyPPMtxHE0cdwijkF6vJ7JSR7dmlLWlMTdGlGhLldeaeNAj7MaMt8eW5GYLAksLbwx7UaDqEo3BdT2MUexu7dKEW0hxX3N6csJyuQQ0WZYz6g5Yr1fMZzO2t7Y4+uILnn/xhKdPv6Df6zLs9Qk8D1NVLKazdpptrNT5nbfeptuJ+eijDyQK/PlzilzAxe3xNvt7e1K81TVHx89ILVMyclz2d7dxfZ8g7jBbLMQrz3qpZJtUmFiIl+DW9g6+61Arzfj6IYEXMi8LqtOA9UoM7I+mM9swymDCcR1ULQXa9tZYwIf1Cu0JK8J1PWF5TCc8PTrimnYYuC6v3brN1nib+w9eo6prfvTLn3Jyes7J+QXrJCEvcgvA15JAZcxl0g8C0taW7WkwlErYw623ntKsVkvW1v/Fc1ybeFeRbDbCjgpDUA7gkG2WYCr+z/+X/4TXH7zOcHub6WzGex9+hOe6vPX2Vzh/8YKf/fSv+frX32V7vMVP/upnHB+/YGtrmyRPSOdzMiek6FQ8P56wmk+5TUHcCZlnDsPBgODuXYr1lOV0ymQ5o6jmuH4siVPdLTIn4dfPjxkMa1T/Gr9++py//vmvWM4WIo1RCtcPefDgATdv3uSP/uiPCcKQIIja9EhphjT9ft96dAxssIi2PiuGwaBPGIb8z/9nf5/1ZsN3v/ttjo9f8LOf/Yzt7TGv3LndsgD+yX/1X/Ho4SNOj0/E+8MmeAkTQIPjYOweWZS19ftKSPOSVfJztre3uXnjBrPJBN9z+ezTTzg7P2c4HNLtdS3rqKYsczbrFavliuH2Fp0goN/rE8cRN69/nSxNefLkMcvlkvl0xnQ65+TkjPliyma95rPPPyVNEmm2LXu6GRYYLQ3j+XSG1po02eB7LkVZStKX4zKbL1itE/rDAY7rsliX1KZksXqCdp7x059+wPXDa1y7dkCaJZRFznq9BKUYjsc4jsvTs3P+8kc/If2//4kwjK30y3VcRqMBaZbx688/RzsuQRxRczkB10rqoyiKuHfvHo52uL53SK/fZTgYcn4xYblcsEk3GGM4Oz1FoTnY36fT6bFaLHG0JBUaU5MkGxwF69WKn/3sZyilePDgDcIoIq8qSjsYSzNJEf7Ou9/AcRw2mzVaaXpbI+Jhn6DXxasKjFL4NlFwk6Vskg1JImFEvV6XNE04OztrDYU9T4YkL05PqQuRMipXwjaaBLHVekVd18SdGFNV4qtYlmRJgus69PpdHC3+lUUh0sRkvcb1PKkhrU+YeKAuyMsat6yYzBZ0opjBcEBq5ZFlJUzJzx9+zsNHD1FaS4gLWgbIZWntGkzbyzZ171Wqx/HxCyaTKXfv3qWqKuJOhKM03biDMuB54sW1STa2zjYYI5xlrRXr1Zq//Mu/5LXXH/D7f/hHTCdTHj98xIPXXqcypgUBjHbIy5qpNaOuypIg8HE9l+5ggBcGfPM732Fycc4vf/kr1qsV04tzptMLZtNJuxY8fPQZs8UML/DbUKnZbMbR0REGzXBrh/F4C9d1mE2mZGVKlqSSbB53Rf5UVdR5Bqbm2nhErxtx88YunShkNOgS+S6dwENXNdrUuKpCUeNFYuiN51DWGq9UxL6m7CiOtgZCupgsJGE3S615eUBRFFycn9Pt9+h0O3iuxnUUgStBLA2nxESWsYRqsABM4AMKB8Wg2+XNB69K8nhZ0ul2CAJRRDReunYVuzzNvIwfNAP5sq5sz6lewhmMufxNp2HlKMXrb73JjevX7NBdVC2mNm36Y5olwoZ3JWUws31LVdWs1yvrn9cw5h3KqqTIs9ZG4OL8nCRJRbIahty/d58bN27y9W9+nfVGQh+e+l+wXCx55f49BsMhBwfXpLZH47gevuNSuZoc5Dwb8eO0QiJLSGjS/6DR/FVVLYP1K5r2RiZ2Geb1shuWkC0Mdftr0ifrZlAvB7sFahpgSSmphcpaVA1NSIjBeqRW2OdeMfquGxLGlfMIWFIlL3mUU1uQrb4c6FkSS5OX3rCbBKK9TN1rWVb2HZor0+oTWtZYI9EU2WuNVqJyqJvJma1PHeW019tvEMj+NY/fGngKw6hluyjElwejqStYzJdkeU6302M0HLG3u48BlssVk8k5aZpydnbGdDpFKYma3d3dQ2vNYrEgtVMS8cIQ47c8T0nWC7QyzFyXPCtI1ksmF2ccPX+K70fEccTWeIusKOj2upRlRpptMECe52RlSlkJ88F1fYJAQKow9BiPt9qkGcdxyYuM9WZFludoxxVtpVI42sVzNJ5lLgVBJJMOz2c5n5GpDUUmE9WyLAXAUc0Codo7vfVsaK+fy8vBtGvRpVlYY7KtXroQm2jdqk3HqGubjlNXLfXR1CWVJ5HRjtaUDSreJpnVGOdywkG7Ll1+xkt3fHNpLGmUPSbS0BoDysaVYm94MWamnc6o1p1ftZMI7Vo/CkuVbBhfVS3yxJcokM0NZF/PmKoFcpr7p0leU432vTFUM42Bm/0cTfSnssCTXXRcyxLQdgEr7HH0tIdrnJaJJmlDcl6q6jL9TSlJSzRliTFle860LagbRtblV7o8sU1aXMveqi+jk5tz4Whhjuj2eyrr0+TguR6duEOeZSLNrK8sLg0rzBqjy4XZRKuW1jjbop1c/nnJsHMkYWLQpzmQnitTuL2Da3S7XcZbW/YCUty6fYudvV3efOcdxts7eGFIXdVkm9TGoIv/mRCky/a95ItKLIYycl2KdNPGdtrL1NS1PE8i/ITREMUEYX1JI1UO2l73zYLafkd7zOumSLO+nFW74EvUtEahSmEkir+USEeNgTzNxHuglPSRdZIIyAWkWU5Z1fi+TWR0PIJQJmeO64qRsata4MnzfKJQZFJ5WbDaiARgtDUWNpT1i1nMZsRBiB9Iql9WFHR6Y3A9+ngYpVi4GjwXJ/RxfE8SUSzAUGY5ZZYJi8zzCKIQx/fRgU+62pDlOa5T2SlHAWVJ7vqooMazu7m2bBllBFQyGIlZtdeYVleM/uvaRsBXpOu1TMAtkyjsiU+KspIFg8GtBYguS/F0k+RGywZ0HbQG7+4t/E5M5+YB+emE+sXkUpZX15aNVFEWORfTCZUxeLNJC4aNR1tsDUckDUXacdBKtx4gcAnyigdIzmq5IllviEKfThTT7XQIQ0lLlIGH005sd3d3cRyHg4MDNpsNaZpy584dHjx4wGQyYb1es7O7axM3ZV0IfL9dE429/8QkWkYSxq4VDUCBkutMu5KG6ttrvVkp5JvJ2tL4ETh28tYUm0EQcVmOSHHmuZ74kGQyFS+zktV6xcX5GYPRUBJXbTFpXA+NIs9yKYyqyrJK5U3qumY4GrKzPeazzz4FsB4d8rZ+4NuEXGEAKO20xXBD43e0Igg9vMRtfSTKomhTOJtmqzG83yQpnU4PNwoJu12iJJEpsuezto1hUZQigS8LHDSudqjtRLG0DNY2IcrIvbxcr0myjLAQ0/pGipJmGcenJzw7esHz4xds0kQkIs2iXQsQ61p5drMPtH4IxlDaRJg0Te21p1gnCeskJc3y9n4yddNoazZlgaklwWoxvaDKU07Pzjm4tiAMAjzfZ71eM+gP2BptMTk5ZbUQ1hQGFss5y+VcktO0g1sL08pzXYoaVnlFVoJXKfGW1B6u38HNc1w3toW0wdXCII23dsnShOlihRd28KIYP4zx/YggKKTANjVBGHLjxk3u3r3HW2+9RRhGBH7Q1jDNZLdr14YwCPB9n063S57lZGlm7xPNeDwSr7miYNAfcHT0nO3tbQ4PD0VmpDXDwQDf91gtRVKZptmXvBTlPFSWhS6MbENV5xT1HM/3WCwHZHkKpiYKA3rdmH6/S7fXo9/vYmpD6Isfkeu6jLe26Pa69Ho9ojCk1+ngey5boy1MVbOYzlmuBMw9Oz9ls16zXC4py1LCTMwV70tzeYdmudQTWS6Jyqt1gu95hJ7PJs1ZpzlumuO6hryU+ivNSguMSX1SlCVZJuDuYjFHO5pbjifD4bJiOp1yenoq15AnzZ3nSnJyluc8fPwFytF4oXinoSR1t4lm73Q6dIKIbrfLYDjEdzwCL6AqSjbrRHpsrcnTDMf16EQxruuQpjKMkQGcGK5XRcHKDr3iuMNgMMIo0/q5YS7VAaPBAIxhPp2ibSqW9lxqGvWAMMmbfqAoy3aoGgRNglj6Mlukrsk2G2F6NgOVtja/XKcar1IBf0rKqrS9hNRkUj8p8hySdSUJ03aPafwSr6YbV3bg64ehpGQpqYvzomC1XrNeb8S0XmnLmheQyfNkDzGqqfeu1M0tY8JQFEU7TAwCH8fRdLvd9tpvauPm+wkTXv5OPI9esL9/IAFDZUWyFnZnluftPlXWlQx5G3+jqkZbO43A9/B8n72DfRxH8/zZc7I0YzqdiR2Cbc6VUhS5eMw24TVpmpIkibCRjMhpXUdYiE1P2gAA2tG0LH6lcLWm1wkZ9TrsDAfEkU+/G+M7itDRUFZQX7JflaMwImOB2sFDJLa+q4kCX5KutRivN9I5pRRZljKdTDg4vGZrfxkEuY7TDj6bhy3NL5vBK0ljruvged3L59o/teO0AJG6+qv/kmZf+ikwpfQ9kvIuv2fngu0LO9bTpDaGTq/LsNdr37M2dp2shK2UZ2lbI+W5qBLqWnrENBXj9tpaE/iuS1kWZFnKfLFgtV5xenrKZiM9fhRGPHj9DXZ2d7h27ZCLyZTaCM6Q5wX94ZDBaCT1kpaBO9qCNW1b3Zz3ywOhFC0RgaYHv3JgmvPVPJpjenluzJV/b57RNOiXj9aLyYBRL79m+8L1yxyqq/+ljGrZ7Vz52dXXvwoY8Rvn2bz0Z/tjc1k3yj535Vnqy+9z+V9XX17wiJc/T3MMLg3W1Zd/698IfPqtgaff+z0xzv3000/Jsoz5fEVVHnFxMSeKhA7c7w7YGm1z7eCQ4+MX/Pxnf81sNmU6m+C7Ads2sabX6VOXNVEn4rX7r+Ioxcnxc9544zX29naZTM4F5Z7PSDZTllNBSicXU54+/ZQf/uAv+Dt/79/mwRtv8Q/+wf+KJM159uwpy9WCFyfPOXr6lP/yH//nJOmGPM/wgn9Cp9Pj7/zdv8vu3i6HN8cUZcGPf/Ijvv61b3Dv/l3yakGn71BVKeu1xIcnScrp6Um7UvQ6kgx3eOMuUehz79X7bNZLnn7xkOnsjKPjhzbZyCMMxReiLk2bLqMUOK4SRNRYOZ6yJ9WY1t+p2+2SZinVrEb7Llq75DZa3rc66sGgx2Q64U/+5E945523+Rvf/R5RGHLn9m1MLf47niOJYRoHjHqp+DIKalVTmorKVJRNipEjQ9UGQXYcYUqVWqN02GrmK2u2beqaMpfG1oAFxnTrfZRuUjKdo3RCGAj9tkaajuU8QxlD5Hm4SoN2UK6L9lw8LUV3lYlkzHd1i2I3IJHn+XhuAO7lDaodgx845EVNnteAvgIqWWqkEqPvygJ3Iklz8AOJb/VcKayjMEIpZMOeTinzkhopENbrDUo7fPbpQzA1nu/hOw6+ownCCD+KCMJAmgxrQJ6V4jc1GAykgbLMtqqWhDrXkehyx3Gpy6JljznaI4piOfeuTyfuEgU+q9UaBYz6PXwvZDQcy+f3vFYOlNvEsMJK3IpCkggrNOPZFM96KwS+y3g8ohPHjEZbbG+PuXHjBsPRiN//gz+gPxwSBgF9K1O7ce2QIAzpdKwBJ9IQa8fBeI4k9liNftgLaajmAhgJjb8x1Bcw06beueDVLnUztQAx1LT3h5BnNaURw0LHcSxQXGLsTw01dVH85iTCAmu1RsBzq3M3qkkZFODLGDg9OSFJUihK8jwXllteUKQZH//6Yx49fohr0/L2DvYpspxf/PJXbNYbVquNUHkdja5LFDW+L9KV7d4Wxhgm1njdD1ZMPpuyXCzZ3d2nE3cp6poqTVlvMipTk5kKHEUQ+ZxenLFJUr5+uM9eb8DfHvY5qhP+RfYCJwigG1MkGfVqyfmLEzarNdV8CVrh7w6I4pjeqCceX0WOrgqcupRNyRjKJKGoapan4rPnBQGDrRGdfp/I9cBT1Mp6KxTCJnPttet5AqCVRSqyoSxncnZGVVV4kUd/Z8jBnVvkRdEa39ZlhTktpOHsRhhq0iJnk4mXmFeBqxTbr1xjsD3mb/7f/vcsP/ycz//Tf8jq5Jzl8Ql1kVEVCb1eTK/fJR72cHyPrZ1tTk9O+fj9j/n2t77J7/3u9/ni5ISL6ZSf/IsfsVlteHF0LAMI7VDmBfPJlOfPj7i4mLBcLPBcl29/83e4fv0a3/rG1+iPBmzv7oh3m+uzd7Ansk1oGUp1bXjrrbdwXWlKO52OFKe6prINQm3EO8fUBZTN1E6SXgAxklRNoSmTpYqawlQWvFXkZYU2BsdWFUY71PZ/yq53eSND1jb++6pBpn1EnS5hp4tnfSdu3bwjxbuRdMTCVARhyK2bN/mn/+if8OTJE/I0k/u/35N10ogZbJqmxJ0O+9eu8cf/1r8l7K+Hn3N+fs77771HnuV8/uQLCtsIKm3wwhDlCivh80efEne67B8eEvgh40Gfj5INk/MztOPg+j4X0xknZ+ccn5yyXixYL5Zcv32Lnf19uqMh/dGIxpdQaU2yEanI4yePePzoEdpUlMqQphIHf3Exoyhq6kqgZ0f7JEnBZLqk019Q1Ir33/sIL/D5wU9/KuzmOCKKY27euN7S16W5lPW+sWJpmCyXEnPsmib7W1mVOI5LYGXgKHj27DnLxYrRaEgQhPSGA6qqFANq10d7PhfPn7Oazfjs84dkWcbv/cHvo5VmEPcY94ZcG+8yH50z719w9OyIi7MzfK+mE2tOnh0RhRGvvfoah/t73L5+SInG6fbZP7zOoN9h2BNvjf7gGt3umK2tXbwgwvVDfE9kzeOdMRi4ODnFC0NGO3t853tz/t1/Z8rjx484OztlMp0QxiH/4B/8A3a2d9ja2rZs79+sUL+ctmOqEs/VeN2oHSaBgMavvfYqd+/e5Tvf+ZY1unVaFuuv/vqvyZKE/+F/+AGr9YYgjO20tm4B2SQv0EWJ67gox7V+nqCV4ez8Bacnz7l584Cbtw74oz/+W2xtbRFe8VIzzbktxacqDsWa4OjoGecX5/zFn/9z6rpma2uLzWLGs8ef8/jxF5y8OMHxHNkDXQdXKwt+yz1cVcIAx4ImlYWWKxRVUXM2W+EohatthLcXsNykGBIBZzC4jpj7+j5MJyfMZ2cYpTFGUdjB4ORi3tZDlb1GU71Ba1qflS904/kjTdBmneGIiluAUcTMemrg+NEX7O7u8u7Xv8Erd25zuLNP5PiErk+310M7mvliiVI1vU6XJMs4fvG8BTouTk9ZLZccPT8S2wKliaKYwWjEZDbh7OwELCPUj3xJYS4LkiTh6dOn7B4ecOuN17iYTHh+ekLoeATaEe+kqmJycUFt0xUdR+M5LlmWW48ayyy0QwhJWeuwtSWR7lUlqcWO1sKSTRMe2fsuTRK59hxHEnrR+J6kmEKFrhVoQ1GV1MmmfS+U1KVuEBDGHXr9Eb1el26/T0+ufrwgIM0LaiMDQ+2Ih2ye5Xbg2OW1117j5q2bJHkm6goLNnmu21o9zGdzZrMZURSzXotcKo4i3v3qV3n27Bk/+NGPcbSEWsj3rdq62HNcTFXwxeNHbI1GnBw9Z7NaSs92eooTSFCE53ks12f4vs9wJD6H2nNJ84J1kuA5Dq7WPHjjDcr797l/5x4nx8d8/NEHZOmGNN2IMXhdYlBEUYft8Tae5/HkyROeP3/O+fk5nbiD74fMphPKsmC1WmCATr9j78kcTAGqZG+nz7ATcedwn24cMAgUnjZ4VQkV5Ap8x3q/mWYQaptn7aIt6yu0aaJx4BN6btuTu55DkdVkScbjzx/yF//dn7K7O+bOK7epy0p6heYFley9MmyR4WmTCFfbIZCrPSoje4JCWQa/9YWy4RoCFlzxbaprXEf6GxleWcYKtOl7VS0DHUPjASTeRQYoy6odel0OobFXoGr/DQWEAUYpcoAgwA98ISFoTdcMwQ65NOBhh5CtVYP4cNWmIRdIQnlZV1yslmySDabI6UQhrqPZ2d2hN+hTIanxIhsUwoGuNW7ToDbgTG39WJXU9c0wq7IgrWvrqcbeRfC2BpWRcyQ48BUAyz5cx7WDMnk3dQVoqmq551zHscmVdgirlTTSxlAYGfw04K523BY8vjy+l8ddt8SEK8DTlYe2PY1uGFpGdgnH0S95MzVokzESOgKX5AugJXg1cJiiAbQRT1plA7xwLwfMlpAi4Kbspe3QmZcun3/t47cGnt54803m8wVlVTOdTnnx4gSUatFqrR2quqYsCzFGW8yYTifkRSpaYmpU43BPxfHxc6JY2EPzxYyyLGyRHmPMkCgKKStpnotCzFDLqiDNkJQyhTUjr9HKkGdi+FoVVavVr+qaoqzaaWWn2yXudKiNxOHOZnMWNsrcdT06nS5FIVKlMIxkCuq6wp5KM1zPQ7ku61SicF2/Q6w9dvZz/DCkqqXRL4qcoqwpy6ydflylLzUslIbQIZpN7P0t1EhrKfAvQSTFP+H27dsURcbJyXM2qw0X5xM6UUgYhNSlLKLYJhojnkebMqEsJCVBBlfiWSImeDU1+pKppC4vsGb65jiXExQZTstUo7YbntIa3w/QWrc+GlVV4aBwXYXv+fi+Nb5GpHjKTq8u2Ur2vZXQGo0jch7tWpDA1KAu44mbyQyo1oOmmTA3EznVLIKmpjYVujZgKhxHriHPl0mVo23BYMHcKAoBQ7pe2yJTzCWVPTmmliZDNYu2PVOO5xJF4hkmcZ2y4WhHW/PCutXPmisLXBul0Ew+lbDEBMy8NI3ECFi1XidQGyZBSFHkZFlOXRscRxIQDY3ZpCKIpJl1HBcvCPGCiFfu3mO8vc3O7g6dOGZ3d5cwjOh1++3EzPU8dnZ3xWMh8Ol0JLFlezzG9Vz8ILDf2rQIfVoVojFWl3puYwy1qlFye1kwSLVgYrNpNhe7vjIFasEjCxRdvSNU+zr6Mq7UXPn7Zoe98uJXl/NmgxJWRM4my6jzgixNyLOUk6MTsiwVkM+Ag2I+nTE5n9Dp9fCDgBfPjwWMn87tdC4FRwrFwBePL6VdUI6VgcqxQmmU4yDG/TL1LKoSCsuOqIXhYjCkacq0FoCi0+1QVxVlmhJ4hr5SHPodNnXFcr6kWidUSUqx2lBnOdpz0a4jjE9HAJY8L8SnqCihssmc9ngapWgSecggz1Lc1MOLQrR2hflioCir9jyYqqLSkqJTWL+eMhc/FddxCTsxQSgpp6U1XhbDdUtJttPWxjutyAuqvKCqxNtrtVqThz5R4GG2+vRee4XS1SznU4xS1EVFEPk4nocTBfT6fd55912ePH7C5PSCqCPreZombDZrXM9FKwlqqE1NkiasVyvSNMH3PUbDAYfXJIr3na+8w8H+HrdfeYVOr0t/NBTQ2/Pp9rr4vshZlb0LHBRu0KxP1mdNqba4aAZGBiUyVYnulGNg7wNFQ+G2oK59fvs3tnhsYnKVUi+vJc2AAVtk2kKmZUVdvQMcy5uyRYnbAACIX6EuS8bjLYypefX+PZHirmxwhaK9/5rwgulsxsnJKVEcE4YRYdwh7qQMt7bI0pwgzZhOpiRpisHgOg5aid9IURphGy1WrFWCVpr1WqapcRzT7XatH5ySBl1pwjAi2STiB+N6uI7Iox3Hw9NaJJ69LqPRFpvNhjLLoTbEXYlGH+YFvX6PXr9PFHfwfJ9ev894e5tOtyMMll6HIAoJ7HVUVCWe1gReEz8uFHhQsiZKrS+G7g3j9cr0Udtl3nW0ZQGLf492NEEQkoeleF3VNb7vU1UOrieMES/w6XQ76Loi2SRMJhNOj45Zrdc8f/KYbLlkEEXMpxPSJGE6qXE9h04Yk3W6ZFmG7wV04g47u7vcuXsXgoi96Ywb13aF3dPtEQYRo9EumIKqHuH5Ia4f2Nh7h+HWSAYLfihMlsGATthh2JNJ9e7eLvOFMCx2d/fo9fu4th5qal8pfczL67rC7teq/buGBd5YAbiuSNWDwKeZ21ZVZQHNQmqMhgWhtESBv3R7iD9KUz0YW3sYZf0hrQ9QkqQMh0OuHRxIEIbWllVxOaxovFuqouTo6IhnT5/y2aefUtc14/E2L46POT+/YLVakecFnpIC3iCDu4bFQCOZaFu+y1qLtjSwbVwtjQy6WbltDaIkPr1pTowR64HaNiC1feWiFqZZw7AE0zKmGza47AcW8ECYrnUtTaix9ZqxZuj5pmC5XDA5P2M06LGcTaAoiB0HXWSoShOHPo7n47oat2yk2rL2SJCI1GBhELK7u8dwNKLf65JmGxnmxrE0u0bhKMVqvaHIcwaDAVEUW0mIFgsAX4YJRVVYhneFUohUzdQUlgVZlKUEANk6RCF2BFEUEkdRCxSZqm4BuSITwCvPBbjyLduwuUaLPBc+t5XXyuvbkBcskxupXeUcQFWXpEnCRVHQ7/ftd5L+KIoigiCkLuWcdTpd9vf2uXPnLru7u4yGI04uzknSxEp3hVUd+AGdTrdN2RKWtdc+ZzTaYr5YilWGanyIlJwTLRKaljGVi/+cgF4uw+FQPu/5OeOtLZTvCftJSYCOo7VVxZi2Vq6tL43juPT6A7kHjTBpilyCkZqBtu8HXDs8pK5rZrM5tZVtlUGAZyqyXBLfamOs3Eg8g+tSJHNaQxh4xFFAGLiEvovraRxrKt3ugKq98a+ATkpCPozGdTwLIjSG5iUtJGPvRa20JLE+fcpkOiNJE5QriWKqqT3VlX273QVe2oWxrRo1Cm3/rO3zW+mYffLl81UrEGtakNZ+vm2SsGuBade79qFsH8iXf0A7HGgqBmWNq68+tRmYafvsdjxgsPW4bu8tx7Ogz9XEt7JE1SWe70tvjvRUQRC0IUuybjXeUW2rbD+YfDrT/uXLR7Y5Tld/r6nTsH2h/MzW5Ba8+pd1C6Y5pKj2N5oDcbVX/zL20lZcly/QHtmr79P+90u/QHsKv/xoT5e5+rmuPkHR+EEpc+WDNj/iykF7qSu68sENrcH61b/mspz9En7x2z1+a+Dpf/0f/m+YzWb8/Oe/5JNPPuGv/uqvWMxmrJYrNtbjoLuMUarivfd+zunpCUdHTxgM+4y3R8wWc5IkR6uaNF/xz/7sv26Lj6qUSPM0O8CYir19kS0M+z1WqzVPnj4Xw0PPw/UDvDCi2x/S7w/44IOPefHihI8/+jXJJmG93rAz3uEP/tbf4fHTJ7w4PWFrZ5vBcMjrb75FEAQcH58wny95cXLO4ydf0B8MuHbtgPH2IdPJHGMU+we7YqLqOZyfX7A8fsEyz0kNXDx8gue6vHr3Hv3uDl/52qsUecp6ccHnn33CZ59/zNHxY1brOQcHB/i+BzblTjb3GlOXuI6Ny601ymjqwmAqg+MZtJA7aHKTHUszrKqCOA759//9f5/lYsGf/9mfQan54Fcf8MbrrzO6PiQnswlazT0vOvjp9JzVYomqahyL6FdWS1zrEoWmLKTxcxq5Wg3GbkRBIKhBldei3y0LijyjyDO8KMYLAvb2dnEcTzyBzIIiuyDoevQ7HbrdHkEQcn5+TlnUeEpJ4+1cspnaG9NuyE4YSMHga+qyIk9TOX5VTV3l1PqSxliUtSSShTGe48hkVmm0EYZZVZcUufhl+ErSzMLOkDiKCIJAnu+4VNQYbdjd26YqK06yVBZRz7Q3ne9ofEfjuZq6ErNJUwnVvee6DIZ9AZ60olzmlHVJr9+nqmoWqxWlqSkQBkStsddHLXI9bLPpOARhQBjFxHEXpRRVUbSb7mq2QGvN82cnkurouy0ANt4eE3djtnYPiDsdRuNthsMRh4fX2Ts4YG//wDZWXVxPtPRiZKkwVWN9pKym11xGqysB+PJSwKVVUdDQO7+8MDX0aZmyGGxWYTt1EANC+feqSXFQl3LI5qGVYxdJ2ZC1scCjBaMEmHIvASyAJmm0aQ5oni+MQznilw3EZp0wn004PXrKcj7h2rXrlGXFn//3/y3JOqHrhdKAXLtGkWUUSU6hM4pNwQ//8ockSWL9F+T+9j3xtOoMBsS9HpVtDBaLRJrLuEsYhnS7XVwV0IsHrPKUyXJJ7Al4i3ZxlMZXDueTE6aLOd/+9re5efMmF+cXXEwn1Bh6nYg/fmWf906f8WcPP6BY5VRpjtOJCEOf/q3rOIGP4zpkScrFi3Ny65PmawFgalfkbX7o4wBuJfHOdVlKmmexYTDeIlARUexTG8gSMdSvlUNRQJXYxLSiYj1fUdsCstvpcHjzBnlVsjifsl4nZFlO6MU4jkvhVNSmwqsrAbOLmmKdka029rpTnH+0QDkKvx/R8wNu/4d/H/3f/4CLxQUmMVSrnO5eh7jfpfIc7t2/z//1//Sf8PNf/ALfk8HIx59/ynsffMDZ+Tnbw2263R6VqVkuVjx8+JDSmtq/+uqrXL9+ne//7u9y/fp17t2/RxiGEhqAaqWaCmz6pAWREUnyb9wPZS53hXLlem3YTdoB5zedBQzSdF/GOkBpX9Gx8i0A49hm0pEd39pHNluG3DuuYwsH6/tkLgHd5om1lS9nVUZjGCnTQvCUxnccblw/5M7Nm7x2+xUmkwl/8v/4f3J2fiHNWC2szKqCTZbzk5/8nPd++T7f/d736PZ6ZHmNF3S499ob1qPN4Ve/+AWf/fpTZtM5pjbcvhGhA00QDSjLkhdH55ydnHF6ckJeFri+x7Xr17j1yq22KatrxdZom/3dHT58/yM+ef8T1psNSmnefOsN4jjCsYlW4/GYV199lVfvv8rp2RmbzYbRaCReiKWAWoeHh4zHY7qDPq+/+QZBR2SJQeDz7tffZXt7m1cfvM7z50f86Ec/xPV8XCXsy6quWW1WGKXoD0egdOt5ha5eMs2V0ZtdplwBG/IixamkgfICn6iOOTo+QmlN1JOEzTTL8OsKl4peJ6QbemxWS56tV/zp7J9wfnbKP/0n/4TtnR1+/eabFDYcoFLg+x5/+3d/n148YJOkBFFEfzzk7a9+lX/33/53Wp9B1/es15hIOxxbeBp12Yig6uZKA2Bv79plY7ItP3nt9VctECLft7DT5LwoW3+4isrKmWvbtNhrW0mjrhuPp7qm9eJVsn8UNhmprmtc61W4nM+ZTqc8evSIh48eo5QmCEO061JXJZT2rjVGpuVaiW+Q3B4YrVDapdY14HB+dsHnn37O7/3O79GNe2IoXYuJv+xbNVo5aAVn5xecX1zwJ3/yn/LBBx/w+NEjyrKSvcsOplwb6NBYEuSFyCw9x2/XOWMKMQHHoJWhLoTF1KwDzf9Xlk2AjZtX2gEl7IW6BpSWtUK+JnVRWHaEgCzKvXzFdt2x4JbneWitJYyFRk4rgSu1kdRm7YrUzgk8HEAVOUmy5tcfvUeRzFHlit2tLfa7Hc5OjijqmoN3vooOAvKyJI49gmCbRtxuCkMUxHTiHlEU8d3vfkck6HmG57mURcWtm7fY2d4myzM2qzU/+Ksf4Ps+3/jWtynKgsXZlND36Y538O3A7ezs1Bq3q5Ylv16vWSwWlPZ7BR1JdK6rGs/12BsO6UYxo16fqpR79+joiOVqxXKzZrPZMJnOBLAxEAYSpIA15J5PzimLAtfzhUkfRwJYao1G1v4izy1jGzAVy+WUsyTjxfNjvv61r3P79m3GwyGu43C4f431YsXjx4+IophXXrnH3/t7f4//+D/+3/LRh5/w8OEj1j/5MavlhtVChqSe5zEaOYwOBsRByLA/YLQ1IopjkkSYnjdv3iK3rOXmSnDd5t6zw6WipCoNVVFSWPP07S0JlXr45Akvjo64f+cOgetymq4pqpwoDvFdkYO6SuF5DVMdLi6maK2IopCbO3f49t/4ntTW9SUALeE6AoSdnZ7w05/8CEcb8mRNbj0PV5Y95rtSu7q4UoenKUGg8XxNpxvQH0R0Qpco0AQdUY8ofGs6bVoQsLZpbK4NZjGO+CLqIKQo1iTFmnW6Fh9Uq3oo68LuDyEnp+fMfvBjvvf973PvjVe5vndAGIYUhbH7rG6K+kswufm7BjjHAsNaU9vBqUGsDlrvHqAZ2hoL0Fd2PWhqh6rBuOwaLUMreZvadksaa5vSLKxt6sVl5aKu1Ovytg1cUrcAWi30GPEzNPIdjIHUrqtiFWDatRojJILmflQK4iiiH3dwmhQ6i6TU7XeCsr4EwisaabINHXJdLncjO6xtMBu7dxUN00prYWVZsK1hezWftZHmXsH4rmIzrUeUodlGmhCwS/LBlw3DFfb7tq9Vt61uYwfTnK2mdlRceT0LWH7p9Fz5lC//ezvQB1sUKpzG87hBsUwDqv0G2tiCSk1vdNmKmVaJ0prTN+f55bDN/9HHbw08TScT1qs1rnaoypLlYiF01NGWfCTbTK7XG54+fUaWZ+zu7RGEkkpSFgXJ5tILIYojcde3kiqtHeazBU+fPmM4HOAHvhS0nsd4vEO3V9DrjZjOF0yncx4/fEwcdnC0w3AwZHd3F6U0W1vbjEdbXNu/xo1XbjOZTigRY2fZCARtL8oKx/VYrtY8e/6cTqeL54ckNlZ1OpthMMRxhyw/5vGTJ/R6feIoptfvo7VmvlhQlAVK17ha4eqQ4XifV1AoVzOdnlPXJWma2UZedOdNPSpsjCb6VC587cjm2DTtdW0oiopOHOP7PmEY0B/0+eijj4mjkG9++5ukaUKyWeP4DqtkLR4pWqROzSKfZgl5IRMCidoWYKmZ0ghx6NLfx3WdNqYYdSkZACVpB7UUIY7rEkQRXhRK0pQxYEqRF2qFcrT46JiK9WbNJklI0g1lUYi8T4FrrK7a0RiEHdTopx0bzV6Xpi3cJTGiQpsKanU5QbJghny2ylJZBaTCer5LUpomT3NAE3cUjQLaVOKBFYURCpjP58LksIl8jmunKkZMz33fp9/vU1mwqK7FkG+TpMzmC8ZbI4IgxHF9mhQ9Y5RQe6mpqXAcD8fxJM0Px5p2KmkYypIyz0mTDavV0iY1KYIgkDj6Tpc4itjeHhNHEb1uB8eVqeHO3i6dbocdmx4Sd3vEccxwtCUJWv2BmOl6Hsp1ME0RbllwSsliYuzKK4snsiEgtNYW6FaqLRquTgWaYRLqyqZljN0Ury6UV0D+f8VDfekZDbiFMS9PO8xLy/hvvpcxzVpMswIbJb4Epq7odXuErstquWE+X3JycoGjNPffuoOpDccnJyKXHA0FqK1EhqS0GJQbaJNrFMbKNsXAva7r1lfG0Zo8SznbbGzKiSZukvTKSkDIWujaRV0S+B47W1uURc50OmGzXkqhHIc4yuCkJX5W0ikMKwWlrwl6kRS9taHOcoqkIkszik1CXYoBZ2UKDAoTeijHoagkuj1wPfE50C5e4OP6Lr72cNGYwhpTF6X4W1mAsq5rMjsJro0EEnS7HYIwFBZUUZKmeetn4dgAPoVIzPLVhrLIyTcbiiShSFPqLBMwtsihrkiLgiLwcUcjluen+Ft90uM5dZbw5vaY3f09lOcwHm3x4viYLM+4efs2z5485dnDx6zmc4osYzKdUpYVfiAJhXv7e3iuJN3duHGdnZ0dXrn7CsPhEMf3MFqRluJfoJxL7XyzDrYFbFt0XNmFVXs1WlCpfmnDb65Y9aXJEvbekoKxvgJDtaVJ+woCAF5e83IvNO9HCxa0v2G7TGlUG6Nxmxhqf6dGU9r3NWVBoUphk20N+crX3uXk9JRHj79AW48y5TpEnZjAldTNxWZNXlcs0wSAoBMTBAFxFPPqG28wGG3x/nvvs5gvKKgxRckmTXEdh16vx3KxlHQim9rn+R6u4zC5uGA6mUqk/XrN2ZmiP+jz4I03iGNJOds/2CcMA+K4gx/4xHFMHHeI4w7r9YoiL4jjWIILaoPv+wwGQ7rdDoPBgLjb4f6r9zGmxnVdbt66SbfXY39vn9APoGHaKiXXZFlyfHZCkmWsktQawTp2P7TAgdY2TfTyfLY8HPlLYVl7DoHx8XyJzy6qAsdxCONQJMk2sckARZrgKMVgOKAqC3rdHsoYzk9OKWsBnjapGO++eO0FVVXR64mY55OPP+G1e/eZz+eEQSgpW7bpu6w2bTHcrtu0E07F1YWXS8DVMo2UkpQtKVjln6yu0RiK0uBorGei04Kmhssuqbna2+Key2ZGa8casgJW4LFYrnlxcspkMmGxWFgGmdQ6DsIcbhqEyzht+Z51bdqkX6MdasdhOp3y5MkTNsnmyr1qWs9GU1fiLacUi8WCs7NzJpOJRMNrjeuKH2azNsr71K2/bYN5VbrxEtIvDVwadhPmyr6mlT02tqPCpo3WTTotlywD+xoNq6phHsuC0gxg5PVaFruhBQRFU0ObRnVVilNbm4Xmv6uqptsJuXnzFnEUMbuYsZktcLWiLDIcz2O03uCWNVlRsFytOTuboJQAT/PZnNQaD699nw9++SuUgixPWSxWTGcz3MqwmkxaG4zZ2RmO4/Dk088oqpJNkuD7Pq7vWbBDMVvMbcCPSHp7cQcHhTbYhGfThpfUpZXu1/J9ktKmrJUls9VSrinPpdPt8tbbb9nOzIYWeA5lLUm76XoNyiEMo3ZfKMqSJE8Y9Ad04y6reklpCgb9Hp04xnN8cgrqUqRTnU6HohAWVBhFEkDhuGxvb/PHf/zHXDs85KOPP+HHP/kJH7z/AQ8fP2axWFDYQaB2NNP5lPl8RlnIkDjuxOK3pwy+53H9+nVWqxVRHAsYWteXqgZ762vtSDqYVpRlwXyxYLy9w9Z4zMMnj1lv1nYQWraJemVZoo2iuOJAqBvZppFLtcgL1usNp6dnl0oDe0M4rvi5RVFIVohHW1lYXp+9fBtTZe3IOlNVBVVtfbMsS6+oapKsYDJfkSQOeSUJvnEonk2+68j6a2pq695sHLF52Gwy0iJhncxAlUCJF0T0R1sEWYWyxt1KC7BWm4r1ZsVkOuH87Iy9rW3CIJS9lMtHk372MrBhAYZ2yVW/8bPmL66QSy6f86XnXREL2PdvXk9dridc9noNEMGVmh4sg/flD2/f4LLfbx766tPaD3KFrQUtyNUsu8b6KEtPIQMzZfcVITxcqfntvxpo/YWbmqkFmS6Lm8vPeeUzGUHK7He7mhZ3tRa7TIh7qYS7cuxeblTUS+/z5cdveD/9mzya76aufK6rJ/9LNeTVf5pS8qXL52pt2u59pv3933z7yz1Eqau/L9/rksV9eY39tt/2twaeHj+UCY6pa1JLa3/nnXd49dVXWzPmhw8/Y75Y8PzoiMFwwL1798izhDSVONX5bE5m021cVwApXFnotHI5OT3j/Pyc8XhMp9Ph4PAaYRhx/cYY0Jha8Ytf/JJPP/6MX/zs50zPp3ztG99keG2EUg5bW2O+9ze/T6/bZdDrs9qsWW82fPboc+aLhZQtSrOzu4dBcXT8gtl8QfLJpwxHY4IoZrlZURQF63RDFEXs7++zWm/41fvvsbO9y2i0xf379wmjiNOLU9y5w3w5pd/ts79zwO61V7hx+x5xr8vJi2f8+uNfkiRrwkCKZiewjbtRmFojwY92wqXFJ0Km64Lkl0VFXpXs7/YZjYbsHewChv/uv/1z3nr7Df4P/8f/HaenJzx6/JDlfM5kOWU0GOK5Lmma4bkuW52ITbomL/LWnFYuUCUyRO1ge0FLrxXqf+B7hGHjZl9RljnGKKpKZEG1MXiBj++5uH6A43miZy0tsq5BeZpaG/JKNq0it9N/exFrpcSTAATpp6aoipbW7LoujvBOWzCqrCtKU6IqTa0vWQBGGWoqykpkmVUtqSKmrCXJyChCL8DUsFjNMbWCPqhaoY2iLiuqvGTQ7eM7HqcvTqTx0E7rv1QbYWS4rksYhuzu7JDnORgBvEAYTVlV0h8MGVqzVaUclHLFg8qTVDfKCt8L8dwAV3s4WjxhtNKSapLnZEnKcrHg/PxMIncdRdyJGfQHvPrqq+zsbPPGG68zGm2xsy3xwEEQsLe/R9ztMhwNcRy3XVxqoKxqikqAxKoWjy9qQ5XbRbk1O78smB3roaEcmt1BNv92o3oZGrr06wDU1Z9YQV6LSNlJxP/YAnRlgbsqKRIJgF08r0wdHC6ZU6oxGq9LlKlFswwoe98pJS22qmv2dvbwHI8f/OBHPPniGV88OWFne4vX33yDp0+f8uEPf0wcd9i7dsB8vqTeJAyGA2pj2NoaU9c1eZ6T2rhZ3/cJfQ+TCyiJbQBcRzObLXjx4gU729uMt7aIo44A2hYUMaakqsQcdjQcMd7aYpOlPHv2BF1LgRb2IxylYJUQJAWjUlF6Dmmo6FhPp2QhEtvVaiVF6CaFqkZVAh5VdY3qx+C5lCh836c3CFuPIj8KBXyycs86lYK8SnOMdtCOoi5rqrwkWS5I8oQgCnGDkOF4iNYOSZqTZBnrNENrZU1YwdfgVQ5lWbFYzEk3G1azCXWZY8qc/OKCar3BWa5Rm5T60RHK15zu9oi6fTr7YxZnM6abBTs3D7n/2msEWuSN77/3HiWGB2884Nnnj/n4l+9TuEJ8uDibshmuieOI27dv8c1vfpPRaCSMl26XIAyE1VdX5GVFUuTkpU2C9Nz2emvuD+06/9Ii4yp7r2n6anN5vzQ7/tUm+PKX7RNUAyLRArxXS4UG5Lws3Jobz1xO1MzL4G9zjzex1U1ARVtONsUhMnncFCWmquj3+nTjEX/wt/+YFy9e8J/9Z/8Q1/NIiwzHc+hvjYjDEN/zmSznmMWMdZIQBAH97S2GgwHb4zGHt25SVzVJWfLo4UOyuiLLMharJYNen+2dHTarNZPzC0nnQRH4AdpxePrFU46OjijynPVyyfnpKe+++zVeffU13njjDYbDIXlR4HouOzs7ND57+/v77O/vS1BDm27Twn4vHfpv/uYK1JZoNw6v8/Zbb7V1z3KTsEkTPv70U84uzvnrX/ySoq7xgrAtrJtzbMD6VlwxWLAnSLzswA08XN8l6oSUVUVWZoRuSHfQvbzmLFM0q3J8x+Hw+iHdTsy1/X3WqzUvnh8JI7ksOTs7p6prHty5RxjH7OzsMJ1O+R/+8i+5feMmz77/jOvXrxPHMbkFUi8nxsLcqstawBF95btoe0RsKIhBWfmZubz27XXnKkVuIDGlmI7XELsusWVcahpDfdPqR5sUJzHzrayM3KGRdjaGyiLd0FxMpnz+6ImkeF1cMB7vytCzlj3eXLkHL+85eVTVZcOqagfjOLw4OSHPUhaLhZXxy/sVZSVDgarE0eJxd352wbOnzzk/v2CxWFipiISClGUl0uaisEOsJq1Y9q/aVDjGEV8Uu2+1IE/TJLb3ZLOv0crI60r8eBpft0ZmbpBhnakbL0QxtW5eU55bt4BTszYU1qw5b5An+95KIZ4uSrfG5ZWu2mug0+nwla98lcn5OSfPn3F2csJqMWN3d4fBcMjOxRQ/isiLkqNnz/nFL9+XwSfa+oWadg9/+PEnVFVFXmbiH+h6nD17ThgEKKWoypLT50cYY5ifnNraxog5uu83c1WSUmq1ne0dukHEdn9IGkR0w0iYqnVNmmetnE5u0Iq8yClTLOu34mRywWw65fr164zGY77xtXdxrNH2fLFgNp+xySUYYDlfo5OUnjVqTtOUzaZgerFk1N9ma7RNmZbktcPh3qHUbG5IpnIwitAylM5OT5jPZnQ7XcbjMZ7ncfPmTf6j/+g/4teffsqf/umf8t/8sz/lxz/+saANSskQTImMsyolfv6lFUwJA67b7fD973+fLMvo9/ukWSISMe2ir8AIjQxR6ZysyDk9P2Nnb49rh4fws5+xWi5JNhuyblcsBZSiyHJwRd4j15/B9YRJ6TgS0pKlOZt1wsmLU3vOPLsmXp7DvZ0dlqs169WGPMtRWOlaLd4zYpwt+1xR5rY/qVDKx3V90qxiRkK+SvC0or+M6HRidndCOrGPH3riaWXqS8sDxyMvCiaLNdP5iuPTKVHkE0YBYXfAbtDneLWBLG2DhtzQZbNJWW02nJye8PTpM+7duiNexq3E9xLoaO/PFg1paoEr1hvtz648XgIdXgYCrj5a3lDLmLnc44xQRl8akF0ymV4GVuqWZdSA87bW0Y2T6uXrvgSYIxI7c2Xg0vrrgvjp2X5JVmPdWiy0r2LXusu9s/nupvVPlEv+ioH2SwVV+3+yZxquDNsuP3MD5ih15fu3f17pZ36jQnj58a8Cnv51zzf2i1193ZeNz6WnfdlCgd+4DoCW5XUVaHvpL37bz/Wla+qSxdWeisvPqC4P1+Ub/XbQ028NPP30Jz9js9nwxZMvUFrzO/+T3+Gtt97kzt27/NVf/RXT6ZQgjEBpkiylqiom0znr5ZzFYkoQRNy8+Qr7+wf0+n3u3b8nJtVVSZYlbNYrmxBRMJvNyLKMp8+OiTsd3nhdKLllUbO7u88bD96kE3dJk4xnz57T6/fZ3dun2+sxnc1YLlecnp23qVi5nbY/fPQQpRTXr99kvRFK6mq1Yj6vODp+gev5xN0Y1/fIkkT0vKam1+1y+8YtPGsweHF+zmq5pN+LicKQMPAoq5oKTVkpyA17uzcZ9rdwlWI2Pefzzz9Gq0IMXFuaoSwEdV3bpC9hmoSBMJ5kOibPzYuSzSYlsxvJZrPhxckpP/7pX+M4Cs8PrCa+R7bZiKzRAUPFxcU5k8kFi+Uc3/cJwqBdRDzrleB5LiLmqwUkQSaVVVXiurH9ubXBc12oSoq6lN/1fbTvoR0Xz3GoamOjNsuWti2FkbKpHtYwsxTzaWmCms1OnqM9udU9T8ox8gJtU8IEYDJt1GPjmeVY09LaCKBSVOVLzCwxBVUURcF0uqCsDNs74Pkhvf6IIIyludYarZVIa+qqpRXK7WUseCOv31CoQcCZ2A+F2lkU7T+9Xtf6TxQY20RVRUmy3jB1J+RFYT+bIQ4jSfTpdFoQ6caNG9TG8OD11ynLkoP9A+I4ot8XFtPuzg5BGBJFIi1xHJcgFuBgU2RQ5HZTV612vylmlealBDgA7bi2GL1M23PaqPdaFmqtryzFV8YO7ePqpvfypiQT8SuThd9mKqCAli76pZW4nQxcNhWm2XiuTCO0na7W9glyLGryqsb1I/ojhaukOP/rX33AZ589Ju6PqbXPn/13/5yTkxd88tEn3Lt7l5s3bpLmGetkQ5rnEpc+uRDat+viBR5BFFDVJYvFXAwjlaLf65PnGU8ePaTX7fHmgwcslwvOzk7pdXv4QchgMJACriytj1qFwjCbXlC5GqMVHeu1kmYpZVWiy4qR9vj69Tv8Yv6C1fqCxckZK0fDMqcua3s/GAGdXAftexB4oBVuEEh0dOjjOC6l54B9Toohyws85LxXVUVlagpjUHVNpUqyIiPLM3Ij90Q37lmmU01lKpZJCkrh+GIy6igBs7OyZL5KKNOU1fk5dZpSr5bURUZd5viWFRkMenjDAd2b13EdBz/ypSnWDsXjc2pvyenRKd2wy7tf+xqO5zKbTYm7HQ6uXWd7b5/B9phFssYxhu/+0fe4efMmf+fv/G22xlvs7e0JuBZ4pFVOuinkTldgtMYoSfpSqvFUsJ4DVy5h86XLuKHDtxBHAyRd+f2XLvAmw/bqtc0lJbxpJi8nUfZuMM31bW8H1RRWV5pWCyCZhjFaXbIY6qq0YEP10vOxTC6jNbUy1FqxyVOc0kF7DqPxmD/4wz/k9PyMTz/7nCRN0Qo6cUwURjx7+pS8yNne3kY7DpPzc7JNQrZJGPT6xFHEvVfu0I87HB8fEwYB3//+98U75PSMrMhxrE9eU+xoLfHrr96/z3/wv/wPLPOzw/bOHoPhiPH2mCAMxe9FSyMmx6omjmPQWpidTZNpr2mMvc+UrHPN6mZePiKy1tvCXStN4PmojiR9Prj/KtevHRJFMWfn53z860/F18X12vPdrKNlKSfKsetxXYl8vawrfNdDK0XU7UjzXeSWrSIpXKvVWlT4tSHJUmrXE7awVqzTBC8K2D88EDPv8Vgi4KuaV165S21q5isZDr44PubF8TE/+tGP8H2frdGWyNsMYvaKwdEaV7sErifNAkaA7itrtjB55drTjrFFqmU82adpo3C0wXclnnudJsw2G6os4/DaNbqdbgO7tMbVcjE3bCt7PoQqjlKayWTCX/3VD4jjmO3tbX7xi/f46KOPWCxWGKOEae6IWXFtG51Gwg9YgoX1PqkNxlQUZYnG4LseRV4wny/49LPP2N7d4ZU7d1BKc3Z2TlEWlHnGeLTFeGvERx99zA9++COmkyl1ZfBjkak1NUCW5e0WWTfsJNXIfGqatO/a1MJyVJfN6NVO4yqoJ7J0/dLA5fL1m+3wMsCE2vBSHHazZ9r+xLHs3APrbbe7s4vjOpSWgd6Af8bA2vpVNSltg15f0gTjDm60RoURezdvsc8t6rLEuA4vTs/p9Lrs7O7R6w9kXbAqgCRJJS3Wpi43++XAlf0ySzPWqxWb9ZowkKHstWsHhFHIwf4+603CxeRC/JY8jyRNKIqc1WpBViZsZktOoiNOjo5xPfFJ0671W7Lri+eK16fv+WRVyWIyZTGdsZotmJ6ekRe52DP0Yjo7WwJsbRJGvZjx9QOSJCFJUuaLNYvFkk6vJzXqakVuDH6aUivFJsvYpBllXhB1Jazl6vleLVccHx3bZLeauNOhPxgyHm8TRTEXFxM++eTX/Ld//uccnbyQJDzb62ibfKe0SEK1ktrbGENkk1hXiwWgCEOpEbfGYybTC+bzhWUpihwUJOlTa40f+MznM370gx/geT47+we4rqbX7TA5PwdjGO/u2rWtoqKmVFXTXVNWldQKla3XavGP8gMJ4MnyojUrRimb9Cq/XtaSGt4wHR3toVVBTU2epWAMjjKt56DveURRhHI8aqNJSwmTUEnBOltyPk0JQ5c4ctke9+l1I0wtQ/6nz05EsbBcShCO66EqF1PUZGVFVtSSkFoUKG3wPZ9et0dV1eKx9+wZ73/wPt969xtsj60k9so6iAVAXgI/WgC6Raau7P9y/K6WyP8qwKl5tGWwaQ9/C7D8yx4vBU5hk6X/ZT+3f4pc/PKjXq19amMskNOw22qUDe1pPkdtN4t2KNeA8OLIcRUzuvyzLZvUy+wqq9RpgKqW4W1+8zgpi/Y3q2nT/7SthWkhQAyX1gVX368Brtr/vPLRroJI5sozLldw/aWfvbyey88a44WX68DL3/myH9clMGTgsjZtLiVzpc9qPqP68mu+fKwaJtzLg9TmvOr2NYwBpVV7vNVLJ+5f//itgaePPvyI2WzGL3/5S9555x3+7t/9u7z+4HVu3rrFD3/4QxbLBaEt7LTjUtaGxXLJbDJlcn7GjVs32d7e5d2vfo29/X2+8tWv4rgOSbJuTQmzLCVNE95//z3SszNOzy/opQW+H0rTaArGWzt4TmDN/QpOT07Jspz7r79BGIYslgvKUgqIXrdHGEXkpXjwfPH0GQD9wZBNIkZ8m01i6frnRHHMK4NX8H2PZL0SXwAM3Tji8OCANMvI84L5dConpR5RVx22RgNhAKEpKtnct0Z7+O4+FAWn8XN+/fFH4gcSVRIr7zg0fhuNrwaW0iZeQ44tngWoKYqSTZqRZ6IrzrKUyWTCex98yN7eDofX9ok7Aa5WHK9XZFlKJ5YCfDYTyu1qvWLgDoj9WIyyLaDg2FSqS/p2Y3gsxbiwE1yqUkAvMcy2aL/jEPgeuJIOI+ypqp3uifG8LDZKyfs1kxEsVbuuL1krzXXbxJ1LFLehzEsxnoxilKvRribdyCSktPTihsrZyEaqurbglKVD2+K5KCtWyzWO61MbhesFxN0ufiAmqc0N53musKKahayJX0ZYV00h2wBP2iaD5GVBVjam+CVxHGOMYTaZtvTEqihJNwnYSOPhaAvf90lTiSwdxqMWeNrfF1B1b2+PwWDA/v4+vu+TFylaaXzPp5lAXG7WlY3rzq4kK8m9KcWFBfisCfvlQwCZ5jg2C1Iz3Wkm9Y7kxV7iTV9C7q8uyZcbbftXcjybjvlLi+/Vx8uLpoBOVxf19k9lF89mA+RK+kS7mTVyKPsdrFl7WSkcL6DrB5RZTpaXfPTrh3z8yWe89sZXMabkxz/9GZOLC46eP2e8vc2NG5Db9LXGLykrCnzPo9vtEscxnU6H5XxKul5jjEzyojikrApeHB3RuXuXu6/c5sOPPuLZdAIGOlXN7u6OjaxN21ji9XIp0qM4xAl8tBPiOIqsyKjKgiCv6Pc67Gxt8zxb8nhxznoypaoq/FWFqqFwdCtp1a4rXiWBSOo8x0U7Dk43tsxDTe05VL7b+lx49hoviuKyHVc1JYakzFjn0hALTb5DEISUlSErCxablaSgBTGuEnPYOiuoioL5cka+WpMcH+NkOV6aWuApI+yJoWyn2yOII/Zv38B3XIJKkWY5mzRl3euTByHTixnn0Rlxr4fjuXxxfETQ6zLe3mY4HtMbjchMTV0bvvfd7/LgwQO+973vCRCPyCSKqiLNMoqywHFtAe9J4liTltKUXUZdKRN+4/qnvRa/XIRc/durtaZ56UdNwXDlN5SxhdsVINeuJ6r5DSUv2jTvtsRr37syTWNXXWE9VbbRkBVEisYaKlCONPq1ku0qLQs0Jd0wpjfo863vfJsPP/yQn/z0p7bo1IRBQDeOWS4WpGnK4YFETF9MJ2SbhDxJcdFEfsCNw0MGvR7TyQStFV/72rs8f/aMx58/lMbWGlkrW8w6WtPr99ne3ubNt99ga7TFtb19K/9uWB+0cpHaXDHNN02wg1wDzcnTrqztpfUfchzHemDQNmByOptJtTRyWss+5Hq+eDv1BuRFQRRFPHz0iI8//BjjmP8/a3/6JFmWnndiv3Pu7rvHHpF77dVdXd3V1d1oAmgQIAnuWsxGpMhZREpmshn9G7L5PB/1B0j6JJICySEIAQQxGOwAe0EvVdW15VaZGXv4fvdzjj6cc697ZGaDPTK5WWRkRLhfv/f6Wd73eZ/3ecDzaSAs4Uk8HMMGF8g5gEUZy26U0u7JcceKG69WK7e3GcuwWiycI5q0DHKwLppCkFcl3X6P23fv8uZbb/Haq6+24spFVrJarbicTijLEikEFxcX/OhHP+LLX/5ym/QJI8jLsnXj68RWw0Y5UKANPN0IFY0RiHa/8TaDVnfvjEAaQ4BPYaxw99XFBbPJhP5wSJQk+NKz7Hd3t40TmthM0po9GM+2wv/pn/4Z4/GYO3fu8Mknn/LJJ59Z0w2sgYxl6TYuR674JdYTs2H7NO1wVjfGJ4giyxKtKh49fsTe/h63bt/B9wWT6dSZ2WQkccKO2OHzz+/z3e9+j8V8idGGwBUOc8eKq6oSKS1ruNHNsGYZBqMMRui1zfkmsNdE+M1sdqBSE/TLdlQ+x6x0cVWzz6+ZaJtFoPX7Na2sYRRx4/Yt9vb2eOONNwnDgKK2jKCyLKmVXTumkwl5liNc/HHj6MiyoQx4cYIXx2yNt+h1u5yenFAUBVeTGbWBW7fv0u/3GY/HNi7zPObzhTVHqV3cUuStI+hisaAsSssCr2vQCXEcsXt0yGg04t4rrzC5usIY7cxiQiaTCasVUCnKNGM6nYAUPH3ylMFwyGhrTBhH+GFAmMRW9L7jBMADH12VrBZLLk7OuDg5pawK66oZBUTdhGjUx2hNphU912GRr1LyNOPTB4+ohCDu2YJjqRVBVRMmMVrYfSsvClStiDsdkm6XPLeFGYkgW6VcnF3gB3bOR1HsHCZHhHHCZDrj4aPH/MV/+q5lB8UR+ho7xIqLG2fC0BQQO70eURSSLVeALer6gc9wNGSVrmyhWHntGmmBJ9tO5gcBy8WS87Mfc/vuPd6Zz/A8j163w2w2RQjBjVu3AEFVrKyQhHTi6cLqZ9nFdp3Yh75PFIRWpL2yQJLBspmUc0PTxjIMtTEWCBKe1WlysVxVlhZ9cDrmQoAf+ESR1cnUCEqlqY1B51ZQfjFPCQJBFEteEzchlOhakqUlH3xyn8UyZZXn9Id99o72kEojlKGoFXllx79SClEpIt+n00lIM6vXdnpywmeffspqldo1ZY0AuM9iPf/a/zXg04Yu0ubjZ9Zl2+ks1gAGYkP0efMg7ufnQOrrx2vik7WNSXuoDfDJbKxfDjeyh96MYdyyZXEh+3z5PAPL7dUtkGJ4zmzp+ukJY5/QFNUakKtdH52GRgM+NQymtvuivUNOluB5cMs9f3OV3Fwtr8dn7hqvn+FzT7iWoTS+cs/9tVmznz/eZu7UFB+vH3vz0TRaNyBz+9RmkW/i0+fO+WcxnNorEhtC7BtbUvs302hA/Wxg82WPnxt4+uyzz6jrmiRJ6PV6jEYjVqsVDx88JE1TjDZkyxWl03KK4gjP8xmOtuh1uvy1X/olXn/jDd79ytfo9fosVyuWqxXHxyd0Oh1u332N4bBPp5vQH444OTnGjxL6gyFfe/c9tFLMZwtHLxZ8/uA+5xfnnJ1fMF0s+e73v0+SdBiPt+l0bVB8NZuiJlfEnQ47u7v88i//MnluqdPTyYSnT79ogYOmVWE2mRH4HlVZkQQRseeThAGdyGdve4s4ivn+D/6SyWRClaVsbW1x79YddFVydXFsbUM9jyqLCH2Pbm+LW2GHv/3r/2suL0756MO/BFHjeTndbkwUh9RFG9LieZJet0Mc2ZYw6Xn4fuiCl5qPP/mEwPfZ3t6h3xswvZjx6PNHXF6c8srd2xzs77K3u0W306GTRORZxsXlOYuFTQK01qxWS2vrCfSyLlHjTCYkqjaO8eSzWBSkuSFaZuReRVFkrvfWbkRRHON7IZ4XkmYFtcrwU6sjhbJi0pG0FFpTKVSpUZXCF75Dmm0gWdXaCtSZCqEkJnDaTlJSVRY4ylcr26JUlARhQBQFVEWJrmv6cUwgPXzPWgNnZdEmHgpDjcZIgZGCs6tLVK3Zu3FIt9fD+B7LPOP04oJFuiIvC84vL8nSFb2O37ap1XVNWZfURlmWQysGaqhrZYHQvGB2ObE96oFPkWdUZUGZr6irmunEBvzLVYEf+AyGfW7cucPe4SFfefdddnZ2GO/uEUURvX6fMAzouOSjqmvCIEB6HqsiY1VkWIacwKusS6BqXFKEEyVEYKSHkNYCulks3BKDkcI54DgGmnaeN66NQ7eIDW0F22i3gLWEgZeVJp5bmTesQptfGWOc0Fm7dzrg9WWr1/O/29gSN57ftii019lUEWxKrUUNQrsqAGgTooXGDzXaVGhTcnYx5+x4xtVlTbryCJMAgSQIE3b3Dtnd3qPXHTCZzJhOpqxWS3Z2xgghKKuCsiyZTs9JkkNGwz3S5YyqVpRZZnXbpGQ4HPL1997H930ePXhEWdWMxluMByPiMGI6meIFHv1BH1UppssFdVWifUkchwRhxPHpCVpp+jvb9KKEuN8nna04OT5lfyvhV996lx+uzrioMuS8AmX11r0wJOj1kIEVupXSjmXtxnPj2iSDELDjo64UZVWh6rVtqxU/tAFqpa3jjKkrur0RSdzBD62uWZ5lGCnYHg1s0pRn5GlGXRTUVY2pKurzE8wqw7uYIqIAs9Uj7OwRJglHt25aF7leFy8K6G71CTyPSAh2w4hO1OFL996i/vgpvRJCJH/0/R+AENR5ziotqUtDoTR33nyTX9o/YHu8xd//+3+P3d0d8qIgLXKKukC4eYsvLJjgROmVrgGrC2LHkrhmS9tUK4WgbS2C9SZeO4Dd8+S1RLLd5IWw8+q5Yd5Unl4MFDZBq4aTI9ZBZ1ONEqwB/eeO0QgG2/5FrZUAAQAASURBVK96o8qF1XYWEuGvXWykk3Nx5QmqLMd4Pokf0oki9vf2+Ojjj/nwow95/2vvcePwiHS1JE1XfPzRh/T7fW7fuU2TCNV1SZYumc0mTo9HoGrF/c8+54vHj/nss88oi5yyKHjl1Vc4unGDr773NV57/TWiJGkti33PY5GtMMKjqSgiaN1J19CgCzmbgNmz7ACA2hjwBL4XuTWjCbaMbcttl5uGJSpcIUyvgSljx4nAcLi3R+D55L+a8+n9z/nRBz/B+J4tygWOZeEs0jeFj6MgJPTDNkgM44g8L3h49pCt8Zi3Xn+T7fEOd+7cxXfMq+/92Z+zSlOOz86pypJX33qLN994k7/79/4uvV6PbrdLEiWouuZf/8t/xfn5OUIIRqMRb7/9NkVR8Lu/+3u8997Xee211+mPRhghuLy85PLykp988AF3bt/hF771LZIoti5yzjbal82+4TTtGp0U0YxKwAF/xolsC6XohRHd3V0+/eBD/vy7/4miLLlx44h33nyLJE4otXZFAzbm1Ob4t8WDuJPw5pfeavf6kxNrz15VpWW3OVFXz7XI13XljmlYa1uKNuHRQmHqGoxxLWl2DPzRH/0xx8fHfOnLX2Zvf5/DwwOb4ErJ+ekZf/gHf8BPP/opz54+o9NJ6HYTpJQoVVOWOUqtK8hCWNCxcTQDG+Nda1dpATHTznfpzGWEZ9tSVMO4FoKkk7TxmNaa1XJJFIUM+n3iOG6/fN93bWgS4fnt3G5i+vH2Nr2+ZVF7nk9d1+RFwfnllZVECAK6vT5Jr8ve/pHdrxH4ns9o2KeqauazObeSDkc3b7G7u0u/1+eLL54wX8w5OX7C1tYO73/zF7iaXNEfb5GmK7I0ozObU1eWzW0wPH70hV2bs5SdvQNu3L7D1mhMp9NlcnVJXdf0B3200nz0yWcUZUleKzpRwmA0oqwNQdzha9/6Np7ncX56xnK54PT0FD/w8cOQVboiz3NWaWrntoY4itjf22f38IB33/s6VxfnTCcTC4IKQWdgdTQffvgRFxeXfPiTD4m7Hbr9PgQeRgjOjk+tA5zKsYWCGk2FoWaxmJCnc8LIozPqcevWEf1+n9lsShwFmLqmPxpSa81yZs/vg49+ynQyQXiSsqr46OOPeXb8zLpJtx0Fbm9qtMQcyN50FQhhGVBhGNrx4vnMpzP8MGDQ7zHvJoShbZvHAffrhU/gSw8TCAINo/GYG4dHXJ6fURY5aZoipUddVa7wbJAeDiiye56utdO3WzPmC1WjsgxV2wJUFIZ40mM5m1MGAQe7uyxmMz755BNOz8/RwrJVK1Xaa9fOPN4VGIMwYBDFeAJWiwWj3sC28Pl2vsyWGUoramG7Ojwj+fTBCZ8/OsPU9p7V0iPqd/G6EUmni+cnxJ0e/W7C7PiK2XyFqhUYW4iSwuYpfuATxREPHjzg4uKCP/z2HzKfzXnnva8QRCF1VduNVXrtHtPsTBocK0q2n6Gwq9cLBa0GqtD62sez8XfTFqNgI943po0Xrj02YhgMGwLYzVm6OMShQ03s3oA/wjjQTL5w5PZA2gHmbetdMx4bt0y1zjN4Lt5pf3BteK30t2lxtNYZVdCcxItgStNhhNI0J2HcdQt3IEf+RLapw3U5hOs43s/OU14Eo5pM6cXXbOrTNs/fjPGeP/bL33MTzroOAIkmEHzJy18GQK5jV67tUbAeP1YAf6PF0bVmt0fzJf+5x88NPC0WCxBY8T5XzcnSrK1EVM41o6wtyyMyEXEUQxhBp8Pe3j5HRzc4PLpBEiesHj2kLCuuJjN8P6TbG7C1s8t4a8jB0Q2E5zEc79DrD9g7PELXik53SRiEhEFEqRVeGJIWJWmWMZlMWaUZBkmtFX4UkOUFZVVx0LUtcQcHB6RpymKxaBdlz/db8UorjpujPBdUao0nBZ6wSVsgrSAdxr62LEqqsrKbi1Lk2Yras/oiKEXlB4z6HcIw4vbt1wiDiM8+/ZhaZdRVjjEBUjghZ9YLfhQGBJ5ngUqsgnyj+VLVBpHYa0mSDhKP2XTGZ59+bm2wlWJrNMDvdvGdfkJdWx0XKS191Yotahc0GofM49r9oPEWDqKETqdvW9A8ee25QRiSdLpIz0cpQ1lWVlejdriyEUgkRnjttPCFb21KpYeUgsAL0NJq7PietBVPaa3nhfRccudhhAbpoYWwYpDGoAwoZdC1QRi7AXiyEUx3X47faunr9rKKqsRoGPW3nL27rTJnRUatrEh4XuRkeUYv6bfHaI6jNyeYcMc2a+HeZkENQ9s6V1UldVVaAfJWPFE6p7ltbtw44vDWLW7fuc3Ozg6D7R2CMCSOE6eFs6bSaydsnpelDTBcHquMBZ0U2jGTBALfVYec3WnbTueSMbeRtBfiLqCpMmscLtQs0u2LN+isWBCyRbzb47vdwA6EBnBvn2NBn/UG8tKdlWvw0gtYlj3gC54MGwtlswmsqwXuqpBCY5AIbVxAaeEEsAzI2XRFlinK0moc2CEgSeKQXqdD4Ht2zSvt5xr4Pn7gEQS2ZaeqS4xWVrtM2IHXtJAAlqq+s0uapkwmU7SAJOm2hgJZnuMpj26/S60UeWldKhuwEwFFUVDVNVFZUskAVSmKVcb8akJv5zZbW3s8CEuWhQ+ytm6ZBmQUEvUHLdvNc8lQ5blNWNukzPN9O9+VFR2tlU2wJdYlRQAYawSgqgrjHH6iICSOYttChNVmkUISByF1XlhHwNWKMs3snlFViMUc8gJZ14hOhBx0CAcj4uGI/s1bDLe3kL0EEXoEndCuFb6kE3cZdfvIyxJhOtTHV1SrnGfnFxhj6PkhIPH9CyoNg+1tbt25x419q/XTH/RZpCmVsmw1D4Np1yG73rUVPoxz1LINx9JsOHGadeDWjNNWoNWYth24mYOmjTaaeSccWHR9NFuMaiMo25xjGxXIdoIY04qRN+ATbRCzGVCYFnRat9xpx9wULWjVRJ5NwNi0nwmsrox27x8EAVtbY3xPspjPydKUsiiIwgCtIqqqxBjNoG9ZAmVVEfheOx+EgG63S11V1ra7qgDwfJ9YCI5u3OC1117j4OCA7e0d/DBowTOrwVXbtVBu3Bd3u4Qw7edg25MacEqugRIX6DdCwM3naJrnNbfeGBd2OXC/eU4DSrn71Ek6jEeau3fucDW5ssc3bnfVjlWGB9jWk/V9sGu1ca0M0rF+y9zGGRgIo5AwjpAI62ombEtuXlgG0+7+AXuHB+wdHGCaeSutg+Lp2RlnZ2eMxmOCIGB7Z4dnT57y5MkTLi+vWCyWdPp9pGcNZFarFV88fkwcxyxTC5wnIlobILU5jWNBNcAetGOj2SiMK2YIY2yrbGAZRVeTKecXF0RRiHrVFsOUG7N2zDUW3S5sd+O3NjXS89g72KPICvIst2yuy0uU1k5I3J6klBJ7iusAvCWINPdeAsYae3iieY39TJ8+eYIxmsViwdb2Np1O4tZzmM3mfPLJJ5yfnbFaLRkO+3ieZ8WOVTO/aEGnZoA1e3ozJtvr20gUN+d3A75Jxy4TwjJWgiAg7iQEQUCn17NJqxB0Ogm7O9uuANml000IwpAwjGzrqh+0x+92uwwGA7Z2LPCUZzZuvrq8dPvhHD/wbQttxzpYxmFodS893+qSRgFQYAxEsWUkjbd26Pd7LLMcL/CZTK5Ikg7D4QgDbG9v43mWjRUXJcpXjLfGgODiYoJBsEozojhmNB6zf3DIcDBACEmWZ7alLk25uJxYgweEi1k8N7999g72iZKEMIqshEdVNvAxeZ7bz0HZFsK6LBHaUBUFgeezt7tLHIUMRkO7tgBZYVv45pMJFycnPPr8PmESE3d7yG6ECH1UViAMbo2Tbs20YvpVVVDliv7OLoNBjzgOieMAVXcwSpOOhni+T1bkrnUvYzabM18u6HY7GAznF+fMF4trRTbh4tJ2/XNtkdro1im4GXdNUTfNMiKtkE5QXDpjm80Eea27Y4/RMFB99+V5ntW0LAoaZnvTwWCMad0wG0BEu4VVSGG1frS2rZhatcYvdVUhjKEuK7I05fTsjMVy0c5f4/a6Zm9r6pq+9IjjyP5eaTwhCDwPHVj93DS3q4ofuI4TIVkuC4qicgZXksEwIfACQhESxQlhGBNFEVEcuXi+cok2Nq4TltHlOabsYr5guVhy//7nDAYD3n7nLaIwtIXapnL1XNittc1PvI222RbY4fpjHRO3iEu7VjTrxrWQgfYF6zUFs14Lm+VGN2YO63GyueY2727XdvfczfdprqvNC5rSzZqB08zRdjw67d71Zss6vr92/us4f7PjYX18d27tPvwS2MYBeOa56l4LxjVz6bk73qZJ7TE3mGDtZ7nOazZ/Xr/B85/i+lpckr95ppvvvPHbTTOZ557bXL+bG2LzGJvA5UZhfn16pn0t11653n/E83sSpm1Tf+5gL73Olz1+buBpsDWym53nczWd8Ju/9e944/XXuXnzJo8ePuD+/fuMx2NL7TWana0t/tq3vs1ytWC2nPPs+ISryQylBVtb23hBwCrL+f5f/pBXXnmF8c4ueVVxcn5OEHc5uHGXXn8IQvDg4WMGwyG379y1zglS8v72iK+qGq1qFoslv/cff5+ryYTHT59QPSwoq5x+f0i326Pb6eB7nm0bk5J7d+9w42Cf11+9y9nZOadn5xRFwenpKUJIojBEq5Io9KmqknS1YnJ1wR/90R/w6PETfvXX/ibf+Mb7JIl1iVitCura0O0KqrIgNYa60ycKDUiPMAjo9/a4eXfAPxzt8OlnH/CDH/wJy6VtLYxjy25B2H73OLZBgtZWCFpUFWVZ43k+f+vX/jqvv/4a/4f/5p9RljU//fgTPvrwA8aDPnVl2++Wi6WrHvhIP+LOK29QVTVFWdLtdel0uxaMEJIojgjDkJ3tHSwltmlX8HjtS++xmK/cuUG6Si3dXmmyLGM6n/IXf/EX/OUPf9gyofr9IWEQ0uuN7AY9mzMYDBmPhq6NTbJYLlFa0e3YRX00HLUthZ6UeMK240kh24niB15L5WxEXY8fP2Z6ecmT4zOEMexub+P5HkZ4+EFEt9u17XJG2w2/Ktna2sKTPkls9TMm0yuk3KLf79Lr9xhv2Y1fa0OR53aTDax9PNJD14aqsgmDUpqitO2HN27e4mD/gL/2C99GGYVSNT/80Q95+PQp49GQfq/HN7/+PuPxFnfu3WN3b59bt24jggDp+/iRZcMYq95tWVrKYGrTsoMMer2ZOwcusBtX077ULhY0tri+3ST0evFoEoRmHVMu39KbaLeDadZhiPufo0rX7jcSmzA3+a5BsNbr0hvPgmvy43K9ThkhNk/nJY9mU3RPEqJN9Nd753MLtRDXQCd7XeuubWEkGA9VG/JCEQQeQdihTDXzyYp0uqJa5oy7HZTKmU+vGI1GDAb7lEVGVeT0eh2i0OOLhw8IwoCvvvsuebeLqRW6rvni0WOUEgyGQ+688w5RFHI1n7GqMnwhuZpOefToIbfu3uXg4ICHn91nuViwc7BPoEPOTi+plCIrSruuepLp5RS04eaNW/h+wPnVFZfzC04/fowX+ARxRDeI2R3scCNWUKfUOxZgLsuaqrbHo6oRtSaJYwLfd7otBqFqlK5YpSl5WZEWBRLXjunZMaoqqwVUKVtkKMqcTthh1OkzEDGRkkSe9fEWJkBXivpsSrpYsZhOUUWOrkrq6RRTVpaJlcQk790lGg3oHR4Qd3vEnR7Gi1hUGllZjQhZ5EhfEnRCJk8veXa6JHlwSXgyxzc2AMePrGsRkllWcXV6hh/6RNvb3L+84IurK0pfsL+7y3vvvUcn9BkIQ60sq1ErS8kXGwwlF2daYwi1Ft9fP3Q7wt0AbCtozfasXWXvGgj7HFDajPdmHja6TQ148vzjhZDmuSBTOJC5cgBTVdk2gaqq2vduAA+7xhhKB/xIYcec7/lrNpQDPzVQCcMsXTIYD/n7f+fv8Prde7z/5a9QViUY+Fv//J854drCaUuZtq272+2SxAmTyYSitCYYSmlmkxnLxZJ/+Pf/AVb4H958+y32Dw7YO9jHDwJWebYuADjwwJMukHUT3kHL1tXs2t1aV20LVdtbJdfFkeaz9oQNkGunx+M7xya0tXNuLO8tYGWP7Ukfg7Wfj8KQe3duYzAEUWSFvpXicjpxSWVKWZbMFkvysmw1bmrX2i6lx6A/AAE39vYpi5L/6Xd+Fy8KCJLIguZKM5/NSOKYm7duM+j1uHPrDk+fPOG//7/+95yfnXN5cUkchgjg/uef4XmS97/1LaIoYntnj9l8iQwDzi8vuX//PqOtEePRmDdfeZXRYMDZ2SndXo8nXzzGv32LUbfrwNh1y13jFteOOSHalVc2zmtIjDSIwLYE1sCrr75qmahVRbnKLIPBgJY2Ya4rTSCs7l7g7nVd2wLXydU5CPjK17/K8dNnfPLRR+TZkvn0Cs+5F8dxDEJQlIXbNoRjq4GqXaup4/B50o7xMPQZDofs7+1xdm7ZLmdn55RVzYOHD5Gex/7uLufn5/zohz/iT//4T/mjP/wjzi8uwVjtTYCytBqhSjVyCV7LMmyKU02rq6qsLp5l6TUIk0sDlBvPwt7FulbsbO9wdOOIb3zjG7z22mt88tmnLBYL+sOhk3Aw9Pt9Dg8OiKKQMAwpipKqrkhTO3essLImTy3AcXl+wcPPH5CuMh4+fMBqldLt9W2MNJnS6/U42N+3Zi+eTxyGhEHI7Tu3CXyf6WRClqZMJlcWxNra5unnD5GuHdQYw+5wi0iG/Mnv/xFFWbBczLmaTCwglOeoWjE5PUdrw3y+QClFXSsWtaYuSs6fnWCcfqhStXM7q1iulq0202q+4LF8xGKxoKptm6QfBiSN1pvSrdZd0u0wGg4ZOyDWOPMkVdcsryb88W//Lv3RgG6/R1oV5FXJ2dUZCLt3dJIOO1tbNLFRscio0YTCMjFDZQBFlZd0pMdw/4CTp8dMZlO+9Nd+ids3b/LJBz8hjmO++c1v0ksSdK05Pjnhxx/8hL39fXrdLkc3b7Bb7TrZCslHH33E8fGxvR6t0VVN7drpLKBi12dPggwCmm6OyWTCxBhMrQg8j6dPnoIwZHnqulaw+qBh2EplrNLUsaiE2yc8PvvkE37nt3+bvLIyA3lWoJQhiTsYBFl2SVXX1Nrg+YEVKHfBWsPAFQ4YU9qyqKWUVHWFUhXdJMGXkqvLSx4+eMCf/ukfk6UpSRLR63VIkoRJXaBqfY15L6Ug9HyGvS79boduHBEGPv1uDAjmiwwpIAw90lXGYrHEJEOMkYSRdFq59h76YUQcd+l1R4SRJAwFF/0ORV5yog2qrFFCYCJB4MdImWHpCVYD89/823/Lj370Y9758lvcuHmT0dY2ldGkVWkLAUK2jNtllmKMIQ5Dy57y/WvA8zXh7ibuaAGTzb2/haSu/W6TNb0JKGBwcbht825A/ibMUMoWApqClH3YwpxxBfemlXCTWG2lY9ynssEMd5tDq72sjC1EbD6064K4BqqKddFWGHOt+G+BTstiUpvQTAP0C1pWlmif65wb27yqfYkDvux71awBryZmk38FtvJXwS5NFvXyCO4luUubQ22IxW/CjuY6M0y88FzTXPzPPl/zsiOsj9Psmc15211ds84I1/+2YObP+fi5gacojgmCgGF/QFnknJ2dMhj08X2fLFuhdY101PcojAh9H4lt3ymKktUqQwjB8fEzqqpmON4izXKyPCcvS6q6RqUKWQgr2N3x8f2Quq5Zpil+GFHWCs+3QaYfhQTCOqpFcczO7g5Vrfjii6eUZUFZ5gwHIzqJFWv2PY9VboXokjgiDgM6SeTAg8qKKNa1Y7VYccOiLCzTC8PW9phO11ozb22N2dvfa0U1szwHAd1uYoP6usbzCzQC6ftoBIkRyCBiMNphtLXH9s4hZTGjqlZoI1BO71RpS/NWygYocRzT7Xbx/ZAoirl79y63bt0iSRLKcs5kOqGsCuIkhthHCrvYa2NbPHw/YGt7D6U1Za1IOh2SToLAihCGYUgQ+CT9IQLh9Acs02hHRgzG9t4IsAmJsS5yDfB0MZkwmc/JixqtDb3egDAIGfYH1EoxGtkq4NZohBcECOkxX8xRStnEPYoYjUZttaVh6AQu0G/ofkFkQSucrWtVVXSSDpPLSx7+9Kfkq5TasRP80PW2N23lG+B+4AIn33NU+KIAY+w4Cq2bRuD71jXDTapm4/U8j+GoRxDEHB0dMBwNMNpW3v0gZDQe89obb1jxXq24nFo2y+7ODoPBgHuvvsZoa4vbd+6ytb3N3sERtVv0a2pLj1a0Qfx6k2mw/WaNcIuxY+q1lVu3mLZAUYPUNagQsLbCXj/Mc397cXVcV/db3lSTjMO1ioBpn2/WyXebvK+R9fZ1zVtf/+G5x0sWTweO/VWr/TXQqXkPI23FxljarmVOGKvnIyyTabGYUZUr6jolT5coUznHQoPne+hMUxQFaFtNDMOAMLA08cAP6SZdK25f1kgvQEqvDaKNsZtrXuUts8M0TMK29clWyuuqalshjXG6MEojtGnthFVZURUVRZHT8bskSULiR8TCJ0DiI6jcdVIrcME1DsBUygZ+unbC0lVpWSRuTa6risALWtBJGAHYoMNoy5yUCHzfW1fTBei6skl4VVKXFVWWUeZWRFy7tjyjldUtSrrIXkKwNSQc9Il6XcIkwY8jQFoXMK2wG3+Npy04XU9T9LMJ3nQFWYn21uLfwoBya2CuahIpkJ5vNVjqmifPjimrisMbN0k6CXEctm57QlgtmGuaK+0Yem7AuR+fM25cg07u9eLaUL0OOm1+v67D8rPG98Zs+Rmb/bWYollPNlyj1joz69e3wK52wLPEmk5u0Oh1E/BKC7vURhFIn04v5uBgH1WUzOYzyqri6OiQ4XBIUZTUdU2aps6hym+dW4WwbcxxHKO1oZt0KYqCnZ1thykJbt25zXhrjBcErb4W7rMQDsm7dpuaJapZ/jaev/mc1rXHPXdjIWxuA6Jd25pAbg1E2mTsOgMW45IFKQijkPFoxO2bN0nzjLwskI4tmeYryrLA932KsiSNCrfv2wKT51kARApBJ4rI0pQrY/BCnyCJrAOXNvQ7XXrdLoN+nyROqIuKPMv54vETJldXzKZTPAf8e75Pp2u15+I4wfcDRqMR29vblFXJ+cWFZRsIiJxo++HBAUEQEIWBbe9r7qe7D80Y3Gxz3hyfm6NT1zWL1RKbJHpEccTh4QFX5xdOVLphaEBZ1UwXCzpRRDdKLEvDWZUZrD29EQZR5JZhagxxHDEaDhlubRFGsY15ipKTs1N7/UHA9Qnl2lOb88cCEv1ej7t37zqQxePq6ooszTg5OaHjkuKnT57wkx//mM8//4yTkxPKyjKa68qWbOq6atueYJ0wXmv72Hw0TAchkBJ8J+rcvLasSoIgYjgccfvWLd586y3efvtt7ty5w2Jl9fOiOG7Z1kkcr3VudGPEYlq9r1rZGGo5X7BapSzmC6aTCcv5ktPjE/Isp8qtIHq2XCKUYRZYpz7PufwGQUDfsa2mlxOKIme1nOMLSSeMLajoZpPneYwGAySCq8tLtFLUdYWpNR4CX0iENEhjP5UkTiyoog1e4Fv5ClWhVY0vbUGtlhXC9+l1u3bvDQOrR6hqfCmsfmaeo6oKqU177kYpq3EX1mjnrh1HMXHPFfKUYrVKmUyn1lGxqpinK7Iy5/LqHKQgFJLVcoXnWqeEEHhYh0BPCDwDprJ7bZlmBL5PEMWgNEYphGMTX5xfEIUhs+kUIX0Gw6Fj+CxJnDaoH/gETrfIFshPmM/n67XI6HZOrvcSO77lxppk741CGgukW4kNQ1kWrdaWEI0emn29HwTYdsrAGen4YGC5WNIZdOn0uhynp07PVK3nkotzpNFobddJaIAn42IxZw7kFJ5rZ6LStFJfXV1xdXXJYjazTLogdDG6BdN0y7S056uVQdV2fHTjmDj0CDxJ6Nt53olsTB/6HrWUeNoQxRZADUI777SxWmxNDhtKiH2PMLRSHkI0c3U9Z5V2DBBj2YtGGC4uLwnDiKdPnljdz8GwFRm3e8vzccSLG33bam/+6qT+BV2e5vfu/00s/sJrNotarONl06xH60+qTQua72Zj+W+ef+3dWwCpKURsJB0buQqYdafNf+Z6wOYSlll3/TnN57G+zk3uz4v3Wmzq077kndbXZjbm1ks/pvb4L9WobdlC1/ORn3mBzeFeOFbzYb14jjSgj9lI9TY/mxdfcO2zu3Z/WWNV167nJTlim1q+/Kb8lY+fG3gaj8dsbY35xjfe56MPP+A//M5vc3FxboWiMWxvjdjb2cL3Q8vA8Dw+/PAnnF9dcXpxYS3nscDK7u4ed159lSzLiOMYz5MUVUk2SynKkq9//T22t7d48uyUVVZyOV2wyisKZej0uvR6HYewGeeGInj3q19lOHzEBx98SK/bYXCww9tfeoc7d1+1tqYGnj15itaK27eOiMKEKNoi6XbY2d3h7OyC1Sqzm72EvMwprwqyHy24ceMG/8U/+kd849vf5uzsgv3DI6Io4fLyivlswcPHn7r7s0Ne5iyWS5Z5iecHDIc1URyjfNs+l/gBt175EndeeY0f/ei7PHjwKXm2pMgVcVYzW+Y8OztntlwShD73XnmFN958k7ff+hL7+wfcuXOIMZrf+I3f4JNPP+Xf/Lt/w/bWmKOjQ775za/z+muvMpvOKMuKrNQMOglf/to3MUJS1rq1rawqgVYC3+l45C7xbMRYAUTUIYhpg6WD0ciKaW7vOJ2lkF/523+Hs9MzHjx4yGw2w5c20Q58C2h1ktiKdQYWgLPJrrX/9QO/rQYKtxjJBhF3faNNkOYLiR+GdPpWkypOEuqqJMsy/m//w//Apz/9iIunz1BAEifoLGc+W6JLReQFJH5AEgTOglNjVEVdFKyWCzxxwM54RL/TpRPFjPo9hKoIpEArTVrktmrW7fGLv/TLfPXdr7F/sE8QBHz/+99nNpuiDAzGW3zt/W8Qxgl+HPP2e99glS7Z29sliWM6XWuvW1Q1lVIczxbOyMq0FFDPtYI01FCJaxls1m2zpsQaR/X1nLaVUmqD/tqkTgBrUcNGXFVK0VZc2ypUk2ALe3wPHNAA1G7ZbNpRlNO/cSWSzYBnU9xuLZEs1w5gz28aP2vRMetFcS1caKsk11qMXvbSFul3CQWgcWyyusJS360wdo3Bx8MQc3z6hE8++z7z1eesskt+/MF3CcIA4YEX2KpYlq24vDzHlzb4fu+rX3fMxwyEx/7eEatVynK5tCwZrfnzP/9PGAxfe//rCGF4dnxs59TBEXWtePr0qRUa7XQwQlDkBcvpnCRJ2NnbY5WvWKyWDCOr/7a8mqO0ZjmZITT0uj12Dw+489qrDAdbdDIDs5SsmHK6XKLKCu8qgyiEcQ+RhMhuTLXIKJdLyvkCVZYUeerYKSACHz8KkUFtWXlS4GHWTiV1Teh5dHo94m6PqNtFC0NuDPnkkrooWaZLam3HuyhKZF2gyxJdVZjtPiKJ6Ny4Q9Dp0B12CUOfOAmRPiBKZGDBrExlaAWBkiRK0rsE8WCB/OAEX3p40qMobbupqW0gXgiJFpoSRZVXrETK+dNnZMvGdajLR5/dZzwc8srt29y5fZu3Xn8NP0qQnmC6mFGpGj8MQAiUC0L8tp11TX9uWrgMaxe7BgCWQiA8O4XaUSnWCe+6yfn5sbzmGzZtuht/eiFeWU+bdfCllG6jDCFwiah2iUEjVGz/3oo7ywCDQaFa5qByF6fqGiMEURwhhKTWmlpVZPOMrZ0d7ty8jTKWXWUF/qHb7QEO5NyoXhpj7HhvzsHA9tZ2e65Ny4YMfFcltWBxnCSukFLZAFa47UIrywxsQAQMQm1Q/d298VqA0l23Q9z0RhudMtYGPHCAR+3a8TwnqNqURzcFPVs3MZddGGPY39vjcP+As6sLZvM5d5UFJJS0CfJqlbo12I0FByhLpwWnlOLBgwdopZ1+pI/vBW2L5MH+IXEUUxQF08mERw8ecfLshGyVsrezx6t3XmE2m6G14hd+8dts7WxzsL9PXdVMJhN2dve498qrlFXNX3zvu3zzm99gf28PU9cMuj3++i/9MkJIx3q099hvGGKquhbrC5rr1pYdYVcLOz+0ZjVf8P2//B610WgpuHfnHl9+5x0+/uinLBYLcl0RVAX9KOJiOuPPvvcDbh8d8ert23i9Hn7o44U+voSwk3B+ccEP/+SP8YQgCSLefPN1kiDgr/3Kr7Czu8d3/9P3efToEf/6N34DAySdDnVdU9cW3PNdsUEIW3BTlSLPU+7du8s//+f/nE8++YQHDx/ym//u33F6esrv/e7v8tOjI958800++OAD/p//9/8HDYimnG18UVaA3tgPhSskrOdv0+ZswXQQnkfTOhp7PnHgMxpY18der4fSmoePH3Pj1i3+N//FP+L999/nr//qrzGbWn20RZZydnbGxcUFQgj6/T5pmvLhhx+yWCxYLBatxlNd15RlyenJMavlkrPTUwtIK0NVWh2/Zj2tlytb/ERSL1OeTh8QJzFxZLVDtdYsry6JwtDGHdIyDKsgJY8W1M5VWAY+YRgRBz7aGM7PzvB8nyRJGA+H7GxtUeYFWimGwyF+ECD9wEpflCVlVVKUeZssBYEPCIqiQAhrxtMkv7PZjMVisU6acoWqFctsZZ2I64qsrijzgsvVyjKDhGA0HnP05usMBgP2D/Z59uyYDz78iJPHTzh/dsLl2TlZmrIsM7TQ/DjwSLpdxrt7hK6FMcJppdYKozT5ZE5eFFxeXhH6PkmckKcZPh73P/ucs+MTHjx4gBCCy6sJb771Fn/3H/wDZvMJn3wKT599gdaau3fvMhgMuHl0g6dPn/Dnf/7n1FWFh20TVqomjGN77xvTINbFSaUUCtXUH6gqRScJeO/r37DA6uSSk+Nj7j+4bwvuhaKuLVPv1q0bdDodtrd2QVh9se0d66L8/te/yd7BPv/yX/5Lsizj/PSUOOnQiZNW2gIsMFbXVkfQKLeOam3ZMJ6HQVFrQ5ZnaK3Y3h5RVxXf/Ys/56cffUSRZnS7XbaHIzr9LkEccvK0pnQC9ABVXWF0ga5rdgZ9+klMJDRSGOrlFGM0ntKgBWUpqRYr1GzOwWsD9ve3MKKgVhXHx3MwHh2/i1A5db4iCHcZJFvgOieMrVpipKDSivlyRV5aBnEQhgQYFumKJ8fP+I3/97/m7bff5h/90xG9wYDuYECpNZV20aiw5g1NjtXsi+sY2oHRzyf3DQL0kkfTMt60bK/xngakMy7Xuw4aWEb3xkM2/2w2oG3GKaIF/nCtko3Lmdl4qmifuhnzrIue3kbG8ldcVvtQGMdoXhf2Xng0wKC98PZe0NwPwwuM9OeZZe1DbHz7eU7wJY/NbOzaAcT1QwpY6z61fxNtLrW+tOeBt82cq/nvehxdu7b2+0uu14Gqz+uUtrGNaGDIdUz6VxZUfsbj5waeAj9AK83pySmz6dRpJFUIo0kSy4aqVW3pmasMz/NYrWyylK5WbhH0ODk+ZpWuwLUK7e/v0e/1KIuCOI7p9wcWjJK+tZhnxfHxM7SBJ0+e0h/0GAwH7O7Z/vHQVSySOGEwGHB4eEDgS7qdmF6vTxSF1t5TKVdVtbb2WmnXbmADPK0F3W6ONjXLRcrnn32GqisCp7Hzyiuv0OsOYD+g2+3jeT79/gAQDEcDx+Y6tpuvtPpMRmuKIrdDQFuB61pD4EmkFzHe2qesFLPZBXVVEnW69I3P62+8zf7BTW7fucfW9g7b29vsOAva+XLJcrHgRz/+Cadnpy5RhdliwcnpGVEUEoeJE6yUBH5Ip9MjK0uWsyllZYWqtfLBSHxH91SqolkphHNC8UNrZd0g7qs8RxmIVil+4ROWJdILGG1t0zm/JC8qiyQDZW31kqLIUKoa1egsuQkBBtUkUw50avQOpBRtItK4rgWej6c1tYBYKWpsD70fhty+d4+qqjh99sy6CjnGmAVcNhICGnc2C11ro6yFtbLBqBTWUlcpa5kqfQ+lLL096fbY3t5lPN5i4Kr4y+WK+WJBVSuObt5kd28fPwzB81DG0O33W9cSP/Cp3OKnhW03aCe+WDOB7L8bCaf7TUu83Ki4m+cWiSYfutbj2353K9l1CJznWySaQsjmc4TZ6C825vrau5F5bArR0Z7R5nf7J7NxDdffaf14Yfky67+s6cLuWsX65/bF6xOkaRtsx56wQFytNbXWrTuZNrDKCmbzlG5vhDISz48wCKrarmvnF1cYJOPxdisMnGU5ZeUYa7UiqwvKokBp67IjPc8y9ZzAfKPP0SQgSmt0rfACK/xqkxhtK9dJwnAwAGErk0rVZLVqCx9JJyHyQ7Z6I8Y72/QGPUxVs7ycsnx2TJpeoWJLv49DHzzrMFMvM6pVil5kmLxE5bnVEHOWxI0Dk9foPrhKk8Zaqmtj2tapJE4sQ9AoVF5a6n+aWbfJsoSqQqcpoqqhqMDzEFGI3+/jdRP8ToQf+cjA0s+buaGNY9gYgWkdVCSiUHinS8R0haw02gPlGTe/GmASjFEYaV0409TqtpW1QgYBUdIhCGLmixRVa3zhWZvksmJ7Z0yv38ULLItLOGtnpSoXQEma1jPTRlh24DXU8UYz4WVB0fUAbBOwdSO2mY/QlkjXK8B6HiIE4rmpZp6riLXgmFsCtGMRKP0ckNXOrRbhdsCRtBVpt05Id+2eEe17GGGDcCUMJaptE2oC0AZwxpMWqGnmv1gLfDbxo0G2a5iUbn1rhcJtsGQ168D3g/a1SjutPWOP11QAr68pYq3jhP0c7TVs3ouNe38t4G7uDy4gdO1k7a1160q7u9n7Z7U/rO5jGAbowoINfuhjCPG9wDFd9Vqo1l+zXTSGfq+HlIJu0iHwfCJvbRTR6Vor708/+YTJZMJyuQIh2dnd4+jgkP39PVbLFUorxuOxZYD7AUmUMByOePzFF1w604uqrpjP58znCzodK5DtI9vihBbWdUs3xY8Wcbo+5uyUaIoY9p55WMH3TpKgsKB2GEUWaAsC/DBo3WjBxpvDfh8hBLPFgqIonBuuDeCl9IijmPFwjABC6XF4eEQgffb29uj1B2itHIPLnoNumaWmHVv2s19rfxljbBJ9fk6/3+fNN9/kD//gD7i6uiKJk1ZXKF2tyLKMIAiJIntexgmit63nLwngm/9bJ0nT/hx4HnGSMOx0GHQSumFEFAT0ky7aGPLRFsOkS56mHB8f8+MPPuDq4oL5dMqzJ09ZLJekDsRs9a7Oz0lT20YlnL5c6TTUppMrijwnSzPLnhXS6pkGHklk2XCdJLGC1EFo1wylLLMqsmY3Rht293YIw8gyeoLAGvv0+4zHQ4rKsmatCLokCH2UtvmCNc1xoJ/R1tBC2vmjtQItMRikJ/CMxDcWDJOedMXqNSPdGOtIWZaF073yaRy3pLB5i8a5FmpFFFmx9aKqqLXCKEWRplyenZEul5RpxmQ6pcoLBJb9NxgMiOKIqO5YDTJP4IchIdJ+GeH2RNv6ZpRlAgeeR6/TIQojet0uwfY2gecz6PfaOLSsSk5PTuh2uzz4/HOml5cIYyxzyve5eeMGO9s7bI/HSCH46le/avVnheDk+JjLywu0qlF17bQYLZgpAEUTSxt8PyDwQ6J+wHi8xd7BIb7vW2e/KCHp9lFGoY1tCZXS4+BgnziK6XZ6VnPOD4iimCiKW8Oa7a1t5vM5n39+n+FgyK07dzANsG8cNN84Yrr90rY5gRDGFQmdE6vrIimLiqdPn3J+ft6y9ezcTJ3OVnUNoGkMDTbZ4p04IPIF2gvc/ZQYZailQpeSKhD4RkNVImSN1IrE95HCp59ErrZgiD0fqaHMC7Iss9IQnnQFD9su2HRm2BY0hUBQ14pPP/ucvCgZ7+5wdPMWb7z9Ft1+n6TbtfeEjXaz5lq4/jBmXZhu9iHR7DkveZjnvjt86AXQ5BrgsbF3rYGiRoPjerzf5IPX2NKmOS8bP7TFJXe8daTDmlHDGvxpgMqNsH3j/drtpM152qe0oJC49rLmP0LQ5hrX9nLTRBPr62+f//zdef7FPx+28sLj+qfbxBnr1v/NE2j4Wtee3e6tpv3+0sfzaR6badr6+D/zHJvYUoj1i5tDb37mYtMgh/9F9+XnBp7iMCRPU/7sT/6ExWJukUop8H1Bt2vb2VLnEvHki6eAWDtoSI/BcEQUhnz88U8xwNn5Obfv3uEf/MN/iNaG5WLJa6+9xu3bt4miCIGg2+txNZ3xA+cid3Vx6ajhY37tb/wqb775BpHr5R/0R+zs7PDee18DR9cejLYQwlq1VlXF1tY2WiuW8ylVVVIUOQeHRxwe3WB395BaaT744AccP/uC//Db/x9WyyVaaxaLFW+/9Q69/pAbwz0LomBIkg6DQR+lK549OeYH3/s+t27f4tbtW6245moxoyoj9nd3AUGlNEoLaiU5uvU6t+68ztNnj1ilC6qyYMsIXnn1q3S7Hba2xzx79ozj42MboGrDBx/8JU++eMT/+O9+k6ST8JWvf4XLiwuePXtGulrx0w9/yne+8x329/fx/ZA46dLvD1menvHo0WNWWUaa5YR+B08GrU5Q7dwvPM86NIRRQNyJCaOwBYiWWYbv+UwmS9e7a6wT22gM0qfSUJeFDWymcwLfZzjo0zj/OIOLNqiu69q2memGYi7br+bRAE9JlNiBLgRxEtPpJmxtjekmCV/71rfYP7rBH/7BH9i2TCEpyqqt7ltxW0OjrYAQmFo7LZeCIs9YrVYIKYmiiCzLWSyW6CRBG0NWVOx3+7zx+lsc7B/R6/X56KOPOD8/5+mzZySdLt/55V/h7r174PtkVUmepoxGI5IkoagKslKxXM0RniTpdGxi5fk07dPtfNbr67aLrFv1pWwXV20si6FWdlO31WXXo32tHxuuLUEtYCXRWrQbOriFu2mzNBvJYHMMs/G8jXewCeOLfdwvgk8b/292DHN9EW6f8gICdT2x2XyC2Tin9XNM+zwhnCg87tYKkNIKzxZFboMsaVDCUGuYTDNOzpbsH73KntH0Rl3yPCVNz8mzS66u5rz1+mu8/sZrzGcz8izj2ckxAtjfPyTPC87Ozhx13Wc0HltdtV6X+XzOwwf36SQJRzdutBbVWimrLxG49jeXLA2c/sSNG4eE5x66Lrm6vCJdLVGqJohC3njzLcbDMfeObhN2EsJBl7NHz7h4dsrpD3/IxfwC8bVXiIZ9trd2rUNkVTG7mrC6mlCnOaaq8aMQ4XvoboTnB8Sugip8D3zPAlbCjscKhcYF8b7nmBk1dV1SXk2plpkTWNf4pkakGdWzU5sIao23v4M/GtA5OCTodfBjD8+XeIF1G9PNLqYltbaMP+E0WGQgkNMM76ePkKsaWcPK1OTaCaMDgbCaM1VV4fs+kRfxdHLK42dPOdrdZTwccnBwizAMOH72jPlsybOnJ8QffUI3iXj33S9z75W7fOnLX6LfGzhWT03pPhdxzS6+sZfZEKbGtAl445Bi/RoE10GnjemyMXY3x7amYY/Ijb+7L/PcizdmSrvmCgvUqNq0rTYN6wNskaQ9n2aBxmlZud9p4SG0bQ8Jfd8yo1w/o2WxSnQkyEzNMp8TSGv0EPq21acytV3v1uiYcwSSlHVlE0/ZhK0KoWndAYUQSDYEM40TvxeWfWhwIJqpMKj1euaqby0IhV0bG3aJMcY60yFc0cWtnS2Iv9bMs5/R9cD2ehDrfu8+7Fq7tlX3OUk0wrOAkk6thkyYWHesXndoddKKwjFNJJ1OBykljx8/pCgLhoMeSZKwvT0mliEdz7ZReb7PxWTC2fkFv/8//UcWiyX94Ygwjnj7nS/zzpe/zNtvvInB7rU//ehDyrIAbRhvj3nn3XdRf/xH/OAnP6YsSgTw9NkxSZzw2muv4gceZVVSK0VZ1cRRRChDamNX08Dzr+0DawMK2QqEG8/+0sPKNdw8OEIEAUEnwfMDyqq2TptJh0ppqkpBbOh1u7z+6mvM53OeHJ/YdVJrOk4X8ujoiK3xNu986V2qPCdPV4wHI8rXS3q9LlVVMbm65Orq0gL/xrgCpANelQU4Gs2lKIza+XVycsyf/Mkf8Tf+5t/il7/2Hv/+N3+Ts7Mzbt28yXg8Js9Sijxv4wmrcWU1azw3vpqNvElG2RiHymmLtePJaJIo4db+Pkdb29wYb6NWKVS1dUuTknHcQ/keDz79lM8fPOC3f//3WVxNyRZLhsMhYWS1Osuy5Pz8nCzLWC4WrePQbD4jy62ek9Vu0W6OBkRhSBhaa/vA9xn0+w5sGRLHMdvbW+1c9MLAtl+5eG00GhOGVk+z0+mwv79Lr99nOByyylPyouDi4oIsy5jPltR1ze7+rovLKorCOsHa1kJBmqfr+Sst8GLQ+L4gjq1e1WBgi9OjwRitNbPZjOVyyWRS4/tWK7SpvkdRDAYLcoLV1jLWMCMvrYj6fDlncXXFh+cXNsDQBj8MiTodIj9gf3+fg8MDjIBcWeaOLz3yNGN2cUlgPEIjyYuSsrZt78YYwiQmCq3sRLfbZTwacevmTfZ393j69CmTyYQwtFIlDz7/jMVsSl3ktmVNaZIwJIpjfvFb3+bWrVuUZckr917h9ddfa+O9//Hf/lv+8A//0GrlFQXOvcfqBxnQSuP5ngUSO13iOObw6Ii9/T1ef+tt2wJ5vuNcESPraucKz56UbI3GCCFI05zQuS3PFwtm8wVIj8V8xWuvvMbl5SW/9Vu/xcHhIXfv3cNgxcOlsfuycppRvvTcuHdtZHKdCAd+YJn4lWY1X/LjH/+Yk+NjVyyxuoTz6dwWkArbQVO7QhkCjLRgf1kWpMsl251t+kmCFAGeFHSjDlrVZNmCSNZ4dYpXF5SzBTLQCAnjTkwYRoxH/bb9UPshdQWL2ZKrq6m9P2Hg9kirdWnbSSVlUVLXFTKMqZXmD/7kTwh8n9/9/d/nF779bf7pf/Vf8uUvf5nXX3+dorQsP/xmrxJNgvQCc0Qb80LMIBDX4oX1H59bj906c62lbbPStfnCBhBx8xvsGGr/6gr5L7JbnIh+U5Rx2op2fXWX5aKAFhSyYhdoFy8hnne0W8fxTeG4uZYWXGniKfeHzSOY9ndroGVzH/8ZsM1L7gnXpRT+f3q8/B3/qja1JmfVm2DbRrHiZz02Afnn//Lic19ymht/bMkITcfMc+OyYWc1kgc/7+PnBp6GgwFaawb9HmdnpyznUzxpk9SyKKzeBxCFIXfu3CFOYsbjbfb3Dzg6OiIIbaA0mU4xwP7RAZ1OFwH0uh0O9g8Y9PtorZlMppaGF8X0e31+5Tu/wuXFOQ/vP6STxHS6HYa9PoHwUGVFaSDzVkgBd+/eZXJ1xenJM4QMnJiqjQy9wPYnKw1VrUiznMVyRTKbIf0QgWA8HlCX24yGAwa9Hgf7h9y5eQeMJM9K6hLCJER6kqrKEcZw5+YN8sWS5WLCo/sl56cn3Lpzh5ETW/eMQZUFqBqtlWU7hBFVBbUQhHEXjWA2fWqD8l7SBvR5WTFbLHj44DFXVxMuL56xmM/Y2dlFSsnkcsZykVJXir2dfW7fukkn7mCUY/SUJdkqpS5LAs+S36VR+MJuAqFnLLshTtxiI1pBOM9g3SHcz3HcIfADuu5zM0IjkVRVZe12PY9lXthNQVv3jIZlplSNFDYx9FylyzpfOXtG1ihvM+AbBpQQwrJCXLBie699imVKneZ04w47W9vcOLrBNE4IjK0GCa3xg5BKaVulcGwKIQTCtzph3b61li/qCun7xJ0Og9GIWin2trfRSjNbLBj0h2htuLqaID2P0WjM9vYO7371a/R6Pd546y36gwHaAWuBc34sy8JWN9G2ZcsxSNy8plWtaAVl3IKtXMtjs1C6nmlYAysbihsbLJGG0eUWBAfWbeI3ZtOfSjTtlU0L30bbHICrHDa9+XrjHGie5arGm2j9+rGuGlwTDHTH1+1xGhS/2ShenlBvMqXW1WTa5G/dVtO817ofvNmcjLbVMmGcHS9Wd6GmRLk5WmRWl6amxvc9bt99nbosbbA5S/nkswdUeYZWNQjbYpAXKUVVgjRoFGhDmq7aOd/r9+gEVkBysVg4u+2SwLE2MbTCz0YbKwSeZ0xml7b6KQRREiKDPr1ulziOGO6OCf2Q6fSK4kqx0hWr6ZJ0vsITgkGcUAcBUinmXzxrLbKzukLVFV7sIZLAtjN5EhFFSGe77ErGrj1XoUo7zhQaKST9uEskA6pVRp5bB55ysaDOC2RRYKoKNZ1jtCaQEtHrIPpdGPShm9hEW1stNlVryrSk8hR5oJBOAN5z2lIyCqwmwzTHu0oRqxxTGWphHdaobHIvENSmbj/vPMuYTCaoomLc7bMz2mI0GFCuclReEQURxg8wRiEFFFpz/8kTLhdzpqsV29tbvP3mm1YbzjmTtXNxg83QJLCbYKpwAOy1Cl07jDf/vpm+r8Ele/im9XbNeGoYOi9W6Rog1kVJGyCtNlZLbpP1YYMa8JrFwUWI2glqB6bxErBaGngeygG5UrlfScvusK0dVo/MdzbTTRInpefmezPr7ZKh3MrfOCm9UJFza3WjyXZtsm88BALPEyA8yyzWxlWexcY9ckF6Iy4MThTcOA1Asb6PjiHQ6Kutz6pZQEQLiDfDQGLbLhp2pQUb7blblkWEFB5pmjmnSoWsDZ5j3mA8hPCd6LQdA73+kK7WdHuJddf0fJQxpHXOxfyKPC+4mky5mkwpVQUehJF1/KvriidPviBPU9599122t8YIA/kq4/F0jqo1b771FlIIkiQhcsK2m2LsTSGq1opSKeZXV5RFQRgE+IHH1njLsZAaRpFrVUS0N8w48VaFRkvJYDxGCIn0A8q6piwrep0ecRTjO3vtElgVBZdnF+RVYdt0fR9PgPE8am04Ozu3e6cyJFHI9o0Rp6dnFOXEtvB7OO22yImIi9Y1FNbtbs3O0DL9mthDWlZqkiR85zvf4d69e3znO99BK8Xv/d7vMpvNWgCzmf/Nl52jzVxu7uX1sWi3aNvyina6QFKSZinHqsbTGmkMF6dzNFAYQWEMi2c1WkiU51GmOXVZcXl5afWofB+llHVtdqxZ42ij/W6PLcfWDsOApGM11ga9Pp1OQr/XZdjv00mSllmWu1am7a2tdv1pWAlaNcXXrmVFhRFhGNDr9QiCgErXVlC/ruh0O8RJ7AoUmizPqJ3ZTaPtFTkdVsAWh1PbGleUJb7vEfgBURTh+75ldC1WnHxxQp7nLStGG6tjpJVunWBVrGicIm38WLdLY1bklJUtUMZx7GQODGhtRbHDcM3UcRcfOqMFX/rE/YBR0nUaTIFdXzF4xjHf3HZggWg7GLLlgjNVc3F6zGw6JVssqPOMSAqqLOPxg4f0+n16/T5FlpOnGb//e7/HaDxypkCi7aRIV0uePn1KWVX0+wNGI4+t7R1biB8OqWvr0tsfDBgMhvQdYOcFtrC0ygsASqUxnsZrjHOxzCNtBCfOIdZoQRiVlNqQ5TlFVYPO8KXHaDi2zrVhDNpwdXFJEFoWo2pAQGNl/BsVaiNtgUk4QwuEZXgJA0WWsVoumV5NWS5WSM+n1oZFllEU1knYmlBK52ZqNWCNUqjSGoMURUFVVtRBgOcurJQlxhlS+Z6k1+3iywClcExYYXXgjMdqlRJFAZ1OQpalrEpN6pjtohPhSYHRNQiD0hV+6DEI+8wmNVVVWta6lDau8j0qrbj/4D7/6l/8Cx58/jnvfPnLvPvuu+zu7WKEZU/Vbh1Vzf5n1jvdBuS0LsK8sA/aR7O/PYchPPezy7M2niBYF3zcRLSgg3ur9d+dC+dze7JNF68zvTdj/c3iUXM8WBeEX4BShCu3tUVvB6AJcQ1Ua+Mu8+L9aHOEzVY78aJD3OZ6LZ4/RnuJ1+O+nwdmaY977bLWgOHLGLHPv74VEm/Gg3nxXjUf2WYRvgGNrr0P13/evI6maGef9xzS1uaOL3njDQbW866BP+vx87va9Qf4vkfSiRHC8PTJI2yEpKnKAlVXhJEVOLy9f8BoNObW7Tu8+5Wv8vX3vm6BA6NZLJcYYDgesVgu+eCjn9Lr9njl3l3bWqE1V1dX5HnJ3o0j+oM+v/Zrv8b5ySlbwzESG+yOegMC6aGKClPZJD1OEu7du4vRmgf3P0NpQZaXLWDSiIFrswk8LQmimDDu4AcB2+MRvtBsjcfEYcw3vv5Nbt66gzAeeVqiVMGWP0QKnyLLCEOfu3ducH78jNViyunxM9JVThLH9LtWj8gzoIoCLQS1rsDE+L6H0XaRCKMuyIBV+gCtFZ2OQRk7IbOiYDKb8+ff/S73P79PFIAvJbt7+5RlxeXFlCJPUZVif/+At9/6kk0ktEHpmrqoyFZLVFkQeBJf0gJPgacIffB9G3w2VeJGgFLaTBjpAuJe3CEII7qdrkvyrVV6VdiKtic9sjSnLApXDZTEcYJSFVUlbKJvbKVUSonvmTVt1ZgNa+91v6itIEJRKaqqJk9TBt0ekReSLhZUVcmr9+4RbElu3bxFEkWk0wmh51lHnCCkUmpdBXKuTAKPIIroDQZ4QUBRlfhBQKfbYzS2gdbtW7fQSnN5NaHT7aK14fLyijTL+OY3v8mNmzf50pe+RK/fZ7Q1Ji8LJvMZwpOEno9WisKoNqezYrqb6Zdu+5SNE69uqMa6Vjbh9m0w1CS2QohWFHdz57A279I5AQJ6zU1ao9FuITKOVeJ2FNP6QVjgb22/a1sTHUREs7003wVrF4zNheraJmfW9qsNMm6EbUHZzPM2l7TnmvleOF7zSyukvl5c20Sg2VbcC5tNqjkHVddWO6ZJE7VBm5pag3YCpnlmAdS00AxHQ958+01WiwXnJydMppc8efIUD43vSQ4P9/B8nzRPqVUNXtPSVLNKl5RFSRDYVptRr0dZVpydn1HVFWVVMBqMSKLYCs1rTVValkGVKfI8YzK54ubBAXdu3CBKIuIg4ebBEZ1Oh3jcR+UVk6cXnM9nPL48w8NHYCuWg6RLFvjUSjN7/IyyKGxVuRNBLybo9vCT2FrgCInnRbY1yOlm2CBGg1LWGc3dSC8IGSZdMIZykbJaLJjPZ6g6Q6uKeJkj8pz88TEyCOkcHeAPBwS3Dql8H+V7+NLHV1Apg9agixLjCVTgITRIjXUkQRB2Y8LaML5/hVyWyLRACUklpW1fqmqIApCSurb7gSckWZZxfHJCt9Nhqzdgd7TNaDAkW64wBpJegvAERmqquqKoCu5/8YT6fsnJ+Tn7e7vcvXWboNfD22inkNK77szYBD7Pb/QbY3sdp22MbfGSOdPMMNMAVBvAk9EOMWkCl+sTw8YBkoZx0QQEGrv/XgOeZDMHpNNFao5kgR6/aYUwChH44HuW7WKslpwUWDcwcD/bYoknPAc82aNJ13rUzP8G3LKV0zUDFsSGNohbr5ogzWgXhK7vldk4Y6uLBHXt2kGdJl1TubXBqbZCsO2xzboS2y6l9jPUjX4BogVW1gYx9p1lA7O4D0Hrqm3DAa6BtmEYk0SSq8kVRVlQFFZ6WVC3WnHgIYVNhEAz6FuXssGwY9utCuvilZcFT06ecnFxxXQ2Y7FYUuka4XuEkXWkyvOMx48f8eD+53z5S2+ztTUGbchWGc+ePUMKjzIvkELS7XYB607n+/61ldfzPExdU2nN2eUlFxcX9HpdkiQm7vWIvWbPsWuXdPubJ23BQiknao21bR+MxvYWK0Ndr6jLnH63hyclRtv2/BLDqig4Pz2zbIAwwI9CPN+381trzk7PHbDeYdjrcfPGTZarnIurmRNE9uh2OrbwpQxIWuBpM76QTTV5M/FxWkVBGNDpdPi1X/s18jznW9/8JqenJ/yLf/H/YjqdXAOdlNJt3PT8owGamv97jQGD0WsDFCzwtEiXzGYlSWTF3CeTqRVdjhKysuL4YuLYu7JN5qTvreeQMdRKEbhWuUYrc39vj+2dbd56+23LpN0Z0+l22N3eYTDoMx4N2d/bZTQYUNUlZVny+PFDALa2ttr7VlUWLCzdHiWdIDW49mMpLYOvsu6DVV3S6XVt4aXTRSvFfD6nLCvSLG81y6y7qofn2ULms9MTa2AzmxFHMZ2kS+jA0cnlhNlsxpNHT5jP51YfMY4ZjUZ0Ol2SpEO2SKmqCt03LXOlqiqWy6WNcz1JmtmWreGoTxiGxFFk76pRIGynRlkU1KVuTRUi1yLvez5xGDHq9/Fdq6gIfKTvMQpDfCFIi5yqrknzjMVyyeXlJav5jMXVJWcnxyzmc7LFnLosicKQ2gFPN27dZDgYkKcpaZrxH37nd2zL3c2bdDodxuMRs9mU09MTzs/PKcuSvb19+v0Bb7zxBsPhkKOjGxRlxdVkyv7+AYeHR4xGI6I45nIyIS9y5suVG7NWF9FTGmEkUhqkJ9EGnp2eWZmSqEMYRWS1lVPRSlPrEl9Ijg4OicOITpQgNFxdnFst3sHAsZWlddgW0jK7bcXCzjcrzgcCfE8gjSBfpSznCyZXtnVYSo9aaco0RVclxrmT2/3GGr4k3YQqL8nyirIFnkrqMLAbijSUpsRoy/b1XQukqq3WrXGmRp60zLjlcoXRMZ0kJEszJrOcNM0pKkXk27hc1QojDbWu6MQhvaRnu2TMWt4jiKyhkjKaz+9/zo//8gd88fABXzx4wM2jI27euNGCREKAMlaCpIkb2vCh2T+bjfRnPYQr5jZir9da7037nCbq2FSXbOJ53Hs2rZGiWRzdIb1WQ6qJa5pOCvdZ0rCH10DIZmFnE+BokqFGD2zzBBuDT9o/tcHVS1CfhlnaPOV6HtOsyn8V4NPkE5t/3/ijfXfPntjzXRbPH+vlj5ed989+XMtrmujkBcSp+S427vXmdW4+aSN2eu4+bD6rwdjQa63Cl5MKmmsSoG1XyYsn+PLHzw08zZ1lqdI1VaUIwoT9/T22xlv8+Mc/ZrFM+Ud/93/LYDDk8uycJO4w6m6jtcfZdM5qtaKqK15/41WiMOTxk6fkRcH2zh7jrR16/TGPnzzh5PSUIIjwgwilrYCtMdAbDvja+19vKxdxHLU2vgbIy5ra5IjJlMFwwHd++ZeolW1HsvorVoAXYLw1oK4qijy3woBRRFXVKK0Jw4Tt3S7/9L/+P2K0wfNsj/vlbGKrPNrgBbZCU9UlRVny008fEMVd/k//7J/zvR98n+99/wd8+OGP+Ozzj/k7f+/vMewOWJUF2lir6q7w8GLTWvpGsY/nSTpxh6IomMymCCnY3t3iyRdP+O6f/QVnx8+oy4x33v4K3U5COlsyn0+ZXB2zPe4xeuWImzf3GI67FLkVfgyCCBnAZHpFEMW88cbb/Nlf/AUffPQpW+Ntkjhx/cl2ValVRZZnCCcuORpbJz+BBUPSNKPb6fHW21+mrmuyLLWAh4LP73/C5OqC+WKGUprAS/A8j88++xzfF9aNUEgkFnwzxthAUljSsOdcUqy47XrBqkobzBVFam3p773C9u42hzcO+finE07PT7maXADw/i/+IhdnZ/zxH/zPlEqx1DUXiwXi9Ipbi4J+XyM8ENJDhr7d9GqPJOyyPd7jq1+LeOXeq3zx5DEnx8ds7x/g+z5Hd+6SdKyG2KuvvsrNWzc5ODyk2+3hhyFlrZktVtS6tlhsIwYuG8R/EyAyG5NTbNiQusq6ce5dXtNm8pzgH1jxWrsLWXAA0y6M2vWaC9ksIw7pN40IrgtW11i+A2Q2UHyz3hwaN7EmIdtkD0nHwtEbgI89P8eScmfQVL0F6/uxFjRvQfONxHxD+4vnpcjdVSlLv167ITobYbXWEbDZoVsUjbGtYg6JahZfK7SvEb5H4EtWsysmp48ppzl1qairEiYzHpY5YWdIf7iH6km0iDh9/DFltiBKenR6fZKtPkVWMJ3nGFNjdAU6A2OIIqs94eEC89IGcKY2LGcz8uXSspmkJE9nCM9nZ/cQpWtGox4721ts7Y5pTNyvLmecn12x+iijKgpWl1OrT7XM6O/s0BmOKLSkqCvmHz+lck5Lxvfw93YgChFRgAgCMD5RENsASQuEEehKoYymUjWNda5RNkCMOx18g9WcqmryVUqVLZDFHHU1hzTH6j57hK/cw+91iY8OkEmM7CT4QQC+hxQ2kZSha91wxBqkZSQ2lSxhDONpQZLVbF8WeGVNgaFWNZUToBYCTFU30ClVXXE1m1sR3Lykv7XD4f4BAliulhhHAc/zzCEKGi3s3A2CCF94fPHwMZen53z6zlc4Otjn9o0bVKZmVeUWCDES0UxOp/mAE+SWDnRQxrGBjJ3TNGPdzRma4OqFStH1QEMK1nOs0bJyQE3jGLSuMto2DO2CDmOkBVaVcuCFZdpZLSHRzncjhQOw7ftJr5l7DvjRgob07nme0+Rw87GZwMKgtGjbjuwJrdcmKdx9k2sdCHvOGy0Ybp2gWSqbAKxliljwr9KqDayaJNyTga0tmHURwxhahpfArZ9CtOfV6Pxsog9Ng18rrO5ur3TnJrEip+soDULh2co19n3V+mDN4kcSxVRFxf1Hj0BIjvb2mS0WnJ9ftNexPR5b3bTABu/qqQM4lKIsc/Ii5fGjR1ycnzMcjQl8n6+88y55lnF2eub2fg9jfPDg2fkJXhwQDztsyz1M4BH1u3z2+BHRoMev/O2/yWI6pUgzfM+jyPL2vhUahBcw6PXIHBP49OKM8rykOx7TH/RtIUpZ92LfJeWeA6RUaVsplWsPT3XmEjyJ9AX9Xpcw8Fu2ibA5IoNOhzfeeI20LFgWBZ999innFxfcu3uPXq/HaGcbXStm0xnF6SnTPGNyeUVeFCSdnnXh8z3H4NAInGB2raiVQTZjRzS6j/Z74AfsbG3z9ptvcXR4SL/fww88dyM0ni8Zb23R6w3AuY1q07AWnW08pp0X6yG+hkt1m7BZ5NoIQ1rmHJ+fEUiPUEiqyoJ4WgYY4ZNmOVWtSAJ//Z6ucOm5haJSNUmScO/em7aV6vU36Pe79Ho9Dg4OrAbq0SF+EJKXNQLjrt1QVAWn52dcTa5YrSxok2WpncMysEW0sqDWCqU1WZqh6prBYGjXEWN11sqyQkrPsdolYZCgtaCqNHleI4QgDDt4ssYTPnlekK5WlqVloNY23pdCEiV9bg62iSPr0tfs1/ekT1mU3Lv7mt0DqrLV9mnLTk2+5IC3Rteurq3GaVVVbs0yBIEFW1fL5TV9xU7ctew+33eMQ0kQRtbx1LH7GpbaKk1ZzCfkec7D+ZyqtMY3VW1j6izNWMznlFVlWceZZX1pYxCO0YOURJ2Q2XLBx59+4gS5Nb1eHww8uP8Zvh/QHwxakfjhaIv9gxscHR3S6/fo9foknQ7d4YiOge5gRBzHGGA2XyAWS+dWW1OkVot3NBxYjS0nTl5VFYvFwt6rssbzPDpJByGEe411GZxPr1Blyc0bB5SlbTPUueby8hIhBcPh0OoDaU1tSjCsiwCVcF0S0jI6tGZne0wUhvzPv/97fH7/c7I8RakK6Vkmq9Iu+hGeK8Qakm5i1xotLEva81jkOU8uNaPxmLALwyBESCtAXhQlk+m8DTiFsTmJV1uNMS/LCYKQ4XBEECUIv8OzxSUfPn1GahRxN7ZwjRJ4hAgtKAqFMBXCFGgj8P2oabTFw0MYQVVUGA1RlPDw0RdMZ3NWec6t27d55ytfYTQacXjjgH6vx+7eni2qbbBJTBuxNxHO+rFuHXcL2rpCQhOxX9ONdAuTYPOpLjBp9kkhaB0Onb6WcHuwFus9rzl+89aNjJfd661uXMOOalr2ruUtYIuLLmbfZIXSxDwbx9Za4bFZEKcJqLj2MOaF9kRYS5ioynYqNHlSyz5vIquXvLZ9htlgXbn3NWadEz0PQLXdO5tJDtcBoGuvMG1WxqZUQHueTTzE+ngvCyFNU1Fpc7z1NTQnbaBlKW262Rma4qQddw0ppDGR8KS3Tgs3r/f/38BTmmcW6TSW/mp1m8YcHB7xkw9/SlUbXnnlDcajMVVa2+CDgLJUTBdLlkvb3x0nHZJuwiJdUdeaXn9Ap9PDDyKyrODicsLu7j5hbFuVlPsgozhiNB5d06hQStE4c9VVha5q0jRjNOixd7RPlpfkRcVilVIrRSexVNVuN3FOHmuBxzRNKasKPwiJOz7v3bhDUZacnZ1RFgVZnlsbVGMo8twG/8IKy11Op+yMRrz//vtMZlPuP7jPg8ePbD+9rqxWgrKC10VZ4Vc1tTbUrnc5NJbaHEURWmlWeWo3+Voxubzi8cOHFFlK6Hvs7u7Q6/a4qA1VmeH7guGww82bB4zGfeIkoKpzdG3wQ6uZkuUZYZKws7tHrQzPjk+pa+gkXfIidS0/1pZ4la0Iw9i6xmnNoK6R+Kha8fTJM7q9HqPxDnVdsVouqSpDVWoePnjIdHpBWeVgIPSHti+7zgkjn7gTELiqR5qnaKOcnatAaUEQWCFl3xP4TcVYQ5o6m+l6hcBYd7hOQsc5G2Z5ysVqhe/7fPWrX6Pb7/O9v/xL8rrCLGcUSrPMCqpSYSpjURwPCCQSH0/YpLvb6THo9Kh3dzk8OkJrxXh7myiK6XZthbfX6/LmW2/y2uuvEyUJQnrMFwsbiBXFGvm/thKsK+Y0i3ezIAjYwNjbKqgQTrepWS02HpsidNcE956br21RoF3Y1m0BTSh+raWufQO7AK3ZQ83xNhZ5msW0yanMS89h85ibV7IJicnnVss1+GTW9829r9l4rTEbFHjZ9JdvJMq6ERi2wITRGiXtnBXGt+CTS0h1bYN/4RmqfEW2vELlBlNpVFZS5DmXdcZw7ybd0Q3CoEMUW0B7uViyWhXgJwQipEJT1J4V+1SaMluh65LRsI/RIUVYUDvBequ/AUVRkKsaQRc/8FB1SSAFnU4HhCGOfWukkEToGlRtuFrMSNOMy0vb/pLNl5SlIstqvGSA1zVUjk2Un8+ohMb0Y2QU4vW6EAQI3ybpIPBkaAM8p0einVtOraqW2UptRTO9WCOVRpUlZVGSr1JMkUKZIpYrxDJHEyJjD39nG3/Yx9/fQUibjNhWGA+FFdqXngWePLlm0VnHGxttCKXprSo6y4pOWmNqRSYMtbH3sWkcNbX79CWoqmYxn6PqGmEgDiOGvT55aav5ntNM01XpAheFCTxM6NtN1RdMribM5YyLs3N6SUxw944dS3UDYJrNyW7fW+DAIDfGjbEBsZvfTXy3OeLb/vnGVOHajNwY0y0S4/7LmhsomiBIrN9cNCckmlcbZ6ZgwXzPkzS+bODEucWafdR6cWsL/gndiC+5t3FycpsBlItUwbFgYB3orJmIhoYpdD0gdgcTFoJpjtsCURvz2wDK2Yg3QahAtuumkTh3Rn0N1JZSbH5c67NrES4Lym8ynTbDtc1i65oT5VrIW2dDW/1TmPazaK4l9ENCP2A6nYKAvfGY1WrFyekpdW11gowyDPsDpC9QRrPMMzC2Hausc/JixbOTE87PzokT63J54+gGy8WC42fHGAy+58xBtGXRXEyu8JOQntenUhrfDzifXrF3dMDtO7c4e/aM+WSClNIC1MZCjJW27KA49OkkCZ1el/xpyXy5YJVnBHFkWc1aU9U1ptFQxAKgStX2c3BrSuVam3zfJwwCotAn8DznFmjvs1aKOAzZ3d1mtlphlktWiwWnz56xv7tHksR0ul2qsuTy4oJiVbMocqo0Q5UlfmBdbxv3QpusWkFysKCoEQYpGuaTG/HCMry63S77+/sMBwPiOMLzZduW6XmSwWBoZSLEpnnJxl7fjGHRjA83aDTX9uCN3ZOyrpkvl3TCCIKIqrbAWBBaAf2yrC2g6PSqLIvMOlM1CacCoiDg8GCfu3fv8v7777Gzs8P2zpYtInY6FgxAcHE5s25xRUpRZORZbjUPtWYxXznnP8+2GHsZdV2SpinaGXFk6QpVK8IoIlAB0kBdWZfGIAyJkrhdIFStUEIjRW21g5zjoZQeyoEwhRPGzqsSISXjwZggiCxLJwyJ49DKZtQKzw9cscEC/GEUUBQFi8WCsiqp6pIwtnIYdZaja01VK7tmCrvfZnlmxcpdIlrXNWeYNq9IooRBt0+n07FxaWDZWIHTiirLsm2Lz13svFzMWSwWnB0fk6cZWZ5akCnPKfKCLE2dS1/VRn2hMxRptHD8MCAvCuaLOVFonaE9z+4dl5fnCOGR5blrFfUYb+2wu7fHwdERvV4XpQ1hGOGHIZ7nkbhxCva6lbLvU9eKqigRUUgUWSa+EVArO6azLKMsC6T0LBNJ2HMsi5IoEgTSo8gz8jRltVpR1xW1qtBGsVqtGA6HeEI6Vp9G1Q6K8X07LrQGz7JUG5C7E8XEccSzp095/OiRW4dsy7TWVg4Bp/3VmG8Hvu803OziLD1JUSuUyliVJbnS9F0rm3VCVSyzot22g0YvUEvXfaBIjMD3Q/ACKi2YpAVfTKaUaPwosN0CBoRpTEcMlajJRYkxTkdWNWwhq2mktEIAfhAwmUw4v7wkK0u2d3bIy5KDg33qKmd/b5e9rRHCCxBewGZUvW5jcuCIWO+cawHy5/KF55EOYJ1x0IIRFtlxRTzZxPb2L3qzEOzim3ZX3Di8gFbkvY1ixLolr2U6eU3E4VbAjRjgeQBFs34/IyyYJI3GaOn2/Y019drJrP+2/tW6mKm1rXLKdt/5WXdNtIfbCBGu62ddC+jEC7/f1CzefOYLDCmxEf81MYuL366dYfO5m+fOVFy/HzYctIuegTW45w7exmVN3AhtXEYDNjbgVJNHuXh2LRi2bq00rXnAf/7xcwNP58cnpGnKkyePAXszn0QRRZ5z48YRt27d4sGj+zx6LHnw+QMW8wXn5+e8+c47fOXrX+fV117h8OiQx0+szsjJyRm9fo+33nqbVZrz0ScfUdQlu3u79Pu2TzxNMwRWpLwqa1bLVcuuaDaNIAgQUhAGkQOgFJdXMybTGVFonRfiTg8DnJ2e2Q1V4GxIVfs1Gm/RG42JE1vRKKoKLQxbu9s2pDVWy6quyrYPNohCirJgeXmOUhWqzLl97y7/5//uv+Xjjz/m4vKSqq44Pj5mvL2HMVY4uMoL8tWKIAiIPB9TlQhhuHnriLKquJhOKPKcH/zwL3nw4D7Ty0v+yf/+H/PGm2/wB3/8Rzw7PqHIM3pbW/zdt/5XjEcDdre3QNWspktb5Tcaz4/xQ0MQxfh+iABmF5c8+vQznj145GyALdMrzzN2dnd5//33eeOtt/jqV7+KH4b4gc/2eIu6rPmtf/9bHJ+c8Bv/6l/Q63U43N8lz2uKvOLy8oQsW1Ir2zdeeblNvMscP/TIltYtQiApygxjNFESYzRkWUlDJ+wkEXFsN3etNMfPTomjkG//wvsc7u8zHg6YTSZ87+KSfr/HN77xDRsw+j7bOzvcvXeXe6+8wuX5GU8e3WcymTFfLOn0exjPik16gU/USQjCiFt379LrdkFYl6QwDPmv/uv/hrIo8T2rcyMkeEFAGId4QcDKKBarhZ3YUiJ82fbGe57fOn7htGD0cwvMtb5n90+TWPFXzN01GGOuPalZrK7pSKzfjZ91xHWyuPHsFxbhF3+/bjEAhK38SemqMEK0clXGlQGuLbzGas2YpvrhSXf9642n2WDXIBRN5ubW4bXw4bqH21lTa7Ox8NrNqN0A9EaabQxlbQUvla6pihryFFnlJGiUZ9sItm4cUVeG05MZ2RdPOT55xs27d7l3dIP+V3+BZZbxyccfo4+vOEojkmGX/bfeZnI15/Jixuz8PsV0RTcaEPsBUlvtNE94BIl1PJzNZyzTBfNaEuBxePttfM9jNV+hKkWVV8zPUx7LYy7OL1iuVgRJnzBK2L9zh7EfEOIxnS84PrtglSvmn59QJaB8IOngR5Jod9A6a0plLGtYerZ9JVe2ty2QaKEpTY3CfvkSPAM1NihfXBVIIDICUSuirKLKU8o8xU9ixOGA+OgQL0kwSQKBT1GW1lEntCxVpRRK2M86LEuQAuW5qlBt2Vl1VTNY1nRyzfisIioUeVHaJFevk3TVfKbatpJly5SiKMmWK8ZbY+7cvUsYRuRViTEaaaBSlWV0mQppINZgKgG5sACUgNlyiSdxQIogF5YV5SOpPUEphdNBEg7AczR5wNNgWxcl2giUAd80wZppx27TCtZs/E0hpZkN0gFkSqv1fGgTZekm+gYnUmAZY+2csb+Ow4jA862WVlmDEUSBFRRuqtCtq4xuzsuBPb6tONe6bheWpvXXBFYQ2wsCB/SY9gSb55R1ZZ1JNzR2mjdrXOZqtSF2fj3MWlcjG50GYdkzja5UAzuB63ITtv1Ia9u2s74tloXTMB2Eq8ZuBvHXqPYb69AGHLf+clpS9jNy+l9g2wyFsfplOGKtsmL8g0EfT8DFw8cslkvmx2fUWpOVpWXjaM3h4T46EDw9Pma5XHJ88pQkjjk8PGIrSXhlsMVMfMGiUGwnPbZH2xzeuMliteLZ+SmrlXVbvXnrNoeHh3TixDKrk5ggDF0wK62bVRjaNt+qZrla0R2F1D6UwlAbxarK8aQg8D2Sfpcb3YTA88jSjO2kT4xPYjyMlIRR3DperoqMWiv85t41VVTh2ppLW+ySBuv65duxKMC6ghmN9jSDXodRp0P1zle4s3dAPOgRRJHbk32G22N86REFIY8ePOT04sK6rwUho+GI4XDgQCdJGIbUSuGVFUbXaG2o6xIhBJEXIIQkcKBVb9BH+h61qi37JekghGQwGPHrv/7rBEHA7/7uf2zXMrBto57n23XAgfXGjTMpvZZdboeaaRMxKUBqAzgwoFq3EpWuoCUwbYuLLz3r8uvZpNuTHkJKgjgiimOEUsRhwOHeHuPtLUZbY87OT3n0eOnWF5AywBiNUhV5npNmq3atCPwQITxUrcmynNOzcycEnhHHHaI4RtUWCDs/uURgqEp7nOlkiu/7BFGI9UWxFvOe7xH3bMdBVRTMZzNOjo+tC10YcOvOHfqDAYm2bV693gCJIHPMoKqskJ50Dpd2LKWpPWc/89rkOI5jurJDk1GLQYzW2uYSjtHWxE9NMa5hS/UHfcqyZLFcUlcVaZExOZu2vyvLwoJWWc7Tp0/d/y24VFcbxfDSFjN8B9xrl8wHoQciwJPStvwam34bl8CpWlOuasIwYjgc8Kt//Vd59dVXePjwIRcXFxwfP0MIw3DQA6w2otGKbLUiiSKG/T7T+Zw8T7n/+afEUcJwNKLf7ZP0+k5vVfP40WNWqxWr1dICh74gCAPCKGIwHJF0uvQ6iS2IpStWqxXf+/M/IYpCtrbGdDpWSF7XVkj73//732Q+n/P48SN6vS67uzvs7e3S6SQsFkvyPHeMCdvuKj1JGMSoqiLPa8LAJwx8jk9PqMqC733/e9y/f78VsW70Tj3Pc3pIgqgTWV0/37Mgv7Y6TnG3Q5UXpEXBg6dPmUyvePX2DbpxRBL4KOnR6fWRGKQBXxukto5/UnqEnS5eGFHHMU+uLvn4ew94NplzNV0QRpEFY70Ag6CuLYgXhp4dL6sUz+3njRlCraxjYxyGdjwajR8EeMZweTlhOltwefmvCAKPwIP3vvpV/i//3X/L/q3bHN6+S6mgdqBk82jbmhGO7b8GT5riSLObIVy8TsvlcWCPA71dvGGjKLcYAWYjD9nUxWuO+zzIJaWd61I7AEysnUItwLRm7pg1CvLSxzXtPPc2QlpGm3Sk0gYstljApvHK9biqiaear2Zfl87NfXOfb4ObjXPbLHcLFx8ZJ0HwAiOqyb0cgPS8jMJm58rPunqx8XfZ5FFcB7qef8+XtfitfydfSAGbIqhxBYtW/crdV601wjGXm2NZhpNp107lHL1hzWJs2aY/x+PnBp6WiwXL5ZLz83Nrm9rpsFotieOI8dY2SZIwmU6oq5rLySWrVcoiXZLmGblzeRBSMp9ba9w8z0mShCAMEXnu0PjaJeproUbBWg+iGWgABBsTQsjWTcRo2x5S5aWl5gFh0rGOA1VpF8GybD+0JvFHCrzAdzoAtKKDQRDgCWk3e9+nrgLq0lYEraCgxg8DEIKsLNgd7rC7u0NRVQxGQybTmXVEKguMsVUhVVXUZYnvSSt47TLrxklKSkFRFlxcnFuBx8BaBN+6eQvf96nrmjTP8XzPWcN2SJIORbqiLCtHI9YkBrQyrFYpYRijakUURoyHo1YEE8K2krY12uLWzTvcuXWHe3fvuSBfsLttGU5HhwfkecZyPkVSo7b7GFWDrvGkJvAcbR3wpHGYgsT3BIHXTCqD8W17XegLlDb4nkYrg9IGjIfRNtkyRqFVCVinlV6ngxSSrEiZL5b0uglJbK1xfSeYCLaK1EliQl9yfn7JZDJlOB5bNznherl9nzAK6XatOGStFKEf4Pkeh4eHAGhtq2HaKKTv4QUBeVU47QIbRAZh2MxZt9i6CfOSxWDz0dBHeW7NW1f1N55r1pvGtQpICxyZNXhFs840YBQvXeXWTIPmCeKFhfQ/92hopwjRLmYbb9C+b5trNl8b5+2wqWuQvnj+RZuXsN4H2mplcz3m+jPtGb70YzAYtHM4UvbL/VYKgS8lypSAIQx8q02mDUoVqCJF5Dv4dUESJWgvQsjAVm6XOWGS0Ik75GFBJCSezToxtbLfK8sAQCmE0etqtRaoUlFrgfQipO+hdIbSAqM9qwtT5Uyu5iyXC3ojD2Nsco2MiJIuoZKE/YpqOqdKS3QgMdKCS8KzX4g21aahMyNcS6VFHVBGUyubnKEqMJZ6LOsKobVtL1OaOsuRtcGvFKKukbXG6wXIJMHrd5FJjPFD18LV3HfauWGaMWT78lDGtWDWCl1VUNaEy5o41QRpjVdpSq1Q2lWstEFo21Kmscm9qmuyNKOuawLfJ45iegNrWlFrZd3YcGLARrWAjmqWQy2sHpIA44Fxjn5GWoq5BRbcTRNtvec6VLJRpRIIJxbazrJrY7ShtPMzp55j5j03kJu2swYwaYPEa4sKNBVHz7NzNAgs8KAChe97Totnze5pghxx/RBOKHfNzzTtxG3WPvdezTmYjTmpddOjtnkFz9+1jftiMC9EWs3at7mutGfDtXt67f6Idj1pgsymirex5Lb3rq30blzbtWX62sew0abcjoU18LYOWAWNjp7vh4RhRCeIqLycuigp65o8z5y+hwXhaq2YLebMZzOmkwlFHNPpdOgYg4wiQuHRCSI8x6fzPA8/8IkTyz4qqorBcMju7h51WVlzAKXaZE5ID9+zIHBZFORZRpameDs7BFFE6QR8baVeYrTE9+weOB4M6UUJcRARSJ/ArSh4HtJoqg3WJLIxt3CfkXBbg7GyBdqAVgol14JpjbaHFMK1nvnsbG3hSw/lAdK2eRoprAOv9IlDG8dkWWb1+6RlVvptO/+6Ctx+em3lu2EmNolL46y7TiCanz3PYzAYtIwn7WLOpjoimrWh3ZfWI+HanIIW+HRGYm01Xjm9Ry2sqYoBhLeR9LkxJaXcaHkV+M60JctS0lVKmqYkvQ5lWTKdzZhMJ5Qu9k3iDgBa1xR5zipduXEviKMOnvQsYFrVzBdz6rqiqkrKsiYpXZsahsJu6JRlSVEUrJZLPN8nKIJWJD+IIjzfsv6NgaoomU2nXF5e0UkS6/ybF8RJZaePllRFAQZ0XVP5PqWLzYTb87XW5K4l1H7GG8mgYA0u+xZorlWN0KK9hwhaoKgqK5SqSbOMsixZLpcUecEqXZGuUrIsZTabW0HvNCPLUp48edLOG2M21kYBvrFxRBT67e+kZ1v1mqKZMWvNzKY4Zmh0dWxcMBwO2NvbZTq14FeSJM/FTg6M18ppJYHv+SilWcxn0DfseDt2/XHjSCmrG1kUuQPMbQdHA0gygDAInN6V1YOtipxstaQsPDAKrSp8iQPdYeFyw17PuuYVRW7bH41ybre2LdBec4SnPUDaTosiJ0kiEDHzxYzFYsHl5SWLxYKGgdhGtOtNzrUGStZR38Y8lXaOrLIMdM18tbKdBCa2MZfn4wsIhEDWzq01DK2sSpygPY95nnMxX/DF2QXLonJadTSVjXbPFI69qeoapWonUyJcq7OHwVuz+hshdXchdWVztbOiwBhNni0ZDYYsFiu2iqrVy3s+RWhi6EYLsdnjrscI4vr/rm2RGxu8adZjLEYhbLs9G/HaC61e7SdyHfho91loW7SaN1kDMeL6BV1bH5uN2LFnmvO+9rzNtXxdVP7PPtpiHtdAoba4JDbvbvsu65xrA9jbuKxr9+RnvvX6Llz/w8a9bH/VnEF7vQ3jaPNlL3+/n3Uvrh9/fR1tnNSe5PoMm9ipWdcanKTBKnQ7aESzra+LnT/H4+cGnh48/AytNWHoo7VisZgRxSHCE9y8fZvRcMSPfvIBs9mci8tLbt++w//un/wTdvb32ds/IC9KHjx4aAMsZfVDiqpiOp+CkBwc7fPpp5/zxRdPGI6tDf3R/hGe55NlWXseVtjOVoRME6wYQ+hE/zpJQpqlzKqSZbpivloSxhFRFGFUzWox4yc/+TGdTsLR4QF7+/vs7e3j+SHGKMo8x5OSfmI3ZlXXThxPEiYdRNyhqqo2YYnCmK9+aQulSspyBUJwOZ9z8/Yt7t67x6NHj5jOZnzy8ecYY9vbTF25thKrxeEF0iGKtsL17PEXXF1e8uTJY3q9Lt/89rc4n17x3R/+gE6/x6jY4oc//DF1WfDBX/6Ae/fu8vaX3mJnZ4t+r8vcVah2d29QrDL+43d/m7v3XuGXv5Pwt/7m3+Bv/c2/wXK5pKpqOp0Onquedbs9Dm/cQrkKUKUU2miyvEAKwa//+q/z9OkXZOkVnq/pD0ICP8SXIRcXPbJshZSO1q6tIHkY+euFzQ16P7TUdW0MWmmKUjldgICqKqjqorW6fuPVfZKkx5feegs/CJlfTcgKG+Q8efwF56en3Lh5g063R20gyzIePnxEJ47Y3t7j1dffYjAc4vkedV3z/R/8gLIsGTihyjzPyTIbyOztbuMFXdIstRpCeG4+2kCgqS74wrbpGSkQyiUdnl2olLCUXW8DCGp7aJ/P5thIvl31s0HvMW2adX2/aP7frmZNsHz95yaQuWYJzjpwvfbL9bf/xeCTxiLzgvU6JDY1nV6yFzZBd5OgGWNYlzY2NjfzfOIn2iDSUs3Xr1cu+JdCtotrmwA0e6x0mHytbKtsXaPqirLKiZKETqdHMhgSDUacHH9GkWaoWuILQU/k9AcBO6MtlqtjHv/wCyadm5TxiLe++YtoXfPk448wK8XocsRwfs6d4gu+6KRcCYmfTqmLJWWWYLTCZEsK36ecXLIsNHmlWGQpyhg8PLr9AaP9OwQCZF1jJlPyqytG3R0GQZ848kBrHv3op4TdIfuvvI0Ouwxudgn7l1RLy6KqVImqoc4Ui/MZMokIRwOIAkwSUqGcS1kFZUnxxTNMXmJWGb7ShLVB1hqpDJ1uQhgGbPX7lFnBZx98bINPT9DZ32e0v4/u9jHdhDS1rcndPZvESDyMFBS6xlfgYVwyZUgL27ZQ1GWbofW1T1977M4Uo6VlKSkJVW6F4X2smL5240RgSFcpeZZzeX5BkiS88847BFFI2QqiqtZFUqsKYQyRtPOvkJZ14CvDMs3J6oreK0f0tofonT6qGxEhUUJTARGCSEtqY8WsI+nZee+CFOF5SKURlbbAm2xo3VwLmJrExIJPVni4SazWbIr13LzGaHxurmo29R9ssGBFXa3bjBEw6PdRdU0niuw+XDUaXgYpbaJktdA0tTGWgalMaxvfFCxEY7nt2zWyrCrHKBJOd82urcYYZOMmW1uNF89VIrXWVpzcFQLcZN4Ak+11GCGuz2m3ikkX6Rh3bUKAMqpdV4QQxFG8pv9rqw3VeACvK7AbDNRrYZppmU6y/bvZaA0Qrj1yvd5qDKWq0Qi0dCyrJgiXEi0FUafDf/mP/zGrNOXpxSmffPopv//7f0AYRURRzHwywQjDw/ufs1jMEVqTLhc8fvaE21vbLPcOiDod3njzTZbLJctsRe7A8ziO6XV73L59lxsHhxzs7jG7mrBarfjs8X3KsiQOI7q9Httb2yyuppw+ecrjx4+YzWb80je/xc0bN3j69BlCemzt7BAISYxEKEBpdgdDt78198vuKYGxrDktIPI8KlUjsGOrKKzGpe+5++XGiIdAe1gNOmc64XkhEkMgFNJYtuXNW4cc3jhwzBLFNE1Ji9wymFxlvSwLlssFxmh8v6mC23lS1TWT6dQWjaoaz7P7eaOPWNWupbgoyLOcLM1RzqRAudZoIQRFUfD5559bxosDcaSUrqXwZcLizyUNG3O527UF0SZJ8xDUZUldVBSqxuDE8I3F/3FzWwraAomU0oFTBoTnxiA8On7Gs4szXn/jNV597VVOz89Ypis7Z6WkFyf22morxJymqWUbSkld2UJgnjfaSbYwIFxbFEZb/Swp6CYdF7MIV6j1WvandBpqRWaZVtPLK4SQ1p3OwI2dPRpA4cmn9/nCrIEjaawLYSdJwPcRYUBZVWilSBLr8gh2LYmiyHYPxJFrcVdt0l6omrqumM/nzu0sp6qsjtHl1SXLxZLJ5JIsy7i6uqIsbXG6KYoZB9Zqx1ZrXd8AXwiGcWdtxiOl0+LTz61W9jhF1hRNTBu/1M7xuImYAmlBtzLPuf/Zp2AUg8GAWzdv8PWvf52rqyvHBrLgfJIkxOE2V5eXVGXJnXt3yYuC+5/fZ9gf8u5XvsLp6RnPnh0zn07JUguuBUHAa2+8QVXZjgyzyux+4bk9QCkCz2f74JBhv8/l+RmPHz3i937nT3jjzTd446036PYGNj/55vuEYcjNWzc4Pj7mt37rtzg+OWb3yQ5a2QLf6fkZVVWxv3/g4m7rgjudTv+/lP3Zs2zJdeaJ/dx9DzHHmc+5c15kAokEEiQGkiAJgsVisVisgVVWk6rKykxqPbVkJjP9B60/QO8tqxeZSWbdpqFb1mpZq9WsqVnFAQABEjMykdOdhzNGnJj25O56WO474px7QaJ22s17T5yIHXv7dl++1re+9S22t7bYGo/4zre/w+NHjzgOXQr7/X7YM43M0dVSnonzAgR5YTqpAOxFey5xR8qqbqjqhgdPX9DLM/aHIzp5yqjfo9PJGXS7NJV0uhuMtkjTHNIOJxdT/s03/oTpcsX5YkXe6dDvD4M7qahrafyTZRlpmtLv95mbObaxVMWKqmx44/4b9PsD8JrlUho9ONtcAf673Z4w/tIU6yx1WZKkOf3BkCyUdL7uWDOOfoavHkCEVzO+60nZ+uXtHrj2tL13V0CsTb+j/YqNOANEsmLDuLVJ4Vj5ETWT2iRW8E+0ViToFkS9wq4KgaNznto1aKVJwustUHUNFNssN2uapn09sq+8jazpjXu5PoxXYpZXhcTlO/TP+MCrR1zdPw8mE2Om+Ajb06vXA0vXn0P895r99Zd92QbTW1Coq+eKHQpZ63GK7te67M55H8Z0rdv78xw/N/BU18IA0BuOVqfTYXtrm/F4i+FwhElSUJrGeXSSMtraFqPz8iXj8ZhOtyMZGmPYHY8YDocBuRbgo9ORlqzFaoW1DeZmQp7nKKWC2GEArZpGmEjGtI55pPVLxwlDt9NZl9I0NY1SDPpdbDNkPBxgneX4+KV0dDmQDVCC1DCgVrJO1lq0c2AEpddKHAUDVylqILo5MVhWBpMkjEYjQDEajfAe+r0+na50/0sSIyKrWjpKRQHUUX/A5cUF08kE10hgeH5xwbIo6PUH7KLY3tqmWC5w9ZKqKrm4uCDvZCSJCaKxmrpumM8XPHv6DK0TPrrxIXffuMftO3cYBlZAnncw2pCkGWmak2Y5vq6lg5WSTGbdWIxS0qlvKJtgY5egViLOnuTMZwbbSM22io6DUeSdBFxkPMhg6USBDqUxxgRDrAPbK5H2pwFJTUd9up0+WZbivGK5XLUdU7JU2nRbK9oRi8WS1WrFcrkC68iTlE6vR97toRtxQJpGSgsjvbqu6/bfVVUH8cegHRbhDr2RTfBrWqmsyM1yl7WJ2rDxbZB4pVxNxd+u3x3LwNTG569Tdq6AUP5VYyYA0BV4/OpvFS2Kvn5L3KACA+masfrZYJQ8I6m9ls9FvZpNVku0aeuMlWr3xSuGM2JPIfMi4Nurhn9N6dwYzxD4yZjEZxUEBsNXOufb1uzeExhPst6t9zR4Rju73Lhzj6aoWc3mKJugnSfDgklYOYNNEnSqRKR5OaOuC7QxbO3s0tcaNz3FzC9Iqhk9HFWSUtVgG8vSVyF4NWAVvrRo60lRZMGRcrMFpYVJfk6aJPSMQTlHphI63QE675BSYpuGy9UcpxRFcYmtoFINpinIjOdofwedaFY5LF3D48WFPIOqwmHxrsa5RthOVY22Dds6odPP2d0+IPWajlMh+FN0h33yTs7hzi7L+QKmBWVTUfmGG/ff5Man38IPezR5ykfLKQvvqK3Do9GZkQ3YrzsEuSZsyVZah6dJElqlGboFDGrIGo9pPE1gYsW9zanYMUzssEMyt0VRknc6dHs9YSMqTV1V6wxZtPMBqFTI5y0SbLnGUijHKld0tgaocZ/H8wtUJ+WtxU3pDBqYIs75EATqdg+IgbjQpAPAQaRNe2JHtSsBqV+vlzZ7FNbJ65yNlpkTgiB3ZcMPbKEIhHgZYxfr/JXY2baRA4QSoDWdfwPaCgvqmkPS/loAXwkGnEi6BEHxdaJhLZNpnZOEUWsG1Pp5XPGyNr4j2rhoLzfsk0bjo1JEawqusVqueXEK2Xti0594HXI+GdTXWTt97W8Vx6Y1xFFsNPgCzlE2tnWQVZhrJAlGKfrDPiY1TIsFRhvms0v6bkBqDMo7jEfAF60ZDoci3Du7JO/kJL0Oeb9HmuesLhsq23BxIWyWp8+fs7Ozw/37u8IQamRfK6uKFp1TcQ4qlvMFz58/5/jFS+azGXhhDCdpilbSnTU1hkStHW2zCfpDyOS3pxVQJLABRIDbYXVY/8EOW2eDsLVuAbsmBBoRiFFetY9dGw1G1lpiHD0nQNCwX4F1gVEuQtGt8Ky/tsY25oiw5BXGBdZEGJe4z6ugT9MGLyEhVNc1x8fHTCaTNnO+uT8aE3SNYul3LDeJJbRhfJRSrUahUSLWmpoklM8EMEqroNUjTIy4Xk3wcaVbmwgqKyXscRBPZHd3l9u3b7G9s0On02E4GJCEbqVaa9IAcDd1LZ+1jl6vR5bllCvxgZJkFZiwvq1CqBthB+HBO0UZmBk6MK+sdWhl0UrYpM456f7lBESTUlpaHzsyb22zqTsX2Kt1g3IObww+SUSHtaqC7pGh05F4wiQJaZKEJkFS/qXDc69sQ20bEcuua1arAts00nzi7JzZfMZ0OqEsC6bTaasfG+3w1QkEPiQgjTEt5GqUaAttRpcxRoolRg6/sV/Rgteb9i5WWNR1Q91Yzs7OSLOUGzdukOc5d+7cJs8zPvzww/DenF6vS7/fb1lLs8tLAWONJFrPzs548eIFT588IQnzxMfnGcpluv1+K7oufpF0kJY901GVJYPBkN3dPW7fucNgOBSt3boGlDAljUFrOD4+ZnZ5yeTinOOXLwPY71kul+C9lMeBlANPpzx/IbIhRbHi9PSE8/PzFpwB1TIyogmP5ZZJkoQEhszf1CTtWvSRlOAMCgGp6sZS1k1YbwVKKZIkDWLynqSqMdazmhWcTibM5gvK2hIrJNbscEWik3ANKUmSSslrLDcKz10aU2nu3H4D7z2Hh3ss5gsuLi5EWmE+D2x7s95PwtrudDrC4ts4wna7trERLAhrqU1AX5lRvHqO6y9Ewx0NbQSGroUQrR//lwIc62u4/j2+/Z6Nygi1GTG95tKuo/bxzuLrm6DZFTvsW79+s/wNT6vtFD8bdsL1NW5eQXSBWr3da/d2Pdi7dvz8MMyrJ12fOvgXf8m7N0Lr8Nrrq1deiQ034sfr53j1c5vfFdfk1QD0Z5X9ve74uYEnjxgZnRgZDAu379zhi7/4Je7eu0+Wdzh8/AylUy6mS7K8T6c34oMP3uMnP/4hv//3f5837t/j8vKSJE35yle+gkmlBXls332wv0/TWD744AOKouCLX/gSW1tbZFnGxcUFZ2dnoZ66XhtQ51oRySRJ2raoW6MBq6KgqmvK1YpqteLenVu4m4cMuyk//elP+YM/+AM0cHh4QK8/wGR5eGCO5XJObDsdkVZhBsmGr4yAT3VTM7mYhPIMR55l5GlKUdU0znFweMTe3gHdbh/vIcuy4EgrqZP3DpOkKCW171mS8YXPfZ5iseDRJw8k+FDw9OVLsqzDP/j7/4Bet0uxKJlNzrk4eUpZlTx8+IDGVhTFkqOjG+RZzmQy4fnzl3z/+z/ko48f8tEnD/mH//Sf8Ol3P0dnOGw3GYDEZNSN5fnpsRhws9YdsXUtc18bsm6Pr/7yVzm7eMbjpz8hz3KyNMdoj7e1oJ4qgCjKgAWlEjQJMURsArU0ovZapXhrhemkFXlqQo20ZzTaodcdohA22OnpGY0TLYztrZEAeniKomQxuaQoKopVzXK+4uT4hOcvj+kP+qSZtP2ezedoraXdat2gVNVm32ezjgRgG8ZUa0OapOGeHM7IptYERzJPcrGDzgankhYJboMONgxWMPKbZiEuagma/Ktd7NhY/JsGMBjuvwoJV9etZmu/rxqoqJOwyS54nbZT/Gzw7cMfKXt6tVAwfo62flyxLkmMnWjiPSsl4r6Rjh52rNaYeuL8WjMMnHctCGwF/o2jKdflxUA2VgCmFBGnrAuH9R6nDKX1UNXc/9y7dAbbzL78ktlkwrf++DtUiwWdasVlaXlw3nDzrfvs37nF8fe+S3n6jMesGGzt8pUv/yacPGXxrX9N5pZ03JJBOiJJejxfNqwqx9m0IEsTDrbH4B22ruhqRW6gl+X4piF5eUbBKT99/pBBb8DdvSO65GyZDuOdHbp5gr14TLWYUdTnVKsFi0nG7PKS05fH3L5xyOHBHl/9pa9wcOsmq47h5HLK//dP/pDZcsn8/ALnLd5ZXLHC1zV2uaSXZXz5F36R+7fu8De++hv0kpx+kpPlHZIspzPskXU63Ll9l/PzC/5v/4//OyezCc8uz/n6136D3/z6b6LKhrKo+D9/69/z07OXfOf0KTaz9LaG0sWnbEJJkaeuKnCOLikmTcl3RpAayDP2ny7YP1uQVzVYy8pVND50r9OKRoNr/DoIsp7J2QVlVfHmZ9+m1+/TGEVTVxSLBUlqSNNEGjrgMS50yHEy72tbY+sGW1ZMjvosd/rcuLdP0+vw37//59x9vsPtzpij7R3uHB6yrEqquiTPMhIdy0ikvFh70LXMSKeFAakJWFcEK1rHUdavt1fp31ccpo31DDFwveq0tdoxAcRxgcVU1ZXQ1gObIUkSAQbyHJ+leCfgeyw7uWIvWH93q1uHbwFm7z3Fsmyv0ycJSplwbTFJJYGCB+mQiOyhSmtUzJhh233DRLsUIJ62JJkA8G2AB+34sQ6mIogXlvzaXsV27woStQ7AWrhQAazZkptBp2r/bNDOfchkKkfUURB7BF5rqrpkcnnZBrJpAAkG3R5ZktBLDCpP6PZ7OG95/vwZB/v7dNKEjjKMspyt3oBB1uEzb3+auqk5Pjtlb3eHmzeO2pbdOQ3NYsEnH3/M8ctj/uiP/5ivfPkr/MI7X6AuK05PTzk9PWW5WpJ3e+R0pewkSBO8fPGC7377Ozx/8UxKtOYLjEnY39/HKMWw0yPqsXsvFT0WEfaP7ZMjlKiRxJtGkSmF15JkBEiCtlaDSCEUlQv6ctJkwHrQ1mK9R2npkqadrAWnFZUXW91JRPLgoNPBOsfOzjYvj4/55JNPUAa2drbIsrRNNEhjCVqGgrAIG9LUkCRGEmAeVJLiG2GN6QBqNNYyWwiLPU2lAcJyueR73/seH3/8saz3yAT0DRbo9DooJSwHvG9FmevaEstqtRFm4GJRoBR0swzT7dLt99o9eTAc0Ol2Obp1k+FwyBtvvNF2j8vzDr1OjyRPMVnCzs4OWZZSFrIWs0wkBPb29qhDOc9iPqepakm0KpjMpjSNAJLScW3Ondt32d3dZT5dUJYl0+m0TeiWVcFsdsliVbBcllSV+E+z2QznLGmqQ9nevN3Di6Kgrus2uMvypJWKiELznaxDJ+uglUEnhjxPUUBVlDhnWc5nWK9oPJyennI5u2S1kmdy48YNYc9UZWBfJiJUXpa4plkLsIcSTNs0VEUZ1r3jcjajWK3a5KNzwsjshqDfO9cyaSIYGgFEaYTqsF5KutM0paoqadyAzCnn1wy41h7FP2FclVn7YXmWMhwOWa5WLBYL3n//fX76wQe89dab3Lx5k3/+L/4FT58+5U//9Bv0un329/a5c/s2N27c4IMPP2I2m7NYLcnynPF4zGKx4A/+4A949vQpT5885Wu//uvcu3ePFy9e0NQVJ6fH9PoD7t57g8VyycV0gk4zageXiyXFasXpy5ckScL9N+5y5+49fuPrX+fJ08c8ffqk7Xz3wU9/yuXllPPzs3Z8iuWC5XytKbZ3cMBoPKLf69E0Dednpzx58oQf/OAHbG9vsbU15sWz58xns1Amm0lSI2iB1k2Nw9PNMtFc63XQWrFcyHzrdbptYK2dR1lPkocOpzrFeUPRWIqq5vx8wmDYY7w9EtBWa04W0qH3yZOXzFcFy2WBMinDTg+faPEZtAji9wbDEHNG8FdYuy6UM3oP08spnW6Hv/t3/hY3btzgxo2bfPLJx3zjG9/gP/7H/8i3v/NtqqoQgoVRLRCbJIkI6nc6USJW2CYt8iPzxWyy/cO+vW6mwMY+eR1LiABq8JODNIpeb3JX9lyJP1Vr/19JhIeukcpsxDUbvkubUG6beqhQYhzBxI2yufBzWxKP+HrrDtgbjKbrdxQ+F8HSWFYeQUFC11RrLajQAXFDZkDOczVpFYXHI9tn7S+8/oj7/5Uwqx2414OC6tpPfuOVtrWJ0m1ceaWs8TVnja9rpV+90o23+gjOXf+gj48pxFxy422SRIWGEfK6ZlO56nXMuJ91/NzA03hrF2sbFssVhzducP/+m7zzzud441Nvsr9/iDEJw8GA+WxOkkib1AcPHrCYz+n1e6xWK85OT+n2uvS6XSKjwVkvpSde0e32Odg/bLN0nW4Hk0hr1k5HOlxEiiZA09RtIJ4kCWmahIyXxlopHUgSadcJnnJVYV1DkmTs7x/yS7/0K/T7Qx49fMx4a5tOt0ev15Xa4ZjJ9YJCG23IspyUVGryo/6TVnR6PdGPKleURUVdNXQ7uZT/qRLlIcs77SK01klduROH2wSRuiQsTOc9VV0zn8/Z2d1lZ2cXG1obPnv2jG6ny41bNxkOutj6kunUsVjMUEBqYkethMFozHBVkvW6pN0OJstw3lOsCiQTqQIF3qFV0WpDaC1ZtGhnfGPDzFxh67IFXYRhptBtd6O18ZD/QgeKkOFUMXBhDWoJRS8aj6AEoUASbSIan6W5ZMuThO2dHdI8I+vk7O/tMhz0pYTBeazXeC/BlQ+AnUKycLYoUXj6vT5JItnFKKquglZCLB8JqtmtgH2bENXr9qKxVl+FxRoDv8j48W0WoTX1mz+0CxXW+LHimgDdtbTDJvjkWQPhMaCKgVj48GvPI+DNa17bMGrtNcWbY50J9u1n1k4U/pr2y8bRbkTtZYVZch1Bu/rPFjTy7Uvyrzg/UAIyeR/LDNa3HHkl8fPyug+bq0IhDk3VVFhvccaR+BStDM+fv+QnP/4py4szlvM5xxdTlId854jMG7atobd7SNrfYffOW2SjPU4mE4rLFY8+eI+8XtHZ3Wc5O6ecVlRVSeMbrA0d5GxJQ8V04VAqtJfXFq08270OWdKhm+xRolhWtWgPdDJUUeJWlzQqo0w0l+enYgvrCqfBVJdsDVJ2t97g8GCfne1tUA3z+YS6UFTTCf7kjK6zjPKMLO2SJSkMGpT3bA2HjAZ9vvwL77K7tUVv0CNLMkyak3S6pGlG0s3RacJkfknRlNx/+y0OyoI75ZKbR4e4uiRBkaWaX7n9JjcGW5yv5kxsxWw6a+eYSRNUkpCgUM6TmwyVGJwxmMqRTedk5yuyaYlqHE4rlAXlRPBYnmnQyfCwmC8oikJKlTodYXEmSSvwqYO2lXUikC16D2E9KU/jGpZVSZ0oqlGCHXfJxwOs0VTeY7OEqW/45suHvKMshwcHsk6VFuDS2fX6aAEJ1TJGZW2uM33RpmxM91eO6yVf8bWrNoMWaGltkERHV5w5iZGkvFRYtbTsCa0k0E61RgcHtl3jbDA1nHSIa4GZYKvXelfyt5zfBZBI3hN1ZRQKnQFpur7PKwBbtEGqZdSsrecrrubGT/LZyFgS47RpNYLDFAZDB6fKRVB7Y6g3R31d4Nfy1FoQCiWMJHE2290OIJRaCyvFOwFMrG1wjefp2RlNXZPgyfOcg/0DTJIwn8/Z2toCrZlOLnDW8vDjj2lsw87uFoPBgPt372ESTVFXrBZSMjMajOjlXd7/4Xucn5yymF4ym0w5PzsTEds0oawFtHW2QWlFpyuNNaz3HBwd8ku/8ss8f/Gc2XzG2eySDx4+YHd3lzxNw+csdVNLp+IkIe7izjaA32B/hH3EObGr3pOEvV5p4aclsdg1VTTO0dTS3ME7T6MrEm2gq0i0Io0+QmhtpFFUNnSH0gJoZTqhk2b0Ol0G/T7OWZI0Wc+p9cbYBg5Kib6KbSqs96A0OpTKR12ZNE1x1gl4EjphPn/+nEePHvH+++/z/PmztqRs3RCAdv7HGGU9x9alf1obsizjzTfvMBgMuHF4yHg85ubRjVaXKgvlY+PtLTrdLru7u1LS5pCyskxspjKaXr8n2j6BnZUkCXmW0R/0aRqpECjHJa6x5J2c2jYsbcNyOuXx8xfSwW17l92DQ44ODyi3S5patICECSkVB0WxoqprqlrYMaIXVIQSytCFOrxum4bLy0tWyyV1Kb5uXdftMyjLitpairqirAT49iEZ4L2jLEppVuAajBFmiWsaMmOolcY5y3w6xXvPqiwkmNS6BdoG/T5papidCxNwVQjTqSqrMHs9VVlgm1qSht634snCVlOt/ZLS7PXYrkt3JJBNu6K/lta1fEcjpUpJoq8E4ngoSulqZ4xUT2R5inOO+WJO04TxtFa6CYZruLiYkCQpp6enNE3DZz/7WRKT0Ol02d7ZFgHx0QiPrO2802E83uLiYsInn3zMdDIVva+ezKOLyQWz+ZyPPv6QvNNltlhS1iWL5VISv3lGWRYURSEas41hvlhQloZlojk7O+f45JTp+TnL5YLpdBoaL9VtXCAVKsvgr0pzgk6ekQZw8OGDT5jNZoyHQ2xdc3J8zHK5vFIe1VjXggHO++D3yZiUZdTpFfZlLIuNnbUSk4iAOFCWNdZY8iyVfayxLFYllsv2fMqCaxxFIV20pVOAQiVKdJ2k5R0eJ/pVLqHTkX2sqiqqql53KkZRFBWTiwnf+Maf8KlPfYqjo0MOjw752te+RpZn7O3v8d5773N2fiHzMJbL8poAPt57GMuYjH3dITZvY3985a1qHatd3eza9ymlrlSSta66lx+uxglrgEVKAOMlr+8l+t+io+cEsAhACh5JNmyGRxuxhtuINeOzkuS8v3KbLSMtfFCFstfYoY+N66GNn6LPtgatIMyhzZ9fM85rAOjV3/qNMbv+i/jylVhnwz5c8XJec47XnfYvZY1d+2HNMr/y241LlPUWNQevd6qLzDF5dFcZvz8v2wn+E4Cng6ObrFYrLpdPeePNT/PP//m/ZGtrm+FwRL8rdc7bW9vMZgvSLGOxmPODH/yA0ajH3t4O8/klT5484p3PfZ7BYLB2yGobFrNl0B+yNd7m8OAI51xou61JEkOv3+Pw6IDLy0v0VFNX9dqhVYosdGgRh8HT1A6lE7JUk6YZ3llms4U4Jibjzu17vPXpt/n+D37I977/A/b3DxiORmzvb5NmaSu6CoSWoik9PB0NWokOS5Z1SZSmn6SoxYLFcklRV6IBNRzQyaWDkNGm7ShR1iImulitgpCgIPQGxWDUwyuoXMOylPrnO7fv8ub9N9u69A/e+yl5J+dv/q3fZTHfZjF7TlktaZqSREv2rKlqlNLcuH2TGkVve4tet0d3OMR5WFwuQCc4CK1QG5xQk1Ch9FE63vmAaItVqosa11SUZR3a/coiVka1HZEiSu+jQpJSUsZUNyiCU54G3RE8uFj1EgIXL8bdWvnePO+TZT2ss6RZl5u7+2zv7rJ3sE+WJhijhYJd16BztF4yz+bSetWnJEG8vSwkA3nr1i2yIAheFAWL+YK8k2O6XSk5TBIps/SQpgmwFljTAeBy3kuWo+3A1K7E1tG4kpyPIE30RuMGQgwmeb2VCcfmco42NJoNtfGb1qi0b9w4x4aRfeX8G1mHzS+SU6wDON/eIK+wsv6qQ0HbkXLz82v9q403B3FIFz64LreL9dmSgcJFSXC/Mcbr74v/iEwNbYRR4b3HKceqKVqWRIcuxqR8+NOP+Q//4Y+pFnNp1302ozfaYfdz9+nlA0adAZ1OTpql3Hxnj6osuPjDP2R2ccYPn/wR23vbfOYL73D82PD05BJWC1RVsjfcIVEGbZfUjeW4npIkijxVdFVFR9UcHN5je2vAztFbrHxK8XyBVQ7T8ahiips9oZh7ajxPLpYsq4baWRLtGJYXHB3d483Pf4HxaIteb8DZ5YTj46cAzC4usI+f0O92uXvnDjujLXbGWyhjSJKUt999l539PT7zhbdwznF2coZOEmye4/IMn+V4bWhwPHrxBKU0n/viF4Tybgyr1YLFfEo3zcmSjL/9mV/gYrHgw5dP+Hhywp8fP0WnKUmng8lSsiwlTVK0V6RpB2sUsxTMvKTzYELnoiKd1Lhuiks1ugRtHbVvQlCnUKFL4WQ65fz8nFs3bzMcDun0JLGxKkWvL00TyYI5KZ2x3mKUNJFovKdoGibliqKTs9rvs703YrA9ptaa2jt8t8sFjv/h0Y+YGccvf/pz0lJZaypn8Ur0WVSYhErRsvsIIE/MmLe18nGORofrNc5cO4f92rloJTvj24PdiVmS6BC0DCAZqlA+DN43cYmRJYYsBLqbHWDshj1zQb9EnMSrDrFCAJaAyiO2Mqw35aTcAddqphilRXMuX9+r3gAGQMDBWMKm4uqO98Hm4a/8rXzQ4FMGtcFcioyNTYZ01GtaI2xX3MFwPtpyvPbP5tuCDY+Bsjibom+jEf2dTpqinKMBXF1TNzXvv/cek4sLqrrk8OCAf/j7b5JlKRfTCXsH+6hEc3z8kpOXL/n+d79L4xq293Z46803+dqv/honF6c8ev6Us5NTFrMFb/zqr5GlKRfHpxw/fc78Ysrk9JznT59J59Zep22cUNe1JG+GAxJjqL3l3puf4qtf/SrPXzznfDLh+dkZL6cTfuNrX0NnGZX3FHXF5WJGv9ejn/SCjh40VtgseZK2I+e8F0ayt7gQZGglAEnksUU9x/liSVWWlFUlzEXnpRwIQ5amkOetloQJ+mHL0JkyMwmJ1nRNRj/NGQ+GNLYmyeSzCkK5Wghy3DqI8d5TVoU0RklSlElIE2E6R1agdMBrWCwWrIqCsij48MMP+eCDD/jOd77DcrlsHfPa1et9LSStfBB7Xjvnuv1urRN6vT6//rWvcfv2bX7xC7/A0dERn/nMZ+h0u3Q6nTZBE0v82lm/USkS98i452/kol8JRYLeO0rDsih4OZuxOrvgR+9/yJv33+Te/c9w884dbt+62foxevMkPtiojRrVNtEYPLu4ToogVn5yfMx0MuVyeklZFJycnEnnu8mE2WzGYlUwn8/FfysKmrqhWIk/WhRF+9WDbo9xf0ieZXSzDFsm1JVjGrpGL6IGrFLtM94aDej3Ojx6cMl8Pm9lOgTY8FfuLd6F0eIrVk0dgIeEqJhbB2H0QSeTPS+RcmtvLfl4xHBrq9URXC4LcJ5Bv3ulE5gCJpMps5CcT5KEfr9L3TTMZnMqW9M0NWkqsUxMmJyenrJaFTx48IDBYMiv//qvCcN/seDw6Ii9vT3OLi5Is4zBeESn02F/b5+Liwt+9KMfyrcrzXA44ubNmzx7+YzJ5YS/+O5fYEzCzdvPWz+p2+0wHo8oViJOXxYFtVZcnJ/L3mBrHj9+zKNHj/j4w58yuThnZ2eHNCQT4n3aqma5WLRAbidLGfZ65GnCeVnwo+9/n16vx927d3n67BnPnj1r7bQIiscxX5eMo7XEGQoWyxXeOYYDEflv5TGslHOnOok7AMv5CqUh63aka671lLMVk8tFKBX3aIc0SwUaL919VaIhFYZONP4OT1EUGJPS6w1E5D40x6qqunVal4sVxWrFf/v/+m949913+frXv86t27f59a99jbff+Sxf/dVf5V/9q3/FX/zFX3B+etYCbu1+tpGoWscOtPP8dUcbj23GAbz6ufVvQjwSxr1NgG8QWa6wn9XV2KUtcQvPfR0zCMs0Xks8XHiWeiNRtsng0YJGteBTBJ7W4xE0BAkMnGCKhOm1vkx09ADMFR/KB3D5SlJuA3Rqryf8ceH9Tq1ZT/E7ribuufI7sfvrAGwNFl59m1zW+sMtzHXtOb3yuH9+fKd9+3pXkJ/WzPvXg0/xEy4w2uQ6pOx00yeL9yfl2q9qHP6s4+cGnn7ja7/FbD5n9+NP+PRn3mXv4Cbz+ZzzR0+oyoLVcsH777/H5eUlNw73ODw64he/9GWGgx6DoXTW8Hh2d/fY3t6mKKs2gIijU1c1TVVT1qLN1DgREY7dyrTWjMdjxuMxTaDHikifodvrtowUZYSt4sNY13UjYEJqcLXjcrlou3RYb7l97w6rouRscs755TnaaPqdLlmWiQ6V1iFjFZyIwAqK3fQMmjQx7G7vtBkX74TVtGpWgCdZiBijCVTj6AQ752hWJcpJYGxtzenxC46fv8Q72Nre5v5bb7JaFVRlKVoITcPHH31EUy1FCH0w4OjogJ2dHQajEXVjaRrL8xfPqaqGX/u1X6WqGhGLxDMvliRJRxzAADKJlndErKNnI8iyCb1zEiOC2i7PSYtUwBUdHl5gnrRGwImhKasC76Vle2QDWVdfAQpcYEZpra+ABM45Hj9+SJb3uHHTMBgoeuNt6qZhvliSaDEI0mWuYTKZUqxKirIg1YpOmlA3lqIqWS7mWNtIp5wQLCdpytZ4RH8wYDAY0g1MvOgsNEFHIrY2Nq2qiEd7JRtV6ECT6DXSpBTtOeLkjqj/+iUfskG0WaEw8hsGZ91VR8XPsHY65eeN310xbnKmFuBhI9i9dkSDuwZao+4GtIh+uzGtry1+dvP4WVTLeP/rzEYwZoHjq7Vslptlc9HitlkKFza1YPidty0sptgsn7kauCslGFXTyMAZbWjKkuMnz1FGM9oeovtDBr0OX/+Nr3Jjb4d6NWcxn/E//+Efczlf8cF7f85we4/9m/dZrlKMTjg/fcJqMafb6dO7MSDN79Ib9sm2DjnIegwOj/CXl/hVgVqtULZh52gkGXFtSZKUPM8ZDFL6vYz7b96n3x/y0aMzTs6nPHzwAQ5Pp2NgcQnzOSqGGvmAbNzhrU/dJuukdPoJWbdPNa84K064MKdcLhZY6zjY3efO3iH/+f/yf81gNOLw5hG9Xo9BEO/UWjPc2ibPM4bdDo2tMaOaoqlZVAWN8ijfSODoFSkNzsNschycFulUVJU1PslpTMpZVlI7z+997kv89OIlF+/VzLDMjCfNUzpZhq8acGBN0Ds5maPPC7LTOb6CUnsoS3wZnzE4K5GXSTSL5ZLL8xmNs/SHA7Z2dxgMB+08MMFmNy4KaDthaGKonUU56CKspomqUZ0eydYA200pEkWigiOdCCgzKQs+vjzj3z/8CZ/dOuCt8S7LpqJ2tqW5G+fxWmFTg7YeE0q1I+Nh0xbEda/C/F+zDNd+SmQHru1A9GzW6y6u3+ikgWiFWWdFu8oLw8C6oJHlQXlHoYM4b5ZiQiYfoLGS8TdByNM71+4Vsnc5nI2aikZseOiKaFm3d1ZGrtW0bAiLsxts2WjIQopNAHUd+rSFexckS55/QPOjfoPH0QQ2jnM2lK+Iy6mCUEVT1xiTkHdy0iQlS1MBE9vnEpK7ng1nbG2hos28HoS3zyAmJYJNUigyLXvSxfExP/nJT/j2t79Nt9shS1KOj4/x3vPFL/0ih3v7ZCbh/htv8I//6T+hNxjQG/TZ29qhk2UM93fwHu596j6DXp/TkzOmsynlsuDOrdsM+wO2xxLwfvazn+XGjRt88YtfpD8YUNUle8M9Dm8cMV8uqeuaXqcnWjSJrPk8zTg7OebhRx9xdn7OYrHk3qffYmtnOzAOLCXSwSxPUtF5ck72aqXIdCLj0ITyhaBvhJZn6JXocBF04oI1JsB1GB1KVdIEjMJVUoY7nc1I05RuEKNXWtHPcoxOWoH7tvRTI41qqpJe3qGX5+Rp6DTrHaKOL5eljMHX4lfcvXuH8XDAwyfPWJWVaMd4JUzMUDqlApCRZyl1VfLv//B/5uOPPiKKa8fdUcrqpaDWWdk1szQN+9raD4iO+de//nXeeust/s7f+dv0BwPmiyUvz854+h/+A86LFtJytaQOpVvOOaqqQuQk0tZ3cMGmxSMNbLSmjvpSqtVUle53mjTPUFpRaRW6o25Tec+j58+5XMz54U9+0gZ0nSwhSRP6/X7QlUpoGisaQomcM8+lE3NiUoyJVQCGxGRs7+wzGG5zdEOaRyxXBU3TCNuprihCF7m6qlnMFpRFyfPnT6Xs6/yC2WLOi+OXFJfydxq6cLqqDmVNLjQVCX60l3Fq6pqHDx6QpgnTmeg2KS0gudKp7AXOYRLT2iqUEkan0vTSAcYkJCYlzVLRHgzJg16vS5KmdLsd0jSj2+uxt7fL4cFBuHfNZL7A49nZ2SYxCYkxnJ6c8ujBAz7+6BOqQuKbuqy5bJpWyNsjoHu7lygpA9vZ2iLNMn78wx+RZTlJmlIUJfPFAucI5Ys14CmWKyl1DSVpxhjG4y12dnZ48OBjppNzfvTej7mYTJjPpXOce1S3gXk3SygWl2hlcNYxORN71ZQrnLWUZUFZV2yNR+zv7ZMlKdqoNriWEsqGVbFCX+pQEWF4/OghFxfnvHjxnMvZjDx0oTw5OWG1XIrQf9jHbOj+1oIOWreAgY1rwWhMmpB1pbTV2gaDiFUT5kQSmpf4Ytnuo8orDAlO2j+gtdj5LADjtbU411AVNdo4UuNIjCHRCUmSorUBJzGnDg1yTLvnhOA8JLu0VjhX8+TJE/7L/9N/ydbWNnv7B2xtbTEajfh7f/fv8Tf/xu/wjW/8Kc+fP+fP/uzbXFxc8Cd/+qe884V3+cL2drv/SrDl2/1trUAr4xNjNfzaR35dY5+IDsUuh/Etut1vw4tq7e23TNHWLY9+ObGZYvv+GJdsAiibuItv90y5Bo2Scr+N37dgELQyitGOtuCQUq3Q/+Z9RZu7CTitgRO11qBV6z/xvTp8ZwvMXY+LIujCphzB+vybgNTaV4t+AZtezdWH4v3Gd15/z/rz7fVsPodwf15dfX97xP0nAn2sATdan/Oa00l0u1w7prEDa3yrUuvrkY/pK2P3Vx0/N/D0zjvvcjmbo0yXO3fvs7W9x/n5lBcvTzg/fclsNuXx40c45/j025/hjTfu8OUv/SK9Xpdur8OjJ4+5vLxkPB4xHI2YTC9xzmN00g6Wc1bKvaqKxjasyhUK2i4M3W5XWgr3em0Np78yWD5sMmIIo3NinQgdGiOdlVZlwXK5YDK5IO922TvY4/Hjp8wWcxbzS7z3jAdD6fgWjJ5Sik6nQ5blYeBV2GCllW9iDL3hkCYIX8/nc4qiZhW6+CklDJperxeEywkZBKEVO2tJc0NVFLx8/oLJxQQ8DIYjjm7elMzbasV8NmM+m/Pk8WM0Db1M0e93UewxHI/o9nvY+Yqmbjg7OyfNct5++7NcXEx4+Ogx1nuWZUEXQ2IkE6K1IkkNXon2SjvBZcpJcIrBqASn7FrUMtIY43L0vt2EBESQ7JFWHqOz9jk5bzeeWzBXSsAvAXN8KNFznJ4ekyQdRls3SfMeSmustayKIrBf5XvqppE2uMGpMZk4QmUT2vwuF9RVha1rEmPI81zaTR8cMByNGY3GxKIJZcSQW2uDiN86QAkqH62eRWODtpMxYZH60Mr7VRj8ylyNr24g7q2h3nyPWgc+UUP4Kojlw1Nan/8qzfU1piBmKV4DHl0HjmLNcsQjYdPYx3+vTU4LhG0Ys/b8GxtK1HSJwo0RdGzZDTHQVhuGUYddTvlQChuZBlfLZaIB3QwjwWOtwnkwaGztODs+Ic1Ser0c7aGTZXzh3Xe4f+cmtlwyuTjn8eOP+fjhE37y3Z+wXS3ojscolYA3PH30IavZlPu3vyQdXvaHJHlG0u8z3tpiN7mFPZ/g5ksuXzzF1wUHQ0i0J9ENSZqT5T1Ge2MG20PuvXmfNO/ww8d/zNlyzsvjx+A8/U4H15S4psSG8dk/3KO/tcWddz5Dt5tivKUsG5bzitKuqG3JqihRaG7vHnK4vcvv/PXfZri9xdbBHlmek+UZkbNXNQ3ONtTLOXVt0P2GyXLOfDXHao/yFu2EMZZojfWOy/kqiFdbXO1xtUfrCqcTXFaRZDm/fO8thsMBf/LiI17YFTNbkGSGNDHUQVzcqQAoXSxQFwXJtMBrQ2UMumpEACYLotXOBRTAUBYF5+fndPt9uv0+/dGQ/mAgLa6da51Z6y3ei5ZYGkoclqH0Nw3uwNw4OrmhP+ji8pQqEZBD7tdg8Sxcw7PllD9/8YD9vMsv7B1RuQbrXcuQ1SDAkxENI+NcsJ8KpyJWscEX9ASR5Ws2I27sIUjfZEhudg+5vr6jc+GcMJUs4qzXtbSEbu27dcG2eBobsvgmBaVkDw0AfTBpEvQFwdqYMJF1m8gaD12GnAetnAQLUusszrqHytVtY4dESyDsIjTuZbVGXQUVXlJ+4x5bUxMDlBDklCWNraVlOjqQMmT/aKpaumM5S7/XI83SMA6OJBEARfm1pWgduNeYzfXvgmMYnoMOTn4EzBOtwTbMp1M+fP99/t0f/Gt2dnYYDgbUdU2322X8m7/B9niLRBuOjo74zd/6LZZlwaoqubF/yLDf5+5bn0IpRdbpURUlk+MTFvMldVFx8OY+d2/foQ4aPXfv3cNZy/bONtPLSx4/e0q32+Fgfx99dkZZluxv7aG0YrK4RGtFlia8mEz48IOfMplcUlU1n/n859jZ3pFA3DlqGrSHLEkFyA3PRMX79B6srMlY3oDXGB1KTV14kP7qnhNFtCVx58Ep6SRrHYtiSdqkOARgNomhk6bruaQUNmi+oMSfqJuKfqdLN8sFKLiyPgQYUhu6KEdHR9y+dYPTiylV6FKlvG9BmlhS5b0PgtyK7373L3jw4AHgQ/dJFRiz6zItF5jgaZpKa/XQiGAzgPnCF36Br3zlK3z1q1/Fec83v/0dTs/O+PCjj1iuVqwKYbuvAjDTNA2L+QJtNN1uF2d9aIwhOn3RdkQNq6KsxFIoRZKlJIFBYxJDr9+n0+1y8417Aj72etTOCfD14jmuaQRcBPo90Uvd3d0lTVLyLKcshfGe5TLOw9GQJEkFEEmS0FWxz2g4Iu/06Q8SkkSFZFkY/wDUah38AOeZXc5YLlZ88MEHTC8vefbiOadnp9QKXpQVl/MZsaNkQkgEJuKRSQmxpbHSta4sClbLpcyNYFtTEwShDTinsBZMABmjDlnVCCNw0O+TmZQ8yaRrXKdDGkCcTgCeBoMBvV6P7b1dbhwccPPmDSnvyzLOZpdSxnpwQJokJCbh4w8/oqlqTk/OOE6OQ3fGhmYlpX9J0KFxoUxZBaDLaEO/20FpzYOPH8gz63YpipLZYsH+/gF7e3stk6sqS9IkXWvRKsVoNOTmzRs8f/Gcjz76kA8/+YjVakWW5yg8xWIaAlNFr5tj65K97T2SJGF2eYFtLE0loOFqtaLX79Pr9xiNxihguVq0iQiPDyWN8RlL/PTy+CUXkwsePfLUdUOapDQbTRGkFNoGyQy3ZseHvaBdX2H/yDJpgJAEXV5fS/ImTYLUSFNLST/go3RK8HVM6/WE5IeCLFQveFVTNZ7aObQXYCrRYBITgLwUYXFG0XG/3vedxwRQP8tytIKqrjg9PeH//d//9+R5h8FgyK/+6q/y5S9/mb/5O3+To8ND0tTw3nvv8/3v/4DFcsFP3vsJu4cHG75r3JA2y5rCltj6vmt9I8EuNmKJjZ9brGPjD4QEtaDoa1/kKvpxxZ+OJXQhtyfXcH3v9LRzIoL4sAbEpNMdAbRfx53X2d9XvPiN5For+r4B3MR1Ey8nSubEMZBwQrWlhG0VCrTjuH79KtAVh+QqqzSO618Bufj4LF5XnBevRd74yu/91eZW7XOIcV785wYY1I4Rm4/lOjmBK/FVjKUCNb6tXmoZfyrG6hvAU/vc3M+8r9cdPzfw9N/+P/8btra3+cUv/RJHh0foJOX49JQf/eQnuKairgtqW7M1HvN7v/d73Ll7l8+/+y4//NGP+ONv/il3797j5q27NF6zWJU4pARrtVq1nei0NiRpwqoUI1csV+3iiCyhqqqYz+ctmt8EEEcHnQGBYRu8b8JDVljXCG16OQc8ewd7LBZdrLecnZ/z4NFDxuNtbt26yYfvzZhcTHjvBz8kz3Ju37rFvXv3+NznPoevay7Pz9oHVC9XZGmGGgxJcwGfABJjGA6HDAZ9ynJA3dTMZhOsbZhMLkKNfgdDSqIMMysA1ezphF6e8Utf+jLGe773ne8wHA7QqeFyMefs7JT/8B/+kOMXL5henHF4sMvXv/bL3Lxxh739faazS6bzObdv3SUxKX/+ne/x5Nlj/t2//kN0mtDp97lz9460VM77eOCTTz6mKAqUjq3q112CyrKiqS2pFmUG31i8bXD1nF5fsbt3QFWKjo2tPdZ6nBWgxrkQUGlph4oyQVvFo5NEnIKooxWcUxdAJ+8lEPXOMxgMyTs9hsMhWZZRFKugDVDTyXKSxAQRywYpzdVkeY4xCofDJJpcZTTnNdPJhP/xj/6INEn4O3/377Kzu8vdu3ewztO4ul2osXNGGsAkBzjlaPCiqxANHgqVpgH8EiaKVqwFTSNqFE3UNVCHOF+vHNGYxLzwprHfBKVV+1rsDHTFKLN29NY/y5+r5H3a7hFCZVWvGHMfjU3rOPp2Y4pGz3sfdK3WTIJ4rTFIjderlQK7brUaOxzGb4yduOL24YOxbcsMiBvutbH7GZavvQ7qUBuesJxd8kf//t9wdOMGb7/9Jsp7ptMpOjMMd8b0s0MOj27xj/7xP+G99z/g+HzJsir45Kffotft0+l0uXtrjzy9wdnxC6qLE7S5S9rtAlLGV9dLzp6/YDGZ0tUJo0GXd379lxgNOwz6UDeOVdGQ93pknZyLasns7AXf+u53OD+fcPv2DfrdDrs7Iy4uJ5xdXHDz6Iit8ZjdrRFpmlAsZywuG6pFgVcKpw3FakZdLtk/usn2zi5/7bd/m729Azpb2yyt5eTBA2FfakWWGClZ6XXRStNUYR3onLyr2UlyVlUhTrmRuU9gi4x7Q6yzVE1NnXiajsd4g8ZQpopKW9z8go5z/P7dz/O9i+cULz+mrGsmOHppjvEaW1XoyxXjT87IS0cawOTSOfAWVBC3VlKe66uGajKnmElZxmAwYGdvF2NE46OpaqIw/SZuqbzHN8Kq0HWDU/Cs5ykyw6h3SLI1IEkTTKrRRknXPS8lw4lS7PRGzIuSf/v+9xmolFHe495gm+2sx8o1woRMZA/QtWTIdGrQ3ocyHoPXQg2Pc/X66o/O2XVqfQya4SqgfGUdBHRaOgfKtdsg2BzXkLWiN1QVZZgDuu02lySpsBeyTAAo60MHJ00dOgMtltJxdjQeoZWmrgK9Wptgu0MrZudASVY4y9MWIKnLmnJVsLO1xXgwDPy99f3GbkZXHKZYrqIC1V5pbCCyOFdTlTVlU1E3jWTgtTQDSdKc7fE2k8mU9977KePxiPHWiO2dXUlehWvd7FrT2rwNP33zGXnEXvo4tzyieRiuPYJmWZ5z4+iIX/nlX6Gbd7h1+xa7u7t0OtJtcbw1otPJmVclaafDW5/5NMtVwbIs6Pf6GGM4Pj6WzrONzOXOoI8zCp9osk4XpzSfPHrEfDZjZ3+XPM/Z293lybOnPHzykLosWS0WLGeXrFYrfCFM7VqJDpJOYDDocu/uXZbznzA5OyO1ni6ajtdkSpOnKQZF6kPWU2tJ5HnfamXFDmwxGAEfRMZpS2O8FX0wsxEUdLJMkjxVQW2lxA0P3lopnURYPGmesSgL5ssFCaK5Oez35V5wFHXFbDYjNwmm0w1r3pPnGXmeC4jmRZtle2eL+/fu8Dd/53f47Nuf4cc/eZ/jkxOSJBNgI4AuJtH0e5LoLIolRbFiuVyyWi4FVGqalknvrMMrYd9GZ70KTS7iHqyAo8Mj9vZFIuDk5Jj/4r/4P3B+fsFHH30UytOWsl6D9mdMxnrnqKo6MCnSNhi3TSMBfwtcm5B8tbIGQpdQpQT0Nsbw9ttv0+l1+ejBJ6RpxvZ4zO7uHjdv3ODBxx/z4vlzzs9PqMoiPF/W7H5t2oSvyBF4TFhv2giAk6UZvV6f4WBAr98lz/PQrTpja3ePLHTY6w967O5sc3BwwN7unoiD9zPe/sXPU1YV4ydPWCxX3P+Fd1leTJifnPFv/6f/iR99//toGxuGiI2rbd2WeEaBZ+easCZTnPcsihWRAZamGZ2guWqJQaVCJRk6STBZl95wwN7OLsPRiOFgwN7+Pr1+j/5gQJbljEbDtpQzz1J8llIFn9Z5z2q55N/923/LdDLl6ZMnnJ2c8OThIxbzJavlCmuFdeV8g1ICZBqT0M27co7G4n2D1Y5VI0wslMZrT+FEe6lcFRy/PKHXfUgd9G4PDm+gtOYvvvNtHj1+zOV0ir95k0G/z2J2ifeObreLMYZutwPeYctCGF5Jgm8apudnlEuppqgr0TyaTi5av+xydonRhuVqRVVXVFUT9i3x2SMYElm43nvRkm3LnjXbO7ssFguWp6dBUjUkd7V0CfRIM4p2z4v7ow1ga2AkJlkm8xtJ6JSNDcL3BWljMEqRdDK8tUzOL8gx7Og8lGUrau+wCBsX70WryVuMUTIX0hwwWC9sXuXBWx/KiEXPrA76TuBlH00NtqlDybqUGmedDG0Sagvf/s53+eGP3+fhg4fcf+Men//8u+zvH/LixUtu3b7N7/yN3+X2G/euuLPKBKBLB5AmaEmh1myhWMp29YO89oj71PWI4Wc60XEvvOZzr/16+Vvjg7bl+jsiOpWYDb1cvxHLRL/Bid+gYpASY4V4aYgfY+QXrWPnJAARdi1r8GWdHIqQYyRUhB3oGkjT7v3x823cEhtFhVHY8BU08Rc/e9zWVRjqlRF+7ade8/zacr2NOKxlauPXAuhq7Z/I0IfkUESsNq/HrW3flfv2G5qWoRFG3I9q79p5ELsfxoZOEfD7eY6fG3j6+KOPuH3nDuPxiG6nQ9PUzBdzzi8u6OaS9UzTlH6/z717b3B0JOUcRVny9Olz7tx5g+FoHISzG8k6hnb2rRp/QP2jwYpihNrotqyuDi08ez1HmmYtAyAJgxG7YXkbBOJUJBH6gKwjGi1pSt7p0ljLdDplNNoiD2CWApbzBXVSMu31qQ6PyAK9taqroGEhwbPNGnp5jjFrjYyY8ZIHr0gaQ1Ek4B2VK8FLS+WQHm+1R5pyRZ4Ydra32NraYjDoo42WziOrJYvFgrOzU05PjplenJKnmqqQNsmdTpeziwmL5YrRaEy/N6Df73NxMeVyMiXvdekPh+BpW9d6al68fNl2eos4QIzuy6KkqZs2G1CtCnAN2pUcHo24eesI2zicK4Vy6QKIpMF7Lcu9FZldo6rioBMRC6JBwa0nflyhIhifCjCpRCjcUWN9LKWBqqoD8CSshtja1UcGU1gN1llOT0+lE1WSkOd5O0frotkAgcKyC1Tdlk7qPVp5NrSBZZP0gN2AeeI9aN1SRf+yFXnF9HlaY9deiVoHm1ft/trot4aWtZ2Om39bwhMBoo3PrE8VhTTDN28iR62h3fg5bB4haoxmnWiYffvz+vnGjagd5bWlx6/Pvh6LMA/XG4lqX94cNRW/8Mprrx5Kiem3tqEsVpy8eE6/16Wbd9BKhPbTRJNmKZ1eDzpd3nzrLWrruXnzBsenL5m9fIJLQOea8bBLr9vn5MUzmsbTVCuU9tQrTVmuKMsFi9kl88UM3R3SoEn6A/JRj+7IoMqGSpe4NKXCcDqZcX52ysXkglVRcPPmLYaDHvu7W/gECt+ws7/H3s4Oo74ESsdn51RFxWpWoBKDztO2pfR4NOLw4JCbt28z3trGK40tGparJbINOrJU2qWjZd00leiKpJlBmUTKhmyDqmsBttQ6w2a0lJcY5XE6lqBKCYrT4JWjqAu099wbbPNieUkfTekcpXV0TI7RGl9W6GVBPivILGgSnJdS16hiYiMAGexXuVhi6yaUe+TSsAIVHNPIhPXtOmhncMjmeOewGuaZoekY0mGO7mRtGZFW4dNenF2jRTtmXlW8vJzw+PKcT6ZnHHQGbOddcYY8LW1cW7H9yqiWj67W3ssrvsp15i4b63Q9f6NzsSHmH19XiOaViOdtrDvf6s3E9e+s7DdaK5wWoV6tRcxVa0Me0brQaU8bjQ8B9mIpbaBH4zFaG1yrGRVr/+O4rbVtInjcNA2usdi6ZtwfiLOyYWcik/TKGt40eNGuKGlooXzMgnuaRnQiNRqjpQzXJw6bdVjMFzx98oSq2kcbzWi8JSCrszi8lJCFPX39HK47pPLl6zJf39qy6PiiNZGVobSh3x9wdHREVVXcvnOb3b09+r0BxhguFzNQUEuGhl5PmmSgpT08ICXkdb3urmN024WpsY6iLDm7OGc+m3Hvzl16/R6dXoc0SwMLuKYsV0H8tsK4UA6XaZSWTlFJahhvjUiDtmGiNLlJSJUmCd18EzSpj84+ND5oP+g1i8kRgN0rGdWr9jjGEDo8x8RonEpIbHJ1rtsAYjbCWjRaU1lLVVd0tEZhQmdHJUFjCNTxwohq95cI2Cphv1lr6eQd9vb2uHvnDvffeIMslPxcYdpq1fodaZpSFJKtr4J+57p1ugtghqbb6bQsjpgB3py0Hk+/32M0HNLYhul0wje/+U2OXx7z4vmLENSvD9FdC2vDB0BaKUxIfGkddG2Cpo3s1+vujjroVcY101iLMprVcolzjhenx8Lg14bRYIjyntl0yssXz3n58jlFsUQFPUvpTCerU+ySo6mqwNyPGm8KpUUvsNvt0u/36fUEeOp2pVJg7+iITrfL1taY4WjI4cF+EK0uyXOZt7u7e3SSLuOdHTqDinw0pNneod7f59t/9meoJKGpiqDhKc+taiq5780RDJNAB3BI1pTY9SxNyaJ+GJ40z6RkGE2SJgxH0i15tL3NeDxmOByyd3jIYDig1++TphnD4YBYYeFxWDyrssT7gsvLS2aXMz768CNOT074+MMPmV3OmJyfozGtMLkslfVVa6VItKFxodws+CvCYvHoRJI+ssfJp4qi4HJ6CVpA2m63g7WOFy9ecHF+3u6HCplD1tpWPD9NE/ldI1qoshYsxWpF09odKd2cz2eyRmP7M69C6faaRau4WoYkYtKy8KXqQwUGFOhU5rG17prN2PATN33Q+EhDmWTcI9v3K2GzxxLzxjlowGpCCbCASkY5SLMAogvbVYX9CufxVjSH1wmdGEOG+EiMBJ41+yqCsWzYOOvWVR3GBGawEo3Ys/MLquolu1tjFvM5X/7yV+j3+9y5c4fbt+9w584dRuNx64fHfVTFznCsQZd1xsS3znvLyGn3znUs0Y7kdZf5GiJyfewj2H31vK/5ufXPr+7jEhmodnxg7f97QuDpNqQ4/DqWCEHAxn3GtPzVy37FhwpnvxIutP7J2n+6frwSiVyPT2IY9Eos9urZ1qAT7Tmuv+t117A+a4zdYnS2/rbXmLuWRHD1JHGu+Ks+J1x5b/Rj2uobFX3LEN1d+V38E+8vrKNrc+NnHT838LRaTvB2n73dMXW14vvf/y5Pnz5htVpy/97bbI/H7O3usrO9zf7BDZZlzb/9d/+RTx4+oLEw2trm8MZNLi4mVLN525UgCVo7SmvZMJt1m+P5fE5V1yTzRDIp/T7WiYDfaGtLSu/6fUHqw/g1zqGdR1twVraEzGQkKmXm5qxWBS+evqTX63Gwd8j07JJMH/Py6UuO1TH7+wfcunmLL37xizShDe3BwQEAs/mcyeWUqq7xeDpZzqA/YDjooRND2tRBf2JtuJQR4fMbR4dCB65ChnZVCgBUN/i6QjvL/uEBnTzlxfkJy7pg52Cf07NT/uSP/ghb19im5gufe5vP3L/LbDWlWK34o29+U6iwTcPuzi47Ozv847//T3jnc5/nM5/+HEVZMZsvKKuKxXJJXVdUyxXHZcWyLPjv/j//HScnp2xv75F3uozG20J3taHdOJ48ScA5zs/P0N6y1YUkvU+3e4+6LqlKLeUV3oKXEpbEyAYj8zBkQ67NqWjXscjm2jquniSVboazyxXOKi6nl4wwjHf2qRtHWdTYxkrG3oruwPlkgtaawbCPdKDwrIoVy9VKSjTv3OF/87/9zxmPx/zmb36dNMu4nM8AFTrh0S4oj5SGoEQoVtqH04rOCj1LiSg78pw9QhNuRWndegHH44ohag3K+pASvjV1/+p4rbVewivtZu5CxuB1m4MYhTXFM2ZGYlcHQoegOP7tV7d72rWAQim0CUDVFTaTvBbFiNfIuQQbsVMCEECL4FcHw44OwRUqbPbheltR2DCH7MbG4uMdClNvPTLrQzJomjzv4J3j0UcPefH8OYPxkL3DfW7fvctqtWI6u8RlKTY1vFyeo5Ri69YNPj8c8L8zKe+99z5/9Ed/Il3jdrc5PT5hNrskMxVGWdL0jKZwvHyxEicdw42uJhtvczGtWExP+b/8X/8ryaaPOhiVYVSHxXLOarXgcvoCa0vu3voUo+GAW3f2Q3cWQ9YbsrN/E+8ts+WK5y+e0tQVjRXAqNfrBQe4oDPqk+W7/O2/9/f57NufxSlF1RRYHGmueePOATZk+nwoibGN2E7ratFvamq0klKzXEt3ycLWVL5BZxl4aMqSVkZFKzBasoRaS3cjZykbyTznacJ23uFOb8y8mbGoVnTSDso61IdPMdMVnaohQYVEQxS5Ds+6cm1CYrFa8ez0hJ3tXd7+7GfpdbvkOsFWtcwnJRanaUT3IW3Xhw2OsmNKRZ0ZysMdmlRRakeWeAxgGk+iHDYXm1AuCjQ1PnRR7PV6fPvFJ/z04hn8yu/yKzc/xaHp0FWaZfAsTJi3tnbCUkkVifeideOuuza0gbS0Zl6bBRe7+G3agaB30Zak6QA8h1JltDRv8EphAKyjqoPjEDpOlWXsGmVbplIMIBxQN5b5YkFdVhTFSjK4TUNVVWRpyu/9rd9jPB4TS9rLoGvo/DowioB57CjlraOoKqpVwc5oDNvgrXy3NskaQA72Vet1KQT44MxvMIuShCoR7Q2/WFIvVtTNHFs3PHvylGK1Yn454/GjR3zzW9/ib/zO3+B3/9bvoqoG4z1NUeCcR+e5jOmGyfXBruho81V0dGV8BCiQ621Lx0tpoCFC2JreaMieApWmZJ2cyjnOnj2lrGqW5ZJOt8v9t97kcj7n4YOHFKsVRSHswiYk5bTSqIHsI7V3nJ2d8eLFC47Pz+l2Onzy0Ue4puHW7ds0zvHi+JiL6YQGx9nlBc3TsH60otOR9Zn1O9S24Xh6xngwYv/WEXsHuywXC44O9jja2w3ixjp0yXVUTYNKDBgdQGUlwvp4lBdgprENWZqRZznRzRYNRBGy916YKK1d1po8STCmG+aNC+WRFq8dVlsSo0i8w6SaRKfkeYbRmlVVtN0DU6cYdwb0B0PyrREqTbBVJV25VgV4YTSsViv6/S737t1ha3tM3snE0Q77VQRCB4MBt2/fDiynOc+ePeXZs2dcTqYURUGSJNKZuG7Y2tpiZ3eHv/O7v8fbn/kMT58+ZrFYcHp2KufqS3llURbSCWxyyY9/+CO0MXzy8SesVisGoxEmETBA9rigVabWcy/Pc9aRZdCO0tFmpPJ+H+M0KS1y1pGkolG0WAmbSntoygrdNAzSlDdv3WFvb4/98RauKJm8PCZxlmGW0+/3UUrTNC7oa6Xif7dBtRhb76CsKoGmzHpfn88WXE5n0u3LO/wPf9Lu44kxpHlCvycAldaaPMv5+l//69y6fYdf/tVfY1UUfPTgE1wtTW36u9u8+bl3+PF3v8t8sWDU7aGUMGydc2AtJuh36qAZOhyOGG9t8Su/8lWauuHk5ITpdMrFxQW7u3sMhiMOj27Q7QmbKc1S+sOBPN+mIUulVHE4GpKkKbPZAu9nXFxcoNSmlqfn/ffe59mzZ3zw3ntcTidcTid450i1wTnPoNe/onEnnxIhbaXE9gozyOOtACaJTgSs1oaqlr3Ua0131GNv/4DUJEwmE9I0od/vce/OPZbLJf/T//j/oyxLbhzdwDWWBx9/wvn5GYvlQnw8RMJEoUhNjvdQVha7ErawAJyEEm1LWVRtGVySpO04C4BjUNqQByCrrksBsMqCbrdLlqbC5LMWa4UltFg8b8vpnLUb5eBWAFNoE60tAIsErB4oF1Jy3Mm70sVSKRrbSBe+1DDIB9J9zjbUwUftjcdkDlzlMVpskg6s1zSAOSrXKGcxzmMtLJc1w25K2ukCCmcDgBITP+G6nRPGY9PUOFe38Yy1sl9XjTCo0iyj1xuwvZXx059+yMMHD/jKl74sa3D/kIODI4bDMVmWS/WJks/FJgmbOo5tYjaMSUxQeCevB3IUbWLXbyShN1JXrW+hQAet1FgiR1jnitC9PALpG3O4TXxvxAmtXtLG622pc6ArKxdjwhATECuXVGh4FVgMITbYLH9DKZoQD7Rl0eKh4awVtrlai4JvipFvjsEmULLJ8GwBKtbAZhuvbYI3EXvZCDiuJwvjdf/80tvxcUSe1qtHizNujMmaYbZ+ss7beMdtIiYCYK3liiCke/WbNqtV0LGbZ7g+o9u1KS5bTLj81bDSzw08ZWmKSQzOyQZ+dnqCVoqd7W0SY3DeMx5vMd7aRicJ5XzB8xcvmC+WmCQlSaUmF5SUNjUS1Cut0O1mFnQBwsCUQXgwZoxNkqw7RywWIvzY6chGsxFytnWewWnUSoOWxeOcYzGXbgvS+laTmlSca2tpBg1Ga4xOyLKc/kGPfn8gbWmdFU2mssBaR5YkKDxpmrStU6PWTiw9itofshkG2VRHoNIi96XD75QES6dnZ0wvL6nqmslkymJVSL0xsDUa44cD1EQyXufnFyGTXDMejaUWPc1I0pzR1jZ9axkFMffFYsHl5SXz2YwayVZsjcfUVSVGGE9dCiVZo/BeHAZlHEp5UuMwypPnhiRREGh3ccGuTeB1rX4VG+PJKxE1bZ9XfD2+RRD+6LhaW9PUBdYKndjjg1itx2u5j6apuZxNSZKE4bAn1G2tWS1XnJ6dsr21Rb/X4+aNQ8ajMf3BEO+hKopWPF4RTezGtbFebAI8RWrrVYijNRB+89WrR6zT/Xkw4ZY9dO396i/5tLpmpa78qELp3sa1x+tVG98F159POPErmSfW6Di03XcUqs32boJgrfGOp752rfEKNu/4lUzYBngWf79h4q98p994GG12LPwRDRvNjVs32dvfbx2o+F4JosQ2aCO6Fbu722xvjRn2+uQmQTWO1WzGfDrB20ZAGm/RyuPTAJyphH4vpZMbisrhV47JZC6AaLlAkaDJWSwuWa0WOLckScRZHo2HpFkKHqq6keyh0lR1RdNUoQy2FgaE99TBhlpbcbS7x/7BIbv7u4zGIy4XCxHYDjuvMZLBA4/XMudju+h1BiNs1G02W+EbH+jQ8tybxq4FNZWIbEZnI9rsKHhpgFwZhjolDbaFskLVkFyuSOclJmhoumhD44MMdtw7KAvZE8ThSOn3elLi7GmBD6U37JFHNGhiWQaORjlWmabpGHxucEZJQBVmTOsQh2uwYWNunBfGl0mYNxXLpuCTyTE73T7b27dI02w956I18XF+x3+E3W1znUYHDkVZrLDNOjucdzK8Epmr9Soh+H9rY6OUQnuNU6CUUK99cBSErBLYaiFrGgEia620wm5s68Q2VkS7q7KSFu3OYxsBQhbzOWVisLYJ61ycjQgOx/bx8fq8dzJvrBPWQZgbUVdlvbJfd/iN3238P9gFowRUzBJDuVxyfnJCvSqpq4qL01OqsmS5kGTLaNin3+/R6eSgJECIgIPzTpgE7ur4QqgY3HhGcexs2Ly9Xzvd7VV7jzGi22LSlE63G8bVUlvRorFOAFAJGJQE4kmCT1N5VomDPEdrw7DXF3DPNnQ7wiBJkljOLM+g2+mQpgnnlyIavJjP6Q369G0TGNrgVVzvXjQ0lyv6XUnc9QYDxltb4uMhgt3eC3DpwhoIyBE2rpM4z8Nzd15aYzdh0Dw+VEy8znVuLXUImOTcPjxXKW+P4IaMpdKSIDJK7JWwztbZaGVED0qem2U+mwdfLwRk1pGYhF6318oixGtrQdxg/2Og3DSW1XLFYr4IwtXSpTjGZCroVPX7fbbGY6aTc/CeqhyGJNiQuq7Jy5zZbM48WVCWRctIc961XdIkgRqBp7UfopWUwa71UpCANLDfjA4sKNYsjXgPWWBtVY3YzKqp5dxhP0kSAQsiy8V7Rx4kDIbDIQpFEUo0jU5xXvzgdq5HTc7gI6kQINoIQhPYpc5hAzgt+y+opWI5W4T7Fj/64PCI1WLJZ95+h2VZcHF6Bq5BOUuapiJ8b7R0HgvMeaMTYaIrEapPjHTpNEbT7/YZ9AYM+0OqqmKaXpJnHbqdLt1Oj363Rzfv0Mk6dALrKktzalXT1E2bRKvKqmXhWWdpEIDIORs0pVY8fviQZ8+f8/LFc5Zz6YprtMJ0OhC6bvoo1tnGvht+lwqBbAjodJKgkgS0ls9dKbeWeeecpSxXKNUJ1xrA20bGOs9TvLNhXxFb7oOsgfeS6IxpYRfYQs55Eu9a4MlZ1zKTYhm3jjbPrZMmra8QI6HoG4REiZS7NrK3NE0b5Du/brQUgSjUmlm9DuzDeZWU/kgMIHqESZq03UqNEiF829ShI1nocaYNynrRMQtiyUYJe9KE6Fs7MMqH2NFD6HCt1LrcyKjIqvRt7BHLssR+xPREKKsPDEUFIaEv8aB0wit5eXLadtOMMbYLLLWWJbSxLUVrKit9XS63uUetfekNH+E1u+xVZlP8rvAMX0VU1nPWrf3vSKSJ13alYdrmdhq/JsQOqKuxVPt/teEeted63R6yeZ/X7mnjHVd/r66M3ya0sxn1bd57G79s3MLG9iVr9toepzbesB6K9f//8mPjiv36r+v3eT0+incRY+RXLrI99dUxWQOM4S3q6nddTfLH92yww1V8YH/1ncXj5waebt6+y2i8w/HxMWfnF3z84AGffvPTfPUrX+HPvvUtPnr2nC9+5UvsHx1RWsvxxQXf+/GP6PV6bG1vi1PuFSZLSH1KWYL30uK5CRoGKgAAjXPUzjGbifHeGo0l0LFWPEHnWC1maKPp9XPSdESqJevjjEZgE702jiiU8+RZSrFSXM6m1HVFlmY0Vc1o0MdVFctVycNPHlA3NZeTCW/ce4N/9s/+ObPZjJcvX+CcotPpiehhVXLn5gF7O2NuHOyilKay4pRZL1oazsvPTkHdiMOQaEXWySUraEXL6HI2wc8s88mU5XLBw4cPefLkKR989DAEgB5lG/I04R/8/d+nN+gz/X5DVV3w7MlLdraG3Dja5e3Pvc1bn32HeeN58OI0jK/UwBuT0hmPGWxvkygFTYNtGu7+7w+ZTCb88Ec/4vz8jEePHjAcdNjeHrFYTKnKFcNBJiU5nxqRJppBP2c0GrGaL3CNlY1ebTJYoJXyc7TlKxLregmirCcW8sYyRessWpk26JIyEek8WFUT6ibH+SYwssKS8Y7GliyWc9577/v0+31uHO2TpzmDTp9vPf4zvvXtb/LX//pvs39wwJe+8st0ez1OT84kIE4M3mvWsK9ChbK+JIgQGszaKQhWURHup0WXQwlPG6zTOgoxGG+ca4OM1iRsBpBx6W4i5uGzEaRUm0FrG9yJITFrDLv9KwKympAxUWsE2wXBZe2vlvBFOnFkHcXNRnhDwWg5H6jq6+tcU3x1C15tatC0oMTGGMltrce+BRnChUiprYnF1HJ9LmrYWIhCnPEGIntjg+ocdTisDvpEWcLu0T7/8J/9c3r9PrPVgsY20vEn3LqwLcCVNfWqZFEuaeqSnIYXn3zMfDLlwdPHzJYL9nZFM6bbwGA4ZP/NfWrlqZQXnaDGobo5VVXRG2nKsmR2eclqNWM2e94KNr/9zmfZ299lb28fYxSXyxllWTC7nIfSZEFfZHwUaZ7T6fVoGsvFxSVl6Fz5m7/9u/ytv/U3GA6HTJczlJE5pxENkMtl2YromtB61gXTSiJiv9LkUsa1VpYGR2ODFoKT0gZbVhhtSBON1gk6TWiqiqqRjCGATzTKgS4tQ6u5Y/p8qKcoLNnTUzqzhuHTOaZymF4X66FwFhXdyID66CyjqRuOX5zhnWPc32LUHzHo9EVjKnRBxXsylYpDpjXaCsDVKEulHNPEUSRwfqOL66YMMtGes3VwFbWi0p4Kiy0bUJLwcEpjvcJh8Eb0j6y1/Lc//hZ//PDH/B//2j/j/tZ+O40bA8YrEidBtQVMcEIsrp330U3XSu744Ucfc3F6Sppl9Pt93v385yExlH7dWjp6ok1gnCQ6aZ1osbmhCx0K7RRWOWyaoo2Vvcg2oZGEAEznFxcs5gsGgyFaG2EZJwk7oy363S5boyGXs0vm8xnvvfcTimKFTJjYUU6cbRtKc7I8I0lMCFosVd1gtGKwNSJLU7p5h17eFQBDbQYpG8ZEh45h+Fak3CiDR0plpfRM0U8M2aDPNz/+kD/90z/l4uwcW9fcOLpBr9djd2+Xe5/6Mv/4n/0jDm8ccnjjiLIumC7OiSUMTVO1EgCiUqHQiWhOeie6hFEOoGXjWYsKnkZkiplEhK9dtMlWeielWc58uaSsCtJOTtbtkFU5WZqh64ZRt8NnPnVfklGNbbULjZFSqcY20jZ+uWBx65DZp+4G8Bia1YyyKHnzjTtUdc17P/oBDx98wk9+/CPyTsadu7c5PT+jrCpGwx4azWK+YLFccfbyjG7Sw+7C0a07DLf2WALPpxd0+32RTkjCOkxE38fWQUhf61ZYvrENShmSLMU6x6IoZKyUYmg0Sew0hWrnrkdYiI2zUpqvBAzEOzIFtbeUTS37ndH0shxjgkQBUCVrgKNwlstyybZ3ZMbgXMOqWPL+j9/no59+TJJ2Sb2mKis6Scr2aITWhiZ01TRekRmxjbV3TGaXfPLwIZ08J00Ms+mMydmE1XxFuSpJVQKNdGSydcNyvuLJ4yekxvD44UPKoiTPpfvYyhQhYenpDgbsai3Ps6zI+xkq1aRpLr57KPnz3qG0CVl+hfWKqhYGYPSVnG/ETiuDLWuUhzQVPStLLOmIPpiiaCrKqqIMrPDMSEl0UZUsj1/y5PkTLheXdPpd9vf26PZ6jMdjbGM5eXnSJny1Nxiv11n8ABb0sk6b7InJrfiepmnwLgpoy54Sm/40dU1T15RVibUN//7f/mv29/e5dXRIYy2fPHgUAGYY9HsM7t/lO9/KRbMqSUiUoaNEfNsYg04TdBK6whnN4d4h/X6f85MJy9WSkxenJEnKznifPO3gGzh9eSqgZpqiE0PWzQWUL2us9jjl2d/aY9Dts7e7T2I0i7pgsZxzcvKSD9//gB//8CesipKqrukkCd0kZZh3IAI6PuxPrZsj3XtVAEAFOFWQJWRZRp5lxIWxbGphQEXWoG2ktHhVgbcoHEpvk1SG588eU5YVeZaglQNf463C1tKlMNU9Li4mwgZODI33lLaSZxG6mYIkPLQxOAver7szpnotXG6DGHied+SZNtHnUihl0EajTYo2GWVZYq1jsSzwIOxzQuOn2lGWpZTgaensDUglTLieyOZpNMHfFfi7qSq0grzbIdEKRQBytcEq6Z6d5zlaK7xrwFoK79BochSpziXxnAggp+sV2nlS60IyUaODzlpT1eA9JssFaPUeW5csFjNAdOGEvSV7tDGa4XAoncOVMNaWRUFVBTajSVHAn3//BxweHvCFz30Oay0npy/Y04cMx0Ma79tmGXHrjwwT7UMlAWqjOXxMCYCKTcnCpPPRB2eNC5lw0pgvCk8vbMGSnLSRZbWxfiH4tQFEiuXTbee2AMTpVmplrfelQdZr/CYfEmHehUYwBH9ftyAa4V58jKsUpHqjoZNfC5VHaZ4ozxOvd31/SPyproRaXHVC1jHNK4DdBtq17huurvyq/YRHOqCHhEEc/41fE7Wfrh9rnG6dHIGAiXGtCsWE8qIITvtAhAnzxYX9d53kXMeGUa+vvf7YpTFcxOZ1xM6smxU5ijgvzM8ECK8fPzfwNLk4x3vLj3/0A1argsnFhOLmTXxTs5jPWMwvOdjbZX93l8vplOnkgvlsRicIPKrgQEV2j3R7kxbdnU6XQT/U2uPah183DVVdU1SlGLskCVoTVtojpxlpIvXJqDUVLtIKpZ5Y6ovxnm63Q1WVbabQNrWUnpUlTx4/4uTlS4qqQCkYj7fANTRVwexywotnz6Xr3WrF8fEL8J7Pf/ZtkiRDGJEhcxoyUdZbvBVml8TaIviosjSAGZFKa9jd3aHb7+CqkvOLC95//31Qiu2dHVarJWWxkg1fC+OBpeLk9ITJdIrz0BsMuHHzFnt7+4xHWzjrKIoilBgJw6NpHGVtSbTCKIVywgLIOjnj7S0+/dabzOcHHOxukWWGbifh9PQFs9mULJUudp1OCngRkq8z6lpKbYTOGJZQyKq3UIP3KC9laS2lYI0RiPEONEiPBGUgddFirBRi4wW06XZyrC2xTSVuv0bq09NUAp40xeNZrlYsLhcYk3B04wY3b93k6MYNCTBCSQ4EW9MCt8HUtEblquFWAfy4YoZiMHgljFStkdnM3FzJDK1P0F6HZ5OCfQ3h3rje9SWtRfOuIEB+4yW/cc6/wii01xx/2LgGMULqiqGOX/WzTqZ+1u/aG4nviJkTj3JyVuVjYnADlFK0WbrNbUFvPjC/AYbFe1BS9ulCti/r5Jg0abUOmiYwiqLwrSdknuUatTb0Ol2apubp82co51GpYTQek3c77O7u0u122dreIu/kKKOxdUVRFyxmC6qiCl0aJdum8PS6XdI0kdKR4Mjt7u7Q7/dp6oqqcixCS+06ljG5KCIoQBJKUZYVVSXNCXZ2drl1+w5379xmMOijgLoRcMizweRxDuMszhkRzFTxecZw5cokkw1dR8acoyoDCOI8hMyy964NIlo2J0pa1LuQ6bOO3Hr6pWe8cuSzEjOrW+DTOhdYOkHPKQiVohSr5UoYOHVNmmbs7OxIh9CYvY3rSBHYXdB4uU9tLVZZKu0oM82qo3F5is8SrAryAkDjPZW1aCfsCtHzgzxXaOVb4MPjAis2Y16VnDjHxycvMNZzuLeH15oqsP40MQMqgHtkv28uDqUUZVFSlyV//p3v8PCTT3jzzTc5PDzEvfMO2mvRaFEq6M7JPI8rQFgvEcBxgVYejVoUbZVEjGjmGNIkxdaNdGEtSlbLJeVKmBjz+RylVNCtSehkKReTC2aXU7z3dHtdEmMw2uCaomU5iTMDk8mEsiqZXFwAcOvmTUxbKkQbiNmQ1V17SFftR7QukTUXLZLSGzwaJdnj3b1d7t1/g4P9ffCem0c36Xa7jMYjBqMhewcHAtI6aVfvnOwx8TzOSbclj5Ixcw5U00L5SbSjNtoa3+4X1q5LOCPb2mhQiVxblqV0bCbPIZSwpIkwnIzRqOAHYIV5lbaMDXGsE2dIbBKE2kXPDCXX/Nan3gyd8nokpuLGjRuUZcmLmy/Y3tqik2UCLDcNs+ksMGCkm+Xezh6DXh+Fotfrk6Y5eZ5jkqSl5K+KQgRzjZRvGmPafUXrdQ43PntrG+rQhZjECDPFCUSnlfg80shc2FHWe0yQhU20AS8lHYlV5KmXdvTakARGT9zbEiXAVVk3wkxpGgFfjMHZmqqqWSyWLJerNtmB92RZxmAwYDwaM97aYjvo+NSsGcnOOaqyCp0XFXVTUzd1C7IoDYPhgIMbB6HDVx/nLWdnp5ydn1OWhYhXI+XLYpcUvWGf0XjMs+cvuLyc0TSu1epR0U9Qup3n+Pi6bv+O4vtGCbtLWC8BHFXyJFxkHCsV2B+GVBts2DMk+SWaR1LaZWmamjRNGQ5HJKkkYFbLJdYGO6YkIdeWzUSfoq7D3ilrQVrI0+4z3nth7iLPDGivUcfaVgVpJmWGUTjy4aNHUqJUVRjlscrjQjm3gjUQrKQRhDGGNBOwRBhDwngvikJYnXVDXcs+aXRFWZVSlmWSVl9La41JE3qjPr5xuKrGpxoSQyfJ8M4KI8U7TiYvmc0uefn8KS9fvKRYrmiCnpIL+lOE5+BCAthudCAUJhBtCVUw0lcDcVsHH1kAyNgNGy8aQrYShrVSntlsTlnVfPzJJzRNQ1mJPqsKScugsdxquEYbqhQB4Ja5o0K3NkIHyxhgbrLW47Pvdjqh5E4Ya6UvA5sqafOEMQlpraVuGhob92vpwueCXxOvKVaHxEP8FokPREEv/Bf8y6oqQa27S8cyvSaU+K/vR/wIF2y9KHMFwCRgNT40BBLbm6ASg09k7tZVLaxwH9aCVjS1pbFB4kLJ3EeptqMuqBZ0Nca3ZUtxPGIiaT6f0+/32vXTah7DmnkV3GUt0yEwzTdilzA2KvjJMQCInnJ47G2X6jh+m+Ps239dPWKZeftev2akRy++7boWnvsr59i4jngOYawGVnb8XeuMrvfZNlIIYxzZeld8KEIEptY/x2UVn433rGMF2JjLr4ti1LX3bFyW2nyHfHwdQ8bTrc8Z7fkmsyjCPD4+q58RLfmNf3iu6VXFZ7jxfGK38BasujZIaxBp4yo2xnrN7op+eHynv3Kuq9Irfk0W+Ku6+4Xj5waePvnwPZI05eEnH9Pt9RiNt7h5uM/BzjZnJ8+ZTqe8/ean2N3f5/s/eo/njx8zPTtjezxmOOiDktaSSSJO1PnkgrIswTp2dnYZDketVpF0KoCyrliVBRhxfPIsbduQHo2GDLe26Pf6dPMOTfS1vQ8Csg5jRCCyqUVQcWs8DoZWg/I0TUVRLLicTfj2N/6EH33/B0DNaDTkb/+9v0eiLJOzlzx5+JAf/uB7PHv+grPzc2kp2uvx27/122RZj6JywU5bjE7aTALeUywLGivlYlKLOkArjdOaPBUxxvufuo/WYDw8fvyYP/zDPyTPcz7zmc/w8uULjl++IMGTGcPl9JLGWd77yXtMpxMwmr2DA979xV/k7r032N/bx9WW5WxBJ8vwSKv0oq6YrwpkeXqMEUR+0O/TGw/59U+/KSwHW1Ou5qyWl3zw4Xu8ePGMVTHHe0en36Usljx++ARPw3A0CMLfKVFTyRi9RkM9Ajo5ZPOUFHdbZmGDOGZVNWgdQQDZpJMsGHcXyv6cJ00M21tDmrrhvF6BM3hjGPT6GKPZ3t0hTeWeT8/PefLwMaOtAV/91V/ll375l7l54yaTyQQ3X2B0smFQguOsN9k5wWkgONYbFmfTeLLxSjRy8a0xaI4irHFcWjZXRJn92lD8Jx3hc+s6XLF667Ke9kKvGIqfCUBdA5uu/HtjE9t4qb3nK5e1YcxfCz+trWT7HdGACpgmh4mb6MYwywYVmAbhbxWFAn1oAerXaH5kRvjgxFrvGAyH4uCkCc45yqoOXXtiuQKhy4nMhyzN2N3apigKvv3dv+BT9+9z99Ztxns7GG0YDAZkWcb2zpjGWhbLJfPFjPOLc54+fcZkMuXmzZvkec5yORc2yc4WadB+GY1GDAaDABA3HB+/pAhdnLx3oVY/aK7pFGM0WZrhnOf0/IKiLJnPL/nyV77If/af/a/Y2RGmymKxCCLSgR2xwQKLbY59AH17vV6Yl3Y9E0PGK2baxcY55vNLcJ5O3kUlhjRLKKqKoihxdRPOGeY+CcqBqxxUDXnl2Zs5bs0s+mSJmpXinBpPbRspl9CZ2EzvSI0A9dPzM1bLAltVDPsD3njjDbwVmrvFi+4M4lys6kpcWw2JbVB1Q6kbVsYxH/RZjjNUP0cnhlpJRrvRCIunrki1JAbmi9Am2kuJjzJxbcWOWSkX5ycsFwv+6IMfcbZ3zj/e+TpoxSUNmZeMqW0sVglgFR1bpVRI6Ik3MLuccnZywn/9X/9XfONP/pR/+S//Je+++y5f//rXwWjKWoL5NHSuImQO8QRnX9ZGLBFqV69SKG3QOsF4hVGWLEnod7vUq4JqtWI5nzOfTjk9PWW5XPL8+XPqqsLWFWVRiGbN8Uum0wl/7/d/n8+/+y55mpIlCXVRCviTpBL4Ks2jBw948uwpH3zwAUmS8C/+F/+Mbp4HcFK0nkwoEUpCCXprFlycn2tQqNWei+tZixi1dS7owiV89vOf4+j2LfI0JU1S9vcOpK24VlRNw6IsqOqK2WIlCVMtGmwojcNTe8uqKmUnUGYdNAe9mBjQuMAmS9NU9nF8q8nk/LqxSJZKt68sy0gT6dbbhI6KAElqSMI61kpjlBKGGrRlLXFcEhJyPP1erwUhait6KHdu3pZHHeQLvvLlL3Owv0+Wpoy3txj2BhgUtqx58eQ5iTHs7+8zHm/xqXtvSSdDZdjZ2sYYw2g4DOX6ImswnU7ppCmDXo9OlpGnKVXTCHBAhGEj8OSwdcVqMccMBqRGU1lPDWSI36UTCTJqoEESz8aLrU+TrDX0SeLJ06xdKzqI1EvABp0koXI1s8WKZrnCliUJ0EkyLosly+WS6XTK5eyyBYwA+r0+h4eH3Lp1i1u3bnL/jfucX0z45NkL0WlRSnySsiINAt9VVVKVRdu8RBvN4Y0DfulXfok8l45tz58+5cGjBzx9+pQy6ECtViuePH2OSVOyTpdf+9qv88an3uS9n37Ek2cvWK0qIvNX6WgXACUdgr3zQapBt1IN0v1MY5LQCVppnBLAUqs1kyh2HOwkKZ0sp84q0akMAX4e2tDPZjNAEgr9/oBut0dVFTR1zfmZsMKzNG+B0BhwJkF3xi4XgWGpQ0evVErVw15mrSXLOmFvFe+kti4kmWT9GicC51ma0pv0cN7x7b/4c/r9AQeHRyhvUa5mVqzaZ5lnqWipaSlYT/OMTq/buhhZ0H05Oz+nrmvKUpLXnV43sIfXWjlVVQVgyJHlGTv7O2AdvqxJBn2SXpdEecpyzvnlGUVR8NOPP2J6fs7TBw9ITEKW5KgACNZNteG0xBkdWCrhGSaZ2AcfzLRudY2kTLSuCSwhSyfvCxO1kjLJRIufXId4yhjN9OyYumk4OTlDa912Acd5krIiSbJ2z1dGY3TUC9UkJsM4hwnC42rj81E/ZzMAj2LaW1vb9AeiYRZZ2845tHPtfI0gS1lXVHVNFc6r6picEmBORX1IY8hzAXtWq1Vgq1ucF0DGOrsuHQYWiwVVXZP3utIwKhd2VVmWsjeEMlQFWCUC5E3TkCqwWhIMKu6hTmyuUQmZzvFZgurmoim7WrWAq9aSGFjWhehu+Vf94NhUY7US6ZLEZIElKmMSx8vjubi4IA8xb5Km5HlOmibBLw7Zer9m3rSgXvy7xaWulpHF98SrcmF/2QRoNg/nvRDMN9gvci+vAg5tElNFfzlU5kSN1r/kEPdFyvel++Zanyn6R/GwdWQJih+vgs8qgvmboMr6p3iNRqsQ09F2vIsNqdbMvNcDT+0YXAOeWn339ReH5OpmzOW5MsAt4LOOw9xmbPPKNajX/Cv6QZug2ma8GsvdNwEhhVLxPvSV87SX2r712n2GUtR4bZLg9FyP9eJN/6fGrz838HTjxiHGJPR6fXZ297h15y5pkvDs2VMRdw0b2Wq55NGDBzx7+pTZbMZ8NmN+eYmtarQTKrNkBBRN3XA5mZJleainb2iaWpgrRmObmqoscV5ourVJW0qoZGeG0s64aqhcDGLDQ/TSgtZaEWpMEsksJEnC3t6eZHrrkrIspJxsPOTGrSPyPKHf75NmOdY5LqYTiqog66TMLi94+vgBt27e5nBvl92tLXqdDpfTCUmWkPdywCEd3SCgDXhrKauaupGgLk1T8izHeUVtpTY90aqlmt+5dVs6/wHb21vcu3eXpliBbcjyDFsU7O5sg7NMTk9Yrlacnp5x9403GQ7HeA9VWbWGqGyk/KWxnsREMWqPbzxl2eCc4vhsSmI0qVbYxtO4lINbb7J9cCc4XWIky2LJoLctYoaDPlVVUlQFZVVKKUEmRlnGXTJrcQJHDQKNgEoCfiVkeSaBUZIQkXvR2QltTZXQ+C4uLvjmN/6YVVGzXNV08i5ZllGUfZQx3L1zR4LxsxNsbdnZ2+Hm7RscHh2Q5TlFWcpz0YokS1vDJdjQNfYMUjKBYgOVjqjvGtRYd6+hfS1uQj8TRw+BY2QtcOWsckRWj7rywfiP1xnK9TX+rKPNVl7bGtZm6JpJ3WAybN6BCueKCNtVmu91Lasoeqc2jOWrl9mO14bhlPpzhJS+gfJrxM6beG1XsgHrcY3GNLYXNUEvoaoq8F46IeHbTBtqbdx1KIcsyhLtPePRiJu3bvH5X/wFer0uLtGswnl0YvBKwI/FcsnDxw+pioKyFN0MhWTWEqPZ29slSYwwowITqyiW1HVJURStk+ycFSZncBV00CKQW3ScnJzinKPb73F0dMA7n3ubT3/m04y3Blhbc3FxsXZuNrIWstGLVoffsJlVVYldQIIvk6VhLGSMtNZik43G2hqNpt+Xtsy2qfCuQTkvZaSRYYWwGpz3eOWkNDrvsJt0WaoeS7WgMQ6VBfZUcEpjZldp6ehpm4blYknTNOzt7DAYDWls0J5omhbk9dEpjeXJLrAXnKXJDb6X4gc59HN0mmw4gjKvGmtxZYlKEmHEBZFJG/SvkkDtTpQSrcPaS1CVZPx0cozF81vFkn6nQ1cLUNcoJZ2MPGs1xzDXXdTkQFib/V6vBSyqUpi4zrmWmu6I7NAAzgRQ2zYbzlnQirAhkHJxSQUQXOHJ0oR8POLl06d89MEHvP/eexy/fCFBt/PMF9LldNjrcri/y9b2tjCllOZLX/kyN2/eQnkoCxGPbcL+NplOuZhM+PCDD3j2/DmL2ZzhcCjBeZrJdYRssoAIrmXQNHajK9BGQqBtKLDhvLExnwmWJcly8l4PW9XYqmYym5GYhDRLKcqSyeWlsAScYzjokyciqOsaR4MNgajcf2OrwELUYS8SjSqtFWnojuWswysX5ocEYlmWgVLUVUWxXHLy4oVo/4xGJMbQyfM2IWUSYQDFfdUh7bpNm8WkZa6sGzGspQNi7Xc7EoFKn6UZhweH/NKXf4kkS0jSlEG/z2q1wtYCQo+3tul0uoy3tqkbF5jlohkXgWpx8DeYLRsaXpG9ER3RLEnb5+OcowosTWF7CbBWNhZlHVUju2jcNXVro/XGPhRdp03QKTzvTcffOZpamtR08jyUsIc9w3npCthYeWYh2EvSlE7QBVVKkeVS1mSD9EAU/3eNxQex86qqKMoC5510vMsybty8yV/7rb/G6ekpx8cvOTg6ZLy1RW/QD4yvjKZpuPfmW0H7CgbDMYtlwc1btxmOxhy/PJbvDEymJNGhLK9pp3nUEJOOzApPQlnboLEmdlP7uL8Gof8mihs7et0evV6P+WJJVTcMxmOMUm1zn+nkkjRLSAPQaK2lWJWyb4Xrip3/qqoS4M8Ji0lrTVNW2AA8WaVoqpqo52OtABFO1yhtWu2+yBAxSqONwWth89RedKfw0FQ1K7Xk/PycPDXkWcLn332Hoxs3OH15zOMHD7FLsY+kCY2zLFbL1jaUgb3cdt9zNjTRaMJ6tkR3QQVQ26QGo6BcrsL8gmZeYFYNz4olJlEsbUNZ15xfTKjC+zzQENuM05a7mFDOGP2KGFijQndm5wPDX6FjaboXYNNs7NuxTCZN0wAUpaTIPHZB06nb65NZK1pgWpMmWcs6M0YAnRgUy3kU1jXy3TEobW1PFLMnJDVp50DU53JWgDEPLcAY52iSbLDJbdQE2wQvNnzEYOxUHCPnxPdSIUHrPNY1oS28WzcAikewocvlUuwvvrXl3sqYN6pBaYXTCofGa/ljjcEkqfzcyDhaL3umURneSKfDLE3Is8gQk7GK99s0UhbovBd7gezVKoLIXsoE0zQTRlu4pygSrpWm2+3R6Xaom5rpdMJHH37E/U95dnd2A8srjBFxb4xRA8FOrOGm9a83Yorw67Ue1BV4qv1ZyuXWSJbamA/Rn4vrNwJP4jYHgCLu0Zvgh9uIj/wmIKZQifjY1q2TnZuf9/5qmOACWB21N6Ocy+uqSGSZrWU4WlxgY+Jcx1A2f3yF5RQuqG3gsPGJq2eW/flKor9963rzei201P5uYyf0IRZU11hl4cJ8GxNwNRZVMU7jleO6JqXWm2Bce6vhea7fu/n7V+I1dfWe/6rj59d4unEUxE673Lx1m3c+93mePX/O02dP6HW79PoDlPesFksePnjIi+Nj5vO5lOHNBHhSnrZUDg91bbm4mDAYDDc6HjQhI6lwdUNdlpR1JZkEZQI927XAE84L8BTaOies6z4F/Gjo5p1WdDICT/PZjLOzE6pqRVmuGI0H3Lx9k+FwSKfbJckzGmc5n15Q1gV5J2U2m/D8ySM+ff9THO7tsrO1Rb/T4eXpCXmvQ9oNXVJaZ1m1i7asasBTNRWdTheUtE3V1pLrFKUVRbHEO8ed27co64bSOrIsJUsT5pMJ5WrJ6clLiqJkd3eHuqrAw2pZcHp6Bl4xHIxYlV6+LzhzZVNTWwlEEpOSaEPVNFjvKKqGqnGUpSNJDL1OLhPfJxzefJPRaIirQivtxYKyWLKztU9Tl1R1wcXFCWW1FMZDVZA1IXCqahHhTGIWSpEkkmlBi5izQbJonU4XbRK0iR1JDMvlgrKsBDBEsn4X5xf84Ic/Jsk6ZHmPQX9Ep9NjsRrQ7fV48+1Ps1wt+f4Pf0i/12dvf59799/g3ht3aaqGZbEiZizTVLIqV0T82IBZwhxqpZ/wofZLv2KUrpkYWqN2zXC274oWdY3dtBvMxhleiy5vEE//iuPq5nLVKGwAQyrSl68BTH7jH2oNtF2HrKJo/CbL6jqiHn0xxUY241oHBQGZ/FpfKlybIgZn6/eJkGpgo/n4P4hih+052eiuoRQmTcE5bAzoQ+DUUrvVukzBBNHusixJjWEvAk9f/AUup1Pm8zmreYGtG9LUoAwCPBVLHjx6QKqUdFNr6mgGSBLD3t5uCLZt68gVK+k6OZ/PQ9mMdPlJk1DW4pysHSOZyLquOT07xTaWz+69zf037vJP/uk/ot/v0u11OD+7YDqdtcFVE4CJyMZITCLlXz6WI2tpma0ALdoZqdbt9cWSZQGeJEhQBnq9jgRFRYG3EimlJsEo3VLZbdB9aJRDJZpulrNrujSqy7HOWOmGJhOWB1YYBbaxkBi0MawWS4plwXK5RKPY290h73apgzi0C1mzCAI770Jpr2iXOWcpfUOTdXCDDvQ70M/E3oR1qgKIap1078o6Od5noSkFoSsTuCSVrL5WVM5R15Zh1iFTmg/OT1g1NWfFEm0M405OoxS18mROk3ho9EZJYAQ+gylIjKHf7ZGlGYkxoQS8aoEJZcSWN84G9at1aUIr9euF9aCTBNfU0tU14jSKUCosgcew16dcrfjoww/43l/8OY8fPeTw8FDK4o2m1+syHOxy795d3n33XQ4Pjtjd3ePw8JBOp8N8uaJcFXQGfYqyZDZfcHJywseffMKHP/2Aly+lc+yg26OTCfAUuyhF4EnmoBiQxslYmGTtIvoAPL0u4xoPHUYjyTJy32NaTqiriubyUljS3Q6L5ZKT09PWCe12unQ6BtcIUFnZithoxFlJdnW6XbQ2ARwU4BQlJYrOCXMrOuKxbCLNhLGznM+YXc548vgxR4eHdPOcrN+nk+fU4Xkatf5s7CyolcJqLaV2KrQgD3Nj07FUCgFqg2caEzUAWZJxuH/Ivdv3qBsBgG7fuiVgUd1IuXpvEDSENIvlitl8wcVkQlEL4NCyWzYCZcFjxPeybt0+PAITHtEw9N5T1zVVAJ46eRdtDIuqwhMUtCJAqkOJYSy1iM75Ffsd13acC7T+uzAHxK/q5J2Q5AqBrfNShhe6ZEnTAX0FeALIsyx0kBKGTr7B0nCBBVGVlSQDgp1IspSjm0f8td/6a3zve99lenlBfyAd4LZ3tgPLR/SW0IairFiuCparkvmy4Nat2yilGPVHrFZLZrNZYNUZqqpqkwAgtqdpLMvlUm7aSHnRarWkrCoa25CbTMqAnYCVpW1wtsHWFf3+gH6/z6osaZynOx5htApdyhxaX9LrdxkOQwMd21AWhYioGyNrKM8pikIYOI1tWSjGGJqqFnCpDYBilKvaOeKMAb3uWuy9X4MhWpIrLnTbjKU3TS1J48Y6BoMe2gx4+7Pv8JUvf5lvf+ObrGZzjpfPBHjRisY1VFWDig1vQoC4rvyQJEpTNy3Ascns0FpYiADlainXpRP0yqJqz+TkktqXHK/mkizGYDykoXlDox2JvwoOJGnaBuQxaCbYtsjcamJJdguEiZ4cKe36c16aeGSZNBswQWcpSRLKshSfQSft3qKUIk+zMI9du8dbK4moLGgeNVYH4A20lu7i0ZaJLpJmuVyitKLX79I0DauVNBpySoCnMoCREZhMEtGoShKpNvEKXONb8C0+i8gOJYAWETTFi6ZnLDmLep4qGAgf5tbmXHNO1oe166YcWps28WaViImTGgnUjcEZKT31aYI3BqdkTjdWSoGTJMFqjUVYqWmatvtWZHgJ8NS01+IiEGP0hhC8sK4iIKiNaChGgFY6Enfpdjo0TSXAU1kyHo8Jkc/GbrdO4G4eG95xwD3kHfrKu3z7mlNXX9v0t9tyZrUGnjbhqc017PCheRcRtZLrCc/xOnspfo+Uo4dn6Jz4QXER+rijheer4nf7jctdA1PxOq+gSBvfHX2H+P+r/sMGZNQOwVUwTmKz8LNC4pb1cK1Po9bnapNDcczi266Ahv4VUEhd/4eXT6uQYhdfac0t8hv33OINGzbtLzt+FkjUju1GTPWz3qviNbwmTv2rjp8beErzPoPBgE+9+RY7u3vs7h/x8MkzXhyf8rWv/Qa3b9/hbDJjNp9zenFBUdWMx1vs7u5xdHhImiRUZQlGMh3dTldELhdLlotlm+WP9E6QgKApKy4up+AhQbO7v8vuwQFGacpVAbUYmzpM0kgAj9kFpaWbiTY66Kw4dnd2UN5zevyCRw8f8e1vfYtPvfEG9+7co2yk48xsVWA6KxqlMHnOcGvMeGvMeDym2+tgjObJk0cMRyNIDcYayqoiy6JjLQ+sqWvqSrLX0iHOUFeW1aok73TIsoz9/i64hn/3b/4Nj5885tt//ueYLGe4tcPdu3e4c/sWi/mMYjnn6ZPHTKdTzs5OWcwvUd6zu73N5z77Oe6+8Qb7N4744OPHLJYrtlIRQp1MZ2JUkpQ0k+Dv4uyC+XzBYDAABdPLGd1el1u3bhDL5pZPCjGMHQmE67LBe4vOR3S7inGasH90D+cbzi8rrP+IqipQSnN0U5gdqdYkaUKaZiQmx6g0ZDSCYKDW4szHbEfYJPv9oG3j+5RFycVkyXQ64fnz57z51qd557Of4eXLM6bTKQ6NtZ7nz55SBUHb7e0tvvCLX2DQ77V0zehsKqUCi0HQexFLDawVL4EsMdMaAahgEIOKQhvEbOyl63+0GYKQFfBrAxhxkivo8YYB/Ktoqq8DoyIzqN0xonFSfkMP6ZUPhWv3rfHYrPVdXxttPXk8vQ8BCFw1fgrW5UObr21sGG7D+Yr1+u0nroB4rJH/CI6pwHba+OT6nl8do1fuJwBTvW63pdZvAk+KtRB5C1Yladt1aDQe88b9N/iLP/8LPnnwgNXkEtU4tr/webRSnJ6e8PLFS549fcZo0GdnNGJ3d4es02F7e4ssz0lScQAXi7kwDaqqBdiS1AQ68XqE8JLVLlaSVZxMLqiril//9V/j1q2b/NZf/006nZzLywmnZyeUZUFEGfIsFx0QbdqAzXonLC4dgQtxnKU8y6MSAcvcaiNICLpLSciU9npdnHVcnJ+HILwO2SUDSSIBe3w+oVOYNobFasmjZ094+uylaKE0FpcmRMH0JE3azliusTgs5+fnzGdzxuMhvY5o9qCl9EwpBWlgn9hIv/YkiL7TrClZNRVTtyTNEpJhSqcnnc0kW+vpdDuhnA7RE7TCsKoCXd851+rG1a7GOkXdgEqkTEx5EaOe4XhWzvkffvxnvHNwi7/92S8CoWSG/z9p//ksa5al92G/vV+X/nhzvatbpru6uqfNzHTPTDfIAQdDgCAgEPxAEhSCiqAiGIqQ/gyJoMQ/QCFKQTBCNBIBUgJoQBBmbM+076nu8nX9Pf6kz3zd3lsf1t5v5rlVPWyEsvvWveecPPn6tdd61rOeR8ZCsaJhElifcZyIDYZSHJ9dcnJ0zGQyYb5Y8MMf/YhlnjMcDtlQWyStVNgQde3drFSjY7H+sqFrG0Y0EUZi5Iv1WIvWU12WXDvc51u//uvYqmRrc4O//jf+V9y4ccM7bEV0ux3a7Tb9ft/ro4k2RmEMBsd0OuWnf/xHnF9c8PjpE2F/nJ2J3l6ccO1wn8PDQ7S3JAyjJZXXVDPGeEFuYSI2BQkBWBCmo2rilWuOUcAFC150vTIyeCtCzVJ44LcXxzG9Xq9h14CApZVfm09Pj8myFofXb6KMo3IFqjY4VXsGkhKQ0zpqVTXARIhW3VZbxNT983x2esrlxSWffPwxWZry5htvEMde98QXnC5a0zMJrDsk5wnPTmBdGp/IWwJDSEwxlFXYcF2jREDW5ZKqqpnP5mRZKmxiJyNSRvtxQSe6i5GKBGj0RWdZlY0+TnjWW1mrubdqK6MPk+mMqqxod9skcYJOUv9zh04zehubAgSlCbEf68nSVJoKUbB+kXxOOxXE/Br9EeXjVOHZKsaYxpa9adr44tdpaShk3TZRmoAWt9/S6z4ZY7Ba+9gvsayx33aO3INKsWdFxQgzNY4jer0uG/2BBxQ1Do2xsMgLLodjHj95yiefPuLDjz6W4jKKee3hQ1pZxmg0Yb6Y8/LklFa7Q3+wQS/JcE4RKSkov/j22zJyGkdEsSZNk6ax0m63ZGQzzXDOMRqN0JGm1+uR5zmLhYwY1XVNomXkTvsx3MJrly4DA8iJjo918O6HH4hURCbXrt1p0+l06Pd73L93l729XX7yox8xGg6bc1QWwsbt9fu+cezXcOdkHCownqzx+pm2YUSE5oZzjny58EC68o2VZAUshFW8GbtVtNMWuzt7HN444NadW+wd7MsoUtoizVoCIGColaNWUCtWAIExYB1lLjG8tuKUhr8njDF02m3SLCPzY03zxVycJ+sapyOIYhkdr2uiSEDQ3fYGSonDX12LiL2K1mQaFEgdrdBeK6u24mRZlBVpkhAn8eq6+N9L4oTAJknimDiJmtgu96vGESYCvOGAqYmUptVq0e11iWKR4jB+lDnEyZBTR1Ha7KP17okSWqWplcQRaSLPxmAwII5j5q1MGEvOoSJwmUy2aKXFbCQ0+5yAaXEc0W53qOqKsiyZTacslksqD3rFscgb2LLyLnG2YViKQ1zNbCoag9aKdp72I562rkH5prVvqlX+HjN1TenvyW63S6fTEeDLg9PWidFLpGM6m9u4qmJaVsyqHF0Lm1nFCuNiYUk5h/M5TV1b6rqg3RYQaT6fUxQF+XIpTNP1HNg36ZQfA82SVJ7xRECrhoGjRWsxirTE7LJkY2NDpoeylMwb3ehQfzRp7Ofk/1daNavv+gfpyuvzIYSw9gT8KIANKy3F8L31EbQAEIamsRQ9Pnf2elkNa8qt6qHVuVKfRVvWDi+s+6/WPFqpKy7pV37uPPs3NJMbXMldQYGC++aVff9MbRWmQ9yqvPLHoX1Nopp9WO316iPl+F6Bh64e7+e8mprJhc/xNdJaDen8sTa/oDws+coxfB5oFEA5uwairb+3YR7qlSTMVbLFCmxSXD3/vyzr6ZcGnpSOSLMWeweH9PoDEj8qVlY1G5vb7O4fMByNubi8ZL5cUBtDqy2LWrfT9Yi7QSkJbNLZjamrmqqqqcqKoAG3TrF21jIZjVAosjhlZ3eHXrcrQaeqpLPhu74KqAnCldYXV1LNSnCTE95pd1hkc7TSTMZjnj55wpsPX+fatWuMZjMWec7lyZQkz8nLAmMNUaTJfIAXur3j/OKcsq4Y7GwT+1HB2IvRKY/Ehk5O7UUYlbHU2qCqSgosL0SnHHzy8cd89PHH/PgnP6bTG3Dt5m163Q6721uUpXQ2xuMRw9GI+XxGWRQkcUS/12d/f5/NLZm5NhjyqqCyNdZYlnkuyaR10GqRRDGLyYzh5YVQTHEcnR7T7XXpdFviRhFr7+gD/X5fOgBGBCw7SUqUprQ7bVrtjDRN2Nm7yeVowejyQvSWtg9F2yIS2/MkTYh0G61Sca7zxWjzEPgFPxQHcSwdyG6vQqkZ4/ERi0XObDYjiiL29nY5Px+SL3OydonWEdPJFOssUSy6O4eHB1ifaMis94p2ae2qw9TQS/EPtQrXj+YBC/ROQrDxgWeFGa0HfQkUrvnX2uszz6V65e8VcPPqQ/yZh7/5t/+HDcehCKTaELBC4GyQ8WZdUk3gcqvT8Nk9dAFQd+vx++rBqc8HfdyVv1e7ug4eXV1/rh6/sM5UA0x9Zh9eOUerMcAVYr/e3Uy8fXNZVfBKV0ZZ6xclvxB7Bh5K02q32d3bA2A4HFKMZ0RhR5xjMpkymUyYzea0U0nyer0uvcGATqfdiAWLBbI44BSlFD1xHDcJmJwrB15409QifFyWFflS3H8evvaAN7/wJt/61q+RFwU/+OEPmc6mjMZj2u0OWdbyhb5DpXrlYGFltCaKNNHauRSXQId2YI3C2HLtGgqlN/b2zmmSULqS+XzejOBEOiaKglaaXV0zvxDrKKIoKy6GQ0ajEZPRBN0WN6JwTyodCVvJCBBWm5rlcslyueRwd59ev0+aZQKs5GXTQbTG4LzzDL7QwTlKW7FwFWNV0Ymh3YropAlRnFAXwsBIohijLEkdY2qDQsaqaj96Y5yMUionSbD1yVWsFImO5ZlSilLBxFT87PgpLd+pBem8Xymq3drfVmKJRpMvlwwvh+S5xPkXL17Q7/dZLBa0e1067RYOI2LF/n4NXXvlgXKcH3HxsS2MtTpWXcnIi8RbUzPo97l39w5PHt+irmu+/vWvc//BAw9GKFQkjRpjDJPpjPl8QWUttqooypLpfMZHH3/E8ckJH3/6MZPJlPFkwvXDQ7Y3t9jc2GB7a6sBkcLzWDciuTI6qJvERjVW38qpVdITqVVEczK2FPbL+bGZULrqKKKRpg3JodbSwfcFP74YMXVFWRYMzy/p9XrEN7QHQwDrcLVBBZDCymidjDgJQK2882USyXjjbDZjvlgwnUyZTibMplMqzwLQ6/HQrVYGSaJDcu5Yjc/hBf1V84x9JtjqILcrz5erZZ2qvUSB9jmLVn67BGFW1+xHFEVknoGc1qKt5nBiAuOPy1o/NgU4I5p4RVEQZSnoqGHcGSdshazVFoewKBLtKiUjiuLwK82QGNBWtNTWO9yS/0tSXBlhd1ZVRZIK6yDUXg4pAKyTainy20Oppom1WtFpCoBVJ1x+ZI2IzYexW+Vc89xkaUqn223El/G5ZVUblnnBcDjmcjji4nLYgAdfzDJ6/T6j8ZSirDi/uGRrWzHY2vYC7RFVLuyprU0xo+j2usIUyZKGKdLr9ciyjG63C8BkMhENrsGAoihYLBZUXlss8WPYcZTgHJS2piwLFss5VV5QFiXtThfn4GR0yWg0ZrO/QZKktFstOp02vV6X+w8ecPfOHabjMWenpwS27Hg8Js9z0iyTGGudgMfGkGapH8eS/D73sgwhNoWiyfmxyHBdtI6IkhhlDJgVABPFwhKyFrJWi16vx/bOLtdv3qTT7QHS2E3ilKTVQhtD3MqETWRq0jiR/Lz2Qt8OVFgfwHfyhf0UZSlZp02nlQGOvCqwCrQS0MF5PZnaViglTP52khHriDRJyT07TSkn4Lr2oy/WM8gbdrcAQMZar7EVEwZLtZbiXUASGf1N0oQ0jZuiM/bjvXVDbRVGnzE1UZoRJzG9XlfGihc5FVXTFFUq6AquwBpjq4bZHQrWoOMoGq0R7baYN1lbC5Bbymhm4pJmKkGbGmNlPDJEJplgaOGWlrmXDciXS1mz1JpYOQqCEUYAF7wofVGUHpT35gVag2dVBXONUCMqrRuwwxiDK8uGMb6uMaWcsBdVpInTjNI5AbY9qJalQohwcfgdRxAmD+OM1krTuSgKzwqUMTsdSx4Q4su6GUAcJ6u8Dgi6FA4ZodaRpioLqqqk1WrR6XZoZ5l3NWxS81VF4VwjbXG1waua2Bheqypk9fWf/3Jr43irX2gqm6BQH45zTRO3AXBCcNZrQMh64s96XfP5ciSrg/psGz7UMk3Ztfb9UGM0eUM4iCZHh6aT5dYQoc/shLv6bxfG1l5pd6tfgFet/6zZi8Du/uy2GvyoqX3W6qFXr8GrwFKzM6ua6xcylNaad7+I4HB13G5VN60Djuuf93nb+GVevzTw9NHHjzg4XPL6WznHpxccHX2Xu/fu8W/8zX+Ts7MzHv/TJ/z03T9jmRekrXbjKGOqivPTM27duk0UReRlQW0MW1tCSd4IyPpsTpoKQGGtI44jbt26SVks+Xv/5R9xcO0af+Ff+Ytcv3Gdg709Ek9LNtYQ6YgskUJPXAss1hlMjbAFXN5coTiJiTa36HR7PHz4Bj/6wY9wVjOfLRhdjqnqknKx4Omnn+CAp48+acaE0ijm7bffpihLnjx7ztLAxtYWb779Rba2tkiyFs6KNXm73SZpiX5AXVbk3l0ly9LGzWU2meCU4rWDPTpJhLUGY6WDOxgMeOuttwDHhx99xGt3b7O9OeBP/3jO5cUZ08mIdqvNN7/5a7z++mv0ej2UEiFMSfIty+WcujIsFjMmkymnp+e884U32eo94Pf+6f/Ej3/8I+7duYvWmqfPnlGWBUVZ8PCN1/nyr3yZr37969y9f4/RZCJz/z6huChq4jgmy1p0u13a7Q6vf/Eb3H/9KwxHQ5y19Dodsiyh3+tycnLMs2dPyUuDtRW9XkYURSxymRGPgjNJklAag62F7l1VFVEck3U6DLb3qJyi2zsnzdqAd/pwUpTHsaHdatEf9PnGna/T7w8ryWLHAAEAAElEQVRwRnQaMA6tpegIAVpm30WDwjqHwTWgl1Urx6gGFvKZ6qvPlRSYKzeJ9Ye/Gblc/wy1Kj5Zf8hX5QafA1c1n/mLHuz1JSiAN5J4rH7SjA2Gv7Xfll6z3oTPXaGa4wrgj105IDSv0MEI37MNWrXS9PDnan0tCJuU3Q5jiqs58nUwCkSUtgHKYMXI8gmrVKmrbYZQuy7GjPMuOx5Vc35uXfkREFMbHBZrHKWqmZc53V6fd774Dj/5/g/R1nHj4JBuq00rTSnzgo8//pDK1Lx2/y6Hhwfi5pWIQ9RoJCNAxoMDVS2W8Fm7TVVVLPLcCxYr8qKQDuly6R1Ex6LrEGf89m//S3zhC2/xG9/+JtvbW5yenmGd5fbt25RVxTIvWBYFuR/TqqylWIjAZZbJcxd7h7/aGWoHWgvzRClNVdUe/I8IblXGj65FUdBgctSVYTQc0ul0ODw8lJGQylD6gj6JYu+GJU5DSdqiXix5+ugxk8mcxWJJWtboKMZ5y+bVuqyYjidcnF/QbrXYuDZg71DGwGbFwhfCxhsHKQEuAGdqsI6FhjxyDPsxRZJA1sNtDbDdFrXMONHuSSGWV6XcZ5HCajBIwWsruZ81SpLdSDSWrDGYskQF3QYr+7u1uY01Nd87ekxpar5x7R43Nna4tb1P4SyVc2RaQA1TVcxmMz79+BP/HGkuLy65uLigLCtAM58vGY7GPHv+HBVptre2SJUm0wlFXQqgkQh9X0gjAuhI7F89wNbJOJlGWE9ZlmBqQ5HntNoZ125e4/UvvEm73+Un7/6Mjx8/5vXXXydOEhnr0yIC3ul06HQHfPzRx1xeXvDypYgoK6W4efMGr73+wIOFhvf+7GdcnF/w1ptvcu/+fa9ZVbAsC9H0SzIC26esKmofiyVUrGk9ITHYVt4g3scVY30hUNWr93hGkvKgSp7nck9kCaBIIy9K6gyuqnAKBu0Ouq549OFHDDY2uX39NniGb+VZb9K0WIHTZXAX1JrNdo+NXpfHj59wenrG//g//SMWyyVf/epX2Nzc4l//1/4Kg40NcdLFuyhpdaVQkwAVGlBSsITC3RqDjCbqZt2ojGFZVFSmwlojgItWVH50Ie22odCUdUVlDfMib8ShZ8sZDhj0+xhrmc+mnt2WNAy5btZGKcUyLzBlRe3vsywTDZK6NvQHA7prI8naX5OyKKSpmHqnTq39aBNkvuMvTAKfkvu/E6XROPKqwmIpfXwKMd4hgJXF64E4iCMxq7kYXoKP2xKxPWDR7bG1tclotEluDGVRiPV608VVoHTjbOeePhbnSH/vjMdjbt28xebmprCF/FhopBN6gx3Sdp+ydnQ6fa5fv+ldtRSlMUznCy6GI0bjCXmeU5bBOa7G1IbvffdPOD87p9/pSpPPd7lCPYR/NtbNSLLANNF6Nc6UiQh8K5ExQ2HUxnS67eY92i+HrU6XKE64cec2+9drVC33VZalJGlCliX87P33ePfnP+Nwb4/X3nidJBJmTlFXK4ZwYMr6KCOs9BVYdyUTCY2+kA6sjXxHcUzsHRfFPUnGKPv9Daq65uNPHzEcjnj6/DmD7S02d3ZZ5gVHxycYB4PNTf7yV75Cu9ult70hILOC6UgA31Yi416tdhullYwIeufJuhYws5VlnlWWymirtWRpyu7eHmY5pxpdMhsesxid8tOPXnByPub5s2Ny5zjc6mEKsHlCXefUyyVZu+2PSe6x+SJHRxHtVoe01aW/uRKJl/HtFVtGKYWrrX++uuzsbrOYzymr0suEKCgryWO0rNPGOKI4Is3E3MfaGusMYH2zzGMA2uM+2ruqGYmbrZYcd6xFdy9OgnFFzXQ6EZDKrDSemvyrDoyxLpFvRMn36+Y9VVkxuhxi3WpsDwWLPBeGMQIoRXEsDqlxjKppnE6l+eyZTsrgosgDC77p4hxY23xGKxVNtTzPmU7kuUuSZMV21ZqiEBbWy/FL0XZrt3BGANRlXYMKBgdKNLucRRnodzp0222RWMhzFt60RXlNOa0i71C4aqaHV1kLCKiNgFhKi0OttZZOp0OaxLw4PsbiiJOEa9eu8ytffocsa8l67j9qbUXnamXyarHvruTUv6iZ/HkvJSdWWE8eaJd82U8YhGaaFDoClIaGpY9fKoD3zl0BTWRiodlhX0N4LU6lpJlYO8+CWq23Zm2b4WcBYApfX2lyh5phbfsQRrYhVAVu/bz5z1x9Le8QR0F/GkKtppvT0kBQ67pPV4CZ9ZPrVnJX65crjM9dQbGaE+Wasyf7t3KiDOf1z3/9AgAqgFvNjfGLAasAVv0vgVrr7/1lXr808FTXsniPx2MuLoc8e/6Mw+vXaHfakogeHXF8fERtDPsH1zAmoapEfK2uqtW8t0+qIr94lUXR/FySLeupoo52p0WWpixmwu5JswztE8iiKKmtpd1p+4dALpDxD0OgmUqhZJtOqnP4LgX0en1arTZxnGCMCDgGS3DtoChLTo6OhZ4dabY3tkl7fSpTg7Es5nPSVsvraDic8fvvtSMi8GMuipl3D1F0BZ13DrvWFVFa0+kJ5bnX67GxMWB3d5fLi3MuhyOK4oBOlq6sY+OYditja3uLTqcDCkxdU1UlqXd3mM/nkvhZS5EXvrApSNKYolgwHY+oy4IkiYlwmLLk4vSUjX6PFzvbvPnGG2Ats8mUZV4Qe5e8qhaKrVMadIxxim6nR6cXUTsZY0ujmKyV0elt0J4taXc2sMsFdVlS1hZtRUw1dEFqZ6n8mJwzxmMW0sm3Dq/XYNFRzHJRcHJyynK5FOAqklGBTrvDoD9gb2dX9nXtIVinISoPyATNISfiCL7aWUm7heAeQCf59+cj3Fc6DeqVoPPq25oM83N+3sTCfzGxtqufL6CcaiLiKjCH42saEaGrsA5QNd2CV/YxVIMNRL8GSIXfDYcXtuE+P0Cub/NVcC6Imr/6w0B6dc21UKEhceWD3frG176vnATtYGijdXOyBWx0NM5ZVisRbdLyGVVdE8Ux25tb7GztsLe9SydJyeKVVhjWksUx3UGPwWAgiQ2u6bqVdd04yznw1varrlw4xqXvpi0XC8pCdAT6/QG723s8ePCAN996k92dXVqdjOHwHAek3gY9ihPQEU6JbpOxFldVqLV72/pFWXnETqTLhD0RhEzl/nfSvfVCtetdD6WUBwb9aQ5JhhfOdNrinNdbUFrGHoqS6XRKXpTiYFrVRBaclefceV2QqjLkvlO/MRjQ6/ZI0hQVR9RVIUWpP68yvabQPkGyzlLgKLSi7sTYREMW4dIYF6mgydyM9VlT+gRNCXCqBWDCA8pXngvZajMeEv5oK+PEtbNMqoKzxZRPz45oxyl3dw79CRJ3T1PXnBwdcXl5yQfvve+PRTGfz5nP5+R5DuBFfnOePH2Cc4521hLWR5ahYt10fsP1bFiACtxagiNJy0p0UnIqi7UGpTVpljHYGLA52+Ls/IKLy0sGg0063Q6tbifkYFgLZWo4OTnh9PSEi/NzHI5+r0eSJrRaYUQg4+jZC5bzJb1+v2FsBLAQFEYH9pgwnpr0Zy0xbOIz0qSRxFU1IE14to0R7aKyquR+SmSkTXQkHbU3p9BKyUEEd0gUyllMVfHyxUvyZS5uZK2MKE2bsQ+JpSvNjto7HwWB+aqQHOHp02dMRmOss7SzFoN+j4N9GQ1qnh/cSsgXGp075wT4djoYMbD6Pg6sX7/8+Vr/ozyLwjl/jL67rrxouzGGOjJo5yi8ELf193BZV8T+Hg/5WRTJ86r9fRWE9bXXl6trEfqNlPbHE5YFOZYQ00IhEq5VjAiQa+fvV5/Ry7hCEDcV8ffarQqDSGusL/BWcT8sQzJio7Qm9aMV1rlGl2h7a5PLyw3yy4sGEGu323S7XYLzV1kKiBs6+JirI2LNmJMHqpSKiJMUpSKqqiaKYnrdHoVntJdljamtBwZsw8yw1mBqQ1XVXF5ecHJyzLzTEVc6u7rngzNRaKSYWph1nU6nWe/SVHSqklZGnKZ0srYI6QfgqdcmTVLa7VYD7KStNlGS0Or3aScJpvBOdF4IWkcR5+fnTMZjYq3od7sCPCkaJ0YC6LTmXGx9cy3kVFHU+MkKqBaYKYAKTl0BcEgzAT2UFuaJQlzS6lpkKFot77CYEMWxmPOYAhCB9539fbr9Hq1BH6f8NYsE0ArAU6cn0xFlVcl4UxyTL5cslnN6XnctiG0758jaLQ4Pr2FnY6pUUUQ5ZVQwHS5JiTg9PhNXRwxWOZyW50lilPJAsXdtVsYDOimRd7Zs1hLnwbY1HRqDQVfG61/FwrY2fmxYKeJYnpmVGLARDVgPnElzSNw6tc9f1t0Qw1IW8p44OHY214lmTTHWrIEbHvz2X0uq4xp2XpBGCXE+sBSLUkCz4JS3DgyE/E/5dTcwhHTjwqV8XHAE1pYcs1+HQ97n7zsdRRILfQPGFoXf83AEK9ZKVZboOCIN29G6icWy6rsra1LYcFVVFHku47s+PqzXCI1r4Fru3vy9/l8X2KZyfYoiZ5nn/tlO2draluOwlpWm7HqWHGJnODZWSXd4R0htr6bAV/Lz1Q9WjNtV7u5z6/VNNttasY6aa9p81AocCoDNFebM2jUJnyc5v38ePq9yan5pfXrDNV9fOZTPLZmurqtrR9KAMCsA+PNOUPiUz17L9RpDEa67uvJbn329CuKsg06rXwtkBnnbqxUWq/McfvKZelFqQOd+0c9XH3WlVlZXz+svZDE1daC6et/8Eq9fGni6fesa1jr+4Pf/ObPZXDpNtuL06Bk//slPGF4OuXPnDlmrhdKW+XTI8dEz2knEg7v3pOAzFc7WOFOzXOScnZzwg+99j7fffpu333qL2hryPGe5WGDSlDRL6Pa7bO7u0O73yKuS4/MzxtMJaatFmmU8ePganSRiUebS9XUrjYjIL2pRFOG0Fgp6VXJ0dESv2+Vgb59Bf5Pt7V2iKKYoa8bDCdZavvL2VxmNh/z0z34kbhvA5dE5VVnyhS98kd3dPa7t7bB7cMCD27fIMgn+zkrCulwsKLyzA8BPfvRDtFLcvXO7KSCu3bjJ7u4erXaLJIn59W9+i5u3b6OzjINrN/jyl7/MH/7hH/D48WN0XbA56HH92iG7OztcXF6Ky2Cvg8UyGokddpK1uHvzJkVV8//6r/4LTG15/Y23wVnOzk6Jkoibd27y5a98iSSG3/rN77C5sYmOYi4uLvjJT37K48eP+f1//vtsbe6Cifjxj/+MxWLJ2++8Q39jwPa13UacNC9LZosF88USpTXHx8dUZUWsFe12h/3FHp1uly9/9Rs8e/Gc88tLHj1+RFmU3L1zm1aWkbVSzs/OePToUzqtjFaWcbC3RytN+fTRlMvRmB/84CfUpiKJ4Lt/8gP+v//gf+CLb7/NzVu3Rfdre4c3Xn+Dbq9Lr9NrFiDlFLG3q5YOjqQHSfyKVbMSZoO8pxbXtFeopFcfTp9o6zWdJ3U1sK4WzqvF6zoW1MSQK4m18gCX+vODBmsLY7jp9dr+rm3zM79zJTb6UNoEstVRKM8KCuMg4ViCDtbqvFwNcCGJDovZ6rhkYQqBJ5TE1osIB1ZaWPWsr9kJ6xmKoGyjWIF8zbGui5avJSbNZ7tVcau9GC1eD6EZEQAyr1vikE7tfLmgk7W5dnjIb/+Ff5mD7V3++A//gJcvXzJfLkiShK98+SskWUqn32Eym3I+GhLo0dZJd7Is6uZarmynRUB2eHFJkRdMJhMZP64q+v0+d+/c4Xd/9y/x1/7av87+/h7dbo/L4ZDLyzHGighwnRfIvebodNu0et3meOq69qMOMtac57l37ZKRYa0t8/lSElfP7nAxWFM3rlEgSVEwmIgiAevruuLJs+e00pRWmjXClZURv55WK8HUltHFBWfn5xyfnpGkLeIkxdQWW9donYDoSjIaT3j69DlZnNDO2uzu7LG5tUVuaoq8oPZ6IFG4Q60jrh2JgaUzVMpwGhuqToq+uYMyNWa5wHg2U62BWBG1EnEajNtSnFcVWmW0IkVV11TGyKiVoimmxB3Jij29s+R1gauN2HmbBItFtVs8m435T/75/8Df/NXv8KU7D+UzHJSLJRdnZ/yd/9N/yKNHj/jZz95rbKvTVkaSppydnRHG587Oz/k//0f/MRv9Ptf2D3j9zTf50pff4Ve/+Wvce3Cf6XJOZWtqnwRnWYYxom/VgB2eQSssIUm6BQStQtbHxvYWBvjj732P8/MLjk/PuXfvLn/tr/115rMZJ8fHfPj+hxwdHfHB++8xnUx488032dra5N7dO5yenvLDP/0er7/xOl/84hf5yjvv8NqDB7TbGUWRN851cs8biioHJSBBik/gvTsQBNZh7AEZC75oKr1YLE5E7AftNhdnZzx/+ozh5ZDZbMaXv/JlNrc2mZma2tRYUzbW7UHMOmqlxFoxGY149uQJf+/v/b+5fecuv/rNb9Hf2qSfbLLIcxbLBe1uhzhJRDhYKRkhiDVxK+P5y5dcvjzi7//9v8+nn37Kf/Af/Ac8eO017t67i9KKZVGgvUBzpKOVUKxzK7vztdgYYmUUyXhf7XVR8jwn6C5Enh0QqUiSdf/cRH6sNoBLrW5bWI0WCi+8ezG8BKVIMmH55kWJKiu0yhsnqlbWQsWQJBEOy2K+pCgL0bLxIHKWZcSxuNpGUYLGoCPoe3MVAQeFgVZ5c4VMt5p47JxdjVsCVgkbamFkdKy0hiSK6bXaZEmK7viitTakUdyAd7GOSBJhlfd6PeIoJs8LsqzFzvYO3/7N32J7a4f/7L/6z4mjSNw/33yT3/iN32A+FzH873//+/z4Jz8l3eiLiHte0PIjXkmaEEbFUBp0AlGKjjJqA5fDCUpF7O0dMF8uKMuKs9OzRmw5y1L29vbIWq0G4CqLkmIxp8wXZFsbwjYz8gw041ZrY2q1ZxRZz5yIolg+I8+bta7tgSeUMATyYtlU6KauhUFeG3QS86//zb/J7sE+SslocVGKM2Wcxrx8+ZLHn37KP/xv/j5zr7MjOYWMBEVx3OiPJd59M1pj72mtSXzDz1lxeYxiYb7K/e0BNu3H5ZJU9IyimKoqsU60vByK+bJgsLHJg4cPAWHKaJ/L6TQmabewkWZW5Dz99JTlYsF4MpFGRb/PLF9KE9g3w6ezKYONAQ8ePODF8RGffvIJb3/xC9y4ft07r1mGkzFKKy7GIxido14+5uZywq1yzv17D1g+bLGcTHh2ecnl+IKydlgsxBqtWiQ6JSUh6XaI04TBYIBCNMesFV3MIEyNEiZpt9fza3GEqWvyZUEURcymC69BKWBnFGm6nd4K2JDMhE67Q5ZJnDW1YXt7E2MMi8USwaF1s9Ybz5JMvIh6AKQC00mMdgTwSeLEA65hbWlh/Jit8tc586Bd0PlKkoSqqjg5OWE0Hkv89GNvdV037BiQNVVYurIO6bW8dd1lSwGxCpq5FuPz7ij2DNRcmtUhnsZJIl9XlR+j1yxn85WmjTW0EmHaVUVJlqS0EnHEBMdkMfcMYblHsyxjPp8yPD9lPl9QVzXKg2nBEVeAYgH8V4y22gOhUaNnFhpbtZXRTx1FRHEkYLsf+5bxvdW4cGBDNiY5fx54wC+WoFitM7/452EeJOTgQcXQsoLimnoobMc6xG3w6ticCk1KVAMQfi6jRotZi7Ia5XTTVWgIGWu1U5hIicK2NCvAyB+cjKevCB/haBut95Ub0grkCjXMVeoSn4XJWDu/zn/G1fN5taxyV35PrTed/gVeSqk1k6vwaavd/NxbogFq1+4IJ3sYmGuft58NcPgLXp87cvfK37/M65cGng4O9lgulzx9/oK6LtA4ZrMJJycnFPkS54w4adQVzhqKZc50PCbPl36eWE5AsK2VrqNXHfAdWFPX1L4zWtc1F2fnDC8vParvHYUi6RxEDUJ/BX+UBMV/w2ExoTCVfMh3pUpqT13u9rscHOyzWCx4meckadY4EERRTCttkedLFos5rSxjo9/n4cPXuH79Bjv7B2xsbtDrtKSI8ze7czIDr6wl0RFxpLl965ZP4o/odHsMvK1tp92iKEuqUlDv2hjanS5ZJqKSnXab3d1dRqMR48sLDg52SJKYNBVAqyxLbxtcNUVsHMc4oMwL0YYpxE2o3+tR1xXn52cCyuiIJ0+fMdma8faXvoQF9g4POLu8AKU4Pjni/Q/e49GnH1MUBVtbG+wUuwx2N3BUlLVhPBoznc64dv06nU7H0yctde0oy5zZfCrOdN0OnW6HTevY2LgUNsPGBq1WRpaljbher9ul12mzu7tHlqbM5gtAM9gc4Kyl62fPtY7Y299nd3+Xvf09tre26XS7ZGnWwP1N11ytBRv/vShQkRvE3nm9sPCezz5In0HXfQKwmuMNv6Q8Cnw1cH2GSRQ+z9/Hr472ORcCy+eN2K2hXf63Vx+7Blj5m186RAE8evUz1vdtFW6bxNP/7Vij0zdvdld/6TPnSUJzOO9X2mprx9Jo36j13xQNlfCDAGap5qdXw37ohq2DXWF/FGvX2gFK4s4qcrvmOkixG+6ZVcfGGHmWBoMBt+/c4Wc/e5eL4SWxd3HRsdxTVVXJqIupm9Ef4xkejS6P18QwpiRfLimKkvls4RmghjiKOTg44OBgny+9/UXu3btLp9PCWMNyuSAvZBTVhrMRQcMN1qphammlvJW96ObIWFIoYAO1PoCRa91aU39mgQqd+dDNChR6Y2yjrxKeH+PHGZ3y48/OiTZKWaIT6XTjtBfnBlMblmXBcimdvyxr0e/3iZKkGZ92wd1mdds0l00BJZZcWepWjG0nkMWoyqFz0ZArywJXRMRYojT2gqY+qfKdzyiOpShuOpZez0dJR86f1CauOCeW2NozQ7Ikw7mK02rO2XLG2XRMN81I44jpfM5wOOTxkyc8ffqM4VBGEQDioiBOEipflMg1MAyHQ/LlkjIvcErc37r9HlVV09vsE2cpSZaCUleZw16YFX98TRq1hjqHYiOOY7JWqxnBW8xnzKYzZtMp0+mE0XDIYj6nqkoircnSlCwVLZXA1MuyTISmvfir0uF5W7mgFX7USQqhGm2iFQjbdEQd2lqxGQ9recOW9po+xgrjwAq7uC4rFrMZ09GIqihkxLquccagvFahNTVKRejI4YxnEGgR3jfGUFWViC73+16g2LPwWCVbDtcIukemblzOrt+4TpIk3Lx5k/29PW9zLh1rYZWISLizluVySV1XLJcypiggjjSoTA0VgSWoZEwXtXJnspZUKWKfYGvn2Xn+IVDOuxJFCo0cl3HBCEN7N93VfZCmSRPbZJzQO0NaibVxpGllon9TVUVT9KZJLGBcFItYfYizWolOi4QStALjmXlFLczCytQEFmhge+SljLsuvJi/AyI/riQsiNV1sNbhENaoaLLhC8SVU51SUpjuH+yzd3qKs5as0+HW7Vvs7GyTZRnT6VS0WgqRF0hcT1YUHwNSbycfmBtFUQqbzIOoSokuz8wYZrOZHwlZrRXWSvG7mM9RWtGl6x2cVuCp8gVlo0bVxGKvtOLwOn0W5UTHKYpi//l+eDOsTdYIUGBX38M6r00jjmPKmGZcEi/aLOPXwo7N85z5fI41UvCG5lJDa8Ovug5sVWOV8gLMoTjSKIc3QRDJBAGePBvNeE0cz4DROhKZBa29dppl0VoAiryoybIWvW6XJEnE5S5OZWTM3/9lVWIrmE2nIrtRm4ZJO53OKKuKdppijOSpWmnqsiKJIjb6fYplzsXZuTCRFORLcQ6s6wo1m6GrkkVdUNYFbZvTtopupGhrxVltqJ2DWOMqPxqqNTqW3DxKYlmfrRMHQecaFmVwXwvHEceJn1pQJEncsI8kNQlMGrnHpTFqfDSSPMx6INc065ZIS6BWembOrXT/tI7CauBXBmH9G+MadqjFu3mFHfF/1p0nHSvtU6UUSSoGBUVVNlqrDhnVb3IzJWtDU6SBXyNss17R5JnhcPyiH/I4woet8kXTjJmHu1TW7RoofF7TbreIPHvV4BoJASUHAgqvaee8WYmhLMTNMZhDhfOwPkaquMp0Es2zVQ0CrByYw3PfMAblbGo/uh80gsMrbOfq1IBqrp78fy0fDy+3kgsJP/484GL1iazez4oZb92KUX0FilE+P9cKnPYguPts4zdcxwDuvHLtQl2ynvy7pq5XzTUPn7H+2SHX16+caxWeH8K94prPvnIK1uugkPu7tfpFrVdwzQY/c/6aWsm98l3l1r53lXH1OVhRU+c1NcrVDfjvuWaBVWs/d25tW2vP6KuvcCet309XxunU6tlb38nPTOC8ck5/WaZTeP3SwNPXvvoOp2dnvDx6TpZG6I0e08mI8Wgo9MDNDeaLGYvFHJRmPl9wdnrKZDykNDlOGXTkKIo5VVWRJi067ZTt7Q1aWcJyMacyltqK/okxhh/+6Z9y9PIFrVZGr9OmkyZsDvpsbW97PRYlaKkTtwLnH8LgcFQbCz5JAdCRJFZ5WdCqW1hluXb9kK9941f4H//BP+TjDz/i27/9F9nq95gvFxhr2Nvd5+jlc06PjvmN3/gWX/7yO/xb//a/w/37DygqGfcrK2HIVFZGxoy1VEWBsZZWEtNqZfytf/vf4t0/+zP+zn/4f2R//4D79x/wxsOHbPS7nF+eM5tN+PmHHzCZTEkzGd+7uLjg4OCAb//mb/H//E//H3zw83f5K3/lX2Fzc1MK3LJiPJ6QpSnlzk5D75YbAeqyJF8WXJydEynNW2+8yXwy5Q9/759zfHzCZLrg//p/+0/Y3NzkP/qP/y+0NwZcv3ubi8mI7edP+enPfsr3vv8nXJ6foXBMxyfcunuXg+u7FGXN5XDEBx9+zKePnvA7v/OXuHv3LlmckGhNni8piyVnZ3OsWRJHNVsbOxzuH9Lrdqiqkr29PdJUxgJ3d3bY3Nhka3ODzY0BnXaHSGsOr93g4uKcypTgYNAZNMF9sD2g0+9y9+5der0e7UQceKrSeM2omMChCQ9zcLQJoql1VTcOH0Loj8ThgjVshdWDulpwQrDTjfVkADcafOUVLY9mxGr9QV0DVgAZq3glMDfYyJ/zCuFQBP9W88RhG64BdtaXFglDNsw9O716f9gfra5+jv9bae2Ffe2V/X+VoqkUK1qTWwFc1n72gJr1xr8acezw+crzwtz6+V4Vhg26vH5S1v4ZGAT4j7NO9n0lLq4wVmKPT39wtSTuGkW+zJmPp/Q3Bry9/Q4/+bOfMJpNSFPRwlgsF9SLirxcShxwMgqjoDESqLzDotbiCDQaTVjOF+TLJcvFElMbuu0uezv7/LW//lf5whfe5Hd/93c4vzjj5ORYRH6dJU1FPNw4GWlIs8xfNwfKXLke/a7Xf9Miet3tdBpa+Hw+pyxLUi9unnhL5fli2ozNNMmTbwqE8Y9eT5iF3W4fY+pmLMc5R2l8HHTCL3M6orCW8XJJ2u7S0QmRlq5qVVmWRcnTp89QStPr9jk4POTg4JCyqkQLznnXPX/tQkLQPEsaJrZiGlnq/U3otlBpgnaOVIvG0GK5QBdLGaVS0h01rO4lceASTT7TgL3SqIiMaXQunG+AZDqmRpzeKAoiHbEz2GAR5xyXCz6eD/nBJ+/zzu173Nza5ejoiI8++Zif/fw9Tk9PvSV2QpykVKZmWRRYpVFJgqsllue5FL3j8YRPnz7hn/zzf8a7P/sZb775Jn/93/gb3Llzh93BFsYaTobn8ozEEbUHe8TtKujbQRyngBeM9Q2LUPhEWoNxVHnOZHjJez9/l9l0xunJCVGs6XVb3L51w2s0bhLHMefn51hruX//PtvbO4CMDQ5Hl03XtyhzyqpmPJmSJAntdpsg3Jr5Ar8ZFcQnvLby+66a0YbQOa3rGjyIU5UlWMd8MuHi5ITldErV62LyJc5Z4kgYbWVeerGTyLMmFP1eX0Znt7dptVqMxkM2trfo9/ssi5zcj+Q7hPFsjGU+nxPFsTg4JTE7B3v87X/v36PX7bIxGBB5FjCKZjxKa6jLiqooefnsKZPxhIvLS+Ik5saNG3Q6Xba2NsnzwgMcAoAcHhyglRbNt7WCtdVqyXiSczgrumbBZEV7V8lIS+ELFTqKSVAMtgaAE2FwrRn0M8pSXN0Cg8XYGmtFwzGJM3rtLkWR020JS8ri6PX6JF5TM/xPXisgP4rl2hVJTG0Nw9mUqq7FQS6KaKeZjCBFMaPZlLwsyIsCBfSyNpFT2MpiY+2XIFlLKi9QXZYly+WSMELX7w+8HpkG5dCR4vXXXyPPF2gs+7vb/PZv/0s8eO0+IFbwK8BIRqm1Z8QlmWhFWhzT+YyL4ZCL4RCnNSqW44mSmJ2dHY5ePuPjjz9kc3uLdqdDlsTYSLOcz5hOxnz66cfcuHGDvZ1tcmuo63JVINugRyJNVxGiT4jjVPTrcEK0UtqPU2kiLyDeFCGI7hxA7LXT0m5L4mQoqJ3jcjyldo7KOBZev6vf63Fw+xaLxZzJZMxkPGE6nnDn9h3arYwszVAIg1KcvizaOxHm+UKaqz7+rjvDFqUwsgTAXTVjl8s5AEmSCdhb15S1MDBF1FpReOBsWVREOG7fvImKItGki8UYIrgij8YjKmM4Oz8jS1LRzEIYfi9evGA+X/DWw4doB2dHx7iyIr95i73BJrcPDvn5z3/Ox++9z9aOOM4mbYlFtbVEpiQCWhg0Oe7yOdpFbNQVG2hxv440upXgakNZ1tCPiLttOr0OAC9eHFEUBfNFfiVvXM8fjanJspQbN26QJilpIkCgjhRFKTEximScrteT3HexmMt6W1uKXEbx58ulmBt53U4xZPCxxzeloyj2YuaRv+fFYTCKIuraUVUQRTJWZ2uLUjJOF1grTiMC6v7Wq63BVZJYBtdfYy2LIscq6Pb7AtxWlTyXHphzcuASLqxvyPmmiXPQ9o1/U1crYFyphl3XjFIjzCnnHEWxBJTXppS8XMAi0WxrtTL293fROqJ2julywXg+FRkWJXmZ0opev4e1lsV4SundI21tsMYQpylpqqnr1Sx75KdaglyCAGCuuffDQ1HbWvbPiclVkkpDrfbMJ6mht+l2e6v8NtwrKO8IF56wq0X+VSbR2oTBLwAfwqes4xSv1jtSz/rR5zCGHeK9CveWIlZyPaui9DFL1gAxaNKEqQ+0Z7v5a7x+fPXaDjQmTh6AjNaOoQHUG1SWBmBaB/pW9c0r9cCV87UCWxooxr0Cwqydj3U5j/Xz+5laDvCQLeumVQoV5jg/F3S6cnyvvAJA7dZd6FwA5lZ109Xf/MUFYwC0Q8Og2Ya/Bo6rp6053rW49f/v65cGnn7+/nvMZkJDVJFf4GuDMq7pahhPWc0L6Wzs7R+QZpnYlNYVkvTk1LVhZ2eXjY0B/X6PyWTMn/zJd9nY2mawucnh9WskaYqpKorFktHFOWmccHl6RqIjet1u08nDiF6QigVUcnXdCAUDVx7iUGCGLk9ZFvQHPe7dv8ftO7epyoLf/M1vsX+wz/HRES+ePeP9d39CXZVcu36Nt7/0JX7tm9/CKsXxxXnDNhAIXxKeRpchPFReyK82Ne1Omy+89RZxnOCspSxylnNxaUuyjNoYJpMx77/3Abfv3OXOnXtESpFFMdcOD1hORwz6AzrtNot8ia0NVV6wtbHFO196h97mDnGSMl8ITff1t95kNJpwenJOWdUUeckRJdqV9AcbPHjtHj/60Q+p6pIP3/8A5xzPnz/n/OyMbtYmVZq61aaVpIAjSTPyZcF7P/s509mc4+MTjHNsbXSpyjnj0TmLuTgaWiPMq3anzXg4oy4sefGcqqq9tS2cHh8JOq2lW1/kBZcXF7Rb4niolBT7eb6k22lL/FKaRb5gPp/T6rXo0CHNEhFY9BGi6dStva5SD1fsjSjyIwusOs3Nw++f6HWWwOpjV8DN+uc3XY/QcVh7WD+PpvjZlw8oK8D/cwH75t1rBXIz172C+z/z0h68Efckr2vk39/ENJ/kX+UNcSUaXTmW9e2G1/oqptSKqaLCf2RRaHpUKnSFrrJs8Itu6OCEIjAsq+vdmHWMK4wufmYR12vODkGccM2Bo67lRNSlxLCQ7MSe0eiiGAk7TizRI80yiMdW4pJi1yO4IFzUlYz+LBYLry0i9/tisaQqRFuu0+7SbrX5zW/9BjduXudXf/Vr7Oxsiy7SMsealb5QbSq00+hIQrgxwsSwSPIYsDSHYrlcNGyL0JGKYhkBwlriKBIqeFPYGXkuwjle76LjxyKtagpFlHQQa1bizrWpwWpMVVMVJePhiOV8IUWylYTCWYdxNbPZksKPJbVbHXZ3d8labYqqErDQifMZOJy3xdaBUo0idwbjDMtMU2eS/LtOigmaTqjQCG6SMVfWzfhDU7B7unyiNVZFjdED/j6qqkoSKa0wzojQsT/LTsu2RFPPEacZo2LJ+yfPubO3z+2tHd+J8y45eLci/3VIuMJ/AxvEWSvU/jQW56a65vmLF+S5jEfdunWLf+2v/hW6/R5pJDpTZRCxx6Gckbi5Dtp5naKGweLZs4cH+zhr6Xd7RJHm5OSYOI7Z2dv2wKKhrlrUdY2O5LkxtSVKYjZ7PXQUMZ5OMNYQxwlZKyVOE+aLhQg2T0ZkaYa1lpOTU/I85623vsDW1lbztBtc8yxaJ1813XC9Yr44K0nsfDrj5bPnPHvymKOXL1gufg1nDJPJpBmhdNZRl6LdWJcVHa/tonVEUZSelaJ5/OgRg41NkijCGkuZF5ycHFPXFf3+gKyVsbm1RZqmtNoddKeDspZerydjpgjDa2UTHXIQibFJHLHRH5BGAr5Fccz21rZoY6UZWq3csow1Yivu7/M0SYk7cSPcXZaFNOis5BdJkjT39nKxYDqZCQAVRaJj6fV1AmDrnLC3lFJkaeY1YFaMmeBiJXwmR9ZqU3vxeGlu1b6JE5wCwfOtAmEPtyZ2GPkRB+X1a2ItDZ4oEiAwURFR2iLSEYNOx1vKi3C6rEey5wZhjgQnx9KPxRpnKUthzQx8rjCbTZnNZoAjz5e8fPmCyWQCsGL3WCmUalOTRRmbWxt0ul2UvzesnQrbfDJB64g4jqhqYXTEaUy/L0LQvcFA9ILimLqumUzG9LodXn/4Gp1Ot4mDxbLwjKdwH9vV2hRyBbdi9TZOqMaChigKLRGaHDMstdqz9JRnVAWWrqlF+yyOYhlb1Yqet5yPtKbTbhPHIjTunNfAwaH8WhGAJ4PDExGpihJj6iaGNMLSvgAPBaL2rNKg54ZSRJLIoSONUsElTeJJkqai6WnEwcw6y3Q85XI85PaNm2wNNsjzJUWZU9diPnP98FAqZSP3dF4XmLqW+9ZPDiRJQl1XnJwcc7C/z9bGBtYYmdYwA5yxDIdDWq0WN27dZDYacf58yIap6VnHhlsQW6irUqY2jKwpmXFkrS6brQHtboc0TfyofMVyuRB22VpRG+oQucwO5wxVVTKdTmTMtQvWRQ3jT06pbdwFHawBMt7prcKzq8QMZdUzlCc+rDdBkFtHMqgecsvKjwJajzisdPbwuqoaiyKYojQNAmv9SJOMeJ6cnjCeTJu8QBqHNKxM5axIdLjVPjUNTh84wmc1xjKhp0hgxQrQdWWMya2MbrRSwv52qtkOyH0xvLwUpmarBRqybgfxQPW6ZUqjkwRblZRF7ll0FRrtXYdDlulBEZ9khTi6XmMGwLU2K01P/FqmI3HjDRpPkhPAYrGgCNpUShHEpJsTwApwbqYaXikOQt67erNbfUb4V6gp1uuDALj489kw1VnL8f02A6PLrm3bBTTc31QWGs2tJofy22kYSn7TK7bzWsni3yN11NVJCzlsP4YYbpFXwKJw0j4XyAln5c+pw9brhtU+sSbXsXY+m0V17dNDTebf1VSQcoIbwGj9mMPzGE7GOqAV8p7mh81nrj0/zX129flo1hR/j1prG/fW1U6t/lqdu9Wt9SqD73MZUP8Cr18aePqj73630fdQkXSGtHf7iKMErbSAG0XFxeWIjY1N7t+7R7vTZTKdCC3WWhYLcSXa2tqgLHK2tzZ5/PgJv//7v88X3v4Sr73+Om9+4S2x5KxrisWCk5cvcZXh+Mlz0igRZD0AT7UhCkHdgSsrARbXbphwssJMc7fbJk4ilvmCra1N+t23ePzJR7TbGX/jb/xVbt64zp/+6Z/yJ6rm0Scfsbe3x/0HD/j13/gWf+kv/2V++vOfcfTkMVmrS5ykdLo96ZTpqClAgtBnXRU4a8iLJd1um29965ucn51zdHRMvpgzHY3Y3N+hrTvUxnB5ecnv/7N/xtd/9df5l//i7xClKco5Xntwj3aq2duRUbv5ckGZFxSLJQd7+/zWb36b8/GU8XzJeDrD4vj6r/8aRy+O+PGP/ytv8TxjPjpjOR3yb//tv8W91x7wP//jf8zwcsQPv/en5MucR588YjAYsL29RdTfQOuAtvtFfVnwp3/8Xc7Pz3n0+DFf+epXePudt6mKGeenFefnlzLuF6V0Oj32966xnI45Ls/56OP3OT095tqN67RaLQrPCiu8BepgMPBjEavOQRzFtFspt2/v4wwU85rZdMbxyTG9rR6DrT5xKs4eJl9p94AUWAG8WZ8bD4ypZuzDg4brD6aAFn6kIQRXRdN194/mlWdkHWAKn/9qcPu8ULf+Kc3C8i/wIIeFIowvi9HW2pYcBAO3VbByTaAMAahZpj4T5LmyP1fA3DVnuPDfMBF+5Vj9NtQaqOZcSErW9+lVUXfvqubfo2Al0Os8cLZ2qj6vyxMWfqU1GuVBGofyo7FKu4ZdoZUca1GUOCeizpHW3j1KivU8zymWS7kfIs1svvAsDOnCaS3CK9rZ5uKWlTiqTKdTlsuci4tL6bbVq/fs7Rxw/dp1/va/+7e5d/8Oh7d3mE6nPHn8VJIgExQ2HHVdorUii5X/2mGdxjoFiSRfIQmZ50uqqmI2mTbXLvUaDe12hyzNyDIBBCazMSDgvGzKYmvbJFfhfBpjhDnhu3U1hhIfi63zbAtFVZYs5wsuTk6ZTyYo54icIrGa3BpKYxhOJtRVTZJkbGxscOvWLebLJfPlsnl+Y+S61JXsh0vCGqRYmJqpK1m0E+puQn+jC1lCpSxWqxUgiyQOGiXrRC2j4TqK0FkLnYjOTaIjXBSJy5a1/jkQQEdHkbAejCFSq46/i2IsirIoMcqRZR0ulnN+8PwTvn73Adp5BzBvF66UEsaVc9RGCju7lnhEUeQ1A2XcKO22ccZi6prHjx/z/nvv8cPv/4Dr167x2oN73Ll7l+t3bpGXBbO8wGqFVWBrC2YFzGoloqZxHBFZS2Qj0igiSxPu3rlDt9PBVAIyPXv2lOvXr3H33utMp1LEO1dTVxVxIoCEwdBK2+zu7TOdTjm/uBB3qFZGq9MmzVJOz05FF/LinHa7gzGWDz74gGfPnrGzs0PP65yEZz2MPOGk4JYCJVxBpDhSFmcso+GQjz/6iPff+zkvnz9lPv3LWFsxvBSHwDLv+5jjmIzGjEcT+v0+7XabTrfHYrFkMh4zny/4+bs/4/DwOmkUY6ua5XzOxx9+yGQyYX9/n52dHe7euk2706HVbpMkMYl3W8KtdJuChkqTdDsaPZzd7R3cpoVYtD+ERedjrZVkbzgascyXDEdDUEpGyFsZG4MNQjq7rGuK5aIBYVq+mAKYTqZ88smn9HsDer0+6X4mzlhuNY4SWENpIkLV4RWYVUG3RWJBi35/QFmWuKKgqgxlZWi3vX6mk1ijHX5kD5zxTYFIrluCdMdbSeybTQKE6Cgm1RHoiFbaJUliBgNhaErhI2BeaDsYD4LEcYSKNHlV0fIOfstcAOxOlhArxeXlJcPhJQ7HbD7jo48+5Otf+xogRd5oNPZFlBTurVaLvb19BoMNlI5YLHPMdM7Z+QXnlxcCkrmEoiwwtiZtJWxub3Dr1g0R9o7lfqjKirOTE9qbG3zhrTeZTKacX1ySL3Jhtfp7OgD6WgdmQFOeEFgFcSTHXVWVLI+RX2etjBMqrxsDeDaJLK7OCKhVlCVlUZB0u2SdruhYxhFbG5vCnIsU7XaXLNui0+4gzKQldVFQpyUgDl9BLCMAj84IAtWwOljp9zRroF9znR8vrH0sjXzRo+NYGjvKH5CWe906x7KuUF7/5vTslPc/ep80ikgjzcJPVvSrAf12i1u37rCczxmeXTDOcxbTmYz5Aa22jKe12gKYP3n6mE67RevOHZEEyUUPy1nL6ckp27s73Lpzh6cVvH/6Eb24op1YNus5mTWUZU5ZlQ07KKssg80BG5t7VNRUpuLlyxfM57PGqEP7Jmo4L0Ho2+EoS0tVG4aXF3Q6HeJYE9uY2Ikbp/Li88aUjKdTFIq0yUWUH6k2WOS5cH7iIYpVI1wf8p8gBK9JCAwH6xxlZXzOKtdYDB9WoIFSirI2Pic2PmdTVEREKiJJZXrg/PycxWLBYrFo3AJDxiI5nDiD45kxkreGPE+hPKhaW9PkqevFdQM8rTXBwis0yiKl8HPeEuuslz6pSk5OjkhbLTZ2dojabTqDPqoy4nqtZM2JsgRjRKPXVBXWVMSp6C82wuM+f4381ERZlo3QetB4kvFgh6l80ySsB0qR6rTR6ou1bkb+J9Op1+aSow4SISEHb9g+hG+sjv8qQ2cF9ARw6UoT2YNOIabKRMjqd61amRxYnJ+iUM2nWvOK0Yw8/vK1v6bO0kxShB29AryGn4TtOA90eLZviIPBNVyagoH5Y7HWrdhG4YKEExL21a72cx2cdLCq6Va797mvq+wnxRoUePXXwq25dg0aHCq8NB4A8uf/Fbynqb2af8gzarhqqLL27qs729waV0En5ZPokKsGFnYQ9V8/luZMOtc0kJo6jzUgzoFSq6b/n3cOP+/1SwNPsY5wCsoiR+kIHYu7h+gEgLNGkkFlwNbUZc5sMqb74B6v3XtAt9PD1DI6MJ/P+YPf/wNOT0745P0PODo64uLoJbzxOhvtFq1ICqoHr93Hmpo//pPvYpyhqHOePnvM6fkpN27dYmd3l1bapt1qsyhEz6ioKhkPiiJJWBw+UCsfsxzOOJZVznQ8JcsyWq2MB29+ka29Q07Oh8zzEusUWsvpiZOETq+HRcnPdIKKM/LaErkK4pw0StBJC2ekgAgaGwppxoynCxwRt+4/pNXfxCUtVNpivMjZ1wmRhU8/+Jij5y957cEDblw7IHY1jz7+iEeffoKtcrY2B6DlGe/3BlSFwaCoHdTOsbG5SX9ri59/+D6z2YxIbZEv5ywXIy7PT3j25CmdNKHTysAqbOXQfsBsNplRFDllVTAcXTCbj8UVq64bB6WqMv6cljgU25tdLk6P+d4fT71dpSaOEzY2Nvj2t79Df7DB1vYWeSk272+8do8b+1v87N13mUwnJN6RY2tzi9l0zNEnH5P4+XjnA07bz74/+vBn1FVNvizZGGywubXFg9t3ef3N10niFnVppOhmJc+j1WoQIDx0IUkTtoIFFa8AXw8AG79Q+9rnlYDv38vVx14ePtcUlZ8HOr0aK0J8EZZV0ItaBUoJZKvPhKtI86t00Kv/amDXNVRbYd1KPyBEy+ZjdAg68jPXqHqvLTD+M8NIoTSWViw/oNGScmEf10+DW9sfD/I4aMYVV1tQza5HTjfnQ+Lx2gVbvyDQPPONbkbYd6VE48jJmJucA9E6MLXFKuuBGo2OE+LUaycg+hm6MmRZRqfT4uj4Jc+eP+Xk9IjR6ALjapRy6NjTiv3opooQlkVRMR5esljmjIbStdwcbDYaNb1el163w1/9q3+V119/yPbhBoVb8sknn1DXFcZK91ZHilarJ4YFvu1S1aIjYWqDUo5Ex1BZTE1zDyqrSaOUna3d5twXZUFe5CIWqiQ5RkFl8isON0ohjn+Roja2ca0jgAHOicunUiQ6oS4L6rLCVtaLEUcUZc2T4xMmsyXtpAM6pnSOWS4jWMo5sjRhc7BJ1moxXcwpyso7aMk+yG3jcMo/I7WlSMElmkmqmeoEt9Ml6qRUiJOfNQZbW1wSEymFrkW3TytNPp1L99cabCuDTgdrQecGooi43UIX0iwxPo5o67Daot2atooHFxMn933tb9pYa2au4kld83Qx4flsTLff52Bnh1THKCuOrkHpMCTUmJBgeCZGonB1hV7kkqgmKd3BgFa7TV2WTOcz/tv/5v/DF7/0Nv/rf//fQ0WaylRoK4lrRAyRwpq6eU6tXXWclRIBY1Mbdna2UTg++fBjHDDYHNDKUmERlyWUJdoYYgWbmxuUVcXT5x8SRxeMRkMuLy44Pz3zArYx3/mtb9PORHNPKU0razGfzjh+dsS7f/ZTHj96zLd+7Zsc7O6zubWFijRlaVA4aqVQxkJtcJHcjHUlxxBZcTfNkoxEWVSZM7645MWzFzx//ITNXh+3LLB5wdHFZdPI2Nra5u6tm+RlSW0MH330IePxmC+/82WSNOXGjetsbvRRWPb3tuh0Ega9FnmR02q1abc7dNsZaRqTJZEkXnZlIR5imPPx0dSenedjoEah4khuZh1JgRRAJyXOmhZLt9chy1KeHR0xGo/58I//iGsHh/zOv/QvY2xNURfgRCTYIuC5sTVVLWLg1llu3LxOEotmSL5cUOY5vX6n6bKLEYv1LEXjCzVf5ii8GK8VJqKOVuyoLCMvcylwlc+2lYhYL4q8Kfg6rRZJnOCKGpylnbZlrQM5bu2dGbWiqmoWy5xciyZQ6d8CdqUFFMR8oxiHZTKbMZvOyfOCuha9SqcURjkqa9FxzIOHDymrmhuH19na3OKth2+wt7MHwMHhATqKePOtN6lNzaePn7DXH/Cv/s7vcPf+XYwVnaDpZMpoNmNeVNRa4eKIJI44fnnE3/8v/2t6vTadbpvHTx4xm83Y99qUg8E2xhpeHp1grSOKZbQwTlK0inFOs1yW1LUlTlOUFoA5jiKiSK2BmUGE3a+tvqklzqEiMi/rrKbttfxMVRPpmLidkbXa4vSXiQOesg5qQ6vTJo4i5vM5cRTRbXXotNu0Wy1xTwQZ+w0FkF9PE6VIolXxGdyirdeTMsYQ+wLcOUtVlz5XcLQyYeVFscQD5QECnKOsJVanWUu+ZSyJitjs94lRTIcTTk9OidDMlzm1ceA0+bLk0aNHxJFIWuhFhPX3rzE1n3z0ERpFoiNa7Tbb2xskScRweE6/3+Hu3dvcvHmTrNVid++AJM1YDHO6aYt33nmN/sUzusMCnWYYZymSMUUkAJyONFG7g00URVQwOh8xny4o8nyl8xOqTESj0FjhbGvPiEmyFs6K6HhZVpR1iY61HxuN/TmSs5/FqawtngXnFBBFKDSxh0VqJ0xFsTJYAd8KUL4zaY31n+uXHbwJiTFETjcOdOAaXaK6FGFyYbmJC2KNpaai8P4jwcFUD4cNICNaj969D9EGk1vJ50oe+A0gmHO+YYuwHK9MDIR8cu15CNMNkY9XpqoDdCsxRiHNG0FCsKZmMZ2SGUNLCYgXp4nfFcfl8SlVUXpR8IiUTMbOahNOl2chqmb8W8cCpjsXJCSsCMr79VZuceuFtGWfrLUslgsBl5OEZZ7zX/+9v8c7X3qbwaDLtcNrXL9xcyXI7sEVHQ491BKKBqBvzpFb13daF/1+1XAo/Nc1CJVyAhiJBpYw4QIDOdK++AwyGeH21srrc4GKIn8uVyywV0HCALgIEOcacFKWBu1jg7zJWGiARue17lA+t1QNSCK1k27WGAVoHQkusQ5Ueidn55rT19QTr06mfN7Lrp3+1V14tV4JXzuPRDUTGa/Wfm7ts9bLS7V6V7MdFRqojsYFdu0dDSFCyTRAcK5eL76ao1JhrG59h9zqeBxewH1VsDYAHrI2uWajzUf+C71+aeApikQfpKwrdCQ3qk4TklRsZa2TWVkpiCymrsgXc7Ik4XD/gCzNqGuxyp7PF3z0wTPOT0558fQZlxcXzMdjqCtaSYTGopXl4GCf8WjoT6ShrEsmZ4IKd3s9tja3SJOELMmYL5YyJ2/q5ga0VrSekliSvPAAOwdlUTEej9nc2qTV6XJ44xYb27ucXY44vxzRSnRDJdRRRJJmGKfIqxqnYlSUUlWlOArVFThFpuXxt7hGLDGOxbZ7kZdkWcbetRtYHTPLS1wUM1vkos/g4OXzF1ycnXPt2jV2tjahLjl+8ZSf/uj7vPbgHjs72/7iO9qtNmm6wFixeK6to9/vkGYZdVUyn03odzuUZYGpchazEWfHzzk8OGRrYwAOTOXtKx0iYFsWGFNRljXzuSReeZH7QldRFjU4g1IiBH547QbD4ZiXz5+zmC8xtVyzmzdvsr0xYGNrk/5Gj8UyR2notw4wu5t8/4//gONnz+gOevR7PQ43BsxmE44ePabd65J12n6xAmM2qeuax588oirFpvWN19/gxrVrXNs/4O7tu5xdXlJUJc7Tfp1ya6DTqmsSOukOh60NOI14N8g7/FItS7hzBHzb+QdzBf74h42r/Jr1IBFcOsJPQqATRGv9yVIES68QBMNvNh0nj/Q3W/0FD7kAKy6EvCbmqGYbYeFRfjsroKsJmgoaC84GUPL79TndFucXvgBWrXZOfeZ41uKpgMPNerc+cqea3260rlgtMGGbn4nYa7sW7I3DAQVnEOUDpRY6EIGuLI390N3TqEgRJeKEZbxenKpE4ydJEqazCc9fPBOAdjElTb3ZgfYsEBuSH+fdSnJms5l0A+cLkiRlZ2sH5wuL/f0ddnd3+PZf+A3eeedtJrMpy+WCk+MjtNa0221Qch+0soxWu41CmHnT6RRrDa6yomumnYzkOQ+EKbkvtI7odrt+AVOYyYhqPhNw2ZgmSUvSlTNL6D4ppQS8qL0IqGdCaC3ixrUxUuhEEWXtddNqKwUGmqq2nF4OWSwLsjhDKU3lHHkpwr0KSD1g7RQsvEOPDZ1PBVbLk6j9RTbWu9TFimUasUigNWihWymVczhTY0vP8IgjibE2jE4qlssCW9dkTpJwozW2BipD3NJESSRgugPnwuLrO6hNQh9GHx2xP6+lkm1kaHJnWJiK42LOyWLGXpYy8OxY5QRIQSu0EmdC5Vafq6w8SzYWLYwyL8naETqLabUjXNZiNh6xzHO++8ffpapr/l3nn0dnURZf5KUoHYlLH36cwllJ6JCYVlUFZVHR63ZkvL0ovIV7mzSOBXiqa/CsPq0V7ba4lI1GQ5y1TCdjzk5OOTlau2etIYnj5glO4pTl/IKnjx/z6JNPefTJp4zOL8nnC/T2NlqJbpxTyENpDcoYD1RAbSp5Fp0DDbEGbQ2uLJhNJpyfX3B2esbF6RlUNa6qGJ2eedONmu3NTQ72dzm7vGQ6m3NycsxsPufhw4ekWcbB/h79XhewbA56bAy6bG0OxBnMyihTmibCSoiU16uwa1F0ldQKhuhjsVLeMdXHPSIvyhw6zZJUWiVAZivLIEkxtWEymfKjH/+E+YMpf+k7fwFraspiSTMargNL11BWNdPZjCzL2NndERMx65hNp9RVTaedEukUHckaiJUmWWWN14+Q+3g9DgejF2NM41CmqwLbgE6uiXnLfOkd3Wo5R0mMrY04nLXaKwHzsPIoifth9NioGl1FWC2gnozzJb7BmRKBAC0K5suC+TKnLCqvuaKatai2lgQ4vH6D2WzB4d4B29vb3LpxS1jVODY2NomThNu3bzO8HPL8yVM2uz2+8fWv0e13sc4yX8y5HI+Y5zl5VVMrUJEmSWImwxF/8gd/xGtvPOThG6/z4sWxOPoWho3BgJs3bpAXOefnL8haLTrdPkmakWaV6BTpmLoyOKewkUVZJw2RSBN5bXHAv8c1zLIgMm+MkQ6bDrmLjIM755p4n6YZOo4almYUxxJXrCVJUxQwny/od3ukcULmHQKrshQgSa0XrlJwiO4fwoqwljqwet2KSY5zfsTOYmvTsJ/SWJobgUERwE1rpblTG9tolDpjiZSi3+4QKcVyvmQ8HJNECUVRybOlNHVtuLi8ZNDv0zk8gEhihfYGECdHR2il2d7aotvtsL21RRxpprOJxLd0n729XdrtDtdURl07xpMlrSTl3r1ruHoE41NU3JLGe6QplWgMORJ0mmJjRUnJZDZlcjGmtJUH9VWTBzRrhvUJoI/7wYWtyAsfpyqcy4QRo/0YlpFnM4nDiJw8Ow7nhd81osRkcUYKfe3DUWgehlxWoUSLZ02XFGTNsKbGy/pfYZEDGJ8nVJVoAiaJOLs6hOmptWZjY6MBqO1angC+yHYiur+e04U/GiWgTWOGsL53/vaDVX4ZGHVR3EwuUNfCiA7xK4CmGoItmLOGcrkUF9BEXBfTOMJZqGzN9HKEMbJuRV7zrSjLxi0U/Fiz1g3Ys5L2CM+AaMY562SRguaaBGaWc5bCOxy3soyiLPnDP/pD5vMZX//6V4ljMauwodEXQJ41EG6FnMjXgREWNSDLSnIkpOdu/XfXLw5W6gMPqJnQXLNyn+lwD4WwHxIzP1begHIBtDThMikxQlhjHKFWnKzQwJZzxKpJvFYHOPxYp1IExpAOeT0r2RSnXIAz12qz1YeH41a4K/fXlfcR6oLVA7DOenJrf4DmqVo/p6vRc7UGGoaNh62tgUrhg5ttrLZw5Sn1+xxqwaujqHIeQ5PrSom4tqGmnrv6juZ9V24L1mK/RDT/ttVYJi6AWOGs/3KvXxp4Qik6vR4Pb9ygqmvyfMl4KvPvcZwiYm4Vxlj6mxuixbNY8PzZM3784x/xRWO4fvMGN25cpz/o88Mffp/nT5/y+PFjDg8P+d1/9S+jo5g//d73Obm8pNPtcvLsGSfHRzLilee8ODqSB9FYtre3uHv3DkpDXubUtkbHiv5Gn6qsyPOC84tzxpMJ3V6PNEvZ2toWCmiW4ioRAs+yjO3BJu/++Md8+MEH/Pj7f8pyMWN/b5vpeEyvk1Lmcx59/CGT4QWqNmz1+7TTjPPLS2FD1A6HoahLLwwYkXnxTedR/LqShKwoluT5gnwxZzi8FPG6xQhblzx+9DHz+ZzDw32Oj4/47//7f8jJ8RFlVTKajHHKsWE3iaMY42A0GTG8POPyXJLti/MLLIrIRmz2tsmiFjsbu3z7N77N0d3n3Dw85LX797l39y4vjk/49NGnDIfn1FVBFEG31+J2ep27d+/w5ptv8OmjR5ydnbG5uYVz8N7P36csciJtuX3nLr/ytW/wve//kJ/+9F1uXO/QaXf45q//Otvb2xR5yWQ0wRHz/PkLPn38hO985zd4/ctf5tqdO8xmM46ePiVNU+7fu8+LFy/5s5/+Ga1WiyxNKawwrd56803m8xn/xX/+X3Cwf8Bv//Zvc3h4yPUbN8haLc4vLwHRwFiJuq2Na60lOQFUcEDsYnl7IywdbnO1Rh+X+z486KugSCMM2gQ/t0KHG+0gH+ldyA+SIMDp9ciaYAw6llXE1mExC8FldQxybKs4ts54klx17bjDefBBSKidLhyS/3MViXc6LJ6rw9e+K984A+J/L+yDA70OaLEKP00RvX6CA0qlw/mUZDSc8RCs1/+sYWPrUJl8rTxAtwYeha47wQLdCHvEmNCV8UmI/3mSpI0wpByfWO8aYyhLEcYcDLo4Zzg5P+KDDz/g+z/4Acs8p93ucHxyRJEXLBc5irD4yj1S5GKR22olbGxt8eD1e3R7HQ4Pd4kjTRJrvvjFt3ntwUMODjeZTC85O7+kNoZev0/knYfy5ZJqueRydAlDRNx3bXyUCJz2QvEhH1Cu0SWw1jIcXoiQZSsjjjXb25ve6lm0+Zxz1LZae16kMx0088J9EQSfRfdE9A/C8xArGVeMY4eOIU1FB2Y6nQvYY6Aqa6AAZ4ljTWdrkzgWoW9jHYW1IogdaXExwicLDlRtMJFi2YlYDmLm2wmF85VamkAcU9narxOiM9dtt1lOZywXC1qJJlYx/c0ezhimF0MSY+lVUJc15bLAkqKyiHackDrFbLn090rmk1FhTTloRrqdlTwvjoVdFaEojSOvDd97/jHT2ZR3xhHV8QXLYolRjjjSKKeIjNy7BhkhQgNewDT2w4E6irB1TTUTUV9rxR4dBS9ePKff7/Hd3/sDNve3GRzsUCzECS9rKeJYwAZQVFWOqyy2MH4crsM//We/x89//nMODw7IkpS9wwOcc+R5wYQpyjqW8xn5ciGjTtbyp3/yPeZexHdjY4Nrh9fodDocHB4QKU2aJMznc06Oj9E4Iq0wZcXRs+f80e/9HuenZywmU0ZnZwzPzrh39y5RknA5GqG1Is1a1MZ6Z0gp1JQFZ2UkYVSUPJ99yk9++BN+9NOfcnJxQaUV06JgXlc8fOMhoOjv7xLswPcP9tk/OGD3zm2sg+lsijGWNE5E4yOJaXc6lM743EyEq1WaksYi3By62DavPNArhZ8EsWgV4pQUKGVZki8WtFot6a57ZuFsuUQBNkm86UC1iqCREV24ukJp2N3fodVpc3x6gsFRWmE5OqDf6zVFUoqmnYhu23wyoZ21yLKMjUEQrLXUVQlOOvaic1lRFoVoCDkroKhf56I4Ymd3hzDu4+rKg9MJqRIdRoC6NswXC46OjjyjSq4/WrPw7pvL81PiJGZzc6NhQ5RlJaLecUxn0KWuBYRYLGaSXw4v2NreZmdnj8VigXOOjb6M419cnDMejXnx8iVJlnoh/Yg0Sj3oB61Wh1t37vC/+9//H5jP50znMyZ5zuOjIxbLJcvlgmv37mKSBJvEPLh3n/uvPcRiWZRyzXrdruhN4igWC9qtFg8fvMZGt8Nev4eOY0YXQ4Zn51ycnhBZS6vV4unjx8zncz59/Ji79+/x5a98hbff/hJ7+wfs7Ozx8sULTk9PWSyWXFxeNHpkdVlSKI1zAjhVZdmsg6LX1Vqti8FIxOcRxXLur5/GKHnW69pQm5qk1SJrt7h95zZJpBldnmONZTmfQ1WjrSFfzkniiCL3bNNc1hJjVqBSXdWYqm40LNudDlqpRhNMKS3vMXMPQhqyrCXxx1Y+f/G5khKtWB1pijz3pjwtWa+qGu2gnWVsbmxy7do10FrGkZYLIh3x1ltvoRR8+OFH5EXOJx99TJzEdDotkkRAuI1Bj26vx8MHD6VRM5sxn065mI7Z3tpip9clbbdAxxjEkOZg0MPOx5iLKc4kuGQTNxhQa5hVH7IsStJIkcWaLE1YzpeMLi6ZzeZUrvaFn2pYT8qtxpSalxGDhDhLBR/wwPpkMvEjWxsYUzVrr/K5mEgDaDyqLE0mPNsD5QFKyV0UyPiYEvaOdR7obpgdNAC0AJJhlM6KM52xV/bZGENVVp6FqBvAIYypYSxlVUnMRPK7AFo36V/IsRpnPYmTWZpSFEVjACMN1+Bs6c+fWrG4XwUGwvPR7XabRsOqIeqPWYljZacj77k4PaUqN+l0u8RxKk01r09rQ26FgHIaGa1TocHopHl9ZXTMCcPdWOvPvZLfUQqlREexAVuNuJ4656iUjI+Zuubk+Ih/9I/+EWmS8itf+YoHgVyjeRsavKvGsN9OAL48MKl8zr4CSsLwV8jjwz3VZFfSsLUOj3P6vMN58rUcp7PWGzisRq5wNIL14dpZa1cNzFc65SFXDyOI4UQ760TUXq9G4WiGfF3jnBcOwQWAKlob63UrzahQ6MghhvHWz77WR0oDaAp8Zr9V87e68lysA1GEq6BWYFQ4TLVeav55CM0rO6nWvi/n/CrI42DlCu7/rGG+/4uv9RrrylbVWi2nfA3p1u4o/zsB2lZ/3jG98voXAp6yLOPg4JC6rpgvFhRl5YsP6dYIOisPKF7nYzQa8eL5c65dv85gY8Du/gE958QWFnFYiZOE/YMDxtMps8Wc09MzkmzC8Pyc0WgiiY9z5EVOcNzUkSZrScGIt+9EiTNR7QWEi1ycSxyQ1hntThenIErjho4rNG5NkRdMJxOePHrEdDLClLcAy97+XuOUgBXEPtKaJI5J4hhtJPkUpFW6tUqHokl7kd1VcW+taVDbIl8yGY84PjnClAWLxZyqrkiSmKquOD45pshzslaGw1FWVeMclZcVy2IpQovFkiLPKeqaylgRfFUxcSRssI3+gGJrm/29Pa5fv8bt2zc5Pj9nmS8QOjvgHSw67QGHhwc8eHCfvFjirGF3bx8cvHj+grJISJOInZ1d9g8OGPQHJEnKYLDBxsYGt+/cod8fMBmPsQ5anYrJZMrxyyNqY+n0+7y5uyvH6ROP3YMDytqwf3BKlmakScLSVKhIc+PGTabTKf3+gMNr1/jKV7/K5uYmW1tbXI5HLBZL0iSVAOcX+CvsmRCcgiWwB4QacEitKJHhd65QLtXVABS6DmFiTK1FsytocUBF1JrLxPpnrwu68Mo2kKCPWm0PVhj4+thd83KfBzqtgkFYGEXLihUgFRYjtfbbV5XAaej2DUKlmr0J9/06r2n1Uz6Doge21CofULwa4MNrnT4s713bvN89F34QKMlrLwWNNlUAgOUGkeNd6Wuo1XVcu/YBfPI5C2VRM5/PmM6mTKdT0iwjTmIuh6Ink+ciMo51DdvA+Q7wYKNLt9diZ3+TbrfN5naXTrvFRr/L/Qe3ee3hXYrcsFjMfZEFrX7mRS11wzwqS3GxqY1tQB+5v8P5CC0QJ91052foraUoC0mEYl8cpilR7G3pjfztqldWrLAoBcTTrQQoRWxbdIicZ5fqRHQL5D5bWUgv89w7+invhijnVWtN0s6IdYw1kmRZ3x1UAXXCu3b5+8VEIiJeZhGLTOOMC1mpXNfGLUruyzhQ4UGuh7VETjXX2FlH7LyekrFgLM5oIh0JC8Gu7kSFalhTq/VaNedI+U57WKStc5zOpyQOdi9i9MUIY42/XqGPKJ+JckJV1wprK5TzLpxRmDcUjStTS3KbZSIIv8iXjEYjnjx6hNWO7ev75IihRWzFWRG/JgaR37quiG0CSoq507Mzsiyj2+nSbXcbPcYwppIvZY2pvBvV6eUFeVEAyo+5SMOg1+2i/Tkvy4r5fC7PnrEUy5zJeMzJy5cs50tMVZMvFuR+O7HWWFMLnb4BkH0WbMVVztYGU9WUecl8OGE4HHF+OUQnCdt7eyIYm2X0NjeJ44jSGeIoptPt0h8MyHpd0qyF1hGdQR9QbG1sCFvNijOjuHVJHIuiiEgpYf0i7BwhjQgTa8VEXYvTXs8kNA+sE1ag8p15hWqSYzEKqCmrsnFuMi6MuohrU3/QJ22lzBZznFYYJfvhjKXTaotWkjxMJFEso4VVhUsSFI40EfC3roUBaGt8ARWJ+6//LGetjJL641Va3DKdlXFk4wHPJEubAgonxgZ1XVNVFc5FKBU3rBzjhBUzL3ISG9MxUvQVpTj4VVVNb9AnSRNAnByLcuXyZrxuVihg67punoPKuzKGn4kemgj41saQxCKsfv+11zg9O+Xygw9Y5DmjyYTFckle5PQ2NjiwlrvTKTdu3qLd7VKbitKKcHXkNbxkbNegUWxvbbLV67Hb7zNbLpjN5yJmba2MzxrLfCYGKKPhkNl0j7IoybIW29vbXL9+vRHdnk6n5EXeGLKEoGKtbppTq8JaN8BCyHdRoKyPydbitBYGhw/Z1gpLJeuIJlkry0jTVIAeY6jKkqLIG+3VyBf71loqUxHY0lEU0W61KIuKUpeY2viut89WdNSsv1EUk2QJZVFSm1UhbAPQ4UEZY2p01iKORDTfGtuM04ZpgziOvZh/G6WUB91F1Lrb7RJFEVtbm4zHY2bTKe1Oi0630zhA7h/sMhgMuHHrJkVRYo6ORTTeQZwJ8C7OxL5QjBRJK6ZaIjqPVuF0ylIlVMqxrC2FMUTag8446rJkMZtTVxVBjexKHuJjt3s1pmGbvCUAiGVZ+lE4mnPUfI4fq5MvrDdi8fpMxOI4uNawlMJR+6J7FVNoAIiwejWrWKhsMR6wXF1jmjxBWSsGKsr/VhShfD5gTC2jgP4V4sS61s6VbSppskZxhKoUyq7OXgM6ORe0wpvvNcfoX+HeDZM5NEfkc2CH32ffxPFunkUhOZFzn214XmFsERimunm2Gt3TBuiQ2O+sbUYpRR9HNXlBuDle3Y7z21ouc16+eMlkMrmSdjW1ilsV/OuXU6u1umctG5cfr913AXT6DENllfc6j5iocH3Vms5RAKDC+mWv/Prq09Zrj/V6au3v9XMbwA/nfL71CiGgQVdW1UDzbbe2jdX31qZM1uuuz3k+14Gn9bG8q/eZxKOGCfiKzV14S3hfIx3ifLnBL/9qnky3+ncAu1Tz/fVzuLqWyp8mtfb9z2BKa9v43LFCtf7bEG7bdX3j1XbDp139zv/S65cGnpIkYWt7m29+61t0uz16vR7//f/4P/AHf/iHUjB4hNMay2Q4xCEjLe+/9zM+/uhD8rLgcjTka9/4VTa3Nvlbf+vf4YP33ufo+UuiNOHRkyd86Z13ePDwIdP5gsVyyfxyKKDG1hZJmtLrdZnPZUF/9vwpvUGXu3fu0+50UJHYOho3lwCllLgBxYkkXMuC0XDY2Dlnacre3h7OGY5Ojrj/2n0ODvZRTsSDv/Pt3/CjBhHzxYLxZMK9hw+ZLJdcjiZUtVhK60i6U6AI1vMyrmV9Z68A52hlKUkcEUea7c0N0ugeCotSlqfPnjAZDSXBTDPu3b8DOJbLBf1el163zWg4pCxy+oM+VV3z6bMnXJyfk1dLirqgtCWLvCTPK4ajKSjNwbUbTKZz/unv/wHz2ZhiMaG/0aXbb/Ov/KXfpt3t8R/9nb/DixcvKKqcVifj9r3bRGnEk2dPePdn7/Lxxx+zu7OLjiKOjl8KBfTGTc4vL/kn/+Sf8PT5SyrffY9bGbVzzJZzfvbBe2xtb7O1t8d4MuTTx5/y45/+FKvg4RsPiaKITx8/Zjqd8off/S5VWZIvcrGUjWPmRY5VjsSj2Ndv3ODazZsMdrYp65pnwREvjhqHo0hHTWBEq0abqnmY/DwxClQsY3loJc4963HEX0ft5PeDuLpzFqVWC4pCNewW62eJWcWb9ae72YVf9ArUxcYy1oNbV8JLAE6kAr8imK7Qge3oA6FavyV98JBgrFXghnmdlwByESArsD7QBRt23YQ1/G8qoWTjZEwLGoeSsCjbK8ccViFZFl4FzVbg0grs0v76hTEQ68Xi8U5POOQaOyfgwxoApt0qEGNX3RIH0t1HujTGGKqibsDJpqvi98FaS74seDq8pKpKlssFG5sDvvq1r3B4sE+71WY0GjIajfjhD3/I0YuX/PQnP5FxB6W499p19g822dgYEMWavJyTVyM+/uQlr7/+Bt9462tEUcLzZydMJ0vK0uCUFDxRtGgA7EiJgLDW2o+miD5IWUqXM21nzSku67JJ4GW8SgrhOIkB0cqL/P+01qhEixOeT4atsV7PTc5beCaNKQUw0hptxanKWUttSmKtRZS7NlSqpvbF9svjI549f86TJ8/RKqHb3ZCRbETXSWlFhFDdl/NcxpmylDCQE/4Xeb28qNem7sRU+21K7SicCJqHcWWNIqv9pJYfPS3riqSdsZFuw2wJ0wXzRy8wtcEcbkKrTZxolE7RiYzI5XVFL5aC3talDORWCeiYRCVyL60BcTgZcbFOYZyjrETAPtEJl1SUdsH1pEWaGdJWm3Yrp1ICAEQ6lvUhTb1jkmE8vERHEdeuX8M4x2i+oKorKluRxBEZCbGOpZHS6zDKF/x3//Af8q1v/xZf+pWvkOul2L/7ADCbzsSJK0mw1omuznxBVZb86je+wVtvvskPf/ADSXiNoa4N4+GYTrsNxjCbTpjPZzx99pT5YsHugegy/dZ3viMFYXDjQTrj+KK6rCpAc3lxyU9++AM+/fBDJqMRWBEMHQ+HnJ+c4ooKFcUC+miI/FikieMmIbw8vcDUFXubW/TiNhukfNgdsDSOv/Zv/pt87dd/jddff42NjUHj3Pfw8IBGM8In54VzKGOIUmExzT2rpHb1KlH1QG8Q1ZzOZwAN0KvjCOsspqqazm7gbTrPsFRaGCppmjIej5lMJmxsbpJmKe1OF5EkEB2UqqrI4oQo9txVZ2l32mypbb7w9hfRwMnlGUmWkbY6jUtkFqfovqa32UbF4vJY+3FJZwXI7vQ6JHFCGkXUtWE0HKIjTbvXJXLQbWU+sVUs5sJU6XQ6RLFcD60Ucaw5PT3n4uKCwUafLM2amB4S/5s3b4rgehI3a1On26HtxMxAeSAhGBJ0u1KQhnO68ONV6aDH7tYGD+/dJXRJiiqhNjVVVeKsY//wgN6gTxzH9Pt9cfzy6+ywLlFakUUJ89mMn338AUdHx7z33s9Z1CUu9hQTpTk4OODG9Rt889e+SaQ1L4+P6fV77O/vM5/OKcuS8fCS0cUFsVIMOi3u3rxBK4pQVUUxX3B5esbN/QNuHezT8hpFw/GEamOT3b09rLW8+2fvcnx8ysbWJgeH++zu7dDf6OGAKEpXAKSXEyjLHGNqaar5JoGpa+azObkHirIkI41Tgg299l19YWPKuMxiuWSZL3nnK1/h2vVrbGxuY4zl048/wVpL2umQtNvoLCNpd0h7PVguMMZRlBVpmnHt4JDXH77Od77zHYo8p8xzzs7OmEwm/PSnP2W5WNDt9VgulhwdveTBa6/x9W98neFoxHQ+4+z0zAuWl8RRRL/fZzKZ8OLFC25cv8WNGzfp9GS88R/8d/+QyXjC1tYWUZyQdXtEcYqpHUksjZZetwfApx9/zOHBAX/5d3+XxWLB2dlpE5en0wm1qdk/3CPNMhSijbS9vU2r1aI/2EDhKEqLNSUoR9bKqE3JZDpkPrxkeH6MXSywzjE7OWde5nw6mzKvC5JehlWOy+GQxWLJfL5ANLr8yBieNRhFZK1MgNi6bkbVY681uFwswDm8jB11KUYhdQV5UVFVpeRrWkEizmrarcZ2Y6Ul6jTJovxshf2IeUUYR5VYappYJuuWI9GKOE0FmLZOejhWxvYdKxfUVkvE2hvgGT8+5plrSimyxFCUBcs8/yzg5GN5YGQFZksAlUMzK6wl1sdj7Zv9VVVRlSWRd5kLQEEAGqsoakAcrRTOA0DOCZuprI2YLxnR31sslhRlTadTNU3Iq8CKxPIoTZrR++DgmCaJ5FfGNrlllomRQwDbqqrGKcm9tJYmTeW8K7J/Tp1vCERx7E0gAjC5enmY0ptvrICwcE79lW9yPhduiQDiNi8/luaRDeei1QbC/eNbvg3rKLxlbb+sFZkIY0RsPkkTdOTZ7/jxQ9zVpqb/3SRJ/Noa49EmgtKlCuCYXYGhojt1Fbxx4dr441RKarGmZ+48yPRKzWX9fSKOeAEFDO1zX+WoNaaYC8ctHxqg33BKra/xQt9aaq8GspFz4OuJdchLruFKi6sBjfxPXfM7K2UW1SA//h5QYb+bZfLqGfqc8/YLX02dePXd69CSCj9WaxIBa8/36j57BTT8nNcvDTxpLZbbnXaXfn/A5uYGBweH3Lx5i+OjY2azBXEsXcEoko5LpCNxj1mj4yrlKcNpSr/fZ2trC1PXkvA6R6fVJi8qYl00GgaxfyAjLSo81tSMRkNOT064eeMW4JjP5xIgkpg4TkmzjH6/L8KOPmh2OtIhiaNICnyHFB++k4eCKElILLQ6PXqDPlsbA+aLOWm7i44SpvM5yzyntkJHjWyEc6YplIWu6QORg9prmCgcphZtD+NHQLY2NwGLKeaUXsA0zVKyrEWeLxiPxySxpttu+QXBMJ1OKOuKupZAOdgcUNUVT589w7kIhxY9hkhJkK5qnJNFJu71sDim8xlVXdHBNYlgVdcURcF8PidNU6pKkqCyLP2NLceG7wiXdS0B3Fr6/V5TEM/mM+l2h25kVVJWJaW3nHfOMZtNwTlG4xGL2byh3hdlIR23OKYs5BxXVUXWyrh79z6Hh9cAmq59rFduMAq1Ykj4p7ChO649RIGdEwqRX8S4udIL8C2TtcYGVxGmFbK+vi2a760p/6sVEq/Xt+tjm/YAUNhms99roFY4ts/ut2oiRODgBcRaPkjAt3CKVjhVAHvANYBN0ChY/W89hKlXNrneVcB3qJpxPKXW3sgq4L8aKJv9eOW4wts1q2sb3n5lUV2ds6blBw0jxwYYwy8UQSPRBkaiVWITLxiUWHQXS7mHl0sBR4slWZKws73F5mBAu90iTWIvjt2nWGxw49qBp49n3H1wyO6+sC8cjtEUbG3otNtsbmzT6w5QLsEaJ1pyicYi9tKNjTx4K+yo6cys04KtXbP01Zqqqq640OlIGFOJdz0KiVPowGmnm8sTRTEaC07LCJ6nmDovLI4NrhxyThWIQ5qWuBrGA7TW1A4mlyNG4wllVZMmMTqKpLuI9frKciM6L3itnHSVwgK3fl+gFHUEVaSoEkXtxF0pJIvh+RMACpSOsEBlpHhWsRZwrTKY8UxYEoebWIXX5Av3gf+j5XgxxicU/t5eo4g3z7VPUIJVrXau0RYzzlFaQ96Jcf0M3UqJkkRsznVEkqWNXXPt6f5Ky1hAu9uhqGrcYiFUeCyR0+jG/U2h0xSD4/T0jMl4InR1/Miw36+Q/CmvdRhpUQVxxjHo9WlnLdI4Aesoi8KzlWY4Y0giYWdkWeat5jW9fp9ev0+nI+yCMs8JSVBImoqy9F38umEklGXR6L84xIFtOBxSVSWJzZrYamqDcQZjPSPProDQyXiCqg1uIWzpG7dvcff+fV57+JCt7W3SLKUqCrnns1YTJ0KyLRqQK6ZjGJ9rKPRrHVD8GtLYe5targ3Cfg6ucrKJdYr+KpZFvsCrq4q6qnxnPsH5kV7r7BU9SZEkUbTabYg0Lpb70xSFrHe+oBUWlmduqsiHRq9JmaTSdVVBjHQVgwOYjdfvCI+YIoyyrK95stYaW3uGQA6uRxRpYaC50HSMSRPREQrFB4CKYnBgkrSJzaGItc76WCHnWPvRsSiKiOOEVpZRW7kHIq1wRFRGxrzCCPLm1iatrHW1CPMxPBRgMoLT4dr16+zsbNPtdFBaWJBZkpDECbs7u1hrmc1m4viZZhhjmM+FyeKsEV3NJKbKc6IkIbYGZwzOWHQihgKRZzJFWkMUo6JImOplyXg8ZrFc0Gql2H6PIi9k/+LUlxMyXhnicxTFpD42ZK2W6FIio45JkpAlIuAe7jUdxHUbVoajW+TkZcHW9jaDwSbtdoe6rsU9ztToSMSNldZsbG1x/cZNsnZbGPTe9fBgd5+9/X02trYoc2E+Oq1o97rcHA1Z5jm9bpdlnpN2Wty8e4fDGzdo9/vMFwva3a6wgUthw/QHfUajMXGacXjtGnsH4iSIghu3btPfmLCxscHm7i5WKVqdNnu7u+T5grIoWC4WWGM4Pz1FOceLZ88pq5LpdCzPuHMs8wXGGC5P5XkwRgTBl3lJWZTeUdkzAL15RxRHWGNEi3E2YXJxhssrbFkzq3IWRSFaX9YRR7IOmLpugD+lVg00AWsiKcaThMSvzbXXSrJG1nbtx7YEQJFn1JrA8BM9L+fzMhNZAjNHKd8w9S/rDFeo4NDES2HhrESxw3Nom5gaRsYUxo99y32kcHqVhYb3hDxL8sXV+FuQK7B+rWkE1puY6PNYJQ0rlGSVAZxYZ56E9T7gA+ufs56NvsrYWGesrNAAf05CLPf6iUqLyYLz7Eq1FkM+y3rxWqtrOWczRhatgLPmbDXXdAWgNN9fc+0WrEemNZTSa0d2pcq4cpyOq+fDrb9RXQUDVuuxurIf4YOaT/Xro2P9e/4//kI7uzonKyBCodc+tck5teSP4T74ReNrqw2qVc2hXtlPX0tcqWX8zl/J/l2oZV5hNYWCi1WT0IVawYXzEph1qikjrF2dx/XdDXVD2PVmBFKt3uSu7Fmo4db24dXja/Yi1KhhWV6vi7hywOtfy26vdiCcK331Vz77+szOrD02q2C22t564Rf2sLlF/twtXXn90sBTlraI49SPbchN+itf+Rp3777G3/27f5fT0w/Y3d1FKV8kIYn3l95+h1/5la8K+yhJ6PW6tLOM46Mj8nzJm2+8wbOnT3j/5+9xcfqQ6WhIsVxQFTmRki5F4jvyCos1FVWZ89GHHzC8vOQbX/8GvU6H997/kChOuHX7Dp1Bh72DAw4ODptCQKHIsraAN5Mxy+WS8WQkbkcKnj9/yvn5BU+ev6Sqaj589Jhrh/tsbu8Qt7r0NjWj+YKXF5fE3hJ4tpg3SGuSxLRbGaWnb4bFKPIUS+eEkdPKMpIkJksS3njjTTY3N3n/3Z/w/NlTfvbzD3DWEscJpydn/ON/9D9x5/Yt7ty+SZII6Pbp40cYYzi8fo39vW1u3rrBbD7lP/1P/+/cv/86h9ducvfOfXq9DqfHR8xmM15//SFaO9rthNHokmcvXpIX3yVNEqbjCbZ2zJcLZtMZL1++5Itf/AL7+/u02m16/QF3790nTTOOT04py5Lzywvq2rBc5ty+c4c33nydZ89fMBxd8MFH79NutWi3M5I4YjS6IF/M0Bj2dra4ffsGzx8/Znh5yaNHn5AmKe984YtcDoc8GT8m29pgc3ub4fiCcjmn12tx/cZNvvr1b1Ibw+VwKAlj1l4FOV9ECGXWW7e+AgI1Zmr4pKChwq7u8asPztWHKHSvdHAD8dHHerab9gsbweHBrgCCRpRtnbobimX/syYw6+gqIHXFQUJ95s/aB8riFVQlfbS+QrpVgbW1tggpxbpJaAgg2oMLOhQrr5zPK9rpanXsqxNOAxSt9lUWaeccOmgyvRL4mu7AWgKiIvn92Af42tomAQhCd2G7IbEIYyBSXAuVWYoWy7prBsiYgDU1tq7pdDvi1FmL3tH58QspYq0A1GVVstHvcm13S0AWU7HVbxNTs9nL2HrtLr/61XfY39vj4OCApK3RCTx99pzZbM5wNKLd7vDg3kN6nS6D3oZ0FY1jb080ncbjMWVVkZfi2FSWZSOmGNgVWSYgv4xp1CynBYGSjl9nsywjSRI2NwdEUYzSiuVyyeXwkiRJcGlKbGJhxsTyPGRZC62EYVV7MLrMC4rlUsZ3nEPpCGUddVHSarXY3tgMF5v5fEplSrK0hylK3n33XY6Oz0BHaO1HV9ACPCUCiJnKC8wigE1UW1QsrEXnGXJaRRjlGOuapXaMXYSpDLqoSXtt0lYGUSS9IAtKadJWxtJWzPIFcRoTJzHdqibOa2bnQ2osqn0fEyvG04mMfESx2Ctbh3OV6NqUxUrXwVpMVYomkG8ry1idxVlFWZdESjrRsRd91ZXDaMPywS72oCba2yIpSvTZmCxL6W5uUOVynmejMUVZkvU6dHo9etubqMWC+uyUylSUpsJUjshC2m0TJwlpO8Eay/OjY05Pz1hOZ2gFvawjUiJ1hatqrDHkRUGapGwM+l7PoibriI16r9VhqmMmwzHz+YIXx8e0spTxqMf9+/e4de8urz18TUA4X9xOpxPqqmK5WHqtMEMSJ0RRwnQywVjH8+fPmU5mTKdTnIPNzU1mszlFnvPxp5/glGI8m5B0MimkjWU+n1M5S+kMw8mYvCjY29zCRBHf+70/pFzmRMawub/L/+Z/++/z2huvc+PWTfKiwNSGrNVBRnO8YxuiA5ilaVMw1FW10mFRGqUTqloaIIm3LA/xyUaiEbcsFjRNJiMxYTDYFEZgKaNJnUx0aoyPnxGeom8sxXyBrWqiJAWgrGrqSs6byAdkDVC03+1gsJSV3BvT0Rg/Kcr+/qEAWFpJV9OD0qWRPKMzCA52msrUKxBba7a3txtdqdBcCueglaW+ceiBZiXjH+PhmNlsSlVVTcNwNptRVpUYu5iasqo8oCjamXEckygBnlxVYzyQLSyQFsZKw6/2oyZRLIVX0Igpy9yLTgsQm2hFrRwoizEVWZZw/8E9X4jqBtCKPZs5Xy6J0Lx2/wHdbpdr168L6BaJs6BzsJjNcdbS7XRAa8zBAbHWpLFmOp7w5NETqrKglSYc7u7Qabf56Oc/Y6Pf58b+PhhDK4mZL8aUZU6WtVBoqtIAAh4Pun329to8fvKEZ0+esJhNaWUZR0dHLPOc6XQuQFun7YWSNbt7e/T6Pfr9LkmSNGNlSRzTTjP67a4fy41o+3G1OE4bNpnWouElaKLyTEcBrrIs4/WHD6mqktl82qyFX/va1+h0OwLKGEPuGStiBKUYjUfkVUFRlvS3N9i+ts9rX3xTpCjWEoI4SUjStOkJhXHxNEqbNWwxX3B5cSENyrJksLlBkiRce/CAspQcutPtMq8qrt+8xcHuHv/kn/zPvPv4MR9/+BFFnjO9FPe0//w/+7tkvtGcpsIc7XW7xHHM+PKCsiiZzObSMC2qJl9J0sQzi8E5w2Q89qzmpSyiGlAxEEGII1ryh8pJ06AVSb6mPWjl1grsOIlJ0pRWp8NgMGB3d1cYY0XB06dPmc9mDDY2UMBsNhP6hIspS8t0uvDi3XjHXfwIuhToQVA75Fa1kbU5uLZqHYsmVy1ArbPQbrdknBnlR+8Xq2mBKCaOUpwTXa4o0igdE0VulU/5pNEYAc+01zqUHNcxmUwaAfJ1lo1a29fKx9yQ4znwDfJqTWNTNSCQAESrXDeOIgGMPIPGePe0QHoIwFbz+QFQcQ507NNU74jmwTJrZb0J926z3yqAlgKmpamPjUWBQsaRsyyj1+sxHo+5vLzElRV6DVhSfrQvjmQywxQleb4kz/NGGD3rdlE69iQF7fWSVqwStAi5B4RCKeXXpQDciS5TY2ikggyAXYFba+CdLGg0YDfSn5DcxgU4xa3VJAI8VZ7dm6YZTsxyiZUwWQ2raxfOvbCi6uY6hPgc1t9wDcO0h9RYPjdvgLSw89YTCwIbyDV5Lv7YI9bqDNmJlcNfYMGtgVXWn6Or+2Ob7QdH0dDUkF8yXi/X35tN3bSqJ9YRsasA1Do6tbp+V6FG/1kuMP5Xn7I6tPVtKghNyLWthLptBVyu7Y0SaGp9mwF0VOrVfRTwq9nHBhT2P/HPl3Urxt0v8/qlgadmtjqKWS5zZrMXjEZjxpMJZVGKmPh8gdaKJJGgZzwD5uzsjHa3Q7vbxVY1dVUxGY8YXpxzfPyC8WgIznJxfsbjR58Qpym1MRy9fMloPPQuG6bpdCSJPKTz6ZQP3nuP46NjPvnoY/qDDW5cv0mxyBldXBIch6QIVU1QkcBZk8Qx4+GQ8WjI0cvnDC+HLOdjyqLk53/2I05e7lAuZvQGAzY2N7F1hXaO0cUltanpdnoCOGUtjHXkVuzRrbGURennnX1wyYTOXlW1zOIbcaxx1jEcjRmPJ17IOCJL22xubHHn1m22NjeItPZaDpqdLbHp3dzYQIQ4F2gV0Wm1sKZmOZuymE3RQJVkXlPjiMFGn92dm5wen3ByfMaDew/Z29kFJ6MeX/jSFwXYubzg2uENrl27wd7ec6azxf+Psz9/ti257juxT2bu8Yx3eO/eN1W9V3MBVUAVCiApiiRItkh2i5I7LIckq6Md3XK0o/8G9x/icLQ7HB2ODoejw6Gw3aG2ukVJFMmmKFIAARYKNQA1v/nd+Yx7ykz/sDL3Ofe9AgT6IB7q3nv22WdPmbnWd33X98vB4XWyLCPLCkyScef2bdZVxenpGTdv3uLFF19iPl9iO8cwsMru37tPVVXcuH4DrTRFLhXE1XLJvS/vcnZ6wnQyoSjKvnpblAOaruNsds7e/j7p4SFXr0o1rOlEuD5WXSKtnLA4KBTdVqVjG5iR6pPaei+COF/9rF8CZtjCsC5NiLHdazMJKOFEgxPtDhMntAB3b45HgJxt4ElwlI1YeT/5hhH/NNCktia9ONf1c4LaeDs8jWhHjYBtNlistMTq9+arw+QUcCXZRiaiuPDFyfMyHB62UttbqFg46ffZ/63/lA86Xc+CflsnECosYSuJKjYTfdD3caE9L1b9cEEoM5y3UK9l9fW+JTGaLE2wbcO6rTh+8oj1egm2IdFSwXbaiBONUWjl+1ZOhYDt165dR2vDZDJhNByRpnnQjLFk6ZDRKGNQTsnzgtFwQqINTd0K+1Ip6moNSmFtC4FF2QOU3m8FbMExbut9rYO6hKJvhTdaAqy2abHa9smmVlqq4wjjRcQz5fn1OJySZuEYEEbBz7jwJNqwbpb89MMPMUnCdDplOBozGE1Yr1biPulOWa4qHj54wsV8SVmUJDrttUnkjmpEh8qFFthw/PhNAJ+AV4pVU9Epz6pI6JC2Pp1I20GapCQBdHLe03qLRpNphfGybZakZHkKy4ru9EJsnZOgv4CHpoXwXQppUbO1ADZSnQWMPNOdtdIaEcekknHVC90TQzcBRrugfXFcL8m8In/1OdrMcH50DnWDmi+gcyjrSBNhImVphkZx/OSYqq5o61p0ZGxHmhbkSSri81lK11ZY19C2LYvlksdHT5jsTBmORszrFU0jSYmwbixtvWQ+m7FaLVkuFty+/TyTyaRPGs7Oz+jajsl4TFkWTMcjikJaOa0Tm+jGdjKPGUPXtsH9VCzNu07AknYmzj7igiTOqNduXOfWc7dYLcV2/OrBITv7e5yen2G1om47Em3I0oymqWmbkKgoKAclZDm70ylNnoN3XL12wO07dxiNRzhnSRIjwIOOYqJqK/BVfVDnvKdtG5xzkjgr1Reo0iRDKQnEY8udCMsqfEgCo+5aLGD0AT5+M38FxzvrJUmJ7WvGmJ6xqU2CjwBQ1tG0HUmaBcajDeuIMJgG5YC6aamrKOQs86oDqrYF76m7jugaKexuHQw0VC96m4a2t5h0SaIt+8syaYNomiawQaSANhgMABG/j60SwpRRmynYq2ccd2IhwSQJyksbh9JK2ua6ls62RHvomJxqozfJUGgt8YH5IfdQk+RZuG9hLe0ZbAJrKw9FmpKguLq/T57nFFka3MBj4UlTlKJhpQJIE/1GjFbU6zXnZ6fgvegM5TmJVswuznFtQ64Vdd1IYUCFdrjg6tc20spjQAqVHsbDEc45RuWAJEnYGU/Ik4yuFkYlNrADOs/F+TnVesVilmOMJkkECE2DzbsJWnAomSuMNtJ+pDa6f9pszU/heS2KUs7diwZcVa1l/TCG0WhIURQCVriNo6uzTmIuLYyz1nYMh8MQE26+e1NMk7kxsumTZAOGyH8VTd2wCsk+wOnZKcYY5stF35I2v7hgfn5Os15TLxZ88emnHD1+TFtV4Bx5YNaNygFZllFmOUVekOU509GExBie3H3AerXCW4v2kAYmsbUO660UXYIGWqYNSidYZfqKv/fSeJQasXnolMUrjzKqd2LbTpx9jKdCK6dznqpqSNOK1XrNlb19JpMxs/mCtrP953vH4aiLaG1vwALRwEJcKMXdSxGxiF5PRhFalYTF5ANgFIGjphbXah/GZ92seza4MQlpIlpttrNbmkqbtUwOJTB/iOBNaBfzIgauvA8av7YXpfcuMLtirKc2IugxRtuO87yXeE0HhlacX621fawUploi3SLGk8La2jBIe2SCTfzsoWdRKSUxwEb+nEvz+TZjJ4IokeEaWeVVVQEitN9Zu2HnRvDA+d6l14Z4Igp0K6Im5eZ7otFLfG20meIzpi61UAlB+ynAQMX7tonre/Bi6zzjg94zb4O+mIKtXGQbwAjbhUJG5J/FNS+yNSP7O35PnBu27/EzrLA4frbzFkX/vu+ZS9vX5fL9Yuu6hY1CviU760kAyDPtAhtQKUUXYpsYb1sfXd99H7PG2C4c2iZX3Hq2NiM2fmcokG/letv/NumO3/qSp3Og/qdLRXnZfvOz3z44ti5X3O/W/vyl/V26aPR5HfFZeGp/fsOj86hoUs5TO/qZr18YeFpXNU3bkec5x0fHfPTRTzk+Pub09JTFbEZqDCdHRxijuXb9kK7rBGS4d4/lYsWdF1/g8No16nVFlmQ8fvSQLz7/jB/+4PvgPKlO+PLzTzg9fswLgWHzo3d/yHwxZzgaoI2haWoRwC4KXNcyOz/jf/r//jO0STi7WHL79h2+9dY7zE7POXnyRAQbnaOx8kDFXtvd3R1p9SsLPnnymL/6wQ84PTpiuZgzX16wXq/4q+//LwwGA/7q5Zd5481v8mu//hsS8JuEB59/wWw2486dFxgNhpQ7CZ3yVEvbMxLWixV1XZMHMcfpeIr3nvV6TRMew9WqQmvNxz/9mMePHrGYrxgOBoxGE24/f4cyS1kv51TrBVd2dynLnHHohc8HJWdn53z52eccHl7n+eduYDvP/OyYk7KkWs4p8hFHR0e8+4Mf8vLLL/HNN95gdrbgJx98wn/yD/53vPOtb/Hf/z/+Cakp+Ad//x9R1zXvvvsur7zyMm++8U1Oz+Z4lfLqa18Xccnhn5JlKb/2a9/l/PycTz75hLe/+S2+8Y1vcnJ0StdYrh/eYFWt+MEPfsitmzd582tvkppEBM6riiePn/CDv/xLZhfn/Ae/+zti8e6kCrezt8fJ+RkPj4/47V//Lndu3+bmczdIkpSj42O0NuRZ1ifUKoi7mjTFK2ntgFAV2QJmdACrVLD+3Aadtif4y3ReLg/W7UXMP9Umx1arT5xgPSSBveR4FgmOyH98uTDBbjOUtmmr6MuaTtsv1aMNseqxNfU9M6Fsi5Drp/4bF5CQjKugB/X0XNJfu/DLFoi12eCy2PnlY2ALfNi+zPLT9r6enthjG1UfFNnLtr32KXqvc6EK6ek1CGIg1jZNEOLtmIyHDMcTLs5OWMxnfPDuX7JcLbj9/HPkWUaWGZxLsFYSFmxLnmdoY6jW0pLwta+9iTEJeV5S1zXVes1sXlFVFcPxhPEg5/r1aygFdSNgwmqxoihy8izlLOhI5UWKaIklGEE4RFDadnS2FUaOUZeqnvHZU9IjCNaTRR2JxSo49DWhDSclUQbj9cZJJPF4rWhtvLcidFrXteghON+DpVmWsl6u+Jd/8M9pmoY8z3n+hZd5/sVXaOuOtum4//CI+XLNw5NzkjRlb/8KXSsV5w2YpgCNdQJiBDGLkPR3OOtIdIo2irNqSYWlGg4wyjBKM1yq6HJI0wSTaFokqaxth9GaoVakGAZekvZyUHB+csH6s/u4poY0JzEK40Gta1TuwWh0ovDa0C4aXFWLJbxWkIqFcms7vPIkSp4pEZkOY8iJpoPTOrjqOJpVRdd1fHL6mHRQMP6db6M/usrDf/ceq+WcxfyCYVEyKEpGxUAC2yyhs5aPP/iwB/3iyBhOdplMd7h6eIBJE+onj6jallXTcHJ6woef/JSvv/Y6164ccHpyxmK5FD0K72nrhvPzcz77/FMeP3rEg3v3+f3f/9t87Wuv09S1uMfeu0teFHzt9a8zHo+Y7kzIspS2a1muV9Rtw3IlmibTyTS0uczY399nd3eHo+NTlqsVs9kc0Ny6/hwaYWd8/c03+J3f+VvB1azh3r0HrKuKz+7fpTw9YWfvCqPhkOl0yrqpqdcV3oNJUiY7O+Ta8PKLL9K0NZ1y3Lp9m9ffeIPFYs66WotQdZqK0DWR8u9DhV7uUQRcRFDZkmYb3ZIsyxiUhQBnXYsP826W54Andelm8lFaZjkf3HwCeGrD+g5ekncPZVlSlmXfKhYbodM0p6prVusKrROUNgxNQpIY1isxTSnLnDw15OOE+XxBtRIBa4eCRIxP5oGdsqrbfu4zWpMYw2g0kvb5rkMpyE0BWpMBFxcXnJ+f93NoZI1U6zVN07BYLNjZ2eXGjZs0zYSmkZjGe9HEgYJyINXh9arqZ/KYoETn0KwoQGBtmq5hXddU9ZqmFdakiEinm4o4cS1z2C60inoXtFIMaZJvkhutSNKQwDmP7xwGGJYlutTsTSZ01lK30ZihIytK0iyjHJYyLtrNdVM6IVEJ84tzHt67D94xHJQMyxJsx5MHD5mlCavZGUmSkaY5o/GANCs4PT2jrhvqqkEpQ1Y4jFH4vODa1QNu3bgRWpwc+5Mp63VFmmS91IDIEnQcPXxI27U9K6Cp66+oJm+nQWyEx527tL5e+tRTxav4OWnD2gIxgCzJwEvROQvaqD4IcfeMwJAElcWwv3cRwB6NRlJwDd9jXYzHNuyHyWQSJDFcDy5orSjLkq7rWC6XnJ2ccPz4EWenpywXS8q8YDgYsDeZkGcZBzs70uqdJJTlkLIo2d/fR2vNT37wY5pZxXhnIo7TibCEl2Hse9v2bpPjyZ60V6ZLaYVrLZ3r6JxlWJQkScKsXQuokRhcJy3GzoaYKcSlWqcoJcwi23lW1Zym7bDe8+ab3+Q73/42T45OqOqGxWwmoISP8ZS0FbddRxo6K8KA6t3VhIUl4FOQkwrfHVNbAdackxZ5Fxg4y3pNZPt776nrdQ8iRKMSG5wloyFHjO+EqSzjURkVWvI3RgnOOREINxrjDE3X0QUQxVmLMhrlZf1UWpGZjZtnBKDiHGxDviYFZSk0WmdprUWnWc9Cehps0Hqjz+QiMhPjYe/R6EuFIYUUTojtjkF3MOYIzm9MDbxz1E1D1JqK4LywRhuKsmR3f4+LiwuWy+WWeYQHa2nrutfmFOZiGgqFKgBajrYTULcLwOtXjF58AOldABiVUr1urd0CDGLkLQDiBhyUJeqphj7vhY3q5DnRwfTJ6KgRGZwTQ0Gy61qslxZrpVxfOPB+I+MQf5f78lSus814i/9g48Kn6PdJOG4X7/PW5XBbz43XmqQv+Gwu3eYqhnlP6z6O6o13vMV7kWSIzKx4fFpJfBi1HqNQ+KXsb3tOJRAlL2+xAXnkjC6pIF3an+8ngmdeT+dCT+/g6Xxvs89NRhYlBbbe2uyXCO6p/sJJ2qu2jjccX2xDVKHht8+Pf7HXLww8FUWJ1oaz03OapmMymXD37l0ePHhA09SYRDMYlgBUVUXTSEUjy7Kg7yMT3I/efZeiKLBdS6I1eSrJ0SAvqKs1q+WCt996i+vXb/B7v/M7LFdLlqslJhVnmtnFBWfn55ycnLFaLcizkjTNyYwhDZbTSWLIs5SLo3POz8/Z2dtDKcX3vv89AF577VXRB/KeH7/7Lu+9+y6/9jd/ldu3n+fk5IiTk2OWFzO0NmQm5eHde/zzf/Y/8fzzd7h69YDjh9LCNi5K/N4ez12/jgeqNgJNOQ/u3efRo0d8efdLkiTlu9/9LsPhgKIs6YJWzGAwxGSai4s58/mCV199jZ3phGsHh5yeHHGvrinynPGwZDQsSBMjyLj3ZEXG3BjWa0ls67rmxRdf4dq168F1R9jB1jvOZxdkZcFbb3+Lo5NTjk7OGIynqCzna994i6qu2T045NHjx3zx8CGTK1dYNi3rrqOyFlMUjEYjXv/mNxgUJa++8Q2Oj4+pLexePSAfDrnx3G10mnPz+dtUdc033n6Hmzdu8OrXv47OMpZVxWS6S5GXvPjKq9R1xe3n75AmKRfzGVZpSus4KEp2reXWiy9x7dZNaWlAtLeia0WcGAkV7KgXohMZ8tqEXumtokcEHeIIexr5j6g50NNwdUgPtu05wxQY2EwbEcK4wx7xVoFTonRwP9m8/FYr4CVwia0JMuxMgVSYtibupytEmxMJC4/qQfr+d/nc5nyFFtl/sP9C2WfcT+i77sEi98x+lN98Nu4nsqFir/JldD1MvGHxi7/HygsERpN+Sp8rfqnfHO02bfZpRD9O8H21BBG7FnT+ckiutbR1XFx0vP/+ezy8f49BmbK7MyHPUrx3nBzPSLOMwXDQU9dt3QItLjhtduH7nVLoNCFTJUPvRPskFRDJWhGdrtYVeCfsASRxk8DLYK0HLJbo/iNsBrTqtVy64C4ThT3zNO0DKodYIjeuA0sfpJlc9EA6ZJ+N6ySADAwELCjf9QFgX4ELVPMk2Tg8ee/Is0wq4l3H/XsPeHI6x6gUhWaxbOicD21XCW3TgBfX0XibRGtBeoe0UqQmwajg9OUk6G8dAoiVCc4k5NMxybAURkzQnkmNtLS0rgPnMUqjPbSLNSpLKAYydxrvYbHCn81JGotPHaq1kHRYndC7DIXoofMW5zt0mkIW2gp8aN1MpBrr8ChvcUF7J2EDbmAMJBqXSEve4nSGWawxwxHJwS53fuM7LO4+4vSDT/DG4EPgLg5LEh7lmRRZurbp729dVczMjPK8wCQJq9mCJrRwLOYLjh4/Yf38bTCa5XrNxWzGeDSi6zq+/PIuDx8+5K9++MPgoLjkp59+DBqGkxG3bj/H+eKcLM24du0QbYTmv6oq8B6TJuRZzmK5wtmO1XpFWZS89NJLjEbDkGwOqKqaTz/9XNq0ZjPatmUy3WG6u8tkd1fWrKbhlfFExmiYT7M0J80yTJowHI9J0oQG37vQKq147s7zOGdptWcwGrJYzUErMRkJgfyqFiDGRDaTNtRtI8ysRNaSYlAQWzD6+SwwQ4xJ8EoFsNeShMCza1psZ2mbmrKU9byuBcA2oe0mtox458Ja7APgYQXMAibIuCWBosi5evWApq45Pz+naluSLCMrCjItILECTKKlJWxr3m9DkrZar7DWsarWfSCbJpIAN00bdCeFWSMtjx7bCrNlNBr1WnImSXDeSdtM1/UJiA6sKx0cFtvQwhMnX+9FQDy6phISNxVsKKJBR2fl+mGdnFeSyTlqQ2Gyfh121tK0UkjKsoxcba0tKk74myq6SCps1l6vFLXt+sTYe2nl9SEZ9UibTlOLsHyW5aFoGEFx0f9s25bhaEwahOibtuNsNiM1GmuFXaYwmGON0kjbdHBgVNqQNg3zxYInx8ckaWBmWguIRXoUlndekv0kSRgMoGkKcaUMIMG6WqOUoigKrt+4wUsvvsT5+SnL5YIsEzb9ar0CBOTctFLW0koZYqKmaek6yzy0Ta7DZ4BLhTnvfGifFSCi8cI4j9c9CsjHJHJllqgQ70TwazmbCxgR44Kt1Tm2Dc7PTynKkjRJSEzC4cFVyqJgb2dKVVV0qyVlYhiVA+ywIVWaYVGSZRnnJydyDMEtNa6fWicMhgMpuqwFbGnbhs6C7kRHS+GECOgVXSvuiU1Yb9tWxouzUuVKEk3lG3zXsArOdcaLRl8b9L+0tVi90YNTeLLIDEwSvPfMzi9YLpas1hVXrlylrhs+/slPWNvAONQCniSJIknFyl5rtwERLEFbUcw7nPWbhBPRF4ozgxOZ2TBGZaPIUnGB4SDMNw10ffxpkgSDAEsRfNlufbOBBaq16jtJYmdJZOrYAHwmWYrqwjMSxm90B5X8ehNvb2IC12tHXorLfWjlcU5ipXgMYa7tuq4HOCK7VUBv339fbJ3CeQgMx9geORqNMYlo3cY207AoSEy83W7VP8VE/I+262C97llQsedAB7Og2MYlrVzCBAx8oH4O7bWyfDD9UTHH33BlLvFqPT3wogDrhTnVOwAbvSnQEtijSubqvmsg3AeJjTfxv3MB5HSKztuQs8h+bACKIvOrv2/+MnvpaaZT3ObpDobIvIpziYjbx/sm52Sti7hnv782MPETk2CAzssa4Leet3gs/blv6TZF7UjrIgDlQsEkgKBqAxRFtpWMhZBqxURyk1ZeAo0ukxM2Qt9bBEW2E5rtrGSzstITmn7+a3Necs5P7zHuLwBPoR1ls0Vswwv56FM40gbEknvV57mbb2Y71/z3vX5x4Ckv0cpwdnaO1prxeExd1zx69IjBsCRJDIOBLHhVVVFXFev1mrIsaVoRlnbO8eMfv4fRhq+99hpGabI0JU0SRoMBj+Yzzs7OmIzHvHDnNs89/xzrquLzLz4nyzJ29nb5/PPP+fjjjzk9PmW1XFIWA1zuGI6nPfCkEulzXy0WPH74kMl4hEkSfvi979G2LVmgTCwXSz56/8d89P77/Cf/6B/wu7/3uzx+cJ/79+7x/b/4d7RtR55kPLr/kO//u+/zS7/0y7z6ymscP3rMarViVJSkSjEs8oihMigKynLIcj7n3t27/Mkf/THGGF555WUODg4YDoc0zrJercUZJk2Yz+YsFkteffUV9vf2OLh6lWq9pKoqRns77O9OMAqZRIMzW5KkGG2oqpqqkp74559/jrfe/hZ3795nvlhwMVvhlGO2XJCXJW9+8xvcvf+Qe/cfU44nkGS89uabdNYyvXKFR6enfPnoMYfPPceq7Vh3lto5krJkuLPDa2+8yWg04uWvvcHo4SNmy4rplatkgyHXbz1HOZpw/dYtmqbhzW++zY0b13n59a/Res/J+RmT6ZSiGPDCyy8Dnudv3cZ5R+M9ndIUzjFJc/I04+adOxxev87ZkyMBKVMtNG0j+jNGmz4ItT5g/YnZMKHCpBxBpI01+9ZgipMe9AsWEAAjRaJEENq7Tf+yCwM2MtsutdaESS8CO0rpTQVl63u93yy0ka2iwth9ysy+32abovp0y538IM/f02BT/1b8SW3O79k5YgM6PX3M/WwT9xc2lYk0Tp6bzmG/1Su8PXk6IoaiLu13m+e0fU0ugUfe9wKCiui9sX1Ml/uc+3fDL10IkLJA0ZfFRNhDTVOzXs358MMP+MmHH/Bb3/1VdqYT8jylWtecnJyLmPJwLAthYEx570mSTJJULz3lToFKEtIkQeOxaSK6VFqJrol11FUldt953ruIxeDDWQk8rBdNqhjMxMRIqQ2lWYfnMMsySXK9p43BRN8yIWyPQVbIcduuFwAtCkWiErouiE93rt9fZBl0oWIqLa5RiFuAJxs0Oh49fMjJ7DOG5ZgszTFJiUkyRnt7InjetBijyZKEzvo+IQdQ3qHRlEHEWkAnK0zV4E7XFgkuTxhMRqRlTpZmdLbBttL2YJIE1XQo70m0xlthGqWmpCxHpFphvIPFGn++ENefwuO7Dm8TrI4cFKnsoenFrU2aopI0KM7TR3JihrKtw6FJYqXU2sDgEkDJA6vTORjFcDqhvLrD7V97h8d/+QGnH34WRKS1tH4g1UunEIFlpfBdS+ynr+uKxncMkpzEJFSLJU1dBwbdgpMnR6LPYhSrasV8PidNEuq65su7d/ns00/53ve+j0mEvfbJp59hvePll19gujflfHFBahIODq+yrisuZhfUdU3btuzt7UnyEAL5al0xGU948cUX+9aanR2F7RxPHp/QNh2z+RyA0WTCeLrDeGcHs1ph6prDw0NhUZ+eSVtn1YpDTpowSlMmoxGdBidOICgFN5+/hdaKVnmqpmaxXjAajimLQd8aWlVV77SbJCl5bmi6lroWIWST5CLeDf14wfs+wRJNNN23+ftEGGO26WjqmtViSapTksGIyootfVKWMi+FANvhsU4SsaqWYlxrJUkeJAUmTQBpwx8NRjx+9JDZbMaqaUjznGvXbwgIF1ymDDAoxYAkjsn5ak3XtqyqNW3Xsa4rafsK7U3GJNR1Q6cVSSYT4XrVhJYumReGw2EfeEaDlPlcZAB2p1OMDu6XOsWQ0DS1AHLdZrVKTEKWFcQ+38hakOKDzGfOx6Re9HISbaStUickypAb0Xbq2pbGCuMy6qgkASyMOn1dXJMxPVAV9bRUaEGr7UZfpF9XQpuQx2EdrNaic5Nled/6bsI6EttrhsOhiHJXwoI7n89ItMK5VhydO0dtxZ1wMhwHwE+YscYk1G3Duqo2ibGVdXpYSuslRd6zV7MsJctSuq4M87NogS1WS5IkYTKZ8M473+Zv/c7v8uUX0no2Gk3QWvP46AlKKfb39wV8Xa1YLOYslwuZw5RmMV9RVRWPHz9muVpyenrcrxEbxo6ABaulgJkKje0cTdMSQtDebTI+63I/BLGPoEFkZfRrdIi7fQDZpEibkiSG4WBAWZQ8d+2AcVlwdWfCYqE5P/KUaUJbDvBtS641o4Gwqy5OT2UdCy1r1jraztLZjW5LnghY2rZNeDYtUjy0ITZTdF0jxSPne3Zk1LFNjMIkiqWraaxl3QmLL7EKZzsx+XFOTCvC/ryLgFXSH0ddVSwu5izmC1arNftXrqK14YsvPmcdQA5Z4wV0SpKQ4OK2wIuYMHeb+xEyRGc7oludj0lxiInE+CPtgacIVhiThLGxSXNNYkIxShhOve6S1sFkQJwnVYh3tl3LIvOpd4ILrKlY+AJ6LSbbbLcLy6v/rHOXY7ktgErui8VE58yw73gMsRU3miRsk0f6OX7rlF0oqg3HI4qiYD6fi8ZZH3MlPfj0dKG3Fz1XoXV49ZROFYG1GfICFxyTY94hqr2bV9QwivNm+BYZMyEgd/7SO1JcCccWYzrv6QGf7XP3DmkTVZfj4zifRrAFH1v/5CnqulbONVFhew8qCs2zATWfaq2L5/lV7XX9NsicHLsSRE7lcswf9+1DwhHHVWtF/49QaDChAuys69eAbXZXH7d5L23N3tM5Offt+xbjgKjh6b2X60Y8p62cTia7eJHZ6CGpoI3H5Zff6CX9zNczH1LP/O2ZTp0AVl76TLw5m0/11yFel8vvbj6lVJzJuTyIwr6fIT3EPfivOv5nX78w8CStYOJGtrOzw+HhAXW1oihShgOhSs8uZrRtE6r5nvFojPdwfn7OB+9/wN0v7/Hmm28yKEv+/N/+W87Pz6jXNapQWAflcIQ2KeVwSJIXGAdtJ5aUIn6XcvPGLXZ39lAkDMv7XLt+nclkwiuvvg5a8YMffI8bN2/y6uuv0dQVi/mM0yePGZQlv/dbv8lyseDul19SVxXL5ZIb167xjTff4MnREf/D//A/MMwL2rbjrbe+TZ7n3H7+Nnfv3eODDz/kyeMnfPHFF70V53I95/HRQ7JCKlfL5VJ6x63lyfEx8/mCw4N9tNL85MP3+fyTn6K1piwLxsMh9x/c5+TkBK2hLAqm0zEKx7/6w3/B40cP+MlHH+JfeYmd6Uj6vfGgNV3T8OW9+9x/8IjHT864eniTgxs3GYynYDI++uwLzs7O+dY73yEbjfnN3/ldbty+zfs//RiVpbz+zTexieZofkG5O8V7WDYt4909/vb/6j/m1q2bTPb2eO3rb7B3cMB0b598MOS1118jTTLWbUsxHvG1b7zJoCxIs4wXXnpR9GOMoW073vml7zAcDmhsx/7BFd75zjvs7e4zHAxJiwTXSfV3va44Pj5hOJnw9TfepMgK8izHOcXx0QnKhap1r2mj+6p0NKo0OgkxT4Ak4oTrNsh17BfbRoR70Gmrbzyi/n1vL/RuMdvtbtsMJNlfAHVCm532lwfn9qBG6bDvULVQMlHJTLCNWMdf/VM/bwXSW9v2kwbPAlgBDqJf+Prv46kJK2zfg0nx6yLStA1jXZ66tifUy+9tfotI/MYB6vIi/PS/HlCK3xvo49uToSLQZre2jSGwRwXLU9//a4MeinUbS1+Hp+06Dg4PwDt29/YpywFN3dBZy3g8xXnPo4dBP2c8op6JNovQuhUWh7WduDMGEdvUC1OhyEqZM4KuRVGWsnBrjW1D5dTb8EzLHYmCwKLzEqjvRr5LrGhBBzq+C4BFQhCeNFqo13Zzzau26Ss6SZJQJEnQBVE95d0owAswFtLFIO6uMZkkf+taLLqtE9v1vRvXyZ6c06kztBfwt8hSYSE1a/muwUAC4EBrd94LhqO8jBXvaQNLxTpHoxyVdtgyxeWGVSt6FClO9Cu6hg45j8ZZumaNVR6voQvtlfK7QydQX8zhYs5qsaS1HUmSo7QJRgQenSXC5gCM92hvWVY1XVWTp7kkq06QYRUCSA89ktp6i1bC8JLxLw+wCw+9TwzZoAQFy/M5Ks0o33iB4XrF6Ec3aGcLLs7PN1VPBVobxqMJ04MrXL11wNmjJxzdfcC6bejqhhTFuBxw88XbzOczfvS970uQVkuCmKYp4+GQxcWMP/iDP2B2cUHTdGJXPt2RZ0151qsVpyentLdvkeUpe3t7eOeYL5fCFAgV5jRLuZgJiFQUJZPxlN3dXfb399nfvYpJRBg5S0uU0szOFzx89Ig/+qM/YbFcUgUR4dl8QWctnfM8OT7BGE2aZBRZQTndJU0SijyXJBhxL3R4fBc0yxDdkKZrRZRbJ1jrqJuaxCSkOidPxcKcrSq4MQlFMcBZz3pd9XOgSoJgf5qivO+TDq2k3ShWSyPjJEtTiiwnSTOapgUkQbHRmTF2xygVHgSCeBAUWYHRCXmZo7SipguBu2JYFhxevcKyrmm6lgcP7pNow85oRJaklGWOtY7OdqRpKro2TpgbZ6fH1HXNar1mZ2eH64cHuBCL1FXFum2pTxZordjf20OhaG3TB/Nxrnnw+JG47uYCahaDAV4pzmezIDgcEhM2a6nRAm6dnp6TF5mIGKdpaN2Rsdg2NQCJTlA6QacbfRXvHDhoK3EATpKENIG8KMWB2CT4YAnfWREpXwVtorIcoFAkWpwDvYPZWuamcjAAoGnFDTCNGlKJgEIC/pSyrMXk0FuZa43oN80XS2brGufh1rVDkizh4NohznUYrWiqhq5rwCRo41nVFVQV3snzVpYDPJBmCV0r7c6pFhe5qqqBGtbrrWTNh4RVGB1ztZ3swez4lBSNbzuWAWz81V/9VXZ396jCOlI3AVCc7LB/cEiRFz1QeXx0gvee7/7mbwtTbrlgHWLhwaAkz3MRSFeK2VyEx4fDIatgSjGfz1kul/08FQWXszyjrmtOT876tsnIpq3rGo9nNBpRliXXrh8yGAyYTKahMAjz2Uxi8osZbdNwenHBxfkFx6enYCEzKWVaoG2IxxwMskLiNS8t9l1rielX19kAAJm+KOadxbq2B0dDj0gfR0jxx6M0vWNy1zWsm4YaS4cnM5kUDq2FUEwn3q8ANlrnIWiTJcZQFAWDsmQ6mfDk6Al/9m/+lBdeeIEbN65z/fAamUl4+PChtPWkCShx2uuCIUQ4fIlnw3fZwAhOkwyTiGFH7M6SOCwWTYO7XmIosqEUrbYc5PAO7aOmlcI7jYvgmQKtEln7E4NxDqOS/tk0mbCXY5tqVdc94OEDACDSB36zrgW2dNNGt+9NUh2BIR1Azch2snajdxlj/6gZFV+xVVSpqAMHvfmsCwy0JOlDUhW+bxts3QZSTdBa3AZOelmD+Nk4NiMwEsCLbZe3yODqos4igQ1NS+wlEIDD97GZDYXItu0QGdKQL7iNcdKmFW3zEnBpk1P07VIolBdHXx/jkTgmAgPOEdu/NvfDhvsRgUyj05iJbL7TyvXSSvUMK6U2HRz9fSXkbn0rb8xdRJ/PBVMm70Qj2ffdFb6Ph2MRuussWsc8IDzv3kPQFBNpAjkPWae2HpWo/Wo37Kbo7rit2RrzgqfbEuUZ3OSGXLoel/8W86rtvKx//RxwJn7XNjj4Va8ewPMBUtraeDu/++pveOo9Rc/SC3frK48h5mPbJ6OiTl0Enr6CHfj06xcGnqJT22effcb169eYTEb40EaShSBDhQQvsj6yLMMjlauzs1NWyxXJW2+RZRkPHz5kPpuFB1WStLIckOcFHkXdtOjgXtC2HVq31HVDlhUMhyP2d/dYLVbs7uyws7vLc8/dZDaf88FHH5HlKS80dyRobmrmF+f4tuHOrVvM5jM+/PF7LJdLFosFt27e4OWXX+LBw4c8fPiQGwfXyNKM3d19RqMhh9euU9UNjx8/EV2qL79gMhmT5xmtbWi6io8//Qm2cyyXq2A5XFOUJSZJOTy4Ct4zvzinbRrOL865euUqzz93i08+/gmfffYZt28/x8HBVYo8w9qOzz77hJPjI05PT1ivr4c1Z9PyZJ3l7Pyci9mMurF4DHleYtIMpQ2zxZLz+YLRdEo+GPLq66+zu3+Fo9MzMIarhwc4pVis16RFAUDVNJg046WXX2Y8GaGMYbKzIwwjYwIlf4xSmsVyhVIwGo/AScBfFDlFkbNaVyit2N3dxSSGxXIBCqY7U7IsBUR7wiuh869Wa5bLFeOdXQ4PDsnzgizNWVZr1uuKQZoG+2e1AZeUQhmk7cVvFrUIjPSCp0GccZvq/TRY04uSbg3U7UEn26ge2e6BkKcHY//3LYT9qVeP34RtnI8/bzOgnvpQD0B99RS0AZ381n8vT+5b3x6vwtZ/L7//s84rLh5yicMZRhrzpe03PcRxAttsE2xCIxAUPqW2r0l/OBuwTanNifrgzPdUMfUSQAf9ofXH1Z+tv0yp1WHfzklSMxqP8d5SlgOSNKOuK5zz5EXBer1mPl9IS08AIpy1dKG65vB9lTxJE5IsDeYCoj/hQXSWtKYI407AiajLEZPUy4tIfKajAK5XHkwIb4xCtGbkTCWIMhjotRzi9ZFWCflSrcXm+VLlogdDPZ0NC6eS9hRlQgur0tLCEYCqLEvZ291ltu4oLtbY2oZgF5QKCad34IpAzVZyyOE58Gxo366z/bWwxtEaj00VLjd0nYDM1jtxKLG2198RVpZHJYYYo3mkSmUVWA22qrBnM7qmCdWzcN18YKnpqIcg86z2DmyH76xU+rwkyMqrPm/x8TlzwnjyGtJQUdV+K5gOQZBJZEGu1zW5MaRXd8gP9iiu7tJWFVVdC9vHGDAGnaUM9nbYubLLjddexOM5e3yEahu8tSjnSZTm6sFV0iztnfeiSLFoMID3jk8/+YTT0zOm4ylNsEkX/ZKOar1mMZ9LgI+iyDNpw6mkdaDrur7dt21qvPPs7U0YDAZc2b/CdLrDoBxIwK8J9vYJV68e0Ab30/l8zrKqmC8W1HXT3/tY7Z+OBYwYDAoRug0tclopVAjsnZELb6FnlUnbrg4JiiNJhBGbmBSl5BnpE4fAKuma9lIVXjsxAcEYfFDVjfomxhi03wpIjSQ9qUmwnr59VwUh4TjHba9Dmw8LGJgkKSaVaqrrgn6XF9OU0WBAbS2N7ZhfXKCUItcGlzsBL6yla9u+6pskBmtNEIG2YC2JUozKkrppqGvRueu6hvVyJU53VwyKTdt0bDOwzrFYLuk6y6AoSZMUbRKc96yrKrAhdJjTttYERNB3tVrh8TL3BQ0gSxeq57IuJCaVBFub4Cis5H7g6FrRf0uSVNhaQVBbkvk2CPSGRK61hHwNFVqQvRVHvabtaF1HHtaOzjm08lttg7pfp7NUdIw2WiO+X3u6zlLVDctVhVeKcjSi9AW7e3u0XYNzHR5N222xujphtLa2I8GT2q530vOhtTEC+V3Ut2mjJpOSJMjZXkMpAhsmMdLy1rU8zO6RJgkkBp2mdNb2Tn1d56irFSZNKUpNmhWMpzs0TUPXtuTFCmMML7z4EsYYASuXS2bzuThOD8owlg1VXWGSRFwolwseP3nC2cU55xfnAWjRDIaD3nVvtVrx4MEDAUSLsneNW61W+FCwHo1H3L79PKPRiN293R5UuX/vPudnZ3z4o3c5Pz3jYrbgYjZntVyT6pQ8yQNzJ+mXyV7LMwAaSrVEBkrTtKLx2kdEUtRxzkre1D+/ITgISbjkTRtQVLQgW6wWBmoirQe0obgRNVF8EBQXbScZ01FYPc/zfu5ZrVZ8+cXnPPfcLfJsLNdtuYSoh6Zl7YpMZxv0FYVpFplKhugeiZK2MhfNdsJko0Jx06sIVKgwZxi8aoji8TJV6Rgco9Ch/S6EIkGE3+gkaEjpHtgRvZwNONR/JrKcnOvNXmLS7pwLgLi01ydmS64iAB3brX2+X0O5BD5dSnzVhn2jNlKrfaztg4Wb3rpGzzBvtgClXucn5Kb9d/QOfpfLugI6RWHuDdMn7q+P70IU2rN44jU3l8/VBhZZ11kpXqi4jgTZDy9d/HH/fZB8+XG+DET4zVrkPX1BpI+b1TboQIiNNjpacjmlx0yFv/XzZijwREbQ9muTtjybk8Q8QvSTZB9+CxTdyGTQx8QeJO7G9YBSf6vdNvAUWp+d3C3l44c9hLh9+/4ETtmzQNPTf+sTrssneqlj49IZ+2dj+fB3tXlI+2PZfl3az9Pp2tOX1G9yrf6P/by2GT/Pvvyl//T58Vds2R/GV+Wo8dr+gq9fGHj6lV/5FebzOR988AG3bt3i9ddfZ7VaMptd9OjmlStXxHI46A7NZjNB+wclN2/eYm9vn+FggNGa5557jvV6zXq1YjAcsru7K/ROpfhXf/QnrP7Z/8zLL75EYhLOLs6Yz+c8fvyIK1eucnBwgHeO6XTKYrFguVxydHzMcrXkk88+49GD+9z9/AsGg5Kd8Zj3fvQuq9WKb7/zLZRWjCYjnLfMZud88P77fPLxJ9y6eZPpdMrR0X3W6xXf+94P8B6m02kvlrharxiPCvLMkCaa/b0pnbX84b/6A3FwQKyid3d3+Qf/8O/zzjvfRimxMP/hD3/IRx9+yP/zv/+37E3GvPG1V5mdH9OsF9y/+wXHTx7x+//R75EZA96RJoadnWlwGsmp6xVt29G4TqqXXctkOuW7v/7rOOf40z/+N7x45zW+/rW3+LW/8V2qpuXq/nVQ8Hu/9x8Se2WbpgZvWc1mKGWgEe2Jjz/8CNvZAJytqauVCKHXtSzd3os7EuC0om0asYbuWlzXBc0eFXq9Peu6ksGsHE1TUddrOidgS71Y0jUt66riytWr/K3f+V2Mv8Z0NMB6T2drykSqNGKfqsRxirAoa0QoPjGivREolvGx10pYLtZvDfoewAhjZWv0eOcvTRzCcLoEg2wG1lOjbsOU2v7j05PAU6+YkARKdkx4N1+01ff+FWN5A55tJ7cx4Qk/9257/cGHf8FHNQYbcPk8wwlsg9pfPZ1sgU/h+0Mq01d84pLVo/EqtOB5elbAJuiXDmj/DBCyERGMVTRhLIXjCsFNG6oWUjUJgVCglWOFvi3fsZmIsyyhC86b6/WK9XLOaDxmOp2QZimd91StCyBrjnUVrV3y5Og+Z+dPmIwnFHlO27R0AYC1VhKfyWTKcFiCc7St4/T8EdZZsoEwHVrXBiFcaWHLy4L4uBojIFUWtEA8Dp0kmMSwrteBnSTXS1tRdKobcaszypAaTa4MaVbgE08d2oW6tsMkhjw4THbLqr/H2juU87S2lburRYTRIu4e3ruomshqvaau1mSJYVDm7EymlKcLjNbMVueslyvOL04kYfQKk6Tkwwk7012uXrmKSVLSxJCEFirnQqtskYnr6aqmM7BKPb5MYJjhGxF1dq3FaYfxwoYxCmyomGEk2E4Sg3Ng4yNadaRnK7IHF9SrGoelNRKsFtbhW0u7qnBpRpdJsozxmCyl8Iq2c/iuw3YdKYZUpVgrQt2l1yQoSAxeKRordruJA996vOuIDmg+uOKJNoil7jqKg11e+q1f5st/85esz2fceucNdm9d5+VffpvJ1SvcfO1l2mrN6f27PJmfcf7H56RFwaAoeHz6hNPZGX5aUDcNJs/IhwOGkxGP7t/nL/74T/jgg4948uQJGZpxVjA/PePiYsa9u3dDouVYnJ0x3dnhO++8hZ6MefLoIcvVmuWikufEtgwGJUVR8sILL7K7u8eNGzcpipLRYAAomqaTMbRecnJ8Rr1u+JVf/ZscHl7nz//8e6zWaya7O9x54Y6IsQ5K8qIgT6WV6NGDRwLe+pZBWbI7mdJZT2edOBiG5NIDNgOtDKUe9EmaaImZ0C5jhTXbB/wxORGtog6D7Szr9ZK6rjl+8hgF5FnGlf0r3Lh+Q9pynSMNrRadkkRwsZijUMFdTMTA667DBiaOzGUWkyQURSHAdNuhgTLLGJYB0NGKznXUbYX2SvTcmg7XtIzLkiIvOD46prMdO8Mh2iicL2la0c6MyZ73ntQYXr59G0KyXNc1x48eBXdKT1lkjIY5O6MBiTHs7+xirSVLUlbVWtq48owkz5ju7kq7UdPSWsvDJ49JkpQstCUq4Ob165T5gFnT4rwlzXKKsuDKwdV+fo0tONtBbxQwjq/WO7z1wU3IUTsBYhZLEeBNskxcN23H+ek569Wavb09sjzjymAo+zTRpEBJ6611DLISryDFgIcyKVBGk6YbxoMJCbUPTK+6ErZGnqe9kGxrHXVrSYuSwWjE3/q932NQ5nz02kvYTubgk6MTTh4fM5udUzc1V/b3USgePLjPer3m4mJG13ZUTSPC9YOhaEd6QnsvKBNYE13LIC/Js4zVciHaTGGCblpp+226jvuPHnB0etxrKb7/3o9IkjS0Xwv7zjlL0zWhU8D0wY9WotV1eO0QpaVdLMY2bdtinSMv8sAgESOK6e4Og+FQ2mzznDTPmE6nlEXZC9cPh0N2d3a5fu26tEdmOTrZtIFrpXEWlsslP373I7RWpHlKmQvD/YMf/5gH9+/zr//Fv2R2fk7qZYwVeU7lK+Z+3gOVbdA8TBMBEnrWHK5vkfPeopQjTWUt7RoLOLRRItVgDG0nAEjbdj2jjCDybJ2js+Gf8ygXAC5Eo7HdEnt3Id7M04TUJORKk6YZz996ToDurmFnd5cb12/w4Ycf8Pnnn/NH/+oPg/C6p7PCRMZB13oUHXh5Hk2QewDRRxQNqETY2k5vNOwC22o7fIpgk/eIuLn1vX6dMKhD7GY6KVaZRPanTRgnqi+Y2dCKlee6B5KleLDV5qYulz17aQTve43H2L4UXU6V1vgA1sYQOK6XUU7AbDMowglGoCsSHvrCdPhe55w8d1pjGwF8u7YLIfwmfo4/r4OZwnq9DqCZPFcmAE6RZebYFKIjCOL9Bmh0Qcy9Z8JlyTMJ/6Xcw/sg3A7OiWj6+fkZZxcXnM/mFMMhaZ7REZhJQesotoR5J2uktBlL0cV50ftyQdMqFrjFOTG0o6nADdQBdDFyLo0TV1mjFNZ5vN3ATl3byfXXhHneBbaq52f0lYWxuAH5ts8/grs6zEveSKwubqaSzzjve9DWhjjfWodrvWh7ak2itBT6AkiLs7gAuMq6HBysAaNMyDnkfQG1CDmbnIY2gQUXjjGaWcXW3J/5is/f5sdL42EbZvpqEOhn79aHY0OFNNRv5Yxqww58+vWzCAuXtnnqu4T5FHPizbMet4h5ipxPyDfVBqT9RV6/MPB07dp10jQnTTPyPKcsB4xGYyaTCet1hXOO8WSCApZLcbQ5C60DcWGaBPeKtpGKXZZmNEkTqJnxAYWjo2NOTk/7RamzHfPZnOPjExTyIOSB4ltVtUwI5wJ4LReyQCVo9q+Idenp6SmLxZyT0xOSxFBVa6ztJLlsW+p1hb51i+FwgDIdbddwMTsPFbZuM0F519s1p2nCaDSkqmvm83mv0RKDzStX9rl9+3m898wXcz7+ZESapqzXK7qulcC0LBmORvjHD+naJnSDedarJbbrKPI8iDhGQGdjvxrptTrJhDW0WDK7mHF+diHCqVnGermUx8fa4KhQMzs/5+LiQgQptWEVKpy2k8R5dnFB17V0XcPs/IL1es1oWKKAo6MTqfAaTVvXVMslLujFpEb0PQbDIQrFqlqDEmHGs7MTjk+e4LzGeVjPFnhrGU4m+Cv77O7siO6GVsEhRHRaNEqEuVUAJCJosVVV+FkDWAbFBgBRYfTElrj4XqyebYM8EXTZhoIifhNRbB+R66/8/mdRbPUV78VgcPu7+s/12/RH/xSU9RWNburpI/ZbM6C/tHVc5b/qe/tTCovbV5/Zz3htgPafAVhx6Tg32z57PD5s0etoBWApVn1itScubL22SlwQIyC2Zf8ahWYjrq+QZ6LrWparFYM8R2Uiwh0rTQqprsrYF42TdRBVTpO0r07Z1oYFUwVHqYQuJFPiVNKR+ayvEgkrRdgWaou15FUMqOUqKCWi0zoIiYudsYi2xrkTgrCndyQhONBKg5ax5ACMD+BUcJKzdiNcGJIPAsV+w9zrDXn737u2Dcm0MBeyNCVPU4osQdxZRGdHKYXzGt11OCWtTPV6RDFQpKnBqdATH9oEdWBWdtrTaeiMEsOAxAibKdgSq8SSEHvudS+E6EMgoZztbZ2N0mjnoWphtkK54OoTwd7WQtvhkwSvJYjyIZAyxuAT+kTEW9e7ykTNhH6sBeDd4oPo/bZDZJy64lMnQV7VNKjUkB7uUdw8YHR8xvTVO+zdvsn+q3cY7e2QHUzpFoZmluPGJWY0QCuDRtMEDa/ZxUXQDorPu+fk5JiqWnPv7pecnZ2J9pUxtHUjBhyB3eOcMLDmeka1rujajmE5RGGwreh5tVZs2Ich+dy/cpWdnV3yPGdQlKKptK7obMdyJcn2el2TpCl5UXD9xnWapmH3yj5XgtuUVjpUvM1mlva+F3vF+14XstflCToGAroK+0bmgkiJV4SmvNDyvJl7+6AojE+tJWkzYbvYDmG7Lnx/EHgNc1DUN7FuwzxWDrQKAqVBC60H0ZWNBfwQdEtFOJ73ptWFfl2K1W5HaE8Jwa60zIQ2MytiqOJQt0m8yzyXNsdMtFzW63Vo71MbjSQvrZASqOqQtEWXT0kS8ywHoPYKRUsd47KeTg+2tb0TU5w3lBKnM7ln0RozzCMxeQvn3o8fH/VgwhDSAgRZ7/BOQHUd1/8wTcX7liWSuPaW10Q2hCJVydYa7zfPmzZ9VTxW+gWc9EEPLLRlOujajq5tBeTPZO69cvUKw0HBg3sTqmrFerWiKAqmO1OKssDajp3pFO99HxcuV2sBLzqZ5z2hXcbHBI5eIoDAKjQBKNoUbqT4EDUtu66j7dp+/ZzNpXMgSzOiCHzXie4XhHgmABN5VpCmGXVgGjrbSoJtDHVV0XYtaSa6SEqL2PlwPGYynbBaXmcwHFIOB9imFf3WuiZNU5bzuQiGZ5no7xVtABYkJjba4DoRtj969KRvSc2znCxN+eLTz3j44CGPHz5iOZ8zzkuKPCMNXQ/WOrIkEZ2vtkEEh3WQ0YvxsQtA4lYsEMCRtoutTi6wpgl6UJa2C602gW3UORuAJ4t1ogqVKB3mIN+v3z7EDj4GjHKh+0QwSVOZo5wNzCfJWTzInKwUu7vTAKLIbOOsxxt6gETY8C7iBrKuKAVKWvs8GudV/2zE2E3Y3PI8udCCZL1HOx+ccgNIpRwgz7e03ZswF4UYe0vHJ4LHEiKEics/HWtvgIYYnwkrOAbaYe5UkWnEVgASXltzxCVWiN98njCGowPmpcDUx+snc4XTdssEZ3u/m3m3bduNVpXzT93Prf37ALDE+LaPmdQmSdg6H799zJtT29om9DvEa+ukDXw+k3z1apqQF7kUVHxkZG5EsjfnG7Qpt48tzh9uc0yR0eljdB3zghCDR6c3he8BBh1nUhe+I97jrSD/aVaN7/e5dS1irBSC6visbCcy8bkIuv/yeCoBFh2gXXByDM+3UYGBjhfWmXehVU+eUBudTsM1cPH4hQYl+2YTP0TgJXJi+1SILVbcpXsXH43tQHr7pehlxf8aYNOze4nXLq4Il7/hUt72M/fyVa/NxX/645vHVj17evGas9EM+6p9/KzXLww8vfnmdzg9PaGuO27cuE7TOq5dv0U5GPHuuz9iNpvz1lvfIc9zHj58yJdf3uWzz+8ChjwfkJgcSDh6fBxsUkVk78nRk35QVbW0GzShHeKnP/lQqpBXrmC05vbzt/DeM5udc3p6wmq16gGIGERppVktLri/mvPF5z8NmisNKPjg/fdwzvHFF1+wt7vH6699LQRyjm98403u3HmBnb0x5+fn/Pi9D/De89JLL7FYLDg9lf72qqoYDoeMxmNefukl1lXFg3sPWa2EIZSgUM5L32NneXhyxOnZGfcfPuD4/BSvNbPFkk8/+xKrE/Zv3KJpK1KtGBQ58/mc93/0LqPRkJdeeoGiyHDe0raNuAemmVjIXrnK8dEp7/3ofXZ2djk4OOT999/jyZEwMUxiWC8XVHXF8fExg8GIK1ev8ulnn/PFl1/y/K1bDAclH37wPgp4++1vcXxyxJ/+L3/CnRde4Otf/zofvvs9vvjiC/43f+/vsbMz5U/+xf/EYrEiLQf0rQ1ZSpIm7O/uMS0nfOdbbzEcDpgvFgzKAdevX+OP/viP+Kf/48fsjHcpi5K6mzEcjviv/o//FS+98jJvf+cdqrblfL5Am4TMiEivVoJmo6DT0AtXxv9ZT3Ra206V4+CMBFYpJsl2mUo36PDWoilJsttMxBC0gS6Pt34yDwtQBC7Yfv+pyfiZVxAXjQtmnNx9WIAu7YvN8cSzlODdh8/FfcgZb3LhrcoIPs60KGW2zkfOJdLRN0wl+mQZNpPJ5f9eviKb1fnpyZlLn4qf2EydHq+ELRXPKLbh+HDodjuYdDGYjEldVCKSClwcz03b9AFgGxOIeM+13DfbWRJj2N3Z5fTomC8++xKjPInRfOONNxgNhZ0ph5FQlhOuX0v54ssvefL4iCwZ0I5c33YG4sC0uzOmHEgLgrPikDMZDfHe0dgO51usVhLcBiFtHQQSAegkaMqKrF/6lHe4Tqo/Osso8lJaVkPQ4ToB9Ot1Res8Vm8EVk2SkQBFIUnLer0WkXNnRe9ER0tfoe3H/2nAoGkRRkIanonl+YzlxRzVQeo1wzTlyu6AVTfl/OKU+Vyhw8OjAyOxXp1x1iypLk64efsF8vyQtmuxeNJyKECdU1S65ShpWRcJ9SChLFLSPMXtjHFtx3K1JPUdyXSAMgaVpSSdR1lPl8g496fnGK0Z37iJyiSQXp3NWH12H42hnO5RVR1u3VGdXEBdSKKnDGSeTInLFrnB6Y51sxAwYtHgE0eXKZwXRkCLAIWJD9ca8DhqOkySkhQJxoF20IQgutApqnPcffyELEkob+5z5R/8Hjf+0e9z+MpzDKcj6sennJ2e8D/+3/8ZXZqgrh+ibu7x0n/8Ozz58x8x/+Q+g6JEKcWXn34q2oJtx3K24OTkhB/9+EccHT1hHdo4Xrj9IqlR1NWS6WTI17/+Xaq6Zr1e8+Xdu8wWc7747C5ZkvO//jt/D6UV9x48omoqVusVg9GQwWDA9RuSfFZVhTGGyXSCtR1ZnjJbXDCbz6jx2DzlvF6zN8j5/f/478gISqIOj+go2aqi8aJldXBwgNaic5QmJrSYWBQ2zN8qMAMcqvZgErJy0OuDWSdJpOkr38JUTKI+mU5Yr9dU6zV5lpEkCTuTCfgxu8Hxb11XJEnC2eycLM9J0pSmq3HeMV9Lop7l4ja2rCpp5W8bBuWQNEl75q2JLS0olBEWRNdaYdDUHbbzmGDJOVIlSWoospyz7pxZu+bo+DGras3e/n6weldY1zI7O8PrBEzOqm5ZrmtJvLWis9Kqh1Gsm4rzxYyIKudZSWJySbBbS9Oeif5ckuCcxlto1w22arl27Rp5ntPktTC9RxNpKXQxOIeL0zPOjo+ZjIMTVC3t9dqYHvwyStxn0yRFoxEsJSQUIQm2ncV2LXmeozMREY9aMZ0V4fqiKCgGJVcODsGLg1FcSVwQdddakxhDmmqyNAtsTUXdNn2Ln9aaRBs8NhQ/K2nFCm3bYlWfil7VesXp2TkXp8esLs5o8yE+ySgHKUkKX3zxOV9+/jnv/uVfcufOC7z44it8+9u/zMHhNT799BMWiyVpPuTs7IzlsqFtj1msTlhXtejtBI2cPM/C/Kh6EL/uOlrnaLzDGk3nBZTQqcwvhcpl8XMiX6S1ByezdVkOpU3VpLRtw3K5RAXzCWsd3hHABY1aW6ztWFdLWWR1rFpD3Qlb3QWg9f6XjQD8Rloo09CiLSZDE5TSwpozCcPBiMFgwGg8ommFTW+MsGz29vYC88li25YmmBDVVc3Rk0eslyvGWc7OlX2yVIoYdbOSsdNa1qHFa7VeipizbVBKkQdmi9GarpUikAnJUqvkWeu6RoBubXC40FoqMYRlE+jEaMuEdloXdERVGNM2sPNsYMVrY/r4qfEiVqw6aQu9mM+kZdJoZssl9x49gERzeP0a9+/eZb1ckaVpiIbEMdV1oHJDlhXBccuBkdiwCy6KukME/5OC1gv7w4QE0PVBmrTfgcLrEJfp6MQaogofomSVoJTBKR3Yh75vR2XLMdAHA40+qrMC0KsQb7tQYGuCcHgUqlbekxsRK3exeBDe14g2k4PQ/qg34ENod770ivpZfey+Scg30SXhmLXoOKJET1JHnUaJv/UWSLgI2pvGGHSyicXk7IMYvRHw0UWHnPgvghheSUubgiQXPaS2bvv24F4fCGHFEgqgrgvt20mC7TqePD7ixz96l3/5P/+P/K3f/Q/Z39uhWnXSGpkFV8AugGdaR8JOYI57fKR6b+naOh9F9VVfrFBK3ElFusJG+SNaa2m96JyZkItFTM1ZR1u3Qb8wtAkqDZ1E8CZLcXiaruu1uFRkCrkt10MQzSmjkcZvKUJI27TuCy5tG9tngxFhIvfMWiXHp7ToCPbgobgeOqVxKIyRdnGdhTjeB+03Z3sALLqkR7ApQfdGFYJeeVQSwK9Q1IygqXnq+exzsq0n18dYeGvbvw4TKTrRbWdNSgU5CxkUvT7XVvYqG24Bx5uj2hzHBjQLoyYmf17BFlir/dbHIhEgfMZuvwdk/94z+2sATz/5yUdY27K/v0eWp5ydnvDo8SNOjo+ZzS5YrysePnxImqY8efKY8/NTvLdoo4Io6QXras3OdIpJNFVVsVotmc9nUqXJUkmGvCyI4JlM9sjShCaI4lprmU6n7OxMxfVtvcIkUuE5OLhK27YcHR2hVILWKc61tK1lb/8Kw+GQl195mbquOTo+Yf/qAV9/4w0uZjMuzi/IcqFj7+zuSytIXuCdIy9K1mtpOUiShLwocN5T1xWPnzzBWrEjBsRJyEcKPKCU9NZby97+Pvv7+4xGIzlX25HnOdPplMdG+unfe/99XNdx/cYNxuMRh4fXGJTDUBFRMsBDSpiYjDTNyLKU4XDA7u4uZZFjlOL87DRUiQLL6eKCNE0ZlCXeWRbzOZPxmMODq9z74nMArl87ROHIspTJZMz169cYDErAB/2msq9S7e5MJblvWvb295nu7qBRFHnO4fVrDAcDunv3pNVxd4fJdMp4MuHll1/m8OAap6enlIMhL73yCtduXBcxQev6iSqK+PV4cwhY46QZ2QWXhs9T6Eg/FsKkpZ4e5/7ZZrieDRUXahcRXXXp/UvgUEj8fyEw+2dt1Mc9EbTZBpq237+8i2f3FqenzX77CsVXfafa/mFLZ+rpTeMkuYX4RzaB39pGXaq2fMWeepScS2d66Z93+K1jkaTgMqPJ+419a1zU4zHEbbcvlCRFEpS6QA3uq5ZZSqkymrZlsViQp4Y8TQLQK8mqUmBMKkmvUmRJSlEUVOu1sP22BFazLAuBubRUQQBzlMZ7JS1tsYoXFnIVukXi32P1qmu7PliR6s5Gn8SHFoDtZ0P3LIbNBY/AFAr8VvulDpXap+FA68L78TiVaEaBBiVaMmLRXeO9OOlErb/xcESaZqAMxgRhaJcEZkQQOm4auuBM1YO8QZS5sQLMtTic3tDynffC1HCmb43xkkL2QSQavLUC9HUdpCmqSAGPW9VkaNJywN6NK2RZzsc/+Yy1b9GNhTYwWXwEdoUd0bYttmkleVAb9zN55pQEeKElUdoKNkyWaJ28+R18CNrjYu+sx2pP5zyZUag8YXVyRnd2TnvvMauLC85PT7FlgZmOGJYZ5e1r5F8+pJktcasKOhsC7Aguy/flWcZ4OKJeraibjuV6RZKk7Oztcu3aNb7znV8Oa/Cag2vXODs/oxwMcR6yoiRJEsaTKQM3YuIsZVmSFzlZXiICe/JMCDsvIUkyhsMx+/tXGe6IykmWZaAUw/EIhSRzzjpc19EZ069rkcFrjJaxA33ygvJgEHHzNIzB8JnYihEeIbm2l9aGTZUyVrP7wLezpLkwYzrvgoC56AFhLcp2vYaYCixBF0VigTzNAjAr41JtfbcJgazpWYyxguxYLBZopZhOx5sCQgDXPULzz8sClegNQ8KJ9pZJElx4hqL2R5omwchAnsPVek1nrYA5QXMmamX2c2wc16HtdjSaEBuloxOV0gpN0IHzyPMe5tq2s1jb0natJOFNjd6a/xKT9O3qGt23pkTh3PiMCjAorYySOGxcOEUnLiS8Ian2SmHdRsA3ji/nHFaF9jktyZSL7fOx8BLWh5grdp0IcZvAKPfBrdKGVu6qqmQ/cQw7ubbV2vHo4SOOnhyxWCw4PjklLx5w89bzDEZjtBHDhsVCmORXDw7Ii0IYUeH6VXUtsWUuIXrbdgGMtZuimA6pTyiuuLAYeoLOnNpOMkKSbLuw/gV3KK1D3hTYUprN+QRgyW2tFZe1LBXaSOCUJpJEO0/fPhmf98jWtW2LbUUQu6rWgdlv++faaGHJJ4mR8eIB71gvl6yWK+qqoutaSDPwnqap+9YiJyhFaN1TFHogeYLL4yjvmXCoFlRkEStUcIFOXYZW0r6ntEYnAkoorYlOYVH3qeu6fn9N29K2HWVZkpiEdVXRNk0/P0UwdqteKWPNeAZlSZKmwTFMmLN5lmOmmqNHj2lMzWg0wjnHsTrpPx8TYdm/xnmL8g6MIc5u8twLWOB8NIzZOG/5HgwKeoZsYraeZejj/Q66PX4jVeDj+3EORod5KrA6hYgagBhhpNnO9vNsfD5jZBePIbJoUBvW4baeTxynm5cPTBsdmIuxSBw+E+IV7zfjPAY1zjo6L62kqt/vJv70T32fUpKrik5X0OsMa8blOOnS12y94fszjcBEZBhtruOzLVERMDJ649BZ1zXL5VLGxFZcq8LzTti3cjGsVv247uEItynnbg7R9XOgXNvIIu5vVX+Gz+hfRU2zp4CG7Z8312YrV1CqjzfjfolxkdsI0Hvvey8Or+IaEZ8bH/IZtSkGO4kBo7h7dGbugiu0xCZB4yzs2Logu2EtSousSn8aEfDcPm8f7+HmVLfzK4nbN7/H9y8/G1vMqe3zeer1Ve9trsGz228Ogkvr3KV9KPVU7rt1D+L+2TyiXsU49md8z6W9bL76Zx3dz3r9wsDTf/Pf/J+4fft5/tP/9B8xn8/58MMf8e67P+KnP/1YwJQ05Q8ePsBaKzoIoVUhzQyD8ZCffvQRp6en/N2/+3eZTCf85OOPODs95dHjB0ymUw7GB+ikpCgyHq+XOGd585tvoJXiBz/4AcultJL92t/8VX79138VsHhvKYqCyWTCb/7mb3J0dMQ/+Sf/hMFgxGi8A2oBquI73/kV7rxwh9/87d/i/OKCs9mCN954g//0H/9jfvzej/nRj97D5DnLqubq9ZuMd/fJyiFd22KyAusVi+U6MJ1yzs5PuJhd8MWXX1KWA15/7Wvkec75+TnOOZqm6QWAo9bRd77zHUaDIX/6x3/Czs4OKMXe7i46MXzw3g95+OQJ/+f/+r/m+uF1/vP/7D9jPBoyHJYs5jOWizkoQ5LmYdJQpCZnWI65cf0616/f4IUXX2JnZ5dyMOQv/vzPOT094+rVKz3tvihKXn31Vb788i5t3fCtb73N29/8JnUlyfNv//Zv8/kXn/OTn37E22+9xXe/+10+++wzHj16xM7uLjs7OyGAKvn2t9+hbhrOz2e8/a1v8bU3vs777/2YxXzOG29+gzxLeXL0hDTPmEynXLt+nRdfeZW/9w//Ib/yy79CpCFfu3YDB5zO5lJlCaKkxiTBFWpDkUz6FpfNMO4ZTtuIzKVB4HtBQPlsWArdVywaSgWHCzbChu6yYOKmChOD2I2GSD/h6ujPpjZBJFvH99d6xWVmK6r5OVv+vJ+/8tP+KzZ85r2v/t7Li1kM7H/eacZFf/u/m7c8QefC+55KHq9xDGZ6QNdvEkkbHFVin3xMRrfvU7R5b7sVje3omibotjWUZcFgWLJcrzg+PmZvd4JJhiyWc9q25ujkCQBN3ZCG9uDxaEhirnH37l1WqxW3b98mH43Y3d3pv8s5R7VehmrvhmXmAsBklAiEui6Iim8xlOSx82LVHHRRkiTBpFKF1VqxnC/7REVrLS5bRpMOBqFVVkAvHzQr8PEZFoclaxXKSlLntkDExkqQnCDVLhEVzQMjK8O6lvlywWJ5Qdut6WxJZxvKouQgySnzeyh9TpmXaKVZVw7rW6xvxH657ajbTXsDAG1H5z2zes2SjlpJ5StLk0Cd7si0QRtYB/HdTjuU62g78MbgjSZdVlA3NLbDFClud4CfLWnvn3Cgc64+d4df/Y3fZP/gkP/m//J/5cHRY0ztsLmj8r5nHZigp3VxPqeraqY3b+K04my1kLacrpNgXdA+0UkwBrsVTHnnsK0FI9deqnpBIwGDQpPqFN15unrNuqnoEsXRH/6E9tEJ9ckZDY7Z4QjftqjjM/KDK5Sv3WGnqUknQ5782Q9pl0tGuztY2zGr614D5IXnblO8+DL/9nt/zsPHj3h09ITheMxb33qHb7/zbf6L//1/QVPVrBZrHj58yMnpKX/57g9pnaUWBIRyNKUclEynO72Y9dnFeWitF9il68RhMc0MN27e5sbN2+JKm6VcXFzQdR1ZUfQJWmTSRRBotliKeUhIYsuioGma0A4u1vIqMyRJRp4VgO8LQcJ4lpaTuAZ4v9FBkXlf9xqN1lnQiqZtUbRkubS9nsxmfUKdJAkZ0HlIWiuxTZJQZtEk5YyyLNnf3+8ZCVVV0batgCjQzwFpEPd3ztF5j7eWBw/u03Utb37jG5g0pWsruk4AV4snzXNu3LqJNkZApLalqixZYhiOJzRtR1W3Un1PDLs7U7IswdmOuq558uQJxhiuXr3ag+DVutmIoBtFGgCtNM8ZDIYcJGlgOli6TnR+hCGgUJmASAZNE3RQatfhbMeiXoP3LBYLskx0f1KdUA7zfj6Jy0HnHbbrqNervriUpRl5ltK4jtZ2XMwuhK0SRJmLosAkKhQj43wv83ue5xIfKAFTbOdItSZRhtnigqZpmEwmaGP65yMmKM45qkrA851iB5Mk4rzmhXW/Wi1ZzGbUbStuoYG1+fDhI+r1ih9+7wfM5jOazvLp51/w8adf4FC8fHbKjRs3SLKUn3zyMYOy5NvfeicIsTvm8zmr1Yq7d++yXC5J05TOdpycn1Gta5azhchEaI1KUwwp3ol2WN1WYW4RLb9EJ4RyQEgIYbmopbihTWhHTGi7js52/fi1bRtAWgH2ktyENVu4PYrA+ugLgJrUpCGxcwHwsf1aFY2F9vd3g7PhGcu2CTGrFEkiSLNeLmSNMgmDcsDOzlQAzKYSUChNsU7cjufBUS/LMpI8Jy0LAb4zcXcUoFrA6+VyGZJSQxM6JvJMTApsWEviOWmtGQ6HjMdjBqNhr3fo8ZhE9/tzzmG9Zzabs1yu2JlMSZOE4+Nj5vM58/m8T6pVyOS1F2ZA21lUmnHj5nVMYjg5PUWhcJ1ld7rDoCx58vARzlqef/55uq7j7t27EgMH4DrZMiRp2xrv5X7EolvXWdquIbJ6HBvG2iauCsygENvKS0livgUwaGMEpNLCIpR1ecM8EqALLJcB/CKT9t5mJU6+VbXesFm0sFw2xnK+BxvAS8EoxC7OWtwWQ2Y78Y5xX9I78ErxvY+7/bMARTSAiESANBcW5EbvbzM39Tp5aYpJDKPJBKVET7BpGrr1WoDeTai6FStvA3OXIR4TOjV6XKDv9L58rB6wrZx7rpOgmSTzXFU1AUQPpisIm8SjcBpwHt1ZbAS5wrWVnwVAj0zUCCbH69m20qqbJBunvgicxJzJBHZmBMtiK3moXIpWbfxsZFcpOT5tNsYt2oNRwgyXeYc+rrfO41xg1cXCnFI9eNk/B1uxrjEJGKhXTRi7Mqc3dYtzwjpERQe92N0iykVt20gCaC0mMWiT9eMg7j8CnBKzhRbeDWLaby9lgE1Ms3kmtphJ/f//9fK/DVBKf82/Mufa3jYWI7ZRo9gG+gu+vCcwtC5njpfAtK0f1KXff3EA6hcGnrIsI88ziqJgZ2eHF196gSwvKMoBr7/+OtPJlIePHnNxfs4HH/yYvb1dvvHNb7C7f4X9Kwd0rUXpz7l950X29/eZX8x58OABj58c8fzzt/mN7/4G9+7d48njJ4zGY4zWvPzKq1hn+eyLL7lx8xbPPfcch4cHJFlOXg4Yjaf8jb/xK0ynU1ZVxfnFjLbtqOs2tAIkjCcT3vrW27z++us9S+fmree4fvMWe1eukhYl67Zl6MEqJaKqqxWrqhZBXudoQ5WvGAzEwWl+gbNe3HuU5v59ESRvuyYsYELLFe2Yrrf2HY5HTCYT2qbhi88/Iytykizl+edvc/XqVT748Y8ZT6fiCJMkaJ2EBFwCaO889+7dp24asZ8uCt555x2WyxWffvoJr7/+dabTnT6prkIfv1JC697d2WE8HlMGgVNxKWp756K6rpnN5tRNgzaJiIYWZTgXoVXnWc6LL77I6ekZs9mcNJMAUSqu9FWCtrOgDaPJlNsvvMAvr1Y8d/sO452dXgenaqUFMvZpiz5wqGpE8Cb0kkXBT6koXEZt+4Gt6G1C42Ip6LXuN4tVgO2e3Tgwld7epw/fGbaN43dr4YiplN+auPqKRDwy9ezPfV/z1tF/1YDd7OtyxeXya/NJFRv9t/+2uZJPHdnm01ptpsrtK/qLv756a9/72Soi80pdAs63EXo2k2aY/CKTpA8uwrZua0JWertmwaXA5emqQgym16HaXQdLbuc8dVUzm83QCJhltDAO6mqNd461SakDDVha0mAyHVMOCsbjUaiIGpyzVNUaY0z4F0CvoCHQBMvhNMt6QU4iw0ALHT22j6rQ9uatw/ouOFeJ0HJT1zjrhAWCzDPbjLloy636MRHfiWNi85eYHPeVUCSZERKADaVNhTdSKapXS9qqokgTaQOyNanOGecFqTEYrcjKkiRJSQcGlEOZKdVqzfJiibfBKjgyvVqxFs5NQus92DqIxjsSY9BpIuLSykMqek9JCGy98/hErqGtGlxVobIEk6fkSlNfLFm99yk2GZCmQ1brFensnOloRN3VLBLwJupmgQoW9E5t9IZMmogdtS+xXUfX1Gik3USlBu0lYEcFv4CQkDmt8J0Vin9MUIhtPR6VJPiuo7MO4xIgId/fJ8tKJs/dxCeand0BPk9xkyGZ0lTzFcn1PYZZQvnpXXQn1tvednLtjQGjqZqaer2WgLYoqLsOnRgOrh2ys7eLQzSmZos5+aDkILvGm+ptcboDuqpmuV7jlSIraky3EUlPs7wPzlwIeIzeJHYeYfsZrVGpPP/xycT5PqhUSvfuXZE12NtZh6QXNHUtzOUil+81iVSlm6aRRKw3TCAk+YrWWvAE1oUIfG/mOLWZD5UiT3M6Lfc6y3MGg7Jv662aBhXW0rquOTs/Y11VkrSHpHuTNG+EzPHCnOialrqpSJOUIs/Y2ZnQdUEjyXmatumZik3TsFytyKyIk7sgph6dMtfrteiPeNfPL95ZulZaiaL2jZC2OtHA0cKYELHljaU5iA1613asqWQ+UIqoFdfr4jnRNbNK2CFpnpHlwiQ0SuaJ6HybZhleQd01dEF/zIXCUZrKZ5TZsHDqtqHpWjoruk4mOIACwUFzK0ELY8dut9nojV5WdOZru1biJ2NCG8jlREFpaR0pAqsvTUTPyCYi0JualHUAS5q2oW5bskzWjqbtaNsuCHan6DSjKBKMSTk5P0d99pm0og4GTCYTdnd3ee1rr7NcLjk5OaZuO1pr2dnboxgMxHmta5l6R57VaKWp1xXrquoZE7FFxna2TwrF3U3WmrZzofWH8GwIK8XpwO5SoIzBeoIwcXBgjQw/K2CSs11fmFBtJ99l5Lt8QWhP7PokO7ZmN3WDMVp0/ToBjaJ0xuZ5k7G3rlY9ULOu1lRNxXol7a/xeYli2flwEMYnDCZjdq9c4eDwgJ3plMNrVynLkiLL6DrLbHYhxjuhrcl5z6AYCKDY1nS263VoY+LddRZ0QudEeNs7h+5kTjk+OZP1OElQJmE0mXBweEieZZyenoZ1Us5Dh/YtrVzQZFOYxJClCZPRiCRorrVtQ13V0oXQ1pShm+DWrVvUdR3iFifJcEjibWgF7UX6Q+y5YXPJbAaIWLgSgJMALMZjVKG1MzI5CICHTN2aNIAPPrSl9mmy9wGQFSZkBLyiuDhDYcO5wJpRxvQabpEtvRl9m9gkxvN9YXYLGIsOaV/1khZdt5Xab5Lq7VgvSzOyIqeupV1YhMtl0hC9HxdAMckZVARSwriPc2TPqA1Ll4Ai4XueAXq2WPl4fBNj/Pg+/fn5eB8un10PRKEURyfH/Pi99/jm229z7doNkvEQnSS0UeDbiBCYD+1p8Vorr3pd0agPCxD1ErfZXeGR2hTQvazPBJC289Kk6EJbWs8ISgXoFBaW6+9tBPLiL/EZwrtAxo4xqRawKGwoOMfmWdlm4Yi7YGSShQg3sKOiDltdV8EpUYCszjqUNtJJFa5NrFi70B7qI/AU4u6NM3oAI7U4xmqlepDE2X7h6Z9jhXoKlYlX4nIOtvUY/cKvOFZ/Xi7218vTfv6rXyX91h3dwp++6jQ9m3P665zbLww8jUYDBoMBZVny4ksv8c23vsloPGG6s8Pv/+2/w40bN/n+97/PF19+wfnsjNdee5V//I//c7J8QJKVnJyc0bSW117/OteuHYLzjMYT3v3Re7z66mv8w3/wv+VP//RP+au/+iup4JcFb3zzm1RVxY/f/4CXXnqJv//3/z6PHj3i3r17lIMR0509fv/v/F12dnf4b//b/5aj42PqpgVVs1yumEzl+P7mr/06b7/9Nn/wL/8Fy9Wa2y+8xPN3XmD/4BCTFyzrhon3WKU5XyxYzOcsViLM2DlHay2NtQxHYw6uXeful3dxzguI1LZ8+sknIaiRa5WmaV9hkYqTZTAcMJ6M2d3d5ez0hAf37pIWGWme8x/8zt9iOt1hsViRZdKTqpQJSIgJ5qwiUvjJJ5+xWCy5du06L7zwAr/xG7/Bv/3zP+ff/Ns/48aNm9y+fadH61erVZ8MlIVUaafTKaPRKLhdSPU4glSr5Yrjk1OWqwqlNVmeUwwGYWAaptMdppMpr7/+Ol988QWffPZJbxeLEqHPxnb4TlF3HWjNdHeXV1//GgfXr3Pr9h1GOzu9hteyWvdVrQ34owJ4HhYFH2jffZniKdBJRcApLiLy2cip0VugFWzAEKU3dErf73qLpeRFT4etBQ3nZZLfmgxkod0Cl3iK6RT/3h9vfwrxiDaLZ7+Pzb7iZ3/+BLONxm9/EjYthbrfNLYv9J9QvVHF1gE/88Ozr0vHtTW5+qenomemrEvgm9/8cfNZH1tDNovidhgjXx8CllAh8TEQ9MEpLSw2cZ/GGIwTTaaqkqDXmARnPetVxdnZGbapaKoVSWIoy4K6WgmbQUfLdmk7EtbDDlprqfSnKUmiqaqGi4tzylIcf3RoEYqsiGq1Fkp/OIfY1qWN3tyjUHEwemO921kLLVgjz1ddSyAtgrXR6U8CkSS038RrqgKwuAFtY7AWadaBVRaDM0S+QTmHDcmiMrFNyrKeL2hWKwZ5SpZo2raiLHLKoiQPiXg+HJKXJUlakBjDoNCcPD6inq1xVu6BSwWQ8bbBaMOgKGitQ3XBRc+Lu6e4ukhFlixBp4bUJHgXggE0XmuqdU23WqPHGWmZUypFc3zB4s/fp3vpJZKXpGjQ2pbd6QSdaL5QZ9hEWpU0HmXFrt6ihNnkHDpNUVnK0Giq1ZJmMQ/jRqONgJCd7RBfJdBJQp4VtM6KphcKjAR1sU3AqQSdJMGpxZE5hfYJxfXrJDc1uwdX0HlOV6Y45em04+LBY86+fMDwuasMXrvF/HsfoJY11ekpvrVkAeQkUSxmC6r5ErSiHA6o5nNMknLz1i129/epu47ZcsHRyQkH166xP51y8+UXxOH0i89YB8OKzoNOsx7oKMpcRH9T0Zqo6xq86KKZRNiq1rYhQde9gxR4fGAIWWd7oCrPU5xPSDNhRXW265lHscVzvZYEgomMpTzPcNpKwtjPGSHh8mI7Hy2pBayRnyOTxigjyU3QdSiysq/kl2XJeDxiXYne5LoW0fSo4fjk6IiyLLCuZTKaMB6NMamIHqs454RgvmtaYc/MZ+zv7zMYDtBXr/QV59rVveh0rNDPZjPypiNJU7I86cd/6xxLt+zB8yRLyDITtNqkNSm6XTrnaduNMG/UpYn289ushajJkgYQLU1NX3GOx+mVxodnK08LRsMBaSpaSM5aBqMyzDWiz7eq1yJU3bbC/lCa6XgiMVFwnnTOUzeVtEeEybAIzDjr3SWm8ja7If6M3rQzOi+C0J3taLuOLGgnxfUjLo8eel0QPdDhmkirn0ukKl8kKfMAalZNw7ptyBHGddN2tJ0lSzKyLKdRUA4GDIZDjk6OOTo55td+7W8yHI3Y29/nxo0bvPWtb3H//n3myyVpVZO0LXtXrtJ1Haenp7StMO+qsiZNM548fsLq9EzCmh5c8NjgjplkCYk2pEnKunE0XXAYc2ySIDxWSfEvzTNxvAtt5ll02XL0oEbbCmgZWVEuOPYpFZiDgVlU13UvyN8E1nDXSTt4sV6He7Vhll1q0/Gebt0EEEaYvNl5Kg5VW0LJWiekacre3h7Sftky3tvj5gu3ef3117l16yZfe/01ptMp4+EI23WcnJywWq05P78gSeQ5jjHufD5jvV7z8PETYevVNY8fP+Hhw0eSuHaun1+UUqzXKx48fEySpRSDATs7O0wmE67fvMmgyPnoww83z2A4PxMKRDF5TRNDlqVMpxOKIidJjOjEti2dbfGVZTgcMBwMePHFF1kul4HN5EnCWgQCHkdDAZDiRhKc/qJRQBzHqZFnvm0bNr01ARgJjK++YBrBBsTZNU/TfrxHQfJ4z9bLleg75nlfnO7NCJQIx9vAuNMhTui/2l1uE5L2p8slULmU8p1+C2Drn4hwPBKTuK2YZjvel/fi85blWR97xTyo/yxeWvFDwc8YI1qRWuauWKyPAGa8DnFcRTAUIEaoOqAk8Rq6yDIHjNkAhH2r2vZLXY6bvXyIRw8fsZrN+Pa3f4mbN2/x3GsvUxQZq2WFVwqjM1QQZVJeicNhuKZNWAeSJEGF+DmSC7YBlg34JC3G3joJ/BIgUfig/1TVkqeVZSlgTSpFEYmPfD8OPJeZSZda9DYwE0koltpwjTaFoA3wFNODCKptABCFd1aExJ0AyIvFsnetc16AJ2MSTJKKhqlSokPkhV3lvev1GKNZ2HaHRGQ4qVQ0VrXZtF4qcwmaDemhCp0M/llJl62X23xgaw9bueH27+F5668hl+GsZz7zc977hV4xF9tKQvvn9qtytbCt2/pLvHeYrwaOt1+/MPD0y3/z1zk8POTw5vMk+ZBHR+dMdg/5xtu/xHDnCj4p2Du8SUfCG299h5dffonnX3yNs4s5J6fnHN66zVsm4+btl9jZmZIOPmf/2i1+63f/I976zi9x5dpNRtN9snLMt7/zHQ4PD8gGJYvlkjff+SWef+45bjz/AirNsRje8orlfMHOlUOyLGOye5Ur12pe+do3pHrhIQlo/EcffYRSislkwmAw4MrBIZPphPv373N4eMjf/o/+NhezC9q2YTQaMhmP+C//y/8D52fnPHr0iC4IIc4XC95//33OL85p21bEG5Xi6sEB4/GIa9cPpcqfZJxfXPDpZ58K3RPPxcUF89mMpmlYzBecHB8z3dslzcRavCxybt28yezign/6T/8pV67s89orrzAaDhiPx8xmM7rO8uKLL9I0DVpLcvnl3buYJOGtb77N/pUrYYIYMJns8NJLL1I3De+//z5tZ5lMdwKD6fIgc84TxVDruqWpG5qm65O6ohwwGI4oigFZnsvCqEVULgoKulA9mUyFVfXmW29JcDDdISsHDMZjsiwLiYpMNlma9QNQhUUwRFzE3ui4BEVgyQfghK2Kz6Wkegvj2A584n+j5Wvfx9v3+G8NoLAAJOF7ng58v2q/cigb0Cm2z2/e26wxT689cRtFLwkXgmX/75lEtvHmuIefjzs/vej0x/dV2/6MvV0GyL4CUPq5x9CnA/jYn08MVv1WELrl4hECG8Xl5CMGSQo24uFcZvBsa0Fpo8m0aMi4ruPi5JR2tSY3CcdPnrC4mNGtl1SLHI1nNCi5fu0QgIOrh3RdF+jbcnxZlge75FaqukFjZzwaiuio7SS5si1KQZJI4i4Vnc0xxmfHJEFQP0zcOtDDe/ZAYAUYI1bDbdPSVGLTvbe3J2K7nWgwbcV7fQITmX/bIJ3yHq08rRJuXGqC85P1feU60Y5EOWy9pFouOH3ymMXZGblOyZTCdw3Gt+TaMSg0g2GK9ZbWWsphinMdp2dnzJdzWtdKsmw7XCL6IDpUlqLgo7jJJZCKFXiqDHhps1RepFwNUuF3nUXVNdoa8kFGnmvSvRGqtZz+8Q+oPnuAaTuOHzygWS747OOfkmUZRTHCJZqizHBas6hrlDLoJMd1MpskWpydOm/RTqM9pElKOR6LnkXT0IREPhkUGKVEs0sJyNkFd0WrRMBWbKo9qmmlRYiGulpwcXSE29+DQpxSB8qweP9T2rpibmtckeL3JmRZxpVrh1jjseuW5OY+aVOzOjqmSFNeePUVXn/j6/zyd77DX/z5X/DTjz8WYV3rWC7XDIcNk/GEIi9YL9dY50nKnHXXYBcz/FImqb3dfbpxx2Iwk+eFjq5tcLXDUcr1K3NhoVkBANLUoDUYLdpkLjCs5LZ2EvRZ2wsLk8jDWeQFSithVzlPoiRJmkwmEtg4H7SdvOgWaR2SVRfWsVhRlp8js0GnSVibxDmya1tp3QqtV0ppVut1qOAm6ExEgDvb8eT0pC8cxXUhSxKSsiS9eZO2aVjNZtA5bGNRicZrabHRieHw6lWUh7aqGBQFgzzrGY426PCURYkKoFAsVgwHA4w2rKuKrqlRXlzdhmHbXidUheUXT7WSltu6rnpR4DjGY8Xe2o3OjgmsNdt1LOfCEG/bhuFohFGKDlnfjNKYRJMlKdZ7Wietgl3b8fDsBGs7JpOJaPakJuSZjra1AbTQmCzFB92SqqnDcxJMYIIwrUCLsnZJSwjQQV03nJ2ciEtaLk7KJhFQwjtPFYEOa6W1LDH9euGsxfmO84tzQDEaT0JyERl1svBoJRbdHnEsjO3dVbXm+OSE+WJJ3Yg7XLZaMr+4QHvP1YMDRu0Ojfe8+MrLvPLqK3zyk59wfn6GSgydt9x47hZJkvCHf/LHrNdrZvMZy2pN1Qn44vAUoyFJ17JcefI0IRsOGE7GXLt5QwTW2zZoMjm6tgHk/u4HUEuKRZ5qXdO24vzctrJGNW3Ler2mC+CFNlLZz/IUrTR5pEkBqMFmeVZsNFS2YoVMKYajaf8MRQH4mBylwWUQ1DPAkwnstchAU0oEwYeDAUVRkufCGs7znEE5pChLbt68iXOOxWLJcrVktpyTZBmd85yenTObzfn8s884Oz3low8/pGlamiY66Wl2dqaMhiO+9c632JlOeeXVl2maltPzC8rRmNHOLl/evcvJ8Qln8xV4x507t5l0UigQAXEX1veO07NTLrTm8ZPHnJ2e9QCCAAyhkGQt2nlUvGddi7UJJtGUg4J9tUtZDsjTjOOjI85Oz/jDP/xX1HUd2uoNWRBK32b5JYmkacJu2ZZ6kO8RdmIHKrZNRjdouXcx1rVbmoPO+9CC72lWMndExmeSJqxWAipPJmNAXKrzLGU8HIWcWNbISyyaGN4Jhb4vasXv84iRhAK02orRrA2aO9HF00kdwQegZ2tOi9FmnOeeLvJ674PDquvBUULxWbSDQQeWrQ5MXAUBQAn7YHM+AQfDW9c7/KmwLtggK6+QzgzR4NwwMHvWUf9zP0TkewO4HnXWugAwKqWom5aLbsbZbMb5fMZz1oncSDyG0C7pVdBF8tLO3d+Hvujggi6X63MLBZfuW1wrtFdoD8dHx8yXC0bjMWmWCusnMdJa533fltyz1ZQP9yiyrryAWP16JQL3EcCLYEWM3WMxbnPdNjGr66sGm1yoqRuauubJ8Sl10zIejVAJ1E1kyltIDDqAfqp/DsN78V6YzZzkVXgGYlystRgF9HOgDvkpz77+/8B5Ypb08yAatbXtz8rFLgFYW9t/1aH9rKzs52eMP+/1bM78DLD6M16/MPD02tffZGd3l8nuFZQxnF0sKYcTnhtOyMoxTiWMpnu0XvH8Cy9z4/k77F29xqK2LOsjdq4ckA1G7F45YFCWpMWA6d4VvvH2O7zw0quMp3uUown5YMSrr3+d23fucPfhA5xOuP3iy9y4cYPp3hXWdctqXZNkOW3bMhhP8c4zHO+wu9/w/AsNTbWmWa36ZPTBgwcURcHtF+4wnU65ephhnePk5ITJaMS1w2u8/8EHHJ8ckaYJw+GA/+C3f5v79+/xz//5HzAaDdnf3+f+vXscHR3RBF2kuq7JsoydnR0ODg947bVXqauGum5YLhY8fPiIqhPhzcViwXK5pGka1us18/mMcjgQkAxIE8PVK1doqpo/+sEPuHnjBpPRiFu3brK7u9Mnz4eHhzjnmM+XKKU5Oj5Ga8OdOy8wHo1xThLiwXDItes3gq7Amq6zlOWgb224hEZ7oUXjCQ5gIhIZHWHSNCPPC2mHSNMgPhrcDAIiGlsgBoMh050dbt95gXIwoBgMSIuCYijU8rYVK29JsMOCGqprOvRFb9dr4gImhZGtga83Qyo+6/1EyGWAZXtwAv37m22eHqCBSHkJpNmqfsT9fMV3AdtmAFuoNpc+9/RrG8z5Bcdu/yn11Hde3sI/O7NsgWV9IWd7I//VgJd/dkfPHMvTW/aToX/q/f6ebVc5pHIbqyObv20WuR5E2gqotu/lZv+bf7HCnyYGjTByvHPML2bUqzWJNpyfnlGt1nSVxzaVWIunKTs7OxhjuHbtmrTCLJfUQUeiLEuMMUHbbdMvXxR5f5xd29B1KmgIKFK3YTHgHTYEnIZgD9tbHasQlGxVyjyBtWF6+n7TtAxciTE6BBfCSsLHcb3RtzBmyw56G5QKia/yiiRQzjtv5V5Yh04FeGqbNfVqzuLsnNV8znh3SqIU3rZob0mVI081RZ4E1yBxgrHWM18sqJo1nk2wHA8iOun5kAwpLZVTnyRSYVca621wypPrpsM19J0NMkuOLE9QKqUcj7CnM05+/Cnd0TnKWhbn5yxmF6KhkiS88rU3yLMhZZbSGY9rWqxp0XmH72SpN0iwIcdq0U7chLKyoF6taZtG5kkPaQyQ3SZ4jM+w6Fs48KEm2XXCIHMdbVOxml2QjUpyxiR5Rq4SZg+PWJ2dc7Y6xw1LuHnI/s1rjK9eZbFe0NY1Zn+CWa3xeFKTcOPWTZ6//Twv3XmBH/zgh5xcnJMXJSgV2nosZTEgNSl13YiFfJrQ2o62EladNoZr167LnG6gaWrqek1rpSXbtFpEOXVsiw7aIuFvWpSogyC29FJ6XN/iEJMN7RxeWbI0wZiE2XwurIMALgwGA2ndaTdV2qiVFtf1nvqvN6LubdvQtB0ZBR4C8ynoU0BoEZR1q2lbAAGQE2kVaxZzZosFg8GAoihi2YPUaJTJGRcls9kFs7MTDAnaJzgjTpt125JmKdevXUMDLV40afKC1nbBnl2YhWmwhvc+6SvlRZ6TJqm0edU1FlDGUAT3whg8O2ICJkynphYmhwpM8Q3wbum62G4R2m4QZo/1fsNKahqKPIcsE8F8pYJcgLClRROmo3PCFjg/PWVdrcnSlKIs0BF4Qpy3uk6MU5IkERFwJ3b2VsVnRwBdpdSG6dn/DEpJMWs2m1EUBc4NhMmSyjPglKOupL2ibUX8PycPoIMKz5llPpuBUgwGA3zfyiPXxhgRUe9dypxHaZmbmqZhtlhQVTVdZwP7qWK1WJGnhunuLgNr6Yzmtde/xi//6t8gTRIe3LvbJyy7+3us1it+/OEHwekvo+4a2qgbqSErCrRNWNuaVBvyNGe6uwse5vN5D0jEud470bq6dvMmr7z2GrkxpFqzmK+CvtcRVSWixKv1itPzc9brFVW1jumxAHhaY2KLjKLXEIyV/gh+WC/jp65rkiSlLAtJrpUibwR4ujQ2lbTPei9i0yoAH2lofTQB3E3TlLIomIwnUpycTLhy5QrDwZDpdMpgOOTO7dtY67g4v+DjTz/h/Q9+jElTnBfdpbZt+d73v8eD+/f5/r/7njh+ERJIpdgNuqS3nrvJYFByeHhA01pUkpHmBVk54Oj0DHd8Sh1aC8eTXZSSeKFqalb1WrRpvGe+mOOt4+LigsVy0Uc21kbxYh1EuW0YCREAlVgly1LSNGE8HFMWJT7c4/fe+5HIcVjbs7XEPcv1a3S8xpbtWDQ6lcVimyh0xZg0CvNfaiHqNkzHyHZ01mKbtl+rlBYQZbVa4qzl8NphmANa8ixnOt3tP38xn7Ou6i10JsaUil73KM5F4UiNitp7gaFiXa+JqE0S4oUgYG4l5tsulG+vrZdi/K0YvW6kRTaea9T7i2tGbA02scjm3MYsx28AKAggSmQUhkQixtoeAVc2QInadETYcO7EexT2F4Gj8HMsKMS1Kt7vLmizLZYLZvM5zkorcL9xKNC6yLJxm3hXhrXqCzed3bQMxmPZLsrGGJmg5ncxm/H4yWP2u1YYnWXZd4hEokFf/I9nE3KIyPjpO0vkYZTwJ4ATdCLfoHsTKcD7njnn2eRkLqxZ9CCXogug+unpKeu6ZhzcVVVbIwnjRmYi6uNKu7nvjYi0kWuptN5ISURWVhgz/XcTHPViTLcNuMT7+pW50bOJ3NPP8M/6m+yh92zc6Pw/9Zmf93oakNo+3qc32s4Hnj6uftOtmHZ7X39d0An+OoynX/8NnHMcX8xJkpQsy1mt1qyrirPFmizPKYcDTDFgevWQxmv+4oc/wgH5aEw6mKM6y08++5wiz9m7fp09fw2lYGd3l+PFgtuvvsL06lWSQcnR+TnD0YgsLwCxy/3g/Y9w3pLmBYOho2tbTo5PAcU3vvEWxmgmkym2rWnXS959910+/fRTsiRhdn7OX/zZn2ESw/7VAxSyaLSdgCyPnzxhsVhw79OPMUYG7dnZKR/++D2auqaua6r1Cpztqz7D4QhjTM8S6rqONEvJ84K7977k0dEjGu9J0pSzm7f44tPP+OlHH7IK1p2nJ0fMZud8/y/+gueee47f+s3fYvXmG9i26nWOFosZjx8LBdTajraTAdp20tpxcjZjOBgwHo15cnTMgwePqOqGLMvZu3IVTMKyqjk5v+Duvfsslqu+Pa4syx7tjhOzaFK5S+JxVV2xXC5ZV5W4dHjp5y7KkmvXr/Paa19jurtHVTeMd6eYLOXKwQFKKRarlSzCQZvBhNai2O6llCI12cbxJkxw/cwRgtE4dcY/b4PPfmuQh/nwZw6Y7Z97MOMpZKpfqKNGkZL/i3oS8bUNhlwCp+IK/Nd8PYsP/Tws+/LfVT/1qX7LSw5325sTJ7WeT7aZ3OMefyb4tP3LV2yzzTW9hHlFlpPbfKunF2S20ct167WtyRCPx3lhucRWmb6iFplNdsPmuXRYSsQ9vfPsjCesZgv+8F/+S5q6ZlCUXJydcHZ8wp3bt7h+eBVvLdVyCUGP5fjoiYy7tuuPax2q7kppkkQFYIe+suY9AZgIjlFGKv5xm8iQwltJ+Izp3TxAgZYWJW00qdEkPgFU0FmQZ0/sf82lAaG1Ai8BXPwnyYHdurdP3Vjn0UCipTLadXUIuATUKFL44sOPefzgPouzJ9imJdnfwXeO5cWSSTkiz2E8ypiOc04vGtarjpPO45XHJQnjK1c5uHELlKFzDlNL4NYkQsF3CSy1pQrta0pDh0VjKXRCqj1zp/BNy+nZCa612Lpj+twh5dUJ6mIJq4rmf3mP5uic1ad3cXWDx3Ln+Tvcvn2bb779DW7eusHX3nwb6xz/+l//c3569ID7n/0Id3UftzuBag1th7YtShlSFN56EbHVGp0lZHlOnmasa3Hpq5s6aKk4GmC+Xl6qKkK8RaIdYgB7sUKvOgZk+MqxOF+zSFqSYc7u732XfTx3qob1bM7je/eoTuZ8ePoexbVd0nFJcWUP3VhOxyUdirP1jPuPH/Lhe++zPJsxyQZ4k4HR3LopOoKL+ZLZcMG6qqjbJjgtpaRZxiAkiNa2ouvgOpS3KDzT8ZAszwRs0hrlLevVip9+9BFZlkkb92SH3Z0d8EWveRSBY6Wk0lwWJVmS9nNk2znatqIoCvDCuJMKv1TxrW3pQknYuNguIvvbZs84F/S4EoP2XgTElaYsS0RoVZJr5xw6MYERIGycuqmhAdYrAYCKDO8ddbUmyxJ0noLtpC0vySiKjOGgJMsHpFnJ2WLGqlqzqNa0lRWHwMDi0FtBuVeO+WIulfi6CYyxqIkhBZ4kzUgTg8sS5vOFMJ6GRR9zdVbYW21dU60sbSMgXGSDRXAusrWcdwyGQ7TWfPrTT6irCmMMo9GYW7duspgvOK8rjJKxnxU5Sinm8zlN07JarRgMhuzuXYFUQMW23qOq1hRZTmpC6yIKnYi+ilKireU6WfO10uSFxBp10LgzxpDnBVme99O+CZbroCiLnJ3JODCexDgBH9h01tKFZDlL08BgLPq1IFEK7zRlloOXNjkD0kYiTw+r1VrmRRMTDx1EnUVM3HlAGYxKRT/Oe+59eVcKlbdu0bQdF8sVVw8OuX3nDkePHwKO2WLObD5nPJmQ5DmH1w7pQstiXhREXTMVwGDvHYfqUJJE70mMCIPH1ijXCasoz1Lm8wWffvoJZVFydj4jTzSpUZyenNF2HXsHV8jyjOFoJHqd8wvR8eo6xoFxPp8vsdaS4XsjFWMSklT0kqx1AhgrhY7goBbTlyzLQ5ThGI6GoumFwrnAaDOGcjiQFrwoCG0Mg+GALM8YT6SIkwQWUVNVwvjPErIkDUC2gMInJ2ey3tYNw8GQF+68yM7OlCLP+Ys/+zMBnP7iz1kul3jvSRNDkqTkRSHzVJLQtjX/3X/3f+PKlSv8/X/wDzm8dp3bL7yEMpq2s3zzG9/k1Vdfl/Yq7xkOBzhnWT5/m/V6xWI5k/Zr7/nkpz/h6MmTXktRmaRPtsrBgOFwSF2thZnmvOgc5jKPPHj4oDdBivGptPgkzOfzLUMUAem8EhaMTsSEQgx2VACgI+4ggyYCxAZxvHNxPgnxU9SWtNbStE0oLqQ9cKCV7pmgaZqyWCyYhc6MNE04ODjgxo0b/NIv/RJXr1zl9u0X+PLLL/n888/5f/2//z+8//4HpKnEJVoFtluYk7yLIMh2WBiKTUq4Qnjf51POCWgdY35lNoF5D+yEz8d58+k4z/tNHBlbR2OhIs7FrrNgHU7bHviILL/owtgfawCVtNHCoAlMTe990PsMAA6XSFNC3sbjidqC8U05Jx/BIjx+q4iutdwHrxW+U/zVX/0Vq/WaG9dvYJQiHRR4JYLkXkl+5lxwt/Nh/2Fd64KpDCgpenSWJJVW2dhmu1otZJ0sCvIsZ1gMmX+05JNPP+ODn/yEJE357nd/HZPuUFUNeJGxkOthAolA9W2SsWNB9/p6QYcT37szxwRuI4sh8b+AToEZFzXACE6cAeRO05Tles2TJ0/44z/5Y45PTvmt3/pNrl69wvPP3aJtO2azOQSt1io4StaVsLSMgiRLKItRLzivgyusC7EFXq5rBMB0WJdcBNaeyhX7X59Kz6I0yM8DZJ7a3Vfu5+e9nv68f+rnf3/T28/b8/bent1TzCHjNfhrHPYvDjzt7u9RVzXrqpE+XZPQOU/ddCxWKzLbUY7EzWYwGqGN4exiTlGWlIOyt+m9mM9Y1xmTySQsNFIfuJjN0CZhZ3dHQJ66ZlCWoitiO9Z1zXI2J0mN6AtUFV3bcRYsx42WIPPqlSu4rqGthkwmE4qioKkrZjNxJVFasVqve92f9XotVOiLOVVVY52gpkorloslF2enMmitxXbtpZsc25W6rpUqZnRkU4a6qVk3NYv1WqyGk4Tj4yNmsxk20KYjA2g+m7FeLjk8uErTNBxcvUpVrXtBwnW67tuLREBNqkmdtZxfzIiL0nq1pqokYTRpSlGWZMsVnXXCwlqtQp+v6atcoh8TtDIIfcrO9tpULmhGeC8tMEmakgZG1f6VfWHBTaeoxNB2XbBT1+R5LgtfFOhTHhWYHMT1JI4aLa4x/YPbT9AI+MVTmkkquIOxPeguzQaX7tFXvWLivgX1Xvr7tgj29j7+fQOsr5hsb6S2f/jqT1/a/N8D+Dx7NBFs2n5Hknm8v4SW+63/Sj60BZZtX2L1885zC+f323/Z/P3/x9qfPduWZed92G/Oubrdnf7cc7u892ZffaGqgGoAFACKpERSNE3bkhwWaYce7PAf4Aj72eEm/AfoQS9+dCgosbEcomzYgiAQACmgUGD1lX3m7ZvT7X6vbs7phzHnWvvczAJTDu+MzLz3nN2svdZcY47xjW98X9xoXwbqOltY1TswuJikvHQ8L4NKKmyyncYCPWW4+5yt7kHPiAhUbSs020FRkKUplxeXLBcLtHO0bU3b1ORpymQ8li59HYVSHWW5CXbSPf02AmLSwY/nNByfkm5WvJ8EjIoFBYDpi0562rwIjoWExF9dx/Fz42isCVbWUZR523I3nu94/pTq75aeLbJ1vbf+iw9AMXJretdiG89ifslseo5tq+54nbPUlYxQKeUwBhKjRTS79dRlDYmCVJPlBZPdXcqqEaFaGXoXIVzlaR202uNNmJnHS7/QO9H7USIkb52jrqquW6m1FM2uqnGLNc3jU5rzGXa1DkKisLu/x917d/nSl7/Evdfu8YUvf526LHnvRz/kfH6J35T4pgHl8W0LVQ2orisZO30yFpgEFhlQ152wZbznrsS9rRPcYekhWXONxdsw5mxlvZVVxSbNSG8eiiuo1WQXlywvp9SrBZvlAt1MUEBSZKSDApUaXCs27ZvNhtV6hWstiU5oPOBlzHxnZ1eSPCt6OJF9I45yWvQFIwvEScGrw96a5xmDwKaJ0cZasU73ztHUdTdShwrJemgutF6AcZMY0iQhz3Ksj1oYwU3OJFKQaQGS7BY7KkLVXYc4nNDtJkNI8YRZ4XxwP4uab6K72DcOgn9XvJ/CSKR0OHudONln5Zx4GzvaUtAMhkPRL0tzsjoPTjrCjttsShlVm4xFCDtUJB46FlddC/Ak3ejQKY/jH0bOFQTRbGfx3ojkYwgZnf6S71mN265Qxphu/46Mx81mzWq1IjEJWRhhS0thWURTjwhcSWHSsinXwnQOMU6TiE281qRJKlpdKgAVoUAz2oCraKzvWKlJkgSdIDE+iA8dRvG6GCc/lHNcFJgkIUmlgOyVQPp4mIY8Jgkj8857TLiuAnBGwDd0u5XoevlQeEk6olEmHE/INZq2DU32OHIJ08sZynleuXsXUzesK8k9rWvDGGHajUW3TvRy0iyDphGx/SQlSYwAOKrvkadpgnOexoreV2pMN1roQn47HBQh5qc4D2VZYQYZxiSsq5K6qtk/PCLJMoaTMdmgIMmSLl882N8nLwrOLy5pm4YsgLdaaUwAlaoquKGGTpzWwjjN8yLoECaBHODZ3d8TsC+4s67WG0xiGI5GgUHmBATKMoajAWmWMRnvyHoxiqqsWMznwszRAkwoL3u0tZb1ai17e9gjB8WQPM9Jk4Tnz59z/5NPePH8BU1TC2itdTi3KUWRQygqnzx+xGIx55NPPkGbhNffelvYhknC7t4uu0Rgwl1hHuVFQZol6KA12DYNq+Wy05KJbA+PxPMsy2ibOoweJ939a60NRkema0461+vgRFAoMnB0aF64MFanlMKryISRdS3SFv1zwqaNx4tzp/eiy+b7XKnPh+Te0iYRl8AkYTIadgDuo0ePKMuS6DK6t7fH8fExd+/e5eTkOq+/9gZN03B+fo5C0YQ4FpmGsVnV5WF9NrLVEo2/lucNhgMGg4LlIoDyMd6HnOUKw8mHLKtL965mnv2b9/lfZLromA+HOBHF4bvxRfqcafuxBS3w0i/CV/Dd/7siPH6O2gadulPRf//49/A5SkWDHNGtPDs9I0kSTl+84PDwkMOhrPXWNZLfa41zBGfFLjrivcJZ3wEDPuz7wi73oaYLul4yqyex0Ah7tXWW2XyO0qE5Epq6EUgRUNGJccpWw9c7D5oud+2YZkAcLdyWIYEeRO3Pdm/+FOuSTl5Da5q6Zrlc8uLFC56/eMHp2QuS1HDjxvUub5E44sDKJ4nEiyNNEnSiP6V1JWN/rgPqgI49eYXps1XCXWUH9Uui/11fU8Vy8+XXxVUQ18z2e1w5S5+1zrdez9Y5/Ky69WUY6d+0xj893fLp13zqdb/iNvmsx+cGnk5Pn1PkOW++9RpZcDt78fyU8/MLNuUa7y3DYHPq79wGCO4fRmjEGlIc1XJGjaJazKirktMXz8nynPFoxGa9ptyUncjkcjFjvV6LmHgx4OTkhLoqKctNGAVzjIdDvPc8f/686+7Y2BVsatpW5pS10ty//3GwdlUkidDEhZbtu383m5nMOhe5ADQmoW6a3t3BGKqqChpPawg39t17r/Ctb32Ls9Nzzk7POL5+QlYU/H/+8A+4nE55eP8+i+m0K/C8VwxHIwajIW+++RZvvP4aO5MJ0+mU2XTKdDZlNr3klVduUxS5iH5qzXpT44G9/V2evzjjT//VDzg5vsbdO3c4Pj5mZzJhU1aYJJV58mKFc9A0IpDqnCNNhfGU5zmbzYb1ek0VuiFKKWbzBR999AnPnr3g4nJGkuXsHR7xla98jYOjQ37tm98Apfm9f+tvkGcZOk3Y2d0DoLEttmn6xDB097bdxqLUnAQ5T9mKBo5KRQPFQbfpEgp65bY2BtWPz8ViTrCqrcALxNtn+6buQIjPuIm6G0v1kVH1f5DnbIFVMTh++o2uYF9dItcDap8OEn/Vo3/OZ93Znwad5COjTkOv5eBC9SNd6JcCie+P6yqc9VcdV+xP+CtY4UsHLX99CUTyAamRMY4oMHqVMu1teL51VwDQbfeouCGZLaBJha/T0anD5zdVBcpzeHyIQfH1r36Fxw8f8cF776O8I9GGvd09rl07EZrzek0bOjLSxZMNMNqUd+M9tsVbR9OuuyLQBwo54e+RHTUYDEjTtBfSDeBVFH70oVCUTVdGFtrWXgGKAQ4ODsL3EseS+XxBHMVJ1NUxRBs7/Z4r92L8PuA7HYmqbHHeQgp5njEeDnj24D5nz59x9vQJ5WLOeCfHWcu6WkBlwBuWiyXlakFTbmibEutTvErIiiFoaLwlTQaMRjtoU1MnLW0pbic6VUGrwJFqwzBXVEpGodq2pXUJpVE4bfGJRjlH0jiK0ZDByYTxqqW4fMrjf/FDVk/PsKsa7y26SMMJgre/9mX+nf/x3+Pa8SHjiehUeOs4LEbspANoPap1mNZTb2rsaoM+2MUPCgFplMKl4pQVE2LJUTweR13VoiFW5EGzhm5UyYZET3sBVkbFEK9go6HJNGWmSEyLcWsePPsQo2Dn/D6j0Zi37r1OOk6589vfZOf8gvHzM6btmvV8ycQY1CATLbq6Zfb8FO7c48abr/HRg4coYD2d45Tiq1/+Kjdv32Tv8IBiNKB1DXhHAuTaUJgEcWiWJoX3nkQn5IOcncmuCIUbjQtuVq5xpCblzTfeQmtNlqaA4uLykiYIGe/t7aKThPVaRLHzPMcraH3bdeKTMFqnArAAnrZtWKyWnSNRpOBnmQj4y+ispS7bLg74oGOR5zlZXrBal1hrmc/npEnCIGhSGQW2rmmcBy3AbWEMPnTGnRfNkegE1bYNbQuL2SyAnCKKWpUlWmcYk3F8csLJ7g5VI2P0l5dTmrpmPByRpSl5luJ9g7eeYlCQpMEJNgDp1okeWuNa2rKVIjAfMRgWWGtZrlaYakNta2xraeu2Hx/e1itRfYEZY210+U2ShN3DfYY7ckyj4QgMjHfHMvKPx3rZv5VSQd8jY1OVYpneVuRphgksCAUBnJHGRox7ERDPVYJLXRSjkve30pYXEIQcIAABAABJREFUXRcn1zvsRx6PbVu00mRpRp6kTPJBB2LEcYg0jM0wFvDVhOLEeWEtJFqRIoXY0eGhMGrphX/zLAtAipZ1paWTXdVNB9yvN2uevXhOta7IVEqRFySJ4Ze/+CXHR0d8+de+RlbWTGdLfvKjH/Pe+7+kLUucsxwcHJCYhMVs1jUDYrGr25Ym5I8gOlYAeZKIfmBVo3XUo5Hra1vZdxJtuLi45Kc/+Sm7+/ucXL/B9S+9za3bN/n4wTOenl5ysQx5X1GQDwp2dsaddk9lDUVRU1at7Cm2F+YfFJ4JKdPpjPVyKQC00jRNRWoM+3v7rFdrzs/O2NnZZ7Kzy7PTU5QO9vPaiKmMk5HFfFAwGA65cesGxXhM1TQsNws+fP9jcZf0cV9r8E7s4rNgSiEML0iD+U00yqnqmrYuSZKEX/z053zw/vvC+vCwXq/F5W4wCNp5dOyoo6MD2tbyB3/w3/Ds+Rlvf/GrbALDqapFy/Ty8oKyrIK7XBBR1orRYIizDbapmV5e8vzZE9pGmi4x34wN7LYVZovWmr29PSbjMeeXs44xkQRgp6oqNus13vvOoCEalGTBLbSphUGbZGlniACwXsvUg7AGfd/s8lHf1FOXZZcjFPmA/b199g/2OTg4oG0lju7uHzAaj3n9jTe4eeOE7/zGtxgMBoxGI/7RP/pH/OEf/iEff/wxAL/5m7/JYDDgv/1v/pAkTdnd2eNHP/oRP/rRjzg/v8Q7z2az6daSDqBxkiakadazw4PDXEwTnRdwoG0afuM3foe/9td+jz/90z/l448/4pNP7gv4lfXMLO89dV13jFutPzs77RtsnrZp8AhIr7zvQJXtnJTwb8daCiPZV0EFcUi1kdJkww6/JRcQ38vFMcEILOkeVI+fI2+iO6CK6JamtWQVPgCTScaTx084ff6c3//93+fR40f8w3/wD8jSlHm9EBBRG1orTuJJGGOMh2WD2UUUxgZxm3Wt7LEez3gyBu+7Wnld1ty8fYu9/X0++OgD1ps1eZ539ZiYgtCBd1VYbyaYGJkkCbmRuPfFJojSmiSRvapua2kQhFOEFb1GE+4Hz1aDGgE027bFZSnKKKbzGY+ePJH9IM34+c9/wYP793n6+DH7+/vcvv0Km7KiLKvQtDCdcP5kPCR1KVmSdE2L2JixNrKmpUkVyQdxbYR0r9tn41r+7DUYfytNjvh3+dVn1J5b7/Wraq//frXi/28/3wa9Avfsr/y8eLcRGjif9/G5gafHDx9QFAVt03aaP+fn50zDHLl0Cy3GJJ0dbJJk2KbG1jVnZ2esVovOnSw6mznbgG1Z2Zbnz55zcX4eAr9hPp+y2Ww4PX3BYDCgrUvKzYbNZt0Vp4OiwDvP6emLIDBY45xoKfQODWLTutmsO+BJa00VkiqtjTCrnO82Rrd2pFlGMSm6BVkUg85KuqlryuAs5awjS1Mmkx2mF1OZiTfSGdzd3e0o1K4RrajVasV8NufGzVvcuHmTvCjYbEre/+AD1qs1eV4wKAZssjVZlpNlGUkqHWEbPs9ZcS04ODggyzM26zVaKYaDAdPpXIIidOBPGm2tVT/CFGmGsdBVWqNNQpqknWDxzZs3OTg4YH9/n1dfe42d3R3SPCcxCUUx7HQ74uwyTl2Fd+mTYQgABFwJ7j7czXEz374Bt95EAoHaXuhXb/5+Bvcq2hwfgv73bl9bb84VQMj/FYHFb7/mpc/des9PIcgxOdh+mwhmvQRGbT96IObqa1X3p/D6WAxvoeYvA1bbP/Mvf//tr6/6I+qxsu6V298qbJ4RH9/q9tB3jqRJtf13362DlxlL3e9iMhD1nTyd1lEHYEYAih4QfPlabANZWmnQ0tnJ8oy7d+/S1g0fvPc+2ggYPRyNmOyIVlpV191adW772OTbu+3j7M5PvDKRMhwTp1BcuaBvE86YNppokb79/eOZ7j/TXTkv2+KaoAJwt7XG4oGztZa3wKir57s//rZtQRHEkMWq+uLsnLNnL/DWkqcpRZHR1DVNW5MkOUU+JDUG5URsE0Wggesu+WjrlmpTsVosQQcQLQmgP5KQGsTqPNOGFiV0+FaaCDoR4WFtjNC6Fyu8Ba1S2tmS9XJNfTGnWaxxjcWkCbsHewzyATvjiYwdK0MbgMLWWhwwmkwYDIcoR/g3rDUFzmiUEZq6U6obPZauXh8vdTyHFuHba3rXzO5WkWvsvRS63it86/v3QnJUGwrtcrPBKMOmqmiVxxgZN1aJQTuDcRqdp/hhQb47wRjREnKt5ezslOViQVMLuKO0WGanqYy1JInp16h3gfmgwjog3CuqYzsZYzpGjADGwfHKJAyHoz4aOCkovXNdDFXRtVGHe8DHjni/NpVSHZNANLV64Vnro1OQADTKSvIc70M5x3386z9Td2LbxmgBLLwnqNaG62VBOZqQNCutUGJP0/UejJZzlZhEtJU0YCDLCqyl0+JwzjEIYFJZqm6cyNmWqtoEgFKYXSLWGhN02117uQdD1FVhVCTer4hzog9OUdECOrr/6URvgcrI9wvxJU0StDEMxyOszcmTjDzP8F7uJ2MSGY0L4uEoAnNbh9wj7Qo+GYsxfZz3Pjj6qE4/SxMKFK/A6EDilDGFNBHA3mlHopPO7COCjpERrei/S8wLUH3jSIfRGL0Vw2LK0enHaS33piLsIz0rLY6DReDJtq0wR72I585mc+o6jmsOyYqMi+mM5WrF0+fPsdZR1TXrcok9q0i0FIFFVpCmCevV1qht2ESToGfWuZYFiQMXGFUxZqBltNf5nsVqnQr24RJDtE5oWsemrHEolE5oWk/rWpp2zcA5kjQL9zj4yxkmWXVryYbCWBonG6q6YXp5yWa55NrxESYzVKsSawxtW9O0ovW2KXNMmqK1rKk0sNKiiHFdS6wuvA9C55XoVZUlp6enYjoQRsg9HmdbvLM0icQY72QkymfSNBDnPAGam6Dbk+UZO7s77O/toZWiacUZcDgcClMpz9nd25M17hxlWTJ9/0OquhEmf2s7UDvawUdNJNkDG9FWtFCuV5TrJavVMhiL+C42Qhx1kpG2CDpkqTSmNus1OozUqdBIEeMO18WuEARJAoC8LSuwxe9DKeQ+DGxZgrZeEtwoiyLHaCNrCrrpizwrGE/GTCY7so7TjOFkp5PaUFqzXIpebBGcr1977TVpEnjPyclJBygv5gsePXzMJ598wunpKW0rLKLeMe6lx5Uc03d7hFdi8hoSQwZF0Wly7eyIgH3cG2JO24E0L9UV8HIu239czMHUZ/3+ylP7HNNt3a9d7rud13qPcr6rQ+K4UbxOfSLd1xKEa9lndX0+duX0eAGJhT0ujRhrZQ+5/8kn5HnO9PKS8c5Od35j/WWtQxuHRve5qougezgTvj/S7UZ83CvapqFeC2u6qkvGkzGDobAWu5gf40kA2qyV+175oEvqZFRX/VUYRIg9HUvKC9N4G/TAR0Ohl+oIZNKnbpvu+GNzdTabobXI7VTBbCCLzNEQ32PtH3WGifn8Vr1wpXKL5+zla9XVRPEe/iu+b/et+qpq++34N6zPq4dz9bm/aqLnyms+58+uvvF2DXv1PrtS58baok9bPtfjcwNP//yf/BNJtKMTkTK0VtycIq1ssylBIToOWc54NOH50yc8ffiA3Z1dhsGe1HvPhx98wOHRIX/z3/4b4KFdLvjZD3/AD//yhwzyAm1kXA0IoInm/TSlaQRciuKVLnQ6ex2TJCQp0TZY5jqLomAwyBkOcobDIXXVMJ8vGIwGjCeTTvh7b/caAJfTS/Is5/DwkMViQVnW3Lhxk2vXrrFcLqnrmtnskqqsmM9m7O3ssL+7x0fNRzx9+pTbr7zCaDDg+7/12zSt2KgvF0uevHKXDz74gB/96Cf83b/7P+Df/lt/i3/6j/8Rf/HDv+Qf/5N/xs5kh7/xN/86bVNzcXHO4dEBBwf70g2ylqdPngeLaMXu3j7/8B/+Q+5/8gnv/PwXTMZjblw/4dnz5yJM2TRoFIeH++zv7zGejFAKys2a9XrJZrNiPJmIXkmek2c5g8GQ42vXeOuttxgHN73f+Pa3OT4+5pvf/CbWO1Z1ycbXeCt2xIlJgtAhJMZcKdBc2AhFYM4FK/GwloOQcRTks04AuqQbE/BgQ1IbEs/tDVu/HCS2b4QtAKDDq9XWa7cYWKir+kjx6aZ7D7oApOL/1VVAbfuzf9Wj2zy3P6t/9cvP/pXvExxMUahPBYdPP/TWf7shk+54t7ZI2SBDMI0ba///T1OQ5Td9sRq3NRGQjoBMeF4oPGIX2IUxn7bt1btiZyB2e7fdBLsipwNf5DnRijxenwhoWddrAHQglDFoYLWRsYC//Xf/Dj/8wQ/4sz/7V+RZwmhYcPP2Te68eo+6ragWi+CMIQWQCy6sNti1V8E1JV7XqCkQExCPR4VxhdaEEYzW4lGYOCZjDIGU1VG+LTFpiGuG7nxu21iDsLoUikT3dsk+MELwoLwiNZL4KhO7hT3Fvz/Pcjzr1Zq8yDk6vsaD+5/wi5/+mBef3Gf2/AVf/8Ib7J7s0G6mQnU+u+BgN+fe3dvsDzMKBVlqSPMUn6ZYm9AoT1vXzM4vmZ1f8OzBA26/9hrHN67jtTiurcs5GphkA5Iw0oFvsU1LM1/TbirUTSl0BoOcelUy/+V9lM4okiGXT5+yubyAPMUnCls7RsMBX/vmN3jr9Tf57d/4TS7mc95990NuvnKNvf1dRsMDMmO4/uZrHJUzcKAaj6492iSoQUGbKCyOdrMRva0ixXuo64Yiz0mylEwPUc5SzRd42+KaBq0VSTqQG9UJk0vWtYxIrFAoB1SBZYUhIyFTKTbPQuw01DWcLta46Zz1ctbdt2mSkOdjzK7Cj3KOvvkFBsuaV21BtV7zf//P/jHTp+fMz6aoLCEdFNi2xrUNeZ6QZgkqEbCnsTXR3CHqBhZpKoV/+DnOy3fSCV45vKYTIFZKdQWmxBIrRZTSocg2jMfjjlEMHimzdQCzpAu9WMxxXtgSsuY1Hmkg1a2MM65XK4zW2NZitGEwEBe4xBg8Fu8tTbBzV9qQaE2eZWRpwniQ09QVTVXhlMIBTV3ROkfZiNbM/t4+OIVv6a7dMB+Ik2Gad+PAiTHiTHVxyenFJfPZnPV6zdHhIWma0jQVbSsM49lsxvn5KTdu3GB/f59BXsj9moijWt1uUFqTdUYbXtzj6sgCEQkB6yxNY8mSXs8ICBIGfezpxufbVrq50RELTzEsADFNsNZSbUpUosiyDEVLi2I+m9O2bVeUjsc7FHnOcDAk0YYkOsMRGRshPuKvuAAZpfBGy30T4pcP42jQ6yV2pZCnKzjbAL7aOLIcxhDZ3quiAUX4Wz9x1Mfl1gnoOhgMRDMETd3ULDdrlss1dVXjNfIZxuDSlDZPmV5O+ei9D5nPF5g05fbNm0x2J6ynl0wXc/6zf/yfs7Ozxyu37rJezlgtLhnkOVmasZhOSdOsE7GNcV0Z0dLJQt6qjO5AXYpcWOijQWfc4mwr92dkHyYpLTDe32d8cMDk8JDnZxc8e3GKJ2Fv/wjnpShbrFbYdY1jgdYGpQ3vf3if1WrN8fE18mJAPhzLiBue1XLObHbGajGjbSr+xo3fZWd/h9Ozp2g8TTPC+waTQdVsaGaO0WgU5BTq4CCd4NtQhCrI0oT55SXzy0sePHjAcrlkvZiTGMPe3h5JkpBlCXFk27YCpKaJaBw1bbi6ThpbSWqk2GwbvvzVr/D2F77A7/3u75HnOcvVkqaV8VWTpJgk7WzYnbXMpjNmy5Lxzi5107IpKxbLdcd02NvbFQCuaajritlsyroqKVcrHj+4z/Mnj3n86BGr5bIDYZQ2AcDzncuWCkLiRVGQFwUvTk8pBgXXb9zAWsuLF2fkWSbfER8ctSQPSzPZW9brNSYwIqMpAF6A5v2DHdIkIUtkvNF6y8nJCUdHR9y7d69z7S6KnJNr15hNZ3z44Ycs5kvm8wVf/8Y3uHnrJutNyXK54i9//CPeee8d/tk//adcu3aNe/fu8fprr/L3/t7f6/TiDg4OKMuKcl3xZ3/2Z/yTf/JPut9pI/FFbelYQnBJa9pewyjeqSqOuEFYfLJj2Ja6qjjY36e+fZv333uP9XotzXrvqaumA8i1/ozBt+1mdQChITT9oDcW+KwCXwHKY1vX5ZcKJfpSIb/vuLit7wCiq0PfPS7hdTBH6z4vghMRdOibJS+PQsnIvpjDmCTFpKJVprznj//oX/DOL37Jb33nu9y5d48br97BO2jrhsZ6WucxJKB6/SsJhz6Mq/otdEAF8DfWSdJMmK+XPHt2ytOnTzg/P+M73/0uN65fZzQcSTwPI+y1a0PTTVO3wkrXRvb8thXGfpGnV4BBa0UbmTCKKRMIghdIQyusiXimmsDW0qHRp3xX5zvfDd9jTMrNm7dJjGE2u6RuGtZliUkykiRjPB6TZRlNJZplx8cnZNkgaD/K95HrkWCU7hpOUbzdd9cr1He+j0secCq6d/ZLKtYDEdDqas7w7fp3vroMP+vP/30f/Sqj+5TPD2u9/E6f40j81id0hbH5N77scwNPy9mcyc6EN998i9VqxemLc5r1hk214Tvf/jaHhwf8+Cc/pqpqdnf22N3d4/atV/jBesUvf3LJa6++yr27d3n1tdfwzjGbTTk+PuLtt9+irmrmsxm7uzsURS40dK2p6orozrJ9YZVSW/PYW2wdLV0l+bOMt1jbsFqvqJuapq62uhqygMuqlCQqy9gZ7HD75m2cc7w4PcO5snOEyzLpqIzHYy4vLlguF51LhOicVMxmC+azOYv5nPOzM7IshVSCgWy0MmIjdMDbNK3l8dMnmCRld/+AG41lPJbuhIwNCFiWphmL2ZzVesXZ2Tnewxe/+FXyYiA20VnO9ZMTrh0fcXh4AF4s1YfFgKaWsbcsS9nd2WFnMmY8GnbAXRQ4zvOca9eu8Z3vfJu3336bw8NDkkTYa9uJbrgAEowTHaypX1qkfXzrnAs6RJk+0MRRJBW7Ckpio7fiMqE9neVm99ZKbQXuLeB569EzPOgCxKfwme2O09Zhf9Zj+6VxzA8+G31+mU3y8jFdfUe6TfMzN8XtY/vUe306KHRBZwtQ2/5zRy1+GSDrds0tNpr8oAsmHbjUdQbiJr+9eUaw5LOAJwm5ETjy3UerK2BiJxK+xW6KgV2SADmk2PmObIz4XGtt38Hi6iaslQgIikOQYzgccPPWTX77d34bvMNoz+HxESZNqJpS2ElhrRmvr3Q+JLkIm7jq2QZsXf84CuhDohWTYe99xyyI63CbrRfXds8cefncB4Dd+w4Z3IYgYyYUmXJ9AiD6UCpeV3pgLjLy9nd2sM7x9Mlz7n/8kHd+/gFDb9kbTchNQkJwe0OH8UZQtBgjBb5JlEzXKHFrMVrjjVize9vQtjXr9YLZLEcnA5QSUVgFtMrT+mCcoBoULT4wVHYGI7IspZ5XrFtYTFe0VKxNLeMF3qNaL7t7kuCNpmlbisGQV994g+zpMxzPyPMhOknZNDWtM2RFQV4MKHQanLYiQwN069B4TKrxBE2m0NaxVnTwoh7Sto6YCx115UE7QqKK0Ay8x+uQuLQt3rYoJzpGFohmU1qD8o5qs5TXO99p2OCCjk1gmWWjAYlV1NOGJqz3e6+/xs5XxuSjIXmRc+e1u+wfHDAZjRgMB4yGMk7ivYwbWe9QSq5pFsRndWcF7QKY0QRrdNN9X+8FlEpTGReSIjnpHUtdzxCMOj1XWI6qv5/V1hptrUMpQ54FsecAJIsmVehythaVKDAxjekTwCSVNSWAmdwLWinSpO96GpNgvcPU4uImibGMLfjAgF4tlyFJ77V/8jwjSXPKumG1WtHOWrRWHO7vk2iNVQbnahlhr6qgVyXXPtkSUdbKMywGHcMr3rrayLEbLewyKYhENyhLcwb5oM/1ukxZzl1TCwOraWqKwUDOQzwp4alGGYlFaS6iwlp0LxKV4EeS3GdZ1jEM0iQhCUymbi37vshrbCNr1hgZk1dbjNdw3WKh8FdZUvsQl3pHJBXq7nBDdttZdE8S9kgshOO6agPo5BEdl9ZZcLZrRMY1axLTnT8V8pQ2jHZt1iI0jzLMZ3OapqJqGtpwvzd1zXqzYbVcspjNaDLRH2rCyG2vBRRGbpOkY65HLZ+8yDEmIc2z0NQ1aCMglQ45lncykphmOZv1WsCoumGzLtFYtLIMhxmQ4xEQ2LpgbuFaTGrIsoSb109obe/mp3S/ryZGrvHuzgT8COssm80GFcYe9w6O2Gw21I3DC52T0WjIYDBgd3dHNMCSTEZ0nZzz9XLZXXflHZkxqPEQozVZHho0GmGIZYmMADkRYXAovPZBl6YNcS+IAGtNWuQoo1lXGzCa4WSCs466bSSGa92JKU8vpixWa/YPj5js7uGANgCzsg56geiy3FBXFWW1QaMYj8fcvHWT3cmIQZEyn11yeXlJWVacX86xTmQhilxqlnK9kkZ8+CdNBTheB4ftzWbD4cEh41HeO3qFfVqmKoIeo3VYZbv8QsaENNeOrzEaDtnbmTCdTXl++pymltrpyZOnzOdLbt2+SZqmjIdjLs4vuf/JA6bTGbPZjLqpOTg85I233iYvCl579VXm8wMSpRiNhLkqY5iW4/2Drt7ZbDZMdnYEjFYq1CUD2f+su1Ltbsf11vveAc7DZ+XGWsv5OT09ZTq9ZLGYX8nZIvMxrtVflSfH3KurDdu2Gw/rc6vwnlvNyBiX+uNWXY0BUZJDjFdi3OryPRV0rbocuM9r+6KkB18kpsUmaf89ur0vfK4Jxk7RERENbVlTbTY8f/6Mye4Or7/9JlXTsl6X+GCM4J0LAyfbDDRpXMaR23g+5JzGw1S9Vp8XxudqteLy4oI8TdFIcyJPU5Q2XedbqcDUMwbfRn1g5BxuffsOiHGS+0SnwG3BeW8d1gnD9EpRF5tVqh+vHAwKdnYm1HXDcrnsGlHRmMC2ojfqtaepxZ19s1qTZimRDa18rIfCZ3XK8Ko77shqjNVWX/f1VzqSbtSVV4bv3J2ArS0vFFdxH4uPz4Z4XpqF+RVrXz7n6jnf/jj+ir/3v3gZDvsV+zQRgOurxO1X/Zvq2Pj43MDT4nLK8f4Bf/uv/w0++fgT/uW//FesppeUswV//+/8bb71rW/yH//H/zEXF5ecnNzklduv8O1vf4/5xRn/1X/5X/CFL7zFv/XX/zq/8zvfx1rLg0cPODo65Pf+2u8xm055cP8+P//Fz7j24XEX4MqqpK5rKQK07rqsMiYnXcWi2CFJjIg56t6hQeuEpmkoyw0XlxcoRUA0FctIGzeGxbLkYtry+uuvc3JyjW/++q/TNi1/8qf/krquuw5VURRMJhP29vb4+U9/yosXz/tOZFuzWC558vgpz5895/TFKZ98/BHL5ZzD6yfkRUFRiPV6URRcv36D4XDMbD7nv/uzP2eQD7j76uu8+vqb5HnO/tE1GY0whrraUFUbPj7/hGfPnvHxR/fZ2dnju9/5HmVV8+d/8QOKPOMLb7/F66+9ys0b1/HWslmv2NvbDYKsniLPuXFyjWtHRxwdHjAZj+X4rWhijcdj3njjDf7D//AfcPPWTW7dusWtW7fwiAB7XdcyM62UiIwmhtQIHbqjR28twTgSkCYiHho7gEprKXiAxrkuwdYhIPiQ9McbP1F9gdMDSFe7BVcCfnhEMMtvBbEYJGKBcgVLC7f4ViyUpKl7v+2w0o9ZvQwIxU3y896AVw94CznuAtjnfH0XqD9Ne/48wFb82O0gF0+xFEXb42Rd2O0+OhYaUfTy6rnpw7KL4zwdBtYDj/ER9TjiI+o0yes9cWTJKBkjMcZ07B2JFxLpY0HXgUJarnNdbVBKMRkOeevtt/lf/q//V6xXCxbzabe5tcj6xEv3PotAZwDKbCsIgdJxhFWhTdBWaXvtmTboU3Vi1OFaVFUtMSgxIS71yVCvQ9brc0UwLq6v1PTW8ortSexA6/4McNK7cJ2cI+768bNE4FTzyvXrnF9c8sO//DE/+dFP+eM//HN+95tf4gtvv8o4TTHOkXhNggmOVh7bbjC6oBikpKnGJGAUuHCcmoSiyKjLlraqmU5PWTcbjo5uUBRDilycWipbU/uGTemFf+EtrlUom3F974DRYMD8+YpprTh7PqP2UOkElThUZlCNF62mQY4zCfP5gmww4Evf+DUG448xOiUZZZjcMCvXpNpwMBwyGoyYJAMak+GMwSMuVmlpSRJNmidYpUQoXStUKqBW6ywNDuch0wbQsv5QqLomUQLSEMVWvZJRT+PFGr0OphERWFCgoxZUrtA4yvkFRidkSUHlWuq2wbUO48H4BOMsxc4Y08L88TMxsigKfvN3v8/3vv099g/2yfOM1XqBB4bjEVlRMN6dsFxn0g02mjqAGolJGGSF3AcarG0Cy66haRzj8Zg0Ta8AxEopiiKnriWGiQhwGKkKzEQBS00Yx7MdU9B61+3tHmit0PebxlIUOYNBQR6Y1dWmFJfFJAPvaepa4nZ6NY7pcDwCpMnCd7YJYs8pSRI0gYL4dBTp7mJZK+wi21oWM9FOG4xGOOdZrFaMxxPSYsh8teTs7Izp5SXWWt587VWS0YgaAYAuL6c0bSPjieGRpZmwgp0UIcNhQtM2bIKgr1aaPIBTdKxO2UMdniwvBDwN93Zt204Hp21byrKkaUUGAKVEpDrEJ4OJwZpUa4pB1gPWmRQiO2F0Mno9qIgyxX3F95G/taJNNV8Le2QwHAYHoNhgcNBuMX+U6nU8lO9YEtu6i5Ir2BBb+7gfR0biMTgv9FPXWtIkJTGJGEK0DbVtaGOsRBhQbdtSbjakSRZGoUQA2nexUuJ8U9eUpbj4tq3klE8ePwblWVWiZZMnGmcti8WC+eUF89MXpImMo0RBd5F0oNPfSrJe65JwL+zu7UoDITQkolOUSUxoOKaiq2USBoMR63VJU9WsF2um6YzRQFEUioPDI3HMM0nQZ5N7tqwq8nTAzmTAzbffZDwec//+Q9abDetSGq5aKxhkKD9iPDpiUGS0TcPldIo2GcPxLrfvvMZyscTZlNbWON9wcLjHZDLh8OhE7vesYL1egxf3z4uz0+6ap9qQj0ck+Y44W4VxWmstk/0J+/t7TC8vKctSHOaAVGfSGLZ1r2eWpSIDUeQ4PI+ePWV3d5fXX38TpTS5k4zNeYJu6YaPHjyiqipu3L7L0bVrOMQVtq7rAACKFEfbtkynl9RVxXq9ZHdnl5OTE15/7R7DIufy7BnL+Yy/+Iu/4Omz57w4+3EYS1cM9/Y4uXaN58+eslwuQl5jGA7HeO+DHMmG5XLJ3u4u4/G4021SWoO1QfdLWKjeeZyNIAg468lMyhuvvcbx0TGv3L7Ne++/x9n5GbPpjIvzc+4/eEyWF3z3O9/GO0jTnOnljD/+4z9hOp0ynU6p64o0Tfnf/O/+t3zhS1/it37rt9hs1nxw4war1YrFYkHTtszmS958422Oj44YDAasViueHjxjd2+P0WjEzmSX3d09Li4vWQfZk21AyXuPda2Mc4YmGCGviiwk52TE2BjDdDrlgw8+4Nmzp8xmU5pGxqgiMGGS6CBIB9psNz4i8SBqeroQl5T3QVsosj7Df5V0O3wADvG9FhsmiI3rLUBwqy7QWsbPZepHBsRsP1PRn4OX/h7vhVgbbJ+zOIoZ3z9NE6wPwF0Y6Zf9ruKjjz9kNBmxN5owWy55XpXkWUGaRBdZYTf1KbXUa9irpjxFkXVNRwXCEArmAXVVMpvNeHD/AavFEqMNk/GY4dGBxHCvcSFe55mMjFcziZc2gne+30D6msnhrQfrO2JBPE82jKvHEfKumRKeEd0+lRKjlJOTa2w2Jaen52w2FVob0iQT2RyH5FpoiYel5+LiIuiqBrKE66sS5aA7mLDfKaW7MXtP1FDjUw8XmtPxu26n3N3bhdJu6+25ikZt/e6lP28/PquC+xXY0P8fHr/qKHqgqz+gK/DY53p8buDpzu1XuHf3Lm+8/gaXl1Mup5cATCYTXrw45eOPP2EwGrGHYjAeUXnHh48eMl+tGQxHpIkgp3Vtg1h3g7WeYjBgNl+wKitu3b7N9773Xfb3D3HO80//6T/DWbh+/Rr3Xr3H93/v+7z/3nv88ue/kNlS67icipVsagzWWS4vp6RZRl4UOGtJlOGNt99kPJlw+vw5g8GQb3/r11muVtx/8ID1ZkNZlvydv/13+fKXv8RstuDp02egIM8Lbly/zb1X7/Glr3yJTb2mLDeQGEyW8+u/8Rvs7u2xd3jEK6+IuPhiOef999/jzit3uHv3Ljfu3g4bJUwvLllcTHmxXPLxxx+TjUekgwG3T66zM5lw9949sjyj8Y5q09DUNc+fPuHF82c8eviQ6XTK5XyOTlPma9ngxMa15GI6wwLZcMSyLJnO51TVBmdbxsMBeZYKpbWt2dQVThvSwZjv/c7v0bYt6XCI0pqbd+8wHA5Z11WXlHro9Bu8AqsltNkIIigvwngd6uo74KZ1LmwgqhPmtaGLG29YdeWGlc1WR3Fsr0D143Jx84F+vvfK+icGehVQ+e1V3B+f6zYsdeX328ceU2wZBQzfKz7N+n5n3LpBu4Drr+oNXRmzU6oDajqAJz7XxU0qfPZLAFl3vuL7hr/7eHK2ujvx8Lrfxf8pH06PXF/nt0Gi+L6BXRFx/GA9E8URI+1UvkI/R+5RKJVI1zvMcFsbAZTtkbkOAgzH4Xv3KmM6Nk38Ai+zoCKYGRP8uKF3a0kpDLJGIpDVtk33OqVgHYQRk6JglGjy4YDp9JLVaiVC7FpGfLVcmG5jUUa0Uwhdk65witfOGAjfxqBE60SejmstSnm09nglLAZUCj7BRNfHcA0i1Knif4NIvQ/rJK4fRxzNi9cxuHMZ3XXNfXxl2G0FEGgDa9MzHAzQKO5/cp+HDx/zF3/y5yznF9w5mbA7TjCJsEviPaMVKGtxbUtVtbTO440hVQkFaRDyNOgsxbVgE4PTooaqLSStp6xrWq1JbUNiDKM0I3Gepq1wxmMTR6ozEhSzdz5h5T3zn33I5nyKSo04omqFth7VOHaOjkmHA9TRLig4nc94dPqcDx/fZ1WvGE5G1LTUTYstVzhjaPZ3GY12+NrdN3ho13z89Bl+kJCkJsSvFl9tQGsybYImTK8zlOQZJjUYL0lI3cjomm+d7BNJQuOFGWViyHDgW09T1t1YhQvsU2edTBEFZk4TbJlTL12/zCTkSpEALtHYxnF2MZNRu71Dbt6+zVtf/yqv33uN3WvXQEOtoNjZCwKeCV4rlusSUEzCGBwemrqkReFt24nmJklCkQ9o26YDg2Vc1l6NiUiBkOngjNaFRI9CiqmqbDA6IU0yFEHcObxXlklx0TjRk5kvZsAOeS4FvVGa2ovGSp5ngIC/ossjCbvWQVgVcFaEZR2I8LhtMaGbHJ2MOmMC3Y+86HD8wphwJJsEG5gizrVdgXh2Jm5Dt27fYmd3h7Ztma9XtDgZtVIwHI3knGQZw2GBThKqppGRIRsCoI7xlU5DySuPxdJaiVcmzeSmDfuibRsiLL8IY/+rwDAZ5AUGRZ6kMuJ6OWUQXKsSnWwltwqnAjBoYydc9/pDLoxAhVipNVfiPZ5O18c6Cxqcb0OsMX3vREkxvVmL8UJeFCJUnyahiOQlhgMdK6Bt6uDyp3tNSi3MUU10uezNEpQKDFhnRMS+aWUNBMHqLM2D3mVGvVpT1XWXBwyGQ9lznIxOXcxmrNqGxmhSrUA5lM7AtbTlhslgyI3jQ3Is2rW4Vtay8dJoUF2hrTsGvvceb73sdNbRbCpaVVNHwf4tVo9ojwbdLG3I8gLbintctV6xnF2SGIdJ4I033mRvf59r107QaUqmZHTQ5DmZMWjnmF2csZxP2SxnOGfZHRW0bcNytcQ1FcrV7Iz32d/d5ez0lLIssXWLai33P/6YqqyZTafUbUXdiih3MZhyOV2QpqmMArYtq7WwhjZl2TWFVJLg0WgXxIK9fMciz8BDualQaBKTonUj62VTyphpMZAxXQ9KJVgLN27clvttseD07IKz878IAF9CWVbUYaxGa83+7o647Q1HDIqM9WqJc5Y8z6jqkqpqWCznOGcZDgqOjna4detr5GnKIIzpJknC0f6Iui45uX6N2XzOl7/yFZ49e87PfvZz6rrm+fMnrINo+GQ8ZndnB+stm82Khw8fsLu7y70gv9FUpZg0dGxQRacUTnTCrQUUCTfscrPkz/78v2MwHLK7s8PF5QVPnjzuMtrWio7tXyaKx4+vMxgWvPPBe1zMZzjvGE7G2JkNoLPsV7OLc9brNcvliqZtg0yJxnl4+Pgx0+mMg/19qaMCI7RtWxbLOVVdUVYC6EZAtWenq665EP8eDSRaK9Iozot74GBQkBUSG5Owjjq2UZfzuy42Oeu7hkaMWQTmkd3KEbUxRFZOHNmN3TnnooNb7wioQnxTKNmjQ/Pb0AtadDk5IknRaRSFAK6UAivOmT3A0P9BIY0Fr2NV5bs9ByUGAnItbcijZfzO28gsSnj27AW7e494/4MPSIuC3cmEtnHBXTDWQ6JfGR2YldadSYMxck+aVLSK20b0LpuqxiQZN2/e5OLykuVqzcHBIbu7+zivKOuG88tpiE2BNaV00BaU2kAnQTtJK9oAHqKiILnGtuE8hLpChTUvebNBKdN9h9iU6PWHRce0LCuGwxHXr9/kW9/4Jjeu3WSQD/AOrAWlZfwu7iGRkb7ZrPE40syQ5Skq0YGR7reXRjhkuR7W2f66vvx7+n0bZORWEeu5nqEXFnD4n5WV1L+8e/it5RLlXGTNeIR3/1mMpm19sauAZwf3XTn28Nm+n2zpXrFVf8d3vqKNFq6Z7r8UERiXdOC/HwT2uYGnmzducOvmLe7cucs7777LdDYjzzNG4zFnZ+c8ePhQWD1pTjYc0jjH/WdPWGzWFMVgS2DPUtUtdd1gnSPLC1CadVlzcv06eztjTq7fom0t/8//6vepypob12/wa7/2a/yD//k/4L/5r/8g0HgNznl+8vOfUS+XJCbD2YrFYklWFEEcUFyS3njjTa5dv87Pf/pT9vf2+Lt/59/l2fMX/NGf/inL5ZLVasVf+2t/nd/+rd/iv/zn/5wXL05BebIs4/joBl/7+jf4u//Df5cf/vgvePf9dyBJSLKcr//ar3H31Vf58td/nb39XW5cP+KdX/6C4XDIrRu3eOO1N7jz1qtkRc6q3PAsz/nonfdZr9c8ePCQZDwiHQ4Y5QVZlnJweECaZZxdXrCpKhazGR/df8gH777H5cU5m/WaTbWiGA2ZrxdkacZoOKTcbJjOZrRekQ6GbOqa+WpFWVVhQx2QpynOtrRtI8WRMqTFiG9++3s4Z0mHQ+la7kgSXdZV14E1YbRCB1Ao3ne2C7pgjCaiJN169aLbpAhitSFpjF1Qoa/GhR5eHt48dhTkfUKxvdVVkZduLfbPuJHlx+rKzefCcUVgSatPvzDejHGsRilx3cL1LKDO8oDtt/dXAJ+IDF8BdeIvPFd+3seoOGagefnQXv7O/Wm+ikxt489xA/Rb36t/XtjgIxtt+zx1X29b6FJJRwPQvmfliPbRVgEanb+UxTvb2boCHQjShp8k2khnih7wiuMG8Xhs23ajL90acEHYMCQyUa8hnrt43eL5kVGh+gpraB1cbEyaiv200XLftDOcko67NomEfFcTgy1aNACMV90F9YRzoASUimMoJoiWtvE53qLwGE0A9xBhRmdIjNxv0XFRdf/2wGJMtNquyCN0GG2XdKmw5PMg2GpbGV2N2JVXgXHjZD7fW0+xs4N3jg8fPuKDdz/gJz/4EQd7OXdv77IzTjCJQyVyVJ22mrP41lJH4EnrDniS8SSDTlMUHhucw0ChHejWSxGuNZlyFEnKQVagHKzLhqYAlSpyrUg8LD58gFuVzH76vrhfpQYMeA1q7THWMzncZ3C4T3r3mM16w/2//BlPL075+OlDRiZnMCqoNiua2tKuKpxJaPf3GAxGfOn2q5RPP+aXD++T3jwkHU6wbTBhqDfoJCXPh1gVmHRh1LsocrIklXgYuqN4LwBjIskird2KiQjwFEZmjBG78sZA7b0Ip4euoFeexsrd7BJJgo1JKIwmRVEZsE3DxWzBbq3Y2b3Oa299kb/27/wtiiQj0wnL1ZzGtowmkwCeSHd/s1kzKAqGw0HHlqnLOhhXhAQJzWg4Ih8XXdEBISHrdBYgOvRIQptIvHGEQChfWFzoGvJ8QFqIzg9KmEUeT5KIThC1o2lrVqsFRZ7hrDCsIiCiEHc7pRStCXOJ26ARPrApehfKCDyL65khzyQ5dlYKsZjcEkCnLMsFVLEWpWV8yTmCjkwjAures7Mz4eTGdXb2dqjrhlW5ZlOX7O/v45WnGMioyu7ubqeHWTeVfG7bO7wlaUJeCMtMG0UE/atwvgehSNBB+8c2TefetVotWG82zKYzUmMojo8xSmOSlKqu2aw3nXacNmqrOBGtxTZ8J3EeUmgkT2vD6FPdNCgDJonBIxgtuJ7har2MlVrfopyARMoIMAQK6zzL9QYV9pU0S8m3Gj5dsagktqRhBLKt6+DslRK1gAiNChNHMtT2qHoUjpW1VEUNOyX3TZYVItCcJrRbWlBaa0Yj0TFR3lHXDdPlgo0z2ETWikahjTRYbF2Tas3J4QHatbRNxWa9oWnqsN+4Lj8wKoxpOtUVQS6AeXVZgfesy7JrjMQi3rm227dQSvRejCHLsk4LpnXiTLU32SVRhlsnN8RJGhl7TI0h0+ICOr+8wDrRBjTGMNmfUFWW+XSNb2uUb5gMM44Odnjx5BHrxRzbWNqq5tH9B4FN3LCuNpR1xWq1IU1TLi8uMUFfbFs/sG1bfCFC6yCAmnI+5A3igpklKb51lJsg2q0NCmG9V5uyy2+9VzgvIzRt4zg+PsEDF5e/YDqd8uDRI0wA5xazOavlkoP9fSaTMV/7+tcYjUcyUpqmbNYrvPekWcJ6U7PeLDm/eIH3jsPDVzm5fsh3vvstaFuazbrLi5zbB+BrX/sqdV3zla98mV/+8h0W8ykPHjzk2dMngLBrhqMR4/GY+WJKVW548vgRw6Lg9o0bADRVhW1tGKVXIb9VXZ4Zx5pjhNXG0Gwa/vWP/3WfH4W8IAlSA21gei9XC54+f8re8QEPHz5iupwzHAwYjYZsVitca4UtaR2z8zPWm1LcuZXqxJed8zx58pTEGMrrNwVA1FHE2Qpguwj6YXF0aatAjyCUAMoSV6MwOnWNdcKGNmnCcDwWJ9jQpDFbwFPMbSQ2BIxeg7Wx+UhvlBHvlaANq03PVnEREEB3P4sag8J06hvQOuRZRKZ8bDZ2QIOKRnXdPtDV+FqDiwAiXSLeK8iGfwKKH/M0FfavCLC3ne6Q6hzq8iCSfXZ2zuTJUz6+/wkn12/wyr17zOdLyk1JlgiLqVWuYxSiFFoZbGB1JQGgNSY8N4zIrTY1w0HGwf4uz56/4HI6Y3f3gMnODt4rqqqlrCqM0eSZuL2nSYJp+7zbJJosE6azOJ6GlCeV3MWFPCjGuCQxIY+Po3QCYklu6UNdmYZ6M7q0NgwGQ4piwFe//FVOjq7z5NkzMRWz4I1CKVmXsrfYwCheozSkWdC4NArlFCo0e9XWJevqjrgGjOlynZiFvAxGyRqTP8e1Gusw1a252JqPfOXtSm37vcIj1jrxWdtgVnzKS+BT94Lu/ekLVNX/Wu6Llz59672134KSfPxuvmtIuu47BYOFz3qTv+Lx+V3tTp8y2Bvz8dMHPDx9ytliSlHnDJsBJzev8+abb/Hs2QvW6wVVPeXo5IQvf+WrvPPTn0jSlySdrlBrLVmWYrShCai5957p5SVnL54xGIzRJqFupHPxxS9+kTfeeIPDg2Mm4x2yvOD1199kZ2eXjx88YLVakaQJN2/d4D/4n/37nF9c8snDh1w8O2U9X/C97/0Wr73xBuen57R1w89//ks+/uRj/uiP/ogbN25w69YtFFBVFZcX51xenHcJeFmtMVpxuLfHd7/zHb701S/z4skZj+4/5PU33+TGzdsUwzHWK04vLlmuS5yHxWrNdL7gKzu77O7vY11L4uV9bpxc49W7d5gc7DOYTNid7JClGfPZTNDcwyMW+RJbVQzyjCLP2N/dZTQoOL1oqauSP/mjP+LmzVt89cvf4HI65/HTp7TOMd7d4ytf+zp7B4c8e3HKZrOmdZ7GecrG8tobb/G30oyjoyNs27I7meCQYtx5T1OXKETzIjI8uoUVRERVh6yEW8rHsSBBqpWnm7dVul/AneBxF2iDBTSquwNUcOvouEl+y8pS9VTVK4/I8ujot8TWrLhR8ekb1nZgh+teEzV4IsPJ2cjWCreq692eogtZnAN+6YC6//aACl2Au/Js9RLyTA+W+IgqBxADpQJI01NRu0D58jmhD3PQ1Qz98zy4rXARPzOc6AiMd5/dB3I52qvso/Bp4c/xfbpxnHDsOmyuHsTZzdM71UUtJO8F2FGq0/bwQf8gdtSSxIQCsKUTKw8JQNywVaBKb4/5KJVeOUbvXKep4wM4JqwSQ9UGsfPQ+W+tRROSH2Ou6Od1s+IugjuhCFJGwFlnMSqR7plJ8UQnEAnw3jqsaqmSoJdjVDe62q0HF5xLYrIXkjDdSidL3IKCuLCyOEQ4urWK1GxRl50TJyEr4MH+zoQ0SXj48UecvjjjD//f/4LFbMb1ayMmw4w8SUh0YKAB0U1HimQj4Ei7wbkWpTTjQc7eZEByvkFZ0SbSSlOkGZUxtGF9aa3J8hyVZcwvzlh5L0WyUZAokg0MKyifXLKqa3xV4ZsW14jmh1XCKvLOsXNwyGhvh+HX3iA73iPdGWHPpzgU57MZf/neL3n9+ivcu3aTPElJnKIshMr+5Plzqrri7hff5lm1ZP/nP0MdGzAZaxpa76Wwth6sAafxgdIvwu6i60QYH06CG1BT1T3gG+KTU8Jys62ADyoxOKMovcVasMqThVHkWjkSpdkZjYR1lObYuqYta6arBU1dke8MKZKE3/n+7/BKscPfvvVlJod7GK3ZrNcsq5ratlLAzGYkJgn7rmY4HKK1CIrHkZs0SzvWlkKR6BTnRTPGQ2BuEEA2Ydk1TRO6oL5jEknMUtS12H/XdYXRhtF4RJJkYDSJTjDeiMi5dzTBxjrLBoxHGn8kYMF6XZKkVsazlYxArMsqAHZ5uD+0jAA1NuipiDW9MQl7+3vyWcYHpp7ovHmvMDrputiOABaqMO6k5d+FW9I0DW1rSYzmC2+9IcBdKd/t4vycPM/I0wScuGbd/+RjBsMhN2/cIklTnGuF5WMyZLLGUrsygF5Jx76qW4v2Xij+SoFJcNYxnc/xztPaliwx5KnpnOKSNGGoBqTBPWtvd68DF1trKW1FVZU4Z1m20y55jyOPaZZRhKJGax3YATAYDmQfMCHhL10om3THflYqaD2qHKUjyCeNhrg7paGQ3NsdSyGRBAFxK1pIaB3Wl0clCdZ7qkp0O+qyJncDBlpEhh0SY5211LZGK0WWZkT3Ymct1nlaL4mxTpMw0iHxr2obVlVFay3rKB8Q9HPS9ZpMKQaNoypFxiFJMwamQLkGby3Neg3OMspyXr1zh7/37/4d/vhP/pgnD+8HyQKHtaJLp0JF6QlNEme7pkRM25umlp8libifZSkxn/LedPus5FGyJtrADlNah0ITLi8ucNayM5kA8ncTABDbNCjvOdjbI89znr14LuuiErBnb++Auqmoyo00b50wCat1xScffETbWvL83b7hYVta13bXPwmMoPF4gkJG6JqmoWlqsiwNOqKyb2d5gVLguvFL34l1s62TGO5FYwyDYtDvXYEpnwcNWNs6OZ7NhhYolzNsa0mVpd0sWLYlP/3XfynaY8Hd04SxVfCcn0t+/Bu//i1u3X6F73/3e6RZwsfvv89mtWIxm4rpTi7O0sYY8iwjSVKu37jB/v4BX/zCl/jww4945513+dM//Zd8/PHHrFerICYue8u1ayK3cXl52RXpTVOH3MSjjSJNTdBXkrymtW2nO6e0xK5ib0fyCx9L0Z4VrXUirA+nmM5W/ODP/zXz+RzbejbrirZ2WKfwaP7zf/rPmEwmDIqCLM+Y7OwyGAyYTCY8fvQIgHKzwTvPZDgiyzP29nZ49913uwZDmqahHlBB3iACNb2MidznLbZuaLTCah0ACckJdnd3efvttxkUA+pSwDg8qCDejpPawCgBKOqgV7s9rrY9PiapRQSLeqAoFsku5Kg41zlImg7gCXqaIceJDoXCngoyDbEWiMCas6EZqEJ833KU832TVCnB4L33tFb22v57QBN0wQxyziJwJ1IR8h6T4Pi3e7DPZG+XfDRAp0ZIBHhxlvRy3C5MpGiT0BcYcj7k2iU419C2ntVqGcB3acwuFq3INyjFw4cPSZKEO3fukCSG5WpBkhgGhZhu7e7siSlXUzLICzCGurGhJpFa0VlP4y12q+gxOsF5aJyMBXpniUZTXQM7XMKqsoHFZLoGkgDUinxQMBwPQ+otDZwklbFr+XxYr0uqqmQ0GrG/v8fBwQHj0VBYb/QyL9tAUs/AjZMdfXUWVZeurDtF72LcNbslynf1nlLgI5ng84Ez3Rr+lS+5WvN1TKytF7guTnz6DbblOT7jwz/1Z6XAd6/qP7sLR0p97q/2uYGny/mMi9klp5dnXM6nLMs1SivyPGOys8Ph0SFaa5qmZVWW7B8ccnhwyGg47DYUHbpq0WJZKRXYDHIDl1WwXq1r0lThnEUbzeHREft7+wyKAWkmwnyHR0ecXDshy4SGnmYCpvzmb/4mH9+/z6ZuaNcVtqy5fes2r776KqPRiFk15emTpzx8+JiHDx4wmUw6IU3nHJvNhs1m3QEVTVOjgKLIGe1PuK7h+vXrrJdr9vf22dnZwaQZHsemLENXWEm3sSwleRnIqEKWpnhvKfKc4+ND9o+PGe/uAkJHXC1X4GF/d4dE6+7GSJMEX0iSES1THz96yKAYsrO7i04M88WSJgB8165flwSuadiUFWlILK3z7B8ekeQZw9EIZy1ZLpoLLhRYovVitjoGRHRja6vz3SKLw3hxzCeCLLGh2d+4kQ3UUxE7h4qA0ES2RjcqR/9+2zfTNvjUbcJb92DEgOV3QURv+47YAnu6cbStBDWCLPK2/QYSHS96QCAeZ//Y3mzi37tj7V4ZX9MDVD3wpl76WX/uQrtArsL2zR4/8KVNuL9WPSLvt0+D77/JFronr1X9afVORsO2v0//b+9kFBlJ28Cg68a84uFG2rKKTwiaBq4L8J0dq9+6jlvntRdG9N3vehvckHzQd90iG6rb0GX+JrhlgFMyDhTMM2Qjiu/tIugYOmcqfKfIEhOkiSt2sPEyhZVo8aSxbAtUdgFopcMewUnrhCIdHeriOozgRaSXd9ev+6Xr2Hiinybn2IZzmpi0c5ECJ6NHASBOU0OWGM5OX/DowUM+/vBDvG05OZowHCSkRnesrbhIYl7X60O1YSP25FnKqMgwao0K41iKLfFK5P5SWrreOk1xrXT767YlzRIGgxzdyMBOe7mkXK+xTQXOkQRPNBdcx5T1ZKMhw6NDkmt7qKNddJahNiXeaNZNzbOLc67tHeJ1OA7jqdOExrZslktwnsOTa+yNd5g4Q2MVthVQWYVxJIXHuRa00KzifhbXeKR2xyLHtQ221TRN3XXyYsxxVpiAKrh/WqImDqJxoDQWuZ6ZkeItSRN806KciH+uN2tINcVgyL27r/HG7jFfufdlrFGslIxA1mWJ1cJSrYMVeWJMYP1kga3YdtfSpwJ0RI0NCNpTNmiWabrOsPcqNIZjDNhmsQaXM9vSNqKZk6Qpo+E4LB7ZA6QEl/vAuUaSZZ2QpjAciuNlHQTdXWTUEsEyyMPfvZfuZNs66kYYPOtNSZIkTKzrHJgi/T3qeQgIEPcZGVcRYC0wg8J7xzindcLB/j5VXeFxrFdrqrIUUf3UBE0hSea10TISqARYM/QxKLKwPF50EpUKovGua/DElNN5KEsBS5q6YVCkGJ13cVwbTaZTksSI/k2WdZo4cU9tmxbvHVW5DkBg3YEkw+EQkyi8cmivheGkFPkgC1obPrxHHG3xJMRrGPAxY4gdaWHj9Im5CUVDkgWQT/UFY9Rz9So2WQRcaGwTinCHsVb+7EWAPwnfu20i0C47RiAkS/EVgSdjJP541Y2a1E0tVtttQ+vlM7QSQXLlQZcNTbhXNNIcw1ssck8pZ0mGCXs7O7zx+uv8/Gc/FQe6MHLoAjhidFdydDt4LEy0F0FrYYqpThB7e0/zYQNWcU9XugexQ+5kwtjLZi3MnOnlJSjFcrkMLsVZaK7IfV/kedgHhO3Vaat5R2sanPM0dTjfbcvF+SXlppR4bQTYdGFMqnPtU+KouLu7H/YC2zlPRx0tG3LiPM/Bg22iw2vb3RMCNmjyXNh9OBdy3zQQ5/qcIjaSJpPd0PyQGNwG9ppWirp0NFXJYrmURkDTdjlEZB9MLy9o6prf/t53OT444Mb1E5qm4f7HH7GYz5leXjAcioj6YDAgTVPqPKcoBhwfX+Pw4JC33/oC105OODw85NmzZywWc2F5eQFKvIfd3T2yNJUGeZIGgMJ3xXX8ThKbZA05HIkijGHJvZYXfZ3iw3Po8hQTWHUyuvj48RNhgTgR1+/APqV459130Vp3YNPdu3eZTCbdurfWslmthHkD5FnGtZNjTk9PO+ApSRIRgQ/n0/oowN1fJ601qkVA7tbitTTIUAodRswPDg6k8dbGJuJWue77PNF5H0bFroIEXa7pIxucDvTtGFgh/3cBKOoqZR+aJTF763J2unon1i6dLEg4h/0T+0ePd4VGcVhtKDEycNH0QKw08T6wT52wm+MUQXjVlhyIZjAcMppMmOzuMt4ZS9POaGnYeAEmnfUhXY0ucXGvjnmb2hpJF2JFU1fCENOa1jY0VdwfbDe+fXL9Os4lLIOrbNs2THZ2UEHTrqpqsjQLjK8wFhnqPhfMBrzqjR0SE/Z/rVEqqGTF4w7HqkMjz1uLcls6v953js9pmpLlOSYx6FZyMWkw92ukaRqqqmY8EfbxcDggyzKqqgzX89Pspe3z9XI98/I57X78K+rA/jW+Xze8DBldfXx6qmUb0HqZ37RdjaqX1uf2syLRgu75n/rvViHqu7+z/YLuRx2hwXP1eZ8uiT/z8bmBp3ff/SVlueLP/uRPePcnP2H2/AX3vv51vvTFL3L95BqTyRivYDaf8S//9F/xxbef8eU33obGcv3mTZI0pazKrkCMotZdkoSjKPLOElQ6gWBby6bcUDYy81w3DavVBoUmywoZ5dKGL37xbb72ta/ye7/7uxz/8h0Wqw2LiynPnz6jcVa6XOs1L05P+ejDD5nNZuRF0QnPpWlCnmddEXV0eB0crBYL1pslTVtSLmpq68EpkiRlXVWsNiWZdaRaRBQHecFkItT7y8spp2fnrMqKX/zyZ/zsJz/h//qf/Ce8/cUv8N3f+m1eefUeh9eu8ez+U6bnl/yr/+5PaeqK/d09AWU0bNZr9vYnPHkyZ76csV4tGQ4Kbl6/wd1X7nDv9df54JP7tN7z7MULPvzoIw6Ojpjs7fHGa6/hnOPOa69ydHSETxLGe3uMdndRSlHZCo0JyZ8E+zzPu3UUtX90kuC17roCfQHaA0Hobco7MdrTZ5cQdW/iDK23rten8T2jRWuNJ6q/dYhIv7avgE50Qd5ExDUWC2wREbdAmVi4SlDv9yJh5tA5yQhdUnWf4b0LRWK8gYV5cQVG8kGAsGuRKNH38QGG8FtMoPDdt89l+Ev/5x5zufL9IyCjAk1YeTrHN7/1Yr/9s63g0YNhoMIXiuc/6qZEcW7nXEe97JyD2lbeP27eSnXU45hgX+0A+K3fQRJBC++7wiOCfAKq6e48RHBTI+OzG1vivSPJ0u59+6SpF6yNDKCmaYOYd5inR3RHyrKSa+3BewFj1ssVbd2E5NiCluSLIMztEEcj70WwP01ThsMRWpswhujD+gq2uFqYG0aJyJNrhP6cJgVC7lFdEd+6RiypvZOxtayQxNHKd5P1It2xuM5b1/R2s1haK4WcQkErwEFUhHGtDbbsFYOiYDQc8OiTB5yfnvH7/9UfcHF6xq3jCUaDVpZRnjAeFhRZJs5XWk6ENh6TSMw0WtG2JVW1ZrNecrgjFvf/+uN50PFrAyOrAefRKsGYlCQtONjdoxgNKVCsVyuePXtKvVpTnjVowAA1rSTYqYzuWStgU1J50smYbH9Ccuc69sYRl9UGf9YymoypXIO/c4Q/nEiXzEGGokw0rTIkKsU3UDvLaDjk3u1XuJhe8vjJY959dJ/HD94lf+sm+bhgtlwLSyfLJSGNQKYK9HFlyXQuMaOLAz0gKDHPhc4+1Is1eNFEUqkRLSjnSIJJgyIk2q0AY1makQy86E4khmRYkBiYnl1AtuK1b3yfVw9PyHdHIT61jEyCGo5xWm8Bbpo8yzFGk6VJ6Kw3JFF7L3T69N4hTdswW4hO4HI5Z2dnh/F4DETzBADNIB9KUR9o9N6LILlzDlvX1FXJ86fPaNuWT9zHHB0dc+eVuwGINOhEOtrCfPKUYaRWTmEsPqRRpXUEgsRRcL5Y0LaWpmm77zea7DFSivLpU8qq4v0PP2KyM+HWzVtdnG5aGzraIgw6zDJcyA/io21bnLXBVGQUjkFRtxu8twwGGUmiGQ4L2gCcZnlCMcg4Pj5GaU1dlV3QVYF7v1qtqOuay4sLkiTh+o0bKA9126K1xNK6aTuQwVrHuq4DWCkFniM0b3RwQPKSyHnvuZxf0jat3HvBcGWz2cg1CoBimhUUuaEoMrIsJy/ykIDL7+TKJtKtruIIL0Hny8kqD383RrO7J0yb6KYWE+UY7621PD99jlKIo26RMxyNqJuGOrjmam2oyhK8Z5gP0IVGjVOWqyUvXpxS1RWtsxweHJCmaWeqIN15AYGjcUWSCCiTZ6kcZ2NxXqOUwxSGPJNrZp2lrkV0/mBnn2q54vHjTzg7O6cuG4yx6MSLDl5rxVRF9Q56q8WCupJxuaos2VQV+wd7GCPnPDY2YsPBdGvYBDCvDrEhNlxUGHcEJXPNQRMnNu3CPRHyLbzHt47pxQWzy0s2yyVK6eC8WDDZ3RHQOkl49vRpx9JEKZwOhWhiaOqaqiqZT+fkeU5ZVuIUmaVoJYYEMWdKvRe28taYN8i6jvueMYYsAEiqSwMtZVltNUuC/qKXHN+HPaoM94yOBbm1gUEsoH4EChSex0+eCsAQxfedEy0iI2BXP7IemFReWM4uFN2vvHKbV++8wve/911efe0eH7zzDmVVUq1WKO8Zj8YopTpWp3NirqC14vTslCRJyLNzRuMBv/X93+QLX3ybxXLJ86cvmM/nvPfeeyyWSy4uLzg7PePhgwccHx+zv78fYimcn5/JCG9bCaM+EXH5TAlzVs6VAidO3MZITlPVNatNKWAHChNaW1W5wXuo6wof9lDnWhpng/5OXAOwKZeU5YqL0zN2dnc4ODriq1/9Cm+88TqjwQDvHP/6L/+S9XrDo0ePODs7x1nIsoSiGFA1YrCRBZZvZK+LZpnomBmjKZKcqCUX18dwOAyMVbpYv1gsubi4pG2DuHiIIXHEWyvRgFZeRrdQcSWEZkLMt7v/xjcnXPvIFhRA2rcWlUpjraXPbZVSpHkuMdPKfY9WXUMwGoKkRdqtUds2YloT4nz0RfBO6tqbt26w2ZQi8l41NE1gRmohTXhPl1f2oBdcv3mTvf19jq5d5/DoiH/rb/5Njq9dY//4GkopVuWGtm6xjSUxKUoZ0QQK1yPG44DrS6PTWwFrlAcvIhB5WvD8+SkfffART5894+z8gsODI8bjCcWgkJHztqVsW+bzuYye120ANx1JaihUxqgYhZgroCdecj6F5oMP3mc2m5NkKYOi4PYrd8REK5iDxGkGY0y8ZNLUQ4B4rQ1GF2EdieHHvtK8/cW32Ww2vHhx2o35plr0wsqyYr1e841vfJ0bN69jTEJsKPfZeg/8Av2s29ZUQ79OXe8k6+PrPhtp6TBR+hrmrwKcPrVuf+UP3aeeElf+FQwoNnR+xfvql37akzAIcXtbP/ml8wW40Bi7chCf8/G5gaejw0N2d3ZRzjMejrh35w73XrnDnVdeYTQeoRNZLG3bMpuJi8J8OhXKppdOiG1FnLOuG3H/cK7bnPCiXJ9l4vqy3QES6q7Q2NtG/jXaBLaTnIXRcMRkPGE3uEbEsT6lxWlovVmzWCwpq1LmVvGMF3PSJJFRCeiKUqUN4/FOEF4TN5Tp9JK0GEFnNS3IrwRJCYJaSZEpQouWTVlyeTlluV7z/vsf8ODhQzZVReucCB6OR+zt73Hx9ByUoipL1qsV9WZDmooTlHUWkO5k2zahuxa6QalsAHmRk2YZm7Lk4vKSYjBgnKaCSks7W5hnWkkQUCrYAvfuB56I2KtuDcU47kNHMYItn7WIVdgfrz5ehkPlw7r7dgtA2gYmulf77vIKbTGivS+jvt1dJwfRwS1bxxuP/VOH1aujbb1fvGFjx3criHzqs/3LLw1B3nUAQXfD+j40bDOptiCgq1+8+3pyALHg6xsu/kq0iV/javAJp2Iby3r5PIYvKIwuHzrEkmh2I3Vbx/dyF6D/c+z0RGbLy8y0/nu+HKwjUt+BeHFNxO+P3J/Ohc7Vy+8fn7cNPPqrn+V9r0XlfA8QNVWN9xZCF9aHxEJFpeLuIsl5ELDc0oZR0bZtwhw4HXCH9yK4r7fWO1vv1V1I1QGx2m8zLAILJq6TK/fmS+tVxcJWfep3wiaRn0VgUCuDbVrWreXFs+c8ffJECpf1muu7+yRG9G9So8iSRHQBdEzx5F+FuISCWF7btqFuGtLEMB7kFKkmM4REPwIq8n3DKgsFmSIxiTiqWN8VBbhgaZ+C72Yc5dyYxFAMRmQHO2TXD2BnSJ1AYy00ShoNeMhTXKJprICkiTZ4X4eCsxKAMeiuWOfIioKDo2Pyh49gtob5RgqkNrhsbQWCq+s0jNup7Y5dEM5sZWSCMJYnm6S8n851t//p+P6E3pQXQLhtWrSHOnTJ3RawatuWVhtyk4gTWmLAOxFvT4w4ggbXrEgnT8NIVaI1yhuUl71E6zhCDEZLwR7HVaPej/dxDQYtBhVm/h147YliyD7o0nRJmZfvsVqtyXNxv8qznCzN0U7GGLyTrqcXP2jpXmO70V75zklYb57IZhSNIhmrMy5hMDJXirPFconSms2mDIW37sZzq0rYzAmqE/qN+4SI47ZyX+rojCTjURLjHFrRje54L2NksajyXphpPmjgBfEQbLD6lvHgoK+nAgMi7Bk2jhWjQuIemDeaoLVytTfRrcPA+miCiUhs6ET9NxmTU2SJuLplWS46HcpsxRYBFOIopW1dYAsJE8ZFowgvzUMwRKZyV/JtHZwN97/1risSfdC0cUGnz7mAo4QRPdFv6ke721bAl20B2P5WkhFfwvvHPVJ7On0W3QVg3cVwY0KukQqYlBhD6R3zxUJAoxijvesScq21NGACe7ENAspRZF3Ocb8vxVgc14eshS5ybOUA8gHW+zhx0sX1+Of+jIacojs+3+nviCOcnFdhUUBiklBkyl5U5FJE2sBUVkbTtGJkI65/olfX1M3WOImKVWs4VGFhxBwuFoh9ShBH5q6mVjEHinu9PDPGu3g+wjO9CucrqkHKLaS97CV4H+I6BMFEiVXBnVXWTBifUmKSgPcdu8a2LTuTMbdu3mBnd0KeZ8xmU8pyI3m27xm94DsmkLUtWilKv0ErTVVWGK0Zj0ccHh6wt7+HQjEayZTDarXixdkEBTx98qQHLuJequh0nSQXiFpZsZEX2cyqv7+6PJF+vLnTPYqGLm23FkX0OAahno3jw/dq65Zl0NWcz2esVktxo1ViBrDNHO9GI+nje4yBLqwHh8NbunxeG411cg8nxpCkKXkudV5kj/vgBCljwVs549Z+GzWaup9FsMD3Z2W74RnXXaxxtkNmjBVb1Ub/md1rVffn2IjVW2tezkHM4/oMOYKBcTfXRjMcjlBKsV6v0cqQJFZGjH2cAKEDhaOhgDaGwWBAXhRkWUae54zGYwbDIagwHm6D1ELIZ2ULv1qzxG8TWVs9oNn/62xLU9esVivKUtzkldaYJBFDDYWAZUFwexVIHBHoresKbRTDcP9G+RzvPCZoKtZ1xWq1pJrWFMWAnd09BkXGcJSHHMRILPFecmFkr0ARTEOEIe5DTpukKfnAsWMnJEnCfLYQlnUHUPfXdWd3h93dXSJA3V31l2qZrQVypXa5Oonit4l9RALANoi1/diuY2M9yGd/5Et/2Mozw3/7Wvbq86685ZUPvPqEl3+ktj8g3lc+xOQrT45rPKxytX0fvPy+n4UQXH18buDp//C//z9SFAU3Tk74nd/6Hf6j/8V/xGAoN8XJjZs0XrT0XZhHXq2XvPv+u3z00Uc8fPiQ6XTGZrPh4cOHbDZiV2utZTQcUGQZCsizXKxG00SSNaVw3rJcLpjNZlyeX7CYLynLmtFoxLWjYxKTSGBGSZFlPU3dsl5tMCZlMtnl2dMXWOf58Y9/ys54zP/l//R/5sOPPuT/9p/+p6RJwma9lvliFEmeMxxPuPfqm6wWC87PnvLw0UP+xb/4F3z1G7/OnXuvk6ZCQ1+vV2zKTegqSQKts4ykKFiWFe3ZBX/+5z+krCr+i//HP2NQ5Pz9v//v0TQ1v/jJLzk4OObk6DrPX7zg+YvnnJycsJjP+PiD99EaioFobljnWZcrWtdgvSRry/mC1WqNUzCeTHjlzisslkvefe89vvO973F0fI0sOBjs7O6HBRbnnYEk6WaNQwUeAkUonrXuEF/rnBQ0cb8Lq99b30faELC7JWe3ExFCky4J5ebV20lH20rfs2fkmnr6SdQQIKKgH/0mEx+uDV24rcRNxb+4q3e6iccEV4J0/CwFeBOTgf5Yrzxr60WSbAr92VmF3dqY+4fr7u8u4YxVRDh3nVsZXWrSfwbIRheTM9cXofirOLiPL/BXfxa1Qa4cf/h8GXejoz1vuw3FWfh+TPLqddkO4FEEVoAr31mnx2PdZlfE6xI1AbwSHYvWWdqmlTGVkIxleSZFY0NXdEbGZNOKi1WRCZ2/Dt0j771QcrOsE1FugobNoBiyWi548eKFALnGCPXYWhnoUiGn9aFwiskBDmUdTVvRtBWrtXSas7ygKAbs7e31dslOQJRNsJpVShK/sqwkwUgNmUmDEGyK8glNW0sxU1XddYqz+fE7x3UVz1uS9F1fsWR2Imxr6ICDtmkospzdg30+fO893nv3F/zsxz/h2dMn7IzGTK7vo32Lsp4igSLVDPKEPBVgSBFYgVaSYRHntLTVhs1mxWK5YDKakKc5RzsFdes5a1qchyIvsGUprFXn0G3DdHbJulxTrtY0ZUXqFUmaw2RAO1/SlEvR9QkOJHigbBleP+K1738bffsQ9foJD3/2LucPHrN7dExuEhqjaIzcaHXbMF0vscBoMGQxX1DOFzx58ICmrUl3RtRVyfnFBVVVc/etN/j4ww/JG8fqF/exeUL25k10oqGRQlt2zXBAYdRss5L1p4yAD+PhiLosKRdzBqMxuijQrVg8543oO6WDgbhYOeSctp7WW7y2FDpBA+V6QwnMVwuUD7KUzqO9gyTBpynlakMzKsnSVJghmw1JmmHylGE+wJgk3IN0RbkK97ToQEhMMcGNrK5qatvglcJkGQOTYJIshHgpPPJcAKa2qUVwtMiC/p3p7rtko8nSjOvXpEt6eXnBxfkZtnXcuH6Dw4MjvIvjaQsZMx2OZeQmTWmqmqYuSVMpeAYD0XapqqoTYwaJLVVZ4VxFURTkecbOZAec58OLS9aLJdV6w2QyYbIzYTSekCQplxfPaZqG1XBAkRfs7e6GWO/I2gxn28DKELFoa6WpFoEWGQ1Q7EykcI1aRc634GUUoK5r6rrs4qhWUOQZ16/fwHuoqiYAdr0YNwH4TrI06BilXczVyqJpOyZq7P5WVYVSwlhu2pY6NOvatg129xnjbEBqUoajISAMJYXCBXdApRR1KdpQLhSOLugT1VYEyE2M+wrSLMNoYYQkiQljW/3ItQPmGxnl2Dk4JjEyDgieTWmpa0tTO7yTWGiQYte3hqqpmS3PAMjzlOOdQwaDQRhnk5hugw29DQ6deZ6TpAkEECgCQVqLGLnShk1Zyahk2I+GRYHRBu8s6/WKTx7c5+JyKqOZHgjjW0pl5FkujIFEdMIaZykbYZ7YAA6UVYVuVMfAjceAh8r2UgZK6W6f1DoAG64N472q2yc74WajuzFXa4VNq/BoDXfuvMpwOORyOqUJo6abzYazB2fde6RpGqQwGryX/ct7H/TOpKDohOfD39sA2K9qcRc0aSImEs5jTELUBVUquG5p3TEKuvXpHHiNQsSEtxkjeBEUT7QOI0jCalIRjgpxKuhvh4JZRtG1UgzCsTahEYXqRW/zIpd7NPzOhDF72pa6kkL9m9/6NX73934XtOPp88c8fPxAmIuFWMvnSRYK60QaK23D5fl5x+gSV92GZ08fobUhTTMBwLUI6H//d76H1pqyrPjxj3+CVjCbzVguF0ynlywWi07bTgAPjTLSQEhSg25CEyysrcwINcQ2HkPCeDCiGMjo0OXZGVW9IUsiBBOzQY03QScpuKa2ZYPSmtHeDolOSEkpyw3PHj/ij+czfvCDH7C/u8fOZMLv/s7vMB5PcNYzGn3I/QcPu3FKr7bBOcD0FJG2aWioO7BfQHjP8eEheVEw2R0zHBRsVqsuR10uF4FNExjaVhip0bxDobCBmd5PW/QmPCqCcHTLoQNyZEW74H7ngruqnE8fc6agZSr7SQkBABQg1xEH0KPepY86QQqSNBXmUpAxiLIOZdtidMr+/gFFMcA5GASywPPnzwMDVsTE9/b2yLKM0WjEcDxmvLPLdDoVh0krItkvTl/QOCt6kHnOYDDEx/gQmctNL+IdMfcIZgJdc0/yfUXbtFLLbjbd2h4OhwyKAYkx/PKddwKb0DCZTLh58wb3P7nPD//yR7z5xhtcOz5GacdgkDMajvDOs1gsQl0J2X5GMcgoigJjDD/6wY8AxXq94ujoiFfv3WM0HjMeD6SJ2bjeOS+AnBD0s7b2PBmDFXOXLM1ZzBaYJGE0HHJxccHl5aXsnaMRN05OODk+ptyshfGdpH18Iq7jCKRuieProO8V4nJXy7xUT0bjLBPE7rupngCGyzp5mWMEsQ+x/fPtqrf7QfxDjIn8qkeEPxGA7FdgQOGMvvTJV2va7v22nhIh616D9rOO89/8+NzA0xtvvEmSJIwC1ZSQYEcnG6UUh0eHzOczjq9f4/D6MQcnR0z2d8QyM89I05TxeBgCa9JZxqog8AW9XoaOerihgjZhHt2EjSmejSjqprYoHc46qqqmqmuquuL+/ftczqaUm5KdsSSeWZ5TN2LjnQT9B0/o0HnFcDiWEQ3Tb5bTyylJ9pTVekXTNtRVRbUpWS0XZFlCntEtTNlXpbgtigGv3XuNiA5kaUGxP2CQDzoQxnkvo4jOce3kOHRpFMv1itVq3dkWG6NJUhMsbEU3YbIz4ZU7d7h2co39/QMGgyFZlqL9p8GPrqt0BRGPD9UvW9+jwfE79UmQ6t6rQ3mUegkFDs8IP/Mq9rbiJ/TIc3d8PujtRCBrC2m2wd6hp4/GTaf/fvH9XHxPpYIRpQqdoKtrWgJb3yWKZyKKp8cx7biJXDnW7nv2P5eiY4vPobbPf98V6VlTV1EhD4FZ1oM422BS/35byHtIvqQG7tlo/ldEJx+PwvfvEe1d+3MUE0fbHbtMDcRAdrVT2zF0nLv6WS8BUp86bwGFiwkCXdItIpjKaEQ6JtybIUkzWwlO1EqxHXDar1kdunF1XdM0DcvlkrZtGQwGaKUpy43op7QtaZFTFDlaiXPOulribEsyzAMbRAKS1rI+nBaWSxxHxLtOlHG1WnathIR+BFIpRZYanNMhNQwdR1rwjjRsTE1gRCgE7Irx0ev+noijAzZcw7Zp+3PiA4sn3LdtKxtfmmisrbk4fcGLZ0949ughTbkmN4pBZsiMIbFWEimjhAYdRjWSJEFri7exUxh1cBx+S09LiglPkWryVNEsG7wSdqZSsVMqCaJ3PtDf5fq2QaNuMBhSNS2+aURbxUmnUWuDOdolvbaPu7aD2x1AZtCTIdn+LoSkS4UxEIzGKli7hso1wgSpauqyQnkBF40SPb7Ly8uue7i3v8+rb7zOs/MzeW1jsUFfSfnQ9XQe69qOlaaV7gT8+0RPCjFAOu3eBqAqFFUqvI9tgtB8vD9VrykW7g3VxUzfHYcK9iltXWObFgNB98V0tuxRv6wP06rr4vZkzxgMVMwVYwQjxvDW2qBZojqND6Wlmy1ku8iukUaJaAZ6vFJkgwFD7zi6do3EpJ0+hfWWuhTn1aZuUFohyiEB4FLxHNkOaNZKmB0+dHldYOEIK7oNzk0y6pEmCdevXeu66tPLSy4uzjk4OGIwHEruoPOuMBG2hNrSEZF9X3loW9XJAxCvr9KdQPl2rItso6h11O8RPavaJDImXNciQh9ZHN6KBptzjrq0XSIsia2ws0UPS+776LwogIIAUG2ISyjVAQZJyBdMYGnGeNTlFVb0Nz1hXYV12rQN0dpaRtPjMGiMhTICxFZcjqE9nid8+L9S3fgTCL/LK0XdWhSWRAmgIN/JhpijuxFpEQ+XMURhYBp8lnbC411h4ETPxxFZY6KFlcY1F93j4n4aQB2lNUmakOYZg+GAdDAmLQadw2FTreS8KNFWmS0WlLXovsV9K75nt8/F6+9lHUsOY/HKdfdclDTAxTEOsYBXKHxYi8rprsnnrMO2jmKQMygyjo5lJKYNQJwxtTRsVv1oVWwy5sGF88aJjOrUbSuj6HUV4rEny6TQXy4WNG0j9xuyNiPerkK0iCxQ1zppvIZ4bZ3tjUO6WBdi21aegnd42w91dKzPlwpClMRQZx3eyDXwijDmK7pBnTlMyOuUkvWllFx/18qI7mQ8Znz9hNuv3OLmzessV3Mx4WmbcD+0aMAGrRqlwAVgrK5LtDby98CQJjzHmLTT3UrShLOzPOjQFOzt7fClL32Rjz/+mEePJY4IWEzXWCMcr4DcNkRhZG2iOsHrJvwOhbC1A4vLO38llistY2RZPui0cEGacijFZH9fADadstmsSbOU8WRMMRjQ1pIvPX36lL29khvXb5LnWZcL+3hs9Jp52zEwant2ObEW9FB0Mr0wLcPajrlK1K6KsVLh++vqfXc+Ym4Vc9UIGGw/tnPO7s9h9CuKhF/NTbfz+7BmCWBWWMDxPu5MRcJepftCNaa0Ww85SwrJBYpiwGRnl8l4jHOe0WhN28p3b9u2qzWrssR6WK2W1HXDYDBgPBqLdvBmQ90Iy94GcwQV9OwiENx/+TD+qgOrXAkjdD6dUVU1y+USpRWDQcFkvMONG06mdTZlB+yXm00AegYdWBP1mC8vL9FKs1yJVI3RGRpFud7I3tza8NkZRT5kZ2ePg/1DWtvStJblcsXTZ884PDwMa0uyjwiUSwM31mXC2vJ9liShQcsemWXZVt4lce/46CgwzoZibNaKZI9PInvn02umqyOdCxPNms+qYborHEFQ1Naa/CwQZ2ttdIWa5GHb5dqWYfr2K69+5st/2ir8/NbvlP9Vr9uqN7fe/lfVjWEb7e6Lrburux/Vrz5Fn3p8buDpW9/6DRyeCkdtW9ZtFTYij0oSUq35ype/wuHBAaeXF9y8fZtf+/63eXT2jB//5MccHOwznky4d+8OVVOLQFohM75aaZIkxTkfKH4Go/tDS03CoBhwsL/HaDgMHSq5UbMkoUiFMSXJvKJpG5aLBbP5jPOLC/7wD/+QJE2oylJG65xnvS559uI5N0+uc3x4FJBKT1XJDbGzd4DSmouLZ+SDAYPBiE8+ecAv3/2Ip0+esFouWM6XpOkl5sF9hqMB+3vjcJMKkpgmGa/ee529vV1eu/cajx4+4L/+/d/n7t27fPnLX+bk6DqpSkmzFJ0onr14Rp4mfPs7v4HCUzcln9y/z/0HD6Tr2NTkRcZoPGSyu8NwPEJrze1bt/jt3/4tDg4PmUx2GE7GYjMa6E2xINZadxatImYa0HsVOoJhRcWix4YOXWOFNhmDQarTUMjE1Uq4e15OuMKfw6bhbATkenAA+q7JNsq7zZCRvzdb4EbPvImjHxBBP/o7WQsuq9Wng0BHAw6z+/Hv22yexsoGHZP1l4GubjMiBsT4Yx+Kpp6KHEcAtjfliPDF323f3d0GvnXMHRusf2kABFUHFMnnX92EY6L46XMQEgPVW6PH58REIBZYceLF+/bK+2yL5W5/9nbBFc7KFSAujgN030X1cLIOQqMEtoELSdWmKgPzYdCvIS/xqGlanHWkWjquTdOQmIQiy5leXPLixQtenL6gqmu+9KUviRX0+QVVWdI2NfnuhONrR6yXM8q14fz0CXW1YTy5ThqsgOXaWbw3OG+oqhpsK4W281TVhrLcMJ/PUUaK8kGak5qUYiIb3yg4cdnWUTU1y82a2tfUeHKToZRmWZY46zAhycmyrOv+EoCPNLrGBFZDVVVSXCUprauwTrrebdvirbAvdg8PuDg95Z2f/oz33/kl7//yF5wcHXD3+qEk2N5DbTAaslxRFGKMICySHHwto1lK4nO0CldGOtqNtfiQCO0WmkWhKc9KvE4Y5APQCegEnWaYLA8Jde/stWpKJoMJB3sHLJMEsoR2NsNuSlKrSUcp46+9SXLjkNXdfWyqaes16fVDjvf3WH30mHq9QTVD6eblKVUCF3bDtF4z36xYLOas53OKNMFnBpUmLOZzPvjlO916vvvma3zl17/Bj/7lD3h2+oKfb06pfUtyMCL1HoPoHbRB5BoNxWiE0lLIaaXRKNJUrqf3nrZpcJUAJlmMdA6cbWiqOoB7aUytJQkFMKJfk2UpvhVAUTsn4JNRoJFEdFOK6HO4P5IQqxrX0PgGhYzbpAEIC9xMAW27BDzEKCVuhUobvPW0rcO5irpuMbokMYb9/V0paINduveuG4mvWgGfoijuYDJmuLvDtVu3aBpZl0YnVK7hYnpBXdcUaUaWpQxo0Ajby2jRgrOR5RfiyWUQUc6DkLZtLevVivV6jW9b8ixjNB4xKHJ+89vf4fLygvc//ID33v+Id99/jzt37nF0eMQ3vvVNxuNxGK3yrDdr8jxjmBQdUzOOxTRt0xVIMQ6naUaW5h3jCERTbbXe0LaWqqxJ05SiKDogKybGaZoKYOZrjFIkSkui7m3QyLKim+M94/FIGI1phrVNYJmZwGCR719uxOb+4vKSLOhMmlTysmI4lEZVYCy1vg2BVorQ1WYd4rJmPJ6QmVS01RrLplyhTUIWpAuk6ArjfkGktiw3mDDupILbZagIyLI8lghB0Nx1DQGvFE5r6kpYpiYILjZ1zaAoOD46kEab0axWKxaLNbEBNpqM0YmhGOQd4Lteh0aCq3vH0nBPp1nKMDWUbcVqswoxPaHQSKxOE7IiZ3d/j/2D/aCTecBossumqqiqiuX8kra2OG1Ybio+efCI2XKNzgYktkUhYKdSiiYwmnwEYFx0/aKTdoB+RCxsnhDzs8gK2so3JNaojhE3Otzj+Noxb731Nnt7ezjnWK1WrMoN6TKlbluyLAtiuhXOOQ739jg+PuLv/f2/T5ImLBYyTXB2dka9qWjrluOjQ7RWvPuLXzKdTXn06AFlVbFar8O+bDCxWApNuzawNnySdHnj1VwJgsZ4wM/EOdm1gWkSc5v4flUwZUgSVCL3TFOXtHWNCk6G8f6sW2HwaGM6ZysBhBUurNMkMdRtw2a55K3XX+Pb3/k2v/Ebv87bb7/F//P/9c95/vyZAKlaAGYVAH7vHalPRL/Me9qmvJLnXGHch5zHOrl/33n3F4xGY1577Q0ODvb5n/x7/yP+4A/+gKquePfdd1kulySJjFRlaSpGE0phWxsaCVpiQ9jr66rChtHiCJiul8uwViQ32HbkSpKUNDcc7h9x/eQGJpH8fb1Z45VisrdHmiQUqYwlrzdrjq8ds7Mz4S//4oecnZ7y3/7RH3Fy7YT/4N//n5JlebhvwTvVGbDYwO6LOX0EweMep/HiYI2naipMqsOor0yKlG1NVZdd/hq1/ADi1K13vUOxUrqLy6LVypVHLw8Rb6uQk24x+L3zWHom/tXGsozQ6WCM0JlChHo3TyLzLAjWB/1XF+RLxIxHroEA3wrbehKTsTPZ58b1GxwfH3Ht5LrINGiJbz/+8Y9p25b1csVy/YLFaoVJpFFzdHzErVu3ZFTPaPbKg24PyrOCNE1pa8mTTSIgo7VtAH9asjQRswEvY3AfffQJ0+mMum7Y3d3la1/7GsdH13n77RSlNPP5gnKzYbVesV6u0FozLAps07JcrpjPF0ynUz65f5/nL07xXvTVHj54RpZk5Ekq2nHlhqp0eJeyt3vIzs4BrRVNuPlywfnFlPv3P+HVV1/FWksS7vUIFPXOtcJ+khzJi+5bEOLHO7RWjIaDLbBLMxwU3L37FoeHBxzs7ZEYQ10J+O/8y/VJDzjFR2zcqgC2XmH3qX5up6sZVd8c3H7ocPwu5Fi8tF7xwnyK9U/40aee9qlHj/nQjaFGjHbrSb8KD/K8pNHUfbetD+j+++n/xwNWUVP2V4FWn/H43MBTZQWMKL2lsZbWumBz7mhaizKKw4MDEpPw3W9/l72DfQ529xgOBhhjmE6nPHnyhIePn9LaVvSM1iuePn3K/fv3ee+995jPLlgvF5yenmGSNHSvHPPZjLMXp3zy8X2eP3/BYrHg/PyC82BlvLOzwzBQTsW1VotrT2vZbDa8+eabHB0d4qqGvb29YAkr1slRk8mjaJ3Qi621oAweT9O2DAZDbt2+w4vzKe3lnOlsxsXZGXXTgldkWdolMsokUjADrXeUTc2mrqmdIxkMuPvmG1y7do3h/h6NUsw3G/LBgL39fa7fuEHb1Dx6/IiqKlksZlxcXDKbzaRw3N2lrVqKYtAVKNoYBqMhh0dHjMZj8kERErhPLwIfOg8yShfWSdB/iUUgPo5HNUF/wQnl1Ci81jgUTWOvBHbpssSdIvxsq/viY3dBYkR3K4ioZKfFH/vrVw5cuqhyPH2gkM0H4kYh31fmyPuXRywsWpn6rRs1AiEyV+y6DawDmBDNBQVoE3/Xsz1i4Ikzr32316MN0nGTAwyf29MaO7aQ2vqmnemIupqMbl8/5+IBhvO57Sh3lbUl3zAyzvyV87K9HuQ8fRr9V90/8vp4TDGxiUBdrwPlrgbm7fdSfUjtuglBqwYfe2c+bPa6S7aTxOAxOK2vbApC2w7nWmmKLKdcl0HAtMS2oiczn8548ewZs+mM+WLOcrnAOsfs8pI0TZnPpuA9RZGhlRdxSDxpmjAaDUnT4LxmtrURhLINhI5dYEt6T9v0HV7CfWaR5LycTsE5XjiH0YZBLsXgTj5EGSUJVmRyGbk3YlKijMLhaNq6e3/nIxtKBS0eR9NY6qpCGQ+qF1p1jaWtK9752c+YXZzz5P59fF1x/fCQcZ6TKd1145WWsb2iyMnzQqjKiFaRDtQt27qOBt9rgcm/WgtTajzMGZcWhYicKmPQJkUlGc4HbRY0WifoxKLTlGQ4xAGz80uc9mSDgVDxtaa1ct7LVKF8y/r8gmSQkwxyUm9I0NjJmDbL8HWLr2rSxuPrhkW1pmlbtFYMJiN0oimQ79qkosd1cniIVwqdJHzprbe4cf0mF4+eYb1j+HyO0mBUIkB+LYyC3rhAieOVFqc2TdBL0loshquKtmnwMVEdZpAlXEkKtMYbLWtNKbxxARgO93Zdy8iFl3E8ItDsHAaB3qXxotFJivZBWFbJmJiA766zUWcrnkVHPQE85J4UF7W2c7wBScSywJwpy1JG63SI7y7qALWIDptnuV4Cnv29fXFoUppEG4osg6BnVpWVuHINJUC1bRP0omTPMEbL2FNcfMCgyENMVZg0o8gLBkUuui6uZ8ZaK4lplmdcu3YNj2g9JMEpcDGb0tY1g9FIvnPbdqwOAVgyNpu1jEclKiSfSWBBxIaI75jbcvzCqouGBrGpEBPdRMk4I4HpZHTU+RJWtwA0TWCfSHzP8+hKKWBkkqShUaQoW9HMLKuKpmnEgt2YbuQzguZG626sShJ1+V020Kg07bru1ktsbvE4rclC/pZ1jKmka8DEkQT5v6N1wl7xdSPNg9BQlBFM1e0fKryPDC170sTgt8b+08SQZnEUwlLXrhMYzrK0ywni+1nnhM1YN1hrSdNeh9N7j2sFDHfWkyYpk8mk20uapsY7yyDLGBYFN27cZH//QVjzHts2zOdz1qs1bSP6cE3bCuO9qTBGM56MWbQlrq1FrFwHNzYUTV11+YLshXSsg7CzEhlA2w2Y2MiKv2f7d0F/Z73ecPrilJ/+9CcMBkNenJ3SNDIq2TSiLeecowprQ9gyLXXbsirX7BZ73Hn1HuvViqOTa6yXa5qq5s03XmcwKLj32qts1isup5cCTJSbLmbEvCKym9bLDU1Ts1mvyYs8uMBlHVtWKWHs4HtGe3TE7ExMvOi2WGs5Pz+TUaYAUCVZwmqxoq7KrvEso4UN63JDVdWs12sa29JUDTYAYSLED20QHFfAteNjvv61r5KnKRdnZ9i2EWhUsHJ0l63IveKcDbpsrme0BZDUhvtU2JeBaRiE0uM6FBv6lNF4xa1bt/jud7/DBx98yGw6C0wzJ01Z7XEqMOJcK6wutNRXKGFSmYzBsAjnzFMUhQi5KzGQODo6ZDgccXJyncvLSz54/wO0NlxOp1dzE62pWtmPbF2TFRmD4VBGNZuWvCjY2d3jYH+fvb095gGgXC6X0tBVqtM16wr0Lm9Lroxabkty1GVF0uVTMaei24fiKG3Mr0Cx3cTscvor+f/WPdI1SOn215izRv2s/vg+rSkr7Dl6IDT8ohO6956Wq81nrUzQHaRbG8Lu9uB1eF9HmqUyGpbnJGlGngvDO01TkjTj7t27bDYbloslaZ5RDIe8/YUvcuPmTV69e4/haEwb2MGr5QqRixhgdUsbYl1sjsaToZTkOS40Y0VHS1wPLy4uyDMZNa4i87ipKMsKG8x3nHOMhkOS0EBp25bHDx/TNg3HR8dyb3tYLsXxzh4e09DQVBVlWbJernhxdkpWBNMqpZhMxmRZymwxI88zRqNjdncnZLm4sxqt8UpMdeplRZIkQejf43zTAdeBdy8xBR/Wi8c2LXmaYEYjhoOCLEvDWL4nzdIuX+8CcneZr4KQnX4afe3TmRt0l3+bbSeO2bHulR+rq3UeW+t0C1lSEKaCiKXhS+/D1RdsrVkJp9sEhu0nKK4MxfVL+uUj6nLC7d9Hgsmnjj++ZPuQ/o1IWf/43MDTurECPDmho7bWdbbQVd2iM83R0TGHB0ccHV+TbtSoYDQcorXm/PyCT+7fZ/f4Oh7pTi0WS+4/eMD7H7zPT3/6U3E+8pbJwTPSLO/ELKcXlzx98pR333mPx48eM5tNOT19wd7ermiq7O8xGo3E5c5KMTrIC2zbsl6t+NrXvspbb7/Ns0dPGI2GQRTSdcBTmmYS4K0PDjUtiUnxSDdlMB5z595rtDxkVTZcnF/y5MlT6jrYxBa5iOWlGTpJIEmwytN4y7qqSKqSdVNjioI3v/JlRqMxg709qqZhuVozGI44UvDK3TtcXJzz3i9+Jt/xxfPuJjg4OGCwM6BciQuMV0LLNYlhNB6T5hkmTWUmVpTwutWwHZyNMuhEk4Qkpg4icNtwhbWWqm460bq8KFBJtK31tFXbBbn4vs7bTy3K7ed04pNbI5FRgC4+N7yqK+wjWygWJN0Rqj416GBXf5Vl0312YAVsAzkRrIqdjMhCisBTOGsoIoV+e6Zc9QFl6/3E1lkeOgFt+u8QAZJtTpfqbmjfu68odQW8+fQxX/3ZNiU0/k7rbcFtHzNXIk04fOyVz/BhFGd7E1Ze9f/SF05x1KQ79yFxjKDXy9jT9neKrnM+sNbYvuZbx24SGRFQW5oQLmgdtG0r1P+QeOV5TlZkLM2Sppbks65qZtMpq+WKy/PzXg/Ki4vI5fk5iTEs5jNx0jw6RCso1yvSRNgIk8mYpknJcjEwiIm7dLHlupkwputTOf6KnpUXl3qLB2eZn59TbTYCIicZ145OOD445PreIUmWoFNNo4NleGJo25ZVGfQPlOiwuDCC571syloH+2kvwFQdrOuzzJBmSWdNbVXFdLngRz/8C5bTKfPTMw4mE+6cnGDrGte21K1of+hEkaSG4XAkSW2WohBRZJ3E7p24mMU1HJkMzokQcpoYdscFi8qiA5tOmRSVpJg0wyHjhCqMKlkDOk3JJiNsWXHx/Izh4Q7Dwx30LMPrkpYGi4NU4W1N+/wFw8mYnd1d0mxAYTLU/g5N27I8O8evK/LaQdUwX69Eo0YpRns7FDtjDvMMrWQML9Wa2cl1vDGoLOUbX/4qb73+Bh/88h02dcno8gkoh1IJrRPnpSgAGiFbW7cooyQGh0I7CvCW1tKUZa8Xk2eoLKVDlpTGaw2p6e8V+hjmQ1ffIMyY1rWhm9mijO0/z0vCrJMUbcV9KlZSSim8ddLtDklKEpLeMIEgDjVB4DmO1vXOkE0AYBLSLGO9XoIX3YcrcQSP8+KKOZuKXsfOeEcMQxADkURFJzhLtdmwXCwkPnoBApwRi3sf3t8kCUqbbo8ZBcp/VTWSuA6HpJkUuWdnZ5RlKfpGVsxBsjzn5s2bnJyc0LZf5NGjR0ynU6YXF6zSBfdefwNQ1FUdAFQRI1ZJEjQ4GrKQKhmddk0ICPEqaCmC3ANlWQdtpzqMWipaK4UrWmE82LburkHH+A3nqImx0UvnXIA2T1luxAnQpFGrXBzswviFdQFsTpNubCzLso6pHGOHc45EG7I0Iy8MAy3i61VVB30nyfXQmnw4IjGazOig69MzAKKOnR/kVGH0IupKxeeOM4Kblny+bRo0iiRV4sCIx6TSYIjrMssyFGKA0rbC8NIBSCoKYV1Y7/De4hxUdcMmiBJ7D2kicStJEmFkrTeAOFDmWc6gGHR6f9V6g9WaZLLLeDjgzp07HL77vjA7nMO2DZcXF8znC5paWG1NC3VTU9cVJjFMdnaoVnPqci3uqUozGY3Q/1/K/uzZsiRL78N+7r6nM9455siMHCursqq6q6uqq4FqNBpkQw2AhEGYRBNoNKPMCDPxWWaSmf4CPugv0INoMtJEk5HiA00GUKRAAgTA7kZ3Vc/dVZWZlVNEZkTc+Z5hj+6uh+Xu+9zohlA8QHRUxj33DHu7L1/rW9/6PhR1GH2IIzzxTFTsFD+xeiDW5yrlDbs6i0qJxltmZN9u1huuLq94/vwlWmuKqhTWT9AmyotCWIjRLYt4rVouVzfM9/d44+230pl6c3NDWzf84ne/y9HhIfVmHcBIRz8M1G0TQBmf4gHIqOXZ2Tmr1Q3Pv/yCo6Mj7t27x3Q6paoqcS1Umq5uwQswH1m6MXY0nei2VZOKru/56KOPRCdrsMIsLCturq/FedLLefzJp5+w3W5ZrYR98eXz51xfX9O0YeogNIp2CyKt4MH9e/zid75D2za8eP4c28vZIAYjCuWDzbuSSOzCeSuMDNmvJrQdxPRnSNqLEg8k55lMJxijub65RmlDNZny2uuv85WvvMc/+2f/nGdPn9FedglEEob7kOoqrw0OJ+PjKCahub5YLCR2tp04nB0eBhfHgm9+85vcvXuXb3/72/zJH/8J/8V/8f/k5YuXvHxxGsZwHfPlAm0Mw+UVXdtyeX7G3Xt3efLmGzRtS94UlJMpWV7w9a+9T1mWXF1fcXF5wc3NjcTavEjXJDKR0kREAA/j/bPWonOJbU3dYEKeF/PJqNkkAHJoRisVxscEOI7rP0G0KuTou3mxR0aVQ2yMDe8h5MeZMWncre/7pIsXXlxA0NBAMlkWjDN8YFTa5Cw6xKZHGMUU1r8O6awOLK0oB9GBVwyDDdpJM8pygskLCiBzVhj8zpFnhpubG54+fZrEwv/qr/0aP/dz3+Li4pJtU/Py/Jy+k4keozXLxYJe9eAVmtC0sjL+qQm4itF4b4XdutmwXq/59NNPOT09487JXbIsD/Ff4bFstzV9PyQd5pOTE6qqIstzYTl9/DHz+ZwH9+6x2WxpmobNag0EkM8jDOTNltXNDfMXz/H4wMo3fOe738Fayyeffkw1Kbl3/4i9vT2qSZH2Vz909MPAarViUlXs7S+JjpSEa67JCPQ78JI34yVeVWWBmU6YTiaUZUE/dDhvmS3mEsN3poBibZLyrXAOmWBytvtziE2pXRkVeYhhSBJIEMOYVOb48Rx4FXQKgJO6NSbn03kQn5PWObef5yNQlcC08FcKfbuf8fZ774JOcR+k142A006tmoAropyMDmmsfwVg+///+JmBpyboJkS9BOUcvre4YeC6v2GtNYsAMjnrMQYyp/nut75N9h//x+zvLZhNJyyOTthst+wf7LPcW1KW0lmvqorMTMhzw5M33qCoKvI8Y7sZROeo3tJ0bXAxUUmAr+s7blYrfvzBB1yvN+TTKR9+8BN++IPf4eLinKLM6buW7Xotbg15zsHhIYfHRwLmTCaygLRCGYUdeqEmVmIV3rYihH51vcIrzWy55PGTJ0xnM15/8hZ3794TobizM/7Zb/wGm82GN997j6OjI+bzBfvHh+RFjsWR9RrneukSW0u33QrCfXPFZrPi6dNnnJ+d8tnTp/RdKyM81uKtY7PaYnvH8dEx9+7d49f/+l/n7v0HCCurp+06seM2ZtTLsj50SoT67hH7ddVH7SOCqJ4sI+lcx1E86G3oOG42AEkkLUMHjRMXuj0uuVYYIoKsUhIVH86P9PHwD0TmlIIdZtJIlY0z/ol9hApJgQraE+NO2qXLxteJ3Vm3A8TJc2K3xYzv6UaGkHQmcwRM2UWSb79OfL9YgAFog7BOwlOjk5S4B42JpQ4d7gRAgWg/7CLcrwSo3Yezu6N1KtDE7e3nhRm55GD4CiztPaPzndsJNsTEYBccIq2tOH4XtZ/il43XL96PeC9GVxhJVCaFCA3G+2IC00MrOaTbwCrxnnAYqdRBjM6WdhhonA8z6pKUvXzxQty+uo4vv/iCH/zO77C3XIZkrcdkmscP7lGVFcxmaOWp1zf0maHPMuk04rBWgE5xCopfLKyptBLlmw5dEPu1sm7yPGdbb9lsN5yeX7Fabbg6O6VvpRDtup5/fvqv2JvNuXd0zINHd7lz94h8mpHlhuVsIddGM9KLtYdMEY32kvaF7VHOkmuYzCYc7y/p25a+73j20SfcXF9zeXbGdrXi/NkXaOc5nM0ptWaoG2zfIXoqBqUyTI6MG1VTJmVFkWdkRqzIvReBR0K81EbhvEKmEBTOihuWs55prpkVGuWC9ocuMFmBycN4VNPQNj1G5/hcoXNDNZsxaIMdHF3dMTw7RbWWaVaRHxxAldNcrPDbBjUvGVrLunfYqqEuS8owUrRcLmnRnNkXzH3JvXzOa4tDXr9zn5u2prUDi7zAaM1Bbjg5vMOdoztEGv/j+w+o8pzHd+6xurqGH/4WjoFlltNp6fSqwMxLxUbQH8yyDOeh3shYSuyQRU0fpaKVeYhXCrEDR8bxdEymM7G8tl0vHeosQ3tF5hVDAPqttzgc07JkEqypvReHGqXMqC/lBRi0gY2TmYzpfDqOEIQ4nE0mojVYi2AzSrqIZSkuaMIeykUbKcuwdmDbCOsjCuvqwE5T1jOtJrJHNzW2G5jPpuJcm2VkymCN443Xn0gR68T9p6yk4dS2fXC583hlxaXMxIaAnGnTaZYAra4XTcd+GBick/PCOrZ1E3RuZL9mWcbx0TGL+VwKjziG03XcrK7ZbFbcXF8xqSrKIqcshFGVFxk+FLzOi/mBtXKO952cj0pLLDs6OhrPi6BnlqkiRIsQ7zKdRs5uBWMQINooTK6DZoyMF5SVgFrr1Q1dIyyWJgitC0tbxOLzrGBSVRR5QRE60t46BjuE2JFhnWOzqbm6vuLs7JzLq2vWaxGY7QMocHh4wPf/4l9EhxHSHEWGSmNbI1AkjJbZfD46Dw8ydpIZTZ4ZppOpME+cjGEOdpCRMSeNBqUD8OeDWLRSwh53DpSAXEZr6loclvIil/0X8ok8l/ESpRRlUQrYhbAPZpMZ1nn6wYZi0aAyKFRGMZXnGa/Ybmo+/vQTrm5umM0XIv3QNGTaSGPR5mitWB7sMSlyzp5/mf4MfR8+QxBsDw0lF8Df20e3nNfRbdToeM5HYDCyR+JZGnMcF8bJDGUl6ylqkMYGjUdhjDRoYn7mvU/Mt77tOH95xj/5R/8dh4cH/OgP/jgBANvtlrZt+Wf/5H9gPpvxxptvcnLnhF/4zre5Xt3w8aefMp9Pmc1m6Uy2ARQ4vHPCYn+Pxf6eXPs8D2z/Fn91Ke/RSf4nOl6Wvu8kLjmXtMRmszmDHVjX28CQgs46tq24prpQzKks4+jkDvsB9Gjblnc3a66vrlndrAJrSIT++77n7OyMw8MD3n//fb79nW+RFznPn3/J+fm5NJqzTATid/ahCrE+uS3u6L1GBl7UV+u6LsXToqjIs5zJZEqW5TKFoAVUqMoJk2rCX/trv867777D/+0//U85O7vA2V7iX57RO09nBxlBDYyqxWLJr//1v8H9Bw/46te+Jnp2dc3e/gGLxRKFsCcPjg4oioLpdMp73/wG/9H+AZfn55yfX4gQ/2ApqgqUYts0wqzuBhbLBUfHh4nZ6EKett1sOH35kn/6T/8pV1dXTGezIOJtQHnJAdyY68ZyOa5abWSUMM8k920CKD2dTpnP5+zt7bPZ1vhtLWzNLEuxM8k7RKA29ZhHZ0lt9E7OGSQ4iDVAGCXfMbLx1qWGd3SRA0QzUUGmiwhtoTzBTCE0RpUCIyPeoBj60JxPI9ljsyj9N6Ld+/nTzzk+OWG+t4fOM/KyZDKfCXOxlnHmx0+eUBYlv/Krv0oUzDk+voNzA10vLNpJVUnzJxOzFzHRkXVY5CVamcAmV5R5hrWOrm2ZVBV5WbJZrzk7PeX66or1zQ1lWeLx/O7v/m5oGjuurm7G2sz7JG4Ons16jR360PiKY8Sh6eQc11cXqKCfiodqUtB0NReXZ6KfR86XL57R9z0XV2fcn9zj9ddfTw2SGP9c2ANfPHtOVZXkeclsNmWxmCd2ZBeaDSbTFCrDU4Ev8cuZOCVnhnJaSOPNGNA6AU4JNFJp6SQ9r/izPM9jJyDt9dgMiFXArUfMiwODIf48aiRGBm56zwRMhTopgDmeePtDcyIeHh78+MvpESqTP7e+e/V542f9c372CiB1+11CjYnf+cEOABZd/X5G5OlnBp46K7RM5ZwkA9bB4HC9Y9vU8jG8JAhFbsIMMDx5/QlHR0e4oFvQOrkpe/v7LBaLkNgJNbfIDWWZc3znhGoi9D4Pgdo8JAYOEFxUgvXrMPD8xUvqtqOazfj888/49NNP2GzWIijW97RNTdM0DENPOamYTqfM5vMgukcYjZFE0odZU2MUfS/UxM22Bq2FnXRyhyzLODg4Zr7YA6W4vrnhj3/0I+7cucO9hw+4d+8+i8WSMnS2TVszWIXHhSJ8oO9auqamqWu2my3n5+ecnZ1xfnGOQlEVBc4KdbBve4zO2N8/4P6DB3zjm99gtljS+zAWMQySdIQOrHT4xpnoCCjEYKJ9gJoCwBMtnEWcTsYbnHMM1qVr3/e9WKwGR4AIIozCgAI87bKDdnWJPNE5Igb7sGZD0I+MF+eC+oj3qcB2XqeO3wg83Xa4iO8Zu4s+Al1uVxwudqptKLrGaxKDLQj441NCN6LAo733SLeUJPIV4Gk0fQsz35pMj1RtrXVyDQSS3orfuXbEwLjz3XYfaVwNkujrLRqpXFzwUbT/1aClEloOu+LsI3C0e3/CtxPYJTDr7K33GrtM8nsj6yuyjpLTTxFALDUG5TQ2aCURjc5A0Q2jmBaM7DG5rkMQ2p2FcRmF6I70nXSqf/LjH3P/wQPu3rnD0LcyvmctmZaD2bmBrm2wvcYaLeKDbpDxOyMHFTBqoMllG48dLzRqGwDcOOJiraXebjh7ecrp2SUXL18yDD2L+R6r1Zo//IM/ZVqUHC6WfPVrb/HGm4+Z71VUVYG6c1fo8yHJMIog4gpxvEuHa2t7SXyUdxSmYD6dshkGhq3l/MvnvHj+gufPntHWNd36hllVMTs4BDfg+i6MEFjyIrjpZFAEF8Aiz8gzg9YEBsoIlsRDNvp/++Dw5Z2wIgujqDKdAG6tM2FqZBlDN2D7nqG3DINDFwZlDHlZyvdse4btlnZTU5biWFIe7OELQ7Ntg7ucxzpolDB5ejuMY0GTCarrcTgKrTnJJxxPFxwv99FNTjN0VFkurI/pBBTcuXsnCXxPTY7xiuODA+4dHZN5UE7E371SZGo85kMAET0ILaC/jAd1adRJKdG9cYOsoVsuTYxxzw8uzPordCYjWc5aFEEs3ClxwPOeaEENnrIsKGKSJFkohG6dClR/Z3uGwTH0IvYpz4+r2AaAN8d7cbWLorraCAMuAvQmCTErcCoI4RvyQgWQJUM7h1eOsiix2tC3vehZlQLYiZmHRWvF8dERAOvNVtyGMo3zPd0QAV8lTqZIEUPoGEbGTfycdogSAONZ5Lyn6Xoy48jJyYwAObPZjMmkksQVj9EicCvJsojPuvkcP5myXC4pioIsz0MCqQKTakyQh6FL43gmy9jb2wssqIyu72m6NhWtQ2AW5sHQJGkYBkawcy7piuQB0In3SWuJK5vtlu1mQ9uM7mxoeS2RDsgo8oLcZGksyYWEOQJPzjraoeb87IJPP/2Ml6dn3KxWrNcbuq5ju93w6OEj/sJf+Auis+dkXE0rndhCY5NDuuHVdCIjtTrD0+L7IXzHAE5pQ+49Tdclhkss6ASg9XhvsYOATd6HsVVGi/G2bUU4O8tAhbNKqQR6ysiiwWgR21UKdJahrDDsojOkUhkYT0Y4N52s+5enp2y2NdVkQlM3DH0fHE8zlNEUueFgf49JVdDVNe12Q7PdiGNfXmDDqKYP52hKxtNRLv/hgbCciG5Tu023mKeM57VP19KE3NcF5+DYMR+smFSkzv0OWyqyG9ut5JtfPn3GdDrl9MuX4YOFkbygIVSWJd//S7/MW++8wzd+/ufYbGtevDyltwdgDNWkIkMATKM089mMyWzKZDYVQeKmoWv7lD9bKwCOdOFl7G7oewEqrU2gqA35XxPATa013g3JZTEVaVoxmc1E83E6CRpAluura9Y3K2G+eMdgRRzdmIzXXnvMX/7Lf5m7d09QWrPebLi4uMBkAiqJVcd4vVHSvLV2SOOCMYeOwBMQnHJ7YeopRZGXQf+tIityJtUU55xo8XXS6PnGN77Ogwf3+S//q/+Ki4vLNLqeIcxOFc9SK4ukLCt+7ue/xdvvvsP3/sJflBHD7Zb5YslkMg2VopcRpUHcN+8tFrzx1tvcXF9xfXlF23ZYO2CyAuc9q81a4r7KKasiiUd775lWFd45/uRP/oTVzQ2ffvYZfd+TF2UqdLUSt1llw9snsGV8xOZLlpmQNgholecFRVFSVRO63qJ0AO5UYO0Qdc4QZ1tkcn1k8485sqS1cb+MNUCqe7xPpjNxBDt+tvFzCtPN7BT5aQeGaxvz0yw0dLrg1Be1riQ/2qknwqMfBs4vLiinE5ksMBqTZ0xnM7TR1F2N0pqDo2OOjw55++23iOn/9dUNm7Uwj5y1YrCVmaT7JfmpXC8Za9Zp1M4TtJD7Hl+WGCN6epv1hrZpaNuGupba/fPPP0/xN02UhK8QnTBFEL8JTfqRhEKoJa0XZ1BQdF1LkRdUk4rB9qy3a+bzGSZTXF1fBPbVGnAchRwACFNEFq1l3V9f31DXBQcH12itWCwXCXwZgoaVnK0GkFzLRK23TFi3SgczCi2O2VrrMO5JirVxfG6XFCCyH+Na22Ud+Xiz4/oJ+bDChDUZ19HOREtYVDFm73SnIIFO0QwrxH6vbomN72A+r/xD/J+jdM2fBY/Gx+7n233EkydUwQGI3607Y2094mGkS6H+te/36uNnBp6GgKx6H90qROy673oJJkrTWIsBBhyts9R+oMpk7tg7oVAOSnN855h/+A//I4o85+Hdu8yXe8z3Dvjxj/6Ezz/7lMPDYw6PT3jzzbc5OjzmF7/3S7z9zru899Wv8qM//RGDs7z9ztv8xe9/n6vNDZ988gm/+T/9JmVZ8fDxa2w3kghMJ9IBr+uay4tL1jc34By/9Vu/xRdffikURBVFxKLVvSz6k6N9bF+HhH3AWsf+/gHFZMLj118ny3J+7/f/SA6wfsNyvuCvfO/7VJMJVSXFjGo6pmVJ3dT84Dd+k8vLC168fM69+/d48403KfKSzGTsLRYoHJ9++gmnpy/praMKXYvNzYq67Xnnzfs8evSYf/8/+Pd59NprmCynbjoaKyugKAqcg34IgUAJQykWxnEhOWeDnWjoodlIoVPpPmZB0Na2HV3b0zS1iIJqjdeK2sUALmBk3EiRHqsguLJ4vBvCAg1id87ifXB3iYveS+ciy7KdoB3BCxlRc2RhY44BQhxuxhG5+O8mHnIBwcf7QBG/HTi8c7ggAhptj+WjhlPH7G7j8H91ZP5IJuldCCbYADI5vBd0PYJU8flWyXiSRjSzslhI7QAatxTWd1Bzee8YIEcEXp6mBDAdBJTbfewCjiq8JkTKcggYg00MNkKxqZRKh5hzMieu2A3Ajldibxp1sLYPbKWQOIQnxjG6PC9GcccAiMXR0fj6mc4gZwQireWqbZMRQXSwSGM1nQBQ9+/f5/TlKb/7gx/y9PPPOf3yS/qm5er8AoWlzDM+fPSQveUSvGU2m3L//l35nrZHK2FQRbHgyFYj0ymKu8AEDFgQmRZwaBjkINyst9Sbmnrb8PDOPR6dPODz/X3Wmy1XVxtQPdPZIUPf8uXFBfsvFkyqjP3rnMLAxz/8IUprFkcnaCOsjqqqmEwmxJvW9YNcbytsw67tArhnub64YHN9zWq1Yhg68kwzN4ricIlRCtdt0Eahcylu0Tl5VZAZzSST8Zwiy8hNRm5MYHI4VHBvGmxPb3scFoy4lmV5gVIG68RpKzeKqsjY39+jcfKzLCuYTOa4QSj6Qz8wdJZyYsiUZi8rUYuKbP+Q9WbNervmzsEhs+mE66Wm1g7bXGP7Ab9tpOAsMlxVYClouwa8Y1YUFIsZh+8+4dHeEe8/fosHxydUec7UFyKGLvJIbNsOhYylOW9x3rIJhf97P/91Hjx5zJ9efskHz5/xz5/+GJdnZLM5ve3pB0teleRZkUS7VzcrKTiVMN+iE6uzlgYp/rumwwyObBKQZxdd0kjX2AV3s6HtMHlGUVUoBU5DH87XaV6wnMx48+QBDw9P6LTsoVKXZF6BBasUg4frkLxmZYHJM6yHrm3SuJDWii44DOrcUGSavTImZ0E01TusNXivZQTKOrKwl1frLfW2ZrutmS8WVJOK6WIheoPO7uRJEu+atg3jUQJ+D2E8VXcqFKIyzjlYSxnG6KwTEdHMCABnbU9ZlJSTnM4JA9JrIBOnW+scp+fnZFlGNanIg7PZZrWi7zoODvYxxrBZidvl3nwhWzwA2E3TodRa7p9n55Ah3SM3jNpCJTKW2jQdWg+AFk0gazFGgDb5Y1BZsFaOZ1Ze0Hd9cqkTo5XIZrqibRsZI2oattuaIs/SqK82mknIdabzmYwmqsDMcI4hxAarBEQf2prttuHFyzOapqUwirvHRxwfHopzldL0fctsNqXb3NBrKeC2yOi1FOHjqN1m2+D8luH8Qsb3ygqT5VRZyenmmmHoUWdneC8ju1EvaDqdUU0qDrN9Sl0E0EqB8zhEH2+wAz4UXfG8NCZLIKQAf8L8imLiRVgvVTUB76m36wCmbVMcjYyYvhENJr9YsN5uOT+/oK5r8jxnf7GgzAvaH39A09Ssri44OjzgL/3FX+KN11/jOz/3Df7gD/+Y3/39P+DZly+4vLrixz/6MXXdMJ3OIIO8LOWsCIxwvIwOeU8ax7FuuHWuxxwFSIBHb4c0Wr1cLjk+PubF8xfUARzzQDmZorROgGB0d9JaU+YFeZZhc2F7ZHlO1/d88tmnKf+QJoOcqUopfvu3f8Dl1Q3f+6W/wGQ249u/8B1msymT6ZQvvviC1fWGk+NjvPP8+EcfyLiQyVnd3HB1eUFZBle3XBwwbSz8exlN69uOfugZhp6u77DOsV6vsdbyxRdfJOAp5mVtADzzXBqrTSNuW857jNZkJqdtGrqmpQwC5DdrcYRe7u3x+LXX+f4vf5/Ts5d8+NFHrLcbdG6Q2+DRQXUMaZHSxhHFwJZTKsoOeNG4Dd8HJP/e398Xi/dygclysjB6BhEQVlxeXnF1ecXDhw+5c+cOf+tv/i1+8sEH/ON//N+yXW/RWlNVE+bTfd559x3u3LnLbLnk8OiI73zv+8wXC56/PE85XGvXmHWDGwIop3UC7rRSmHVLphXz/SNmbtQNBM/e4ZGwepSwa6NWpPcyigue97/2Ne7euUPf9/zoRz/mn/yT/2Gn8RTkKjKpzuOYVfyjkKIZ5xNI46w4mT579gWHR0eUkxnXN2vOz8+pmzbkmtKgybJcgBM7BMBqZAHawafc8dbIk9/NiwnArg4gogDvEYCP1wutxEwDLyB1/Nzei/Zl/EJyOFA325AHRmB91IkV3U+TmrdlVeK9C4zchnW95q5WYgwVYthsvsB7z/nlJU3X0lvLbDZhMZuKJIzRqRHqQnHftm1qxngpMAJr0DN0Eue7UCtVkwKlxJFxuTdHqXs8fHhfYn0m7LM7d06o6y1XlxdcX1+y2WxlXHY2lQbzIGOms+mU7M5dmlacgPOsEOOGahaMQ7p01uezkv39Q6IzaV7KKPDlpWizyb+L73PXdTRNS2ZytJb3KYsp77zzVa6vrvn93/sTMeqYlLzxxhPu37/P3nJBnmVsIzsyLoAdyEUF8wjCRIWDVN+5MFEkI3UjczSBeuH+jkSKcGCHHGEXYEoglffBVfe2WdWt0eodckAsn3TIiyLQqXa+yq3mPux8nl30J/zsFuq7879/FkTIR3BstyB9BaAKjT9icySC8fif6S3i42cGnvq2xxNcnQJzpev64B6Vo41KTjZYJ/P7AxSZjIrIW3mx7wTeeOsttIIqzznsB157MnB+fsbl5WUAb0rmiwUKePDgIXfu3hGGVNBcmUym7O3vc+fOHTbbLWVZMplOuHNywsvnX1IWJXkoTqtqIjPNQ0/dNFxdXrFeryWZhtS1V0oxn8842N/j+PiQrmtYzMUhrq4b8mmLLiTRM5lhFRwlVv2G2WTKnaOTpE/Tti3OOumoOcfZi5ecX5zx4uWXFHnGydERmckwOuPgYI9poOUKdTo6fECeFcymcg3efPNN3njzLe7euys2uG6gsxLsomCeAD4CIMWDwIYl4Yh21xYnZ4106AgUwSAsLJa3UZNHXHPEWjJ0YRgC2m3TglZpEUbkPzBA8GnDOjfcSsJ2uwIePXb+d5Hk8LeL5EalRityL2N+emeHKRW/qRo3Ydgku+8WEwZZy4L0p3cL9YXXu59AjQHDMwI34UBKdGPvk7RAtJkVgV8FKow3Ko/xO90ZHd/3VfqmvwU2j9oDt9F60jUfcfEYOxLh10fnAQ9qZ8TPA9Yn4CneKwEZY6fIgSXpQCmiQ58U77uB3vswgrkDPI1BS5hNSW9kR2w0/vE712JXf0v0QYagYTFqCUQWVaQCTydTyrKg61rp6tQ1dbmVIskN9LlhdbPCKI3RnjwPOl4B9BPmjsb2Nl23W122nXWUvpbWyVHTO0/fD9K190o+T15ytV7jlObyusah0FkOQ083WJq2k4JdD2jtuT47lWtrfTgQYTKdMptOQ+Ioxa0LOnvOOtouiAw3LaurK7arlSRSWlEtphQ6Y1rkEHQMtDYCMBpJvEyuk4hwkctYi4lgSDh/0l4M99Yrj2ga6MD4kXVhvdjQZgaqIsPZLNzPIHYc2A026LeUlBgt42jGGIoqF408A4uDfRbzGXXV0jGgsgmq7dGDOCERpDxc6EJrFDbPwWjyxYzJcsH+cp+qrAJmIP8PL0flYAe0B+VlPt9isUoO9eOljIJ/9Z13cIXhNz79ET3CFIv22ooAQuPDZ+hBITo7MfENMV0bE9Zx6GiXIz06nEAj7hy10KL5Q9rZ4frjKLOKaVGxN5kxLScMYY9HvaQwSSz3LHQo8zyAEj4yb12yISeMayltRCRdZ4kpM+5vh3MkMWqtg96O87Rdz3q9IS8E3JpOJ8Ju8mF/RCYpBCFZxzAEFmnoPg82ir5qlHYkT4bdCxCvw864V/qjFTqwY/0A/SB5S+4yubpeUzc1bdOw3FskFhFAVVUphskob9S5sqHhoZJ+UmRaqVCwaR/GKkPxFuOiDwJacm6OzqS3c7udBC7eF+cSqN404tZ2c3MTRtnGpF1pGamUUYWCPItmCPF8FDaYHQacGSSHs9C1NU3Q+yrynKoKmkzzGcZkONuTZUaEl/UoekqIc1k2Jt02MM26rkVBEiFHI+ymVr5HHHPp+56m61AmIysLkRRILdRwxskpJnHQC7NWOR+Y6DoxxVRI9u0gRi8QGgAeTCaNsTa4LXZ9LyCuG0dEbGg4WWeD7lDH0PdEp6Q8E5dPjYzCeu84Ojjk4f37fOWdt+m6jrppKMqK6cspn336GX3XJ0ZiPC9Ha5FY3BMaYz41r1SqPITdprUiD4x86106+4qioKyqNEobmRtx7M5ZlwBNYVvqcY8j+yUvixQTEgtZKXKl0/hndLt7+vnnHB0fc3LvHm0jOnAX55ei3zKdgYfLi0u881RlyermhpvrFdPJQFEW2CJPTUvnnABOfS+W8Vb06mRkdAhTCaLt4pwLzTZZD13bylhcLq5idV3jAtvfhBHTvpP7Z6sJRhlW6xUAh4f7LBYzDg8Pubg84/r6mr7vwnWRyy75p7Cw48hPyl92Cy927lWIBVopiqKkKGQsKIGj7P6qSHf0XRibmhQ8efIkjemZLGM2mbHc22d//4C3336XR48fM9/bY7m3x8HhMSbLWK3XwcUvY/ADarACxHiCfINnsLJZ9WBRZSmiyn48pwDykG8adBgNDec6LvVe9/b3AM+DBw94/uJFGB1lJwbG5MCjXMz/ZS/LOSQHdFmWZFqjA4O0KMvEDHPOCbtwEGFxkwIj6fr5VPSPOe6Yh+2WvP7P/FuKFTvPj4xYHeosBWHqZQQ6fXjz+Pf4uzbl2zF8x/+O8T2+vzFxqkJiX9u1eBxZnqVPG6/BMHTUTcvV9Q3eObleOjgHax3GxQVY7K00Woa+xxaF1BlO4PrIPLPWhrxKrqizljzPmEwqprMpk81WmiLaUJalGC14n7SgvPcYbQQk8oqiKrEh5+rC+VgWijzLKYro1mzD+SDNicgcihMZHlKjpqomZFlG2wroVNcNVQlZBkrJNV4u9xh60fLbbGpublYsF0uqasKkKoKguNxdqRfcrdHPWw8V71/c1iNTLeItscZMa0hSXKlT0uuondU3xtn4hFivvGq1FM/QW+QAP/6eTB8F3lMsqXY+b/wOY727ux9GcEz521/e73x3+Z+vTsXs7LaIfMXPFp8ylnCw8/vxE+zW1j/L42cGnl48+yJsVklClfIyKmFF9b4oS6pAw+ytF2HLvKBpLEOzJisKssyQFR60wiqZne37ATOf8dqbTzg4PuJ7v/x9cI6r83Nyk3F4cMAvfOdb7B8cMNgO8GRZxunVJR89/ZwvTs+4WW158ugxb775Jn/z3/1r7O9N+enHP+Yr777Ha6+9zjtf+QrWef7v//l/jh0G5osFF1dCP51Pp0yXC4o8Y5rn/O3/9d9h6HvuP7jPsy+ekU1knvcP/vCHrLcb6qbh9PQUbx3f+tZ3WC6WLPf2pSM9DV3LthU9Dq0xRYGqDVeXF2xXK+ZZCU3H1YsX/Kvf/i1++vFP+T/9H//PfOUr7/Ef/of/Oz757BP+6//6/0V9s+LF0+d865s/z89/85v8vX/wD/jqN97n/Oqal1crXDPgtMIVo9CZdH/AexFtvEWnU1EEL1AkvR0PV2SeNc+hLCucs9S9WGHKoahSIiTuCHIfJCFwKEKi7T1dFxk2YUEHcEQpUrEmXYHbwm7OS4cp0jzjwnZOhPJMHhhpsQuWiuLdkbcgCdGD9zYweMbEQoCS3SLKj04ljIdTcu0Z5BdduJbJxSscWp4Yo6STLWwxk1xJ4nUX7SaNQFvymkZrjBtthLMgpK3D50hMJbUb4tz4tyKM5flgsQxYFe5rdJgL4FvIInZHFB1SNMqYQwgDXgUwwacCCO+EShyoyn1vw/ePF2snwQ3dSeeEhm4yk2jFRokYo5eqk7ZuGCnPSpLJUIC5IFhusgDyevk8XVgX27pFIWu8yDOxt5UFyHRSsZzPuXNywnIxB+eYTSpODg95ef6STdvilcbkBbNJRZ4XbDYrptOK5XIhrkCDxZgsJGEDqB3djUgbVzuChEqFQkZsc9u2x2QV+/slymsGB3lWkmcd26FnO4iIb5bnHOwfoHVJXXvmhzkHs4yZP8FZh8rAWhlV6JobmjMp1K11bDYhUQtGD03XIGYJwlg8WJZMJxW5MYgwtiI3iDhxlSc9Iq/iehT69l4A2ovckGWysbQWIEpAgUE69taR5RJPhr4lVzPmpQYNrfdo3VGajkVlUYOn04qsyEHPaZsr+s6zvvySdl2wuP9NymrC1IPyDnDMqgm6KDk5PmE5n3HdfkqPZf/wddCKzHiazZbN9Q3WK2xncbZB656ul3s1DApUxXJ6BBSs6o6buqEeOiojO9500vXURYbKc0w2wSjZy103oL3m3/ur/w4fffIxpx98zIdnX/DDTz9heveE+Z1D2npgqLc0vscrMFos1SdVjtXQDh25LjA6Q5c52nj8qoYsIyunYDTWKEQUMZN47Dy2k65ZmU/QmQ7ghRe9ETugveWt5RFvH97nYH5AVUxZb1vyXFOVOUMIwBpPqeFwsWCwlrqpcU7GvI0xzOeLRJm3wdo8xYtwjbQ2YMTuO+qbrNdrvPcsFguqsqBYzHFuoN7eCE3e9dTbFUOWsb9YBq0Mkg26jK9l4pDqPFmRY53jZn1DXhj2lrN0fsVzQweL9BiPovtsP0CR5RSZodBGtAhNYH54Adtm02nS4xicuM1um5ay9JSVsEFm01mK59dB8ygaGezv7wt7oyyRpoIjNdOy2657UdPHKI21wo6w4cxIjLZw7mRaYwdLs92K6clgZcx4GHj67HM26y2Xl1dkWcZisWA2WzCbL3F2AOdZLuaUhThSAbS9sAZM1DQMwKFzFos0neqmBaW4/+BeONs1mc6lAMmyNJLgvHwWnBRAwp6JDBGXziOjJX5UxVSKLttRbxqcc9xcntK0HW4gaPkMaJNRFCWTyZT5bAGIU64024LttIJcecgzyExy6JxX01BsBCcxP2DCOq8qGd9pmpaha7nYrAFFWVXkVcHepBKdRW3IjMIoxXI6l0Q/jKnhHH1Ts7445fyLz2m7lr63VFoc0Zx1bFYrhmFgfnDA13/umzx+4zVOTy84P79k6Gs+/PAjPvjJTwSAiqCyF+2uLDM0TrR1vJMxmaj9Idpx0gw4OjoW1pRWWOu4CGtgvtwjL6cMFnReUE1nTBdzdJYlYKbZ1DJSqIRRYYHWDvTesdpuUQruvvaA2XTK0f4BN9c3XJyeC/ihNQ8fPqQoS7748hmrq0v+L//Jf8J8Pufk5ISm72m7nmEQsOS73/0ue3t7ZLkRTZWyRCnNYl5R11tWq0uur2+w1rK/PMB72G43tG3LertOhfp2u6HrRZswumvJ2RrqjL5PTo42juyHUU0Xm4FO0Q190MKZopXm5ekLptMJX3nvDZbLCev1BVdXp5yffyluj0YJjZRxhAqE4eF2jFSi9p4OzJsigEtFUabi2jlP23qgQ2tLZoXBH8fy5EySEdXPnz6jLEvefudtyknFg4cPefDgAX/jr/+73L1/n3v3H/Dwtccs9/dZbRv6wdH0A25oGZQw+vFWAG+lcXoc8YzjfpLvetoBmnWHTtqChLMhgOk6gvYhd/MWP0iTcL4/oe87fuN//md8+OHHbLe13OtCo32JRjN4MT2xg5gteZToGE1K2vWKoWv5t371V3jjjTd4/+d+gaIsabsWOwzYrqerf4OffvCB6NpaK+eND0BvlAAxGu9FJNszNhtu6VWEkBfvR2SgE+KJjwC6GyUqvPdoJ+yqcZQKehdMO/IMH9xSox6pDswrpwQQdl2XXs+FeieSGpwOEJnzNPWWsxfPad56ginkXFMO8om4vA5Wzpb1ukF5g8akEeK+s4FRJWNYdrD0DGjVMq0mFMqgrdC441HUdw1Oa5Qv8CZMeDiAjKKcUpQTthfXdGaQ+NyLM3L8nhdnp2xurjFZxnw24+0nT9hua55ePaPAcDBfsFguKcoSZTTbuublixdorZlVM/qh5/mLF8xmYlTjvBV9SGOYz+c8efIEUPzu7/8xhEbAciHyNxcXF2itefcr73B0/BY/961v8vHHH/MHv/97/Omf/DG/8Rv/km98831OTk547dHrohWd54mFrIzBYHC9x/cWVQbn2ZCv92EJxNgMBK2qcQpDB4DJDS49T2dC6hh03GyCz8QaUWo4RJIoPIYhMuN2nBLDQ4XpksQWDCxYvwPnxGZpGttObxxeI4Jmuy+9g0ftwlNxzcfvvgvwglA2pGf2yr/vsAs9PlA7JC6mJmzak//mx88MPLWt0G8FNJCLYUInN9r1yh+Dj7boEKjiDheSLR8SWkfUdpFgbnLDfDGnLEua7Za+63j06CF4oU5771mv1kkAse16QV2tJCB5XlCWJdPZTKxcs4LJZMoioKPOex49fgxIF2k2m3H//n0ePX7Ma0+eUJQVbdcznc/Be6rplP3DQ9599yvUTUPdtHgvLif37t4lyzLu3rvDfD5nsVjiUeKapWRsTDlSoo5S4jxhNPV6xXwxZ29/HxD1/65p8Nbx8MFD0QZRooMxm854+PAR77//dY6OjynKCuuv6IfgsOAVoT0fFtTtP5E1FQN1TELH0UKP9xG0Gjtf0ZFit7saF6yw3oTwqRI66gMye3vWWX4p/J+Iqv4563J3dnbnl8aHH7s0cTumTRNbDun3Y+fmFRaQnNRJ6E02Y/i8ILs3dTeI6SIxBMg4mB4bYIzPBSEmaO1HllAMPD4yZka3AxWDhlfCtkBhnTDORPJIhbjix/f5cx+vIPOv3v90/cbvEe9h+my3bwSo8POdDk/6DjsoeWJbjW0k2E0IQlcsgngqiOxiRc1qd03taiekkVdI2iQq/CyKkfvQsXbWYRWJLRETO5MZHjx4wL279zg8PCLPcpq2CZ1w0VpYrde0bc1yPmX/YHoraMY5ce811rvx643fnlsL2Y9rRJvYMXYitO1c0ImQxCWCrHgBDHVu6K1jXbcMbgqhGHU7d1+reC0czg64wQVgU/ahUV7MG7XHaMiNjCPlRpNlAYBU4uoSv1tydAz7R8Z2gpaQ0WHckp3DTt3e4/jUFRXgW37PK0m+lA+gR6ZpvaaF5LQVRURdVzMg1HCbFZAFnSIrejJ5GIlTg+ewmlBoy9o7Bm3wswqtPLl3qFCcYuWztV1wLMGzrms+PX/Bg+MTHq9vZMwYaWIFoquwtYwJZ1TcSzIeZoxmVk052T/g7bsPWTUb+LSV0VYdDmEf2HuB9aUggKcihah9dAAkNABk/w99jyIDo8PruKTllYwYzKj1pEPMwDroBw7KKSdTYe04QrIcNOtUeGocD4ldz9EiWKX75p0NrBMpXhLgE4Bh70VENo5x7LqRxrChtaIsC+ZzOcOj/hLpe7Gz5yOQb8gzTewUe/xOHqFTV70fIsgre0/urDAdUAJMR8BSRVDfiCtRVRbJncZZcW8UAeAiFJ4ifJtlEVCRD6iNNAOybEfbSpEkAxJLJa4hBZGn49OeUCGrjWYVI0tAhxMmjXyHQlpYHzVN29I2UogLG8IEfQ8Bhgojo0RldK0zeozJRH2U2Nm/7TxqjABleZancGbUDouLoDvkZU8r9M69iyYKHhu+fNTy0ypqNAZr+VC85UajTIYPjQOlDTrLKDJx50vuOyHOiOgvMuIbk+Tw2m0Xxq2NXPyYK0VRZBOT+5CjihOvRcT2dbrmaUOGpEQpTZbnzBcLjNGs1zfUdU3bdqIJVlUslkvKasL55QUX11dsmoam6+gH4ZSbzHD33j2atuXs9JS6bui6Pgjq5yyWC6bTCVdXVzRNzfXNTRiLk3WWF3lySNvfP+Do6IjeDnS9jLXGsR4XrM4B8rJgUk0wmcH2g4w/h+sVmdTeORlFy3OOjg5FYP/4iKqqWC72pEhtZERGK81kOqUIr2sHy8XFS9brtQBGnXwepUT77ZOPP2axWDAJtuWz+Zw8y8iznO12S9M2XJyf0/cD23UdzujQMImuhcNwC3CyzmKH4PbmwzlvLUMIOVEbLAqnx9FU50aH1bbrAMW2rjGZDmN/WXq/YRhkjZONeelOsRY3RgxzzjlhDBmRSshD7IijkEprrBNATMaIQo7tb+tBxZy073tQmqKsyIuS15884fHj13jn3XfZOzxk/+CQ2WJBUZbkg8cz0Pai46qD03Pcq6OMQjyPfYqFSo95X8Si1c6ziHkyMQXeYceHn9th4Orqiu12iwnTLePaGovYxAZXBPORcTzOBiHqO3fvUE2mrFYrural2WzQWtO2IuWS4kx47Zgf4mUdp4w4hDrHzqRCeHOtbzPVx7t5++G9D40VnYp7F94jvkVk/EcDjld/f0wMY75EOntTNbPzP0SzS4w0CKxxE8YxPaOul6yjwJwPewbEtCvdQ+/x1uEG2R8KAoMvIE9ePn8CarWWUengyhZvnA6N71hDm6A/2PcDeCi8DyYCAqh1fR/KLmmaDHqQ8z3gA8aIGYONWq1dHxrcCq1yDo8PmFQTMm2om5bziyv5Xa1xw0CeZZydnqK04uTkiOWwZDadsZhPefTwPjZok95c32CtY1LNmE1n7C2X8r1c3LdqPD/41z0ioPNn66xbIMruD/0r99gLFKOdIjoZp5qWUatsPORGZqBWiuS6vlOvxomcBIrtfIBb1cdujbuz/9Jfr5Qqf/bh/5z/FV+YdE6+ei3SvlTj2SyX4l9fre4+fmbgqa63wcrzICyucX5cKfk7Ku7HJBKgG3rauiEfpMOaF9JtN0UAq0Ly45HOoWgezTk6OuBv/52/y3azpessm80Fm3rLp598zvMvn1Ov64DKywFA0LcYBs8goD1d27Pd1my3G6pJxf/2H/x7OOeZzaa8/uR1/s6dv8ubb77JW2+9Tdf2fPnyEmUEOLqqa8r5kr/2N/4dCZDbmqdPn3J2fs6TN99ksVgIsISntwPrmzUvvnhJVhSUE7HrtdZRdy3KaP7Sr/wKZ+en/PGf/BFvvPGEb37z63z82Se8fHnK1dUVL58/52s/900yFL4fWMzmvPbWA37tr/5V/u7f+/t8cXHGjz76SDSJIAkQ6mDjGZN5AZHCAbIrPq0UGEPXtYlSCZDlhYCF1uGUiOJGq9FmK4yneLiONNuwEWTP3EJaddxUOws5gkRRS+TPjNO9gpSOizhQhz0MgwsgZ0bUoorQUFTydla+V5z21UrGP23UKIobUkmiLZ9qfN9du2lAhHzHT5lAVrHy3KErRvDNRQZZ+Ofw5V1w6YnQU2I26RFJ9sqjvMIGkcQ4MxyD0u61TI5mIagICdHHsJOKzd0ACDsuO+HfXYyg+DQL7b0SPQOkk+2CFoYJVZbJJVFT1gZdJlIRlYXizORmXHMqJD04tFfJaaeaTOSgCYBKFzqBQ9CykC5PN94LrZOA+KBFH2IYeraddEanswk6OMfkWc6//W//28wmUz79+BN++tFHfPLxJ+SliLJ+/vnnvHjxnNXNJU9ef8xbbz1Ga5UsosWNSTpgvZPD26VJDk8UdY6isNZJ4ZGF9a21kkS93jBYjbWwrbfU2y0MFhUEaNEaioKLbc3lesOb96bMJrlopzkrQIzR5GVB5j2F92gtblbGVHivgiB0GPFCEhkXwH6UgB9VIQ5uUeja6Gg2EKniwhbIswyUrIUs3MPBhrEeTFo/6ZB0oAiOZnkOwQzCWwvWo71iOSkZdMZVN6SOeNtMscOM7XZL17Zcn17Rzy3F3RMBYq0UvpUydJcb6k3Hd37hMUPhuPjTP+G6yrk5ekA+32P54A7Gy16tzy/p69BJB5Z5zodffMwffPRHvGwvcaXnG3cfc3e2TKCTzbUUwZOKvu2wgfLvnWe6t0eRi2DswXLJX/vlX0Vlhv/vb/4LbNNTW8egPE5DbhE6ep5j8aybGmUylMlFq8krbC7JWlFVeOtYrVbkk5Iyn+MHB27ABDFJ60RsFwPKO7LtIALHWYbftlDXvHNwh6/efYjHU9uexnVol4MvpCsbKxG8nGtKUTEJZ4WcI9ZZ2r7b0VzQGC0OdtG9zFpLOZlSaNF/icLpIyNJnrO3t8fR0VGw7Q7GDx7aRsCTsizxSmF0AGmUoiplTdZdAx5KU8nrDkDUZnDilNu0NR4Zs+97y8XNmulkwjIvJBm1PbmWvKLIcpSCMs/pnaW1A5umYbW6YTKZMF8sWYYiOctkL3R9EwrXAZSjmuSUlaRIxsio+Do4vEqMFbaBFLH69jVRCjLpTA99T5aLG6APYnlZsAofwtgBTjr8Tdvy4sULblZr6rZFac29h/dE36KqGAZLXW84OTxiOV+G+wyRwZxlIzgYmWxRp8R5UNqw3J8TxyDapqWtW7pBGEplXtwCn6uJMKmUlxGJtu3GzmdLArIViDRzOEOjTfpyNkVrw2Qyp8gLZvOFCCPXdchRLCbPMaHo01oxrSYy3mfG8zjmJWfPX+Ks5fDokKqs2NtbUmQFk3IijDbn0CbDoJmXIpa82qzTue28FGU6gE9DL4DLpKqYLZe8+957fPTxx/z000/T2XNy9w57+/vM95dYZ/nhH/4BPtd86xe/w8XFBaenp2zXW/qu55vf+gXeee+rzOZLLi4u+Pzzz1nM5hwdHvLO229z/8EDfvzjP+XFyxf8xm/8BpvNFm0ylnt7PHz4kNPTU05PT/nq177KV979CpeXl2y3W55++ZzNZsP5+Tmb7VYkKaYVy70FB8sFRhua1QYbcgJlJN9yw4DvLbP9kr3lkq998+tMZzNhaljH0A4UOifXYymQFcJuXB4coDLDi7OXrLYbXp6fYZTBKDlHtTH85r/8zZg9MZvNePDgQRilKhg6AXlOT09p2ha0oShLDg4O2Nvb4969e5yenvLixXP29pZUVSGAvhvomjY1QE2WY/KcutmKK2dghysvo5Jt16fxVKNlZLTtZRR9s9lQFBmLxZxyUtH2nYiwIzHQhJHzBAaFXCMZrCBnddf3eC/ugCLUHjV6QjM2NHTt4GhbMUaIGmjRSEJ+X0ZiY93w/PQMay1/++/+Pe4/eMh3fvF7bLdb1psNL8/Oce4MUcNQFNWEPKxjwl5zAewySf8oiKqHEVkTmkFaqQSeaF2MTbZU3N5u1Boj97kfBuqm5uzsnKbpODg4xPoBizCfB2sxRRgqMgGs2WluZVkGNuODD37CerXm1//m32KxWIiGpvf4YaDvB66urjF5znQ6pe+HxGaLY1vWyXtFYwvXS8y0OgKtI/Npl12yW1vE14uTHxIvRXQ/GiTtstPieNyuax2QRigjY18rnRozqchIjJqxvogTEUWWUWSZ5Jb40AAIEVQjxiB4EfvvusQQNsHAQGtFpgU8ctbSNo2YZkyn6CxPzthGa7xzNNs6rb+9vX1m0wq8jF9nmThk7i3mosVmFHXdsrpZBZDZApquH9jWYrJ1s1ql0damvQ77RCYh5qWA1of7B9R1zc3NDW1d02y34Pao8oJf+vYvkhnDH/7hH3J6ds4nn35OVVVMqyoAoY6L8wu891yfX3JweMDb777No0f3+Zt/43/Fs8+f8+L5Gf/ov//H/OSDD3n58pz9/X3effsdJpMJi9mczI8TFHgvGIXSr7iGh1vlPHg7nmsxbcK/+lQBtZRL/57GNp3DBYOZyAyOPxctYp9eMY4cR3KEGCjIz60PzT7rUnza7ZO8+kh5vPdhlFZkQyIwtvuII/Njk2en1t75M16TkSCwu4dehejiXkvukT/D42cGnu7fvy8zyNMJcbwpdgxjUV6WpaDcaqRj5S5H+dEyV4cusR0GfHBFECR0BBIGJ+jG3Xv36AONsW07blY3PHnyOt/4+td5+PA+h4d77O8v8XZgpjLuPbiHMXHsyVAUFdPZjIODAxbLRer8LRZ7Uuz2PXt7BzgnTWTrxJXKeeiCS1xBsCguSxHDqyoWoasriKcn8xlusMznM3rrUmKeBaehtu94+sUz6qbm6M4JOst4eXYmo2Xa8OOf/ISLyyvOri54+fIl9WbLncev8Yvf+x53H9yncwNN11I3DVkREnOC/oHdEXkOCy40OxPrJoIVQnyJxWYYJwudTsLmET0ImwL/+AgFdwK5fHBnGjVvVGwbKflsOiBTcf2PwM9tFHX3fVLHZefQ8CjwEtSjs47eBVRS58uP76NC7FcqgU6K8Rqld4yvExFcRpeZUWCEcL13ALNdhNeHMWB8cqoB4Tj5qIG0AzzJZja44PAYvkUqZMaCkXG6TqmdTxKplzF5SC2VZOWJH9lnEXRKbLV4XcNntfG+Bp6N6GkJoKUiuBWunQv6FKREh9QtsM6mbv5upPRhLm9wPq0t5cEGRlQc6/Pcvu9pXj7ocAy9jDtEPSUTOn+RSZSuk1Zkecbde3f53i/9Em3b8vTpUybVhLIqqeuaYehDEigFqohYxlFVGQsBdjpdf95ajWfbuBbjIRSfN9iBrotuWz5Fdx8EeJQ2iTnTeUXrPHmgvjsV7rT2YR1IYalVjs/CPQmf12jh8XjvsVrhM+mqaaXJsyw1C4TVEFerS9e4yGUMRAUKQuzeybqQD/1qEieHXIjdYYzSh1WutIAGZebJBxU6+x4/hLiT52Jxax3dtibTWaA6C4Ar3VpF40Q03/YDRnvu5RmZVlzVLdZrhqwMzn+ayUyKW9NmIcEGNmLb/ezylN979hFvHpxQHhwxBLBQh3FOAVoFsHBaWC5OK3rl8bbHG8P9hw955623+d43foHPTMsXlzeYyVQKNedTgg8R2I6xRSju3inQitxkOBxd2+MGixtkNCwmz8LSkASp0IXoQXkXNPoshdJMdMGTgxPeOronWhBAEZo+zg7CRlGhBx0CXxxnjswArQVgEEbFgPEa7Q1lJZpFWZYlZ0ln5XPGYmI3RnsvSXK0Q06Mq9g008I4itC4I7CfnUtuljawfazrQyKfBZFpHcb7xfFOGhgKj6GaFBRljjGKZtvRbGtZpyiqSUsUNfXeMzhHYTL2FnuUeRGaVYbBebq6ZnQTG2NWjGmxsRAZtRJmBMDNlNiFp2ZAig0CJFk7uv/4nXE8G8DNYRiwvTiJ3dysWa1XoiulNPP5AtGyy9J4WZ6JDlueZ2gdjBwCeH+r+xhDsCLQsVQAhCzbi8vAPizItKGsqpBHxLFzOTPjWRR/Lxp5ZNFwIcRbAbJHhpyA8sGVLuSKzg70wHazJupDxiRWnESDDonT4rSkwWs5z4StJoyJPM8gMGoyY2T01Icz0QEuuG0pH8ZKR5c3O1i0kp9LcyUmTuBr6eRXVckbT57wa7/2a3zwwQc8ffqUzXaLUorJdCpFr3c025bf/cHvJjBeKS2F82xGWU346tfe5/z8XNw6TUZVlJSTKXlZstzfp3eWO/fusd1s0RgWiwX7+wf0vRTiZVERtRxRWmQsnKObz2nbllqpMLY6iEGA0qnOcs5iLQyDFmCz72Ws7uiIvb09ysmEzWaL9QPeeHTI4621KUYASeg4ywuKcK9zk1PoLEhwEwBG2RdN23F6ehbqgtiOQgTQhwGnRWh/V79stboR7ZumkfXjhQ1Vb+vkhKtMjzYZbdcKSzRelrDPun4cuTNG/ozs4jE3jMxjObqEOSTizLf3fnooP2pcspOvOk/T1KKvlsUSSokuXDD7AHBeRLGT1hMhrxgGVGZTniRr4oD53pLVdiPsFi1MTGHDy5kQx8F282jnwthuqiSdmLQYn+JB1PnczRnlE4+sy/FFSTmFVz5Ms4S96WVU1it3q6iNLJ7dnCDVE05Am+VyydHRUTJBiGDyer1Oul4miLFrrVPRG/NAaXB6dGxeB5fVVPeoHWUoRYpbrza5d/87fvd0vkWWaLwmry6HXQCLEViEcbwv/e5Ovs7O70lxLqxTq0RTMsbryLwSbSwfhPRzGV9FarYYrzItOqkxLnob/ihhXseCZ5eJEnN/E5oe3lm6tqFtStq2YVtvubm5wTobRmblPjatjGafnZ+L9EoU3w4OmNZaJkH8vKoqsjwLDC3EmT7k9lprrHV8+eWXOOv48MOP2G7rBEKycx/6XqQLblbCUs8+zdls19T1RsglzvLg4SOq6Yy+H2ialtOzUybVhKauuXNywnwxo+3EyTEvi1suhp7boFK8b8oH84+dXDfG1cg+Uq+sp5hiRSF9KVDC2vQjG1EaPyqdT5H1FF3cI2hEzJvY+TvdR1Bq18l9ZGWGD4f3ijiREKjY43dk/Kw7u2DnQvhU68XrFP9DxYvxytZ4tSb6WR4/M/D03le/ihSwImYraGkWRlLkY8UFSSxgnaPIDK4aEfaYKPWt0HXtMAS6exBKVOJ+obXmtSevCQ3QaOqm4eLiknq7pswN3/jG13j86D6fP7vLbFqxeGvC0dEReR4SQZMznc3ZPzjk0eNHHB8f8fobr8nH06Ow2/X1mqurtRQGCfoC2w3kFowRmqApcu4+uI+JwuHOokPnBa3I0NB7Ti8uuFmvODg8Ekve7YZNveUHf/B7TGdTvvuL32G9WvHjn3zA9c0apQ3/07/8lwzDwPHBAUPXs7q65v537vJ3//7fo5xOuVjdcLPZsKlr5kGLIQIhbnC3goss5NsB1gj8jQp8JBENNgGBD9fCSSE69L3MXg9jx0EeURRzBHeERRWS3XBBIy1WB2FumSMnogVpPemdIBDZVLtsIzlwVAju4monAFukGMdgTuquxgBuIg04fBATZd68rE2UT4dxwsrCe8r3DWOi46cN9M3oZLIDPsWdlvCr4G6nCCLbnnDWjFpRWuOR7kJCul2Yt1eBXcao/xTFKxMgs+PR5xlZZnJdww70PgkI7x7Afud7xuttfRBwtb2MYBS5fB0v1zIWFrJ/bUra4teOh1/EyBL9PBx+cW5Yo6SDM1hsYFjkRSFFS0jWkhihUulgt8OAD84ooosirAaV5/SKlNx478UZKbiFvP7GG/zdv3/E2dkpv/vDH7K3t081qVitVmSZ4fHjB8zmM3kP77CDR9p2EpdkrUfwNtqc7oJNEvQjvda5Ae/jKKvsnb7vqNuWoZcRuZixO4L4oDKoLEehaJ1hO8BBpoM7qA6HoZbVaKHMM1QxCq+3dRs+k1wrAfCycJ/lc1ZB3PU2s1DWeZZJkTAJuk+WIcyh7R5OQQtNqxTvnQiXBb0UI2vSedEkUx6vNSozVKUnH4Ltr1NY5DNkZYXKc7y1bK9vUE4+u8aDlQ3ptefGW9Tg2G62zJ3inapkgufDqw3DQuGLijwv0WXJ1BQY50Vg1g1sbY32A+rU8cGLp1zqlr/y9vtMq4p112ARbSGtJCsoTIauMiweq8BqRY+DviPLNG+88w59pll1Lf/N7/wLPv2Df8XkzdfJF1M2XZNGSBWeAnBKY1FSZFuPDV3KvChxamAzrHBG47oeUwQgTsUCRXQBpqbAAV0wdOj6nokyLIsp37r/Bt969BY1ojcxKUqUFwvxAZnCDreSLBMR5/W2FnHnthWR4rKU0TnnAqjkgo6BlClp/HoYGOJY/U7XXZJJK93Zvhfx+MD8iXvA5MHmOSxKKaakKInjgMMgCeIwNHJ+hyDqhxDbFBRlFsbkRH9MmXlo8CjapuHq/Iq6b3HeUU2nZLlhWpYCEGnNYr5kPl8krY9N09B2LZury1ToxA54fPSdsL5iTJPvLGdTkRmKTNzYVNDiiSPhzrrEkgBwOoDywdSj6zp80HTqup66bjg7O+Pl6amMOhUFh8dHmMyw3W4Bh3UD02rKfLqgyHNQnrZrGIJLpNKaoizG4jSAt1EHpR8cbdvz9OlTlNJMZjOOj464e2dfuqWeNPI0PjTODcFSW1ieRRjvg7EYc87RQxLt1gFojAdJ29XifnjjA/M9sPK06JcAKC2d/+2mlqRce4pCCi8ftFqmkylGa6aTiaypQUxHlJID1g3y3gbSKNtsNgvFTCcupSaj68UhzYTYve7X4DyTyZRvf/vbvPfee/xn/9l/xsX5OZcXF9xcX/PeV7/KdDqlqirqTc3/+7/5Rzx48IDHjx9zcHzEZDZjuhDx5IePHnNxcUE5nVJvt2xWa/KqAm04PD6hnE556+qaelvjB890MuHg4ECYBMEZ0NqguWIdk6oiCyBWXddsig3rek3T1WwgjBgK2G7dQHTo7JuWoe3Y39/n8ePHHB0dYbKMetPg0SmHjwzo3g40fYd1lm0Ah/KqIitLJrM506KiygvW2y1dJ05dcY33w8CzZ19I/mgtk8mEoizDiLfGKscQNFKzLGNSVUyn4jK4WW/SaK51lnqzDSyUIaiJjTniEJjtcWR4t9jR4f7uggnek7QbbXCjiwxFE7SxIni4k6KG890G3aFs7Ow7y83qRsDGAMIaY+Q9rCVml5mVa1uqSRqB6t1A7xxOG0zmmUwmTCYzXn/yBtZ5np+eUpYVk8mU6WRGnhdYe7uhFXPgOCrodwCI5GyjDR4vxkLeSVOdOA4bC+qgHbgDrKUxPB8ZWnliSrsAGOpMwH9CjS3C/lKgxkkE7zzWDyHvGbh//wFvvvUme3tL8kLOnHq75fz8nHVwGS0nkySnoEBGwxJQopJTrNYaQoiOAMeufk6Uuoisz1enKcaxNB20DYdb4+OvgjQxZw8XSa5zGNeOsS8+x1obrY1STRBrCx8AFVDkWcGgh3S+xmkO0dvLRIC+61jM50ynU9panMV9mJ7IMwF3ur6T5pUVBpNGhbo01D/hDI7fO55xCo+zPdv1Cq0Uq9WKq+trnj9/jvde3FEDE+eLL75gs92SB7fQvCjoQ7Pk+uaatm25e3zEpKqYL+YAdG2Hx1MEMzCQUWRrLX/4h3/EZr3hBz/4AXlRcHh0zBDMBmKjK+oAX1xdcXVzw/OXLyirktlsyltvvcWDBw/42vvfwDrHv/rN32K73fLJp59RlQWL+YyyKrh7/y5t19I0DdVsGlwrI7IT17xOAFAsYKIsQVo3OkiixIIrgkl+BK92R1MFaBvXW9S2Fe6YSm6mRB2wBPaMIA9KcjoVC7EIsnIb6PmzJA7Sfia8X6w9dwGo8ffZ+WK7P1QpF4U4Vje+V9Ii3q0tf0bQCf4XAE+S/Ag4EYvhiNOkYOh1CIg6IJwKUfrQCRk0gdYau6NA6pjHK+G9FO1tL8WOQ+zp54sFb7/zDsvlHscnxzjneOPJE7q2I9eKsqzoXM+Dxw/49X/3r/Pw0UNO7pzglOJms02JWF7oUDw5lDFMZlPRuHCeIdDipJB01IE2Cz7pKQhzK0u6K3gJ6PPljG1Ts1mv2dxcs1ndMFvMmUwrjk+OEp3Q9z3tZMrB8REnmw1X6xvaZsvFxTmZyXj88BF3795jMp3RDAM3V1cC9CmNHywuXnNgCF1KrUYgBx+od4xJobBKxgUWu6/+lcBMAFZ2D7n4OyNSHoKyChspQaQB9IoFOaTOSMCh0gJOwTh8Ph3+twrvEUEX6aJKKHfBhUa6oGPnJ1kVh/WTQDk3urSlb6jGkbTwyzsFNngvM+ICmkWaoU7OdLujRuEby2sHge8Ifnm1o/yfQLZRsyC6iER6bh4KGx+tPr1DxQQ+7AlxZRr1rlx6VYUKKLvcY9LnTN9f7TK2wiy5Gy1gtVJoMtnhQ3QrDGtMRQE5l5hAJhNwR6moDzK6NcX7Ih1UxxC0PoySg0ypMAsdDmpPEODTomWSPjth0fjx9Xx6nahbEsBHJ7ojSinavufy6ppMG6azGV9576v86l/5K3zyycdcXl2Kq53RVGXG3mIWkirRmzAmx+gsOfuIULoHv6OdodTOGP0IRGol2k5DLwVeXXesbtZsNrUkpc7R9oNo03lHYQyTakrb9HSd5ep6Te5bDo5k5t4Pct+NV3itI+lPwGOTyV4MHeekr+I1ztkAFJngOCe/p1Ni7dMezHMB/U14ngtAcVrj8flIj8jHNewtgxerw0xnYX8qskJGqZre0tmBXEOmZHzJKI3ykkQ6p/A6x5uwrvxA73tQSnSpjBJgthdNmeuLDUwNx4sFjbPM25a27ujcNXXVirNLWWKModUWpzw4TbVYcPzma7htzcufPuU3/vD38XXPd975GrPJhLrtGJQka5KwjrPrWXDgI4yDr33HYn/JL33zW3x0/pwff/E5m3agu7giX4pQeO+GIHztsF7h6EPRYsLobjiktaKcz0CJ1pMxGuMy6Xx5T64zSeq3rYDnuaGzPU3T8Gi64LVqzmI6IcuNFFh4sJZMSTc0bows6jV0nWj2hf2W5wXeQ9N0RL2+qFlCGE0Wan+eBIPFJUccCiPwkOc5Q9/jhkHGVpRoSBht6Hxkmgx4bVKiHk0fYmdbNI6EbRFFzAcrr11keepaZlqjnMZ2ksDf3FwznUwoFjmz6Rx9R1gRsWDVWjMpC1SIT2gY3EDXynUQZ54BhRgJOMF2w/WImh3xDDABDB8LEe9lPBcrBhjRhS2yg5wdCxI5WxxtK+PDQ98z9APbzYbttub6+oambdMoOcBqvQrFpSfLDLPJRK678nRhxHgYxhGgWDh6F8+Z2MUP8TO4rC0WogtWVhMZ0WqawBwaz3sp5ALlHk8W9fV8HKMbtVUiK8Ta6GS6kz9oAaLH0RMtqHUf9VpILBSTlaEQ0KHppIUN5sVdyYSiyWgto6FKMTixEY8uws472VeZmI80fcdHH3zBfD7j0aNHEMBOo4NwsBcmTN/L6JBrOiZVxcOHD3n/fWEt/fAHP+D84oKf/vSnHB+f8P1f/j5d1/Hy5SnT2ZyinAjoNBeRbwdsg/6TCUCIMobr1Urc/JR858XePmU5oW87yqKkKCsOj46YzAR47LourZ9Y3E4mE7yXsbC5mlEGUX7JVVusc+wvliyXSx48eMDFxQWXl5cc373D3uEhzoHrpNk7DAOr9ZptXdMO0RAkkwkFckwmue79Bw/o+o56u5VGp3X4eov1joOjI/Jc9Lo2mw3Pnj0TNmvI9ax3KK/RgT2jTSFAlA46bkrjBsu2b8KYpApNpo4AZQjTc6eJFs2UTcgZrXXphDJIkSjuuRlZVqCVFn3Yug7rWgCrqAsl55owCn0AYpLGiopOwrLWR70myUuiHk8cMzFakwe2iLB8IyAS8l6/o8OiXIhDHevNBpNllJU4vUU2t/eOosjZZfBIc1b2VWro9yqdX/Hc9qEOsM6h9Kid6ZxPmjxKgdcSm+wQDQM8SrqRwkR1LuWg1jpUMI1xQe8uumi6IZapgFLJfdIrxXwxZ7m3lwxjoiFD3/eiCRmuV9/3YdQ9mN8EUE8rQ6byBNRER8fd9nBqlIdiOl4rHWaPdgGiCNZZLw0uHVqLw9DLulMRRAvsFD8ysIZhkD1SliknjMBO1IiM90hpHe6HYTKZcffuPfpu4PPPn8nkTFEwqURjtB9E29IYgzMGZzJhKHtxHs0D6w/vw94hxYa+73FFiTMeb0dnOQ9JdzM2iJRSnJwc03UtP/7xT+j6nq5vaNot6811cGcsePjwHmVVgXa0TcvgepEE0OIGbJ1l/2APrTVd23CzXdNYyeF8yJ+KsqCqKoqiwA4Cam9ONzRtSzmdCPNrh+WUZRlZnod14cDK9EIxqfAo6rbj82dfcHl9jdIi/7DarAGYlRVlVVJNJlxcXvCnP/qT1CSJdUn8/kWZkRy2w/unBkbM8VOBuQv0yOZN9aYPBLMA9N7eo9z6PW3B4DGBWSdMdnkRF58T3s87UNqjncftsKPietv9O679uP53sXOvdn4e6/KIbSmd6lgYJ3IcUb/5z77+q4/d/II/++N/7eN/gcZTHT6hE9ejIk+Jg4//zwdeg1apeyFFeJipdV6YNjtfJHYkYnCOlFmcp0MEACVR0ExnU1578oTHr70mLAfvefTgoXQbBwlgnbWc3LvLX/rVX6EoC7I8Zxh61nWdurUqk9GIwTqUNpSTLIn/+mabFo1znqbrRkQv3Isy2Ln3w0hz1EYzmU2pKlHXv7y6ou1aZosZRZmzt79HWRQy25sXVIFyfbDdoj7+kM72dOsN8+mUt994g+PjY8rJhPXVFdc3N1IMKxPEmeVhvWfwIhw5iotCVBGMYwYugklxvCIg2SqI8CUkM/7uDooZV1QMxPH0Uozd9Pi7EQQY96QffwbJBjLS+VHcovxFwcLdh6wPhVIuaO0MeBXGKQP4lIS846YL3VvBBF0CuHbxtYRU+10EeUSN5fwag49WMvoUDz65Bj7mEzJGE65fXCeJWRTfLLyXdQ7tg92yESp2prJbyLPzVq5RAHQ98bqqJKo5QoIBCNFjIrIbJLSOeysAZ1G3KHTStBFA1gaAeAgdLB/WGN4zuKCjEMAsbaOekYYsw2R6/O9072xwMhJHGoIWSASeUColzdZaGW/HhCJGvr9ifE1rLcSkYae4wZOckLT2uH6gaztm0ymL+SFvvvkm21/6C7x48ZLPP3/KerVGaShLzeruiRyUNugihHFHY3KU0gyDOEC6MGYyImsq/n/RU0IFi1zLMFj6ztLUHdv1ls16gzI51nlx3bFDcLjSlEVJ10rX7WZdk/kW7iwxuQmsonFsCaMQxp4StzrAWhOAJ53WxWAd1pESv7iO0wgpsWMqY3gyyqNS4SpJuUvXn/RbsUMjBZ51Dr2T0Hp80NyDwUpSnWtNpmTUxusMpTJZh17hdSbg0+BwfmDwgySbRgVx8whMe26ut2RDzmsnJ2zdwKztsF3Pthlo6o4hy8gP98nKnDo02XKrKedT9o72OPvxx1w+e8nv//hH2N7yc0/epZznrDdbnAalBCzqrSNTUhRlJscoJW5z3rO1HdPlnG+++1V++4M/5fHhHT66fMlms6Han6FyQ1OLbbwP7oPWeYrKoHODchZl5fqhFcV0wtD39G2DtznaxVFWT6ZE58HWHSrPMEUmeg5tw97eHR4f3mVWTcjyTPaZ92gn9uOZyUQrBZIByHZb0/VdovrneSEGEn1PZnRis0VAE69Sd1RYUUE3jJGtGkW6FYreBBFspcm0AFh2GLDOBZfIEENDwq9irHAW/DgSg5LC3Q6eLNdkeUnbDXinpLGFwvaWvunYXm8wTrOYCHOgnEwCo7JnfXODUqJvFkEhlGKwA00ros/eSs6iMAE4HaH8CNZK8B51LKPwqlIKH0aBYuhXgQ0Y2UHKkwDsWES2XXtrvO7q6or1esPZ2bkk/GWVQOTtZgMa0V/LDZMqjl95uZfBLWe3My9nh0/uWcktBx9cUGE+n4cRPnHkattWnCqd29HtDEmxkpEgow3iXusCM208X7z981jXge1rQpHsoviswXsZnY3SB30/4BxkhQhtayNjdEblWB9chnK1I4AugJ93HgILY7VayT1QCl3l5FmJUsJY+/zTTzg+PubRgwd4PNbbIJIsLBXvpeixXU+3qZlNpxyfnPDWW29xeXnJH/3RH7FZr3k2CKvszr17tE3LZttSTWYUZUU1mTKZzdJ37wIDMMvzIDOhWW823KxumM1mZFnGbDanLCqabU2e5eRFQV4WLPf3yIKN+W6hrJSwzay1NE2DMZrSFaybLUPX0fQdWikOl/vcv3uP97/6NZ5+8Yy8Ktk/Oma+v48LmmImmBaIAHhLvzPBoMM5V2pNWZXcuXuXuq65vLxgu9my3WzxWmHx7B3sM51MmFYTLi8vefHyJcZosiwX5ukwBEmGkc2cVVXID5y4IoXvEwtPGJ2gjDHBpGFXSDzkQYbwbyHHVeCxaO8p8jKI0AuQu9luaJtmp6AcgZSYV4EadTB9TEwj+KTGHARIGi6xAYYP10/GjbTWbLfb8fyMoDDjGQxSwOuhp25qysmE+WxOluWYLAuAgSXPqjTulq6Bd9gdXRrlkXwuvLyOzX7nUchZndpHKjSrwtcWMEVGnWNuEEeGrLOjwQpReoAQU2P+GGq6cOZ4hOUhRhaS601nMwG8w14Q1g0jK0lrYcD2pHMmV1lqaErdJiLk1g4YMxbeu0X32IAe/303Nt1iJjmXxqOE0RqkSwgA7FglpN+LzC+tdid8SK+X8nIXxstUuOtKU1UTjo6OGYaB58+fU772OtPJlKqchNeVGltFZnmWpdHb6iA01ULDIbGJjdkBvcJItx+b3TFnjfeq61q0VhweHtC2DTc31wxDT9+3dF1DXW+CXE3OnXsn7O/vs1pfs1qtuLy8llhsYXAW6y0He/tMJhM+/+xztnWDahrQogVbVRU6zzB5zmQ2Y3VzQ2cHrq4uGYaBcjoRYNmNxlbzPCfLc+rQQPJB/iYLOVjTddQvX+JfeLowEry3t8ekqsiLIpyhBTerG07PXvLgwQP29/dT2t4FN9+yypMAfrx30dQiPpRSqbk8rh+dQN0xakQHPKmX0noLP9cBfNRegCTlnGgM+lROCyfZk0ZmHV7EylWc0LmN6uyu/XhWpzph5zm7v+XDd4l4iwqF7u7vpFDob/8e3N5Dt0EvbtcpP8PjZwaeNnWNCmwRrRXbrWYymVBVFXaQ4KtVL8Wf0aIRoEWIzWQmaQjssnAE2RNkWxInEvLtwr87ryAI9A47bKvByiHhB2E6DJ6g4O8gy5jtzwGFVzKqhw/6LYhLTuy690NIvnNB4svQBYtBxSkfXDd6vA8i134I8/Uebz19N2AyTZEp9veWzKqK51+W3Nzc8Pzzzzg7P+O3/+d/SdM0/HOTMZnNmC+WbNsmuLQI48Xpgf29fX7ll3+Zt979irwngZpupGuubOieKmEcSVI8LoK4gb0PI3VaE20hR3ZT0NQYBlzoPmVh7lpeQ4oBFbZFTGDjBlIusHxiV2V3ofgxWMefBwMg6XxDSG7HsZ242iMtMCA0EmADlVZlGqM9OktbgLhz42hdjC4R3DAhWKVOCOMoWmTsabIEssRAEL5I+mxKSQcty4wg/dYlnYHIeIp22lHnRTRvbkWBsNnlquqg44MnOFNYVACAZN0i4w9RCy/iHSkq+PFah7leAUHsK993ZFulb+ZHKjHec3F2KgKGpQhMV5MJQ2/p257T81NuVjfcuXeX6WzKfCbdGcco/GhCwekDvT1G3MxkGBO68agRV/PgdlhqPoAwnvEw8X7s3sVH1Hyo6xqTZeSZjEUlANwLeyRcEjbbDX3bcf/RQ+4/fMDv/OB3ePr0cx4/fo0s0/RdzWw6SwwM6cKRNGUk8eqFjWG7sCYiy8qnoj4zsneuLi9p247VakO9rRm6nulkRlFUbOuOoa+5uryhaVpx2clyWb8qdPedorfCICoyg+qHMZArAVqHwSXGkUIlFkl0gPHeYfLoFBZGnqzsh8wIo83aEZTKc5NYT0rB0Ml3dwEEUtpgtIwftX0vI6C5Rg0ah8UpDRk45RhCxzrPDJk2FNqzP8nZWs1sLlo1WZWTWxicJjdSWGst7mSDlYJ98IpKa3KtmGQZOOh6z7bVDOTMq4JvLSo+r2s+2GwoUGTKMWsaCuu4Vy5kjZqeZTHh/mIP8/N3MO9/h4vnL/jJj/6UH977AU/uPeCtt9/B4VnV2+D0lVGG7qK2DpxF5cG+Wml6HGvX8e33vsb+ZMr/9b/8f/C7P35OnWuYlkwXc7zOGLRLCXkWKOoExqnyXva8teLg5xRuEGOHIcSiSVGFpNuhigw9LVF9A87z2v4xP/fgdaZlJclYK8novCgE4NUKN4jGkPPS2TJai7bRQjrNxmQMfS/7TUkMz7NMWAQhkRURexNYFhJDoih5H/SLNqs1Witms1k6t5umlv3tZPzmxYuXaKPZ39+n3tZcX18zX8yYzaYsF9L1rcoS5zyrTceXX37J7/3e73H37l0e3LsnI7LVhKHt8d7RhQJyf29f7OnrmrrraIcevEMD89kkNCfG6De0DW0dLaMdSpmk17DLTBqL2+CyZ0Za+a5DldB75T6jFdt6KyyS1QatNFVVkmeZMBacnNNNACRWNze0bcvN9Q14BGwwuQB/gfU6n8yE6TSbohW0dU0ULFQIOBsbCW3bjjHSWrq2TUVgZsQJL8JqeSaH6NC1tAH0z6JpRlTddzG+m1SEx4RTR1QunO9DcJGMIFsESJRStK7DeocPrLAIohBAuUxrylh4+cCi1Rnagx8cWSmMu59+9BEvX77k6bPPaWrR8hoGYYyVZcV8PueNN9/g4cOHtE7YMj/60U9Y3dxwdnaGHQZ++tGHdH1L1zZs60ZYgL1oK87mEjNwnp8++5R/8du/Ke5yd474K7/+V/n5732XLMtZLJfsn5zQdz0uyzg+Pubk5A7TmbDRYtNmWlYJgNhsNqxubvjkk0948fwF220dzmcBp5u6xlnH2flZADc1jx48ZL7cY7m3n4rzzWbDixcv0j6TqsbQ9gNt15OXFdNqwutvvsnhwSHlZMrRyR2yqqKcTBjC2KFSClMWkGkmmxnVfMa+P0xrvG5qrBOheaUU15dXDNai0Yl1VpYlkd2mPMzmU7RRPHnjdWYzcZiaTqcUecGzZ89Y3dzw7OkzBmchuFQ75wiqjRiTC1gVzu/JbIa1btR/8VLgGSXOq86LRh4+5lYEECHUAViccmPOsK1pmjZpokaDml2h6cToGyQ2D32X8g8V3UqdNG+rSRXigU0yDFrJWZlpYSwVWZRmCAWq2SkOvYA4Qy+xbDIpmc3n7Ae366jJBtIgVmbMtbNM47xCOxUa8JYsCHw7G5rMg4BShTJ4wtidjRMaUQMmNNP0yCSKCZp2MkVRlVUa6xqG0U3QDcJixxipI7xPoI23kCHi0zEvmc9mLJYLtnVNluVMqgld2/Hhhx9ycXExFvKxlvFeHOucYxi0zM0oI7mYcwmYTDl2jG/RmRVh5WsTY1pcKgEkUMIij/XoLoAfa6e4H3bzT4C8KFCMMVftPC81RFOVEuoP5yjLkqOjY5zRbOuWL758zuXlNcdHx1RlyWK5TPWaUgaTFXRtIzpufU/mPWVVBcBUcqYs6i3ZQSQdrA2uwYZcFUhTWgvgZ3VgBA/cv3+fsiwpCmHQ9rannJQ8fPQwfP4AFhvNkzee0LYd19crttsN5xcXeLrgTikNxtj4zatC6vk8ox8GXr58GZzsNeWkYjqdcrB/gLVWGJS9xbZdqtOyMEoZR9fbThhK69UKYduLGLvJMqqyBKWo6y1tW7OtV+zvLSnLjMvLCy4vLzBGM9iBh48eUqhxNLJtxR01jhPiPaYQ4Die8clsIK4RFCasn+hMHV23dSIH+J2aSwAka4cAKgWyb0eqWbRJHa4A7LqxFo16TTq+5234abfuT0wnH7dP/Gyxph5ZXHFJJ3ft+DtJDicYETgXcp/bbMtY9xFXfxC/8jvkp3/T42cGnvpBLBRHUoqXBW6MADA7IwpYFaj6CuN3LmhAtmMAJyDyKI9hF72T4s4hXc7I5nJOOpFeK5n5RoXZZYWVGhrrPDo3ZIVJVFoVAowf5NCJ8dV5Qdf7ocdkcuNMSLzinGccfXDDEG7sKGLtnbzGYEVsz1hLXmRMioLteo63lpenL9iuVqyvr7m5uaHebDk4OuLeQ+itjKN4J1RPZQzT6YQnrz/h+PiIfhjCdxZWjFYmbBIVcZ2goTSin7t/x0eilu4gRHEOGqUSvY94n/w4K65UpI3KQ+0+1/uwHvz4UzX+nT6FH8EOHzaDd9F2Ut4qIvPjLiB1I+QVw0yuDpvWpY8xbsAd0ColyJEVQ0SnITJAIlIdE+j0d/qKO58lAGXOuXGD7kK8SqW/lBoPNPn1EQQSIcjbNM6IGMfXiqg0QXg7xob4LXbxp3TFwnzwbofnz64L0s+FYC7foa5r+q6lqWUcRkMYFWu4PD/n8uqSw6PDAJBKpyCNzxmTOtEygz4CfTpTKbkbP0BcCzvAU/g+r9I5I0syfodYEHddRx4CfEzK4/2IY4haK7re0tUt9+7d4/jwkMPDIxYLEbk0RnN9dUaWFzF33QnkXgBFH3XNRgr+LrAre9OQGRkbbpuGtu3o2jZpBhRFQYGiaYNwa9PSdZ0YMWg1jq2akByGhM8ojRsnpkLnEPk3G/9xZFQ4FT9jiArKp3VoJZImVqT3LhU4ycksFNdabkQS+lZ6LDZjIRsCj8SJ4IIXfo3IrIrfoTSGMhPQVmdG9HBMhlbxjwElI3vCshLWbFwHmZImRm8dnQXrFYXJeTA3NBpeuJ7SKQqvmGtDqTSHmRR8LYY9U3KHgoPDJcvFnN+5uOLs6oazs1MWRcm76l0BeMLZhA6MHWPCeeHQTqf14YEey73jY/bKiteWR3xmSk57h+0sWRAQV6GRgtoZOSCAspHdY62M00YNgJDA+QigxyQ0N5g8umnCzOTs55WMXkNiB8busFNybkkRNaRYJ44reQCeTGKPeC/wrUli0nJvk/7ijuZR3IdDLze87zpxeqpGjTEXhMIJTOftViyzy6JgtVpxcXGOcwPeWaoix+gIVEikbOqaL774AoW40pVFSZEXCdiutzV5nonLJdI177qWtuvINOIEmU9DZzuwj5Br0fe9iPV6jzE7B+IrjxRDA7M2ni1x9GwnoKY8pu1auq6naRuMNkEAXGGdJlaf/SBFRF3XtF1H13dkJmNSTcNoiZHiENE3yvOcqihxztI2dXDlUbc0pyIgFuPjEERfI9vAaYdykfUbu7MSg+M1IReWURxj8jY2qfLAkI0xw4T4qlOxEIvx3UQ46d4EfT6ffjaejMJu1EE02RAnvLU2MTmT2Kg16/Wa09OXfPLxx6zXK5QijFvesFwuOblzwsmdYxmVqWGwluurKzbrjehttS2Xlxc0TU1db1mtVjRNi7UeozMOj4f03dbrNZeXl5ycnLC3t8cbb7/Fw76X8cSyZDKbkZcDB3iW+/vMl8vEGoxgQRm0f7rFIomxi16PTc0VAW+kmz04S1c3MmqSCfs5y3Nxs8qiCLYXFo3ecVBUKlzHjMkkYzqdsljuUU2noBTlZMIyPN8GpySlJUZpY8iKnCzoSqWzTUlMqQr5fHVdy14sy6SHM51OyDPDbDpjUlUyAeEde8slyz05YyMboutalIJnT5+GxtS4b+J5HdlWQ1h3k+mMruuomybtr908T6GCqHWUgCCZ5+BJLPgoG9EGV0QfK+qUq97a9an2sNYFC/mQF4TGnuQ2Y04NLtz3aJCkgl6aEqDERw2fkHeyA1SEGGudDXE2CwC8TF9IEzH8goqyCWEPB/DMI8BzNHVSyqXfl/xMpb0nuTzj97byj8oYxtwrgF0ODHoUF98pKdJzQyoQGVguhkIEaMl8LK+hKEW3bAjnQpHnOGe5uLiQaZo/cydIQIOIfClwsSD2uF2B5VRrjHBPzNkjYB5j3+6YUizWd5fB7r9DzCd3clAg17ddvPRO3LuVw76yvowxVNWExg7isrqp6buBsiix1jJfLgGVAAlljOj3ORv2hUsxw4bYyI5DmrWhRtVartVOji/3WUAYZy3Hx8eB+Sh5X9eLaPje3r6wAyOopjXLvT2GQUwG8puczXaLdyTCiY0OqoxGBUZrusBGbduQ8+YFeVEwqSoBNZSmbzvaUP9IbqnT+aZ1WFdujJlyvXVoEgbn6b5lGBxd31IUueiqNjWr9ZrNdsO0ngajjyHVPiLb4XA2GlaNJjkuyO2kOoadhguy1z1jLSMpnXtlIYU17MeaRDGOf0IIQ5HZH+pNt7PPCHs/rkbP7dp+l2Cw+0jvoUAICSPLU9b4zudOwNNYIxMxGOeTvEd8xLPe+9v//oqAzb/x8TMDT23bpuQxbvBtXdM0jVC2w2LzQN/00vkuMnzTJZRMaRXml+OiIc2fNt1AUEmQQyjTtP0ggdWbMNYlIxoARW4odEYfFr+XeSEysT9IrhsQXFgiI8MhtHIv7l0ipOnoupZeKYqiDGJgY1ApjaGcTAKDYNedR4SZW++g62naNVkmdqvH9064/+g+D+7fY71a8eTBA65WN3zx8gXL/T2O75zw3/7j/w+/8zs/YHNxxVA33Ds85rUHD/n617+OznMuLi6wwR0quscNESvVIuYbnYYS+yTM7u8WyLudgfhvmTHoTCwnRyTUhcA0auzEOXofEDvZZDFxEFaUYHVB8DomxAlYCeAdXpBx67B2FxWOoAykGXs8RilUEL8UICbO3EeoJZXBDENgz/kxyMbEV8X3SJ9d/lNZlQrNVzfvq8AdkAJPcvQJCKz144ZLe9txK1GKqLbWGuXGkY4IBIF0iyRAhCJXq9FRzkdWzwioKaUgkzeMdr0uAApAGlu0AbxJ44joEAhF3tp7GX25vrzin/+Lf44dLNOqou06tk0jrMbZlG/+/M9xfHTMpt4Iy1CL04gL7o8KsQ6XjlToljPS69O9VrKn8lK6nl3bJcAtrsO4duNnl86DdO5jwGy7jrZtk910OanI85z9/X0BxMOoQr3eMJ1OKPKMX/3Vv8yT11/nf/wf/0cuLy8Z+g7vXDispIsWrVD7rgtJiRWBdVXJZ0Kcd6yz9P0AyHiAzKi39H2HtR15riiKKdqUOAxPv3jB9dUVXdMIwFBkIsy6hrycMF1O8a6nd56uVVijKIucUCImMeY8y8hNBl40ZpxQWpJTjLV9iFPhwPLs6L95YmTUWoXCeKSyRxDNORcACzngY2HbBaHGaG1utBHAPTOURcmsmooTj9kZ83MDfvC0tcXXmlobbC+20ygDOqfvWrS2qEaR5QH89FrGrTJZy9e1o+sc1+3APNe8YzMeLY749p1HzPOKSVYym4g2SjURMeHV6oaXXzzng9/6Iffef5+33jvize//Cl5B2w7UauDz02fMpzMO9w4YnBfhV+doBznDQITmtdbsFQUud/TGUBUl+/v7/B/+4f+e/+Dl3+Ef/+Fv89nFKf/qsw+xRcbyziFt31N3HYOz9M6GIsFhuw6FosgKEcOd5nSDpR8GCiMj1W7o0blneriPyYyMspqMTGWc/eSn/PGnF3z33fc4WC6ZlxUoTZmXWCzboZXIaAxd0+CsC53EoOHkvcRMREfJO5Xig4Jw76XQTJbgIZkZRwosuwl51C3qmpb5YkFZlmm0bzqdhjWnmU4rtJLnb9ZrFFBVJQ8fVuR5wcFyzltPXsP8lV8NwJsmMwo7iDaO85Ztu8YMBpXLGi6KnEmZyZ/pFG00TdfQ9SLQihdc3luPCuNZzoczVIkYMwFINkZjMgEJsiiSjqept6kbaQJDWAKv5uLyirqpWW/XoBSHh4eURcFsOg3itZI490PP9c0NXdvS9j14z3K5FHA+GEaApyyLwDSr0FrRNC0QdN20Fm2LEH+iHlQ/iIivaFjEEVoZWxjCaG/sjnchtmXakJUi8mzD2dx1Is5e5EUYNzWBzTgC83EcLwqvo5BxiCJPwKPzMm6aKQFSVFaFlEGucVbmY7MpFPs6dCC0D+zYXDMMPatVz507JyyXc77ylbdlLCLTqYAoy4rZfCb7xBiwwsz+3nd/UbrmTcv1zQ3Pnn2ONrLmT05O5BpXc7Q2NE1H0zScXZwzm8148OAB0+mUsix5/ckbmCyjCEydOuS0R0dHieEXNQAnkypJOjRNw/n5eTrvZ7MZR0dHvHz5kr4feOftdynLkt52iWE4m86EPdj1DMPAF8+/ZLPZ8Plnn8noclUltq+TRIH37j2QBkeeMTjL1c01zdBzs90wnUzFor7rWbs1X7x4Ttd3NJsNxogG4mQ+Y3//IOloRbHoLOivbDYbpsEV77NPP+XZ06f8/De+yd7eHl997z2Goee/++//O+phKzIUztNtazbKMHQdk8mE/f19qrJiMBl7e8uUF7RtS9uOchaHR4fMZjPefucdzs/P+Z0f/ICubgLbb8yntNJhtH0nZ0t5qR8bBd7R9wOnp6dcXV1Lge6FpWEGaXQMocFAbGaGppbJ8pT7RlZP1Dq7vl4FMDFPOngxNl5eXeM9SbdTcj/IdBYa5Q7b97heNFqt7RlsxzDIuRqZh8bkYb/pxJCPn19pYX+ZfNQhBbBG9l5spO/gvWS5wbsol+HxNk9jkLHATwXq4JMMhVaKveWC9XrLuV6lSYq2rhmGgayIY8jCBOmD0HkX9ImUFofOZQBWjNYcHR+R5wVnL09pg9GFjN32Eg9DwQ+jVqhyEqOkMSa6UxE4cTsC6TbEoFin6EB2iGBhvzPGGcilgeUy1iUuJOjx/nvvE4NqF7yKuevIQpTXtYGdItqCcYJGMfQWnWmKLGp5ZaxWG5qmAyXM87IomM+XLJcLjNYMfU+z3dJ3vegtBuA4ja3HukjrYK6jQ0O5CeNkEvezLKOrG/roLI00Rut6y4cffsCDh6/x7lfe55NPPuHqcoUiIzNlOi8m1YyymHJ0eIerqysuLi65urrm6nrFdltjh4FJORHNPCdMpb35ArqB1cUlzfWaPM95/fXXMUrGrbfbLednZ5gsE9mAAMR3nYzuHx8eYYeB65trYVoWYmzQ3Fwzn80p8pwinJNx8uP88oqu64MMgMYOlk8//ZSqmjCbzSjLktl0St92bLdbprMpeSlgmPUjQSLiFl5rkblB6imRG5FrvFPm7jz8OL0Tmn5eKVwACQNeLnvPqICDyL7bpSxYPNaD9g7tdiRW4rQMsDvmBwiD20fmlE9nrApM+FSkepVc+mK567UkSspFIGzEDWKvIMaHsQ7nFgnkZ338zMBTBAgGa1NQd86L5aYP4wPEAlhG0NQggcIFDSTRdZDK30Q9mp2uWQSeIBb6Y/c1wA6CCDqF8zrBPxFZlGssI0+xGydXRv7SSpMczZQAWVGXZkT7AxIZnBUii0s6GYyvjSxCF6A/wWUEXPFKNnteFCwW4kDz1ltvcbNeMVku0EZj8iwBI94JdWo2mzKfL5jNZwweuu0GlRvQYWQsflc1AhYE4E55nwJkwv13VsNusPQRrtwBnWT1j92LW7/7yt/xf6TLmz6Lut0ZYefnqXWj07WKThu7bxSf62MgCc9wwc1Bo3a+ZzxDd9ge0tpI7x67+uPOjDdYgDPv1a1fSV2WhCaPo1V/hkk0vmD6b7mWu3Cwj8B1vBFp848fM6DOMXGKiGwCnVSEGxnvLqmb4Xc+S2oChcAY6X0+XH+lxmfHv8tSBPkmkwlDPwQBWwG05ssF8/mcIgg3pw63D+vQxWAZxz7G65QCdwpeO4Lhavw7JntjB59bazmuR+9Ex815S9t0NHXN6ekpq5sb5stF6sgWRc58PgfvyQvRwGnahjt376C15gc/+B3qekPf1+Gejbbh4+L147oAUFHMcfxsQ9CI6fvosqNSghiLM4foR/VDT9d3CVTURtZJb3syKnSmGRpP6x3WCcCudTyEImNRjffcjWCSUgRquIj7x7ilIjNSy5qPh4kKCVt0tNOhwNeBrq69SpKd8v13Yosfnc4SyBn2mFEjPd2/8vsEhpsN7Al8oKOrGOsNeXTsDBqnPixhhcJ66J2nHSxF2+M2jgJNVk44KEoWkxnTyTQIWlYyZuY8U++ZKEUFFEAZdAfO7A0Wy9XNFUPfkylhFSipTMUBJe7PmEOEM0YrjckUOoOHDx9ysNzjs5sLppMJn569YIOl6TuU8xit5ExwgR3mfQgPKhVfcv1FbyIPbCsCvTrTilxB4QDrsYOnbzast6PQ7RhnCaYFPmhQxLPNjU8gntEk0NF5ORdTeAp/R5ZbHN/dvffxubvW6ZHdGDuHOrivFoXEHK2gqioWi0WyUW7bNhQcFqNdaG6VQsd3t4VkbdANe7VzbTIjNsih+aKNhm5MlqRQ8Sm+xzipQtxNu0yR2Ho66D8Aif0nLKEovqtQImWcmNWRwVOWJUVw9xsCWNf3vYz1R+ZF2D/CJguJYIiJRVGQ5aK9BqSxGSl6NGiTmKBjDPUhB5LCLs/ypBUTR1BGB2IBrGKM0lrTqwGrBow1aC9AdhbE5l3wc391ze7mDnE8Aj/qsilBvdNZRjj3dfieY8qVDt/4pHSiynqzApKbKfP5VIruyEj3bsdpqU8sFVCURYkHMpPT90NwZdJkmbj/ZVnObLpAKYPRW7TWzNuG6XTKdDIV4CDESx2+YxRSVwiw0LQNXdsmfZwyjKvHc68NY7CxMTidTjk5uYNSigcPH1IUBevtKjGh9pZ77C2XXJ5fsN1smEymgGK+XOKdS2czQDeIhuJkItqiEXjqnTQjy1L20f7eXio+rYai6ygDkLZ/eCD6O8u9oMsTmTsSEuJYynQ24+joUJgKWvPo4UMODg5444036LqOx48esV6vabZb2T/G0HUd201Nnst5HN2rJtMKtzPKm+dZYBKOMaQIei15nicH3CzsqX7YYSQQc0Cf4hvs5h4Sv25u1mw2mzAKKRo++N3YRgoYifUih72AGaFWSQDPThyK+0Ga2KNu7avshMiWVCrk2SFWOxuB6dFZLY6zqvFjhfcjrcnYzJftJHm1NsJWUpnZvRzpDPNKEU1wVMgrnfJor9Nng1hVkQCbuK7jc2JOHfM9yQl3WdOkKZg4FjWZVEmPNs/EObmu6ySPMOYNIX+EVB/6cO3GOB4+fSj8fGjAxX03jhHF56hUW6Y8NF5DQFi/QUYz1qVq/H6J6U1cZuHi7ua3LrK/U5Y75rsga77rUCpHBw3RyNyzStxNYw6d58IS8p50jnrnkwmPNibpC8cPFZvPAsIimpleJxkQ+QwuOTZrpVnMZ2PtE86xqOMVnfZQwXjAZJhMzhfRBPN0ASA3Wof8NMS6IEOhtVzLoRtwShi2Q9fLuGwEUkKt4RCwJbK+VTgfox6kyPZk8sdmOyWWFCNCLvG0rYwB4lWIqz2Xl1dUVUORF2HtxZrdJYzC6dtGW2mPxX0X7rUcWZFN9kpdvbPfd4qxsKp9UEdRqYqTOKVligaVpAHS1/IuAUFxHSo/anaBT2Sc8LESFjB+DgRUcvFz7+gP7DwnFpJeheIundGvVJ1/pk6LsW6sP/9Nj58ZeJpMJonanOc5s9kUY7LAshENAR+iWxTsWm9rgi8AKqDBShms84IaMlIdI3PG6EjzckzCHHWz3cjctve4MG5iB0kG8tAFHJxDK02ZZWIPP/hxVGeQYqHIctCKgcAqMZpsUGTW0A/9LZaQOGOMDAyhjEdwyQVhb1lUeVGAz2AQgby2H1htG9reUWpFNZvy1a+/Tzf0vH5zze///u/zT//p/0Rbtzx68Ijzp1/guo4Hjx5x79FDsknF0HV0bhAlfK0ZXAteYXKZ2+2GHo2myLKkQdXbXsRww+LWQRC1iI43KogIDjYF0egep7VOziGxs50Wc/i5CIwG9pH3eBeovmlufASICAeZZwSxdJaR54GR5T39ML6H1ooMk54rwolxY4jwM4yHi/yOToE/sYLCRpHaqE/dmTGAZKTywyMF8M44F8RZbj8CgyicFTp8YoeF37GhRI+bVxxcJCGQdUw4HFQa7dCMbh0usISwYXQxC4l6uvZjoQgOrzTRUhWze0yPxaLoq0WBWCed0fi8ONYYgBal4dGT13ny1ht895e+m4q0eL8HL8LF3dDTdE36rtFdw4d9ookaSXGG/rbeVKJ/hvujs2i5Hu8xO88NQv/xd8I9Obu8RGtFVRV88cUX/PSjj/nk4485Oz3j4cMHYnPdbJnP53ztq1/l8ePHfOMb77Ner7m4eMmbb7/Ou195i08/+5iPf/pTfvu3fxOUMAlsEO/UQRxZh8M66dLtjAwOg0brga4TQdT1ei1Fy3xOnhcoNTrzXV9vWG9qNttr2n5LMa3IFVTzCba3tE1PqSxknst6i7YDtbvDnIJKdylZisBk0mBR48GktegqMTiGcH98FBdXkugJ9hNZLjIyUlVVEIXXqciO1uyDHTAmCxa0YxyQtb8DPoTPpqyH3jJkCAt0GOjdgM5KjIHM91gyUDJSqLFit8zAbDGVwuT4hKHrWV9doUrRK9JGJzc85xQX65rVuuP5Z5fk8ynl3pLqnXfYm1UM/RZvNcp2bDdbPvvJjymriu/90reZLZb0vufmXDRSyukM7+FHH/xpGl++d/cerz9+nZOjExbVHnUfHGUK0eJqu07WuRJhW2sU1cGSyf6C/829v8n55QX7puAPn37Mf/V7/5LicI/JnSOGrsG1HSYTQWM1naKMhiwaCgh9v8gy9iYVVVEQRuux2y1Tb7jrS64ve7LLBustN7mws3qluOlaWR+9FavrXFOYjEwbysDG6/o+nF+RfzqyZIdQfBgtsSszY3EV13dk08aH9xIjFotZ0ErIyIyhKkvqrmPTNOFc9KzXa4xWzGdT9pZLDg8OePnilIuLSy6vLrGrDfv7x0wnjqosGSxk2YRpUVAUBf3QM1jLenODtZbZbF/A5cWMoggjHK4PNvIO11uMl1xDZYUYHDAEhjNkRUamNHG2y2SF5C1696wbr8EuyDqEUaOmaTC6INPi2lNNKqbzKVkuOZF3jr5raNuG66sbEYkdBtparOqzwM6JWkiyL4UtvVguKUrpNIsznkGjUoFunRM5AS9nksQahTYZi8VkHI+U+o8sADCxY5plBh1YUTGhj6wCiYEC2iilhFXtXBK6VkpGNgCKNEakEsM2pqh2x93RRzHoAH4bY8gz0UlU4XurwLSR2DWA8nhl0/Uu8owsF0BWKRlD897juoG67ri6WoWiCfIAhG42Dd6LJktWFLz33teQJlVg6ykoiylGG44PT0JTwLNeb7i4uGS72tK2LZt6KxqIhbCZylLuU1GWrDcb1us1bSf24YvFQsDYTHKZ1XodmqqQFzknd+/wt7//l7h//wGTqmLb1Pzox39K0zQ0dc3du3e5e+cOP/nJT7g4v+Dnv/0d8izn7PwsCWzfrG44v7jg9OUpV9dXMpITYvZ0NuV7v/RLzOdzDg4OePjwIQ/u3+fq6oq6aVBhZLc0WdhDC5q2ZbOt01pfzuYYY6i3AsZFMfQsy3Df+S7eOWazqWiXhWLl/a+/HzIlePHylGdPn/GP/tE/4nd/7/f42tff5/7eHo8ev07bNLx8+ZwXL17wwQcfMCkrZrNZii0Xl1d0bcvp6SlN03Kwf0BbTWhmM+7cucN8PuenP/0p69WKZrtOjd+Yr0RgQ8BASXaaxvHRRx9y584xV1fXKKU5OTnh6uKK7WZLlksuYocBraAILMEowh4b0977NHZs+yGMTlWhQR7Z3jZoz8T8wQd2ojCq8yIPzr2WwYkuYqMUZ2cvAcXJyYMESMcG9+AshNdV2pArk4CG2FyKRZ8JuoxKyejkMAypSFWBeW+HoBGiNAqHcoOAQXlGlNpw3gZ2osSo5WJJVV7SDx1ZUZIp0UFUTsato3aU1oY8D4YOCqqipMozTo5PuHtyFzWZJm23vu9l1K4RjZ6skMmZ6GqHlX1jtCYamkRTgDi6MI6ZiWGFM2MN4YMWShTadsGJ89ZExs555r2n94hBR2SQu2EHJPApJwR2ckQfiAo+jXbqwJaVRnkcEd9y+vIl88MDZtke0cpMqbGB0TYdN+2K6+s1L1+ec3x0xHw2I88KnLNcXlyTlznHJ8dilNGMDcEuiPkbJB4P3mEC6zXW1F3X0rcdWEdVFHzz/a+zqbfoLMN6xYcffsh2u0XGiivKsqLtxekvxrTBWvYPD7h79x4nJyesViuGoeXm5kYaL0XJ/sEBXdOx3WxCTTkER0/F+dlZcsPN8pyjOyepySTGO45FtSTPc6bzGUM/0A19YhrfWc4F2N42DH1PHTTzqqrCWy+M+rAXLy9X1HXP08+/YFJVzCZzjM6wnRPtUwxt3dE3PZP5hCzPyfIs5QGS95KwCh8O1Vg3Z3rUNbzVLGdsMIYFxtAO4X5LzHTeY10XANrApIuSFzuvh5cpq0iKTkvX+TTKm1h5gS1otIj3W+92PldM2OV8TCZfhOabT9hTaqCn6afQdd0V2Jex17Fu3h3n+zc9fmbgyWiDM1KkKaWCG4hcvEIpDEaKZqUwZKA0uZJuv3fhTwgUKqDzHkH7CdT9TGvMDmNADXHczeCVw7sw87xzgaT+cTglF8eHZAkPygXk2kt3wSYk2jNCfBHBVvHyp0sXg74L9Lp482wqjMcFpxAhda8UBpvQVBu6xspanIdJNWExX3J8eMTF+QVRM0gbzXJ/j/lyweAcfXB80fGDBBRfBVeixHyI38/FudFIsVUJuR/CAossNYi6TT4sMn1r8Y6LiPS/Y2dAUNkgPoMbkdHwOXeZEfL0XRR47MjHayndhsBssmER+1Bgp68QtQACsyY8J9qwhg9JTH3jqJfsJT9eR1S696+CVbtodUrAd3DeeMjHgJTQ57SKSF2DXSpkfMKr11OCgxbhSD9uaNJnUQHUGRdkOPawI2omzwvBTEZRBSEnScmGwBnumVejwP9uIaEyEQTEjbowBGkS70eXJKVEKwYTQT7SnklJWgBFrB+BxXFN3b7+u7TWV/+tDlRuD/Rdx+XVFX3X0nU156fnnJ6+YLNZMfQtm/WKrm3kYO1aPv7pR2RG8dabr+O9pSqLoPfieO21R+S54WZ1yeHBHl1w+ok2y5LQSDxJXY1gv+h3vnRy5grPH52/VIqT3q0Zug7rBqy3WCXszd4NQY+lF6eRxjA4j0Gz7R3N4Ng3GXgXuuk7DlleDkClgv5b2OdaQabjKPDOSCZxp8fPvUsX1+Mong/gpdGY/x9lf9Zs2Zadh2HfmHOuZjenz8ybN/P21aAAECAKAgkBpEkQtMUQRbkNRTBCdvhBYSvkB9v/xaEIPph+NIOO8IMi3JEIWSFRQUpQgSRQAKpQ3e1v3sw83W5XMzs/jDHmWucWCF/tilM38+Q5e6+15pyj+cY3vpGV3q8VTgW09LygADaGbDlvOn7aEiGRQch8NTyd1CBbO9nfHJFTANUGZPlD2KZPmhEpAyax/zEE9GNAthnLegFjHKATtQhc3EgZYxy4ZXS9wnK1wuXlJcg5ruKmzCBZjFwZkvHN4+CxqRtcNy0WVYPW1VMiA8iUSojDViFJaXMlgmkIy/USv/iNb6JHxJMf/iHGRPD7AxZtg9V6WWxllD2Ty5kgLqgA8DkAPsPFiEVV4ZtPn2GZLM56wmfY4f4wIDnCaANG1SyKUTQC+frsbM2VOcwtU5BnOk2CUlFQ3hMzFgtQABhtJQ0y+UptoAYgcx0w/V2dsgexZUmAu7pipkm7WOD0NIlGYpDKKutTZe5tT7sAAQAASURBVAX2csQYWNtBW/ddZrHtStqNrGEjFb3HGMZCNeeBGAld32H0HofuiLZtsWgXxfZG0oZ8Knp1ehCYoCaCvEla9BNYzzIru4hZXZzsMYBiLI/kjiFg7AcEHzAdPULTNAx2VUaEb03xITpwQ9kvOh1PW2fL44Qmm4ByxLlIotoYZnYeiWMXqA/NRQuMY5QMndqZ5N8yuF2FoGc8P0i+o+dkrNhsABA22rzAkDPrX6aiS8ksMT3YlNm25BBhjLTHyHPKOSFmnjjHwRVX7oPYQmN0mpMIwWcjSSpKwUgZXlogrZtaElalhWY4w/pSlmTgiQO8DzL+m1ucF1gi5Yy2kTY6x0Wjqq6wFOC/G3qkJNMV2xaWCO2ixbPnz7j1UISXiXi0vKscRvGpy9WyAJFVxe1dp6ensMZy67h1iJmvBQCaxQJNu0DTNDg7O0WQ9WiaGqenJ/jWt76Ftm2waBfcrlM5niBVWW65JUIl06eD9wJucuLGothcqFwsWPTdyAAaBSkJHDPEnJGDrJmAH8YAzaLF6eUFnj5/jnc297h89Air9QqNZV2fJ288xpMnT9A0Dc6F4aVs6pcvufVqKG2y+QFAm1LiBDPn0rLLhfxcArGcM87Pz+U8sjD23f01DocjPv7kU27NXSyxNRsZmjMrqBCDy1HYSzxhN5f70zhbbWcICshO7S2QXERtcEoBGjdTnIpybDvZlxyPx9Im+wAYKXG0spEn1pUmtlT8++ylOYkxXLRUDVA1H0ZzIxT7Pdl+yb+M3j+38AZJ/iG5DUGkOFQCQRJoI9fPf5YJcPLV1DXIWOTIwIAOLWqahtuRSqxgi77rlJPIE1X7wokOypPOmTtt5qLxVLK8YttL/G2VwZin5y2vB7atPNKpEKo/A9170OxC/yy+XYMlZAQfcDgc0axP+BkbniJrJaawxiKBh8sQdAAUfznLdv3YHWACiZxKLGdifm0ppyJ2rQAlyvWwTR8FBLo4P4exFpvtFklY30bY8AVHkC/NM3UfJOvQtjw99PLqit9nc4+UM6rDAV70DnnIkEXd8ATcQQZseO+Z1W6t6FjFslZD3yOMI6ywvLrjEdZYOOcn8FYKRzpgR+NwJj/wPvA+gDBA2XGHw4FjONnjzjkMw4AYAtplW3xjyetnsZSaGM1bv3rkZkcPEyNplhML9gHNn/OUX+kWZMYYprlRM4AoI5f109wWX9lv0zbW/HqKFb6KCRXTItf44OdmtrTsH0zXCkz5n2yuggF8ndfXBp6cY4OxWrHo3/F45MDJWqzXJ0xhq+sy4YUvOmHsB/THTgIQ1pqAyXBEEhj2CMEjjANqx9OckFm53osWUFPVQs2VuzIc9FFGmSwXDADigFE6LGESL1IS8dQh8GGrqqqAXwW5E1FeUwwnOxeuZEEWmr8ikoiOC5jipf+3qmFSRmWZfZUS6z/lnDFsdnDW4nSxwvOnz/Cbv/FX8frVNf7sz37C7QSVxdO3n+PRm2/gGHg0bsgJVkCTlPg+xyAaDg2PpNWJcynxSGJ1RATAiFgrC7NpCwF/BalwOjcJgyqSr8BfYSqRebBntbpJhpj1lFjUvQSCWWGPqfXIEBC0mqLGW3d+ZPHFGA2vlWgV8XWVTy33EGNgIT0xEHVdPZg8pO9fWjVTAoyBKWCN0EklwdDDNVEI5aDliWaZ5flrclKejXa0iWFQgFVF44D8wKfxXVAZO54dMdtAe8CzF7kINVKczFsVEhaqf4YYJxGQNSokW8Zcc3BdCXpvZQJSEMYTtw5wQBkpI6SA7tAjhQjfD9CqVwEJRe9n2bQgR4UqrRXxnBKaup7ErnNGNw4lCACmYAVZ21QnzRhNoItoIoDr62scjsdS/f/wo49w/folfvTDPwEyFwCMYQ2Y7ea2BMSbjcePf/QDbDY3ePfd53j6xht4/Pgxbm9vMY4jfuOv/jr8GPDeu29jv9/h7u4VJyxGqM9Jq1oZdWWKl4k5FhYXwGuWk2phJBz2Ha8uEZxjtgbSNXzXIUSPgIABnhkYfUQaI2LvEXNCP3SIWIBchdvDgMYB7zw+QY4ew9BD9cVSnABXAoQhxx7MgNBUDjEbJEgCRhPzLCHBSMLBbayTrpi2E1lnYZBhnYBwsl+IUCaxJbG5yQizihzIOMBxMu0M0NoKJgK9VC9dZQHrkFwN6wGiBEojsu9BC4tsEwISM+xiQEwOEUCIbMMa18CYjN2hA1Y13njzGUwOoDjCgO+XAie0x74DrMFb33gPq+UKV+eX2B722B0P4F1rgFH0vVJC8iOG3Q7X/YD99Q2qTKiNweXlI9Suhs9S8LDEk5204pwyepMRkDAkD7us8D/6nb+Fx48e4Q+//0f42f1r/PizL/HGb/wlPPrgLRzve/gx4NjzOYsdM1StsehtQJ89tv7IWgmbA1anF/if/c2/jEW08C93+G+/uMNHNzuMp8CxrnDoeLR5HANgWO/DEevyxJwwpggL0VQTEf0Yc2FHxMjMV2v4GlhEcwqsiJjNW9U1NhseqbxY8PSuxWIB5Mwaj65C5epyzjMZRABZp8JYhxQDtts9FosFnK1wcnKGs/NLXD16wuc+sy2LlhAdkBxwGDuEo8d6xZPvTk7XsMbg8vyMA+7IwXf0A46HHbruKPYRIMcab9fXN9ht97h+/QrvvP0O60sYy2dWGdGZmbB11QoYPCLKOZs0rdgH+1Ha3oyFcxVrQjoDYzmRSSlit90gjB5D3zPIZBRwJZyuT0XDkpByRNcdSzDHIJ/B8XhAiOrDOL7KKWMcvAABBsgkU28icub2PGOY6aY+0EghYPSsM6ZTblpXATlPU6oyyw9kQhGd9156FSMXGyfx6cgxWwwP2r5iikUHlMFJvl8fE8d+mf2YsxYm68h00YcKUU9liT1iChhDJ210FUxlAWPQHwfRb+HPHcfAgJttShxTVdI6DcfP1TWsK1o5aT/lwTdEhOCTXIYpwFPTNlifnMC6CtXAbejOVaxVRmC2L2lVGCAD7PdHBB/w+PEjNE2Drutw1V7hrbeew/uAcRhLTDMMrPW13W4BZJydniKEgLZlO78/HPDk6VM0dQ1nWfvGVFb0chweS0LcHfYY+x4vb67hg8eTJ49wdXWFv/Ld7xZtpuPQY9cdQJVB0yzR2Iqff9ejP3S4vr9jJnpT4+rqEU5PT3HY7XncedMgSbKmk+zIWJA1OOw6PhdFG2wCiF1V4ezxFX7tN/8Knn/wHrPlADw6v8B6ucSzN5/i7vYGH/7sQ7z1/DmePX2TWYI549NPP8Mnn3yKf/gP/yH645HbcpzFcrksYOzZ2RnOzk5xPK4LKzP4gLHv4ccBPnh84xvv48mTN1A3C+wPB/w3/81/jfvNPf7Lf/Zf4Zd+6Rfxq7/6K7h+9VquTWM/jk/9GAWcQTkjXEgyZdIVwAOXjsdJgLyqeJoYT5zlQUjICT4MHBcYtstGxKIzCLUwqG5ubrBcnnLCbyymSBVFhzSmhGxUDY5jSyt/ilBmDkeYTO4xMMJ84KMs3QlWMssYuEV5xmo2xIagahsuuCSPse9xe3OD4+GIpqqRkeE9g/zWWNQy/VCLhFlAFWNZ45HbySJyiliv1gARdvf3ognKgtkn9Rrb4wGDH1FVDcfUWdnvmpeYh/mDXjCRTP1LyCHCVg2sqwU4EruXAThNntk21nXFrWI+SUvwlHtHBUEEcIT4AmAqAPJQD8BpzmV0GJBOPCYudkrFoO973Ly+wfL0jLtVKhmaESIPo3A8La+2ymwFYojww4jV2SmIgM19hs8e3eHABeNZbA1I/iPFTxI5rxijdH7IQJGccdjv4azDszefwVke2tCuT3H++BwZCcZkwAIJEcaINErkQlff94jBI4aB/fjZCfrxm7i5vcE//+f/HOMwYrvdQvX+ri4vsVovJe8m7Pb7iTXsWMswSOxfNTXIGNzf3zPT1TJ7OIy+APMKjq1Wa9RVjZPTU4CArhtK9w8P5nAY+hHj4HF1eYGqanB9fY272zt8/tkXePzoEd5+6xm2mw32hwMurq4kTpqK4Fq4yylN5ActuBEh5ynv1FeWIkEp1Mi+IQHmOX4EkIQhJ4iNmCB+X5NL4VOZ6BqLBIRic0iKS9yNhAfXwKZDro9/QdpXSfCOh+CTMqoMiNnxSAVML+8juVGKfFi4o4InJRfg/Wu8vjbwRMgPRg+rhoM1VnpUA7ImZQLcQJBl1TtQZlAKEUOS3vcMWBCyaFsoCukqiwmjF10FA+k/ZCpbQfQAOPCB8ikUNDAjIVGajIcuSowwmRkCyrAhqeyFLANeyTysDKepUsgADkR8VjcUsT038lmarAa+Tmu5XWN/7FC3Dd55l9uAgIS7V19gu93i4uoxTs4u4WMGk724WqGbGJRhiB0g2xkBIYhp9toaqHdqRBtGFfczx6vIJMLqOSFnI60YgxitKG1gnMwptVLBGgCAV/2rqVKgYFMWHS31mhzsMjco+lDafaDgFt8FCl1fpu+wmHIq92RnQo1k7ESkIhGcT1qxzjAmTy1fsg+0whuiotCys7I6a1MSDK0ohZDlXrJUDhIyEmzmCTHIWYJsfR/dYAkZ09htXREj1SI1NtwWJT+UuEWOitaHKifRbOdO6PWEcAsDSfdyeSzKYplVswwzm/T3+baSjCmXe1QHJv9uyPJoU6FV+lGmJ8k4Xa7S87hWL/oSsjOZOZYS8qhOESgVmBnIxwKt3LY2jCNGEQ7//PPPsdsxYBtCxM3r19hvt6VajpxF3DzDOB0Tzy0mtbU47vb4sz/9ISqyuDq/5CoHsQBjNgHbvsO+77DzHuu6xrJuuP0mRg7OyED7Qdh26bQ4frTWRGTLukFRgu+UeBxziAO6YcB+HHFIEX03wh9H7kOTLcUBE1c/kg/I8YhkHLbHU6yaCjyRQlrNSKtpuaydMLWhBzAh8+TKLBR8w3ub2VtcGTKi7eJcxXRcaVdlk02srZZY8FR9SMoWBraYde2JJ8dOtKlqFvsltqmGUPSujEuwJqBJIwiGG558RPYJzaJB1Vi8+fQpXNViv9ki+oiQCax8k5CJR25b4oKC9wYhWIAcUvRI44Dj/oD9/Q7B1LAwGGKAJYeV41aQ7nhE9J47U60Dif2DFA8IUv1ExBgGvLp+iZgTBu+xWq2xPj2VAI+QKSFqP35mPSxHBglWAOiMR48e4e/9rf8hfv9Pv4/+Xx0RPrnGi5sdBmsRhbkhFhRsYjxc7XBaL/H05AKLqsZ3vvMIb51d4jvvfBO587jxX2K5WhVmhDEOtatQVw6VH0GUEY2w9IR9F2IEnGEGphTZglQWvR9Yi8YAlZ38MwPaE6vNAEW3CJlZT8PQs0aRtTKd0SDESRS3qVxpmVdfqm0shgz6voeRtkMVYXUVCxnvbu84eBy5zbR2Bsu2ZqArMVDK44mzsF8EtBFWRBAwKWUWzz5dn6KtW6wWC5ydncl+ZoDTWN7vKSRkRPgwQocaTHaUSku3gcXK2WKGneGJjNyamtHve/gwYrfdIgYex05SzMqSxQRpqx5DKEmUkQl4/JzYzjgjtt8YqexqvJIQfYCPoVwns1Y5q4oSGbGQPes/pBB4vUSnLsWJzQGxISTgV/DSRq/DVSAM7wLCKfiu4BHQDwPUWLAuivyi4fYymxNilAKKdTKViME+Njf8maq5WVc1cua2fCst6Srqu2xXyDlPQxBMlsKMK/tPbSSL2rPJZVDJlCp+lLaZKD7fGYMIFoKPyHBNBRsDTOKipbLvjJHR5KSt/hyjNnVTxLhH8WEa08QQ4WNAbbkwu1xVpXUopchaJobPdOUcaxmJnRiDR0JG1Tbi67mltXIO/nSNEDxOH50jxoTVmifM7fuO4zYA5BwqTHHzse84/t4dAGINR1fVqBsGuDa7HYuLA6iI47AxeGRwrKNrxPZB7KA1POZdInLVfLs4v0BbNSVurEXwPpPF6vQCH3yrxqJpEWEwDnz2njx9A1VT47d++6/hk08+xh9873s4OT/D5eNHhdX34sUX6Poe7WqFlCLMMGBlHdqmxltvvYU3nz7FL3z7W7i8vERdtbi/vwcowVUO7WLJQLi0rM5FqQnCZKUk68uyCJpQ5RQF5zDCsphiawYetNjIPz/6IPYkAlIo54EgbAuMIVTGIufERYT9Fve3Nzg9PcPi7Aw+JQaqVHNLY3vxyyxgLAVQTSRhpsrB9KMPGBQgIzbCcf6VzSQynoBEsbCN6rpG1TSgqgacQ7JqMAwyBVDWbgLwA5t9nrI1nXOsIbpaYlFZHLsOH/70J3jx4jOMvoexLVKWNj+JVTQWycIS5kEnU7xc/guOJY0hWFPBtcwaYt9FpQMmE2AL65KvzftpGlt5Tln+VnJIkYShiQ1GWm0W3xVpisU172GNWgNjKmSTEDz7la7rYI3FenWCZrGAcw7Rh1IkYAdlYKwWztkvbXb38tj5Sg+Hg0zYXD4QUo8pY/QeNnE7NkKABwDrphjZOYyepWWWJ2vUuy12hz3W5xd45+23cDgeMQw9KlvB956L2YnF7GGB5BJrCNoKKbBA/uXZOSpj8ezxGzxd1jp03RHbzRbj6LHb7/Ho6grtosXq5AQpJRyPxzKB1c2yHcrAUgpbi7phvxQ8nxmJx7nwFDHkAXm34WKSDARhGhFrr+q5CT4gVRXaZgFmPnV4+fo1dvud6AJyHmINMzkhJAr2l2Vbc2FO/AmBCy6cSE4xgx4/LRJrTptSEu1O3t9OcistZOf5+yQwdgFCNhwbgPR888+nWTcCKGHiTk8HJELb+Li4rFdJ+nl4OOW2sL2g9kSlGbLkI/L7s1YcbWnV6/o6sNLXFxeXxeSHT3JQmCqoNPwUwmR8JKmyZGCk2spIuUeKAaMwG5zokFTOwTkFnfgrek0OIogyjIMcrqjnW5JBgs0WGQljHgWcgPCS8ozRo0AKi65VRiCRzDkaOyOtHIh+EBhB9j4WnQtNxisnTKBiLAWosFPiHgNvnqpqeELLfofz0xM8f/4muv6Ay4sT/MvvfQ8+Zlw9egNnF1cYA+AjOLnK3IogthDGWIDsxNjJk4CfMjagWyKjKPWzJxWar2ynYnKzsKLUodEEeGTw84rSbsDMH9ZfMnaiYZeU2ECchZhtdczE7VJxjDIqlErglojFcCE6YTlJhUQOjzEGVqurAjwpqMaP3yAnBadYJ4mgfbLxAbrLwbqwPCCtafL3GMX4SJAbojK0ePIhSUWMRfLESWKiZQLi7Az3GOshLvRNCXJz5KCH+9Ll+VECZU6wS5BhpjY6QMGaCYay8t7OWCSwXsC8LZId4eS4ueWGZG8yhTXFBD8MmLPdyu9lThSstYAwkkbRQuPqNqGqLNpFC+sqAV5m1Sh5zauEpRfZTuPAY4w8XnwYcOg6bDYbbLdbfPjhh7i/u+PYKjHI5P0g7acZiBFZKMdV23C7ILjStKhrHLY7/Mkf/THeuHyMb777AYwkqMYaRGTcHvbYHw/YjSOaukFbLRDCgRM9VzEoVIIBvi9rJpNpbUQGwYoeQMpsJ6L0s/fDiO3Q45AC+sOIYTciBz6d2Qqo5KS9cfTA0COSwf3+MZYNs/EcCJVxzLJUjQJQ0X8oEg8Cxntk2CxBVtJEkB1e07TQsbHcfsLCjVTAchIQdWJJcSIhfd6y11NISCGBKgZd2rqBsxZZgA8rLDdu4UywNqBJA5AMcm4RR57I1a4aVPUCb7/9NmIAfvSTz5Ezn+MMwJis3FJJ/AmjN/CBgZ4UM+I44Ljdo6o2CKsT9kc5oLEWta2AxNU9JK4OM7WNkIMHIYmdAJxlHYnR93jx8gVuN/dIAC4uLtAsl6xbofYQkf0OeBqZyYRMXLH3OeHJ48f4D/7uv4+FqfDxn/4If/azz/Bic4fw9BxYtVifnsJUFcyCJ6lkH3FRneG8XuL9R0/x5OwCf+/X/m08O7/CN64eY7/ZIR091idrVBUnns461FWFtqpR2SMyZUQjZy9yoBV8gCFue1eqtk8BIXr4MMBKi3dFNWprMUZ+2gHK3swgYYYsFi2a2uHm5gZD32McRtR1jbPTU+Sc0Q8DC9Ybi7Z2INRS6WM2DguhM7PxOPSwIYq9ZtvYVA45BWyur5nhYQzqpkLbNlgvWyyXi8Ku7GUypBfWK0+gsqhNAytVwXHwIOtYWLn4f/59bZWvKmHlpIiUI0Yfp0IA1G7Kl7OivcLFjZwTksQ8QcCY65sb9H2P45En4CElGOK1msbF86TecTiKDeGYp64bGeEubF9rylSn7KXV1hgWj/YD+oGZHdoeReYh8MTK0JyQqHaStU0B7rQVSCumQAZShh9lqi20uk8gshg9T0LS1hiu+jIYddgfmJnetmw/iNkeRISqEU2coLZk0ptkAJX3ao6p2CbWlxKfV1JCfr962YjP4M8OPkn8WJXrUtH91WoFENAPPbRyDTBgH6OybcVvOwYAOMERHTDvYANrg+WUMXqOd9pFO+0LeXR1Q6Jpxc9oGAaAqGhspJTgwD5luWSdGxC39fUDa8e1LWHRtGjqpqzvEAYkAIvVkgEnY1kXqV0gWwh7BbP7itgcDuX5krWohUEWY8ShO2LoBxw3GywWSzx//BaqukbdNLi7v8d+uytaYzxViRPZnIG6imwsk64NJJEyMvFPdHAy76Wr80vYy8fSFgkchN0XMrA6Ocfzt97BbrvFbrvD4dghpYhf/NY38PjJY/zu3+7w/e9/Hz/8wQ/w9M038cEvfJs1pYhwv9/iOA5YLNYct1iD09NTPH3jDfzu7/4ufvu3fxtvPXsTJ+s1alvh9fU1+/ndFt3QwbmK2+JnsbERoBcZyJklEJhYSEhEoj0joLA1WC0XJQ7S4Lww9InXfPSDxAWYksXInQjOOVgi1GQQcsJwOGC/vcfd9Su0VYX68pLPceI8iq8tF19fgC5IK3uRvCgIk6xQLu1mRCTMfCn4CfuwyhwnRIPSEgoBXOqmQd20MFUDVA7JcdzC8YKMpM+KRU3sCk5ks7DAKrSrJQOjtcVh2+NHP/oBPv30YwxDB+ssqlRzYhxnMbXmEsbOYulpvz/obiCDum6wXC7L0AqCyE9IjqPDQbSt0sfJtuh1azsy5yKS84oG0+QLJPcwUiQHQAbSuid5kwDHxlhkEwHDOoV9z61np6dnsHXFbDYn3RvCoM9kYEna43PC4HscemYUrqTN9CBnfL1es9Zwmphggx9hk0VrG97jIYDqmtnPhgdbjeOI6CwP5blvsT1s8VZl8d5776LrevQ9T94duqEApdruRxVLSVS2Qgo8JfDq7BJnyzXefvM5a2Fai5ubGxz3R4zDCO8DHj95zNIHV1cgIhxEH+/ly1cwKTGJRfSDT5YrOOuwkuKBl2nrKU0DTo7dEWEc0HVHVFWFR1ePedAIchnkoT7Fjx6pabBcLDF6j66/w+3dHQ6HA05P1jhZrxEjF4GY3TSxnDgnnLTeONfXllMB/R4UqyTe0LZ8qG/IgM0wJjHJRorAWujJKRXd4yLrA4AogYyDle4VAvuqBNZCZJtjpvM+IyBkMGHHmqnDi2ZniEgkMDJ3vej3UIBWsRty32wuqXQ9MWtrGhQ099d/0etrA08qAOlU2FgcW/mSpLj0BM4cfWnNkiCUr3ca6c2snFiMaAgeKUVu4YAmz2LYolby2MEZaUXKkpRloATLTgwWtxVM7V3znlgjBkUdqC4CkZUe7odCxxro8t3KpCuni5hF2I8F/KL0/6fMPbU6kjVJdXEcRvTHDqvVEmenJ7i/v0W7WOD88grICbago+pkAB8YWLOu4bvN+jwSotcqg2CfcQKlIHo0pcVCDLFO8AFVEK/LCUqcGDspZaSQMI4clFk5gDEBpNM9ZOKOJWYjKXXSey9AXgKC2nEOXoL3DO6RAFraRpZTcRAqdN51HVSQe54UzF9apSVMAAzTPQO0LqPJtDrmlFhUV5FjIjYmBJmcY1gzJSXu+08xAZRFdG2abqLvHVKatb5xMJPt7DnnBwUp3vsq4GaIjYvChyxeoPBgCeYVfuI9mRGC/Iwg5BDtGRIAsCQWEMQeEKMZCjAoGDjK1dF0fTxqm6tgzvAZMU1dDF0IEaBxBlQwq0oTAGttOUN8flCq9Uo1Px6P2B8OuLu7w93tLe7u77G5u0N3ODAoHCP2W26nubu9RgweYRxBAoi3i5Z7ySueerFYLAAw2PLZ55/jxz/+CR4/fYzleg0Dg33f47/8s38FC+Cbj57CWUJlDZKzSMkih4AYgVjzeriZPdXAZtKg4nVg1lbA8djjeOywPxzx8uYGm+0O28MOXeg5iTFc8a+qCgtXY9gfMR4H1qCzBp0lHA0w+ICEgOAHDvgNT2giZ2GC9Nv7SfwSxHO2rDGwkCom2M6qeLg6FCNAeZIKf9E1Ex2OGHIBjGNibbkgujlV7fjnKTM+bzOMY+HHlNl5GmfgYOEi07vDOAKuQVVbJMNBpXENrCG8vr5GikCMHtZVqJsKhoAYArMeGM5l25R4PPrN6xu0LmLlHPzQY7+557Yny8KsOs5cbT6Bg9aY2Pf4oS8FDFdVOD07w7E7Yr/f81mPAYduD7KE/OlHaNsFLs6veNpYUzGzDMyEUGCMz7uFTo78y9/9Lv53lxf41z/8AT764jPcjz0iZZycX4DqCqmtRLfA4cn5Ja7OLvDWo8c4W67wdHWKhgi7scOYA1arFdrFovhP7z2OhyOO3RGLukEiEq0nbm1zjpklOUWeGCe+2Y8BSEDjarRVg7ZuARADppkTzS5wItzYim1IYvastRXOzy4Q1yrSahC8CMEmSLvCZEe0gjsKk6gI5npf2AEsZp9wf3sHgNliRoJ21tIxIjgbyvSwXiaF8f40sNnCR48YA9uZNDusSFKhlOl75KCkgHEc2I7HqcChTO451T4j8/hzApCr6VyEiDCO2O526IceXd8jJp6yxvvNlCJOEqB/v98LsM96WavVibRlaFv55E/G4DnGKbaYK79jYK26ue5SCKGcbQCzyTYqiEwcnGYu/hkiZpVLXKOxM82eg6SPpWUiBG5papoGTqZmEQFt24jfkGQ+eZikiVcFkGGdTgAxjgVsY19vRQg2obIOmbiCzknjlGRoQtI0Leu3SGCumlZz4XsdknLsjgXESwKgaCKhrd3Kcu77Hk1T4+LiHMMwYH84YBw9hmGUwhNhvZZYV1ofNAAnMqgeiBpnBuKh7DLeA8fDAYf9HpsNg2Q6BdQYrqBXjvdWTAFkWAT+8vKyMJWN2HdnhIUjbp21taae6NVyye0pAoANwyDAp8HVxSWQM/zpOU8ba1v2XV0PayxWy+VUEJIWyIuLC1hj0UibC1kjGjOptHgSse7rfn9A9AHBe9Fg4wI1SZwHSYJiCtgddtyy2ThUoUIIwM8+/gQ5Z9SLFr/wi9/Bf/yf/CdYrFdYn52hbRs45/Arv/KrOB6P2G636PsO19fXuLy8wDtvv4M3nz9D3S5wt93hfrdHGLjl9Zd/9VcAsA5W33fou2Np/Y8ycdUUdjtAkuCybiODrRAWL3LC0HcSewUo1JJEG7NEWzmW9zNkhLWbQTnCwsHkhM3dHctehITh2OP1ly+xXq0R33gCZMACZV/pwAOIxouGaux/5iVJcfWz/2pkZ6CdCQQjNpTLqjrwidl/S+uQQ8SP/uQH+NM//VN8/tEn2O73aAW08yGiMoaLvLJflO3OhWi5b+fQLFqs1musT05Qty1Szvjss89wc3MDYAJsNanVluB5XP2QzT/pGs01BwGUdszS3kRU2Gkx+PI+RUtL7J3q0ymwwCwQLk5TfvhkSa6vyG7Ie7A2kopDsz3PlJESIVuDerXExZPHoNph3x1w1p6jWdQ4q08lZ5RhPLXj4iGotARjZAfgXIWcORcbx7EM+1os2slWJQYPQ9DCjIVOq7PGgipi5lUwePzGGzhZn2C1XIMAbO/vuGgVEpzoXC6bFjknHA573ofWwspz4P1NTCqIAZdXV0g5Y7lY4PHjx3jzzTfx8Scf4+WrV7i9vUPf97i9vYV1Dk1dAxm4PD2bnr1s2BA5j1osl/x9GfSSsrBLK4f9bo/Rj6UQ9eXrVw82PoGn6BpncRh6+BTxo5/9DMiQwR2xtEQWlhtxfK/M1eJTCSxrQgLcJtW7VSZeQXr1yIOsgckZITFIacExGRIzzyPirJuBr9i6qhB5SB5GTBE5JlQml9wyYyLggDKi5LzMCKMiF8QXIx1jEO059VNqp5KCzfrKM3YUyZrT7OzMJrzOWNfqo7/O6+uLi4sjtcY++B5rrFg5qBDsYnLAJA+CZr9TgiNjUNWuPJwkgJMKej6YfFWCKtXtUSMh+LoCChAgigBybByCUM3nzBSldfKEhWm6kIrjAjTvspqWRA5InqGBBf3DpE0Ukzgw4vzMh8BBiP6+JNMxRjR1haapcdjvcTjs+Fohv4vZFxFS8sggnsSjwJOAA1nvSVoDcuCNqkip3rcPARVNVQQWAeTFy1KtSXE2tlqCeaVgG50ok5KgrRk2O5ARUfCsrAjuT+b14eqv0f5WkqBMQD9AWwr5kMyr1Hp/KhjI/zZdvzoLFl1T0VKtRirqrKCMBAmyj5iGKwCNPGcN6ixJQiCGRWm4ueyDhwhyuc6cAVhoJyIJpY40YKAZ+KRnRXTGyKHs49KyKO8tD/sB4KbgU0GcDYrTh54dTKLy8xcj1WkyvNOvyd6dzkt5ewlujRiakBJUWFvXrFCG5cVnKs3WjpDyNBJZK4fd4YjtZoPN/YZBp+MRY99L61DAbrPB4XDA7fUNjyUfBgEZUSr/puIx0VdXV7DW8c/f3OLFiy9xfnXJU+dgMHiPP3v5KU6qBt948kapChhuwkYamf3hxfGbEuGx0+r7DsfjkRmcEgSNoxdAoMN+f8B2t8fufoP9dod+7DHGUIJEGMOVwEWLNAREw4ltdgYjZQw5wQdh2SlVX3S2rLXcC56BoLbeTCw/S0YowxOgOTHh5n9mx8HJooCEWSbIJN6hxvDeTKQiy5kdqhW6Oc9vZXDLGHE+Ar4W+rhMx5gBsJbkz+DKF2vqcLHBSUsM20FR7JNEE4lFOnfbA8zK4KS2CKNHhwPiJbdZa2VuzrSzApiq2PHgWePJSFWyqit4YTuols0wDjAdMyEXiwXadoEWLaqaBYA5SebrsvJsC4hLCW+99TbeeucdnJyd4flHH+Hlq1cYvcfpxSWosvANt9W0TYsnl1d4fHaBp5dXWDYtxv0eGRlD9IhIXHkWQE1BjGEYMA4jmtM1EgHd6BnUlGDTkGGmSkowltvPUmRQvbZMla9cJWK6CQFC1R89LBm0hlsVecolr+9isRSbSuXcZo20soI+uidEl64wbmxhuULsTIoRQaflWovHl8956pq1DLqLDY8pslaRiPGDSMS5ASQSbaaopGyxk8XSiU9h4EAB2a7j8c6Tlh+JvVa7xz1jBEJOkQOx2VlSPYnj8YBj1zF7Aiign5uxI5Nnbbckz8JZA2tFkNxoMUWN7+RLck4s4Ct2MsQwjdQ2U9Ca0vTMMb0bJ0WW90LKKGdY+2My1O+iJH6ACnNnxMQxGX8uj86u6wo5a5zErIaUU5lkl3NGggElHVDAYIV+FoBy7aQC0apbCG3PBwBuU1IWUc6ZNUIJ8vO5xFswNH22FKuGceDJY5ZZAl7AkpS4LVrfF5B2PWt4QmLgAlOMqUzV0+KNsi4mBoYprZhQADDnAo6xz+Oz0w1DacEzZLBerRiUEXvK1XrWtWHGEmEp06OjAO8WBJL71JbGKPelvqFp6wKqJQFsDQHOVFivVswsaFdsTw1xsj6OsNbA2rr4M22nXSwWApxQ0ZVRUFZbbXm/JjkTI/zAExmdnHkigm1qqMg0a4V59keGYJwFYsDN7R1yzjg5WePJm0/xwQcf8LAB8GTtqq7x7W//AnzwePHiBfb7HV68eIHLyyu89957peh87Do+mztOlt98/hxt2+Ds7ASfffIJPvzZT0tMxechFsCa3Vou6xkC65kZksEYmdn7JRcQP5u1/URbUowmalzkKdIe7CGAnFijT4TMw+Cxvd+gF/bXlO9w8KVDRDhWmyWWM1xEU9ivvgoYNvthfa6RUJJ67pBlIDWFhBeffYHPP/kM9zc38DGiXq5Y3yVL4m110MZEOCD9HB1+IuQEYy2sDPm4ubnBbrcv9zfpOGnMmvHQik3Pbv5nM7ODAAroNE+SVYIjeF/ei8/yZO/kTSWYmu6BHzOfuTKURS5troNbxPeVnSWXHUUkMxuCrZn5lZBx6A44vWBNr9VqBWUAJbUxCbAJ4uMIVqZ6c4cRP3styGunUJD2bcienNippjxjjQtCDEiZmYpt22KxWMKQRXc4lM4WknyE2+ZNyQmtc3J/UnACF5ByznwvxuDk5ASnMeLi4gL32w1eX1+j7zrWDgT7yIuLCzRVjfVi+QAQBLh9O0ssl5BhRU+LkNEsWh4wAMAJs7Tve+xubwFMuIQxBnXbIhPxsIIY4F+/Zl0yLViYyS9lTEWcud1nAImV0BSy0WPnSlVIiQ0oOSdJLgwh6xhrSjxV9rzEqho6KjuU34aBbvVZJrFOMYEnQyfNR/Mku2GNSIJoDpaj2LIJRtL71GOWzOwMlGMw5bmcB3wFmpI9NmldTYSer/P6+q124OB9sVyUfn9lQgTPeiBOQKWqcrDWoakbRvZmRkXHTLKh0b5Kpu5FA1Ay3LKXM3yMMEI9VPtAZFHXpgRlUdqhtEKnB5LVTaXX10zOTyt+5QEmrlpPBkhb8jgQUkEzIqnMibAWP2RGJXmTMyoYwdfMQaoKlTN1PQsw5b3H/f09Hj16gqZu8I//0f8N1y9f4fb1NU5WJ1g2LXwIOIwHGJl+o4bdGKaOet/JDcjmyFPbiAIaTIPl6WCgKTFMKSHLvG5lpeh/iVhQMQRfKrH6qqqq0Ot1eoAeipx7AJmBJWCiGWbum3WWD1TKfID40mWTJirCdTylS3QUjDDZFJyJkdv8jAGVMZYTmBlU7BOqPcRryi0SXJmLElD2w1AcMU+OkGc5A2CGrocxxIKPINSulkCKkGyasyv5cw3vb32DKZmZVcEwOTsNLEpwkZlhZwwH8yCUSXWcXERxlpJcWhLcjinUKgRe9nbOOswEpWeXpqCfmXFUgoWceEJVJYJ+KaapIlBxYKYBV1knQjFQBaiUe1sul5wsjR4pcAVB8nKACCFGfPrxxzgejrh9fY3dbovX16+x3+1xPOxxuN/geDjg9ZevMPQduv1eWHSjrJy0ZeaM7sj6G4u1wZA8Xn75CnfNBre391hIi9kHH7yP2jj4Y49+d8DueMCwCPgQB5yYEyyrGqPvkQLQiZA4JLHu8mRUu77DMPToux5+9MKS4WpSCMx4GocBOUU0xmBVVdgI0GMSYJ1Be7IGkcHRZLz9nW/iycUjfPrZF9hud7i7uYfpj9i/tcZJY7FaNKL1xs4oZnArAPEkopQTfBqnc6aGIXIyWlcs+t7UVQF7dH94qRAGAcWsAp+ZGUg+eJycnKCqGjCAmXA8HDD6EaerdQFVY+Je/cYxkB0zTzYjMrDGoa4aeDLwISKFESkM2B84aHj+9jOADEa/hzUZOY1gtJf1bWIKcJUweIxBjB539z0qNLhcLbC9u0PwEY+evAF7ciLAkzBPE4/odWTgYBAgia1hENw6g5giM1GMweXVleiMDQh+QHQOyXkcDwE//OEf4+zsHM/efBvtao1muQKRMH4CBxek9Pg4wiQOtr/zwTfxzbfeQec9UspopI3lEBiMCBJIGiKEoccheBhhy7qqhiOL+oTP6/FwgB9GOGOw2W5wPB7Rnp/IGF2mo/fHDm3LLTuptKQJE0vAS1PVGFPCsN+XMcyjJLBjjCxQvvCoKoemkfYoQ6XwtNsdkHIuLKYQArrdEcfjAY+vHmG9Xhc7WlgrYjAbGRbQdceiWfPo0SW3EtVVYYtmAcSDZwZaSIHBVInqk9jEDFkDELRoxFOwBKDITGVn0jMzDgEqAFEKmkRxQBfiUO6XSJmAU3DW9z0OhwOG7oih60oSEoNqH2UkGUEyL45om4MxFmfrtYCIKNeuPmAYhgJ+AhmJWLR8HEZYactTULdpWmb06JkHim+uRDdTiyS1TI5sFzyaexyHAtLw57MIvTWs3RVjwG7PU8/GfhSB7RYhSsuzlT1heRJf1/domgZtuyxMNmYEZ5jM+84Z1kc8jAceZCDthxyoWTgC3AxsDDHAC1gKItxvdgJUSTumtDmHGItYsYZyXAzh6WwZ3H6h/oendAVoC3pVVTgeD/jxj38stpHjnfPzc+x2Oy4QNsy4KULawly1huAHvt+6Zgbv6Dl+Wq1WqKqqtJtGOVs6jTSmhOMwsEjumsXzHRku6GSZxpw8x5KGiq6iAYM1JAxPBSo5TuICpAFhtVyhbReoZy26OWcMkeUA9JpCCHDk4KzDYrmEMay7xPG8vH9KSFJo0cROz7VOqiJiXaBGfI4hwtDzPtN5FWNkn9N1XWl/0gJOvZB28MoiUcbRDwwYk8P+0IGOXWG2vvX8baSU8M4774ukBMd2KSc0ixXaJSfJSeKafvQ4fvkKh2OPum5R1w3bCQGZg4DCUACFCDGzZpCPGRQDRmltsSIRUlhIYN/M3RMOCSxCTwRUtYOPPECkcg2srdAdjpy7gJBhYaxDDMD99Q3CMGBRNeiDR0isRcc1RTnf8ltaaeR/VVbDv/k1g4Sma4aAM6QDIVgwPpNF8B6fffopPv/sM4RhQLtY4PmzN7E/HrE7HKUglgrwakQ/VAXDF4sFbq9f48XLL/Gf/xf/BW7vbvHv/bv/LoYx4IsvX2Cz3aBuGsCYIr1idULeDFgisrOrnV17noY/zIudasvng2sk5Czg+rxYTMRtbbC2+CiOgRK3K2fDMhgyPEWfWSmsSFLPOY8ATfIuCryjadB1R/z0o5/ii1cv0K6W+Jt/42/gvXfexflyyZNea4dEIsOQCJSAcRgwDgFtw3IGC2EfWWKtrO39Bk1dYblawGrsFZPUfnIBoXQa6KJpUTmHZlgg54TNdgtjLX7rt34LxjB4FTyTP169eo1x9KiqCuv1CX71V38FIQTc399iHAP63rNWqHXwgeNwK0MCjl2Huq5xen6GX//ud/ELv/AL+MlPfoy7+zu8fv0a2jJfOYdF3ZaiL9ujhIP41bPzc9Y5zEnsVUTd1KjqCifrM1RVjfOzFuNiwDgGWPGJh+Meh8Me9/f3MMbg4uICVUU4djwdD03LeV3tcHPzWlrlX2O1WohkQFUKtzGyzM78xQUjIyC6+jmxzUaYTVDAb0TOWtRlmQl9DZFzIp4iaATkY8BKtZad5ILKvJJRIKWom2lqC8zSkaOTOIkiKBJrLMpnaveJgl0FUJ1TqyXvp9m3AAGaJcbhIraCr1nT9K/1+trAU0ypHGiTpwlgmCFduXx/XkGcIez/BjR++nkR7zWGmShZZPpmd6Tvb4wwPQR4mRC5yaBwW9R8spopweAM+GYwZIaaz19GqNRawZoqDlPrHVc8GOGnbJBN+rn3md8rAx8j6qbB+fk5Tk5OOEARarI1FomE9QSCthJO1RI8qBCoE+KNVpal3GBM03qVe5D7UGc7p6aW6nFmnZVpreX9yojpWIy7ajJZqd7SfKkVQMFD11HAmCzUvsh6S9nkGXIs6yC/od9XBHfuSCaGkSDNoBIgqQi2llVp+nAoa+jBNYEDiYSpumfNhKTz1LosIqUohqGMqU0zIIZE5JAyJlYEZudlevG6Tp+JB9cpH1VG9coz0cqXxiKz50uYfp/fq3jfKRAxhp1UOYMEFkacPVuhTxdgCWD9KbnfP++lDJtSGVSnToSYAoZxxKtXr7gFYbPDURhOQ99hOHboDgcc93vsNhsMfQ8voqnlvcXwAiitjylKkin7kUDYbDa4ublmPYaUiyCmsw6RgJvQYZtG9CLUbw2zIhIySAJZH/mcpJyEwcGaJFr10vbMSTtkRm8t+wmgmEApszCxISRDaNYrnF5dYnG/QT+O8Dd3GHpgjEDMDGYyEVAA7ZxECywz0KnPRFo29IholjWdAWkRyTO9Gy0gBB1lq60hSTRnpkqw2loFb3XDadDH92xngZfcPVFxkppMg7iVg8EuVyr1/Dmsy0aYVVa0/RbcEhR8xBg4QBr7AUM/MFgUZHS1BpbgFgKTWU5cvyavyz8XY0Ql1T8fAmLk6VlKXY9CNXfW4rjfg6yDrety5DSB0kKAyDcjpcSV+uUKUTaCBfvT/TjAB9YDCzHIpNEMpCgzKrQF2ABC6/eeRxQbTGOJDUgSUz7HubBtlc060VvKuhiZDho8f37wDAqmVFouigCyJmNZnxdN7BHZBTkldP2AzW6HtmUNnMVi8SA51alH8wpZ5agAHVZ9MKFU8riyNzFi9Oxn/dzM2mZMvplA76K3ktW+k6wIP59cfOZXYhXxixP7SRMgkuSbWVK96FyN4whXiUi/+qykhYJcGDEa+7C2mkVV1zySusRNKO1jypTRlz4LSNHAWleAJ201CzmVwglJy7VqjKgtUqCkbAZ5fsBX4oKsLW5ZmD8RISRYy3sxBB6x7mC5EmwtWC9xsjdE3B47BaW6h/j5hBCQIOcyqS9Potco1ec4yRzovnggmyBnOUpyGQKfIWtY/NuHwDbaOYl1fIkFSxXZQPYG24C+71A5h1oSPess+r4qSbEmR/rsSCYEsR0V1oiAyFq01C/nuKCjgAxXsROqlFi7TXQ6LRlA9vwoZ2Y+OEbDAhIm1TxRL3/WhNo5VJJYW2WlyvNV+19iScxYXGTKc5yfV/2d+T4BpnhUARmDiYkSRMS5xKcZkz2IPBFXf78wly2DGTEnIAsDNqruGCd5bcvT1Oq6wTCOOHbHYi+IhGlTVSDpNEjZiw7lNEDHWstSDGnyNfz8lJnNPqz4c70HyoBhqQ62+RMzSSfCTnpLZuaHeG18ZJ1QFqo2ov+ZpZXTSgsOn1N+J43zp7hu/jV//UXgE+S9pr9NXwTitjsxtCknDEPPNs45Ycc0GL1n/SEZQqG2s3Is1xEFeFqtVri/u0UIAbd3t3j9+hq92Mztboeu74XZKqwzmnw+oLne9F/e33zV2mI33/fl/hU0VCA2T50KX81J578DoJwnkDKvUPKQKbeYXZ/4SvVFP5erSlzARW9mYcYcEVLA0HXw48BagOAWxyQxob600NrWFVRTOeeMqoqwgxYOdMp3hrUkMbDmINIunoVtKnGzc8xSVVbP5dUVxmFE1w3l7BS7GgMXhKxFDh5d37GtSxkVcQF88mOiJRk9HHjK4+nZGdYnJ3h9/QqjH7HZbArgjcz6ZMraGqQIphp5Qz+ARK5mAsoDxtGiqRfcRVOLTrRIDCyXSyYyjANG75kRGgOitKgxYSUUn87tyD02mw022y0uLy8eAMoPWXGQ0FHiy5RKkZ5zISOhmu4zyalm4MwDckBiv83xuQwymz6k2H5jteMG0/6T2Jrm2ITEIGwDOX8HcV5Ekg/kAjyJMdMcO8/5knPGeEkZoQlpnl/D7Fz+G1LBn3t9beBpfzzAWYfliqsh1nEFJVUVovfS4sWTfWJOAlwMMM7C1Y6rlikCgcrEI6UnAtzzCEkUKxGXjEGCqa8YCioLOI0YZENtxOjzaxwGpD5h0fL0ALIEkw0Q+YEZOwXF+lIgxtqqGJQQI0+dwszg0LTY1hB8iOjHyEFL5aCoZEm6RXMlIWOQ8bpnpydYnS7xP/2f/y/wW3/tr+P09ALL1VpALIvFYlWS/zH0MhGOwZla6I68VVSTgXeABnVkdZLgtMnK9JrRI+SJfh5C4ApiXZdrLhT3pO130hYlo8gVfNKqMgDU0hdsbFUc55wOr4ENM3YmJhtX42xJQosOl7TUVVJpnzNrlKKvK66HmudTASkSqkoOsLQLcZXWYmV4EhkHrBOTijMADtwr1xRtLUMTUwiA/CyvPaC0dK4+8sh5MURE3AYgyRRPJjTTYUeCaoUBGWMYOHCzTHl21jLqJj+fQUiSEGVJBiknkTom+X/do1SSueJ8cy5i3cVKmFlwGQJ6YTDOT50RY+tqEVH2nvdpfthWV5KEDOx3u2JUKQOVtLoQET767FNc31zjv/5n/wzd4Yja8lSq5WKJ7d0dvvziBb78/HPsdzve91larkqwMQFgIGLRaBCG0cPJiNaqcqgs4eb6BjEEvPriSzx/8iaePH+GN954il/7hV/GJ4db/MGLjzHGiFRZfKe9wNPTC/gQMGQAS8sA65AR/IhxGFBLhamtObG+vr5G3/fY7/boe9bUsEbFsCOOw4gweuTRIx49KGSYfoBdL1Gdn6DPAV9ub9F7Fnl3mSteu8GicQaXi4woWl8+cWtcazJTf43hACEPIOIRssgMLhG4x9xVOgmNJ2KkxOBZCAFh9NJCK7DTKKwXP5SJUilmhJED5ZSySmojJRZbX69OJPHUPSWgYEoIIkpsjFDDxwG1M1hULcYoAuqWWw7PL6+w3+/x5Zcv4YyBMSyGnHLGOByRiVBXDLTFaHDsI263RxzvN/DdEZ9/9gkOQ49vf+sXORlOExibIoOTyfA0ECS54wBhzWYslws8efwYx+MB990R0Q9IsUJOFQiERW0xdgd8+NMf4/TyAicXF3jy6AlWixWcmRik2RBcXWMMHsPYoYsJJmUZlc0JeiZCNAQPFuxXCjtqx4Kj4gvT4JnmL2duOHY4SjXwfrPDZrvH28bBVTXrEyYGNlNOOPYdiIDKOfSjh08RQ/SwyKCc4FPA4EcMYUQQAIsMoa0aNHWNs4sLiUsSxmHgAJgW0PYg7z0+f/klmqbB1eUl9oc9vvzyS3zx2eewRPjud7+Ls7MzDp6Dx+5wKMm4tRbL1RKrxVJ8Zo2cE7r+yIGzAiNQIDKXJMVglkzME4HMIKZOA9J3YN0v9R/MRgkxIhXsVIO8COssGlcLm1fH2XBgHEJAf9ij63oMxw7WENbLFQfLoy/ak0kFNxO3NlgR/gYR1usGddOAJytGqUQTMAODVbOIJEtnrbMa5xfn7PEzCnNc/VEcPceqdtKnyikjl3YfvketNKfErOYMAtkKUQL+46GbsZqn9toYMmIEhjFiv9/Bh4Cz81NUtYHNnKis1hwz+THyfddOWMEMgMTE4K1a7xC5fcRIGw4SS9sPQ5b4IkI1tzSId66Cc0ArWkRE3CoWUuLflwlyxR8BBSwZx5GFjCtXwKC+75kdlNWNENqmxunp6Qx8JAGQW37WcyYFyXQyV6NqrABUBucXFwz6SDxVWELCwClTe43B40ePBFHn2K2X1i7VTwVQWEdh5DXLxNMKqTDWJub3vCjpHCdjDIxnnmRKqUwxU7CjqiopfBr0hyNSVv0mC0QuLCrTCwD2MhL9/PwcVVWhbfnZtG1b2vJUV6ZpGk7wwsDxclWBckZqAjabDXbbHZbLJeq6xnq9Zk0yw2ww1lkxrAlomXmucWnf9/xMQpJWRQflA/WDBzBysp3VDxjpXjACeldYNC0Ouw1i9DCWcwqNK0MmkcMIRWunEq0tPr/A4HmPEhlp30w4O1+wVqFmEIZgyKEyDbwP6MaBOwOcQdf3Mlq+w7vvvIfv/vpv4Ombb8KnUNZPoGEIbiAxpya1NIFPX0n6/kIASuPYDNiQOEY1BgEGkaQ91FrUqxYnl6f44NvfQIg84fDYHbHb3aMS0FvXoZVCgzEGaFrU1uHs5BTOGlxeXGK9XuHm5hqfffE5Pvr4ExyPR1RNXQpZkpojJdUC/XkyQBI9rqdPn6JtW/R9j2EYcHd3xz6CqNjPJLlLijyZkkQPeK7lV/KMWQ6oz447AqrS7puFQa7A7QMAQb6U+cKi0SjAlCq3ppTxzptv4p3330VbOey3O+QQYKoarbCHx5x5+mwI2GzvcNjvYfAEWC5xtj7hXZUC2rbFyckJxnHE9auXuHp0gbZtED2zL/3Yo6obLFarYm98jiBYLNYrACwVEAFUTY3tfo/PXnyB9z/4Bp4/e47zqytu55dpzd//0z/BZnuPTz75GG89fxvvvPMulmdrtE2D/YFlJ+AMcuBza6xBPdYy/ILwjW9+E2+/8w7efucdHI9HXL9+jSBsy8VigeVigf3ugHEYsDo5A2QNYgg4dkcAHPNC8qu7L19zLiVtPoSMuqpwuV7jbLFAuLrCdr9D33fYbrcgQ3j25jPknNkPtQ1qEVo/HA74g+/9S3z26ef4e//+30XTNNjtdsIqntqJVVIhiN8IStjgpUZKjB2wdifbGpP4+4MyncxXcAdiqYaEjOAHzuIcF5OyH1Fly2wp2ataxIXhONyS5cmKgEzqzMLiBqjmoVxz0DVnO9kAmpMNaCoWie8rsUSe9K3V9+k5y1r0UtHBr/H62sCTBnp6wUQoI261ympFWT2JWGeSgLkAeKRJOnRWUakSaBo5GRoGCBQz0U3IB3nS1VHgiqvy0t9K0zVrxQ6Ykuuvvr6KqLNmTtCLlmf5FSQb03upNtG8IiQ/wu9XFk/fhd/XxwjyAU+fPcNyteaqoqtKCyOyPEtKBSNQkIKk0mDm15LZcKszytO+nu6fdHziw37MaVNOAE55z7KxchEUU5RXq9HzahnruzAMQkaqOJoQFEc5ic/rOlZVVYAnDe4kXp+E/GbAExEDiUZa7Mrpn2pNejOzA8T3zBMAMR3CovMBkLPT/gMAmrGX8rQTyvSCLNO3shgiBV/0dwwmR09gQCqB2TdEE8NRIO4s2iYZmEabTzfE6PNXwoq5C8yzPZtlT+haqn6GAlfqMMsWz/oMJ1yq7KIyZn06uylOs0aLflMBKmd9xQJOKrC7ub/HzfUNtpsthq7HetEiCxvosN1jt90wcBwnxo0xE2CX5QL1EjV/LJXZGLl6lCyOxwNiDHh1/Qqvbl7j6tlT1HWNNy4eYZsD+tevcX084sPdHc5RoyGDqmUBw3HsEROhkjNuzCj93xFDPyKnjO12i3EccTx20jIQZUzsgGHkCVRchYIIMWfYBLgEuAwMxw5xZBHUFAPrdBGhGyPGlrWQnCXAEmLUyYFToAbi5JpZaQ/PFDuq6ayxfZuzmSQwp2mdCOxgtXXPaJUkpWLbCZO+iSWLedime03XnkEVAhJXeitHIMeVXhADKlVdY7lccsuHADSMj7Jd1/dXcCsmYAwJ3ZgK63Cz2SAag8OzAwDCcjmbPqXPSu2DsGoHmeioo7pTjMKGYzFqSwQ/cltuDIGB1hzRd0cYZ7B1FeIw4mx9ytVImp8puXbxDUYAReXCJW2eoKnSVGytrKP+nnPcur5aLpkVFzwO3ZGn22RlhGpVa7YONH/fjMo6KRoZJKn6z/3rHKRWwJ3IcBtzsQQc4OWUUbsKteMkfrlY4Pz0TPZxLNdfRtY7VxITFTvmfaubbwYoYfbnWXIwt+NlRLi2IWGq0inDQiuFMQbxxeqvixWXRFJ3q/q5JIMXSDABBqK0JchaBgeTtPwDk6AscgSsBVk3sUcqZinVdY3KsR6i+uoZjj4VK8RPEAzIGWFJNQXcYj87sUmLthNxQAo59/PXXN+o6NLISs/9Q5LWjJw0IaPSHsZAnra+sNOdpAxYsytJCxuBZH+x6C5FQCfG8gQj0bCSfVFZK+cS5f01QQTmzCcqQbDu2xIEV9P+YOHXSXhcrwmz563rneT+VeuSE1wF3ViUXCUaSgJQgjy+pmkNTGGy6M97ab0rSQMmJqrGVar5+YDtJvcySSGoPaMH/64AEjBrL9V7m4EvxvB/nRQuyzRBw62iPo6yPwT4tsJ4iwyQs2aPxP/C4ngIlE7PU2Ne9cvjwO/rjEFKGc5WaOoWccms0FpYHZDrYUmPhGzZODB7U6Ygqj9KGd4H1mrNuSReeiaTaIYiM8tZ40te5sm2ZPmsYrmzFlqjnBVhXWUGtqY2F5S2bYCZ0MPgQT7geGSGNlkSvwsWbpbWHdU7XLQNnjy6xPNnb+Ly0SO0yyX7NPpqziKBIE3bt4BOfw7MlP/c706xkyaaClqpH9HfM9bg8tEVbu/ukMHaluPxiO544GEhApwGz/o+g9yPMQZH51DXFcaBwcbT0xOcn59j9B5912HoB26bqqe4foqrvxLbzgJR/aOCj/+m8/Ln6c3M96cCykXLbq4LhSnW12dd/GJhyz6MgzGzS9MHTnG6iroru8mSETYTF3Scs4iDSABUFZwhUGVR1xVCXTPQKe3R1vAU+FhaeJnpHUNADDz8gBzJlFZt2VbbIZcmtioKSF83DZwMD2APD74fY1A3MnG176CyJf3Q4/X1a6ScsFqt+MwRy4JEYUlPsQ0/SFfxFOXT09MyJIVb7js0TSMANbfqcvFG4gfL50oBwHI+U0TOkadPk+qRpnJP1li0QmI5HlgaQOU+jKynl2nu1lj0XY/9fo/joQMy0Hc9A/fWFeICazKRdGRN+Q93JU2xQwIhhAht1UcW3y57K+tZlrOmkxc1rqEZ29wUoHN2CDgoQTIJlFTnmEqRf8KWJguh1oLd0hRnlLhH/i9lkacjKn5D897ClsqaS8z+PWP2WX/x62sDTwXJ1s1L4KlxjpCl3UNbOBS1VgNAiaeaGAEUck5cYZXNr1NOjOiOasXBVTX7dXFudV3L4eLRzERT/3nf93INsTBqeI1Y42hO/dfXHMTQv+vD7OWQsVaEtCuILVIdo3kLgS6y9wExRNR1BSuMqpgyfBACnQSMRITtsUcKe3zj29+BMxY/+tFP0Pc9uq5joUYfEDMziqw1Uj1l18AMHT7MUXS21Ni6qoY1hBjGYhyNBF3GWGQy8JE3cyVTxSa6u4ILeJD0zysrBqwzkyUZR+aqpTUWruae36qqJTihUl3UBKNQtWfOwTmuQmoLwVy0WffIV/fiHAHmgJSvJUUFArmxtaDL4mCYpt3CGotKpgjMP6tpGhAZdIOXpHGmASbAjHE6iciwUYzcqhLGQZIxnp7EU78U1NKWP1sCTSvrUirXhrVisuVqdaKZQdD1ESugAuu8tkDOkzBjAhunkH6eCqxrWNacpiBHr7Mkn2qYBAjwstchANMowbieRWO48lcmS2WZnCaVja7r0Pc9fvzjH+OLL77A5vYOOSUsmwaH/R43L7/E559+iheff4GqqspoaeRc9CkUvJqQeZqBULyWfReQIp+D+/t79H2P/+6P/iUGl/D2t7+Bpmnwl9/7DqKr8V999lN8eHOLLw4HHJ70eHX+CH/z3W/gom7x6otP4QMDI33fI4aA25s73N3dlzZB3c+G2I61bYv9foe7uzvc3m+w3TM1WQEFk4E2Am5MqI4eN7sbbA4HrOslJ2SO4C1wu++wqmpUboG2rmGaBpv9Fv2QgehZcBYRZIBltcBc+QESVGnVlO1egtKMQ2AhdB14oEbdgKudi+WiODIr7KXkmfnJjFGDumpQuVqGBmjLp7bvJeSkGnkWbWuxDZkZTw1XmpLhtp27+y0ygG+cfQBjuDUyR6ZWJx0KUDmQ4YlXrEOUYPoAooATY9C2C3zyycfIX3yO8/PHePzoMd5//10QMlf5aNqPlDPq2iGEiLvba9R1hatHj5BjxN3tHYiAk5MV1pIM3d7eFgHfumqxWJzguLvHcb/B3Zdfoqpq/Mqvfher9ZqnIoKBMeQEYV+L6ZhSAQVBNIkJOTEFXxgNrmqL7WpcheV6hSePH+Mb776PMfwYr29v8OrVK3x5+QIIAaZmkXACYDGBECGKHU2c8Okod2cdBjKoCDxlLkZUVQ0QT7whZIS+K+0VsBWMTXBs0rA4OUFaJtTSOrZYtDhbLvH+W29jt99jGAfRCYqiU2JwdnZWfEzbNKjrqtj50bOWWqIpucgC2oXIzz76MCXS7NQYxDIWVVPBwmL0Q2k9MAZwVVP0ZGLi1ujC5BDT5qyT7c8Jq/pwbYsCUITE+74HEWG1XuK43eOw2/MkTcsJA8D+zVqHZbssSc3p2QkWy0XZByH7EpxnAYOtTuENHHBaAWia5aKwUtRXFX8R2f62MmZbi0BwVfGX6tuCH1k78nAAgPJ+KooOAowzHMimjAgG2uqqwWq5KtPizs5O+ZmkyZdq8Wfoe/ghAjkhG8JqsYJ1FaxxUg02pW0npmnoC5FB7bh1dRw8ko60F9aPskkkLSx7QH2/Mnt0rQDWM+FCSCyiw6Qgr4ATEr4g+CixikFKAfv9Fn0/THqCROgOxxKrWuuktUi3Iq+HLfFLgLZn6QRUBeiWyyXrPsmaqQ/hfWMfiBYHP5YJwc45nK5PGCgFZD9L6xsybGZ9P53QhZSLds68GGCtwWq54kS2GjmJSgmv7++x3W4LqLZarwFgmu5kSfRVajQNt8RpW8yD6b4pMaA1A9ZCiLi9vmb9pbpBXTdYLldYLlfyTDnhPRwOiCHBuAoxZnRdD1dXqJoGxjrAsgByCAFGWABjP0iSzO2Q1rhp6mgSUWZi0Gm5WKKvWOclhsjFrcz2cRiFIVo5xJjhR2kLBwv6Ehj04rxgCYB9IwP5FUIEYhrL9K4XL14wwOYaaRXKyCIB0dYWTVPhGx+8h2fPnuLf+7v/DtZnl1hdvMFAZRJ2PhGMFjOKrMOUsJrJ4RfgBn/un6a/l6ZlBeNKTiSFbMnzXFXju7/+b6FqGmz+z/8XXF9f4/b2lovK1qqsVNlf3bEDW23g/v4OL7/8gjV8mhbvvfMOfukXfxG73Q7b7RZeioqmbQFMoM88buFLnGJ2JS4AwP39/c8VqPXnFSAuQJIAtfrr/H4TWE1EGLseOtmXDLFWY5oJdIMkdsrSwUAP8hcSkHteFCcinkaZAZsSUshADOiPR+zuN2iaGsYSdocdhmHAZrPBcrnCszefwzQVTFvBWmDsTxB9QEoeNzfXWDQtnj19ispaGCTs9xHHrsdhv0cYB5yfXQAghP0BKQUcuwMqOXNWNGoh+ynI/Z2dnyOEhO32iJyB+/stDvsDYkw4PT1F21isVkus12usVmt8+OGH+OM//md49513cfXoEd55713UbYNRBlBo/qFDJbIAUpkIFxcXICK8o8yn6+sSz5+dngEZGAZfWKopRsRwiq7rsNvtpN2ap/MSAZVoi8UYMA49tvf3sFUFVzksFi1WqyX8wNPvXr/8EnXd4OrqEWIM2G627M+Xa+TE+phffPYF2rbF4XBgvxqn3KhparH9RnyIAkITI4ivJcH7HlmKhsYaNIumADQUCBmT1nRImlfxe/k47a0haBsz+w8lKKQUQBEICGUv17UMEhP8JRSJAgWaJiahxh5Qm6BDK3IGoPpVE6BEAELQ6yLkNEkwEUnHw9d8fW3gSSuXqkFjjaJ2D5HkOQchpsSbI03ib1SMJhtgDiRFY8jw++po4ZIYy8090DWiqb99jniz3sPU3jVv2yqJt6LXeaZZY6b/Un4IXOWs09vACbfQ+GOKRctHr4uF3CK3vCjQA0LOnp+NJMlpZrD6YZy1D3Byz8g6JmBBLoC1iKRdC4QgG5T7chXOnq4HUAq2gbGuBK7WORip6BaWiDAheFknPaJiuAHAarAnzwpVCd6NZe0KbsWcWgGMVLVJf4+0Ch0LYKCgZgErZ+s7X3Pg4SSLCXhC+X0OTPUZCDosSPLP03d//rAUDQcBhHQqhoI6UKSbEsq0u5zLe/G0t1jAPoKg0dZOqDVmGk5iFDLyNI1gdnUPGQATTjB/vkgPK0NffY/5ftAR34r6l2ekPz975nzGE5TYRAJ8xpk9eHhW8oOkwBBXy5V5eHPDCfPN9TU29/eyPw0MgOg9dtsdhn74ufdBzmXsMTBVrHK5Q5pCr8yGP7np96212G42uP7yFbrdHgsYrFdrLFZLkHOoXY2Va3F3v8WH2x7PosWT5Qqnyxq2qpD6Ec46NHWL01MWNWwEjOqOR4zjiM1mhxQjjocDhr5H8OwcLRmEKCN+DfgMEcHkBPiA1liktuVJk2DBXFdV8DHBx8yT60LgiRaZhzEQnDg+K2ADkBk2ApDYBjoOMnQfMqA8nfWpyjgxAbmRiQrYmlIso5d17DkRCQtKKiApQ8ulzHw2RXPLEIvv1jXBOtnLRADJhJvEoHnXdbi+vkEvldDMfcl8LkjC6iyaf8jSgpDQjwnLhocRnJ+dwzR1SUBj5AAox4CUCEarxYQCwPV9DwAiwpww9KxfYRfLIrqdZjp2ybKYdRgYvDt0PYgMvvmd76DOC+TMLdVGQGAHKl2tWVuMocUDAe2NgRXnHn0CcoRxYh+UASPFh0a0gQAU9kvOvPu11d1JgMErq8wjnt5WET8Hl7hpOxuLRd3AkUGS4KGwWCVS57G9uVTsMrR4ABED56KMD8zaC2EKqCCggAIn6k8zctFrULDkq75c92v5i7ymIsRMuzDOWyayiDznMna663oGQBz7Zbk4cQ15sl9J2scVrJMJi977ArrzQJIgSWr1QJSTiLgFhXgKkDXMVLLC3i5sFAG5plaPXGwViU9Q5szc1/HPUCns6avEQiFBmVQTSzeLVibfeV1Vsi4iGi02VUH9FBOL6UpSVtc1mrZCmXYpCRxFCbRzRE7iy7LIARgLY6UtKiX0/a5MinOuQts2qJyTwR28XTkhMqhrEarVC4boM87XKvEUzJxSKUbqv+keYt0TKUqkhJyiJP9Tq0wUbb4MOUspgUgH1shkRmXNiN9xzsp+dhOIBUD165RFnXMuNoTbqfYYR8+JXNvi0l2WuFbjjJJclITbwBq+XwKmFgfi4RzKjDHCnuRCqC9rrXu8tAeOOoRjyYCbDPJByjKWfcHTWgWg1JgWhmAyD04YvYc9mQAy3Te63wobKWeQ+GwWXueWO91XWrBJcSrechuTjDtP3O4Hw37ocNwjR9WG4oKWhtQcqlIBFK2xnE9YthOGplbEpm1wenaG6+sWZLkA4ccR3bEHKBe5CQmP5TwKAO25E8LQgBgThiHAhwjvIzabHY5dj2PXYxw97u83yDnDuRopsx/Q3KZ2BqvlAr/928/x9jvv4OzsElW7FBCxWDcxoSQDjn8+vkvATE9VUXu1/dP/qz8o39WzAoKnrNmY+GZhEhJhtVriZLXGerXEblsDOYGIgcIU8sSKlHUw1mLRNNDCrzJHK1ehrirW05H4bmJUzmM59s05P2Q0TjE2A0hl78xyu7m947M9l2jQZ5DL/ZWCoRFwRJ5PmslQKINULARSzqhMBcyuKYgmo5nF5Pp8o2hL8lwPYQv1PW6ur9Gul6iahj9XfGuMEYfjAQ0t0NYWWbpfnOXgqu87eGukTTpxTNrUyFggx4Bx4JZjYy3qygrDNyBFgxgMUqpB5BhUIELs589RmECJ27uddbBGCQgJOmV70bZ49uYzLNoFcmLA8ZOPP0bdNnj85AmWyyVrSKWEruuKTdPif6KpU8mQQS1dPkWTa+YLqroCsgNQs3i9NUV3zA8s+QLLeYYVSYmQIpAIiIBNPB13uVoxaC56jBOhwZV7ryoeNrDb79H1PXbbHZqmxjAMODk5wXq9ZpBZ9LH4WqdYAmbWdcCLyifRoLQ1655XAo7mddpCOuWmExHESP4OY5hVJsc4ST6q+rzISSb0GjEKWWBguT4521mKuRpzTDnmZF9K980DzIQ3ctZ/n975v/frawNPQQyitkLMhaiUsZFyLIBKBk+LY+DpIRIMiAGGCqEJXd06GHIl0PJ+hFJm+Xcmuj8bI2AOUqgoJ1mCxYQQKnVYv75KryQiAUYIJvBh1eBWJ75wMDUL6HNG8A9764kIwUuVsK7hHEk1NQGJqwHZaPUpMQXfGWz3e0QfEBI/P56GQcwkMHa2suLgQbBVVYJ3BTU0IVFjrM+FGQ/8XsoWUaaTGh0vyHIYwwS20M/3WWvbBwioCSWp0GdNQpVWwApgyi7cNAVEvz9fl5JAfIXF9NUvfd5z5hrvDVkmZJ7mlxJiJIA4gFQBWk0KyhOdAUalctN1yACqZsGAnUFJEvSIskYITw+YPp9BLx7NmWBFfBWCmDuxQuqoIZ88ST7N6frT85iuc8q/stI0pRcflKaK2Fde8/Wj2Zo+BMymoD3nXIDCFMMDwKERRxkis/G0IjQPDhT8cyKY2rYtJCrGn/zJn+BnP/sZvvjsc544Qbwmlgz8OOL+9hZ9xxMbdW/rXh2Hgat8CiAaTZQnEW9t7Y0yEhtAASLuX9/gi8XH2F3fwdkaJ+dnWG/PYNoGq3qJx+0Jrj/5HC9u72FfXOP52QX+zu/8de4D9/fIVQMsCSfrk+JIQwi4fvUK280WP/zhn+F4PGK73aLve/hxgAFQG4s+dIghsii9JVgDBn6HEau6xmq5xNCxcO6isaidhY8Jg3yZFGA8M/gqAxiqgEzIiZ0bw01MsWOwIUpblYUOhUmBg6q5rkFZ/Sy2TPZWFOAo5wyXM6yTBE8GALDt5ipeColjuZxhHU+K8yMBmaRtjdAuDKpOS6QGmSxc3SBTwDgckXY7fPjRJ1CHSBCWqZ1sQxawxoBESy1gPyScNiwi++yNK7TrJdqGtdn8OLLrjR6ULYAJoE6RNW4Oh30BEPq+w/G4x+npKRaLBbbbbdG+Q+ZEJ9mAlAL67oDj4YDPvnyBMUZ897d+C+3ZKUy2RW/NZAbAY+YvGG5vqyFissKmMEQsVg4gDp4r/pWwKJy0VKUIZwiLhjUTimbcLEBm28Z6ARPwlACKiN7DIKEWaNGkDMoGhhzcYoXYJhzGHoP3CCnAJRXXzRgDMz9JA/TM+jIgMH1ekoauO+Lu7hbWVqWtjIhZEhPwNA2lGEaPlMLP2X95KAUcyHrGxQdUs7ZrrThqMprBRaK2bZFSwu09sw/2+wPWJydYLJfyyEgNYnkPBhdTCQIB9TUyct4HZvumCC9+uGka+BgLa4KM2MjEejzVwmGpIuvC/ko5IRsG92IKfCajtkpNySZUB1Pa1rV9kHOrmSg0PSzS6LNR4D8TgWSoBAFYLhYg4klaGQLmyvsxsyjCGWaXtm0LV1m0bTWthWj3uKgAKO8F3huBmUqOwaJRRL9fvnzJ9g8kbJclzs7OcCKsGmQtKFlm3sl1+RDgQ5AYZgaYCwimNtgLUDFPQEf5ryUScMoXEKg8O2tlKiCD9Tn6yUcag7p2hZWnLcu1sLrrmX6TF9vIrKUEY5YFeFLh81evXuP29haPHz/GyckJTk5OGECXtarkLCkYpRPwIK1h+n4M5hvedymhbhuZfMx7dxhkKuOM+e9Fy2+/34OI8BiPZ8kg+4+2bVHXNbquk9bxo+znujA6tP1j0S7Q1HXZa5Pe1QQQKhis+3K5XD04tyEEASZyGR5Q18y69J4n6rUtT1EcwojtZoPueMRysYIhg+HIXQnr9RqqcMn7MMGK0LAxbopD5cgvlys0dY2XL1/A3lYYfcCx67Hb7gFkNG1d2sytZf0yyhlIwNCz3o0fI/phxN3dBnf3G9zc3OP65h67/QHdyMUiBmNIrsECJIUgw1764vwU73/zF/GL3/k2zi+eIOSMbT8UvSpN8Cy0yySVhJNm98PeMksIN08DH8aD+ee+A0RkeAjzSYqRprSmAqerNS7OznB1cYHDbocvCXDOoK4rjv+kgJOR4YShfnF+JpM/99wOlBLqqkJd1egOR3THI/vTlIpWaAHIS7HhIXiuxTIdDjAHKvRVhr0I404Zlda5yXcRQFblBsaH7CpCsSnKPuRODX5/L8MDWmGQcxwckaUwo7ZYY2sVxDbqc41F2yyw3x+w2e+wPD9Fs1wwO08m5oUYcL+5wykl1G2FMHr4YUC7WoMssAsjiIBh7NlmOAezWKKpK9zdXmPwA9JlhHMWy7aGDwHHYUQE28zFogGBp3OnPAOkQ0CSYnlO3G3TNKzX1nVdycOts1gulnj65ClOT8/wve99Dx9//DF+8tMfo6pr/L3/yf8Y5+fnOD8/x/X1NT755JNiV+Twsy7vDCRsXY0xjSi6jApiGkIj08idc2hXS7QnK26HOx6x22wQvAcswTiHhfh8HwJyBDJlkAdcdjg7P2OfMI48iXq3k9yiLozNxWKBxXKFu/sNkrDfnXNYLBZ47713cXZ2hqquUTW1MKgTJ29y5Iw10ubOm0k7m/RY6rNWYfUSf+dZK3XZQzOs2BgYYddO2ZpAStwGg0yJZW4zd1Twm+US1ytxhWMqfpNZjW8CnhQ8Bceu86IcZudkjv1o8WUOuP7/e31t4InpYjLtSYwGSPQRjIpFs4EmIlA0ImPDVGMFKL7a6hZjBCUgSXBEgIAkUx815P9VpNYKGpphkLzn6l3lSjXcCDqov/1VcGPuDBVt5IWdT5+xX/kZEcpNEygyOVlGELM4COcscuK2K1M3IDCrQ1vihCoAIxQ8Y1hotu97qWjNkwamD2sfawYYkU58t3F2jzFJ5VgQe20niFIdpNIGEwuIZmBKcm+NhRNHrZUZaLUAGvCyTogCqNwCOBMAlWCHyj0IQhoTT8FIqQRYVTMFLlqZK4ysrwJedlo7BXnmrwylu5OAzyQOjdHfiR1kSwVw+s3pNQ/ig/fczuhsMYTaN+N9FCqol/0iBohQRmkay/o3kANtMhVhb718NQj6XwjAG4O0Fcga6HXxNchVS/U2Ze6xz0p3V4cNyP3z4unTVMx6SpYUFxKNNH3Oc+bSV8AqA4Csg1u48mzViXsZNpAlkem6DnVVoa2bIkR6d3eHV69e4emTJ0gx4eXLl9je32O72bBzb1tUdY26rvHNb38Lzlp89tnnOOz3uH39mveMUkORS0Ciy6kTDMfRy1kh3Nxv4Zpr7O63qNslNvs77Hc7FqR1Eb1JOHRHDLf3+OGnr3C9WOKDZ29iuVyg77qS4AzDAD+OuLu/R991OOwPHKirwGJmBmDbtBj6AygnnJ2ewDqHs0dXTD93NYs9hoAg602GYOGwyAYWhN0QsRsitoGwMBkLw+0rzEzhI+D46BQ2nzEVUmQbUdYsKbjsEQPbIB09XoDHctapAM568I2VCXxJJ1yF0mtvDFDXFVjlLPG1SGUnx4zoPRAD2hpoaoemNkgR6DvPLU2qZZcJ3udia0r1UGuNUSaiibNMSNJq4hAjIUQNnoX5IfoJ3H6hUJDld8sJt/e36PsOZABXSasHMdtUdUKiBAmFeQdC1/foh6GIbp6encHWrHmw2d7DVQvUrsKqXcMah7qp4AO3y4QM5BjRjwMHDVannTBIZQC0ixUMCMu2QSbCIXoJMCuslktcXV5itV6h3jYlcIeAreqXI/KkBSStTSST5rjCH9B1RwwD6481ywVc5eDHgOCD2CZClKAiJW6V4ZY3/iwem8yBN4HjL58i6rZB0yy4wi3sVyrtan4GGkjLvTxfLSTNW3nVWqXIumjaYoQ8xQ7l/MOWUdc5Z2w2DBoeO9ZrWC3XcK4qTKGcp0q6WkYOrgBtiQaArutLRZTt/lCSE9Jvin8pLXzEAXpd12iaBnVbTy0hxAWlIUYBzfm8MVDDia5ekepfTewz8aN633nS9YkhcBwkDG9l6qmPISLW5YKDtvuALBcVYpjZTWk9iSMLzdetJF6akE0DOViIPJXrripb9HWigFL73REhRLRNC2oIxrriA1RwnPdPRoisZ5YEyNNCJhfquLjA46aFgeYDjocDxATyWZ8VVigz46xtaxjK6HuS+5had1TrkqeSss3i3CFDSDPSymHhHGtVWccMiHHspxhR9oPGZ35geQeDjKZyaOsK8dEjLNuWgY+mQfSBW5jnBVBNyORVbI+AwH4cucDoHLegJNbqg2jPxBARg472Fm+flcnFchN8FkPx5zHy7wQF5lLiFpnIZ3Z/2Ms0zQFVXaGqayzaBZAzhmEUrRq2UyoyPhWYp/VIwqwxxvCEKh/KxCbCBHYAGc6qPpdhpIAqnJ+e4mS1grOchPXKYGrqKZGSR+ecLe+hepbTHmHh9udvvYPlciW+9xbjwOyvpmng/YjdritAJYgLIpvNFuMY0A2cwB4OHcYQeWCQJ8AuYVsHC4O6bkpulOX6hNgPJA+fCf/oH//f8e1vfYD/9X/497E+PUG9XhZfXdUVx49Z51xNSS77QP1/6UeQ4o8m79BzUfY6fyfLu2WIDANp6CoACYg/M7Pvf/z4Mf7+3//7+N4f/AEPUvEj+mOnaQzH3oZbSNfrFZ6+8QZubm6w3WzwC7/0bXzjGx/g8ePHSCnhX/yLf4Gf/OQnuLp6hH4Y4GWaqpcC/7T3JyZgid3NJHfy4CX2Iem9Kogt95xEOxSOY3EFlbTl1zkn8iaxfE5hLKkNnWo80I2q/qLI0EAf/JSzQhJ26xyf0RBhyMEawmF3wPWra7z47HOcn53h4uySz2bkoobJBs44VJYHNllr8fSNpxMZQC4oJR6qUDsHSxn77RZ1XePs4nzSRAOQY0DoO4w5oz1v4IxF7VjQPMiEYPXNIXg0dQMj7bV6phRkPhy5Pfi9997DW2+9hZ9+9FN0fY9PP/4Ydzc3eOuttxGCx8XZeZno2XUdQgxwAmIjs0/XOME5HqwCAP3Yc/wlbcQhctFVZVAW7RJLAaUrVyHEgO1mIz6Qp+PtD15YtQxA13WD5WqF3vRFjF5tYUoJx64HiHDsep78Z9mf9cOAYRxLbGjnBZ8ZE1fvQSVYdPp7lFwoSAuoBCli8wVLkIEHPnhYY0SmgOOxECLIDGX/6TTTSkA5AoNePLSKZnaQpr1I03XmAu5Oe7qcM/lfYRRjZlMAGeI0EX70PFJGyR2+zutrA09Vpero/L+UdBQoSr6iyT4biIiEiWqsN62gQ3kI80Uk1XwCcmYnX8AdcdCQFjP9vpeky1YWJk+VUUB1jSYtA309pPMnqNCm4biEf/crDA4gl0lQPFbXoqomMeVUglYOGHOKCJkpphCmT46JK8VqsY2ionwQtTo2b0kgYqFdKxs6+ACuTspKSCDGdE6FMrMErjrqnenvWn1gernQ+GXj6xhXclPAoP8tXaK6pxxQwBSjNPipb3S+PgmT6LquzfyQztAQfs6RaZJWHYeuh7I2ktLef/6lh4ukFYGDFrnOmfPSYEvvb16l0LVPKcHHwAmhmTkXMfgpaxKu/eQWqnORDQCaGF5aLaCsifOEHlMxDmoY+N9TnKKoAu5K25Qm94W6mrR1IJX9NB1MfZuHREoOhKSlIE/GZPYjsyrvdA5LVRkTm05f82onB7PTxMTVYskMHMuj0/f7Pe5ub/H08WOkGHF7c4P9bovD4cCVh8UC7XKJ5WqJX/zlX2KaPllcv36F25sbqAgzFfAb5RnzHmAQeRw9dFrh/f4AU91jvz1gsdpjt9uhOx65OpYTBiT0/Yjj7oAPf/IpbqzDR9/9VZydnsCAGT/ee2w3Wxx2e3z2+efY7XbM+iKD1XpVAlxnWffISvKxPlmjXS7x1rvvgMhg6DqutBw6BpIjn3VjDdODARzHiL1P2EdmIi3EPjF2SaAEVBLoROJpN+wsIxImLbkYU2lnUBvGAwxSeWjFZ5S9ZopT5GqtsMtEOL3sHUOsiSHsVrk6vUik4IEcUVdAXRlUrkZKAcPguV9cvCRlgo96HYYFWRUSyNLWnCHQkeoAAjFVEqBIe5A4zZh4DHFVObjK6s1xABmBzfYeXd+LbbUCbEs7obTiqNivakbUdQ0/jBik2hVzwsWjJ1idnGAcB+x3O9RNRK4XWFUr2IonnKq9SnKdwzAAhmCrFjLqFDbxGq8aBq7qyiLkjGMfikDyol3g7PQUi+UCVV0XYEwPdhIbkBU8SyzaW9iofEjhc8a+O+LYHXE4HHFuCQu7ZHApRL4mTJRuIHPbZ4hSoc6oErfNjMMg5419QdU0WCwWHLTOEgUWCubfTSKsk2eFEPVVBXjClLSqnSMpJmmioZNVswBsxgBZArjdbi+joCNPy1wuATkL+tLgqbS9a+BlJgbz4bCD99M18Z+z+EVtm2P7XYk4coysabVYLDjorpwAPIm1AcFgXkwZyJx4awGHZJ1IEnLWMZ2Gd4QY4IfxK8nOdC/KoJmPvNei3zSCHMggpGwKgK8vBZ60gMfMsYgQB8TICco4sj7cfrdDjAo8CcBjGZjhln1Cd2Tgab0+LVPerLDhdG2JiAGYLG1XnqvvMfmZf5bYynC7+pgioh9wPPDkobqu4EiLmxoDM6u8rhxyiiLjwDGfFjejJNgMPEmCKS2+BGmJFtkA42StND4o+k9ACWSyJhkDtMW7cjWDEBfCNhOtJ/aPJPslI83Ws4A1BayUFtcQmAFFMtFZQHaNA3QwzVS1nunQEEni9vD73nM7qhY++TwxgBpixHa3w/F4xP39PVbrFVbrNS4vLlA5h2EYpI1weMDemgplyrg3yLIeZNkoxBwlvuVYj1EQjo0mxjskFnSscygAdU5J2LlZ2nryg7PtjE4EJjkfodg/botyePzkKc7OzvH5519iHAMOuyNyTqiqBkMfsd8POHYd+q4X4D3i9vYeXT/g5n7D3xsCTF3D1DXqagHrWljTgozD8mTNDJLZ2pBsshwGhBTw//m9/xw//slP8Lu/8zt4MwPPzk54cm0IqKuq6KnyDpuSOk0IeZ/mafiMFn7Ee87TwGl3iR4jSGYAzoAnAoyYhJw5l7m4uMS/83f+Dqy1+L1/+k9xc3uD/X4HgHMSEMdbbdtitVrh4uICx+MRMUa8/fbb+PVf//Uyfe0P//AP8dlnn+Hs7Ax1zyPsg7QdFfF/0jXLP7efkhRMtcj4QNlKnrOl6Y44r2BtIYNpLdQeNg0XQ7+qU/Ywd9JnPkPz9O8P9uqsgKE/J6G+sRasmpdZh8xaHA8dcgauX70GxYznT58j54zdYS8gIBeuuWvGwFmHs4tT5JzRCeDO9oZtQGUdLAHH/QGh9nj06AqGCKM1RQsujgN8Fs0zeQY8WY5BbAXmUxIShmHNM2Ufqp3oe253++Y3voXLy0tUbYWbmxv84Ac/wLbdYLVcoW1brFercv4H1WFWeyZ/VlKLYgx86IXFPAxcoFUGmmP9YGRCu2iQEn+/6zq8vr7mn6lrjF3AYX8o4uCr9Smsq9A0rYDssZxJ3h/gIUDgTpyqqvD40SOOW0QbMcT0c/aU/VEuxTO2dxwHjCOz05jVnBD8CCIDa10BfzQvJdmr3gfAWRgyCEn+7rnooubNONm7VQ0zs7Mo+2926IsNMGo1JB+XWFuLbuLvC/CUNSeRs6j3PBtY8oBhLZ80L5r8Ra+vLy4uCaYya7jaZiSQ0hvW9gyUDUWC9o7CFCgL9Ock/PPWN4CFrNjxQAwIAy5axWFjRAAZ6c+XACITh81ky4LMGUx6rSjVLhnb6gOIbBGtUwqcAjNTC6AH4CWAMaXKyVr2MzZL5olIRMxgyESgyBotlXNcIfMe69MzwBgMTx6j6zps7zcAMcIcc8Q4BJjgBfTApPshf8wQ48M3JtsoYxgm4WcjIJFW8zWA55ySQOApJzZPWjDG2hlFVZ87CtMm56nNaprwNsf8hYVExPov8ucE1saqZois/rFSxpVsJG1lc24az8vGUfuAFS2cgtMM1kDIOTO4R7K3FDSRAEzXXdd26vm2ILJw4BHVBdiBtGLEVAxXoZDyrip7Mwn7jLU9pJqnjjDxCimoR2L4AIL7ypHMup9SBnxEJr0WQNX1OKgDsp3RzTWxK62q/IwMJrCtTCWMk9MmAS90D+SkzKmZY03cmpkzMMzsjGqJAZyIDj3T5eu6wrE/4n5zjy9efIHXr19hsWhxfn6Ou9tb3k8xcO/4s2e4uLrE2cUF3v/gfVw9eoRf+uW/hNVqjb/1u38bH/7sQ/w//rP/DH3foeuO+K3f+rfxwQfv4//9//p/4tNPP8XNq1cCjLD4rfcJi+UK7WKJrvO4yRv88Yc/wxthgH9jhdxWgONqrE8BZ+88xfn5KW5f3CJuD/j4J5/grbef4bd/89ex3W3x4osXuDg9w8lyhfOTMwnauRphneWEbL/H6+vXePnyJZbLFucXp3jr/fexXK1BxmIYRxyPe4zeozscQbZCZR28IUQiGDggEwYQtsHg890ALIDTpYFHRqAsopWE7Fl43UslL7ERZNBH2uWiABHKulDQSadxZuQC8utUNmN58pAPATGonkUPLxOeYAwWixZ17dgOEoGcg7WsBZAit4xRzjA5wVJAjglDxyPruX2Nh0ToUIGiNCGJsSY+DyBTBddzAjKzXofBo8seJhMaq8FkzTT3RKiQ4EOCjx6nqyWq2uHV69cYxgG//Eu/jLZpcHN7CyLC2fk5ixl7z0KZMaJdLoq+18svv8SPfvQjvPn8Gd54+hRXV5dYLFe4efkazm3w7M13kKmFIYsEwpgShpxZR8PxdMIGDZ/bqoKgZxiTRx8CYmPhKKEOhgG0YWCtsmaBpqlxdnqKnFiQeLvdYrtl7RzVZci6/hAAPSaEFDAEzxbA8vqZ0yVsbeBqB+8sUgwYwYy6y/MLOGu5/Ttz5YvFkJe4HzYYR4/gOXg/WZ0wOG0NnOVkj+0wFX9RRvwqtRysv6N6JmTMBOLkabXtV4L5HFkvI3pu7YAkRtY6+NFjHEYeJDAM6Ice1lqcnp0J66jh4NH7AsSUOGP0bKstB41VxdOYmLnJ+7Hve05exU6TAVJksE9b2cfgQfCcMsh7xxhL3AND8Mr6SgRkCx2AoYDIFAxnmfJlULk4FQrkK2UCid2eV78VVOYBLMKcIgNLhkFgZGRyUjyZbIQmrv3QPQCtxpFH0o8iuM7sMwtLBifrC2jVX4EPGAuGfysQWSyWK8QQJGEZENNOABmH9ckay9USTbtg0IKE1e0ct/QX30XQ4mBKzEqxhgcEnJ2toS2S1kyhkTFALRVhP/ZAjlivF6gqg7rSNrWMum4Lu1NZBurHrQjnh+BLkcnIpEvFSfQPfAanEdkpjiwMX/N483EcgEyoqmnM9jD0Ek9H1DLVSTWxCuAkn0GYWjX0PGgxzwsoOy/kzotC+rM55zIaHIXFl1FXNSeJ63VJygGwvfcel5eXRVjfSOvZcrkCEWG5ZIaOVvqragI5gYkJDWK9m4iEHDhuXq9XsEbF2Jk5FXOCilZn2aONsKXXqyWausYQmHl5ul7Dh4D94VB0ZPVsa+yUdMKVnHeN80aZpLpuWvyV3/xt3N/d4f/7e7+HF1+8wPf+u9/H/tDhfrOXQm2SaU5AFs1Wqs5Q1QbVmtu4YC1SFpAoAZQjhoGHNEQdjhADXCWTPHMEUsDY7/H5px/hH/yn/yf81d/8TfxH//H/Fo4cXON4iJHUjDkGn+KwnDGJhJOAbpp8abwmZ0dj8LJnoUeW9Y8cOE53BI4bMndSZGL9IhjCxdUlfv03/i387/+P/wf8k3/yT/BPfu+fAjJqgoh/n+UFRtzd3giDKOCnP/0JQvD4oz/6I8QY8fu///s4HI8wovGobVgxJRy6bgbyS26Hqfiv8XKG6ISBZNLsTHEm5alQPlt3ECGDC9HzIQR93z9ov9WfV5abttnPc5oQ2ceGFLi4bF155hNhgBn3JF0FPg+l8K/Pe3Nzi/29RfvLfxnLqkEaPYZxxP3tHZbNCgu3xGgCAhL8EBBDQuV6WDNrKUxMZgijR1VZGGcQhhE5BOzvN7CVw7JpMPgRwxBgwaBTlAFAhqt6OIow/NnlWenmMBXrJulrCAMSEqqmEtCL8OLVC1zf3cCSweXpOT54733EFLHf7vDlFy9we3+H9959F0+fPoU1rF8avEcEoa54et0YuJOJHD+zjFwmnDsdgJG4kIGMYiO5s4kLlW3b4v1330Pf99jtdqhshdViVTb79n6Lw/aA65fXGEcWcrfOMYNTPmvwAV5yQjeOqOsai7bFyekJrK2QhC+CmHkSdeQhIqpjOowePTJq15RWWQAsDWAtGusKk95JbhgE0DocjuJ3eYCP7z2C9xjGASfLBZq6knZJwKYMl4CqpHZi96U4kfEVrWDpwJGHy/p42tqvsQMRADNJJSmOMMdMiHOJwj6EkhNM0Sj7uq+vDTyRtvhkCSaV/knTB+pN69+5JY5vTsUCC7jk7ETPAkRMmwPLUolMMhJ5Xk3SBFl+T6siSARFfDR4JZJ2A0w/Oz3Uhw83xQRQksB5Cnj1wT5kxsiY3RiQwdpJCkw8EPqDAGHEE6+MXCJXXAg6UsVZC+MclqslgIzN3R106gIj0VGmBBgGMqAtWJjAKAKUkqtr4SO3/Vhjkc20sVIWAXZ1RiTMK3A7WGKvVih9GpRqixaIgR9dH654yDOb4xyz9TFQ5yfGGcqcwaxaQ0KFnlViH4wCzeWczMGmLJWP6ZnIz2cS4ElZaRAnRSU4+XP3uiS9xkytl7zvUILCOTuq7Dk5G0T6OdN7AfwMsoJ3egeahOjPUPkt/gxZW5L3Bz1cB/nw4lz54yRQxwSaTTty2scqdBuz7N6cYBIhK9go16qV08mxZuhYzYRcGG3T9DQBqGOATvIJIWB/2ONw2ONwPKByFdqmwdj1Ur1kZ1OvVji/uMTV40d47/338eabb+LZ87dwcnKCJ0+eYLVa4U/++I+x3++w3+/wq7/2a/jVX/kV/PCHP4QPEUkm1fiRtUH6YYRSX4Mf0eUBr29v4E6WWD07ha0cU3/BSU29XqCuamyaGhFH3N7c4fzsFOv1CWLkBNxZi5xqLEVcURPLjMzi2DEIeJ2wWC5wcnqCy6tLLJZL9D1P0YGZ2hyccbI3RKmK+L8xEYYIbHuPq8ohYWolmoPPmTTYSkhC0y77R4IdbedIMrSgiEhLlStnU/Yv7wWUdggvdN8Yg+gZSKAqYo68FydbAjmTuXhqDnBySvBeK14OilLzJEtbDoUc03KvqVRDUXyA7E5+TpGBJbUn1k7DL3hyFYOr3B3IZ6jrO3jvsV7xVKW+78sEtyzBDVc0mTFrrUyMkjY1TeL037rNDtb6IhiuZyWkBJ8TQs6ohLVopSBDloUv9YzHHDGC2WqQtcsxAhLYGmNRC5MoJR5PPsh0oGKT5LyqLUyJveoYQhH7JWtgKgeXalSZPzzJvRpr0Da1aD1kGWHMdHZnOZnM8p7WWDRVLToonFA5a0qFr9gXubaswBPp3hMqt9jLh5xMzP6m+0Lgdq1CEwHSnh8E4DkcDuj7viRpzrmi8aGA/FdZrhq0ETlMtHcRPxd9O9b5ieVjp2SGAGEsK4vWmaktnocwxAmgSAIs5Pn4ZQB2KqpoFTZGQs6Gi0tZimASfFMGC40mFqBWwCGlKGPgJTAvTnHWXk5iLRTMyhCWH7cDhBhhyBZQpJwvKbogk7RINLwmusbeg0SXUlm3lWOG++h7hBgxeg1cA+q2QZ0yWjIi4yBsRog/zxMTcwKcdQ0Ba7nNKoQAn8fys3rL1nLMFSKDrlXloMLxai8rlZBIwuKFhbLgtaA2+TMRyhYAyhjlX06gIQQsiyHJmlYCGirTwXEMR1Ra5ZLYKF2pebCvTPY8+z6L2086ZCxX8ZC9x/bClP0+j1esAG0K3hqTYTEVZjX5rpwThr9lfbLSAslyC3NwK8n1K8tLgScAsyQoFcDT0MSEMsbAh5m49GydVcTXGQY7rVGdUGW0o8SVZMT2Oys2UfUfp/Nenl9KqMjAVhXeePqU2x/bJWLM+OLzL3HoBuyOvsRlObNXrRYLKcjWrA/marBmISELcEYS8wcv5zl4OfdRbIyBkcJtjgGH/Q7/+l//K5xfnGO/3WG5XKJdtOyjw+SHNNZn2zMVuHMxkFOiSOX/xWpmQKqOBZyC7C1trzOYmE6QtCLJWWvbBpdXl/jWt76F7/3BH0hBX3QTkcsZHcYB3fFQztDd3R2MMTgcDhiGAa9fv0ZKCU2zQEs06+7g2GlU+ywxxexSiw0oOQtIdzE/nqy7Z4qxNY4HsUQB5xumABhfZfJ/9aVdHJQhtkAkKjLbWhgZ5sEXODFwJS/KUoBWUmmerRFrlhLHDFI4Cj7IJDf2r7Zo8/Ie8t4jW4vKWc5vaRrKYciWThFkYOgH1Mho2xosyTix21KKoGgkN55kRVjDdRBNR5oGiuQs/jrDOIMsfujYdaC+x6nopp2fnXGb236Prjvi9uYGV5eXODs7K/ceQuRrrDTM4RXk3EfiOGthZzaMiy4TC660YSrWYB1OT05gjcHxcGC7DhIduQw/jBizFrwegvN107BvAMcRQfzkIMwnzZVC5MKVJ2LZihgRTZTWZxm+EROQCC5lkGX/4YT8QAL4hyzsWhgpEMfSjTB1x2SEMCKMA1JtQZbJK/JbRUaI7akeAN39wGRNqZzlAkarSFOeOctM6rpmPmRmJ2RPzWM0CWCKafnv8/r64uKB+7GdsaWv3BsR2KxZfDAz9xU2U0l2nDVoXI2UIozlSRwhRSBmaT3KJaCxEiSOKXNvqeONHxIV58GGmA+wMRxAWwCIuhgGiVTvIgPgyR9qt43haS4xoUwFiSnLRCCDUQTDVaeHR8uTsK8MrK2EhcMk1ZQFhIsyucM5FiWUiVJccUlCLU/o64wQPLrOo664v/jYd7DWoWkX3A9qOBBzdYOEETGrsj0V1k6IgsiL+Cm392nGxxW48dgh5SRUTZJAiTdiTTUq44DAf7cVBx6jVJNyTjAhgUyAk4BcAR3IyGVIV0YCUGJcSSJYhIYEQLPgKXNGNj3v8HHkagqJzpUlgyiGiKtIgJfE2Epg45yDelJtO0sxPTgQWX6fW/nEBSuYpdMCOEyCddyqM46+JFClrYdEwB5Zfo1gycI4wPujMKZ6aDVWR0XnxLcaogcFTXQMTF2VdlJOzDlxLjgSgOxmk/+kkmtIRNunGwT0cSKD4xsOXp11ICvtIjlL5RsolmlO5ydXvqUBtbpzSxbGTuNqx24U58YGe9UseI2cw+b+HrvdQaqdpuyB5GUkcMpwmVCTg+9HHDZ7OMsihZpkGTJolwtcnJ/j8tFjXF1d4dvf+SW8//77WJ+ecgXBWbzx9lv4D/6X/yF2uy3u7+/xl375l/H82XP8r/6j/w122x26/R6H/QGfffopPv7oI/zrP/hXePX6JW5ev0LMCXVd4fM/+wmcT/jmr/wlHJtzvFefog8j+u0BMVcYIxAfXWLIhD/8wY+wO/b4zb/211FXBs+eP8d2d4fDcceDEVKGMxWStFD1Y4fXr1/CLCq8/cvfwrvP38bV+QXutxscjnssVmuQszgLEeQcjiEAZJFhYSWhjBQYk/YRxz3wSTZY0xrPzleoMaDOETEwfTwJ464itqVGbCcLEnNCpKC/BkUZQEg8nUh1w2IGuO0jIQ8RMRyltVDbpDlRQsowmYOtZduiqR2y4SmOPkYs64bBBwAeCfuhg0/AMrSgccS+67CghMZoi7WBc00JDtmXRSQQEgySIWRYOcYM0iYAPhMiImJmrYwx1Ngf9nBVxsn4GNYZtM4ipoDtdkBVrdBWK9x8+Qr9cQ8KGYuqxUoYD3kYQSHCd51M9gGWywUHY1WL/W6PP/7+H2C5XOA3/sqvo1ksQBb44sXnCDGjWSyxXp+gWTvUSwM4j34Yceh7YXIYmMUCzlg4Sbxq2yCahJEC6sz+0CQChYRsa8AA1rUwtmISABFgCOdnF3jz8ZsIMWG3P+Budw/UFu2ygWGCPjMjKWNzOGAYR2ZcILM4pnNYWIumcjhxBkTsF3xdF/ZIBoC6RhoThsGDvEUyhKatUTcVmoYB2EVTSwSUEHNAF6KwF0IRZVagiOS+WQiZgYUQQ/HlGcR1KrE/SKKLwOV37sEnQiVC1yFFHPoe+9sdDscjhp5ZTvV6iTfeeKNMHUs5oeuPYA2aWkClURhNCYYynLGsvTT02GxG7PcH9F1fJmkqbb4RoXRDDpUFnNpOz8/MWov12SmDLcLqCsHDSSud9x4xMhAI9WfOAmh4f2dtdWCdpJQihrEv7RTOWFRGWsrIIkVmNac0saJIWdgy9vzoB8Q+lcEixlH5LA0uu66HHz2GvkPOGav1CYgIPnoOpmOQ1tMEWxnAGOli5+TegVC3DbfTVRXGYYT3I0zVoq4I2TDDuJ0JThtXgyXe2JkpuLPZbBDHEb47oGka0furRGtR4RlJAhP/mVzFOpjGCuudC4mZmOWtSYbas8pWcBZoK9ZPmTN1Y4jM7FSQKnFc6UzFcW4yxUboSxPT5XJRCi3cAuimVIFEUwoCcsngmYwsCTCztoi09YyB1TnjwxqHUniSWEeTMCv6lZA9P/qxgL8kvmU4Hkuhke0vxwUEeiB+q+1MRKzzZQ0LGavm1vxnkTPWixXHLVY1Pk3REfXaSlXaSHP5PJ5gmoHEQyOc5XYbFYpumhoUM0xM+PAnP8P9ZoPVyQmss8V/tfLMrbHYS2untu+YagFLBoiSJMnYcoMKh27Avuvw5OoSy3WD89MTLJoWm/s9ct1i/eaTAoLxflBVpYyUPHIagX4/gaEagkZOIPv9DMxgfBopVUjBYQw8OKlpF0BO+PizF/gX/+3v4x/8g/8Uf/Nv/A/wt//W72Bzu0Pf9VicswafMw2vVJwB3/KhZC0PLpnlmymxjUzCuELNOq4pz8AaUjFiiSM1VISCUbnEkR/+7CP8X//RP8Yf/uH3MQ4RzYKZHf1xD2MIl1cXICKcnp6w+PNuh9fXt7i5vS/g/snpOdq2wdXVpQxEctjtdtjtdgh+RPQjF/Zk36iWjZoqY7ktXoclaDKsxdYoxYE5iEQCrxTAVYDnlBggzmlaIAUd9D1Uu4yZTRyDKxiohYUhDUXQXMFxLS6llJBI2M3yGocBYRjR1BWqyuFHH/0Ut/sNluenPNCgXQAG6PwRtjJYmgW2O48QeThAXVU4PzuFqytUtkFKI3wcWEMXGc2Kbe32uEWbG9RLh4QAcpyTpAE4SewHnHVwJmFqsjJobMMDFCRnymojdIKyk5zNWhhJRWJMiABOTk9xAuDq6gpP3niCt95+G9fX1/j+97+Pg7QHfvMb38R6vcK6qUAxYswBIQXEIZZuKFtVzIKSYitJgcTmDNvyJLq4C/A+CvjE+f5iscC7b7+L7tihk/bgru8FEDdYr8+xWCzx6PKK5VJShKtZa/n65oYZcDIUxRBh6Dtcv+rgTEROHV6aFsZUODs7gbVs5511WK5WYksNQvKgkYt1xhj0eQQhwyEj5IwhRZZwyTxhjgBUtUVKAdcvblDXDo8fn8PBo4pbdPf3OETgyZN30bYrHvLnAG+lEBUBkAUZi4CIBKBJ3OWUKU8glGhX1sYiZ1NiGz0qP4e7EhWt5VK4EI1PeJ2+KTpVYGLI1319beBpuhYqk1IU4eWqwnSxKDeSiyibUeCjtMrJj4tBKSNYYxSxY4NkDUwCsuhvZGm1iuIArAXIaWIPzKg5eIj5K9KckPPUdjcrBpZXYUsp8qqHT1DuqVo6VXmy0pa1WiCfXZZBHD0JRTJKAJccBx1cSUKZKGErbkKLKRXBPG1NVOOijkOr/rOPLdREdm6QEdIKxnGbW+1q2CyT8BQ1z1kSnFwAF8pAogSTZxpOM9R+jo1mvR7BOEjRPpJqQaIHKGsuv5g4mJPWMSnrlCCT8uRIpmrHxEJLlMrazw+ROiStVKDsCJQqvIzj+nMOHe8nxdJAnHzr+7IeSpjaEtK0XyDssRQTI+KWqxPTPejKKTLNZ6lMqir3MQWYZX9i2ub603n2j8pG0p9VHFB/pVT3oRVPKqCXOvEUM2ASG/2k7Cb+95SY1UcVgxTjcMRRjDyWCwA6njSLoClXlvphwH6/w+FwlCkZomNhCASLtm3RtC1sVWG1XuH88hLnF+c4OzvjNl9i0NpYi/PLC7imhqtrBgCMwaMnb+Ds/AJx8Oi7Dienp1iv1/CDR/3jCt4PcBVTux89foSLy0usmxaXixN8cPUUX25v8eLuNZL009vTNewY0F/fY3s44vPPX+Dq4gRvPDrFMNQYvQOToLNo0gE+8mRKIGO5XGJxforzi3OsT05w6DqkPMr6CTCk6rWYBIWnnZphkZEzoR8zOg8cPFf5HU3VqySAvJntCQXpy5mWyrrujwf7RO1moTGzDR6HQcafx6L3pIeEIIwnAYwz8oN9x2ecLRPH+wwkkIBXytzT86tV7yznouzVchqmQ1nOR0mY+BmExCyVFAOO+y2QI05OL5FiRHc8gpYOtW1wPOyx323RNg3qppn2qVpTNsQAGZ7YBmC322G/23P13xicnKyRoOKRcq7lfYahl3YW8DNISaZSTe3IgIrNSrWIRF/POrZHasugrCjRWzJTwKeMujEEeJk8WRkS4MkIvB5L+w/bMCoBJhKLKBtrmUKemQELbdmRhU45S4EmIiVJ6IjZI6rhpCuVcpSJb56FimXIQNmXGQyIqbYQIO1zYjdp2l/FgM30hwoDVDT8htFLWx3rc4CIgbWqKky0kFS8Xlt4pqo0a09muMqKP4+lpcj7kdvihDXB10vlOlgjgfevtmk4GdWsDI/CKswJMWkMwobUiG901oi+oikMJGbaoBRWOLLU8/KwtX1iLAo7Vc6VmSX+3KIei+3h9c3QiTcljouahE0vPddF2+/B4vBLYxMn+1I1CY3RtnWDunmoR5VSKqKzZgb8AJBWQmnPzPP4bXrmysrh1l6CpZkOo1oLOWtzvSR9Tsq2qaybnUsJ1A23+ai/l1B3Wn/ehPJZ4hilmjwfoKNgCCReyeV6eF0mmzdrCYIw4mUP8DVQ2RfZTrHsw3WY4pvJMubpn+T5paiMkimhIEm6562eXGSSdRSGnNq5B19pCnxLa6BegwJQKSLP4gyanSPdXwxiTmulk/u4UMd21o8efT+gahq45DCM7NNXZl0SS3gUjTWe2im+kOmuxXdlQzCJC53O8rTR4L1odup+1mciXOScwaythBRHiVtjeb6cnGtMlwtDUveCsQ7WcltPFGqRqxf8XMeMfefxkw8/xtM3n+Pp0+fY3m0xdAPWV2tUjUPdLDgm9bqXPVztYCseSe9mjFhrWRu2AIHzmHt+vtXfZpRYXeNRIIteObOR7u7v8NFHH+H+/h7qixU0nfTpJnaZ2kY9tzqAyBjWslQmiT4f2RRoZRBG7vtiDxQcJUDs+CSTouev+JR5MiTXP7UeTstV9t8styh5gPxlYtXMgFqanTGafVQxwNO39UuvQS8gZZ68CCJsd1u4yqHre9YEzqql6afcUY5zjBHJaq5kpfWV40mVQ9HW1oxpciqI2YCcPwdosXwefxVfrr5gSmBnO0buXP1QRmFkApM2lvce1jqsViscjzzI5Nh1SCFwG7yzaLuO7aCd2jWVcUSqG2y0IGDkc4jbakEy4GSWwxAXtirHheAYApq65o4KZ/l6ljz1uHYWh27AdreReA/YHfY8CKNdFG22GPmMd32H4+EAYIQhh7p2JcaY9h7rAT84b5lzRRmRg5CFqCK6upwv8zRo4wyGcYAfe1AegLAHhXsEn5ATYd2eASGhOluyPynxOM38Mmd2ilFkIchQidMkxi4bczojuu9VW3nCQqaDMz9Ds18u/mW+U/6i19efagemoFdkWNC6El2ZmEUMcuoNj5gYKMEHpMwHqHIVyDCVOYXIU5ksV641yfEhwKKGcQYmMoOiJgZr/Dgy1S0EFql0DiuZOmaImOkUeTqCKQEaFYHrYQiymXIZWapOJqeJwk85Y/Tcd1rXTDfW6WX8YhqpF+FiS205iAAQckLwHOzXleokcYVrsVxxMNX3iAmgmBGHsYjzWedwen6G47HD3WbL4mjOMa3XEHLkdjhuJUFJSqKIYwJA70eM44j7/R7WWZycX/BVp4T9dsuTvAhYGWDVrAAiHAc28qzST8Km4S+mBiY4qoCcEMZJbFUsBreFGG7bAlCCSStq+2QICIkrT4W9IwlLFMH0rCwmEfQ0BrUG1tqWAaVzuyKknaMAJiVoZsfc9ywsW1VWKJahGEauYHMFkYyFk8ArRhEznN2f6nWkJNN0gsd2u8U4jKjrhtc8MFXVD4EFjV0l15GxWFVFPF7bP6YX08ZVcDdGU073wwAyF2cBowLLsQThHAgYRC9UTnX+mIxFioG1DaoKpq54PHxKKhQm04Qya/PQwwDi/8fanz3Ztl3nndhvzrm63WR/+tsD9wK8AAgVQYo01YQllSIUUS+usCP84H/A9Q/ZfnGEH+1SuaLcVFhllShRVFAiKRKgSHQXtz/9yZN97mY1s/HDGHOtfQCxhIrwBpP3nDyZu1lrzjHH+MY3vq8sCwxOAKYQ8NZxfnHBZ198Oc7IP3r7Ecu9JevtRthXhexfT+Tx86d88vNP+PLzLzh99eqNgrKua95+++3xwHr01lv84Ac/4J133+Xw+JjLqyv6YaDtWnwMY6dzubdk0255+fqU5XzBcm+P8qigKkt+63d+i77rWf9vb/ln/+z/wx/+4b/i3r07HB0d8V/8r/83HBwds9m0HBwd8c6DB/x///JP+G//5F8S6oJUVRx8+B7x7h2ublqutx3/3f/1n/I7P/g+/+V/+V+QFvtURcH6Zi16NyayjR2XN1f4oefwcJ+33nmX9z74gCElfEzq4tJzdnVF18n+7HvP0MdxpNU60UURXbnErHQEAx1wtoEvXns+OICTWYYWEj7IoV2U0gyIOGGrWTMKv/ZtT0xJhe61SBBCgKwPzZdIiXa1xQ8D2+1WgHK1N3eFkzGCJEWeszrGZJ2wV6OCHkno28YEjE1gGtnHtqE0PXboKVhQFg3GDRhNiKwRpqqAIxMYPoJdThh8g/c4Iy6mxkQsltAbtsHiXIUFfvHjH7J3cMCd+/+Atm159fIZJ8ct7sjz/NVzrq5v+Pi732WxWHC7XmENowlAiolCi4NZM6PvB/7kT/6ElBIffvghy/mCspix3rZsu5aTu3doGvn70Hu++PQzHtx/yLsP3iUVhlgbbFFJ0VHK3u4HAYrWG+leLpqZxtxCAZxEr6ChKRzGOWlAFIXYLxPZ9i2rdsu63dJ7L/dGzxkfBQSKSRKe0hpm8/nI+shOs2VZ4qqKbSusqFw0F0UFCFPED6JH5pyhLByL5VLE5NWVru23ZOAjA0+bzZa+68aitspaMwjV3Y8sTGHyWmMVfDKTeDgimLxTPhCyPhLI2MbZmbAmYuDg4IDFYkGl3cq2Ff2crGEIolnTd5OFtuQslvlsQVSdhe12y2q1HsGJ4CUuu9G9RrQnh6ET56yiYLsVV8s79+5S1yXe9/qzUqRmxoBPaRxDWuiI566g6qThU+8kr4nBT+P/zjgKHYOTXKZXEEzO2rIsx8LTB3Ghk3EaQ9U0CkSJePcQlLkSZE/ZSorXBBSmkH2YUKH+gSwiTkJ1IuScqHYEw4UFk6jKBltLYY+1HMznFEWpYuVxBP2SXpMJRLPMZhWpLkgL0X4qi5KgemtVIZ+tqedaELdkp81dIHtsWhlD05QMwzAKHgMsFgtms9l4BmaWT1TqfFFNgNh2s8XHPKpqcEmYZ3XTjOL4NmV9UjteC2EuubF4zKY0UjQYLW5R58l8/QTgnT7D7ijQNGoC2V0wy05MZ32h2pxWc51kZZRmEpU1lK4aC3e5bnlUMI1sqxgjyXu6zUZyr53CPscKi8TpQXOrpqmVaVSgcDvYgqjvNyXGYjLjOFI0TmDT7hhs13WkEMW1a9ZwwCFVowLpNlFVFYdHBxOYxS0hDJTO4BzMXAQCfbcWBlWzAOsonKPRtbKczbntex5//RUvX75guTcHwLWiZxeGgahaZ65QwEX10samsOZQAEWzwJqCWOo3rKUsG6rZgrKe4aqatpPJgqaR0b39BwUBzx//1Vf8+5884f/wf/m/iwRiMhzcWVI1JYv5QpwG1z3bzQ03N2c8eHiPkzvHPDo5Zn+54J1332U+n3NwcMD+/j4PHz7k6OiQo6NDidkh7lz/3bElNW7Q3FIANXHe7oaBp0+f8ukvPuUv/uIvdFSuHOPVYm+fwjn6XsaFWnU8y7lpSkkFl0WPUVyGo+bVcibN53Nub29xzvH+++9TVRXPnj1ju91yfXUjEyBlhe+HEbwHJhZnBiytnYAUtIEe4/h+ps8t7yE3XQTjNyMbDCQncM6poHmWM0gUlY5fMQE3MYgzZH4fhUoDTO7Z0kgQdshUqPth4OXzZ7TrFZevX9PMRE+yWyxoNyvKqlIn7qSgBkQi3dCDKcXgykmTzIcekuwJlyI+iEN623fUdcNyvuT2diMMaN/LOFtRUyRH3ZQM3jP4gfV6Rbtpuds8pKxrsDKK7JMaKUWpl1MUBoxJU/MBYLvd8vjJE2bzGYeHh3zrW99ib2+PL778kqvLS54+e8br1695+fIlh4eHvPvuu9Sqcffs+XNub26ZzeciQbOrGWfyyJ+cPXuzBcxg6HUNKEhorZhw+UEE1sdr4hxVVdC1W549/ZRffPYZP/rLv2S9kfP73fc/4PjkhP/st36bop7Rdf1Yg61uWizXUscbYSIvl0vef/99NTeI47lbVTXOFePZ0A8dWXoAa0WfVVeTjEzLeWSsY73d8vrlcz776x8yK3r26oHjowXLxYyr5y9pFkd8+Nu/R71YUhS1jh5P+tPGOCWHK9nEqy6l1bWtDPOUkta+Bh+91pMChhZlpWLqnqQOqZML+6/CkCj5aJdl+J96/PrAU0arjWoXaKciEQkqAmcV8UZv1kRH3oHKNBjsouAAqRA9AbQ7K0EA0LnOEBODqtEP3o+aDd4PkCKlm7pMSbtkI2SbX14LGe89jkLsclWgbNAg6rQLJd2KTBs22hmeRB/H4K1Ji6D44pIyjkeZyfY8xDS+v0KV+ccZfNgBEKAsK4piGLsHNicBiuQLoKCdKpvnoNOIrHsfpDvUdTjvxL1p3LRy8IjLkBQKY5Jj3kT0x8c4ypamzle+ntYIk0kBq19GRIXmDg7t6FlGynUGW0hpFL22imOZlCCGURsqdwYhFxJp+tzKWpq6lIlMac9ibillZpj2K50wC+L4PJBh4BDFKcqm6XWysHkWyV+vN7Rty2IOxgp911or4n6CKGL9QCJRDiUpTWDbCHCOnyNOoNLOXpG+5G6CoO8+GhF6i9NhOnZmtJOWWVG76Ht+6hRFOyCLi/shqK6XFEjbbTsG0dlsRlVVWkjK/Rp8YH3zmsePn/Cjf//nHBwdcnB4KMJzyCEUrYzUYKTrNQyDWNAPMuJS6P7ZFfrNr3l4dCSjMlUpIzt+oB96+pxkaNLrCkehwtRZ8yiZiVhni4JmueCbH31IP/QcHuyzWCw5PLlDM5/jQ6JIJfN5w4PDE+4eHHNDpA2BWVNTJsvho4fE1ZrbywteXV/z2VeP2dubM5vPwPZEAut2S9u1gHTr9k9O2D84wDhJvk2CqgkkY6mqCh+Sjp5qF9A6MJPmS+52V8bggcFC2yfOr1sezAvizGKM185G1q4JJKwwcVLAhPz82v1UYD/FSPAC/IuQqAqn6gjM0Pdiz50Y409ZlFSViDPHmLssjBT03F2x43rWoCcifnJeEIQ56YS15ex0PuSuJ0yiqWOna9wJ+jeN7XEnbvo8rq37OAYZGXp9do4PIibd9y03V+cyelxKklNVFWEYpDjOOlLW4QrpZL169UpACBid0Vwh8dSraG3urK1vV5JkdB1N3XB9fYVxhQhL6rmY9RRcPieTrI1+GESjJUW8JigewFgqNyW5RSkJelEIWLFZr7m9vdXxraC9rjFKyu8FGYuvq1q1r0RnYGS9aIzOdsq52M1neVk67RJW4rJk9Y7qupFzSfSagv4XLcDHQjUzMFMazRmmJoKyKnKBHfx4n3c+jJwXev72w8DQ98IQLgsqU1LrCGEeozB6lllrR+Akeh2jt2+6bY2rS/ORoijHIr0onP5Obm5MlCA5b6JqRJSTSH4GS3eA+/zIGnHZ9a9QEdI0xmfzxu+mlChdJftLzSOyALaAYxOjbWTuJPQ6B6LfMbnQ65iZU0a5cSn/u5FGIJiRCY3VccAaOVem1YVVk4DMsrDWCaBCwFo35jOMjRsZw5Q4t0utyutEwExnBYTOBWKvWhfBe8k3C9E4CSHS6mjgBGC58R7l3DJo936XceFUryyDSzEmyQeS6laSASw7roHgsxC8GTPwXbArg6IxyTjyeI6bN9dC1qtz0en7VsHp8d+n3xnXv5kaUPnLGF2DeYogTppq4uybZQWmHCIlWQ+7a3RkjuTiIq8RffM5d85ae7s6jplNH1LWmFKX3DSx5N6MSWNyrhqAucH25mP3s2OkqbxYLmnms1EuoPLV+Pr58lRlSZo3ZNdC46TQL6pKz1rJEUiRqqwoC8d2veLy/Iwnj7/m5cvnmv8lUhpkzQUBYSTnln1irI4+jjpVTkFBMMUMYwuRsjAGjDSVcDXBVkQKonMkB8HVJOvAOkK09MHT+YTt/DjaNFy3FJue6naAkPDrnr5bsd3ckoxhtd4wrNfsLWasN9uxsbm3t+TBgwc8evSQt956i3v37rJcLrFZYzCXZ2O+n4TxKIXEeF2FydsJcN934xqW62knwFwFq+U+a3N4Z81Dtq4PCqQY0b5Vl7cMIgkbyPL2229xfX3NzfWNholpzeY1mNfv7mMXUM0/M/GlJhbHVJKm3b+NfxpBbKQeya5v40/GpHqFaTIX0LrWG5kMiDvAUyRfB2HPOaeM/yRnZN+14sZYG3zXsl2tGLSREAevbGwU+PREA96JRlTW/Mm1jTGWumk0v8onPRSlsqqRGJy1qKIy9a21bDZrLs4uOL5/j6J0wtY1Sfe3sLFsNJhkx2s5xhNrJU9ZzHFOzHZub2/FKa4o2D844EQd8byaTrx8+ZK95ZLl3h5Bm8qzpiGbvITkNSble5mUpCT/K5wY3EgjRPLQuqpgPmfoe2IINLU2pDYbLi/P+eSTn/P02VOury6kQRs8F2ev8UPPy2fP2D845N79+4AZhbjzORJNHJ1A+74fGx8Z3JIpGEbgaVxLxu2MKBpsMmJSlSKh94Sup91uWV/fcPniJWmeWBwYNnFNXBXsv3vCrJCAmZ10wSjhS6Z+RiZ01opSrcU8/bDL8Mtairmyz+dD3s8ppVFjcNwvCd7cbYzjvv9zHr828FRlnSCMOk8IUyUX9TFf0AxiWGSG0aSR4p4PxdxZwUjnOqn+QT8MpOBHiniIAh+4kPBDoO36kV2BbgJjpRNrm1rGP4pCXcfiOEGSkah84I6W0ErztkVB32/w3gvCC6OoIqDsGivdNRVnddZg+sysaXFFQVVP8/jZOj4oWJBUUM0pHXaxSKMWRmY8iKtJZNbM8EOgVEaBQZz0Qow0jbqwxKSaHwrcKRBIivTdwGbTsrpdy/NWl2MBCtA0zXgd8ud8g+q903UC6EM3ipeyg9ZnmqMxRlfSJISaEdT8yAE861EJDXdyz8mjO/l4yOK+RVkKuDZS6M30eVOYDkCTj04F+aJsKR8iCS/FpREtG2OgrGvRwer9COg5ZZVttx0xBmpXagCZbL9Xqw2b7Zaz1+Lc4Y/iSLkUZxdHJIzzw9YKK64sC9ErMGbsvohIsBaw+VrtjCLKQSICsyAJ9ZR2SpfRGAhBWC6lLd4YbUkknUfVK5cEaE1B9HhADqXVao0PIpLXtS1np68p1HHkwYMHLOcLri8v6Pue/b09unbLJz/9GT/6ix/y3/zTf8rv/N7v8oO//Tu8++7bOCPjCwmo6mp0deqHfgSghmHAlqJ31TQNZSnds2bWsNzb4+233+Kjjz6i7TvW2w3r7VaAp2EQJ5TZbCwecyGHswQjguaeBKuVFKYYfud/8Xv8/X/wv8TJ2cplHOhDoJ4vqJ3jsK751qN3+e77H/JXL55weXXJcnbAbF5w/7f22Zxf8vmP/pxPz84Y/uW/4fd+93f4/ve+S7rp6GPP6cUVfbfFGsvx0THf+fhjtt6z6QeqakZdlCRbUNQ9myEQzZp4cQvGUZQ1MlQnOnIpCUuvsJbGOgZgiHCz7bi5WPP2wQH3DkqcCWAixpUKsPbEJALk+Di6bTlX0VR6UK476QT1XooUFY/OiVqMkW7baswTMVdrxb1uMV+y3mwIQxiTy8I63cu5FtC4lPS92ahJTWSbWoL1FI2hLA2lNQxqdjD4YQTeU5KmxhSTsgMeY+IZU8L7iHPgXKLzkdALjVlKg0i3XfOzn/+C/YM9Htw/Zn1zxfmrZ1AfsXd4RKOOfO3oWOXFWapsxOnKWf7yL/8Dr1+/5tHDhxweHnJ4eEjXtlxcXFKWFWUpgKwfBl69eE7f9zTNnDh4Ht9/yPHJXe7eu09IlphyswBqV4rwMND7QVhXTkZwtoN21o3YJ8/LCmtkNLhuGo7v3GE+n+GM4ezsjBQjm81G2Lf6v6BxNiHjI0PX4faWwq5hEo+MScTPvQ8Mg1e3VhTQKGiaisW8YbmYURYFhRUx9JQCadS/EfHxfujeGEkrXElQ1lLYGXHLVsbkgqS0OmpY6JnU5hPjVwCcfJ+ur67kHKtFi6KuK4pCOsOb7UpjyVwFz8VqeXVzO4JD+UvGBo1i9YaiqKhrSd7aVgwK6qZW7T8567fb7QgYeR0pPDw8kM60gg/tLrM1pZ2zC+azOVVZjoyYnBSGqOw9pmZCPgSME70LV1hhZoc4Fl7OFgo4TGdp1ibKYGJVy7XxQc4Eo2tNQEhxhszMs+x6lovAlBKmqDCN0eKzG+9HWYim02wxJ6VcVHqMiVirQtouNwiFFb9arYTFro598lXIug2iRVcUMnYYQqTrO3HE227ww8CinwnAZ8APwyheXFWVspthGKKySRo9H+WsK8tqZOoIwyrpqF1uOAUFv3LOIsV53dSUUdk3KY36RQmULaxFhe6drAFqE5hCGaDsFLJW7nuh3SHnJCfKYc7ApJmZEinp2IQCdgLaTcBTbopl9zTZxxKUM/Mpr6gsU1HkRpm1wsbrh+l+7IBOCTBORNkJIhvgFJhNKVE3jVyLbQZmE8YqAJaZjXa3KSwNrpTHjHcYKr8MIuTvezxEy8nJMfP5nG3XjaL/MQaGrlO2PCzmM/aWC3FjTZGkjLNZ08i1jArIhsisnDGva778xVd8/tmn/Ps/+3e8Prugni0FWE8yIpgNBIS5L40AZytcWVLN5rLObcngIz4kcDLZMVsuMUbO9pDAh0TAkoJoY4qOaUkeLwjJ4Y2jsJbSGJwV98Orbk1qPXFYSRN422NSiyXx/OVrePGcq9f7zOuKlH4sjJPHX1HXNcfHx3znO9/hN7/3Pf7JP/knfPvb36au63EPmszqScJYJZkRqBSARADh7XZN122lMWBkrdZVgytKNtuNrL1e8rP5fK4gdJpGnlWWYr1aEWNgs2bM37KguffCMGm3GxaLGb/zt3+bF89f8OWXX5GbzFanHDKz02i9Mbp57hTNIysvs6FMbterY2TKeXYeN30T/sxxHr0e/TDI+tZcJGV9MqamyPhIWifl0U0lRIwdBqBpROO3qWoK62hXK1xKNNbS3txwFSZSwKyZY10hjdWyIJYyidMFTwyDanHJp3FlSVFY6lmN9wObdqP7TTSQjCmQ/lOgcGB8ZPDdeF3Pz8/57NNP+ca3PqKpazZbaao6J42sfvAURhoPir4L2A00hWPm5jx69Ij1es319TUvX71iu93y7W9/m/v373N0dMR2u+Xp06dcXV3x+WefcffuXe7evSsGQ2XJ8dERzjlevHghtaAfpmYRShhRtmRTCtN23a1V8N+ymM/ZWyy4ub6ma1sWs4bgB568esmXX37G//DP/ns946KMKxrLy6df8/pFSegH3nn3Pb7/ve9ijGXb9SMokxuvXddhreX29haAvu/Z29ujqiqGoSU3kRnjvsgpuMKJU6CIQ9N7afR2/Zrt7YqbyyuuTk85+/xzmjszGrfH6vU517HlOx98hwcHMx3vE51JLEQrE0EmJQon01e9qMlrYytpUzCTG2QPjXkgmQyEurWn8XshqWlEbonl5sSU0rwRs80v7aG/6fFrA09C0UVFCTUhMRbndjQ6orrd5PnIURcpu7vEsXiQN6xJwc5Bb5POCpuJ5bKL0uUiKcSEiWkUMC2LUqmRlsx02UXtAWVQRIZWglTfD5SV2L2XmiTmMYBKKfDe+zGBzWhmvoFFKYX+lLCHUQ8n2UiMbwpD5i6DjGLN6XqHH3r8EInRM7QdYJhVDX3RSeKi192pMNj4Pe2W58QqhiAHIwg67gN78wXWGgEN9YL3vRT+YdtRlSX7iyWVK8b3uKuRMFKz9SJmPaOoiO7IzlDUfqLj5Sn3DKgIhV1YcJP7TwaocmKUUGQdCCZzljSAayfcWqX6kxCdgqjJ7QTWTDasMtY5aPCXF5VnHTLFfsiF95RoZj2cwWd9kLyUzPg0pdp8VlWJ0+uXk+uydFAVlKV8QRqTpJTe7JDmAytf9xgmNpQe/dNrj/tGBUnz7tekYQjTvP2kyfHmHtoVmR70sG67nmHwrFcrgs+uD8J8ev78Ba9fvyYzslY3N5yfnfNv/+2/5cWz5xzs7XP/7j3ee/sdmqomKoCVSPheuh1ff/0VT58848nXX7NdrXWfFlL4WBSgDdRNw8OHD1kslyMjbwhTlznGiE0yDz12sYwZk6fd7nNOmgORTdfS9j3JC9jSWgEn+7YD6+iBe/N9fvf9b/Pq6pqXr8+xC4MpHPGghORpTk4Yes/zy2v+9Ed/xZePnxH6QSjp1lNWBQ/eus9ybw9vDD4ZRItb17CRblBdVWxcy3a7pet0TMaiXfisKSLvvQuRiMFh6YdI33lWreemDdxZlDib8BFZJSYXNxOokJIkVdZZ0XNzQpkOxuv1SWOn2CCdopmOMWQ3sKKscEbGRLfrDdv1mvlsxmzejPT5DOrnbpywDAX0jcPAECLrGGljJLhK5RQjToFqa6f7mLX+knYTk92l8GYRXu2i54aCi5hCLKB9NPhg6WPk5uyCCJzcOcIHQwyOg70DZnuH4nAYBnw2k3AFVdWwt1zy5Vdf8fL0lM16w6xueOftd1gspHsm7FZDUViKQhJwYxNHR/sKpENMnqfPvgZrODw+YvCidVWmUqjNnSe7i+ZGjLieiqZhCCLKbowRC2XnaJwk8HdOTtibL5mVNdvbNX3bSkc+RhwCokjnL4JJUlzAxIrS2BBJoNqCzjqauh4dXZfzPAY2GRrkkRp0PedzcNCO3zB4SUaMdns0OY9BGjP5LHYKEozMWmX6eR92iuxJC3EaywOvWlYymqmmJkYsfkfNJe2AOhU969X1r1FAxSBd6EHPMYDQ+xGoyV3YbA2fkjSx4iCjGfLpd/+cR7/FeUjORG3GpImVt9vMEYDN6zXYyeDITZ9pvErOAuksK5kMEC2MFKeGmitKxvF/zRXK0lGWjPHQ2qyLomNhJL2WxbT+chzR2CpC5HJ+SBE2jc1kRkOKSRsMve5VGT3xCaqyVgc4ZQUbI2ObbmIAp+AJZPev6XyKyjJxBpqqIhbFaGCRnRynMzGNa9x7iX05LwPGEQhrRVNtfIw6WrIWC1eOzzf+rnU4C9nJVTAdu3MtM1toyoV3GU4pTYxpY+J4bocw6O+UvKEVt5Mv6pskM54ySJZyYm2F4ToVFcr00v2V2Bn3SWkUT/Yh4PQ55K1LbiO50TCyp1JKKposMdLqGF9mFg5hwCRlGieICtYYZUBhsoaLxASTeGPMPgMCUzzQAkeZSVHfm7EyPjsEPzbexOkrTU3RJCLk0o91WFsQjRvzPWegdJa6LCmspS4FtP38i6/4+SefM1DimiXNwfGYf2TgSYSALUZd7AxGZEOqimAKIg5vEtEh7mnGshncuMcFijTE/Hwq3R0SoCNfcpELguajBRnXVHZedlEqI46SwlTyLKYQINcVGAszA/fu3Vdgp+L01Sl/0f2Qbdvy4P79kZmxWCw4Pj7ie9/9LvsH+xwdH8u11rNcb5Cu36nonpqmkegHoveQIqWKl8u5JUx1cTae8tGs55PSjkty1PzbyL9dXl4y+IGvvvqKtu147733uL6+5uLiUmPPDkuPqQme85axmZ1JEPqICs7HcZ9M/zZNBUx5MklGlEUXVwxUhB0+sZ1TjmGai+T9qk+mTXFADTyAsTFQFCILYYEUPdv1itIYmM0pDNQqXh1ipA0Rax1lXWFTxHcdJhYal7JBj9HXVm6esziTqFKFLQrZKyZi8KQk66lM0hwsSmn+lJWYXAiTRyRQrLJgk7XYmIFvndIgO2DLw2e2qXNUdc1iT8x0ZvM5Xd9zcXXJ0A/EFDk6OWa+mLNcLATY63tub2+JMXJycsJyueDu3bugoMlmu+Hm5mZ0E5540/LINXo21gEoqwJjBGhttwM//9lPefb8qTYHDNYWo/GHc5KDXl6es7e3gBQoSsfc1qzWa9br9U5DRUgrm812JB1IDaIYhOYjCYR1RRgJOGaM83mEOuI7T992YgKTIoeLOcvSUocBHyI+QFhv6DdrmrLAFo6222AKg60tLkRsTKSk7MsUx/o719WyvFUM3EyMwDHf1j2Ua5BpGacJRNH8L+3Egt399uYd+ZsfvzbwFEIU4CPPAO+CDkoZjCmK1kfWoNk5vPOc7ZvyU0lHBJBDyUyikbvo8y5SlwGPLNzZ9RHnIlUZKAoVNyN3XybhOmNEeNSGwGa7UWSvoyiEMVGpkOxmM1llRy3OC1NSlBP4lN9PqZ0f+QxJHWYk8ZYkY3eG3kwAWFlSlg5XWPresuo2BD8wtB3OFczrhq7cCsgkq0dmhlVLCWQ0DWMwIRF9JPYDVmm/afDgA/vzhXQDFRgJIeDbjs16TW9FhO3dt96mcsX4Pndp1L0POvqQ10DYEZ4bUaYR1DIZ6NB/GnUnlaKYrCOZpLr7OSnPulIC+BhdDAI8QTAKa+usae5SyPrTpPuX1ovbEXjrhm5kdQl4IYjuMPgxGdxNduX+iGbY4HdAoDS+Y4wxY/GUO9eZchlCIKYKq13MqsqJbPyltZAPIVk/YxdWCy2rXdEMIOSkFhip9fm6jWBsCOP72v08uz+Tv0IIbLuWfhjoh0jX9bx4/gprDfvLhR46A2dnZ3Rdy8nJCWVZcnV+ztMnj/mjP/ojHIbjoyMePXjA++++h60Kog/ikIjob1xfXvKzn/yUly9e8vTJU+qqplKWktPuhLF2ZPO99dZbLJdLYooMufDU+xuScIPcONY5XcssuKxLEkwGXxLb7VaovVpguqzL1Q/gCnoM95cH/P43vsNffPJzfjrIWktlgV82YBOzO3doX1/w9OVzvnzyDL/dcrJ3wHI24933H3B854jjBw9omoYe8LJkKdMUB60xVHU9sjC6TkA+Z4y6ptjx/UegD+r0YyytT2w7z20buN5GjpclroDUeT0YZP04YzQhYCqMnTjmucLpSKgAFML2GOFNrDXUdTN2loqyoqxq+n6g7zrW6xWb9YqDw0MWi7kUgVaV1a1VqbcE2mQIIYo7VQisU6SNFu8q0XJKAWdV30bFHaUI3Cl4NNbnwsKYaZx2bHelhLEJW0ZCgiEahmjYdoHzmzNcWQjwEwwxFBwcHHF4cofVzTkxDBhk7KaoK5q6YW+x5OuvHvPDH/6Iu/fucnx8xHvvvkdZFrx69UpcTAqnmiwF1grr9uTOkXTd1ltiHHj69GtmizlvvfMOvQ+EkEjMlDkrrCavo21SzCkAl4AgzJCQIq331K7koKhpypI7JyfsL5fMqprQDwI8eT8CT0I5DzoKkmTEzjravtPEPxelCBvUS6OoqWqiAgp784WOyU5xKzMF9KgWVnHwE/DkvSS6hYwwE1FWdGCzXpOSjBjm0d0MhuQYDFP3eBd4GpsdCq6nFCkK6R7WVamg10BEQIa6rscRuhgjnY6Zz5Tlm5s0MYRR/Hy7bWU0LcaRlblYLKjqegQz+kE0XVwhBWiIwmrNgLJz4ogXU1BzELPT+DI7DL4Mkvjx/BzBisw2GZlQOXrLmRp2kj3vJYYXNo8dZ+DJ6zluds683NxQdpV26rPAubHK/NbxuwxEG2sUfMu5lKMoLFXVvMkE6ISF3nUdTkcVg+pLNUZcLlEnQymGjI7KZcBE7msGnqb7LTlFYS1lXe+ALxPDYBfME/dOAS8z8JTz1KqqcbakcGZkY8i1zCKvyqRwNbmznQE6YTIL2JBSHLvA2ZFVXPQEYJj0ZXa7v6oratXZTVBzhiEzPXccsHbO7F3gSc7/pOs67xk5F2Oacl2YNB+xRppL+m/pl4AnwTw0trpsojMBeGNhogy7sijF7MCaUfemDwMmilh31GYDMWJJaihkVJ/Uaj4rzE8SU+5opqbheABm0Glnj23aLWETqWciPt11Amg7vZ/jJEVKzBYLCieAkDQfO3CWWVUyr2sWdUOKApZ++unn/ORnv8DbEjffpzm4owylIEBRMoRfAp6SGoLIJ3WkaImWUQtI8udpv44sOU1OChwWGROX26BjjK5UM5Cguow6cWGcqgkIq7g0icoGqqKgdJGqrNVN21LVNbPZHK/yBq9OX/OLTz/jpz/96ejKWZYlh4eHfPMb36AuS9577z1OTk7GHNfaiSmfEjv6c5AdB0N2zAsiTVFq7gAiA9F37fjZ86PUCYYQdopWZcBJ4W+4OD/n9uaGuqpZLJd88MEHPH78mNenp9ocyaNhU0MVpgZA/v5uLZPS1GTOrMXdJvu4AuPEiiMmep3siQp4AoRdud9febw5uu2KLGPiyGNQfkCBJ2G+4j2EwGa1prYFHAYcUBeO0HeErsfHVs4Z9ggp4rsCmyLRGW3rh9EMIH8iMbApwDY5VdJcSljITq+9AE+ipVdXFQbo+05qgBhkIgc5173GvPELiKNQtgBPxggmUDY1i8JRz2Z477m9veVmJdIAVVXxzjvvSA768BGvXr7k5cuXnJ2d0bYtH3zwAfP5nPv372GM5OovX73kxXpN1tBD72tiAh0nRqnc56qScVpnhJX04x//NRcXF6rz7DSXsyM7DuDy4jV7yzkpeQpX0zQVq9U1680tVTmnqlQgX4GnqqpomhnOlSMxAjuRC7q2m+JziJDdD8mgT2ToOvq2FcmOFDheLtirBqow4EPCefDrFf3qVqaACidM+VKY8UVIFBFSMBjjiE7y/wxJsAPCWrt7tgBhdwQvg/95MFXj7+4ST2PrF5gaZBrSf63Hrw083axvyJTm/C5sSqI3oG4o+Q3kYiTrCVlrdeYwjVoDPsghOwSv4EGekVdGTQgkm9F1R7Z3RQGl0WnLiF51H+LYHdntBpHS5LJmDSYagopqBt/hrJVRnYS6QlRjYT52PdAiLqU3Eq7cCZpApYyyW4hiee4sekSpRaOVZD4ECeBlKYKbfghst1sV2luwWCy4f/++WI2ubqnKCuPkOuZDVii/QtuzGjRjDPRtx2a1ZrW6mZJ3LQIeP37M06dP+f5vfp+3H71NYSyldVze3CJjNXPyzLpzch2HOLkjjTO+WpxKQl2M3enxEHBOEw9lIyXtpKXdTsNEF8+RMXpl40TRbHF1Kc+TlI4cVW8qoQAWo6VmPnjquiK/rIuWkNyUxOjrSmIl1NLdTSiob06MNOUzVmd621HjKQe51eqWwQ+sViuapuH46BhrjTAqNluC98xmDRSOGLIbkSWEgaRifcYw6auMTnpZCFoSP6+JiYFRX2Z3dCb/r+076HuxnsbQa1cwZAplDCP70PuoMdDQblv+7M/+TESHneWtt97iww+/iTECRqxWK7qu4z/86C+5vrri7r37LBcLHty7R9k0PH/1kv3DfepZw6JcUhQFe3t7XFxcsF6tGPoeZ6ToGNXADON9q+uaw6Mj3v/gA5Z7e6LjZt5kPuR17/tBOxtu7JZm4G7cnxoYjV4nay2DHbRLJffbVQKAxcKyaJbsHR7y/oOHfHB6n2ftiutuw537DwnB015c015e01/fcHJ4yNHDt/j+977LvXt32TuYUc8qDo8PhM2FodsO9JtW93vFcrmU++dWbDZbsab2EJxayKL6cCmNzjq2aCRGGAFdhhR5ebmFGHmwd0RtHaROz5VaARlxPEkEAqL75AoREax9rUlFr9ouFqlRhBFpjRlHT6R7EemHlsurK25vVnjfU9Ul+wdLmlmDH3pSqqibit4n+iFSFQZTGJIaCSybJcYH6m2L6wNp1eOLhr4uaUzCmUQwpYIZCvwW5ZikRWXNuixGQBzHUDLl3RoRkW493LSBr19cigHF/h5DMKw2HbNmwf7yCGcM3WatBW3BfLYcY/YXn3/Bv/yDf8X5+TmLxZyPPvyQu3fuiA6UF10yUwi9WUbtaspa4sfF5YWMLsdEWVYs9/YoqoK2bzG2wBWW7XZLzMlsgiFGirJkVhZ4J92iUu3dq3RN2w3c3J4xn83Yv3NP9kNZMpvN2d/b4+2332axmLPerFmtbuVaWIsrCxmDz8WllaZLDIGu7yWR1DGzwjkZC7eOUtkM1mgCblQ0Mk5z/zFNlPM0zrKLRlNKhuATQQEdY6QRtFwuMaBaNm46wzW2WjuxaY0VS+t1u1UjkWHc23VV4VzJfDaDhGg2KUhSOSmKU0x0bc/V1ZWM3ygAkxmq01ei3WwFPFOAIrNOMkgTggpspqwfJAntMPQMQ09VNdS1jjNsgnxe46TRgiSVWWx6F5BIZmL5YibNTDSuO1cICOSyYK4jr34fxDUwKWA5FukK1OZmRD4X8u9EBcokwVQDlpwfJSQu7wAyomuURsZCVZVYU2mMFRMEo69hjR0LFzQeZwkGZ4w4E2vUlXMzN1EE8PYhSTFdlIwJeUrEkHVg7LjnB2UVRx372tvbG8HHlHJBV5H1tyDv1VK6+oVT7RF5ns3mljRqFxmqyo1FWgyowH4n96Ww+cJirKFQEEjGFjKgOCiIhDaeqpx8juBWdkjO4HrUhltKWrQk+X0Z98rjZwJMDYOYpHjvxe3ViluaMU6K5ZR0gUkRWkiVLlpFadLD7IdBrMmzxpg2SKQQtRiremxJxrFNingSNnhlKktxGXIeWpYiP6E6crtgK3YqxEFGEU0uZnZzL1ACYHojz8trP+fxuVnSaZxxJssVCJsxhIBxJVUFznoqazk62McPnvX1ih9//td88vOfc3F1w+16zU8+/ZLzq1tmd9+nwkKzgBBIveZOMSl7GQwC6hlj1dRHWTdMrpFYMwK4WV4jM/hSSGp2tDMFocCysRHDoGAa0sxOEYLHIP8lBmwMDLHDxxXBBbyLDK6VPZmSYo5W9WcHyqrk5ORkvNT94Om6gavrG87Oznn16iX3Hzzg/fff56233+bevft88MEHHB4d8PD+A83PGo2hco+yIysIaCFNQAGE+r4djQeMM9pbysxCMbMp7RSP8zMJHpvGOPTyxQvu3bvHtz78iM16zcXdu2w2WwEcdx+a/2b9scwcNHYCpTETa1dYy5a0w8TKRe34d90LIS+s8ScyWDqt3TcbvZJfZvaWhgtSDFiblBgh9/573/suDx8+5OLVK0xK3Dk6oqkbsKJxF2zClI6Sku2mJflAH4ZRRiQZSNYoIyZIbEOZlTESvAB5hSvHzZNldTEOtIGSkoxEpght23J6+oqvvvqCy4sL0VptGskbfU+MOtGgkz7GVRRW2HwYRs3gwhXCLFZnvqIUfScZV98QY+L09anEmyByJR984xscHh2x3Wx48eKFaD/t7bGYz7h37y4xJY5PTsCgUyzyGNTMA4M6smsAJ1HVNaTEF5/+ghfPnnJ7u6bte3Bi2GWc0yZpwLkJoL++vuYP/uAP+MY3v8nv/d7vs7e3xxACbStNqPPzi7F2r+qKYfBstlvabTfWxfkh5798iawOdP0gWpVJXPxev3rF9fU1bRwYSAQLfQxsupaiqmkWC4bg2bYbgbsNFAjuEgZxnY/JaH0T8U7kDKpSPr8fVGQcZa7pyKoxitfo/p3kN3Rf5QaN1f2bQadx/RttWjDq7P46j18beGp7mWlMRmevVZw5vzmhvsoBEOzEYrK5KM6AxC8V+SGlNxTxYaKH5eI/avdwpLDrIpMfMSMggTEYH9/8/OZNwdX8ujGIS97QDwz9oPR8AaGCMeMIX6ZT+wGljNtRxX63A6lV0Aik5C5xio5ohBGVA1fuvKKHs4zsQT/0ozhdVVXs7+/Ttq1oTxUTBXwXeLJ6beR6a8eq7+nalpvrawVKWoKPhGHgy88/5/PPP+fth29x9/hOftv0bYctRPQUg/RjRvAuTp21lMUrJ/0A6yxetVJyp6xICbKegl79oF3lrPE0rgPN9IwmHDEJGyACJog4r82Uzp3NMP5XRWNzUK9NmW+9HD52OhhMmlhOWecig6P5+WL0I6so7zYZzRS9iWGYHKBW6xu6rmO1usUYKAo7ri8/DJiUqOsSG82YYErCHlV4XWfs4zT2JBFA/5wmUThr5f2F/HmV1pxiFJFDI0lSigljVasjj8QMYTzofYiT4LrG6KEfePz4MevVihQizjo++OB9LZgMq9UNt7e3PH/+nK7rOD65w+HBAQ8fPaCoSi5vrimbClsW48Eq1GtL13aT48eYRk5bMgOwi/mckzt3qJtm7MyOlO7x/SoDRtfVlLxNnThJXFXUjwmUShGi2RH80zgWjejFLOdz7h0c8uDwiK+fXrLyPQcmyhjjekPYbEl9z/58wVsPH/Ltb3+LR289oqgAl0ilCisHWWdhGPC908NfhNCrTsZFCufwLieYZix2cmKEsQLiGJN1+0nGcLvxlEDfG2LjJCE1BvEd1fNWr6sMBUUKPWRcWeCyhp7ORoyAnbIjiuw4qQWH94HNZsXtrTh6ZO2vuqqkCxiFgeJ9UFzXYPJYSkyURUWVAiUDLgRM54kBfHIYBqxJGt8Zmwu7FPk80uGMG2PsuLdJ4sxnZB0MIbHpAufXG2KK3N0/IiVLPwT25jXLvX3AMPSd6J05N8ZV7z2np6f81V/9Ffv7+yyXS+7ducvdu3eUISIjMsmCMwWuKJUtW4JBnGL6HluIwHQzn4ExbLdbmmYmjjyD0KYH9SQckjJXnRMxZRKVVXYaFhsS/XpLmUFovTZVJQnPfkrM5zO6rlMXtzep77kGFefVKbE2GGGnWimKCtUjrMtKmJ5Z92unyTExJadOZxrBJ1nDKSIjU8qMzaB+o7qJzuV9r2dYku9JcTCNlYUY2bYtu06kWX+vcIWuvUDrJc+wZNaQo1Pn27WyrJpGur3Oup3PEMh6TX4YZIRiN8kyRpNZFZQ1Wlzp+4wxqCugaHTIueeplZXzps7Imxo2OTGxdoqD+VrnP2dttCx8nUcHhA0XxmI/O2mN9zqhWiL5s6TxuTNgOI2lQGbySoYlI09Bf0+eO2khIezdkaWqmkzTe09YJ2dGZlkan8f5ND/R9VbsiGjnMi3nLc5mLSBZwNGoC6AyAvOxEUKg08ZEray0aSTTjADnpO1Ujg6rbieHjFFYuTIeX43/nh/inpSYhHfrN/LqfA3lK+ssqXZihBjzOKJVQEXueQY4d/OYDHyS72VMOwLr0/sNQcwhQghSQBgxRDBGzkUBt2SdZRMXC4SdIjklxvwzS1Lsgk8CHkrjIWqOjv63cJaULIUtx7zKAM7I3nVM12SU4NA9b8gyGNN6y/GA8fIYdmPPdNU0OTI5X1TR+BhJ+pkEoxHA3YeIC5GChDMFTVGw7gZurm759NPP+df/+o95/vqcq9sVrakI1lEsTwQ4NgXJe1LsxJyBNDaF0PdiVSMlpjeBkwymj6wBMzXPkp/ue9KcemIXqJFM8KPUCOOeVbmKGDGaH6fgSUOHLQKEyGDFDCkFacJOI2eRpqyoZ/XITg1BdMBubm+5uLjgyZOvOD4+4eHDR3z88ce8/8EHADzYPmB/uafrPxeqAqhFoUwD7DgRwqQxhn6OnIfntSe1ysiMymOgeeEbMzIzb25u2N/fZz6fsVwu2N/fp+s7/LrXazf9GgouGZOBJ3Xv06TaGChdHmmd3OzyqNOYN/Hm20nKohvXYN5HGgB2Y1kaP8v083ll5Nxudwrh4cOHfPMb36BxIrmyaBoKdetORhrrxllsUrfbKCCFU3AhiWgr0Se8si5NymeUxBlrjLigGiCZDI+O6zUGPd+KgqEf6Lqem5trzs/O2KxWdG0n4I2ea3lcOmqNIzTGXJOrqLWWTUnPT6cNraaq8tWg73uur69Hx8qTOyccHR1RFAWbzYbPP/tMHA2vr9nf32c2n2OsYbFcjJqxVsGSEGUqwo7NkGxQhjRdU+L8/JxXp6fijO0D6KSFsY7gc+zMa9PR9z2fffopi4U00YVFOKPrNoQwsFqv5eyPkcGLDEwIESLjKGDSM2+hkjd5P2BEO6n3Ax75/cvrK26ur/EpEgwEAz5Feu8p64qybggpMAQB/4wasSUg+SjarliVbkgMOiIppaTUiHkvyAqQ6QKMNIoz0zqkMIKuu8BT0ji1G+sMu/8vvVHW/acevzbwhJPN4KMXq11jicRRtCxTG0c6l5Hg/AZYkCb7S58dsHJwyLV2UiAnFxiYkepbVUInraqKshKL7yF3SkFsg61FaPsBxuUnj37wxBDHcaQQ5KavVivRuChK6SKZxGYtqHpZVRI0SCTtgLlCkq++90RQsUUvnV6fMNaPh07W/RE2k7BxciDKTYA+BIYUSM4SiFxcX1AUJfPlAnspi3vbtZhBNGIwhqgHUxgmVf0c2E9fvxI6oZfEvetaLi8uePL4MZvNhmZW8+TpE7qu56233+bo+Ig+eOxg8TFIxyZ3XK38V3axJabAuttSRqH7+SFivDB84hhkDKYUR48AoxCtLoERhCvUecTlme0Q1IbUUFWa2OaFoWtk1IPRImA3kOdxlV0NqaEfGAYvegAh0HVbSMJKCMGz0sQzRhG+Deq4EVOi2/Rsty1nZ6/HkYBBrdDfffcdFvM5VSlid9WdEwrn2GzWoyizqQUMM8kSI9zerDDGjqMmeRRCxgTEXjr3qzP1OoNS47U1JjdgJIDqVYpEwo4eTq8Ct+NGz2BpCAw+jK4MUiQl2r7l4OCAsijwQ8fB4T537hyzWglD5+nTp2y3W/7zf/yP2Nvb4/69e8QY6fues4szzi7PWR7uUcUZt5s1Wfvn9fk5VzfXBB9o5jNhb4WAGXpsFDp30zTcv3+f+w8ecE+fN9t379KlSdJdb+pGHO3UHdIVxSgUnGIWw1P9vjAVlZ4oAuQaputkscoETFpg/u5HH3N3seTz//45Vxc3tGUkOM92e82igrfffcTf+7u/zQ9+8AMCgcHf4JyO1iioWpcl28pSVnB1eUHb99zeXEvcsY52sxHNEg+dap/l3ydGqkI6fn5zhS1LWMyp92r2G0caApsImz7RDoGyFFHpkDxEgxEbinFdpaTuhxgKHfuch8h2s2Hb9wKSYSiXwvxZb7b0Xc/t7Y2C63ovSstivqSqa5pZjbVmdPUYBjmsCiOgbdBkIvrAajsQSdydwe0ycr7fc2171n1HkyTJjEUgYt4YOR2/tLjWwQstSpN2IS0gMSSReH56SQqBNhjKsqZp9pjN9pjPl7iiJJCIfUdKgbqcEXzgi7Ovubi44JNPPsFZx7179/iN3/g2b731CGcd69WKumqYmCcyJLGY7bFYLHjx4jmr9YqqmbFY7HN8ciJJynzB6ctX/OjP/5Lv/+bf4r1332fv8BjrCs6urgHD0XJfdHVw+BjwMXB6dcnQdczrWsClQ7HBPru8IHHEbDmDosCWBecvL7lZ33J5e8Py5prT169Z9T2n17c8fHCXOyfHEB1JXd0MlloZrXVVUbiCspg6c20vsdEVMq4+KJNEhDRlL2YNrq7rFYzvNS5L9zREr+NWhTrJMFred73oJZZFMZ4FcZgAF3nNrOPklHVTvbEeQgysViv5+QCFK2jqGVc319xuLuhaEfY8PjmmKESs3nvRmhsZF96Po3VGQW/vPW3bjl3MmBK9HxQ4MqQk45Jtu5W8QAXChfHkmVgscWeEyo1xXpJiEVLPuUeMkU4ZXRmks3YS9s6s2pQKgvdstpux2K2rWq6j5l4+d301c9odnc/Anfc6jqRanF3wsv6soxt6Ut8TBhUVJxeBOtZiYFANqLpuVC9OXsfvjCPGKKNoVkERkiTE+XX90JOZ310njZx8793okleNMTxjzTGotELXqcFMbtpIjmCcY9HMRjFjYwzNMEBiNJEpS2EfTUBqoCicjOGqSH67XU/3TGORPKe8r5QSbbch+kQXei0ojJ7pTsf9ImOhbieDhJSEbZ/PXbRBI/db0TYtkgUczMYi2otSTa8RwAqJmPzIEjdIo825Eh+9Oq1qbgS6tmSdzGYzUkpsViv59wSL5YKmnrPebvGDl2IjBoKfwKkMUOcGkJHNS9928tbSpDOZQtQxRcnjfSFrtR/6sYFrbK4T9LMFbb6oY69zAgKFoQd168rapnMdn01BnJy7oaMsSmZ1w0xdS/fqgu16zf/wz/8VX3/9jH/3J3/B85enPHn2ggFLMJb6YIkpKrZdIMSBGFqtRSTXignSjhab7LcMWKSd2CTfswpICmPMEOlH4NfoXpyaA5Kvidaa5nJRzkOinM3JBAySfxqiln9yP7y6Y8VBTHKGXu5vpWPTZVHQdh3bttPXsBSVCKO7qsKQz+3E8xcvefHqFPNH/4b/5//r/83eco/vfvdjjo4Oefedd3j9+pyHjx5xe7vidr2WUROTiApwZgA/x1kBz960Ws9TMQNZF1eFl4upKHcKnu/m8YeHB3z00Uf0fcfN9ZXG0Vwv7gD3OyBmQgDvHM/6nWJaNG7ynvufeKRcUBstvncbOhJ3yrKEwe9oDqkZ0ph+G9iZQJfYquW/M+wdHkjtGALGFdi6JljDZhiYVw11U4y1TLdtCd4L09pa5guD7wdhEdWVME8ryUejzXW4o+s7urZju+0YBk89W1KUFckUlHXF/v4hZ69e8+LJMy5en7G6vub16Slnp6fcvXcXV5Rsb7fSxFF2aNRrMAYYrWtDCCOgn6VpMisV0By+prl3n77rWN3eslqtWa/W49n3wTe+gTGG7WZD23f8+Gc/4/jkmLfeept6NqOezxjaVmpGHW/LdREa66xRrbG+47PPP+Prr7+SaRGbwEbRUhvCdJui6C9//NG3WC6XHN+9w97+Aaen57RdT9v6USM5A7tdN+B9oO89m03LerNV9+wF88Vc6i4SRC9r0UCyMlng5gu+evI15xfnfPnFZ3Rdz9HdE27aDc98j3WRpXP03QYXW+7NC4p5wRc//QmumlEVFeVsSX1wF1s6XFGDC9IEmksTzCQhVzR1/SbjO8ctVAtRwaas3TgKNu/EKN7cYeSmUx4tJoU3fu9/6vFrA09vCLUZxj+/wWZSEEkaFzoiF+NOMJro7G9+mKlbkJ/b8KbDhUEYR4URQENs1Keug3AIzc6T7SCxOxcpJZntdAogYbLwecKoQFu+djvQ1wTxJaQ3MV4DQTKJueMrqGexAyrkkT0MlJqU7LyAvE9FRGNKdDk5c2JJ6bSrmkLQBHW88uNn2w3sXa8d8DgdjhNLSg659XrFuSu4vrmmqisqnZsfBfQAl1QwjUnsPRejRWLquKaoXdUoWgdRktVkLNZMrJqx28PksrL7GAtwk6m5qnG0ey/MVJjKI4tYKtNv7AJndoxQxlNO9Nt2TJqGfmB1u9axSz92qnUCgb4daLuOq6tLQLoHWf9gs7rFpEivAbbSrn7ftgIYaXBNpa5eTZ4x4Q3NKSsZ4a/siaA6LRhDti3fnUmXgzmO1yCqGLtmf/gk4GfurOfRvaifdRh6BeNEfH3oe7KtcwxW9A/aVj+vp2tb+q7TztMei8WcSKL2NWeX56zWa2EbeE8RCi1IPG12QkLYCj4KDyfvzVwgZZbJbDYbWX6TZpMZWWm5iHJ2Gl+Rw3ViPk1r6T8eZ/L1w+S4IKMuPkbu7B3APc+9vQPONiscaHwJLOYNj47u8PDBXe4/OOHs8py2a0WcF3SwTcBPKbxrVhux++62LWHwFCrALo6V2qXaiXm5eEgx4aOXzpUmKJUVOvQQIp1PdEOkFhx6HFNjDFMTeJ9jocQUGYtxhRtfJ6W8diKdjpJudgShjcbbqq6o6noEf/PIEto9lDiZ47v8uo8RTMLZxKyEo4VlS2QVPNGVCqAzvuPdeDbG15xEkjT2plGbwGg7NRHZbDvC0NP7qKMiScmaUui3fQ+hhxTpW2k6vHp9ytXVFZdX15wcH3F0fMTRkTjYrVcrslNU7p5mm+ikTRQB3waWB/vMZjOWy6UAoc4JZfz5M966/5DD5T5Ns6BqDKV22iqndtsZXNd9P3iPm8/F8MIaur6nbbux624sGGtHS+LNdsu2bfFB7t/tesVRfzCed2ORg9h/F9a9acahRVHQkWpsji9hZB3l+JttozO7NTNcjRZKaOMod8DzHhf2nMcxabFNsWz6Q2YVjAXrzkEh+KMA16SESVaaR0iRvdlsxjjpVBw/O2vFnaw0BNXBgtHAZCyWNKZE1bLIKru7ybOMc9dkN9XMIsmaQOM+NDn+Mh35eg4G1RrMIylTAct4Vst7lufzYWAYevJBNzZdUhqfd/dz5D+Pedr4c/pfjS/WOhGlD9JEzPpPI2u1zKMIfrQDL4qgMUe1lsa14EfgCRzYzG6Ru5c/F1owZjF3fbMkD1kHKetb5mnCvIbjDltXNLniqCclU9aZxZVGRnChwJPZOUuzrpS+tO6BgFcgUNhqToHHrB0iazwlRvFtiglMfOPa22ySk/PmqYEi6y+SjXry9zMLO/9d7tVODquFXQZFZNHtiP7nC2Xygkv5/yZ2UT5To+iZrW5vFcZS8GPnz1EZlKM4tOau1hi8Mm9y9R/ya43xP42NhKxHmjIIkXNXk8Z8bzqq0hhrcrMxf3Y75n+M91UMjfS1SzEJyqPDpMTV5RVXl1d89vnXfPX1Uz794jHXtxtut55YlOBExsEmi8/rVxnHxmb26JsxIpHEVOSNR86z8meZWANxzEfjyEKbyrfp7pLPz2lVjM8ltVMU0fb8MzmvjrKf8zQCKeGZZAeCNtegINmplivUHbIwSEHdDay3N7Rtx8X5BU1TE6Pn5OQEElxdXTObzekHT9sPkscx1XYh5DmuKfbElBtgU4OB3XuMJtvaPDLjvZ/WgzTVxQE5f6a8BtA9MSUPb17TtPPNyQQgX9bILz8mzbfp+czu+8lve+dnsn5XPqxyPZJ24kHa+X7+/aIQ0Go2nzH0BevVSs6MoiQZQx8CM21gOBUHj9uW4FFHdBmBk4mcQYToYyQ0XmvwySkyBsnH+65XU605qcjacGYEk1e3t3TbFj94bq5vuLwQN+tK37Q4A8oNmBRT0pTC/NKy3mWuj9/DjOPZRBnzG/phBO2NMaMAfjYY6gclECgD2ur1ToYxLuULG5PoVjrniF6Aouuba65vrmUPGoQtNh2fgOivzmczHj56i/39PfYPD9lb7tF1PW3X03XD2Mge7+vILgtjw8kvF2BU7LxwO3FbrkGMOulkpc4a+o52u2HwnqoqKaqKaK1MXiVDGAYIgc73tEPHzYvn2KJhuVywOIhUi2OSk90z7gsdh8bL3/NZKO9ZGcg7nyHXyQBiVjjFuryGfvnepl/586/WW3/T49cGnrLyfAqaGLBz0Ko4rMtdO/TDOicFvR+QmVKjDjRxpP5iVKgwqiimLkhjxNFnvCi64IuyoKrLsQiPcSCEhA8DhoCNjpSZWEYGkndF8YwxNLMZoapxZS2jHCmRnCMaO6ry1/MZwYvSvBRsblS/z+VtWcpYxTAM8jow2lIvFwtK7WwQI90w4KK8n6osBahQel+zmFHGSDdIx7HtxN2uHgaWyyVvvfUWT58+Hbu2TgsSawxVWZIKR4xTsS+gSs/t7TXWWA4P9nn37bf51je/yc9//jN+8YtfcHF5xu3qhpcvn1OWjo/f/i7GWrq+EzaMHyDJ+EzfbUfmA0BpCuZVzdHevt5fzzYE+hDpNlulPwtlsSpr6qYRQEFHGworelVDCBBFENkZS2GdApNMIzR6tSOKz43YS6YhT53hXf0tOdx0HQQJRIbI6uqGthVWx/Nnz/mzP/szGYlStyprDPP5TA+EJcvFgrfffgun4yhnqxuurq549eyJAAhVxXy+4MOPPiKEwO3tLV030Heeb3z4Te7cLZgvlpS2ZDaTtdir4HnbthJoFAiQhFeT0yQidMJWkU5VLqpyt1S0gHSzWyOMNGXvBC+k2lJHp0T4UwRgN5sN682G2Uw619eX51xcXrK+vWa73RB8z+ef/YLry3Mevf0Wx8dHVJUjBMtf/uWPCD6w3Wx474P3+f2/+3e4urrk6y+/5HB/n9I55rOHwhbZ3rK5XXF9ecVsNqPeP5DglmQExjnHze0Ne/v7fPjhh7z7zjvs7e1JQrxajcBSZohVtQiTZ7ZTLk6zQ8ouOC5/n4o6WRdGHEHQcQgD0RqCM0Tf060jx/sHPDg45H/3d/8xv3j1jH/7+DMu155hPuO73/4W/6t/9A+ompJtuMWYgcrBshLnpg0yz+6Bg8MDTvaPuHtvy6bteH36SmjiwwAR9pf7BL/i+mqLRaxR5Ry20sUmi3/DtvckZ6mco0vQhsTzm5aA4+hgQWmhMIYQRacyJ8CTIK7sl3yNagVJi6Kg6zrC4Nl2kmycvb5QfbtIXVcs5vNRF6VUy/oUZUQmJKOFSQmhx8eAU5AzmkIMAgphnGzXHdXM8a2PjuleeW4ub0kcE0yJcwLqppQbCWE3I9B7J4wSAYWN5qqWwlUERKNntd7QbjasLi6FGWtKLIlHD+9y7W/wfmA5q7Akfvijv+bi8pJXr19x//49/v7f/3vcv3ePtx49xA/CkMnunUPwo4BuXcuBf/rqFednZyz39tjf3+Pth4+YzWdUdUk/9FxfnHN9/prr16f86E//LZ/9+K/5wXd+i3t3H/DB3/o+pqq4GQbppFurBYHj8GCftJhTOtHCobK4uqQoa6rSsW1bUkwU1tH3Ago/ffKMxWzB0dERwTnM5SXrzZbT1+fquinJvTVGrJtdwayq8CE7uMk1DmkgxEC72arW2FRcpRgIKdFr8pUNJnYBc+eUxaC/0/cDIUZWm/UI6pepHPeuFI4ZhFBThSgM4qqWsSZjwQ8D0U9dVKNOVb0fuLm+4fz1a4YQCClO5gRxYscA1M2cYRhUiBzQzn+MiW27AQPLvb3xeacESsSFV6uNMosH5vOKvb0D1QoaRivvvheGyWKxmARQx2RYiseuk/vHDtsqaxwKW1Be16oWpPeJvl/ryIcI0pZVRYjC3s3rxNoybxTJEZT5Y61VIH9K7PNIWJeBLAxhyE0XNwL9zjmaoiSmyGa9JTd+QBhavp/kCEIMBFXdtRhdL4G+F0ZVVVXalJLiL+bCTAsEjGG92Sq4d4NR/becO9RqyuBTGiUOfAis1tcMw0DbtqMtdj43Dg4OVFy2UnbuQHahE3OZMGqPymUIpOQJQRznisIRo6OsHM5YfJgaNTGomUcqqaylbTtdL/p569k4lpjjcQyCEoz6pCn9yrk1xbu8/qSoinHSn8nMJ5vUIl41cYZhIAEDYjyyWCy0oTbgkHHbxdEB3nu+/vJrLi8v+eqrr+RdG0M9a6jqhu/95vc5ODgQRlOC5Ao8oiuVxzbbvhPjnWIC5XKD1SVHAZPsQh51DzISU1XFqLsmCIoZNZ1yXl84NwqYG+eobDMW0lZdbbO/hCkS9XLBspkpIJNYrVZcX17yf/w//Z95/OQ5p9db+pDoyiXV4ZI7B4ar2zXbtmN1uwXTy0hrSrgU1JjTTjlnEkguMx38IM5cwQdQAfJCGwlBJTNyZZbBqAxYRrJhChhdfyGYPPCKLUS+Qlw4kDoheYaulbiREjYFaXb5xIA0S43JTO9E13WkmKhLgQyEVS9sqKwd55wbwZGiKDk4nFFUFXXTjgXsF19+xddfP+FnP/25TGHMF9TNnJM794UdpgzPYRi4OD8fG7hWRfxNBt0UhNPERBe57IE8/pexRspJp7PrO16/fi3nU5j0mYzJjf0JnJ+QjwkokgWyg/rnUdtfKaQnwExAld39aHQP7oAOuv4iwn7bdfzLv5I1yWSvRzVrcKQocfPk5Ii33n7Eze2K29tbnp2+omnmHN1b4kNP27XMZgsqV2CLEhdExyqEwPX1tZ61Jwxdz3q14jZ41bEKInPhLHVTUxjwXU8YBoauY+gGZvcaZvM5tiioyoLZbEYYPC+fvWS92pAS/OTHP+Hi4oKyrjm5c4d7d+4DoqccUtQRXP2MefIpCmBfVxWDH+jabgTQCwX1+r4nJGSSycDB/sGoIZyNgMRJO1E1NfWs4Tvf+Q5d33N6eiqMvaKgdMJYu76UOvf48EjiYN9TaRP76mLN6vaa01cvODt9RUpx17ARY0WXEuA3Pv4Ob7/1Fv/wH/1DDo8O2ds/4Ha15sWLU66vr7m8vKaeNSLubeV3XSFSOYv5Qg02WtVB3WM+F+LIdrtV0FNBQCKzWcN8vuD44IjQ9zydNXRdT12UNPM5y/v3MetLbtfnXN/c0nW31J/8gvnz1zw5/wnJFeydLHnvo+/y24d3SCaSTBThc2cw0UjMCnJvPAOJiXyTz5iJDCJ7MxLpQ7/TPNQW/i6TyUwgpMl7xSgz+lcA9f/449cGnkoNuJHwxr42GWj85U6bHv44i6EgO7VYM3XKU0raVUgTIrwzYy/P6cDI2FyUJslOcYmAQXKq4+zEsIn5jY3tgzS+aTnAJCDJDC07HW29qNaqCJcu09ytGz+zGTU/GBO1Ui218w3OyL+8hZhy4HQUO7TpjN6WRQlRKJWZlVKWJQcHB5y+eoUB/OB1tja/vh8bQ5vthu22FbeusdOozj4kZnUlh5iO9MTgefXqBcbA4fEhxlq2bTvez9lsRlWWXFxc0LUdgx8oi5KjwxOGsmPYtrStiP11XS96EGYSeZZ58EQKgaDve+wUpswk0S6DBZvsKHztbGZa5U6hasiENN6nnIjlayr3Ks84S1KQX9P7gb5refH8OdvNBhD3jOvLyxE8q6qSsnBUpcOQ8H3HUBYMfceAFAJ910nXve8l4d1uJ4ekJB08P3jW6w1+ELePMAQ8WSNrVzclSFJjkiZd0gHK4BMwMrAkedDu1djtnroIGRQmIgl+PtSjH9cvUSeBBaPSaxNo2w3tZs1mLQyP+azBWUPftbTbDdttPR7wq9UK74fxsLu5upav62vazZah67FJxA1vr29Y397Ktalqtf414/3LX0VRsL+/T900Y4E6fibtPOvF+CUNE3aeZzcuZBbCm8l84cSFzCloGZNSX5XS7saixXBUzbhja9LpNen8hgpLYwVwTQSh/hswRdatkL2MyUCPUZC5Aizz2QxjDKvNZhQzNklkmUdmT/6fxidjSzCOEGVsUQ5niMlwvRmoXQKWSCPej8Kiqhah4GsaAShrrNK9o2rLieaBwTBstzICaYWtVxUVdV1RNdU4NuPy6I92VkRwVEaRY5L35TRZjziiEfZMFwIvzrfgHKbyOFNwOJfDOxDH7st4v8aELd9jxq5jLtjy3hjiwJA6fBpG0DzHnM16xfXVFa9evdKkP7EuwBBpux6M5eTkDnfu3uXkzh0Wy8UoMDPGeqturcoF8H5gsxahdWMSs1nDYjGHFPFDT4g9fdex3awwMbA3q3Ep4tstj7/8kturW975zm+IULaed6ZwDCpkLW46kaqW4iw6cCZhKktRWAonDnTzZoYzliFE1qsV7Xar7qwVs2aGQRK8PCpWOCfno+oMhDCxlozRsY0go8bCtJPi3JAT8azBF8au+u5YRU44bN63qCZNnIwf3hxhUm6FBrbcvc8j+s7IdQ+DuP30XT8yqp1TcD536MoKV8tCyWLJURGtlNePjv0HZUslJPHN541053MiNsWfXDznPVu4kmylnP99bGypdfbEfjHjlcmMGmGOTCPVRuOVkmnGPUtiFFrOCbI1TjWIBIQSnZiduDfeBX2eHRkE0Sw0U1zV3xj3k47R7VRsmsc5cZJ1aYxN6L39VXbXxMjNYydvxmomxyFUk1GNH5JeP3mbWahZwKlE1vBkXLMJRvBnPC90hHBak2aME7uNKrlvyuTLayEzzLKxSL4Bhul8NkZH2aSJmgBjna56eW5r8/1884wTpqas93ydjLJPMoN0/N0RXE/jPsmXWnQep3Mxs7NSjMQs8poyeKnjMCDnCSh7ecvL589Y3a4Iw0DXtmzbrdwD5/joww+xhwf6CeXLMBUaMj1p1exGXtu5Yrzk2vIb12K287DkOM/4nnMOPDL4cmM3x/w06a7kdZbzR6cNcIeCW/nMi5EnX3/J06fP+OKLL3l5ekGslgQsPuU1lc9Zq1jopCHriooI+CQMW2uMaGfmGiDnZ4pp5P2VGdd6hzQfZKyNjBYCosGpny/vyZDrE3ku1ftFfkr3kMZdmcow4xrMsTizl8e/p/grDI3dR47RKQYZASTXPqKTKceTrNWu7wlRpkVizkP1OfLeL8tSR8clp6uqir7v8H7Q2DGN5UQVME5hWid510bVVzVGxlAvLy8l9w1ZgqFgqgu0zkq/quWrBRi//G0ZGY9j3PiVq5IPjZ1fy/FyvJ/jsTdJNejtk19NcnfyK+wyorL73MHBAXfv3MGVJTHBetvik2HTdcQ0iPFFDKL7k/S5rCFFM2qvJUTHqG5quq3cc2ulCdTUlTRqtSlfVZHlYkFoErOmkcaIxpAQApvNhrOzM/q+pyhK1qsVZ2fnPHv6jK7tKK00hMpGzT1iItk0asyOazFfW90TuRbJV9Ds3B8dJh3vi4zYF6MZSAblM+M4xIhRfTqrwaTvM0t1vFHalHSjG/O4DjNWsbMnylK0Og2Gvh948vQpm3bLt/b29czKZ+FUz8cYCCYb/xhE3iL/LON73n2EFMjMxyF4Bu9Zb9bc3N4SiVkoT3LwpiH1JUMS2QhrE8MQ2Wxa2rU0t9f+ksXxCbebK4qmYNEsSNETQzZDkRooEsW5jsyUzJ89Tct8N0bpz8QYxQQlB+2dnxt3SwaT9cz8/zvjqamFihesJztjjYCTfkUtXAplKFhrcbbClNOFCCFTit04tpVIoy5ARrHlA+mcorEqCh31pqPCWYZ5XQOJQd1cnCZPEasaBDson036b9IsCSTeTIbV2hZJVlxRMJuJ5sKgtuApJVxZYKylrLJbgCRRRTMnhCiUvJgYQhgFR0GC9dB2UqC5ckxKamMpLOwt57StZbta06eO1W3izsldTo5POH3xktXNLdv1ehpfBEwSZ6SqLHn69ClnZ2esb24gBpazhmEYODt9JboziyU3V1f4tqVsGqyz/Pm//1OaZsbXX38J1tL1Pfv7+5ycnPDg/n329/b40V/8kMvLC6L3HBwc8oPf+l3CZkvYbLk4P+fq6gpbSgf74cOHzOdzDvYPR22qMAys+2EEL4hCJQ1JxyBw4sLgkuoxBcqyUrvLUoK7b3XdT6Lmu0mniArO5P4qXXro+nEM4PrqkuurS/7oX/8Rq9tbHj14IOykzZYUBYCpZg3z2Yzjg31xN0wJEweuL87Ybrfc3Nwwn82pq4amLLEp8eLFS9r1hvaDDXVdszdbcnu94eryhuAjhXW0m5bOGKKRhMMVlhA8/dARk4ymGe3WllWFUfApKh2+KAqMBmL5vtph22nsMAbpvJTKTsFATEEdQBKlus24psIYcVtcr9e0bcvNxQWX56959fI5i/mMb3/zfQFQYqTdrjh73Wky5UVkOiX29/bo2i2f/PinfPmLz3j+9RNuPviQ9vAYFyAOnq8//ZznT57gtx1UM5G/NpZgtUgwkbIqxcHx4UMWyyW3t7cjZTUDuHVdS5e16xANr4i1udibtLJ2g2GmYe8G/2o2E10bLbCv1ispPIdIWVoOqhnBBFZxYL9PHN961v/uZ2yvr1kYR9UmwtWKUERiEaEWMfVtDBhlMxItprD0PtIOnqKomM9q7t69z3az4fT0p2w2LX3bE0PE2YIJbAQwOCsuRaaqSdHgB0v0Pcm3eCO6FF+fblitS37/W+/gXCIMF2h1QDZ77nuxca1rKZRr1bLxg1cWgoyNhRC4Xa8ZQqBZ7lGWBcvlQtm6WSw6CTXfOryX2Hh4eERdN8o4tfgoltvWWrypGIyFwnK5Hvij/3BKUSTqmeHRu+/zG+/c5YvzgVXXg9cEXceNrfvlY0kKYCmcVHTeWIbe07dbNv6GLmzobntSH6iMgxi4OD9lu73h6vqM+XyfxWyf65vX9EPLO++8y7vvPeD7f+t77B/scf/+HbabDefn59RlQenENRHEfc4YEdZdr255cX3BfD7n+OSAR4/uslwuuby8pL/saYeW4Af6tqNxiW+9/za+HRjann/5B/+CZAq+//f+DveqillZYYuSoqq5uL1mu9nQbzaYGHl4fCJdwzgQIvROjAvKwnLn+IRH9+9TlxXb9ZqL0zOu719SGMNyPuP+vXu0mw3b9Ya6LDBlwXI2nwS2Q2DTb3XcyxM1Ieq9NA9CEkZT3/VaMAho5axVzcKEuG9O7mRSIErSEbQjGhUgKKtyZKSOQtsqepEbEbnYqHX9kBL9tmW73fD48WNubm547z2xWE7quNV3A00zZ/HOPlXTUFQFNzfXbPp2GmXOTmSJUZMqF/7iMjjpBAYv+YV1E0syF25t2+JcweHJkYCtERUxHkYXm7qezvTcBMmJWvBBdZ1km05MJ/m7s1b0dBDNpBjjyPRsqjf1n7wXcNUibo/ZKViKnmm0IlPno8/nhVSzXsVQnZNRpRCTAKHW0XXdyCoz1uHKCiv4qBRMKPsmCCV5BM4w43WTIjm8Kbyc0pgz5XNN9OJmCoJKbChCxKi7nbNJxk2dZYiBPni6YZDm2wjEC9BU1zU5vajrhqIs1H3PTmLHZqo5+r6j69rRqS4z/0RXzEAy2MJQlFKEpxQkFwGMaZQ1lt44d4zRMzl3ishAhpgR5GS+rBhBAussZZnjXVSmiLx+ShPIFXWc2VlpWLnCSyNFGRCSrzoRrR0GMixhkPEskgBA1xe3nJ+d8cd/+K8py5IPP/yQi9NTfvHpLzg7O2Pbtvzt3/4Bjx7cQ2lWKlitWlmFIzlLOauxoWCz3UKEmS31ujkl6qTJhU4WgBgNZVBaR/7zuh7B26iuqsXk5JhZbPnhB2UxzueUzjErCsLg2dzeSrGfIv+P/+a/5k/+9E/5+ReviLbim7/523QRrm7WujekAKysow+WaDTOFQWzeU3f9Qxr0WV1riAMoicTVYNmBH2tkWIvBjDqLoh2/pNAbtHYUcsqqumGNXZs0gqDqpfiXZkUZNDrDeBJXCKbqiT6gTCA1cQhDFqXhWyqItdY4pYbaxxG8Fca+TEEhlZy62wcNTbCrOXo6Ghkdg6D5/r6WgwyfMCWDuMmJstivhzv0axpWMznXF9fs16vmM3q8fzw3rNp1wQvY9I5PoyC496TEK3Bbdvyyae/IPjA0HuNs1ODcgK2d6D8jABlIMJM3xvX298ExuWmQ9SGXQZOECZnZoIC43sY2m4n1AvyNGL4Rk08ykrgaa19i6Lggw++wfd+8zd58eqUsn7M6dm5MJuaOa4yuMrQDEuMr0amZijsyDj3RtiNs/0l1aLh6uKcYeiZzxvm85k6GUp8krHJOc1sQVnWqnJqCFbZputbXr58zk9+8hNWqxV7iyVXF5fcXN/oOjjm6uMr7t6/z0ff/g2pq7OZgpVmJvrxY0x0YYsxhlId6UMG5hC29thYDwGvzqnZSMJaK+d8SrRtRz8MvDp9LYzWohACShSnNmFJtcKQTBGLFYCsKKnLguurS54/f0a73RCjp6oKfd3cLE0cHR+wv3/AzfUNV5dX/Js//jc8evSQ//1/9V9RVhVFaWnmFcswH0du+qHDRc98PpOYpMxqmdaClALb7ZpxJJhEGz3ZoMtv12z6nl988RlPnnxNHDqKoiQQSYXD7u/huxV9god3H3E4q1knz3YzYELJtl3z+eOf05eGR9/5mMVxzeHdt7h5fU6/aZlTYCwEzcqGMNVBOQfL8WuEAscmgLjHeu8p0tT4z8B6foy1Vb6X8W8GuX/58WsDT9nCPbMypCGk1vCaXpgMLnkvjCMrLiGFy521DAUnXAEmCiUsxET0UVt+2u0wgpCTdh1fMhKXuz1udHxJhaKmeuBbYBgCiaB0fmWEWCgK0SvK8+ykyZHP5KJVN2zMB6i14oDjvThlOCcC58ZQORlziymMyU2MgegNQQGFN6j7it7mIO8HoRw6YyldSVVWGiALbm9XbDct19e3ovMRIsPQc35+Tt+1bFYrmRWuSp49e8bFuYxXCIo9kGKkaRq1Ey5F5d85Ve4UnZO0DTx98jUHB4e89/770mkfel6/esn56SseP/6S66trrIWb2xsRYFWV//Pzc66uLnn7nXc5Pjnh4OBbOrKgSbVFNBCspbCFihvKqGAKWXyesRMmGiqoXkQQi2+jXaqY7Z3V8ljHDzDS7QqDUJhljXhi8my2a7bbLZ99+gtOT0+5vb5WFPyWfkw8DQa5Jj4Grm9v5HDyInK7Wq3oexEa325aFaOVQ95HmUG+urkehfQuLq/YbG8Zhi0xCmvNWEvbifBt7t7lxDglg/jBWGS6RWiZMrMP+EhMXhN/0c2R9bTrCKISKyniQi62TJ5swBjwfU/bt1ycn3Nxcc7lxQXr9Zrrmytub28Y2i2mEVHj4+Nj7t27x5dff8Wr01c7tuIFdV1z9+49nHVsu05EDudzbCGHmOwZtbPV4irGqMK1Qt8X9Niwt9zjYH+f/eVSCu1hQFyS3NiJDmMHRQqi0hUUtiCPIGYWDjkO6b71Ohs+FSgOCslGshaJ6JdE+t6w3kDdVML26ge2bct2dcN2dUMqHdu+ZTX05PHfuqopTEFZVFKQ6UIeZ6wdRKSIt85RVBWLxR4hGi4vtwwhCBhpEhjtGqWpkCuNIVgIJurhLcmPTYZN21Mkz/V6C3NLUeVxyuzokWRfGBl7iSbRJ6cjqyXGBlL0GBI2RbVLNzgj7k5lOQF/CZmld7bAuYLSTR1N6yxDFPaFIWFdDabg5ek11+stVT2nD/DBO4+IDMDA3WXDcWN5TscmeKJtlGmViz69BlMYHrtbUXWIBu9FbLPtGaLYXo/tRXXXCl6uRz8MLC3Us4L7i3s4Z3jv3XfY21vS1CUG2G62WqCa0VAh9+gyQJCdGZfLBYvFkvl8QdcP+OsbttstIXhMTEJzDpau9Wxv18znc5r9GuMSoWu5fvyCGSUH77/D7XbN6asnXF9cs7q+pSocdVlwudxjPp8xWywQRpKABcYI66lwkvRHkx31hvF8LguLaSrqQqj2ZSnjUinGMVnL42EhZv2mzKYUAEbEJ/PIgwDbaUz2oXSFnpMKIkc/doFFa8aOhJHMsjIRYvD4KCBI1lAhyfs2us6GMNBve7abreg2JTGDyGvAxEjhLIf7e6pZ5ohaSDkj7AfptsrzBu917G4QfRoFdogyrmJVhDyooDFM40+D96QIdTOjLCvqeqZghjqd4WRf2Knw2W2giQC0gDsxJjEwMXZksUqNKVpFMvYfR2aagGd2NGnxPsjzhaTjr9JezawTqXMUWclspxwVx65lZnSJblwEIfkYYYm7ssRhaJqaonBUZTkWDGMB5vS8GXXl5N9kmF26v4XKAeQxq8zsjUlZdcFjtdnoQwapApiIK2TNlM6OY75DP6hDq6xHa53GWnGbtC5XeowF/RACPkqTRd6mMtSCZ/BB4trIirVgLNbVO+wRR0oW5yoF3Qs9tyWfLYpJs1Q+PSPzWmQZhKHkbKJwuQkiOjzJiJ6Ttapdp4w2TGbJSOzLDGHJg3cazkl1wowCIE7YpoSENTv3OeUcWjRMZWRaYv3V5SV//Md/zOXVFa9ev2a1utUm3RXr1YqmmeFDoO062dM7o1lG73ehTAOTAZJcwSiTJsYdx7OAFuUSY5OKOwfVOTN63ucPn5CYkYzGIwXyZoW4bxYRVjfX/OiTT7i5uubs9Sld19G1LT/+8U+5OL+SdW7g5uqKYApMAIcT9+EhEbXGEDQsqUzBpPc5eD8yQXfZe/keZPdWmY0HrDCncs0hH8WO920EJJjc/UhM4uX6nCEECkF1Vd/V67RHwhIQhp2+bRhHIN9gNCS5B6pPz8io1jrLmqmgDDp+moX083bvvMeq7mDwQV9Z4kUIQWL6zvWQ5zW6n8UwoKprBU4jtigpnaM2atQ0+InFqPtjb28PgPVmrfWOsKOMrr+QRJNTXi43PrRmHPXvePOR8vXPZbZ545/faFzqPcmMqbSTXU5aN8r8S1oP/9ILZQALZ0f9qqjNZGekkVY3tTTpD/bZWy6JWtvMqoqicpS1pcCSfKQsShEeN8r0Dl61oKx+31DUM7AFyTVEU9NHNzqRGsAlg3U1xlVjrd3U4r4bSDTNnL39fTbrtRhFpIQD6rKmLEpW6w3u8pInT5/QLBbMFgu85tLGaQTI+zTlqYN8n4TdnpIwf0DidDTTGiappI7eX5KM3ZfGMI9zuSVGGGb9oCynEOi2W0JRMHS9OPSazEaObNZrbm+uBcxM+U7qXdbQGqKnG1qMN5obiVj7k8ePOT454f7Dh3RtxypFbFI9L8U+uq7HuUkvEODi4mI0ULBWRp6trgOnTKxsENB5z7YfqG0Bxmke6lnM5nSzJV2zT1WWzJyjqRtSUXDn/gMubm95dXvG/uyY44NDirJhGxK9N/hgFOgTCHwEXvW/UfNoqw2W8Z+nI16uj7orxpQoXKZg7mwsM8Uao/vm14Od/mcAT/0gSVutoqRWD39jnSD+SZONlHS0C3GMqORCp2h23lhCf5QYLQwBnzyyHqVDlBkLcqGiFs9ZxDNhjKNwldrz5mM/TckvBh9EvyTP1IfolZlkyMy2nBwOetBkQKiqKjkAkM1gnMO3LW3XUUaxEJ/P53ItyoohDLRJkm9rjYyXRbFGjEZQ6nGuOkwUWGsNQycdqrqaUzmYNTOSdpTPzy65OL+QbtS2xVpotx1ffvklV5cXPHvyRIGngpcvn3N1dcXHH3/Mwf6+dPSc42D/cKQwukpYGnLOiS5D3225OH/Nh9/8kG//43/Izc0Nr1+/5unzJ1xfX/PJz3/OarWimom439MnX0nhWZacn59zfXXFP/gH/4iqdNy7e8LB0REvTmVG1xSZ5lnTlHNKV0kxnhI2DKMgorDogqDa1tK1G2IIzCvRqkjWEWJma0TRy9KHVdqy7wct+qXASWlgtbri/PycP/+LP+XJ10/oNlusNRKMQqAoJYEXVw1DH3pWZ5KAhX5yJ8pI8O4YhTEi0DjEwOn5KTEKXXW7bWnblq5fEWJH3ezrrG9PAoKVcY2iqLMeL4YSg6VTbSZLpk/rmIEXnSqrSUJMaRz/gDgWKh6PRXTEjDEi5p2ElrvZtJyfvebLL77gyy8+58Xzp9ze3GAV6Os2a8zBPvP5nG9+85v87u/+Lv+3f/pf8xc//KFoaFjL+x98g4ODQ95+51026w2nr05xZcH+4SFlVYEVamci4fTaCu1URPQkGDvVj3AcHR5ycnzC0cEhxlnavhdQ2E3256JXIPe7tI7KCRvO2Swaa0X4fowuQIoMUXRMvI6uWmOpq5pQ2JFtGYJo0G1jT+i33LHH1HXDtuu4Wa+5vb5gfXNDms24bTdc9FtckOKrmhucKbUYNQy+m9akEefJ3kvBVLiasm7YPzzBR8e2e0U3eKJNGKNuEGZi74GhMobBRDrrCSbiEzTBUgTD6arFd4nXV7ckSu7chdhJkjY224zFOIhxIGIYkoyvOldjYg8pYFPEpMCsqYlVzaJqSCSGNDCodbc8m8O5SjpJqkvWNLXo2kVxEbUkTDEnmZovvn7N6cUlR3fvs1jM+a3f/BZtu+H29oZHh0sOZ47P0oaboWMoawVUKk2WI9aBc1OKqOklXsda282GXoXQx26N4rBJRctD2uKTsgYry95BzcOHDzg42OOdtx5QViXbbUcMAzfX12OiYJ3DlsU0FqWNg6H3VKVjf++I5XyP2WzB68tzNtstFjnIm6ImRYdNJZv1wOnpJe9+c5+9kyPK2uG3W85++gV1bzj+5je4WL3gz37652xe3tCerXjw4C57+0tmVcX+/j7vLvYEeEoDMGlzlIWDwhBcYtu2tG0noLYx1KVlVskoXqFOil6B/L5vybbsGXwyxo0j7jHCoE5zzur90IJd7KKjxr3JcVJ06yLJQjSJpCOdTm3eRYpBYljfq0teoU0Qa1X7otSqLNINHZdXl2zWGzbrLQbDbDbXEZMIURguh4eHAlhZWG22bLctpbLmhkGaQDaJm+3t9c3YUfVDz9D3FE4cX+qyIaRE12eHSatjuZZ+EIB6f2+fuqqYLxYMvYxSl4UU8TJ+p1bEpJ3rIuLZwxAEBFatI+cK0tCRO/DZGS4/smNv1jGxRliJQ99LIZmSMDerCp+B+SBj3S4aZUlIPAxEicc6CoA6QCXD2LQzCFgYjaGoGwrnONjbU7MJbfZpPrPLtPVjh1OTz5SHsyxlLVoYzkrPVSQIorLEZMwgn6U++jHHw4IrROOnqerxtbq+F1fihMQiK64KDjvmP1YNE7LzUzuCsShoHRn6Dt/3I0tt1zXOGod1c933nhgdIThcMZP7pqOPMlYmn1kE0sM4pu1cZjll1kOgcJbSRbwRrr03nmQipigwVhy2nJWzcjLjkTzSKaCWQprK5QxOJA9W2XMmj2nDMEhOkFlS0sCRwn5WNzRNQ1UUnJ2+5p//wb+Qoq8oIEWqsuTs9DXXF5e8/8EhPiXOry5J1olTMeQOFwYBoFNKuAxKWqNTBlGBp4n954M2FjXXwtrRrKC0mtuort60MqWJFFWn0xnL3nIhYzRtx8WLU/67f/rf8vjJY37+ySdcXFxwc33N4cEBTT2jmC3AwfmrV9hyTrk4oqhKirLC95E+O2BHIMgaHAZGkf2h7wg7Iz8Z0chQQxblZ8zjdDzNRrwgSjugRhrB+DyElZI0HlExdFD2lAec6AKFYSAGaRIZwCYPO2M7OR/MeygXfxFlrAkqIwVmMhhtYJXqJGecJQ6B3g/YwuFMkfs/rLtW7t0wNTmjxoukZ0p8IxdX5oo2ZW1RUjeGzUY08vb2ZsJqrmeEJLGgazv6rsMPHcTE8Z07GGD99ZroZd+4osBVxQgK5tHHpLHWRIn3zllCSGO+OD0UENF7tAs7/fJobp5iEewpakMkjfcsO4Khxj0CDOcLn8EpzemUURRzMyBJ7YpzNLMZy70lGLi6vCR6jy1L9uYz6rqSPAtHGjzNYilrviylTup7iqomYZUp7ihnC2wVoFjgTUXrHaUpmdUzbSpaTFHI+Yw0WWbzpQCPIbC/3OfOvbucn5/T9qozbK2a/sy5Xq3Y9D1X6xVvv/MO78zfHRl2talGoEn2hx0RSSMIPF5ZsIM2eAqj4uDagIoKhiVjRrZuVVYU2vAZhp6ub1m3nTrtiqatkC9K2m1LVdXUtY6DhsjtzQ2XZ+djrRSTHaNKZr8NoWPTZsBQYmfbbvnZz37Gt771LT7++GPWt2Im5RBrLONkame73Y6jivn3226LO7UUSva4c+cOVVXRzGfMyoqZAoHRJFrv2fTiMohx3NzeApH9vQPWbY9fbqiLwMJGDg73qJZL9r7xW7w6v+HTL065u/c2b91/RNksuB0i/WBIg2WoIlbVbEX2SBpBGciOQUG0HUBcTxpZw5oLCwgYqazc35Ggs7tljNE6Nmfp/+nHrw08BS8MhZA7MgkVa+xIysUOOiJTFqUe5NL1jEHGi4x2t7KFpnSLApmTm2lfSWswYzWh0U8pCbAkMcYKbdUXeaTPjof1roaBMQZXCqW872ROOa43WOeoqhqvaH5+5NnzHLhcUWBVqLysRKRyLHSiAF3OOe3IDJRlRawT7XZL53ti1CSqEfvavhfhwUiiqiqKolAtjQRJxP8EwJNFsl7f8PzFEzabDcMguiIxRh69dZ+mKbm6OOf6+ooXz8/BiLCpdJE8ddNQlSXLvaUmXYMKpAZcUWKMw/ueqqz5jW9/h48+/Ijvfvc3ef78Od5Hzs8vaduesqyZzRKLvaVonkQRcu39gB0DqNiLv3z1kqubay4urqRLhBaLPuBcRbb2jCliS4f3npvbG+q6Zrm3VB0BcYfzwfO4G4SR0kmyOJ/NRRx7vZbDyFqKUqzB9/b2aGYNJ3eORFjPlTx7/IS//qu/4skXX3FxcU5dVFhruDw7I6gTgdWuQMyOflmHSQ+YwgrduiyrcYRjUNvpZjajcJYhC7cGcUYsioJnz54xDAMff/wxi8WC3kun3W+3ytYrZITIWqwVEfuM+GcXmRSE4l+WpYCjKe4wAJW2rswd74MksNbRVJWwrLbiqmadE0CsHyjqiqOTEzCGo+MtTSXaIc5ZDg+PePjwEYv5kq7ree/d9/k7vx/Yti0xBu2QwNPHT9lsNlxeXlKVJe+89RY319d80XU8enifohAr+gxYFWVJqSNzIkLqwVn2Dw7Y21uKU1UMcqA4obyDkM2tEeH+4AeSTaoB4yidkxHD4MfkqqxlHCLGSGEc83qGt4WMCAURLwx6f/M40DAMRGtIIdINnqKIHN25w/2H1zSzGZvtloQA68vlEu87fOg5OzvDGMPhwbHaqxfk5MW5gsIVGAyFkzFIa+DRw/vUVcnjx09IJrFp23GkdPDZ7hSMHozGQOlKbHIUVaAIYFxk1swoTOTL1yvaWHP3zj6FGXCEKQ8yolnigg5dBHGzsCZgC0tZNgQswXjiWvaZYBAWR42NnuR7EbisGxlvtgZTGZJLBNOrbl3EmYKydPRhQxc61rZk5WbE4Nj0CXPbsqgLHjy4y36VaFzk0cEeZdHweBUJccBEN7JoSie6RH3fjwYVUbtb4uIyWc6j8TiLNJdWkuKUBubzhoODfe7dvcfbb78zGgfcrtZi2ww6BlaOBV9mBI3C1FUtAvC100LQsu16Oi/7vbDq/AX0Rrp/ZV1QNhXlvCJZcSXrVls2F1c8/8l/oMLz7X/y95mVJXuLBTfmhvN2Qzp7ydWqZN22HB0dc3B8JKwy32OMpaxqDg8PePjooQpw53JE1p1VDRqrILX3gZg8MQrbMOsr5gJ3dE4LKkpJtrNmp8iS0RecJevKZW2ZzWajsTJSlCJ0bbTrmauxYRhGQe2IjKq7osDumEFstNHQ9d147cuyZG/PqQOkG11snTX4IMzU7KbWq+PNtm1V3Fb2Yq/Ct3kkMDefTF1RVQJcO1fKqLeyudCEtCgK6qokJZEaKFzBMPSklKgqEUeuynLU76gK+bO1mYWUMLagrJycHUU5dp9tKeNkeVTMmOzE5yRuWPleSpOuUVRQy5nJcavrZZw8NwNz93jU2kpJxg2NMMlSkpwGIywZAQeCjC6n6b2IftaUjKcYR/ZNQjqmPrsgpqiFTSFGIc7J64c8+pOZGIYsTh6jFInGikanSZPGDlZAy7IoyU6C201Lu20py0p09VJSLRk3ioqHwQubSvUkxTEQrJN81JlEtAHPICCTcSPDpirFIKJwWggpuzM72wmwJOM3RWHHMRNrZdzROjuCKuJqakd6i6y9yd3NKUIuZ/U0RjbJBpgxzxjH65V94Uo3Vs6igZV0bNNCiEQjDHdZBwnjCqgqsWuPkeV8QfKRO3fu8PLlKzDQNA2L/QNWqsf485//nKIoePudd2TUxBXSQFXWZHbPG/NgzWvlnBdw1xRG2TNu6oObSasRjAB5Vphm+TzO62vwEjOCD7hCwMW6kcbHq9OX3F7f8Cf/7k94+vQZP/v5z9hsROpgNpvhh0HYuIVj8J0we6uSlBwxdLSdJ/YtwxCEcWGl2DWFI1nDoPc29H6HNSZgbQphFGJPSD0SguS4mcGWYiQRMU7vQsqA9lSTiMTIDjNGR3Az89MkjZcxiWiiiwIYAAEAAElEQVR/DFSFlTWchjGmGyNj4OjZpRQHAZxUZiQaQ9oZoUtRmI6DD2Pj11gz1iN5pHdXR8xpsy4DUNZC0LotC2vLXhG9oZgS1zc3VKWYSVR1TQiem5sbiY06UmpVe3A2m9Ei4MzDh49w1nJxcamGCGnUVvNqTpUBDpe1nszkgjs+tG6U/xi5h4nxs+2ynMYkQjUqR5rYzr9kN/OR9JSBlfE1d9kg+Xl03yazO/BDCpKvBx9ZLpbcvXOH73/ve6zWG16+eMFsMWexXLC3XDKrG2wpbmf1YiEC/psNRVUzRGGri+lEg0EMUES8v6DIQvwaD3yMWBKVGuIMyv7tuh5nLQ/u3ePxV18RY+Tw4JD9/X0ePrjP/sEhVTNj27acXV7w/MkTVjc33Llzh+XeHvW+wxaFNMlRPa8oa8sVei4gsT4Sx+sgVy0Dt9rkHHM5yZtAc1JnaaqK0km+1at5yL379yhdwd5SQLSYJO4XheSPkqNIQ1bunzRSilKMOnITYr5YqCamxPInT55weHQkeaCSDJwtsMZR1rWCuQIsZtc4a40YuhQOH3VE2ZXiIqw5yeAjw9AyRGHrzpsZWecwx7umaRjqhqJs6MIF192auneEDTz7xc84X/cMi5KVTbw8u2RJwSKCGYTF7X3EJQPFVE+aZFSKI+MvykpUhuO4gjOCrt8xmBFYE+KHiKrvLnerTY/0K3vqP/74tYEncaOyRDPRYqWbN2DLUqhkRtlCxaR1YDRJcdrxQxOaUeA7KY2SSa+G7FqUP1QGkxLj2I0dvAqsychdXVcCdKFi5SnowpCDP9lE2Mp7GWKkrmuaZkZMwlIQ4E4CNkbG4YyRjqjsBUNZFMSylJEupeViJWGMKWGNo3AlqYLNZkPXDxKsSgnKOYnK43u5wx581IPDk3Wm8mPbbrm4OGMYegFGiDhnuXPnCEOkmVW8ft3x6uVLTu7eYf9gX+5XjMzKkqZpaJqavh9ot+2OLpIkgZn+/+E3P+Sjjz7i3Xffw/vAq1enGGPp+4GiKGkaw3y+JJHYtCs50FTTq24amtmMqq44Oz/DOcfN9a3eO8t227Jeb9SZ0Iy217NFQz8MnL4+ZX9/nwcPHmjyCUPf4wfP+dmZ2FmuOmazGffu3ePi4oLT01PqulY2lQjl3bt3j4ODffaXc1xTUZY1F6/P+ORnP+Ps1Sva7ZZy/4BkDOvVZmS4OdVzEcdF+buxMptvjRHmXo0Ea71n+UB0WggM/cCuiKu1ltevX7Ner7l//74EOyNFhDjg6Lx4kbvbstptUU6HY4ykEKlrSez7vhdBVD3xrM4Ox5To+oHNthM7YetG5l7f92OXuhsGhhAoq1oYSmWFHwYWTUlVFhweHTGbzTg+Oqaqarq25969+1R1w3Yro0jr9Zrb2xXPnn7Bdrvl9vaWtx4+5O6duzx//pzL8wu2mgTKHuhGTa6iUo0hH/AhYmNkuVwyXyxkbEBZXAWK0mtQN1pSJe0uGlSvyjriIGymPNpnq1L3ryQlRVlJp1T1S7z36uYkYuN57IMkwTePZ+wfHnB89w51MxNQQsdH5vM5m23Eh56bm2sZcUrQ1A17e3tj16euwRSlUH8T+GGLAU6OxXljvqi1qxRHsCBqIpcTI2skTjpTYF2S7pcZwEJdV5gYeX61wZYJOMYSKbQBFwFsLmQ0woWM6KcxSSRYRPT4Wsed0TXtIIme1qKaM99b0sdeyLsVYBPBaBcpBopC1nIXOrZDZGsdm6JmiJZugGLbUc8WHB4dMAtrythxZznHusDztXRDTQojYJJHpjplevSdaCe1m+2YNGZwYKL7SjerspYYC3zoqRtxDzk8POLu3XuSfJLYbrYYw2jbKyMyZoydyccReGrqGmfNSHUnJbre42NPYaAwloCMvXlEh6MsHYWCT1gF39uO/mbN6y8+5WB/gY2ByjmW8zk4y9oPmNst63Vi3QbWbcfHmzVVVRKCFzH4FFnsLbWLVv5Ksp2vy8hKyS500ZO7sfl6jToLWtwKw0ZYU0n/3TAJJcsISc62RdNxu90iLBApuMWLl7E7n3aZmVGBEwVYsk5f1lAaBkkS8+coi4KyltieQcisGuRjoFv39GrwkDv0WaOobuYAb8S/pKC9LcQ+varrERQgRJxTYC5N2o9VKUB2rcV91qUpy4KqKqmqavwMArzp+GCQUS6rjM+6ESH+/LOyv9LOWnZaPEyOvfkeDX2cWN8qFJ/F0gcv8a+pKhLC/BydpDIgaAoVyZdeWdYAFL3rqYlh1JAkg6/TupLCdmI6qbtZHmFWqMsZRIxU6eyi3yXMDJN1qHJfNaFnoJMwpfE1j+VJM7HAD6Lt0nfS5a4qdbfzudhVlqIx9EHy0cxCiSGSjRFkfBm8MmTzCKPXfDRr0xkj19gUhcYEacpMAuACqIhel4iJ46yOlStbMifm+hjFxDXnzSeaM+KWN2qAhsxcnvbvMPidcXmjDGK5SckI+lMquzmRwY9aGlGadztrGYwIKjezOcEHDg+PhG2B5DX7+/v0bUffdjx+/JimaaQ4U2Ag5xkCPE3rM9fWeV1nsKlwTscTLTrKIMBTSrqH0mTqY2WkVXJoLTi1URT6ASjlfNFrc/b6Nc+ePuWf/4//I6enp7x48UK0IucL6rpmmMmZba3FDx3RWMqiJ8WCGHt6D300SPkj+k5Sqcq+CMHjg7ChdZVqXpdIXhpmZek0PkbACyvKSAM5JrkW+nGlFlGjnAmsm+Kv/pAA3irxbaTYISHNR1JUTa+grMegeaB8GatoyCS1I3swBFIwJC9mSZhpjM6HON5XYy2VFuBZcyufFRmAkvgZpjotr8O8FqyMqJdVJYL16w12b4+yqiirEuMNF+cXYmJSCjBS1zIKXhSFOv4mTk5OKNVBD4yymtWYRvONvPryekkaX3JcGdengXGKMezo0jARGn75kUe+82Mcz8rBMV9AKVx170230mh9O/5a0veRm0P6p6iNq+VizuHBIR99+BFPnz3jZ5/8gmW/RzBQ1Q1VI/GoqCpxnwuBiMRxHyKVcZRVPe69DFoLkJnnLM3YpE7RiDOcc+p46mm3HdZYTo6PaOqaGEWI/OjwkDvHxxwcHlLPF5xfXvLs2VPO2pbL83MKYyitJS7mFM6OoDJORh6DuhBiM/CeGyTSBCUl/Vu+eemN+5qZsdYJDlDYEtc0GGNUD7anLg/FqXfWEEKk7TppNDiRx8luuFkAfATyraGoSqyCrfPFnFKdnv3gOT095fLyUoEncGUhDUgjunzSGJpiobOOohQsoixL0b8jNxjUkARDPwTaoWfby7quq0qGHTJQh6Wqasqypihr+mFgNaw46hdE4OtXX3HlE2FW0hI5u7omFBVYR2VrSlMIWItMHBkYGwaW6WyJIcep6awa988IqupfhT4r5jfJCt4DMhEwalX+shvk3/z4tYGn7XqDtYag7IuqkotbluWOgwkKoEz0UqGBB5IJSKNN6PdD71WIW4pAa4sMUMvhbYw6uICJ2jFzBhvCyFISxo10Q7EOY9QpzIi9eExSLORkpChkfGKIIjK6Wq1U3FHmSEniKJdipGuFyldV5RjQbZJitlOUuG1bEb+sawEhjDg5RSJN1UiXzEkykpkas8WMvu+4vb7CICyICajLDC/UmrHj6Gifj7/zLf7wD/+Qr7/6CmdlzOCD99/n6uqK68srYgjsH+xzfHzE8fER9+/fp6oqLi8vuLq64Kc//alqFG3xg6coJxS81uT7yRNhVa1WK05PX/P06VOePHnM+fk5i8WCuq7ou5akXdd8gPZG7MY/++JTLq8vOXlyD2sMl1dXtNuWm5sbrJFg2PuI1zGPhCYZRro+TdPw9Rdfq0ueAjO6qIIP3Nzeagd8fxzH81eXCkQKeHa9vuXunTsc3TlkNjT46Pn2x7/B0dEhL54+4/r6mqePn7BarXj5qh2BU68gTd6IueBMNlNzpUOFLahifGPe9erqCuccC2X2uKKg7TraTsbtNpsNt7e3FEXBpmt1TdWs1msuLi+5vr5hvdnyzW9+g4P9A5pmTqY0lkXJfDbHAEPXkkcz61os7mcz6WwOwdO1PbVrmWfraTvZSsPE4rh/cixskBiUmWi4ujynbbdcnF+wvl1zdXHF/sE+l5eXfP31Y16dyhjhMHiev3iOD0EKLu8Zuo7bmxsK5+hUpNIrGHN9dcNm01LWFThL58XuGWdJUa75gwcPuHvvrhwuxojuFZboowR6Z+UgDGHUIioKR4pJKNrKkBCxPDOOR1pXjOBoDrS7AsdG95FR4c/8SNayGTruPXiIcyXfeP8bLBcLEp63332bhw/vc3NTs1pXNPWMYRhY3a7ZrDdcXlyogHGno0yBo8Nj5osFs3lDVVeEMAMGqkoErAV7T6LjpBb1RZH9ZQRsjz5iYsLGhCcSTKBezkgh8fz2iuQsz049+7XjoFmy7TtaP6B1CUVwOmZYAAFij4x2yoFuSjAmYE2gmAt0H4eBsnE0syX1vKAsVKMAqwl6VoxIlKbAmRJMwbrdcLntiK6iqCzz2ZyU4Pl1z8XW8/X5im/enfPwsGZ/GWjqyJc3njYYZvO5ALNdS7fpWA2e9XZDPwzaURIHM6PArnVTYW+M3dHsi5jgqULDth344qsnLJZLDg72mc8bqrKQwueNpqbGpTSQcDrCU4x7MRKxbgJivAwM63SkoaxqkoHO9wy+Z7PtMCZy5+4R8725MAj2j7idbWh/9gmv+54f/4t/xvKtt/n9D/8zvv/w26x/b8vl9Sltt8GkgrqZ0cxmDL1o+g2Dx2oCM1/MOTm+w+16Qz2bYQrHerOF0jGkiFGBW++n7rDEgTDWOfmRKdXCiMraMEiSZQWIMlp45ySl6zpWqxWffPIzlssl77333lQEqPlIUMBCHEmT5KQqhr3ZtvR9z/XNFZ2OvRlrx+S5qko1BxFNQ+/t2BwagozPD6q56OPUPGhU7FNMKWScLIaA94MYjuj+eoMZrbblMYmAflVV47WpqkqZJx6Mo5nVIyhVFuUbTLlRjD54jDPU1o0j7gK2TF32oe/G+2KMVfBAmEC5CB1d6YzBOEttS2V7WtGnG3oBCbUAsSZRWitaGkHAKrH7HsCg2lYJW0hR4FXTrKwKDAWggEEGYGQryXtMiWSCjkepTpMC5DlHGoIXTc/kRgeiqNqAtpicK31QrQ0FgIxqEjkjRW9ZieZWDBIbo480VU1hHFUhBgezWnUwdcRNdLqUje6kMIzK4KqqQkGLQllLkaHr2Q6d/I6x+FCOHfk8xt3UFVVVU5UFrjAqPI6OqGoD1FhsaUcNnKIowFgGZbg6l11YxQ4+hqQjfbuGGJaRYa2IYEza3A2TPqG89wyASZPKOitniIKMGQx0VuQipleQa1k4x2K+4Ae//dts2xaDsNsGdYaazWbcv3eftx494mD/gHo2ExZRTASDAnE7xYuyXWTETnKMnLdNTVyU0SRyHVWhub6OuscYMapZlvOtupxR2IJFPaPrO9puy7/5oz/i808/44d//udcnF/QDQPJJI7vHCsT4xLvB5I1bPtOYo+TLvzt6pKi6pi5kmQrClPLtU1pKoiNFH5d15EGj+pjyFmXx6oKGbFpW6+njSOGCqIlBSfN+b6FKIx+g7K7rUhuCCBhBMCKeWxTGjwYiEkYVViRVAABZC1TXQQFuJIUc4xEWfCKcKTMZBWmGEnGp+Wlc+PBUJW67qKMehZFIU7WVTU2DHIjrdXcLjNdd1lH+WdygyH/bDOf4/9/lP3Zr21Zlt6H/eacq9vN6W8fbVZEZlVWk6yGPSlKgAgSJgzoyRINW7Ye/G/40fonDBsQYBiEQVMWBckF0yRLVWQVWcxMZmUXTUZGxI24/T39blY3Gz+MMdfeN4u0krtwK+89sc9u1ppzzDG+8Y3vS5FNu+X48EhqgH6g7zvW280kEh9ioAilsFmdKFhZkp7tYgRgwsgYholBmTsNQRlpb3yWDC7l0cOMNSWJtTsiw5uaXRNJYT/uaXyeGEwmj/ElXamZxSn7V/k7AnYZQ/IRTBRWnQKBd+7d497duxweHOCspe8Gqqrm7/29v8ef/Kt/xe///v+Hg5MjTrpOa4IZ2RjCGqcC9KJrmsfTwFEWNaXmzKD3Q3e/dQVlIY1WMBweHRJC5N/8m+8y+pHFYsntakWlphfGJH7917/N++9/g6PjI2KKfP75Z1RVzV/4rd9kvV6zXq149fQpL77+modvP2K+WHJycjrFNuuENepHyQmsNkyKnHhlAChFif1OGxbshNuJ4mQtNZfkEl7lSMpSvpPRPKNvxa3cWUsMnr5vads1281aAROmM1XwAtHVDXqe3d7cUpQFZVljjBNjmutrPvvsM2aLBffvP2C73oq2aD+QkpnGOuXzin7gUidvQpJm+OXlJXXTcObusdpsuHz5iuvVDTer1cSK6rPRibN4H9huemI0VLM5282MTVdztmppXIu5uqQ0NYfL92hXHT/4/md8+9uJg2aGnRtcBW5+LMZFqr2ZpyfyuHBKaWL87+tP74O2E6VJa5C8/621WKyQBZRZDPsSSf/zj/+AUTtPMgaPatsUxVTE5dn/SD449z56EmFNG2TBO0XKhKIqiW7uJOWHycFev8TUgTWSuJio414xYhNEK0LCIDpOhZEkNmmgyYHSWKOzp34CGEpT7tGiwecuflDb5VhMh2EujuV7CZprQLvuOlqoV6DQTRT3UFZjEKr0AN6P+HEk+BE0gYhZ7FeLrBg9dV1yeHjAMPRcXV+Kjkhdc3x0zOr2lq6T0ZOqqpjPZyyXSwEenGMcBzabDS9fvmAYRoZhoK5r6rqernUeC7i6Flqr9yM3Nzecn4to+Ha7FeFoa/DdKEi1OsFkJDXEyGq9xlhH1hu9uLhgu225urikrCqaumaMAgZmO27I1MSCru3YrMVlLdO2jRFNsZgS27bFdB1t19HMZszmM/28IhTqXMHB6pBm1oiNeOEox4LT01MODw44WCy5ub7Bj57r6yu6oWUYBrquk025BzztLk5exGBdZhdFYrLTZs7U377rcEVBiYyW9H2P1XXtvYyB+HGUAqlpiMHTtltub2+4uV3x9tuPCHGpJ56R4hkonWzwEIKuUdlDRSEdIymeIqksSHVFUwl7Sbpx0qkH6IceZ0R815YFloL5bIZzBd12zajAZNd1bDYbRj9irOXVq1e8fPFCEgvvefHiBcYYzu7c0TELodlvNxu898rsky5g1/VqfyudRB8Dk1OIHvLL5YL5fD4dOFnbLcZdQJSR3UQWbs1JbnYsDHqoGAODl31eFEyMtilWGRH8zsGz1vEKW7ipWRhGca9cLg45ODjk6PCIvu8IDPJZF3P6oaXrW+azGb6s2KyFsePHgXEc2W63mmANkLLjhbBOtu2avm+n5lkGmPY7jFl7RQKaXoekrkBq7e3Kgmgj3Tax7iOXtyPlYcmdZUk3ypjZdG5EGSVwU7NOWAoiQC6dIIu8ti1UHyYECldQlyWuMGCCitbmD27II9KWXUE9eE87DEQcOHHv9CHSjYluHLnd9hwtShaLmhMrxhOFlVrRGaFhpxgYx16Ew3WP20oSvEJFrbPNq3F7DB8F2oIy2Kx1AvKv1tzeriSxcJL4WJfIluW7BDQSo9HrBUZH1oSSnCT5xJCMMH/ziZdg7xCP01ooSiley0oSsINKhD3tzYrh1StefPIJ79QNd37rd7lzcALW8PT1jNV2DT6pDpyMdw3jKMWtjnqURUlTNzT1TG3N0c5wSXJaiGghmpKMRkgtGHUNvHlO54Q9kR1TVdyd6Wh840wfx4GuE6fPfYBbACZJSPK5JzFKEnObslC2NFYyK3I2ayjLYoptRVGI21l20EWKIyPVhuztFKaxY9G5MHLuTnEEilQo0zZO42dFJSOBIYhwuNHCPwPTmcUUYphynKQjrEUho8wyEqcOouTELmtc7NgxmVmYAYG8l/MZOIHiGYjQe2OQpDxfu8yKyhpUKeZRMhGxJmZ5gV1HV9uBE8CW2Vwkq+POYWKnyGFnVddpF6O1FT3d96SaLlkjbyoCkSLQasyOmnP5oGe9kXMtAyxTDMHyBk0jacspMbmPifunw5RmAj3KQvTqYAeKWmXBZrJBdkEWoW9HWTpCKAi+xI+jFIXT+tZzVCOasQZXaGdbc9M8rjkMYQJcMDk/1XuvZ3RKkYgwN3NKkZ3sMhvC7MfSvX2Y/533zpsbdbfWnDKskp5/0wXU1ylcZoEkknUS9zV3v3vvLienp1LQJmEhgYAbZVlRlaLvZkDGSaM0P8x0Bu9E4zMTazqLfyFg5O8x5eC2mM49dHxPDGh2+X7lShmjSomu3XJ5dcnnn/2cH/7wh/zoRz9mtVrx8NFDHeGv6IaBfg/MFUArqYCxjOZiC0IYMDgdKxZAUHL7BMpUCiFIwZvXttndV2wGHzWXsY6kAtMpWVSlnxTz9IXELjknspeYnb47u2U0FYQJg0nZkEhZ9XmcU9dYXjv5/JkEsfM1Jxea8l5ScItcStKaK+6hK/tM2cx6mmK6XhOJU5YU0p9fl3vPy3lgUYgm05iEUVUUMoaXiJjtZgLI8prJcWoYdyxVATdFW3D6vHvfUuKplhPTv6dIuPc/u6J6X7olT03sWDFmtzYR0HKn58TuZk2UqGmonN1fpjv6xj0hSSybzWacnZ0qk9pp49vx3vvv8eWXj4X9HqSm8D43bbRW1s9vVf9varopq19G0ndNDvnsGZwvUCNxiqIkxoHX5+cMw8Dx8Ui7WU8i7wY4u3OHR48eUc8aul4cZoui4OjwEJMSYRzY3q7YbrdcL6Qeq0oZKTMaR+q60e+eY216Y12R0rS9cp1vyOLiOxEBo8/PALusDzkPnUHG9PtBpkiUjehHqXnHsdfzME0x2thdzR/1vYZxIKZIU8+xKp/Qti3nFxc8VLbZ0A2MoxcDlpim5lh2mw2jyO1k7UpjrU74iEPfdrPl+vqaq5trrm9vWCyXFGXBqGtFvicKrhnKuqEzFV0o6ftAYQPlsKV2kdokYj9wdXFLt+0wQRxMjVGmk7WkUVsZE6bCFFcyK26Cncxu5QuYt1vzOa+ZxuHzes7TU3nX/Pmw8O98/NLAUxYOz12ulBLL5ZKqridXkmxRmYPUfkek70dg2B2aOj8/1y53fl0QejwpEUvprpRFTSLt3LySdinY6Q1ttuspWEoJkXbBM8VdeDa7YpykqUsUwCrESBx14yUwMRFHDaJlQYxySC+Xi8kOdgzSXSyKkqppCN4wkjSJNqy3azxJbVklqStLx2Ixx/uB6+sBcyTWyQlhZc3mM6rgqErDZn3D5eUl86bh7tldLi8uub5e8Qd/8Id4L8LgIAj7yckJDx8+5OnTJ2y3mwlIAJjNGg6PjqZ7Z4jEOLJa3RCC5/LiFVVVcrA8UCbQoIh5ZLW6whjDtt1OI0z5Pg7jiA+e46MT7j18QDcMbLuWV1eXgOHw7p1pDX3j0bscHZ9y/uo13ntOT08F7e17bq6vefHiBW+//Q4PHz6cxsq6TnQd3v3Gu9zc3PDpp5/S9jJnXM9mlHVNXcv6dGWBKRzBGEJKjD4yny9pmob7D94C4Pf+6l+ZgJwQw2Q9jDGiEaGaIeg9k+5H5Kc//Sl/+Ad/RN91DH2P6DkYTk9PwRgBsKbiKxK9IOApRuZzodLeObszBbuyKCmrmvffex/jLPfv3Wc+n+GMdNCHfpDXiULfNjkwxggxYKzh+uK1UOpDYLFYcHJ0xM31Fa9Wa1Y3twQfODo+xvuRp8+ecnFxwVePHzP0HYMytIwxdIPqaA0DzjlmsxkPHz6EBJvVmrEf2LQbQgjcPTtTN0tD1TTMT07Yti3n5+cioNc0bLdipXp7cyOHlRVmT3YdxBjmsxmHR4ecnZ1ysFyw3qzAWNLeyO126yElOUzZ5bO5S2ALQ0mJK+yU1McxkEJiHD2TpoHGrWbRSEKtIz+zuiaSGGPIJ58I8qaoLjZCN95u5rR9mArNtt1yeXnOcnFIXde8++67GhsFdLq4uMCPXp0PPevNDa/On+KDJ6RACNB3MPaDWmnnYnyU9zXCRAtJgBAoMDaCjZhgIRWMzoNNHBweMcbEH/3kJb/13glv3XmAcwO1Ew2GlBL9IMyIWHoKa6hMQWEKCuNo/ZZu6CgrKzbxRak1jIHCYioYw5a+DZSNCA/HGIhk4XpN4EKgYGS17ji/GVn7ijbCzIsr1nJu1QK65+mrDRfXG+ZVjQFevLpk9HoPjBRTQZmR8/l8YpIYDGUhbJQM8kQV1rdWddaCujBF0dWQVN/x/MVrxmHgd/7Cb9E8qElJ3H68OmQW5c76IkY5Rsc0SGKj75/PsoRFSbYiaGwg9KJ3lbzM2M8WtbjAdR3V8THNYsmiEG2jD04eEFvDj/5v/5Dtf/KaO2//CubOEfZ4SblYcNrMqHN8dQU1M+7evUfdNOI6phpJAoIY1u2Wq9UNL1++ZnFyyOz0UPUjZA2KC6zug2HQaGynLCGLqIsleBLtI2NFuypEtdIep+ZOjIHXr1/R9R1HR0ccHR3JiMswsmnX+DASY2A2m+2YiLoHvQ90vTCGi7Lk/oP7GGOYz5tpRGC/gPHOM/QjwYdpbM5HAUUXywWxTBTKeMqgREo77SkRJy2ZzRumzM5kBoPeT78D5eR8FFv7MgmzLGuLSDGfWUdZ90/Wai4OUgKr+oyFlQ7z1Nwwhr4Xrbxy0k5Rp8iiYtdtzCBuq11F+TyV6k3tph0NlTJ/FFkiDAqQlaVQtA2MfphYJajOnbWGsiopi4K6rLC2xBrHrJ7r2PlOb0iKhsAwCptvGCVO9b3oErqi2CWeGYTyXsbEMhCn5YOPApbtOvMqTBoi61bGLKsyuwwahkGYw8J0LbRBKeKvzhXM5wvGUZo4+Rov5rUwcHsRcLcujwZFqrqgKOfMFtUEoJGYGJXoeLM1RmvNhPeSt5aFdN2z++Wu6NRxA7NrjHifpgJxqkGtxKysA7XLhSW+ZPdbY60Cx0nYwqC5hb6nFWFeDCQVtDc6qrg/Rpu1zaxRrShd38Ya5rM5y+WSw6MjRj/K2Eovcg5ffvkYA3zve9/j3oP7PHj7Hbph5Hq1Eq2WX3ifvF9lJGuvpFCmiDWyLqwCHNl4oFSpgKT7MjeeCus4Wix5/MWX/A//3T/mxz/+Cd/73vepatFjmS/mzOYzlRgYpDYII6Y0hMGLZIICEWM/grE0MwHoQ9+J6K8FkFHH3MzpNyIhYb3GiTKz1QIi4iygDCnhs4SALQW4cYmUREaDQseJrN50dUMkgFGNGOtKkf/wHogUtbC4fdCx1MJB8CQCdV1ROENVJMIYRajbd/hxS2ETTjsuyWRmQsJo4230gwL5ltyZEU26xBBbnHXU9WzKBdu2pW3bqVmXAZmsYwfKvHKOvu+UtZQm4AfUeTbpqKKemWt1wy6co6lrFouFOELrSGWMounlfeDHP/0pVSn1VBMC5vpK8rsYMG4HGGASaXLWzOE8ZUSXN5GgpPml6N8IHmP563/9r/PNb36T3//93+fZs2dTfloWbgLFktmNg+37dkm4yLCf/txKfRpVc6ooqwko98NIGEbu3b3Lr/3ar3Hn7l1miznXtzcAHBwe8nt/6S/yf/qv/2s+/uRjfvjjH7O5uubnqw3vv/seh4eHHMzmlM5xuDgQtqVzzJqZGDEgcTRoE6aezSa9VKM6ZrYWFuT1aiXTLefnXN9c037yMb7vGVvJXwHu3r3Lu++/x8nZGf3QExAJmS8ef8FsNuP49ITTk1OIkdeXl6xubnn54iVVVXJ6dkYzm7NYHtA0c9Wj7EQfrZZRuRT0XllpdMYx7HSeFfyqylwPtVOsKcuCoiwY+iDkFeTMnhpmVjTK2jawWW9YrdckZb9mQHM2E2b0MI7atLIk40jGTpMwfd9zeXXFpz/7GVXTcO/BA3Ux97ltu9M5RMgmpUq2bFdrlAyPK4UF++zZCwyIU2Bdc/fsDkfHRzRNjT+WJv3F7TU+eIZhYN7MODg84fz2luerlsN1y6kxfHhwlzZGfvz6Szh+gDu9w8FsRtMcCRO8i8RmhXEF0TsFJYtc4pBJ1YXmWyHH8vxnD9w22mwNOt4qjV/01NvtrYTsT+wvhzz90sDTNMe6d9BMNueKrBsVb5PO6Q5lEzQ7dy5zh2E3CjQhaBonJmQzSFJQuKSLK+11CBTRn57rpctQyBzllMPlz2FFaJXpomqiFHUOehIRlMu/i7MaSGIW1ZNOUjSG6HcdEqst5dyDyF/dOtGWmFJKw8S+kDGhMFFUi8KKyHGSMbQ8ylhVotU0axrpYKSEH3VMbPSUVTmNzGU0E7LYn3vj3zEGoXxrR/z4+IgYIzc3N3jvWa1up+5UTsQH1cQR3aEkhzCSNE3ufDp64EkUwYMVWnFR1fKePujBbSlrYXg5HZlKCp70fa+JmWNRLSDJIVfXNXfO7lCWJecXF9yubokpTo4HZSlCzmh3MSe5esrK++oBsFSh1VKZVD5myrQAAV51niBRVrtZ6RcvX04uTEydvl1nOO+NTHmWxFX1oPqerm0FjbcyA58ZdXUtXQGDjHkGFR5NJGFr3N6SR2Dy4Z+7kzH5qdPix5JxHGjbLZv1iuurK11XMqpy/volF5eXXFycT8BT3nIBg7A/BEAtCkfXd2w2a9Wy2tGqC+dU2F/o/HVds16vWK9WLA8OqKpqKtJE5FUdYfQwyd0Gg/bY7V4RmHLX2WCUGZc0SkZjKJwk5D54YUY4Jx12k8RRKmliRe6CW6Uo696bxoXE4cM5h0kRv0+pz50/IyNBy8WCdTNjs72WdaFxKfgwgRJFIULBxshoTrawDz7S9x2jisqP40jbt4geykzeEgEXRUIiTvc+kVkLWblIO5ZGCtuErIGiKEg+cLONXG8915sBR8RZM43bJCNXNQTEecoJ2CJ2qknvu4CDOW+LyHU1VjtSCuDFKK+VRUlzB6qwBRFDNwY2vX4fdsnFboTE0fUj/Rjohvy6Eo99iEpRV70zjV9WnZOMJimy+JlEbmXr5W5YPg71/jtHUVYMw8j19Q2bzZau62lmkgxInBP9k5hjts7Dp7DTkspvmvTMEBFtM92rJDdsivMRKa5sJeD16L0YJnQttSvxMTC8umTz5AWXn3/Bonif+clSQDbrNKGVDepcQTObi4jwnqZN1rExRvRh2ralXDQ0e53kPL4Zze5eyzEXySzenJ5buzuXzd7a2NHIg7JYxL1z9CMzHe3N9yCq09nu6M8HaQYmtJOp11Xc8cwkqL3P/MuP3FEM2uAKMWpTS/ZtFuR2+fzb/90UcUnZGQo47Rp5+pk0RBQ6dhTCTlQ3j/5ZLfxFq0G7y6oFmKUAQNfPXsyZ6iDNa/JnmyjrdqfvB1N68sb3389l9tf4NHal/5tA3IGNcC1yIRZCVAc6+Xe+9nVVi45WUWBNgYxzmene7b7U7vPL/ZE/+RF05MyZYrrfE7V/YiXpOKd+bjlA7fTcZHZM6JFISpkdrWxKs3svWRNSBo7KJo4xvgFc5uJXtESUYZLZHyTVEDTTvXJmtz53jILMTNHfipHdXcnMJQmaWdx9YukrALVLRfW66PWdrmtOfadrZnbXG8R8JAM20/JJu92U3lge073NQBO6Xtx+hz9E1hthlxfOyTXUpgcxcXV5SV1V/OQnP+Xm9paTO3dJGOpSxsxSTG987v0xpzfqhPyZrKi6uKzDuM+osW+uNfnsgVcvXvDV4y/56U9+ws8/+4wnT55wdnbGcrnEqQNmBqJDkkbTdBbo+s2jSMbEnT5Q8CQXNFffXbsMOOeJNfncCjdM9ZXegF2ZsAe47P13oxo2eT3l+2KEpWeieeP65bWBNSq4bDQVUHajnruST8kIYB5ZTHGQ7zRhMbt7IYTklDOHvT2ZC0wxetp/ZNbajjgQJ1KBSRDtm9csf3e9vLK+YtytZf29LF+Ri92yLDFq+55rvbyWNpstQ1lwrLIaTdNM22UMXsDrvbKX6b+mf8ffdz/KTMq8x40x3Lt3jw8++ICTkxOur69pO1lT02/nC2b27vveu2Rhd4kH6Y31tzv3ZE/mPHc2azg5OZGmgc16ipLPLA6WfPNb38QHcU4duo7opQG6ULc7ZwtCSlN9URaFjmFa3X9mcobe1StOR4Xl7mXDp6KUaZ3zi0t83zGqW3BRlFR1JXWls5P4dkqJru+mhokzBmKirEq5L21LCAKOxgTGZU29fA0sReGn6SDN1nfnXR74SG/evzeZ6dMP9/bm3n0xOkruxaRA6iC9//txFnRdy7qoSmmcn54cM/QDq5XoFIux1zjFttxMgb1JBWXXwg7/yFsraJwOXvSZazUhyc7wVVlRzS3jWLDqNuDlPayzChbWuPmc6+uWEAKPFgXWRhaFJ9hAiB0piCZyWZfKBBNyScqa16S8hNmBp3HvJEH/S84t8vrOOEsOMEyvN2XaJu+GP3/f/n2P/yDgKScIiUQfPLZrCSTpxBYOm5wWhlECrAGj7kSjH6QTOtlzMyUKIHobE66sN7If40Rj3p3WicIYfP49/TyjgiMmFrhCHAAmraiyUtvFzRQUJ2HaGAjeTABYJvtlW1xJ6kf6vlWNAHGzSSkRfVBNl0GRWAd4XCHsjkRgOW92SYXOqlaN6MNsNsJKWt+uCCFwfHxIConWbamqkvl8zr1790T/6IsvWd2uuHh9SawD777zLuvViq+/+pzF7IgHD+4TQ+D165ccHBxwdHRE13Xc3Nzw9OlTScxKEQxOCYa+xznL3/k7f4eyLPmTP/kTrq+uePHsmSRlRUH04g7TsysgDKhGky5UDbBJ56lPTk6ZL0cubtbEkHBFKQ5/48j5xTmbdiPaA87w6vwFwzCwulmxWa+5WV3z+vIVRe344INvcnh0RHMjoqynJ2ccHx1zfHzC69eveP7iBX3fE0Lg9PQM5xw319fEIWBxwuiwBcMYGEJLSlsSQg+11nJwcEAWvcuz4Fsd7clnRrLSRVzM5lhXMgY/Oa84BQ/Xk6uTitkHCaJ1VbKYzZjVDV9/+ZiXz59zu14zn895//336fqe1WrFnbt3KQ4tX758NVHFy7Lk9PSM89ev+egnP1GHipK3336bw0PRXooxcnBwQF3XHB4e0G23PNtsuL68ZHW74tnTZ7Rdy/G1MJ6ePXvKMA4UlcMVc5pZIwh1ihTlTAuDNBVbIYieU9/3+DBSq+5JCAEUaBWXtzlPvlrz9eMveOudd2U0qBeGjR8GkupBpZQIyh60GMLQM/ad3EPvqauKkMRVLoQ0FRYGQ69BH1uJQGS7YrFY0DQzGEdhGXpPIGJLYVI2Te72uGlePBlx/SlVp6IoxU47GdR6PIn+hLPMqhI7b/jg/fexKfDFl5/QrjbidBOl6Mhad1KsKtOGxOHhgQA0MRH9khCky931Lde3V4ChqZfEdMvlRUs/wOANZTWndAUhQjKJ7IXjLPgUGZOnMJbCGrowkEyiKSu8sayt4evrgT/+8VN+7a2K9+6WdKEjJI8pCmIy9GNPMBbrSgqjQpS6T8qZdMJEgDOA7zGuwpiSummwzrHeDozDCFb2y6CMyJBGsAtwFa83kedXI+ConCH1nQAv1uA9jKEmjIHoB8bQYo3hnQd3cdawaVuyE4otHLYUkUQ5CKU47/2o+b3EamsERLFWktiY0qTRY1X7rSwquvUNr1+e8/XXz4gx8s1f/QZlVeP9QAoeO9qc+/+5c2+/oM3ubMlacCJObIyhMAXWQmkLxjCy7XqOD4+4e3LKxXrD68uXPPnyM8avnvJbdz7EGcf8NrL+4af84P/83/Cd/93f5+1v/Sq3tqMPntu12Fg38xlVVYoAuSaybVnhioK+6+jalsOjI4w1XF1dYeqSxZ1j+r6n71oKK3EqMyhA7m/f95SFaNgYI1o0VTXT5Cqqg2CnI1XaXLDQDyNd13N5eYmxhm9++CF13ag7jugJ1HU5xYepEEVBUuT8yR11ib2RdruV5sPQT4VJTjTbtqXvetU8YWKIbNpWmjKzmqaqqYpSkkR1GpQR6F5dW4RNXNhiSsAGbfi4UhleLgMvieXyQMxHNLEUYEYjkrEUrkQVQaW7vVfMVEVBiNKwsVZYehk4K1XfplZHQpIYfPT9OOUlEyvZ5LG3QHazlVgj691OZ5do44UkHdh8wUXkOLLtWnWVlftS1w3zWcOds5O9dQ0khKU0JrIEbh75idOoS2b3SPyLKYnzbVVRLxsKHQ8NpTZQjNxzqwwCG9OU1Rp1tSssJJcdLCNDN6BPECejxZwUAz6Jk1FMibKsGcPAettO52O+fuv1Rho72TJbRzirqpwkB/K9qqtKzgJl9AfvVQ+l0nthyG3KYRiRURGzd68k/jRlowC5NK2aunqjGAewTnKoDJ6V2j0WEM++EWOyCLJz+7oZohdkMqihIEWuXLOeYalapqQ0nX0H8wV1WTH2A7frDT/4sx/w6Wc/mwDBYfATEPPxxx/z6aef8qd/+qd861d/lf/j6Rn3Hzzk7bff4Wa95nazptKcPxcakzYOuTGjzbEYp6aoScKcKas8cZBUp8WhkAxNWfH61Sv+m//L/5WPfvJTfv/3f5+mmXF6ckLTNFhrRas0eLbtFh+isG6MEf05IwK/E8OrHxQIE+an9wlna0he3N2SFoYmYYwTLaYQ8+rHRGmMWEVcMtsQU0r+64FkVChZgU0nayBoYWxTonY182bB0A0Mw0gGYMuyIhnZtxZLrSLbYz9Slg5rC9rVlhQ9KWxwJtIUSdgQi2POXz3nenVDqe6ORaFgONpwz6PNIVJaKUqFYhhJoye5SHBhOuv6vn9DgiLH2hA0GzE7UD3FNwHH/NgHrvaBp7S3RheLxeR22o8y3VBNgtctwyAFelkUPHrnbUod+3/y9CkXlxdkJgZ7RS+8ud+mRwadsDqGK+w7aw3f/OY3+Zt/82/ywx/+EGMMH338iUznaKN8fyRrH2jbAcqgHBIJa1aROQWUvA84k7C20pdJHJ8c8+5771HPZviUZHSfxLYbKOqGb33713j3vff4W3/jb/Li+Qtub24UAHIT8DHmyaOYdAJB2LPWWkYRxBF2mAIes9mcg8PDCVjcrjckDO++9w1CgD/+4z9hu1qxvb0GDIdHxzTNDOccL1+9kqmKgyXz5YKz+/fZbjZs1mtW6w1+HDk+PeVMY/h6s+Hrp0+otlvWbcvx8SDTUVWjpAsBXep69gbAuc+iDOpabDLGQ4650nQYBq97MVsP6W3JYE+I+DCybVu2CoYlDIVx2uzRBoH+r0mJe3fucP/+ff7u3/27rNdr/sE/+AfEGAU3CIGy3DlmSz2cZQWkES3NjfxxjUzgGDNJboiOcGJMIrmTzUgK51QYPbD1Ml45+kC/bbm8uWZxvOTR8l1+9C9f0V+vcNUBp8uKb7x7xk0wPLl6wu3rB7w+OePRe99gvjyisFm2R75fiJ48FJeNYMShF2V7ifmAnPW52bO3X5QQ4+MwgbcAxrEzJAjs9sf/zOOXBp5yABJaq1Aj+3EUa3IDZSx31taKtsfc+dTXSGl3Y3L3TNgRvImua1cNI0VhFn/e/TEkP4p1qC6coEEuBE/UDrXRzuoOmXszQGYNgNzdfXMDGC3Ci6kLaYzgFLtrYqfNEqOIChtrdHwmEaJVgU3pRgvSbpk3c9JSGDHz2ZzNaksInrbtCCGq244wJIqi4ODggO12y/n5OSGKnaHMpwvoVTjH8dHxNEJ2c3MzMSy2260kL9ZIV0E3nVdHBedKjo5O+Gt/9a9zeXnJp598IlfLmMnRZFRgLV+7FLO2hBXkPEhgSzFxdHhMiJHD5TkYw2K+VMZPR1kVU8EhCXoJKXF2cjoBeE3TUNfNxBqZL5ciSjj0itKPzBdz3nr7LW5vb+m6jjt372CNZXUrTKhxHPCqczQOg4i85fseA8mKMDVaFOWxjvV6xdAPHBwsKYuCdisASrftpvcKyuLxyU+Joq5uAUz3ss2Mkq9WK+qhnpIhP45EL+Ni69Wavut5fXEurj11TdM0LJdLUko6urbl9vaWw8PDSSA/hMDFxQXz+Yz5fKZsmk60uS6vuLm9EZAAsehs2046mtnTFVl/Uxd4T4FRugWeYeh3QXZvz+TndF3L9fU188WCX/ngAw6PTpgvFmw2Gz3ghF0hTDvVcrC7Lk1VljR1rXTaN11Uoq6xnA0LA2zEukAgUVa7Yk6siTPdM70hFr5jrCR1jcuObjtdJ+lwyfva/Dv6e4vlgqZpVK/Ks8/UlETWMwzjTt+CJAn5KCyRcQwqOltSp8SsaQBDXVfMZxWLeUNCOpnyJwnr0Rii04Q25sRYdYxMxCqOIACdpW5KAoGLjeemjWx60YSyBrFSTgaCfGdx8guTY0hRlJTOTJ2flCxlgbotCvMgBhl9ickQvDBP/DBinRQLKRq2nWfdelZtIKAOQQpajDESgsUHO4nIxySFnIRbS9OITkC33YrAsXx1cq2KYWfXmjvDcrAIWJU7fCmzcv2UmFl1hbm+vcU4w70HZ6S0pK51rDGEiX2XWZwTo0SZQM6afNE1vqrLlLXKUzQka8W90kh3OFrD+YuXPHvyDL/e4Hyg7UcKI6CoaXvGr19w/aOPefbgIe4bDzGHC4qy1NLH6j2JCmbKlsgjUmUh5h4+BLbtloOhz4ctmY0b0XMuj1poQZGZXFNTSX9nGMV4oW87YfRVJQRPCGZiwloridNiuZR4joLxKmwKWadAAFg5Q3cxp9D3z06imQ2UwW+zd5+z8K3VfKIoS2GyqQuTnGcj0XtGPSdCFrU2u47qZAmszKnMwLSFIxIZxz0Wj54JGfzeFTgCnI2q2waRoALu+TN7ZUJPUSjHtSgjcxOjTJ+R85/pfE3KnDU7cDVG6d5G3fMp5XUpmyPnTOI8qLHaCzs0hXxthUmUWQciVm+nawS7NZDHzEKU+zOGcQ9wl7hcFJEYwSvA6wphHcfMqoPJNt4PYZfvWXEV3LFdzV4nmun8FKw5TWdOvli5cDHGUJWi0ZKBJ2MgxVJV7JL+fnZLs1hb4FyaxktTFDZIHi0UoEmYaFa1UzLQNK3TLCYHmtjvmCSS86apAMpnbV4He8FL/jYVxfkp2nAxu72Zf75j/O9Xvbt8Qz6z0TiRHQfRfRZox5ZPPvqIly9f8t3vfZcvv3w85cCFNhpTjGL+kRKbzYbr62uePX1K08x4//1vTAy5Ssd9e222GPZ0W7TgyXFzqgHyOku765dZl199+Zibq2tWV9e8fv2aj3/6Mc+eP5+avXltxrifI6TpeqUESQGPnNflzn0iEcIoozSADwPj0JKcEc0qYyUP0DwCZUUmk8CCncQ+d3dqYilqvhd3txTCLgaaJCMoIUUGM6iMQx57BBOD4oaJaCAaL98jeREoN5ZmXmJxRD9S2MRyZqgKy7x2LJcVMTYKehkBqPZYGDFIDEtGnFdTiErSS+ISnAyxCMoGFUZ+kfO1nM9qLJCzNk738ReZbhks3T87s1lFHtXxo2iHVnWNTHkU0+TMfj5dFAX37t8nxcDq9kZyIG3w7T/k6bnOe3NvvfE8pmirdZu8Z1VVLBYLcVeez6fP7VRyIE7fUddD2tvPel2iAg75bGUPrJqQkxzfjYDJZVVpwW9EeDyi3qCAtRRlQT1vOLt7xmK5UBc1GYuKMTGoC+QvauxgRCcTIywnyVMCTk3Bcs7oioK6bnj01luURcHf+o/+Fl989hl/9v3vTrq1m42MqRllPI0a/4KOPFZNI9MPPkzC0q5wVHXFweHhlCt3nbipz2YjZVFhko6CI+ZbhTLaY4xTXBcXxbzm8l7OAIh8VWt3oLukD2mKfZn5l53k93evgYkdHZPUEmVZcnR0xMnxsbAqnePRo0esbldcX98wdOJ0J41gJ9ht2rGP7TRZtGNlTaC8jufmfedjEPsaawnBy7iw5iuFnqEYQ6orkg9UruaQwMX777K5PuQm3dJ3I5tXl2yj4dJbTi8vub255M74UBpOGTq32ZTlFzaCkdg8MfZzxNzHa0hv7GnJB/Z1EX8xd4nE+O/ef7/4+KWBp1Is6VQqbyT6xLYVS/rRC1p9eHCk9HNZNCElFZvc3Qy7F6RyMii6R+o456VzKjehBswkUJyF4EonTKUUvBxKBkii2dOPI2HqGsq1zB2kHcMqH+RBxUVRtE429i74OepaNkiMZi+eyH+XYAB9LwfbZtOzWCyYzxZUZUWIgfV6TT8MvHzxglF1X46Ojrlz5y53z+5wcHjA1cUtbRi4vlpR1RXz+UJFywKLxZzDw0NevnzJRx/9lOOjI7GBH3vGoZPxirLkwYMHXF1fcbu+5csvvxTHPi2Qc+c2hKCWx5axHyWQj4mT4zv8/f/if8Pl5SV/9Ed/NGl6nJycsFgsuL2+njav0HbDdD/W6w2bzZYXL18yDCNvPXoL6xzn55dUVc3Dh28RvcePnm3X0g/DdHhUZcl8PuPRo0ccHCw5OTnh8eOvePL0mSLkFc18TgKuV7eTWPq9+/f41rd/ladPxanu3XffIyX46uuvCMGzbTe4wjKLM9rtlrbrVfROipVoEmsv4MjoRUeq6zquri7ou44PP/yQ+XxG168n8O7p0yesVisskvjGcdd9f4Mmr0CBSaIz0rYtlQrTnZ2dUbpCtRRkPb5+9Yqb21tevRLG05279zg8OuTk5ATnHA8fPuQzpZovFgsA5vMZkPjii885PDjg7PSUzWbD5dU1X3z+OS+ev5g+z+2NgHGtajplIfykLoxWi+5MP04pH8oihl0UpQqGB11D47R3BXi64sMPP+Sv/NW/ymq1YRgGXl+ci2iw7tuyyDbiw5TYNE0j2leHBywXc4L3kzD9rrgFlDmZUmK73WCcpfAyclRX1fRZJpv14FWnSUC2OAVK7bhipLNmnTwv5jGUzDIQ0VZjRJT2+PSY+XLBarWm6wfVpism3ZcYE+v1Wu+ndBzrqmIcRDy5W/eMg6eeVyLSanXtVxUmRcZuwF2uST6w2naMPoGrBUBpJOAGHzFliS1LjB0hBooIMRm8iVhnOTxsCP3Ak9XI2W3koAmcLaApDYkCksUES0oBnzz9OJCiwZaWWd1QGEl6XFI7ZxtElydGRg+jj/hoCQm6fksMntD1zGczjpbH3PSe63XLxc3I+a2HgxpjDWMU3ZAujYTgCL5k2RQ05QzXDaQkAKVzJQcHB9yuVmwvLqmx4EpCVLcnpwepaqaICDaQjIynpjQxbcIgI8hdJ5oCzlmqZkZZFjx78ZKnz59xdveE+8Md3n7rLQwwjsKMsWUhGoPsAzJB1kRZamc74sdE8Im6KNSJx4mIp47wRmcYDXREPv3JT/npv/4+759fcRIi1+uWqiwp5iW27Ygff8nX6Z9w/pPP+OD/8F9w+tu/zvLsFOsKfC+FxOgHRu2EGWNomoaDxYKD+YJtFND55uaaw9OjKXHYadjkwtRQ1TuwJguU7kRc49S4GIeBdttycHDA2eGSvocQB3GrC4G6bmiahrOzM9mb642KoYu2jveetmun/SdU/xyDywn06r1/o/n0hrCtJpxVVU0/M8ZQ1pK0C9AoZ3K73UxxdZ8xVCqjKyUUJFZ3V81ZXFHgKmmAyP4W9ox8h0BdNco6ycCHnZLZFD0pZcOEzKDeuUHJKK8mqBo/c1cfBRT1RcmmKxP4HhNW9RIMRkcpt6CCxlLfiDi/NWan21A4Sb7VvKVrezCifZGLu6oUcef1ekNZlNRVJUCgMWqRJYzDmHTdjZ6uH6irgqoqqJpKizd0HA6McbhCmLKjjm3FGBlDEPaXjmzndVgUDmegdDsGhXNGhP1T1Psrf89jOPvsw6ZpKIuS2Wwx3bNRNaicdUQfhaEcI8PQk6zFmkrGUqxo1/jgCR6iiYxqE18Wyh6wxdSgKBRM7Tq53xgxvMgxIq/LXOynjK1MeJM2J7W42qX6Oki9l5PmItLua9nAtI/34Mqp2JYpAUNVirtgUCa+937SHem7js1qzf/zH/5DPv30U773ve8JaBSlAKnrmk7jy3wumj+3t7fc3tzw4x/+iLpq+Et/6S/T1DUhBprZDFc4hr4TFkuxc5HN12Xf2j0v9rwX8gSAMcKt++M/+hf84Pv/ln/9x/+K66srNpsNzjlOz041F87goJ+A16TmFrmx5b1HqSxTI0pMJEQjBucwRc04bvAJmoWjKGsyeykMg2o0GT1fIqbUezCNvsEEQEtCTDRJQQl9zqBj6/qLMUQGRoZuoCiFxRjGnug9+AxMFCQbRbtRwVUbJebdOzuhrhxxNJQFHB1WpDCSfEfhFhweGtptYhwiq5trQtiNTgrQ6zC2lJw/QWnVNTcmkksYO0jDrSioChmfymBByGCK3D3EmERBrj2wAJjy+vz83PQPMeK8JxBUX84yJ+2cF/X7Bh2jztq/v/6bv8HtzQ3/5l/9a1lXMalpjxgh5M807Z1pTnK3b6anKACZRc69HxlHT1mWLJdLjo6OODw8msbX5sulNHPbVrahNm4y6GHMZIkwfQbJm4yynoRpFtBJCOMyko4rC6qmBieyMNFYohVdKJBmQSCSnOHuW/dVg08AhIgAR/04qtzBrlHb9z0xBHF5TzD6wDCMrLdbqqqmLGu8F72+sqopq5rv3L2D+c53+Nv/6d/mf/jv/zGfffIxV7r/Xrx6xcmdM9597z2sc3R+ZNQx+6qqODg6VAav4fpSzKmMc8zmc95+5236rme9Flfvtm05ODikrhu8stuG0atJSj2tmRwzRPM4TazkvJ6EcZcBHWl4RS+sRhm9V3F7K6Fg9ONePmfJEbawTjVUZYzx4PCQhw8f8vDBA5aLBU1d8xe+8x1+/vPP+fKLL4Ug0LY4IyzZtus1v/IYRD4F0mS2NY2nguj0pUQaRtXk9VRGtCf7YVDgSRqfzXKOSwXOe8qiYNbMOJrVNKVjeXTM1e01f/bH/5z15TmbZ0+xtqSs5syO7rE4OuLBu484OF5SF8dY63Bur2kjF0nXpjBErQJhcrb8+THEGMfdXk5pytVcsTNSy7lbNkP5ZR7/Qa52xlhcVVJV0iXMGkMGYdPkwBO1yyXx1O6SmpQZE9Lx32dSiAhq3AvseZ7faNCQ3w0+TFT5TJlLRt02MJSFJNTj6DHlTmcHIx1Zgp9sPHNysPschkrnYBNZfT9hLJRVKYd5GDBGxZKDdAMlCZOi3fsg4so5SS5KfBEYh1GdMJyCYZGu7xQYqoHExWXLMPRsNmvK0lH6Qp0PLL/7O79DYS0/+Lffp91uOD051ZGowNmdM0KMdEPPdisjgXXdvHE/gCl4pZSoKrGo/+jjj7ldrXjrrbdIKXFwcKAAmVfnA3EPKAtJ9nz03KyuydoUbdtxdXUlIuYJqkLE7KrCkcLIzcVrnGrtxNETfWS7kZHHw8NDnC24f+8edV3T1A0nJ6eC6I9yvS5fvyamxGI+w1jD8nBBUTr6oaPttrTtFh9GrLGEMDJ66PqOZlaTTMD7gaFrSUEs2YPe35gSPvjJFvx2tWJ1c0Pf9zRVRV1XtP2WwlmWyyUWq4CndD3s3uEKCBC6t2nlgpsJ9Qe4uV2x3my4ur6RMa264uLykpvbWxGMDIGh79iuLc+fPWPoe66vrrm6usJay/n5ubAaDg5IJK5vbuj6jp9+/BFd27Nerbm+uta9qolpHqFTwVRjpKObR3aFYWDIp+uu2Ba6qjFB/y7gTF5Xq9WKk5Nj3n//Pb7xjW/w3nvvs15v2G5bfvjjH7PebkUzh8QYZATHlcVkAz6Pc+1SiIX46AftrmX9MKuMqSAORJqw2iislrGXwlgS2F1RkjVZpMB1VGWJ90F1QKT71muBWbgCr0y7YRgY+p7KOUrnaJy8zoe/+i1CDLzz7nu4ouCTn/2MEEequlH6uFeNp8yGTAx9L5T1vqcoLFVRZ9MoDg9OSDEy9APtuuP185esNwNdO2KoRJxQncUIEtpF2yoJNd4IyyLfz6jXK4aRkALeGi7awOOrxLxyNGVBilY1pDQxUsviIQVsNNhgVLvB4KKwNXNHNmIYPXgvlHgfPP0ornzNYo51FZve8Pjlms+eX3O10uNo6MGAT+rrE4XeXpQRy0iMI0VVkChoh56QEvPlkno24979BwzeMwZx9jBmp8UyAYlY7eZY0MbCMIwYEsGL4GNZ1WLvbi0xiH5eWTfE6Hnx4hXjMHB6ekpZOoyJZB2fSdMp6W2bmiUi9J8PDqedeBF0kqR8GHsSyAjF4Nm+vsK+vmV+vuEgGOampE2BISToI40tKQ9n3Ny85vyjGw4++R1YLmgWM8rZjEGNDuzEQhyZuxKnmn+zpqYfogBzZr8rqN2qKIelgC+a+CrwGydn2TglFSF4fJBY1sznmMLRamwv3G6cKQuKhyALyzp1rgxRhOEjFKUkY/vFWmbiZj2KsqikkRKFIWiCxJtsDmDSDozKHeNcqGQBWB+kWMvPE9aW6NvFJFT4rDGSmT3CDhFXnEF1Pfw40jSOqqoncLko3OROCqKr5/1I14lAtzUGV8j6GCdnMC3MMjgakorBZ0YQONV2342l7HQTM4tmv3vvnIADMWpDTxPrFKVgyTbRYu8szLgskuqKrKPlps60xFNts8eEV2DP+3HXyU1ZcF461E4ZZrtmXs7DRHMnOy/FhMRya4ijJ/gwSSGURUHhLKVzlM7iTIZgciM26VoNjEM3XQ9xNDU4V0k+Ulaq66VF1iCgk/ei9WOtpbQlRUrKQBcGcghejGQ0RuRmg9iI20kv0uh5mJKsacjXRMFByUjJGjlRx21EU0iZT3v/l0FyGfORka6JbbZDqDTsSHc8y0hkQGtvOcg9mJJ8Ycbl5mA+11NKFE4aIT/5sx/y+MvHbNYb6qrmG9/4Bjc3tzz+8qupMC70GljnptK973seP37Mu++/DyRev3rJ468e8+DhQw4ODljO59Jg8EF0SUrz5seMcTIlcM4Jey9Y6qpg3jScv3rF61ev+MH3f8Cf/eCH+BBoZnNcUaju5zABTKZwJCv7bJLM0OaSQfSD9hnMKNCAapJZoHCGkDx+bEmxx6ReGU0GE1U/iYjMreZ7kkg+u30lLU/0/QuHYyIpyBkqeuNYJ/vC2ALRWorUTUFVOcY+koJlXomzWeEqIp6RLSJ8Zae4PV+IOHgsGyCy7dXt0RuwS6r5AlPJzxZHB7JWggBP4zjIXk1J9enc5O7px1H0sVTzdRg6dZGVui6miAlOwZqSLLqvQU33qzQuMcKQjmpSkfLEr9ZdthCw2+p4ZrvZCEuxmUl8KRxhDFgDDx4+ZHlwwGq14vb2VhjlflTznzTlArsaN6NBuwiP2QGT0x7Rc93vrZ+8V2oVPD84OMC1rew/xAQrERXUMvtYMFPk2kOjYkyYPc1QV5RTczePGB4eamO5cNL0ZDc+Z62ldIgmo3P0oxhYSd7ONHIjd0CMcND1XhQFOIczbke8qA1LK2N4XT/Q9QN938to++gZewEYx6Hn8Vdfsd6s1c3V8dOf/ITz89e89/77LA8OuP/oIWVZcnx0RD6fMiBeNyKJMmiMHfueoig5PBQDnnEc2WxaNpsNPgTqquLk5GyS4XDqPIoRlnw2KdgHnfYbZLLHvYL0yqQe5R4XpSMGzxByA8gqKJXPFtHTNVZcR+fzGcfHRyxmDYWzPP36a8bRs16taLdbxkHMr16+eIFzYgAh6fxufUXVcU5kgGxPtzHX4UkZXFadNkk0ZYmzjhQldxiVyeZ9EJKDc3TDwNgnipQ4mi34K3/xb5DCiPFS719e32Jcwc+/+pqDB48YQuRXP1hgimKSKdnplBplLqO4CJMmlRB505vbKbPVNf/JuZDb0z8ULdHMoOSXevzSwNM4jAIo2Fpstp2l7wcGK05CYn2r4rvTBTYYctdDbpMP8qX32UdBhc7yF5Fj1EzAk8vIub5+PoTzPK0gzUKZLTUR8T7irCRornA40jSTntLugDZK/c8JSFmUWGsm+mRS1yRjLT6MjH6ksLK4fJBudFE4TUiyTbSMjBWFaAX4IuAHYWTVlYxQpCjjXikmmllNWRW8Pn+F94HNZkNZOipfcnRwQGEdv/M7v8O9u3f40Z/9gHa74eDd9zg4OBCtm9kMH4PYNW5bGeupJWmYut7sgyTSeY0h8NFHH/HixQvef/99Tk5OODs7U8FzT9aUMKq1sFgsGcaBi6tLrI0KPLXi4uWle1AWjrIsqJxQLK8uXjGrZsxnc7Gg9JHNaoP3nvlshrOWu3fukQUxj4+OqaqKVy9fcduvOH/1mpAi5dsPaZqaxXKBKy292ntut2tCGME5CXgGur5l9DMwiaDOfymI1WhwmW4tXett13J1dcXV1RXr1ZpxGCB4irKg7VsW8wUf/soCiwjgRmR0ahKqlisq9FNjpKJQ4MYai3FWizLD7epWusddJy50JydcXFxyfXM9HYRD30NKPH/6lM1mw6tXr6fAcX5+TnqdOD49wVjDzeqW27Xhdr3GDyND28vhvgeKxXwA7gVDAWucgGUpyQjRHviKfqeozmIp7Qr+rOcyDCPL5ZLf+q3f5J133uWtt95mvdmyXm/4/g9/KNpXBqKBIfjJIj1rOoUYlT1pCAG6YcBYEYLOxYZXNkS72WpnzVFEcbkb+5HWbNXhy01MgqwDYYzcr7IoRWA5Sucx7gFP1GZiQWw3G9arNU0pI4AHyyXz2YwPv/UtEvDu++9jbeLTn33G3XtnnJ4esV6t8aPXrrtMmktRKqDTMAyTtkavRcFyeSjv2V7QrjtePnuBjwLMVM0htlCr9GSIPoNpDq9OfdEFrIkURlgTVscHguqPeWs5b4XJ9/7ZkhOjOklSDcr9dVZHdiJOcyQJdxancSzr6YBoM3kPfT8IkOtbirKgmZ8SY8G6h8cvNnzvk5eY2RGmbEh9L/dfackxWUpnaEowYSSFgGvmYCzb1Va7RNA0M+bLAy6vr7i4uppGLayyaKPuswwcWGN1HQf8KOyq5APWWAEQrKW0huAN3iTKekYIAy9evKLbbvngg19hNqspC0NRSPmbQQbyqIru8/0xU6fuZpNgowFMZBhH0YhpZsRNz+b2Fne+YnG5ZYljbh1dDKTkIQ2YxZLl0Zyb82dcPn7N3Y8/pTw64d633sNWJYMXfZ9CgadxHLFNTeVK5k3DrK65jeM0vmVs/vx6Tk7UZ/lZBmhns5my8oZpn4mem7ByrbM0MxF17fqeqpCxvtwVOzw81DNEBe9dNq5Q8woFnvSIlgLURwW6gjqt2En/ZRh7fDAYM07Mq/ycTL+XqCQP0UawjEk6nHn8Kjeo0iBdUCm+ZIxd2JaZyl/o/TMMypSKMdI0RlhOhVpTZ2DAZraGx4eert9SFpUAIEbzg17GHLMY7j77qqoq7bRn9165H7kgcW4Xf/OI0gSW6Xqv60YY4eNIdl3LYE8GInYOewK0eC1mUEZWHp9NMcmIoInTiJLNYsokiH4CWTBO3RRlPBSUUSWKxSpQm8+KCULSQkzGHr1qK9qqpLCWuiworcXlTikJa3TEz0iTIduy21Ic95w1uKKaNJgKV+CUgTaMvcTA4LFaYBd6DpjCivbIWhwXvR+nablc2FRl9YZW1NT1jRlgUkBt+iOMeecMMqCdk27JOWPM42aqfRSTlsR2GkNzdtc1zmtbXmKP2aQgXwp7OVwO2ElAHqsFd+7sl27nOuespS4rPv74Y77/3e/Rtx1NXfPBr3zAixcv+PlnnyNsPRUprjT/jXIw9H3PV199xfnrV6QUefXyBR/95CdE77l//z53zk6pqoqr25WOJakTMFmPLExNK5vzESLOOA5mc352fslP/uzH/OD7P+BHP/oR77//PrP5nCbNaNuW1Wqta0nYqPwC8CQon4JAzmFinLSVQGsECQQYwFkxZwk+kEKHSQ3GlALKh1FZ0YE0Guj1DEiRmMdhdLwWRgGdlP3nCovTs6IoJT905QzrCopqpvqSMJ8XNE2J7z0mWc6OD6iKkqac4dPA2ssaSTj8KEYHVtm+MTbimLXZ4n3ED7CYL4WxbCPGJmaFwZmEi54YvQBJo/xp6tkk1SAMmY5+HLm+3dJ1nUxntK3kwLmCdOJgJ46h7J3DO5kSAZ5Uu8vI1IoxOzCkKApsoc60hSN6T7fdEutatHiNMCis6sM/eushi8WSm5sbrm9uGMZRjH8GcejLn0HOs19gWZjp/2H26rrdWkgaVzOxgClmLxbi9AiGfpCCvbBuaqTsxvnYxcmU/xdSymL2O80/Vwkrx/tAWVgaZVednJxgndPmmnxvYeqocQiQrKXTtZ4fublSVKXIHajDs0HisNX/S1HOAgtUdcOgrNW26xn6gZubFV3bcvHqJX3fsV6vePz4S9bbjQJuAjx98vHHfP3119y7f5//+OA/4fj4mJOjY2Xq9CJl4gNNPZO9uN0yDIYYOspSTK8ODkTz9IsvvmC73bLarIWBVTU0esaVZannd8KGQFUxNUj2QSfI53AkK5HX6sKLMWIcVDhCGGQdWgE1x1GNJvQ1x3GkUBmB+WzG8dEh86ahsJYnXz9R7eFb2s2GcRi4ub7m+bPnnJ2diVtvMpMOnIyk7XTNBBDfnS3Z9S6RNAWX0V6fEnYagXSEGJUlLrVXYWXv9NsNcehxpeOwmfGNb/66TEKdHvDy9Ss++vQTPvn4Yz7/+eecfPWYlBIfvvctbAPDmOU0cg5lp+ZIqSzrLEGS5QFSiuTWQ1LgSa5ddrTXpoj+PNdX2RDhl3n80sDT0PUYK7brppBDwI/SHS32Oo0xRrU4Bayh71pIgc16y9APYg1alGQqvNFAkRPSGMPExhhVByepaJot9OieOoJmN4OrQUXEFxXQSgkTI9ErwleUFMZOnUY/epIeauM46CGpgqDqnJE7TtPmTwkfpIvQD/1eJ1gC4sXFNa9fv+LO2RnLxYKjoyNm9YwPP/hwAthEaFHAvOADoZFAfXIquj55nld0o0ToryxK5rMlhSuJ0XB7syKlxLpdY29vcRfnE0UyJ7k5EQGmDZETYeekMHelI8SRf/4H/4zj4xO+8Y1vcHx8zNnZGU+ePOHy8hL2kEzvPTerW7lW3nN5ec711TUnJyciaL7ZYBdz5vOG4AeuL26Z3605OT3k8vIWP/Q8uncmwF30rG8u+bff+1cSDBSQ8FH0F7wf2ayvCTGyvp0zdhVhEEHqvu948vUTbm9uePv+A+bzOaFvSd6xubnh5PCAg8WC1fUNo++5vlzhvZcRvrrm8PhIkoGtZ75oKMs7nJ6Iw99c7T7zyMhnP/uMF8+eE1TLJwZxgzBZ8wXVQMuNSw0c2ZVQbKg9q9VKGAGqS9T1Pf3QE0k08xllWUoSUTjdyLInykKCcnZ06oaO7NiFgTGORCO08KIQd6f88JoUuHLXQcjd7Lz3TM6m0X9rYSYdSukG5hPXawdbaJwC0vRdx/n5ubjNWEs/DAx+pJ41pCS04G4U4fRZ0zBbLpgvlzSLBYP3AkyVIp5YVCXZBaMsZJRuXjXTXkgx4fuR4AqoZVyzqkQ/y4+Bjp6iEIvZFCJD14u9fVXTjarvomwe6+TQr5sZ4+gpil6vqXwHjMEuDKf37/K//t/+l1ycv+TJky+oG/mey+Whdg69HoTSFbWYCRRYNBVVWRDSknEIfP31Cy4vrvjoJx9zc3XF+csrvbQGV20xRYGtZiQsvVe3yKqiLhuaco6PCW/EQtZYR+VEGDDYhDUBy8CtD6yHket2xnHjlN4v/hY+JjabgbJU5z08hEDXi15LwahJsliGJyB5C9qlnjUFqagYQ+KrizUXNyNfPt3yqrX084cYFzBECq8R2nkcljKVWGSMxRYyKlRaZV80DRjD1c2VsNWqis1mqxp3EsuMzsmL06msRx8CIY4YkzXnpDitGhGtdNYRQ2DoRVtDbOll7KDdrjEknj17xsnJEe++8xCSjMdWZbFj6RqjxbsUi4GEJ1CMUPhI0jiQug5jYTFr8EDXbnn10c959r2fcPDFOe/FilkhNJXeiu22iRE3DjTtmtEEzKxiVsLcBG5eXFB0I+bkSFIbBRHyaEPtKtlLsxkzRqyzXF1fc7ftZCTdFWqsUexG12BvZFatiIOA5pGk4EJBPas1sd7rNCICqKOCX6enUnCO46hnZFANPmFGG9VuMIKO4FMekxAAunDF9JlijGJnby1LHWHt+24Sqs5JU/7sIAlPBszElVaCb9uJPtUwjkJ373ZgmzHSUCqdgEpONQZ9J7ojs2ZOVc4AJ8LDpInJkgGtvu8wBg4OFhRFTVFWZK2ZqhF3v6lMsMJusTbrX8l4WYo7+/l8DSYNH3Y9gDxC1Pf91KFMiSmRdNaIDl8QEfWUpDAcFGjLI2k5bxnzNamENdQ05QRw5Pf0QdhfRVmIwUs/CgHDqZiyMaozZ6hrEQ4f/EiITKLnzjmimmwU1mEKSJUU6MtZM2kyCT4qv0OyFNaBTZQqKky9OwuqSoCmspJiviwr8vhg8B4/jlgrzKXgRYMUFUbvtp2K3q70xiSqohQ2Q/REIn7sIRUUasACMnIuTZedQ56cjznXlHVv4k5TCNTRtogTiJ8iO3dXY6dE3Sh4iFHdHGNyDfsL62EHhNlcVCPMuZzr52ZuBiCdc9RVyc3NLV8//oqfffopP//sM0on4tVfPX3CdrMlM55z4897Fa43cHJ8TKVsha+/fsI//af/lI9/8lM+/eQTvvuv/xTnHP/lf/W/55133+XBo4fElNi02wmcdkWJ0fuUSPR+hAQOSxo97WrDRz/6Mf/k//373N7csFgsaIeeUYHQUZuZPkhO2PU9TtncOW5M4LphF7OwhDiq26JMIsQoxdU4yMRCXRQQOnx7S99vRb8wRgH5K2HmlE1JU5bUZUVTHigoII0AkAMuWcmlncvtcojWk0iMvSiN1YUwrmIIGDbYPpG8gN1X5x0yKWEZQ2Q7eFISMNPYkoQlxFzcKtyRQCQRKq42AUuLKcDYhAs9jsSsiFSFYVkXhFAIIyEmrPMkJVSViyVlguXBkeaFuYAUs6ZxHHl9fqnjyT25BPIZuNOGqs0kAm1oytiRFuFWBdwFuREWsk4OmCzhgDQ/v/Od3+LszhnXNzdcXpzz8uU5MQROT09Z3664GUYdLQtTzCSzkLJmSo7W+wB43vUK8ld1Q/Aj3g8qcl0rY3rg5uaazWaLsdKwi1kPMEUFtIV9vnuLPe1bMiOSCUCfmKh+pK5mHB0dcffuXR49eiSNCJWjsEWBU/ZQztkxsg5tclN+nt8r67cajQkmiaGVj0nZZjuG5r4TrLUCJFZVRd91PP7qK26vr3n96gVPvn4iTY8M3CbRL3z69Vecv3rF+etXnN25wwcffpP7Dx7y8NFDaldiy5p29FrbSC62WCymMW4fpFn/6NFbnJ313NyuGMaRZ8+eUVUlh0qgWKpepHNSj++77LpS6hrRZk1glcFnDNl4AzXACNFPsUAOq6SMJEvd1JI7dj1lVXJweIABtusNn3zyCXVd8xu/8ZtUZcnTr5/Qtx1lUbBZr3n65Al1WVK5AqsNp6LYaVFlKRNdDJO+qffiPh7R1NWKrlfECLEypQn/CPnSg7DYC4cRFI5uHGi3PZ9+8YSmqTm7e8x8Oecv/bW/xu/+3u8RhhGnsbzzA+P6VhpoTmq13DzJhgP9kAk4O3Ava+3GlARcM3Zy3JEtbvca1XJOjCqwng3lfpnHL894GoWaFlKSzaBJZoxRLgy7GV+50EkEcnWDt9tWi7sCt9tH5MCQwZ0Q4mQxuT8vDioGjpoEKktjF3wyqKI3DXaW3zkIGkHt5SZAIjskCbUt08yt1Rl7fc8Q4zQvb50mDmrrLqMwpTZlRN/i+uqaeTOjdCXpILuUnRJ8mLQFvPc6nhhxhYiOzmY7W+rpesR9EWBJ9GKMtNuOkAKbdjslKOv1WgSqVRMjX7v98a8MpOUxgdzd+vzzzzk6OsI5odsvFnPOz1/z7OkzYZylpOLngW4Y6PuO7XrDZrOm3W4pXUFT1YxDT6gr6rJgaw1D32FINE2Fs0AMHCwOcc5xeX1J32158fypjDz1PdpWYTaT4nEcRXB96FqIAUtkvV5xe3PL5etXMnu73VA5pwVIom9bwjjirIi3DYroD8OgYygR0iEpBsax1yS6EqHhJB1DEDrhZr3m/PVrbm9vldm3E46dOqZaFMh6SdPmzddeHCiEORA1SQqDODhlV8BCHdIKBXuy4CJ7r59tib0PGBsne1YRbkzgBPHPa1eSlN1/y52CSf8gj17G3CHcsSIgfyezO2RhGs3ZDREwzcJXCgaMfpxowzGJU5CMvcRpxr5sasq6nvZoUYhg8G6sxuLyTL0rJuAgIIBnHkXIwsMCSql4rX55KU5HLV4dLggzcdTxpRj3Po92XJwTd5jRexkhCBXNYs5v/+7v8vXjL9i2K2IciWmkqHXGPGxUn0q7HWanb1FXVkeCSqJPXJ1f8fL5S7787Ev6rmPoWg3oBsYBnKWeR5KxdJ2MUI1jhZ3BzNWkFAkkohX5QBnSNQRjkHExaIcoLI8xMoxgChkZC1pYdIMke8maTNBjGJXFYIMUQtbr2IIRun10NK4SJ8CyZOg9r1fXPL9o+eTJNWN9QmgOIW0waRAmFWCM0OeLPD6Q9Wkwk6hx7sK2XSvgo44/iraLiEtLE8BMXUzR/YhiCaxr3u4VqVapwKPG0Bh15t5aTHJyHfqRq6trqkoYEkGtd53REbusaxhlpEY0AiKeiEky5mGcdDhj8NgkhglpHGnXG66ev+TZT3/Gt7qC4yRAVjIGb2UsxQTRR+yHDp8iqRCHr5LA9naFs5b56aEI1O4DplYSnrKqqKqS0gudf9u2kx6iGFDs1mFuDI06ihR8ZrRo0WxkREzOGavU/1HZOE7A9LCzD67retJCSupMJ6PogcKJaGgehc+jo94HylIAqfy59jXYnNkJ2ueEvFAxY2stQ84FtEgag4xux5Cp4sL6GNX0JH8H5wqaapfq5GTW6JqKEQprpxG7KeZpLIc06UHkeFJVAjq5olJHv4g1v6h1YqfrZ7RIE5Z2En2XvW78pO2EjEXveDC71ysKic82xxhlc+S4l5I8x6tuYdM0Ai5nR6kY1aVLzq9Cx18k9ucAr++hiXFMAZNkz5KLSy2wcx4Vh0HYsTqWnxmDE7CWoCycOPrqKHSpjsIxydhw7kYbs9PYswqkgIwJTmvBFRTKJMpGBzFE0WWyjkB4AzQa+o5h6Bn7Vgsvi1EXyonNFD1R9aUwO4OCnAMmLWwzqCJ1mTYAMjxpDKQoeW8SnUejDDQp/N50rks2ZU1oOctz4ZzXwt76eOOhCW4ueFShnCy8m0LEGiku2+2G58+f8/LFS16/fs1ytmAYBr7++muNnZq7mp0Av9E4PV8spth8dX3FT3/6U7768ktePn/BZz//OW3f8Tf+o79JVVXcuXuHmBLtdqtnoJXmlZURPpO/ngGHIYyezbjm2ZOnfPrxJ3Rtp0C2NLOdMiidcyKoHCQGhiS5gsn3JTM65WZPYtiTM6Duu5QUqPMRWxicTRBGIh2hF3DHWYt1UAJlAdW8YNEYZnXBcj5T/aMgxazC0j56rFM9ad1H3lhCDLT0mBSpnLAKZex3JCZP0tH/bT/gQ6LtIqM3dL0lIp/XlQ3GFjIKFyUGSb4ihWgyluijaN2WUoCnoccRWVaJeV1QmpIYLSk6fEwYnyQfKCyFLSmcpXZ22l+SZxr6rqMfevpxnGo3FHDOxkYp2Yn5Pwk97+WN+7EtAx9OxzilASTN9cJJnHzw4D5vvf023//Bv2W92XB9c0PhCk6PT8QMCLMrnoE8OpXB2t3+2AOezP6Pc5NYYg8aA7ODqsTNlq7vqKrZDoz7BQDYaJ6cotlD7ZUtEvUNp88lnyVG1fBR46DDw0NGjcm2lBFsa+2kofjG+00i2rvvkXXSMhvboLm5Mo5JYJwhRpkcyjE/nxtFISy29WrF5dUlz58/5+bmegIORJxbPt/tzQ0pXfPq1Uvu3L2nzb8kesOL5a6e1msubOSd6YNsSGFJS/0A682G89fnDH0h54kRZlKWypDrpZq8ySrj2E7306Aj2EbYpjksonVGPrd390LYRq5wCgbK35tGWPEpRq6vr6epHbdHPLDG0vcybtd34qTuKpkicdYyOTFn4ElxiJw7TjE9nxEmrxaNIgnRMlWji+mR8wVXyDj80DP6wHZzS1mVRAuPZjPuP3jI8fKAw8Wc89cvRe93PTAOkWW50HWkuZ7WkySzM0NyZqpBJIwmMvunyMYaE85ide3vjKJMCqpJyS/9+KWBp9t+RaZq5c7Ozc0t6/WG3IVbLpfMZjMePHyoM4BK2U2GxXKJs25ywWEaZ4tQQOUqordEsU8CEOcD8kxuYtOLSHRZQqUJRPSSEIY91xRnJLnt+x4Qa3tn7aQVI/lGwKTAZrViuxVb1pQS81klAp3qTOMHP3VQc2IjNsCGSsVsZQzQE8YR42BxuKCqS1xhGMPIGEcury4xxjKbz+TmmnzDLcmIOLLVpNs5R9DRB+OEIXB9c82z5894/vwpz589lU5nSmz7nsVcrDLrZkZRljSN6CHF1WoS64sxqCOexZYOYpSDLMpiq+uaruv40Y9+xKuXL7l49Zpnz55xfX3NwWKJtdJRjzFMIIYtDM2soSzFwjYhNp2FsTRFxayoKLGMbcfN+SV9uybGlq6TQqjvNszmM95+9JDV7Yrnz1+oyHQi6mjSwWwuBUTXYmKgLsQO1mlyI+CUuJvdOTsj+MB2s+XJ46/pti2f/exnPPn6az744Fc4OjzCtz3Xmy3PHn/N7WrF8+fPJVCRcCp+e3xyTFXVVGXFdr3m8Rdf4L3fWWCzs4fdjYvmwwnygdcPI8PoWW23gHSjKXLklM2e2YKjH0WHqJNxjVGdx0xREIA+jJNuhE1IQksipsDoBwH2Y5KEYS9plmCc6G8zsBuoy4qqEit1Vzi8aj7tj79aTQrkjxQUBjMV50PfcXN1xeeff8mv/tq3uXv3Hv/me9/nq8df8fzJU66vrtmuVywOFrzz/ns8ePiAd957lx//+Kc8ffaM9z/4gNM7d6jnM2zhdLy0xJiFgj/q4hTFdSIay3YcqKuSR3cfyOfX+5GCJ1uEZhr5MA4Cr8WIDQNmNMyaOc2smajkWYfNGUM5X3Cgdq/GGK5vLum2W7brDXVdc/f0jHfffY/j5ZKfff4pX379JduhgxQ5PRGRRedEtPby6pK4bfE3K85XLcN24MnL51zf3vLpp58ybDsOhp4jA7Zu8DHiU2Q9yljQMN4QMAx6aPXG4usVbX1NM1+II0pRgo0M45qEYYzZycRg2x7XtgxjwSrU/PyrV7TtlvPz1yyWcx4+esjrF9e8PH/Ct7/5Ng/uHXN46CltotDx5MpZvE8MfQLbkGzJbTewaUc++ugZV+uWL1+uGIJhqGuwI8ZfTuMjsZBDtmoWuk9drlsVyEx0o8yzp0yTNgUmWhgSDBEzRApvKEpD1w2EKKC3IQnYZEuapkaIRIYUnQLrToXRFeBRdoiNTg7J5JjNjiFFPv/yBd0Qee+99ymcujslYYfkwrkorIw1qZ5ClRKmTKQikXyPCVAfHFKWFU1xyNXjz/nuP/rHLC/XfLs3zK1hmBl1LVTNkwRlNHQh8bzz9CkwGtgOA92w4eLF59j2kEd3F1RFTW10jCxl9qnhcLbgaHbIq9sbRjy3Y8926AmdjBxGK/vWmUKtc39BJwbFAnPx4ESzSlzZhLlHkgaQV92/elZR1SXGIrEnjFJQJRmNKyvRWjQm4QoZ6bq8uCKRqCsxzjg+PNrt014YO1YFLyPimFeWNSB6UMGHnbaIFnfBe7bbLaP3DKNnbDthECcxSqjqGucsRTNToC1oYakFsSvoVNtpPptRlRXz+Vzi9tjvGG5aIAogb2mapa5xhx8Dw9jK62pszJ1mVxQ0MzFHSVowBWkTSne0ysmzGrF4oarnDjkm7QAtFUgOITsWyvkwGkPXd8QQKSpxLPKjNAWappnGj61uuqqSxpkVtIoYveQ0hYqdA4XmbH0/EmPAR4NzUDqwLoMubhdzEhgbZbzHJmIa6XuvhUOkLCR/SY1oATmH7DMnnd4UPJvtMLHl8iMzmTJrWBoD4n4avBijSLwD5xJFaeS9h1460U51l2yiLgusScCSuqpUmyxMa3C/wMusMsmVhIVXFSWQNZTk3libRwzlhhaaEzplcTq7P0KXSIjeGCSVMZT8N0mrXIpCwOsZXZFwyb2hqQUSK6fRIVkw6I4j6AiR1BaW2jmefvmYf/HP/zk//dGP+eLnX3BwLCM+B8cnIjWw3kjDVdn4MUbm82Nmsxmnp2cC8hSOly9e8Q//H/+QwpWqjZjwPvH/+kf/HUfHf8CDB/dE+3G93gn/63W9d+8BZ2dn/Gf/y7/H0eEhhbX8/Oc/51/80b/gX/3rP+XF63MZxTKGYdvKOlQmqXVOADzVIUphx94orCMZCGTdv12BXhkorSU5eY5DtGSIkdCNjKGnmQeKpuGb33iHxXLBYjknEemHVoR3y5Ku6+i7DavNlhgNfTcq86cgxuz2GidJgpQgGBl/HftR94dOHqSkQI0lJQU7hqDNNXEIo5Y4nxKMutaqhZiNSKFoMK6Q8a8QtWaQhrohEdyCFAOb6Nl2icuu02uj+9ei2mYeE240BxUyQFEYmspSlYaqShQO7j16qCwKrflTZLvdsm1bNpuefvD0XYsfRzbrG5VcEfdsiW0KU4edzqxci5FUFlBUvPPue7z/3rts+46ffPIJj59dsG17yvk9nDV0KTIKoqpC6bJH5XrKmRz97myYxM8R9mLC656VonkYeuqq5OBgwfHxMUdHR7tmvUqvGNUFClkckwyspAl4QZlJ0hATwD25DC7kpoZXADpQuYLDxQHL+YL5fM666yZ5GtnPBpcMqBagsTsyBZo7OVTGIy+SKGskgfzQqFFFvhYGdQeWfVObJPf5YMmyKvkrf/H3ePzlY776/HPGvqfXPLwoiilGGgVAUkrc3lzzZ//2+/z8Z5/yL//wf+I3f+M3efutt/nN3/09lgeHdJ2yS1cbiEacYpMVnc0o8jcP79wnHHvuLI/YdC2XqyvOLy549vw5B4cHEnuORXKl1umTcRhEc7hKqu1nIQpAnisd6wRXyCwir6QTrDZ+MCKwTyIYjy2hWZR844P3efvRO1JDGHTSphWwOkqjuh8G2m5gO3i2Y2J+2GCNpei8xp+0Y6Nare1sjciDSXzwmruFEDEhQAhivMXOfCObEuSx/uCtEFVSxDhHYQyUBoicX59ztb7isy8+487ZKWcnJ9w5O2XWzKgUcPdhFEfaXhhJ1uybeWTXaiBZRK1OlxVpaq6YPQDNFU4yGq2fZJQYjIvKDOaXevzSwJNxiobtbZSo89tRA+IwDCLwF4IQV/SQNMZSFiWuULHOLJYL5NlBq8mcSwasosyuVEtcplnx7AwSk3Sdg44jBWVfBe/B7mt/JIIXe9ShH4BEVRSi1TCODCq0lhQs8KUKiucOkIIa0QdBXU3CJgGfpoNGE5gxSDekqgql3qoAeUpCEy4cjZmpdqAmOlMraNchtdYRrYzSCOWbqSs2n89o5g390CmFVbpAO9p+MYnoTffO5O6DXmtjJmR11wUQsGvbttze3nJen7Ner+n6nlqp+Zmqnyl1xhpcIe8p4JsKNY/jLumKcaf/RR57kCQtdx3qumaoB6qqFgHjcZzYbs5K4hF8wBsvFNMkM8ELBcQy48ZaSyCw3WwonKNrO9arFVeXl6zu3pVuqJfXuL6+Zr1ec3l+LmsqRRk1caLDUdU1s7qha9vJ2SJ38PM1fWO2fAJ6zNQZzfbVXr9nVbupW5oR5vwn65f1STpLPsVp7U9uMVlkIsoMeSKqc8moYohMbDzIzZiMUAsIk0IgmkC0Aco0BTrpmuy+m3ylOCXnKNCXdNFn94agLltlVTEOI9u2Fc2CumbsWuazGQ8e3OfRo0e88/Y7/Oyzz+kHdY+qRJQ7ZicoIOSCP9mp8MJaYgiMwVOmgqquJkruNJIwrXG0wyQxQnRCxL57R8Xf1d+5C2SsxTgR8ZUxV2HTxJQmFtRsNqc8szx58QxjC8IQCGEkDD02BFIaGbdbuutb/GrNeLtic72lW3dcvnjO7eqW7vyS5ANz43BYnHGMBsYEA5LQjErNNVOMhFE73Nmu3kYJ/PmAENFNiy1LGD1x9Pho6IPhatWxWm94dbXmxBTcMxW3XeT55YY7Nx3VbMDOI3WRKKzogsTS4MdEPySijUQTuFiP3LY9zy5brjcd19tAsg6r7p42BSmClI0gyVNmK+V9on/izpHFFPudRLQ7Z3DS5pImgI6nSFWVzwyU6SRrP9ndoZpIU9JonJR1Rt/fRItzUuC13Zb1puX65pZZUzKfiQaNjAhIoYJ22vLaz3smWnAxTd8zJsPq8obbV5dsn7xkMSSWSRMAo6yZFIhEdTsTZ5URGFPEm0S7WrG5uqKvDK6SmGtx1JNgaOYrIod+sYtJYxBB9hwrcozJ13RKYvONyGsKN7FoMiCeu1uZnZHPeuccRpk3+13FXXJsVWQyyYhjlNF7ay3zmSaMZid+HvX8zszP/BmNtcqwChrpdmNG6Hkw9MM0utz3A33XCeNTk2TRQMsOV3u9xHz/YtaIqCmrvXHmPMqRY2/KY1LmDeHpnMwL0IZ2OtPUaJ/0fXTNT0xZs5MLyKxQMWuMU6dRMDb5RasyAnFS7M3fQ3WDtFmVoqwjjNmxF2DKB6afTR3Q3VrK+89ap4Vi7obuWKBGzzXM3mfc+07SBJCzISYpWkR42U5MNpPb85oveO+VAR6nTnQ2oskAa2bAwk4qgNw5TsJq2q3xPLYmotKk3Om3b4xu5tfJ18O6nQlN3hv5qxoFkSY2gNl9X7luVot6O50f++Ky0yMnRXvXQclKOSTu8gi9tlPHPP+vfZMFZXYXKv+S/Fy/9+3NDU+++prrq2vabUs1X1JWan6gtfq+jhWai2ddPYwUjG3bcXN1zWIhYzEJ+b4vXrzk+vqaq6tLYox0rRrruDwWChcXl9w5u8Nf/u3v0B4fY4zhyy++4KcffcTLV68YvKfUQjt42e9YJM/WRt2UT+b4YJIUlOxtibT3RN2TaW/NGv1dZwxF6agrR1M5ZjP50zSOkAxjyA5khuATwxgYRzlj29YL8GTEgTEEo1pWcXc9k4DPPitdWM2ZkoA/1u0YdXGUi1RY0TEryjIrhk0asiaz3dMbX1C+pa5bk++57l+/p2s5MQmTAse5GB5E98o4cQErCkM/GKrSMJ8Z6sqxWNTCjnJ5n0ealIQ4kByuEM1bPxZEr1IUXnMRJ8BsShDGrCeaawdwVUk5nzGbzWhmM25eX3O7bml7zxigLivFgfJ45d6kQd6I00Ou2u72mzeSPGMkr5E9FSjLGYeHh5MW725P5b3+5qTIbpul3d+nhZf38/5azbn0bl86K45oZVnqdZhWNSbryxikvtJmUNAzVuKM/jfSLqfaA6bIzzGaf8WdoLaA4ZCs5kJWBLLv3rlDu91y79492u2KulKJmb3Rxel7GWHTrtWl7vrqiuPDQwzw1nvv50tDCpHCqWPfG1tSwLiyKohFiY0CZLRjq/p8YdK4betKcQT7RvzPuozGGaKVuLVzG8xVjJn+njTI5jM7n6sxRc3pm8nVsFJW9PXVjYp8K2AXvDaER7phpB9HkcBw5WRukcyOsbs7OyQxtUYa+1bjwrRXU56OsRN7c38VGtgxOvX6W6sgYIz0vacfem5vb8XFue0xxnJ4GCmdALQmFhMwZ4zFEvZqWIn1MSTdm26SLtot+zyumYXZM4Mrn705/9W4wpu//+97/NLA04N7DxjHkZubW7H5m824c3pH3zwfWnK5kg+k0lI1lc4s7JLfTrUHqkbYTMLIsRROHIcKV2gCJm4LAGYmQpttK2Nq49CToizKruv0pinIFIK6l3mqQqxwtxvR9+kUnDg5PmS73fL69WuGYWQc8gigo+87xtFOgqVOKcvz+WLSZciZRwzisjB63TTjCCmwXMxwzhCTZ71ZSRE7Dohta/6+NZkObl2BUYFS2fQykzmf1ZAs7bbj/v2HHB8d85///f+czz//Of/j//jfM/rI8dEpBmjVIc8qADgVb9bqSJ3FpUIXn7hhybiggj9VQypKqrpmGEceP/ma3AXsxkEovo10jUIMsjGUX5yIbNuOFOH65pakxUfbDdxuW47ODPPDI4K1uKHn4aO3cc5xfb2SZDlEZsslv/Lhh7x6+ZLzi4tpVrbtetXlsQzjwHYzcHR0wL17D/ngg29RVSU/+tGPefz4K5yzdG3L82fP+a3f+i2+/e1vc3F+ztdffcV3v/tduq4TzQktcKYxEtnppFG0yc4vxEmvVC2SeSNaRd6Pbx4WZocE729VcQ6TQ0ISZ/kdq/ksBkHCkc5Ygt2omO6hqOdmQGf7k7DAUoyEUUbXQhDWlVCwZexMXj87PBnKUjr8s3lDpjwPw8Bt20JRUDu3E5LLQocakPK1iQjDwGCYz2YYCkxRsDg84O3332V5dEhIibfefYfZcsG9B/fZbrdcXJzz9ltv8Xf/F39Hi1j43r/5Hr7rpTCOic3tirESFzjvht2okHMMwzDNu+cZ/MIY+nEUllAIU1dadBfMNNISooy1rlYrFosFi8WCbdti6CbGU1lV1FVFs2zE2fDmdjo4RMuuoKwKirIkRNmnzWIpyftswWp1xXa14vWPPiKst/hXN3SrNTcvztluVmzXK/qU8AmWxlIm+MZggB0Yk5Tp4o2hKSsGoPUDPiW2zjKmRBfE1nwbRlo/YFyBSaK7U5pSTRUK6qpmNp8zbDs2/cBtOzJrR7549prVZsO2g/pozvzwIaNteb15zp/+5Euan33FcVOLMcBMWBFVWQrjwY+03UDfj1yuPN2QaKPB2IJ6cSh0/2QpjKE0llJFer2C4Uk71TsXGTuNrogzlaNsKjDghxF0bKbM7j9jR99vKVSUuJo3cqhb0E2mzhtSJBuLsF6iOo0Yo9pjWX8LSDCEKBbYpuDi5pp/+of/E48e3udX3nuHe3fOODo4EEvqFGlcMTEAxZo+MloZS3SzJc6VjD5ye/GSf/kP/1vM5Yr7refA1TBr6NsW33eElKRxUcmIk/GG6CzROcwYcH7kiz/+11x+/gXv/2d/j6pZcNP1zALUKeJTwCfPmAKjDfgiESpD2YgmU99uGdoW3/aYGCmtm/SbrDqv+mnsNUyFbRb4zgl3U1VgRN/I+8A4aFNnHJnNZnv6gaLDlmLCJ2WrBNis1/Rdx83NLSFEDg6ki7lYyBn6+vy1OuipWQi7RF/2s1LYk4i6Bj+oo1QOsYZ+6Lm+XZGZWl3X0262zJZzbKFmJDGSvI4mluX0+14LJONEy/HO3TuSM2jjKE2CteoY5BzzppEYtuvYCMM/IK56MDXbRGvMKbgoTRer5648DMZW+rckOUZpCSYQTHbgjDhTYApl0+j1ybpW+RwSplN2sQuMozDGdsWQWlRbS1U1ym7bnVY5qS5L1QXLYsLaDa2qYgfcaXGUx2UGjaOS4slYhNPvebNqabuWxlWSy8znwgKy4nzVdQOr9ZrtdstsNqcqKwEdNBk3xmFL0eGyriQEARsFJJFzLcTAtm0FeHZWGeROchtj8Ora2KmWRVFWRKAbhDkmbCbJ+/IesEaZsBM4BSRpAYkA/I4VlZKIxtdVM+W4+eGcI4/v5FHX3WP3OlOJkQQMcMZOGp+wM4hJYTfasAPNDNYUU/6bG1UGiD7Qbrd8/vPP+eM//hPOzy/AGBbzueg2DaOMDEf9XNZQN6q/kyx9P3J1LYLhXddSVjXLo1NSCmzaDWVTUjalMPq3ntV2M5l7xGHUvFJyl08//YwYI59++jFlIazgm5tbnj17TlGWlE3NMAyEMUzgkfdSUMYosdyyK3asgklWi+19nTTt6uKTuuxFZWb2gxTiMXL/3hlvPbpHs2go6oLbTceri5bbrw3DCOuNQBwxqVB6knVrMMQk96aoat13eh9KO42O6xw4g1M3X21mDsMgmiuFGOEQI0UjjeKqaiiritlirsUl3Nzc0HYtQz/u5QvahFQWR57u8KOwc2IQADp4ad24opwaCVaZwUUl48RjMZBSIJhezlJXsB0DmzbRD+Kwu15Hgu+4unhOWYg4+nLRsFjMqKqC2cxw+t67FE7GkVJ2J7V2iuExCksqeKnJsIZUQFHOqOfHrG9aPvroay5vBrrOU8wa5gWEQVwwj5fHxE3LDV6BF8n3EsIUNahjORFSHiHPIvAG4yTXr+ua4ANt23J8csK3v/1rHB8fT/s0n40go4D5XEoqvixn1d4+1wZVdgd7A5QyAhiWVUUKgaEVzcLj42Oaup6EqTMggpEmeyTrEQnw4LRxkte4MJ7SDojeAzqsCvvn2j9Zg4kJYwKFKTFUmGHEZodG53j49lvceXCfX/v1b/Mn//KP+Af/98DTJ0949eoVddPgaqfj9BpbctMhivbgD37wZ/zoxz/m+z/4M46PT/jOb/829+7d4zd+4zdkD4VI1w0i1k7SPF1c7A6OD1keH3Dv/l3Wm43oKD1/yu31NZsbcf6+/+DhNN1QFAWhHHHqOF2Ug8buampGubKkdNU05mzV9dhZcaNzhRPNuHFkMZvz3jvvcXhwpBMdTvMGcTLtxoGtiu6LQ6Xl1auXYAzf/OBDlouFCN+PI8Mw6CSUkmqiSAGQ8rSIgIEmJYjCvs5MaZukNoxTXJc82hqpIIvMaHSSkzllSVtjhSlsR26ub7g4v+DlixdUdcXJyQl13XB0cjI5NgbV2qpKNTpRUHpU57usDV3V5W4NpZ3+E4D25DDWMAxipJTPtwkH+iUevzTwVFcN1jiaqlcarcUWsn0yTTELlnZdJx26IIdGUJE1QXZ1M+eOkXbtA1DoHbCKiic98I2x4BxVVZL6xIhXhBRlOgXtBiAdNjnFRWQyyLyy9+JmksGqvu+FOp2Y5kp33cBdcJFAtBuBgzRRKXOXKOlMaZ57LOwuccu3oaoqKZ6KgtzZj8FMbCmzJ1IX8802ajU/CtBTlCXf/Na3aJqKP/03f8JqvaHXJNQYg0miIRJimPQpcpc+t16NAmcpM1mQQzwDalZH/6YFZFSvIEYyyC+sHjMp24eUqIx0OKxqZKzWa7ZtS0RGzm5Xa9abNX0/cHFxgbWOtutBu+pFUVI2Fccnp3qISPHQzGci4okUBn4Qe+i+Hzg+cjT1TBd9wvt+2kQCQuo6iaLHFUIQKCjT1Y12nvXvUTeasxabkemMCu8BTH+O7cReQNau4d4KmrrbO4q8IMMmCu1eaOMyarIL7GFCqlOe+9Z7GffYH8YYquwE5+zORSR3crVbIOVymhJ3q24d4zhi1PJ10ozYS3L2WRKC4FtSCMKsSCIQ6QoBZ+aLuY6+SIFaliX37t/n9OSUvutZr7fy2XW0xmkREpW1INd0IBYFtpA164wVLZepW7azpkXjiF6mfGGnDk8Gz3Kynscj80hHGgYMosGVO+9ZPM+VpQJ3hQAXCuQaY9iuNly8PMevt7DtuXrynOHmFnO5Jmw7wuUtDB2278kcHGsE4CsV5YxGhKqzvJ9J4KKMCCSMAJDWCcUciW9B22wJ0fDInXWjo2rJyvVI2lLsh4G+d5wezVg0jn603DlaUOAhyX7ovWi5pBhxDtyoMcyJjkOMQTu+kc5bxsQu6c2MTHa24EnXZ7ZfjXG/HNp12qI67EX0fph9cdMwaU6MPrMsVQfAWQVDY45E5I26XxzvFyT538aY6UA1zmFNIlkdWQyBTddxeXOrI5zimmaN4Xa1lutupGtZOIulwCaHSwFnDDcvz9m8Pse+vqLY9NRIh32Mgcy2EdBLAo2cgfJ5rH4/a6C/XbFxDn+9wpz1LIqauqhIQ1KGjYy3jaGkrCUh2263pBSZV9WUkGbdAUMQcEN1m8TO2DOMPbPZjPl8/sa5Z9ixcaTbJXE0J785vvjRgxF9w2h2Gk7ee4Z+YOgHnCsoS8tyuZQk1jnVgPNqsBDeGO+V9RDFlcfkS5Umee/cXZSxZEmaRENO9CfLqqQoC4qyoKxqYa2FHQNGilX5u3Tk7e7sz+wuXV2YREpmaoBk18BomOJxVB2ZX3zdN3KJNNUFiBdFrkzyOEQ+S4Wtm7IDZdxnjO86uKJRhI7LpEzqmbT3MuC0M25hLwZKTZy1AeW82p1T8mkyI3fHxiXpZ9or+HesKQXbpufrNbAFzhaifaeMWeOcjEvEREjiPpdt2kEARBE2Fs3LMltNK2sit/YzAJcNYlzhsIXRqRPVmtBubIzSZcbsdZBNzq8EfMprwZqsi7mnl6SV3C/m0/n7GyRHNCmzpZjWQ2SXF7zBniDDTXnEOIMmu3OLnCPk506d/708I01vOZ3ZxkihErznZrPm9vaW1XojjG7nJgdH78UFNMVAWVfMmhnHx8fMF3Our28Yx5HRD1M+4JxVDaaOcfC7BEdzyVFZzPvyA6MWZV0n2qCvXr+WhlI/0LYtg/eg32u/OZGBOLm4ep1V99WkXU49uUbu5aYauibANxExFppG2JZlUTBfzLFFST8m2tGz2kT6MbHpwQeDT1mQ3E74coEAysnIXfF7qu4RJKdxqoWW5GRKup6i3hjrshiUmLcklybGwLQLkzJ1Yx6ZdEK6JXMJ9Of6hYXJ4kiFxcbEGPbOW7N7TUh65rJjXVhDilb+WBkrys8JSZgleAgehmAJGIx30FuCSZRFonAJ50bcpH2bmV07oBYc0dQkV5Cc6CYma/GpIgyWdZe43QbGYEimUIdo+b7zRcWH37rLY3vNxQthFe83BfKXzN9xOuD3Nkeu3Q6WS4ZBpiPqqppG7PJamrRL9+6HmWq9vb2628S79/qFvZ2fK+Ya8sS6qblz5w7z2fyN37d79UiODAYmZvUuruy9R44DVhhQe4SpCYAGJiaxBDUj4AgJgsQ4l8TApqll5PEv/M7vYJ2jH4bpnN5fm3v/AFA915HLywv6vuPLLw5Zr2+ZNTXz+YLl8oCYxOw7pKRswMDOE26ntWSAw8MDINK2LYnEan1LWZY0fi5SJ1OOm0heGGG7NM9MABTJqPi4AJUp6cSInlEC8JfUTS16lVWlGIFX0yeRdrDOMl8swBjarqPrWvq+A5MmTcyMY7xxg3YnqdTxNsrURa4j92qqqU4j61jzZmzfW25Z/sCg2qd6L/JEWDcMjMGrgHzH6D1106hByS5H36/vh2HYYQ9R4qXTM32qCffe3xgjOVp+jbQ7j35hK/x7H7808CSOL7JgMnovYraW09NT5vM5XdfRdR2vXvVkN5bej3R+nMaErDJwyq0Ij83ncynCjJdCPCVcWQnDxpFBZFzhKIsZpMgwdEKz915G61Jmr1jqUsd3iHStsBvadkMIgVIplZeX/YRSzmcL5vPFdDO0htPZeimihMotdu7OKWKPdPxMUrq8ui2VZUVd1ZPoW0ii9zBbLCnKUjWehJo79qN2HFsSkaqaTwvQWodxBaNPCphFCmf52//p3+by8oIf/fiH/PzzL/nen/2YsqxEjBuDqghPej7TIahFHehTdKEWCvJI8WfEIlY7nl5d5vJMfS4iI1kRQoCzcfQcHhwyXy5ZHBzgypLHT54Iu80VXN2s2Pafs9msGYaeTz/7DGOE7n12djZdt+XBIXfu3qOua9q2xXuv3T+HdQ1933F1fcVXjx/z+Wc/Z7k4pGnmzGYzuq7j5YvnpBjVqtTy8tVLrm9vaPuOppnR1KJHlQus/cduvxiKg6UkjlMib6d55wzq5C7AGwk6u+A8HY5IxytT76fYrSMJYhNtZZYZQ7TCAhy326lISd4TVbvMGivaGCmJnXdVsjw4UOAscnx8rOh2nEbYxnHk+uZm6uoURcFsLiKjXT9wfHCoM+1BE3RZL6O6XqUEtpROuC0cyY9s2i3bvsPHgKtKFgdLTk5PKaoKV0qH7x3zDmenpxwuDnm9fc3VxSXdpiWOgaooqasGkwwxJMZektnRWFwZKIrAYjmnLApWG3EgK5uasigZBhEMLoqSTAWdgLIoQHEuaGRkQK59p45X+V5t20BdCW226wfGIIeYtZblciFCuEUhjLB8YBjHk58/5rt/+Cd8cOeIhUl8/d0fsL244NAbaizLVDAvLTQzxpTEtWIYSSlS4IgYRkTHdzRi/xwjkgQk6fJhLRQ1A4lVitxGT/SDiKOUJWU5F3cnV+c0BVuUhKrEhIoiJVarG2a25S//5rvM6pKQaulI+gucXxPjQHQLYjXnYoA4JFi1mtjGKRYWZY0tZpSLmtrqOiEpi8NiU6GdOrmPMUZxD7GG6HVMU9kUrnDT/hA3jMB6u8GYRFWXMtblPWU1p1nUjGMvY4QmUZhEXVhCSmx6ZRLo6DZGOjdRdS+wRtggUWblc0KXj9GirolUFKbE2kRZRDb9yGePv2K12XBydMRb9x9SlQUvnj8lBI8rLE3TcHC45LSacVw2NGywY+Dp//cP2b4+593zjYhO1jU+BG7HLU0SvRGnOhejz5oMAnC74EWrojD019eEtmP7+TOWzTG/srxLLCzX4RI/evqxZ9ttgcjxySGnN8c8++orSInTxXLS0vBBEiiHMAKbomHwI18/e8pms+Hm5ooPP/yQ+w8eaINobyRDC8ig3et+6HBGWCEymlAyGGE81XUjjkUY2nbN7e1adGPGgUdvv8VyueT09FT2X9+ThoFBR0gSkozn0acYI34YtWCXfD0i/5uMpakbSInVei06OHVN23esN1vmdc1yOceWolm0PDgiIYYbuXifzAO02K2bSnXldsnfpKGVZL00dYl1djJMyfF3HMXJLUZEa8YaClfhCktVFVPSKKDwbqQr5PFhBV6TEYt32SsJPwYd20k7TUFN7GICYyVv6rqWQV1WU4qTJlkGfzKgZ4xRC3IZY4rsWSubNO2JHEP2E8cMJkqTSpioLuulWcuoxdKb2oAWl0pm9QJnStbthhgTxhW4UoqRcRTx8/nc0dTzidWT3UnbtqN2NQfLYxlxUAY3JKpKDFg2m82kvVkZQ2WLKafBWJyVcSMfIqOOnWLiBKbqJRdr7ELOth2WklnKCjzEzJ7YPbJ7HySGscfqqJS1VmpUgZWmRP3NZqbkGTYzNrWSyHvPWqvgo8ZYx58DnSZmWGLqqIcgDcqmqrlarfj5z37G8+fPWW/WWOeoXcnF+Tkxis5LFqU/OjnkrXce8e1vf5tHj97in/2zf8bz5y/ohy3OFSxUu3V5MGN1O9B1I6Oyz6pKnGdvVyvNdRzz+ZyD5ZLVasV6vSYFAeevb9dTsRaNYXF4QPRhcjPewQiwfwWtylI4XZ/jqHGpG6U5kjR3dXKtnDH0YydTBtZT1QX3HtxjsVhwdnaHrku0beDl6zW3q4HADGyBqStsYamWjhQsyYtDZPSBoqx3QucJZVvLyJ4fR/wwiPOWc+QeodHiLA7iiurKSoALA01TYa1hs9no3pbRuixoLHpiBmdL/Cji/ROyaIupgeGMjPzUtcTsWz8KuFwoYJwSKXpSDARXYJzFD8L8LbRJHAfRwUouj+sbkrMEa/AxEZPFzE9IxtJbx2brCbeBEo8l4scbDIm6EuBNnP4KykoMc8qixBbC4ChVyyviGMbIulsztiNjZ5kvGurGstq8JkVPU9Y8eGfJ/+q/+m3+xT8ZePrlT1mvIl0XEKpCwrhKQOage9TEaf2QL5dx1FXD22+/I/Ial5csFgsePnzIbDYjawPnGihrf7IX034xv9edrNfXTPs3A+PTlIm1OhIGp6enfOc73+Hu3bvTJ5T4LPWBz6PBRnVcNTKnXATLO06fKYEI6uvP5ajIoKUOahvEwEBzOVOq8UjBzoxH2WB/4Xd/l29+65v8t//oH1HW/5SPP/6Yq6urqXk6mR1NMVKdtYHV6prV7RXPn33NbDbjB9/7Lh98+E1+93f/IidnpxwcHBKTaPONKQpuGGT8qygcZV0yW8yolxX90PPkyRNWqxVPnj/BGMv84IDjoyPulveoUAZX9JjRMg5y3s1qcbJuty11WVIXNaWrKFxJ3w0kA7VxOGeo65nUhPM5i8MDDo6OePrsCberFedXl+Kq7D3NfM6777/P+cUlFxdXrFa3LA+WQu4wiWgSSSUfMrsvA1E5liXSBJjHKXbrfTTC7pYJA7kfpNxYsogNrmITelTEIDVMVZZE3NQMbJqG9WbNtu1ou35qsldVNdWFh8tDjo6OxAVeQcWtGkLUda1TXxWzuhZHQs1XgorZZ93InENMGoRht0Z/mccvDTzlC5UBiZwMxBj5/Isv3uhCtV0rtNt6xsX1Ja8uzjk7PeNgsWDWNKKhkZIIGo7ZOccqCJPRPLu32fRhzZRc5ODsNEBMFrXZWtXs9KgyFbIsyynpLMuKohDBypxo5+TGaEfCYMAl1aVS7SSTk9M0vZZ10uEzFJT6mlYRb7wwVySZFBe9zGZKSTuYOpedZ+udLTVoOU3yDGEc1LLdUpY1jx69zfXNWtwNSmVtadCbLxYYYByGNx0SMktk77NPTJ49AGXq0ik74c/9PKXJEa9wBVVZUZUi2nl2drZbI+NA18ncaZmSXn8jaLb+OxcdXdvR9b0CkwLsBN1gMULXe7XZ7rm5uQYiV1cX9H1L17aQEseHh+qs5Fnd3PLRT34qidd6TaGAZwhZq2Ja2dPBn9da7nzKuucNlDh/5h0DZu+J6IgIChhNx0R+5Tc7KfudO+mSSJddPoMGKmT9uQz85blt7V5gJMF2hVX70ppZM5uQ/dlszjgMwnBS8CwDi23X4kc/HVL3HzzAh8D17S1pWuO5ayXXIAOCy+WSuqrxYxAtrfVGLMxjInewu66n7Xr6fuTmRsTj+36gLGv9U+nrIt87ir6KsY7kYLK1ZqcJk2PQRP2Mif2m4eSYZZ0I+o1eGz5mYlVNndIkAGzXdyLkrtRpuabyb6tGCNagM+gDN7c3XFycM7+5YhE8TTtSBMMcKBMURthJIUZMBJcA44gGBZwMgzEMKTDEiE8ihhg1bpHEYCFi8BgGI6+lmQoGO+2TXYJkiCaJCKFBGC5RNO9mRWRWRDZ9q+yyUcD8ssG6GmNLXBmVgTfPi36vm6OFsa7J3IeX/CFi0kAWEZVfVX0PZW0kcmIoHcCs1WfU+axWrS9nLcmIplJERpids9RVydj3pMJycnaMD5GtdmnM/gmRP2s+LqyTot8YHSMN02y9NzrOPQ6UhaEoKzQbYrXd4n3g937nL3L/7l3u3LlDP/b0Y0/hHLOqZvvqksfPnlKsWkzbYa+umXe9fJIEdowU+nlsVM6Oyx9TRe3Vsp2kjDhnmBUNRVnxs88+5+t+YPsHf8DZowd88Ku/Ap3oxUVlft49u0vfDmw3m2lvY0TLZ9bMiNaoDoEIPBeu4OTomMVsxtHBASfHJ3LN9X7kMz4zA4N+tkJtpJ3N7nY68pQSfT/QdR3X19dq8uBZHiwpdezGWMtmu5Vxi66ddKLQkdjcrctnb9Ywy6AXiMaacQIAZGfYoGPBBsNsNqMuSwVs9+I1OrpnxKG0KAuqspy0Fet6B3qFFHaC0ylrSwijKjsKxphIcRQHF2cmDcZCBbwF4FFmVBLDk5TLAm1iZDdB0s7lLOh4R2bo5n2S93a+HzELj5Po+xHvpdiSRpbobDpXqutelbeEjqCZaRxMLrswGjEqRmvMFPNTkkRarpOVwoUdk2unzZWfLwwREcOVmO2Kkso4ltZpUSQM223bSWywjmyuUqjg/qijdlXdTMyofN1zrLMa67Jmk3NOmeTlFKsywxcdUSjLStgu1S7PMylNDcbJ+dHIvdyd0ZlhCzHumElidmP0LNUGSJJzfOpcKws+Kji0Yx+/mQMorjjlEpkFkG9UZutOv5fBYav6JUY0EKfnG2H1BB+4urhis94wjiNl7aa8V+7brtE4jAMXl5fKSG8py4Kmqbi5vSWlQFUdEaPn5uaCdtsydL2wNWHSYcws5Jxj55+FEGgq2We1ymtMozuaI2VGGpqHmQTJhF080nHticnt5KywtsQgwPA4jrRdK4V4HJnNHUs75/DoiLIqKeuShOX15Zq+T3Rdohsh2ppESTIOh7DrZOI2YUwU2YyiZBizy6rkxE5rivyzsqynPRP1DJBCUYEAY6ZrpoOrU96ZkojKRw8xZZbZTkPW2CyOvzvtcg3hfaCjw3p1YNVYnteXtUZYvdidiYfWiEFNdSjMrmbSETaiOAenDGJoLBJnsUJ1HKXhRFGQiIx57aZEiJZxcAzRSqi3mbEs10tEoC2eklQEbCN5EclSVgdYE1nODfMDg2uumR8F7j44xoe16IhNVFLlBVpkF2nuSdoxFqUB67m4uKDruqn+yWt1qm10DeZpkLRXG725Z5NeC5NTr11tpHcogwRBZQWMsywWSx49esRyucyvRtYSQ9dDrgmS7oMM9Oz4bkz5rCyyXTMtv2aOGWEC3CWmZeZwMhnYSBNAks/Toiz5jd/8TepGXGsff/klL5491RriFxsTO1fJXM1kQ46rq0u+/uoxRVHw4be+xdtvv8OmawkhMl8ucUVBXdZyTnovkgyoPmFZcnJ2ymwxx5UFwyji3tuu5dnzpyyXB8znM2azA0pXKrM7TWdnjGCKclebVhX9IFIHkYg1Yl4wm885OT1lNpvJlI3L+T80sxnf+tVfpW03XF9d0HYd56/OGceBYeinDZ5r6rAXyya9TI3rKNvJItq1BN1vWkNao82KTE6IIqdiHFgZDdN7uqt/phUZd2L3Rv9bmXIzfqcNtlmvCaPH9yPtdktVCctVCD0yhhhGjysKKu8n4fPM7M7aheM4Kv4SJmA1x4hfZPX+/3v80sBTTjIySDMMA33fMwwDT58/Z7PdTAjYfC4slOPjYx5/9ZiPP/2U3/rN36R6622WM2ExxCCCsWM/UJQOawr8yCSIl+cfQde6Aax88Qw6jeNIoV3BYexVa2LUBSGjDiQonegUZERPkjKJGH700+G5s3YW7YoJWJoSBpV03rsW+TuHkChdeuP5Ai7IjeqHXmLItpdDWMc5rClUhC8DArJZsqVyqR3c7Sgz8MEnnCv5xvsfcHUlomKmQXQ5tBg4PTmhcI6b6+ups2yNsA7y9yxKAce6rhMatt11SPe7lxP1W/+dkddMrS/LQhk70g1/8OABeeyy73vatp0cSppZw/+Ptj97ti3Lzvuw32zWWrs7zT23y77PyqweWagCCiAAAiQNBCmYJiWKphluwhF60KMV4X/FEX6yFbIfaCtsS6JaSoQIQCYpsKrA6rOpbCozb2be9rS7WWvNxg9jzLn2zQLJcoS9gVP35rnn7GatOccc4xvf9w1rpnvYdR1tK75R6/UV5+fnVQYZ1CxeQM6Re/cfAoK4zrqO2azl3t3PRGZpxBT6xo3rxBA4PT3l0cMHvPXmTzm/vGC92TDvJPmECUQtqyulWANvJhP/AvS2yEzKtCDvigwg1/1htLtiSOw/Rc5T0jAlkCrhy8VkTv9NJR8l0AijzmMbuVdjLAAEGC+d9mEcmbmO1rfMuznL+RLfNjRty7PPPCf+CfHxCT4gXeO+73n06CHZwHMvvMh2u+VyvRGEWw34QJkH2o02xnB8fMx8vmAYRtbrDWdnZ+z6QYshOfQv12vatmO93fHg4SPef/8Dtpuerp0z6+bavdahBUnMO2OMwuRpJ9CpJBFl3xW0vRaDeq2ttTRedMreNYzDyFi75RSa3t5EQpkYsVHvt8LGkQAr5oKtTtWw3jCGkavtmkenD7n72aeE0wsW2x031gMNHmdyNbqWAxVMMrhsMa4hWtggnk4DRibCxUxPZgCCVVa2SgFDTCRjCNYwaMJg1TDZale/yn6NAE8xjeDAV2lqZmEjc5u5GHaEmBkTYC2+W2GbGcZ1eCeguMutRFwzVvCyjHsNCqganeQkXwEYkXEuvsY/SfoyxaA6xCDmigoohRRZLBYCqjZzJgA4Yqz87tAP4jtlHY8uzojOslrOGGPibL3ZSwJl38oIeFv3ndXC0zpHNCLFUbtnrMrWhnGHsQ2+WwKJlC1nF1echnNeevkVvvKlL3N6esp2t+He2QNyiNiQ+Jcf3efHP3mX/qMPMRcXfLOZszKGU2tEJjVEnHe0rSMqOFCYPNZpbE86ijcbvPU0znOyPMb7lv/yBz/k6t13+LHLvPHtb/HGt76OcTL9MsfEEHuefuopnHVcXlxUtldh9qz8itlyyaxtcdaJBLYbGG7dkuROtfzOWsJeTMxZBmpkpKdM3pPyWqvgi4Bfco9Gzs/P+fCjD5nNZsznc27fepKjo0MGTVLOz0W6s95tJeGZz+s4bWEtS3ffGBmpLJ6IwuDBZBlMYi39Rrzg1pvN1IGbdaxWKxpncUaAuaz7T4CYqTPXdi3zrtVCAWaLuQDyKanESya5if9Yg3MNxbi6nEdDGYyg/+5si1NPqmIRgJEOoDRdVLqogMckb7f6bwq0xagSwlEL7ClOhxCrJL905kssNKaAhVLQdV1Tr3HZpFbBOJcl3RvDUJt3zglIhMbXcl0LiGadTIayNleApiSfJdEv944sJVc2jqb1tMawMFJk9X1PDIntZl3PUettNVzN48hmLRPNFosl1sh0xcLcdU4kRaUp5BW89G0jjCWvE/tSrB1/1Deza2WoTTdrNc6I3Jucp0aFdnFnbbd3bcrnRdnhxWu0ukazWCxFEjzuWyZQ11HWKYtkMLbBmKlomO7xlGwUhhv1Z/ZyFlPkO0WepiCmU68obUa0TUsYA/fu3uPi4oJhHHBtpx5Mkmtut2swItfY9lvWn2149tEzXDs5pmkdi+WM+w/ukrynbcWe4vT0lBQyOYJvWwF8+mmoj9WJgZIPx/o1n83oZjOa5ZwxBNabdW3cpTy15wTkS/UsKPnmGAJ9CMzmHW3b0KihdoP4h83ncy4uLri6uCTZQHSJW7eucXC45MUXvohzDfcePOT8asPH9x4yjIZxtLj2ENssyGrQUSZkxVEZtkSODpccHV/j088+Y70pZ46lWhWEQOM97UyaJ5lMtrk2ILIO0cBQ478xwiSyBskTUyYZbfyEiHMe5yX2pJyx1lfAMStQX96HGB73tRYR7yi9nrp/BdtopvijgEYosaid6qzSVB/DNERKd7h4wyaDQSZ2F7jBOIkzIU1TKXOCFCU1oDy7AYMMnnINWO9xncN1Adf2xFGkjsv5CW0Dx9d2LI8hd5+xvDby1As3uLgYOXsoDGlRK2srzJX82kGWRCorgyiFTJ8GPvnkk8raKXVguW5FiVOuUdwD8D7/MBrPy+CePUxYQeRc13CJ09Y5Do4Oeemllzg6PpZLa2wFbOor7e2HqRn+2GiMvYa32TM/M3p9oTS1kxHJmaHIjpNK11O9Nk7P23L2GWf5tV//dX77t3+bfrdjsZjz8P49hn6noLx82Nro0keZKu291JgPHz7g4vKCjz7+GKxluVpxcXVFzImnFjMa1zBfzRmHgcthJ0BntDUO33riNgA3bt3k4uKCDz74OecXFzw6fcTNmzc5Pj7m1s0WN9P8NIsySD440M1otM6ezWbshi0mRs0vRTZ8cHjI7du3mc1X2MbLhEjvwFlWywVf+fJXubg456MP3+PRg4d8EAPD0MskWcROwjoBkmSaLip5VEP3ogtyMiDLWbHXsNFVMFOaG9r4yALwhHFk7KWxmvZq8JKL7NexKSWS1jPkTONEXhg1BjjFTC4vLtnYNZfuXFaQMaxWq1qzF1ynYBNpPjK2pUmhzGBrNT7rPbei1imNw8dN+v/1j18aeNrtxLy6bVtWqwPRDQ69TBnzlvV6Q4wBawXZHYaez+7eJeXE7ds3uXZ8xGq1oGmdGmuVNygd1BH1Ecg6ljBlgl68pGBPiJEhaIFU5Utl0pYGT0M15bLe1+JDNktQ6ZB5rNNaJ3hQABfxFwD1yoiPA005CSgwKiNH8jmD94UpM4nRCs09RHnf0iBQyV4Bb8wMgMY16jWgCYbJYFTzaSIYkWRYkyFL995bJ0MzwhQILi8vK8BTGC6a5UqAZTKryxo87V6iWYNl7QLIfSothIJ0ZzJRQaSL8zPCOPAv/uzPmM1mHB8esljM1Rg8k1LAJJEWLBdCb91u1ozDwPd62cyXl5eaWMcqIZB7kNjudiWqa2KZapfeKLLbNDJueegHhkF8BJIRWnMMcSpmdN3VzwS1E5r175IomnqPUoqMOgUkpcTBqhWjurGAGPt0eoMxjjJHLedyoBXWh+qbrZWDEeSkLuNUEeQ6RWXZhEFkNn0vnW29T+18RuMbSeKtTFoMwJAiMYi7y/nlBdZYnnzqSZEzLpdCf24aPvzwQx48fMjDs0fshp77Dx8KKJhi7fiUBFBoyHBdTetOTk5YLhZcnJ7LkIEEXTOjbRDfl5Q4OjgixsgPf/hjfvLjH/Hd73wPYyw3btxUEEvkIkW6WDr6sl405gzS1bPOigfFYsHh4aEwA52re6rsGas+MLvtthqKOlsmaeqaUR+VmMdaQO/7vBUjSuectk/AZ8uD01PeeutdPr13l8ux56Vbt7htHbMP72B2PeRIzJk+Z7Y5siYKEJIN53mkT4krCwEIGEaTGfzEJAoKpBXWjtRGcj0iYjTfqCm7GO0CZpwSzKwHYTKQHDEkhmAZk6U1YuKaQ6LfBRIjKW4w2dbOacoJsQrOYANk9Q/IezEAxOOpop8iUyEakSekREiBIUgDoHjk1B9HfJqss8wL40TZLXLYalGZhfVy7fiEWdNxcXqfFAP9biNAjZp/ipxYp8BYK5PwymOvY2iY5DGGzLi9JObAfCnyqD72CvzKdQaEgYHhpZdeJpK5vTmnyY6FaXjhqZf49d/4y/yz//o/59N33mLz7keMu57W+2p6ixGZrMkRcsIpaJ/SiLUikcjGEq3noQmcpR0/Xj9kNJaPGkmWP/v+n7NLI6++9ipPPv0UTz/7DK3zCnpD27XcfvopQghcu3mD2WJB3w98+NGHfPLJJ1xdXhFi4OTGDVarFS++9IKwNttWkqjtjmHoGUNgHKWgPjw4EBlQVjBP/disNTppLlXZ6m7b0w89y+WCxWLOcrki5cTVZs16s5kkDNo06LpW4nEU4I9cTMNV9pWi+tepmbLxNF7WW9/v6Hc72rYBvLBNmkamY6ak013ltvf9QM7CNJ7NZHINWWThTSuyzxKTw1iQa1PN8aFMphonCjwIS9o5Mf+00lAxQDaZmEItPGIFhsrCV+84PSJyKsljYcbEClbEOBKjqVM1t7tBz6Zcj61y3qzXl8Iq0elMTs9vmfIqbCbvhTkdSyGWS/mhkocg8TZnqk9NQjv/WYArkZAVuYAyedRjImXJR7LJmvdMUoOsUr1Y8xO5HqlMXZTTWxhQTTFuFqDRGaOMoqhDUmxtGlhlp3rvMCqndk5YGFEBq2IWXNnsuh5iGOuaC0Hej+2kc7vdbmv+U5p0+7lIlRcgHiKkzND3pKT3WW6OAE7lcNLXku+x5883STwrE2uv6VdynwI2SAk6gZjl/ZTytORr4zgyjKP4lOhwjsLeKgB1ysVrSGTJzsLHn9zlcr3l6OCQmzeeII4yev7hvQdSWBgHjcU0Vjv2EIah+q0556pkZNDXzllYpZhMr36bOZRriUoFxSi+3FfQ5lBSGYu3dN7LVK4k020Bghnw3tPMLK6F1dGc46MDDg6Xlfn2wc/vE0Lm/GrLmDIxrzA6zCgbS2SgMnjpBBi06jvmLGO2bIdIMh7jO4Q9YupkqeLltQsjTgHjYpKv9GUFRco9kzMmFAaza9TPTBqwKWgTfNeT7HSPjDH1GpVdJOvEYY36QCUwphGKta6bMArbxpYJwIj0F4TtQsqkMYj3j3caj6W5IGh0rmlyymWdoZ9bwdVUQKopf7alga57szR2nTEChLkojA5rsTRY5tI0CAM5JEJKPPj0nMPDBZ/dWTFfGb71Owc8vH+fj95PeCOxIuZSwyeNp0jOliY0yLgJtCsA7mw+5+TkhNlspr+3B9YVokGNG1kv+OeL6vzYn9N/qS8ukxV5ThlnLG3bydmjDShRUmndq41oir9rrZFNiSyPvc70/qZ3ZAwTAyVPAKjR+FB8xoqfoMvy+sFYOXNG8cOlz3z729/m2WefJYfAnY8/5u2333zM80l88LTxmxMpyZmV9XpZK+BeN2uZzTvOri7Y9T137tyh7Tpu3rolZ6n32kCWQyjHSBz0vIuJRdvxwrPPstlsuLh+g12/Y3txxafhDm3bcvvkOl3TiiokQhgT89kMTKbtPLN5RzpTVqYRttPBwZL5aoFrGwWbtNazlsViUf2pRNI+6Hln2e62XF5dsOt3woIkYZyhnc8EdM7KzE6pbP895pzcILun2FDxdz0rrJVBKO0s7a2lpPWK1t5BLW80vgoD1tazwBBJYaSwkRvruHZ0VNdFjHLvra7x7WZDkXc77xgKYURzd2PEB6rkF7L0RDbrfaM+29OQml/m8UsDT8Mgnbj53NO0jmWzYhhkCtWYI4vlhl6lUsvlktPTU84vzjHOcHL9hNXBktl8ppQtqjlVLAbkKVYjTqF3C1JdwIDiWVFQReemg0gUAftBodCRp06WMbDZrGuhKmbUhVI/mYGWCy1U70RKoaLF0kEVWZxMCEoVebbW4X0Z15lqJ7LQyV1NLoqkTg9vEMd9LN56TUR0yekEJYkcEWNLR61Q67IEclBTXjlsdtsthknSYqFOP3hcryzfF/DdTtpmJtp49ToqAZgSILQojoEwDmxiZBwG3nrzp6xWK5bLJXM7xzgrE8MuLmr8Liyny4sLQrjkwf177HY71uv1Y0nfBPahXcREGbnZ9zt+8SCg3r8SqGeLOU3XsR1GYhApWM3eeTxof/6R1eejsDZizFOiZyRJz8M4JcLlcAPUBo4y6lOYVJIEWvQ+WFfvWSqBJ7upE57F/yeGqEmkbHDrPNY3zGZz2q5jsVjUa4azJP38MSd2fU/XtpzcuMFyseD6tZPKSOx78WrAyKS4s4tzucZlLekaSEmMOo0xHKwOWK1W3L51i5wz2/VGwOcETdtoUBXvink349GjR7z107d492fv8bOfvcsLL7zIyckNchaZjuzBrFOyZB0mBYaGfpA9oh34iWI7pxQwJXmvk/k0poz9oP5v0iHwzmvCmii+JsUMEzONHy9d7kZ107oZsNmwvbrko59/yMOzUzZhZHl8xMliRX5wQc4yqSamyBADuwzrlAhWzErvpsA2JTbWEIGAJdrMaCebxVg69U4WWCrAyd4adRmZgCGtUokLSSm7WAWlBeyKCUKyhCy0duNnkBPJDORcJuMpPT5Jdz4Z9U5QeRgg42uLGbLR/WXVVNxmbCNoWjbqUZMSYxj1fu5LeCWuWS0qW5WthpFJ868yCimOEvP5goPlEu8sQ4gM/Y5sBTgoXTcJwZPBMXsxrGReBvHvE1kRxDwSU2C2mGEMjCnU4ikhRfEYJPbffuJJXOs5GjbMbMuxX/Ls8y9ztdnw4P4dhtTTf/gJ4zZyzYiXRS4DNULU5kHGxShxKUt57rwhW2meXKTAR2ngXr9jA9huQUiBR++/i/GW7/2L7/KNlHnhueeYt51MhxrFr+3kxnVCiKwOD/Btw3a7486HH/PTH/+ITz75jG2/46WXX+GJJ5/glZdeoms7uvmMGAJhCMIMDCObzQaAo8MDSSqTkcIvC7DprGWIQy0sh2FgvVlLnJ11alY+J5FlGoz68IAAkMvZskqVU/rcpDrQgkfPF02UvZPJTQDj2Ks00unEoKb6hsWg+YL2kMUjRWsGY5jNZowKsJUEsyTNo/q+CbvY03XtxKxWw/QiJWo7YSg763WKTWFW51oYljhUPlWVfzBR8GPe74hHYgoUaWHpMsYkhfpO2dJFxufMlLgWdvBiscA5X+N13/fqj+ihtEAUDMl7lu0V7FLmaOvETqAAXUap/rXLSjGIzQJOUtg9EIlqPC4NlZocx0QKkzSy7M2SA5UD3hXfiKYR0MkI06oMZDF6X8u9KPHa2GnMtFReBpiYt+U+m2zIUUCwwgIT6agyM1NWGQWPdW7LepwakzLQoXFewJcxKLA4FfXlyxgeWxM5JwHubf3YFXjaZxB83ldm3zJhun4S98qrGZXChBQIMU6+SXsgVwHlsjbHsA3WW5y3PHh0xoNHZ3zja1/n4OCQOAQuLy95/72f4b1MJrQKepfhAGEckQmwk9y072Nteuacqz9a7EcNx7o39PZbLDEHzfcmtmxW2Zd1MtAhK9syBtkn0UA2iZQDzsNiOePkxgk3btzgar1lu+u5+8kZ2+3IdkhY3+EXh6DsjJACqbB0jCHjkdNYwEycIyRDPyaScULTKSbT3mGTeCVFnZIp02qnqVblfhk7rcMS8GI51628VtN0pCTS+zQG0higaYTVJy74wmbSfKUMXvA6QXMo7CijeacVb9oUdRJzLQh1tRQJeo5CWjYWY7zWFqmyjjHTgKISOUrNY3QsVEryvgp7r0xM81qYylQ/yb3ls2SSHcEZkeBlh8szQlpDDALO58jF6SVnDxOP7vccH2Ve/eqcf/5PSj0gptHU+qisK7MHFtka67XGrvek67rHzMX3z4oieaqgESWPMPW7U3gou2/vN8wERVWnH70+3ou8r9ZcMMnVVMYpjchc92596oo8TYBSeZi9N1UmvBdwvUSux5rjSfaXpwxukBdIUXKvkDKvvfY6zz33LO+89SazruO9996tYPxeeKzXDvIeI2Ya7uO9qHZSTgyjTDNt2la8YecLTg6PwEQ11U8yJCeo12JMtL7h4MaKvu85Pjjkzp07PLi8kknu3nG0XGAQYDzGzNAHtWnJNI2c5yWGtohf9Hw5p511wnJyZZ3Ie57N58wXC2nmKMNXGsI6WX27YRjFxDsh32/2fCrHMZNTqFYFxTvXmj0guZxVFGabXLdiDdAo20jibMkJpA4Pep0K83FfmeUUVJLtkCGpx/R8Lk3AcWTIYi1Q8vFB2VU5Z+xoGYdRp9tObKvSnJ/M+CE2Da2ef1If2gpM/ZsevzTwVA7CIQRMijIKWpkRN2/cADN5EcQYWS6X1eTZOPEoGoaecSegyKwTvXcMQU25MoMT2VYZ2VzG0Zdip23biiqWdR/TpDGsVHEr3iwxJsZxIIQNkMU538Bms6vB0+lkG/RG1clXMdYXsdbQ+EZ8CIZeZWngnPxejNLV2Wyv6rjUxsqY82LyNZt3jGPg4uKSJjSkpJR6N/k4WWH54RuryaCyEALMZnO5/mNkNwS6+Yq2mwujw1hmTasHquVgdUAGHj58SM5UE+aYEpPMyNSkL6ckev40yQ1z1q5H0QmXZAAVYWRqAV/+zRjDj364FVCwGI4aMWKMe9P3SqQaxvEX7l3WaRUlufNeOtPFPFVAmpII5sc2qz5xfT+UBKBqVL0wJXJmu9tOtPTalZdHed+F1VXkXEA1kKvd0Fzeryuvrvp9TSwpvhNiMAxIoCsJuKEm8mRokeTBNw39LrHb9bz86iu8+uqrHBwe0nUdV7utyLD0OpVgkI3h5OQaBweHNAqgLOYLpU+2NelfLpYic3r7TYY4CkNlHDk9PaVI2Izu+erlkVItPvvdlh//6EccHR7xzDPPiPyxlVHVYRz57NNPyTnz1JNP8uj+A7733e/w6OFDAbwWc2aLGbP5nK6TSRJyYI1yv61hHHvWmyKhdLz2xddZHSwr3XPq9mbaRii1ZR2No5jgLpcLTVCO6wE4hFGLw+k+lwO+HpDucRBafHMMGM/F1Y73PvyQ+1drNt7z8GBGu5rzqDMMfWYXBnYxcNrvGAwMFgabCBai8VIQW6tT2AUs8liRfaQskhcjtF0ymhQU7bq+6Sygd7LCErCNsDqd8yVaChjtLAHDNhlOR8vp6ZY/+5c/pvEt146vEWPiiZtLNkNkGDc4L0bhmYT4bTWTQSayjsOoY94rYywyxsQQIs44nPV1jxY5Vdu29VoWCYvYMRgxftaYYBFJV86ROI4Y55TZYoghiVyJzMXpA5rZguXBTYZxZNtHlawIFTlBlYeWwk/rYHJKXGzPRc40t2I82chnTjljvHghRZsJu4G33/kZnZ/xyiuvMvOeMUSiDwxmhM5gXMdv/vW/zitf+jL/r5/f4/K9D7h1uSPbxLZFqG1RpEfGwgyLz4BvwThCdJymkY/ilg994hNnGJs5CT38rePm7ScYQ+K/+W//Mf/kj/+U2f/h/8jv/s7v8OUvfZGvvfEGrW/56he/zNV6zdCP/PAHP+QH3/1zfvSDH/DOW2+y2/Xiq7D8H+i6jv/rf/Qf8dzzz/Nbv/VbvPDSC7z8ystcXpyz3qw5unasZsHCzoApidhuNhKDk3bftBDuulan0shI+TEJmB1SwrcNbdeyXK2qFK2wccr+KwM/6nNrsi6GyUCKPDo7k8ElG/EGnOmEPKtGtTmLHK9rOknfjII8VoY2OGtJYcRbi5/Pq6H5MA6kLBIqkVIL06kMHimSNmOMsiyLt9oeKLFX0JRHOUObptGE1mnRrEyHvMdgyZO0okj1YhKmjjGSE8xmbcWfrbF44/T9jZVBdnCwUlBv8hsyBSRW8EOeV5tH0uGrzKBSULdWrqt07A3WSYzsx1B9lmISc+BSoGHM5NVhDc5NybDHkt2eHxS5Tmsq16mAFI1OR6ZeEWFHmFySdpjNZzX+WwUf9aCt52jTNDTKvMlZm3NGcqyUHDGWxoJjpqzLppGpSk0zDT8o50Hf7wghMgzCijw4OJCpfa5hHAPjoH4cxlTJSc5lwpvCbWYaN221wNGP9BioVD7bviy+sMBKwbnfmDOG6qfsnBfAzjbcuHmTb37rm7z5ztsCShpD2pNoYmVypEwMFQDKq9feh3c+5eHpGa+/+gqH13bcf/iAvt9xdnmBMx5rS9mQVVqfaYwwV6/U+F8AQpHvrLdrKc6aThu0OhW7XAAg73I11pVz3wCJmEYcwt4Yh5EQEuh5d+3kGrN5x9HJMSnL0IaLPvHog/tcbUaRP5oZLOY0XVaGkzZVshXAJRVfF53sRgYnDQcTDFebNZvdTuQy3iujI5HHOK1nZ3Vce7GD3sMINHc0pVGJeFLakmPqeR7UG8068aJir4CLuo5800wgpMpFXSt2FSkLG17bccLGjJDyqAU11QcpqR9c0zZY0+DmDWNM9KMwU7Utgskifc9kcFHXXyDZCBYsjUjzNY8qsQIjOVNKgXGMhGCZzTr1g1GQOkph23iwwWGTJQyBJkf+5h/8AY2Hf/AP/kM2p5e8+6MzvvQ1w5NfhldeO+D+R0/wwXuXrK8Cxjk5v9MooKGx4ARUmZhOIzkbvG2qNPP27du8/PLLrFYrSuPYOas1ULm3WgsU6soE8fKvetTGlyYeWturOkOZrRWWkpZY6ellbfbtVTKPwVr1H8qe1xr2MUsaFJQzE2iVzdS0L4eVt+VF5RWsA5etgJ0KIvX9AMbyv/xf/a958OABL770Mm+99SZ/9I//O/UjjPVN6U7AmvqUpCw+kT/72btcXm1ESYH4SFln2Ww2VR2zOlhxsDqQs9l4CgvINSoP17z+8PCQg+WK9MorfHzvHpfrK95//32sMdw8uYn3LV07Zwg9MQXmyzlHx4c1nhhlvTetWN2IpFryy+PjE5bLA5Vfe/px5Pzyiruf3SNluH7zFkUQMAw9YRyYzWfElBn2vHJ92+LblrGX5pr3xct2YrRWX0HdmyFMzNZi65KD2ic4ZaoleY5x18t+2wevtGFnksHhWHQyOVHyOBj7PbWP3vdC9ClTBmuNv5eTFJB71w+MQRQRU2OroWvben6Xe/TLPH5p4KkwPWKKmCoTlhU268SkqhyI5U0t5sJ4Mc5w+vAB62FN0k7k44BCKQwyyVr1lJADHENNVMqkuX182RhDMqkCHSmlSpcM6mszjjKSu5vJBKh9L6epMyn3sCx48Q4yahhocd6LbCxncZ4xE8NFNnWgH3Y0ucHYViZBACGK7tS5OSlKMI4RwmgxJqv+WhOUHOXQ0aNrYsIgpuXOEdULx1iHMW4yFrNFey6gRWHqoIZt6DXed95H72HS+5BUk18THJ0+ZPd+NhdoZa9436exDkMVdf/CNS4/O3X2PtcpAAryO2mv5bshjI/dq8dfY6J9SmG+B0zp4rJ66Fo9XKQDsT+u+vH3LO8u189dux17SV99P2Y/8AurbRJbfu55Tem2T+AYuQBb5heKGDBcO77GSy+/xMn1G8znC87XlwzjWK/1vpTy+PiI5WpFoyy+Qn/0Tgzf+12P9ZJshRi1+Cr3btgrrB6/LgX5lsIscHZ6Jt4rCkZZK8XyMIrnS4qR48MjLi8vuHf3M/Hracq4c53E4BwhyMSWcRwQZpkcziG6ykJarZYcHhxUoCilWIFJa4XZmIwUxMJAkHVjXXkOKVyMs2JEaG2NHbLiykABt+eVsN81Er+l7a7n9OycMUT8bEZezBmXc06dYWsym5zY5sRZikQr44cHIJBp1LMt48SLKWcdBlAKnSTgpbWkKGtPqPCpAoZljZVDXm7T40xFclbWgejJhwybMTMOgY8/fch8Nsc3M3JuWC0a+rgT3yIjsqHiCZf0/tuCT5fOYspq3pBJSbrdYVTavH4Wq/GyUnMf6+xQTVZLwWWVZdHYRpKyhIIPIgEczCjgah6JccBFZUSot075/MWfovod1ERNgJRIZEwDIY10TYP1pm7SLNWAyImMrInT0zMePnhAmdqWFPROOYqfl7fcfuZZFrMl7Y2bpHsPGS93sp8LmyOrRMkaadgA2TiicQzAWU7cTSOn2XClIAXGMaQRb2A2X5Ay3LnzKbvtlt1mzbXDI5yx3Lr9JPPFgtViKf6Gw8j52Rl3P/mEd955h/fef1+DkjB+jDG8++673P3sLseHR7RNwzNPP01WqUzjS8Gu7BRpm9WEaBgGBfOzxk+qlMu3jQCLSjNPOVfwu0xne6w5VMCAEn9LwqPeTAUsSSmoV+BOWB66T636IRYGjtXOfzH9Lb4J8/lcYnYYK3Du1QehNLGKcWZ5jyGEOqykrOdqRLu/EZmaL1NWQk0wTUE995oiOU+sruk8mzpp09kj69ZiwE0TcZwOFgApkBqdyNa2wiRz6lOTswI4eYoaKT/OyCrPWUxoazGs3y8gttyHTDY63TZrwaxPXYYKiHwu17gpbA/kTNbXLEXqPrunyA2tK5+tvAcdb07d0hVUzmQF3N0UE3UNlecovhVNlQROUr+yXnzT1utmDFX6UtjWThm81k7nvawFAZ5yluEn1uWah+wz58UuwVJY0yWX2GeAikRq+r39e1T9Ncvv7123vQuoYEPlrzKbz7j9xBOcnJxwsFoJu3mM01rT15Z81mCcr3txvd0SU8K6hnYGi+VKio+hV1uA/FgeXvYrOSuzRb2tJKknRAF7nCsTJP1jhfH0OeQ5ZOBj2SsRWxea8Bklh2jEN6rrsL6lGD33mw2XVwObbSAEmC06OR90OlSMKgbNuqhyhqQxOunrpkQ2wuiRJlzAz2YVcKtbqnx6IyBiuTTl/lb2uwbTkt/IPSjxYdo/IDmcWEdQ42ym5LC6FqwlxynmTE3kvQtpDLWU0C9TrmtUn1YnrELvrbDRNCeWTg11rwrKYeXPnOU56qZ0GFtYUkZrEfnd4l9qjOTfzhtSQIeSKLfMCGPUpMSi9cyahtdefoGmgc4bYj/y4NM1mxflnh9fa7n15JI7H6+l0M57F95kKaAR2a8pKTtIlM5To7YQI7quq3vt81/kPYXDLyTm5hf+M9frbD7372ayLdFvq5OZZHJl31ejbrRm268xdF3VNTe9h/JqkzhLvl/rtpIaogMkoLJv9pl51lqyxkwZ2iOx6/kXXuT6jZt89OFHpJT58z//c9ZXV6zXV0xnzPQa5U3KRE7H1dUV3L0rfnzO0enQkc1mq5PTBqLm9Bigm+Lhft7gvEx07ZYt3nmu+p5s4O6dTwTg3qxpm0BK0I+S53nvaGed2lfkWhcXq57qE5ug1bNg1omiYhykXtpsd5LPtK3UKzFWpYpvvLC0xkABHEvjOlqjefR0Zj3GUNqLf/vrrjRJ9s8RoLK0Meax+uXzNWRpGAOkbCo+UT6/MPJtXXO1ScUknSzxrcSvMURSBh8lNxqVqGGY/C+det/9Mo9fGngqY8jz54tuRCOYjbCYCrsgI8Z5E4NGbkBQs8jMjjAGLi4u6LoZy9VKu4KJMQgnoGmlVT2M42RIWZ5fX3+i/skFLrRsa4rXgGGMgRyRwtpZfNsIQ2l9xTDoyM/W79G27R7g5CiTS7AGMwwqE4RRJ9ykkOiHkav1FfPFXOVCqQYt52SKnzOGRTejH6Q4X6yWzHIWiZ5xXG17DNCo+XkJIQZDai3JW2YzS0iWq/XA1UY8L3Zty1Yp9zmLYabXIgItoguFVBBWp7KzVGUEhonVFseROAxTkNRCcyoUJpCxbIxppLJs8DK9qOs6xnGsk0xK8JfifvIGgALoPG6guFgs9N6WaYaPU873//4LgJA8KymHuuG3OmGp/PwwDI8lweX78rxT97M8irxnHEac81U2WBhTOWeyddJdK54aSj+1TgJKYxuZLhZSvaZO/cHGMDKM4nvWeM/Nmzd5+ulneOGFF5ktlzRty7UbN7DOcXR0BDkz9r0kC9aJ9ngYGEdB2wf1hVqv1+y2Oy4uLurh9dZbb/Lxxx9hjWU+m0mxv4elWWNodc+VgHh1daUTiETf7Brp4o1jz507n/Do9JQ3f/pTQgicP7zPJ3fu8PGHH7Bcrrh27YRZ52i8oWs93lke3L/LMPScX1wQQ2AcA23X0nYdr776KkeHJzgjXmJ9v6vdovliIdR/K3r1YgzeulYC4zggbTmjnZdA9TDTJKTvh9oB+TzTqRj1N96TxpG7Dx7x8cd3eO9n73M0X/GbX/sGr7/6MsvZjB/+2Z9zP0eugGgdcb6SpCWJxKr2hw001ikVXw9aZ9WTAEwsv8OULRgDzQRhRiPyXx/FT8bZrGBorMl8dhFcYhtg6A0fPtgw9jvON4k+BRbrgeVhy42jOZswsh2DFnSGMcoh1DTSLR3iqN54CRNbyJY8qjLdBpx3HBwtaExHa1tc0wjbSpmsfdGaI+vJK2uVnPFOWFVRx+yklGVq3GzJEGSSyUcffQQ5862vvc6stXzw87cZRxiu1tjGc7BYEJNIUglytoDsK996Yhzpxy2bYcN23LJYzVm0C2gkOowpkHJkNFEkHzjwDtc2PLh/n09Wh+Qwge82ZrperssujhwsVsxuz3ji17/Fdjnnu//ov+ZwiHwxLbAp40hgW0zjaaJ4BdwPcG4z7zc9ZzZwr7HkaDA9uCQS3MG1mLbBNh0xJfoccN2Mg7bjz77753z/Bz/iH/13f8TBwQG3nnhCOmQWLs7POD8/I+REN18wmwnL8Nd+9VdxzvH222+zWa/5v/2Df8D777/H/Xv3+Z3f+x2+/uWv8eGdjzjbnDLXfeV05HrxRugaz3a7I8ZAo/T1bR8ZQmDQcerZQNvMaH1D28rKv7y8hLzvwyZd9xQjYy/s43KOlzHiRqUlwoIwzGcLOYdyabzArJvJ0AMDOSRSzCzU9842rp51OUUiwmBpvDAP5XxxODc1OXLOjMNAv+srmL6aLyTfiNJs6dQTBCTRT/UvUxNhv7FTEjrZ44kUQz1PamJNYZiV66Dgq1MA1YokLMdJ4pBVJrRczHVCjeReVa4gaIZcawV2Rj3rB23+VWNTL35V1lqGMcKoJqZOmlgFPEs5KSCHnDuDfpZaBGcBlZ2rxbtMOoxsthswAoDGEBh323odKzvKTsBTSomtdlCdc6RBWGD7DYdkBASPKvMvF6cc1yVnFb/EyLDrFXwq8djiG/E7tM4p6JBL/UDO0oluys+o/GgcRR4eo4yNXy6XWA+YYt6sU0iZilCjRXo5fEtub4zBN6UQmfKNyjSuP81ebmMUxJGiPhm1qwgy1CQw4tqGZ194nje+8QZ3Pv6Yf/pP/xkffvgx7XwuAwWixPCQRho7o+lmdPM5TdNwdXbOdoj88KfvsJjPePHV1wlxZL1Z0+96+m3P1dUlQ99j+x2F2SXAg3iPWhBmUZSCUQZiyGcpUtKcQm1O7HsBZsSHKydhPCXjSdZz7cYNDg5XPPH0EzRtx8OzDdtd4ONPe8YA/QgZS8oLmZTmMr3QuqThCGQrDQZvnMa2sm/3cKiUsUbusZEOFuNmB8bSlUlQ3YwYog5bkbwhaPO28WJiPwQp9kQiI5SjMsFKZCxW2WqS61cgyTq8depzJebBGEi6R0vOmZVZNux2Iks0CiiQCbpfUH41GvOSxigMhGAIxtHjiQoGeW9wvnjSJozS6YQwYkhBpv85PGMWMNc1je4XUYnU+5yhaaQBJRN3I1bUiHgTpUiNM8bdA8bNI/7GX/0tvvLFV/mDv/IbbNeXPHXjmM/u3+d//JMPcG7Fs88fcXTi+cZvHvGzt+/x6OEo92+vNlHYCXIkJa3hGmELjtuhXr/r16/zyiuvVDNssfrYTIX9XlFvtdCvQGIBdrSZXexKmKJgjTFxDDgjLMnVaiWNEGsZYpBJxoBTZlRKodZhZdcn/RmzZx5eaiwBH/ZjTNalLAs5hT14q+DNZgLlAcKed50Aup4wSp3lm46UMp/df4TB8Jd++/d46eXXeO75F/mTP/1j/ui//8fsNhuC5trlvRljsK1ldXTI008/LWs3By7PN1LzaZxv245M5k6KzOaignju+ec4OTnh5q1b2myU/TiGgNfAXqTxJyfXOTm5wRPXb7LZrPn4o4+5uLrgwYc/JxGYz1tiTrRdp7FVAFVnHcvFisa1jEPCEskpMA7K4j5cMI6Bu/fu8PDsgl2IXO0Gzi7XjJtL2sZiM3RNg/ENeY8ZLZ6lctZ7VWIMg/hNCp5bEJ0J3CTnxwzDy3RM5x0tMigixiSEAWNwi0XNlSprKUrj3TcKqAVtbtXYIo1h6yy+6TBGSCJj6AnajJc43MiwM22W1kYCRfE21oZNNpaQpE521knuwOQB9q97/H8ttZPupC5n7doVb4NRO1CiHWZCTlMxwNKoU/ggxmK0e+m9FCGuPIfzFK8Yn/PErNA/C0ujJI2N99IRdK6e6lm7O7Vbuec3Uro7RQZlC8poJ9PvfeZL7aZrQKjItlWZjvNqTNrUhM6qOZwrSYUzdG0nHUYGQf5Twb1TDWxjCILcK0vCGpGrgUzWSjlzdO2I27dv89LLL4vWXuViOee6iGRcvfxuKfw0ZknyVrpKv4Dm109J/YXy3Twh9PvfA2ry/vl1U8BCYZHsPfteh2Y/WO8/6v2qEqu4/4slZyhtDfmfvfeQ0kRfLEDgBJlOYNVf8MrTq5TPayZmVyiyoYLSl8LUGKIxihuUA0muoRgxikmkjEQPdT0bOxU/dZyrgnS73Y6HD0+ZbXdKh5e9FIZRgNm+1xNIugvb3ZZx7KvBbQxBgKfdjqvLy/oZHj54wNXllUgkkkglilTFlM+Rp0mWIMm8AE/Fb0rAWe89dZR9ToSh5+5nn/HgwX2GYUfXtsQ4MvQ9u+2Wy4tzJDkR6vpqsZDCJslB0c1arl+/xvXr0pVqvCMGBY2MBGXr9saKlrViDQaLTZNRePUo21v/Oatfgcam4r9V1mzZldaI99Jms2G73bLrd8xnB8y7Gbev3+ToYMXi4AB/fsGwHUhW7oNNkrRNHm26Huv6y/UrA8nkOnFtWr+GSvcsS1yx3TLq/LEuuTEkM/1MzGAiWBydbzg5WDGbdRwuO+Yzz8yDzVLQis8JUkCbXFr/1IwcGb1tsaSo16ccVq7FUQxz95h+pYtTPqUx0nlO0yfPTBjb/s4zRrr35d41jWPWeVaLOevNyKPTNbOVGET240iKYeoUa+Ib4iiFCwHjwVuZomNbZchlJXAhBu/Goma2DttAP/Rs1xtlwCj9Piey0fHvMYIXsOzZl14ijAMf/svvki437HaCF2adPJiNYW1gMHCPzDmZB8DaGnbW4zL4VNJJlQ9jxSRbgZjj4yNunFzj8vyc7WbDnU8+pe0eSve/63CN5+r8krOzc8ZhknJLw6ewmAwxJdbrNZ99dpe33nqLr339ayKFRtLHpDIwE/f2g01kW2REtsZjZ111DCqx2jkvrCLr9lZ7yQPkDk9x9199BqXC7lX/rlJUiQRb6PClkLXKWPFOmD8lSZOYKjKayq7SR2E9Gakq6hlfuonOTp5vtXmj8VF+zmDyhDmVrVsmr5XPZ8q6yXuy9b2YRdkjxcshTfvGYKrkWwC6WOUvzkqx0DReJV7KhCrTdDTeiWK+7MMScWR/lVzBKoM6qlGwJL9OQa8ChiiolgWkLkbzpTB2VeKKnGHkOtksKLux0PILKFTOdmlqSh5UPHLyfvwwTLFCWUQghW9MSYEeU2P5fpOrdnFNiS1WmCU1v0MZLlMTa389Sh6nIGZ5or2Tx+hNrbUqtbav502qT6fstVQKZvnMMRrIj9sRfB50Kn/+IlNIeXf6GpIHW3zbcuv2bV577TXef/8DLi+v2KpZPllZKzo5NmnBmtX3KUfDerMjZVgVgNF6sBHjI65t8GTartGrIQzBOPYUBpup1668L/FKLLYC+83L8rnEc0liqvHFHkEkpLP5nKbtSNkzRstuyPQD9KMhRDGKz3u5mCnT5WrxZcQg0Vi538ZibJ4O5axr3zjdp3pQpXJtpGGUowLnhY1ck9qkX1LnmFyYTMVL0Qq4OSWr9U8lW9XvCUCvckgF3Cc2qKzVZK2MPU95XxW99zA155F8W3L+pHl4rGzqrGwv8/jb2n+b5S/KiJLrMdVYGG2UW4NXuSpZQX0F/VIuUSfreypMFkO78Dz3/FO89trLXD854twmDlYHPDo9Z315ysVpw8P7kbZruPWk5+CwYTb39Lv8i3F1b4vKJbVaFhS1jafVMxMmGVoxQJf0YapprMaMum8eq42mx/4JNuFWUo/N5jNm3YymEUlmTMXCYa8mYzpDy5PJmVzitT5xCTD/ysd+Pbb3WR6rm36xTtt/88bIFHSMgLPOyoTn45MTXvnC63x2/x6ffvYZn9z5iPPTM3a7rapl5Llanf7tnJwpcn1V7hf0LNUavVix7LY75vM54zBiMMwXcw4ODimEl2TEvLzU3p2Xib2r1QqvMrwEnF+tyQb6cRT/tLYVAFkXhDWWWSv3whkZ0iLDL+SaDMNI34+sN1v6QZ4jY1RtFIlIrRRjpG0n38aCK2S97s45ss2YYCkAZtnkpjCeMtrsKLmWrInPM9HK+y57bSJsSEgjIxYdjz1MPe+c9RXwK5OgMUHrIHmOlCb/RmkaTEQLOW51uIcD6wobOelHyjVv+WUevzTwtJjN6wItXh2jeqYUP8WduqNblnUzhRgYYsAax2y+YBwC0URm+nyzxYKmaZh3M2HqWEfrZRqCsdJF8c5RSMT10FX0XvycpkkEYjoriY3ozIMGGCnQC9XVN47l4YLGN2pyK4Vq08mI92EcNEES49WoBVpOqdL02lZMwS3iS3V4dChGYDnRzdo6Gtpi6Brxl5p3K5r1mhzlcAqjJIbWgvctKWeGodDiJu3xGLZgMiENdG3DX/69v8RXv/oar77yPH/yJ3/Kf/af/cO6SA8PDlgsVmy34k5/fn5eq1ajeuWuka6MTBObDv9aEEgVSiFwln+XSz+ZmpUE7/Om4CWRKKBP13X0Qy8+MeUA1WAX4mTwWO7x5xMt0ckGjPk8q8locaJdJCYaK1mo3zHFOqWsdDjq+9wbDzk9bC180ecqa6v83rbfEVJkaahGbM5Kh3gIkT5EYbrZSTYyDr0E4XFgGEZ2m56uk25qWfPlOliV4+12PT/4wQ/52bvvsVguadpGWCTaTUQNN7N6BBSAKaZAzJF+JwBUGZcawjgxzgpbUK/5bg91L19l2lvcLwT0Pg/jgO88i9WCo5NjbvVb2tZzcfaQ+/fu8b3vfIeL8wtyCGw3VzxMYvp3cXHO+eU5q9UBX/nSl7h+4zqvv/4F5os5y4Myda/l6aeeZrU6JOrrFRZNMJMMor5fU+6TxXlU3kNdgyFOafyowRS9BkPfS1FqhfnVeC8FGKihcuD0wX3OL8/ZMdCEHjO2fOP1L/Ly88/z3T/5p3jX8tnlj0VCN5thUxKjP5WrolLQ3ThIUm4AEjZlIoFoErmocnRqRcapweqUpBgvhWLbdTjb4GzxbwtSmDojB4OVPNpayzNH1zjoLC8uljStZXE443K742Kzg75nd7XDzhUgDuIJgU1a5bU6utyyWHTCLItWE1eVzZAhBsIYCMqWSEWj56dEWSQPjqwTVYZRzGbtTLz9jEpyigTPe8/h4SHOGNZXFxAcTz1xk3t3H/Gj7/+Yp557jqefe4azizOGsQcj19V6S4iBi/NTjIdm5jg4XjJbzeiTxIOdjgHPXj4L0YHz4BzdfI73mfV6w6PTUzbrC2bLljgORCuTI3cx0MfAfHvF0nr+7t/5t7l79y4Xlxc8+tl7/PzPvsfMRuYusWNgSCMfuZ4LG/kEx2gsKTdgG+gs2QXtSEvMaW1HTpnPPv5MJvDcusW3f/03+MM//Lf4/g+/zwc/f58//uM/5s4n9xhCZDGbcbRacffePX72s3dYrZYsF3N2MXK+vuJP/+k/E8aZFU/Bmzdv8vFHH/HO22/z1NNPMpt3XL95ndnBIRfrK/KYcc1A13YsFkv6Xc9AEo+d2iyBmbI4col1Oq3PW6dd88y8m9UOXQgju900IWWyRi75sTKVsQLShwIqGbz1WCfmn9aJj2MaBkK/ZTVfMp/NaRplLnrNE5Q1YrKtcdiphNeMZeR9qH6QxshZ1TRlel3zGC1+n80Ecp6WBhJaWDW+JWeZ7pjrpD05lZzKOcuxI8A45BCJIVUPGfkNOaujspeMMxUMnc9mzOYd83mn8VIAxjJxrYCNUeXUsTRJAI80L6xp8E2Dbzt05AVJmcmL5ULALCfmoaEfa3HWNi3OWFKQe7peX4p5/HKJd3IHx7GX5ooWuMMgecZ2u6mNqDLRqNjPBJVyCjPd4eczsWowYs2A8ZKHGfZyh6moKUXbdrcjaN7nTPHpE++NEueNxtMxRpFDWCcTj+zka1gaF+V2l/PZahGTM6QorE7rE9aJuW5KKJBv1FKi5E7CFg9B8irxnErsdlvCOLLre9q2o207FvO5FEx7IFOZ9iqMzknCVHnxWjsmBPCOZL76ta/x4nPP433D97735/zRP/ljTs/OsLYB63FtR0yW9W4kEGhGD3aBbRKX257z9RUf331E0ziJ/8WHtO1Yzuc8dfsWs67BG7g4P+Xdt99RBtqItUaM+nWiYQoj1iaK9NBYaaRGLURzzgzDDucs168fMZ/NOD4+pF3MmK3mXF72bDeBN9+5y65P7EYDxtN2CzAG15la3BojgFhjRH0RkoCjZk+NgW+wxotfU0owbrGNYz735GwJQYCwlJIaizu2uzVgYCtxxvtGfe90EjCZGMuN0MaYkclypQjPWYtcg8ZSeUqLMLEKONXolMd+KDl6rsA4WniKSsTIhMoKUFj1kxI5bgFg2lY8trabjbBNB2VkG4HmHEaKzZzACBCdrcSvEOW+2cYSCihuS+lZVh20TcPh0ZHuG8c4DCLLSVF9IXWfWkdKkb6/4OmbS565dYPf+73f4rd/49doHQzDhmeffYntLvDuz9/n4b2ON3+Y+PXfannplTkvv3bCsGv4+fuPGNWbKmfd607N0eWGk3PxLeqr/Lo05ae9NUnAMZNli3My3MKaXAcbFEAyZVvldRMoDtVryhhSHHFNw62bt7h2/RrzxZykNTTF004bFDLRXJs6SRhtBgEy9s2ohQixD0vzC3HCIPmTqEceB6+lLpqmzxkjjdwUkwI7BuM8XjFViXORR+cXdO2cb/7at3nhpZf4/d//A/6f/4//mD//3nd58yc/5urykpgSTdPw5K3b4lOriouo5tPeOeIYICXG3U5AKufYrbdc9T0P794D4MbNmxwdH/PGr/4qi+WCxXxBiIkh9VWdMA6SGxweSO39tRtf5/zikuuffkrrPdt+Rzefc3R8TVhvVobuNL7l+sl1rh0es5qv2PVR/KyUkfTJnc/YbnfcvXefq82Wbr7CtWuy8wK65sTVxSXri0tmi5UMwUBk6d45bTRK7bQvFzSaHzgjU13le3Kfy0RM3zSSn+52FSjqmhbbyDCEmBK9qmuKhYG1lmHXk/tB2dKF4GGwVqb9uU7iAVkbsjngfIMDrK6TMUaSCeAcJsnk17Jm2k4ZckEUFznL9GnvJl9XM3VX/o2PXxp4Kn2yEDWZsiJfGcNAmTwWw0g0hmFoqgwp5oxLdWigJBqmaBgtTSvd0ZKEeH0uTNmIU4Dd94aQ6zqZW++/T2NQozgZnV0SCaGzWZpGAIQxDNpl0QPdoEijSgpTqt0BuY3IgVn+zh5onQXxEzZLIAZF9rWTFJ2MdW+aBmd7DDKiMKbEctlhGi8m4zlD4+orpDJxhmJaaIjZsNkNON/y6iuv8MmdT3jphRe5d/8+l5eXjGNQZkogpOJeX5gIj7OLislj8bkx6hkjCXF+DFkvTRDQjl4NdhMg8ZjMLcvBVwCfEAbKmUy9NkwditpNLL8vwd5qwEi/sLAV1KF0jOszoxGVMvFGzNql61bZF0giUib62fI7lWk2eVMYlV8W7bPzTZVjGi2yE7kWW85I4V6bZrmYQgoN/ejwkGeeOmC92bDrd8SYCTHUhDoDpEgfEnkridO23+KcE7ZRTqSQZKISVM+CXd8zjIMAFlnolIVJVAqaIrPs2hbftTK9ofGsVqvKoimytHI/Dw8PcM5xdnbGdrvl0aOHtI0npsxyueT2rVt8/NGHnD56yJ2PP+T+vXtcnJ8zjj2L5Zxbt27x9DPPcuPmTQ6PjmjnMp3utS++xrVr13jm2Wdp2pama8TPrGloZ3MxEE5FtpqlkAyjSDqsGsdaZXTo+rEK9pXOVSkoSnLSOFcP/whilKgy3yZFoZJbh0UUWZd9z88/+oj7Dx4wpgBWCqHZfMbq4IDnX3ieq+2Gf/GD76t5sK/NT3Xx1Tgy+TtkcmXCZGVy1E5o6d7p5BFpd8iathSmk9z0rB0UGZNL7YR4b4neELBs+p6Zc9w87gSQcpnRJkYTaZz4MRnvNdHSfW0FUG+Ng2zlc2QjTeFUFrWZ3ndGuz0lKDIxmaZWPJAm/yYFkV0q0zOV1WEkqXXGVrB/ux1wpuXGyTHLRU/jIuNwxfnDewQSvjGMfSTERCAQiTAT5pKbOXKTGWwgJJmWJ3O8i0rKKHCLHp7ydbG74tH6jPVmzWp3gHfCDIghYHOiReLKEAMWTzvv+JVffYPT27e5tzrg7ocfcefdd9kMgd0YeGgyG2MIVfuv51hIdcJgefmoly0ZJ+9vDJyfnvLB+++x3axpnJezIkbGYUfwDtcK0yeRmS/mXLt+wqOLS1Lfy+TJnCV5ahqMc4Sc2PY7zs8vOH34iBu3bgotfbeVa1SM7HNpQVT+Xo3FVj+HUb8lKaTkOsc4+fJNk2H3pATqq1VBfkMF3JPKyoqpfM5UcD/p0A2TRbpWQNycguw7kzF4uY6hTIMxqPkIlGPNlDNE9rqN6hPl1J9MzwWURYlu56SfU56onIpT3CnZjnwkM31mMx145RgUTzr9ni1AhU6hMzp9LMv5USj3IAats1lH07Z1eIjkPtIMKhL6wmAqjAtrRNImZ72MYjd5WvNeWUtWbnJtzkzMJDloY4qMYafNgIixDbO5ANPyHJZEIkeJB945GaQRZaKcd4bGGZyqja1O05IcQhJrV6b65kyRcthy/7RDPaofV9qTIcr1dmoSOzFjhQGl57sWXJS1g+R5o7LGi9G9AIhybWIuEv2yeAoLQRj4KeZ678o4dVECFcDA1jVXo7kRU3CRd8n0pHEcGdUmoUj4m6bV82zK2UydoFc+s8Zf7WDElPFNy8HqkK9+5avMZnPefOttUkqsr0Qip8tU1mMqtgC6Zr1THWsmYRmCSI2NzXib8S7x4OEps7bh5NoBxjUcXz9hfbmWhlMxIC7NrWwhZeI4ULr2jfd0Cxm57rwlpSXGGmkANS3Gt3SzAw4PTzi/uMvVZkfKTtl4cu0pOaD611DOIVSOqXeq/B9Z2yX1PJZ9mGNZW4GUrQALWc3A4bFrTU56xmsDI6q01diJ7W7qrpSYVgv9AiIYlCta72dpOU2sRIR5YmWNY6gyTvSzOu+U9aBsQTJGpUVK7sNZg0kGchL1hZXDz1hTZYg2Tw2FukY1Ty6+jFVuliUmm5ozG1wjEhzrGwV3LaSIydpZJytz1dG5ln6zZnP+kBsvvcpXX/sC168dKVtK3n/bzUTqmzPbq8CDOzvGbaJpHM88f8h2bbnz0RnjILLknCw5eYl3Jk13y5RaTaS+t2/f4uBgNd3KkkOXDTb9h+T7JM2ndW3V581TAci0ziQkTNfLGWHvdF2HcR7jJO+bUJ3yu5qj1udXhu/e/di/75T7oO+7ujMUlmH5w5hKy82few5J60yti4pHUwGxTTkrs8Rwa0T10LQtR9eu8cWvfJVmNiOEwP27d3nw4AHOCVN7DEFrm6kxUK5peTjrdNDHyDAOlZhwah39bsc7b77J4dEhTz35FPPFXMzgQRmxErP7PuAjGCON2MPVETHKVFpnPW3TyXRF78BBNokxDUSSHj4R8QeT/R+GgTD0xFGGoW2urgjDgENlnEitFmIUZVY2Go9kwE7Kkayes1nXfEYnw+r9LswoV1jFOZGSWMpk/fd9KX6EureF6T2t29JEd96Rgq4nBYWtL0OvhAdtiiIjmz1/X7k3rZq+l9e2lol9nTLZRFVoWWWBypopZIzGucr2/jc9fmngqbzAMI6qUYYh9myHLcv5HGuddLkS5GyYz+cslwey+hX4STkxaztN/GWs4XI+rwuyUdNhoUoHnJ3VrlPI4iVRCquCTJfpMAULjmFCqg1yGI/KdPLKklitVsQoqKL44YxyQzMYlDkQtJM2Tmwcpxpr2AOeKIaaCdJIGgfGfoAUSF7GLmfrGHGYxtDOO7zbApnt1Zrtdsvx0TG2E4mAMQY6+TSJzHa3Y9vv5JobQ7YNYzLc+ewhx6sF33zjVxi2Ox7de8gf/8mfcP/uPTbrLWBZ73bifWD3kgtN5JL2motxpokif3RWQTQdAV4Ar33RWCrf2UOh/iKKnQBHA97rBLOxF+1+jbf7Bzm/EFsBttutdpZE115o7TkXjTUUdlNKTE9itXjW5DYlYZ9ENc6FMslIRmhb52kK025v05fPUbwlyudOOiGojIBGvaSGXqYntdYzqtGuAF4CAlkDbWN56qmn+Oav/io/eeunvP/zn3N6dskwjLRNW7vrY5L114SB3bCttMfiAzJ1VeWwtVm6VRmwjZf9oYej+CwII7vfbhnGnoP5AQfLFSc3T1gulzz33HM0TYtvWrquY7FYsF6vGYaBL3/5iywWC37yk59w9+5dvvu9f8Fq2TGOkZOTE15/7VX+33/6T3j/3bf5zp/9Ux4+fMjQj8xmM27eusGvvPF1/spf+as89fTTXLt+nb4fsN7z+pfkeZeLJSEmdn2PcyIRstYKPdvKusQaZTgM4D3eiJygcY6rfpAx2dqStX7vcNPCOCmjxjdSJBdWZBgHhhgYYxQDxMaz9A2NMXTA7uKSP/ve9/jos0/o44hxhm7esVgtOLx2yDe/+QZd5/mH//A/kWDeWky0mCgAss2GMPRSoLWF3C4HfrYqDdZATkq1QM0x1jQQC9ZL0uYqMy6TkCme3jegMbprGmZdw260DBHunZ/T0PArr9xgjIGHV1vmjBgbmHeeZmGgFcPH1kuHMyaDM57GNtp9y4SgUxzTROnNCko4i0yRsbYmQjAV2vL/MlpdpEEOEyMpQRO9xJU0Ugy+vZHCfxyluD0/z5As1649wTgkVovIsHnIh+/tOH7qFsuTY9a7kSEMnMcIjWVx3OFbQ9vBYBLbvJVCWPNgC/QlsUKlvFHuQSLx2eUDBht4dPaIg9WSg+MjhpwYwkBrLY0RZtU2Z7brHtdY/ta/87dZX234+KNP+M/+4X/Of/t/+ZTLRxds+4HcObAO5xt8aSykTOwTxophsUyCSkSrFaHryMYRdjveffttLi/PuHXrpkyl1KbO2O9Is47l4ZLZ1RzXea7dvMFzzz/P8MEHjGfnjP1Aiok+jmAtyXuiMYw58eDhQz6+8wmvfflLLBYrzncbCEG9ZK1MbU0waE6TciYFYTp3zuOMsJxGZTeLHDxV5tr+eWBQ4FeLXNd4AT+QQtI1AgQPOdaCKUY5X50ym/t+p/tH8m9nDeRACuKBlpFpjzmrj5tRCb82FUQ6JqAO6vFmkxTZXg1M7R7oBBNYFnOZZhoxkTpdSEAjDwb6sdf9WbIEqgXB1ATbvzBgba5yt1J6hjgqO9gSw8hm24tXpHbtVwcHtNo1L00fZ4QxWDrNFewzWpQhk6QE1dOXjxKAjMnMmkYlAEk80+rENUvbCFAy7LaEYWC3vayei01jOTg+kECWgvoqZcyQiQFy1yrzdMBZS+PFQ8w5sFYSX7EKSBgTpFlgYg0j5Tz2eMAw9oEQIpvtruaEVZ7uZXJa20wsZxSYsCoXLbW/MHAyIGf1OOwqyJZDkKQ/FWnjNP0YikmsV+aSxBHnJNkKWdkKpcjKRexVZKNGfY8stjU44yCpx6MO+QghcHUh3mlHR8d7gKgwF7ORoliCWpaJaEYvWTKMIeNtS7fo+IM/+AN+57d/i+989zvknHn/3fcZxYQVm9WHMGYpxrR50HXCjDN+TtJOe4pSGFoShsinH95h1nq++JXXmM06nn7hJe7f/Yz1blv9JhtdfyZLkdTvdrW4XVw/5trJipMbRyyWM3zXkZPhar0jRojBMlve4PrJi7z7/gX3H95jeXDMrG1I6p0Ck+UHxmGcq2A5VtmzWZl1CZJJhBwUbMzC/soWEz3EzLgZhDHmvDYkpDBkr6hSwSQxFN8z8QKzzhGQybWS52pxqE0C4yfpWQE4jYFGGwYhhyoztUnijmuEmSBeMZkhBllPGZ3g6DGjbNntOOjn9nXPNM7ROEtS1nuR3RB0kvZM3ks1Wo6ajBsjLCiDrDVtqqOApabdIol0omhp2hbXzjSsZfC2goPGgGscrXUc+o7z7RXbT9/j5d//Fv/Tv/q7PHn7upbYHmMbutmCtp1hsuHy4cCHP73i6ndOcM7x1W/c5NrJAd/5px+zWQuQnfCk0Om9KRP6wKq0yFrDwcGK11/7Ardv36p7OSkj3dQ4mmpMTTER1RHdODkv8pTBUZolaHFutBFaJaY50VjL0dEB8+UC470wawpYFVNlwhTbjqRnRwHHs9Y7+4/SFC6SrFyPGmkwFBmbPNVUM5WfLWBjRMTZY0qYLGyc0jAxipOYmLBYlrOOGCNXF+dgDcuDQ373r/0+3/6dv0zrW9595y2+82d/xna75eLiEvHlDY/VLSC1ySQtE0uYcn5JnhJZX8rE4w/ff48bN27wzW9+k6effYZbN64zDAPDOEodGjOXYSdn4iim4Tev3eLs/JSzzSO8a1nMlsxmwgzGQ7CB9XhFnwexlHCmMkdTzsReAKfQb9heXfDo3j3xfczSestEhjgypIBrWpKVQQyiwmg0zmWZIqo5jzWWzskAljEJmcJZq3JEy3qzrlJOYXc7yT2MIWaZIF2mLbadeF8Nw/DYPXZNgzURYhYwzBj8zOtgmPKaasFjZPBZKqbhzrOcyyQ8kb/qQIYkAFpIocrwSIaIkCRcdiRlz/nFkscTm3/145cGntZXVxJqs4zNdFjCGBj7gdh0MoJXu5phDPSm5/LyQhbensGscw5vPMY/zijJOeNy6RBoLSbjD3SzSwembGx0n3kryZ5XRL1Q25MGbbnYkuCHMGqBo7RQpTKLsaRsdPFfkkPcWq9SFhC0XsCHKaHW3W6KdlsAEmO9JtSWfteT80AIkRQ7uq4lJkmsxnFgvVmzXl9hnKVTTay48FtJ0HOLMcgoypyrY/1iLhLFq37HwfExX/361/jJmz/Fv/MOm81aQDNN5CosZ434PRS5QAky2vWYHhlbplTgyQruea8UaeO1w6d6Wya2U+24aODCWoYQSdsdIYPxDYoQyaFWEnNr66TDCVQyCuybSnPPe+agSUEW+Z3HDeULc6sAgyUpbfUzy/MZ9kdCCwjniFGohCJfmLxBitYWA0PI5BTZXOlkBwX0ck4E5wSQciKnzEpD7tqOxlsW8xnOOi7PL8kBFu2cvh1xWRLRnLOYdxfGnY58z7HQM6msESmq9P4azbbKBjBGTCHlwpGCTKZ64olbPHH7Nr/5G7/BC88/z0wNag8PD9UTRpL1tm2ElRcjN2/coGkannrqGa7WV3zzW98ipExIjmurI7aXG568/SRf/fJX6JxjfbVm1/ccHh7y8isv8/zzL/Daa6+xXK3oZjMG2aDMZnOs88JEYU8GY9VQPpXCEoZxFKmJUnT7YaDVaY9DCfJBQDbXeoo3jHhKRMYopq8hBQxGJkFZR+dbrLE4G+VaxiQUc/VZSymz3WxpXMMzTz7Ni08/w7NPPIk3lvXlZZWILJcr4nbLkAq5p0QyPWyzE8Byr+8UU4Ys7AO0yz7twors8lgnbO9fXTEp1WskBZ9h6I0kxDnTj1FAqJzIztIuZ1IoWzhZJS6GzNZ4Ipace305ZQnGUIGnRJHhyv52iAGh9OoyUwNeR/waNFZLgmT1+40TE0uyMFsKkOW9dImjJkHGGIpd4TYE7K7no3v3uby4wi0OGHcj28sr2qslrm2JJkAL83mHbRyzw5n4fDhpZKSUSw6scQPpwudMzlHWgHE4fe0QBtbrK3769puEEHjjG9/AZQNxVD+IyasoBkl0o85kuP3007z0yst8/Wtf5yc/+BEfr9dY12KcrcMGjJoZk7Mk9ElYH7Jlp5HXzkqScHFxTsiB3W7HYjFnNptx7fiYy6sriTdI12q5XHKwOuBgdUAOkX6zlWTTOwEqnFCzSYnON9y6dZPnnnuWTGa724gBdhIWVhgLvXtkjLJvTDk7AQpTGAFEZs4RcyClyDhKbC6U/xAjZQplVrC1MFBEvg4xBwozqTSDvbLxaoOq3ZsuVSsgYeHY7MgRxvVV+QFZdVbOjjCmmuAH7fIKO3nKK0oxYnJW0Eu/yHvMSnDYeoYZdPIqEmfrGUh5D4CyLEX+EGpcjjESxrG+btQmnfIyCCHWiaSztmU+W+KdFMthFC+5mtQjYGgpUmHKd+pULgVSksbDMgjEWlevdRiHWtgUP5eg0sTtess4DOy2PRmZemas4+pyzTjs6HdbulbsC2IwehRZnA7XgOIjocW77oFhlKLWKjM9ZVN9PYsxPVmlsTY+5idjjFqopqR+oMK5yimx3ey0QWPFy03/bjQfEgzOqPRnkDVaCrtcWCBZJlMaU3OHMshA1urj13pfBm6h5g/W2D1MfiqIfeOY0eGCZRzHKvcsjIO2ber9cVrYpqTyDes0r801Ry/yu6i5mcPjGseXv/QlUoz8/IP3yWHE2RaIpDTgmxbnC/s/q1zLQFSYJQPO47KHHCBb2sUhzlvOr3Zshyj30DfcePJJjq8dE8aBzcU5YQxYOyeT6WKPbx3zxYzDo0MODg4ZxsT2oRaUCR2wkhnHxNXlPR6dZi4uB3y7IpuWmK1Mic55r9foZDqfE7PsnAXIKaBA1sFBKY7kMGjeayDIoA6sxgOTpRGgAHnWM41cj8Yai+pEKFeYbrIuLRCJE/ZcWFg5Sj6t+bdzJUqkWqCKv+IEtta4533NP4XlF8SXM0UlRAuYLGl3rKC8jT0mRJatwdvMo7OHxDFimJGsIw3iS4tKii3TIVmZOxpbkvXl44inrS2KAUPjHTkFrh49EulhiMquD3iv9YAzBBK7uKHNkS+8+iIvv/wSL7zwIk03ZzcEOidyJmuS4P7ZsNsmHj3s+eDdHdef3LKYt9x+ynJ43LDbBcYhaxqhk3KNx+DBCAMz58SYM4v5gldffZWbN2/W/VkYooVdWPZzBQ61YZGQA2limU/nBbrHCxNJrDKnumNfXpyyxCWrfsLFvFyPAzTzpDKia8bC3p/6Tq2tr1/WJ/lxoKos33IvjSw0DUMZsi2ENJ0eqhlIKPxm/UnN54RhOwHtbub49W9/m5deeIFrx9e4e/cuP/3pT5QoAGEU9lGpJfpxqFhASmL3Mn2g0iQv+ytwdXXFm2++yaNHjzg7O5NJnYeHdLMV1hp2/VZio7Uk5yAJOL9YzMneMVjIMRHGkc50eOuYtzNmTUfbtIReho8cLBfahEq0refs7BHe2jo0IKdEgR2H3Y5hu8MpQ7ucPQWYFQ9WZdoaKhCYyw0wUqdKY0MN1w17M4XKzwhrkExl7joroGHTNqpm0VWSM9mJVLcxBSvR2sK0ui5Unm3FKqgAkOLFZiDnqZ7UJpfxhjSMGHRCrIK0MqRJGLvFB21ayf/6xy8NPG3WMpXE6vhkYzxhGBkH6aRmq4h5TEQCfelAaFIvRb6hWS7l8Gx1xG2hc+fJ2KoCT0mYNykpOOEnNkpN/jQpaRunCV1Uo7A9jX4jnapht62vZYzRDoXFBq/afJEHgDrWG4NpTL1h5WZMnQxTF5EEBytmnxqIMzBcXhKVPZVzYj7OxBfLGsYwsN2uWW/WWO/IWfSxzawVdopzAkZZy27oCar5tcbSzTu8N1ztdiyPDvnSV7/CjT/6I7z3bNdbhn6sE3QKfTIj2vaYs/YNoY6fd8UIVg5zm5NoPYHICCS8AmPOtnW8ttHEqdzHsTDQTMkGxFNnCEEXcaPaZSpwAnKodm1bkXFJDB8HwyqNVddAiFGlTSDglJ8SPCsa85SifqVaBFlr9XpTO+/iRSUsm2EQGnbjJ0q+2bvVJiMyjxDY7bayvo36QGGI3mFSpOlmOG/rWunalq5pOFBJ28X5BcTMvJmzbQZMKqMvhemUkwSzbJTqGydE3NagUujdWRKdsjazmr/tBZEQRrabDTdv3OSb3/omf/fv/c954403KjDJ3r4rn1l+V4JaSYZyToQ4cvfufd786TscHxyyvdrw5M3bzJqWl55/gTCObLdbrt+4wRvfeIPlcsVqdaDyj0Rwds89rHgITHscFGxNSeiVwDgMDP3Adjd1pb2ChUaLyWygyZF5nuPUhLbEpUGN0ftegCvZW46ukT3mbBQIRQciJJvJFmKKbNc7vPU8fftJXnjmOV585lkchquLS8Z+R06R5XLJkDP9MIpsQUEaiV3qxdQHzeJ0AEPMVa6USru66nD04v8Fj1wiTmHiGSqImqJlDEYB40g/JnZjoE/ibdcuxJOjNZmTxcC6jzwKjj5atkPW5FrK3pCyTK1KSqw1JY9WoLf8mZWtlUsklJjorLDxstE9bwyNEzklCaKJjINM83SNIyYptC2WZLLIc4BdjKR+4M69hwz9BjdfEXcXXF2ds7ja0HYdqUvQGOYHLbZt6A5mpBwZ00AO4sNhVMUsoIa8U1KCJAentQ6bpWwIIbBZr3nrnbdx1vONX/2WsENHGUE/qpcCObPrZcLpjsByueSpJ5/gxRdf4mtf/gqffXyHjz/+SEBC54kKChilywgzIgqLpp5vCWMdbeuwORPjyOXVBRfrSzabDYvFnEXX0TjHvXv39Ew2NAo8LZdLFoslMUT67RY/a7He0Sw6chTWQU7i9Xfrxk2eeeZpsklsi0logsL2CENkjIGQk8jhravAUxhGkZ9pbHXeE5MVgFU7dF3byF4IVJapFUOFeq42jU6bG8SqXMONJDbqB1UexfukdKdjDLXoizlhUma73WKMYdYthPFrqJP0SgNr1PPRIABH8UzY93Ea986OlJKAbxp7jMry0OJ+ApWmyaslhqa9QrV4RxZgJ8Vpuqx4ZwqrxDhJaod+lLg1DsyajvlsgXctZKNgkOZYesFiSoxhrO+zDPWYiZeuTnIscjm5t97LiOrFQt53VKsBCvBireQx48h2q9N0dz3WOfGOMZarK2miXV2cc3x8yGK+ADUir0wjPZOFzaX7UOVtfS/veTZryEa8r4Sx1Grzt/hpFZ8YaQ6VdZBzBpvxKt8zRG0aXMn60fsr8iExZC/PFRD2/NCPmuPue0mqhNKGynIqQVhM1PfOzz1/usqmMALSl0mJqXj4ZWWTO+lwe++wg4Bzs67DN00FG+p5570CcFMuUuTxVSZY/9EQ9T63iBfq6198jRgD/9V/9V8o2J4gB1LMWDPHOwgq+JIhe0ZHmons1maRYKdkFHiSaX/nVz1NMxLiyHzecf32LSwRUuDTjz8U5jorBHT0zBczjk4OWS4PmM9WfPTRQ87PtpyfjcQIWJ1O2/c8fBRo7l3JGm2WZDw5Q1TgyWhRLffNiw1COcND1Hydeh1JmTwGlSarakKQApXHZawybiHzuMXDL7JPKOCQEXBb2IOG4n5UAKFsBNzUhY3Zk70K8FQYJ/q9csjrH8XrFgSgH4J4OxIRqbzuCWm2BmnmGotNA4w7VouOeWc5/+wB43bAuBXJtoR+ITG2abC+ETCuHPQU4CmTjQDtVgG7xVKa35mSGyaGXc/m9JQ4BuIwYmIUsK2V/YbNpNSz2XzC07du8trrX+Sll1/g2eef47LfsRsCvkvKqptYgv0uczoO/Py9HQfXtvzab3luLAwHRw0XFyO7rebLJujl9qAMUpnOahhSYj6f89JLL3P9+nX5XLrHY4jVa9bsA08UU2iqdIqcpfgu+VbSc1wL77LGygCsUtg7K19GWdVYV9mPgNpylN+ZQKxS++zXoNPSM49/b69WLTFKEy/19937bwTkMlnUPvmx3zUqF0vTMtCawxs31WnO0znHN7/5LbabNYeHB7z77rvcu3+fjPiUDX1PGEY2mw3DMHB6cU5KibZtGbVOKJ+leMoqZMMwyGCkt99+m3v37nH//n2++KUv8dwLnq6dY51jHGS4UuvcBDwZWMznGO/pTSZHObssmcZZAZ7ajs439KbHZFgtF3Rtp6xiy6wVkCqOQeJIbRhCv93Rb3c4p6b6WfLllMrlFQC5SlTVs6sAgKaANxqcJH4o21nhhEkKXvLtPQIEkksV4/ZJNq3nohf8ojSLW500HXQQiLXSpHRquSD5DLJGFPzMCnYVexeDePZhJGcdkwwN8bZYk/z/AXhazGYVrRvDyMXZBefnF1xeXrJcHNK1lsV8KVTaYaTCrxqIrWoZYxxFAxnkAjatfhCDsB6Gvv5sVtmFUaTV2QnFm6aeJO2QTMmhociPpvdvgG42fywxlLVtwaR6eLTdXHylvNPEWBMaRa2tTnSIdRFa2qaFJpO7jqjFbdFGurYDGyRh1U0WwoixsFwtgETrHTlGGUtpso6SVcBEP6O1hsYI5Z4cmXViDr4ZBnzXcOOJm/zab/w6GfiTf/LH3L37CYdHR1KQ50zMmT4lKX6aVg+sROPFbHYTNhhjBfjyjkxXF/o4ymjVYnZpssGlhG0aOYSsqYDhjAnkMBi8orOgvJ/9dVlp6HJYjiHpNBYBwTJl82knL+n0Le1cod1zQebBee2UpzLpyGgxEpUCrxs1RIh73Q1NUsZxnMAlLGHYkWKsco0Kpum6aNuWv/J7f5mnnnySb3zjDemQhciffe87/LM/++fcf/CQi9NLrE55Mm0r5tpn56wvrrj36T3xZBrG2lkrEr7WCiW37I2kBXlKexP69O9llLqwRYIUCEEYFIWlFVNkdXDAc198jb/61/4qf+vf/tu0szlvvfceXTfHec9sNqPQTcsHHQfpVozDQE6Zxjc4J+vENC0vvf4FmqYhNZ7bzz/H9Wefkv2dBdCzztI7xzDsODsdJpBZr30Jfu2swxuhnxZvhMvLSykgdR14J0nOfLHQfS8MhDSEOp7Ytw0ZI0AWBmv2R1NLYhk0iIZxxFsntP0kflVB/WNszoRx4P2P7vLWz97hzTffJOZEM+t490c/pfMNy8UMZy137txhs9kQYqJtWuZYxkEm/3kvsh1JWBKuaSneZwVhL34gZfJGVumEIsOy7mwBJCDFLMybLDIk6zJN9Q/JZA/GZlprIRouzrYsTINtjtkMOz78+D4L07AwHa2LHC88d+7tuBwS3kusNdW4NFO8o8rEDct0QJXGgjVqvq9rx6vUsyRCdXKHgV2/Y6fyYdm4ctDtRulCu07lr96T6Yk5sZh1OGu4d/8BMQ4kHNk6jHesLy+JceC5r77C7NqSu+GSYEZ2em1TTvWQdEbktynmvak8KuHJUpTHLMDb4sYJFsOf/+iHjGPk3/obf0jTtXRNy45RDN0Fc8aZhiTSd4YYOTu/4OaNm/zu7/4OP/nJj/npmz8Rv6ocaP1ENS8A3mMgMZl+6HEuc3S8wGQIu4HlasXB0SH9dsMw9Ny5c48UI8889TTXb9zgqaeeZhhGNustb/70Td7/2Xs8PDulsISNsk1iFEPoZ59+mhdfeJ4XX3mJ60/c4mpzxTCO+GzU+0q1/22LiRabE43z1ZeBnBnNqKFc/HbGFFWGMzGd4p5ktHSXy1kaFPwZVWK42w1qThzq5KgyCa3rGimmrHSNh6GvOYDxKmkfey0MFaC3koOEYaL7GwX4Sh4uE/jslD/sx/qUtIjQxtQYxMeoaX7Rz2AvcS+tqJpmKJgmjRpUhiBMpzJ5teQrQeUJnkb3uAw0OV4uOVgesFodaWEq8dMAw7AjpiiDSUyWZNB7nHfi/ZCkWRCjGHyDSHcxwv5p20bHwEORmpScyCjraBsTY5LzahgC3WxO0zR0szkpi6wxxYzM53RkI3I3q4b2YpoqNgNGjeKdtYwqL+pmsrbmi6WsD5WWSadXg6WVs9k5I8CfN8QYCCHhKKDLqECcAGdWQW8QmZH3tg6TMV7ilFf7hnpehgl4Ks0QV+RLU42HMRan68AYal5oyzvOU/1uFXzCyj6QzvXkNbo/AbhIAdtWmaEpVYZOyW9ARrGnJPFTpttRARNpRQUSkSFZbDbcunWDR0/eEja3FdZ6eX/9Zs3Qj8wXB7hGBuegvmBJC9cUkxToWT2rnLDzk830IbE5HfCXgabZMGsdjbcwu8Gsi/imNCRvkJLh0ZXl3mkkjOdsewihI3VzAWDUciM00kRws5aYRcIYdcpeckYODy2KsxFpeVaWLoB1vjLgAWUBCwPAYLBJr2eGlAzGO/xiVvPCAoDLenGEqFJ0Zd5LXS8AojNukmvFJFJ5I6tBvTKKJp3imShsNbnSJebWKVm6yGRN6RtR4CPGSAqhMkFzDGST8UYLyMZgQoB+zdxmDuaGv/93/pBfeePLPHpwj816wycf3eP09Jy33vuAzXbL5dWa7e5C8lGN1UVCKqbgKCvYYrNjmRY0qakAatN47NLy3MGS5XzB0cEBrVMmig5acEZkPMvDb/Pcc8/xrW/8Gi+8/BIj0hQXgYvUDfNOGrXCCPcYO+PTj0esu+SVLzlObni+/s3bXLu+5p//8WdITW0waN7CIPhZWkrMaBzdrOXo6JD5fF7PoxLzq2JC92IZGJG1HigTXVMZGZ8LI6kU3LZG/XI+9ttE4xy3bt7k+PBQwPcggLUrQGO9tVkdQqbnkXXwF4NOn//viVRhp98u2EUttcpJrN/S5plN2ijx2mBIUQdhOF2YUl8UZMSIRk+aN2FUZlvm9S9/hZtPPEE3m/Pxxx/x1ttvcTo8YtevWaxWLI2AMeM4Mo4jTdtyfHIigG3KtbYR37SI1WFIXdcxhsCdTz9hvd3w5ttv8ZUvfZnr129y84knBGjJgTCO9LvAcrVktVry4PyU04cPpbZOImtsnOfa4THLbo4Fhu2Wq/Nz7udM13UsVyuW8xmHB0v9WnF5dVVroJQSDx88YHlwKOvbOJq92D3dOIkMY0qlQ6DxlJp/ZNSTWskx1Q1bQc4y9R6SWHMgTc96z8uZqH7CKr6apJf1rNKVque6NBZkKFa7d84XBU3WQliY6kKIIct5YY2VOGmdWhiI3ULJY3+Zxy8NPAngQqV+S9drYBzE0NMYS9eKBnQsvkhaPOm5oLKXJFryrN2sttwj9T8g443B4WpimEELm4khg5Uuew7KlIrTxnPG6ebVAKRvoNKn924EpsjHMpRurJ3GRQt9U5KeIsWythibTRRKozdaAojIokSWqG7wqo2vvgtG5AppPle5jCa32pVFCyYB+3TNGqGMikWWvKeQIk3XMJ8veO6F51lfrfkf/9k/Y+hlqoyj1H9K6St0zyjJWeOU+6TFb536Uj/XtABdK0muaOakW2MLfXkPKJroqUaoefoIiPlhNZdVBg8payI+yihz64hZGGJWL6wKfQhZ5BQTSjxJkIrcKCroJIbkAtY4p6ySVDrEE425dMSKqalQYCGNCvRo5DZ13WRlFsz50hdf59VXXuX3f//3BT0OgSGNvPvBu5ydnjH2PbO5rI9iPl8muYxqFptypmk69eEo70ETf6uMnVL46NoxGfFbSEWCYMhOGYQpqq+RBIOUIrthoGtbnn32GV75whf4yte+zrsfvM/D0zMWiyjgEY+zCXPO9LuecRjYbnekFJmpme1iPqftOo6vH+hkocDi6EBZbRNTbBhGzi8utZvfUw9UDZ4pJ7z3AhhZ+T0h2UR2/Y7NZlP32WK2wDiLb4WhmJHkK6SIJWNtxtNMIKXSYMn7+93Ue5hilC6eLYZ6GkO0y5NS4uGjh9y//4CHDx8wBmFLDNsdQ5kcGAOXl5dY57h16wmscXibiSZSptHJpM2AjBuWpNOkPfNL7UoYBXZEJzBdKuP2EhFdq+wBP/vUsQwqL5OujSGz2yR2O8i2YzcO3H1wxVG7JLctzjTMWxjDmn4IONdVoA8D2ZSuLVWSbLOsP7Fg0WREGwJGk3VbOjoh1Niil1/AwpRwjRMwyxoFKGQAg1MfjEJFLnHUmMzV5RpIUlA3sm7GcSRdjnSN52Ax58HmikBkzJOfXFRw2XrQZn09C6zuN5OmmGsMNMs5JsGnd+9y/fiEfuixjcM3DhMCMSdsttq3EOPNRCJlmUa5WCx48YUXOD4+wjeeEGVteWXTluvkrGUf7Mg5M4aMddBp4UlKzJdzjo6POIuBod+xXq9JMfLcs89yeHRE182w1jGMgfXFAzHE7FqR4VXgcmKyXLt2zKuvvsLJzet0izkXm6s6pdbk/Ji02+IkObV2eq6y5spZJdgq3qLdallDnweeStGMpca1cv+Fji9y/XLzys8bGi3ItSunzytycjlnSvevsEBK8VZYr6nQ5a2ReGMnyXJ5f/uPIoUsIGzOIm9yKm+qP1cApzzxR+U5s8Zn6YhOPy+s2qBFcoy57rtyjaS21WEW1rJYLJnN5rRNVxnUpRkHlpyjMnelgCh5jEhnijl5rEBH44qEUYBE8UKCwggvQ0bkS/eqhpwMNG1bR2aT5P5jrI7hFpm5U59LayEHBdm1yLNWEl+rZt1WWQFNo+OvlVVW8p4Cy5ZusFXERC59wthUY41Mv9VhHkbZhVl8rJyb8pY6DdlanJ4z+6x2SWUmP6a6pnRF7jMWSoeZKVpPAGQ5fijs6dKwm87bEgNsjQdMuZKuI2MkB09Z5ThM7IySLFpT3Dm1C0+sDYHlcsHBaolvXJWw55QxKQkT0yaWi5WABXUdqgaKvgABAABJREFU6/moz5Z0Acjlb8A6LYhGtruMMRFrE4t5y6xr6LoFzhtsu9PruGK3jazXI5urkc1aphgaKxJsay00wgwx2WAaaTDkGJVpKsCT1a5+CdgZUwfIlDdfZDsmi6JAgCej4A9qTWCqz44xHudn2uQcKQ6nJQ6Wc7tGiZrzozmvJRelR/l+Oad1f4h8pjyJFmt6A0tt8liTU+Nj2Xwlx6uHm2QrskY0HlhnMDFDGGhaw8I7vvqlV/m93/1LrC/P2V5d8c5PfsZndz/DmS1n5+c8eJi5uExsNiOhxGRl7sQsciDvDNZlnMss55m20XzJGLpOWOQHywOOj4+5deMms7al9Z6h35GSuF+1Xcv1J2/y/PMv8s1v/Rq2bSvoBGXdmzpsCgV1jHFcnEWs33F1OXJ4zfL0cweE0WLdPWES7RfaeQLsBKx2NG3DQiepT7E4131c6jjZf1rT6CWW88xQ3unjJ0VZhxqiSjGPfI5rx9dYLpePxYPymqneR3kUC5r0+Av8hY/P5+vle78AAFQAau9n65qSz2ZLjS6LTgggRpqmE+hEvR8gTLHC2LXGcP3GTeaLBeMw4puGu/fust1sWK/XdN0c7x3b7Q5re2KUKa+2dXWITHnXIQQxG9A91bQtwzCw2W7ZbLf4+/c5Ob4GOXPz1k2sbcQiIwb6XgYaNd4xDD3r9VX1gkbP7sVsIYSRLBL5od9xeQXD0HFwsBIJobU62bawH+V8SWTW6zWb9VrevzHyp/58vR8lR0pSPVpj9LKVmK61OeoNqN9NKe0NJtCoUBfOL+YoQsTJ09lk9r7KqbnXUKtnk7WSp7kp/6xTFbX+jGOoeQZkcpjUPWLjYhF+mjZP/38NPP38459LjZOkYzmEkePjazz55FMcHR7Rda0cc0ko4lJoRtquYzZrtMiOkuyhEgyg7/v6ocUDYOo8CgPFPBYkpLs1Tom6BvWazCIGo96WYGLrNIgazPcvgG9Es6pPVcw060hLTfqzBl7rHG3X1sO3hB9jLb5rsY3Hh5ary0vCGKXIUANA5yxt15H7TB77ikquDpZ0Xcd2u8NkSZiCos6FOj3XYOm1QzeOA85butkMg6XvR77+9a/x5dde4+4nd/jB93/Ad7/7XXYpcfPmLdBEYjcM9ONAY9D7NAozhUyMA5fnG3zb0rYdpu1wzk/yqHKNNQEvAFodb6zgCmjwzJntOKp/jiXkpNROuQ9WgcGirc4ZjPpj1CkLezKH8rApqclteqz7F1OZnlJiqiRemUiMcmjU++umrpOAfOoJZoQlRTbYnHnphRf5e3//f0GMke12I1MLU+K5557j5PoJ3/zVb3FwcMh8vhS2lnP87u/8LjdPbvB//4//Y77/gx/w7LPPAYYffP8H7PqdTjiTwNK2nU6s0UNSGTrDMEoiUyiSo05vKsiMAZBpKrteOtiYyRz3b/7hH/Lcc88SQuDevfv85//Ff8mXv/pV/r1//9/n6Wee5e6DBxjrOTg8lk6VEW8JeRrpOPqmE4DOebJ6m6WcCTmzHUaStTSFTZTh7PyCEIMYdJeWLbKHvGtoG5lU47wjDKPKNXeMo9BwnXMMrWcYevphYL3Z0I8jbdOQjWHT76RLHn099J1SQQtIVzwwoh6EOC8FjhH2UwN0J9KlSyExjIGxD3W9lHG5y05G8H7yySfcf3Cf2WrO7vSMe5/dE0O+EElGWDOmk67v5fqKBIwFILSJmEZiyNUnzZjCANIPYKgdqhQGOfAbLyygfqjFXyrFBXavS2pV+iBgUIkVqR8xBBorSXduLL013Fsnfv7pOX/03Te5vlpy63DJC8/d5tq1Jc3PR0wcsWaOYTLZfCy9MgqOKXXRqlxQEBQIutswGYtM0bCNStlirgll650WK/r0WXxT2rbDOiOeDGRyHImxJ8Qdu0HMpgM9q9WC5194hmG7Y3t5xYfv/5wHd+/zwU/eZnFnxeqLT+KbhnvjJSYZXJTOjGkaMUk1ethi8HKokQYBa5231TDWqEHaZthxfnnBRx9+xI1bN7n51G0xlQ5R450RNqi1dN5BErZc6y2L7oCTk2vcvHGTy0thxc2XMv47RvH7SGEUX589WrtMBss8fPgA7z1dO+P84oyrzRWL+ZyDo0NyEPZmCInPPrvLh5/+N1xdXVVmXjebi1TcildUjonzz+5zcnKNN37z2/y1P/h9/vBv/U2ihU8e3WO3vRKmZC/xODlh69kU6xSXnYaeoWlr0htTEjaZF5ZNH4YaZ9FilQJg6R6dRizL98dxFN+LCmjtAZ4WZbhITBlGMdUUMC8Sg+y3bJNKCMQY3xrxqCqTccvDaXFrvCTWjX7OfV+fAlKV91m64ovZHO8crZtSp2IK6pwj6/UymhMUAGEcR0b9vHJVDBiLb1plSI8V7Fksl4Ca+UcZDd52LScnJ5UlltQaQPFh+n4gRp2whYFo6MNWQK1ioqzyxsViLsxC9XVy1tPOZIJUHCX+tY0079rGE2MmhoxTieWNG9elWeLVpDQEjHUcHR1xdHRUGwXF6waEzZ4NzBZLioeSAECOrgKPsmbEmEGgxKgGtdIwKnJekVWWR4iBIfQVjOqaFu8cu51MbhPmneSaxWzc6bmwP2nRGMtitpzickVXqDmDKZUpU+OqshaNMp20mWagjpsWeWWgWEAU4NYY6ebXtVlfQwHocYRMnQoVQ66STF8KV2Xh18KzB2zGeGqX3XivfnYJZw1PPHED5x0XF2LSPux2YubcWGbO4Mist2thrXVHDDlDFBaEm3lpOMdcPbNQhpuf+XpuZDcjmoZtgDxELu9ugUjTBQWZExhPs/RkI+djtmJw3o9qDt04mVG6G1Rya6FzpHo0TSAhaN7iPGONzQLySnyRWA8Zi5PpVSlWI96mm4P3xNSQo3hNlSbsGCKEQimYmgSlgSAFrEjbS5xyjXrhUDhRYLPD4fSchJzFxzDHVNPRGGXfUxg3BUC1xbZhOpNL3lKUB0W2Lw1AYTxC1M+aiMbQHR8zOzri2zduE8fAX/n9v8o4BHb9wHq9Zrvbst3saoMIjDSxrK1TuKwxzGYtjZemqnWW+WKO0yE9znllhZbCN2pzTZoCMmmsxTcNyRpCSnidiGlEl0jbtDo0JWFcwnWZRw8uOH2UePuHS9LQ8ZVfuc3R0SX/1X/yvtaGg2RGxmJsgzGOECQvv3n9Brdv3uLWrVssV0sB05yAGl3XyT5UoG//kXImx9IYhDLNNyW1kFFIFpBGnTE4J+zco+Mjnn/+Bf76X//rPPPss+QocXTWdRhMZVWVqCI1aPlG+Q7soT718RfVsxq6/pUPqZmn5/EUdgvqyzWK37b1mvcbhiQNPDwqdZbGJkb9fTJYL7Flvd2SUuaJp5/h5hNP8Bu/+Zt8//v/knfefod3332Xs7MzDg6OWCwih4fCwt0NW1EKaZMSpIFkjaHpZpI7NJbGdawapxhu5oc/+j5vv/VT7j64z62bt3jj62+oqiqwG3Zcba+4uDzn/OJMGjxGfJHmiwXXb9ykm83Z7nZynpI4Oz+T8/dgydXlFT/84Q+4e/ce9+99RkqJxhmCMuHOLy44Pz+XRpOVIRnOqsm9ggkymVh9+Iyh8U3NLySnmCyIirfW5G2lLDzkjEg51bOh+EqFUa6RcTr92aSqUvLqH5YVKLfZU7XtRu651fcXkkzbacv6j6q+yeCbDmNAs3VkvkaJudTYm3MUGfi/Zu3tP35p4KkWnWU8MdA2wrSp5p/lSRUcKSg5VhzSTaUiTk79UeVCQnH+nORgD5EtTIRy6NZO1R6il3VjyXNnDfhKVctF0jI9b/n5ifZGXRgFIhaZizqWlI6XtTLKujyS3MwiCcNQk1ZbA7aipnudvJzFb2mi6BV6XXrsM+mbxlCmppQJMNLFN+rFsprPaZZLXn71FXa7HT/+8Q+FqRKjHH1GKLlxGLA2V4TbOMts1kly5EMthGORDBZZ4+eAp/pVjlZb2E5gjJuaMWgRWy+ZHsNpWr01vGpuUCiHBeD7BfRfwaJ9/C+pB9Zji9/k+h7243ZBgAtyX1MDBSqNMXSzjpOTE77yla+Sc2Sz3chhnAV4Oj4+5vaTT9K2LcMQpehxjuNrJ7z00st84QtfYBgGnn32eWKMfPzRR1xdXdH3O+kiOleTlpTVVyUXn5AynVE/jaF2KYpk0agB/GwmU0SMMVw7OeHo6JgvfumLvPjCiwzjyPUbd3nrZz/jpVde5rnnXmC2WIgnTdbiQ8uDAgAK28XiXJ4KRiehp3ROS5JUft4aoeGPo5gDy5QmWwsj6ZoK2867huwmUKPIb4S5IN5hwzBIMcmU/JV1YHJmP+k3GkjL3oQiy1QAATS5lDzcek9OmSHIONEU1MtEu2RGuzspRk4fnXK1vmJ5sGLX99hTS8gjYxwVOC5y0qzTMacUQXDxPD13+ZcSOwzT9YH6b/+qhCLv/0VjosFM2v39JZ811BjoSQQyIzDmzBAjQxoZ8ggui/FnTZHlTeW8t1/M/p9TbKQuTTPp0ot3VdnzRgzDjVHmB1lj4p6kM9mpS2sUqsgKGpsELhPyKJ+pNbiZo120+MbStY67n3VgDZsLmQxyFJ7ENBaHynz1dYSZGfcmwOg9ylKcZC0qCjgljIDimRPYbDcM40CRbeRU2BVTl9Y5eY0+BNpWEuvVwSHXTq6x3Q7C+tO1kFOqkiu0WDg+OqKbzcCJvGG72+GbRozrkzQkurZl1nVwKFKtfhgYx8D5dk2IZfKreDHF6g8nxcusbbl+fI1Xv/Aqzzz7DNeun/Dw4ozddl091UyKUmDp3U56zuyD/MGEae9laRSYbDBZQKgCrkusKIWRrfu9PHkd/azfkoagssD0BpX1Us/oshiVpcZeYVdWZGEk5ZSkewc1PjjrpPGwx3Z5TF5Xtlnee6/6+965CTgon0/Pr1Ir1KK0fhVGX6ys3KRxfIoKcooKu09927QAsQrSeC+yh4l+v5cj6PsrbF0BIiS/iPrz5b05v8fycQ7v/MS603diFcQppt0FXANhkXhjdBoRxLQThkIjAx2m6VAZiuxac0YBuwropaC6LoAaA/XaVyZAVrP1AjxRQHj52TLUxlojIs9c8oiswJOe8Xvg5wQKWo1bFpOprC+j+Zwx8jxS3LsKFoD6eOg1Lfe53PtJvjPZEJTrYB8PnjVjKUwXqyxnaXymveQeYGII6umoPiLTc2QFvUyWBkfSJNIYMcqNcWS+6Dg5OebmjUNOT0+5e/8uzoDNiTQOGDKtE/laykFyjSxxocq76gIXDx1pQEr3W/JAAaMkj4NhlIIpG2XRpFzzT/lwCWOmiW9yz+z+JqnXeY+AUA5avRoCwJiyp3JpXE6emQIQ5nqtZG8I+w5riXlajfKKEwuuDpTdrw/KWt1LMGtck80o+8oUBiZUAonJ9bwkT7WK3OqSKzzOtp9exjz2LuXPPF2jUpTmSFDGr9wW2Xur2QoDHOcTBUanSd/b7a565Zazqcjpja7ZVn2bCujVzWcqV7N6fpj6eTBTjWAQr7CUs3p76n7ClL9qIC1MVMkfMHIOpxg4vT9ydiPy5a91XLs+cnTckXPi4nzQmq3kUabmSTI9ecF8Psf7ZgKBrcjJ9wHg6UaWe5j37u70Pb1zU82q/yPj52VFOmeZzWbCsCkfreRQJeeq/72fdhXWXD3xHov1j72bvbN4fz18PoX7hY9npjWUjDL/jCaOe+dYLtfB6rMm6lkmscaSo/gWZ2Nou47GL+nalkePHjEOI5eXV6Lq0DohxoQLlkxkrADl5MWbFMDVLSgv7X1VgGzWa7ZsuHv3LjnD2fkZ1pZ4I952sZwd5ZOUc69pwEA/SA2AtYQYIcpE2BACrYKRs65j6HuGONTnCGOoFjS27LW9dSyG4rnGo/17tO8hWfOPvZu0f44YI/l9tWOQw+qxdWeNFQb/3msUzKL8mWtsyXpfp1o919csOV/xLGM6JzWu2Ly3JiVQaxPdTO/vl3j80sDT9Zu3hPWx2+nEK6FZZzJjDGpGpR9Og1HjrCCaV5fMZjOarlMmT6LvdzVh6NqWdjYXurfzkyxKP0bWQ1hkfjLJAQ2eWSuHVLqnzjHlsnvk9pwroyMriCMJkqCORSpWHnWCjxNJmSugk4FxnCYVGCNobEyR3XbLMA6M4yh+Gf3A3MjnWs4WGGNkap71tLM58eyC7W6kHwOuicScIUbGcawJUvFpyFnc/7uu02vkCOq15bWLPA4jjff8zf/Z3+K3fuu3eOvNn/L+++/x2Sd3MEaSqr4f6AftDnrLs888y2Kx4OBgSdO0zBdLHj58yGeffsbp6RlXmw3z5aoySVLOjGOgmDmWgsQ4SSJ818hdU+qfcw0pRsIYaZxs2uKJMPaCpPs9GWfZCSkZTc7lebxva/IeoxqkN04m1SgjjThNE/LO0vjSWcoVLU5BusW7vscYi/c6/j3nClpst2sa3/Dy61/hK1//On/pt35bGAMmUXTdSaWRl7uetN1KwquHe9PNeeGVL/C/+w/+9+QcaZqWi4sLXnzxee7evcuHH37IbDbj4OCAH/7wh7z73ntcXlwyDmNNZpxr8LZh1sww6oN2cXEho4iR5Mk3DcfHx3zpS6/jXUvjG37/D/6Ab37zW7zw0ousDg5kPPM48jf+9r+jrJKWEDNDH2oCm61cv82eyV/btszm81qcGSfFXKv0dmctrXa0Gh3pPcgYKyyi+13Ol+Qs8pkcIQ+BnJ1M6QvSwW5dQ8qRYRwZhkTKkyTGOktrWzG1tw5rpZuaYsC7SRoCmvjVczELo2oIDJuetmloXaPsDyoQlA1EMqNOmskx0DjRLo/DwOXlFf/yz/8lp+cXfPErX+Ps0SOuHV3jow8/4LNPP6F4iISdHEjBCMDcttIlCIp0lQOhAByU96r5WU1G9xJluQ/7h4Z+ziTrPIwjLmVa38lBJ7xk6Ugbj6Ncn8zV+Ig2WNqZ5/atQ379jRdYzjtWy46DriOnQMyGnJ3KZIRVUZgi+wwQjMEkAfwtZeTrXvGlMTLGQMhybS0yXcfoXiyHrXfqmaIF4hAGYhZQzDZihmtXBp88m36DdYabt6/Tdi2P4hVHizk3b1znswfHnF5dsDtbE3YBfzrioufG4RHbYeB8eyn31TmisSo+2SsUlGUqXuOWiIzbbpoZzhsGZKRyP+wYQwCr8rcQcZ2XQQU2km3CO0s/Dlytz2n8Me3smNdfe53L0wv+k//0P+X+xV36XsaJjzo9LqfEjZu3uH79Bv/u3/07vP7666ScuFqv+fMffB/rLNeuX+Ps7JyHDx8RBhmD625ntusNf/qn/wO7occt5jKQYj6jVeDpYnPJMPTE3Y6D5ZK/9O1v87U3foW/97/5+1xs1nzn+98TNm3bSHEJ2LbBWIdvxdcxpanbVtZmmcxXivj5fE7QsytnSLqGJK6CtZ5Zt5gaMrpOgg5RMCC+Zdbinfh7lDNw1JxBCvdM084QNsgAVs4xqw0ZkmQNhSU99oOeGyJD8V46e04TWJjAhiLTk/eorAOsetqZum6B2vhB8xPZwpO/z34hkjVvGcex5klCaBAvxJTK9DyZid40MlErJDECXa0WzGadDD7JqCQasHIOGhCwUmNFMUG3pqFBk+skTbBSPBaoy3nPfDYnhMi4k4mWkutLktrvRmLMDGOiH3odKCLXYTabKXglfikGkTtbh0jIgDhKTCss9UZlpuW9xiixP+nnrslvFr8vW2sgLUJLcm5KXAoq10RzMthue30eSaZTFoBtNW8lD21nkntmlWLZyRPUqrRYQEoFjoqMsFzfPMnpTMlX9uL21LycCgtJ8gt6Ih5O2LJ+1Ag75sruK8Nukjbsprg6MfJrjV+ErYLRVbNsk2UdjDFw0Mh58+DBPR4+usfRtTlf+/pX+ff+t/8B/+gf/df8n//D/xMXFxdsN+es1+c0TcvXvvGrJAw/++AOOWY6DDHPSLnDGY9xhQVmiahFgCu9VYt1GUwQxpl31QNWpgyXQiiKRCYZwOO7Ts8JNZFhwNkW72aV3VgAVKvnq1WzY4krCUvEMpBylJyqoG8piYxdm7/WyFAkkpyvvjEC+FM8Fn0FUGQylIKQRo6Awt6UeBzqhzcNGJOVPZghRIzzeNuS00iKAwXYj7l4gU3DAfYBpfJ4bE0hoKdpiquZyHJzzGQXsRiaJDl19C1DyNgQGcZI7AeSawDxYzQZchxrg9l1M+aLJctrZb1NuYes5UnamfcAukxmqz6ku92W0mgsBtsVpHIC+lkEhDeNAFkOyCPi86P136gDN2QdRWDEGGFzv/vmJePO8Xu/b3ny6RV/+X/yEu+8eZ9//qfvY22maYU5ljNgI65tuHnjBjdv3OT4+BhjLcMw1HPi5PoJt27dkjjQ9/Vs2GfKxqQsOj0DpqCArhFT7RJCDISQ6Yc1n3zyCd/77vcYh5EXX3xBnBSSNuOYplJTMNb9ZgcFGEAD819c2Fd5NNRGcqlz81/4G/tgpZnubaNTy4wMK6jgHFPT2bmJWFGGDjnvFPyY2J27QQYBPf3sczz11DM8//yLPLj/gH/0j/5bHj16xPn5BW035+BgyWazYbPZ1JqkTCvd9T1jGNnstrLWFKPLCdx8Rk6R9z54j08+/ZSzh6c89fTTfO1Xvg76fptuxmy50rxWvF/HmBhzJPRb0nZNItEu5+zGgRgC55eXLBcL/s6/+3f55M4dvvud7/DDH/6An/z4xwLaes8QgjT8wkiDyNYFO5cGhbEOUsRqIynnrB6f07lQ1BqTvLs0aybw2GDkuZCzvtQQ5Zy3xuKNAy8qiJLDFFyoeFUnZUSlXFaToR8HIa5osyBGaQCkbHC+0amDgr0UKWCIMvW16Rr1xtOG417O88s8fmngqZvNRGKnoEhxZA8x4mLc+0l1869Q6P6/5Kl7qmixtRNrwWKrPM5op6gkZ+SsB5Yk6qkATiB/7qGIYLBuz++h+lvsbcE9pLd+31CpbvtoL3s/V8E19tBF/TcJNjI2EqieVMLC0sKzvifPbDYnrqJSvvXAMSVZlVcXDwpX0cmohafoOiGFRK8jtr0WV7dv3mB1cMgrr75KJvPw/gN84zk4OKhspZMbN1gdrHjmmWdZLOYslwsBnuZzTs/OeHD/AR/fucPDh4+4//ChGodOXWxB9VO9j0YPzVA+u6LAJPUoSrGqJ6qWe+/zySGY9b5M66EE9DKC2yCMgpJc5aKry5PkQRBZKwVBMSa3yr7Qz1CMIK1x9Z6W8fMnxyccHh3x9Tfe4LXXXtcxw/4x3W1MQZlZlDSFZLQQsOCMYbZaVp26azxf+vKXefKpp3jyqado25bFYsF2u2W72ZBv31Iw1NH3A598+ik5yyS3UoC13uPmc7pZy2zW8eJLL3Hjxg2+9KUv4l2Dsw2vvvoat594EuMc/ThKh79pOTy+RhhHdrtBAV8ZAZ9ywlkev6+oF9U4KDpS9pLuGw2UxhrG5PWgEsPdloxhYgXElBn6oQKUmYwPgUjUBH7qPKY9gCOqnBKodG/pmu35XuzJFspGLQzIYsofU2LMiAwnyB6qrCh9bfH9tFjXVDPMGCJD37PZbGWK3nzB4dExx186YNZ6Wm85O3vE0PfMZjOc87StFHCb9Y5U1n9h0WRlIJRQabRnUZKWUvGVa1tjj/qreQE4CkOvTN+pHfFUuomKZJV1L1FW4k8ILBrH87ev4b0As51ryEk8VET6VN6v7iOzl7ro2ijfKbuhNAis/mxGgEqJCXJHrCsMCtnzRtrrstZsFPDRDCSTiDZCY8Q+xHgaLLEJ0lntPMmJ/K3zljF3tPOOg2uHnK4Hwhi5eHBOO4747hCfxWPBlW6exm2r9z8V6YXTUeeFTm+EwWSz1ThhamdX/s0qs5d6D0hGTDZjVFBRgM6j42OeePIJmsZr9y1hjWM2nz020Wyz3bLeiIfBtZMTfNvx7LPPkcm0nUjCu27G2aNT1ldXnN17yOXFpd4nlScW4CGNJAImZ7q2lVhx/Tq/8qvf4KUvvMLiYMUuBdxGR9WX+2cmAm9Q6VtJjgA1w041+ZZYW6jjeh6Y4okjbCvn7JRgAaaAmHmaBEfxM0phks+WM7esNA2+UpAXxqvR9Sr/VvqCjxdvpt7PIsst53dZ2PvgqnzJmp+6lcLeLCBTbZIwga41vTATozsreBDKe9Y/g57DFWBIUywMMYqXjBYTTSNSwBgDZCOASel0Ft+pIvWyVqdPTRNyvPekZGtDb8psJi8sprdO4YsIIBaIUUyGa7KsTahyTw3UPRFTqlOG9sueCsPtJdblzPn/0Panz5Yt23Uf9svM1ezu9OdUX7fvX98DJASCIuggBRE0TUkOybLksCw7wtS/xNAXhyU5FFZYNGXJgpoI0wQeHkDg9e/2/a329Ltba2XjD3Nm7l0XEPH0wftFvapbdc4+e62VOXPOMcccw1qDWHrnWC4jAmI1L0V8jh065fJsrkdmsek1pkr+1mZGElgVW7dbQvKQthL/TZgDZSylzCb6l79yrrrdIPgyg05yUMo6zDppaPG+XVM+A1qxYVWVNNXkMzCP58uaD8oKEyFyER7P/xOALHG1uOR6cYmtDJPZhLt37/D662/wGz/4TZ48eczV1SXJVrSjMd/+3nfpfcC6hrOzcz7//AE0DmsaXX+6lrbYrPLzy4UU1kJmkGHka4DiKigjxhZMJEVfDNVkb8uzefb+5jN+8wySPugYU2F35jFPg5w1cg9U527I+j96bjqrZ2Yis84l38z595eeeb6+HL/0AW6lIpvnb+3mXpUCU5Nhu7lX+X037ISttUQGIDIzv9wkctzIObgmqCU/9wru9l1Hv+6oxlWRwsgLSo59WyY0spFIZn/nDyPaiLb8Vf6ZeQ1n1/NyF4LmKPl/SfLkzGCFhIn5l5i6xBAZ+oGzi3Ourq83cT9tarD5VcfF2YrL84Gqdty7v8/Z05UAhGTGoTaboycRGI9GtKNWmmlbaY0xhnt373F5ccloNGK5WsmouMawf2lBne95DoJfevYhJtarNZ99+il37tx5ZrSufF8+SvIay+CAefa90jM/gZKP6Vdp7fiXsE624smXa+DypmaTNxt9X01Ny7RDilHd2ygNjBSj1mHyeUWvWNaI6MEpo6eqODo+oWlaXnvtdU5PT/n888/puzWr1TV1XTMajUoO4dTl3XtpEbZtXkdRGlEhMBiIweCVCX56ekpV13z++ecc37pBNaqxOkppShySM+pqPqdW4woBhGJxz3WuoqoaJtMpo7EYaFijebnGYpm8EoF0q2sun115b2a38fyUivhAyvHyWX3J7X9zmU3Lhulty5LJ93rr/GWDowDlfSsnesgilRKJRlmrRoyYMNpANjlnktXjVNYn601bk/MMZfJauTZTThezlQD91a9fG3iazWaiu7JeiY5JUFHf4DEmUcWqJJY+hnJYlgQdysPKLg2SyGwcRqw1qpIuNyKGXpDT5aokYc4KmyXEiNdEbvugFo0b0ZTptUPXtm1JZPOD2XRwQY+tDVgCqgG0oZXFJF3XiNifbyvYZ/R3GAbW67WAQMoKy4sjqKir7weZg65rjk9ucHx8QtevZESiiHlbLSTAGBU0V2eVdSfAzmg0Ei2SITFfLLi6vpTrsNC0LeO25fd+//f51S9/yYcffMDOzoyXX3qRndmMnemMv/E3f5cXXnqJk5MTsbBUUXXnXLmWn/7kJ7z//vv843/8j3n//Q/ERQiDcTKrGnzQJMgIaOQTi6tLUorPdGDzhgjKNvJexvn29w+KqGkIoreTGSI1WdROnkntNp3Svu9Z+zXRR6KPQn9OSbvnwlzZTiQNzwp4Olext7dfAAgpuiPduiPGxPe++xu8+uqr/J//o/+Iw8Mj+hDoQhC1qBSVvqlrQ1qUZJZXSp4uBtZDT6wMbWWpgWY65u/+vb9XDpwc6w/299jdmfLyCy+wt7tL1Yx58PAh//F//B9zfn7O2dkZzokmxcHBHtPplFt3bnPnzh3+D//hf8jtO7d56aWXMDhSskXD67MHX7Dq1uzt74tgfiWA1vXlNZXa2a9Xa/zgcZU8w7ZtC+gUvGcVdc1vAbvtaKRjb5a6ESevlpZR5WhnE0ZMhHafkgBdfc/55cWmyFD3g7qttmJDKuKCKYIPGXiS8i4Gg7UB1yRxO1G2gveD7LHKqYi+KQdEjDIrH0OgW4nQfkji+NS0I9mXbS1U0srRVhVtVdM6RwVcnp6znC9YrtZcL1Zcp0u+8cYb/Gt/83f48Z//Cb/8xU/50z/+Q548fsTd+88xnc44PrrFo8dP+ZM/+XMd8xINE2MM0RqNE6kkHDmJKsVeVcnBrhbQW/4YtKOWyc6M5WqljEPRS4jJS7dYba6tM2KDaw19koMf12JMTX+94GjH8cZbL7JYr1isliRGdIOM4PZDV4AneeWkNhfFCqDrP2d3F+GFiJNVFpluW3W8JJWCq5zJTg7OkAKRyMquCMmzjmsBSpsK0zqq1tI0DdZZ2jiWWFNV9MPA9fU1IfY4Gxgf7HBvPGF53XN1esGHP32Xyd6UF0ZvMZpWpNmM0A34PrtWGpyOF/ZDL3oVbVtEtfMtsFbG9bIuTNu0ogcI1HXNeDxm7Ttl9kj+FtX5pG0bqtoRDdy5d5cUItPZRAoH52hHI05u3KAbBuaLJav5nPOLT/jRn/4ppxcX/M7v/A77+wd869vfZbVe8vjJAw4OD2mall/94hd82nX87Be/4OmTp0ymUyZtS5eU/THIiJ7ve3b2djg6OOQf/aN/xCuvvMKLr78KFlahpxmPxFY6qgOYEaW5PqqmznpF27RM27boC86vrhj6AVvJPutV+2no1gIuOotTbY28UJqmUsH4CmsCKUb6YSgglrjFZQ2QQNO0jEbCcBBtKQGhK+MwMbHu1bmujJhKwWliUmakLeOnxURC2cPbuYhzMo4Xotcx4VA0nba7keWlRVwWBjcqkL0BhvTQ0Rxs8AM+eAYFFnOeEGOk98pyUaHkTTIqzGZx8ZP73rYtxhi6ritnh20asE7GI8OGgT0ej3EYjNkIhbtWmBFWM9foN9palXs2BSxjhFHOga7riMkQo4xbt7WI82bXJpOSMtwtVW25urri6vJCOqbW0YxHsi4y0zR6MFuFqVHrZ7vFWtMR17rKwIQvvlH5WC9d4mBxrqZtDU1TU9WOFKSDW9eSp3TdCldV1HWrLqMVqKFD27ZYa1mtNMcEFXsP5bnk55tfzwJ1RgG3UM4rA6pNwwYE0nsEmSW0uX6rhbyt2AAxumbLyFbMmJ2I/so4njhE58Aah57gI70P1HVFXbVk0VeLmIx8/vhTPnvyCbY2TGZjjk+O+d3f/V2+9a1v88EH7/H48UP2DqVx+dWvf43r6zn/zX/93/KHf/hH/F9+8TPaKTSzVvIxp8A7whYPKZQmMWzAovF4ihjG9CQE1LVWCp+h70lhKE1aHwa9s05RjgofE30Ux9OiJZrvLcqgV6vB4D2xF+c05xwVSU9iPXddpF93dKu1iLJYSzMZC2vVbPL8JHJNWFvjbFXWQtSfYxRUFi1OWyYwjDXF9dA50SoSPUHKcySKPpA8c/dM/S+AkALRUdlueSw47xojYGx5wxi1eKY04n0nYEuMYkQxrBdcX15ydXHJ8f6MxlVELwxXp83f7XUdYCOxkcQVO5FkrMZKAV8ZpCBVOQNxOnZMR7WCXV516qByCWNjvkioK5meiJE0eBgCY+twxgjbfH7NL3/1Kz76+GNC1BguRtzEmHj6ZE6MkXd+cc3NWzt887vPMZ9HjH2fGAfSEGhHEp+XqwUpOnb39pjNZnKdVstsKznjv/Lbv80LL7zAf/Kf/GdcX89ZrdZyz9WB9lnQJu/Jzfix1GqUB+lUozEA11dX/PCHP+Tg4JBh8KTMpGQDMmaX4MwYyvt/+8eZzR/lZxoFZzefgKzzRX7v/wkwoFxPLkSMrJ0hX1f+gdYWVpiwc6UecE6eVfRiojOkRLRCqCAldTKUWs97cRS+ffcuzz33PHfu3OX87Jw/+ZM/5dNPPubP/uxHNM2I0WhCjvAhxUJ0cXXFZDYtn3vddfRDz2IxlxqgFhHsBw8ecH5+wcPHj/jGd77JaDbGOMdoOpGmrbFUVU0/eD759DN2dnbY39+TPCQEdmY7NHXDZCQmHhgrI8LeC+FDf74xRmrQ1ZrVakUGfSRxzFMAIh0hm0lqRyzFrCS/zzaLWu6xB4Q5XJ4h8jmkP2PKM9u2Nym4hTElP7U6laLBcsNSs1KDHd+8QdNKnT4MnsvLS5x1tCoRUdVVmTZbr5eE4OkH90w9mJtR1qgQeV47f8Xrf5bGUz6Mt5G1TEPOnTmA5DeIqRRDOvuPKYBP7vxvxBS1U5skkcUIuBVUUyfpzctOZc+OdmwxjzKbI49dlU5T2oiFy1duBVpTWFHlX5VZFcoNtoXJlRBRxUx7Lp3Jqia1SdkT+TolsXTOQe7kKnLv1HXMVVKUdl0nHcPBS8I5HinlrdoA66ouP3j52aPxiG7IIsRyHV0nAns3b92mqmr+vX//32c0GnF0fMioGTFqW154+WUODo5wdSMHsHMkY4v4e2Usd+/fZzyd8Hf/7t/h/fff53/47/8HFssl0UiB0bhGOzCqXWAsb731FjuzGXfu3i1ufx9++BFvv/020719RqMRJycnVFXFkydP6bqOq6treWalk50ZLihKbUh2kyyHYQAdxTLWEoOXLpWPIn568ya7O7scHx0X0d68uS8uLlit1jx9eooxMovsvdz7u3fvcXx8zN/+27/LSy+/zO7eHnXb6LiZdJljyMwt7Xxn7Soj3SjnrASHqpJ7ijagEqQsoh43yPkLL79CMoZbJ8dMxmOMq7lz/z7L1ZrHjx/x4QcfqHtQy4svvMDh0SGzvV329va4/8LzTKczVv2AtRFrK1ZDx2q9JlmZY7ZVBdbS9UNxm8ygjQC1jkwFCZoM5VGCJL7y2vXPOilZuFF1wLynS4kwDGq1bpGROCQQBdFwy3oVm8iQdM/nPST7MKPu8kF0LxoZpTDqatNl4I7MhssHtIwIyv7vtHhKBSQU55xNpyA7OG7+G01Q4cnTpzx49IjOewKJxhomkzHHx8d87etf5/adW7z6ysvM59fsHxzQNCOm010ePXrM8fFN3n7/fX7+zjtY1+KcOLuA0O9jkmIkJaOFmK7xIZQ2rslxxUpy2o4aprtTSXzXnVjA54RbAR0sqiEiYwFOtZWsEx2Vq9VAW0e8N0Ckqg1tWzFOjlnjGdsOUiAZ0WHRiPoMCzSRu1oGl7T2t+qwpFo+GIguiKuHai1YJx35GEWE2lQCUkUS1BaSw/paRxUc1JZYG6LxWsgJM3G+XAgbohIh5y5BFwZ6PzA+nEFlWX3xhGHwXD06xR1Mqaf7UrTFiKkk2RyCuNLllRjJ44AO52KZzggxiZh027K7v087HtH7vjReQEY9Uu41OqPMGuh7z+nZGa6uODw+4vjkBodHR8xXKxIwnk05GE+YTKeslku69Zrb9+6yu79XNKXqMBBjYG9nl8VyydnpKR9/+DHvv/c+wzDIiPUgugrRIoxO7znY32Nvd5evfe2r3L13l+defJ7Z/i5nl+dSz1lJcmIIWQmrMIyDdhmdEx2ETLn3w4Af5M9VJWeSiZ5M08/nZ/7vupbCNBfPMYr2U9aLFIA4lftsDFRVA8ay7vqyXmIGkcjFpZ4F2mlMivSkFMkiLD4EXTeiP1lpd7O4heoZn7XEsoaQsJPCXwAaNiLUBu8Tfd9rsRZKwytrEhmLjrvJtXqVAXCqfWljApM1KWtpSIWQ838ys6NtRCTbaf5R9FG0wIkqTp/ZWpDUXWgTnzFG8iZtmBlrqVtXQHqQsS7p8trikheix8SgxZF0sK1z5Rf5LExRRjRNHrGWeJz5cBZJhutKnovV2JKblCltwK7cIBoG3fMZLNhq9WddJacs8Ghj+VlGEe7NfZSxrHbUKkPLYkgkPXOskbUUzIatZ9k86zJWusU+yznIl1kQz+qXbYqJkHUnt/ZG0btUxCGz6worSBLqkiPktW8UdcgAvnVOQSttUlpTwN/8c6wxtFWNsQbvIxfLU+bdBbfv3OLo+Iiu9wwBjK24eecu+0eH1M2EqmnoB4+1jq9+9S2C9zz4/As++uwRnz14Sj2aUtUNdSMxu1cQw2jDMDNOMhBtrcM7WS/ObQEozojoeS7WrLCDo46Oy73OhbieLbomjOaqeV/IfVbzCCSAx35NDB5CX9ZSQoyATNWAq8St2ToBWHP+YShaVOj+zQxj8nJMkvNtEhWEzsPmP9laLwYjhiTl++W95ccZNrmRADo5bmZNtlxLpChC5GU9OqOu3lH03JJhsDI26qzBE/G+5/T0lC8+f8DB7RvYdrRp7CnQbLaRre0sTdeiXG0+K6TdlONSvpxn96HELTlD5DpdJQ0yl/c1klPKtJDDJjg9e8rjx495+Oghl1dXtO1I8LoI1jRYVzH0kcWi55MP1oRhyuHBIZN2zo2TE+bzSxbLa4g11tYQV9hkmIyl9tneujnbquuaWjWYAGVFbTG/2ezFgoDnvVliw6YXUtUitDxo3N/d3WUyneCc1XbdFnPtS4BWXiu5QbkRU+UvvIzZ/EMBCXMY2dxgygPSsy/rxJZ/s1bGxPTijJ6LCYo5VwYnxW1S7kEes3LOiMENCnaVRorU/tbGUt9b6xhPprz08stMpxNiHKTJfn5G163wW42RlDbEjrppaJuG4D3Ba9NEr8lhSGMxrlgtlzx+9JgP3/+Ao4MDKusK272pampXYRUca6oaExM+iaB6VdWMR2PG4wnj8QTnKq3L5alVqonoB0/f9ayXK8nFndX4gTRjiHq+6pmQtrAOk5+V/B5TnhnYPHtbgGUZW8+PMu9Jo2tUmj8UADUYnejRKRlX9KCMNF2atuQGTx49pB8GLi4uWK/XIpaOnLGj0Yh21DAeTWjblpOTY+qmYTadkkf5B+/xwyB5g7NqXrHVqPuXvH5t4Knve2UrhVKobSjicsOyOJvPM4i6uTYJYqKuKhKJvt8wnjLK74Pc0m3xxKTJsNDxE0Xo0SgTRpG9DfBEYdVAUjcc2V8hbQmeJkm67FbhKZ0+/dnamRxUyNxmVUFUestsRMJyEjdqRtSupm1GsrhIzOfXZI2M/GvoB/r1GmtrDXgTjIHr62v6vudqdYV11YaZYTeOYlbdoPphoHKO2XTKuu+xrhJXiMqxWnWkCHfvPcfLL73M3/yd3y6LdvM8Az5EFosFg441GUTsTxhdjudffJGXX32Zk+MjPvrgQ37y539O3/d0SfSFJqMxKJOr79fUVcUPvv8DnnvuPt/+9rcL0+yf/tN/yicff8ydO3c4Pj7m+9//Pm3b8gd/8AdywDx8pEW2uBsFBSu2QcVBqfObudOIqytxURr64jTWTme89OLLvPjCC3z9a1+nHwYGZcbEmHj33fd48OABn3/+P5AZPN57VqsVr7zyCt/4xjf4t/6tf5Pnnn+eq7V21q1qh1lHHMSlzOSgoV3ugv5ag3HiCGGMIRpJZkiJZddJsaPi5c45XvvKV/jqN75Bq+NACSmavv2d7/LZp5/yox/9kPF4zGQy4bvf/R53796jmJMryPjk9Ew6um3L9UpmpY1zNFVF1bSkGFmvFzoCJHa/w+DloHeVFuAq9EhSwUuhtbqqFuReA2IOaFljIviBoeuIITJqWmrtLBuMdBJ8oHaVjNYpnlhaggays0P+CwGorYqZakGpwpJx8CRj8APUrqKu8qGmnWRradux7FsVL8wjOWDEqrmy6mhkQIuRqnLqEKSpVYx88eABH3/yKatBxAdrZ5hOxty8eYMXX3qe0aiRYCMZMDkFffjgEa+/9ib/+X/xf+fHP/uxsAmtZTqWjs1quRYw28m1hxQ2wLl2Lo1xmuLFAkyPpy27+zv4FEgWYYViSDo+aN0mWYbMykziUOJEC+9s3tM4y2oHsJG6Nuzt1lhXs9cOXLhORx2MdmvjM0LukoQKCGSMUSHoKJ0YFQ+1tSSiPnopdlULg9oyhIFu6IWlVkNU8fA0lkLWBrMZe3COYCAMArxMqynExOW1dGV2pzsk61gDK9/T9StmJ3uM96Y8eHrBMAycfvKQmT/m+PYhXjVgMBJPh/VaXDqtJNZBCxlnZYa/Qh1nYqKpKsbjMUfHRzSTCV23ZvCDGGMYqwQNWdOuElq2xTKfz7m6fMr+zh4nt29w5+5dHj96zLsfvEdKkdnuHnfu3uXVN16n64SduzMVh9N+6EmLhFkaxuOWo8MD5tdzvvj8C375i1/xi5/9nMl4TNu2XM1l3M6NGpL3hPWKm6+8zOuvvca/8W/+m7z2+utMD3bp/cD7H3+IcZbJbIo1yqozmzNYACaPsZamFXCp6zuRo9kSF89jTDZIkZE04cjAiLNGdRUooEgIXl34BLyKCCAf46ZxUTdSEC3W63JWlSRUDm5xrLQWV2v6spUf5CTee3FTbdtWxLnVyS43hDKDKIagCbY2lHQ8N23F9O1ut1PUp+s6ZZ5sjQXmDxxUkF4bZz5Gmlo0E/KYcqW5Q13XhWG8/fOMMbTqHLh9D/Kv7HRaGGMpEpPF9r2wvu2GpRP1vjgt7EejUSkO+97TdwOjcSvaV8qAEtHVgK3r0hRwTsC7/Pxk3D1iCFgcNlU4K66VWfXKImNyTSNNScsm+Y46U2WtLSNHMcm9dXo+FhqHzfdA2MWVsq5jSBjURRAjZ0YurmLAOctksjHfyM2OnF/4oZf6PwYFJfKS2kr8t/M8zUFKvqmFQ5afyI2DbW08o7lq0q+XGF/entxnK6OJCpxtnGEhj4EVy3dS0cjL45q5QSTsKrn+2joqW2EM+BR4evWQy/UZ3/nKD7h56zaL1YAfAiFZ7ty9z3Rnwnod6L3n8vKCunJ8/3vf4eToiLaq+S/+H/+Ed3/1C0w6xKUpzc4upnIMXtlHthL9syjukeIaLcWO1TzDWgFJUgzIiOWmDLFYfR56z1UvVuaz5JxJQxYgbsg6iNYYYRkbyRdi7InR49cL0tATV3NyyVZPdml3DjHNGOqWrLfUezEHscYS7VbtEbaBaIllMo6c2GgeaUmYTEkLBAy0UG/FsLgBqYxcqFy3MQKA4zdrDKkrRBwfUhANzOB9AQ0kv5DmYUQY1ULWCjSVoakNPgWGYc2Dhw/58MOPeO0rb+BmOwwxkBBXRAxbZ30OvJSfkwtjC8XZGT3nCq6hWlm59jTaGDMGuqEjpkhjGhxQq7QIJrNkxXnOxsSTJ0/47LPP1IxnwWy2Tz94Vv1AZVucreiGc66vOt79xZJhvc9X37zBdNxz7+5dPv8sMb9aYGKLSS0mXGGTZTaZMBmPsDaPpW6AmVrdoPNzrOpajBlKvZjKmZd0P+pCpjBY9L8TFEc/Y8RJ7eTGCXt7e1SVkzMnpo1wsyLwGZLMrmUFkMrPo8SnxDMBZOsldfOzr/KV28AZGm8y+KTAros5k03EIPVw8NJcqtuGlCwmBWHYaXMHY6m29KlijJjKYqPFOTQ+yURKVPbyeDLhra98hTt373B4uM8vfvlz1j//GV3fMfhA0zSKyaVyPlauom0ahr7HG/lvk2RRGutod2XKab6Y88Vnn9MNHd/6+jc4PjySUc4kjqdtVeMw1NYxblvNG4SlWlcNk8mM6WTCbLojkyHrtTq3iktpXdV0w8B63bFcLKmblnY8UX09GRs2ukaMMaWR71ylZ0Q2B8su79rWzyA1W81eoMzaaR5SmJ6ZBZlUKsSYUkMaJbVUKsEQSbR1o7qM8pnefudXPH78mPfee4flcsnFxYU0YrxnNpsynU64efMW+/sH/LXf+uuMRwfs7uyI6U3fsVgsRK+UWrRlm/+/uNpJF7hpGv1vmf0TxxOP9+CDJHvOiGCzs8j4Udx0FG21OSiyQGVmQ0nnsuyKAmA1TaP0ZxX01IN+2yY5aHKVgBS8JE3KAsqi4vJsTVkMYejInRKrdLFt9DnGKM4OVqhv25oEmwRRDoYSmI3FZX0PYDQaa9DaBHRXyaiFUMvFvchgqNsWq51TYwyLxYK6bqiauiDbmelVqXaQsTLDOp3NhL6bkrCkqpqu82WELerBVIJMlEgRdKwv4jRyqA26gUEZXUfHJ1Su4t/+3/w7vPPue/yT//oPcM4xGo+5vrpkOZ/zm7/xA1566QX+3r/+r3Pz5k0ODg6koK9rFosFTdNwciLB9/U33mA8HvPmW29xeXnJJ598wqeffsrPfvYzeRbW8o1vfIPDw0M+/OB9Li8v+ejjTzg+Puab3/wWZ2dnPHr8iCdPnjJfLLh18ybWWt57911u37rF3//9v8/9+/d47dXXCNETYtARC8Nv/uYPePz4CTdv3eCjjz7iRz/6ETdu3uTrX/8a/9rv/R2++93v0owaLq4u6JMkfpXSgq2V8YPcqU8pFdQ9hCB6JsYWVzFx45H7aBAh0wTYtAn00RoGa7VDL9+fUsK2Dcd3bvEbv/VbUkhUFdP9PbokhUxKMEQBD+1IxgVw0slrScwXS/zgRQMmifVmXVdMZwLMxBBZqUtXadKZPAKofbyUIArM1VSNgK86HjJE6YKI1piwCU2MeOsIbcAaV8ZeqqqSDpCReeyYNlb1UkwKowmtG61xNLVVcchYDtsM9qXSMUh067VoiiCJjoy7bFw4MSJ+XjmLa2VktanU5lcTpNypSyFgK5l7/vzzz/nok08wdc24rjjem7G/O2U8HTOQWK/XWCPJoU8Sl3zwpKbmra++xcs/+RfcvnXIfO5ZXs9FFNXaAoaZfH+RhC0a0Wkhu39qnMNYqqZSNpMnmUCy4lJTikFrihhj7ogMRJoUMBFqKkywXF5es9tOcO0hF1dzzq+WrLuGUevZn+2yOqw5025NOxI2o02yJq0x9CkQUqaRQ0pCG09Wipoh9Zs424jtcqiElZBqJ9deR4bGEytNUA0kh1xnZbGVox410uTwHjdyVDi6bkX0AWphFdajmuQsy5i4Xi9ZXl+yM93BVpb2eAe/XLO+XuKuFqweX+B2R+we7DPv13RexiOc+AZroi92sz6zP2zF4nqN8Ynj3T129/ap2xZjjeyZmIiZFZZyYm4ISWjRRBknHo9GTHcmNHXDzu6OUP2x+CFweXnJeDbl4vKStm2ZzqYcHB5J0jOZUtcCeBkS3brj/ffe57/7b/9bnjx+TNu2qslluHHjBu14xP7RgbCznOWvff8HfOvr3+CFl15iPJtytZjTB890Z4arHJPRREkGSZNBGdmwQFO3pSDJDKWEdDSDgg7nOg7WZRv7vM+rqsS/4H3puqYYGfxQ9q2xMj6NldG78Xgkia+rcEjiLgLfXmItG6Zijit1JaM6q3VHdkQyCsyM1PCguMoWZzwBHmSURfZhSInBD6xWK+qmZTqdlp+Rmc+5IDNGaOw7OzuynsO2tqTmSspg8iEUxm2Qdn0pPBvtiAcVF8+AdwLaZkRVVYx0DAxyQbPpJkd1Doz6PY024IQJaSBFnHHS6NPxwqqyeo8VtE5GtNR0JDiWEaBEp2OQg+Z0lXMMQ7dJj9CaxUrBD4mh77DAZNRiKxEKf3p2Rtd1aowy4u6de2T2iDjpWRnjCXLPElIcmLSVb2n8kcagxPXMNi9glCn4AVmBK6UEwdB1FOkDGav3pfFYirkt0gpsCs0vM+oBZbttGh7b35fvS37ObivvE4A0lucscdSUjnhSEK40QYnEoPuFzfqTkad8b5wy7A3JVlrkIa7LKZYcfRg61uslXVwR3cDxzQOOTvYZT1uGwZFsogs9w/VAMjVgmOxMsMDl/JrJbMwPfvN7TCYN3/za6/zzH/4LPv7sIVfX5wTjqMa7CijquIlJgOQn6z4L7mqeH2VkS4gUjkoZevlGSsfe5zspRaKptREdpZEiVAhx2itiu4EwrAjDmtnOiGZcsbN7yLituXPjgL3dPe7efY6fvv0+f/zjX4mwuEnFXRIFwAxWGEe5QZbkWRg2Z1+MKqZuVbuVVNYm3QBIDkfS3C7KNaZhIIXArZu3mIzHDF1H33c8ffKEgLgUO2OpC6AViutu9P1mBC9rMGlzyjtDwuLwGIM02GoZZ+zrhlQ1nJ9f8uCLL0iDpzKWIUkTu8psVQWE5QKT9tRMYYvk3EJ0xxRMNRu25fZeyfqI1gZiTDLViKFpZL2iE4q2tmDymGp2jdScLBli3OgKGpOIDCT95hAN73/wAB8cjz73NO6AH/zGN/ijP+p48PAzUlqRoojb7+7u84MffJ9XX3ttK25sCAsm6zdu7WW5vi0ihLLT0GusVONoGAYZh9yK0TFmjSiRRXnpxZe4ceOkxJaNYYclO/4mhXyCodShOa+Qz6U3Jv/7FiDIVvNLUQ+9znxBeS3n55hP5q2ROx0DlWtX4NvlHEfOc6nPdFTZWB3lAGtTWTtRzz85tpQskVAmeaKjL4yf8XjM3efu005G3Hv+Od55+20ePXrE2ekp6/Wag4OsTdsJaDeIAZAZjaUui6nognXzpU4sTPDDwNPHj3n4xRcMqxUheCorwExTVexOZ+xOpsxGE/AajHxkNaz4k/f+hJQSO7MZjx494Pz8nPV6VZ5dChHf9wzrNcvlkulsh8PjGStlQNlnRoJTGbkro9jaABMHW8EdcjwvIO72QZsQZlnRXVOSg0oFWL3H7hmNUnmuQTW5M2C3uL7mZz/7KZ9+9glX15eSywZP7Qx3bh0r0CgmZVVVsV5e8Wi94L/6f/6XtKMRN2/f4fjGDV5/802cNYxGLU7zmmp7hPyveP3awFPULqDo8UgymvU7YgyEqKNnTjpcEv1sQfUKMqx3N2/8jZOJdAqknNJDSOltTvVRvNeOQdFX2CQEPuv6IN2U6KPO8zsRKEsbIeLcjfLe6y7cdBONIovO6Vx3GRHKnVsE9S0dyM0CyZRqY02xJ27qRkGLTQJircU2MjIHlEK0UjebVsca1qu1HIpWRqLs1jOV7qkmcApkCSvNS/JuHb33+GDo+oFoEp5QDqzGNIqGGl2kkjzGhDJMjDgBmcjOzi7jUctv/42/wf7hEf/v//Gf6eetdERwzcuvvMz3v/c9vv/973N4eKjOfIaqrvna177GaDxmf3+f2XTKvfv3GU8mfOWrX2G1WvHFF1/wkx//hCF3a+uav/t3/g73793jh3/8hzx48ABjEs8//wJ/53/xt/nss89474P3efudd3ny5ClvvfUWTV2zXCx47v59fvCDH3Dn9m2ee/55EoFEwNqq6P+cnp2xWC0Z//GYP/rhH3F0dMhXvvoW3/nut/ne977D2cU5y/WS5FqMddJ10wOxaIrpr+21ZJOy69JGCC5tdc/rRsZIkgKzII28hI5NpEhjNW40FbvtAccnJxJcgD54BZvk4Fp7L4lAXRXxPFdXNCRYLKXb3mcXHFnTk+lECs0YWXcrYaZoxwtdp8J+0M+1xXConBNdMV2fiiCXfT2kRDCZzVXhGmXGOCn8XOUwfhBnMD2UUQAvNwzzXhT6fLaOFlZUYStqQAdh/pXRCS1kiki0Hs5VXUlh1jpsZcUJzhhERFRGa3LSkA/Z09NTHj95DM7R1hV7swmz6ZimbUR0vB9U/NbSa3HZD2smVcW9+/e4fecmJycHrFdPuV6JLp7R4i6RxIHGZEgtIfa0VpglSQrHPF4hxbNoKol+UxZnVtt4a7CVKUl7JBWg3yRw1BANi+WKdd9i3Jhlt+Dx0w5r1kwngclowt6s4nQuSW7dVGjJS2WddOH8gFVmSiJKs9YYqCDFgI89GSZsqhYqS3JJQMbaKOAJVJFYbTTt9DFhnaNqKppRQ1wHhhCpahk1WiyXkvg4g60NrnYExKVkNfQs+zXj6Zja1TS7oge1PruiX67pLq6ZzFom0ymL0BMGBRIwW9ocwvCKPohQv3MMwzUMkenJjOnODk5BSa/AlcRNjfnqLR6xhbmGxv9mpLa84zGj8RiDnJWL5YLFYsF8MaeqK2GRTifMpjNGqu8zm03pu47Lq2u++OxzfvrjnzAeTUonzlrLweEhs90dbt+9xWjUMh2P+fo3v8F3v/M9qklLsobl9TlD8LTjEXVVMW7awgTu+p7kvQrgGlpXExMs/WY0NzeGsm7DcrVS/SUvY9eNsHOKHT3b5h7y574TkMo4S2WEPeNSAmcLCyfGTXPIew+DiOJnIED06gRkrq0TRpz3ahHuSkOrburSoc7jKEk/WNCRv2xeERGG0mq9xlX1M7baudGwzQTIml99PzB0w6Z4AWVxCQMpKEMsM6lMFFaZMHakUBn6/pnzZPs6a81fjJ5bog+lQGA2a5CESdesLaP8JGE41VsMLxnZ0RwJYRyJOl7Ov5LorqUkLJgY6IMvGg7DICKuTvdL7djsI5JqN0pzslZK/3q14ur6mvl8wc7ODvfuZgAplQQ9g5lewaS2bUWTQtfkdp6XcozbYtpLv9Dmbk/5lVIkYDB+++tQ8EmfWCnMNvEzP8xnilP9us1z2Eq0N4iXfqOCRbmWN3rIK+hUxvo2VaEWrAAbQCsXsAUEIyNP+folxmTmk9MNbQMYBShy2er9QN+v8akDF9jb32Fnb0bdijmIj4FuWDH0PXU7xbmKdiRs6eXimtGo5dXXXmF/d8Kbrz7P2fkFV1dXnH9xSh8M9Xim55cCIMrsiDEweDmbmyY7O4fSV7Fmi0HNps6wNvM2EtY4KlPp2K3qCiFAjNIMIAVSHKBfYvyKaTNiNm24eXTA3u6Mr7zxCrdv3+brX/0m8b/6A/7Fz36JN1EEkJGcTKm7kKNdAZ5kZF/qH2m8e5+Bz01x71GQ2vfStGmdnJNCp4XkIAyYGNjfnbK/v0+3WLJYzDl9PKi+YCUsZZ1yKE3OmIgFyBeUUjnH8ssYsDL+Lmepaq+4CuNqcDXz5YLz83NSCDgsIQlDTCHYsh5TUu02pEma15D+q6xDuwE9ok6SVFnrlLx30DMl61iq1hkWerl5og2ZJ1GSxly93xKktiReICE6hlgZbXr06JymnnL21DOZTnjt9Zd57713sS6R1Nmwqiqm0ymvvfYa9+7fJz+4bDTxZXZrzkkysGNMKnk8+e+VlVZstXJuqiBk1MYsSKPi5OSE3d3dEntznDF6r/KfNXxsAUkat/I35t/z12391SYEFThq+y/JWXPO7VP+wJvAKMwgo2BjBop1vw3K/LMKmBs2bD9jN894m90JYLTIsdaRopwt+exq2pbD0RE7e7vcvX+fEAJVLblNQkhlfhi06R2JIVBZR9U4qpQb+cqMX/XlulfDmsVqwdnZKeTz3hicgdpJQ3A0GjFqGrqqYrCOFBJDP/DhBx+yWq0Q7b95mUTKD1jkCLzW6Cu897RNS++z+6mcCQJWJ4yzZR9jpFESYixNMmsMIW0aKegZVR5Pudtyg/O0l7W27F2neIiwqtSYLUSG0AvgW9esFgsuz8/5+U9/yk9++mOmO2PatuHw8JBxM+LwcE/OxsGX9XA9X7Badzx48Ais5fZzz/Hyy6/w4ksvSQ5QV6WGy7H813n92sCTrayMsQ0yN25dhR+kiJxMZ7TtiCFIhyPTDp1BNS8syTtihGHIHb+xdEhtppNvHdiA0NRcScqsJmsRSU5zkekUTaxrBZxiJEUHyeF9ZOh9oYZ3OjaTnfNycPcqxuicoxqNBcjZ2tgylaOJd4p0XpLFrIJvKu1IqhMC1uZzQDR2klgRGwxVlbtacsiVtCMlauN0ERmSs1SjBh8Dw3LBqGmoXQWI9fBitZKObULV9TsO9veZ7u/TVOpaEQMBIwKGWGpndZQgYGulPGuAiMpWyMAZNjFEj+9h3a2AxOtvvkkzGvF3fve3ee/d9/jTP/lT7ty6xZsvf4ff/Vt/i+99//v01vBofimsq+RorGXn6JivjCXJsZUjOMey77FA3bTcu/cc+/uHfPVrXyuB/+D4kKZt+VsnB/Rdz+//L/8Bo9GY46Nj3vzKV/hri7nqNa04PrlJVVX8r/+df4emablz5w7GOh5fLaSGt1BXUei81lBNJvyrf/tv89obb/DKK69w7/5zvPDii9y5f591NNjxDnWKoNotQUcZSBHrHE1dlfndvOkqY7eCsBW0XxPMDGhsipdUDqh8fFeVw7ChKoobW2I9dFunjvxr79UlTgWBbZ7jTcgM+2iE73vWzrLuRA/o8OhInLu0KDPWsFgtGIKnG3oBdA2QXCksrEh2Ywz0gxc7XgWNKnU2qutK2QZGLJYVTBaHLCF5SoGKaL9pjVUAWwMYsdktc+O6/1PwJCJt2wh7RsdAHZIkGmMYogAgSe/ZYrmkqipms4no8jR1MQ0Ius+GQcd48hhELdor0cJ6NRCWa56cnvL0/IzGOA73pnz1zbd47s4dKgONc4SmEV9ZY6mjMEOMl47KAHzla9/kf/+/+z/xf/1P/jP++I9/hDNjKaaTDkpaAXVLtZooidvgexJBkuAIKWviWEluhxREDyoZokuYaFjGNZV1tNYRcQKA6PNO9UDEcNU5LuYDT8+W/Py9B/zop+9w83iP3Z0J+wcnTPcNy7NPsG3Dwe4YPwTWq0EcSyz4ekAYaEYTDE+w0DlLTAIAJmV7mrFRlomArKkyxCiOdJli7qLEyd7K6EkdAmYAv1pLx9BakpdRoW49kGJktrdHZSsGi4A7MbB/csT+ySGh8xATx8/v0V8uWD+6IC57Lt75ApKjbifYkKhjJaKYJtG0UtjbJIlswuCNJZBguaRJhjfeeJXXXn2FUT2mGzqGhQAUtqqoagGuvFot+7UkP7UKP/vg6TsP0dI0NaNxi7Uy1jG/uOCiqnk0nvLZex/ih4G33voKN2/e4OWXXqQz8NM//VM++/wL/vhHf8LZ01PqekRTN9R1zXJ+TTMa8Vt/7Tc4PDpkZ3+P+WLO07NTLpZzPnz0OXvH+7SjlrqpcFEYi8lHeiOgdQQGL1T4uhIDh7WOw63WK5yztG3N0Kt9cN8XplXTNMxGM6rK0bTNZhRMY2NlxJmmH2TduHzGavPKe+lGC+NM4pitnIJbgcpZajcS4DnJKJFBOsUpBlbrFTFFxpOGumqE7aOfwVUCRJGLdWuIXsANm4t7HZO23tGYEUf7AjiGzisop+yMraLCCCYsf2cd9UQ/b8rxU5gPJiVhLRgHyiY2PgrTyVi8H6TAVmevEKKymCuaekTlanww2CgjAMYYagdd6hniGmNbmlqE962TpoZVZlemk5SmiDb/XFS2RtayUkFiSW4dBsmvUhT2UiIJU5SESZ7KJlxtVENKdJtSEgcqzZZLsRZ6uR+7+8eMprvsd2sqV7Hq5DyLKYrDXLU1ZpULJi+uvXU7khwKlPkWBUBMgDrbduuVNvpcaXCEmM+YWhuUFcZUxCAgm7WV5olJ3cz045PPVCAZhigd/qaScWk5z0XsXLSwqoI6CG9GAVp9LxRvIOaST5dipSwzt9Ejy6wyAbaG0jzMxV1uvAz9RhMwxkAkYJxE5BgEkGhdQ7TqRmgsEcvicsXV5TU7kxFNfci9m29wfHCfmDwhDsQ44GyFaSptmgdikPXSNC0+Jp6cX2LqETfuvsB/8H/8D/j9f3jGf/p/+y/48ONP+ckv35P12swwrqGuG22IORkbVjBDmnLZOa1SkkUq7oG21i6+k6Z1UgaXVzmHMHSkbomJnooBZyK1i0ynE44O93nt9a/z4kvP8/qbr3N8cszx8RF10+JHLbNmzN2dfT748BN++sp93vn0cx6eP2S8fwdbjVhnFEHH/5MBG8HERFitscbw6ksvMJqMiSQuLs754P33Sz3RKpvwxbdeo65rPn7wBeu+x3edSmHUJCdy54OPrNYD81XPqo+k0Q7ZeCIYQyBPDkckeQJjawEvk5eGaF0TjcVHg0uOKiF7yhmqyYhkIvM4wLhl5g6IlWU99LIWTcL6Dh8jqyTjrcvlkqwTu7uzQ9PUNE2LIWnxrzIFRtabSiZrAZyLbSXB5AYYCCs6Wl2/EWsSTS0sRZcgeEMcJFTHGPj4/Xf58L13lMhgZdw3Rmzw+CT5jUiTJsLQcX15xk9+8ue8+ZU3+Zt/62/y9jsf8YtfvMvF6Rn9uuPO3Rvcv3+HO/fuc3h8ImA04FLeW0nYG23Di8/dxw8DH372OSkZsmagZNiqcRVjGQnObCHRwotlb5qkuX2CoR94+PgRdy/vSQxQ1NXEILmRydCCxkFUXcnmEzoDYJBSHoTTOqJEForWWaFvYr+EWG3+XAZHc8MD+XHCVlZtp8zaVCMJGa+TWjFDZabKrFWve7xEcwVMFDA0SXJaEs3IlHMnBKkPXAWtrXjt9de4ffsWJ8cnnJ2d8atf/JJuvaapRgKMJQGfYgr0fS/f73uStbTTMabv6VeBKjWMsTx+eMrZ00vWQyC5Sl3yDNPpDtZWLBZrgo9YLN1yQfCBr7z2MovFnLffeZvF5TkPPv9U5FpGI3Di1gdiHvLgs89pqoaXXnpZmNrGbK4736OMQRaUWl3rrA5Xpy12r6vkWSt71Ycg5gSZvV3AUXmWWb0k/9mHQSlz6CSFCOQ34xFfvP2QP/znf0jVNHznu9/nu9/9Dnt7u5xfnitDL7Farbi8utRa0TBZr/Eh8NqbX6Xret597z3ef+ddrs8uefHFl3j9tdeZ7u3SjMeSF/DrvX5t4KlsqIyGbv0Ea0VwMguBZ1Hp/D2WjCCLg0yCopkjVEPtaKl+U55SzQjwpgmVO185+Ujl38pW3Kpnoya3YlcdZYZbxYYtRpT3UyxK88FFvLE477CtAlTJYMymsyAFrnS8stihiDYniF4Cf0GXBcQxefbTGKzSukwR4dosunwNGTW2VuzofRiIISeFshhXS2G0JC+z8jF60u4OVZkzzt1QmRc2mclCklGv/IM08IoQpyF3P0EK+ZQiMYiV+dHuHkdHRzx37y5PHj1kOb9mNnmJ559/jnv37nLz1i0eX18IkFcJNdrEiGsadpsROMki+76X8Tcj9MDRuGE8nnBy80ZZUzlZHk2nUuSQYX/DXhTR2Tx7O5nOcK4iIKjy4KXYWa47HQUyajEtnoSVq7h5+xZN2xC95/jkBjdu3cbWtdQirlI2nyDHIbOcUBtrJ59bQnyQiaiSNAodNyeem2OBzTrPCzWDrEjn7xmaov5sHzdjA/ln5vGNskd06UinUBLYtmkEnY/SQRiNVX8tBE3QnToXNPjohWlgt5h/W58DEIZO2hLbZ0sfTcdrjdL+nY4+RGUUCQAqehxWRztzPPjyGMP2sVr6MmbzUQxG9Y3yl2SBYr3ThZUoB15dufIWee9nV8LYD8q+oDAmUt/TL1YslkuWqyW74xltXXN0eMRUhfVAuoRJt0tlLFGLNGMMISWm0xl3bt9jMh5TkCVdE5ita9t6be5F/jftfijIuG1ukPduJEgyoh3wiqQ6F5ZoKh1nS8Rk6AKsQ2A9eOarjvOrJXXTELEc35DR3xC1SKily+fxqGkeCSmWY5IuZmUCwRq8y2hiErDIGqiM7Hc9JKPZ7MNkpCueL7/YKmt8C0E7u9Yo8BRVP8Lg6oYiVq9v0IxbqrpmdTUn+UDbjjAh0oxHhFVHd72ku1rSXy4xrXS8BhXBzWbjecVH1RhJJAgSo46Pjzk8PJTVGaWT5NymU5wP/kSSWKnNh6JP0A+QhMkxnU4E9EiJoetYr1Ysr+dcXV2xWCw42NsnhcDR/h4pJT764EM+/uRTfvnLXwnoavOYlOzDpq557v49Do+OoJLzjLNT1kPP1XLBaJhgmywWb9RqXHUXkCM3ZNc4TZeCjoaF4LGm0i5cKusPdOzNiYaSAE912cH5uZry/5IwbOscbgs2F6F/jQeyjYVZY508HXKRkKS4jjEwDP2GHaR6MpDPTh2VIzd3VDUtykhr1lSRfxGNCluJxkemvW9r0ZVwk98nqYNeZYWRpftvUwqkjemBxh7SxnVvUAF3s8WyEL2oquRGsg4l/8iFh1HGrHPCjhTgU4RD87hIdkgySGEh3pFy30hsWE3qxpiScsxNIqojaQySpzmrzzPlmJe18PLRYDTXyJt563pJohtVi5alwZQRdWHMbzq3Zut7BaDQXZUogswYyn3ITFgfBmwSANvotWSnJ5PvnbKBU/47/Vkp/4ACHpUSrrDJc6MuEYtg71+eXGself/xmfuRGVB2K49WYDP/fD1783h5/pz5SjRNk/VrM8css+kyQJW3mpH8sjwkI7bliwXWJpqmYjreY9RMtegRiMAYp5o9oeQnIAzFFEX3qa0q6nbEiy+/zN379/nxT36Kc/DJp5+x6oKUlsoQsU73YtIiVkd2yxmocSVt3a7C4tFGX4qh6BXWVaIii1M7dtqGqoJRY9jd2+HGjWPeeP0l3vzqm7z2xhscHx9zcHgAruJ0CIyMY6dqOT464P7tEz579IA0LLF4AVPy8zUZkM37KEEUuKKpHOOmIVnLqp5LcywXkUZcUGfTKU3bUj22OqWQtW7lHMRYeh0fWq07usGDVcBNmx4ln+FZUKIwDLfyphSjMpMyQCH5mIiKe6qUtIHQ0I5bHWtUwCHGckZ1606YUtYwjCUfqDSf8iFgc1N185Q0dG1WaskX87b40r/L+qVoQhKTgBk+QiNx4+L8nPOz0yKVgJ6X5Q2TALpGr73vOh49esj9F55jOtvlYP+Qk5MbLK6uWa9XHBzscXx0yHQ2o2lHsvyS3NVU9qZMqUzGY8Yj+ZqYts54zcc3W3rDusxUn7KsNU8oUw0xslwuBajSq7Dlap6pEErsMFt5b/46DYDllb70u8lHb9qsue13L2fx1p8z8JFjYiH5PRMNYbMGk16bKY/VCMlb9k7a3Nv83UbZi6LHlHDVswygqKxx5yz7+3viFrzqGY/GPHrwkOViKfWu90Q/CMssqMZdBsgt1G0jDZbelU/cDwNdPxSGEUhMqmoZJx68jPS6qsKaAWxiZ28XaxJBWaKr1RIy06uUobJ3lvM569VKn3vO29PWet3c+yxhkh/tMzpO5cs2+7hQ34ziCCazf62GzrSJAfrfmxUhf2/VEdOHwPV8waPHj7lz+zbHR0fcuXOX3b1dohHySkqRqmpkVejC94AJnsP9I/p1xydNQ9/1fPrxJ0xHE24d36QZjRmNJ8/Ggb/i9T9r1A5g3LSlW9m2LePxuNDrM80qW2A7Zd5YTVDAFOe2fPe3qeUba2WxN8xs6Fxo+BC0A7KxJd6Mv8XyrC0S5NerFV3Xs+7WkBJHR0ekBBfn5yzWa66vrzk+POL46EhEtYLni7c/JgTPzTu3xU1sNKJqHHWsASkso2p8JFfR+56nj59Q1xWzyZh2NKLRxFoYDRs6Yk62ZVzAPEPZdkZZAykzfhMud3oBq4JuV5eXdF3HxeUlvQ+qVyK04D52nF+fMRlPqOuavdl+6ZYKuiyzoFWtAu/BF0HW7a5uVYlFdD8MyhYLOGNYjT24iufuP8/HH30CWL7y9a/zD/5X/5Bbd+8SjaGqW0xKtE1LQtwsQkLcDBA0t9dn2CHsueovJFp536bC5llpn6Ko9dcVxoxwIbKKEpBWnWhQFEimzu49Mm7lnJjcY0TXY2dvn298+zvCnrGWkOTvo2oGVE7HjYwpBUcZAwmiTZKCXkO2lzZGQDO/5ZSTgaqcZBtTANHM3Asp6Vy1rnmQEb+qIYZYNC3yvYlxI1waouwhp8UuwP7BAaTEuu/LfvEhMHhPXUdqanZ2ZkwmY5bLpaxDdR6KCuyJiK/cw0H3ZBFCDEEAhq2nlpDSy2f3Pu1K59G8ru9p2pGCkgbjDE0rAFnf9WWPVMqaqFTs8fLqihhjEdJsXVMYT2vfMwwDvfcF/BnigF1aXGdZrJYiHKlAmzFy2PR9z8XTU2GyWRFbnu3usnjwiKtHpzx88JCzp2fM7k4YtSOeu/8c4+kOX5ydShfMiraacxWmqaltxWxnhzgMdIsFH33wAf/ff/bPePzwkWgHDYMmp6pjQFLGjnYvdQ2Itslm/Rdb2X7QxCWpNbiAe4MCCMFIgbSOntpKtzwZcZYLtYwNr4aOnQZWk8jBzR2+9upz3DyRUYSTWzdYDYEqqYaX6+krT1/1ZUzYNULj7WMsMSMz3FIKpGiJlQBPoXZEa9UdBTKToHG5oIaYR0rQxM5VMt7T97hKivAu9oTgcTsqiGz17Iii9eEah2kS0QV2xhUmOCIBt1Nx81svc/3glEe//Jinnz/g/OkT7n/tdfZvHjFvGrwRYM0YEZoMJBHAHTzRB5ytGI2nvPXGW9y/8xxPL89JMcq50LY0TYP3vmgIbjBl2QNd17Fareh66RC+/tprTEdj/vk/+0MxaVisWFTXnI/POD8/5/LykqdPnlDXNT/+Fy9ASrz//vv4GJk0G8ed5eIaP/QcHh1y//59/vq/8lu4yvH/+cN/zvnVBfPVkqvrOecXV5zcPKapatb9mhTF3CPGxND1CpxKd9amhO+7kjhboG3ka1eLpYBclaW2Y0Dtep2l2oqxKReMynjqh4GYkjBz8hmfYnGcE+q7gk5RCuneSzMhjxGKYUCDc7Ywl9frjhBEW2MymTAeTxUAq0rhLeNystcz0JHH/ogbcMkaQz3WQiP6EoNy7lbpPoshOyBqYccmGRyNRLx6tVpsRpM13jwD5G814eTYlb3ubMRWIkDeNI26xLDFBhN9ka7rcJVjtxHtHaMFGAaxi0Z04MTyOm7G8az87Epp+OC0iMxAUMwt+8Jo6wcRWnbRUzmDqXUcPxlwAoAFvSPZHVSaj8LekrMyMZqMZF+EkYzyeS/s2cwOxxCNvFPwwiSa7MwY/MDl5Vk5i3amU0ZtI/ETiKrr94yxjD7nfN+kZk00tUHGpgYdgdyMy0cvcUxikKWyNXVT045GdP2avu94cvqUYRjY2xG77elkIgCeuj2h6x+zpXFhNp9HAMWNiY2ASwnvVWBe9bCscyRUMsII42bdD+Iqpdda17U2wyQ3hEQ39GVtkSD4DmPEObWqLG3tOL38hI+/+BWn5x/J6Hkzoq5HbLtSlzOnFNTCRLVEXGUZ2zGDD1x1PaNGdBv/vf/tv8311RV/7fvf5ZOPP+OP/vjP+PzBYz7+7GOSraDIChiSa0t+EXxg6Hs1YnGbQk31zmwGRkJiujNif3/MnRducXiwz82TI/b39vjud77F7u4uh0cHYhpQWaa7O4xnMxarNXPvWT4+I6bEYvCMmwa7t8fd5+7x+3/v93i6WPLw7JJohXXoPAJAjxx+iHRdIFhLdAYzaYkx8bNf/grnHOPJmMF7TDMiRfBJmMfGG548OcdVjsWypw8RqpqUzTKMCIg/ePgZ1hh8J2eHqyvRcUm2AJ5NVcnaaXVqYr0Wlm4j53nouwLceQVyXAKCIcYlJnjqYUnoFqz7Bd/4B/86/+rf+C1me3sMBsKoEqbRMjAZj5hOx6VWSTGI1Ic6jKFndBgGNURSB1r+kpfZ5MzGWkzciOkbfa79IG6lIUAcAnHw+LbCpMD7H37Aux+8r6wfwxBlZFPWqsaMXLxby2q14ic//gnT2YxPPvmEO3fv8vf+/t/nP/9P/1PWH6z4G7/9N/ja17/GZDrFWMN66Kmspc5u4frJYpKx817P6zyatQGt8/UJGCD7VXLe7RiUUirvEaPkAldXV6xWK5LmLcZKDotRd1DERTY3PozdcIa2i/mo6NKzgJK+ClalI+YZ7Niq7TKJIjcNcg2R915hfJZL3WhcbSU4mx+ZIika1L1lc69shqvkkDJAEV/Pv7w2nibT4gsyHsn5c3x0Qt/1PP/CCzx+9JA/+9M/5cmTxzz4VNhHIXh2ZzuMRi1VLddUVRVd3zMatQzDsy7e15dnpBCYjEaM21ZNxxIBz87uDpPRGKvP4snjx3R+4PT8jOvFQpqlCVJI6HQmyUqz+XoxZ7laApJ/d32HraPWfE4BTc2q9P2HYcDlGlvrs21zs8AGRHLZpdRmWSJDbqpvn32l1tS/y++5O52xmC/41du/5OnpE6q24v7z93j++ef5xdu/YD6fc3FxzmQy5rXXX+Ho+JA333qd89MzLs/P+eSDj3jy9An9yTWz6Yzf/q3f4vTsjD//8U/54JOP+fTBA/7a7/w2r77xOtPprNSQf9Xr1waeslii2VqVQmmvSjG+raGUhS7lBplCTy9OK7mItxsmFVs3HHRzpazJoMljzHPy8neDH5QCzaZwddKZyGMCMYqavh9EA+ny/ExU5UPADx39esViPme1WvHg448R++oZTCc0bY33kZACVVWr68uWGGiIJUht5hs3aHhUpoLcO7RjHvBsdXBjVFqqFnRI4CcGUvTE4PFK4x76jqHv8ENftLaqylKrBtRm3DAnD2yAdNCgKR2slJHZrRhW9BQMhd6naZkIuBvLzs4u+/sHHB+fcPPmLW7fuYOtagE59FqjAhS5w0lK2BAwySi4o18HhaUi99Eq+yeRRXuTQVFxykELsvkBoo/qQCGd+3wwZJZXToyNzUFb38+KoHtJRvP90d+luyTWzTFGfNyAnrmDvb0XUlIXnyiskLyeU4ya18v9sHazX/LXxBSli6BBatMBNAVEL7sibgVvKN2n7QdutSuaxfe9FmDb+8xV4gqYg9ZGOFPorKHachcEvDFFbyCzB2RMQBg2cttFkFHoovlWfuleqPBt+Xs2ezdE2U/Y7IYRJTjr57VJVLty5hFikOeOCkBqvBiGgRgtG9t2WSPWCmiYxccLiB1kPGaxEHeHTtl0zjkZKZrt4JqG9TBgXcS4Chsi1ug45VaOYEh0qxXnp6d0XffMk4l5AeoaLest35/8ldZKYmc3DMSk8/el85IgZlt2J/EypIizckBGK0VncJtkcjCedfBMJiPu3z5hb3fCZNTSWhgIVEiXI5ok4quVPIs8fhu32NvSGdHPmoRNiLXSIVdaxNaylQM7g24pbdZJkPsXHCp0b/ImLcD4xnkU3Xe6BpHRF0OkdroX1gNEaGdjup0x1WxE9APDck0/XzFM1zT7LVUFa31/q2dIhRQRxChMjdGI6WTKuB0RvNCR7ZauWwZWg/fCIvFBGU+Oru+Yz+fF2XBnd4fDo8NnEtYMuuUkdLVes1qvePT4sQCrfYcxltGoUfDYM5mMqaoZb7z5Bi+8+AJHx8cMfiiAudE13vVd6WYWJx0VpMyptMQstEGS16mCMmQwKf/DpuNWVRsmVImXEkD1c2hcNDIinwEYyWtDYUqKs6bDpFj0PPKv7YZNcXLz4shJEmBGxPWzjpEtRY8xm9haqOwps1WSNnjyWSe97xyPRPNL1qstZ2Hep5s4l9nXm8LMkq3ft/OBDNAWsfIkujUilqyDH8aSHfKc0tzlM8gqT0QFrjXpzICdyedtjsnCmJGfG9W4RMCz7WIlx9xcgCgd45mwlNdJLmCkQ5vv9UaPB7bjmBYvGu0ERDDlWn3wMoqoS2cT8+Sczc5/IO8vBUTPRFkIpjzTvOyyRpBjO4/UJbkVYlVUPqXN/ckHa/mWXKDFoluDMQVczrmMgGGJYfBFRwdlmxVdE6O7x2SQSZip1vLM2gZpzmWnUMhufnkMhmde29+Hxs88fpPXdY6NmTVhjKUbFqy6SwGjahmhqlwtgGraPMOSb+R7o2eMMA51CKjcH8dkOqFylpdfepHJaMJq1XN0dMhsNmHwaoSSTzXblCJU8vGBqm5wdV1ykJxPV5q/mAS7exMOD6bcvXuHw8MDDg8P2NmZ8fxLzzGbzdjZ3RPgkkTVyvtVPkjO1Uv+bbdyyfF0wo0bJ4zaEcIuk/ukiqciXh51/+Z00FkRYO89NgbSWhgwRhACWV9YgjEsFDT3yiQteaeyvggBrzoqyXvJe1MtOy2ajb+SkVMixxGrKt/OZu04/V5QjZ1EXA86GeGJoSf2C8a1ZTLZ5cbxEScnx8QUWXe9nOtyoAJbzovIGVikI8xGyNiwiX1lmWgI2eyp7T1oSlM0y5xs4kQiRrZilvzd5fUVl5dXW6SCpIDF1j7N4IsW4uv1mqurax4/fox1jpu3btGORhgM0+mU6XSmz3MD/Met2JO0JvEKaqA5by70y74mB0ZT/mzz321d17PxZOPsZjaBj2cTpGdfX54qknczf/nX8uzbmC994zao/Oy/p2e+ttyNfJ7p38eN+PKXf1B53/wd+Z5sfsKXPqheswFlTWWWrjyT7Bjq6oqmbrh16yZ15bg4P2M2nVBbw9X1FcvFAqsTS9nBPl9L2zZUVUXbbvJ7a0RbToxSElXl8DHSdR3j0ZhIpK5bXF1Rt40wonSNx61L2F4LISWur69ZLBdSS2gdYpI4zKKO1dZWihdsr43N2Vf22fYz+Euf5fZD2NRU21+S7yeoU2QlOnPL5YLBaxNZG8ldt2a5XHB9fUkIA8vFgt2dHXZ2dljOF5tnY4ziCpkoU3F4cMD19ZzzszOula0/Go1LvflXvX59VztFD5MW2MaYIgRdWUkiR5NJKcBzwZajVdd1ZV7R5i6rAleZxeL9IEWEBrqAF1eMldi15zEBg1L7UmI1X0gnNCWCD6xWK2bTEQf7M3Z3d5lOp2r71/HZx59wfn7OL3/xc/Z293jl5ZdZzy/5/PKc9997j8ePHvPBT35O7SpO9nY5unWD3f0Zq3XH9WpZ3s9pkeC7Doxlf3ePuqkYj0elmM1FyWq1IpGYjCdgRJQwDJ4+rhmNRtLB8kNBQiFR1YKMRu/p12u69Zpsp7tadvLeQ4dJMLaG2XTC/v4uo9FIRF5tpRS7DdiUN1AyclBtJzXGGLGT1660aBQZRnWNAbpeRgk6H8BW3LnzHG++ec3v/Kt/i29+53u8+OprLPuOx2dn1G2DsS67xBYUV5IKHUnczmwRd7b8amtLWzklVGtNC5hkydofNgT9N5lfDQoqoIdjysWAZaPnpXo3hR4LEBN93DDnrCa9VgGYykmSVFeOru/pujVB2Q113ZRxk5z8SgBw2Cifseu6Z6yynWqQVMoEHLctXS86aUNUfQi953l2HGuVjRdyfkP0fmP5rcBQLqIySCR1XKTvh2Lpba2lrety+XVTU1WVUItLkvEXDy6Aq6srYSWZJcEH+qEn+IFu6Cm24loM1drpb5tq06WNETeIq1XwgWbcigCp3nuvh4L3Hq9A4fx6zqBxwznHZDaVGWsrYyJ+EHFjYS3JsZeQUcTleiUjQKlh8CoAnFkOjYS9yXgsY6u96GC1rub06VPe//AD5vM5MQQm4zF7e3vcun2b5dDz+eUZVapwKcrYDOBFZZcweGxMwjBZLnn44HNWq4WupUrmtgcZxXRKgcVl56yt5MY50deyDpdFQtVBr6orUmXo+jUhBQY/gDVUTUWyieQSrknYCoYkQE5qNd6ayDp2PL645MXjG/zg1TdZra7puzXrxRyzWNIaK/vXQqrBTqGyVhiPXtz0vBblE2tFw8YYQhJdCteIjlt2SnR5k8dU6LtiRiHOhtYY0Ln7tRFR1bppSYMndAPEgEvQtrKmnBaRSbtVKSTCoOD+eEpdWbi4wuGYHp/AcWT9cs/i4RmrJxc8/fQh1+dXvPy9r9KMx1wFEaYMywWVddSuZpkSHhjt7TLbP2RvssMsFynGYJwTxlLXlaLg8vycoOu0qsSN7vT0KZ99+jmHh4fs7Oxw49Yt6raFSliR1jlcWzPZ3WEgkpzl+uqaru/44vQpVeU4PDmW2+ajnGPLJW9++5u8/Mor/Lv/3r/LSy+/xM07t3n4+DG2qqmahtF4jI+Bq+trhmHQcYQ1xERTCeu0crbges4J2F+Kv5TL1lJqEKOMbOVx0hwjunWPs5ambQpN3w9y9lWNaCaNx2MSCEMAARjGTavAkSQqQ9czxEGBhqGwQYUhUmNM5Pp6gR/ELbBtRxwdHUrcsY6EMFZrJ/lETt+E/SNJYdbjy40O56SDKKLW8h2ukmQtZ3MiDZCwWw02yAmfLOgMRsg+ZaNVBCWmNY2cF0PfK/NsjE2Jzg8CJFmo64q2baUjbqSUjSkRVQy/aRwhgPc9dTuiqaUJllJksV4VCQBnVUYgCIu7qbXBEBKK/MkIWRaLtTrOaIXlFoIl99Akz7PUtSuNt+BFMHm9XpFSom5ENDaUpkwEZXvHIRGNsM998HTrHusq6rpRoEy03Ky17MxmhZUs45COvltyeXXFeDyhGY1UHyXhQyIlS1WPysh3fqXkn2EI53UwDEPpHudrM/p9UtxKp7jre7pB2GXWSWc7pCjgg4HFcikaaKuOyWTKbCaj/s650mho9IxJCMt/sVgUs5uNYYfIU1xfXzAajTg8PGTUtrTNmK6Txoet9CxAgIt135Vn5myNyQAmkaQ6nVZZpRuGiGXVnXO9esj+7iE7O4fs7x0yHk1YLoRFm8FMjCWGoQBM0iTwxJDwPoGJWCvPbYiwnsvZ+rWvf51vfrPi9/7e73N6esqDBw85ffqQq6tzhn4thiYIS2Q0Hovmka0YTyeMx+NSH0TVjxs1rdQQVcVsNmN3b5f9vX3GkwnLocMHzxAkD5r3S0JMDD5gV7qWdnaZjEd0654YIuOUqGtHM6nZP9pjDLS1o18sGe9EWe/JCxheOSorucvQ9wz6HDAO2zakBMu+F+MOY1WDxRCMwRvDw/NziTVO8pjKiPtZ6jvS0MEwQPCYGMV9kIhfZv4gUFXgKryvidZhW1njTZVT50g0A4ae2so47GRUYw08PhdLdGsdYehYry557etf4dvf+gZf++qb3Lt/l/P5nLhYsHN8LKBwknyq68JfyJOdE2fMUds+C8xr3CzjcGyaaqXpbTfC8e5LAE6MBpPFl0lqaCRx6fPPv+Czzz6TehCD3QKIbAZDdW1WyuCJMfLkyRN++MMf8Y1vfZO3vvIVJtOpnGHGlkZEzqllpByysKiYG3jmy5WYTGiNYjH4lMrZXhrYChJnSZSk1581k5zquAVtHGaWozFGchZtdOb83ZCJCFv5d9oGxqWy2W4y5zFy+ZVKrfeXvUqDYeuVys9SoNqaIo+w/aVeNcby6PhmrFpJEmlbKmQLWNRPGjMYlz9sLkSzXlXU/uI26GKhdjXPP/8czz//HN/65je4uDjn8cOH/PznP+ODDz/gV7/4OWenp5yfn5fzdzQasbe3R9uOaNsR6/Wa1WpFVVUMw8B8cUXXrZnOJpxfXPD09DE+etZDx/HxMW3bsn9yRBcGRtMp1WIhhhoqETConBDGMPiBdz94l9FsTO97QvSgZ7aJkd6Hku8AW3WgGIuVBgTqwm0MVVUG7UqzS/ZVAM9WnQdpS5A860ZnoKhS4o2rDAnPfHnFEDpcbZgvr3ly+phkI1Vjubq+ZLlc8PGHDePRiN3plKdW3Jt39/bAWWajCSnCL371K3Z3dvn+977PT3/yEz758EMeffEFs50dpqMx1f/E+vvy69cXF8+ouwalwoT4UsGbv8ZogZFSKuM32xa4uYNtdWM+k/QqYycoylbYJWkLcU/y93UtieYwDGAj1sAw9ILCzecY4PGTx8yv53z4/vtcXV7y6aefsL+7R79a0q3XrFZrHj14wOXlJRdPn9C4mp/8+M+5+fQ2r9eGdjphZzYTUEcuAHSxGJNImtRlah/GFLDAD0r1r0WwMOqYwXb3IIt1Uss9W3crLOJIMx61NHVVGBU7O4IYBz+U7x+NRkymY+msu0qyWGNl7M1aEpI8yb1UBFeDQHbfc1nfx0jHOvoESvW11soRkcC5iv39fV548QV+87f+Onfu3xNb8coJfVXdjfyQrUc3Sd529zlBcc8rnWESXvUs1MOFym0OjG22XdF4UQDYKOAhX7vR1siH3l+6HfRwMXrdmxngTFWVn2kNRTcplsNz424jlNwt953E5sDV8YPt7n12/wnBFMvtHHZjigqspk3nIJVeAhioqxqXYpmvt5WMBGZkOkQt6NO2qLkWTGyCV/4saNAPfuOAl78nFzPrvpPRGVIRkCYJoFHAri0EP9/fvNeruqYJoYyYeK+AUZKCpVfL3BB8AXSyI2YG2ZarZbmOohWiLI8iiG4tJms5hUDvh6KrspwvCINn52CPqq5p1REuj/ABXF1f8fjJE6yVef/JdMp4PMI5S0XFaDQSwMBZ6kpG2obBk5IUNrW1tHXDcy88z2//9m+zXHcsliu6IRGDAmD6bDZJBeW+w6a7mGLA6HMR+9YOM5KfOwQROTQ5UZCFS7aMTyloQWsLsygnf4uuow8DCQ82YSvDeFLT+RpCJA6iP5RswjpIRtyhVPKCINLlRU43u54kI5bHwrzMHUJ5KS9L1g6y3yyi/2GUAVQAVERM1g9DSYQzw0Oc+lTnRIETtM6NMYmuRRiw0WOurgHDwa0bxOXA6uxaRhvSiovPHtPuTHDHY4yxpMoJc2BrDKwyTsYWE9gE3mrMiZu9X/Z1YULEcj4659g/2Gf/YJ/ZbMZ4PGK9aJlNZcS194Fu3XH69CkrbTB4P5RxcoJoQzhNvo+Oj3jt9df4/m9+n1dfe5XD40NcJYLNgx8YT8bMlwuGwUt31WbhatFLwmySoBgzU1fOAGcdVDLC0fe9HLdbFPvcbHFqi14Kk8zSsWonrSLllatoRgKiVE6sg5OT8csUxXG2ruS551a2gNUNdSUulDkAGmPKyFJVG9qm1cRyvGHCaRMgO/NlrRzRr4o6mkR5tpnVi8YZiVO2dOSfPas2nfoydqDR1CQZ54tZZzHJuOxmlC4+0+XOPzfGQdeMFHsCwqnpSLkl+ayX/SwxLeJ90memCSjC5KRo7BnqSppPdRCAE2NJaqQb89h6YREabewpG8hs2K+ZYenyGWnkfiUVe9eGtxYgco7le2mMMLExECr54YOVteSsVRZwPmVVziGpGHpMtO0IMNR1Q9uOIVnNYeTfZc2I5lkMqayXtJ3gyCqVs4gAak+Rg1PlpLO9YSFlNhSIeY1jZ2dHtF/GY5FE0P2dklFAsSLnsDnPkTN+s2bEyQmsDfq9sJyvWK1XPHj4OePRmNVqzcnRMcfHbWF35MwlpS0h5628Ob9KXmoMRk0SYjRFK2sIS3p/xahpmIwmIiSerI4LJmW/5FyB0h8smaoW6OJcJDc564eZBGvfYY3HBI+tHQfHh7TjiqP1EbFoq8rnb0atXkNF0zbUTcNqvcb7zBAQN1Bj5Gk1TcNoNCJaS+fFwCgkYa0nVPDaQV01m8LLSG5SVRXJoWP4cmZYY3F1Hn80mOAxQyc1hJemQ0yOGGsBEVDGlEHd1hJVuS0JTCosJdGxMeWhGBKEgInCdDLek7wHHZWU0bMohaUWrMQAbgC/Fv2VodLcRp6xdVYb04PoCBvDutfnFgadoIjUtWU22eflV17ku9/7Fie3TnBtA+tO8mdlXWUd2hyftmu7bQZiAfOT6mGlvPc3531m78t+S5uz27kyypUSyroQTzufmZkmS4JITlw3Mi5d1Y0wDlMGk/MP13ud5OxfLBZ89ulnvPDii4QYObl1i+dfeZnjkxvs7u6VRoHkpTraVPa6AWVmSc2Uyjj29rU9oz+HxL0yhm024EmOIzm2nJ+fc3V9Tdf3JUZm0GlzDm1qws3dzv/w5QrG5LfPV7D58r/kK/VTSR1h9Bnmn7v1XlkPT4+erVx+CxBjU1OY7a+Bou0HcaN3pxDZJuXVnNU6zLYT6db6y8ynQnKpxZnwxo0b9MOr7B3scfPGsdbzn7FYLDg7P8MPnq4f6AfP9VwIJ0M/sH94xHHl+Oa3vsGt27dxrqLve87OzmnbMePxhF41I0ea9892ZlxeXW7dR6O5LaXOWy1XrFcrhqEnpagNvUgMuS4yWtOZct+y6UdpZBphkgKlnjTaPPvL6tYSo7ee9Gbfbq2JJEYVxhh2dna4uLjYIkjAdDplNGr56te+iknQqoj/xx99xOmTpyKxkBKNq2lVYik7laYUsU7q/d4PzJdz1n1H45u/5BP/xdevDTzlhZAvMB+s5e+MauCwsZgfhkHobVrgZlQys6HyAosK0OSkznsvf6fUaJPRUjKDRYXeYmA6GUNKLOYLCWKVo1+vuD6f8+TJE87Pz/nVL3/B0yePefftd1gtl/T9mt2dXd6+e5fz83POzs5kzjZGdu2I2lY8+if/JXefv4+v4NU33uDFl19WzSNJXhJJRXDF4S9r7uSkIHd9h05YHkM1lI1Uuoy5+HI1Ionf0Pcdp+enjJqG6e6MdjYVy0Lt1O3u7tHUDbOmKcD0JoBofmukKOy9WGAul2uG3NXVRZPH2KSzY4QpoK/oRWelaQ3UyrZQinhVN9y6fYubd2/zzR98jz4G+hhxbUNtrVDiU+JqfSkbR1k+xlqMjySfdPFGvKLsVVOVQNelxKCipwYkgbaOVvU7LFloUAFK5OucEaHbQgNOm+dhMpi2VTREDQpGLbiN2RQVWbxT8zGcMbS1sIO8aiUJm0lE663RhCY/V31WlWo3DLq2c2Ka90Iu6jbjpjImBmwSawWPMnhmjDClJHDng3MDtGQh5pI8aMHgtg+SDCqp5lNCrj13azN67irp4PZ9z1K7vFUlz8rUTqxXI0XMFjYjlPl98u8ZFFqvO/p+YN11JUELej9zh7VyiSppUarglw+JM+1seO8F/NliIeR4kq3Qgxc21DD04hZVVTz45HPWiyXPvfIS0+mUajaTDmxdU1cVxMijx0/44KMPqeqK/dEBBwcH7OzsimV81bJjd0vC0BoR+L2ezxm8Z92vmGjH4Hu/8QO++81vcj1fcHZ2zkeffkbXd7hmpMVR2iT8SCJWRpSrWgq8MIgmStdhFgZsYtru0YxGdKGXZJpY1gDWYtR9NMQg7kkKGBgkyQ4xcrZYcjVdsOrnRALUsD+bYCpA2XdcL3BjRzWtiWiiryMIRZw4GU26FYYyMmrqdG8CRYRdgCmjIymVmLiHhE3gaikEJULJWvLes+rXTMeTwhQwZjPKVmlXnyBAlFU2pE+w8B2mi3RXHbs3Trj3+qv4ec/550/xq4HhuuPTP3+b8d6UF37r65imIrWtMOiy5oaztFS0tsIFGZ+lEcp8GAa8umzlJklOELI2UQiB0XjE7v4eBwcHwpTtAt18yY3jI9bLJU9Oz1heX3N9cVX25GbkRDQOz1Xwta4c3/rOt/i93/s9/vpv/xavvPYKj548pus6ussLFqsVewf7XF1fC0NYz9rMuBSWpbhQBqWjyuOQ966qiqpuSuJfNDXy+V/Vm/E6EKc+xEXTOUddN8pqCDSVaDJNphOMNoVi2uQFMUZxCnNOc4Q8XuPYmU31Z2xAs+VqSdf34pRlrHY0W3WmUVfCyqpmkYwJd6u1XnsGhXJRazdutGj8TLGADPlBhuAlFmuBafVMyXpeEqRlH3ddh/fCVjZGGgP5a3O+I/WliItjE33flftcVQ1NU1NVIhQeS82iTlCDXMdqtdpqdihhUvOyym1Sucy6y/FEPl8glyBez5aszQkQeq/udABGASOj4IzEDmczQBTEHCTv26K36UtOl12Cm0adWlPADcoKdcLk3DhJys8clBHr/UBV1cxmu+zvS+xerVb0yj6JMYq7shU5h6hsl5w0lFGImKgSYMQsRJxUM/tB9tuonWCMsJLEJU7WakhJRfNbpuNJAcTTFug8GsXCAovK2C1MwK4jN8OCF+c/byRnHo1EJ+3xoyecn5/x81/8lPF4zM2bN3nrrbc4ODgswGOOKwIQmWf2oNQWW3s5s76CISZbNDUN0PlzlsNjJuMJu5N9nK0hGYY+YBy4Oufvmk/q+hLoxGo+knCuoq4q+j7fr0RMgcX1mbKOErPJjN2jA27cuSUgtKrVSP6DMgrZttxgsRSG12g00nUr4HHfizyGHwYul2u8n5eGW2ZWN01N5RxNXZc16oeBGDxtPQZriVZH6TQOmEos2ZvGYvs1DJ5urTndxQpraio3wrUtTduqGLQVdm4SBnNCHdxEHRAQMyJXWwVDdIRskNrChCBsp6Ej61hlzSOSx4SI8UG6KDYRY09Kni6PrFbCRrauFiDPR2UOwdJ60YWtJxhjiSEymc148fnb/PXf+j7/4N/4+7TTXWzdYK+XhOjxq3XJ9QTwTupUXJf8Ma+3kJuYmDKuWoSot0D6mIS9bqyw22rNa60VRmUKGZRTMKuKeCPj/Rnc91FGFCeTmRTqVc0Kw7DuyaAGOZpl4GlInJ9f8POf/YyXX32Frut4+Y3X2Ds+5OVXXuH27TtlkqGAYdaqREMU9zznyhRAjDL2KWDXZowra5BmsD1r0JVN6CSXC8HrXhIh+c8+/5xHjx8xX8xp21ZqFQV5MiMog1bZFXYb0JGA8GWgOUNO8uwywPSXAU9G75o1/IWXQiI62l02fsnhUsbGNAbmkcUMPBnkzWOSe5a2n5HNIIleT4I8rm2V+UMKqgVqNqN22nwdeq2ba8t4OmZ3d8a95+7KmjUw9D1/9md/zoOHD/mjP/ojHjx4wC9/+Tbz+YLFfCFaWwZee/017ty5wz/8h/+Aqqq5urpmMV/y2aefM5nN2NnfY7laEVPi6OiYYRg4PD7m8uoq3x1tWuWEPUGMLK6vmM+vWa2XYBxtXbPqBCeoa2m8ZY2+vPbqulY5gUwwi2UNxJglV+wGrMv3WnN5W0p188z75vxK7zbi/NfhnOHWrRtcXl6UiSbjLId7h0zGY15+6WV83/Pxhx9xdXXFD3/4QzUtixifGFW1TId4j0HOv3W/xjjR1FsPHacXZyzWC+rRZqLmX/b6tYGnrCWQKXlNWwvzonLFUhokIGWmU0auvdLNM10RNkX+0Autfuh76RiGzehTpnIW6mba0BlPnzwRsMlIsv/nf/bn9L3MMK5XS+bXV1xeXrBYzDl9+pTlcsG6k/EUay193/Ho8eON2Lmival2RGtYDWuurq/44tPP2ds/4Or8glW3phs8e3sHVHWj7mIJUqeiWg3WJqyNkoSHWESTp5MpGYg0SVhO0Uf61GOiACOrfiW6IIulji+MmE4nTKdjuhAIKdH1Az5EWi1Os7ZNntPPAQayDE5iNGqoY6TxQhUM3m/myJWOnYm++b0K0JgkWcOokxGyUaTzYnDRaAdbmGck1bDSBF3Gw7TLmIQNETVBt1H0H0ZVvWGr5DFGLexCimpwIhwot0WZLdedOxMqWJpF7ExM2oXOeirZlUNdBsnCb5RuS0pJ2ValLBG9Ji0+rLXYZ4ooCbO9HwTgsQ4TZWPnMY9GhYEzEFNERmMsoFNe810QC+dqi32AXmPlnKyLphHWQU60jXwm0RCRRGabYbXRnTCbbkZKDKoTZp0Ko1NurYyeNQ1E6W71tiOZKPdGT5Ksg5LUmSSLtmYQGaQTL9bIiaKebgV8S0aBRSOjIUKLzrRdyj3OxgMg1q7NaKTzyxv79EIDz90ia0VOYRAB/RgCTV1jxmPm87k4Kw4Dbdsy25mxXCzoFkvWvXQZm7alHY24e+8uJzdv4JOMhPp+KNcgLkC5M2hpRyNsVbEaelpjaEcjbty8yXPPP8fDR4+V8is3LWtfiNjkRjQfwA+9JpY9KcrI7bCGlALNRBPzJKCxaCdEBu0khrABVhsnArM+dPpQDSvjebK+YuH3wCT6dSQMkVllsbbh8PAA03dcXa5xZkS7O2YVBnwKKCGBFISxZ+tG2VSa0GjyGlN4hrmhgyC6ZrJkpiH2g7h2juSZj42ILS6uF1L46VkRUlQbcQGEnMkkfQG2W1fjkLHFGCJ11aim08D84gLzwYf4NLD33A2Gx5fEeScC86ue+aNzmllLvdcQvDgdNuMJrmkwa3WysjIat7yWcaFekyGL1c5vKmYBuXja29srIuR939F1a27tHbO7u8u9e/dYrzsePnwkuhfW0apYeabyjxpZf7fv3mE2m3LjxhFvvvkmr77xGoHAZ198zkITpclM4mddNTg1k7BG3Z+sw9mKARlH7pSdF7YKh2GQcdzHT56IiH3fU1WOvd2Zhh5lT6UN88do9z3H6xjFNaayTsSxVWcKBb5yUWKVXZUF/nPSHHzQjrIpcbXkAV4YXE5ZEgIc6FhQApKs4WQQNzaNfdZaHfNTlkLlqLRwttYwdL1qRmWXt4Cr1PHTVLjkCCmUgqCcExlg10S6JOMFQjEFgBIQyBX2s5zLKj5rDJPJhKZphE3jHJDH3GSXiPX4GGcD1lT4MOD9oEKjtjCSnd2A8CJy6jF4DdDSjYqlq7xpMqHFUxaiHrzXrrWIxFvnVLPLqvONOOBI7lPKDi1eBcAXswEp6BbXc+0EV1SuYnd3B2MdrqoJUeJV1j/JqIfRwjcEAQ2lm5w0x6qJwTLofU6aZLjKyXNKFMeltmkUUK0LQJOFrXPXfX4932qoCptOgKeAM5YUIr1qim3Y4Tqq44V1H6zEO2O1WCufVf67bSWupijrOgOBx8dH7OxMaRph+O3syjhZZh6D0SmBVJppMkYl0gGi65PTn6Ra4waiNESMkVGxvl+wWD+h9485OnyJw4MdAbJS0kNcS8UozDopdOzWs7VUlcEaucdDFJDDWKNns7C/bMj5P6y6jlXfg7HCpkHyRmMo7MlNQWXpu47gI6tuJfc4F99xwybKedP29+U4nCL0vS8aaV7TQjP0JGOITgYW6wR11dLsVjz/wgu8+ebrvP/eZ1xfXxJ1MLyxVoD/YY6JPcGv8au81pw2UCp534zSYTCKfWa9S01nMHr+JRNILkGSs2oDkiZMFNa6wxBijw8D0i6qOdjboXKWru8YfGC17jHO4Sq5tyYATpjHtpKGTBjkwzgnZ8tsNiM4GctspxMqH0he4l61LQHhNg7lOd7ZrdzE2I2BTTaOktxsw07Jz0jOf8kLS+PUbsDUpL23yolZ0HrdMb++xnsBnoSFKKPbvh8K9mKM0frHMCTx7MQ5fJB48/DBQ957932msx1mO7sqelyX9Zw0BmdmWB6/ztptIKB8NFvj2VvgU76uTY6rOrhmu7lbZpXF4EVNN1xVF43H/L4FljBkKHLrtZWVPwMabUNO+f/+4rcZKLEjR31jtsYXt54TmA3ItPUeuXGS64cN7mHKpIUxWvsBaE0p+MymOS5yEnLFKUmz0hg2DokxFmQsT09E1UBMSUbb/DBs9pXmHYcnNxhNZ8x297i4uODb3/2C+fWc+fWiADL37t/jYH+Pt77yFov5gouzX7Iz3eWlF15ib2cfgyUG+YwZGMyEghRkHNxYh9FeVKk9jWG9XPHpRx+zu3/A/sEhoRJmWR6Z77s1IFIrkcBg+uJMnlI+k015FoDqiep1WovJmnNQTCkylmLMZj2areeZEtqQMYzHE9p2hHMVq9Wa8/ML9nZ3GY+mTCdTOnXRreuG/f1DkSOIkSdnZyJ34oPUzIXhXpVcymkD3iRKrP+rXr++uLgBVGTMuUrHurRTWmVaXJQDOWyK3iwQnIGnbdqiMILElarrOhG83tL7kTGgVBa9tZbgPcEPnD55wtnpKSl4Li8v+IP/5v9F1/fMZlJEXl6cs16LhSW58HY5KRSbxfXZaUESrRFdo1SLQOC667hezHn4xRfcuHGD6/MLrlcr1kPPeLqDqxtNYiLRR1KUgFIevoow51G7FLXwjnrmJh3H0w5KCJHzy0u6vmOxXDIZj6nrlsl0yt7ejPm6Zz0MLBZLrPf48RSsYUhxo9dgnnWZEBtaS9tIBzbUNd16TRfCptuUogArGr1yAeEqVzZYcViw2R5WNgNOOzwpKoCgHSHVp0r6dVEBJ80r9fql41MZQ+sqdeqqCzti1Yt5e8jVbqwQ7eKcEEnCWkBJIAalLuZOTFRb8BhKkHWVAi9xQ4XMtPlnCgf5QwGjjEaBbSqy/C7rW/RLDM4GTHTYtNGcaNoGU5JIitAieTSPLSBW54DrRoQ/vR90DCJCXYOrsK0kv0Hp9ygt04KwycImqGXApsS0DMyQipaK6OhtEgIBnmS0sCTSykzMoyxGkw6TBBgICqKUMYNopAPusgOh3QRXawVcSao5o8CNXIrdAj8lFcsgKEhXt1XgaRt8+rLLpbGm3I8UIzYIYFdZx2KxkO5GCEwmE0bjEaEb8OtOOt8KPE0mE27dvs3RyQkhZX22gViAp1gKcWcdRvfMqu+omxF123Jycsxz9+/x4x//GGGDGimY0USfhDOW2kmylhIiph4C0SvomCJ+3eOHnslqRt3WG60Sq5bfXhybYkgkK12RZBPYyODV9ag1+OhZdD3L0IOBoYv0q4CfWTA1B/v7DPM5Z1dPSaOaxjhWeLyyJIlyECdnhNmnCedmVFWFpW3WW9uM1poSAyROeQUEo7XUDhrj8KvI+mqOGzVUoxaMrK9134M1jGsZjQuJsn+buqV1FUOKBONxVQ1W9K/C1RXdcoWbTtm9c8x6HRh8orseGNYDyycXxGFKu3uMCQmGQDOraMZjfL8WK3AnieN6sZBzYxiKA5lVIb2s5ZNZD7u7u1R1TVXXPD19wmJ+zd3DG8xmM+7cucPV5VWJXVXtmEzGTCYTnDJF9vf32dvb4xvf/hbHx0e88sqLHJ+ccOv2Lc4vLnjw6CEYYf2NZ7PSSctFRIbOrRH9taTPqfeDANNlfH2TsT58+JDFaglGBFmPjg4BNkL8W+B0jl35WQrQY6hcrUWq7Jcs/lkSNSegdgae2lpGs/PPQMVm8/dkwXahdteaayhrxWxiRVDthaiFutU9OR6PNfmHpq5pa3GNM8CCOcb0mLUUIiEGbHq20CJuJZkan6KOCJPPxwxGZPaJrvGq3hq39tnQQM7cYfDUtWiBySjRuABukPeVbJqmEY28qmoYfM8wrAsLMANPdd2QtQa7rqPrVuUzN1Wtn1tHqUtRFMkjy8YaXGXVbSoSQzb5MKrrKSww773qK0lim5li+WfXTaPahWuGwbNczAk+CBBb17STsbA2bI33CR8ifTeU+A3acIDCuosxFo0sQ0V0TuPK5sR29UajLDex2tFIGmLqOGuNoe967UDLSu570UUajUayp+tW2dEKOIaoTVHJcZxz1KOR5LU6egCBtq02awMpplOC4CNtXbM7mzIMAT8EloslfddxcnKCc5aT46PN/q2qjbixMaWJWxq2OgqMtVgruVlZoxHJY6Iw6StrWHVL1v0Vq/VTev+Uvb23ODiYaY4uhQQmkshMeBmvBsmJ8pFdOQFLOt/LSAo6suoqrE2kJIYwkk8K8NT7oFICKBgX9f02gFYGk6IPZdwTUOkCAbJdXeNqKXQy+PdMQY7GjOBJtSEZKyZbMUEUd0YZ9RTZiaZpadqK+8/d57XXX+Wj9z+iW1xiRxOscdS2xqcB33fEOGC8K03wqh1JvmUrcbbSWEsymEHRrsqRrN2MwTvVISLKuKuxUFdaD0gMtno/KlcRhzWpXyEsZTi8eYO2rrm4uGC1WjNfSWOgakekQXJDawGrlvExEXvVADUyqjoZT1j4iE+JdjwhhMjy6rKA5vlXBmUyK7/IYKQN8JJzSWuzS2d65t/tNuiSkjaeKJIU+ZkZHc11gnpzdXXF5dWV6ugos9KLQ7QPuWLRmKiGHV7dLXGi9bpaLHn86DEffvAhL776Cscnx4zH02J0lV9Ra9VNAyGbE0mNWzlHNDqCrCOCZXpCAacUBaQtcZIskJ4vUUAnuado/VFj7AZ4SpsDg1x5pJS/fXudb/6YM3iTwaKtv9t+PbtLynfpLdwC0Z79KX/hVUBHRdbyGBilLpLJkc0ztUJf1/eNelaU8XO5I4RoZGts/3C9J+VcTyrrEGXMOq/LclXGyBjdjZu88dZbdF3H1dU186s58+t50T0+PDykbRsmk5oHnz/k5z/+JTvTHZ5/7gVs5URDWMkibd3Q1o3ot5Fk9DVDJVI6bV0HrNZrPv34E+5FODw8orYW43KuIPqVAG4kef/AXyQEmK3aPYO1UnIb0YLbAnxznet0TW8DT3mNZlDTD9KcGI3GNE1bgKcYIuaFitFozHg0IQXJPeqqpt1tEbZV5OzqkriKDJrLCTBdKWvZiaamsUU2Y7ul9S97/frAU/5dH3oebdkOTNkZrIAXbsuhBQFqDJBCxCMFddd1DENPv15rYbJxBqm0eDERGXVpav7sX/wpP/rjP+b9997h6ZMnGCMA1enpY2JMrFbXMufZ9UynM46Ojug7EeS+vr4snw3YQlchaFI279ZFT2TZdXz00Ue4qsbVNUc3b7J3cMjZk6fUTYtTSv1awbMQAnVTi3BmlAMhxUjX9bz79jvUdc3BwUE5cPP3ZI0Yow5yokFgicZyvVzTDYFOBaWddiTWQyCZRI/fSool6HvVy7FG0Pg6ZVtnRzVqcOrUl8dEIJXOvdA/KcVU8hvb4+zU0tugdpF1SQ7leQsKWxuDPTzQA0dnXjWxjxHG07F25CVhb5uKjKNrb4GRvk/M+hsqigumJDdB0qVyoGRHlLB9wiS9NiThl5EIDaAGFXSTbZCDsbgkUITSYlQKsTL4shC5gGUNG2aSXIF1VrVNlJGjoE60riReIUZxNNEDKhetjQrytk0rTDLr8MNAGDzD4MuMeO5Ea+aAqyoqZVbJ6IUrf87ikTICkRkRci/zexOTdqUUuAuR6D3jumZS17S2oh96zs8vykx70GAXtWtdWFYkCNANogNSh7ok0iBitSMr15cBSospMWO1WrJerTk7O6Pr1pwcnTBWRohzFfWoYbVcMb+eS7fMyvhNVVUsl0sVmxddm8loTB71o5EEY5TELvzxk8eMR2L3fXV2zvmjp3z62Wc8vTiTgs5Zdvf2mEwnXC2uSUZGWkJmj/geYqLRRGvd+zL3vPIek3q+/u1vcXzjmAePH/HOO+/y8WdfiJaFFU2XthphlO49dL10FYyAuDkpySM3KSQZFat7Jid7UBnOry+K/bV1FU2eH1fgOxpETH2roxJjzzoZrpLjx+98yhefPuXk5j5t27KzO6NLkfUHcxEvPolUtaNpRsRegKS2FrYlWzpkVtdhNJJgu6oiGWkUJAzOOAErkDFI2UOWyllqW8EQuHj6iG7d4VcrjLPQtlRYnHFMJrsSN5sam6AKkWHd0S+XXHcXXPUev+4I3rNYrhi3LS+/9gLr4DldzalnMrbsbGS4mHL984/x657rx+fEEJjdOqJpxozGYwHYFh3TYNi1DTv7e4z3drnoFjKW1rYK8hvW+jOjsj4PDg5wVcX1fC5NmabC+wFjLYtujTOO7/zmD7j74vMc3bnFzs4Ot+/c0aKzZj6/xgfP0dER4/GYg+NjGUsyiavFnPWnn+h4T11AqqH3eB8ZjcZUVS1FxXLFxcUFT0/PtQGwoclnoCQGT/Re15qMOKUYGU+nNHUtumspEfxGu3Bbf6H8sk47ynL2D0Mis2JjjKy6tcTTqoII/dDjtQnV9R2kDfDu9TwJIRQAwToLMbvVNKIR45ywAkweI7U4LF6BzqaqqKuayWRCArxqPK37HiNNU1zdMK5rmtFImwfaVWcj/FnVdRmdKKB6kr0kDJuIqRwpZe0bKZjE0KImoWNgCsokVd0fjyZq7LAjOVRS3bh6w7wdBo8xibZtyvko49GTwg6WsVr5ZbXw731g3fVyJjinOmhFfUQSd40rxkqRPwRP8F7uuZ71rqqZTKaQ8jiJxRhH22YNmGysIbnMYrHg+uqKqO8VQ2Axn0sDKASatmVHAfzVukP4HZbpdCZNjlxxFVZEQZYKwy4q0G5svUncoeiOpZTU8MOAjcIyIeg1CNjXqI31MAwslwth5ntPGI2YTMaUH50k3g2DmL9UTkSi16v1VkPHlEQ/hkgpH4oGlfwyBlarJfP5gvfef0fFxr/Gzs4Ohwf78ix1/4QYSzH77PjEpggMXpjceTxGgMGkZ2oAV9G6ETEF1sOKxWrOYrVkf3qbo53niMlqEzTnwOr6F8F4yS1DULFyK83RFAQ4TjqyiDL3UZ0lTCREX/atACpRGr7G4Ewt4HQto0w+yF4yUQBrbKKLyvZNyv2wyjCUgW9p3qgjbm4QGmMEAJKejqxVPY/QvN5pXbEOgWAgmMR3v/d9nnvuee7cusMnH3/CH/7hj7i+mnN9OcdUltHRBCdTb8RVT/JetEutw43Hsqd6BcsitM1I4oWOLa6WCzHzaUQawVmrMbsi5MLVboMMiYGgmqkNs8ke0/GIl176KqOm5d1338PYOeO1aFNWtSXQEejJvgGVc9jasjce4VPk7bff42c/+wX/4s9+zK3nX2Bnf5/VcoUPkWbUPlPsxhiZLxasVivm8zkpJe7evUu1JSy+PVIXMXrwb7lf6YYthg76PbqlCkN6A4qILiQp8kd/+M/56c9+zicffsLl+WVh32RmlXy/3Lf1eo1JSEPMIPmCxt4Hn3+BsX+Ga0WTdWJq5kdH3H/+HraWJkc2wjHGiIOvng9inKDzH1sgwzNNzQLAyQeMMWwYwJntpkwfo7lnUnKAaO6AMWLAkiOYyWt0k1Y9A5Tll36kZ/4m31FT/l1jz9Z7b3+XkeX6DFiVfzfohZv84fIYJtrQT9u9qs2n2BK6xoJJArYafa9kBAgXQxP5vBEFAIOCLC6DmELooDz7DFTLaOzGXVSudFBgsh9kvLFpR+zsV4wns/IML6/npKtISkL2+OZ3vsPl5RWnZ6f88Ed/zNvvvsPh0T77e3u8cP85gvccHx3y+OGO1IpIOAmah8t9l/tz9vSU//4P/jsOj464ces2h0fH7O7ucev2HSbTqcgsuIqqVm075wo7XhouSfNkxVd0XTqt2dGcJssbpRj17/MTyzmD1LgbcN8IwcJanG24dfMO3/omvPPOO3zxxUN2dz7g4vyC1UK0Rc/OLspETT90dEPP6dUV14sFfRDW8u7ePpPJFOdc0Se9ff8eh3sHjKqWig3h4l/2+rWBJ1lyG+R7e8QlI7d51EbGd9QmWcEkVzoDcnNC0pEsL0lKCJ7sQJYBqtJNjZFExA+Rhw8e8NOf/JgPP3ifs6dPyfaArhKtHtHtS4SQqOua6XSKtUI5Xiy2XM0EJtzaOPLnQQXDR01DSBKIT0+f8uknnzKaTDnYP2C9WtH3ntlsR6670NM1obVOOjhRncpi5OL8nKYVkcQMRvTKOOm6NTEmxpOx0oflM8Uk9q2DjwUBresGa4VWmkzCf5nbZiQYpySjeZYI0eBMRY2wMpwxGBOIIRGD2rrmBa8sms24w1bAyvRnG6gM2CTjYKb8Ui0i53Dq8OcT4kCmHWlj0c68ozLiAlTZrY2j6yw7acWUEfUMcFK6MrIqUkn2NgfdJiHZesDyW0g5gmp8Nc90diBThxNBrzcXQkMIpTPbONHAqKqqJIzbOk6ZDu8yeMoGDTaGwh7YBPMNy6dSjYOEMHry8/FrcXKrFNAtTyYL/6bN+2wSVzAxEqMtdOoMPNV1LevTC/BRuhdINyUFtZR3DsYiWHt1cUW2mo5lv0cFTJ5NTnzy2GjKKSo6RpWOhojo9aBFbR7BskaYgOv1msV8znq14uTwmMpYGtWZqeuGNSv6riPqfc4OM9kS2OsoZRbZtdZhnKwuZw1mLaKAKYqA8/nZOQ8fPODy+op131M56XI2as+86mSctqoboq4vr2yqykoYlaLUYapInwI2Dty4eZPd2YS7d+9wenbGR598SvCeqqlwRj5fDIOKBnuCD9S1js3ktCQnASkRh4DvBgHlKxGuDwriCHvPEbJdmaomyfqQAkFozoYhGdYRHl/O+fThKcsQmO1MeOnl55ms1oRVT1wN0EdsbakrKyNJiJvfpkmwKX6sZaM4ZYwCuxKUiqBzQsWBI9YKwNZEQxgii6trKdJ1b2QB8grDyNbKgNMxWp+g84TFmn6xEtBp2RFDoCfQNjW7h3s433PlPPW0oRrXsD8BZzCNJa0T/WJFPW6JvczkjyYt/WJN6AYaGkZOgIm6bSV2WotLhkx6yQ0XY8QNaTqdElNi3XWihUXW5LF0fqB2cOvuHcazKdHA4eEhzz//vAILhrOzp3R9x9HxsTD02oZh6JlfXTL4gXXfsbu7R6UgrHVWYquyQmREFz1XOlarNatVR9NK0VeK2srovg2SAmqCmPUXq7ouILsPG32kEnLsRoBWzmC7WaMyG62gdyxMz6qqVAciFHZkzMwrWTUlhqYcH60pNPOqqkU7SFlPErMEgMlaEjL2I+Mj2XU3JDHLyMle0ng8Uep52zZyHzpTmGs57tcKQGfAxlpHFshNKZEcxWlxMyqr3X23YUpsMz6NMeJeV1VUVVNyqMweKvFTP0d2Hcz/7lSsPY+ESVM2FntqcR311AogWZOLk1Tucc5/8vRzVFe6DOJYJ0z2rEeRBYPzGpHRusx0qsp9W69WrJfL0tRaLZdyrtUVI++pR2P6fmA+X+BsjbUVU01kN4trU5hq+NCTXg5/k4zqym2KoLw+C/BU1mpCBRok9jsBOUSf0ZTGn6+VkR9zx30rH0kb7cIE0iwpxaEWZikzwDZnYIndmoaE4On7juvrK66vr8VdaTphNBJgIkRlaar+X95ff+H98ufRgjy/8ucMQdy+rBYpg+/oBtFqHLf7TMeHoKeLMWYju5DE3l6SkogftMCysl+Dj7hGRrwkxsvDMWS2jMHYuMl9gsR7lwsp5Byuqlo1VVO5b5VSHwYzKBCgYaHkcJk5E4vO5zYAYIGkIFXu9sv6ULBAx3yGkIpRz63bdzg5Oeby8pKjoyM++egTHlvD9cUlWEPVOmxImJAwVteRAmLGSC5rrORJMUScScL2rIXRbpKMuZRMLYk+UFVVpOAF5DMFeSIhjc2kVW7djGjbKdPJnrr8TXBVoGomGJOwLpGcJwWDz7fTyP6t25ZhteLi8oqz8wtOT885vH0HY2wpeOt2pPWVggZAv+5YzOdcnp8TU+LWzZuQTZXY5HYZE96IVJsCBspL8owcbHPMRfNdCSVJw1AkxcBHH33ET3/6Uy4vL+m7XhxyS8zMWIj8b2OKA1iDzZMMBq6vriWXO7/g4OCAi9ElTV0To2hKCsAtDMiowE3e3bnmyde5DeRsMzLzuitfoezAghilfE/k96z3VXS/ninQ809gc03A9tzbZhdsYsH2a7vWMV/+ffvLZVOVz/5lbGsbjMr/vZmG2Ipxafszb9eIeU9SHnqO4XmfEhUu0xgrTUiJ39v3HtjkjflzmMyq34y753uakjTXR6MRxjjqumXoJaderlZ4P9D3a9qm5cbNm2JeYURq4OmTx0LUMKJDaBKMlS31zEsPh63LY7VaiSD36SmPnzzl3v3nODk5oa4bvB9o1UyBFDFJTX6MMom1rhdC36Z+FLfVHPv13mdDLb3BZU+Vx7Cpa53Tmjhu7ttstsOd23f56KOP6buei4tLYTk5MVFYr9ZKwjAyKt2tWQ8DQ/Aybm4ss/GYuqnx3tMPPeuuo9IGVa51f53Xrw08FSHKugZrWXdd6ajlGf11120Ofk1+MlqtdwtnJcnqOtGX6XtxWDCA771Sl+XlWYkW08NHPH78iF/+4ue88/bb/PKXv8Q5y+7eTulMWkdJ/sVCvmexmDMMvTKuErPZpIAI3nvW6zzPDmjXl5SwFibTCXs7e7zw/POMmpbF9RXjuubG0RGX1wv61YqLrsO6ivFEhLeulgtWTUNT1ywWC7z33Ltzl93ZVGi7KTF0a429iaqqaeqK1cqz7lY8fPA5dV1z795dfNdxfXnFeCJd+J3pVEWHTensJKBJKtztsiuOFb2clDZuU8rQCH7QIlwKyaYy+CF3UYeSfOaktjw1PciTQvG2Fm2bUd3IIZzk2DQxgU3ZKVOehxGGkg+B8agtI1IGIx13IES5JqsnhzGITaoBcCSDOo1oYbL1e0JQaF1em89sBMAJyhTTv3xmTTsn6K6IW6/L3+fN3efECA2alTBHjI6CeK/r20qwK8LX1uAwAj4mLw4tOv4UgjDgvOpg5SR30oxUt0EC8eXFpa7nSsdLI9fXc2H07O3JeMa4FRge6DVA5FG4PGzjVC9jNHq2a+Wj6m5Yp3s4sFqtsAbqphUQIUZWXccaigbNdDpltVpxenpaRit0hamrjCNGT0zgghxuWWjVWsuAan/p4RyCJx91zjkInuvzcx4/ecpkPGZ3OsP3A4uwYOgH+QzAsF7Tr1YEK0XZZ8tPsM6xv79HjIn51ZWKRYrTTWUsERUGrRxt23BwcCD3+vKSzz//jF/9/OcMBI5uHuH7gXbcEAishzXzbsV4NGJnZxdXKcVUD82kh2UuwK4vrphHOfCPJmNGowkHBwccHOyrDphlOtnRbnhiuV6xXi2wxinVPhflWgRWlbjdhEi3XOOHnp2bB1RWxk9ygM3Avq2caFy5AW+TeDmlhEsOExI+1nRD4rzrOLxxQsWYyahmMmm5f/cQawM2QVgNLJ/MaZo9xntTzpbXDEFEhZ21tE40noIiqAmhzW8D58StJBM2mlgg4HUMxM8u8KuO7mJOPZtycucmrm1wbUM1REyI+LMr+sGLyH3Xs7y6FgArBYyrMM4xu3NMMx5zMhtTVxXneKZtyzdvvyCd7EdzrsKAT556p4EUCNc93dWSqw8fcXjvhOnhPqvza67n15zceoG9oyMSYmNvg8WkhDMQFSwXButGt3ChhXZJvHTvAJyfnev4rGc8GvPG62+QUmR+PWcxl709KLOm73tpnOxMqeqK8XRaiuHxZELTtP8/1v6z2bYlS8/DnjTTLLPdsfdcW67LtEV3A1ADIUIBQWIzpAgqgpT0QWJIf0A/QB8VwU/ST2EERVkSFEFABECw2qEb1aa6qm7V9fces882ay8zXWbqwxiZc+1T3Y1ihFbFqXvONsvMmTlyjHe84321U5aY0oBzjrfffY/X1zdUbUPVNFRNS7tc0q7WLNqWmCJ3m1tAxHprX7Fol8Uo4Z133pW13TQC3o5TGWctunQq9JsFaOWzmQIUYUXnDmPZ7YRN4lU3KQM84yh27ZiEryRSTWNQJpHFV5669gX4ahpJ3JZrEZp3Ol7rXBaynC/2cili0ZXek91hTz+MbHe7MvafP8s4BmrvOTtZziDaUVMtywkYYzC+IiWoqlRAYlNRAFi53woOJCk8p3ESDZiosIcRQMw5z8npuT43msT1Mj7lsmiyADwhhHIdx3GkVQeefhwZxrEAJd3hoMCzZXvYc3N7Q3ZgfXh+wXKxoPYCWN1t7zgcOm5ublguF6xPVlSqy5XBy/X6lBgTd3d7GW+uGqzzJIQ1PIWAA4zJxZjlZH0CIdHvRacnWWFIjUPPX/7ox9RNw7vvdyI47WuqxlLrWEPrayYdb8sGGxjR9RjHgaqucV6TcZPwyrTAiBZUFnL3fm6I5lEEkjBljBXNkGGKNIuWxXJJMrL2vK/wqj0WY9CmQ6X3Yk2MSQBaDN7rmXfkepVyVa3NqvwZnBX5hX4cWCxa6rriu9/9Nvv9gfXJCuct/dQX8FH2hAA0+fOXBmYuhvP4oW/F2CaoBlblFRQYsC5ibKTrt1zfXnK7ObDdJx5dfI+3Hv0q3ksDxWHBSPPMK3NPuOSJqlKWpJORwnEcNbPIubKwbDMwaG2iUec4EcOWEV8TlUVt5Hd9ENaDMV40jwwzs1CB7jBNAn42mjupZmYYI920hwR1LeOmlZ/1NuU2CJNSAJaj3MIYGUOfDLZXUwVr+Tt/73f4zd/+Lf7+7/wOf/pvfsB//B//x9zt92xvboWhVHlibTG+4aQWtqWtas4fPOAb3/olrq+uuXx1yXgYCVOgPT+VCYm3nmCNo61qbm82vHj+gpQG0V/SeFm3CyKJw+EggISRAjrFwHYz0G1f80//6RcCkiSHcY7lshVgkij4RV1xfTMSxpHkAyFFNncdq7blG7/0S3zvV36N3/jN36ZqKqauIw2iHTlhy1lcqXPgl7svePHlV/z0pz9lHEeePn6CwbBsRStvnMRAwDgr+ncxA8S5WNYMOqO2M3Kszcg87guVgdo77m633N3c8nu/93v8k3/yX5NcxdnDR4Csg747SD3hLSaPvmVAV2gzpFEY7vVqxRhGrq9fc/v6NZvTM87Wp6xHMSbIzSNrhG0Zo5hIpJDQyTk5f/u+gOwZmZWm7QyqhKiap6qdFUlZjQZXaRGeBIDPshYC9ptCPsDAlOT3xuxyJtHqHjD081DT8SOVU9AWEC3flzfBpQxezAwpQNte+rUMRB8BPiDXuQAuCiSVkev8mhkoLBCh1lMmvx+tXRPYkKR+aWYYIj9vcQhX0E5qiOPYM09YHRNgYhS2N2oiMQwDYZpUNF5dXIHbzQ1X11e8evWSRw8v+I1f/zXWqyWnp6e8/847YkLWd4x9D2RgS84Q563k5iSMmQFEcbj7it3djk+WH/ODH/wpdVPzzrvvsFytePTgkUxhPXjI+vSU9cmaqm6oq4qVXxJTYrvfkx1Mx2lg6qb5zsm8psobJUY3ks0BpAFkinFMzknHcRJQ3DoW7YL1cs3f/q2/zdfe+4BPP/mUm6sbxn6UmqiuGaaJQ9/JpFMIPH3wGGMtJ0uRc5iA11dX/P7v/yHTNPHgyROevPM2T999h4HIeNj9jSs1P/57MZ7KBUgym29sJKjAZ05yYoqKaAIh4KwIB6OoaVTx0Gka5+6iVt8hTEU8kZS4uhJtjE8//ZQXz5/zk5/8mOfPn7Pf71kuF1jryZ2NnHwWVyBFxRMJ72ZaZe4YWiNiYhnEMLrqc7PEJMhW68aKhkzfdex3O8IwascWMKGA3MYYhr6Xrl93KLPBzlWcnp7S9x23t7e5uUxVSeF4dXXJdnvHqxevaNuWB+dn8vnMPM7grBPmSb4HWshh7JHI4jxOkVJC5UeIUZ3L8qWC8rxiS676MkavR7qPrLucXCtlOjNIymgWCLSan/wItc/XFSOCkZXNej0yBoSuHcsc8HJQzN2CNxbfUddlRsbzPTv+8RwUM3B09J2fW8/HHY58sqR8ipSv6X+tiE9CZi7N3W7RodD3lteIT0cfTgE8vci5e541E4pQ9zRJd93aQj2f75uOWZR7mLu/KTc0CHpIGOeUEWZVBCqWvZgPCZtHPPNMwJEgV+4s5E5HRrutFmQC/Kllu5drEWPuNCYds5hKwM8gtdPrmUdYouqEOdOUIrauKuqmIU6SGHjrCE7HOKYgo6x6afeDJO+rpYDL3V60aox2QOqmwet1CypWXNd10Zfb7/fc3NzQnq2oWhFVt9bSjwP9OJAQZskUJ0yyWnQpVVsPWJf3XWTunCHgUT8MdF0va1vHlUhRtS3yuKrcq7JP9d5a70U7LRp1O4tM44ipnRRjKYs762FtDcmp8GlS4Ngc7UtjGGNgP3Ss1i0LU9E4S9NULJe16JUYYcINh556iuJMVFp6eY/Kv4sZrHboSg2Wd7Kuc4kz6nwKpHEkjIFpe2DqBy3kZJzRJGAMhH7EjIHhbs80jvT7PdMw0O8PWGexlcdWFbau8IsFfrmgahcYI2PT3ieca/EBqjFhQ8CGyGq1ZMLRj2LkMO0OxF4EXaMmNb6uVU/M44wTEdsUij4ECgx7X8k+CBFjewGn3Gwpn+PUMI6ziLYRQGoYB4bhwDhNjNOo99wUrbvMNBHB5pwIWrKLZdL4WTLiIyZy3sN5HM5GlA0nabIzVoScJZuiaRrRTKs9WZ9REuVZByRpTHAaz60V4c+sYZhje2Y+hzAJQGTyiPRsPiJsWfSay7ntrMN6EZ9GmcQZ+PI6jnjMtEKBzPJ85oglQiqOusMgY4MpHusgoFoisuGOT4ii45efzxyPPJlyD0UfUq99EeR14oKoWyIlpegDvqoFfPLSKMrj7TODLB8zApwA5V6EEAurt+hnJinEojb5amUnOO+J46ydJHmR1Q5zKk2ScRwZh5HKNcX9M1/vI0sAjLHijGpEayProRjE2MIY0V1p24ZxsUKFh7DG0fkKd3MFRhhGlRdAp6qkSUcS9ntmq8QYS/wYVey+sK31f+Mk4uwyXm7uXbscmzIoyNE5HvVMHsc9Is0gbHPnK9Uxnc9Z9J+z/qM5Wl8GY+JcW5fEqhzzUm8niY1GWanWWk7PTmnbVveb0+uoL21MrgJ1/cg5f7+alPUmX8q59Vz9GSMMHWNhDAP7w5YpTiQsdbWirleEOBeE6HUS1obmCsxGAk7dV52T+00yZR3mh1y2/CZzMTozITOoLDWA3l+9lslSWIsiEq8sCJv3nxglpPI/eQ1hPIhWTB51zGdP1k+dsoOn7sWYZmZOztmXiwV2ueSkXbDfbXn77bd48eo1+5eXOCOsdasA+clanDSHEFiqE6FVwPI23jDptIdTN2ZvHLWrC5NRHFmV8aTwgkyaZSaM5tFJJjyiSRx6kXGo2xW+rmX0Ta9xbjA2jTho4eWexSBxpa4bpjGwudmwPlvTNLWMrZm5WWCOYl3lPU3dsGwXjEosyLnacdp8lM3Oa/0ohpZMIcfGdPTzecHkmjCEos1zc3PLyYNHuMoJEz+vl/u7TPdW/qqRy2ZzGA7EMLHfbtlu7uSMDSOHw0HidVPpfktlv+cyskwucKRflM/R8mqp5DEFUMkL7Phhsg6sGnhMk4yVpXQvvhh9kvx2juNY2aPzJtO/pqOXkfiUoaQSrYzWsUfvpzSIjq5hfo6SrzHfy3t13NHz3q/L0vw6+V4fLxlzb+mUtZGZhxyxVyUmzPVUjrnzi6P5pJn/cfxOSsE3s5JBaytlYor2bwALVV3x6NEjvHcsWzXzWi4Zuo7N7S2Hw/4esFU+Q579ROOwnlspyrRGTIndfi9saZNYLBZ02x2r1Zr9dsvZ+Tmn52e0yxVVVbPIms1Z1sDODsdz7WrKZzyeOInRIDp783ss1yFfl5iU/GA5PzvHW8ft9c29fC3H3SlMZcTYKlgXdNpnNwzsdjt2+z2r5ZIHFxes12uqupIJlHj/XPjrHr8w8HQ49OXvWVQcPayy7kOl9PxB3bLGcaSuHG01W8BGFQ/tOpmTn4ZR3T6kmAohcLJaMY4j/9l/9p/y2aef8JMf/UgRYxkd8d7S9x1dpwHAzA5YMc7J0jD2MOSEFNqmpq5rHj54oO8lcnNzy+3NhizImjQbFcc8y+vrK9arNWenp/zwhz/k448+5pd/+Vd48OAhy5OlWEKmSFN71us1n3z0ER9/9BEnJ6cslguur15zdnbGr/zK9/j888/5l//yXxSnCaEWRv75P/+nfPnVF9xd3fDg4gHj4cBv/NZv8jt//3dKAWsTmJgKKyZYYQR5J9/PIF4CpZobKnW6wXrZbClijcNhy6ia9R7jNMWcJvoj15RpGggx0PgG7xzLRaui4m5msYU06wOZWWchJIkn1pkc07FRMBhbmRKUQ5KRrGjmQGR0O4sjQk5CjTKvZBFl98O84QEVg9PwG4M49OQwpwdAAYNIynSSdZ1BFM2IAEmEYE4eM9hkAOOko5FBy6iAWl1XTMNY1nJKicp5jEM6BilRW0dERoiGaWSKgWkYCKMpYKmRpS2HoV7Pk5Mz1utTTs5OReerFy2cxWJBniFPysAJcSpMnAwO5X3aNg1NU4ttbRRGTLAGv2ggiW4WXpInVCuoU3vYdrWialpsXbPXzvph6Oi6jkUUe+kwjSSkKx3CRNd31FWNbxZ0qiGQEflBO5N934t71+NHrFdLFosWG6WgvdpcA3CyWmETHHZ7pmFU1ozc793mjmmaqJ1o6nz11XNuNxteXl7y6NEjLi4ueOfdd1iv12zuDiRSYW9tNhtubze8ePGCZ8v3WJytZXTFGl68fMkYAk+evU0wcHc4sIwRUgMxqri6HA6LpiHFROsbphgZQ8Q4zzj0/PGf/Al/8Id/RAB81WCMo+97tpsbZCRO9w4JSxbS97iqolmuCP3AlIZSgG43W6o0sXp8QkyRw+6A0XGk5CLJBlBvhiFOwkzCEyzExnM7bvny+nN++4Nv8d7ZY5yKdw42sGgsTVUTxonby2uqh0ua8yXeis7eFCcIiTEFEVCtpAMUksBQxhoZs0DWcEziTOW9w9Yer/v49sUrhu2B4boDLNXpimQth82W0A2EvifsO+IwMnTCGDU6OtmulrTnpywfPcCvFtimxg0y9rC92TEMPTebK05czaY+4cw1nNmGcbOnGgJf/+Y3scZw9dUN++2e189f0e8OdP3IaCA2jma9YnVyyvnihLZZ8Mo09NOe/WFXhMNzfM6j0A8fPSy146QC2t1hzzj0dFMU4Cd3QVUHZ5om/KLmbCkjbs47lquVgLvWUPmKdbsqSfHh0LHfHWYmp4qV3mzuuLm+BiMufP000vUDfddT+Zo8FjsOA/1+x3q1xKRUnNXGaWIcJlIYwWRwVIFyyUpo6qZYbptMu83FOspqHMWVaRxHAZStsFl2m31JTrP+YZxmEMr7irPzh0e5QgICbbsQhspiKUWfOsLJuS/gXx4fmQYBMMcMuCkbQjSj5N/r01MWi0VJlsV1bzZjmKZpdhnMBYLNDbOpsKFEwVyo8yYZJj0rBJC0Mk6pI0pTkHuf3etSnEoRVruKtq01oU8q4p1Y1AucceJWaBNN3Srrh6KZOOg502/30jldrajbhrOHD9juduz2Oyrn9b2L9s1yuaRpGhaLBeM4MI4Di+U5Z+enZfxhtz+QMLTLdQHfrM3sRYjR0XWdNNYqh3OeRbPg/PSc6v1KRipMUjbXyLMv35H1QGKxWHJ2ei5C9M5zd7vhbnMnIxIW+iBd2jhEur7jcDiwXC2om5pmIcy9zz7/Al95nj57Sl1XtO2SaQpiY+0EBI1jlmyY5SDGUUbr/uzP/pwvv/yKhLiP/uqv/jon6xXt2TmVr2i9YxgHDoeOYehIKXF+eiZNmqPx0JIQoAlMysYjov0yDEMB8zKo/OTp06OcQ/jCMQNUyigqQvDeYmJudCnImfekMcpcltfsh0lHNdSlsLLsu1uev/qEZAZWJw1VJePN+6EnMY8nJigNELEmSoRpBvOsEXBDQPdIGgTPi6rFkrSJO4VZY6SwNzSZMc7o+h5Fo8jbwlwJCHukbip85cprGhJez/nkPMlBqmsSaP4irGxhfwpr0pDdEg3jKIxq66ShM4SA0WZtQpjfd5sN3ljee/sp3/ylb/C/+9//b/jXf/QD/ov/4v9LVXm8q3De4KuKD77+DWJKfPjhh1ysTvnWO+9ztlixahf8YP8X3N1e4/oVldY5xhi21rHtdgwkTs/XnJ9fcHu3YRh6whSIKWBV6D9OUtQ664WNkxJeDTVGDNMUGHY7vDGS+wwThMB7X/uAdtXy8tUX+rwTtbUctnv+xT/7b/j8o4/5X/6v/wN+42/9Osu2IRrDfgxgLI1vyojRB++9zwfvvc/f+7t/B0iiYQr0gzRFsnYoSfRkjUXdHWMREM9jwUdkkALCHo9t5RmwaRrpe3FoTdYyTCMmTgx9JwDdOOas+95IFoA3XuEHAa8P3Sh5WUx89tHHDPuOi3feoj1Z8dFHH/Hw0UM++MbXi5yDr6ShPxnJvfb7A4e+w/jZXMFYJ0CHkiqiJuapAGL34bbc1DAGFosGi+Hm6oq72w1D39M0Nc4YhjARFPQWcxZKYyDvoTcgPvnbMQBCPn8zSGU0/9CxtnzdtS7KulLz+NoMLenxc3TPFIwq6FSeSpn3d9bv9brvhNmb/6t3Oj+x5gpOgehMNghWWZxhZiMf5wCZWS1gsTsah5RYJM1rAX1klNdrnjwJWcN5pklYoVYb9tEYHr/1iHfefRvDr2OARV3jrJBHPvvsE37v+9/n6vqaZiU6kZFUnOyrWtZdiFIXCmHG4euK1XLBYrGgn2QK5eNPPpL3FvLIvaVZLGjaJWfnFyyWK569/Tbr01Pe/eB9mqZlsVrRqMGRtW4WsE+zI27WyYwhlGuWWV3DMOCsZdG0gJrfjBMpRs5PT3nr8WMeXlyw2+/57IvP6Puerus4dHvutnc0vqHxFbu7O/ph4PXla/qu4+ZuQ9u2vPXWW3zrG9/ku9/5Dq6pSFNgv7ljHEZ+kcd/P8ZTQm6wUcQxSVI3abdqmqbCfErajYiTUAjLUwhOgVjlKkgRhb5vraV2nhhl9Onlixe8evlCnKZCdiaTLZL/7vzseAV55lg3lUD75XWmEDGjCG/WVc1ysaLvBrq6m+0N5UOWpGFzc0vQG3Z7c4szlouzc1KIfOPiAl/X7IaOMEgSWFWex48fczjsubu94SuTuL25JkwjX375JZ9+8jHGmCLynKK42XV9TxgnLHB6eiKjESFqMjUpayxiXI05CnaZmGmNYULpxkbh/zRrpURjSY5Z/JIM8msPSTtOVv84a7BVRUqOWm2hnXPKrjH3kPQcaHJwTGZGopO+fmVdoZYeB0KnSVuhzoIkKuTcTmjsMc46UJkwlIX8jKLsXlk1mfmU0gx6ZWYRzIh9Qfk1iBLizCw6+v+k7zkDDHNSpWKfJutEGUCKRePUAVDfS9a+weiYjpEg6hDasFMgK7+WaBXKWCLei2uEjrtWtTAIXJjZY+UsKp9R1ksWSgxpRs8Lkp5m8T5jrM6/i9ifSyJ2GA3lQMxBLpFYtq1og0yjvNcUqbyTUVqjP68gmMmz/ikVDZmqks68BSbrik7Y7u6urLXDvmMYRl5fXeKc48lbT8AKoLw/7Nhsbour3RRGQgzc3l7TDwNXV6/ZH8Q9KIySjIgKRWLqOwJJ9JXiRAoBa4S6n2IkjBPvvfMOp6dnNItWRgZiJBqD0UNmMrJXyWsUVC9Hgr9JFusTaZoYuo6hF+C8rhqMdYxjr/bkKu5/vH/czKaQAmAUvSCr9znBeOjBwSKeiJBx0blJpCyFpEWKTbJnhbEiGhnBRA5pYgo9TF1xmPHWUNvEetWyHwcO3SDFRba5J4PMstFyt0caLKnkYXn3Z+035fRhkyOGkTiOxH4kDaO4/qhNdQiR/tALW2PUA7WuVcw74Zoa6x11W1OtV/imISXDNEwM+4E4TnR9X0aHBwJ30yBxzxh6D9E4zi7OdB0uuNts6dNItW4JCKMsoCPF3jGMvY6IB6yzwkZV1md2Ei3FeY4NOcbpmIh1jjROwm7QxK2uK8Ikm8urIYGYVjjquiqdaO8kds7U92MXokTQ5KyqKhZtI6CtMeIcGUZSDMJaMIa28ngDnkjb1KInZjnqtue4muOK6nEZK6wpTZzuMxyMaqslHZ8fGDXRM5TDQUTMo7iBlW6z3lcp1h3ZHSeEgLWeurH4qsa57OJmqXxVmk2ZSen0vaUAKQU6HZWoTQvGlJHgsl7DrNdij+zkZZ/cT37nw0hzC4MA8tIVKHpDeqpos0fb78aIBgluLgjSvOMLozkz47QAz+/TJNXGyuzp/L4UJBN9ySjueOqKlozoz5GSMjasip3reWGFfeZ9xaSjbHUtuhjyGRLOClDissSCJu1yxnkx5aiUdaG6k0adoKYk46gWGU+vrOHs7Ey6pgpeLhYLPRMkgR6nkYYKYxxNLYBucAGcgAZN28i4hHOEaFi0Ld47aufx2kxLaqXknZxDx0VUbix5J9bgIjLu6UcZawrTyDgM7Hc7GfVsGtFb0k5vHoMzaFMnZZHzLKQt93PMDo45l8TMpIrcfVegqLDzpRJUfdNUNBQBjTHKXp0/jE70mXJ2SJyNoulZkiBp7Gy3tzhbsWhPsbYCrFjQo287yUBOTKoXaHMMz3l7ZpsdbQX9PEXvLKaS++fuYcqHVdlDcn9CSqKTl+UUNE9KysJKaS6658a9mV/4CAzLjVBDlGaNgl3GRhk3NFFBLwHRTRQnWpdEzsEbS7KGMI389CcfqqFJYrE85evf/IbqSlbc3N7QjwN32z1TmOiGgevbWz786U+5vbvj+vaW/W5PGAPdvmf06lplZFphnCLWV4QoIE6YIjHkXNZAzoGcFKcSJLTS0b0oubAFY4kYJc3LdZqS1WkSD4je24ShnyZevLpkGAb+5E9+QIiBX/vNX2V5ckKFmPoIIKh6RxqPKjdrz93XFNL3EbUONKUaK2sk1xV53xmyE9z9Zyk3Xz9TXgQmBgy2aAEeHTMl/5FUw5R1nlRXMGsLWmfZ7fZc3dyw3dyxPdlyfXtL3bakcdbOQ1m8cgAkWaOZrT8v9PkN3ANqVAM2CdtEzof8vaS5oDRv+040SccjV7bMussvMddj97bFPYybo6+b+18uhKvSfNc7Mldib5xnZgaVTIkD872x5b3cfyVz759Z+F0z2KMiy+Q3e/zahpIPyFma9LyTdZCv3xwHYokFuejPx6u8X9UuzUxGozlX+d6MBRhE6xg9ZXPtlt+YuELDoRMQpu/74jAtZ7MCXhExujNGpxqMEBGsm6dGNI/wCSpfEYMj6wzGJOdE7A6kG9jtd8QUWN4sGaeeumloF+JyfHJyQtMsqLyQBfIItnOOpqpKjj9/dlnThd1tRgUzQ9lH/TSIDI8FV3vWpyf4vhZyhpd46IzFGctkwXiRMBmnFavTtbh9P32Lhw8fUlXCOE5RTB+Se2Ox/jWP/x7AUw44kwS/CEnd1w79wKh2wSBigiSxQQxjz9RNpfC1RoV4i6CdYQoDh37P2ekpJ+s1m5sbNpsrPv34I55/9RXr9ZqEdJAnnb8vlrmLFmMM49gr40O6j5JoeXGKG2WzD4PM2g7jDQ8vLnj3rXcx0UBM3G5uOXTjfNTGwGG/4/NPPqVZtLSrJbvNlr7rid3IN772dX7j13+ddrXi7qsN28Oe17cb3n/3XX7le9/ln/3X/5SPP/mYH//4UJLx66sr/uJP/0x1lGIRJK9PT3BVzdlyzdMHD/mVX/4uz569RbfvChIZ0kiTatbVGm+8BF4N6jaPWgVhNRHARrVutSIUKlRmSbpykIsKpiQSScGSqvE4pItbV40k9FkkPgfoKeqhLwlRNFkVQFfKMVIfxSa9rcQCOQvCZa0UY6DSjr2UPkmfa05aEsIJiUkQ5inJv73aRIuGg7xOBg3zIyKfcVBL5CyunYvEex0a1SYymhCXLWSNuKrompbRR3s0MiVd6oTFOmF5eVMXumiMYmObcqFuwBhJKKva46MKNmvyl0cOys7LAe1oK8aUaMgshsA9Ub6kmgbWcjgcpCvBPD4iLj5RZ80NjfP6WQMpCD3dG4P3ookQTWJUVsdhe8Bby8Pzc2JccnGy4vb2ltvb2zLW0aVImITxSEI/mxSri8WS5WrNernCWctus5GueN+x3W54/tlnnJycsFqtRCBys+Hjzz9jsVzy3V/9HsbA/u6Oy+uXfPbZZ8WCerVaYTB89PlH7Lc7Xnz1HGc9bbOgtoZl5am9pXIwbLeMYQITGYeRFAbatubhoweio3S34x/8B/8O77//PndRxuOmacAn0XUaYk8cg+g8WUtGGLsg4nzLtqXxAiTcPb/k9vqGGBKVrVifnjJNE9evr8Qa21AONXS1x0rYGQ6IcaTb9gJWOgVKo2V/s8EfKk6fPMTVlsZ7GZW1AZwhOrGHJVl8kuvvnCeYSLKJ0RluTeD29oqbQ09bCZN0uT5l7eHtpw95/vqa6xd3TH3CRMcUA2McWVfSoQt5h0bZZ1ELHqknZI8TcyHiMabC0nDoeobdgbjtMN1IdXpKso4UYRgC+/1Qlvr69JS6aahsAmuoFqLxUy8aLA6bHPu7LYfdnt3dHdM4j6u52jNay+s0cBcmKjqalWdRNTx9/x0uTk4ZveFms8F+tGIyiYGRMU2MKeAai2sNN5tLuqZljD1t23Bx/lAEiadQJowzIGCj3kMdnbBK5zbWwP5AnEacsfiq4uTkhHEcOOy2CoJVtO0C5zxjPkuVoVBQdyijUJUyA3a7HVXlefLkEfvdhsePLtju9xwOO8JwwISO2p3hnaM6WWqMPlMGpOrohL7EurpqABlnimESdmHTYqsMhlnGQQpcGSmREZlhEt2h7XZL3x9mds8kyWPrG4ZhYOgHBZqsmg244taKEc3IbgwsFuIylrWWBHyyLOqmrA9pXIkFsmj69PT9wNXLVyTg/MLhvePk7JSxH0RTchyULaGi6YsFYGQ82Vjq2heQJo/t59Ei62cANkYZ9wXtjqdc9NqjbrDokDnjVftS4rurTLkGeUhepJOTuDwmBBwjsWgbzV8GATG9jumOA5NqX7zzzjNhYRlL1x3Ybe4EvIsqtF5VNCpGXymTK4OLZb3G+dxp27YIpIvm0ViAPmdFJN5WS5mudWKAEUMU7al+T2UFDG8XYgrw5MljjLF4W5Uz/dAdOHQdYxzoQ8/StVR1xenJCQlhQgvgPZ9dfTcQp8A7z97CGsuybfVMjGJGYg2NsgYzYJQ/kzFGmjeN4dnTx1TO8urVpWytqafbBbqbW5q2ZXmyFhMCKywTqU9ks0/ToURr72p85QFhQm3uNoyjsOK8l/FVVI6C3IC1UihMowrdGy9SCr6in3qGfiig1Gq5kiag8zqmqkWrtTN4GROWhE/q/abpVySx3W149fIrardiuXoPb1eQKhIH+SHr8w8T0sQUJyqnTVE7aQUs8thZW0qANbmu0zSVjyXnmN6OJGLpAs45eYlp7oZLgZYB2yTgS6Tcr5xrxhjlbEDHVfOZYqDSXA7vdWIizFp0ysQwqSGmxD4EbIy4CepkqCM0VsakJxe5vdnzf/1P/hNub3YcxgXL9QX/3v/836OuWryv+Rf/8l/x6Wef85cf/oyu7xingVdX1/zFD/9SC03t9mC42W+kRlKRe2c9xjuqxZpDH+j6WzV0SQQHYKWhbA2y9SXeFOxacz9pkAkbiiTNxMlAtJbNYWIIhnGoCNEyEhnjRDcdePnJxwy7PS8vX/HBB+/xf/k//594dHEKTUvCkMIMok+TODhWmluno/t1zEIJIcy4kZlBh5SkoE3672yUQ5jvqzEGi8TLiAFX4epWAKwwYuOISRaTTZui0ca47LEUxQHcKDia1PEwKZvY1w2+bnh9e8PtfscvffEl3hg+fvCAZC3ffu8DqkVDtagZkmgsESMmBCwBg7LQ9DNk7QOTdeW06WBUGy2GOMsteAWFjWgF101LGEd22y27/V7Xjug12qwHl+SehwzWlVQ//ZUI08wamx9askhM0l8JpJ+Pf/npkoLVumpJiYiCweRb+3MvPL+n/CX9/8ykym+31D7KCjsGtNDRYvQ1pDIUEwynteoUxZQjP4/BkfWZ84i9vI+Erxpdl3IXQtSR/YQ6kQeMF3MD70XKIyqhY3/oi7t8DNqEGEeubm4Zp4lpHJgOh4J4RgXJBgWeMNJw8a0I9UsubAjJyNngoWmXWsNqrZ1EXiNMgc3mhnEYeP7lpxhnaBZNabyfnp1x8eCCi/MnrFfnPHr0iMVyyfn5A1arFQ/OzqQczw0lYyQ3MEbYxTHQh0NZA86Jhuyru9dqYiTNvIunj5mmiermpqyT7nBg6DuWg7DWV9/8OlUlLsFtu+Di7ILD/sBut1ddV8OiXpKq/78DTxJ82mqhVFBBuYZhKGNFM7NInHKMzjymrNqWUTljqFScNcVI27S0TcPJesWiafmD7/8eP/3wQ/Yq1DqMoxb3sjULaycmxq7HOSdjONr9PBw6tpstEQkeTpPl3BHDiGr7Vy9e0A0HhiAioMa7otOQO1qRhB1HXNezWiy4WKsoWFNzd3fHlCKmstSx5ny1onaOMPTcXL/mxfOv6IeecRq4vr5mt9/TT+KY1dQVi8WStm351b/1m6zXaz7+0z/nyZMnPH3yhHax4GZzK4meFycfp3o9wuiRdNVldNOgXb5sw6jB/bi3kBSdj0mBFLlXkFSfA9q61jEvcUazOchpcBTAi2K4YFBmjFy1+RAqq2ZmQeX3WeKqmcGdkkSl/P056Dn92Whzl8AqK0s1RsJxK2QO6McgOxXa5fX3Anfu0P1cV8ccdSE0oGVE2Zqsc2Xnzr08WXk+kw/to+fNguhBCx6nbAlB4pkvaJoPiZx8xRDmjnW5fPOBb8idF3lN50WnJ9sz96qBlH9PEpos/K/3QYO8bbQg0nFOZwQ0s1bGycQNRJ6nripOVmsqTYxTTDLOME3c3NwIxTOGkqxcXV9zt90Shh6L4dHDh9qFVsFeK1pKXSci/L7yPHjwgKZt2O22QKLvepq64e1nz8rlrWopaNb9mqZuWOmIiLOe5WLBFAOXl5fYa8fl5SXRwLl37HY7Pv/4U64ur5imgKuUCtu0NG3L3XbAWCPiukYKTKviaeMoUulZVDMhBxpBiuZq0TJNo3yWfCiqg2cGGEE1Z6wTkcu8zuaFIEmWAk+FajgF0hiZtgf8sqZaN0xxYgyDgO+6PyULMCoCHok2j+taknG4Zkm1OKH2hso5Fotzlq1jUdfUWWtpmIiHnspZkqtkBDaBcbJvE4iuhRMmVYwzyCpyYUao2CExxZHpdsdws2Ha9yJi2I1gg3QNjYwQ+KrCVV5cCa3BVeIuJlpHiW67kwZlNPSd2MHiwFlP3dTyfuqqjGJ5I2B662sa7/l4+4ov+xt6RLhyGzrp+GBJIWLHSONr6qpm13WQDLVxeGNV+0jj0BHGnoGEeU8KEyJMkXGccM5TI6NzTllMta9w6xPVvKlUU9BhlT0cs+CykX0cQiyOT91BhIfHYRBG7u2G/e4gWicpd9oDh25gs7nDOw8p3hP6nqbIoMwOp920Ydzl1SxnjKtk3EQdKQUkkbEWl63rSera1UlRqJ/lTacToYN7BYzls2YGsFgNS0HRmIqmFvMNqxqN0mqUBN3k+GeUEaZx2SSx514uhOnU6Bpw3olAv1bJUxDGotFzRAooX+6hd7LesvaUjH2n2cnLSiKbsKVRkbPrzEgKKg0gibjG+3j/7JFxHKRbCJq4SjTxWrDn7m/RP4qBtpGRx6ZuyveykHuIsqYzSFFVnrZtyl7MLLagboXGyjX0WsBrW0qSZX0Om8WZUxKgEEMK4u4WpzCfk2m+LxhDP07YyVB7+XBDnIqGWkIKjfXpKe1yKW5pRgDAGRCTP7lx1FQNvrl/hjtnqXxNrKT4rCppCESrulzp5zXA3nr4mJPFisfnD0kJHjy8wBor4EXlVWBfwPRazxbpNgs4mbQRY624yNnCQMrvySk4XOuamp2t1HlFcB9E8wdjZLw7Zm0sBTDLWlEtL226zqChaqxhNSAbYlLR+Wjohy13h+ecP/Kcnp1QKePW6DmS2X7GihNSIovVGlw6en3ycaQ5hDK6TUxgooADJudhRyDEG43A/MgjrZJTRqzzZZwEVJNFwcxgY8kBYdaIym6bMjmQtOgU/bHssF1XskurmEhOJipsjLiQqNS98/rlK14+f8kf/8kPuL7ZEt0ZVWVpW8t6fcZiuebF5Q27bgLXYiuHsbV81irKyKivdR8aYpAzMdp8j52ewaqlmVTiAhnbSkmaxtJMd/r5kgIYsq4Scj+l0esLUcMaGSvbD5FhmojJE40AT5IrJ6pVQ7284LaDT754zX/7r/6Qy6tbvvPbfwfrvIyceU9b16p5B13Xl70s495qsnDE7swLY2a5yD0qwEZeOEniX0ZGcnaj4Q5rZpC2bRvJeRWwtCYRTZy3Vs5btV4hxXlvW4M1fmaKh0mWZAgiG3Bzw+1qzd1+x8IlFq0X6ZeU8FYA+QcPH3K1uWXz/IVeYP1zTNjKn1H3YI7pBeSJqgGZYHe3VcOsN5vdimeVzVWW99G1TaUeePMHjiAk+dGj3033/mLufT3z08x8XMl/U2ZO3nuBsu/Ls96/9eU9maMbaphDwXH9mRdE1kcyx98w8+/lN1D+brKOohVt4/y5svae1c9kc16ayuvaYAnJSWwl67DKf513+MprA1GBpxTFiChG/rf/0X/E3WbD5uaaq6srrq+vub25oesODDra3w1CuumHXiaUQqTbwdR3JU4753X/oxiIrPnKOdGkbRqy+6atfHnv/X7gKlyzvTlQuS95vl6LudL6RLSgHzykbhoWqyVN01I3NWfnZzTtgsVCHHuNX6tW3sySH6uROAUye1s09AyrRW5KGpqqZhrX9MNAjIFam391VWON43DoGfU5rHNKxJhr8H/b4xcGnmJKUpisVvLkMdAPA/0gbgEhzBoJY99hSLgswJYoB0v+8LmbGEKgaWqZi2xbvLX86Q9+wO/93u+JQxCIDo8+dxYZzYf4MI5U3nP65Alt07BoWy4vX3N3vckxD1dVQhs72riH7sCnX+6wXhZgcEYuhwb9udMJZhiwCR49fcbjhw85Pz+nWSyEfhsn7KphYS1LLyK9Y99x+eolX3z+GSGM9EPPJ599Kl2MqqKql6yWCx49ecTFw4f8z/693+XJ4yf8v8fA+uSEZ2+/zRgTr66vOTk54eTkRFxXvC9UfY6CGMge9NYK0HY0giAPSb5MQlhRqvcUU9Rxnyzg6kWnJijQYbI4LlJIFook5HMkjxvZ/A2NCRE9kDTAhZK0oyMjpsSznDjnhyuoey6/5XmigjWxAF2aiHAEwBjZZPl1szCir7Mm1pFAuwJvUa8JMINJxz8TQxmZyeBTHvESfZA52cojIhJc7zOXBASSkUztjUvCbx3JHovIcfT64pCT53mPXcysVTtODCGLUurG91lE39pifSm3SA9AN4OKVl8HK24lrsr3bAYBKyufzy8W5bN4a6l9RXNScXZyUtbbBAyDXJdR3fYOXcd+f+CLr77i888/4+UXX2BS5O/9vb/HyVrAonEU0fJxmgQQNVA1DU+fPsF5z912Q4qRvutZtC2PHj6UsR7VDskaONZazk7Oy9jcfr8X8fDnL+iHnu1+L6yZpuX69Ws+/MmH6hYXsL46Ap4WpM0Gg6FpWhUBnceHhkEKf3E7BGMSI4m+k3W3alvGYaDr9gIqpdkRKlvOQ1LQxhGDFBi5aCv0YWXRJWvAJJKJ0MvPjps9Flg8OiOOHdM0yCx53pPWkJys/aDaH6IB58BUuHZNdXJBo2POq9UDVgvLsmppnBcR8H4kbDvqM2USjEE/r+zRmKBynqqu6MaeGMd5r1vpbFbJEKfIOI0M13cML64JSX7O7jvQItv6Ct80LNqGdrUoosyZxVBVlYjB394xxMAQg2TKScAO7xzLk7WA9bXEzLqpRCgRQ1vXOGv5y9uvGKaBwzjgk+U0VdSuonE1jKEAT03VsD0cMMlyZhosVhgQiDMObk44JcmYRaijAlSiqxRU06YSvQLde1VdU1WrAsbkGDA5xzRNHA6jQkC5WBNdjoThoM6pICLMwziyvdsSJxmn9K5iHAP7fUeKt3gdc22amqZpRC9k6AvwJEwnw2EQ9pP3VoVmpetfFRe5eZ36rDkUIyGIXbFR4KmuhfUZdLQhpXkksG2l6aJBqTj/TdMkQELVUDcVdS39W8lZBXTLBWdpyuTER94Jhsh6vcIYQ9vWJd+wSUelxlGE4BXkss6Q9RHK6Fs2IEH2bVDwImgHt7ABDMIY0MZH0hibkoDM83OZozE5SMz5kjWpaAfJMSTZu9XfCyS1g9cRl2lk0basV2tx7QmBYZjKOR7DRNd1Jd7XlehO5NHeGEX0veskObbe4f1SXM3ymafAp+T1ouGU13mlY6ZR84gsmB/1wCpsMaAfBr338rmHfmQKE+M0sVwuWSwWnLcPSMB+eyfXOkSywGGWGzgcDuIG+WghLrH6PlMUVsVC11I+z0pLSzoq9+6HtZbVk7cE7MkkJCs5bj/pSWq1Wx5CkVh3eSTViJ1CjDCFhJkSxmdQZl4/3nvqWtiDqRTIhlw05Vyl8tUMxKie2ptaJ5npEUPUKawM9MyfD1MBgRQHCYkBuv6Oze4Lnr37Ho8ePKKuW81P5OJk4CkRcd4WAVpAzCCY86pS7hqDc3KNQgzEaEuhafM+iTMgkHVXZ5adxIucO6UkDno4SmOQGAloPqWuYbkyjZM+7xGQWPL1ozoEEk3rMcZRTwj7qPKiDzoFqral8p7N9S1ffP4l3//9P+TyekO1fqJswj0PHj/l/OIhw5SYQgK/wrmInabymZp2KRpj2QBAXePGvG7Q6QIF2YzJo8FGneESKUxgHKaqBZhKkXv5YErKQDNEk9eGCPuTEvs+EOMoIKmFkQmDsESX6yXL5Yqr51/x+uY1/9U/+Rd89tmXvPudX6VuW643d6wWS6qqFeAswX7fEaZJAVRLauY4mt2z8y4r+a9RgKmAD1o7xFTis9yW45xYRNCrqlLgqWUYZfLAegEJTLIlt8tAmLNyJoSU815KUwNrC5Ag4VRGkq+vrjhZLrm925AqS32yJOjolPOOpm14/PQtrjcbPn/+sgAr80ifQjVarDOfTJLL5ZiV5EyIBDaHAdCxe93v1mRCQN578rx2jlpyv/Olmsuq8jBH/47c/77ysY5+0ehX3gCdNEablApQ5si1W76sfwOQ8MYbMuj9z18yzPGrNOdzHLj/FOYIgIJ09B61KWRFN49oIQN9Ba3Kl0zO5GPjH5eOGnYF6MvnmuoMFwMO0bFdtgseP33KN7/xDQ77HbdXV/zoRz/iJz/5CZ/87EOur15zt9vRDz3XNzfsdjtevNhJU3mc2A/dfGmMCPxbJyPBWWdXgKKWZa2NfD3fQ5I9McVAfxjY3OwYDjvC2Bfgt64bvLKPTs/OePrsLc7Ozjg5PeX999/n4uKC02fPaJqaanGK856mmnM3kTkK5XNP04Q3FrvM98KQtKnW973mmHJPvJW9uN2JXmcG8Jxz2Dfq3b/p8QsDT0PfyxhOXQv1ehrpOpmBNNoNMyliU8RbWYCVd2VkNgfKGKIm5NKd6LoDMSxovOcP//RP+ehnP+Mv/vzPuHz1UhJzTcYXyyUPHz4SgMR77u5uZQRtnKTYWK44OT3hvXff5a233+Hd9z7gk08/4fmL50zDIItYEyLnHJIMyFxzCBO+8lRNzYh08MIkei2ZRjaR2E89N/stn372Kbc3N3zw9feJJnFSWVbLFQ+eXHB5ecnnn3zK1fUVu77jW9/4BtbAME5UVcWzt9/m3bee8a0Pvi5znimx8jXT/sDd7UYPcEnQ67ri7OyER48f4Sqhrjea/A/DKMwGnf+WDoAslqw7Ih0L3Wt5o+dZ12QwydL4Cgw4HRsy+jMWV4Jl3kU5mYhocayHTwaIDHOgIRdLxwvxOBCRmPJmm+bxMulc2yKYmXWSUsqOQUYCZcyuPgkTy9PLc2v36zjZyUUyPpXOOuaIoaC/l8GiSGLKySJzEM3vv+87wBTdK2eMipUP4qTlMzPPlKRTXs9R10LfHwdxFDIJloslzll2+y3DOLLf7YXauF6VNV8ok0VoTsqspOMUzlP21xhFT8M5h/WexWo5F8Qp0qv4nBREar0ZpvkaK8BGUhDDzqMhKSWmlBhjYCoJfiorwep45pPHj8juS9Mo4Nf5as31N77JP/kn/yVffPE5//gf/+dY6zg/O+fs/Jy3nr1VHH8SRi28hT77+vVrAV6NYeh67m43KsBsOfSdFCh7EdkeOnGxitPEZrPh7m5bmHCSIxhsAIejrRrsQgr1i4cPOb84p10sJUFXx5xpmMhMpEqLXdGqE6c7a61YuSNJZOU91ogA7+bulq7bMww9rpbOaNM0hGlkGnoBpYyc+ta40um2KQOdEn9SyERfScoMsN9siQZWQ8ThaZoVkuLGsgeCydbeAnS2dQMm0Q8j1/3I813Hp3/2I0I/8t5732AKibMHZyy2d0Rj2G138MKwXDyiqhtZcyUrksxoigHRHFfBTQ0bcZIZ/hrHMHRMdzvCpifsJlh7zJHRgF80VE1Du17hmxrfiFB9TJFYGZKFYZTr5VWMOZ81VmfSrbH4uhLtBm8ZTSQEWevOWKapxxhETNQZcfNKBqInGsdgwCwbal/z7W9/h+9+89ucnF1QW48ZJd46WxWwvIAaVgjjXd8zjCOH/U6cDPuOum6oqprzM9GV8nqm5aaBSeKAsrndzmy43FhRpmLuzE3qdpnHV3Li5KylrRuWKtz8+uqK3XZHilBVDY8ePaZW0C3FSN/L2IuvGtrFGuss3aEjhEhdW7x3rNcriQ8md+LVhTLORgXOC/i+290xTSPOIJ83CypjiGY2ZbAKsIkVemamzjbARhMcWT+pjKMqf0zOG2NLLAyqqTNxH9xaNHKuWYIUcoiIrG9bUiNddatnYT4n57PClHMupZntClpYG9FRmGJQBlrU55OCIoyzcLi1Fm/F6TSqI+ZxcySLp1pnud3ccn1zwzBIsfL1D74m4JwW3KCOclMoMR9MEXvPa3G9WvHBu++WVkRd1yJTMCmIpqyZ9elZOXdjSnRDX4DESQGfvutUl69Rzb5IR0fWGTPGiHmGfoYpSJMk39uxE+e8FzevBJgw8z2vW9XN0/PZN/IaAVHn8NZjTcK7ijBJXIlRLN2lGSkAf3BW9fX0oSy6qOz1ssyc5CsxUQCKnDk4srNrEjaXoAMYS2Hyy9u21HWr7PsR5ytMHlVPYlhRGkSg+/eoEHJOc4KkeHlkYiAzg6wVZ8KsFTfp+pYcJRdkkVDcW0Sb0SaRr0hq7zVNkbt+z35/oJ96ls0DHqzfw7laRrLjpLmAKayPzJxWAc1ZdudeY1BL5XzsG7QRZkuzY5qCngMISKe5W24eJyhN5Pw4npgobHCjjexpJPTaHM0M/yLAnO7FEWGnzGNRIimg9zREptCroU2kTQmfYLc9sL/bU63WLKKlPX/A2I8ctguCX7IPjn6KhAgYJ2NFTsCRSKSfYDpkEE2BaAxBY7xTpmkMUwEsRjWaySZBmZU85udIwtY2Vk78lMBouRZNVhCaC/XojAivN6L/aaKFFAlxosMSA5h2RWU9n37+FZV3dLsNKQW22z3OVpxiGUNiGCcBf5RlL/tuZuINozTcKmUW5/hpnWhhZmc/75xiMWk2wtAlpJwgPS8qTs9Oee/99/jGN7/Jxx9/wuHQkdlVubkiI3pIAyJRQC9jVMNPAXOn+bLo98FbTx/z+PFDrrZbXl6+4kcf/ZSv83UePnksxkYxYKuKZtHy3e98lxAiP/jTv5DmoFPtv3gfCDxuNue9mR+GrD1scd6QYmA4dGU89d74m+wcyr/uY43zljv6+jHe8+YjX5f8S8cwQL7mKR2BTpC/eq+Oy79ouE/2+mvfxBGwdPxDBpTgaY5qIPm5Uq/p1/NrzWCc1KL3Pnve4/pab1wa+XIpRuU9WGvL2zP5DR39ojWiyeqi5BX9MGAAX9esnLhiL1ZrvvFLv8Th7pZx6OScmyY2d3fc3t7y8UcfCRGn60sse/nyJXfbLZ999jmH7sB2u5frFANj3xGGseQvxuRxOZV90ZpyvVhiFw3WRGXISS6YYqIfenbbO55/EXn14gXWWX78wx9S1zUPHj6gaReszx9Q16JnXVWVaFurmUzTtEXCoNS2+ifpishrddAmQWGiRnUdtYZeG5U/p4v5Nzx+YeAp67VMo4yKDP1QxLfqtlF3N+koOi0GvBPhthiOOh3K3AghiEhfd8AZQ183fPjjH/P973+fzz//jO1mI4myooTL5Yqnz54VCrPzjt1+S5rkAFuuVpyenvHWs7eZxomnT3q2uy2Xry9lDCPNjiwZXRXRamGhVE5QxDRMxGQKTT4XB4FEP40iJH75isN+z+ZuQ93KiGBtHRfn57x68ZKry9fsDwdCijx6/Jimqnj+1QuWyyXf/ta3+dYHX+PXv/vLXF5ecnd3R2UsU9fTdwfGQRJN6wxV5VksW07P1uVQ9laCe1Ir7SloR9XdH6vLG/M4JBbXOGswUUZPnB7ax2NcxwCDbEx51qB1Zkpzwqh74edee6bTpqPnMfeCREgyllPU+WOUQ8OiAFTupEjgF+BKDlQ0gZ5ixKGidJogBT0kY1Ih5DyGoQluIun1mhlO1gqLSlncEh9SnD/fEUgl+0ECRtu2yuJzymyYAKt09pnZVw4aa3HIuE6IgTCITkjlKqJz7HZ7uq7j+vqadrHAeAl8XhHrvPnl2lswei90Bj6olZlYXoP1AmRURgDjcRzl+kwTMV+XSq5FHmVNuh6cMXLgJhkzyMBiNEa6hkmEUPNpl4GnWouS05O1JBmRog9xsT7l8HTPv/6j3+f58y/54Q9/yDQFHj58xNvvvsPq7FQEK7OYvVahMQT2ux3OWpZ1U9yS2sUCX9XsdwfGUWzTjYGgIo7TNHG72XC32dA2i6ILZo3FJoPHCpOjMhjrOD8/5/Gjx9RNKywcvSBhysW2ApbOiXg4RlzASDSNdCvDJBbMJMQ1727D0A/CIlBKfVVVkCITlBFFq5p0+RA+LoRNXph5f1kBYIdDj60rGCK2stRVyxQHQhpzACAxx7LKWlpfMYSJYRrZTYHrfuSHH37CYbNjN9asVkvOT5c0i4ZooO96uE200zmVaSV25opENkcZC8ud6bwfY1QBZ2thjIRtRziMpD5iT2uoHBYpWuu2oV60LNZL8A5TWbAyphkVaMvMDldVWG/wlS2MlzwCmdkAyQnoO6WAxxGtYYwjhCTONM4UYWKSk3WaEqauqCrP28/e5r1336OPCRMAvXfGeJIKAOckwVcyptSPI33fcbfb0nU9h0PPgwcVi4Vo1ywXC6zX4sDIeE2cJna7A4dDzzCKkYbVEYwQxHQDI2ygcRzxrsLYpCCv1Z8XbZvMhLm6uqY/dKQkTYWT0zNxDUuJvu/oNz3WSnGwWCypqoppDKQ0UllPXdes1ydk5zljpOjPzld1Xas9vCGlQK/OX9Jw8sJK0dhXks6Ejr35e+dNyoUNMvqTwVZDmsf0oTBlBXwypQNemhtJY7tRrQNQQEtAC6dxGu045/c1jkNJxsvRmQuEHAAUdC7MD6nQ74ESDgWTJtHGMUdMp3nMSk/H3PUuoAR0XcfNzQ2Hg+gyvP32O9RtM5+pRpoM0zTJ76aE97WeKXO8aOqGk9WKkASGGIa+mLnkRkDlHO1iUcSzs7aLsaLJEvRc7rse531hDpD3AtA2Qud3lYjni2OaKedcBstCTGzutsSYipuv917l30wB1qS5EgmT6LTlhogxhsFXc1dY3zNJit1jfUMDJCvzMSGl0n3LSbUsQ6N6oKk8v3w/FSa3yestqX5mAV9McahzQcYOBQiVdVYf6Wdl19zM8ndZ7yavMX39oKCpFPZyLUueMU1lncvS0+ZRCKA5d0pSWGWNE+OsOCnue/phZJwCTXXCun2Etb4AP5CI0SpYEss+Q9dWbjqmo3NHrvMbpajmh+T3qLnB3KgryVnJy+6dbWbe/zmmee9KBhlCEEmLnPfkvFbvRy5c88uU+w06tokwbqMA1aNJTEaaWTFBt+s47Dtc3VAtoFmtwE+MwZFcwxAtQ0yEIJp2yRhBM3VkNYZZs1YuknySqIUkzovkSJJcSq6/stuM020yCyrL71sVEneSYxhmBlr+mPqBBfzT25bdE6MAHhEYVX/MVQ3OWF5f3bBeNoz9AVd5WSNBYAnZ9zNjreTMKTNwEtM4FlkEn+Po0frII7yUBj8/t2ZSygY6ck29dzx6+Ii3nj7li8+/5ECvjLD7I7JG11BeA/nhvBfGSRQd1hKHDFycn3J+fsrL62u22y1fvnjOw0ePOGZkobqLT5485fnzFwUwK+dATLp359dMMd5ba8cP0S201K4iTpOcxRw939HmyZXTDASVTXV8xY7+/vOvl9dVud6YEivma162xxu/I/+1R18vW/bnXol79/ve2zv+YlJkyZqjbXkUV/IvzSlk+X5K83SM0bMhlTd+dP3fvDJH30/lS/JEOe7O8eiN8eska4AkOZwx0NaNjOOuVpxfPBCA08okF3qm73c7bq5v+MlPfqyucJ00ecaRn/70p1y+fs04jtze3t5rdoQgzOOh75TlLZMWWc7AeWlQ1lVNU1sqb5g0ljnnGMeRw2EvWkzdwDiNxUk4pSSi5G3L+aMHNE3LenVC27QsF0suLh6wXq9Zn5xRVXXRFa3r+h7whKGMgQ/qHJqvodTD8idMAkR77+fG0r/l8YuP2g0D0xTYIaNvu/2+zGRPZsK5KMJqxhTGDUGS3rqqORy6Yt0rQoBSGFXO89MPf8Kf/emf8hd//ud89LOfMg6DWrdCSgbva6Fkn5/z6vIVL1++4Hu/8su89fYzHj9+TNO2tM2Cqq5Zn5ywvbvj6tUlv2Z/i2dfe08d4gI/+Dd/wuZ2w/X1lS5GKRC9qXABDJGmronOCz0zCnPEInPUh25PjBOXh47KeX7wB3/IW2+9hfu1X+Pu+oYvX77i6sVLbi6v+a3f+C1+/W/9LZZWrAb/9nd+lYtHD/nbf/93+PKTz/jP/x//L9rFgrppuLm5xljDs7ef8eSttzg5P2OKicMkAmGHw6Hc7KrShM4KW2sKE85AlayMG+WAXg6EpGJ4shuzyHhl7b24FEtA1+LKovRuFX402XktYaMm2BocEplGLMm30SCQu+XzIyfyaFFqRLMj06qJ2BSwCUIKOJEPphS3SMI1hsioDjkxRdWnUmYROhpnkI4lBpdEYBwExHJJQI2CQmZqObG4vJDE2cco2JVjZU7eSRKgh06FctGEeBB9hUmLQY6uQTg6fEOIGBzGCLi126vVeBJNlbZdCB2zroUl4T2Vl/GPnBRkhLmu6zL2AJk+GksHKKVEP/b0fS9AZ1UJa8dKwb5ercrooLy3UOzJm7qm9pWOvs3AoSQNgspLQI0F0MnBfghxXlPGYLyhWbfUy4b/8H/1H/KPbv8n/PCHf8lms+H5i1cslgvOH1yUg/719Q390HNx8YCUIi9evqTyFQ8fnGMU3BNZVcPJ6XmJPfk+7fc7rq5es1isaJpFSW4vLi5YtguePXwiNqC7Pf00MoSJd959h1/5lV/F1Z59tyfqeEYe4TseE668o/KO5UkrBXflhVFU1fTdgavXr/gv//E/5r/5Z/+My9evqXwlowMpqWC/Jbd/SrKQZB0bhI1FMsQws/dckg5Z8LqXjLAfr3/2Je3DM1bvPuaAjMqGOMq6dxLrsi6MOBMa8BWbacSyx1Qe6xyfP/+Kp48f8CvfeY/nry8hJaZOmg6hH0nTqFaUiRQniSWuIjqIVmnmgI2yh+IolNcpJcbrO4YvLqWQOmtZPjinXrWsToUOTOVkz1aOYBITEeM8PnmMlzjgnIxkmYQK6abCbCsAgHUYZ/G+JkYLIRbXzJhxA5Ndxqxq4Xk5n/Ydz1YPebK64NHyhFPfcK3dStM4ASMzpJ4S/Shs2v0hMk4Tr1+/PlpnD3n//VPWq5UA1E6Sh2ErI+RZ6yClpIm/xTnRRfJOOoPOrWQ9k3RsB8ZBmDY4WRPr1Yrlcsnbb7/N+uQ1wxh5/vIl+/0eYyxt2/JER9FvNxvaxYLHj5/QdQf2+z19L7bxztf4uhHXOGVSZQe+PEqW2VreCWB/e33DMA7FNr6qKsI4cRhD0TWLQfZ/jrnWyQguTNRNg7WGcVQ9JJfZSTK+euyG5OtWi4V5hCczM+eEUh7GOAVpRh1h6/VcczrugRR7KRHHgaryrNdrfZ5UBEeDaiA6n1k9osEi5gmTMtCkSznEMR8SOGUWCvCk550CYykmxm4sZ+o4jex2O3xd8fStp0whz38Z+mEUnSvrWCyXxBhowoizqomjOkabzd0RY0Qd7KzREXGJNdbXwo7xct36bqTvew6HQxFwt22lmkkGZ2u8bRingX440NYNbVuLplNM+FqS5WEcSCPse1OumdPzJOuYnaxPpPhVcfPFcknTNjLGkzuoSG7SthXWgD8q6E5PxdlPWEvQKMBTXPsyWxsYUXFmBXCCbFa9pDqmY3153ZQSYxQ9mEpqZV0es97RMTMsjzfGGMFEjJVYKGPvs2OW7JnjQZgMlCjIomBmpS6KVsd0peklMb+c7UGAi3vuYCbpa6tHnZOco64XDFPH3eGS/TawuzvFx3dZua8TAgxjV8alnU3lNdFG2wwSO3LDTYoMKXimadZKtdaqM1se7slAIjrOn8FpzS+jAO1G94lVEPoIuRCpBzuDuqIJJi60qez/fBHmOJAvcyliyY1uWQQCzsEQRnbTwMq3uCny53/+Q/78z/6CTTdwCJHU9TjjOTk7E0epuuHli0uGrqNqVR+x5LsKuOmaS3LhJCfVYncM+WySHN2kRBpHUggYJwLfJhfqel1JIjptorAhyCDWfJnUhQ6MUYdFk6SxZiAMSb+fR5ATzlu89fTdxKHrGfc7TtYnvP/u+zjvGKcB5y1L17JoRMPKpoQx+d6mIuWRJxVinGjaujSw8yM3/fI9bDS+lPdvRCNuGHrauqbynkePH/POO+/wR3/0xwxDT7NcCYhkM8M1FOZVOoqR+awqjtQmxzzZu2enJzx59Ah8xe6w5y9//CNOTk/5xre+xaJtWdTi7nl9e8v/55/8V3z4kw8lv9eGSAqhNFzKOsughbXSBMvrTUHwylW0bcvX3n2Xvu/48Y9+LHvlaOxUGFCRqMwuGVWeo0VpzGRgl6MfOHq8CUPJ8TaP1uXa7xjYKuASFGe7yPzFDDzcf52j8/WN18zuzOU7GQzmeM3Ku4laT5moAFNe+8ZAeR59FZOrxqSf4eh7+W/5OmVkTYGrdFTgHpMqQMBUWUrzuIwQIyxtdlxFmlrDqLVmiFSVNJ+jnvVVteDsYc2vrU+l/jwaMf67f39PP4xc3VwzjSNxGum7nt12x+vXr7m6uuKzTz/h9vaGw6GTNZZiIR7c3t5ydfWa2yD5Xl7PC20Y7XY7OQNVH1beozREt3d37HZbNrfX0mD0YqRQV7We9X7WoPIe7zyL5apIJKxOTlguVyyWS5WDaHDW46sar6yp3Ewpa/X+7f4bH78w8JQmsfOehkFYT+OE8b6I5Mlraqc+jy+JcpyABjGqFpRs4JDnBr3j+vqaH/3lX/LVl1+yub2lqYXCGZV1lOfl89jdFCbOH1zw7nvv8fSttwpIBRrQrGFKkbptOD0/48H5BdbA86++xHtP3x2YxpFxEnaKdUZdF4Q14Ix2tUJgjEHmjZO85xFD1x0YjeXm6opFVbHbbNjtD3RXVww7ee7Hz57QrJdsnr9iDD2PLh7y8OEjnjx8xJcffcpnn3zKoydPODs/I8QR6yyr1Yr16QnOOYIKoYdJ2GXWC0gQXSyHe05QbJKglZ08Ygab8304alnZZMrBnLULE0cJvm7c/AJlM6MjLaiwvBa9kaMkIMlhZ8lJVc5BcjDLUsQzum9yppDk3kX9yWjuB7dc/Ii7XdJuro4Ske53KErYLb9cgl7KyT9H53x+/vyercEkWz6H1odH3Y+ZFhXUptJqQZELyXQEdhnLjOa/8Znm7qh2wBRF9ipAfJwcJz0xkh5ec3Cfb2S5t3aeG87PMU1TEWnNYsLO2sLayolBvtbF9txQ9DvM8fvOL2zE7aGI0edDWEGnFEMBea11GG94+913efTkCVXdcHNzS7v6CEizxtM06UjFIImdEcvUpPdThDh9YZZVVV3iRO7KHQ4HxmHCqsB07gZk1mRO5GMM5c9qvebho4dEHQPOtP08CiHkyaw3p2wX1TwotO+q4vb6mhfPn/PRxx/z4YcfMvRD0UmJMYmkkX4uyN16U9ZJyd55474mTRSc0u2NAMTD9kC9XuKNu2cpIKNLWjw4AVJTooxI9ClwiCOLxQI/JoYUsQZWbU1TSWxPIRFGdfCKUUwYgDSK3onVxNvMy7CAqDYBITJNkdAPxG7AtBWuqajalrptaVZLrHcCLJtEMBLLAqGwNGNSpHe+JPon78d5Z+U4k3OZvFbLT2iCYZifMhkBXMd+YH2x4On5A5aNaIBYLX6UVkLuumejgJhSAWtnQWc5nM/PzmmahqqqGKdBf049QI8A7aTJcr56Tl0R21YKgKmwHiwH04sbo4LPbdvOfxatuMnlZDwEQpQxFa/C7MZZmrZFnNJGul6aSs1C9lAW6s926vIek76eIwu7ZtHnKUyy1vT9iQD2/RGlcunzPdJs+DjB1up3jsfMryvf1jueC9IoAry27Jdye+exhpgKywddQnm5pKCrIgSMisbLXtG1ME5zrCVgrRQaIvKcXeDmTyWAkYyWZjZxvnaFsZKOz1s5+6ZpolfHusVyWdap1QI3h3kBAmTRWutEYwyrGha5WRBVD8MVEd66acvoRz7bpGBPwrwNESFKWN0XDmOkeWMdmKgsQ2UqBUxZRyAs+BiVQRIzC0TeR7Z1butGClkrwFNT1zKKY47rDrlGMvKfdJxKEoEytskMIBnMkbbX/EgpqvnF/fznuPDKQq8JKQBDSipgrQygpEU9834v4FOM2v2d1+WcX+SvmTfWfjr6k59/bs7l8zHqukYB9dzokIL1XkY0r6nykHjsnWMg0vd7+j4y9jWOE2p3hmj4hHLNZYvPuUmCwsQ63k85p7j3enpBjf5O0vtSzuh8nuX8r7CamHMhBaSKNb0y249jR87pcj5zdKNJ5Y4eXZdjVpnmTSHl3Ayy0UkMgUDg6vU1Ly9fM0WRLggx4r0wB9frFYvFiqtXr4lhIrMnj1/z6NVkDeQv5LwhxPmnNSalGOdAVDaBmZ/a5M+n6/DYZRk0kFEK9sKezNcgGXKGn9mRAgSLLtkwTnT7jjCOrB+0qvc64IwTYFZt5wmTxM2jjDrnEyFKDKyiL+Pu+fuZ+VRy1yONmXKGYkrdZq2hbVtWq1VZB+Xs1sCZ92AWFJfLMNcp5WtHOagxwsBdtC2PH1fw+pIPP9oIC357R+09rmkYdHz3y6++4uWrl/c+x/HpUtZfqY3yRio/oddLQWXvSVGIE03T/JxBUHrjv0cXac7t/4rvHn855y8/9+2j+uD4dTIgdfR/5VG01I7fx9Gnu/fjf9Xb0nVbznF9b4aja5djoFKuSrV2lN/9Vc+d/rrr8Fe+jRwbjj6FmT/LUXZ972ekQaajeeV817MyRkwUl+8YVPPIO1ztOWkXFJkAfZw9lN97WyeunBEjnO1mw8uXL7m8vOT8/FSMx3a7Yjy0P+x5+eKFmCFZ6PuRcZzKuq7rpji2lmZTMBjVNCtxM0aG7njsX7Qay/XMIKie6wsdx2vbltPTMwGfViuqSiQcnK+oGxnTG/qhGJJUdYV3wjg8jr1/0+MX13ja3olYojG0zrG4uFDK/GxPn1RMXJLSwDj2jIMUG7v9jqEfqCvtNDvD2A9cvX7FJz/7iD/7Nz8o4EuYpmLHXvnqaNManj17yuMnj/iNX/91vv7Nb3I4HDgcDnz4s4+422559fIlt7e3XL66ZOg7wjTy27/5Wzx98oT/xb//7zP2Az/8i7/g448/5vvf/z7RRIKd3TGWpytc5Vk+umDsesZXl2SQgSkCgQWWyjim0LPbbfjiww+5vt3ws08+55vf+hbf/PYv8f7bb7G+OOe//jd/xm6z5dvf/S7rsxNeXV3y8vlXvPz0c87Wa+pHD7UISTx4/JjTi3PutqLzs9tsiOPEYX9gdXpC3TYQhPI5pqCjB7ZsqBgEHJsmGbfKAqk+K+UbERgOKWEj9wXBNemuvFfdq5kSmgOsMW6m9ZILZF3E+vesHeDSPHefMWx3HAqMCFwHB8Y5AjJ3Xw5S/cGo7A9j5lakJKcGYwTY6LqeFKM4EZlZ+DURwXmMOpmAjp4ZO5/Z+b0cHVYz4JO7nFHo43pdDaL5kx2mjBFhWmctddNiKoepnCbkURM2SSzz9TQmKCijmgVZoFU7OavVknEaefHiRRFhbdtW3aJmQd0QI/vDQbqLzlF7jzeWwXstiKUQqCph29S1uFl1XVcS95PTU1JGr42hdp5Y1YQ2Fg0loYpLUWWMjKhh9CBz3NPlyp19saJOHA4dVaVuY0boyeM0ETG8//Vv8GwcefzsbS5fv+bjTz/BqdDwZrcjOcfFgwc0TcODh48kdlhJ7EmZqYe6LVgtIAXg3m63fPnFl+WaRSOxqesPOAwfDROHvpOOXXTUKfLgwQUPHz7gxx/9lP3hwKOzC7y3TNPA9u7A5vaGuhEKrowoedqFiAc6ZRV5m/j+7/23/D//b/93/vD3fp/Lyytxoqgc+8NBDlg1W8gd7ZQilVdLeCdrYjiISKGwF2QMiShr0LtKmX6i75HEk7eYsJhkqF0NFmJlMc6QvCOgoI6OG+zjgcpEfudv/wYn0XNzt2XZVpzYyMpAYyuh3odE6ifSMOEWFSA6QdbIviYEzChdV4OyjjDgHdM4cHd5TdgdwBrah6f4B6ci+u0du7EnDpF+0vFALbqCClgnKJpsx3PnAlKlItC/WCy0QNXifpBxgMZVsteGSdaJc/hhJIVIHwJjigxxpN/s6K7u+OW/+03+4W//fZ68/Qy3WsDtrezPKCwjbKVOkZOMxsWg5gyOZ8+eyRz9SgTz27Zlv9+z3e5QXgLWO623IsJE8azWJ9R1w93dhnEcqBdSnD9+9ABrLCmJCHHtK642N+z2e4a+g5RYLZcYY3j+4gXb3Z6qduo2B69ev8JVnm9+6xssFwteXb6QhLhqRMy1aajGiYTR0XZbcl6bwfJwP5mPUWb+hd2SsMazWtQlWTNYMKncCxAQpYznOaeUcnUGJcd7YUdgZ+Fuq4BQihJHMvBvrDiskIEkTa+cFil5XE32jhfHVwRAqCovAJ66Aba1CFNvtztmkVEppLKuzDTp2rbCpCLqOLKX5yLBbrshpchqvZRzL+vQIMxv77OAuDg1TVNgc7chxMgUA8vVina5LOfYjEqqXlsUwethnKhri/GSPIr5hDT2uq6X88zLSH5MibMzaE1LXQvwX3kBOKYpyBi3NvWyrEF+TKqP551h3S5om0bo+LXcn0Fzje1hL2PmYyhnarc/MPYDkUhVeT54/2s0ymyIKTIpQ9ZglEGJJvqRYTgwjiP7/R7vxR2xXSyofM2k7JFsqpHPe2dtnukWBoGZmUXW2qNrCVOa2TSZaWRzc0jHaDPT3VoY1fWoVz2+cRznpkEKEBUIOxoNrNQAR5odkRQnGcdSoN5aq2Y6jhoV6Ef7tM6o4YcwlkMMYMVFsfKVFt+JZJPk3EZiyRgjzhgqV4mu1qsvuL7cs71qqMwjTlZvY9VhqW2WpQiVQl5HQY+A31yypijyEylmPZI87ia/HxEAWgAJEZ3PhWZUgCV38hMUnbmgluJ5zKMwQvLv6fuwmeWkzbNjqNFocZ2UrW6tVddVBQY0Rxm1QRgVmKqrWsz4poHPP/+STz/7EtsuaTBUWJZVxcOTlu/98rf52je+yX96e8Vmc4W3AeMMU9Txcv2TZWNIgI7aivOEnDuStBqpIYIK35IwSsUSfVwrOTYKkKWoebeVq5yveb4eRNU2NCQnxhDDVliqznoggInYaPDRUFUOZxLXQ+LVpudHP/yYrofvnT+iHwfudluqKjNeBYKu3NHkgp7FrqmpneP162sO+wNDGKjriouLCzKzdRzH0uSUnNoSU2a3KXCd8zZlEddNTbtcFBMfOcOUcWUEDIuDOmfmKQXVbZumqCC76gva7IQKIQhb+Nd+5Zf5yc9+yr/8ve/zxVdf8Rd/8Zf85q/+Cg9PTtj1Hfv9jtvbO3a7A1VVE5KYxXjvsb4q4HJQhn86ko3JazUzr7vDgb7v+ZM/+WPW6xN+7dd+je985zs8efqUqqlFhVNu41GD+g0Q/Q2cJUEZj/vry/v74PDfDNWk+Xn1v8cDkZmY8Obz/Nxr6zktjDiBfKLR3IYMx74J16JA8Pwe7j2loNMcRaECBOZmhH0DbYsZZ8tnpwKCBnM00aPvRteHc/7eWSAvpnWqzfqdBh+CMPyMEBS8l9fuQhCSa5xktFXrJFJSV0ujDqAyrWDqlpNHNesHD/haiPwP/v7vYDSGSFIY1fjjwGZzy/XVa/a7jr4fSnPpxYuX7HY7Li8vef36SqSJ7u7YbXdHzD/5TEMfGIaB7W5LUO3qoO+xXFsD4zCIPq7J9WzGdlzZe855VqtTzdsk316tVrz9ztucnZ1ydXUl+pT/x//DX73cjh6/MPDkrBT7zlEASLAAAQAASURBVMosbNW2omFgZ/pkTIGSAsYoI1oAKgBYum4GKu8Z+p7bmxu22zv6vqdpmyNnlYj3FU3bcHp2xmKxYBrHclj2h47t7S23mw273Z6rV5fsdjt2my1j1+Os2IM74LDbs7m95dH5Oc453nvvfWJKfPHllyrYKkXqMIgOC0bs2Qv9uTBHJLHJ2VUYBvr9npvXr9ne7Zj2e5yB1XpJ5S02BeIwEMcBY0XQcXd3S7ffEvqO1jvO1itGAjjtFqc0i/d50UyISl/PAqzo4oc81ihLyOaDFV3DQZITk/JezB3UlPdX0V06Bl5yQAjlM2sCICVmYSXlYFGSlOPnw5QIpdugBLL8syBUZa96HjmoZoT8OBrlEGMxApKAquhLdzli8CVQZOBpDib5oCoCaCVRmGeO55ES/bwKcJiYiNbOBVFKDGkQu9Zki4aUtbPYOFY6j0kPYlPu2RvIfXYu0y66kSqPyjtCCkx6gHudg88oe6agZ+2kHNwn3W8Y5XRk7Upr8c6rqPWkzlwU3SJjVTMFI/dBfpXM9MmFoKaqejCYeTTR/Hw/oqwPa8k08aRZ1aROgpVqrtRNI1oiSSj1VVWxXq/FZrdtaeqaNltcp0CmwkhXTZ2WdEZ6Gg3dXhhb4yDIvIxjCDJjrSFOgdubG8ZplATOCZgM4jw39D1D17GvdgIYWsPQDxwOe8ZpxPcymiWivqdUdUXVtIzjwOXlKzkUrl6zV8FmKUKTigrn1Sx73tpESrI7ShctZfq8jHEed94MAjITjbohWkztRasrsxyJFHdFPQDzUSOjAsK6mdLEgKVpa1a2JhFoKifx3hkqZ4mTgNXEsrTmO5zXRz501TY2qBV3NBCITHECb/AnS/x6gV9JsR+QceGYIqPaH7t7oxlHnXij4wdaPAjN+IgxoIVz+V29VhaVp4mJFCIpiZaFAL2p7CUbRQT9dH3Co4ePcL4igohDuwQxqUj+rtjBl3ijr1dVFVVdC4vQ2MJwyucKZh4dyMw3QEddDV1faxLkdZTUgLEyWuXkT103TDHS9500GzTx7RUMEh0jKRJCULcsvRjCroxMCszk2FfcpACTtfU0AbO2RO3yMxIPTLnm3vujMeSZ2ZoTmTKmWsZVM0itrEiNu9a4skeKlp1BbcdjiSdWR1kk8Z80vmiM1WIg6bmV+W+FfaHXwgqaK583KWNHr6c1Yt2c71WIyopyoQACxuaxm1jOzKis15nNepSoGy3rjX4Gl0SLKloRNz3WvcoJcjpqvuSnKaCUKWfJPEKgyS5S0MwaTpOAMy6BtzrCIgUhSUep9NDNr13y94wLRQGrnJMvxqQurapdl5IwVivridUkpIwkxi2192rKIIyrJBsZyVg0VmRAJWV2r3y+KUqybHNST97bef1m2DGfOGnOHwqAcnT2lgJ+Zu5m0KCwpY/XSo4/+fqrKH0ewyv5k7I+8nrPv5mBMlniEfIImzZKUEA0RQFP8rhyQmUIlLFnDEVsV3K5ePRZLJJNyejDNI7cbO4Yx0jtWpp6SdMs5Jom6X7nuCfayXoNUypd67z/49FoYL42hXHozCzZkN+LrMR7ZxlHxVXW/5qf5+eZkfmJJDdiXhcxknR8rMSrcv9m0KwAWPmMIsd5eepKm2njGOmHkX6a8FVNTAYb5Pe7YWB/OLDb7UggDVzV+YmFDTF/8JIK5YI+BQHiU6IkVcelvcnvOWJzZp0RrCRrTMbwxF84j0fJp44YBW+M/rZeAlnHMZGsKeuLGElJNXcxjDFxt91z2Hd4Z5lCdsmG+9pAc3Ff8g8jyaHzDl9XRT8njx3fZ+knvV6xMKDKvtOlkVl+bbtQB+/ZFVr+zNeKo/hW1hB5fcgeqrxnsViIPp0yf1NKnK5PWC9XeOfpu45XL1+x3++JMXI4HNjvd5KLxPlclCaH7NW/bp0m/UzpaE2mJDXwMI2SYxbU8Oj30tFqOKqV5qmQ+bVK3Cr51/17lPdAzstNul9n5K8fvfq9O2y4/4zzT6R7Xzj+ufuRtbwImek4v5qZ3/gb1++45so5hXy8fNPfjCfoHtA4WOKz6vPlVy21ijn+Zz5SJSHMa+kIqSvvp3wtlX9bZ8vzZ9ZYiXFH7z+/Rq4z81mSMOoH4SGB91BXFm9tOYAMSFyaRlarE07Wp+LcrWzmaZo4PbvgcDjw9Oaam5sbHj1+zH6356BrOZ+FMQb2uwPdoeP65pq+H+i6rjhrGz3fxjDr4QadRos6tics/kSMppwZBjGkOLQNh32LtZHdds1NMUb5tz9+YeBptVjgvGe5bGkWS5br0zIalbUcRhWZ6vteKasSnGovncEYgnZpI4tmwX6348OffMjLFy80QdNDQlG7swfnnJ2d8d3vfZcQAnebGybVVfjBH/0xH//4Q25vb+n7npubO6y1rFdrHq3PeP/ttwmDiOA9/+orvvr0M14/f8nTp0/5d3/3d/nO977H17/1S1xeXnJ5eckf//Ef88UXX7C7uxPmgqtwyVAtFkzDSOh7La4M0SaMDexvbol3e/bPL6mriserFW8/fch733iHlEbuXr/CjQeqODAMd4R44Ob6BZuXX2G7Hc8enPK9b37AdhzppomXG0Hbd4cDi8WCx48fy2ILQYqlIEr73numIK4uPjlcstiIWCI6sFG6IWEMqm0om8Y7J4lo1EVnZqq6rRSsSXmULTJMw89ZV8t9nYUUc3HgNRlwmvjkjRhSFAZVSsrGOA4mlIM0AdHYknQdTSfPXQEjTIqUpBDJr2GDJCTSNcsBQj7HqImbOwaGjg6HTOc/7vRmEbVKOy8GHcvy2ZEGtnfC4KuqWqzLK493Au7kMagspJpR/zGPM9o5eIlYf2DsR2X5iYtV1TZalAfGcaDrpIjJIm4AQ04cNViEGIp712K5FODWSwcypoRfeNqF6J2FKZRELY/aDd1QxISdd/iqYkwjIUW8shVAAqlDQAWRVNVRTz2AvZVkJ9tXr1YryuLS637oBmFNpJ2O/IgDWNf3LJdLLs7PWa/XKiIrNNXlcimOfOMoALjzRbA7JdEIWS2XdF3H3e2NgN/TxKJpeHB+QXJC82vrhsNuz09/+ENCjNSLVkStly27/R0vXn3F0O0Y+wOfvn7FNAW6XnTnVqsVIU6ls+Gc49vf+Q6nZ2ecPlpz+fIlf/zHf8xHH3/EpK6LCUPX9WqjqrbxR8CFMXnsT6npoxx2AeleciRK6LKmwb6T92CgWjYsn55hTxeY2hGCdOmbLFaeN4pqpPjKE0IixpFD7DBxYjAd0RnWJ57aO2wFVWVZtBVTNzKOARcNPlgxGdAVnIiEOIjg6DhhKnnNLiWSMQQLwUZGIs3FisV7a/zJEreoOdxuGYeRXkcgTVLnIl/jtANfEkFNOsI4CSN1sRZmgJs1xbJO2ZsuODbv6TEyDGIzHyo57M04yliCMSxszaL2PHv4Fs/eeQcQsHG5WBLGiW6743a74fmr15xdnGtDpMUYw253UKcpYfPUTUN3OLC73RW9NJPjSYk/SAwG6qaRuB6DuPKptt7drsP7irYWc4cpJpyvWS09L56/YH/YiXOWtWCdjNVVNagWXO5eNY2AYeuTE3a7HVevr9gf9lR3Naenp6obMMjv21nrLe+zEu+PvmetpVY3taoS5zHRf5lHH42RsUEMZb8cx+Ch74upgXOOyteFoZKBKmPusyB8BvKBYRg4HA4C1BlXiowM+shYo5wFwjry0kywVkZJDRCEzWa1GCVRzrgslJs1+wRkTQqSzgAaHBUgSgv2virnmNYh4uSKNLYcFb6ZBT1zYdb1vTBlzVxIW2upfYWxDlebueOv68k5J4YF+WsWUi8jrn3fa8zvVZfuRMBCKyWrSWBNwJRIDtZFPLBaN8RJTDPC1NHbgUbNZPpBHBz3+30Z+VwtlpwsTzA6ijaqi2TbVBgj4s4CWMpIUz7P5LoJGG6S7OXV6UmRROjHgZBEFF1AH11b+UzS82guzPTvKWWMrvxcKsCNMOQSFKZx0O85X5VCTwBKeU8JizfiKpRC0safxXkB75qqUUA1MqaRqOzbDP6mJLpN+fzP3XgxWVGntCSAfEqxMAsHZVlV3moTypOiFABOXfyc1zGpFLm72/Ljj75gGCJvPX7Kw4cPOL84YxMENDfOC4NoGGRN57F6vSY51wAFdvXhXIV1FTHK+/JGGEbOzGBaUm2CWEY/KSCEMQbrfRm7k30R7wMSxoj8RQEVpmJmgrUYP+uTzCfRjE9YKI7KQXVTsgvyOEXqqmJR1Uz9wLDdcwgjk4HFYk2KEPc93b7j+vqOzX7gRz/7hG13YH12zpSSsgtHMLPGSUr5kAWvrNF+HDGkIk0RY8BhsA5iMKRoIMp4itNiLgwjudkwF87CHsnjiFI4J0gRkxwkp3mGxRt5PzluOV9DGglhFFc+LNF6JhyXV9c83W05W69oxkqBzcwWlBdyObblLaTasilGTk9POD09Kfdvt9vpGpnJCPkeZz28zIxr24UW2RFSDTU8fvKEr3/96yyXS9GtUQOf7GId0UacNl5zrNPgK3XjGFk9ecI777xDDIlxGOm6gb4bOD854cH5BRdnF+y2O/70Bz/g21/7Gh+8/S6vnr/g+RdfMqkjqRTlCVLAKBM3jyXnRonJDacQSTYbzvh7tYStayLw4sULXr9+LXq91irIqbIo7qgeSYlMHxD2288DXaR5nPMYTzIKvOR6I++KY5D2+J7MABLFWS+88XrlZ45+/ugleeNp5++/Aegcf/2v+vv8GUz571/1euno78f4qNV69v57T+W/GcfMzappkvzF6P7FHLkM23nsN4+xe1/JOXWPhCKMxZmd5++B3rKXsuSIam8pZhKCTHX1oylrTZiK+Vy3+PqEi4cnVI3HH9Xn3xnzWTI3aZKOveZzCGAaB169/Jy7uzuef/Wc65tbrtTtuO/6Ens3dzv6vuf29pb9/sDt7Ybbmyvubm/YbneSY/U90pTfEYLkFHdb+ZyffvbjI0zxr1ivf8XjFwaefFXjvAMd7zkM4nZinCurv9KxkVg2JYQo7lP51B3HgTBNdIcdr1694rPPPuPq+lpB+dxR8zTe8+TxY05OTwuV+uL8QhKRcaDb7znsd2xuN4zDyNCPomESE+M0MIWxIKfeOqhqYkj0/cDl6ysiiYsHD5iidNrffe9d6qbmxeefixBYFMBEkl9dLAakX6BuGEOPqxInzYq6qqiXDdFEdocd29sN+7stVy9eEsYRPwWIkcPdHXEaWCwbQhzZ7e+4ut3STYHks4aV2jQjG8VZT0K69OMQSBEda1QkNSYR/FRIWpg2FoKik0Gthl3WLbJkntQxug/H3TYBEkZNuLOOlIH7LkJWpk8kIByjvZDpEZkOLd97A3U/QsBz0jAHF1MSxeNHZlxlJLlRpoxzR6wRTdY9mribORiWRCF/jLKBE7mbLYFARxV9Tnbn7mTbNvpctrg7oWvF6H8ziJo0iOaOZh5dsaq54bAkn8cE5eIJyLvg8eNHJdHM4zw5uP08QyuzuY4cqDg6pK2RpNmIxfesYVWihnz+EGQUruswXoSabU6wyl6QUYYEpZuVXzsXYGhnGKXWH4ck573cGx1dGIaeYRy0QJI9bhCgpT/0TCmJHbEeFvv9ge5wKCLA1grzbde2TOPEOPR4Z3lwcUFTeaahZwgDIQVup8DQdXK/SIzDIO4V1nLY7bh5/ZrDdlvmscU6VbSqKitiuuM0SAGhGm9hHNlvt7x69YpPPv6Y3W7Per2maVtcJfo64j6p90Od7EKYlL0zJ88ZyHfe4YyMio3TxDiNNE1DXVWEugKT8KsWv2xYPD2nXraiDefAVI7ojDDetDPvNVZHtd02RuybDzGwT4HORNaVx1UeWzf4tqFdNBymSJomoRuNCWc82IRzMvYRwiRxNEWqDKbl0bgYhK3iDMHDVBswci2pHM7WNFGvSUxlH1llxqbRYGIslHqj1zF3Ra0m9UnXbmb/cbTPpykcdYIkuIhWlhHXmRAZhomT9oR3zs/xTc1td+Bwe4sxhrcfP8HVNdUisoiJ09OBtm0L28cYGVMrboXG0HUd4ygFm1Vb9hw78iiKUadIcmKtumuV0vqtMbiq1sJydq7KVr77Q8dud2AaJ7x3VE2LaLjIcztfEyJ0/cjrq2sGdSNyzrE+WQu7yHqqWs72mKwUM8dAXmFlUIrR2YGKEoOGYSjxNI+OSnw0Kt5+P9ZGBXZyMVpGh6dANBIzY8oFqbx4XYnweq0AS4iByjtS2wjYkwwhjEVs2RwBDFLkBKZJxpyNMcTgSgMkKcVdxvyn0hDJXcvM+hx6WW0hRmGh2WMOgzxbHiGaVMcSLTB0Qk/XwVx453NpFpG+f0oWTS0dPXV5jCR/34ixASTGodcxxErB8aB9jkhugYzjUM6f7Ooboxb8Scbph36Yr7+VMZjccRYNIhltJ8GylfGYtmlpqlrZpTmJ14NW76GxwuqWc5ECuB2vDRnz0TxAmYze+QI4St6i10//G1PWCclXRc8zY2aNkbIGUX3ImbUSj37Plu8lNVdJZT8mLJFs3BEECFK2rTVGgVcBJlOMMlJqxE0xsysrXytDMEl8HIWB3A+9ZpeIPpAxjON4fx9MwnD1fmZa5U/rjLjc7bc7bm5u+erFS1IIXJyeUDcVOEOcpMEhrMK8tmwR+RW25Vz8gSm6ILlJYrBkRk5uYHrr9PlU480esQN0fWeAUViMBZLV/RGxyRSiQ1SANmphf7w+cpw/zluFcRqJ1pbRlaSgo1VwTGKZsKOdyaNywqBK1hZdY2FTOpKFQz8Rbu4YplEEfJMWsqoDk3MdS86LE97KGTAwyKZHznti1PUo52KKUYqKCMFkln4JViWeJBPAJAHj8gImN2P0TxB7npLruaQAqDyXQcaErXM4HTc/HHb0/QFrVD1Di1mgMDeT5n0ZhEyBYlrgs8EBs75nvhdFs8zMDoeQdeqsAqex3KcYAmcnpzx5/IT1ek3btiUWHq9FudamjNzKuJWwxoyR/LTrDlxdXdF1Bx3RPtB1Mpa+Xq347re/y/OvvuLzzz7j8vKSV69eYa2VOKY5ftZwc+oMEbUBmqUEck2SNeKM1obCGpvjinMOYuL29rZM1dRNWz5Xvt0YU9ZrXgT3M+a8GnKdlWawRuPcmz+L/uxxPZXf9fzu0TM6j/q+UWwdgQk/ByOZuVaTH5trxPtlXvorfpkCFBVdOHLtaO6dgffAJv2C4eef8s14cP+zznFIGmDze8v1Ybp/uUtsNCY3fPMUSF4f8wRNNlQz8kWOp22iAvdWMREyruDNfH2zqHGeWJiLaEbFRUq9Go9vSx45dVgvdyLmz+pguT7HVg3G15w/7Hj61k5qpkm022KS/ZENToZ+YLffs91s2G238r1xZNBctqqk2X/Y76WhEib6vmMcR5FVinM29Dc9fmHgqW5bAZOMpZ8Cu+2WdrmgXSyKLWbbtppIyeFT1ws2dzfsd3d6OMOh29N3HXc3N3z08Uf86Z//GX13wGrSGabIer1mtVrxNUW/TRQtggcXT5nGgaHv+fDDD3n16hWbmw0xRBq19u12e1zlqNqKpm5o6pqmblguVljr6LqBn/zsZ5xfXPD2u+8QjSEQ+eWm5oO7D/j9rufm+rqIxjprmTR5mUwSzQJkzGvX7XEpcXr2iGrV4k+XDEy8vnnNZz/+KVcvXvL5hx9SW0f9279BSIntyxekoePkbEU/dbx8/YLPP3tJPwTe+qVfEnHlMTBVQpG3lcxWhgRxChx2vQAhi9luOMZEmqIyAIzMaAN9UDbMOEEU1ojzater51UOsFLA5YRMdtCkVNHskhOSIMfh6IByOlibuzFFH053oUxNWCyq11I2d0a4UtlQufieKdSmPFcGt2TcRt+z/oJrtBDRjRS0sMujkm8u8jeDWp7TzppOg2p/ELwmvXnOdQae1usTFguZn83otrEGnKDfzloFRWQ0Mx8M0omT7np2pbLOYSoDPgF1+bmmqXnw4MHPJVx97ojbWdBaGPiuJINpElHhY8qtzR06MV0pc/D9OJZrllJSrZCO/eFAu1rSLNrS2YtahE7ZDSIl7WzOTjcgBYNYgWsyYgwhF7XGUDU1rvIludjvJS6EaWToO7qDp61Ft6k/7IuFb103nJ6fc/36ki8+/5y+75mmiaYWN6bGV4Ud0HjH+++8zXa7Zbfbsdlu6PqOq8tLYoos1msIhsNuz6Jtqaxlc33NV8aIvts4cn31mhAT1nniOOISHPY7uv7AxcUFHrh69YqYEq8uX/P66ooPP/yQtml59OARq/VaBLTrpuzXlKR8meLEMA0FSLFWR2R0zVRNTeMqTuolu8OeME2sVytW6xWQcJXj9J1H2GUN540y4w6kymB9rWLdMlbgjKV2npACfRhUG8TQpYkhBG7TxJLIWVPj6xq3XNGsVqxOVmyHAYZAGgMMkdrVBGcYvAD8Q+gZY2BIQVgcxkAlttOpkwQxVoaxAqpExYSfZN962xSOpOxBEX11CrImZWkKaGeLqxo2H/SSvAZmkDcXuRYBL6ZRmhCiT6Z7LgpQufI1YxzpDgcePjznN37pV3GLli9ur/jio08hJJ78j/8Rq+UC62tc01A1jRSGWnQZY1gsq8JoSymx3W41BpnijikuQIkwTCSgdl4SmWkSswQFnkw9s1nqtp21FpLE5K7v6bqOzd0dd3d3WCssirOzCwGzrMO6irpdMobIbn/g088+5/R0zcMLsdB99OhJ3r46LmqJcUJrRo35dQHFsmZkYW9lEN/MtvF5HU9hKvHJWos7SuhyDJuLCvmZtmkwwNQPUhCS6PoDXd9RVdJtvDi/wFcVrYIgw5BwdU3T1GVkfhiisDFidtKr5oQzCqhdxtj0lPEK9IUwqmh4VEq80XA2j44M41DuDQ5wEtdSStI9NSIWbgz0vStxO1u3Z0bBvYQYAZOKHoq1er2lEZFHq0MU0NBbX+6dMWCcoW0brIHddsJ7y6JtsDbJeLGeKFZH2rvDvjQqSpfdSDHpoozTb3dbUhIGYlO3LNsV4zCK3IEWjG3TgEfZxKLh5RQ0zgWpx4BJxSTAOkcM0ozMQHwW5S/saeuUJR0LQ66uKrx1RVieo+uaP0P+2bzO8iF/fLdllC2bAmTpAkrMkH+rjqMKUMv91jMeQQ9DDAzDiDNe3P2Uzdh1+8LscM6xXLXz3p0EQGrqtgBRYZo47Hb0w8B2vyvgnKvkOacgDUWvrKaJiLWOBhlLxcyNQOsq4jhwfXnNV1++4Mc//ZgP3n7KB+88pV02JCeN4CmEMrbvvAJJBWg7Em42mbXgyl6OEWLIuZmwcKwxmCM9t2SFnRlyYanFWWPtvefOuZcU9pFwBBxmkD1o09Rmts8R6HTMXM/VaG48FADXqWepAv8Ri03gYmQgElIgOUtynjhKXuidxSaHjS3brmfaHnCVKcBPZjikmJjGoMCixShLt3ILGZvuKHIIKaomkDVEa4hhVLMOWXchj8XdY3JpAj1FkrVYPzdW5+ZvEkAr6ug8QZl3YtYxpSD6Ucje81UtZ0ptudtes99ttAmDgKxAMqo1mhLeGsRZN6iW3FR0+nAJ73xxK01udop0xqqemyvAKYBzIrBd17WM8uj9m4aRx48eUVcVDx6I3ftmsynrJx05NhtjSJOuA5vrhjwiatlsbrm7u2MaRtVNvGN7d0eMEw8uzvkH/8N/h3/+z/85f/D7f8Ann3zMo4sznj55IueLqwBDSEHOVe+Omgg6rJBjhd6mXEMJyCkgmIA6hsrXxBB59eoV19fXHA4HmnYh7GhyTpLjTkZy7HFZVEJU+csbAMn9Ryo/cjxmlu7/CKaATgXeFO+UnK/fe877Y3/z1+4/qYC/lFxrjr/ziOu95zbMhmRo88AcfT/lzzPDTMfv+967yXXH0TeOwzt5LLqcq7bUe1YbmOFosgB+nrkH3BsBTUZisDl+h0klCzUmJFDzlQywCbvVOYfxdm7k5fd1bCilzzoMPVOYSm1XPl9eJMkUUkLWVcuf1bcnnC5PuXj0rEzDVLWXGlWfJ6aJhDTeSo3ZDQzdeM+ZUq6JYRgG7u7uGEdxxb28fMX2bsNms1G34n/74xcGnibmBSUS20mBiUno2iT6TadXRNk5Y8BXFecXF4xDzzSOZK2n9XrNom0Z+o5J32zTttR1w3vvvSuCxyEyDSPnZycs2pblsqVtL1i0Lc57zi8u+Nd/9K9FER5D3UC7XuMrR1U7Ts9OOVmfcHHxgMpXXN3cYKyl68RW/vLykhAC52dnnJ+cMvYDf/TffZ9hGiFJInVxccFhv2djLOOUnfBSKaSnMLHt99QEmgT7y1t262tOl2sWzype/fQzHLBcrfV3ZetEa7m5vIYIu90I1rNcLFgulqL/4B110wjjxFoa32Ktp1Yq7TiMRDOJYLI1GCvov8hsySIZg4wFSJwU2mAKSZSadJY8aED13pWkB90cvqpoMvUPocZnTaWkwSgzW3K4NbqHXAae8rpJqv2i+bpEqFSApfI4CjwpD4GDdG2UbpxM0g08lQ6yZuCy4fKGT1GozcYUna5JE0nnlPNlTKFlF+0G1WbKGzhbGQs7RTo2kkSrOLQWSjFG+iEQnKPShDqESFBRzpxUGB3ZM5KTl/cDaPCWLp+MQ80zszm45pGK/PP5YEho0XIUonLAsEjAjDo+I+BwIpkkbnPasXLqflW3DVUrukvWib25d76MZsYklPNhHHS95rE3AWytEQZkZpjJATsL3o6DjHHmTtrF+RnXV6/56ovPOJyd0e1PpIsKvH51KSKtUT776nLNV8+/4tNPPubtt9/mwYMLYphIKdJ3e2IIXKvrQl01vL58xfPnz0W0fxDg2leexckJKSW6rqNpnvDs6VOIieurK7rtjjiJkKg10B/2jN2B3eZW9J/Ggd3mjrqu+da3v01V11L8n57x9Q++Xticm81GafkCFGfWkdCtPca1M/PNOZyV2IiBMU2kKbC5uWGxWvDu28/43d/9Xb77ne/w6csvuN7d8kef/CWRgbVtZP06MOIfXkCY5ARQHtIoe8o7UtKRIT2dR2PpY+LVl6/Eic45+n3Pd7/5DYbpJ1xt7ojdRDxMtKZiMhCmxBgih2kQVoE1qr0maiMpJobDgBkmrOrKME6kION3pkokYwklK5EUyaC09pjKGqlU+LqMYsgnLAWmRfXGtGBNUcZsDTqOU2oT2XcpRgKWroJxDIz7PQ9OTvmNX/5V3nvvazx88Ig1NVMQZkvWkMQ5FotG0RlxCpSiTPa0JDMSY7LuVF1LUtB3gzB6FLipVJzaH42OBC2mh3EsyUgppPTzjtPIFCaW65WMHSgVvGkXJIyO/FkSlnEIDMPEYrFkvT5lfXomQv91o45ApsS9utJ1kVTHaJSz3GDLGNiohgk5Xo0KvM/gfdaymYuEzEgUVg4FLJ+LR1MYjkQRZN4fDvRjTz/0rNdrnHWMfSdVr67ZaRzLSDApYEykVn2yLPRcdCbJRathFuuW/4Ywai6p50oKoIL6Jh8tuXGQHTpVsH4cBkYd5zFOdPja9kTH2iWpnKZJmOFqLkHKI4sqNB4mDuNIdoZaLRfUlVh8y/vO8V8o+tM0FVv7JosyB9GmkzxrYOg7kjJzFosWX/kyUp2bBDn5Lk7DY27mGJzxRKIADRESVtlHkrRaI0YkJIiuktGyfiA6h/eyr4VxIflSZs3k6zGOo+inGSPOwUFcBE0S/U/jrOQ+RrW+9P7k92eS3P+73U67w7BarVRwXpIQ2Qc5h8hDhJQcwSbmdR1kLNxXFUnF8Y3JRiNRSSUyYj0MI92h4/Z2w67ac1dtWZ+sqZsGksEap0V8JIakY5Ae54RBla/FdrtnHEe6/V4dEXWNpSQA6YTKIoBtWwiyNwzI6IcTRmzSz2vtXAylmOiHjrqueXTxCO8axgkSAcyEMVJgG5tBvFgs4/P6yE6CaPyBzERVpicCmJLEKW0eFdJsRBduYdFkSlEyc8FVFrfGbi1y8olQir/Sp0xM44BhZvAmvadWWWLCShBB8zQJCOK9mB/ElBSIcuzGkV13oJ9GxhCoamENxnHE4Kidw7uGlDxjHArrMSXNJ8n5stEzTDKd7nAoaz2PZAJaVEYBnIywgpMzZMZnUvCHdCygHXOqLALfiFC6xC91d9YcypJIRtiL4zgJc9jXWOuVxeYgGskPxsDd3Q3b3YYxJMYpyTgcqeRvxhiCjWSvS9HtcMKI2O9Yt0uaShzbMviUgbC859CRJGHt6rmgsSHr/aH3XKQMllTaPJxUqLuABHFmyjp35AJrlKWnwdU5iVNhEr3U5XLJcrXUOsrz5OEjHj14yEOt7b74/HOePXnCarEQgoS1wlhMCcLM4HVuHrkj5Yw7ayDqmotHgK1RsCGfdbqO81rNoLnJAewI9CCDWxmozf+nP3oMvqR8qOQvxLmuKplVgsyyPX56tJIzCni5lKGrfDlT2V/la/MOP35L9x7HoPAxaJXe+Jn8LBn0ljxo/sGkIJnVSYuU5rwh5XeicacAbZpT3AOxys+irze/h/sjgenoOXL8yu8lzVIxdh5ozL9V7oOeVaUhkE0n8m+UCQdh0LlMOTRGGhwpgaWcO7WxVL6e9axyfMxxKMpYviVSe0dKciYIJqVmT0FyaZMCg44ZkrKGJ6W+zY8YvdS3XkwL9EZI3loHfLWW+nYKnJ4+kboqEzZ+gccvDDwF5iJZjw+CCsJaRHS730vAbeqWEGEYA01bsVws2Nyqfo0VraB6JboT49CrFoylbmrW6zXP3n6b8/NzNpsNYZrE1attaZqGhw8f8PjxYxKJ5WrJv/6Tf8Nh6EnWgXeYyuNrT1XLOMGDBw94+9k71HVDP0mnre97uYjOsl4tWa9WrFcrUohSQKvrRNM0nJ2dSRI5TFK4TgOTEVAku9HsBxEQZoTu+o7DyYaLRw+o1mc06yUpBJp2AX2f4zDJWDY3t4z7juRa6uWKthEXJKPzwl7HN4yz1O0C7yr8IKyAMEgxG7UT4jRIiV20JuZqIW0NmCQineIokrBJEoZ7mhhWNKLyIe+8x3pP0OcL6spS5QN/zsrJ6UZhDB6tnfz3vG6Oy8zyzRIJ5t9MpAI+2ewCYoTKKkBP0ANf2h6ucuU5xOUlYIzT+Xk53MI0KTBWFTYW6PiLdqOtE+p50iJLBFpl1EnEw11hCVi1QB6mQdZD1hzyqSRywoqKYGU+vXINYEvgT5HCKAoagGFmBuTgmEd7KmV9zPfOFtq4U3AILQCT3sx86MUYSjcijxrkpCDPJBtj8E2NbxthkcSkwFMWb5a1MMbAfhDto8aLneYURVcpJ6T5bufOzqSJ1zhmEFfe28nJGmvg1YvnhKEjjOLoFkPk5cuXjOOIQxKKplnw5Zdf8PHPfsqTRw85WS05HHZMQ6TrDmVeedEuOD97wM3NFV9++QXb3V7GkqylXbZlhLbve9Foe/iI19dXbG63HG7vIEbOHl4AibHvRVh6GMo4zk0Ut8APPvhABNGdZ71c0dYtry9f8+WXX7Ld7iSemFHAljJ+aGR8xDpN/IXG6p1nvVoDcHfYMowHtrstZ+envP32M/7RP/yH/I/+wT/gD/7y3/DTrz7l+1/9iH6cWBsFnXJHRuoEkkWBYRERlPXtIGuaRGELBWMYIly9vGbqBw7jyOr0gm+89x4ff/Fc1s4QiN2EF6qeAk8iLmy93BuDwUU5WFIC003YEGTcDDBTJNmJZC3RSJc3TgEU8M1MjKB6Vzn2ZPZi7uQYTTgyjV/GN2St5WJymiYqJ2eB+EKknG2hEYTeJyYTCV3P2WrNd771bZ6dP+FsdUrdLuljkCI8JAICENeuLswi7+vi0hZjEiHaEsqEYVrXNVVVkabEmCBoki6aRuLolOOoU+BpnCZNySRdyV1jAc+n4oJW1TVhGLHO0bSt6ooFdDEwToFxmGjbBavVmpUK9gtoMDtAScIuboXj2At7qB81QTU6Bj+VsUUj6J24YxrpuOV4JCNoYjwiYEkAhI0StXi4DzxRxpt9MoRpZL8TZ9d+Glm0C6gFrM4AM1pwVbGSxC1J68N7MUuo6pqUDIPqhJTk1ETdGJGAAujTUbKUQYoYKC5fJhfhKKgoYOY0RMYhMqg4vnGRlCo9G/I1E0DFGytjebo2rFFBac2huu6AdyrAbS1V5UsH8jiAhyD387DfS3dztSojTCEMImWgo5hVJUDYctlQV041EN09DTRxDDSEqGwvHaGyxiEi/HHWXTSuMLCc1TwgQXSOcUr04zA3OhR0jFE1U5TtkkejpxAk47WmCGgful4KUF+pILl9w/Qks44kQZ9iYne3VdBbRv1yM0nyDX3j8agokw8uel1YUpJmSdaewYpekby1/BmUZaKjBV3Xs98f2Nze4Z3cNxH9NtReYmBSse4YorJCRFgdDUExihvv0A90h45cAWRwZVSh18wcrHMnuu/l3+Mo98mLzh5Jihg5wh0xwTDKuXZx9gBna8Ik42ii1q1AV0kMhAUWlNGYkuRGee/LfgPva7xXbTOX8ycBV+bufSpOhfnp9WqUoiyvk1K6aSWdwdq8ht50GE5obEyJFL3GTdT11BXgIyr7SPC8hKu0cA1yBjtjGKeRfQaeYqB1UoxJw8JRKbPHOtgeJgbVdUx6LcBirC9ni9Fqvut6AV9URzAmivh8CjJemZnfmSlnVXNL4g4FfMoLV/Rf9HqFpIWlgDEgjR5jYLJyjcc04aio9Dx1zqmovwBPicB2u2G33xFCUi1ZiUVTjCUOxZKzKEiUZIz86uqKsBpZNK2O+lb3GqIcxVxSKk2jHHcyoJyOgKeqEgfzuq4UuBctG9Hli3otJSbLGjSEmGMZWh8LSCHNnAEMtIuWdrHEGktV1Tw4P+fB+TkX5xd0h44Xz18AibapZ0aV7kNhpUkMzsyYGFNZX5KvZDmLJFEnmbJ3cgO4xLF0rLl0DGzMkM68IeSDmSPwKZVfM3ljFYBpBiTS0VMUeKrsOWNyI/reKxVJFJPBk+N3dfSz6egXj3fxm+DTX/vQ95mZtuT3riBcYV0lVKMvM4pmxnp5KmbGpwxCz2P95dh44zOk9MYHP/re0Vc4vriFEGDy+zD3n4v71wvmOtxlNmgQINSZ+Z7Y/D7s/DWS7OegTElpMMxM3nmczZJCJEsuG0TjyQDTlHQSIOtwp5nNjZ5/OuUiDUfJVQoOoE1Vr669b2JzdZOfM2me9yaA9zc/fmHgqWlXJUBmnQn6wNRPcs1SotuJtfSeg7pRLXj+yce8+OpzfvLjH/H69RW/++/+T3n85LF0bJcLvNrOpjDx8OKMd955l5OzNdWiYoVYUj98/EgAE2Df91xe33B6cUG7WnN+cc7mdsN+v5Mkrj9wfvGU9z74gIvzC07Xpzx465kEtIszbq5v+IM/+D0shvVyqQdV4ru//D3Oz89pmprFomVzd0dnLfu7OzCGs4cXDGHiMHS6Sg1usaBqFpyenZOmyP4w0B86wv5Ad33L6CzjncxJ/nf/6l8xjSPPnz/HxcQ6wco52rqii6qjsWqx6wXLxYrKV0xhosYL4onMmfqlJyVLOzSqEQPEQBiASvSGMl3a2BlxTSYxhZFkHJ7ceZVuowTY/x9l//VsW5al92G/aZbZ9pjr02eW7aqu7mqgmwDhKARCEVBIZOhRLwpK/5pMKKRgkJSeRBGiASOIRsN0N0poVFd1VVb6vP6Y7ZaZc+phjDnXOjezieKuuHVvnrP32stMM8Y3vu8bBpusxAtWAqgyUe0k87IYqtJ2zpQN5k0ruG/DPbOkJleazZ2FET3OpN2flmYDVqpvCa3wRQl6rE1a3Rb0PMQk5qxJQqsxDtL9Tpk2UY1s7anTKvCiBEySlEjjH4yFRmjyIUbGBD1gRkGNg1ZiBk3E4iC+IMllurR4QUTEYDCRitHzGBNpVGmfonHBOSyGIYnE8ng8YpSunO9CDo5z62F0UfbWMmrHg5gAZ4v3WgixyI2sEdZNLAGZ3PdhDDoNogJPstDU3hPtRP0cetkUUhKzyFN/Yre7JiwWpFydSpO/QtDkwhjLMHR0XVc6NEg1KxbPqmyd2TQNMUQO+6MA3SnR+JraitQixkg4HQndkTD2mBQkIBulg91+dyClxMXZvUI/fe/9D7j/6BGLxRIw/MVf/AVjCDy494jb2x3Pn72kC4nrQ8e+DwzJ8tGPfkxVVXz2xWekBPfeepe6qmjblnbRiMGukQ58P/qd32F3u+P//H/6v/LixQu++uoZu9udtCI3lovN5g7wmYBoxAzWW+mON44jYydV98P1QZ55ijx4cJ9/8Hf+Lr//ez/hb/7NP+DRO2/zbPeKtx89wjnLOlXEoSOeRkKKKoOVGVg7AUWMVgODFf8LE4KwDq1jEYUe3/UDtylxvD2xu77lk6++4nvf+Ygn771fvFxu9wcGB+1wJBpLiANhHIingVR5ojcMtWyuNmTW0Ug0ULcS+Dkso1OPsGEQ41CbO6MpG2wWSJ2fr6nrWvx3YqTv1Hy/8pT0SZeeoAG5idKBs3ZWQAkEMBCmjvhSJKfdU/uOhXO89e4HfPT2+7z96B2oPLcuUlkvnjdjxDrDZuFweHwS3zNjnfgmDT2pioQUOR5F+x6GQJfnbdtR17XKZkS2ngHeIQa6/V6BGvWASomknhLD4Sjrvnca4ELlBbiuUKZL7go4DrS24mK95P56xcVqQUoj/dDRNg2rtqXG4XDUxnPsO47HI5Uamze+wVnxvRrHQIongnqLifH9qNVdSxglEairVjpCVlkMLWwMOVdZT5u61eDRkduHl2qxgtl10+K0Ih1C4OzyQhpTKMs2MxPTODBqJ1FnHXGE4TgUgLxdLKgq8a0KY+D2dqd74LwUkgPwHNQHBVYMtjJ4UwsYkkIxPz9lU2zrJUE7nTgeT5yOHU3T4H3Fer2gqiqG4VSaeVSNo11WdP2ogJ4klF73gpgk2FstxSogszjGUSRzYPBOWEqnTsD6YRil4GKsdgcduL3ZcTqdePnitcpiNGD1jpevrnHe8ejxWzRtQ1NVOO9oannOwzgQdO8KqJmvlXijcTXGQNcflI2RsF5kkd04yJ5LAG9Y+FbZansq9WKrtTMvyhKwSQAs4zUp70eR6hlP7XxJpFOKEEYBfYzBuAqsY9DncdgrWygM1HXNYrUEB13olJVrZA+EOx6RkuBI0ph9Ia2tyMW3xkmcYdBELBe7rGUcoz4/g68azi4vpyRQmWRGk+aL+lyfrxSe9vs9uZujsIsiu92tNssZBMTO0kckqBd7BLmWoZPVJMuO+u5E7cCamn7spHmId8Rh4Pa0k/tQe84uznnr7bepG8sYjjDqPUE8Q7LHpzEWoiUFJx5+xiggKcqFDP7UHvDS5VQ5P+UeJ6MNMXIhwBpSys0oslepMgBTmprdaJtvrOz1icTp1JV7N2V0aUpGQTpCIsW6YRw5dbLOVnVdOkM740g2cdMdCCFy7HqW1QLqFVe3e56/fsVhd2Q4DrCSrrZ9rvwby/nZOWebDZ99OTL2uZ16IoUBUsBENZh3whYlRZKJJJdKr7loEGVCilgje0kMYzEEz/6tEnDHjKWRmZ3WVRhr6bpTSfZNQqVRsg4bVSy4lC0zHNZWNHUr3zUM9CYRraNaNlSu5tV+5PWupzsdwVpWm7U240mYOEKKxDhCMrhqQS70LBdrHtwzhZV/6Hp8iCzmoEASz1KjBaeU/6cgcOpUoojFOA/WYZywV//23/pbrJZL/sv/8r+QmDffE2uxSRLzGCQ+KqCDgn4ChKo4Xb6Kuq5pamm4kQxEF7n/8B6//3u/y+sXL3n56pqf/eJXxJS42e8Yh4HGWAIwaDxCTPQhQBA5XQ5Scpx7h4VjkG6P1jCOHdY57j+8x/nlBc1yiXFe2U55VVKgPOb4W8Z7ZimV4pq+VwCoDA6lUtTNJtbT+ybQMuVuiXrsODve/DTSLHMz5NjKlO8qVgZ3XhkYmhx677BLUflf+aIMOOlxM/BibPHvTfnh6efLfZ1/eZTOjiLnng45d4wqwFi+/vybmTN5SLm8l79Pv0UvwurPQdlDpAIsJvXzmsv3y1hIWY+j66TGnPMTmUuPp/9WQgAiubfze26meFffJPFsuV5hOtlaPHxtmsYpPo+F/B0agxmJr0qEZNB1ydKPQirK8VNWDEkeqLjAIPYIVtUwl2z4971+a+BJusZkyqAEbOMgXTuysdbYS5u+MYx4DSJePn3GJ3/1V/zq53/Jy5cv6f7e38PERHc6MfSDSpck4F4uFlxenNO0YnbatC1t09Iul4Ak3kOQytj5+RntYilGdIuW29sbhr4Tc00Mi9WadrGiWSxplysWqxXVZg3OMYQAIeKN4XQ8cTqeePL229SNUNKbpiZex2JyXLcLmuUSf3UlAzBO3TlcLe2zxzQyxpNU2/uR0PdiWBgCY9/z+eefE0PkuN+zrmoWzYLaCFMpjylbeWxVaQVNTNyxU5Nca4waiBmq5HTxTcpsjZDsNIFkRMmxs9IkRmyaghvmIIFq402MkiCWwUxpUT0mkfNl8Z2ugGRWzfT+ySttDiXruqCUSb4JSX/Ly5RlxBSfpFR+ozRXFXpnydw4jmrSKdp0ssZeN74yYVKSynjMsou81hllmqlmfYzql2MkIQxRacKJfhyk2hWCmLdrJStfbMrHyhUvMpNJZI9JNwuSBDBjkmp1r53bikyI6bydc/p+M51rkNa9yUpgnI3ds1fGMA6T9CUXO/WZDbljDDkI1aRFqcxJE2Ghxhv1NhgZ+lG8l7xncFO3qvycZdOUf+fAsOt7kZ7l4NFqVRuR0W3WG7mHEYahJwZpt+2cUOvDMOg9D1jE2DpX+WOIBKWRts1CO55Zzs7POPeX4oFjLJ998YV2z1sxDEHAdGMZomzj1lVcPHhAu2j58vkzUoLt+QWLxYLNds16u2G5WuKdeAA8fustnn79VAwrP/+CX//6E6kyWi9MA5UhhiAMyQhS6QOc8yQv8giv92HspZrd1i0P7j3gd3/v9/jp3/gpf/Qf/BFXxx2noeN8vWUYR84Wa8ZhIAxB/Nl0gzQIIOmcIzMHo7Z9MtkM00g3SkgMYeAUEl1IHIbA692B4zAWPbjBiPzr1AmAHZ1UZ4NKB2wCK0mAS1IRRNcVrPjoWCQwjiYRLMRRW0Jn8+riqaNTyEBdVywWDYdDULbMqEGWLcbBJYCJSf0WdG1wOQDIm2ycVhMjwO049FR2waPL+1yeXbBebdjHgVMaBQxSMNuBAFk4XFIpkLX0p444jnLtUeROQcdhZixalAFhtfmAVn8laJXOVdaMUxKXJjPWNI5EZ6Xcrb931hFdolJfuLxmjGGg9o5N27Jsatq64tD1jGHUtUSkOS5Xm2NkCAMuVQVwtjZ7voxUlXZ2i2NZw4R1KX5VmenknMFXWrm34BR4CgpGZ9+MvB0YI+wMyddd8fxwztJo1bxdLGStTInjUbqnheORMURMUD8KrT4TZe4TI+1SZHDOehlnxaPHlHGVd5CS5GvyJueYO90kYQhoEJ09o6ybpI/9ONCNHXWj8UojzLYYZS0md5OtHF0vhp5DLwlnVHYpJGUmtSoRmYB+kd5pGJwoXZWma7IFqDyeOo7HE8dTpwzdUNbwECVGW27OGGPCLKEC6kqYBCknAnmu6C5rjHR2jToG8j6Vk4KgRauggal3Tlo1j0Pxx7L4Ul3Na75UfbXNuYLBGEPlPNFIU5ccO5SquBa/BvVPur69UQbeiFcPsASMcSQh4LLPoHPOIDSRKx4as4TOKfDrdP1Mec/VOCRXhMchEIOsWVVTS+yV2U0xiDcMhrqqybLYXEjKjGV5PgKqjHoPrBE/upTHZfYf0dh6euZ6X6J2IDRRvzcWr59jdxJvTmdoFy3b7RbvbQERSCIlFBbX1ECHLL1VywLpBodK/qWA5YwhoL5mem8wKiMz2nkMAQhKzqrjRtZcQy6YWaPxWY7LzCSts0aSmRDi5Btavi6zJZWhreNwHAPOR3xUL70QtRALfRiKgbs3FaOH0zBwPJ20Y6MERdlCQuTGA85CW3kBAJORpj2Fu48wm9R4GAU1jdFYKs2WFfR3SI6tbVnKmh9VUmn0Q2Z2rU4MPBnDoHNBpTsZhFMAS+6FRrFGYh9nHUmN7mMMBJuoa2mKcOh7jp0An1YBOxPFQoWAGt+H2TXI+uB9zXKBenIGYlLmdJrYPIk0zS+jya4m7SQtmJukTLXMlhD20Lvvvsv19VUx9hYwLhXgYc70mi/dRtnd0/yVl7NTbJpIhBRYrhe8/fZb7K5veXV8zfNXrxlVRhtjpLI5vrBlLcysO+PMdJ1pfp2T5YXRtScE8eXbbDYsl0uquqHYXKTMoCnL0wQO6fqX45oMwuTBodCBro8CPgkAQoY59K2TGiVhZEzqYdIs96S8p0zpKZdMM7gkr8dvvEwys09Ob0uzn03DaMr7pqKA0bXiG9DMdN2z42QmnUma/uV8NMePaXY1Zd/KZ5Bm6E1+S34Q+dzMnfuQwSiJSaZLKN/LdO45ts6/MFNiqXnR9K129r785OZ3oPgKz+5IxkvyfDBOQcfZOeRGW8KlSGSJomVS/8zZWrI3T6CXBoTKgkb3C1FR5bGfr3mMosKyaYpR/32v3xp4ujlcFXQ3t2M/Hg50x5N2MbE0i4YQRl69fMHLFy/51S9+ycunX/H8qy95+513+J0ffJ+f/Zt/w7/6V/+Kf/bP/xnXNze6WdTUvmFzfsnlg0clQF+uxPMpauewxUqMW4co7dids/z4Jz/h4vKS//b/+9/QnU58/vmn7PdHrq8OvPf+ezx68oTL+49YbyuWlePJwyf8J//xfyIoHvDpp5/yySef8Oz5M549e0a72HD54AnPX16B8RhbcX5xj7fee5fd7sCLF6/IZpm2kq5+fRBzLl95Ionj2LNdXNKuFjx85x2qV6/46vMvOD8/52//rb+FDRHbDzx/+YLXL16R3IIWx6ppWda1VCCIVJVQfatFi6ucJFI66FtfkSqIrUi9opqhJ0QrLYGDBKXDMGCRVrhOE6ZxEIp5SPPpKBuuGaXamLspoTRy570kxszm6GxDSmliDOa1IilNlSQVVJfBEiNa77wh56mdYYusb9VZodUAU2a80eAVTAkDvAYkTVVp4CY+T0FPKCVkkiRJ9nyKxJMYgee24cZO4JHRiW1tJeh6gEPX051ORE3mjAbczXpZuoaEJJu38Y4KpxIk3ciTMCOGYeTQa8ealKhzl6zZ9WXpn/euyNxy8neH2pgSrqpYOF82j64fJrnSGDjs9yWgaZqGuq4ZegmKu1FaNW+3WzVoNQXIyYsLqrHvTr0Ezd0AFlabNcYYRg1+rTFi9K/V267r2O32KqeYzFoBsIamaai8Y1FV/P6Pf8L33vuQzz77jC+++IJ/9sf/I19++SUPHz+RrmHOMQ49x/0JW7U8fOsdvvjqKU+fv+Ddd95luVxy75GaJkewXpgP9aKhampev7pid7vj5auXgCS3ISUu79/j4aOHvPX2W6WCdu/+Paqq4ic/+QnWGDbrLbnjWl17fOVlPFvDzfU1r1685PrqNbvrazptK4xuQGXbNIZ6sRRaetOwWC7ZnG35zne+w3vvvcPZ5ozaew63O9q25cc/+iEPHjzge9//LsZbgrNs3DmbBG5Zc9k2/B//d/97fv5Xv+D/8l/+3/HLhvWDM2ww+Chj2iSVbyZJ0LO/RUpB5oY2THh6uOachp+++zbxyWPe/eAhDx7co117NusF5+s13TASToF46knJ0B0PhJSofDv5BFkvXdn6QBxHYj8KoO483lgqYzVQilBLEmJVOpolXJmcksdPTDNDfSfU32SsSmlyOwSDyKDS5DdhcnOFgMPiTQXJoSgRcRi5fvGKh08+4B/93X/I9z76PiNwPB459Cfurc9pqkZZKIloAxaLo2LQJheH01EAuc6UZ2w0Kc/eb2MMmBhY1ALI9P3k25aBhNfX19ze3Jb5/dZbbwmzMUmV6fX1dZH2Gu9ETqbPt7Jyr9plw7pZcH+9ZbtZCYhhYSRye9izPq45P9tgvSM4aFYLqqWwkTDSZCPGKKCOM2xWSwUi1qieZApachc0ZWDEFIoUYfK7mvz0UhKwOssn89ruVbKc17xkrTKqI10/0Pe9gtUjfZBErV60AHTDqOuzLVXTMUVMHBmGKGySJMmsrxoxFw/KGNI4JhcgYooiI5wZ4YKhbhsWTT2T2k0+Rdv1GdvNGWfbcxbtUmTyBh2rksQMQ+R0GjgeO7p+4OrqmmEYxGerqjk735JNRKMgWuROWZXKtmA6J2nrXKmkMuK9NKPYbEdcVbE/njgeDuwPOzFlT57z83OVsDTFj8QYabXufEWdxDYhpkTXC4g/dD3WGLwR36PFoi0Sk9pnyXUgpkAYe5J1eGdwztC2WbIC/dhJrqzPWHyjdH/ECChdGZWKroFU5k4KAWPyHivyxdf7Pdc3N/zrf/WvCCGw3W55+PAhq+WSGAPj6KhclA6JVpgrQWOJiU2FesdJbIQxbLZbjDPCfUt5RREg4na/o+t6Xr26kgKCyvILSJgEFHDOEl+/xhgxe6+rms16RT8E+iFgA1gbOR5PjONI14mHV+XF+/C4P0jxIKUC9FonQZXVGCvGSF01nC83OG8o0shk8cZx6AZ+9atf8fXXT3HGitz8/JymaYRdmCJEI92Rk4BLzlqMt1jr8d4quzSDw4mqpkhtE4kh5wFJn6EReWJSYG/UuCKzAshAUZRzrZwv6xwxkYL453g1kc/FqBAC3TDgyAUSnZUZuM/RobMk62lcJcbXGBrrSVhMzECFAtYJ0ijNEEgR79SLzlqCyiub5ZLT8cTu+orfXL/ms5SIviFZR1TlhfjoaKfjXEQYR1IYxHPOGEbtBOWcSr3HKB1eNcGzxlD7SuK1Yyf+VM4Sw0gYBhaLpXQKVyuFoGPVVUbkdiESh4E0StETazG+AevwjZeOwaeOlNSnKce5VYUlcjgc2O/3HI8HWmfxTSNWFAmquhYuVlXrs49FJu29xVcti1YUAc1C/CWzsXCOTcMoknqrv0tJcxMkoR1SoOsHBRYNdr3EWcsHH33I8XgQMFnx0KxgQOdl8RjUdbF00UWK3jlXMAUojBpP9Dx9/pzVasMf/dHf4vnXz/n0k0/FLDlOnTZjjMScRytDcp6oG8173pQYpYg20ZEEfTgNNM2CDz/4kLfffpuzszOGQRUN6t+bmL6TXGhQBlwBYnKepiBk7h6Z99NiNj8rxt1xMdFcLZt5CxFmZlIPmlvOwKgZLmEMJTfJn5WlUs4zMu0r5eN3Pv/XABKaHr6JLs/f/+Yny3PI+77J4M+0vufDZgzl7kHmcrcJ8JvDcN/4yOy8bP4uPbgBLZq6O2BrDHouBpUxcmcMfeu9eOO7vvX9mVAy8xNzGYx8A1ASoootz9VgSrFkIhtIFz4TZ15bQnUp+3bxqbJ5XpUvFKZtjN+GR/61r98aeEoKbpy6kwAWIUjXmdNJg00LToKGw3HP4XjLYX/L2Pc4Y1gvV5yfnfHs5Quurq/59JNP6fpeW43XLNqW7faci4t7ap6H+Mz4SluvZnMxoS/vD0cMsNluud/1bDYbSInj6cBut6N68YLzi3O25+eavHtJ0K3l4vxCkh9j2R2O8ufmltPxKOeyXPPoyVuSFDkxV/beUzc1TdsynI5AKu0Eh8w2Qfw3ur7HeOnq1SxaqrqmU7f51XoN/cCooFDf95iqEhNJfXDDOGBHSwh1CQhtBmjMjOkDhX4aDQXEyICISWBiJGgAYDN6mrSVLNzptpalTVnja4wtQBKk6b15jZuh0BmlvYscZ2aV/jtJpSez5lI5ynzETkH4dPRvjug7iLKegNFFyFuZSDEmkZ0Z+V6rEy1Eg42xBDAFCNPEKQdTGbY31qo40eGdZcwsHQOVEwlM0cJaDRy0Yp0re7mCaLVqllkeSRfvbB4s7IhYkvB8rdnjxuq/85yErCU26hI3+UPFKJT+PF/zipwrr8MoHW6GYSiJv8h9JjS7oO9Rz1MBpDEbBlt/Z8HL7Lh8TcMwiERGx0JOXK36BpQAwVraxYL1YkXX9QzDyNnZOddX12KkHyJ126gflme5XLNYrei6Y5GvgeipY4ic+hM2CBhmvMVWnsPxyH6/1+dkGEZhcpydn5fucxnNdzrvV6sVVv3nEhMzcNokptaqTSNz3VioqlolOGrGq6Dk9uKSqq5pl0va5YL1dsv3f/A9PvjwQy42W+qq5rAT4OmHv/MDzrZb7j94wL47sTsdcEmTEAy2qvjw3Q84Ho6sl2tiJR4SJgfqM2ByHgVMU1o3QwyncaAzlmVb4Zoau0hs1ysqZ2kqz6KuGVMiWmG7pogayaNrjRE2pM7tMAwEldIJJjCrfDL5YZRNLG9kGUTSUwwhYMapomPMFGCSR1XKoHkilZ9N/86VxRJOpNz+GmyEZd3y7pN3ONtuGTNYYrQ7pcvnp5+frV2xzI9pOOROYdbp+pvnrRZnrDXiv1XmdZ7Pckxb1qLcKQlMygCw3D+Lsl91fbZKirTJUNeVMmh8ke6EGFXOObEex5TU6ySb98pzSUkCd6vrqFy203UlA0+UjjHWGEI06tM1DTljpoYJOUEX+ZSa19qprXY2ko3KVBBwPqdnBnRdzd523nvZg4agbIMZK9Rokwt95s6Lb1pV1UQ1kBb2DcV32pqJKZdiIposeTAsmrYwakAqfjFGvA/lGS0WS5q6mQFouaAyVcRTyntWmn5Gpuxbjb2TxjkyZ2KUvThqc4o8xozJXoymBIRVXdPEyGK5BAN9GEXK6xyL1YrlYkFV18XQfipeZJTXQIzqzZeIzmm9yZQ9J8ZRmK9lXElxIqY48wqbguG8797JKey0P8xDBWNzTCPyBRMjIRi1ExgxuWJrLN46KRIZUwoyZRLO4nSRnostxHzMSqFEmxfoHiB32pI9vObxTiorTdKiVa8FGvWEtFMSF1QuM4aItWGWFBr13pKYTyR2QY8ei7l6TpRyhz7xwMmnlCDbHXiviqIMkU1rz+3tju50knvlZeyXJKYMIpnT6lpQxr91VtgoKYkcxeRKeCSpxUAs47csibOEJ5VcwWkslY1uo75Puj6aAuCO41iS7WEYsMYSxrGYXDujxcCSW+uXZi8oY4gG6T6s6xtWWUCY8mysSaWYmpg8hUTGbArgKDG0Y7VcQt+TBi0QxrzAKThIjnCn684x7RTfMmXCzO6rPtLs31MGcJqYgdkU+3DqJFbR9dkoCJJC0Plcyb1lAmJIAmaO4yjGwzaPakrS2CuwP4w9dY5XS3qqcZA1wvo1YEwsgLKxFEa5yw1TZolyURXE3KBgVsRkJtNJ0/og40kKl81iMct1nJhWxNm9ygDJG9nuLCybARLTK3uutqtGWUgr2rbVAu3I9uyMse85XF1LrGytrOP5vr2ZrcxidIlL0p2fpyiMwrPtlpX68Q2j5I3OWY1DpvEjH5rWyPJdhhLXlPs3v15yHpTXrURm733r/eEby+XsGAVTuPPmuWS5vCE/bzJbZ8ra8oHyuJiDdN8AVEpOafjmWZUbcPd33/KMS74yP8wbYyCP8vyeN896/r75V0EebqYQKtLsZ/P3mHKE2TP8tsuaf6+5u4fme5bv+x3w7s0TNtOczfNu9qtyTuU9ubEXE8EiZasHzGzPlv/PeIN1U5GwDCD1r/yfwtTefP3WwNO6XXA6nXixF7PcEALd8Ujfd0LlTIljv2ccR16+eo41iZ/8+AfQB+hGFpsVOMsf/4s/4fMvvyi62DAEzs/XvPve+/zo936fv/mHf8jhcGLQjhOjUtqHcaQ/Hgso8JuvPuWw2/GD732X7faMn/70p3z11Vf87Gd/zm53zX5/YHu5YXvvjMWqYXu+5csvvhB5n5GOW+16xQff/SHvffh9Pvn1b3jx/Dn7w0C72vK/+o//N7x6+ZL/9p/8E/ox8PLlS1arJR988D6ff/oJh/2e1zfX9PWJLZX4Ao0Be3vDSOCD3/kum8tz6kWLqyqGPtD1I12IDP3AcX9kd+w4dQOYAcJAFwZOQ0fYXbMIC5yXhd8YaJJ0CFw3rXaVk2jEpSCLvjeA18VGJ7dBKpG1sqICoqcPY0HzjYI0Qc37rIIB0ilPpAVRN84JHZ+C56wvLgPKTLylIvtRyUAGxjL6++YC7szEXho1APfWlfUFKJMRSnhI7hjtjHyn95X43YQA1hfmEEg78pika1RmK+UKW5Y9RkWDsxmzryoq52mcp9k4wmolkjugrYTtMWpQJZWpkf50kqTKWUngjC1yDV83GCfG7ZmK33WTRCIHZ42azc/BGQG25D25daYwQbS7k75iTIQxElSGlpS9ZIwYyg6DgE6ZFWWMURN09WdhChwy9V+kfJqcWhl/Y9ExG/VZmf57HAf6rufq6loSbDe1w16s11ivZuMRGMX0u3KGJ++9w9vvvctms+bzzz7nP//P/nNurm945+23aRcL7j96i+35GZf3LtU3ZeD1q5faKW/keDrx+ZdfillqjNx7cI+zy3NePn3B8XDkwaNHJOCzLz7n7Pyc3/uDP2B7doar6xLM9uqX5b2YRt/sD4zamGC5XrJctNRVRe0r6mbJ2eV9fvLTP2C53vD85Svee+89Pvrud3j04CHb7ZbFYkHbLvjOd7/HYrlkuV1jvcN6z/3794WVUFXaVn0yMB7GkZc3Nxz7jn1/wg0JG8GEBb6u+N3v/Yjtcs1f/uaX/PLz3/Bnf/UXNAtP1ToZ6woWxDd2vTynMutwf+yoiJjlwLpueNReCtsDx73lkgeX54ynPb0DW9VEIwbxUqSTrk3WOAGfEly/umbspeuYs66wLLuu1wq1oWoUdMjzwiugqidonKXrB7p+oG4b2fQUMBfpiUhNwqyjkizDQwkUxddMJEljiOI5Yy2VSfLsNvf46PF7/J2/8beJ1vJ6d8t2teDybCvrSwzc7g9gDe2iYbKQkHWvbVsFJadCglfpmLEWlOYvrWzlvlsnjJ15VzHvPecX52rq6oqPW0oRF50G+TNUxxgaLyyQUJCsCucrAmJUv1q0PLt5TTecOOxu6Y5b6qoikjgd9vi6oqpqbactSU9CjOaxYjCdAxYxOp5a6/bDWORAw9CzP+wFqHCGqqpxzqukQ8zVZe2O9H3H4XCgbZc0bVvA+cPhKAH5KPIYX9dUVcNmuRZD/xAK8GSMeMwNIeK9E1Z0rkhbS0AACe88F5fCWGvqRrxOwqgWAbEE97mNczbJzECLsYZWAaUs4x7UgDMHYJhJAnc6dbPKn/gWiXwqUDeNdKk1hnEU0N45x2KxmIJFpJqaQ9ixSIjE58aZSW4uAeMUBC5XK9rlkuV2W/aRvDe0i1YYVlYMg9u6BiaTd+ecyscMi8VCjrlUTxctMKQgjJz9fj95DOp350LSt1H4C+tF/3bWEowA1qVxR4qYaBlDX+ZF0kXgsN9ze3urYKzjyaPH3L+4x/nZRekyJ13jcrMPS6374O3trbR+3h3KuTrvccoySUiBwRlLJlSjcc88QVoulzRNA8DhcGD31Q22aWnbtpgqD+op1GzWIjvUuEVAFmjbhuura/a7vez1Kv+XAu5JYqMQBTBWL8Fs1pyLThnA8M7Rti2BzDIWH6PaV5gEL1+8ZL87sKwXLGrZd05xZOwGpPGAoapaAbv6o5imD4GmFaloiEG6IzNqaiUdj7ruSIjZ50eYu059yKJKMJxFvZ4UvLeW00ksKDqNa25vb8vYyGM0F8MyIDqGkbZtuXf/fokTY4rKkBImUVSJYlXXsrYaYYe73GE3RpKVFMdEAbJcHbHG44zn8eNHnG9XXGw2LKoKkwLjMHL76prHjx7zwz/4PjZGCJF/+ec/4+sXL3GLBQZpgCBQvAXjJM50Yr8hFgqQszGRW0v3KuXeqFdRoj8ewRhcVcl4GMWL0zcVP/jh93jrrbf5i5//O66urjh2R42fAymMxL7n8Xvv8/jRY/aHA6eu47PPvmToO5IzjCbQdyNNW1E3taxFQRgNIQZ2Nzuur2+53d1QLVrW/gIXBKiV56kFAmtxbVWA1RCkq6qrpOh66k534vL563Q6lVjWOVsaG6B5g3QkRUE/k63gJMZMgHXU7QIbRpLptalpmBKCb34lpaqQwZzyVgEMhkHWH19VPHn7Lb6/u+XmdIAh8Q/+/t/ny8+/4J/8V/8VBsOybun7jiGKN1dBZTLEUYAXXQettKkXSZ0hnHoWi4b33nuP+/fvy34dhcm3aGqMM8X7UZL5hAlT3F1pDlEaiwy5C7mfLl/vRVavZKA7zc4vw4mBNIEGbyIhKem+qHv+G0hCgSr083du/bc8++mw3z425iDLHbDqG2+880XlBwXqmT3jNwuss93yzs/njo8T9PStX3PnlT+XPe60fKReSnpeaTpEjhOnw74hm5vf0/klp+lnVllGKPBMOcL0/2Z2jLwn5wJAjhVyAWwuCZxfb1apyFcZZVTprxUvcPntZpqnXoPinLv+Nq/fGnj61S9+SQKCelkMMUx+Gtq9xldiZrtaLhmOJ/bXN7ho8Am8P6NqG/qh53g8lQcSY2S9WvPe+++xWq0YhoHjYU/fD/imkeA41hyPR5HsKMtovz9yPKmpolb1VqsVSzUQttZzcXnBgwf3CwvC+4oUhQpvnHREE4+JisVixWp1Yrlagkk8fvyEylecX1xocSWy2WxYr1Y8f/o1+/1eTEbHIK14rZd2oNsNl/cvWW3XNMsF24sLun7g/N4l28tLlmdbrkPgpjsyIDKT5nzL6uKMaA0DotOvk3gtSdBRtCda4TZobzIFXXSKaQAYQlLKdgbIVVs/AxMiwrCZI6V54TRmFnzpCJtXtHLFOGevFjshrLrIuFyF1ESBPJinv74BkRZGG6j8IYkpI2ZaRKaVZEJcS5Vl+pVDK+E2m8DpB3VyoZ2ASgUHCjvDJAkMJlM3+bmT7ESKtno8N13cFKgbMwXCxhSfBsg68aAeCalUNkGS6XGQKq1zjka7YTmt5E0VpDhbPJSVMQPX8jOw1mJ8JRr35Yxhpec6amvu3Dln6uA3se/KIgaIREqeadPUWphJJelLJWrQ4YgEkou2UVaYKwmRdyrjNHJ3YxKPAJsi0j3JcHn/PiR4+PAR3npqX1P7mrYV2Yhz0vnJmEhmDjhXUTew3Z4VNuJ6s2G7PePl05cM/SCSXQOnTrpsnp+f07TNNF6ZLiMjpAnE/LJpcL4C58GKN1Q3jGAcH333ezSLJRHDk7ee8O5773H/8pLNai1dmupaJFRtI3IhY8GJWbwk8ANBxw5mmgNBYWapOhmx6ND/WStyinefvM3z69cMw0jdWpzxGY4QcA9hgOSYQ+aInWQoYyAYw8lGFg5cU5OM5TQMVIuGs/tnXB8txgS6MDKEUccyZE+LTFNMMRH6gdD3WNtMfgxlduqMSRPdV8a2jLcCIszG3zy4SjF3uxMjV9IUZBXQCnQN0254Md8vmUux63EJHp5dcv/skuVyyZCkRXteE3JXylwdElArEkYBOHMLbWvkPhqkFXxelrLPRq4MW5PXF1NOUnITAWe8gk5zVmOexyXQLHPRqASakvQPfY+Jid4Ko2W5FOkCYy/XMgb11FLavAYmTnvB5PU901xLohcj49hroh91rI5lPSpJXlkuB4ITACbP+RwIvQlmC+tDTJujthnPwKK1Dq9rnJ22wGkkaUAWk+4RVosuKRGC7JWVyqfRuWLwMkatAk9MgRhQ7n3+AxSPDUmsleWirIlEKh6BJfA0meklz9qkvM9INb+qwmzvyQBHJPs56FQv3U2NJtXy3ZLoxjgF9BksQ2MhZy3RSbEpxahdonzxiZwzU8q+ro8+S/nne1qKqQDXuVBTWNXkwtIEomaZlffic3dXfmHKvmCtK987huxxY8hGsBnYzPfU2oklvVgsxGer70SmledO3u9JyowTeY8E1k5MjK0lG/GKt5gjt0wnDRMAkmODJBKVRdNggfOzcwGXvadW4MlrU5e6zvv+jIUVk3ixLRcYYLloZV1XY/e4Swz9QD8eGYeIGXqNXaQBhcFMLdmTFMR2hz3W6zPQe5MBm9evrzgdTyzatlyfJYq3n8aJ1qlMT2W6cq+z/9Xk6TQl2LpjWC1t2jzZy2i9s15bKGzOUoo0uh5bO407/UxhaGdgW4tq7X4vzFObgbdUPLUyo9QoWzwizH+HSgFnBs4uyZ4xBDEAF+mzo10sWCxa2qZm1CJdZhEO44BHGD9pfqnKBCuxZ97/UkJYZMoad7rMm9lc0nuV5nsmoPoXien1vnXdid3+ltPpQDcr8AtIKddRec9i0TKMPSEMGW644yNV1vWU90WLdD7U85ll6HNmJWVPmOEURtZdl4EWQ5k/c8aTXNKcdZGTX8p6Brq2MgHXIIXjqqoLG3bux1aSiZTZJvPsWa/xjWR//hJgWhiA/TCw3W558tZb7D7+NeM4cnFxyWG/VxZtEpAr5XL+lNCnckPyBeZ5ksrvcxxpjLB1i1ybXMQY0DZLuqfIOMn+T2KeLpTEOag/v88RMHfufSKpl2ecHipTwmTKuRqmOVxuV5pN61k+kYy5c5gpDTOzMf7GK5U3/Xtfec0uH7gzDmffxd3vMnn+zXK/CYeave+N/9e0bvrGN88/ldO4eyn5HsyPm7LPWv7yfJ6zPTrv6+mNA3zbd2PewPHyZ9/4/fz83gCTvsF0Kx/WWKbs8bO8uQBdwrLNkkoJD7KZ2iQl1N+WeWkiv/Xrtwae/l//2f+T88tLfvq3/pBkYFC/EGe9VO6dY3O+xpJYVzVPP/2cn//FL2nqikXbcPnoAduzM/ph4Hg86uS3hBR49Oghf/fv/h2MdTx9/pznX37N0Pd878c/YrFe0bTSnvzzz75kt99zu99xPOyIIXDqR1pjWa63bC9O3H/wEKcVoR/88Af85Ke/T1PXnLoTq9WGvuq5ud0REvh6oKqkOrpcbYhJkl3rDO+9/wGbzYYPP/yQ29trrm+uefutt7i8uODXv/oVr169klbiZuTYd/hlxfrijHc+fJ8Pv/MhD995i9XZlre/8yHr83OOx47t+QUPP/yAm6Hji9vXNMZQb9Y8+s77bB4+JNSeUwq4AC1JW203NK22CU7g1VcmUWGYKieRCY3ts5GxDnrv6hJQBGW5jHEkEksr5rzI58AtB8Z50OaFL8bIoJ2lvPeqs1X9/wzwqOu6BCBqRyYxcyozY740CuCUxKQwEidJk04SA9r/A03gZjNTaY/Z9K2wsBSJzbFf0nuUrIzbfG15CmWpYWZQGWeJJmu2rQQh1qrnmL4npMLkym2snfNs6qZsvFlyAmIiOYSp6tM0DVVVsVwuhQasVfNkxGx7uZi6icwZUYB2drJUzmeAWgPGVCqIvhWGXOOkc08Igf3hwO6wpzt1nLpTYSRM1ShJGHNXuGkcgNH3LFdL+mHgcDqI0bj6iFksNMKksZVUn5fNQoGXSmQG40gfxbDdWPHjUYtRUooMQ8AkeOvtt3nr8RP+xt/4JV9/9TXXL19Tty3r7RlV5YVBc+olKMNgfUW7WLEwhrOLS2lTPvQ8ePiAy3sXfP6bzzmdetZbJ8yImKjrhidPnjCMg0hkZ+BrvuaEAeeo6ppVXeO8VwBDpBCvdwecdfz9f/S/ZBwH/vHtLcvVktVmzaZtaSovgbQmhhGjbCSpIHZDz+F0JPTSvv7exbm2EFYJrdPABPHiwEp3QoelD4G2XfAHP/wJz169pOt6lmuPdzBooNIlqc6K5AmMenNUOJlvMRK7kcEkrtyAr1vuLRecup797S3N5Yp3Vu9y3L/majhxczrS9d1kuGxyQhCVOZEYTyfGrhfQp5oZn1sxt8agxoWxrDd3xrb+LAOv4vOQCrMgKpsrg7eZlZKStpQ12dPCyR4VDSZavK9wxnI4XLN0NT/6zvf47lsfslis8SRSGHBG5E3D2CubUJK7UYGp07Gbzk9bvsdBqrDLdgFGmJUkCdaM6hxsWctEepbXAe8dxlRM9OWcBMpcfHNdvhOA6joyhsD19TVt3WKioW4aHty/x8dffsbhGIh9Txx68fmylto7ZWf21K7GWy8dEZFF0qRECAPDoHKMvpcqv+4D+VmFINdtskwqJvr+pM9xTYzVt557iOLjFIeueO2kBF5lD30/AKaA8saYAnZJopNkDU9SBRbPNenyFyPS9MRamqrGaGFEpEfCwCveg3oHM4CWzzOPqewtVsaTdhmdJ8rjGAToUmDHuErXDoF+I1M78aqSdTgn33k8T8972h+lWplUCmSpnMPYCmOqwgKb2ERIsUSpO6Xwg4Ch1loxHtbvlHsqZ5cr7VZuhK55ypgapRmCteCtwy2WJVaYew2OIXBSifQwjFjrAUtVCWOs7wcd14CxeF9T+QpvPbf7W/qhl7luxWsoJGG/gb5X14FBZdXS6TJo9z9pCOOdFFm6UZ7ZYrWkiYnFciVd43yl4y4oWJoK46xX8/devWXquhbAzjvSOEJKnK02sNpwtt4yjiPH47H4Jco2ljv7lBSJnFRbYLVoCWMosVHXdRy7js+ePuXm5ob96cjhcOB4PBKNYW3A63vRDm5Yw747cXj2NZv1msVySV1Jx1cwnE4dH3/6CcZa7t2/x3q1oqoqei01GoTJ570Itl2lsjY1iA3BELQglceJeBQ5rKlxlcH5KTYsRcjZ2C1zxYnM1TsnWI1Xs3uNY3K8UYou+rMQAre3t/iDZxhHtbhoigdmGGXtqZwyZolFUuk0wY/a2CR3rGqVWXsYOsYhMvaRdx4/YLXecnF2xtl6xRevrokx0dbynJ49f07jPZW1jGEU0DZPKgUJBCySe5mUgUfIcgJl9XgBZeOYS0hTUphyAjcOGttq92pvefr0K66vX/P02VNhjfXyPKK1BbCqK8dq0XI67en7DCqkAtRL98tZVm4E2DHRFiAlrw93gGh9lrFIinJRR46dwbmUUokfp/VwvAMs5rU0fwdMbN9x1GZG1krch3QmzU2jjqej7A06rhTCI9sbzHOUfNoF1JdfMH9579lst5Dgdr/n0ZPH3Lt/j199+htOpxNvPX5CGKQ51jD2jENPDNLhzwrcJuqQNxP7KNBn3hdjCCRlmRikuOjddM9iihwOR5IV1rTz2m03wRhGBbuQuHq2ludX9oLLe1MBL8qjnoxQZrhMGbsFLMh/dDCKFUoues2m9ptAkBF2rmXW0OpbsBtmgN2/91UOklGfN35v7r65zMb017/t2771tziT6YTeuLgEdwqpeYWfj7MJJNV8NHsy6XGKETjfDjp988K5M5/M7LnlvB7SbA5kNFG9Au9e0TeA2aJSmf08qfdrZgzm7rt5QBmrcsMUC/EoZO+C3+L1WwNPj995i812I4kw0l2kmB3XHusM/enIcbfjl3/6Z1w9fcarz77g3Y8+5J333ufy/n1W2w2+rjDOMsZA5T0Pzu/xzjtv8d3vfpd/+2//Lb/61a/56rPPGfoB39ZcPrjPBx9+VBC2vu847Pas1uJb8ODhQ5bLJXVd0Z2+w49+9LvkKvdb77zLxfl9nKsJY+KkNP+Xr16xWC5oF60Ea1VksajwfsVms2IYen798a959eI5X3/1JVfXV7x6/Yrtes3l2QXb9ZaL8wv2hx3OVyzXG9rFAtfUuLbBtQ2Dgf0w8OmXX3L98hUhJo7HEx//+jc8ffqcU9ezWKxYtAvWmy2r9Vq6WblefBp0O0MHVhylIhijaNX7oIF5GWT5L+k+F0ilLeygleTcxti7Km+V0zNUQ96MBs8XbdkQJSFP1s4GzcSMshpQZzmeBC2yODnnqbyZkPI5Iq3XlxR+TuTNWCZg0Eqoc1a0pyYDSLlDjgBEKNr/jUWlrLq6DOq8Lgi7mapiedPK8z5L7xLZLWD6c5fCqpuds7gkwEAolzB1+qidJ1qrHlSILFCD9yEIWBhVuibBWpL28VpdfpPGmNtGB6XqJkMJ3DLoVenx5y/vPW3b0o8ihWobMTav6mq2qMkVB2WX5CQ3s6GyX01T1ThrqX01BUO+0iBRN7AknjfOOupKNmATtOPdbFHOHRjCKNLAk68wKbG8OGMz9BzHQZKeyhFM4jR2DCkQTaJdrzDGqpxFNnAXA3YYWG23rM/OJWnUpM85zzp7n1RVYU/kanWliWytVXOTE5y2Lc+j8pIoVb7S+WGk2ukMwYip9O544HjSQCslDld7jqeOl69ei9Sz8iUhs/rct+t1SepAmWBOJDJjShocyNg6Hk/0fS9eD24KtnKHJAE8pjGdEDZIruLHURIOg2FMhk9vb7nqR3Zj4th13O52HFOkT5GT6UlVwo+GGO0kfQuS0oQELowkIzR2k6TbEXaSYnhtUGAMBEdhYU0TUM5yYnLI+pRZUN65wlYMKTKmIPNAJYNzQ5l59dZoYwPndF0Niaau+PF3fsgH77zPQGKIQbomErWb3Th9J8LKOPU9t4d9Abcb7foXVYI1OAlOIxkcN1oVoshSUxoUaJ+AeumiNM3pHEgUw1FDYcAKEyuUDj4Z9HHOi5SoqqibhkUrSXUMYs6eQZSUkngzOodTY+OYRjXMzWwHCMNYuoiF2bpS1iEzgWoyVuWP907nUIP3YuYu7JsAxtI0C6x1Kk9TloEROWH2gxqHUUBaZSBYa+m0xXr2Eau9JKZd15FiIJU5ox1+YqI7dcJi0r3DWlOkygW2s3q/ZwFlUOAqy4RyoJ7Zx7Mto/g+FQZ4yIwmU+agAKyzfUP/nWKYHU0Ax1CGcO6CJWlEDKN0myKzjlOZH6Oy0Yauk0SusOwMjMIMLACgzQBgkJjAZJp9NpBNpGQIjGLWjsEkWReToTyPlGaVeJ3b1tqJpXsnMJ6CZ/HL0S6kTqXeUGQe3gnb2FfSRr6q6+J9lgtlGcjP62qvMugYU2F4ZuZACMogLmM2Tx3pagkwdL3I8q6vNZ4UwEeMt6UIIFL0VL47s5VlzKpxvq4DjUptUhLmZD+MKldNDEcZf113YgyB1WJB5T3LxYLdbsfudk9VC4CyXq8LuDWOI/vdLSb7dHkvXoRavDkdTxwPJ/phYLVa8fDBA9brNc5bUi9JsfOaJARhVnvvSixmdLxmXzqnzy2bxwLENDIOAWEZZ3kqkLTJQJCOfeMYMUY6/mZrjqQmzfNAylpl6GmCk1LCOsfZ+TnWmiJ1P55OhTVidAKNYcREaYqQZ1AcRAaG3vswSlc8rFHG08DQR/peOtzV3uJrT72oSCaQrKFZL4gGXl/dUBmDQ67BeS86gTuVfUm+hFkUgYD1wuaO2RdPmUpYKGlgfGPtCUEKiZUwMsdxZLfbiVSt7zEkzs7PCDFyPBxLUni7v+Hps6+5vr3meDqJlNKKLxrWaYdR8dmKU6tpmMX+MU6y3BgCYRhLLJE9qKRr3pSIT2vZFD9PDRB8Yc/fuVM5ISdbfkSGfpQmCt5LEw4Sq9WSi4tznjx+gjGGq+trSlOKO0BnBkl0jdHAQgpgscT5lfPiiZbHuZl8v+rK4zW2aqoK6x2L5YL33n+fq+tXvHz5fDbO7xZPMh5U2Fzl99PeYJDcarVa4aqKU9cJ0ykFsdvQuD7fq/xvo7lTXj9LmqfnbuIE9M2Zs4AW96d7LY9pYojlwscdZEqxk5QEcMh5UEJBLv1bcjejTCOxfLH5Yr8N0snnMBsD00ndHRvl3yWZ/evfA0wM6ze/Nt39p3njF5I/zn8651rdzafvfuW0TwsGMwGCOcTOMZ0xdz872+G/BVb6669xhliV3+e8oGTRb3yXmf2fmX5CnqvfzgjU0Wqm/8wdQeX/5HclP8x+cKpSyIWo+FvSnn5r4Om9jz6gbVtWq6VIHQZtsewsvhVpyMvnX/Pi66/5Z//df09/dYu93vPRRx/x4Xe+w71HD/FtI+a7zhL6gbZtePToIe+99x4/+MH3+Zf/4k/4sz/9V3z2m08Y+4H1+YZ3j+/zwfsfoMsLQ9+z3+149PgRDx894tGTt9hu1rzzzju0bcPD+w+IUcCW/f7A8XCkG6SV6m5/4HZ3y/OXLzjrN1yebbEx4AgslwuMrdluN9xcX/OXf/lzXj5/xmeffcbrq1c8f/GCd996m/R24mx7xul0out7vPesNlsWbYNrBXiybUsHnIaOX3/2KdfPX3LmF+wPB375l7/g5uaaruux2zOWmzWbszNW6410oDCGxWJJpienJMn+0I9qtCmLQtcPYKRT3TQQ5TUSCUR6DUYBrBqsOuc0kZqm3nwg5oA2V0FLJTRX3RHD1hzQ5cU+f37Qri9dN3Vuahpw3skzjMUiBTT0L5teXhALGGFKEFFarev+EhOlLXg+FkmDjHwvTJ7omeZcLjjvn9MyUCaqKb83ZBZZUh8U+fe0eJYDYmzCJoPxjpAgIBr5DBI7KEFFdIp4W4gK6OQqLOpb4JRi3HWdGORW/s4zNgjrJaWp20xmhNzpLlI33MW8FXiykrjXdc1qsSwGkZlZlStUQxjUKF0rnGrQa1US1NQ1dVLQcZRgqKnqO/KgMp5QuQMJE8TclRSmBDvJxhZGuRdHZSCtLs7piFx3B0kgaycyuqEnpJFkE5vNVuSNXtgGMYEPkSoE1mfnbM4vRGqbEs5YKg3qV1oRtk5Ym85OfjzWWhaNyCLou+K9oStwkUct2hZSYn88ynNQ0Kkfeg59Twojy6V0CPvy6ddcXV3zV7/8lTCo1iucdUW60bYt7779TvFEKN4f1lLVjoPOaQOkGDkcD4xDh7cGb3NHOOkylnJsYazy/uQWDyFKd58EYRDPN4djSPDx1TW13/PFYcf+dORqv6OpRCbJshHml7dSAfdOOteNAprgwI/ZF62WZ+2V0RYD3qgJv4Kx1onh7Le9cjCVJSQ5icyJXt00DDHQh3EG/MpkywBJCEPZc/OcctYW4Kl1Db///Z/w5K236U1iDCIPDMWJI3cXE6L9kIGn/a6wW8Yghs1o0u7MFASWgFClgKN265Ig00gXTDv5nMQYi8dTfpXg3RicS/qzQf3rZBx6UwMG71SiUMs4XS4WIoEKgdPpxOnUybod5b+bRvyPokp/cwApUptEVNCpVzZC1ORxnrSI70UOaCVorHyNd14Mt7WjXYqBQQGmpl1qchpKh6/Neiv+Nt5r19yRMKpEXgP0oEbElRMmZlNVhHFk6DsIAdTnLpuNhySdpnJsnYO4zDCyeY10FPlYXouy5PF0OskedGf1lZfzAk4HfXYhaDLpKl3/JkCbGdNBANUMxGi1MScHcWL9easAv+7FGSzI3kwCjMjfQy/3bOg6AUsqYRNZa0Wig8hnhe0iQILsEyrTYs7UkTXEkDjGgDMCJGZvZefmhvCy/1gnANGb7MUsGaGATqGwaUIIyqaRJDHmBhiaNFVVVTr0zqv7KSW600megXMkNfw+Ho8CDikQI+udfE7Y2aaweGVfTgz9iRTFcPh0PPH69WsALi4u7kguU0rsdrty7lYBsbweDcNQwFljDG2zKOvAGITRmjSeG4aBcRy1MY9ltdlw5ivquubm+oarq2t2B/FSzf6AdS12E9e311jj8bX4uVVeGYUpcdwfOOwPDMNAXVc8fvSY7XaD9bKPjKMwA40R/0XIbEtTYjgpRgp7KkW1TXAisbPW0XVigp7HsdxWASUE4JautwI2WoKXIrWsHzoe9PsSEhdWVSVNHWbJ9WKxKOyZbujFP01juFrBx6EfZEqNQ+kyGMOoDD2JV8aTsEcGRDo8Eum6QNeLr2btLVXjaRc1kYBxjnaz5LQ/cf36BhNGTAwEpEg06jVMM0VT8jhCEvmbq7QQ0o+SKzFI/Kpm0iaZ0t0ur1VmlLHtvCOOMpdvb3u9XzJ+zy/PGYeR/tTJfLGRm5trxnHgcDwqoCEB8hgGrDVUCjQKsB6KwbvVxFK6B6rEMVstjCMRBVoK8JTKnMrS+syMmhuHZ3A478FmNg/nTE9Zy4N47urzyvLB9XrN5eU93nn7bWII3NzcSDOAUZxfc16i22IBVnTZkm5/ylK0RgqDla9KQl7AI5I24TC0TU1bS9fvxXLJd777XT779Dc8e/oVXpt15Gues8Jy0o0xWhg3GDMVzvL9WG3EbuFwPNKPYlbv1fc0SpJ3R05ncxOVVFA23as0qJu9FyjSbylRyN8u3QV85Liaq8UJ6M3FeBBWes598iu8mT+hOSFZ2Gkwztz5TD7fPEPKmeTn9gbwk0GuO0DSHByZ5XXzwlcqVotmOpa+dT5D75zX/H3kPPDb3qvH1PmT8z8Z/7Z8Z75O8+anS447O9909zu+ATTd+e10/+bPOt+pbwPxSi5fBvv8kEak0iVnzh+dPzm9Fq3jigXDHGDT41tzx0Igz4NvY+d92+u3Bp4ePbjU7jwRrFTgJTgcGV719KcjP/vjf87u1Wvev7hkbJf0i1veff9dPvj+d8FZTkNP07S0TcO+l6rM7/3e79E2Nf/6X/wJP/+Lv+DTj3/NYX8gAb/85S84no78+Mc/YhwDF+dbdjfXWCM+G93pyFdffcn19ZL1asVisRD/FSOJQnfq6Iceaz3Ow/XtLa9ev+LLL7+kv7jk8b17VFvpJJV1tA8fPGC1XPDpp59QNw3vvPMuy9UKX9WMY+Srr76maRZcXtzjq6++ou8GXr+6wpyfcf/yAmustEseRwyONETSECEEhqHj+vaWynveObvHpl7ikuFnf/wvoKr48d/9Dzl/+JCzt9a0vuJ0OmG8A2e5fn0jLezHkbapqRY11jtwOSmbUElhMUSMJtm+yp3XbAFwCj2YCbEECpKdF2fmg7sM4MkoFMhNGKb3p6RVFpl8OcgVSqdR9tD0nUEkpeK5ZSYNczLQS7hGbe1sskwLf0oySczsFGeg7d0Jo3/noMeQ7kj/DHmZiMTsM4EpMrYROaes/55WSZUZpSy7k89Opuppdi91udJ7gbKc4jAQx0DtHM5kOZJU6co9NaaYDOf7L/fCEoIEDrlFr8vyDO+VIi5jJKaIsYbKVWzcWuRfdmJ0OEMxjzXGaHdFYVhI1U4DunHQZzg9U5D9rNcWuR2d3vxUgKigzK4+SJWyrmUJCtrJEmPox0GkF02lrdBF+pDb99ZNxcovqeqK1UqC8ufPX3I6nYpxqa+a8vxfv3jJ7etrTscTvhKTTKzhfHPOcrUSwM8IkOeV8ZSQ6vXV8UqTPWVAHHZlDHmV3K1WC0lAvMfbxHrZKnsDkjPENPn1tG3Ldht55513xERZzTUNsFwsaOqaq6srdrudVMW8xdaV+HOEKK2sSUr6BhMD3lnW2y2b9YazdoUlMnQ9VOKV1VphbY1pFmDGREgixxsB21QkHH0Uc+YUe3qfiKuaQat5oR+IsWd4vWPoe+Jpj3h/WIwzoMyfIUbCqYOYqNoa46RttvGIt0iQJCWEpLJXGX8xxgISw+Qdkcc+1ois20ilzZDUjkiedAi5NqdePb4SFl1MaqdluHn9mtiPfPTWu3z3rff56P0PWa437Pa36uuGUoc9UV2yNMzGJIO3IuPulUEkSb7hfLuRTltMyW7+O+ZW1EbOLjMUjZneM5nrCsicgvyurmtybBBGAYz67kQYB1xbY50XuSo6b50lxMCibbl/eY+6qkni8CJrlxNHJ19Jt9hBmYc2CbsypkiqFaoOymZLUuCofEU/9AJ8zAKOXPEVv0SP95KQGydw5zAOhDFy7HplbY2FEZO7gZbqewh45zg/2xZWJVGaFjRVRe0c3gApEAYx7V02NXEMkyxC94Us6UOBzhJ8Ozlu6VionYfqqlKj8FFp5EmBJwHdJGmRBLRpWsahl7lTZEfa5THGIkWZKoQaiGogOA5xVtjQfSvl/UJYUMZ4DKZ4jY3DgHRem7xwhJklIIE1sFoudG9wpBBI46B+aFBVTmSUiE9hZo+EcZx1+0KLGT0pRRbLFoN6xmmzhtwaPV+3U9nm8XicJZgCVhntd7Hf71TmL9KpzWalEsUJzExJkuD9fqd7tKXvO05dp95SjuVqOTFkSMSQyEbtznvsGDgNozQsQNgcx9ORViXtecw5Zwqz1QBtXcv6u1yKN1JbM44DXX8SduEs2RF/RoO3EhMIo7fGuZqukz0vYsRPtB/oupFDP9L3g4ADCqKPo7D61slQWce6bTExiZ9hVdF1PeOp5zCM3Oozb6um+FkN48j+cGC9WmGN4Xg4cDwcGJQNv2xbKud1X9bC1CjjOAw6nm1S0FSfAVrQsxJrJBIhBSl6RmEf1r4t9gIxoLYAHuMTNUbkuZ10s80smvz9zBNYnQ/GGimsmeztZmmaWtf0gB+8FD4SpDGUBN9qd1oBtyHFJEzlyquMO2GrpAVblQQnGSuVM8Vj7ny75f7FBVX6NeOYNB5AQM/gII4cu0HukSafAsOiyaSAwc6KBCWGE6RE7Hu5oy43/DFgFOjTPe3xo4eQ4PWzp4RZV7+qqkTenEQZslwu+ej9Dzgej9xcX8tY6oXx24VBwAFjpgXFSILsrdVYxAoTUGVcUjwwjGHg9YtX1M2C88uHJcaXNUu7Wie1oIIJQJ6BEZm1T1k7xgIc5/XAzd5jmCT00olQfhdzrF9XLBYtFxcXvHghDWEwKAM2lfUPKCzVkmxr7hBCpG0XbDYbHj9+zIMHD4S9n0SibRDLkbryVM5y8/o1z77+mjEkKl/z9/+j/wX/+l/+CT/72Z8VFme+lrmtyPy6pfCdJdcSKjtlyd+7vCc+ksp+KwUnRqamFhMol6wl+3nMmWKEiVGS51H25cv5R5ZX3Tk3UgEPjZnlTAXMidM55O9kin3K61vQHDHL584r53BzZk2+f/l7y+/SdCZJryePtW8yc954pXydGYHMf+eDaS42Q9NyrjiHxFL5zbd9RSqnaQssN8FMOecs529mgGg+dk7/3sSZfouXAWUpz9PxJP6bZBYT3wDqEoncEfXN5wCznJ03xko+4Xy/Zp+dA0tv3q3fFnSC/zld7dbS7SSZqDc3EdPAOJ7orm843Nzw5S9+Qbc/8O7Dh8Sq5mgM55fnXNy/x/XtDf2hl2RLA562aXjn3Xfx3vPrX/2Kr778glcvXxba1rNnT6mqit3uFuc96+WCpq7EOC9IpfPq6ko2e93YlsdjQeT6YdSOChXWWI7HE7vdjuvraxpf0R1PxOUKb33xXFmvN8VYsqoqLu7dAyP+EjEmrq6ucc6zWCwhSYeaw+HIZr0qLZVDkGQDBARKo3RfiqeB7npHu92w3S5onMfGxJcf/4ZuDHzvR7+L2Z7TVuJDMgwDfhhww8DhcOR4PLGoKoah5bz2d3TWIcRCn4xRZQM6ICdDUFMGqKzTE2pq31gojA7KFCf5WjI6ipHEfTL7zIsKE4BzB1VV+qgVs2+p+kjyjJEJHfWPTJJU/FoCspCXcrxOiqQTK5npHGKaTQajiFQqW34B1OQIAiq9weZkzpCKwYBJ2qJ7AppKMlE+QzFCzQsmSfTP+b7Ke2IB3Mo5pSTV+hAxMeJUviWyBl0UUn6Wszbreo8TlE1MghkLDmo1N8+U6ZzUS0JjFfTwZWFOM9qur6vZYiMB0jDIpjanBhvAJDG8NfpsDDBqx6tYVlrxKcmb9jhKR6pkpHObsdmLQAMX9cGKKWKTJAdNrdIhoKnFE2u9WnFxec5isWC/O2ib6kGeq1b7vbXsb/f02l3FOaeJAyxXK5qmkYp9Rut1fInfReCw35NSxBqVPHVm5gElf4dBZADr9RqM0WBNgJVc+cssNJCE7+xsKyNAk8YUIwvtZLTf74HEEAZ8VbFYraSSO4oUYF6uMDGIh97ijEW7YFU39JzEtNlZDYIs0SgjTRNqATyUFSInBcYRBq3GxpFgITWVemWIHCUMI91uzzj0pNCTjANbY8jMJPmOMIwybq1e42wMC5coajA7SdnkvGbMR6YAoXTZtBkUn4yX8/tyQicF+yxDTqSQk3zDaX9gPPU8+u593n3yNvcuLrFVxfXuNd5YGmV3YG1ZG/L8zRWeqqoY+8lrKiWom4bKe4JKF0uSlZL+LBKtwtr6GYyAFeMYJvNRI2txKGuorlfGMKSxeC6NQ0/tBaBOGuw6NewPMVJVNWtt3yxro3jgiR9QKpKxoM/LRJFWhhgwUarkNiEV5JioKvX0GUfQuVByKSMMSO8q8dBSqe0EjiSGMTL0WaITiredgHUqF9Cg0VpLW1dkk+Ok96tyIvUWhkHuxCqNCvpxJI5jMdTPQdqUJOTxEfVe2zJ/iYnkLKPNLe9HSZZD5NSdys+MEbYPJJq6FmaWsmlk3x9VFiFdxnJCZYyUeXLLdijxoI7znJBBNtbWnQYw6lsV7wCr2dBdEkjpoiYsnKrIQEeVpxCzFCmVPccYCqtWum4ZcNMcCmGUdbty5FJR7gpSOrg14tOJAoanU/b2gspLZ8Pk5Rz7vpO1Pw74WjyZUpJ1Ku9LKeWkUcpNWC9+hLtdYZdWdUXyvuzRci22sAets4RO2HSyHgVOJ/FkG8exdIqTzwi4bQCsxVPhF610RPSOrjspeDJqwaMpXnOg3TV1/27UO85YZTVGuZf9GOhDYIiJY9/TdX1Zs4QRYskgRO09oW4krhwG6bY3joQh0anheF3X4llnbPFKWi2XYAy9ygVFGg9t3RSPNHn6U/fikBN2lN2YJiaH864wdChsdDV4tpbKOMYQIE6S/pJ0VFIItTaIN9xs38sAKCjY5Ny0rjuLQ9hrJUcwpgAWJkGv5t9SSMiV/cnoPyhTsalqBmSMGpV/xJTEJDyBc4mkYFBMifVqxdlmg9M4OirL1Hsvlf8AqRsm+XpiiiuN3ssYpKudhTAOEuvFQfc7MUZPAZLTrF/X981mgwX2r17SjyN9iFgva+1oDSZS2KMX5+fi5+WdFPyNnP8Ysoeirsf5Huv55Y7NITcJSEnXbZG37nd7+lM/xaT580aeDQlBnpgn06mYk88ZEXlcTxLUdGd8iHR88i20zkI0JXdICe0KWxXJ6zgMWCfMuDTDgEsB2oAzpd+WnmqkWbQsFgu22y3rzUbHsBRIpJAUcc5SOcvxsOf2+hpXtVxcXvLj7/8uX3/1BS43eFJ1QZmzZQXPkyuVuD/fd2MmRt9qvaJuGu1gJ3lWbv6QPZXyDZg6y03HL0SAAnF881XYWGSlRV71J4Al50E5b8r5Si5m2vmx5scuidKE3sxjuvyZ+blO5zw/psZSzPJNRZoKIPKNa85f+U1gSE4rB4F6b2ZkAr3c+Znf+Q7S3bt5985+8z6nPMHS3Z9OOajmtfMjFEBsdm3fenQ52TevMl+OMdOn8t43sb+mvHT6YMrp18QMM1OsXK7oDcCKlOR5v/Fsv/E+pnH+jeP8e16/NfD01eefUlcVFxfn3N7e8OzZU4bTieF04uOf/QU3L15idyeWGE5X11TLlsv3HnPT7/nTf/On/A//w//AX/7iF3zy6Sf03YkEtIuW999/ny+/+IJ/+ad/yrNnz7Cu4uLeJU3TFCPyT37zGx4+esQHH37I/vaW50+fEoaO26tXOAPHQ8PpsOf84oLHDx8xjD2Hbk8cdVNFjExfPHvK1dVrFs2CcRj51a8/YRgjTbMA60jAQc3sHj56wmlzTlsvWK/P2J5f8vyrpzx7+gJSLJImi0ioVpsNj959l+3ZluVyze71Dfv9nqeffMHu6pb1k3fZXt7j+z/6EV9//jm/+sVfcnbvnMV6iU2J1nvGmx396xuO1zeMTc1YeUkYiTRtQ9suuHz4kLapaSoBALrjSUeAtDX0zkk78TEwdh3WGqIxGO8BrWJYysYdFaCKQSQ9XQ4Q1cgVKOam3gsgMeZqd2bcIEE21mArL4bnfqr45lcWG8QMouRfaQW6zI6kiWlZxdGNz+gEU3NvXaz6QaQTUQ0g66qahAN58uU5myfqvFIy261lQZRA5Tj0RVcuxA4jxsxJWix7N8nfvJ5QBGF/aFATU6Lre5ETKPOndrUkihgqa6htRaPGz0nLF7LReWl9rbO7dPrLAZxSmb2V9uNtldtEzzaYKEliZSVpS84RE1MAMg84sy8ImoCFgHNi0CtfN5nQWWsJw0h/ko5ZY4xFonM4HEhRugllsCDEBJlyr4BmIjH0vfgvGDWuVylfXWs3NJP4wYffgZjovvt9CUZrr9UykfpiDGEQADgZw/F44vPPPsMaYTF8eX3Ny6+/wnnH6mzDy6vXLPuOH/zO79C0rVTVjkf2+73Ij7yXNSpGDfTFjFmYDg3Oi5/S119/yW63ky4oxrDZbtgfDnz51VcslguW67Vs5Umq0WGUKltVVZxtz1iuVmzPzqi1e+Gz589JwHa9pqoqFsslMcLt9a2MSSJnm60wv7wjpsjx5lb8i5qaZbvgcrHlJsI+huJFofsCjFq2VGBe5mDCJUUZTKJqPBaR4jkMIdkChB53R7pjR38aiMNISqN0B7PCWjRGqokWGDpNODR4GLtewFWNMA15DJpygiGNGGPxThLMqqoEtDJJmDYh4exs4y0Rtsz1ygmYUNiFkQLI1MZRYVnWDdY1/IM/+rt8//3vcnU44LyjcU6SsDSSgoEgiXtKkePQY7B432KBRd2ybBaYe/dK98ohjPRqEJtBcest3nrSYCCEwmLMAdUwjsQocz2q3OfZs2eklEQaYEzx1jPeq6xR5BtOfcxKNTkZhjAQx1HNdgPOiXFs5YXif7vfiT+VtQz9qGu+eHoIuCMJlzUwDD2vX73CGkdV1ayWK5aLVkyYwygNLpL41DjnaeoW8Quy0twiBk3utb29kaeeEzdfVSwWC5qmUR8Yke/UdfYaTMQgMj9vZV0atNNVTrhPfacAsXSCjUHkfDGqibIRI10BKx1G/fxSCoQxqlcNNIuWcRg57Pby3QpA5f0wxCjG2tZSVx5rEt3pqLKUyBhlXeu6DoxhudxQVdp1MyXGIAmOdZam9kU+l5liOoTJm12MWVomiauAi7o7aUFH1uq8NSSsFxC/qqVw4a0n1pUkgbqmY8UrTbp5Glzl6PuO4/GgwJWj0iKVcdD1PV9+9Zzu1HM4HFmpmbXRPSCkBSnBbreXbsTHI5vNRrqENq02gBCGXLNoVJIt4Ho/aGfIFOm7Tu+lADDtYoF3FXUj42Oz2RTpXga3ZQ+agGiJUySc9XVLSpN07N7lpd6nCRz3zmHx7G5v6fue3e2OYRw4dkfOz8549OgxQ98Rxr6wEStlxHXjgIsR4yrGU88wBhZVLcUVBe5u9sKMrSqRvy4WK9pmwel04ng6FFN0i+F2J2ywqqroO2lyMffLySytzJCNSTzQdvsdx9OJ1le0dcPt7a3IAUNgsVjw/jvvcrY9IwHWe3wtYKDsr1qkVN+leUc5p+xyozLIcRwVtIk46/FGZOnGoH5XM/8wY1i0C8JK5sNY2HQUtodI900pmOVrr6oKmkabAPgSl0isBI2vSFXNdiPF4eubG/pRpM91XbNcLsu+kSWao55ftNJ4YBwGwgDjAOvlirat+f0f/5iz5Zr/5r/+rzkdT6S+l+cYBrwxOG/xNiECNKvFg0Hl2wIyx7ywpQRjR+0sH37/Q8YQ+frZM2lEpPfRooB/SsIMttB4izGe5KRwd+j2nG3WtO2Fgh+Gn/3pn4vJeczyRujHgSGz0RPEQeI92zRFDGRT0uJlZrXFAtRFLYYaY3Em86jlWlIKxCA5glhnyF7d1BVN3RJmTXUyMJWZ7SmlIkmdz9kydzMoJbZ/4jfpTNHeT6zhKMwhi9gfVDXJyxo+L+hZZdem2Wfz3jAGAeCdt7IvjBIhp1kskmLgeNzziz/5E955933+4T/8R7z//vv87u/+Ll8/e8aLFy8VkJ3cXt9ki8j1a8FdvfFWyxWb7ZaLS8lpD4cDWCudiZ2wfZ2VePhwErakM1KMDEweWZklZXUvzMU3YejGUjBIIAQBY1B/GnLyk2Muo91qc7CSdB2YviwDN3J92iSPzNTLBe/5uREzqDEDigriM0NDZ59JZHbY7NnlI6fpuzKQN89rDEizDCZgiXy5byJJCc0vyUhV2U//etDpr3nlfDSf5htgG0w+T1rjzSKR6VG8+Zp/8Zv3iQlQtDNQyqAM9jnYlGbgXj6vu/DlG1/4zfs3deucUoVyLm+AiPm6Zwjmt1zct79+a+Bp6DqIgX5/4HB9w/Xz5wynE2PX8eKrr7h58Yonq3Nq7xiGnsq0LM82nIaeTz/7lF/+1S/5xV/+ZWFmCL22YrPZ4qtnHA4HoppA1k1D3bZFG359fc12u6Wpa1bLJednG5EIhJG+79RMbqSua634DCQNQGOEw/FA3w8SLA6DBMIJrm9vxGMiBJFk6IQHy6JdSoDsa3w1UGkLzhAiYRwYhp5cSfXeU7cNi82aqhEPmP7Ucbzd03dSpWk3K7aXFzx59132+x1jinTDgOk7XYgtaRgJfc8w9MUAU+SMAe8b6e7SNMJIIZRNOw++wjrKYyiPhQy4zEZ+8eBNFBp19pLKVfUpGJaF31oJMEKu9qRYAi1rDCZZNZs1U2e4cl7zEzPT+eV/GUr1Ps3Oz5rcKlrflsrbyZeXgYyokhpZUO4uKvlzMj/y+ZjZzJofURa9MAN6spyQGDFZ6uCmb7D6//N7llkP+fuM+ebDsWoA61RUm+u/uZp35xGSSqVgjnbnJCbXYabKR8HHmaoqenfStHgUCqz5JktN2mZnWaQpAbx3HpNgNIN0pMv3k1Sq8VVdYZOCAfl7yllooKRc/aR+RpLUOgl69byWyyWVdbBcSRJeuXId0qExst2e0bQLnPfs93uuXr3CWUvbtDz3TlrNW4OrqlLBzd1ETl0nCYFKReq6ou9EauI08Jfzn4wjEygTYiiV/kTidrfj1cuXLE8rhnHEIHKZ3e2tSFq8gFer5eqOD4K1Vo3cQzGxtb4SEDaMuEolh74SIFCBp169qbI/VYVIqcqWk7jb7TnluGJiYqQ0be7WpvJ+k0wJDPIGk3RNLcXrmFCd8tSSG5kndzbRLPELQYKzUrHOk5OyqZfNVNqmyJgvX6czIa9BBnKp1yjzrphgJvmshpuYhBiNOsej+w94cHGPU9/jgsXVVjfsbF4a1ZNJDMcFQPQFgJbOV7ljG+z3AoKUwMgASQ2Wzcy012Qz8VSYCdZSPG9yt7JYRzV6Rq5rBjzFYSDFQOUN1SzYSzEJdq8PR7zKBHQYx5F+GOiHQSrRIao8bWAcpBuTLN2GOAz0Xc/xKKBSjHLfnLXCUIlRbXuiMoHBOWEfpWQ4KaiQTajz+DYKEBYWkJ21VicnLlPioQNOn29OkAODHr/vT4UJZHSAZ1kPuROpmpvfCbJ0rmavpJQSKYSSKLlqMscNeX/Tc3VW2RUqGRavKjE0HsehJARl5Y1ToSClRPJu2oeAuUS+rIwpG8rKem9VLpUbPkz3KUv45hMtzX5vwYI3vjBviTOmkDJMYoxlDfdWJGIhRbrupIxyGQu5Xp3ZDH6Q8+r7jkHZ5XKvjI4lHZMxKfNGvs9Y6Siai64xMRVU8j6j9zszAfP8sLN9MYNPetPKdVtTFdBT7kgoc6uw6Kw8hxAEgDydTuLJd9xLE4dB1n9rhJljFYTJgCRanBn6QeK4GKlGp0C7sHPKuuyEWVVVte6rQxl3JAHV5RrHwgrKTKX8d9JYwVeVsCZ0fx50/o5GOjD2fU8CvK/YbDbUyhyEPN+yLFaBHc1tnfrjJWUTofFEMgYTdW7rPTfOFUAsxIhNk5dPBsutxjPOudIwwSVfvKYymymz5+YMcjsDY8taYSzWZzDZ6zkqq2wYtBike2FmhjlHUFZ+dI4wBnoMIyINyoDixfk5u8tbSYaigNhEYUg1Tc2iqtntD5gUi8F+SIWzyN1MDQgjzlU8eHCPYRi5unoNXaKPCWOnxM4AUdcMSHhnWVQNp3Rg7HsFgrX5SEi8fvVqiutSAgVyUkplC50ClFTi5xwbTqtEmv1Pnrksv7OYU3OJ0lI9r1Vp8mQtTJq8nszGQEpJC7ZvyNHyS487y6TLXpl/Nm+Sk4N+o+doNN40ZpRLzvFJSgVQiSqb7tSnsBgiz8dWvh9JPKSeP3vOcrUBY1gslzx8+JDrm1sZs9YWKxApcIX55ei+P1uPYhLj+qYWL1HtxJkjeWsEgM0MOwF4jTZkiaSo55v3rPn9I8dzd39myDESGiOZMiZSHqNkACpbcOgfM6kUsgVJ+Yx5k8U0y5emw34DnJjvTfN/l+/NsXUZZfl0Jx81/U+MWhXY+aApWY6585PZXdJj5piMkg7rSd1532/7SrPr/lYsKU3Xkd8xN0MvQsZEue4yT77l2+SNc8XON+fbm9dh5uem88LkTotmdg/ufA/f/N3sB98Yb2/M7W+7F9/2+q2Bp812S7c/8Is//TfcvnrNq6++JoSBMQzEQ8fCVzx68hhjDZ89+5pV3fDB977Hn/3lz/nn/+0/4erla8ZhoG1bTSocq82Wh0+eEGLi9vqWvg/c3O6lwwHi4tF1PZ9++inWWj744AMePnzAo4f3+dWvPub5y5eM3Yn+cKAbBw77PcvliouLcx49eMBpGDkNAz/785/x8uUr0iCU6MX5OYfjgZcvX3Ea3sbVEogTE+v1lgQcTwe608CLl1c8ffaUzz77jIvNhrfefZdXL16w3+2kK5V3XF6es71/SfPwHn3Xc9jtuL65ZX+7p10v2Vyc8w/+t/9rzi/O2Z6dUd1fM1SJZy+ecXV9BUuRKIxxpB96Tv0JnKGuPQah7i2ahrppGeNA6EdSr/45amwLshlaO6gnjqdSnbwxYlpYNU3ZJEKUwdJ3HeMYlAo/VamGYZAWxb7C4nDGU9la2A1uAhBCkmTZR4EXxDeDor3OAVIIai6syYBVcMqAUKe1JXSeLUOyIslxCu45ZRSlNFticvApHjRZzuBcloMpYGSVQpqm5SmjxVkumMibrAbCxlK1rUzSGBlTpE8jjEE7C8m1OSvEShuSSgZFJjPqYm2ck5bNZDhMAiujSZU18rOg8pzcJSZT20OcZC1GvZ+yyWZOZDMVnTgtbCGKoMmp78wYhOEwjAO+EoZNNnRPcQoqU0qMowT5KUR6BsYQ1PjXlEqJNdqGd7kslHrvZbzd3NyKj1Ovbc7ryby7tBweBazITQq8taSQoA8EtXc2bSL5yP54FJ+DtiUh0hNh5Q3iDZUiF/fEg64bBlbbNe1iwbJtuNxuiUPHs6dfM+wTA4l7Dx+w2WzYXpwRQuBmd8tyueTePdHhN02tm57Q2I0xVL4RWVQYybnPBx9+Vw3WG0IIvH79ihAjf/DTP8J7qbwOg3QEA6Rbz3YrPl3qUxJTom5qfFWV+/jqxUuub/dcffyJsKM2az744H2++53voPG2dEGMAXd+Ju2m6xYTobs9EP0ovhJR5kWKQTvASUvtYHIF0VBHR0qWWmUP2I4ESGdmC6mGOGLiSFNVuBa6aiDhdbxFTBohSiITh4EUIi5N7AKTxOAzIcFV3dS4yovcyc7mknYw6sdBjPfLAgHW21nCLkCERat3SYDNOAYgFgDKJnBYvLEQhFWzahasmyWXq3PWzZKX11eYFKnSKCzNyhE6CEMpvlJ5CXVS2Ms98o7VekVKC3J19fr2WgBXrf43dS2eX95ru/LIomnFY0kT4oX3Ep/Gyaw7++fIsjhJU49dz3G/57DbcfXqJafDgXe/9xHb83NqX4tcfBxxlaeqG2xVYesaj8GGRH88cdwf2N/uaOpagOd+ZOwExIkpUvmKmAKvnj0vDQXkugNXV1e8evma7XZDXVX0/YFEUq8Oj8EyjAN9P4AzJanLgHeuyFbq1xZi4nA6UXvxIVssGlnfo3YHiyPWGdq2LmCJc5YYA7vdzR3fJUyW6xiWTQsYbc1t8FWWYEScNVjjNLKg+N8MXV8YCDlpHYfAMChIasSnwxlhqcYQGMahBGfeiWSwbVustSxXK6xT6SQCVCT1NOuNIbhQYrksCTPOlaSqgChGWUzFYDuqnG8szIKcUYYUCGOgGzqqymtTBAGDe03caysGu01dCSbl5L6XzmbJiGF7CHz8yce8vn7Nx7/5mEW74OLikuPpwKk7slgsqJQFmwG51WrB/fuXhXV0PB4Q6bbXe9oAer1Wd0LrMc5St14AsCHqLumJAfquwzuZQ66RhaKYRo8iBbRO2WEK0PdDT+UFrKu9JwGnfqDrem5vdtRNTdu09E7uYdW0OOc55C6PJuIM7K+v2azXLM/OaOqWlODj33wsIJOvSdHQx06Ko2Pg2PecjEqZkHGWZXxD13E6HmjqhvWiYdl4Gcf7PadTx4vdLX2MtKslbdOyWa/ILbiz9KvrpVlLLoRYK/GRmBNHTqcjz58/5/Xr13jnWa5kP/O+5njs1MPJKKAZsTaDV70CUXpMM3WIyzGCgIpiHF5VicpHYXcaUyT3dTWxXDLYmKIwXPP+55oKE83kgzVjdWUwIwyD7q+pFB3rzGJqG5z3vHj1Ugq6iG/hEAOttdRL6VDrfMVqs6GpazYq1euB06nj+tVrjoeBY98zdtJdbLvdcP/+JevlgkPX0w09TVWxWS34wXe+y/vvvsP/+//zT7i5fk27OQMDx5ECdudKTLKQIphxYLFs+A/+8G9y6jp219e8fPWa/c0NCQu1eHRZ4Hh7iyFxOh5Yn13wzoff5eXzFzx7+oz+1NMdThj1uDudTgIIVp5khe2d8ncrqF9VeZ8N2ApWjdh/GGsZeynQxxhIRuLVEAOnw1H8/cbcQdoxxkBIicZXWGdZrVbCDNwdOB2PhDDgKo914nmYAUZQD8Ns9aF/grKy8vogjT/MZJadQa7i9xrZ7/ccDkdCEMAupQmMyuCk4Dsi7UcOI+xA7zkcT8R0zce/+Q3rzZqPvvuh5C9RpHvLZoXzFpJ000th5PnTZ3hf8+tf/5oQI3/zj/6Q2/2Bj3/ziUh9qwrphB0Zhk7WIEOxX8ggztD3BOtYbxzr9ZoPPvyQPow8fflcr9cy9AMp9WpnIt33IggzznnJvdxUeE8hcJqBtvk1ByAAAYoL4JGBSL3HukKVDE4/kwufY4qlcUouFM1fBQjU0CzbgKS7b5uACGNKvPttUizxuXrjlZOYN75dsVZyAT6Qc5HpUpIGiUk/ULAfYrkV8yPPgapvglbzU9KMICVlMs2Allxo1KJD+e4M1swxugw+fcvrTaDuzoW/cWZ/vazNzPJlfV4FO7wLVL15jIn9OItDtLCaMoA5Ow2rhc1iARD/urv3zddvDTyFm2v6mx03z57S7w+4cWQ8nQhdR2MM1DWkQIoioTLeYtqGPgZubzNiLFRvayyLRctyuWDRNrRto9RY0Uf3pxPWWTHvtGKmmeVPi7qhbVvqtimeFtFFhhgZxpHnz54yjoPox70HmwPinjSK3KFuFzR1I0yKqgKMVH1DkOBMkfFMQc20/XaxYLM9E81xYYEA1hJjYuh6Yi8m0SbJAr49O5d2uI108+vGXqixzore22U2hVS+hnEoFFnxvbFqFC0PPntNCFgzp+GnsnlblcaUBCaKoXScgRgiT5g6juSWt5lBVVUVXunP1jmMF3oomUpaBp/IGFypaM9w6BmTKoSAddKFJy+K30ZVzf901pSW74aprpQ7Yk10z4n5YJzl2+ejvtdMC8ZdpHpiByWyB820wBgU/DJO2tPlhWZazWffRNl8MoNowtPM7N/lq2cbQV4otRJRjsh0hLIh5Pv1xgUXKmlU07+8Q5jiT1EC9TeqKKXyocm0LCZ5Y3jjjmnVwzqr5rIiJ8EYGesmV+MpSfXdl1xhZqWUym6dqcORoZdOQd45YqzkuKBMhMl3IgcfWY6GMbKm1A21r0SS1p3YH/f048iDe/e5d3nJw3v3GMaRoRcvpbquadqGqvKF4RVVMlT5piR+uXK83+0YhpGmafHes1yuAAGYmkbWKQF0B6RttGO9WUvVgaQ0cGnTbL2jrmqGQcw+Qxg57A8sl4siH5COcJogy40F76mcyB8qK/8W3xBzl+WXx2Ganh0a2JMDfWbeM/qsC21Xg6OJVzcFIPmPiSgbJqrfhdVCi1SpBRtNBRT2To4XZ+2wjYKa5KB+HlmQq1Z5jM/GUiqzvMhyrZnWA9m7E5Wr1YtPDMq7/iReJSnBaEnBEntDDJS10tkKg/xMyCyB49He8Ty7vbml6zsGrb4vtEV6luJZ66CRyOkOA0b36+zXkz1N7hg1GoMPIvsMbctyuVQ2X0PtvQAzaEfPmEoCYb3XNdwXdt4YRlyw2GQK2KJ3VhI/LSRAoqkbQBgwMp8nry303goT2JXzFHakGIvLj+RZ5mC5qsQ4eRxH+u5EZ2VP2GzWGAPd0BGCzMnsS3g6norpbm6O4MhZnq6xdrY2GjEOT7oOShw13U/xn4vKiEn0Q5AVf7b2SUKhEmEjDyllj64kjKSU52BmZamvYJpVAWOUOZ7Hb9TjiewvFUliXlPmjB6nhYWcqCfUsHYma0ITyDxXZfhHNXRXubTGA67RLlYpYoLsdTkOCJmZZD0xJMYxyp8hMrhA30+yGaOgl0jwXfG4El+vRNd1Zf+oq/xM8niImkDGIu8X2ZAlqi/POEo3U2cN3ge8Gk4bAx41oY4C3llk7Nk8vlJVWFDFf8hIIw7vnLB0tbAGsFosMNbSti3BO2qVp8raIXvA9c0tp9OJjz/+DWOMPHj0hKqqqRtZn3z2icqZNiLBysBtLvDIc0slKXHOUavktG0aYToY9UJS4+xoEtGiHivTXLJGuhNWlccbQwpRpXdHFouWtm2pGmnskC0L3tyB53uzxBSpKC1KfDOL0Qoj+k4MKKMuF7CKHN/mVcVqF7yEmj2UuZBPQlj0sewPRPVaMjkBtjr30+RXZg1N1eC9yB8XzULkopogHfcHuuOJTuPDEaty0BPDKHM3xEQapSCwWq3YnG3ZDQN71BDdiJRLJLRJ96s0AaBpxhtKkdo3VN4RwxLva549e07fCxifEtRVQzKWFIKwp6xls15jSBwPN6QY6I4HwjhgjcjowjiqRBt8XQs4o+tOKdbm2MyYsvbkOLQfe2WeSoHaWQFaiFGLgFGZ/SLPHoeevjvpOAMzKvM29fT9wPF0kM6bMVDPmMulW9oU3he2VN7dc8w+28Kn/Zm83RplKilQVVWcnZ0Tk/pYUSL+O+PI5DhH425rLWMSBuzhcFA2u747x/T6efHtsSSEGXw6Hnj69dfUlePho8ecnZ/TttK0ITODp7mRZhPrbnycgTavOVQKI90wYl3COi95uu7ZAJNV1nz/0Lwg702kMh/Q+5WZTQVMStPfsxAp36DpG8pYmWJFErO5PXvN8gTe+Ge593zbW5QsoLlnHh5306b5p+dfnr7lv/Pzn2LA3HUuR4Dp7sGnGHi6xG855re/3lit5lnaX/+5JO8x3/YmPd+5Hic/Q8ifm9bXHD/fyRnf+Hc5dLldb7zzTSPj2bmUt+c0cfYndzi8+613H/6d6/zmzf1rX7818PT6T/+U3e6Wr//qr1gtljw4v+Tl1Ynh1TUPL87wdc3h+jWBRNt4/KJmv/D03kLUbhNODL6tdbz33mMeP7jP2XrJ68ZjTKQ77bi+eoG9yRIFi92Kp0mjQFOzWLI521I1C4yvudhK95vr62v2uz1//md/zmq75uLBJe+//wEPHz6i9pZFU/H1q1c469huz1guVzx6+Jh7F/dJAXa3e/UoGEvrXWukrevZ2Rmn7iFP3nrC/fv3uLg44/b6ml/85V8QhoHDGLi92fPy4y9YNA2LpqGpatza8f0f/g7ee3Y3t+xubzkOJ7767HOevXpBH0Z8UzPujgxD4NX+Gn9c0zphGZ2GyJnztKuVgkQdse8kEW6lUulcJYF0kE0jd+TJxqEpiVlzFWox9tZuQ13stVXtSc3sxFcJoGlb6R5TOZx3JbDNPi5+NhqbqsIbVyRekNcoyxCkzWsBxBqwFdiUE+9QPJnmC4NBAK03FOfIkiMJss1bWgKrE8v5bLaevYimTSpvgiEvHUnopA4m2aFGZzGKzO6U5ZQpUXvPqmny0XIGClG6pUSjZ57kdyIdUcZATNMCYrI8wGBwxWMhn3AsS5IpAdYdHS+UgDb/pLCkHSUxGqNq+FOY6e4hGd2Qx3HSS+mxM9uidIBRHxcTEyHMTEpn/ljWW5ypSqIJcHn/gnEcub29lYr9rCNISpAla7JpyZhcLBaKxK/ptGPYixcvOJ1OdGedBtIVkAiDBlO5ypYSt8e9mOlqxWaBhTFwuNnz7OVLfvP1F1y9eoVJib/3h3/ERx98yH/405/Sh8AXz56zPx3ZHYTFkZkPxhjqVij7rW9KcrVoWipf8U//6T/liy++4N79SxaLBffv39cEEi4vL3jw4L4yCkeskUo1tvSjk3EWooKc0oFmHEa+/vxLCIHT7ob1suHJW49Zr5eEoSeDoMYIY8lXFU1VsXIV62bB2facYxfYDSey4DR4Cdl8tKQxQB9J3ugxJBkyVpPtJOdXGacmuUNJEKOyJIknpQTlcW0xQVh/IUiSRaNt7UOixrJYLHVciuSr63qWiNQx+hwsyGytXO6qFnGVHGdMOtfzMAwT/JVlWV5ZAozqFVU10woSE4TIctFyttwQGDkNR3a7V6QIta8LUJCNmjNrJyVPBm5Hldfs1Jdlo34jn3z8CbvdjpvbG2GpnZ1R1xV1XXH//n222y1pucQYQ59ldV13B3yXBLgpQESe6+J9FhXgSBL4J+nylgNQkqylcRgZjh1N2+KXS9bnWzZnG/qh43A4CNBGkkPleayszU4lbEmbE9y/OKMbBvbHE82yxSk4aq3Ds8BZy1r9d7qukwp45UtBKMRB1kgT8ZVjtVpSVxVt3fLlF1/y4vkL+v6EtYYPP3gf5x03tzfFd6hpapqm5vMvvuDm9oaLiwsW7YL7D+7L+Z462SuSrNchTWu7KFQSwyBywdrXEiipL8g4BiorY3x33Ou9r4VJc5JbWtee/e5EGAO1EwAxWidy2DEIq8w5xDJDJX8x4Qb1wGLk2HfsDnvquqHyNUPMe9dY1kNrpGqejWjF5s8UgO7Lr77SKr/h/GzL/Xvn03qa07G8KBhhZB2PRw6HI6fjiaoSY253Kd50Xddp9diKR9WM8bzZZA+PGmsWOLtkGBKvXt+wXC5ZLBaslhu22zVtK908vRe23eFw4HA8cdgfqFTqxNJSm6lrYdLi2dD3pdi1WKxwznEcj/R9z+1OuhpLF1cx+q7rCl95Mcy2RiXZFmOaIv2rayl4HPuOUcekMUaaNlhP5SqOpxPH04mbmxuGvuedt99muVxy//592bvVGDqECMZx6Ab+7M//nC+++IL/7r//p9R1wz/+x/+Y7Zn4trTtgsViUYydc6w0B44F6BLj73livFmJ79Pl+SXGSgHn1HVc317jalf8CxOJMQ4qi/ayZruE94Z2WbH0jmEIfPX1V7x8/ZrHDx9y/8F9mu1SmK4xYAd7x5jZqE+Qr6d1T2RKuVU6xDDMAHFZm5yXhiXWioT8dBKAYFCZZUzSLKLyvjCfOrWbaJoWmxDfOyTRdl728T4FhhgYc4I9jgXHE1lzTXc8yf5eVSyblvPzCwyW0PcSc6l3TRxHPv7Np9ze3nJ7e4v4nElhab3d0C7XLFcbbAAbDef3Lqi848MffgfzWcuvPnvO2PXc7Ed+/cknPH/9nL4/slo29IPMndpVBIQFn0KANHK5fsD5Zks3njH0Hf+P/9t/IfdjIYzky/uPuL3dcTwcsAxUbcWPfvgDjIHD7UsOh1v+8t/9G5zzOFcxdNIwZbnaUNU128tLQozc7Pdqap9KV0KQmEojX4w19GPPi9fP8b7B+YblYkFbNdihJ4aeoTsx9h2jSYwpMMaO25tXXF1f4SrpbOyFfsRw7OjCyG3oaHxNW9XUba0egm4yEwcFnSWuHJMUoirrSwwbS7qalQgCNjorJgFi6n/EOcf52Tk//t2f8PzFS7746isBKk3QTq5JfVfvmpd7J151g643u9tbbm5vZa3FYFOQjq0mEdMCcARbE6yQJ3Y3V/zLP/4f+eHv/A5/7+//A37xy1/z85//ghcvnnI67mlqL7lFGCRf0Gs1dspYUgRjrTLoG7oQ2J06Xl3vhIhQ1yXO8JKFMI4RYz2+qiWOj8IMk/kZdB4KiJhyd0QLaRQ/qAz8xWkUlPudXznzyJ0IDUxWDBiimYHD/xMgQgFkNBeZo1VZZplhiZTlwympL/C0RmbgVN5tVGktQDolZ5r+zu+e4DMt5kDJV0IU9lsudkkBKc6uZ0ZE4C6QlP9Z8qt0R/CnyakpNgiF3CH/UWKMfH35lxn0vCOrewM9SrP/M/l7DVgzy73ehM3SdA4FMCKV5hFzxCzHDBlkstNBy73O/11Ob/b+woQiHysS1EdV6gzfvKa/7vVbA0/PPvtMdPD7W1wY2RmDCQOrpiINHX3oOfQnfFPzzrsfUZ1tBWg5HOi7oZxPCJI4bdYblsulSlks7WKB8xWoNt87z+WDR1xe3uOtt9/lwf3HtIsVzlfEaBiVLbBarWkXLecXFyIHeP2KYRx5+fI1lxf32W7OAFM6LIQw0nUnMnX/eDpydX1FQkxGfSXd4mJKeF+x3W4BWdCcdxwOB0mGe9mAYkzsDwfGGFhuNizblkVT8/TXz3n58iXjqaNtGs4vz4kp8vrqFa+fPmX34hXGCyukdcKyOu2PHHZ7+uMJnxLRS1tYoapGNYqWKm0MQVr5GopPUAEQ+p5gLU3TEFNk6E6lElU1NVVdQxJGgHMea5OY1cZEXWkrbEMBIYRJlKsaWSqm4zqJ9OsOJJwHL7lVet4UjfhDqaZ/VI8NXSfkM1ZbkZb0XA7sFDhKMKukyIeSToo8/eJskZDkWT9ppsljbCpOOBkvygygrIn32QBRWWTAtAiWszMFHc4v+bzCv1mXayi66ZB9fZj8X2Qx1HOcfXbqpJJK1FiWnpSr5gqCpWnFyM+keFSNo1yfVVkSUxVlvuAkTXpSEo28zWYdpOL/IH4haDvigRhDea+wgyQ47lVeEXNQGmesPCOGkMvFUoJPMy1mTuUuTdtOQFoY6YYB78SDRca8IwUBTA1aBa4anDEscBAiYQjc3u549uIl435PW9U8evSIh48fcRoHYoLVaglGmVTKKMqSBqNttwuT0GbPK0PbSteU66trTqcT9+7dI0Yx792GbZEX2nKPlQWGsEJsAuuTGDaPIzfXVxwPR7q+x1jH4ydPuPfwPhf37tG2rUKZ8pyigq1eafQJg69rNtstz69uGLtEbYWq3Wv1sICtxuLyDNONNFfFrW5HhRGXK9jGAlK5Nvqdil5o185ANOO0MSqQ4pxTY2YHKWg7azFSBR3fKQ/n2Y6n8zQDUuWVyj7J5LWQWXxyfySAlXsiAYsjIVLTumpYLJZSATbToROa5FZ2lp1ZkrFlfuUuhYMm2cfjka+++op+GPji8y84deLzVNc1fdezXC5YrVYsF0sqX7FYLMWcuFNfQvXMKKxDAzBjIBhhnoYY6YeRXKVNGoSapMF6bmwQk7BVQsBVDlvZIlHph55+FANog1H5kLAKctdTX3kikeVaKvfb9YZhHKnbvvinKLaDV9lWns/CqrUTYGcs3ss1ZEP+uhYJaz8MKgUW6ZA0H4ikMTH0I7e3e77+6ktdCxPH3JHSesYhcP/+A+lyu6rFy3EcGeJkcAtpxuYyGjyasv6AzOlhEIlhToiGYVR2Qiztvuu6gVqYXRiRuxkrXjsYS4owDtLJ0FdZQqOSkzHgndxH7z3Oet2DmO0nes+8o/Iqz9P9yhlJzpdto+w6J1197eR/lz2o8n5gtEGEc17OPdmybo0qUylMO5UsD8NICHKvQojlmW02G548eSL+VaGnaRqauqaqapyryIygDGLVdc0wBgHDtWuhc9LRaxjUy0b3jRiTyNGq7Bc0MYyEHe1osi2Dbn9hCEQXMDhlJDnZAyIMKj+0xmhTBVM6cnVdX9Yzr63pj6ejdlcd1SPIg/oPFfZOCMIEweDrhnfff5+mbtienbHebFiv1+QOWfmeVlWl35vXLCk2JKfG1qNIQJMyJVNMdKMYsA9hpOs62T/Oz2gXzQTIK+g/JOncOBrpoOiU4ZpS4ur6ht1+z2Z7JmtNjNr0YCynMyqgY70W97SxQfaeya3ZCzg9S+qFOZOX6KQ/s8WjKQNYWSKcYyPrxftq3gEve+WlNJ2TsxZb14onWE2OTAGeKt1dTl1HTJH9bifFaD+NRVIimcR6tVZTc1EzhCBJewgjMQUwCectla2kGdHxyNXVLfvdUdYZI0DYoODog4cPiOGSX//yE/puwDW1gHQJeZbe0409u+OBIQhDcwRlDSSCEcakqzxVKwbqtnJc3d6QYuTQdQwpUrWN7O8pkqxsaE5tM6q6gqClU42V5oz1HJvm3+c5kPOplCT/wlu1dDDKzhaJcN/3AvocT3j1ZTM44jhyc3NDMJDqyS9v6Acp8KikXBdsSrc7jWljFJBH9i5do7N3Y7RqcyIG2ZbEom5pmobtdst+v+fZ8xfSjGAcJW7U/W4uF7IKOsw9AoWBD3/1q19R1TX72x0L7fSaWZjGCPAyDoMw0510bPzyq6+5//AhXd9xfnHB93/wA07HPYf9TlmrUxyex16OPySukoLq+fkF6/Wa0/FI3/WSz4HGQ4gEW3Ml68XPK4YRUtJiWy5MS67n3HTtSZHGPAakW/ws3zDmzviYBRlv5BDyg2TzM5uAnunT831Gx3VJG/KoozyPyFQgzd3mJPcLen/M5HHpZueVgY7sMZWDPUthf+X4sOwns3GQz6bkUSlN8yHl80vl+6Z7ku78V/mXmb5yuvhySeW7JY/KJ5xvbXrjGZRs8W7e9Y3v1fuNgKpZnnfnWc6ud34FKZ9imu7Tt7xdcsD8ltnZ5WPFNz5TfndnTMxP57dEnPT1WwNPH//852IMGHvC8UA47tm2a85XS17dXHPsT9wcD2wvL/jh977HofH86uULrq9uOB66EoSEIeCt5/LiHpvNGX0/Yqxjsz2jblppi+s8dbvgu9//EY8ePeYHP/hdzi8uWG/OMdYwhkQ/jPTDyPb8nMvLSx48eMCzZ0/55NNPuLq+4flXz7h3cZ+zzRkkQ+VrqWRFoSS32pnn+vqK4/HAw4cPpXptM/o80tQ1Dx48YLlaslwtuHr9itevX9MdxGsjRUlEXl9d8eStt7l4+JBFK4ynr//4j/n5X/wF/W7HerXirbefEMaRzz75DddfP+P68y9Znq1pVwsWdYvFsbu+pWoWHG/3VCFimoo0DBAiMZswVrJojqHHRGm729STVBEo1PzNrBoNsmEvVyuWJtOXPZVS4RcKEpBgGHvtIjWSAnhTkY1VpcPIBDxlo+ZScUiZBSHBQ+VrTAgYRIIwMlHgcycjxqnlbklcmAa7NYamyLUk/Sr2rWVizaaQSpnkOwJDnDB/YQlkFH2S8AVgDHItkiRYamOKV0HWr+dgyBp3Z6GYL10W8ZbJm4PNNA2jYI0G906p9ZJg353+mTqbZmDNFFBQQMHijZC17042vLquC904xcgwM6GPGljGJN4jYgQ/kT8lkBXPEONVHhkT2FSSKmPk3nbKaEsplTne1C3Jp8IukERbAtlMoa68eH1dnG8xxnDqjwL6hCgSgrpmvVnjK6/GryOnUydmn5ul3CU1wTUhm2g6FssVlbOsjaM7duxOt7x6/ZpPP/+cNZZqe877H33Iux9+yNXuFu882+1GAugQi7dB3dQYm9kBWeJqSjtuDGy3Gw6Hc/7tv/3/4SvPRx99REyR69sbzi8vhN1UKv1yzxMJayUYz2NWgqqezz7/jKurK47HI1VV8b33f8DlvUuevP02YRgJXU92QQn6sLx3YB0BqNsF9x485LPjS4brxMIJS+CgrMZsul2p5t4a9VgyFCagteo9pc0ZUlIQ2OYNU1pUWx816IkFWCQljBdjeDShrl1F5b2AuHrSVeVnoGjeyOchjj5PTc7EdNhoXqEgss1rgyWmUIDNZAxeq6spIZIE6whpZAyBpl2wWW8l0VTuZF4zKl1Hs5GxgPxW1gUdu6Mmqq+vrnj16hW/+MUvePnyJfvdAYPh/HxbOiydn59z//492qbFGkdVSzK+1y6I9YxtMP8zXwsXiwUhBI5dL6wYa2VdTpFFIxXnppG1ezJPFlNTHx1NW7NYrTi8OnHqO25ubjAYVss1AfHiqOta2nTXwkquFzXeWdqqZgyRk5puYwyHw5FxDHgkkTwcDmVOi/xHzNudMlW8d5ydX0inuBg4HbtSqDHeUVtZa0OKjGOi7wOvX13z83/3Cw6HPYfDngcPHrBer8VnZj3w/ntQtw2b9Yah7zgdDphxAN1PZL52xAgmN4lORmVcEYvsMTf7o/gTtsLI7Lq+VNs3GymMiUFzTQY4O+0U66vsAzUynGS8LNuFSitzkjeyaBesVusJ3BoF2KrrSZ5WQEYvwFVey1MUe4Lzs3UZD3XVCNhiZDUR774J7LVWEjNvPd7VtE2WrUSGPvvTydwIY1ApUC8gjrVFar9arVgul1xeXnI8Hbm+uZJClbUqLc7JPgWsatulzpPIarWSuaSNEk7HI9Y6kRtFiEGMm+u6loQLo0Uw8e5rnWe93ujeNhKGQcz+tWOt173GWieyzb4ne9kkxSCMc8QQud3vS2LXNA3rppGGM4N6kmGo6poYA4f+VOZf3w0iE3OO1XbL3/jDP6RtWx699YTlcsl2u52aUugcWKrfzTiO5ThW45nQD4zDMCWeMRFSYL+XYubtjbD9+r6n8RXLqhET6yQAh/gtTXu+b6VjnsERYuLps+fsTwd+9N67rNcb2TN78SyqfIWzrjSuMJqYZwuGbOFQuj8BQQG8zGA0xuhaq95qpGK1YBRYkn1UpPBeGxJUVUV0sazdTjsg42Tv6xWUrJwXplcGrIx4iGSZuauEeSpM6IGXNy+oqoqH9+7jncNlI+6YuH//PjFGlupBud8dGENgjAMpjWCCdE2sGik+X13x1Zdf8+LlFX5xxhh6uqCsvJT46DsfsWhafvPz39DvD9TeqeRX9pjkHfvTiePxRFA2I7X4oAUiwcBowLc1rnbAiLWJL55+zTgMXO121G3L+dmWLo8pC8YL67pZNDRtTerFlyrM9oopYTTl/8cYihzPe+kSmxIMY8AuWlkHlF2zWq2xznM8duz3R3a7PU3UOLhqGLqeFy9fSufce+fkOPt0Eo8zkVC/aehPKexk1YUxRhjXRuIfa6TgldRaIQ2jqAvOt6yWKx48eFBYa/v9nr7vaRthb45B1tG8dloFMXOcFUKQLnQY/uRf/AmvXr3i//Cf/qfcd45msShxt3SHjQx9R386FZP/X/3611zeu8fN7S2Pnzzhb/+d/5BPP/0NX3/9NWOAbHQ9FbZydKd5iLH4qubx48dcXF5yu9tx7KQDtEHW+tCPxDEWO4dGm8kE9VjNnfnIMaPOpbzH5RxgzprOxvsFCChIwRxs0XwjTccRENzImCHnb3PFyVSYzz8oygvtFkte1/ReQC6gyXORPS2VYoR4WxowTgGqnLUlZflMbKmpUK4FLmcKwDSBcCLny/5f+TxjJm0gHrxvKkgksn0DfJr9Pqvoy68zsJP/8w7wdfd1FxjOMfTd333bZ+fm4/n+z193ck8zkxjm4yrQNuWXczAxzQC5u+DT5O01zwjvnNgsP1V47H8e5gT8zzEXbxcy8FtXOoR03ZGh7+nGgWRgtVmzXK8ZU+Llq9f8+cd/xYunL3CKto+jpDfOeS7u3We12bI7HPB1zbvvf8CTt9/m/sOH4gkVI75qqBcrVpsz2sUKq/5LWDEPPR5koT8eTxwOR4xxfPTRdzgcTux3B9568oTz7QVhkEr/arUqm1HbNOIxtViwXC5Zr1csFi2jUvwW9YKwj1xdXbHb3XJ1fYV3jsvLS9zlBafjgZ//u3/LOCz4zocf8uSdd/BNS4qJ0/5A6jr8OLJcLFgtW/pOTPlePn9K7Do2KrsIw8AujBjnOX/8mM35mn7oiB2QpEX88XjUIMtrMihm4Zk1Y5C/vZPuNblLgjESoF1eXhbmS1VJpdooN7xy1Z2BH7XLTcxyK6OggxEGTGLqxjIHRWTkZnRXF2BFd7IfjQExlNbFUjqwpELXzHKTYKbqZQ5CcOpT4ezdhWM2iVOcWrgbnXBDDAyyU+j1Tcj0tE3rRDKKZBc9sh5HWVh5HUgmKceGYqKo+LQm6NO5za6ASRaRSmcULUyVxcCaqOCfeI6NaqCbMgiWJlr8m6DTqF3TxGsjg4F63XpNeVwYK6BlnAFPNjPbdBO31mkyMHl4zWmkVoPFvIp4NaKU/UCZDrrJyHohZrHOO9YrSdIqJ+OkbcRweIyRYRQ/msp7zELkHMYa6lZMdvf7Y2kDv2jE6LaqKiJaPY2WwVl2+wNffi2MlPV6zfeevMs7jx6z1LmXn0HXdQKCXZxx6oQZstvvCTGyyHKSSlg73svGP44jjx4/ZrXZ8OrqtXhceU9bVazWa87OLqQa3bRUVV1AljGMhDCKb80oXTlvbm7Y7fZYazg/P+fhwwfUdc29+/dpl4tSdbZNQ/bhOB33DGFkvz/gjOHmZkdIhu9+/4d8/PorwmeBOCQx6I6WlIRJgDXlmVrrxF9ptjlmH4WIzFlrjLStTaifl/gWhZQYB51Xzoo5stFKqrViforQ5iORqq2lAYC1Zfzb/AzUrT+pMbhzvnQnimWny3NIziUzVdSuX+e8BNpJuyiKJ4jKc62wVzbrDdvtGQan0kGjAVslAWSyOC+G2SmDDSdJ1rAOoiQNy8UKc2n56U9XUlEfZc2tKqn+LrSdfF2LXMxbxzgMKilQ40cF90KcmCjZLyevkYfDoaxS0zoyMR3TODCMfbknUSW2vvZYJ34+GOGHxigmxUMQQMM5C8kRY6DvkwZziTAMxMEwHAdZm50jjBNDK5udZmZMjLldtUizGy9m21Z9voKarp/6juPxxM3Njt1+z+F44NXLl3TdCe8lQdqszhjGwP2Hj9Sbx7DZbGjalqqu/v+0/VezbWl2HYiNzyy7zbHXp8+qQnmiAJAwRZDsbnSzg9HRDEVIr3IR+jnSg8yDQnxp/QGFpI4OUP0gNRsNgKbFJlDeoLLSXH/s3nu5z+lhzvmtdW5mgakIaVfcujfP2XvtZT4z55hjjkHVeVMiwiBA8x8FF0gEWdoS9vt9vp8A0Pc9B4zIgamxBgaUlMkzEL22qiIGtrEFu8rRZ2pr83pflApN0tgeHQMAyopazj777Gl2gjs+PsH9e/ew2W7RNA2MFWFPAnmrquQgXOzsubrNLQfGGKzLVZ6fJNYtbL0EgBgn40SmAJlJtShQSIIgwbqSApKhFnfS9KINrus7IAF1XeUW7VXToCrKnNDUjbT5U3KQNcsiUFcNFR54b1Sg+W7YRa1nva5hGGnP0QbJ3y1cPH78OOtIBV7Pi4qS5bqqobWiFmbl894nOpUxBihuz83VfBCY7kYS2Z6cQ1FVOD45BVg7tOt73qHVHNNwy87DR4+IDctJtojIT+OI4Bw9P/4zeQ8dZ42tYRx437AwRYF1WaKuqiyangCsbYGkNa5urqGNRVMbrNsWm1ULFwSwoT1nSEOeb3VVo6xKxN5hCiHrhW23W6xW7czQVbODZF03HN/5rPenFBUwQvDwPvDaI8xsYjBHsEt0IqfPHEfA3Dm+MYbE9xlMoliCW4QlphKHDDC4JAy+mOACiYtbYwFFCXeMASlqeOeQkNAdDtgfDri4uKBEO5Lz7fHREa0Z1rDoucJme4QUE45PuNvBkUB3UqwnG8mgwoVAgs7GQrMhRcHAXIJCVTVYtS2a4w3GFMn5EglTZFqYjzCK5mMIgfctMcSJJN4dqNdRKYWvfPgujrYbuNFjGgbcf/CQWu7ZwMSxjqwpS5yeksbQ5AP8NMINvCdIC06SVh+AJC41iqqAMmzsokV2g266ZxfQmDR8APp+REoKbdPi+PgE2hgEBgmDI9bfarNBUVdYb8hdvC7IPEMZnfesGahYxNIS+zNQqcxCJoLn5+fS2wQ2a7nC4dBh1bYYhgGltaR3xe17tL5ImjEzdMgsh65XAej2e3z26Sf4P/8X/wW++a1v4j/7z/9zyp+4oEpSJRxLx0BF99tbPHv+DH/9wx/g8aNH+PrXv477Dx7i008/g5sGXqcJcPIh5X3SmgJGa3SHDkopvPve+3j85C24ySOFSOtoAtwwITgSjRdh9Mn5zFAjBje53tFSphZAE61pNL9mBhQwEwHotr8BAgk0oZBZipS2qRyz5ziL96Q7AEx640lFYhcm+Z36/Hs+D7xAnj5/lUIMSdLHXIwNkQuZyzwtgfaTBM5F053vyO7nkJBx/h4tMEo+nd8M6oCBMjmcSksG0Mz0ku/O+aigOOkL7pWMzzd/p9QCvJHZI8fOmTSWzCl5kjMRY46L/9YXfz8W3wUG1ZbgEz537svT/TzKpHhd//w1/+bXlwae1lUDWxisj1foug7XzrGNbgAKC2UNmlWLum3hU8TN7Q4//8kvkSK1rHkWsU6J6J3bo2M07QpdP6BpWzx4dIJ7Dx7i9Pwe+mEkynZZo6wb1O0aZd1CaUZzNdhlw2HoJwz9iKEfoaDwhCf5NDhsNhvUdY2+I52GpmkRY0DTNKiqEnVdYb1eUXVz1aIqS0TWPyjrEnrosNvtcLu7xfX1Ne6xVseqrjCNI1brNVIIeOvdd3F+/wFMUSIMPcauQ5ocbAjYrFdo6wpuGtB1e9xcXaJRFkd1jREezjuMjvQiNscbbLZruOAQJhol40jVj9VqDSOBmAJXmeacTClqmUhGw08uAwTWGBwdkXvXxIKaM45NYJVsCkv0W4ALmVDSr4/EjnhxZtxkxBmLScULqMlCzfwdDGqFEOBGrr6ZRYCkFIKS3twZkJJ2twSbe4PfXBSdn3t7pR3IMZiRX4u2I4AmnWYAT1tLova84Fot1WgtX3Jn8iYAKSyOpUh3R+6tbIbyE9Fiks+KO52AdQQIJk4kplnsne+ltIqExTUswSfvPbVoSjubpoohgNxClhMRRQ5aBFKKWOlchf/83zRqggjl8j2bacuKAhFNGwkUsrAy6Y8R4FIVljSJ2gZVWUKsDbWxCIn6wEMcECZy0hMgTSmuSoeAoTvATRPcOMGaAmVZwerZEQQqIYDc8F68fg3nPdq2xbvvvosP33kXdVXnJT6myJW0Cqu2hTE99KhxeXlFgFWzQmkLNKua5w0l0iEEnJ6f4fj0FL/++GPSuLEWNWvCtasVlKbEBVg8p57mzKHbU5V7t2PgaY+z03Os1y1OTk5QVhU22y23N4mduzicJISOWJ/CvFQJCFB45733sf7hf4/kQdU0w8LHiVrGNDMbFJXQOPhbBCQyj5WChmgNERONKk3EYkGw8BiRtCJnzdyCSO9JmtpInZuQFDFFTFkwCEdVPAGjAwIHEQwjmbk9SEj7UAL0CvA999UnqFxtpfWKGJEqzuua0RqmMGiaFuuWBN4jt/2TzpiF0gYxgYE5ZoWEBB9ImNSaAlARCpTAlWWFd955l4SB9ezoY7RGaQsSyWZtF+89B5opVy2DtPIs2E5VVd1xeRImB4l452WUgaeAGAE3sbsOs9WoNW+EmUhDjsuJNNZZYFzEf02iVgefAmKw0AoIDOC4KaAoS9RNk4WqZWWTYKkoWK8lgfTe2BLcGpNZaSRqPusOHboD+mHAMI54/vIFbm5uME0j6rrCh+9/FUZrnJ6dYdWusF6vySGQj0cahRZJaW7dJgdRn4EnAthITDZRiyozL4UJJHtEacsseK4jtd7RWlfndYfGAodJStP1cgJgdYHCkOmBOO4dugOurq6w3x+w2+3hnENdV2jaBsas8jjx3rH+neVqP513CHFRXGGWE2sX0fqtEBe2ylTsAaaJWsRygBpFVB0Z0JHgW4ACYwhwM55d5WKidpAYUVUFxO2sLGpiLi8AAzk3AHDweS+qygp1VePQHZhpTWUxYygGHIYuA09UMCDJhJQS6qZGWWpsNhsaL8OIpOk5l8x6Eb1A5w4ci4S8/4/jgMk52KqCiCmD9yiaSw7OBxhPrIe6segPBwIkppH2NEN6lZ6LdNZabFnHbRqI/ar5HruRtKSEST8zhxQmNrS5vb1FWZakjbVaoa5rbNYbFNaSCHtKsKbA4IjNWhiD0pCD66quMTp2nlWAM9QWqWKEihFlUaKqaoydo/WFhffX6zUaLhRrEX/m9bQoDDmksX6TJE7GaHg/u2hSTJEy0z3GhOADQvJ3ihVlUed4IrP6lJoZG2lh0c6JbRZ/B7MkmSGW0uyAR2xczaLXkcEnWtuGYUDXdbi8vCQ3yYKYo5v1GrqwDCgASiu0qxWMNuyk6dGPHfphQMfObIldJUOIuWUs8feLDk4EtdrWdYNqs0LpHFQkFk8EyKHXBSRDLpOBr1sbnfcf5ya4oWctL4t79+7h4cP7ePn8FXprceJOMUwjdt2BAUCHwlgUPP7qusbL15ek4zqNUNrAFBRIUj2A41BPRRZrauiCGE0Rwhym2Uj6L5GLUQnDQIz0pm7yWD8MPbM5O6QEtG2LsqmxZs2iuqwoXtbSnjsXWWV/iALyswscLaFSRMGdRHmWyqBXDBE3Nzfo+x51Ta13ZUEu34mBp7l4fDdlT0nYYNT+5pzDq5ce/+X//f+Gq8sL/ON//J9AqwpGF4vcRoAnbk+dJrx69Qo//8Uv8PjRI7z33ns4Oz/HarPB7ZWHDw5KdDBDhFEKhSYnOgLkO2it8fjJW7h//wG3dZNLoIqAG6nom2LMrFCMDoqLe5IjFMXM3l4yokPQrAXGWleYgacAWhOtnYves3q4AFGLf82oT77/vwlEkBYxeWsuhrPwSQa0FseaAaD553SMmaUmQIriTSsGivGkdH6HVSS5T4p3viMKEEmPfi50Aph7W5Djp3yGM16Vz+kNHEk+tkBn7l4b/0e+lnwPMxgreeJ89+XnAh7JDFje+S/6t5Ac8rl/CcCH5ptAkHSuHBbeAZ3EpfDN65RrfRN4+hwB5N97JvT60sAT6RAUaOoVrK1QlC2evnqFm/4Gv/cHfxen9+/hxz/7KZyxGJTFBKoSFpaSr67rZvpxUnmzEiZATMDv/N7v48Hjt/GTn/wY+/0B3/7O7+Dk5BSn52ds2xcw9SPGaSRnOaXx+vUrTNNI1URjAJDuQvAepS2wWW/Yltfg8nKNyDTclhNEW9DiThRFSppiTBjGESEErNcrHA579IcOfduhKguoRODJu++9B60U7j2k6uxHP/k5rp8/x/WzZ9i/fIW1tlhpDTNN+PhHP0ZKCfc2W/h+wm63x6gTvFb47h/+PTx+5218/z/8D6GMxS8++RTDNKEbOrSHA+rdDpujE2w22xmozRMqLs6fwQ9NFoeHw4HaNbj6VVXVAlxS/CfmQDomqtQBgCksyqKENTbrZYSJEkRxPpGWF5XuosCUPBr+t2Lra5+tXyPbw0YGwjQss6p07g83RQmYBGlw9Qw0hTCLxElwTi1rigEmdlVMMYv5SwVhubgYRQyi4D08X1+ldWb90EIWZkCPKwnBzYmsMIfIhY6fhjCLcuUAWfSW9CISMy0iIi9SkX+XUkJygRc+Xg6EupyQNYOgyUY3cJALEMW1KEQwUAEhIYUAn+g9ZVVyBXZE0gbaaETvEWLCqm1zUP9mlVS+XDYCz1RpWrDYPYSDVcMuRxUnSiI4SmLLG2w3axTGwBrSk4EizS8kqZzQfSdLYEUtWwD2+x21G+3Jzt4WFd3zSPfdBdK9iCnhcDigMAbttsDl9RX++kc/wugmPHnrLXzlG7+FD999DylG9Ps9pgOxjHRTwUUNeAVbGmzKFg/DPQLyDLG4VGLx37KEmzTdB369/fbbCCHg+OQYTdNgy5VX8DlhAS5IBYvcnTxCmPDgwT28//57OD06pbYpBguTpnGUFOakVFOlTlpZECipnsYR7arFervF3/vt30NhDP7sX/0ZPv71pzh5dApbGhRFRSBvaTmR8BCltIKTa8duUYWhBFuCshQjV/USXAhw0ZMrJ49RckyMKKyBLQoE/pUpuEWCN3qtSY8/JWLWJAXYmnRSfGINMWbNRSz0IhbaFuA5tHAFyEmjVgrJ09xXxvC8KJAGAn6mccIwjihMgbqquUVZZw1ASrpmsDmmBG0p8fLeQSGhKC2KJDo7AdM0ZJC2ach63XtHwJBKqNuGQaE50QPA45z+J3OIWm1G1m4CjKYVwvsxGxGIS1kQLQhmRVqet7kCrRXW6xW22w2ePfsMMUb0fZ/FfoPzcONELS5G0zkHj3E/QEHBmjKzX0OSlmpz18FoTjOYwQVoJIRIyb4PHpdX1/CemKfGWAKTqhpHR0do2pbdAElH6uT4FA23nBht2BaYASy25E5KwaeEy9trAvbGgdxkQ0A/dPDBo6yruV2Tww4Sq6Y2eqqYAioodONACe04oK5qLkIRwyokEiu2RQnFzkcUgBqowpLAeGF4jVBoVIv3PvyQNF4c6T6VZQmPhN3QZWDssNtDKYVV2/L4jjn2X6/XbGUf2AmJWh0LNoiIUWzFWR8uRBhNErUEgFF7muzSYkcvOijDMDBIEjLwZni8bDfUFiiGH4Hb5OUlnVgpJRKCdw6HwwFlWeD46Ahdf8Ch2+eqqWFGtSRM1AJuoDS1JDofcgzS9X0GQUKMGJ3jFoeEfhyBgeK+yE651lps6w2tJSmiKGtoW+Y9MzKynPUt+ZpSSjjs95QIFgWzWBmA0QbJWCRD2mpx8vCKWLub9RpIyIYRLnocdnvS+AsOIUUcHR0RU5f3RXE0AxSqitaG29tbTpwoMZGC1+O33kJpLUpjEbXG5e0OwzghgVpLoRSKpqLxO7EdfUy4vbnB5eUlxTBVhcePHuH87BSVtRQre0+tekovug7EdVRcZAPGYYSbJgYwiV2m9GxSAwgjczZIobiA95JELdoqJW5PpaTfTy5rTkocCr5+BVq3oDXtRPzsRHQ6xAgVIoyKeS+4f/8ezs7P8PDhA0o2uV3YBwLFTNCsQaMARYYWu5sDjzMq5K03K0zdBD8FHG2OoAB89zvfxkcffYy/+uufQtsC29UKMUQcbm7x7Nlz7A8HHG+3MErj1evXiCqh0AZBRXgkTMMIFSOSEe0g1s0CMfGSd9gcHWG93eD64hWG/S2efvIU3ns0VQXvHVw/InQjYj8i2AAYj2effAprLQ59D+8CSm0J8OgHZG2rgos/VgGK2sMLQ7o/IWmExEVmaPjI7W1J4er6Fn/xl/8KSWl881vfQUoaMSms16RtO9gKbhyxv73N8Q8VqxW1b1pLmoMpEbtYUeFI4h6Ju2VPp/WExNmTSmyERHvK5AMVFocRh0OHm+tbjMOI7XabQd2b60scDnsGZDRrjEYMwwRJDGTvk3bgvifdzE8++QT/8l/+S/zv/7f/O/zR9/8I//E//k8QAwFNZDjhsWpaaKUxugn7/R4/+usf4Cvvv4f9138Lbz1+hG9/8xv41//qX2EaB1RNTdfnPTE3k0LfdUBKeOfdd/Hkrbfw9W98HSenZ9xer6lowlpFnuVTREZDaXDMNTMKqdCrkZKWOiGEufYm4CBxewgM8iUpfivGnRSzwUBxH4MzUMh6eIqBDDGzSFyUpnWT8iuldJZCWRYGZ/c0ZmIlrg7qNwGKOVnUSs2awUpYWgo++gz8LK+Vui7kMJSI5JY/qYDJ9ySKSyRPU5j3oTsAinxGZU5YjtOWQA2wuET+DjGTEKCKL3+Rw83Xm/V68zHBANAXP8/8RskDoiT/9OVLltGbzLJ8zM8f8QvBp/l+0Q++8HNL8O/Nk9QCQn7Br7/g9aWBJ2mvoiC9QFkpwJYIxuLowQPce+st/PTTTxFiQtC0cUpiKqyI+appgxc9pRAT0evv3cdme4wEjd1uh8dPnmC1WhNgEomuOk0jDoc9vKOg+3A4QAHouo77jNVMw2TQgFoeKNFIKaFpGjRtS6wEBjSgZdARGONYAJWqmSZXn/u+B6+hxEIyGmVVIrmAw+0OVy9f4eUnn6EIEyy4BzwEHPa30MZitVojKuptNmUJW1d49N67ePerX8EH3/g6XAj46PUrpBAwBVowh3GC9AwLoyYLZmMGCLTSUBqwRQGlA3qusNQxUtuMnnWHYpyrA1IhCEzzzdoT0o4jqLbQGzPYyosWD3SlZFCrOyJ4CnPymhUr8wBVi/yR35cSkhG4mW121YxGyzXME2xGzyHUT4CCAF4Ul58BgypCGc9gXP4kKDAS1hf/lHqcY3aDkt/x2/OxNLcyCH5Ni13KlcKQaJLOIoyUVMUUESZPwRhX3pDYlSKlnEh90UszmLaYsPMGwucTEgUccvtJGyRlZ6I5YdX5PiWu3uWFif8dFYsdKq6GMjCgTUKlSgIOuCJhjIbRBekwqEXyAsIb5ZnycODkg0G2xSI6TZSc2ppasciMQOUgPkQScAWL5h66Dq8uXsOFgNVqhfXRFqsjCmLc5Aj4tIaeTKJWBVMUsNpgxdo6gdcRafuxRiNaw+dMD2i73SKmhIargVm7hwVbAeQ2GsXBtzVUUbXWYLNZ4/TkFEebY5RFSWy3GEkUfLER5mpSVHmOytqkjEZRllitV3jr0RP0hz3+1b/+SwyHnnW8qA1Ksb4TYpjbTpEgBHiVQr7elEj7aZ47ANjiOwcbDEZRvYbbeIy0yKn8nWlxnHmI0kYlAQ7twwvKvPwv3ZmZn9/c8voj68AMYmpmYQX+uThMKa0XexAtNVK9TFFB6Tc2dAUC33gcQMpkzBTRCgDrMMhaKkCTthqFLThInk/eGJ2DwJQ0kDQcB9KGxbvBcz8I2zF6qKKAxHWybuUAU83XrRRo36upHU7A6siBbYjU0mo0sReFSTkMpGOkKwMfeM2T1VHHhU4COPGR99AzM4r20BgiCbH3PYInUKqqNVeFCdgsypLYr4Fac2puaTk/O+UqHXLiO3kCWUbHANk0wQcHFwJYURo+UCJd1TW1nccEJSVQWdP4PGMKQFIInpgzgcEoY8gCuyhKWjP5OsWRJy2izaR5LUwUyGtjcHR8RMficxeXUM+AUAge3TDQeNdio5EyozHECAtk4fCUAjSLhNP9SMwgj3k8WUOpgDEGUcX8TAgsoHVGiimSxDk3Qeuafm+onbooSyqq8DgeR4nyZT7Mc3eaJowTuSWmVAMgcHaaJmqpNgaKK+2UYFH8qDWRJBOkkCGJmLRxKzaUCDkxcWzAcDgcEGPI7W6c70L03choYXHKidgT4GcoIJe0slPbG7UuKiz0QbQBnINfxCsiUxC8o9YvLgB55+ADvddxMS2vy+C9PgQGZun9ee1VColjrqallsaqKODGCYMj0BFIBG5qA1PYOa5hFLIfehy6DinRXr5eMeOJF1LS4QuAIlagUuCkPEGAUGFMe0+C0dBz67333N6jOM6QGAEKU2A9I4nb+Lrk+nNsFWNO0pbJ0rxeiYD5HKPKI8yMUB6DNTvgrlbrOwUp0ojkc8gMP4oNhlFYoVRUKQoLpzyAQCBr0+DJ40c47A/wU49CE/g6jAMmN2F32ANaoypL+LpmrSsqAoixjDBxKJ8AVVgAQEWoGJBCQGE06sKi3+8x7Pe4vryg9f7ohApok0N0HggRCQExAYfdDlprjM7zfqmRIpkqSNt84hxGWh8l8aXnAKSQsiB/ih4xAVAa4zjh408/xVcvLim+5/ldsEZoGKh7QnNRkVrlOc6VNkneo5EBDwkw5/0b7HqcpDCLGbiQmEjGRGDmkSSyMq7bpsF+R8xSrUvea2XcEINLxhQxRas8DmOgLoJXr1/j3/ybf4OHjx6iO3Ts9hzz/iiOjCFGODfh9atXuLm+RtcdcLTd4tHDB1SIBj2HyMBHLo54cjk8OzvD48ePcXJ6itVqhcPrC2htUWib50WIMe/Fi6gojyGaB3PRPBc9FnNofs372xybcIjGObdK5Jo9B6+S2ch9Q/63xGYSiwHgfjO51AWbCvK18/3P5wQaC3Oj3+L8cv66OE7+m4GsxX4z36H5jTnmWdzFO9BIkrHKt0iOz9efPockzRe0BJ+Q7oqBL9ennHveeRbz7wSJevMty9zmC18ZnXrzZ5KO3Y1Rl1yqDCzNt+WNa7175KTkU2/c58W/vqidTphqec/9Wy5n+frSwNP1/hp2sJjihJAURg8U6y3euv8IfrXGNYC42dKEPz2Cvb1BDBEBHl5JhY4CIWOISi92tF0/4sXLC7TtCnXT4nu/87tUgeYNse93OYB7ffEST58+xavXL3C7u8I49bgqCtzc3GC9XuPJkyfs2qTQH/a4jAG3+x3GacLx8TGUIl0KrTWcc5y80QKcEglzew5wUkpYr9c4Pj7C2dkZrq4u8fTpZ7h3doqisHh1cQGjib2xWa/x4MEZpt0VhqsVutsJw+igJmLHtFWLyXk8/ewFjs7O8NY3v4nf/ePv4yvf+Saak3uwdYvLncPkHY7OHiLqa1zvekwuYL/vMPQd3NiiXLVcEfSA0lCKLKD7vmdNDcUIekLVkNBlyTocfd9nUKGwVAEdp5ADVKRIdGoV4FzANDgo6HlyMLNJlVxVMLMOU8lV0whe0zjY8MFDqUTJWlHkyZYAFIGAwBDIFS14EvKkiUtBZViAXooT2TnA4RavHAjx6NcCmES4RG0kEt4bTWCGBIiUnJXUPgRO8J3Li43cr8yYkqCCncCmgRxphAEjLQyWW20iJ3eJafAUeAYOmBMxQoxhhgS30SEB4wzsyXlJ0gTevK1Z2GymRC0YPPcDB2CaE2bSiqHgOVtNc0tTUgRu+RigQbb00fsc+AuArBSy+08IHlAKMbAjFZhxliKMZzFiHh+lNnkMOaYXJ23oM4GueZyIZSGJA5QizqTWqEqqkF68fkntpjhGWzU4Pd3m65/GgappPId/9dFH+OTpZ7i4ucLoKTl98eI5rAI2bYW2bWFKO8+XFAFETEOPKSZYTdovRd3MwDQDXEZpwCoW4tXkeJOISeCcw+XlJdHR6xpGWWgAPlCl3hqDsrE42Wzmcc1gUAyBRG+5yg3LNOqUYLVGWRsEvl8XF69JTJqT9wcPH1Ag5hy+/fWv41tf+yp+8YuforQGF9MN/OjQtmtERIwTJTOGhYilPU0phbYkBkbwLPhqqUIq9qxKa1TMLu3DAcoAtixJ40lTq+8km66mtTaphGEaYKKHT56Ega1BwXPWaGL+BEVAwNyiQUyvmNLcRqcWrm+aGCyGnTjHgVpfdNQwSpHSU4qI3gEhQKeI/f4aV2UJhAgDBc/tvkiJAVRqpYNSmbU5TgODIjUH1TG3W9Z1xeKtpHE1Tl3WQJTgoh89hknBJGo7siVpFRqLDAIUVqMsahinEBgUCCFQq+IiEEwpYooBXmusViuIjTwF2nUGgbUuoJTFqmmxXa1hQPM08hwhEfUJoxthrYZOCof9PuuAEYOWgITBdznp6LoDpsmh6ynRreoyA9eaW4KritxhpRq/2WxoVUpz1KQ5UD49OqbPWkr+IyJUSuj7jhwsjYA9QIokbJwQoFREWRpUSgOrCm7wCFNAWTcZiAsx0D6uLMpKGGxAUdYAVG7vKSt6HmutUdc11usVqrqBLchJSnE7SQgkBC1BVhxH+DBhx5XrggVzlTawithJxhCTVNrdDtxqtl5TUNrWNQprUZclchFIJRK1VtS+Wlg7azkahbLUAAYALhfbpB2QAOqAECz/HHMLtVaUyLRcqU/CdC0Fdqb0IAYEBhQUEreiA5ObqJ1dgcGiCGs01quGAXeLvj/g5uoyu9qFaDIApxSLsrMYOAnGAkXWoSHwbxwHBtHX1G5tDJ4+e4bXL1/h2dOnMErh+3//78MWJa52OzKwmMa8R1dlyYDyQk8G4Oo+rWOlNdBVhePtEYrC0n4WEwEXnCwXxpKxSGHn9l+l0LYtYkpoY8TJyTE+eP99eAZHhnGA9wF91yPFiKNmTaYVwWPcdRh3HU7PTlHVNAaHccAnnz2FNhpNXeNoewS73UIZZqhYBhG4bSs6Bz8MGA8dKqVgY8DLly/x9PlTGldaYdM0NJ5kpKaEEMnBlVrZFIxJue2JYuuIaeoxDAPWfN8JpE4YJzIHapoGwZNIffAha75Biim2wLpdwXlHQKGi9rh6TWwtx+L/1tosBSEFFVlDhOXRdTTPtCFQNASbE+uJ5QfycVj3FYqKa8TwIoauSAyAQZiqKqi9aXDQ0ChtBQWgrir8wz/+Pk6PN/hv/p//NbRNMJXFeHC42e1wfnuAVQYmKtiQMF7eQlmD9ckRpgIAFOr1BlYb7G9uqCUusw6l4BrQ72+BMOGKpSuGrkOMEd3uFomBAZWSWCJAxYRufwDAmlvawHI8j5Cw3q6x2m5wO46YQkAMxDZp2hXKqkLdtJj2HQ6HHnWlYC21bCsYrFZb+ODxP/y7v8KTx0/w9NPPoEtqz9NEv8F+v0MMAduTI5KuYAabAoGXRpvMcjOK2raHgWNLS87CKUbWGqTENsWEwfW04miS1tBKUZwcE8qiwtHRMb73O7+HH/34R/iv/qv/EpvNBvfu3YO1BZlhcPt10zTMqD+G9w5d12OaqL39K1/5Kk5OTmjdjxFdP+Lm5hr/3V/8JQ59j6fPnuGf/tN/iu9+97u0B2oF78lUqbYFnHe43V/ib37xc/zb//4cjx49wONHD/EXf/4XOBwOGIaB8wE1g20g58Lvf/8P8a1vfRswGv00UmwcHRuVzFIYonNJYDi7BBrLro8kQWHLAsaKo7Ih4kJISCpmLT8ASIHZ6hIjLcAhWQfJSZv1kNQsVxCDABcCaiMDOor/O4mQGBMZIG2TihlOfEwkkDQDf7OcS+ScRHIt0hGWQri05NJLM6tqZlvOAAsZKIluGHJspN8ERXLcxJCXgD34Da8Zt/kNv065tTDTPgREfePv5YuesSLwOf/07vu+kO10B+iS/74LB81n8vlP8RCaQaE7n0/ciYNZ44ljaihmV8XPf5fk2PKdSlEerAT4xBddx+dfXxp4okSTNiEXgMEDq5MTNCfHQFHAKQVdFnljcNFzMqdzC1i+BEVihgT+eEwjVc1EGFZpg2SBvt9RFcaRRoRzE3a7W+xub6AU6TcgUXC839ECuV6tyOnHcruPc9h3BzjvKfiz1Fqn2UZWmB1CXXecUACymZJuy2a7JZedw54qrd6RRo4xLKxqsT7a4rquIH31eWKDNpCkNcr1Gpvzc9x/522cP3mM0wcP4VSJBI3JBfgQYTUt6DRZKclxk6NKvWqJMs/jSNxGFKPGM3MHmREhk5rau4Q6Sf9e9g2/iWbHmJDYpliWIKWQfRg1i/gCiwmwnNiKxSWNZrBBcfBH79HK8qbEmYVS+XpynvLmRE4yhNT8zby4xDyR6G8C4GYRuhkBnr8va+cIpTzG+X1qvqdvvuQngcFR54mpRDRjKv7EQKK6kYN4zfdBBAKlAgyoHMgtNSvoFBZsLQHBJGhbujfgDQ+CvPpw1Y+DNa3MnUVTjh8XgaC0RsQY83fSYyN2WooaCT4vNiRWi9zn7UOAlsoH9ZVJfMrPiZlOiqvVeUiluxtpJJaY0ToL56dEtufB0n3KLYr8OWsttdz0PYZ+YOtlFlA1hqqbisaryW0DDFryXEshkvMMB9SyGMcYWTuFEjphDRproRmkFIBcKsjQ8xyRQECrJQt0wdjyPmsX5OGXKBnM91/dnRKGhd9FxN17B2V1bneo6xrG7wFFwSw4sFVKIS3cTxLmzXvJrqKSV7qzmxlrEMPMRtOGNP5Ip2tuidBqQbvnZ++9p8AhKswXMwdtd8Y+5vmcNfsluBHwKQdHyMeR0Zalx7UiAXRrEaOAOTF/B127VHvne52rVCnlZ075w+xKaYyGYVFuJEqcI4OYstHTzxJKVcDoBKWKzEjK01VRi5EJBNg6xwmLbPmL9eDOPeKgjxK3gtc8uiPE3kJeLxWQRVT5IEhI2V3UB88BMbGRJjdR8cAHaE3XTKzjCUPfUyCiE7cpxrzfeE8iwGR3r2GtrCEsAr9Yq2TsGhYTjgyupcAi24s9hQI4AlCk2k73IEEVCj5ZQBVAYsfUQMmwBFGZgSbaLXFeV8WZqaoqlFXFa8NCNwyzqUJK0qCaZoONEMkyXWkUyuRnY7Sa56jWKIwl7KOmZ1IWJen62IL2KhY6DikyQ0GT1iAnogIg2az9Nov6gwGenIdrlWMRARio8GfyOi8FhRRn9pSMr/xH9mNZF3jbEe09evbUWpZiygkVAC6+IN87+U5jSCzaBQKyiJkQMmgrYERZVaShpqjoVFYEKhVlQbIIDIb1w5CPX5VUWBTW2ZwcyVpMY6Bg1zWtNJLSSDrlPSrFSNrQxkBb0bqTZYrXHH6mVikYvn8JgNHkVoWU+L6Q+6FntypjDNvbUxyyu7mhtbogoXla9heJjJrnr1E0Z6wm/UatFPqhw/5wyGAMJeWa41g6B80AlGEwfanLJCuotNsX3H5IbXQEjMve5r3DNM6uWzbPE8WtrBomGgTDmi+YtUKjYn01uT41733LSEbGmSSMoqm1eAfjaVIMnD8jfwxMFiaWxCvHiPKHX855aAWcnBzj7OwUR5sVXLLEUGUTi2maMA0j2rJCyc8JMmdkfdWai0gqC1cjpUWrEnh8j2TWEEnwXNZYSpQIvKa4lOaXYyZqBM3ryOugaCvm5F5Tuy91KhDwTyFLmtu5lOwdtHYk79F1PYa+xziOqKxmxirv4XqhrxlJj0i0iZq6JSmC+anmuSPJa9YACpJj8KYXeF1PNBaSosIIYsLI7qyPHj/Ci5cvcnFmZNaaMQKyI+99RWHz2kYxFcWhVByqKdY3RXbie/nyJX7wwx/i+3//7yMwI3675bbdEFgegPbL2+sbPH36FI8ePsR2s8XZ2Sl2O3JLJtbbDOx7vr6yKHO7qRg7KXbblgKzXQI1PJ4Vx2G0Vcr+o6HV7H7KkTKI4ZVXJYEFIAX5ecG6G+svIyaV4YQFJJLm/+aI8c43ZH7LF+RFKnHcxPmV/ExB8XGR/0ZajJlFjLMcJm9+x/weuRYGQSSle+N83gSt7gJDKV92euOD89e/EXfl853BF4mR1WKd+kIm0zI3/oLXb/rsnWe8/Ercvbb82SXWsvzG34AJvflj9UX/+EJgDIv7d+eO/HtfXxp4AmiBnNyIbgq46SacfPUDPHr/HZhVA6cVyg05/Hz64jO8uniFFBx0ZVHWNewwUDU3AODK3jD0eMYOMF0/4Ob6FjECt/sDxnHAfn+BorB47933ycL66grXV1e4vLzEW2+9hQ/ffx+fffaMREv3BwyHA14/f46mabKweFmW6BiZfu+991FWJdrVihDmiejqUD4znYRifHR8nIMnQda3mzUuL0/x4sUz3O73mTG1Xq9x7/49fPUbX8Ph2TN8NE4wSkMVFZQt4FPExe0OR/fO8b1/9Ad458MP8bVvfxs+Rjy7uMbutkNKCu998B4NXuehfIRJCsmRrtXu9hZlYXF6ekKVRE+9vwoKZVmgLC2kIYIYNmSpDQD90OcBxOsWxpxUcBXKFNBKozQlxPFqGAd24WLKcCTAKjhHC31T59EhrRJVUWagShmFqqiIHaAVxjgvuuAEQIICKJUdMgg8oE1IW24vyAHSHDRxE1reLMglb15khalCgbrNwswKYBcupiJzQiyWyELjD2nZzofFgrPQIEgRPrJwuwJMMmTNOnmqohgNy0EZaVFRQEFBMQd1IVClJUYE6fN+AwAQpp4xBo6DMs/aH5a1P5BmcWhdGApSOBDzWasn0CZZFazVorPwvwTngSsnikEBxYmB1pqqwjoiJnIvs0UJw+cTGXTo+y4Hpdba3MOtBQRTgAcBS4mp27aqMiiYrz0EqEjVyNJanJ+dYxgn3B46JB8QfcggWllQK996e4TD4YBnnz3F/rDH9fU1tdW2Lb72/gf4ra9+BakgB5JiVZN7jdJkdd2ROG0IAcpYFEbDREdtLpys0fibk5gYKBgHkIVvJVC6vb2FVfTs67pGUVQ0ZhPQD2N+rsskQBsDU/AGxGASuHCaIrdbWouzo5PMBoopYex7iPPSp08/xvOXz/D89QuEFLFuWkTF2mJIsACUpYrk4LgKJ0E+J0xfBLYaXj9sWRBQaA20MiiqGrokvZuu76jdkZYb1l0CkirJMYaFNL3x2fo3scA8fS/18Gutoa2CDgFRk+CmVFfA81rmZHATvAMM6H3aR0rSkVAYjbauYEsDmxZOe8EBKaCsCp5jgDYKyViUJTmbDT2xjqqShJWNVixi7dC2Ddq2gTY0R/q+Y8DR07zgexQjMIwDRjdhU7YobYHSrnj8ROqNNyoDWNQSBVhD4u5GFbkVPSfPiyAnJaCqambWlIgxwVjS/umHHvt9h+7QkzOb0hiGCcNA4JGs67v9DjF4cnBkZ7rgA169fEGFl7LKa8Q0scV4YMc7HhvErmRR9UT6UQqkKeJGWnPKgkCdtm2znlRw9AcMqhqbYI1BXVLVXS+etVWaxNm9ZrACfIwJVdMg1jPrp+s6xBhQlc3MsImzxhbtg9RmgUTaNc1qRQ63mw3tWTFiHEbeUz2U0liv1/k+EB6dUBQayVKRBgBUiJwsaOgAJHgK2ZPCuqqhGgbjE4BAY5Vs2Q2UBjQzqBS3OlVFyWNB2hUibN1SIptoDWRMCZEQEQL9GFCbphEheAzDgJRSZnxraRWbHPqemAICiMt9Im2ohGQA0ssgAD+zGVOCG4np+frlK1RVhfv370OB7uv1bY+UIuqa3QIXMcPLV69wuz8geBJ+l7XzcDjAOYf+k09wdn6O+/fv4+HDB3jrrSc5wS9L0iz0MeDQdbi5ucGKn992Sy6I15dXs9uktVitVqTn4j3qkhhZMg7BRZairFjEOlBx1MyM74CUW+skmaSMEWzUEdE2Neq2Js1RrVFXBRkUOBI/d35CWdM+LgYrH/3sFzi/d453Hz1BU5SwSsOnSO21nLAbdn1cVTVCVcNXNeqqhNEKl5cXePb8M9RNje3REY7WG5S2YLYfCUObSC03SdG+pbktmLTEiAm5XW8zEwMADl2HYRxzbBxjxH63x2Hf5bXo5OSE1oi6zlqbprCorSG5Cul0SCm3oAvTECAWj5einTBq+LtSSkjMugYz+5Qwo7g9WNr5Qwh5fMcYiSViNHRFxfDIxb1xGlAXBZqyQphIV+/1xWtorfDo4Sneeecxfu9738WvPn2BH/7yM5iCTD4O+z3cMOK7f+c7WG3XqH5cYQwe+6HLlbMxJThmehtVAJr1jGwB7yZMQ09uh9EjeJFskCI3tcsl0L5qLGmsamPgmBVlqhpQGl5pqKqArRscQsDh5oYcb7WFTtwSpwy8T3D7PcZxbv+0toAbeiAG2NxVSsWhcRhgmwqF1hTPJtLDBRICyCn09evXGIcRI9/rk+hxtNlAa3reiGmWJhk8AsHpmDzt+9mwRhsigiUpWAPBUzvix59+CqSEP/jDP0LTrvAXf/mXeP36FT769a/RNjXadsUttyM2mw2cC7i8JB3BYSTn1HEc8Fd/9QNYa/H+++9jvdng5Pwe2s0Gb737Lq5ubvCnf/r/wD/443+A73z72/ja174GpRT+8i//JYahJ8MJTXHlJx9/jN3uGr/11a/g7bfewve//0d4/Pgx/vk//1OEGNHWNa0TWhPTzXt8+umnWK3XeO9r38gui5plUJIngkGCh2ilAeL4qxCQUJqCWaOW75m4R9q771+8lFKyVS5ed8GHGRwRYJuPlhaAB4OTy9xHKbDEQFocl3RqkQAV+NiY8xcCY7R8MbdlAqIZqLXkOGJaghwHyEsbfQcZkUIRgMygoverjFZ9kRgJSQEoMmZQihnX85XMN+gLPoz5fmQQ+03QZ7FnvnkIYQS9WTTMYKNaHOeN78pv/A2vL2ZKzWD7nee/fO/yJNXyM6wd9QaENDPocAeHSovjpvibz/PN1/8X4uKMLJclVBjhgkdRVdgeH0Gv1whchXExYLfboRt6KEM0a8e9yUrNuhopUYW/c4csbpgSkCLQHXYY+oHp2wWGvkfX97i6vERMCdujLR48eIDTszOEQOKK+9tbBBbLREIOlAMnCjIhjDZElY4JSg1zJUTYHdwehDTf+nEYcH19zU4YgRwuKo8dT5oUE9w04eb6Gof9AdM4wU8eMXiq+BYF3v7wKzi5fx+P338P7fExunHKNtxD3yFG4PL1K2ijSePFOxhOxqIPmEaHoR+xP3TwMUAZBa0SoCX1Tjz3pEUk3RXVFlQ5JISoZ0HARcVLRqFQr71j0WjDrmZGEXACGgsiMjsjtDNTRoAMw9VPow0MA0VSfREQyCiNROYXLDTIThhq1kGgFi+u3CiZUvS3VLGisBYUII484EQW5q4YWz5vtRDPW4z3JQtIKxbBD2QT7EOggFxJJV5T0srviUwzkIpzFv2L0tvN54oEpIDAAurUzsWflUVUkjtJNGOa6bKyEKSUIXvF555imlH85cKyvP43WRd3RoHixO9uu4Kcm2UQ7c69TAoqRXYRmpPjyU00D7K9K/L8mtvc0nwScWYSIAGJgZiqKJGSQuUDC2XSc04KbIcN2BUljZJs9n2P7WaD0+1RdhXqchBkqXoODVtoJEV2uCFG0gewRO9PstqCq7NcJdeKdCu8aC9oncHEzCDjuyZV/pjALaizMyGtrQSV5MeJhOTJ8lqFmNl/sj5VVYkUSTg1RGrPQSL24NPnT/GDn/wAl7dXcNFzKwJVnxOPSxKVnYG0KGJb8vznktP8vJL8Td+VQiCNm0jJc3a100tBWpo/1hZAUBnMBT97BcWJuspBkARVhnUhhE0mQCiW80HGe0q0NiliBGjQuqIARB9yC/ChPyCOog/k874j4G3k79YsOE7zxOR7oTSJAUNp0jNMYQHUzQEXsRKZpcBMF2kbms93vp/EitQ5SbPs3EaAB4AMJGh+TClrJYErvNIO5nzAOE7Zktuyi54wen0Ii+eTciFI2okcC3WTJT3buA8DOZ4xa0iYDhn49wFRE2s4RGJ6ElNPoyosM5TYxZCZfQqz8HNmlMREIGmIxKBMzMRKiZ39hH2S8h4mQRHJqlA1XvN8iYnvv7V5TXfOwceZ1Vww00PaNpbjShIDXZBQrTWz26rcO+KzJyDxs0m8gr6xP6ZITryUaNE8LoydxzCv2YnBJAnkxiHmMQQASSWIyHuSvSSziu4mFPN+HFl0dm5tIp1DACpSSxOD96SFxONTUXIf3ZQBC0pw6HkCgK5qWoscAQgpJjQNFQvquqb1lNnmVcngfIpYtQ1C9DCcTDnnyRSmsKztRC38KsWsLSQrlIAaAOmYbTcbrFYreoYlJexFSe2NBTPqbGFZk05nxzpiWAPigkvgBs23L2IXppQyk8Jxy5ECuanGlGC8gYkBKZCGG+U3Ip6dMtAiwuJFVeLJkyc4Ojpi0W1gHMbs8ymsJZcSUogYoVhPie5zSAn9MKAfBxQVMVzLuoSxBj44YnpKPBsJQFyyIUSwNt8Hhaw/SUYuNO9kXS+rGimpDIjZgtcgjqGE8Snt0hJgJGB2rpNCJoOvkfdDFWOOkQS88LxWiCiySonEu5PmmCwu9EPn/SZfLzNNjNKICrlop5BgjEIqDDwD2UobtO0K7773Lm66Ce5Hv4SxBQpjaI/n9cIWFrosoCaK5RRfpqypwviFsA0N6XJpLirwxc97GWSXVbltMFGmT+g6A3pUpCNQGfxv5ASajA9oL1DwnnMDuSeyZjI7EQpIkeZrWRRcvCZW0zAMUIrW1bIknvSyE0RAx34YYG5v52NYZvjEuZA1Xy1zi/mZ5VYQYNZDZAaZcw5IgNUWm+0W3/ud38HPfvZTXN9cUzFgHGktZq1NyfOoK4YMLJp2hcxK5jjOeQ+lDY6PTxF8wIEdhZ8+fYYHDx8CALbbLUY2lgLIVW6aRlxfX+H169e4vLzE/fv3SG/UWoRpoi4FzXq+tGDMhjucA3jniTWMudALBU7zly7dc5tcHicLQEjY+yIHQCxiYFbJnEcU/f8ixs8xE4NCC/AlP6dFQnDn33f/j8+d1o48L/Plp8WnBKFIkHgo8b6+iDbnfwkDN6e0b1zTnbhPPrvoUElvgDHqzXNY3AvMOeSMz9xd85f3YgaZ5kPKRpvnr6x5bwJCOZxOn/vdMi+bvwvLs8ufmfek+bNvvu6AWHL9+X7LBwWklPOfP5tSEtlFjj3n3FJl1Gk+bv6K9JvO6POvLw082aKELUustkfo4w2meI12s8aDR4+gVyv4FPHpLzX204Tnlxe4vt3DcNDRdT3ImtWgKLmqFCLcOKLrekq8ihIKVFXu97foug4fvv9dWGvx8tVzXF5d4dNPP8Vbb7+Fd979AN/6zrfx8OFDHB8d48Xzl/ibX/wSIQTWcZLgnNglk5sTQWstzs7OEGLEnjUtvCcXHEkqqed6nwPP1xcX+OlPfwrRYGhXLZqmxosXz0iLw3vcXF7hFz/6CZ5/9gz7fYcwjkghwPiE4/MN/oP/9J/g5MF9nH7wLi4vr/DrTz5DAQ2jgMnRQre7vYC1FpujIzjnSQMlJngX0HUDjDng+fOXaNoaJ+enjMqLHkokO2t2LJMhQLauJl9nbqHigLgsKxbUVFn32zlqI5Sq+GrVQGtLm5ACFFjcmf9orbOFrLQZ7ff7jNyuVytsNxsUMUIT9zcHNQqKkzGNqOaAWMWI3CWsFGxTIQQPPw7zxIozNR6gDUwWJKUijDIsoA2UxkIZCqryekUHz0GVvFIIJC44jgBo0yYxVnLw6fseq9Uq2yQX1gCpgHMe4zQAoLaAorALO9TEVfeU2U6L2UrPTim4QXQQZv2mfFGRBHGFYj+fr4jn6qxB41kIvihZcF/Jd9Ef2egoiaKFRu69BtP5rZ1BJ4oQ8/OoqwohJkwh5PtHbVoabbvKQWMIAYeup2q3sOG0zksqsYXu9oPHyFpjjhJLX1D1sqlbFAUFFpJowhokBTx79gzTOKJ89BjjMGIaB3SHA26urvDBO+/i/XfewcnxCeq6xe31AMSEoqhRaIMSGmVlUGpNAsAxIRgCnBxIE0M26YjEEl86O4GM44gYqarvPVVeZW4YTqCE/UVtNB6j83mOSRJUFmQDLsCk9xM9l4QMPJU1AWJN1UABGKaBgOhA2krROfz1j36A/8uf/l+xPdmirEvoktoLvaQzWiFED+88TEH6ZjEwqJk4eM1ThIPpKEE+ge0xBiTnEA2xl3QkVy1hTAzjuAh6qY3JBQNMcyIeYkCKkvQpamnhVluZPwLUyPwUYV1Z28DJRUSiNjYoWE33vVAGiAnTMCDCIiaDqxevYILCbr/HyeaYBZYNrG0ocYrg9VBnqrwtSH9mGGivKmvSpBqmibVwIqzhihAHHUE0eoxBXZL9dF3UC4fMxALO5Jomzpp5fpWkwzMkYuuWnwOukNsKAHDg7TLYOk0TnCM3tvVmTSBWdBgnx05o/AwZYFCKkgetNG6uL6GUwmrdEktgHLG7ucVhv0dRlTDW4ujkmPaVGDLzRCUNozxGNxDzS1kYU6Apuf2dtUmGvic2gtYM1BPLVCkgBHIB0wxEiN6icw6n5/dQliVbwpMOEsNC0Iracv1EWm+8oyFwm1BTVxl46roDur5H27awtsBmu0VVVZnNtASORST7jkEKFFBVLBjt5SfE7ON1Xp6RGAko0Ly5ubnC5CZEaJRFgbPjYxgOXGW91AXpZwRO4MdhQqEt1k0LAcJJl1B0eOZ1WUBGQLFIr8/3UdyOAq/Z1loERUlfzQ5N4ioE3ldFZ4xYAAWzMHRudTRao6xbqEgulWPfwzmHx48fY9WucVK3dC7BQRuDpqmJMeYm3Ds/wb3zE3hPiePt7R7TOBHQpDWKqsytgEjEyul5rZVz1FpjvVrjaHuEpiGXSo+YzR6UUlg1bb5uy0G2PE8F5JYspTW3JmpYSxphYTEvLRe//OQwjiP2+z23gRtM3GjuU4CCghsnGG3Q1C2qskRbNxidQz+MMIEcYOu2wepoiz/+B/8gxwFd1+N6d52d7uQ5TLT8Y+h6FMagKkqMfO63+z1uDwdstkfYHG3Qrul6x45Y6NCa5pULUKXKrfEEbnoGEij+iyHl4po48q1W6ww2NM0aRpNLtXMOTUM6YbSeJ7hIIvA++AxOg5l1PQugSxuZyEB4aTXDDJQURcFjj8StY4iInsAfo2ldjYENF5wU+wCj6PpiYhDaBygNFLaCTwQ8IQUAntxJCxKSBgClC2yOTvD7f/CHuDk4DP/1v0Bdr1BZi0M/AIEKvlZb2HUDcwB8NxIgxK2NSQqjKpGxhtKAKUg7E+UMhnFRVNqpU2AA21hEbtWLmpjWqigJbNTMmDcFAGJx2aKEEefpmABohAQMk+M9FfPYBRUF6rIgHb1DD6uBdt1gvV5hs9ngdujQdQeUVQFrDUrebw5dlxmRSPQMbm9vcXN7g/1+j6Zp8NajxzTuvKPOES1gGDGfERW76UWEwK6MRmNyEyY3Qdgx3nku5nucnJ7hf/o/+5/jn//zP8Wvfv1rXF28Rrff4fT0jFiPgfRVJxdywXuz3WK93aCqSH+xXa1gjEXXj6jKEm+/9TbqsgRiwouXr/A//Lt/h3/yT/4Jvvmtb+Ltf/bP4LzD1eUljCHg/NDtcXXd4Wc/+xmstfj2t7+Lo6NjVHWFyU0YpwklkOUOEoi9FUKkzhClMA6UF0zWk2FFoidPc4ELIDB3WixJUJ8KaNAELQUBUrkVTxuSi+AqA40nQQ34laDYIAM5dspAxhtggTCqP/daVqjzcWd5jYS7oM+cTynSbYTKe0sGnoG5YM0ATm4vddS1I8XDGegBa8omaG7lzwUe7haRnI/mNB87zFIiANgg58vCJJ8Hs2YmmOL7wCDMb/is5MKf/9I041DqjZ/LD77oechh7pzW5789LgGvxddQvKLzd8o15GI4waF3gL+cc2UQmX+e//7/Q6tdWbawZYG6XaHxAatNh6KqkJTCj3/4I9zu93hwdg+r1Rq/fPoMg/NQRYnkPRCJNWN4UFtL/fzi9DFNE6bdjnUVDIKfAERoRb3wVdmgqSesVhvYoqSE13mMbNMasRBPtpYmo7LZllNpCtTGcUTPtHAAGWTKzBx5Aiox7XfCbnfA7c0Ni5ev0DQ1idh6Eiu3rPHkvEc/TRhUwlhZHN07QV3XODo5weboGCgr9D7g1etLuMlh1axoI40BpqygGdQSTSmlR6o8GEAZwPsR42jhg0NCiaqyuV9fKQWdNIIPcMnlRcIw6GFFHJN1GDwLTCqleMMPiC7mYNk5CqwEeKvrCmUluiQKBShRNEZnFZIoYA1XtZqGWhw63rBGcSQzBigKREPgCMVFzJDg/8VEy1nSskhF+IlbmKK4bmmyY5UJjcQCnDKX1AKR5ypbYhaEzP8Q4eM0V0V4Ji8r8gJMSXBF9Hw/gwVlmccPtfMBShtq1SpmW3Pps/feY3LhzjpOzC4mZPK1tU17FxCT6p4IekpFD4nRa0oEhEmlI4EMRVEAitsjlCz+dJ3WWmYhfL7lS/5bKs9SERV9qoCAhJnuKwuWUEd1ZgcoRsVV3jBUiix/kKAS6xfEAKWpMp2r/4y8M5ZG4J+nsVloA20LFMZCFwbHR8fwbkJZlBi6AZcXF+gOBxTW4v75Ob7ywYfYbI+gioIrbgomzGKLISU4RiQ1J32JMkeucrvcxhhjpHnGa0hZFrn9RoFAObqXmguYKoumh0jB9KHrOUAPENAQykOrmY0SAoGMxlBrAfhehxAQdczPxRiglJZU51FUFra2KNsKZV2hjw4RCdGqLCQvGlshBigkWMXBcxRAmNmFMeSNNrIGTUo0N6qmgTBQNFeVHY8Fo8URiW22QUyDtm2pwhlndmLWflEGM6NlflHeOesSyQ/zus331kRFelB5DaBxFHifcZEq9VaZBRORnu84TSTkaYs8/ompG5ESJUj0PZRCxODYpYoGqOKWQhhmk3mf1yU6XWEnziwfqvAHpozPCTGJnNJ9E3dRYyvSTzELoeMMEhBosdsTKL7b7RgsMdhst1lXi4oDwnsT7YmAtmlQcHuzC9QuIcYDh36Pl89fwE+OWnsNMZYPh45YMgyG0Tqoc7IqYHvwAd2hwziM6A4daSyy0Lbhc0oAiUODRPjBQIAUSXquQA/TRMl9pETWOXLfs1rB+xHey/rIuloxYppGDqYtuwhRa721CeAWODlXCXbnIDPBuQnOISdFS5BHXJdsYTIAgXxfyUFMaw8fdHZq8tGDCDAK0Amj62GZLR5SQETgOUh7D6kURvjkMbgR1lgUtsxs18JY1ibiwF0Rs0b0CsWuXBXzvLLWZNCSQNc70w0ps2cVrCkIfLMMFmgzC6wygDqxrtPZ2XlO/larNayxmf1B60GCc2NeVzzHDJp1bTbrNWIbsWpbaldllhqNVs3jI+TnqJRi1h85USElTOOIwGtcSPFOO5ZUdhMEfFPcNqhnZ115/rxvaQHhFYn2BtbKM1R+w6pusGobjKCGSs0JI9ikQCViXA49uRhWZQlbFjSXQWOoG/qctAizjxgtDK5zpqBATBgfE+I0YRwJjNntdjh0Hc7vP0BZ1+i7EcqQxpuxxOqFiYgRmCYHQKEwhleOkJnrcu3SBqaVQVKJAdDEzBQgmpTZTBODVJpdFZNKGbCLzuVkiFrwewjT2BYWlSYzhJmFwRV1jtdijFmDS4qUSknVHdklMOvBJWZ5MwVJKUXv8QFT5+D8hL7fIzQl4CvEZJGShg+0j+67DsFHnJ3dx8nZOTbHRzClxRR8ThqfP3sOrYCmKJGqgHGYZrYctyLFQIY9KQYERCBMtI9ysKzBuoeipZMStLZkuMK6bgCzWDNzlorpjMGyppaFSpqOk5glxXo6if9GQt4vJE7Tmgreq9UKKk0A9rBFgfV6jWgV1MTahVqzeQGQ7BpDZ+GniYsnhUBmiInW2W7oKeaztF/OguKLxD1fcrqzn8teDIA7NQiMVACMUXjnnXfwJ3/yJ/j5T3+CZ599hmGg/OT45BRlWWK93pDJ0jDi9PQUxyfH1J6vpWioYMuGZnMIqMoKdVWj73q8fvUaH3/8ayitcH17Q8YZnITHNLvTvnz5CpvNp/jud38b6/Uajx8/xqvXr/Hq9evMpirKCk3T4t33P8C7776H7tDNYEeMCOPI+YHJ803ip8wAX+ilzUwbERfnuJLFvIldBi4kz9hF4nuueGHJjnj8BmEWKSWgEe3DYbFW5gPJ8/siVEXnyAZS0Kb3i0bo/HnaOueYSHI0cRKVjpQ5pwOESSTMYwGcKI+Y9WmFLbbMQbA8M/5aWevk/sz35C7IIq87TCTg8wBcpvvMt0veJ+z3O1fNudvyUG/c6jdPYPFVXwz+3TnWG/PtzWOqxf+nlOZ/8874uW/I++L8Lsk95UiiL62UuqPR+7e9vjTwVBQNCT22a7QRWB9NKKoKEQk/+Ou/xrPnz/G/+l/8LxGR0P+3f4Zh8lBVDZVGwAfS1JEvtRbinBJDQN91uLm9QVXVrF80QUHsOgvUdYvGeaw2WwaeIibnqCWNq4Jd12WBUGNKGFNit9/j5uYa5w/uoaorDNOInityS6FLqsrQLEyclIo45c3NDa5vbnB1fY3VirRiXtxcYxgGnJ6cECU4BExOgCdgbEqs3nmM8/MzPHn8FtpmhViWODiHq1ev0VY1Nu0Kw9BjciOsFqpyQGELNG1DQeTf3CO1AAEAAElEQVSBWri0ASY/QY9UOUyIqCoLpQ2842qdUoS+u1nnqNLs5MG99TYmQI157KeU4D05yo0dac6QJsSEcRxhmXVQNxVZclP6iBo2C8a7ENlNIzAwQJv0ZrPBMAy4vb3F5ByGcUTLuge6KGjjZU0m0QZQaQ6YZVR7SVL93C4pGhPMEqeWQ+DOGAMEDGHBax+QVCItIV54QgyYvIexFjbNiv1+IvHh0hYLoUed740AT1R9J0ce2IKptRraWnL6UrO4qyRBlPxRVdQYk9ufKLygwNUag1XbZpaMvBxrLYjtuecgUqjkpYg7I8EEYhWVRZEBC8NAmYCPooski8abrxgjCtF24jFDrUURIRKYYqzJidbcWkWbmuakyGgDH7jFJ+SDI69q7JKnucKBlOZkAaCgKpJujXMTpn6AKsvcvlRWFc5OT6hNI1FSevH6At3+gLIo8PD+ffzWV76KzbEATwR+6ch0U0VKCwmJ9biAFDi4ZuApeEebt1KUPPI6Rk45JWmS9HtiLK7WyAMYvCnkMUdr135/WFSHDLSJSAxmzclvJNc2DuaMtZikhdiQGKnioKUsKMlJzqGsS5RNiWrVoKgr3O4G+BRhWMA4JAKeEInJgxhQV5TsRW5DRKS540PI9upgOjy4jbJuW2JAhZRbamVTkjlN7JGAkDTqtkHbtrM7Ft8hyfMgrZ2KgoAYZyZcZDYjxwgZ3BCXSoC08YQFScelSrl3AdEFJEdAj2LdMQl2Q4wYxhFVRQxQ0RCQuRa5Qm0MtTkkZekZxMUGzK29WhmE4FnzLkKLK6hEHkmMHuZgdBZ1prlvjMZhoPFR1zUDYhXpZWmNkrUfJFBPIB0pd3WNvu9xe3uLzYYqvienp3mMiQYbFWsSV54DVu0x1qsWL1+8wtiPGfgxxqDvezx9+pRspo1F0zRIMeKwP0CzvqHRFlVZZ1aoMVSwCCEhRo/OHyBue03bYnt8BBMC62OB5hQznyZPgJ7ohCml4DyBvv00wQOwnsA97yZYoxCtJqbNNGaHP+8nbrcduaWMWmh98FDwKCyQlMugAgACjhfVTABwbmRWV8pgsLyUNlDKoG74eWidwQMfAiY3M2YHbu0sWXtGFQQsjG5A0AYoS0QEJBWJ/QZar2lvoES2nxKaskFVcLEgUaFtob5AFegYaI5HcU+yMFrlJFLOSYpPIv4OzIUFgIoZhS0QEVBEKsykCPiJRJdTiAgAfCJW2fn5vTyOpeXPuQlI3NaUCHgSBiWx8hzqqoG1Jbab1aIwQt8vz2xyDs4TWKU41pCCUFGQK+AwDNQmY6j9mgxNNO8lMwCSk440O/7J3JTYY26pnrU2CikwKYUAjVJprJsGZycn6JHgQEzH4D386Jh8kLKOWVEUqKuanRI1UgqYvMOu64BEbJ3ClijKKlefad0jYwNZ53wkGYQ0TfB9j5vbHQ6HDlXboqxq9N0AXRgEsDuaNlBMm50GAv5UScY8ssYqzAWAGBJCAsRkIERianvWFAzMME2KtEIBcIFL8dqcMjiYuwhSooQ+UotwFSvYouCkXowduAqfkPcHw62tSMjshQw8MciZ4sJghCUatABrnt6z21Gs3fU7+KlC8hVCtEjJwBQtjCmw2x9QGIOz8wc4O7+H7ekxnAdG7zMg9vTpU1it0JYlUoi40R0l31qExYE0TkBgDRpm94vRhVHCslOINEgBKCq4aU1aphw3xjweBRznYRopTtKave8iIPLssvup/FQ5HjNzq7FiwLWsLVKwcN0exRvAE/jTVHDWKE0Now3GrpPkAbqwgAJurq4xThO6vkNVVVitVrRmOp/HFCDghUKmSEBaIVUWDKd1lbREfWCjBK3x7rvv4uT0BMebDX7ctvj5z3+Jvh9wenqGo6MjvPPOO5gmh9v9Hvfu3cP5+TkXV0gzDlBo10eYhgEXr16irGo0NQFPL1++xK9+9SskJFxeXWHfddzWS1IGAlC8ePEyF6Y2mw3efvtt+vnLF6BavkbbNFiv1nj/gw/xwYdfQXc4EIDG69E4OhRVdceROgNPKUKzDqXm2Hpm1lCsYnJhTHOBxctySev4QuRJzpv09hi8pINlWYQEMfThIkd8Q9d2iai88brTSh5nAFH2SXr2JPtCQybksSznN7cM8s+iZEOYj6uQYzKklK9R2mxF1mU+0cTfM5+rAEySy0S1LDBxfKZmqGrJ3Unpbhvj8h7fDUj52wVvkwm7OM6dj71xjvLmGeP720GnN8/hzdiFMgh+adL4U2lxJXJ+kvgmWTkW14o0H2Sxd0qcLQUaKJas+dvOc/H60sDT9e0lGtdgfbSGCgGVNfjVD3+Ap7/+CMPrC6xTxC/+5mcYQ8TN1TUCFNabIzgfMA3Ijh7ee6ImO4+yipkJ4EOEiQEqarhA4mu96xB0xOAG2MLg8cOHcG7C7cUVXnz2GVx/wIvnL3F7c4PHjx6i63r87Kc/x/HJMR48eojVukbd3iNBN1AlZnITLm+uctIIwptYzwMYBhLitBYwJsC7Hm44YOp3gB9hU0C/u8Fhv8e6NPAp4fnVFdbrNR49eoT7985x/945vvvd7+D+/Qd4+fIVhnHExdVrVHWDew8fsMZV4GTGslhlhLEapbW4d+8erq+v8fr1RaY/excwKoeb2z0igEM3kpbOEmrRGmVZzVpHgZJHl+aAujIFKlPkPvw+9vAxwRqqhK7aFnHVIMa5haoqLLuiAEgRnR8gk0bagrQyKAuNqqygtEKhDVRV4fz0BNYa2MKi1BoFFEgWHQBrAxgWNxQh1MlNCCzWmTdeQ84+YBbU5FxmkhSaWALJk1aYmxzKskTbruAjOQQRG2nWK1JaIzlKXrx3mCZqfTDGMC2VEjxxEJTFfrvZom1XOWAVnRdixygUdZUDVhLRTqzJkFDXDYlFuim3axlD1c9kCUwrN3SeSw0VeVbKkl6FDoFaxdi50RppgVQ5+KMBMAdgka9Zzs0yAzFTeuMsKkrzkZK/jjWryoK+axgGKK2xalpw0R4qcrUxUEAqcYXoqAjokhZJd648pMTVOQMkjRBS/qNAA8VFetamMFCmgjYWxmgU1mAKHtOQ0FYlkjH47NOneP7iJa5uB+iixrsffoAnjx/h4ckxYlUiGo1Hjx5AJ2DF4GBCYmcVgBVYMErFVRVICXCR7kxG/HnNNYmE+aNP6LmlsLQFg4YFJ44pi89nRzEeU7JRT9OU51tRkKtlXVakQSX2sUy39jES4Atqx6PqqoeKCRYJOgCYFMbRwSvAcKAYhhFRAcEkqKhgFFVYk6LkEUFBBXB5iHXZSp1dSXziVjuf4F3E1PU8XhRgCHCVDakqSUC3rCtqt+wPOXCie2fmUo8kMqx7YGBpDERhSkjySEwRhpnAgjh5/E7jREUAxa12pgBCQvQRKtAYNdbClAWGMKF3I6BJN6ksqA2iP3QSV9OVsdaTNgpKUauCmyYU1qAtGyRh7HnHCRtriFhKCjIjTGt4kK20MJVSjKxFU2ZtOwH21s2ax4hmgFchpYAYHcZxwjQx6AaFafI4dB2eP3sOIKGpa1RlibK0CG5CCGR7XxoDnYCx6/HZx59AqwSNiKvLS+xurnHFAq3taoPJTfibX/4Cu9sdYoqwZY26bhAAsjO3BWxRoGlIKN2xoYUyGj4lIADaGl7jSMcohoiiqqAss/9yYs3OT4mo3InXhixEy20iKiWEccS+76EVOQclpRB0wNBP3F475gBTaYWyauBDwKEbFs+UmTtQFG84T+uNlmR2FtifxnF2ZOI5K4F7WzdYVRZt21DLOjNu66qCDx5DX2atOdoGEsqSDE/qqqSxnEgLqCgKAnbT7L4numODKqCgUNqC1kgfMQx7hBSw2WxgraHkSpHgN7n0WWaFT9A6QCmNgllPZVHmuZeT9yRAh1yrFEx8LuDkvTOl7Gc7MxVVTlqABOdm1kdKEc4RGOaEQakNoi4YICEb9tv9DlpxDMH7bQgENvX9AOcd2akXFmWxzeunnJepGzRljSRt0gvwAokKVVZ06DhVL4yFhoJ3I8ZpwvVuh2kauR3UwGqDh48eom0a7HZ7TJPD9c01A1gKnXPQ3UDx7cI8oS6pBaouqjx2RDhbB1CCqQnIqusah8MeL1+9yhqoZV3DWMssU1CBgGGFwhiURUmgUlFSbFWWuH9+jgf37uF4u6IYcRipGBEidCL2VluRAYHmuA3Bc7JEz41AosBtPjPYKskGWOPLFvOcFqZ6TgI59hgOe0zjiNVqBaMNqoLbhJEAFRDDBAXSHJKWOlvWoLYcnRMj0oCKzP7UmOLA8a5iRnTMABa5AwcCeLXB6AJub27x3/7Zf4eu7zGOPT744H184+u/hbPzI6w2WzhHzFVxDKzaBpujDR7cO8Priz36rqPiEDPeQooIE7XLGz23gibPZjcBQNIwtqRnFpmd5YmJGRK1ONIbCQAWZhPYAIS5j1AxIcJkvSh6ACRELgSSDJyCmeOK2taTAiInglruOwjcD9FjmDxMcmhAQP4QJgzTiKEfGaAM6JmBi4LmouZixND3aFrSxGvahtaVuoIpCkSt4HzEwAz0wti8locQAK2hZSzESPFijAC3/thCUyFuUYSs11s06w3+4Z/8CX73938fr15doOs6XFxekcvqMAKFRr1SmELE66srJL4X9+6dwZoCbgL6yWN3u4eCwsnZGX7rm9/A1772VfjgcXlxgWkYoZXG+f373LFxgCotLCq8vngN5xw++ugjnJ6d4re/9z00bYsf/fgnsLpAXZQotIVRxJifYiAwUVOnxhgcOjeithqI7KiZqNXUaIXCFtDWoqgph6L5xnIkDDRmiY1cAElZR8rynqcUjaVCisrQOfYnfU8Q4yrnCZQ7WGUwa0wBMmIyyxcz41D0YyWvTDIEeR2R1sCUVC7KKc4hZ2dJcHQsYI2iIgvnLQBym57kFNQFwaQRo8kxXRg3Rud1SDGY8qZbXQY/NcmSiGaugNl8oaAIM83fudj36cj59tPek6Ek5GJj1HfBpkwmU9xGp3gNA5EgkJD3T4HA8sflH29iXuCbh8T6X/nBQCnAYtYGpvxw0SKHxXuxONcvAOwEoMrA5aIgk4CZ6fT/a+CpHzpKwp2HChFGAZdPn+LQD6iPjlCvWrx8/Qqd9xj6DrooURmDpBUmpAw6TeySQVT4lJFGwSkjVGZQjG7MVRWjDdbrFW6uHPpDh9urK6TgcH3xGn3f4+iIrDCffvYcpjA4j2eo2xpFWWLiljyq4DscukNmrNiCWhKEax24hcJYEu8m9yMPoxIMEnSKcGOPsT8gTBPpNlxdQCEi+vs4PjnC0fExPvjgAzx48AC7/R7DOOLQdVBaoynLDLQpsL19pEXeGp1d8oZhxF3KbYIKEX0/wFiLcXSIiScfDxrRlBFdAgk6AlPhLbdfWGPgmQ0wqgFGAdEoFNZQQMxBX67Uc7+TBiULk7AV1ExtNNyCYQWlT0ChDUzT0n6iyRVBY1b0MaLnoqllD1qz5k/KFGkKbBegCgNPzjkCT8A6GpoEygMn5VZpNFUFFwJcDFnTIeZgVCMEnUUrkw+5bUcWU8utiiEEZkgYmMqgTLNw9uinLAqrOeCnW0a0c6EiIwFFSQlUydpJGiq3nUQWPm1L0jqLHKAnpJwc2Kz7QE5gOolws+UFYRZhlukvTUtznZ767ZNUEBYvWZQlAfGBXEKcd2hbrtw7ak1sJdqXTYQp85CqIyjYglJzC6RSmR5PibkSfAyy2okGFgng0jOPTNkm+reBNSW5P2li3HnncFyR/snN7Q2ubm5x6CbAWJzdv4fjoyNs2hadBbxS2G42MFAo+PupnQWImsZ3SMiaO5or45F3sDsbSaIKUWbOeGKyUYVLg7o/5kRy8cEFPXgWJZU/BWta1WXD4CrjiVpB8XMnhkhgN6WANI0oDIHEBhomGdJOmQgcBCgRiyxcqhIBShT3ptxipyMlcokrGEoDKksHKIhYfwwRbmL3Ok3XHrn1SIFaO21RoCpJByF4os5Pk8tW9RmQVJJcRahIEcxcraPnnHhzlS5zCtp5+IWYWTIhBAR4ds2hQB7sEKoTHUxZAxcDWblzIlqWJWuDcStQiiiKkpMdvv+KvjcGB1M0LJTM+iWB9gJySWWDB75f5BKqESHuLfPc00qhsJbambSFY6CjYKA3cPCsJB2JIbtvUluqQt+NOOw77G5vUVUVttttbnP13sE5DyMANQA3Tbi+ukJTlWjrEt3hgJQiDl2HFIFmtYZzDhevX2OayL3OFgXKugIUCcSX2sCYAgXrYInrmzaatFdSgrFULZ/FzSPZVGtpUxOgThgpCpDigJoZyUaCGQYYh64jQFZbZtwAbgpwjsWIkVBWJbMhCySfMI4ugxlFwfsbP43gA4KOtP8zazdFKhiMAz2PWfuHHbWsgVFAXVg0ZYmyqjihpoFigwcS2BEs8PdpAk7KCo0UNRIyc4cGfryjL5VSAoII/ZbwU8gM4tFNaNoGSit040B7aUGJjzFzQU8nQOsIEwtu/ZU2rrmlV9b8O1VZxWYXFGAQW4MD+rksu2iD4LVS9szIbbwEPHkGniIxxSzAPYcEQsbE7nZSSOF2m+Azc805xyLGFm3TMFiJDHiItIDSlBiN2uV1JNG3cbsgNdBpkBOmYtDbTxNud7fskryD0bTfnJ2eIFUVJdzDiN1+BygNW1XoxgnJ9EBwSCFgmIg5Xh8doSgKVPUMPIVIkgaBQSSyYScB4xQjbm9v831frdc0phTyM6L1L6GuKtJIUwWz7ihu3KzX2GzWqKsSPkR0asx7DaeU1FIbI+LkWQ8yp1d5K5d2ahkfuX1FZikX/CTIkLFD2oyeHUUBP44Yug6NtTBFAaupDdTHwCA62bVqBm5kvCjcZUXQ8+WfQyF4xwBFwefN15EiYvSku2d5xfQRfTfgV7/8GxwOB4zThM1qi/fe9TCmxKpdo+u6hXA2SVQ0TY2T4y1ubycEv4euCihDLLKUEkZHDG7FCbVSiRmeyPGM0pZ+p1nU33MBJSbev+Z1L8dO8iPe12iQmrx2JQmmuVBG4BJ9HyXyfC8UgYQzA0Hl2IzMH4DgHUrlsTZ0DT4FipcdmUlE5+FZb0oXkuwbbmkbiPFvLQvMEzgmrfwhRe4AMFxUUXldIGDR5H2WLoQ3WShiwuoEwwzr4IGqLFBXFc7Oz2GsxmHfo+s6/PUPfoir6xt8+umnUDbAFiViDBgnhxRJ3Hu1alGVNW6vejIyipG6d1YNHr/1BO+89y5++fNfYL8/IHiK9VfrDbnCDh2UIafhQ9ch+ICXL1+SYdTbb+P65haWC42lobUXCeiHAYe+g7EFiZ4H0j3zkZjSkQspUpBQitvbrYEuDIM0d+ecmBnJvABE1kJlpj7dQsrbdAaRJJdjphRwl7UDObaGgsl5X5byWMQqst7Tt6d8vLQ4N6iU8SdpJZQYhi943mdk/Ung3IOFAPLFSMvjfN0UzzLDECqDHjMopPJclgKSvHJUqeb3LIEtqOXfdwXFl/dsBn0W+yVDOTofe37/nOKkGZyR9VPN8a7m/VPxdwsglOR4izQCkhfL8TFfq+I9WSOnZ3KT8cUvQZcWf6nF+xWw/OwdQC8uT+rLvb408LStVqiqFrosMXYdXr98jeQSTEh48M4Z2tNj9MHjMPbwClAxYOgOOZAXhyCh0EsyPUxkL/vkyWOq/FqLvu+x3+/w/JOPkRJw2FM1zxq2fk0RH33UQxtN1UQATbPCgycrPHz77Xzsx2+9g0ePH+P2llzyXrx6ie4w4OriOuvznJ6e4Gh1hIEFWb2n48MbABZtu8Z3/8738Ae//4d49eIFri4voZRBTMDl1Q2UAqp6hYcPnuB3fvd3cTh0OBwO+OEPf4yf/ewX6PoePgSU1pJ4K6P+wYfsxCEtI8YWMIbcc8qiwtH2ZDGuadAN/QitDfp+BBJQNxWLLwZYpbKWVh4gCbyhE81XtCE0KHhYNysAKVdf86YJ0RSiajQUC3JCIZJ3JozWfL8CTCKnET8GppSOMEajqkoYRUmCDxFD9HkCi7tLHIn5pi21c5h2jVDQdQnTRlpEAl+njhFjP2ByHmtToCgrlE1L1caqphYwUH97aTSJsPLNFH2UqqxxcjJrVgjgpBk8o6CW7gMlSC5XLeW9opciSHUCUBcl6rKCZbaCsGiM0rBliebkDLI/cE6PwCATOaTNfcpS9Q2BxbaBPNEVkLWFRIy5aRpUFbFMlsuMDCNh2NwRpF2woigZpGcubaTjMKC0BdGxV+uZrhoTkopMqw9zJYM3uoLFH4d+yK2KPoGCfA7aKhZRHrktBZiF3KtqhbKkTZ1aHhkQVCzQHAOSIStyozScG/A3v/wbfPr0OV5cvMDRdoW3799H27aANYygSMKrcm85+FkYEJsopgX7i29cVVX5/mWLaNa9kCr3o0eP8jjywWN32MNNxMIpigK2sDg+PoZ3DtdX1xmEPz4+xna7JcdQAwTnMcWEAQcAyNbehTVw7GQ0DD27K5EeGbyHXbVotkf44P2v4u/+9u/h//3zv8LFxQUeP7oHZRXCFOCRqPKSSPPD+8huS9w+CAYEtYQWEYWh6nGIgWnN9CxNUdwRyjbGQHmKhodxgo0RzXqFUlfYHm0RkbIbleIKqTYGSpOtffJ0s6WyaozOCU22eWedKVqb5nFNLcU1AaYTJf0hJCgGEKy2WQNNsbBzWRZkC82t2tM4oR/7LN5P+noK0zQCXDxRioRtkyKL6eCpXdzzWikOOkppZmwGKBCLkapxKbd0WWNy0WCcRiSu5CuFXB2L3GrsOs/MxwBrCeAJYYBzHi9eXGAcRrhpyqzN29sdXr16jWbdUNFFK+jCYvATSk/t6toaVG2Lm+srDEOP09NzaKXx4uUrjMMA5yLadoNHj45QlhW1XfG6QXqLBcqyzvPScOsrONBMfDGk6RjZXIHW7WxIwBX/rK8ElRct7wPrJFEQ5aYJCcwc1VJwIeChqhpUdYP9fg/nPZwjN92uJyckcjsyMAaIY4BSvLckhf1+R+dvLZyfWN+QFk2p/BtFrKSmPsJ6s8G9+/dQWoPSEgCntYJPpAniJhH8jqiqAnVV4pjHv+JErihonlGrkMc4THz/uNIbI3pH2j8SyDrnuJ1+RIgepJlEhZqyZC2WFLgYnmCMxnrV5gDVaFrnJzchxTgzUiEtdhKn8d4cE5ybE0Nr2L01kOmDtDVqNbuVOjexKYnnsVpCKZAQfyRQX5kEHZlpikRmANpgvdnSOmcsxnHC9fUNponWSAGBJx8Q4gjPe2Di2LIoCtJe0orYl0qhAmm6DdPA+5kGtZ1EllzwqHldv729wTAMOOxus7ZMfzhgchM+/ogcD29ubjEMAy6vr+C8xzh5NG2DdrXC/Xv3SaOK46LJOfgYMTnPrZoEaAYfUNXUamN5rlvWPauqChcXF7i6usLx8THqhgwPbEEs+LIoUVUltb1ag2HXodt16Pse3nucnJxg1a7w9OUrMvWZJjSrFZp1C8OJvRgLKB8zmBm5pVrW2sgJp1isW3Y7c96jYHaV7IHeUVyVHRZ5jYQm4WNjC+y6HloNaNqawFA3ASHCQhgZCkFcOKMYntAimDydm/ceJhhiiLIJQmDw01YlhOmgraVW50ggSl01ODk/wx//o3+Eru+w3+1xdn6GANLWKvY72puNJgAqRuy7A46OjvBHf+/3MU3/Bp8+fU2Me2vh/Uhu3N1AMamysFbDWI04OE6qCSQUwXSlZvkIScJD0swO5v8pZrfHOLObmIGSQXloGG1R1k0uRksSqw2xl43ENFoT6KQUoA2gDVJIzKiiuLbreuhSY328xmq1RtO06IYRmhl1QSlMwwAgwcJi8g5d18Eai1W7pjFaV3jx8gWGfsDHH3+Mqqpw79693BZ+eXmJcRhx7/wcVVVT23uMcK7PMhbEhDZZMwqKilxSIJVitgse096RzlgMgDb45re+wWPze2SC0PcUj3ILJgAcb4+hjcEw0Fz8ff9H0BowVuHRw4c42m7wyaefQLMQeYgR/W6PfhwxdRPKukTTNhj2HWJM+PM//3O88867+B/9T/7HeO+99/HNb34TQ9dh6PpsOvDP/o//J6w2G3zjm9/EZrPB2ekZzu7dw9vvvs/tqhzDp8ggeGLtPS24EQBas5at0IbHSUDkggWt1ylTgpD1m+YXdxpEBiIVcuFTGKMaCjFS4VUgC2WYXZ6IHSSyFHRIAXupfU5rs/iVMKbAtRTKZcTtewadAGE25/xk/sUiD1LzV4aMUUEpmiuGz0ukHt7ASIDFf1M3S0bYAYA5VwLipNwyv2wl1AIGyRj9gpe0DM/6SinHQAARL5YZWZKLyt89g07zMe9+1+fArDs/n4G6nLhkwFF97hj50Onz1zNfY1qc3RvfL5/Tb97sf//ry7vaiaMOFLlXTB4mKthE1OimbnA1juj6HiGSq8yy/1oGucwqYQLEFGFgYCz/MdQTSi5vN4iBXPEIlaWWLVMUlCgpCnSMsTg9v4+qrtC0K+z3B1xeXkMbi6Ioqf0sUpuITxFDT65T0zihriqsmhZudNnNhgoP/ACVwmq1xoP793F7c4PJiciwzpvgerPF8ckJNtsjeB9w6A7o+wH9MOT7J+grCd1S8COo9edEPxUdm/R4qIqeNyxPLAc3OVhrUMUCSzvZ5WSZq1VqFjleAJgJFCQRqEQAjIAbKc2DLwFQiRIBcRwj3RlNm2rihSzNbJUYCMWnh00siRAIpNBJRJJjDnoMC+kpzbbblk6isKQdELnNRwEIRsYJ8uZCiwPRi42JgJ7bcwDWUglkGT5bCBO9dVnVA6gqqgTxTxRAyO+pLcPnCsISFxR03SuNYAsUWkGLyCPj8FppFIXoKgE+JWpNAVFQpW0vt6CpmANC8DNRC4RZgCcbLS3uUdo1UkbK5YEuq4h3NJk4Wc6DQxZDXnCNNnlMiUj5HUE/pFknU8YXz/f8fCCLKr0vxEgUdBvvAGHzvwkMFUF6qcKIjXekGwbD2ppIJGS83++xP+wxTiOAFTbtmtzJNDN1QNR3aun54gqA4mQvbwyLCsbdsZLyOQNAWVG7FrUdYQYMmQ2iFJ0D/aFEfLfboW3bDPAqpbKF9KgUiyj7rLcGTTR7xwmNnEYC4GPC5COOtkd458nb+NFHP0XyESopGLBQPF8fjdV5zIpWETiIyS0Ri0DhzlhXc9Vbp5n1pRW5U8YYF25BGkVZwgfSP5GqbD4WhzoSFC2/BsB8bpjjBdJFomekWeBSGwqYkuH5DWZsJZ0T5MQ3S3OLnWbwmET55XzVHcFYaqcDtxRLLzuvKWl2VBLNLZorxHhKSeYRF7rTIjAwJo/3rCUlgDbfHwminZt4HQhIyUJHarFzk8PASbQIXFtLGlTD0EOX3E6umR3Lz1X24pjHgWKWlUbX9ZgmYtwWRYG2JVcgrQxENLSuG2onZeF7Ye0QI4iFT0FrjgBPkox5BguMYV0y2RcjC6WCjpfXMtYbc55d7CpKTL0PefyCdbsILYwMTEdMrFlG4KhilxweL7yuUSxBbEwk8J6oqMW0YsaI0qQlVFdo6hpt29CeynNEWgbpfD1ENFlMJxRXcD2zPGReJWY4yZ4SI7OM5JgJLEQrDKUIKLoWDZ3HjmgqRWkz4KRcL4JC+bG09ocYcgvGckrKmiZjk8pV0iJBv1N5XVS8DsleScUZatGL3Gap4DwJTocEqJhgkgBPgC4YftTElRHWKzGdHLG/9dyqE2NCSGPeU6SNXGJLaSEX5owwtaxSef4jRnKv5XE3DCN61oiSFv9pmjAOA/q+p3sXAxK7W/b9gNvdDpvtFilFhNNTQM3toeS4GRHjLDExj3EuoiXSzCR2dYG2bdF1VLikuUUFTqMJCBDARUBb5xy67sAsP3KltNZinBy1gwlrieNeHRfxJ0spWGXzwv4mO5cq7qIFs0iKEojhHJMsaqyplXJ7ECBSAgbBi5MX7yghIimOx3KrGu9jMSIxSJiSJJKJOsyEfSPmCkbntQ0JSGYGdpOjPcJYg6qp8fitJxiGgffbBnVTswg2GOlPmLizIsZIAMr5PbRNg6w8z/s3zW1uJVKKWEia9GwUgKTiYj7NcQLku4CcxKq7O+udl8SYc5zJSbCe11PZE2UPzVo4i8/mxFNRvwE1mkrxhvK3oiyhjZ33dKOBJDkf6+okMt4pbYmqKFFwMVKKKo4LKs452JSgiwLTOOJwOGC72UBrk+9f4OcM3htza9lisVLMTDSycCWOkYPE6QpNs4bWxJIinc1+BlB5Pa8qMkEpWwJAjAHHlsB61cIUpBNaNTXapoV3nhjIikD9nJcYg4SAV69eoW4aAApN0+LRo0d4/fIV+kPHT1bhxfOXsBdX2Kw22G63cIOD1hYPHj7OBRrRm5t1ZIndTcuYPGuJJxYhOg9H+ZzQdURbSCkZYcuFfwkm3AUhlJy1knB3PpBSCor3lCWYlfh50EFoji4BkwyCAL9RcFrW79wyC9F8ustSkvNcAla01yLnQmwkuZhT+bLvnvgyrr9zJ+T75xl5F2xZ3rPFXnnnP+Z7s2xFy9d657sW/53eeE/O0ed8bT6PxQF/40vlL5hjdpVjpXw96o3nmE9nkdcoyV0/jyssz+OLn/Bvfn1p4EmVBZLRGDwFwLUumEZpUa3X0G2Dj37613h9e4t+tyPHo2ON5IAAZs1oosfBGPjkuY0goe87XF2NKMoS1lhcvH6Nm5truKEnG9XAd1EpbLcbHB0foV1tUJQFnj1/DqUUvvOdb6GsKvT9iM8+e4pPPvkMH/3qV3j9+jXpHiidnYJub2/hJofD4YBPP/kETVPj8aPHONpuM3oXvEPfj9jtDiC7R4Nff/IZfvk3v8KhH2GqCt/49rdxfnaGDz74AApsq46EoixxfHyMqqqy4OXFxQUOhwNev3qFqixR1w0hpCGhbioYa7BarSjIZ/oqOfHtsd8fcHp6hrqucXV7jbDvcXV5DTe1KA0HySDU2i7a3QLrMxRsU16yS0wW21QKE9PsJ0l6zKz5I5bwSAQ6vXj5AsF7IEWsNxvcX9/D6D0GP3ElI8Eo2qzaFW0IUBqTC+iGESE6pDQLwWkOpodpIs2AxGKSDDYAil2S2JoW9HtblSiNIiZRZaHaCqGw2PsxV+EMJ0KBxdMpcUuzjlOcwVC9SNZinG17g/fwPmDIAOI8+aQN0rkpA1SLmYuQIlZVTQLlRuWefFmgU2L7YUR4xX3GChAxPqXmhCz4iOhjnuRB2BWGbIOT1gigFsgqRm4X43bVYUAC5n7vxQI+sli5aBK1qxYpIbMPkBKOj45wfnaWgSwBZwNX5mANB8klbfQxkuAtgybWaGxW7cxc0QrJaByYsTMMA4RBkxi41JqSVQmwS0ug2sSV9hRpw1Ggli6tFbr9AfvbPfpxwOQdoCK22zW+8sGHODo+gQdZDDvvURcMRGHekxLo+RhDjiOe54WIpIob3TiO+TGv21V2N0wpscOPZ2YGH6ssEQ21N3gfcH19DeccTk5O4SaH25sbnJ+eorQWaxaUf/nyJRsgANM4Yne7y/fi3v0HWK3X6IYBCQrb42MgAdPY43p3wCfPnuPJo7fx7tvv4enLZ0CgtorgE6qygOb2FdkprNIwWiHyRknaN4nbQQDAZGBZG4NkAUzcams0jGKHorpBUZRICdDaYwqsaxMitNWoqgomGqhgclCjmeIfhMWUYtY3y5tsTAy+OZ6vc0CjNYkfZ8DOeSSdKFlIQHABGgqlNlAeUCEhklgX68QUMJYEYW0ikeWqIm0Wug80MnyI0Bqo6jonGiEG9KPPQVtR1TS7GYQz3OpmwO2lIZKOBQOMNI9DBo41J1aetXEkKBVmXWJHyxiJrRFioL8ZFK+qGufnW9R1jdVqhf5wAGJC27SwpUVT19RCrknjZ7vdwrkJr16+wrpdYX26hkoK4zji8vISCuDEa4WyqIh9FB3adoWqqnB8TMYaS7t5JCpIJRWoVdNoGKNgDCXNq7amRxoTtWhojXGcmNnk4H1AN1BRqK7rvGYcDgdidfIaNnmH4AP6wyHfa2Jrgp2MiNnmU8RuT+8hRolB07R5DyhY0DZGcs1zk8d6s857d1GWKNhxjfQTwJqUJOo6egfvyMkSisYHoJjtQ+CFgkHUgIoCgtI47w4DyOlUBFepih/CDPJHBnQcl3ljIj2c1brODBXvHfzoUFbU8jhNvB9FZhFzkKkUYBQ5et7uuKXLEOOlrmtKNpXOCa08U9IatDC6QEwEvAQOVgtQW//N9Q0ZVrBOneU5Rc59BFocDj0x0QK5l2or7owGdkvtl1fXtwxqRVrjFRm8DOwEFWOC8aQDN4wjbFHg5OQYLnj0I0kQWEMs9cJaAlcUsG5bQvujywUAoxoEX2H0AYMPuN2RQPfV5TXvuQ5TP8C5CY8fPsJqtcLXf+u30HU99n/x5zjs9nj62af4sP4QZyfHuH//Pk7P72VGcc/MC1prc6YIJe5UbCOvlUZT1zg7PcWDe/cIeAkBIdE86ccBIdJz77oOzz77DJvVGifHx7i+vMbTzz6DY4MUkQrQ1sDaCk1VZrOO290O0zjBmoLiuTBRAWcBfAded5Yt4Eop6EgOXEZr+GnC1Pc5ITZKQyWSgJDiJ7FWEoqC9BiFTeelEB2JjepcQFkaFEWJplmhLGl/V0qjKimemGJCURVYFRpN06IoS3A9g7RbExUDSTDbwgdhoNIcJKabxcPHjykeGkkb1RbExlJa4/b2Fn3X48XLl2jqBg8ePMDRdosnDx7iaLuGtRrQJEgcIqBgsdqcwkWP/TjAAQg+QSly2FWRBSUCQAxdKpLDaCB6Aj0ZmRLGCJRiZhKbkPgEWxLrJ/AuY7i1yDsBuSUs5eIoBCCYQXVymzUwytD3p4TSkLmTjkBpLI6Oj9A0DS/hNB7KqoSuNc5OTwAkTH7ENE2oqgpVQX+MUgjO4/zsHKenp3hw/wED2iQjEgMZwvR9j8uLK9T1gNPTUxqrDHC64KmDASa73dqCBLSLosi3TfbZyNtoCC7vh5HjwZRSdpkWYJb2J7qnZcPsPu+AEKBCRFJAYQ3uP34EW5Z4/6tfxe52h816jdcXrzH4CS447Pd7rKoG1hi8ePkKMSl89NFHqOsG/9F/9B/jz/7Fv8Bf/du/woMHD3B+dp90mpTC5cvXePHZM/zbf/1vcf/RQ/z8Zz/H7/3dv4dvf/fvYHfYw8eAdduSxp8GF3rBMYjNWq+W5xtSpFZWS4Uzaxj4JGSchsMCAspggUCXYoTL40Zr6mIxifanpBadHwxiakF05KOJn8USbIoMECtF2kn85hxjK0DU+KQYsizeU/FYZQMBaS2ev1VD+ksEPAmcz89F6dlJTwAcyXdyAUbAGBHHfgPBSYlirQzK5F/wWWTZEMoZ5v9I+e+c3yrK++Q+CkifX18AHqkv+OEdwGlxV9487y/6zN02Q3nvF4CI/BmByaWwPt/fu2DlHVLDEnz6kgjUlwaeqqqEKix8ivBc5TXa0sKYEqYQcOgHDOOIsihQmAIqzeKsYmlNzlrUTqa0go4aMQQc9vsciL9+/Qr7/R5+GqCgc7DYtiucnBzj9Ow0tzQITbsqS1RlRUBOVaFtKnjviDW1XsOwqDNSgjOkJRSjxzAETNOAk+Mj1E1FG7OakwIJxkZuixmGkTZ6Y1A3LZrVClXdIHiHYRzmhFNJ+4HhqnELpTQL05I4Mj2zucqtjeGqNE0wAm6k+jgnHkoB0zjBV+WdASYBRP7+DJTgTluRjI+c3CTSVyBGi+XAQeWebYDRdGYBCPztYiCtKKT8Ryt6r1TSFQvqkjsdBa5C7xQGwFLoGqCqV1SclHIwA8+LGldnNfjeRru4fqrCUUWKKuuJgafIx5EWNO19BuyMlQRkZt9IQJbFZvklARdNyCVaLMCRRrbeZuAilzH4fUndvf8JRHFlHH+uNqc4JzHcIpSrEfJ5qU4uxsBSM0gWQwoGkK9Z7pn8PS8+BOZEBrAy+BgXQammCnUCZmBGza2j1MeP/H1z21rKoIIrS2hOyIl5ZnMLqmyc2eZZ7n0e0xD9a8gDcM5jGCf0w0AOX97BaE16TtZilPsIZOBj6cAQePy82VtOG3rKToDOucz+lE0yV7jVvJkqHitGEQNH2iGk3chai81mjcePHmGz2VAbIn/HbrfjdqwE5z36voecdlU38DGi6wdAK7SrTe65F02u7XqNo80a77z1NnbdLX758c8paKxr6EjzSsZLHs+coOTRrJnnwIGEtN3mQZLXEfpfdjvixEOqhBIBLMeXrB9yUQoKiQEEwywj8PpBgJtaGGvwM+S1KcSQxaiXtulKgA9uT6DxlOAZ0BQ2H61FdK1JGyQTWSx5ZgdZEFg2i/3ny89zclkpW9ycfP05kEs5XMn3klqZE38HBcridKc4YaX2EwJeBHCKrJNoWLvPGBGqJ52ZqqpQWNaAYRHLyPtw5DlKYs0FyqLENHpMw0StlUajbVvUdc2AD9mzl2XJLVYzCC8vYXIobmW2IoqvqAWqLJldyqLxYtdtjOX7Q+5lhluPpBBgWZdmudclw+1lmnR4HLfvahY/zu1mDGI3TY31qsV6s57nUlkyPZ/c01zh0bYtmqbh9htO5qFyK0OCxAbMYGFASkP2BMytyLweEytbE9NX0ToWFTtq8viTa5P9m5696O2J01y6O5YAKBXzXJZ7m+daovcn0Oc1j2nD43jpuDrPVd63JXhmTSRrDdjwFybdbYGw7G4FDvBpzooOIrHYNLeWEVudGDjJJ0QVWWOLGZzcrqXB8gPGkNMkz29xAJZWnnnSKS4UeATnuDVk3v+QZl09eubIc7ooDNarFRekAsZxRNcdUNoCKgHb7Rar1Rp1RSyHs7NzxJiw3x9wcnyKuqqphXacUHHCOTODCYTJLGRmq+WiV14HWQvOGKii5DZqjq0YDCyLAnVdo6oq1GUF5xx2OypKNHWNuqopBpY2q8X6muM5Bg0lVvBx0bvCq1ieZ/z/y7b8pCg5FJ2+wJqZ4OPKlixx6twSy3MCFDOA42pJXyR2BcdVIVKOQcktPz9mD0/OIyXAhgDR1ZS5k5gJS05uElcTGKeShk2LguoyuVQEUGkGsa21WK1WFAt5R/pjfI1QmsaxV1DaATLG8x2je5kk4xYqilZAzCpWVMRY3LM5ONF3Y20OdlLeT5ZxJ/2TGNqSU8z/W2SSOZ6i4Z/YyCJmRnvkGIjW8LuSHTJ36rpGaQoG7ROTB2gNbpqGxuRhD2MsCqMzoIWE7JatuVWd2LBi8iSABOeFaqlVGnPcpxQI1E4KKWrkCDpfJ7OVoRb79ZxYL5kbYMao9wlN02Cz2aBpW3gfsNpsMHqH07Mz3NxcY7e7JXmWosT+Zo++7/H69QVOT09xfnYPp6fnuHf/Pu4/eIjjkxOcnJ3BWovd9TXGccLNboeyrHB9c4PdngTrjdGwxdxeRwzDlFnV8vM7AyRS3HNHJgJpbqvEElD5PMghU31+j5p/mceOfGVazO15/5szmflYd9hUSmJMJeHP3dfiv+8CHTPwMudYyxhjPt/FKdE5JT6HhDtaTMscZ/6b5sUydsmxvty3JM9D8Ro6v0/xvIXkyYuLycdU8x2ej/rFqMwXM5nS536Xr0Hhc+e//D3v3BTvLbp+5AzUG++Xn8qqv+zm4DfmDyn53GI8yA26A0b9e15fGng6OTvGlCJu4oTeTyQyXJfQhcXejUCncX3YY3AOZyfnpIMREgWfdY3bG+qhPzk5wXZ7hLIsUNgCVmlcjyNevniOZ0+f4tWrVzj0HRzb5bZtiw8++AAn907x1a9+DffP7+H+vXt49eo1bm9vcdW0VF1OpP3SVjXOjo/wzpNHePbiGS5ev0TwpyiLEofDnh8WgQ5FRVWkvutxfLqFLQ2aagWtNOs9OTQ1uWwcDgf03YBxmHLVpG4alFWNruvhvUM/kO5SWVaZGWIt6e5st1uM44SLiwvUdY26rnNg7SLpIZiCgKfJTYjRU+shJ0lS8ReHnb7r0NRUSabF02d7YqnwKnabsQvMSQZNSJFavDT97MDVYxIMJNFYQUAjEqIGVps1fV7TYLtlUcaoAFhyTNKGWuN6P9ESocmyPbIoL2JEqeg9gQG89WpFiZ4CxMFNBE+z8GmaN6qUaIuttUUsNJSPSIHYB5KhjhOBEIrp31VFLlvOe6gF7d17j7IsUVUVof9asV4La/iEuwKbs3XnLEJO4KqemQ5WQVnAp4gQHKwpuPJEgUTgyR4UMmDnOejmX9L4CQHeT5npbS1tzpED5xgj2WdrWQLUnXsnQI/oqwgQKiKFmZWhTQ5yjNaorIWLkdyrhE0gC4YImQPUc++mfE+IA6YwBUp8RTjdMNiklELDiWzTNPDe43A48M9bYmBNLtNmNScePs3sJtl6klLc7x2RAnDoe9zs93h5cYFXFxc47HfQRuPRo0cwVYHrbk/P13BAxyLbMc1Br48BhnXYfBCtJ2K+yNySqt9qteK2InYMYZAOcl953pZsf7vb7bDf73Fzc4OiKHD//n289977+N3f/V3cXF9jt9vh8vISXdfhk08+IeaCTrmFyTsHPzkcBmKGdl0Pawus2g3KskTSCS4ETM5Da4O2XuEffv+P8f4H7+J/83/4X+Pm9hoPTx+Tc08goI2CEArUUmKBdU4YigXjbBonau3zBHQQM3I2FpicQ1ITojIIXhw6idWgOKh00d/ZBAVAzYmMUqyBp6A1WKg1oGkaWFtgnIiVMnrPYtcWwXuM45jnh2HAKBhyICI2lOb2VosCBiomVNqyjpNmpzDA6tm6OIQF2KwUtCINkZBkjkZmZrJGUUIGtCH3MDKor+YEWrO72yKeh7UGZVmwXbxjjR9yHhLgQiuNQtlsiPH8+fMMRpKOXs3tFwF9P+H6ekRd1zg/P0VRlLn1XacEN/QYuwL72x226w2OTk5Q2QJGa1y+eIq+73F+dIq6qfHg4UOIA5+81usNa7ywTfiiYIAERETU3LpRFgUnRBHWajQNsa48s1hjDGhbOnfRqPLOwXCCLcUfgDTWyrJESgn7/R4AcLTZ5Ljv0HUYxpHamBXgfITWCau2Qts2ODsj2+2joyPccCxydLRBUVhYGYug5NPYglqjmOWIlNjVkL7Le3KLk3Es810CuZI1cbxzGKcRQ99lZmTT1DBGw6hyXlQZHFju3wJMKEVOuwAn8VHPH+NkmVgfTg4FcXul1lrFWooRydAx1+tV/rwAxrPLqAT+httRLBfPLEwkQw5rNQFZDK6cnJ0ihsisZ/njGXQjJnTbUpzWrFrsDx0urq7gHQHtZVEg+PIOc5TmjEXTtqibBt1AjClTFLDWoG5qnqu095TFzMga+gOM0qgq2n8ct14G53PyGjhXLcoSVU2C/FRgdLi8vMTTp5/haHuEzXqN89NT3rc0Gm3x3e98D8Mw4Nvf/m1icXmP/W6Pw/6As3vnqOsabdMQ2zOxFhAEFIy5BU30vBJYv2ti91Y1t5lqBtmUAky7QvnkLdRlhXVD++Xz58/R1DWOmxr3zu/h+PgYu6GHR4J3EypbwFqNsq6hbQHXkWZZUtSJEL3jPdrAYB7DAIh5lhLrdZrcSqs1aV4ZY3BzdY0YA3SakxCKk+ZEzmhu9y0Lus79ASYByhjYSIXJfhwwDLP2m2fziJgitAsIDpgGmnO7fUe6qWWJpm3x5K23ME0TDvt9/jyBejoXiPphyPGexGlzXk2GHsenJ7DWkjlNWeL+/XMURmHY3xLIZUvYooG2FrasEY1Hwe3jwTv4kMD9/AAUtRznRFaSRg0kcXbU1L65XGGTIm2ssoQSvUAGVEIgmQpjJduXhJFMC7SSFjxk0Ens6SOondMaA6RAhhzjgFjPAFxgrUIfEkxDrZ7D0CN4h3EcUJQFjjZbEq2GQj/28MFlIK9dr6hVdHdA27ZomxZvvfUWiqLAL3/xN9jv9ri4uIAtCqyONjSOV6u8zityHMiyGwQER3jHbfBJmnN5D2XDBjn3LEkBUGumIsatCFuplGAAKMttkQrwboR3AQ8fPEJZ1lhvt0hK4fjsFM16hc3JMX724x9jd32LtlmhbVu8fknEiB//+Cf44P0P8JUPv4bf+vo34HzEyckJNpsNvvXt72C72WIYuizG/pOf/Qz/r//mX+DFy5f49ce/xodf/RBHx0csYUKsOJU0rFYwrBtGL4pFVWRIQSkoq2YwnYtKYMmBFO8WlxMDjRI8y3gTsIvmGf0ipxKJMr8MPAs+K2/ivwTjicBdwWnOMfJykhKWEAh9DS0aS2DwzvqT86sZjKI5JdezMDgAshSLwYzhSgEPmsYOkUmIYIE7xA4CkRahTH6JLrJANHRMuSFLftkXv/KzWP4HrwvLa3vze5eAFxhYk3b3N+/Psg1RzhnAnfsp/4xJIOolWPT557M8npLnjRmHFOyN4vg5p/gyry+v8WRISHoaB2LHgCawrgoUbQOsG3byoRal5AMcT4zE1Mu6qnB+fo6joyN8/OuP0dQ1Vm2LFy9e4NOPP8bNzQ36roObJqJIWotxmnB5eQVrS+z3exxvjwCl0bQtoDTO792DYqcH58mNYbff4fr2GkVR4Pz8nJLHRBuxoPMpUXBPCb1BfzjgSincqlsUlj4HRHLoEzo/u5EIK6MqS1ijcXt7k1HCsqC+58Q0+btBJA22vu/x6tWrvFg26xXKuszoKlg4rqpKAugKyywpw6B2ZFo+aQcA7I7HT50EJEUnRwNlsTg2AKWI3poSxNC1rWpa7FlboOBqARKxClSI7Eg3LxSCCGttAbb9FUezxK06iqs9Sok4OTlUGKUROSkX4WLRz0r8TLQmzQsAGdHP5r1SwTELdzTQouCch/dE6S7LEqUtshBq3/fZBYfQa4JLxNpbRZVZG4hCZ2a8evE8Z5YQreZ5v9PcruATEgM6BZCrGEik6SQ20ZEnrbArqGpNTKe0YHAI0JSYyiyV0Mh0fnL4obYEouabPO6gQGPyjUVdc2VUArXEz9YlsnjN7ogMDkCpmTXEzx9RGC8MIiRqGckVJwaNZi2SWQdHACgFcvYBKEFZ9rULuwAAChYZ59uBoBIxWgA8f/kST58+xf5AApCnR0c42W6x2awxRc9gMdm0ej27IQrd23MCYWLIrTpSFR7HCTc3N8RyrMiqvuCgMKWUW3iXOh5yfZIAFmWJuqnZ3pzs5w/dAdAgYwPnqMotrLtE64y1lPyt2hWausnBfZvb/Ay5wCiFuiqx3awzSyVxi5a0X1CwzQwtUJuvDwEIIQd0xNiTuXSX6efZZlsKIkqrfI/mzZsHrJqrzXSwlMexaCdpBgA9SB8uKRG+p4VHMRAten6QNjvWp1kynABFgZcChBU1C6TPx5PPTuNEwtEhIIYEFxxft8pBkzAz8+acyAXLGAJoNd9jJGSXSFMQdV3megIyoxPMWIpJXEEXjBMlYv68BgS6TjpGhAdpxYiOxTiOMwNRATEFjP1EoMg45uOFGOB9QFkQU2m/3xP7USs0bYvT0zPsbm6wv91RwSMl1G2Duq4ZtCbdHjFkWL6UmlkzBEYqGBiUFe1ZlvcrYQKR5kak1mMeQ8TipYRNaYWqrqhNBCkfXwBsYdBUVUlrhp01suq6grU6z9tVW1MQqinu2KxXUCrhcNih76l1bxorIBWAtTmGiMnDB5rzzjm2qtaoLbWyOS4oQYME680M0M4M2blokjWJGEALPnCMRHv3wAlxXhuVQqs1VKGyEH/f93PRpRC6P+07MleFocdoMjEGcqJGySnpNRHbhBjndO5GW1q/OREQxmKKipnKdBzR1SHL+ohut+NrTjlPsYVFWVgSFdeAtYGDVGaAW4O2qQGcLNbKmYEo8wUggwb5ztVqBSigqUnMfllcUaz7FwK3mAfPMQStF8HOLXuGjyeMnawdyYw2YzTaVYt79+6TFlBVkUMcA70xRozThEPX4/LympyqQkDfH3KxaL3eoHr0kGK4koT8Q4wwlUYqqRU9xwlAZqzK3jqvxctqP5+fpiKXMRrjSDpTdVNjuz1CXVfQRuPQHQgY1AqmXaFhxhhYCwdKI0RKmDQ7Kc8MQ4o/EogJnlICGOwXvZ/AwLhmjTBrLWLByb1Sud1Kc5EnSuGooFbI1WpN66uhbob1mgxLpPU/cREnM7i9z05r0zTh0A9ASjg+oTE0jCOmaUQ/9MRSNAZlVVJcGQIQCXQXZjUW91XiE600Vu0KSpGJgVUaVV3j6GiD++cnOEwxa9MpTa7QKSUUpoBOpOUZEhWQxaVHC+gRaS9QcZHkBnbOVKyvtlhUl8kkzR2Z7zOTjfYYndnzMgHnLYzbZvhZEHud2cSKwAhlLZIGgf7MXBMDixgjIoN3MKStS3GL59Y9LrTCULwcAvp+4LZxnYuKMmfatoU1lmNOKuRFdqMtioLcFnmYSyovrVQC3KUochMpm29InCiahUrlLTz/QyeKscnQADPLkO+kTK/CWnzlK1/Bixcv8PHHJMHy4P4D3F5eob/dw00O1+M1ttvjHKd6H3Bzu4OPEc1qhWcvXuKXH/0ah3HCarXG0B8ARXnI1e0Njs9OYcoCIzPDlNVo6oaLwMgArxRd8xlGcbBbFryRrzelxLnWEgiRyOdu6xsHYXcAE8oPZ4CUhyL9RudBdhcISpjvucSKrJuqJEhX9Flh6cyr2+K1eObL1+fAGI4BZV7kz3KslUEQLEEv/mIpqORWibs5I2lXLvTRgBzP5ngXfFA1AzoqzVpOd85fYuF0F/zJ9+s3ITRKYlz+uMTM+TvUnTs4dxKovJbRNclcuavJJBjEb/p6ee/cbZLufP/8xjnslixYfv5lXl8eeNIkSTccOvhpJMveooBpKtTHG6jtiqySAfhhgosRB++oXzJGNE2DulnhnbfeRtPU+OFf/wBFYfHkyRN88skn+MlPfpIDr5zIKI1hmPDpZ0/hQ8T9+/dxfHSMmBJW6w21mTDNVimDyXnc3N7g4vISz188x5MnT/Dk/BwXF8QkGEfSjyispbaW0UEDaMoCh9tbHG5uME0eTdPgnbcfQ6uI3e0NsZvqGjE4KJCIHhK19Flj8Nnz5yiKApvNBkVZYr1eY+h7eOfuTlR+OrvdDhcXF1lL590P3kNRFbyQKN54ie01DCPqYUTJ+leESBNIQknGBGsLFJb6l2NK6LkylCBtd+ucIMg9LqhtHRM0okqo2iIvTlpzEJiIkRN8zD3RSpBRCdS05WPGPNhTCgjR5bFDzgw2O0utm4oSMe6iCyHADRO6rqOJqRWM4cVYkyAphBGFeXJIG4RQH1Mi3aRxnDJK3zQtttvNXE0dR7hcYSGadlIkmJ8WCSEAihlExJgnlNzDOfCV90ekJJXviIQAVURoGDSoSbsGRGgaF21binUwYOj6fPRUPfZTTmBlwQvB56BOqqjEmBPXQk1ucQO12YhbjjEGVVVxBXr5XGhjy/OOAQ/RNBJxaPx/OPuvZduyJEsMG1MtteU5V0XcGyp1ZlezKksQTYAEAcKswRc+0PADwA/xP9hGI0gzvrDb2kBrGg0kWF2iS1fKUBlx1ZFbLDEVHtx9rnVuZBaC3Gk340acs/deYi6f7sOHjwGU8ZqlE5KMLya+FhJ+lq5/syBsKiMdiotIay0atmMHxN1n/vcpEMNoGHrknNE0BI5qgFzqrIHTChbArz7/FL/49a9xczhA5YwPnj7Be08e42K/w9u7G9yfelRVZi0MA5vp7zEnTMwWnKapCEtLoZtSxvl0xptXr7Hf7/HogrrftXO0jviaCijwrj6aZtp427U0Rgtwsjzg3J/x9vqKgQnSlaJxDBmdyzBWwboKT997Hy9evMDd7R2Gvsd6vZlH/pSiQti0aJsK6xVpRYVpwtj35HhYEaMAOcFGixQikELRQTCGzrtyMrq6FH3n7mMeOZHnda91MTZYjixIQqQVSNOPnyUJMCQQK+YE4qwHGulTFHNkZCemgIzEzCgwyJm4gOcvkrXGf1Km5D/DIilW71IGUBQ3Y04Yzj36c08AsA/oz+IoR0CH/HmQZHAsc2a+7iFHRJXIlt1odE1bgFW5ftYsGE+Z9LikuKIGArE1rTbsqpiRwty9TTnCp8iCyxGHwwGn04ldYA2UJiDjcLgvOmSkk6ZJgDx41DWxcG9vScPGWIvtbovnz1/gb69u8ObtVWFFrjcbcs+ylkfMBzhXwTkZsJ3vtYzSUVFnYJwp7B4ZhYqRkuYYpsJok5iaU2DWTYRSwGrVFdBGRtHqmq71OI5ISaFtWdhbocS0lWugVFOs0et1A2cJsBVW2eFwwPXVNYZhQIwRldUIvkLTtgSqKQLaUso4nc4YxwltW6GqLNquAhQw+ZH3KA1X0YhiiVfi2jeOZc2EEJHybMwRLOks0dj+gDdv3pQRlM1mQzlETfdVCu2+J1ZoXdfImfQ/ZnBecgu6N9Lk09DEAGIxeAVF2ibIDEAQuFO5GlVVY5w8vA+LOE77gfcRyhBLsm0aMjyJQIgBV9fXvD487W/GYbvd4OJiD1fXHEt48EhRgTr5CTVrYMrr9vausLoge11KmILnteSwXjOgzi1XEREWxpNRGoG6M8QWTBHGKiRYmOQw+oDDeShuxp3T0NYh+IkA3hSoGNOUx+2223Jt725uee0lXpsJN9c3+OzzL/hwM67evsbQnxEnj8vLSzx59Ai2adA1LUKMmPxEQsxal/F0L8CTnUGoJfC3BEdkPRlt2EBAo+/PuL6+xnd/+H08efwYXdvAaIXb21sG3ixqdgWmm5BhnIZKQAjc/OEcoXIOnteA5FjLZpVoYYYUKeZNIxTomSd5CJTfizFCc4zR7EyqlCq6beLUG0LAdrPF5eUlNps1vPe4v78v4JPc3+HcY/Ajrm5ucXd/X/TeNrsdufdxbn86n0rOYyvKN6eRPIWtTcU5MANzgydRMWeUwm6zRYykKWeaBu16hadPHuGTD5/j0y9f4XCiSQcYgzEGqAzUrkLSBlEZTFAQ42GlAGUoX0YmBiwyAT5JKaSJTQZ0LM07zDUxxf2UHgrnM+dAcs65UAY1utVsGgEpxhW4SZOJQaOJLZONhqocktKkocfalTlHhEhalYbNXYwhwDLGiHEa4YwDjKPYb6sCGI4TNT5I1sSTo3eg8eXtblfkBMZpwpurt8gp4ZCBi90O1XZHo4qKxwZzhp+oGWQ0NRwyXw9p0IKvjTRZDICcDU1XgKQpCjMGALKAG1TzSONK9mrrHP74j/8EP//5z/Hv/t3/Ex999BH+4A9+ijCMUCHhb/7mb3B9c42f/LN/ht1+j8rV8CHg9Zs3GMYJ7WaD//5P/z3+/u//AX/99/+Auq5xOh9Q1zVevHiB7W6H9148R9N1GPyE69sbjH7CBx98gMpaWG6yWGuheezTcOwWoXRrZ2kRyq+5GZ+BIldfgA0GGQXFWABuFBIU/wrHGv6M8lb+/WLKAnHaVuW6zRDXPKKlVPmCGQDKqizJAn5BvlP+CFi6MEIqW4IEGDpXLj3kPy1gK4UCv2Sg0LPK9zAslefYKg39Mvq+uE6Z6ywtdK7EH1l+/uCyPnzl+TOU5KlagKcZPJVryYcPuYFceQruWu4bxJjjAUi4aFLIfrFAhB4AVMtjVPO1exegkpH0sn1gcS/LIpvvk3rwwf/069uLi5PyGBBINE8rjapr0O63SM4g5ogwBcTJI1qLdrXCk2cf4nBzi7vrG9R1jbZt8eTJE9R1jT/7sz/DfrfDT37yEzy6vETXtvj888/x8uVL1oHRTEsF4jQhhwjHbgA0MsWMEVCH5ebuFjEnnKcRY/RkG05QOMRsY7XawBqLtm4xqQmj6jH0PQbulGitMQayP//Nl1/gdDrhs08/xWq1wuXlBW5vbnBzc42moVGb+/s7pBTRNE0JGAAL8fK4m3N2ASYZbLfbkmh6Fobd7y9YMJ2EW+u6hp8CJlARcTgc0DYNrKtBgtILweMQoZSBMbSJksNqlvUH5IxzP5T1XCzpGVwSJwsJIjkT0BSzWHBm1sPKtNFAPXgwQyAhR82LNbFrj9WzJaWIOco1JjYNIfQ5p5LsuKoqWOxcuLP+xsQFKDJ36OqiB0Nz6fw7mnUbrIUzDvWiMNBaoVt1s+YTrWwS406zs5RhFpU8oTJrHeM8bicgwUyXpwQjJRK6NJpctDQ0EElgMoKAscAMm+B9+Q5dO1qrKZZAKGGyIPMcGIquEkcuGRPSi3sTw8y8QQZ1yrUu4yo5pXLP1TtFjHTwHXLphC/X8BwTeM0YEn4Vd7HkHH0Oa0XRXD+BOeM0YWSdM80JA61NxckoC4iDihtJBOX7rLVomxqJdX9yJv2h47nH6dyjrhvUzuLJ40dYrToMzH5L3G1EImcWcduT6ylCsMmnB4y+STqtPFIIANfXNxiGAYE76x2LgtdVBcVAuOYxxuCpCzpNYwGmQvA4LZiUVU1OWevthuLBxQVCjGXc2FUWTdMipoSmbVBVpD9D15+6NSkwWBg88moNbRS++uor/PIXvyTxVSj4KL9Dxam1toBmIVABF9l23lUOjLqUDYlE3VHcyuqqJpZWHoj1rFJxyYwpwEdOHrmjDy3rDQQC5SQ5AQGYIJcnzZ1ZaUIkHoFUWsFUFopHYOlCC5tQl+6S4VE72TEJrIoUH1NCVrqMO9/d3ZVCR+5HXVWoXFVGiYgxm8joICRMYeTtVhUGn7V0fDEl1jackzPRjAOzXeR5FtHdZSagmT5utGGhdUeCqHGCPw/o+xEpK1hXo+t43BMKSmXUTcWjXBe0dqcJxlbQzmG1GanxzqO6CcDbm1vE9At8+fJrXN/e0Oi4c4BViCrj3PfIOcE4i812g816U9b6MAyUUDH7wjkqRJZsEsXJUZhGKvZY54lAcEpSSQSYgKcM0uGKkcHclNneWZd9VeJTSAmJGctQQAzMzoSGVhmnw4nuX6YxyxgiUkiobAXd8ghHSMjJwzoHrYmhMPmIcQwYJ8+aUYbZO5zACkAfI9IwYJr83BTSBikR43gcR9wfDoiR4vx6teLxwSPrRpLOFhmKdEgpw1WOR+eJtetcxeNNpsQNiiFnVFXFwKWwUilHc87O18STGyKHVxLSV7SnkB7cCed+gNEWOS8TUsUMVH5xch5igI7M7MpASAnD5PH27RWxhrTG8XzCMI7Y77foupYErg3ptEl3KKeEFAOk8GibBpVzOB1P8MFjGgdAKTYtqNC1LRW+KYDpwWWUyllbYpTSlt0/CRBv2g5QCqMPOPcDrm5uyjP54sVz7Ku6sEBpRDggJGJixETMJGs0EjyUyQASciSnxH7scX+8w2q1wma9Rn9ukVPE27dv0fc9Li4vsdlu8eTxE0QumsX1S1jdcizyIkkCSuBlr3B1xaw0ZihpjWnyuB0nHE9njH7Cdr3Fo/0lvA+AMszWJ42Ypm4ws3pIy0+0M5VS0AzcShNJDGFyygVsG0dqfAoQDwE+oMr7FLsFh8JSmQsZAWTjxOOgOSP7gLHv8fbVaxxu7ug8jcbUD6XhJeOqUBrNaoVnVYVHT58hBAIkVus1jCXdWe0ctvtdyXkn7zF5j+Hc0xrrWowDWd17/pnRBlobyq2tZROiOQeq6gZPnzzBdz/5GF+9fINpPKHTjwmAywnOVdh0K5wOJxyHeyiQplxmtacy9jZ3RSlWsyEQFfiaKmfoRQNSfkYQMgFPs8ZfiIHZirNeqFKK4jskRyQ2mnIWKhH7MSgClhS4CWM1kmFXShAwJcAd3ctYxrhETiBy3ZEzG/5oGuEz3Mx3zqFbdTifexwOh3L/hcEjDHZjNLS1qIXtFNmxFQkxMAAhDMAEGg2MEWDHVKl5YwoMPMn0hSruisR+FQ1XhWQAzmYhXW/Sm1K4v7+HVgoXux3ef/oM3/34Ewx9j3/7f//XRTf2Bz/+CTJQnoOvXr7CaRhQdx1Wmy2evPcMf/jHf4z3X7zAhl387o40efPkyROs12vsL/YEqqWIfhiLVp1zDpUlbUVAlRrDsdGJPHMziIGZNc7gSEFAFoAEbwUgeEGXcbii91UQgwwBO0R5TfMazGqexhCmFX9RgXvS/EXl2IAFuyfP0yNLnEZlQMUZaBfdNyX5G38PubnytETK0AtJ0qJ3JSZN/MMCvrxzNagMSAUMk2tDujOKR6JRZG00I2ha8smEGSjmL1hAenwLFrtpYpyLmWO0pnOp8R5cjyXopIRUwTFWvk09fNdSQ1eOR2q/4nKJh3vN8rrI5MI3r9R8/SVvJfAwf+M35PN/l4Phu69vDTwJ5pViJuoqFFxTo96uka2Gz4lmnX1EUhFVXeP9Fy+gAZzuD6XbsN/vUVUVDocj1qs1Pv74Y+x2O0KHTyd8/fXXBXSIgbsePrBDluHNQiMmosKnTGNBd8cDgQ9hwhg8ASd0NcoCbJsWzlKXMscEqwziFHG+P88aQGlEThFvXr/G4XDAq5dfk8tN5XA43ONwuMd7772H1aorWhPr9frBOIDMkcKQToFSKBpNq9Wq/G6IFFjXmzXW6zXapiFtjKoqFuLeB5zPZ+pYsI4QEliEkzrgWieYtCgQ87w4ck6lm5gzJde6ACMKTUPbmQAKFGTncQFKOGljsgIWLMb6goh5MviRI43FGOMgjBdnDXXDLdOUJ3KkEEFWKuAp8S7aBotOhkoJGD13PEg3q+KETCkSOUdKyCEwCYIo1V3dzHRxDmZN0xQBVmGnTIsRKQEXNFNRZTMDFBIHJbGiTjnDYJ6RT0hISZFTGINOShHwlHgkJ7JgOOkCBORIm6RVCsoaZo8w4w+5IPMAHox/CfCotYZjoEwrYSSAmElpFrqnUQkDyx3JiMX43wLlL0wl/hMxs6DmjWfxO1BFVHwZACVx8p6KJQsH6xzGYUAIAXVFbEFdNLNm9oKsYzlPYRAUUWMWDS3XPdEYRT9OqKoaq7bB5X6Prmkx+UAi8yD2WmIHGK2ZzcOfExNt9DIuJxpt/TjBT+SiJc/E/f09rq6uyPlNKTx79ox0PZq2gHZyTsRsI+2awJ34EAPr0VDCZitHWiY8IvfkyRNK2ILom8XyOa6qyI2If5YZbY4pkMNV4GfLaLx98wa/+c1vyFlJsXZRojEuMEhAz3zi92VEk0rySfdyvsaQjTwLCOgA5aECsy0y2acrTSBXjgRaK2MAQ+BIaZ/gYZySWJV51E9xdygzgGoYwDfWAjEtNESo4NaanrPlGp6/JyNlRboumeRqRSQ7xlgc/CTeWLaJLkweR5pGfgo8+jG7PlZ1DatYCJTHSgojs7DmmCnBWJmzCyAlPxQb12y6IcKudVUTwByAjIG1hTSsrdA0HYOHI5TKRatu1a2LpljVrEgzaRoxhUCMMpURM3B3f4/D4Yi319c4nI6o2oa0GbmLOk6ztstq1WG/36FpmsLqjDEiIbPOlJtZOOK0milWytpKmsbcVUMONcLelNgLjl70/HmElBAitRil4THHigg/kTOXs+yIFCUJVOj7AVppNK4mRmYSJ1ALa4nJcTr1iPCoQyBDqayLSUEIsWhYkUMUJ7pKNGwSYo6YMq8/1hfTmkCjfiCgI7H+izBGvCewzDCwKqYjxoi9Nj0XJORuC9juOX6EEDFN5ITlHHjUPvP4FY2o0/qbnTgBarpYVxNrlQvIvu8ZcNKs5TRr8S1jmMQZ2R8jH2fKGZ5HTZbjhQA3a6DgjIZStow1Uw5LjQARTa6Z9Xo+nVjTxUNbg8qQ1EDdVByDYkl1pdtvjSUwPXpY0bQk/3U0TYuUM07DEf044u5wKOOPjx4/BpSMywKez21k3SnS8qtQOctxnkZeEyLlmNOA0/mIbtWibms0TY0wTTgcDuj7Hq9fvUbwAfvtjvYe2dNz5pHgWcNLrnHiWJ5TxjCQQUan2OHVUR6ptYEficlKvxOw6jps1xsEH6Ftwm63A3hv1lgAIFAl/qaceCxel+aLjATrrJFVRuh9GXFbFi3CtlH8HCJz8bIYKV2ekzQ3YqbRVcf5dxgnjMw63V3sUTcNuQRznpFSgp88tKvgmhqr7ZbHfwmwn2TPygQSVnVL+6wP/LwEnI8nXv/UsJ38VNiGlasJMFfSz5+PW5oJ+/0eL56/B2cUwjQU0WcdMypnsVmtEUePc6ZCPSkFgCVHMj2bqmyk4AbtrNPGmx24sl0U2/R7SjEgxSAU5cuRpqKU/HdVzFbKcxkDtLJwpgLjTMSQzwmOC3URoZf1YYwu8V6eZctaSFLEFmY8g8AGpjTc6TMM2q4BlOL4IsYsHuLSmVOkZoW16NqW6gluMImBkqwzeaVIulQqKyjNUy4CSDAIQWx6+ZfM4+qABufAqgydUXMISsSicD6foTLwaHeJRxeX+OC99/Gzn/0M//5/+P/ivfef49l77+OjT76D9WaDly9fkkP51SuEnLG/uUG9WmN/cYEf/PiHeP7hBzCK5BpuDjcwxuDi4gJN02C9nvdmz4x+zWtNHPmozua8Bw8byrxCscRllsyjAlrM/1oaETLKDLV4TzFI4l/k/S2DJkQFlMogNjowu/IuHpgHYIjAH0rJ/+V5refFsfFx0rnwOS6c3x6YNyk57vnPrEeoyzkWqCTPEONDMIiOJ/J4tVrkFgJKoeS8C/CIn02pyxZZ6ztns8xn84OfADMWIaQOtQAM5/v4ENB591XOaXH/y3cta//FvVLv/LPcEjz8jHmdLUcIC5du8dl4+AEZD671/9TrWwNPpwjc+YiXfY9x8hjShG1TY31xgVOabXy1NVg/ukTTreDPA5y2uLjYASCRS9GgoeCuYKsa3/nu9/D7v//7uLq+xj/+7GfvdEwNjCNRzqap4BwFkfu7O9ze3ePq+pZYFH5EiB7D0GMcB5xPJ6zrFhYKKQRU1sA2LVnC+glARtc1uL+/xTD2qBoHVzd49vhpobmLgOs0kcaLCH+u1wQU3d7e8liDxna7xX6/L0nLyDRTzWhi3/foug4ffPQRFd7DiLppUNUVtts9qqqG0Q4aBjkpkAuIhuMCI8aMYZwKCyhESghub2/Rth2jkXMBv6TNyTEUzSAGeYyxSKyPQBNftBmIZkPgoixEsjA22jF4wRtT4JnylItLRdN0UAoI0Zekg4pmW3Samqp+4GJnnZsBAO58+BAQYiA7cGvQ1VQkhmlCqzTWrM2EDFRZIymFpu0wmQmxH3G4u8Pn15/hybPHuHh0gTDRJm6lYwKULmRiUTrHwIwEISXoOINMRHsGNDSslqI8FjaNtRbGGU7IEpL3gAcCxvJIppzYhttjGn1h37RxRTpAXQtoYIrsaDYORUdGtCFoIyI3DGMturaj+87gj9a6jBtIQeCcKzR96bCIS5xsNALOUEcmFRYCkMsYhnTaK+dYqHsutCV4SYeT3krfTS4gb6iLbwwyCzTXdQ0ABehZanfIuNPFxQW01ixoyu5nUHBQGO7v0R+PJJ5Z1YijR7vd4o9++gd49OQpdWp9Bes9rt9eYRonPHnyBFVdFYadiFT3Q1/YcANr6LiqQr1yuNxtEULEp5/+mrUMRuz3e2LOMBg0DH0B5CKPU07ek44Ba058+umnSClhvdmga1o8fvoEKqOM+i0BNxHyNoYp8lrB+xFTyjJzSswBRYWs0UShN4bskw9397h5cwWtDKxRiJ4AOKcdIjJCymhcjUobjBONaY7jVJwGJQkFyO7YWgeVVWG7ACid84yMkAIMSNdKuqHKKGpSWgIrEub1olkDS8XAxYstRUCIkYVvLYxzyBCmCW2BVpiMOcNqA6s0subRT94lrWaR3hBIVJ1jjFIKwzSSVTlr67Sbdt7sVGZ2BSU11tIYtLUktB9SkhyNnnlrODHK84gyd/+RZ7dNEdmfxgnCIiSWFQEywigFgKqhkbNxnJCDh4+AdS12e4O6boqVeE4JaqQC1lXE7BknD1vX2Fc19hePYKzD3eGe2KkhYBxG7kZTo6Fdr7Dd73Cx38Nag8kT4LTuVuwQ26JpW2Y30ZpYr9c8ejFxfJjdHjM3EqaRRjMVCFDTmvaW4TyWxGUJZlMcSmXM/NQPGMd5BFJixfl4YqAbpWijPYxiZkbCerUuDE/Z/2ZQmUClw4HGem5uryh51RW0dsQS433gzeu30Frh8nJHbGPFrn2GmWZ8HikFErO3BpeXl1hvNlhtNuj7M06nI4nYA9judrObnoAn2sLZCuM0YfKzaLllEFczM0NrhaGfcD4PpMviPcT1NCUxyWA9R2RUTUXNnEii+CElGvObJgJSY+LP1TDMSJYuL+lBqVIMxhwwjcSAcBVpCT1+/BT7i8d4+vQZJKdP3FTpVh1c7Wh0fIrwMTAwxy55xjIQPjcW1usN2nYF6yguK62QY8RwPpf9oa7qxQhnxNAPtM8JeAxVXLE6T82mnBKmYcD1m7cY+h790OPpo0dYNQ26roFSgJ9YjysmNHWLy4tHuLp6g5dXr3E+nxg8pe88n0kIe7Pt0LYVXKXx7P1nePL0KQ6HA4ZhxN/8/d9hvVrh1J/RrVbYbDYMYs6OcGIbn5nJdj6fmaltGXgjEwVjeFwdJHRwd3+Lt69e4Xg+Qxky1Fm3XQH3JO4ogIEYX9ib1Oyg/SAzCGgUje5RbmDKc6sVj9J1LRQUjocDXF0xG5ZexhEoOA4jsfsijcwSU4biWdd1QCaWk6xt2vsrfiY1coyYhgH39/f03dZA9OVcVaNqG0zjwAz3uTFHxhEOIXvkEDEMY2EXxxBxPp2ogdT3NObL+k+Xl5flGRdR/3GcSkxyrsLpPGK9XuOjjz9E09Y0Tj+OyNCoTIXGVVh3LdqqwpPLR/ji6y9wc3dLBjsgNllGIuFmzIY1mVASkLc95+jQEKaUNgaurpBE04kZiSFEZChoawEBrxLBodLoW7Yx5DpLxR7Y+IOKRHIEt0bDGtItnJuJAKccSCkga2o2K03yKqUxqqiRqgXwraj5QHtkxBQ86rqCtobGe61B0xAo1cY1NKhJK9l2CBJvKOeUPSHECK0Ms50MUNRmeZ1pBe3oPLNiDTxFObIU4jMbJGPWIaI6KoZAOUNKeHt1hb4f8IMf/Ain0xlV9RfIINbksxcf4P0Xz+EBPAbwv/+v/iuklHBze4uYgS+++hrrzQaPnzxF4Hp4z/tGxVpv3nt0TYt122G326LrVri8fIymbpCCX8R+hawznHWl5iPQj2ox0W4NSYYPyyUpeb2AMeAr9gC6WlrzgmsbReCnYlapKm/iO8R79QPgKTNwwks5y7+ruWdOu/pijEvuRM7zmJxSReaCxsNzeRYBwCyBJ9HEi8zNWjTnCcopiExh2ecsXpKKJWlSEQ2nxpEqR5Yy5XfEJhNwjBuLzEoV8ImY+fKtSvAx+iS+xrkAyjJ2rgoQLc+wAKNyvcD4SMH+5ttbXg/ByPlal5+90yx48N6Hb/qdn8cldnkmy5sf4lf0n/PDf/+nXt+e8eQqZOcRnEMAKZi71Qqr7Q6975HiwCingnEVoBWmYYRSQNt189gAiOFinS2Aw3qzwUcffojLy0s0bbtAPHnsQKFsnAC4uCWR1cORNvph6nnzPsL7iTax2xtU1sIxU6qpG4hAt9EKmQXzZHTEWI3VmsYXBK0XkUOxQ6dLQZ3lpZAeOWDNG7/nUSqhlp5Op6ILQb8HtCtybKHCRhdKZwiRGRZU1FEHAuXf5aZL0maMfeCGI12nGcEURsKi6IsZUIlGFAw/2BlIWiiK+UHAztJSUQRkydjZDIuqcqxQRIGVIlqOiZqcisZY+D0AWG9CUHLaFFImxk4G0SedMRQ8tYZTmpyIFl+vwQW6sSyEH3B/f4/Nbk3gjnTj7SzQJx062ZOUUsUNoDxdy2AALJxxxU1joW8DGkekyjOXLvtMH1WLkQkCJSILkjpfU/GJuRuqwQxDFkDNRWxQcWzXsMowmEaBqTgsAYhJl7WQuFiO/IyWP0BhY3GELuLrPoTy38TdySyeQ8VJSl4g7svgVTYNGbnrBxAzSxVKfsXd7iXDLj9YeyhsRKLCAwADI9A4DCOOhwPdB94cK2vx5PETrFmnQ2sDbQ1R7/ue1gOPpGRJTFIq6yHGWMSb65q6oquuw+l0wv09aYuQ+H9d3H0UZm0rDWE6+VIwuaoCcqbOmlK4uNijqhyauoaffIkVEj8yrx+tNZKz0JZYdDGSBpgIlhKbgkfQIHutYoBjxNj3vF40abUpLMrlXIDYzDphIwiQFZtsYxZrUinqkpaOEDN21CxkKl0mbWjTF0oyPa50zO/2iERBcclqyYnim7G0uROTSLYG1qjhrpHmsbTEm2POYnQwr8PyP/67gHuSxNnKUvxLCTIGqIoiJnXHtFbIWnEBrWatKtHX+S3rP6dUOq9y4hIPCgtEEi+hkkPBWWJ/+hChWPjSuQpaWxaWr1irKMClCkorNE1N3fzRw1pXtAk1j4GpRcyamHmDTOLbq9UK3aqDUgrjROK91lm4ihzmzKKr/YD5yM9QYlCD1gIVWd57pCjjl6o4AMoIh4BGD/PYBCUugIrd05YdUS7+Vc4wmsGfrEA0/AydaL+ztSlxvtyLB6AuufJRM2MEsgZUgHMN6sZAOwLw+5EYhMPQkPW1m4V1S4KvJNYR0FFVjvIVQzlFVhkq0fquOXdYxlCrLWpXU2Ei9vQAJPNXCqDQX8FPRM8nnT9yTRXgyZhZqB6g50IZjQiFpIg9FhM5jiUejVPakJaIoX9mzjIfsp149EAcuDQ5AbqqRqVIcwuK9sRh6NGfT3CVLbIA0tjQmkey6DEt9yR4yp+apoM2QB0aYrAlioPkfscAmJ1HpH0IOPd9kR6gGon1XrSGmXwZRVEZQCIw9Hg44Hw6YRgGNI3IFzCjOVORXVckd3B/T2L0kYXOY0xFX6rrWjRtjapyMLWDAq9zc8Lp0xNijLi9v0MGSJ/QzCYe4vaaQWB64EYFOS7xGBVozIJyAC5aoDEOI+7v7wmkVBQrSMtJWEgclxONOpNGGxlRkNGMsB/mQlwGMsr95mbcUjg/BMrbtZrBHyW5W5ZP46Ke9xcgs3QGM05L05nyPgvMmniJtPsCP98Sq3SMlCcxw1gcRLVSyMaU0bCUIxLnzinO2oPSDDPGFKOXmV0CbrbwaJnSzDAMGIYJVV3j4hG5fFpL+68OEc5p9rogrVe32uDN9ZtFQ1WVPJ+ayBTmc1EDf1gYLqs5KcDpKmqIRlG5tnoe1ZMciYplYi+Wj+NboHjPUmoJlaPkYks9PoBSXtrvUQpkTpChDRvpLPIz2feEwVdyQdkfjUZxz+RYY5ylZzKmckQmLc8TJV9WOdMIj8Is/SBnoMF7iS5FstQovDBLI/3BS6p5Xu+UNwDnfkCIERcXl7i4oHHZpm1hHLHSV+s1uvUKlavwwx/9mMwhfv0r3B4OON7dY73ZoGkb9JF0purKzbVGIMmFru3QNQ26boXVij7LWYspzsxrIEOruZEs1zYRQjTnXAtAp7wYmJFTVJLzZVlyas73yyuXaZGHphSymHLZ72X0rGA+ef7I+dPkV34LO0iAF76TItVZlntSi2PLfEp6/m9cls3C28uTeVivlXqZ1ywW1yKXc1sgKZC2zSIvWdS4eDeHXazHjFyuWKmhF+/P0kheAkJlGdJ7Z+ZSfqgnJWkiHr5+K1g0X6byO5I7Ic959vI4oR5+ltzW5UXIy8+V+//O2vvdR/Pw9a2Bp+//J/8xjuMA++Z78OMEfx7x+z/9Kb7/ox/h//2Xf4a731BnMsSI29tr5FuF+Juv8P77z/Dig+f4F//iX+Djjz7Gr379KW5ubvCjn/wE+4sL3N3fY7vbIQJ4/uGH+MM/+kP83d/8DW5ublB3awDANI04D2fcHe5xPJ3QD2dYSx3Z++oAnRW2XYtxGvHWj3j59g0+/eXP8dnP/xHWOjx9+gy73Q4//ekfYrff48mzR/CTx93hHt1+hd20ozGDisCwuqrw+PFjdB11ncXq/Hg6YZhGNE2N9XZDNH/nkDJZPH/22WflJu+2W1TbLb744vNioy7BOZkMaEVifCkCWcMZh9PxXDZboTgPw1i6kkqRtgUUWCzYIPqAaRxx1sdSnImIZcWCwqvVio9LkhdVRGw1NCwM1i2NoPmF7pBTFs6y6DFQRsamhNI5h1Ko6go1z8lnjgZV1SADqHIGdXsyFyCUvKVI+kgyZuCDxzhR0E8xUvKlNM6nHsZotFWF2jjouiqU0ZDI8pqqU06kDNB1LULYwo8TmrpG9AGw9Hk+kc6CM45YKZ60Jt51NOCIBgm4GgpZgx1CUuk4ZMxsL2X4jyJ9nzhRFy5mCurWOdo5UuR5fkoUkkYZsVSZEqO2blHbCjWPXZImkQLZ6i60YRIwnkcSum1rSgx5c08poarcAoCc7aeVUsWhaRqp09J1HZ96RvSB2AaluKRFMQ0jogkwXGynSFoC1B21Zd0J200D5P6oNTkEMcCixGGFtStI24SKCtFLu7m5wTRNePz4MQMgvIdkoFJArTV+/uolfvXrX+PVq1c43B+wXW2x315gtVnBWIPz+QytCdx+fHmJqemwWa8JNFqtAJBoe1ivEbwnGvXhgFcvXyGlhIvdHhUfz8XFBS4vL2fW4TssLelkSGFBbCHaYA+HI8ZxwNPHj1A3DT7+5GPknDH25MJHGlm6bOw5Zyhm2oXg4QONmYpIt588W4R76opX2wfAnQaQpogwBoQc4UOCn3dAwBnAWirQlEHVEDVc26qAjkZpLrLpOR3jwPbnBKIldrLUWQtjHVAJWSV+thVCmJCygVakVSDxMud5NNMwwJBjBpSGsw5QAYhkIR2YnQEQq81ocuIixkSA0wpKG8RI+nwSZwF23qkMEGg9Dv2AqAzqtsZqs8I4jfSoGwJ6nbJcrAA1s9Sg2LkLkRIjZ4khYi0UJ2wxBiABriJw1FgFJA1oC+V02cipIzg7TmYGdb2nu+PqGsY61FBQxmG13aFNCV1HOnuRQSzS4KDidre7gFIC9gOrFVBXDZyrMPUeMQ54evkIVmn8HQwlbSnh4uISjy4fYdV21JENASlHbNYdjLFo25buNV/rcfTEmssZb9++JoFu1n7pug4xTMCU4cNEBdqi2KFaycyJbBaAnQ1JPDlqpRw53lEi1LCgtdYG00QgS1O3UIqcdiUJIsdKYL1u5wZMCGXfdc7CWAVjHVaug9YG+8stFdSTR4wZ05QBGChlUdU1XGWx3awAlVHXtjAmtDGwFbnoGSPVUOZ4kIlRlCLG4GEsa+5wAaeNpZFeMSKImRmkFU7nHudzj7qe9SJJc0eSO3LaMsah70+0dgFYq7Fa76G1xjD2JWczmhpuSUZOTAVnFKxjB1tjSwknlVnXdpzXkB5Lfz7z72gQe4O0vw7HUxnBHiZifTdVja5tsNttUTHwNA3EKNbGIGXADwNJBPhY9loxA/E+whiLqiIh/P7swVgO2pbGSrOiTvfxeKDn2XsqiBUxLqx1xbRk9AFGa3R1jWdPn+LR5R5//Vd/hb/4i1c43t/j7uYWu90O1lao2o7ygd5jHCNev7rGp7/+Ep9+9ms8f/4eNpsdLi8vkXLC1dVbiCPrfr/HxcUFvv7qNe7viRG0tRZ/9Md/BGMtNpsNtpsNLh89IjfKaULk3KLuaB2fz2cYY2jsEpKG0B7w8uVL3od2cNairSqc+xNev32DU39GQibtmN0OTdtQMTaOZb35aWIn34icHMUizTFWwKKYMEykrZRTgrMVgxK67PvWOrR1QznE5DEOI0KMNDqrVRHdlnxD9sWUErTVDBIpRACTmL8YYqk71p1EzmjWK8QYcep70pGtK0SOj7LvEuCeoBTgjMKqajimZdSrGljNDZUx0rM4u0cGQBFrV/JkkZfwnhpHMSYEf8D5NGGz3eGfP7vE7//0DzCFhM++vEXvT6ibDsfDAa9fvcYHLz7EJx9/gt12i+AnXN+eMPkAbYnxFNmUh8YeIxKzGksBzkV0BgCtyPDEe85rgRxptFYv2PrlxSCF4VFfSHxVCsgavh9hnYPl/FkBcIokMWI/wVQdnj59itVqhWmaWOssQst4bBJgKzOQpIHI4uzMDjfJQNhVxNId0TQNPvzwwwLyf/XVVxjHEe+99z7qpkbTtnzquVi1QzGIJPiEpmkMY22RFpmGAd5P1PCzxAwUQEAgB8VFtAbnZTK6FzmYaBp7j4lGFo3SiCojIWL0Ez1TFzv88z/8KS6ePsHhRPqhp2HELz/7DPtHj9A0Nb56Rc+mrSrkDPR9X5qNV1fXOB2PePPmJQYGu9frNR4/eYyPP/4E+82Wnp0MDOczkjQtFbl806JgTbDM7B6VWTsJCHkG2sF5hTwfRvZFfna1XJuMcq3kpRngNBxvMgP8OWXyY1Gq6G0KFGUW75cmZBSA5594SQ3yQJIjzRIECrLfLd6UH7Kscl4AlVamSyiOxYwZDFmAVFkppBzmmgmKDI6W6BEY1ctg6RG5bqIPyqPeSphQDNTpGcx9CCI9PIfMwKZoLhV2lIBoAgBx8zanTMeRVfmZlsYCPyKzTvF8bYumU15+9/JY8Dvvk+SjD8AktfzLHKu+LcD0u17fGni6ePYMtZ9w7iqcbu9x+/UbaE0uF7QwmNKZqaNJQIAgeApt22Gz3WAYBhyORzjuONxcX2O/22GaJuz3O3zyne/g1dcv6QHmrjdYXAv8EBhDI0POGnJOyYmDXqLiHcAwDDBMMT4dVzDGoB96tFPL3RHabIy1aLuOijdnCnIrBZxh/Qhyy6HgYJ1ooNBNHcYB/dDj+uoaTdOgbVusVysoplcm1lyBUmUMKbFuUkwRg+rh1cTjPcy8SBHeR3ZvEt2fVBY5IA89IN0wOS8ZmbNsoS4PtGHBY600wG5W/EllbeXyoOuZasmgTlnL0lHT8nu6BAyh4YLFy6WTlVIsoomZXTxCoC4o+Hon3lxiTAtUnU4y2VS0iCKo/vaZQSDMgnvUDdConMOaOxPEJiNtE4DGYZLK/H0RlN2KI8g3134pnqCI+sxaT3LcANN7eYMgtgdfF5OheMRRur+SGAgbRynaXJfC3Vqp4v4mmlQxpiLgmTJ3Hvg7U3roLibFV2bwTNYJQGtEAD7RioKihIdQ91TAAeRcxLZLB0pJx5NtwCmiImkZQVKlSyPvs9aiqWuMClBeAcaUTVQSDg1NehYsRpsSFWiy3mTNE2OEOo7DMOL+cMQ49IjBY73eYb2h+56hyMmyrmBtRYW0NgWQtYbcOmQzMcxiqqua9GmEzZZm5t68uRt+hvHgnHnnK+wporBTWqSVwqrrUDU1rCExzhhEE2Ox8KSzpKjYE6AhpVS0xwxT2sFsFjpMiWukIxVzYnFmSl78xK5WnNTkFFlsGjCGnnGjZ86fnCtddwK+Eth2lp8Dub/SjuGpdQh9WjqzkhgKOL44WT6i+X/CApdkRzBgih2RLaXpXXQYROaWdaQyfz/vGTAKcUpIPqBr19jWK7R1h8rVJVlWUCXRjUzhVprmDRLH8ISMrFRZn6JrUkaY+T4tqkcUdmLp8s2MSykul0wcxUKime3oRUC0cq7E+2n08CmwQQTtg3SPAqwxUOxoaY3GlOk5b+oaXdNQsgsCr43WaJuanjlFYxNIGVZMPEoMl2SeRi9iTMU9brnuU4yIiQDrEAmgNNogsWhn1KE8O0vWpYD71A2ciyujNayVZ85AKyoaK2ZtKCXPGsc/lWhsJwuza2b+ini+UrR/ZSVMIg3X0ii7MZHLQ7IPNwyeKhCQqBRYy1CXBLfE1SwszTSvTY7j1pgyLi06PsKUJR2JhAnCeBRRUFVqhCU7ip59Q6w0gJ3qgDZJjOZnKWcAGkplfl5mJzvRSpI1mQDKsfifdDqKk/7FcypJMObEWfYxyvtCaTBpRY0eoy0yaByHGFqkS0nMLvqMECmxp5F+Bcfnahi4l3Ahz0t51vivIjJuLWnmSWZO8gH0XDtjUNcO290OF5eXqJuGfoHvFundWSgHNnYgR7227bBarbFebdC1K+ScMa2nAjxVrkJiFtTxeCprm3LECk1To6qrkotJcp94rK+MU5SYT0wTzzqDh/tbAvstMfabyhHT69wj8bNa1TUqdq2lqa5Z06kwTIwhtkqMUCmVMp1qCWYGJXGfZY1SaaiBriONrNKbUmax55xZwN/xaJZ6cK8KMxZzASVPh4ysWkv6ZsgZBgomJRIMZ+DJszC91kvAnrcXKAK5QUWaZnaPMTy2bVXRwiTn2anoysnxGTOzlGQ9kKFDBLSCqyq8ePEc19c3ePnmb9EPHpllDMaJ3NvuDwcET+OkUozLc0MsEnCerjjHAn+ffOdiv8xiUCTjZvP6p/1Slc+dmWb8SUrOABBR4pxIQ0liLA2qZSAFOKvx6PFjrLoVgU6Say2Of84fAcUq0ppzZiqSE+cipjDHC0uHP8Xw3prZVEHMXQrwxrFEL59xCWh8GEqL/iPKiN2ciwjrRC3eqkDUOm7YqcVX8r2XOCj6fNoaqEQNt81uhxdK4/b+Hrf3R5yGHn4kR/MwTvgqfgVhqN/f39O4aYiFWdmfTrh+e4WRRz/ruqZRWiv7qy65dEzEDBY5Eon1qqyJGTQBUBhgkgnJ+c576nz3ynOeM7ODfwdwUHL+h++Vf2q8wwLKKLrks1TUXCsgz7dv+aUPWDpqXtH0r+rBfVKs+QnJExbLUvOCV4u6LtN2ulgDnLfMUWexpzK7E8L+XF4LlNG3koeWOlNylvlSlIw0cwZc9kngwUWTh7U8o7msx3fviTD9yloVDES+bQ4Mi+vK36HmOlPAu28w4zhVTfwcLC9BOd/l8wQUllle/NbyfH7HyvrG61sDT9/5ye8hIuNjRPzsP/w1/l9/+wv88h9+jlev36JPAY1roLVFZrvPpq6w21OX5vb2Dq9evUZdN/irv/4bvHnzBquuQ5gm/Pv/4f+D8XzCi2dP8aPvfR8//N73sWpa/OxnP8Of/umfYhh6BlLIUne32+Lyco/oJyB57Hcd/GQRQoI1QEwXuHr7GgBQdx3atkOCQt+P+PrlG/SDh6sasmHtezhr8fTpU7btzojI6KcBL9+8xjSQ5fnd3S1evX5JuherjqiSbUPijtOIm5trXL19i1/+8pf46KOP8PHHH8NWFpe4gE8R2jm89/w5mqbB69evKSEr3WDgGO8QQ8Sbq9fIOaNdrYq1vDCdptEBOcJx4hvGCJU0ckVC3nXdQvsJKUXstxvSw+CgNg496eWwa1FVOegR8CFg8hN8UugDFbTZUBFqeGRNG03jVDmTJlGKGMMIqy2a9bqAFD4GTJE2dSoOKlijUVcVjQ16hSmQTavMEAdx15I5dChkT2ybrLnQt1TkBQ4WStOMu7EWngWfG+NgoEjPK2eEmNE0K6xXW0rgYiqAn4BUGtR1ncYAAdXquib9KnmEcimhyS4dpBOTTcYwUscvMj27airkAJxPAwnt1hWxj6oKypNYrWiGlVEAbVBbYoK0dcv2xbNIq9YGDWu9ANQZ9j5g9GekGMvIhgIlqnns4XKCTal085SWQDsXY95P6FmPSCmFaAhWm7j4yJEs56n7F0uBCczdChIBT0ghMECigBARjYGtHZTWqJoGKZB2g9Ks0VQ5xJgWmwsHaEPjLdbqoo9UnP9igooZiCQkeooe0ApNsrg79nh1c4fz8YAcA77zg3+OTz74ALvVGvfnE97evsXF/hLbusbTx49hFI2p8HQOb47E1mqqGu89ew/77R53t3c4nU6Ik8cA0hySlxTkwvCq3azZgUzCm8fjEff396gbSjZqZ1FXDqtuhQzSqYmBxH9dRfbpcQH4Uce5YkCFtJ8QE+q6RmUt1MpygkJd1HEaEFLClDPO4wBjDjjFCYNKqEwFlTwOh2tiKWkWws/UkQVIv8hYi2a7RWUdtusNFYo5YvL03AZ4BEXJdXlekwKiIgaf1sia9NZSytAKaDiGicOhHz1ENNWyy9aUPAOA5GIWfWZ2CY/UAnDOQoTmET2sAMUVdbOm7GEqDZUNVODNOSWinVuN0zjifHPEf/kn/zn+2Sc/xEfPPsC22+DW3LE+jILRlBBCJ6ickHhdR3YDHHOE1Qb1QrB/CqSJVVU1lNJkP69k7IDHa/Msvk8NABZLDiSYmngdeO8RJursW9aCIVMNi7auy3W89T18OONi25TnUbR4msqhrjfF1cmoCGUitps9VCIAKivqzqYQUBuNcezRcxGpodC1LcX+nKARYEBrvG4Mhn5AmCYcjweklFkcO8PojHHocTwf0B96+Mljvd2UsXSlaYSvaWp0bgVrZRyCMrHaEeCjWWQ7eAJtKy7Scs6orIKyBm1TI+eEcWTR/hjQ9z2mODLLImMcJjjj8PjxE8QQcTr2/F2pgDopJVhn8f57L8j0gkdRsxbLe0DrqgA0UvClBKQhwCMCKha3VgpkbImdWTMpZ8TRl3RsGGi9uKqhZ6CiwrkfBygFNF2F1bolcE0zYMSiwtRdN6TDNfYYe4Wbaxq58iGhrhtst2QxP4UJdW0prjLbt7a07k6noTQOSB8pESCpNEZORmU8ikSZaV+VNVq3DdpuVYAbgDTqTscjVNKIE1AZcgN0LbNkYsQ0eQzDmXQjuYO8HJGLtCFg9BOstdhud0UzM/AzIkww0cmKIaCpKqy6FQETegZ1DQOyPoai0fjhd7+Hx8+fwxg6t6gSfPRwtSXIsakRY8A0efzkxz/Ed7/zCVacjwlYuNtelPO+vrrC15//Gj/71a9xdXODp08eMXs3Yrvd4sMPn7M2WYZzBlBkouNDwAF0jK5yUDkhBw/lSG/pdLrH8XjEp7/6RwzDgPvb93F5+QjbzY/RDyNeX99AZY2L9R6biz2a/Yb2K2bJaq2hrMF6vcZqtSLGITIOhzvEGGCsFCYsim90AT9CGqBUZkdmDaMsNZmSiNhrmAmIEUiIpE5kZsOEIg7NIz8Tu9np4khooDUVPEas47mQitxE3ncXpVFhrUPDBg85i7nLnJ9cXV3DVQ6rtoNOlPMEcTvjIp+mF2hccBxHYqdwjrHZbIh1PxH4O0wTtLWwVY0pBNzfHfG/+c/+c/z09/8AX37xf8CXv3kFP52RYNB2K7y5usZXX79CUzkCmRXrMIHWtjUGOXhm4xpY19DoqE8wifSyolOANlAwQAJijjCmhlUGISv+pBmoevcl49vG0TWO0UMpA6MdcvTwI41OZ0MNZZMCTDzjcvMM//H/8n+BDz78AOP5hDgNdKyWRddFPycQQBlBIK01lscsE7GIQaOdUNLkmmg001BD9enjJ6VpipCQRr8o4ikyy8hfMePgPQmS9ytiIVtryu9aHg8Wjbd5hBQwrM2YgAKOzaSDzPgss6INFeaGR9yjT2i6Fba7S+yHHqehxxe//hTXb6/wt//+P+B0PNJIpyKcu13RGN7zp8+g9gnD3RGHqxt8/flnMMbgw08+xgcvnuP3fvJjbPcXWK/XhS2cwE0fRY2ubIgJbIyFkA6UImdC7q+VZytLk03RsyzA5RIaWK6YnESgnUFBBoWTUvMYrJrNTQABbVjKhL9UAMayKiMDLtIAKfmPLschiujCXopI0Bpw5QgX4AUDTrqwv7iBUnQduSUhOSzn48gZedHUMZryyuRpVTjD14iB6JAjBCErrnU5FRBJa9IrpXHuXEbfZGR6KYRPYHwqDQ9bxmULskp/DdSwzoocKlPOrK1GDRLINWVAT1xWrVULRpgqN1dJbawYi1K8iWMBnJUm0twQKEcngONvexXQb/7XuZmAGVTHfFjf5vWtgadf/sM/IqSAu+GML37xK9y8fgPbVKhWLQ59j8P5REwVTR1JrTUGnoUPMeH169cwxpRg5JxFjBFff/0ST588wZs3b3D56BHW6/U8G80sjsSJBAExpswLB9aU0Nqibog1EhIlYMpYZlntsN/u0TYtaTxptn5XBl3bYQoePvhSgGpFSdY0jjj3Pe5u73A8njCNI3b7PTabTbEaFpTeWou6abDb7dB1HYkdeo9+GAqy3TQNz6ITSycyg4H0dDKzj2hhxxSASHPwVjlYzT2KnBi4z1BRIRmqnOdrzuJ8EJtqSgJ8mFhQLcN7i3GyRZQ0MmNtCS7kkBB8oCCPuRtFhYIhEVVt4IxBzFTg6ZyBrMo+9W4nvwjKgzeBRCNONIYhxQV1mgCUTr+MY0mnDBkU8OXz9GzvIA+P4c7LNHF3K89JrgTWCbP+jmxsGbPTGXUbNAc3QaSJ8UTjcCRmCzN3TApoXIDomaFH56QfPLRFL0nNI3DSQkg5w+QMFWadEijSziE6skLpjCi67/0QZBKrdJzmjSeXrhBtLLNgoRbwh5lVKZDeT+UcAj8T0imwxlLioTVyVogW0HkeD4sx0jGbmUEmRYzSChYWSqeZAaASrwHuZoFYYNYqbDYbNHWDqqmhnS3Pm7MW4JGWYSCHGnF3WncrrFrSqtGicVM2GSo+En9OVsSo9JNnoIe1p5Cx3mxIDPqBThGNDJAYtC7XleyyAZ0iUpqBvdP5BG3o961xHLu44wZmHiq2IzamuKWJvoOCog5jBoGYjsYNU45AyNx94G6PlMU5YfQDcE44Dyf0Yw+3qgpNPueMCOrmUnJOjw+5M85uVhIbfKTnRLrGZZw2o+i8zWuMqeJKE4BaGIX0+cu0ebnZyd5mWFB2miZOLqWQ5PfILypKgnMGcmSXzkUCK4CxBgFgYQpw2mLfbfDx+y/wvQ8/RgoJ/XkgjRvMDDMCxTJEr6UcKz+/YHA7F00yug/UNeLxZUkEsIhni3OOLKae+d7JSGbpWCHDT1Nh2GZmKBjWKswxQMl+kJhib4gdYIyFdZYKl6zRtDWQmPmhKOaExO6RisTzjbOQ8UytNFoGipTO3AAh9kBOIkwLVJVjoXdKQmWN5JSYms6MSmEWxIyUA7xW8M4hZ1v0FoVJKPEMrLmhmVEbeb+QXDgmMmSIySNGX9yBRj/hfDrDB48UiP28Wq1hjUHLAAiQRQ6Ei1xbwAqtFcOwMipEfwCOzyBQiUBN0uBQmn4m7OFl11lrKhbSYk/Q80wqxQ7WmYoxku6lteS+xXo/CqCGXp71CJVScFWD9QbYjRPGaYLWDikB5/Mw62dlBWRiHwnTTcYbkBcjKUqcrRLGYUROmca2MlhD0sG6Bj5QLNDOAlqhrgT4ZKAj055hneO9jmJVzovC2BrkCGDBzgUDssR2TNREARXskd8nrEPNxYAIc4cQyN4+RBgD6JxJP0bPbBAB6HMG525NiXuFccd5AeUixLxtWnIZnps4zCDh8wnsVugqh/1+B2MN9vsttNY4HA6lKUDPODOqtIKfLKJWBH7x9c/83YLlOTbUee+9Z5jGCev1jgEkjRA8TscjtFZYrztiVTmL45FzGmS+/nFmnnAhZxhgCiFAcTyn9R45BqHsxfKSnMV7WqMZzBTWpDsKzuXoutBannXc5mZVirFMGiRZE7yurSVdq7gYK5PiL8bAOl9kDiD5h+RvIQbAA4Meyg4jYL9jM5Su6xBixNCTxmIZ20zCKE7lmbWWYwIXfSEm1FWFrm0ppqeIcRgARUBO8J5MhpCRrCWmBEt9SsAsY2qip7m4toT/GWLJm7nxSRMC8mf5njm+iFh5AXGy1KPCVSAWJjG0AEATUgLap6rKYb+/QF03PCYWC8CXgcJMSrz/axaDFdBacnlh5MtxGUXCsTLKZY0DtDAo5j8zA0ch+Iicg2BNi6ZKLgGURMZV+RxxHius0MV1LXb1zKZXRpEBSQSExSt7cMlF+Pgz4x1aE9ilNPDo0SWcMbh+/h4OhyP6c09HZTTarsVqvUaOCfe399hsNrDWYJzOMNbg+YsXePzkCVarNRphJPOUQ9FfTCTbkTLFMdn35frwic1a2gucRv4DuZRmPFhksh6WAIJaMuYenr/sh3jnU+R3hBW1zPuomZ+R9Tfvh9z18n4IaFQKpeWBfgO7yIv/LrhK+ZflQS5yynJeDw5Ugj69idbYklUmx7fcy8FgFI3cqWS+gbAI8Dfv/e+eQC7XSGKaJL1Ka66d+XuUPLtz7jkz31De/zB/Lldm/rpy8X8HoMT34Lfd3+U6Weboy0u9BIzLJf3Gnfvdr28NPP2b//a/RT8O+PLVSwzHM/rbe9iuxubRBV6/+hpXt7fwfoQ2GqtVB+89rq+v4VyFum7wj//wj3j58iWQgO1mg7ZrcHt7g3/8x39AXVf45JNP8BNrsd/vWTh8KDPinPWjaTsobTBNAePkMXqPlDW01VitVtQRrGus1lsYV2O7u8Szp8/w/e9+H9vNFsfjkUEthbqpsd5scHNzjf76zO5LJNQcM83d397e4qsvf4PD4R5D3+PFixd4/pw6WAU11LqATWt2L1mv15imCfd3d2hY+6jruiLU6/2EoR8wjkTBFHHzbtNBaV0S+BxobItcMiJSDuVO5xhBeRDpqbRtU47JxwkTu96ksnHkoidB+jPsZmcXAASPQfhpwjiQo0fTNMjsTFTXNazTMMqVJEkx40FpGlnRORbWBnVeQ2GwKAAamphRMWKaQuniSwKSmKUgow7ykCtZ5ZnGC0IMqBtKDI0UebwJVbVDfzrh7v6Ou6C2bJJS8E0gBlRIsRR0ouNCRRBo18lUMM0vikSGVI/5GSRqdwkGRdSWACnnKhiTYNgtJrKWgOgakc3viBg9JfWYhap9fDieoq2CtjSCRSQTKtrO/Yj74x1WIaJtU/n8ElQlZGTAKAPtVAGEpAgInpPGcUJVVWibBsGEB7pQlITPQSfCcieGRwBjRPAZOmp20iPQVZJXpQ0SMqKPfK0IXBBGS4yBzAmUwmq1oa62gJic2KysRTiPOJyPOBwPOByPmPwE6xwe7fbYb3ZISqGqa9LliARmjIncfmxFhZFKmphop76sPcvjqE+ePUGINGJLiSONc1Su4oRBw08DkoihIiKDbOBPpyNu725xc3sDV1katXDUwaIlyvbpiYosGcMNZ7bQZYaCAQErKmc0dYW2qTEcT/Rsc9KdE7mAtW3DIF7C8XzAXYq4urvG3eEWl6tHUBZwjUOOCslH+BQx+dklszYWxs7aMhM7bI1+FM8cMkGwuhTlwU+zOwrl2uyUYws47CcPa3Mp2BXmxEjGFwnwIPH4YRjQn86o6gpoKhZpnjUBlFyrNBeBlbOorMHEwDwSYJBhFQnKj0OPR9UGT55u8cc/+ef445/8FDfX1zgejtCOGIfImYtzFo0Fg0+YR02tIf2SEGNxQqoqiu9BRgcoOjBDgkRxy9hrpmtyPp8BAM5Yes7aBim5wugKIeDcnx48w+NAXUhnLIL3UCAGihRR1lhynhMgGhbQQL1ZkVbesae9wjnEica6AYWma9HWNdw7XeQYI/r+RE2VugYy2dzLKNVmvebRT/Dvkv17Kukej+HKOs25ON8qSHyfk++ua6E1CmMDiDxqpwEfgRyhLY0cjNOZmZvEwBk95QtDP+LVq9fo+zM7vNVw1mG32+H58+cloZKCJpSZTlMAChpzJ1HmyUvzhuzttdbYbLZlXN0aBZMVpsD6EfySPVaME6iLTyClYz2QnKjoHaeRmyIRVVOhbhuM44g4TgUItMxUCiHA2oSYFNrVBtv9Jbr1DuMw4vr6GuM04ermDk1dY7NaU5KcNKyqSPMGNLafIrvUmpkdJNok1zfX8D5gf3EB7z1evXqFtiXnJR8CAWxaIecGm+2mGJ80DbDZrOdnPJOLHjl1zol83TZQ00QaNuV6cQ4AFIH1wPkEANKejBIbCQSVHEwZg2mccO77Usw1PCIp5hjEfCLkif6eylovTLWUqaBlHS8D0WvTZSxLTFDA4Lhnfb3Nbofvr1fEHDMEDH322QRjFCY/kgB57WCd4XyMhIbnkVMwM5OB2Jyx6lZYdR0eXV4ip4xhCEViYhxHXL19i0ePLrC/2GOzIXe98Gak9YS5gKhYO1IzK69qLJQH+vszjLGoa1OMMOR6yB4fQ6Axc1Cu1vcDXEWGAxnUBEs+IOZc3CdznplxIqbeNMTW7IdQXJJjTIsxc6oJqsqRxijmEiYx+El6p9Rgevz4May1zMSN5c8oMhYpsUNtRNMQk3y322EcR7x9+xaPHj/C06dPYDOzW1iQXPbCpqqQsmbmZUBIAV1doRLDh2nCsR+gdAXbaPhxQhwnjCkhWANUZK6Uo6x70LVQhlRDIiCM2QRCWbS1UMYCor2VAOKbKkQGTZcFJU1MGBhNe6DIFiREwrpYPwgMwGQAIUekqJCchckRTmt0TYNnz56hqmv0/VBY9fLsUS3CsgHWoLYKAlT60TNYJHGU12jtYJwlLSkGueU5s5o1wAogwKAQNI6nYxGBN4bYehkZKU4ljhpFP5tByVhiLi1AUHDF7ApcGtiGwB1jAlLSJd8ktrAAeHSBrTWFGdXZGl1bYdW28N5jtVnhdDzh7dtrOidreb9p8PbNW/zmyy/x4x//GOv1Gj/+yQ/pXLYbNuuoymhskXywDqIZCmSYRM1MlbjRrBiQVqrUgN+AlRaojLiyyXOUwSO8etZsk5zEL+KwVqxh+E4zX3Y2YacqAVTl/7mhJQDNEmAqx/AOWDIfOkk9LI936VL34ETV4rsXoFPmdZ4W8STxs6VEnkY+0vB5leb/DLKVGhHgvEqIATPQSoCVLtdPIFQNxYxFgdpEUiI/AFIFEBN5GmmQiGFCAXK4U5J4XzKK9N4SZgkQAZwJ7JPncjFnmBUyFvI8fJ3m81387m95FWBq8Z4CREkNmIiJ9u0hJ3p9a+Cpf3uNmBJ2ikZSXNfhfDzisy8+w29evsT98QgwgjhMI4In/ZKmoVn43W6L/X6P169eY5rIBrg/D8gZiIFo8+PkMU0eN7d3uLq+Jt0F69Ct1thfXOLJs2foViva6CaPcz/g7u4eMUX041QWQ9Ou8OLFR3j29H08fvwY+4tHWK/WcBV1Peu6IXFapm9PE4nVWWNxd0cg0/XVFU6nE3LOBTja7/d49OgRANoMD4cDJd+aNDgudjtooxGDR/AEmXtPx9Wfz2W8iopzppB7XyxAbUU6UzKX75xjgIPGg8AgBJiJQ3PoHqMf0Y992ZniYlwr5cwOVfyIJNDTG4k+aEAJlWGmj1UEImlLAIGPAWEiR7MIFjjj4twYzU45pEcQc0YuKoG0bqSbG0OEUcRCKGNUrLtRuiucGFpjUTUVO+SpslAzyE3RGoOYXWGKFOqmBA3QRm+sxTCOGKcTKg7uAmDNzkbzMQhTQR4w2Qhkc6OEWvSaJIA/dFuMMSInZjgtn0aFUtQHP9OMCQDJhRFmWXTbOjt3JZDhg2egSKOuHXJl4awrSb7h8yUQg4KGACmU186OIcYuutRKsVMZAWYmsXiuJeaE0hp6WVQXq1q1aB4Q8ATFnWC+tsvNJi8yJ6VEUwPls2a0vZiclv1FNMEUj7hZKJyGAW+vr3Ae+jIy07Q1Hl1cYLvdIKSEiMwJCW1DIfBx0dwmr9uIge28HzjJcUJYNyzEa0lLCUoRw8IT8JJSJAYWMsY+IMaAkcdRnjbPsFltUDctjaEpcX2kRAtKwSjSxAvsGKWNaNzQyWutqOPGSYL3HiGS0LQCUDc16qrCfrfFzf0trm+v8OsvP8NvXn2F+/4O9aZBtgA0YGoHGxWczlBOw6WKTAqMpdEVTh4orhDzS2sCYvI7HTOtiXkm46aRWS5ieS/rLbLuixpUiQuSCAobSmq/zJ3lp0+fQvQjfKRr+m43pTw/ed5EhfZutabvl8YSgP16gw8ePcflZodN0yJtt0RfrslNbBwGpuGnwjShbJ9cOAEgW+5KarKhJ0CZupUPrw0VLXKuEptymp0cFf+eNuwEBBJKJ+BlOQ4WGXsnqcsI8LOuSb9LK1Q1xUFxiVWKGCHitKqg0LgGKWWs2xY5J5ymASEFZCR0bYNV26EfeoQkQGpGVdVwjoCnGGjPDtPAAFIszCRjNNqugfHUBEph1orzDDLkRCxcZx2GfqDrpTWxSpzFuScTAK35uWdpRwUCwqyxpM+yiN0hkrUxtIFSBhqG2M6sDWOdRUg0Nqyt4dGayC5hJFgtVt+lYahYK4/vpbU0CiMgElHqKR5DWRbNzsycnKAANDwKOCfZsy5L5uMfziMy32fnHKqqI6t659jBjdZfhuICiC53iAlpmgiw1rTGjbPYX14ghIhuGGCNYZczSrDFodLxCP12s+W0nK6h98QaS6ToXgqPqq7w7L1nqOsGq/WGmhIxoq5qGGswjQNCIFBHWGvvdtanaWStu9m5NkQChGSPM9wAmVnSlOBPQZo3YFaUZoYzmAVHxy+GHxPvBV0KcM4xYEp6n9579OcTF4gVm4pk0iEzBqaqkGPCxPpT5FjM2mK8T8r+LWM9zrnZuRQRSokAbcaz956gqips1isEP+HLL78ox2ENga77/Z4Yd9wM01rBTyPOfkTbNHDW4nw+w3uPewaKutWI4+HI+wAVzcN4Rt+fYayGA8XkzJ95Pp9xf3+PrmtJYJ/zg7puC7OB7tuCaZtBTpyJ8gWlSH6hqllwOs+CObJV+TBRs8SSlpSKpRRCP5z5KTCswcfwZGatyER5MiDNJRrVAhSzSQns9IEMd25ub2kMmVn8hp3DDDObY4zYVHyvImmDDtOIjIzNbkt6WCUfmUd5S4UIIMWAySdEPyFFj9pSE1ImfaigTVCI1AC0NMKWkZFjYFYRz0VlRdqEMSLFgBwF2OFryE8GZ5TIZePScxMzY9HkWYy6lL4P790sZC76dEwT5vDGZTHHErGIV5mdEZsGIVKsEa2qlPBwpAqzdqvHQ6BBjsl7D230HA+47qGGSJRNssSKJQuKTCwmbkasuBFS8W1Z6N0oOpYCspb8IHM8V+VeLoEHpWmkXhhFNCWiF/lqucTcLCCgWIGaZzE3+OCjD+G9x/sffIAYAvxIenB1RbIKNzc3OJ1PCDHg0eUFuq7FoydPyjUSFqXlfH3ZENHC5sq5xGPqzy5YiOWfnAOVf6fj10u0RiluqKEAFcJo/22vuUE81wsLnAmS9C9HrGh95W8AYos7svhLXnzU3BBf/o6SWkA0RMs9pu8v95P3x2+w3fizJW/KdHHpfbzX86XDA2UlzkmWcaCkBRDwbslqygUIK80VoMQlKL04JqqRBFzii/0NME5IG9RApZikeI08uLZy05UcXS5xTAgx76JB5dvz4v2Yc9TCxJq/BQ/v6G958e9npf7p33vn9a2Bp+HqGsZYXHQdhkrBrhTuT0e8+vweX7+9wnkYULUttNHoh4GKkUhU9q7rsNvucHFxgS+//A2OxyO7lvQEAsSEcZgwjR7j6HFze4ur6xvEDFhbYbvb4+LyEk+ePqVOckoEPJ0H3N7dwfuAU08sjfV6XYCnJ0+eYL+/wP7iEVbdCk078ugDBZMlALRareCMxeu3b3C4v8fV2yvu1mXSl1qtsd8R8HQ+n0kk/XBgmrDFbrvFfrct3RkqPsiWPedMoyZqpp4qUICOIQCaCvG6a1ChIt0f7phKwiZUdascdCY6ZkykTzBOQ+mQyx95T0psnc0JhoAEGRk600Opcy50cijWVnHU1fIhkNNDYsFH3gikOybgzeRHxBSZ5k5MqsQjGGXuXxtA6QI8eU8JcQiBH3qFxpLVKrkKubL+HFBEsSlq6FmcGihgEoCSoDrncHc44u7+HpvVGvXCQleEtQMzElImYcslCCKdkGWQLiLvak62gYdCmnNSMQevDBQh44Jsaxqlyho82kRCnQaGxetRrg9R4xWsUagbcp2xlkY3w+SLVoQWtzgOQgoE9pkFiCVjb+Va8PFoQ7RzV7OYqFJQNkMnCY4CDi3WGSPzSFREpZTgh+EboJNYNMum9WC0BliMkTCLbCFkK+NK2hgYpWBBxcTrq7c4s1uNrRyatsGjiz322w18isiKrzkUUfsZUIGic+7HoTDvkFG0zEwBnoCmjOjwsSkUsDpFYjpo1gc492ckBmHX6xW2uw0MLJQyLEwNGGawUHJHnaw4TZjGkdiHUqBxZ0RrhaaqC53fh4nOIRNA3DYNVm2LRxcXOA8nHI/3+Ou/+yv82V/9Oc7TgHbTIBtaY9aQ8G6ygFM1jcvU5H5mOHnwcWTwkJ5NuU+SABVaP8CaZAAyd5oDzbgDJCaKTMwRedbEWtk5Bw3N4xkZhoGYFCParsPuYo9xGkm36nRgcHg5ckrHI6NxYFOCZHkU1mgWm83smKOwX2/x4bP3cbneYd10yKyRULcreO9xp+6I5TKOtGYUuIOWUTnSy8uGQYAQIY/nMjYsN/NEKVEZL49cdABsrc6/a7SCdNSo+0rW8lbZB8CT4k5mBAFX1tmip1fXXDzLiIiexbtFLHblOuSUsepajH7Ebe+LK2jbtNhvthinATEETJ5cRddtx6BIhQnc5fYjgXRF84yA7KZtqWnATqsAiAkQAs6sKUSxmQC7wMym9XZDWhfsglYzM1CctYw2cMwajgy4yp4TIpUd2lpyYUJAU3ew1qFua9Z6iXQvjEb0GedpQhgDcgKabkN6W4ocgyQ2zwL4qjCyhGFzPhM7cgoexio4GNLoSAnDMAA5w1UGKWve3wgI1AuGbIwJp/MJCkC3omu82WzY6ZPeJ+dJzRYuCLLi0aaExHnFqluRkcZmg5wzhoHEb1Um0Cf4qTROnHWwxmLVtXQvw1RYIuDzljETAjQrXD6+hLUOzlWlqBeR8Yld9aDMPKLE61r+LqzuqqoAxvdonB3FpEXe45lRRyzgjJjnkXFhQchofUyzMYaw5HpmxcQcS/6gFDmY9eczrq7esIvdBfzIQsBdJg0+66jRxnH2dD6TK6Ah4FXWAfheZ4WyR4cQoEwCuV9SjvTee09JnLxu8PbqLb788kvc39/jfD7j8vISq9UK680KyoAt5Sk39J700ypLUgbn0wl9P+Dq7Q20sVgN1PCU3DHGgHN/xnk4cffe0f6WyAGz73vc399jmtbkxrwmo526afneoYyCl9jlU9HCoduboY1CrS19rgAgHIqzIudVYwycFvfHuZjphxOB3qttaSyJM3HyFPt88DPAoYgpozgnlIaMZy20ib+rWxMwYZzlRq0l0CNGNBWxrA7HI43Y+QnOWmx3O2KosoGNFOSl+ON/xhgwjRPCNCKGCbFtAGaS0LBsBkD0JaUB4+bR+8w5qoz0gkGOHCLF+OhLcVvGagQHywpZ3qg0sjTiuNCWP6TDmcu1pCJWkUyCUnAVs/x4exLnOAWFolO9MEqwxmK1WmMKETHmAjyJsc3iSAt7Bu9cuyXwZLMt+588v2TqQ3mxtpY/b9YSUoqYoX0/FJaoMcTyleKe9scZGPgGFsO5vFIL+EUABiVMEyOBiMc73xVenhsEFDsJeNLWQRmDzW4DmXKYhgl317fEhq8qpBRhjMbV9TXO/RkffPACu/0ez569RzUvMzMl7pUGmgDAApiAAYxIsThpAVLmHEMpReOMWIIS6cE6Vgw8SVwVED3G+PBzwHUK74HiBCgxe/kqOnrlkVk8P4ucvrwePFv5nc97OI1Bi26unhbQYfnncuICyIV4IOcyrwwGlgHWIwObijwUzS6jhprPSS4hUMS9wd8r1+/BufExy7nL6CkZ8cxHHqUulGdrAaTKNZFap4BOGQ/0tgrLSfJwuXeSIyzGUn8bFLQEvcqxKfXg53nx5m/FZVJ0Lg+fyH/69a2BpxpA8hMObw7QbYvNbot2v8KjTYvbvsdpGLjjR4FTa5qrXq1W6NYr3N3f4dSfSRxWUUJRNw2ePX8ftq7w8vVrPH3vfewuLvFf/Bf/En/0R/8RPv/8UwTv4eoaF5eX6PsJziVY65CgYaoau8tHxFoYBoSUMUweTbfGJ9/7PrqWdJ0SiA5vKxLMM9ZwEPP44Q9/iJ/+4R/gzZs3uL29w9u3b3F3e4vNeo2+7/H27Vum/FPH9HQ64erqisRMhbkC4Hi4x+dhLChmVdfksMIy8IFFZy1bmipQ4uKcw3q3RV3X2Oy2sM6haijJTTEhxQAFKg6MtjCaWC4xRIQMjMOIwdF4StO2xFywMwtHRtwSdzZrPi4pcmXTtly8wNC5uqYmOnkIAIMZUyKLczURpdxZV+iJlDRoWE2jMdoYZO4WCi19OPfUIfA08lS5+gHabx25FDpHIzI+kNijyoBTLMwrLCjF4oBcgAJUJCcuABQU2tUK1Ym0EIaxx+RH1K4CkDEM46LLBQLKpoc6HRmzNgEFCCkyZ+tSgJk42kA7A5MsqsoVkIlYZ1RACJA4n/MMEAXWSLAVJexRmFWMkuuSdKNoqyhmghhn0NkOddfM3VljeUyDRhMMA/kxzXPPIZIemNLcLUtzpzSHJZCGmXaq5+CfIrn/qKxI54mLAsUsK2MtrFLs1sGUTNZ98AysyD0odOfEFrJK0RgniDlByZlCJuU++GnC4XTEECZEnbFqWuxW6zIeOiHDh4B+GlkcOuN8HihBdhYAFS85oyRFRacqz6MYDzqTSjZZWiPChiCtIxKArCqL9XrDRYmBdg5GG9ZNALE/GGz3PmCcxtK1b1ikXDZ1U8Y/DJRK0Npitd6VjVZBoWIG2u39Pf7qb/4W/+r/+n/CdX+LYIBm2yErhdPY04ZmNKzSMKpinblUBA59Fr0Ncr4zzEaQIibL5sojQtI1EWYmacil0sHT3EmNLjOYPVOx5XknvQg1u4fxGvR+xDCcce57GKXRNe2scRqWWlP0eREiyk5lQVLEjAyZmBA5ZxyHM97cXuHq7gpvby7x5cuvqVBlJuGqW7HjTDU/0xKoOSGaWZKhdIvfZUOEEMrvZ77GWtNYs8esMSfJQ4g0WhR5/ATKECsBc2IvmjZV5VBVNY2QOct6ZKS1I2KjokMmCYNnV8jOtjBKY7ve4DwOmK4iTqce17d3eLK7RFfVPOYXSUzZWHL90xrICtZUMLXGo0ePKYZPZGNfN+1iH6GxAWQ6pv50xjROOB0HaEXj4NZVqKoGwzhg9BMqV6NyFSoW4V+1HY+CO14LCcYQ2BF8ZEOJjJw1rKlJsy0Bq80Gq24Ne6wx+RHDRPpdm/0WzWqNAI2sLWzVwE9nhBRwOJ1ghwHKcBKYEvp+wOl0pqdLKTx+9KiwYhIXKq5yqOq6mG9kfqYda8KRrhyNbY7jiPN5QIYvoBYwi+RuNquydsZhxMQudcQ0pJhfVTUyMmKgtefDxGsDmPyAGCdkiAaL5vxCwSkDrR01LiaPECYefapAQsse/dDjfD6D8m6Dx4+f0nrjJoa493o/0jOfczku0avKknRr0cSZDSnaVYcOc0NBEuv84HkSu+pU1nvKmJnGShXwlsTKCdCaxgm3t7c0DlrVlGt2NG5q1Gz6EL1DbTfYrleo6xpNUyOysL909idPYACFONqbxmlCjAOO5xONl242PJKfSn5Guk57jP4EH0b0/RneB7x98wZ1VePJExrZvry8xDRN6PseN7e3OJ1PePreU2QknA/HEoPquoKrLqEUmbE8fvwEfT/gs0+/wOQjbu7ucTgeUNU11psdLvaPcXt7BPAShvXYNpstsbbGM6xtsF6LxqgFlANAY1pKkU5ZDB6Tn0rcqByt3yqRk2dIE+/PEYxjl5e1BEZN0wwaQgHGzt3+mCqQriqBAp7H8gDF2kMeKRnScmVQU1gXMp7UVDX006e4uLhgJjrpYGWgjDNbQ3qqKSX05x7e0+iXs46bPKqAmwAxz1NKaOumAIvCdFdKwVmFxnWweoWnT58ghoCnzx7j5u4ON4evaWPInKtznkAah5Z7I6oU7hnE3pLC7t1ifp5kYD0uGXfKmchTDExmefD5RQ6SzKjMCprzWxrHptE0qecDMwmjrZBywugDPv/yK/yrf/V/xB//yZ/gX/6X/1ukEDH0PZqmW7B5NYwS1zBi0U3TBAX6edu2izEiiqUFKIZCiglXN28XY13EFSMtT4tV16HtOrRdC+sc9vt9yS2WzVy6zgk5R2gwWxIL3RxI7k7JrjRXIzeBSKhaCnXOy5WCMuTgCsy5TooRitdOThE5RWg9Nw9kf3CVw+5yx3u8wQ9/9AN89MlH+Df/+t/g9uYGN7c3qOoam82Gzz8VwXXJ52fQBmw8NTceMwT8Y4CKf4+AwxmHmgE4yh2FIaPYmOJdcHB5vcr6W3zO8lUgnAWotARK8oP1OF9jcJ0h75M1krCAn+RcymcovPt0MK/pwTksCQIFeFscvMLDa5LfOTHJoQu4Thefvk/NkizlO5SC0lbuyDcfYAbLRK8vYXFtDes6CgtPyVsUoCheasg0jnwDi8ADHDfmHHw+r4eAlJADHmCoi4tS7p+Ai/yzJKDRP4EZvbtelp/5/8/rWwNPBkQhHY9HNJVD07XAbou8WxV2DNmLKwAJ2mmiHjpXRp7yMHBXzZRAv9vvYZ3F4UBaLadzj+989/swxuDi4gLD0MPHCOscptGDEEPDm5JDpwxpbvhQEruqqdE1F7Cs3aOYwSBMInEd8RF49PgRnj9/HzHGwlY6n3us2prGBMYRVeVQ1xViDIXp1Pc9RJ9Ia40hRUzjuQASIQY+Rwdk0kxRSsEZ6WCrUtx2bYembdHULeteULI4ieg5gFyTdbYqYEgGQIytMBEDQ1zOjDCXpDDihzYEsrhWYNSa9Qy0odE6pfU89mctpuBp1pjpn2EKNNoQM0zipJOBpxJclC5/Mm++nq2ix3EsLDKtNWoWj82ZOxvWFtthGllLDGwAWeky7pR5DEdmdJQBZCMAUFhornJMaSXWQYiBXOnyrEmgNWtqLTa4wugxFsgcXFNiGv0C0efoRpuk7AKmgDTSuZVku7DKMG8Y5YEOxKZ4wHjh9xJDaSGyDAGFVCkAnDForCnvE6aTjEppNSfUElTl+Iyi6B+XGzyPncnvLLuYdAwkzutDgM70XZbvvzhmFBBFcZA0gLRJ1CKQlqDJwBNz1svmJGFSbMGhZtq9jwERGV1N40I105inQJ38KXjEwOKoE4GZhpAjvg+qaK9pqAIUyrMTgsx1L7tishlx9ygRaGg0Fcwti5tLF1tbFhVnHSx6FlPprhfRbMybg1L8pGuKd2JPLt13uV4mZ+QUcX9/wJdf/QZ/8Vf/Ac3lCvW2gWN3QQQSDIYGjaA6AwSi/pOmjTAZ6LMIuDRFpDgjslaDWiRKCmIAYIyhTTLPNHxJMog9NAubL+m80vWWWAReE541R6ZpQtPURQg28zWUNU8i37lY5SIriBhnBlPl+Z6N04i70wGH8wnHnpoHh9MRV/d3aJsWHzx/TuB+Z98Z05s36mI3HlNJMjQn/svOlnR/EgPPjvedEMgkQl4SI7wPD2LPMpYp0PNkLI3S1U1d1oDmTrAAoCHFMsYiyzTFWSxWa816To7i8TThfO7JhCEE+r2UUVcVWdPr2W+G6iJxjklcnGnUbYuUaCQyc/ZXV+SSlsW1lB2S2qYjl7umpXWlyDDEuQrO8lhf03Gjx2IaRwQ/FnCCWGOJAUaKudJ1daxZGJBgJosxBihrULcdTFUjpEwNMWORQC6gpxOxRKraccwlh6YjAwGWmwTyT0lmKYeoShyQ620sFTB07ai4n9gpKybaO7lXgnVTFx0qiS0+eAzDMDcoeNTLVcQs1DoCPiMmhZwVgzUECPhAhY/jcUsobmxYjclTg8AnyQlojYZA0gbjONExW0Ni7I4Ekil+zSPJMoJK/Qdxo5XmiCrXcLmW27adx+wWiXzmnEi0r5bFpeKxUnFZAqSTiwI2B44P4zBANQ1s10Fr1krhkUfHuZjTGto5NE1DhboxyG6xvwlbDShjDRTX09z84maOsbNIu4yyV3WNKZwhTovDMODu5pYcSFljiUZKyWCiH3uEyDpICuj7cwHEXFWhcQ5D3yOEgN2mg1Yksj5NI8JA2qDaaNR1g7Zd4XwaiMHXtmjaFhcXFRIR42CMQ9PYIksAGKSsIN5J0kyJnLtrpaArAnGyZpZl9vP9A/j5o3VA4ESGUsRal3hrJFfgPUALcJESu7sxaybP7opJUdZCo3c0rqWMRgWFyjl2l8oYh6HoaaVETq6yX2vOMw7hgGkc0XYd6SHpOTeU75483du2aUvePq9BarZVxqKytjhmNU0zj9Kyk+i8r2mULXsB/ss1Wdbj75ZrCgIscP6siUm5IJeVGLR8yfiP9ESzJv3PONHIp+aGRMZsPBRjIlfnmHB7d4c//4s/x9NnzygOJTIWSpWwYxjI1pkbQwnT5HE+n9HUHZwTSRBTchtxRNbMes4p43g8ou/7MiEQ0lwHKkWSBpaNCRzvZ5NIILzzZ1n10z5J8eHhHkxAOhTIMRJUP5V4lRegAzeRFOc69MNEpgzGki6W/J7SRZMXoIZw07UlV9jttqR1aTSmacTxeMJuRzGdRmnnaREZnxO2/7x25lPkVAs5U+qcl94UMwLBgAIYdJrzFnlu5fWQ2YUH9c7iPz7IReg6P1x3AoqlAroyw1st2FdZATmVemC+X+/m9g8O6J1c+93vnY9PXlJjlJ/Pl+XBOZbPXxyHTA/RGzSvFzouYYsjAzAE4oqMzW8Dn8ptWTynMytJgMDFxeR4CqWg332yBaAqb3p479RyAeT8cL08OJrlRz5kwS9//NuutvotPyv3b3Ed04Pj+navbw08TWEoQXu13eLF97+Dz0+3+Or1S/RMuS50TGNRWYe2qnA+nXA4H/Gd734Xjx49xjgSAPP40SPEmHB7d4vESfDXr14jK4uPv/MdbLZbvPf+c0zThFdv3sDHiMPxhJ112DQdLi4eoetWzGIIaLuOrr9WqFkYWY6HiheDpm4gOhLTNGI6jrg/HpBfAu+9eI4XH77A11+9xJdffIGf//xnOB4O6M9nKL2CMgZX19c4nc84nU7lOwWVt0bBGTU7bQQCngggmq3XkWl0z9k54Zz4mohmwd39PRVf04TtZovNeoNVuyZ0n8dTaBbewEAj+ojz8Qyd6e9VXROYpDQMLOqqgcsZVUWglx+Jym+shlVkRzoNY1lUzjnkqoKGIq0IEUDzLBDOGgn3xyOc0bBmnuEOMUBDo+EuLnJG8gHTmcavjDXYbrbMxCFr3qZqYJkqLUCHtXwsgpKz+8/peCTb+ZRQs+sMMri7QQG967rykFxckHXpmzdvyEJ3mkGwuq6x3W5RVTXboc/JCQDYup43ARYdMdytEFZZQcQXTI+YEkY/UUHHIJiwNLSmDpHihEE6uYUhlTPHkQwpqQXQE/FzObdlEFaQboMg0wz+cCSYWIuLEjo6fnBXMvqAFFkINpHYZtM22KxWpIsS4wPQjBJ/tl/XujiviUC3NmY+PkgwxgLNBwlPyg+hiFUHCvox0XUYWB+kaFFlIEcFhIj7wwGvXr/G9c0NDqcTfu+HP8ZHz5/TelCAVRp1VSFXFlM/YRqn0nHuVivWwiLWjTPkkpcza5hBEaCREjnbZHouy3XPmU0CqGNa1zVcRWYFRcSR701IAX4gUeWUEvq+B0AFAVmGb8saIiAlscmBQtc1tGk7i1Frcs3JJGw7jCMUgMvdFm/eXOHf/nf/Fn/9s7+FN2RNr2uH0zQi5oioqWs6sttXGsS1hrsjmYW12XRHKSCAjmWpdyNuionXlOUkUieDHKmqVpZ0fkgAH8iRtaycZXciYlTFHEvCREAydXlS8PBH0i6xC+YmN4bgNIksal5zsucmZLhEo2u1tdAg10mjSOT06v4Gt9c3+E/+8F/g2XvvY7VZIaSAz/76L7Hb7vD8/WdImQACaAMDM593om8QFqJRVHzqDOQQ4VPCy6++RsoZFxcXpUAX8CywnoMwCslUQTGrB0XrDpiBzrpuuFvPscNpOFfDmBpQ5Cwlo8MUd2NhEsxDHyChWE6StNKobQ2TNU7HE8Z+RPIRlamwbteAMYhIcFUNQCFFGeUgVl+MGVYraGXR1PScRY4bx/OZGTkJdVOja2rsdnsoKHzyne9DQ8GxKGzKqoh/QpOmyelMz4WyHD/PJGy+Wq0wTSMJbjO41VQ0+qiUISHwkODYht42JAC8u7wgvRDvcT6P6M+v0dQE2t3f3OL25gZfffkbaGPwJ//R/5xyBG1QuQqrrisio9bQyFOIpGkl3erKWnJ5ix7OEdPEcK5ITOWEnEPRVxIwv1utUFUVtquGWQEiPE4jGk1TFe2wDIp5xEjKDFh7BD+iqis4W82xloGQU3+EiP9LV/d4PGCaPLRydH67DawWHawKVS2jn2yakRWmcaIx36ZGZS3qypRR2sRNmPMwQinwegFSoEDvrEFV1TTaW4K/FAfi5BdKPBUgXWQJZAylZfZKSrE0JcZh4BxmhDMGn3z0ETF9rC1NQM1mKJbfr5CRgkd/CqhZBFheUgSuVitB1OCqGpb1QJEz7u/uMAwDvn75EgCw2WzofBmsTzHh6voljqcDjkcaK9tsNjgPI/70z/4c+/0Oz569h7pu8PHHn+DUk9TEmzdvYa3BuuugBVxXClAa4xSoOZZvYYzB/+o//V/j7v4O//CPP8ebt29xd38LQKFr13j79gokTl9jv9/jxYsXzO4g8ei6qamGyRnH04H1+2i9tU0F0nOrkAKJ/9B4ZKBRfjD4rRZMVmbBiLEJILEsFbYQsf3IcKCqKmhLm4vRCquupdivFVImmYbb2xukmHFxcUlr0CiETHEgRNIPlLXup5E0voRZzXl1DHR/q6pC2GwwVTXGacLkA6ZpJPmFqmJjgqmM57nawTrKI6nhSw3a9WqH8+mE67sj/s//l/8bfv2rX+HP/8PfkK6sT4Ax8IEAJwFhARr9VVojsVU66ftFIHILTSvA8gj7QjpCawMjOn2axw2RadaWVlz5DnYnYHAqlwYzaTdkgNmwEZrXFFXUSgFjH6BADcdpGPDZr3+NL7/4HK9ef43JU7NnmkZMfkTXrphVhaIXR/Ipq+LUO/G47vF4LEDuerPBxeUFrTuV8fbtW9zf3+Pjjz+GsRa+H3B7f4u3b67w8ccf8/g45ZhpolrEiHs4ay/mFCn/yNwMEwoZRZJyaQRYktE6pdiJdMH+yez4WWIz/z6BVQq6SF0oMp7Shs9XlVwxMiMdWpxXI7bOoK1r/PD738OqqfH5F59hmHr89A9/H23T4GK3ZQZ+XLCUFbN7PaCogVLo1oIoajrcWV7km1CBAB5l/8/z1MK7v/fb/l6WlvyTf/RA0kQ9/ObZxZzeKbpUoluXwQLfBYxZjNYt7lyBabUq/23++QKskvsnwE/GA3LFkhlUziVzDINI1oA7afOnE7An36MefmvOsy4dKF/Fw0v6zouLRkYRpR5Ika5P8vMIHpdUNDa7AMjEmV0aMQXEze9eO14napaZAWaQ6ZsAnfrGPRcG2TfWwhL0lm9TqlxUuULcJiqTR9/m9a2Bp5QJLYfWyFohGYXzOOLucF90UwTJL49GyvDRY4gTEhfXNVs+b7Zbdu85oz/TWMXxeMT9/T1OpzOsq7DuWjiQLgRiLCMJyCjJSYpAMESpTUCZvbeVKwFCusXGUUfSWMNCrgnjNEGdTri4vMB6tcLjx49xOp5K0UA3jCjsgVkWAi4tH+ykdLEPnQtlGcsRzQMRcyQNI1mQ3pPzi4y23d3dQlgrgUGBopMidMBMnd/y/SEVSr3WBibNd9doCw0WTeaNASlzsZiQo0JUImJLBUoyZB8tG2qhOyKXZDCEAA3DsZeDespFL2PZJUYm6qtR5DzjWKuLkl3Nf9jJJs1VZQlYjKxKgI8MkCjloW2GSnRd36XoVs7BWYu2bZFzxsBBWDqRxB5wD0bg5GE1hmm7AJA1FI9gCfAEpQrtW2i9SuaEFy9BhsH/pCKfbaz1TFUlfIvtfXMmrEsL8DRr7BQBwndB7TxL5Sm1RKdRumfSncDiO1NMzH5ZdKszCvWeAKxZl0GKAEC6JZg/j9ct1EyBzhwcNGYAfylMKActRW7pNsj7BZ3P1E1DmMEXcnfL2G23uNhfAnpG4JUiUDS7hBwTnHUINpTYlBUxV1JI87nL+YOFjqGKO8xybSyvNz3zJIBMXcN53lm0reS5oyBP611r82B+O4Q4i1ur2SrcCiin5s2cPofu8TiO+OyLz3B1ew3tSCw5ZnKCijkiaQJmYp4NCcop8HnIuS7vm4zPKdlw+F5lWV8sFMt0OhRYUWFmvWVKoig+UOdZqMNyBImdN8p6KW5A8/OolhlOBunyCCsvJ56nJwaM0pywJ3Jd01ZjGAec+hH35yOO/QnrpsE6rIghVzkW3jWLZtRCdnIhHElFAYF0su4JbCCdmfKslzW4YC8ps3guJQmWT6bupyQOwripGPgXdqpiXQ4FWj8UnzI0KEEBXyt56pbMU6U0jY1pU/aUGOY47yrSD1QZhYlFz6SiIiolFtGdAw9pBQWczz2DmApN25AukKXCxGrLDm3E0gkxA+zWE0Ex3ToagSGduFzcPGEFhOfRCcyJJo0qSGPHkLBxzswctfCBmdCRQMNkWQyU6SBhmmhMUM+NE2cMmrqencwYLOGToyJskfxT04k1jjj2y3sBEqGvqgp54jELBqmsswttiozMz72AUSR6S/FaxoPoT+Ri2xQ3JIAFr5Vo+6TiUrbsSEr3VfJyymuIvVUYmsaUPA4ZzEDlcXYO4MI+C+zOai2zrDjXAWY2ILFoU8l96J/z8ZglSM9/NwumrMQbTQ9Hea4MsyXatuUxCLpmWmkYLbzwzO+V6xKRrNiUvJNoS6xhAMDapZZdRYLvErMWb4uR8qB+GHE+9xiGEeRk60oOErlpZq1Dt1ohIcH7iYXuKQcixluE0sQklOJZdMIuL7dlbDfz/a4qh/V6hRAneC9KjQtdLK1Zv2nOhxIzjkjkmdaK0SKay6Y1idejluqK+dOKGEUJonMy50dmAbxQDsZ3IKVFmkJX0BotmtelEczBFA/2IAijYtbOmlkt4LWgZOnNjlRQqKyDYiApMZOTmFmLPeUBkMYFMe9rMWX0w4TrmztcX1/jF7/8NX7xi1/hPEyIWUMZB2gLKI7H2izWR1GAml0+ZS0rsM6MYv0qVZ5LAZwWCRGExUu5X5pzvEwFfeZ7RZ9Bu2lGRmaHrwRqsNFGSJ8ZA8VRA9q3jsceh8M97u/vYSyNdIdhIBZRKTaF7QbOX2bR/VlzL5QGcQgkuk+gIF0TAZkNTyPIiHGSkfRM40UiXU+qDArQmfA0JXd3sZp4yWjekL/J6EG5tvN/W9wnySdYMF9ZAVhNKfRpjc+sKEEd5mJcQ+m8XL64vLzA0J/xj7/+NQ7HA06nE5wxcF0LIDy4ZylhIc5MK39mG8lzwR8v3yH/W4IJD8CWJWtpPu93Qad3AYe5PuC191uxBAF2vglWyDHm3/6u+TGXY+DzW9ZI87Wdj/PB1+J3fIF8SV78XWKixAouyIW1Xy7v8n3lmFjYffm5fO3z7zrJ+aAf/H12AszlWSqxTOo9zLWi3P+MXPbBh3zHmeVVnq/lBry4ZuVtef75u6DUu2vj4T2a/3/x7Q9+TwG/5bd+9+tbA09egYCVpsb1+YiXf/93+OLmCi/vbxEnD2UUIfrcecgpI/uEkCN8Dri+uobWBt1qXRzizucz7u7u8PbtFb76zVfIMHCuxueff4719S0+ePGcklXeNMmZpMetvcOqW2G9auFshRACDidy1bMV6RckZIzTCD951E0DpzUzSyrsL/a4QcZpOGOYBtjDkUQnncOPfvITbDYb/Lt/9/9AiBHb/R7dqitzzEoRfRyYRWIlMdKKnEp2ux0OhwOPihDFervdki1uP2K1WmG326Hve4zjgNevX2KcJu74ESJ7cXGJjz76mOfWgXE4ATng8vISWmv4MCLHDD9OZJVcE3Nl4sinOYExxqLlDpMkyilnEo9LGXEMSIoAHCgFZQAdyYSxaRq4ypFDYYpwUBhDwO3xHgCYsZNYaJYp1dkiZ1USX3FvqJyDrhy0NcUKe+wHmsnnDaq4YIDAOGGTiNC6ILM2W6SceSzCw7FdcNswS6CqSoGuuXB6/uw9pJxxd3tLgFRVQQL7Q62JOcGRXFf0PVLMSKI+l5bJUvkoAKxtxKK8OWfSvZIgz4ATPbRzcSsFhDhokXAqdZjkvVLQFBHCjJI8IWf4cWat6QXQWY5PKyhDVOEYQ2HsqEjHYVmTSfPGO4weoycwVFtL7DM6ewKAOJEgQY5vRCoS788AciQ9FGvK+ZrECL+hDTPETMW8Vg82fGUISKEkLiF6j+n+jPvTGSNrrNVVhRfvv8CHH36IKWWEyVOBZiyMrWAbi65use5WCD7g61cvMUwTieumhGO4Z0tlSpZyynj85AmamkYfRD9CxkKEpVZXFetq0EjS4fa+rDsSpjVQpKdfuuMyCrjd7ZACCZuLHsISzB6HAb/+/FeonMVuv6PigIFtGIVmVXHBlXB/usOf/9WfY9QR+/cfYYget+eTTCySlgUylFVAUqyRw8Ufb6wi4G2NQ0Ymlz35HU2JNS3ZXMZRtDNIOgORnEmn4DEFDxUMGueoU4jZ+jgrQAlTUJGAa0aGDjx6y80EraWImfcTzUnANAq7VlOSGyKiisgqw+kKWhlMIwEmKgF15bDqWvhRIeqEz776HJu6xf/uP/2X2Hz3O9g92UMpja7pZjAmJaTMnyFYmmINH8W6Ge8kuB988AEBF1xwhhDQNA0DxZoLRgoSmvei4/EIpRSapiugfbtp4OysS0LMFwZnLLFcrDWLa0Sfaa3GfrPjf1OQEZCoCILSmhgh+90FNutrWG0QfMDxcEQMNPITc8YUAsbzgGkccXtLcZ6OsUFVVWibipoRfio/OxxO+PKL36CuW7Rth/VmDescjqceMUQarQFZgFP84A69gA5KoW4bBu/pnk5TjxhGjKNB29ZYNQ2lYSljGMkBSysNWxloY1lYWZN2X0poqwpWR/QwUJZGritn4YzF08tL7LsOL548gXUWz99/hpwzTqcTmnqFy+qCxasJkB05rmqtUDUVjWCNA6BpTXRNW5wtAeoAkptsxHpNoMj5fMYwjjCsOyTai8uXtRZuMZI6Tb4I0krsaesaq3ZDDRNHlvLEEiYtrsrRaLufIiLr9G23F9xcoXGhfhwYwONtAeTc6BxpSNI+ZBlQoXFE52yxDe/PPcZhIGCSi1BjLaqaAJowBUwZiNbTiDHvwdqY4p4pLJXSdMkZDQu4U643oT8dec8k5o51rognr1eXAMDjPQmJnUFTjmidg5UxHqPROAcPjzCNUKgLmwyZDV5Sgg9sZ61moxBhqbm6gq0qbHbbAk7GGDENJB0wjiNu725w7nu0DQFxTx4/Q13X+MmPf6/kFq4mp95xIge4x482QAZr5gzkXMegZFt3qJs1cowIIeH29h43N7e4urnGMI1wTY0PPvoA/7Pf/z30w5nGJr3n8bsKxiis1i2xbIdTWWPGUCwA2J6bql7kxFb1VhXQa5o85SuW4r/VFVJW0FkV8HHJEpd76Zwt42hKobgaO23nOi8lpBxhmAG+3z0iseaJftdPE5SmuFA7ahLKSJc0UOU7I4+M55jgxwkICbWr0NYNjLEsMeF4LIpiclx0+cXYIUb6b7vdDl9+8Qp//Vc/x9/+3d/il7/4BU7nATE4PHn/e/AhIdrXxA42tuiaac4Zp+SRMDcUlTOEmhgFRPqzHL+TsSUBSwFpWNPxaYCa+FNglIJBak1GDilEpDQCOfKHZMAHAra0kTnpstlHzkets4jB4+bmCl/95jf4+c9/ju99/wd4/vwpcH2NyU+AJnZymDzr42rorJCSAgqYTH9WqzV88DidTuiHAeHNG9o3XIUPPvyg5N3WOTxZv48QIj757ncop2FQLpWgmDGy7pjlPTDN0B7m36JcQFvDQwkCaoPWNQhUokbFstyl4088Pi9GR41quF6pCoNPa9IWlVwgBiY/VBRfUIkmI4nbH33A97//PTy6vMB//2d/isP9HT791S/xwfPneLTbADkiRw9tK9oDA2W3zi31kShPSHz8KSeoRGzhUkdww0TeI3pLeZFHltxj0Xx4998l/oru57zuZnBlCf6Uy7cA/N59ZabOL2UIypVfgB9UlhKdXTCv+b7iG++jEXBuQDDWLrVT+W5pAC4O1HCzSuD5hFzmWAX0QVqIgS/OO/HPxUVYKdIoI9By/oyopD5cHEs5eDaSARF3CimFf1zG2Pl/GgpJk0EOHfB8vwoouRSuWn4YKL7mcn3pv4lkzLtg43KShb5jcdCLa88f8uA6L4221MLt9H/q9a2BJ8HjslYYvMft/R3OfU+2tJRdLNT1KUEMiNBWo7ENck40c82gjSBu0zQV8enT6Yy7u3usNzs4V8OPE1zl0LUdlNYYxhHjNCFc3yD4UECdnIkObazF5ZOWqPwxUFdRa3SrFk3TAomEya2lef/9fl8ClTY0clbVFdbbDb7/gx/g/u4O5/MZKRPoRYKi5sFDO3e3VRGqzCDwwWXAGFs2SrkvMZIY+sDz+pE1Q4juTe/vOtLD0IxsClgTmZorQs7isoY8gycxBGSTi1BuiKEkzkopoqCXBQ16mKWLu6CvEtNGF2FgVxH12jlbui/TNCF6DztQx3m73cLx8cn4mehqKUMsoTEEFhmfkJQm+jwvbOl2Ru4wKiVW9rqgshQU6bqkRELhWntU3EFR3nOxlslaXWvW+yKNnJQSd1uomC1Jk5y6egcJL88ASmJMIr4oT2kprhGh2cFQuoBGOmp54aZQEG52neAvEgZMAakX89FyDfQ7M9NzEJkDurxIu4F+lIXRI+AUyodAKpHlccv8ds6zm6B0mUT/RwnyvqDjxkW3JWWmPuuHAUnJcRb0f77GxGyLZSMNns7BOBLpPvc9+mEg211l0NYNCy5XJBKrVOmWmRgZfKQueTakITQOA05nGovIMvMssYDXiwizK03PceZzUTzOIVosszbEshNGi4fAP3KNme8xJYzSGSSBVaHKC/CnCfhydtY+s7o43hjerDVvYsM4IFQKWpE7U8rMEmI3tARiBZbYxQu8rLOUAZWQVFrc15kKTsf2cM2JdpliLQ7RXRKdLJNnbRwB5/Oya80/EN2VJeNIwODCQGORp8BJH3IsjCdoAi3BLLYQeCQuK0StyTZZke7I8XTA1fVbTNOIxK5twCKZy+yKI6CTAo0cKsVU6IfPnCQihjWxjDGzVtuDrqMqe/bMqJydToVR2DYNrLOw2rDWhy6FkjWOxx70gi2zeKYWyQv4fhW7X77gNF61ZGNEiKAqFd58XxTAikRl7xAdu7y4BkaTNl/NBYazNC49TRNC8EhRGHzz+kCWUov1H/SiNipdwYTEzi45E4A/jkMZxdZKQ1vF9yOX549CkRgsGB7rob/TM22AjrTgVJaxVrpnzrnye/QoxjIeKcwIStIyklGzNgjf08Sx1uoFMMn/MFqjYiCkJNyQtU7PjMkZOpsS96QRQuuEHJ0kBkkeEAIXTjy6JuzLqqpL8SGM3sRgWoyxxEPZwlKM8DlDVXR83pNb7t3dHeq6wmq1YiYQgauU8BPTfWZpaRjWWyzjObz+FADFrlQPOvVaMfOZEnPZExOzdco6MxpWa2QnqTkX7AuNHWHGEAOdmhkpZ0wLZz9kFGA4xsQs04wgIxiL/VySecVsRIr1lD+JIYU0Daq6hrN1YXRL86ntWuRMe6/EyFW3QowRTcM/yzzi5T2U0siJiw+lMXrSqzId5acEQsZiMGAtifan5KCHHsaStgzt1xl9f8LpeMJ6s0Zd1Whbkg9Ime755KeS5nA6SPFA9i4AhaWmFI+ez3IEwkwOYcnKW+yj1mCaaLB2LmpR4qjWCiopiGOUZSakCxbQ8/WdzVWYlaek2BZG9ByPFOcpKSdmXlkS/Gcd0QyQNiJf/BgCN4bmnOTm5ga/+NWv8Or1FQ7ngYAWbRGSQswKpmpov2EmjjBecqbcXyPP14Tj2Fy0q3f+sACxfghILSJ5ie9QVHBqBnyR6T7lSPT4BMplsskPvoOKdrX8MIrHilmoIbIDLcE72ijoqCGN8JwTEufdOUtuAwYM6HesM4AG2kQSAbQXJkx+pN/XSmhMAIPRS/dmcByd8w45eX4OFTHEMo9NSV4xn6es27k4F+Dg4Rtk+kLy8tmZWqQW5CVNskVU4L2AdcyYoTbXvcTfrpsaq/Ual5eXiDHi+voK2/UakbXynHOsW0l7oDgTPtiE5Xg5UXrY7FKY/1VgGjmOOZaVEoavOd2vd9gtwDuf/c3XkgEuMRrlc7/5u9Tu+i0//G0vtfxklOsguWfmvEvOsmAssnktnhVgkQepcsNL/jrXufNXyXWWeyyfXfYuWecFiJM4N38uNOZrqihmlqaK7H9ynIq17kr+PbOX1PI88nz+S5Bree/yN9ZFmTsoTeWHvwtq9j+4/PMzLddElatRTqlck3LtSx4Hvl8KSv3T60he3xp4AnhcQwOH4Ywv79/CcwDI5PcLGSVImdBpnxJ27QoXl3sYrTGcT9hut1DISDHATyOOhwPGfgAycH11Be8j1ustmrpBf+5htMH7z5/jyLpKL1++wsuXL7Hf77FarfDRRx8h54y///u/w3qzwXvvPUNk4Gm1WaOuG7z//ntomgbH45k2NVfh8uIRdrsdxpH0I9quQwaJuF4+vsR//d/817i6usJf/uVf4rPPPsXf/d3f4fHjx1iv10gLvZfF3YMyGlMk9pVzNWlRcKfy7u5QCpS7wz2ur68Lc4Lc/zb45LvfKV1MzYUvuLiSMcNhHFmviZLxwKNnid1BlMoYxwxjbdE6Op9PBfwRwcspZ6Q863/MwZoSbACUVBuNymoAjthPIcA4En49n888p/0WkQWZf/ijHxH41LAjUqJj7VYrBLY+HoaeHJRYcD3GUMYYZZTNGurQj9NUhGattZxwEXg4TiO0D7i5uYGwSWyMZeY8MjhQOUd6AFzYZZDOilLqgRC4yjOVP/O6FkBKEtYY5eFniraIVnICnFKCMxmVrhbOHvT+b4yPgR2rFh0IIwkVF6Ji55lSglGqCCvL5/DS42A7jwuC2QSjnx4mhMzo0sbAKQNlDIKdg7o2BraqC9BJOiwKwzQBLIZKwqY1n1cmPZ0yQkU23sSMMTx6QsVntnNQUlpDA/CBgCKw6G9MwMTC+j4Q++R8PgMAtvsd/OTx5vYWVze3uLm9Q9e22G93pDngLO6O98gAi5FauBipEDS2sCYP9/e4vbvDS9bsoDVSoakqrNdrdG2L7WaNuq6p68aApWzkwkwizS7F7LwIw+06vQAHNBcbTfXQafL+9rYUlvKnadoCiteVw4cffgRjFBUYHA9CIhvlkCipNXw/Y0qYQkL2GkE6SLwpxUzjbDmwyDREqD6XDSSGxEWtLkzFd5MTAbvl/IsWmnMU/7nAmqYJribdF9FpSCDReFUGLlkcn59J0duQLmOU51h0VEIkomGi74gxwigNqyy008WVJkYSiFYZcMZCKyAER9oiTYO3b1/BjAEvX79CCgmnw5GEzxvS7xHQISZezCnBS9GqEpxlBgBfG1eR4HDNo9PQPMrE7n9yj3PO8D6W88qZhGrlOe5aEq0VhyUSylUwPJIX88NnZxlzSoevFHUKMuRBI3IZqMixdL0hW/UQQrnOIZJOVVQZ2QBV7aBURtNWXODwmqzrkuw5a2CMYiYBj84kBWRynBzGvoBquy1p+llL7AMaYc/l+tEIQy5ps+YLmFlPjAq4hJevXsEHj/1+T0W06DrmhODJcYuKfkrcrTXYvP+EBPQXzNHtdk0C5qCi5NCfoQBs15sCemfWIZKxempUWBgjIBZJAGht4D2xX97VKFo+P0oDde1KghkX7mAhTDifz3N3uiw9erZXqxWNeuUT6xyRBo8yuoydD0MPxb/rnMNqtSrJsazDw+EOMQZYo1E5h8pWZf31wxnBR2y2a2itcHt3jePxgM8//wy73R4ffPAhSyXU2O72JY7N48OqxI2lSHPg55cKhwQ/kimLiF3T2Ke4RtEskLEsBJxnnSVnScPLWWKXjuNYnqvyyhFAQsgeMSqkiWLJ/eEeWhvUVUOgfEo4HI/sbEtrxRgCOsBOmzPreQbrDTevnCH3Qt11ZVz16uoa4+AL2EJOsdQ0a5oGXdfBe2KwiWvXNE1ABva7PabJ43g6k7ZnCMQ8ywr98QytNLpnHaw2uLm6RggR+4sLWGcQ4oi6raGUg48jUgq4uX1bjv3ly9/gs08/x+/93o/RPXuGJ0+ewDkHH8nB8fWrN8iZQAkeQqfnDRSflDE80itaJcS+WO5dMUacz8SqstwkSYkYHMY0zK6m8VmlFSprClsjIxf2VM6ajAegoK0to962otyTji7Tnmo0sjXlGYECNyPpAaOGbiyM+/V6xbvODEyESGxM0WwV5njwAT/72c/wr//tf4euW6NpV1Agp8WrY09ad80KCAH9eYSwGCKz77Yb0pC8v79HCB6R2aGASAJpEgFPmRoxRqOqKkRoTGzuQfqssvwpMlpj6H2RR3ZrBwfaZ3NoGUj0BFyDmtEQVppSAMdpAlgUrKtIa5EFhFICNeWmiUxIKkMOmjmXLmVMc6FrWOdrHD2ggLZr0egau92Gg57C3d0djqfjHCOcBhLQn09ETliQASQWAQJKSu6QOVe3CJFyHamotWSuygCKzltxnlyAl0hNf6WJzQ0NBslt2WuF/R+5aVWAahCcIyA3MlA1dsFiRokpKUUkQh1QdytoY/AHf/AHePv2LX7+85/BKoWf/OAH6FYd1usVDucTpuBhLLkgCoEjxVzYXyorJkfkB9cnZ5T4PoMGFLsigyOlgczXTxtaO5klQ6j2ovMsGmEMAKvFszQ3K/n/1VzDqMzXmpsGSEvxIzqmJau1XNOCtLzLiJrPT94jo6by+/Ivsl/QUT2M1fNn8udJXsSglJZ1zNec0pq8ALIWoE4GjdapOfcv36Ntubbgq/3wus01pDQTtCLGFBZrzCzkxTPouFTO0Bmlccx35cHYnjTNZQw1L45bAYUZv6wByclRPbhOdO3muyDN5ry4fnL7C1Ynt4IvW/r/AWz89ownFsabYsAUY9FpcMaQY0xOD7QERBgzhIChP8NYKgRDCIg+4Hg4wI8TLvcXUBkY+gE5Ed399evXpB+QScjRVA5QwHa7YyHWOcnuz2dkZFxeXmK92aBrW8QUoY3CerVC27Zo6gaVq9HU1C2fH2SiRStoGE2imoYp8wrAxeUlfvJ7/wxKK7x+/bqwZSQpEUaE1rRxrDdr7kK5At6IFonOFAjati2oqSRu282OOsZVDWUMLKSjYQGVkVWGnyaEnBgwMTC2glIkEFiohgz6jf0ZKWechzPqqsblo0fFNSpEjzQx9VQEz+UzaKUiaSAiY4oBOTAam4kpklOC0wa2adA4h+g9kGg0RxuN7XZDo305s0sSoe/GWermJtrsp3HE0PfIOeOsiCo+DGMpcFYcuD1fo5o7IwQSsUNfVUNrQ0mG6H+BOk7lIVsU9gA/iPwZS8qpMQYxJ5p7l2CkZkYUjb7JJo6yuQkbDHKeOjP9FQUwWor9LV/vBvZ3fsh0amZgCBAlCDjwIOEnFhgeBEVwgpHlvZAAq8rvA8xEUYBK3PHJhJYbRQybCGHuqKLzUajXZh6fK+OBwiAqHWI7az5wIEvcByAXFgqYMaXSedbawDkNkxK8ZkBimNCfelzf3OJ4PsPHiFW3wqOLRzQ6uaTcWrovKUYMk6ckjxOEtmtZaJSKGLFcrrlga2qy5rbWFhF5I2L5iw5E0ZxhTRYnDBajF9d6AQbKPTcWbdPS1ciymaXCTCAQY2YbGV6nwUf4GBBSQj/0yCmisST6W7kaQQf4zKPJOZbuosSHlGgD1MzC0koVxzPRYpCNLfHo3TK2LLsusm6V6INAOiyqrFXNIBVAcVDOv4Cucl0yiSuPAzmTluu7SEqMJXRUR1laiUatlEHWCVmRgLo2ivT9Mkj8GxlTmEj4OtAI4+AGWB77sZYskguzKPIazjwKmnn8VSvoykI0lehcNCX5EVB+gmikUAKgiigqY/tIOSIhlSRFmIvyDJdnKEa6B0piLz92fD7UdlKSfZanqvSfMkozYhomxJTgFCXsTduibhti/uQM7yf46BFSxBgmhBxREekNbdsw45Vt6VMsrDRtKIkLMUJpYLXqKBNJGmPQ8NFjnMhNcfITjQpwnugqOyfLDICSCDQVj0YbNHWLIvLJluB108GlhKbteBRRhLUBOEBTpi6pEjGVo4cIt8p6sslCK0PxLeei05fEgccoGNjSoRfmXUoR0zhAmBr0UJAOowBqKRHTVmvFzRPNDpHClqP1PXlm3HBjQLG2ELHC+JlkV9XT6YxpnHB/uEdlHVnLW4qpSxdUhfk7FD/nAAEKBIgJcKbZaXFuYAgDWBJlY0l8fH+xQ9t2vJfxnp7nJF5GJiF7Ejc3ZA8igWVyOaRYJCN+NN4yJXKUCzGyVhaN1SsAVeUe7OHe+wIuFC1Cvp7CtAwxICZmU1QORhEbT2td9NJCDCXOGm25QOU9iAWYgZmVJayV85kASudcGasahwHDMOL2/g7H85lAVufYrdGV99MoV2AGnS3PekoJKigGFud9T/Z056rC4EuRmjBZAev1GsMw4tWr1/gfKfuzJk2y5EoQO3oXW77F1wiPzKzMrKqsrCygCtXdALrRCwUk0DOc4cj0E58oQs4ThRQhR4Q/hUIR/hE+zANl2CIcDoeU5nSzAfSCrauAXKpyiwjfvs3M7sYHVb1mHpnAJB2Iygj3z7/Plmt6VY8ePaftGPxlIw6SEV+Om6tVj+fPn1UG3O6RQbhCQIxZGkj85OmXdRzHlJGpxW1OifNZzK6FOk6nej3OscFJFKmELMx4QwSI6+4oI6dtLyY4nnPkXMfVGNxLOWESHayQIpQ9rAx1p2Ch6p5i0YQzPKaiazJGdb3OdY3r1+7xETFGPLt+huPxiL/4sz/Hp598iv3xyPkPEVJmxuppCLKPRslXGOwsheMtSsE4jDCGkEOUczdzrM6Fr1/MQGJNIysMpgJTtTWNlJk8LqbMYnYUzaUgoiyEySHr2AGwPPJSWFSf3OzQm6nUApIIKNaCbIRvOqxWa1xeXlbzg+NwnCcsoLkgKkBsjMFpOCGGgNtbbvw+v3mOtm2xWq0wjiOOpxM3zHPmZ9GIuUQuAoYYNJ6dqo0GLcygz5xHLPK6Kh+xAFukGJ7vKf+sAm5CNVZDA30NN7lCrSk0nug7MJ5lQMSjcJUpInlVIdFChcRaayo4RbJvnm3PcNjt8XB/j88++wx/9Ed/hO//4Pt453vvsC4fRJ9PnjHe/5xwlmbB6CIbeyWUSFxM4ubOsdU93ZuwBGCwOL8FY3v5c8y1gbIdAVTN0lr7KBSnZUbOQB39xxvvy3nKt4FO+h5PhiHqcdXfhu5L842pJfScly7eV49TLhOUcaR5E4GqFm9RBGXxphVQ0QPRrR6Asl/zUodUXjPnrXgDgCn1M5gdyPHgjQHBera6x2nsIiLYeiUWe9LimhqawT9me5b5EcF8jZSt9+Q+vHl/vgU8qj+vl2rBdqJ57XxH3On/D8ZT5sJwmCKmHBFLgXcGzngUw4m6ivvBOCgFbQoT9rsE55niH8cJoZ3wcHcPgPDWixewxuJ0GLA/Dtg/7vDZp7/C7es7DMOA8/NzkDU4v7zAO+++i77vcH5xhrvXtzgej9jtHkFEePvtt7HdbrHZbpFShJ/YMWq9XmMlTAIIzVxtPwHAWY/Gz7R0L5bIPKK3wnvffw/WGnz+61/jcDhgGAbWV7AWXcdubK1v0K96nF1c1IRBu1spJRRTJJFqcHZ2VtlHuoFeXz1H07QIVVdlMfIkAW5IE0KIGIYAkEO7spzEUYZ1puq5FBTs9juM44jD6Yiz83N8773vMWgYJraZnzK6bs16Id7N9EMN4IYdRRAnxCrfz2N1BoSta+F9xw481mLVdvx6Q7i6uoL3HkMIwsJisMY3jbB5OMEYhwG73a523tVafrvZYrPZout6NMZgmiYGX/qVBINZzLDvezjnEKYJ4zSyELuMJuhGr+CPgnwEpmw7/3TpawcExHpV+kypdXhNEo2gxSL2q1RhynMg0iCnv6MjDUvkX0cT9PiWSS6RFM1EIBndyUVEbIkQBAjTz1uO6uiaWgYaEKGVZJkpvdCIzMdjpVuhDK9cYMGbDwyzllgQ3dTkbRpG7gC384x3FAe8lGKtfqy14jJWyxou9mRNwVoBnbj7FWKAIVM1bkopiKfAxd1hxOFhhy9fvsT94w4hJpxtz/HuW++gaXsUWhTyntmCKSacDkcZx+QNZ7vd4vz8HO9170ls42vrHeuE+UX3rSltBfqW8CB/TwAjcDHeebbMNaJbxQA3a6+oQDARwXrLTBHzzTUAgJ0kSQpGib1RRpKnFNj58v4ROSVcbFbIU0bfrhAwYpIRJRYFZ0FgBsI4gdWNy6qweYkMuIohoq6dFLgDbJyrdHLdbBdXgW+zLgEpMFjgl9dkyKrMMM/H67alwEvJzFZRLR01BzCy/vnvktgoEwmQ7pFBSCObRRh+ZnzfsRNdjMhUMIQRJWSUWDDSCYM/sV7RagUvLoNEhJLBguw6zsWRGH3bwTgL2zbIKQpTk1k6KXFXOabZvaxALorGAwUAJL6bKmDKx2+X4KLGKccFS6Es3e+ZRQKSRKo2UBjAyYu4FWJAiBNOxxNiTOgt67SsNmse4/bc/R2nAVMKmFLAEE4IKcGC98DNphdwx2KamIlhLN9bvpf8OcYYbLcbXuuZYCeDKU4YpgExRQzjCT57BgWdRSPAUx2nLLJPgEDkYY3HZn1WQZxceHRzszkHEbDerERbQtZ1UV0wQggjNwgEoEshIkTeWwB+nSVhcSinIMmTFgDfMvvRW49SHExkRs5wYnet4zHV/dtZaQoF3Zu52DZRgQ2gNQ2ss+BOKI988loPGKeAw+4RTcOjbDqWX2KEQYGzHjElPN7f4Xg84vXdLVYrZmMqM7hfrSoTBaBahxPUxl7GcQrrQ/H4kRh6OFPjHxonoAGvfd9YkOnwwt3U67S8ZxrbdUxE1+5ylBsAkgB/2uRy0t0nZEzjCacT/1EXYNXDdM6jk0YfswQDNx0L72mcV6CyDkrJiInBv0IcSy/7DsYbrIkWcQXVibBpWrRNCzIG08RxMAjop0WKxuxU2Ek1p7Rg+2Y8PrIo89cvX2F/OOL84hy+bdB17YL9lTGJQytfPwawQwiiU5fF+axIE8TyflmArutF0N4gpYzd7oDVdo2L83McDgd88ulnaFoeIT072wijXfdObtz23Qp9z9fy9avXKCXDCji2Xp9xbK8t7QIIiyalMOMlSbSUKM1AiBTswMzyc46LKmU9zw0/grEOMUUcdkd06NCtexjn4ABMQ0IRSQhrLRqwTNE4sVQEAlV2yiCM0dXKcSFoyrxHy7021tTiSJuGcy4YkFKso/J3d3eIU8D33noH98Md/uW/+P/gLz/+HPvjAQkFY4oIiVmwUZRFlkP1rNmju3XB6ZiF/cujqMZZUGZXtpw4/4UATy7PY6QQ/SyLWUew1DyCGyo5J4TMYG6MmVFca9CaFhYOsAx2QZ4PR1TH9FNJVV8PABAjYBPadoXt2SVubt7C+dk5+r7H7f2tAOmcv5OM1/K9tLDeYf/6Fo8PD/j4448lJjAg6pzD/f09vvr6a6w2a3R9j7VMKoQQwO6xGU3j0Lf9vK+JfEPVHiUCrIWnuSnD+Ts3VoCsuJM0Ft/ITcwMwnN8mpsPpUqTQNayTHpwAsm5EqmgvphMmHkQih8X3ndNIZHysJiigHWG9/XLiwvc393i1atXOOz2uH99i3/yT/4JNusNXN/CONZazHKvnbFw3mA55i4qwnPOLjk6M2FSdcJsGjzJn964HALAzJIr+gzPeYVoDUkNq5+lMNayEVgKRMdMrp+COm8AWgoZ6XVbAl1JQeCsddNiRM58y7BXRbpmfKMSDLBg29TBFd6fdbyff8HImDnnZGZxmdTYaf6Qp3UxIE3bQk/klfQcWeIiwxSVYZnHE5c1ZS6pAsz1p3J/DOax45yZQ2QXoGz9TJqbupBckqypGEBZjJYvf0cbVcuvmfWmBAUmK5TF788MLz4OJWcYfWYWP/suX98ZeHJdzwVwG5CnEXmIiGAR1lRmVgsDAxBNDiDHhCEnuFxgU8LD7hFDmPDFV19hs97ghz/8AM+e32C92eKzT3+FL7/8CruHWxz2D2hbixBOuLg8Q4wBjQhcrpoO/tlzRKGFggir9QZN0yBMEePEoItzDZzxsDjBWnapKygLjYvEtumJE1WSIK8bVQ4Z+XDA2fk5fvvv/y5ev36Nx8fHuojZKYODRdt28K7F2fkZttttLV6iuG7FELiT23G32fmZldO2HVPOxUVPO2rWGsQQEEKEbyyMA4wHYDJiGmEKz8TPTws/YOv1mplDXYftdovVasVgWJpHLNqmYxcuN1PKUQoST8Tw58PAFEVJCbaVQpEsEgFTyvBdh4sr+0T4L6ZUacLqxGIyQKL/8OL5DTarNT6dIouuDgc8Pjzi66+/xttvvQ1HFulsQrYO+8dH5JSxu9vh7OwM7737HqIKYycwTde2QOMwTgNKIaTIQcNIxzhH7kSRXFNNJFNKrC8g9EcnY2+ZJAARb3Zhyty1djxWY52BFUehXFF0CfoLmqomsJoULdFmfZhntB4AlaoNqcG6Mke0EAdgIcKCVYz5m8wJ1tlhINUQwUkgiZW9letGpuUrB7KZXgoUeOvYiVIALHahIpjseHxjv0fX8piQcQ7OEKbELLiSEhKAIJ1K3UILeKRQNzT9njp3ARzYY2KnvbZr4BuHaRhhnMEUAkJiwXvbWPiVx+7xHmEaMAxHpJIx3d/heDzg7vUt8sSaYlfPr9CvV9hut2iaFmvn4S1bo+s985XdIQYFgcWsjYj+QlyICBChwsLs4lIwpMBJZOMEdI2cGBcdy2SmAeq1kGRZuvf6nCmAwNoj7E5XkliKFy3UB+SUYe0GrvFoNyvQkHCadiDL7peZNHHVjVGYNgCEH1HXHv/hZyanXAt17s/MYDoDm5LwGRYZNZL0Ge9grIxOyd01MLNoKAE8zWoqCMauxgK+8SJkMEcTQHk+1F3Pij2QAlzGGHhqYIurz5ZJsqk7x2eZgZKJAbzITIsorCYn681ax66n1olzZkYMASgFISdQzOIcx4WEgoZJQenapQW0RcY6aKYW4lmqFjbAAMLE4qnFWgSJ3Vn1/vo1vPNYiSZikVZn1YIAs10L+NrmIusk6xopMMSMPUtsLW+NQXFAYwk2J1gwW2E4HfH48IAxjbwmW6brT5Nq2XHHlUpBChNKMiChlPNzkpDGMI8uSIxCyigxoekdGuvQuYZjUJjdM011d1SWmqSflt87pSTrtkDZZmFiM4qu6yWWRaQYmO07sUFH1zZccGSOqd5YYVVkbookaVCA2HpcwP2+7+AAHul2DSJZZJNQYkSKid8fhKZl1wBjjLCqOTTEEAVgRAUcUVmInC9xwRBRSkRIATazNgoZZlaSiOmWAnYbRUGIAY+Pj6z/1XToGtb4yYnd5cQuC7EUIGdQThimCTmygLMBjx9zvOEOe4hZniErluHs8ptzAsjCNxZt39dC2AiDlSRpz1KYGMvnF9MM2lTXK9W4LMwaKjFWfZoYIsIUMY1q6sAAx54OLPDbMlifUsLr169xPBxxc3MD7z12uz2zOiHj4Y4beTllNK2Hc5bzAMPrJsaI/f4gpg+ugpp3t3cYxhHHcUTTNLi+ZvZs2/V1TCuEgKLxQPIz1jazOBwOGIcRXePh7AZv3TzDZrOGcwIqW1MbXyFEEc7m617Z4M4yaFBQCxpbWC/DOBaEf/XqJV69fondfofNZoNn51f48Qc/wvfefgsPj/esD2WZfffJJ7/CNI3sDu0cnPW4ec7H1bUtAML+dOTRbLIL8wgpOiTmWjM3UHTcQ+3ZlNnZNataBGlOzUCvMrxyBeDI8j5rXYucDY6HqT5308is5BgnlJLE4XnCNBxhjEUQJpxzon9nqO7Fys3Isj8msP4OM/r4fMI0MtN+mpBk/C1NESCL66sbWGJDjHA64c//7C/w8uHEYuqJMA1RROfBDrgLvL8Iu1EJH0UzAxINoAIgc/woIQAlsxtdYqHwBB4Di1NENsL+EVBfv3S0WhsXZKVsU6HpQkghIJXArBtIzmsMsiXEWOp4WiGSwyNYalC8Qd7e4IvbR/w//x//DV7c3ODy6hJvvfsWzjdrtL5HLsBuGjkHCQEOFo11ONts4I3FcDpxTibN42EYpK5p8Xj/gK+/+ho3z2/Qdb3owxJi2KNtW8S4ge6YuseRADxhTIhkkB07OxKZum9rrmod5+6NF8dYx4U6s8Y0v1ywR4A6kQAiYZdChJFLZezxM5CgLqJLsKPe/MosKkK8mOP+NHLucLFeY2UdvvjsU4zDgD9NGeu+xdXFGT76jZ/g4nyLQZqSRnQdnbWIpYg0CbNttcaedQ/Lk+dQ3Vp53Tyt6XJWEOKpQPsTECgxQ56MnRvherZy3ZRVa8jM70NP3weL35OPhJJQ+MqVegX1vhOoTiRwHo55SmTxv4vU6snvZgGektZilV3ErzL1Oun7UmVxFcygyhKkgQBAWrvR/G0UPT5FZmQ5WMy1MhY/r9cRM0usgmzyp04GgJsA0gdeNGsXx/nNQ52PUYITMwj57AtkJHIBpM33p9TngrSZp5+nV3/5YToNJGBhdTp/83X/A1/fGXiyvoUhLhcyJZQJSMi1GwmwoCoRoQTpchS+oDFnZAA2ZxyORwzjhFevXuHq6hk+/PFPsFqv8ez5c+x2O9y+foXb/QNijNierwDKeHy4B6Gg7xqcn11gdd6j79hlbrffowCsO0CEGLg7NowjpjEgNBETTbCW55/JMPtGL1TJWRgeqA9XKUVmmVlbqV9v8OFHH2Hz5Ze4u7vFNE5IoklUMt/kxjXwvsFmc4ZnNzdy44AQ1DUhcHFGKrZt60Ol2ig2iRi1tbCGWGwzJ8RYYD2Tb3nEgS3RHSxADss7X2jWDmlEs6ZrW8AYeBFJDyGg9U1lVClSXQpgUpGiUim/IsJniJN3MDsFxEmx9b7quQDAFCcUoUxz167I6JYsWCJcnF9g1XZ4+cWXiOOEEjPG4wl3r17jfLNFurhAjlxsD6cTJ6Yjj7R87+2COCUO7LBwHrDWwxt2i0EBUuKCxjkLLDq0RJzkcS4ws96sJEVOGAjsWMABhk1IqHZrnWcR9TovL9edgMqQUABI15KOcjx1X1iCTlTR8TcxY6ZgP0XHjQY2+2aQL/WzY+TEximzBqhjcDFF0d6AJE+SNCoUovcKgBdHKNXQ0ZFCshYpRhxPJ+7uUydi8hJIxUEhEyHK9X+ygdh5/G/+JtUkizEefna6xklRzhoRIQa27kUGOQPbOJyOB4RhQMg8jnZ/OuDu7g6//tWveMy1AMUTzqmgXXVwxbMosvdYty0nlVkEMGm+PzFGFCpwxjFVQZgZYmDPCalYZXAnUnSzEh+HKfzcNtJZ1xjJl1LGQAuerIU5BnHsHGKCSRmmjrBkpMy6N7wuPZquhwlHTMcJjeGkm9kipTp5FCnglc0zJw518cJ5h2gSyijd4lKkEUlV90sT6xrvJQnisUTViOPO0NzpQt1leQOmGndADEQtGRWqG1CXR8kiEs9rWRMrYwgGXo6VwTl+gsE0+VLYcVG0EopQ6nWtaxJqiIvXtu0qM2GEuDfFIGMRmbvHja/C0kiQ7jN3vJfPuCkW1s5suSLC6JogpBBFdH8eB57GicXQRaB61bMjaRYrcAJErBa1S6jd15Tm92HGGYMFvH65A0vWoCGCxTyaNY4jDocDAnhUpzQNShZXK0iRIkBCivxMW0mICnFcyTHBe018JfFJGZQynIxENtYhpISpdngLvByjVfA8zTHMpMTjMhJn1UhkeBwAN7tb8R6ZZsZLyWgbx6BnKTCF964oY95hZI0kZxkELnHWqzEAVk0D41s0xsISIZNBsA2mPCHGVNlVurYb34DIwJ/YgrzEyEDSIr3MmV2DQh23SihgzcOsnXuJD1LvV6elIrGbdY0KnG/Qth0a73HY7dllSYrsLMz0IGOBYRjRtyz63jSsnxNqbpPhnIDiFkBhsC/GhKZhRtVqtQJzw7hISzKiDjKIOuZRZsYqB1IZLzK8T6AQsrChciaZiCYZf011VJEgrMrCo7UpzzHh7u4ODw8PWK3XaNsGD4/33ETLCY1v0fer+tyxy6hBTrrGeZTtcDii8R5t02IKLOb96Wefst35MGKzXqNxFqv1CtaxyDxZ3h91lF8ZBd45dNKQSTGibTxWtsXVJbPsp2l40ryapsB5TIiIgeO2l+aVESazIcNs1ZzhCDyGJSyh28c7PIihDwG4WJ/h3bfexo9++EN8+qvPsNvvMEwTpjHgq6++xuHA+99qtRJgtIG1BpvNhpsIuwSiDDPyOKhxzB7StQowg5cE1K6i1xzZqjuSdy3UkVWZaTkxuKa5r7MdgyXagDIeuQDjGOtemKqjaAAoI4SBpwbCABnA5VieM/p+xc+gsK2M5KUkY2i5ZHg/6/DknBFHvY+BQZoQEKYCwOLi6hkbeRjCNIz47NNf4RQtXHPBoFBiPTW+GIG3P9VoS1likatFaSmZTews5ww5cC7LrChuYKSSgcKgcgbqM8yGCU+yOmivIecsQuYCqWTOz6kwi6/kDEtS28hIX5bzR+LxaB3hkeSOXWadx+uHI/7NH/8xXjy/wfX1Nc4vN7i4OMPl5gKxAMfHe+TMwJmFhSOLvuvhrMPl5RXGcajgUxCAtm1bvHr1Cq9fv0ZjPdbrILqzhMNxRNdNLGIu+wkDyaItRgYxMJDAY/8cjyZxr9R8yRcrDRU1qZD3ozn6OgGeojS7LOZrnAqhkDZbC6zqFKvhhjzEREZobgWkriNiFgXDxX2SBhxJbAQKtn2Pzjk8vH7N1+LVK/zkxx/iJz/+EB9++AFWTVN1XFXOgYiERWVkvyCUhCqSrpBJHVXTnUjOgfMCaRhB9L4k986avy+a1DPjnkc9i4ApKqquDVLNwTLNOY3mYksgaV66MhqoeYvsFfNrJTcsT1lXwBJ4XYAtpCCW1icLxKWIxpB83pNaY3FU+jvcPP0moFNfJ5+V9brqeUp+o+7bdU3IcZDEIghg9QQhIqrXVn+B6m1TNECYW8oCoznP0J/Pb7d4lmnGLoqCXRV8IqA8HezTQytPzl/z8fn6cY24uJaylCjzPSI739tSnh7f3/b1nYGnhxIwpIjXwxGTIWzPzmqBMewPSDHCO1bqn4QlAL1xAHrR7hlPRxhr8b133sHl5WWl3Q/DCevNCu+8+w6MMTgcDnj19S32uxPaZoWLyx1KKSIITHjrxds4Oz/H1dUVjDH4+ssvQESsoWQI236FvmnQWAsnwciJg8rD/b1oCg3oux5d32HUxAiq1cPWwMfjQYKSx4ub7+Hm+TuYxhFTCHj96iVyKViJq9Z2u4V1HmQ8j2IRoe35EocQZUPmgjFGGT0xJM5W3KkxxAVcKaUW7M57md+cC5txGBCMQW4akGNqcpbEb3N2xjRioa4z+8vBNw1W/Qp266CYZliMHQJst0tE1aGJiEUwuehkdplvW1hjeQ5f6fWFr53qIPVdDyOJ6zROOA6n2hUrhccy33r7Hbx4UfDjH3+EaZpwOp1qsqDnfHl5KTa3jpMmR6BiYDKj7jEHYVJJ5zVnjGFEQx6t9bCNl5EVDmq+afi/SRMlPqdMADkughCTdPkKHFmYjq2+tcGRdZ1Ix/8Jsynn6rinmj2Vri+Jq1JdlwkGFQ0WTF3MwvaZcmDRY2fr9qEIf4kzOKLvpdfPSnFQr7kEKWcMiDyMsXVz1Vlzb0wFBjTcGdG+Kpk31/3xwICG5D5d29UOcIpcUHYNO+d0TVtn93n9xDkwFffE4SzL+g0p1mtf0twFSDnh/vEBDw8POOz3oFxwsdrAxIRxv4fp+qqxNA4nfP7xxyBj8M7zGzy7vMLlxQWuLi/R9z2PfTpmYBgymEKqm3iOulVzWO5WK7kvLHCdojIvSMbQDLx2NmPkOGMNHBk01stIj0GIkTWaJmaihRhqss5AR4J3TsTj5enMLPp8SgmWCA4GhrhguLi6hLUWZ9tzXJ6d473L5zgd9/jl/Q7t1RmarkUMJ07mUVCETVGw0FgAoB1spSVNIydMXddXION4PD55dp/M/5dSRehTKeiaDt4RU8Chmxuzq3Tt58gjB0RFukoAQQRWFdwi3cz4c1vXyJgUp1mW204VOCMybC0tYtkQFpJ3Dfq2x7jfYbg74Ld/52f4yQ8+xMXZObz3AjgwODVOEx4PB5yOA8IUsFr3cI5Fz/mAMjIZpAwZOfNoGwNnM3bTIwsE7/e1YDdW9JxkjVvODnDY7auINevutCyGby1a51FywbrrZeTLMbhTN3+a9foiN310+lAdnao4KIBuxVpiVkZmQQXWO/TrNVIBbh8eeXQFRca95rEeFdx1xtYRwGFgZ7n1ZsOOszLqRX5B45ZH/OzsjNdfSsKgY1BkSlFA8ITT8cQOX22Lrm3x1vMXvF8mHpGbwoRpUqZdkeYBa5kUEZMGgP3jIx53u8p0oJTgvMe672Gsg2sdhmFEjgNMEeFOiU2juMUREaYQcL/bIYEQSkbTeE4YDWCcq3lPKsBwPLDJxmGQZ4DBg77vZdKS17f3LDZtckGSSZi27eFcg5wX7oaWeMyiCGshZcB7XF9d4/LiAu+99x7atkW/6hHGEWkKjDcZ1oXKqWA4HtlRLXnEKSDFiGgskIFx3KEUBrCMtfBtUzu0y+SXiETTkxPrVNSgQNkpfM9ynPc+Ai9zZyy8tfCybhKYyThKMCACUoyYTswca/sVcgGmEHA6cZzBaYD3DquUqij9xcUlVivWnzHGYrs9QwjMYiqZBY75tR7GNrCuAWAQYsZhv2eRaudZ8sE1+NWvvsDXL1/i3/7bf4cpTPjpb/0cq77H3e0dXn79CuMUqhFLzrx/n5+fwzcN4jQihQnD8YjtZovf+q2fsgtvyXDWYRxH3N/fSxebdfRSYo2sIuPf1lj4NQP1Bny9pzQyGJcSGufgjcVmvUaMAR9//ivs9gckGfW7vr5GLgV39w84Hk8Yp4AQI47HAZ999ms4a3F+cYFhGPDq1StYy03afrXmRu/Ni3nvLQxURIn3U5gqI0Cf/9pIk/9zlnVX96eDsEMTrGPtwqZrK5CqDKpcMobDESVnOLAIfdev0DQ88hfGQcS+VRJB4CayPNpWuAlDtbhXXawClCjrV5pdUvAaIowits0SgwZttwJaBn3CxAz/pmuRCvCv/+Tf4E///Z9hf5yQbYfGWcTI4HAUR03rdQwxgXJh9lKYGCSRUF+k+E2iNZrUTMHIqI4W9NmI8HgB5YxMCREJlGXsuMwao8q80OeTt25u2hhD8BIHUxy5QBeNSxhuCuQw65PCqdss63Q21uLr1w84PDzC5F/ClIT//l//93j33bfwv/3f/B9wcf0cRA0z/QshpYDDbsdjojnDlAJvHDYXGzRtg/V6hbZt0XUd1qsVXl1eIqaEmCNU/LtpDawrSGliJhx5bhQA1SnQLlniIAAZfedAxmMagzQ8IhIBI/EIMY8Im3lkCAwsMVuvQDrqs0lPms0/5OpWIGa+1k/gFPl+eZLH67OhAAAgo3bXZ/jgR+/hn/2z/wx/8id/gn/+f/vn+KM/+te4v39A2/Z4/OkO/+GXv8D9/R3++q/+GtZZXFyc48OPPsJPf/ZbOLu4QNf3mPZ7YdPycS7H6Wq+jyyOpcLxIQE2xd1Rf6eCHIu6T8f+Cag6UkumUj1v/blgROoCqKzuOS98+jqqb0VPQGz9vk5D1JE7+X5+gmMoBCMgih6n7OPMWlv8QI+PZIpg8fWk6V+P5enJKqZV/0L1k59AWRX/qkARn1iR+E8CqOUl0CWgufKhzKIWWh5LKQWxzJp6WHzOLMXzBoBWZgYVSNh/Ij9TUGQCYl4HXoTmrbEohZtBZMU4Ky8+u9asBfPSKMpTeDJ++D/09Z2Bp1OOOKWIU5iAxsP5Figk4mpMu1aKpOTX31jYzlpMQivsuw5t08zCnjmjaRpsz7a4v3/AFAL2949IqeDh8RFkCGfbDbJ0NxvfAKXg6uICxhpMwwkgdtnxspl56STVsbqcUZJ0AkPAOA6ze5PWX1kmao3oHWSAkUAjrlOuovqTULDX/YrH2jYbxJSr9TyEjcALRQrzxHPFWTcXCIW31CdZkEweC4AsGiuo/HKUqhR2jVHwoyyutbqpWGFfkDHwYCCh8Q1ykUReRkTqvSJUep/+0fG8cZwqLTtTRjbzuBaQpfvN4oOFuPtgRcxbC+yUZvS9X6/hrEXfMP0bKDgNAzveJS6qUlqjFMj59DCOQSdmV8jCr0NPRbqyEaWICK7cgyzHZxwfjwblSmXkTEfAQLkUMh/knJECt9ROvajSfQNM47FN1KTt6Vy0Bo8nYWvxtyIBmK8PC6ZmGJPBhZZ2GsoTdkiIUYL7PN9thbKd5bVlGbSKBGSjwUc2M+m4FJqBJ90Q1LlDxd4houKsiTYLjBN4fImI5971+1n/V2OjXrN6TpxcKhBQQQ7Mrx+GAcMwYBonUBEw23sudpxD4z1IBJCRMgvrX1zg5vlzPL9+hs1qzQ6H4OfMyghRLEIcLjx3rpsUiUAwZ5NsT12U7SBikmRkLS62RB6FLCjFVHcjLZ6j6HmMKr6a2T0rlyTPqYppFkC09Mac2fLdWDiTYU2BFxYDd95bXG/PsWpapDEASTp3hXjkUbsXucxrpxRx9qgNDbnmvFmq8HASgFZBiJmuu0i4pLBIJbOIOEFG9Bje0s/QazT/WzsqvPy5O11qZ4lo7jwq8MuPqmYC87mRvLEC9hzrM8gwoM+jdoRnl8/w7tvvwvvZ0UsFwGNm3YzT6YRpCmi6RkafXD3WubunII+Vv6vGUETOTI7ThJeEreQUVNbiSJ9ZY+AsNwlUy8k7X58jjnK5xgRlP4bIybdeGI1lTxoJhpkntQNEVIX1QVzwJ2Eks8aOY+HbhYqJaurwekgy4s5jeTrGXePcolvmG4+cLEYBl4C5gOR9K+Fw2PMIZ+hQEjOSYJRdw3tGiAEx8ngcEWHtnRR4CoSy891wOqFtG6DY2nVH1wsYbJ8UCnXvyLyHAnxdY87AFOCnkZMvcdDS/VnH9KOwWE6nEw6HA6YpwLetAB9mZnARRHdJknNJOkmc21SAHJgTyoJSrZCtIXQts0qaruW1TwUlBmTicR4eN5jHSXj0k5ncPG7Bz34SwC/GCFsKXOMr21UBJHX2IgHRNP5rNz+DxwlDjOIWxYWtMex0CEfiZlogM8j8/qoj4RxKLggh8oiZtXxNAQyDWext7CBrhR3VdSu0TVfzta4zsDYKUM7xXF0GWSvLIRc+7ikkGAKDvIaZEzEmjMOI05EFkL1j8eNpnDAMMqbmPayzwoZkoWACaxnyNWWdyfV6LaP/qeY50zTr1ORckNNcvcx7nwZDBk1yzDXXMqWAHI/+lFLEfZlH05w4Fqvg+TQFLhYkJpVcYFuH7XaLnCWehYhB8qoCCCuekEV3KIEBBAWh6ji+Vlv6fKsGFvF6DTEy2zBGeAA9MeBkRYOsOobFLGOjPPLZNC26lmuApmkQrEVKEYfDQYAnI+/jWa+vzKPoWkzqZqLag3Ud54ISExJx0zSXDFuM5H2ocZssMxyNrIeXr17h1e0tQsoinWSQiV1kc+SmhnWe9zEREmcqCjde9TrxFkpVWyYn0RaS3J1kvdaRKEC00XLVf1HgSdeZPp+8hBigkeCMInUYATJSR1JHcOAvmdlWReOzhW6uovNocBoiTjFgOuyQphOG4TVev/oSr16/hutWgPX1nsQpIYxDveYpsiulteLYJXG6aZq6Bh8fHxFTqi6/RhsEUifw3q9ghRbjMmlgjGYw3Bi3lvf2yJqMWmiTNFp5NJwqQ6bIdSB6WtwX3Q8XOTr0kXyj0NfndgY1nlbZ/FKanw1Apmsczs62+OijH+Ply6/hnMPr168Rpohf/OIXaJoWf/EXf4Hb29f4sz//czhrcXl1ARDh6uoabddhtV5rF47BjDf2eH0Ws7BvWMCaQLIoao705BzLk/fQdThrHilz6qmeEb9VFWmoOczTn4Pj/+JK0eLHy7fjWgS1Mc6g08zxqawmvPEm9VBmQXitnSpraPE7y7pqCUy9eV2efP/NE9D7WhY/qCidVkvL85SajpZX6+kJFL3Ob6xB1FeWJ/dqzgdRG2egp1hL/ZwyH5tOOJQyf77+jjW2XvO69muN+/RZgDxT88gE8Ob1/C5f3xl4+nR3j1gKDtp9txFpCkhT4HliPTEoAlfLHQDAeDohhcBdNrI4nQ6IccJu/4izs3NcP7vBer3B+fkl7u8eMIwjjG+RCrOcdrtHnI4HnJ+f4fz8DL/8xV/glwVAYXvaVcdJ37rv4JsGbcc6CI2xuL+7wyQWoUCpyXrXtTg/3+D6+pI7aWTw9as7DAM7roEIm+3ZE2ZCGEb0XYeu67HZbuu9tdbA+4adHAZmGpSYYAyPneXIs9zWuNrFaHwD33iwMGa9ryLaxoWcitaV4lBQKrCwFCOuzB3R4Xl4fEQzDLi8vOQOqV+BiAU0cxp4nn5Bv9T3qAWpmS3VjTHY7/eYpqkWQoeQcDgecHd7h/OzM5xtz3BxeYmuazFG7myTaJtEAGQt2q7DMIxIKTBgSgTvWy5wjc6sF/T9Gn2/ngXuJHAmcc3zvoGbJtjRQdkQDEZGPD7eo6BwV7JETHGCbRqYxoPkfFMRcXPpQpGfwZEoo101zslxOiuCqAYzw0lG7VjeRxP8Uu0tUYpoRPgn4zdzgClzcKbZuWNGojlxsMIo584d/8xZTn6mMCGmiFFm6lF4fVhrsdlsYJ2HW4BeOvKZBXBoWw9nHTJE+0ODm856gBNi5FJZbVhooHW+wXa9ElwmCIsA1apV34TARYm3HTScp8LP4X7P7A9yPN8+25LqteBEtuSCu7t73N7e4vHuHlcX53jr7Rf4uz//OT784EcwljtbwzjiJt/gRx9+wICUZ4DGyfsDwGEYkHLGYRpqMaVFu3bKLDGN3YjbcCYD5xo0tqn3MYpYp5WN2DnPG2HmwimL4G0qGdM0IcaI4zAiiUuPPu+6eQ0iyKrXruTIwI0xiMSJtO8aeONwGkaMZsLadtj0HX7/9/4hDumEf/7//e+48CALaxxYL5gL/cNwALs7OR6TZi5UjYkKnpZSnjjLcKI+bxXKqmnbVoDkEVWEsz4XMm5NlgtlKMilU/ao1xsKQmHefPXZr+LrklAhsdupUWSKZq0slwDKwDgFEAjrdo0QIr7++hbvrK7w4w/exx/8oz/A7/78t0Gl4OFhx2PDMDDew4QEIKJpOzjvcXbGbqPq5CYVojBLgSmUCmicnV0iRh7/1aQ7ZR4L4GKYwVFLzMplMwPW+vNNsxgRMDCYi/9SZEQrc2GbY5Lny+Dzr77EOI7VgbHtu5qkeMejpMPIo2eGeP03xoOcg2866fyyLlBIGd41aLzHaTrySJdzaIUlq+tgtVphmiZ89fIljLFYrbdSSDb13jH4Efm+l4SH/Y5HlWJkHaiFNfrxsMc0jojjwC6nAFarFS4uLuq+VkelZYR0tV4vwLACYwDnDNrW1xEbXsvK6MyYRAMKhmC9gwdwOLA2ycN+zzGqabhLv17h9uER5eEe19fXtUFWwMVQiuwuOw4nTMOA7dkZfNOgX6/42XKDgAABAABJREFU/DTeZz7/YTjpAsc0stYkC+Iz+6hpmyq8y88es5BVbNwK4wS5YAoDwnRC4xt02zW0eeWdRyoFh2lAjDzOuFqt0Tgv7NkCm5lxyqwhw2PnueB0OEBd2tZdPzOwKtstVa1KLewps+08j1vv4Z3HZr1GMgalGOz3R2ZDQ/avcUTjPa6urwFTMIJBZUMF/WqFHkC/4nE561k+oI4zoeDinIWz5y8RNH8RkXKRkVgGM1t5vtTGfbXZwkoTwYmQ80cf/QQ/+MEHuL5+zmYsIeAkTcSLsx43z2/w8PCI/fGA7cUGXdshl4RhHDBVEwTCfr/D558HDKcBMSQ0sgbPLrasU9U0iCFhHCc0vhGmEOcKrPsk4I4A0dM4Yn/Yw4rWy3a9QYoRd3d32O93wqZc4+bmBo+Pj7i9vcMwDgAR3nn/e7i8vsLF9RXHIO9xOJ1wPB2raK3zLVIqGE5jLaiNNRyDsoWvoJ+ygJlRqTG7CIgWZa3GxJGeLDvlDcKOjzEAgv0qbaFfb9B2LZ4/f44CqozaJI0sEMGIi58DwRPh7NxKUTeDTk1tGpx47NhoppEFuCg4DSeEEHFKvO8OjydMMeI0TbAWcI6w6ldomg4XvEXh1d097h72gGlgLAP/DDJqngaEceQHOSWwKFnQRElG2YA0spZfVtc90too1+ksK87X3rG2XRomZBdREAUosdK9KIDsmRV+KfWSMDORCtcPikYRAYkHzhOpKHUBOQdYK41UJguYXJBKZJAWHvb8Gt4AD7cfI+z2+L/8V/8VfvijD/E//v0/hLGEMY3YP9xjf3/LQuk54eHhns1+7lassxcmOO/RtA0++OADvP/++ziejjyyCM7xus7zOguJm/2Fxw2zjOkaIrSN57qq0QkNCPMyoe88gAYhNVANNdDsE1HkHhsiwAh43PC+oFpUU5jQNi2cd2gc6+pqDLYLEWYFKnOO0lBCbYxxk1bcpQlgMw7VeQV2hxGuW+E//k//Z4gF+G//u/8XHu7v8esvfoX/0//5/4i+W2G1PUPTtDg/u8Q0Bvz5X3yCP/3TX+C//r/+1/jf/Zf/e/xP/vAPYQ1xU0ga5pBmFoMPBaymyg2LXJLUFPMoVqYi2Z6sRFlbNecH2IX6SYRVbFOZaG/yhmbAaomDKZhe33cBNxEEc60/n0GRXF+lP5/fR7/Hn/X0KIoAOGXxYm1azyjEU7BlCfQsiQFvfn0DFCr8OXqdvgFFlm/5u9wEIn0/I7yFMr/uCSBa5j4hwHIMZQbnSmE3zGLnPBF5ZnGTEUFy8ARTgYQS0d0lu9ShYpAeBBaoIG6QMqY+a3FWfbTFcaqYeOUW/g0A3rd9fWfgaRCh4KwXTDf6tLBWlSulHWsVkDWkha8I7hIwDEMNAE3b1fEq7xvWBSDuymYR8A4h4HH3CIDFda1hZ6i2ZUc57xoBK1RQEPU9OYFj6n6RqO2sQyPjf410XRRwqcefwagx5kJIKiZmM0mRnPNMu9SConYopOCSN2EWUDEoMj7lrOUuQFHJX/ksQyIMyV1RduWYwSZ1K1PaogaH5Zd2oCuTQQIC3y9+ik1dzOXpMy7Fp3YfASmsiTWUuGsZMI4TTu6E9WbDDnkCCzO9mR+2IsdirUXxqFGqFB4XiSHWpKJ2RPS8tOgzsq7KgmGk3Tf50hGdtudi0SgVscwBd+7MywOj7gkKtGiQpHkt8/1GLYRVUFxfpkFeg0cdP3jjQXyCWi8u9jKYlsV3SQvvRUjVjrgWKCoiXoTl8eY6qKJ1ZeHoKMATxP3GyM/nYEe1UKodD/m702uqbic002IVrzLKfCzL4wbUySemhFGEqtXJzDsW1K0U0cXvsWCpCNGfBu7YW4vNeoO+71mkskQsRa898dhF27T1edJj4QDOAvMM7NBT3SBSvpfoO2RC8SzSTAJIVaAEBUaWA2+oupkVsKhwqsKe+lwktV6W9TfHieU2Nq8B2fU5OZwij9+NJwYNetaO61c9x8vFWuHnyIorBmACVfaHFua6keYk1tcA1L68dpgXWhm8lvhPTvM658K11Pte/+jxk57jTGHXR2ZmMEkhJLGtFhQSg0gSfu0GF4nTOnpK2cJk7eBwwZ7B3e6b6+f4jfd+jOfXz7Hu1zie9vye8lpjrLiuQYTkmQHI3dM5xgLMwsg6DiqrQBPVrmMxcOccKEWUhBrjreV7Ucdhna3gAsl58s+ko4tF7BLwTsdASdcMxPWJACvMR0icVOZLLokZDWAtn5RZcDoRJ/Ix8fMVRNNJ4761rup46R928WSb9yXQpEClPjMsks5r0TqLaZpwe3uHru+wPTurr13Gby5kI/9+nvWqeH1ZZDBzdxnTlqkf1/P8nDhy7H6kSVoxIiTLDytZHm2jRDXHUHDLWLvQw0uwiceq+SVWtESMaAl16PoOTcOuTWzjPu+ny/2zoGC/2+M0DFzcSuG5ZLfxs8dAkQL4el5R9aEE+FR2i+5LKKKtBBnftVZARwIsF2BL1nTddwrHTGUYGDJ4ynqeGVzsriqFoOpbppZzGeeYZStrKsZQAWsnDRFtzHA+wM+AEVao7l0ko8uUsHj2OJBwvqm5AAT4Zgav8QQPBmW1nCJibUYrjHvdp9u2g/ctnt/cYLVe4+7hHgxWdxWA1Bhwtt2iaZpF51/Wve6j8r0CSOHKBgkMcDBTpBRw08z6WvAtxyEq89E5zlkFeCLZtwaRd7DWom0a9H3P7N9pQoNWGgGss6h7HQFwAohm0ZfzvhFmmJHrI00vguhbZjEk0Xx0Ub5prJjCzH6luY8PCDMawujkYFRH8ZvWi9QBa0TFBUOMgc2ESZhF0DVYhbT1P+rYSk9zIxGJZpbRzJpWJ0POsVUgn/dn1oOaXYCDuPIyM2Y2kCBjeaw+8edpETjHWo1BVAv1SkGCjuYX1FK4zLFrZjDwT721lb1Ym5DCQtbryXmW5r9Z8qb66RIbM5Zxm6yZY5jmoYn/mw2Jdi8/28YZxEwYQ8LDwwN2u0cACTkTpnHEMI44DQOmYUIMAfvDgdnqcsxTCLAhVDmBpvFIuYVNVsTYmeGbqQCZa8qcyoKFryuu1POck23NK+Y1OS8PhTH43xx29crOX0RUdRmV7YGFk3G9lzS/fv7l+XnF8vrK65Sxo58cEjd9zi4ucXZ+gc32DMfjCQU7PD7usD8csY0Zq36N7fZSTD0i7u8fMBwfsN/vOa+X2tFYHR98+ty9CbRwKrqoWfEtNd6TU/rm+z25ZphJ07U5SnOceZLr1//O31m+Ny1e9OT73zgGvHHn/oYvfdGypqL532+CTvpZy/8+eTvS2uXNdYBaB+n3KrtKr/U3Dk0jKOpaBWHWvqoXkH//TSabvqbqW+l5LD6rrtlacy7eQ56Bmo/Xj1sAb0/KDilm5kOF7hNLtpXec3p6ob/z13cGng4SyKz3KBkYjqPMOANPZJFJi/Nci1C1Ys/gLiMADGNgNxLvsbm4YO0E61BgEDIQMnB+fi6i1oRhGPDFl1/g88+50/CP/9E/wg9+8D5+/vf+Dp4/v8EwTDgej/ji86+QpgkhRWy3G7b39B7jOOLTzz5BjIEZUW2LFzfP0a9XaPtuMcOeUBBhTEHMEafjwJ1WoyKMltkCKSBlU0/bZFHKN4Su63g0IGcZoC8zwEFsfdu3LbsoOYNm8ir7y4UsCNZyF5StVi2GkQtu1Qlqu47n8aeJ/922NcHt2haNAGrOWoRx4iQtKwvHcTdhmYDK37WAKqUgSPfKGQvfelxcXAAATiOLqJ4OzJ76+vAKMAabcY3N+QbWWIxhkuTSQUURu1UHyyqmyDnj/u4OwzDg7u6OrX1Xm6rpoIVM2zIrynlXH8wQxKFQHqSVdEqHcYBzrK/SdR36vge73EWhjQOrvp03MAESlNGjXzUZV6FHpSZLYDQLIE8fQEBACTO7YijYWjQpkiLKOU7cVbR5CfJ5EbzV58gSVZFpJw51Y2A9h2Ec5yIMvDEY0fIiWc/qMKKUaKXra0LgnJNjnM8DBQIkECeJKMjE9Pftmsddh3GEipg3MvKlHDoNT8vZeSud+9u7W9zf3+Ph/hExZZxfXKBfrbA9v0DK7Bql15KFHgmn0wm7xx2++uolbu8eEEtGt1rhxVtvA8bgfv+IMU1IWdxwpoDdww6b9RrPnz3n4tlyQQljUIwIBofIXeCFS1ljWUcoKjB2OALWoNmsABLgQJaEJQKKqdeOKcNANkApVJPkTAmutTCeYKeBr1MUzQUYHnfIs9CvOi9a0yCnzMyCwADt4/GInBJud3cwxuCq32AMIw4lYKCM5DiBzIUFqr0htKLTxa5ZFn3fYwqBmSaS6CcZbVXrbmXOzcUvYRxHWadAzhFhmqq1vDEKogFIBcWKC8uiG4jCrE+AyZl2KXa6AHe8b1nwEwVEXMSEiXVHkFlDDcYJkJAQi4yIlAxLFtv1lgvRVNA2Dudmhf/k9/8j/C/+8/85XCCEIQAwMM6g0zHfYuAdUFpUq/qUkzwzI4whiUUEb6lqLpUszwbxPncpJheq3ce6eFpUuDomNyduytZgx6vViuD9EnAsnHRYy1owEjMMgPPzM6xCwOE08OjTMHBs97xuQg7C4kw1DliyOByP8N4jhYBhmHA4HrHb70GpwHsnzCGP7XYNAKK7xnbv3jfoeo/vvfMO7+/WIqWE4/FY2XJq5mZFf+Tq+hpfxa/wb/703+HFzQt89JOPKujprIftHDtXeo+262CsxWkcuHBBgXONjEdxUf/4+MgFuDBglDVRaHahXK17WGcFkAYIlsXH48jtMGuxPt+iDRGH0wQyhNV6jb7vsVqvMYYJIUYkAFPOvF/LSC8KkPsMZ2aXVAA4Dqfq/Ehgl9RCBkSlamb9+V/+Ard3d3j7re/h/PwCH/3kxzwC5izCNPJ+LuLf1hgYqxpBPL7FzB3P45HjiNPphFIKzs/OAQLixM/1Yb/DZLlxdXF2zmt3wY9XNhnHG1cdw3LkkV8jozrkmCHUdh2bxJSM0jYCEvLolGqOlZIRwoRpGjEhI6Jg03g0zmO9Xtexr1wKmsah63s0bSPXLMN4j1wKTtKMaKwXB2CLw/6A+4d7nE7q5mmRUsYwsBsds+TOsd1s8HDg8TMd9eq6VvYfg5xk9EiO+4c//CEKwOyoGNl1T8an3/7e29DxnFwy7u6Z2cEi+wlhGrEWN+UoI2evXr1EjBG7xz1WqxXOtudo+gar1Rq6sec6msW7pbWs79Z4D7/qsIlnzM4yBn2/QkiPuL27w+FwwHq9xtn5Ga6vrtCvVhimsY6BNm2LggLjZ628i80Z2rZhnR9lhgBPDGF0vI91nQjr1RpENINBmmtl1ss6HI64vLxkcI6UvbzQEJL93xhurj67vkbXMaA3TQEvX75EiJG1pCSOHg4Hdg0kBvHX6zVsIXbGDQFxCjVuet/AGgbgSHQ9Y2BHRs2RSymAI2w3ZyAihH6DXIBIBiVNyGmso4exRISsWovsBmoty4n4Qiiw8L5lQDWw+UNKgXP1klhnKAaRoSC0PYPyY5jm4oy0mT2zMFESrFX2p0XTtzi7uKhC9FPhJkFJPDplRK/UWYeYZG+Rue5ibZ000X2DrEPjGnFidjySmTMwMYuLUkIhi+gMss0onp3wDFkk3yNSBoUCEyNsEzGOAXe3r7DbPWB32OP1l1/jsN/zvm0NNoF11lqJlcycNJXF5IxDSDwyPZymOd/WnMByAsWsfGAMACXCGGYmvxbMMUzIuWCaOL5DGgZOpTQAxKTj4lLUTxHaAKcCpClgSAVhDGicg/EKPqHmPOpKWVSaBOCYYLQJg3k/h8B+pQhZrSDEDOssunaFzdklXrz9LqLUt33PTOXDaUDIBca3aG2Di2vCcLjH7uEWYRxlCoU1PosAiCBTGdBa7yvAYnTETlhRMGICIq8ifhGoLBqu+h5vNIL+RhaL1Cja6HwKVD0FkJa/sgScKrtqAXLobz5tP3/7lzZQ1AV6CRRqiffk8zX30k+hb7xk+eLqdMgjzByrzZMRMwKKrRDpzCJCfe5V3wmFx3WJSJqdMwCkRdObx8Kg9ywAr/81T3hp/KUNnZRmcgpKYWfX5bkT13aGCMU81fwSxLceO2saWxRT6nHoMZQsQv0LMKo+yP6bx/fm13cGnmo8SxmlLBFevUD05CJV2pfgnjqbuhaWwo8/+oitzc/OcHF5hRdvvYOvvn6Fu9t7nJ9fwPsGD/d3CGHC8cRJ7Xrd4/rqCs+fPcPv/d7v4cMPP8TV9TX61Qq+6eB8g9MYcDwesdvtME4TppSqkKZvPFJOOJ5O8C3TdbOwLm5vb3E8HhmNLkXGIXhGHGDWhdpdalGuVDO9o0SsdwXiEYxsDC/eIjIbWSx5szhWpQkZBafDnkUjOwYMuHOoQm+i+UBmBsfKrDVUH1YtUopsbllcQgp43I3btFDr7xi5C1xXI9gdxAlQlAonLtM4cYfTUk1yT+OAGAIXnES1A5oSb5JLEbWQ2Va0ZNH+MRK4iV339Fpb60RXpojmjWqaJDUx4H4GceJNDSlILAKgGddXVzDWoJdxAdUqYNBNxRetjC9Id0KT5kWoXHYGKuNJI0WZX5Nzrm59FZ5fgEbzw87nq0AMi4EzcKGONm+iyYq6qx5KSAleAoImWNrRm0WSGZwi6QRmeX2Wz1RdFb3nSdYhOwnNGgqy876xtvV6c+BsvJcCmzfCVLRHhTkA1bUFGYcInFSFIAkUPVnLTwM2ZDyOcNofcDqdMAwjQgh1zGu73bIIvXxOEVCOn6UOvuFOsLpi1YCr91gFi60FyfqYRCx/miZ+fmKEgxPTN3a/NNARZ6pgqPabIABISglT4uQ6yOhMzuzqWXU86KmzyCBW5grwTCHAGYu+7WWj5jEh6y026y3U2vw4nPAfPvsYd4dHbC8u4LuGnUdEFy5LekCW1zsnFMxEIRJxY0Pf7JLSU3dGWhwvHzMDy43nsbIc4jwexMMddQnwfeBnJJclC5STVsJCLyqrzpYwSVFQfMNgRcqSOBiwVLphxy0AHhYWFivfse5gjrh5/gy/+f0f40fvvQ9vLFIKyCEjGXEIKsrqovoIQ2IoBOiyei1APLaYEwvsZ2F/kK2AnTOa+PIYESELewTMOALEUbLUNVfkeuh+oozJXArixFo+yUl8z1lylZlda4UpYi0zaJ2I2paiAtpK/Sf03QrbzRaX55e42z/iOE0sNqnge5r3mqedXu7iK0NCGx3DNMrIUBC2DNV8YHb4lAbTZgvfNuIox8WQE82etvUymiTPbIGM9CTkxAYQPMoIdF0DZakpaNs0HhtsBJyCuPqJS2lKOIWj6G9l+KbldUoG0SecnW1RAGl6WKgepa6DHBPQcOyzxtaGgzJXNZ7MDBjeBEphzTjdezKA88tLWN/g6voam81GnM2oxj0GsjimqeunXe4lEGap6uDJ1hMTj7WpIPs4DgjCVDrbnrE5hYLhwmZkl0AJ1xp7pSDh15TK+AspVHtvNReoDQ0ZzQpx1q2zzjOg4tzsCCbg9Cw5JowNCQY5Jx7/IUhDwPB42zDhNBwxDANOx0GOgaTwZDDSe4dpmlh7THQWnXOz3hahrhVlBuveDxQuzg2xyxfx+BkXCAxYIklzr/DzUXKujT1dxzllXF1dcbPOsVmCkdhKZIAyC+gCphbSvmk4LuQEGB419M7BiUNSjAn7wx7jOKJtWzjnwDlLQRFQrOSCg4izj+NUcxDdx7SomBkac8OLTTPm0eraBODknptKmRktjTjAaoOSTQuKpEjKoJJR7IZHcNumQeOcNFA4H2RtWCOuZgapSQjG1gbgNIw1tyEQmsZzUykwQMZABO8v/FwnMbjg+KysqBCDTD44MaAygOV8NAOwKbEWqgnIiY8vxwiUzJMXxgIm8fibHDcyizVTyUBmhpSyBLkW5fVuCstB5LzI0zWkar4n7MVSWAMrjhOQizDeeC/N6q2u6yFlpAw+JnIgU+CaFmTZ9GDer6UG4U2XWbrCpOW4RZK3GBDleu+ICK5dwSDj1d09Lm/vYVDgZSSzE0OAYTuAiASY5PtQikwpGAtXCKfjCQ8Pj9U99jQMXA8ZHedVGEBZJKX+Xy7Etu2GUFJGKnOtqa64MEZGmjmOZRm9pKzNU9m6oKNwElOtZadh8PvweOmCjb2I4XrflsU7xx++ZpobcROt8lIAFDjPseLu9ha3t3e4v38EFYvz7RW/PwrLr+SCl19/BTV/uL7Y4gfv/SYur6/hnUVMAUlzVTlmFINiy8xQ1zoFWqZUzo7sHfLdBfiDem5znqcnuQSUyvLdSHPfRb6CpwCH7ou65Ev9PF3/qK+r//ybQK7l6/UfT4AuCFCkn6fA0uJ85PfoG587P5PzRIr+W89Hj36+Nnj6NotrvPx6eowza+iNq0Fy/PUnVIGuJ+9Wnlysuvb0vZfgVK1b3/ievk7r4vk4qV4LzT/550/r2ifn8zf8/bt8fXfgCRDAJHKiTbZeME0ujDXzHGFhl6zMv1bHTZ7fvMA777yD/+V/8b/Ci7fewnvvv4+Hxx2++PJrfP3f/Lf4+NNP8ZOPfoL1ao1//a/+Be7uTnj9+mus1yu88847+Mf/+B/j93//9/F7v/cP8d577+PVq1eYpgjXdAghodts8avPPsOvP/8C2/Mj+s0Jq9UK3rfo1iuEnHD78msYxw/aKNTRP/njP8Gvfv0rPHv2DNvtFh999BFKYUtpLRQtDKx26o2WovxlJAZSASgTrMwl8+wj4MAWm4cwIiQWJz8ejywaOZyAUvD8+XO4pkHXtDUIlMIz9dyBdBIkM6J0oWrhKptKEWQ1GYMwTojEDkXO8WihBvCS0xM6vROR6MZ77hrFiOF4wn6/x/n5OQDg7vUtYoo4jgOc5c6G6TpJyA13S0OEKwXkzBNGljGWEySyQum3WG/XaPu22mSXUiS5mOaRx8JAJz9oXNg1XhghbnYAA4DVD344Ax3S0Y0yN67MoGC449F2Td1oiwUyfRNjr2PzT744yCqAp/c4Jw7L2RhJWqmeg3O2HtPymlhr0IBZSvPGxUHAEgvdjtPE7JQQ2KnQWuz3DFR6z8yE8/NzqEtWFawWwIHEzYC1FxgQ0aQtZh55g5wHC44uvmgRbGuCwJT83nESlMGAWpBApiwvwuyWQEQI08RirsOIaYroZLxWQWm+/7nGOUNA57lj/+X+iMcHpiVPU0BjHbbrDZ49e4a+b8HCsh6UCIfTAGssnl9ds1OY4/GzTIVHOwTlR87IUxB3E8tdoZJwPBy4wDkNyCWj6zp06HAODpYWgIXMeBPf/cSzNQBm4GSaJhyngUckosSQEPH69V0t/KrOj4AHDw8POJ1O+OqLL3E4HvH169c422zxg/ffx6ZfYbNaY3t9iX6zwvnFOaxl4PJu94D/+7/8f+P1cYe33/0ecok8zkepisIXKa4AICQeqfLegVRvp3T12PnUOM7MpgCzlfgSkGh8g1XX43g4YDwGuJWHt160nTj2E+QZIADETNKUixjqkYAPnNhnAVoh7Aodu3NOLnEUbYLM00POgIXuycDAwsHgolmDMjDEE/7uj3+K//K/+F/DBCAIQzPFDHh+Ri1MBfA47y0oiS3lJb1ippJh3ZEYE4ZwlLUOmK5jFpS40vWenyEGHPi49ZrlxDF60pHvjLoOeC3wdqz3IMWI/f6Rr1OjziMGWRJjvR8KvjaNCM57X++ZJbVq547x9dUzhJDw7vfeRf7i17h9fBTwlwkYFgRnPKyZn12NeprwAEDf9Ygx4f7hgcfjYuRCXBi1yrjkxWTQtT3efe99GGMwjhPceo2269ll0ns0jWOAyvnKzIgxYxwjYhwqg8Nai76/YYcy5xECr5nNag13dibd8lydPq0xGMcRDw+7+rz1bSeW7NyNd65FCBHDMNT7qHGO3eoSStuBTIFXjUWwzXeUvKaAgTIuVNRJBxWUc57HFr//wY8AABebcwEtjBSn/Hzp56socylgHRgioOtm10ckEfG1KJS5+C4ZwzTgeDpgv9/V6//WzQ03J5BrbFLGWJgCxmESRpup567MGGa1ThjGE4u8pwTnmhq7Z/HqgP3xwKy1tsV6vUbbtihxAkpGBCsHu1YY0JGZeDFMNQHWZoozht0kG4vDYcBut8N+z8DL6XSq+6g+gzlHNI3H4bCfG4TGomubKmDMxhihMveYZUQIkRkFZABjHdoFg02pe1NkNu1qrdqTArBijpH6rFw9uwIRqk5XTfCXdYQwQ62RmLFeiyPmDs5buIafYWcs8sQ5wKtXrzGMAzbnZ2jaBikxS2eUZy+lhP2ehfpPpxPatsXZ2RlSPCGFyIwvYRJ571kLJmVMw1hjhQo+s+Oo5IXGwLdtXTfbjcfZZlvBcyfrJcNBW09kDDMKVyusViusO97rd/d33HQqgCMDYxiY8t6jdS1iihiGE0KY8PDwAOcc1us1ur5F37cIYUIII6aJNQVJxjoPx2MFqUJJcr84hsYT576Xq3OO5qmASGKpY73Vi7MtxmFEDhPiOCANJ+RuBfKOXc+SqzpE5D14KoEZSzlFICcUeV5AQLLsPGus571knBjsAO+FHEsZTUoCcgFAHEecCuB8A9u0LMRPBhk8Lhgn1vkLI0tKkOGGMBGxjpn3LIkiuWDJGTEzMGwl/1DDIhDJ+C03pK0hOJqBnXZzDpMzfvHxr+EaD1fYjGB9tkHT9VhvExrX4HjY4fb2FuM44ng8IkQGj4l49PP29h4hJFxeXsJ7j/v7B45plsdzG9FxYq1Xzg+yxAqOrbyvF7D4vq3MJs4ZyIJNPKKMIMeEshQuJ2kyE3GuIJtZ4zzsytZYkmNGzLGysPV1JZU6hjzvg1T36WXhPzdrSOI50PcNjocjPvnrv8bHf/XX+OSvP8Ozq+d45+Y9vL67xWkY0LgG0zTiP/zFv0POCTAZH37wH+E/+8//GT744Q/Rdh0Oh4BYMhrXMigkXbICZhyWUoStNh+7itsTIFM7ZgZsFvs6yRqA1O66y/M+B2hHTmcrSAAcUpDiW74KzVgF/708CYEcM4AqZSOHpDXFkxe/AUgRFgAXFPR5KoAtHfAnv/rkbd6MyYv3nMO/mUGcxa9pGlTBvXoJlqhWefItblx+GxNoAdjJnsKf8S2V52KtVaBrsRaW4FM9ouU9B7DM8ef3UlBsnnbSmizLOTBx5dvhJZrf7Ft//m1f3xl4qjiuXNNilnOeDDfHwJutgYp4J1jfoGla/PCDH+Lm5gYf/eQj3Lx4gd/8zZ+i7TocjycAhMvLK/zu7/4u3vneu3j77XfQNB7Xlxvc39/is88+w7Nnz/B3/s7P8eLFC7z11ls4DQN+/fmvcTwNSLnAjVxE9qse27MzXF5dwTrHI0FCwXz2/DnOz8/R9x36vkPtWJaCq8tLEBFubl6wTkchFrtLBSicuKOwY0UGi2t6v9BZKpm7OfpAJ75pMnWASKl25oywmrRACCOLCjPzZ6a/ceeME3JIt9JiDnIqclvSnExywhrrotLusS5A7xzaroNW+PqapuVAngSQaruujuXpn5ILXHFwDdubkgoFC7hSLRsL64kYIumWcTEXZON0i+S2lFIpq0RAI7pey5EfdsEQx7XEi7CgIEys61OLYSmWQxXi5uQqqe0ugMNuL93NLQMwMvZG9DQoKEtG2ThFPpOLOO6IFzPreUREDhzK/rNmYQGuwNn8B+DujNqU62udWMdO4Fn54/HIeiOyITCbgZUUtLiaxrEmE4Z4hGh5HsayuLsywPSe6/0tElCW0FspWUTn6Ek8qb0gko6+jLmoZpGeFwAUYUF472GsQ9MA2+0ZnPNYtS13dK26NhIgwKKteiMcSA+HA3a7PU6nASVlXGw2uDzb4vLirHbHvOhWXJ5dAOCEI8WEYzyi7dmqXfVqTCGQc1j3zIxpravJhW17dNZh1fAoQtt2XASB4ECwvCOLloVQukuSjpsKcxeEGBCmCVOImELC3e0dM9VC5PNfbZEij6u1rkXrW9y++gQvX77Ep598jBgj2s0aTdfh8voa677Hpl8B3iPkjLOzLVAy/uqTX+CXH/8VXt69xJgTWmsxFk4++VwXXauivKxZ0Fb3pFI30CL3MIsGxuyeWDdHSbAsGVApOB2PGA4njMdTdYciYTEZK2siCdBtSBy2uGBXLTc9vuU4yLIzx6AMAZSkuQFYYr0lMjxCaWFhCiGFiBwiDrs9Do87HO8f0ZoGHqz1Qp5HiABgmibWM/HcvXfGYpqiAE8ZKppIRCjOIZdYYzPHZy4gCJy0pykoHomUuShUMIFEeNw7D3VwXDLLGLDhjC0lcSslqnGawPFMNXFi1BFNN+8JAt5rN1lZjzxuxCYJ1lisuh5UCMPxJCyCjIuzc6y6DiMiOzrK8SjDjArVccqdFLnDOICIQUzW+ZkdUlR/MJUC33V4/wc/4OsEFlhvm7by7WOKoFQqUGmsE1t2Ho/iwpeFfTXPKEV1Bgc0boPGNYhTBFJBJ7bnMSSEYcJpf6jX2sIgjlPt6E6Rk2IuUDj5ZhcrLioBYBoHIGesuk6uIY8Cl2Jn4Emel+Va9k0D3zTi8mWqqy+vDz42axloUVFnZTyqHg8nggUhsKZmEo076ywacIz0sg6NjArzeA5/jnEGqaRv7D3TFLgY1WbFwlBAn/EpTAgxYEwRITGIZoV1qPvt8SRW82ThrUfrW6TALLNxPCKnCDIMwPZdJzGoiLtvmRne4qpKxCPct/vXeHx8xP39fR1h5JzAVJa09yyb0PcrNE0rumxSGImLqhYInO4VlJLAlhBgMCMG7A5HOGNxtl5Dta6U8WQltyFhbei+HWPU3bAWTsZyHlV1tCqTYG48ceJfqnnLFCa5zhPIehF3FUflzAzw4/GIVDLOzs9l7DFVPTQGIYSllUxdW8MwVN2oRmJQ/UxtXFpT91B1gF7uF5q/VAalMGiMMd8iT1CqHo3z7Jg4jSP2UqiO01hBOu8tbCdAu2ozLgonjWksqzDg/j49+axSEg5HNiYZRXNKXT6z7B2lFJZfCBYny6Lq+2FA4whNYxBCQk7A/d0DwjTh/OIC5+dnAlRy4zJlHRmvJSIfM5h1ExVodk0FQks6AYvrgVhkHc6iJOpUZ0qu65NrCI5LmQBqGt4vqaComDARqFGdT110BmMCDBISmPltrDhP5wBYQnYGTkTZdTTTeAeAzQCYYciSISgAtQ2ICo77I169fMAf/cm/x7Ob53jx9ns42QAyATcv3kJJ17i4uMQ0TSK/QNIgZYCoFS1A3dO7rpObY4RNicV9lRHUahsmrF4no8WRQWO+ZpGfLbmmTpyFlaGdYgRMFtaoE0DJ894sIA1LaQAlzyPTRjdvvSf8ZNRkZH7a9RAXfxewh6B5NpihXQqcIVApiNOI3cMd4jjgYfeIEAPOL7a4OFvhvXf/Li4uzvD9H76Hv/Pz38Y/+Pv/EOfX15hiAhnOkRX4UPDBSIOjxnaiGTSQZ5f44nIORvN5FPm9zOh9rXFIco4C0ZLUOllPlyqyI5HjzWuiV3ChAVVfraAWnhzLsvHOucP8Xt9AiDA/S0+Am7qO3lT1moEduRSLN/o24GwBar2JVpX5PL7xm4v8ebmC9HospwW+/bPn950BpDn/XLLr6quLvj8xkJzlHtZGKtcl6napjGY9N45Fsj/ppEqZP1OPab6neoByBGW+Dk+v1d/+9Z2BJ/Ys0g8SurYIPxcwKyXHuVuOwjojjbPo+h4/+9nP8LOf/Qy/+bOf4vrZM/z4o48wDCP+8j/8JZxvcXF+gcu/d43fNtyVMUR458UVHh8e8Mknn+C9997FH/zBH+B0YhbO436P+8cHQFwErAto2xbX1xtsthtcXV+hgEcBjLNo0ODFzTMYIpyfb2uipdTrq8tLrNdrvHjxDpzzeHx8RJJApxR7kgyThfAKbMNJdioi4BpjHTmsaLgm4fKg+MbDCe21zqjGJKNlvFnNHb0Fmk5Wl8BcrEBEAQVsUaAmhlCTAkbqbaXte+9F+2gOAsYadH2LLDRPJ5o9TpIV1XrRL7I9axyolbG8L3dLi1wzOW6hWMfCY4YpAkkAgJTY8a+RzWnJAtFRCV3LBXzdp6ydREkMUqrC8Ar2HI9HDtTWcdGirosl4zScWAeq60GeADFNeRJe5N8a0JVKOq95quCZkcRfo7IyNHTMKYlYpSbyywBSSkGI7KSlAFQjYtgpRYzjyOKCsg6qo6GMJ0RxRpvGsYJoRhLLKqRrGIRpuw5PooTcM2Nkbhxc9GmHJGV2XtN7AgjoRAWmSGJTWOdj2fWt17Bwx4qPi0V3fdNgs92i7Tqc9Ssu2g1v1sPELlhkGXiq1rw543g8Yr/f43QcYIhweb7FxXaLi7MtjqcTxhDgrIUnB3N2xvbQgcVtp2lE2zase8OrE5aYUWalCLJgLS1rDHxLSE0jXTtOoviCsCV3deAoQBJfOKb2F0AZhxmV4RSnhBASbm+ZzbRarWBtg1W/wTgMGE8TDHk0vsPd7QN+9dnn+KtffgxjDD786U/QdR0ur6+w7nus+h67cUBIkenuKeLjTz/GX3/6V3h19xqu8VidbaBGSeoXQik9ue81+YKMB82717xhLgRas8aKBUhiyMBbixgij0GeTphOI2IX4JyH9a4yKjnGZXH9sTLWVRZgF38xa08Ks5qI8MqzUogUYuCqEJeOOg5ExjLYXQjpFBCHiYGnBwaeTL9B065grIOK6zJzNMh+RSDfgGTUOIYAVTDQZDOnxLQgKpV54twELRoIhBFSBBosivkCwMvIzzy6MpUwgyGqYSGvZkA3SYDW5FHATWInziiAetM2c1KVC6YU2UHP2vp91t3gGG6NQd92MGCTjyhA/fnZGbarNb7evYaRkR8dl3fGwUCYmznhcHvAMA4YxxHeO3R9K2Nqi8RdO2a5oGk7vPf+BSdBIaJtGnjnK5OG3esKbOais3FWBKAbWS/AMBzlukeJOyxKPI4jztcbNNbjlDlwt55Zw+NphzBMGA7Huh9bMgjjiCiitcYyk9S3DT8xKSLHwK5sskCncZCx+S10dNqIMH0FnjCPdPOeHEWjaGYxWWF0QeL9OI5oGi8Nl1SB9mmaRHJACqmcma0nIJy1Dtb52pDRXkPTiFC5xLpChcWCS4QnXwsEBnhTZUkvxeGXMX+aJsQcmUki4BNChDZSci44DaLJ5By8GDoMxxOmacLu8IgYA1Jmxu6z62th3xjZMzKc9fxMSj7JzZQBt7evcX9/j7u7u/qcbDYbWOux2azRNC3W67mBxPqKBFOLEi7q33C8xkKiHyFywXx3+4obbAKQ6b7FLoytgE4KmjPz6zQMlaVHJUt+x2Nws3g36vWto22yRrqO48EYeDyS9Uc5qytF9pTMz/nxeIJrHM7Oz9D2HaLsO2oUwMCThbHcLEqJ11bfdvCdR9O24u7KA8rszgY4z8PjavrAj+0M6i5zUI1PWqCrpALADYQsTQ5rOF/MKWNMYx3jGwXs0kZm23WYAjdoaiErn63jwjwZsMf+sJOmcc/XJmeMcarPBl9rzgFVT7YAmMYJwRA6P2IKEQ+7HfrOYV0ahCkhJeD+/h4pJlycn+P84pxzEs0vy1xnFV1EhcRllZAy6n4i2wDSNIB/kZm7iLKPQlhPhYEnlCLSE7IuM2t5GgISldrMLSTsYGEFETtEoPDsGWAtpiSj2+Lea51nKYGY+TXOScOVme5FcptSOFcyZFhTMwQgJtC2ASxhePmI1693+ON/+6f4jZ/8BD/60W+CzISMARfrC7Te4vJyjxgjphhqE0KZnnEKs6lNKaLHSojjsujmZ5tBvqxIhKw1iZkx8jObRbwegDE6HmiqOYOCXKyvy+P0zqJOWuiXFUCPx5bn3FwOZ06XJFd6erTyv9+os6U+VvC28H5MIjNiqCDHCftdxGH3iOOJRdmfXW9wcbbG3/3tn+MHP/w+fv/3/0d4+5338b13f4gpRYxJgSdT628da1dwaTkar7n/jF2U+t+yyKvqf5d5ICnOVOHQCkTwv2fQCWUGnvQePsGL9LPr7y4Ar+VlW1x30nqKvnnF+e0WwE41qpnfR2s14CkQQotj+MZXeXq/BZfFciHMo28CDpWKRX7j66lYt3wELfSQZH28KRA//878BgrQzbjZNz+UlhdBxkqfAE+6Hgk1X1EGFgGIOT65bkYWARGJztWbnycC94smRT207wg+fXfgybHmAaV5nITnk6l214zSbmNB33a4unmBi8tLXF4/w+/+7u/i5z//OR4eH/HVF1+iyJiBs0wpJhRM44AQEx4f7oFS2LWq6zix7Xp8+ulnkmwmuKbBdtsiBGEbgAX/2Noz4uL8DEkQdLIGZAnDNIDAYqk5J+SUsN/tsNvv69gSBwhThXcb3zASL0CRAQNNJScMpyMXCeLgw6N2vAFMYZKupaugD4tWOmRkxBR4LE9BCGB2FzEWhoU3oA4tKWviEmVkSoVc5edKl5bOT0wJh8MRbdtitd6wDoGMQCSh4xYAjefxvSmIM1LVCGKnLC0ecynYnG2h2lNcnInwYS7wDYMYURgBRUTOrLUwngVGU2VR5CeJDoDajbOS1BQpstTGOVWB7llPgBk7FsY6OcZcmRokIsgKnWsgVkFtFUSepunJuIsRIGQZQAmozI9YAGt4HEDv3bLTDSh72aBETn2DaJPw8SdM4zRfG/lcBfa0Y6PXpOs6qHCzNawrQEVGvQyqwK3elyLnr2egGi92QTNWAEr1CnRtVdqlkY5rmu+RgoDecFFDpaDkhBQiUmKGSNtJx9nMY6ylFLEk5t8x1qCzLVLh350SM6Wc86yX4xwsSY5lDELKeNw94u7hHo+HHS62W3z/nbdxtl5hOLLuxxgC2tLBWIe+7VEKEJskOmfMIhyHE7IAF2o444gp/42MoBHYVcZLNxxSdKPwCCUwiylmcKcpAyjGzV0F2Y2cb7AyFs4n9DHBfv8H4sbHoMNB3EqapkFBwRQDfvIbv4H3v/8+fud3fgfGGlzdXGO9XuHi6gJO9OU2XY8CTmCPxwP+1R//K3z65WcwHjCOAOKxXFuojjnXPUmMHryM07KbpHSyHRdWOfBadY51r2LKQMxIOQJwNeFhYfX5GYXcW2bszGN01to5fsmmaYjBRU50iDVJ5BlVUwplR3HMSCiBO/JW7h05ZnCWkpHkHnmhKZLl8cfd4RFfvfoKf/aLv8Rvffib+ME77+P+dMKgY0Rk0HcdeCvlNTtNE8bhhEGF1MGNB+7kehjLNuogC+fnDutJxLsJXDT1q74+OyFGpFTQNSzcqg0Gguh2LTRzVNB3HEcGIlBYn2OSDb4QUmbL7a5l2j2zKGYgWt9rpuMX7I9HBlZ9g4yCxvnKNBnHgUf6Co9jtn0vo6eoGnDJMKOFjLjAGT33hBgyjnsWJvfeieoWoek63k+FxZlCRAwB4zDi1cuXGIcR6+1axLWdgD6LZEYSataly6IfxqDeOI54+fVXsNbUQqeAO+rKJJtH9qKMWsXqiBlj5OMyxKPGZDCFsY59aMIdpgCgoO8uYAxh9/iA03DC/d0d2qZD23W4vLpC36/4XI2RZoKA1JG1HCMLjFRA3VgDlljk/GK320FFp71vGXCDQUy5Oj0tO6YxpgWjFsiyB3jn0LVdLSoLhFkDA5lkhrUehthtiRrJOzADy/OaZdYMWWaw2N6j7zXogUdkAeSLDAPRopLGyzgMwtrjBkQKRfYgA+sadC0LYLNmGYM0CswMAxupbDZbdF2PZ8+e1zzg/PxMWE4dci4Yx4CQAso0ofHM0gYx2yDGAGNZa4mBXHGBzamCimEKiKKDNKWM169v0XU9Nps1Nxd07NYYcfUlkOFczxDgnUXTsEwB27FPmMaEcRgA4n1Nx9yssbCNFeOZgmlk7TIYC28d3HrF+UeKgIiaD8PAUgwo8A1rg63WG0BiY5gC+rMtnPNofIMYAhodtY0JxllksPYXu8Vp84vjguaNOsaqzAAiErFySJwtFeTJKDXPmMYRKEDbsuC3t64WSIfDHsMwMlgOmQAQDU4zWZymEafTwKwkq40Fbj65xku9zOCM8wzOGmPRdczcGcSIxOiUANhVMIRYx5n7vpPx+gznLa6uLuAsoXGErrMAWRAcgIi3v/c93N0/oukcAmUcDwdY13B+CUIhvo85Zwynge+JjCamGKAaXiACrIMhMZFpStWPSpnNkRS3aFpm+0/TwGyFmJBKAkpkqYTg4JueAU7rgWLYhc4a1hmcH8eaF7DcB+eIRuKv9R4w8rtB8wGZIiBCiUCYWFvKeMAIEJE6jxMKPvnlx3h++QyrboVhmBCHI17tH1BirMydnJM0GD36vsNmvcHFxQWP9AqI2TTaSIjQJNR6MTEps86kAgCs05fhDEDeYApc/3knzo/S7GDGEtdnjnjUTYEJ1TAdxRDHCjAvQQ9kpGGQWeeWGXvcWM0pSkzkJh43y0oFVOY6W4EyPGk052zhmxXefe/7+MN/+k+x6nuM44gwTVhvVmi7FheXl1it13jvvXfRdh0bFnRr7I5H2MZz8z4GXjbShDKFaqPYCTMziBssZA1kia3GYAafBPYxqmUnmoV5CTxLfaW1U204LsEbrSNk5am+85LTMzPsOV+WLAdvjpERnoJE3/zizyj6mYuXcqgxM2hFmJlekusv78/MlJrv/8wumo+brxItfnO+v7Iwa124wM3qn9p7A7ggBDBrQD6tL/UzFxdDrhUqSMSNLrPE8bAExjRG61cWMN7wL4peHf9dNcGU3cbTCfOlVv3aDEKC4AyS28oF0DN7cq4wZnlwf+vXdx+1UwTa1Od58X1aXHR2TlqvV7h58QJX19d49vwG77zzDt5++208PDzgeDji9vVrNG2LzUbADOJxjDhNOA0sYn22uUHXMWU+JXaz0c9sOnZtQ2FNh5S5SzSOvEn3fc+aNyUhCZKbRHtGqespRQzjgP2euynOtrWAT5Hnoa0hlGyQTalz/UlcZxj0KtLNNzBeFO5LQYp8TM4xssm1BgcwtXwmucl6ORWN5gdGO1/zpq8FBoN+8sDTLE68TA6AgnGcaidx2VFPOSFmXvzOc4cui5ONarGUUuC8R0skHSmIWKYCHAXeMZsopwLvOemmyJ+vtL0qkg4C6X2K+Wlw0MBmVDsBiCWLKLa4sWhAJelsSRIPmAqU5TBbcEMCHeWnQUXZW5rEqxZDXduYqfFyVwQ5ltlY0fOx2nHI83XnV0upungAk1JfpYjTJO/Jc7Vgd81AgY6p8bmWlCqbTH/OoJMIJ8pu/aRXsACT5AD5WGUd5cKaOyiQOfsZKZf2zYyWA/X+lJKr+DI7Bcn9prkY13NLqoVVRDDcGhQpsEMIYMtrX8E1R2BnDgE2hmHEScAAbDe4vrhA3zaIMSCmKNpWXAw4GcliS+4CKp471DGwi4NcIwKLa6MGdH6mVexSuzeC0c0bSSl165T+nCR+HBega91wd7Ep7OZiz4XpA2AYRux3+wo4Kmj67OZZLQKtteg3bHAg83Jc7MHxui4Z0zjgs19/iq9uv+aYb+f1ymcx05EVrDWWi9OSMyehdcPj36oC44ZBDvm2AMUKZs4i9GpioGBRXZy0SGAW32BjCu62iHQbj8LKhq7XmvFSg1JkFFW6tJoAWcvJNZJu4wLmFOINltge+3A84OtXLxG+/yHW/Qq7aWI9jsKphbOuAto5cS81iBtdTMw6UKCALI9pQQAYI+tJO/Oc6JUaP3V7TimzQHhMEmPkGSyoz1UpM0NKu8U1CYfUKgKEcvON4zMZqgV8Hd2TeMhdNWYijNPIYtoLbRYrnfoYI8ZhrJ/nvGcheBRU0dUCZk9KfKysGAHdp4l/HyXDyBhF0zJ708rzFUUDMEwT9rs99vsdrLcwpodtGMRIaWbRLuNXAQOnpRgUMKPzsN9zMUpdjWXKSE0pVTZmga4lBvYmcVxlnFZ8ZIlZplrEaOGQ4jQDRoYwTSMO+z1evnyJvl/xn9WKx0t8A0uEUOIs2C77oAKxhrzsPbOYeIwL5zDMTNQkxYU+o8u9Upl0CjwpG41AdQyvMgoFgNJ/sz6TPIdmNi2p8U2bLGKO4ODhGo7bOh5DhYWmtammewM7sCbprCqIYVDt6Yn1l9jNi5BkRB1AXWsMRBc0TYtOjEIm0Sg8P+dRbWMsQog4DVP9TGMSMxqtjmtk6FQxX6tZzFwLNHb0ZLZilr3GGIuUegAJ2UjZVPNfjX1ZzpmbJE4K33FIorPEwstNk+Gdl3vNo77FsD4Qu7gBthHTlKZBzoGfAcsXeRJNo7onrNbwCirK/uysjNIZgyjACDMBWX5BWcWQxhyzsgEF+zRnqoLrcq5Lh+NZDgALTUYxSgFAaCUuz66+0zjheDgwaFgyjJ/F+40xmGLE6XhknRsRap/3XXk+nKtFl+4jCpA5AdJUIzSJqUfJnJemwmC1cw4lccxq2lZGtAusbUHGIUwJxVicX5zj7PwMrnGIqSCq66Ow3WrxLaC2IS76Y4rC6pInQQq8yoyUvRApccaQOX4DPAarBXzJCSVFQY4Ku5ClyIYV1jFjldj1OhkAMsZJZS6nK4dC9hd22pMxUb22Wq8p4GyE8Z4zyKGOwxMK4B0iFdy9vsPxcOAGacmI04jT7hHTMOJxv0OIsT4n1jvk83P0Hev3rdfrqs1mDJuMWEc1xzYyJopsa+5M4JyI/16E7EVQKS0DkudOJBKM3h8GlTIx2UzXYk4FyfDep80wUrBiEfcIwkQxUjss6tsqHL7Ih7kWn3N9zR1njVrWH92cd/jBBx+g71qcTkeMwwnXz6+xWq/Q9czevLy6QgwJj/sDChGmGNF6D2dUsGWR282Yj+TchCgyJKR4hGA0FXxZflPeR812UF8yy6MvvwiY93u5Blrx1NfQvPaKHrHWAYvP1Pf7xlfBk2P51hfoiwSMoXojFvdA8yQscBLUdOvpWdGMZb352fpUFUlK5/pMs+pF/SZLpQqcF4Lq30Puh05c1BxX32NxfE/OhOqpyud+yyWhN/5R93E5A5Jmu4BCRFSB6gwxeVDASEE0OcBa/9SCcH7/Ny4hZrH5b72z3/j6zsBT0kRZjwbAdrvFdrtl/QhrcDwc0Pcr/Pbv/A7ee+99/P1/8A/YmUGYG1999SW6rkXTtliv2EqyE0HSpu3gLP971bfIhYWPKRDIOlgqoESStLDgHBLQOBE1lE5sCAG+bdBtOpDlq3KaRqSc0DQeQEFoHMZhxPR4gjFUg+Nms2E6ZA6IcRJLdWY9dV1XLa+nSW3F9UEDCA5wbPEbEzvpsZPPBsbYalk+TCMIBs61s1gXcVLEuiNycw0naynyMSypzgAnBYbU4pvBFNaSsFwQl4L94YBUCi6fP2O3j3HAFAPMaDAlFgHspw7WWe5UW4LN4gZk2HbeeQfXeKAU7I4HGENYdy0M2GY5UQGQuFtTMpw447GTDR+rkVGmUFj0WpOTRtxcci5IMWH3sKubuwpNK8TrvINazetDpR9gPetI7XY7FnU+HvmykpHOvq/uNm3DoBOPdigIJF0Q2SxIuv1hmnh9tC1y4oKpJubSzYccf8ycBCEVHt0qpt4zImaoqU7FFCa4wsehXWsGtSSZNwa+bbhDCbDwqaEqIqp272dbto3Xy8G1oQRd6doHcRzRe2qdRYpJLJ8fmZUE1v66eX7DGktEcJbgyVbWoJVNShknpnBSaJ10hrJ0Q2PCKEDlkiJqjYWrtCsGfQwsWmX0yQlYWbslZxGVPWB/3OEwHHEYB9jG40cf/gCb8zOsNiv4dY9UihTEwBi5k1YUxHIOZUooQa/N3LkaxwlJ1qoW/OrqYr0AQlk1HjIsGXhSpg1YKD3FWhxG6eqVXDjxQYYvBqYAw/HECaowFdfrFs43aLqubpS6xjVx6dsWxgLkBGQkgw4GNgOff/UFPv/sU/zlx7/AbtzjrR++jWAI+8KuMQpqowhAgwIYy/enjBU8oGyBkqv2jCmcuI/TAMEnQUTouq6OxHjrkBMLsU/jiPF0mgtbKiimIJWEkgqGMYuAO3eNkfX5zQyyGUIW3fEsYwZk2O2IjIEjB4tcmxNeGSMgIBHHHSrIxIWAQQFZB993uHn7Bfyqx+e3r3B/2GGcAo6HIw7HIwuGS2I4TQH73aFubxpdotiu+8YhG2BKEZQNrDYaDIHGCUDmYpGAxlmEEPDw8FhjhfctnPM4hgOosPsPEXFc1QRJRkT0SxscD7sHvnXGVVZukfVyPB0rRd44i361qnuBPuOhJIQUcf/wgJILYsgoKWO73bJwb9dhmEbcPd7jeDxiu16jyDajQJYTHbzl9zYbtpEfx5MwpnZY9T2cXeG42yGKKYdvGlhxkNUmQsoZl5fneHZ9hc12A+sdhjAgxVQbAdbyXm+MrTpTKiBrDLvqPXt2VdmzYwzYn054eHjAMAw4Ho+w1uDy4gL9doObrsXd3S2m2zsMMWDMEWY6whiD9WpTi+H9/oj97lE+m9B1Pdq2YXaLZR2icfRw3uJ42uPx8R6+cQhxwuXVNYyxOBz2COOE4+EoY4OsV+W8x3g8omQWQLbWYL3eAFBNG+mSl4Kk3W2amUCq/bQcxdeG0qrvauFeM9ZCousnRZWkF1x4PdWjGkd2DFUQfxSwQ0dZLAziEDBGGb8mU4uIcWR20zhNvCd4fv6u1ytchEsAbDTBjCzL2laytzrXADCIqeDu7q4aoVgRHoakAH23BrvJEaYpYZwGYeQysMWgF+siOueqzmEpwEHzAcyNsGmckGJEnAIsCDfPnjNYMiUBYzPGIQhTkxPyruuhrqA5s3ZkiiNi8KxXlRSs5RFeYwyK8xVkNhANRnDyfzoeUVCwKoDvPNb9Cvv9hNPhAFsAWI+vv/gSX33xJV9D77Far5AB3D/s4L3H9VXPeUjOlcXF42jAZlMEf5iLhVK4ALIycpdzZta0t2IOwLGjgHX15vGlxCzQEHk0IzPwdnl5yYVL5j2bWbQc1djR7AHDOCCXgq5lzaLHuwcWFO86jlExIgjw/eWXXyJME6yxuLi4wIc//hChcPNuHAZpVPFY4fl2KzkIj+WlnNkgxzXY7XfcDBDRaJMSMxytRRLtvrZr2X2aAHIGL773Dm7v7/HsxTPc7wY8HALSCOQQ4ZsVjGWmcMkZHtyUbp0FpchD90XAlAo2Z96bpNSzjWeR8kwoIaGUhHE4AqUghVEKP+IxvJABAdbGkQGw0TYC4DoU45CdZ2MNYWlzFcj5yrRouOYQkKdYQXyVPhgH1pNiPcgCdJzD51JQkgPBoFk1sCZjd7jD8fCIHAIe7l7hV5/+Ei8//wrH3QHrs42sp4JhHPH67hU22y2urq/x3nvv4fnNjWgMWqQxS9xb8z0TJGkGMNVshECkx5OEWdih6xh8skagNlIAXwEfznVzIs7Byqy3ZD0zE6uO7qKZrTqz6oo4HEfOH0WIX/GaZdm9bAQsm8/AXMyHBAHqEvxqhfd/9CGIGOAiawEyPH2SC14/7MWIC7CO5TxiSkhjBgzHDhFBlMaJgfVNnT7qmpZLEDEZGk5j1Riu+7cEgRIislHYDcCT7OfplxMmqzaQiuTEOu2BUqBeY3OcKTXm6rqeQSdavrDGp3n659vBLD1KK/Ee0gzlUrEIS3vxu9DmT5kBbdJ7OQNWgqfNIFGZiQd8VQqMgk+L9yaaSSMK8JmnKF4FmXhRKAJVli8R8EnOrwJA8yRUTmVxvKKhSwvQawEekq3JmzzbudaDVH/H1pyilDIz2Up5sgKKoOZLcKqy/RbnpSPWRVjnkHzvb/v6zsBTEcHntu/QNg36vsfl5SXOzs7Q9R2sMdjv91iv1vjRhz/Gu+++i+//4AdV0Ph4OvKG4hw8MR1T7Yt15MiLMKRTR7TIHRYrKDkBlb2jF1utcjkZ5y6+k66+irLQNLL2hcy1a5fQe4+u40266zo0vpGFx3okiELPJALQ8s02PB8MGAixiJkadn4wNVlTK2IOnvInZZnrZqFyjWpP0FsBXDJQWU6M6BuQEUt3CQTWuWrpqyi7EVqa6kGQJKK1Y2W1uy9jE6kgW9Y8KChwFnNiqYGVWM/HZhIWgDKW+BwqxdMwW0KZG9/ExWdE2lYKIjPTQuSOM9M8GXhS0T8y8zgcB7wnb8jHUBZ6NE8+dakf5eq4iApjFwFOSOm60pGOmmS7WQujPniSTM68BszRSL9TNyYDHWnSwsssmFLLDqy+Nz/oes5yTY0F7KxB4Z1slsI4UZQaWCDwcjT6/ibPtqlRwRbDwc4I6EfgLoqVhDKLULyuIz1ZIsARIRWADI8DZeS6MTHAqN2feTPiA6H6PNcrSABEEJYADOOE/fGIYRwRIluwt02D9WaNpuXnUcdTScas1FZcAS8FcYrh4olgoDarzCgQJkZiCreR5yyWUDchfe4LFZARVk1h1kGO4iAoSbeCZplfIp06YfeAahHdChjhG4+ZwWcXzzAnHkYcnXX9e1iYVPDwcI/Xt69xDAOmHJmRQ7ym+SwXQpQcYep33qQWQ+JMKVkJfVVUP+ciBYipx6nrVIFQBU3n5TGzVLIejzB9dDMuEge0c6WJA0gEyYU9pTR3jQva+S6LZ07HH4to9hQpJPr1CsYbHIYjTtOIECdM08QMApcFtCXEGBDiJN0dmkeGNHaVwsw+FJQSERIX/MYa5DhxoWCKsPVaidlxXn/WwWQjwAlrasyjanLPRM/DyEMbIgvRD8MAAsF7HmX0cAgCwMQQkSEsn2KqviB3t1gfKkZe12qwwKxfkvG2WetKdZNiTixSqcmMJGkcc3O9/jwa7eAbL0whYUtAYV2NdQlZnMtSKjW2tG3LNuuNh7EWMc2xjYj1tDTMUpF4ZLkZQsTMyaZteGxKwIEQA47DiTXHhpMwt4Q5Sr467ikzIk7s9rVZb6UgYXYDkZF7yKM7Op6enUPjZc+V8b6cS9WoCiHAmlybTDGx+UXJmfVVrK0j/mMFXnzdIxRoQ1aRXarxPS3eM4ZYk0ZtPGmk1/2sJpFFGdpS7JAynmYGFAqzA6cQBHzKiDEAIBGLZ4AmhMBx2DlYgzqKnRLv3eM0wZUMD2ZHN00DyJilOpwy60bkEryFUzRMgLBSijSJ+FrM58JxU11qQ9A4r6wS3vAYTKMa7YDZJt3KWmfWcZQxTG7utC1LDhhTakGlI2gcf4nHqYjHeJh5zuBBzhH73QnTFEX03Mw6UWbWq5THaT4nQj13DYqz5T3H8NNpwPF0nBtyMSHFgHEa5Vwiimo1ah5pZtOXmhNpYaNMeRCPTxhCLnPe+oQxk+UYpaBTptNcgM/3KpVZe1NZH8qwBbHgsY5bTSPrfa1jwjCy8yuz+DK++uorxBCwXq15LEudIiUeaaG7zHXqV+EGFzy7rerVnatKzEUT5jRO5Ru6rsNqtcJ2s8IwZTwcjvwcSuyDFPQQZrTmNbR8M73JXPUKyznJfZnLVqqXOC+OifT/nxR4JSUGsTKBKKGYjGI1z51HYPgUTa1h6qYszHT+COKEAlIwArKHgPddnmqGzBKgWIZJwzQihgk5BYRxwOm4x8PDHXYPOxTKcCKEPk4jhoEb+tZZnJ1t0XYtvL+uTU8+BJXTME8unT67WlvkAtGvJamzZI8Ea2Txui5SrKvekT5SBJNl/coelnJisXe9T3KVKqNOYmV1qqwZ1Jy/zo5tej/luBf/VLaMAj0As4xZC5fgDLHjYOFpk4yMkAMfk+T+srBkD5yBB11flYFXmB2nTdNiijwLy8G3+Vw1L6NCMLZSQutxL1lKy/OfX1Tqexlo7S2lrGZmy7/LMc7P4PI6LeLfck/C/Pr6v/Xx0WOaI5E+M/pcERUsRZhKefLyxYWcr0sNfWDQc3Gqi5rym/964+r8jV96HoXK0+OgxedIvYGnh8/rqX5j8fsKVC2vD+SeaA5Ai2s4/8p8UN+4LstD08X+dK1Xahcw37tvqSv+pq/vDjyFgPX5OX7r5z/Hz372W/iDP/yn6Poevu2qLkWI7Fh2eXXFrl9kEHLANAbkwswlpdSuN2vuzspoTClJtJw6Tr4AjKcTJ6+yCFTsWamgBWAxZtHqsWRg247dZgCEcUKMEa9fv8bheMTLl1/BGIMXL15gs93g7bferc5epxOLYR7GAxIlnF+f4+H+Hp/86hNsN1tYb9F27J6yMVsQSFzVMG+yxkgiHFmUMwbcvXzgwkJmh60kYhGmOhdtugbOGVhlV0iCOQpbpRTAr1YctABG6kUsr2nYRco6z+sxFxDzU2BQYAsXqzFxV6ltucvjmh4wzEQjIoQwAoWvtW0tfOdZW6WwM0YuGSTaHiUDRYrD6h5yOiFJUmqsgWv5vkBpvMgs5hgzmpZBshBGSSJ5rCXkyAwHYxAKJ9brZsXaHsJQIGv5/EWnSvUGSgHIsSPM2vkaCBlAM/W4yHoUCECReUMaY0KMY2XnWRkTSABKTBh3x6ol4p1jVpfMSIcYkCFUe2thvZ8TPXnqFTyzZHhfjwmZZgH6pb1lniJg2RbeGgvXq9MPoWtXks/w62MUkfEYZZbfiDhzgcm8KXUyU38cxgqQsFAloV11sI3DulPhUdHvSgXQ8YEyu2YAQCilsml0MyxCw8/g97aLkVNjWFQ8TBNOwyAjPix2aaSjJGELlBMQJzjr4a3D/e6Az1/e4eu7BxyPA3741g3ev7nBdn2BgIzH3UnWoUHftLDGoOuauZgHgVJGZzxs1zBgK3Ek5wJHBiFF7B4PmmfDNzyqcXd7hxBD1QRbr1oQgIlYaNmKqC8BYrmcWEdKrgULvVrkzqE4j37LjipORlKtFLMhBnRNi9Y3dXfUrjxER6QxhJj5tcEyBf1f/Mm/xJ/+8s+Bix4tNSDLpsO+FJkpJyCxICffD+6qGcuualHszEvOKCmBVIfLsNB/47mgjnGsyXXM7OJULDt4DkKfh1wJIgLDexbONtxVjQEJRYSZAVBmbRsCsuVksRAX2VZYPySsRmZu8nsb7ysTsuSMFIO8BkDmNTnmjEQGpuGC+dnNBTwcvnp8iVePr3C7e43Hx1scjkc0TVvB3VIA1xGILGswyTiOyVzopOnEa9QQjscDbm/v6r6x3+0Qpgmb7QZd2+Hm2TOOh4HHR3g/A1AiToeAnAraxsPBVPbs4XhA13do25Z1OErG51/8ml2gSkbbtLi8uESBAwzquHq/4lGGbb+G805GvQuLljuCcR5hYBFw5zgGXj2/RIkJw8MB1rJIbhIDhiHzHwNxO4JFKkm0/CJKSuj7VgSJuXg4Oz/Dat1js11LQR6xuToHQGhFb233cOAuXSF0bYfVZs3M58az1ltK2IjobFqxKPJut0MuE0rO6Hs+z/P1OciQAIgjQmLNDmZ4Zez3O+x2jxjGAU3TwnvHjKjIYz+WHM7PLvC43+F0OuGrl6/grMUH7/4Afd8xs/WqIJd3cf/4iN3hgLu7O+TjgPXZAzabDZ6vr9GsOmzPz7BanSHFAmc7TGPC/e3DzD52Dm3XYjid8PD4iFQusAZkpNhgf7xHjBEvXz1gs17j+bNn8I4d2rhAZV2uEAOOpxMDCOCRxvF0xDRFpJjx4sULOOcRYkaIKuLL4E7TNPCOtaIAIImte9OxrpyOyKIU7E8nDANf9xgjGuvnZoFUGEZ05lYy7mUym4MY52Al1jOrLsLBoHMNsuHcIYQTVCtznNh6ve9WMNTDe84DLy4ukIs6u6IWgAUR+8OBHQxF2Hy1WnETU1iDHAbEAIQsACvgZUFJwobPEcfjCccDyzGgACeRZihk0HUdrq6uMU0jjqcDTqeAYTzi8uIcjexhzOwaKqiqgOC/+ZN/j6+/eomf/exneP78OX7+W38PTdNAHV4hjOWYIk6BmWubs3MpbllK4O7uETFmEK3QNls03uP+eMTtboe2dTA54e6TT0HjCb4hvP7qJR7vH/D977+Ps7MzXD97zsW9OBMbZ1mAOiUe48oFnRi5pMQj7tZ6xClinBLG44BTytJTK1UU3Mg46DgOaLsObdsggpsSowDjOuobZHwQALaX59hcbPG432MYBnz95VfYPe7w6aefou97XF1d4ZNPPsFnn31WAefH3Q5N0+CnP/0pun6Fu8cd75luHkvXD9jt93WkV9cLOxz2HFuElVtKQdv3c6MDUrDngjBOOB0GGGPQPX+Oy+0lfvz+u3D0BV7dPgCuBXyLMY4o4QQvjJlutWawuwSEwgxFSHPcaj0WI4PIOaAYQjYAcgblDMoAMxIZYDBetP/y7HKnbq1MoBJjDQC5RCBmIAUgSIOyYY3Lrj0DyCCL9i03DsR/V/a1MEUuTK3j/I0KQA4GDVyxMAVojIE1hIlYc+x42OO0f0Qc7jGeHnHa7/Hy1Vd49eoV7h5fwTnPe1jT4PryHCkX7B8f8fnnn2O33+Py+gqrzQbhYYdMhKpGaM1sChJjZahI/xHjMOHV3Wus12tkIjjTVJOMQmA9vVIQTYJzHq330OTfFMt1ARjU3O92SCkipMCMO5kuMGTQNg2zJhMbbVj5Px0tf5Knk2gcCltfgUuZRUchZksDwuQX4CuViGlkRv4Se1Bw1rasr6vC/CklOJobVCio+lSqD8y/z9MaqmWoTeK2bWtMXGrQcsoqsREs12KdGBctvK2d1FwpFyCV2TwMOt43a8KpCzgyZsBjAaYUQ8g0M3kAqZvB5j51DE0pSbIvzYAJodKVoFpqpv60fqDUJ/XfpNdp8VoUHnd+4z5Q5kS3NgkE+3oCAMmLl+PvBfy6TJWQ9lQbXe6dNoOfgGgCRiezIDbI0SoAq2AcryKaNRkLZoLBU9ypSuksx0BRtEHLn2F1AkWAqypInutJVuAwyYnNBjhUr7uaBdnyFIr9276+M/AEELq+xwcf/Ajvvvcerq6u4HwD6z3GYRRbV9ZO4E44i3nqA1TkLlaNAqGssnMcs3NIEpu25bn+JKLl2h0qgIxDMfOHix0tloXOam1l3ahAbdt1KGBqLRd24kYDTVY4yDvv4ZKvIFIKEWfbM3jvEWJEi44TfFnExhqo5hKzIAqi6MkksWNOkbU/rCdY49D5hm8+CJF4lIe7Y6qZMQOQzs1dC+sYFDEAirgVEeQchSmRk2o/yQOR586dBk19JufFyg+rJmlEKmAeFytZGEoLxoMuyBoTFN2W189f8t3FvZ+ZPvwWnHQIfV9GK/QB0dlUfadqSVxy/TwFelQ/oHY2ozrK2cpm0iBirEURRpwyLfjnXIxxEc4sEu2CxBg5IKiWDlG9X85yklCRwlLq/LQytrznkcVpwfLj+6HhiOq/swQrkiVAi0Bn9TouaKR6Q/W6RdFV0nErAAsdFCPjlbPFshWAEHo8nKfU6zV3GvXfGmBp1n8AeFOWLnTJi42G5rn3ZTDM0oFlYDOBckYWMd0QIoZxFFvjJONBK0moRUtEjAmysHVmq9DFiWM+htplpiJgDgO8fFwsOkyZgewgLi187+1C2yhJp3QG/nLOs9aEjAMZ1RNTMUuCMHfkOskIpQoa62ZVWT1URE9rTnyyZS2Lu8cH3D3ew3mHosxKvX9F1wVvoqmk+gyiKIsy19GnuTs6/64CVXqzlYKPAmQZOa4djtpZmwX+F8FAWFSyucn1zGB3weXzrZ+vnfZSjwooKTMQnFifqWQZYJDNF5lBqlSAmBLrmhgHNl5O7MwVWQ+MGR1R9EwYeEolIyfWkWmlOaLXYhK9JWsMphBEyHoW5i0AvGOXNtb9Y+MFY5Kw6U4MtEVmkdrIjlBTYMHfeVS1YDgdMIYJD4+PiDGiW/WctOaMcQpI+YgCQtN2aJpWdJ4MChmhYMv6F4aY92zz3RgHZ3kcO1OCcwFexpD5WUuIMSOmAl+EoSD7d04JJbFDkxU2srG8SzHwwyAFj6Ib0VaSrjFEc8iwsH3XtugaBrqtsSgy8q0AZkoLarwwMofFiI21lgVEMwvBa0x0hl3NVisuOp1XdzeS5Fr0C+HRtex413WtPB88Hl/U4dBYdC0L+r78+iWOxxPu7x9RCvD8+Q2IHIzl5oa1PCI7Mzdld5emkDKPvGdmo+5dLGA+C+OiMFskpgAS3bJxHBiwPx1ZsyewCHYOEURWRtJ47Jr3QL5nKJw3jVNgy3ghVbSNrcLppQApL3QWlVHZNJWpw6MwrEujlHwjoz3VRcmYWmi3iwYKiKAmFwqE1X3AzmNdypTT8SnSPV+KjixAg+5xanfOLCJA9RxB8yj6ZIC80BoqYkyisdU5O9cl00JEX5iK2nDTZpMRIHAcB0zThIfHezEQWNVYrez9/X4H5xweHh/Qdz3atuPrnWadJGhzgVTbVJgxaWap63Z7Op1wGk5Q/Ut9JsI0MVtoGLDb7UAgXFxegnXQmB0DCftsSlIEYNCAyv+jwt96vev4Bgjk5lwtp4QwBWYRLgqkJONgmpOYur4k/yF21DXW4vz8gllwYHfnzWaDEAPnIsL8e9w9wlmH58+fY3u2heZZagig21hFQ4nqflZ1qohZrDXvlT2v5szEcX9mtcozS1z0b7dsasTCvPxsROg64lE5fi/J0VSa4omKi7x+If3NO6B8T25wzf0k9y+6F3JiDHWh4jUuzEZJ4Pln/KcW1CmigNcJA08ERnFmQfMsjZ6iQBwnGRKbVOqiVFYfScyKOWEQTc6u70UagLDb7UHGYJszpikg5lxBMhjDTXQZE9Z6gUfsBDiR66ratSkz2ygn1op1vgEZi5QKDDKIZi3OCkKU5fOll5DXJAtby+RMMaCkUwiztAakuH+KF8ixFHkiZL3M+dj8PJUCPEExtDCQPDQXYSRJ4z4XHRNePo+LL0nptW5afhXNp7SAeuN89e30Levf6Q39JlqogL75+bqelqyh+j3U8Sx9pjQ31DcifPNafmOUrugxQAgM33YMNVTJ+8o467eUmDPjZub36zHqRSiYf1d5+W+CJfOxz+eyuCL1f5cnqCNy87/rrRfQCPXak7z26Xm9+UnfPCidOPnGq+Yy58k51M+Sbzy5Hsvs+k17PiJZW/yLuna+8YHljX//LYf/5td3B57I4Or6Gf6n/8l/iu32DMY4diwZuXs1jhMedo+1AHPOoW1bNJ7dNoyVcScQkAv2u30tnEMIGIYRYWLq87Nnz9klpvG1MOEgRnCe0LQW1ri6eZfMXVIiQt8zamwbg2IcyBLe2r4Adz1acbXxsM7hNE5IxwE5F6zXazRNj5UUqc4abLotHHk8Pj7i9evX2G631aFBmSMZPEZIACwRhoE1L9T1LAfeLJuOk+7z8/O6EdaNsdqkKtLKzIUmdRWg0JRuKUrNxeMkYx8OKY0isikC6YkLrNMwCC6hdNMMJ7OfLObKrCNmqFQMA77hMT6yBIKFN3PhWBfacqMk6X5KwQ2IgJmI/8HJxluYbQF4WGsq68qAWNQxL8BKzA9sSiLCKp+r10atWruuk8KY9TCO4wTnG6YBC0imx9PIHOpy3I1ZarGKYXfeyzVKiDHgdDwhKH1egMK2ZRvxrm0Rc8YgHRhCWWhuyMO2XiE0HiWrBlhTi2GAw1kWNkjIsYr4EzjQ63mebXk0JKZQ1wRJ10PX1DAM7NTjGqhIeUoJx+HExZltsF6vK5CCoqL0DIZw4VhkdIcQ5H40C20IgMfI1C1K14NvOYksMvCcE1s+u76vCZcm7DFGKfwiTMmwJcMiw6LgdBqwPxxwPB2RUsTNWy9w+fwK1FrkMSCUCEckFsEROc+JJVkFSXmNp1xQnIw8ECEg4TCceJxPXC2btsU0ZLl+JwYwkJGyg3Vs2eutk9ENYdzkgtPIQrIXFxecgC5AVl5jcndLQcrcUUtynM5yZ9GYeXZd1zvjKQyORaH5q5j3ly+/xhdff4W+7QHD7nNJkl4t/JuWi/sURCtMxoNj5LEZXU+6yohECDsnEWDmtYDMxz1NoYrxopSqWQIzx4Qk4s0+t7CGYyJnJgLGkUVKASlHeM+ABAx3JqOCl0aKBDNfw2maUFJCGJmB5YQ5CgCUebZecbLTOLELoCVkw86XU0oYwoQo4CvrkHFhkVLGMAXs93s8Pj7i7RcvcHlxWWPsfr+vRU0IAQWEaYooJbCwb9vh2fMbeOfw+PhYiyAQN2MeHh5wOp1wffUMbdMyKzYl7Pd7GR3dIAEIKeHXX36Jh4cH3N7ewjqH739wAbIe08SaZ8Mw4J133sH19QVfA2I2XBbwyBgWliY4GDI4214AALwk2qZxSBSBDlj1W2xWW+QMHIcJpzFgnBJMSwgh4u7uTmIZyegFRBOP4BuO3b518M6ia5qqk/bw8IDhNCCFDGscNusVnDhOaqd5jrsWyBGng7AF5fvWWnGoCpWFc37OzJPt2RnGMeD29h7jOGIYBnzv7bfw7Poal5ffg3OOn5mUMBzZybY4ZqmW0sA3HtsUYZwISk8B4xSRE3fNvW9wfX2N9XqNP/23f4avv/gaYYx49vw5fvjDj0CmAUxTx+tVDJwbKPzcWmvQ9Wtst1sYY3ksMiUcj0ckYY5V8wgQcokYxohxmgvph4c7jNOE/fGA4+mEV69foWtX2Ky2uLy8wna7Rd+v4H2DKbAT3DAOFVzZH458fU4sNfD+D95lTSVig5OUi4DeDr5hAGG12dTnLcXI91HGGZuWWXld1zHopcARAQ0Bq03PukkxgiwJq5gZWFFGV5zofda9Bwuww5laHBARTCZYKsggYcazVhRAaBs2BRjGGXxU1npoHbwz4rQrQ2vSgOrElEZH2mIKoisGYZftZA8NaFuHplnDWoOcIu7ub7Hb7fDXH3+Mq6sr/PSnP605yDtvv4PGd3j58iVub+/hXYfLy0u89977Esdz3RNYMNtxrpIShnESFjE/dzz2yADC67tbvL6745zKcz6bUsDpeMA0Tggx4euvXmG/O+Lm5i0QGAApKAhhHnnMAqQjzdICwMI8AGq8ohp8kOuUcTweUUrBMAys39U2FVzSBpfreh5J9HbObeVZZp1Tg5tnz5g9vF5XdpTmW13Lch2vXr2q39cRYOcYqFRdzrrmxPlOnSs1Xjjnqu6YJar58zyZQHDGwDWsDWRFD1LzuZvnz/HV6wfJfR3IOgQIkJoScuFxS21QO+94jxS37FImAanYAGAJQDAQlVB0po0xMGYBywg/SywQyDmAFHwysEY1zwQ4EcaJ7lOlFIThIDpBs2QBO7wlXncylltggASQNTCNNvKiNLINQkowCawJWyZkEKaUcXcYYdoeN2+/g1/9+gvsdkf88pe/RAgBNzc3yCVjfzygX62wPduieXhA27X4+d0dNtttbbqNwyjXz6lITHWfU2OiaZpgncXV1ZWAnxmJMkAZzotxReR8JRfee1JWQXlfGdRqStH36yqf4X3DrM3FNJqOavGdYkmMFBKcNG2UlRfCiFwKpjhVsDLLs6S1E3d8FyOVMcI6h7Zp6z4JLEY1IeCNxH5SQPONGKn7pgJsOkmhpj5K/NCVVjA38UpRJg2qA7023dWAS7VgCSSNiVwd1hQcUqCam9oMfpW4cMZ+Ayh782vWRZLR+++EWDxFm5Yg1QwFzd+s92GRg1eQt3DTk3/3Wz678LGVN76p38nL7+qBaK1K9I3fgxy5V/CnzO+h0yt87WlxvKX+V5lhyz8zqvg3ET74X/8/yv6kV5I0yxLEzjfJoKpvNDM3D/eIjKnQVZVZQ4NkLQiCBAtoEmguG/wr7L/DDdcEQYDkgtsG2CDZjWY1akBNmVWRET6bvUEHEfkmLs69n4iae2RGqcPc7L2nT2X6hnvPPfccZzXvXU+TQN/mOIpDtb0XDVBUAK59sialm+O2cwU+ufY//vqTgaf/9T/9p/jyy5+TZi1VD05qx3Y3Y3GZLsi5SCXVNeccJ+g0wZCMVFb74CILReg6EZoExt0O/TAgdJ1Uc+U2GohWgl8rLGzAR98PtGrf7ZkkBgvrMop3AjwAb9+9Rc4FOa/J1jSfcDqemxBqJ5bNpVY443B3S6CIFr8Zz08v8B2R/pjYIpYqW1AoAGVgg6fWQikIPVuAur6HFeFZfVgqNg1HdsQ4jlARr1IKjGoMWeVYrZtnRaXop+EjpOuTBGyyqOQ8Y4kLTueT3DcRcha2gCse6vJSSyLNU51HnE7M2gYhRf8gOhhmBR+8E2Hz0mifxikdkIleSYUtMQZ0nrAqqGpa4IMKpMwkelulNIaAo+o3NfZHWW2zDcgoU1DvakGoRZxwLFKOqLlQKFiSBd0gTGVLUBaGQ40E5VRHJIsVtwabBGgKcmbA2PRh5NhN6FsXYgsUW1rCCDBBYb+7VMQEuMgCzjip/lZhxmmwoxox+qqlNO2SJlheydYgw4nij8ZAaPNzYzqxM0sE3TeovHNKoV2BIl3+1RmHFM3NYivV0bYB/ahaoxVUgh5zZIC5pARnKjpjMJUFccl4PR5xPJIqH4LHw+MDbm5v2oYqAx+lJjy9vKLkjNv9AaEL2O33MhZSC2xyoVvi6XKhu5XQrmNilW5JCT6w1XMYRwBVqvJMXnIuyGlp4u68R2gCwbkwwcoCvnd9J1pvvOcVXDPXtjdH7RNUgkEaLFaOh0UYVxwjFsF5nE8nHF9f8cPzBzwdX+EODKqXFFGMQbW2BebAOmdQTWOR5pywLBHTNLWkWeebgbIuTQtSdLdiBdhJ5YUjoWoLrlRRjOyK1MBgaMF2rgRYT/FvfZ+Ma90Mecor8KZjie07kQw6SdCsWoYYA6jlqyVtnwA+j1RqRcoFS2Sr55wjYs3wxq/jU6ra/dDjpt4AxuAsrcNkq3q4ygCe7cMGfT8g+ID9btfMJ8h+I3jmpZ1xXk6IMbcA1XtHJlHJkkgSLH5+ecayRLy8vGKaZjgf0HW0jTcAzueTADKm7W/awmthBATNgJEAyVQBM/m8SiKTI84Jthj00urmvUNOCfPCvWKJC/zimqNf2wWqgvYUmGdbsmjmydymUYfFOO5gjcXx9QRTFxx2B7aedR1UP0//UF9LKuIi5q4VXYDJrwbZSVpCY0xANTjsb2CNR0pMUE/HI4wxTChkfpI+XuGqwzwvWOaZbq1dh7ubW5RaEDq5hmIxzTNeXp6Q04LdbofP3r7BYbdDNw7YHw6YJrJMLpepBeC3t7cY+h65UHC5mCpAqK7hZEuq9XfOVbRrKkxge9oSqXsTQifisBnjuEcQZ7clRtwcbtB1A8aBTnq9uAaSoSwaUCkDyOJqNnOd9ywEhsB46jIRpNJEPm/W68NBzThcY7MoK7LrxEkYpmkjabt/exnVWilsG02rUyNZZ761qV0DMRxLum8ZYVlyj3TojEGooe07WkBzylYGELxDLaIb6i26TuOL2kAvZX+VXFFsweFwkBhUnQslMa8QgL3AGg8TDB4f32EcD8iF4shDv2+X/fjmLYZxj7dv3wIwOBxuEDo+Sz3XruvWdjGN45zHOIyy7muhx7a9+yxg2uPjI96/e4e///f/PtA5lGAx9rvWMeAtxaC1TV4LCTWz9TGnzLHugzwzAY9KRa0Z2YhzaMmN9Qaj6Rb3wdvbW4SBmmLVWibJWnDIuWnMteSprQsWqiWXspqPiG6SLMEEbErb77wf5LkkMV6grlsujtdc6yY+RGO7a6zlZJ8ysuc6afGnK5vEU4ZMLdXGyTnBWODunvN5mWd0fk8tVWtRxXq+gppoPHdx9NUk11o4E4BaUKVtuxRlDeaVHVyrZPLa7qo3zDagyVgPYx2K6qA5r5Eqx3CVfABG1pOC5lSnQFfO6DqPLgz49a9/jbv7e/yrf/3vcDydkUGLdWfJCirSKgbLPRO1sqhjLB0J+wHjzS2yjOfPf/YlnAvY39yilIL7+wdM8wVfffUVuj5g3I3YHw7Y7XZIKeHl9YXsN2NRlG1kStOTLXJR1ag4O0SDM3HPkaJnKhlOciMYxhgxspgbJJ5n0Z3An4rPa6tsyRWXPOF0OTNOMcqgNK1Y7LzXQFeOIVIvGwDEKGtO42C976a2AqfG3FbmfYwRBkYY1bJzyl9OGJBGW5bMBtjYvNbuIawxjFnlZ5qjsyAJSvBYWX/6Ozxh4p11cw2SVzckYh2yum4ZSx0IalipyubmpcDFp6DEimas3RSoq2RQ+5jtFxJr6vm08a0/rdj8aHsSaOCfxESf4Fd/FCT70W03aM9E4y18ctXy6H/8i3Vl+0NwHotVY01/9+q3zOYYFe13t6e/HRvm6nfX+6Mtmhqyy6jAj89++0HtCPIt03LazbevD/if+PqTgaf/6r/632McR+x2dBcppVI3wnmYgQGFVvM62biodeBWkbMK2inHiA8fPraqxu3tLfY3N2wd8KTghhAQumFNajfIrw4nA3VogQBOHvvDngLApsAH6t3Qkt7hIAvk+Tyxjecy4+PHZ3x8esL5ckEIAe/uH9CFDtlkOOfxeP8IayyWyMr189MzHt7cI3QBc5xZbSkqiu1gAisTs1QKb2/Yq9911HCZ4+oWMy2TiFeSMn97e9tAiVxKA5A+RZG1VcWg0mkjJ8SFgJYRoXEA0q+c8Xp8QVC9EQkyKwAfMlJSumdFMKZp2ji3CkLr4qZJKtu8SgtMjfcI1l61+TVEvRjkSPHVVeDbNa0ZWnEvUBF1tqZsMWUBORxZEbCk4KaUW2CqxwxuI7Zd65rk1IIgGgHlEpEy2zec9+jHYQ1YagEKrWJTSpgyoK4aeh7DMMB3oQGB2moFGYtBbMG3k7NVLUSfSjfQCrYHGqt6TwAEHCypwIItGjklpKxMQieC+mZ155AKyLJJQBR8m+LMwL3vG4CUxCkRpQAhwEiArltEqWiCqLHSYt61gFxANbuOR2WTbVkvmmQYvnkdtw00JNNpXiJyLphjRLCW4GxOqKng6fkFT0/PqKC19rvPPsPdwwOK4ZJpQcCtpozvvvoacZrhv/wC+/0e/eEWuWbMG7eUVDJSLfju4w9IKaHvRyw5Yk4RpdDpTZ2+DoeDjFMBiZfckrVhMHSGkaD1sD+glIqn1xckERre7ffoxwFB2owYgAKgShuKKVLJpVNOiguTb7FlLrngdDrBdwH7ww67cUQXAr7/5lt8/c3X+OaH7/D980c83jwCBjgtEcax3ajNURF6l3Ivx13lmjvPM06nM3ZiBZ+kYtU5toM6BZKKBC4FkkBXmYsazHActxjNAsZQS8oJk1PbQ0jpZ9uhM0Z6yMnUAkDgqK11BOeKiADHZQEqRWONoSYEgx/uRQrqWetgwCoxgScg5oTLPOP1fMIUF8SSm9aOHtd5h53fYb/bY55nskyOJ6BWfPazz2GtpdC3rMs7cUF98/AG4zAiCZAXU24V1dPphOeXFwJOgZbnIXicJzII+oFJfMwR33/4gA8fPjTdtmEYMI4jhmFEXGa8Hp/RialHCBYhUNxcW6TI3Mkw4jJqDIsZwVJS/xInJn0po/cdDrsb9ENA8BbLzHVjmi+Y5gtcZ+Sech3TfYDrh4OXFj3nbGOi0G2O7z3sKZ7/4VvOs/effY4usMWt1LIyPGvFskTR/CHjSW1haqV+4ziOrZ2KjpACPMHg7u4R1r5iWRLiHPGSngEA/TBgdyCAaN2aGKTTCcfjEQ8PDxj6odnSp8K908Lg9fSCr7/5PV6fnzAOI/7sz36J/f6AOWVUQ42v8+WC8/mMJS6IOQmI18l+JCF2rQAik13nMA4jfAit1bYshUWqqq0oEV03oOsGJGFOHA7C8hGXJ4DFH9fc3ipeX4/USNywPnRuztKmvH84YDfuEEQL53g6I8aIJZKtfjwecTgcMI4jDre3CF2H3mpLJee6qVWAU4/LeWrH03Y0Xf95D4qAT1XaWnPb//u+p6tdjq2I0hkD702LW1SnSvcTbQe31rZWrdfjKwsSXp1+DWrwdB/sLLy3AswB07Q0cXq64hqKM7c5CDR2CgBjMoxxqJVsZOcItrx/f4ucM+7u3sEY00DRnDPev2fRcLfboZSKb7/9Dsasrccppca20vjEGCeGPaOAIRV2nqkNKIXJ4+mEaVnw5a9+id/86lf4J//kn+D5csQ3Tz/g9nCHcdjh+PqKtKS2b1gpBhn5OqfcWPrhJsA6jxCcxC4FpS6AuMullNCPlJRgGzH/6/oOu/1uTSA19pECYCwZFhZB4vHGatBE1QhrWpiIBK1lDygF85KBCmHgA8PQyxqQqTNXKUZfEXBJU2NsNfDScWxyL40IzqPailJzi0WC9xj7ASlGxLgQeJICCcBjW2Pw+PiIcRywTDP8UJqJTwXbIStA8IxoNdRltVoWbbzEzlwGChm+mXEOCsEpAy/6TyuDoKFwsAStrG86TICF8eqCqjFwArvmDGpm7Go9P8PJ2Ks1YugH3N3d4n/2T/6n+NWvfi1aYt9gIe0asBUsOFHCpNpCxl2uGCDs/hDQ7XY43D9SewoGv/jVb/D49j3+nmE8OAwDnp+f0P+Lf96AwofHR9ze3iKlhKePT7h/uKdsCFYHTpoV0Jm61gq70UXLYMvw0HPfiRLjWpMkr+Q+v8SMAIu+9y0ejnFBKbk51s0XcaUGcJpOOJ6OdHG2XMO8dzjs980hvElwwKKq1pOsNbp2wawaqNqSi03+o2L73vvWsdGFgOCCxE5oANA1CLImEM24afNz2+RBTDuHop8jAKmVWJvDlOtprmvraovbzQpGlAq65TkyFzeNcQ2PsAKOw1q2fpcMWz8BP/QqFAURPWAFNtY7WaHl7pX5tM11VzBvvVnrPdLPWdel7WeYFZBS15z266uO049ftb1ju94ZY9C6lc1P/679tG0NBJj5DASEBNo1X2Ft7aVYhx5jBdbMjz7/+lg6RFrMVtY7JCXfq9t4BV0Zhenkujf4k9n8wqdwWxtHf8OZffr6k4GnL774QqpmoSU3VpgfvQQDWemu84ISE86XCaEL6PtOqj0B/dBhBNi3a6i/pG0umiyHjsdRoJ/94rR3VaaLF3cD0ltrC2ap+1BQtcEdrFw1dFpeTijf9/f3bSI653BzcwdnLS6XC3KtiDkjdD3evHmLvu9xuZwx7MfWIqZVHNUx0N7heaI99DiMK01TH6JsdvvChJVOa645v5S62iQrUm1Vu8rwCauTT625VY50ZCjSnHOGt1baCLt2j9Ulz26QUYDVhbgsZBZ0qvlTWxAxLQvILLLiVigiytY117ci1Wln5/Z1Y7YJ62ocBxhYts9U1UopAkQCpBJzMDeGmF1ngTEWIShLo7aKsrYhquAs76cs2JXn64TCbIVdppalMZHd5JyT4LGIA4dUdM3K+mrtjoC0tWjcYBpQZ3TV2rwUDDvsdkilIGo/umFFhBsIAxDn2SrjrINxXNAoiEnQAMKuYFAlemgpo2Rhacj4URFsBp4MQOd5xjLPuL+9wzgOsG6ENdQ1IoDgkGRjJTSw0ZGSy8rbSsZ2IwOubb3lsamDoNp110KtHhV47o2BN3Q/ukTqWlwuE5Z5xuA7jH0PVNL+f/fXv2cw6Cz6QG2dn737DCVl3N9SR0LI5EyM69rSu5QM77iGhdDBu4Au9GQu5oShH9BJq/BaJa/IkhDnnBvLUx1vztMkNGsj4GPXqlu2VpnbAYAK9quVKTBNZCXERVo+JOiqskmpVfxQenjj8PL8hG++/gov5yOmNKPzAdUBc1lFXTVhK1KJWoFojreu6zEO1H6x1sr6KFXfwgRARSq1srYWak07Ri4EnqtUTb2jWLwK3LKDc22dcrIOQoJiMqcY1vE4K2WciW1kwmsdut1eghMBXWGRwDXDWwfnAky1BE2NMK0E6My1ou8H3N8/wp6OmJcIk4Q95ZkApCxCycZi6Dt03mPoOt4LCRiPx6PcWzJ15nnC73//1xTvP51gYHD/cI+cMz58+B6XacL5fMbbt29wuLnB0/NTG/OhCxjHkUyd84X3w1rs99wPP//8c4zjiPv7OyZJtjTh3L7vmCQ5YfM0PSdlRLLlq+REMWbh2nONJButGoLe+3HA+XJGWhKOp1e8HncYdkz6YorwwtTqhg6dMIW8cxJkk9avz0zd3CyA4Dzev3/Pvdo71JJxmc5tT6mSZDlHMKHUgiVGvLw8QwWZu67HTkw1VH8EWJmyxlgMw4jb23ugRKBk+E60EC3BfWMd2y6DhT9PMM5hWhbkUtv6lgpBkM573Nzc4De/+Q3maUaMET88fcCHlyeczhPmJeLl9YRht8Pjm0cKXDuHw55VfRWBnedJmHxcH1IumJYFqWSEoYfvO9jzDID3Tfd9Hfdkq63sDZ2LjH8y8pypNRYjzucL9wFhwD4+PKygsOgFHQ4HdF0ngXTFYS/7W97h9nCD+PDY2DjB8VkpKy+JoxSdLTmfqWllsSxkgZ/PJ8ktpNUEEAesLO0zBsF3AAiGrXsK17fz+QJgA3aCSciWjdIJ65N7bGkgybIsZMyHTkBRlQMwUHv7klnwmybqdJUCjMNOYlnu1RRaXZnHAPciLywsdTAEmGBrnKHx2flyRooRH58+CJASEbxH1zMO2R9GlJJxOr3icpmQc8FeklwDxmVRNMa8tZhnrh2XaUJMEeMwousHAulLxuU04fXljJIrOk/mcidt9c7yXvkQaEiRYmPc7nYF1lYBuMkU5N5l0fVsP9LCZ9vbJWk+Xy4NfFS9SB23lQtMS9S2yYkmzhrPxhiBhSCl94x7G0tbfiflAjUfMdUCZY2tSmZ7oMZh3NsKLpcznOy1WuyLObZnlFLGYhY4Z7HbDQQT5DkyPzCUlXCmMVuto3GPF83TatjWXKXgsk1kq2g/LhKOO9mxYAMMLEy1qBANtpzoKmZY+Ahjh5IrnTaDh/UBRXIBI66yVXVps9wna9E4qcLkUiYRnIWpNDVassXz8YL/4Z/9C/zV777Ctx+fMaUC+mODBnEoKEioscBkMjatoRavqRk5ASkWpHmGMRb9fo+7x4xht2cqKwn1br/DZ5+/h5qAaNw47Ea44FtsaOFkzXLNbVTHVFyixMprzlSNwTbnLoJuspPIogtsXc4yrktlnBwjNfJijDi+HNEPIz57/xmszO/D/oCh7zGOA4urWjxtICHHtzN11TW1AmjUKoDxhtWnUG0rwgMwaABQEIZwcxiXvEGL9SzOFsWiWiynItQrsrDei09b3LZf6xrlrEW2eZODsiCjbY3rKGbsuS1et24HnX+fAGEsGG7ACbSQo53zyswCtoQBrqimgW/tt34CxTBY+WZNXN2I+LZBiw8UWGnvVaTIbJg7ddUG+4kDAdi01G0AGMixt+ezfduPYSHTHtkWxFKM2WzPub145vXT7wjoU67u9PUJbM0Pt+jY9v/85zqfVnMrKRLAsHB0dfFXV7S5BtNu4U+x8/7Y608Gnh4eHtu/tQIF8MBKoV92OyzzjNeFlrzLPAOoUqli1agfBjjnMYw7+BBwe3fb6N7LwoXCBw8XnHTI6OOS1g2pImjfvooxKvjCallGqWRdWGORVVTNAFTw50btOk+xYqsIo8W4G2FgcJkmUJugwPmA29u7VnFzgZtUY3gUaV+JDIK8dWRN5YTge1m4OHm1Rcu6tRLEdgXbmD9GFmwndHddlKwKkAOw2QplfRuk6oPnilZyBrzH0PcIHYMKtdfW89gOJ1SKiVrjGougAqIhsro6eGPbc2Dlu7ZFKsckCxR/XlJuqG2oHrVuWDopt2PQYln6nuHanImikWWD29wvK0EMA/vgViZWo1o7h+o8ctHqaaG+ojFNXPvTJNdZfwX4aWvduNu1u6RBjN65xlAT6nVLq67m67oh0EK7h80ZVaqQCsoZY5AK6eadp74UW9ksrKPeT9lsCtqvbqyAtps/TlzjqoAIqqWQUsJ0ueB8OmHsKfJbc0ER1x3eOwkoVUTTGFQrEo1mFTDHJlDUjdcIeMTNtbT70QBGGUtGeh6s9ZK0MNFwjm2ql3lpFfvgPDpJXJZlxuXDgnHocbPbwfoOwVrc3dzCVGAQO2tdDa1ZRW6TXD9F+kUnzlsMA1kHMSUEWRvWjduBFXwmJqWooLLYqdeCaZ7aBs25jrYWeXCu966DtQaxQD4DjaEwzwtB2LLdGGQOoSIKuG5hcD6d8PT0EZdlogukc4CwBegCJ8GQJHfAaqvLYMdIa3OPIa/C6K21Nq9MgyrB57qZaVInEVg1AggbYVq6FYgWNpPOA7dZvyogu/oqvq8Al7LIULh2aCLV9xSCrsqGLAYmKygvItmJc1xuHO+BmD94T00zgr0WKbPdQ+8NwTWC6s5YwKElVGSIcDxqaxGTtgUvTy+YLhT47bsOn71/h2WpOJ6O1JsRxuE4DPj2+QlxWXB7e4sOnbAfBHDnzcYw9hiHEe/ff4ZxHEWvyAPIGAYCT0yQ6VRkgBb0tTYBx0JAqcIMLWSycb1jol1BfZ9eQNJcCi7ThIs4M1YIA8B5KLtjHAZ4Z5v4bEVFSXThdALQppjQCSvz7u5uHUuoWDZsX1HWZ3u3MejQowKSCK+BqWrUwOjej7YnOhcwjjuum8uEFGMryGjLCaQQFHwQIXbXhNS1RSxmrqPeWozjiLu7e3z48ANeX17wcnxFTAkvL684X2Z88+33ePfZZ3j77i2GfsAwDBiGsQE3DaQwbOmoMu9MJtiqAFWJtSUE1XJPYrtPFm2StZWaumJoCUuqGZO0YE2Xma29wjI/7HcyPtDu9TDQyXZaqE0ySluoPhsmU5LUFnWNTAIcJVgjAtuyl7AlzWCeq7h5ZlgrrZ3WIYhtOi3gRVDfOoKLy9JaW41kQSmx8BQlVtCCUO9VO2sVQq5YDVN0/dyu1XzupBJofpMzj/v8/CKsinVPpvaogbXihsWFg4D45v5znwZUl2tdpgtKMVhmOuFNE/eCEDxq7ZHSghAc+j7gcp4wTTOOxxOLgqI5xsJRxrzMwooMiKeIy+WCeaGcA10aO5RKUGaZI15ejzidL3i8u8fQ9TCDaS1hvnpUxxhrmWMrEhCwKe3cs+gBAsJQ1nGwGR9WinNqwhFknG/Z8CwIGk27WyRqcF180Fg/54wcI4ahF4dXFaDnmNXChPOOj9Osx8upwNrSYj0WT1gcGPpBgHHRWDXKsBbx/mTgfScsX8b3uvY3xq7FOkYt9zPGDNoKX5FaXgJct68Q2Gy5mWEnBA8ib8qMc3nPvIypAcVmuTZ2i0QpnFhZK6usgUWBe+tkuBpAQLhajUg+iPuZ9Ui1IE0R//4//DW6r77F8/GClMlKNgCQhXlsqrjPVmoCglpWpRaCYpEai7AGoR+wPxR0fd+ecUkLhmHA+/fvkTNj6tPpxHbfnm2+ysi0VWKlEJjvbcZUW+/MyoFpcWebd9tE3sD7IOtXbXuTAtPPz0+YLhOen15wc3ODN28fAVQ4w/1vv99jv9/DWYdJ5GJiihJHEF6om7XBCoCylfSoeo6Ss2q7oDqHafHA6xwoWVdexnpWYtZa0RAuvdA2k9a/1vVnFe3e/r3eNiPzQPSVJRfT+6n3a/3ANcfR6/u020b/blIrcoxVW72SfaUQhaI/n4Blen51faeibfjJl+JTVdcbvR/8h7361RU3gKwpRq673VadO5+iXLrZfnK/K+qmW8+082mnp/e2/arEte1stvwsfdOPgZ32nrp5Z9urlS22ZcjVZhzRwDBdk2V8raNICyt6iO3zr1DSh93E/Py4DXp2fVu2+NafDD79ycDTUfUTHBfKtCzUJOg6pBgZAAPoQsD9/V07WSPCx70kudb3a4JtDS6ztmA5hL6H7wNbmaxDWhbeZGsBy8l8uhzx+vyC3ThKv7pObC6y7NkNMCa0yWPV/ULAKW/VEhAIwaHk0AK/y3xh0G4KdE8lq9C2as88z5LMeGF89aguoHdBqowVo+8A17ESb1fhURggF9rqNiRWnCd0kusGrYLpuqCQPhrlekXpRiyNh35oWjY1KwuL4MnLy0trqQnOIViPYddT28JoQFkboBBCxyqzfB2n0jZ2VCC2HRTIwcD5dREu2lftHBNTGeq1sFKTTcX5fGH710BrVB884pKQM6B8TAZcCafTieOu7wSsw6pjpJT1XoJE2RRCF7hZe4uaK2Ima4QTgyDCMFCXzDqLYHrAr9UzBR5IH2UAkjIFP/UVRFiVSXltYtbGKoJdhWZPVpo+VxizCsUL6KWBLQwdbqiNI30rxmC+TJguEz58/IhpuuDh8aGxH1oFQgKULpB9qLoZSYL94/GIlFglLzmz/aMfsBtHzPMCWl6rc1SmhouMbyZlIqwox9JNpwCtilBLBUxtX8/zLGyyKGLqAhDKOmENkCFjfYlN2PD5+RX/8Xe/w3fffoeXj094fPOAm/0eD4/3gLX4eDpjyZmAwBzhrUOObKm7ub0lsy44nC4nfPjwEd1A4HXoWNXyxSKXgmk6wTgmEs57jMJgVMZYrcA8L20x7fsefU8AfZomnE4nLMuC19cXWGvx7t07zonI1rBcCs7GsfIpG4H22Vu/2vQaGFjfIcUk45PjqHMeqWRcLjNyn2BRcTy94vun7xGGgP3tXuIIOhUWCd6hYJBsFrpmKJsyi4aarmkM1OR5OoO1jor2XKu6yxiDSda/VLKAKr2wYQLmecGcxAHNWgzi6pSl8jxNC1QRwEjSN4yyJ+QMutMRcFK7YxY3etHaoFDz6XgGDNuQrLSrWknYvfWEr7OBM2A7Qq4wuWI5z5guF9zf3Lb1O5eCfugRHJm2cYnIkXpL8zzj5fkJpVQMXYebmwM+++wtnl+e8fryCtSM4A1++Wc/FxYc17/DYYdxfNM0ZFKa0YeA3ge8ffsWXlg88zzh5fUZ1hjc397gF7/4Ere3tzjsyMhMeYazFve3b6B6QaoxFgLXExZbIMmyg3cBlP4zyIZOQTFS1B7GoVaLkg2C63E73uBr+wNiLjhdJrwez3h9ObEN1DmMY4+bww28tbCoSInFkWWZgQo4b8WhjsEKE+7azAiMgWgLrftYqQVWzEFUS6qzBE+/+OILAIC2ZC/LsmrROS/AU0GMGafTpa3PKiJsDLUujq/UYLLeA96iGId+d4PHtxZPHz5imic83D/COotvvvkWpUTMl4zd3sF3AeP+Adbv8M2/+Td4en5GWiKcc/jNL3+DN2/f4mef/YzW8gN1mVRvq9aKoeuxxAVHYULWUtAPI8ZxJNBpKsYd9RK7jgYT0zyhgmyKLowCShQBfy1yTjidT6KBKKxiAwRHhszQk/mpWhnbWN9o63mt7ftc/2bRQ/J0iwSEAwKZg0C3GxBTwuX8yuS9Vow9mV4l0pnYd2QGjQNbF2tha7axFmM3oBTg44cPjX1jLNe/1ipqqKuXNFnQnMEKq947ggRpIeupkjFPplOPEDy6rm8gc4wLSi44n9ky//T0hGVZcJ4mhNChCxQXj3HB6emIUgsOh1Gc1naY5wteX14EvK047PeyRwDGsPU+BOq7zQswzRmnP7zg++9/AFChGko5R1hbMU0nnE6v6PsBXR+wKz1yykh5BmLBMLBNs4rYtLNsQMk5Y5lnJHFX3g07XC4LnPV48/gOu/0t5mVBEf27nDKMA/rQw4phg/cBO2GrAUBcFnYkaCpU13hqqxtWwe4BY2jLHgQQY3OTge8DjDWiaZhpPCHrgrXUI9SEVOMpfa4WotnU27bPGnlPjhNQANdxfiRhgna+Q/B8bqiroQwZ3x7TNAn7jZqZBOEtjNc25AUlZRzPJ8BW9H0gm8U41EijEIK3Xlx0C4x3qBZIIDs9pSzaYyvgoYktBCuwALLsvyoSDVmTailQTXHCOhYlMx67HE+MGUtBro7aqAJ4qJxhEbBCQYpaqjhMEhiDodaoAWBtJ893BTPOU8R5TtSBDJ5xQgWQjAB7BEdM5Z5iAOx3A0yO+P77H/DV736Pf/fP/xnefPElHn/2M8yTBRIw7ljso419xdPTUyvUcK8K8JaMRNt5idN1geLApBg9T8dL27KVGMbL+E2xCFjlkCJbMLtuWItVVQtRLDbs9zsMQ4/9fsd9yAecTif89V//R1wuE7tXhhFd1+O3v/0tDoebBlJm1YD1HglZYhCyuY1Txi0fuJH2Bm1Jho4NgxXskcLSp8CR5gVkOkrBuwoAusn1WynmExyK4d8KDikA1N6qx5ab28YDNN/bsJeqFOqqgroCB23ORePKVoCXWFXqiNg6/Zn2t2lrDfDTrYN/5NJ+8vVT2JICKg1GavdAwEKtQ5kq4K25+rQfwSWbfXR7MM0AVXX5intkFBK6/h0j4JPe46qADxT40o0aDcEpVZ8Q2rvaYRQ/1Pt7dSv0/6qnrJrDm0JCw0MESNuAcT/GweR5qlu4nsPmmPq/rS7z3/b6k4EntphYVFulyrMO4pJXBzJNZlpSYyhCxuDMwVi6klSrVRdehnXqUlQbDVDROCNJfC4Z03TBy+sLSs5CkRxZTbdKyxb2hHVIJV1NSj2g3iANkoDaqsFLLcg1bybN+qtKXUQhuFOlsdVJRaOC1MVcFbRitWOlrwHqsNCu3VwvHMqcUKBJE38VMNy6vQEqtkuB6Aq2tyS5RgMRKZ6XpjFlsOqCWAFeANDCuVWmRGSzij9K3bifbFFYAMaV5sRQN8elQKKwNhojjTMmC6vClwBrWZ02luy0Ci5eBGQW0s+dFTo4F++GxosAYvHSsla4wtRSyXBWl0CswBifi8ww6TW0zsIbL9bC+tzYzoOqVsuV4wKmfWZDzzf3Q5exClYNlYVi6kb3SudKW4hqoyUbea/RsSpsJboTXXC+XHB7e4sSVlaABjhq1wqjrRGmVWnJhOJ8dda1JNt7jyVFEZ1WhgqXcHV60TUR0Ge5AijrJqCC0aZ9XQod2FKi+5zOIdTa5oRef8mlLcLzsuB4PGGaWNXvuw77kYlbAeDmpfWD51yAXBsLIuZEzaCa8Ho64/uPHzDsqJVjbxyGTp3tKhZpC0KobeOPWjHTxVTHBNAA5MYg2+iqKEtOrzuXLEl1pmuVzg8Is6ZwveOa4FpbW3OsMcKKFKCoaXbNE07nEwHTELBu6JtdsgJblUOd19a5dbzVdU0zRmjKf2zj2Y5xs7aw6RxQlqCxrgmCtnOS8YO6tqVUUIDZVUJcja24Wds0mDTi8KNtcCqsv4L04mwq86nFsxr/aOBVAVOpjVFSaWu5JkZd6JoAdkkJsRTEhWLUFMsniDYOI/b7nYh9F4RAHcPDYU8NCgGR+77DbrfD7e0tXl9fKBju6OrXCUM4Zuqd5JwwDHQMu7m5we3tDVlFpSClCGs8fBigrYkG/BzuLXqNmsxc/wfLqj8kuWrONJXrI5mVVkTYRZy6yPwXXbwueAYoIvKexR4blSxWoKLLvo3ZFPNmvTXo7HqvVUBWhYhtC4Q5v3a7XXs2zfVV1w0dgjr3RcjdwKA6t2mXInOqAvDGAaYKs8EihB7OB9iYGkvIuw65KY1ZwDi40KEzFrAOFdR06/seb9++wcPDAw7jHt3QsZIv+wX3RoLWNtlV1LVyj6N4tqzVTuIUZ1CqaYFxrVro4trNeIj/LuJsWXKGGlxQs6jKWm2kxU+Et2XuZAuJOVqYy/lRC1CvPYWMxiMSMAfvyERpLdIsdm3to9kWR1C0MWgsn4uutVvxc2MNbK1wFdLapPOdDEMtRDKpUWa7gmerOgbvKf9m0Cxxn7BJsojOT9O8aZVD01Sk+P+MUijArKwXmNVQhPtcFQaa3h9auhtbYYTppeLRaxynouqxHctIjGlMhbF8njmjMWfZhk1YPsUkAAiB7KEfmltjrQRzq4Aul9MZJaU251WAvRSCNt6t7R7TNDXtJsg8ayyklJBVI9Rs9By5SZHdXQpQ1DzCNoZt00PZ/M66hq/Jqs5eo0LKyp7XuEoSriJJfKkiC2GdbifNMVkF61dZAbc5zjqm2nWa9ZmqVIBeZ5W8AaDmaM6UkbhuH8Qa/67Dv8Vq61drRlirpoGbKPFH90Ta4BWj2L6/fZxBU4ZpmafkDdZQUNoYmGxl/1/BEH5OFTYoi47Uzq2fXFOV/UXWHlPhvEUBdQBPxzM+fPcNDg8PUtjkdTpHlqM1BATPlwvmecblcqFOYU8Q0G7QFGvqel8rZNyzUE1DCAMj7HIFm3X84GqscRw3JopR5jSlWajL2sFZ17pbNLdYpOV6Xsgu9KKhpefDz8xtwwxODT30kazJuI5byAivrVWpjZDNGFGQYM35AHUiVABrjeX5+cJf/2l04OpI25jg6vubY+u/rt5WIXmmacNMj2+urkbJBBVGuhMVvCiKoWwTaLMeY8uI2V7FdvbUn/j59UWuMalZB+/V5+q4bqNl+299x48fy9UnrLdZZmXd3tba7sPVfTXrEdbfllj16tO2MfU6pdc/16zRdq76vc2D3h7vk2idV7LJudrVmzbdN8+2Xh2rje/NLdPrbp+9XUB+dB//+OtPBp7UEpX6KetJaFKcJRgKIeDm5qYlTxDGkwIwunsH62QBhlgsd4hxQU4RueaGpgIcrMvCXt2/+su/wr//d/8Obx/f4O72Fv/gH/xD3NzcMCGsIF3bctIaSabaYBctqOfTuZ23ghi7Peny/dAD8JgvEwCh8aYkFOpCO99hENc6PrSSyFIhhZfJkbawsMUp4Xy80Lluz2rhrj+0TdAKwKGaR0n1FfICJGC7aVGnRUTAHdvolHZ+mWYswiCrtbZWgvPpRHG7VFErwbhUkji/dGugZ9mGqOKB3LgJLGZx4DMQUWuIUF1ha2C7x/JZ1L/gQp1SRFoidLKr3e/lcoYxFl0XJSkIonmz4HQ8Nqts5z3mA93EuuJEGHVpSC4q5FiqN1BaO17OCTVx87DG4GbPVocsoE4uUkVxHqmyvWCOrOpDrivlzFYi51GUmSbPt/pV24hW96kt1pYZBHKKQC2rCOFmXhmwStYHUu6dtLJ46xBjwvFyxul0wuvrK3a7HRNTGe+X05mT2HsEsZBlSyYZP8YY2GQRrEN4/1l7Rs7ScVKdYEa7u27FmyZ45xBDwG7cwXZs08jCTCq1UtdHwI81NlpbQWFsMxlQ5iPvEcHJyzSx0jdHpFQwLwvGYYC9u8W8TLjMbDMopeC3v/oNvvjic7x9fIMMwHUDgnUYXAAkUfYdK7BLSpiXBU8fn/Dd99/jd//hr2kZ7B3+zp/9Cm/uHvDm7VuCP4bMsN3NgdeeM6wmbnGRexsa4JFSwuV0kidXcTjscWdvsB8HtkpM09Uu5gRQZTDD4HZrvc4khC226jBHIWEJbixgTIU1rPCdTid89e3X+I9/+B2qKej7gAzVMRIe0SaBVVZkeyZq1CDMtO3mqyAtQJB1iWQmUGOM5xulPbQakClmuGakWpDnie3Jhsex3ost88oSNMbCO7JcUCuLEpJUAmhrPufnCmSXAsyIMCbKuksqt3VWmCEC8ubMhNpaoBpWSBOAyGu2xsHZAIsFP3z/AwR9Qd/3eHx8ZIsGDL775jt8+803mCbqWfzsyy+w2+1wf3+PUjJOr0fkVND5Hr/48s+w24347rvvcT6f8e2332K32+GXv/wFagWOx1e8vDzjfD7j9nCHrutoT46KeVkQU8Jhf8C7d+/w5vERt7c36LqA0/mIeZrw7XffAHDo/UFYjoO0JlCjcDuOtB2qNkCrwIUAqH4JCGTBeWTv4Cwwhg5AQUxcT7vg8YsvvkToPM7pDGccLIAlzojLgpfnZyxiVQ5wHAzDgHp/J1qOPaZ5IlMQAnL3vQDFCspSgBoigG7bvgbYrheAMjegXkVcjycKSu+GPR1zjcU8U5h8ln286wZYQ5ejUmlaUArXcO8dfHB499lnbOHzZGX8vf/sntoiOSGmiGmZud5bi7/3F39OxlLw6EOHN3cPBKu8MCqsJs5rJZVCxwIO1YoqayDXV7GEh4jjSsFlv99D0wMriRdpwpBiUMD9/cPK9pWooFs8Qe6YsMw0GTmdTvjh+x8wDGRo3t5w7BwONxSuztQ6POz3kqitov6MvTLF/A2ZI7bv4DdCuylRu6nzBL67EABTcblcEJeIZZ5prtB1OMdz00BxzsMKmDjHBV3fI1jfQJkg+onDMLQEUlneuj8ZYioCxlcpAFCL6vbmFvv9XphPtd3PUgHjPPZ93wCteZ4wCYhnLNvH6CK5x9Dv8Hj/2BhUBFELVNC6CMPndPqugenvP3uPt2/eidB7XpnagWLi08R23Jxz03bSczmfz4y3rEEeIkzM+OoPv8dX33wDVGA/7PBwd4/dMOL19RWpZMw5tfblw+EAo/sNGPfmnDHHiYC2JwMvJ65dpRb0A4GssR+kqFtwPB7x8eNHPDw88F6I+P7lfG7FBgWeXKZAuLbkbQEgLaRlYSU1U5pKYPRHCTmAFGNj8qESINMCtjUWcCvLQo9BPVc0nbnDfo/pcsHL+dwMimBZlODYks4DbzEtM6SrjAm05ZiaLhO+/sNXOB6PGHZ7dP0IH3pYNSkxvH5W3pkDaId8lRYgSOE6hFVbUZM05xwcLFw2MLkg5wkwwDB4McKoTUu3yv1zylAoRQp/WRJ6hyrtf1HE5bXdtGLVEFIgwIvmKRssCnJiMQLZgfZ1BRUBgKUOpoPkaBa+3+F8nvBv/uW/wOPnP8PN/oDj8zNyjgLSEmDIklc9Pz/jhx9+wN3tPQ77Ax7fBPjBt24TWNOKkiuQJ1IequHnrjNZxuIsNHph9KOwuJeimnqwDb4Io9uYtdvkfLkgdB3+/M//HEuis2+M3CdLBV5eXlnk8Q673R6pZBpRLTNSXND599KazrgMUoxfRJsNRuJFJ2ZBZi2GMbJS1prcAlnLLpezxJYXeOfZzdN5hF6NnhxqkvnXMM0VlOKUUQBGnnddBawBAM6Kk15t84j5KeNGdRLVAraFdCv9BMi1BTlq5k5UbF1BDLOen77PyPNDratG0uazFVSsom/VruXq8NeQlF5zbf/Z9mMFUOz2fGtFzXIP3WYVakDuihUoS+uPXbu+97og9sdftVa6ThsFKeV3NF6Xr7XL6Ora6/avugKD7ah/HPH5VMOLvyKfLxiJ0ge0W4e34xos13RBYx0FsbbXbjfyQ3/b608Gnq6qCUZ1HkpbLIylk4/qKLQqtqczAzECYcIoMCQJXUuM5BK0UriipGiThaKuM46nIwDg9fUV1lrsxpGBIFSAbz03yGdpZUdZCtqCAkDEsktDshW84ZeqA8DbVUoBUmZSVSnii2qaw0R7ErLI6x+di3rtdN+rMIWDx8mCVTZjRV1ReBkrs6NWDxU010poTqywBWm3MjL7GrsEsljI5xQRH7S2UpQTgCkZORsYI8LBqFeLleoiqe7LdZVJGUVXj5NBp6cwqlYClX1EocvEaqet7Vr0mNDjF7JictuAVyqh7rCNKbI5gZwSlnmBtjDV3QigtqCoAmtAUjcbRV3ZZaVWeHlf+560BTF5QNt4eMqCQm82/Vbl2t4aszrTEXDiHz39unmPF2fEVeDftuvKKcHBoDi/El0aDM5vqJMeABFjZkVMabUaNHKOyJyGwWwXqNtgKRQAhjHwPR25toyodg/kBJTdp44wOv9KKcgxoeSEy/mCLElCTgmXidWyJS3t3Pb7Hfb7fRu7BmxTDEqnr0DoWa2aY2wgI0pBnBeCGAZsMciZz64amf8VNWdANXNks2pJr84bST64oVe+v65UfwOIcC6g1Uyua1JlsJyDvgGVK6tq20/fqnho7Gix2RUmR06Y4wJBvdftQf8n5QlrxO1tU9ldX7rRoLUk5JyZLChQL8GDUqkBBhmlrnp5WllnlW4d9zz3Alu1Dm7aumh0sNTrSpEGCjKQoCvWWjMoba2tFcLV15ZPrj+2fQjaeDNVE2vuM8EHhK5HTmhVRL1XOWWgoLE2nLiNDv1AfZVSMc8Lk7+UYMBk2rnQnrPOCedDW++cZytQ13dNKDvLXHCWTjrjMKIX1zFlZ5RKsA6VWhswtVVcFZSrsrFQSNkK+M322pgiQu1pTNH2MAl4Lej81QXRRqDTZC0ZffAIXcBSvTyDVSgbAgg2oMjUqz2oliJFE66vxZJ14mzd7Cdoga5u/fp8K7iel+342FaKS6X+Rl2Byq7rkHIS1mZGKgXn04lsEUsWTRYWmnW9sLGZtDthfZVagATkqu2uDKTGgUBW33l03jcBd3WMrHnVkDMS5irjOsjnllpalwVjHsBW154trIGzfk0UqyYVtkV8a0sGQcQizyFpgQ1rq4EGgdvqv5H5Ss02DVmFISPrFYyh3p8wfO2m/Z9JND+dbfErG41jgS2yytBB1X1bdQnT1X6qY2BrbKDrko5xVCBjZaUbA35eXdcF58hAzzBXe4yC29oqBgG2NI6JMTXzEO8cQdPQU/fPaDjP80zCYswQIxdw/48xt+JYJ4x+rgWWa4kxIEmoImdx7I0RqUubhIVzm4k226UBCKBKV02nOp0hEHjUIsPVkimt/BUoaY1zU0rc+1t8e/1flfbJImx2AMKqK7Bmsye1xEzXef1+bfMVkD2hthSJz7isLaO6h7cYAWI4IXvx9kC1FCRtHTNbBqRpjL8ti3Z1RJU7q3EXv2ixq5W2YILzVbScaFaTYsTx5RXzZd6My3WfbYm1sRLTy/iFsMolCFy7KTaJpN0CBYC2Vlpr0A89cgXKnITddZ2DXGWrkqRvWc2aPK8sGunq0J10E1PWsq7lULDMSJ6jI8MaaD5eDeBChyUlfP3N13h9eUHNlPjg2FIAVzomBAAaBNxc27gyGa6GTz5vC9ab11qAWu/3+pzXYhqlPI3Mc/1dYfM1Xc41HmOcTVCpywVxSJimBXFJKALCBQGE9fecc0AIZN051Xxb5GBV9vG1YNYSdsPnw1jqehxtJ26tLMAvy4Lz6YIgZjh96QEj+pzOSSxWr+I4U9ev1wxPYlaDTdsf1iBrEyPpM1dtIuZO1zHaOuSuu3I2n8J9o26uC9fz8Pq1rvN6Xg3IkD1f/74atJ/cMx3ptf1P3thyLGVWCjOprs+kTQdz/dl8y/pNs51j7ZQ/yeE2l2K29/YqLscaqzfwcF3/r16fzId2Hz+dJy1o3qxJwI/ec8W03H7uT3xhfuoHmsv+1Ie0R86fWmwexd/y+pOBJxgnAqQXhBCw6wdZAoAw0JL+9u6BLQQxwsGg63s6jlnfKpBa5cmlwDnqppTCilDJpQXORaoJVa7fGAcfOvb2B4+n52d8fHqCqcDtzS1+/vOf43A44O3bz6hfkLYbB1fQKEKNSqXVaoyyfmohfV9baoiQUsup70Nzw3p6esI0TThPFz5cS/CoZrQEXrtyq5XgZ+xob90HBgfIQkcX8eIKDCN1ClKMiKkil2sxxlpXQem+pzjiImKWtRRM8wXzvIjg90pVH3YjuoHaNCgFCQzeK4hSO+dW57K4tGtQELHR5JcFznv4nlpXXde1pJn3tCjsh3mZyALLvJe+c1iWgpxo55xzxs3Nnvd8pugsrwOyQTDYLYWCl1WqErNoSFlQ1N57Byub99D1oiXk2+ddzhc8PT1Rh8wYdF7ayy4XBqqgU13wHsMw0H0sAMkkHBeeVyf2qsM44nKZMOcZcaYDnHcWDh42iDqGMQ0kU+BkdWFSUGtdxHcjxey1iq0JxSKVkW434rYLGA8H1Eywo++ZDNXMdqDj6xGl57gNmkDISrREPmcrbBdtkcqoSDmiloKhG2Gtx7jfw0wTXo7HZoN9PJ2bMyFbOGit/Pbz9wjBY9f3LZjUe96AK2PhvIVxZCYs00Q3ppyBlJFjwocPH2Cdw7t377DEBX/46iO+//gBL6cTAb+uw8PDPW7vbvByPiLnjMvpAtuPwGCaCx2sQSoZy3Th2Nof8BKeYGPG+XzGeZ6QfrEApeL19RmlZHz8+AFdF1BKROh7dH0PWAIYu90e1lqcT7QOv8wzdZc6tlPlAizzDBvFCdBAwClIwuGZeIJAlWrAqD388XhsS+s6t2MD7AEgFyahve/QOVrwVlMRkQQkSMhuDeIhayVBTI+cKwuzkA1IknUGdnzfzc0BXdfjeHzFsixYLtJCZbWVx7WW1CyW8s1dE2scpOetdsdqlLDvd5vCwhZYq22NZL6+tkVUANZ5ONknSiktsYHVFg2CN3GOUCfRnew3bBsmi8casnBUpPrm9h7duIeXhD7J2jZdZqgTj3MeDw+P6LoBIXjcHGgH/fu//gNeX1/x/fff4+HhHnd39zhfFuRikDLgXIe37z4TAIli6z50dP4xq4bDx48f2dIGg8PhBp999k6CXYvXV45x6x1gHB4e39I6O2bsDyNu725WQXgLABkxrgmOVpFfX19xOp0wHPbo+h5vHh7gvQN8gLe0m9+NPR7ubtB5g5pnTJcT5ssJnTXonMPFORQpZpha4Z1tre0vLy8otSB4J/bhYvG9LEiJ7XgEdg2ce4W1FPN33iF0ATlX1NbSXhHTzAS9CGjrHBTcVY2nIHobHz98JDBimUS8ffsWWVqjvv7qa7w+v+Kv/vIvkXLGuBvhg0fXdzD1gC54TPMFpSbc3RxgnUEB2Zwpz0hpRo4TRW+dbwBOsABKxPPL91AZgRgroiT5ADCOI0IIGMc9rO1whxukROv2zjl4a9B3A4yxUlxi0k7AyqHkhBSTVLkNDDyf8aYwp+wvlLQWnDKTcTLSezgXMAw7eG/hvMHY91Kw6FqAT/AltiKGMgYvl5kuaDFJ/DAjBI9x6EEhfAVb1hhKT4lAtkXXBY6HVlVPeHl9JtNNmNVGBKtzWbUyl6XCh4KKnsFsrag5ISfqfNngcTodUUpmLOgDduMo57Q0cGJaJsSY4APBxfefvxeWWmjs4UVY+ruxxzD0ePPmDYEn18k9TbDWiwlN13TSUk6IM50Elxn46999i9/97j/i8fERhwPHIlDx/fdPsNbi/kF0WwpQq4O1JMukpAVG0/L/mg1uR2AIHabLBc9PT6glI/gB9/d3GIYBr+cTNY9E4LyC52WqQX/oUCuwpLmxaFvBUIoHozjyKQN5ukyIicY4IQTc7G9gpCizzNR46gQQB4CEhFxr2xs0PqXxgm1GAHqhtdYmSt6HDrWU5jTH+Nuj7ynCrrGfAU1HSqk4v76KMQ6ZNCklYWT17djTNLVtxEscp0U6db7LlQzZ0AVo89zLyyuWZcYw0PWxpIzL6Yw//O4P+PjDR9El1TbE3MxCYEQaxJa2Dnnjue6VBExkyy9JXYtFzsF3gID7S4ooiU60vuvw5rPPEFPG8+upgbIudLCgIHzJn2S4svHSqIg5VosjBeRpm6sAaw24E/DUCXhWDPUYye5m23+R+DFnrk/93S2epwv+X//v/w9++Xf/HP/k6Qld8HA3N5iE6Th01Fa8Oexxc9jji8/fE+DNbENdxIQFhmLXvJS1DVuFMZaZzPHGDhezAgqTE3yqUrTR9wxdQIoJ0+Us5kEseimxocUyxsBYj07iEGtOmMwM2w+wxjZNxtfXV/gQsD8c0HehtRyXkvH08WNr87SGz9V5Fmtyyai2MncyhvqmhuNuC0ZqxFZqwVdff4Xz6Yy4LGQ8DXscDnvc3t3APjxwHFuKg+soUNAfRgFXAZ8EPJSVBaWKJqAA2woWKzwHa0SuRQom0DxsLS5tC6nakfNpe2tJ1JlrRa7NNf4IvPgElNK1QEGfq582Z5tPAZQqWSAaIKWFY10LtuBVA7Z0s2rnskajn+BQTcVJf7q9ir8JiLk67XaNn4JADQUU7F6LVz9+xwaOXz9Mz+qTE1k/la/8yZmaLVjdADZ+2pY1t4J+/Lu0Y63A29XfBrju5fmbX38y8BSzLFae4Av3TCL9xlILoai4sHV0WbAOuYDtc1p9T6lxDBWw0Cqp6hcU1QmQR1WbRgBd1G5ubuhS4zzevX2H/bjHYX9AF3q6scgAdE41QaQyb4ZVdHujkwCgfS+dL+1rIqasFCcL1A7wnou9lwC61goX1F1CNgJN/CFi27U25z+rVyWjyRhlZ62JOzUVeC/UpUwHiRU6dVoIKJS0Dq2uY0W973oJGLo2PEopAjbJINkEoPrvLbNJq4bGGHEbVKr7OhW0MqxW6ky+qxyP1N9c2JuvVdots6PphpWyBjKSEGrwF+PSwC9A3LEMKcWdOGKwY8FI8pNxXuZWWX16esIPP/yAnQpnyiaXRXPKiTYIEz0JKqyFC2Q6AJCNjJUIMm08VIy5loqMDOOMbGoWqKUxl9baIq4W4Ibuy78XaWXTFjkFMLQaZ6WVFE18moKyzgBx5nOe51l+RyriWokwaG41pq7aTKTPF8wLW4qsY1IQukBGWa2wwQLeN12uXCtC10lSpk4q67iptTaGjgy1ljQWmQMpZ1SXka1DN/QcJ9JSMc0T5mXGEhdY79DLe0IXkGoSVzxhPi6zsKoKorAslsSgtnd0rPzii5/hPE2Y5hn90CPlhPPTiWDS5YyYPFzn0C0d+jiw+iXsQec85olg9SStQ1rtBYCbw4Ei6Y215lthQjflmMVpqxKIo16GwdB38t4KoON62O5xkflFENOkVSNlSbxGA+qqKNtiFaetm0qHtM8oC0G+ds6iGo5gFWldlgVZmYcCEOn614DFVjnkeRtlG5YKCraokKxUouuqj7Cl8drK8MLI5kwWp+6nGjyhFSmsc2TBokqbFhhPw8Aa335PWTReaD3K8LBC8dG1jy1ektimjBgJ1Cj7Yxx3uDncwos9ubEGSd5nrMPN7T2GYQ/vO8wzrcq9DwieBghq++4EBNc1q+R1DfXBowsdxnGHrhtwuVwwXS7N+W8IPayzfHa1omag70c4G2CC+yTh14ChIlUDIMMYAj3KVoyJrW2cl9TWUoFkLzpPtXA9MyCIGmeCC9SPkXElSKbqiznRZoxLRHUFVZLRbUCUU0ax1H9QvTyt0KlhBDVyQGFd0f+wRnVXNMgyUk3ndVWJLU6nE0rNAoR57PcjHh8fqAO5I1DmBHzyzogQepUWaFbumy5ZFQC0cG/1ga22JXF+5ZRhJeGMia0KbW2U9qdFhMjV1l21l3JcUIprblkErA2EBM72UQvUKm2SotOnDBH9v2wl0JYyXXusZTu4d2jtb5C2dmrOEQiMMbFSL8w6xkRoR7DWw3dqlsG2ezJeec+9D+j7NcllbY8Qu2rVqY5RTmxfPF/OyKXCdwTBPJW6mdwKmxTGAalimi7wzjUnRicttc45jOMg8RHogmotjDeiL0NwwHnGHNpKruAhDFqLqoVB7hPGkS1lNKoxbRyp2QcKNTKztObknLHEBUUS45ubW7x79xl2uxF916PruJ/d3Nxhnhd8//2HFtt1XUAInu0tlbEki5x01CuiZWRgsEwTJRKcQ991Ip5voHVU4nIaRzLWmeZJklyuW5C4SFlCyu4CqHF9FetFgo0A0PUqvyB/VJsSdLrMJcNV3zSYtCiwTSAVlKpS7ISMRBjAhSAAOffGmCLjua4D6gwV5C9yXgoW6GcXYeV7aZWt4sypTBuNFbOymyGoaK3I1kL6V+GsQ9dLa28u8NYhOMbPXuI9BXQ1ktOb36QsNaLboK83t3ewYDsnGZii/WW47tYKVGPlmijBcJ4Y/+n6WEqBcR6wwlyW/XBNUjnPFKQya3NHix31xb1+jVu4r2LVEvW1rbNGYnV18a2Fbs02OOQIHC8TPjw94Zuvv8bN/R26QYTsG8OoNtbelp1+xRyrQME1w04ZTgDaGFUtL42LNFfT8bXKA2iexr3BtryPx1xNc4LchXj1c/kEHkvYvfxosoCXWFGysE8FvDCG4Kx3Hn1v256vxWO6EV53hHzK7tJ1hhI11E/jvaxIeQVaa9ms/5vPWgvZis3IM7Yr7NJAFV2XoaAIEReLTWdPm8uVqItiZFucpo0Tg23urN0dFmj/rpKvNP7SpygJrteMLdt/e5z1ArHGcPq7eoKV3UMSpmo49OPj6efWLYjEz68wV+YckGsBVunyqijLT7y2e+inx/6j5/PJDz4Fjtr32nP/0SdszhPrmMCPASuz+X/7ntn89JMP335pru6b3OP2vMyP3ve3vf5k4EmDKTppyeGs6jZxU1tSgisOvu+kIuARlxnxMtP1y7InF8YIWybjsrDdjWKiUsWTyQYrPZEorMosEf0w4N1n7/H5Z5/h9uYWtzsmf2NHJsH5fIb1Fq7zCIHMHHU92hkGUFoZ0E13tcvl72sypnoDSncfx0xXK2/R2w650gab9GKgZBVdlLaHWpAXOv4dbm5hzOpAVCRoqJUtHno+OhFTpLNSTgkoRQbkKlA9XS7tnJ1UYA+HA8ZxZKWmFPZRlyIVtoTT5YLQ0cHLWMv2rC0CX2u79i2QsIhNtWosMDgzyIUW1NYaWAHheC8ze7+rQTGii2REj6GBbFW0HRgkBAka6Hy3VrLOlxOs9TgcEoyx6AKDUO8ZhHYhwDkuDLQvj/j48YNs4hm//8Pv8fU33+C3v/0t9jcHAaosMgRE6rtm52qsY/AfvDg0ijMI1iBNtUUg92iJEchkr1FfiYnmVQdsvf7HCj4B2sZyOh0RY8R4s28AkAYI2poKa1DpU8oEeTcihYCaK87ThNfzuVW39Llq4mSd43HrpmqCilQLLucTDAxu7m5hncMwjtT1Shl9CHSNk+eWwP76vhvYGroNXoWJsRtWtz0NCG1PZzkd5yXy/WeprmuF9jydcZ7O1DzqPPrQY7ffoR8GzJdnttTUjCUtOBcJDJzHy/mMJSXEymc09D0eHu9xe/gL0W7hMeZlxldf/R4xLnCBwMC0nNH3PYZhwPl0QYwJj49vpL2KidESM5ZlxmU6N3e7+7tb7Ha7FujrolvKOl4u04n6OWaVFrTGoNvv2pzT6uzxdEJcFlyWWXQjJGGdE6L3WMKCaZ5wniY4Q4dRCqWKFTUVg6FW1LJjcT2tKrZJ6+GSCxIyLpeLMJTIdOpdT72btDrhVQEoVWQ2S6JK/4FKd0lZw4NnpW8pkXbyVapmsG1XdbBtPMNUpLjI3iWrnKGDmYNoAFmDYgjAR3kvXaY4F1XvJWeuM6HrYbwBAivRav6QpX2NgRgDvBgLTqcJ33zzHboQMPQDfvWrX+Gzd++Aymrzx6ePmOeIeV7QdQPevHnfqoDH4ytyTvj8888xjiN2N3tx43yFDz12+7FVZU/HZyZtUol/uH/E2I8Y+hHff/cDvv76azy+eYP9YY/9/hY+eKSSYGHhTWhjrHMKnidchxYVwIIlZtEbrEilYFky5iWhVIPQe1SQcdN3I+7vHtB3AwCxLc/EEGoquJzOBHpzljZggxzpWLjb7Tb7RsH5ciZYIO1lHHrUP0pJgU/VIVn3eh8EaBs6rr8SxGSTWVH3K3vVGNqr7w875JQxTwtdAZ9fUAyBgoe7O9ze7LEbekDmFoxBMUDKZKwEb+AtsCx0xXNBWiULx6mzvukaWkcnzHmW/RZyLTYipzVJLKXgdDqBLI4e+90OP/v8Z0w+rEHOsTHTYAy6UfS5nG8t99zaGSOUrEwgsgiVndtygkzx7JIJBnVjL6weriV9CGQwLmRxxRSRxdRkmdZ4pyUdkkgQ5Hd0A9RdopBRJBEIhmHEMGyNTjjPc1na58ISEI2JxYSnl48o1WB/uEMPwPd9S/xySUi1wiMjZYOUFgx9h+72jswvE9BLPDcOAaVUvL4eoYYDoSMo9Xo8YYkL+j7A2K4lRrkUJrqFbnTeedjDAQYGQx/gvWrDrK6NpRbUTGHl55cnzNOE6bK0cdh1HXaHA372s5/h7du3iAvdyQ77Wxhr8PnnwHfffYd/+a/+NQAmoG/fvqHjc43CWgdCsOjHgcwTAN4SBD69nvD04SP6EHDY7eAs4WLrxIEMat6xChK/vr6iCx3evXuHCmDMIwHtaeK8NgajOIhOy9L27iTspvP5jHmecbi9Qdd1TUNumzBn8cNzhQWsKzYqGGeqaYmOKxaLagOeuqEn0FUiW+qngt0wwNuOjsxpTbrnSVrxje5dHjESMB3HASYEiQHd2oqYc+tKqMIGdJ6ARMoE0Q3o3tz3A46vZOx0rsOuH3F/e4vdR2o5WgEDGYu5q+RtLUQxoS1SEHz/+ZfofcB333yLeZ5xmk7QomYpCSVVWBugGk2pAj88v0C7M1TPzAfGlKpX5jsvxShxkMZGd0tmpz4J41ZQpgKiCwVAtGiNMUBiocr5ChRDqRALGA9YOO4TMVEDbfBIGThOF/zhq6/xr//lv8Lf+0f/ALvDnkVFBU1KQcqROU1KLbbRNRwV7byLmDSt6w//PhwOjRSQM2MUZZk6C86FDbiiLB+rzCDZJ9UYiesy0I972Y9SY8G2PIylD2mj0w6BgiVOyBMZQENHnbAg0grH4xHoReZBgMeCCpTajBvU1Gl1Fl6T8yI51TAOJDe40OZazgnn81nY9Su7qaEBm3XbAKI71p7+imDIM285hII08hlO4jvVWSTTU4sOm8PJeeu5N+0pWUOsvMkKmGmLFra5Pyjwpef8KQjXChjtCtZW8av5tnk1d2TUdmuMqsw3YHMD5TTUXkgTVQBpmSTt8BVX5wKgidfrvahyjlfXYKRjZ3uees0wuDp9yf02F/wj0EbzTnN1JM0hBQS9xn02OJCClYocYPPGn0DA8NPP5erncj2m3Sxd/z49x78dfPqTgafOk+7uzDV1ka1NIkxt1S6e1rfLQivYuCT0fQ/vVhcMpSoCAnjktG74MoG0JzwlfsZ8mdH5Dm8f3uDtw1vcHA7SCpDxshwl2WLSQsq5aCIIkuk9xWOHvkOSRLQWVoGmaSYyDrpo1AIEZzF0HRkvbnXr05a9q0dkID3AawUIxrLNAqT61lIQU4ZqHrEiU3jtuTQXA1TAegtfPXxPSnWSBUhAdwCiWRUjK+fDgN24wzAMmIUiPY47YZVFlFpwfH3Bfr8nYBEXlJLpjlIr5nniAm42i5YIQVsLOOsxHA7wYglOa3OpbBoIldsy6Sh8BhooGHDiuhAAD5hKICDn1O6hV40hEStcFtqxzpcFzjNotKYgeAPnDbwzQKVAYilcTJeZzxDVYJ4WvLy+Asbg4eGebkSPj7LpZQwiMt51HcdYKShIq/ucQRur20nnnFnZElWYJlWxySo6OQIOgewOGeS0BtYFXN4/zxTttc6jF+tZGLY1lSpJOtDuYykGsVDnoWjlbuzRBwf0rBAnSRYr0QDJ79lWWaX6XlWAVVuxasFRBFGtZxDnDIFF3ZxqreKYCJwvJ3hr0Yt9egXb+kopDDzhEKy6k0DAkdLsl2GA6gyGwSN7g7xYnM/A6+uE04ltrO/uH/Bwc8v7AiOtDwad41y6LAkZFt5VxArStytb1M7TzCA2UrOl1IpYClKt6MY94DyOpyN8KjAuINeEJU1ICyv7S9SHClRYuM5i7DyG/YjduON82+3JchG2yJKYmOQKpJIIki3Uleo7rR5Tb8h5uy7VhmNZQT7vPdual4QlLTjFCXYCvAHiklEKUAzdyozJMNr0XIGSACeJrNrgXm+GHLNKG4cE4d7RhUtFvUvb2CS5rito0+IaJ0Cmtaw2Qejn1mn3XAMf1QJa3UlzKbRJthYwG2aTgPEwWDVVsuwTppLNUCVgdRSIb5pbhnT0UB1MqVhSgfXAfuiw7wfshx1eLxfENKEsZJOlvMB3Du/ffwYvAv1LSvjmhx8kmSTzstSMn33xOSn1/SDFgoKH7gHGAI+PDwJACtC6PyB0AV3o5blU1OphXMX+cIfgAw77WzjnUWrF3d09tfkU0DpdmCDOE5y1GPsBXp0onSZCVeJIPp+U2MZa4ODCiN70COBcs8ZxbSsch954ttsEMqOCcYi54Lws+MPzE7ouYNHW91JYSMhZ9NAqggSFWd6TSwY6CnJzRK1C4jkvMMbCBwqzMgkl6yJGmjFka+FsbckHrdorrC0tENaKuHFck3rLotQ8Z7jgpJW94/6EPQBqdkTRjqspIsUZpgYUx9YJYwxC4RoeY2qJZOgcrA2YlzPyxPkCY5qYfZp1rHPfM8ZgGAbkXDAvCT4mssQrUKuVPZKJlKmAqxauEhi1VOTnOu0I1lkFF1pwyvttYeBgkEpETQU5imSAxCcuWOpuCTh/mdW9qWDYkZ22RK5TdcOu8N7BWYfeDBu5ADDRlVjDOY6VrDGa2bAzjEFwXZu/PjAJHAbAGI/DzT2SxD7KGNi22Wz3UrKXPUIYZL1iCB2X3ESyp8skLI0t+zzBWvat1cw2XRgj4OUadBsjBSRrmVyhYpGEM2XVkgNKTiiZe/Qkf4owAmOkEyzjFg8EjxocGY/W4c2bB7JaNZZZZjLSvTJ3gODpttXc2aSoF2vBJUZMS8Tnj494fHhAP47USpQk3DkLWI8ahMVQK17iM1KOOF+OjW3pvUEITgoCFs/HV7rXScFUDXXYFuwRY5Tiqm8M8av4B+qMJC064rLZ+7VIh0y2JFtUuRfUUqUTgZpqyVjYsu4lNQHZFOkCMzCGbYkh9MJsqhJvGlzEnCEJ85euhB12xmKeJ7b1x8g8XFmD1qIYCysxaq1ATZWapoVj4nWakEPAb/7BP8aHuSD/d/8/zNkgXQh0mQqhqbWhJGOtIJcEI10hx8sRs/dY6oJkIirUdVkWMGdl9StA4f3MUyLoYwt2XcC43+OXf+e3uHt4wP/w3/33eHk9AqYDjIPNlnu/LdRkKhbVFgGmJXeCFcmH3O6xd76xsxsTHgBSRYFBATtZLAqCqXCoKI7PwdsOBQNyHPH6dMG3v/89/u7f/7sYux7LZWppLkEbC+MhboQAahaWJ5CrsL+ruHw51fQVPUYYpGVBdSwuo1Zp5QZMzWwFtLatM43dlhLXgdA1EEnBvtD1vC3CnIYlwzVFitKHzrdHqiwkuhqK27Up7MQwjFV8CLCu4HALYfATwOGaybjRVkNgI2UpzpU2P2jkxHnjnMHjwxsyQ5fUMAFlZIV+QKkKwAjQYgDjCYJWw7mFumpcJnkOVdZH1aZaiwQadsraoYClqajt3hbKFliz6r/puKlANdJRUVYARBnjjPmlY6IUFsOBxjJaz0Oup9B9cz0bGUpYm89arr0BWozeC6xfA6q0aBRj2/z+2s7GzqHNR25BPaPMtXZnBAjTNwLaGqeTqHUxbc9X8kfTwK26/kxxOL0wvWhjrs6rfd7mmW1fVb7X+Iz6TKvOxk9c965+U69sfa3MRDQmuJ6GXlMF2vNuHRD8hR+BcX/s9ScDT730rDpJLJwPrbIReoIzxCrYY59SFOtWCiv6LsCbFa1XkWxrregrJKhDhr6sJeU9JWpcxDliNw443N7h4e4Bh/0eT09PYt05i3DcDtategYcmLwd3lpUwyrXYipS5OKIaglgLQnWAV70cIJzGDq2c3mpiBEkyxsEe73R1plGfTdgy8kw0qFF2T4xF7J7vEMqNHHOkgSyEgFBbh28DVLF9HQ+kV5+2TO4qQgrZb/bYRxGdH0vFWYydpS6q66AwTsMfYccWVHy1qLCIS5ZqnBrPz8Ml3BnKZZ6d3sjFHlpYTHa91rXthihYBswwe68oyBoTghSkaglw7uIl+Ny1eqndPhSM+1OZzrchVLBlgiKoDvHP6gE7pCllXCmo0ytBvMc8fT0im7wuLu/w+ObR9zf3+Mo2kH9bmQCZh1BsET3IyPgEmCQRGSMacFK7XebxaGoGGsFgbosCzJsYxcZFeRtorW2AU/LPONyvuBwd4PQdWxZrdRfshUwyM3tDnBABmIiJT5WoekOPfraoduNmM4X6uuI1bgtGbUQpdazzrW2dlbNa3KtmC8XMsl2I8HMrpemHLRNJ1cG3U/Pz9xoc99aWVNKMpdX4UlTwTbbzNaOJKAZrYotht4jO4NUHVANgaczHdIO+xHv3t6jc661VcFaWG8wLwvmFJFNgitVFloCz6VWTFKBVq0Say1SqUgV6MYdqnWYPj7BF6BLFBo1C4E8A0l6s9CZnSGD0nv0XYeb/QG7cWSbnZW2slwwz6wip1qw5IglzrC5wlaun9YAwVG/RUXGrbGI0iLShQAEgy4HxJyx5DMKKs5php+BUIAUKYBdUFEM4IyARwIwoXCHoNX32ianf/NR6pil3gPBdrbfpVhRUFBkI0wKRJV1624bpNX1z0r1ZmMxLk3utRQUY+juJQFhkrZqBwa1RnRfvCRlWUD92iygZc5oECVtUDwH19wtLVi5C9WJ8HOhxk0XMPY9xn4EUBDzhGUSDUFXxensnQiQO7wcT3g6Hpng5IL90KMfenz2/i1gLaqxmKYZyxIx9gNCCLi7v4ez1DLzqOg7tj55HxClRQeG7K39fk+dxP0NVAPn5vYW9/cPeHp+xiRObeo0FbxH2if0XYc+9xQytqWNoSz3bFqizAMLKxV+Y2n97owEC0W0HORaq6wtwVikknGJEd88P1MYVsRRa6FOy7LMLagzAoQrOyenAmcrum6l7ueSkDOQEnUDrejSAGR35AosSRzarOPve2l1hkMW8JBupQzudf20FvCBjqmwBc4HuC7QDSgE9MFJsuUwTRdczhElLcjLzP3JOiRxIK2V+8c8z22/9YFt68fTK6ZpljY2hxB2orlV4AOBeQMGaF03UBfvPGGJCalo4GoEXAWgbSPVwsHCawhWmdgYS+C4mnXOthjD0GjAFwtbDJBra0PxziGIplOt3EOXGHGZZ0yzVM0lhqM5Afe1VT/So/q1TUrbXUqRFlbLSr/3gYB64T7L51yFkRDaeqCAUj84GOuxP9y0VrW1rce045EtzeSsEIGDF5MUAHSWSlE09yLiMjdGU+gC6OKV2bIoyVCSJLiXdYX6NgTlvWMLnyYN1B2CAIWy/4uuzLTMmJdFgCcW/6y1SHPkXN55GO9RZT2kdt4Nbm9vcH93i+PxiOfnZxaZYmzuxZ3EqDkXsjiMtI2DbozzEnFzOODh/p4t6dKqZWHQGQfjPSBGITlnvLw8IZeMaTqJ7MIOzpqmo2SMxdfffE2nYOfI8h0HOO9ofNAFicsJDnYd73+SeEP3K4AFNU0+ANBMoWqrGAuCykpl0Ytt+laAJ28sXGdakl+z6M404IlzvOvIjNO2W2sNLtOlxdPKrB5yQeh6nC8TzudzY3xbT43CAiOFbMZmWUWoM4tSpgKv84ziA3759/8cf/m7P6BOR6RkkM4Jpd/DuADjsVZzZFLSdCMxgTYVp8sJzlvEGpGRUE3muCrkaDTpD9TW0pSXTCDJRYxjh7c3O/yjv/d38MUvf4G//Jf/I45PE2Bv5VcsqiGr0BYDBwsKb+QWv9gquUhaxfu1xXWOK3OPQCFQBfyvKLCo6EDgyTgtVHRItUNJA44vE777+mvUmDF2PV6NEVOSDXvJO1gQ3IcCCwYgnbY20w9NXEsbTxU5JoqXg0VY72wrlhmjTChh4Kckcwbo0TUWE2N57o8+sLhcrNxsAVeykgDsyhRTbcqWnxqREDGV0YVxcKGDA7C3XoqpBA29mEGsOadRxkFb9wGgegLrAMfz3d09aHbDeda0nAyZklvlnwoWkJ23V2OKMSDvsZbz9bkroMP3yqhV1MpseHLWwFYHNVcJ8uxrlt9rMioS00neBgUh5Nwh76XjuXjNCSangJNei1wmi/QKYshPUU17DyDgi4A1BhJ/fgKnKHy15uV1BWU0doW0kl5jRSu4In9vu4EU9F5zqNI+f31tGFoV671p5MMVxNn8yvpPQaJaW5v8aQXfq/etLwUY+W+9SpVZkauvJIm0G/jJ/z8FjNqo2ABR6wG3YNw1elY/Obc/9vrTxcWlWh/6jhTVYaRtu6VldoqkLxpjWrsFgAY8AbgCa7aVr61jwPUwMqimwDebXVaMgmebxJIiLXm7DoebG2kRSSigdpT3Ht5baT9igF4rHa6Md+iGgclwzAidF+o/A9d3bx/ZEmEtliWyYgoOY6WPKjuAZ8rqTxWKi1WHNenLzoWCveO+p6aDNYClPpHfHwAwgIIhsKABjPZ1WkvxQrVXzik1pLmTAOL19Yjzhx9wOh5RSsH9wwOcXemQXKTV6pXinMMwsLo1Do3JtkQGWRoUDsIeW5YF2RUM446VffK/5X1etIg0UeVkDd5hmfNqhwzR3vID7j2rfbQTRhOt2+/3GEU0dL8/wIlWgwFZL00oUGn9cn05lUbxdc6J2PwDHh5usesHIBcMvkM13CRqYVJkKhCkLQQV8IUMDW9NAxVSTJiXGcE6Mn36nuyime5rcB5WKhgVZKPMCwVMaehkmuiqAmyoBuPhgH63Y2+6tciy+e7crrUtaCuR6qBpO2TwrCIkgMGZtRjHgZXWhe2qzjkGD8ZL0s9qdS0V55dXTBeOa+scDrc3dCPpWInlXNVqE2dnFkArK2Aos9YY3hMDyO8T6CmV9y5qSysvu1Hfbw93BG18hP3hI45H2siXlPGzz3+Gv/PrX+NwOBC4LhHVgW17ecCw3/H6rDDEhHlhjbR8ySpCO+6IXT00AA2o+O1vfyNLm20JWIxkuTRqcBWQBazw0tlvgbEGS2b7p4qvk1mQRTOlwNYi84xzI5eK6fUIQMXzA/phEG2SjJTnBhIBFLXHOAIPD7jpetyFHo+PD3h4eMAP33/EEieMu70wBApC8Bh81/QcqC9VUB2rvFOOsmkLCOksSs0UXpVgzIhttLVGNky20ZRaWh85tfMMgnNtW9f2Qq1Eyu7PbV6CXnUu89WhGILZ1jjqyBgImISWUMIYJGkbVkA3NMcfrro5M6gNzsFVwFZLsDFXAWboZpiWBSlGOFh0LmC4pZhoceqQGISm79ANI5aUcDmeUHLG2HeN8SqLN/YPO3QhiI6PugJWEdtmq6def+0HJtZJhf4VuOe8hbJVxP0x54TT+YKYEs6XM/phwLgbMaeEXCpeXo88r4FJYz9QEPlyObHlsFR456k5BrbyprjAGGA37mCNwSsIQCxxbuPRgppJ33zzNdtXrMFu6HFzcwCDZNdEO+d5RhWwpmRqHTnnsD8c2KaWs/actrYJAwEitWpmpF0ULIwYY9jeJiCkxglNI8cHGENAy1lDhqD3eP/+ZwJmVpyOrziWik60NYxhS8Q3335NPaaScXtzi74fME+i2wbRGHFALhHLecJlYqvNy8sLUko47G8ABMRIEetx0BZth+myoIgBQa0V97d36IeBQJk8a91cujDAwLT2y9U1ZzN35EX2GNevyqACufJ8u6FDN3QY9jvUKjqTLXDndafEdnUynitikvYzccazlgClL2sb7ZwSMoCwaeF3ZtWxiylhbuYsbG/Ua1lNNDTSrlgWxgNdF0T3h2tDzglJ9PhCA/C5z83zDGuAKECgdesYYIvnGkBXsZYvRfOiVRNr6AdW7DWBqCKKLUY5lA6w+km8b+ryhYqSEnKMwsgQ974KeNFAnOKCdCw4TxcC9Kbi/v4eXehkz0k4HY/o+x7v37+XU6i4iEzCOI4AgCVnmErOSc4FL68vOM8T5hTRjyP6ccQUF8BQIiDHBdN8EakLh64ju5xGPQR/jqcjfvj4AeMwYhhHZNmr7u5usd/vpDU+44cffsA4jtjv9w0QT7KWaSveVXFV1u2cEnKJ8Na3yj3BIYdiucPkmFiMyWKcIvGlJmSotd0nBSpVEyeKXlrXdWQoYXWf2+124kydWqEixojL5dKKw3rO0+UEwFBiwnq40DHmT2THGWtEqN3g+fkjjLH4xS9+gf/Nf/lf4M9+/R7//H/8N/g3//qv8Nf/8Su8vv6AmDKqsQjDDQosojHwg4MPBnEGcgKWaRI8SToGOq5NQvQm2Uladp0ZAAfYEFHTgnJ+gduPGL3Hf/4Xf45/+J//Y/w//y//N3z3hx+Q4VHhUEDTBdKTKmAKPDpAADXOAsv9rHNkm9eMJUfEklibsgJewEkcYIG6FtFSZ1GtgUGBdaD2aB9Qxh7ZAItoGyZpjaRLOJ/FfJkxDB320iJqrJVOsArvyYp0Ag6pmZO3tsXAWjhXFmTOqSXoi5hXaHNP54PsmRyz0zTJmuuY68HAeTKJF2HrWlDrLTiPnCNqzojCClVSwcvTU4sN7+7ucTjcNhmWvu9hlQlkBOCpVYqtZN466bRhdGRhdZ5Yu7k2yYtxzf5sbFONEWQtbSBJXcFgVDCOcmZ10RagV+fYNqv+KVigyvlYa9E7t+oKC4rhjaBGlWSHGhOqMB2bxIRpGAVQpWBYtdRoYKu+b2Xn1CpgsiNT/arVa1OcAFYQSMLxtgNcXUfl0exPXKVAOvy8T4Cc9Q79NAijPyEAVDb3FevJ6LsEeGKrppUiBT+xiMLz9nz/xldd/zbb82o4zwoobhle20912OAq1xhZ+z6Hyk+ci8QjFVi1NhXvIJb16Wn+ya8/GXgiUOToahbCla7JIgK6rkpS4FixZCCiol/rJrb+4Q1oInGfoGWlkJKvAofe97LxrYPRBSfOAh4pZ6TzqSHhZK5oVQuNUaVBL9s2QKFKoRqHjuKCt/d3cIKsaxVH0cRGRc+rHhKBJy74EDSYl0SxXgMGkn3XQXV9lJrofMcNsCNd2cgG7aV3ughryanIbqnIjhVdZyyT8r7H8vEJx9MRx9MRpVQMuxHeB3FTKvKHi7kmA0Ho39TukvtaC2yM7ZmRNu8EkZcKNRSVXZ+nNWxbrJVOGap3BYhguozMYRjIHPKOFcWJ7nE5U4NBnQZVd8dZt/Zu23Wxa+RVuScaIKru1jAMuLm5wcM93RZrqU3okBTtwoqQtMfo+LACMmjiiApuTvNCuq6lY5mxAjrUCmurbGo8L2tME86EVIQ7qThb+dxiAO/W7wEEdHQRXqvRsizK+WXZQOGkza2s1rHOOUlgrZSRTFvwUSm+rFrEaVkwTxOMc/CAgLq+3e/tnOT6agCsgtFcGLQSgDam9B7nQjHomCn8naRdRVc9ayz6QL2hOJcWOGjgcXtzizdv3nKtkeoLBMTwpSCUcCX0WEqBk4pt33XruFwczEJ2mzqAeAEm6yb41Wp0Ej25plci189bKNeUqEtiIJtxXduFKdKt84EsAVQRco8RFJ/nM/Bd14SrF2mntcoAam6LPcaux9ANGMcRwzA08Fk3IyPrrg8BuYruU44Ex2Uz1HFTa5VnbBoQWPWEBGTU68UaJrT7YDVptUx0s1ZPWyVrDQr0e9TBqyhFRCkrn7+FWZlZsoE2LQIj1T9jmhvM9nqN7AGq4acCq0XcH50cM0VqTtAi3PCedhRFLY7PKTjPFkhrYbxHKAXeMLgcggAeyEzancM4DBJYUwz4eDwhI7dkfej7jcYBz9l7no+xqzsMJGDVsVrB8TWLXl1KCT5nPifZB6bLBUkcfkIIsN4IIB0loSyoIXCtlgB/nmiaofM6y7rFVoXa2sRrKbicToje07HTGtzo/TYWqqeQpZDAeSd6Q5+sU1VE8rWyrWOvSAsUNNiuVdoZuYm2tUdeqkVUAqvQKS9Sia3Y7z2G3a61WU8yf4sWv0zBeTrjeDo1ja9xSPCec66iwgd1naKJQkyLgP0Z0yTaTuMOtbKCb4Wx6KTNyhgW1BSU3+87SWbJ8KDNvYBw3rRi21W10GyBpxZZMmCuUnGuVlph0JyOvGgrpkK9r81wk6RNtCOxJjqt4CcJDqd5FQBHGKuOsZzXNRSiy5XFdXjTwmM3e7L+W0FoXT988DCWQXvKubVlUxvGtudMt70FcQlspZL1pq1bAkwokK2aTBQol0VLKrtOGIEpq8OXrDnWij7Xp6nAur4o069mSfA3Qrs0QZEkVdhfMUUUVIy7nSSG1C48nc/wITQ3SGstur5HzlkE4A1CSjI+6CI7nS+c+xJ7hS6IM1VtLUJxvsCpnqRRfa/1nsSUcDqdWDgcB8Z0AIahR86BgFCZyX7yHjuIdmPfw0Tqr8UNW3gL6FhjELXA162tkgpmGlhUy+Q4yXOutbIA0uIvtBhsFak3orW5rvEsMAJJmK9Vxr4xZt2ja0WOkWxT7+XnfFg5UVfOe8f2oM0axKFiRZPTNMfum5sDht/+Gp998QjnOqRlwXJ6ha8zTvOCXDNiXgDj4GwH5wDfseWqFp4L1zK2wMHlVriDtmC1BE5Yjp4xVTUFY/A47Hb44v1n+PUvfo5dP7BQWi3KNi2uunez6M31IbeBaozsrUXiEin8QISwi8TBsJ4flNfMNetYl7+Ns9SN8sIaU227TLBUdR/VfS54D0VKjDHsepC1QoEaSNFL57gTIsOnMW97VkaE5UuVwr4VkwtIyxf3NQchALQQ1Qoon1oSb41lrlIysuyTdVPEVuYTAOx3BxZSxfxGAWwFa5xzqE5/3zUkw6yPWZ4F72HR4q/8UDU5vfFt/YTE26pHplpUCtwoA72BPk7iH9k/DDZMpk/Wts3wuf65YR4EI62piWCebWDNajyiRaWmtGUgbJd69R+xUQWE9L2ynkukaDY5wSdn1M5TI8tVqFy/1ou5vporpvDV72yeywY4uQZeNvf2kzv2KVi02cHbce1m/RIEQvbKNZ/8G2GaT06Fl9oi6k10INNVijnrE19BsRWs2nzoJye9vfYGYIl6h/7e1dkKhnL9Gdt//dSzvH79ycATmSceu/2Oi9b2hKVfNUtV3MkiYi3bSEzKWF1jSBVMJbPPV9wjrhIXHckaR1hWxW5vblpCpHJIyiZw3gOZbSrzPOF4POPe3SMMtHAtqFhiacAT3X5UOC/goX+QycWJ8Hq6QOY05rgg1YLOd02cutaK5fWl9Ri3rdSAC4XqVAkjaBxHeAF4zuczXl5OIrBacXs/InShtb9o2xpjQdWXEurnBuhhwFlaQt4NA3b7GwAWKSUcTxdYO2EQQKuXgOd0OuHNmzfY7/e4vb/npow1YbBS+Z9nsVZOGRlFKvsFzy/PAgDKuWkAawz2N7eiueAliIxtI1Ghs5QLHKiJwZY8h5wrzqcJ487AuoA3b9/i/vERoe8IqiRqwgxj30CCtohZAn6h74AYYaPFfrfDw8MD7m4O6H1oIn1qqQpJeBw0GPWtvUHb4LKIutaNcB+1CljBstbAi1OGjsPmYiQsvppBW+RcUG5u0fc9Drc33OdrZc97YQXIVKUD6yZbrhZQXYCq0HZrYcva2PfIqEhgS2MsFcE4GKHjFlSURBAiZSbHfQi4vbnF0PewnsyB28MNK8SbVblKkqiulLoZD2odvt+3tiZIsH6ZJs4xAWko6GkIcGlwIYm38Rbz5YJ/+2//LX7313/A8/MzHIDHmzu8eXjA48MDjHPIdQ04g7jZKPBQakXv15aVFBOOxyPbS89n7G8O2O/3ZGxY09ymsBnzes+dUPM7AWKzbLBVtKnYMsV7dH59pbOJJIFD36PvOrZQSHtAFi0tbSUOonPjxcnEOo85TjgeT3h6fkaMETe3t+i6Dntn6CK0zKghwHmL0HkMQwdvPZxlOxeHa8YSM+Z4BpyCOQbGOoJctcID4iaUJInUMUZmKqTKzcCG1X1NJpxb77mOx5SStIWWBkjAcS7qWC2Rro9Z1lrvHIMaaPC4ClJWo0kJf15LRXAOAa49B0gbTZuPAGouraXTVFDjCMJkSxkvpxdczmfkmHCz32O3GzFfyNqISfRBbnZY5gWXy4Qigde7t+/QeQ8DPr/n12cJzhxMLVimud0L6ku4BiykKvpQcn8BwGQGvlbae59fX6lLFDqYSGvtaaI+CRkMHe4f7sk2sQYpSiKXM0QWCBUZp/MLAOr6lJJRcsRSZsRlFZIlgJJbG0rKmW3ykvxqFddaYL8fxNkp0A20G+CsR/IREMdVbYtUkdG+7xE8W3OMhYDbCnoYAW18Y1Hw2ZH5Y3S8Vi0K6VQW4VIBC9Qe3jllflywpIRpWYAqLR2GnxmFFWosAOdwuH/A+XzG5XzGeZ6RSkW8kO1lLB3HyMox8J7Mp1IAazlfh/4g7n+S4BUAiftBCAO871EKdaKen1+oaSmgcd+HlmjoGlYSNV5UeBcAco5YNvtalbYNtlkb0QUhCFRhkOoadzhx/WrFJVB8+a0xWBK/txvZXt7akBQsEiDHOdeKLxo0I2cRTrZs6zIWg8Q/RRwXIYXFKCxzK65lanDigsPNzQ1ipANhTBHH47HZ3rP4NLVkr5SCzvv2vAkyLK0woAUZ6yx6aUEzmri6gE4SpSgtIykXKa7tKBVhgKUyaw+BzNglSfthMQ10cpUuZzS/mHHY72W+qs27F1YLcJkujXUzTRM6lWYwwOl8xh++/gqHw00T5bfO4TLPsnZ4rkFDj/PpgufnF+SU4YVFHLpOWGtkGj59+AHfffM17u/vsD/sUeoeXdfj9u5Wnu+IcbdDP+zQ9x1C1+vWyDFUQK2sWjDsRtHHAl5eX/H8+tIS3KHvqfu127W5uCwLztMFL68viMuCNw+PNKsoIktQC2PC4FHTwrYfSfTmeYJzjIGpz5kbOB2l/au3o8wFiastNVVPl1Mr+PL+O+wO+wZCxmXBRRyp11yi4rA/wMr6pMUaa9GMh5S9Cxjc39+iVuD19RnGOvjuHv/L/9V/gf/F//yfIl2OmKcz/sU//2f4y7/6D/g//p/+z8jFYn+zhzc9fOmBPMPmiOV8Ri0Z1vYwJgNmacAC24cY86JmpMsTTC0IXcHD/S1++xd/F//gL/4R/tE//p/gV7/+M8BE1BxR8oIYLwS7DDUva/FAtijVIOW1vdBYC+8GAYgkT5I4AbIvIxu2gdmC4phb+E5aGgHUORN8CgIQwjEZXRL6LuDu/hbGWiwxCvup4HDYA4at5LUUTGKsRHYEwfO6JFmjPUw18NaxRTNFJFMl/uW6lzLZr+NAlmOtkKJAQq5Jnn3XiAcwENCS67PGF0VaxVTmhUOyrn/knHXc5Jxxs983HWBrLV6Pzyglre25m1xpv983Zqaa7KTkGjgCoOkhK2lCx6n+rUWIWjNSUhfCDcxYyK5y3gug4DRRaRsmc4nagFsA+BGkI+t6lWGwzbmvcBajTq95jdMg+Q0UYJb8AGuLlQq6b10UqzqVN9hIvpa5b8t6DyqT8LVooQXLFqNXQFk8n6AfmyzpR6/2KDZY1N+G/2yBJ72PShrYPrsq59fupbJEtTWRqJxIsGzQyD9yrE+vQuGjdf7+xJvazzb3YwOCMWzeAFKb31XTB36kgJZGYwvb4jLFCH4Mx63A4J8COgH/CcCTD2w3MGL32IJE6KA1K/S5uU2GT2utRleOKq10sS1jPdktcmZkIQk+yEahwnhZjk0Eyggf0VgD6y1slCqMDi6hHW4dOIpUEa1Z6b0AkKTne4kRAAXbWsVMrnPrQGeA5jRn9JwUUq06uBmclSrufNrKJjdIg3ENlnXCbntMCUBxA4Ei0LWimtwYYX03II+1BSncvE2jk9ORju0RDMqt6Fn4FRyS4Lgr4pQF6qkoiFBRW2UfwgQocj6abK+V3DUQbjdQcO/a+vgZSGjAqc8h9D0CSGs3MCi2rFVi+VO3KLA+fwlOaFceWrvCdqpz7KxgwzrrWIlpix+YWGQBBHWBrVjHlnF6b82PFnwF55QlozarHBJVRC4rE6a6AintPMt2UTVtvLGCXpveFINNJoQ5iQCwA5zhfUEFUs1rNVscsnppiTOeopNeRNXVMp0bCKQ6hbaoqd4H+88FjBPgCaCGj/5ulYBBWWXKXEta5QQZKsfjEafTCfM8YxwCduNALRvnWwKRpSWkFLZXaXXGyDm1qW4LndZUT8VYEdZcK/3an34FOjmHalihscKYcFqtzQkmrU59piVtVgBY19hmXuaFtUCNZBpq9UHnIuc9mo6IsluSBC7WWqQoSVZiBboaSHWdQJ4GBLrE1FqRUdqY1iDLCutSBSG1u0fXKLVI3c4RfsTKTLWS9CrwpIwGrXyurB1hPKzDmDiRAghYxWn1hy0WMCtzUls9qAWxsgTbxrdZY7H5fpvNRvEpnXuaUPNnuua2QKloO2tFNlUc9Bg4d9r2pSxTmfNK5Tcw8AI4MU6qLTnO4qpkDICcViZlpSMjDN1tgBVgVrarFTATltVp3Sets81lpdSCkhIgLXUqGq/3ki02hgWEmKiBJ+tM1/XtGTuh2Ouz1NZCY6h1owClVrsUhFTAQgP/lBJEraXdYy3m6L62TQx1T7XGNrcuZdGqcKmGE7rnWklOcmXrl5lnWBRYU9H3A6wAFWQV8z5Z2eO1GMJiAudKThnRWMQlyVhha7v3tu0xzpPhXTJFfHMm8GJQCFYbtpvXCszLQnenlJCzh7aD6zgF1ip3C9kqmZdq8qH3SyvqxmhAu+oS6dy6fq17YnAO6Hs4z2vqQxAGRL1+K8iE87outzn0aTDMMWhdbfNWQ1I+m9LWoVVnxcgevwbqzlp0oWvuoOqsmaQFKqWEoesak0Ln78r+JgBiHeMeJ9pT2oql4wfKDP7k/I2RNdGu+3xKWcxU0NYDznWPLrDdq++Hxry1zsFLsTDXipDJvFAh9yiMcWpa2XZdMcbGNFuWRe6JBTyaO5i2sXL+Dxj7QdZ6vqcLHfqOGmRBgMutCD3XG+rLWYkXswKx+i5r4bCuuU1wvmrh0co9WAvCRtbgUuvKqtUEU+IhdVetmVqouRZhrWqyXqCul8pg346zloDpsTRuktizCCPYShu4kflRWmvtuu411mUlF0DBUi4pGp/KPDYWzgbQ2GaGdTRI2Y17DLcdOveImhdMl1eCwzWjpgTEWfYZwOQZtkQ4LKigFqMxBdaRKQuoeZIBDFsrg6Ee4M+//AwPD3f48suf4/Mvv8D7n32OcTdIDgQQ3NV4ngwnBaC515MxV6G5QYYo57T72fZ9/V6tVzH05iHI5gk6mmxABAuDvuuwO+zgJB/b3neyelgkKRKnbNcS1YHikFr39lJNm3fbHLCxGFsLrNn8PpoA9HoOq/B4gYhe5/UzW1Jd13MB0PZbmihIjJqSsGC5/4UuwNcKLwZApayFF7PNyepaXGlt3FZbiTUfqliXJlmEGutV9s/NdfEHqwZSyzV0XkH/XrVc23PH9WvddT59j+zRZv1snYfteeixt983mxFSV2xg/Zk+sDXO3F76lvXavl2vySjXZ//T2Ms1YPLpb/w4B/yjP9QfbdelitZeZn50Q81PbcRXZ1GxnWvm+uftdq8nc/Uz0UvFJhz6qVPe3qsrXGWTu/346PX6r+25yDxZn/Une+nmE9ZlZJ2jf9PrTwaexnFEAXVrZOdm8uOMZtlMuIBGxY7LQiTUGFY1ASwXJpzOSVV6+8Ds9VMNIny6G++5iSdqLV0uJ+x2O3Shg+9k4xUqbj/0rG4NA4ylfWqQFidkJufTNLUAyHpWZ4oE1+fLGTFlqUhy+mtSqUytb7+lTeqtMBNu9gdqKGxa7zQpitL+MM90+JumpVnH397Sjv31dEQVQMgai91+1xYcrfLd3d1jHA6tHe94PAGgloe2B+6GA2iN/u+QcxHXLY/DfoecE5Y443I643g54nBzC+sDdoe5bezW2iu9Bi+OQK8vR8zTjA8fPqCiIgwUMz8cSEHVFjtvHXrRMTpLtRIwa9sgGMhby0qTMWwvfPfunZz3Qvt0pfXqogsRVKwVl5g4/DrfRAjbNLUWLljsb6iZVWrFnCNqBIIPrSqMyjY3fpADsFqvokKSRWrEpFpwni9MXJ0BvIfxDsVZFAvYgXap69ZWRMQX6LyDcz3m3Q45FwziTBMlmE4arEOADhjEeblKsEIIjaZdJXB+c3fPHnNtpaugSOacMF0oLm5lI7UyP2Jeganb/R5D3+MgltLZrBTWWlXccN1AleFgrIG3vrXlxZTw+vqKFBNp9yLE2IJgCQq7rqPVelg1rhatiIM6PR8+PuPj0xOen5/xeP9z/NmXP0Pf9ViWhA/PL4g5AVZaFn1oQt+dpz12YyYxMgYqsNuNeHh84PG1Ao3aNEPiEtti7bdAmm6+G7Cj5ox5WZBKQRcC+tDhZtiJNoppG2x7v5HuDGvg4ITRIZo4pbTnnFLC5XLBPM9MJLrVZXKejiLKXrALHfKh4IcPH/H7r76m3boNZAtKkldkfOSUhdrO6+iHTsYAhUO5bRAEijmiZG21AqIEj05cioxZE34Vp9wC9aUAKVJfyooJgw8BiNSVgeVYWmKEqw7OhJakGqk227q277XNvlbUlNmqYMwad8pGGJwTmr+yLrgGOSqtAaVgKRGdseg7T7cwA7wez7gsE2rmvXI921ienp54fOewTBOmZcHvfvc7oFT88udfoh86uI7tZ50PDRjzXnShPFurljQh5yTGGiIa3w0IPiDOF6BW9GaHgorQk2mQSoJ3HWzwbI8WTUN9UYi7whmLznsK1MPgMp2k3SSi1EwNQAlMlHE8zxN1Y15eMc8LTqcTixTDiKGSYWm9xzCOmOZZkvAkjE6HeZpxej22ZNRSIohuVaKPUmrFSfQvUkoYx6E5ZGVJPj0CejvCGYdg3epuiTVgMjCtza4FUVVMNDbf09YL5y1KSbhcIrxodT0+PqILHY7HV6QUBSwiGyoJs2aeFljjcH//AOc85pmf8fHjC3zo0A0D7u7usd/voULVKDRkmKcJtSaYmqS1NqHrevjgG4NH2WDzZeIEKQXOWxGBTjKnpEXNuwaGfXz6iKenp5ao7Pd7dF2Hh4cHZIlbvA/opE3UwLT2XlahySSoIIg69D3GvtlDQANaBROyOK5N04QSEpK1zbhiGAZYacf9UcuBRJnK1jKG2jKFWQlyAWKqSLkyWZPPWOYFx9cz7u/2+PKLPUJHBvl3332H0+mE4/GIy+WCb7/9FnFZ8Isvfw6TEsp0IavRrDpGl3ni85hn7LyXZyVAlQTaVjQ0rQCMMUaOL0fBc28sJmEqPT8/Syt+uLr/4zjil7/6JQDg9XRke12K7VbkSjak2wCwKSU8PT21hPXu9ha7wx4VFefLpbUHffj4EbVW3B7u4ACEuxsslwkfvv8BJVeM/Yg/++Ln+MUvfo6bww2sdbh/eMQvv/wSFn9BMDlHfHj6iGVZcDqdUWHYaiuJbTUWsCzsxGXBbiRgcHtz04Cdl5cXfP/99zgcDo2Zb61lMQSp6a8ZY5BRYTqHXkTJ4QyqBVu8c8b5csFyYdub/k7f95TfqOxueD2+YhgG3N3ewkwTYEARcDB+V/C2VOpnNTOVmNhKqIBxzk3LM4nekz6DZWHr7fHlBdZS7J1rh7YLWqRFnqM1TUw954yX4ysdQGHxRD9d3D3s0fUe95+/w9uXJ5iaEc9HLKdXWFthHGA7uqje73oYY3CaZxjnsNvvqSmWIi6vE+J5hkEP5zzevDngN7/5Jf7r/8N/jVQSfveHv8bDm7foDnvYrgOcR9fzz2QLYKsU4B1cdUjGIBkDX9n6moRZucwL42zRN0I1rWPUbfZZY+hUWKq0S8vPfAWsoYSEMQUpzzAo2A8D3n72Fr/4O7/G/ubQ2K7OWcS0tCJGA16ksOCkiJHbWi7ht3cyTwl+5qwgI8HhYgxKpSsqmdAGcB4A26aXJcHKnmwrhdaLMtMFqAMii+xDYJeCmKHo83fGis6wFHeNxTh6AEPbd1TqRNvkq+QJymanJEsWAwzRi91ALE22IZL5DSlQGRgEy98pNa2glWhJOinWFYgYdiZDV+M1zVtyFs0nKVisUJKAy1rmaODUupTrz6uMD2hK3wXumymxKCVEBrHTgAEZa8aaVawf7bE3/EHBalvWwl+V86KzcG7x9xYW2xaGdaxev/Qat1erR/wjr59CrH7ixQhZf+Vv+Dwo1I+rOQUIQKdAIT5tfNTfrD/6zo9ObSOotL0HSmLY6mBuX0p4+PTA16Abr7SNV4UujP6YoJrZPFAjb23XqZ/5p2FOAP4TgCfjiK97SwHsaiDVn5Vq1i7KMMTRcHLbI873myuAo70kQFEk2vtNa45U/g0ERHDq9MWjrpU2WbQce4CNNe2mfjqQ2yyAQEyy6FhT6UYhFRMNRJTtoOetwf2PPrd9Ptrm60T7KIRrlJ1VWBHvVWpokQWrcqO0xgraXa+YSay0BzgjFs9RKmrWoet6jOMoGjEjUiaDa/FLEzpOauGJdRBdfb4kc33XAVWYNoYCn+Nu18SkDegYqFpdmtqyAmJQi1YQanPZW1kitiWyrbdZgbvNecF8MmH0s6s4VVSIZSmTWIG82GcPmbemnVz7rMYwq1uNmnr1M63abwEGtk7ZTaIknOaqbxMdj2LRdz1KLo1pw+C4SoVVqoDNnrQ0toX2vKOCIuJCTbeG11gyW+38MIhOjUO0FgmmsXBbK5XoJqkuT5HqueJvAEWJsZnHjZq8qULKxa6bxrJqOJDMtm4DTjZOT6odlnkWUXFlCBosC8VqU6YodxHti9ubWwDSYiFMIGMrit2wAGXu2eyE8lspboqK0PdcP7pA0AEQwcOVgVcETGGVy7XxaowYETQWIhlUza3PuaaFpa2JOk60GqwVICu90laALK4Z6zqnX3ddgNh0iFNVQcmWVPfC9WyOCy7LLML/Fs4K8wK1tdxpm/92D1DASFlg6h6jg3k73yD94to3vmUraqUuyzxb24kFLBZtKq182kpXnG2FrFUEK9tcNcrR4KQJn+ucrzof1xrLVa2lSiVJPrdKacpYAxc8bDZAMaubnoBxoWM7pAlkD+bM+euENelFa65kYQmmBBOo44GyqUSKXUupovOVIsex7GFW2Sqowsrj8yrS9sp7YlBtIrvQYGUQAW3PszL/ttRzFnjILCxFAPOqay+DBdVZo7MPW0eNtfBdB9911PgTYHaZF2EirsMhCwPDeUddMG+l2g6UapkUNNCaz4B6N4XBsTXCyKKgNJyBE3e/inXvVGZdW3zkXmyDKp0zWvnnEkrmmDHcS0/nM2Y3s21LNAMViKZBCdu7jWgvWeeaADUFd337nq6LXCeYzCQB8Nm+UdZnoYzMTUyjFe7z+QznTPtMAkR9ix/aeqZ7oNzLGCPjgU2ACYg2GCjw2ooUUJaa29wrFs5UH0RjGS8i9rpm5ZKBzL20aHuHAZSlbQA449ZEQvYsYAMUgwBUlSR2s5VAw2lrHWMSYTsZ2dv6fkCtwP39vQBeFrc3twKM1OZeZqXdt9TCdh6JJ0Ngq7Nu8RuC2dXYoUOVsOEFnEviKAoYSQj5KRXSJp5Si+O2mn+QNa6K1pmyyFRXKgh4rJpOTZ+zrjGhgmgpJywpYkkJ58sFLy8vgGGxd7ffYRzHVTO0stU0OBGmb2z+KmtBbayrnPks1QBBjTgg64DelxAC9vt9A063el0aByiDE84AlnG/a+NcHza/50tBlrZN6B5b13aUsixwnsWiXFbmlK43el4GFtYZWBXMltiCwAk1dwoY92psXmtp5jIGQJW4p0iLfK28T6mq6QHXNStmKjByv0AQQ+saRYp2eh+7AOz3Fvt9DxsKnK9wvYELBm9v7mFg8ftvv0PKBbCJoIgzQK7w1iCeWfQ63IzY7Qecp1e8vLzgX/+rf4lf/ua32B32sp5biqI7uqBxb6UDsNGYE0aYY2zfMxWy1mhEIPtv1fVqZQWaKmxTiTtNcYxDuJHAwcDkguV4AZYI33nc3B7w/vO3cM5imieo+Duq6KzJ2mKviATbeP66q0DxGSNFPK1b0nRkZTDVmqUt27VJngvXuGQLnXM1FzPrfkTjI7nOWijMb9id0XK4TX64LmkS5wKNYaTJPO8swft5WVr8YZyHazmsdO3gCk6Rj5aYpa1RRRestmKuK6c+y/Vr/aKxZqusSdAv13P/0avd9PVA5pPn1L4ncw2GTF8Iy1vd41RzsBXu9fw2QIXGo0pEWG8wP/fqeBLrXQFOkGtrMVd729Wdki0LCpasV7MJKPTrKr+zAUrq1dtUYQvXmmzbQ2/u2KegWIPCNqd7/TB+fL/1vPh525gHLRb+8dE390HG/ebNepmfnCwYI2/v3forci+qdPewiL5lQpnNRyozu43vnxxwP379JwFPztF2tdaCXHNjVeByaeK+ejIQjRGtZGuApJa71Fyx7cQZ8KyBAwDsxqEl9iUnzBNZAePhDqEja6Zg1VMqUsGzlrpDVs5ZWwX0/LZAhzHrYsIAnYFnyglVdE6UmaAvDXo6ETCepVIMq+0ttT08DfQawHbDBCGnVfgzZ07aoR9bQp9zRo5JrKEHGLASPTUmEdD5Dvt+xyrckvD08ZmCktbj9nCLm7sDXcqGgfoLziPniiTCmvO84Hy+IMSArvdXz0mfo3Med3d3SIn6INZZvP/iPfquwyCugDllWlRjTVi9W4XmDQSkmC6YZoq/apCgVr9K124tjHV1PTTGQEndpinUAUY3jZIlMdDF3sB6T4ttJ2PRmMZA0efTxoTMzu11t0BTKjCk8TvRZipYZrILBtFG4S9CwBwBG2FhHHAvjLhqGfBN6u4IgypjYC7SYlLY2ng5nTmGNxP5fDohLhGhCw3AGscBu7FH7z1G54GYgVQAOdcl5RZAe6lOGdCVpIGFnuevrpNXtFcNsM26TFXonIhYLhOMd6xcBc5JpAwDg9F30sLhGFCfjhj3O3RDTx0BY/D6csTrywkxZWFBJBz2e3z+/j1QK46vx1b9NMK2iCUjloylin2wJNtWgnnvPQ73t+s6VAk6LMskQenKvMolY75MTTsidHRwipEAwssLddxqjuhCh6Ef0YeAcejbLZojRXdVNyNpMF0rXEXTM7NSVeW+RhZZ6FfLcF0PtmwZ7xz60GGaL/h4fMHz6YiXywn9oYPzBuc5AdZQX6cUxKKVLxlhBlINLljmZZORAUBZBTWzBuiMAovuInbVglGwg4m/fj4ZbU7cXGAcKmxrQfWdFirWOcfAjUpMGhxVVBEXZwWyoALWoohpgLXmagPVIFHXWwMC+HT44bmMYwcbK1ASYs24LDOr832Hu8MtnHVYSkYSbRYe22AYR/SGWmI5ZzITlwVwIAMtRgzDIJVeaoIteZGK/5kJsaG2Te8Dk8JKMNQYsmaXEnGazgDIsjKJrlNd19MswlGkNEu737aZexGHvijPlcG6QYq6WFRU0CyBa33F4ZZA7k0mMyXXysR2t8P+5hbD8wvO04ya2NaqCXJKCafLme3u3iMUdRnzqDVhnmd0IeBmf5AWmELb+ang7uEe3nmcL9yz5jijM0CwTISNtcIArBiGvq25GqlaY2H8GvBTwwooOsaLRcoRMS6AGQFr8Iev/tBcDZ1zCM41Q4XdMHJ9cGxBSrJXDUEYgQIckXVLNuA8U1NL94ElTWzNWxYxwugaiDOLC9vhcGj72/l8wuvrC3JhuyxA4ODdu/fUohKNONX52Yu2iDKAtdikzIKUEub5gnleEGOSeMo20fwQvOaiG7H51MBea23TGcolI+aIJS2wNcOou6KzqA4ohpV0b1ggUregogC+gLjUJjYwzsnYKiA+S7c5TTWdC3j79h2TMWMwzwuWuOBwOODu7g6Pj4+6MIke1BmpkonR991a7DMG93d3qLVgjrzn3hphLzukyjZmLexoy5gzthVLY4yIKeIyzcgptbZTBXZrLlhSpBbpxD1kiSJRoG3V0j6j+lO1Vrx586YxPqy1V6LiutaqWcu7d++wxIjvP/wAN1u8nE/49ofv8bvf/zWsNXh884D7hwfc3N5iupBJmVBRPZmjXMpti+mc5/p8Pp4xixYT3r7FOIxkXYaundv5fG770eFwkHsv+5mwclWzLS5k6T89PaEbenRDz4KSgPYlZ2SJp/fjiNx1GKSFcpkX5BgBMP7KhU6LVdbZWQpLLdE0ZM1UAQqCc+0eO+vgjcc4ME5exFFznqbWkprigjlG3NzQoffs1lYpHVvLTFH1/c0Bw0CjCOc8lhThncP93Z0UzDzH6BJhikFeCkxm0nRzqHj7dsDf/YvPEYaKMBbYLsD5Dr/98pdANfhv/tv/Hh+fjvj6mxdY4+FcB3vngGrxh3//ijQteP+zt9jfjvhv/7//Df7y3/57/N//r/8P/G//d/8lbm73+PUvfonb8Q7BD+i7ATYZGEMWU6kJJS9kBMHSXbB6xDwBpvLZAKAQnZZSpZguLuPMgyxccaipACmjgk6J6FlE6kpAWRJePj6h6ywO9x2+/MV7/KN/+J/h+48TPnz4flM0qFJ8YQua6tYScF1bzitEU1L2KlOkld9oviZ5mhRLiuRDKWV0lvqW1bKIFCPbVZOwaSxEvyu4VggMnjFhFwKmyxk/fPgeXegwDjRrsY5xRimbjpXNS3AxLDkKwyk3YCfGiOPx3IpFRmJqZWL3nZVCscbNKxBFcF6cmK0m9Fu5khXg4VojMVc7M4FG5HRV7iDllUxgdU2T15X2Eq5fVo65kkTWIkgpBlVceXVtc9YJgLEWN9oz/QTUAVpNk0L4Zr2Sqm42WAEcxaAUdIJZf7Ze/SYkvAJNNiCKqVfnsTlFaItmAz43J/opm2d7rPqjD9NjXR9oe7b6XK9gprr5xyYsVxCofZzhfrZ21fwEurN5LwDJe1aTAP22ufrV67ZMvWaNFYoCWe1emCsgVV/aIbOusH/7608HnuyKOKquhZ6AtXSNKMUAUvkDDFwIrbqvg9iAm3DfM3HTDYG6HtKCIYNMU5KcpMK4rXwW6pkopTiLtkVKich2rsi5wtrc7pL27SoN2DmHnMVFYDN5IeKDJRuktNJ3tYrVSTtMSkw4c6LO0rW9uDALBCkhwi+VfmOa0FytFaHjJhECmUVxod7LIvTO1iqIld6eEt1UzqczLtMFr6ejVLiA/UEAp93QGGkaJDrn2M4DAmCKiJZcgVo2E1+BGNI+rbU4iLi7XvuyLDIu18WqFIJDXloTK8iIoC6B9tcreyu1oeqC3lfRWtHVQKsL0l5BtowkRpZQbBJLZR1TRjYxWNu6N5sGjYxCVDIQVuvN9RquJpW1GIeByL+4yAFsvdJEHFXd+4CKglpYjVQhPkj177wsiFk0BEQbSOe2E9ZIgEH2DnFZ+Dvns4jr0r0xhCAOTgnH4yvG3YhhHMSRLjBJhlJfRY9mo20UAl0OrXUNkFPBQ7LyVgaCXj+sJXhVS9NdURB3HAdBxI20xjoCfsZgsA6mMnAIPuCw28N1HSvXlvP9mBOmZcbxfEKMEV0I2O1H3NzdwDhqjmTRGHMB4rbAtrKsT7NW0YhZdQKaXlhVloRspM6vVWt5aXtbTLG1UWiFa+gCDAKCo4BkEK2XmBJiUrcYjvslMcCmQws1RwJW8V4Y0yjR1oj2xqaNSJPMVzEt8FJ5DYPD96cjfvfV7/F8fMGSEjp0kihxJ9B5bIyhuDhU72QVAa/WNC2xKnpGaLT7KpWVzXOHAkYGqmZtzMooxOb9BCj1XDSJ4HuMANC6Dmkl3TrXWuBagMEzaUGTfpqyIbkPMLk1xsAHFdvkmmNB615UIMYFZimwic8I1sAa3zZ26uqRHaBrWM4Jy0KwqQigPkorgXMOxlHziXuBFxDDYo5TYy5YY9gmYdkuvLr/lRZRGGthnacd9bS0ICSlTCdEqcAv8wxsxoa6caHqTkMwrNTKSjA0oOG+41yA96ZplvkgLCZl05S1xdp7DwODeYlwfmq26UFAka4LYkvOCrGyIIoUGfQP2YsET5rrjwRXtRSkuIjovQj7ViYQRvYKTWB0A6mb+QHZOwFWm41huzb3o4T5fKG2SCHA48A2oHEYWKGWucpilej2geNz14+iGWPJJHYOJANZxLKglkp2ZkqIS8S8LDA4I3Rda8fvQsD+cGBiUVYXrZzYCmn//5T9aa9kWXYliK0z3cmm955PMUcGMzKTxalIgmSTRVapIUjdgiAB+iMS9LdaarTUXYDU1fokQKhqlQixSRanZOQUGbO7v8nM7nQmfdh7n3vNM5JKvoSnh79nz+zec8+w99prr2WkaktzYp7JvMPawGveFia0FK1Ix4cSCmm9p0q+gTW2JOGRtb60IfZT4oSPrgGlVWRx4YxQmoxPqLDC1dUMbimk63bWQVUo2idlvUsAWAJn2WvpOTLuX7YCASlkjxaATYlgPm8qYm5RN01JxiyzdbQmXUP5cK1oHlEiR+B1ZOBJNP4oRtEXGozW0Fzfcoue7EmBJ5zsR4rPAgWFJlF8EXmxiqmLtZZc+mIqbWoiVlxiEt50FFD2tcixb9M2MMZgmidkBbiainpt2wKK5BrO40DbrbXww4zj8RF932OcJpxOJ4QQMQ4TYkroz33RCpzGCUPfY7vboq6qYnMuxYR1bCsAzcIsoH24qiv44InBqDiWZQOcGFmYWmuANbdSJqarML0U61NBkfSFsKyoEL209a3/LT+ngmwDZywD+Kkwprfb7cVZb5RG1gawubSvlhb6VaFCmI/SrhR8QE65GAdJQRqK2oNMymgbyluOdyMUFN79YItuG/Cd72VoY6G0ZX3YBOtOiERKhIoalVZwFdB2wHbToW0qwCecH2ccz19h8g949fIlxmHEh9/5CN//3g/w27/5m2jqGv35jKdPb/DWW8/xzU8+J8c87Yhhm2YY7UBMJzoLrGTKYWbtzYXlrbSGhTj9AdpQe3jgGAaIUNpBaQt4jRyAcYjQKmO/Ubh5esB3v/8erq5q3D3cY56pe0VimnJ6L5ZYJWfjelZZZykvrGEBq2SuaN7TDJ9ZGSQfoJRnnUW1epYyXyxiCgh+hk4KOimeSwbW0l7kZ1qjlavRNg22mw2xJa2FFlMQ0SflvSMlyZ2waLKuQBNjDFpev2IyQ/qhdEZdgg+8h/L5v94TJE6SvUJxwv9mPC4x1pLiq7IH/1OgmeyDvwx0Au/PioNJmv68zynKE7TSxORe5UgpimaXfBKPjIAndEMrxAAcoKwAj9W+fKFrK+P8C4jP5f2pi/uTj8gyOpdgj6L/K1ywXwEpkTNI/nv9gwuyDZaxBiS6WHL/DDGOwsXfi47Et3+yMP6LsOfq55f/VJe/evFhKNdXgip+TyFKYHXtC/L3i+9ZnuvFlSiOpH61r18ZeJLEQuiuOS1irqL0rxOhzDNrKNmq5osRkUmNypE+QVVVECFFQSUjEoNFigErAEydlQRNbjzGVNiJKWcWzE5IOYK6sxOUpsCqql3RFAJA1W0OGBQnBpUjrRilFYxSqCuHGIly6pwrTAo5GHPO1Mef2BnJKjhtSlAVOYByckCzqKIsOm01Miefxi2HLVWsBnjt2TGHBSQVbQjCkIickJ/GI+4f7vHq9Wvsdjt0mw32uz3aroVxhLyTkxHNFuMsO8EotrenZ7vYEaMcvoXGz987XB24RcQXPYXKVcQMkA0yJRhF7lspk64M2T5bNDFDKcN4UiK3vEiWxJ1uUde2JAWBk/qcFqtTZYh2/ObBFSIArVBX9ZIwc2BH3V+UxBa6Os9nQmZkel9S6cvBpjW6tqMkUq9cK7KCSokBKAqAC3gFFnHW7PBoyZVrnmfMPmD0E6w2qMwS6FhLIqmtJUeg4En75/F8htUWzlaoa2r/eXx8xPl8xpdffoHNZoPtZoumbdFuiP2WFLgtL6OxDazWyMZCW3PRAiCJ4opEdsHuE80bci+hhCuvAGCjyD0wJErUpQW2rRw58oDW6TR41M6hbmpErZC0guMEaA4e/TTi8XTC5D3qpsJmu8Hh+oBxmBdB5JyhLSCcT9HxkEMhs/6TBKESECuope1JU5V6GKYL9mPd1OSAN0yYJ2JFdV0Hay26hkC9fUssgQRiOE2zRz8OBHRz64oPgVyADDnbVc7BcaIUIYLWYl9vCoC7DhhijLi/v0OMEdvtHlZrOGtw//iAH/7kE7x+uKfKm8oEGOqFMSoATZZWMw7Q5+gXtp+MFzhgZ2ZSZFBRDqFlHcmey0EFj6H8TJJaAMSMg1TVUNbh0rYh7UiKA0wDZfjAY9BM8lg56qntX5HmGweECbQfOGMvEhRrLek1BGq9nOYRas5QM32uktbVFQtOAF4KlBJ8iOgH0nhyxpKTJu/90IAx1NKqxM7ZEvDUTz0bR1CLbKUX4VzFAPQ4e6SciPVmNIx18GHCOE4l6aurwMATJ0Wir5Ai5mnGOE5wrGtmWU8vcCuKZnFriiuodUrWuwCM2hKbV5LnwGwa0mGjsRzZbQvMGqqrGnXToG7q0orj/VQA6JRzAZ8TFHyM8LxfCCAjoFNOCfM8wbkK2jqakpocrwDSFgLA7TlUEBGAjYaTgKeUEpL3sNagqhweHo44nwd4Zm0p0N6NkLDdbnF9dU26awrohxHz7EvAnjJgtcNms+WkU5JPRW05KlA7T84YxqmIRPt5LqxkSTzatsXzFy+QlbpI5EOImOcA5wy0pmaFnIBpmrmgQmeAWNrL33I9IQaEiYo9ZBvvYC2dB8jAaX4ktuTUw1pKxJYkemktVKvrEm0NYWMCJHgdQmCGTSxsIJ1VMXghwEdQJVWej3zlnLnFVBOTKi/fTzmV8ZN5I2NELYDUxq6NQdux1mXOpeBhRFiawS6thBPAoGaICCkjMvBE55SCEgJIps3GWgdnXWEAg/fnkYGRS3kIAkgrju/GeRHiJre0TRk3iefbXXORWKeUSlIqcUZkp9Ou65BzxDANyCqj6VpcXV1ht90hK1UKM1AadddhOJ9wfLjH3e0dTsdzec5QqsTCAK2VcRhwrirc3Nxgvz9Qa1SKaJrm4v4EnJFzU/ZrAc988NRGKEUHpnEEBrBr1kkSy3iVOb5Ri3afFH7X4yvxtOx167Uk+UFdVXDGFg25kRnQu90OKSWcz2cC9KBIv0uhxDBt0xaDF3kOEscP40CubH6GiQa7bsVOUxFJMYCdMrrOwWmDh2+orfU7Hx+wuxrw8W8mpGAR5w7n44Bp9DD2ASFmZK+gvEatFLpa4XAFvPX2BjdPrpDijNcvj7h79SmGc8Q3X0S8/eJt/OEf/AF+93d/F3/0h3+ILz77Gi+/eY0XL57j4fiIv/rhJwg+IeoKJF7uYWyG1lUpNFaazlw/T0gxIHlPMVtKcBXpSuVpQk6Atszi9CNpArgMZWlfVjOBAP14RF1pPHv3Ch992OHP/uR7eHJT4+Wrl7DuAK1rBg0p7qfFJILwseRcVNhe2NMomo66rAcCrJd2Z+ccFSiMRgixGMgA3Fqa6CylThyHeaZzREdiEDU1tfXS68mFNqWEtmmx3Wxw2O/KenUV5X4zF0zGcaTzJ9N4iiQDTf1FEF/yNjnnhB1L+ySBeWVP1Hq1J6uLeVmwhZLoU8xQPlPGjQHRAkZJHgOw3q38+tLBIYW1N0GBrJbv5AI6ZQ4TVcEnND9X+TuxtInKxH6V+GkNVq/lCDS3tvO70meVoBHlZxdsZyzdLutrJNRjaSlcoLRvbyuUWLL8rIBhZZh57P//QSYrUG31HfmSuFVaNpef59V1iFkDRFWD3zF/6+eX94PE0ZfvryCFxksQt0BuslxWzz4X0ElGrpye8tJlcL7tmla/uYwlr4Vf8gy+7etXBp6kwk803IgYAwWiNduDa42QqXJUNy0fYglaEQ1aqm1SoZME/tyfCmMKnLZIFVksefuxp4QjJ7Znj6V9Tg5IcQih8ebGPbVQDpPVqCpXFr4kfUabEgRmnVFRdotpHMlxilvUhHWUc+a2wgww4EAFX7Wij2qQvXNGYNtPAW6LaKxWRfdFgRZdfz4Tk+V4glYsmMebraDktavKphJ9wJwm7A9bVK1DXbO4aaWRVVq5EdGfyNWPhW/HQt+aLMNpEzUXgQK9atlkVSZtD8UBXIoJAXG12EjjZuQxikH4cVSBVRCGDaOtmp4LkFkLg9g4loGeEjDIYQXuK5ZNGGANqiVxJ/YbaSdIkiaWkbTpgUCL1ca2ZsoI4FY2VK1lYpUqsjUaqSTywmBZxButYdHynJGhEBIJPs7BY54mZHbcI2YWAbkpRETNWhC8hFNK1PKQIkIyMIr0aVpkXD+5QVVXi7uMVsiGNjbDouLaLu1MisdHAi6pBu7aDk6Tq5G01GUeZzDoR62o0pJFDKOQA1m3zzNm7+EOV5TwpAylMum7pIR+GjHHgCkG6MpBW4tNXW//f7gAAQAASURBVCGniJe3r/Dq7hbDOEBphevrayijcTqfKemM4MQjYRpZDDwJmLjM06dPn7JGhazTpYqguO0I/CzqpqH7k/1lGDCOA4a+R8Wi5V1Tw1mHirXogmhEKGKTxRgXZz8ZX6685xhJuDIlRK72lio5a89laEQWKCaRyoUJ0LQdiY6PPSrWuTufT/j5l59hDBN0U9FzNRoLfZ5arozR8DEXNgF439AA2C+hHE6kbbOwIZVRcI4ZmmoBX7+tigZeH/I/owzU6n/8EgomFBab8hxLwgp+llnTHmOtJVA6xhJYlnbslEqAoMBsKa0X50Sw1g80TKKkM4UIkwFnDKyhfSdEj+ATQiAnrYfTkfFnzQUGbh/2Adf7K3RNg7ZuobVCUtyOmLKQmdCPA7dgecSU0TYda7AYZN4fqcJGrI0MjRTIxbJtGlS2Qtt0OB1P6M896SittH9qY3A+n/HV11/R/jHNuLl5gu1mS0kcUzqVUUVAP4kmziqgK3vaSG2gIczI1gKZXOwIwOPE3XugqrDbbYvZw6UWEVBVJAI8TuTQ2vc9s6IqnE9njGOPuqrhGwJxtdZwltsFpJiBXPYcXVMhyo8j7XUhMDPScuAFEHqQ4T232CrDjK4a+51G12wR5gnRB5weH6EAYs1ojfPQY/Yek59ZS0zR/ulqGENC2q5yLFhPLGYJgJ1x0K1GZasLFhHW6yNTYGiNxTRPED2mpm3RbTb8WoC0txRaBrKF4QXkkrwsLIDAoIBlAKDiZxSItp8iPT9tcDjsqd08Lw6JxSDEczv3NAMZXGTi+3C0l2tHn91UGtFE+MkjxIDTwwnaDDjXA3a7LTabDWpXMcuPErngF90wo6jNPXNkao04iKJcgwTKRbCW9yhqEyS2AhX2WbuKwfQSn2dmN3FSEULCJEAiQOYwKbH+JQngam5HlCBZzv0QfAG1KMmifW8ZI449FJA0zV9h52RhzmZiiM0+lLZjy2MQOZGVtuk3k02jNeq6wd3tK/zkkx/i//Mf/t/4D//jf8Sf/Ks/xccffwwkSlbEnQ4ghu5uvweg0dQdFzOIMe9DwOvXrzEMPR7uH6CVQte2GMcBrnIrt7cM0SOTuSb6njI2MhcFrDkcDgTsGIMQmKXGiUwpVvG+7Jwr5/PMrXvk+pjIEISBVdqbcjEJMaCk1Y8T7QPeU/XBsAYft8/GxMydDLR1A8mSlSLtPgLsc2GVpxQxjhMeHu6Lxthm02G/3aNnV8Xz8Ujz2Dloa2BrC4AKDlkZRGhMPmEOCcgRzibstw5TP2GYRnR1j8Z5ONcieQXEHilO8GFCShWsclAhAOOE54cKu2qHt5/VOJ0icpjw3e99hP/iv/xf48WL9/Dzz77Gq6+/wf39HWylcDhs8P2P3sfD4wkvXz3Q+tYK3veIeUQMtB6SyqBi/eLcSWtJIcURSWlYW0NZakvVOsNWBsZm2IrbZXKGVQF1Y/Av/vA3cLhu8Nb7LerK4OH0j3D3CnBbPL9p0bU1mZnkjHbTEMvUUoHW8/5FQAQBFH72UIriU9pHdZmHpLcW4XKG4hxP9gZhicoadpXjwgcx1ad5hNaKgEajWfONOl+8ZzBpGODnGafTCd+AwA8xOOg2HbXAOlfACGMsmzlpGlMEZokvrFVAlT1JTF1ySnDWMqgmeRGzMJOwvhfkQ2LzNTp+UfzLXMx+M6vPklkt+Aky5QEAip4b1LcAAmUvvPyJALgSG5bvZ1D3SeQ/AspljssMa/2IPtgKopGPKmMmGsbrDwXHhytxQKWouH15z8JgXTRHy91/C1DybUykC9CJ/86rX5eXyRVS1kBPagEJFdb3+OZnroHBLP2VHC8XVpkAQiuQ8OJWV/+9jOqKAcUFGGIYLtqOZfzkd9ao2xtDLyzy/MbwqTf+483LK9k+38cvGYpf+vUrA09yKIm1d4yBhP+MWrWC0QVYZzmA82VTkWBaFhPR9AOmaSTGFBwJu67+CKtGrF6Rdek99IGYEFKp8Z4OX2NI4FKrhfJZ2A+8mDUzV1KioBt5cSqwDGSlkIp+EXK+oOsSoCOChxpa01O7pCnT1wVizSg/CV2vWxfpWqeRRFH7/oy6qtHWTZmciq/bWAqiYiIXtOg9Wtei3XbLGBsFgHqHE+seFcq9zDzeCAoCj8yaWBaL+PGy0Cgo00gZ0InvL3HfKevvCLCTEwssJyAFWWjCqOAFp0Agh1L8zKiNgZgi1D8sQY/QKGnMckFWOe5kIUlVKi9hFeyRGKRdCaxmyYgvKn1vAk+lxxWycDlJlu9pdgORxJo3GWGHkSC8HORYxNx9KAmFVHxFJFv64aXVQL4yFgFbpTKMs3AqY7vfQdwWqROKAYNVW2zRyeLxkiriue9RsW5GV1FQpBlgyxoXYqAEwtH3YkpQyNzmmOBjgPcz/DRD5USJR+ZNGorbemb084TzOKJqG7i6Qm1I3+rheMTj6YjJezhjsN1soLXCMI3QoFY90VANHPCDJV4yr0tjLZyr0DYtrKG5Qc4+l5uwbJeWXYWCUkieWmbmecY8T6gdgcyVc6gYeMogDQHZ+mVcjLGwrNtF62NJphJrA0VNpQ0aN6BuW0iwIXoBi9Yb7bG2InB5GHoSl1bAMA54dfsaU/LQ1SLincvajlAwfHjwXOb5I4wXmUvFRVgpDmgyxIbcGukNTyUIlb2xUMCxHOQZueg3qWWgl3/zfiAt1cUSnn8mFsHC0EopsdAxt4/x+wgFW/YBYVwUzYIsWi4ZyAYq03Mw2cAazcGoQprJ3SzzOuz7HmBwSgGoXV2YOW3dYNNtUHGxIKz2CRF/nL2nQgQoSK6qurArUxYhdgIkjaX79omYEaSbpNBAwc8e4zAt+7FURfkZPxwfCXgaZ2y2O3QdJ76Z2LMGGsbaAtCJUYUADDEv7SckBpuWwEQtbbbCcgHA+hfiyLhUWRctDgII53nC4/SA7XaL/W6PaRgxDCP684CcUFixStMYy5khml6K98CYM4Z5Is1C72FdBVsBcrjIDAiB2q6dUQw+WZjGATUQfY3oPcZhAFKmta6AYRz5z8DaTA7btmNWTV0mbsgBMSTkSOMr92+Z/UaOWtJ2RnusuPfJ/YibHumcVOTAy2xQWeMLu3YBZAs7TC3zLANQmuIK5yxisARgloCTAK+2bYCcMIe5vPfSQkVMcmlZjqKpoxS0irAhwVlmDxlT2teQgHmckLXG6AOsc8R8c5TuiO6Knz3twZWFUqaYlwhjWJfEJ5fzXNZ/YsB83dahJSBnME8Yy2ugT/aDnIEQE6Z5hojFS2uxs9TufOHitWxPyBwbJmaEUHuPhTCzymdJuCPnND9red7I5LjmvS8MNEnAIjtvBjYJkPNIkiYNjdo5hGnG559+hk9++I/4T3/5V/j+976PD99/H8jUoCHtLsjEErKmBRLpfErrZdM0mOcZx8dH9OeM8/nMP4sce8wXjG7aStWyL6yejcSGsocYY4iZpTWy1kh9JNOAvDzXmCJMihDGoBa2f8ocRyuO12gtVa6imC0Ry1PiPGrHpetJgVwKFdRFDkExPxV1RfoipwTDOpNiepKSxOwEGB6Pp9KaKy5+4zQxMDESaBYjbF3DWIecSVgysQus6JZxCA1nAJ9n5DDBmR7KeiidYKCBNCOnmcE+AmBVSlDBY98ZbJsayVocjwlffmbw1tvP8Nu/87uwVYWXL+/w8PCA0+kIpYGmrfDu28/RVhXuX9/RWa0MQpgR54Qc6YxMoCIzCjuHC0+KWJcJCsa10NoSaxyazTQU6kpcuAOcAbrW4Ae/8QGevrXFs/c0+uMDvv75Z3jsn8IcjzjsAzos7VbGGFhnUVW2mMLIPIoQwxTqslBJtH8Xxt08L7GxStRZAT7ni04uxykS80/zjBgixmlAXTk0rB1MRXKWZAky/31pTR3HAcP5jHZDJknb3Q6ucmi6rjDumkaV3IiOLBbD1lJcW0CRZV9KoGKA3B9HnlmV1ym16B2Bd6V88Td+MT9EKUWXfe+i0PcmbrEGV3jvk3ymxE9YgBneEOXHDHQsAEr5DM6fxDCg/GIWFhjDI+s4UK30o8oeeJnjrMcRDLSt4LTLHBCgYvTq8wvYs/7QN8diOXZ+4aPz+no4bcirz5b3y5wHKBisB339mjKu8u8CBi3A16rxsLz+kim1XDLd73o0lhtag2Ly/fJMs3x/9b7fBnBlGb83f/DGOK0GLr/5wm8B/f6pr18ZeJLqR127chE5J0Te/JXSGAaiy9dNC2UM2u0GVik4tbRtrVvmYkwYhoH0CGJAXZOORAyhCFWJy4XcsGbHtpw1tCGtBQrQ6OGGkKi6bQy0oRa7uq7IjUcRUPbk5gYxkHhn4ECbNHRsmfjESaDxDMHjfDpB0ulxmBBjKs58bdvSoXY+U7BnLKrKoWrqIpxYAii7WLZHDhBNmVE0puNIAqYapL/Qtl15sN7PPKmp9ci1S6uJ9zPCHOGiK21HGZl3OdKS8oFAPwWDrPMiYFw5ci5atSSKhodYDFMbIo3nPE04PZ7LoUE6QoCX1gie73QgAsgKKVH7nA8UKNnaQetFv0USIGMMCYEqQKrcAOlnBZ7kSuki4hwYHKT5odHWDVXLIgVBMXMrZmL3skxi9aSZZJfAFpwAawOjgKz0ZYKNjOBJf0vzBSv+TFNZkMweL/IYi8bLzGxBgHRoNu2GdBw27bJJEKe3aDBIxXqz3RZXk9ILHagPfnd1hbqucHV1BWcMKmsxM509QwJV0uSpGBzWSiFNM3wCbEiwYAtYTS0yKSVaU+AjjgHTdZtGuT5Xoao2JCyfMtqqotZS0AbdDyNOfY9vbl9jDB6jn3FlDWxTk9i8D/j65Uu8ur0lps9ui3fefRvWWdw93gMB0Fnj5vAUdV2jcZZ/L2MYBpzPZ1zvbrDdbZG0Qu9nDI89zQMOTDQICLfWQpOHLeaJklsR6tda43A44MWzZ6gMse2cMXT4sg5a4M1AA3AVM6HKgc6HFINzgVuuZj8TeKak3YW0CkIMOPc9oOTZVKibGsPQk+U7z9XdbgPojE8//xQ//fxn+Olnn6IPA7Qz8MlDRSCZhKwSEqi9iNqac2mHkyAjg9gYdD+xUMe1OD/yfj7N5PCk+Tkuhx3KHma4nSEz0y7myP9m5pVS5XuVVBCTVO24EADWYJDAiNcoJRuXGlyQNcjPStZ6SrGw8pATt8ArdLbmlA6ojMWh3mLbdGhdjYfHB4zDGV1FAKh9ekPtkVWFFElP8Hp/BRgSndVQmLkVbgwTsRkZuJQ9MufMxRcAicTlx8FDa0uir3yPQvWnNmLStaD9RSHHjG3XsduexjAMAABT16jbFm+/9y5OxzOOD49IAM7jUFzyZj+jqio8bxwBCzkiR6r4s9UBiVszMKG1RlVJKxZ47zAcYKeiNfT2228DCqUlSwo28sdai1//9V/HF198gT//8z9H5W5R1zUqPkdevyTh2a+++AKGP1PmemUJ9BYmc4riEDTCWoe2I/t5EsRWvJcyOGqJ4RpjhJ8jkGZYTQ6apAeZ0XYdzTUk9MOExxPZqhut8eL5M+wPezitkT25FaZM57zRFttNXdgahs+mEImdqG0UvJR0sVwFP08IIWIa+VyTBJnPKT9Tgm5iWiX3wnxqQYl7hjFLlZu+F3mP0JDk3lUO14er0vocfEAMHkY30Eahaxs+Y8OqhYkSr5gp0Zs5ITTGYIoJaZoRMmB9KO5wm+0ObbfBdreHjxFTJK2vmIApeDKX0RrOKW7rM3CWWX4pQlMYVdq+jLUI3uN8PpEYdYxLa1ZG0dZSWiFOJOascoJikxCJlYZ+QIypgG+RXSfnsDCeZk8iuHkTUVkH1214y2CAvxSWEsah5xhMF2CLBl0V8MnWtCZLERHEtpnGsWgr1uwOKfvb+Xxe9lQRs+46NHWN4+ND0TNsmwa76hrz8RF//ed/jp9/8gkeX7/G3/3lXyEOI/7nf/qvsG0aPDwQM1Mr0ga1ukJ73XIeyPuqJyHpd168wDiNeHi4x2a3xWa3Rd20MCxmHyMZaoRAZ6BcnyTsV1dXzPTg0IRBOcqYExASKmXgXIXG0F5oNLXwPt7eYxhH9H2Pw35PwC7rCvowlbjGe0/gkiTrMutXBR6VyZiDehI4LtMaYxzh5xnH4xHakBi4xMfRB6RA57/jWDJnXBS/JaGXdr62aeCco5Y9RYzyOAc8PL6GdlTIHY1G5Ry++/F72G00/p//7vv42V9/jr/9H/8R7Sai20VcPdmg23Y4XN1gnoBh+hEVzVOANS22mxbdxqDeZkxxgp9n+OiRjcP7H76DFy+eQOuAV9/c4uWre9S1glIRX3z5DYZxxP/2f/O/Q1VV8HHGj378Y/zFX/wF/vEff4Sff/YZmi2xU6eRzqib6yu0TY3Dfou7uzvc3t3B2gpKGZzHB8yJBaMBAkeygc4WKiZUAH7/938H733wDv7VH/wpmo3FafgSUX8DVR8xDAPilz/B080NGtMWw6h58hiHEeM0FGfYwC1X80AxTWUdadBpAEhIkXTVqC0PrMdESfjELHhbVcTkMixKngGtGiqcxYhpHPDVV1+hcha77Qb73QG73a4k+JUR5+9EGnxdR+Yc3LKZMu2X/TDg/vERxhhsNhvsdjs0TUNyGSC3w5xzMZERx3FjOV8xhphnCUghIqnEJi0035IA5oraf4UxLsBOLh0zxJT0IECfitQLm03iMHo/AKwXaxmU81l0h5a5Lix3iaUoJJEIjwEKpZAUaxPlhdFuFeV3tq6gI5lQSKu5tNJSMVQVhtIbOEz5DAUshco38DLJTzIgdKoC+ssvyBVTC99S0EC5k3KTl0AQ/37RE119shSStbymIDAU/aYC7qw/n/eo9UeWm5Lr4fyAn7HE5IUGkLH6rDe+FL9SgdyhgQVkKkVk9lTmMcsiir7GEjmvlPdUF++/Hq60GhtQvJ6WFk+ZPYqvK69HXi15wi+5m1/4+mcAT7pU+uS6hUZM50QmmiFflFHksmIArmYtrBu5c+oDpoW0Fg+Xv8WiUZBxmkv06LXR0NkAiqrHNDgK4p5AyRNXXTS3t/BnVa5C1AyAeaKkarWwsZZBXnRSQogMqGScTid4H9A2DSz39y5MFXo6ymhy+hJhP04+CDygyDWDJr1U+OTeZGEs47UswpSIXSSAyLoyF5NUDBRS0jwWMhq56CFkmS2g5C2mCMAtaCj/RRa9CVqRwDjtTZrHRJXqRIwRrhbHFLYIZ+RQRIxpQ47IebEeLveVF22ZZd3wwubDA0rwM1lICxOj0D15DAUI1VqWKiVP1CZG40uC8Lmw0OgkFHYZI/Za8yWmZbPgAEyw3ywBmXxuVkC+9B8IHBwD3B6mSRRWRDJpsOPFM8/IhfZtzOKKmLniqY0mAKSqUDcNrFKwAKIiPaHIjBfDh5EkQkZpAkatLYEcbSaZx4gYYwJcSaVChICpj5+ADRIrJ3q8URoOFJRLCxuJDLMDnZ/RjyPaeUI1V/Ca9CGGcSAXrJRQOYvrwwF1w+2kvBKdY8pzTevMGwJtp3lGVdfcOpfhY8A0z8hgwIMmMbegmbJVLslzgAJprFXMTLAAdOZusCzgCh8enHCKHXxpoZZlk4m+na2FjktbFlRid0dAcbvwzACytRbZiRjvUmEGQC5Wfsbt8R4Px0ccz0dEl2CMMJ2WzT8XftNK/BeXXwvGubAGlOZDjQF3YWGIUPWaunu5vgAoDZ3ZgP3y1F/9v6ycfPHjzLp+BXfC0hL2bczR9Z5M+0sqgREkoEm5HITguUjz1Jb78POEaRjRGGoXqlzFwHuN4CNS4BZU56hVOnmEkdrLfZiRGcQsIueyr7CNvbRhzrMnFonVHHDk0lIZuZXQz7FcPelUNNCWgKqZE2tlyAxis90hBEq8FSfFGjRX5mku85oPBhpbraGYpVkYNhT3UqGFgwpnLZqqumCVaKXQ1DUluzImlirZhQWhSePt8eGRWlpShp88ai6+zH4u96s1mQ9UdY0uBJzzCTmDgR2CiHPOVOVulmCZzjsuAvH2axSzkjMxkyKkLQ9lrlpjkVKk1kqOU4w2sNahqms0dYOcGDjUzATiYoRWpOWlGYRWUICmdrLKGdrTQkBKCjFqXscGgQX0xbZeiifS5g6sdCyQ6RkYAVIluV/uQcBs8DwPMcAoSqZtorZUanORmGkBykwWDTlx9M0MStIfjSVwFyYrGETVXFSgc8cRUBXmss+JKDYlHXLWLs9MrVa7aICkTAUNciJj4JKFfbOitkvSOygbL5AosVz08RL8PNM9lVa2WOQXZJegtq+MMHvoDGaNMggnez/vwwRkkeQCXQIVp2zlyvlDCeZiqKE1FcGKvhkYOFMkrE+mI7GkRcBlspcTAfTJ0Fxwmhg6r1+9wul4QvAet69e4avtDtMwEHNTUVsxUmYWl12YkXwWTBigFbkWdqFD29awVQVXOShDOqESS5NTWKA2pWnCOLEznCZWXipxJxYGOH/+wlyXFkg+O0KEn2bMw4jx3KOpamY2OWbpk/alrAEZz3LOAMVdlZh/tIaWCj6X/9LCfFtiVmGiAjkrEMlXCj6ixUMabJK4U5y8sI2niRinrqkphgkB1GZFMW42Bk1Xoa4aTEOF+5cKn/5sxO4qYf8kYRhbbA4KfiZTonFMmOfEoR3JWijWNVQ2AzEx+KGx3x+w2W6gDRCix9CfYW0Lawn0zhl48eIFdrsdqoaKsV9++QU++/wz5ORhK8BVGgBpQl7dtGjqCputw+g16jFhu6NWaH3vMfmIeVrnpBE5BVSmQmUqvP3WC7z/3nvYb6/hnMY4HGHVAGN2UNkC0XNbGaAdt9OmDHHjdM7R2o7UEZCEIah1aTNbsxdTpoKVFiH6LIECyr5A+QPvjMysW+ZeQEQm3T0uuuSUShu/5sSfWlsrxFgjBZr/IQZgHIHgy5kj56BcH2m2LnNR3j9pwGSKiWVe5dV8xWoXyHnpJNB5lS8uu/3qn3QN2qzPAsmPVzkiS8QQ44bP0hXWsFpgZczXoEyJsPLyj1z+SFIlMQPLvuQM5RfWrLzPWke3dIvIM1Scv/M1CIBxEV5Kjrz6vcw515ux7Bs3V2LJbwVy5N7UEgPL+60Z/ZnPXrmtN98pY8GV6L/X+TKPQ5Zo9OLy5CpXP1lAs2+54vJZ5d8LVnWxH8rYSAunkhfLZ15OsQXIy29gT3LvnG+XmCK/+UJ+uSpR9+rt1w/yn/76lYGnTbUctpJoG20BR7oVGUDDbSkOGU4BjTPw84h5HksABEifPFV+G9bPMJbex4eEpqlh2dFKa8BV1EdMtuoR80w21EZTUkoOLtJvT7c/J48YIkzWSIi8MbLoXEMuLnVLwFGo2EFKawp0UkaWTWrTQSiUwzBiHEf85V/+Je5ub1FXLTabDb770cfYH3Z48vxpoYSG4EnonF0MKkdVO3HUU1rBZM0BID0r6Yt/8fw5t4ixOPA8QTNjI4OovrP3GMcRd3d3BABYW3QMsg/LpqwU24UScqO15WSLgIdpGBC9Rw4B1ho0oeFAkqmvMcCHVITlhTE0jzP6vqeNO0S88957aNqOqo05IVtOHHLE2Pc4D2duwQI2bcdtBwExBUxpgHUWTVMj+ogpLNoulpkEidsEqIWInrG0OLm6glKKBGBTRJjCMsE1VTvgibYN45AVMMcAlYihZJyFNdJFS1U2ZBS3DgN6XlZZuNZCAfAS8IYAKMUAnYJj0AsaRRy373uyvnaOFqum98s+LK0spcWJ2hSn6EkYf9uwkKwlZhIUDle7EsQyZgRkIChgmMhG+eXtLUIMeP/d91DXdQGikkrYbjvstx1bXmcWJPXoh5G0nGKkdrOqIX2cFcukachpxzBDQgXC7CzrnOUMHM896bsZB1c1ePb2W/jZZz/HZ199gf70iG3T4rC/QcoZ52nC5CeE8YRD8y7+5Q/+BUxbQ9UVVQNzxr7qSDOLqYHEFqEqPjlKaTw+PsKzrpLW1O43jSOOx0ccDgeY3Y4FOBeAu2Gh5MpaOGOAlDCymLO1BH4lAYICgSVZKao8qcUBBZxqhZUwq7EOtdbo+x7zPBMIrTWamsSTpdrqWYyaftaiqVqANdR2mw2+ev0V/uonP8RPXn6Gu+ke23qDtq4wq4iIBMOBv+egTilD15cSIvNGFSgoDJHWh0+BdLJAzD/kBWgjPRNOJOUYUUur1TpZoMAdyBEkvG0Bw+4wQllNeQnIlFawWo4ccq3RRiPlRSNOKQVlFxHO4hq6arMgTaXALZiZtVOIpWiygg8ROiu0bgOtDM4+4O78iK/vvsKnn36K+/tHvPP2+2jbDt1mA6Mz/EhV+8oRADWPPW5PL6kyys9os9lAbTTMpsI0TZjmHt5TJVccOsexXwoBLiDXqdiYU+Cp+AwkwEopYupc7Q7YH/aYPbmVtpsN2Y/nDBcCtHXwc8Tj4wl126JtGmJppYTz4yP8kHC6P9K6rStcHa6w3e3wcPdArIbTjJQyOteSBo1zBLobhbefv8Cz6yf45Ec/xakfkSKLwTKAPE8TxjwgpVwMOQxIs2pTN/jOu+9h87/4L9Gfe5xOZ2o9R8LxeMTsZwxjX5he40hJ7t/97d/hpz/9FN//3vdwc3OD58+fo64qNHUDaxysdgg+Yhp6NE1LZ6PTLMJN+iBRKaQckbwHwROWWUMG3mdE73H/+jXarsOvvf8dNG2Hpm0RQsbxODPTQkHbmcZCacx+xDBNhSHRcEGFgswMY4DT6YjPP/8c4zhjnAK+8+GHuLq6gmEQ1xg21LCybgJyDvB+qSIj0blsEyXbM4u1UwK9FNyM0ci5Q4wBw7lnsV2D2lVFJ0cphXn2yAkIQSHDQsHi3J9w7ns6c9TidEoObwSoOesoGZdoms8DYa9rPqs6aWdCxsiaOJvNphShUgZpl9H2AS0AJmYkP+ObV68x+4B5DCWequsKVc2taVphMtQGveN7UprOzsdzD+MqKG3hpxkxJow9MQIlGbQCMkChqgh0G049RgC+n1BxfCHi7FrTevz5j3/C2pIE5NjK4XB1wLPnz9F1G9TMWo85l7RBG43KGtRtS3EJr5NEPWFQWpVYzlkSHN5vt1SI1QbNc2rnHceRfo6Efh7x1e09+jnAuBqff/EVTv2A/+mv/xPmGPHu++8jpoT7xyPqpoPd1gSGcKERyJhjBFREGgdoo1FvtvCzx/E0XDB9iBE3wvtA7Hpm1k1+osLTSxbgdq6UDQzrnCJTcUXxmXc+nahDYVU4busGbVUzAyTC1A1LAizgoeyRss5KrBvoDK3ruuj5kJPjRIUiRYU9Zy3eeeedcj/TNOF8PqPrOjSNOGZnTH7gc4tYvlqDWDH7HR4fH9H3J3z2+Wc4Hk/46quvUVU1PvjgQxz2Bzx79gyn05HYW9sdrHb44osv8ZMf/wR/+Xd/g/vbW5yOGl/fJaQfJyhzB6XvYPTPGQNwAAxSrtDVLeZhh3EEbK1QbSuYLuPzv7+HyjW++/6v4fnb76M57PBMGzSbDo5bp997712czye8evUlHh9voZWGVQp/9Pu/h5//9Mf4ez/hamOwPbSwtkXXVfjo47dw/3iHT378n6CdwtP3NP7oP3sX73/wDK9fvsbpOOKn/0CM77pTePX1LT798Zf48Du/i7ff/h5+9w/+AC/eeoaffvITqKxw8+wZOtXirc0em43DdlPhxc1zbLsNEtidWmXYyqHdXDOYR2YdIdIZKILhGSAWKMcmXBvkYm+CqykXq5s9A4IzECN8TEV02gcyiKqshW1rfPTBO6WIVVUGSBOmaUTO1NKulII1iZmVLCdiWtK31YvTnmgFi0N5CjM8A+d1XRfNOvD+kbPCHKgYGFm/D1LUYcRGWJCJu2sIsNIlZyPCBgO6Ciz1RIXwkjcv1U2KMWEIzASAyEUnjsFlIEpMlWkfd8YUYFwxEG44to+rvF4ApMxrMjHrXxhJBpTPGgGdlIKFhcpSzGBEgGNjlVgTiskjUHROcC2dna8Tos88JgZ5ZSZDGpR2yf8Ka5g+X84gCPBXYuElbl3kIMpE431hAU5kCARvIZxNQ5X0JyMpDaUyS8bziaBQWuGA5W+BYsT+YuEylwYXHqlvh54oPkkIyoDafZnEklIB+uTz6B2EYbcSwLcrjSwKQNcfUdZMQeYSSsElayCqy2sTrEJ+TwEcO2QY/OpfvzLwpAQCzHLFyzBLAiysDJq4VMVSJTOWe2XQIIrw9fKgRcMmFzRYkDtBlJcq6JvXJoE9sKqGKNHZiEhKUd6q9MJoURS46DcWrDBNlFqs1ss1KYWrqysJQdDW7WIjzxol8zwjpoCcU2lRglp6dpUg+0QHo4Q2E16pNIlNEj7B4r9p6csfxxExJpzOJ8zzjHEc0dQ16krApBUqz4mZVDuFXUW22ay1lSJUpDYDIMNrz22HUtGjN1KJrxUEesVE+hc6p6LPUDYGQbQVGAzjKkdaUOyMRWBPAlGyTE2IWDSxFFdUZRzCqoJK01HBRALG4qp6JfOCHM3iMgaJMu4SiK3GS76kvTNiEelV0MucX728tCXyrmU0zYGIdDGvAamUotB0I2/oOnMLGzKgiKlTWcvz0BbtCtkDDOvRKB5LxIwk60bGxFoCSXj+z0IL1ppZO5wsAPCRHQTLbiJVbM3AljDSUFhawkZUOUND2ETMxFGsNcWVAGMdmqbBfr/DpunQVSQqSu5w5FxHrJMKm7ZFrhwyi2dnEHtBNHMUSPfGOF3GCIo0WLLDcjCbRRQ5hoBxGPjfxE6gA4gST0mKFT9HqnAFQC1CsIWFqTKMovFObwJP3FZL1eFFI6sEIVgqOGJfLZbzAjQrkDujArO2csb94yP6cWBmIgURAgQKqCOuRksFMXPb5gLIS3V3KWJI4LDsqRkLeykvWyInlJc1G5nXBWwzsqYUiYlDqtKybIQVsV5tqvwsQ4KqZV2Vj8sZJCCOJfDgval8rc4SWicWSJnaHucZ4zTSXBEnJcXsCBYfNgJsZdK5CMEXvRjF2nHz7NH3PTlSiXYga0gBuQCKa4YLPQNd2FAE9Gk0bUOfqyxq1ltLOUNFhajAemEUoFtjSBC369C2LZqqRl05pJSw2+4A5AutM1fR+1V1hQygYn0Xx0xLax2MZc3ADEQXCExWKOLe0zRRK6VokHElmNgdBIpFZr3udzs6f4xFzoEAoZxQ+QrasNisn5G5taFpOmw2GzRti7pu4FwF66hdSZIUwyhGztSWGzx9Vrdpy2qitjbD653bfMs5lPhebfkMYx3mMPMev8xlYVPR2ll0mER/UCs+c2QMZN0pbotgBiNV1zNXFnNZS7LWyUVSgTtcaUfIkRyoUirC8AAxMkrSkkS4ldadD7Hsr/Q6+hzStlufOwsNX/ajkkCYJW6hFtwMiZ/kKyZmemKJuWS9S5upnBN5tVcIiztF2lvP5zP8HOA9m50k0qXLEE0ghXmeKBF2rhhu+HnG0PeAnin4jgnieqsU6ftoLqIF1uSU9pmZi3zOWqRMjEVpddaK40Vei4aLbZLEkC4oyppEjIiK96EkWmeKzSI4uUpY4pKUOEpf2i7pbSLHX6awB8uerDUOV1eA0jg+HtEPA37yk5+gbRu899577LJJiRB9TgnIARAgJiz46GNx2vMiem7EBUkE9En3hs7sZRsVR+HihqUUTKIFQpwaxexCXmuruMSuC6BAiWkv49+ypZf5VP5Wq++phfUqbYsAxXSSNBMDlhJZrYlhR7Esra0o7sjMtM8xAClCIyMFj3kccX58xOP9A+5ev0ZTNzhdXaOyFiEeSnFUaTp3p3nEMPbohzMmP0EZy4BvRg6JC1uezu/alkT2fAp49bLHMCl0j0C7DYBOOD0m1JXB9dVTXB2u0XYtsVgSxeopZjx79hxd2xJzc4gIc4BzFrvtFpWrKCYyCXWV8PytK3Rdje3W4jxk+HlA29XYdBbbbcZuR/O0bQ3SSAYH7SajrRuEqcLhYFHXBnVN7aNGWcQYMZwG+ByBZGB0BedaKCXzjZ5NzKRtVzWO2isV7U0ma24ZYyOWckaXwx1JEv0sz1qClMscQbR/yCiKDUkU6c9L26bSdIaB8zWRECmZMjTnfZqZsoYZ7eRgSHq3BjlFyjc473Aps5QRdVMYjp8l3kOizgjaJpa5XPLMTIQGAQx498fS5cDrmIkc5d7xJoeGOyuwDNECw8iWwLIEEl/xVqEuXrcES4VJnhdzAXkr+UPdOrrkAG9ek3TxlPe+iDKXZ0uoDn8WVLk2gRYu3riM4RLzLl/Li+W6l3EUcHy9Q16+ZX7jO8t953IL69SQbilffkO9wcZ6YzwVFMAdM/Kbwk3KJRf+lq98yRxe7kO+ezn6K/Rp+ZZ641v5lwzjep1JW4cqv3LxSWUIvuXj/zlfvzLwBNAFk425YitF2iCqxrKtMfWFxxiJQo5E/ejWATmWZDxyMCX2qCQWuGw40+RhjKbfg4BNHERl6vONkVzTDLsHOG6tKYwsrYh+GUlvRSlgv9vBOYOqcRwI0wGljYjsooh3b6tdAbSMWdw/cga+8+GHSDHi9cs7pBhhjSkaAKfTCafTCXXtYJ3FdrstQRqAIsQuwZvWGqMnrakwJyij0HbkghMjuTIh5zJWL1++xPl8xhdffAFtDPZXB9R1jf1+X2w9J7FC5h76FHwBa7TVaKsGfpbgIiCrBOWBkIjtJZo0xTkqCZAQAUSMEwVM28NhARABjONYdHOkklVVFZqqhgYwjRMi30fKGZuO2B/iqDIMQwmAZIzalEpbiNChhZVj3GW72hx8Sfrk2cUUobIiBlpK8NMIbQwlfXol5KsXUFOENqGFvSLtSwtVv1DseXVP40jMi6rGVKqqS5VRKoYxJUxDD6WoTQOKDhUZt8PVAVXlcHO4IoAFhNfFlDGlQJpW4H0mRAJ8oZGQ4Xlnsc7hxYu3ytgO44Q4e6q2srBmCJRoaq3o9zTpjRgG8ki7whB9PkaiyxsNq6mVrh8GPozIOl526KwUTFMDISFMgR0INd5+8Q6eP3+BjXWolMEnP/0UD8dXeLi7xzyNuDocsN/vsdls0AdPrANhG/C6HoaBWoBsBevIhcrnjJCB7WEPgS9Szpj9BM3sm/58xuPjI55cX2PTtdh3W2ili7vf6XTipMOyla9G9h4ZlFjIgSwHdRE45T50AeFEvPL+4aEkdPvDAe2mK8COrPuq2pS5KmuFADYCoLRS2FiDHAM+//wzPD4+QCIHYTBlJGirGCiuEbh9qzAJp6GsT4ArQ+IpD0mcCBgf+54CeusAlcUXlGaaIhc3Y2k+U0yXC2hG7Liq7P85ZwQJphK1dxllmFWiENKqpY7BLCWH3xuHpfTFey/uU6vAlJ84nQ2ctGdFNt7cRjcNE46nI46nI87nM66urnB9dYPtdgcohdOJdfkqQ9oTTiONtAdkraCdQe3IpXWYJpzHAa9uX2Gz6dB1LdqugXMEHBEAsGUR2+MKNGB9mrFHCAG1q1HXDZ4+fUrtX8oWTUNqo03ozyMJBfdnYt66GteHAzZtW1pkpahxfX2DxAyKtm2x3++JjZkTdrs9dtuMqiO3vjRTcmAqh6at0bYNUoiYp4mTeI3ZTzj3J3zz6hWdKW7REQzMVjAM3sfgYYxF3dZwTYXt1Q5+nhCDx36/o3YmZsh4T9qIIUQc9jf4l//y99B1GwKdGAy0ls59VzdoLQFZd3d3eDyf8Hh3DwB4+523UFUOTVWhaVoc9ruyBsdxLPoTKSUcrq/Qdi1cWyNDYZw95hAQYkJdN5S8rswYEmsDembU5UzW2IrbGUKYoY3F0yfPFqfPlPB4fICzjrWsqsIMk71CmDab7YYZtgSmKwZhYqB4xHuPpumKbpKwmbQ26DZ7vraIvh/5tbRH1jWxPKZpQsrUemaMQdu26MeR9vwYAEUtvNZaNG1L12wMIkC6hBkFUJE9LQRinIgoe13XMMbg8fFEYKYjJ+AclwJZ09Rw1mAcJgz9gFcv76ggF8WhNaBtG7RtU64nMZC0dlN7eHjEq1ev0LNr3G5Lhhqzp3ae6+truMqibRu8fPkad7f3mMae9tXKUltl12I8D3j56iXqmlrTkajusD8cSCNRzreqQsrEtOq2xOhymUAAzwW3lBbR5LqqULcVPSsoDMNQHEkjn//CIBgnemaHwwHOOkRkcu+aAnTW2O0O+Oi738OzFy/wP/z3/z0++cdP8G//2/8W//C3f4s//ZM/xn7fIqsdfM6Y4wSrzQXroGmaUvg8n894+fJlYeA/uX6C2hFDMkdqiZ2mGedzX0TojbYwWhynI9I4QYHZW8YjehIBt9ouDtHKwRoDVxvUdYXdblfiHnrWiWM2anVds1Y9A8mX7l0AIG1zC0OrgKEKJfZ380BnpVVwlUKXKjI6eDhy6yeAQGdliszETxGTAiatcb69w/H+Ht989jluX7/G559+hrpp0BoHPw5wlZgQZRiT4RwwjScM/QPG8REZHocD7fczt2nlTGBPjBF+ygyCBnz26T2++PwBClQse/5Wg7bTGOeEd95u8evf+y18+NFHePv5cxzbIx4qS8zTlPH7v/eH6Pse//gPf4/j8QEvX36F58/fwkdPPkZTtTDawZoeXafwr//N76Jpanz2+Tewr2b4fsbNvsaLJzWcvkeYR+y3HjcHi9/69bdgrUbdRLz8xuLnPzH44jOFu9vXyGGEzhkvnr2D0+mMH/30HwADuI1D0z0H0GCcIxIGKjKkhGE4wzmHg76CUgaAQ1Wb0l6XM2nUCiNFdCbFJMGwgPs8eUrcFUphL7FRkoCi3YZcjJuGcoiUF0Mhz/qa1lIhfrvfoKpraFch+IDzmVigCaq4OE/TjGKsoRScE+MLjZAC5jnA2QStMoF9PC9jIkfbDNHOpbZxbZjNBZLzcJVFzhY2OkgxN+el9R5YtYZqKgCxNG5Bi8p5oohZtCYyrL8k/3Hc/p9YiiRHBmzVwoaS12qtS7G0QNqrNUefowHDRiSJ3O0gcYGPJQ7LjOgTGEwSOEoq0Ry3IgMJIj1CoybXleJKHL/sF3kZCN4j5Ev2CsEjCNDSyNymKGLNb+BKrD33BroE/MJ4lr2Jn5nCkp+WMcrLeMnvc9megfnVuMq8zosm8OXnX/yL5wux+dfw03Lp3LIIMeZYAfZreE3xOAjeuAKXLrW0UIoyb46F7NGllP7PRZz461cGnvph4ovMa6AUgIKNRHuHvCITRcz7XJIFxVWQwEi01kvPLUPE5YHmlBAzAR1SCQcApUzBgCVJUUDRUSDQORVUW5zMiNVC154ytcTkJJXBMsIAWMANC8qsACAlpDBDq0tnvnbTUtU7UcINTYFT21EbhGWHLK11YUMAlxM058zC0Rpz4R7SjWllijhs5mtq2xZaazx//hzaGGy2G2y3Wwp0+bpoQCipvHSHWjHGlExEAUtzmVSKr0FQWcXXHLjamxlNF8aQ4fubPYmwp5QoEXUUiGso1K5CmD1CXmidSptC5Zfrkmkl2hEXfdX8muISYzQDY8vip0W3CLui6IiRe54EmDL2MUZm7ejyTAp7hFl2a3cXSSLDWouArzqEiLPvWXdiYcNErmKLrb2AmMhglgVpGcQsTnwKsUqLaFzGIqKcMpThZ8nPmzQw6DKk/c/wxrhU/FYbHFcTNVd9nNEc0LFGTCJtGas1oooMHgn5V16Sy/tkACGX3aHQSFMmdtcchM2VWfPGYBpn9P2AsR+Rc8LhcKB5bDQsNCxYsBHUQpkjOd1YY6AdjWkYJ0RFBxhdII9jDARyRgLm6qqC1RqbtkFb17AiGp8WNmDZ1HJCzlI5ydQ+gdWN54ycqM2yJK2ZwBnHbnTbFSPTCHONy3kCoqe0gDbIxAyQ1sJxHKFyRrAaj48POJ0eMU3jaheQ/wEqyXVGxJDgPSV1IQXkLMw12RZYoFlE4oAS5ChDekBlvjOrKmVJAC6nDz1f0hlyllp9nbGkfcMBCTJ4rfFeI2CVokqjEpRJ9kPet8D7+br6tuBSvE8vl1Nc0gxfW4gMGpglPBH2oFYVtDJwFWmetG1NoHDloC2xW6rKQikClHImpmDKmVuWCawXI4zFSZSDa25H6zYdB0Js685AmJhjVFVVgIUoLInM4H8WZqpB5SykikpgmiR8opUhzprSrk6MVBFuFj2UpRJ3aR4xTRP8NGMax7KviybRMI1IOaOSQokEuYq6XqlyS4ydEGZiUJYiSWRNqzVThmjqAO+F2lDF2VhUdcMFHtK0arsOzjpYRxbwZEBCsUPXtgQ81TXahhhTs5+5lZQ+s25Iy6VtWmhrGCCK1KofAjF2Q0A0GjYvBQJhpVnDQCRXyyMbY8S4zEtrLKwV4DMXJ1Y5q8qhVOKXRQdD4hhxPZP3JhdEWbcCXikQYy4X7USJ+KbZQ+uIquL2okyFo7q2pT3VR9aBgrB9uZUiSeKjmS0UCpukaORBhFENUkyY4sTMZGAcRgAZWjfL3OCAYeh79CliHkf42aNrO1jrME4z4jRiHCfaGwxtDilnNFzUmYMHIHFghja2bMDaKhirUWnH4N4SFwgAJ2xt11So6wrdZkNt602NcZ7weDrCKAurDZ49eYq2abDpOiilqdU9EbsRGcUxTuKOnHNh2kisGrwHQHuOsCSncYLhYmxesVGlLSxEah9GSjg9HnE6njAMA+q6xrPnz/H97/8Abd1gPB9x+/o1Pvv0Z3j+4i1cPX2K8XzCq7t77DdbdNz6DlAssrC6Faq6RvDE0Nx22wJCGcstT5niSaPJjUyCwqLBJGeEUrBGw1VVYX9TAThx/EZ6k0opjON4magqMjaILJsB3seKzXxeWMHylTO5qwnrWpi68jvBUzwxTROdGexgnSPtQz7MkFbxHGlOqsQLRwOzn/F4esQcZmQFbLcbhBjRvr5FxZpYRms+U0kDKIQZMdJeRP8mIfembaiA5zXGceS4kPdYaSlSpsTSmWO4oaf9cZoTxiuSMGiahkHAClVdo+9HzH7GOM+YQ8RmR21t1WOFnIHzqUfOCU1j8O5713jvQ2qD0yojxxlIAU4DOiUkHxFGj7nXiHpAMECvLYwBhiEgeo/9PuGl9UhhwKtvviTG4WBZfL6HqTXpiKaZivYqU9E+0QllXUXmSTw3YoxwIL28GAIy8sLaFmCJ9yQFcTNfdHZjXGnUKnKlneKM2U949fo1sb52+6I/nGTd8m9pTY7HwzBimj2UcUjMgJY4KPlQgOaUIhfvxVqK80Ct4ViK5SKhL6CQZOoLMBIiPXsYRcR6cO6UEu+VPAZ5YdWvvzIuAYiLTpllVMAZT4nJJI8GQEU/tbCjBAySNQZwzIU1jLOcXxeXJLHY6pvrE46MP/JSjF3Fbhym8K+qgnLIKag4bytASAGPln8XRn4BgOT6VnuH5EsydmX8JE5ZwvjlJzyGZfwWsGbdOXR5x6vfX//im99fD9/q7wWr+pb3Wz1daaWk+/k2bpTMucvrXYNB63lV3rn8fM2oyr8wBy6YqG+8FzKH6heT4Ff/+pWBp8fjiVBU5yAaK+JoZqwceKyJYxViAh0AMNDaEoCiwaKciSjDyEiJ+vGlDUycaYAE+FRWn+ZKIoDSq420aAGVPvuUGATSTH0EJwdsex4IcV0Gk2jZEqhHHsFUBKUTPFel6qpCZR1D0RntpgVSRvQUjCbQRty09UVSsmbRvNm6Q9V2ByhVXpN4MWlFNHGrDc0XrXB9c42cMgNPGmbFoMoXoI6GdQpFGDIl6KyxZkAosySZRLfmlakJdV8vxIwM70kjBwCMIeBBKtXn8xnTNOHu9WvEGKnPv21RsXBzUzUYh2F5Rgy4UTUZZYxk/srYiTCwPF8BVrwnxwdjVy0/vExtqTSSo12OEUYTENc0xHQKDEiFEAg8y2ZVdaeEM+bF6pXmyiVTL6WEpmnK+M/zjPPxzAAXMfHAYJ/SmhlUBjVqYn75AGeIWRTMDJWptSCnhIqddHTZGhlUTYk0p5QCDFGEA2+qiBk+BIzzDMtgWxRWH2+uAiwYRwLK1lqYpkJGxuPDA+mAAWiMgdMswJkBqxbhQAGVBEyLnCQIeClssIQMHyP6fqCD1ihEWwMGOJ/OuL97xPHxjKau8dbzt3BzfU2MRA2qFmtdgv/oqfUHrMs0zhP6aQS4JQ9MpXaO3JOOxyM5kRiD7aZDU1XYNy0qaxFBgQExJ5m1gAzDVkxShZMgEWppMQRIywSZ7KulvUfxWmgAdLttmaPWueKwA0irLLVBNE2DTdthmiZui6DE6/Xr10gxYGM1vv76K7y+fYlxONMBDqbz85Mg52RiN/o5YJ4C5hQQIUwqYiMoBXLYowUOEZhVUoW2jvZLmR/GlPYgcemSNUCtdLTfK2vIwdPRHz97hDmUwMMZyy0nnNCFiKZpFtekJIUKAtrlHJXqFcpZyszBNQgtcy0nxAQ4PmemeUbSCW29JGXWWdRtC2dqWO1gHQFude2glIazwtZKaNsGm40p+5T3sax9StQDmrZGXfM9KG7t1IrG3TjUbVN+R746bq8VhofWuuxnch5NntrArDUwxgG5AZkzJAIvhaW5CoqEuWusRcwJx561TqoGYSKxVQGBRDcFAOZpxjj06M9n9P1QkvecaB85ns8UQGvWozAiSA5YPo+0ovk3jzNrUpH+n/cL4J3LmUN6HtRmnBESlXeU1qRb44h51jRNYaHQH4v+3KOuSRvn+nBgzR6aR03TgJyJfJmz+8MBzjns93vM84yHx0d4ZgvNrOOYwLpeZgUYse23Y0alJCJh9HxexNIOZ60r2kAyJ+WZS7BMZwBJCGhNxQ/RE8w5X5wldO1SJLEwhnSCtHUE+kzzUkRQVLgZRnLx3G62dE7mhMqRUYIwloXFnBUl3+IcFUMouNg0TXwdnBgaUwBjoxWUtYXRvGbxEVOTzk7HbS85Z9zf3+N8OnHcp3F9fQMfIx6Oj/AxoB9GZE2agzmT/lzbtVBR074OBSRi+tqqgplGmKRRVxaO153WJNScQWvIOYfdboeUWmQQKFDVFW6e3ODc1+jnAZ9++il+9rOfoa1btHWLd955F4frazx78gQ5Zzz2PZ/xtKaGYSjPN/A6azab5SyICePsiwYlQMB3zw7HTdMAzGCV+XFk97TD4YDsA1599SVev3yFx4cHuKrCu++9i/pf/xnuf+Nf4L/7b/5rvPz6K/zVX/wFPv7+9/Gn77+Pr1+/wk9/9mO8//Z7sDdPy2lA+jkZIVHHwW63xe3tHY7HIzZdB2PIvdUqg7bt4By1tapVMfVNFoWw3qjVt0LiZyLueJo11eqGYpqHh/uiY9Y0BBDPgeZtpdzq/ZeEUuZRYUqliJEZ49ZaZpkn/sylgOtDQEZEjDOM0aicxTQTU7SA8iRfBctFTm0U+qnH4+mR9iQDPH3rObr9DvfHBxhjsdltSHssRfh5xDSNmMcB3tkCbE2sA7fbb5nNaDFMIyY/waDiYs5chPrJyGA51/o+YBwyhiHi5gB03QZt28HaCq6KqJuEx+MJp+GMu8cjgg+4fnqDunE4Pt4jZ+D163uk5LHdVfjt33kf3/vBU3SdxTjMiPMAlSa0LsOkiNB7jMcZg8sA7qGUx/R4ByAhYkbXtdgfdnB2QJgzfvKjv8cXn3+JFHiuVwMa7dCojBBHTNMA0nQyQMhQSaGxHe03mXKZcZzRpIyqArwfkXKCraijBJqAzhwXCQgq4HBhKS/ttMTs01BGI8YT+mHAl199hZQSXrx4UdjWMp+ahnIP6yo453B3/0BkAxgoBlmNIdbpMI2YvcfjI82Hm5sb1LVDVbvSmmw0tazbVcGao69SnF5QEy4g8Tx1tYMUGEQw3FjNWlFCpFjkA8q5UUSvBFQg8xkpkEtUBKzaV/MKPCjnjyoO3HJ9WMKqZR8rhalvARlW16j4PWSNS1FLsQtyTFS4TZHAEuQMaDr/hNatVmMlRTXF4KOw5MVkgAphK0iEgXHKhfj7FsyaMvJGKIcXj4uoc78Jm62LqjLab975+pkLyLfeI+kvabH85QhMee81CHcB96zb9pa8r5izre7g2z5l/UzLna6vR60/7xLGugSe9C+835tf5PTHV/zPBJ2Afwbw5Nh+uaoqpJRh46I9MHsPk6iiIZo8gjDGlBBXNNTILU/BkwaSOHIgRWhFDkMRHJzmyGuV0M/gZ9J+KIckME0DgxhirxvBDdlctdRlYiEn5CSLQpVrNYyUEigtQmoAci4Vr8xARUyJK/qCStLHASRoTJWNy7atEEJpvbhgzvCk2G93ZM0MhawNo9AKKLTnwFXaWDZnrZYWIAFlhLEk7CrRxSnBpFYATGF70RiqwrxQEJH2BKWYuZITRIvJWVsCc6WEAkibiwZgtcZ+v4fKQNNQVb+uagaf2E2I70dYAtBLlTmEULQ6oKkiEoXJFmmqk4YIzQ+tNcD2zTIWMsbLBkpV7hwSEImRBgb0cqYgPHG7RPDUilASu5yRQkA/+zJO4nCnwM8gSVKv2TXJkgubo4AppYyqIiFfP0+AYqafs6idg1AmnSHxcDQO2rIDDcTVhdkFGciaLE8zgzopJfhIGkmVdaUNBykBWmO72RSrVWrjouR0cWAEMjMA4uyZkUXCgRasM6ZJzFIBCAlQmXSIwACv5qpKlAOZ5/fM1UGlyVlonDyc0vDTjFPfY5hGWGPRcqLZtR1izKzHMzHoqLlyA24FMhjCjKgytLPQ1rC+F63PfhyBnLGpG1TWoqsqFp9mscaYAEMMlmmeMHPbJy1hXWoIhl3dfKDWznkaebhUCZJCjAS+rlpD5N61Ugurhd1z5FDNMSGFgPPxhPPjsbSafvXVVzidqC2wcha/9uG7eOyP+ObVKwxxhGtqQGuERAL0EZkBoMRtP0ubqWYHLzJe4BaazDRwbYCcqJ2OK9bGOihxXAO1Uq0BbQliABQhWS3sKUg7A32O4TkBxaBwBqR0IwCq7AFggFgS1ovgCUtAJjoyuujcpOVzOAjRmhmihvSdnHUIOsDHAM+tTJVpipaW7CtaXGHkM3MCRK8lZ1hLYF1V2cJ4omDXlUJKiqTjZFg8PaUM70kTChykBU/7sPcEBM1cbY0hso6bpladGFG7qhQfjDVoKlMCrqHvuZ13Zp04ZuA4h2mece770rbKmB8HhBTEkCOPoiTKz0iZtJIoac/w4wwFoG1qcmsLpGfllcKmbWGN5aVPrIqUEjLbo08zJeei9whkiNO9NQbzTKYY0nbcdRtYR23pVeVwfX3FGmzsQDgNCMFDG+Cw30IB6LqG2nscXYeABNZSa7ucAVqz7bMPiJHo99ZodmGkVp+AADAzV9qNrNFom5qSDWYxkSlARts0GAeyqj+fj5jnGS9evCgt9Skl9P0AYGHI0Pw1qCrNjClPWnsZXGRTBAAoA+eo5fx8JgMVbQy6bgtkFDBPEnVjDCq32N7LdWqOGzzHAUPfw/sZWlOhzhmNGGn/i5EAR2qDi8Q4swbYkAGIq2reO4gF1TZ1aTmTuMxoBeSE6GdM00hOpcNADIKqZgYBOdoCGVfXB1zdXEOxCP00kbYTzQMCghUUlNHYbLbYbLZouxbez9jtt7ClqAMG6SpUtkFV13RfE4Fj0NQa/3B/j5QS9t0Obz9/C5WmGEIpYlxNfsar+zsCWVgjisBfaoFWwtrj/W8YhrIXEmvfUPKTiCFqlcWTJ09IBL4iEfBpnBA8twNxUuXnGWGa8PL2Nb7+5it89vNPsfnrHbXTTzM8gxs+Rfy7/+H/gR9+8iMkazGFAMSEl19/g4fbe7z9zttouw4Ta0Zpa4idnBKxvYxG2xGwK8m82KDLdfgQ0NQ1F5ZTOQdTSpjHEdk5WG61NgwOGNErA5AStWOe+yOLgc/YbDfkuCuW8ImdPyWmnWdYtqin41evdKl8iUuFmex9WDFaCGiW7grnLJ/ZtAeTZIZCULHsj0prBvQtnMtFD6zrtri5yThcXUFBrZhHDpWrMDczqqpFzgZff/UKL795jbpuEWPEq1ev4T05Aw7jwBIQpA+ps6V9P4bSVoZM56W47Um85H3A6XTG5198iXH06McZj48nMmZAhHEau8Meu/0e19dPgaShosOnn/0tXj/8CE07IaXXmKcZISR0HdA2gNFEEujPEzT2VOzabWFNLIk+mVlYbPcGGRPG0ePm5hmub97BOM2YA7V8Q0X4OaBtKjx/8QSH6x2ativAeQik10ZGTQS+GAMotTiTVo40+YypkWJAUFha7kICAgGnIQQ8PDzAaINNt8Gm22C/2yAhoWqoZfR06vE3f/O3AIDD4YDnz5/j448/Lnvkz372KcZxxKbbQGuN2ScS/K9cKcbHyHpwLCreW4vUNuiamljTKbJQPBW/c0ql/a2Ap8IoZV2rNXwQWSy/AEM5QUWSm4GRzgxxi19A3wxi1mtmKMu7SphC+xcDOlALsI1c9qmlXXUxB1IMyMgVSjeNFEkKCCM58fprFSNpqkgUfWJhQeakyxrH+n0ZNlFl7Bbm7zr2Kh1S5d90PsoaviBuvAHylHHL1LmkObda2FPrJ3MJHglewf+5FDwLuEQxoFK/4FnH47/gLwpKKvPl3wpA0m/+2i8DbTh3ZYDhYkbxPX4bKCSXfTGeq3f8BVCMwa+8vmEwJJVljv1T8BO9B+Xe8lm/Ggr1zwCeiGroKseLLGMcZ8SZNABiJME3s4wQAF7cnqmweQnGBIyia2WrTVBiQcybBM+bAiS5irFUQUUHYJpGpBRR1xUDEkIv1ICpKfGTMWL2QmQwRYuAMgMIaZWQa2OoispVLspvlqoksrSOKrasRxGdlANdArp5Jgc4AchkYxTKtYVC17So2oaFGFEs3IMwbLiNoGbKp4jYBq48yXVCqQI8ifsPJcKaLd0TMrchEsCmy2GxBMKcjCVmriRpLaCDPTKzTYCnvGJKbDdbGK3RNCxuyxVr64gZEULFl7m0sJX2uRhhRaiXNz4StOXnmlGAJ2tps1OcVEl1Yv3eqXyf3ecAsiY2C8MhYQnopUohbAwFogxP40jgDbPL1uKZkihrELDjrCtAWxpHxBwpQdIa56EnFltVlwpx8J6YT1ojaQU0NbU98aZoNYEFSgHZAilLLzY76zF7RlU1tNOlfVXo8l1L7ig1axWltMwtzzbjKdCf7AOyVjCuglWAAVXpM3Shy4Jbz5x1BexbVzBK1SYTIJZ4rflEbT1npTEbi/MwYJpmrgrXOOwPaJoWISZm7kywNpF1Ovd3WwbkphiIbcGOlhQUENV+6gcYrXHY7tBUDrumKQCxjxEhke5czgmz9+RYlDK1fECVPcRa6sWfMwmU9hO5KGmtUVnHLpURKpHDx7oSk1MiNuKKSREiMSWKDW+IGMcRJ25NzTnjJz/+MW5vb9H3PTabDm+9uMG5P+PV/S1MY1B1NbLSCIlaUMTlQth5pRJkNSfQDLyvDlSpmiUlgQsxHo21QCQ78AL+MAgLXkdlX+NAS3OCKGMWWXNMsz5cVlSVBhee5O+c5Bxg8VHHgdI6qOApdQE86SXR0cwgpHYyTcATt2ZmA2hruP1YMSAXODBWFwxGaZNagjSaGwkLvdtye5vRjpNSalWRary8j1KAdlwACQF+DhiH6VsA8YicA/zKDEHe79z3CN4jN21hTDhmakpCdgwe/fmE4/HMWm2kTVbXNc59j9e3t7yveFTsqKcsa6VxEJZTgg8k7m8VnSfbzQYxJtwNr4GcUdcVFAs6S3t613ZkXJAzlKF4IMaEkDLS5DFPnu6FgRFkEmbXWqNrWkx2WiqkWqNqCAiMOcM5i6vDASknTNOAeZ7YBZYIzO22ZedBtxQCUob3M4B84fImyZAUfmhO0XlvM6AQ0bOYtQEATjStISe7pm7YdpsC6Lqql1aQDNzdZZzPZ9zfP+DZs+do+HnRZwYGk/0KBBNwmlhz0KxJGRkMqioYQ61vr169Rt8PiJHazAh3V8wUoz1/s9lwLHQJPNWO5qgwqajta4D3Ht3GwRoqEKVIDFJqo5kK+L3pWuSq4qSHzmzNe4ZzFjFWBaSSNUT6axSn9OcTHh4eSmHKWtoHaZ1Qi95uv8fzt15gnAZM04hXr14Rg8TRPAaIzWU0saXrukbbdQjRo+nqsq9KodFoC2tritSzgjoT48IHus7jI7k9brsNzI3Grt2iHwcGYTTm4NE/kpSEYZehmDNqoGjRZP5vidvKeFc1nKVnmbmqr5TCdrstZ8I4jgQy8RgHT/MiMGBx/3CPV69f4asvv4BxDsM0oWsYXK2ovev/9e//Az797HM8fedtHG5ucPPsGV6/JqDh6uYabddRe5rWaGsqrqkY0XQt6rZBw+YzUYoQWpM7Eq+V/nxmMNct5whIb8XPtL6qYBahZhDJmETaMwO8I4bhjHEc0fc9QvJofYvdbsetfdQuN01TiVskl4BaWOPkfjlCOixI4sKQQ1qIRW9tGEY+G+jsrmouJHPRgRLRabUGFesnEntEnsdut0NVVfh4twOxkXoET/u3szTfK9sAWeHly1u8fnWPqqrZVfoB3lOMn8QqtmY9w0xj6YNnrcMApSy04vbpVeIbY0Df9/jq65eYfcQ0RQzTCT6MVHC1Dt1ui67pcL27QQ4KcVb4ux9+gM++fIK6GRHTiHmOiEGhbTPqmkTgY4gYzh7I1O59dbVFVUUEz23/Eag7oNkoQPWYpoDrqyd45+338NC/Qj+e0AcAmp3ImxpPn12h22zgqqbstdM0EbjvHHKOmGc2btIk+K0AOEvt1cY6pEhxbfCeYhoG6Ebe91+9ekVrKyvUNbFblVVouoZkGsYZn3zyI3jv8eLFC9R1g5ubJzifzzifz/j88y/w+vVrfPThd1BVNYaezAaqqiJG1kysOmHxaq0xGEOOb9LmFxfgRAwakio111KcZzITIKxt2iCwtGFTPgw+eykVzSQPwfsZ6WJJ3ENi+MqgOJ+XBu0CPmUiPSQBKdYCBHTWa75e+So6UuugrIAuedWWJ0QF/iz54IWxAA2FpMWkg87FGDWN3xqwyNx2qHgMlJiPvQmQqTdRDM7Z6XfWxA2s8r0SrIL/LnI5y2BdQiurS3sDjCkgFf/Cm2wrpb79feTnywfTZy9AIv2ewHnklo3lftbjrJb7ymCX9QXFkCd28VHlp3n5bl7ddPnP1e1K7C4vKu+rLl+3/o2Lr9V0+La2wX/q61cGnpqWE/UUaNPUCk1boWkqHjgO4ldoptYWc/IImYKAxHaoGUDKnDRPE1XcjcE0jQjBrwS4ScxNG+qF1TEjJY9hnEqCd+7PQM447A8FyBCNn5wCWTS6ijQ2OFkOkSqglBRf0vkst3bRo1aoNIthhgiPgGSWhER0DXI2JZmy1jLTgZHfQBXV66srrBlJ8zyXA7lzNelDGNaMMQY+BoR5wjzSJlzXRIu24tzD958CbVAaVPHW1pTFJvfljAijZ8QcWK+CNpu6rWCtQ2XpOfpMiQwF0fQaJotwq4+CMwtlWgRRT8djYYeR8xDpXO23O8RoESIlgvv9voy1q4Qyr8q1ks3xkoCez2dicSR10QYnLAx5DmTtvgBPsoHlGJFjIuqttaiauoAVhZ2iCTR1meaHtRbIGf35jJzJ8UMcW2SZiWYPOUtlnI5DSQylEqGNRm1rrphkdM3arTBimkJ5VkF0oQYKCrUl5pOtG/lIOAZlpxigUobNGUYpTlrIlrVrajSVK9sAzReqehUEXpHDY0gZYAaOUQrPbp5AbFetFq0HrvYwuDD4GdPscXd8ZKCNkj1J+AisI/Di6moPcICN/RYawP39A47HE/pxwDBPFEjtr/HB+++jbRoSxbUGXdexu0vC+UzgjHHUZtHuNoVh4z1VPStboXY1tte01hu2sxZhP2QgKiAiY/AT5tnT3+ysN013mJiJYY0pTJEUaT00u20JUiy7oOWUkUJCcnl1SNPOkWJGimRukOLSqnU8HqGVQtu0SC6ismR0kGLCb/zg16mSdz4jpoDH/oi78yPOfiQtG2dJTD0lgF0340wul2MISFAwVQVbueJQBgDaYAGTGHoWkEfcFKnNdwGUrLZkBpHo/rVi58WUANYZoOBZ8zglYqEpasuJvHcQWEgg2ZvH00JzpqpLaQvO3M6nFR/+KIy2xOCTOH7lEEo7qgBilKRTwhd8YHe3mtzgmoZdA0kAyllyM1wLTGtF/5aA0BShZab+2woA6YwZ66hNUSlkpQFlMc8Tbm/vMXJSn4VtBALHtvtdSWKFXZFBgtfUXmVwx0Lah90e1hkMjZxLpEtVVxbIVGW+vr6h94sRbV2j43ZiDWDoz8gAnr54Qe1y3HI3p8DnLLDbbOCMxWdff41zP2AYBlhr4IcJNzc3eOett3Hse5zHgRg1RmOeyI799JKStHEcoaChlUFtHSfMBPTtrm/gnEXXNMRuDbG0BxkGk4+8z3/52WcI0WOaBlguMnlP4sTOOj5DdiRUrKSEyIGZUhQbxFRYiNY4BJ1KcUTpTPsbtxTS/l7DOcvtSKZYZqcYMfQkCE/iyJqq59B48fwtPLl5hhgTNpsNFDTmmQCupm6R3JrxRMxCrSmBUkqRixyfd8Q4NMiZErjNZouqqjH7CEAVc5O6biB2oU1DGmSzGGFkStxSihjGAQ8PD2VkAq9xhYqAu8ohRWrrnscJ0zBiu92gaVpsuhZKKXz91deIwSNGj7pusNvuSqupMKg3mw20Jsvv8/mEb776kuKymIjB2nWcsAUoPiu3+z2Jg88jZm4x3m632O322G523OoJFj9vID5qVdvBZYDa6jI5VCLDGA1jIhJILNvP1HJMWmuk00UW5tS6U/M+sGd25+39Hc79GbYikLHvB2rLbRq0mw7dpsPMjpCWY5NJ6wtwfg6eGdkZm82GhOM5ngmBnmFVVVQ8DJFbSRI+/+wz6Ay888F7+OCj7+CD73yIP/2zP8Of/et/g8PVFaqqwpeff4bj8YhPf/YpfAj4u7//R3z344/xzjvv4/DuFaqqxmazIXMQbq+U4rDj2CSzFh8A+GkuawEgFrGwT+dpupCsGMee5ygQo0VKM1gmsLRfKwaO/EzA/qZtsGlbPHnyhPfsjPv7RyAD2+0O4hxIYxNK+6gwo+QUpTiK9mNXKdjKIWZdnHolIVWaWgxdRa6YuqqgwNqbClATM1iZjZJgEGNGzgsYPfkAHxNO/cL+yykjB4o/h6HHbr9HVde4u3uF17ffoB9OQFY4HPYYhhHAmQpBIE0jhYxx6mkskViC0gCwQLaY5wyjgXff/xAffvRruHl6DVtXeDg+IGWFlDQxdVNEDASE9kOP4COmIWLT7HDY3OD65ineefddBP8J7u9PcE4jRYNhyIjRoWuf4vg44vZxxF//1T0+/3zGBx/uUNfUvqyURu1aaAfYJuGbr0gc/jsf/jq+9/3fxKvHr3EeTtjsr2AM0LQOb7/1PrbdDfphxunYl8IM5VcZKUxwVuFw2BSAoHJseZ+BHDOSTgVYNNzKHWNADB5ffPUlxnEkxiWTDIZ+wJdffsn6lTSvdrsd/vg/+xP4ecY0z2ibDq9f3mL2M/w8Y+xHDOcBd3f30Frj1cvXqKoKN0+elNjDcTtejAFGazx9elMkQlIk1n7mzgUp/hOYplBXFTHbDRXySv4rOQhWUFBa9JXIGEQvroxRgG12ZyzxFbjgxWBRASuogEgggfj8LZ8t6IjK0vGyiIC7ysEWEGhpsbPMwBUBckoyNb+nwtphbR3pSicGP9oCAhu77JFKrkcJeEbgybpDYM0gXZM3pLCtViCYsBejoH0FCKQxSaLZCMWMrBWokpf3kK9vbY/7JegSN+CUJ6sYTEs8Dgs8JBqYy9utwSHmZvF5zt//ls9kMQIotf45Q1i/cN2CGCmab8gkO3RxVVhdpyq/sX4PyZnKZ//Ca964xn8e5gTgn8N4cpYPpFjQM2upKkXBCCUvC9jL7kw6MtDJ9sZKl2AspQgffGlPopaoXNoOhJ6neVFQW1XG2up6GEjjoOtaFvtkh5WcihipBNhKDsokA5YZXaXPUUrU2lWZHFqx+8EK6CjAiF5NcGYmCQVeFo7mlj9p7Yp5ad/ruo5ovdy5myjrYzFUSkZJC8gTDXr1vgIKADzBhUZsl0eqFLfAGKmsh7IAFEdN1jgK6A0/X52K4LVQcSW+VyK2jSVJmxg8HMeBK4GsT2Vo/EJsAUW90M7VRbNJKJ/kmGVLEszQOKR/eJ5nxBBAbRKLnsb6OchmJ3vTelNJ/FmVBCfGFDHzzO8hQKnsYEazMH2iDVKq99YsoJji4ILa2mKpAgttWICScr05l0ohvY6YL2Yl9osMJK7oRSgkRdUDwU5k3BSDanLAFf2hRAmXtpY2HKXK/BYB7XWyf7ERKYW2aYpgsGJ2oi4CocSy8TFiCjNO5zMDPFWhxC+MGG6NY7cjjUwAlXN4fHjAOI6YuLJZuQpd23IyqRFmDwXFQqmJ9ZjIJjsrYrJopZGw6KjkGGEcAWa1I5DEamF48VpFJuFYBcwxYI6B3DWZNTgMPR4fH9Fwi57KoMoNgKqusbmizzVKwShOevNqL+Dyghyu0qYVuU2JxoWq3TKXknUl8Eo6Ybe7gbUWfd+jH8/46Rc/xjAN8CmgBjFMUowMzBgKOjLRtgNTmjU788l+vdCMM5JebXelKrKwSWV/QwHvgcQsEc3MF3IoWfZ4WgU0z3LKUFq0i6S9l7StaD2/ETyUeXi5ntfUX0nuipV2Styix0yEEnho0uVL5P4hiY0ENVLNt85xFdXw3mn485aqGwnmEqtPAAOy6eZnrEUjK0GxtlPOFE7FRO06537APPvSRpR5PzFao247aEPXnYuBC7uqcuvi6XRGSgnOOLjKIGZTwO/KUoLVNNTGs2Xx5Hma4SzZYHsWixYXUDFWUIrOAbAzlzGG2D1VVdawD4G0uryHs5aKJlojKjFToLArpIhhIHBvGidUjnSvrLFw7HyjFNAySNI09TLneH/XvKfOfsI0RRzPJ3g/Y5pHdF0LZwyxxwK3LPK+xDOaQHrFzEKli6itCH1rboUi9xx9oWeTnANyLqxcatfR5XdlDgkLw2iD2hFbtWtrWmtFUD+WFlTSfSI2oZwF1P2vuA1FIyLw2ZNKy78UzcQVT5sAAVeEGcqnLzPkmD2tgBCYocL7WX8+F5YglCQEmZMFcRJCKRbUVY1N16FrG+Sc8HXfYxwGDMMZG27XLg62XMEmJ0fNBcQR9/d3PD/Z6twZpLAUV4wx2Gw6al32oj0WubXJoapqKKURfYQxVMCLCUjcJgkFBE/tMfPMDn1CO4gUS05+Qo4U3xhmla3NQYwxqOoKNWjfvLu/g4gg55wxeRKcdsLiNgYq6BL7yPvlnDnp4v1TnLlY8zSznluRPVixNSWuOp/OcMbg2c1buHpyg7feeRvf/e538Tu//du4ur5CVde4vr7C4+Mjtvs9bm/v8MN/+EekmFBZh/1uh267hWETBGMMFPU2UTGPAXPRQ5HrXFp4dJlH1tI+LWYkMUWMI8lYUIsx6XsqlaF0RuK9guLppY3YWWKz2KrCOFKBZx7PCDGiqho4t+whsr48myFkXovCFJO/AUr0tVHQSSPHzPE879eG2fxKZCiETc/ajElJiE+M70RzSPPvS5v6OI7lLAQRlND3A53Hfc+SEB45x1KccM7Ce2aBZYpbRetMa7/kGOA1zkAqxeIKV1c3uHlyg7ZrkJRiFg6xouRozBKnhAAkhTBlONNAG4uu22C/v8EwAcMwwVUjcjIYews/azi3RUoZwzDj5TczzmdAqw51DZxOAVoZdI2CMhmwwOO9RkoOm+0e19c3iCaiahqM8wxtMtpWY9PtYG2N4HsM44CG9zzLbKGcI7Q2cMaWoppY04SwmDrJ+aOV4lxq2d9jjAQAVTV3iVALcsgU/zhrYZsG77/3Prz3uH19i9rV6M8DP6eluD7P9BweHx7Y5bIpQvsV72cxBMCacg6U6ENyVaAA74BazIgkDlK5xFTgvDEDS6xED7K07Um3DX2bQYSUyn5d4qSLWEkiIlV+yFFcAaTk+wujiaMvcRnO6+hq/TkMzZSfy3nBoNPydm/8fXmxBJypEhOVfFMt1ydDJTneGngSSQXFvWsSD8o4vDkKWQk0sr6qi/ImjwB97vre10DUUpb9dkBqnaPR3OXx54G/YEqtX7+6nPXny+sFWPs27KawmlRefQ+/8N9rEKkAUhI4yzzg+BQ5l6K6xN/r686qqGIs710+dAUkljG6/PuC6fZPfP2zgae1WKrRCtZqBK72pBygsoLWVUEoq5oC2nl2pRc6hoDAiboBSoXEB2q3okBvXm4klWwJbV1ju9ngdDqiH6iyRwGyQV1VaNqGhPySIMssTJeBmQFS6UXWViOEiJx9AYsyt5FRFTrzYQtY1gUI3Iq2pvnFxO1u8yL+WTE7qeIKjLiIhBAQqgpzVXOVhmjBWqnS+08BMgVlAnw0FdH/NYMOIQeoysFst/zgFxr+PHkKephtMc3Lgeqsha0cLIhuvNlsipaB2KML8l0YWp4CYOtWwB0/klcvX+Llq1fohx4xJlw/uWLRXQZ2wCKuWBJL75cWBGM02xHTPJGvaZrgc2DtI3JzssZyS2UubQdS7ZUsTmlqCRB3EDAzzDhqu0nceig93SU4ZwYTJdDE7ro+7IhCPIuuADsjxUSgSlZ4+c0r9P2Aly9fom07PHv+Aq6ycLUt9tridpIYSHu4v0ddVejaDtvtFm3bYrtpkVPG4zTCh4hhmmk9iH0nKDkwxlBQDQVIAKcUtGzOvNtbBowSI/Paah4zslMGzytrDMY4IqeMM4u/exbnNHoJDKjtNRMQlBJrTSlEZGhr4Joa8zCW1o6cE8I8UpiVAdN1qJzDw+0tPvv0U9zd32GYRjy/ucH19TWQKWmfU0Q/DhjHqYAy3WZDbCtuvzndP0C0F7u2Re02RYtFakXk9EeW8p5b6sDsihCItXN1dYV5mvCQqfrvtMbVbovdZoumJhZiZS2sc2h3OxJuHwdoESqVSlQi4IJAddqniRWlUAsQztWwq6urAh7mnHFzcwPDwOc0Dkgx4a2nT3D7cIt//z/9e7y6v4VylvoaQC1xWSnMiRhy0zxTBdBQMKSUKeC3BPjgNmc/R8hhROytBbwjtlOCNY7cBDMdScoQCIcEGG2hVcYUmLJeV8SsonIusuLEJWdow+5rhoAdnQCAQTNudRBh5pSpmGGMhQaBEmvRbWmbzciko5eXtj9i1bD7EaSCFqByRlRkjxx9ABLgtEFT1WibBsOZ2jzqSsCQBRygTRgEnnHLiVIKdV3D+4Rx8sVmvmYmJTQlE9/cvyI23Tjz77SkI5EyciKNm9O5h7UG7aa9qGLlDNzd3+N8PuNv//pvkFLEr330a9hsWxyuN0U0talbNHWDt956qzAalNLo2qvCyEuZdMAejo+YvIe15HCqFRU4hClIwuyxAHraaGLCWIuZW7EGP2HyxE7RzCTIXGBomgaoSdy6rho0dYusKEl1PHYxeKToMY19WTeFnczz2hoNVA6paxCiRe0tuq5Dt9mgnivEEKDtAr5Bkaac1Rq2stDaQSnSB8wMwAMEgltr0babci6M44QQQylSzayNY7hY5pwUrxioYAFzEt13oAQqUtuxigyi0NqhFh4GuhMVvdqqgmS+mcfaMStVgImUEpxzaJqG2nZSwm5nOKgFn5WkPedshb7vcTpNeHh4QEoJT58+IWY3n+OOz8mcqHWcGOWeAAJlYa3Dhx9+WAJpCS7p9wO6tiX2YsrY7w549uxFmS+9sMDikiTGSLpTDTvEjfOE+dbjcNjB1jU0J1XzPJcqvNyXsxU7PdbIGejPIyIAx61VwUe8vr3H+dwXncvDYY+qdrCuKqlCXdcEoCrew4xBVhmbuEVM1AI5p4ixP7PAv8OvffRRASrmEPDA4uIiX/Dq1SuIXME0UZuo0eSedzgcCvNeJCZ6Bi/G84AYA+ZppjZ9QwntfkvnSOBWx5wTTlOP9z/6EP/7/+P/AR9959fw0Xc+Qj8O8D7gg48+AqDwg9/4TY7tZgbaMlxXwziLcRip7ZtZfprd9DabTUkEqNU7sttpgs1AVRF7sK4c7YMcn/X9GbOfOW6fcX9/D+ccNpuW2EXaYRyo60Cxc2rF2lwAuZyFKcGoCk3tcJ9PVDiSQqkwh7m9FWBdSY7BJQ41xrBIPpAxw1WKmJRBI2WDqmaX0RBIi/HsYQwXSnDZyuZ9QIoZIfCcDbQGyeWPxMBHLpxWVYXkJZ4OmMOE//u/+7cYpx6/+3u/je//4APM0yO++vJr/OMPf4zZBzKgSOT++MEPfoDdbotxIL3GH/3ok8Kql1j7+EhxxMcf/xo+/vhjNBuHyXvE1GO7u8HV9RMMY0fjf3tGToDR1ELp/QgfBoQ44OrqBT58/3fwX/9X/1988sk9QryH0hZds0fbbnF9/RE22yN8eMTd3T2++GLEpz/7AlQ3mwksS98szAgVYJ3Cj3/6V9geLNzmCtpW2G6eQquAynnEGXi4HXA6DiTmPgQGshWq2uFwtadkOibMzELMmQA3ZyqWNcCCnzCDZZ48gp/xe7/3e4XpFLzH8fFUzg1rHblccsLfNi0Ba/2I8/mM29vbAtS89fY7ePrsOZAz6W/pjONwxPEnJzjnUNd1IU3M80QOePOAw+GAd955u8R5hm1ZqH2fcjYpaEjulRMXqnWm5EER0EDA6WourgDsnFHaPwEUwHeaJ77fBXils2ZpN1N2sexNvC9rXotGG0j5jhacAhQXAJUq7fZvggRSoMO3/Uy+x/dVCoRydqhF7y8rDcAuoDd/ZWSSRhHd3hXjCVL0y4nOcUUav4ldXi8k1fnaZNwEa6AYUT5nAVz4w9f/efF+b7aJKbV67Rvg0/Ja0RjM5XWSLxslbCt+jxV4Lpe0jC4DlG/gNQLwCFlFxv1Xg3WWz774hZzLX5eA0uo38/LZl+94OSbSubZ+33/O168MPMkHyoNYGCt8YasbpdcRwiZOEiKuK+hm5RySMciuojaSqoYxkemMVF0WKnxR3M9UQa9Y26Di1rbCRGLkV6obquC1KAyWcpFqGc5165bwAxKLjBOKq7h6GZcKxgpVlge1dhuS9714/mrZZKSaRsCHYjZWWi6PN4HMDKa1BTqgio6KdXYJHiHXEmlBrA562fgsO1ApZm0Iu4ySq8vnXbSWQoQwiwRfloRHEsT0hnX2eg7QwaLK9xcNASBDo86i2aFWn02VcNKsoEqYJB1lHoEYLEbzdWYRvzSFzkoQvDyXb0ezpdoA3jiyYr0xY7DeFYTFAuRSybm/f1gshFcJlSDKhaWkiBUn7WF2xfxSmgXuNaCjpS3NLxpXctUmRe604Dm4qloL90SvpvYqpwUdfsuGcrGhQrGeWWAWYiBxTmOLFpgPDPIxa0tAoYrdrt6cN+K2lgESag5079M0ox8HzN6TqGXboGnqcmiQphlfg6E5Ks988hMD0QnKUIJNroC24P1lFWSIiQZVq5DZHYKTOF5fKpNgcAoBOQTst1tsug1qBp6coXFw3AaQHetnKKCwFPQ6sOCefGZYaL4i6YV3lWi7xLI+rSHx9xQCkgpo6grOWgzDQIKxHExL6UjAeBFdBTI7jOkiRlmerMqrtbjcv6wTYr9gtU+taz7gCiZWew8Eu7qoYuXVH8iSkbOAP/PiBeu1yN8UqjSwUMBlxym//61feQnINEQSgD4u58J8VYrA1Ms1KtVEppVrdmhMb5x1cg0AFuaH3I/oXGUM44jgCWATNqNU8RKf9oF1r+Se6VrozmdPjkngM4cKCmR8ECwn4iEimMCBMRZXPEXVRtJWIjE35xwFIXp5rkWPg79BTB0C/gTUyWB9QbYOjxdBojBuF4c0owy3whFbNEEEUzOgeF9NEZnHWbRwZK/SvB6ruoKNJHBdcwtczhlRGwY5SRw/AyBqC50xMh+N1gvbs8x1DXEapZYOagF0lQCz/Jy1uCupwpQUdot1DuIISM9E2taZWZczUClu7+WxyokZXfK4FybvRatrJgaGiDADC7i6VE6XuCIl0qcbBtKIiymg23RoEolJG2vRtgJ4JhZa1kgpAFnYQhoNFxW00kULS7HBinMVJVNtZn0rTeyVeYYwZWjdpdIW1TQtrHNcxJG9V+Iv2kuSaGmKhopSq/YrWkMhJSBEeB/o0ShxySJNH2PZiVOb1ZiKjqWCVVSs4q7Ei30myfd4367qmtvmASgNZ2cg56L/k2Lk+AildVLirQKKY9lv/Dwjhrj8Pp/fSRE4bK0t4sSuqijWTRl12+K9Dz7A4foK2hgCymKAq4lZZxm8zF3GNE4Yz2fed5bY1c8zoKj1XjPbrpz3F+zXZR8QprbEpyW5VNQeqJTCPI8sEE9nntYGKVFx02oCnFKmVIzm78L2hyKWX0pLhb+wUHm+SwFnWa/LHl1yjsx6hArUfsaFEhQmhxRPeG5w8mc5hkthuf9ynjCbTopCktMYY6jwUmlqM9caDw/3eHi8Qz98BAB48dYzIGfc3z1gHCcM44wUKT959uwZ9vs9jg+3SCkuJ6ok7Jn2UGM1bp7c4PrmCqJHN08TYgrQ3M6YuYBKGoJUGO/PJ1SmQt8dkTNgbYfjY8arlzNCBFyl0LxoAbRQqoGrMrqNxvE4IeWA8zCDdFy5OOfZkEkZaONRhYz7h3s8PNzh7asncMrg7BzmccLD/S2aJqJtAkKm4oW4fC5nnS7zTMaaTEYSwFqaZNDErDwu5k7jiHme8JwdS+X5p0ygngyiVmDXTc3OnRlVXXFhZGFo72sqKo3TCGUUdvsdtSZz3kht3B6Ikd9PYZwmVOOAfhhYh9WR4ZPS0OyaJgybkk7Kgi67PC6AHznjMo8HTeclDhczLtlEljBJrf57yeeIAbQOhphRLvAAg3I5rQCmFXIgLJ31VcoZtQZrv+3r4id5mdOFb6O+7W++JonJ8+UZuDik8cvyMnZ59Zmy55Zr0ZfXSZrE/D+lFr2qZejKPeQ3v7kayTfucrmQN35BcU61zr1Xw/Jt73LxOrkYBTCjTF286uJ1vwTceZPvJe+JLPNkWTe/+OG/+I1vly2/zBeh3vh3+c1vZ25929evDDx5T+i/CALXdX3R9gQsYIH3HsaQDaU2hpxk+LDpROPg+oaCP7d2tRCq+QnzPOP4eCqHOOneUGufcxV2ux3ajoIr76ldj4JXC83OCVVVUVuFJj5IEcnm5E+CO9IpEI0TFtt2jnU+lsFMiSpV4hBW2YoohVyFM5bABHFaSiy4mXNG9J4SWW75MlYTjVwEvHMudOOcqVJ6dXVFFftALLBxHMi1TGk0dc3qjks7kbYGlTXkMMaipQCwNTtoq+EqW6pKcjSIhbLnCmZgmrsxFt2mRVU79MOZBXDJTUaBKhHDOKLtOuyvDnBjTToY1iFDY/YRxtKBRrT5mnq7Q0SYCXTw0Reat2ExZoA2q7Z2ULVD1za0J8v0XgFXmatl0iKSVj+XoF4WbPLEmLDyjPSSFIrLCok/L9ocAAVHm+22BAZCkX24f8DpdMJf//VfwzqHP/7jPyZQQVGbpB88kAHnQPeeEs7+DJVJI6tmbQZtDEIM8Lzzm6aCSguN3YD7tHPCEDxy9BANsxoWWmnUihJQpVdzFcwcyUtyp7SG4xa0DJSgM/EmN4wDMriyw4KuEnx7ZjPpTHPo+bNncNaidQ6e16C0kB12G+SccexPiD4g9GTDrTJw6nucpxFTnBBVwtNnT3B1dcC5H0hU2E/wcQmElDao6gZQGT4TQ7Lh/afl4GQdoAbRKdIcJBhLjCssFNS2ZsHxFNE5hyfbXTEK4AnI7bXAyALE8zxx29EegRM6xhwu90GlUHpTAXJEynTiyjoXMEzagVPW5BxoNZStoBUQg8f9wz2GoWd9NwerDVHNucqOnKBYP8I5C6stKiPWzeVT4D1Vp0NIRTdBGxEGZ/t4o0ikO+fSypnTIsq/bnsopgA5QYmLCbcrWEPOitK6Pk0TtSRUljtiIkymY0eYBcZwNdM5HpslKZfA1XLbjLRvCUsrpYCQaD9ubQULDcQEBU1CwTljGkakogVFYbErGnacBLEoOLkdzvDew1UWlgEQ2SulfUYbA8faZtoY3j8j+vOAnMEGBQopc7uOVTCmRs4J9w+3yCoVNk3bNujPPYa+xzxNCMHjd377t0tilnPCNM0APJAN5ok0KzZdB2eJJZNzxul8pjvUigRbGWBRmhgJUIrB3xFff/110SPcdlu4qsFms8F+2qNpG2JSzBP6ccSpp1YZEommwH0eehitcX11VdoWgo+Y/UAAj1FwrmZwUnalZc+V6m6O9DwNmy201w2EDSeaX4b1B62lJDcySyuHGSkRmyFHcnAq5iUsCitGEcgoII/SCraiVl4FoGFdIwEhlQLiPNP4aQKFZQ5Mk+fz2OPxdMLxeILloghpHi3GDhlA5WZur6U4QzP4OI7ErBlHYlmQ0L4u5iMy34RFhAIuBIQ44Pb2FsfjEV9++QVpit3dYb/f47vf+wGqpsWHH36HWiZDxPF4wjxPCDMxCf25h+FkWcxahvMZ8zzDMQtxt91D76jt3IeAu/tHfP755/jm66/xG7/5L/D06VO4ihwPz8M3cHWD9z74Ds6nMx6PR1wdDmi7lhjsU8A8T7DG4VB1CCFhHD2M1XC25tZCh2GaEULEOM0wnCBuNlvstjvcVXe8T9D+td9tYYym+ZgyYkjE7NKWGVUB4zyRo9dILnTGWdRVTSxFjoN8CPAU3GEYJ9y+XlzKRPB/1+zoGSvNLs2hPOcC4LNBzjzRdcu4ZtaBITetitriNDH99oc9tUUOA5yrsdtfwaeML19+g/NAjKdTP0IrjlG8x/l8hjOWmF0pwAbH8Y/By29eIeeM6+trGKUR5sXYQcTCnbGAIVb3MJBujgJdn7R4zhPt+S9evAAAjOMNpnnCue9pz2tqTJ4Es3eHPQMzj1AqF21FpQzHwxpX11clvhawy1piNMo4nc89uSVyQU+0D48Pj2hah25TA6D94P72FtM8F9BKcoicM9KK7auVRpwDHUQhscZnW4CCiWUc/DhBG4Vt05IuZ+VgjCN2SwVokwqw8X/6r/7P2HQd/vN/8z/D7/3LCv/F//J/hS++/BKf/fznGMYJOWX83u//Ptqmxd/8p79HDATqxzki+hEEJii4WmOz7/Cbv/MDfPDBh3j1+ojH0yO+/uob5KxQmQrEUtHYtB0A6g44nnr88B/+FvvdAbevXuH4+IChDzgNE87DhKbd4HB1hT/50z/BNM346qtX2B+u8OT526jaGo+Pd3g4vkIMAQYNYkrEsLEGpnIYz2fEyeNnP/kam+7n+N0/+iNUdY2+P+FHn/wM//b/8t/h6fNneP78BX79N38Dz549L0zqpmmRkoJWtrQxmtYhN8SmjzER8z5n9KcTsX7rCuMwYBx6fPnllzifzzBWo+1aOrunCbe3t8hssNC2DeqmwpObZ3Cuwt3DfWHxW+fw1ttvE1hoDdq2gdEGd/d3mOcZT996BqVIm4nWUyhzToBiEpZP+ObrV6jrmrTvqhqoamK2a2AKEUqK01rDGQulKI/hJnIUvUwmDuQk4ITEIExiApgJTXi9MsSOJFKDRi6FlBW4wGeIfIdAVr1oQ3GHUIqRiu4M1FPMlhFBDM01cJJSpJxwBQAv4AL9Lc7QwAIeldy9xMKKQbWFnUXnODlI5pSLw26KVJQS3TiKuwVElvdcin2y1y54wQqclsIYKIbTiQoUF18CwkNAGRTpn1/2JUXBNZAqILXim5YxLNey+gxkXGo3CRamLqsiK6I9gBVAh+X9fgFgKv9eviufW9rzluro5QXI9ZX/ltzxFwGlnN989eo93gCkfjlkefn1KwNPNJnIopvoomIbnUrysghEy4SgCSTCa1Jpok3UYEkaWdk+A4rtT6EUKlcj6QRrwpK0sa0qrS2Num5hWDwbmYgrWhN9W2tLMzozyixWiEUjgnWdFCA8thiZJ6EpcdH83pH7wlNMQBEXTpRYqEX8Tao6kIMwCluINUWkGpgyH/jUrpSL+NzSL6q0JvV7vveYCe0XHShohajAG51Ut5ZHL2LYckCvq6nghSPPwQcPpQDLoJ0wcnJG0WUi6+6EnEkgNqYEW1fY7vZwdQ1xZ1JccSKLaAL9Ysr8fNUi/KjBvfmLQ41shoU2rhSwYm/J/RQkffXvsjnIBiMwPn9usSZVa+bZ8sdZA8AgeFWo+ZGra/K+2miIQ6C1FtfXVzQ+mjb1EGauHICTnwhrctkcFVQJ8HLORVS80EQZFDXGLKwW5CJSSFU8DaM0rFYwIBYHzYHFmTFx4g9FlRmydUUR5M3IXOUWXSpanyknRM8VLAj7IxWtIqUUsqLP1RkrHbJYWsZknUuwbjNVuM7DgPM44DyNyAp8MGTMfsbLl6+oku2I2VCxtbPluQLFrV0AKtbRQCEBynGfC7CTUywVMQ3SfEq8R1iunEIRO8lKtU6J8PZSICLGQioJMoCyBhcWCEpCDV6vuWz4uQQoAMr7pyKMuKxZY8g4IISAcRpxd3eLc3+GqxxrSPB8X+3LVmtkDSQjulMy11D2ZR8DV3W51pMzco68X7JgOO9ZdFIyT6H8G2VPovV22cZA60yehIiD67Luyp7ICHIZq/LFY1YqzzRPjYCHq/ErFbqUCyBdzpGUkRQx27TKpM0mAVeiNkBkZqQZVfZAcThNzM/QRsMkzcwKAwVhYtF1VxXR/TUnOIrB68hAhQLta3LuLPsvMT+KVtNKV0m+13UdtNbY7rYFhIgxIE3xYrypPYCEpa2zBTCjvWy5HqM1dAFiaJ/VSpXCkVJqYa0ye8AHckj1MfL+tGixIEcgLzqAImg9zxO3dycoXcMpYhZl5DJfoNgBVpISdiilEhrNgRCpEp8RpEgK8HpVHKEqpbjlEuV95fwQ4CmEBKUWoNRoDWR6NsUC+o1or1QuV8ULYVH7QNcze2ljX+3ZPIu/DYhW3C6RQTbaogWSV8Bp4j1EAGW5L2ldIoFq8H1FEh3n/VXc7YR14r2HNgYVFKj1ULGJhyptiAKwjuwuJq6wip9NYc2Bzg1hJxhj2MiCW2R522jqBlAE5mptYV2FzaYj5695omdqHD97A+eINWMcJWvOVbSWEg1g27UEhLBuTM4ZbdviigE5YzUxFxVYS2WJt3ICslGl/VcJw1FrBnIX1hkVKpYilY+B4hZLWl8CijQ16XppUBwbYyitYeV9fCiaVQKOL89Qfo/WQ+TigVIKykisZZCyMH49+nGk89lHOpd4jQ7DgNw0qGpX7s0xqHw4HJBzZj1Qu4iIl4SAAC+VKfExhp1+GQReinHC8Ke5Sn8rju2YvcLH1jSTw9/sqV01g0B/pTSxyayD0mQQJAyRddGP5vQydgqLFhf4LMwJSGFJpHKi/UKB9lhimFIRp6rIyZpimYx5pPZIV9Ul0JOTzDoH4yygmb1mSBTZVAKeZTRtjcPVAe++8y6QgU9++CPcvn7A3/3tD9E2LZqmxTD05Mx72MNVFepaQ+mIq+sNhmGHJ08OpdUvMivjrXde4Nnzp7i+ukHXbpGzgtEO280eVlfwM4HkGapIW0QP9CdyDeyaDlolTFOP4/GeBPAzkLKGD8DdwyP87HEeTrS+FTCOA4ZxgJ+5yKrEzIP3PmZhK6Vwf3+Hr7/+Cl9//RJN2+Lx8RFGG3z00Ud48vQJnjx7iu22IyH1yhWQn5iQmoXlWcCdb4DUH0g/VICReZrR92ecj0coRWtfzkRpOZaulhQztNWwziKDwAyJyWZm5aaU4eoKFg4ussao1rDOoFUtnd/OFY1VaUGFolj3eDyVM0QcFUluYwa0gklU4KeWNs3SMmZ9jNBnqiX/KEccHxKUT5L2KcU38jqOzzjWkLhJGJUox5WAQm901Eg8mXB5PRK/rXImitHzJUsIv/i6N0GL9XezBGBYYilJucq+rBcAis5zYTuhtPzJXqK0aLFlLgotLXZvsp0gmMEKIFszGoXxuGaerYEeYHk/xTH75c8FdJL/lvtfXrNKLy+uA5CnqLAeyjdHNK/+n582hDWkLod9AZ3y6rkuP15iGEjQlFfXvfpQdTkvLq5n9cYFhsqXfy83tOQS5XfU5fj8U1+/OvCUSMRz04mtsEIIMzvEiYCiuABx0JICOTRE6tNPiUSZjdYsZojiBCPJUOJDPKWM/eYAKIWYKOgdhgEhJMx+JMBCa7QNsSuGYSh9+dYZVE1Dh/3FIsycogYI74CYNiJESAKtKQEOGTZbKGeZCeQLO6hh6rmfiQHT1HXZDGQCS8IePIlrusZeVDTJdpoCK6EBi34GXSnNEAIzPAIDIM5UUM5CNxV9FgeuIUZIw5W4u0mVlkTLKelJXPV1nJRJtXzyE+sjOYi4YQYx3RxXnO8f7siCOwTw8ka72WJ/dc2uWBw4A8hMZzVsBz3PkfRypFULDtYtQnoE7PlSHURGEW+/mPgAxJWuzM2M1YRfWgZpjXCQwUwn2SwJ+GEL10zVpLZu4IzF5Gd4T1XeHCPm4EtiaDkordsW2hj81m/9FoGCKWHyM8Z5Rl3VaKoG3tO8dyLc6QO0Avb7PTOtiB4fmU2Vc0ZVNbDOott2iCpiTr4khBbEdts4ag8Q8WtxqPMhYQpUqYdipkNTI+WEvidqvjj2qQzSngrhYiNLKWKYJgznHo8AJ5h6aVONpNejm4wUPfpIVeUQyfWnJNlWo24bGChUO43Xt3f45vYW3zzc4eXjHZQla9/Zz3h4eMDrb15hf9jjrXffwX6/x3a7peq7UgiJEuHtdgOjFZxYXq/sYzMooVy3BBljUSkNqyhRkVdXWnNLIjn+IQlln/rPScWN2kREuBWaxilG0R1S8EFASbrnumnKXJXqruFDsLIEovTBl/misCRFShM4pgGcjkfc39/jpz/+ER7jgO66g1EZOQUWOGdwA6AgTCukyjKjMECkiTwL+IYUoBSzcBQBUjEQeJwTWRhn2SjBWhwpQeVEQoN5ceAitHhFx1ZgwIZ2hMilKjJCoLaXwlJEBrQugM1i1kADHkMkUILPCLC1N4DiUhYCg07cwmK0VPpUEf/UoL28rip4FnMmps9EbpDKIDoODRRpY2kQaJcSaZ84RyK5EpTkDEqaK2HD0lhI8jRPE6Z5hq3IDl6LQ1PKS6KeyXyjaRrUdY3dbrFcryoHBeDZs2cFwAeAMM8FYKJiD7EJlFLoh4HPLdJ0Op5PEIdY2S9tVjBJIc+UTFpoOFfh6dOni+ZiJFe64lB6OsG5Cr33GENAYGZO3/doHDGYm6aCQsY0nuGZtQFN4sZa7aHR4MhulFKMMNwaXusazhLLRahx00RnXIAv106tf8Q+MNqAVgzpqMiyJRaMJeYgCyMnLhrIkUEaTzWstlDKcht9LsUVJAaCea5Tss2ABDP5Bnbfon2azpWsAMusOK0NixybhVVbzqeMMDPjIwZAZdSNo/0qi55QxPl0Rn8+Q9qZnK3ocwTYVgrT7DEyY2S33xdW6sPDA4y1pDEEdgvkXaJtN2iaDFF1TSnhfD7jyy+/hHMEgLZNi7ZtSRtJkd5V8AHH4xFKG5iqxm57gNYGTdNCKYNpJNDh6uoJigbLEzojM4NZj+eezgY+d8JMcU/TNqgq1tyaJ4QYUVvSz9odDlQQyNQKHLzHk+trPHv6BCGINhlr0mkNpISQM3Ig90xTWyhjYKj3CXVetLpyJtZ1NAvgEnPCyG5vDSfPTd0UnRnj7LLfZXABjs4KWjMThn6A9zNy4H2U9yVdGFhUAKD9Mq8AeIO6apFywug9pnnC5GfSZpsmVDDcuk37G2nRKMB0sKwJ1nUdFcHYOVlEspMAYNJmqxbNRmRyZa3rBtM4sksgzVXRMxt60o4apwHGUqyYcoQPM4SpcHv3etV6vGh3AQSEdV1XYlk579ZGJCLcT+zrVLQaK2alEGudNKPkS8HBaJbrENFpfo/tjlh0GcTIff1wD6WA58/fQraGI38Ck7tth6quMUwDgRiGzEvcpkb2AXEacbja4smzG3Rdh6+/+hr/1//m/4af/fRn+Ou/+Htsug5vvXiKDz58D9/97nfwve99hOcvnuLzLz7DOB3xwXeusdllfP3yAwz9jL738IHiuT/7N3+K73znI7zz9ofouh2GyWPTWnTvbxFCxNRTLkOO2jO1owVi5Iz9jHxI6DqL8/kOn33+YwzDgJSAECyOR4+/+qu/h1IRCROaukPTdPjyqy9wf/8AxUVvSzKliMhAiID20CnBGo3PPvsJZn/Gf/yP38Nmu8P/j7I/67UlS9IDsc/W4NMezrlTzJGVU2V1cehiUWwQEvQigGhIaAgS0P3U+n+tdz1KgAYIkB4EkU2CpMiacoqMyIg7nHPPHnxYkx7MbLnvG1nVkTsRGTfO3Wdv9+Vr2fDZZ5+dTifcH4/4P/z3/z32xz32dwf8/ttvcL6c0TQDrPFofAfnGpBhPbnr9cwFLmQ0rZeCM9s/A0IKEfP1indv3+Ld27f45LOPcbw74u7+rgJP1lrc3d1VX7U/7LHbDRyp5CgDDiKezuyHlmXBsNth2A0IcRG9Pi4E9ZaH51hj4Du/MuXAWqFEBuN1xDwveHp6qn5oXiZclyuWGGGdRyNTrluZXm6saNOK1mIhngQJcMECRfg1EkMzEFhEH42Y6bRJ5LMMb7DKxik8vVqLcEzo4M9iopCpRccalGEtMgsKW6UnFMEoBbWorj9WMgawAkk3bxAbCMmtuIi0YezU3xVQJ6Pm94BOB5T7ZKlV1qslEpkDLh4gsQi2kkq2bcMKyMXamaK2VLTjNn9WJmouG5CEhJlFWxRGF+cW5Nquhf7ylumlWB9uAP6bj6tC6Qnbv/wAoCkFK/gkv8ePTYgxm/VVV755LhxGFfncsoJ5WzCJtr9H0LdLOLO5eNmr+Qa229zVFpjc3sIH4OA/8PrBwJOOBlzF0oygvk4CdnnA4ARidawGxXCSWFAQkwR5kat52u6QszI/Ug0Ck5HpG4ZYOM0CJTJKTZlkAzGAtbYlbOh9cjh1kgxTBQvT9FFQq6eSlBljEBODYePlysLf3nNSJhOJrJzGkov0/hPmsIAiMblKN2X9bqmetXwNhcTxkfS2li3iXCo6rY7aOwfqetbbyUnEelGr2wDqJLUiulRZ2AyGbN15a5WPnwNJIuiZrgHvPXJiKj9RBhFP3SACppEDgOl6lelmMkELBrFkFAVmDAGit2NIpp3J5J2SImLJPCXLcuKs2iRW1sgQB8t8jlc0Wm6AXwRof7QGO3oQctFEkqqmRGWfgaroH/9ykfPJzCEnzAZmRnDFPIi+Tpd4X0cBFK3sJWp4PDVXRAI4hbWIIeIazjKWtYGOYzeWJ5WoMQ2Rk+ElrmLrzjEocL1exXiQrA1fozUsdKgmmNvpWPA7JAYEGcAUVoqcXSeJSNXpKpAWLlfXN+cMX7wkhLxulUkmxk576EtSuqzoeBAqiFUA1iUKhMZyW1wMAefLBdfLhPG84Pn9HsfdgD/90Y/grMO3371GPwxw3sFJRbsRAMJKO1e7YWuVkqudUEdXMmqVrABwAhboK0hiWmR6lXNKmRJxQxAKbH0W9TeJ5HN01dlKN9YhG1vtTApRjaWImxowLJORirSxpQJTuNqoyWmhggiDVtDhx6f3ePv+EY/zGbNJ2HcHxLhgjguLpkOciCUEcex54balIoE6rwlPxDICoDCjipl5IBGcT8yczFopEZ1+UhHpLatDkinVv/PCekUWai9BQBFwYsinsia8hpEiMUmlVrj4dwuKgD8lru7NboKnIoCp/Kck+k5YfrImBtxkJ2xXFsDPVedIgzdb2MXrdBplnLI2jNoXhjZVRFQVAG8qZGUTTIrQOa/1hn0G9mkkXt6IbUoxQbW7CAzMtG3LgtCiobPI+S85c5LZ98yEkCEc28qaMw4pJyxhhhERW12XOhE1A9Zb7MzA7YSip+G9w9D3GLuO2SQooJjRGIvDsBOBzILWcTtt2zSAANohZISQOMo0EVdz5RbbGHgfttw657xn/ZpC7MczgzglF1yvIwCgGTx0/pcOBjH8gNjuEyccKUbkGGELxwBRQEc+uzxxV0eoO8esEm1FsGC2pJUTnopMexWGERM8ZDNV+EgT6yR+lPent04GX1gYZCBlFjrOGWFhLT/fNHxGigTVIKQlwRjCrt/j7dt3+OUvf1WD2d1uD+cdM9HSOhVNCx+D5TYmY3nSZMrSBm8IXdewzpaM/i651CEXqhZoLD/z58+e1QmYjdN7YJDDESE3Ht4yUzSiwLoDdvu+Ah0KCnvf1Hgl5YI4c3thSplbpRtfYzOefLlqlwFsryzZ2u7srUVKGdf5irdv3+L16+/w7Nk9i80PQ7VjCi6ALKwT9rSVgDoxIBGWBefTmVtK93sWIG9bYXLx8IFSCk9nJQb/NUSY5qm2W25Zmjp4JZcizExC5xxcKZjCxIVKMKtkWkIVL3fewVqDJQqQbExl8BcA7CIyXCF4sshk10mi1sE4h95Z9P2Avht4gI1xqMyfKHHayO2bJLGAhcG8BGFkyhq7BjlltE1X4xadcFfEnumwm7btmOHt1dZmwDr4lAES0Fc1P6UNPaWEtuvR9bvK4otG2mXMyvicpgkpJjS+QfHC0i/M3KPMGmlWipEqzO2cQyoZMTIwY62rjMy+79HIlE4CgwYMpvXMwgVJ14Z0bpBB33SScAs7M1mkGDBNM87nETExIPn82TP8k3/8Z9h1DX75N78GQLiOM373u2/wdD7hq69/j8N+j3G6CNj1DCEsGIYW3ls0neecw1h8+eMf4Ysf/wmKM1hKQEJimUFDMGR5sEvHaxHjIvH3iJ0z+Omf/hzP7o/YHe+wv7vH/u4Zx2wASlkQY8Hjwzv2qRTh3ATvzsyWqzFTQYgMHGdjAJMByiDyKOQA5wHv4XyB9wW9yJbEUmCcQ9t02O2PIOPgPe+hlAqWOOP8+gztMFCbZmBhSXwSFTQNF6OXOWEQ1iYP4gDevXtfz0xYFrx587rG+gRCXCKCxFp9v4MxFof9ngH8hcG98/sneMNFRy0EKPtmCQkpM7sW4hNyvtYYEobQdi20w6EJjXQ/iLwCtE2LrZAO41H7QGUFJ4ow9ZyxPGEJtBnmYQW04M9krU05t0CVaWCwiM84M7CpuqUiBTiNRWoIp6AKJ4Tc3qtBlcQ7fDVboKBCHpxD64ApzQPsLaNFGUE5a5eTfALp5Wgeq+8lUJGJ0wWibSyMc5AMziKNaOS5ZOCDK+RYa813awcMcYymnQuMS3wfOiEBXTYoXL3uCghtMTxSEtkKOG3XTcEnbcNbf653ooDXByjQB5+1vc4t5JPLeo1F3kjb/9Zf1lyNo3wBlWi9N/0efTZyvfVW9fKKJHskzL3tdSmuJW8223v68Cb+gdcfBTwxcJRQirRDkakBNmFF6MMWULAMUGiwlkoGZULGylrRdoKUQqX8GmOQKVUtDAKBPKGkwkwqrYS7dZy7GifV7ak36XSCBlMvWbdEkh15+F3XwvsGIbIu0Ls3XPXdD3s21lIJsE7o+jnDeo+CUkdm6xQDNZCGCO3dAU3j0XaeN3DOyJQZeBIgo1IWKwpaoEwd7zwaz1U4XducM49dJYK3rgp7x5xWZJcIhladp1qNkp0RSgIlQpOzrF+DUAKm61h/X9tULpcLs66WhZNEK6wkMiiBkdzdbscaC95V5pQ+37jwNBXudCF0fQMyLGiqATUbj03/Lm1Qc6wbXc2QTmi7EdBU8EamXpRUAK1kQ/atZXpskfY9A4N1ggSLxobAE8Bmqbiw9lNBpoRkWN+hlWeSPbc/hMBMC0cF8zJiWSa0TQPXrS2OWoW2xlXR3mmaMc1j1QkpicVGpzDBOoe240l2jXNwZCv4SQASMegTckGUKYbG2rVFiagaNa3uVDAKDGoCqFTrvDkzCq6qXkk1drrWKSNnQspcOSiGkOaAEhOWmLm3fAGGpsGdb7DMC55OJ5xPI67nGZ+/uMPL/YA//9lPQcR7wbYNfMsJkCOgsQRvCTFzC1oDToJmEmq9guCQ1oqyVnthOOmGMGUAYJTKegF/R+84YcoyacRIu0opDDqxcZcKhHG6LDXJslLpYvHlgrCwyK7RnnrDwGwGT9ejQjAyAZRc4UQdBZnsaq9zwbvHR7x+fIuH6Qmmc3jRt0gja6UoW4NansQzKwMoRhZvzqkmSUxOWrXn1NZmSUD4DHPlSSvg1YE5A0SuzCkFV8fR55Bq+2IphRMxKshG2gUNkIvYWMhZE6DJkpEYqvAuNAzNyTul4lU298Bg0WpXUZ2bIQNnPUIWfT5G8WBhKzurEJDk2mrlHww8AXz+cykIiafa1YEKAIJMAzWtTnLjZ2+goqcyXa9wG5/qCjGzVVuxBYQrXNkjaTlGYmav6pFoQublz61v5PrEnsHgsNvj7njE6XziKaJZiyjCZrKO9YemBb4TnSQ5u/o9SZiojWl4wmpsa9FlN/SYxp4ZpSgwMaM1Dnf7PQBOypxh4GnXD8LcjQACT3USn3rOBfPkKlBijGPNlKYTsACik7YOHHk6n2GswYv9c6g4rBOwnc9drna/CPBUhH1kxG5m2fskQDvROqlOGXNcZbY3frGISLkR0LFkoEjlWp4aShGtRgGCdP9Z59D7Bs6J/lVOmOcRyxJwOp3Rdz12uwOM4XYqPUxpyTDeYb8/4Pdff4u//s9/g91uh91+j67fw9qG2xZjREKqSbe2f+mkOtW02O2HWnjhNY2spRgj/G7HE7GK7HhjYNoO/sXLdf9pMiVJhye29Wa/xxwXXOYr9raHVa21TYDpZK/mzMzwaZowzzNijLh79lxa/TTYZTUJbh1bkxYjiYMhg9Y5jGnGZbzgq6+/wn/6T/8JP/ryS7x88QKffvoZ+q6vzy+LWL3z3PJKEo/mlDFerhjHEW/fvq0sHu8bdF2P6/mCFFhvkohw6Ljo0XZtFTK/ThPOl0u9zzp1VwA9lIKhH7AbBnTOI8NguYzcei4My7ePD3WCVtd1aJoGo0wFdMS2Z1rmtd3Wezjv0RiHYhLGMKOAY01nHfq2wTDsGXhyDZz1wmwghIVZ+dfrCNWe8bAoIMxXHlqQwevd91yUaNsOznm0fm29nQMznWLiWHzo+8rKzWxi4eV5km1qrJ1zRo6pMie7fo9h2HM7ac6IViQLCtB4j6HvWT9yCRVIdY5tVjqz9qGzVljDBm3DtqppOO5+eHxEygltB2EGxXo+dsMOzhosSZhs/VB9ddu2GIYds/9zQds2tVgNgHOMUDBNMx4fn3B6uuLPfvEzPH/+HP/8L/8pjocB3379RrowZrx7fMD1ry5AtkAxOBwGDEOLn/70M+z2HZ49H5BLxpASXDPANwN+/LOf4ss/+SlSIcw58PATKVgYZ2DgKjOMQfwoAPMOH718hcZ7dF2Dw7MXuHvxns9gKUBhjcDHhyskj+c13/xbodUQJv6BdQAyYBIXf40DfAtqGvi2oG0JJnJxYskJIIum6XDY36Fpehgpvl0uF4zTjG+++Qa73R73x3uxEwqmOTjrUAz7pCz28nA4oOt6XK5sNx8fH0BE+OTjVwhLxG9/87s6HKLkgnlacL0yoPjs2QsMw4BPPvmEi7kh4PXr13h4eMS+H9D5dh2uYLiVdQ4RFBNMMAL+GORxAgHo+46HDvQdnOUJp0nygqfTE5Zlrkm/Fd+/LDN0GqqeRQU2ysLTPF1rK4C9xCK+CsKMKtWmqg1mIIbBXEgxhZTdrdrDhYvO/F2l+sgiYNo6Vk2AHG0wqcCD7gmGMDRfIEHDithRSNzDOYBKwfD7qh4u6XPWyynrDene46yY9aWE4b/iFkUoQVwO1JdKZ/BFy8/SCoqDpLVdi4HEDD6zKRLd3qdcjtxWEbB5vcnNS4AjkFxHyfUa7CbnBAAqHEvXiml9LCtwZumDz6/XswGxNuCWQrZ5C5BVsGq95Ap8lc2nydLnAp56LutTCDI4BxvQc3v3peIROn3SKEBVCvK67Cu4Kb+ZMm6AyX/o9YOBp5wWafvi0ZkxcQtdylkKyXIXWwNeCgC3osGGsExcDRzHST651CpGFCFxZVU450HQSk4BkUXbdWiatoIVOg1FwZ+m5WC38dxmRrQRn5ae9VVfinVmFJgyxqBtPYwBPv74lTg7jxiDtJfJg5VWh2lapIonSb4xSJHHh3ZdB+tcHWGsgpROhGjnOcA5bsPISLxrHBuuxvNazMssiQyDIlkSnAKu6Bqt3huDIsmECrSDZISuAgqk6CTvVENUkyQAmMaZxw2HRab7WK74xYiHh3cIMUgAsuqWOGl5IACnywVmHNF2LZz3ODgHZwy8Z+Fw33joWPE6PlSMwyQCxIa4eq3rVPde4UkuOWekwslWiqtYnQIBTvaR6eSQWsOVVAKSVgOEnWGJq+SztJvFGBjEJINRguYiFVurGiNATRrnMNaqLZHBvt/V8xFTi5ACi1jXhL/UKk2d7Ng0AHiCmm9UUJzqc3aG6e2qiwJiAfVZ2hrHicUqrXNy9EjaQXMFG3QSUIpRWk76G1ApC5JSgScFHA1r0pgijEJrqn5TSgnjOCHEhGmJiOB2BZ8BU6iCqZQIc4w4zzNO44inywVzjChEaGU0PAzBty2++PILwLLAZeMcvLMoRIilVNbSIlP9IO0gJNPzVrDSYLfbs+0X8Lrq72Sm8VsyIqBLzMwUG1SIBAxm46n02CgiqrV1zwsjg4q02mVhWZVVT4SNHwB2NhZWdFQgbRsMhGh70BxmhJjR9ntQLvjl17/Bb3//NXzjQd4hxwQqZW0xKgXzEhBLqSwr1vqyMM7Lc82wUh2jzEUD1R9JOYmgPwN6mZg5kaEVLm5jyrnw1B8JInR6FS/2pvojlUGIqHWYM4zorPimgdRfKuXZSRsaaXJLqpGw7p0CZsYys5UkAFk1Acgq+yDpxcIbrmAjMpgQ5wk5RBboDwHT9YKcYgVtOYBitptx3L7JXXwrwAfillQigvPK5jQSYJGcd2Z3GUNovVsDLbrVMtSAzxJAzrItSxGIoTJ2kpzfFAKMIex3e1hncbw/AKXgdH7CL3/1d3jz9g12xwN80+Dx8S1/fubJXruh51Y/W0XQME8LP4ecpTDgRLOw4Gk8ici7Rdf23FqdWXttWbh9mJPVvlZKoyRtTdviYFgbhXU3MttcYzj5E5CELO/NUlatxpzXPeGNBRlC6xpmIypTsehabsYuO07CD76tQLo3Bqakm+ERHAiT+DMuOqGsFdKwLML+4xgiCispCZCfUsb5fK6FKiKg9a3YfWYsWTKIaUYILNIbY5DfYQFyItahBKQNQ59HSWi8R9sn7PZ3+PN/9E/qZLnd7oDdsONzUQx82wpA5KGTDqeJ4ydtLS5UwDorzKoAAbYhFMfT+NjWCHtRfKsFkELAMk0VlDUSF0WnTNhUAVZNULSdSjVoohQcl1kZeDJ5zhKmecS8zPXMlyzyBs36nFhDqkixMSPEiOv1iu++e43Xr9/gzZs3ePH8BY77I94/vsfSL3j58qWweUr1qTqhl6SafDwe0TQN5nmu8Z22S1pn0VFX424nsdcizCD1IdZazKJfpvXrnHgKnCWzFg2JQM6iP+zRJi4Q+qVFoFJ9QULGEgOMc/DWcstfZBF0EoDZhghjZszLLG06zLjsuh7eOXSNrwUjHksewdAMkAqD74e7Q9WwcY7BrB12aIe2xuZGYgb1/0TcUmiNBSVmtbZptYEhRkzjzOBP29QpYHoWkhSb3eAwz9yWS+BYQQX+UxprC2DMSVoP2a4miVHmZbllWRjCsgSEZUExxJN/G36W3a5nUEAkE5YQalFAvDgsOSTo0By2bylkPLx9xLt373C9XPDs2XP0fY+Xr17w2ZwnjNOC03XGHFgfqZCDawb8i//qf4n7Z5/g//5/+/8g5DNCyjC2xW7vEQLroS1hRjov+Nu//Q2DmW3L/jcn/OxP/wxf/vhTXM4BD2/fS+u5w27Ywet7C9tGK6BIoQxvHV6+eFn3H5yHNQ67fsD98Q4//clPkUPCd69fY1lYi08TzdoZICBG0UKHlXZx65ltRwUlEUJauFjeNPj1L38Hwu/x+9+8w2dffoH/6n/xL3G5XvH23VtcJ46Tm4ZzrVKApunw6aefVV+nNq1tVy1DIqogbgG3ezZtB+s8YkzY7Xaw1uD+/g6H40Ha5iLCsmDYD7JGYvddI4xkwrIseDpxi9xuvweIeDpyCByfSGFbJzQySYFjF0rKpl9fKTPwX4S03XkHr2x2A5YiMKwJVmU8RFcuhoiYEy4Lxw6JCpy0NXNe4qrmrBbHa7FzE0PqVFAi1kN8++6B5W1iRN93OB4ODFZag5w0poFAPKbGUgq2MOMRte3uVrJEc6S1k8BYU/GjbV6v+bP+fiqi0SxsJp1+q6xjay2KLyh2ZcHp923jOn4AZQU1JG7KuSAR62KRtPur769yCFCmlKAxKx52U2gCIOwqLpqmhJv8eKs+ujKPNBCpC6eLVtdibZJDzRcL3Wo/ffgqGtdunsMKg61rnCG5J91y1PQqUfis37TglRUIKlsQUj6zkghuf+XmGirgJTelg2K2ZI/1zT8MdAL+KI0n7qnnkbwAMlWj4r2rzJUtmqpUb25LE/HewmLE87xqOTSNF82PUh18kY1TJFguWWjNoqPQiuAjEQTQ4OszogvRNl299iqgHcKGFqj95g5No8ug46GBu+MqfJqTLjIEdBHhQ9GtsqrvIKKGYUnoWnbmMSQkSOJoLUxLiCGLtpXhf4iBJ77OAmfXSWs3FO+C2vpiaWUUMcuHQRcd/woAl2mUSnCuyaHuka0gOjuIWFs4LPigLtJXfb4y46lpG1iyNSmrfcVFxVf5EDWlrBR4afHI1sKkXI2Xsq9KLojgMc5cqQZ0Optea86FRV1zQsyr3lalswqQ1jbstHUMMPdfcytdSQxaMYOHKw06YWWaJozjiL4b4JznCUCCqGswbvR61KFKgMoJm8dxfwQAJOeQikeqjQ2r2HQVrJXk21nLIKr3rPFiDNLMlS3tRW+8W42cfNYigd71cgURg1PGGhhvWU8tRjESVFvPcoyinyUCfigixijeCOJo5feU6qyGXadGppRFoyghxIA5BMSSEEsCGWZlMSBIoGwQUsa0LBjnBdeJJ9YV4tZWFaW1zuHZ82fVGep6KxBgFQTKq3YV5D2ZcrUjRIS25XNfgYm8rrsCiNYwGKnTRCpLgETME0pvLQiJWyZijGh8qTYHRLUdYQmsQWVhK8AAeebGSiInU06ocRCVfSAx2BfmBfMcEFwLlILX797i7ft3LIwubVYrW82ACl9PzNJaB24FNGCwnkFTZvNUB5GLaMllqdzw+0Fg8VdZ+wIC68oUjVMr2KCVbedc3dOVmSRJQlj4fFovo47rztVKi1TwFBRgL1hdVpGfFb0eMbo6TVn3I8TJlsT6XFQKrE6yy9zelhBREjMRubK+MJhcUAX7CZsWu8JgV5SWb/1+tsMri3MTqlU7rQGIcxxYKd29ro0EDygirmpVf0A+Q7QSF5m0NF7OnCgNPZxx6IYO8zhivF7x7t1bfPvtN/ii87DO4HI9s46YTA9tm4bbCgyhZD7vMaTVVkrlVEHGeVqwzDOOd3cSyHNbd4ycQIcQAcPisSGEChqhQHRwuLCgLYU6gehwd6xt7iACjIgxZx46ogFqKQWtZYFkIwC3lxZKvWZsrKmyL7y0OeeYhK6/Zc+uvpH/EUYfSmXX1JYH51f7LPeWRFh9mmaZmssFlNa39X3OEpwljCM/t+v1WjWy+L6oTkviVr115zC4QYipoG17fP75F3j/9ITT6YSu7aodA1iEnZmEwv6SFjxl/LKd0fPWrPduHcsTyJqXTWylBaqcIuZ5rixzEvanpgQprQUzLVBsfRm/h8/IPE/8Oc7KwAuLpWpi5Xp2rDU350KvryYxKQtj7ITz+Yzrdaz+dhy5JZMMt1BqYJ+Fua1FLYAFyY0Ub5TZoGtvif2lxhG6R5OI7IPWwlyReCbnla2le4htFmp7rm8aBsyjBazBkIIUtrhgGDNrZhIR5jKjZBK9P6zAMJHo7xVh7DEg4Z1D450wp9U/5vqsMjJgCJ1vpdVz4WdhDZqugcuuxl2ZqIorwxrWN/Lcwom0gjfKYkuFhxcoQKfFKe+5jTMIoNuJzqHGINpSxIXnWWyjDuvhgqh1Dkkm7C7LApRSba0hIxprM9o+wCWPjg82XNPAliJtdwImaM4hzsKQQ6GEFDMMsW7aMl9xOV/x5vVbPD4+AjCIMeHlqxfQ4t0SIsY5IiRtNWeG85/8+OcIEWi6FtdxRIqJOzucRcGMSAFxmbGEJO3DBmRcTag/+eznsHbANAWcT1fWlPIeu34AgVmrGouQaBcy48Ci6zuUnDFPI5R14n3DWlOffILpOuLpdEHOV2kxKvV8FBkIwWyT9YxAfFQhbsUtmeNPK8n0m9cPWKaIv/2r3zCLPBfM84Lz5SLtm+xFtbCvxc1lFt2zGLj9Tdi9ap+19bRDj6ZpZRARdxeo3xx2A4h2ON7dYZomXC4X3sfesZYUCDmIQLqwYLRIpAxH1XErBBgJIozla60gLBFgNiCyro74flGARGMtihQyV5YQkwB08jRrnxkk8L5cVBM0RcAaOLFdpjaU80aloiyilZEmkLDsZY4Dz5cL5nnGNE24Ox4x9IMU7U0FJbTPodoUhUSKoBP6nVsEo6hF2YAzxtTPAj5oexOgRbCaeubMFmQRt61MKmctsinrgAvdo+sVrf+loBZxoFckZksolcii0aXGiDexpvocuQcjxRjt4NB2PBVX5yU2N6z4FTC6BcH0noFb4I6w0WTaZn/ye9ulobra63dt94PZrEHB2vD/Icaz+YT6+Sv4pFDcWiSGtLrr0n7/s7RIugWRVvDpZs/o72wAxB/6+sHAk7Vm1VmS3MrKCGr94iwtEofDoQYVSZyuUvaY2GPRtV0Fq5idsI5BnZeZRzNPAdYVnsAjiU0FThy3aThnYZ1BGzhBb5oG8zTj4eGhTllYGU/rBBOtfPHfuxpQxRTkQYsI+MT/bY1FSRkhJnQt0zAn2ZDO2pUN0Rt4y4HsMi/C4mGRSUM8CcY5h8POgQzTL7MYMQWM5sjaIk3bCK5TRDOqcFIhD5uNaq5Ubj0fyzxz4pQykBNKlCQq5Pq8+r5nWnMUpyRiv9qOEULA9XrBvMzY7XlM9DAMIKwJqAHVAEKDPhVI34pGeu95Go6zcLB1wpJWwrZotDIxmEa6snIYSCicaAv4kGQU6lodMzXY0eesNkArw5UJIyBoPUAKXhjCbr8XY8nBrIqSqs4JiopPFzRNK2vHySlPvzGwxFpNVQTQGOz3e+h0mlwyxnGsSfQ4ZWZMNA2cddj7gSuuWNluUfbotMxY5gUP79+LLge3m5jEY+ydjCY3RCgpoVgLryOkQRJoMmMuZxZFjynhctWKZNmIznZonMc7GWF8Pp25FWEc4ZoW/f4I7z1618GIIN0SOOjs2x4lZzw8PeHpxAlEDAtQMr747Av8+EdfIBrCGMNG3JqnPCZsROIjn48YOWhOo2oyoYIzjQa3Uo3PG505by0Ld0uVzMleiqnIXrKIWYJhsWUh8lqHmpjwdS0pwhSCKdpGx5UsgGCdXUGToiL7pSZz1SbmhHHhloy0BCwCpIbIlaxfffVr/Oabr0COkE3B9XqW1swAEiaLyRwMdbaTQoCACEsAgTVT+KjL2F9AxHvXiocBuN0kRsQQBbTtQaBqI/kBsCPSc1PBALNNzjJyZLFf23qZOmjq71sVnq/MM83aGAUm4OYc51JqC16BAghymOWVuGdLxMhdnRBJCQBZGL+eczIF1knwUTKWEFb2FRESjCSIC0IUPRRdJ+sEqBSgcZ5wOp9xuVww7PYsNi5+ABDwTOxJ9TeFp+0QAdNlwvoqNz4pp8jMJfGN/W6ANRbzsmCeF8zLgs+//AKvPv4YT+cnXK9X1lNpWhxfHKvmXNP08G3LbLdSMI7Xylzx3mOQcdWlFDSOW/Scb5BjRuc7TJnbjE6XC87Xq/gwfd7MZGPW6yCJeaoRT8oJuXBBiRO5xP6trIUKK1pzzntJuGW9NMIqhdmTYP06HkzCya4VcG8R0C+EAGcULFe2BNv7ZVk29p3Pf9MwYyNEZjyRUPw1WZ+mGVqNXbSq73qxl8JIS7HqN6a4YBov+OqrrzDPM7y0YQ/DvoL/qh/lRG/NyFCAyzShbTy+/JMv8ex0xuXMekSsvcRgXE65+lxCBiFXRkIqq6gzETGjTwLz2iotCULfM9Cfkk7S4wlqy6L7kdC2DCROE7Nq9X76rod36zhr3bM1u0CG9zpcwspgA51Suwlk5RwroFPPmVm1WGolvBS8ePECzjl89sXnuL9/VgHeaV5QAOwGbmOKiSqgVZMaOd+ff/45g/4bIBhS3FpkYIwZDbxzaLuOCysl4Xi02O/3MhWU9Ya0eMM2VfRaUsI4jViWBacTswe97LF+t0OSPcoBv8Gu76V9lmOpF8+fVWCbbbnY38JAkrEW/X4ASeKk4u+uETsrtrQhjgGNtUAiZCgzKvEkvcKAJQA0bQvjHfqahBBy3jDk1TY6ArxH37bY90OVclAQF4W1RLtO7ydXHS0V+9cuBiuxfgKYHZtY/N03turnqA/o+x4AkFsGdoohtH0H3zbcym4tXCbkkpBCFmBbC8oaOxTs9zthmzNbd5kD5omLjdZaDMOAtmvQNA6LMDubpkE5A5fzFUQJZAuWFDDOM05P7zEtE37605/i97//Dr/61W/Z9qUFKc9IKYCsh7XM3OScImLoBxzvjnjx6jkOxz3evH6Np6cnvHjxCt41eP/uwjp7Q4u+7zH0uypur+DoMnHbYFhmhGlBmBcs0wJrPP7r//p/jevlgv/hf/g/4quvvsLf/s1fAwS0XYNIQE4F/+pf/Sv87Gc/xb/+//5rvHn9Gr/69a+4gyIX1nUyDXIKQF7wd3/9V3j97e/x53/2l9xxgSfAPsH493Btw+cEBggsM1FKrKxZ3ktsr8dxxNPpCfM8ik0cJGajGosPO2G1qzSAnI3T+VKJCtZZDPs9T/h1FkSW2+5m1q0iArpdh0+6T1ib13nN7nlyM9YCI+8NOQ9hQU5SVDdOa7BQkJ2BBAU7dBI22zJnOe45n081K2+6Fg6uxhuHu6NW0FCKyrJw8U/bml0tlGhHgQBgxLqwlgg5AyFkTNOC8Tri4fGRwTzncDzssRsGOMeF9hKK1DZLBQYYFANYEHz9Pkk9VZKYQaSyYRxKfiLeWe5/8/MPkQhSF7/KepAUfEEQbUuJjwt7ZG211rhTY0sQyVTpIsxMtpdZOh40bkw1LxPmkLFVTxOF9T3Vp8TEk36t8yBZF32rQoEkN8z5obKOTF2bCj6xqa6gUiXcFNwwj4q6SNIIZF1LfRl8/6Xrx0qxvB+22OgK9GwhH1oRMEjRXkPtDdiqwGn9nZtfXwu/HzzdG6BNnwnqV3z47r//9YOBJ/lWduxg8MnIQVH6bM4JIJ1YtyYoSsPV5MGQRduw0Chrz/DDcdYiO3YAWu1kx6a6GYJwavJUDwIqxdpZixksTsgIu4XiqjeLJoBJZTtUNoq2Tay9pPr9CWVN5IwEOkVEx61UBT1fWwihfr6yVxRgMayAy5vZCJ5ex5Gvfa1GwCDduFsklqu1pfbhV8SU9FDX0yDaPbLlywbZxArS6Esr+GHhBIyn+HUrk6rcHpi1Ir0xSPI5dbKKMXDldv0r1RdrEMrGjoMzff7KyqkBz+a79PRvk3pdJA149Bprq47u4VKqNpZWPLVyYMUxsiPiZEciV1TGhjUg2Ap8xJRAxL3FLGRc1n0nm9Q6C5M5qS7SwlRIn4R8heUx7kxFZuNA+icJ+JJUcbLelxrQxAE801fK98zKmizwS6vISwoS+JWalIO4EskAADDNM67jiPPlzDTiEACy6/VJcqGVUj2LMWaexDJNWGZmSzgB4Q7HIwoIqZQ6oY+NrFZx+cq12pxE7DCV1Xi6zZ7T81MDWKw2B0SwhVdaO5BIl4IIoI0ZF3tQQU/ouko7lnpXKDBh65/1evVVOVRSaVLjH0OsrcpJ2npSzog543Q5s7aIOA1lw/DENludINE64QsoiCUjlQRXRZHzzfOvVOKa3KPaiLU/XNg5YneUwbWCPxvqsCRw/DNAx4izvRQQrgYf61ndbEj+3MKnRO09iF0fldsKmJ53/Xplb2gAl6UH30rgU+rvofosTrQXzMuMAmaKEEcmSCkyi2+exH+IT3EeSdoWl8Djn89nZmNokFxF1eV+8eE6lcLaVmJzCWsQrMEOQURIiVBKI2K/3CrFAztIAOwjA1jLJC16MhHTN2w/oZpOzM5jdo5FJtayczLJVYOlpmmQLbcVO+tYBDmwTQuSNFvnYIsRbQmqbUjOOllru56+xKw8PYc6GrlwsMAAPvFpN5bBm1yf0Wrn6+9LgcWKjpvavSispBClmmyMCFrz0WGx41Ttv+5DkwwsVh+qwWAuymDTllIR2hbfrvuBSIc08P2GsGCeJy7UzDP6Xnz75vqN2fyeJsiSuJAhNI1H37eAtG9o21wBsOSl2hONAxiYtKyXqUmFnArdS9qSXkFDEZaOUVlnwn6EBs0rKJ1SEtHovLJINr5f7WoR20Ok02ZN/R61N6VAhOaxue/t562Vc30Z4nac/X7PgurDAN94YbdxfLAmU2INtp+pSQJQC0csC7HR9tL3bf5b74uygXN8Qa6wppCCVk4NqDCm58T6ZspeTCmBUoQlwEvcQMawyLtT9hIzhZRlbMTOIK8+opQCcqxb1Q08fVgHeFBhmQgeICAiu3YF+mGkzVdt/MYWAmv8qmAf7wsCUuThLETCimfbZsAsySAFEjXEGnPWYmFKMIbj7knWQuMW1lIxKEYHUKjkA/tQU7Kw8pkFTeA2cB+jgLEfarOVVTJA10ttr5xNt2Ez6u9xzioyBto94VexfL03Lh5xK/c0TrDkcR0vWMIE3zo4b2Xvsk/V7ybiQTV6vpEifOtxvD+ibVsQAafzGXS5om16eN8CMGgaB55ca9E1PYotVYuUZWa54yRs2v9jZLDn448/QYoJr169wul0gjGbNbAG5Bp8/tkn+PnPf4avf/c75BTxu999BZTIurXGgWzLfpcsvGN21NA3MNag6w1cU5AyFw4VSIfECvjgedTzYvg8aQfBPM+VWbLqmjVwvqndEfr8guhaxRjQUgPvG2Z58uFj4GlZak5mRQBfyQY1ti/rXtMJk+ueYCYqocGa3kjkrnGGoggaf8j+UC23cZrYvkrLG0lRxVqeBF9yqblItbkl8xkropGKVXe2MnCqrTU1V9HYSmUU2N7I/odZAYgP8jQJtNQwSoxVsYxqGm4Ki9uL2H7cGrSs+aR83jbm2iwZ2xySljFDIJWnkZhGuVWF8gqC4YO4ER88H/miul5rAL8NMeuaVjtfbgGcm7XG9hlv1mz7/9tfrN9T6r9vmFubv6ufQJo13S7sH/jY7Td87795vb//8+1Lcx/cvJfvad0i22v4/v0pb+rDn91e9AcMuv+J1w8GnhRE4THSqM5GK3rKINJkJcbIIz4lgGmaptIwG++x38ko6ZQQAtO9rbEYuh5hXgAR/VsZSVn0pdhpqs5XkaDMSATBU0oyrCM4b+EbByttft613wNZFGipAaowB2LkscbeNSjcHszgUQFgIooB7l/s5XOYTuysQ0vsyJd54fHgEmz2QwtA++FFA8A5WEjrjhgR0CqMmjUQTAnk2KhcTuda5WVqckDTNGjbFvv9rgpYKrqeYsR0Heu9ONHH0ABMPydWXYXvEJYZyzJjt9tVirchg+ly4apwiNIm1jCDjVa2kwbYQdqP9GWt5YSj6HhxnbSGG+tkpHKtVFge980MLNVQ8s4JM4iDHWW0qREDsNmPYmjEmV1F2PN6vcJZnuTUNA0Oh4N8jkVIC0osIMfJW9/6GiDpNJxhv5P1471zuZ6xLAvO1yv6vsNu6CvLg7V0DFLh/eDbBiZbULTVCfa7HZx3KI4N/xw5APTGwst9zbkgqJN1Di8//oj3tbECRkXEhbWwlHIMw6PkJ2FXee8xTzOWecbj4yPmecazlyLQ+OmnCDHi4eERrvFoupY1pZYZ5+sV4+VSBeHv7p8zs4oIYZ4xXa8whc9hv9ujaRocD0c8PjzgN7/+Hb797js8vHsHT4SXxzt8/PIjvHrxEQ+3FKDKguABJGKQ1wiAfTlfRMCdK6e+8eL8qNK20wac5NOkwEzFVhTHqQ6kSOsPcpZEz9Wk9nq9IudcWyI7YeepgC8A+HZtJcuF2RU58fnQ68pIyMhcBYO0J6eAeZzYdBvCHNhW3h2PyMh4fHrE+9N7wBNggFiYIceQuLSsGA52G6Pi6QSkgCUk0YxLdTS1sl5CiHVdNBnlJIGF/fkeOOmuoDAMSNsFY0Qqa1VTsDj++wjWWtqCVMJ+KLQKPWasiUJtc/GN2AAGKL43KQNFQJS1IpaVTeEtogT3DO7r0wemHBCpwHastXJaRvzuzbd4eHzCdZlgrcPnn39W90+UcczffPM1Hh4fcDjsYa3FNPGQgd1wwOV6xts3b0SXosVVmETD7sDVOUlkDajep9qnApn2ZHmi0ou7Z3yvmdcn51RFo60lqb63HNw3QOkG4KAJXAHI4nK94PXr18x4unsGZxzbsJy4ZXCZgZJwf88s5BAXFGTENAlIZUCWP9N7jy51ONwdAAOEkFjHbZ4xOAvX+EqTZzh1nZCoPj/GgGkJddQxETat+EBcAuZpQoqcODx/9hxd19aCVty0DqUURXeQ26zzwmsbpcJJZQV2ZH5eLfB0fStAoIiE51T3hRZFpmlai0OG21StLWg7FsE11uJ4N0iSrm1u2uKdscwTpmnCt99+h7dv3/L4+ZSR84hlSUCx2O0KnPUYhgZN06LvO57sJ/u8bRxSCvju26/luRueguU8SFr3yXJBxjonE1jXINyQAKfiR+vZJML1csXlfEbfszAwt90A1+u1Bo7WOhwOLB5PQG1Tn8cJxTrWKRTGNtuQUG2bslK4jUwS9cITh/q+BRnCdWLdnm+++bbqDz67v4P79BNZb1dBoiUwW9N5Zvp9+eWXWBbWGdPn3LRNbTVLSZ6h+HplzDvPbIeQ2DeP81QT4sY3K4O5FHQd6zA20tqleoAhqaYnhL20EbzN0iIdQ9Vk2w87kIj/xxjx/vSEeZ7x3e+/ZZHipsHxxR7Hu7tqg5umkWKDJkMFqnBH2nLasj1oO9bRiZvx59WOCqPSOC5CpMDTFIdhJ9MfE6iwf2TgQ8SLDesdcq5BMA7IwgxOOQngUSpLSsoSUEmJWrCjlQmnBagcEq7nC67jtTLyjQyTsG5t5VPwou1aNGhhPU/UNY5jfuQM37U4NK62g6tuZRCty5BCLSQ7y/46Gm5/7kQ7U7saUspoO4/7Z3fo+g7Oe4zjhbX2UJBywBJmwETc3bV4eHfB+/fvcXmY4cijGxJev/4Wv/n1X+Hx4QTKC4ahwf444PS+x3SNCCUI8CIyIHHBYT/gT//053CNx3ev3+Lh8T1CiHjz9i32uz2+/PILAAP6toMhV9vPrDWwdl2reZ7w9P4J8zJhHK+4u7vDcbfH4e4eBMKf//k/QtM0+NWv/g6XyxnX8xkfffQKn3zyMT766CM8v3+Gf/YXf4HPPv0Ub9++RYwL9scefT9gtz/g2bMDDkdu3bt/dof/2b/4p5jmEf/X/0fBsHuBN99NoLzANxlLYODLewdm+/MejqJn2zQNPvnkE3z00auaY43jlZmWYZUpOF+v6LoTjscjt8g53uNRzu8irXqXy4jz9YJxnm5sf8ncXdB1Lftspy23DJ4+e/YMTdOi8y1CWPA0T0iBY2AtwhB4Ml8U3c4gZ6hpWuQCLMQt3SVnhJkLr6f3TwhLwHW8om14eMDdszvs9jvcHY9w3mOJHP/p8Bs+SFoYXF8sI1IqgM3aU4RCzGznPCjj448/rjkFuzNmwKYSUYJMjYTbaJ3JaxNSrUWB27/SuHbbBv3hqxYO5a+0+FffW3D7vZsvIUCkPoQ5bQ1Pys5qWwChJ1U9KtGh5+sVAInZ5CSxOOeWkAKXXoPGyAqCJu24EtmOEIIUBNb7rOCW3hdQ7VwRfUQrcbO+tqCS2vCb9dD3FP7uQrctdfKb3wN25BfrwpFe2A98bZlq2+dLptzc7xYw+5DUoZI3wMpu2l7CDc/qjwCdgD9G40mCTbtdIs4wuOpuUUfsxhgxTxNOT081SOGKqbIz2HGr8wgh8CSetuXxl5YdKB8OhvsrZdcAWUV8N+gsb6xNxYlWBC7nLCO7OQtVR9k0TX2/3qNqdHAyzEmurRViFVtkZhTRlnqZ+WdGhaD5Z7ytTE28NPhi5oRg1AKvriwepj0v0pKlNO8tosx0U8PPxK6Tu7YbCeDN7ryDIRkpLevGCVyuDoEBqAhV7tdKGUnFwJAYDYj+TuapTGqDUmZaeMpctdLqRaW2F2nXFIPGPAU+FiRgUWVaQJLcpG1p0pea8/p5kBa9gkrV1H21iCNaX8rUK7IfeL/o1D/tPddrTln0WIgNBdM7lQnC6+aETUCJ27tyzixyWbj6SQJ0JWEiAcogES00YvCItKpcpBc9C71yU5UomduOFMTVthT+DrBukpyRENkpKhPLeV8r+ZDnNI5XjJdrHRWt/eEhBITIAvPWKcVVwELHwTPEafnGV50YAifaapS1us77JGOZF95fMaL1Hl6m0zhnEXOsz9ICqLtcxHJBkMSn1HviZIXq36HaAVSnUI8SFIRajVauzlGMcwGfxrwaaq4oCTsRq9NDUS4WffjBq8HWfww7Wa3MEEhaPiH3RszUcB5NI9XzacQ4jZjDDHS0MueoVEei9R6A/TSRnM9CK1W8xvS0IT9p4LM6vlLWtatErVKgI7DVXq4O8NbDkLxfP7vWVOoEEGE3bP6O/3512FntLfQeafNeuVP9jLK59/XpbgIrAgnQq/dqrEHMCddpxM5OsMUgxwgqBfPEoPxW7+3p6T0eH95hGq+wzqFre2RrccGZ26cFiPDe1wAuF55aCNKgbaOnpyBkUdo+a6RoO6wpQM7MXFANDOfMTbDKZ9QCdm0j6doOBcB+P9WWDFg+Qykxe44BOgGBzPYJ6TPIVbetabvKgjDWogQeGhDTygxSJhvVvSjPRlm2QG0FyircTmt70pb5zKCV7mj+f7U3RQAtBUhZc20VteaddasFWPe2+AL1l0QE43z1VTeBGFG1FSwYyxODNHkhPUNynxpnkNgea7lYwZP7eHBA07Sc6HQd66FJnAMwCOcIAvRmXM4Tg44pou1aeMfTBksuPKmKNqtT1ip8zmuwuEnhbwotRMIcMeonojBm2Rco0MXTfiUxUFa2BPMcd6z7enPw6vrd+lZ5i4BJPB0tCnNOxsLPM6Z5QlvAnyvPjZ9ZqYCG6rQYYyrgrCwVjXmSsIxYoJx9pcZgulbVZtCqt1gZTrK/lHXLZ3HVFiulwAijSddGbZGebVgruoF8Pqxz6GOQdk4GxJ20Tmo77lok43bTnFmDy2BlLxli3S4dtlMAlguuCQJW3yfxGCNPUnWXhEeDRk3SSMBuQHUd+e+LvI9ZIWuMrgxNBfVVtgJAZXLoi7VYUYE1fZalgGOysp5BZQUiZ7bZcn0a4wLExb9M3NOSy8Y3rYxmXXsCCTPRVgBK11H3gSaevP+VCcjFGdUD0rPath36fmBN0TkjpkVaiiO6zqNpWa8xpYhllqIkVsaPFWZK03TwvoWxDgRei6bt4LzYeyfgh4GAMQvGiYe3aLue7rVF9LZiylgCT0V21uI6XuGsxfMX9zifX+Gjj15gmgbEcI+Xr17go1ev4JzBNF0Q0wKijJevnqOUhOP9AO+leH0Y0A8dEweuI86X95jmEefrCYU6jJcJ4S5WW83AD0Bm9Sva9qvXbO2aUylgwu1IfCa5SLys4DHW2FbzF93H7DttTcQTIjPQNaHWeJREp7LGzRHZeQay5hnzPGEaRzRtw4M2QpB9aaqea/0cKONe7Azp3pWOn6TFNO6iYDCazyRnOrjRhNva0O0fqyXfOCn2qytQYEVL2HthGhdsfpv9sMZRa0B3CwyoXVOOkvpwfSNt/tHPVhvxvWu+AbfWeEX/cwvmYM1ga2xKGgLomzQ/lGOq+aCCOvoe+XL+u811Amurdl0VaQsu23vaBqNysRzf4w++Sv2nSPz+AdKyubU/+BI/rjxp3b9rTP/B9tD8RHeFbp8PQL3vfe0/gADdxDL1Z1RzuA8iqduvqktePnhPWT/jj0Cf/gjGExsXk6lSB3IGqHAVybQ8Yj4sC969e4fHx0f89re/xU5aapxjCn8IgQ2BMEWu1yszgJaAw+GI3W6PXdcDxIh3jhmhcNVlVPFKQdNVl0jZLSmlSuWsiXNe6fbORWiVV/uNVfixipy2XFmaJcFgTQZZZFH2WRbu5Wafy48+58S6D8XBWY8lzFXbwRhCzAGlJCzLDOc8M6kkMCNhjLvGqzIZ5iXg4eGBHaUhtDLZphiCtQ12XceOt6yGxDoerxxDrM7ZOYfnz57XJFCZI+N15IBXHOU4jkgpomsbZGuRrGWh3iXCNIUrrW3HlWIyLKZ6PlcgaBxHpmALKNgLNX4YBpyeTsgp4f7+HrvdUEf68mY1opGidO9YnYMysVQfqZRVswNApYJDJpvM81wBSk0MrZFqjIh0z1MAikFskrQ39JWaa6UyD8PtC9lwEDbOU91nRvqLew02Zc2zJCJt16EfBvS7HaaJW3ZiUE0NVGp30zTouq5W30epvtuBg9Odb2tSGyKPxp5TYHH1GKtm1QrIsoM/Xy4Yx5H3i7PY2T37MWtZm+l6xenpCaenJ3z66adcZWr5vL198xbzsuDp6QnpeKzVUSLC4e4Oh+MROay6DSkp+82hbdqqSZByRCkJOQSemhRDBZ5ePH+O58+fo5dKswYpTeNhC+AYv4QlCAUZ6NsOyRd4aStV7RNObiQoEBZELxoq4k2hmhhbwcZZ2j6MZc2jLABsiKneQyfTZUJIQOapiluHbIxBFNRHwS7jHGAyV6vlXOTEIq7eelDhwQPFGPi2Y7qQsehcD9pnfPPNV/j2u9/j9bs3eLo8odn3DDxJwEwg5k/lIuwnICEBkOmNhhNmKhmUS2Uq6ejY2gJThXYNckmI8hxzLnWa2LYNdQVlLQc2mtQqIJdyFSBXt8S2gBlINYghAogDgCx7koCqXUYQ4edNMXAFJDjwUFr/9u95rSHJFKFpOhYaTzJdy1lc5hHfPrxGbzs4Y9EaA0LG2+++hXrVy/WKp9MTfvvb3+D1mzcczHuPf/kv/yWILN69e4u+7/HpZ58xc9RxuzgZg5gCcklwvq2JZi4FdnOtjixKYeFs7zwaEY12lun4ED/HADonkLGIfp5oEqBo2zAw7AZ0Q4/dbsej29+8Wau0hrUDTVxgUDBOVxjLmijGGFjvoa3amuQMwx7WO/iWbWGa5joWvu/ZRrSib6hrliHs0jjLFFNm1JaM2gJ0o3HmHEzf18EkZEmCLwa/YmamAjKDHs43MI4LJVNYpG1NNNUMqg0sEp01oj1VtSIA+MZhtxuqn8yRY5C2bbmQgJWZzO0hltnI1lWfontvntkOsI5eg8N+wLP7VyjZgegBORfc3/OUrPv7+zrh6/37J6QU8fLlc3R9h6YZME8zfvubX6FpG9wdD3DGwLUdnh7fI4SA4/0zFl6WsJRMgiUIS3QF3IE1oLy9b4+u75Cklfo6z5w4CZNTfV/TNPVMqT/ywhriajInWMz+dLhcL4gxVsayVTmDsrYdX69XFiEeJ57AmSIDUGHBZbzg7cMD9rsDhmFlLNegVibF7nY7aTddBYmHYYAVX6axXU7MRkiF2WgZpU5dM2bdq7oHU1kFjJXJdB15CltjPReBykYLVATWFQgTvKcO3OCpgVwgdJ4/rx965FLw0ccf1cJe23a1eKIgrLGEru/5XiJP0s0p1TVRrRNsGRMKzkEkGwprOV6nkYuUZNB4Dwee+qpZjSEDbzxP3aIoYPsMhfI1VppCrMXjUhgssMai9Sw9IIoXSCnhdDoh58zaPQI4N02Dpm2w2zE743K5ICwL5utY/Yl3PFCF9wUPgKhxOxQkYh2rnBIoRGnTLcJ4BFph5ymwkbOAAiAMXcd2yK5g4/aMxBhxulwQU6wSHlq4u45XWONwd3yFw+4O6ZMFv//917iOZzRtwe7o8fNf/Al+99V3ePvmCafzBW/fjjCi8ZgCaxC13sM1DY739+iGA8YpwnqDrunw08+/QN/3olPrsD/uUDJxHJgzLlceHEO0sk/WIUisb5gL8ObhHb57+x0u1/fYDR1++qdf4sWrHd69/w28d3j14oVo3TaYpgm/+s1/xm9/+xVCWPDP/vmfoe1aHA5HLMuEy/WCeYkYp4D/+B/+LeZpwm+/+lvEvODf/v/+PT75+CfY9T/CsxcvYX1GvvI+sSAUY2phQ88Naz4JkCAbsetaZlaHAJcznJdWyJIwSZzddG0tBrMe7q7ahmE3VJ0eFHBXTU4oOXHcaPmctm3LgzoSazLqdOJxHPHw7h2u1wsulzOOxyPbFNm3h8MBsNzmyb6ZEBIzkuY5IKeMXd/DO4+cCmbPTCTfeFjvkXLGPLMeWMqZ2xxB8BvGJLAm8Gqv1jCBbmwhx7eAdSzrwmzlhCVMUiSy9Z8lzBIbJqRCUrwWVnqhtVBMVAuLCuhQAYoxMH5tgVxlWD5AzCS23oIcFXQQYJeHRa3kkO0rS5SoxSjt91Og0ZDK2hSEGFbwW2y2lfOgw1o0wFUAzagvIpKhPlu9KeFW0eoPFPhJRdpw5Tmo7V1xrk2hp2zXZF0DBdq/9/MPUKlaFBBQL2NtkdfNUFlXgPjggj/wrfwZm++q316vVeMvmcb8Qcygn2PrfTLQtVFA/hDvWu9h8/l/kOn297z+CHFxdljKThGwWpeKH7hUH5y14liaGjg4Se69b3iiCN8PGt8gIEiiw4BDK+NalV3CI6tZd8g5ByOg000fr1RhnHVVJ+dDyiBvXt6oDM7y7evvagWYx4DrlKNYkzDQpq+SDGKUDa8UyVIQY4IxEcsSEGPi6gIgqH1GjAExZiTP4qvOObjNAU2RE4FZjKYlC0M8TYJIJ4RsRPIE2CKsB8SQOAJJwLUXfJ5GbCfhcLivDpuDtKZpAJtRnEeUCUvvHx9hjMHd82fccrLbwVp7I9z6/v17ngy338E3DVzjucddaaPE46xjSkDgIEMnDEKDQGM22hN8MBnoESHSGDFPM5R5Yq2t+lvbg6Cftf25ain0fY+ua9H1nCBW4XpZK2Xksc0mlUsCckZaAooxKMZgnqY6zZBK4UTFiCMQo63tGwyw6JkhKPONhQZL3Zu5ZJjIPdtj5GB6mSboaGTjWbBZJ9lkYfZ1ChAZYi0MFdS3GwciYF/btjD399gNQ6U2k9yjMQaN8zhIq1wWXRkQ1rYtw8bLwsqIdNV/IMAawK5tC0tYMM0TzuMV07Ig5ozdbsCLF89qlT2nXIWbC4mXRDUpVe1JzMWNQOo6sWWtAqdSqm0h1eMSFlbeOHlOcrl9k/WyGNBhtkGGCkmiFNmTCTrpr36vjmG90X7ZMANQbv+bGGyRBie5H0LrCd6RiFY/IZSARFKdJQatAVRtGK4+S+VEALhUMlO6xSaTkYScwEyuXLhqouesUG0rzGLM5SiKk/mgglGU4syfBco3tlWnZHlrAJKJbXomN6ATkTAbcr6drlE21R0F2hRALOvZ5qBB7r8ow4IDJ04COVg3MPCWkAxPc8wxYplmQCZFRUnyFhHo3O12rNVnOOFNKeFwd+SpQfuDtOh0aLoWh/1BEkj1MYbZRYVbNJ1z6Dqhz8cEJ2Am5A6tAHmF9D1SKMi5AsqmBj2cWFlptaai7KIsgsEFuUQQZXSd2gEJxgrvTUc87dFaI4xM2f8COCaO+BBTRkxZ9DYcQliwCAvyhvEBZhZu9zXbcZ0aIz+U+t420OFk28AVbp00EpSpXwph4cpg4TPB57BUwNMYU4WZSVh1xQhjr6BO21r1Wvj8qq0tuo/FV/NgDW7tDstcJ/k1PrG2V2IwwxoGDTngJKRUkOOCaZzhfYu7+3s4z8Wk3f4g7UXMeGrbFvM8IcaA3X7P7euG2d0vnr1A27W4vzsKoyHhepkwzTOadoBvCo/rNqwXYoQhptMDlYEGXceYaoANtdeFwRcvOl9U1qTObu0tGLvNgBTABCAmTiJKYUZGkTPIelp6gPmZVyBQPsNYC+fWYSbMFpSJwbIXbnUmCcA6bRRAlR4AIMU8qkyban82tnfr/xUshNgVZcRYiaPYtigzkKQ1muOFKBozZSmAYb9maG27hAKZwpRh1tJ6XXrOQMxqMtbykBTxqdoiF9N6/yxsnuEksVM7qN/D8gFZ2BRceIwCFJUo7eZISDAIJlR7qBV3ZUXNYZZiWqrP3XuNqZi97Lyvw4CsgLGppMqYW10D2z3vHIaur+tZLMcrrH3q0Wi8LvFMyVkYIqJfBwAVBFonh/E+N/WsewE8W99UsF5BRo0WwhIQKK6Tco2pwwPmZeZJjgICtl0j9osZZr7pBPQDqFgYtDjevUDXDxinN+iGHv/0L3+GZ68GXJd3eP9wxuM7i7bnSduP786IS0KME6zrsN8PaFrurmAWKFgGpPXwzsMYwjxz3Bdm7nJQvwIBEY3Ytaotawm+cYiR25B904OMR98fcL1OuFxmhPkJb797qGy7SfKKN2/eIMaIb797C+cb9MO+Dhlgex/w+PYJKSV8/fU7dEODX/zin+CTj7/Elz/6FPvDDjEGWENovEUjBVuqLUhcUDaGJN+Jt3Fuje8/jDH0HPHAgZIta/5sdEmtIVjjGaCVVkwqPJTICJCrhcCm8SjFM2mCNixqidm0oKYDlZSEoMAwRNi85AzkgsZ6wEK0FAm0WyfdruL5bDPVjrL93LQ3AbVIx/9NleCkHCTV29TOiRo+bewsCYDAU0eBnCX2sVu+lvoBVDuyXgehBv6aO0ocjk3suz4jzS+3z6t6+Apu33z2emNQBrN+Lsf2PGHYgOreMcVKPCAdQgIcQX9dgr6imqzq5+SjtRCgb90y7z5k5FSWbuE/Ezj4VWXUtYOdPlj/v+e1ec/2vR+Cd1vQSREdBaf+ILBUirTorcu8MslWFtV6X/JtpH/mB6FfW5m8ZsUdlD16e83fX6vte/4YhtOHrx8MPLmm2+xnFkczYlw4xuXmKUsGXdNi6VoMw4Be0Oeu69B1PdqmgSGDHCKKKXBSVSxC7Z3GC7zjSnmKrBWx1SFC38MLoNV1bUVtuZWIoQKy3HKibXzqtG8CnFI2wrC0Vs8QahtEShnjOFVNJQ1qtBoVFhktnUQAuaQaAOvDvVwuKKWIWHQBSoY1Dt4LRbWzcI2ybHgS3ps3b2rCZrZT3mRiSAWpCveRO+s4qExZwBwORrX1kR3OjIeHx/o8lTGmU3GMZaNlycFKYnx6fMQyTfj29XfIpWB3PKBtWxzv7nE6nepEpZQSXr9+jYeHB3z65RcYduxotffWOV8NdBS9DgAVeCpADYSztodoIinBQUkZYQm41FHVZQU1NyO0Fa3Xf1grqiAHnvZzOBxkHCsEaEg8XSyuIpiV6SEUcYAQY0aclxrQxpkD4GEYmOHVtDeOLedcBX5L8fVztKVnWRbWNds4vlIK8sKMhzlEXC5nvH7zmrU9vMfx/q7qaqAAWRg6h2HHiD0yV9Ek4SgozEQTfSzrLLquE/Ctq61743VCKRneOrS+wUHYZVmo4wWAbddpQCicoDupUKaQkEMCHKFYHmVLBXh6/4TT9YR3T+9xma6IOeHu/ogvPv+UNSsIKIknOCbHoqRbjeIse1wNZgYHACmn+jM9v/rvlDKzzwq3JagbNgASVqAlpYwpBtZOyjIwgAT4JE6OCKIll3mKVVEgE+v5BiBTdkzVRwExsyRnnvJGIEDE5Ekmsniz7r/BNxisxXi94N3DO8w5IJoMIouCLOecKkOIE3aIkDW3D4eckCBjuQV80sqjXqc1DpDP0cEJMXM7VQVf9Q5J140Y7MirUHlOSVr81t8xxCwq1SSZw8LJm9oXdcrEIH0qmRlTWoUBUGTqmQZcMAQqUumrzpGfk3O+6q1BKO3OexjDU2AsGXTkkWzkClqImC5XUC7wZHCdF4RlwdPpzOyU41HGlTd48fwFjscj2r6Hb1o8f/5SWhGkzcetfkMp95dpxDwveHp6zyLBYP+zLAuG/Q5t11XWnfPMpilgZtg0TZXtUNd+42t8sfCe6tSVUqK0hCwsIC1B3eEwVDZikWTWOw9vHXYDizRH8PCAy5XtwjxHARIMlpiwhISm7eH8GeM8YpZkpBRhv0ihok4DFOFw5zyKiOBThez1HG9ASgmCvfFowAWmAiDK2Plxusp7LbdZgAtQXDRioKUTvZtcW70lyYcGY2vADTC4t1yWemZb72GNxbJwbNB1DXKMOJ8umJcF07Sg63jMNwmY2Xde7of1bVIGxusV0zjicHfE4XiHly/5Lbo/AB6Y4r0TwfoFu/0A7xwoMcttaAd0XYf7+yPePTzg7cMD3r+/4Hq9omkH9AOw8x0MLKxxMGwt62CCtnV1DZmdwwC5E1bjluHYetSA01pbCwQVQFF7i7XAGAsXFJ2CqwoqkUFICUgKDLF10DiNBei5AElkcDweEULA5aKC2NzOZ51jhnaVR9B2dgGKHE9X1fhNYw4AtZACSCJpHa+9sMS995UFX2MGxz5O2+pn0eVTwC6BKvijrDwFrg67HchaeAWewK1mS0pYhLmjSXZl+Ekc5rxnRoxdg/1ZhnuEwDbKWS+FlQQPTrKVzalJ5ix6VSgFlDn2npe5Mr+0Ih9yhMlzjZHUByyyb8bruep2ZEg+12XWnzSm7hEiQut8/dm0TJWFoDaQn8sFXdtiNzDwFGOoMZleA6QdcLpeUZCQjcZecU08BWjeDkHRljVSTRiRjNh1vbCunmryr/tknEZhMXMc7dsG8zyzXtPlgvP5jGfPn2G334NblwjGO1hnMOx4SnEuEbk4oBi8fHUAkPGr31ywawn/q//yX+Crr38N6t/gq18/4De/fMDd3RFt2+Bv/+qXOD2e8e7NGa4lPHt+hGtamZidAZl45huHXc+x1vvHC8IyYxqvzJSR4TIEI+x13kPO8dABbRPU+01LBsFgt3uG09MVb7474dvff4OvfvubWqRnPdKMaZ6RcsQSF4AsjBn4yBgglgkZAbtuj7ZpUWDx2Ref4r/93/w3+OjVx/jiiz/BHAjLwm1xjQDrXJQw0DZxffbv378XvdH1vFTW8mYPabtuzhEls28shoXEQ1lu/KG1FnOaUFJEFvZ603ZQXSQeclCY+WwtljmtGjUEBu28QxE9XI2/c+b8SgGpIgw4FPa9+ndO/ELfMXtu2O352lEwLzNCjMhESKAKOhlC9f8fTiezFThYQRwirIVG0jbX9aXyADoVFEDNgziK2IBb+hnqD/QvBDhiv8rrnwQURjZ1oIQKxGvLKj78fAFHVvgHm2KEFo/XgF0/t2QBXMjcDN9S0K8UlRFRDVgu8qeckTb3VcDXpjbd0sqA1GvWYoFyo3QoJ8wKslRG0aYGQgJIw/C6afF1u7a3P7i997/vtXKZ1nUhWgs9+mw2aN32sv6BD96CXBoPbdvOc+0e2OYwwAYcJSno6t/9PV9Ywa8P1uSHvH4w8BSTCDyWXNfVOwciW2mMVlqfdjJi2jlfl7fxPCbewKCkgnHk1qIUEvKGDgcNZmVqFxFJAMiHzXkHJ9pM0zR9b1VyKQhjZOG4TYuItRaRNlWyAkzTKONwM08IcSJMnTKWeWSW0LxIMJW48mCZVs2aAlLldzplBSyEt4QK/rRipIaBAQNtgcuJe4OXOcgB4R74JQSEJcJag7ZtODlLVXISxaa1lUcDk83D53vj/ubrZWQRvNOZe5qnca0GEtMtjWNGzMPjO8TAE50a69D5Bss0I4WAjz76GMZavD+d8ObhAU//8T9K4NrUHvrnL19gOOzx5Y9/VIENK4Gnl4qLJpNGqqkaXNwAi7yT+dCL0JwyAWB4pK72BFe9AtmQWRJcTep49Dm3uimzarxekUvGvIyi88Vtb23T1BZSwYjkAGbeJ5FHDGcJ8JxW1mNC2fS3c2+yGLL6f7I3s7CpkiT6FZTIjLcQ2GgiI5YC6z0Od3fMmPDcFtg0vlapi+eRvcbplCBuMVGRvVJQ17iTFpmmaVByxvVywXi9sp5B5uRkGAY25AoykLRTAbDiuKwXEDSLPpTliRQwFtGwx7SWgcLxesX1cpU2Tm5tvDvs8fL5Petf5LzeCxgYCgIKpZiFI4zVEss+z2mt0m6dM4GTTGMMGmMECOefb0ejhhAREoveatWEe/CzAHZSlSJ+ZiiF2QYSjK9021yfNAtcBgm8XK3qQNhpCgQkw3FHKly9v14nUNMhW4df//bX+Jtf/Q2STXCtRUkczKTEDtOIZg4znLT3WzRxBAxi/TmtqhADQlbqauLjgiT5MTCTlKfRySTSVKc2SHFpG8BgTaQq2CvrUAqQufrOmkEAIPoOvEJrMrnR6COg9t4rE6XUZ0UwZeOMoczOdc8VRzA5gbJOdwlAIhRySMagxAykjP1uj08//RR3B2b5XS4XFGNwuLtHSgm//M1v2A70He73OzjnqmD96XSBdTMOB9b8azct3m3TwVhNmgh9P6BpGuz3+7rvvfNoHOtU8GjvhadCSoKlU4qYWaOJKZ/BZZlhrcGyOGk1kf1UCmKJKAAXIwy3wFTWLnElOMYA5MxJDwGxrJVdZgVJ8lJUfzCh8Y4FYw1JK94VyzJzUi3BK08pUnZoRsmJQeQU0TZs+6NqBpJo1rgNA1V0o9Tmz/PCcUDiIkjXtrXtk4dhWNnfoo1TygaIFZdR+LxACjJFQEwdVLG+eG/1fQ8C6y4lm5Az0PcZ6cBFKW33WO0LoRc/bogwDT3maeK2cvVvm2BYn6eCTzocpYBEo5HgWwZHXr97h7fv3uHdu3cIMcJYy6znXHAdR24DOR5hDcHVYJkwzwFAqN+3hIWTdE8CFjqZllSkCMI6JAAhBh4UYERfxxjAyFnWds7aACBs5KQFusxFLhJWE4FZGFQcjAW8dXClwJjABbOG2xqHfhAbabEbduiaFlMu3DBcq9Kq+xLqPuWWQF9ZTHXE/LKApOCZqQAxAY61L5fLhfdPtcfrkAINmrMUzpxb22uQeC+QOJlSCxNrG4wmcM4YUOOBaECGbVAp/G9lK+r7P9QTVRCw8Z4hBmMQA/uRsLCmaNOI6HlO0rLtUEinDHLM4CwDqdQyoLXMc0246nVrrGQ4NiQp/hnHg0liSvANC7cbYWXlvEK5JQvTScBAvY+2bUS7EzcAl9qwJAwSALUNNsvPvOcuigrmG5KJtVqU2BY3pNBoLLNcwCwJUwy815Y7KxIAsQ6KsXYFnnSoTieF8GEY0IiEBYiYESt2vBRIm6IyTCGxjcMcIv76736DsIz4xS9+gU8+Cvj5zwJSmhFjwP1xwPl0wd/+7bcwpkHTNZwPNazzBBicz1eEmDBPixQGemBoUe6Om9ZSZvTnnLCEjGm+yL7JaNuGcwoB2C08Dx0wBsP+gL/4y7/Ef/qPLf76r/+KZT0yM1pTLrCuAcEhk2i2ulxLBUN3hGsbfPbxx+jbjttqE+H0Hrg7eHT+HgULUpnhxA8/Pj6glFJ9n/e7mvhba9F1TR3kwAV43v8xJeRZhhCVAus5vkohIBPrgXnv4ZuBh1aME15/e8I4jpinmVnoishQQdM22O8HJjh0Ha7jLIUh0TvtuBtm2O9g6CD6W7wvYljqeVxZ9Ewm4L6jFeTLTKHi8yxMc9DaMeKEZJBSALBhYUpBLOUigv+oZwW06utVIoCh+rMoYG8dyCRxUErcVsbag9zRY729ERfXM5ylwKgUDc0bN0Q1xsQyd1tkHTDAF1nBO2U0KSNI2Uw1h8f657yxdR+CNGrr63rXa9U1WcF7bcurw02yFJXVPhATX7igcSuaDaB29XAcIOCeIZiy5pBG7gu51Ji1Qj9ycQqy6esm70bNUnSVbt4DWp8G28f6KZt/3bKX9Md5A1Tqtd2+acMAQ6nTCm9wKL0yCZo+BI6K5ixAvUd9ZNtv2z7HOujtw2T3f+L1g4GnENfJIiuzxMAWQhLgoIiw4m7PVbzdsMM4TbhOIxqZDkWFhP7MwTeDNAJGaDJfMlJexQ4V5W6aRjSPTGUhbWnVSs0bryNOT2fsdjtJ1hUJ5kfmHGtNzctUg3DWE+B2sCyaLqqHVHWiZLobs1MAQ65Wqgq48rwsC2IMcJaDPu8YUd8NPAUtZx6lrqPlY+BgH8T04BgCUkiwZATYI1AuNcnVUdTa3qMHUgUg9ZCUDMwjU4pP758QIk/r0GA6RpJglCuvp9MTxnHE0/v36JoW+35gsU0QPv70U/imwd/99td4fHzE3/zN3+Du7g5ffPFF1Ss63t/hzhA+/fRTdH0HK1NwUoy19XIFdNZDqkEkEdPnndWRuWxMhAdZq+Zt27KT3Gz+JCAlGy8OSFRQewkLFplKBQDn6wXLsuDp6RG+8bi/v8fhsIcxB0G3VzBDQa9FGHkoOvWwVBo6s7PWA5c3pkeTHTUyMa4tBMZaOMPthusYegZKslh05xx2hwMHLZ6TV2t5Eg0BgC/1LKa86pBsNcu0d7iR9ru2bWul/nQ6YZ5ntL6vwDAAhKDsgtVIqraVcSJqGNlwM0sOsJZQckSSJDPnjHlisHOaZ5hS0HiH/W7A/fGIaA1X0zfAaS4FUSq+MSYOgo0KDa5GUhNltqmlAniENVg2Sr0GCYgilZtCiIknZS0y2cI5t9Yfyup0UFajvJ1QuO411DONUpBiAKwFrGh4CAhQwTLZn9wMAYRlwThe4VMGjMc33/4eX339FbIpsI1lB1i4OkNZwCfp/cw5C/eBdxulJHtXnEDZVNzluWrgVPVW4lL3dR19nnJd55UpujohY1Z9Pa2S1Q1fwNPKSMViV+ZdxKo9o0mCfuhNwi5BhTrLmwqdOm2xc8YYODJAZIPH+wIAIgwVZMuU/CK6DC9fvuRJnU0rQmIWw7DD+XTGN7//Fs+eP8fHhwMOx3vs9jtcLhfM84J3D+9hjEXb7gAycC2f5ZQSfFOqLSIydaqo6rdN0wRnWeyW7z9VFq6256j9AxRkIaQsEzkFpJ5ng5JSBTfJEDIxE65tG8HMdViFyrNr6560pxKJWPg6xbWyfXNGThElJ3hnq+9JOVWtOm0VUSBXz4uKYyv4ZIiBj2WZkYswP7G2weS8OePyTKdplsAfMG4VXkcpIh4MaSMQG6vAvdx3DZ6k7Z1kHI4Ki9YdRCttXiv1lgyyZTAGpLo/fF2V3RwWAHQzFaxtG4ShhfctrHXVJyvIqu3WVmwMT2hi9o3xIjzcepxPZ7x7/4iHx0c8vn9fC2Y6zWmeZ3RdJ0UcC3hbfdSyLGs1X3xesQU6FEEZJACvXykFYV6kxSvV9+haGmFiFmnBksXidRcbnZRlkTJMUdF8AFVzyFYAlSvzmnSsCQgX5RphYgQBhWz9O8Yjt9MevTBnfAWcQgiYpglWwXVpQ4TsAZ3sOgyDGGputduykeqwELcOk6iAS+GzpImItnFoZZxoHaiRBZzTCc/aKmZvpuGtuozb+90OhwG4iBAjT0azsqdiZHaft5Zbvakgim9wln1y03ArWxYRb30ZWkW3i5wpk1sRbvYIOWGJzGAhaRlCtcWShIp9BbAWX0oRHc2N7krOKOIrISAniW1UEDcKsFLv36wtiCnM6/quEa0k3Ratb2oR0AiQpp+7vS7nAGMyGFMiON/Au4JGAEwvU7aVcQ4URDnjvvHizzTJ5OSewCy9NCX89ne/xW7X4YvPv8Snn3jk6PH23be4nJ/w8vkRl/OIkAlhAbz1sLZh/T/rATIYpxFLWJBCYMbj8QjvW/i2l7xoEVYT6zCWyKwyZeDtdgMDL47bAztnmNFMhG7o8Ytf/BkeHx4wzwtKNiD4Oj3Ri7+I2jLv2F9QJnTDDv3+iE8/+wJD3+NXv/olUrG4XoAwezTugJBPsHbhZ14MzueT+DDev8MwVFtkDOvusRZTrqxwIgItC5Z5nX5tycAZi7AsKFDmpoGzBmHhePLN69d49/ZtbZ3e75ltNC2jaPY+x/7AtisyGZqZT86ibwlkCd0woG07DN1Q86d5Gpl9twWGNRIUs7KNiQrATGDZJsq4M8ZL7J9QJ6kpyGAYnNfhRprc124Np+34WQZX3Mo2lA3po4KjRX6nADFyjsRTitf8iAt68slUIac1fi0E5XCS2MmU1/ZIqE/DCgiB1lY0bD7tQ/AJm+vYwEo3/2ZgpVSx+e272Y+VVaNVhm1xURY1DixGcmOQtN5v2TxyLWLP9OeGnVX1pUYGXay/z1dBG1uKsoWUvv+6uX/+wfrnzZ3Lsn5vHW7fvP0cFSUXPeEPv3e9AFTwqqzXUGPrjf+9uQ9JtbfXS5vHRGX90rp+m/ywfu8PxJ5+MPA0z2NF/Jx3aNoGjRVhVOdYnE3Gasagh5ersUqHRimY5xlhCZjGGdM04uHhAf3Q4e7uCOstC5CngCUFONsAhYQSv/AYYOJFuQpbY79nPZq7+zuAgCQ99hroqcFjp8prFwVM4iTK16CGCLieJ0kkDZxp0Ox6BrmWIJO4GEArsgELgJRYiLxtHMLCQVfJCTFn9MMAa4BxvKDkUsd0tk0jNQbWFSiAoOXKJmAR2nVz8sU3xq36VoUrnGzkEqzh55ATO3zVaAKYndY1nhH6wsDalCf0YkR3ww5EhGkcGVSxBm3TwBmLf/sf/j2u4xWLaH08F8HCcZ5w/+wer159xMJ2hTVlQkogqRh3Gtwrk6Ssk/0UNKkGPSUs0mZXsmiUgEFJnTLEehkzpnHi71PwgkiAClOTWENMqUUUJgtxhc43DsOuqwKrzkmP98KtK9dxZC2LpMGjhSWzTk8hw4m1sTwCmjhYiZJoLsuCeVlwf3eHruvqXj2dLrDW4bg/gBoelw3taYecdGthvcNRq1kiKloAOAHcGqmef/XNNxxktQ2vU4G0QI5ouxbOe9zd38kEPjYzYV7gncez+2e4v7vnIH7m9pjdsAMBklgkpBxFD4PvF2Z1NqqhZq2FKwRbCCYHJDB7K8WA8+MDLu/fYxkn9G2Doe2waxsMjcf7lBByQa+aEs4ioWDBquuUpaobwIFviMwS0aA2KftDzzewXi9RBSwNqcaDOB7Rx+i6ARCATdsOzSbRIlr1RVjPi+CsqXpQZBioTimJDhQLoEIYIMgZS+LW0rZw9ZLbcAqQM3Lj0e16GLKIuWBcrrhMZ2YMOAdvG1DJ8JkBA7VZxlgkMOBZJNhjPIqTBNWGUE+hYGlIoepq5BShWnd8r1JBcoYZn0us59MYSbykasctxhmhEVaId8hixbiqDtYJMKJxAIIzTvS1cnWCEHsAAQ6t2Wrz/KFXQUmFBdYDAynFWGFWML2eATeuKqeSscSA6zTJhFAuBjTe4+7Zc4SUkFJBMwx4+cknXHxoO2QA8xJB1qMdGvzo+ALrBFGdKmNgXcbj+ye26VKJZBbbBd9++4202gVM0xXDsKusp2UaOYDpGtTpUQrKxCCaBxwohRAwjhPePLzDvh9w2O3R9y289Rj6nkfPdwNQgDBOCEvEfJ24LdQYlBIAAnJeoCL8pWQJGhhsSEmn8zB4NAwd+p5ZVClGXC4XjONVRnmz8PVut4eVNqh5nnB6euA2psajiZxcXGee2Na2DRw5+OSrrZ/nCWFe0DYtrHHouw46LZOImD2XU2U3Fo2ECChmLbCoHo1qeyQReVZAQc9M37e8E4kLZfM8YbcbmEFkDXIm5OxrEGytslWUpaL7VkSZhb2ScoLJ3ELD00s5gSilIIW0JujiD9umrfYzpYg3D28Y2EsBvvM4Pj+iaztYsvju9XeY5wnLpMCTwfGwR9/dV1Dq4fERIQY0TcsM44YZBdfLtcoeCKaMoJN1RSOMwWvWlLGOi3tOzq1JgmBL0rHGS40wp1g3soCfE+VUtcBKKcIksGiZ4gVtldRkSsOanHMtSjphnjBYQShlTVLVDm+ZQswqZ98dloBhGNC2LSLl2kINcHuPdw5d34u9IwG0yk1bPgpqkhFjrC1i3vMUWm0VM0b2nGOR8yUExMQgUGMdGutQPF+jb3zdj44YMLaNhTKCuDjHAHOS4mHTNOxfyWCZJpZ8uF7Rti0+evWS9W1iQjSoRSp1WwVFGFTrhNgi+5moSItmwigAT5muCDkhpAjXNiyLgKauCRmRrkgJOWYYrK0sAJASM+FUikKTLmOMCK4HxEU6F/qOQVKjcbMy5zKzJUvG0+lJRKm1bYtbFI1nSY4YAk/CAsF4QDW8NBYBUG0xXwszM6lIjGWAxluU0sA3PAjBt2xz+r6tgEOKCXGJKDahlFR9jzcGjjywHPGr373D//n/9H/Bn/z4C/z85z/BvCTE2KLxd3B3hL/4px8DZNF1B1jXwDc9xmnGLBIdhgi7gW3Q47t3cL5Btz8gzAuWeani/xorKyOd4xIL5y2z4Z2DNw6GCr755ndIaUHbeez2PQ7HPcKSMM6jwCiEkBfO5WSSHgyEZR5h5guyBZ4ub2HcEf/lP/vHePb8JX7ysy9xf7fD6fwWsRSgOBQR07y7PyIsAY+Pj5jnb/Hv/t2/gzKGPv30Uzx//rwOMWDQVYfsdLUdNqUsBAMj7ZoF5/MZ4xiRFpaKyDnjxz/+EX7+85/i17/+NS6XixRpElIJlV3YtR3u7+8xTgExZWaZGVq1QQ23uF/GK07v32O8jhKyGNwdjyLWzUMmyDQa0gHEjOFp5s+xXgHKUoucRegfoh4MmdEHygyi6P8yrUU71ULLIjUSYkKKCS7l2lKpCb1ObGcAgSeSqpyIFUZfSULXLFqgoRWEEAhpBXIY5I01Z9q02CnQIB03Ma55iuo9q6aidTrsYiP0rf4awtgRe1dkMqBznsHpIgydpGV7DiFBXFhcC1sFSNw+5wxVnT7VY+ViT0IJAq6ohoP+JUc8deJqhfT44rBOwt0UqhSeqUCUgDKC/mywuZuYtgJ/pItRNu+tP/ze6xZAkj+SgJuFz69yWYluv28LtImbgyVmNer7boAxwZKUwUbCYMZmFSozuLI+sfks+uC+/+At/cHXD59qt6ngkCRrLBotFTOsuigpr7QvrrSYOq0sxVT/HEPENE+wThMO7tENgQMH71j4OGSufHEViB/OOI4IyyLCe6tqfBEqnQIaW3qzJQYfNCgFUAWirYivaZuPVy0W14BAyEnGo1or0OD6AHISNXxJzNZNUERuYJ3WFkKo9Hs5Xut7jYEtprYsrqr/qKilNTJmlxjcylI5jjGiWKAYw218ygqR3cCMMY8QA0Jan4UNi4A2zITaUq1VpPrx/SMen57QDT2zm46HCvY0bYvdfge3uLpHVDyPJNHWzUtlvReUdVOTGGxljpQs8KskpYCt06HWMcqpVu2dVJuVlaNrpiARs2YYJiQDmEJwruVgV4x9jHPVvHk6nbjCHxh4GYahBsYMPllYy5VlPowFiLFWpxV40oBB2XlhWQBX6v3XjEqRfpLKibFo2raOUU5C7zWZDbQ1PLFqniakUuCpwAr4M40TxutVEgZxdsKQKJkDqrZpmBItz+ZyGVGyiHYSX2JMERRLHa1O0oaoroGsACnGwIHgQIiJR8oXYQjO48SU6BhhugadjK511nB/fsn1cyRqrqLUwGaSGbIYvrV6yv/eGHexN9vgV5OgSg0upZ4JtVf8QbeVkPqR2z1kWXdudSRsA7XXvtDq3FX8tchzSzlJi1KBE0eQkWAMTyvhiRUZIUcsKbBOAYl4dSEesZ2V9ScMzyLOkkRYW9hzevUKirMzLmILc60YrQL6irOtZ5ZI2BrWiOPiGoratpQS62XlDB0ckMWZ6vrXEbfyJUQGpmR5Hz87rRySGgdaqyr1+eGDl4LUWWwDEU+xAgC5dr5aquyMGBNSlm8iCZicQwIh5gjjHPYyxZEnbLLvMJb3/mF/BCBtTSoUagpMIczzgmma0Pe9+BwWyH58fKzJbddySyw17EuKsNNq23Veq6z6JGzhSh8ndQuens4wsNj1OzCr08L7Rhg5TgBVbt/mli4GEAoS/zsnlCIJYxHxcg07xCYru4STGmYc5cLskiUsWJYZl8sZ87zANw0aonr9yyIVcMiUIqyMLmUA3bDopLWahVpRbTizNgpiSOKLU90DousNKuI38+rnvRQF+BAK+Cv3Smb1G0SEuEhbX84oRnYPodpI3seo5+C2cqqgRuBzhVXoO2few86galamzIK5RoSLGSxh2xFTwTiPXDmnAts4dLbH0PZS6WWAOKXIrSbTiF70rXQS8DiOzLJJaqtNLeLEFAUgZ4uQxR6q4LK2JabMUzANFRhhiFgVpJb33+h0gWQviQ5f1dxb2/S8+msZfa6aHN7ZesSTFAGM4WEzToDZmAFrSgWbtMVte0bYTzLLQNdYi0RJ/av6AYmdnNuyA5IAsKb+HgFAXpM7/X7+vTW+zEXbVAxrkC4LkmxObh8zgGXf4a3jke8xQacmKusqxVwnMym7SMXLdd1izIgh4Hq9AoUHIxQDBqaJeHqVnOUCHqVOjoEnUyDizkFaNVbtQT2bqWTEzBpVxRpkAkxmANBYu3WEzGYD1ZhCAcAswvNsvrc+WO+LmXWrPhhVMFLjVMj9x2VhJp73KIaZe6r/FCWWt1hZih9qtyoTd22JXL2JegZt9dTcRPeSJ1v3MxS4hwJRpUo5GGNApcHTQ8C//x9/BSoeH3/0Slq9CXbo4FyDV6/u4JxHv9vDOg/nOzw8POJ0OotUB0/mQyk4nZ/gUobxTdWmVbalgr4rQ6umzDVPgNjb6+WRY0XLjMzj8YjT0wXzfOHiIVHtsOB8fe0eYLsWkXNkxi1FvHz1DC9evMD+2KNpDZYwIpNFBgNdoCIsUIOUHnEdR7x58xrKGDkejzgej+wfrcUyL2s8YJQJGnkIh7WrD0is/5VTRiihAov73Q6H4wHv3r2tNjwmAxdcfeZaoI4ZQEhVsiFnjUV4anWMrHV4Pp240OccDoeMAluR3MpiNWzrirCBAIKlpsYkt6+1RWsTWnHOc/s3a3JP4Gm/xDIMKBwlkqzV6n8ABTEUdCklyfvk3G3yPv5+2v5yTT3UNhYQqGRhAHHccQN8QPPctWODCsfghghU1rgvlw076sNVubkulbcglhAot9+pEawVf5Ny4felDHIEwqoLpTrBScgKpWQp2Ju6/jUyrnGppl6lpqQopVoJXc/bp7pee12Yzb39ofd+76XoTQ116eZ53PxJjGr9rAoGUP3/daXlGdx8Gd3c7/bvbu6NNrk5iOOFQt+7p/XySr2XIkyg7b78Ia8fDDx5x5Taru8AsLBxhOgIeKaP8gKWCuqQYWOWQ6rUaFCG9YZFMU0PsqzIuUwzulaExxWksov0CHuEpSBMsW60Y9ejdB3uDndcFRhD/S4C0LReEFFNmomR5BQxjhfRUPKAceLcAEMFXd+LQxWRwxxABuh6X5FVIwZcg5WuJ8xLwOk8YgkAwaPtuGpFpSAl/seQw27fsTi6VrtzRmfbmyA3RxGbdK7SAHOSCUbgBDOOM2JOuM5RqubAOC0oKcvYXgPjexYL9zwNsO1blHlEnPnwohQ8PLzjiqfnymHX8nXNYcaL4QXu7u/w81/8KZYQ8JM/+akww0oNuIZhqBPdSi41QG0Eeb+czyzAuSywYM2gbuhZQ8MYcfSBgSYVnStrkuucr9UKZpqwxlLXNKyBESOj32TAPAfWp86ZQYy4zBjHKwqxcN7pwqDSeLnCWIu2aTDNM6Z5QjP0sM7i2zdvsIQFrWnhncNuGICMVbyzFBQycE2Dv/iLvwAI+E9/9VfQyWcvXrzA559/wWL5E7dzWmvxp3/6cxnTbRFjYNFSSWT7vqstdUrNJUHiLXHr2DzNSCliEr21Fy9fAuAAcZkmXM8X9DJiXQHElDOQE7zl8djFAEXEVxfRbMhUUEzBmFhPpmkamMyjzNU86RSrRhyGcwL+VMACwJyQlojzNOF0PuO78xmP1ytCnLDfv8SPf/JjtIcDroXpxpSBbJhJkkQbqE5AKYWT5oIaeHrXVoNNpcAUHpu9bY3JWe2PGGOwQC5lqeol/kxDQOO5WruECAfWkqstZIWTxyVONQkpEqQXCUD6YYBzttK+2QkTUHjqVQyJE4ecMZrIUxQjV3DG8Ywgmm6u4fOwFMKUCRYNt8y1fF8+A6YYdvbOohgD7y0yVo0cZmFmuJyQM/ddh7DIwAGuFiXR5SEqVSOEKngjwouFWQtopB3Ue3k2CakkeS4y9c8wKDiHiXWoEuCEyZmkSsb6Y0COUXGfasNT0WmLRXIRnriE9XHK5CdltPG+LYUgJUTA8HjtmAsaaYWOcUYBIVCDaAvgHZxv0TQDQgFO84T//J//Csuy4NVHH6Pve3z6ySdVu0pbCflFMmEKsC2zTGPOWCKLkyNz9TCFCFgWvLUApsaD4GEI2HcenSfkFJBBuLs7SPIrGlslbewKh1wxJBgQvG+xPzh89kWH42GP+7sjGi+sV8faKjr2PBGQSds4Z8QUYcDtOvMSpB3o+y6fW8pDHVEPGFiy8KLhkUvBw8MjT9lcZhARurZB3/cYug67vsXhuENnPXrbIFBBpIyjOQIAOtF8ct5hkRZ3GA/fWjR9z211ErxM01IZLPqyIlarWkQpsf8Z5wnKyuvRojW+tuAaw9VN6wXIWiYY42pMkB3h8XwBSoHzbk0IZN/ZyMlt1SLToIyY/UreIiByBXxJKDkC0gqRo692s4gGyBRnzCnWkeuUDReM4EDeom+4yEZEcGRhAPz853+KmLg4Ny8LTqcTLtME8+6xgndsm40wVNlP+sZjOAww3mAMU022+nZgXT7HfjdbbSnjW88lwfLoS9RJf6JnUqd8Yi3maUHPOyetexFBfD0EtITjSXAKGhaIq5c2FHwYLBNEIJjZc3WPhsitzPJmssyiPNo9xwUp8z6yhAYODRwOXY+Cwm1kcv2cLIEHLBizPie5DmsBZzv0nbJf5P1gQfmsTK/MDJgpJowhSmGCr0lj+lQy4jiuOkbSgjaPE2JMOJ8uHD92LTMX21aAmLwmRYaQUsRvfv0r7HY73B2PzB7xHjGzXVb9Jm2DcaIPdjmfcD6fcT5fsNvv0EqRkBzH5s5ZDO2AJUbYZY2fM3FRZJ6YCW1Fb8ZbXyeyknXIxsKCkCzbKiIVErcVRCQw+10XUFkLZXO9RIB1rHN1yEcuOvsGW6adKSStUBm25VbpIImmtjXHGKsNTzVJNvX58t4rIGvgbcug7TzjOk1IiT9bWZcqN2FcAzKWgea0AG6GcQva3gJIePPtEx4efoenC+HhrcF4tdgNH2EYjvjH/+QX6Ps9uu4ZciakWNA3gUXcXQeCtKmFhJIbpGQxTQw47Y8DF22tRSvPdw4JeV6wBG4Li2HBIFOac2JG9+n0BpaA53dHvHz1Mf6b/+3/Hv/23/yP+Df/+t/geLxD2/VY4oiYWG4CxcG2RxjPBa/jYcDhuMMXX3yK58+fIZWEy3jC48O3iIcjms4iJrbBGst636Ibevz05z9DTAk/+/nP5FyLGLizlXVfBKREERsUM6zlQVEKoD29f8I8TXj73Wt+5jmhbVr0fQdDGefLCcs8wRGhPxxE+4zjnzgtMAXofIMUEkxBbdFOrGZdgR6UguNxh75vmDwAQhH2+TIyuz4XaSeVNmfjDBqzMgpTYQHylBMQqUqFJAE0kIQJaLzEn3LOoIa3VLagl4qAKxYoGVFQeC5gK8giwy1KAYqFgeVYCBkxchzgpIvAGGkTkwmAOjm6kEg0EMGRA0AIS2ZmuxEWPAkjE9LuJjnIaqdXsKyQxPPye/wX3IpdIusne++q3IQXPT0tJmjLFrDmwIy5rAUH9qUFxeVa2Czg6cwh8nO1zlaN3SSAd23VVV8pPr6g8GRu1bzDyh6tE4Xl35JKrNcBlvS5cVv0/XvQ77JCzCEB+VA90fa1+QL9Tqy5DoOQq6YlwPU1ZWQx4K+ApwKMqnnJmRCrS0iRX6cCKmAkMUJBEd8tQ43qN2zDcnkmGTeyGD8UdAL+COBJgyK7GW9cDTnJzRJXmiuThVYkcNVF4cNGhinpTdNU1o4mhjweNsB7ru450XvIUhEyxAElEesEOOcQhIqnGkjbMb+VOaEbWgCzlLktiIwsrv5euUUZOeY0lV5ItFbaUYCSE0Lkf0oRIUehKaNw76oFAwFeaNScgQGqlUVgQ1GyTqszIjDH31fkcwCZPhBTHYetYHEWx679sho46UbWaV46bWlZAqaZjVVrVAR9qMyspm3Qti3un90jpcw0VM8jdbOABF5aA5WeWR0+VOtCxg2nVA+AJjgxii6XtiqVXNFppT3OYeZ7kOqI7aSitdFi0IBOAZtlCVXH53q9YJxGeOkt12ly1/Fa9VSWZcY4jpzUUyPjvj1az6woZvElWWtpFQkBZp7x/vQEQ8R6EuB2ST4rBqVwxUZZdW3DQpx1EklMEpSa2xYxUs0MVBS+SCUubMQ6nYiSQtbAOccCk7QRb9704Rahk8aUQFtqvBqdovW9DQYv7yFDQhJmKxyXgJwiYghC9/as75Mz5mXBPC+Yl4AlRqBw68Xd3R28b+sUHa6O8/lSVk41HOwJVgNMqguk4CTYjpDZJEWobMTbisvK/imb815rM4WRqK1enFZP+LN4PZTuvWp1JGnRkeBA9a+KGg6hIUMAHqFMq8ZdyhwsZ9sgk0HMCSFzIsFtamLmxa4ama6hm+NWnJIkyC5CJyaYaFh8fGPD6/Osjm51LJsfVUCqCOiiE3SUnVm/V/Yms7b0mYoOAlVOJ3LKLD68SfaIbis9peheRE1S9XnXvyD92fdd93oTGaUQi35qhU1YogocaYVI2acKNjln5Tyaaj9zYSaftb4GDyUzE0HbRVKMQDGIwQC5oJEx2c4aeGuZOUait+KdtF0vde/oOtYzkApgrAS9DeBaDEOHruuEeWlgTUHVtsoyVRXcxqXPzRIzJHnf8doowKt2OQkDVj8nhIAUUz3tORdcL1ekEEFUqpC2E7tlyMB4g854AX+YYeHFPqmor546Q9wiiU2soFYnSys4t8iaCngTaYBKyDmgagzJWS7SblB0n6gmi1SESy6yH4TBR+vUx7RhFChjQ23hNvjdil8bFDkjK0jA9hs3lUdDzAjlfDsBmc+AkeesBS4Su6QT5AwIduiRc4Z1DtaOGKdJNDBLBS1Vo3Jr6621Iprs9NDzPVfdN8NaYJJ86Vmu51H2IYtOxzX+0HhK9omC3tugW22M2gE9Z98DmPSlz6Veg+4HrCTIarNQP0cTHiIWmC52FebXncZt0QWUGPTW+FE/z8i9FKDqLBJ4Ha2RM1RWs5NLXhOZohO62DYpm2kTMNY1dLQBLyUGq3IDWP2LMjZQVsY67yGqMg8pJ9hia0zAsZ4OCRC9E/m8lHnKYZDp0LbqAPKQHmV+WgA2ZSDzObLSEqTMGA0HCGZdI+JEassyqcwxFTbfxhWia1MnWhVJisB20ekzMawD67wTmyXTDsEsb9r8o3uSjOE2ns22+jBpNSJ8rsnV2rauYvUMpKoQu7bjs74X2xpmiUWAUgX/ucMiwNgJMRpMo0FJFwA8IbVrWzjbyKRdboNMbYvGdwAsxnFCyYBvJMaSeEZF8JX1AFLgLYp95thrsYZBisjFrnmaYQ0Pa3DW4ZOPP8Wv73+Nru3gnWNdUWvAE2QlcUwSGBUe/NF6h6HrMXQDYigIc6rrwwzijBjy5lnwvmvaBr6oPAHfh8YMeq55zYBSSCYPS5u05fYpBSRIQJZEqRZuU0q4Xq8ygClszg+fX5VEySnVzhCr8SFBxOJXS0WGNfu89whLgjL4QBsh8Zy55a52N2zs+yZM3rKV1T6w/UgSe3BBB8rer78suXQhHgQC4sKhiOxDZSzMhkWIVRNJc1pAteMyillBmSKgQj2QcpGa3xaxSbXwJRWCCiJt0ARlFmm8vIJPK9CxohASXxfxO1j9RO1KqU+iXtb3XnqOlSGvjPnta3svpf6Xrm6u9pSNmDBbN7Ih+hmbrbGuF9WnVHOxNSnZ/P4fuHj1Yds7reu6uW79u5XNe/sZhtY15IUsuLn4zZvVV9X8SP6f1N9/4IW316DxTl2LbT6wCdZvnxc/c9p4sh/y+sHA07oxFcH0QofnwJWIGQOKyvJFZBQyyCCQCYA1iEtkirUkst57BACICdM8IcaAp6f3iDEgpYK269B3HQqAkKJoOQCDtH3tdnuQMThfL2vCIwFATAmlREaHwXo/xjkc7p8hhAWXyxnWtbBO0XaglLmCM8Za9LtBqosR5GylywPA5crjlx8eHkBk4WyD1jfo+g4pczW0aZoKOhjphc2ZmRNOPs9jbR2q6ywBcd1J8rTVIQdp3xrPIwMNJMCMY7Q8xSxCl2xQeUJMwPunR5xOT3j/8B7TOLNujbMwzuJwOODzzz+rop339/cYhgH7/QEAtzfGhdfBNx67w77SHfW6FVQqhRkprW2rwUnivN69f48kwJAxBm3XVU0BbVdcYkCIEW/fvkWK7Ojv7+7x4x//uLbVpdTXRAngXu55mfH6zWs8PT3hzZs3lVXxk5/8BLthh8vXV1yvV8zjhGEY0O8GrgDkjL7v0fYdXn38MZrGY9/vkWPE6f0TxuuE8+lcA6xvfv97nJ5O+H//v/6faJoGH798hWEY8Ozunid9vHlXNQQO+z2sZT2I8RpxOZ1qwnM4HFjnR1qlwjxxBX83sAMsBWFhNsJ15BHoOg5ap8iEEOC8w/39vfTtr+KCUYJN5xyDjdOMKfO0rd1uh0ba7njvcQJQp2zlzAKwwk5TdzFPM37/9dc4n0949/YNnj9/gWfPX6DpO5C1uFyuOJ3PHCQsC4xxuL97hh//+Cc47PcsXhi5rVGTJmXKuYYr5GSoBudWAncWlmWwFWCg2lo2rjrFpxgBIzdGlh0doVi2R03XyucEKB1fwY4K7IjFVwaadQaQtjk9pzxIINYETEfbpsJtWp3zaEoDnTKoQUYIbOMyCoqw9WKKuI5XTNOEYT8AzmAswgACJwvaTqZJxzagwwYQ4oqXBZWMnA2yjG7Xypq1IuC5LDzVA6tmh/McbFgS7Y6JR3LbpsEyzzJ1SJPCNShgp1UQC2ujJXmenMBkhDDDk0fbOklwV2qw0r2VVr1tq+FpbWvgVQBmH4ovMmAGimKPOWeQShxkrriZBFAS1luMyM7gxz/5ExARuq7jlkYU1vtxDFRE0YRSwMYah13TwJJFSxbX0wnnpxOulysPkxBdkfdx4emNxyOahiu5YZ6RYkLfNTxC3rvalqssEV1LtZ8GXFS5uz/CNy18M7A/RYa3HFDHyEH2skxVuNoYg/1+XwdyaLvQNLP+U8gLQkgYp7nuXQVgYuBJh29fv8X5fK4FkRgjfvfmDa6nM453BxwPe/yjP/svpDXCCmjL7aGWLGxmQNm6ll1XRj0vIGYorK3nnECpsCfHD8xycjINVYEOzYxCAAEAAElEQVRmIwMr+Nwl5MTTJp1rUIpFDARjHMhAJgoBhry0fSaEkBBzqGuiwNs4TdJmcagtHarZ0erUq82LxJ6kXGApA5ZZiIcdt2SvLZS5tuefxiumeYFOSGusZW0PYWuEGJjhigznpPXftTUZ8sJ+5jZvh/PbK06nE86nE1KMGIYBXelw/+wZ+n7A/d2zm8RQbaFOLF3vhcEELXzolLdRplCFKkB+O8QlpYSnpyfknGvypq34ytQupYg4sN3GsJyoivyCiiXnktFJuypfJwMVTlpgjLWVLSYmoLKsKpAkzwXyGVF8WI2nErfdbBlC1+uV96IUuiwRfMNsPi3KxLQORgBx1TiEyMUma0THdB3LvtZPJLkRUFP3W0gBMUcM+6GuhwL9KWfM0kIZY0DX9XC+wV/+5T+vn6nxp+bRSdpDWZDaVlvkGy4cqgaddRZGztQwDCgoCDFxq3zMaEVXqm2480D9o4r5a9K1PTv1Pje+iBkHUgC2BtfLBTGwrqsxPIAhJ2b7atynbWTKJLDWYQsMlZSF1bsC31UPkICSRTdKrks/VwGmbjfU35mmCdfxirvDAeb+Hr5pWHtWmSfeo7ENLDosywVLvGIOQEwB08z2/u7wDHf7O/R9g7tjg1evWrx/veB9WPB4ekBagMP+iN3uiHniYkDbOjh/h92+g7MdNBGNIgafS0GQWKKAB3XknKuvDYEnuWmc0ch1Xy8XhJm7Hqzh6bbvwhOGrsOXn36Brz/7Al99/jkPELqeODNLBZRYoyifr4g5IqQF9i5jsAZ3wxHH/h5ffXVC7Avopz1K8pjngHlKmKeEA2kuxHuC4yDCOkl8nXKoovtsz4GcOF/pug4xLAgxYOh7eO/gW2437Loe5/MZX3/zO6YiGoPvXr/GeLmy/IXjKekxRrx985af6/WKTz/7jKdqCoDYtC0fshBqbuccDzza71o45+oEWi5IZJS8COCYYHMCckRO4DZvsRUcdKyDeIgIlhjmL5ljVx3qQZa7aJzo4xUoMz+zV88Z13FiwCpTjecaKYRV7VqN7Y2V4rwgamXVGrVG9LckzybwOTQCHigLtOSMtAHbtaiy9XNb8NYps1WmCSoQpfEoX8sKzRAxu5YAbpHjnbKRqqmG8nsgzrZ1VmPWtVAmLfyFBDPlq4hiDlagjbsccsoyRRhoWyZ0OO9rQZf9AySolcdKqCxdtrXaUs8grXG2AvDAer0Ktm/BSQZIqTLvtq8VqNwAQB+iWEzfvvmdeo9FxxVV7Fg9fV3LW/RrBR//0Kva8T+EpP2Bq69LRGA24w/4LeCPAJ4MqT4BV3uXJQuQkG+qHBokKkOjFMOVFDk02qamVV/VPrDSb23FMcVoa/CiTkF1gJj5EUAEjNMVRKbSzr33HJQQIcpkgZh0Ch2hWKX4iSaVUD+rLgBUlNrzdQlrKW9ORowMnk0bZ6UVL9XCqZVRqWLenGmiG12bQoJJKmpeuOWiGhuAN18pHwjFbTY4OKlKBJRs5ToXYZFFQe9jddy73R5t06FpPZx32O/36IcOzvl6cHRKyM0uleeosGyQ1qi6OuIkVa+J946Bs44ZWSiYlxkppRrUc/K3ai0w4yTxlI2uRcmFAb2uq0nD9sUJKbNBjLVohw57QfqVQrjb79G2DV68fInDPCOFiKZtcHe8q1pW3dDXYM2K4GkG0PVd1Y/S64spYj9PKLLnnj17hrbxLO4qxsmS2ehCGU7cxbl5z2PZm66tgaJWWJUpBjlLyzzjcr3icpUk93h3A/ZpMOqUSVcTDqpGXUV4nWPKK4FqX7vqHJSiRjh/b9IDYzIS9OeE0/mM8coi7Blgyio4YVBQdJ651avvOm7LGYYajFTKp+z3rTipdRaObN07+lIQVX+nMnAKg9x8ncJIm3mUu9Jooc7VUN3Pyj5TDaCUMzxkpLae2YI16CbRvcDal10ZULIPOW7k1g5n7UphlWcZAgMNMUYk2aPBBlAhpJKQREgdKgRNGxbaWsqozx5qVvScFrCdhOLVK7drrRTLeoDZlBvOUw2qrAR6RdY/xVhrG3Lq6l5hlgmq7QMRTFn3HhmstrH+9mpWlKZdTPn+2a6PQPcz6nfpezXphLYPgvetMw7eOnhyaFwjgK1nX+Z5so9zrKNhjatB1rpGvOZMdC6YllnsgMUSeCor57mmsjbnZWbGhJzFGBNmAY4HL4UGSZyapkFZAIgN1STeGp5cqaOnOeBa9AEx0wUFMQRkYQmXkleAdbs3arVQWtRiqsmYglMKoOq93x2PbL9EZyZnPsOtc3j18iWOx0PV9ZhmZuGQs7CmIFmqbA2ifAM85ZSrXtsSYq1kW0Ow3lQ/WfIGDK77Vu28BKabPbKyxoir00WmKxZmQaWcsCzMTkmFRVittJFyTGNqDKP/rCzalWBet2aB6CWhrpkyiTYXzvahFJn0ZyqAoswGQKasoSAng1wis79B0k7LwbF1Dp6AvvSctBUGFbquwzSNAICmbdH1PXoZEb8eZ9FDA2phIdfYM1cbn2X/omxizmovStVT3DKYtTCg58YGV5MV9Rk5F2TKG1BCz7Uw14U1R1nimlrgXO1rFLHpygABanVbP7SUXLVRTJ3Kpm1r2noRGOwrtxP01H7o+5x8hwIb+m+t+uoahBjgyN+05daqvlm1eRS8CiI38e7dW8zzgq7redDB3R0L+ecsII8+O6ptfU3ToBRmynqfb75H/6y2TGM0HZ5CAlzqQBDIvtR/in6OpixlZfvxAJtQEy9vLRrnbp69/j77SY7prXU8biKnysB0MvjCNR4xACWI3s8mueX7LCuoBHzP52kMtd3jRTKulDOWsNTnu8ikuiyAIce3qDpbKCLGTtwmRUaY6bBwICwBYOyAn+14PSPEK7xpcbjz+C/+/GN8/vkddn2H6+U9Xn97wn7/Ct4XHA87dG2H6/mKggxQEiH6CGqY0embdRomsxiZRRsTr1VlZ5M+a6AUAS9SQs6oTLca2hAklmNmk3MNum7A0+k9QljQtA3W4SMF1vJ5ygUYBofjsYP3AIiHKpScMM8LS6dQQIoGKRK6voX3BSFEAT9RJUI4XaEan1WZCq6e3eY6Yi1ClOnU4Hi27QYWYgfxxPCUYYxD03YwzvFwH9VPjZF9juEW5us4sq8rq51Wm7K1aer36vkGg0ha1CXigTEpxo3eJaDBYcHqFzQXq3EJ1m4bAjP/YzWuBao1rCGussH0TCroS0X1lahq8BEMDMmUeZRqT4vEbAQ+u5QLEhVhJ6489xsHKn6W/VWWz9a/WC125ftsgKJtzoIPP1LikRqbyj5eMZNN8fHmtzfM700Os+bVuPnOLGefFHXZPhRwrGiscu+L+NAiuSqg3VvrM5PhFpuOCx0ohMI4jur3rlqZN1+5xtO6jrdh7c39fg9o+uBV9Ex/74fff91wybZB9vf/dvOmcnP/kBiaqNzc03rtf//1/oG3/8HXDwaenGvF+RtJKqcajOz3hw1IAdE0SrXXn4gZUMYaeMOOxSY+2CVlmJsFKWjbRhgxHCy+f3oS8CQhxIICnrg1W4unyxnGWPT9Ds6yo025YEmJNVaWiHmZa+uWXicR0DQteCqK0PRL5iBYdD6qQ8ysm6HtJMrkOF3OKKXIWGbLU+XE+vOGlKDaiKBsKUhYK5g1cSOz0X8Tx2oMtpVWNjUQMC5LJY3WzykyKSgsNbEJYeGATCqq8zyiaRocDgc8v3/BbJzjUaZj2OrwtRIB6Nhw1hSqVU/R2ogxYhzHOjLcWouh6xmESJuxlcTV+xgDUs64Xq/IOePjjz9G23Vo27bet5PJdFF6oV999ArWWHRNi7Zp0TTNDeqdUpK148C/aVu8/OijWrm2wirTisY/evESKlaaU0KYufVumqZq4FINPLkV7nDYA3tOiBR4+vjTj6EUc32evB4TA7IhofFeEknuP7+cziAi9H2Pru+xO+xrQKPjykn0/Xh8Mhu10+nElR65h77ra3VVA33nHZxMQKnUd2NQdShzARzQ9z3vuZSx6wdObs1qnnLOrDFmeLSthP+ScEPOd8DrN6+FjcQJXNN1SAWSaM8Y5wnn8xUpJTy7u8f93T2OxyNrleWMtmlRgMp6Gsexgjttw0LkGrRrsL8snHxX2m0Wza+8to4YY5ASs9Si0NGlIIT93R6NVKYV/FP9sZAiYkpoGh5b3oq4O2QF2PgbON+wNkpiIeaUWcOptj0AmGdmCbFdUOfEDo7Py4g58LS7WDJPPml4LVJJmMMMZEJQR6q0YBEt1mqZAkhqN9QZpRzrA60wEa1JEZ9LI0wfZVKxZ8spgIzofBGzPq6XCyaZHLRWxfiMJ9kzxlmQ96wdR6SfyhORCrcYr+NXN2BZycgZNcDeJlJ63WZz7RU8JJ4OWAQgcWSY5ZK5SOLJorU9EAidm7FvdzjujpwowoAQYEi0CwXk0RYvPVM6oYYsJzTX0xMIzOw5X86YlrkyCU6nE0JYME0js0hlb00zC3IvywwjwFPf98xuXBLM9Yppmet+fvn8Bfa7HXa7HUop8rkBGK+i6+SwLJOwk5iRoCK03rGORNzqI1kv7MGMEBgEM8agbbvKMjidTqxFt0QYZ/Dpjz7G23fv8He//DuAuCXt41cf4eWzZ/jRF1+yWOyuQ8oZ7969BVmDpuuQfQNqCuaUkEpBEuDJyiFKKWEJC+ZlwjgvWELA4cAgVietiSjCHiRhTCNvil5m1anAyrzgFmgCT6LzABGmidtRVEw5bhLZtungrEffrzGLHAw+E3LO1f+Wgs2+5yBU/Q+wJv/VTkD1ZIAQQ630D31f97822BEcAkGSO2EmCwNMBzt4Z+DANnYJEeM8Y388oO1aZgaHgLv7e+x2O9H9W8ESttepskZQAKpaHSq07Hh9ysomIW39NkZsZKjBtjKVtuzmmCJS4XHpGjsQ2I+VZDbC3tLiavlnHlw5jilVoKlI4gWiymDxDZ/bele0JpE586AUFiNO8G1b9UhqjJC58u3kDGnRS4sMbDd5QlqW71b2l760QKQizKx3BjRSRGXgnNtDddoUMyjEDpxPGK9X/PVf/w1OpxPu7+9xd3eHZy9fAESYI59nZmU5mFQwTbN8J+tcnU8n9EMHoMA3LZxrqp30fgVAWcOU0O8G1oAUxokVnzaFZQUlC6pcAjIz0zPlWtw6Xy9YwoJpHjG0Hfq2q9/JADTBeLcCd9byXp1n5JDRdh18zlzoNSSAKWFcJhgZZKBFQrV71+tV7JcMLjIbiQKJexSkUl1IYwxCDBhjrMXM96dTfYZt2+LZs/t63Qq4912HXvaKMQZ9P7DO7LRgHC3SYuE6B6KCh4fXWMIJr168wKeft/jf/Xf/FIc7wv0zg9df/wf8x3/7K/yL//keh4PFF5++BNDgq9++wxIyYiwIcUHMAfu9QeM9ms5D8ep5AsYxY1kmjOOIYdhzx4DEEE3DTG1nLJZlxhQDaysWg65jDd5l5njHwKAUi3nJMLbFsL9D/u5rfoaHgW0pnkCmoGkNbCYYBzx/OeDzL+/RdAmFRhgXUSjgdHqP8wVIbwIav0Pb7LhQ7T1SnqqdcZanrPLZSjd2iM8920ht1VUmYCnA5XpFzqk+u+FwwBwjMiyWWBAza8oe7u5qDjBeOBdbkrDZ+wHTEvD6zTv4hgvIUTpHogIHRtkzDASrDdwWnnRfxxgBIS9YEMhh4xe+n4ATcZ7GxaoNKJoDUomgIu3jhhCjsMBaL+3RXFgIgXPdyqTPGTrh2QjIyLAugSjDWR065aRAacFMniTFuAQoiEDE+qFbEEleCkTzMnDnDIrGjswgZbaV+EGsADEZEikYjQ6Vpb6uAcd9fxiaULxoLTxsAljaAGbynixgEbMruZAuHCR9k1yXFEHElilTvmxY5lsQhwCUVDZB6nZtIDrCJJP5uC1Sc80PwXB9qc3d3sQfA95ImFx/c/tB9X63a7uJVQj5D+5T/R5919pEuH4egAqK6vfffvsNEesHg07AHwE8hSUiGkaKQwiY5lAD8xASCAlc2mQtA6XS6sU6xxQ37119UHxDWSokhoOHnOCpwGWPpoME6AtCmJnBkxPywmyGlA1Y+5LFzZqmlSomoSEHNNwyAnFOy8iOTiuJRIQwL5iuk9DYCY2TSQaZhYtdIxNCwNoL1lgWrMsFneNkqut7fmCSqOmGZo0PJ6wnqTShsK7BRlcjCULt3KrJgML3rgY2CqvCyTh2DQLV+bJzbeCcJusFuRBKFmE4S2gaV1urDKxUtDJC4MCR+9vlOqU1R2nLWsHTCQaFWEPFFMBLXz4lnrBlYeCaViZOrCM4h65H4xsWrM0Z3jpQ5so9EUk7F1/70PZonBeU28B7BgLnZa4gYdLKurbhFAnlpaoMANM0S0WE2QGTPJuhW8VcrWi8/P9Z+5Oe27IkOxBbuzvNbb7uvee9h0dGRjZVJAvFYlMCNFBCA00E1X8RpL+kkaZVmnFAoKQiCoRAUsVKJTMjmBHh4R7ur/uae+9pdmMamNne53vumXQCuoEX/pr73eacvW2bLVu2lnb6FG5Jmddx1OBKgC9OQJ9SO33MAORDRPXH4DvRURCtGRD6ceS12bOYqO58AiqQ6Cz/PX8/1u3qQoe7mzukAydYh/2hFpuQwK6Bz3s1UZZgoF1aw1ovfdeJzoJ2qkkIWlR/SLWv+H4wlTPnjFhU6Dbi408/YaDPe/TjKN+QD4j39w949/Z9tbF+8eIFjoc9nIFoBLCTGMn+UwaQFhLRAFBBaWPghX3QCzjAXWAGyJIxTCkufFifTk+Ia8RZxiK7rhMXLMMFnWWUTZmIDRxlkI5KqTpatjgZXVUXJHmuJCocPukZpRzUrm0uhJyTdLXEFCCzNht3twFYiwJCzAlGO22iUYT6km3mWg9bko6N3Z4M2ydtHs450WsR5ydx1lJQxxpT3bwsDIaux8uXLyuNX0Gr4JtzjHWuFuTKjgIpZRnQTlVJ28RTGCQC4Fv5s1WmFBqwpo8tIL9ld1rLTqOsaZcZqJB74K1jME8aG4g8fufMxkGxOtd4GONgrW8gibR9NN0JxjGgOkWsiYHqTBnDbpCchXC4OqKUgmFhQOfxJOO0uaAfB+yPe1xfXaPrOxHZBHYyzsN7XUaznENKCd9/910dn4PZaLZBnZsMQuieNQIAgET3b5pnpJwxjHs47/VLoe8HOC+umdJIABiQ7j1bv4/jgKHv4J1Dyhnn8xn+1Ue4ubrGYb/Hbhg4BhcGGmrhnjOmdUGWJM1Isml9gLYKmZXZw3c9ClEdy4piUx8cwI41Ht7xr5QzYlwB4i6udRahgoONgaPMHmOUmQjkldmMMbaRrHlZ2MlNr6nTIEyAsEEV0FNmhMaK58AIr0NNlJNooNQCeaOjpe+trxel8OeCmzv1BBbA1T2didlSMRZm0QUWTY7LimWeEWPEy5cvYa3FfrdH33VozHPR+5DcoJQCKxpPvrJTUAsDLcIHuSfa0IrCSvO+5SLrygLwegapzTt3ioG4rlAdRhcAWMCRXEcpRjT1JvC/W7ArKlE7j7QxVzLLO6iZS0uSOaawxki7xoUIyAUheCnITNX/bOca33P9fWXqDLYKY38YR9s4BTctjsdjBa9a4SFFWpLrn4u4D14wXS6YpwtADIBdHY44Hg41t1qWRbTbRIy5E8Cd2FEZjtckiFnQgMRRXceyD9t4DG0AsU0RWL9PAyhZey5Uk5i6j8A5+7rKWSBmCsqWjJLjq/6SFllZgETj+PWsNejtIJ8KcN5jGMe6xyHrVEdrn7FPPxwTF8DdCVt73I2SK6daMBph2FoZ81QmNYywF3Lby/rfZdNcYeBpgrWE3b7Hks6I8QmEGTFd8M03EcEb7A97xGXFt79bcDkByI4b5HHGd99/h77fs6FQTFiWiEPgeDyOezjrcZlPVc8OATjsRwRvJVfv4Zyw6KHaqMxMt8YjhAHWZnHPZCaV5pI5RVAEsBggANevDvhHd3+KUr7CsOMm8O7XCd45vHr1EqEHup7w6qM7XN8ekLLBOhUYO8B6HlWzwk7cDUfsxht0YYQ1Hs4q07FIbsHMnVRyzbF1ba5LhI4dGbONUwXryrn60+nEgG7XoZSCr37+1bN9aCRwERGm8wkxRoyHQ43Tvu9xf3oCzAnG8Og5N0dHXh9MEeMmlTYNSM/fdlZ671nzNkXkFJ/tdV3H24YjSB0vba1bvPXyTM57qi4nATHK2QCAHKGTph1cQFawJ+m0CtX1r2PHvM8SDCxrUMr3T8IwRlEJc5LPIzqJG30gosaANGjglH43AEyc0OcIwEEaQGqYpHrdanwpH+Sick5aIX9s4ym1H5cYZn4sBMu/6fmYQYWvgbzBs5yGNm9fSBu2eq/YCXkLyrSzSb7H5gU+/BxbOROgMaD0+2yeWd/jB/hPxXjMj/11ffzdEBWgIuFa8xUY0U7Tn33+3ubDF8fza1AnI4B6ryE5yvbzKcOUVJD97/uMP/L4ycDTskRYa0QYMbK1tPSf4srCqiRgiRbhOWdBJgu6LiAEj64LtZMn31q6X6JBs64MfhAq3XE+XzDNwGU6VYE9QoHNFnHlboYmRarT4A1rg3QyWrQQ8Hh+ZAbM8cDuHMZimieczxeE0HHQ6dmulFJmlzHvGUwxlvUKrOPDl4AxsJ7BfuQujdoKG6AezHWEDKLXI4BT3uhrcPfWYhialgKBQYd1jVLo8MZRPR5d6H3f18TWewOigJhY26mQZUtaMrCWv4vqMRRhebXAxsndOPaV3j7NM+K6Yr/fPwN2LHJF9C0BnXQQINfFwaDv+HXWda0Luxs5QT3u9jXRosJC1dx914Sv1O7wmjix0YRkXpa6JjVhCDa0hBPMgIBhkG+6TDifTjWQpsSHrQXTrb3zdXyP1ysDWURMMa/MPdlcRcY0tMjxzvFYZ0oV6WfXmV5OyNYVGHfjsxGX7XbnToSFkRotR+7ixpjQdz12474e4E6BNcOBQteCFjbONtqyBg4A3D130hVRoVTtAkCBDIMgdswGEIt04LIyQ+H+4REwBp9+8Tl3jrse0zRjmmema4Pw7t17vH37jhOCocfLV69wOOxhDXiUJCYEKX7Whef7NYFlYIgdm3QvmH6orLmcmU2GXJBjhEUBZYuY2O79m69/h2VeMF9Yw+vu7k5GHR2SsD0MAJLCiDaJN6xDLgQSJxJbCnoBVKreRSl15NN7ZU7lZwmsMkF5n7MIu3GizSa6KSmzK5txrooFswYc22+TUJ5JT1/TxiIINfQKi2gDHpa2qgBJ+pwFZYiteyt+tTi0hm22AS76h77Hxx99hPv7e1xOp/pc772I7kKAXe32MHiWi4zdWQPrPECmarDUEZAKlKGC/ca7ujefJyTga2QttkmKJrMkcd8aqhfEwiAI8ESZQIlAkXUyvNURygY8GeMA42Csr+LEDPwVAaEMvO+wmognOmFZVrx/uGdNnd1Yz7orYS8uyw4xrnh4eqqf93j9Cjc31zju9nDWspGBYSOHEIKwJRkgIWJjhz/84Q+ij8bFXBA2YymFx6LHEbtxjyCunxVgoISYMh4fn3A+nzHs2VjheDyi6zqMwwAfPHphpQDMBACAIQSUlNCFrmq7rcuMsxgx3Fxd47g7YBwGPE4n6Gggj+GIu2CaoWMclKU54r3ikKwP2QW4EFiTb1mQcsYaufERBtFUc6zp5r3HEiM7mGaJud4DzsB77g6rziRET4z3pID+69LAbokn08Qucaq/6CDnTtlYs8s6NMKMUXOUra6NMdI9FlJMlH9TjTwdg9xqzlg5a3R8yXrXCnSjYwP8KxUWjp7XhQv1wIy2VRi6MUb8/Oc/x2F/kDHollVyjgDJ1xh46gQ4diqZYLXgymIIsVQArB+GejZoh0RZCgo8jSNrOt3e3jLoOF1E4Het19obC+P5bHZWgYlmPgCJJQYGlDYxjhorIueMviizh6NUbQK4Jnxe44w26aRhUQTY0EpENXMU0LFGRlqg5jkARFzaiOFBBcblvUIIGIZB8r4i41KNIZdS4rOlFKR1xXRR4GkCiBC8w/XVFY6HK2Z4J2ZQ9aGDt+wCpWAWkY5kQoCnIrb07Aj7ofyAjmRpXqHrU19L8zhscgcyBl4akzmmBkiB7e3PZ8LlfIYDN4J0PWtuBKcOZ7bFcu7wwEjR0vehgpzWOYy7Hes3wtQ4us1x9FoX0dxTA4h5nrlxSQXeeuz2++cTFlXondcHA8S2glC5iC6oLDQ9u+d5rtexpBV5uSB0OxyGEfP9GyzrQwWeXn9zwfXVHi9/+Qne/CHh268XXJ4MUAKoZKxxxh+++wZX1y9wOL7EGldYz5qeh8MB3o8ADPL3q+hcOtiex6eGIWAXh1oXhNCByCDHLHkaa9l1waE4jjHnaUZKK7zrQADriFFGQoLpgZuPjvjiZ5/j+rZHLhOm+QR39Q6h7/HVV3+C43WH2xcdljliXTO++VvgMmUYt4fzA19DaeTt99e4OrxA6Hiaw7tQz3UdT6a8zeEMrID767py3bLrnwFPpWQsy4Jpnlg7jgjjOOLq6gp/9Itf8D0prIO0rLGOoV/OrHGX1gZMni8XvH96qrXHXYoYxxGvBs6hswAsVgTclTVpDLFbs9RX2rhclxnRoDKEFXhSpnsDyVmvk2zLu4PzsveclgNiAsX6kyUmZmJ5A7sTtqI1SBbclE8JKemorxhtOQvjnOjWJRgUGOLc0cJybcdIEV83CWF6b4zCBAYo0uCkwnWPd6bVFj8AljSkNICpgkxojwpMgFqDEZxX1eds4pWC4Vq/VQAHNc1tgLloQxtjxBm1mVwAqDU3qP0MyTvrveI+BaMzGpuMJChKWOD7qcCTSm3w/9VzZvvZNuBN/QzQc+zDnFyv048DTs+Bq/YeP3hi/SPVOoHwfJwR+BHgira//SGspXG3OQDKZ352BjZgbws3ms3//32Pnww8ZSogYjCHiwEA4nKxRh6hgmiGhK4DF0NbFxH5sMLisUKhZZFIg0RAIhFMlEW/ThOzg6iI0PcB6zJjnefawU85s/Dr4Yi+HziwFBZwzMIs6DoPHxxc4A7I4biHao74zmPcjdDsYhyYMaWBZ0uho8JjDGM/oA9dZeqQdLeKFFkwBnFZEMGMGxYZlffzbbxHN2boBxjDos1620iSeUbx2Q2BwGh9IXBykAk5qkvdwpvIyjYxqOyllpQx86GsKydUskAY6bUyJtiQ/OC5GFOgpHYcI39fTqgZuFkXTkafnp5klIPH56IyqayFL6F29LWrVQoH3yUlLMtcg7tSX610I6d5rtcmSze5HRrNlYiAmpSraKm3roJKg7AEcsp1sS3rIkkH77C+4xGpvuvBVu6NAcSi21Lokq4aBmsqom8NjGvAmA++JVMgrIlFnT08F+uS+MAY7MLIe8tpYGr3aduhA4BingdyYziBAxEWSeTGkcfyvLj05E0AM5KYMlYg7opE7F4l75qkGLt/fGRbahnpG8YRVEiYFQXWOkzLgmmecZkmTMuMAoLvOtzdvYR1Hd7dP3LRkhLszG6FS5wBAgbfsQCiOvzJSAQXSgKOyKhIHwLWecK6zHi8v2BdF7EUTnjz/eumpQWgXN+IXo7H+XTG6XTBMHKc0HWYiQvocRxRRLdulURm6VYYg9qVdOKUpExB3j+cbF8ul1YQCavThg7kA5aVmV3ztMjYinZUMhJZEcQVZotzKBYM5oOQkWsxvC2Cap+DFHCS8SR9quH1TWUjyGiAGBcuqiThynw68oFgeSz1r//6r5FF+BcAuhDEcZPF6pUxScSj1SQOcsF1MMYJQ5NkzFQAbjnmnAhm5syfVTVVSCzWzeb/FGgqwhAjicXO2JqoKOykjp6cdCcsC6H3AV99+SU+/fgTvLi9w2VZEVOG89IdtSKQanhEUYvdUgU0WQCDcoazDrthgHW3TQw3rkg54enxoe5NBRu40dLBGIiI8gprWIMCAHKeavHre9alUZfRq6urCuxYAd/UjXQYR4TQCXNulQYuj0d2vQXBIQwDblJGP7axXH7PDE0SVEuk73sEz00hI1bix+MBtzc3SPfv8PbxHpfLBefzGfSCz7IuBCRysMQCqrM0EdQ5T+4eYICn85nZTDKWqNpquUSczuxSZExjGqjTZ4Fhc5KiawHPHwYy1igiJVLAMkDUCqEQ/OYMbG6x2ql3oqXiQleTSO+U3adxF7WRoukWCYrhnYeRuJBLa1hEYaXAoBpD0H7PIILzsBCnLwhTEJY1qhhxBQQg8MYBmbBcZnhjcXd9g3MIWJYFp8dHzJcJ18crPqc+GGnTdQEAfegay9O0c57XLVXdylQKRmExbQFfPWN1HAqy+87nM7x32O129dZsXzeVAooRLhuU0CQGsowqa0GkDmsFMl4Shc1cBCDLhcVqzUZYmqgWVVayYdaXRD2PVdDdGR23YNt1jilSnMnzFZQyziGJHo8+p+s4f9kCTspGZwaewTw3cxoDIHiHEDq8uL3Di5sbgAg//+JLUCnY748MRIKBqKvjUZhZymilqrtlnYHvOux2I7K4yS5rxOV0qexFZdEZsAnNMHSAAbwJgGggKoAKw0wG23e8tsHn4BLXOpqoILz3DvvdDh+9esVNsZxrI6Y6/dooORs3p53Lss9MzaHXFPkam2bOwY0PBoW0If3hGeosC0Gzw6dqvxaZbrDS8GCX35QzoIWoMdgdDnwqCgNLRfMrS4Iaq0RlCWNKMGRg3Q4pE9Z0wv3DIx6eHvD0uGKeCcNwi9Mp43/6H7/G+XHC08MFVHq8ePkRPv3sS3zx5Rf4/Mtf4Hi4hbN75BKxpgUqFG2tB8ji5csXyCljmSOPahsZ97UR87yKC3OUr8N7e105rjSn2VJNB/i6AcOuF+AkYE4B58WAfEGxBde3tzjigD8pP+f8tsswwQJ2B98zAzTmC5ZY8MnLG4zjHrv9teRiHJut49wlJ0JcZ3nfNuwUQsDQ95imqTZQYFDPofOFNcn6Yagaq7txQB88rq+v+b7kDB88zudzO5chY9ZST/G4aeCJCIlRl3lmZ2sB3L9//QbWOrx9c49hGHBzc111R7W241Hg5/qI+ui6nl9f4k3FEQw78oUNO49HtQ3XYTW9FpY5jOgPclNZmfLGi4uf85LLtBhQG35bMEMaVMx6DkKIYO3lVDIDagAoSa5kAWaW27r+qklMzf9dlfnQg1Zd2ZXRVVm5IgWzZbIpMOMF9CmSfys7ykojhEAwErszFVjY2ty2AHSweQvsfPjgmAnQyrFEzyPVoIU0S9ikiBueWfZJyiIGb+rEYE2pVfWMtRpJgBx5T4VozHMgR8+huiQUpKpJ+o8BO3iWy3yY1ny4/p4/Nu/ACX79/KQvThBR+R959Q9e2vzwr37wuRQAJLQ6cws+WfzwO/ynHj8ZeFJ801iwa9BGKLYlEB7OsZW0XhSlDhdJ6ivdrS4SthrWooGMUW1mOdQUtGH9HgU8cooohQXXeG68r7R/3oCp0t67rkOw3HmzzqLvO9EK4cLCizYGEdD17IoT11hF/xRMUlZPkFl/NNsj6XBmAbRsLUAulzNbU0sAGUYgxhXLvNTXDqEHDJB0xh+qI1BqUNYOlQakkrM413GnbFlmsSVVAWw98NG0qqiBF86omKoGmef3FEDr0mr30nvRuxJ76lzgXAsSejhAO2uyNupopVIk88a6FKhJaCp8UKjOBKBFPSqq7ZxDFn0J1RzbBmgq3BFe1xWXy6Vev5IzsyF0XKiwjXOR7teyLOyWZ62M+DnuIJDoNhi2RV/XFYmSVvV87eRzKSNBwRwFUG1NNpqjoWoS6XgGsEHdjYGxzB6zliqQoEmzji/lzXiBFnkKMCzLUq8lAHjDobMUHiVhRwcNtDLCI93iVHJNwrWInucZa0q4Gnic1YeAuEasq7h2WBZYVtaiMpic99gfDrDO4XyZkXMUoUTWIcol1uJIHb9UcLaOExZNmpmlpd3fnBPOpydczmfg+gpEBefTScYQgLEfWBRb1tOyLIip6XaorpSxBnQgdKFDkWRlTbGCKgwkKs3ZVlCYCrvRKBulueSZlixId6zMS2WwKfBAGvfKthekQtwASWw0RXZ/tcrVVdficn1BBZ7APw+0jq5ShzOysHssComosHT4YXmNPz09cex2PJ7mFLyVsYmtU0ZL1ngMg136ONZbb5sWQDbItsg1hDB8xHXO6OeXPW+0vG+gK695SWI2z9fhPBbT5ITGZCAtEbtdjxe3L3BzdY39uEMsQKYI5/Fs3xRqDDUdMeb1xy4xOWdAzqJxbBonHJNzBXrrx5KYpKBHkRE4a7gw4+9EAmgLfd5x8VisxSiMTx1jIgDLusIYLmSd9/X6pcS6fP3ADn+dsegN//wwMMiqDmR8fvJ1iykhpijJqGG3PGvRd1w07HY7hNMjYlzrvuYETwxByMCQuE4VBd3aulD9hJQTN5qEacpnKUmcWrGsK1xgcJ8SC0n74KS4sPI9Uc+Etu553VjLPFySPcLnSzOrMMbXs84YUwW+DXSMzlYmai160RIsJq6Uer7VxFAyPm1M6HdKmRkay4b5E2UN9+KwZK0C2Ll+GyNrgY8Gw70Nw+dAATcEuhAwDB2PjcFwYYcFu34EBcB/cIZrMWYMn33K7G0daRLcWkBbGXluFP0NsGNbXDamjQvGuMJazr/0vdo5tDLQkxMK2Tp6RSXziHXOEiv5rNBrznqWBqZYGKNg+vOYswXGlMlqQGCS9CYmUmNEwfD3Ueatxpkiz6XIgIn1zMZb1xU6qgLwGeEF7IilbEYr+VXYPZiBGWvY5Yq1Hkc283AWYpqElLkRNJeVC/q+5zM1Jw0idewN4Bxjvxt5bVmLZWHtLWcdyFnEla819yK44WplxFA/v8ZMECooxGYWBZl4NFjPR+EG8/ncdzgeDljmteYWKeV6JjBLl5BSB+fkTJKG1nZNKNCu56UVVtrgfugeWe+rBQx8PVMBiBaNrXn5dp3X/QSIoxmEpZcQF5nGKM38Zo0rqJBIXfDIqAVrtq7xgjUxo3uaFjFVMnB+wNPDGb/6m7eIS0RaIgo57PZ7XN/c4fb2BW5vX2G/uwKVDoUSMi1yvTIYWHY47HfIqQD5AgNCTAFqaT9PC3JirVuCwdAPta7g3LldL45zrbbygdn8Xd8h9B6+k+YKiDXQXMCLVzdY1hWnScTjS4C1HWxwyGVCSgxA73d7hG6o+4trJ260s+D9wmC9AAKcX+5gx2HjHs4aoRWQJh2rzLCGx4S74EHeYdjtARicL2c+96SRyBINQUa3BdBxnscuXDM2cLY1IgCDaZpRCmE6XbDf77EbWfJjq0usxllbk416bT2fHyXx933OzGkCzC3GSCwyqCxqL6/PrfQEEjkSZnzz+c6jxkXkBtpr6kRQZetz4ggYLxMOVqYJxEzHy5tnI+ejngPbkf0GWsAYWIOqNbaJns9qOR1NK6UwWPSDThAqO52kv7V9SmWGUWPukz5JmizaDN+ynp6x3be/LGu76nXR+nbLSrbSVOL35LME+AB0qu9nNrWRNroa+qQr6kexHLN96k+HYZ4/k370b4GWB/M945x1Cy0RffBThKp9rCCavkP9Hu3V0Fbc5j01lgqQ9+E6V/Bp+9F/7HV+7PGTgafrm4O8bJEkua8FptpoDgN/ipQXhOBZBNk6OWg4qSvIkqw5OfB5I5O8hnVeAKiM0HcbpXqPgA6HwxHeWdHsyTKuYTF2zFoqpSB0AcNhQIxSZMrVCZ5p3uf5VN2FtOsl+uc4XU4ohTvB1lqENYBELL2T0bsY+QBldoko4INQDAElV4QX4C6VD1Rd8nwIWHPCkqOwPzKuSYXOW1fWUNPT0nl5vun8ORXoipGZTsPQo+v9sxEgLckKMRvj/TtG/Pu+x37Yw/uAQpJo1jyNwcKwsbxutsfc2UAWnZsuwAbHVqfewsDBClXT9dxts9RYW5lIxjQXOXw3DwMYx2y5fugFWTawnYeDgQ1OwK5cWVi6gZaF7bVn0QK4v7+H857HRXxAcB5j14uLSJA1yrRlMgbDwAwC3cxdYG2peTP+Za0FHCec67oy3VzWXgXndPbbAonYzcWYwDaaAkbV8apSMK+ruIKhdvJK4jHGLIBUVLtomOpwpiOsmsiBWO8gyChaEgcO7zzvn1yQbWLGigg6Glkn1lokOQy0SwtrkNaEOC8CBhJ2hwMO1sJ3DNpO0yTOUaiHwOUy4f7hqYrOOucwDiNevXqFkmX9CLW6wl7EbDtet8ym0liWY0KWNWmtqR17ZwDvLDrnYWTPU+bXC75DXBOeHp+wLgmn04Sr62scj0eQcSgE/PrXb7AsC87nM0IIOBxldGm/x+3tLXa7Hc7CXjpe3yD0HXbjUAXDU0pYZhZ4JqJn4vhanCprjzXtnNwmg3VlcGq/PzDbE4QACyvVD2Vidppj0EsLEO1UK6gEo+e1QFbK467x0sgeE30Qy+NLBqzxogmEMdxMgBzeqj+koq5UeC2rBhRgmnvS5uEdA4bKbnKO9zwZBgVY6J/XqALcyixCKVA74qq5sCl8n4UJAWcBTnK8NRBPXX5YA285rj1NE14c7/Dzz77A7eEKDrayEU+XJ5ScUJIknlJIr+sCJ8XS1dUVvPe4vz/jfLngN7/5HZyzGMah7vlhGLEfxyrEr11MBn2Z8WRlTGJJi6x1BvS7XhNoQEcVxnHEMAw47I8AhPotTYGwRhZMdR7WWJzOZ8Q14TJNGPoBdy9f8hlIpV4/1YRJOSHFBL9pjBhrZO2yoO0cE5yx2L8cEJzD2HNiPK88AjFdLiDikYRpmZFJgG0j4r9ZWL8SmXX0zHu+/52cgboXqPBY2rossDlxEdr1oMRF7eMDi7Ifjgf00lhiwIP3EAmYyqxSK2YZzHDIiTuuzgVomqXgUQVRfCdFNadBWtA504SMtejR8ebQdQykyGg1pJjKpTATW8fohZ2mYE3fdcy0lH3jnIMHxzFmGxH86DB2A4s7SwOF2Tq8L/oQWB8xZ3Q+wO0EgE8Zj08P8J7dabXLu02oAeCUIpy12A3MTLKiyZQAGa/gs0lHkqxqK8orDF3Y5DaoIBWAClJvE3/dj4LsopSCaZrrPylgw8wEEq0yFhrXteusRZEGGoPBwijwTVePgf4mhtuzJVfVyqrOYPJpHQwDSI51BvkY4s+IjgGYlDPev3+Pt2/fYtzzSKGOtF7mUKUInJxbpajFN8fUvg8N1FTnPqg7lTTqVAeKtCDPKBLLdH8UAXZWY5EErOOKjuC8w27cwVq+J9fX16hjTZt4WUqpTVRlFJWcYYhzHc7z2L2soLFSYAWIlvhmc0Fwoe5DYwz6fkDOGe/evUMUnbD9fofj8VBHbHISlqyA7qfLCdPEI1VD17NodspVboMKj70pk1hzAzXZmJeFzxjfmIxeDIEKsYFPJyCV5nuVLQ4g9D32XVfF6FXfs8piWGahWQBPr2e8v3+DYfQI/Q2K+xJPp/f4j3/7a7y+f4/ffvNb7McdjrsjzstbXM4zbu6u8fFnn6Hv9zC2w3RhQHdeJ4y7EUO/Q1z58xhHgMlY4hlxzUgR8GHAOAZczitSmvG7r7/GNE2w1uB4POIXv/ij2nRNKTJ7i0YG+UX/MpcE7wPG/Qhj7tCFhEwrzu8T/tVf/g3WdYIf3mNeJnz/9j2O+xe4u4n45S+/wiefvoCn90CeYA27kxaaGcCwGQSHVBzevX6Dy+mM+/t7jofWYhwGvHr1CjEdYV3BN9/+Dq9ff4+XL+8wDAOvHRg5K2SEMgR4d5Q9RIjiFp1TnREFCKx/WgCKCaeZmadDr8yuToIK4fNPPsOXn31ex7DVlCeVUmNk3/dSy3H9ej6fJS/b19zmB8CKMQAsnOhREwiUCWuKyEmAMREO1/pAp0WMd3V0KTtpKFqDIu9RiBALjxzGGGGdOC+SAVmqjotUz5sMs3FyVjjBGLCunkgzNPCHDbkIVnQu+fuw+HYjgtSeigJOm/yrskyBZ/+mMWZ7vXLOrK+s8RWQ5g/QshOpHeTabpsJlZVb3/+HYAzfp81nJCYJOKefj+MncvvxIDWa1bpF/6ECNwYkDFvaHGPNsZbq/QJx87Q2jMzm+2yuVxu72+ay5oPfbpChv+fBK5B/12AntGsle0Uf1P55iyb+EKX6TzyMXM+K2H3w0xVE/ImPnww86Wx+lo63CnGZ+rH1TfkABblnCCrrFlF9Xl2kgnbWrsWzzqTOajKLxBqDrgvouw5eABlbk4omWEZ1UxmgmHpRFHEtJcFSgTW8cEouYOYM01i56GdQS7uDJAsMxtRxq1wSUGqdB1jTCkQRz2uz5mKvXTJiTlhjZGvVlLgjnF1FZ4E27wq0Q3P70NtvJZlwItzuhbYJoOrXKFilr1Ovr+FOn4r1mc3m3wYAtbFvnTDLozaWR1CKJN4M4EmHSxKdbbeRSq7iwZXyjaZJoN/fCnuGUOCpdTLUGvnDLub2s2rR54Gqn+JEy8kJm4nkohQSbQdjnnXbFBQ1JtXrAUgwg37mpsf1rNtmDTKVGlytJPT1/eSzk9wfvQ6GeMwtpSxgSq5Ufn2fWoyDnm9yaii2kb2l1uqoSS3/zA+6BnJYEZiBIVh/vY5FPmPwzQ2OiBOpkrWQ49dYY2R3rMzXjbvj3HVbF7U8J0Ho9YSTuXPd9/qVSlsfKrZNnmoc4BHe5y5rDGiz2CURd5DmZUU3L/BdB+d5rECdGCcZfwG4q3a+XGpnqWwAa10f1WJdgV/ZT9sZ8+2ebSw9qkUJx5PCbDojDEWyMIVjkB6FzzpS2J4Tz7sPLZ7KnxR30lgrwJUxED0NYQzR80PdKFglB6qFCkxuQWl5H1nP20RDz4K6p+CenYHGKGjUfr89wrYFrb6XOsz9WNLRvrMkNrWrz0UwGVubB4f9Hr1S5SGJm8Tdkooc5gbLPON8OUkX0VVm02W64HI5Y15mOQd5/NY51jgzaN3IoWdtu3meYSTJqwmQMTAWsORq4tO+DP/i88JA7Sg1VhkHWCsUd3F4c86jeAa7rGsjg6B2KiuIp4wk1X6HJEuavJUibJfNmvcChleDC2XKGAEN1AHw2S8F0QwDAQY1NhYiPi+yfApqd5bHewjJtDi8LAsu04R+HNBRV/9eGVak7A60BFvBC11d23wi1zpG/k3GRpyMIZci4tNuC6puchZIUV+2MRS1EaQbRceyFZxU0JWF1J8zTZ1xstOYwUTWVvONtKwQPL2ee1QKcpIzQ75fMQUxNQ26rQskr/eWP2i3lG8iJP4bEbR2laWpYIg1ejajfmd5UXYX3HxnDRbPcxXafA76QfGy/fssOeBWjH0bewhtrEDXMOeNm71E5tn9BzYjGHr2QJk0RhwSdZ9x4YKc60g66d3Sz7M5xwsRrDyvjr/LudBY6u371dgp65XPeKp5TSES1sIPl18umXMKkqkD+U5Oc3EpchnkMs+vtazTZzGXWkOQmRhyramtY31vK+dfF7ra+NDXVrdCo8H+WU5noI0hSF6hOaGuxcbeT/X6UWmabB+yoKzEo1KKnJktXtVxcqLNrm0PzTG9Ey0rY5DlPZQNzNujxTIYPtO63qOzhP1yRKaIvvfoeovQEawjEFjeY00r+qFj50HDOVXORXKjhWO1dYiruPtKXqvxNaWMEDoE36EfBgzriuADVrfIeGDBbjfUumJdCTERM2kICK4IMB5Zy6/rEIcOKXd4fFqwXFZ8+7s3mOcLXn1W2CXzaYHNC3oTkRbAwiM4L4AQj9ep8LTzgHXEjKeSkVJESlHMGxhIV82mnBNi5GkMFm5n7T1A9rgkFM/2Ts4QzlHNk7U+saodCG2QEUqQeCfrlYjqlIN3DDwx8SEjliwTLjwSynmxjGDJuCVPUvCa03xXc9yaq6Otda0Ndd8TDI/YyU5zxPpLrN1XABINSVTxFHkdiTY1rsg6tCLOrwmWxiTiV2CGu7J9W21Rs4carqkyqYq4b7ILXYtRmrBp3KXt99UzaBM/nrFOP/i3+jnra29yEU39t/nPs336w7+v79Pe5Fnc36SyYG1Uvq+bF6iATf1ZmA/ey2ho5nqDnv14fY5k4DUr0Gu4xTS2Z9uHtfvzn2r//eGzPrwG9Qt+kBHrqWbaHz98Tdr81+DZm1Vm1Aef4O/CHLYX5hkL+YN/+/se/xni4guUrlcyISeCNR5dZ6FTfjX3KEZ0UlZhqRBCF9g+twsVaACxeDGIRTCtUwvfgGIcyGSZJ88yjsMjUIVYF6qQwXyZq/aLukKVuCCdmhsAF+0QTSZiGr8xyOuCNSbENcIY7vAva5sBV80GPaiYUu7q3L2XQ9s77sZskx1lKTkpJBYZV3h4fMQ8z6KLwKAIAxWZrXOJahKhWgIAj/6pFT0M0HUeQ+dxfTggBI++C5jmGeu64nQ510BqDLuojf2ALz7/vIIkIKBQFgCXHT+ahgU/4gbcI2ItB8C0zlJWR41S2UXHqyMHfaEt281C9L6hwszW4u6ddrUahT/idDohpSTOMSw4nTNT99PKXfLdbsfC28PAwB4BNIw4iFOMjpkBbbzPeGEq6dKXRDJTkQMDPJ5FzGTRDm4pBcu6wAeHLuw31FnV0ehr13hNCUtchYpe0PcdLNiJRhNsZx063/HzckZMMztd2BUKcDIbUBx9pGiBBYyzcLDoey+jTS2AKrCmjkopJRGUZlZRN2yvSUEkFb4WvZHCnU8Dg34cYGs3lBApI+ZVxDlZPJVyQTf0CF2H+/t7fP/99zhfJsSSmT10PMBYBhHWnODtxk3OAL0IhrKLIideH547mfigKDDovUc39DASc5ztEMIAH5gxOO6vABuQiJkp1zc34nrYUPCPPvm4gn7n8wnffPMNTqcTnp6e8P79H+Gjjz7CH//JH+N4PGLoR2ajCXiwyB5ltksPImARXR5NqsZxZCfFyG5GXEjZNnqbE+hUsNvvcHN3w4ynQhi7gCFI95x0qrpAR84tgUftDOpak4oJ1nOH3GS+j4aKaLZZ6Oxy7/sqemwKCQPXoh44xCwr1TnhhIo70V7YDAAqW6Z1crjbF4lYUKBeb4j+BjcDMiW21+6ZbTDuhgqG6oPHHFUwOsMK+KGC6LW+RPvYtYgSBmIXOtbosBZDN+DFzR3Gvochdhta1hlE7HLXdZ0wOzxOpzO++/b7JnIOdiz99pvvAAN89sXnPJpwOglYBUzzglWYtV0XcHvzAqfTCV///lscDgc4H5Cliz/uD3AwWGJCKgXWG7mOMpJitOAvuIgGWtex/h8yu8s9Pj7hsD9iGEa8fPEC3nnRX+QRQxa0ThX0qAYWhcdpuNFAkog5vl+SyPLITCvMmQmqjIGMlFeoVowWAl3XMUMnJnjr0IdQ9ZGMZ0DncpmFQfLATKBlwW6/xzgwu6sLHd7dv8cSZzzM93DeoR96AevqLcY882jXuq4VdOGPYpBMRiHIeCSz8ogIcY31OUZApctlYlen/Z7H5klAQfleAGTc18LaQwVxi8QAWIOuM8LmtpW5PMpYozI1tMkAsP6MFX3DUghJXPyciMUqW5CIkIxh5uPRVdZVTBH3jw9QdmktsIXdRgCMc3DixMfObPx60zQh5Szr0SPKuR2Xld2e+g7HqyuMpWk3pRjZnlzGCBskLm6vspb02ubCbqAfNoLUqdiZBua1woMlAZT5WMoieKUwR0uuUg19CHxOoUGBmq8oy8dVoENHxdu4JerPcSyyzgkAz8DPujLbl8FBh+Atvvz5z/DFV1/K/qJ67UPXwRVuHijDWAtP1fnz/qrGtWme8fj0iP24Y+a1AC6qB7VumHu6ZJhV6uHCACOapaYQyBtAQNciYO3V1ZWwdnT3GmH7dDVIVmZXyryH9ZrkDA/WN1uXBTEXGbEDKDMotKQZwXkcr67g5xlW8ldmtnKud3NzB+csdrtRBPudAKDAEnkEMLiAzgfsbl/w/X3xCufzGdPlUuO9rh2NwbNqe2p8t+xS1okhQj0zYsS8LtUhV5mNqleZMhtrHHZ7hI7XPMlobZHm8+VyQUoR08RM6HEcsNvdwJke8O9BZkLMH2M/3uLVy8/w/v4dfvazv8av/uob/NW//xrzApTSY3/scDh4nM8PsGbGsliczg94e/8d3rzlkjNFnhD49PNXMMbgMkcs84qnpwnOOxyvD/jFH/8RQgj4L//Bn2OeJ3z77Tfw3uHu7g4pJ4kLa2vAG8cmLlYZ+IALBNj3yEj45tvX+MO3b/Bv/+f/N1KK+O/++J/AXY3ovIe3V+j9HnmJON0/4KOXL3B35XB3cw3vO2Qy6ILD/uix3++w24/oXECcU82teT3wucGgjcX19TWMMdLkO2G3OwCGnUVVsqEUwrqwXlmMkUfQrBPRcgXL+Vfouuq6rEYG2YiRhayHd+/e1X1orcXt7W01iiKCuOetNZ9gQJincV6/fg2gaSYeDgc5Sx1PIxTVpDO1lmEdNweYVq+VpGYtBFBGjgsiNcajQWuE6INHFZlxA6NNhOZgxw2ODFAG5RUFDtkQMrMeGLQmwFttBJTWnMiS9znOJ9WQQEEjrpNZ6gICyGgvRWv0IgLkTptiCiBv4v12FJ3Ao52mtHFtrpka8Kzg8w8eFcPRBs8PWUPteOUcChsmP4gBFWf0DOCfr6OUIKiweH3DsomTWyxtg+d8eHYZ87yR8gPiRimIUtMoQ7P9ANBsDuVtKoTQnvcDHE4APPODy9YoCbUZJ6ZvkLcy2HxGfXGqp0S95lvCxQdvsfl9I0D8EBj8+x8/GXhiO0cAaAuSGQc8sW5g6tw0WZlXnRdJhAu6knjsRMaObHmG0Wnu26xcYaqTW2OyUB0vijFV8KJ2+eRm5ZKRc6wHeW3zSoeUTWM40FDKKIlpiyCDIo402sE0irzngmJkrE6KNuM5+QwhiFaAaLWQFeCqwMjoULU0FkBkHMeNS4JsDhG446RXgAYRIVZ0VzeQLmoUtpVfqTDVeY3Vol7ZMkGs68lIsq4oLAkjB01o+ccWj/5V7T4JwqiJmJV/s6LfUHLmA9+a2oU38plBJKJvDvAt2VI2Bk8M8bgRHDBPMwwA57jzkOW+W0Wnteg0RoaZUYWPazGBhkbrCJv8OCewss70/SvDTK656vqgcMLqDRfCts5ym2fBgT/KB05chvXENNA2thQfQurUwOutjRrpvW5UVkHX65uhBuUKuAMg7TjKwb3tSujfFdln+hmt4Y4762DwZ3YEsKibxJzSNEn0gFLDAAVbUuY9qQ6K2oHUtUS88Pj1pUDerj0VQGzdEb47tStM0jMiLuiGfoD3HYy1uLq+QT+MsL7jfWUdfGhjfKzFIt1a57Db79hGfODxqePVAfvDrrpvKlC+1SOr4C30ADN1T6mQvv5Stx0ewWK9uZQMYuQxmhQjvAsMfgj4uhBrCVSarNkc0rIm+baRxOFnKwI1mPJKkJEk3VttBVXHpu36oOfn4Xb91SVnP+wUARW/kj6EstSqHoKDxIPmjiVOvuysYlALshrvZcGYUpAF2LdQLlhtd2ziUWMg1mtkONYbKENEutkiF2nAItNdN6ALPYLvUIqOm/D51vW9mFJcI6xLPU4MAcZ5QGIgweA8TbjMM2LKDECvazUQCIVHug1Q9XSMFaFL52BtkXsho8AEGMtrIcW5aquorow1ygo2Yhoh4DoYvKLCgK9qT+leZd1qBiiRdDSOz16S7IoZT14aJ1RfpzJcrK1s0bbG9N8Y6FbHRh1NW9dVRtAigo/woq+oLAR9/bZndBx+I2JMzTVSz3tjAI8O3hi4wuxo7q6irg09e/WvrIwY6Dlq9PyQP291PAx0HVMbY9zGe5jKcmLdyPaPql2pzFHOX1D1DqsmINp+JnDeaRxrdwjdCFYFzHOq4E/XBRautbYWE9ukUrvmTgIFQca3xHgFOYGikR68Mrg0DW1BoHWWf5gfbP9tm3TXa13/vf0MKdXaal4AYcKx/suzdbs5oxTMY6CH9XIqT9dqMfA8Nj0vVkQsV2KOps5Zz7XcmGzGqnaInEVFrmE9p1w985Z5FndWBt+irF8F7NVZcbUsowAixBSRZcxSVxJpUiLfWZumlOKzysRYZSzInpBrwd/JwZYCQ1RHf/i7b1msDKSmmOCslfFudnDWfCiTMrNZRqIQ31Dnt65Nci0EINRcRplyxnDDkcjW8SMvOYFzDnFdEX3b+3rtvTidltLOA31UBrjGG8k7UaiyVOralF96LqtRCTddjC6Kzes2Q6GWd7N7YMkFD+95/Nd4AmXgxasDfvcbi2m+yJSEgTERMDNyvqCYglwCYHiv5kTIWUbiqOB8vlQ2DaxBCI71kBwzTkPwuLo6YrcbUAqvrWEYME0T67stEZfLBCffj8BjpPv9UXTTxEjDEZwDumDx6uVLEBXs9yMIBTkawBIcIniUOrMGkgkyFs5NEe8cnAkAWZQMeNfB9kEa09ycABr731ornyPAhyfkXOC9CN6LI7j3zAxsQLrGdx6t09wy5Yw1RXQ9i4lrE55NlQyGPolBRldz1UIFJRNiyoCx8Jv9o+/1rPYygPPpma7aNh/RGCSvAMqFGapWGfimxgdlJ5bEMUNNehRMUm1avm4i1KzMQJ3wsVaAE9vO18pIVPCZ3VyhtS64AZkNYFUtf9tc5I/ewAgAoMbfaflke6i2KsAhm2jD9NUXlNcquTz/2VI2TKP2/loT6jWuQA0k25fG5Qcf5UcfH8o+bOtSHe/b/huoXQTWRZMcpp59pp7D+oH5luhFMyK4vgFenn2/dk5o/fLhN9mej5yH/pRvWj9Nq32BFuTaFd18eCUEbc/tVljwNzfyXXRlS+VA1D4V0eYn2/Pql/jPfPxk4CklXhKWtX5BhZ0ZVJSNn7NIYgbkvHK3v/BIA4t/BxYJryKUzTUIMCipoKBAHRBSTlV4WZPPZZHkVEZ91rjAgDAMA1BHHHhRVIE5JwcPePwvCBWvpAwTM2wqbF9fCkrm2WEVRXSBGSRsDS10Uym4h66vM8MxJVzmicsZS5hnHqUbwQe/OuDd3tw8G9FShk8hYrtt55+JFRdkUCbR1XLoAh/I0zRhTRm0xjq2p4/LZeJrFVcedZI5/ss8sdB6CBXIUivtaZlrsaEdExUnJ9mMV4cjCMC6GS1Sej4nHSziuC4EB3Zc2O/3tVBdVwYlQtfBecNFG1phmyPrfBljcb2/AoHw61//Guu64ngY6/UKXYdxP8raEVDGWgQRpAU4kYwp1mQC4th2ni412S9UEHOu7BGnha0eLl5E1cWaG4ZdapyzGHwnyZatHRuigiJxzblQD1OrCdcwbrq07ELiTEYxBT4IS0DmizNl1gwzHBJiYaeV1sFlsNBu17dtSbGOjPUdJ3Wn07nS1zWZcLA8a67AlQAzzjFjMSV2nwx6j4hQYJhmLRmslSJ5uVyq5puy5o7HI3a73ebgZmZZJlRgx/c8QqP6UhbCApA9wCezBjr+vGtid4oCYHfYY9zv4SQW3b58hVwKTucLHh7u8e2332B3POLm9hbX11fo+05ETS2O+z1yTpj+/M9xf3+Pt2/f4sXLOxyOB75vztV1pklD1YFxriYD3loU+Q7wHsFyUsUxMeIyndAFBrbu7u6QUsTTwzvkwjoiL47X6McdxmHEYbfHMp2RS0QRVMIaGfHYgC7YHNJ8EGxGErR4kc5/FkDCSZPAwqLIq1lhgq0xtnHiDdBkrWUx/1KqlW/n+zaeoOCOCFSr+HnMPBoSqcA5i15GNdmCe8E0RbiO9xVPXplqPVxrLxCSaOaZkmtxb2GqJbxT5pdr45DOWmQBaZmlNtduevABfSGUVQpJMvBdj+P+BstNwvTRgtP5jGVd0Y9XGMYdPv/yCB8Crq+vEVPEzXLBdJnYGl0vgMSvv/nbv0WKCbEQzvOCiEfeW8YgjDsYGT8lEC7zVL9ti209jLWIiYGKJU1Y5gkP718jhA59P0jDJSLmDDJtxCQK+8N5K6MF7J5YZC07IsQlcuFrCwvtLgvfV8PXqur7WIf9MArLmMEOtjznex6Cr4BKTlns3fk+muBrMk5ELCC+LDifL1XbY55mlJSx2+3gg8dhv0dKPXJMWCOL29/c3OB4PCLGiKenp7q8jXRw47pC8dL9cY9hNwIKlju+5l6MJaIIoxtjqh6I84YTTzk/LDj5j5m1dHIpGAYea1Hji3VdYaytDGGTRSBeWIGsJ9RysUTMppjmGWuMtdnUiwPcEuMmfZXEWAof550UEQQTHHb9EfM043y5YF5Z52Y87Jg15jcAubw55zAGY98zQGPEyVCadblkLPOKdD6xdpgPHGUNnhXfioBXcEBEqbcFuzZTtkU/M38cqBjWxdRH4YKsglQVXJDxmZKqdIE+NOaq+HXUNZ/Wet2o6xBsQFA2kwKZ2nBEG4UjECycgE6FzQFAMJZHm/q+q1IIanKRFJwiqqOUKUacHh/x+vX3uFzOGMc9QscjaWw9vxP2KjDHlU0rcitmuZZsTZh67bgPKo07C0asDWBljVnAeQaX1hSZVSTAhLrnqltr3/fS6JFrIrpaIEKcF+z6AePQoe8cTAesObPDXWa285IiImXkMvNUgRiBaGNlC1yvS0TfG9Fz49x37HgPUW6Atua3fd9XoLmUUnUnt9cipYQYUz0/OtH1Uf1W65tYuT5HdX00tvkNKMpARxuP0qarNsG89wJ8CpM3RpSVnTv/zb/+Szw+PsEGjxcfOfzZf9Uj/C8L3j/+ASUPCH5EwXtk+g5LuoXBHikd0PUeHx8+xmWKWJaMlM9YlhXfvv4Ozhkc9kd0g8d+32O3GxCCQSF2YD0eruD9Aa9evUTOBZfLxOvtD9/jzdv3ePPmLXJZAEO4vn6Bw/4Kf3L1AjZYuJDZsCUUXF2NsPQC/8f/0z+Edw7H2+/w5t0jXn/3BqE7Y7/PKDhi2N1gnTuk2At71KLvOX9xcIizRVwKxn7AMARxXm2Ntmm6AJJHf/LpHbou4Ol0wiomPlQyOt/XJry1TkyJLIzzSJFZec6yBtPj4xPu7+/x5s0bdLsBvu9wc30N7xweHx9hDGtfHQ9HfPTqFYZxhAuBmZ4pYV4ZFN7RUA1sdP/xWmMwFIbNOIpMVviNYDlLa/hW2peCJUZ2aCOepFBpGGNkjDYlUGatQTLbWCYMKjGWSVHkXFDgncM49PAds8GcZT3HZZoEZCqAaKSSjA8aaZB538EYD3V0JWPhjGOXO5MBkyUOkrCquKbh78jA27bJXYHAlGtc4bSQahNRz191plO3cc0PizY9ITwvbf7UpueHjwbw6efRv1fAfHsmtHjXtOmMZSMojXc6wrl9XaXrqrmPgi+1+c/vAB1TVzapyvi0ppvK3SiUQs8lBX7kXHz2bQXcfsYwqt9Rzl1qMhIfIGLyKTf3EqhArnxh/o/2t0oD9xWrUjDJyB/I0PP3aQn59mO1P26uww/bUj/++M8AntSZTdwJrB4MpXYlSk7Q+dUs9GkDUym2ne+40xYz4AlWEUTi0RAtNkg6QsrCKHJgaPePiMdvqGQRvSqIywx1HmMtoVRHnYauB4mFM4iQo15MRsRRiszKO1jLQJMR556aYGcSPQhTF3EpK3IumGYeC1uXmW0HiZAydw9SXmEK07+NNShFFnOpGDPUUW/Kl3oT+SBNVU+q63o47zAlBjjWZQEKIRIfzKuMAVaLTe9Z/Nua2tEdZSTNOcfoYYGAPWBWAEEszbV7IqtMgAlneIMH35yAqvaDbFe1OdeRniydnVI4ESIQktBjVefEyVgApGtSSmQhZGsw9gHOEkpaW4DM8vmNhTFi1S7FlZHEWLvSRjp+3MXmZJuRXL7O3mmX2taEX/cV078LbHnuOgcjbLxS2Cq6cIFcJOg459E5h0tcpaPIydYgopw83gGg8FhbTklGzFhAW4Ojle/L3fi2FxVqsM7WYAFrWMRcA0ZdR/wLxCOyy7QgB48SvDyHu2H6fdndRB2XWsDj71Yqllsg+imOQdVpWjBNC+aFC7wuBLx6cYfrqyNyzKBEMOSg1NTOWaYoO2V86TcD66gYEpFUAyPAkxVQQ50Tfd8x1TplBiAsa6ilnLDEGc47vPzoJY7HI/b7nQh9M/DGVGc+iIdhwPHIoxHDOMAadvqhDMQlwdhcux1W74uugc1BuLW85aTKY7cbYSwB5AAoA8vgeHOLZV1xmS5IxWCOBXJOIZeEQhlkVGlpk7QYBnf0xCABArQD0hwSWYuIiO9TW9mNCVK14EgG7rQDQmj7x9QfewYyqYC+MgL5wGr7w8joqjcMznrDgJElPii9lbVLqMLlhbJ8LekgOrexcRX2QeETpuSEYsyzjqOyrFa2sMDQBaQc8Yd33+Hx8oiUI9aUsCYWi4ZtxXmMK7x3uLm5xTAyC24vrNR5WbDmBffpPbO0LMdJKjLGlDJ2wyhFwQXqWucymwVcXV9ht9tJAeHhZZ/mwiw4ZXdwESR2v1Z3hQH6HserGwbVHAu0+xCwxpXPGXWIWxdYY+ESr98iZyOzbnhNpZJgYOEk8TRoTj6Qc2JOCWtmdy9vHDwxsLCWjO/v3yEawmme4JzDq1eveK04Xk9GHMGsc7UhMk8XbgIw1VjcRBNSNlWk23q2TL+7uatNg77v0Yeex7Voo/sjC9NU4Wa+JnWkqhRAEt86ZrgFh3SNCkbjBLTN22RN2C46Kgrp/nnVfypZQD3ISKsBkBktkC4qg7g8GoHCvxjuh+imsEOnAk9FgAgVgtbYouOOOkrqhAkRY8TQ9+gCs574Fgp7y9h6HkXRrFSgI8bm3FSIeAxJdZWsXN9SGORwzLIs2zOwQQ2yX+VsF/aRkWtoJX6R43OMY1sBOda90wSYspgSFM4VFIjWc5lBHt9YsMBGFLc18Kq2GNCSdy0kNNfUuGOt6DsRYAHfhU2DBDKyxUwLYy3sJrZaYSuAgL7rcXW8QlxXdCGIPk/A9fFY5QNijMjgXCJvuuCbmkpiW67FlbLTCVzkaMzPpM6h3LAVbgUKZUzTAmVxeO/ZvECatFbEidXqnYTdB8P3N1GWkezW+TaFBAHjc6RIQ9YoQwBckLUGhjC7ikEqLKZs+MUFYOSvu7LtoJALeF92cg51fVfvd6Eio7L83fV8rTkySa4KJyPWYtag55lkpVv2RLOEV20w0Q2S5qoxzDrS6YpxBIL1+Oabb/Hm9Tv8h7/8Fd69fy+5xQ7GvoQtB/zX/9V/g/NTBBWD/dUBrh/guz0M9jBgwX/nDPb7HuOOsC5cyMaY0XmPVy9e8b0Rdz0WOLegAjw8PNTPpkxVYyxevnyJ3//+G7x/9w7jfkDfd7i+usLV4Qq7sZMGvkVaM56ezmzYNADL9A4xE3bujCWd8P23b3Bze8T19QiAxF2Nzx8VdnfGtuamgQCbGTEZBrZAiJnHiJXNSTBIuQAxA9bC+YDecC5Ows6s7sXeo7cOHVEFqUPnAVMQgsE4dri62tfR+/lyRqGCp6cTlHXrrMGyHAXc5DF652x1X4yRWYj9MCB0gfUZZT1UN0go4Mt7K5cEkzl/MxuShbEQaQXdw8TTM0WmZVKBJWZ2Wcn/VeNTG/uqI7TaWOsTBUtiSsgL4C03RbLk3kVrFKnFQARjvaxjve680bhZyQ7vBAIJcYLzxlJzOdbQkt2ieANpY26jM2rAeTAV1k6udYauCUB56ApWGBi0cxvCFMKznJU2jTeN3xqH23/rhW4xfgtzSAytZ7v+neSbBY3BSAA3SGU6h8CJgHuW6HIDpoDz06YE+Px8caJvu0Vn6vSIaGpxM6iWZDD63aHsdH1JenYNtLms10p+uv4Abf7J1Hsh//JMVbz9kUEUifub69cqDL0vqODc9hl6dum5ausX2FQqz17sxx8/HXiKSZLmUEGGlJO4KmRhAyx1oZSSeX7c82E89uxoQIkQcwTI8TgQSCiG0hEjRSBFLsRZqEOzag2UUpAMJ9WGGDhalhnBBxyurpByQSwZaWUWRrBHWAQk6aokRWWtjjo1u8pMrCPgXHMl2HZTrLVY8srjfIlQ8oJ5PbGQXo4oBDS2oUGMVc4VhizUn+7ZyIBs1lVcQdhJR91h+AC4u2NXiGk+89+ruF6hquOhh8R+txeNJU4YF5mn3o37ikJDQK28Jrm2/DFZA8CAyUT83sY0PSMY7oB45xCkc5VzFt0BgjceGewgoV1ppaOrnkVaS13KzjmMljsFFpyUsJYWd7+ujjvE6HH//g2vO98BxQLFC92cbYRhuPNlHQdgA1N1aJw1VcRTizzt0LAbl6sdNE2wiQhxWWtQcN7Dy/wzYBGViZc0oad6bb116L3DKUbMlwtAVPeAs+AkVrQhsmiMzTGCCLi5vqquhCrir/dVX3+VMVLnNywXCxgvh0hph0VOvEZQTO3e+c4jdL4ClEoZTWKPzTdHAAUwAq7udlSBXwDOwAeP9Snj6WnC6TzhfJkBInSdx5eff4bduMc6R5RY4PS+GGAMHl3w6EQLjIKHqpXoWIv12nVvBxAKsb2wMeiHgQ9oiggWgCUsiS2wT+cn7HY7/OyTL5vmWL1UXJQu88IdppFdDQ+HQ92DEBBouszCIoFQ34MUjdh0dFonl+1kdX0FXF0fsdsPmKaMnAoSCN5ZXL24xenphBgLYrHIS0bMsp8pIpUEGM/JSS23pMtj1ZAbgBNKOYnuChUedbAWJTMApFo4esgr8ARjuJNTipAL5HAxGyMQzl359xYM5Hr+iyUnOHAc0Nd/Zg5hAC8jGKEKXxOCtbBG9FoIteBKWcWdXQUINBGE4XumjomlFCQACUZMFRyMjJrMSDBUcOh7pLTgb775Nf7Rw3+BJc6YlxVTTDh0Axc4cm2maYL3Hq9evarfRWPb+fGJha4vF/TDgMP1FfKaUVLB/fsHTPOMTz7+GCDC6cTuOH3okI0FuYwXN3f4+JOPoczCZ69fMlLJWJYFaVlQEhd62y7y0Hc47A/1ezNrxmKZJ25oSLK6LIvsL9eyG+Sa8OZSsOQVliyCpSp0u6wRKbOeDozBeVmQU4RzHt46dOCRuSlH/Oa7b/Hdw3vEacZut8Pd3R3fH29gg2MRf8e6WdPphGmecD4/gkpB5wNYRJsZVESE1bEb2ehHhNDj+sXHlV0aIzOl1mVFQhJwZQucFoS+wzCOwqBszES9xqpN6Rw7yqpgPNDyKg8Goed5lgKxFem5MBDiBCTpnEcpCTlFpCLsTS8jVUQtrwNAZCVJTzAlw+QMSwRneJRc3ec0/UuFC3cdmYvLCoCdw9jN02I3DChmj4swTId+FFCnrVdjuJmSxZ13Fq1GCNCkuUzf9ygQ/ZsUYUACyBqQAuUyxpRSlsZbW8OuZtCSwKcksZoLLrdxc3UyXrWmWK+PigJrc21JLE+QpGGp4vdqDqKsI4KAc9ZUQXJneGTWQnQ++BCrhQ9kN1jDQFhdAwK09EMvhUgR/RzWXsylMCBvrbDeDZxl3RJCwW4YcbU7oPMBl+kCyuzm+uoFa/eklHAhYFX5AwUGNw8r1zDnIjFRwAWZWyYYvifgkR0vcatsChIC4el0Qcmss7Pf7bDfjQAJC0HXupy3rJfVzvo1Ny24zgcBQQons5XpVUAyJqSFlsYf54M0GAvjDNnCEv9KxDmmTglVCQiRqFAxaGNYH1EdYWOMONGJ8zTrhPVvBSwgJLmWHqLJZjxyTgy06dkl15CPuwbelFIknzcAUs3z+HN1cg8IY+hh9gX/6//njP/419/iX/+rf4vvv/8ezgMvXt3h/u2f4I/+6Cv8H/73/wzfffc9zpczrl++RLc/ohtvYbFHdldyrTMOu4Bh8FguC0wpmMhg14/46vMvAQDzhXWqouwTKoTvXr+uY9asvTfgcDjgiy++wL/9N/8G3337Lb748mc47gd88uojXF8dcXUcQAWIsWCZI96+uUfoDcIeeP3wGxRacXQDzst7/O5XX8P84lP8/I8/AgkYxiChrdqt2gxqwJNMpOQCFzySYR1bBu5CDbDzGmFi4gaB96LNRYBIpgAsl+CECWota+Yxk5wNs9fFw7kdhsEhiQ7o92/f4DJPOJ0vsNYhZ17jV8djdYa1tkcpAQ8PD1iWBafTBc45HA4HXN9c43A8NkaMjlDLXjLWgIgBICrs3G18B1O1Jg36XtcJa62VNdZazIHry24YEILHfhzZ0Xud28QLuJ6Y57nWpXWUfi0oq7L8GLSEQTU9cC7UHNRYx45/4FydpGFMxiKDG5m6tqWXK0L1BGPZlZYKgyjeGKCI+QyzKAABGJgoYqSxIvW34bNKa3Qvky9byRwrZx2JbmltW5DmrlTP6MpI2uT8yu2HvuIH4kY6EqbSJ/riVBj80zNJLhCDT3I+Rolf1qgelKuf2wgZob1/RbdgUGDJwFvRxBKp+NoEsRZG9IQUeJIX3vy3nf11bHhzNjSsTcGt9vfPRufapdnCX9hePf03fR1u0v4QeDKkZ7LcA/17PUOl4aJTaWZzj34C3lQfPxl4UmvUotRaI0KbRaweHbMXmO2TECOECSVfVNHddZUibUBBxrK07pvesLrglMpnVXOGr56xPDJhWSUNpRRcBDR4enpiECjNAiTwUicYOM86EPtDENDBIcZUR90SAeNuz0LV4CLKe8+OG1q8GSD0A4KWg7IBCxnukKWMlEpFBFlXxnKHjdIz8e4tYEFEzN4oBSkx4MExgg/NGCcYZJTMCWLouHArGc/sYJU6yslAc/rLOeP0+LTpMgojQcbuci5glolDTgmTJEmlUBUL1DhUCEgJWBeljeoMMoRe7QBhIr2/v6+JhBFWTqXWF6YkXi4XBrICW/Uy3ZrvffAdAIMQ2LIe1nJHZpnRGwtvLR+UxOCI9x7jfl93WK6AJoeH4MPGnYIDZAaPbbGNdaN9M9JtePwkJRbvTcyQ6Htmj5EpP0hoSmHb6HmaMU8LjPUoBTifzwwmgYNR1/VYY0bKBUm0QJo+kKngE7DRnUKbabaK7psmrGwAwAHLvIgWlnaTI9YUMc0TXHJwq8Nuv0cHANZLUcD22MZywUQ51SKwrqPCIJ4h7mZa8Hs9PD4y+yNGXB2PuL29xvX1NZx1uH/3BO2cWKuMJnYeK2B9CO8dcslYVx7NTTmzqLdpzpKAIPtSYGkni4hFSOs4YMkIzsEZjlfFWhRj6nM1yWW9oYzzmRmLSukv4n5iYJixaAy8N0DPSViOfJ3WNcrn4K5sP7D9fC9WzXHVYiOj7zoUDzw8PSHFgpQXxDVWHQdrmMbNuiZGxnk8yEoyURpgTaKloAcQx6HGSDDGwpJDqcotqI2SIuw8aCLOP8Q/X0hk8FTbQn+ZRot3VuKhAPeQDqZ8Fk0eCxy0M6IaNbXj4xwcWRmBIWY8GmFBmaZ7Zgzqc/jz2qoZ1sYwiZl+1tS2jgqnG2uxxBWv37/Dw9MTpmWBsxZj1zOTAzzCWpkOBTAZeP36NZ6envDq1St0oUOiAlhm2JEBLpczqPCY6Sd3Lzl2p4jz6YRvvv4a4zjiq6++wvFwxM31FXrrEM8TJokrOuqltvFGwOghdLJPzAZ44rGQmLNon5kKfOootILYk4z+MW1euvdO9O/kNOEznLCWFT4QQpD7V5jhxEA3J4/dbkC/G9GPI2D4rLxMM4/hLisKAa9fv2VhbAO4TEgZIFdYBy8E7KzB1dU1lnnB48NDPVM6H+A9j6cSCOM4IueEN2//gJgipnnmMW4Bn3cjuzxZsRFnF74sgJKvI+LctOFRPmMMhn6oZ70PXgpRTs9a0oRnOcjWUZZzDh09VS0dHtPPUiRkaX5ZG8C6ZlkaQrled+ssQhfAEosF0zLXs9MYZvfp2AY2QDZJAm0EAOZ95zbGGc81A/U6fJhf6Hg5yeuzOx43nxTsddJM0oaMFVaMAapOUCHVXaopkYBdqOuaBMhbY67xQ1kQHBLUNYybWWQMhAbGxbWeQ6LPoQULjLorK2AEdN6LRlgrCLXvT7RJlo0ynxkk0xyArz/qnwGq8c6UzFFW/j7I2JarbLhcr8U4Duj7gJK1iBKWuHMc+4lgpgnLurYmgu7LYvVW8h6VPJcywVjtirc1SbkgI2kNBLa8N9iPO6QUqzNzXNnZLARm+lnbCjNvrYBEideeF2ZQMYiUgQIe9XcG3oR2tkIdjMGMCgUPJXd3gQvZNSU2RdlUL0a1zyVnThTreowxSuOCGVCqsxa8R7EW5EqtD0KnrHC+Tl6Y/pwXaeHL2rK5ZEAbQQJ+gKhpahoDTwGu+LrvdGSMKLNuGHgSoh/2+Iu/+AuklPDZF5/i+uYKn33xKT75+GN8/vlneHx6wLxOOLzs4LsOlPbIFJDzCueA0AGgFXGJuLm5xmF/RFyLgNZZdGS0WSrxypimyypFMGWeeDg/nfAnv/wT3F7f4JPPPsX+wIYNTiY3MmUQJYSuYHfIGHcdfOdw9+JLpLTi2z/8R9y/P4MQsNtf4bPPP8X+uANs4TOPCNZ6eN/BmsBMus4zY84AOXFdF2OsTd6t/pbqUeoeVjFtA21I2TomVQphWaY6Eu+cQTeMCAHY7Q/IOWEcR2aZ5oIw9FjWFefLBGMsdnuWKlDWa1FgS/PGD8DeGCOmC48Ewih7ruXW/HxhJueMIiY7ytACGFTT/aqGDqpNNklj4P4PD4DhpqX3DPbP84RlXhBXzmGfTicGmi3njldXR1gfYH3H+1Ycy2EM0gbcUxmRQgDlXMWrreR9JLmkxiuYBjyotm/VkJN6p2jcFTKAPscYqqC5d15qOD1JG3u1UCMhGL2ehhhcN7Q5ayFxnJsH1pkaz7ThaMD3hW+jAvbUYqQgVCRngbK11Ahoy9LVNZmkyan5b5WJMS0+krDqDanZkvLuqQJjikfQRvsaEh/V4VWlOAhFJm9sXY8fXofnUNrzh35TfLCG9d/qOIyB1ALtFdtVaq9hNm+4fd8NbId2eU29hsCPAV7KnPrxffZ3Pf4zgCf+wFU8zHCBR6WwOK61sDI7uyzKBNEvoR+6qcoTekHkV95YPtSDQCIVlCJLpY2v8Co0IK/OOV40IxgwuSwXEd9MbRGLyBpT7T32ewaXvHPsmjFNmNcVmYog1GETAFUIDtXdRDWSlshuRXoD2O2viEueFICGRzq0K70FnvRRSrPyVNFMDnsKQBBKjohgnSlrLELHVOviVMhPCota3bUg6r3nwuRyaeNAMuuph3ihKGWJYSQ4RuTMhz9rcpkaZHKRUbqU0XUdOxtJV4znolk9IaaIp/MTxnGH0AUpQFE3kHbIUoygruPZfekEbOfuAYj7BVOANeH3XYYl6XLlgrKqS89Qi+oiO4jkHnnPr5NTBkHYQEJvUWeVaWanRNaKsHCyhvKmuO+7vo6BAmiaN+C1nyK7lCzLChd6EBlME9uxe2fRd30bifQePmUBnkxNoszmHj6bba7UcUm0nYOyEHmfGgY+RDeJ11hByhFLXLgbGS1rNXgHU3hfJQEQrABNpRSZDdZXERHjwr+XyZnqpLisC1JOuL66wvXxCofDHillzOsMby2C88IosJtRB16rIXggAkBizZh1gcu8xzUpladysZ1ahwjABiwsUnCzMDIJ8ETWIsn+CirCC9GnWpbKBlPWW9/3dc8aA5Tiqq5JFsOEJM9XMD10AR5AELA6qdA6FXRDYJwkZ6QcuRMI04o95yWPloMVPFJDAHeM6zp+PqpR6oHYYi27ObXhRdP40xWE5rUlnRktrqlZedsNma4m6I67zjFH+bM4nuXSbozRBoJ5fqpt9r0mEKYIWAUGiZg51QAkfnH5FvK6tbOnncpcpLtkgczHIGdivBdiSrg/TzhdzpjXBdbv0IuGB5HQ0D9oAHz/5jW+++479CN3losA3j4E1gSbL/DWwxuHu6trBO/x299/jel0xuvvvsP1zQ38H/8xduOIm6treGORpgWn0xNSzqx7Z0SjzXKDQF13rMYXSSwBIBvRojPS+ZSMT4En7bIuywIIUK4jSE50FWE0urP+U8qsDeGc2A5vEnRrLeDAbpVDzy6S1iAl1r4o0t0lAu7f36PrGRQqMtZLLsNLZ957j/3hCCJgWpZ6ja3oO6acanZUSsL7+7eY5gkPDw/Y7XbY7/e4urpC3/fY7wdmzVo+j1NuxYIClimy++uyLnDW4bDfV1BlW3iTxC7ZFfV1FEB9lkAZAeeIjTyUGZOz2IYLzYkKA8U6or0sPP7uRX/JWAe1eVadv071cnTfADL2ThW8yLGJw+u1UgZnyQ1AsXIWaDpagWlNdpWdKRdAizPVKlSmobKMNIGu3V8d4ZAYpRpeJGK4qokCY3CZmA1fmyISlzWfreATDCBdZgtXNUJrKqvFo1GQpaJdnNOJw5VXTaCqHaLaGXp2bjrt0rgomstpXK3JMwNcOZv6jQ0RfODmjjUsdFpKRjFcPPUyIlaeS2sAcAhgMEabG6pFwvtb8yotIVq+QiBZoy3mV1BF1ocC9MawlEKMFnFduDmTkug5usoe04e1rTiCnMdcZxDnY1q0WWYzlcwTDDqaqcAT6f7YAE+ca2TWZtRzgACrDQHZT20s3NSz13uPIGAo0MbXt0WkFt11YkD3juRLBkBx7HK8plKPIT0nzLbyAuCDZ9BHQTIDsCJAAQzr8Vgf0A87/JN/+k+x2w34B//oH2C33+P65hY3Nzd4cXuLNU1Y04JvXr/BtERQ7iWPinDewAfOR1IqOB6v4WwHJqMUlMIMJ2sNbDF12kJHTTW/M7KnU0yYMOHLL77An/7yl3j18Ut0fY+3b+6xrhHLtEo7leB9wTBmjDugHxxevbrDsq74m7/+S5weZ5BxGMYdXrx8gWG03OiSrWctj/05F1hfKwTwvDzxSHsW4LkYhL5rwA0MIKNdxpq65gGIwLutzawkkhzzvGBdF/R9BxDnit54DMMosUuAfGJQKmqzxTL7XcW4QTJeqsB5XR+tPsqJHYrZwKExTxiANbWZXmCRcxR9JZ7kUQfSy2UCS5sww9cGbfpzc2qNK969e8tGIeBz//b2Fg/3D3h6fMT5PGFdVrx/eETOGSEEHI8HwAJdPyD0QPYONlvJ4yDnBp/nrLkZ2oSA7A+jIEjhesJbbQLqt6wwRM39dF3pz9TpcXAsJDChpGoIWgPayPYpUKEN+2rY0YJwjeGa8wMcrgspaNRiND/PCEtSzq+/A0R8xtyRt9rqsW5xBb2PRkdJHepaVDCrCBuIwbUichabHButzlKpC1NzABacr/mkMGNZZkN+WsXaN4jQDwAb/Wfa/EW91gY/+FsNs9TyGcj5IcgAZEti+4yNXjqefQL9TPTB5/qRa/7Bx/tJj58MPJ1OT7DOYsgDUkxYl6myLNShraFePKM9dEMdYVPmhAucLCtV2rq+JsWZCigTC90SYeh5HKIXcISDgVL8UCmNRQQHn5YFv/3t16zZcnVg0c2+Rz/sefY+cBJO1iIRsMYE4wOGY0Avn91Zx10coa/HxImx73t0guYboZB3RTvWBlQSclygttj3DzyCoUnhuNtxAZsL5nXBZZrqtQ1hD7YHjQ0wkuTWWrfRaEFlM7HQuUVnQ6PYOyOHNCdR87oA4GRGHcZArfgkkCDNBl3o5ZAQHQnroYbJ3nvWlRDHCJ5/Z0ZHHVGUgn1NUYS+AwZrcGdeMODnmdqdqSClWNlEes0JYPFVKRIS8ft0wcK5DrcvPqqAmDoFqUBfFRxdGbQ4uyeEwKKHJUeQ4dECA4N5meX5KpBu6khCjDxCedjvEXqeAQfx7LrRqFmRj4KCxFozJGN5hTviyzRjmWZeX1JkExHSmpFMwkKE1IvlswF2uwHjbgRgEDoBIDaF8IcHZ6Zc14MVkKXkjLxGJAEmiiRlUcCZNTHoYr2TPdEj9CyoeDqfq76IBl9NKCtbRSuBxNpgKAUxZsynFff393j/eI9lmYCS8PL6Gq9ubznB6BzuXt6h9x5D6LmDa5itUApraRCAjjaFkqx9gwyyBZRzPSpJklyle3d9gDF9Tc4shJ3Ts6D+vMzwzqPzAfM8ySgdF6dPj8yOVKZTimt1ydwf9uhk/C6EgC54HvUpnLTEmNh+OUZEWfNWkt1xGDBdJry/fy/3inA+TTDGYeg7WNfDdcB0nnB//4DOB4Suw93dLV69+ghvvv6O11zRuf7Cgn8qtssXgmOFnF5GDzECKFEFgo0xnPgU1WABs7egnXU+qbVwRR1DoUr/dtti1DvW7JITnkjilHMw3mJdZxAgLjGmjsTpqC3HYFMLGgsgyrhqjLkV/paB+1oMyoFaLeqJEwYXHKyTkVRrYMlUwedu12M6X/A4nfD9w1v87vtv8NnHX+EwjDhLg0JBTaICL6LCX3zxOV68eIEXL16I+C1fh8fHR+QlYV0XLGkCZcLt9RWMN/gf/h//Pf72N7/BH958j9u7O5Ah6YR/jrHr0fmAKEzYdV2lA+oF/C5VrHe/27GzoTB3zuczJ+Bdh904Yr/fI+WIIqLtrjYeLM6bfczjhwGKw4XQwQSmhq8x4nI+M/AWI9iNqADgkc3LfIG3Dvv9AfvdHkM/oGTCdJlYg64Qzo9PPPa+RNzc3ODLn/1MtDBY+D8ZwBgnQLPH8eoaf/Znh8rIiDHW8X2ngGZc8f79e1ymMx4fH1AoI3QePjjsdgMzsaxBKWxC4TZJpRbuh/0eIMLUadEnjaFSJDayjox3bdStOo6taxWufh5zwUC2s9y0MsockwaGYbFX7xms8dah+FKLNe+DsC8I88yaYJn4O8zrjOA9m6NIPGe2KZ/9xoBHqKE6Sdx57lyH4AJbaEtIgGlAMjckLHIIdYzcSCc6SlOnEIPwzjq+Jj5ABVar+5eAReoBCWydxkQbw8vYLEod0XDeoXdWNB5bweScq2LvOuraC5MyCcgVQmBmDUhGvVrh4fR+1wpGYqBi3xIa+ZZvChJwX1jHK5UZpW64jkgKbjFhkGvADSoBPFyQokwYKJu4mAuzF6zIEjhos4tZ4SGw4HbJGauAo6oVWu09RbMJAOrgD7Gej7fShCWApFFZEhcUzFLjGDgMPY6Hj+G8R991zDpyDt41Z1bItcjCFGUtGG7SFQDneWYDDilur45H/llrgVxgTMEkcd+J4HKKGc4CzhKcYaMXbqy52hizZZN7bgFRIgwiMt5YeE3fq44kC2g3C4D99PhYG8GdxEfNH+FZ9yxTZBaCt5VtWNfEZn/DUm2qG1gY7xBshxwz1nnCn/75n+OPfvEL3BxHhC5gdziAX5D3wLvHC5blzDlkDHAUmP0FAhkH7w06z+ORJTNInQuDtUBBTLE1fWQP55SRTcZnn31WATeA9Q2rg6us7YeHR+SScTmxk3hJBc4Trq4tfvNNwXe/n7G7fgvfRfxP/5IwnQhp7bCcDuiHJxhPWOIZO3eL3e4KAa9gygH9wBMIXsw7uq6rkhVdMKDQHLFLyoAl2M7WolrdrrWBzKYsJE1Yh0ycT6WcMQyDMF+ZGne5XPj6CfOEBbtF83YYmnC+XBtdWzlnLLJ+YQx2ux12ux2ur28rY0mL96LAAie/6HyoBhFkCcUS52xG2ZH8XWKMuExnzlMN1zDeeRyPXHfu93v0fY/X714jZzFVCh4xrmK09QIffewlPyNpeE8I3uNw2GPcHbE7XNW1Os9TBWcroGItguU1xGchs/101LTr+rqHeLSqVHzAGmWGceDk8e7NOB0aNJsp1XOHoI67fOZy44N1f7VuMfwGfL46i2KoMdfRzLkq8CKkBm5cqfaUaZ/VNs1DHfWqgOK2mVQ1bpqgtzLw9P296HJVVikRACssqVTBN20QtRoMLTZAde5M/bzQxoXERRBYzdFCmiJGRNr1O/E5orhO3rwXjJILGABkII8qsenvfnBtxb/j/4pRMucRH4BO+hsjYO6mW4IKxdam9X8CWfo7xeJ//PGTgac1LnDS9Y/rimWe6/xpCIyoapEcQgdjmMVk9cATVFnp/ErNxAfooCaBZTNrrrohLKzL2K4trl4XC9bg4dGKBB8KYFjMLoQe3ndc5HhmKhVAhKZLFRzVrqMG0bqYCZXSqN0jiJiuJb583D0KIO8RfEDwHouO7wnyzuAZ0/zJmJr8AUAXJECIZo8XqnGOWQpCVw9rnRdVBxOlEAJoCLPlkZnaURIwqeu6Z2h0KY37qoFYkVErhXyl0enmMwbWEnjKktq/owEHlkgEh2WmWwEM4iqo1M9gGxJNDDgWIjjpqmlybKXwMrmA1JFQNqOO7RXtSGeDtEY4Y0FeLUgJPMrMuhlJEhy9flHBh8SdPn906HxAHzagHjS552TNyOIoQueOa3P6S5GLGJ355WRRtUdIRrkM1tXJfDvPaBtjtflbO0TP0PxaCNi63wDtPLf3UI00DdaaKGiREDoGOqzjBFu1J5wwvLaacsqT0IBF8n8WLBwZlxXLumBeZmYzEuGw2+EobobWWAxDj94HjF0HRbBSnpHBs/FGQMttoaAMS6Prmmizvm0VkdfCNTjRpSAGgkMngryrxhsrhyePxqWY8HR6rPcvxSRW76vsNWY9jeNQnXbavWS2QNbxPNnjWkyUzOzFeZ5BIAFpWKOmu2INry5YLHZGjhGFWLyc34+duVpxh3oYcYHd9tr2Lm27WATttPCfCm2seM2GFdk2bStc5d902W1ji8YRfc8tUAhHtRnA1GkZiSlaSKGNURNAZBj0FhAXpGN1mrzYKnrfNp+IU9b4LJ9JWYKlXQFjwEwTZ5Ep4zxf8O7pHh+9/JyLOHGH0cS27TeOjTzy6+uYsLVGxPzBAB7x9V1TRC4Zv/3db/Gb3/4GGYR+6PH+/j0LmA499sNO4j+fM6ELCJlBXzauyDA5wRrLI3aS2MYUMU0TuytKAdbuHd/vbXIVQhBGYqmfuyZBwqjT0fQa3wvVxURyLWKKgAd2fpBrwGYIylZWgeFCJF3qKJW+xBrpAq6RGV2lsJ7Ubrdn3abZY55nLHaF2pwrqJhVS67GPGzugRbfklTZ1geAfA1lM6aUa+yGIRhqphcUqDqBwjTWquprqAak5hxGusYKijAL1jKY5JitQCjNYZGIWQtO9PlCgDEFprRxAR2zzIWLgVK7s21zc2qvbCNTdzkIVYC8mNLGsLeJo8TP7bXTwl+ZnCnn+u/Bq0YWCxPYTSzQGgHto6Hme2jxWUFPvv8yyixgZJbP6EQLK6fEtEpLLDTcIpKAQiKcbUUnS968ngk1ArQ49YOuMbbn5/NroyyH9h25uUK27Sk951QQV8G4ykLW9WFMNd8wxlawl9+/fZY6iiTAWXUe0sX7LKrrC7TP175TabmbfC5dHdbaqpOkDQMez7WVta4gHIyFKzKGDt3CPNa7qk6SXjNreXi6xufGsAaMiPRyEW8dv58XbS7VblHgk+TCtO8PFNU1E1ZyHd+W68Ti0KyhY6U+YPAcCF1ASZmZ6SGAQpueqCw7qTl43bb9UeNHvea8hw0A6xxSZLDr+uYawXm8uOPzOwPImVgaICWsMWFeEuKaWFsRCowDxvI10QYy69pKaee56GvjQhtWTs4oVLCTZsQwDAARYlzqmiiJc47zdMGyrkiRDZNKKrAWCN6iJML5KcGECS5N+M2vzjg/Gnz08iOUxM157y0IURoFHVy/g8WOGYWVJCBrXyaPWGqixU7Ida41if3gz7IHCpUKSNukuV9h/UznajxLAkBZUM0PmWVKGHUUUdYWg7+lgk+llMri073AzFNXXRVZKxcopjyLZVpvckwheAdwacYrRgkXXHdwLpCREMHTO6UUHA4HOO/YFZYKTEIF30LHTLYqYULMCHt4eKgM6NAFDENf91uMC3J+3oBu0irKxuf7wvHasHGSAJQamzVy6ug0iXSOEZCjOdVRDZmk/6NNrSXac9uYbzRHNRpf+FeRmFXjRj1PTBXFVvAb8nru+cb8IGfd1rsKnGxyBvl+RDLybKxo8qECVVrn1hhE8hlL+576mbefodZDdYybf7aA0CjUVMcc6zkq9Rnn2O1zatRpX00jxLOvvzkePsj8NV/f1OEbKnf9Iz9tkyhhq8mk32lzSm4SEXr+x/q+z8/W55/rP/X4ycDTsswSQERvxQFkC4ohXOYzLKxYwrvqbLMfjoxSU7NcHYcRzrOmC4Bni5lFqCV4l4IzXeC8wyCjZzCcWIbQoeuZBXU5nZGpYBhHhL7H1c0d1jVinifs9nsMw1jn/ycRrdMkzRhT7Xi7jrugel8oq536vl4Da6XoFf4ayQE4L9ylQc4IvsA7drfxvuPREGNAhjeAtRa7ncc47lmcr7ANdymE4LlLy46AvJRy5gJJwbvT5YJcEnJOcN5jHHacVAjDgIFLGdMCb4B5XRinNTzi1XUd0iQaTnI9lmmBc47tRCX55s+XYYN0UU+82JQhsiwzrq6ucDwcudNXi0ArGx/sMibF+Tgw68p5pegye4YsYZ1WoadycnF9zeMVbpaZ/cxi49oZrpCI4fHGUgjjuIPqXLDO0sQHDBX0XQcYgz98/x2WZcGyLOi6Dsfr1lXYH7hL0YnbhYIQ67LU56ijVBeYVnw5X3C5XPD7b7/FfrfDZ599hmEc4LxtxU9cUVKzgAe4iLtcLuh7HlWE56Q1pk0grGCVbNbAXXcruhb1taSI8T7UsbHQd0J95270VfCytqkmo1rka6BUB5/QyRXeJGc5y6xzKXDGYDcMWI0B1gjKBZflgpRZFP6Pf/4VPvn4Yx45I4INBoUSljWj64IArBks0psQrUEuDMw477Dbj9jtx7ZX5ZESa07ZEKCuid6xCUBcWBT87du3WNcVl8sF19fX+Ozzz8XljjVpYCxSWrHGtXZOnQpfG2YHrcuC0/ksArwdqBxYmH8zfsbX24MIPH5EBercNE0z1mVFjglJxBOD8zAOmJcLbATmGTifTpinE7rOC5irIpAB1iZhM0gnfqNXwnvW1ARebhbH2hKBzKL71dEL7CBq/TZZ4h81YHeV2u3V5rtc+1a82Aq2GnEdReFuftcF7lBx0IE1RdY6KljCI0Ucp9YUkeOKzohFs+ditKjpgGvUZyNisjrmuM4zqgOLnJLWO3hvkS4LkDJMYbbPeNjBeItkCt6dH/Cv/5d/g09uP8Wrqzs4AmAtdoc91hjx8PCIv/7rv8G///f/HuvKrMr/9p//t3j10Ue4ubuFAeCNQ+cChq7Di7uXuL65xb/8l/8Sv/7Vr0Ag/PyPfo5/9k//GQNARFjWFb/97de4urrCOO5wc3ODvh8wp4hIBWuJ4j7VcxJkDBIV2JLhhx4BPYb9viYE3jusceaExlrM81zNKKy1uL29reBsEr26LvAIQhQ9sjUlFADDblf3VpFuaC6EkhLOlwtrG/YsKE4OKA4gC7z46BVub29ZVwWo410RhLjOWFMUByTg6elU15L3DrvdrhaQw9DjZrfDMrMW42W6wFiDX/zxn3FhIqCIcw7j7gBje7DmhozzlcJOXLIOFMBvD17nKho/9APniva5Fp8xprrwWS+OcwrCC8DNe1JGDKBj940J44UtTOIcOM1LS/KN4xEtcf0bhgExeiyJ2WneWDgX0PejaImoLpIVxhOf5SlnnOZJkuo2Qq9xumqeCUDJ5zeD4C4IOC/aXUPPgFdMseZBOval433PtAX5q9QmhhYiSfS5uHtuqutSLvSMoU+mdat1JFqFu43lrq/PThohqNp0EA1B4xysAORFjDOcyjAY1KKDBxoEHEErKqrbIaQgsw5wXjCGjRsPUXX2tIb1OVG1tFpqXQVgFUSTsT/jHDPkC4EyfdAAYNZX3IzbtWJKGlJU6nrWXIqIx3SUwUoKnpYi7CqHkiNKBlIW164uVPBUdWdybjpIBgbOsENe0fMEqDmfJSAI25RywenpCX3f43A4YJpm5DVyUxjtvhphbaV1gZF1aT3BEUAqayDXsEByDqJnZwuJppnceigbdJ4nZmUreGl58iGKmPP58alWgKHvELoO19fXnD+K22XvQ13nem5Wxj1UZ4z3h/OuNsG9czA9r7mCjLfvnzj3cnw9fWDt0hAc5tkhF4N1PfNnCQc4FzD0BwFbC9IaEdcMYK0gNAyQkhTTm7bfGtmY53w5wRhwU8LYZ0xPNZKx1qHvd3BwiGvE/eNb5OzQdT3Ojw4PbwyOVzcYd1co8XdICyGYV7gaC776WY+PPr7C7sBstrgSrnYdujDCuZ5jkDUgWAb+nEHoGKAy1te9roZGfP6kaiq0rmsdG+S9n7DmhCDr34pb6yI5HAmAOwy9nPHEwL3NGGSszThukFrZ26lk0ZVjx8QQumcGBCmy66P3HnvJLTU+WFVwkdpGwfi670kbgEXiOk+AfPb5ZzXYPD094eHhAX/7m7/F6XTCZ599huurK/yTf/yPqwOt5qW6xhlkI/zu629wPp9xf/8Ozjns93scjmdczlNtfg27EeM44vb2tjaZdA0oYUtHqYMfJFayk2rKDUyBxkDDjRTdZ8g8NmyyokKm5mAKHKr2ITvv8j1xekbJurUC6EgaAoDz9FRaDWudr3FOTGArSEWkQNcP6T0KrithoYhrcym51kuqwadu4Bp7i4DNXkxqKG9qC2l4GiqA4XqACMi5HWI6Ym2smivIZ3oGJMlESs6gkuEdy4koaWhremJLQbK2ys/oFBWEoVQg9xOkHKv6XSqbCQqOmoqZ108i17/d8/bYcJ5+8G/PnkXPn4d6T0397lvwyfwdr/Rjj5/uapcTHCwKuXpo8GI0taA1mTvya4xwgu6xYwCPFdlikTu+eUUs0nMWpkopVTtFUdRcCkoklHKpG8CMBqHTRFBQdzB4YeHRdQMn4s6i71mviY8kPfj4fzprXi+zvKcW2pAuuhGmDgsrCgdIApB2l7MwHZIAZ85acUMgLmLAXSQvlHqlwbMSEpCNkY3Mny8XcUlQhFQ2M4ypyDOEFq42yZZI07V6bdaVKd1pFY2cwrPhqeuwprUm9wr6VaQXkvhAkjv537qs9fWNQQ1IMUUEbyo12xiDZV04SbSN+bBNtqxlYEbBj1yEgq4MidKKAxBkfpk1FPS2tTXI9047JtbZGohTZmtuZbLN84xl5UOADyVhlTlbX5ft7LlD/KFAnbod5pSRkTCdL5guF8RlQe46CfilUmJ5bYheGVR4VGittnW3SikwtrGKzAfFkULOdZub9rOcMMtv0dgl1tmazKtQbRZdj0rfJE3k+T2sdULrl+AiL0rSRdLrEIJHlnEZHpuJAAqsNdiPI/a7XU2sjDVtVE8+L39/1lXlAKmuEF6ui606HFaZgnofnAMZywCHXIeqVVSvA9VCMye1FG9dM3UQgryeFlhZ1kyqM/2lChxqQdfYhw7eoyUBchBEGV9SRkmhAm0X55RQLN+lGFeUwuOaWTTpnGpi1O4wbe86/zLtTx8eGyQLSJMQvb+1ZaGApiQr1VlKuiCqqbQtsrbsB913utgsuNuoh5J2wDlOtrX6jEGhT9ZkSAFOuX88Ztf2Obb/prm6xMO2QDkus0B6BpVmQeyCw7TOeHP/DjHFVjhuvodeF8rsSmmkqEwpIUW+NzlxA2ToGMzJKePN6zf4wx++w0cffYzD4YA/+urnsM5hWVacpwueTmcYZ2oXtlCuXX3AV5tzBu2E3WKbw4vV+0cMCmpM0FimI2KcUO+FOethTETOpjKOCcp8bEmvri/dX8ht1JEkkVGxcV27Ovq+3/HImYoAs+AwCSOtPEu0eB/Zuof0WhDx+WAl1llj0Q9j3Xe1syuJatZRndTEoXVFWcdaYe38aNdJR3V0HRX5uwo6SNGqSeSzXx/sr1Ka/kwphEJtdICFxdHGlmHkHKMKjhgoqMqpZIvhqHtAE1sGnnks/BkTSxlrzxI/Wcal1O+uLAFHP/wemk9slv+zvV22W4MIxbSooPkIyR7fKj9xnvS8WAPp6G9jSW5fW7UFg93kOhLHWCezNUB4XVItmgBUYAugWraTXtBn967lrdtzl691lvPP1jO8vq+taHz7/DVublg8UkGRQTWESFoUAbXRp3twy17U8LutIBqTmxowYUyVm4BlN78ixa+u6STsSWMts+yKBUwBioUyOpV9ynuD70ESZzs9MygTssk83SDP17qDAUoneVW7xu16NKZ1DbMCZirbAmQqE8nCgQTwJTTGvQKjz/Md/o82I5BbHp5ThrGpMm/Vh7juLf2g231nDAxRZe/UTKuyQXUtE8tPUAHEqS0XAYqtrutNTlZ0REzcEmVEn3NtXvNrWmCs2rJLzaH3X/eb0fVbqmuZFrkKfMA6bDkMnOsVLDMbpRwOexgsiMuC6RIxTQXrnJFkLXlvsDt0PGoGL+QAA2u9nOab6omInbtNhiUG7o2eWdJ0BlDzJM37mwA8anN6C3C0h65/vfYKWaKu3cKHSQWei8hc6HnGzq6QM4dqM8OYNk3Ar7flighrsQC06TJuP5sxH0hfyN93MvZnLDcvX79+jfP5hI8+eoHdbodhx+car09lGDlmw9nWaGOgdYb3AZ3npnQIAfvDntm8cg3V+ZqBDokTprGNNLfVGL2N8bqe62aG1jmaY3E9CqLGXJL7UgEs2S/sBLepk+wGgtA4vlmZGjP13nwIV+j6qntJn2s0d9XYLTFGPzsRs5qUBo0GjPwAQCEdw27fRcfQpPhqTzTbc/nDONQ+y7N1q1M9tp2Jz74fVNeK6lsp+FYbNjWGfnDWtYtaTwpl5mmgbfn+5is/v8ibU+Y/57HdBy19fv6Mn/aqPxl4mpcJIQSM+x4pZaxprSJxXhgYa15BiRCfTlL4epl9beJm88pg0OFwqMmzUiWjuMLpd8yJAZF379/WjumLFy/4Z+Vzaed2Fkcf5wOG3YC7V7e8ITMzX1IusMGByDG9UBaQd74JU0Lo+8ZWFgSzMhi80M6hjgLqgiIizMuCh/v3FeU/7PcIzuO777/HsiyIOeFwOOBnP/uZaEtsE7ACMgVFOlsxTcy8WJMwYnruxlqLMDj4AljHY3MxZsQ0Y92MCfXjCAODh/t70cphO9/L+YzgWe/meHVEP/TYjTuACJd5QheCWMvrKBbPxc/rjDWuuH+8RwgBX3z2BQDUbvs8z6CeC/Cr3TVyzvjtr36Fruvx0ccfCziVcJkmlJxxdXXFSUMRBtomQFxfX+NwOFSNk2liLbGb4xVUS6oFXAZ2kuhw7Q77Ktitn+0yX3A6PeH+/p6ttaVIBrjzxmyMgH7osMYV0zLxerQOu54dQoIIqCtoCABv377F6XTG119/jZQSixsWYL3MOE1nPIlTGrsCCgBKCc512O328MGj61ibiYU2EygRrGegtI4alsKjeMFxZ15p/iRukrxVmEkg/nxkhO7uHLJTEXXRMZkXATVK7U4E62CDRy+aasyS4vuxLqzHEme2893vRfto12M+n/HmzVs83N/jfHpCZ4Ch63B13ON42OECDtih61h02xh25MkZ3rP2C3rRLSASYE8LL+7IsugijwAGp+GKILxgBnLUQcdZ3NzeIpeCW3oJ4yzOkdfnPC/Ia2THxiWyHodosOzGEefzGXlesKwR07LweGDfg6xFkQNX1zok6VPnsf1+D+2WpTVizjPSmuCdR0wRJSW2tDHcES6UkdLMFskpIecVJQf0wWEcehGnT/DB1QKPTwo1G2hxuRo+GcPdKiqIa0JaU+0k8/UsVYMsCcOSCHCOATReUxAdKH6/6kZpGDhU3Q0FtZxj58DOsx5coQIPgwKLFNWZCnU0zsiJ23mP3nYMDEnCBAOEIMmUACw8eldARVe5nqdGYjUDpSUXLDmxmx0E+MsFOD9w4m8Ib57eYznPmNaFtTImfo/z+YwkGlOffvoZro43uL69xW63x3S5IBcWic454+npCYfdDp9+9An+8Ifv8Df/4W/wV3/5l/jmm2/xf/0//1/wsy9/VsWiuxAQS0bMCf/23/07/Oa3v4M6ZqbE2ka73Y5FxbtQGTah5xG/rmO75GVZYKxFJ4YXqjU1TROvWWkedF2Hvu8xDAP6YRBgic07UlqRchSWSa7CtQo+6CjWGlMz0PAex3HA1W7E1X7PYqiXCyhGBBi8vLmB8x6X6YJ1jThduDnkvZfRSargmRdtr3EcMU3A5XLB+XzBNM047HcYhl6AVwd4XzXevPPihsqOqtM0cQxbFkByBs3WFGhfMzNq1mXhpM2xx895utTRH2OAQq5+Psh57oyFcKtrwe9tEzc2EK0yy5o5ay5YU0YXnAiwMqBbBGCx4O5wuTTGLGd9zbJdafvrsiJ4jz50FUA6n85Y1xXv7t/De4/j8ViT0WVZql6JdQ5OWL7KKFIdECssDlBzcKz23zp6a6VAgatJvLOujpVlcMGkXd86Rpt1xEDdjJuQsxaCi+QkRUCzIExhZSGBCEvkhtaIobENxLJbhcO351whgEyRJLyNH+tIcRXZ3YBDev61RE8Y79JwU6bDfr9HzAy2aDHYCWumgiob4EjBJN03fddV8fGUEuZ1qUL0MSV2VZJAZtTBgVhfrQY4a6r2zJbVCKCNTVqLrhNtFV1ZpFoxc10bDXXxIHWmAkB9VxuO87wwE0MAUh8CHIB1ZrOQZV0Qr1YMw8AM5s7DOwOTC+KkeaswHoxBtkACQClizal+Zm9DZa8+EyCGgL96YAA1JycijIbjpMbOFHmk//r6Wr4em6ksy8IFlmETmbpepaC3ACCSGts9ruC/VlMlszlAihkxrdW1FuDxpVIIl9MZhdj5rus59uYkUiOuB6ggJ0JJEev8yLp3OWGeZ8S4IOYFKUe8f38P5zy+/OIrzkNlksMaCx8cnLfY7Xa1yZtiFHdkC2eYYZdTAglz2UKaqY4ZYd+fZtze7fG/+d/+Kf7m13+Jb373Gr/9zR/wdJ/QmRfIOeH1+2/xy//yv8AvfvEJLk8vsMzX6IJHCAbe9QABa7xwzPWuNm5BEywcDtdXNe82skYV3FHzldPpCQDh7u4OXvbZNg4Qob5GW8tJ9u1a2a+JCJYKa4RSRswRgiHAWofguGnkva/1EIO9BSmu3BB0BiHwGcs5T5F7SayPaZipotMTPDraki79zLonnXPYH/bY73eANRjGEf/iX/wLvH3zBv+v/+f/iE8++QR/8Rd/Udl7u/0ewzjCH3uE0OHTTz7Buqw47DkPffPmDdd2S8R+f8A4Dnj10UsMfcDpdJK4RugC69BGJMQCWM9rmJmogLFthLlIraTxQIEH1sktiHFBkdyN3XMdjMTsXqRFFLgHIOSIDNN1MPCIC4OpThzJvXVyLnGOaCy0uK57r0R2e3OhxXcFgvS8ba5xVGOGkz2dkJGJ5T4MmJHunQN1bVxTG8oNWCSUTEhRRvAb9g81tjCimk4oNR6r1m1tdj4DXRQo5l+pcLPIWCYpWKgJhJ5XVROiAmwqT0Dt5dpbmBYX+WE3qM8GDAKaJJP8s/B7Kn/M6N/VvsxPA4pqnH4Gwm4+pFyin/r4ycBTjFHicjvEjQ9w3tSkmRFuQfWKMAysAxUva84gJxYNXmZ24DEwoomS6sJWirkVWrwKY+/3h2rZCyjSx6/hZOyFF5oRKp2AC87Cgrs69Yob1CJ+25mtf0daqKl7EhdkmvzrgVV/nrg71/cDhmHEKMn/ze2tiMIldKLfoTPOuch7pAiA4L1Q6EMHYzOYAaJ6L/L5jBMdAvBYiwPTJEm+rySloHawMrDH+iEKFipdUXUulAaZS4aD2LhLAbosC5Z1qYmJdqznecblcsE0TRiGVRI0XzvKMbLwtAa9RXSA+H45Hmes4J/HOAwYhwFD31fHnS50lXUBsHCevn7taksX4nw5c8cv5Ur1XZaZbe1lhI9yqkCn6vSc04rzmRAkwYzyGb318I678muMtWjPOeN0OtURFyeJcYwRT09PWNJar31do3JtowhedxS4e4KWGzakXpwkSJlBH4jrbda/FilZ9luSUZY1RngiYewZ+a7MylM2jZEoN/QcIIPQx0HS7XUO5NhmOEnhq+y0mCIDdfPMB3yKGPZ7HA/7WhCW2oFqyTF3nlS4r2Ab/hqtl79blNEE1ojh4lp1o4gItNm32pV23sOUUhkY6xo5OZP9W1kUMvaiRZsXsPVwPKLrexjw/p7FmWpZVxZztjIWlgvWuNaitBSqrnmadHnv0aOHC45F6DPBOoBIhFJ17CIl5MTC+n0IAtBAtEDaOUel8OgZ2uFCmrADDNIQg4pVx8eKRorGg6Jdkc2pocCVnEqk/Gf5marRYT5kLm1OX9LX4TErI59ND1btznJCwb9vXRx+joL9dS3oyxKqiGfrMJm6BzhBTfDEOgXG8nVTtgEMazGdMgMQl3niAsh7fo50UYfdiK4fMe52CKFjBmaKPC6ceVy4gOBCB+P5jPro1UcsEEsMqLx/uIf3ns0kLI8EXF9f48vPC2znW7fT8hhn6DoB9SRZA3ff1RwgpVS1y2Sl1+65ngvBB4TAsVcp5rpqtOgjArzPlU3IorZ85beUeiOioZ3zGH1AmmZ8//Xv8d133+Hdu/e4Hg843z/g848+wjgMKCEwW5KoFeACPG1jlRYOnbCl+D6LG5jEHRKAV4sVZYgRci289FLo2tNRPx0d1vdVU4WtuyO/aQMxt0sXsuZYm0b0sMzz8WhN/hjI532mzA5TUAXxnQ+cJGfRrMyl7hsVg68uqPLmOef6HD3rHh4ecDqd8Ptvv8E4jsLMdRX40c9kS6nx78OurOZrP/i2FiKQuvmX2sHl68SOQ7KxC7H+oGmi2cxW4+uaSZqGAmTV80/+p1bcbsNk06YT6lswc1tzOjai2IwTyD1UAIXkXrTwR3XcQtnXgOqQaJTh71BfTRhOyjpUHbCqvQZh1VNjbz+7XvqatGHjmSJalqXmssbKd80su0BEdW0akjNE46dVVh7B+w7GeJSiuAz/W44ZRCty2sZnQnMabHm6/lnPKhjAJnXhbechBMpTBl8fOi5uhc2RExd6GVTzV11zzBTb1GUk7reb87Yx/VCLOL2vVZ9xs9e4MN5owAog2oVQGyOQZkmMqb25MRXEqKzyzXmk58v2HJUnbPI1LqTUbU3zZdPL97SAJcNNkcLXg8FwYF14vEjb2VW7NicUGceF5CK9yE8MYyfOpk3A3iR11W172nnPDTH9nIm/s4UDrIWVYrofPFJirVv4a9jwKV7cPYDI4Od//AbvXp/w+PSOm0U9IXRsOmKNhykB1jhhX8n17LycrQAZIBNQYgIooxcJE2btG9jFPWPrK4BTc1k1AZF7rRIr+rAf7DOVMFC3UCLUxm4WGZK+H2Atu45u2a4a0/l//GcG5Q1y3r5Pu//KKitF6l5ygFMg20A/nqvjuk3gen84oBDwp3/253j85AGds7i7vcU47ur4M2AkF08wsAi+g4FBJ4YYd3d3GMcd9rtDneLIiUHLyg4jZdExMYJKBowCOGYDdDTNvXZGaP7XckBuPhqAVC8OUssXESBv31+CFrOQ9IkGUFcHKsIMNAa2bLJEOTgqo1rjDz6sgTY5ptmMkn34IIhr23MIheT7an7zA8YTml6xYhra0PnwobECkPOeDLtGb7+TMdhqY9XzV39ZvSuoObIx2vDRl+FcgIzG5M17G/PDr789w0hfu2Y5P/YlsHlKu84AfuBcV+/B5trVWy3vYdR5FfV7scxPy83/vsdPBp6maap0RU0M/SaZdM5hnmcUYp0Yfs7CCKQPdVY1pwzKjOZ673G4OmJdJzw9PdVuV6+FsLhVqPbQ3d2dXIwNfc2ooHnPrg7zDEpc1FYbWW9hnEGa56pR4IxrIt650fCVFBjleyojy1qLEhm40ufvdjsAEItGBi6ujkdcXaluEOHVR6/qDUuZnQvmmdkOa+RiJi4LgIKrqyN3hncjSikIMTJ7ISa2fbRMfeWbL2LRHVsVYzF1dul8viDnjE6FAQF04w7XV9csfpwy+q5jYMWzhkEnzoFrjLDeIVDH+jSl4P39PeaZmUBUIAySGQ8PD3h6esL5fMZut0PXdXh4eGKtHuewzAu+//51das4n05YlwVPD49wjju4fddhN4wIw4DdMDAtdRhQUmY3vsCfy8noVVxjFbPWRzcOgAG+e/095nnB27dv6+Fz2O0w9j0DVpkdUYwxGIYByVos8wWPj494//49fvazn+H29haXpxNKYe2K0HWsSzNPuFwuOD0+4nK+VKvwcRwEZOOD4XQ6wQ8duqGTNaUOU45FrVPCNE/swiKfrRPBWg7zJAd9aEWDUdeHBiioYKB2uTUBn1dm5RSQ2LMeuSieFxYCn/i6GQAlFYAMBs/uN4MPILCQofWegaiuk4LYCguPu11EhKfzGQ+nEy7TBXFdcP3Jx/j41SsuvIiQY2LTl6CJHzO5Uowg4j0jmxhqi60jmCllXC4XzAszVHwIuO3v4KxF51hsP0pXRK8HX7eOmR0y/jfNM49a5oxgbHVYdM4h9Afev6VgkMPw+uYW1hq8f/8e67ri4fEJyxqxG3YYxxGHQ4+0rIgpYl6XCg5sk3yAtez2ux3G3QAYwjfffINlWbDb9yCUpoGwrliXhfXLuoDjbsfdCSIE61AMkIhYj0PHP5ShQNy90XVWSq6MMl0n7GhV6tgYSaGohT+LmUJEFxUJagexmiNYaxvD1VnRI+E4pEkeiPWWOP4bgIoAyJuCKWeQjI040cdgthuzVUHc2aqivQJoFGEr1KIFklYQjwDHuGDsenjrBMA3iCVL7DCY1gWn6YK3D+/w7uEd9tdXsNZjzUmKrYD9MGK3P2BZVqxrFM0fki51xJIiEgD0HcIwYtzt8Y//6/8GaY14fHzE/cM9vnvzGr7rcHN3h91+h8PhgI8//hi//OUvMc0T3xtZ9QpSrusKD8vxGpzVr3mp4D4nu7Geh6WwixRP2zjs90dmPImLrJLtma3BCf9Wu49kL7aR4KadwsCHx9gFXHcD5nf3+Hf/6n/GX/3Vf8Bvf/s7fPurv8Uvf/lL/O/++T/H1d0dHBFKB1ztDnXN6KiVuvBMEyfMwXl0u4Dj/oBSeI12PRdaLJ5asOaCmBacL0+iT9P2qzIMlclnAQQv7lnOtQRImCKlFDhh2FgZYdTCpyZ/po2rqXZGZePgeXNqC+ZkYfgBRbTxqbqe9c4hp4J1WathgXdO1iaPaQZ9HdkfVdweQOcDSiF8/fXX+P777/G//n//Ere3t8xoG0eMu6Z/F1OqIGptgpjnwtUMzG7GN21LZkkADs1/no0SQAxKiGBlzRChjvQ7yR2oACkXGV9nk5Ra+EkRkWT02LvSCssKMsjZVwhF3aP0dNiARjWJJyCmiEwyyib3qeQMFIKDAIiiOcPNSKoJ+Bbc8OLIp4m8ak8R0JjtQGOXWctAK1qR4YypelpLWrVigzUGwYfaLffSANFzPCVGkzxYGBlmresSVGAsEDq+16Fb6v5dlgXzMgHTCoAZ1apHuF3TmqvHGGtzWO+zFncKgoYQwKc8uKFDwO5whAsew26HNUVcpgsSZb7u0mQxIrRvnQpk62gwA3cFqJ/Pu225QRVIMzC1OVUBZmzOdXko+1bB9OB8jZHrusIFXwtzdU+tNZAAwYXAgtTi5qzfl08yWdeOVVUgbNfHhxOsGAtZL1IDvQUVC8r8nXIqCB1fBwVSOrLQekHHnEtJgBFHUm+xO75C3/e4eXHNxT/ZyuhQhpfmgRqbgjCK1pXFrE2xCL6Hsx7OJRBluNAjJ2BdgBg/xxrv0P9yhy+/+h4hOHz922/xf/+//SvAAD/75SvsDpY9k4oHxR7OBGmoMOA6DgODMQKclGIxrxNyynDBV5YTSfNBjVKUMchrE41latrevlwueHp6kubJZp/JmDiTGpI4ovK1/f03v8dlnuFEvuTjjz8GiMfBu82EAmvKCmsbA3JOmKYJ0uZon0fzmWKguhA5R8SYkbxHFxrTkMTZrhtGiVulgg63dy9xe/cSv/yTPwUR4c2338I7h1evXmGaJ1jnZTw+YZoW5Ew4Hrnu67sR47jDp59+ipvrW9zdveAceJ7x/v175NMZL16+YCCulFrTlKwx2lQNom2MKqKRXHUzIVpMAGuCgvVhCyxyMcJcYfBIp2qMEYON+vMWhTh/VBdKPiT4MmYxhMjP4nZrNGs/wxJkXE/+XrT76r63Ci5JDrmJ30be35ots9/U3Bcw2nOtMQcc+WCrezPq/vqQzapnBCA6UhJHYCzrBEoUMwCM3BMdBfQyFglrOCeWz8W5JiQ2tSZBVlIMIGzc54ZGP4a8aXPW/Mg/N92sTQxsP7jJo41KDNYr1ABANNBe/lGvz7aX9eH1/f8r8LTfM/pq4NB5C38M6PsBXeg4YSUA4G63d4wOOdFHyinCcEaIbC2K1QVCOD2dOEFNCUGSzBA8fPDouwEGBn3XM80yNhtgXRecXBgBowrUCQbGVqvx7WiIdn2skeKJBDaVi1pIRFMdu+SNshE2y/TZdWnIPmtfECDItBROEqi7vqsJiY4SWMP2nSp82HcDvGMEnFlUPPvuLYuPeu/RhVxHCZTerWN/3jkE5xG8B+WCuK4AsSB7FwLGYcS6LFgh43FyTXzwGPc7YSUtbH8JwiIH+v37e0zThNevv0foOnz55Zd1I43DDof9kUfjYsLrx+8RQsBXP/sKwQfkyAyjHBMMsdXubmCXDm9Y9Pab33+DrgsYx90zi1ye9ycpvFjs++HhgRFmZ8SWuPCoiiQjXRdwfX1diyoqBZd1wSI6Gcbz2OccV8AZjLmgGwbcvXyFfhxB4uq2pojvvv++aqeomHoRdtnT6QQY4Pr6Gqlk/O3vfsPdh1Iw7nYY93uMw4CuCxVU1aS878caAksuSF1CL9257Z7VpPBHEW+gBi0tNNSlqO97KcQM4sJaW8s0s5MQUIXmjROxXnDhcJlmiVMEnUjkbhWQSwBgMeUZ2qme1xVnsXk1hXBzfYWPXr2ED55fMwnwJHTeJPbjhZjV1xwfdEa/oCwrAyWlsCYaxC7WO1CW8QqrbIHWCa+FmDDSUkwwBAxdD+84KTLC2BuGoSbJRKii+8FzYV+1yyS57kJAPwxg10y1Z3YINoBJz5y8pm23rRS+72LjXHICqGAVsCrmiGVZME1sFnA+nzD0PV68YOFmPmy3OjDMJOGxNFuFB/X+WyOW2BLbvE6UalsCbSxNNUFAqAwcFRy3pEvQAKW5J9URTzRGAglIpEUiAVVYUfV+kvzerms9xLXb0xIhoTRrbNzoIBj5TGqHu+2YF2HOGaCOYRaSOX+w05QWoXPJmJYZ758e8eb+HRbiuMQC2DwClEvBKkVDSrmO+2pcub29we6wA1lgf31g0d6XL0GyVnPJOL68hbEW/TjwiMF0hn1vcL5cqhNZ1XSSRxAmX0wJ88zjZOwU25zkjPEiiD8jdB3uXryAl/3jZc2yVhk7zakji7pZKftDnZUIBCN6dcT1RWUdcJeXi7RMaOKlkiCxfgoziBeh9TOleZO4QNgXpo0pRBF+1S60s63IKsqYSBneGrGc5gKC4wQAFNE8yDDGsmi3Rc0tKrYAappyxCLM4zDItbCoTBO0GPchO1Vjiv5eR7xVK691AgnarjJGlzg72rUCym2Yxvx6yniyRpVtSx0X1txht9/j7sUd/uE//Ic4Ho949epVHc2sCWvOMNSaYdok00bSlkGlQBM2/zXyWbcj3Bpb9Svq/s7CJNWVG2QsPEYWpSb5HjmjauFZL46LMkLJY1LYrEOgiPi0IR7FnojBJx98LU4roALO81Y5a/XzWGvrQtXR4qyMN/0em3urzCbYljsSB7BnRUjNN8XFkdeZnLcbXcxpXsXVVdaUxDhnLTNRhH2q64EIMIZ1QJH1Z2oZIQYOqLFbRzND6Nhcp+tFVDxVYHYcelgZDdWGSG2aCoDofYAxtrooOhmD5ZEYiU9FARgn7FFlzTM0RURYCiFRqmPKba218bbqJiZMTl1QzTlKHItd+95hIzBurUGQUR1rTJ0+2N5DdVbmpkaRhqEFIA0Tz+BPXFN9/y2YvT3X4hol5qI2wQ6HPazzWOIqTO8MawucBLtSWg1wmRbkEvH0yI1fHwJC8Dgc9nXv9T03SWts6LzkhOxgllZZ14RqFKOAhzp2GmMBZ9D3LFfAZ26LV0QWIAtjMkKf0Y89rN0hU4+Uv8R8MQjub9EP/w6EhP2xh+88UpKRHxR4xxpDMTqADHLUAjnLqJyHs1bG9guWld1NWXA9QMc4IXFRnYGVqV4Kx3BrhAW730vMSBJHDVKSSFMIKbPrcBTW0NXVFfaHA6A5sgCdKUZhDYMZ1JITMvbBoPt+3Mv5mIUdw8+lQpgXzlMyi1iBCFjziig6itZaLMta95W1DiE091tlqCTJTcYdm4OcLrwmQtdx/gaL3339NeZ5wWeffcbxGrye5iXi4fGJgWnoucujzG/evqvnp+oAZ2E9jeNOWPtXMMZgmufK3nTC7CeQEpNk/epZRgrFIaONt6mOo9G8E8pWAoxRMy59vmnnoN0AXQKylBrPpOSWfI8dxhvIbASU5FhRWk6hualpOQRrjPE6qdqdcg8YxM/1HIMCzXxgtDNBPk8xpn6+evBpGFZwilcFKNhav2g+rBzKxh7lPFuNe+rLGiPrjlA2sRCAEEVMlaVQ7EGuxrPXUECoZZKtTtSzsuYmm5/+ASxk8KyWUGCY2m2oI3zP2cf8c/o7Qz9ep/7Y4ycDT8fjFSdOZKu1p3NstZzjKrTkpgsAR8jOyohP4aYPCCnK+IdhZ6t1jdL9zLVT0XWBmT89H6ROGA6zHO48j6/OXBtqN3S+X6mDcuF0dt2xcGEpSoVWtzyZu5QCGI67z4zW4//H2n/13LYl2YHYiGmW2e4zx15/M5OZSVZVkiqyQbJbrhv9wAeZFgT9QAECBAmQHvQL2GALUgto0RQ7WVUsVvHezLz2mM9ss8x0eoiIudZ3M4uVBWgnTp57PrPNWnPGjBgxYox6y5bgZSpSX+fEDcG5lg+gywVeEPJ5ZIaN8652cnTD68HXNZ0ITks3xanWAmDJozigbbWbzehrCpnHd/JcDz6lRltJNB7u74EMdJ5n0HfbLS7gRO94PGKaeW6/ox5XNwwePZweEXJESBGPDw+4nC84n884n8/40z/9c9YNKIS+77HdbvH8+XPc3Nzgu2++xXGY8Oa779G2LX7+05/xe43cmZmmqY4PbYUdlQI7u3391VfYbDa4vb3F6XTC+XzGBx++rto5ANPdz+cz3r57i36zwWa3xSQjdNv9FhYKPDXCCmAW0uPxiMt5qJ0j5+WAGQaQNQgpoet6HK47tG3LukEFmEPCu3fvYIg1fLK482kX5Xg+IaWEw801Qk744ldfYg4zCoDdbo/97govXjzHbrfh8TaJyKzX5arTBo8hNjD9Bt45wCxzx79F2cRSMEDXMUSoXbqbmuxpMJ2nmeniw8DPCd4bzjgeCZA9ElPCeYiwhtB6D5e5eLNEMjMPlMICvyknJGLwjoGnGZQzrq+u8PLlC1jvkCEMG2LhTP6coaLr1jXs0icAJhf5mfWO5HN56+BFh4mIAAGeii0VKF7oxAurJ8kIpbWW2W5qWhBDBbRyyaLXJB2Kdil0+fW4UK56GnLPRklAnPdonK+sz1Kejto9PjzieDzCOe6CcjcwY54iMljTa55nDMOAy4VdcD748cfodh2DhkUAVyLuQ+ckSQSxTqyyjCSeUHX84iTBWREFzcswilLWi4j6ExbWR0pSBMk8uhGx1CIacYsmi4BVeRmn0eKIx9t4FBYyKqoir6CyrE0R0a4jXtUuvQgon2CKdDuBxeGjLGMSgICVKcMRM+YAoUMLyJJShiGOzTElXKYR948PeHf3HrFEAISH+0c453E4XPE4cSki1lmq/stut6saRb5tkE3B7rDH9dUVWutgZXQm5YyX88jaZCXju+++w7v795inCZYsrq6uFi0MifXO8+iEagPeP9xjGoeqgVHHYUyoScDz589xOByw63pYIpynqRbhPF481YJYLeDVYp1IAaJFK4EZJkaS2YxT4EZRXo7OmlBkeZ0kybDq8yjTDWbpwvHxTHIe8eisPk/XMtBrBYDMZLm7iQBnDTZ9VzWrdCyXz5AEiImBczLWCXHNLZpoaWLERY41hK5ta/xTFo6CMiqcnOV6KQtmDdLoWtW9nnMGJRViVjB2JaJqDLw3Vd+qMqci/44VcJQswGMdS+y2lovH7Y61AD/97DO0bctMatG2U5ZHljWqwNjahbI688nemn8whlJKYcDBqQTzEleKulxK4aAsdtXK4cSfr9McQwW+WEh90TLrbA9jmZ2SkDCPs4zsL2BYNWuAQSJCnGcpsrsngKCegbmUakSiLnccJwVENwUlAykXGMrLPZeCYN2sq59bvpZCrJ+7nrOFEQZbMlC4+FJNIZVeGIYJMaT6WtbRUpzKfWj7Do1rF908YumJJOP/hCXhr+Mu8plUTFhjQs4ZcR75TJX323cbKTjSKk+2tXjMIBjRS0x5+ZzOMzNef1Y5RroHQmBkzIqGDxVhS5uCOU71TCUFk+UzN8JUNsSFlE7mrNegcYC3psYZ1sLk9WwN8fdEGqLEsACmRIt4udyjmNTCXBpKpsDJOcZSETw25GV8sOuYfZjB5442jkrJaHyDrnXY7nbotzvcPTxgnEbEFEAJMAqkxlzXwPF0j3FilnbODBJuNhvc3N7U9eQcN0n7fsMgoGNQ3VgghihMV25MT6KvWWNS10EZcc4YkCNwP7tgGM/SWORRoJINyCR4F9D3PfruCtZ8hFLU1XCPvtsiYcRm38I1HiHI/kWBsw7etUiR700MCsImeNeg65gJH0LC+XxGCAHDNHK8a5oKfBrD48UK2oQQZMqEtfKsZ1dcay2Ox2M9cyv4nzNrXgpDPGa+51c31+weKzEpCfNHG46UC6K1Vdydr71F17bY7baYZ2YNcgjgkfRiSmXzx8Ci7KwXG0RrdInjug5Zq3ErdYGpQjdB6o2u3yKliOPpkcGppgVgUYrBr3/9Fb7//nvEyEDaixcvQBkI44x5ijgdz6yp2jR1fd/d3wPgCZWcGHRSZu1+v0fX9dhstiBjcDmf67X00oj44aPkXM8fOYABMLHDOqFuSBOCzYx1XHWRvNCDlYxkjz8AnnQaQQHnCq7L68cgshAK3GFhIVeTHPl5W9lNtLC6ViDSAlorc3QBvJfcURpZAupQUQbYouNXrw94CiVlldvhr3ohiwCojCteF6iNI/7N5WxeN7T07x++njIxq/A4u6Dhh7euiqFDDVIWIIrPEP5wZoUErfA8+ezyfmgZiQepLpTeB70OqzWz2p8EBZ/Kk3Prb3r8/oynzY6pwyL46R0HlxwTjGFtiaYwKBIiB/k4z/XNrQucHCDouEW32YDIwDk5XPKC8g4XHu/yrhFqacBZgJDNpqsb0lkL3zr+fUFh2eqbUc9QwirRAP+ckaJKEE9nPdQyFCQ0QmjNTzXZKgDmEJFzwjTzOM/lcgGgSWkWFJNZJzGyyO7jw0PtMDVNg+urq3oznWF2ShJU/zJMtWNkjIU1DiiJCyJJ0prWw8Ojsz2PzWlnybAFdCkFV7sDU7OHAZfzGV/95quqdzQMYwUr+r6v87ree9zf3+Pdu3dcHDQNPvr4Y+SY8N0334EMVbHDaZpwf3fPThnDBQDw0YcfwnuP8/GMaZrw5s2bCh7qAn339h2AgnHgMcbbmxsG1QqP1MQQ8P7tOxwfHrn4twa7qyuACDfPblFdf0pGTAFf/upLGDJ4/vwFA5fOIUxsXTpPE0rK2HSskRFjQCoJFga28Kz5eB5wfjxBZ+v3hwO2Xc8dXekWKNjqGy4c3759g3GcMIcZKWd8+MnHLGY+DJjniLfv3ot4IbPwUmawzziH3f4Km80Wh90Vnt3cwPsWl/PIhZrlwr5tW04GtQha7aE12FKLINmbGqS4ECuYRNBdu5Heee6K0jIOMccElAhj2fbceYc5JZQpCChLeDyeEGJkJkcIePv2Le4fHjFMPF6x3Wxwe3OD58+fA9Yi5Iw5RBQUOHDWSUR1hjkXICZm1uWcMYUkMZaBV0X0IXuwAEgx8Cy7FIk5p9r9qI40pCMOArxEsSM1FtnJoSkHVes9RyejlNeMGANCmLHbbkFALXBYwF6BcRaAzilhjgFGEhuetZci0ln0mx4hTohR3OsyU+5hIJ3rgKZpcTo+YBjO+LB8hKZpWeydOEmD5QRT2RLaOVdwjg9mTnSGYcTxeETrWzTWg2TMg1m8hadzYWANjyjk1VgedH0pBpQBZRrqgV67VwJwKSPMGAPrPaz3gGMmQwKDEzYrgO9rV1B1anQEwegIkByWDDSVWlQwGwJAWbl6goFQIosC1jvS4oxFjvnYd1JGWWvgG4/3D/f4+rvv8MGrl9j0PWzhUYBnz1/gfL7g8XhEGEfMc0AjQt8GBVQyqESUSIjDhDkyaNw47vzWZMg5OAIcEV5c32DTsBlHkvsEItjWs0C1jk54jzlGzDEiloyIgilFGLEot8ailc52jBFHZQlfXcvYRa5CziwWPFbQwQm4NJwvzAqQBo+yrhh4YabNpmWGMUQkmnUdGbRSQPZyPuPu7g739/c4XB3Y4TOzgYfeKz6LDBfCnj/DPAeM5zNKkf2cEsJsReOJnXFKKQyI54ScI+ZxRJhm9D03XRrnUSwLcBvDDOMKtOXCoyaOr+1+t+ORhhCAIiCydFWtxMeSeLSrxlEBNtVBbqHsP00WNQY7a2AyiaCqAaSDHkKU7aYxTMeDWGxVH9qJTEmc3SxfnJAiSs549eplje08Zg8ZE3Loe4NGRu90VBUQ0Vdw4p1iRFoltUH0EfWRc4bJK70KKOumsNsoVNON162yvRZdSE5MnXwma1kLcQ4zKjssLwxLAzYiKKCaF5XCjCtrjOQ27HScfQbZlX6o3KMkAK8WqFr8JNlbBoRIi3irtZZ1Ig3BkgCpWIqonJZ7z/f2qX4WhNVgrK3NQRRmB6QoguEhSFNtYfBZu4CtxiQe2xX2srLNWeqHxxhzYiHrnHn01TdNZWFk0MopTEbQLGsUUmkRIzsnK+DoXIPSZHRtyy7GKcK7RvJI3qNe890iTCEUxJJY1ytGVGcmST4U5FcR8AyeCvBtJ0ykVEepHRG8tZhTRiwBbeMFaJVzSNeQnGPTFKD6g+yGLMwlw+vFOm5wl6Tnqwi6yxqCxjNrmOkfFyFlwwMH8nwGfdvWxlFBqaCprinVr0x6rjUetrHY7nv4zuHx/hHzPOPx7kH2C9WR+cfjEdM04XDFo8+77QFN28LZBk3j0HYN1LEVhpCRkAPvwznMOJ+OePPNt/Xzt23LoLDmoK4RQKyDGoVQdcFLACXk2CLHgpINYiTMl4QYZqR4gXMZRBbW3OD25kf4b/73/xtM6QHd7Rn7qy2++PJb7JprbHyDFAzmsWAaB743JguL0wGFkGZGIlQGpWkabHbbJUfRGCksTo2dPKoG5MJ7Ogxn0ZOyVWaD47mISxsGHpWB3oqZwqbrYZ3D6Xjk/LYUtM6j3y9Mz0bOgsvM2rKPwwBDhLffvZE8ItczcCvNpf12X1mxJACq5oacK2m+jToaaIUQEFOqDXCSllkqBSCD7f5QGUpN59B0PT7+9FNs93v02y0DtM5KIc97YQ4RfQaILK6vbgAAh8MVmxaMY91LOTHDnsGvBjpm5kX3mEAYThe8Hd7W3LXreB/0XcdxRUFLGJZ1KBklxaX2ACFkBRt0Deu5WEBWxqpVYbqwtAwIsNDzEUttUg8dqjU2cpF+hKDUtNQ8eu7UptEC9VTWGla1ka63CkT9ALnRsxdP/uZzTc/QegRA9TeBmAXcKplzZCLkmBhjkOtWWctmaUSt67TK7MIChOmashV3WK51BYFqC/m3H0umrGUT/6aRL+g1LOXJpX9ynVijzdRGwe98SLwxIvexvKGntenf9Pi9gae2aasAKs9rWxE4zYyMkqnURhTtXKt167K4YuSDdRx4PrftN0uwAtUDL+eMNPFmKJ6TwTDPGIcBp+NJgWVO5HxB2+lMN1cumVijhwMLd1NrgaU3p6KfJImFQUyCAmK5KXa9ocAduihFAP+d6s9qxyRFHpfRpHZKiTsdAtwpKycrslm00y72tSIGbkSYEupKJTbv1loWGnYy7ys0YUWoUbirHMhgOJ0xXAa8ffOmdptUzJ0MH5z76wN3tAxhEp2k25tbWMcOhIYMu+oUPhBVW2gcB0kY+V7vDwc40fs6X854eHxE27Touh7qyHUZz1DHuq5t8fzZM0n4tXsRcTmfBajk6+Y3XPz0m80ySiW3+3Q6opSCw+GKu3vGVtptlhEA7x2887gkdn5jlJo3WJxYJFs7xs9unzH1WQJCzhl932O/37O7nDG4jANgDAtGouD65gbjNMF4h8eHEy7nBdhD4ULmdDqBjEXKPHvcNh1TegsXGygZ2SxW2cYa2Ly4MiwaHRy4NPlGKZUyXzv5sg6qewx0bM6B5KCH6LukFDhgSoBShB8CWJVCGIX2feivEFPC6XzGeRgwC022le7edrsFkeHOlLBtUkowlqSo0X3F4EIh7kxnnY2W4nB9UBTOfGvxoR2RXFQkEIBZui8kcaoUsCiuinUaHrNUUwAnhQAMg74qQJ9SQt+2lWmZMyezrGdnql7FJLEslyT7N9XxNO4ke4Q4ynPwHuGxDS5muKvoUXLGPI1SzIouHXi0wBALh65j5JPOiVzHJAVQDAGeLIqMI5J0fGq9WXTcir9QtWDsMgakZz9AT7Wfnhz4C7sqxgQSAMYag0IFOYOtvKUIU9CJgSdTGRQlFxinyQSW2fTCzyFvWf+vrneuM3msgx2uS71G1RnVCGgla99ai/Nwxt3DPbxz2HQ9xm5E23bYb7dIMeH4eJTYMaNrG7a5Lrz+cmLTgURBhO8DooxRWXn+jeqDGMKma9E1LaYwY44Rw8QgtYJvruEOqjqvsfgsF4FJRn9Uk0jZrqrZUkpB38/Qpph2fZXpUNkWco3mMLNGW1xAAX14uXeNAJ7qNMjAC+vh6ZjHNE24nM84n04YLgO63RZJNMtY34mTMhLAoOYKhs0NimQ+RYBjEiacU9FtI3N/RcVkZ7QNg6jqdLUwgx0X1jHyOrfiZmUturZBtFbEXHn0y6rDmzJf9MxWxh2Ybk+ra6kx94fjRGxYAhmn4kRMz68Y2GmJhzU4N6rFmFWXyCVWrdmLFTjNGfv97kmc1/eg4LOFq252UdggvA+Wva0C2UXOV11TNSmvmeoqXa2xhhmvmj7r+KvGCGUeWmNQbKnPG2NgZoc1EnuWz2aNFdas6KJA2JnEY3alFJTIwNFiw77oGcaUxO1UmEyacsqaLSDu2BItLGfnQEU0P4BqxFKwat7I/V+fO0QiSCzAE60YmMv1ZaF/aRZXBqFRQFwahYWAmCIomuq6SeBzrrFGwPPlDLKOHV7VDKIUHekuAFk4MnxWkIGaSeh1tpaZSd45jGUUgwId8ZO4IrFci2pkqmNrsTojFl3BFRDUXJVZDFKYEy1ncymgXGDlnuRS4OGxSp/rWuC1X5BKRJHx+mmcFgacMYg2oWkyuo7q8+vn1L29zouinLWqJhNLqeuOGabiIGoNj51LnqjGLBpfDRkEH0GOJTtcdVxlo4bLwGxp72zVaWRtwAjnPLqux3a7l33g4H2Dvu+keMyICXU8MKWMYZhwOl7w/u6usjyuDlfo+r46ac7jDAI3JbnpGmGLiICLqHgRc5BSCCkC01hgTISxM5rMTuPG9NhubvFHf/+PMMY7TPY3SDHi4WFEe1Nge4eSCSlyXpFzRjZJ8kbPr5GWEX/vWevNuIUNWve71FU1dsr1Y8ZaQgizjH9yc4rIcByNqdYy6waYSrF4jS8SugwWEfPKkpH8M4gu6eV0rnGd82vNCwk5FXQ9G0PxWuH6SvWhjCGM47QafWcWUW3MgfeHWVNMQCx+TgaNb3+gt8bGU9atxvQk5ppiEFJk2QjJ/xWIbpq2ssYUUJCDrIJKuq+t5MAkQP/peKogoREZHLTd09xS1g4DOrl+Dj4meDwSpECi1Bgo0IFV/f9KIKnnBCpgVMGJJa3k9ywNRn0Wkm9WsImwqiGU2bywnPRMWjOfljtBtfAvKNCP/+QnfhdoUqiyt4ACk1XDcmmI8l4U9/Ci56/obK0C39PmFb9hBXj0GggiUf/7yYVakIv1G6xfL+vvVsRrga5YGF0AvR88w5IGLPfwd4JP6/OxfoDl/v6+j98beOr7FkzRXLBCRfbU9pIFQhdh267bQGdpeYMCj6djFShu2w477FCyQUpsBxpCxnCWWesUQJL4TtOEu/v31QXK+IKEgDFc4L2Hb55zQu8WZk0RtNlaYtQ1cecjxAgLgoOtRWljPYw1cCKWG+aZk2gLZEOIxtSC5zIMiDHBgkXNnz3bceC3PH53uVyqVkgjAaMKIjovHRoZuyKLKbB2kLMNbHYw3lYHNf4eaykp20KT1RQj5vOFx4oKMFwumKcZXcu6Nq13sL6gaxvMc4Oma8XByyFHPqDZOSfiTmaHVWz21YsPWNfpuze4nC9w3uGjTz+Gdx5X+x1CiOwOJRt9u+MxkpJZf+H+4R2mccKYZsSQMSOh7xp47zDlCWQIP/nZj9F3HbbbPR4fHvH+229ZsBnAeTiDDOEXv/gFttsdrPOYQ8DpdAKkIH/94hWPx/2EC4tvvv4G0ziibzs0bYuDs5jv7zDPI1zr0TQtHo4PbGcuYw0o3OV0xuLzzz/H7bNbjMOIlHl0jJNZccNAwfHxiHHm4ktt0dvOoet5pMA5Bg6s8dj0HVMyRYBvHAZYaxnIs5y0yawIcpZDW4DFVDILy18utaui4n4xcbF1//AA7z2e3d5KAZbqaI0VkIVpxkvnGOBOvbMWp4nn8mGE+VAAyoQSCkoDZAu2Yo8RlCNcyTA5IYwjvvr6Gzw8HJHmGb3z6PsG+65H3zSYEhcO++srSca5o8tsM6E+r6K+tRb9bitrOlWtOz5cJaFCqTocARkKtl/ObDneCSNDmUFcGBInjppcwEgCzSCQJpo6CjpNY9UFe//+PVJKPK4KoO06dG2H/W7L2nZNW0Gf83BEEip4qaLb/CfMA2JgO3vVbeO3n+DgcdhcI4UM61p0zRbeNjj0Wxy7Ho95RDYGTgK1IVN1siBjBb7p2GJ5uGC/u8aPPv87eHh3h9PjkZkrOVdtq1oEZQY3YNhdJecMW2QkYiXkHELEOE2AdTDWMTCOAiLPenyWx5cKmLGR5pGtcYVSn2uxzkBbLhA2Bx9buji0O80EgFKPUgIkPhNKYuFgyisRSCqcA6UEyhkmc4GjrIPOORZyLBmNJWwbh9+8+TVinPC/SP8ldqZFGDNKnHF/f8KUEvxui060R1T0f5y46/vwmNB1Ha72ez48CeL0BHR9h0JiPZ8ipstYmUiHwxX2h73oPizOOufTgEkYSuM08ohGYuMLWwiN9Xj27BZt06Lvd0uBKYmglzGWnCIMDJq2qSw21TBhmgzQxg1SjBiOp6oPFlNGSBEps7XwZbzwWF7LWoOdt7g57PHJJx/hN7/5NXzT4PF4Apk3+LM///dIueDv/dEfoG08uv5GOpQFcQpIMWEaLlyUylbvuo7BL9FJQyk4idnBZsNs0s2mhSsepjF8RsWIlCPGkZNmEhCCk/iEy2XA4+O5FpY3N0DbNthtWvA4O48KDcMgHdGFlVKZlQKo6Bhd0liVIqYxVWBf2SQKkCYRDHaZYEyWojcjBC28DIwwWEOKVbjaGIPO+comMt7B2m3VjHDWo5iCxEZZsLapaLDe+yyvdZZziJmcJCMYCVH2EYoKfGMZ19JkHtw4mYaBC3LnUKRkd1Y6nyjQsTgL/t1ZGCEq9OqdBaFgNpCkuyAJ+8sYB3Vq44uSYTLgsmFdmgQgcqMwBhW6tSBnYZuGmXyr0VFDBAvCrutrEqwGMQpeJH3Phhs8U1BNljWotID3mq8aMnCNW74vYHjVZwSPd8U5IEoOO88seGykwCsGMCbL6FgBGRactzDIc8Y8jxgFgDbWoPENDs9vuYk3R8Q0Yxgn0UAUoBW0aKIUwGQAqSDECVNOeHw8IszLGPnV4YBNv8HV9RVS4vUfYkCIWvQSRrkmVJjJZY1HnKMA1wxQNp7je4oMGoc5/rC8qSCyam3xSDYLMzvLzGrKmd38pLjTpisL7/OIsZHSNXOfDiFwQyfnGV3H60DNgqyc56RjecIWcNYgBxnT03UuQPRms+FmaZw5v8kFwzBUHdQKGpLBxjeIc8L74V0d59vvD2iaBofNBtu2Q+s8a/idjtjue1zfNngpB5fqRFrRpvSNB1nLYJPIyiqjUjXz4jTCW3ZJNdLI2PVbOOfw9bffYBgGfP/+OzRtiyGM9dxtPJ/FTdPCe4OxRHY6zAYOBm52QDZIoSCbDCLRAe03+OjjPwDZgH73D3E6nvD+3T12mxfo242wOAlduxFgNqMgYxwSmtag3Thx9+J9kkvB6Xzi9WnNE3FvnpDhuud0OrGLt7CvCxg4Ye0oNvLpsa05Yi4M7rq+Rbfb8OJARowTUiIcdrsKTLx//x5/8Rd/gWkaMc0TWs+N+4f7exQAN9c3uFzO+NWvfl1z6K5rmUXWd9y8bRr0fY/XH36I3X6H29sb3Nzc4OrqGl3fVYMtgMctJcSyixsKcoigQCvwn2NIzlHWKCGGGVOKePXiOV6/fLk4dCYGqkMuGMcL7h4eAGMwp4hvvv8WBODF8+fw3uP22Q2PZk4TM8ZoNc44TQxEiU6xcRa5HKCC9oaAy3DC6Tjjiy/+Am3T4sPXH8A1Dq5pavL1RGdOmqIk6xo1CigQxE6NdXwsZTn/jIj6JwaNiGSijxvrGQWh8H61kidqEwIiR6OvZQQEV/A7k+SKVuUhGGNg4Am1mQ0AxWhDhT+TMtjUNZgMC5cDQFGjBIYPGGwWExFyBFcIrDcJTCHWvKxekyzM6rYFEdccIHBTbXXlAD73IGc8A8dydOlP8cJYVRSqIYV6rhsRrnrCCqvTAjI+KSLt+tJ8CRciDtdM6oqoUONTgOrpF5bPUMFCrekM/sbH7w08aQdMcbg1GJZlRlS7mcYwk8AVXnBKSQNEn0hs1p8Sx5ghlZCqDXYqPOqTc8E0jbgMA1POrVrThwUUSBlkuHOjBwnfb118vNBBGSY9xRUNrf8NLL2xp48C7Szz53WiP9M2LbOSzOJWlVV0saK19MTOkv9WCr1srgwUIngiUOQDBLXYAH8GnV1FQcmMYBoNCoL+5sTFUCYCcqnOP03TLOKkooOjwpPjwEJ00zzBWAdrvYhQWxmpSWj3e2aFxYiYmKJsDKGQgfMWbdfIHDa7x81h5uLT8JgLj6kxiKK6I03ToIBpw3OYAQKcdwhRCqY6iy+WopcBOkLJ1rpNddRQJ5OmaZBKBkVTgxtroCQpHiwa49E2TF3WjkHf99j0G4RZusd6f6yrxY66ylQrYbN0333TYLfb8AhE20uBY3hkpgBpx4nfZtNXIGVO7LhGnK8hizC/EUaIihtb7dKLBo6KhWrQKAIyUdF/Lx2muodpEa4lEt2HxF2MChDI3wreIAE8A8+HhgF3YYeRC+UYInzXY7/tWV+MaOmqypq0xIt7hb1XpwpZ1hzhi45XcUpSyvIZC3jMooBHFHR3skPIXHV2Gume8TiIJkayfwt3JEJcxuf0firwpDbp2nmuTDjnECw7VFnrRENJKOCzas+pBoV0PUjBs8U2grsk6lBn4JoOXdsjJO6UOuPQ+Rata5DDhamypIcBVdGdhULMx3FO3Nk/7PYYHs9QhpB8cPkdHSvh4nKh30pFo/fdcKykuDA9jDCoCiAFnB5PRZgUQtUtBqYsCcjy4HXNLDg5XI2R+J6fdGHqO6e1Xo9+U76bi3SJ9HfkusuPkCQyVBZKvbUG5/GMd8d7jDEgZGYr5AIM04hEAKypIu2aMKjwfQgRzsa6J9mKfWEkAtzhjCJCW++RYaB3ifP8/nX/JVmHSZIg4zzapkXbNAyiN2210NZipWDVYVoVyNbYCqobY5Akd7SOWZBJhF9TzsglgjKxLldOKPK5dptNLVCds2gF1AVRFV3/7tvvsN3t8PL1K7RdA981ct2BOAXkmOHbBmQtYJiBoS5jaoFtDI8raawt0GKfx9f0LM6F8wXIfVWDhxKZMcDN7aVQKUVZbsz6UB0gHqmJcr4TkmdDBwWV9FEAxMhs2Sg6ToJ+I1Oqa1IZXvzaVItKXfYkRbnqrNX8qIjBCnERoEDrssTXexM1TzK0sF50LSjTrZRSzxmNdRU8EQ0KIf2ITgYDT1lHB7CAvqBlb1UGkLpfSjwpWQwBDAGoTgZ179X8a5376GdZ7Wu+RhA2N8cBR/x8JMCRMhj4+URoWVgWpZQKgCUo0+Xp/tCYnHVUhJarXbvlchMK6q0WIILq+IHcjArm6WhbZWuCZMTCyHUU0Eo+bRaGZ4qqe6fvFBX4BJg5Mc+s6caj8bTcW11ghdnvyv7Wsec6OqeMCHmfKXGBVFkipEeEnAuZtXR4XFxyU6GThRwYCMgC9EvOuGaV6HpY8vwMGLtukNc1qSyNImeZ5jCa3/L1KDCyVkC/nY1z3i7s2qLabBbJGkQjq4t4TFlZJSAAUfMAZtYzW5Kf04DzaNMYlMxFfRRTmr7r4axD07awtlS5iXmeq9i7rgdd12t2YilACIujoTKg5cJU5tBmu+XPYmxtfKhxyTAOiJld5Ja1zRMWnCMSlJDCR6vIl5SCGBO8T2Jvz/nlZnuAsRnbLUBlizh3aP0G3gkjhngMNuWCMM4VfGpacYrLJDOXIkAthbB+7rUr6dNi2dT7oTXVegzJOguSGEdZYpjh/ZFz4BEwmZl1Vg01BpxOR9zf32EYB0zTiMY1MGQwXC4wxmK33SKEgHmeas6XU0Jq+TyxzsLNDApfhguMIW6qdMKEEhHxddyA5JTsbbFkuMYo4FR5ORxLlHWY+Do658VBPSOIoPk6rug48OV8Rs48Prvpe/R9V5nkqtW5/I7op5Fd4jHpaDUEHOevXUT0PMSZwQkn8I6sHc5hlX3ETCFjqMZUza+LNCcWfICevPaTh5yDemZwbGeNUEkBfkf1vfp1gPM6/e91IlhfX/8p/5bn1fzxaWpKTw1fsj7ZknxrPNd6XnPwins8eXU8+XcFkDR31afVMx6obGKNCfXHsTp2fnBVftdrLawpDp3p6cdcchN53iXvXmImrX7+P/nQi4LyW+/lb3r83sBThghxC4JGIKQcZdHyoWcbD0+cNKaYeF47JZQcK6WURbI9iFhLxpJS0a2wkZhWSpbgjUeMM7777msu2Azh6uoKt7e3eLx/wHAZcThccbcmZJScEGNZURepzvIDYGc5ANayXTEj15zwzjGgBMBa6eJpIm0UpaVKebeWU+Kua2CtQ9N4SGmMw/6A/e7A4t3jWEULedzIIst4hbEWaWbhcS/uF3OYUMpCKXXGirV8FGc/V5Mg1Qbpu7YmbU3TYBxGPDzc4zJccB/YKfD65oqDuVkS0TmMiDHgcDhgnme8f/8Ol/MZb968YeHkpsUf/MEf4KOPP8I4DBinCV/++leY5glhHuoBsdmwzfyzF9foNw021GK4DPjiy3MVF3z16jl+9KMfIQZ2XzifOdiNc8DpMuDx8Yh5mjBOM66urrDf73E8sr7Tm7fvcTye8ezqGvdv3+Hf//Lf4fr6Gs+eP8ddjHhw91A76U8++wxt12J32ON0PuHdu3dwjw6Egnfv3sIai9cvXqJvexx2e2Yr+aYK+85hxjfffcuddWfx7v07WGtxc3PDu6wU1hmIibsJjqoLQQoJfWdxfbiGF4BvGtiG3Vt2ftzstiCw09caeCVj0Itzo7VM0fTOISYG8Hh9eDw+PrJjorXovMfr169RCjCNUy1E9KEAVKcz3AIwWcsghTqIpBQQE6QruIVvPCdXDe9PZw1yaeF7AmVCyoA1Z3FkG3A+H/H5J6/ws5/9BPvDAQXcvYopY84zVG+J6e/yP3XJAaQzwZ3IEDnZ03EWpWjHzMnVHAMnaVkLuowcI7MwJQnW8Z5GXICSuDvGlDCFgJh45LECxFln91Nla/Ie5+L9xYsXNYmKIeL4eGKwc+t4tE2AK6ZvL/FSwWkCwbgG3lgWxRU3yhwjNv0G14drwHCXcNfv4BqH51fPcRoG/Pr7tzBk0NpeqzMGz4vBPLFOCGwEpQwPgsuATUlGKJMwHMAgSE71kOQOv4gQy6nqSLrJsDCZkMbInf1phtlR1dMppYAcC3mzi5MmYIqvLcCmHs6aHOeygL9EVEdW5hRqzDMSa1njiZsapEmJ7I1SCmASDHgN8egewDp4GQmsIzHL6CNSAlmC27R493jC8TLjq7dfw1jCMJ1ARDiXEbZp4NoGb+/e4/H9A169eMWW0JaLjQyPYj3mTHDk4OBBXpoLtkUmwmlkkD6kgt12i6v9HjlnDFOo7m455Ork6oxl3YY7jov7qwO6rseL5894vK2garFw0jyvRlFouW5aABMAspXJF2V0z8lYz2a3A7OdmHlk5gl3dxz7W+vQNy1eX9+iaRqACCEXDPOEMcyYw4zGM9X/n//zf45/8yd/gn/9r/412q7Fpu8UqcCu22DT9/jjf/Sf4frmFk3veG11nG5sUXjkwxochzNiinAdFwmj6HA4a+Esgcxiv22tOg9NomvB+/36+poTR9mnuQBHGdVmK28DGI/7+wc8PDzURgq7wFocrq5qsq8jXbOwFFXbqpCBFRRYGwFkeD06JyOTK7FVBV5TTJjiBEVtpmkCAQhWu9SLmDIXON0qWeeG2ul0QoE4Q0muFDODFzpmNIueJuvLueoKq0YTADCLJg4zfTn46oiHFveq28CFoHagJQcsmcFaiZNkDZALwjzVMUMyBk3TVZCtkWujDa458lhVCjy6Q0ScF6SMEAOMAedThQWsCQTvGCzNpaBp1zkXhGnDhSkDOglhmuv7WwAdYUzJPtF9tB6VyTlhEsYxlQVEaj3rkJXEYI6yCbuuwyAMd73vfcej5hfRvHTWIqaIECaM04QQZmaBWQsvOo6n0wnGsImJsru+++47xBjx+vVrtCLEDwUyCaBimC00z/W9lMJuwNsds+cejo8gAlxjkaeEkuS9O8cMTYkpuWQRNOZzbLPZchPEcf4ZZM16b9D1G7Rdh2EYRJfoVCcerHOgRuUJIjMyhXVZeGYcuWQM0yDgaUbXd2j8ItQ7C3NrDurQ29RcKcqIYhLg2TlpcAvzqet7XLyH9QPmYURJuTJZlKXSCouLiGBgMHs2X8kp4XQ6wVmLruNG0DCOzIY0oiFJCyjgXFMNdlT/SvMHBeDVYKiUwmYA44QQed2pbp2ygqr5gZFR55RxPp1xGs7c5BsGxIHX6/F0qnt7s9mga1vRuLN48eIlN25DhLGsLRZiwGU4g+iAruukYQ/st1tkJEzTBV13wGefvUAIXKeVpM0oi+lyxp/9xZ+iaRrc3Nyg33TYbLaYziNCCggjMxXVDGieeSRQm3s5swZgitpEtdhumcGrOnxziGh8K9qZEyAgMkfBxYkwhAEpApZEFzcmvH//Hv/iv/sXYrgw1qYhFW76fPD6Q/QdTyTsDwf84he/wMPDA96/f4/9fo++73F1dYW263B1fVWbLNM84dtvvsXxeML337/Bxx9/jP3hwOcvymLsIGw/ruUcnLPIsUg8FhBAANsCaYg5x/EqZYwyXqrxqG0aPL+5xc3VNetHEfD9tzNOpxO++eobHA57/OEf/QEaMZMKMl0DEjaMBZDBWnvZwJWCN2/e4ItffYntdoO+7/Czn/4deOdwOvLI6DAGxMxAhTbJ2EDM1rwvZX4NC1PBamOdAMCMCzij4HliENSuGt0CsmRtBGhDRTSOId9jPIM3kQqHs9adJJlljTMtjRN9Pi7VpL4yuoL4bFNSC+MJprIT101YNThgHcJS8631I69kYYj4eTSu6N40Vs5xaSBxDcZrQT+vkTWxbiIuD83n+DmqG+8K4H+yxgABrhTqXAA4/t7Tz/A7iUn/KcTvh4812Ff+Nr/4twCetAOpIzylsGhvLgTrDShTTYJY6I8BHmMskB2slRslxQfK4tAByiiFqnZSknnTnLkjEeIM6yy6blO1KRghlFlcMqK1AiBlOFcAEqvFqvMhnfXlFkkXErww5HPqgs2Ru3cqfEuqey/dNmeX8TnVfyL18ylAKzbQOaUnCKd2IUFM20bOsMWi5KVrS8Rim9Q0MGahGJsqJLi698RFGRmDpu1grJPkxuAcj5jCjO/fvME8B1zGQbr3BSGMIlLHzhnn0xHDwJ0CI6DW4+MD6Cu+Mkl0T+I843y5oGk8tn5b34eK2pZSME1zHTHU9ThNkzjx6agMpJAKOJ/PMGTQbzmpYXZUgwLgfLmwc13bA8bg+fPn4jSyEfokKmINywXnFAI72njWp1I7ZGsMbm9vGThYUbY5uLN+SUjMSsql4Hw+s+CgjNawPouvtO1SFrevnBO885wgAmIRykVhtfEWpgitaJmVSWhEuH6eQaUgSDGwMNzWGk3MQLHirMKCz4vLA6EIsLCw7NTK3ZDBnJh2H5OAT1IUKRNWZ5VTVotu7eTJKOlwwSRuecYYdHJwW3VjBCpyXsCsJNV7YFyBQGAmgI6rxBgXJheATBm58DVLRTu5SVh42lFemH5OCjldg7o3iNimPsZURRPHcaz6IXqPOBQuwXOtG8H70WLGjCTaaDEyUJnkfRctxPQhwFjVRWF/1KqZ5IyrmmosHOorFXa32WG32dV9QiABbfg1rAqUys+rXsw8jbh7/166WAz6inIeIAdiZYsUjrnLgVHqey6Fx6OyjrfxquV4pj8HXXeANUDSw74s3STthmkhrZFX7438R+2G8hUSsV15HrNKCADWnAEtgG/Rrksxi00wb4cVOaDAkYj7gpOoaZ4wzSNiZtanIyDEgDEEXC4Dmy9IYqidXBYX5pHwXFZJEtgxDEAtyqt+lToJlpUtMPFebryXz+Iqs7Nt2poMAVRjOUTLhZeWCOvjacKUpbhCQXUVS+r6JHsfbmFocbLL2kdt0yANE07jjP/x3/wJSmHA6Zf/7t/h17/5ivXpVMg5Rbx98xbDKMC6Z6BD9/ym67DpN/jks8/RtB06cehLSu0mFTU3IgBrxGADog1BS9whuXa5oBi+r8oiiZXB6qtzWCmsucgAtrIbCDEt3cnqqiVAk4qoq/B2ATBNo+zvJAK/Bs7mGjOM6NsYa59062viuh6jEWOCdcexBAbRtSGXUkTbdug6Xgdc+LslgQYqMxAQJiJE7oAIgQg5J5zPM68rYNFeMauEFYA6VyHX1gc0yV2kxp8mrnxd1sky3x+Q3jO9XwaGllG7IqOhGgJLzpXBRKuciP9bgT0pQtIiEk7ETl4/LBJUrwV5KWwqCGuW0Qv+fAvw9OQPFoZWkfYyM2IkBhUgW2EPgOpYGAno0XVdvUcK2LZgIMEbixBZPH8W7SQu3sRxUhoSKMwGVcezh8dHNioJAc47NJaZ2cxUXBgi1joYs4xV6hmsph3GqAh8rk0hSsuI9TTOCGHmkWr5THzfSj3beKykoETW5DGWwREqMkYv67HkLOeFiIdLHqH/y7r2ixac3Fxykm/puKgyx7DKRdRoAiRgozRhOHdazl1r2bQBOfPYsuToVdt0DoveoHWAB7LhON/3ouPYNshU0OVNXSM6LaBxhrVfeD3GmBjoMWbRWKMlt2Ph9CR1z9N1n/PiEqns6SLaU3OYq86c8w5x5kb5WsszxogR7IhnQDhcXVf9I+vUETzW19KxXEixyw54FtY3aNsNjNWxStYRct4h5ha7/Y4F0/c7dGK88zg/4nJiqQMyhIO7qvmUkdfjmM6snVxyNczge4IKRDnLOTP/YWDHiX6YBuUYAudOzuH0eMI8zRjOA+7v7zEMl/o5eUKCtWpLKggza3ZZ3zB42vWVKX84HLDZbHB1dcX32LraoFd2fwyxsqMge4rDBK2i4pL/5JyFUMH1Z/0ARc8giUnyixqfdU8DqGYGVsDVq8MV1xe+Qde1mEber+rACgLGiQXHTY1t/Lwp50oS0EZKFPfOzXYrDYimrmtgYe6VUni/l1JFvHORUUPRFquqd2WV9Gsutm7EkAJA+v1cYy9jCpznKiOS9DnkqQHOuVbS3HXfL7F79XpY1nn9uRVA8gOM53fX1n8NoLLOdZcz5ofn2e/81eUaLBkhFoby7/5Z/ck1i3d9DvJd058vq89cwGN4y2f6a9/T+trgd7+X9UOby3wv/4Yf/sHj9waeNpu2UpxVJI0CQBZoiRNowVFYZM0a+LYVzRmdWMzo5y1yZsCDx+4ikIBMEYNozugh9nh8QMlM2W/7HW5vr1EK0wOJuDPRNKxbNM0RGRBKqUfXMTPJWCO0U6aMrtHXVMfmCrxvYY1Fxoycklitox5S3ntYx45bbbOToqfUDcYdlCVR3O3ZBTClpVhIiZ2HioAlOfJYYZpnHoPIjIg2xK/Z+bYmAWHmghekdHtOopOCZwB2B3bT2G43GIcBv/ryP+Lt27f4t//639SidRxZz2ae+forI0Y7gNMUcHNziw8/eI1f/vJ/xFdf/QYffvwRttstrq6ukFPE6XTG1dWBbcabBs47PB4fcRkuct0ItzfPOLGZJozjiC+++AKOuPNtrIxcJB7buHu4x+3tLT78+KMKzPnYIRvC119/XWnI19fX+J//1/8V5hhEE2HmWW3Z/WOOGIaA6fGBBdy7Dp98+ik65+Csh7MOfc+Hzndff8OU9hB4XTce5+GCYeJiNMaIN2/eLDbWxKMUW+mQqIUsA0FcHPV9j8Y3GMYBwzhgv9ujlc7iqhqH9aJDljN3P2Vtxhjx7s0bBEk4ttstXrx4URlzug7bhrvikzjqQTvvKp6L8lSInKgmdNrtvYxnTNPAzAtDKORAljUqYgpgTroR4Mwig+/XN99+g2+/f8P6TjGi33S4vb3BBx99COsMphChqH8xrA8xCYupUqmFep5Kxjixnta86iro5617VRPQnOGNrd0FAHCWxXW988gp4Tdff4XL5YJ3797Ve8egdEHbdzDWigslsN/vV11HVw9l7WqWUnAZLigFcDC4XC5MzU4R59OpAlhJxnHMcoTWBMRYFqmUTKWKm276LQwZpJJgxEggxoyMiNcvP+DO+1/+K+k8UmUEtK6D8x7eOmahUgGBE/H379/jq1//WtgkHIsWG24S1hYLkJf6vqXYFCA1hYQk9ynHyCwyEYvNAnDOUbRYGqVyA2NIKJGTfRADvUbiXGVeZKpgDLEYE+91ZaflLMC4EoQXYWNNYiuLwXgpSoSZgYKcsGQ1oEUEsgBkLZxr0TQJPhuM4wXn8wk5zhX0uXt4wPdv3uJ494jxPGAStiFihLEWfd8LKwY88kiL3tT5MnDxlBZy80ZYCHUfSoKmGmuNgOsyNYC262ozI4aIkGdczme2bN5t5fx1lWEAPE1aWW+A193lwrF4DVzr+zCWdUfGccA4Dtj2Pa52O3z55/8B3331Df4f/7f/O968e4Ov3n6HYRhxOjHNX7UBxzHiV19+AZDBL3/5S84H5nmN9KHrWnz2ox/DWoeXr1/DOIvxfF7eByN52LTMlMriTJiSMKszN7ucsxiGC0KY0ZAyM9mx7pxYm6hrGayzzuH+7j3GccDx+IBSCrNvZB1NUlwzkxI8ymIMLrKPx2GobKHT6YRhGKpGyfU15xVt5EWWEo89tHJ+KuDEIHJbz3od6dDPrUBomkZM04g3b95UZz5ltr5+/QHrgu33zBpxy3hHkrFD3dPe+AqkjuOMb775Bl3XMTOh7yujwhgjLp7APIW6Riug62wtpHU9ZQAxL8WBxmPrGx6nlVhnCotRCRkTiYo0NRLmEmBNgvGsPaXAvSbs1rLbKBlwo4EWYfMcY82VVDhX3x9b1nN+wXuo1HvlhOW1ANoKBCyxXYu8mmwTMZCi4E5KmMaJ2bJ9z+zyvmOdPSx7r21bbDYbCLYlQAths9/UYiCEgGme+Ny9XLCYT7BbG4umZ8xhQtP2eLHZ4evvvsXj6cgW9Y3HQQxdpkvgUZCc4BuPVhhy+sg54zIOAnjO1bFSr900zwgUMM8RMUScz+fK/nj+/DkOhwOiD0BinSZmnHKjRbXo3MlXcNwZB7IMChRk5BAZ8HCem4spwhUPKjwqr3mQs6x36q2FMUCYmfWmayoTT0rM41wLPGcsg6xhriCjtRZOcuKMAtt4dM4CPbOErZzjOWfM04y79/foux6bDY+Utb6r1+7q+orP4qZByAk7NW/BotukDYFS2LnUkhGH7rk2v5ThO02cY+cUpFHAMVSnHJRNAjBIPE4T7u/vn4xdA4R+u4FvG8T7e/imwbNnzypwwgY/I7MiS8Fmv8N2s8Vhd4CxRgAGbjRpvm2dvk8u9gktrN2g7fZo5Uoej0ekFLHb7bDbb9Fv+Gzq+60wbRq8f/8f8O3XX1etU2ssur7H7rCvI6A6BksQ9+5akCswYqoA+7t37zAMAzP8vMf2agPI/hmGAcfjEddXe/TdBr/84pf4/vvv8e3X3zCwbwqahmP37e0trq+v8e033+F0POHu7g5kDF5bJ41SBqaUwbXb7bDb7UBEePPmDUop6LcMOnpxFYwTNx1LyvAdg8pzmVHUrEXWWEmcxzQdXw8+ewq0OI6R3dxZ5J1zs82GY8A4Un0eZx2cWxyUr3/2cwDAZRxYe/fN99iEWJsLZAzu3r/DOA4ynt/g+vqW92AMOFxdYbffIwrj7t3dHYgIz1+8ZDJJZkAplchSEs5z7M8ZbdcKcMms+RBnlhaRsX1uPCzMJI65qyaD7C8SUxkV3C45M2td1yLWdZKsG6tjfqh7HsRMd8U6RF2LyVCr5pHG6DUkovmYxoXKINXmCC1mH0tTYs3i18Yfm9+sm9z1QQW/Lbr9dFCOG2LaCPnt5+FGQYHBwqKGPEtZvYw2cdRpFkWznfXQ3d/iUZ/8b/drC/r6+/347w08Kcq+RkL15uSV5sD6AjrHHYCUFzaDdl6sAkKCemuBbK3F4+OxIszGGGw2G7RtC8KSSDDThC92Kaj2vAzMlFqQq6sVARURN6vDSBeA/m+eWVQ0CCLMM++iOpMZUDMkHU55DwXi0FIUM2WXhFwWZy9dXCTvEfL7ToKyoFcgYtE6MovtMoDKLlCaYqkdL01KmaUwpwRYA982eP7yJdquwziOGIYBpxPTdqdxQtvyQXq5XKpDn9p97g8HWGvx/MWLahWtwpVd12N/c4O2YRcz7aq0LSdl78/3AgTwDHLXbTDPM4ZhROfBchBVJDstrkMp4TJNaLznDp9Yyb7+4AMYIhyur+HbFqfLuSLA+tmh6y6yyIZNBY0z2PoWOQUM8wXjwInqdsMsrXmeawBpuxbOc3HnWqauFgBX19do2wb9pkcByYGwMA+IaNVlaYFS8PD4iOPxEY+PjyivgP0elUqe+QYiCs1cnWBKKWhaprX2PYMgLHzYoZXitBQej8mJNWS0Q1/XsXZKZHmZ1dw3F3aChBdpTOgYKngE1XtfD4QMBjtzkHVtC6xlRsM4TgIac8HfNo3YyjrW6CoZVrq+Gi+NtcuBIg89HjIg7CrRmZCuXIqpdvMrozAXlMIjRGsAGYAUpwGzFCRsj6suavw62v3s+x4AJ5MMUre1O6SxWoE65z1iiMwiykyRTzFimnhUlQGRzONhRVyYiHXQLpcL2q5lbTPrAFcQkjCF5HAqKHDeAeigTov77R677Q6OODxbMtxlLzx+EhFZhwkMYGaJKdZZdJueu7JkhTmwsIWy2LQT1RsgB7OpHWoOL1wkVLBH11GUuKPXSRJXUBEmqIzsqHg8QVgHpnbinGVHIRhmrJQCwHMclRpz6YxpZxBPWRu85TPrtMul5BaZshk4kUoxcffdGBYFDjM2fY+t6+GKQQk8lhPGGaeHE7797jv86te/watnL3F9uEKKM4bzia3QjUVJAWSssAxM1QUwRDzSYVlfCXLtGmeRwvTkTGTNY1OvdcqF7b+zAhoRKZE0BtQhrcDNc2U85lXcyFJMKCNN75XSxaGxIy5uqHalu1EKj4OVmPFv/+RP8MVf/hW++OILHE9HnMZLHadUVpIX8E07qq5thFVhYInv7QevX+P582f4/Cef4/rZNaYwAWEZByNwwpRihJXR87Iq5pUNpftBxUwBzjXmecQwjPju2++x6XtcHQ7Y7ffozTK2T+Kwq6L2SpdXsENdCEGEIqPWj8dj1UJkIFDF88GC6KXI2SXHjjTI9P1qqpdzqZqAes2XdStsQ2dhogXPYEiqaLhgrw5qkqgro0NfS/dCjaWr97HdbtG2bS3eVBhbxzV13/+QFaofSt9zja9yBYzkVfUzQJkohZtpmbv5SXRKuNYq4gjJbB+UBTArksewSy9/XY1T1n+4YM6IFGu+CTl3laGm0gMoPI5lxeZcH8o2NnKP9GvWLgxda62M0mVQAkLM8GTgfINOdCS5lig1fyuG5KxMldmQBFQrsQioDykMDNquw3a3w9t37xFjwnZ3AJplz67/vHzxEn3f4/nz55wHiMZbKcsYuAJb6/24jIorG2G53yzUzNMGzhSEEHkEKjHTR+PEcLnwaKEA+3PgnHgOrPWU7fI+GNMTBqAUPlitLUOGWR7SaAOYtVqFfLEYoJCc9VQIVuoEvX4lF4kHqAXWOrYp8FQ/p2jsNZ61Suv4ixS5zFDiM1Ih1JgTDDJsZgaWscqUYiCVsozYEjt/ZRBgStV3pFJQjABP4HPWqMnJqpmldyWXXPflNE8LoCZMSTlp6wif3mcdJWMG3VLgamyFxJ5ciozdzZUxXQCUCBAVtL5ByRnzHEE0Qt1TjTUMvkIknKwVYGYZXXUCyCQdUXQOIQa46CuYtm56rOtFzpsXZrB+TRurP2So6B8jDctcgO1mh/1uxDflGxhr8ez5LbquxWYrchG+wQcffoA4RzzcH/k8bnkfKWDsvcf7u/f4+uuv6mtdLhdY53B7e8txuWQ0bYumbRdGsVzHdb3L63phU6aY2Fndsb6hIRIdQ9Rzm6eiOMeErH0GrhLHq8wmU5SJ4wlvmFp7zjHiToHKlCRnKLDOw3nPcb8Q6ztKbu2cRUHGMOhkgDTvsDD7Aa7Zmd3HzJdCzORj13AGS9bNL9V40vq+QHU7ea+us3+NwZrD1bp4WcFQQwqquVKRM4Xrjkyoe5Gfn6qEx3pHrM8Svcc/fJTC4vnMAHx6NmodpU9acRnDGnTa1HmyZmWSA2591smbIhI52x++D23GKPgon+V3WMvV97dcrnom6RrRK/pD5tJTxtdvo0v0O/77r8OSfvgZ/jp22O96/K2Bp9qRooXqGUJguniW5ACLlbLqUoQ5IKcE73kxW2cBGDi4qlfkW9YRefvuncxbUx11apoWWKGSRi0vhfY9z0yX96LjFLMIjRO7sQCQ5LsIhX1BHQukgY0ilpnqQMWLPScGnpKI9+nnX3ebtIvHjmbEVpgrFofiSCRAAIhthItdqP980hruisBUjTMF1EgYJBzwZAbeewA8+hFLxjyzs5nvOnz06WdIIeD5yxd4//Ydvvzy17UT/vr1a/R9j7/8y7+sDBC9t42wmD777FN8+tkn+Mu//EuM4wjvPa6ub/Djn/4MQR3m5PeUOfX4yNpOu90VrO2w3W4RwwOGywzTG5iGYHln1HGvAiDEiMfTEbvdDtvGo+t7WGPw6tUrEY50mOcZb+/u0LYtsw/IwDgDiE5BjglUCnwh9MZh33S4exzweHzAt19/g+FywX53QNMIiwkc/HzLa++qa1FQ8P79e5AhvHr9SujF+wrwcEGxWKpO0yiA3BW/v7dv8e7tW7x9+6YWd1aAPGZ1JMyyvnLOdSTm+XPPLo/7fRWTbNsWXdtWq985stgtyXiBJllJ5p5zTlUQ1VgdjeWApACfhhEW2gdAQL/p4JuGZ9AJ1fUsqhh1zmiFpXYZRwwjOy1659B3LH5srMf5fMYcJuyIbXs1DHFXNy0isYUdKQBObFIF1ZLYGzNQTUUtrGUMR8Zph5CqBpQWdQ+Pj8yumyaQMbh9dvu0qKpxa5nrVobBZtPXkRgde7Dyu957pBjx+PiAtm2x2+3w+HCPy+W8BFG77mhwghnCjOPxWEfG9lcMxOaZWY2gLAcZx6ymbdmaGsDV4Ro3lyMa65CpwEJm4AvHW5MTF8BmETguBvBdg27bySgI1etYgQoZfVGqOBXijjOZOlaiiZGCgLrOiUgEsVfMrsx3sIDB8s57TIFZiJIhQUWqIYmjdY4ZYAQ5N1LV1bPExU4xmqTqWfrbyUPOGcUSYEhAsgInRbqFRykZMQzc7W88cmBNo+fXN3i2u4WHBeaE+TzifD7j22+/xRf/8Uv82Z/9Of7ZP/tn+OmPfoTL5YJpOHNBbAwGIrnuS7KhSfjV1Z5BrQ132mMMAAriPCyFmONkUKYNpGESMI58zRbhWdbEKKXAkoFL7PqnHcY6jip/x3Fa4vbKlVBNF+q4F1Bju28aTKITFmNEngP+xb/4F/jln/xbfP/VNyy2KiMLVsRgrbW4urlCI+e0sQZX19foug6Hw0FE0Dv8F//Ff46f/vTv4POf/Bhd31dNvxiXM1W1afpNz4m3nHHGy+id1UKWZHTEIsjnOJ/PuL+/x1/91V/h6nDA/PIl6zt5DxgD4zysZ8aF9Q2QEsrKBltZjdYwIDqVwszbuzthtvTY7ffYiOZOzhnjNMHGWAtIBS1K4rEKr+BYQS2o9Jp7OaMBLSIJxjfCDLcgGdnzTYOu7yuL2DoZtRBUwxBV9x8FfmphljOsYb0rjmmbygBCFbqFgMVLglg/iwAAUdiMbatd7lxjYWWJyzlYBNAbxwlFziBe16TmUxUUHsWkQRnCkEaOag9yXO7kezKSbQxyZD28Wc1CVowskI6kWMkPWDag1UaPNOfcSgJCmbPrPBYQ4Xtk2JIQckIOGd462JabatZZhCSadhKvauxJiR1hCYjCoJ/nUK+Htw6t99hu2aXsP375Kzwej3j+4hU3H2XPao4AAJ9++pnEy8UQRFl1+t5TYAH8pfhh4WKigpT4+VhjJ0nTSxhiBfCGc4+ziBa3LTfO4jzhNPOYqvHKxBhrczbFjORyBata39RrDPB4JMf7BUBOObNjV2SQoXFWzFJ4TRasmqgiOeC1yJNzJ68mB8wKuMqZ10cBxDC21PHZkllMnYyVczwJcM/3xzkP61ABtjAHYeKuAN/CBkkpJDnrXS2cCYRMfNaHMAuD3SBjAZyNiuHLflM90YwMZNQYfRkuiJF/T0Fr3dsKImmuo/IY0zTVtaPNYSOFvo4PO28BAxGzZwAwiERCu9mgFPC45RwwjCO6TY+mbap5Ti6sLXfYHxBDxHAZeURaNNZijHh8fISxFlMIMG6GlVphzUzXM1v/u+oGCZNfz6/yg8+u/9brWUBImXB1/QyAwV/8xX+AcwaffvoZdvsdbp7d4Hw+43K54MMPP0LbtHh8OGMaJ7x7967uHS8s2T//8z/DX/z7f4/7+3uEwOPOm80Gn3zyCbqO/3u332Gz3VZmexFmXkoLu9nSAkoSkThAAq3GGaPJjJFaMaGwcw8zWknF8tnNMSUCUWTHTyEw6PlVAFjvMY4j7mTMcJ4n7Pd7ZrgKUGbERU3HwXPOaBqe3CHDbDjVp1LRcJYZyUgxoJfGbaGFdUSGJyuQ8eTeyRSpGIHIg34IbgjoT9oE4TMkYxkP1H1lRP9vAZ6WNZHZ/WCRuinLWJ1O++m1Wv/95GtYgJLf+ls+gYLg8k0BdBSMBWAYQFnnpgpU19+nRUZCgXV9g7T6Xc131+ueP7c2xOkJ8AVAHKapvhak9aXvv4Dlvmh5A1g/Q23k1DtDUIu61VXC09/63Y+/DegE/C2Ap/PpXDetimpVrQRJLpzQUImMJGhASpw38QHKwpHG6uidHCTWcrfeObRNh+vrGy74N1vWEtrtAOJup4pra7eZkzt1rOMOFBWZAy182KaY2exOmCqaEJbC9GtLFiUnzCkiRp7tZ7BJujMxYxwmKPLatEzrL2XCoqPDSbIqJvNmNghRacHcKVWXNe6e0pMuQtNIUlGTWEIxBeoCY0xB46wEbk6IH08ncKefA0Yu7GJXgyCA/eEKTdNhu+dRuZQinG9QQAiZOxZv37xB07R48eJ5ZT5dZMThF//gH8D7BofDgcd8mlY6QhYbofMDfGD+5Cc/QQHw7NkzoXlbeN+i6zZonIUzVNk3xvH8edt3SDnhcmFNpbZt0ElHYhjZBrttODHq+h6djMY83N9juAyoFpJEHIRywUkc8N7evcH9wz3ev7vj+flM6DcRu/0evvHYth2sdxinEV99/TUeHh/Eba/F8+fPOTEQ0eIQQtULatsWrW/gPK9d3zawnrtFm02PFy+e4+rqmjuV0k0LM7sw6ijWGpicphmlMAXdiAAoSsH9w8MCnkD1iFCLIaWoMqOKkwQnoE/KGVFeiwtbcSAjHuuB6Kptd7sqZq/3MUdhV4WEnArOeeDu0eMJx7Owf3yHm5srNG3LGj/cf2UQA7zxS1GKPR+6/LlzZUlGEUYcZIwtpwRvHRrn+VoYHjNjIcoke8XhfD7jeDrVPb3dbdFvemx32yo2r+wpK4UdJ24MWAFAkNEkFXQF1DLcYBp5NOLLL7/A5XzG/fv3ePHiBbbbHwMo7KwZ2ZmmWF9jOskBvtbWSDECWQSuK0OxVFFxI/Gy6zvknPHu3Vu8efOGk3jH+k8xJ0xmlhi3HK4KeDP7ktl0pkQJr0UEDtVJRWbzieqYMRXAGgVVl8IphVABX7WvlbOwjspqp1i7Nar7Yckg5AAkIM7MbrXEo3/GGGEr5ApGLbRgyAVcdZaw6uRITC2lICHWmGtJbOvlZM7ielOZtAYy7kgYxwF38zv8P//5fwuXDe7v73E5X/D9m+/x+tVr/JN/9I/wh3/37+LHP/ocd5KMbnc7pJRwd3eHYZzw+PhenIw8Pnj9AQ6HPa6vrvlsg+ovLft8cZIEgIxJitKcmUkzjCMmGZt4AvbJ9VALZ40Z61FUFu/3tfhWUXFdz3OY67h3HTNKGeNl4LEB6zl+eo//1f/uv8E//qf/FH/1l3+J8+mM93f3cu4Q2raBbzyG8YJSMl6/fg3rLMZhqKCuFlnv373BX1LGw+Md+s0GN7fPASJM08wxJSbsd3tsNlv0201lkCnSmGLCeLnAWCOj2drkSiIw3eH6+hY///nP4Z2vI42n02nF+OBRTAUnuo7HD7RYWMff7XaLruuwk/scY5TRelcd5Fho1dWxA2WfES1C1UHGjdaaMwSIKG6s94aZsww0ffzJJ5U51UpHXgFEJ4CVsq1ykqbSSr9Pi84rNXaQZFJdo6r4NqmZwwp4MsuIEo9MFHjVOBGQaZomXmPCDgN41FZ1qdi8IdTn5cabkcYQs25yzggi1FpIgLmYaldWWbqFuKBQEIsE4FrvfzXNUDCvsnhjQmM9WsfC5FqYc1OsrQ0/7QDr+3VWNBOJNSJ9x42Aru+EccaFIREBiQH7TAIOqDlF5nE0BsxUgcRodYOcMqbMMhIhJBwOV/C+hTGW2VxhWDX9vOhjkoC+Wvhwgdg0vgJ2T3kEYPIcmO1uUqr3N4VSR2xQmDnUdB6gDOMIFqzJE+KMaRoWFpiMhWkZo2Cj8N2QsxWAWMwd5OcMGXjrWXcr5sp6tXKet42vY2nIC3tKdS7XbEGSc42bafxaOpqjWmAly7oCZG1GiftG9kQW4Jmw3e3l3qNq10DycNOIW5yVzyzn05qF4yX/SlEKdiyNLCcj5IX4M81hZtAMGtoIZA0ceWlyyb4ohd2mnQda4HQ6YRrHal6gDW4t9Hf7fR3bbPtORoO3sh4TpmkGj7A5NE0HECFIg9cS8Oz5CzRtC+9bJgUEBr7u7x7RTQOaljWdvPc1/0shVb2jnBLG4YLtboOPP/0YH3z4AayzePn6A8mxsOSskoeo3pohIwDtSm8vBFAMsM5h49xi1CJJFVlTWUHK5Lm+vkXTtPjok08ZcLMeIItcCH2/Rddv0bcbqUEmWJfQ9z03yUQzq20b/OLv/wI//jE3meYp4P37u9qsefbsGX7yk5/g8fiI4+mIb775GsNwxseffsp7VDTujLCEUJbmvZW1pxMqkBzPOh1ZU0fWgqA6dURsOgB251aXOdZUk7YmWTTW4vb2GcI8Y5x2OJ/PGIYBu92WzTSaDgSD0+lcz6VxHPgzBiZW6Bnz/NlzdF0vjXjO23PhZiU3PSRWAizkCVQJBQZMIHU5N4frRE5ZJAb09wsjU/y7ID5rfvC/VfeCpxOTgrGcL1Z2e0HVIC160Ipo928xeVagSP0s9Zw09dsc9ySGE8dwbepw/AJSJnaalrPLKqNkda6WImYLydQ1AYlfui1I1vZTzUJI7gioPl89q0tZ9M6wgGMA6n2oBYiA9asfrmee/rMAMD+4Tgv49PTfvwUqVSzubwc2rR+/N/A0DtwF0U4f27OuDg1axr50DtoY1vnQGwxr4Bv35GLzB1EtJh4R2e93cN7h9uqGnX0sj64M0wgLAx2pALAk1UqbXyX8RQompq3pJylPkntL3DGY5pkT28RaITnpwiTpBM41qWWRVUhxQ3xAc4ou6GIREWSqIM6y8GjZPHIPFURTPZblnXJxWrKgpzDSFWN2WUwZ52Gs4x/6uYCCbA1cYi2RfrvFZrvD7bNnjGwTcB4mjPOMKczoHx9xOp3QbzZ4+epVFQoPYif92Y9+jKurKz6IYsLD4xExMhrebzbYy0GYUsIHH34IYwx2uy1KYbc37zy6toMB0xPHeWKh7kbcSDY9Tucz3r1/jxiZBWFEHPF0FjoxcdHuvZdD2mGamFXSNW0dBQEA5IwwJcR4xPt373H38B6n0wU5ZfT9yIKLJaMxBt12w6OVMeKb777FN998g08++QSHw4FH8CprIFZtqRAiur6Dbxt4We91dr9hhp7afQLqmJOrNo5Vsb7VxlV6spNRKWstggi5a1e6absayHNm5yV+Pv7cZJiRse5wRAGmVPQ4hMAjT9Wqt6Dveu4MSpCJKYNIWFSFRwnGyEXI+XLBMIxM6RUKNjMxFsbPen+VsuwliX5Qu9dSeMwnhoB5VD2EDNdbeOdERJtqZyanJMUWa3zc3d0xO7FkfL79HK0Uj0TLGKd2BfmPl4JRr895uSbmqTV2mFlf51df/grn0wmX8xHeOy6K9KMgi+jp2h6cKvhkRdupjhqgSKdXQz9grI5ZsKhpSgmPj494fHiUZIOFyCto8IO4rNfdWCuOP8o6XYE6FijFQF08K0CTM9P5i3aSCqJc5zDz2KsXB7vlIFtYZNq1IpJDU/R5lF6d6/ouyJmLDh5b4NEyLZrlctbrpyOfsqj1KQBCLTpQbP26kwRd43NKiTWCVowGIja8mOYJKcz45a+/QjxPeH9/j8vlgrdv3+K/+l/+l/h7P/85Pvv0E7x+9UqMGlgfQdkBl3HE6XxG37Nry2bb4/rmGrvtFtYahHlCKUk6R+vkQCJ6wWqkgkGFeZ6qc6jGBBZI5Q4od3lTBVKrS6qsicYv+iNsGDHWf8/CKvN2ZcGdcxWxdZI0kzX4x//0n2CaJvzpn/4p7t69x3/8D19wg8AYbDYd2rbB119/hXme8Id/9IdwzuLrr77CLFpGuqcfHu4wTRfcP95hs9niZ3+Xz9hxnGVEhAXNvW8AUAWGlaUSUsIwjFXjSRkdmqh7Ge/dbXcixMuxdRiGJ7lITbAEiOYPv8RCfc9ty46iz58/r3opCowXx/ej73puMCjz2xg4Wq45251foCMx3EjikWOO5WEBp6RobpoG+/2h7gNlYKoAsF6PKIVQSombe5bH3pWJZK1lZytw8a3AhDaioMAxFtC7yD5Vs4CcxehE1lKU55hndibNVg1OWJg2ymdJAiRW+r8Awa2MMSdpdDHwKyMqJSOIGxAn+QUkcRSQ4kVMaBSs0nuneTGP+izjLjklHmv2jrUfY6qjnex+tqyFdSdcjT8YiCC4VmKmqThbXUcKOKl2Cd8THn0v0vJ3zsso7QI+MmNZDC5Swna7Q9PwaG7J7HQKXaeGYNoFeNJuta4Z652MWgl7cF08yM9bcnUSIOUMkjwuxiifF3DeImVmzTLDkJtvwzAwY7Us7n06RVA75LTEs5wTyC5vQ9lk1jjRvFsMRXhfsLaTjtEqE5csN3njKi+A/B5rdVMdjzUCaNRCysi6QZH3Xp7cZ2Wagwj9poc60CmoRgJIGl0ntJyRWjzrnzrCWbh5QBCHUyc1gBTAqWRMMuJmiqYMzHiwhkeokFCZRZqPOWNZE44WZqZqCwLMnry6umJNOMm/m65F6z2fI+OEEoOA+baOEyvjCZmwOzDoXwob6wyXCy7DGefzCSnzBMt2t4O1jq9VTJjzVNdiFEmFru/QtA0z+cQJO5dFRF/B0VI4NzXlKWNRm6baAOj7ntdcFOYfd174XnpaGhHGYrvbw7ctXr76ACHMsK4BGYdSqAL41nCMsJbNrdquE6BYTSksPv/8c9bXnBmo/qu/+gKPj4/45ptvcDgc8Omnn+LLX32Jh8d73N/fYZ4nvP7wAwYbV4CCxoS6FWX/aS2qQA2JvAJKqgQEdv9e8k8LAXyI9wXUHU2aosYY9HaLmCK6mY0ovG+E5eqqC+go5h+qj/X4+ICHhzsM44Db29uq29tRJ3IiGSnNyFlGkI3UoLrXar0uRAtavq/GVzoyr7FizejJstdBy8h73RkrmZpau2NhOsqbeJIr5pSXMEsrwOkHuJM+1mwixi047y5Fx32fNgolqEiM4AZulvdlpNa0cg7peaA1z/o5tR5Ymo/LtdF7zjjGU7miUtbAE7Tr8iTkrz6dHAe0/hJ/vQLAeGLAQ3rd6vMvl05xFH2sIMHf+fgtsO9vePzewBMvLouuZdSYXaqYicAMAkZy10hnY1m490DL286SEMUQpWAzy+YsLLC93e7RNh1ySriEwDTUxKMSm80Wu92O35Ph15Q2jBx4DGZwgV0Ao0CXAIE5IwSxbJcgX4oIVceINEdxphDKpCZUIGEDZGCYYOaIRnSSbGRb40YKcL6DvEmq1oYgjvMUalK6WBCvkGNaJZwx1k2oRWSWrm9KSSjvgKoZqPtHZ1gIsGlb6WRJB16Kw2r9WjKub26qLkSScS4yBpv9HkasOi8Dd+StYXZPv9lgs+3x8uVztss0PEesc+cpRbx994Ypub5hkMIR9rs9urbFNE+IKWEcBy6UphGEDawl7HZ7bDcbDOczTsdjBUqidRjDBScRdR5XIoTanWFdIIvddstMguGCjzYf48OPPsTt7Q3atsUwzTidz/izP/8zbDYbfPzJJ9hsNthst/jxj3+M169f4+bmphYNuRS4poFvW2xXiYwGCD1IdZRAdV6WbjknrEYKHBV51JEOXWd8r3kNGMOgTpIxDO40JRgbYYFqUasHQc5ZmGItiJRWDYBYUDelhJNaPpeFFaVubPM8S1HVSLJawHplpgbKx8cT2/uezxjnCcYyuPjRB6/RNA2OpzOGy4AUA9qW6feTzJFX1xsBsaBJiY5s5MydaiauVtHfICOJkxTqECA75ITNbodPegbMjDXY73Yw1uJ0Zg0w1Qu4vV1G7vRQCGGu10wBOk0qh2HAPM+4v7/HNE24vb3F7e0NmsZhs9lgHEehxDPIV8dQACmUALIGvmmwvzqw2HZZ2CbcwKH6epxcMhPLWQ9rPW5unuH98RHznIE84fF0RsgiJG+FVRa5VkN+GwABAABJREFU22MKgWBhbYcxDpiHCU3DgJGeyUmK8xDEHUxswQ0MSgYSCuI8IxfAeH4v5D0nbhkIszhWSgxXByROljmOZvBZoMWus46pyJrM54wCA7LMnvDWcqKvTQgUBv7BCdeSSGgHSA5j654kHikmZKP6RnKokYWxgC18gOYQ0ZoGrfOY3h0xDwF/56NP4Mnhzf17zCHg82HEH/9nf4xf/IN/gHazwbvHR3ZXbVskGNimw4effI7nIeCDT39UE7yrqyu4tsVpZPZr3zbcQClLnJhTQJLEVvcciGDIYZLOdapjGhwz5hDgrMV2swcZgwwGDpMwZ1JKFTBRDTQG7C12+329FiGzm+Ppcq50dhbAduw0lDKOpyPGccD9wyMulwu+/M1vcDqd8TgPmKeZu+/EEPr5fIIh1npzzuLh4QH39/f45quvcTjscXN9hfHM9vD7wwGb7RZ9t0G/2WB3uOIcovdo+g6+a5FQMKaAkhMXccJ60PeoI2cgQomh6rgokK2gfmU5g+Ne129QSqkulzlnabqwCLYWiaUsDOimabDb7XF9fVM1SFATUtWuoJqgaatJY4iypRTsZomAhs+SwkL/RvYjiP9WsGw9ZqV/6/lvV0Uvj9otr6lnUBDwJKzGVPR555ljB4n2VJhnkABdS37HYHWIPKKDwm6iKWVkiZtTZtBMwUwdQzCAMNwX7aw6LsN3DH3frxqWwjwXnSa2nbcYJgGuaxI7IwgTUBlraFs4Y2tBUoGnzGsZFjKGDfR9V4GuFQYsrD9mcCCvNZII0QlrH1Rd2rghaEDWckMppRUalQFxvgQMciqVuQUF0GJEnENlyX3w+jWscTBi9vD+/SwFskHft9jtNvU9zdPMue/MYIRb5dh8fyIDNDDo4FCIEGOQZoRZMX2fOgE+PDCzwzq+FuM04/H0iOPxWIHsObKWop1cBUaL7K/dbodWdG+C6MDptQ0xgISxo66uWcCkRMTjqdax+6Lcl+F0RozM/oxJckIFY52Dt75qlo3jyKzB1VixgsGmELyxiDJeqGCjbxrJo3KNjbxmqQr2QwAolfGqbI2yaOQp41w1VnX0yImsSEoJKfIrd6IRB7AmWQjhSawA2P3ayvszxMBK27Y8Mts0Mh0iz6J1Py2MyyL3tWs7cQj1AgZnkEkIMcFaj912j4fHR5zOF7x/f4dxmuF9i5IzNl2DtN8ihms0TQvXtLg+HND1PS6XC8I843QZgMIOfCoy7TxPfpCs9SAAStu29T2zkdFcY40TBtsso4C0IhFoAW8q4wQsPdK6eq1JAMsYGDz64z/+h9zwdQ4xBQzjUNecuukxc5SBhsfHR/z617+qMWi/4xH5F6Kl9qOf/BjD5QLXcH7+3Xffw3uPzz77TPQ6GxkvHlCgUxaxCluvxeI535PplllIGFBQxfA5pJIT2izICSkGBpscMM4TOCduYI3DphON2iCN2pyx2WxqLSGhvJ5nC2DpsN/v0HYNzucT1wmJm1TOeQzTAKCg5CW/4CNW6lkIeEysCVoKalNDVJVBgIxis6us5nBt0zDYDM4FETlPTsKGNM5Cq+waVwWUrCBwBa8FEF6dEwqGFwYmOOfWWC+xT99LKbmyIxeQa4ld+ljYQVp3SJ5K/Pyaj1ayBy3vR/EGfR5urEnDu+Tl2up7NIs2X04K+OhnUDILuCFbSp1uUNykknjKAvzLW1r+TVQDiOJQRUEn/eEfIEtl/b3/Pz9+b+BJu1NV6NNKAKrAE5AS1a6UjmnAyoGtibAEZ73hatHMARlAKcxyAmEaLoghYBonxJwq8LNeSPpQ1gHRGhiwq5vI3fasDCRJFNTOOIYgjKdUC8VSZOETicghb7aYEowsAGNKHXdx6wNeE1QjM6hF3okgRYYMz3mjXrJKGSYqwl4Q8d2iiKvkMsIYIaAWrcYQuwOWpZup9PIclusdArN7JIWuAstkeHb84eGhFu3rDnoIDJj54rE17MjC+kMJqaSnhWfmRMnKgayMt6Zt0G46kLM8foRFC8VJkdH3G3Rdx13nlJZOmTGIkjQPlwuOxxOe3Xr4jWfxP+8xEbsttJseJjhkFDTWwVuLDz98jX7T4/3dAwvzhQA7zzICwK4+V1dX2G632G639We086SjLHpQjuIco+tEuxarHbMAqorlE1UUm8cFXB0zYYe0vApICyJewGCBrutaFCmKXXQU06z21VKMBtFhq/s4Eaiw5kIRJykQYO3SDVhtGwCcQAzjiCCglyaF2y0nyZNeyxXFM4YgwNsqwIvWU5YxN31+1Xx42iHhbrKKsOu8N5UC33hs/IYLU7OILs+VUcD3SXUDapyQ97GwF5eOJkGYTpcLd35jxGazgXMW/aarouEaPzgOSfdHEgo9Noys9zAnua8Ss/QQVYellSCl3HXstuxMgwzkyHskCqCjyYCCR9oN5g8n2irS0lDQWoGnnEpNxjSJKHLIK8MDxckosxXGJphVEtm0ACQUZw1GmjzKAK0GrPUIMSAd7BqXqBYKS0KAyhIs8jkLaWQXUB5Uu9t6L/nrqF00PQMInOhpl40IMIXgYGCMw4vnz9E4j6FIEX19jWcvXuBwdYVEwDjPIMsmD0W6jNtdi64UbKRjyqwdjgmsvUUorR7yFhCBzVxERDwEiXu6zkt1JQJEeNzyaBnSYjmvQeG39r8+j9x/PovZTlzXvHUOVgp8ZYMRAFg+G5X9NAwjHh8fcb5ccB4GTGEGLOtRBWF0FG10GIsgLBcFWo6PRzTOIW63NQnr5hmz8+xCawy2+wOzSmQ0UMfOeSSY9Uk0OWWRWytJltzv1X0HIMwS1LMVuk7K0nmuuiIAillAI2ViA4veiLUWm83ifJpSkpF9rEbmtZEoLMdVslbvQ85YG1BYYxgIJqrnuo6Q8R7N4DHkRb8Lcm8KZExFnstgGZWtIsSlwBbtnosOCZZEOiVm3BTJn5QRV1kHhWUSdHSJ15R5qiEl97pq4eUMR+5J3FpsvKmutSLW8s450fjLcp4abrylhOIsFwxyLfV95Fzq2aVuyjlnZGNEEJeW+7FaG0tM530QpTn55BzIupcicua9TFZE3jXuKIshL8x9Lo71/suL1/ERfQ+QJJ/jYcnLPSYi9F0H7xs2EyfRvcLioKx29NBiW/RUuFpciqC6/PSFSePAUkgpYFnPGFkb7JKcZNyLTTnGcRDQVDUFuQGVc4Bq9Zm0YmZYgxSXyQezuvcxRV4fEEBVPkMijlPO5nVNi2EcMc8Tm93EiEmaw96zUHTbtDXfYmfA/MTpUP8UGUmUZJuBGSoV1CdaYsM6tqIo3IiVfvwSd9d5A9WIsuwXHYvJkq/omtfnyHlxLNMahsAsfm1aG6mvtDGtxgsKQBspLFU+AJBCvzAIV4xFiBlARAgyzpWZnaHOsWGOmKdZADQDQxCHVY/tZsOx2Xs2+RGgO0LOfGF7K/CkO6+yO0pE0TxZo0KNCZDPu4xJao2iItIVDF7t5RrLrAFhMakhSM6+vWK2PhkMYoaRpVGguQi7XPKUxDBc6gSDGmfM01TH8A5NB+tVY9ZinCb0mxZdv63Oqbq+ebyMUQx9Oc7LWJi+ACIzTMii6amDuKT5/W+d7Tx+SYUBUI7zEAA8A91GAIYlB9D6pEp3iMHD2mChkemSEGc4ZxHCXM+HIiOfBG4MKwAmskFL7CD5gua72gwkAmRfFIl3OolERChuNREAAX00HhNQqrZC4WaG5KQLFiL5JJY9qetgFULqc66ZZ0XyzLqXaQGW6xqrr7HEr4V1tXx+ztdLZVmtQauFCaq5/IJNrBvfKl5exKBjXbMpUaFCXuvn1+siT0tSX66go+VRfvCfWg+uf5/qE61/sH7mJ+fKX/P4XSyn3/l+fsfj9waettvtb33NWClSZAE5qxpFy6cpBVy06I2xhkcjvBPmTq6bhbWVcmXNDPMgNq0FTeOx7zrWheh76AaoCZJchCAbv4iAYMoZdub3wjo63P1ii1m2sY2ql2GNBJEs4IwCOwurAWS4kAZwHgcJgA7eOSRktE2Dtmk0tPA1IKE8E3GXqLCuDFkugrKKGicus4KMZBG/AYBM1TZw4gBlpWjs+42AaYsd9TRckIJF14h7XJwl4eXCfI6hjgJuNhs03uNqv0PKCc+e3yLFxMlI4KRvfvsWaQ7od1tYw/bT4ZG749ZzEnl/f495mlibyfn6vDoywl0nduxpGwKaBvv9nunjZCvQwHeKgY4oYtqWDA7bLWKIOJ24m6725o3MfJcCzCIs3faLxbWzTF+PKeMyTMgEbPc7/ON/8k9h5Tm8dzLz3dYCBBA3ImPQNO2T4AEA+/0BBGCeWHgTbSvOXh7TPGOYRknQS+2SDcNF1hRTzlmoXl2oGjin3VUSFo7Ffn9gluBKeDKnhS5MhscpubuyjDpR4cDE2iKxCkIbIoRxxjCHekgWSVxSKhCO73KwJf7+8fGIh8dH0SbjQso3Dm3nEHLAeAnYdD0arxoIrNuUckbCyrFEE/YfJMt6IKWSkUIG5lk6luwQwUzFEU3T4GpzXQXmozAVHx4eKuNOD2LIOtKCRcdkponFOc/nc6Wuz9OEaRzx/fff4/j4iK7r0LctXn/wAUpht8IQAs7zLGMQi0EBEWseOS/AMxkY7+GdRcKMFBKSltUy7qcOTov8H+F85vXxkx//GLZx2DU9phxgs6mF45RmHhP1nhOaIAzIwvHl6nCNaRoxnCeZgWfQiZMXvt+sHdXAel/vQxY9KlO4W2OtQ44JaZ5BscDDIGYGxZW+r4WRMYBV21cCqHBMRQa8XJNq+7tKRpmKDzSOP4t21LmWW1x4eN0uDnJa1AI8esLCmCzUjVJgMr9SFqel1nmkIeA8TvjP/+Af4vOXH+PnP/45hmHAn/5f/88wxuLTTz8DNR1+/e136Hc7NF2P7b4XTQkZhXIejggNLSYPMSwC0gTgPAz1fOTEP4OMh2scNmSQE9uYxxhxPJ7x+HjE92/eiItQweeffYb9bi/iuAXH00W6gl666RHzNCHFVAsvGBLBdh6dUHZJzhmH/Q6p77HtNwwcJS6mL5eLaNaFCuwqS/ZwOODq6gqff/4jxMhjsLxVCV3bggC20Q4Bh9vngG0wDAF914Fch8Nhj27T4fb5M7bXvr6G9w3mkNC7Bl3X1ZioayBqQ0mKsKubK9bTEzHelDPbMRNrKhlj4TuPhIUdHGPAME1Vp6xIeFGmE+sGs/NbI13YnGd89933iJG15p4/e4aPPviwgizaoGGtQofD1UEYIpPsWz5frLG4ur6StRnBjq5dHXfhxF/OjRoAy5ILkhYjzCaLKdZEW/VCUEoFEpz83iRsJt04lLnosQI+6nWJYbFff3f3nmOiFiql4NXLl7i+ukLbNMxWJFONC6Zpwvl8Xq6J5PVd09Vx1myYIcSmMQuLKEXu7ra9BzmPpuUC+HA44P37Ozw+PtaivxWNS4hGTky8Jre7bU2MY04okUdD1fFU7b8BIAjQxdo78jVh1y9JPFCMjOWGBEMZTS95hOZ5EmOUrQQIW6OgNicthBCXsPQfJJZn6Wo7GY9rnJFzKGKeRwHluJFy++wGzlm0TcNNuzBVQKVtWUdyCrOAkBpzDTrLeY4yG5JMIawbYF4AhBQiLBlpBmUWJx4i3r99h8fHx2o5b4xBv3mGjTi/Jhl7BTLCPDFzR87AcejQ95sKmPHYr0dKUniu2AwpJzwe7/nruo6drSYWzCSOKwbbMg7bNi0zekRbVfOKruvgna8ut0ZejwWS+V5PwpgvSRiAzoLILtdIzjqgVAMW3tUinCF1i+b8PD4P2TtZPk9GzgbnywnTNMM3vJa0Galng7fazGF3ZXWGqyCtIXF9Vh2kiBxYK6rkzK7Nq0eWmOiNBxGzlzEFXuCGHTMZ5LFo2x5t04nTq5G50frxsOs32G02izj+5Yz5cmZXtZKx37LwvzUr5lzKSBkYh0GaQwIwp8WdWEEndildylIrzZrpchFTigat53qSzyZ2XBzHAe/v7hh4MBZd16JpPJ49e4Gu7TCNTE54955jWipJJm9yBc/2uw2MNfCeNWw/+fTjGgu++OILvHnzBr/6za8xjiN+9eVv4JzDJ598gme3z/DsxQtcXe2w3/M4oTGEYRqRcoJ3dc4LKbMpjjKyTmLY1DSNjKtKHbfam5Zkb2iTIhcgsxZnmJPoyUaknHAXEzfVP22EHcfnAqxFTDy+rg1jJ4167/pakyjb5cOPPuCmngBdwzgiF9TaWIFVAk96WKPTQsI2gppMsJSFMRZUgJxZQ63xHtYLG0/Wifee2e3y/qxhpiOTJEQyRBI9bxybxEhTSRtPBagC6FkmJfRszgJUqR6jgvR6fhZNBABpWPA1yivdWAXSuV5OktuvQSdex8YS120FKKKRC6kDQEXKdY4gRQFss8hRpCQj/tLUoA3XRurCqcSEUhiHyCbDGhmrL8vaIZKRTNJMAgJE/ScetEB5wJJ9VHCvrua/+fH7wUt//eP3Bp7MagFyp5S/XookdViQRWbDLVpKwKq7UJFBLB1uFcgtGWz5w7RvvtGm2r33m03dyEUQwEyGBV1pQQr59dS+flmkMTKl1ll2RyiF6m2oWgicBdVHAX+9rD8ILRR/EAE5wWSqm9HGCHIORMumqewOIjmo1P1DnjwDhRbLWwIXE7X7guVABHGnpBSgWE5yYgIa7/i6odQDjlQnQAt8o9bX3GnQUSXnHEwxaEtBtFHE2jlQ6ux1JyKHMQY+1Oq70uSPBVIb32C7ZcFqpW3zPC0fhCoQvxZl5GssXaXCSG50rItgpVC31qFAqYuLc1NOSl/mgpiIauEa5gk5R+TCAWqeee5eWU0MAKD+Hum9wvK11WLgpJbMskmJTe0rvXfV1aro8QoV5yJmsQFNYimv3Yq1hWj9HUmqdDyNIOMExtRkUZ9PNXGeMpeWz8CMl8TirsKaSTI6BpNApsCQFYyCL1rJpTKeVBRSWWbWWgQRI+R1xI5i3L3ScYuVphVH1KWDoh2GGhSXuWZ913WW/ncwhJIkOOoOqGNz/FnlPqzYAWt6rl6zEIIwHmPtljjLYLI+R6rd/gRywkqB3CdaqLU8XmAB6ViRsayxBGH1GGVFLouKiqxZGcHZbXe4vrrCh68+wN3xHo+nI7IpgCnSIZNRO4kbfK2WrhTBCBtEhE01rsl9qOAkSA5NTYKkHycHuYGBsR7eOjjjkES0vAr10ipGQpkGxDE8sW23MhDW+6i+1yL3XE9ojSYkzANj5H6U34rD2sHhvQCJefJUulHleYkMUo5IIeL66hqvX30AIosQC0AWTdvj+YuX2B0OfH9EJ60W+3KttGmhuji0ihP1M5Tl/dHq8xgZXywicl4Kql6FMbY2QFjzSVnBPB5FEq8Xfae8KtCWsQ0d11qPc5TM71V1H+Y8La5PArIrK3AOsYryGwFoooxZQu7ZfreFIYPL+cJaJIVHKF9+ELjp0nbYbHseA/QtYCzmmFAowvml+aJjM5wwcrJdCrOriFT8ntkDmoAbZ2t8YOeupXOtDFBl9AXRiPHO1qbUk86lsXC+yKgXAxTctUd16lWR21osGdZs0/wkF/CIoORFljsJYLdNs7jukDJdV2NddfcveIUC2bon1j/3w0RP91MtoGUvabe1xn7o0y2urLo+2MlrxjROOOx26NsWWwESlElYddjknszzzONpIBTXLHR9zV9yAcnaBPE4LAELU0Q0t1UYXTV7FGDj84yvLSfsi45WFiC6csI0rhhitpLuPf1+1si0JNvr/+Q4k2uSz0m8Xa41cQzSsT7BtGpRomDfWqVuzb578lrGgEQ4NklhYx0LJhvJwYw1dVRZQXfViiHLMaie9cS5h6kFk5FcQvVMhQFNWUxHHEqW0fJUkOJy5tWRTVLNQap5YynMzGTGbJKzMCF0nYy55eU+GjUI4AuleW+tC4xON5RaHyi7okj8XI8GaRyyxj3JraxzsECNIcogKqXU0bSaD0HvWalaUksBrZ+b37fRUfnVvfxhV3/Nmqv7b1UPpBSZFVbKUjQrM0UaGCgsUu5ESBtlaazUNbTar7oWa4X55H2s2CiSxxZar0fRIHWuSj0QhAk/TYgoCJlFy33jazxei0RnGZ0yhlCcrY1kRN03VOu4JNpqJXP+rZ/ZWHoCPClAME2sHWWMuE8KE1NZVTGwSVDhTYR5HnnM3XtMbQdLDKpezichICibXZpu1sI0QCliQ4ay0vx0uLm95TOgaTBcLtjt7+G9x83tLQ7XV9xAbxtYZ9kNTkeu8HQdEK11fJa9yCPeVAP9kuXUu7eA3ToZVHzNEYucScaSGCFw3VzzWK16i7K89PmFpVn3Mr+4VbFyeW8hqXFSlO0iAEtdQ+v6h578c2ERaT65fKoq/L96r0XyUP7MpU74lBpU+ft6Jv7wnFzX3vpn9d0n72u5Pr+7hqtXf/W9snr9+npPvrd8qd4fyXFzzPX7+jz6e4qDmFW+xjWJnPOrPFxfSM8RyoDVGdsf1ke0vubLe9L8t0hGv1yPZdXqfXkSz8qaZfbDjOO3H4Qf/P7qPf5Nj98feLKy0AyQE2sJ6IhZ27Y1YSdaaIDKyqidBiPsJJRlsREDJ6kw1Z43MP/puhZEBv1mI+JpW8TIxZ9SGzXZLnXGZAHAVJhT0cSU+JBse2ZvcVAwgOG58RgCGmdrENEFmMUynBcxA1214inCZsoJNiWkNGIaR56Bb5ZtwzoUhGQWe/MUE2AybObZ9BjZlYI7puLEVWnEai3PW7yOPAJIhmAJ2FwdYIzBPE+SiGeUzPPBuWREa+CKRwcGqdbjTSp/rGyMruvgpJjfbjc1KU4p43IZ0HWJRbRlJz67fcHjKNstix627DQUVgyUyzRiDoHFwLVLBgKyugAu944KF//RcbIWDUDWYtMeancaOSImdWBLGCY+oKY4YxgGPD4e8e033+Dd27d4/cFr9JsNYmR9pVevX7MuUt/VrjDfqlLp42QssgGIUnVTscQiq6NQdr1nFpd3HjEyi2ZhEPAYpAae/XbLCbYwAlOIiGlGEnZeli5eFabFkrAbUO046/iiF6eP6vgJnYM2iPJ8VuB5A6o03hSSiPJysJ+GGcYluMzryntx0UjKsGJ3vXfv3+F8PsMYg9vbW1xdXaFtPSKYaeibBk3XYj4/IoUAgA9dZy2z/lICcgSVBNO0VQAVOSPx4AG7+EiSKJMxDKKioLddHRvgTuyA4XzGNDFFv94PY5hFCKAk5hpZwwYCaktcLbinCe/fvq17SXVzdhu+V9998y0L6QpACAgL0gCFZGbdOAF8cmU3xBQwh8KsIuuQQUgZcl9Z640PBO50G2MRM7NnDrsDrHP4P/yv/7f4//6bf4X/4//l/4T9zQFXL2+x321hvcPX336HEGZstztY59A1DeYYMc4jvPE8ButkNCUy8KYsmpIymzSIiUIpgHesD5ZjZlbONKHvOuwOO1xtr7DttwiXI2IOsN6JsAtQwGA7GRHGFUfFmOOT5GwpOtQhxAJGOG0yipLxFBwAASWWCibo8/AesgzKZAEuqMAL9cll7sJpHlaIGTVzjHj94cf48Y9/iv/uv/3v8d13b+D8Hq9ef4h/8k//p9hvdrja7GBb7tCFGDHPAf2mgSkZ4zAipcgxTC2LSen2Aqqs9m2mAqMuZ0RwzQZEhNlNiCHCkIfzDYy1eDg+4ng64e7uHsfjicdwjWXNKGthC6qIt7JVNYk5nU5s9ND39RoreJJk/HWz2cjvFIQUcZ4m9F2P7WaD/f4KBHZT0kKU913GZRjx+HisI9wvX7xE13V49cFHOJ3P+OKLL2CtwR/98R9X44dhuGCaZrx58z1OpwF3xzP6vsdHrxtcO9Zda5sWzjXyHhPSNCHlhFAynBuq4DKAqruWS4axFtfXNyi54Hw+s7PPZWDWquxpGMNG1cRCs9YaOEtovEMjzFbnHFoQUipomoaZYGkZPQtyrRsZd1HAfhrHmo+nEDDP2jGFWFVbdH23Gs3m9RyFIVfduspiIU8CqMfMDBuUDEvrAnlh65SSkapCKOCFXT1Lx9oSF+LTZRAWrec1SrkCw61oUzZNg2+/+RZv3ryBMwZhmvHi9hk2XYuH0wUFInJvDWAI09uAYZhQIsfU7Wa7GhVZmicFBTFzpx5RC3vRriy5CsY33uFwODCbt7DEgjLLQIRS2QFUx/2TFsUCUnExwqYLyogjYXaeLmcGFlYsA8Iy3qL/LqVgGAY4Z7F1LORsjQW1LPnAY2ksxF9ywZxmxJwRIp9ZzloUmRaZZx4vXzP6tADUU3qeWQ9yfzgABphTQF7ZhaOUJyPjALPqFUBQ7S2YUkFPkvM1lxUrznnRVeKR8dQ0KAWYxoK3d9+z1heRsL49ax2VLKBuqDl0TpF1/i4XFKbkMNvSWMQQYKxBJ7FnmiYUEGANEjjH6HwH13jc+FsUiU06IqYAb7vZCFiUYY3BbrOVdeIwDhPOp0vVBHv1+nVle8YYcbx/qGeDcx6+8cICLPBCRcuKFhYVUycE0WpRqZBci1UBUZBqI7BUoH8BfHmt+gUoAp8zeZpgrcXV4SB7n/N5baBb0SksuWCWEd6maVAgY8cxVK1VMsQNXwBFnIbDPFcAVps03FiVJl/9N69JJ8wfvV7jZcB4ZpOYFCPmccRm0+Pq6gBW5ATazsOKaPY0jvjyV18y+3C7Rd9vsFmxo5qmA2n8SgnH+4e6VmEzYC1MI07bYOA1zjOG8xkPd3cYxaXa3tzCtC3CNCOEUBtgCpCGGDGFETEHfP3Vb9hsyHb1fXE+UrjRnDMu2uC2zA+dRT+HCLi+ucbLly/x05/+FH/wh39Yz+zj8Sh1zF5kRiakOCGnIHlOqaPsEpEBAM4zW5h17ziua4M3F85pa6NqFXv4DPBYGDcMGcSYEEKsjH2WfHC1Uc6agzqenIXxrecX58u58LRRCLNiNhKrZfwYgGtaOWMg5wPrb1pjpRbNAnQBsKWuSa1PlantvZMaIy1gulnE+CvgIvk3j/0FkCXYxrKJSsr4wUTZbz8EqKqA1fLlBZTHkkcSz0hjaV+W2oghYjBv3ayDAG5kAEPSGCtrQzIVC5fJI2ukIR0E3COUvNT4fAZEmcohzIFZxwvQpnIqFbFa5E/kc1jkxYGTCBSlyeuWUUp9PBnPAypQSuBGDWjJyvNqPdJqaVL9v7/d47dBqL/+8XsDT4pDWikgrCsi3sqglDHL/LRSgtVaV8fVFEFf/l4hm0bZAwXdZgPftugSC6Y1TVsp6ygMvEgjnIvMUgCxC81g1oghK6KSBdnwAtKCxgqTQbtKBeBExtrKEEirwwSKGMoBnxUZ1AstqGaKfFBVMC0ts9iq01DKosfDgXKNxvLzcaKozigMO6SUmEWgOlJy8Yi4S8bjfKmOq3GXfRlrsbT8ngJ2yooAFpHOIpiaCquWrB0rfj1jDba0EWCRqaX6OoaIuwOr+22s4YTQGtFDWQIsM13w5H0qQyUEDvSF1JpeumYK/vGNQC6pduLyauMWOXnV9ahtuJt7vlz4daTTpsCGHooAwRHr0gQpwBiZ50IyBgam+EDhRahrOAl1VZNh7pJYpGmWbpxcl1Kkox9rwlC7nopi17Wlx1up9s5W7LTZcYyBJw1WRVyGFFWPss618KmdJDl4QAysIktRo+KvoocWU0JIEcM8Y5hmpBhhmxb7/b6OvHrrUBoWBqai43sFSngsdS5aE2VxsBQr00wsBKn3QtcDZE02vuG1bpXNxWw+ZV8RGTQyJtlKQmpFI0bZdQYGtvAhqgwHTeo1aQYAI4yPtmmk08Sd6qzjuHLtrV1ppEA1n/TWE0yRn4EeVExT14RkGMb6fNYwcKmx8TJckHLEJ68/xsP9PX7xsz/EkCYM84z5PMP4hFfXz4FSMM3MYIkTg9YsJZBrAcPrVzWeFIzOXAjCwulhOfNaLDEjx4hwHnHT7/HRy9cgt9LfAnECVVYNocJrJ2dh65Hq3InWloJORS25Vx3dnGWcmq+1ivOX9R6AjDhgxSLSPxKwCJAxwYWzQJSRc+TxB++wu77GVmyWn93ewjmP61fP8ezZM1ztD+h8Ux1qYsjCZuHXVLeelDmZnClIh4rfVd91MM7BKfNC/hQVEKVFb2qaAzNBDK/b3eEgjq9N1e5h8dUI6wybRxgGPo06hjlfR9YUbDbCyNFEPSmIRHwyEvH4kbXMMnXOwTtbGaO+8XDOVobju3fvcRkGHI8ntB2zmI7HIy6XgR1PI4/tGOPQdX29f955jkNzwDQMHFNS4hHWpsG7dzs8u32Gtu0QE6kUFgyxMLCzbNOusc03HkTc7FocZ3gNGiJhFmki6ECm1JHWtm15xM5q3OXrH2OqjJO266Q1yUyweeJRtxBmACzunWNCsGu3JX6ulIuYIdgatxnoFb0piWU8mpnqfgnTDBBEPNmj7do6Tm8NAynK9FS2JBcyBRELu7PvNlXfgwhi8U31rADJ+HJO1cxE2SnVwl7Po8zugJM4LRaAAfZcYC0DdpvNBmkONcYnyXt4v/FohEOpo0jeec4HQHV0apJYMolDLEqp9xENoW0lZqwYMlzIWphi654kLNqAWiDxWJUY2KjDZ6IaOwCAiuYTzITks1PApZEBTDgnuasI3hM7ZxYCsmNmtbq2pZLwpPtTGAzXnElzLi4Il3zGGs6Lsik1h1Rmjj7VNC3GGtwwcZwDE+/1Ah0f4fzVKMACkuYNsVadF0aGMfwZ5H6r25tzDpQYGBzHGdPIzbuUc23spRjhG1PzjpQSjucj/Dyh7dpajHJxaIQtrA1eqkxZAytnD6rBRxVAl5jrGtGBcxa+BfqCms8770CGhB2W2byFGOxSN2Qk2X9GWrXEOfjSzQJIpF4rqAvNv5fRVm1qP2EZ0JKPrnXSVAOXz3uD9QJgwD8Bhsc5zYqhSCDR5QHnEmX1qyQ1DbT+UGa9Lipez5AGDDKDoVWU3XupWXIdXSbikeymbZGsBUqCsSTGAvy6G9vDOYvz+SwM3CzgfYu2adH4FsbyPjMSD62VXB5iMuC0aY4KqGieWSToW2XYERBTQIhy/wjAXND3HT744HXNXR9OR1wuZzw+HDGEAf0GaEqLHsp0DUJcUJ3QgimyHMY4MxgeYkBMfHa9fPUKrvHckE0Jk4xxtx3HDnZAZjY6ibZbZV7WhhuDCqXkRetJ6zDd45rPpFzjlxGGE/8s1fwgqQtlEBVgY5AEuJJMU86EUtl0Bty0LbJG9fmIiNnbhQEiBhXYfAESPw0KitWxLXoai4rmWtIU1pSvrIGcssS5upNk36wAlaXaFTat1MpVp1T2KiTforJyRqYVwwgCqGD1WL2fWh+DWfsAFkBL6yup5fWxMLz0+tWgXeO5skkJADn75Pe5rgNQcr1e+qUs7KaQYjU94JqRz+Yoo6EZC8Bl7EpgnyQuKIBUcxC9tGtm5lMuXq73T78uP6f7cflKBZ8KPQWinvzQk0u+gl41Vv72j/3Ox+8NPKVSYKjAW8vjOHZF+61sI0msjIgnO3ZqYDHMVJNqBnR+8BbJ8HwzAfvtBs46OGEUqXtRmCOMNxWl5MAiI1SSBGtX1BoPXYr6ULeFJCMNKYaKDBvplGaZgQ/SXVGGhDeuHgQ8GvB03poABAROmJ1BTAEmoh5CmiBBkktjrLz2smkV5LLWSxFBXLkUQgise6XaMDlnpphLEkRQLackVvRGqJl6ULIuDa8R9iDg0pP/PYuOAYDK2KnjWGDk2DoeC9nvW6ZpxgBn1BK9rA5qDp4M6BGKIRSD2rlR5kXKrHNgna/BUsemVIOkaUWDSenWubCeDElHoXaiBGgqDKRQ4STcG4vWejy7usHN7S2+/f47Ht8Is8zrZwYE4OpabSxrzTwOZwHgmIJdjMEYxipyyYwdKbAtIaaI+4cH+LZD0/XovEfTeAzTJOuSO105JsSQMI4T02At61I5a2GkCKOsLLtlc7MYORdmysDSgJNCxJwyxmlmNzj5zSkEdpmYgyRQGSEFxBxrApULd5xzSSgpsKaFzNSfZwY8Hi5nnIYBYQromg4vn7/A4bBHhkHbenQdwRuhq+ciCaeO2DFibxx3v8lQdTKC0E0bGUsloHYz1Za37/tKW48x4nK5YAozJrHL9t6j2/Sw1tZxUE26dZTTEK/DXHLdQzEnuKaBk1Ej7TLoOFqKEe2FXfLyZRTmJsF7A98YxCi6dCUCRQonYWtquDdkaldVLdTHYcD9/QOUteadR991KODk6v3dO3jv8fd+8nMcNjvkOeFf/vLf4v/zJ/8S4+mMYoD/2T/+J9huevy7P/93OA4XHM+PDHjJmmaBTT6sQ4g8jhtnTkxzRhHnt8Y2cGTxeDwihQSKhDTNGO8ecHj9Kf7+3/l7+Prue7w9vsfiKlKeipoDCKkgIMGRh7HMJCnEun8gQhRHLI55GUgsPp9SwvFyBgjceQfgfFNjCTIn1k70ubLomJkly4FCUgYGVAw85OQkdoU5XY74+PYTfPTsE9webrHr9/j5z38GEOHTTz8FiHWDYkoMOAjT04oTCYjHDS7DhXMsMohxwjgwS5ZQ0L56DestvDUC3GaQYUBXxSjnmBBixvE81POo9Vt0ux0O11cIIeDh4QGXywXfvf2WQSNH8M4DAqo557HfH7AVJxt1OlMgL0UGTOr4GZNHUCjBGsJ+09dutMba8/mCeQ4M0hiDkjIulzP+7M//AsMw4DIMeP36NZ49e4a3b98yC/aw5zMgzGgaj1Y69jlneMNaK/PljMvjIzO1mgaUM8bhgmka4f+ex83tDUxc2ZWDFr29rpUzscB5W0ELFMDScu/JOtiO91gu4iZkmcVhnRHXJf7Zy+XCwsTitrnb7eAbHuHX17+cz5hFA44NBpgVUhKf28fjcqZa7+AaFuL1ltkxyIQw8VmapYI0lrW9IAzUkgse7h9QCq+BzXaDRjrPJCCAAsccSSxySZgjA0LnacDpcsY0zbi9va3OecYYmKYBWWK9TWO4WZIj5sTajjmlCjw5t7CecymIJeMyjoAxOJ1P/PWcYKyDdw32uz3apsV4Ye3NjIIUAsZBxmUESENezBv63aEKg8dpxumR19ooYtIhsOMVm4s02IBgto5BAqtjNxHOWRlhtDWHI2ImUEqpFtSAaOPkVMWD1feAIKO7uVSWz5yAGGWUiAg5sp5o38kouTPw0hDSc5gswaYEsoQ8stMkZQbX2NAAPGYu956vrx51HMuU9UWWz1kefQookXNLsrxxz5cBMS6jUNa3fPaDixEGFBKMKTVuqkhzTqxx6bxBcQ4pJ9w/PvA+laInxCgmMB5E/D6Oj2eM44jf/OY3yJlds7xzaJsGV02PfrsFGYM5Rjzev+eYYQu22y2eP39ez4RpUu01C8AxO4+kcWNYM28BQTm+6QiwNsayMfB9x4YxRo1dOAcL88zjtsiA4fF328jIWOAcigTQclppF8EIdcEWCNOrVB1Wq+w0AZZRcgW8FSBT1kaqkx8F6rDHgC0BCmAJSDfHiJgzXEos5q/M3wJAdMgU1GbglSrokAGph4y8Nk99GMPHS4qJNaBShinApu9qHA2BHVUvwwXjOGK33aFpGrTdFjlHhNnJ+1u0snzbofEeb9/d4XIZUTLBuQb77QF937O+JiJySZhG1qxxTgBRWAG+VUeLYEg4J5n3RkaCsQVt6znmi+B1SlEamsClZOx2G/z0Zz+u7+vrr7/D2zfv8D/8D/8Sd/cPuDFStxnCHBOO5zP6rsOmawHJd88XdkwcxxHjNOHh8QHvNlu8efM9YADXODyczhinCfd3D+z4LE3Mru0qOJ9LrA3VUko1XKKmkSE+dp9WxzMiAjUNQGyMRIW1OHX9G7ICoHKtmRIQYsD5cuG8MjOj1VqHMQbYlGBF3wng8e2clGgBqC4SJJeOwh70zaIPaUWiw7qlyV1MgTPMhk5JDaJkKok0j+X1rPkxt1sVXCorEXU5mHPi+lQAUt1yZEjAGeJcCZB1rI0zabKsAF1gNVKORbduGbrGklfKGaq4rCnCuJV9uDSi6y/W78lP1HOkspYkpvLUkuSahnN9xRestShi1sSgmhJLICzdhBCS1Lz8clyDRB5ZRUYGOyBrHNFrTQKqEVb9jcIj7etRwScfRz5/rNePX7OOg0JHxDWRQm1k8Outrkl9ieXZn7zO6n+/7+P3Bp6qY1sWRF46hIV0DOIH89DEnVdmKvECq4sLqMwcRTId9Abxp04pIbPxGaQuBshWhzjt3vBzFagYZgGDAs56ZnesFi9Wf/P4jbAWUGoXX3/GWlsX55oyqEUpGbM8H5abyUWVuJzpQQWw7gvU/aFUIUhlSgFYaU1wt04tXAEGaVBKRdjly3XEg9sauWoAkXY9NUihIGbRMyilzoFL6JEuiiDoeo2JAGvZmZCoAjNZKN0k9ymttDCoLtbloC71Phd5LXBQkp8DMVsoiph5WNHMc0qIRJjnwJ0Vef96OxXFts5g3+6QM2uVdGTgXYOubfH6g9c4XF/Deoer6yuoe5w1RsCqInPtOtaXaueZAHZrKwWlOsMRmnbV4TOEOUYY5/Ds+fNKcYYkJlpIhBRrcmodCyUWuXCchBkRRl46Nknon0unS1Bx4nntAhEbL/xzWYSdSSmuQpM/Pj7AOsvMDBI9ErlnmvwV6YyHENC2Hfq+x5wSRsy145kL64Ztt1vRDGDaadP4CiLxTL+p41eN2AJzHOAPqEmn7sFxGDCOI07HI5zjQiRJ8jnNU2UvFVknRKhaMc45YRZRTeSyguCQWALU12ZBY96jRT7/ohMjwKmwRrQ4P56OaNsG1m3lMy5ii3yLiIsjw50vjhkNAzCFCyRnLTb9Fs563Nw+q+vYNQ0LzWqnKjPV+nI+o297/MP/yT/C/uoaL1+9wv/rv/9/48vf/Arj8QKTCobHC+ZphI8Sp+CAksAKd6wDl4tFBqGRDWSQ4cjAwcKwZQ3KhQHHPAQ01uHzDz7CTz/9HH/w05/j8mcjvnv/vbAKIQfqEusLlLlohOm56N4oO1S7yEVONdaDYA03tU/OicUUFZSOScBRbgtKpMXiEpo5kbPCIFBHMxK3HgMLGAdDHpvNHs9uX8C3HWAdXr1+jVwyHk9HNl2YZ0nG25pw6P0dBKhw1iEKizDMrJGiwHVIES47qEBnCEHYiabGKdYjSpjmST5Pkb1toF31w+GA3W4P3/pFZ0i7gPK+QggYpwlTmGGNwbbf1HPVOIve+0UImidj4C0bJMwiho5priN5ICMi6qa+n6Zp8eLlyzred3t7i/1+j9PpxI6gIwOxr169wna7xbNnz7jAmSfcvXuLy/mEm2e32O52UihGnC9n1ubrOry/u8N2t4f3TT3Ll1jEZ+Ysz6dddx6DdWh9A4IRncOCTISUA1KKQDbImTDLuZKRa+zU0cMUmQ06DoMUO5ygq1V7iDya4LwVBqgwGsCvY62VgoDZHzEEXGLisTbNFSTpBKGyT5lYqtofHBdiTJimGefzGaq3qDmLullVtxvJjwxRFeTXn+EzgwG6OgYk41YqCJ9DQJS9RwXIIaFve7x++QqHqytsNxtuiAxjHW2dxgnGRDjHn8ECsMTC/dMk+0LEk4EC4xyM91VbwnlfGSops7V5EWCYgZOE7W7L2mCbHo3YlatOpSHDY8OqeSY5ppXGXRK2pIqc69hZLpqrMDObi19wQ6SUajARZCS95Aw4znUyASFnlBAYmLFakPDWyWAGS5Tx4GJs1Ut0jgEjXjeo92PRf9HCih37KBOS0bxQI5xBClyMeuPgWwGdnIO3puYQWCJizf8Uu8ilIM4zirXMZgCvqav9ntdD4fv8+HiE5q/DwK522rzhuE3YdB1ubm7w8Ucf4er6GvurA7QoGacRMetYb8Y8BR47ch7FAU5y9hwTkomi7cVzifO8gI5GilzNMSpgk1PVqeIVttQR9fxcjSFCPvt67GbVo3jSudfGMiB5vcRQdTpWrVH9PoAqmK1fU5MLfR9Wxo8AVKbxPE0yJjZj02+YHSaABvHNQtLPLHo8BuDmYRGTGwIoAwVptRe0ZCm1aZKkSZrzwmRVFoXKCHStjAJbj1IScrcU9eo6nlLEVAq2ux26vquGDNvdtsp8aFy0hpszFnLGQ8XjHdTYZdI4JaOKjXXwG4tN10sz0izaZ1Jrdj1fo+PxKJIPCQ8P9zhfztjuNihUMI4jNye3m5qroWSkGHDYbdG2DDDHGIH7ezjfoOt6bLZb7PZ7tG3HAK2x6JoW19c3lbVLIMQ5wMCgbTq+NoWdTgsVNK7hZp/WfpKXcyqno15cfeUcRVfXrHJHrU2X8z1nBueULMDXmdnkhQoul8vCloQ03Ug0BcUEKYhZlS3MjYrC3BUcEyAmBiR+8pqraaNU82RlLypwxG9VR5XZZZHvt+gVIdfttY53ugeBBagpwIrFh2U9ybTKPM9PQCej5jQkEjryGvUFSZ+LhDml2PLCoqr1bkElvtAKe9H1vAa59DWrM2gNJmUVVFBfV7GRSoqBzooxc5bPTiv5KXEDNSpTEfBkuYEqLF+ydp0q1mu3vrb1b/1/krhFBMHiKtCln3O5J6sPsfo60erarn+6lPUXURmbq/fx+zx+f+DJSMcgL0CO0gnVHWV98HPwy7CuoGARH1SRcnWd4ffMvxBFnLtkGcmIpV50wAidPgPIMNYvI1uAFFlM4dQOSkoLFVYQC+iCITCYFouwrwR00stqVonMmlYrVxhPb7WO2XDRmRKPLEWi6qSlwrfaFV4LwKrVfdtx4MiBwYNBEvacU30fvmkAFS0V4AlECxC2vg+rwzcVsVWXKohUc0GuvREAQJNeBdd4zIMXsRXY9Mn8amS3LQ22rroA8nN653gDZplJzquxJCwLPOW0ONlVy3EGGrSLT6SjdqsNxFknrDXY7bbIKePheIJtGnjb4MWrF/De4HIZEWLE1dUVUkoYh4FZZ2kt0quiqAFkzII6y32KMVZRQmXl8GosDDxZi9tnzzBNE8Zx5ANHGGgFQBRNBW95FMyLs2MBz4hbuae6fRlh54hj7GIlm1NeNHbWBQo4WUo5yagKqibA8fEBXddh2/dV9ynLErb/P8r+tNmWLLkOxNaeYjjDnd6QmTVkVqEAEEATZLdMFEk1Zdb/hr9QrbbWF8lkJsmsxZYEQk2RBFgEas580733DBGxp/6w3HfEfQWQyVP28JDvDidOxN6+3ZcvX8ux+5ZLEWZMwjAY7MYRp2kiEJyyvA/ZS/v9Dn3foRQ0Taq0xEY/1lE6J4WmMn6KdKG8aLL0UmjQynnCd+++gxdLYcjhtUTqhBnn2thc1/dt9KPrOnbzy/osN7gTirCwIEKLmgzFGJmwduscOgSEnOe5MV9ijDidnlHKiHHsUVFkfevxJmt/M0Kq4sLOMz3QdaN6dfcPr9pa96ETIJiHfq1AzRnn0wX7wwH/zT/6Cb768iv8wU9+ip//23+Pv/43/xbT8wUmV1yeL1hiRLAWzptWjMuRDXaQKBxubWBBhwIHA2+oBZZjQrkuyNOC5emM8eYGP/nqB/jDb36CP/nDP8Jf/fLnSClSs4NpZaMu67isk0RJdVgYk9SdUUU518NOAcSUcxspyimzoCwc98spURPD2ha/DdAA91wLEiqM9WQfFBazTNwNgrVsVhiP/e6IV/dv4PsR1Xm8efMaOSX823//75ow/c3NDXb7XStgNMZM4urmrEcBu1ZTnHG9XMko8A5LTggbQVGNFdpwIAidqP21zNCuIQ9uEVV2Fjc3N0zw9zvM89wYRiWta3uJjE+zaMU4u66v4DqMwyiOoKnVpM5whHQW/b9tR5Fsim490SyB9Tdv3kgRQo2JYRjwm9/8BilGzNOEcbdrwNPd3R0ulwvO5zO+iwnnywX39/ewlvbnp9MJ7z98YFwdenz89Am7/YF6T30PNWdQMBrViA7IBR/evcf1eqWT0TCgjhXWCfgg5x0WguO0GDOY5fPNaWnnub6ymAhM1yuMtdTbEg0U7vkIYxmTr3Hmf2tSlYGAgM76JvgaJe71PZNFPfNhN/pMPCiQ5TxRlkRKCVgMcD6j73sCL9KUUsanFrtOOvHWWHSBJitRNC85vpwRo2nnU9dxHLvvmVfM08TcihUsSsrYDSPCF182ED+nhEm1mmrFnGbmBi61Z+OMRTYGs+yLw83Y8iMbAv9IrqcjUzAGXoAnI7EqZa7R/eGA3Y66MaqZYQQI8IGMiOJcy79qrYAjoHdZpgY6rHnPKqxaUFDimj8VI+tCnIWKgDWqs1GtQTEGqbJxajZsF43zEP3PUjkmDmtFNzE3F98ZykBcXZNUKLwCyDLWaeT9NI/UTZgi41/X93DeoR97nqdWQXVAmQ1N36eshiYohTqLOaMqcGEMbo5H1FrROYvr5YrgOgFgVieycdTzmjnlYdzhi9dv8F/96Z/heHeD/fGIZaEUQqkZ0zTh5z//uThSR0oBBK7R6mpzqeZzB5ww4KKw1PhcCHK18eANWKakUW1MHw4HWGubZswL4MmYBjxZUHMJkhdtCyMdw3qhcyJglubjwGaEGSuLb9sEZJNFNbW4BjW/qJm5q4L3l+u1NbzR9SvjBFIPEUVoea5emYKqqGvjjNeLdl3NeGLzPabdI5Es6DrGGN81fSq+S9fOkMvlQqanSHscjgdhxK050uqOWoXJb8lKxtrgVjaXOswtyyzjsLyf/Ui9q77v23l0lRzdtdyR+cTz6cQR6GXBp8cnnC8X7A97+ODxt7/8FZa4YHfe82xcFp5PdsLtkaCZFwBsXhYYsBG62+1wuDli6AcZI2SNOu4OjLUC9KcY4bxFF3qUTBahLiPjV8JBG2QyG9BJwaMqNbJoJDmn7rzSDFVAW0An1mfM+Q3QNDAB4HplPAnSyOxDaAQHHXetondKd2rmWW20WhIoXaOQxozqxRJcoSYftUwNJV7A8oOfzxJcMZJtVQtFOLa1cDtzjRS/Bmt8YqXewDNobZxXsFZHcNuUhwBKtRSkWikfA9s+E4yOlysYuMZtvafQ/VZXEwb9cCuusYkJ8jNWGIqti9ie+Rrbyyb2oqBNd+nv0ZFzOMDJfWKcWN00vQBlRphszroWpza38feuzwCb8bj13q8A20vQSe8DPvuvbU3eQHfz2X3RH9TgZbBhlX2/1/cGnvSuGrMCLQogUPz3JT2ulNoYR0VEBF8gh3rDBCVkEpaRNgKfKUYAFWp/Wqq6nwG2GpRiYUQsy5jcMCwjcxjOGemu8Id05p+bpEiHSMZqhGnDzyAsJMNCzsrC1+67zo03Ap/hddDUxkP1d/SzUsgzyLjA8uLQJbI/svDwtHWtCSySnYU1vrleGWNbV6WxhyoLYGcMbAiogd0xKwu2SrSoAPWhFHiCFnG6qNb/v222FmHlwcsiM/o1axBs135mXRsvF64uZmdUYB4vVr0WN1kOsc71bdNerxNQMlISTSq7ccOx9sXGWqIkIoH6PLlkTEvBnIVhFHwTMh37YQUL5XKiiF6mzO/JMWFeFnx4/16SJtc2n47b5c1sbpEkKcl7zBI8x5G2pkaK6L7rWvBos+XTjIrKrohZqdxFknU9PJtIdKU4n4URJpA6vjgMdmxJEGmbATHOGPoedze3iIlr/SRMgiidmAweNve3d9jt99jvRpR33+F8ekZOHCk63Bxwd3eD+4c7OGOQpwU1AyWV1c7ZewTncNupaKLn6EOma5a3dE9JKWEW0dinpyc8PT9L519EZnuCezGx01SirN0KDDk12ilZCwze/TBIZ1gTpQrreYBz1FfihVP9NDkgJBYkZUXEiJoLgQVJKgF2aXdlB2/pplJzhZUx0JSKJMAW3nUYug5ZZtIVfJkmgg79MKBrsVKcjGBQraOzlHfwHRPpbz9+wjDs8V/94Z/in/7jf4IyZ6QKXM4zvvnRT1FyQZoXlJJp+pAjSomolQDRfhxQS0WaF040O4Ox6zF2HX7xH/8Gn95/wFXGv968eYWvvvoSf/5f/yPc3t/iV7/5Fab5yhGbXJC12EJFzUW6dxRbV9FJYyh8aNphjabPQZyYMXG3o1bcJKyDUmgh76xFsQ5VXPwMJCFDRV6iACnUXDGGrMVVb82AOoAW3ngs84Trtye8+rNb/KOf/im+uHuDsRvx3fv3SCmiHwcMu7E5JFFTqGtOb7XUBoQ76+CNweD2eHV7z0RBdCw6GVtaBAS2PqBag1SB6zQjLhHXZUZBxevXr6DMBxYvZFDFJeLx4yeoU2WtFYc9R9pySWRv5Cwgznt8+vSRIts/+ArjOOLu5rYl8nrvNayr4YcybQB5VsLasc6KqQI/094f8OPu69Yc6boA7wP2xwPPSWGfDMMANiMyjscDXr16wHS9AKj49ttvYYzBn/+jf4TrdUIBQZFxGOB8QMwZl2lCKjRV8M4jhL4lyfvdASH0CL7DsixwjoyyX//qVxyltRbH4w1ev34FgGwZLXIJ7rHZQdceFi7LsmAcBoTgcb2Ki5UwrIwBjSte/Cxp10FYO8bSrIOFk4dzFt1+FDkB3qun50+g7hzjVwgdz4laMF8nAbNnGMMiyBVPLQrpjT09P2Oep7X5ZVVzcGlnQxbABHLuWjkv5mmCNQbLNLOpIkWV70bUfcESFnz8+JHdVR/gLMfoYoy4zBdYAfe32mGlFMSyYJooNjuMI8bdAJg7AAbjbr92ZzWWScPoerlCNY1KqdjtRjn5Ku7u7wFj0HUyQi5iqXouU48uo+SVrabaRNdpQowcu4bZOJ5KUesk19FCU0e7ckenLC3GSy4Sk5h/9ePI51AKUhVQTzIEHaGxVtcCGZ6m0CUuLiySjQF2+30DLUotmIVZV+uqsWV0zFRiR+cD5jxhmRcxV+HZ7TzZayxEJNuvFbZK8SKAVpMwkOZRTolswJQa28VJ/np3OOI47nB7vGlxeVpmjmXLOv7ZTznidC8F+uFwRKnA8+m8AqqGcfHtm7dQ7RtIk9M7Dxds2xsxJ5QobB3wszi7MRSpoueI2pq0PK/1a6GxnnWvAWjA6pYJAinWVIrB1XVdqeCuvrSgdirhkdfkVPNtuZr2nmS9EHSk4ZBqb1oENf6pZPXaCt6//UF0P700ItSKvayu3KXAOB2nY26Zt+PleOlGxcZ0xbwQtAkiI8DiOmGe6ViWUkLX9dIM0fpNMl/ZCyRvVbjgWrGpTqJLJKN0mZdWB8XMvEtHoMdugA+Bo3KyTnUM2LnQwCpUwIr+KtnrBNr6vkPXd9jtKVa+iH4lR5o77I9H7A83SDHi06dHXK4TSmVeN4w7TNcrTvMibF/mEh8fH/HVV19gHEb87Gd/JAwl25qiVkDLWlmtUMdI9xhaDskZQWoHr7WrLJJNmZSl5vUCSlUxWWEDzqMastMMMmMtqOVbJU/m+Ruk5vRNnibJutvtdgB4Tlln4WRcFwZY4gKTuKe8o9GHPh/VQ2N8tahiJJBl9JpC8pIvO36aitzyLu5PoOSKtEjjOAQYaRJsnScl4RP2XW1EDWU1K8yiNaiScmAMjJcRzWhRc0WslCdYygrwKkBGt/UNQcTZdo5rPGlkEXnpvq0b0ImPnCwjgnLl9wBEbfKj6oBalbzerECh1LYUPi8tr6dokmlyIZwU29TJmkMbbU5I00JjiORuQdaqvig7IcxUiT1t6K1qDF3X57rfBRKRGt2+WMT6zWt8XP/FvATqFQ+oL779e72+v7i40gihyvsreKQOcGtHCg18MtrmkxfFTjc3Wr63JQFpHY/LmZ0H5ypKsbDtk3JTkAorAAzRFLkmZdUIqqmuArmuwFMVFFmeTsmrSHWtpXU59X5mrCNJan3qYDaLkxWxahGs7K5Nt0sBw7qOYBlj4AOFkK1bHdB0oRpDzE+Dvf7eLOCIMdxMTEgYgFj8WbLH9MZzJ0lCV9vsrcBODXzht/L7VvbTSqcDlABlViBuiyxv3o5rgr+f1vLy/XVdI63wlgTBCqhUs7Kj1lG4ak27Pudce/6aOCnF2QprQkeqUIHd4OXA5x4JOpIl7AxldZmc21ou0rGapgnOe/R2HcMpudChEASb6KzFe0amkmkaVLwmWTN2pYRDrlmpzbkUVOcbAwRYp5iNNUAx8jlzu2fO2uaIUuT+qVW1MQZDz87abhwx9AOLvsh7fL1emaDJNWZQRHYYBrp2hYAibKScOd42DgN2ux3G3QjkimlKkrusz0F1Laww5LjleC+8rOuSyOSb5xnLsmCaJv7/McKVAl99Ay9SSbCwzakGmaNrIUUCyxKot3tEO/BFBPCNMaKbVaHCjHpQakJkgHWkULubQPudANq+U4tcFsASvuUE5agXqewoIghpVhq/MUa0Z/iMY4woMcoztwjiuuU6jyiaVvu7e7y9f8CPf/Aj/OaHX+Pf/+pvMccFr9+8hinAcqYm2rTMKNahZI8sp4t1HiUXTHMV0MZg8D12/YCyZEynC3JkPLq5u8HDqwe8/epL9OOAx6dHdiG9hykWBlmWpqGYbzXw1tIeF+sB7KRbpk0R3eu1VnGrMm0fxJgBU1sCsr3nKjS/ugrRUQuS2LkXcWp7SIKAfTKwc8Vtd8APX32Jw7CHMw7nywUxraMeu3FsezF4B2+dNE/KaqcuBbkTTaNeNGCMgVhIZxGKBHXtmK1gjgnTPFO81Rrs9xyNizG3brWycHQkoe8HWOvQh54FT01trPnjxwWn0zM+fvyIUgp2MmYwCNV+DoHdbE8dCC1otkmYJmrOe9HukzMFEoM9Rx20CNWz73hDJ9NF9VWkyL1er+i6Dre3t7i9ucHlfMZvfvNbGGPw+s1bzPOM3/7ud0zuPZNWYB1dGYYRsC/PTe/VAcq8GHs9n84NDFR2kRaIKUXkjOZMCltl3HjGPE2Ypgle2Jfq/qoDAqYKU1kYT5rAGtCJlAYQDj7wjOfZUxpQnucZtTJesvgrAAYELaZRKKAbU2tctLWKNS+YrhMu14sUbA5e3HFzqSIK79afMq0TBAhIakDNv+A9G2DDDt479F0v55+eo1aKf4dlptC3UYZOFVc5b2GEJbTI6OfusOdotRRpHKV28DLSog6EpVZhMKyAdCfNCGMMuqFH6IKwImo77zXbUABhZT1zDCgJ+BpjxOVy3eRgVuLsns030TPpOhZxXddR58SKIc3m7ON4uLiUlYKSgFTXolOLNABwVr7fQ86NNY85nU8N+FV34FwoILtlild5nhUcWeG1OtTCPeEERKERgLCcTKvnobm+qe3Rt/iobKksbNIKAH3fcjVnDEJHNvduRGOv5rIBa0rBl198AWcsdkPXwPGrALgvijIY7PcHNpLmmSVlLjCO98k7D2Oz6LCSUeSdQ/BeWz/C9KgiTSEjdhVtGkGbN06Yb1sJjW2DV81JtuznCjQ9FB1xMpqgyn2D5vJYDZQg55AT8NBwobSvme2fz3IFzbMtDFIICPJ9Onqja6/lwE3Zd23UKjakIs3rvpW71vLndcyuF5A35ZdMqJQSQuhe1DTtDRXoq6zxrLOwdXXRYuzJ4rQW1xokZZlUoEuXdwHWs0HBaJdX8LUYjtFnZUxF+XvVS/WiV6t1UYySz0njr+vI5q25olaDEKhZlVIGDA0gNC/LmY6sFRUpU/f3/uGhNXRa3QEFHjf3VmsTrGzVbPT77AoYyMMv623ihiy5racqOjEv/ieggJfJg5ZPSV1srZMmTICJkeWzTL10XWAKXBJg1USCT1HBqU6YqV0XkLMVpjVlN9ZnjraGgCrTCBUwn0m3fPa9fGZJZFwEyKloeRr3qwitQ3TTrBpDgbV7KzQh2bjWk3p/JcjW2kwqYpRJproyDrtSYLU+1fgPQBPx9V6vn0GRkursi39T4IvPnmwx49Y1URv0sO699tMaBw2EjLDW0w142tTIVcdajF6PPkdtVKzXrKYfujdXBpc2QnSsrq6fAWhxTz+fXlGbEoIKr/MJrPW7/n75iibwksl/ji+t4NNn9/g/8/rewNNVOnTq2mCE1tY2KlYUELJw7HrV/Cx17R7Xys419Rzk0JVOg+JBfRdaF50Psf0msEymjSEqZMRE3YA4XkHb1gzvfKNL11IQZ9I+szBcci7wAIyzyIZOHPA8+FXzI6dE4ARMBJxzGLpOEh1hO23cDbWDrociE/XSrFX3+307LPU+mlJgURG8Q/AOu6GnDooUBJqIZR3RcQ5d6ClU2QUp8IR2LcJygEHWg0UcTDTJ1QjAeyvCip4Hv7EWVQrw5jgiC7/zbrOpNKXm73qhkyPUa331HUVYfSCgNm30KYxzYk9uhNnE37EbBlSAXUxLVxc9zK7ThEXHIIwhY6xKR0E2l37MVApqTkiJjJN50YAhzKJahLlh0Q0D70riPby/v2+0YBWnW+YF0zQ30WMFfnItcMbAGWA/7skokGRbRyYLagO1NPH13sPDbL5XktRcKaQdlybkromN1ZlxWWehW22nZ7Ej341kAry6f2jr8dB3cJ73e5ookFwKuwrerjbQdLZ6j1/96lcEqQC8ef0arx8eCHRW6QhaD2Mc+t4BtjZHwsv1ImsgtVDEIk32poisp0jjgJypzzOIXW8RBtXT0wnGWuyOOzmQuQY4FjC2kUg9ADTOnM9nfPz4kbTiXLAfOUY1aSdNqMwG1Gfy3rUDlHljwdPTE9kaqQAuiG4TME0RHKGzBJqso7OXPB8Ug+sl0Va8Zgw9RzCIgVdAAHwrBbbaMhuggarL5QqUih4WoRq4AtzvbvDF3Wv8z//v/w8en59w3x9oxBANejvi/nBE2HXwvUeKGblUpEhb4F+df8mi9vkZ577H0Hd4ej5hiQmvXr/Gzd0t/vyf/De4vbvFuUSkaJEnJmrB+TaG2bseMEAuTOSDs1hKRhRNrmqAy0zb+WEnDBbvmmhlqYVMMUl6SiXwNPYDv69kAWhdO1fYzS8UwdWglZjkOVaCzW1rGDogA5dPT3h9uMM//Rf/EP/tn/9v8Q9//Id4/+EZHx+/Rc4zasm4zhPNDTZOUjUXJKMA+ao3UEpB6DrsjKH2XfCYL1eUBjjxamleQO0kYy1OF+qXdR0ZJoIUwHsjzRkLDECQfdGKJUkINVcoIjDgPcUnv/jiCwDUy1C9Pf15LdI1UaaDHfV+qlyfdUZ0TVYgdptYqZVzY1Dk3IR99fubzlLOCDI6+/XXX+PHP/4x/uzP/gylFBxEG+qLN2/gvUc/DHh4eMDN8YjT5YKUcotbyJkJqTCalKkydBzHK5lOadfpig8fPqDWisfHx9bIev/+A5Zlxk7s2YuwCrx1uDne4P7+viWjOtoNUxF8wOGwhzEDrAVO5xOmacIgsdJJzOm6DiklvHv3DjkV5FSaSLf33Cvny6Wda4fDEXd3D+hCB+88dsceqD1sJXikTRRjDD59+oTn06nd4/3xCB88hVst3ZFyyZjmzHOl71HSQj0fLTqGHjkmpJlgPtdvlPjWtZGkeZrwu48f6ajXdY1FqwB+AYuM+XpB6AL6XU/BYu9xc3OLrguYrjOSsI6co06Pt2SAVWGXFgGkX1D85Zys84QlLtAxkhVwFAFnAUOVnTvNBA+XZcF3796h1ophGIVVFmRdik24JYjE0UdPINwZGDD3UOjOe3FMVDtscEy688wZvfeYrlfkVBAXcVwbWCiE4Ahy5or7+zsYAOfLGc9Pz/jLf/2X2B/2+KM/+qP2uVS0vpfGwijsXCc6Hjy3J5zPZ9wcD/DBIy0RCWSbBO9xOBC0dsY0E4/zdELMCbkQHPz06RObeMbgeDjieDggBK5jNslq05IsqKuzktECCSxqDRlA52mBkSLEeYtgvYwF1RfrxhqL4/6mjRRrzAjew1uH3UgQbplnYRWT8UyWquhJ7fcc+xeQ83q9sinrLcZhFLFmgm19CG1taWHL09gIAxCISUBNUxrQW0tprHQL0+zNvTaUrcUi5gJrw4SFH8dBXQPAcmOIlQZ++8DmIUFJgz50DcCnrg2giMUkOmluU3imlDkmKc1Qnbbw1qFasqsUBEgqATHNbZyQzMcrUiYI7AzBDGcgGmHUQkTJMNZIE4CxiC63GYBt5wiv1iKEDsF3qHKOU6+twprQYl3wHr7r+T1VmIApIcXU2LZ0bV3gikO3OXO0SXu9XFCBNmps5UyO08yzEgYP93e4f7jDl19+CdXEjEvEdbqKxioBOZiKcTfCOY/rImQCBWlrfVHwA2jrWcH7+aou1eLY7bQBSqafVr5ZBeZ9oFGE1L4pTqiVcha1AtMc28hyLJTS4LgcQZMGhBvAW8B4D1+qMNU4vmoM4D2NAK7XKxnkMpporcEcaTiQK0HEfhhhU4SJ6+i3GuxoDVgSqziYtantQ2BjT0FbT9ZqioC1rME5ESBsKZGZIcuptLxlJUwQWLQylmetCnCXBpoYYZQNkv9nkd5Jca1dC4gFqPauE6kV2VUCROEFUKP1vzUGuVZEyTGdcQIMooG+dIDn9VSIFp9iHVrIKE78GQCl78nPtupZ21LQRn0Ud1LwEQByZXPeiH4vTAOo5Ze3XNhU037WwLSahW+2nqVa1+vFbpu/Gv0NpK6vnLbRWKqvDfb8e6+GndW/++v/qdf3Bp5UJBYNvOC87udMF30pYsxuxnplLKjXw4JoKcgQ2bBJKmqzxYZ8uBfJC0QgUwSN4VaXCc6t1paEGwC1KOtIb3xpCJeBLkwHmAIr3U7nHPouyCFV2gJvFGER3a4VQpdDW8Rbmt82mW+gwYYNta6Z3JJ47e5A6XlVcEtFUhRS5TugQbLYrFVVoFRYX+7Zi2/67KV26JILbN5i3VQNG1VgcbMJ28iZFCxLjC2oODk0m+h53b6vztGuYKap4uhkgOAdjFjP81nZdq+Msw3trnqvP0NnlYGXhVYMKWw4jiKz/qWw6w4pwiRJH4ahzfDrGmRStVJX9eMYuUfOWhYrzknA5fMFsLKDtkFLA832Pm6YYLVW2MBOtLGcseY1yvNQYBUs7ClGv645PWi2jBT+GzCL7lFa1qCjSYfqVWn3VHVI2AXexsU12OuCLZvPoUG/yp7VP+16nEff9djv9xjHHYZxpDtXzpivi4xb0kmIbs4rtX7LHGhru/IzkE1FVpUBHfMuUpAF71tXnICP3XQECDwpI2vdd7r31mCvH1s7yupkx7EQWg4rI06fNruJoLaFiCS2MWRZAxQBFivlwrg4DgNujkfkOeLydMbzpyfqqMWCLgRqRwQn4xkBwQFzNYg2Urx/iVjmiJIK4izCyiHg9v4ed6/ucby7w7AbEUuBy6WBgcGRLViLWGMbKINYxGBr+0yoIJgks5BtnRb5gVpRmjEwYJyBrWsBzrNB7rNZ94TGWX3EJJnW9nug94zIBXLK6H2Hr16/xf3xFrtuwLfxA6brGdmKi1DlgZ9EpLjWiioFhCb4zQQiZ7js1lGPlFe2osYVoI3EwVSYwgJB44SOHKnGnjVAFZBNIxe1CfNmzfGssrJG+75vLCxAHaJ8YyXpOdjcN+V9jWgSVStsPhkXqrKXdR+psUFdN3cDotlhTk1XRfuG+p5xWYQC79u4Yilcm8fjESpuOw4D48/lIoUgGV/XTdz2zoutvUMxMqptyMSqqI3txOt5eaYy0eWZrnHCB7JelQGwapBsnoc1BOQ0Dla6x6xjMeqseUVayF7SezH06ji7MtlCCFiWCcE7WBc4qgEDU7mfdBQoJha6z8/PYnpQ0edBxG0sR3BEIcBWEfEWgLrI3tPPXQy71yklqFV5KR4QRz3vPWZrZESmNvCQ20bYFXofqzKBOoSOADkZ2h7WJlir5xO7skbiaQUAU5ENWqNFY0GVe1pqBfIq1iz13QsAVM+iNo4vP6fPWrUWCTyxINaRJ2NXhrixmr+8/P0tR4KEK8NMW91mbWFhqmOW24BvnW0ORaHjGP0wDJgn6oJpEcs9ZWWEeBW+XRscWryu57WaccQUUXLBPE9IwaOXsUTX4jGBxUUKfD2zydLb6GJJNl7KRicPBLPZMKvts6nor35TKTz7vZMmi8Zau+YLWvApu0Wfm4FBdVjPf32uDLZQrTNlHHtPzZr5Ogmj7UKx8r6Dt8IGl4K1KaxXYT18Jmj8exWRfkY5N6o8A9RVj8taFT/fMPELHZz12XjvCeBv1rOy4ThSxWusWUbFZZQXtbavNZdE0SWEsg9qbQ7gFpvcZpPMrgyLjZ7VpiFZSkFcZqSckVOE9bZNYeiZw1oig863WscZmM3e19+lZ4yywbJo6WkhzEkCOUuMaeCDntlNN7+1U8yLz6Ig0O+xU3TvtLqG16wOwtZZDB31U3MimDiO4yrBILqfylzJuTaw8QUbRv826whjK2vMeu2birbt3yq5xpr/2yZSX/UXyL9vC3/NNVqup4LQm+fL+23EuGWtMzT2tHqZG3tzPfyelBIcXBvx4vOsa4yR99A6al1njOcG9cVeMmZ9crWubDW0+0lNvb8LiDBmW99IvSe1l3yH1In8L2fVfc6gWGnOyUs17fTaNe+rrQZeBdP1vup+0Y20rW31p9a6dnPhFZInAubFF/SzvPyw273zIhbV9Xmb9SO3N291h54/EpfWJfTZRW2udYsvCFrV1tLvX+9nn82gPZCGyWwu7z//qvK93++79fX9xcW9b4VcEaR9i/xvUVTVBVA726oBF+vG1u/jxskvkwvpqOYkdG6T+NGEUlQhgsgWKFnCkncoGVgmEYLO5zZGkRTFlgcaOoeSWer7ddoOQEU1XbuZ3nvsdjtEoY8765ugKV8rnddUdtM0sJyfT0wgDX/Pw8NDAzH0s+qLwuNF7JvZQexCh710bZ0xbXzper2iVJl3N7QQXVIGptXdgyi+YdFTK0pzWDJt1a+jIGBCpgeOXTW3OEZWRfhxXeCzUsGd47zspkBZpIt8uVxX0EGed80JyXmMdWRhLKM2WQs7cUxzlrTZiorj8UDg2Na2xFc7zIxSElzoYB07EgALp1IoUKwHfANw7Eqb5CiBI9UdwHSZxImRh/Q49PDB4+7u7oVGCJM7aurYC2fmgw/N9cN7BxdEbNLZ1o1sxaIkbNqlNcaIoGNqHTBNWnVfdV0HHV0NQkXWe1tQoblLbklklcMnSrHXy/6NrYvlgscwjBiGkYXPu3dQ7YtpmnE6XdqarJmg3DD26DqP6/mCmoE4RTg3Agii/ZKlCCfIU31FCGu0U6ZBzUxoxnGHYQD2+6M8O9uS6HmeEOMibjsL5vgRnQ+42R9we3uL4/HI7rG1mJcFtRRawhsL6zw636HvB3z69IjvvvtORNOHxt4aOwrqjuMoCQY1Bzhux07i8/MzliWK9TSLw9ubG45mZdUm4v69XE9w1qPrhhYXYCpHhDUDa7MSpYFT2+fMfcFOE5wnwJgLlpTw6XzGm6++xD9ARV0S3v/6t3j3u98BoMtUHzrshx2GsUPfd/jpz/4Ax+MRc4p4fj7h2999ixRp6/50ueB6OeNwd4s3P/wB/jf/7H+H+4d7RFTECkxzhjUZQ1cwhB63+xv86tO3yDmRsegoOBxrxnWaWZQ5y7JE9J6MNWJvL8mYQdNE41augLU47PcAsGHDVszLglSyjBubVgwWTY4lhsGpdW7l3LwVejuY9I/DgLev3iB4h9PlGe+f3uH9p0cMHUWLjzfUOFmmK6Z5wuV6xc3tLXbjjgm1JlXyvwwKmudpwlXGthT8IDgkTkSw4sZasPM9RtejesbXZY6wNjOGc9uysymsXYC6QtQEnFpR3/U99uMO9ze3opewsplKKVgkJrFQJWBqZYxu7AeEEDB0ZL00QW9rESOFuUNPhzk9l60A7aVQlHxJkYWGc7i/v+eoZFld/HLOeHx8xOl0amC3ith2XYdvvvmmFZzG0DEozQvisqCmhKkUXKYrnPfYDQP2ux282+Px6VFAFMblw+GA0HXirsU11TmLvh/wox/9CADdf4DabOuHYcASI2JamRjO0cJ7ni6otSDFWTT+uA77vsfT0xNijAi+o8bVniyM9+8/IC4L4rywKA4ex+MBfd/h5ubYYkdKEZfzMw77Ebuxg3Us0qYrHQ6v05Wd+usFj09PeHp6EnF+wAWH0Pdwkbolz+eTsGktx5Cdw7Ab4UNA33dkCpfSQJaYIpknmSDbZZ7grMPh5oCCjJQWOGeQa2BxCo9rJoM89AFdx+fW9T3G/aEVrrUS7Igy3kMGqoxXVBakWdYsVFIB63htFSC1MWKEHc4RmzWZL7qnRWfTOYfb21s45/D11183UFUL/1ZIbqqIanjONYBEGodaUFzn68oysBZwBhlAUraWN/BjB9s72LgxbggWpg/opKD3hbIRP/3pN5inGX1PNnwQUCx0XWO5r42MgpIqko2tEhrGHofDro0bPb8/yXp7D+89zucLhr7HbhhlFNXhcrngMnFNVgD7vQhCe4+UCp5PFwylIAReizU6csZiVgXSW29cnnNOMg6FiuAcXN+vpg+OUVjz2fnKKYJFjRjgEdOCLMyCai2WEltjwDmK8KuLcUzU8LqeL0gx4t2791jEXOB4c8Td/R2W44xhHFoB6QJBuK7rYD0ZQVpMJ5HOMBUyyiinhjhYWmEYt+K/FJxPz/DO43g8NpBFdVW+++5bXC4XvPvuO3Rdhx/96EfN3ETHvdTkZeh7jmqjoBYw39Ez3nfUsZJ8folkLIYuNIMdHXcc3EAQFQYoFPoH0JhZ1jlAmuud97Aw8AaYUsSHd9/BOYdxHDH2BP1D6Jo4PWrFPDMPMrJWVB+wFopol6L5tkMXhlazYVmQszQ3SgYswZ/nywQIAGGlbun6wKaKdQLXWFhXMfhdWwMppQbsAWvxrtezzYWp9cZGkTUW3TASGN8IzKtwto4tJdHBqjJGZprWrY7Sc3wXkpMrSOjknlBri9cR87I2czxNMIo0wq2x0mRU5lKFgRoAVFRW+S1f1NckDrG9jEL2fS/6lQLESgytAOZlWe+RnFFsdGTExLxn7EdUANd5gl0sfFynTrJImHjHXNQ1XT6y36z3LxCHbY6qjeQo98vMSzvjq+hJNmkRbVwYJzHaoKY1RpMFzz2Y0sp4ghUpisK1YiT/c71vgEyRBkM1WSMW43upWN2ZBLDVJhrAM0dqfSt1rk4Oqei7/luVuLGCiaaBkFrPApA6hteun8F6B1MtAgyc5GI8o8Rx2SrgJzIRqEJiqGiOiG4FKm1QvWgloWzilj4oBfJFnMVoU9+s+fH6knWIzaOuoFFPJfNpC2jpN3wOsil4twXtvu/rewNPzsgsqXPI8mG2HVYAogNFIcFSdD5Tvla3qHVt4JTan9citufSIa5As35md9bCudoWgQZ1fQApqSsZr3eLAm5HA4xZXSey0j/lIfFuV+mMrQwsKwWUE8aNsrb0tbW91OBMgW8rrg8rd0sL+4ZKNhBWZsvlIPXOt9/VAj5kwyi6XTkGoo89S7Dl4rWS/Ei3wugmBLjotGOyiv6u2DbvgRXdKA1yug7NetFrQKprh0iD7vpS0BErUJctdJ64UaDrpoOmgUsK2KLi8fJ7Sl2fgVMap7y8c63r27ouOsIhH8RIVzamRBaWUaR8pWQ2XZ+0AqNtBK6KULUtsODB54VBs7KGyJQDGAabWLtcd5UuW8ocOyu5wIaNyFyt7QBtrg7bzoHsN4D3o6T1kNBAmIVlpde+/RMsj8UWFIUZ4bzHcp1wOlNHw4CgZhc8bo5HgrExkjRYN2KmhVbIBetBBUlCYLbaC9yrWoBqwqB0XGMdnEuy7zxub+8wLzNSyfDOYRC2hLWOe75QCBxmdbrSMSHvPfb7fWM/XsTxw0iccrpes3ZxStOzg+HBbB3BmlITYpwQ04yUKbZuLFDFOpsijwWAjidl+ODkkBNWQN7sMbxkYXKEQgojBYFLhRX6bSwJw36Hu4cHHI4H7MYRl3kiKKb7uFRhWHh8u/8dLqczMvi5r+czDAz6rm9sP3UkC6LTUmV0eS3qVOeCCQTAmGHq2gFU8REj8US7Ltpo0K6uFoXqgKGz/6q3oq9tAoq6dupbJDGAamZVoO1zximuO2eAoaemzePjI7797lv8YvcLnK9nFGSUbJFBWj9jqWnM3M8bTJ+zFpQhZ3R9bAR/ybYSdiVkpANS6IkIu4r+GjlbrNWGRWm/U88f3S+lUMSziYFa2mU3gLMCwXtME0dMFQiyWUYJ5FnEGJuQ8zaxaL1cSWAAtKaSJsM5Zwrq17qy07DGdH3p/tLvYx4ghgzCiMkS82JcKObtKJg9TVcRhi7ieqmJ9QrQTtPUxko0ruhZps6al+sF0IJO7llKkaP54NnmnQOqRwle7nVueoo6NhOXyALfbpgmMDIeuGC+XmGso45a5Tqy1iMEh92OrKzgOwAWqRSUOKEUIEUWd5q16bgHNZ1C+/9ZEJ8AiPRA5fm7xIS8LC1BXeaZIuKWLK4lzi0h9J76kVUZt3LOhY6gcKlVXIrQCsAlzrDO4iAC6WT5iQ5eE+bOnwE9ZAemvIoee7ueh2QgkWGBqsLN29i/aRJtzjcnY/hGz0Fn21g+DPftariyXh9zmJUFt8YP0wrsl0WqmMpgza+00605neYwTu7pVlNIGbzOO+wPdMfqQoDvCAyuLxZc6nZbKhlutVRgI8+gBZKCt3RJ9U3HURlYznt0wkhDBfqubzHCb2IJnc5EpNxosYwGdKjD7jolkLV/1cBEZehVBuh2Nqg2k9ygNR7XdtdZbGmcNOblM5PRt5S1LbE253R9kFEZ2bgwBp3EnhDCmp/J+9AoSNfn+vwJpK0xrtY119wyUjTnV7B7v98LkJfEKbJrI//6fNqYdMsVWcukGKGW9+082dxv7rel1TlG1mPLlbUQlANPRaLL9n1aTsn31NoqiN6f3kOtBwBOcOiJ1+4PVgaaMnWrXRnbZHFzDSRh+xqnJjLbazbtfOee8HCgjhhQ4SQGK9sdWM96J5IXCg6wwcKFWGwGrI6ecS1bvaf18wJ7vWd/36sxu+Tn9OzSuMXCfWVwtc8m+wcGcBAWqyHL7WU1ZVrdpBvJbj6bvkoumPLU4pMRMKdgw0berGNdR6trIUF/foYiIBhJHXkprZ7Rc7qINl1B3twz2afGvWD/c0sbAmYFQGMfaX3omoREY6S39uD6TFptgm3OUNd80Lx8Xo0bJ5pRTQbbbPbs9jlDtrVZ10O7Vy2qSN4NqfWlljUGn33eKmtVgCqzNjn4PBSF2kIuZo15ZgW3Wo6v4JTcH5g1d1UtOy5zxgcFsgxUSxkvziWON5Oh3S4U6x5+cWNewlQS97Zf29wruYmaJ+g9/exXvPjc6634fhDU92c8iYhREJQy59w62Vrk6WLSueeiY3mb4kq/z24SrTbLWQHIyAVgcBWNGAZRj6EfGoU/CXqqCGFKqhVgYZ2BE72FJnZZShuVmue5sRqUYaWBGQLQrIc9/x7FqlIPwNLcjtjN08/gO3Fm2O1AZwZBqEG9iaUQTFuLcduozUM/AACO+8OLIAesYzirDSawxIjT6dLuo65cpfve3z+g6zy1qGRJ5EpmEaTT1Q5ncMFSRJHv2fnfXx7bAwVAc4HT7uWayDkeFvLZTeV9slWouDUBmYfVOPZiy7m+j7rrSERo1+UMkEoWK1+xAhUR2jYOFgKLNWcRY6KrRyQo4vsOxjk46badzicE56mTYhRgtNJJYzJxmS7SZUntWSiS7K1B8A43x2MDqlAqSspY5BrH3Y6dK2/acy2FDkHT9drc7wCgGzoYa1syFWPE0PcUVdwkRo11aB0CLEqmsLQenEr3XWKCMWkdFREdiJgihso9QTFYdniCDxjGHR6fnvGb3/4Wl+sVRgCK/W6Hn/z4awzDgHcfP8BUC28CQaEcYQQgUcaTJnVeRG45djIjpUx73ZTbPjsebxrYMfRcdwU7VBTc3Nwil4SriEVarEnhNE1IS8Q4jtLRpbPVhw8fYCw7sj/+8Y/xk5/8BH/xF3+B7777Tr43IHfcCylRSVYDrZGDyHmH3W4Haw1inpByxBILTucRw+Cx31O0d5qEQdXvYS0ZKzHNuFwmHA9HirTXAojGGxe4bUwQ3UtB4kuLRV46c4lg3lQjbl4/YH97xNc/+Qmen57x2+++xRwjznFBiglP1xPMkoGU8eHdO1pxDx1KyXj69Izdbo/74w2BUOfwgx/+AG++eAsAuFyvJM4ZgnsqwG+qAGLGwxqHeY508jaF1rCdh/KQVHSa+576Uqap4gpG5VwDqlAr5uvUzgQt8hSE1PEajjtDXE9Y3FF4kZ1tlIpgdZQtIZiAh7t75Jjwl//Lv8Gn94/4xd/8El/9+Ec43tyg5IQpLnj/4T26rsfd/QMLRengaWe4YgVVvBR4Q+ja6IIyE7Z7U8+deZ6xJIry0w2NDN7T6QmlFFwBdF3Abrd7UQBvGzp9H9oIW4wR59MJdbdHDcD5fH5RYNzc3GCeZ/z6179ubGQrwFhcFuoMeY9h6BG6PSO+AqK1ttjBxgbFovVcu729xd3dXWMEns9nXvNG9FvPB00wVYRYQa+cOQpxOBywLDOm6xXn0xPmeWKnuhSczycYY3A5B6AW9F2Q7SLnTc549+F9Y22FrkM/DECtiHHBt99+i+v1gmWeAQP0gRbix+OxnY/DwDxidW7LTUtIAdndfo9+6LHfHRroCXAae54jYiw4na54/PSI0I3oBwfAoyIApkffB9zfvcZK83e4XGY8Pj5S56cb4FzAMIwt5ui+2R/J6Co5Y5on/ObXv8ThcMAf//EfS+yM+O7dOzw9P1PzqgsoKVPc/eaAuEw4PT2239uPAzpvkWJGKXQBhQGONzfNqKIKaHq+0qTAeoebWvDVD79CSQXT6bJpxNkG9GmZRbhditKiTqMJe8czgok4NYJQK0qGaB2tjPmWP2ouCbTCuRvoQqu5XGNBGjLfXV0bMyqS71SmwKz58vZeb/MVYwxqqkjz1ACVFouchRFtQf1ZHVeXCoDnWlw7+g+v7tezT/Qho+gWhTC0fZ5LRpq0sZVQgydzuTDH1IaAMr4O+z0BRrfmZsebI8a8A6SxOA67leEj1VwpFcuSUMTRSwXLHWhCM89z62Arw0S1TPu+R0HFnCi8z5E0B2ursAXoSEbAxbVGlMsO1fI8scbCOzo1xWVp8akxloyhFqHhWbHb7Rpw3fc9hmFomk+xsIm4Q0VXO2GlVHEgZL45TRNKKeJyK/laVbdFNeaRMwlkEWprU9933IA1x+OPm8yGFoC5FCwxSS7i2vPVfFiv6XK5YBgG7Pd7AvBynq1sm4TT5YzQdTgcj7/XILTCbvWOzQY2Fdi8Y1M0c0KgiOusjHn74HA4HDY6mLw71BGlJm2tQKlrkxWlouZMdkoDniqWujSwSW4SDQlSxLBzcC6gH+hYmWTSwBgSu4yhc7e1Fsuia2sFIJw363vXdd/WXJCNgd2IlDsYFJcx7PYt5y8CWFI/cjPdkNdRSQUPWDyv4Oj2rC2l4Hy5wFiLw24nOm4BDHdVdJVWkw5lIjGP2QAWrfFimBPLmgRPXPSha/m95gopJTx9eoSztuWn6DqoM5eXfNd3nMghG3qmBpqhuZSORRqTZN2yATDPM7pALT+NgSllFEMGUCM4VDK4vPMwzmzqeuqlMT4QmNL46FwPZx0yFn7VbVg5suJWsOvluLU2wZputAImFYAhwMMRuoKUqoC3fo3jn91XbICiYhQOgZwVK/gEqSG2OtVV182G4aXyCQpu22Cxjiqqec5KvFHQReOK95YTNiUQ3G96h3ImGU6oKJAMxSIrUFPZjMiaRo4wxiBXjkymnISdZNr90PM4i46WKbZhQQ2crut9eclq4nsTRamo0PG7zafbgE+f/+x/At/9vdf3d7Vr/1femdG3JetcHAyCOa6jAtggdQraAGiaOi1px4qCavc1iV0nASIW13rgL3Fh0FX1/I1ivyKniyQ/u90ePvCj6oJn12G9Vequ4zuyVlQ7QAEfbK5PmTgqTqxIckPPc0a1gIF2UQuQ5B44+TkJ9CVnod0a5CpouwutAwm548rwaVRxAJ01OCjaCDQLVEjnxMoYShRAxkIFwtdAS4Fr3rNqTaPZqX6H0WeFzSav6wLXz68vJoIGwRkpCos46IFuKwDqPHNZW9ssqXXjtN/Tgoa8c2HCmqpq5tBFwxgntGCxLQUAoS3WzUGWSxHwi44rl6dngi0gRR517fZPyyJodG5sOF0HXkZilq6jS5vzbbTxZbcILOjkGTfQVVlOiaN712nCrLoogcCPArpFOhcGpmmSrAwZwHsp9CCsoyUKqJTEbctIZgEsEw+GWkWEONNtIufCQ46nFIyxiCnhOk14fHrG+XLFvCx4dX+P25sbMsvkQOBEd2aUR4FzfIY6JsluiLB9NrPlTYDT0vFGBePZYcJaCAso6p2Fsx3sThwf5HctCwVhQ+iE8cbEZlnI9qiZovLKeLi9vW1gj16HxibV5FDNKOdklNFaAc7Z7Sm54nqd8PT0jHEc4BzH2rSAp2i0ewFSL8u8dv80mRfdsG6TDAQRKdZOcMrsejjnSYWuQO89CgyCrMfpckFMWca0QEB+e9BnKTQr2khMihEhePTDLW4ONzjsD1z7BXj16gHOa8EmMbuUNm6onXmNEWzUrALYlM6rwtiUtSoac/r5a60wBW3kzntlEmgiJrptUPbslk2TgEqtFIAJl6ssAJ1hLy4Yh2AdBtfDGwebLZzrEGTcLASPvXzmKiw/gqQWwdPNbp6XZhzAM4VnAhksarBhxJp97VhXKDhvMMcF5+nSwIc9XrKE53mWbZcb6K2vRm8vjLLeU2uQIsdRxDx5/5wwJx6fnsh2SlHYfBmmrPof1jrGhuQQY2pnbmNyKgUcFsZQc0kTr1YoWrI8hmGg7tM0tdZZS0Sk6NX/tDoOJdpQ+vlyTtCxyCoimH0ILMzigvPpGQYU9A2hQ1anphhlvIwF6bjb4Xw+YV5mXC5nYXzRDKV0CbVkeG+bgQBEc+356REpRYxjDy9unimxsPMhsNHh2G3PeQXnvHe4v7uDk1EqalrRzQnG4tPjE5y1OAV+7bDfE6ixBpeLuHcGFlOn01k0Y4bG6tnv98KuIUj2wx/8EOMw4rA7tEZPCB1ev1qalXbNBXlZ8Mu//SWWecb5dG56TB8+fEQ4neBcEOYXtYCmeWrPXsE4jY2rs5QyIJnskk3FJl8IHcVrhVndtE2govidFBVGzgBhk0ILXV3faHEYxjQNtWXjLtoFWowr27C24lE1JUvbWy3fbAWHNK9KQdPQkHWpxagR52OI83GWPDIbjvBbY9qIk7FaOWzUaqyFcet/u+Bl/QjbTD+kaEdpMaRNJmcdslE3WiuOcCuQqw0xvdfKEgAAUzh2dTiwYUkdMcnXJE9PwuazwtSiYU9tjYK6Fb6VKYAixQuLTxWrRSuWAaD3gTHYW5SsGkdW2EEZyKXZquvIowILy7K0HJuAv0foCGDtxpHXokWVMWRgzwld37MptN81toyeH5pHaizVkWJlI2lxWWsRJqNtIJWOe65mRhmxiWLz6538XmWULktsuUQXAroQmllLEvevQTTvtPhdm48c31ctqy5nAo0aryWA5pRlwmONQTQqyoIGSDO4AvN8xRIXYWQR8M1ZnJmdF4BMNG2dI9iTsuQNlcBiXv9bwfkQhCBQ2GSYl0Xs3GvbZ0tcGrNmZQbL2S1MaD0312ZN2eRiwtIXQPh6ZcN3iQpUBqCQ4TNPM4yNraFVpLYphYY0jcUn65FaQXhR91lAGmoWl3lqAFApBZfTiS5644iu8+i6gLIZPQR4nilQwI/I+EgGJnOt4Ok4nWJqYAxKRs2stWCoe1YF/NT6pLr13GV+qm7IXH/KzC/S3E51bZA1s6HgNeRIrF1lbLzEmQYgWStNqgDKQ0By6lUXSnWV7GYMjPfaCLhXmySMxtgtGrGd2tFcodS6MtYgexMioG1UwB2oGTLuVqGi3bXdfEa79lZFauEGLtc13po1LmqtpprDWtcqo09d4yoI3GsOUFHb57LAqivc/nnzoY3IAlW5wrq5UgErtZ5S3EPPLm+oraqTBtxCm6mWuq6d+uIX4gU5hL8bDWz9/NXyNr2Vf+9L87wX//nZJ/7P/hIA/wXAUxbGiTLM9CaRktq1JCXFiGVaZ5p1szXhXLOyPuqmEAHQRJFVZDGlqQV3/Zxa/F0ul6a3k3PGvEwshtSVrVpcLmfMccI3P/kJDodD60KQSiwPVzqf+jUv4o3qPPI5Ir525EmpB4RKJ6KWCpRB2B+cLy5No0KZGirSV0tBsWjJgbUWnbC1rNyHLVPMbUYkvHQSVpoxb5Kio5rwxJzb59XRkJIpjs0ihiVg8B4QEIAFHe95FkRf11XeLGBjDLwxSMYgQ0bjAMA62GTaaEYtlQygXHCdLijyWYdhECaba9fWdKjAIENcmd3BKCLAkHUXjMF1mtpIGUCNGkA6WUJP947Pzxu6oT19/NQ0vCwXH3+6oo1j6YEXnIf1FsEG7MYBQ98jJXH2kI7t9TrJwSydrLqyZ3LOMMJeUkbgNNG9Zl5mLDFiv9s14W5N3ErhuIkyClTkXK9TAQp1NVpmAbLiIgKwVtzICi6nc3temqiVUhFCJjDrPbDM7IzGiNP5gvcfPuL5+YTrNONwPOLh4RWLSLaViKwbyEGgxYRpVubWelTLoqjaVWTce4qFctxP3R9tO6h0PadEltpux64l7d0JTFD3aULfdehEI8QYI0Lis4Br1JvShPL169cvGCrqajVNV+SlYJpnjkw6x0S7FrFQt6hFC6+Ky+WKnAtev34Qyjd1LuJCdosPAT6SRak2xxo3ht0OXoSWt2MgxpCpp8+35II0nzle0jnUauCqweADqpERCgAnAVBvbu6oJxFLO3yqFHsxFmkQBDhnsSwTbm7vcHt7h/vbe9webnFZrkAFvvziLSoq3j9+aoVRyhnXmaOOuSoF38JBxj0KpUaTJPUo1KexVqjnCkC49YCsZo0hXaCL5BLn9uyNJB8rI4EFYkoRVeOT432wBjTiKeIKahw6FzCGHi472GzQ9yPG/RH9MKDvOzKcaCPALiaY5HjRXYtpRl+VJs3kYRgG9KFDF1bto7QQ6D1fzhttHo9+HHBdZjxfzmusFNZTEEbmPPPMSim1va8FiSbApM0zgZ1BMfh5Xlh02HUEKKWE9+/f43w+Y4nUkLKZelvWqaU5xYpttJiX1Y1K40IpKsRZJc4v7fzXuKRj43pmlsJxVS3I+D18r7phntCZJkrSQkvmlGIDnNTxc+jJWJyvFzw9kZH69s0XOByOBN4ytaycI6iz3+9xOBxwvZwxTVecTs84nU5IcSH4MSRpWBHEcVYc10zGxw/vsCwLvvrqK/Rdj7u7+8ZUa+LszsLYtWmQ4oLgHb54+wY7YW/pPvEd3aHevX9PEX4Arx9eY+jGNsL3fLqIhiOFvZdlwfF4xBdffIF+6LHb77HbjS1PqLXi5nCkC9pIRkFBxZdvGSvOlzPmZcGH9x/weL7gr//dX7U4O+5GDLsdns8cJz3cHMk6ncemJan7q+/7poWlukvWks3uLeMzchXmKX/ucDyicx3Gfmij62g5rCbS0rBLAoZntU93cgaVVoxaLsQmNr91UPRtr9sGJFTJ2lexeC/sWiegkmlZcgFEDmBNkZ1dgScrjQWk2gr8Qj9gYaI6eGNbfqM5jb6stahhBWD9lg0BYQFLTqbaagrQdka0dURYu7nVWtt+n6Q8MhrHcZr23nJmdMKSm6dZChz+bDXMmWstHP12jiL7MWKaJn6vVE1k2FYB6tioSi6xKNVnCTYzaqk4jCOscQjOIhlD6YIGdCcYy3PY1op+7FCKhXMRatyhgHvX9+3/t9bCa8Ep5/T1eiU4MF1x2JPBczgcAABxWQFKLbSVudqPPJsVXGq1R62in2MbU0nH6UIISDkhRV6j1hjeqyMpcDqdxaxjETbTrtUMBP8TUDKcp0uylmIc8ysNmIoLmeqn0wl9jGRwCqBu5N3IVCxNe4Y5pZ6Tkh9bgmXXaRIwfUAIZMdQRyuj70eEIGLxzmDsBsBUlIUacnFZqJ+T2eAAyOa31qDvg+wzYJ4nPD0/06XaB9kTFdN0hXcOu3EH7yw672T8uKAWgmdc0vLJpI7YNnStsY1NezqfX+ztEDKcIVAR4xUVkAkGC+vosFdQRDO2EmwtBYPvYS2120opyJUuy85YeCNEhnlm3Jd1+d1336Hve9zc3OB4POBw2De9JR2tjcv8Yj2VIvIRFfCjhTce+x339qUk0c4qMDWj5grnO3luFjAWQZqHJRXAS1NJQKT5dEapFX1Pra2aC0oqdOBNEVkAQ4Cj1eiYpygbCpWNnkWetbLqNW+2MPBdx4amBSsu5+EcWqytmRNM1nN8viRZx+CaqqhttJdPmZ3AtjcV5JJ4xSkMNccgSUMZT1Ziqg+2OZTz58GaAgYCFKyHznr4oEKaDJufM8ZAZZJ07XGcm/eCEz/a8IaqpMi5VZGRN0tXY80KOhVZf1toh2ubdZorRnLndc3YSqggt8/CZrcPHp116KznulVwarPe2sUY1ipF3QFBbEBzugY2Ccilt+r3GE+bMv/vBI82+NTnr7/r3/5Tr+8NPCWZnraQDpGzMN6hOkORV0NhsuAsbpxrmj+1vETZLpfLOhtsbXsopRaK0m4dzwzHKKgDxYN+nmakOPNwCV4S1gofmJTRAcDBGY/DYQ9rLXa7fRtH0IOsCIhBC8jcDo1hGGXETjSaCudkTZYitHXHdUPxcxFQiK2w3wJtOhaggILbJhRm1SKCJG+L/B5ls5RakeSwWnKCgRHLVqH+WrKkdGEod6gFAGPa/eMsv2EikhkkicIz2dDAYSpWvZbPVhVZLGvnK+XcKPDsFhnUzGdXpTOTYkLf9eiGlSFSam5UegXzjEGbEzZAE+vLkUUYbcp5j3OR56ew8cbBwGnyIuspBOof5BiBXLEL7ITZTBCloMB53zqQVujsqkGh9zKljEudJCitbKPLdG0Ua712BS31GdBRbMbT4yPd1uZZ9EEsUipYZtrB6verk5QWo10IFN7dH8jiUtozgLgweYICO13XCs4qnYoK3ro4kxXkQ6CgsHZZjUOpCdM04zJNuFwvBG6Cx93dPe4fHhCXhISV9UJKLAW21fK0Cx2fT9Kxi9TAQieOUaR+S8JfgWWZ21rTw3FeJrGuZSdw3I9tr+k9Up0OLRYul0sTf5ceCnKuiDGxeNos5hA8vHfSzSo4nU5SPBl4oaOP+x2sUKxjTCx6BSR9erog54qbmwOda0wFDEEi7zvsRisd5UR9hMpOqTEWiwj0WyfjdCDY1Dr1AthXa1C9pX5XBpYloeaMb372M1zjgtP1gjhHdKHDx0+fcD5f0I879F2HJc6oNWPccUwlLdwvizDsvvrqK3z89AnvPnzAP/zH/xAPrx7wcLzBvMx4nxIKKpI1DTyjJoVBhQiFVlAbywqgVMV5TNyPjACcrcFTK4otTXg4Z3HGGYQZB3V8qs0yVhloWuQFGRuuhWMb1Ri4DLhCXQan9y5lxGlBRUCHAdMS8el0gv0OOJ9PqKVDF3rAORHpXcUrY6ZQZ9cx1g1DLw2KADiLKLEG1sD1HUzwgFjdq3DwdLkixwRvbWM8LsvMEb/pKh10g5wTnp+fcD4zVjQnVmE/7HY7QM4EPofCjikq+kAgmpTtwu8pa3LonUfRxMtRkNoF1Ynxcv+VZawuSga9OImaso7NxRgRl6Ul3spcGoahJaWtSVJ0nIUAxLxQkHXsOySxjJ+XCcsyU+NJDBCsMIi8pZ19yhVpibi5ucHbN2/x9HxCjKmZLRgYzNPcGNaHww6vXj1gHHo8P31CrRVD1yGliN/99jcscEPAV199hcPhgMNuRJZzv5SC0/MzO5tlOzIuwIQx0uxQ5jTg3AH7fU+HOesw7PYADMZxACrlCYZhoOOZiLz/8Ic/IMtY2FtLjOi7nuOCcnI/PT0TlBe2gbceJWWkeYH1Hi745sBVc0WwHl+8eYvb4w2ClYZD18EFAgyPT09YYsS4o2j1OIyYpgnTNAuzO2C/P6Dve6T0AdM0txxGR8ROp8cGvA+7kaNIw/iCFb51bmJXmcl6EVBa2TurNIDEhcI4oEYCXdfBWIdS0daF5hs8p1ZNJ2UDBS8ub2jpONkcZuOYVdbxJSfAUOc9i1QR4A1yLsEYYQ6SpR1lNNc6jVVooJYBYLyDReWZBxVurc09DZXVlKlkRmujjAwdJ/ptopG6iZf6MgYoRjVnBBCSuOwt2RWqtTSKtp3mT6VWGE8HPiNjztvx4ZoLaspkXBiy8llQVibUokJrJM93ziFbKXaEgWfNaqyjjOx1H2kRbVqzsRWghtcYN9pxABBVHFfiVjcOeP32NW7v73g2W8t8uVYY7+DhWj7Ae01WQxQmqo5Gb1+qczfuKGMwjqNonukolW0NAWNWYX39Gp1IO+Sc8fT01J7n4XDA0Pfoh14Wh5WaUseuRI+1cB8MfY+3b9+SDS310LIsbfR+bcRJY7rrYW2BMQlV4gjNJsi8TTnCeYtgyIal4zPzTBjDppAyJSXpKoW5q4Ho34lZwTD0TR8u5yRmL2c8Pn7Eq4cHDH0gqFQyrpczvPMStwKMsEu1RkMb+2noAQwslnnBfJ3a83l+fhYZDG3aMHcqIOPbOhbmxlq4LrQ9UyqNkGImiKajrzthnHlILtJ1baQKUsMcd3uMw4Dn8xmoFTfHG5oF7faUlykCxgiD34JNJD4bAntZGF/GGEzXM1nPyzPrAwH/tS5x1uEslphsCjnciMFOkfWrzx2AGCeZ31uDwXtq/xlgmRfklHA5nVjvypnTSd1LvWHmaMrySTnJ+WZRs4EtjvHIWlk3BtYyhmrsKSVKTSX+gFV0LGHQbD438VFjmTbmtMY32jTU+IC1FtaxWWeE4VoY+4mESa4B7vHNu2BT/QIFUNdvklFISOFBQdBLgcIGXRkDL7XiNne10nSoqjUmQualsa9qa7wY+TFtjKxgD3OIkqsYzdf1flQFnladx4KKaZnZBIdpIJc2UEoR18LiiF599lJwjHl4VVxrswcVuNJ799l9bM+Pn6Nuv2X7MgIE/he8vjfwVPRJVCMikU5aMLTQrHIDrdmMj4APqOT1wF9ilGC8CjFy9IKHmrEVq1B0QCm2sSxKpohmTlGonA4pW5SKlgjnWuCsR3Bdm23OlZtLO8pEcEsb5SmmCqWya+MUznu5/tIWEUOXaQ9566RSsjgt2FUcUudsjVLXJTnQwpLPX7US9CHSkaPpX1U0BD9vApFxluN8oom1HQl8uUhU/LKiIkkAJeikFrZGk7qqImr8HgUPLcDnbnh920KSmhMECmi1bhsop3TQnNjZGfqhdaKMMYhJBFFldOUFOi0LqHWaU21dHk0tl8RZd6ssMAMYI2OGRgovw40aPKnveV5gSmVxxbdsjC/jeeg672FraWtsZRnJjLuMpLHzAGHcLQTgUmzOQ/oz2lVNkcDT8+MTnRJTxDCQLp4Lk6/L9YQiSWmKq8vddtylVjRmRmNVSWfI2FVXQin1qKugM4AGBjnvGqimgB9BIAI30zyjgO+73x9wONwIm2nbaZC4IF04AOi7AQYWWXTXciY7wyntWa6xdW6ExaEjiurINc1XlJIbw2QY+1aAAGhdCmX7lVxwOV+Evp7WQC/7XBO3bZdNu7Pn88pMgZE1YE0bfymJyaA1XnFPXK8zSq4cjbF0neDMt+GISecbc0KWGq/B8VlV5+h5wgCDhM1hK8+1GgL7VdYxHQYzvvzhDzDFGb/85a/oMJiKAJkcDRl3B+RTRspAPwyg3hJZLjlTD+bu7g7f/vVf49PjI/75v/jf44s3b3EYBqGCZ2RURCNCwarbJfcHEsN47RLPqrqYrIKRTC6rHB0VpZhmF62dNGeSsNKs/A4BayuanbCOIXfeN/ZMBVBzhi3CSrKOwFMiHT/FBGMcHZVSxuU6wdmCZZkwjncYhkz9NefQdbTHzrWiznQ3I1C7WrbrGEyupcUbGxwsyIjU8yDGiGVi99hbR1HpyhExMk1zW3+1ZMyzmlywUCq1outY8HB8pjTQqY1qVHWGIWBWq3R4a5UOMEGmVuzIqN0LceJaAQH/dNwaFQLCaVGCxj7MWYpTKRB0RIbAU4I64KR51ZqrdWUS7ncDSiwCOi2IcdkIfrPxYuBFsNizsVAKduOO+lISJ9p5B8bUeZpgHcdqjoc9nDWYr2eUnOGdxTxFfHj/rhVFdzc3GIcBY9/LumFMmK6TpljQ8RodazJGCjK/WlN3nQMwwAeC96EbUcHC0AAc87SrlqVzFrv9CGMNpssizLqVCa16JNfrFcs8U5PLORx2e5REOQHfdegwIKd1DTnrcDwckPdH9I7jdcNuFMygInz7LS7XK92SZKRQC/++H7Db7WRckCBMjFHcoTiOtMSI83SRsW+L3X6Hoe/RhQ5qpsHEnMy2gtIs0IsRoepaQOt2jd2r2UhjxgtjVpklgsNgNW/RWmY1ZdBn4cyGHSn/0+55M3RR8ClnwuKWYuzVVCQxaeF4LVmuWICauB5SKbA5w6LCe03KTYttClAmMbgpqNJwXzUy9Gwp0vWGnEPOMjfREZFcV1BKixMrWiTFrCMsKcuZHwBAGGEwsEHT+lXLyoreSBYdETUmcNokBnMEbxxZCobNQx2j1pxPx1SssShm1aussK3Xr2Mq2gxK4rYVFwIGvQD5IQQsccEi4DN/FzXPShVdHzCWBTnXjOTHpZKZXaF1h4V3dEPWBk41a47++ZjPttPfD/2LvxWQN9a2kfZ1zEaeqbUUyDYW8zxhmqYm4XE4HFhDBGF2AJLbrPfEyrNURvW43yHXSudQOeedXGcbHZPcl7UEK8hUoxSTBjCWjmMpU0/UGIn7BMaVZWe34598qFDwyQngoMzvLvhWo5SSqXO5TLhez6jlVrSzRDtunlEDZSQ6zwJfHSxrMYAtL8TmNS+NaRH2L9e7Ak9LigBMawrVlNA5BxjRwXQORsbMc5ImFoBUEuZlJmuroskbcMrWtGmTNlqXM4a+RzUG0zyjloL9boeu6zD0veTQpo3mqklDcB7FZKBmjrqlBOsdYEwDUq9zRk4J59OZLLDQITjG7BQ5ljeOe3Rdj93hBhUGqfCsj0WbUKYRIbYvnWDpOmoRW2MRlwWn0xMNmURixfsOubA+M8IWVwJFKuIAbB1MMcg5wpqKUr1KeWsazbhRK3LK8GJcoHHEQEH0zyRTjJX1UVr+EuQ5KHvUtCb2xqwkJ6CSIWuMIThlARTLGF4r1DG1tnbD5qU0e/0bmrMaWZd1rcFbYsuXakzrgtL9ypgi/yh6YlW1ytr7bi9lMxkEQyOispJJ2ACxik1LjW1a/qa6kxDx+iqftwjISiDPwJYMOTrlGSjo9PJZNGQM2783X26gQX3x5friw332kvOYMKD5u37t3/n63sBTZ9S5gMm3sxZGOhgxRoI4cujDdyLeZTYJGw9X6p4IAAWOARhZHJo4aNe334mbSscHMF2v7Awag92eug8cvVoFL1HRkm4yVhym65Wspq6T0b2lJV3BB4TQYRxGhC4gDB2p3GUFlfTAybHCZtXaUSBGwB/ricIbI4JllvP8UhzPOcEUA6cji/rcBC00ZtXqyIUJ6bTMjQ6uBakLq0NeKXSzKjWjwEtnvTSad/ChgTjGlKZbAADeKMLMheMEuDufz1CdJu0esTsIwBrklHF+OkMphMsidrjSWRofHuCcxSwjW8/Pz/AhYNwP8J0DbGnd3924h7cOvdfumQJPFqfzmRpI1wmAwW53S9ejOaKIbkA/dOhGPi9UGcORNVZQMMUFauu+LETbqzOwLmAYQlsLTbegJphc0PXKJlsLhzYCtElaKipSZqKw24+tW24hh4IlRd8JcJrnRAe80GO/P2AYR+wPRwzjgPP5ghgXCRY8tJd5xrvffQd1zgmenb7vfvstrHP48qsvhaVlKPIbI+4f7nE4HnlYW9M0kZLlYckuScC4Gwn0GoMUF1TnsO9HIFV8e7limmcsZR1T2w8j9sOA64ndeDgVVs2oosejI4an87MEWl3lFd4a9DJzDmVB1YoiRgTzzEJ9K/ivG+T5esF5mXDJkWLqnhTy0HFcIEpXNeeM80w75iXGxqg0LxwpqqyzinmJzUjAeo+bu7vG3CiZh1HXUf/FVIM+9tSMkP/lnJBSwfk0I4QirAURoFTQ1to2psSDlUDuMs9Nz0njnlLN1bmp7wbUXHD+9CQJa8ZS2UX/b//ZP8Wf/oM/xm9/81v8zd/+Lf7i//uXqAC+/OYbLJcLrpcnxHkCDHB3d49aCz68/4D9/oAf/vjHQLD4+a/+Ft0Y8KO7H+JP/uSP8fbtG/ziP/4HfPj0Ae8+feToWi14vDxjma4IKBidhXc8cM8i+umtnAemAlm6MeB4L8esCubIsehl5tjmcRxhHQVkn55OiLUygQoUXM4lIZXUzsBghZFEtYYGNhUBiDtH4wJTDWpyyHCYAWRTgULreqSKWh2yCWuHxhjAOMCow1KB8wEdyOA13sEGD+sdquO60dgrh01jCcA6mgM4g5gTxSGzA2Yjmm5kLyYp7G+PN9jt9jgeb9rafBQ25DjumihuqQQffd9h7yzGgWMUHLcULbJ+wBdv3rax3HkmsONkTIg6SWQ3ZETM9QJl1+n61C6n81YYfmpjXQS0Cc1dUws4do15L5w36KxDgUVdEs6nZ0QZ4XicZ/yHv/o3HJu5XODkvWOkC12OPFePt/cEsUvBze0dbm5usNuPyDVjHHuEzmGeGfOst7CVjIjn5ydcLhecT8+4nM/413/5bzBPV4x9j+lyxYf373H/6gGvXr3C6TJj2C+oFGLEElddmpzJzt0fdhhGGWuoaOO70zRLQji3MX2NB9P13BJzwKAYzxyj79soG/Haihxo5tD1PUc+nGtSBftxRxH7vqeznzBYSk5wni5p2/Ef1YNx3uHu/o7xCxXTPGGeFwzDiGEcEQJBwuv1Au8dfvT1jzAMQ2PVoQLf/OQbCsXXKkCVwzgMeHX/uoGPO2nSqbiuFrGpZFRTBBTlvr1czwQWKzVDarWIqSDlyPXkQ2tKps34GIxBP6zNIR0bePliAlZrRSxVmn4BxkopIjEfGQ2k8943lnetaKwHZVtZT10vskJ6dNm3syg0GQL3AqAsheO93nCEsBTqv+TChqReqroO+taUYiHuK4EUOCtagwlP84SUM7W3gsduvxeAeGXNFEdGd7EsdkUtDVkKJSuNYevXojFNNPW4Xikm3oDR4OA6Mj9tJUMCKfIcs4Ugk0lArEBiDuudQ2rADvNS1SZTRom1FraKeUopKClhvk4oIbCOLKsuDSzBLKCg5gTAwRrRn6wrG1TXe1DzG2mClFLpCGmMnN8yHgMDb3wDHdQ5NklDPAigVRTAr4X28MKqBahPZa3h3IcBxrDje+ZCN8ic13FT+VwuC9veEHxKgFjRJ2QLlM6h63YrGFIK4OlKWXIBgm/nCzLPYusc4A08PHznMU0VZeHIXakVOdIt1HQdbCW7xloHZ4XFWpmLOTFgKsagBsb1sR+wTAvzpyViRkSu0pA0nBShVpTD3c0t+nEH1w0CCFe8eriFk5FgY6wYKVm0YAAathgBARRkcHAIJoj0xILzTPb77e1dE+a3VgFm1kNatyhxxRYBFSpgUkGNCTXJiH7KgHUyGcHn0JiZ1sIbQ82qUjB0PXbDiP6LL1pRbaw0w6qCDCLcTEVJdF2HvhswjnsRUycIx7E+nic5VfRdwP5AkKkL/LwpLqgVyDZhwSzXJ4Ad56t4luSIWoyMKFdp2CSO1UuDOXQ9fOjwdhgAA7jAeqEYC9gAAwcLNZMQwMZIXe448idSVCi2wtvc9L3U0dDWCmcBKzNiZD0RKOZWVCd6I2IMEPDaAouMGyLDOJF2YWSCOhzKMCpUgy6LJEsInvepruNuQEYtqkVlWxyoWucaoNbc1pi648FQ/sFK473kipTWcVx1pCerbtMIBWAVq1CQ3YqGrWAEtf0fyGSTaWeAsSonFJskC/e3he3CBq9atfdSSnC2iCRR5mcA6+SuD1LPFzSYyRgBimUU0K66i2TcouEyRNXQCAcai4HKuGeIXVS5dhj9aDz9FGjUBkp7LN/j9b2BJxU5tjJCodQ1SIFV0tptcjKnaIyRYU3TklyKSdeW+OsFK/pNsAMULbYW1bKTrpa5oQuoBhgk+QkpyAYSMKAQzHJhZTO4yM6DdsmUHaW01S70rattpaButrHakQNE4M8I0MGCix9CENz24NEWQFVEUDrIjX69QUKtiIu3Q6vWNgLIxbPeK2XP5LouklIBo8JxhXRKay0Dl7yvdv2IrgoqukFIlT0SY4JamXIEyABY3fWSaGzw91PzgkweYbdEFovqArfEhRpLwbM4M5Bin1RVZ+lUV9p95DtWKUaWOQLGoutXQUXtssFsuqEGbbPp3qi1inbDy4TVSNen2dliTcxspSMfO7Krrlc7qHSd6ZoQ+qg6JrqiBxTp/M46OFiZvzUNiBiGAYf9AbvdDv0w4HIW5zxhgRhw7jeJ4DWMRZTP8fHxE5xzePv2DZy1zcmDxR87IEaGmXMpKLbCWqGuC5jmvGuJXMqRAGPPtUDnuYRSK7yhXkVwHl40zEotIkAtM9JVgTi0bh0AKbSUISljAkUdI7gm80bLhvpoGxFQWRNRQNs6TRwdLCLY50xD/pVKnEvmYZ9JQy1FBYLX56ZslSqBVwHFrusQF9KVdWOrWO220AI4BrYsEKC8wNiKwRDk0rXHrimpzcryK5UJqh5WW00fa6QrAqHmG/n9MSFnsmW8OBLd391BGaOlFJyuF4zjDjc3N5hQMaOgk7GqN2/eotaCx0+PON7c4O1XX2KaJ5wuZ7x9+wYPDw+4ubvFbr8nEy+KkHjOMI1FIGCq4SGkjhwVFV4BeMsMm/tP4pvkgyii6xMjCxSJCbUCphbRlrDUmDNWXC7bbl67aZVJDUdW0OzlnRyA3HoUXMyFmoQJYhJQAYiewjau1/Yu/Ns6B2/Q3KRU7J/BScdWV63AYjdrSwEcq6eljBAV6kjlXNo4np55fVit1pdhhtMRh835AimcVZi+6zpJghizPTx2404aLD2s4chAE++VceaSMmLmea3MIQKeBttxEh2j0VcTjN2MD+v6ZXJcmuaXMWJWIdoetXBE4/HxEXFZsMwLtdk8BbytsZhjQk4F07Twfklj6O7uDj5wFM55C1jf9JJo+bwOaJJxyf9/nmZM1xnBOmErcATf+8CxWOvEhngbE4MUNAnGqtuOJJrCNnBOtYUMIOYJ7b4VjpCaZtNMXTMFPJh3sMHivIMttRXR1nAks2BlYirw4wKRAzb7Xt7/1gipFZDRi1QkjkpM9X3XGgia8BpjMA4jxdnHkYB/yTgcD8KezU1E3zm6XG7BLu9cy3GYD5E5ToZOlcKSBVJMcXU2dA4yZ9A23jbXMhI0CKRZqDGBJvS1rcf1LG/ntLBpYST2agDS+KExxOIliGV07MvAOCMNVQMI8GvkXmvRq/e7yvU3triuRSO28Zv8gYEFsueZ+BdpKFqNk84gJ9EfnCZMMwvRrnQYxhEQcKKdZZpnWk351/tT1o/Oz6W5XxG9nZRYrHgAMs5mnYXxVrScAIcVVBY4iIVbLpR40Nwd+tylgJUxFMaXLPltbfdBz9sYbSuZrJ6JZvspBJzbNPsUeNoWVdoYrHV1P0PNIocg721XIWVtDNOFVycTTBt/qRoDsZ4NVnW5JCA7R2FugzWO6nVpAdzOQDm3dD2knClIvHlv5vUGzlQYOUONWRlKkLOen7muNZUT4LfIc5D9ormnsnQaQ1DLE/1jsF6j0YYCnWHVLc5UAk9ZGovBB2EE9bA+oGZqW/a9CMRLA720+85mkeYQRmsjWae2sF6DVTkI3muyfgOGoddQwyutIsAtLGFlvCgUZAWgqqonJVM3qenAbre+aQ0UNlhofLPb7ZreT/seqT30HjrJCYwJokHF2C8nA7Kwmy2sTHsE9P2AfhA9x1qQokOMwg42RSrEuuZTZt0HFQa2bl3UNOfWNcq15HrmE1kYiwrSGbuyvprupjB2xKYYVR3TahHxc10fYD1oQCYeL4rhxxoBdeSpt3E7ZRQB7WFzhEf2pHxbg000YGmNKmPFst7JMmrIAWMRAFTHM2eTlzWtYXnz7dpXMAWyzqowKPW8tMp4gtZMazwwcrx9tohe5Lztn2FaXGk3cRtV1OXOrIxWiBB4TtRg1vPDat6r98iutS8+v552Kfpst5e21rCMtxUce60v15WOqLdH0iL9772X2f5dN//wn3j9F7naEVjI7fMUldPSYjJnBjlYwHt0vdf8jCJ9Ka1XJQtVQZaSuemddeh8QHGONvYiiOacxc3dbWO7qDOL0vd0jO/x8UkKXYtxGNF3XRv1Oz0/wzmHh4cHOQDrC42hFoDw+0m3Bu4VMFoL620BKWVpuzb92XEY5KYJq2MjiNiPI4wzuJ4uqKA4LQAEOFiZhWZhpaN/tf1u5wNqrlhSkU1hGUSqxSTjb1HYZTAG49BjGDoUT5DKWx4S6nC25Bk1J9REUU1nXRv9Itpa0O0GlJKx5Iw5RczLjOfzie4c89QOaA3cCsxQ/NOh72ijbB0X/JKl6HbsFpac0Q8DfNfDdh1izPj4+EhGV8nour4JrTaBefmcVmi0vThSbJ0caq2YpqmBj61w0ueM1fVuWSLevfsAay0Oh0PTCAME0JLPeJmusNbi7u4OVZDq6XrF5XrGfndAH3rAs2sXRDx6t9u18HM6n/H49IT3Hz/ger3i8fKEioqhH+CMxdsvv2w78NOHj7icz3j//j26rsPrV68RuoDTmQ5GwzhwbC8BKVP4UDP0qiiOflJjkDNHXc7TJIWlx+n0jO+++w7n8wnOGvRdh904UptJxCE5aSfugiI42MZJjcFlmrjcPO+ZOtSoiKcymlrhL/Gk1oqYV/cP9bdsYGuMiPOMx+Vj64QpI5C6YbSKXxYjmk7iluO9JG38/HSjYycw5YyrPEMVZ62ltIJ9WWYY47Db99SdUk2MUpsgqjJBG7PJWiBHlFjgQxAgYRAmXpWkKrQ1qY6FynDQvRrFEbNa4NPHR7z/9lv80c/+ELe39/jrv/or/Pw//Bz/w//xf8C7d+8BY7ALPd7c3eOLf/AP8Or1A/7gD/4A9/f3eP36NZwUndM84/H5Cf/qX/0r/L/+p/8J/+Sf/VP8+Z//OcLQ49PpGQkG3XjA1z/+KUytsLXiw/kjPl2e8e0vzpguV4wC9thUaMlsC3Km0PwyR+S8OjA6w/UWbAd4C9s79H5AMB27sAAO45HjuDFR5L1eKXApAFcFzwjmnU6KPGo6WecQDFmz03VGSQV9IWgTBBxflhl4qOi8sGCtFxA7IS0RCEDxHGE1MBil4KcYuybwTHgJlHBUpaSEJU8CHDJGOh9e2GnrOIsyLpYY8dtvvyWTZNwj5oLzNKHv2Tk93h3RdR1dBEvGJCBVZ5kQd6FrRVQrvKSor2FdU30ImMfxBaiWc8anjx/JMMq5OTzuZKzAOd8SPmsplq2dyHY+5owc1/1LQIZJlIofx0SDkNube+joRHADzJcW3rOQ8K1Q4+jML3/xC5zPZ3z77gOG3Yg3b9/icHuPN1/8AKVmzIuO13vsxl6aF2v6MgwDvvjiC8zTjHmaYECg7I//8GdkQp7Pba/e3N3yfFE2pPXyWRKuVzF9mGe8u3zCYb8TVpOjnsbtKGzGvNGvZCo7jrRYHvoRqpnnfUDX9di+rKEOlN7nnGgMkUtBqgX90HNdS8eaBaIR85KEKG5KRoAC4y3mwjM7NZYaC9dhGGS00iAtkaPiAvak85UCsdLgyCVjHHcYuhX01DO173vsdzuOJQqoos0vW1k6FKgmE9r4fo0ZaSJTwhiDPgztOWRhC93e3KDre7rHtWJObpapKAUc2y55XfsSz613SFn0jjJzB2eVQS5sEcndmplLrU04lnHeUqsGQNo0l+hUa9B56srp+LyOl6CUNlZvYDYgqDL5K6ztyKByFPq1myogBHUOZuFiK92wfBfwq9/8Gu/ev8fufMYwDvB9By+NBD0/vXfCGKfbn+p0vgBuZGTUWQdvDfxAlum+3695pHNkdJaKGgnGGFT4Qo4Ei9EibpMUildt1924ZzNIH5cxMlLNc6saEMBzLL5rJRNvmi/48OkjDocDWSC+Y3oi2HHfjwLAxaZNpyOpaxbD9/PONeFofc7eeVhvgEwh85o5DpWzOsGxEK2gbIGxFtavVu1aTDagRHLFICA9JE+NMcI7h5vDseV3GnHVTdp7j1xVD5XjXZBcJIp5xG4YqRtEuA+itMPmi7UwzmPfD8ilYJYcVq+173pcLjNi5KiXDQ639/dNv80Y18AcGLqt2mzQmx4pcSphnmZczhccdgcM/QjruZZSLUBWKZWAw82tjCkPbf9O0xVAbc37YRhX4ElWuBPgqGrDWJmOadXs63uaxyxzfDGqOc8RdBHnFAmMjCuBo4nalOGoaIebEHC8ucE00YQjloJlmnC+XmAM2kQIAPRDhxA8xl3fYhIMsCxTa2oSWPQg06k08MN7K9MyuzaVoKOF05XM++t1Bgzw6s3r1mAMPsBbjx//8IfouoDrlbnP49Oj6NqJDpTs9VIyFpUyAddUNw4ItaIvI6cpUBFk5DTJWX+5iF6shdzfXnSCVlC+63vmoKIrTJ3JiJIy+iPrHp43XG/WWnQ9GbfLsqBYwFnqrAGsx2DoRF0l/miDP/RqQALAFhSk9p6lctxZZQmosboCzlszBW5cQ+fFWmA77tsk47rMbTxd/RSk10afMqmkxie7l/HAeQvrACNsLj3bVxyZn0XrcBiOoOph1VzopV6p8r7bsV5t4misao6BZRVgp6wQ6GAcM4oDrC3SNFOQHiixtv92Rmr1WoRtquOPpX3+7Z/WYCwVeYkCdNpWy2gMbMLukg8o49/IGbFiWH/nwOPf+/rewBPfXv+WC665Uez0JlPMt8DZ+uJnlcIO7ToYtSjnAsgpt86fJqS08DVtcdKikmMW+uHtBryq4Jy2AW9iEP0DvfCXDCbzYkG0MRys6KcxGzc+QUD1w+rn3d6YF6gijHTL5CeLCHWX0grXbdcPWzSzHSryHlmQxgrZxJsEQ0FNKZr05ytI1VTGBAykk1GwPbToqkAGSqlr51E7elsUlPattc2jVkiHShZxLgWX6xXGEgiwlmMCfd9xjMb5JtDeBDp5Jcw36poysSCo7faSMUMNna6jPoC6zuhYk+qybDfx3/ucS9l8zch5tgY5BrraDott57sIMMEr5/1WhxYeXjLOaScWqF1p4IkVhkHW662VAn/6GSUwOu/Redps55SQEx1PupxxvLlp4pXee4R5EWtgJ4AqXUlqrezgaruoQtxt1metI2qlFMzLzD/zLAVMwdB3OB4Pzd1EaZpVBKK391O1sFTvQjuBzgd28yXpb2Kv8v66Blpg/wxVb2tfmG58HnxeXQhAw2pMEwruuq7pSThhrgQBkxQwVnvw1SFp7YDpWmldR2F7eM+5/pIoRm83X2vjvqDGkfdehF9FY8CqVox9AXzqe+vvyJniw2lzTc462pdbGh788he/ws9//h/x+OkR8zTjeHODV68e8Md/9Mf44qsv8PD6AV9//TVubm6wP7A4sMHhep0wfHiPH/74R3j3/j1ev32L480NLtMV1+uEp9MFKSd438E7i+AdZluQPDtmuayx00vLqnWHNVkssu42/7MuENat5AGVXICYJS6ZxrKsld0ejsiCv8dKsQcK1KIBQNR20SI3xoSSCgbTC5NSaOk5021nt0PXD/CeDj2Lseh76XBtEgQaCtgmSPuyu//ytX7CddVaKYa0GaHArLEWrla4EJhYhiAFNFmLGgconAtJlGzTFdCkkcwYEVqWeGd030nG0wl1m01GdUUtrYBqumN1FfTtOnZUt2Aq1+4mVmsCVl42ZwCySKqc/ykXxJlJnTUOXT/g7o57bxxX8MGAOjTPpxNc6HCZI3a7HW7v7jAMHAeuxTQQvVkL67qrjEW6p0zPTvQXb7+Adw4PD69QasHxeGzX3A0D/KbZBKvPqjZjhlUbhgC1BnsjYKpHgCYCuVD3jmApO/VCXWwAtsa7LCNA+ju1UOZ4JGNvhw6uemo9yHuoQ5sm8cZZNqPsKlZdS22jTyWXxrzT54YWWxnDG5tHknorEgrbJpzeBwM0loYWLVYFAyROWZhmlKB7Rccol2lmbMxo8XCJCSkmBBkv6vtOijeJ+qU0MNioAmxd11itZL0aLaQqixYr4rjbs6mt2br+3loBK3lAtWt3X5/LtsnI41NyONQGeujXaxVb8bruVUnr5Ptqy3nWnzMvM/W6NnD6YcC4G9mg23wWPauptya5CzRc/F396LZ0WSxLjK2eDHdbSmPPFP0mzUtbjir5fsookWw4jy2bxjS5AtVNJeAFFCMxrEqeKOtP8zSCD0UMKYw4Mq+sspYfY407ChyQGWKgzV4tpvhg+TVnLUpBY+PpWqhlZT6XWkR4uLb6BAIkbP9bc8WXax5tlEz3eqmrO1dL73U9lfVv3R/KgOZ55hDB/LPCwNgCa32LlaauwGdFlZqI52lKuYlAq5Yf5DPCmNU2HnWz7ta4krKK/Fs4eJhKxhPz/JUJO81LY5FqXmYtBGBljsP4YFq81oGflZ2nMRyKAYKMK8B75uCxCBgv5hTWqfYmwVC99pavYS30OcYMOF/EjbMI8w6tuaLPsY2vGtHFwtrgF07Wpg5a30trg5gIPhoxIzLGosudaEnx53zwLzQg53mGdwYxdijZCttGGga2Ur93Uyu3mKG5hPy3tZbjZ3VzbZu4x8e/Ob+NiGnrPdDfIzmQms8s84z9qM0ZuSdVoYX1+WU5N3V8ORWJfV7GzAQTqNDxa415ZNsoDKZbXT4k14JZc8vtuVXKun8aG61WCsoLGFxr38BKa8VdGdv3gJwlUIKuMJvsyzW1CahcW2hrSK91/X3r79+G9VZ/bp7Z+pw2NfdnP7k+QwNUi+o2b1AZt2yVZ2vXf0eFEsBe1O+fv9ZaX9/5Za3MX/fyPH/5ehkL//7T5/df3x94EuDCQArbKoKjJYnYHR9YRSW12uhiqqi5Uqx4mmAtkWllj+gcY4wc9zGdaeyAXCNS0oLXSgJHimzoeqhAJSDi5wb4gVMHvCJCkhTrjJGsmlIKnp+fwbln3w7yFTRIbcyNxX9oD4Mjt/pUicwbCeifr+pOisQqCOT0fAGwUe4vpQFtMkiOoR95/+Isv8aIm0RZr1PpvNbCuopi1R1LkpNSkJM4tISAUoCUaIttnEVMDj7RWc9Yy1GEknE5nZp4uVN9o00BXkrB6XKGMcDY9yimNEF5FzyLqJLx+PgIay1+cPMD7HY73N/dYRh6jONA0KMoW2iDylrRUBLmh3UWJRGYOV+vqBW4v79jQejWwogOHuJOWMoqgI+N+BpWCmqttYm48vYqYLDRKtuwFQ6H45rkCQAZxYJ4GAYZYemQcsKvf/1rDMOAV69eiQvQCacT9bL24x4hBBz3B3gf4LsOthSYlBDTAuSKw3GH3X7AmPeAoetbEAeip8dHPH16xMOrV7DW4h/8yZ+wA72nnTC1pSqWJb84dAC6femMdKmFyX4mK2Ut3JjQfnr8iMfHZ1yvZ8zzFXGZ8fr1PX76zTe4udnBBwMnYwrq1NU6yXWraURXwGEYGtMN0G5SRkWBsRQ+TolrnQkb6dBtLE9yz3X8bhVd1ZhRZOwoZILMag6w3+/hQ2iCoQDZW8q0SCnh06dPWJYF5/MZPngpRllwK9jYWG7gTPjgRzoI2oSh6+AdadnKtCsSc3wIdJES0KvphEjipIwn1XYqMsJiDPD8fGZyEjO6EHA8HPBw/4BXdw/w1uHp8Rn//X//f8Jf/uVfUsOlH/Dw8IB//s//Of7lv/yXcAOd1pZ5WTuscv37rkO/H/Hqyy/wL/67/w4xUQ/rF7/+DT5+/IR/++/+Cn3X4Zsff41ut8ft/Q26+yOO8Yr/+a/+f1iWBCNCrgGhaVfUTDCuxgoUwAcHZxyCWNV2g4CPKSPlguk8I5cLKqqI49JlMKXEjq4BYCrG/QjvPGaxLnYDmYDWsYMfrEFeCpYl43qeUFLBw/4Gg+mwtwOWyiTv5nCDb77+CZJld/Dx/UcY2Wfr6AYLleCkAAdgURFk5KrUSsYqqoASVjrK2n1bD95xGDlWpozMTIH9YAzevv0C3ns8vH6FLgT0ocM0XTHPE+2ws7gAWYPd2LODNZMpuFwumGMUgIGgVhCh3v1+D7ltGPseY9+hwKIAuF4viJEMGI1xy7LgcuG5RIvl0MSznXfY7cYWO3NOBGnjS+CqGUOYKppndMWcpgV/8zd/g5IL/vRP/gQ3N3d48/qN3GOxA5fksdaCcX/EvMz40TfPGMZR4uiC5/OlMQmcZ1eaFvB0FtLPEfqO+z102IUOf/pnf8JkObMruNvv27MhhV3c66oC9RmLNA92uz279hsw0li6Fl6niTpk44gucKwkRuo+wWkiTCArL/H32NLTFFFKhvfUW0pLxDzNOJ9OOJ3POF/O6McBIQQcbm5EX24Fa5wA6GHoWzGTa8USE7QZkGLCPM3izut51kgR7sFRCWcd+nFsQM44jE2jktc5tXWi3XzvfANwQwgCYki+IiBwEfcr6Hl5vWI6nXF+fgIqMHuPEDoMw4jL5YLrNOF8ekLX97g53MD7DnNaRFA5Uq/TOQRvQf282J4Dc4UdAIPg5PxOCb4bYapFjhwXinFpoFnLF5UdMzHORy9aOJ3/veYcBNiqch/JzLdtjDOXgkm69eq25WWUPwk7iUwHrhfN4ZI0I6njRkDBWjoWf/3N1/jyhz9ophcukFUURfsj5wxTCJrbTopcyYFNA7tEvqISBHCVTNEKIAkrzHtq36RaxUGO7rulFKRFZQ2K7OsFOVFaYXfcw9muAUz6eS5XxpNqDMWRDeDEiZSsjQrrHYIAKbUYXC4TQkc2/NDTiVonK9TMwBhDPcclIhz28N41toAyD7nfRUzdkh1Dt8OKbC315jRX3DYEKiUWTFnZC6uWF5thmv+xaazELOb5+vusSArAeP6csGC18NZcGkWK8crvMVaYsdZh7Ho8LRHz+YLQk63tLXWR6ACaEWfq2qICdqCL7DQtuFyuiEsSt94gTeX1FbrAPFAEpVlsO/TDKEyjBaHvEYYeAWzMffj4SJak1dz3io8fP+LTp4+4u7nBbhjx+vUr7MahNfY4Humabpok5A1c0lwwp4IUVwfRdc+xuTbP1I69XFbjl/1+z9xbWGpqZKVrNKXYTCR2Oxr3qOB8Pw544d4HnmtRnFZrLRgP+9ZgbOV0K6wJmnCctLS9+fHjJ4zjiN1uh5vDDsPQIYS9yMP0yDljjovstw7f/u7X+PZ3vxOgzeHtmy/ouK4It7Hou9JqI+ccgoAk1q8Ni23zZwsYZJkq0AZH32pRIQ4AsKLtlCL3ytgNWJYZ1+mMjx8/4vnpiU1dAxyPB9ZbC52iFxnhc67DMlGWY5HGYNf1CMGjswFq4EVSSG4AboWMiDvRbcoKbkhzzqxMuZxT+1y8NbbpW3XBt3oxxYTHpyfM84zz+Yzb2xvc3t7gcNzDed8aMjqq3GrbsoLN6nqvgLa+FMegIZq6vr9sIvy9AI8x8J7fq/mOxpfPp6oAwNmAYpiflKgTICCIZKvojArRI2VUW9kAUjywiJyPYhb6eV+AXS+BLkqIrA7oNRP4hF2/T8ejgYZjs/6HgX6Mal7ctv/k6/uP2hlWgTmXFtwhgcuoRoJQ39WhLkrBUw03QAgdWSuf3Qhlj2zdw9p/G0Vat5utChtGZ/rprGDaB1dUmBpRBByyLCx2E5iIrRba8mNw6AT8ie0a9fWiA2hWSprJq1uL/t1ot8o6SjJCJGCHD6sIY0oJyBmIXOCqX9QeMqgfQZRXqdAgQp0SOy6ba1UqqOr+2DY7vYIMEOCrSMfHSsAzirSDiRZRa3YKneHv0ecKS9t56z1iinTaM0x21L1OEVUy2PB7K5NdivJCbwnG4DpdMUuStQYgCwPXnkOuqxZQ69CbtQM8zzO7MJt7w04FR+L0Z9RxiP/9konSOukSeLWQ1ILVWgsPj3Egk4LrgyM3xqxd4QoRVrRGHFzoPsKulWsdB29YXAVhiHWBlq4oq7NC1/XNdYiJqxVdo7LRGZGuhASZNvpTcgPnVrpxTwHoOYojHIUWnbXYjyNuj0cmAzL/7A07xVXXiAYk+ZvMNgazWtHem10rOrmVuI4iVVSgSGGvIDrWg5WudC8P1+3B28TIq7KtREQ0+BZbyALIFCKX+zFNU3umFWgBmI9iBdVUE0v3K9fEmlTpKOvWrax1bGWfepkb95rAVgrQRi3spOtZyrpfgug5WZDZ1YWA//BXf43f/Po3uFyvcM7jcDzCe4+bu1scb29wuLnBeb5iOp952JYCdaQrYgBQahFnIHZJ5xjxJIVvNwwEPbtOktABu0qRbAOK2FN7rgIpIZuK6Fjgg/IHsAIMFgH/DQxmXJujlBGHHaUmNxci0YFg0sdoQK3ZIp1iahNVFI552wxkhzglpIVaCt559L5DMJ56c6UiyNjtbr9HthwRyvOqQ9as3auCKgnA2m1SNiP3+/qsAHbS2xmyWZ/KANTEWEf/ci2YQkAtBZ8+fMBu3MHf3iI4Bz/u2IgowgCgcJ24vlhQP2Fdm9oJZRdYmL3CQMgli22vJIQhsDjd7zf7iueSjkj0PYFZJwUECwKeH9zfq0umJk0scNgBTEn2/OjgfIfD4YicM7rQ0cVHmIrZaKcUbZ2wI+1xd3fXRi94D9eRvlk0b9ikIlCYciJQlzjyyyKtwqQN47VUlCqaR6W0z6XlYNLYsCwrg1E0UrSzqZ3dJEm390kSMBZRtYLW5jVjni/SAMoYhvHFSCDHcxbMc1zdGaUhQoAv4/T83Irivu8xyoiSOvyoe1j7nZUjJ6UQ2FUGk647tDjLg0jBb2fY4QekYVsqYFfWgMapIp+TzlZm1fBr4rD8XEls1UvOGIcB1hLEmKcJ5+dz+5zOTbherpimiWd8IYP4xz/6WooSsiaclZGCxHuOWps7k7rnZZFvqNWIRmKGNwmwaMzaLKwepyDptrOrrB4pKvnltZNba11HKOzK5oBByzvUXapumAjbVztH2vm4ngFA6zvKaB/XWmM+9X3LEfSlz6Yxg7DG3aqJnmlNeL5XoWCsMlWSqVBJCQ4QMUaYzftYb2GKgS0r26dkj9onBIkZLxpzbT9IvmtUwwib6xJWs2WOo67B3rN5qnlt0zeFmNzI+Ii+35Z/qszlIv/eGuHyu3QfvGDztVzDtLxqa2jS2CDGwFjT4l2RPMMokCJXYowK9NY2YqiKc1xH61ooOYte0ur+iFobMzXFJKZJgBPdOmUDG9m/vA88D6PEUc09a+WYjprbUEfONoaj1jVGWGDWWHTSuFARZ+dYzHZdB5PJcosx4uPHTzifz1gWAjyjsmKsbeNQOj6qLC0WcSJ9L7lIzGb9DGXDRJO4znyZcXMYsty/KoYaoNvhdoKjsBERHMH4q2gJWhlBMoAwh007wyBgK6yDy341x9I/cj0EOKXRAzS3QStGAsaUdj5dHNeRE927eWYNM0u9YZ1B3w+4ublFXFYHQwA8840BHNnPy0ym1DbfqLm0dat7Xu+zTthozmiGgeAiAFMLal7jemOmyr1DWVnT4zgwZ/VcC/NCgsVWF8+oA5t1sJbi3VVADMBKLrzWZcZZJQZugLztOSZ7zbQ3gLJHuVZty8FWhptmieset0LCgEFbT2SSGrLthfTQ3vWzvG3LblxBpSKAnTIq16uuqG3FtIgr78vVxppfvvnF+UIzDLy4t1tgSNdY27/WvrguI9oGVX/uM2ALwGayZf17y6SzGgs3r1orjGqn1c190e9rt0u0rYzc4+8JOgH/hYynXGtz5tHEWinr1rKbakAb+FpqE0e01sK7IG5UL1/aDVRbZv3gpYo+CljEJtVB0DEos6KUfHCqfZTaOIeCCn1P1oOOtyxLbO+ts6rthkiwmzZz1FL1tplufWlRoQeWHl45056T3RYm6VFEda0x2I077HY76l7FiGmeSC1NnLV0fgXluhAQfGijeTVXwFo4z00QI5PlIgt0u4g1uWljPRL41f3NVHGiATtfmnRWORBqKZJUc4sH65GrdH1lJKHrAhM6bzEsEXe4ZxDc3N8uBApCy/hMViFE6IjeKvonxhR4fHrC8+mEruOo1DRf2bF1njpK00QNB7extw5dW6dFumODjPpZa9sGTTnj6fm5PW/tIh8OB/T92kHREY6u6zBNE06nU3tmqvukf+7v7qVLSEZI17MDpA4rxqzz1JfLZe0mW8t1LkycLaClAaIX1ouuiUXcIaZp5niEdJlioqhsLUUS/FXbgoebUkU3nXxjsN/foJSM0+VbTMuM63VCSRmdD7g93OD1wyvkFBFTIiBWN2COgj+bzkunxbx0rlKa1269fG2KqXUsixQUtFAWpB61JVMa/ZR9xIJ5BdQAIHqP6qoYBFiEbhXU1etcrhPt10Vr6nQ6NQbbWGvr2BnnMM9rnPPes1uWKVquVHai/WvnK+fMQlH0x2ouqIaJY+jWZ8zvpdvX5XLBOI4IwyCgDgtaZy01iayHK8Cu73E8HvCv/+Iv8P/4v/8/MU0zbm5v8fqLtwhdwJsvv8DdqwcMhx1+9/Edfvu737FjKvdc150Evqa3lTLFxN+9e4/T6YSbh3vshhHjfodhv0O/32G0I3LZwVWDJG5ppVjUaUK2QPSAgYWtjqwHQ9e+WtYu9DLN7fDbHw50bQucWdeEVTViBtknTMzBgFH4J84EHUqm8H1yDvN1Rlwijrs7jGHAvtshwCFeZ1jnsdvvcLi5we39HWf7a8Xg6cbTD6ElI+u8fW5s2lIqTqcTAPA5+YBho+2lZ8Qg7CBdnyrCrALRMcbGtly6C06nE/7mF7/Ew8MDxtDh5njEYb/D+Uy2mxeL9RITD3WwmtFECtXAyV7qOmqdVUmsjHOom9ELGCNOQ4yRmsDpnmwgq5xtwzCg1IrLPDcG4Do2Wxu72UAZY6Yx/lJK2O25xpOMUo3jCGsMznIfeUYRGLher9Q4CwF93+GLL97AwCDX0u4XXVMjrtdru98aI3POiCk2LTALg2wtpkqAeBzYcdZzXt1i2rkIgyULmJFXZtA4jIwHorcYr1fklLDMM6zLHI3suxb3gIqcCdy/e/eOo6SwuL3JGPqhxfO4MN6cLheu+0K20d3tLc6XM0opeP/+PcFOgHvl7QBjpBi3QK0OStGnNXPBNE8sWJdFXB5De8ZZmCZFwPuh62WU1bYkWAEeEWV7AdjLl9m0AdlQ1hhhxBmJwxGXKwXtUYGhC3DeUVvldMaH9+8b8NTOpMxmybMAbV9/8w1ySTgebuE8z8UUM7XfBCgn+CoFYSVLQwvFZY60ks8WziS6kwGABaz38K1wsWtTUceWqpyNta5jjXrGyX0Lvg0X8l7UtQEZnIPFyv7VV2syCKtDdYqajgbW91SXONVCNdZg3I2tztE1q/vMQ4WMeQecWcF8yQChZVmW9Z0j72M0HPG/zhObQV4dmW1r/gXRToEAq2M1TcctFarsqNmLH6ntZYVZRBaiNMgkN4e6H6ZEt8bQr06ZTosbzZeZ13rrUAtg8spmWpaI7AqCW9co5QgSwtAhdN16zzLvkfMW0LNQPt/KQ+JrWwcYANnQ2Wo7GaENZCQdTyWrSplPtVbA2LZXeB7ktYaQ37GIi5rG5QauF8h0yAK7MD+MS+L0hWhIDv1AZnCZkZaEnBeysFNuZ1ZaIoLzCENoI3DUKQSs84qIAZVAih9G7MYdUlJB44DgLPaHHWKMeD6dMU0Tfv3rX7f1vdvv8fDwSrRgRRuoOLjKPL+ZE1UCTzSsoNvjvGxrFObaWfSAvIxwdl0PiPaTkSkTnWTR71lEE9TU2pqNz49PeHp6wrJQK+p4uEHoArpxgBPd0e2EhQebgtzPtp21+spJnMOlkT8OA6xxCIG1ljYzzucL4rzAO4cusFE3X1mzLimK/hVBp+PhiKdPj5iFWZqVLenY/K8xIy8L+r6Hl7wXRhq9IOtKDUE0r+T6QzPtcH5EzolsLtn/PgRhQcoYc6U6X0m5Nf3u7u5wd3vH89EYnM6XTa1NMFpdadWsw8o9JAhbRWOVkgVd6GRcX8dcVxBEkQsrAK9pKI42hkoDMZuAv+ZeQCNFAGhTHV3uyfaTs6hWtDrRGitN7fQSxNn+bddnr/GlkTGy6I1uUJYKNNY8sGo+69dSVYALrSFg7Fq38vxkM2XL/jOGjHovzugNWLNWqmdpYBgh5+TcmoDqCoj0sk5rBABprvH9hZm5YWChckS1AU+bXIH4bVWRPciN3QBS//nX9waeYmTgECIX1JI85yJzxpwnbu5t1sA5Os5VCboaeFE3D/pFR06+13IRaleglioCwj1iTABSm22+Xq/s6PYdRR6lU2wrt4HaukJ/t7x0IWhiDbmH20QckC6QJuqWBW1b/ECbLW3aARKEFhmvcOalZkbf97DeYUkRU1yajSe32GeuLoLuN8crY+R+ZCxLgyJlUVihQq/3Rsc/4kKnIBe8HCwJVoL1LGDXOI6tS1QrRHurbjadQTEVttpGF+eCrjBZXKlKlW4AmvNNFzqgAtfzpTUS9P4FoXKq9lSSAAywW+Z9aEVHFHe34NckIC8FMLElEr4TlyR9Vs5L10SjGROolBKenp7gnMPhcGgsmUVo2PqZNUmepqkJQN/e3rZC8nQ6MahZi3Ec2wYPIeDojw0E0mcJs3HgMQZehO3ZoeM1alcKWMdQGUCrNmn4b6VIskgYXYNNSUk0puQ9/KoxRLAwsCMp3WkFfWOMeHp6xvPzSZwIHe4HCkl65ynuWl92XltwlcRZZ8/jsiCaprxBtpyMAzW0HSzwhqFHyhmX6co1UGSsrq5isBrb4sIiw9iXwV0Lan1eqGhMAh2rU3q1CjzXstqnahGwDc7PzyeUUnBzcyPsAAvnxC1F4kPJRYToZ65/uQ9J2JIa2/QeaeJcRAMMAAYBKI3cz5Iru3TeUSDRB4zdiNPpjN/97nf49W9+g0+Pn/DNT38KHzyGA0Vi94c9YIDf/u63qKXi/vaOz1jXTqltdKACrXPIkdATjABv+3HAbjdif9zjcNzjeDzg04d3ePr0Aek6waS8ujd5D+MAE0SWv1rMcWlAkrHspNZapIPKLn3oOlLGjRTOqUpHCSixYKkL1EUoQQqlhZRj4yu7bcXAiB3mEHqMbsAujBh8j951sBk4T2fsjkfcv3qAdRbPp2dxilmdglQXzhbdddThSWnV4dEinJ8r/t75qgWbamjoK6XcOqExMgEspeA6XZDSguAd4jzjt7/9Lb779ls4a5vQ92HPsQ0tuFPSYj0Ja09Ega1tDCXvfCs1FVDUBo0yPLfU6887iErRPwtAycJbkutcYG1q+iLagduyeVSwv0qcffXqFRlN4tZZhBnBxF+0+TJHxIIjA2e+TiilYhHWZc5FtBuEISnnNBNnJ+Ke/Mw5Z8x1XrvABsg5tvNMG0R6npzPBHp81zfASfcKNRkrXOLnu14uFJrVsw+qN2eaOUmpBc5VHI83mKcFj49PeH4+oeaK480B4zjCeeYAoR+4DrGe9aVUxCXisD/g5njE27dfYLcbMfaDALi0eg59j2rkHJDMsK3RGFFywZxmKcjJPgr9ygJRdmgpNGQhM5jA4rjjNbJrb1eQ1dqma1SENcqGEXWkrBOXQWmQqdlHyhlLXPDd+3fIKfGzB7o7ZYm3+8MeoQuYlxnn84VuVujgAwtOKyNt7Ko6GKs5BCRuVtmbjNGrRpB2mMmc0qalngvGmAY8KVu160LbM1JFtTOrlNq0KIsxELFL3kv5/nY2tLW6MuNXBhbZ2mrTrfuC0eelruhaCkgXXdjpXoAuK++d60vdKdYhedW/VDfgvBnHTwlpWphvO4f5OsGAY7lZClFrOKKuBZzzZBGH0DW3OjbPnIiPM0YYcCwtgxpGznIM0xiK+FKfSlisFXAyku2sgCMjzXgsjFyfRek70bxaZSCYNa2jMzll1LpARagDbPuansPbZ4rN17SRrN19ZTe379NzoxRxTFuZDbpWVMeq/bu8Cmrbb9M0iQ5NxaCmQ+B+nBMbwcooU5b42rDKiBILySiX0UJwTRz2exkFlaZ3LvBuLTKBFbwokgNqTGA+peeC/Gl7LAtbvuD+/gH39/d49fDAvFfGoeKSYF2Fdb69hwI4JcUGMBUptFtNpo9AAYX6srhXLSBllaGu59m2iZJL4qjV5SJNYhGbTgVd3+HOW1SsoG/oOuVsyBiqTt8YOWMIdhlHybBYFoLQ0FpukD3P3HSeZ7LYlwW/++0n5JQwdBwdtd625kmQEe0g4HwDsDsZw9U1JgSLXGR0FIy9ENAly7JLGzYl2q00qGIMVcWZ0liNMEXcAOUsBRlWBHHWkTiOpSmszT9V2cOy5xqoLLGQ0zMEep1j/odapIlMkDD4Ts48SA6QUVB0mOcFgNHqBd1vkFwSdElvTChnsT8cMOSMcbeDU7mOTWwH5DI3v1f31YtX3V6D1LgaLzZ3A5X3bWUQ8QwshTqDL/AG/Z1Vgaw1DvFtyJbWUWBlZbf7YbkPqtxjCHah15hLQq687xYGNSnovQH51qvB6kL4+y9jmFejrJMzVODbgEvtnBFG8Abj+T6v/wLgScarNmipgk/cqJyplnMYxorQb13ZENolgiSu7WFKgFTwRdsq6kZXteMUAiCgl6Kf0zSjFGqhWC8BtqIJzqKuejS6wdfiYF0sW/rZOrNtGyNGg5sCC8aYpt2hAukqBlyLuMQYI6wX236ec8YFS04CPM1tFKyu5FxYGdPgTH+ClZnmmgjGlUhmjbOh7dZ5IhNoHMeWyJRCsTgfPAbnW7KPwnG7aZlZIPZ9S1wUUNpS/owxIsJm2/yzotdFAlItq1ClF6Cj7zokmQ1XuT7t+LWRJEGhKSios94M7so8MYZodRKmCQxHObMwtox0Oz4H+domkXWmgej5+Rl932O327XNpgWJd65dX865OfI453A8HrHf7/HrX/8al8sFKa3FlN5vHzz64DFdr2Ifb18ANpr4KiOCQukMKiYVQf7YxZuu1w3KbVbgqVZY51qCC7m+KEVZlFE2ZVx4zz/jOCLmBBMj2LwTZkEuG+Ap4rDb4fZ4g6Ef4J3DXNeOaytU80t9NKfAk+ooVKWYE2TTvbMtekPwsCnhdDk1t0rtICloo93pFCMBNr/qcFQBLNShS63qU0xMlJ1r45FD6BqYy9FCjlD1Ulzp2mD36rwCT4aJsrEWRt6bIFlEQm26GwAZOApS+s1BVUthgSC/f56m5iimwbFkglmkyPO6utBhN+zw7t07/Pzn/xHffvsdHp+f8aMf/wi3d3dIIgYpw2f47be/w83hiNubG5wu5wamorIjqEYMdAM0WKYJp6cnmAp03mO3G7DfE3jaHfbY7XZ499sFj+/fI00zTCqw0iWF5+Hvg5O1aVAFMNBDNQiD0AdS3n3oWgHWDsVc2phecwoSV5JF9F7aGKPsIQsBn6xB7zt0NmB0IzrXoXcBRUZt97c3uHu4h/UW58sZXsYPBgGcU4pA4QgR1yTWLr7fxLsqxW2tWFQgFtvEaAWe1thBt5plWQR4iXJdE1KKBJ7igu+++w7TdcIyz/j66685bua7Nu6WMt0IqxT0Gkd9kNEEAdhV0DzLaMQSYzu7orjWAGtzRV/rWTrRNUn2he+6F3vdsNPCn+l6rMLbZIm1zmtlLLu/v0dOCd/+7luC0cuygjRlHaNFpQuONcAsmhFXiXsKZFNDaU1qdL9Ccg1dT6oJ4SVmzLU2kHsb56/XK7799luklHAj3d1OO+ExNYddJ4zKaZp4dg29nLdrF9FIw4o6Xh7Hww0MTnj37j1yypivE7x3bfzcWYtutxcGr+P5eJ0kbkXc3Nxgt9vhzevXwv7jfa+Obj+h6zFHgnHanfUCXkdjkGqmTk+msPdhHDF0PRkndXV2LYUOWU9yFqrwuzWmjdf1Xbc5PzWfSi05BiC6i+uITBUNwFRrY/B8+PChjajv93vcb2L48fYGwzhiiRGX6wX7w55jhpUZNx9dkiYPi8YubEfiM3L+TP7gBTz88rzS8WmrVVfl6L12rdXowDjd0/x8WeIo4w9YjeKzOkXO9yzft2UL6lhokvumIzQKCm0bRPr7LNpbyppDOzv1eVTUFciSOt4UbXSwyRTlXNWc2BUgx4w0C1vQrg7Bz0+PSJHGAF6acwBz964b0PUDDodDm1Iw1sBF31gkdN8ykhtyL/KZ8OKcdyI8zZxXaxa6efHJ6XSEjvJXY9D3qqeEFdVp9Q7jsILzxjnR2vJt1GVbZmn+tJXTUPF35xzHcoWRvm0maJOy6b2qq5UxrUBsBkBaU8q9y7U0YWllamtMgjFQdmcF0Alb7PNYnUvBEhfm/s5DzWGM4ZhZ2O1bA6ABFdULi0/uQV3lP1SWQd+bo9O+AU+6k7Spjlpxd3uLn/zkJ9j1Pc1Hpquc2wmuVoRSBOzV0TqCnI1ZUdUcgH9gDNSltI0GQwt0tOvWbEoZlgDahEDXdZhmnl3X61WcSdkESzGh6wfsb45NT1bvra4FJ2d6CDrFIjIlkIJfahLU2vbfOK4s56uwbycBoH7zm99gnia8ef0V+q7HuB+avMN+t8NuN64uyIK4NODJisZtWvNh1YXTWvolkLCJCQCM4Z5ElpoMa3MaOmKrS0qeU2pN19LYsJRs0frPCui3apdlXjn3tBVZlsIzyYExlBqIzH/iEuWsZ+7gRV+46FrASkr5/T+Ajt9ZZ2Cd1iFrvbwT99haONWjzWeN96aBaet4bdt/29dmv/1ezBDgUWtJarRRb9mqm6oRQ5hNjlLl/zRyDRRMhQCJwvrLnARZCRAQ0xLZv4Yj5gbb0bbV1AHFohq7jg1jbYYAWkvpfavbj7qp9QU7KbWx0NwGVNKpJP0ZuYkttnwf8Ol7A08pq7CiRwikyaq1rYFBzhXL85VFglBpaw8RLHTQBaLJwpKiXOTm0JZNN8cIRHH7qkT2rQGQCosG7RKUii50LSAW6bR76ySA8gYbSx2BnBIKdIFsN+ra+dUH3knSvWXA6Esfqt507TZ2PmAcBm4e6bgQmGJiXg1wuVxYJHQBw25E6Lu2kXchtGdmLWnGRDZtY0voqJ9TjRlDcc9pviLGGRUFw9ijCwHX6xVLjPj09BHjbodh7GUm16EUoBYe9DAUflTtG7prSMJlOfZQcsGziPy5TWe/C7RsdcbC+IAsXc4Z4k5VOTbUi320MdSIIiAW24ZSgDHKfLt2hdQW2/ltKimdYgAFRsQUPfbD2MRInV0Lxi3VUA+Mn/z0J7yuoZf1ZZveiAI9+uz7vm9i1jom1/cDQhCBWEms2THt0GNomkAs+vne59OJtsK7tcu1pAVz6+5nPH34KGymdcxkGEaOb8leU/CHSRCwpAgDg6ELMLWnlamsza7v2j2mwx1gUEmMdZzHjkvC5TLhOxm34mce8Or+AX3XyYjZ5hA0a6dA98YL5oQye6qi7lWoyuyY+RBgnQGcZUc8RSzClGkBFGiucVpksu6VNWodhiGg70jX55qqm+ddkWQ80sh+j/PCpLbr0A9MnpUN1bqLsm6YUCX86he/wH6/xx/+7A/YxRUGJgpBOO89Hh4e1mt2vsUOTYRLKej7ThJb7p/9ft/umWpNlcIDZb/bUey8J5D24be/xjXOOD7c4e0PvsCHp0/4H//P/yNyLnh4eEBMEd999x3+7f/y/8f/7f/yf8W/+Bf/B/zj//ofNzt2PdxnYWalnHG9XnG5Uket73r84R/8DM57jMcdrPcIPePq9XQCUkJnHUwsqHMG5gwYusygWqBYLCkhJuos6diBFoAsSuX+yj3cApa0Mq/swlWH0Hs47+C8RW+CJJ1y2CcWWMF3BEFyxbE7YBcGdLaHg8V0nYEC3Nzf4e1XX+Bnf/QHeHX3gN24k0S8vkiK9RDtuoBhGKUTvBbW436PWoFlmYG6ipJuD/ciGgpKR9eiQAv9aZrgZP8RDPZImfuwMxzDzSnDOIdpWfDu4weoM6KCQVoMK+15WWaOfso67EOQUZSF7AI5ny2kcOBh12IWCw3S/xU41zVrjIFXgFzYYeazM88YQ9vpsmpF9X3XCq+Uopy5pSW+S1owfZpacqf3UEEY6wkUPz8/IwgjlImdjtNjw7bVJNK28yBJEhvNesYvccFZRkWUvUo2qegHJtp1ez8gRVqI8+sRAPOP3W5HZo+euwqeK2tFzg0ADWD55ptvpBY12O/JZLNm1V2IMVLPSb7nzZs3uL25wX6/b66cqECcCaars1g1wj41to1S7nc7oALH3R4pJizX6X9l7c+WbEmO7FBwqQ3uvqcYzpATMoEqJFAsDiUUssmWy3ub0uzHS96f4Z/dfuruX+BTkVWcC0ABSCRyOENMe3C3QftBVc08DlBktkgH5CAz40Ts7dvdTE116dK1lIUto5GFC0pKClRKTMhLBnnCtJmamYU5m9oY+DiOWmiz9gPljAMzvvv+W1wuFzw+3gtbajNpSkvNeOHqSmzmRfT1CW/fvkGpjLd3b/HyxStcX9/g6fiE0+WCaSMC8CHKuHQbRQ+hjRG1AkKBfhmbY2XLCPM+zbOMmKSlsUdcGzmutmHBpDpSRL1JBXTNJgBcRBfQ9oblZ6zJuTF9LY+1PMMYLWYnbk1PaAMNBGGMsRSHucoY3LSZ4De+rWMDwe1eTKrbAj0LKzPyPANcMcVRmd4qGF6r5hcJKeuoIpHoJc3CQCyszU4WO/JlmQUgIABg5Jrx8PQgjctpQioJ+Szj5UTAzc1t04iTfezl5lBBc1XU3E760tSaIDZNQOhAMq8gQzknipybyriDMt0AwXwAaTJHFxFDwHm+4LwsOoolwKfpUVb7BQPfIE3hlqvoQVA4t4KslAoupTf37HpDbOUbaQPbprNEZ5R6AUvCznXkcH19ha2aJzkn7N/WEHDGVOLWhDa818C1lLJqhIoxi+Wzw7BBXYHKppHVG5HSnOpsPwfvI6z6EhCG1GAitDPC9NRQKgYfcHtzg+1mgiOg5AQupenhOZdbDBQAMOntlukKyY91QJQKTJvL9pYL5lgHdBqZTsJUAVABgD0hhAHGCCw14/K0gLnCDxH76yu4GPD0dMQyL5jnBcgiaUIOYnRUC0S3qdeldt96RaoNdUiuEIIH2AmDl4GzO8EYN5fLBfM8Y7vd4ub6CptJpgi4SG0RR13rzqExkLzUb0UZgo5l9LpCG/iDaNJRLU2WgJ1p7envuD4yfzqdUHLGZjMADkh6/422pm0a+Z+5XUMYylFrhlpcA0m86+Ct7Dcd83OmdUlYDNCuWV6XWaVugJoKLiznSVo6EJSzsO+DCwKq+A5uGZbUgbW1G6hcv9XvrHmGYNOdtEEKXllOvwaYrLlgePO6gWhf9t7OG8+HNH9iyXdhBBPNQZhRs5gUkO9asOvXJAIokEywtTXVdTq71ig1ZqqB202fTfEMGK5Btj8sP2ZpzpGYksmXvKaNjzdRdQUfjS1G/Qa3+9HcExVUInTQqQNOfe+QKdatGoR/19cPBp5sjMQ6ResRMrlRQiMV+rSAGGIn/ofoIjWggQGsqf9Q1fqM1mEG4LSzRI2F5FGzdH6986ig1UKVB7OeBzUdo8RWmOIZsKDnkHxOLRbWaPiH3W0L6ta5750yageKAU/G2ElJfjblDHiHQNRGJDLJhhzGob2+o75R2LtWzLdEPQZ96FXGL1JS6jsLu2UIcIvc06yORKTBwitFupIUwdIxk6B7mWcRtQ5BCyXXGCjWdR+NWQRCRt+cjghF71lKScd7EmiICF7AKQfqls9VbGyto9CoxCmJPkgu8OQ1EZRuHiv90NZUc9vR4suCcGMJKfPGnqsjcY25ubluzxT6/MuzBJMaqNKFdmtjDpi1PekzFsdG1VtSIJQUHa+6znNOCAgi5m1gmHaETVTy8fERtRREpbfLKFh49n7DEDvwA7OLDzpTrYeEpnB24HW6Kbc/AhqLKGRKSQVf5RmHIK4gwfvmGmNzxGu2QQPMqSPe65E1o/oTyUhArR61uhZkSxawScZqO4PKET0TA21ovLomCVtqaB3ukgsqrejZzMi54HK+iE5D8ChZEv1hHNvoHzM3ltQajBaGBGthqOM3bi2C2Z1uTNPJ1k6zX0cP0BI/exxZM8dyyQ1YsEJLtKo8cq24f3wAAAzTiN1+j91+h3//l3+J4/GIv/iLv0BKCd9/9x1yySi54Kc//Sl+9rMvm/Ni0nGmUgpKFsD3dDzh4UmL+xBwe3sr92UIYAIKSbKVlhnQMT1iAgqjpoLqHGhQIWfH4CSdRaejEJYkiIaAxgcrKmwfazfFeTlIa+MjqyZFcK2LRCRGDRlZxVAH6egxK8tpRHQRxIRlOcM5j/3VAVfX17h9cYvdtEMMQYSkW8uc2tqVfR6aqLUxRQFg1EaH7R9iYFnwTJSxC8vH9prrv5O4oXs0RoBc025obNoiDIEliz4dOcI0Ti3uuOARXNQkXij2pNdpCZCN9rnV3tGF2K6nrvZoZW4spLZWdQ+a2PT6dZi5NUMA1sK4NJafjY0zIMwrc6VR4Kkm0SOydWBGGKIb5kHFNQ0/O9PjMDSApx3Wq5iwDkS2N2192ajt6XzC8XjE8XjEWgjHOWrXvv5q7kckIwGDNtqgOYprP0/tnvU1IsDcbreXvIBFQ1GcZz2oErIKlV8uF3GYGwbsdjtcK9sphCAMtFxkuNPOxyqFsCWFJhIbQ2wxMy8JnlwbnSRnBVovHBho2orGhvXhubZd08jTNROUARQ0uT4dj3h4fMD333+LYRhwe3Mr8Q9AGgTImqYt9oeATz75BA+PD+LcOF9wOp8Rh4jdfofj+YisOk6l9s9m5/GalSKPzYTWbdTTmmTiElVqFZ0hHTVtz0qZRA3asDOl5aa2dWmVH6IB1E7PrJYzEMR+newVV00uY1flKmYGej8FPKYuWM0MaDOj1tzOJMupSy7NKKWJjdv4EqN9Vq4VwcVWMNrZm2tFUqZVXe2brOPm1n1HtYZR7t/TokKMYySvrgpEzJcLuFTslGFTcuk5l9P8o93bzkxWLEEKV+9Aa0pBe76rf7FrsbhDK3H9lU6wsZLnxfXf0X3JRKBaW76+/nJEyAr+kTLG1vm+xMja91vLTXz/fCyNKIt7Bkh9WMjBOWmU+dBjrv5e0REqKRCFaWIFXjtLW8yz/EbAfh8CfBDARhpwNuFhZgA20lik8U4ORB7jaOc0w85cW6OlKBNFJxm4Ckt6u9nIdAm08IaCIlJx9nNi1bix+yxAiQFcNiILBW2p1U2tHluDQrBzW+7uGuCy89V7YdCPmwnkHYqOSqYsTX+Ja3b/5N+B7nQp64UbyGd5csv3rM7TmCBnvlyT1QfDOGC32WKIESVnPD2eBA/Q+BqVlZ9zkn2/WpNNyqYAcL7r5kjBo2N4Dk71Ee37LohGG7OZX7DWHT3eG5rELHvTAHfYcyHumpxV17HpCnm913bG6d713oFqVha0/GlrnzvDNC3C/M65aMxR3WdX5JmNTnNphxYQ9Dqlvq4a86jthR4euG33SiYOr/DaB/VD34z9Xy2HWOcS7WcN8LVPZnEBJjLO6xfSGgHPRL7R9q6C6w7gSs//GqYRRQihgtmhOB3tLqzs0NVasF+0e2HXTv3nGsNJf8Yc6GSz9ecFYLXeV18qxg7qsewZ02n1oz1er3Lq/8nXDwaehiCBMvqAWmpT5Gfmpus0L30solZG8FE2Ru1i2TKz77DbbRrQYK/jQmgUOtF2kM4DBRHBXsqs4JcIGDtybazt8f6MECNub26B4CDuZ3JTaiGUApxPM3JODTwQNyBqySczY7fbPUtCnXNCeUz980KDUs4ZZunZ4jc0cQkd/CCi5l4Vh0ES2NIZAVUTyrQSKTZx4c4aEBBonmcwgM12i1Irjk+P7T3HcWiOUKVUXN1c4+r6Ci9evdDO9tj2ymXJjfItiWXFMi+o9YSlLFjSIhpJykCzDr8FJkFggdNRxs3M1W0cR9RacXf/XoJ+mhrjZIoDoo8q0hvAK0X+Bn6czzLCloQpNoyxjSkAWhRB9o4P6k6hIN/lfG6AiX1QruqEpYHCWedMO13LvCAOA6Zx0ERdZrTZB+ki66ZclEJr1GfrQBpSfVB3scPhIN2olDEOI6ZxagvDGEproUorXk+nE5ZlgR9HDN7hsN2plkLUblLfqlF1KKxIsOeiPWAFG5KMVFVZh9JtFxB2UaehcRiVmdFFtG0sZxxE6HfajGAUeQ6D7+5OywfdFGa1GrY2ZNdMKlzgKagltCVZ8ojOlwtSTg1QNpq491ZsrEEah1rFFSoGGa27u7vD/fEe3gcQORWS9xgG+R2zj09zasmeae/Ynl9reW03G7Ey3++FSTUv8OTw+PjYgrMxMZouyDjC3K9krNa39Wbde/kkAJnDCkxjQeJJiBHjNIqeFozOXHFSIeIhRhmHDQ7DGPGP/8k/BteKV69f4eHhAV9/8zX+7Cc/xz/9J/8EX/78S9y8uMJf//V/xJs3b3B//4D9fod/8S/+BYgI5/MZIAEXpVs6YJrEnaZWSVwqs/YvCEQBYdhg2uwwjFvcffNe0uLgEMcBm/2ujdSM06idS9mkdU4gAgKRMOy8CP+XLIKpcIREwiyR0KpFn3fg7CEc1YqSBPCJFAFipPmCzbDFfrNHOS14uH9ADCMIDuk84/bmFv/0//LPcbg6gBOj+ozisoylqdCqI8LucJCxXI0vOeWWpBkYM5/OcPozNk5yPp/x8PCAYRCq//H4BIBw80JibdZ94IM4D4p1fW1giw+MYK9XCk7HE+bLBU/HIypX7DbbNqpuh7nXpoEk2zKKCz3HivdNHHz91eJlKwJt9aElMfOyIOUsJhe5g0X1JJpCjBEhmBuracapk1g14CzK91CkKbSii7f962RkZgCauH1aZgW4dFRXC34fAnyMCCFqoayNE2WnSlyW7nHJGUmLJNnjXosmZUCRwzBtQOQwxFGvjXE8PmFZZNRRxtPVaGIcMS/CFLm6usLgHAIYqAVnBQCmaYLTkVj7MjayjX9YEWfjdCZsXqoA4qWIA53zAUMQJz/RPZSRgDiNiMwIQ8SyLHh4eAQVhgc3YNoKpza6U3sMHjcTorqrggDPQfXSUivWDKCx5/T9998jpYTD4QAiwuPDo4BNY8B+t8MQt7D6gGtBLTJK2sAILVTncBZAbXOBDwFXN1e4eXmDL3/2pQgjL3OL9Z9+9ikYwPXNC43Fmi8hQ7BfxtPTEfMyt+LUe0IMEfvdAUBvppWaWjEWOGpeNLZnZvfCzFMsRxuG0IoWKdrRCpJA4n7ckif3vMHAsAKFUHORJohqRxEAqgxk2bMVBIRe7KzZKSDC8fGE02kWiYYmlwDkuSAvFXl5EAOLacKcZiwpIev9Dy6geilYKwAEBxRq0hVcuekRcpHcmkme2+V0ggE8Z12bh8MewzDi6voKpTKWlDAOEdEFDKq75dUtpqQMCgFhGDBogZxy0qZnbc0rY21xZSyXueW1a5Y5EeBhzQDTXBVgiAFh/DDDe9X0hIETwsYjL+6hlVU3lbnpIjW3VcsFicDKgm1amwRdx0VYLiTxvMLYQrrhFTQEOVBwYAV6HazwpRZjudQ2vldLweV4Qi0ideG8x7U2QrnUNl5tYHVUYKdUAY5CDCi8oCwZlSWnIpU5KarbFBQYEwMegncyikdEOF1m5Lzg4ekE7z32W8nd4zCIdlzVcfMiTe2cM5Z5gXcer1+9wnazAZhh2r4S9zopYIwjmBOQLSMl+SwKJnM7X7HSRZQ6q2RGaSlkBxv6aKDUH3Z+CPOOME1ivvLixY2CHAnbaYNlSfj4Y3mtYZB4kLPphvbi22bPpJ9Cz0FPUTvEOGwQY8AQTXurm0eNg8dmjLi+2mIzjVgWUp00bdxXabAeLydpMmwPePvme1wuZ2y3OxABl9NZARd7V9U/qizugV5imIxSiXbikgvcBojkEZwDO4/T0xHkSAxcnIMnaQgJKCXATyEB2HzUOgksrsAUkGnlGM7GQexxylv8jQGVM8ix3qKuqyS5RGlaXBajyQt7FVywIGEYAnzcwHvSJoIBzab/lNR0puc0FjcFSFYQGFZLV5U/saZlJ4vImnIKvnVQ1L6sVn9GkoFkTB4EkO91PhHIO0xuEnyUqMUOONdAaA3r8qnKHwLf7b91/ZkhGYfYdJZLLo2EI/cFIDKgbLWG4aQG09clkDa7jB0rjDofOzmDiAxeBRSwBNm+dDrah+YIydqQMEBKGk1yNrbG8g/4+uGudvqhjV62DiCsZ3K/0aQXqd9vN7sjbHagrBkE63tIq9+tKlhpKD4zwEFoet45FHJymNqcaRFV/aoJxHyZkXLC5TI3/Qsigi9VOy+kGlN4tjA644jhimsgGfUfwOpqV8g1A4pqtnE+/XlbzP119DVWh2KtDDhGhlIa1R1M7rvcpJT6z1pn0g4Cc1ogHYexsUMpiNEPXQW8rEPMiljaKIxjgJ0U+8Z4s8/XRmOqjDja2IJ1va1j77wXoTfvUFyAV4Yb6ea0+9a6fPb5uSPLz2wireuETs3M2s3KyZhypaHA9rkaC8n1Z0a6cG0DeSf29WQbiHrBZoXEGhm2awbziiqpXzrmbsmNPeZaxb1wDWISOuvBRgVHPWhijHgGNeu1P+uKarLD5Ffh7g9+BQw09lrJBdULC2eZZxFGbAmZONrstlsE75Turh0QAtgEeWAC4r07x2Cx6CY04UFyMm4r4u/oyL0KjTJCSwqaJobzba/HKMDuog5fxgiKITRdKcA6gvLJ7Tk1Fgb3ddZGAVcJqD0bWw8hBNShYlKQFKBGDbfYZUWM6fu0mLESIG9dYFu/rutNcDHWgRZKQcXwtaNVs4rBVtF1yDmL6DJXfPajT3WvV/jTEc4TDlcH/PhPfoKr6ysQAff3d/j+++/BzDJm256LakLEoONRYysCuSrdOyvrxRaOc7i6vsHLl69wOZ9k7TlGHAZsp72w1kqB0z2SqgCfJoZJ3gljlR18AZgJTolHtr21aaNNL5Li1tZyEnFhFxwCeSnUKWLwEcflgsvxAtpGBO8QooxSHg4HjOOEnBKyC8iUECZJ5r3TDmSQfRub/l2FKUF6Y67pQWZJSNv7dn5BEnVQZxYaW8YpmBJCUDCR24vIyFMFUWqFaFX237IsqKpNIBpyNgpKqJVggp3MjDTPqNrxtPVma1ESJW4fo/8nte8J47A0BlRzCm2JhHQcWV3FABnLkb2U274VuQg7y7ldg61/EUNm+CLuXfbAjfFapaqAsar6OWF7x7eCztjXlQmkl1WpNtC6mGoeye9JDCEFpdYaJ89zFGsm2PhN1/lRurlecz8X+nmwjjnPzgmNkC3fqawFVNXmgYAGXnUdjZnhVdiVvFfNmk5/Ny0QYdX2e27nnMQlEqaKZRqExjAG4VncK7WCSnf/s8aKyU62/Kx9pu70U0tBhjRCYGeSxuaso9V7v0eIAbv9DrUWjMvYzvs4DABJ0WpNHoBBBroSsCyigSYMI3Ewgj43UtDSnqXzDgwPXzub3s6Jxt7TZPzD57Q+y9brV4rfdZzqBbHplpLmIEkd1vR4VxCDwVxaHUtE7Xyrq+ustUhTUuOj2V23MfKa4Z1Hicqm0qKELB9wTkBvC6a2Thz3n7ERP8jrpiXhdD4Ly90ZACCaLN55OPKoKKiFUVick4wdYYBnu7+kbIgQ5JypK7YB95Ere29jtNoeFKFaamymNWPTlp+NGPbI0PNSRzIaVEt6Fvcs564KzDbRdZsiYIA9P4t73F5ZMx22jMf+tv+d5WQANF/VEaF1TWB/KmM+y3j9aRaH6MPVQQpn3RPSNe8Ne70F8n5uxWxAvxcW1okk73Y6uuxUIyaoMYJPGSJXqG6XcuSvsBYx2DDdpqQO0c6RCkPr+aLnUc91+p5Z52QNWCQ5Q4i458QE8Or5WR0mXwby9UrJ6qCqwLEwW6GAUBRCgoL9NUsz1RgmBs5V7iJh9lyeF8xWC7FJ6KmYtmK4xsJmgxd0kiLoJEnNAspXfR89121EjjU2FwWDKrPKxXVherkrrLUBtfqX9Fq9c0BVQwEGUGsjCxXNPXgwppDG6CW1e+l8aPeDdM81wAX93y0+rRZ7L3uhrGKm9j4S76SBZ5IpzpmWmuk79vyg6lnI5tjb1nmvwZ6t/fWDavepn8e0ciP8AxZPex3bn/Ts+89Bof75rZZcvTBsZJu8gyg0rS7p2TV3MOfDr2cMq9V5Yz/OzoGoohZ69v6S0334mpYv6wGzuo5nnx94dr/+4O/tZQkiaM5r98/+b2tCDBQ3+GPs1b/r6wcDT/MsyGWiBVykA2nFtumymOg2yPRnnGW2bbOa6KJ1N0xvQfQmSu8isbBg2oiUIxVB1rExTXYPuz3KVMC5in4RO5yOF3z3/bsWxN/fvWvjByF47PeiJSDgjdCLr6+uhLUTo1qDSuK12Wz0QaNpsazH6ViBLphjw+owM1EzfVIAoBTxThUFZGwRjvFkSWiIKJWBlFvAyUvSUSHp1n391e8RhwE3ty/EhWq3x+VyloJlrqAlI6dzo5/aGjPdJhVUwfl4VO0eKYCnOCKlBcucsFR5/2EaEeOAGqTLtcyLuJVARCCnaYP5csH5eML9/b2CKyJannLGbr/H1X6P0UcMqvUih4iNY63QdXIIPrYi5nI+AyRFRfAeMQQEHzEMY+tk3j08YJ5n6c46EVQcorCviGVDFO2SxaAjipKJiBMUAzUXTOOIaRxbJVxyaQn6drvFOI76XPtIV5oXMBi7zRbLsuDt928wjiOmzSRiekiifUEiZDwvC97f32HSwtgKiN1OBFXPSbqAm2ESNt+SrOHSDvh8uaByxbxckHLG8XzCZtwgbH13gmyAiBQs2ZKrKu4jORUkSigp46vffYX3d+/x8HCHWiv2+x1e3N7g449f4/HxEefLGRTl1HU+IChrrFRGUjc3Bmuy6MBUUJilqx1EnHR/2OP6+lo6tDlLAeEIV1dXoiV0Pvc9o0EtKSNsu9kipYyvvvoazpHohvgA5wJubl7gcLhuoN/5fIZ0t7r+lnMVzslYSylFNQzqqgtCSv3thVjwAX7yOHyxV2bQFpfLBQ8P9wIi1IqoDMMQwzMqvhkUmDAqrf64FTiZizAoYhwwqbivaJsU0RY5z21dfv317/DVV7/Fb3/zGzw9PeF//zf/O/b7Pf7P//P/icfzCewdDrfX+JOff4n5csLD4x3+9m9/id///hv863/9r/Hy1SthF81Z3zPiME24vr55ZkZQFsJcF1zORwQiMHksqSAx8M//xf8N/yQlxCQjfY/no2inTGJM4MD45ttv8XB/j1/++pc4HY+Yl4vcm2GAj4Q4ALthBz94EUjOBRd1sbaOKzNEE8MZOMIoSQRrd7TDZtzg1c1rQMcB39x/hzfffI8//fktrq5u8erVS1xfXcM5sXN/fH+HZdphmS64ev0Km/2Aw/4gxSs6QBPIgaJvHawQhQWxZBllW9S9tHBFGEfsD1cNwAzKmFqzeO0saN38LMnhqDottTLYV9QQMZ9nXLzHdrtFLRVv37wBgfHq1Svs9ltcXb9oMdx5QsmE92/fYVkWLJcL4jBgfxA9nXGaGrbrScCJYuM8q06fxZN5FschAz6urgS4JGUmSgIiIs7zLC45j4+P2oWTUdPb21sJUsjw5EWThRnVWJ61Atkp603Gxyl4uCDjJjEo0we16ZBFR0D0iD5qYdtHHbx34iqkQa0UcYRcG0zUWnFJC8YR2O12oueWcmuY3Ny8QFoWjFHGVba7g7BJNpsGztjYmx3ho7q/WiFlHV7mPp4v8aWPWF4uUlz6OIjYf6nYbrd4enzCr371t3DksJkmfPrZZ/jk0096M0hjZAwBlYBxt4V3cj9AUqQHfY5ZNTNbQ4+kwZHyghBHOO8U6BDx2DAG7Ic93PEsxU+tWErX1yupwA8e+8NeHIqCEx2QmpGTJMrTNGKeJ+lszzMul6OAKizX7L0Xu3OSOL/ZbPDq9QtIQ6knvWaj/t233wMAxmkDRkUtM8Zxwmazxfl8wZIWsQYHY7fbovIO13SNGCLGYWpMNgpyDoYk4FQQlwBk1TTzIbS8Kql8wOUiCXZh1jzDt/y2Oc1qZm2FNxcZRZ6XBfmSUFNuGpBFRwFDjA2+TTlLk0w73zYSQzoiH+PYwOW5SFD0yqrIizBRHTkk8licyBGYDboBo1LMyuiojwEeEYMjARtywfnxCM4FQeUD0jzj+PCIt999jxc3N9hvd+C5YLnMuP/+PYZxBJIwqFLKKCWhltx0nU5PRzjnsd1tsd8fcNjv22hIK6xgI7Va+Gdl+kJHboKA/kvKiAqUODhDi1qzMUPiWMulVUfFawENVoCFAlJRF9QVCG9ney3SEFloRklZ3SElJjjLmSTsCfOHK6CurFVzvzWQKWzvVVzVBiibTpg+t+A8wALgff/td7i/v8fT6YjtbovXr1+L+YcZG0ySC5BzwtbSBp6KpoKCh48R1RFSLTpyaxMVhO04wQWHGJyWxYyoDSb4iKlUTJMZIxXkwsjnRVgpjnBZFuQl4eH9HS6XC+7e3ylwvBVmtoKUNlYvAIXUbKZZFGPXrzKmrEPDQ1sOlktBrhm5SD5ALsCaiETUJDSII2pZgMrYjCMcTbjeHRCHiJevXkjTyXsMPoAjI7ogrKincyNKCAsstrqv6h9jw8tYF8Dcmz5dB0pHxtJKR4scfBhgQNb792cBmbRhOF9U860W+BhEy7FkXGaphZmciLJ7j+12v8o/BcgSB0eHbI7bOtJ6GDfAAB1prKhzQp0TOCfwLKOFC5/l+sOA4/GEp8cnHZHzePHyJYYYRVOMBIyo6Fp0jjqbM6UMIujUBMOTgOiLagTGKCx9rkAtAkafTidcLjNOp1MD+4VVH1YatQ1hQckVtYr5CsAYx0FZrPFZI6ChlRBAzvYXQepciwlrYNjiDNrr9HFKGSuVHEImz/Uc16aCTcys5VuI0ABSkaqRuGusqxZrWMkstFauw/PYyJLDrvWz5Gdc21dCGFmZIKwAMtO/MnF2OcsFmyFIHQLVCjU8xJhgwArIs0aFXlNRQNJqO/ssRKJHae71lo8JEcWu6/lo/B/7+uEaT7W0jqEABJaMGuKFJthIXheDUXxNBJNZmTGAcxnmjmcIpxxGa50WLTqKUOqcHtSNFRFEd4QcYbPboJSCx+MDno5HvL+/1+QnoBShgooLhTiimNhWSgmZGOMwYDPK/LXN3zt98tZhNBpco/BpN1a0SSS4y8Hmn5FUqtIsBW3n1SbQxWkjCU7m44chaj4tQcW0GqrqOZVS4YMlKxHMAgzmXAXd14ItpYySSbl5AMBNN8f0dObzuY18OS8z6JbIwGin6EXKGv0ERHgcKn7nQwAtXnUa9NCIwmYZhigWkwSlcRpboDOSuNifgmyFu+vJSdNv8r3TIlajQuWdVDspJxGfHiDYJ0CoWbp1HhLIhYrpmgCvMQ6YxaWMmeFKaB3w1uH94A9IWFW5iOjj6XwCOREtb+i3k/nY0zxjWWYsOWMk9GIVaMDFM7fHBuBKQmUuivMswrEudGe8YYgiRluyLEW3opgWbomf025dD6IOp/OM42kGIOy4nc7xt7SxMggyg20JIZEHqKIoO8TC7hoRDyr6PsQBDjriZmMI2mphUiq9drCqWsjaYeX7LcRmUgeTpkkje0Nmx+VAqaXIPWRJJFmdyIwOCmbtRlvgWbEIjIbL3JyFjBFj8UZG58w5qQMNrv2OPkPNmyXxJcUyO2vGDtPKFWSdNSc/U6qC8SXh8ekRv/7Nr/GrX/0Sv/jv/x273Q6fffYZGMDxdMI3336L+/t73N7c4ub6BofdHqfHR9y9v8dm2uLli1c4HK6w2WzbIbaZJsRBRntEI0Ln61kZHkXZfczNbREMjHHA4AOGQTR5Hk9HzOcL7h8ecNjtcNht5e9DFFcTEBw7YTlREDFXBDh4eHhECgKM6P0MPqCpW6j5RjuAdW/spz3GYYB3Dssy43w5w/uAw9WVJreE7WaLzWZSsBYK1hcR8S/i5ml6Fhbnn3WBtOXj2uFvDJlk9Y2MMoxj1/nT+BG00xy0IeNWaznrwSyx0cGTrAjHpOLV0PFxW6NiNb/ZbsVQQxeOsYOur0Vb7nK+gCGOVOZuZ6BdbboNJi7ek4Le5eOWlNs+kJWoAEgrlGt/fyXWeNfHvdaFpp0UzKz6g3L/rNtpMdvRKM2NoGYeeoZmFzEOA6IPzYnQhw4CGGuCdI3Y6Hcz3YCcg76q82djAPsmpmkmAjcvbuGcw7SZMIwDxmls6y8OMupcLP/RopT0BjbVkQ/OBXNsMn0gS7RZgUunCfK02cjnrQUpC9tInpNp4HRjhRgCPIlxRuHSRsWkEJZCwbf7QqiszmJcwUWKKYu7kssJQL/b7WDOvOM0CZg8ythfHKQADsFpXsQAK/PbBRl3cl5GQpLcI8FnKkoFLvMMEOGwhzaVhlZUst7DUoW9LcLIEBcyrij5IgLSTCKOXVRcHdwcQEsuKK60fKZUzXHIwTEa+EsQjcE1s5qt8673t7HGSLRxqt7fdb8XWGsZ6r5ZFRymr5RVa2dtxZ01r8nKxjddE++sCVdao1W+CFChaxvjNKaVrCUVKdbrEjaFntcEePZwEPC5qZ/QarSCFETTNWPj0nEQ7bnj6Yik+mggQmHWQl00U8WUI8K5gvok8eXpeMQwDhgwCRjrPAoZQ1rWXmPXkKQqxXIGSJxnUHOIFhBL/s5Ga1qBZE9Fi6e1gLuxr+wgtj3qVizWquN0xtoqLoCdwYFyfTYa66DgZZYiPNpY7hBb3ghmLcJ0jVRu97pCxmqh+/hwdYDzDpvtRkboXW9MmQmM6bkJ8KRTIuCm5RacxbYCi0TBm4O2mvI4B6OPEUuu6nQdxOBQK7AkZZmWqmLzUI3VLA0LAOQdfIzCAFeJBnmWtU2WOBWjtrVFZCoY1A4clVVC1fuftclgI5mAYnyaBwi4j1ZvWeyAnjfTNGEYRKfSzmrdKJ0hqqwULraDZbWRyiLIjwtRorSA7hVQACxvC2E1nqRxRc44m/4Rky2Tick54+7+UXN1j4nFEdLqnegDEEWTN3pxAJezmnX0TAW+SQC7BhyYPqTmzZWTGJsM6uyuQuFEJCOyxxPO5zMuaroAAPurA0L0cNyBnPZFBia0TaaxSOJdaVqlqhdmQIZcZBt1dqZrCLRaDXnN8JQiOfhZNQaDOmLLhIX3rq2jdgkQ3MFiWbsufBDTe5LdP0KLGsay6hMrLbLb+am1ub2W1b2mSWmvyfycIYtVfmLIkYW+FrG410h97fW/M+Cs51TruZJ+PyzHIn1gBNtzBnNZXJXPLNNTUv86tBdpT9+ALvueNIi6DiDpeeFAjWlHZCxEbnH6h3z9cFe7nBtq35OoipxrY7DklAV4YglS5B3gA9h5pJxQsoxgoeoolt0g7oCWOUy1+cLK2tVhZAI204BpGjFOkhjVWuHh8Wr/Anf39/ib//Q3ePvmLb75/e/x6uUr3FzfYLPdYowRy2VGdB7X+63MNEcR8Dyfz7i5upIuGtBmIQlAWcSa1QeHaRgxDWMDzFqiHVjHqlYAjdLkjbYu4ql6mGrRb2yvIr722A7SkZi2G6SUpctXLiLGqu91ns8AgNvbW4zDhGmacD5f8P79vQgXxkEYVKzUdzCSBl5SMfHgHVJekEvB4/2dHLxedIDGQcbyZHRCGSBQwXhL2Facujkn1GXB69evhZmyiH7L6SSz19577HZb7DY75JK0I7KsFrwe8qWipoyyLEjLjPPlglILrm6uMA5jcwEDoIUIIaUZdRa3iRAnbHcbzMuCt+/egoJ03RFE82BZzsi1wOtc+bjZtMBjuhTmpHd3f49cMsYoa0yYSQo0MtrBboBYKQVPd0c8nY94e/cOcITNbtscqDgK2vzmTiylM1fsnMPmcEBaFmQtzJhZBuyJUJ0k8cH1w25JM5Y8493dOzCAjz/9RERsaS+dnhBFmFhd3wDGw8MDTGzSOy8jbZCiS0STCfdPZ9w9nuD9iM004PXLF9htJuRlEbYigOiCAARWWDhCpoJKrEl6DzkpiWbTfn9ADAG7zVbv0UMLusU0SUZJwm3UT7R/fDuIvPfgkuAJ+NHHH8nB4BzMdep0POJyvsDo8USi/UFhAJeMOqv+AJTRQvzMQa4bAsh6kZnqqmOGWujqyEocIra7nbp9yMFSa8XlLJ2lsNtJQe0cmBWMc9ZtnyWRUpCFWbSvas0AoiZbkoLP80lGg1PCr7/+Df5f/5//N/7TX/81/uov/z3+7b/9t/hX/+r/gW/ffI9vvv0G/+7f/TuM44h/9S//FX76k5/io9vX+NV/+yX+9m9+g88/+wm+/OmIF7evMIwjFmV37D7+WAVJA8whrQIKoAR4ANtpas5nzAyqjFABZmFLLCXhzZs3+P777/GLX/wCP//Zl/izn/0MNSfE4BCdjMRlF+F9wDjspHsHD1fkWU00gCLhavAA2UiqZKumieBjlEJ4GBB8xOGwBxjN+eybb77FR69f49MffSaFOCpurvY47HcAC8MoeNHoOM4XXCVx4rFupkWgzkC1Q7cfoiULKHA+S3c/RomTIWxbp/R4PDb2kw8Bk7IjzfaZmXHxMiZJQU0RnCW3FS/3O8TYLZ5fvn4lzIIoxgLTZtfOANNie3HzEqfTCX/5l3+JuiwI44BhGjFuJpjAcVHto1xltG0YIgB1E7LGEcx0Ql43y2JoNu/WlbN7I7Fb1qy5oZVi4skemTujoZSCx4dHuRfV7rsAKOLcaBp0owoEG4Ogtvtmri7TZlTNEo+cMx5PRxkd8a5pQ3p1gpWpQIegOcVsbrBOzrngfAOrr26vGkgWYpAE3vWRRTDAiwJmtkiqCMFXiOW8d30Ue814k/OeGtBZwEi1oKYF8A6fffE5TqcT7t7fYckJj09PjU0iOpaSbXvnMIxDuzclFdSc4cdBC+Ceyglzp7ZrSCmhlkXBN0JQJy2J0QOur29knEbFuM2Vz3svhgNOCtom5KvniQsD/LCBDxOQgSVf5Bk6B0lpCk4PF9GX+WTAZtzi+voFDCSxEb/y9ISUCk6ns7LcIUBYmjHHhFO8YIiqR5gkBtXskBfG5TxrIdMt2jebA4KPKLpO7h/k3LE81Ro8YpIjfxwRqhWuOmpcqIJQUV1vhhLhgxE5Ge3ygwM7aa6ZU6qw3Y4CntsoL1fVUKrY7/eQKW7WJaVFGqRAIHKtID+dzwrYAil5LMsZ0zQiDqEVBrkkUCVQJYC9MCZAuieTNnUc4DyKjsuHISAOchYsOYNPJ9xeX4OI8P7pEalkvL1/r02XKMVG7e5p+/0eRISn0wnbp0fAOxwOB1xdXYnGWIwCpAuXUeIdi+A3vEMixlJzz6e8AxMhldzzH4g3k6geMog8HPr+qug1qJEovDZ/xFEbDVAJgzpU+YrlvCCnBSVJLkJV4oiPpPk8t/x9HMVc4P5OWOHbrbhU7qxRCICUSclOgVUrgquYCuUlYbeTRsLPf/4zXUuybo+Xs4BB+jzLKh81hr01X2OMIA8gyPUtKhRPZJqFoYGvgbqzVykJJSmLH8AQBFjJ1aGkjGoN7loxKzscRHAxYNhvsd/t8PKjjzEOA8Y4iMNhyUga68c4NKABkFjpnY2Kyb6uRT7zzEJmEOfThFqSgmaEQRsnrUCHNKCZHGatbXJlgGT9idmOghulj5lWBQVcFD3ZwqpdaA1HPYNa1GTGoqPjMUbNRwscKhwY2+0G0zS2hlU36TB3PKe5sMfxdMLpfMJ//eUvwQBevHiB25sb7A5XEByWsZ0mYBy1JvM4bDYd2II0DNqZMniw3kOCg/cDbGKIuIJrxm63U+MtmYo5nYTl9Pvvvmuapu/fvsXlcsbV7RVcIEzehOEZcB7kBtWeNuRJmhmgrpNUjcnvCAEkbUQveyBzBlHAuNuCvcSZpNM6ORcUlHY+Oh3/XOYF2+0W2+0Wx6ejykpsEGLAZjM0IXNJPrSRormqI9VT4oq09GsWIOw58+bDUbpaGKb1ZMAmFEhcG8dIjmzMJt3TXn7H4sqqVbB6Bz1r9LvFsAHuzYg2+o3eFOkNQb0uPYesDWzSBc0RsjUVIFMbDVdhwOl+YCB6L81d7s3kjsqxgJD6Qg2aqpAxTsg1R7un1ktw0Jq+NH3KH/L1g4Gnp6cncTPZKLLGBhmYaDK1h9WKU+YmqglNYEupkhVmOSSMsmoFvKGhIKiFe0FOC4L32IwDQoxNr4ErdxH8whh8xKevP8bV7oCXty+w3++x3WxFcJgIswrkbXZSVNqYzLQZMUyDPDACHKugH+QA60noujMsSKWh7EQyAsGK/tkUcdQuvD977a6IE4J30r0xwVNjcpEjEDyid6CNWtMyyThjZVxf3cB7j5vbawXPNHAFj6enI473T9J50C5H8B5xu2kHc6kZWa3VU05C/eeKoBvb7r/ZazMEFLKFTBBmgiQJUnCUWnE5nbHMUtgSxI3J0GoCmh4Ja+cBEGomIECSjSWAhJYbSgCx2M0GLQSMlWQoNaA2sNb11aLtcDjAeS9CjobAk9MxPWGsmBaLdJkI5IWeDyKM0wifBLipLG6NBlAY5VIaRBVVKbAxRux2O7x+/RqbadP2gQM1cfPDft/eYxpGnK1YLTrXD2NPqMCuE20kaCCy0UJLYE1zyw6nrFpcBmxYYsaMRv3lkgVccAHzRUY7RQS0OyLu9wfEOIhWhSBtIGVytBdkkkSNPCpn1FybFop3/hmibuKKQn/n589wsR8T1g9pgmuMIzCwqJ04qtDNKXhdhzJ6WePQnJbu7u6UySava2KlINECk0TJOvaqoRa6tpZ1My7LLAerk+9H3ec2tgHgmd7KWjizUfaVrSaA04ryr0W9sLEEGBmGScCoWpCWjPNlxtv3d6iZ8fOf/Ryfvv4Y//yf/nP8g3/wD7GZttItzBWbzQ5XhwO++PwLbLc7vHv3XooCADe3N9gd9sIetBFh79VUYeXKQ9Tu3zJn7SxDwCBlIVUWja3OvKw4XF1jXhKur2/w+PiE//yf/wsOh72OsOkYQq1gEgDIaRfLO+liBl0vbmXrTNq28WasoONVZSlIVPCURBfn3bu3ADkcdntwZRyfjtKF1sLXQAMfvDDuVDfMBWGLHI9HMWpg1Wfw/jnb0HU31HmZtbspZ5yZU9Dq520P2p4zcNNAX4boIhm46siBY2c8pkWYc9M0IXiPrQLjnrpeR12NcNuZudlu8aPPP5eCW5lRa2e+6mTfR8j5FkJQ0VLRLnL63KUj5huoDjC8M4ct02Ih1RBCM3uwkXMZHypwVJFS6WwRjVvWGRf2oBXLaACAxXeLfUU2kuxTL2tRGkJmxmGjLRILPYRl1hzRTEvECwAKGoSBwNyAospmk4722ZsOSKOl20iNnMMCWEsMLFogooq2zhq8XH+tzy1hIXhczhcAwHbawIEEcPdBDCZcd2SFgd9kTBt5TRHoXvHXtrcAAQAASURBVGR0EVDqu+xley9LbNeAGHT9fqhZaM9js9kImKiAalTwy1lmC0mEJRaKUcjnX3zR8rzOHJTcaD6dGgD68PCIX//6NxiGiM009a6zMpLSZUZK2WgGACrS6YglJWymLYZBGM3ee2zKFmZIInsht4aZnIvSdElpwbIkZZb3xL99Ju3UTsMIOIeCzrB2zgFeNMHQEv4VO1oZM1xlrLHm0kw9hnFEGCIGBYGL5YW6D6Sol3XMCShOGGIyCqgaY6YnSMK2MHZ8qRXQXEnG6mS9jH7srFztTFv+mpxDIRLGUk4g01XLBQ4O++0OxtYNIcJ7h+uba8yzskqrl9FPhox6aE41bbcCBg9i9gEnoNF5voBdd04EATWbfpswa30IsD6+ddGrjtobC1XYne140EJOtoHtdW/Pww5vQmPFw0ncmC2HINc0qKoClRZHBNwQOLnfi7AqStHyP/tqbP1VE3NJS2PaWYN1ucw4Ho84LxdM56mxc73qR5ZmPFFbHWSN6fU5s2bs2VkTvAfp660nAxrTqDEtxNnObqY5u9UiJgEpifmBMSkBoKS5uWU7L0x+r7HYhMeLCtUXJQiwTozkvKBWu25jU7jGHGEWbaoQA9xgph9ydfbz9pn0u9huPWKsWNIMQMZXparoTo4mX1GKMjH0WXr9TCbzsgYiuiTKHwvgwkiZU0LWs5C54rIkZTVWyfTJtwZynAZMxNjvd5KvvH2rbqOEw26P3XbXGFTLMmOBxOUYo4i3t86XTA6xMs86gw0N9K460hjULKtoA9N50VXdbLcw5kqMATknDKNMZJRSFWQltANGcw5bv5bH2poBDDiRn6+1NFkh76TqqV4mUIJ3yLPIa8CmEmpHPLwXMXqLt857uOxwvsxwy4LKRWurTdsDunrBFSjG5SSAqAcKO6O5kubg+MO/s62hwAwrpiGgjDKfrIhtV9y3lIFA62Vjud6zH5UXVkzH8lzq+/PDX7BlZ5+XhP28fk/ZQ6tmoP6TNE/p72WfeVV3ffg+H3wu+YdQ/54DYObmh9bIMS1rYddZg+b/j6N2Dw8PDdEy9XLvJJmXJG8FxrQPoYi8Fj1EpJ1MXiWmeNbptQ8hiXrBkhak+QIaR4RBOsxDGAAWqrVfBdExDPjJ5z8WsIQ6s0jHs3GZUwOOvKKoFuiSCo4aBd37oQFP9ihM2HuNVvZrFoC1otNuAWgRUOQ+QeefqaI47YaSl26e801LopQCFxym0UOGjZyMV9WCw+GAYRxwfX3oB9E0Yrfb4v7+Pd6+/R7Q5GiaJkzjiP1+UoYGY1kkQTydTs0ZgkicuQBqGjjDMLQDsBTpWKAVaXH1M/KZ7u7usCwLXr98hWEYpHACK6NDAEjbZ1URb+vkkJdnnZI40sRhaBbEwzhgiMMzMXpxLBF3MR9CKx5Mv8FcgKwrBy0MXQxNh8yKt2eC3iSFasoJKYg2R6m1uek47zEqfblq4pmLJL7jKJpTh8NBrKFzT6Bqknt8c3XdhIaXZcHTw2NbP3YQWtJg+8N5L2ywWjFNk1znVsZKT6cTgC6g3cC9VXLStmKV57SUghhHDJGQ1eZ0SQtylW5QCBFXV9cYhhFzEkcJeNfAGXut6iTIexYHPfm8roE1bEU4C9tCAM/cqa26R/JKnNjAzBgHxBDbiOl8mdu4hHNymEociMjDAGJq+ltfffWVBGTHrTvolamVasFScgMUpCuqoJpSg6HP9TifpWhWUMuAxw78sbItjDVj1r4VhUpjLSjE2pgYpAC9uNtU1UMZMI0bZX0J+HN8uuCb330L7z3+8T/6x/jk44/x6aef4uHhAcfjUUdNGFeHa7x+9Qo//emX2G42+O6776Q7ToQXr17i9vYWdw8PorW22ynw1LX4LFaYs9/5fJYiCaRJuvyzVMZlFhvgXITmfXv7AszA/f0Dvvn6d/hv/+W/4uc//xlevnwBgoN3QQsbArGMOwYvttfemYaBAxR46mAENedAG8F8enpCThmn+REPDw/41a9+hU8++wx/8rMvcT6f8Xh8wG63Ezeo1XMxfS57vRA9Mmc8Pj52cMq5NjrhFOy1QoOhDDmtIGplFM7tbLEC3563sR0ul0s7F2xvL4uwTKHjQAZQEhFSkoQl+ADvPLa7naTa1sF1DjWrg5jun9vbW4zjiJ9++dOWCFgy04oTUqv1lbNc1T1pLBw5P/uIjwGCRKG9lhU0JYsgbdMEMxZMSuAsv28mGfae06SND2dj8qsmk9zkFqva9XOVop6rrEHnVL+O9e9XzmA6zhS8MfjQXjuQJOrDELXAqgLSgPT1JT4655oja1Wh/MrcgRd9Xs24Qj97VreqBtI8ywl6UtaBJ4/gpRvtvcfN4UrWLHXnVFvDH3ZHDSCsYCw54TJf4GPQQtu3Lk97L4upqu9gz2tpepehFSz2td1u29peN3NQ2wwKnJPrGobaGMGWj9k1WyFR04LL+Yy/+qu/wvv3j/j6m9/jsN/jo1cv23uM4wYOwHK5YL5csJwvAhwMHvf393j//j0O+ytM0wa73W6ltVhUiFzOwGnqBQwz4/170UCzz59SasLZTkcpizLvr/bSrKIguU1R8wqKUbRgrOmwep4AmlNZyotqIAnQMm4mAT1jbG69Yvoi+YjFiTYKSA7kCjZui8F7zIuIlI9OxsvjEHSf9ZESy2HGaUAcek42TZPmVwXBiXbh7BwyOVR1wXNOJQKSFMNXu8OzfRtjxMsXr/B0esLd/b2cjd61Rq/E0ojtYSf5XikqrQHkmnGez6ioGIqMcxOJaLnctwKPAS56yHgLN6CplgyQwxijxgWBFYrm80TUBMqbPAGANt6mxVkIUhlUALUwzpdLO+diHCV31XFI04qRhyssCCIzLok64gYt3GOL+XaPYaCT5mnn81mb5rmdZ8fjEe/fv8d4HJv7tA8B2+0GIUYZpdY9ZOwUi5HDEJ7FFVv7lruHoKw17xBiaLVEm76QLpKCnrUVl1VzQskNZQ1bXjKMk8Tpk7qhsYynb7aTjOFp7WB/wEBJCQ4BHLy8Xlr0bEGPs3amaPrhFPSdxhGWkpzP525KQk6b4AJehUHqoYeHe6SUMKcFqTjU6tsaEOYuGvBkeamJx9s6spFRix/PwL1VnWduZec5oda5gbbdDKpq46KDWeNGgOeb62vc393hd7/9CqfHJ5RlwSeffIIhRAxRHNQvswDkOWdx3vSvWn1aGToOp6CrN/EJAUngA0aiZzq+C4TV5tUNfH/Yt1hOr17CXEEFuC5wrA0XXRPezlEF67vDdDX5Wxlr1waVsasJUkc6T2AEyZ13e6RZpzpM4sJejVkBwZ6nBx9QfMHT8UnBzYLNZhSncog0iJj32NqVTS91ZB/3srfhpglH2mBS2FoBFEGboeCTxQFqe8a+b3rVBDQzFHsmtsdb7YXn0IuM7q1Asz9gYtnZ2l/v2Wt7J8Yp3IFTAVld28sGpjUcBmggl16EnBlc/iBHMeAOq2fDLM+nWmNA90InM7ACw/ZC3Uzqh8BK/z+N2s3zjDdv3mA7bXBzLYK+4g5kyX5nBxXOWGAMJ0O7harGLCHCOSCMAQyh/1JlENXmbnK926CUEXUrlt+Hw06p+EZ3ZmQFwViRYbEEr0g5CzeXoTRAIatZ8VpYRB4FmCIUqqjEiM7114MsMj11hEVR5WYb0ARITmbCehZkUxYtppzVKUqpmIKDeIQwYJ4vWJaEb+/foJaKm9sbBA0sUujKYvYuYDttAStgKzDP86qzIWyr0+mIN2+/wy/+5hdIKeF//d/+N/hAeDw+6CHTA+XlckHOpd3rlGVMMqTeMTFb6JQF2ZeOhogGGnIdHAMRGF6+kkRdNbIYnTllhaB1/21DCXmE2pjCoMmTDwFzWkQgdOjjBiUL2CIHq0eA/J32c3S0UDph1t00fY9gyb1qToQPur3mMJFLwbTRuXt1nco5S7AOQXQOkmjv5Jyx38voVSpzC6DOeZhd/brzlEVoA1Ax3bgPOlpQcb6cVaAO7VAjANX5DsAss+ojPIfIO+BUW0AwxpDXznlKEZfzBffHI4KPiCHi/ukeT8cTTpcz5jSDCBhixM3NDcZxQGaWMVOSjhPzczcrLgBnwMEj+EGKZh3ZZK46XlqRVJRZng0p8ARB5klYD2EYEFWvypFA297L3nFkQqgL4CRJsOR4v/fgLcPrvv/8x59LIkTyXk5HRJqAZS3NGlSWlXTuQOrQgQ4qWxzJWvAPwyBmAyvg+flIDrcAb4mj864FCoZYSDvnsNtsUYcJedyC4PD0eMTxdMI8L3h8PKNWwp/+9Oe4nE54+913+G/3v8R//k//HY/HRwF4P/4IP/7xn+Jf/sv/O66vrvDpp5/h+HTEN99+hwrg5sULwDnMOcHrHoo6YpNLhqYtiMPQD7JaVaOg6Ky9dESnaYNxnPDixUvUWkXgl0Wk8KOPP8FPf/Yz/Jf/+J/wn//jXyPlhN9//U0r3lEBTx5bs58nDyJhqjrYyIswsMy5zXuP8+mEx7sHvPnue5yOJ9xcX4OZ8e3X38B7hy9/8icYt1ukiwj6P9zf4x/9xT/C7fWNsFsvF7x79w6HwwGffPpp0+4xPRCxspeCD45XDQZguSRlJkrot06Oj74VB5bY6+HQQO7m8qRxmVZFZilFQOmUIO5roa3jPg5RMM8zaBgao1GYCVmuw5lAq4xSG+NDxtWGVsg2RouaJxgr2QB9YZ1CmyJydgvblkQcXHO1XESElWRhN62yeRFTheZyq6AQawzrJiGW93UQo7nDkqwNIiBn1Y/gAjhgGAfknISVm5OsY2UkGTspqBi/98KXEHfPnnx571YxHkh69qWc23USEYKNp8OKEjStkvYMVmwZC7/LknC+XFoMYJZ1EVZgtH3Z/jJg5OOPP5L38w6Tl8LLmnQGYm420miwBFJzbIBEE2wYRx2XJZDqeqQk7NXcWHm9s+q0SLXzEpDk0s69UoRhA4Zqh0i8esbc497ltbU+KrDgIrWi+Hw+I6WEIYgOzfXNDeAIb969QV5m5GVu93+axNxgt9ngsN1hs9ng/vEBv/jtr2UEUDUoyRG2+90HrKzQ9pEw8qB7reJyOQsIoAyvGCMu5zMupzM22wkxBpzP53Z2GuNxGEdsthvsdxsMCuyZi5YUcKGBDlUBAIaCf1rAkZOicZ7n1Rkin2UcJxlzV5AwL8L0ulzm9iyGMWIYh7Z+nBfTgCFGNX+ZdQwrW3qKtKigNoyNQMhF7ARKEm2mQA6VXGODlyRAWfC+6fr84he/QMoZ+6sDyDt89MnHAvLljBgDYpBriyHC6xhTzsI6HE1/EcDxfMbT6YT9bif7wgWVMRQW+OnhSdjtMcAPQfVstMC2ool0HK2q9uM6JmoT21kDBWjPMCeJl7OayqzPbWH2CqN5HIdngKllViktmC+XNto76DkJ3S8XA0d0P1hjtBXWBk7XijlJHHNe5ENyEe0kl4WlFxSsNG0/ez1rNJbSdeLsfMg5tzgm77kBx4hxlDHBUrWhp4ZApWZtGpUWnySXk3E4Pw6YxqGBsy5EMBP2WcCdp6Och8JuKu3ck/3fJzYYne27BnPmWfVJ86Jj05PGTdHurcpcgp4hPRb30WVmgLw2jIPWUVEawUFH44Rtm/T36ipmG7EALR9r8bm9J/U4LwgmHLkGnEDj1WYzwXmCY49CBbmqdEhVjUc9CzwxfvTpJ/j41St8/unnMPOOcRga0OK9x2a7RSxDi/1walqlzKBSLK9gxCDOdLWQ7vPORrIY3Qy8vMc4Tbj2TvdF1x6VJmdpI9kEqGg1P4vzzvWmkI3umouo07MCENOhBnawNnXt3HG9sQwDawky1YMuZJ5ygg8ek9vABQ8zPJFxXUJtQIrVD9I9ILIzX0kvq4N3jb30v1IgSV8Lq3gpy6EDQdaYtWcPjTGZOwlFvqfj49wdEtvZa2idYVmM1TNjZTEZo3wF/thJrflIg8X0Hrtq3E+0REvTttW96IAYa+3ZjB4A0U79gPRjl/qcEdhNBNr3yWANArEDl/Lsd/5HXz8YeOIqrj5v375FOhzEAU4V6uUAlUlsZiAY04HNGpNaJ6KhgszaXaAVImlsI0nkttPYHkSMAdtpVIHJLk7dro9ksQcrGKuIyHJluKIForeDSx5pn+NUMXCnWk0w8Uv5X0dRFXzSb9iDAAws6POeKYnosS8dDLCn1Q8q0cN5//4Oy7zo6Fxs1EYiYUxZd0mAKNW7UrDBBAeZKy7zGY+PD/jV3/4Sl8sF/+z/+s9Qq4hDtlE2aNFih0OQxNac5fr8rWssgViElizJrBQ4Voxb12kzbeHIqfNTbcBTWIGSOXem2xrhtWTOxI5jjJiKJA5NiHxZUKp0OM39y37fgIysGhWtKOSe8NvP2j3wWmzbszNxVekwDZrwiNhmKkUKPgU3Sik4nk9YlkUTGtHr4oBW3Aug2SnPDBaXQqAxBuIQW1G6kLqPKALdGAur7tackoqpuwbqAb0AaAEZK7afaqZ475CW1LpTwXthvh2PWNIslH0nguDbrehTZWYEDUwsm1yAMhbBTVQCFSn6glrUO0eqN6Jz1zkjKy26dRvIRnHRijzvZcRunKYmCk4A4EWIuhQtlhVktXEUY7AZk+jFy1uklHG6nOWek4rZl9o6fi0xl1AgTAgFeS3ptde0/VCSJPiDap/Y+6+BJ+sIcO1z7CKobesMbf0OcQACUAM3gejj0wmXZcHlIiLRH796jbt37/G73/xO9JS++w7nywmVKz757Ee4vb7C3/vzv4/ddoPr6xsBFu8fEMaA3WHftJJ8DC05a7oAQOt0EHV2hewXA6HkjxV6wctzfXgU58oYI8ZxwH6/Q5oX3N/d4be/+TUeHx8wmPilKskGHxRQtJjJdgVwcPAkI3EGQh/zE46PR3z37fd4vL/H6OU5v3v7FleHAz758ufIzJhTwenpiIf7ewwh6siIxtV37wACXpXXAMkIb9FRFymsVZcPfcRYincxCjCDCLb9FHQMTK2RZb3IGSbC2bU51MSVu1rTRmAZtck5w3ub51emkv6xfR+9B6/2rznHtmtRQAvoY28G7KzHrIJ/bp6AWjS2OZj4tYis9nFB66xVktl+rlkZ1awJm4CXjfWhyYxdu28j6PI71lVrDCXu53YT1VXhamMy+eAFhCrSxFmPvVneMfqx/buxA7gJvmhTY8XoykQakyQORnNmonVyqUmW7dl1UdoOcW4AhzWA7IwrpQhoaGCU/YYVA6uikmvFMs8IPmAcRmE7rRo1Q5SRp8JooJ5sWQFHBkByLF0XFawNr6IsBW7rwjnXxldD7A43NrZoIDOz5FKsIzjzPOuaz+05moD7+lz1bjWepvvvdDoBG3FwHDcT4uUs4zyqJ6VlA6bpjBgHvH75CtM44epwwLzMbWzah9BGszabDTabTWtQPY/BkrcVlWgoJSMnYXdLE8ghpQXn8wkhyFCFMMlrAzzkjMvwXhhxom1FwuAtcv+t2VV0LTctHG+ZOKR4rLW5uOai7P2UsN3uZGQpBBnldwTg0hzxso3cKjMaQAOoD7sd5vki+0VHs3tTqLRmU28As7KjNBeGNFeyOrs1l2VlEeSc8c033+J8OePTz3+E7W6LFy9fYl4WpKdHhCgAvl0fKTDKunmahiHQgHHnxLQmbnR9sLCtL5czJp4kXkTSRsSKGaDPhBkNdF8l0o05X/XMduQAL0VVzpIznZcLQIT9bteuy8BCr2urkshY2LSCAenzPCPygGixVJlzBjpaXG+gU9Xmn5lI6HpKizRRLWetskjVeXIlHM7iXm0NXxubFk0weS9j+a2bQ8zcTACcNqxz6Qx0VNnjRXNXr+AoqzOX7DGvI5ZeDKBIgNNhHAEinOezmgsI+2ntnR6DNLbkM9QmwL7em8siDctlmeG9w5YmeFKpFaDtI7uPFisJvVHB3NlLzgvQ4L02AL1vZ9A6XvdCmWWElzpb1p6PPhTJF1eFP+lerrliuSztTHUbyVdMl7saiMHCZA5epiYIjNvra3gnjpW2bpZlafuCSLRDXXFSw4agAvu9yGeuWNLSQUYWDyGpJbsGrNWE8AIyBT1HxCzAclq5VAPzi+rVObZe03PgydYcoY8j2r9772A3wUNvMXddw3WNZ89ST09ZNyrJICPsMi0gjHw5Y+zcNGdBroAhCvLY3DPASA9HoP3M2uFOmT2rOryDUh+gU6v/XjOQWq6m9Quvfmbd4Fk3pu3lOiCNVnfYaxrGAEDHKld1Kevrre+nvk4nXUAbDn/8euR8WE2arHE1ZmAFPNnvN/D1g9dk7nky0OM+Vi/3Q75+MPD06uUrVK549eqVFHwhqtjaJN2ItnCp3QjYOLEzFI5AIWpykHTTeJTKOJ9niBxvxRAZzhP2m6kVKgx1WtBDwzS+muuCMqaWcpFiPSeh95WMzWYj+j7DqGMVJuKoD7gWeABeaXcV9VlSZTPChh4WtYM11ftaDTUlKSIvFzw8PWFeFmw3u2esF9M3EeRcmFzeCbDz8sVLOO+ae1kpBeM4NGtJos5uASpqrnhazri7u8ObN2/w/t09Yhjwv/wv/yuGYcCXX/4cAPDrX/8tYhywO1y1xTeSgABXh4No6ljR4aQb9v7dO4zDKAJvo3Q0Hu7vJTHSonOjYnjyOwnVkbDB4IRu2BJCtbX3YvGbmhiisHGacL33rZtjScB5lkM3L0k6TLDxmY06WVDrsACrkGFFka6XxXtUHUmzIN3GP9EDXAhBRsxUjDcOA17q+IH3QS2qMz7++GMZ8UBPBtIiNPZpnLAZR6QsY2wGjnjXR1dyzjgej40Vtd1uJemt3emPVsFJRtQETG2uivosTaibXE/cLqcTauUVLV0srl++fImrwzUOh2v8+rdf4e7hHpeLjHF+8uo1Xr18icP+gCUlnC4XMAqqyrIZFi7sj6Dv51qBntMi7kMc5UA26Jb7CKH3A8xNiXStrYPVPM+SBNTnwu8AMG4HYZUNsd2Tyzy3IopZRojIEw5XB4hNcIL3DjF6BSSyMnaAQW17CUAkj1GBQkcOo+rvLDk1ADPG2NgINnZhLAMBAqULHIapxQ67B7ZvN2oB/3B/r4gH4Xy+YJ5nHM9nEbUfR5Ra8ctf/ArzPMOFgApgzhlf/vzP8PLlS+RS8O7dOzm8Cfju7Xd4uhwRNwOurg/Y7neIKjzsg2p+qK4TWPR8vJPvo7IKLTJ2mw2204Sr/eEZKLzuvN5cX2vcK6pJkfDTP/0pXtzc4uuvfot3797hr/7Df8C7N2/x3e++kRG0S0IcxKls2khCDWYU7+H4hFoqvj0eJXY+PuDp6RHHpydMmy122x3u7+9BRLh99RIvX77Epz/5AufzGfcPj/jzP/97AIBPPvkEm81GTC4A7LZbbKaNuMdAYqfck4DAmjxwLxJ8CBimEWEcGgtxSQkPT08SK/zKSTFG5Fix1fGeRQGmbF3s1fqw7uaougpc1sL2osnSWFG6jh81Md2Mk5w7jp6tcysw1wDArCNU67F1hpxPNqLnojmz2jidU6YBYT5LzAjqWIRVt9O64zHGJujNLKCTczrqFsTC9/27NzidTg0g2Gy3qGDkObdxoGWZRXidFVByMn5JBTBGpWgQLsKGCwG7/U669ZqMBe/VqKQXBVaM6UNdudzJZ8g5CxtnWXB9cyN7i2UEL1dx6RrHocW6lLvein3VKgWijapvpw2mcUQcYwN4/eo5GKO2J8JoQJk0yVIbYSQAg4IqRanxRbJPYUzITbfMRe+juEIJKBRW17nW+RPgzYo0WTfcRmIMIG73TovUi44oNSYU0Czlp2mCjCzKdTILy3e/38PrWf7dt9/i6fERv/zlL+G8w1/8xT/Gw8MDvv3mG1lHzjU9zI8++QQ319f45OOPcXh5g28e32tDKuLzz77A7e1ti0kGcg0xIgwDfJAmTKmMnOVM+OSTzwCIdmAMAdM44d27d3j75g1+/+3v8e3332NZhAF9dX2NIQbsxgE5zzgegcdHkZc4X+Rcs8Jjt9u186eyOPhuNhOC6iLWaqyUhKenpzb2b+fGNI3YbMRZlADU7VZHCu/w7v1bzN/+Hj/96c+w3+9bc8mYdCF4hLDFbrfF5TJrEbvAmksCXkt+CPR8qKp721Iy5rTg4fFJ/jstmM8XXE6nVkAwEch5/OY3v8G4mZrRw1kZ5Wb+E0LU9UIYQgSRQ140r1emzbIkfPfd98Lye/kRxnHEbrtDzgn394+YLwumcUDJkguP6lxrazdnGXktqB3MVdBsvoipSBwGVOheKZInPzw84DLPuCwzQDLGaTnrPM+4nM8Yopzlo0o5NJtyr9quqvEUogCA5/MZb9++bbkjM+N4POLp8REP9w9t73z26SfYbre4vrpWN0xpOJ2ZMU4jxkGAuwackuRmWva3dSJje5fGprUxv/P5jIeHB7x58wYfffQRbm9vW5PYGcis8c8YrtYoitYQYkYInQRQckZaRDcupYzLkpCVbBCCx48+/UyNKSTP9OQQ4wDnWJmo6v6svyMALQBStRjnQZ4BJ0YiZAzzxsahHitXoLlkJbXt+6raZSEouKIN/CWdBWyuuY3nb3Y7zRWFOJHmRaZQjA0K09X1DRixBmYuMuGxpAxPoslqTYHT8dTGu0Fd51DOpNBGpytXXE4zmGcAxxaXn45HnE5nGbMM0gwDQd19xTG2VnNqlgyyFHMt03M72BH3HCRhlkYmOYfDfq/xuT6LE8yMpOPDFhsuD5emh+m9jNuJi6rkws6RuOCRjelJtR80t5wvs4DYTG1KSMBEA/NatS1NKQCpja2zPMso2sTrhpF9memErD9tWIPBCj7Zed1aMHpWsTaatSO1AoX+brBpnROuQaD1/W71BuWWe3zYoOr/tFhMq+9r7Vbt3PTt/dbv27vzWIFmK3BJXlCdYJ9/HuH/1FZfSR3YzRBa47CBYj1v6s3n8gwLqdWkH0idAvqtq/zBJfwPvn4w8DRp0jyp6CkzYxhGDOOIlLQjKdCePBRAZtBc73bappHcyZaKJOKlZDhiOOImBEnBHhY3irwdgmZMbktNED2xsxQRZblp5hhH9NzBRN6b+oOh/l5sF/bh2oSCXaWzY54vSNc6ETKzm3SsRdFdIkTX9axCEEFU3u/AlTFtxoZKlyrU56iW9AI2oBXydh1SSC84Hk/CEtvusNvvsdmKHoKAMvJhYuzUbQ4egIpgrgppMCNVsfx12m0ftaNR9X4uOlvemGu1yiHC/QCxm9jos3316+9VZZYpA8CpKCj3w7ByRV5SZ2sxt03eO5x9szdEf/W8s212pZyvA0frgH3APLBnS/o+gxZbzplFuoMfFMhQQMyCSckAD1Ud8Cw5lXExmwO2QmZZFUzBRiqsE2G02VWBYi5MzOIyVqk0IFRvrQhvexMi7uMkHq510eIwwAdx37nMs65Rxm67w3azbS5V1klt3XbtKMiBS2L7y9RiYoU4tbliotq6jVYdAGOBSdKiuhNV3EO4MjLruACja0KZhgsFnU/3LTmpVUUuUxYgWA9wEctnUDUWpe61ykgKugbrSDCaPah1XZ8J79o99L27JFtlfdDYsfJ8DK8ok9B+xxGBiwABYLl/WcHMUoStMEwDODNOpyPmeRF2Ile44HG4usKLly/x/dvvkHLCbruB9w5PJ3EDMV2RcRzVmtm15KCRdVWbz8Z45CCSOXQXXPsczqmwtdK0DTwzhk3KEuMuNWO/32McBjgA+/0eX/3mt7iczgrGJjzcP2AcItI0wsbwUlE2ZA3IKePu/g6n0wnv7+9wOZ8xXy4Cfk+TjJ85h6uba2z3e0y7DdgRUhXts3EYpFAbBrl2BfbHQcBKWu155xy8snoM1LQYvn7Oa6q/HcIfxif7PRPp/pAFt2a6SHJLDchcx5geN2WvZX2tEkp3VVknNBq7LIFY/7EkqJ9Z3ADayIMkyW1c3Kj6XauhwDps0LiqlHCNcdLx9Aru99gu+gtez6buiGdx2Zzu1gmTRYm2P5xpp1huSzpO59s5ZQCNxR2uMv9uFteiHdifp8UsO7eNVdKKGQNngD+4d8/3+aobyF1XKoYgOpXK+LRzZL0GpIPYFtqzZE4+b22NO7uuonlUBesYZLemtparrcMmeK/n1/ra7b8ry1lsfWu5JywMB36+lgyUtc/Zurd9twjQSEBeUvuuMUOmaWprvrKwccYQ8OKFaDuZxppzTnS3dCxk3GwwbTfY7ve4ub1Vps+A69sbXF1fISVletu9thGO1XMxttc4TepiKKDNGIcGAtH34hiXFFC8zBfUGjEG3Q+pa27NS2qgu/Mei7KmhYGmjHgDT1X3xHILA6PNrdnGi0jzUAOKBRQImJdFzQeoFSOAmdQ43bPiWCfPxvIM1YlaPZ+WwJL+n74f2Uig/nWuBZcVcy+GiMqM4+UIWhxylvH0FtvItUYSqzh7UFdJW+TWkMsp4XKRMf7T5ix57ji1WFCr5stLaJ+TNMo0Vt6qnd8KJrZRO8DpM7TxLudcu+8pJWUUyOsNcUBOGWlJcLoTBhVnthHmFp9gZ4Fvro8XdXtb62jNs7DqDNx/cXODqOOYhC4lEYIwGzebTWOMWQxw1Ed8DRwu8/Isjq73tDEKczKxEcLqR5pGYW1xZ5WTZPEHNCdx1KLMuNqY/yklJM27nXPYTBvJqez19exY53dE1Ng6ZMWpTj/A2VoP0ny3fbCKd+RcA/9s3X+4pkjRb3l5W+2sQI2ysRTcCMEh6qgvV6Aki+28+hzUtkLLU0FwVIXla7WE79MLJRedPLAYJKAhwcb7EtIy63MzxnJtz9lGWpsBCQTMC8+Y5z3+Qq9ftrACdY38R8/OZos5VEU6hCANattn7fX1MzvvGqBjeUmPIKs4pXvCPoM9DdspRUfy1zk/t9ez8TOtB1uqoz/N9dl6sLPJ6ru+7jUn0MRH/pttVdgH6BAXM3qm4Fa/SGD+nwtgS25jzCj+8K8a1rEG/+x919+z37T6zz5Le7b8fD3+IfiEHv8+AJ/Wb8Ctfu7XUbnfOHme7g8+D+ue4v6LLV+x9VJZ9GjbxIiK+UvS1J/wHwVN/sjXDwaebAG2xD0EtTXWsZJau0NDKY2qHWJA8OIotqZDpiTdtvPlhJxko8bgEYMU6MlnHJ0EkmXJKNqxGYcR4zi1IBD8ADCEtcHGklCxM5aZ200chOrr1A4+66y+I3CVDUK6E5OuUzsUHATJyywgQ05mMd4FV8dxlAK9FkzasdnsNiKepmh6E08bImqRsTxLQIbJNAMWEAPDJsBRhHfb9plsQZnmAHMQ+uolYb/f4cc//gLDEFun0cSna634/PPPBcEeJ2y3W2w2G4AzuIq7EzPrZxBa8BAjog/i6KUJPTuHFy9egFncHVoCLMcKggIzKSd1XlHhvnkWpsMoYtVl7gUckayd+XyRjhnQhOsfjk9Y0tJEmas9y+0GYMbx8QmbSex61we4bSUfI6ZhQJxnSeaKuIiN200rJltA0EP6fD4LCKaix9MwApCxAUkavXRBlrkfhgpW2IiPJZNLWuCCU/eSPpqQSxHHF6O6a1JxmWeAWSyLsUra9JpkPEeS20WTbwtOJmqaU8LhcMB2s4HjDvTal/cB02YAE+HpfMb7x3u8u3uPNC8YpxGffvIJXt7ewjpBwzDAjjNWINHZkLjFPGdi71UsRp1T8KgDOOM4tV8JTi09c0UheaYVpOLjBbMyxEIIWLLoDSjehSUnpTHnDiDq4fJ4PCIp8OK9x7iMYIg2yZoez0UEV4mki1V1zZecsVQGR4lj1sUblZllYyqAxJrmiOYcbm9fyOdQZt4xpWYPWzU+GuhjQGVKqSWljAoR7C1gVEybAbEK++bd3Xv81V/9B9ze3ODHP/4c2/0GFQVLXsBc8aMff475csZ/+6//Fd47jEMEQzpccYgICIhjaIkv1wpOJmbrZayZlAWhe1r0xBZ4IgTXD/UxxpaMSPKi9tPDhGOpWJjx2eef40dffIGr/RW++uor/PZvf4P79+/x/bfftP0RtDNbtCs/uAFcGZf5Auc94jggDgFx3MNHh8oZx8sRcRjwyY8+xtX1DZaacfPyFj/56Z9KbI9BRjGZW/f16uoKcRy0AA1ABfKS5ee0ULJ95L1HrhXlPOshLXG/JdTMovnhhMKOUlFTxny+oKQsTDgF8Yn6GOwaqGgAVl6NDrAe2UxwJKMr7MS0AOA2zoyVfqIVV2tQy5xN7RwyTRofpYj83de/w2WeRadsu8HLlzdSzA5B2TZVuu7G1NI/BtpYjLQ4OPihdS3XiSbAePXqJW5urrWbbNpiGi/0mkUMuQO5Zg3so4iBRwBxDNjuNgoYcSv+TLNqVEF825PCThLB8MHeM5v7nTCmlyUJE9TAYZKxcwMgrWC1glOeYQeQTNDXDxEvdzsMMTaRWbtXXvX1CnM7D+z+tSZHCBLvFSgqWkASBAjIi4x5MwNOQQdjLpSSGwBgWkfrM78BbvpcapFGnAOhOimcDNQzti4pWGsjjZazHA6Hdq8s3zFW2TjKSHr2nX1kgvXCMo34yU/+BJ9+uuDjTz4BwBimES8/+gg//3t/jkWf57u3b0XfCoy70xGX3/0OS8748U9+IoWW85iXBb//9ltsdzthrky7xvgjp+OIWoDlaoK/GaWKy5ojwtkvSLVi3O7w6Wef4+r6Bt+/+R7H0wm///57BAecDjtstztcXV3j6XyCG0YZQYpBgEAC5ty1C2XsbMTT8Qml1DYmJcy+qntSYoGNTl0uFyzLgkl1JJ2KQv/Jn/wJbORxdziIyYqxvBXolfUj3X9h3AkrXgp0EYCepukZqFpqRZxG+CEibiaUWnBzeilOhOcLnp6ecPf+Tt11Gbf6e/fK+Prks08Rh4hhiA0432w2CD40tuF+t9cYYGwDxny84P3b97LfAPzm/BtsN1swCJtpwhdffIHL+YxlvuAyz5iXGWEIiBwaSGayCqR1gZOAp/mMrMV37941QPnq6gr7/b7pI6UiBipPD08yXcACSqHKWVxKwWbcgEIf2xqiaBVVljw9W67IEG1GBbgEwHfYbrf46OOP8PXXX+Ph/h5v3rzB/d0dHo9P4sI9DojDgBf7F7i6ulo1hAUIsxxTgrmwlPKie1/Xkp0fRITD4YBlXjCNW6RUcH//iFIZwziKC7Rpb4G19+/hB8sFSceVCFHH133QJnYucD7C+yRhMy3IKcMoiVxVQJgrKgrAIvRtgHY6X5TttyDGgHEcWuFvJj6b7U7c8aI2CnIBaawYtTg+n0UmYRwHmPSKff6Wa7IwLU/HczuXiGV9jNOk+5CEHaoNTJEp6UCj3Q9A2LACWK30bkCIwaMwoXDRfc9gdcFWpBBwhAqZvvn6d9/g/v4eX3/9FZgZ/+yf/nOMSs7w3mMcBhyurnB1fd1GJqHrkXMFqIKTsoD9gGW+dGkE55uz9RiHdladlDFvchKoFakUfP3brxCHAVeHwzPmCgBMo7jnjuOobGOp3ZZ5aWdf1IblsiyyD5I0qEGM4MXY6XL3gGVe8HR+Ei21nRi5bLd7CBPaCSCoI8HUQCKpHEUep+sKl6INHn0udlZbriDnYNZ8weoSa6xos7nlGdy1ZRV8duhM9P71HCiSc9NyPzz7OdN/ckR/wDL6sEHzYcPZQ4BZG0dsq2z1Hh+CUNbkf/b1DJwlsFPDgKpblVn0ltrPoMVN8l7qDMXgAIgH4gdAk5yrBNKa0xpgVXOasAYGFZxb10j/s68fDDxZl1tQUmUPKLrtiESLRRH0FUi9QvPlg3C2DfCcemcJtY26iJNA11pqD2KVeJuNebXyWEEnKz68jh75IADKhw/w2dqzrtAKUZers65hT8SF8v68My5dSNfcBSpi6zQQkVrcdsFw0beyeyR/crZ5JhVS9KQisDJ/DgY8yeuzfsYQPLwfMQwywhC8sKNSSkBawCyOPqTFpaDK3N64IasNaV8tagJsVAOoMCt5pyNrRrNuTJ5G1Wt3+BlObIAgaydXH/FKG0LfixmoDMfUChMHboWAOcmY+09UgVXrFNiGF0G2DizZRlyzC9baIWu2QisW9N7UItbkJWfkJfeupVPRPuY2NuiDB7zQke0eykan5o7GKyDXrGXZ1jBzc4BoHQPqeynX5+4Qsgf089goqnYUu8ZUZ13kUrHkBXNasCgj0JNro7MGEMQQVBtgvWuoPV6jQUsiXJpOmKwfhrliGR0a1ejzWQBZIghWoHP5yuqq6gzX74kCCromvY1t+hUIpoUU0METoI+4WOffWAR2TwA0+ilDEyt7/RUQuGYvNPZLW9j99Q34zlmcX9bdyvYz7dmx6k5JB40sPlSjeS9YlhnzfIEPDlfXh6YjM6oLjI1Q5JwQ44StHvySpCtteRUzAQIrWYVrVXo3tfjYxjbRY7JuAf393jW0YpVX98YArmEc25mxZj1m7jo+ReNDIWFc5JLFw5MrPFxzfiu5IKcFIlyvrkCqe2eJ/TAMgJo7EGQkbJom+fs4aOLi2+o15qgIcYvQt30GiwcCIgGbadKY4larX+5JKwxX+jYAnsWVZ0kOd82KtqOoM62ssPTajbezkLQLblogxrIkIpCOvthr2mswi+aPAZ05J+14i/iy9/WZmKqNC7QY3FbCOhEzwNdiPSsYqXd15Xhnr2cJnMUku3ftQLUb07pu606ebW7r/q5f4NkWhGkU2XO0e/EhEGPC7/Z7vN6jekbJ7/Jq3/f9215DRyqL5hyW6JrWILMA66Qgk12XpAq6DrXYWidN1m2UdQIVm2WgPneVqfgjTjfGMgM0P5LxULCMnVMlELE1fqV7XwqC852GT52JMJiT8Qr0FKZeH/1jTcgrV6B0xrroeBJcCNjudnIdto6cg6sVrhQM0yRxyPs2UiyFpzjttrVdSht3NrHnD/cR0M88E3olFpfOWhNSFq2bcRpBzolg9jjirGLn03bEtN1g2myUGRxUX9ODc2r3ggFJ4mEC/J0Fv84lxmlEiBHDUHqTTO/LOkl3al5iAIcI5utaUDc8aTLZuEyVSQdmOIqqldvPJntW9j7GmIvewbMUCKUUJP2MwhKqrdDjypi2G/gQcLi6QgiiW4cKcOXmNOxXACg03tiuHcIgLDMzqigFKSecjkcQEbbbnTIFR9U6MgazxTYnYz/shTwDqEtdv8/GEPrwjLX/9s6jOjEhgu71xuwsBUjAZRSdr2jAqROwmbwDaM1qdYhDlLhg99SZMc6Am5sbGZFLonFUagVqgbf8QF5IGgmOwExNEmxdm9h5Kw03Wn2uri1Fzgn4p2z8yuji2gzQisZiLG57bWn8Ak7PN7mPgHN2frOaNAXUKJqrxg5jNsMeVpOWClr9nSztrsslY0/c17xTcL2IfoPlvhJTxJTHXNSMPSpFvq7jWmUEORdx9rURYTJ2hwQ2ZmFZAn10z85L57uIvcV1qcu6NpGZpxhjiauMuxMBwyBxydZZY+ZZU8HpfgAaWF+r3FM7w733nbHnukaojfwJeNAnHUS/S/W3tD4C0HRLZcpIFk3VesVYsK0xwtwYooOyh40QYmd2TlnrKyGPuNW6rKs1VVRHx9hbMrLftbM+rCPX8c7qdTPyWQOArbalHhef1aIrlvk6d2C9F5bdffjFH3zvD1lG9u99K/acYZ128LO9aWft3/XanSBgl8vtNQFSs6U//rvP7p9hE9RzJKlZ9IW557S2R/uL6HKpgit0nTa9htXP9RxMr8c+54efXy5EgOU/vN3/068fDDy9ePGiUdltsZgTyqBIl43ALMsC5yvIBT10owRxQHWXJLFzTg7YGEa4jTiIDDEgageNUVC5wPulBeNhGjFqIdBYDNWQSEG1nfeNZSO26zrmpACAbaZiSRP0ILE9AnsA8jPWhXKK2k/qluMY7UGTIww+AEO/pfasGQCcdBVErFNdOvTLmdKyzqamxPC+KrrbC3pmRiBJJgqLzfTVoessme7UnBxAHvvDjSy0UtSdrSAvZ9ydntA3gDxL68Cs9ZZKlfDCzHCr0ci0EiIf/NCeu9HJiVSMWjeKJTmlFGGAwEARWR+77RZcpMuT8iICi3HAdpwEcSUJ+jZyt8wz5rPYlTMzNqqzcjqfewdXg7hpTdl8di5ZqK3UWQzDOGJUJxtL3gAgUABzBXHW4jfj9HTE6XTCdisFvlHMaxENhLu7O+wOexziQdYngFrEiWKaJjj4psNBRE3Py3a//fdF3ZJM38t0otbsCSv0N9MGWV2fci54fHxqa2K73bakyQ6Yp9MJdw+POJ5PmHOSwzRGvH71snUuYxBg5zIv4Nr1TdYFqOiPZHXtKa2r0kcKJGnwJElt5oLLWdhFG9U+y/kiwVMLXgIE3CtdoNKch2KMemQtGGhAGIwlB4wq+v1hAtqcTSB6Lal0O9FZmQ1RafPM4kBTSsGQk9ody+hhVMBqLWDpycFDdC2q6x0l5xzSMuNuvuh1dTFfA3ZMwyFn0VW4XC5S5JDH8fSE8/mC7998g4fH93COcX19wBdffI6npydcLid8/tln8N7ju2+/afdnt9vjiy++wHJZkOcMp4nOpAxRVlSmsmjh2D6JscdnGReocE5GgcUpjfXZCKNVurOiTyRnmSSyFhOYudmgny5n5Fqx2+0aK88KawGSCUXj5zhuUVGxlAUBHkAQ3SIiXJ6OoMrYjCP2uz1e3LwAHOE4nxGGiNERxmkrIzgssWUcxZ1yu9+1eGAxjFEbQySEiBCGJsprOl5WzO12O6SccXx6Wo0+2H7NmuD24t9AKxuhsd+Rc6U74K3BqjiIJbqcD0B0BgBrwR97wnp/f4/z+dy64bvtFt67BnpaQsvMbQSkKp3dxneWWTq8TS+OvLBwQKgl4Xk6ZcxdSciFtr+0LmyLtcWE6YvGUW4NAWMsGbhqtt0x2s/ocVFM8LqfeaZo1BoE5JTloqAXTGTVOtYddDIAcC3aLdbM8mUOaESd5WzAnIEMloBK4Z/6OE8uWEjNNEjrgVLx+HTfYtc4ihW0rQFLtqOaekiDoY/6MTrIZfo2FQyqThnUrp23a4HjvpaysDdVpDgMKv5cGUkFfr2e7ZdlaZ9r2MSmAeO97CFzwbMC3+6niNV2l63LRc5iN8+AglB2384n6cSHGMEs47qnyxmPxycR3i5Z2KE6ZkdEYuZBwKh7x5gswzBgt9sjhijSD9zdQzsr2VxVRX+HS9FGmfzMPAuQf3V1havbEa8/+QSlFHxxf4daMjwXzQW24uY5TCK+yoTj6QgwI+rrj1XyucenU3OqWoNJwzDg9evXOuYdkZalXa/tfyJCxSoXVBCSmMElYzmf2xmW0oKHh/s2QraZthjHCVvVUhPB5c7QHifNn7RRWqHAgnPY7bcwhl3JRcwzNKhl1TC1eLaUrA0OGU9zK5D7sNu3ZnFaFjw+Prbmw+tXr7DdbPDmzRvMywwoUPn1N1/j6uoajhxevbzB7e2t6mhlHS+fdapAco2gYGM3opJ9P00TRgW/7J4QUWOUlVIQwwjvIohlPJMY4CwOuef5gqSab8aQNQ26OAyYtsa2rA00tHvyrPGn58aLly/hvcPd3R0u8wV3d3eyfwm45ITLkzrMKngFAGe9Zh+kG9RGvy3OEaFehPWSFtnX9/f3cN7h408/kdE1HwDnUCpw1Lx4WRbRs9VzyMYPRVtVSAJhP4JBzdVPziHRtCqlIPrQnm/0XqQvFNQQNy4V1bem6CpW1lo1Lpg5E2muRsjMWNKl79Uk+aw5ocWhj5iWUlBSbc+lVBkNezw/IaWKWlyLA5abznOWv6tZzz2p6pwjBO8wjUMv0BXQNaHrJvKuYI33BCElsTJPPW5ublteejqf8eb778WEaFlwtdvi5c01vvzTP4F3HtNm28CfloOwgLfjMGDA0LRqzcBBiAO5GUBJjSNjww93DxCpgoxhHLDZbnWtJ4Q4AORQjpd2/TnnVkt45zBpQ3Cz2TwjcBgb/gzg6fERx+Opjba/fPlSgLKl1wG5ZGTo2QmH25tbibOtobOuL2U0sBmRJW45PwzEZNO20t9zyvZbnb2m0bjeixKvas83SMEqexGNF/YalYxh3j5KizPr2N3BJyjIZM0tyf186I2s/h7UgCGrPwA19yBpsssvoa1HoVR0xtVz4Ina3llflGUL6+mD9dezBpR3LTe3681FNIzt/lmj5pmulr6mOYw/i3nMKgdFaHLv/OG1/4+/fjDw5IkAb9op0GSPULTzZZvKB4dtHZv4dzRdBkUsRSSbW6ciKhPIqw6LVwYJYGNXcmjrnUdwQR6EBsCsYwI+eHh26u4gSbQP0pWsdmdstTUI02AnfTAaRO0Brb/6Rlp9UwMdqgiktQUM9ISRzBlA9SdsBG31Qn3Gsr+uJery97J5QcCSjHZJCiR35g0grj5D0CRbGUKSkNTe8XGCaBttbl2U2e9Iwm5ipHoAagEveFL/nXWHqXWEnWmHdGTYkwN5ElEyiDguAFzOl6bLhVVCxkBjR3FFY7TFEDEchNEQddzCkjkrpO0r66z6NE2rZ9+DotcRI2PIAEq7ZcBpcPHeA0VACxutDFGops1JSv/O6PQm4CrgUm5FyzrArIOBrAdZBB7iJkJSecIYBXZo2dpxqtVjjljkXAMZSxF76BRlRM+xV2aHdE1ORxF0do7gQpQxCWWOmbaSuQgu5sDhCKAg4o7OK7VZqLLkadUFgwY71jUga8/r4cfOIWcR/jdHJXPJYm6S5AIQE8m6aMkLNS0ws4SuWky1NcMs1F79fRuxw2qtO+s6AlrAykFoI8ROGUAGKphNrg9Bxu/Qr6cV/MwNLJAirSDr/H/rhtl60W5f1e/FYdDiDPj2+ze4u7/Hb379awQf8POf/xyvXr1qRbfXcUUpIgKmYcJHrz7C9dUVgo+gwSG6op9lJSqunbz12vcaJ4uC66Ux5Vy7f9JpYtVQMDFC7l0ocKPLg2QOPJWCXGXk1XvXmDfmACXFcNWOCYNJ1p01UFjJhmkRq+LD4QrXNze4ubnFfn8QgCkG+CEqU4AQwtCcyoL3ukd928PBPiczQB6eHDZbEayWYrKLKdZaReyaulB41FHDpSyNidU6fOqK44M5nPkWH9HWpCRHFp+a25iy92xtCiinbDVz8Vkl9fbVGRb9HKgAqHbW1vlyaWPqBlLUKqOYzgEleAVlTDcNSE0zrmvQfPjeRNz/yYyabYCD2vHa2BqlGwjIPe7JHmsS3nTyansDTfashcGw5l6PoRJoekJoQFq/73YfbD92BlR3AzVTBis6WIEvroyqz8WAK3umpRRUb46yvRlQipgX2PO137V15XX03lvsNzC0iXSuEmO9B877xt7FB+eGJZ4SKzW+qgCInak5yXivadAMw4Bci1jKk3Zd0bvVhJXLbe2ApYGB8l5aDBQbCVSmu7Fe9TjLc9b7Wdpzs7MsBgEzTTjbPtM4qJitrslcsjpnuQ5uawFgDPe1BqW9t8V4ZyPF3rextlorTudzuyfTOME7QvTy8wLkSEEvQGBt4s42alhKbefDsojl+rWyXoTlYWt+lV8qY8z2IXQtrnMwWKKvn9XE3AmST0vua/eTGxuJuej1iU5iHKrmdzoi7+jZGra98yFrA0ztbGP6IA60M1j178zhU3PxtfaiU1bObrcTge6cxIwiA48PD7h/f4fPPvsEn5w/kkI4dK0c77wWzjIWXlzW/LNrPuqtAmfJGbprXG+MXtS1sOT0B9VOCKHnAFWMSqI1phyBkm9C1fa51kY2awZgraLByBBjgMjSIGeWsWI516jlXx+K9g7KGKs6lr8u9kg1Fq1OWVJCQIQPpC5gEcboaAWi/VnF4apNCYlP0kCKMWC/nRrIXtTAqdaV8LP+cUSqk1mRa4Vbs3wZ4rDInQQg607rFN33XkEgsMTToDmh09hldUtjgpjzOQg5W77Q1yfWnxfKqCIbyZJvlzZJIqPGlktKjO659DpHImLYRyN4iQ0KyptB1DhElLTAzN3YE7bThGkjpgtST1qTzc7d1ITru9NY34+yfxdlzGdpRvrQ8mlHXuem5LO10XEVbQdIRrVLjzfDMMA0Tq22srF1qzGd90gqoH86n3A6n1rNVGrp+nXU41NVdnOb+iBqOmDMxljzqJbbtxpbVlR7La1bG4va7gZ/sKbxIUDE7Z/WXAZIdeec1vL6870skdxjhZGsSsIP/ru//odf6zrOzkwDiYQh1GPUGpwyFILaOpRrXH/e9h7trVfA1B/8gOZRrucNPTb21+0avf0+Prs2PL8HbLFW439VfWGwsA/bZ7c4hZ6XAM+F4f/Y1w8GnpwmC8PQRxJKcahVDnOjjwLAOAZUFnqX0zCaqxSZwxgg419DQ7y9EyFoix85C30w2riBFzFEE3AEQ5gzOWNZZjCAzTjqARwlWdBDmVlm/sGs4oGQxEw+hQTzFUI42lieFlYdybPF33VB2vP1JhBaWvAsVbRvopcQl1LSgFB0bMIE2tA6DvbcHURYNJcirKAQGzX/dDoBYHWU+8PFY50go+Xa3/v6XATNum/rsRJx8ejdVHOzstlNs/YFVHhYR6nWLDhLOGzMxtYKMwuyD8KSFlQworrE3d/dyTU4j2kQRN4OZnOo0hAEVGEgHA6HttGMbWXPZbPZNLQ/Xy6to/Vh8Wafm5mR09K+P5+FkVAH0fuZNpNcQ0q9KxyDjpyGBoIM2vX0MTxzF1q7FBpLwa5Zfme9DRnwHsM0oGiSQQSxRVeGCDkCHCGq/a3zToTdHaFmFuAo6RikM3Ch6vx+RFoy7u8eULN0tXxUVkwMgBN3rJxEFPoyi8uJU7veATI+EsjDgRBdhEcFu4BaJNm2PV9KhXpKaILhW1dYnPQksOUiWmONOaFU0PV4h3Pyqp7EYh6VkeYFRjBujDCgie06O7BWgq3WjW3im5BxNQNiojpSWTxI6oxJLKMf0zQhaOfIOn9JixdbU+TQRh4dqQ2uHh7DKOyq8zJLws4sgEkcEYYBuWR89dXv8fXXX+M//OVf4s/+7M/wf/ybf4NlEZFW7wIQSGbsvccYRuymLW5vbyUOe8IYR5mdtySjWgJr+6iLsA7DAB+DABRZEhbrDJImGoXFLTCnrIBBFygs+seroHBlFufHUpFZhL/nywWn050AzrXC+aBsKTN2kCStLovEee+BKkXPfJJ18md//uf46OOP8dmPPsc4TYBzGKcNtnthFlYGhnGSjt6K3WJggg+yp5aUAO36OuewPwxtnS3zjGVeWjJNpIWqJtiitUBISxadPhQIPkkoOYCi7En7HYt99pVV22mjzI7GCnQ2kmtnnUMw0MuZlgSevd4a7GhjNRCWSma0Tjc9Pa6Ytn2M93I6wYExhIBBdWxM425JRYs/GdP2g7GI+mexMOp0lEI0CyVGGWgI1Wuw5LYLIVc9J327ppxyK/BsdEVOGmgBpMULd2CJFbg1YIO5gCj+AeDXzgIV8LdzwM7HSRNzAxZyzqhqWGB5x5oxZT8TgrhNVu422TlnPaM7A66PUDKCNoVIcybvveYjz8cvwdat7GL+8nmrNgxcW9vy3B3IMVyMQK1YGAIGQASRTS+QAGC/k+s8PkmRPAxg7kAZCCglt3GNEDyGcWzAnf2cgU7SmRd9ujUTi3Vc3jqz3nuMm0nY4UMEcwd0nbdFw2qYIKC6sZnaHloS2BUUHY2txjaEaHUJ216EaoOeCdI8k3PQAInvvvsODw8PePv2LYgI//Dv/wNsNxvsthvRGlwWMQwANdBhHEeUUvDu3ft2ftvrn84nlFLw8vVriXnzLM2IXAWwd6uEX8FCY2kEZdIb+MaMfh+zgFzCoHSNqQCIeDI5YJxk9HA+C8h8OZ9Ra8Vg7oxEreljxU4bsdUzLum9KzljiJOu2dJHwRQ0Yd2UQacSlotoi83nRcEOrDTAhElewZjnGQ+Pd8KucgFfffUV/v2///f48ssv8ad/+qf4s7/3c7x4cdtASedEhHkpCwoRsspHdFdnYE7LCpCLys5dGQjkjLsHec8hBGBkMG/k0ziHIY4YiLCkhMIVT6ejxM0Y5Fyjrjma9b2fnp6esSjtzKtV2EA+yDobvcdOc+5xHJ/FcGPetckPff4AUEtuzSVUKRjJicU8FrnOy7xgYCDGQadKhpYz2TO1hnIrWPW+5JLx/v1dEw3fbbeIP/pETIx8FLOQy0WbegxPCswDyp4LLTePTphawlSprUkkS07cJIOzMT/JBAdryEQxJgBJQ3qd562ZF8wAnIzmzUtR0Mcc6NDAGzuUJM44BfjMNVsbLgEtRzSQYJ1j9gYFoyj7xkHioqehubSWkgGu2I4RNQVER3DBwVPA9WGH/f6As05fmI6lIyCXhPNJ3BQHdQCU87jLSCQ9P+y82A8H0cpSGYEYIgDR8Uwl43y+IAyDGke5BkymnABtlNp0Royx6cqez2eklPD+/fvWjDFh9qenI87ni+5FEnYzAeMYV3WeMHJbTNCHNfjQANJW64CRuTOxfei5t4AXpk3ZtRc/ZBXa14dnewOdmJtWUdXrZla5kxb0bBxTsbv28tbA6WuOiNs/yZIP7j9rOfCzvB/U1qUBQL2Z81xqQBEd+7f+3dV1wK6R+r+snZgNgIQjA1tAlRpYZPFY4gjbRcnad+6D61Ota71XtapTrZPvVQWuAhkI+hxPsFz0h379YOCp1ARmh5K7uwU8qeMOYGwbEMQZiVk0N6rZILIATMOgaLLXTiOrmxW3GXNDcaPzIHLCXGKCR9evyEnm6qdBxBwHRaIDSETwYHOiMrJnOBIBOiIHcJWH45hkZADQQmL10GEi4KYLQcrge+5oZwemdU/kJ50KXTJSMeFTTaJXXdnaKIa6AdS9pkI1E2pqF2QHr/eL6LgwwTnRzBFtBdWGKCJYzdq1XNKM4+koNMUYBd9w5tRg+7Ii565hYQl677xQS7qN/SEaU13h3kAq2ytrSisM0V6NVLEKcnrvRWBcF7W5cQzT2JM17eAabdieqRTwfTRjbX0dvMdms2ndCi5ZErFVF59ZOk0xylibOSLO8wxSIXnpWkgCCwWsyJGsVR0hMiBrWRYsp2N7/bMCWcFJAVdNBLd0LRZbR/B6eIbQ9AGAqoJ0Euw2uy24aBeTV7pBzsnITozIaaXfUitimITumTNOxyPu7+4wX2ZwZRyuDzgcDk2Efb6cQAxQZQxDxDAO4PXaZkZmDbwKqDhyiD62UQFAukiyz2Qu3xgz3htIIW46cqgJ4NjHUgrOJymEhzjCRLChr0cKKjhdJ96HpoNTqsz/56JOcdU0xSQClJRltGuakHLG4+Nju/9Xh4N0elicnYJ2nDbTJONMui6WJbWuVosBkIR+ybMebhr8S22WuT6UNuJVckFaEg6HK2y2O9w9POB8OuPFC6E2X85HfP7F55jGCTnJGtvvxGL79HRESkK/BwMlidtiHAbV0mKwV9DZdSaYIwJ713QyKjNqli5n4Qp4GX07z4vELihbs7KMHTMkthNATmOWD4iDjA9d5kU6n5DRhtuXLyTuVy2iUmrA0/kyo5TaWJaFq9zr7RbWxXz98cfYbbb4B3//H+Dl61c4HK4RhgHsnYipahIXfMAQB8jI1XNXOuc7ayuZc+DgYQ6JgILXpSDXAhhQXBWcizIaUYsy95Qt5SwmUT90U1jgSmc1GMCxZoU2LUM7/J1r1+fAYooRhF1gLNDelqAVa8eSNGHzWCwj4ibAWVFBnrA/HIQlAQFF0zxLFzcEGVk1m2vnNekywKbApdzORa/Nnwb+VHn9aMwdFi0scdHs7Fl9nB0I0PtXqyS8wzBILDNBOQl7AENEcFue0T9/A+EgrIKIKN1y6gxDY1FmLeDX983+3XTcjLGRU24C8EMQRl0Mylp4duZ38MqSbOi1WKL2zHHOEgt95u0avCW+um81RzA9IFaWkWj2iNmG/W5OWdxESRpYFy14yKlb5rIIYwbAoADqYbcHA6K7pCtLNF10nIpkFLfkjMtlFoAhLc+0lUAE1obTMEaULA0lG+2wr9FbsSLFgAGiIYRm0mCOriEqWMpATRmXsog8QNaxwRCbFp2Be61zK4tP74u8d9E8xUa0uz4SWjd/mZdWiNl6zzk9c3lLSX7GeWPpD+q215nVou1pjRNZZ4UZl2VWvSvLCalpk4Yh6ig6tRgkfwQoTosIr+dasN/tmlvpOIozmhXaxmC0Yu9w2CtTQkbgnBYV0GYmAB3vgYAaA2H0HksISDnrWidxvE0F5+XS9MxsZL9AmS2OQOwa47lqPAjey/ccY7ffYrvb4HDYtfuf0oJpmpBywvu7d3j//j2cI0yj6JRO4wRMwH67lbVGJPckd9Dm6elJ4qlToJpUv2QlZSFugJZXK+vcETbbjax9AsIgz9FGrKdxlPs3xJZDee8x2HNdyRwM6vbdmI+WZxBhUCaSjc+15jIzyiJAVi5iwLTf7dpaMjadObyx1gfeB2w2W3z00Uea1wng3L6IGhu7ltyAXDM4CFEaqMGLa3EuFUMMAmAqiCPgclEGKjBMQXMgySHMAbOBQ2zACovxkdVZxCAnzWXJ3ayRElphbsBBKQXZmtpEGLWmgxMqUWWV2cgFnjK8A2IgxDBANPe5Ve+Wg0s+COTsMV+kRjDx+HXBDM1hc5EpB3OTtphOHkCVMak5C3lA3NsYPicwMV68fqHnmzQWChdQcMKY0txTGu8e283YWK9E8qzn+SJMQAVMZXROdDuDF1uaWiS3NGOdYYpak6hTc8oglWE5XF0rYL8geI8lZ5Vaye05WD1nTX5rpIQoeRWAFnPHaexsJ5IJp8riyGtpCdfSyQ6aC+ecBYAvAoqaMyfaPhA17FpUQ4gBOBXRZzSApC/vDhDlVDT/7KCjM9fXygpqyXHpnAKVToAbEETo285ySWYtvUBHeyqYG+L0DCAykfE1+7H93epa1wvNQM8GltWONaxBNntG7aNpTgjCc0241es3R0gvY/9etVhL7nmQfbb1tQn2K3WR5LL2d/LmRfNPI5e44CAS1Ou9JD/bGU//868fDDzVKgV7ySxips5mFFfggj4Mr1aijfKqBY8jhxh7YmA3Qui3VSmoFZeLFMAljnDOYyAH0W+QwrdUdbviiiluBPzQ9/CAjvlVNNtJqAgXoy9oNnYEAGZJqD3BNa4/t+4OkQn12t9URU/Nrl5QVXLUDj0zLc7FrLhz684aGtruLQvCTorCC61WFn9W8A56vBnwtCzSi3FsHaICwQRk7KGWitPx3DqGp/MJdw93OBwEZAhRkgM7QKzQKKW02V7bTM+AEaDpXNhsfwyxHcY2r9ypj5BJq8KNimv1ek1SoI7jiODFBSPNSZgsuiujdqPbNeYiXX11elgjwjYakJblGeMhaELhnEOupSX19pkluWediY+oUdbA8XhqB5MlmiKC2rsyp3wSTaKcZWSHhBn2eHxqG9Ncg7bTpJRSbiMCa3ibmUWXxzm4IKwPXytKkflnAsMTYZo27b6WnHE5n+VlNLF35BGCUPSXi7ivSRIqhcr5dMbD/T2WOYErsN/tRMcmJeSUhCHmPEbtIoYYsOi6zvMsWArnjpYHodpGL2N4pskiWl/SiRBwuTYa9RAGBZ4usK7gdrvFzc1NOwhLks8ggMKKpVgZ5KGOcPLlFHiKQ0QpFcucQKVT2hUigQNhUZFl7z2WZcHx6amt8UkTe6ORxhARNRmVQF6wzEJJ9tr1jSrwaSDossiBH33QDoWKkRM0gZLiTDqfCfura0ybLU7ffIeH+0dcX99gs9mAS8LLl68wxBGEE9KSsHuxw363x998/xbH47ExFUupiCwdiQITNUeLS9rwaTGsuqojlbKnRERefqCyjBQUBTOZFRxvy7Va80SYj04LEg7IpWBJBjw63Nxcw4GRLxfkecZCZ/ggo13zklEKw6suT6kM7wI206bRwF+9eo3Xr17jyy9/htsXL7DfH0DBg5XBEELEZrPFZpxajJImga7NlTilJXYpZ8TBxGsFNDdWojG2CgiVdfS7JVc2MmoOS4Rsa1vjck4e5GobLepdVPndtRW5if+CdHyxVl1HLExKyNhbB1AsYenUazOrMNDCUht7T2YGecJ2v5VzQZ2w5sssMXcQ56IQNbHwAXBVwEvdP2khhOBktINkDNO6kpmtS6nARSntDLM9m7NcmxXkkgjasAPALO6JgJwT1txozQwFKir3XIFpRT+nLuK6bniQZpKldEH3dZfPgIWoTBiJf7mNRkvcFNDJB69nPbXixnTS1p16GbcMoHb/0VhcBtYROqujJYFOzI1IR4mY+xmFIgV+cL65zNhnF8c6pbxXAZ7sHucitvHeCTs1eDnXt5utNAedjMCmnBpro5SCitLGPS4X6XzPi8P19XUfg29nFyvbFFjS0gon+1yj61ppRFL0WgEjoJiMzcE5RN0TpHF2vsyNqTaECB/VBZQZp7O4Wa11lVjzuAYCrIoCe77GvhrHAcF7XE7nZwyUlEwL6tyeq/1dhQCkn37yaSv4bY+J7shzt0lmFh0r1R+y+GTao6OOBTt0hqz97Pl4xjzPePPmjTZQCjYbMf8w4EnGQZVllrt8wTRt0Lvyz5uAJUlTLur4ZnDCvncK+kVt7NXKOJ0vTQzcB2GrBYpwuhfZDhSnLGxJlgSk0oYmCI0pElUPEwS8v3uPaZqQc8LDwz3u7+8QY0C8vUUMEZtxUuaKNG9zUUH7RdZsLgWn0xnmLl25IsTQDEpQDVCVWsXEmHNOqhM7NjmMqKzG/X4v+5hIWeIC0NRS4bRSsqZnSklG5GOEueQIWFsaIyfo2WKxp8lGMCMr8DQbIK63soIU3CgtXxFzlQ6oTNMGl8uM0/Hc174iPsMw6NipXGdRaQ7nCHEc4H3Afr8HszSXCCJhJmdQUaMTaVoQIE7jUdZpqVUALXSAl03QmdCaJTJZIqNqUZvTwT1v9Bqbq7LUSAIAa4zWmE8+gqHAUy5IKaO6ikoV2+1WmWI6vkS9hgnBq8yKnFWlJJTSz6321Q4gZXhangYbg9fxQwCcBfRJEBKGFR4xety8uGk14Pks+xaqUaQiuSilyhnqB5j4uQZCpLSIo5zqX0qsmpGWWUBQ51CK5BHHpxOcd9iTaG+FGFF0VN1cr3c7eb6XywlcK1LOKAAy9XFBefs+Ql5KgQ8OwzRgGjcYFPyzc/LZPdO8SvTFlc0D+5xF8yoxMTmfzw2MtHFp5tJqH3GV7+AFS2dTTbUAH58DOETUReVr0RzUKQivjWmw4qEM1rhk+bnV/vbv64VgbB+02tWuS//ZL/NZPmbnwBrU/BDckX9xikSsaz70F11dTrsWoOV0f+zn2j949VwUeKqVG+OuvRkJXrEWjbe4zSqNQr6/UzVAUQXko2NU6q/pg5kP/XGG2t/19cNH7bzO3Y8RACE/+yA6t2lWiMpGcYCMHXh5YgS0wLXu/kkgI9W50FG96jFoZ3wcFI1EAbkCIrX2dk4R4T4uV8AyZufVMcLJhIcheYwOPnnXXeY+XCR9kep/K7jbuhZa4DCAhZWSSSK1VcHCEFMWkwNhM20EmS65gXa2UCtLwj5fZggyyni+qiR5L7ng4eEetRTpPsaIw24nlH0tWCoD1THAFX5wyEvG8fEJTBWH6x222wnDFFBLbomzfBx6RlE2amYIXkdEVDsAXax7moQ2X2pti96SPgGZ5PKLji2Yu0bVdeMHZakEo/gTKjEy6SZ2rjGelsvcCiGnyRp0sWdNnK2INAon14LgVaBOASTnRKT1six6rQJQuiEic0VJs2jWBI/D9VVb/2RJFTOoMlJZWoGelgVPDyKquZkmxCHi5e1t24xHG90ztN0RvI9CVdb1q+ERjqHOQMLWyUvv0joniYcd0JUrqgPCNMCB4cHw6mTm5qqW6vLiqUiSk49PeDwdsZQszns+YtqMGMeI5XQW/SB4RBcRwyAgaAXm81kFD5MAvJOu3+DgCuDVXYNJnz2AGLRD7HxP7lEAJnVXIhxurmWEL44Qce+5UeqHzYBoo70qwUpECKSdMOsYaORlVMzLjFJEpL6U3J6dMLEc2KElwFwlab19+UIKd+bW3Ql6IA8qOs2VmqYcgTDEAZOJumoMWeYF5AnDJONewzA0HafAMsL65t1bHE9HfPPNN3j1+jV++uWXKKXi7uEdfv3bX+H7N2/hncdms8Wf/f1/CCLC7373O9zf3+Hu/g6vXt4ihAOubw4YBo/Hx0c4xzhcbeEcUOq5rTPrnEgRLxGYgAbc5pzb9TUrcj1gpmmnSZrq3qDCpPZqKR0wZYJTi+q5ZLHFVhbDdjvhR5/9CJthxOO7O6R5wek0YxhYdFZKBmpGLr0DVvOC+XRs++TLn3+Jn375M1TncH86YUw3GJ0Uz3GIiMqU877rg9iiEDqxk6fPBKpyIJu+E5HEDuYKrhmOdG24Dk6wI1Sj9jsP5wkh6MFAgGffkv7CFaez6Ob4EASkcdZEMOo24XQ+gcEK+MRmf26ZEJFQ7gkQAFqbI8uSGrOBIEwd7z1SyijZtWdiTRb5J8GTxxgHTdpdG5PZ7HYYNjsM0wZxmFoCYfoqSxKx6MpFhDGrR66ECpI4A3EsA9u5p+eiRHpNMoGqAtpUJfkPyi4GoEzgiqRdtKijw6bNBTaXPMLD+zvVnFsa1b8qU+3m+gr7/a7ps4nbk29sojVDClbcBK/j5UH1Dh28C/C+j/MYKGkdThRJxlJKolfoCVXZs+fTWQCALIDVtN20MRrShMJH0aAsGr89eRDXdlY6XTsEKWStOGMG0rzAB48wRBTVwgORiEcroHr//q6dQ8EHjNNWnk2tYjtfCh6eHhFixGazwXYrQLbpNyVt+j09PWJZFjw9PammX8DT3QN8CBgmaRS50PURvXPYDVsMbsB23OF8OQvoQoTMFWleEEqBG2RcebfdYVkScirSjICcM5UYOZXWeGIIYHw8nZQdK8/xeDzCkcgKeAUHTXSWBGVBZrEpX84zmLpQKgHYxBE0EOLHAblkAbI0j5uGiGkIkvQRMI4ywpXUjKKyOapRA6AEdBYGN9A1UEY/oMwZy/HSRuNLWcA+Yz9MWiwKMJaXjCUL4G66eTcvXgjDQnONp4dHuCsS0WdyYMdILPfN2OfDNLbE8Xy+4HIRQxsGsNttW+FZCyPVrFWGTRysde4yCGLo4IMw0sUJy2GZBWQJXsD5aS8sOtMAs3PHGDRpqTinM5zz2G43OOwP+PM//zPMyyw5VEp4fHzEOx193G/2GMYRV4dDG51quki1IJLDi8M1atWxyEqoqcio2yANJc5VDH+UFUK0ek64tHFXY47nZZbPOU7QoQbJ99ZFpjYPpkGAq7wsTV/zcjpJU0oZbT4E1FJwOV8sKjeWsYlly/r1QFahbgYiS3y1Mi4pY0QE3706D0vOR1qkiO6lMAUrgHm56JlF0uhaZpCCtSEIG9WYLafFGoWQsXznUEhyhqVF9tr/VzNKTsiFtV4TgoBXwFvGyDpzsxagOr8SpWcQhF3BzCjskavDMotmZyoqhu2T1kqh5fqFGdUBx8ssWo7NEKK02qVGRhjUWKYypklYYEENHajdN3SXbZYGSC3KjE7S4HbeCaMPwhJnyCibgHwRpRDmSwWRxIR5XjAvCZfLWfTxdB/Kmd0BCVJWaa2MaTMhlgHL44Ow7P0gGq8OWOaEt+/f45vv3uDp6Qm/+tXfgojw4vYaL1+9xOeff6GC4SO2m60I8TvJXaewa0CW6Q/WkpDz3ByXl3kGAIyDEzaLE9ZXSktjkLOOAnq9bk+Ekquc64pBOAV4S61wpOPYGmtNggSkboYQsClrrIjBwZxQu6kJtfxSt50wyAig4HSyydhTVj31/ImN9a/u2F4bFEVz3lxFUD7GQYF9YcRJPW4CHpITSB6s+QBJLlwU2DKdXHNFJgKckVqKEEa8TbqoYZJJWHSYhqwA1M+80rtSEMqYRVLD2s/V/neu3ycwIw4qIVMWCWSqE+jIoxYBpHwwoMy0nOQS/OqSrLFgyf9S1AwBTnWlVKMLtV//D/j64cCTutqQFfe2kYD2wGH3zpTpNdEm5yW5Z7PPrA15JvuQTsbGANEZstEkmU3Xm14rnCb8IWpCx9S6Oa0L5w0xVDQSElRME4l1dpfc6ubK3zz7zO3z2R74AK2EaVYokOL0oxelHNpB4UgSNyZLFrUY1o0cggOIcYF1rnWy3ERCFUnOuciBXzKA57POjuQCzOHPQACZBRbdg3GUQj4OAfM5t4DE3B1MGk1cu7SldDtOmwu37rJZSbdEDNR0a5pVqJz2Ivaso1eGIltX3Dq7rB0oll9sXWEYKKZU8aY4or+TrJttO9IOldWzbN05fZgmZg2wMHaaK5R1c5xQpVmFbzX7Z01EZBSnOzDNSs33zonbxGbT7tugFs4NS9QDTZJkwIQbCZ0Kap07NiocTMfDAXaPdS1ZAeAsSDHAQV5ZtAPsME04zmfMy6xr1kYHogABuYA8EDRJIC0cS6nKBEjSMdWOqFipC8gJHZl5Ji5Lclj46JFrBpPAR8yAg7LlRmGjjeOItCSclqM4ZuSkxY0wC6qOO7YiEtZlWFFDGa07bB2sP9jPRAhO9ehYAO9pM7W1ZCMTxpALNpJZDcyUYCt6VX3cwj6zMVqCjrQm1TWiCnApuH+4x/HpCU9PT3j56iWur6/w/v17PB0fcXd/h3fv3wrDyYlLzuV8wVdf/QbHpydczieUkkEO2EwjwBXn80nd50RcNpUEGcl0bb1VLV7BpEtJxbBNcFTBdAMeHKmWANnccdH9ChBZ59ZiPAEs68E0X7ICDY4Iu+0W581GDl+WhCX7oiwsdTQjaGIjttklJwQd8Xz56iU++fQTfPf2HbKueyKHwQ9abMpohiO/fsqSYK7+aB4httAGygENxOVqwvDUCgnbqx0QUvq8swTEGhZGFTfNJf2eU6FSi0G6TJN2uS+XGYPG2efdRepCnNZFYwDKZLP1Z6ypWhkVpTOzmNu1S7LhhJ1HFZWFnUQ6linglTR47Px0IcoerE4TuAKq0hQywVY9/uCV1Shx3870Dvj1FuHqPLUjVO8HqgrUu+dsHvsdK+Tn+YLL+aL6GRVpEXA+pYxIDpGcADsKeBN0pJ+6QDxr4wAKsJlwr9Of9f559y5pF7rkbHAaclKnoOjgBg9WINvG2sBOwfShryWSD2RC4bZeOt3fCjIbDZAR2drEPIWZaKxqMydoCRQkP8k6TsmV4aPDOAyYk7AXjWV5Pp8RYhQ9MzjsNnsVuwPKIgyoy0mEt8/nMzwIkUSroxJj0tF10yqrWRph22kLijKCL2OrVRr+tWLJUhBn1Q2SxtbwTAsSet2VZJH19UutsLQcxZyahEUvTEnLKWg11sasIvIK0NniJTXm2EyTjtWLm6df5R2aWoJImU3URypYi5JWH2nByjYqqu/tnBRgJVd4iNU9UwWqB+cCyURdYwTaCDQDIOcwTiNKCTgdj8gpN/bVGky18RUTT3daoVluclEnZYCw3e6kYVq1RboCVTqj0hiakpcMCnAHJ454nkjGOqqMvDuiZzpkLW4CyFn2WtNddBWlCKv4o48/wv39PZ6enhpQdf/wIM/3JKN4DBkRHWJogLp99iFElOKw1EVF9GW00sXOjhaNFwa7zhYV9hojqIosOwLpVIJstZ7nGeprjFUomOK8BxvTjISNleZF5Bl0zU7qvp1Tkv2u66jU2nJoM8PgojxxkvzNtYhgTQtGXbFovRf9vcZqXY0+GzOblCVZWXXrlD0bohhtSFOPkHIfC5dl4vSP6OWYjqOd+XZOMNc2+uOsPnWkY7syeWE/bxLlYsDSK0cbZ2KWsetc9CyjCu/NxdMmZqi5h2Z1P/Xa+LD4ULI0pilrPg9l+6/G6tsYPLrphAEcRV+3GnOnSqHvyca3VauIIL9TBaSS56IEAZVjyCVrXJLnYj/j9UwQdzGZ+DAAlAna/ACcJ5zPM87zjIfHR9zd3+N3X/8OIGBZziBHePXqpd57QolByA8lgrjHMNFFljwtqalPziIRUosJh3stN2VMHyzNE+VjAlp7SH2vcdrcDVkadiCbdEE79ls+rGeCTAkZK1XrGk9AJVRq0BFauWZnG/fGXc/pXFuT9ju2jtv5WnV8rIGgpTGqSc8hWdk2paT/bmnLs2QFLXkxEJpb3sP9Q9tPWzx10uh6NluHnv5oUGvf59X/G/OJ245ZMalY8vEOuFHL5XvKW9sfc6VuILa3FzX5H2r5mUmmWO5hzsOFq0SmynB6/1tk0D3xQ75+uKudoYGq0wKocrzSWC34MduomcTs4AHvxI7SCjugC4nF6IWlUwUFd44xjkMDMoyubAei6OyE9qBkYTAKqSUymbgZi9jxyqy2FLbqSpJodu0wbXfOFi1YEUQZAanc3egMwFr0QCHnlDKK1pWeZ6GRbzfaYbKVg47M5kWK4zAGeOcxu1mS2vkEgggMGtPpopaqm82EEAKur68RQ8BmHBrNf14W1JTwdDziMoulbFbnMEbFPHMbtVvUstZcXWy8zsQrpZOeVM9GWFFXV1ct4WQwltxFs42CL1oJOs7mAzaDUEXDZiOWvUWSFRNLZ0YbryhVtKnAJo4bmgi1Xe/lcoEJwbZFHGPTsSFHGOMkjDLvWuclpQReAwpNaLQDcDZTb/pP3f5SrE7ny9xG4ZYsz26a5HmcTyfEELHf/39Z+7Nm3bLsOgwbq9nd15zuntvmza6yejYgBRKEFDYpmyL85pAUln+Dww5H2L/GfrRf/OKw5NCDGaJMm3Y4SIIiAXYooiCgUJWZlTfzdqf5mt2txg9jzrW/kxCEdIRPxa3MPPec79vf3mvNNeeYY46xQdOSpqrjQk1VL8WUfFXWyfchWiff1gwzS4fImAISsTjmWCjvX5bkk+syBdln3gMuI0Yy76yzOO6O+NXnn+PunppGXujk682aGhI1gTNvHUKaMex7dtYTCw7AoO5qFr3VMl6i1PNpGhAiGUEFWDOAywK0Wod5GmUdr+DM4q4x9H1JCnOxYw/CosACAgmwxjGSUHRBNNc8Hg9Cy56ZOFiLmAlGqYhlJ3bqFCe1aGRNWCfjggI8QoBUkw1mwy6XqzzBUQFidczCWI6FLpoiLERiCKQ6i5bU//sf/SM0bYvf/lt/C1dXjzANE77+6ht8/vkXuH1/gzjNuLx+iqurS6y6BsfDDl9//RW1yho6r83ziO35Obbn57h+8pQHgdFRZ1dOnbK2ZW2xG21hLRNuL4cJMp0UnWhfGCNaZpmlcLYWKRukOCNlEQjHUlykGJHnADPNmPZHHPY7fPPVK9zc3ODd69e4u73FPI6wANarFebIuLI+PyOzzFDk/PH1YxwOe3zz6hVevvwIH3/6CT7+5FM8fvIEvqNhwnqzQlO36FYETZSBC6CMcZLmLwYHApbFFBDChLpu4FzDcfECcCSkuIAAquWm+7BympBYIDugMtA2xDSPxQUSMHRVPQXTBZjPyKh8BWPsiZZLwDBoEsT3uri4QNs2JQ44eQ4pJqHFq/OiXcb7TgSWl3EDruO2aZFyIps2ZbjGluSF7q9kN83jVMYMvHWcrZyEAREiwTabEM0k90jcZS1KZ/h0fFCbJQDQthxTDTNBjf3uICC9sumyNIMyjGEBS4HvJCNIvF/v373HbrfDV199VUYjlTnQH/d423VoupZjMqInYT0ZFldXV9AMTtm01CuJyHkuoCtHTkNhV7x/9w7jOJL1U1W4PL+Q8eYB427CFGbUAp6v2g7eOuTERHeeetEga+U9xTE0ZsYKY8s+csYW0FybPyo6bQWMCEYBuLGYl0jGCGcM1qs1fvLjHxO0DEnAXYPXv3qL29sb7O53SCmi8hXm+R6/2v0KF+fneHR9jfV6haZuimX1ze5WCl1Lc4HI8TlYg9u7O+TMvciiWZ3yAuqmQd02qJoasAZ393fMh/oBXdeha1rUFZ/xdrvFutiBR4xy1lNLyKGuaqxkhFb1cG5vbzFPE3wme7F2Hl3TYrvd8N7NM+ZEtoaryZTohVVzPB5LbVBL4R+kYVAJQ3W73ZZR6P7YYxwH7HY7xBhxfX1NJ13VkAMF1kMIQKAe5xhphgJLvbSqqWGbCqvzLW5vbnDY7XF9dYnWNbi9uRWgpGbj1WEpAqX5d5gIZuz3e+pb5VzysYTMQrURACXT0CFNY2kETNOInGMBm2NU9vq0NLek3ae6XjoB0HVd0ZQquYbkxU3Tom2WXEXjVWkoCxjFPEvXNPOZfjig7Rr86Ec/IoNRGE8xhgLWtA2Z4+v1mkzjSN21U323aZowjSNu39+Usbft2RZrGZkz0tBQDa+cM3LMqOqKYvnChlBN0BgreBeAwJyyaduSnzwYEwOQA0eWh3HAMAwlTz1t3oaZ8gsLo5UaSTExbqmrsxoSWGPhTrTC9I+eJdbwvD7uD0WMfjGV4NrohwExJxFw1jJeACgHGUNMCHPC7v6eOY7xJZezxsL6BnXdSgziNXJMFTDOol116Owa2pNRkBICnp6Cb9Y4ATqpn6gFvVJljDFwlUUNMmJcdOU8I4MmcL00Dbq2Q1V7YcOSdT2ONE64392j8jVWqzVH36e56PyMg5i/GAJVXdcKyCtj9TIenKTJy2YzgZe6qQEEGLApS222+gTUjohxGaOd51mmVybRy5vK88yR7op69kGaVhx/pRSHguc3N+/w5u036NoVqqrGj3/wfUoEWIOq8vjB97+P7XaNy4sLTOOEaQp4+/o15mksgNpx6FHXNc7OznBxcY6rq0skw2eUZwrBn215v8ZxwDwEjHGmcY31OLojnHNYr9Zs8q1WiJmg2hwj5qiSEQH2wPE6jkBScMNYi/WWep0hMVcHfGHyImWilUDJV5aGtxjyWAqZT/NUJCO0huc951rKRNhKzlQ0o4kmYo5s5t2Ktu39/T26rsN2u8X5xTnW6w3jlAKqAnLlBMxJNI2tPckxjTQadZyWDLt5XsxLVHIky9is+LbK+td/Ld1CyU8W8Kq8jmgBlya4IlH6JUiTAlM5Rry7veOESgjC6q6FiWaF/ZoLW00bqJVXx8oozNa6NK1TPGFspog5TJilvnGWjUuc6s39BV/fGXjSwKmHDzJBH03YkBWoKYQnqOLEaTdFBZL1UFDcT19HDyhrl/8OgTd+wf9NKbRKN1kfnAaOlMsiUpAq5bR0LIo2RsHx9ZPKz0IQTS78KJvEnCC1ii5aoLxniAmzaFVp0WeMiLHJ9S2LjO9hMu+tMxZJOojGZJhskEJY5vedZeIjIpNeZuCNMfIsVFdCBNhDEGaPWlhnAcVG9H2Pvu8Lih1TKpo4+rzjt/5bhSWtLF5kGWUyyzPWJMNCrknuqrWWBazMker9Uy0MLXCWzhLvz1zo2ovzX5JkQZN5BQ00YdJk/MGaPflD8MYUqu/JIudqlPdR0EpZIfpa+u+KRsMQfDTSbVSxz4Wy/nD+N518ZmuMgDpLIX/a6SXjS2aYYco1nYJU+pkInAkQJfeAXY8sz5MJmAqhM1mjeLYVxhdBa9XCmcv+VW0RW/QcckHKUfbpAkLq+s4JJ52RDFrh2kLL1tjBhFj3MspzkLaHHN7m4TbV3MqIRg4WzY0F3tXujHalcmHRmSDdw5Mkz5y2F6DngHYRlrVmsy2dFWXFWNmLUFaCPGPtIEfphte+wuXlJZq6wfF4RH/sMfRDAX7XqxW6tgWQeZh3HeqqEuFVJ8UZYIyDc0b2+iTXKsdPwTnVjl7o3obPt+xpw62mBbDX9SYxyoBkCPvg3pbbU7o6kEQiznPRwOrFrpwFwgJsOEdg4NHjx+hWHYbDUMA+ax2qusbFxQWev/gA2+0WVV1TlwJAXTdlBNgVTRVdK2UjL59fzitlYhbApTApl3MLCshYdYAyGkr4d8p2kHhtYSAz5/Laeo/1TEvFba0AlAoyp6UbHIWRwf/+s2KVCnIZA3HnWgwdyH7AkiidxjNIDNCxN6ssH1M+P4Aimq4FRJJ/J+MyC5sjPUx2rJyrMSEZA5scskoRFoaPnvOL5qOC1CklJLeIfXNsySz7VUDoMM+S1MUFpJYmTBm9ATBVHL1IoGuOGcW8xJG1tVqt4J0vlHhI4aDmJxrnOaZLhqUya8Zh5EhAjBi7sRQx8zzjeDyywPQODuKAaByZSiOLI+fIgnXWCzttYdxpEp3MEtvLupArLeYZOo6Qk4zq5RIbs6XbZ3FLMsvZw88UxKkqFbe6cRxwPFao7+9BoJ/XSwMJGf8TFnWMS/41y7hCPXlERzFwGy1CmHlOzFZAbzagnLJqVTdS1q0zHInUZ1jiVTnCTfmn7uXCXJBGhJNzNZ/eI5wEKLP8vjKQyUJZGAZWwAEvgGXK2uFVpnkoLCM1FGDuZ5CiMEkCm2YhBBYcytQQpp0TFj+ZhAI8g8WJDTPlEszSrHInTL2UFHT+lvsWsjg46fdkLeUl3mks0fjKjj9Ex0z1xGSESJp7Rn5HBdg1FpE1xYJwcU1TrZ8lt9Kc4VuB6AGrXhs02kQcx0GeD19HQauq8ghG+DYne0P/mfX9kmjSiQ29F12iso4exEZzclVmOTsSP90swB41ngTsUraHBNukdZDuVZWAsFaEuZfiWBku5YxLC5NaNWHnaWb+4G1h72pe4fTanSMIlyKBTX0Gck7zXnCfPtCPc7IupIBVOEoLVpiFQa61F4tJU/TZqP9iyj3gWuTrL3p8SdZJWnIsydvIdtHaiWAnM0E5S62FdZx6MU4ONCGSGMN4q0cWWR5kZIEqi2X/67PIOQtbwyyxy2TASiGdmddEqdlCSCJIz3wghoQMI4wnvnGQkWt1zbWmgk4f6J8Yo0hcpOJWrvE5xYg4z0guIVplOjs5/22JlXXToG8atHVdNEe3Z+dIOePFs2fw3uHy4pw6dd4hzJQNiGomkRjLx6FHikEMlhpENduJrAvLGhM2YBCCQ+UTvIvIPiM5j9hQPyorM0ZuvRW2Ou9/lL1LeY9oKD0DKBB9sg/l3sS4nI9LY17WstRXRnK5BUjWWFPSl3I2LDlgLutO91DOKLp0moeEEEi8SFnqMK3/lnhWinSNIxkwPMCh+aL+3bdjnqAFeoEFmNE4qXFIgZ+HCdbp68gNKZ/15O/ksNOcUnXmplG0BaNMieUIazOogsL9lKJwvAzK5wbITNQc0cDC5izTBqDYvl5v1tHqfHIt3+3ruwNPXgJsWpg/IURAmEt8DKwEs7HlcXHO9lQzgRWj4n8hQpLMjHFkkWKE2TAHpbzJeIuxyAhImBbmilX6IlUnoiEixyJYmA6ysCPYWW5rateoa0wBMcwi/RXCkgzFmDGHyIPBWlgJsLPOcMrPT2MoYI8FZ5PJ9IrUmsCSSGlx441DDjzMm6qGzcAxHgraGyVhPD87Q9s0WK3XBSTgnaFu1DwyIZ+nGb52aG2D/WFH0bqiE5RwPB7w5Zdf4u7uDiEEfP+z76Nuaux3ewyJ+g91VaNpmwKsrNbr0oWEQRHOJUuK90iBFr2nTse1+NCpp+Mc4DzGeYbO/kMALhXV1PHDMEeEkHA48F40TQVXeWzqCuM4YhgG2oTWNWphfWlSoyOBKdlF10Eo15pAVlUF5IyJWVIJ+iommlICROtkHEfUVY31ZlNcsbqWrjL7/R7ztIgCTjFgPOww9D3W6zXqusZ+t0POGSth2oQQMI0jhr4XloAtlqf6OQr7wHspkAie6Mhczhm+XsZHYkzCxJHAKQG3bmRcMDOp6vses3T4uq6VsQmO/O1FN6OuqvJ5vIiL6+EbEwUo50R2oRd7XT4/3hv9LN6yw7ofB3ELigRN6xZtS+0kTeq1q+hkNPA0hunhoXhIinSiaXxbDjMtZr33yC6jqWvEEBGmGfM4ou+PsIZd7qYT+3S3aIwRPAFCDiXxtdZSJ0SuwTmyLRvfoDUiZo3FFYd7Q0YbJDmNQmcOM92C/s7f/g+x3W7x0x//GN+8foM/+qM/wf39Pbxz+PTjT1A3NTYbWuiOxwPON2v8j/7O3y5JX7G8nw4EugPBpMVVyUkTaUk+K0uTgmliAm+AxcI4i3sahDEqQE4IM5MhY8tYBT2GI5zjetGxkBACuzoROB4oXL877HHoj5ginbHevXvHPZUynjx/hqvH1/jbf+9/jEePHuFf/+4/x5tvXuPf/sEfoGkaPLp+jB/++Mf47f/gPygMlg+uPyiFgF4/LAvQklhmQmQEgHRMKiHluBRtVkch6UY0ilg+Muf0OXZKYEcTTQAyFqri6ZOMvSptWcGfjOORbB5ar6uOlqypqoEzDnFmAezF9S0DArA8BPoV/D+NB9rNXNakK99XhqQChFGo7cSCNOlBSdJipJOhFrNOkokxq+g8i5UwR1gLSeT4brbiz4bimjLJHrWoGgfnbTmj9b107Z6KLdctk+ftZkuR/EnObxkrmsYBD5jUOQsrYhFdTykKw63CFCaM0yLsnXLC/n6P4+GIq6srXF1dIRsnI2uyrGd1ExrQDz0Ox4OAmnRPUwHxECNwe4OmbrDZbBBud7h/t4NCRPvtPRnBG8b5lEMxTXj8+DG683M4YWQ7GTuf54mFp+gHOSeunDljfxyXJo4mwnKWGonHXoCfHAPmlNHPe+pL1XUBf1NKZMDCYJ4D7u/vYZ1Ft14hmYTb/Q1CntFPLTarNbzz2K43PM/GCVOcMIlo7jhN1MGrKszjCO+51jW57Q/3uL8PRRdyvTlHtd6ga1uOJ2XRRZxDYdOU1FwKCl2rhQEWI45i/73dbvksAtePtRZTmjHc3ZAlLQw4spJnwBhst3QCjZHMkmHocZhmxBSxXq/RdR0ePbqi268UUi1aTPOEKdBlEzljJeDUcOxZOIlLlIXBWJwwF+DLOe5146wYlzC+jBPNU/zlpYjwRqQwI45kdN3e3uLZk6fYnm3x7OkzGGNwPBxKDl3Ls42O47yNazn+VsARATsMQQavo7zAYjgT5dxwruzJ4/GIaRzKGFjbtCW/t9aV/I9rOwEJqCrJ48NMQHOaMM0zpnkqIuoaXzTvraqKY//lM3HcqG1brNcbKTRFIiAlOrVicQcdhwExRhEnpxuXMnl4z2eCNQ5wdS3js1BErIz0qsPzaTzNKeHYH2A9R5x0EuCUhcTPn+ElB9ZGcFXRdfH+7k6uj8x3Z2j6Ujcc6VemWk4J+/0Bs7Dx6qZBu91wnLE4TpvCjNLzIecR3hk6zUluOM7UtgTYoK7qZhlxmgNZQRPZh3XNMfXNdoNsLMaUS0zOie5um01FVqtOlICgbhJ2bowz6roqItwGRtiz+UTQ3LLWNuowfCLDoKBS5qSMcUbQjITKL2ZC3lvUzVrcVy21pQY2EpxTWQQHHR+aw4jjsUd/HOBkjHy1WtN8Ruq3mAxzG28QhgnDFAFYZGMwjSMZS+NI/a26RlfXaJoGn3/+K+x297g8P0fXtXhy/ZhnofUYhxFj3yPIKBuSgckWU38sjcdcchR+NoruV0ii74VscHZ2hpcvnuPli2fI+cds3s0BjTDQnl1fYxwHvHv3FmEccT8OUPJCU3kYNIggALM+38i+PsDvHUy15NvDMMDAoGobsoosMEwj3r+h6H9d19hst2gMkFJAShZAhK89us0a0xQwjgHJGvhqhoOy4AkAznNGCAbTpGSJWnIkninaQPLeI4SmxBwnTFLt/bqKOXpTLVBFSMxbNB/JIvXAaQkjjvaGo6R5aZNaY7HebFALY60wtLGApQoU6j3SM6aqKlQwCGKIpcZCmmN7fwIqidmAfvHcFmAmZ2r44uTSDMRZ7uGXXpM1lu6NRe5D4pVdgLnj7oj9YU99RB0nzsRV5hTQH2gkYA3dY72j7p3zFq5ySAYIkicr483BwXhtiDIX5og6G9YLecISkMv61P7ir/8fGE8AsHQ4YEyhpj24wSYDEPHC8t8L+h+jaqEoCkkmQAwR0xwwzxGccTLi6LN0v5zO1BsKchskTFkOUO+XOWB5OFEQZ2vlGuWenOpwlGvXhy1oZ5LFAujcs3aUkgikKe2YQuIp5vJ+EMAGoGODSTIHLkmKFkELTVbQUwfAi3UzFl2tuq5QV2SlzHEWYWY+eD20dvtdKU6DJGvstvN+f5v1oyyifugl0U0FLAwxII8CxEiyCHmeVgra8t+Wa8K6RQwRWURSLUViF+0R/mVKHBMwIiav3TOCPRauCFSbglDTRcQWhzPnvYgHnxRi0llyIubKNchRKbJRrHRzcylMStcpBBhH0KygvUZmWLWbFheHNBVs1u5Wcc2T7s+pbovujTDPsp5SAZImyYhUI6oW8Vm1B87I4uLAe/aA6STXkmKSBEH3qPmz+1/W7ygdkZwB5yvUdVPuR4oR2RhEawtoAhGMV7FtJkEPg6qs3pIg5axBKZeGgdqBa3KsLArVGtJZbABFp2C5dK4DdZtKMcNnXxKb/y6gPZ/8j2vCy37iZ0NK5f6WDtlJ0e79addxuYdONC3syf1HRnmddPI6KtirwCAAnJ9foG1b7PdHHPbHMgJQ+Qpd18oIQ8OR5KzjyItz06LvoV33sKz9k2duzLdjG2OaNZxJz+ISaqw45+hTLPEzs3CxpsSKIIAxZfZM2Rtc2wGzaMIcjseyv6ZxQgZweXXFccxxwqPH13j+8gM0Dcfn7u/vcH9/h3kasd1u8cHLl7h+/BjbszNJFh3/GHFFhTIWHZRenbOAZMZIZ1SMI2CLS46C56f3BiXOnzYEmAAlaxc2jMSgwrzMCSmxS7Xs8VRGgVF2ie6BjChjqJrclG4Z8ABAehinl46qrmvVGzst5vR3ARTWZc6q/ZGli4xCR9bmUQGyckbWRoHuYT0HT9YRj7e80MghPydMVoMEE3gv1H1Pz6oYAoXpsRRRvqJDYUoZsHqfAw6HQ3HZBFCYOwAERFg67aWLqa6pkGcWI4WVIynm262AW5FOocqwOBWmJUCuTCxhwlQV1BHJO8/ETTRnpmnE/f0dhdjNc3RdCzhlhqqzXsbQb4pNuzW2jDnFEDDNM3rVCPTLqKIKyauUgSaiTkBCBROMIRAbs5xTGZiNEce6QGZrXfMsR6amjiOoXtUedV1hf9ihH3vklIo4cEoR0zAydqUIpChC6AkmRYRpRAoWSAk5RtTeFp23WdhFTd3R6fREy0mZp3rPs2hEUjOKIHrOZCNYcZLy3pc1C5CNAo0DyHLGOwrkyvPX85eFA9mkVgAgvb5OXOKWjjMB3MpXWOnPOy/6ohQYHoYBOS6MZWd47gfp+pTzLyZYODj4osmzWq+KCDisyjrIXjRLbljLaNGqa+U91FI+lP0Ne+LeqfFEYpOeubAWxi5MDLoV0poeAIIVZntg/A5zKHEkxsjGTGC33KRcgAjN2R4C5Uvc1VxI2VrOueLUqQ2L09hmzMIY0uela56B5YQxFePJXuTZGOYZ0ziWM54sADaMNcpaZ1C5SvTRqDVjYOC96jTGByC9NqQLSB9jidOn54X+/Ck7yhkUIMoJk3d5zpB4u9wrK4xyOu2RLaIxvjSZJU4ry2+5EMnVjS9MKGWI8DwwwiyrmWtUtbAFHVkeCoYIs1FrJ+cSihOnACMLsxAIQQp1KX6N6NmaE6BOWTDLBMjSQIHkGc6y1qETnRF5BdmL1lD+wCx5oI41nbJkyPpbpgtOWTQhRNiUYaTcjTEt99ws4IE+WSdrWhvBKRM4M9ZyrZhFD0pJF9oQ0H0v2E+pHYKMuNKVlefM8XCAsRbbzZkAmDViDKIHxZjunZfnIgYxJwyrEj/lPSmtEqlZZpdcoGkbpMS4r7FRmzhv370ty+goTprcCwlNXcOC8hXTOGCa2ey/ur7i/qs82sy1ZJXdKmOhUdzQUopyv2OptXScO8WIUHCBwNHGqhINWa7JmEn4AGRNGZmWcG7RTIbksifJi+4rRXdy0jqtgoHBeiOyEzLOHhPjwemmUgwg5ogMgyj1r4GcTcYW1r2XPGuBOvKDPbpc24N/PPj672JNlVywRLHl9ZxhDjQOE/a7HfaHA7yjnIPiK1mZCAXKY/ydRSfSOot21UBdd2k4QU3j5CLrbWmc5GxEF9sgWznroICTAMj/fweepJNsnQjzGoNZ2Dx6I5MEFSsHaqGj2pNkMAXkbOA9/36aF7aE6jboz46BB0Fx0JEH7SuPIA4IY98DOaHrGrqFWXGUsK4sxpxPE/SMcZ6QDdAkMLDKeksZpdsYYizAE8DiR6n/YxgFsaZ2xaE/AtnAQpMhwpM5J0zzJAXJUkR60S9QgEIPKGMo0jav5nLfq7qGrytS5VPE/e5O3rvFNE14//49vn71NX71+ed4/Pgxzs7Oyrx5t2r14f0ZIEID9Zs3b1BVFS4uLgRdJXvk2PeF7qwz6noPfSXis9OMyjIpr0wNn9ntUITXW4umbkqAVKBhinShqz3FV2kJmnA6vx+T6HoZFjX74wF1TRFsV3m0dnG0mKULo51OLzoBMc6kzMaE1ndw3iEMgwCivCFeksZpDKgquqIouKWl3DEmhDzjqJ1mazAex7JWAaAtIqXq6LUSty1XxgCHfoAyxdTa/Xg8UCNg4prabqh78cGHL0tCM5eCiPe2Xa1gnSnMJ71v1ANwJwd+pg4IABgWBfv9Ec5XcL5C09BdKMWMWaiZ1lo6EZ2MtlhrsdqsUUnnR5MhPXAVdKqrWg5WHjrGLPoD1jv4ElhJZ1dAOaeEOPNepiK3pjTyZcRrHAeoCKuKmarezZ8BVuWzJ7Br0pi2JIlBCihr7cmhngXcmgswXVVk2Z0W9FVVlTGZMAcWXYkJxTxNxT1TiwSEhQILGDx79gwhJPziT7/A3d0ddrsDmqbBer3B2WZb7LIXI4RUEm1jbfn7KGDkME8PAIqyFiS5LUdzpk4dYBERoWYEOnIqXhaFLVVYFchI0g0d+p4MTNGnKUl4orbEfr/H2/c3ePf+huMqBtjt97DW4id/+S9ht9vh3bt3+OFPf4If/OiHGEPA6zev8fM//Blu37/HNAVcXV3gt//9fx+ffv8zXFxdIsjINIGNxEJMniPBEYnhWNaWFkDOL0FPXTrZxWViU8SAs4qYqmC3al7wXs4CAMwzXXZ85YQRuzA0+MwT7u7uYK3Fer1G09RomxowTFfGYcRsF3btKTD9oLudROATLGbyyTPU72m803Wpia7GrXKO2ocg2yJ+LKOCaWGr6l5t5HWpbcjYUQSuuTxgJDFU6cqYxRIcFpgjUgDGB2sSIqrNz6Aj33Vdw7tchIERM47HI169elWA7mmaJEbzLG3bBvO8gPwaI4dpYUKnQCvxu5tbVDUZFpcXV/C2wlF0KRRwDhPZtyHM8n0yJzwo8M8YbsoaqKsKbcdR2GN/wB/9tz/Hzc17uPpv4uLyAlMcBehoMc8TDoc9au+RY8Tl5SVs1SAmjhAOw4Dj0ONWWEjWOdpOn2h4xXlhhSqDqnUO3ljJjOiyGU3AMSTETMbYMFGLg7pmHvv7HfrjEV+/eU19wq7G+fkZrh5d4v0NtayePH6CVtiiKRJ4ausGm/UaDgmVBVyKQEgYR96/wYqeWlg05aZ5Etcij7ohi8KLI56VQnw2oi8pheLlxdVJBzpjmkNZJ8p2VA2Vpq3L+WidfeBeGMdA3SlhnFhr0Yj7pTbEdN3oa4zipGoEeK6rCuvVCso2mqcJ/bHHNI64u7ktv2vBJkQwZLE4I6yugTo3KUa0aFHXFbbbDTabNWbRC83WSPwypTHTdR1SSri6vMTV1SW6mrpucb3FOM+4292XfIr27CL4rU2flEs+pCwo6/kZhn7AKCPPwySsxiiuXongE7VX2Biiy5jkv8YQKBPgsWkaYZ7xczYNGfK5Uj1Gj91hj2EYsF6vmfc21D6cZsmdSmd+Efst4OAD046lKQKg5ARl/NBc4nA44P3790VvJEwE2MZZckMp7NfbLZl74wDN7ZVNcuz3ZFc0LUKKGFWPx7kCVC7AGBuE3vsi+D4cySarmxpVXZOVY9n4SIBosknxJ/kGWXYGTWhhnGNzwqi2X0bWZqcA0KdnxdKEBNpGzuSa93icJgFAqR/kvcdmu0GM3ZLLe76HjRwhytJcOmWgF11BacJGAf5Kvm4tnDTTbcP41XZ1ifuTMOA01s4xECjLCzu39mRpdV0Lax36cUBGZr7vHNq6Yd01jkiRrpd0VUzljOfouYW1CU1T86zKzBGGoQdg4JqmyEDw+fml/pJG8WZDpqfqVKko9tj3aLoWVcVxbWMdxmkuwKIaAeWQKKqeDUw2outEUFfBy+PxgL7v8fb9O0zzjM++931sNhtcXFxgHBscD/tyPcooub2/xzTNpQGTUizmD0M/iDudAGiNL1pxdV3j8vIK97t7fPPNN5RoEf3cOQT86Z/+KUGmpqHzbzaYpqnUpGGesLu/Q8oRwzTi8ZPHOLs4g7XUF26amgBHIMutqmqoJtMwjjgej6Vhp8xd6nIFpBAQckY/HFE5T1auxIoyFp3JBNZRaNXi897jOPUyHqnNO1NyQiv1oeIu4zwDmSwz27bYbDdLPSBTSiaLsQssMjiCH5OMtoI1eeM9vDNYNKop+9CAOr7MqSKxcneS5wFCqHkILC3jhBLbTsCqUstENnEXogr/NN5gOAz4+quvsd/vcTgccP3oMVarNV/ZZphMuRTrllxhYZ1Tf+zq+gpVXaGzHiGRAGQzx/AuLs7RuBqV6PUqccQwiBGUE/Ys9em+m87Tdwae5ilq/OdNMSqstgiZLr11/i9l0bApjBdTOtQxLWNRtGmfCtCjrAgH3ngnSJozplAyreV7kKRiAJOQykPnuElVLXbsisgRO+RI0hxiYSsILQhTYDJklNmRLXIW23ENtjJfPMmIlXy4wgwgO2ASIE6KBTnEGBCYKDHRtFIAscBIKaFq6qUT5HSwmdfZi5jecaR16+7+HnOk6Ph6s8Z2u+Xcb2Qy/W0EVTdb13WkHJplXOP0Z3SDa8FWKNPWiKh6Fuq1OFUYSzyyWhhEGcAsXX6lNKeUYCPFBhPoHFLsKw1OdCxk7liEewuLJMayUZOwZLSA+zY7wMpMfMoUEQwxFLAmSCdYadRaOCZJvBRg006sUkOzMEfu73eY56lQotuuY2cnRExpWFgEUJc4U+xfm7ouXQFrmbRthT1jJZidgijGmKLto+KgWXQCgG+HMjz4XR0R2e92OB6PDJgxwdiEtqmxXq0KSGFAIbsxTNJFc2gbrpOmZfHiLYX9vSeDIseFgWWdA5LBHGZAimM9ABRIijILDqP6b7znzjlM84T+0FNLzVihIi8hyrkK1iQCJ3KtQIBSbfVePQBiZJ1W1pbRWzIzTBEvHsfxBJhgQlQ3tQglS3fB0kiBh3GgNap2ELTTpYmgFC/wwLvbdzjuD6jqGm3Tomk7xOMRr1+/xm63w93dHZ4+fcoREunq8zBVS3lhWiJjwRAMQK9nRlsZ91pAN5RuKsCutxV9OCOgvHZNDZGTE9Yh2TFN08hnimVkTD/bHERAPsbSyZljwBjmhXUSE1KI6A8H3tvmCltzBl9XePHiBT548QH+3c//EO/fvMU4DMgZOL+4wPWTJ3j50Yc4u7gQHRcBlaDMSLknUrDxcyjwsxhfMI5p82FhBSErUzWd3LeH+0bFvpNoDUGsrXOm8553GjM4xlKcHLPBZr05aTB4WOvJwCrXc9qNVXbTAgY9HDnFAm4XM4Z8Eq/ig+/VfhFaL137nEqRY7IycORnjKH2DAArHVX96wLiWWFNlIOfSRBNBORbxU5XeHBZrkk6Htqt9iJkrk2d4qwYCTwnkwqTpK5rdvOkA+uco8NX8GVMr5y1IXCEeJ5lBMOhl0L73bt3eHR9jefPX2C72ULZfAu1Hqhqi5QcYKQw0nsAAqpc9/xM0zTBWYv94QjrLT54+QEO/R5n5zx3CWLXCDGiF902jlfN2O0PWK02sNbD1w1gE9zsyoin6hVq0ZGtsMEj91TlPGpfoZbmlbWmuGEFK2wyeSgpL3pmUcDoy6tHaLsO3z/ucTgecHv3HnVTlyZJTBzJy4Yi+WEC7e7HEYf9fTloNpsNqrqWrnRGjHzTw+GAtm2xWq1RR7IZq7oRkxQCi7WMv5A5IH1Y0eKYhYGmMRiJ4xuVo5AysjQEoaPFfEYKipRucFeRnSH/U+A4SHFkQK04zVv1fAWwuMAKIKMsIoBjONM4FfDASHzNuhZzghWLai/nRycOgNYvI+QOvpzZPKMI+Hrn4M7Psdls4JxjvhGiMMcJxBQRXstGrEkZw/74AOBVMeopRTnjWPwaQ2ZBKAyMDMjEgPMeldyDRsTylX19WgAlYdGfgh8GpsgNxLBox+j+pxNzgjf8DLM8B2dZwBN4YnF6OByKft0yymLLmkiS02h8zClhlvzRVx7GiEB2RfZPlFhhhLkyzbOcr+r6FxnLzMI+Uzbnw8+45M6FPavAp5xDTjSx2q6FrzyatuVJHWnIwakIjglNwh7O0lRR7T4vhWwpFLP8vpQoDxo+p7l9ysiIiMR4yzOLQZwUkzASrCnxeZxn1k7CjvPWAb5CFCDTSgOLZ8KijYryuRdmWc50FcxxySODsDlDjIu+YTlbFoCyEu09vdc02yFbeobBPEzCJFnYTuM4wTmLBo2MTdZy1qOMPgbRFp1n3gOjbLgsbP55ApBL0x8CqsEAnQjqQ3ZtNmwuI2dxdQSNcoQQYQCsVmuoocswyNjdPMLOjrVmyoh5pg5wjGjaDk3bYb1Zs36AwRwj+nEUcH7JQeYpYp7p+kj24ow5BIzTzD/jJPtJp4KAMQzo7RGHux2mMBNoSAbJJzSNgc3A5dkFjLXYrDfY7w94/+499ocDWcLWIaw63N2+R0bGar3CNIzo9wfUdYu6JpMqZXDfZ2CehT1nmO+Q1S4MNVk3TV3BGuA4T8I+jAgpI4cEN1qSDpLWcAS7Z6mn9Q+b96HIi8BQKqFMIQmLeWE8LSOOSqIk+y5IfgR4WUApsj6pRYS+OmHsOe9EG1AF8HXKRh3KBe8QrSsCNWSDmXxSq50ATIxjJ8nX6fdzLt8puZ++TwLGccJOmhHeezbAwwR1R9ZRaIjOpzUOKVWyRpea0gZxpg6RDb5IQInscjKjmZcK4K35hbEEWIXp9a2P9ed+fWfgaRpnvqiygx7QZK0k1Lw5IadyEAv0JxfLxQGYQmmnC9yMYZzKPHWxQDZBDmp1SBAhQ5NgLHFJV4kzk01S7yQmdBmoao9u1RXEdXnmGTkbTNMiNqkfbJx6ZGQ0TQsdRNakpQRMQf/GsRdwCJJIR8ziaqeBhw59oGhbXaFqKlSoKEQtts+kty76Q3XTQKmUp4GEiXCPfugZ0KcZx/0eKSVsthucn5/h4vIcVe0xTRNub28LA0K/9NBUG24tdMrBKwe+WtzXdV0AKGsJgo3TxENSAIWUcwFX1JZbC/EpBCbKlYdJCSYluOAKuBRzhMscAeBYj1BV5WsW6ik0oEQ6tKgTHPCQGq2fxcv1RRNK5wXAMi4DPBA8VU2XQpE/YSWsug57mfmdpTP65s0bDMNQ7o8yxgDgeDzi2PdkiMSI60dXaJoGXduiQoVOdC0SqFeSpRsMAIfD/gF4AkjB7V3RZpLIBl9xdM3Ks1Sqdzy5f+xKRtzd3eFwEODJJNgY0TYNNps14nAUerAATwLEtG2HVbfCer2G9cuIkjEGruZs+hxUbFdn+g36oS97RQsvfS4p8/qzVaAjLgDZEHG325XnoesuS+KvWg6K3OcoIru6tzUo6/3TpN4TaAnHgJACMRuj43u0F1eAUYu+umEhqEAnKb5MxmIIGIehdH1PReQVsNbXubu7w+vXr/H06XNUNYGnYz/g1atXOB6POBwOePbsGc7PzxESWYFRRiVqsICKISEL4F5GKmSv4gGAkkshw+6LJMrWwBqP7gRkBSQZzYxyqgEzjhPHBJoKc5gwqkjhCSAyDEM5BDUZn2LAECYZBwUBhDngsN+z+KprdKsVLt0VPvroI3z04Yf4/d/7Pbx+9TWGYQQMcHX9CM9ePMcnn30Prqo5T+6rElP4jBkrcuL41Kl+iMbqqB0Yx+TtAcjDQE33eLlv7KargO6iD6S3uBx6mdqE3om4udORNsYXA4fzs/OyHqlZ4PFt8cxSNBWgKxaArGgf1Yu7m7EGzqpLXi7jRHompcQksfaL06c+qxh01EGdRpd9bLWAMwYxulLgkGlaiAYcMToBs1NOQIzlM0qpI2+s2ZXECoDFoIAOQcwyTGJrMkeCTWGaHzQPmqYh8DRNPD8kjsQYsd/vQVwilS6y6sUo6Lfb7XHY7/H69WucX1zgow8/Rl0vnfiUEryv4dzy3GHo1KojUClnHPrDA4BPC+QYI67OL/Hxpx8jm4SbmxuM00DgCRzDGIdRnMFaDMOEEDLOzyZUvkaz9uwqCoNbm0DaZScbU0ay5Vxrqhp1VaGpazlvLR3ckhR7SceHpbizHPmZ5TNdP7lGThlVW+P1m9f4t3+wQ9O22Gy3pbF0d3uLEALqmjnIMI4Yhx7D4QBnXQG8ViftDor0JoSUUDctNpstsgA/EVowMkbWVY26blA3DZtBQXUdCV5EG5fGS2LjUrWRCiCFpTOcsTTX9J+VMKlVz3AaxwJiqvDv2dmZNDa4/nVfMB+jjtsSJ7m8h0EcfuV6ddSfrDQZHZWR7qql5s+qOKzpfqBTmAHPkZQTJqCwrFRM+LDb43jsMbsJ3nmsVqbEhQdSETHjsNtzjDnM8N7h7OyssDbYJFlGxMjaD8U5zEqDqfLU/fDOUU/TeeahhrqOus9oAR+XfFC+8rToymmOacBRl3GcYCYDL06YWiTVtYcTQJ3rgzpTkP2jOaiOhakdu7KiZgGRVFvLVwK8Z3X+JJCsjeQMsMENcJwnJ+QIWNlfCoSqkLY2GJL8vtGYLrlJFqBCmznKxOjWXallcqJweA4BWVjrU5hxHHqEuLhBE1z0wqhxRbtNLbkzJO/RpkQ6aVjkzFEiZKQYyE6VsymEgFn0NZU1ouNa08zaoLKVjHU5GdHxjC/Q4SNpcCEX9oY1BiLghJBkXDYbRJukgJX9Jmeujiwns8Rtaxyakxy8jIczu8PQj2WMTMewopAdYlS3ON4zNkYtnF9yZwW9plF0b040clJOSDHIGaiMeV47ndxWcv9mYhfWwruaY14gwLq7u5fYyxphs96U13HOYJpGxDDD2BH9MAIpImaOMs0xohPAf3t2hqquEWLGHBMO/VBY9ZTZ4L6ap4C3795zLM27kusM44RxmOG9gXOAlc94OPDsmqYJvqroNBqA5CM8uEevLx+hrhtcXlzh16++wlevvqb75n6P9XqFmCK++OJLGAN88snHmIYRh90eeUV2Z4gc2wth0Ray1grb1KHrKmkKBRk5NWibGs4aHPZ0Wc1IsrctzJgQgluYqr4BkKmFGK00QUnigGc9mpOMalbq2EbNRDbHrACkKPmFfsVEdq4yjZXEkMD6pKnbcq5o3ee09gzMN4vhlhXHbQBQpriuNywmaDotpmeevr6UOIA2UjSunpx3+u/6TqqLfXd3R4kO0b4kk4lnYF1pvmcLG1QnBMo4dEgI4L4Kc8QkurhhmoXEErDKnehYnZJUlrxZxc+/TXT5876+M/B02HEe1VV6QNOdyLtFwFmTi3lmARJSog1j5RGD2PDNTBRIT00niTbdYAwW7ZS6qpcuFkj31M02jSPmMLMjboChn6SL4lB1FYN/tdwkMkxS2RxAlDE/Uow1ibCGgfL+9h5zCDgcjoXazEKY1EsNps5x1jXHjDRTBPPYH0WDCthsKLTcSRdkJfTtaZwQAwGOaRzFkYObtm1lnMQ5JBEfTWCR3XYtjLPI/RFVVWGzXjEhFEcs7z0doHLGxcUFgMWhKMlBp4cdgHL/SZFcBNVgTBFMpEX4InYI7cwaU+4p9b6WsY2h7xmAas6IelSYIxOeWboC6vSi3epFBF3ZVFiE2tLCakqChrdNA+8XIezTQoz/jEiBXb/1Zg3vqxLQaNfMRE9/ZycURA2eBOFcEdc+Ozsrf9+2LceOIoUB1Y3i7OwMu/0O97sdrHkEZy0uLy9Q1xXF4yV51yRNO17l3pq13H5Tnh07fqSJGmCxepcuPK8jnYz/5AJSdM0KNnPata0rPLl+VJ4Z7ZkTzBIyBbzN8IJghxAxjjPqjLJHgIyYJqLe1sDAwkRgmgZMYcL9/h45Z5xtz5BNhhUHISNub1rUGrnGJB1AYy222zMyFUsxZlHGzjIdq+puXfY0RyxQRlF7tRqPETDL+JRVZym3dE8pZm8fiKDq61rjRJejBjKQZiZA/bHn2muXQ0mZUSkmeGuxalt88/o1Xn31CsMwYrVa49GjK3TdCr/4xZ9gmiZ89NFHAkp9A2sNxnGArynW/u31DBi4DEECuPYL3Xqe/gzYqF2yWkTPfRadBwGK+fvCOJRXtMIUyuq8YSGaBh7tikmjjiHqO1V1hRQj+mHA8XjA4XBAkg798ydPsaob/N444f3+gH/TD7i+vsaLDz7Av/q938d/+4c/x7/43X+GN69fY3t+jidPnuB/+p/8p3jx4UvUXQfjPIzzsMYLg0xZN4UrAMHB5ZkuTm+CLErHkCO31nqy0OR3UmbnjGeBgTNAMglJXG9yRmF41p7AaW46WCc295axSQl5ta8RU0TlqsJSUSYUR09jiWVKmaejCll3q1VHgM4x6Q+TjFlJcmysK0CEsjYlTMMYsmP6HuX5ahFEjT1bGCMKbpANw24dIq+rrpnkDf1AYf55EmBbGXFAsjQPIfOXRXROmYYb8jNGKjiNw1pUhCmWkUyOEDg442CNQwzUIjSG1940DTabbXHfyjkTQJgDLi4vsd/vcHt7A+AhM0GbKuM0IhuDT773KT786EM8ur7EOE4YxG6c4BLP1CyATd3UmGNAPY44HHYUQ0961jcFENf9M4w9bu8ztmcbdKsWX331VUmK+fcTpjngcOix2WzRrVa4ub/DFANss+je1FVG19J8w8n1Gxj05ohgZ6BlMb9adbCOedIw0IFsGkbknGTM3MFVXor6pgAGbdchxSRNMINus8L1k8c4v7gobDVV96rqBsZYxEhu+Gqzob6fswRKQsSrN69hjMFaTEeqVrTp2i2ysxhjRNu08L4SC/VcrpHPR0bDnFtcdYwRhjHYHJDuaWkAOWU2loSuNDM1LhqJx9+8fo1xGFEJ66iqK2mktMUSu5jTnOjnLckiRIskFFAjpYS6aQABh51z6IRdZz3B+CAjkckAlRTo88hOfQgB/TBQ3NlX8IWBapGsjgJ79MOAfhiQZNRkmicyimKA6tLoKBSUMRgC4hzw9VdfAQAuH12hqWt0qw6NjPtrbq7ahZUAizEFCl/7mqNNAn6wieTKc0Dm/WjqmnIE8rqFMa6AdV4KJ5qM1Li7v8M8z7i7u4OzFKPX/KdtW4pqNxRa9o5nVt1UZZ/FEGASm5AxRRx2exhraIBz8uyssMJz5nhMTglNR9ZRjqnsh7qpmWNLcyhEOqOtVisp9kUIWk8bBZ4k/wwh4N3btxjHkXpp0hjfbDZomgbjPMk5LDWPNG+meeb+VrC5qYtAsLOLAHwB/+VM1uv0wmLQwH/KAlNAZRbDHm85VlrVNYwNDxorRvSmKpuL5o5qmJb8IgWQxUpgjWcH5MxV4JVFLLW7cnEqUxOJeZ4pjeE99I6qdleOy2eZpBZ0spamaRYWK50O53GGdwRHtcjXwyIlGlwMwwhjOW6ljEBANI4asj6Px6Uhqs0R1dy14lwzTRNMAvdU5BmYoDUJx3utMNTOtmdF79IVoxA2/nzdwHqCt9M0Ac5RhuN4xHGYMM47dOsGVdPibn+EtQNiSmjHEUaAR7JoBODLBPGdr9APIz7/8kt03QqXFxeYQ8Q4zdgfeuZ9njHi/fv3rGEcY/XWWoSYYM2MOVC/59Hjx+jaDm27wkcffYzrZ0/xu//0n+IP3rzB559/ibYV93RvcXNzC+/Z1DGGmmH7/QHjOKNqWwFkG+LhAmIwho0yKj9QmiKnhUVvUMyyaFIjQLw061T7lmeXhzELS5X9WTH+sgmq71b0AIECiGiOoKSDBGmQlR7u0hzR80Vr49OGFhsUttSHzEst5jku7EB5YfYGZLICzNMg6yUnFJdAmBOAydry+3rGJbkeGE4oONEovH1/g5006lm7c985Z9H3Uk96Oe+qGs5XUi9Lz9pkOO+Km/zQD4iFGelgHTGccQqoGsYVqggR2MuRersap/I8yk1v8Rd9fWfgaRwnUhpTDeuMJA8yPqBvnFI5ZHXW3xoH79S5bhmZUuewFJPo6lRQ2mcZLQETEaUQG3kAOUa6Z0wTbNdIt4xdC1svjIVva7+EoErvHK/IaXFTU4ZCU7N4GfoewzDi5vYG6si1XnVo2qbo8djLS7I5YJDEQWvojzgeDuLq48oMsa+cJITUT1AtCWMM+uNRkMdYrsNXFWpPh5t5npGlC1uJ6PQozkrremEl6efUbpSO1qgAXRRXsVOa8KkYdgihCNABKPPAENaAsyzE6DqIk0MyPniuIYQisks7YB46Uei3KQplGigFmCZ5+hkgHUXdmae5oY40GungFC2MwviJBcgywmBcrVbCyFIXAl+KFP06RcRJ4QacS2UEouu60vnrug5ZPq++XyvAEwyF6LqmRV1VODtnR7kSkIwiu+mky7Mc5rVtShBSEXD97LW49uhXhor4pUKpZwKepcA2dK2xlppKic48QZJpZxnIyrOE9rUWkX19Zs45OCxdwaRMDGVzGI7fzNNUGE/rzRommUJlpyi+jk6dRH0Ycalw6LpVYdqVDpjcG65Tj67tFoaRAE8xU38gCMU25nyShNgCoqhluzIBreqTnYCxuhas5d5F4gguHb6YfPu64jhpVhFbWxie3nn0hyO+fvUKq80WXbfCek03jVevXsHA4Pr6Wg6IQxnRqcxSJGQp3JlgkflY7GqFqZNSFCr9AsYuDYCMnB0RJPm+surI9smSBOj9V4aLsDwBMia8R20MnJOOalYWEB6wA7SoTzHBGYvzizNq0BiDoe9xf3sLawweP36MX/3ylxiGAV/88pc4Ho745LNP8eHHH+O3fvu3sdps4KoKxhJ4gvDblIqv+5NrgiOjBUiRmGas7p8kAGOA9wKQlkTjdCyX/WTteCbJSSxUK+BUWJ+7xEjwK2Mvjp1kCyd7hp2naRoRkrB8ZGxaAbxhGDjOkxPappVuGpksIU5ljUPZLHqOzQqOLx3wnEwR84blCJ03KsjJJP1EyriwV4UgAAAy2rkUTDFF2oSYBXS2vPnlPjhjkEwu2mbcpxIjTvYvAJ5701xG0Ljn+HxDUgaVKbqCmiAVDSrRZFytV8UOWj/LaeJmDMe2MoDHjx/j6tEV1psOc2Txl8rV8w2iuOI535TrmqYJu92ujKyqa6RzKlArYEJ/xGazxWq9wus3r8trUT+HndpDoK6eryocjkdkAGcjAXYrbI7aLyPtuo7jPHPURpkUbYds+BRnOWPHfijNi6qqyLSpK3SrThgqgQyilERIlVoqZ+dnWK1WuNvd4eb2hsyzlFBVdBCbxwkwFrW4t8ZMlmcQxlkIEXDUcERVoQIdxGAdQkoldqgTD7CAPdq8KJ9TmBtWzEbCNPNMkrhqnXZpF3azanugeCAtkPRut8N+t8fZ+RlBjVVXQMPK06hlMZ6xJ+v5pGMrTZd5nkphr/lMltykrpuiOQljMPsZx+NxeV1wBIUMeAKufd+jbRYmr/MOxi2mF1FAJAUhJtEm4d5wqGuyBqdpQg7U/UmSe+/u7ksHf7PZlEZkXdcEYmdtkhh4Ty2WEE0Zq6vFwdafjD3lnGHFuAEAvK9QN4tTnbKZyfxY7mGMEY24p+12O2lIh8IW0pxJNRML81wKeOcXTTVq57BhGYTBofFexX1PmQIpL8LlTVXBABjjWIB7AGIY8BB4UtZhnEPh+ChzvxS7kuceDgccj0e8f/8edVWTza5C5ymWa6e1+cjcKAS0XUdQva0ll1cWnCvrDjmX64Q2/LAIN6ewyE0Utl9KJceHtfAZwpS1EkcXRoL+rrVAQuTIUkqI6cTdW8/CpAwkCPHXngBPMuliWVCPkTXdIK6DMfLMc1DmRy4MU563S4NtnmbGEOdl3wUCUDPjjrMOs3PoVp3cBwWeMiD5EIEnSAxf9EXhLUw0gOiTLWgDCiPGCQJukIEUkVOgHIiQDARZhcGiIdm1Le9NPpF3kP85T1cwa1v4esIwTXC+QjYWrrqRf9aomhbDPMszIkDR9L0QNpIAktJYMabIMdzc3CEl4OLiEjEBISX0An5PlUeYZ9ze3cMYg7YlyzRlIAeSLmgcAnhXUWzee6zPNni+XeEP/92/Q0wJt3d3qI8Vnj59Auc8hmFEL+6m08Qcpj/2OPYD1hIPXcf7Ps+haAlpXTaNE2gQspg1sXm3uHMHmRWNUfOJuegoFYF+SK0m+YHmu85FeE+HOWcdskUhsTwEnnLJAYwxJf6zmbZsQ61HAcA7Asau1Am5gEj6uxlKaNJr50qLejAxeSr5MwT8EXSb15OXuohgsuRS/E3+lWGOv9vtMAxDqSPLntNmvTEwjnVPnTN8ltpO9rX3vojQ50zpIAV0CT7RjEsdKa1MkqWMMqWlIDmAZXz7O3x9Z+DJiaPHYdxD7jiq0l2rZYOIDSK5iUBOCFNAmo5SaEJuYUZdcd7Qi2ZB27QcTxpGHIYe0zTjm6/uqf80jmiaGhdn5xinCeM0QC1R9/sDYIC2pujmkyfPYA0RuZQBazIOPV/v/n5Pqnm1jCTow9puN2iaioynbGVm2AC4WIoLCcqP6ktBYVkA3+922N3f4/XX31AB3jk0zZq2t8ejXH9D0UFfIybaHO73e4zjgK9fvcIw9KirCtvtFo8ePSKY1FSluIii1aEBvwhlSpdHD2NjTOks6sE0jmPpyozjiL4fCjI7SMdUi6vKEdyovC9uPiyUkggykrHilPoqB15/HOSwIL3WOzKllBkyDKNQIj1gqFmhNFI93Jxx3IhS4EZhUyBndDXV+r33pXAbRwooPtCgMqTml66gHOQUbLawJ85IKSXc3t6WYgNYRt6sMWjEkraSTrGxC5D55Rdf4HA4FK2s6+vrUjScnZ9hc7Zl4Eocv4o5I05EhLW+d9Yjq4irALG+WoQBVSxPNXlUo0oPIrVzR+aoVFP5Qu9dS3f3/t07fP7Fl/g//R/+jxinEYDBj37yY/z4Jz/BdlWjrR12Y5Axr0hmHSLGMCIcaA07jg3Oz8+LeHvOmcnVnJBSKCyiEAPmuIxlaXwAlIXGMcRxnLBadQTlzs5RWYOqqSUJiQWwjZGHsbVLsZdSwlFE2o0xxfEpRDoxtA3nzpVirxoP3hg4WNGJ4z5ed5sSdJX9oiO93jg4WERhp6iGRUpJEkyLZMj4GwRoI1gW8fr1a/z617/GL3/5S/zWb/02Pv30Mx6cAH7wvc942DqHR4/O8eGHL8pniZIYT9BELUmRgyUJF+DJuKXZbwWYyUmTCYvsMipPxxFv6KTlsl1AButhKosUcnGxYcHA2O7VrbKqkS2B73QcEGKgOUNmHAgxYE4zxnlk1z/OMA74y3/1LzN5air84he/wD/8h/81Qprx5a+/wN3dPY6HI54+e4YnT57if/2//d/gyZMnyM5hCgE3d3t0qzVWq2X8SJODMt5hjdj35lIgLOADCntzFlHS1WoN13EdMUZQFNMZOmghqQPcAnI7AQXmGIAIas5Y1d6S5khcmBk83YwU3UZYeEDKFKxMRVySOk+btRRdoqnlXFW6YRyUXMYEk4x86j1Y1mzCOO5grcNmsy7dfB0hhbzGerWSwp5admpAQfFyxiQvn2EaRhbAKSBEwASzMBbzMvJMkDOUa9RCznoydkqskAR0P44PRgnJGK4AWHhruDYdk8JJ9rNeY4qR4pU6XgmL5y9e0EVxvydTpO/ha675dzc3qOoan243MN7j7bsb9P0gI1RC0ZciRK9RzRQAoOtWTMbmGUDGuluYy5p4BnHdu729Fc0Rj/W6xnq1hQGwXZ+hH3rsDwecn59ju92WovWLL75A07R49OgRwdthxCysFwLkfP51VaOpF+a3aqy0dQMLoGsWXRnnPequAwwNPLSB07QNTUPCXIC8lGhJDnDUxhiurr24CU4j9/Pr168xzzMOPRnaMVv84Mc/xfn5Oa4fPYKxFvf7PZq2weWj6+Lg1Q8D9ocDYiLb4uL8HDFGvHv3jmeq43hMJdpSKMX94iZmvGXxYCFOO0Cap9Ko4fimlyNeNPAysD07Kywtd+Jmx7hnYQFwwCMv61+YJ96IcLTliPowKKMkFa2Y9WZDDUyxIjeG2jURPBeRMxrveVbtDzgeDri/vWMPwFpcP36M1WqF4zgggRpW+tm9NJfK85Z/99KQuN/v+Hr396g987zLywus2zU+/t4nGMYR97t7MmGRMUwjxjCV+H5+eUGgdw5SUHcCTiugJ+69mR1wQPIg67Bdb8rUsTZ0VPuP4tNL807XnnMGj66v5BmLlmcGbm5u8PnnX+L87AzbszNsN1vUdYUkupdtveY+W5nC6ApJXMGEmeNrrlvNCcMwgAxuoGkYS4M0jMZhLONwYQ64v71bxH+lQaVyDHEORVRYG7XKKFIB9q5p0VQ1zrbbEpdvbm7w5s0bXF0zf2+bBsfY4/Xr1wSbtlvEGHDsI1YbaYTKxEhVkT08TVNpMCjjVp/NJFIQYZ7hrUPtfKlfdKrBiCRCzAkmmcLsYYOW5wUMY3cybAaM08J4Yo3CsSWruq0Q0yYpYhnnPVKMpRkXQsC96g8lsiu7VVfAzISFvZ8FhOBZrA02AV5S0AOVBbu1aLuVgENsyFtv0R9HpJAwmFEaAgRYtpt1yRWlVEcvkhcxznyGsj5TzrBuDe+dNM+BFLi2hiPZ/JVzyIngydjvMRkK1ZM9zdw7J04JRAUbk7K3UEazq7qhi3TboW47PH/5IbYy4rzb7cpoIo0SPHSMkRuOzUw4g+tHj3F1eYUPP/xwAW/FnXq7PSegZLhWzx5dwXuP1arDdrPBdrvFfnePQepB5zzmHHF/2OPt7Xv4ukLT1ji/vMT/4H/4t2mWkzPOzs7I9EHGquuQssEwTri92+Hm7g7H4xFDHNE0LeqWY7rWGVTGS7OOsgFTVSOEGfv9DjEFjDMbDHMIRWtQmaPi1wqybxP2+wOqasI0zQUoq+oGsBbzRKBwGgKqusKq4wicd07upThqA4igLhTMSVMaC4lC/2GRsGRcXJsxgOfUiYC2tVYwSZG0kThuTsb1gyRYtRWZiKztfRRQ1yjgA1uAKG0mJgGzvBW3OmlqhbDIlIzjhHme6OKbE548fYaq8qIvJ/mao6kSmbdzqXXahk2+ceJYd13TqM1Kc2QOgdrScZmYyHBFKiinCOSEcQ5iYPQXf31n4MlKpy0KPc4YIACLvoBbBAchSYwVtf+YOX5hpJiBUQtNi6quKJhZe8yzQ3CiSYIsHdIR+/t7hLZFW9UYZwJP3ldkAcjDL/oDhp3rIEmWtWRrjaKwnzPQnbAoUtaChQVXYVLI9ddVLeN0i5ZI1xF1966SuU8u3hACGqddU4Ih5UFJgEpKj04Z4zBif6DOyzgOcNutXLNok8h958MlD0E3CTfMw0LAlQRm6T4vXXN2GbRYUfZY0LGNLMKV4mZgZZHr2MTpz2YAqDKyc9RyEVYMmVUqhr10zso9NexcGkFUVeepbD1ZN6eIcJSDwJjqQReOBUlACLZ0mlQweRHgtOXaCxuiPI9cmFmqp6Ld+TLe5FwRUP924avXoIyDWvR+ANCVyLulU28MlmJtQd8pIEihcH1NDjgsBefJWxcqM5xeh3T65bqdZXDNKZUgdXvzHt989RX++Oc/xxTYPXjx/BmsYaHJuV2Zb1dQQ4oyOhwsz/AUzWbHRMTiHUEwHSXylS+gKMG6k7nqGOUwrpHh4TwLFZuX0UOjwdug3IPSiBbQS8evsiYRwqKzxgI2w2XpAkCYKzwN6PRgeV3s7vM1Z2HdKQODnSzI7PrSQY0xldELtZtXwdvae0zTjHfv3hXdqLbloT8JDXWzXkuXISPnGquuIwMtsCOq3Ru+XyyA9+may+rIJ7GATB6LZCggDTmoqEmlTJWTvVzWmIUxHLhTSATSpYGMtVhnYDVGLsQAqMWwimkqA8R5aiCdXV6grRtcPrrC5e0NtudnRVPs/v4e4zTh7OICz148x09++pdwfnGBX/zyVwQ/pWgxp7FM3lfZdWVTGCPNp1zWp4596HP79to9jY9wC8gH85D9oO+VVORF4qTJFtpAySfvV7pZGSVmZLlGI2sVQIlTyqKqvH3IuNNOmgEACqQja5eZcSMZ6UhHZRLo51Mb62WM3cAgNk2JPVm6zEuHTLRtAotmfj8U8PaUdch1iwKoL5/Dlc9qjZ7zKDH+lIWg7BPG6YexLhvRKcoo+ytroijMF2csUpuw2W5hDK3U7eGwjNhiieXdagXnOcKkwsLWQs7O5WxO5Z4s7lXanMg5F/cyNZPw3mEU6jzHkUc4ceapKzpM6b7wfixn8zzPhXUdY8L5+XmJ69ZaJMtny626nKUK3ssWZUc/12UPVDICRbOStKxZoDB2bTIPnqf3Hm3TABlFIBcwbCBVtTTQWozjgKqqUVdklz958gzXjx7h7PyMryf3qmmb0p7V844is/rshI0ZE5KNHDfSM18O/qzJZYn/wiFIXO/TTOFZ5z1czsgijq9glDEEcQEyqbRQNrIXBZsqYFXSfMZYUfTkPVMmVDYQUW0ZjUVGVVdi/a7xSXQYZV2XfKMEAwioVBUgrFt1mCXWKbihgrD6lXMuZzrjveR6KYk+UAKsaLVVFTZnW/ixwjAOLNCtLeCargNtHpXweZIXncZLyP5ThoeCDkmNBOSrsNTNEquXNcYPrs8jI5W8S8fipnlGP/RYdR2QvQbPkldZa5AEhrcCXKWkLJRFjF/3LO9fKvFUx8jU4r4wRwEWMIYCvM47NszAnDMmCkDbk2daPhcM6w+j+ndcmwrqQ9YiGxe2/HvbNGS/yrUuurVazDGuquJsks/Hhbkw+lNKy0h8XuoJnkHqQLrkTCW+y4SFyh1oHNd9kOSMZ/NcinL5vFb+m3/E/EDyX2XIhhiKSLLzHI9SsfQphAL0a76p55VeY7nHZQ867kuj98qU3AlypuTEke+UDXzgOjA5y1FOtpfWJikFOfvUKTZLvF8YNzFyzNd6rjkIUJYk1wEybNMiW2n+5YwYsrDIUXJDzc6imJdYGcl1qOGqCqstGYnWMX5N01z2ojL0NQgaiUUGpkiXNE2Nvu9xd3eHumnQzAG55iRByBzzr5sGlafBwWq1QrcSprDl2ac5JMHQHn6eMIcJTdPiyZOnGEeyBIs7oxFTB7nmICwfKOMmsVllrAG9DlHWtzEGycfyXFUagczvExBSxlyj1ODLeQ6ZPMqoGzZ/s2hH6khfaeDWseRP2hhY8kfhyJoT3WgBw/WHGEFMwTzK5mRQRLYyJaL1cTnATnJS3c9QtpKecZorLnuz7IEHsR8l3pTXzXyNlNUVE5BwBpXboHv8Amohi0FOjDSVkp+ZhUmrUiMZC1hbNO/kOozWrsYgyH4r5YDuySwN25Ma4b/v67sznmT00FlTHBu02AjzjDgHmQt0tJ10FpWx7FTMM9arFeq2Ri1YjBZriuCFeULlLHzXYt02yCnjyeNr7HZ7/Jt/9a+Qw4RpPDCxqD2GoUdMEc9ePMdqtcbZ2QVCCPjii89ZCbiM1WqNtm7x5u17HI5H7Pd7WGNxcXYuTC0GRd94pBwxjj36fS/MB8l/rEHOZHecnZ1R10DYMwy6GV3b4eryCo+uHvGB2YUCu9p0oj3CVRcCxR2nccL7dzd49+492rbF2fYcP/zR99G1LWAIlvV9X9wuYk7QGRAjmVZOCWMiFbXve2y3W3Rdx/tqFyor5+Rjsaw2xoi7jMNqtXoAXGmyPUp3WhegUvtUxyZ3HdqqRRgnTOOENAeYlLFerQudOuWEaRjL4iSI5tFUXDv9SCHJtu4QUxDnAhbWzpD2moWOSZvhLDT/Ex0mAzSxLsBfzrTj1s+iiLIK7dVNjQzS8adpwuFwwGq1wmazKSOi88Qxxu1mAxjgeDiIZTh1veq6xrPnz6khIEkVx9ciRbNl5EYTSjq5JUwjNYU0KbTWorIW3mdU0iGd0zJCQrbRVD7DMqYg1M6oI4504sgRGPse49DjfN1iigH/4O//ffzsZz/D7//ef4N5mgFj8ejqEt//7FN88Pwp1m2DO2uQwPfOoL6CrtNxHhFTwEW+hI6AppyQRP+laTo0TY2mrgBr0LQtrh9fAwaF8RWiiNo7B+fOESM1Ucgg4HqdpknEFWe6WYJJp4VdACkD5GwwxwybIqJNIhSZMc3DcvgIo8g4D1ObwoiLUyyJljEWbdUsiUkOSDOAysB5ixwJMh12BwJalYeOEWfD7iMdNk0Bv+umxa9ffY3/6r/+B/j0k0/xd//u38WL5y85IpPo3kERTgLLOjbA+G0IShmLfhglkZu5RnyFmDJCIoM0pgQftSiloGrOFsZkKZ4isuHIm7cOlTr9wAiYOCGB162jqE3TFNCNZ2yCtRSrnCaLeTaomgYJZIPM80QtuxSgVvTjOOLT732C68fXqNYt3t3c4L/4v/2XiHPA3/hbv4Uf/+jH+Ju/9Tfxn//n/wX+8T/5J/jxb/wVfPzJJximiHCzwzdv36NuW1w/fsqRDy+MT8j4Q6ZeAYwe4uKgKYdwJUxA61CYpwooOOuXBCRlYV4yVuME3DDWlCQ8Jgq9G7BQqNsaCi5p7uBE5Jd6TQI+yf5NOcNVHla07OgAaUR7i+nNYu++iJrTpUefq4i4VwuI2MceKSTMI8FS7zyqukLTtLDOlDXlvcfYc+whybjsqusQJb5riq9nxe3djTjMcSTtZn9fxoR0NFEBlK5pRWNwQ7Zl0wpNHDAyil8Lk0YBFzIQQhmxMUbYh6X4BWzlBWz15exyzoPGB0EaJBartMJ63eGwP+Du9hbqWlUJ2/flhx9is93gk+99ChiD2919SeRcpm5YptpsAYE48j2T3ZiY5XnLEcr9jiOxBrR830gy7iuPdn9AjAlNxdHqy/MrzPOM9zc3mKeIMEYMwtLU0amu7RBdwDyKNiUMGl+jbTqos+skI/2x5nlB1xqOY3Vdh2q72E7PKSLEhOF4YM5Q+4UNGgKSMaWYVJ2HFBO6usXFGZ18cspYrzalOTAMPax1GMcnePHiIzy+foRHV1e4ODtDXVW4uX2HaaZwbdCzKnNfrroW1XaLs8vzog9XNMqmCf2xx2V1gfPtlgVMziL0DQTRx7SGjl5xFrZVSLi7ofh523XwrkJqWynKwHyuqnB2RkAsZhZGdOFFAYS04GLxFCWJJzgfM0c4UlKtlhrjQL2vL7/8EtZavPzwA7JKcy6NgVXToqsbnHcr7quYkCuPR22L6yfCohXhaC2sn3SPYa2l+1kBB0R3VK6r8l4cXANFlOsa2+0Wl5eXZIxVdWmebppznJkLfPDhR6UAGIaBZiGe7IN21bHYqBahfRXIVUkFZc90nTRP6ka0gKTogCl7cxiGonXJZpOHGgEUow7RCI2Rbrld16JpGlxcnHMscr+H89SRcXLuK8hiDMXiu3UnI2GxjKfEMp67aJxGMS+wjvpU8zghIpARMUcc9vdkETYt87KcMMi+mIaxAOFZitOcgRhV2BuFeVPVar2+NDhefvARyJLkFIFzDudnZ/iNv/JXUHk6rY1hwhwD2hXrgknu3eG4Y9M2AjARwSyNl6qqgAwchiOsMWirhsCrOkUjIqQo0iYySWIrAU6tNIFpdBEjdWhTWlzGfF3BBINsEqrao25pYGAd6zcDiNsjc4YcIxCifnpAgPK6pibRogvLc20O1KiF0aafgW8qAmAx6XQ/uEWzsPGoVYacpSHCXCWmESHMrCVhEEY6YVJbasQ8jagqB19RtsFZjzirBMRuWVdWR3iPZTIip4Th0BOQv7xCihGHfo8pzpgC3cPmecbF2Tk145oW6rDnqwZV3aLtOlSirZllbRbZGedK7l+mJwA0TYsQAu7ubgVcCeQ5CSjtnJP4mYtUxGkDvqoqGgBJ86cfBqScBFAhYWDseyAl1N6jPTsnwC+ARTZk0DrvaH5VcTJHdQOLHp6zst4DqppM3O35OXIGpnDkOgwTUgzwrpa6hWPnmuM657DZbJFywvnFOd6+fYcvvvg5+r5H3x/x0Ucf4eLiAsORz+V4PMge97J2WLO2TYOm7WAtjZWcdViv14g2YZ4CiTDJLSzskyaB1lNZJBEUsCpkC2MoeVBx1EydOgEUp0k2ps3JwqVulEl0zWPvMctfKQi5aA8bBbZKXXMKNC17ochtwBRwm4YhfG5ziGWUOeeMbrWCFdmclBLyHGj+MQC+nlE1HFdOyNjvdjAAzs7PCtlkHEfc392TWCM6dN47VDJOznE8no9e4q734vhdedh8Kj7+5399d8aTJ/LuI7t9LAAsjPWSwFGwlR1OQXmtgVozxDgjzKBQqzXSseNrp5y0QcwOTlYzBx7s27Mt5nnC3e6+uKlZZ+GbCm3XomlrwJAhQGo33zvMM0a5LgPOF3Pj8mdD4OIwhrQ2Y0DrXQmG9qQAwOkhFLkYrJNF6ujYs16ty4Gf8iKQzoNUFpVd9KqapsZms8bZds3DWCx+l2730plXJkflPYOwIJ3sflL/QSn6alFt3UIJ5EdY4MiUEzeQopVaNGlHLczlZ5061ZVuhCmBOufyGKGdCHVRymJDqZ0odllyAfQUMVZnpCjdo8VaMhddqZyk8xgiCzhtMaQlAOsIQUrS8YIgw0m1mFIBph8yp6I47ITi6qYdRgMdy1jm0Y0k8cZZzEKlHcYR3ldYrReLSr3f0zBys8dITaKCRCe5fkWwc5lJNjD8nBmlO5Rl4YxSkIQQKCBZVXQWmUMZQ5QPibdv3+Lt23eChCdh8VVYr0n1jiEWrSYbFuaLrpSFkVB6zzhlv2SB3Dm+JECfWG6mmIr2S2F8GVMSU7X/5AEYCwLPR69F/DJGZUDgSd0tjViy2awdau08q/aU6npIN9nxiSZldQlopULdENFDZJoiaJdcl3Y5Y/T5yqybF2Dh9vYW+90OOVOM+OrqEt7RLdEYAyd+FEymFovWUxYekOEMY62D7FljAcOk31nO2BGQIQ2XcUKFRnW9yH4DWMHpzLfEEu2Qaq8FkiTIysPClzgJIIK4MC3nS8acMYsjWde2uLg4x+XFBd68eYNXr17h3bt3WK/W+OTjT3B+fob+eOA4buJ48+XFhRTTUYpih6au2MQ4iRHWMU5Zp7wEYUpaT60qnAhny+W6og0jDLaTv1OmoCJIVke9yoPmuaUJgrrMZEAK3RMRSImKp3lI6VaWrFqF8KkHBeRFUFuYmSajrDlb2kdmiZV2OW9OBX6t1wRAGccootmnIJiRRFdBNWVPKVM4QgRl5V6RjeWRm6Y0BLxnItw1LYupuimMXzKNl+ZGiftyzxYth1T2q26u5Zxbzrzlv/k6zuiopAAFksjXbYvz8wtkY4sz5XqtGjdVabxA9lPOy7mh43xKF4fsQWOWsTZq4fDuzNOEyrGY0fjdNg21dkIuYs8cjaRwb98fxY4YpeDpug6tjmrpWpEzxWYg2wyXFlt5LRILky9SCF/PsTDPiJksDQr6uuLgFtRVJ3tkx7EUSPKsMUERaH2WzhogJ44YeuoTqmZQjBFTThinSVh1pzqB+ux4zUzmRSPIcjXo97MUskaTP4mDxqhzVgaEyWlNLk6oBhyJSQKAaLNPlhkMOKKHRBBZ9cMUNE7UYCjvaeQayv8kLrDYclAHy/1+h5yBi8tzZGS06/USDxzZIU5kHIKwDfXZWUNDAsBgHHoKCTcNjJyDJf7L0UqW6vKMrHPstBuDWvaWrysZs+CYfgYoTFz58hp6dqoznJW4WjrvsiZVuqIwWPKia6RrCYUpbyT+aghcdOSWsCoMmqxalar5agBHOYTNZl1ym1pkHfQ5naSqcl+08bpoSSlDoBRrmXGZoUWAQWm+NHXNIhMQ85JKxqeFWZlUn0fjuX4WGfWV+1l7IwCKlRzuhAllhVkc5B4glxzEOLuQIgyk0cARagVklVmkZ1OOERkGseyHpTBGFpkQYTposyTFBJsB7xOMc5IHQXK0BTgzgID1CS4bwFnkTIaWNZo75KIpp3ucsRNlf+jetZZ6b8YYAVj9gxhvTp6Ypo8Lg5sxN4nRjR6iNHqSrS3fVj1hK9Mz2TvYlEv4sBYFsCvPwDJfUqAn5QyTePayzsmlZhrGAVXiyKeeeRz1pIv4PJNBl+0iZJ+y5h98f30vZIpkO2fg8nI2y6It64Y59DIx5JwllSVJzSqvF2LAfrfjeK25KLUIwWkrDLFTzcNU1q93Xti6on8lTUatjypfUZe49vBVzWaWTL/o5IJ3Dhlct07lPsrreKSs8gDKPFx2qtaNGmssDKyr0K1WOL+4LFIvbduhblqOgqUM6wigVr4q2qRyfJMlZqKsWeZEaiSko25lvz3IZrNKdpW1l0EgKUFzL/3ucj+zvLeCV+UjymvgQS38rfd9mG6Wsydnjmibk1/UeKYxVK+GZR3PuphTGe8MIcr0jD2RnAEgjECBh8VEja6szhi0MunDs5SsPmX2ZfmtqvKQSoSVQZJc96R2tjYDOiL4sGj4c7++M/BUr6nBYmrZwCmibskkUEHpeRhoTzqJFaprAczIecL9/QE5J1xfX6NtWzQNPzSBCQNjHOYcEVJAiBNiiHj7fo+Ugc9+9EP8+tdf4h//k3+C1arDZrPG977/Ga4fP8bl5Tmstbi7uUUMAVVFmmjlHYahx3F3j9pZ1JsWXeuk2MpIacLQR0zDSTAHRHA3C3hRwZuK4nTwGPqAadqjaamn0K4YaFXQa90ReDIwsN5Sa0TYLilMsIYOSTZnpDDjw5fP4dxLXJ5zhvbu7h5hnNCtV0zU6yUhqasKABPAaZrQ37PAtd7j/JL6EYO4pswiyrdadUBemDKKvqeUMMcZc4TQ5y1gHFIGBkkm53kSC8uAtl0xgRQWCUVrbaFBWu9gJLmbwkjLzv7AYOAqZGFOpBw5Fy15YiM6Wpy7t0iB+kIpLnOia9GwGPZ0gEIEbDaw2cJGy05NSIgm4f72DlHQZO895qZBPx4xTINseIN6YNJxvj0vSX2IAf3QF5Hz3e4ezlk8fvoUVUWA00TSc6dpxDD00mGw+OrVVxTbG0ecb8/wUfsh5hgxTlPRlXr7+i3mecL5+QV8TfghhljAPWPIUtCRC5OBbNhdr+AYFORwiznh5v6Go6P7I7q2xYunzzEOI457tRRnhyomhy++eoVXr1+jW69gncdqtcbHn36KH/34pzDG4v5uD+eEbinJzDTOMCnDwYj9dQ0YOuAYAf+9pb7LNM3UZ/EeK+nc3t3dUdzXaFHvCnNitVqhbVtUNV0w+r5nFzMTLKurajmUhekURdsImW4idd0wsBZQBnD8NajDHA9tshp1zCxUQHI8OHPKGKe+dG2ZeMaiB2CsjkbICFGGsFNYmKQYEUce/OfX1+j7Hv/sX/wexmHAy+fP8eLZMzy+fozD7oDbm/fYbCgm7JKlM09/LAejJivDMAEZ8NbDGQ9TtZLYBGTRa2h8B1Oxk5hzQojiJOE4jgu7jIZEA+hYM5wC5Q5VAlKcacig45BRRKKhwHFgwuNM0QdhAjYhxQnIEbWvMI8T7m7v0dQ1Pnz5HJ98/CEuLi/xv//f/Zf4+R/+HG++fovHP3mMv/cf/Q7+6Oc/w//1//J/xs9+9jPcvvkG15fn+OjlC+RIevDl2RZ126Cr68LIIgiQUTUs3C2zdqQUYMH7pJ1w/SrjhdYi2UTKvMRRK2L0aRJBTysFZkN9rhhDAVOd9UV/g0AlBzfprLKIVaacqCUgGRFPEtL8rc0yfkFHHx1ZiDFimCbaZ3svNuxSeBlS4fkZDDvC+scAdVvD17TtNgbl+nSUFzkjjBPCOAGW2hxwjn/qCnkG5pTQOAJHregiORBIP+QelQEuN1vpfNWlU9y2Hbzz7Lpbjr3NYcaxP2CeZgyhR+w6EU8G1CENEE0WZ2GKjm5CzgEcJxRwxUjRbYUSfyJm630LgIxWavzNSDCoug7f+8GP0NRNuRfTNJRmxDzPiDOBTeMI6GejIC3FerMw/Ly3MEbdLYFoDFK0GPoBKUQccUCeIyFkw+Lo+uwC9sLhl7/6HH0/4Fb+zluDsT/gm1e/xjAcsdlu8PjxE6zXHT788ENUtTQMIMVQ44HawApTzLUV178w+8LEkaEYAnrR6TKGXev98VAY6G3bojbiZKb6L5kj4M552LUX0BFlXLZ0WyXONVWNyjrEczZlhnnEOI745puvGQMSxZ6NNeL45+DFbSpngrAxZxyPA7ybF0dNY+B8harNiMg4jEPRRiz5hI4hASK87ZEcz8b1aoV5IrsyanywLDqoCSWCw9royxk2Y4kHUpwr88KJPbSCnB68bwEBDh6VNXCbDRyA1998jX4YEBHx+MljbC4vAG9hnUFKrEJWXUc9xhCksWcF+AzoxxHTOOHd+3eYphmXl5dYrVZYb7dIkeOaCqwsJhhs1lR1DYLVEVXT0PlSDADi8YhpmkrDzBqOt21WK1TOoWsanIj7sV5yHKfPyAW00zVwPPYIcyjM4aWAEvAWCyBGUyBhdSoryhhq2wEwOSP0wuoV8eocDera42yzwbpbIV0vpjRadBUjjEQh4in0ZLDlRSBdGxApCkNNGKWGm4J6rs7DtxbrFfUcY4wisu8wjD11UcYB2WRUrY7IRmRYAmw5I8a5sMqt6+DhkC3B32kWk6S0gCgxUTfMmYyIiCGQSeVmW+JoTEFGjRRksSfmQ6FMRcQQgBBhLZ9jGVtKEf3EaYMwBcBYZNhiAmVAF9+ubZjThRnWOMDSdEiBx5Qj3JyRnEHyFlVFu/gYI0JSAgBzbpOZvqc5IIeIuutgqwpwHtYCF+ttWbd8gwQt6yGYflZQLqQivK/7L4vPrjV81zgNCwCp4HICjDgOs1F1crZbMjMUyMsmI6QZde1gbYVh9DCiDxblbNDJiRACYkg4Hg5o6gbnZ2elJkxhxtwPiNPE2kRzbBmBq5qKulgOzFrEUTEDaGoZK68bzNOM43HEJFpb2gTphyObOsJUVfH9MsaaCQL0/RG//y9/H3Vd46c/+Ym4rPMMJ/BkSz0FgwKelTUnn9VYGc12juYQCgsKQKf3U/NuZwg4OwWa1Hl5jqzpMp+JN2oYgmUfytkmiA5xGhMAGLi6weOnz/Hi+Uvs9zvsdnuC5sbAuhrTPKPbMma0Nd0B+74vLtTHfY8YJ2w2K2pZrdfU3muqBQx2hjmxANxGRsIsUM6HqGiQ4edIyqjUUVs1Egpq2mNgK1NILEqu0dcv61WbCFJALE1mdfm2hZl02mw7jcWMaFyzYWb8TVWNKSaMIWGcIoY+YtVVaKsWTVPBe4uYFdAOBR+L04Awj+i6NZqmweMnT1mv3d6LPi9NmWAY8+Z5Qts0sKglF/bCuoLE0kCGW5LmSVpGsP+ir+8MPO129wB0ptpKB09BFxVDdgW00blf5xxct8L9629wf3+PL7/8NYyxePz4GqvVCldX1wX4oSmXhXcNrMnYbJjYW2uxWq3x4cuXWG/WONtucHVxia5pOconRSqks2MMkFOSjbV0XBaUPZZ5SGctYF058LTnkqQ7s96sS9eujKwFIoL9keylKOwhCwsn6vfaLU8AmSrq5sAdTNvjwvpgIPRVVdBE1UXQBWgF9tfkrBK0Ut05VNNjmqaCemrnCjkLE03cY6xFECGwSYoDJBRwyVqgqhxSZleSjBAN8EDMETYJDVHEKJVxgJODIuaEaezhXSWdciZFygYrSQRQWCpVVcFCFfJT6YKmmAHLA0cPFo4YHnEcGbjfvnuHJM+9rihemy0TKzqziB2uCNarEKDSA9u2Y7IldsJNQ6opYoBxTLaSi6IlRABiJRbos/fSVRNHlAwEQaG9tYCrCvNGQYNTZNt7j+wybCJM4oyTszvDZDpfJbMkhnQQYyBUbaUElO7sbrfHfr/D2zdvcXd7yzHDmq57FxcXePToCrsDE1aNu5zbV/vzXJITZS8ppZ7XvHyGpPo+J5/HgN2BnKjjoICaE42WGMiOVGZclntqnSUbAYkuYCf7MYoG08KooHvgotOBItZp/AnTKi8HyUO9puVw1+/r92JKcDmVDmSKi7Bpyhk256KXcZQx3t1uh6ap8emnn+Jse4ZxGAqzJKYAzEzdY0rLQWgWlhltTUGtJmtFY2BxlVHWjj4fOruomKEt687BS/daNdWYRKcoLnZy75w1AjKdOvNJW0aK1ZDICIuJBareHxUqDZIkX11e4MnTJ7i5ucHXX7/CL/7kj/H2zWv8pZ/+FD/84Q/RdR3mOeCbN29gvcfjJ4/x6OoRzmVE2tosgOQiYG/k/pRupjFFALt0t+FoG2LIMkg5w5ffk8PfLEKS1pJ1NpsJBiLGas2D2Hja3eIzsmUNGjnFy79Lp5NMtCxgCsqzXdieSURslUVo0XUC3jjRWhBhRpMFjcxAmAmC2rQ4cSrzdOk4L1171VbjiDbBMB2P0GaUk1EbMp3IenKGzmpWupUxBowTryuIlbt3Apw5K9qnmaC46HuknJYOt94oGJChJPfDWY6ByMW46kSPrxwe8vui01FeS7SZGtHTU3Zuk6g/5N3SqFHwVJsJpKxLZz1FsciWpZRi+TtjDbytyvmwu9uXAsU7h7rxmGPA7rBHDDNSCFitNvC+wjROmGc6w1on2l3O4+LiAheXF1hvNlivN2hbjjvaGEsc89JRPtXJzLzFUqwrE5hsudKplc9QCRPNO1/cU3X/qFYF12vCPE/yu/z3cRrhBYjRsZamqhFjwtD3CJKEphiAtDhqalKd5NqMTQL6OtGq4Ygnk1lTnu5p/A0ygqcsqMLSMcqKUpYC86i65ZiR9TI+LPeM2mVYRicsO9g6/lm+ykPPCxhz8iPGQpg3Dska5LQUGC9ePEc/DDjbbrFerZmUazGVyByYpqnojapjkI57wHDMcZZxUzUm0VEc1d60ZmkWhhip9XMCrLNxKKARThhkEgP6vqcYv1kYu4U1eLK/cjbC/gCyXVAGbx1MZYrbGUXG+UqsKRfdQT0PjSHTubaudPeNfGZlBcV5XgC1HBk/JC89Zf6ePA3mX5K/KthVRgKzzrToY2TnJctBmJEwiwBvXSt47RFSkL0aEaMA0AkYh0nYaWb5vOW1s2JdPBclF5oltui4F8WrJQ+qmOvNon1IZ0zRLhKAtoxUl5x2LHpmAEpcNMYUl+oYIiKSGNYuDLUMitA77ygSXnk40XxDlM+AtIBOqgtlUNi2yCijRJAzNyMv7HvJD021sDCdgpnmlFeyFKglOUN+IGcBoAi3K2MPwobVuIWTNZGZ4AlLlyPZWkdo08Uag2w5QZEydaW0Pu26rpydajqSyr3m5x1GuoQqcxeZNdZmvWZOODHGS4+JMg9hRtOowzFzzmEYhTlCBiqNJSDXQyOEJG7gdOA7GQszwtjMBuouqHnM2XYLYy36Y49eGjDKZuxWK9R1ja5ryVJMtpyRWfJbJUao+YJq7y17G0st7Jg3LoDIybPIEBDCFg1BzbezHlx5ycFx8usKHCuT3NoTHTjZY+diRhEFePfOI4aAzWYt4uW2yK/UUkvDgOZI0hDR9SkrR65b8m5leAp7r7CL5F4ZaYBpI08XtuajORMmtWKGxbG6hdGHomd2sodyRHEEAmskYpfmwTPQ5q/RyKO1luzdIDqUVUWJBcrHZDFdS0hZmuXIML5mDphUty4AZkCQzoCBwW6/J2sSmRpS5Skvun9FJzCZcm+WJqHkGPqsv8PXdwae3rx5A+99sWltmqZYJqr+QNMIun4SVLp2ha5Z40/++E/xq19+id/7vX+BYejx05/+JTx79gJ/42/8zTJ2ww9RlYKubrYy+3qH87Nz/MZf/Q2cnW1xfn5WRorud3cUEJSEo/KLrkddVXBNi+PxSPvflIBEVwgmPYEC2S4VvQdN/KKMql1dXQCZ/30Qx5cQZjr+HNUZRN3mHNqW2kcpSwFhZK15W4oAOAvXVHTg8R7TzDZA04oopoxKKXikwckYI85ydLEhtY4A1DzPGETrabPZQMUEs4yu6XiQBrcpiYtPnsADnhRM5xsBFivAMEhOonlRrJZjBCxQparYxHKHoWwga8ji2R/2qCpqV9Au3FBjJueivVOS78rBOwvUdbFkVcBOaaWahMcQcHt3g91+x+IoBbx9906SjBpt02KzXmNzscX6bKMeUTJyF7E/HMqG4liexfbsDG3XSgFnsV6t5RDJABzgT7psIjp9dX7B9Sazr7O4dQAGkDHD2lNAvxUGVHEhOdmkyo4KoBi5s+JSJkKXMSfkMCPPCbvdHscj2U6kElOfIRvANzXqqsKbt+/w+ptv8OUXX+CbV18jhIDt5gyPHj3C06dP8eLFC/zqyy/Riwth1gLHAc4lEePk6ar3e5Z1Zgzg/KI3pe4a6nADCZpWnttxty8xwhsLbyzdLiUgLlWoJrQZyLbsRS/6V33flyJV13ES8dCcF8FcFiJeHFfmBXAS8XsABajV56AxIwiIFmNEdA6NODvoIThLvLPWYrvdoq5rvHr1Cu/fv8fNzQ1evnyJv/bX/jrGYcDufgcnLIMQZoQ8F/YHDKiFw4wNKWexX5YxXuvQGNG5csu+Ok0CeOgTaHfOIgkg4n0FmLqsQx3aCGEBu6gd5TBOE0KMcgDa0rSwUKAulEJzFhcvCrFHzCKqPE0TLi+v8NOf/BT/1T/4+/i3//bf4F/+3r9Aign/y//F/wofffQRuq5DP4744stf49GjR3j+4gO8+OAlHl8/wc3tDsZaXF5d0Q3Gqmh8KpRuyLhQ5V1JWACKiiIACCgxw+ChHpqui7qqFxBpmpGRUTc1kiTEvC9OQArJN05EI5l/EAguDQEnsUtGpCMW90M2C1yhIlNGxci9dmibdXmdZURWtpBhQn7oDzCGgHIjo1k6lmsNBNQU7RzRTqqcQ1XXTIqnGRCgMCWyP6xzWHcdkPnfTsYvmrpGjYxV12KOEbvjHsM4oD8e0TQtdT+slWZeLjT9Kc7i/gaoycApYLjUDjzTvF3cBU9HfADwHIYmNg+7gPIXWK9XUG2LBbznn2EYEMKMaRrF2e9Q7nGMQIxgxzkt77NcJ8dmvfc49Eccjgd8+dWXOB6P2EresznbYJgn7I57HHd79IejxIEGceZz3+938N5htWKe9PLlS5xfXGC12fAc9BWmcUaKCW1Hx7CqXpxZyxqwLOhq0XKBMbBB9OHCsl6M4Zjr6ZfJWVwfyQIChNgizSDN0/r+iGN/QNdQn4p7KKGpaqSUlwZHiOK4RDDH5IxKGGo5EMgDqMVRVYbfsxnBukLPLx1wSe7DPGM8ebTNifuct5RxgAKrBoCxaNd0rVrFuEgKyHlAEJyMICc27gBgky0JtK4h5vAnHdq8AA2MA9x/yIDtDLquwU9/+lPen5yw3W6xXa0QZEw/i7ZQH5hjnZ+fFzBIAW99RF3XlYatEa2/GBZX1TJSay2SgOklyQddhPR5sIFgkf3SCN7f7zBWFdlRkmOpILQ5Gfkxst+yMTBixgGISzCAvk+IIWJ34HgPmW3LCLsxRphdMiYmZ3xOnGSAgCZzojvu0PcAmEP4ymFWd9ScRQfKPtjvS5NFWaUyneAkVsxxqZatNFeTyAwYshx6caM1viFw7GsMx4Dd4YgCREfdt0fma3ULleBYYsQCtuWcBdCOD+QdmDcQ5GFzglICfd8zn1515XloPGwbugqO4sB67PvSPDCgZhZAEGAjjm39cYI1HPU3IHgyBcqbnJ1tUNUV1qtO7N8dUk5gapYIfoj4fwiLUHwBKDNjhxdGRpamxpxn5oKJdV3lPThMjDLaydzqYeGp31EAQpltQc6q1WpVdP9Uf7PyC/u3gPCZDbvKV1DDpdN4EucAbdI5YwDHUSxtRHvvsN1uZUzd43jssdvthOE+lUbG8XAk22zi96wAfk1VI8OgHwa6uOUBfhwRE5nLXdchbQkG11XCzc17DMOAY7+nJuyzZ6jqGnXd8tx20mjMCW2r56qYC2QAWYxfTCYDLGc4a/Hs2TM2RO7vcTgccHd3U9bUkydPsN1ucX19haYhEzEL0CZZbzknl712Im6fFwA9I8M6X0DYBRZ5CD5RB3RpmKgBg66C0z2tQPyicSmhOCc0bYO2awsweXa2PbmuhS1UGhOZDDfoe0pTOKaINEeCMhVriQKqQrSlmTAvAErQBjrZS4ppdB0nhsqIr9SpXMu8l8SQ87fuzsK2BRR4Yo0Ko21kvr93376nCgbLPZR1H8WNPWcgiRZy09SYuxarzQrD4YDDoUfMLarghSns0HVrPs9pwjQP6IcJ4xzh3IDDYYBJ1DvOOclEk4XxHLl1dpGN0QbRaVz2nmPd3tIQLublc/xFX98ZeHr29Kkcns0iFGwdcs1DHhm4D/eIGbBggN+sNjgee7x/e4O+P8B7gx/84DPknPH8+QdFEHyaaJNYVxSH1E4sBK1ncOdBfTgcMPTHcl0GDJIRCSlmjDMTpRADxr5nJ1kovE4ehmssRbJdIItD3dpSwvv375EzcHV1BSDLopZxCZPhaw8VX6SwHh0cuCl0jl+TYUGEDUog1RWqm0hBJekZFOQ1x4g8adJuMIcoBT+TsZgJlqkAuHZEVD9HAQ5FzDVB1+TCJLI2KDht4BqdkzVy4GYASTaHE26iMC+sAg4B4zRiHCesNytUtTC2UsIwkPKrjDF1RQDoCmMMhaittYhpAQQE8i2CdrBWCv5ZgEUvqHXG4XjAzc0NbEV6/M3Ne6i+U9M0OB7XSIYbatWt4LwT60hqdlSeQqQauKu6LpvKgCJ9RtbF0iGSkS9h7gAcyWlWTPTGcWAiEyOiUHHV3YQjgvoxRUw0sSCM0o1IWIAQdtGkyJVOU1PX+N4nnwjQalHXNTYr3uOYIyrLw+Lu9gZvvvka/eGAUUbJ2qbGxx99iNWqw+FwFHvek2I38/Mpo897znTHOKMfjhSpVA0yCeY6V23kgMp5CUzqEtM1DbVYqhre0gnRCsBgjOpDcW965wluzPNJc1pZf7Yk17qfH4IEjBUMisK6VJBPtRhAF7AFxVdxvyQdKhkdtRawhiOD5XmkQtV3wjwZ5xk3N7c4HI549uwFLi+v6LIRufc5HhnhDQ9J43i4z2FCGMlQtCqwLGB15WrAWPlQ5kG3RcdmlmtnzJingAzGIC0CdXwrCK3bF0ZqLH8gQ20p0mbe2aoIAIcYKLY8j5jniYBxEkvkHHHcH1BVHp99+hlyNvj5H/0J/vnv/jf41//q9/Hhixd4/PgJ/sa/95u4uLzgwRtpubrenOHp8xd4dH2Ni8sLHIaJZ7uVGXst1qCgBAABjhX8STkjGxUJXrrDPLSXhOVB0JXfBwBXOb5m0QhbkiMvxVmKFHKeC9jpy/sZVWXPmswrGKjvJ/oPWuxqQmkA55jwEUBQPb2FTQVtQSOjknHrwjBIiyNdSlUpupWWfSqMniSJRE7FXak/Hksy5Rz1TzSpKbp8iV16Laq4zyKGoUfbtID3AmKgAM5ZwFR1SNSSxkoSpoWZ8w6+9sLS4Bl/yk6DnANlJEYKz5yzsFgyjn2PEAIOh0Mp0kZhG2msnuYRKSY40V/Tpk/OGQhLJzxnEQ4Gl02OCQkB3jl0bYeubajZNAccwx6fH3vR16qwu+d4wDQHNHWLeeIIwWrVIc8Rd/c7rDdrnJ+foalbOOsknhOkC45FoZpg5JiLe5gynDOAYZikeIyi6efL2tbY++0knWBmWNxmc4b3cm6HhaVuckacZvQxYoQRgduAtZwpABDmgKEfyTJyVsREVb8lI6RQBLmrDAHEE0yyCPL8TnMejaUG7GQbOW/niSLgzllk6+DrBYSLSQZx5HM6a8k8u70v5z0t3x3lDUJGEs0dJ+ynxU0wUh/JuKVYLhs3lxxGLpqgbUx49OgR466hrqID87G28hiMxTwHmt4UsInNvyRsphKJJBZbc6KBIwx3I7EtxAiblwIuzDQmseKYaP2io6h6OtsNheGncVr0YuRM1WYFtceW9aIjwyiFYS4Osdp80kawjhbBaAdf2Nby0ZQpwuI1I0ctounydQoUK0NITWA0x9Z4yT2gfXsUEwJrDEXBkQXYWsJGRC6M5yS5d9O1C0vHUkMtxIDj8YgyxiysgmPfAzCo6wDnDOpqESbW6QO6V4pxjUH5Xj8Mmrqi3/eYpxm7ww7OOWzPzrBakd1WVzWcdeWehll1Rck83O/36NpW9HUcLCz6oUcIEbvdQcbgchnfpL4TSsPt/HwLX1VifLLk+2TxcR+EHEr9klLCnOai9eecR+UopUEx7yxAlCO4JysypoRsVWjeADmLCLNoFGU2LdXlTRZIWbP73QE5ZbzD+6LjV1UV92+QvEb2ioJwMAbWE2gthjMCMjYVxdCdar0BqOoKPvuin0MmuZE6lrVH27alYZpS4l4Bc8AQIqZxxDxOGH3Fsc31Gs7QJOJ+RxHm8822GBTlzNE8C4Ln2kggwMWYonqMFSxSWljnsiNLzqfjl9YZmEvWvn/yx3+M4/GIaRwBZNS1L3qBFO2vMYcJMMs0SRITE2WBaq6cM0TYnaxnzY00Vmgtqvte3aYzdBzal3pNGWvqqKZjdScJ0YMaVFlMBaiRM4JNa11Lit0scUAbzIDoWIIGEZSkiKIxJYx+Z6Hypqp/VXTkjLqqn4y5yXVqrpSk5gaWBpiV6ZIsDGrVYDL6fwbI4SFQJq8AZyv5Wd7EFFLJb7McQ2W8LktWUtj4Sw0fgzprOgF/HKY4426/w5wi6rpC07WwLiMNBEf7YUSIbFatVit0TQtInVo5izkkDMeeN0tA2k4kE7wYUxRA3BioKY41C+CmOct3+frOwNP1o+sSBPSAcQIOOBlH2e348BjEKnTtCrc3d3j9+htM8whfOXz8yUeoqhrrlXQJRWNld78XJlUtH8TANUz0T2e/+2OPoT+W7uB2vZJRBT6gWW50lA69dpastfDSUXPOUfXeWvQxYiqLnALBKSU8enQFGEgBnEvC4SpHF7dEO80CVMgBtRRKC5ByuqjZnQH0O+yaezizjHjouIs6IVhrgSjaSKLJUqWEGTPmYSyIc1WRLaavW5Tt88lYgX6WnGFPNrhpagHI9Nr5x0CokRlQjEJBBoKGM8ZpxMauUdWVJFki4GwNCxX5ykIZ9QJWdKtWiubp242SMi6iG1mBJ6u7NGcc+yPudveoGtLVd7v7MpdLRh71slbrDbpWnr26x81HivRdXpb7F0UoUAPDNI4SMGwpnHKi6F9d1w86k23bYhxHgjwhUHxWiuDNZoPK+dKB1drYGiuuOvK+2SAhlsQ35YwgB7hJ7AR573H5/DmssSx0JLmkWGlLhmtKuL+7w/u3b9H3faE1t3WNly9eoGs79H3P0aSUisaDPqMyPuuVqktALTiHjd+U9azxYBmRYCAvxWLkCGrb0H2nFSdMHZ+1AjxZa9E2NVSEVjW+mFyUKyvAwgNmiARq3TvTNKOMCur3BXjSRRbCwnQCIJa2/JyQJEjFZ3mo5SVpkgPSitNkniPu73cYxxGPHz/G+dm5sEsAI4J72aSi2cXEOSPEGf0wYLfb0c1HxkOd9cIIWQR7NR6qKLhqsgDQyRvMcyCorkK1IPvAWUsKLqjXldLpaCEFla0RzSRj4FxFkeJZHL7mCcf+gHEcJPYvn2sYBly0F3j58kO8ff8ev/zV5/jZz36Gf/cHf4Df+Z2/hx/96Mf46U9+Al9VePXmtdiAZ6w2W1w/forzi0tsz7bw725J/dWDG9QT0PWhcfO0uOY/E5JxDxKmZfzMLCMgWP4+y+FOensuN9hq2meNdMMsxqBGE0Hia0Mqd1ocWRP588gl0VhiGIGnGRx5XIApe6KlYIyy/uTja2Ij1+arRW8oY2EXnp5rCqBo4qegUxLWGHIWVyJgHEb52JnrTZxbMkLZm/M8k8kqbmDe+wJ2ee9L3EPmmEGM8QQfJUCgAF3SBFbiJwzgoToOTgTOjG5xGLOMYSkbKifuTWccWVzjgHmasN/vyrl32B8w9MOJ3hXBsAcjfCcAvyZyBfCCkT1O4M0ZgvxNVWP2I6aBWlG73T2atsHFxRnu73e43+1hYNHUM8aRY1Zd1yHkhGHo0a1oZV1VBDqKGHACrGXsz4nrsWhwAMCJdMEoza+UEse1vYdzEYArn/eUfargvD7LWRoMKbMgnMeZDMD1mnnGHDCPBKJv3r/nuRCmkk9M04y+H9hFdZbGFI5jwDnn4gyXxGnTWQcjMT4EB+cyXFx017Jk2XoGesdmWn88lMYRPGRMmQl4Yf3qM6sqzHPA3f0datEgW3UdfEUH0GwikMn28saXay0AaOVlXZywngwKoBKzjA2CjKScEs7Pz6HsSXXyVIacyQbeUkg+RTaFyK5cxrD0q4zUSNEcBVCzKiOQFfhZfifMQZgbXNPOOIkDCb5yMMZR9P4EWCp5r8Tt0tWXawAeMkcgcSSkIKPwpyCQfB6J0Q8suw1OzpQkDRRt1EmRimWsajGeQRkf1pj2gNmubFMZm7FOC0LmVtoAVYZGZlDm+HQkW4SjjNLA4QGMkGgG45wpQCqZ7dQCDSGirjysqUvxzrGrXFjSp66j6o6sUxu73Q79scevX32FpmnwsWczXcdYnZWz3jns7veYZ+bRwzDieDwWxo93HtY4xED9tuO+LxqBKj3AsX2grjzq2mOzXcN5j0FdSzXHsQVel7E7beBwHLHyRhp/7oHYfZY16JTdaHJ5hjJvXbTyJnXBNhWQFgkGgszlUCR7/dBTp/R4JCBX11it1qwJ3UlTQFh0mqPDMWZMYXqQR9ZSv5yev/o5oM1bLCYW+p6nwFPOGWcbTtns93uEyOsLzmN2Hufn56W+Mn2P4dijW62wXW+o1bZao++pFWthCpMYAPXbsIiNG0tNRWsVrBXLFi7iwuiufIW6rlB7NsXv7+5xf3+PeR7phn62QdPUop3aoKo9GZjIaGxTTuFsaHAAA5i86HZyIkxASWhOQnXFlHScTIFplTkQXT2jci7M9U+5VWUsVoCbbPR8PQFlvL6cNI9l7I1rRPWt9JpMyW1U32vOsbCukZd3VzkO752m8QuT2NMFj1txkR8oeWKGEAqAFBdNrMIS1RxUfjjlVJjFgAKmJ7nFyes7EenmZ+XZ7wCOqKUlr+WXnh/clyWjytSNMwKiKesoxIDDkbqxITaw3sNlg5A50TCMI1TSpK64XuZhQMgZzhoEiX8aP8+2W0pfqDupMcUlW/eZE7kOBQ85+vqtQv7P+frOwJO+eVW5MjetG1YPr1W3RmqzoKcZh8MBTdPggw8+wIcfvhTBXrW1FnvORGqvlcLspAQmlVqACdK9ppJIVZ4jBU3TwnuH2dhF46imCHeIDMyV6EiU+eJ5xvF4xLt379B1TAwfP36M9XqNp8+fI6WEy8srjrc5IrOtbwtlfLXqZPEtN9lJgNRFVtzAjLrhhQWEku6b0r2nSEtlnbethFofpMhIKdHBSJgYKSYcjkcMfY/bdzdomhYrGT/IORfGUynUA22oM8Q1zHIRGeNQVx4ZGc5mWMuZUyKvDPDWJswTWTmIsvkkmXcnwNu7t+8BZCKt1j1IaIrGgdT+cwhIIaAfh6Vjrwl5pCCqr0ip7YcBwzDg5v0NvHPsKsjP7Xd77O/v4esadVPjr//1fw/GGByPB1ycn+PZs2dYrTdoxOkIEK0ocIa4qioR1ZaEVAouddWrPRHqMoY1ToU5o53DcSLw9+jRI+oQSOLx7s1bVCKC13YtfFUxWcoPFrkI6C7uJuZkbDMBsJazwRkJtXEwMeOf/X/+Md69fYs//dNfAQC61ZpgQQ746OWHuL56hH/1L/81fvmnvwAA1E2DaRzx7Nlz/M5/9D/B42dPeJjDwIpMQjbUdoDHojuh4wBSJFrn4ConY0t0mzAgyBgEDDEAViuK0W/XFPRUxlZOiQmpHMqkcruSZMQcQbHhXJINFlEsoMdxfHBw0bGuQm1pA6pFpRYHugY5IiZgYIzlmRdhS2vhqgp1WlzAdP/oXpznkXbnq7a4ptzd3GAcRnRdg/Wqw/X1Y1S+wvF4LJ+3XbVkeED0NnICjEPTtswBRVyYBT67C+2qW9hlogsdI0EbAheqiQM69WXtPotrkVm6QwSZ+d4Kohc6L1AcTghCkR3KhI629cZ67A8UMq4qsdetyFJ4/OQpVus1fOUxjBPe39zhP/5P/mf4n/9n/xl+86/9VWzWG3z++a8wh4R+Dji7eIS/83d/Bz/64Q/x0YcfIsPg9m4nug1OGEzLgctYuuh5aRKlIBQTNYOQsmi7WG2Cl2dIQK8qDA0V1KU2y+KqtYw/6EgSSpJsrax9B2ohmYWJMc8CWGY6ECk4Zx33Fg81ssRcJS5Dok2RpLDuuq6MLDZtw65vWorsLF2/eJLIa0xSZiuDW0YwhhbiwuyAaH0Feb7lTEgZISfYxPFzZ4BJANkg3eTKV0U7ioxRL3oeppzJ0zQJSO3LyARdUCFaeCLSe9L55t5l0pQlyVNQQYtday3GccDhuMcsBVZbq/jvomc4y+hnEpbFNI3IGRgGjvU03cICVjCujAnFIPeW93DuR0mqlusdhgG7/QF/+sd/Ip8VaNsGh/09Lq+u8YPv/4CmAc5js96gbRo8ffoU8zzhzZs3ol1hME4zhomjqhnAZrMlMBwd4pwoHJ5poDGPHMFfbVaybpcuckKW+8HmWp7ZxcgCSB+PxxJvySSfRG8kwldaC3CdxjjjcDiKntVIDT1QBL9dtYUJ7JsGdbeGZpwJEXNOyAI0Nd2qxBrqOdal8FDnRX3uus8odWExy3gzZKuohlgGizUFNLXoef3mNYZ+wNBT4+SbV1/jydOn+Oyzz8hiMAb9PCHmhLZukKJBDOMCfIJNA36OXAA67iWDqhb3J+sxh4iYZoIwmYW+NYbuw86JK5ABEjW2vPV4ek1GdpxnzCljnCe4sv5SkTxIoK5XBhCQHsTkRcdQTSTE6MJaVL7CPM84DAdM84w5BLlmAqUEBtfltZyzomeWBdgVsEvW9zTO5d7LYV3GLb2YIVCI2AoAHYUJyzjU90eye+53QM7lGuu6xtBzfOz6+rpouGhT0Dp1njUFbCzMzbwwnJ0jgzclAv4py5mpQFdmLLACQD9gSSIhmoiIiFlYYNlEuBo4u1xjnkZx++V49vk5QZv1evNA03KaJuQEAf54OMwT78M0k2nsvZe1TMDbeYezszPR5ON7AMD79+/xzTffnDwf1gwxcizy6vIRJxdEF9Uang9RGSXSQJumgHGg7AZFpnlG9f0grpa+AKn6rILIQ9DQheea9xWu1ptSPDrnAWHjwgCzssCXY3Vhfhs2ISBgecmxUyrjuQoK6HVb41G5CtvtBXK+x7t3t7i/PyCEheHujEPTNPjww5cc95G8EoY5ifNc45X3oK5UwjD25WcejHdpLBcwWQGsUwY7x5aaUiPGY8TN+1ueMeOMXLMN+H63E1alha08PvvhD1BVdGabpglv3r0texwmw1UOre1K3NP7czoirHFIMZeUWOeqnvD790HOLItxmmTcMuH2NpScWPdpPTRF66uuK8YFZ9nMFIA3zPGEfWmWuFvyDKlRrYWvuDZPc44CCou+I8cbgZAWDVTKOCwNUGiuFU+auFDZDpEeKD8s1yBJsY6pZYlNWptSygasYUQ/uGmqwork57aadZe1UHmaaGHOyMYgTpPUMbwTBjpVw4aPxqwC1RbNK/58SouJAutdi2LCYBaGL2CIcRgIJsDfVd3jXDA9ba7qnwwZZCZwCjKXGZ8KEwTWeVRVA+M8kjGA8zA6XZI4Fl/5itiIAcJwxKsvv8TxcMDx2EvO6tGtVzi/OMPZ2RarzRpd0xaJFOI2p2OXy1d5Pg+//ed+fWfgiYtxEQTj+yxjXJz7JqvDOSf6CgQW1us12q5FXcnMPjLCTKBhGGZ4L3oNJTmV7m0kohlmCtuqyGeMiwiwsnnUptgJYl83DVz0iDmh8ktxC/BnFaFXgcftdovz83P4msl22xJcmqZJhAGrUgz4ygudV6wKE7VIak8bTtrG6oPip1GBY2mCwSTOtuZMVBnGwJtFBDcDQFzcCAqtVLZSiJFdkn4AQEHsUoCahRKnSeiyQOiSg0waui2odF4WlSmVa5nXTynBRHnuNoO6tUtCOQwDCxYp+ttva07omoF0xzILHAcWvwlyoMka8HId00xG1TSOSJ5jWDFw5nQSlxhfEWh8/vwFnHO4v7/D1eUlXr78ANZ7WOkEppTo5GUWgVot3Aq4dOIyUEumnk8SxizzvtplG4YR3vsyrw3DDukwDAxoEjhJEhHawreQcGMYSMjokr82etiLaJvh80JK+OrLL/HF55/jD/7tv0NKCe2qQzYGyRmEYcL4/Igvv/wSr159zbXhPSaZQ3/67Cm61Qo5kX7rnUMsopAGzubCcDili1rtOFoD46x0jCmbpp0zxlRbDjllkURJ4qiDtQQv/XljFO3XBAVlHzOJCEiLVl/ZNzlnOGNLF1C7WvZkH+nzNdYsv+MWm3IAgCS4yoYDluSqqirq6ESCb5WrZM/n4rJRyfpbrVYEVmXE0MCIaD4THbWzN4YAfEwEPqMkRjq2yH8Kxdro6Cv3o94Eq7Rnu3wmmCXhokijxEYBUnQ8L5/cPyuaPAQ35YEil8M2syeDGBOck0EqGQtpuw510zzobH32g+/j2eNH+P4nHyOnhH/6u/8c4xxg6w5tt8Yn3/s+Pnj5IZ48fYqcLZ38NNGVYtWcjKAQZNIxXaUdy/f0tqRFWFs1nE7X7ekoqP5ZmFCLPsnpV85Ls0XHwrTTs/xsRjCMyFljnAAXNrObbqMp+9qqhllJpmRk11nM8yJwru/z7S9N/grjK2UR6V3i9XL9S8KlXWoAZTQmg8BQSBEm2QfFqO4v2ZjIieuraZoS+9JpPHRCYY9LbI8pwkXOMRrDjl2hnUsOUdYqmESedgoZE6khNouYplfANamNMEWC++PxW4V6Rt/3fB1hY+ue171jrRUwTq5Xxtb1/qvDqO7NozBH67pCiCzAu67D4yePCRQYh6urS3RdhyfXj3ndYZbn68iCjbFoYdHViFp60YrGz4k7Y0oJbWrLvTjtpsYUhZ27AHXKhDv2fQEYZgGexmkUdoSOIDhh2GaMooUV5oAYZsYea2laIqN1xtE1TjOzOci4rjSnVE8M8ywgrY5tmAIEnD5XFCAZJbfhgzFMkMrnFOYPROMShu6thyNu3r1Dfzzi9vYW2+12WfcG8jwDUqrK2ZoFUD3Nr07ZsswBJD8TE4Co388L0EsGtOrMVaUIssYCTk1ZEvbHoQA01D2rRfNTxqWR5excxusLOMSNWgoZYzQWsZiaFHidJ+prGiB7h1oWr/eLyQ+MefjaErtSFpMIYb+X95V8WzU4F5aTKc/lFPgeR7od7nb3QAZq71HXTdmD84kTGNewjg9R1kFjN05iwkn9yTWjwHvKD85+BaPmEFAZU3JuBVz4PwGgxE4tpABjgaatEeMEhKWgJoBDceYwB4w5l5zQitkLYOAyEFwotQjA5zOFWZj+zI9Wq1VhZ+i6H4UdNQuLsZMpDF7DuoziCVEVMMs4raaPWpBGqTv4Hlwf2lxy0jQ9ZSAoMMC1rjIgZEKr1ADvnbBbzHIGnD6Pcr7oBZa4ujCKTxuE1hhpzvD3nYy6sT50iHHEMIxS3yXYTNmQJ4+fCEC+xAjrqKtY17UAC3z/U0ZhOfMFEPs2K76snbiYzZyOrEMB8RDlnARCzggTCQJNW6O2FdbbLVRGg4yTQzmHnKNUQGWrZf9Kw77UZHrOiwlCljcjU2ymS6xoFjrvEWPgiJ6wXFUXdJ4DJm36OAc7Llpk5bwz2qyU5wAD7YIrQ1J/5zTPUfbs8ncnP3uytlRWQJ9VBVkaKKkh/2gtWtYHlms4WV/IizkGsuT85b3k73V/CKuzOXF9NFlzvQXIMZKb6fWU3AOSv8r6tNYWHc1TFhI/vzyn0wStrHnJXxWa0Xim+Zp+Vv2I5RNpbrpck+Iap3ncaflY7pPkp96LVIzUAVxnKPWqBXO0uvLIKWCaI3b3d9jv9jI+7LHebOG9Q9c1qBsZsZOGgDUL+rDkcZpfnjzok/v13/f1nYGnSboKFDImnXwYRoQwyYUkhCAWo6UbGlBVNaqqwTwfy8PLOQt7gfd7moIU8CIuDW6qw26HeZ5xf38viKY4uXmPV19/g2N/xHazRtd1+Pijj1DXNc6vHiEmCocnw/nj12/f00Vk1aJrW3z08ceIMeLDTz4paPgcI97f3aKqa3i3FEIKoGjyaqylO4UlS+C082wVAQ108FLLRAC0cM4sFEJMtC6UwOdrHsRJ3kPHZTRJ0gCeQfZSjglt1SC3CavVChlAfziiW63Qdu2D4AopoL4dcDEHQAoHHkgDcspYr1ZcSLDY73vs9wckKSjiJJ83JnRdh7OLM8Cw29e2nXQ8PZxx4ijDImeap8I+SwLccU6bqL21BtM04rg/yBx8JYK/M776+hXGYZSZd4tpGHE4HLDb7YRyOuM3f/M38fzFCzx/8RzGWswjbcqbppXOcELl2GkdjYgxjmMJMlpgHPdMCHQkby3MHXVOmwJF1lHGWCS5ybSzNobdi6sn17i8fiRdPItWkwsBKrXQ9aUgRhFxdRpZhAqfTaZTkXPIMSCMI77+6iv8+ovP8f79W9ze3eHzLz6n2PMc8P/oOtR1g3EaSRV1Hqv1BsM44/Xbt/hH/+j/hecvnuPZs2d49vQpnj56jJvDDuPMhMg4h2pdy0hIxCjdl2ZF1lZWEWul1RhFU9l589JNZpEVS0GUBVQMs3SYwDGipmkoZwRN4ARUEIdIY8QRrkxE8H7HFGAikE2GSU4KjVSAwhQCsrXIhmKTtqqQQ0TMFJ00hs6QRhIOFaZWVsnbt+9gjMFnn31GBoCOsCLRutZZjpHK4WCNxTiSZZFSRts06NqWWkImF5HzWbrmddNgtVrh7PysHHIpKLDJwrOpPDJSERLm+BC1iaw4iSjwdEpLpsWtikNa5MwRDrq4MKnJMmbHsVeO2PFQtvAAqrZh8Xw8wvkKTduV8ZT7+x1SyqiaGnkagfsdPv7kU/zV3/hN/PIXf4g//pNf4P/5D//vtKCHw/nlI/zkr/wGnrUdLp88wfNnz/Do8hJjP2B36OHapmhqlVNZCh7dH8V2Wqi+gIy/ikYGEm2NOfa9gIfGLGvmwSGOpcDJ2SBFlD0Z0oycOftuvCvuijkFgsB46PahoxennVZlWnVtWwoi8VLjdYHJc86Z2j7WoarESjsEeLEsnqcZylAxkpiqBoGRBKw0YNKSnKlD2hyCFO4yviFsJO8SpnnCXuyJVVdIk84YIo77PcGdecZ5OKcQuWokpAQLU9hkzlfwjudAViBbRmSqquJZUInQq/n/svZnTZZmV3Ygts70TfdeHyMiA5kJFICaWEWKsi5ai9YiKT2UJLN+6W4zmh70O2l6kZ7JB4nNqVkkq1pdLAAJIDMmD3e/wzecQQ9r7/N9nmCLSTNdWCAzPa7f4fvO2Wfvtddei+BRXmJlD3oZl59NZILU0KUG1sCMI2KMaLuO4/GnM+Ky4Hg8whhTc5F5nvD4+IhlWSrTJgloNl4mtF2Htu+w31PX79tvv8V5vuDpeCIQL+skl4T3797j6fERX331Y9x/8RY/+enPUDL34G434NXrV7i7vcfd7S2ZgI7upSy0HPrYI3ShglLPz084X054/JzE1Wyuhbv3DtM0om1bYWNC8qcF3lMTUUV+OWKTaqHRNJQmOJ5PmKcZT89PFO3tBzZ3ZAyuGCC0TWWZpJjwdDzhdDrh+PSMoevRDTvc390iNA2WRF3NKI6WcUEdoaTGZ0Db92zydS3iEnGKR+RSMM5L1Qdip7/BsNsh50zHP2s37BSHi4j0MtF1CM2B4qZeXN1iEoYx8NOvv8Y8zfgXHz5iaFv87T/5E7x9+wW+/vItxrjgPF2qcPw866j8qgXIWJthMoWpVS5iiQQmKMPCv6fDbXi511PG+TLSqTVneCtMHSnmc+FI4DhNorcm92ueK4s1Rsasy3hh/qDOqZtGT2sMjBTdBkBwtKseN0y/aZ6xxAWNsCQVOF5KqbmNRjmNC1maxeMopiLgRME0jvwd8GwKzsGJdMLT02P9fbuJyTknaq6OI9ex8/BdB6BgWSQHEwMdglYEgMblglACnGfcd9ZK43I17kglkxycIhs+PsBKA7AIUGeaBrlkYQbpqAzPQnWzhICW4WrPszoXhODgXIfz+YgpTpjOFBq/vr6FjqA7QxOEnBLmccIysmkWc6rNdLLzWDQ657Db7VjQFhafjTStrDQurLMYdj1C4zGJJEgTGoL+kbHl3bt3FSTY7Qa0TVvvZWhbeG/RdB18WJldyogxxuDp6QhjLfaqH7Ppp/D4s+g6MhSZ84yI81zXamga+CZgvxt4zlSXYTmWsYIoxm3GpPVclTOqGIvifHVyni4KQEJyxRaHwx4//vFXeHx8wtPTI47HE/WyTozHT08P8rnJxPI+IOalNlv6vsPh5kDJCgF5p2liHG0aNHKuOZ2y2QABmpdqHj9NE9TxNriAL3/0ZWXwHk8nnC6neoYu4wUYL3i6nCrQOYmx0+H6moBjK+etjOx6RxkF5whWLzMwC7s/ywSRAgY+OGpPeoumC8glYxpHjJdFBMvPuIj7HlDolFwK2q4HrEMUZu3d7S1gPRw8linifLpwH1ma0nCxWtGSChWq1ZxGc/HdfqhTMsoAZN2b65k3S1z6/Pkz2rbFj4ahMkp1/bZty+bBNKEIo0tTPYLqdINX7MJAWKGlIM+lAjUpJRT6W5Hd5C0cHGwmKygmitcvkaQRK7mlMQYncGoibqQ4nHVwZoVCNJ+irEvGEucXIIuB5pilgvFIklFa1DFKbZhSNL7AmFQB6GIiCq2kmH9mZXrTkU7/ZBSZIPKY5wmq26kahE3T4ebmDs412F/f4HQ6sSE+kq0VKkN8wjJPmMcRDw+fcDodcTmdqPHUtuiHAV9+/WO0fYdhv4fzgaC7JxhtZd00ou9plKYmhIoM+Vw/DHf64cDTKFRVRQWNJNB680pRO/CVxlfniguwRBWzJTp6uZAmSsHNJIuqVIdbYEX1KrqnaKGhuPYSI56PpBw/Pj2hkcQtJ47+KI6oaHrfd7COYy4FBb6hIHTVQkKp7AkFQfVfFBWubC98Dw3NGbGwg1QZStLt1EJSg1ysjC1lEqW6qZSaV8pKka3osDKOCguJtmmoJyEBcgWLV5CpFAIl25/lnFAUeBKBdAOKrU3jBBiLYiymccLlPApyCpn7J/uhCkXqDK7cb2tWS1DA1GI+RenSosAVV5NrFmHCxjA6t+pxuTCZmeYJMUV07QBTUK9vzrmCgrd3d7i9vUUjiLe3K6CjqLECidvuKwrEYp6ocBJB3WrLnUsdp0zC0Mop0eUtr9opGnido3Bu8I0IeuJFp7DUdbzuHf0uL8CDCtTz/YvJBFFlPd/e3uB8/gJLzth/PmBaZnEbi7icLxQfFOfAvu8B6UqfzxfmrrRgAAEAAElEQVT8h7/6Szw+PeLz589IS8T9/T0mEHjT66LrHwB8YdJI0Nm8XFcVdHnJMNps4boea1SQv98A9nWf6njGFlEHqLkQxb0ul/zydTf7Q4tvKMspZzpDmXXvZmNh5NPovSulVABKu0kKRJ1OJ3RtgyYoeAsYcU+p10vu8SJ20av2nXYq186pgtS6Vp33MBobTAHMRgi95BoXCPgyUTE66mVQmXcaldjJ5JqBdInyRrR1fZj6uoCpbnK6bxWYSSlDO6BRANrLSL2C0LaSNfD7HA57TNOEjx8/4Ze/+hXmacbbL39SGxYhBHjTout6+NBgurD5wERoZRF9/7HtGvG+a6ewiOOIPo+HvVoaA4C6srzsXilIZ+oC1L9PssepKSQiqbIla9yQWKn3qa53bQJD8nEj4payBnNdP5qQrB1ijZ9RhO+1UZFiqkwH7ZQW8/I9a1T5T5362t2RgoCsGkm855kipaUgel/t4XNKlaGoVswpRhpRBBmvkJjJI4D7juKuTWVw6Pe2ck9W5hh/vzJxra2mC9oxJnhn0YRQk1e/2a+VGSkgBptgEc/PzxjHEfvDga62nmCptcKGdp46JgLMVXFu5xCcFcayaNc5shYOV1cIoruWc0Tf97i9vcFut0PTthXk0vuQU6a1fNNU4KmTnEOlApyTcTTpINZzMrFpVYqpeje++ApmFlmPyvDWa5mE/aHrVNnDdfxYY7NoUZSibjk81zha0dBpN3jRUGESn2JBlNEEGBEyFtaPfl8942vRIA0UZfz4SKayOpMuy8Ii1wd2r2u2tWHDWUutKANhGFkMXYfGedwIYH9ze4v9Yc/CO5l6dBZoDCgoZWVBrt3kDQtQYvj3/06twvmlWHAYszLk5jmieL3nCcgFS1Yzi3VktBbkm9hWsLJ3YMh2fDHK8iJeYWNwkure0jG0qoeJTeqwiQmqlVhKEXHh8uK8VzFz6vgIYzkQBEzZwCyr9lSR66VrVc0FeMai6pMiUycNhqM6UCOBjV5KgQrSgj/P5sX31py53rsKPK1BT4tTyPqQYP4CaODe8RJzMnJemwPrZMD6fiklgipmZS9kAcLUhVfZwyrOvi1uiZdbhMZDxya1vmkEiNOGZx1DbSgDsczCSs5rHlDZOy+Cvqm/q/e9ZBqnwGBlfFpUFvUmdarXuOSCWKIe+fW61jLfGFb4RfsAq56giNvg+4/KLs9Z4p9cnwIyUYypIt/OUS8NJsN5i3lqEZytNU2MEeM4UiTfe8oxoGC328FLTgYrhgRljekqDbHNw3RfbXOhFUTVcSiuUdUjDSFgSRFzpPs36zeC1EsUZrtljgqj9SnWz1HIxKY7r5AqkjZhF6l/FBxe16Uyj1yQOkIocFfX13DeIQob+Hw+cxfoeHvOSODnuVxG5ExgRR0/CX6tN9uYtUaXDVUfmksqeKomBVnygbqGNnlw3XObl1qbYtz31hhkie18wsscTNef1gWblQU9L+UYROVKFcgoHyRfSYgL/9vYIpqEXO8Zpep/qo6f2azjsomNPD/WcQuj8JzGObt+Tv1RxSkgn3OT5624gr6kglfrvkNZ91gpGtHNJh4ZUJKC8g+hKeiGHhAmr/MB00iCBfIq+r5I/r6Iq68LDXwDtF2PbhjQDpxgcNIUMhJX9bMaAc+5l+QzV/e91UjthzxM+U9mq7/7+Od/8T+DLlpkjhgD7IYBnQAfKSWMlwucdbi9vUUpXPwci8s1IaQjS8bj4yMAg65bBb9XnE+SAXGBOZ0orrekVQTufKE43bt332KaJxhws3dth6Zp0Hcd9oc9uq7Hx48fkFLEH/z+7+NwOOCLt294AWGgQq8qyDotvGEWa5GtGhH63qpHkVVQrWgiHyuDSudZg2/roamz6tq53HaO9FByjmyyeZ5xPp+r2J8WZ1rc73Y7lFywTCsDSCt6PUAfHh5QSqEejyxf/U7xMqGkiK5vEILHzc0VpnnBp4cHasU4h88PTzidzlhSkiRB0HHrcXV1hbdv32Ja6EioAWXY7QQUa8V56Cgb0UC11fTAnOLC4joldF2Hw+GAoR/QtS3++f/4P+K7d9+hGwY0IeBqd0BcFpyejyykU8L19TV2ux1++vOfoR8GjPNUD+qcM3JMdc9W9ozcF+85fsfxL6637377LZ6fntC2LUITcPvqvnZLjscjPj88YJmXVWTcGHRtC+fJ3BmGAXev7tFKMXIZL+wETBMAOvwBBJviEisNXUdZKODmpBh2kpxSuyOnBX3Le9W3LawxmOKMy/mCb797hzxH5Dnhn/6zf4Z/+2//Lf7Fv/5XeP/xA07nM6wxOFxdYZ5nPD+zuz10Hf7en/09/OQnP8Hf/bP/Crf3d3j7o7cMOtYiY3WJgUEFdpSW3O93LJBiRt916NuudsK0CNPrraKdJYtjhNK4UWqnjtpWpIxnGSMhAGjw7bffEu2XGX3Vi6jFPNZDS8dlVEsOQNUqKalUEAgAXOPr57OSnLUNC8J/+k//GR4eHnB7e4vdbsBXP/qiUqUVbD2fznSAEk2N4/GIru1wf3cntP1Qx5zev/9QHTKbpsHd3R2Tk+AwzdTqMIUAgTPSLfMNrDXwgevv+fkZzjWwzuPm5g7eOVzGE4tB5wkoxALrmNArI/N0IbtvGIYaw1RTbJ4JsB0OB7IQPDUVpmnC6XTG4+cnjNOISTQMzuczjscz2qbFz37+cwzDQNFNHxBcwP/z//F/x3/49/8Ov/zF36DrOvzj/+v/DYfrGzTdAB88QhtoTd91yHIf2q5DMRwNss6KZbLUKptRHR5VayGSUkGKWUaxE9o2iOOYjoGqG0h+UVSgAMERFOCIIgCLddQ2cX+rMKiOHHgZPXmR8L8Ak1bAVAGWCsZag0WAgSY0Feim3kOprI7j6Yh5mqtWD9lIdJNNOYtwMV9bRWgVjNF1rdeHbMEkY1UEGk7HE5bIEW29ptyztGoOIeDp6TPiEnG5kILdtKuAddfx86TI83KJMj7rLIbdHrv9ARrCVFzYGY4jND7U+5HEVXH9Lk0d49U44zxBotqAAbUSP8peGs+XChZ/++13+PjxI/7lv/yXeHh4wNsf/QjX19f4oz/6I+z3B9zd3UtBsgIB4zhiiRFHkQQY+rYW09M0IS4LDvs9mtBgvz+Ie9o6lpIEoCOrxwrQpILzTGWscdKtJ7snxplmDXOsY0aznOG6RkPLop/FVUDXdWiagGG/w7yw6605gTI7Hh4eWMhsWJvTSMdZZbRVfZqFzN0YI47Pz3j8/Igv3rzG9eEK1nEtnc9npERmlmpQhaZBaAKubq7r+ZZSRiwZy7zgfLrUXGnXD2iagNM0VpZISgmX07nuw6vra+z3B9zfU9emGCa2XdfJms4VbOjalsxqcQBWg4VUCpYUMS5LZSfOM0W3DVDZJ+oal3J6MXJXxegF8F0SRbwVIPDeY7xM/Pu4MWZICcu81LPFgu5fszg8GkdgMLRNzdu2Z2gpHN1hpWBQR/kEUPSik+ktY03S1zXsilvvsAiw2IgepsbTCmYUOhsu81ILJR0Tpq4Wc+xpHHE+nauD0f39vYytFGGexxcMkZwSnp6eqL358IlsxNAIA3WRsY8g114YciHg9ds3CCLorLFS8wUFsj5//ryOuBttGImbnU4IyNmeyjoit73Gyt6hfIMC1K4W9aoPdz4+YZwuOJ9OEvsJBO36XR31n8YR8zQLW1gcKC31b2rdYmrbZy2yM7XYrKNGk54Fh8MBu92O8UXOG+ccrq+vMU8zPn96qo0G3bf6Hioarbm4IdKHUgoul5Huk9OFTHURszbGYLffY3/YVye9rcOaQQFy5H3pe7iGDCE19lmWBZBcTKU5ahNb/HNr0Z5LLeI1NlaMUBo9XrSnUl7XJIEYHXtj7jFPE7799lt8/PgR/5+/+qvaqO/6AU3b4Q//+A9wc3uDN2/eiDB5X5tIalKjQMh2LSkrajtipzl5KZRuEOiwgiDK6Pvw4YM0dckcrw0Rz8YCRysJON3c3CCEICOeQMnMV5Y5YVkIijx+fsA8TaKJajhSJ8QI6xxs4BmgDnzMCT3GccS3336LX/7yV/if/u1f4P7+Hjc3N5QVsRatGKfEGDEMA7744ou6pna7nehZyURFLrURRbbOxjVORuzavkPwAbth2ABPPGPGy0UaKR6lAKNo3nZdVwFujR8qW9C1LZn4wpDJRUe3FYhCNXBpREdP9XO5pqU5JfIevoLuawNvmmdM8wzjjDBXWUsoySWDDoaNb2qurnFZ1zzjCZvea1Od1y0mrTNeahl736y5oeQBepbNca73UBlTzhOsSVESBmME4BZx96KNHrsB9UvN93Imq1lj4zSuTOppmvHhw0csy4xpvPCaTCNlj5qApqHcTGgCnPNkMAeP0HBao+taeGkaBpneaRs2J62xvIobNFvj8pvDS5md/9Tjv0DjSSymqaQFo83mTYdIXZQKVlRbmviwFrAO4iBhxCbaCPqKuvB09MoYK0V3rvTlJAAIBDgwhjR77fZ4AZ66rsN+v8N+f0Dfd3DSydwNOzSB4ow2EUH03iPY7xcSBbUhLsheyus8an2OgE5qYa2sFmMAZPm9koAMsWXPtdOk4AeLqtXJB1jF3HRxJQFm9PBNKeHx8ZHMLqFdUzzUV2HadTxP0dgsjialbuyScu0C58Sk4XKmHXDOwDSvYsQaHFAM5kIR3JRXdoCizVlAlDToGGJaA0YxFT2vHayyHlbWGJzPZ5yOR8QUq1ZU8H7twFgj43wNrq6vcDgcEHPGRajaXEtrAmBlBls7EXWjCBPBOnEeK6WKjXNtUbDaRV5XTWi029aIGKGxDMTPz89IOaPfiLxPE6nwi3QEtTBkcft9ppOwgkQnykj3MG2u72wj1HXPGI4wLimhazuMacQUJ3R9j9v7e1xdX+MyT9XaWYEnDV7jMuNXv/4G5/EC37f40Zdf4ic//T00bcvEHIBji0sAHgbRXHJNiC0M5+2D0OnlmjMBUDFtoY/mgmw2rK+yAqGML2vnSUcG1HBA2ghVLyXoiFIpdLhJ68iTJgPq9sZLyoMyqK202cxdy9pGzkDi+rUC0sQlijgyEJcEHyyaQNFUFTq3oscAY9A2nYCO7cqkMAYZdKPSw1PFiLl2inT8paConXWz7uGyOkLVJLdkUOhQ+wZZXkN1+OQnBev6rx0XcaAwW+cl7lVnTB2z1DGrlCWeGwfnA66vbxAkiXXeo+s7HD8/4fnzZ+SUcDjs8er1K7Rtj1biM0UwHYa+g7MGRUZZDIw4axaYQqXGnGI9C9qmBbyra160xRUrgnw01DExYBXw1wKk7jOJ3yCTi2YKwj6STuQsNPBSCrKAwcXwemXrYC0kxvNAzrrIKzCGde2bdezRZI6aFGB1q5InWWNgHIH74EPVe9Mn5ZwraFmKjmCvHTbtzK1n9UvmAMAOOMfWnys4ofuMzaQgwty5gpJWLnjKsXaCU45AzFgmsqHmZSFbUESPl2VGMJ7253INCPxBIzjPANh6jwCeR7aYylYrsieLZYKaBazX8zBJJ1yfe7lckAst74dhwJs3bzDsdrWZsx1j0s/hdWREvpv3Dtk6eGsR5He8jF+ULM490myCgMQGRlgo+UUMAwALJ+MK1KcBRP/FGIQAAYojQhPQl17ifOaUqRU3NaAyUBsR693qkWnx24rmySRjibMk3tNEYXGOBof6uwp0OOewO+w4op4i8rKCK1ybDvBG9Ik4/j6ezzLKQE2qSXRGxssFQRqTp3zCOFKPqIBd8xRT/TxxiVU8uW0axLig3+14ro1iOiK6Toyl7OYuMdamRoGpo2M5Z5QloyyqSckiMpeEZeIa9U2Q67+5BtI0U3aJBFcamCAhZrr+pZhqg1o1JpW91bYtY5esbX5mX5kfpmgjVfJnyRsr+1f2ShbQyfnVvlqLKu6TIuNTPAe0ieNUJ1HBnBo7UPMq/R0FDgBUjTCCN2Ej8J1lrFuAsrJhQxsCeG3TVEAipyzNXwPr2TCbl6VamzsZtVuE/Rajr7m0NhUq+13PuS0FQ2O3BDwF0pYUWSck6iNWNzZI4VZyNZMxXva+7LkUE6x1aEKL1GY4F2GNyoaY2mDwPlRmZs6rCLU6blo9L/OagyjbzVnRXpL7DGnokJmkbNJSNULZgLRVRzcm7i9tfiqj0VhlUmjxp7UHsB6CqACBG88wBhg9daCenp9RSsH11Q1Bk76nBXvXAjI+x/yZ+4BrVF5a1jePPVtjKQRkYNax1inKSFHmRl4Wrn+T6nvog6ANP7vzDvev7gEA766vcLlwlE31dru+Ry+mQXpmmAo6raw6YAVQigBbWncQEFoNWypIJs9VsHU8Xwj2G4uh7RC8RVwWfP78mc/1jmCAnA3GcMyy6zokcV5LkfkassGyRMSF+8uIxqaCmaUUjOMFvmkQbFvBOdVzXOS/97s97u7u8NVXX+L6+gb7/X7d49LciTKKHVOskgun8xnjNIlZgUPX9VX3UffZyjgs8nkmLI6NEm2oJWmUrTkqY03btLJGZH8bU9c+zZVkXW0ALk4MFOZ+m/NC84d6YyRPM/ozed1F2FeUFnGVJEJGqLqK8jzLcr+pzbWdjNlMcjBwyjraaLT9zkNzSq0l1mun/w2s7HSDlV1WmUsqJg4ARVibhkyz2p8HY7XRzyXr3ekUSkKtF9AZ+ORJYnAOV9dXiHHBPJPMMk8T2q6FD74C0coObET3WN1sgzCbnTEy2quxhTWUqe6L9XL84McPBp7aboAmwbxyRQL8SofteiKzMW3ABlNgTEYIBjC0/DTGAHYvRTA34jTNYnOeEBrqTcSlIKWCaV5WrRhJNIdhQN/3lfan3Zqu67Db7XBzc4PdbuB4ndgUzeOElCIu53MFMojMrjpOWYCuIgegCg7Py/w73XctWpOwmSAJhIEIbmXS2GOk28z3qcPsZDYVDNCOknOuahroPH/XdWhCwOnEOej3799jmenoo2h7aBq0bUuNrZypyVN0lI3fgYHAyLx1Rtf2CMFjEsvk56cnnC8TjqcL9ocrjrOZLOyICVGSRxcc5jhjSQtinGthM88Mcjc3Ny+cyQAV15VkygKQQ8176kKhAO+++w7v3r2DDx43Nzc4iIWx3jMfvOjn9Hj19g2urq7w/sPHeo3WdWckIQ/wTdjcrw3w5Awa20giSe2OJnC2NeWE49MR1jvs9rt6b4w18NbjWrq+z8/PuFwu+O1335JRYujqNgxD1UdStFwLJT0IyaqTwCLrYsFq1Z6iuM4YBkt1TBnfv0eMC06nE5yxGNoBnz58xG+++TUygLdffom3v/0Sxjk4Kby++OILlFLwdlnw+MhRu//w1/8L5v/w7/E333yDP/rDP8R/9z/8Dxh2O3x+/Lx2EKVc1iBtZP1YuW8q0u6srUVFxkpdLWC3kc461MEoKMLS5v4h69BLAZGq+wqZPyqqysQyNA2G3b4CIzEmpCXicqETjzHsbrjOrYBpzChpQX/gfltEb2yaxhc6HIgER733ePPmDa4OV7icLrDWYBpneNdg1+/x9PkZH95/xO3tHdq2Q84EjW5u6Gq1G/ZQrRhjaKO6G3boWjrBeO/RtT2SULgNDILzwnCyyLHUgzDlApMBYznOxrERFrvJFBgrCVRJUI0ilaW3KCimoO9aid3CiNH76Cysd3CFOnvGJDiJf/MScRlnnM4XSbLpIBpCg9dvyBgdx5EMiOtr/Me/+p/xr/7f/y/c3F7h93/+M7x5+xbO0/GlFOD58TN2Q4v7m2uJIzNCoP7RdDkCAvyWAsSESrMvAh4om0T3jTVWJuQzPJW7qeWFTaImlOKYxfFOtMOAghQXZJCibwqFQHOMuJzOtVOluk2wAmyR018BVwsdf1PWKh8snFztCGUFO2U0YU4TCxthAjm/AgkaL1QnUZlrx+NUQQYWWCJAC20sAC/AlaLFLa/Zw8MDzuczHj49VHHXJUbMy4yrqwOstTidjqIlxzPee4tURJ/GBwTrEeOMCLA5ILpyzns0bVeLnqEMaFsyygw4Zm9tgcvUb+JYK41IksTVGOlw4zeaIUkAMGUHnJ6PFXiapxkPDw84nU54enpG05KN83f+7t9B1/W4ub4BQMANAKbpwu8QmpocKkvz5iqs4J7PKHllkh2fyWqczhcs1iLOM6ylroSx7HAucUbO8UVjwYiuB13XHeLMv9NmU2i0mUG2yO4wVNB9y4ZY4oI5RbQpVjaqta6eI3q2XEtjQcc3TqcTLucLiwbJm+5ur4QdMJB9dLmg7zvc3F1juow4no8V4Nz3A+Nu6Hhbe+B8PuNyueByORNo76hHdT5fKkO77XqkROesJUYM+33NA1JKOJ8vYgwyi37OiPOZ7sc//elPgRBwEkbXbker8KqDkxMuoi+yBY8UkL2MI/M0YWYbH5BixMcPH+G8Qz8MGHY77HZkjsUUsSzxRRKvmjZ5iUjChl6EnaYGOJM47R6PxxqbsoAEwVKbLIgz7LwsMEEbtwSMNc91Aqh7a5Ekrwxti6Ztaq3VKOggDBQr13GR0Tgn8VBzHoMVeOLZa4EQVmdPyXM1vp7PZ+ZJh139+3mZMC/Tpim0xjXv5Dw+WMS+x/F4RMoJn95/QtM0ePXqFXV6BJRTdrRvAx3wFi9xai3otmwwzbE1nhKDKsKmodX58Xwiw26cXuTR3dCLIL6rzdi4EPzwzdY0hGZF3juEzsOL+cw0jgIcMWdpxEXTeYc2t0ABdjvR/czriP84cY9NMu6rzZ6rqwMZBMoGixGfPz3QeEYeyrbQMWJn9d5ljJcL9f4kZlj5bnpOlgL5LnQXs87Aea6TIHF7uoyYF4q/K9Dz/v1HWGvxp3/6p+jaA169uqe+rrDoOMY1k+G3ROYLzskfGT81BqoglqOyBQmqVQ3UnKWJttZMdBIu9cxT1pGyD8kC51r94s0bSkHMEz59+oR3795h6DnF8ur+Hrd3t7VxVMeSvWfBboFS2GRYhAk6T3N9ju6DLGtcWUWVRZIILD8+PuL8dMTl+YzXr1/j+voGBXRz/O7Xv2HDX1jiGaWyqWwB9ocDoinCqp8QQoOh32GeJizzAucNfGjQdHImhB6XywXv339EPwzYWUeJkpiQ0lxjtveeLPMQcHd3i9C0cq7xO7HW5Piist8MEiIMHj5/llqpR9t2+Oqrrxj7sugWKWC7AYPH4wnY7M0QAnT0Txv1mnsrq1711SxIPilpJRkkl8SQRMAMC1jROVpkmsTXsVwGsq0ygiY8BQRkVBZDNQ8VhGucY5zPjAP8fY49tqGpALJ+Xo1BK3Cpo2WrcVcR4gYfW7ObdULq+w9V3nTGCfBkalAVXkqtAw0ElLerQdkiGq819so1cJb6w8bGOkUVGr7YEgJSztgf9qs2pNRM+lB31yR5o4LqThpvKmNAHEQOgVw/KJRVqPdDQcMf8vjhjCcpPNtWEGULCoGbzUUUYCrG1e5URwmWJZNqSBUupMQP7n0DFIecLUkHKWOeyS7KImqniJzS4VIiTc5ZFnQGwM31TS2ASYNlwj5LosjXI81uPegIWs3TpJhldZjb6r8Aaxe5OiFsEFK1n970aERp3yJCiZuiP2BQqaWLNcBm4QZHGiotlzfIaS44n06YRgJOmvQA7DgpddiOF9L4J+oiqeDy1r1BA20pBWoiYy3dF5xjMeOdx64fcDmd8fT0hMP1FXwT0PUt3+sjxcKPp2MVUN/t9yil4PHxSQJ6gnMNbm9vmDxPM9TNzMr16ERINeeMy/mC56en6hLWD70AZ9zwTdMgSkLimwZtzxlsFeiENZjTIkJ5pAX6QKbUst1sMgama1a7ONYp8puBGKWhLWVdKQjeY7cbSAMWpz2971rI63VlwqOJyMLRMOfr4QiomJ4yv0pNFhcRkMspwYjzYA1ossencaI+i4wAfLp8wPsPH/HNb34t6yXj8fNnHE8nvLq/r7PZPgTs9jvs9nu8+eINZrkuf/DTn+PHX39dO42taL0Yy1nyXDKtmkXYWYt6lELrdrEuVdvpmMQZwzrQ/Y2FTyJCw+Av4wHGFIkHOhali95whBPsjDvn0TQBVjRbqp6PjLKE0MB7JhBE7Z2MM44oktiwUwosYse8pRRrrGJnm8BG33VoAw/Ww54Wy8/PRzw98c/93WsM/VDjg7MOZkPRNrAUnS1rvFLcM8U1FmlHX1mlxTIBMDZL55JFyuAHEfoniyRGXjMtOCCJB1lQtrI0FqUFy5hzikn0WmQUrLHQkQQKoCeczmdJElGvjY446lrUhN8ai3ka8fTwCd988wvEnPD3/8E/wN3dvTA4LG5urjEMHQwKk2trYSROZGGDFqEM0x1IWLTWyuhbImDSNAAK1JjAmVJ1AZX9pbT5GEVYObNRkrGOSdtSKoOD3SK/xpklVlaSUvWtaFLoYcukn2eadnNrvK6dr1LjGyRGQeI/gaiAbCz1DqS950QLKzQBJgpD09JlTJMCTQC1q1zjThZb8dqRQtUz8G2DrgDX1xnOebHoTog5VVMAZcha78hkGS+YphGn84n2zCHgcDhIosnEsu9pOtB0PZxQyJdlBkrGMOxI6ZfLw/OHa8cLO1rjgd3Ez20sVdctA3FI2+zRJjSITUTXzrT+HXoMux1CCJiWuXZZdXRKKe9kOq3n+yhjKZDON9kRLOetp0Ohjtb44Gocpt16QS5RQPXV4cpaA+85mpmzJrO6ZhLyvI5FuU1uY4Ux6lPC8Shj5cJMqmwK6S7DAON4kfFRrsMQ6K5pjcVluOByGfHw6ROmeSZwL0WXs5ZscC/GDEL9VzaACu0uMxsfsDTOsNKVBwiGpxjx+PQoMcHKHkuYFrqdjfMEZ2ktXwpNFqyx2O/3sJYjbsfHJ5ydw/XhCl1Hl8ySC6JfOGrWQDRuLIznNSqb4mNZIsbxUnOo0/GIZV5wOZ85MirC2c573Nze4k6YFAXMtQCga1sY4wjZZ+p1rtohMhZpOdptDe3Kr64O6Lp2ZTLVLrkydxOWZa75yXZd64NAEdgEkBEb7erXLntZR+Q0z9w2mk3d63wo+1z/PcWEKLFeJwUaH+gIuzNV31BzRM3fIe/jZC1wj/KNFTC5vb1B04QK8LJRGuu4XNO2PCfalt/TmE19UBACRaNHYeopeN51LXLOOJ/PXH5lvXZsMiUEqQuqpo91KMVw/FNGgdLCezdNHKdvmoAiY77zzEZeFvbnJIYzbdORCc8dAWVUJtGp5ZSANOIkt2hCI0wfmv9oPsDmgquagM5SKN2JmYNzzFWptYcKvjnRCNWcrLJA5KCn5pQ2UnO9V3Q9cxiGDjFGNhgWNqhHAWa9t7DO0zltITMyF+bKOoDnrYN1QF5EdD9GrjtPLSFtMkDePdcmhwWKTlsYOZvLKnyftPmlkwbC/jAWJRtkiHZVMZjnBGM87u/fIDQdmrZHE5oqkB2XKI0Yh0EAQU638J7xfpEhR+2+JMyfTWMvqZC2W0dUpWmtGrJW9HRsE1CcQdN2MMHhi6++FJCVTfFcCrIhK3OMM8x4QbFGRpoJUpec0bYNDle7dQMLM4bO7QtOpzMANi7Kfl8nBmDYLLHWclrFOuafWlPI9d/td1IHXoSN7CtQ5IMXtjcFxWs8MsrC4X630Ly4CPCVMM/Het3USe766gpd28FITlKBjaw5MNlfwcsoG2hGBbCRYEB5kVo7yxiXa4RtLkCPUYFbZRhpaDSgBtc807jCGDw+PtaRbxdUpoaxq6AgWhpbKVFD17au6QJhqWKVe8gpIxVhvco+47V7qeW3ZZqvMVvPbA2f5QX4ZLD+jrpL58QcXbXdnAK+suF0vUFqCKOfQRaUAeNNQq66zNqg3FS2Lz67l5FeAzGnsZvmAPStv6efB40DNHH6/zvwBEH+h6GvdDtu5lipehoIl9rFjOwGJ7mgZe26pyJC0q6BgUcpjgLkM619SymAaJU4T1Ckkc4ER0IEJR/Yzfnqy6+ELRCxpAVLWmoBYuuESqmHeJEuShKEVRlQrgmV7oxSXhQgW/BGgScNXr9zYRseTnViWAKxji1FsVzPKcEJ0q8AmRZDRoIzSsHpSA2Ib371K1wul5pkMoETK1BB3KOOHeW4QbwZBPQze/lMxkj33rK4L7kguIAmdPj06QGfHh7QDz36ocf17RWmacKnh4cKPHVdX1lmzjmM0ygCuQnOW9zd3+J8PuOpPAGJBbUtEPeUHrmwO3o5n/Hhwwd0HQXid8MOvm1w2mid8LBZEJpAJ53MAlkP5TkuK/DoHcXjU6qjbnqgKJpNFEUo75ZjedZnlGmTHMr1D94jNHSYmOOCcZpgzFxn1l+MikXqP0zjWMXKDUwVlt5qIVlrZayFazKKI+MyTgjOo2862gjHRAo0imh3TJjHGefjCd9+8xu8+/gBv/z2N+i7Do0PePj8GcfnZ/zspz+F9x6fHj+jaQJu7+7o+tF16AZ2Pf7o57+P+7u7ui+6roVq1lhhGPRdX2n/KSVMeRSQYKodq/oQWqv1Zu0kFo6buCD2nDKOJiEUKa1aWyquN00ErLynGxN1QKg9peATqewOTcPPfH19Tb2LFJEjXfScA+AIZMWUEcvaHUORA1YTdGFb7fsBoevQNB3apsX19Q0+P3zGb37zGzw9PePp6QhrHfpuWEOkKTVOKGVfNTGCuMYpmJNk7MA61XBzYBOVIGSxpGarHs7aWScgf7lcuI9dfXMpPjejmqnI9Z+YlAayylgMAcXwmnrvsahjZcw1+eGsO6obpYJ6SRyhdrsdZ76NwTyNePz8Cf/m3/0FPj894f/y3/63+PrrH+Pduwd4Y3F7d0sdBiSy+Z2rowY5EeiJ0hE9Xc6VbeqMQY4BJSU0IWDoSD9PUjByVHbtwnAPSsKUdFSkwICJVxTgKThhGC4zjLEUBwXBtLFcsGzYQ+osRIcRccLMBTEqNdu8XP/AJpFQICyLA5K4KsIAjmdRMuv4sfUOjWvgG49iCtI8E4hoPNwGrDbGIM5LjecsSBOcFC7KaCs5IaGgaTuCt8oM7qmJQd1BAU1U56LxKEvCNF9wPB3x8eNHMk+agBCoQZhkzGUYeoSmQdP1yAVImS5ZOUbsd3s0Eh9zWUdoU6GrpbGBBfmmY6hgne4j1QlRgdbiCpYCGdESI5El4upwhf3VHkFE+1UzyVoHb0kdr2efX0docs4YZ8awtg0USHcrJd46C5sJ/DlHdpom30uMmMaFADG4rwCg72mj7kSjLudVyy7nWIsCay2urq5EzHkFnlzwSJlOqSlmlLjqFiqYrGfH89Mz5nmqnUm6wjY47A4YxWnpcuZebkSPCIXafX3ohalFF0dIEc5uqpOCfeK+8kwwvTidAQRL0pLx+ekzrHXYH65QDBAzmZzn8YzLZWYzSBoNy7yg73vs93t2/kXfqpSCq92ebOH9DshAtBOSxCzvLRm8YCc3iz4awI7w6XTC0Pfo2g6X4xnPT0/49re/rRbjReLYNE0wzla3tXmeZY9zdMwUZcWsY0I6UqJC2NYatL7BsOt5Vmr/Va4J973oQMWFbF+zFiLf74obCFjpPLSLvx3P0vhCcJn3yThDZ/SCKthtpAPPJg7qWa35aRU8lo42xFBAEKHKglK2kEpeqJC82nIUQEZYLe5u79C1HR7FYXieZyyRjGInjGiOcjWAjD3r67NOUNbcuTL9VEstxojHx0c4cLRf9y/ZuQaHw6HafTsBnnTkbdGxXNHRHOdJxkeuZHQ3ViaBgkt0mPTY7RycW4E+Nkb18y3w3mE39LwuAoK0Isqfc0aaqBHjhGXrrEMW0xBnHdqm5ViLl0ZeYU63bbKubLCXgLyxWowXwRKUScJKOUh+td/v6zV+fn7G89NzZSH6QNb1EmdMMw181K6+so+cQzYGC9gITcsKPBm4KqoMrELIRkAysKfDvBwqVSLCxiLXsRkWFsDQISU2dHS/jtOMAov7V28w7A44HG6qnrk1Fss8AyHAe1frINZPZDLqOJg6CpeSAVuQs6t7vMqUKFAhOa4yi/u+h7GOTGfvkZ1F03do+g5f/vhrHE9HfPfuu3reR1OQpwmXZUYygLMkBjw+PaFtqA/YD69wdb3nWZcLzuex1rXTNON4PMHAogktsrDpdSyvCWp8RPAnND1mYf4rCNp1PXJO4urGe03dsQhrfQV/IfcmlxXIYYOHAY3s19WV8/HpkdqK44i2adC1XXUwb7pW8qmlxgptjjShlbxRuT+MgfO0wBZd06jrr5gizvEv9RJLErmYQmgFBiimYEkLxnnEo2hTLtNSp4AOVwe64WrtIkDRbIA+UwJDm5w2+Aq+lZLZ+LfEPbjfpIo2BlYYe8uy5olaV+o5rXtY9QZ18qpG/a2TmnwulS9SjStb+P5OxOO5r7A2NDUvkpeygnMoCGQk94qRuRCnT+Q9JN+j2yBqnCly/qw5bWUD/A7opDEAgBhx4Ac9fjDw9O63v2YC/vq+dhkUOVNKfO0QFQtkjiLEEpFKXFFoEYU01mIRAVNFW0vOla0CAO1AfRDvuHHSvFAnyK+JgwpvjZcLFFAsKHAG8DKeowkta0Ej70exupK5GL334mgno4DSoUgx125VzKtGE0A6dQETbd2celNyzsiCeHnvcH19JW4oLATP5iw316CVDoiXxGOO1LBYlg0oVgjq3d7d4SCOfYJ4wBjQ2SxzxlU/X9u2QAO0gUylcbxgmigwVmKCKXTYc85ilgPql7/4Ja6urnF//wpfff01vv7xjzEtpOx+lvv25Zdfom0pBs5ClladnJMWZkDVIgBiThzzKwa2cPyhGAM3TcgQsVMU7PZ7NG1DNyLrYDPQh1aKZI5kPnz6DOSCLrQont+37UmxLnJQhyCAwjKLXWWBsxLIoGNeig1zw/iG3WkfArWQTEHXyljUMPB654Ky26PxFGFWbZB5nnE+nQAYHE9HgneW9ufWOnZzYLHMCaYkGCxQ9pf0mWvwm6VTb0UXYS5RkgOOosZEfa9lorju5XzG0/kM37T4+qsf4zIyQfrT/83fhuq3OOfw6u1r3N3d4ac/+xlubm5xc31T7WabriPNumTEZdZNxCAk4MBBRiZSTrCwsI0Hsq33mPuXe2ZeyBjzhQfR8Xisna/eDpyRTyx2Vj0HAnBRBIetd/CGB1LbBGFgQVa9kYOowBonI2pkSc7zVHXErHfo+q66umUBTAx4sGiSjCIigqlU6+Z+6Kul/en0jN/8+lcsdoPD6/sr7HqPFC/49Olb6kuEgOuraxgHzGmpTZkiFKUUWZTCGljLMU9tgaRckJGoaWUssiEDIcrhY+AwzYViiSpibQOMzXI/DLwL9YCOEj/O5xP3/UzNFN90LK7gRdvdYL7MmEH6O5Nvdt3SNLNzWwBvLIo1aLyXQ5giq7dXV4jLjF/9x/8Fp+MzumHAn//5/xm7/R73t6+QIg0nhv0Ot/f3MAYY54Q2NGg7h/EyIhfqz2gmWuKMi4p/lox7Z+GCR7EG2RpMAlDmGsu1K8T1BwE4U84Y47J2jbWrJ2s7pUwxdwDGFvhgNt1zcTdLZFYoWEWmLfmauhL1ulErhT/iKItqAgIwPFfU98wb7pMo+kjWOVKAAbjM2Nm3PRrfABnSjWJSRBFSJtQ6MqAPgltuPRedw2W5AMlg2A0shqqeId8/x4hlnmREKzI22kHOiwnv3r3HX/3VX+Ht27d4/fo1AAfnG2RDhgm8h5GkXROvJEzlmBNKWoRNp11AsgBsbeTI2Ywty6MIwD8LcM+EqdtRsLTtApZ5gW8c5nmHw82B4t2O45ZMxlSgt0N1/woE9RppLs3TjGIyrOeIiw+rK1JOuWqyWWdl/N9KjFlwPp3x/HzE8XhE25ExpvpyFqIXMgwshGPCIo3gKGw+UzJsCCvrtYKnVu6BRXAexZGxaEUgteSC4hQEMei7Hs5anC4XAnwaHwGC+RZ49foe19dX1RgmLsyjGudxnmacjkdxUVR9GoPLNHIxe7oZNW27Nps3CXbOBofDDWAMQqBobE4FjW9gBoOuYb43nk8oJZMhG2egJIzjBeM0cQwCwHcfPmDYDfhR28D5ABtYrIzjiM4aBGNhEl2A88QR5dYHROtgC0VZUyp48/oNXt3d4/bmFnNcKMg+jfj8+AQbPIFGKaCLRb3H1jtYim8B1op2IPM/a2zVV2zaRvIuMqDmeUYSrUEQJ61M4QwAKaMI48w5JwQVVhHFGsRiYFJBSbGyWorkKMpm0yKxSBveGAvrzYtmosoIWMl5i4A/leUNQ6AdBkXYmwSniwDkbBg2wiqlALm4dxkBZOX8iTmx++0sur7Dz372MxG0H6v5ixVWoy8GiAkueAQX0LUdGwzljJSpIVOKgZPmjIJwAQa73R6V1JPoxJzLghQjno9HwBiUktAPA25ubmuMdybTMELO0WnmWdNMATreV5uFcc3LZ0OgKoQGXddL3g0Y62FtwuUycS1k6nzuJD/NKBgnymKMxzNSoh19KdR59d5L84hs1mE/wHuPswDkVRYgkyGsovUAWfClFFjRiStyJhhLlpA6denIacwZy+MjrHUI3qPf7dH1O+yvr7HMM56fHtlgHHpZy3pfbZ0aWRINCIKMfVpnUeRs4yC5QUxkN7K5lsVFrAhAwAaqMgBjnHl+KqNlI92QcybrSq+DMkcFeEgp4nw64fj8jMvljHme8Or1PYahx/092YsPnx4QBOgcp0mYSNPK3pOmHEEX1ZeSXClnXC4z5nl1GSQLylJ/r+/R9QNHipcZ377/iFJE7mV3wFdfyyTINOHu/hUA4Ne//gbn0xmv71/BWwKncYl4+PSI68MNnG04ImsN+ps9liXi22/fYZ44HVJ2BT6QjVqJA8bAek6BxCgC2FnyHRQBnQvOj0+Y5gnv3r2DtQZD32McR4yXC+7u7rDb7TAIUSBnVD0rUwxssbClwNpC4kTXsmFYgLc/ei3sUpILliXCN+o0iBVghGjByRmcxEgoC/tGmY1JHFPnZZTm/2rEMl7IUm2aILUXv78LMjVQCpJIUFztD+iaFigF59MZD/EBl+nCxsc8om1bHHa7OqZsLXNKssFsBVFsZjPNeTq6WekoJFDfEyIVYw0xA218rH/WfyuSj2msQcnIcWb+I/I9SXRamRdtdFxLgUVZtflgeIbwa/MPILmv5L9FqTNAKQZJnuid7NcNW1I63HAi4WKLaiMXFCNzqvJcxU50byYBLJUNZfXz1f8Hfgis9IOBp+PTE1LfY74+1AungSNp57eUF5efuOc6hlZgEKUIdE5Qz3mu7A89dAAuvq7voYLlaYmYlgg4gjVK9WXCCywzD1Qnc/TWGXjDDZ+Eemz1glordQiFdbWb4ERPpha2AgYgA4Wj/xUgUOo2IF2l/NIloabahkG7811FGQ3wwo7SOU8RU2G9qPXhOI1Vr0Dz0mG/kw6HXD/pUsXIOU+b18Wu3S04nVGFKN7P1C/Iq1Lv+TLieHzGp8+f4ZsG9wCub24w9D1+89vf4jKStt80De6u6XrSdR3GC0fPcpqgLA9r18Vb50tzghVHgGURkWxxatECu+3aqtWlNp9BwLhFBJDpMtKTMSJrLUjhb4W+bB0Fi5eYQLqvtiMVzV7Xde3yaPCxTMZMtnCNh1oLG7YG0DUdKdQyH6u/PwwDloWUzzbEikZbqwLOpo6nIXHMEzkjQZxjcqpaX+xahFq8LUnAJ9ESuIimxjRecBknTMuCpm1xd32ND58ypmXGj776Ek0T2DF0Fq9evcKbN1/gj/7oj/D61Wu8un9Vu+TP4u50uZyqAH0p1DszZcOMsxZZxCOtdzBZMG+5oNo1izrPbVdbXL4Qjx9jVKh+vRFM4jmG5Lx7wSBxYbXu3m6uWhhKAOSBHCuQCGsQmoYMDNmfqMUtqphvKYA6SQTvEYJH07TwzlGQb57wm19/g6HvcX97h+At9rsO83TCNB7R7wa06GH9DYxB1X9Y46EKXJb6uVbsQgxaM2AEE9AZ+yzK2dZYpMTRsar34KhXlLIW7bZG/rwkxMSCa1mYDFvnkZOO5a1mCnGZkVKE9UyS47wgzjMFdQV0tHIQOxmptLBoQ8DQtngcL3j37W9xPp3gQsAf/62/ha+//jHafiCDLPGgGvZ7LPOMy/mMtrFwvoHBCJS8ik0DgGVRUzU6UqodubyJFaozoXQDHaMqpSAVMm+iCJh7ATNU5NcYoMQNJVpPJwtYb6WbFTCLgHbVPNAulNlqKWlAUeAAkjyvTFnrRR9DJ+7AfRRzgkF50fhCYpcriPjn5KYaB9fzlkK0NmyELyXb0TM0eMbROZNx4aRgbNtWaPNzdfCLCwGeIqBvk6JoEyacTme8f/8Bh8MV7u6ydBodExQZmVxZezLSmjINKjTJ0aWOlXWqcVgTmkoXh6mNlpTJGFEXFbpXMd6HEJBR0KYW3dKJ9tMKyCigE3TEDhwf86GRxNIAVooRFXjdnJtFtOhWpuzqmqWaHafTCY+PjzjkHZq24Xi0AEbOs0tdckTKq37ELHpLwW4csYyp53Nlf4EgoXMWMZk6Dl5ktFRjmI6jJ2ENOSfMJY1BAPa7HbArWJZU2SB1xCEVzONcl69+53lZ6nlp3NatZy3a57jApYyu30FHhCrg4US3xJNdcDqdajGKkuEMcJmEbZEBYyyenp8Qc8K96FaqUPWyLGhSC/gCk1lslcgCIliKa1tB3XIqOOz2CI7uUEtccBovOJ5OmCL1yJTBqck7qsCvQRH9ARY7q1iw3iMA9b7pd10KGcnqXKwjovr6Wf7eijmB3hcFyrPhdS8obM45I8UH6ugjx2GM6Iiaei5Q3DrVGKVMR+T8MueVakVdPW0m4G5rvMr1dXQcL2MdR7IWLEw3rN7aGW8aDLsd98X5Ik3bXNnDKVLIhOuZe9fASDONelWaJxvra95KkK+l6+eyFnlMxdiI4Wg/BeJ3u6HuU450y5ouRRiaZLgSmOdnMDAESkQwnnIhCW2TaxOacY1g2DxdACQY5wDr0Jd1nHlJFNo/icMcTQUSxmlC33e4vr4i+G0NWfshVPfSChfLdahAPoCcFpSUZQwUyGpxD4NcKFCs4JfG1DjNkksHkSEIaLqOI9JyPVRQXtf3lsVQpJDVv7eWZk+LNCcc6NK6BT01X4A0aZQ1Z+3qSBhkpFub7sZYcT5LVb9PHfnaJkgsSyKMzHGqy3jBsB/WOI6C0/FYta+macQ0qe5slNpSmoAQVk3W84d7azERyWY4YULHnBA8wYmu79H11ERcYsTz8YQCYNjtEZoGu92O7FJ/oXmKd/j1N99gnqipCxk35/jviMvrCcuchREH9EMLZEvQaZRRVanjlJXlvV+BiFLqWC3knNU9UQo1jy7jiOfnI0kchZqMz8cj2q6XhjPH3yaR9kg5w5Rtg47njTO2irirE/g4jjidzjgeT4wfKCgym6Z1TykEyQ0sjRfKykSf4wI1DMmyf9VV2vsACyv7lWN6CoJUYMaQfcQ1atAraz/ybH0+PhNoG0fQzGBBE1YtNysC+jEumBdX6/4KFDlTjbD0u8BYAZ7kWIx61SUmaW6JDftJ9lG9VdL4tsbLXs0ykWiqeYuVOlXZVtaykZNl1FJfTj9SZbpqCqhni+SlOjKIDUCkT9Det1HgsPa+1JVcwex1ukvB5KL5y+Zh8MMfPxh4+slPfoTQNLi5u6o3Q4OJOqlFoT8TFOD/fHBo+11NemxFsXUOvdQ/DJIiriWBYkkLjuMIUwBnqAtEVXZxK5PDJXjP5NQ5aLmXSxGhRBHt9jqWQ5vyfmgrovf9cSH9d+dcddSjo8cqmO0MXR3a0MJbj+A8N1Ni0FIr6FoQywIbhh12w54z1/OMNC2Y0kQdhbI6XkBphhZMpkRcfFlILdcOl9/MnAOolq9ZxMSiJLtd11WQysjBtt/vucH7Ef3Qo2la3N3e4s3rN3h4eMC79++wPxzQ7wdMkTbTf/mXf4n9fo8vvvgCx+OJYnaJ1/BHP/oRGrHiXZYFv/nNb9C2LV6/fg1XCOg9Pj5immecR44MGrdahSo41zZk42iC42Gw6zq8/eIL9G0LB1Nn7Z2l/bCznFOPExk3zvjaPYQkiV6dDAoRZSfrxlqLpSx1dGOeZtgUkURXxBTAFNISh26P82VEkkR2F1r8/Cc/xXgZ8fDwAOsdkikY9jt45xhcSqnUanbMuB/Oz084nU4Yxe3kcLiCDx6TUYQaIoSakAoP+PN0QVwiut0A4z32y4K+67DfHxC6BjfjPdqWXfgvv/oah8MBf/qnf4phGHB1OADFYImpuhZOkYKyTpDzpGNn84KubWU8x8I5Q202kP1SSkG2a3BKiIDNaLoW6m7XdC3um7uqoaV7Z5mXld1k1Z0Htbts6vdn8pYVgNXOTqaovaoO6s+naQQM4JKMeAhI44rsxVjQiv2yNxRPTvPCBKBpcXNzhWEY0GghfXWFFCN+8atf4dfffIO/+su/knHQBjc3t7i+vsZ/99//97i9u8d+f+D1HJfNiMP3ugHFoWSDBAH0nIVMgWFUpo8AdymTEWOCFW0XFtbOs7CAKeJUJXRbuQ/e8+A4XB1EU4cJXnDsoG4t1zVuTxeCc9Y4XMYR796/l2IGuHt1j6v9VQVUDtdXCN5jmi74m7/5j/gn/+SfYB5HxGnGsN/ji6++xF//4heY5wVv3r7FYb+HTQU+Ay0syhIxlYJRTCOCmCBEMYm4ubmuoxONsN2WWTvRviZBHEXkuUAXVBZ/Cuo30h3MMdcDXU9Xv2kQAGQthKJaQlyPqkFHJ6IkbndAMhHa+a9FoY7hSMNiC4g672GcQxwnjn9mji0QnFifD6CeF5p8awGiBYAWCV60Roycc/qc9QCj3XjbNAjFV9FTOs8tOB2P7CIfn3F8fsY8Tbi5uaarZSTbyxqHL3/0FQ77a+z3O/TDgGmckdJnOGkQUGMtoOt6OCkaIcwI1WdIAh7qayo7T0cxcua+LVm6c45ndGMb2EbO5GQoAp8NYDycM+i7gYVOt4olS88IbWillF/TIWVTLYtou0jBV1JCjBnHeZFxxFVM1MnoHX9vxvPzM8ZxwvF0xOfPn/Dx4weg3KMfegJPhrb2er1bsY9XS+7j+YSUMnbDgG5mw6CVUXWC6zwbSmKRBlA7JlhPPSJdXzCk3Qtwdndzy9xBmI4PDw+V9dV3tMNuWmqWNE2LkllouxCwu7qShhvw+ekJ8zzjIiLjKYMOTe2Fa6AfKjBINq3F69evxElvEt0YjV8ZT58/Y55mgrYCrE0xIY4TReB3B4yXEfOy4MO335Jp4jzc11/h7g//ALmQlW0KmeXOOlgnephFXcIK+rbDOM84n86YxzNzoraBdQ7XNzfohwFd33NvS/wgu60HQBCsjCNNWZyM3YheJGQtaGI/jZM0CwpHvYIna1BY7wVFgDOP0DY1Fnjn4IzFGDnyNF4uKIVrtWlbHPYHFMt8NBgZx2+EgZHInkoCBuUUMQuApqOhNX/dgI4AASMCgauLapEG8HSZK2ilD3Ui9sJwdU1b8zIAL/69ldFW/TMMQ21aRYnvzb6BdRYJL+Oi9U7iUcRlvCDGhK4bahMJALUlDVmSWvyEoA6akxTbBMsul0tlLDYyEdF1BGdtNf5x7CIXiHYkmY8xU1tQwS4ro7E6fqWaeo+ghs/WAED3cCPPPX5+FhBlYZyXOuDz58811i/zAmscmsDRWDVpUR22JgRh3GaOm6ck7HkjjXNhRxkHVwqmZRJ2eoaFQd+0XJtwuBzPoqFFoO6wPyA0dF0z1iLDIOYCxISLMJ2DmiAEgj90JLQITUsRbdWQFdCO78t0rEjM6JsWRTj9BqggCrFd6eYb5p1NUE0rU0eW264RxvwzfPD44u0bXN8esMQF+/1O1kHC6XjBb775NULT4HA4YL/bY7cbkPMJ8zLi6cMTYooSL7mXFOjqe6l57u7poB14r3vbChuZgMQsrKMQHL5484Znc9PI98oAqFfsPZvnv//7f4xlmbHbdfj06RP+49/8Dd6//4Bvvvk1/vm/+Fe4OlyJ9pHHm9evYQC8+/CR5Z51tSmaZJ8OAxlybFbJOKLsV28ZV5SZze8RRMuQ45d936JtA3Ja8PnhE5rg0bUd94BZ9YeNofO882LEYiDrhppXXkgSztAIJIn+XSt1lI5vCdKHlCIenz5z5HuckHIWQgnXOuNElGZvgPctvAso1fXWVTCIcacISAM0jmBKzAmNs7i/v8ft7S2+/OqraoShuaCRQjAUSFxljbzMCcUbeLdpPmTG2mwNbHGc8FDQS5P1LItdchxFAo2jPhpkPFLPSkGmkAEsMt4r1Kl6VhYUWE8GasyJzLOyamVbpw6OeJG71q7R5r/VDEeb2WpQZKyDDhSq/ERKlH6wQbATWQdWYn3JCXGiMds8zpX4UxZKJsHw9XRE+Ic8fjDw1A+ddArIvuH5pReh1CKRnDhxoJAiyYnqfc46s7weLN5zBIquVY7sEkFQ1SY3C2DlfIAPThIes4ptYWWtWGtX9C5xvCaLpaXJSmMWZFNRq82Nq91jKJq4Fo2sXewLhowB6qiHNQbJRCSY2mF+UZzIi6gAdrWGLrMgwPK8tDp46LuEEKpj3aoRsM6Aa+GypRGrNoGOACjdN4qulQHQtLJYZDxpiRFtx4N3iQvOlwt2VweCizMP23Gi68z5fMb5fMLpxJlk5zyT5pxRDMG2cRzhnEUpLUTjt17zLPajdnMfAUVty4ufGQFGhr6v3X+939u7tApEr/cPZn1frj6sM8jyfizG42rtzr8QDRqxlBXGgo6F5kSNHWsturYDMkENHQvS7nlW55wNnbIgo6QtGs6kYaUtx4r0p0RdEBUKtM7DlsLir/AeBnF12psDur6H9+wg3N7c4Or6Gq9evaYwoyZtc6wFYVaha+/qdVN8XG05ldlEVgnWed51u7BzXJg8ZGUOGo5qOdFN071AXbjNzLA1QBHey3bDSaGFwpigv6/6LBR+VHtfrGM9Fgy6ZtX0ymW9xqpBQM2UBOfZgeyaFl3bVpaXji2p++Tz81HAUE04DPWyul6oywXWrkLDKwtQ96eth6B2GXWp61or5eUeqGtZ/lijop0yIlJBOsYaaw3gHDXBCg8sGAMjXSKDdb57WQgmz8I+dBYV2IZoUAFkMyiQpg5Q4zTicjlTBDkmQLRnQttQgH9ZsBPR5yLFkBXwJ6eNIYNBBSAAVL2FLZBSdfQkjtbrpoe+YXFqZG9z7FZAmSRJlcSdeh+AOj6AsrJ2ixxwxpkaB/hHDmJViN+cY99v9+h91xiDIqMUYn9dszxJLL4vTqmM4i2TqN5/b8mMkkPeKMtVuptle55ZC1vW9aMsDWVSGLMmCtoFVQestu0RQoPdTpzJvAdQkDPQSSxxwszSzp9271io5Xqt5GrU/ykopeO5+icXMtDYORd2mLLOlsSiC4Xuk9Zzn0tMttI91wSuGoBs7rvmFKVkxuBSVqA3JXif8VLsk//UIvMsrrLjeME8j4jLjHG8API7a4IKjJczDKjFmPR8kcaUGozEGOHktRnLVlq7Nbbq6nnnq6ioxj9dkwYGbfBIksCiCKPaWGRrOIYAcTgzQE5MgHWUlKPxtgIr1dFIEn0AsMZhWVo0rbDKZF1rEkpQI9ZxZu5pZdLoWIL+jKzQru0QnMcs502cOd4zXeh8F7xDTHT2zFn0If162teEXTrV8zTjdD4hJTYmB0tDDScNJjr0GsCuWo/WMr7x/kjz1EtTKtARVve/6o1UTbVChrmOqqQYheGp4Z2CrTq24YSlovs+CvMbSXM9kC0kXrKsQk09h1FE3FVjkjCLYMUBSg5MXbPbs8UIOG/FBVWbYatm6UtHzBo/BNDS2FxkzckQ4QvQvFavGt8szxyn8hkbxrF1Do1p6mt4uc4a78qGKUmhfl+/27J0ZDa5VY8LWB1B63eX9/HGIKRQQSr9ZszDVrbjeo3smtNbU90HraV+aC7ruNAyLxWcrKCaU5FrntV0VdZx/1wBhepubK1oZjmyk5yFsx7AgixxXnOCLZtiZWcANlmUIuOgEHaZEXZMilimCSmL457zaDwBrwJgkfooJjoEE0C38CBQWcC/syjyvRi71j2ta4yxOAMC2lLsXdmbFDlmA9WC2msu8L5q/VjXkxF9vSQjpnJ2huDhg6valCj8jNRojJinBbmXgWO5VjEtNLhJHO2OQoLYuoLqmaAPshplWWe+NwzkXFxd8TQWGwi4a8ie2e8OSCnCB15vTkNwfB14xDhOGPpONPnYXDpfLvAh4OpqHQvb/uG+KLXJZTZxxhgDmwAY0aq1FruhFzDPIrULUtcxZ5WcP7kIb/3mbF7vAXOzLGO4SQC7VctYWcCl6BSEhn05N2s+xPplWmbq/+YMONYDDdgUjHOse6NpWuoQZdEnknE2I2OrpWROsMDImWVg5WdV21IA07Zt6bQt52vJRZhMFNfXnLl+aqPMQcCW9Tpgs++UKfc7JWrZ/JF8vGz/XjcINHbqPtY8IyMX5d4Lo01zNV2X9egom5f7vqC37qHvYxmbGkLu9Wp4Zl6so1WZTc8iqftyZgNWDAReXAMBGl/S9//XHz8YeNIuxOV0rh+pyE3T7h4XucHQdiLM1iHOiUVuXDBNswAvBv1hBxVq5TUuK4V7JroGy4SnOewRgscw9NLRWANF/X1JVJcSJfnmDVahsgJUOmDKkQeKWalimky0bUd6niK34Kb0mwSdBY6RuUm5jcbAtpZucjpDXApHSAyq9bYGERViTMKOgnUiWG3QDQNggGJMFeULgQKpavs5z7yWXoCEaZpqd2ae5wqWaHc0OM4/7/oB9rXFx4ePmKYJu/0ewQcUFJxOJ5wvF5zHC8bvJlzGC2CB5+MzCgp+++23cM7h7du3SCnhw4cPOB6POJ/P+PJHX2G/P+Dp+Ql45nUbhgFffPEFHh4e8Dd/8zcIlmh5K51HjZxpc621E6kClV6YHPMywhqHw46ifJCE2dqVbZcir+/5coa37Ca54OC9raMHzpN500gxMF5GKSRGjgBK8OvaroI9jeeoncmoFN5p4ty90g1PRwISQ98j2YJoIeNwI/JMjYTDNdmCMUWM84Tz+YRh1+P27gbz+YJlWfB0pEZTOp8YaKyl4HhKuLm9Rd916Pd7zPOC4/EM6ycMidbKEQWvf/QFrq6uatfj6uoK1hg8P59gzLnSx41hMVPB11Kqnk/TeBQfkNtUgRc6fXEWX0GqLIm/imhukXtjUUXrsnTlBQkASiYrDnS40MQv5Yw5qt6BBlsjoDEP/lzIqExZOyt8mjMck3COyZcWUNDce1PQqzh/msXVZEkYdgfcv7qvCeASqXkzTRP2+z3+8T/+xzifL/j88FiFvodhWO1bjRGHRcB6BycHgJeREwVXFCxPktxZY1EcPx+CR3bKgsmIydSuI+EibhgjhbWRS6rni+4hak5J4S0Ja86ru501Ish7PuM3v/0tnp4fcXt3RzewPOPx+Ihff/trXF1f480Xb9G0LTschYlHjgnT5YJvv/stAIM///M/x69+9Q2++dU3SAU4n0fMQsl9+/YLOOtwfjqyADRCc88FIbRwJSOnC2JcqmD6VoB2m2h7ZScaAakyKcnzzOSiCQ3j3NCiHsiSiMSFGmlFEq9iSr0WAOCtMqnYnY55QbZkTi7zLMklY78KMet5t+qfGOjodi0ycgFEwwbWoLhVgDVDRmlnGYsIoeqxLCKevrqmoJ6XHHPbJL6W61zZhxxlF4FcHXs1MkoOAxsMzM7g5voGPngcj0eu890ObdPgIBa8pyM1LaZxXAExYdAdrq+FoRyQU8LpeK6g6mo+wmI2NG0FUUwBymasYpzZBe17PscknsWXk1ibpyx7MeOEE0H+roN3rrItrCEIlX3G8XwWu3p+Z7WZVn3FJU6Yl7m65ZWSkebVFc57L25IzC+WeRGtHOY5v/nNb0Q/hJ8vNB7v33+HKBo+Tdviyx99iZIWlBQxjReM5zNNFbzF7c2V5Ay+stgu5wuePj/XWKtFlbcBwTcILccN9N6mlOW8WnjmS4PDloLsA3I/4Ob6BuP5gnEcUfpSqfsxJXz69KmO/m7FpHNKmOaIUgz6Yce1L02TJUUczyfMcSEzrmlkvyYBmwrarkEuCdMs6bspOFxfYUiZ47sxCqgUscwzlmVGjG3NL3e9iMAWiocv40SzA8kFSilYpOmkwKmO4ZwvZ/z6N9/g22+/xe39HYahx9X1NfOJDWtQWbdemOtqxR3VuW6JmFNGWha0tw2GvifQnwuen58ry1/ZMBoPlUnoRHPDGrIqO2EL5cK1HAVksW2L8XzBPCU8PnxAOhywGyjaH2XMxGDd88xLtUHIJmyyWRodKmuQa+5LsMrWs3XbgDTG0O3Jszmhgtw6yqOlg+araoihoBNkPRQBYMgwapFiwvl0EpBFvqdzMPPMppvkfFtGk36evu9rnFLNH2Xl9l0Pt1P9IYfdvkcpndQKM95/+CCFcqHu0m4QljgZ6cgGaVzBQdNZNH6dEGi7AdYFGOvrZ6BBDf/ZNAHzPCEXlYPgHt0ysJqmwThNSMuC29sb5GsyJJ1zGIYB8zzhdDqjlUbv5XKpmrDK/rDWYRoXNE2gY2dcWLTPSxUJt5aOkD4E6jPJo7dkXD4/H5kDiOnGPI1AzqKT2TFnBsd3rBGWdJyRkBGBKsidliLx/MxcJEc479B0Tc25gg9orQMaXrdxvKAYkD0i61cbMM5aJAAPnz4hLhHWULj7+uYGWvgfj0fMy4yuY+OU9yHg6voK7777Dr/6y1/i7vYGV1d7vH79miNulwUhtPjjPz5AP5hOW9BsoEHJEeNlxPv3D4giOh8CGV+7YSCzOSfqgxrUuFxKRkZmI0YAbAhIX3LG6TxWIKIJjbD1OPrYhBbJelzmI4x1+MlPf4a3X36Nv/Unf7uCm2+/+IKmTAJ8nS4XDMOAt29/hPEy4nI6CUvTU1JBpAdsUYBYsGmpm4OyjOXMD4G6RwUJu7ZHY31lXRpj2MiQNRhgOdqeE5aZZ980jyg511G7SZwrCbxQrD2pQ7RdnTdhDAwcjKMLbDf0gLXwTSOSHpz0GecZeUlYLnONn69evcJut4NvRAtpzzjiravNu+BFh7GUzRrjI2XGbuc8rq6uME2UFJgnsv1UpDtlBW5BaRVrRBoALPQ2rMKIGa6QKZlilgYxczovBiKaH6WUKs4gUbR+NljqpNl6jawASaqxVZC9jvABSSAqB9CQR86WIppMK3DFs1ybaArg13zUoJpeAJl1bkpovKu5mkJNehantCDlpcZV44hhWG9qo9uL6LkicUWcI3/I4wcDT1kS7zkv9XIa0SWq/UwjnWQpqMwGdabuhFvn0DcInB5C2lVREMjJwemtIxVvI2BqLaDCXFAkFIApqplS1oum89D6XYoULXUBbJL4koH8ki62Zcawa2OY7JfCRZxIQy1VlHTj4LMZZ9l2UXVRyxtopkAEV9D2YlbdHL3mznuEUhCaBlk6pvpHgSdlkHjL6x2nkd3VlAD5HPNEirMG/Rg559m23cq8kcSiXgNJfudlRlxE9M5yBjjnjHG8SMdvdVa6XGj3XHVHtCAypmpjpZwqw2E78lgLHQHPNMgYbLqWVuxTkSoLKaeMosEVCr7xOiu7aYHqXU1iAbxAXbC8BDaTlQFkJZlaWRpbEfea8JVSUW0D6eIZi1xkjUk3U7tlXMd20/khWONSBM2sDANGsoB0xZq2xQ5AaBYsi3T4pPsQvMfV1QH7/b4WL13XAQWY0ih7i5TtLdPBSedvLaIdinQrNUnU76gBVZkE9RqjVKDMej7RSpFtknYZnBTHFkbiiVLac91/KrSeJZYAailaO1+bDnouwnQx2hH8XSRfbki9R9p1nKcZgMYmT0tkKTLWTgTvadO2cM6jaxX8dgJS+boWdKdq18V6FdnfdlQZp5X4r+xQQC1T2eXIAnRumU4Fq/NX1d0ya6Ggrw89kPS/5XWKWRl8UVh0McU6WgUTcTweyWCUdanjrzEuaFuCcjFFXC4XvH/3TnTACvaHA95+9RVcCLSnl0aCOiLlnGCsg3NrkqCs0Zx5vbwPwrTggZdiopYaVo0d3hMtggpVxvVMkb9MMipi6niFMPeM5frL227Qes009njvYfMag+q5sI0n5uU1397b7z/4s4I6iC/7pa5FXfM505bYcC8XafF8v4dkRW+gJjs51WRWGziVbVkUgAmVJaPxa/uHozgO6hRpADRq7y57opQsrjCmWoLr/mejRvRjnBFAr0g88RA1e1QdQ20cGVM7oFbisykb5lctdlH3EXR3ynepsUPjg1wDZVIXFJS00u1j3Njcl0Imq96rzVmtmmGlFMwzz4rz+SIFoeqXOMRloQB218I5i2WZYAyZh85Z5JDgipNmlerXudWyvayjSxydYjyxhsCqibyWSe6BgghZWMtbcNYasmza0CA3ZFZpc2ERq3s9k7FZgzqqqJ9D9Xku5wu8D5Q3UIekglp06yiItvoU4FlmAnzGeo40i2aUkfsCQ/ZOEh02FXQtBljE5n2e58rMSaLhFU0SENXK519Zkn3fYbffsekio1ZbseBxHOs4AFkdkHzLog0d4rLgLKK22bLwVPYN30fAatERI/tmpluqgKOmCcw1s7DtlfkKaSKmJGzdFexcRED4eHquhbrufY4WWjgfRYPFwhZbx4ZQO+em5rzbQkxC3Mqik4kAI+8NPUeUUfm74auuUf28CsLrz2tei1UTqjrpAYhG3KXNhrGzAZ68xCnNL6zc3ywNWmcsLhKXlQVbz0VLAWj9WWgYl5yAgzDM/cnIW68r76PUFxJrQw41N9AvqNpquo5C8EjWMN/U+J21yYwX+aueWTxHycDwcp4RGFdmAmOOMZkFu2Eepm5smp8qyKcjxZo7aVzT92QcYM5Kdy1TgS3N+7RI1RiooCKlOIVZI8y7lWXJ16vGQbmgiN6h5ujQUsaauk/W+2VpOlBsZVVezmfoeE+q0gsrIUHjSWgbjjO27arbV9b1x+drPZnk35k3Nk2Dkgt2w67GTWVVd20rddNGLxHcn8r0WKVh5DuW9Xpwe/PzkwEkOZYI9nvPMfRXr18jRV1bPB9fv36Noeeob0oJzfmMrm3RD33dw0HNAYzK20SU8lLU+SW7HnXyoO7mYmG9hzeowJPut8oaErcz5JU0UV0BPZvOC7T2l3VrUc9IZcjqBIp1mg8VqUNMZXEhQxrHQHIAgu5p1AZkZ1q5LtQkM26r8bTmT6yTN1GrxhUAKhRujLCas1zHFUOoxjZMHiUumBo76o9rvN3EQ4hJzeb8rWvdKoPfQMdtdI+VGv/WGKj3UvMYHf3QdF6xlO193tbJLJPXD6mvqHqQ2/1CwE2Noci8LQUokvu5IHWJNesIoaUMizZGNWd1+t3wX/b4wcDTMucKoOiq8xUsYHdA7cQN6PqwLCwQjTEY+g5d22BUC+iYkJAqmKEHdaXmG+rDeOfRizMNgasstGDaNGtAiFG6uo5aH1vkzYkArZVkIWeKny4oooPg6nsu0qmv40VmtXrUzhAgVDwQPDkejyycgq8LchFdqVm1EjY0RQ1krbiKEVwqgCfAYFp5nZyRDBX0l5zgckLTtQhtg1gyzuczPn73XQWe9PWCCI4Ow4AYI07nEzUFpgnH52ccn48cabAON9d3yAn4/ERNiFevXtUu6PPxiNPlgpu7OzRNg6vDde36QpKeN69f4/7+Hr/+9a/x7v13nOG2FofDoXYT7+5u8dVXX1G3yflqnfvw8IBpnjAKq0SRde0klkKKrwHgDV3e6EAYNgwBsszykjmvqyMITpNkrjXtoCjoozP646abb0X8shW2UNVTWCLmKeIy0SEhhA5eWTVZgTHu0SyMH2RgN5BBAKFVPx+PDKyLWDiHBsbISIoxMMHh7v4WOYPjGwK6zDFiSRG7HZPqYbeTjj0DDwN7K9RaijaG0PD7WLHP7m1NYvj3rganpm1gjIwlaSKmezKmChDCUCi5lII5xrW4zeKooyOzRoQ7ZdQLBdS7kAQRABDFtluSzkVcGelwyA/m/VYXCiKGvGoTFSlItAMNoLrFZWwO4rqDtYhkInd8ekbXdnh19wp938so64QlzlV3jKAsbZ27tsPV1VVNAi8XOj91Qy+FVA2NTECDJE9Yk0SUQqCsKFNT4l0BfGBSOs8TkHR0rOAF4CLfQ8/KoKCXXAPnhCGX8zou4B0BmoW08/PpLEmt6s45OtmNI/76r/8aOWdcX19jf9ijbQNinPH8/ISbmx+j73v89jff4MPH9/g3/+pfw1mHq6sDvv7pz/F3/+v/HXKK+PT5AbYAjXUwOaEYg8jZMI5IS1NiLR5nshDbDvM043w81mtsDMe1m6r5xoS9GIIJOebamNDYejrRca2TBM7K+1jpAhdbVnC/rAmN6vkogK8x4nQ8ktnnLG/upjzbFm3bx/rfCpSsYMrKXEl1HeeUkGFgRRQ8dA1KKbhcLivYIr/Lzv/atFFtEgVEtTgrpQCyPhphXszzDMQIm7hGlnESFyA6rqSUyc5xHl4cMXWUBHIGliKum3K9l5h4roubIvetgbNewEdbf1fju56TfddWYVE+R4TTlRVhVht4BQ30ekcBP7TBlKWITzmjHZgzGKejetqAsnh8fOQoqQC4NIxYYxmZCKjXFNbi6emM0+mCp0eCA7Rm99V56HK5oG1pl308PtNRFkUKzZ4xAAD5Bo4snNq8IEN0SQvywlF6v7mP6ZjqOJSCWTVu1LXLz05Bb4/dbkd3zrYT4e2Cp6cnXMYRnz89YIlkhLRti15cj5TZAqCyeh8+PuDu/h4/vf8pdrsd+r7HPE/1bOf1WqQAyZLr7fDw6RMePj/g7u4VvPNYJOcywcGaApsTEjKmNBPANwHlckbMCY/HZxyOT3g6PqFpOoTQypjKKCM1Bvv9IOuAzbjrYUDTdvjyq6/q+aF5RIwJp/MZnz59wuHqCqFpMI0EmHrRitkd9jgdj/jw3TuuC2txG29hDDCKo6yy+lV7MsYFnz59wsePHzEMAxnlzqMYyDUBQhhXFrew3OO8kFUSqRu35ITH0zOO4xmHqwMOV4eaP7ZtC1cc8iRnysZkwDvPPSagSBJXMQIpUpzZAos179G9swjwtjUOqTFG1paCLSzckhSiK8tHJRrqeJrhCHhMCbNMQXBEm3l2KH59H/l8zjqE1ss4Zq7ruDrkjhOmy4jHx0e0wrw9HA5V76aUgsPh8CI+6PchMLggosj5UMA+KkEV5wNc8GhLCxd5HkQBATXE18Zg11WAg03KI5ZCoWXvPXIU/RvnawNK8yhlJqrMBY0ntsBJxmUcYWBhjRdgPNH4I0aczkcW4BJvp2nCEheM01TBOC34m5bN+eAsYswoSPDBy5rF2rDLeT1bTCETPTOfsN4K+1+YvQC8o6kIcqkubSklLDX3Wq858tr8WKdYIrwDXr/+AjEuOF9OuFxGfPfdd1Bm8uHquubeztGlWicOXr1+g93+gLYJosFnMF4mTNNaT3rv0bYdVM6FbA+Lru3RhA6H/W1dJ1XrdnO2skGj62Cpa18ZoZbaDVIH5tqoFpSA8iRzFL07xtLr22scrq5xfftqBW3lugzC3NU65/PTI1IiwzPIdEsFgRIb6+M0CQt+PQsVoFQtMt8F1q1JDXwcbCgwZZ1wMAo8icOs8x5lWWDlnqfE0eYcM8Yzm9ZLXOrODU1AaAOMJQg1CkOubVt4Z4UYwRyna1qEIcA5TtZ87j5X19ySC/JetFAN8PHjJzw+foJzdzAA5mmiy7DjazdtU8/M/9RUFx2tJTeBGCV4PlEZlNYSoK7nJhRTYP7u3KaZywwZK4DK5rDuoXnhyGjbd7Ux6QNj8jLPbNQJ6KMakFxvAKSxYa2FkS+Tk+hC2LVp6oWpbjZgrOYmtYm3BZD1DSo4L0CYiJQHyesMOIZ7PD5Ifce90aOvbM8s46lWAWdDzGOaZ8a52lSvt/AHPX4w8ARBRdvGV30RGHZZjCx4RUL17bd6BrzJHsEXcTHQWXgiq/NCV51SCjrprqlANxHIUtk/xtjaaZgFyNo62sSUKs2VekxMYHO9MaV+JyP2hvojZdRoZ4AAeKlJPrBSGzV4jeNYqa/b4kIXOrAeQgqU5c3hzlEawMxcSEldALAWG1taL0BmTMkZ+8MByzxzPCslnLWbWQrO5/MLari11MCYlwW7YY+27YTtkDCLC4YB7ZMtLO7vXmE37PD2R2855tf3/M6JCdT5fEHf9dAZ6RhjFea8OhzQth26Tv/0aJuG1sxNU6/DNE04X85o207+/qWjmZUN6LB2SbJVV5qX98M0a6HP5ItUWXYtrCD06/1Rx4oVJV+7VSmlykCroo8bockYWQyEhgd97QI2TS2ELscTnpbPNVCoK1OSxLaKYIaAcpEZ+5TX+yvFVOssAhrshgFtS3cNzpEPMKBzE3UBVKhb6JAAuz8ZyCIESQSfHR3V/JCmMlLJMNkAAi4bAMZZOGOEGWGxugHpFjIVDS/1On6vE1On+dZurOLkKmyqhYsyFBVA23YTsgB4MS6SmK7OdPq+KrLvzDZQSwIRIyn8G8ZZQUHMsXbZY461wIBhLEkCiHOvX6D209phq6MRDBbUMKgJvf6TQJ+KHdZO8bZDIWKbuq61YPGerigq0MzP57DVRqvdFenIGcP3ypIYvXhP6eiltMB5j6ZjYbdEOUTbFvev7uXwJGV96AeORRqD0/GE58cnPD09YegHdO1rHPZ73N7e4ptvfonHz58RxwmDCBGrSCHtxUsV+i5WwUJf9SOsYXLL2JoQWsaE0MgYmhGNwVQwTxMu5wuCD9VJTJkF7DgR7F9iEftXMiusschGO1apArzKnomJ7iuaXBpDPRFlF24f28SV90EBzvoMaMcqlvhij1jZVxyBkz2SqWmo7lXOCkBW2VCmfoYKRMlztuCXnhfr8/m+mqzQuRMoOSE0jQB/PHet9/WM5X4U/URjYFKsHX61kicocJF6rshZDYzLSBA4J579m4ZCda6SGEQASYCtTVyxAJJctyQW7iVFAVgofFvkbM/IWJIUFNMoTQR2Tpsm1KaVkzMlxoRsgGgXJLzUtlE24yLxYlkIJFxf37JA8Z70cwu8fvMGh8MV9zogDBiCUTEmhNBikXFrjpF4BBT4QnDPWI4hOWtpmuHVZUfWiujh0VEGiIvGBst4ktdxyi0Q6j31OyAMGwUV4rLUceVoF0zWyn3kiL6O05dScH24wm6/r42htm1xuZwxjpOc4bnmOdM0ErD0XkYZHPM/Q23GGCNOp2c457Db76Updq4sL4quUrQXxuJ0PrNg9TPGcRLTFa5zZd55ARcLmPCjsqdWEVYfaOxhnbAZjcEkxdrusBdgleyC+/u7et3bms+tOki5ss4Y50MTsD/sV1DXnKB6htQM8/WPXuMoOWuRte69x7zMOD2f4IJD13d1781xgc0c/aDY7Bo7SNzPUkCiNjn1QaBEGkDCzKgddYlRbJyBzalNYbN9Db7muq4UgKnArCFQkSJjpXOe19zZen6pjpieuTz6eA+zNGQ0Hm8ZJhQJJ2NIz1Nlp/jvabxqUfSC9WXY3W/apjKwleGiY+8aIq0zcHBsxJU1hnIPMsfR69N1HZzzoLapwzROVWdrjgvXirAstAbg5xT9nR3Puly0IW05+mZWTa1FjIFWcfMI1ZAqWDV3SinVhGKeJ545DHsIDVnEF3EiW+YFu92+AhfGAAVZig3WY1a0ogrW467kglQiUl5ouONWAHGbPxu5PnRAXA0mtgw15+gaHJeVXRlTRCPjpGqO5Dfn3FYHC8VUYHcWEw7vHXJJmOdL1fL0wYtRjYO1HC00xryovfjhuDcYKnPVD9WGh5Ox3CxMJl0zXsxBrKEYN5CR5RplMRChsxpBu2IMiluvhdZpXP65TnCQPWcqc7ICLXZ1XtPcRhs7WqeYysZErSWUyaij8AZkhSmZIss/owDjp9MR4/kMFQ7Xq0OQUntvbJb44DZjXOue4drkGsgpYYoZdFwFJW4cUJp1321Z2vM0YdjtGJetqfuTBJO4iUOa824eGhvlrCtGmo4CRua8GhcJvgPpb631BtY1XwwbpNQnK4iJkzHLMletNud8bVRb51BihJFcQ6MtzIbFt/nMOg6tLrrcSmVz3U2VN9B1u22Wbr42ITK75vrIOgUGGGzWUaFuImT6IYQGLlOpS3Echdz0bBDaDl2fDccVvUjdaJ26rWf+c4//IuDJOYeu7eWzSGCMsdrLv2T1ADlHxIWCzcMwSNfBVPSWH5YF0ni+VIR9NwxomxatdFWMfP+UxHrbcrwqxlQTIAhYlDNtEqdpqlosSQAx/XzGrovMOQcfwpYUAd0wtTw264GjB3spHDmbJtoq98OAK6fOTys7TA8dHUfbAk+aHLZDz+B0uVQgq17HDfCkAnPOWkDQcmM5L646HZenpzrmdhKr1m0Q1c/9ZnfA1eEK4zSKw8pU55WdDWiDw2F/Be89Xr25R2gCzpcLrDUYdgOenp7w29/+FqfjCZfzpX7X3WHAMAx4/eo1UfGG4rS73Q6NdPNVE2cYBkzThOfn5/p9lQJYDyqjmLOTTkKEcQVOxYDNRih0k3jX+yDPizmtlu1y/7wnu4msD8WXURkxXtafE/tflE2CIxTcfbfnoST2zt57jkiljHe//hbv3r8HPAugn//85whSbOlzm7aFDx5LpMj8PE1wlnP8ObOQso6i+1d7gnmn0wnRRNwcDgSD2w4x0eXFCeuIAUCEBFPGIh0YBaNSTLAhwFpXr1GStR1lnWlXU9FvHVGAgDaQkQkKn748AAiyrkwMgh0rLTVjDYLrveIJoAeQFbBAE7EklsfzTPtvU6R43AJPjQBPbhU/0vccZ+pzGaBSxnW0Y14mXKbLCmbKuI/qy6AUxGXGMS7UXfGrKH9MpL4775EheghgV1CFRo3oKeRljQ8vQCdjgJI2Bw1qohWkg510RAN6jeyL2KBAGORgXZYFS0z1LDCS9BPbITgfmoDeGHz48FFiZov9focff/1jHI9HfPz4EeH+HjfX12TvAXj8/BmfPnzEw8dPcK+4Vm9ub/Dq1Sv8+3/3F/jFL36B1gXc3kSuQXEkMiUjlQQYjtsW3dvOw8r3DT6j8Y0AbCw8nBfwBWUzBlVwOl/w6dMndA2dF/uugxNHGCvuYNQNWzhK6YVa7wPmvKwCqbKWC4CYC1KmA04V9XRWEuktaIoXMUrXvCamNZ7ZeofrKIz+xFlXmTZKa+eMPlCCr2NTeRPDt+y3lJk8urCOvGlirZ+d3XC1BKa2SzFghz/xmnZ9X+ORcw5eRhMW0X/g33FMGou4EwkIrOzV8/lMVoPziMnAZIPPj58rM6TrOlyHm03sFaMLsXBfR5CEfaoagAZImVT5OUUgoY6cGLeaemQBfOe0UNg+LtLtpGNS27T1ujhLDZ4k9ssO6qw3QQV+lV1xPp7EmnmCgcEXb96uQHiJKIi4vr6GMQaf3n/A5XLBg+gnnk4nzPOCYaCrb04Zh8NBuorUueuGgTmNFOfO+npKJW1ahYAi56uO8g876qDM8wKUAifXpOpeWQsbCJClJSJFglclJcR5ri6pc2HjT0fO53lG27b42U9/iq7rqGUIoJiV5fX+/Xu66uZ1RnGeZzw+PlVmR06Asw3iwph2fX2NeZ7x/Ezmyn6/x4cPH9jlL3Q0HsXqvh16GGfx+PRMsV4VrzcsHoyjgxOgbli8/y4E+KZBP/Rw3lU2M8GQK3zx9i2OxyOen5+pvzjPeG2l8ZczmtDgq6+/rmLh3ns6GksRkaRhU1m5ANqhR9N3ePjwCefTGWdhUu12uwoGaHNxnqk3EpdlZfWhILQNLtOITw8PCE3Abrera3vhzD2BJ2thbapjwwlpHYsylDX4/qOuBWlI1cZrWZujKKLvuBlN/N3XYRNKHWe1IPYCJl8uk4x1OnhvBGBhbtA04QVQwbFifgbVctQ9peOeCqL1fY9hGHA47KuumQIByvrc5nvK1g/qZGcgMbZFzuqabTbx4+V1MtbCN9wz82VagSc5V3V0eb/fI6eMoR1wPp85ni5nwfFyrs6hldEq/1TWoJ5DSUw9SnEwJsNumpLcjxN2wwBrLKZ5lNE/94Ixq8W4cw7n81nOHaktupZr/viMb7/9FsfjEV9/9WMMA12yrTHIZZFDjeecybLPjKnNWrLe6dQnCQt1wqxFWhinFMwiGGnggHW9yfoxiQzr3u0QRSoiRroa+oZi523b8l5IE1fzxqZp2ETN1HxNMWKeaF50dX1ATgumy1IZSrthj6ZpgcKGjWq9LovmpbbmSrr+1LxpW581oWV8msaqaQSwmWGMxm6LjISUZ8Q411Gy43OG89Sz2iw2oCgbD3Be3HmdkyavBRIFwI00ZSqLZ1NbegfAsnEVvDTNDRV/cs7SqND9vx2nFf2qnMWAS15zZv3x4d17fPr4oTotJllffd8Le4b1fzUe8mvM0MZZXKIwAEM9W3RNtU1H7V1pFrZ9qOD83d0dcyiJMTxnEtQIZFmWzch3fpGLcQUTstMYk7HRtXOr8zOwjrpqilZH7ARA4REjuEIilnGZLtKk1uaBOgwW+OARmgZRfk/HTQXCgXEOKv+kWaAaThXR54ySk+o3s5ZuoEpC2caqbZNBf64YhTYGFZszZQUOU44yLUBQuG27CkLyMvJs5TFBjMYK4uicQ3EFzq0jzzExl97mA/+5xw8GnvRAuowXoXmOtdB33oAWx2sgl3uJENx6ccuKPBprYWTBO+fQNk3tkDQhEPgpnGctUCc9ReMt2QkLRctTnckWZ5WUUb53DSrLxaw6C9bR2tk5j5I2gsRS4Bhr4MLa5VamhKL8znu0xuDm9g7UdljqH01utuikLoy2bTEMA11dAjUBUDgSWMyKYFtj4FqwwwBDYdxE5XhvLGxoYPa2vt7T05Mku3MtPIyhPg3AYNQPA169fo2uY3C/ujoIc4eH2dPTEwOGdFSttThejnDeYX84oO1aDLW4lcOtbfCzn/0MMUbcXt9UEXTnXdUlylmcMCLw3bt3SIkAWxJhTr5OW6/1Vs9Dt64e/gVl7YxvHnqAeL91RXipOaAjd3q4OctRtyWu3aNpFOvxeeEB7jw7+SKMXVQ/y1gs84zTPOPX3/yaDIzLBeenI46Pz3g+nbDkiP/t3/uvcHt/h9A2DGqzIZti4eiAC2R0+CZgBJH2cRwVmqm6HHRQ0WQFFZCYRx6IMS5AAEydjOFaNwYIDU00SblMVW8i5wzfBHYd5PunnKozhrIDKktPwD5Nqq1VPYD1btTxl+8FRmqfSWEpB/6LfSnjT5q86N2n85yM/cl6sVj1jTjKs3YrNMjqeklauHuH0AbkKMwJ+fkibkQKVFDMnCD4IuwqK/uROgkGuSTSX4uVY4GHubGoo0SpZLjiUbJ0V4tBzkBKpSZrtcNiDHSg2kBEYR0AW+rrK8OJSYowHtKaXGjDIedYwUQjp5x2i+KyIM4LllnGPiKdKjTGX19foW3bOkLw+vVrXF9fo+97PD4+yoiNssWA/eEKf/y3/gT7wxVOj4/49re/xa+/+QZ/9md/hjdv3mAUINUrm6NwTJkHsRQGRdzSEjUUmqatzC4dI0iZBWzwBL9yydjtdnXdGUncrHVVOFaZOsHw4EwpyfjcAuNtTWaNrKWU2aU2m/i2va4sPLQBsOo4bIu1LVvgdx56kMvZpGRqC1tdonSPTeMsYr/cDz6sVrUK0la/tiyjusYIoOpq8rdlJyjDdMue7fu+7tz6PBBHtk4T9ZmAhbV0pomxjol57zCOhePmklTt9rvqbMjxogV918O7UPelWlkXAZdqN9XxLFQnoZRFrNNiFYAu7NAvcRFs2ahDOobdgK5bGb5B6OJPT0+1oVAyHdXSZozYClhAZmtTGcrjxFHEvhtgnavF4jSO0v1cRM/CSKJuWQxZJuzLPOPb334LPcW6jvbdZGKLGp0xCM4hF454OBl/UIahcVyDXddjkWKUI2dzZXiWXBBLfJH8qcPe+XjCNI44Hp9pKDIMSBL3pmnC6fyMpmlxtd/j57//+7i+ucarV6/qNZiXBedxrvFax58/fyawOAwDSqGNNwWmL0iRIERaImwpCNbB+IC+4djhfJnQhhZ3t3cwhjevazphezkAFjEXOMdOML8LHUSdZ4JvrRUWmyFDRdZHQRHgaapni+odWmsxDAMLqpw5qpxy1Z4iIOFgQhAG8vqHjKuEeVmgGiOTrI+0LLDOYei7Wkyr7gnkn/M8Iy4Lc1tjEYURk1NG8AG3NzewxuL56Rn9bhAGOjeINmuLMUgFWLY6MjJ+l/I6blPjkY7k8hCvLJ8YRTtFThwNW9QEsjUebIsYjgMr44LRxy6R7EYR21+LI2V/sqHAzc3Xn+dZdJxcjQerGO56/uv5TGZJQdu1dFy2q1NtkcYax4UIpDTSUDOGMSOXLIXimpOwEcK9p26o9T1LqewBHb3VfEdH/edpqeeGc+7FWJR3rFGaJkgj1zJvmSMggP7z0zOmcYRvPIzENmSgZGAS1+gC5hNdT4kKeiGVCjzpfSAwwWtXxfJjknFfgyiahzc3N9jv9zhcXZFxlKMUweLupr1XAzmPCqKsM46aJqS4VLAmAKsUAkzNnf5TZyHZH/w+JbN5EdoGr16/xp3kXU3LsWudwtiyOOva8BxWNo6sn2HXMVYGh5wlZ/Vs5HA8P9TzO4kRwiKj6amYOsWge/x8OQPGoO+6ev7Ny1xZWWTrkpSwCGgYl7Sygq1B2zUo4yQs0BkucnqHORPrE+scpmlEEnacbFbGqaGX/DxC81qN69XplwkJoJNASUdkGQdyyXC5iPGG5OjCKi4oiGqYUlC/ozGojvFAwfH4VPeWl9Es58nmnCWxzCjwkfIqKAYXaey07VynX5QpxvTeMv9SnTAUlFiQSuJ3kAa2Xus2NKI1zOtEx3Lm0spafLnOCgzIeA/StGO9IUCKsP+zaBGXwnWUhVW65sugkLjN1RH9JUvb1Ma2AtLr5AaADNjgpA5jDm80V1cNbGGD8XaWzf1lDaavbYqAhchSfr0EmIrEry1jNUl8rzWAnCFKXuFrCGtVf09YtgUJaVmQZgiWkGGNjPN6fiar9ZaxMI5GGlor/ZDHfxHwxE7EhHG64Pn4zA5YCOhSgEuowVkvorXs1Pjq+LM6AdESnAvGWcvZXXk9Bao0EudiJXCQbmhhkaIIOmqyIUClslqNZs+bm6oPpbs6oYpZ46hRK8FWEX4Li2B9BUMi8CKwWqfWqYGOAMtUHdJOYrscKmvLVHAlhFDdDKyMSeQi4oTGVNcBJ8HMyZhOTolJkixcawEb+JpbhlVFY6Xo4Obn4dt1HT+Do0DfMAxEdR07Zg8fP9UOnW7oaRlhrcXXTaDGz4t1wdd/+5bjeLc3N3DWiZaQrUV4zpl6TTnj08OnSpFV2uGW2cGLuyngCirwpInTthOl5yX/WwsoBUNKBVj077UzrO9f8iqiTlR9riwaawyyuL85a9cEDhzhnCdaz//qV7/C89MTPr7/gI/vPuD9t+/RHwYM+x3+6//m7+Pq6qpqQzAwsPNsU4KJDocbukTleUFchPVm2P3Qgmme5heUVL/biS23CNhndiaKMAJ1bxljaqfPWotlAdKsBxvgWx1jkgAaS+2Q6KhjDXJyrfX5chFfPLYdvvocnngVvFX2oz6fB1epjEZrRbxSOxc5125KSglFDl21r9W1oI9tsqLrxTnqsEU5ILIAmDFFGakTkLJkMSlggm5AevA6irmOBgIQi+uCIolo7UgK24iHqf4ei+oUZX1p0AeqLl3TUPtL5YRyFVpfgScrsUPvobJAc1a75qiNxvo76ugSlwVxWWoyriOYHAHY1W5r3/fUehKx+vfv3+Pp6YmgruWIxW6/x09+7/cwzdRm+vTxIz58/IjDzQG3r+/4HpZjEdYYiAEb/8gYiE3iWJI5BhVCA+fWrmPdp6BYJ+9nEgF9W5kE1jmJi7YWklbA1iJMkWWZkZJBsB2sW8eRTJGEuFRydN0vBBV5f1lH6n0FjOg+GLN2To1+QQGatuuw/p7c9JfRSwGXgiUzmQvC4KsOWlJopJwFtBExfAMUw7E4SDHGpKbw+kvsmSTuKsOp73t+5825lmTkyTgHyLmSDZkW1NmJCMKsUTbjOI7ChiSDwwUvI+8Rp+mEZV5wdXVVk+gaW4ThqsWzEo0LCkoqwpDjWknLpqtWqIlktSnh+Vpd1/5OPJiXiOPxhGmig2nbNGibluYCRQwXHN2nFHjSeDeLyPV+d6CgunOY6lnLHMSIEGff9wghYOjPBFemCXGJ+PTxowDFHq9ey36FrQw6CwPj6ORK8weDAsYqAoFFxrJ5zmOZK0PM9apFV+o5Vpm3EgOXhYKtl/O55gA5Z7hlwTSOuJwv6NoOwzDgT/7kb+HNm9c4X0aCGt7jPI5IhToz67iPq6P8qq0TQkBcEqYL3XktLHJckAqBe28dGk9AZx5ncZbqMdaRxCDMOp63dXjYgPmAtWi7pro/AuzSShBGWhLjqqUunDrPriNbvoLNjbA3DRESvok4/ylQnscR82b0K6YobL9Yz7jT+Yzj8YgutFVbyxiLR2H7KZO4CHAVlwVNaLmec6lGLt45HPYHjkWdL8IuC+vZkFK1EVcTlUVMITROKUPhxdmnxRG3TB1/Sgv3lRcB5i1Ypdelxl75Z8o6qo8KeseYa1zZ5v3Wqb6jiNBK5lBZCzJirJ9dP7cWd1swP4lbkt7D7SOnjDnSXIGvaYmIQHIWFCDxedvc/fuNMQVpi9yrLUNC91RlXqeEaZzhrEMrIHLbtjXPdM7CZ7JEDQiExTnCZF6juETuxdljd7WDdZY5XCpIS4a1k4wJN2iawMmBEBDzy1Ft3dtyx2DMytZXcwCtDQBgt9sReJV/koVSRLPGVACdZwrBUmUyLEl1yeIq5WASXAFCF+pnMYajk9pc2F7vupihgKLH9c11ZdoVw/Pt06eHdV9v1h+AGkc5hZLRNR7GCCia172QHbVgnaMuJGUKFsn3RN8M1Pox1iJH5oCT1C37/a4KROdUAFBsnDk5zzx1YE0pAQk1tjjnxSGPAE928hzdv5bF+jJPmOap3sMQAkrboisddISZ+8BUAIH7g2ee1nyQ3EQ3elrIgqXYfYErmnesbPs8i+abIZs4jjN848VEh7nn5XzGPM9ovKcxVBMQiocxwLJIvWwJdHnLbvc0TYzdC+9vVBBYTGaMFTOuQlyA5zzZ7RmJoL+xiDOvSdd10HHNKLqE2RQYCNha1vWxjpIJe9M74Hujt06Z8IkRLJfIxmvOIMmFizQLOEpwbtXP/P40jso/aSNiG1eKdsMghAUVIpd9Zo0RWQeplaxFkPrCoFDHFJIjlnWPY/N99Z7aTRw3xiBtcBj9XcUA6gip1BR6lhpp8MackGNCiQnTOCGJXMCL39mQYzhuR91JbaD+5x4/fNTOEG3u3SALVBgxzqIgYV5GhMYJS2btXOiglFwpzMtLNs6up4XsEkVLBgVN8KInk6rFoY4b6AHQdi2aJmA38MJGQevovmeqRkKBdISla2Y2h5oWhwp+6KMUipSaLPoS8rOY9WDxNYHOuWCeZqQUEecJJ6HdHp+fqz2kUsurVpAWOzCyWWdBXdcCO8aE02Y8SjukF+exaNJVCuZMIbtpmvD4+IjL5YL9fo+rqyvc3NwAYADRZFRdq47HEwvRMlfxwa5rcf/qroJXaj9crIhOB49pHvEXf/EXHOs7nTD0A4a+Ryl0tfvFLx5hjcXV1VX9vpfLBcfzqV7bzw8PyCnjiy++QNs26JX5ZVYtIe14FCngUAqKybR4ZEhlwCgZzngRUAVKTrhEsf2063ilJiy1cJOgwsKB6LMzYoNsHJIpOJ8vUHYOKbcNGGKA7z68w+l8wWWkQOOrN2+QC/DX//FvYNuAN1//CH//v/n7+OnPfobrmxs453A8nYT1k7iX2j1C8BzRShlzHCk+6wP8IJpWOaPZyeGYV9o2AV7qdT09PsnYXlMF5vXBQGTrPDoAICoGz8B1uVxgnSOV1hgE5yvAV4O2FMteZnpTypX+SfDPSOIl9suS7BtBx1GkS+Y8YEvtEGxHx5S9oqwGCwNbDMfddCQAAibU936ZJMeYYF0WVzI+L8VUGXJkADaI1mJ5fEI0ETAF5sgCr2mZ3HrL9RgkIQ521Whbxwwo4B7awMJIuu2wdMqyMLLHIjtoxiK4wJHPVMMqv/Pmv3RWP+dIAFWStVJWltrpxLFXo4ctNhpYicLhSTripchosliYT9MFUTT1pnHGIt1R6itQFHmeI7reoO16NF2H0LQ4jyOOpzP2V1cIbYt/8H/4P+Krr75C03b47t07/OIX/xGH3YA//sM/wE++/jFevXoFJBZVw7BjwZIy4GjjvcyTjFeaSoVXjRg9VJU2D0Bm95PAyWTsdH1TBW+Ry4tEJBfQxvr4jCYweQ+BSS5lCgrZV3ouWKA4Hffg+GQp7Ao6AZ6V5WvqAWzq+aCfseJOAmYppdtZD2NLtbzV51DYkQ0MHR+B4Wv5xr1kHuSMJdGhtCYwzmkuImdIrGCVgvUaWw/7vSw8U89B1WerMVdBessx4yEEFFl3jSTDRRKblJjg39/fIziebde3N+j6Djc3d4jLgsvpAu0u1nE60ZwxMt6xzBz3UHODoRsQfcTilxoPTDFVT6jkgvFMZkDbNGgD3Y6iNF00BsZI7Zk4L0Itp+h58AFXh2sUFNGQ8RiGHjGmOm6hecq8THh4+FiTupyYwFlTYK2OZ6TaPPu9n/wY0zji/YeP+PzwGe/ffwSNKzw+vnuH+XJhI0BiU9M4dF0LMxtgkoZJWdkjNNgwaHyA6YRhJyxTFXBvGl8TYENEE0rxjzlinCc8Pj0hxogrvbfWog0Nhm7A/d097u7vsSwJnx+fcR5HoBRhBnFcjVpxFn2/Q86lXuNhGJBSwvPTE0pOaFpfjSAoZGrx8eETLuczfvHLX/Lzti3u7u5xvdtjnGbkwmJgt2vxZ3/299D2HXzbYJ4mGT8nqBBk/HiOy4rgFiONIDIJqD3BInBZFnz48IFmIQKSadMJkuwrqwsAxgugukRR9lnVG2pbNggd32drDnN7fYddP9ScK2XaVj8/n8SVzrMxEThWlxP1IQuoCcZGo0fX92QdSMMyJha8wRJY6UJDcB0W8zJjSUst8Hd7MrnIDpRGldOc3Ak4yKaGc0aaDuoktsY2BSpW6YwCdfXTc2od+zRrA1MezlHzZjvWEpdYUcRedDW1cCZzjCOK6r6mbqYFBfM443w+Yxyp26bi4hChZgXltbHNz8ARY+vZBGqa5kXxXWMdeO9z4pibMdSDyj5hccpG4BpDoXB+ahK8m5iXm7UQVZZbXwY0MaJtOq6xApiuh726xvlyxjSNaIKHCw4QFoNzPH+8NJSss2hbNuJ1jE/FwPu+x7IstYkAMAY5Z3F7e8umYzEEXmzAlBbMU0JoGBc05635U9XfQtWqyakAKdXYFuMqEeIt7xHdn32VBlH9NO/X+kpjpjbDq9QIMlLMWC4LQiAzZjfs0LYNrq72cs9EYiBScmKJi+g3UmvYGo9F3CGN5NVcTwYwFtM8AWVElCaf8bxPXd+ztsyaSwCQ+ub65rpeU7pli5SMdSKAX1ASwTl1XVc2dYoJS54RjYWHg/MW4UCgbFCW6RJRcsQ0LRRsbxokmYxx1ohwuwWsRakTRAUorA+XWVu/upYLR9YcWXUlr07qs47KC+Gha9uq6UTm2MZJVqZ7fPAYdgOurw+YxgsKEkzJgEnwFvyM3iHmiOkyoR06AsKWrLe2pYlJjhnn8wnn8wldP3AvGDbSb25v4axBTguQDBYjchAFVUNWm4dZ9Ga9s7CWem+qabjMU80RszSQnXVVPLvqy7m1yaPN63kepflnpO4j+5jAjoPJGYuw+2PMGHYDhn6o54o2LnJmk95LsznGSAUSa5DVHCdY7UPWRypkpV2mEXFhDW+sxT5H+exro9lILigybJt1yxieUnwRh2CM4BpAsE2t5Zx1LxqYxmTJcVF/Zq1F13SIZoZwwpifLgvrKNlLudZeZGQ2TeD12YDE/78ePxh4KoK2GWsQjIcxnQiuGhHerFtYLpZAK2aFdfSiqZWstYbiZBZc4GDn2VpTR6BKqbiDvIcckmAHzEl3M2YyGCpNVjSBUqKAKAvf32VBZJOQ00uhLkA2tWygmvTLjVBcNApwNYn7RNqM2m2pkZrs6GZQG/H6OdIqQq7UwOpAJp/ZCQC0COWVYFvCRTqy6kqjbnm73Q63Nze1kFC2lVLGgSPHs1KEcQatk8/nHQUKDSrwFDM3P8e+Fjw8PDC4pVTFxZPok5zPZ1g5HBXkOYsGlVIaj8dnMhgKO2ha0KmNrjJGtl0SlnciQF1QEekUE7w3YgUpI5k5VQF8vZ5679OmW5kT55qdI/hDfJSfpQgynlMWhgwTziJsg4+fHvD49FiT2cPVFRMJa9B1A/quw49/+nv4+R/+Ac6nU10XgHaXaAOs3R7VKvNGuuHOVIFHH9j10iJcE8KClSYLAzRoahK53YcKzkD2h463KDCTteNbn78COzWTW7H3GvB0X6h+xBbUq2DpphND+rqAAjnVA+T7+07+BUr5UYcbWQrfA4o3nxfg+siSVEGwCC2mKzggBaSI+OueuIyXyrjiyJJqyPAQLJt5+JwzrBMmknwuWtTKZxUacxIR+pLZHaLYs0WWtVqvbQFUV279PsKsquLgqNd9WRbZO+t9q2MhMUmnEnKYQw4o1RGSpGsjDExdFAVnFdxkgciOBgukcZ7RtC3arsdPfu/3cHd3BxiLcRzx+fMDhqHH/rDHYb9H33WYL2RLNoEAUSoaS6BCgIC4xRm7jnxs10NdY0btsCE/M9QY8bzmRZJj/fss+oLzNDGhbzYaFCh1NIwFBMXOnbWIZTV/0K49NGYbrKMem9WY9TbqPd10wWoCYQmkqmYg5B7nkqGMzq1F9raDVc8joIpk2+Kw2V7r8/Lm9aytn9LAwHoZ18PGMEOB/bofJbmVte+sCADHJGvEVH2pIuDEbrdDGxp0bUv3oa6F9w1HPpoz4kLx6ZyzCCRzbzPhM5Vab4sFHMeHUJgPpMoK4bgwgUbRqTMEVQnqUptFf49Np1LNAFjcC8vZerQtG0ihoYkJk8lZihduniwjyXOhg6WeP6UUBGdljGHdVygZ+92A4B1OxxOOziPHiCKA4/l0IhgkAt/qPGQll1GQ0dR8R2OhfH7nEcAGi45FWUN2hbVcWyv93tQ4bCwBfJoIRAr2i4ivMRRLpq5gwTSvRa2KRxsZfwP4Xk3TVmCz61omztDPaBEj17UPBIqWhS5cx9OJY3INnZesF4t3Q0mAYdjhzZs38E3ALO5fKSYWf2p5bvU+yHesacLGkAIsBtRhiuDGVHMpSC4Z1PEoaqNL9GySq+uusse9p5uxuDl3XYeu79BeyBbbDXv0PccOyU5jU8cVXzWajDGI0iDwoLZoypmFvHN0s+q7WhAbOa9VF9J5T+dYK8K7aY0PQdyUKmgfF3gUGOMrU6IyDU1AzgmLxKcVUF+L2nrCbpo7+lPGI3UydC+bXU70c+R5CgbD6vgrGfjUy9EzSHM0W9cDJG5pPqx/9L4Xw39WG3v5zNoQsNbC4eXoHhlM63gLG4sc5zVSI6jUBcdwNP/nDWHT2aJpSt2nGmf1/b3IBFjIe6YEZ9m4jHFBXOa6TslWzaLLKXiysPX1LNT6ahJHM7LWFwGbXJ1GASCaRkApRsAlK7lyhpER+Rg5Kq5Fqv4pqGG/NiyKiG1vFwPPBFfPQb0n3q/TIby+uZ48ei69ZIRkAcFQz3YW9gFFHL9KKSjWwCQ+P+ckAAHJCXGWkVEBYZLojFnrasNSRbadjO274OrrvVjrhmLsvGdrQ094OZJHSi6ngA1Qm8IoZJWjKAhn4RvenyBrIgqwm0tiM8sTbMplNUARfBartELZrN24+RnDGNerk8+7Nqj0uSaLW6R+Nzlv9EwxpYgTmzSHA+VTnCfwtSwzSuG0UwH1F2PJlYgBuQZkm8v5nDJiItOWU0V8P5sdTMkwIJOsGBq95MyzOieSRHzTwBnUvJnrjrlXdRuXPHeep5rDUwQ+VdDJmBbGOOYvGrfkvNb/Np7jrkl054zR2pBn5TgvVTZGxf+VoakkACd7skg+a/TcRqkO1uu+WPdAjBGznI3GUBIlBA9rWt4fa2r+Kb9d1y2KhWp1FaNTI/VZWGsjkTkyq/vt/9pDc846NUDUC4CwXJX8kDIgDdWmoXO6l1j0Qx4/GHgiG42CtMZC5jV5CLb7VgIpCydufiaslYq20RxxziKIIBu73ID3HeldOcthRGS5wJBBYIjGeulax4ldiuIl2fEeTg7okgpKpAuQsxawdL9hAM9YZtLISeHTOXr8ThDNhYcjWVLs/jq3AlrzTN2d8+VC9k1K6Pu+jlVZa9EJ4KTsD2WPQIKIHqYclVJ74rmOO8DZ6jjknMOk6G7kvXh+fq7g1ldffYXdMOBwONTDPeeMGwGgAOCwP6ANDa6ur6gJIOCS0u91RM5aOubElPD0/IRpXvDuw4faPWr3e+x3O94vSfydt/jyRz+CMbYWtMfjETFFeO9xOk2Y54kCqyLgmkvBhw8fcDgc0Pd9ZYQtMj7DxS8pr9FCm6ywzx8/IaeMvqMj3uvXb9B4T2tmkNGT4kqVt8bIwbACUV3T1qKSdOxMRzTn0HQd5rjgfDoB3qKxwLMw2v7l//Sv8fHTJ/z5/+nPEULAv/l3/xZd1+Pv/8P/Pe7u7nH/6hWcNXj/8QNBDAO6paiQrKDs8zwjnheUyIMrhAYwopMkxWHbNhh2Ozx8/owlRop1SgLuvUMj4yXsQnlphmsSJqym8bKFhWGcRxe8JBAMnG3fV1CjCPPOSpKryWMyWbpQdExLZRU9VpejRtlrRimlq15UZW1hdfMAdFSMQEQqZK9YKWxSIvXTZANTpDCXuWdnyJRcH5KgW8eRNtlTCtKlmDDOl3ooKxNQwTrde42nOGnwAXAexVFPZIlqu+qqFkyW4tYYI1pUuRa8MUrHMHjAeeRFdFhKrCOEykjxwcNYh1IEQBHb1qJifyAYP0+xdoqtoeZAI+41BL3pdOWsJ8gV2blfphkxLS+TPxAEuH91D2Ms/v1/+HewzuH1q9e4vrnGj3/8Y7x7/x6//OYbfHp4wMPnz/jNb3+L6+tr/KN/9I9QSsH7Tx/xfDkhmYy/+3f/Dr744i2Cc4iXC/Z9DyvxIMu9tYUjd4MLgAOWstqxx5hfAPg6XuE9D5JYdD9HOAcg6xw9xz9RSnX5/O7dezJRY0SQsTIrzEZdd7VwgCEd3Ds5hwpHgFKkI5m1MB3hQLpSKuWdYpYS1GtCaFBUsqsWu6nyBRScXPUCK5egMMFS7Z5cICOnkRoEVkRdRSeijkYYI2ffOnJgjGGxARWH5GvFnDAJHR9gXKIQKAFGFYctMDV58j6gCQ2CFDnncUSRPTQMA7744gvueRjkYhAj0IQebQMchgPPLHFOnKeJe8cGBBdEd04SqExKeloi13XXU1Q4Z/StjIgZKyMGZNCdno9ofUDrGzINMzBdRmFKcczrcLiuoJreO2otUeNhHC/49rtv0XUdDocDLheOUF0uJ0zTBd01v8Pnh4d6T/umg29aOipai+fPn3HxDkPTYJwmPD0+Ii4z+r7FOHIM/+OHDzgdj/jiizewBpikQaONjbYJ1cKY3V6LJgSklDGeL7CeHd2cuYaddfCOAv9WRiSiaDc1ISD4gOZnDS7nM375y1+KIP8D+r7Hq/t7TNOMT58+4Q/+6I9wc3MHAxZz80Qtl7bzclZ5MrwMr18IHr/3ez8FUHB9fY2cIu5urvHw+TM+fvyAGDlG8sVXbzEMO+RSsDudMGZqs71+9aoKwLrgMYSAf/gP/yFub24Rmg4pJ0wTnatCaLX2QEoROQuMKppMtGWiJpY3Hhncv6GlbdLhcEDKtI9/Pj4jiSGOtQ5fvHpNMfSZI0S+DUgp4jLNOJ1PuIyjFGEeO2EhYdPcub66xn63h7d0ODufz9SO6lpkA7hprHqJuidDSxchttIysqEj33DYEZQLgeC0Afp2X89AA5DhYSw8xIzBBOSuA3TfYpUhSCkJyzNQd0269AAQJPUf+iJdfc1DU80vtgUvDNDZngxe0SfMuQgLfG0+l1KQRjofc92sIDoMWZfee3jn0TUt5nkVtY8xIueLjJ6t9t3Ay0amvpdKUGxjLAQMQi4oOdV6zYCxNEUybeKibBzLwjBnxIXsshTZdLIKaElBqgAYIKM8lvnBtuFWGz8pIrhAzbPLWMfutOhPC1m1MUX4xmN/2GEaJzw+foLq3PR9j6ZpuLetFSfpM96/f4++73E4HHBzc8Nx6UVHyHjNvAvIGbjMIy6XCZfLhHQ+yX6ljuPhcIAxEHA9spHuCfC2bYvWe7i95KJpC3QQJIWwfY2Z5H4wJqnAOT8Hr5O6QgMEWqdlgpXctYgL3bxMyCWx6aBCpQZwHmgtcwAhnsF6U8/bnDOK3NdlKRh6gsLeecqTqHamnmtWYphjY3paZqgT3jSRyeZdkCmHQKH5ONV1rLnxOPG+7oY9Gv//ZexPuyzJsutAbN/Jhje4e3hMmVlVSBRAEgSJEget/tDUj5CWfq7U6g+9lro/iKK0RLTUBEmwkFXIITImd3+Dmd1JH/Y518yzMOTDCmRUhMd79szuPfecffbZu0PnO3z48QNOT2fc3d1j6Dv0uwADYJ6ulHJIWRiQocW0169fwQDI0iwhkwfQ/jF/T5CD481FSBmSw+2PsCOfmTUG0ZBFU4WxucQFj8uMx8+fMO52zKkcGUpKYjBgTj/HBRWs8XJacLk84pvf/hbLoqLeAf24w9svv8SXv/gFPnz8iIenR7z94guErsP58QRrDIbAcftxN6LrPXww2I/UrUNJSDNdi733CP2AnKUxX43UY9zbtUaUWHBdJgF4IQwvxzHonJnDVfA5zTOenh4wDiMnOFBRg29jttqgDr6T/RqZ76Hg04cPmCcRQjfUjCulYkkJHFGo6McBzofWmA6qBTmRQeV1pBBYWUtFgeR11DjLuN9lumBZIk6PjwSXlwnDMOD+7o5uzSGQDVzSKjOTqWHFMwfCjDPt/TU+oYIjvsbABsvcwYcW09iLN5u7womRJZHIYDqH/d0Ro4wboqpBDqBd7Sojjykn7ulssetX9uvf9/r5jCd19sh0bILfdlBcEy1uhxU0WBuYTYeXrJEqD0W1GKhXZByaSCqgYwymaZ1AHmj78kaWkiTdxkBETwuK3XTDWkeYlpdEwDeHKrAm/ka62lDWgeqFCO3RKPK+bnwV56qgI4PqOLlNl2vbQSKivjmoCu+tsnBK0S5DbV1E/aUjSopWbxlV4zCIe2BYC3msRX3WBRs8hc9QAUkOgmfhmsCRh7opBKxhZ9fKtdjQoVfHQBklqo0yzGJIC3sdG3KiMeI95+LZjczt+zEJq9L5FlHZWltwlictAVgRfYok94Lk6zPQJKFWCsOtYm4rQGGlA8HgK5opigRLN8B6B4/aRA9zzpimCafzaU0EBZCZphnjMOLu7g63d7e4uTlivk4UExVgwQnYavz62fKbxkywXscocwO6FVH3At44XY8SiDovwuHQ4IMN5ZHrJelaEASbzB4dTRCtMum8WPnvtru5Ll60va2/1BZa+6GrRpv+wrqOZVfx95tnIgU0A/XqRrheM5kQpZZ1jLZUVFe3cVPGELjvdRRQmUPUTzM4LwviQuqo8Wbd39auAFUtQFGmCTttuu/Wa0Xb29rhqMA68gWIhkfGMs3ILgmTgXTfxsarW3eVhgdIoopNrKmNraTMPWVRGRDQrtJ503tqjBQ3UHcmdgb12VCvhQdHLhUPj4/YjSNubo4Yhx6mFpweH/HjDz+Ik4prQuzDMGBZ5rYfFEwe+p5uTHUjfKvMUYlpCkwCQEyyd+W+bZN4YI3J7WegJhVGWGaywmRNLCKcTnC0NDMJXctFNJGMru1CpgPqpvOvi1Z/UIGlzZ6oFcJeUo0vtObKsw2D2p6fPCR+L+1mPTsbKJasgKSCWlxjbMAYOfPaPL9S2zbOku1aqp6D/H0Fu1XqmKZd92p/IuS62VPtVlSOtri6KXIrRx77rgekO15ylTGYCtVFs8JmM47X2BgYMprvgue4hIw4FlknVa6xxUdrkDMTrpIp9EzR+AXeT1AR5pTWEb0NDq/fRGLr82RNO4LarTYaTyx73hSm5fg7z1SPUgL0nGYBtQpBtyZbCMJoTVhmQNmWylalkLujhoYNrdCVwwza6V+WWdgz/HONF60zY8xmhfKcTDkL23nAbtxjukw4PT2RNZFF50c0kzT+6ffT91tv3brurGVxBxA0qY5FZzifAfC871AxjjvsDof2Z3f39zgeDnj56hUeHx9xejohivvSfr/H/rCXNQnZ55Ydab2KKjmhWYVg27qvVdyBmmcqgZ4QYDO1K5DRCkBjyALjSBt1RxzU4bi2ApOyEKsehooIV7DR6Y2hS1BJjZFqoPoXm5EJOZ85BqaoNNpohTb8rDQ5mBe49bMUVNHiW2zIkeVGyG1Q7dGu60QfyLfPyOKaybAmMdhCGHnCvjOmMRS0sGfIWfUls7D7NB4rgwCSTyUBjpXppbG6gqNe1dW2xrZ6kZr36XNRw5G1k/48pwBWoE11UnkWikKY5HIaw1scJsmWS9oKE9sAEGawQxUXv5WFCvlZ3R9tvAUa99dnTpc6jaWmxTQJKk0QGiCDxDuP5BLz0UrgOcmojrKPVeLjep2Yr1Zq4IzjKPFtPb8qgGm64sOnT1hmAntdH6S59TzOF40xtbC5JzGFI7ydgOCia1jQ1kfLuOVraZ6y6o6h5YY8b8ymjhSmiCMrq+V+sp23R6hmjc5YTrWADWWAjYcqxeCqfavrVM5OaOjgPlFdtSy5mdZbbHzxGdDtueqJveZ42Ig6l0qwZp7AUerNpIbEb+rekGWXZczcWMBWdUgkkAezcSMrqwj4NmfOJeN8PqGUyga13P4UF8zGivSNb+cknzVkjDkjiZZnO98NVqo2d7Gwr5nDD8PA8SnnYUxqAPjp9IT75SXfR+6DNpY1543SYLUy5utkfLbdo0LzpqKEgJTaGgEMUnSo1cFZYTwLC7mionhOqGRh7RvZ2yrInmJE6Tqgah7AehK1NpYeDVjkM61t7qC6liTxEJLNqlFdC+8Z2ZbrOtBireV+m5pVKpAWJ6qcP2kzgZAkZ6DGmENMmeCoFgRmU4e1zaGrE88/dPNnuWSpqQBTjLyVshk3/6KVc9Ksk8LbWAdn1o/SlaLC8MrO1Nj6rFb8B14/G3hKdaaAdplhfIAPHXznOXNZGQCulwtqpbtJNQUZidR5yKFhObqxooDyJYyBMR7GyWaVL9BcL4Qmq7TJKUoHmkPRTbfJCACVTUYxVXwlsxQ91NiotSLlRTa43ADHhJgAieheSPD26FpHI8WEPM0UjMsFAaSZHccB2g1RG2Z9/MuyNFE+PZw00GnymYQ9UjI7dVnciCCLxMn9YiePgMdBnFnevH3bLLmVuXG9ijaRXV2QkgRIDfBjP9KZbUOdS0vCcrrifD7j6ekRqgvQdex0vz3eAwar4n7mM3I9taNSSsD1ymcgI2iv7+8aCOEcGRifPr7HdL3i0+dP6EKHr776ki40OWI6PWJeJuo++YDBEUSL9GcmgCXFxpIWpJww7nbY7/Y80CLdnEj1TPAhYNf1a6EkM8P7wx65FEzThOu84CLz8wYc/3TONtr727dv8PT4hPc//oh3P/yAH979gF989SV+8dWX+O1//a+ole4Lx90er25ewBuH+XQik6ynE4txK32cG53gYydApSYyztORKj5lmSesdNPLBft+wOADZQ4rkEFtGOudFJcrNZwaESI+aSoyGED9puvJxNW0GWgFBHQvQYranKU76MQ1qypQVmGFmYVMNwsjCe6K0mI9zHgKAoVaBsUCxcvhLvvcWSvFa4ZxFcYBo9h9QjoL8zxhKQvmtMCGkYCZHKpBnLOUOVlRkGrGDNmbIeB33/wO1wt1wIZxxOF4hO869KJVQkDHoVqDVApMLVhybmtdYy3F/zK7f7U27Zks+ifee8TI5/nD9++AWnH/4q4dtBAQMHTduj6qAG1V7l3OmOZJis+KWS25MxPrvhNBZN814IZxk7pTxVQUJ1bIyEi1IKaKUiyM6dGNAbYU/PXvf4fT6Qn/7bd/jV9//TX+9//qN1imGT988w3+1//nv8f/93/73/Dnv/kNvnz7BjCceS814XR6xO+/+S067/Hl6y8wX2b88N0PzdkydNRTiekqwoMFztOFRkGgkvVg1nFI/py1gPcWIbjVIliEXvue7LyUVofEFDNSjHj/4wfklBAsR1QHYVIaOCwxY0kFfU89iiyJpku1jS1o0Rq6Ds4XnksAYKkzZKQwLSWhVhGiDQHGQABpAweHalTUlN1tQ9RRki1+hy2YUQGCAQVY0iKxd+C+3JzFmgQpFT8u7MYidDBgtysKWzXLz3vo6Glt40d6ZijAF7oOzXK9bEAro1pJGTZ4GGcx7jlSNJYCb2kDnZKyEQBUgwwyDpK4z1jPznc3+DbW5zsmN7vdDrlStwkGiEbYcTnBeuobaTLvDM+tvqNV+Hyd8OHjR7z78AHjwKaGE8CYHdx24wDoeeZF04XJtHceX//qj1kUWIM0z0AuuL25oXPfcsU8T7hcqa3WDR2WFGHB764AR5CRI+c8Dje3sK4D4HA6X+mGVqNobATAOjw8PcF3AWNO6PsOXehkBNSg73oYQ/2beZnxcHpo5/d+v6dLm+Q/c4wwJraR95oLLucL4rJgf9jDWYc//fWvcXs44n/+X/5nXKcJfuzh+4Cvfv1HCGOPKU3wPdko++O+sQFqzajGo1gA3sJ1HYKANrWsRWTXj3AuoBbg/sVrDMOAL774BXaHPULoEOOCm5tbHPZ7vLp/ib/8y7/E7775HT5++AgAeHx6QjcMGHcj4CrZ8DLWk1MWkV8BLg0bjKpnUkpBdQUWC88jA2BRUWWu1YLaRpQeHx4xzRNO0xlTjljiQsbUwBFA7z3GYYSzDtMyIy4LnDDuteDIwuJLMSJOC0pMws4iUGkqWoe5ZLI0jHEY+q41BGop6BR0AuBVQyWzgDOlwMCiE/CGR4ZFtZW5r3MoNTXmgjUWfdchDHvc3N7CS0MJFWwmttxSOvOexWIwDqVGlFzhquqeiMGGEZZppH6JDR450mVqkkKY+Z0w5xPHSK2REUMJbinTzOJ6vTQwVBlZvusAy5HtVDPydZWHILubDTJUOhNTB4pMBmVLqS5pG6U2Bn0/QMe4ihGXKgv4YBu41hmPnA31eWLFdJ0QapAmKcEaBbCtFZMWI3nazCZWnCmY3ocOZTwg6XSIMRiOew094CaySHNCKUlYVkDfjbBwuDlSNmOapjbZkHOBcwYvX76CDwG/+/23+Pz5Ab/97Te4TjNSLjjcHdH3HXwfABgsy4JvvvsG/+P/8H/D8XjA7e0tfvOb3+Dt21fwfWCO4JmbxZLa+DfBB4OeqCr2uxEAnZ5rofFMShkpFZEcqTCFYsyqQaV6YdoArLng9EBX0etE5sq438EHj34YOMXSB+4ta9tkioNlHiRFM2qhA1opWHRsW4DaYRgoKt8HAZwK95tziGJKkUtsOYRqZK26hnLEK5M4Z0q51NJYxu0YsZaaUJ76Vu/evSOwP1Dj5njcc4S3JpwvZFMxDzfConOohTGbxjHMlc2GuRIzTQz60CGIBuw0X/Gf/8tfoes6/PN/9md0Oi8F56fP+DQtePXqNcbdyDPMG+zFaXFMvbDBErphECYPQRvI1HEVYMZDpgisx5/++p8g/TLCgmLph8MBnz9/xn/9r38NB4vBddjtduj7HvfjkUL4qeJ6nfD+wwe6votJAtnF1OyalwUxRVyeTi1mBdEZLqKTer0+Uc/t5kgwUdbX49NTy9OG4x6+C0JMkTWhTT2pN66ni4x5U7NQJW96nRBIPPutc9gfjzyzDTGNmFPLHZTcYaqDSYIPmIqY4wY8FJDJrNp4HCqUxpZiGEuka1xMqDEB4m6aSkFdFlRj0V2vgHUYrAMZOUApPNucyCXkkpoGlbMezq1olzpMqoNjMPy+ZhEBfO/gNX+MShgCDBy8nK1spuhXMY1JSs1gaug5Z5ELpzq2xI5/7PWzgaeh70HHFSmqpGPZOqaFQZndP3ZqVVxcNSeA2jqJrQhX1E0QNyhqVlujYIXj5KbqmJG+xxZpM1XFoJ1o8+jPFBSYtdMJCxozbeA8rN3Pn97E7XwyUVMKUWsXS9kL2+JI/12Wzqx+N/056au3xEmBp9YYARo66qQLu2WBNHc2+bOtHoH+0oOARUaQA3DtjGzp2QQNewGpOrF+Dhj64dn3mbN8F0h3za6OKtSNMAiSAKh9o7VGknrLkTrnYKpqYAV2XhQsaKjpyh7YPo2cM5Z5QRd6jMMoThJkUNVSsMxLuxfWWBQBIvS+wXC0I8eI+TohxyTMKOlk5iwMIQJ+0TPwztOMWkujisMAXQhw3uPt67e4v7/n+GFDvaWjVCqMqbBu261jqV1XGHntzdjVDRC1NrYVcwGrHAhp6pl1b7RdBllLpoGX3q622/r5OWVUU0Rg2SJbEdKX7s+2c1NUb0PZFVLsW+tXx5hWkFf5O9seXK0UyUUTvNaOjly1ta0YNULNhhysFdJtNOxqte6WVccPQNmT65iRXUHdDZMGmVbqztiW8KqL0pZSz+LbkFGlcckUSRzROjtFDmpAWHSWQKEVYUjSqh1B0ZTwJAenisqrna9RXrXByg4SMFs1m3IRZyUB+1o3pXKePldShiucYFh81tplUnCbIxUEyIzTriM7Ry9fvcT9y3sMQ4fr5YxPnz/iw6cP+PjxPXKK6ILHL3/xFYZxBwewMCoZfTficDggiMhxP/To+q51sLfaHMq6ajHK2gZmCqLHUW6zYQxIbNQOapX12NhJlV1V1UEjuzKguQEa3Y+bc6PtBOlAJ17nLOMfun65zjZnjFnHUNDWXW4HWRWwlcXuOtKn/76ITlBMizBYi2zh2gBbbSKs309BIIkfm/OJ14fWddueYe3fQ5exnB8bNm7rNOMnn9E+YWX+mVKYkG/MGlCrAF1JOsai32TFubauDSUmY7o2dRROmFGANLI0/gjjRu6JdgvpLiYd0yL6FbIfVdR6CBszCbl2MrNlCVgD44TZYVdr5lqLMHB4pt3c0HXp6W+fMF8XuoE5h5rIriGwLpG8yIjmtOojOc/xzZQzpnnGbrdHL8zkYRhwXWau3ZxQigiii1Mvquh8yDrUhoBqOeREoLWWitxxpEO7qHRG5Tr2IaALgU2OcaCxxX6HX/3yVzKeZ3Fze4OuJxCla68UZR5boBZ4YYX6cUTuODKRxWkoikPeskT4EHC8ucHheMAoDOyUuC/1vWutGMcRL+9f4ng4spCQURGGe3Hm02zSOgF8uB63K1TzGB0rt473q2mcGLJqOgFaeT2pfXeCuFwYUZk7IlztQ8BOWDeoaGPLGg9MBYJ1qI4i7Ms8S17kGvMtZ45Bece8RwEPnikGaIwfYZ6IA2etq6Oajr/pWHvT4BDWZIunhoW5N5b6qbLndRycrDzuv4IKZGXUsdseY+S5JOu3ojbnJeYgAlDI+Z5Fo6lkMh9heoQu4OBopkPQS5ioYpZRCvUC5zlyHFTGqTWv1iZLLRUGVgrj0uKRar/qGv3pNIHmkYxB3MtaFCqLxahSq+QiBhZd6OGM5/ljHYIYXXhHlmEDsErFfOXeupzOiAtZFsfDEYOAaSYbTNNV8hG5rkRGZ8nSrHIOvTXoQtcMilQDawuWZ2GCxkRQ/3A4bJq51Ae1ZyeGB8owYyzd7Sj9cX9/38BqtbK3lrIknPGSuqPKuHTOSACSjA4FAQUKlH1VmrFJLzF5SQvPvs2z0vpgjgumecIiEwBuWaDGIsZa+BqgOknK+GkAb8pNN2irgVsVtJFzgVIDS4vxqkFHhz861lFuIWFeZgKMOsofpKZrEjCUWtjWnZrDWMkBrcR2I4zJ8/Us45G9TDcIM7Ou+sNthFSc0uy2pSS5ibUWAZBRYtbLzq06ZSlGPD09oQsdOtVLqxlFflmeqOsBbghqBaMO6+tH6lkbU6Kz3zKTkOGDaD0N+NUf/RFyzjjsDzifT9jvD3j1+jVevXzZzqN5miiPsrA23I3jBmirm/PNNXDIB46iLgvPkDUfQROozzmjWkZ86xx6AdO0nihR4xQbZzzvuUZz5veKG50/GCONasYFyiuEZ/HHWdYeJnBcraK2e2+4SRr+0DI8iTmlZqjoYPWc9oE1G3wD/ExX4Ssb265SYsVYceuuEIaaMKEUJ9A6UTGNApRiUDLrupwznDdt/VsATkgJigUo8QUJLYZgjTZYsRABlXlMyZlUG1M4F3HvrA6KnajG7c95/Wzg6e72RpBbffB1FdiqTD77boSmsM5adNJN1e4+C4DaDoKWPMgTaeizXLyrAoooCwGSZMihuxa1tQEcgDA7xN6RwawIvZI/7wzHS6wzreBjoVme2XjKGnguamgMfN+JVggvQL9jNgYxJczLsgFDmIxrB6O2X7V1Z9QKlDaYz4sKLRRD18F408YEIeyscRj+AL3XUTu93k42ZGOyAC2x0Z8F0PRUXAgwzuLly5dNJBgV+PDhA+ZlRprWw77rulY8U7SQz9l7Otucz2cZN6Aoow0Gd7e3sADS7R3XgScDZBaBUm91FK09hlZA1VIQ5wXn8xW/+PJL3N3etdnxeWbidD1zxty2pEdAPQD9MMDAIE/sLD19fmhCdEHm9i/Xi2jp0CkkLRGnpyecn55gYXHcH5ql8u3dHY7HI/7tv/63GIcB4zBiSZHMFBnPWmKEzcL2a3Pb3PAtYYRQ3GUOvd+NBFCtQ44JMakNGkVTAcAITbhk0QDasB+j2Bt7YWL00h3MWd3h6NgIANZ3FPnLpa357YgF91ddR8MMO0BOupAJ1BVCragZzY7YD16iAd9Dk3oFt2DQujywq4ufdw7Oh5XZI8CS9xS6heGoR/AEkEtRgUWDJJa+znBeeZ4XMsNqbR36+xcvYC2dF3PO0oWzbR9yUxdUCxYGxsCgyJh3bglCSRmw63MLnbrroIEPofPSkalY0oLHdw/oug6vXr3C2HWNOVKx7vslce5crarZmYnsGLfnIkKOKEilinYUDz0ysRRWAfquI+AjwEBKHKvLpaLzAcE5eAOMfY9/+Rf/Al998QX6scN1ueCbv/0dfve3v8Pvv/095umKPnj8+V/8S3Rdh+vpDFsKgjE4HnZ49fZVGz29ubtB13WYlokuYMs6OpHFnlh3txXRaKcjNZXOobVWEZQmU5FaEwmlWqRFdDZckEO9cD5/nlf9LgETKM+Ott6s2yZ7UsQLaJFSwvlKG+H9fk/nHu9Ra0YU5xHn7AqCSbwuqqUkBWzaniPQcQZpOtSKWhPm69JiZRGAjuYTTjr9BFZlMbWA6PzqqqoxvIFaWogZTWzXV4OnzQpsPQOfqjZWVvYdJDblynHdmjMcGE+ULZRixHUmgE/9HMaGWq2wwzjCoRujNnDYIEsh7CuTPmpLMFEskOROAWFpJkzXqwArZIp1XQdbK3wpuJxPqCVj6G9hIOLghYW/cxU+CEM6ePhANyBNMHPJTYPKOYtxv8eXHfWR/st/+i84PZ2Qlgw4MglhARMqVKttnmY5q/g92NWPMI6smcfTE+5fvsLd/Qvcv3xJs4/Pn3h/RVcMAJaZehczJjjPTqyzbtUos1bYNotonTmEoAUQE/lpmnC9XjHPtGbPfY9uN2KMB3S7EW++eIt/99//92IhPsNIpz90tL+mzbYwsBP1b9TNh2c50AcyVN6LbtX3P/wAYwz6ke//6tUr+K5DqQWfPn2EOhnnnHG9XvHi7g773Q4vX75s+o5qp21Fv6kWisiyUDftPCppzcdaXCmMgTre+3Q+AeA4UvChOa/VWhF8h2maWs7UeWrWXDdOwsE59IGjTNZaAjPLQsFcI+OE3iP4Ht44RJ/w/cP3WJZIF09Ik0w058ahRy+AKM9UmqI40QkB0BpiCs6qk9swDMIA6lrHvzUaCwTUEI0fWNieo/lavKxgVgt83N+lND296/XKAs0YdDlRTBdkKGjsSoVxuAsdXAhNQ2a+ThiGHrvjHrvDDuPmXs/XiXlxFoYoDK7XCz59+iRMh4C3b99iv9+z6Ks6/mRgYUVrdZVlULcuvWf6DJXpxCJXxr4SBChRIwYpwKyOR2pdYLAfj6gVGAfRAUWFD5Ibdh2sIxtnmmY8PjzhdDrh3bt3yKLr+Ed/FDDs9hiCQ04WH6cZpRZ0vQi5Lwt1FmOkGYOYAAHA0+Nja9b1w4B+HLAssdUWpVBfspSCN2/eNNaO6j5d5guZPpWsjmEYsd/v8fXXX+PNmzd4+5b7cb/fI2Xq41knzoCxSIFNnw8PgzjNSDBAIqB4OOz5/F2WtWOa0LAPATElfH74TE1NlMZG8j7Aei+OuKe2X/MVcMuCECNg6LaozsNKPChgbrssC1JMiEsStptBFq1KspsMUmLMe3x8RKkEpW5vb9H3fTvXnx4eyAQRyYzL5YLXr19jtz9w7YkrnxbkWQA1suXodK4jpWyg7xBA3Z/r9YqHp0d8Mfbod704a1rYIHmM6O5dLhfRcXSNzVelKaOjlc65Borrs1enXzVq+O6773Bzc4NXL18io6CYimwKc11tSQrjuggYb8NW3mbFCHKmVMg8TbiczjgcDtjtdhgH1oNvv/gCwXvsd2OrtTVmfP78GZfLBZ8+fFg15bqAN69fYY6cJMklYZozWTZ+rSH2xwOulyuenp7aM+rFVXocR1SQRe2ckCyGHv04il7iQjfKyFrbWov9gTqMy7IAsJiWiDlGxLjgKvVQElDUVGDc7XG82aEfdui6ftVNFRBqEAkX1v+Jkz6W7pMqGVDByZWYIo0DUoSKbmttHYLqSIswvw+c/unYhDPGYqfn4jzBGOpVRQHnWfJs2oBZcQegZIeSxWW0ZIy7DiFYWNG+9v3wrIGhZBD932az3rVZXWtuZ2CVnE21b6dpaWs0BJJGQnCtCfAcxPr7Xz8beLLWAEW7T6Z1VlkUJZRc4Z0yoMQtSmzTocEEa2JsjT4Is2JPm58D2NFr8Gy779J1SCsNTruBKziFFb10DllAmCwjPxwrqmtiLQGvgWOb6zBS6FuzunZpMCjS0YpS6OjPW+2MCECkxY5SULcudm20pxI1NAaStLNLqwyHlBNsFgE5uzKVlnlGjOy4RBEr10WlegQa0FYB6NpG/4oEb+fIVvMh4HA8YBh79D27o1meZ9f31D3quzYmqL3H4Enfba9a4KzBfr9raL06+ul0eJYkpsTc1tHlfMblesV+x2DQhQ7eQTSY+Fx3uwO6bmj2xurAo3PWrFeMdD65HnUd6maj7SXdfHTz1UKrcp2/TSJ0GHxA3/d4+/Zto9nOkRsxFWrb1MoxqJyLsoOFnVTbXqQQHrsgOaUm2F1LRd930iUtbcdXwzdSDTAdBVy1byCAAkeTTM4aKeT5AkELxEJGyLRM0PEZ70Ojrz8Dgo1uuI3uy7bTJHuklIJFxjrq9j0qGtUaxrRuT5HOsu6PtlR4c9ilNEanzJBFi6ZuNIkIWmhXVHAocFzHwMA4Ff+W0UXrUItBqdTpgDVw/ShsTGrL9Sowb60wnGpLQHSEMRgnWmfrKBbfYQVyFfwOIUiCU2GE0npzd4dxv0ecF3jvcTzeiO2rJ0CZZcysKmMGjZlUpPgvtUJd9zRW5ZJQjNBgUQmEiX6XgpzsZkXUXGDA99iNA/p+xMdPH3F+eML7H36A9x7/3b/53+Gw2+Gb3/4Nfvj2O1xOT/jlL77Cze0Nbu9uUQ3Xas4Zf/Vf/gqPDw94eHrEzcs7+KDMAN4htWHOiWyPIFoyWZltcoFJEv9cIgs6u7Ifo6GhgAFgYZooptHiM6MBouo2M+5GAATcrSPI4IROvU3oWsyVuA0D0cALsofZ7Yeyl0rl6HZegRMn76ddPMjhvT1DNJGmPiPPIT1HQujgu4C4VOQU4Qw1OGgv7tg9NRbed2utqDFCXuootS3staGiwFPTuDKlgUurFsY6pt5YsJIM63h7G8ku/Gw9Y5RRVCFAnwlwVthaMr6OTdKkry1zp9bVpVHPY23qtAaEQRPkLPKch6Fvz8VL3KBbThJHG+B4PLZmUEoUET8cDrSsb91tAk/a4OK5TqaqdR7Od6DDFVAyn1+KGdFnxMAcAIX6hMo4iCni6ccfAUN7dh84snN3/wIvX75kkgusY/ZVxUfRklYVuc8xwTqH3ThyXErWX1EpAgXclQUje6+BBTlhiRbTPCHmhFevX+HF/T1FypdNHNYPNxAWoujcVMAk6jOGwDyh1kr2Vi9J/34PYw1+fPcjvvvuO6BWfPzwAbf3L2CsxQ8CSh2PR5yeTvjby++bTuTbt19gN+4xLzPZnS0HrKLLt+4v1XTRLu4iQBGvf92nzjp0gYWdakoaFY8xYnhhHJbEArbvO1QDJM3FakVaFlwKR68o7kzRX+fEJakmLJn5SxVHqOPxgGWJeHo6tUIxpYRlXjBdr61ppOdnlSYQXVUnSeQ79GNPVmGlRss8TcgCzE/ThPP53Ng44zgiDCPHSWS/aENFY4+OJEZx3XLC4lSdG9UahTEUqU7iGPqT/arutXr/ddRmv9uzEOl5lio4xMY0jyYDGg75nvkmnf8UPO+g+nXWOGGiMJ8zMJSaUNaVNr8k52+28cLm0KYrAMldqftnJL7bTT5K0e+23Fo8VV8kZdwsy4VxvapuWsBut8fbt19gnhdM1xmh61FhWkP5eHMjshRSDC/SNLB0cAwSgwBgGAee9SW3cwqGjo6dABTO+cagCoHuV6PIfDxdWLx//PhRctUvcL1yDOzm5kZGDq3EQAJiIbG5N0+z3D+PYoo0s1QahA20Ifd8Po6gE494yf27TkDrDnWZcbpc4R2L0uv1SqDWcZw6NGdZv+aWsl601lP2vNYTes5M8wS78Lzmvq+wxyPBWsvzfDeOzA2xuqDqWjns94hLxPl85gjb0eN8OuHx8bEBgbe3twCMOHvLmpL6LSvTNhKIVXmOIOYD425E6LrG/LXWYvSrNpwPAV3fASBDOIpIv5EmZVwirGO8sp5sWc0Bl3lBShGvX7+mjEkgm/t0uZDZtt9h3I0YhlGmE4Q5KwBeY5dLznM6n1bwATTaMBR74/hj18E6JTAYxJTx8dPnpp/I9WKkSWgbU7k5iE4zrLO4ORyxxKUBkwDw6tVLWMumRUXFMI7t/FHmcRDiRhbdxGpE59bRZKwCMDr+Kmfu0NOAIEg9VmXyIOcetWKt2yvlHQZpdpYKxJQRdQzZOPr6JNGNtha2Mu8vlbI5AdL8kzOHOlA04Igx8t7CoFpLqRRjYV0nW0anwgxC18P6gEGYYepux/3TrUBoq8/U4MDAwMPailpUX2vV59OUqwgLW1ligGkMecU6iCWo5A/PA41hOddn62f7KoJ9GEs5oJ/+/T/0+tnAk5Mvb6VbYAV5ZceTCaEFO2HK4rBWRQmfC6dpskSURbq6civ1EKjSgdQbpPRQInJo6KQmEtuRAXaDsaLHErhWDKu2w0wpuaUSXGvOB3UViKSeFBk8GQzcMUVM07WhvzpmFkKADYGgk8wHW3DcxoIADRlgTAaa2CP0qwgVsBY6CQqamlNCkZl3bnQyAbTDHyNtGZX2rkwnGN5TnZdXYEqZCVX+rpMg64PHuBvoHJikcJTkoBt6dOgBu+qtpBiRYoLBRuRRFqRzDuM4NFeXNkqFKtRAap8sCw/CXCvOZx4EJWcMQ8LNnrTiIq4aznr0+0GCC+dikwgZq/tHBQ8rJ/dIATZdG5qY6NifUs0XoZon0UeZ44LscxNuP96/xP54xLgbcZ0npJTY6c8ZaSHoN5UJrgvwfScgpEXNq8uMrQQ7SqI+QOu4hoDqzDpSB6CAOimQvaMgbU78s6B6E5ui0AoIkduh1osjAUGc6bLO4buRVNNWKus+EjHTik2BKvew/qRToq4SquOghaKFaFEIENE4OHKQG0nuiyRz2yQcYNG/xpbcEqMs7K5aCaYpuGW0S1+lMwpx+XMBpUTYuoIFW5afMxaukzBoeddbgS3fyRoDLyCWd74BgSqQ3ZLclGGCHGY5AZWjnvAOty/uGANTRtPu0ZglyQGKilxCYpzwm8wK3HkFV+VkSQI2WqBRbJ0m15YUuHkiGwUyx28cNWLu7l7gxx+/x8ePH/D+hx9wOOzxz//0T5Fzwv/rP/y/8enjhxV4untBjpKh5etynvGf/uo/YZ4mlJwQ08IYt2ETrXoKCdMyoxrQaSqTnqyMnpS51gx47dVZNA2CWlAdBeOtPGeeD0VAkdRAOV3/4ziuun+aOCoQL+BKlLWrMSE4oVdLDIQUWBwPXYt4LX50ZIfdSdcYkM8B1Q0gJu1kFrcSb1KCk3FP0sYXOecMpkmt3z2ct+hCJ42I3LrKerZtrczbujVyvsqe0p9R4EnBpgY6bc7OBlJVBQ/TMxCt5NKaGfpnMIBxDj5YOOOaaLECGWWzp3TMwwqIy4JrddmzWA07NjdT7n1qOUQ/9HItpQGKHOXJHAszbCzElGAuF5zOZxGCRRtdstaiEx2evPk+yxyRc5FR6sAEvqABnSkWxECNCN23KZFVZa3FNM/44d07HI43DeTxIeDFi3vcv3zJjnFjH8o6k3tx2O0RuoA5T61JZK3FbtwhzguWNDGRVUFkY1rR0snovY6iAASeqwHO0xVLTnj55jVevLwnU0HOG43dugZU2J5mMDrqwQIjJeqW7Pc7GAPs93tcLmRcfPzwAd9//x3O5xPGccQv/uhXCF2HH3541/Kjz58+429/9zu8fvUKL1++FPBkh+s8s1hK3DulsMCyoW+gkpoqBNu1M1v3ZGPR5SLg/rGZrzDO8mQwBq0poUCWNY5gcxVH15wxXyc6MArAFyNZm7e3t5KTUEMtViCMPWygJsmyLPj+h+9RS8V+v0dOEXFZMF3Z9NnuL653g+s04dPnT82c5ga3GAbTrnuZZhSfYEBA79tvv8Vhf8A4jPj6j/8Yu3G37g0QRKWVOdd4ipKfCBgVnOqdrg3cQuVopJJRE9BtmIkaFyxcA2NqLRh3YxPl16YIWXRLM9dhXDQAnOy9DuNocXfnMM90eyQAJM0gUzkOLwARG0toz1rjiAJP+lxWC3UjOT8LTGWdsdyQwjVQh8370DSw9GcUeHLGkKUU6SYWU2pjcBxF6nB7e4fT+YKnpxO82K27QObMzc2NuD1RDBziRAV49EMnjRiyUJxMh8zL0kbwAYPsaOLx0zqG9yG0M2j+bsI8L/jw4SOGYcDLl69wvV7x7t07/PKXv0LfD3y/XHC9cvqi9Izt03UiEBgssqEqTUxxBXurMkZBLUqpnVAImni5hq7raD8/zei7iuADLvMFMcX297v9vp3BeqZSHmNuzZJGFg7reVRqwTTP/MtSWrOZ60SYV95jN+6gw9y6z3QPDN5jshMu5zP3Wdfhv/3Nb/Hj+/c4HA7UzJNre3h4QAiBTMMuwHrXzv/L9dpqqHEY8erVa4Sm6bkSAIwx6MaB+8AZeHgMZsA8k5m9zNQKttJ8maaJ7OddZrNM9JO3gM7r16/bkXi5XPDw8IDb21vs9nuMMr696oOlFXCC6LOKXtDT6dRcg0MIOO5v4FyA9x28gJoKNJMxk/Hw8Ik1a4ro+45gvRAMvGMs1c8OIWC33+N4OODpfEbKGZ8fPiGlhC+/+oLj66cnwFSMu1H2omvSDJqXNBacYbPRWDKGYKwAdpr3OQzD2HIgZVAZw7Mjl9rYgaWwbiygc12VMzLGRGK5I6u7Sg3rRUfRAuJIx5FhXcPKIHeWjMEYaWyTYQBrEVOmSHcXaH4BToTRybpHMMC438EYg1mYWSoTQymANZ0DIK6iFsEJkuEKUGUkUxvuhs39VGKr1+R0b/tCz3rvHbdVXUeqm1ZeVXxCTYn0XSRvS1kkRsT+4w97jH/n62cDTwBdUqZpogtDIMMljB2sWbAsEd99/z1qKbg53khiN8B508avtslrVvCnKvan+IuRjpT2ogky0T6dgU/ZPi1wQQ9x3hwlIOnft+QaaIOSPEyVbVFhW7N+7XhV+c763vrfYejQFQ9nDZYUW9FRckZ1DkYOQwU39BoLKFimtD0W8oJEVh2hgIRNdoqtd3CGCHmdJiabCBiHkQmmiJTN12tjRhg9pASs0Ps1z1FGIHtajUI7ohllnmkPG4IAV1i7yxvQhoXCOvroZKzgermKK4qAWUI1bc4SRRNDiyDJhBXmgbWOBU7OePXyNV68uBeAzcMJug2wUPWeI3uAAJyF1EgD0CIcwOHm2LoqQbpmSxQ01xrkkjHJwapjorVWFAPAW3Suhy8ZyyNHGL/77jvsdjtcb67onh7R9R0Ox2M7mEopuJQL1BVE3Rt4z7h3FcAg+MAEMni/JhVSJOa8FmcK2qrrS0Odja7f511fLea8d8+CSwPZhrFZrhpjWFRZB52CKeIUZhXMxerig1LEUceRwVQI2FZDenepIopfKqmXAKwkLkkOj7YHK1Bl5A+WB+I8zQ0UNbANPCtZtRqsAN2bwlq/HyRpBse2dK/qZzZ7U3WrMs+j48oGAWpll2McB1i5NgODXgEPsNuoLlBNeLKBdrZ1hJ1zbU+yswQemlg7e+rUYa0VLYMs2hbCepAxA2ctSrFQJzj3kzXBgosAUPIFySYKHdeK09NTS1x88Bj7Af3QoaLg+++/w2//+r/iX/zZn+PLL7/AEAKepgkPHz/h/Y8/4vvvv0cqFXNM+Gd//ue4e/ECHz5+xMcPH/Dp0yccjwf88z/7Z+jHHu/fv8f9i3uM464ZLKgeR9dRjyA4B9/5VjTkUjGfJ6TMUYQuBBz2OrINYaJU6ldJoVnlvjnrGxNIQfNaIfP3kFn6ldGCWhFnCiGmhR1SJ/coltTutfWuje8CQFrmxmhzlvb2Cug/PjwyCS3i4umZQA3DIPuMibp2yw0Mho7d/btb6gd1fQ/vLMahb8XF6XRipz0l9L5D2R0aGGy8bUVeO1822YWuQ8gZxxj0HHhfXaL+cJTcqXaGFPHUTeKojr5vTuvPNP28BirLddR2QToFvF4jRGtX/nczFUiRNU1NTaBf4bzDfo9agbmbkVLE5XJtlO/rPGNZImKkDl/XUWj9Ok2IMeJyvbbfX69XofNzfClF2wpYbVoYSwbVNM9IJeE3/+Zfk0avzIuSEEV0+vOnT7icz/jwWTrClezXdz++x3VZUAwQhh5vv/wS43EP1wUsKTUtOwegh2nfl4l/QHAecVnwww8/QN1GvaP2zM3tLXb7HTNdcDx3iWTaxBQxzTO/Y9+jkyLCGa7dL774AofDEZdlopubIxPFGgMPCyd5DyrgOo7KhIGmMBEZWdwVciWDt1SO9/ziq6/Qhw6//OIrXC5nLMuMsN8B1rZxiN1uj/1uh6+++ALXyxXzNON0PqPretL5S2HyL/omytlr7BnD0ctpvgpL6CK5hCRwMOLkFhpjHBFtv2bZx1qU9X3fitZSC2wGFhnX//zxE05Pj7g93qDv+iYwfBETHRaYFN2/uTtiHEeMux0sqIlDfb6EYRhwc3OD09MZnz59anqYyjbQAuN4uGljNikmTPWKYRxhrcdut4e1a4e91oqHhwc8fH7A3d2d5Kza/V8buzoSk+Jm/CxnPHz63Pb7/njge2zAZwANXPaqeVIlZ7aGzJhiEJcEY9DEgX3ftcZtLkVs3Xm9Xcezb5u/W0sWf8kZc6JGTykF8zyh73vc3d0SKJS9ooxOzesBSPNQY6BphSDbT9TYylmAJw9YSyOLnBcsc5L8y7IHDgMDYfJTlLQ1MQBgN+xQAZzOZ5RamhagjmrlWhBzhHMWh5uD/EyPcbfDeNg3vUZpceFRxkG7wP0R+p7r+vQko3YJnx4+w1qL+/t7apaWguv1itPp1J7XbtzhcDhimWcC+pn5Wt+Pa9NB7pGOZg/9gOx1xFdAWe8A7zH0NKcZBjLPrOQ4VdaWshxMWfVo1KHssNuj63vsxpF13MwJg1R55rLgDq3AVkezKlIj+hydkckVmTo47Hei9VjQBSd1U5GmdMWcIi7XM8ZxaHk5QCBRCQAdLA63WQBpj+PtLaZlwW9/+1ukJEZF+z12+z1ijPj0+TOf3TjyHBIGZClFzGq6Nvaqcidlcx6q1q2yx4DVaXP2M2JKuJ452v/58QHBB8Y8U1ueXUppTbNx3JE95Rzs3iH4jq7EKeEqgJjuD23Q6LV47xv7ZehpsNEPBI6VWQUQtF5KxXDco+86HPajaCRapLSw2VgKlphb8+TD58/S/CCj/eHxEafrBZ8eHzCOA1l4b76QCZUFMWbsxj1SylimpdUuVtjW58u5ObIF3+Fw7BozCVqXVMBUA+9Vp5Rg8jCEttbneUKMC3b7A7ohoR9HSD8T4zgghL5lJF03yO9XTIExU3MsqcxNRUxLqylKZnNXz+fOd/BW2Xa6/qgDWKtMMmQ2SbUJnqOYDQkWwH1AMobKLHRBjA1sBZABs7QcrHMWgIMKjC8xAtKobmxG0YHimmrJGXKmMy95PswFUC3Y02a9RCOIghx1okTcN2tF8MxJSl2FQP6x188GnioJPAQKxP7S90T9U2LBfDo9IeeCcRhbAm2rsCrq6ugGqCAnKAa+/aBthwUbVBwVpqzWhppwb4XsqiBzymDRZNxYQQBTFrtd1QYwbUExETYrzVuCWluAGjhEOFu/A4xpHRPU2pLtItTlbYKvh7H+qpsFDoCjCTBtnAEqAljtJkDnhpZWVtwUhYtx/fmfFCQqhptTgus62osbi2pWJD2lRFqgPKM2Ari9PqPod2zPwIROxrXYEqaOP1qgtHbVIjHGtQBjjKGAnhErzcxul4730XLYbJ6jWYPnptCqEsgBNIE67VxY59AFCsfBLy3hTJVOZ1sh88qsDQYEy0pxjVZ+Pp9bcjrFBe7qWCxKoZCNIauiANXU1jVpUKosUAWesoA4bnN9SgPVIq79I7NShbfMA02wgFVQuwKtIN0Cvez+8N4H0XxSZp01FkvhZLh2uKp5zoBogJHsEfmbFSiWNRJzRs10EwFMA4Nkla9fSfd0rUAVYbyUkCJHYqx8iup4qGmBroW1njWtFVBrfXbdW4abMiydrAlN0vXvyZLTP+D/YyeRB7LF6qRVMpMA7+nYQ60138aUGltK37fIgS5/78WdK0YKteZaW2zUOKNAr44iKYtLx5P5+1XjrgEAYGfKIEE9UE0FhR+FRuyda5olKUU8PT3i8fNnfPHFG3z9q1/BWYu0LHh6fMTT4xOenp6wOxwx7vfY7/e4vb3FDz++w8PDA4WLncfr168xLzOulwtwd8+xW7fS5FdDCmr/BFnzOWcYcSOkBW/koafrG0ZvBYVFS25MTXbVKG5vRIDTWitrQO6SXUfJyGKobcxZ2U56AOZMYchcaOSghSFqRU1RmgSmdfe1AJynScAJjoX74FsXEdbBO7QYr4WbF9Ha3W7XgBxPKsAzECiXjDxPQClYfCdrHfDWtxi6PVPbWtisCSuJSFFm3PaebPbhs/NSgW3VkclqerHuG9Vo0yRNWTLWWpjnk4AwP/nv+trsQ209lfV6tpqEyuBtkWhaNTFsR322eZ6RSwJQ4QTYnuMiZhmz2DWjdav7vlu/nxTken6qKH2UBtGXv/iKMdNQSHZZJjw9PeL0+ITz+QJznWRMO+E6zVik8x1jwrxEDOMovwa4QL09W6ucc+szcc619eEE1L9cLk1joe977MYd9of9JnZJbpEyrpeLjCRmBC+da2OgNu/WWuwOFBleEi2qjXxfCxaTrUECnuMQoX8dySqS5LCxBUDOxmG3x9D1ePXiHj/++A5Pjw9YDNXchoGMC45EDDju9/j+ux/wYflAkEWLtlqFycpzWGOAOlca2QNpo6nBs02Y84bXrI5ntRQ2ejZgisocACpiu54RKqw8T3y+nz9+QufoZNpLbFoWuulOjW0eEXoBnAuLFwKppT2zw2GP0+ncHIed53O21sJbiiAP/dD2eMkZsZTmytaJfuCyLK1pN10njvBNE3a73Zp3CI6gsg7KiqfpB4Gby+XC5xYCDpXmQXpGaS7CESzABW26SKPIiBNpLsg5PosZ298XYQFq3NCGocYZzVucc5QdyLkxLJmXFqS0p0yFX1lXdXs+gnICqtFnJC9uscPLeWmF6WZ1HVXUkpCrgTEVUA1JXiAqtgYSIjVSV9MXYwxlEDJH+Luuk8YV47axQOj5zKyz8F2A6wInBBKnE9goSrIePIyhxloUEHmR2HW5XAgQHg7PHHSv12uL2zc3N9jv94j90L4DC8ZeTDbW6KtNMDVVCV3fYi6cA6SJ47xDNxAQgzFNYqE1PquwQHKSvctzKKiZQdchxhk+cTqmbs6Y7XM0es9FwFhz+lqcNOArnGGjFI45lbM6laLnEuP3tMzoutDyqVprkzkxcHAV6IdRdLt8i8tPpzOu1wvmZcEwjuiHAblQcD/IuaxrN0te6h3zBFMF0BYW4NpkNZv7vuajK3uN9eMFXDPUUhMH2ZrbyF4pBd3A5zhUnpXeB1hLxl5M1PqLS2z3T9eogrtb5lhtY4hVgC6uY+5R5uMFAvBYaivVWrHsdogLM6Z5nmXChmy4y3VqupgKymOZgesFzr8UQO8AAIhLhDFZAOMVEK21trx2EcDcGIvaC8mAcxDtHNMzWh3lUuJe1FpHiQ3qsO4r3fV4YApLyfuWhuhZ0EbyygryVwFrjKzXnGkm4ypJE/PERg8C2V9exmIBwDm6NWYxTlDn4wI0ML2xwdG22AbsknIw6BQWBDuQJr0Iomt8bc8ToEO71M0UWpcpJh1ZNxsGbjEyNcGJkpJXqZUQAu+BNJ0MKlIhO9YJlkIp3T/M8v6u188GnqZZLEtTgS0AkDHVuTnA6FhVLRWHmx2R3uAo4G0gopEGrpq2eSFfQeXQoIwLYcRUoQfHTMtr62orNPW1JtirWr8+gEbX0+7W0MuhLT9YV80UPZhpVFPbg4Og7kESgrYKDGDHEWPfY+z7VRSyqKA552mTsHDUeUc31FabYO0cy+hHcx4z0oUvTfgbtSLFhIdPnxlsJfGJMWJ3oGOO82QJXa9XKehlXKtg1YiQPE0tc7OwCZ6enjaAlVLXiZIqTdtabtqh7zHZiZ0PsCgLKtDnCDp551CkS2NkcyzCZLleryAq62lbu/O4XidMlwkuZFjr4IIHx6ZqG2eMKSHFVej3erk05xVnSZnvQofec0YYMn4Y5bCupTRXJoBJhXO2vYdavaOSgnk4HrHb73B7d4uLCLbOy9KAQ3kTFi0KfOSMHMmu2MlB553jSEYkiFsrsFyvOMu4Ra0VwUjCpJo0wVMIOvFgyYVB1Dg6cARrcLy9aQG4CJquwEsQ9pMLLFbdxjVKNUGCsxx9qjIaK0wfHalB1ZnkNWFYNXK0i5ywiGaXdx2Mt9IZb3kw/31VFh7XqHaMl6sIveYCFxxC6LHUGbQS5mHShw5zXLBEioH3fZCGeGnAmambAlZZKgIUGXGZ6DzF/rYjisZyjp9htYqGBxACD91Z3KMAIDaHoAQjWpsrTVwSYGdXZ6NaJbk1yMW2+KKHm/5eu1FZnIZYJLGrrwX+KjwpI8FiMW6cQXAdwr5rTMW4RNRMseFSCvqhxzCOOB6P+O1vf4u//uu/RvAef/bP/zl+8y//Bd68fo3fffc9/vqv/xr/y7//f8A5h2Ec8fWv/wT/7M/+DMMw4ny+4Idvf8B0veLf/sW/hrUG7797h8PNDV7fv8F+3JOhU3hweuNhPcevlL7LLVLQi624AePvRZgeu6HnSJkkDZrcU3+pkzqG50oG9XUMGHNgCBLC6LiQ4WhfzigpI1h2OpPPsj/YBYw1wljuKydCy1wbKwCv43ioBl60mIILyLZg6EfAgPGmGjrmOA/4lTmVBbDvbIADQYwq2kDK0tD18tVXX8nns+Fic8uX4DtP7YKUkStHDVlAdAJmbpsG/OworqomdPLnG/BXXpoEaeOmpIySqAnzDHg2Bmr/UI0kQ5bNAu8cCrLovqlrpTgjifZCY16kgmWZRTMLcsavIKJepxp1WEsg+On0hHma1/HN2qHrO1jvWtFxPp1wna748OGD5CbsZIeuw/5waA5uHM+t7fsXABkVoe8Qhh6djpxIt/B8pVnGuO9h3S2GYYQLHq+ur/Evf/MXPBeHgeCBAMExRex2O5pLGAPUimVa4KxrgIEVVpDGdmPYKAt9h6//5Ncc1brI6JR3sDImB+kKj8PA4rcWAToOuFwvBCemGRUVL+85Xuekc6o6h845jhwrOGXUuKAiijj7kgnooa7NjVwKqiHDSAsGFzyG/Q5f9b9EKV+RYVwLTuczlmXB6XRGJ0zhr7/+Gl//0der0H1jiHIN1pxQTEY2Bv3I8f/dboecMz5rF3hQN91OajsDHxysN228LMkYorK5mXsRYNvLeP40zYAB+i7g6XPE+x9/xHfffov3P/5I9qt3mJcZkObANE34+PAZu92I3X4PgOfadCF7MwsQ+vj4hMPh0FyA7l7c4vff/i3OlzOc8+i7Hm9eUlj79uaGeiiRZh16lrjFyjga5RLuX77EuBvx8OmhaT2llBqYfzqdGLuHXuQDaPKiUgK1VHhjcTgc8Ktf/ZLgIoAo4CZFxiM+vP8RNVd0oW/7P2XqWvbC9FC9zlIJ2FNQn2OlZKSvI3GPj49kH14uCKHDfr9D3w8Yhh5d52GNR6kJpSQ8nR7w+PSAj58+4ObmiLv7F89ACwVpAbIg6gawNsa0/NqIM2bfeWEUdVD9QK0PlN2aooy9Sq44zxx788Iw8d4jiqh1CHRRTLnyWWm/yNAJrtZCMwpjGsjjnUcVsV+CA8D9i3s2EzYOrOO4w263Q1o4ovmfPvwVpuuVgsjjiJf39xiGAa9fv25yJwaU3WhNe+Pw4u4FfvMXf4Ev3n7B3DOLPpUU6jFGwHAcjCwQdePleitTwTzzPquWG99fAM7EsTdd75frGcsccTqdsduNqJXnh7fUicu5YrpcMFuL8vSEEALGYZD7I3oypojel9YdVfKlxKkJ8Br3hwN1ouSZL8uCCuAooFjOmVpFwTeGB4E6zUYJRI3jHncvMv7dv/s/wDqHf/Ov/hW6rmuGALc3L2Ckgafn5fC6b/VRzgUf3r1nDmYIsFObxwLV4P27H6WhWBoo2Ub/hrE14cbdDn/yp/+k6YiqC+Dj4yPmJcJYui0uS4IxDt530EminBKlHQxzX5WoCY4NUadN0czxLeMscmYzY7pc0YUO9/cv5dmyRk0x4fOnT3gw1LtioxXMi11ANhGpArkaZIhzuLEIYt6UUhLAgySHuNCVUeOLNRbLfmk1p+bBmmlM4g46jgOuV4/TZZI9H1rD/+bmDl3osUQaPnzzzTfoQoeb2xvc37/Ai/t7xDmi5IK+4wSDAn7ELUwDLKl/x4RJUyJjIE2mK5x1ZOBWwFbbiCOxJomvVxkNnjEOA0IXQD1aALbCFDoPqjSPAj6hBLhiUKswNSWvV3ZrqQVe2MhIdEfUZsySE+U/vKXbJBhvOX7IimEWRmZARUpkf07iPktg1KLk2iYDbCEWUaANAs19HWsOL02RtAAloi4LSRxxKy5+xD/2+tnAk2pLbF/6Qc4xcHPms8J5K4ATN3mpFe7Zv1S2RPteUpnKOJ0ET2UwbNH69s/a6oB0Mla1/tbB0l/yF85pUiVou6LBjVmz6rroomRZpO8vi1LBLhC4CiGgmAyTKxISShZAxxgRc4MAS+VZwdm+lwSMVKiXY+TzxYWxdR/1e5dSsOS5MUVa4dqKjSpFPQO3UdQUBkkPpip02Q3tuQjr4BnwJOAXC9mlAU9VWDuaBAydJoBe9D30ALQwtrRnoOOLqmthjEFwa+FCHQEG7SqAh96fzdOHPgZdm+xiChCSM7LbCsWqc8va7WzCmVXYQM7CQUSxhaGnoonW2tYFUXCqorYD1xiK4Sn4JJujgY/Wkm3jnONoZc7E7jeuZamwsvRWxnMs/60BEwLtprGjsa6FbQdFx7yqWSvFxjzT0bC2l1YAl+xCAOo2acn8q7U25xJqrjxn9eS6GRfTixIxfSOdeL0OA+4Fq5+1Pkr+M3C/VAF8SlvTZXN4Qg6KxA6h0/EKYVOZleXVIoZZR4uMdzDONkHRklZadLMXNutK085VhbIb5X8bCFOpSNeDBwsfO5Mca6qMIxBQMiLCVAw7YrpfNRYQrIYcfEpBZ0c/59UVlEBMAYx0gxSLr0aAWINaUtuz/FnT2G6qxzDPCz5//ozjfo/jYY+bmxt0XY8f37/HDz+8w/v3H3C8ucHx9g6H4xEv7u9RKh235mlGzRWvXr0iw+Ny4thoPzRHqTZuZUhxh1XWwnY8kE0C7yxQlf0n67UUVAEa9H3MBrAsMIAczGaznPm8JA5KcVoggHspG+qx6D/IM9FzoJ0X0uWqRWOQzNtDHrsk394FhFAYTwykQOfiUYtbCt2vIzXO2iZKD4058qtaK2YDvcSyQsvzOVOixq6sJe3MKQtEN+HKgNP9tULkeu+3Hdxtk4G3dcOCKvXZXtIzQRPttr/lO+r9a+dWBVDpdqoxTNc4w0tt5h5GEq72Odv41IAoAWTzql9B4NjAGzYmCFB6+ORbs2IYaEbR9z36oYcPai1tBKzWM38dKSQLqMAIk7VCqVwVylLoB4vD8YhhGPDi7gX3mOrdeIdZXNAOhwP6vm/jGBZcC+psZC1FyLvQrfptMPAA9oc94kKmssZUHwg+PotfWF1mQwiwk11ZtFJgB9GI5BoockarHIJEZtlH7fFuO6+yZ4ywsfSzjSSrBHw5MmSMQbV6RhDYU3fLUgqC7xD8OhZhLcc0GR8rTUR/ApDqOvDeoZbQRvh88G2kXfdx1ZHAQnapApe6ZwpWFkzVtnfV843/Bsa0MzROczuvr9crrpcLRX7BQ6PWimWZkURjSkecmm5G59ENFJW2i28AhApeh47jCrxGZVckRMuROX5vz+befk9tTbOKbLdzWfa2jjlv97mul77vMA4D9rs9cslYUiTgEukOtswzTk8nFm1hbhs9iv5l5+kIGQS8Uc25mCK6YcAwjjDKj5bPJuhHZ6++zwgycp2SnAFWGAElN8dBYwyctxj3K6Nry5bBZn1oPDFtxhctZpMFsbJQJAy184jFXJVcMWFeZlyuV7pseo/sdFyVxXEDj37CwiaDm4LIRRsmWtsYze3QYiTZRASeYNZ1BFQk5xGcw9D3YrJCoGcVRvfPzoHVqco2du5hf+DY++Z9lbe+Mlwt1PZVzzXmzgXJ8Ds6iQ8aq9hlYW6dywoaaE1hzcqqqsYh+EVDJ1RjZ53KQOtOsoHKZ5YlubGGI7ZqmsJYyXojLQsbRynyDex6dijzR3OmFDdahTL5Qm2rHuGOcbPvKX0Rl8SxrX5gDdFG6Cpc17d9jbIgx8zcw1pp0hjJg4BlIdt8mq7tFPaBo4Nd1z/LzXe7HZ9LoYGFS16YnHK/f1rXyvOA1TqBY8q1rFMgRp8vdMJAgZU1H9C42hzJiwry86w6ny9kgQc9NwhsFD13qkfXD2wOC0PTpgTv6Gxvhf2zCHllmVczANVd0ricpWk+i27vPM9NmF0NCfq+R9d1OOxvgFCF9JGogye6jNNu13S0csnw6qoudbyVHKnFp1KaqP02p4HucUNwSA9I5gr6Cy2mqBlQKTp1YSQm4dmYtD6fNnUja73KNUnI0KfOP9E8yVrW9MWovn+LQW0/yfmtUjKrq+mG5V7JXGq5oKXcjDGy4pxp17XmdmTuF92TXHhy9q4YxD/2+tnA0zxNQOXMoA+kYMYYscSMDlxEb9++4Y0ExxaKBsK8cc6RTaQAQEt8nKLpfJbGGFJVC4Xd8JOCUA9R5xUhXIvq7X8NVmFVJ8Hwp2BWreti0sTHqHtVKU0Xpm1Yedo5RuQiQnw5oyxkOnQ+IBULX1fAYJHOhHZiqEHAUKTgz/VC6qyVLlHXaXemki4dI8aerK0o//tyvbZDqDw+4Xy5ts71tFCozBRuOO99+/yuI5W2lwSxlCKIOFH8nKhDVUttNqP7/V4o2BOulys+TZ8wjiOGYcDdzS2OklwbY5Dy8myRAxUxMrBYY1Ftbar9fbd2god+QN/1q/OVd6ioWFJutEnrbOtKtDGKTOqmswY5RkQBfap8LxXTC31PKrCIa8aUOEObKteHJTqvOiEVBsMobABYHA9HHA/HRpWeJnGScQ5eCySZdR2kSzT0A7y1FPQEkJ3jjP50hrF8zkY7kdJ9DiGINpFpEciEgCIjBCln1I1zTMoZtY3iGbINrUUnujFaiOa2/l373xDGQZB9Zo1BNAUJaOMKXhwuMipiKXiaJopLorYO+TiOsM5iGDnqmAVcCNKZskXE72AwxZmCm6XCGYe727vWDXh4fMSHjx8AEBR8e9gj+IC4kO00xwm96dAFKw5avq15iuVKMVotrFsFuYfDDi4ESSQKljy1wlR1CuiAto74JAV0ZaSO9PGIRRlfxsDlCmvXOOJ9YBxMZNnkXFCkMJf50vWg28QjYwAUA1SOHX5+fGDcck6AS4uHhydM0wQjQuf39/eMgRWw1cDBUZC+VCwLLVb3xxt473A4HAkIFoDaeg5/9md/jq//6FcIw4gPDw/4v/5f/gd8883v8P337zCOe7x+/YYW8C/u8fvff4vHxyfEVDAMA379T/4UtWSczycmBB2fe0lsRlQjoxYwbURhWRYRM3QAqCW3zDNKqQjCdskxPTvAaq0NKPAyFhBzRkoEk5XyHkREeJ5ndmWW2MZZNemNqhHmpNuzaR6kJMlLrW1sQDvixghDaVPAlVJwe3sDGFKOt51XA4gBxUz9Dh9wd3vDcQEBFsqcEbqAYb9rSYnRIkadSPI6lktQlwn5dhRaO/Y6KvZ8vJvJSqeaGnm1T9duq651ZXepZqHq9wCS7ADCxpH7VtG6iOsIdGmsXxUDXovD0vbbCtw5gm36XLC+35b1VIRVqc0Dsg44gquW89ZazAvddO7uX+CFucfbL77g+znf2HOho6jvIoBuP+7We5DlcxYyMbkWC4ahBxAQnMH1esXnj58w7PcYdnu8vTnCWYs+dECtTWB1EfHW4/HY1pK6qMYjO7FJgBj9vjQQIJsupQzjCGyVXJoVesqpuTBdLtc2mmStxeFwRIwL3r17h+k6YZ4mcbXqJYcq6MLAZNSoaQNZVMZaJACmFniJEyYV2FoRYFuc4piHFf09AMJUomh+ZmdXQH1bmN+NwvhysHh8fMS3336LPvToQ0+3qyB5njXUnUIVvYqCnBZcLhnTZJs+0m6/R91VHAottHXUhZbXZGu5wDFcL66hKtz67H5rY8VZ5JJxvl5QrcHty3v0uxG/+NUv8eXbL9D3Pf72t9+QCSFaYd4Y7PsBL29vYarB9TLh8fEJxhj86us/Qs4Zh+ON5LcOL17e43A84stf/YL6MZ8+ouSCYDv0ITQQ0nuLpyfqpzw+PQoTt6DrOxzzgTFjGPDy1Svc3zOmlk1uqSYrClBoPFBgIniPN/cvZf87TBcyKy6XC+Z5xvnM/75/9yNqYazXkXjm9gWfPn7CPE043tyg7zrc3d21Dvu43+F4c4P9noLNRhrNPjiUSqYQTJG9e8E8XRB3O3jvcTqdcD6f6YwIAqmqHXJzc4txHBt4FhV0iLGBm6kQDOEZTkDSiGlIKQWXy7TJ/6lPNUPW6DCgZIPp+ojrfMXT5QnuShDl8fERKUYcDkf0XY8XL5ivTPO1McmDaGaaWmFyRV6oWUQzITXHkHNH4nIbG4KF9R4+dIwl3qPumHv9m3/9rxszxHuP29vbBjRdLY0MpstFGIzCvK4EK1W8XYWrVY8I0FH+ijSveWQtjO/eeHgBqJGpw8gxcy+x2wKGuZa6et+9uGeeIlIedKTk+z4+PmJZFixiTJDrCjylRIaNd66JeOv1+RCwP+zb2Nkwjg1ISynh+++/x+l0wg/ff9/0ht6+fYvXb14TvDBoOfrgOZGTUkTue9Q6wIGai8u8IM4z/vI//kdYGZ30m9zBYNUW031qZBy6NQ1BbVsD4O6G+o0WwMfpE/7zf/orGEfHuOPNEYf9AdY6dH23OmtbPGseOZFF4HML7dk3fUxhcddCbV1I3lHFebVm1i1uCO1MjpHO2xYOY++xf8GRbcYGA+8thqGHtdSSmpYZ3//4js+o5MZU5B1x6IYRzlnsDgcYyTNYs1DDtgsBjw8POD2d8PDwiGm6tnr88fER08TYo82Sp9MZ0zzj86cH/vfhAc573N3dYhgG7HZ7vHnzBi9evMDt7Qt0XYcUI7xz+PUf//G6t3PBxx8/4OlMzcPXr19z7DRo49EJexsC82Btllq9/2y2h+DXnE/GQdUlMudM5t64I7iZ8iq0LS32RRoE1vGs1fWzdeVUCZMkAGvoCDr60AGJ+XyRlehMgLGAd9JgiGwtFvn/BhWDaDKWTHHxGAUYNmSeW+s4wVR+4lgsr37o0YmetgWnaYwhicV5g871SN4iercBtIAVpfmHXz/f1U4STxt8u4HWWjirYlOaAJORoCyETb8U7bI2iB+7rNJdlM3XqJx1XQ11xXugHV3ttK3o4R+iuFCAqeJZ11f/q7epNMSzbu6dIOaCdCsqqyM5pERzFBBl1bCqhYG11trGBpX90zp8qC0oQ+aVycji5tcEHZsip5aCIhubY48bd7paUSrIFCgspqTh92xcRF/q/rN2e8hAmmWcjguR15lEuDwJ0LYsc0PSScNlUst7qFa76la0YcnJvWXX1LQNrzpd+syN9MqKWYOBs7YtbGpRWOSUME90l6v6HvKuqm2QRRg3C1DgFACQ6yAYuf5vMjQMKixyqSg1Y5EizRjTRh5dyUC1Yo+86iVZq3pfaAyHkjNSre0wXkUyizBVpHNgAWvW+eSfrmsDIsy6TjVQcDhhA7ZuhIeVCbXdhtrJ1vtpoN1CdvSrEXHZzasIqq3sspxI7/YyAuWUseYoYqtArd08a2vxjAmj14p2LZtrkBFTIwWnlW6o7h11s6AkwQo8G0XfBbCzzuhJwuUnsYfuGE66FVxVTu+jIgeVhWjrMpC21PZzbfd7fV4r2LquRtVM0WvWn9NA0xgdlYtQZ7J70WtgkSRd8TAJmLMZObD8pSPELJ6VMUYBROc9YCxyLpjjghA6vHr1Gre3t9jvD4iZDl2vX7+RgyriF7/8Bd6+fYtxtyM2K4kdQSCHp9OJbAGLpnula5buJLradA1JLE2yFoRCnFTLy9CVDJt/1u6N0fht5LszMfDVNyq5/p+Te6mi8o29YdZ1ZjaNDmBl7yjbQWOf7nkWB9JFVVBIFo+xZEsqSKUvK0l4Fzra44YOPjgkGUNLOcNm2xiUtUobUdZ+KQXzvBDgKQbG29ZogYUkRqatp2VZoI6zKztgw6Sq9ZnTzTOmk0QSmFVbrBayNSFnfzvoDQBTyU6UXwR7RQNIkrOVybeKGut61rWv4FIWwHy7hvT5V1k7MabG/DDWioD98y5wu/cC1gY5L7emAu3+1DXRWtdoaUK5qv2ECkm8ABM6Fi+7hDCMCH2PTpyxrFmdW5V5osmlfr7+V9dr3dwH/a7s3gORGeXKArQGNlvYJPcs09WxyQJs3kcT5xACQsdRxGZiIVnZlpkMbLqnwJrH5NyA2Fac2tLuO0H0Kv9Gv42yR3S/GoJUlUxjasB0rfAkcJSRo7BBm4irXE9dtT/I/l2Z6hofjLDebNmcdzL/lEVGoeSynout+73etwo2fvqux2G/h3cOMXTopVl1OB7JFtUcSRiNMSYYFxtLWDv0PgSxZ2esU5bG6GnyUYoAdLE0NrTzFsZ2ONQ9+tTRyQtocd4II1D1RZWkpuwOBdFbQ0rYMLqXVH/HOjaeyG7iCF5cltbgLJmOgu28ku0fIw0szucTrpcrgUBrWx46zVOLiSqUbzQzs2j3nTlaku9km5vwsixtJNAYNrN0ravTKfPFVf9PR+A171KGgbWrluy2HtK853kctOhCES1XjvZr7DBYWWVd16HrVw3DbYyVTKaFSc03lA1UWs3DeKdN5/YLFEdOMWKZec5XYQZ1oWsOdt779lySNLSjdaimQLX/IP9NKa1N/00++dMYqxpwyvgjI8Sh1oxWFlW1VhcmHdWd2/rODYCxKFVyFPmMXCiHYJwTDc/apgucBzg/wjx0TpG5pfftTNb7mMSUQUekney1YRgRZCpHXSz1rNa1YQ1QxV2ujXRLDqE11YePHzju5j0ygAVoZ4HqIOlz217Ds1xMRv5hOHp3OOxxf39PHcx5ph6QY+M/pUggwrlWGzJWVonfPA+9DwL6rWtKGdk8XznK2/LXChGnZy6z1hRkxXuRPWkSEZl2X8hVZBzsZqRaxOPlc+d5werqy6ZOFQkFKww/Y56fRcroreIaXQvvmxo1cZQ1oIKaY6EbmM846vXd3d6h6zsKgoukgDIoU4qN5eW9o46Trjs1mADH5gp4Jvd2hT70jNc46TeNZ90fW1albmKCSWtNAMO90nLLXFtz2hjJSwXoUt2xKo05zd1r4dBcThnVMR2kwpBMDshZzfN9JcMwVyXTCrrure7ATa1hDULgGtV8zXknMVJqlJwRFwDI8EbqiirPF8R7NOdmE1kasiU/D7T/wOtnA087maUfxwG5JMyRKF222l2tG1G30BKfKEJ6P32to3EOatW7JkxMbqtoAanFfN0sZufXwA+soyvtFxi4vF0RaS3TTV21WNoJBblnInaryHvMnPvO4mARY2yIrSbxpRSobe8iHQZN4oZhEHFzujmNPTfUNE0YhgEhBCyZAcJWkmBHFce2jsKC12tzLAghwIJd/UVo/EohVFCkiCbGMAwoteK6LKiVmgN6yKW4wGAVM1Yq9Ol0Qtd1zyxcP/z4HpfLBd9++60IOAIvX73Cr//4j3FzPOL+5UvUUnG6XLAISGDU/UeQdC5ebhorx5EFi+QpXlkkuM1ytDyedH598F1LSp1s2svpjM8PnwnaWQsjbCrvHGJccLleMM90XBylUzIIZbNmzlr34n5TSpXxF2oAlVqxXC+4ThPef3jftHHu7u44zuADmTTCm+aoHdeSM0SJizhxUcsKKONId47dDsY6Wronru3djrpoHgLoiphbTrkx4xoYVWkYiyz6G4kiz52X+ecNDfu51aUU2BUMiFpAS0dRAYBtOabFhdKUr/PCPb0sCM7DBo/gvIxxuQY88aA30vWy7XO1IDXWkT1pV0vkqomE6FtN0p05Xc7ou0jWhlXRRO7fLgR4sfmGsXAFgClIlUmYk0Ix14JpWeBSwijJsh/7Nq7qnEP1ATFTeNqCDmlpYbciCNOw5ArAwtkAoXwh9NId86GJfjIuWXjPwkwdm7aAoqIhmsSSQUDto67v0O333C/PZhMdhuHaxhCUAeCcaYX+skRMl5ndD2sQ+g7WecSScblM+PjxE443t/jvvvoF7u9fYNiNeDw9odaC/9P/8f+MZZnx7scf2FkfR/jQ4XqZcJ1mzHHB8eaIlCL+P//rX2K3H/HmizfoejrJUF+q4nyhy6O625VCjYeYCqKssF7WiOpn8d4oqOTWEVIjDDGsSTMZhB0GEf4spTRCeh86FFeaHpH3KzDYGA4dR7JMATvUFQJ6lSYkuS22G/smVdHG4LPjeHQRMWjXvm+tIqjuuwZK+MBNMMepacCoEK0Ci1VYgLOIdT48PLSEiEVPj2E3ShI2Qk0H5nnGw8NnWS/UewpdwG43ruPUomWl+1qTZX0VcXMaum4d45ZuWytaDJq4NJF7K8cmv888TQJUGVRJjtHGPtkNLAJ2W6xjwhovBmE0qMMcVOsgF1wmOpnB0ulmHMbWsWsgl4I7lgyCTphYJa2gg1PHVYl7FEhmo2aZZxFelmRSBDaDgEs1BOz3B7x89RqpVmkosOjMc2zXnoS9qQ46g4wH1MyuZJSiIKYEEzbgaq14upyaNoN3Dje9uLSajiypTMHhy+Ui7KpKVy0Fuaxr4wi1VhwOMm4jVvM1l7X7YAyqNc+begCWuKDmgiSstVzWvYBSUbxDPwyAse3cUJxZCxyYCu9YvE/CNOn7ATgaOOMxC+jBXCrjcjlTsNwTNOw6v65VLyLc1aJmHfPQJouB1+8CNLAlSuPpcr5AQU1n6cCj665pUxmy7/rQYdePOO4POJ8pBt73dD/8+te/xuV8xuPnRyw1IkWOodgPHzEeduiGvjHArTCZb2/vGlikYtFd38N2AeP4FjllPD48ylqI/PxuxJu3r+G9x8ePH5t+kxMNswrqsFQ5x1PJwpgs8MaLvk6V+5AbAw9AA9GWRKDnfD43gXS6DE7IKcFUWreTJXRpMeLykRbunz5+wvV6xYsXL1AKDVhKKZiWGdM84/H0xFxAbdmNAvgiEg1OUez3e4zjgCdxXp1n5rSaHx+PR4QutPjR9P4kD2L6qkkNWmdBG6dRBMe1+eCcuqllxJhXMMMow4HnueschrFvn0lxfODFixfCZDGNcb8FdHLOsIFiwtUQBFuWdbqDQDHrCQCbccMko1ceT4+P+PTpI86nM+Ky4Msvv2RuLyznTnQDtWA21gKpIPsA5wK1tnY7zPOMz+GhsSPbv8EK5lhrEByZTN4FxMjr02eWM4tYPXtjzC2n9sHCeZoVWGtxOlM/taT1vMiyBq2jhmY/jjy7vWryroDY6emEZSZrEABevnqBYoBZwMhpmnC5TmSB7vfw3mN/PGDc7XB7cwc1/kglIZdNg4Wf0hzE1J2y1opgPCd4uh4xJvy3v/ktjDG4v79HrRWX6xWnp0dcTqfmsnZ3d9caJH3f4+bmBuM4kpEqUxkxLSg148X9PV68eIHXb97gt3/zW/z7//AfuE+mCafTCUHAadXlQ62iSefQBTqnl1IRZCwvCxs5ZzXkWSdLdmO/6jSWgsfHp3YuHg5H3Nzctv2vDOXL5dL2FjJgkkGUUeECyLQRgeRRcq3z+YzDYY9x7BFEu1aJFkXcfa21iFL/VVSE3uPN2zfIOeP9+/dk4oc9vA/CYuR+zYVt9PuX96gw+N3vfg9jDG5ubqSpZho783w5N8AbABwMDocDXry4awyqapg/vHv3DvM8I81kIY/9bhMnVqdT3ZOaK7Zmi+6b9n/MTZzRRpmMCgMNIFZTlipkCufXRF7PhCwxzDu68M75iporllxQTQKsEWfaDtbqdXFFB68O3gVWzsKYyH5NMfEsVl1ScXwxBhgGutqHwEa0k1HIOM0okW69y3xBRaFWt3V0KrccifbOou+CTBmsuqdbFv4/9vrZwFPw6vJFB7W4zERPt1VR1WAoaJvoQ2zZKqahdu0RrIWw/IdzhhunHbMeLLpQtt9vi0gqndhJVyAD0oUEGgFOEhQyjYj2rh3HdYGpsHfZJFU6j9/osmXtGjcmRi2Yp2UVeRONCf3ewQegr6urhBVxT0E2h55CaMawKNCDKaWEx4dHASRoQao0V8A0SunNzc0z9w3Tvvl64ECuPUbVbRIXQmMxTzMu53Mbr/jw4QPmmSMj+/0eL+9f4O7FC7x9+xb7w4HWoDOdXuKZowk6QtB5j64L8L6DzvxPy9wsZYkCCxSl19uovKZ1GFb9rSriaAuWaULNBcOo2jKCGOeE6XLBhw8fGlNFv/cSI3yt6IWCbZ0DmzOr06Dq1PRiyX1zc9PEhrX9kyIF/ax00z3bNpC+gST4kOQny3ebkQMRdxgKm2onQVkkso0oHFuVVSF7S55ho0jn1IqCxjxs78CfJugqhYUg9GuXj9dZquwDWf1r5wpNq6rkVXAYuRAJZwsaRgpJU6SgFD0fvaCi4sHGtAQZsi6Lrkes1OphHHAoB1rcL0LNLhkpr8Ft7ZQLgCzuDknAuJQyvOf64ZpywrIBai1NIwhldaIECJLBCtNJ9oWBaTopFWuHUAWvtfuqe1RBIWs5QlQB6UQqNLJ+3nPGVCbVvZK9aApjSsq5zVgrTVcdurbANwDphJF1QjcqgpgwBufTlYVeBYZ+kG68wXWasEix9lTOmOcJj5cz9naP0R9wma6Yl0d8/vwJ0zTjyy/eouaEv/3d73Bze8RuN2BwHcYwisOIaZ2tmHKLj7lUpExwwxi0EcQk4rBqIOA975N28A22DLEC05wnVYdoFWZvwvVOY4mcO007SG69dKq4lSpK4pha6FRzRjUrbEte+65DsqpDUsTVyzQ9H+32VT0HNXkBAAvEpCcLGhBM4CNz/VqKxTMOk0XorUUqFUtaZLRjFr2h1RZbXfqcZSJB5pNqGa7nIwS81jNFk6vGjlINq7rGD+ssrOlaVEnKnjUKSiuGXSTRsWjC95VAVYp0/Ou6jtpEloWOtSsorgD3H7w2HUYVGXfOrXUmhNWwAXBhTWO4rkwEtJ/RPaPrQxmwpRTYCgTr2DksFRAmYU4F1fH8l3pvEyJL03Ik0OlbYeyFeaWaJ8r+7Pt+TXY339tYs+q9SAwpVUYwTW3NNxVp3n4mjQd4D7yOlxopHqwVhrVtTbtcC1rXW69h04jKVcbnBDi0wjTItQJZ93ZpybWu7iomD966dn5vgV9rrIxv6Y1kt9Rajdd8pyxr2tqVFaJ70cp+pyamgXGqAWNhEkFEJ4V6CJ2ADg7BC3NIFq66E+ne9ZovWNfOf42rOjL3xVdfUqfoM0fLCziSbVJCVwpizjhfLnQsA+hgJ0WvFiVWGCKl0L0qi5SAjq1fLpd2z0IIDbRxzsn5XBtwyJjlm835vFBPRxs5wzA0zSQ2ePjv1V1tkVEssgfWgv3x8RGlZI6KCKu5gtILh5sj+qFv7KoY+V6Pp0cMuxGH7oCYKEXAhrRtzStl7QxDj2Gg1bo2VvXM/eKLL0TH5QDfeYQuiEPbyojUc0UB1lYr5HXUjs0/jVdar1QB+o3EXS9MdGkA1YIadYyJLNTOd5IDgm5PzraC3Eh8Uo0cWIK5UC01rGM6Cvg6EX4OvWjNOYtcC67XCxthltdajOVzlREeA9PYYAx1Fp3vULokouasZx4fH7HEpY0hK3vIgPp3jUGoALSyJqyl8YXkqLkqi4GsxVQSma5WjAByxjxFjgbnlc2iz4cO3hUMS2zMarOCeIGwJ+VTqrHwQda6D83h02hNJyOKyhjmWJ8TyQXm4TFHpLzeo0WMNbzk1zoW36ZcUJEXat69eHUPA2muGMB1Hrf3d7h7cYtloSTA8XCAMQbny4VmJMG3EWG+d8Z8EaF3YZxM8wSAgJaueW2EdIFNDVNpuhWXBXIwNSdmJwxvSC1jDNl/SGxaMSdi4zdlVtpG6oRc2FSeJS+olcxFzUWso0s32Va5aU4VYYoeDkegVnR9J66tJAos8wJnDOAZ85h/6bktZlB+rbNKobbh/rBvU0TGWKSSCRqqk6v8ssbghZgKNGaWar4KmzIEro9aKuZpRkyU6uiHnhIngWtnGPn7lCOsjMipgLzGkSg6wSEH2LpqmVUBd5tGqZzTzN3EmVP1sbznWpZzDg7r9IjkhRVMjGjipImE7BkxQ4DUGHzezJ1hWFuWynzKCtZQSkaO2nw1rQ400JyXzEKN+7Vyksc5Zadp/cX9GOPcGKYXqUNHATV344hkDeZ5amdzCB1z7k0t94+9fj7wJE5fCjot1yu6flgRL7CO4wez2C2C9G2tv61RsbRNgo4q1n21PdhqlP6HFjAhWyX9HciadhsWsb8c5EBQe/paK6DJpmegsMYhpYxnyCZWcKZUdpMg1wBJPDSJQF3BMQbS0sCq8+VMYTQpXI7HY0u8nDEIm04zxdkrINoJ1Elau0S73Q7X6xXzNOPd+x8QY8TYdXJ9azd5ulwZtED3ixgjnPMYx92zclcqBdRSMF1JG9fDO3iP8+mEDx8+tO/2+fNn1Frxy1/+Ei/uX+Bf/Is/x/5w4Ky5JKjXeUaUDlqMEdfzBX0IuL+7g7rO6Bzr5XpuAKE1TFBr4SHWLO9bBJPCL+WGNJ9PJ3z69IlJeyk4jDvO+qYFtZBue3p8xPfffovd8Yjd/tDAw2me4UtGtxvZmXeWul5Z7+Wqk7IbRvRdD993WGReXtfHMs/IMWIcRjjDw6NUWjfreuGaLM1VLOUEH0kndc7h9u6udccbKVkcqaLQjY3CdVKgtSQeFXPMTfS/QGn4zx40Ow4aLN3aVa9VNK2MRTV0SyggGyFVAk9WsoNa1OGqoIhugSfXi8BWoQ6IKdSj8V6ElJ1tGmjsTtvm1OCMb4V5A0ithbMG++MBrg+4LBOSPM+YdRw0oqAIWCZdH0PhPwMmPwo8GVgUr3R2C2sLrGWRw5xHgUS05JEJgMEknf4toNOKSb/pmMvP11yxlNg6pMo4y5Jc+Y2IbvtAjYmOB2mj3goYZhJjYIy5OYT0A+1/s4ANl8tF7h9jSCmp0bAhlGnf0XXzUcRijbUYdzu8eHGPzw+fcTldkCoPmsfpCdfrBT+8f4fX5jXuXr3E59MjPn36hHc/vkOJGX/y9a8Q5wl//V/+M91Dbm8Q4ND5rum1aMc5FYqge+9pvZtKA+VSrgAylrjR5bAW1monp/JAtxxL5ThthbEVzhvUWJ4JxMuB05KdXvRBck4NVFVmibJyDLjGs3SNnOjqZTnEmXwXOAP04wCXIowlgy2m1MbO9fltzyOycRIAx/3VGikQdiTXMAuJAFdIfy5ZxPydQ+dC02VaYuQYlkzz9pIsLuJGRWeg3PR+dOSw3ZuKZ+tWz0x9HlY6/tvGjnMOrvOtqZJmoffLc1HwrAi12wcHYznWWWBQskFZZjhrRQPOib04k5Uio9BNELpqk2cVAEZlcj3sdkCtzX1rnpZWQHhlToG5QxSHKiOgj8M6jqtjjEaYcEHiaiwV3hhU75EjrYONjAIt4ubrO2q45FzWWCqdTR23VG1GfQbe+QY+OQH4wjAgJQo5EyQobUSs7zuEGlZgi6iYHCu8T/M843Q6NSZv1wXpbkohspFDMOwECG3ewve9jP0mQJNTgExw+S7aQIuimcO4JYCxaP3UhcWdw2aMR3IRxkjfGgUKCuZMgGkcx4beLfOVwKmzqnHM750SXCCbNHh2sJdl4WdoDC2V39U42GZqwzdx0u0lyIVWzDettlLJjABavA6QUSAL2J4OVcoKKoWuuX/8p3+Cy/WKw4f3eHx6wtPTE2LJKMkg5IwaIz4/PlCYutJlcACappKu07hQ22aJcWUXgsXV5XJBLbU1EYdxEFC7NrBVUboudDAwwqAsuFwvTWvH+4AQutYQmaaJYOZASYwlLsLqeCITrq4i7B8+vKcBjIB+IQRqkHUB9y9ZoHeeoPQ8R5wvF/z4/iNevrrHzd0tWeeXMwAKg08XfjZZTiNevLhr9/1yuSDG1M7cX//617ACKvjgEHrfGP2MWRqfLOO8MiqTRbJFACrgOtFZWAEt5zoo+8nDoVoD0wSreW7lkpBjQV5i01XpO04nJGnsWCuD+ZKnWjmfrbVsdhsD42lSk8HJCeobCju875oDpjEGqYq77/kksdyLK2rB5XRmvnh7CwuwsaAFpXHouwEmk110nSfMy4L3Hz6IHlxe8yuZFNi7PYwX3QOj25DFqHWO2kWyX5ecmBlKgybWimosjLcoeQFSwSWTzajNnM0hKCOFACCAgveArC9lq+orVwJPwzgKSMt71AkQZSyaO3WUPeOtTtfIGt0AT9pcmeZZPkfE+udJrOVXtlqWEdGvfvkVSik4nU58ph1rmLubG5xEJ3boB8p8fPsttb06GovMcT2PHp8e5dzmeN48U7/3q6++aqxIjSklJRpcZDbA5omN+VxyY6s5S2DU+U7WckRFRkwKsDvRJ7VI0iR13km+XbGkCDfNBJ382hwdxxGhC7i5OSKljGVeGvu1CJvo/sU9x9MG6ildzqemxWZRUYPHvCwotTZ5mFoKui6Q2Wa59gA2Oo63NyiVYFxOdF0OvkPXOTiZSMky5v/q1WuklPD56bGJxMPYNj7e9z0Ouz3rrBgxLQumD++x3+9bnAkhYH84wBg0PbHrZcL5fMbnz58xjhx9XmJEBUkA3nt0vd80mymFQsSkStOctY2V/cAY4Nmkz6Ux7BRQ15pbRfONoq1Y0zRUBYx0HJxxppkZVbApWqswKlMzhJjnBbthR+H6QA2qKhM0ofNyxkQCV6XAegNb1ahBcuo5Y4kT4rIgLhHn0xNySjgedR2+bDkn8wG7avmZNQ/4x14/G3iCIeJ9vU4sHMX+U+epefM0YV1BIUUHeUHKTEqNLtYO01rg4GCMa6BL9TwIjRYxOT0bgdBP0CSCCc4KOBUIu6k1hzZjLnJodL04Y0mSa51qrRggozFEmq5OLjJ+QxFqPfAIihDl3I079KFDLaXN7xax9r1cr1w0QBu14/eHdN9yE0qstRAFdo6U4xBQSsb1OuHx4QFAFcpkgfMWnz5/wOPDA0JHIOTjx0/wzuOLN28xDCP2h6Msar53LgUfPn7gIpMuitOD3Rq8fv0GhyNF8Jz3uH95Twr/YQ/bBaRaW6FdBRn1Mi9ax6GNflFwkdoVKROt1UNXGSVFur9tFElgWyPgY1QU2NmmQRQji2+uEYJHKtJrfcDN3R3uX77E7e0dHeqksDfSXUDOtAEtVWyB+ZzP1wusMTjuDwDWkTFjDLtPksCp8GaVNabjlClnEUhlsqtaCdQC4DUkuX4F03KOQKmN+YUqwt41N6R8K4Sqm9wLc8AbhxorqquoDpDZg+bCl1TYF926py25cElYSNZYoEA6fQTi6L5EELkAksiwYwdr4IJFMRVLTgg2wFsgofB+5pWxSNy3ruxBlPa9UEUPrhaUSPH6eZ4xhB7+QMtx1IrHpyd2wQUgakUVABi+b0oysmcAa+gu55wRW1cDI66CPEzkQFF2gbFk7qUE1AI2LeXvwKLSOoJja4FDsco12oHW3lBKLL9bY2pJtzUE3xgNdKRigrqNntbT5cIVMq5izKiVsSYn0XYT0HCar7SVnSbMeUFCwr7vOQ8/k37bWwvXdRh3e4Q+4Dxf4PuAY3fE6ekRsWSYyjHCcTc2S+yP797j97/9G9zdHdEfRrz78A7XacKv/viPMXQd5vMFl+GEp2EQfTquC+s5XkcgdebYqLjPFBiUSHC1ZIqMBx/IQMI6XlorgT0YgsRkNwHLJONMObW4nioTE5NMO7QhcZ+6nbL+BCSwliAV2WEKfhqEChjnUKuRJq28v3QADRz6fkQ/UH+HoLBoEZXVZQW1NkDT1FVrRkEf5aHyDCkwhudnlcK5WileksGSogihr2eYCsZ2Xc8C03uEJcJJkb5lRFXtRlfVQtgc/QbCQOX7qsOmLkaev7kBNlUKcAeDznm6YkUyAVLMbQ0Yw8Lw5uam5RDVGhQLxELdu5ITn4ckdlHYXEUKupwTHCyNAoQ1VKHrQdhEymKxRhie4mSWRbjTWGGyPAfmkzRpIAxXBeV8CMi9Np9WoF6BXVPX+GOtQ0xZxmjFza6jfo+DxAvnoNorKZ1YBQABAABJREFUBTyjbIrIKTf9t2XT5faeznjaFa65NgMd3lOHFy9eYBx3DQQfxx3ZSKW0M1F1RKKcrSnPsMZiNFUAOd0TRbSfTGO2LvNMFlsFajUoeW3ueSuaIR071tVKi0Tiq3VkPKZSm07WylQtcNYLqwvwXcC0TMgAOnFESplgZMwF1hHkm5eFxUgQ3URDgCZGPg+bqZfknSMgqSKvtUockAVtuW50PeSrjgdlFAdUy1i9xAVLSoyJsl+od8WzlODLS+wPB7x48QJh6OG8W3XMnGNsMGQq9H3X9q2K7hNoqei7DgidbhFeV5a801RkEfTWHDGnJKYKbKhM5wtjWNb1Qkav06NRC0yJB0wxVsZHKhlzXPhntaIuXC8PJ4483dzcNNAuw8LBwndkCV3OlwayhuBw/+IWKAU/fPsdnnY79H3fhH1nAUx0rP54c6QBCYDLNOE6XbkWLXc5x+kzKqhf1Naf1B65FuRUcBXWghUGcnBc2wa0Ac8QhofhJtIaToPfqsUpwJvhaC3GHU7nMy7XiUV1x3PRGIMlzs8atqUUpJhRS2pnhnM9rOtxd/MCl8sFKX5mXhUXoBYkZ3kSajOk0NBBzTIGaSxMCrDDIpYKE8taCENGm7yD8xa9M7BdwH0DKSu60KHbGvZUGgcUGGF2BN4XsbQyFnINVqZVamu4lhvmphVgDiIaQlVzVKDpj8Gu8aSI/kuZJ4lxZGDEFJsYeecDghMxb2NgqkPNBlHYGRQ6dugdgMzmI8kKTeUC1gtr3bgGPA2m5/7JGdmLlqrzMqXAPXkVRqDzW/H1lfl1uV5pbKGs41KwPxxExyz8QRNnv9/zvhkgxYSny1kaLgSRd7u9CH3nNd9OGcZ57A9HiDhq00BLuaIgozNFmhviIu7D2pwRJhnzS4vD4SCMpbKe7YlabkXOe1ML0jKhLLOAN5SKmOcZ58sZKVKGous6vHnzGk7X5rBrQvjGsKlRa2n70DmKTp+vSzv7vR8EqK0ChF8Rl4TpMqN0AIrBIfTofeD5bgyb2TnDFTZfas4YrIdxHseBYEjnOyAYfPnll83QhY1NqcsNx5wrahtDm5cZ5+sFD0+PSLUg1tUNtArTzE9Te57DMKCXUcNaq+hAWXSBIt5Op1Xqym50Hq3WBwyMk3WdWa+r/rM1HPPmWetRRBoEBmyqOJWqERJMpZh8yhnXywUPnz/LHquIl4n1oBPZI8uza9ztELrAUe0CyVeYoxFbybhMV0zzjBh5j1KUvRkIcBtY0RQDLHTiION6vmKZFjHEeqYL8ve+fjbwRMCuNO0Bdab5Kb1Kf9/o/TrisE3ehfUAkCpawUTRSMerAUTSsTVSgLfEVxF8wwQHm2toI3OCula5xlbkKRBlNSnkr5QUfSc1shWJjuML0K5frdKZKo0tpd+pVs6CD32PsNuvQbvWNqd8PZ3b2JN2P/Rnmg2ufM+UErvE0i1WR63QnfHw+ABUI+54heh3XnC6PmF36uCdxe+++RseIJWOIP2GdZHBxf34+NDmja0wIYI4rNy+uMPrN29w++IOfd9jt98DAK7LDBiLJJs1iUYLam3B3gCtC63jDjGxa6+JnKKk/O5WRix/gprKfc+SdJOxYJpQcxbRUoKNOidcYJ3D/nDE3d0L0aBamWEAmuNdETo8+NRRUTGLoOdO7r0mJtaYRs/U2f61QGYyH2Relno96xhetZt9UXSMM8toikXJCSVXeKzjQEon1mCWhfrtrXau2QkKOnqyLVCUrSGjZzFzjWrXS8feCJCQD6KgF/VdKKjIcVAW4bVC2FkcHzDCTquSvDp4FMNxQy3woYCzrGu+fnLfoJO5ZIXFGBHnBZ0P6EOHoR+QcsI0zai1IMhY0zOQUp5gySud35qW/xAsMo5AG3KLCUYyFl13RbSjjMQmFQRUsUUWEkzO9Bk1kX4joyxtnEcFtqsk9aW9l/PqriEsDTT8m0kgSFiqMNLFYrciFWom5Mzk3XuyUZaUMMcZ0zKxcDMZITgMnUeNETVleEMW0M3tDYwzmOOM3TjC+x7XywkpQgp812yFU8p4+vQZ77/7Hm9f3eLmOOLHx09YUsabt18AOSNOdHq6Thcc0h597eDauJBoc4gIatV7Uk0D2gzYaXWOo2+lZinQ5ZDb0J5R2VRIMYlwJF02OAJEwMQkJgKhFcPruBWRBH6OrWIuYA2Kk/XgBHj6CXvJyF7iJdumaeY92RFLTAIUF1mHubFTdJxAgScjs/m639ZYpiLRcrWGI3zV0q2RwKdr610L13EkowAhsCFkV0erKl3eJrIqMUj1THjeEOgzxbTzh8mFQTXryPkqaFpgqtskTLXF35RyG7fkUrfYjdScmZZF3IfJXoTQxFEFjDNmZbJYZUMSaDS1wpk1hmoTgq+NFpgYTWzP1GIKUGWP63lk6H5aS4Xt0BgdGhM8nusF5U0c1nWoTKpUwTFjK3/mDWqR0Xlrm9goIOylWlHTukZKKVhSbM0Wb52IP2uRrKYPtbkK7vcH7Hb7dj9U1N7GSEDP2DZqtuhYvhT+vnsuUoycm1C8avApOGCMCg4b1EQNOuMqqi2o3qJaKeItwUBIvFXdxPqTkf5SK7zstWpES9NQeNmHDirYWzJQqkEpZFjFxP019IN0z2W96bh0qajWo5iCZabpi7IbrQBjRe4jGyYcNzIiFF6kUVmDgghkA8Wc0PUcs0rSsMiocN7h2B+x2+2QS0YY2GB8enpaxzytbUDh6vpYZSQ7t1y2CytrQxkTxsoZaTgSqWenOielJcL1XM/LND9r2hUZodyk5U3XRd9/FifRKkBoEjdCMjAXxGXBZbrCWotbI+LTWH+p5tnn5TPdxkQT9Hg44HQ64fPHz7ieL6KnMiCPiSY8Ajx1fbc2LEEwbomR1w4Kn6NQPB/GoxoF6as0vdcccJomsuJCaKM3kLODIERFrIZhWEZbtGGuhbKFbdMR1hiC0Z1FPZ0pYWGAlDv04wADFvAKUhc5F5ZEFo4zhiLa1cI6j34ckFORPEoatTUjZ2VJyfhwYd5mrYX1to0WPjyexIlUxM1kLL1CtA9rwTDKuIs1NIDa5BcGzF+VGQsQZNLMy8DLPSlwjgmksmi8sLYgsdxuYpmy6NKSW4ykuyUaEqTrLU5XMi7iIsVwzwZTyWT0u9Uxz5m1iK+Sz1NzT/I465CNRZZmI5+jPE8L2GqAup4JwdIVsiQDV8g6HfoR46g6P8CTf6JeECTGm1UDsSTqWsV2FjCO9sMg2mue67Tw7DYgqaBWYIoLUs2Y4oLOUGM2dB36oRcmd0ZxbJjFRP2qse/J3gwOKfLvclF92yLxhMwgOjKXVWevVmjqwjOBOWlcCDhdhWRQ5eyxKEjWIk6TXEPGw8MDnp6ehIXIc2AYBnTeYxhH7I9HeB/QDyNUX9ObdXqB7MEe8zzjep1k3NzB9QHObwTrVfdzybBITRs3SCOIMYC1t5P9rKLkzjmM3UBdNMc6ZNiNWOLSHMyT1nZG9Jglz0k5NZ3a6zRRikIdHAHUWXIkqd+c6FgNMjmgzFcrMbvVDtL0KvKLz0Pwhu05VPl771ajC2eM4BgOyBkpFsBII0sAIjoecy6l1IIcI6bLBQ8fP5Edai0Wo2CZmDqYAh86lJSwPxyoiVrURMG0fVZKEUb9mu+sQKoI0cPIZJoR0JL19jLN/F59ecb6/4dePxt4on5QfUap0gv86YdtQSBruIGeJYIbeqVawAJANWSg5KyaHCuQtAIUqovAAtuJ4JaXjqLRYJfzql2Q/3D20GyYCFGFGrH+zPbmK8qnqP75ypEVFSqMMRIAkISu1orrPAlYQLG+65V6DNbZBjiVWnC+Xpr44ygChvMGJXaRB5wu5NvbW9zc3ODNmzdrsBeGzTCMePv2C3jLguA3//JfYVkifv83v8PDwyP+9tvv2kGVCpOoly/v0fcd9se36Psed7cvWAQGj4PQE0tKSJaz5saAnTUjwEIu7HwHdtzbOFfRBDvjcr3g8eGByZ5oDmjHXTUJ2vMxRJypsVNQJFEkhZOP6Hg4Yuh6HqSJs87TshDwEBDThYDj3R26gZRD3wUYA8SZlFClSs4L6ZXK5ilCjddChCCrEWcwh2+++QY//PADbm9vmGxZI0Ljj3r5GMYRw25c15rZ6ApY27q9ECBWNR5UjwlQ8GYV1ufqZFFWJAAjScHuOfZmLOm1TRckZyYglVRQBpoKdXqp2oWWcdIqjJKtnb261V2niYK4pbSA671H8J0U2KDYOKsOwcHWfa4HAJ4BRRCmnVL2tVvihW2jtOUnTPOM9x/ew1mL4/6AvlenKaVZr0K0Giecf64tksV2dn0OG2FlBbQtdX4ktCL0HYCKlGO7bgWgFSDQ+LdlYWosqVJca+IMiybma4St0diUqbYuNADYTEaaDx5LKZgjEK/U4uh7CgQqcGIsR2R//P4H7Ha7NpI39j0+vf/cDmKfE3JOCL4TBqVoAsEiuAC7C+hrh/Ew4vHxAf+/v/yPSGnBl1++xeFwA+86fPv7v0UqBV+8/QKh69Hv97i9v8fLV6/hQ4eYC6pYtQNkvex2A0quMjJH0HeaJpRM1iB1UAii6XiP3ofaDkkjDjOFYDeYcJaUUZARArvwNROQinNs62MFtPmsLtOEigpzpb2vuifpHtO1uR3DzgomiaFARUEp/LskhXYUQwyAMaPvAtSNSaHF1lmr63bQc9FJ0sVbZ+F8QN8NOB5vZN067HZ79DIG1ITDBcg1zmLYCWBu1TUFKJZdT78RVtXCTZczhUshXckN+K/vv/mlf7Z1zWoFfCnIMEiL7G0XmnYRY62wTq2F0fEwrSD0xsi+MgJsVaA1OArqM9BWf99E+ktpDJPWCAPaGdpij4w3LXL+FKwMNcoIdG28RzUQ55ng96wjtXbVzIIxDTA1FrBDzw7zNLWOs9pNL8uMlDOWad4AEtyjJhdxADLtHjvvMY6+vU+Sz9/GN1RI3kOR9pgSrtOEx6cnLDGiC55ntNyXKKNybP5Rb2KeI1LKyIn3QRnkzkDWi1h1W+peMZ5ZWJnsJahcRcrAImtyujDHMp5sY6fNCWHilkKB6lzorGusQ+g7VFNb08RmA0w843xPkCo4h5I4Tqt6NRorUsot/ioApWvlJCNNyqKlSYVHquKO1weYSoDgOs8AKk0a5HmnlDBNV9FfcbhermwWALDet/WojpgtVyulMet0tAxYG6mNdWfI/NAiWNdIKYXPdZ5QUJAyGdZk/2R5Zo7MmyTFqndyduc2GpdE3N4Untu7cceR5JLhYRCswysxjTEViMuC6TLx3g8dqgVZAtJous4Tnf9E/0bH9Uop+Pz5M67XKw63N60ZOU8zvv/+B+xGnlOqp/Xp4yfkmDF1BL1QgVQW1GXBOO7QdwbLNCM7h16ex/FwaHFHC+0lcn+lJaIUrA2+1lTWuCGAqxFdRaNTDswH9vs9fAgySm3IZC0Vu90eJXMsinvIwYAyBBA1kVIpT7CkiJwXDEMPJ2zQKvVHF3oZL3cNZGZ94OFEpHw47OBjQjlfAZjGRM45S/M3wUYLX9ZiNwgbpY0+VTSxftWc8Z6NS+ucOAqmpvhQkEVNESsxoBo4+FXeQd7Xe8umYyRkqNMN88Q1EbyTRnfGIqOefRcQrEO3C1InOo41Gys5vcRi+f9LWnCZLxA9l7Zf6DxIXcFaDWJcWZrK4Eo5sVHgArwz6EQKIkXKYKSUsKSMIj9vjcOu7zkRYCyqyyJ5QKbhPHM8epSGigI83gc6QsqZCgN03iPsD9iPYxthNqCJRd/1ML3F+XRCrRWHw7410ac44Xp5asy8vhu5rqcrjLXIKba8W1+as7JhEvHx4UHOJi/atxlPT0+YrlNrBHhhg5aSMc0RpwuZ8ymmxqbd7/eopuJvfvcN9woosn//8h6Hw5GC5S5sruN53qCOpnqmO9Hd6/se87TgtD+jydRUYIoRu5F6oaUUdM7DBY75zdPc4nhzM5dmzLJwlNBWxjSaHFWUFNGHACCQdRkM9rdHhN2A21f3zehDR+JMIeux1z3kPHrnEcDmXql1wxZSGYzQtP6sqai2QjMKL3lpsE5Yh8Q4Ulww9D2sQ3NEjUsWxm0Cx+Q8auGZrvqErNeoJuy8x7AbcblccL1MuLu9Qz8Momsoax/Uf1Zm5TCOCF0HI6O2mkP0/YiSKiY3If2k8aosOB2j77tOgiXapNF1vv4ka/z7Xz8beCobyrFejP53LQx05a2/X8fsnievmvxo0qodDFsLCttKG+qgbQd5+7fQ/FRKgY12hYIxeo1tHh7rNZcqYm4/AcL01RLsDV6l3yoLrduqJaNEme13inHVe1FRWKXs6cEcBXRQ4Em7lioOq12ysrlPKxiyFo1MahgQvXcomTTsr7/+NabLFe/ffcA0UROCguiZHXRr8ObNawxDj91hj6EfcHN708CM0Ad59qXNhxpjNw5Qa6LuJelXFwRA9GmExnedJgxmQLC2PaeffretyGnVxFQisZUgUgsL8eApOJnFDUfR7Qp27J33dCdxW9tbHlC2sdfQ2D5l88zVGW4tVkV40rBLd7lcRMuGM9E55o1ANb9HPw7P1s/6+bax/4wV20xNGIrSMleNjbzZH9DrqdrBZYHDP9ssXtlL+mxgwXEl6L4tqFjZeCqM+9PCcvvKAm4ySV6R+tYx1Oe6SZJbjPjpDjLbfVjaYQm511ugmUj8giUu1IL5e0PbH/45O2SNmiRMiMJ9uwHAqq6BqvRTzy66PLN2P2oVlwxQ08qs+/75S/aG4TpuNbUxrTCqioFYA1N+WtjzXayICar2lbPS4ZT7oIws1c9C5cjOMIytgNHEK+VV5FtdJq0RKrwkc4AB5dU8vO3w9PAZp8dHBGtxc3NErcA8L7icL6gGCMFj6HqMoce4G9H1/bPn1hhpgHRkAOtq07GKaYExFEJWfadaC0quP7kfm1Gnuoodw2gzgPvZOwc4AzWTSEkKc7mHvB7eXAWZ+a4VoxnXRwe0Yl6/h+4BHdvjWDSTfGPI1NHvXTfnAcd6y2a04/nZCWzHzQFr9Yo22gLeNzFSBcQV+FXmUgNONsWrFZ0l1CrjikxUtkzKBswY1VTiz5pWwKMBQW1fmed79KfxguOIorki98rBPWtANf0h2dE1b89gg20xXoGmj6DAxxZ4+uk1qdbC9vqYUK56jJCzR0fTOP6sYKlp2k5qza2fxXtK6oTGbOssYNeRlCwxzThqM0RhUAKQkUJtOHBsSq+PrAZ2pq0xqJZln+oiPUvoW6GN9R5Jku+MFz09Aj7LErHEBWFjLKGNNCvFFeTZ50wWcZH4V52Uf3wk0CON4LGsuVpQrd2sY6m6TG1rKsvYsRM2i65ygnRkUrScqRR4dUST1aCj1KVkMvOqGtc4FvntZDDtl8YFnpPr+UcdtIgYF1ynaxuhc45NHuc5wlIkGERh4rhOx4B4gqZMFqlzjuNttTadH92rjdG62Sc8UwBj8rN1u13HGrdU2vn5PpO1mwusUUc7fa7rKG+uRbRj6FKYc26Owq3RAgNnRAQYZMJXR7mEcRjb+Fkp1FarpmvaRbUyN6sCnCvAr4DbLNo6CuzujocG5C/LgvPTEyzE6ACmmboo238FzyW+pYzsMmyMqEUcl4yInm9ib5V9zbWkcXXzHH4SM4BWGbDekCmMUldxdv338zK3+4ZKna52nXqvKuOVMoDm+cpRassmjAuC0ArIReMTJ89MxqmFNdpiNgycX1BhYL0XXbncGO6lVKS6Mq9DCCILsDWTkfHSrKZHYnhiDfeUYV6vuX0zYRFggv+eDby4MUWoSv82eq/XvAq1yhTLmqHpDrUwor1JcXDN/2vNIN6qcQ2ohkwVbWh7z2Je47QxKwtSLqrFHjoRr7FOx4GyaDDFmCDcAhnnNvAuyNrm1VrDpo8xMm5k1roUFS2+AOJJAb6hCn57PyBnOr+SObKy67QG7bte3qAAUXIMPRYl3qWcOX4mNdGaYxl5ZhyBjMuM09MjgWO7Tp0s8xUxzpgm7k3Vu0s5YppnPJ2nNup8OBwQXGAj1hhcr9SQSzmhH3oclgOqAvV6HS23wZqLbHMhkUAg0NHBu4BaKOydYgSUqWnkucqbtVH5TX7GM7sAme8f06pr2PLsUlAyYEKQOtIAwgR2MnVzOV+EVGEEN8iMS9Y2h3AnY/4qy6F7ROOxlZzeSINDWvtgniCVcnXrVI7gAsFzPM3UNcY3qZ2y1oSSEUG+GDS/tM4jdD3MNEk+y7WpRgSmrM2rGBfMs2t5utZh1q7saDoxB2SfkL3EmMKJGZMzLiDQauxa92mtWvMf1o1/3+tnA09qE63ATlb9FqxFNbSjpAdQ+zMN8usBwfW0Jus5Z5ieD7sBMR2dvopfN6kCCSlRPHQRBw9gpcv/gcWyvDQ1WRaCQGqrqd+Bv7ZdVIe+s88KkBACas5IiYvGGKAPqnMR2yGrwWS34xiEzoLHTMrxZbri6elJ7HrJsNGD6nw+Y7fb4dWrV8+S61orJkEdnx4fRduBI3jDMODLL7/CmzdvGMidxc3ugGVe8Be/yXh4fMQXP74TFJZW1tZavHz5ktbtYreaK2fZ+66XQ7piniZEGI6myFyxc9T3gPyMdpKyUN9hDEzlMwshoO54nVo0MVBwXE0d/4yzTQeqYKWBG0P0uYF6S8QcSXe1wWF3ODRRzThN+Hw+Yb/fY3dzRDUWSxSgzega4HtXQ1FRgjS1UfjXgj3DyFr3gbafKg643+3gnMXp6YR5mnA5kVZ+c3ODFCOm86UdlON+x46ZdEINxTVQkmzWYmArEw0GrYqaYgPldA300n03YHDmWiPIWTLHBkMf4IOHr/55QYyyWdcr8Fcr4B0PW9WBsZtkZZ5nzHWWJDJjGAd2wR2QakacM4a+R++E7WYZvHXHtf88S/AUMBB3F8h3LquLUq20elWh5CF0+LN/+k8B4HnBVYGUClKaW9KlcaDveww9u4M6vgCIJolRLZvamDWAsBata4DuIppROarRgYG1pcWKViT8AfjE6/PNEhySVEnR7GxLVrKMXWZZk1aYWLbmdpCh6+AsO5POUfeKLCHG1CVHhL7H7d0dDscb7HYHPD2d8Chi6z547A5H7PZ7vHj5ElHAqMv5jGWeRZ+iwtgC7zx2uyNu9nt88eY1bg47DEOH/+l/+r/j+x/eYTjscPfiDl9//Uc47I+4u3mBeZmxLHPrkmm82rqIARxxCxLvhv3A4lCqqwa+VgWq1qIsRnaT9XDzIjQ8T1MrWFUHzznuj5wTGTVeliArZh7k3okofEYqGafLWUQZA1mCzmGAjh+45yB/LYiJmgHWE0hQu3nvCVSo3svpdII6menib+O+7cxR5l2lTItZtXFoRNDj5ri6uJiGmdY2HlGhws2aoBnAELAEVjc71fkAIOONrp2f2uhYx5HXM5NC65YJHPDMlUf3o44fpxSRqrAZYdBLkRIk7ntDyr2ztjHYlky9ryEMbe2ono0WlByLB7DUFgeeN7VKAxu2oLfqKq2MUSnQnYOrZBpVCIVfGJ7Be3hjYSvvgzMW1Vm4vY6wMF6irI47l+lKFpOIlNbKYn2+zhQVBzBbFh5GivXLfG3dVl0P5+mKOS5NsJ77SUaxUJtbmnZ9ATQh+SRakrlknM5nmn1kal2gVtRMQxFnPbrQoxaDXAGjhi8icL8sBEU6w882wDqOBx7x08zPLjXDe4dhGGUfG8Q0c/xal7Ykqto4ewZQO4fgLIbdTvQU+Z1930EZDjmrEK+cLXLfu9CjuoriupaoKxjCJWCx2/WgSxbHjaZ5xvV6wbzM+PjpExnXhro2+/0Oqvun1uMPp0e6CE5XDMOA169fr7mmfIfDfk9HrcQYkSSnVUa/5o5bQLS5k22qcq7BtdnRBYrMrxIFDsYMTWh9ifHZngbYdaeIPXOYGiPev3+Py4U5SvABt4ebdi0pRRaHgmJ438HZiv3erI1TTFguZzw9TlhSxO3xlvmIsHKWeUbMCZ8+fXoGbjpjyTrKGQ8fPzVgKUg+dTmdmavt9wjB4/b2lvpSDw9wzpFBJfFnmSbEeWaM9x628qyMC00Xpnluz0wZxnqWanNPO/behwaQNJam6ieioiwJcdqASgKinJ9OqKVguXCvT9drk184HA4UKb4uqADO13NrVCpQEbrAYlPGbMZhJ/k6mUSTnKEhBPQhwKv7Kgz2uz3HTiMZPMaQkR0QsFxm5IX6PN57fPH2NVDRZCP4THKLc9ZaVNAIwoWODriezS2CEVnGQRlXU0pirKQ1FUeBYC2FpUsRYyPTHOYO+z1yZsHrnUMYRtwdD9xfjmvm9PiE480NdodBmiEFpIxJHgpp9AVLhzKVvZAYog1iSP6obOqKiiQavElGIZPPWE80NEAVoCyIHqz8DApz50RWq3cdXr18DQC4Xi8wAA6HgxT1USQilgZgpm3DWO6/MeLAKADn58cHxBjx6dMnWGvx5Re/IJDuyWoehh7TNDP3kXWqovnWkmkWQkBO2ixgLfDt73+H0+kJ3333HS6XCz4/POCwP+Dm5kjd3sNB9nVqdamLBsN+h5dve3z+/Bnn0wl/+k//BLe3twLgVMwCsnofsNuN2O122O33HEWWcU09j4wx6LseN8fbDfAJwU2YMznnMO46jONBGh65Mai95Bk62haXBV3X4e7+Rbunnz5+Yv4nwuYARELHiwzCOrWidcQ4joAxzLczAZnD0OMw9LhcpjaCh02O1I8DAOpEZZFMoZSHEgGAlBZY6zAMXWsC0YBmwcPDA/O0SsbTklKLQbVQl7ATYzF1wfXOIddC97jAfCnGhCwNaBiHrhvgnMfQkzhyvl7w8cMHfHz4jP1+L6CfNpU4CjwvC6y4RLY95C0AmjR46zD2O+QUkXPE+XTCPE/48PEj5mnCux/fIYTQTC+C6Divsgc/7/XzxcUhqFtDNDcz0nZ1Ttm+9AEQhX7e0dkWj886D5sDlIVCXTuugtrqA7da7Jk//NwV0FKbedPYI4oqus2/Wa9nLV4NtAuwXrvadRPNtgKwga4SJTfw6Nn3MCtzgl3W/Ixppf8ljb82cdBtQdtAFxmZUYeMQcbzuIB864RbQ/EvVGC3o33lNE+oMh8aHFk9+/2+WVOWCpiSxQlFtKOEHqoC24qOWkG3+TMciWvdCXlmbWZeOtArq2Et9tuz36yddu+sobCsjhMJuyC5DG2jKOMGOQuDbBX4UxZWqQVGJl3cs0JlDYiCrW+Sptos64t0tWsh2rsX0UyKUBJ86zZjGRqAWwduuza1CJd9UUppXZptT/tZ51PBIkkYDFbmH6AZdhVgg+snG3YY9NP5fngmTty2ToPUa9NA0Gszwq7iszNS+Oq/r61TBBkfa/vP8Bspm8y0I1l/hod8E6OraMWaPn5NCHWmm3PzIspeRd/r2TOT2KBrtIG2tQEOW+BLO0RbAL2xh+S7aJHanpCAXe3e6XvWZ0+ZN1Rjx7MYsmH1VTRwsWyBfO30yIgIAS+0UUofQlsL+sxzYSE97nfoexYmU+SYLyo7/v3QC5hvUVNtsaSNkCl7DlWEBS1uDgdYS7D+4eEBnx8+40/fvMLtzQ1GsQX2XYcomlP6DEulML0+m21hraxZaw1qtS3502ffGBPtWW2YRHIzNFw8Y77IvUp51f1r/6YKFiPvqftKGXFcaxmluPacVYD5OVgrz638XYy+zZooa0OlmlV7hd3yP3zp+mrg1Ob9jaHzqTqjoXWkdQ3Xv+P99Puvozz6OQqgbi/YAO2M0kD+jGMja0N7ea4l/H/Hd5H4sT3X1xuk77N+cWKyP2H0bJ7fs2/XttYaG9u/3dyH1twym5j7k/c2m5gKrGMAdKFzm/uxYUk0BvcmvpoV3LNVgXsRai5iiiJrdhFBfdoPrzFJgSRlKhEU53qz1bZz+9l3KKXpWUHzA9XgxJpH6Pmgv62lrqO/st+qdGaLsMp0bRhlGsv3VGalxn6A7BKTbSvwajUEXooWG7U9Y2XJtv1ZZH2CQv/Wuv8/ZX/aa8u2XAdiI2aXmavZzTnn9vc1JJ8oUmSpLBfKLn22BX8smN8L8D9z/QOjUFWGAQO2ZdiwbKA6FTuxE5tH3u60e68mM2fnDxExZ67zKOlyPRzc+87de61cmXPGjBgxYgwGKI2MWcJI7Ja9RqUdV/1feGEpE1LXN4/uoJ1d+tyqxENjxJZbitNaa3s+WtgTqLEs2mdWtN/vILK5zddKEROULtmgILw+P327vnQ3zBT5oDZOqs+8rZOGPrdzUveC3lfNM3RtKBCmeh7KTm7Pm1e1GJIww1kbUZrf6/h/SomB49K1qjjmdQZfi5l6JmR+jvN1lnF23OSsqFWkEXrcKJU1LZ2Mg7Ux5VKRh9RyfZ1yiCufQ2z+sWFVkn47zRl7vODvUJvGVdLxeMkxcmY9Fk4jtvcxt3vfzj4BQArKTQ6o52oRxoipvBdWs0iThc/qdV25AVgKqBYUy85+kMibcxf+r7Xy6KrIG2hzBFXXAu/Fdo3ojcVtHARqa+pb+rjOKzf/nsuGKcsJzE2Tn0AoKK1eyLXyqJCc6cq+gRwzeo6qRu52HfPa4Y+x1ULsR+VjlSlv2nnF6+x2QkA3V1/hUnvIG/fPUlCd2SwVfe/o+nUCqJUwtL2p+7XFUbm+lrfLGNj2PEN7NlJbmc4CUvKGgkshyPPSOeL2NWQtbSYmthM2rIXG8ZQbwXydDMa4dmvUPEs06lFrgfcOkwBL+/2+P1t1fxSig476N8YObmUnbuJRrSiq7VQrttpHWl9sG94qc6D/zKKppvUdUBuTf4mrAG8Z1jmEEVw3GtP1knN3MATQpBpQAeP4GaXIjnf6ELVpoIwnzhWp50Kb9+uNL9qsvSp7JrGT3sKxkb2ZC4gqYiKgslSKMcxu13XKzzjDVDG6UVMAUgk1AwZpPYZxRCXgdDoh5Sx5jeVxQzCJDsTxIycGldlgsp8vhghkHQw5JEMwiZiQQmBzgszAbc6lkYP0LKWPsJ//0OvHA0/1Y9Gs2tAy610DFFqRgIqaubjQA5qDHgGwLcBsXSFYnDS1bpLTorS0sAI9qp21TO8WYUbt3pD8fMlATkJHNkwDV2cLIwddUGojgPP5JGCOb4WuLqjGyKqc8w8hoHrf7LbZTYZpamtkG8Kq9N/Mc/dqsbyuK3JMrXt2PB5xOvFnX688177b7RBC4M+R90jS1X9+fr7R1bAS9LYMtJorMjLef3gvh/mAPXjzpcJ/DtMOwXkGDCrYLtoYDAMzkwah4xEBVUZ7JhGQ9I5HztbEgunauSMimR1VhgKvB2stW3/LvY4C6AwDC+xV4k58LpzwsIApU0mnaWLQUDqwba0p6FGrCJIWvHv3DqUU7qDtdhjCwEGzqjYLIcmhQ+25ptZhik0rgQPEurBoWhP9zJwEHY93Lfl+uH8AgTrTTqzPr+cL/KAMpZ4gAp3xAHAhktYEZ0z7HhrAtUuqL3VHMkJHbQV3qfDWwo5BhEu7lbgXNHoYQqMy94NEkuRWoAg1VXTJUsr8HbxHGFmbxMk+X5aljYtVS6hsvsUhVUcsSJMLOcS5+uD3kX9CEroiRRQyj75s75Ey5Zy1UhxBQJMsz4ealo1SzL3zsGSQRUejFNYlUdHiDiDdFu2ccmTWJpFnwYVGHyfUuKC/3ZKdBpqwuKvqo0gq1ws5QADdhFw5LulYmDFWdAtkHKzw4aNugG4cYIT6XAGsiQuEyzzDDQFffP0190eLQY5cTMZlhiXC8Z5FIUspuF6ueP/0gRlEFTjsdxLzVqzLirevv8PdYY9f+8lP8ft/+Pv4s7/4M/zyb/8W1+uM3/6t38Knn36K3bSHIbbCTjm1WKJuQ5o85pxxPp/bPc45YxiGti4sdb23XkRxMaeHWxd3RuuAE1EzXzAtJtT2WV7YAhUy/lRqA2+mkUUp2bAh4fzMmi9rXUXTx4IsAUXHYkg0HfipJ2FKqRxSZ3GQJEyLPDuOxQBQZFTVN+F1XhuaFOj/R6XWwUyZu5y7ic+PZYnN5aQJqt4AyXzPSxbB4Mxx2Hr3UWKzXfO4WdMqdnzLJvqomWL7+KGejx3c4d9VDRbrmQ2pQLYxhmM9scC4gg4ARBOoi3lvd6f+HUHNKaZ2xmiG0BNyTfJ6cUGy//T8DN4DYpKiOYSzbMndBMpLQdoWDJvRRpIxCjU0COOIAcAkMSelhLwmJLWoJuB8uSCXjDGwcPA0TkC1QN5IBaSEqAUhqiYzWOIq1+iY7bKu7To17p9PZwTnsBu5szuGAXXu4xMFqiPYn20pLCqbMzenlJGieZiO1hixjNbRRC0eKyxirYjXub2nsa79LMkgnAHBEolgcEZJSZh9vN+93Usn2DGrMHfbeC0gQMzNMuCxhSWyrkdtZ0KCtQ7GOLiRx3GsEydZsTZ31sLtOEcIw8CaSdcrYow4ny+9854Lol/hjMUwehz2B2G8y3V4x3lL7cW37pN1WX6lybMdIdP/r0WxsrnYmrt31K21UmSjj4aW0vQTrXV4fmZhZGUhOmuZyRljOztD4NxgWRakmPDDynqJIQQ+b2vhohcGT+/fYVmW5pr58PAI6x38MDTZipRWlBybu6/BLSizLAseHx8x7vetYDHWYFkW/PD99xiGAenhvrFUcmT2xRdffYngPfZ7bpYu64qwP+DueNe0ouIamSXgPaxjg5ZSmH24phnzlVn7bHWv7l/cjHXGyxplJ+Eia1tt59V6nicCCPP1gmVemF3QXFJFM4UIITgMgwfRQfKd2sAugEcv7+/voDuFc7OMZWFG+/VyldimGoDMDHXeYfUMynnrABBiYifE00kd0hw3O70DCosOz9czSg5wjnMJ5yzm5Yq4Ln/v6GctGSXzmhzc7cjix2dKrRV55YK9EsRFcSMqrcmSmHygEGpOqHmjA3iVBpRxXJtZh5gS67tJHGWNQtHBLRU1MaAwkMf5zAwMFb3e7/fSJKCWK3lxeGU2LlAq68sNo4M2LiF1gPe2AcIKHvAYq7C3JLeMMs7FMZHP4ufn53ZupJQR18xi4KXgfn+UZn6Vc3tp91advsMwwHnfpmLc9twVMfzjUUxeRGRcC/4YI+Zlxrqs7OwWgrCjEsbdHmGc8OLlK5xOJxyPRxyPd7i/v8c0jU3btJQCI4YDqVbMpxNO5wtevXqFL7/8End3rGPb601q+amCT9by2CizsjZ1eAO1O5CIomL4FZnUIZdrdG3ca6739u1bjlVrbA3vy+WCp6entpdiykg54/nMYuKXywX7wx6f7T+FHwP2+wNOp2cs84I3b94gxQTvHXLKmIVp+fDw0OL027fvEVPCw+MDSq14+/ZtGxs+Ho/Y7/fsRG9Y2J3HJCXPKCRyN0s7O5mlm+CswbokfPvtL+G8x/54QIVHrR6oEclYRAE168DTP5XQpGZqptb4gTGoCShEMF6a2IYw7XaYdjuM4yjagbwHDSQnF+H4NSbElDHPC6Zp6OcTEQhWtDityORETNMO4ziByGIWB9j5esWHD088+bOvTcdQ87Mf8/rRwJPS/RQq3bKAPu5qatepCsraujiC8hJ1RFMPYqaRc6HVcnBwj6Jln6SdJfSktFb9qQ3qrF273qluXUp5I55Zj617tLUE3XalNKFuYJv+d0k89VqtsSBPuida8Y92jf2fxho+NCW5UOG3xnSSTctCdRxMdZyErawN9rtdC2CodTNrTo1B41W4lQyCDzgcDg14Gl2QgCspO4lgmrIo9GF+JFRIxAKqlefo2s/qPdaEX6+1FBHr1u4Fbov2UqTQL9pNkUNMRMpVWV/OZNGEYMG2IrP/Uejm024H1IppnDCGoc3qKzBQa+024qUAMKjVCINsQZRn3eZ4TddUAdDXakOJK3TultcRW04CArgK6KMjQ1tgtv3JpX+v2m001T3ESDKAqlPDWkhpsUZiacp3VNloRoS+yfTPb53cisYm1A4dF23UuvFA5o42qUCvacVxA9oIgDMIgQs2vtfYdDl5yZdWoQg6rg9fCkXthubE8/YKohpjZfzpVuB3+9J7qkCVq67Fiy1AboxhvZKPCmp93RyWVbSzhAdHFeIk03XmoJ0zoDO9tACWGKefTQK48V7s2gMQYKLKASytRi5sjDxXsD5QLd1FcztilLJauasouwNVCyrsuqKjGyH45oimya+uRe0iYvP/h+B5VCMlfPPNt/g3/+ZPMI4D7u7v2cWlVMyzJLNO2UKFafBgoU0jSZoxGcGnpqdTSkVKnenHrsailQLAZqba3x5kwpZSzZnK69BQ77bo8+YEDmy7bQwDREbVTWQNyB4oiQsWpyOBuSDVCBCLMgJoxhXbpN1S5WmDdm4LkEoQXQZdCwxC8hlh+t7WH9MTSRoiumc6Y6nvff1Zo9+bNJQJOKdAnu1c3ram9RzTkWNSR1dlLsl9lM/Ws3S7T3rnHjdnor64mRNYo6vUtme3v7PtbOqXlSOcz4Ocm7bd9szVtc7fz7W7oeeJNqV0f9y85N6SPPsm4CwA71bPzUhXk7W5eue8nSGbt2Wgs7Nx+L9S0z/w5LGbJqT7ezBjic9Mds3k9Vw2HfpS+TzQRL+BiJKILivrcsCjPU/957qsiHHFfLkgWYcSM1zwcN6LwUlqDF4d1SlqxQ1AtV2cJRQyUrgyuGkMNmdIO8V77JX3bdsLhIKEUgycqMSgijKWAifCTubGHN//uK7N7ppFy/l+VgKygEr6rIg4VuhZUYqcM4YkLhcYSaStNimJYCw7W+nzco5HnKwxWJYVOXIzKoq7FhVqTmmDZ+e6LCNIqXR3oKIi5rJmtgWYnhu6F7sup7C39Gww0kRMGbmmttoUQNWzUtebNtOcZRDOSPNKc9ScOVe0xmLwAbQDxmFoLHZdtlbAPo0n67zAksHT0xMDaBI5rRFbcR94PDtF1veCSmHwaBvBwxjAeQtjCSArNRODYsqWUJDRC3NftZR4veihxOyWrSafgj7DOMKXzDIgxOclyxdkrEsBVkKMqTXwLJkbEWTVOMk5deZxrY2tBmF68RiJ5JEEkAGPPG7MXIwxTR5Ca55S+0i1PEh5xpV1tMpGs7IZOvC+a9ly1bFryEhhYg1XFzAGz2AwQfSdCqZpgA8B7AbI+7Yb5XTdUo35bRVprtbG1erNtbO2nZ5ncvZoKADAGlR87jY2oVUDFwW5WCaDQUhhHlqLUjkm5cJxqZaKamrb21X2SQaL3C/zgsvlzM3RmJr8h5HzzBrRApRmJsdwzRHF9U26oh/XrlUmOLKIMmszCbVr0G2ZOZD4R4A4QHPuS0a+HzjnCyE00EXXdy2FteFKQQaQ1tTyOKKm8tgaWKVws71UZcwC2fHeSNdrG4201oMMnw3eD7i7f4T3HikXXOdFRnBZ+JoZOgYhDLCWneqGYUQpBd9++13LeZxzuDve83oyFkVGtr2w76v0rrOOQtNtXNsyodr2k9xNnaCZ+MB16W6a4KzFalkWZxhDa8xWWeu+8Hp1zrFTZgjY7Xc4Hg6YxLBg9QFVDGySlZgq0wGlVhlt9TL2t8OIyoSUWvF4/9BiRwiBiTASV0sqHB+o54SKN0DAHmMdPBGmieuyTz75hJviImtzWx9o+i/TRdaKix2vs5SjrF3TGLzsTFmhjSQiQnADrPFt3FSb4aVUuFzgfeGROpE40f22fSZAl9QBce0RfABqxcP9I+ZhZDaVPA/WSkutdvgxrx8NPF2vrKavM5Nbmvv2VavQxOVLKJC0TTgVzFHgSRk2fGs1heSbpnFZ0vpOgZdE9aY4qX28jgtgCyL3Kyg/KpBiwTKvnHw7I4Xu7Wibghr60sS9sbXEKawWFmmzdmCNCGNwKddmS90SBgnajMj79jk5MUVYnQQIrB9xvVyb45laoap2zWeffgYCu7StMWJeWCvKeN/Eh/e7fbvf3nvsD/sGPNVU+6hXrXC+F9CkIFHh4Dfu9wyUGR4DmCNTEMlatqE03P0zxjBzQOyE9flaY2CnnQghbjqA4OCbY77p4vFBwQfqsqwwhjcUA1UZMEwBVKG2y+WClBJevXzJVFDHbDTihdMOPSLuJik6WwqLSX/48B7vP7xra4lBPY8wTjDSkVBG2tbliAgosVPLmZHleebZoLEDrSSha4pt3ccYGR0X8FBFxrO8TyAL620TkdduLz8fLhx53M/AW4tUEtbEzkVt3NIYtjAGmrh4QxmKJuzb7hbf92GQeXvT9cqUjqwJ7jiOMM7CBqahGiJJxAtg+kgBU+B7Ic226MSfrzTrwjbs3JFd5XcKCxtaj3GYYCWBKR9ds/677lOvVstFWU0bTQMBnvQ+qItXh7k5yWX9EKbXc/cJQOojuC0JrZtEQt5Ti4JelPcYSUQ8fiagXCmVRUJzYSBUfk5pxcPo2iFXEjtglc3lahEDYity53lu3IKdDFWzZ11W3oN2Y0iQS7tPJTPoSwTEJcIAuDvuUUvB6XTG7//+H+D//n/7f+A//73/HL/xi98AGcJ1vmKNGc47cRDjGO0EfN1NuzayywUQi81eLhd2zBLaNREh+F6caayOYmWuz9f7oTmMNMAM/T7k0hk3025qoLF24B0sjHWiASDU8FSwrszSCM6zAGOKmFcGybRzNTQ3q16AUCW2+N1cQwOIjIJCfJI1GrUxIjDLABNSH7VSW+aUOnOirfVSBGjj+MnFZF/HGldiTCihSLzRMRM+K9lZKWNRG3ARLLfOcoFCAKqMUZUqhXQHlrbALICbM17PTrYz9xLPu51821ulj82qtlPZFDgVrFXWu8/9vEblMSgAmGwf921Avug7pZRE5Fm1dNj62KtmocQDAppwuHddq0dF2NkpqY/ztaYBOtDE9wituKi6hwmiW2QRxoDjw107b55OzyKsfPqIJQZhLeXmjAR0VmuSM3UIfO6xrl9uLJ/r+YJ1WfH8/kmaBxaH4xH7wx7LvPB4Dxm4XEDFoEjBoM9DMA8Mwj6E1fyO1161GyF51dLSs2xd2ndoejXimkROmms1oxaDbFPbk7nwyLTujcv50t7HeYfxMLUibZ0XFnYuam7hOCzH3NgqMARYdsXKpQo4YBqDtAnCy5oiAGHkLvtb5zFfZ5hikGJiEEy+3+hHDCFgN+1RwYzKLL5fPgQMA7OGUqltDEMlELApXHS9XkUXSPfI1kUXFY0xlGJkcIcI9/f3AmoX7cE1yYnBDzwGZBWJFgH1ZWGRXBjsxgnH/QFhYPdYvYbT86kzGCS3Ccbh6fkJf/mXf4nr9Yp3b1kz5OXLl6w9Mwz47ttvcVoWiB8iCKzBxiAQ52rWO1jLbk5E2iALePHysTEJpt2EaZrw+PiI/X4P43SkTnIJYob8ebkiymZ7Oj2x9o534ixsu1xEYSvyWfRaCnE+GxwzpgdpIjIjc2jsulJZf1XDDVkDWNUVgjSHMirxuTmFgQFp6uOCCi5Xx7bjy3pt8bQJ+RI1rc9b4J7H6VBJxmgIlgBDFSVzPJivVxmdzwh+wt3dEUVkO5aaUGrCi5cPsNZijQs8irBhPJxT17wej7mxZroOTK4Sk3MDpK00gLnJo+tbgITMZ2HmgxzDOAjwtClgDSFvtANPzxfkUmEDCTDlNto+nIOMuYCIdf9QIW64/DOX0wXX6xmvX7/Guq4YwiiaQzuM04Tj3ZHPvEo9vlgeXV2WuZ1TCpxtz2lIsyuXrs3GYDvXkZpjKogs2QBiiiwFIecpGYNlvTaQSvNlPQPXZRFTIo6F8+XK8SOVNh1iPOf/Zk1Sx/Lziym3tWucA1mL5+dnnM9n0S2zcDLpcV7OcH7AZ59/hfP5hOfnp9bUyDnLKBp/n93+gHGccDgc8f79ezw9PeHP//yP8Pz8jGmacH93j//lP/tP4B0Lgq/LitPzuWkMW3FlvF6vDSDWPa7adg2gldyctcBIAAwGKsdhz8C9mE1cr1e+vt3YzuKcInKKADmuE61lTcPTCSF4HI8H0Upi0wcvo/MpJszXK6Jjh+pSCs7XK8YRCGTw6tNPGKxa2Nzji08/a42DuK6I64qUK2Jm7UrWWB5R0aUkjFE2WUXwnF9M4w4E4LNPPhGNp4jz+YzL5dLwAku2SQcxw4vZ+qWWxlKNtLa1ZGHBGB814AlEGPwkYB6v65ZLFvWo/AizKdx8vQWkAe/5OWcZux4HdkTdTwfEuOJ0Yn3q0+mEFAtSXP5ePOjf9frRwBNRK+X1b6CYLPJHlu+blzFdb2WLpunsqG7ObYdPi9GMrivUO4/dLUK7vNvPbCwS9I65Blvr7M3NMcaIg1sfFcwyRz7Ps37NJniJqiyH2jpV3O3ihBQ6CiAJbxUmAoj6mECVzrAsyoqK1z/8gJRSSwB2Ox576Z2xnuQrxfT56UkERTmZcUJ5LIkPR6ZscxHO7KOKjCLMJgM4LqjVDU6f3RYwUGRU/7/+THOfKizI7YJnS0vweEVxrrE4imcxx1zKDVgIAF4trwXoQuKEVkfoKFFjG8WY2uffdKbl4EetQuuXol8Oy4+L1JiTuOLId7GEcTfigR5aMt/0gQTBv5zPXLAwmsSjeNKZm+cZqFXo/VycsvOfgBxEG12F1Lr5fNBkoBKyqdIBl66J6ZpYdtOlgvzTCFOODDX2g9voWOgz1z8ggvEkOq2ldf23zJmq91gAAV2v2t3lsbiKYjYgChGU40UVoFJlhFG7dfx3RjoTKAUwQCFOcCA02yJ7Ouk9AUBkAcuFfEy835n2jBYnnNCENbh+HDxl+zK4WaQzQIRmwoKeIPF9NT2S0Aakks4Dx3jpPAuqeRNmt5+7DcB1+6+3xTzT4Q2s3QLfEueiPMOUePwxxZYY69taiWHDyAKISEAsLGqvRgfHwxHWssBiSlnEdWdcr7M48bC+3Argw+sfsN+P+OzXf46/+eu/we//z3+ICoPf/M3fxosXrzCOE7J0E4fBywGvpRBa91TBghRlxCdnGCJMwyQADLUvoqM7DVBUEFdEKCvQbLi3I9D60jNkjSIySZ0WD6AxQ42w8nLNoNLPowbh1FuWVQMbSlE4UXCF/vz01fR0wOB4yglxjViXFd4P4hhiYEGAAB/99wUMrhWqc6HnhnUWzrCuE+85cT/KXOhtO9btrUqR7i+BHAtjGGsYGL7WVow3FoacDVbO+NxAJbS1uAXXP77/2wLKkAEcYJpO0O3WaOd34nUNcV+x8mys6Ihs2X08LmybI+zgWSy6sWdybu0qLQh6cVCbZprG0Pac8jbnkNVb+67eAk7KNOG3IMCY5lxUREdL9aRSybACxrUcB7zX98OIwTpYOXvneWHNx5SYKWgNarEtputZ1EcAuYDi+5ObqcTbN29wPp3w/bffYRpHPD4+clEU16af+PT0AURGhGtHhDFwTNF7Y3SEs5tclJJQpCDt+iGyT7ULL3EJqKjGAkUZkBUZXlyvOB+YrzN4vClC2c1qR258b2Zaa4GibjzCdqqdQcQitgQVHwfQtKuqjKYZZxhY7bJUfBYStfi0XOX+R2ah7aYJJRTkcWzv66XppvEtDANSyaiZ2RslV5A3Pa6RfI4UXjrKP4sRQvA8CqTAu7PsfkBVxMW9x+npCafTGZfLGdZaHI9H6OhiyiybgA0zpbm3ystZBzPyiOH1fGkCsMreLDEjLRHX0xnROcTgsTjHwrbG4Lg74Nd/+jOcTlzkWwDz+QykhBRXeGdx3O+wrOyinKQZyUwbQR/E7pwZ7zrSdCs5sK4rrvOMZV3hvENNhHVZ8f0P38M6i7v7+9Z0jTFy7kUEst0dkSw7Ta7r0sSNnefvq1krKjOHc1GdMdVh472XW96CVgukxJ+XYuI8zBC8UcYUtbEUAMhFWcQFJW11IEXPpSpYKJMBVRjhElOcONeVSuw6dtXROMI4TCBvMOwGpBhxOq+ImZvNGo9zYcBEGysgjktrXKFMTwXTFVgqm7FPfWlO0sM7tRqDtzjXNrmUNu6uDNScMsgAZtPk5NAocRSEab9HBcGFkf977cBlzgkVBeps1s7fzI1JliQoyBkIYQdnh+bgy/my47xRhnG5kQJhhnALqGqhTsq22WiB1s6yAkiaw7MAT1yzNnME+YYlJ6QUUWpGqRZJ8oo1cs6vJk60YZUslxnz9dqaSnFe5Mz2yGvEh/MFNnjY0TOw5j2s8WgNeWNgnce6Rjw/n1gSwwc83D/A+4D3798jxSQjojy2yoygAV999TX2+z2zGdcV87rIPkwwJrX3OhyO+Prrn+ByueByuYDI4JtvvsHhcMCnn37Ko97LgpoL8pDw+OKFuC9y3vn8/AzrrJwDGaX4du+q3Gtu1FioM28pCTlLbm8s4CqqOrBV1QG0sFRRrEGMXdokpYz1OqOsCZRrY1COfsBgPSY/coMisUTCLC6f3ZCFr4HNGliXM+YE58WsiTjOOMn+tmxuPVsqAHWD5RpMHSJ7o4AZjR7juIezzKzquRtxY7kQKEvAIM15FUTqEw/eBd208pldxmPLAFc8xZjagLGPXx/v+woBkAu/rw8DmiyC6PwOw4hxnPD69Ws8Pz//ve/773r9eI2nBvygByXSmy2blfRs3wA7IsrForr9v6kjiAoGdlaFla5lganU5+Q542+FQNOW+Ajo4mSUg3kpjJLnxAyocRo3bC0VE7VwzsutqDjL9cTIneEQWBuHRzGkC9OoQb1o54d9W7S0AgI9iBJ4BE71kgBmxsQY2wzpNE3QueBtUW0Mz8jnlPD84YkBrGHgpFS6CkVH00y9Le4qsyvIqqMWFy1F/pvwOFpSwGAWK+ZjA35BktJUGHAja+BNaIWT0hS7sCkjuKnkdr8UPNN7Cxmd5IaedLDle+h8eyqxPWknHX3IWnPOgWrFKgyzUljfSIVatwWTOulpck2GME4skrzO2mVMrStaUm6JW/tuKQOGn8t85Rn9YRjl4Ov6NLp213lGjAmLCF/q7C7f59RcfJit5TYHqeydejvOqGvYgA95Bp8snDBalAnTwE4pYtqatFyE63O2Qjtd19hAo1xVYyYjJ7a35vKhgzsEYtcn3QXKAy6lP/vKwBPjssLwQdeGSVHGhBSQ2wRukt5ulHGyAa59H6WbrsvagcUN+KQAhq4HpqSalhjx+3fwmBM229f/BlSoN9ap2DgmfQQwGdO0wzRA6v/0FunIjv4uEcH7Wy2QlOSeRC7gcuzgU+UcumnXhGGAcx7TMPLhu3AipLolAPDq1StY6YwxO3LFdV5wvcxNBHRZFpSU8PqHH4D6Ao8vHvDH/+bf4L/7H/4HhDDiN//xb+Px8QXGcRKtkQrrPDurWMNgcQuGaOOJuXD3Oqck3Tj/UbJbsayXG+CQ75wc1CROaOYWeNq+iERnIlLbV7pPdI1zk8G0YrfePsQbgGH7XCu6PhSAdr82n84/V6S4kYQ/54h1XXC9Xvk9fYAhz91Y1+M5M3Xa4hA6foYx1DRe+PP6/VHARcEVqpvrqFyMkoOATyKi7hyc6L4o8KSW1Kky6865Pg7P98DcrvvN/fn7gCeSM9pajul5s9b1VdCZsAxGWgafZPzQSBzYsqKdAE9eQPnmJrbVb1PgCZszgQQi3IDL2+etY9U2hAY8tUSQ9JF8tC7MJrbLc0t1M3YLZk4UY2CrbWeZtVzU2zCiONYKXNeVmYyR38MQd4Fr5rE0b2wbR7KSjLM+TOqMXRBySnj35g3ev3+Pv/6bv8bjwwPGaUTKCfN8FQdMh6fTaZOvFRyPh5brsCaO44LHGBjLbPWUxTE1ltuzcfPcS9oIDlsWRW6NCwHpZKUgihNrLn08zxmxutZzzTDgjMJyA/M8t+eja77lI1IkViiDWs4fWYfK2NAf1Z2r4/SXy4UBjZWBp2mc2nfTvd6BZ15DQxhgckISgeMm62BtZ3vIOt3v9+07zfOMlBKmQXVW6KY5ljM7aIUQhI30jPfv38N5h6+//pr3fipIKWJZlxZrnTRO2zMBj3YMYcDlfMYsrAFrLXYjA/8lsvbY9Xxh5onvo4EvH1/guN/j1376Mzw9PeF6OjEb+XxBiRExekzDgDHs4SwhpoirdMYZeOJzttaKQgXDOHIsMgaF+igsN+NWmMViWRc475BrxXW+4vXr1xjGAfvD4UakuxTRohJt0EoAOcsAkTRaAC6OgIokzbYsDLxSCGSlbqkZVMDAQWFghCSvYqv23ASHzTDw+SUjKjlnLkS95YaZjIqVklESX5gxvWZp686oS55Bho49E4K3KCCkAsxLxnm+QPVx/TjAO4/RD1gWoJwLUmHgSRuUSYAnEJrYb6kFaU0Se2w7C5jUXaQw3oyjAU2vhRsO2/inx2UfZw7CIFb5AR6FBbBhRyrLgvMDwrjbwxgLPwwNeOS4Rw3AIflsHfsr0qBMKSOnipIJQ5hARNjtdi3fs8ZDQaeqAqTA5toJbNigRTr/01CfxjEmopQuG3I6nRmwI4Pdbrox12GJFCDlyAYQqglKUuMUNjWyAjwpgWG9zrieL1CDpriwTt00ecSY8OHtO7hxgNuNyAdgqIB3XBsbaaCxC2LB09Nzc3J8uH/EOI748OEJKWUs69oYVAyiDfjJT36KL774At988w2en5/xt9/8HeZ5Zvc060V02sP7gGEYEWPE3/zN32BZFnzzzTeiEzUxA2hZWyP+k88+xTiODWiaZ16bOoqu44dOGbVEKDIKrE0kxgAMtMlvyItGEZ9XBsygs8ZLfsz18Xpl57/1MiMZg7SswF1FsBynlPmvdUOpFUvhUe+twQ5rLcvclQFiyTBw7IxpeaqHZM3c5P2FNey08aHNGx3t1POGDMd8QxbjEEAjsQatNnOKyutwDUCWc1YjjGRlyTIz0PTrkHUFKKi8ZYvr2GmFjvHqWayvXg9rU7PX+orZeM9TDQaQ3JEnBA6HjNev3+B8vnQc6Ee8fjTwpA5SKRWek3fMFGrJL9FGkf+286/JFwSoAHrXA8CvFB38d0U6/uyYxvRHph4rKETEc95akHChnEDEQBHBwVnDLmgVCJugoeJ8mmQ1vQFwdlIKJ/9BCiVDBk5+r8i9sNLtsJKkUgVKZHDKeg9PhHm+guduDZzoLMUY8Xw+43w+4Xq94v2H91jWFQ+PD3DeIaYoLKoK53kEQx0EqPLhtRdBOv1jrcWy8AbUPjgnJ7KQuJKTJFw7MsxAMZvNpAWRNRZBukaQeeVcmXmS4lbDi8RVQ5dyL9yqPEd1hdGRMwUan56eBL3ndTTJbLEitFxcZMS84nQ5t4LCGHa8WURngDczF+HWmJs16apvh7/gEAwgZganHFj531iL3d6DKrhbkYs4S/XCVdeqXh+AdvBBPBLV2hRUN0w6A5BFSksrNFXg3ghA1oBdMtLR4/teBATKVQKa5ftliNjum/sx8nPKtqtN9H1dVxAZ5FzhJMF04oyWsxF2Rt7c94x5VW0xdcJw8C5w4gJOJtiKviJWHR+sbcQmiyaBFgUclIUBV/VzIiq4ewUpjFVnJBXu6hqhjKriQRJtin6UobHoWiHPSFNL9ozqLZSCmCNKLQgyRz6EIIxKvq9ajDSdhwYQalEhgRjbOLUpwlSTYAN0YgOEVVkfDD6yWGMDyW7ei+/jGqOM2S6SHPfxRBaPJ1gzwZJqW/B6JeIiVQ0N3r573zodMbKwoAKTuwML5v7Fv/1zxGXBF48vEHzAH//xn+KXf/sN5rjiy6+/wldffInHl48YpxHjYQ/r+FAPzmM/DJzItnsALMIYXRY2Wzg9nxDCwGKF0ygjH5CDjjVo2JGn39eKCmc969jJWErNwmAxHAuCc5jLglySWIjbxubZjoNz0oc2yparFogkgI+AedaCigK2XNIyWCigDD/UDkQ0kIYNEi7PJ1znqxgdMFNknmcYMsiZx45fvHyFYRhwOBxgybW4VIp0fLWilAVeoU0fXouclDFrquSCy+nCoC0yEAZUH9q4c7Y9Saq1NjF2jcUAa1hVugXpIGcIF/S3QBN0X6EnONuGBcmuV/0iY3uaoc/Oett0MEpl+jkq61ysy4rz04kZK9bCTqaJA2s+0ZEA/TAZ22PkqY0SkDGNTdeYshqbKhebaY2o0pXXRIsgxVveJmibZ5837wfqws8VQGYwYikrtPxJMSJV8GeVCnKGu9QPj1jWBafzqX2OAmtBhM9VkyfJuEmUHCjnjOv1yiOsywWpJOx3E8ZxgHOWwc80IwwOxgGpMKP36blgni+4Xi9SYAQczBHOuQZWD+MIImnkyTP23snoLHfG3717JyyU3JJ6Y22zOCcQ1iJAHUkMjlHu8dbWfcMgFwan7lnnPIaBG0a5gQ5sHlFLwbKsDIqkCB8CrPcYd6Occbbty7ZH5azzIg67rCvmecH5+cQAwMRFvg8sbJzFgr5WZhGRZb2WgIChDr0Il1Eu4zaNUkDYAgKC14ohBEzjAGudsIm7ox6ABsre3d3BO49pmpBzxvfffcdnCRRYEAMN77gZKSPbVcA37xzGYYQhHsshOWuWmUciYopY44rrfGnPWHVR3rxjUd1pHDHtdvjpT3/acrYPz094Oj9hWRc5B0vL64mAmvoo4BBYb4hguBCOPEp5OByau1kFcF1mfP/6B/inD01aYCcapvN1FsZywePjI3b7HZ6enlAKa3p67/kZEQDLI8hGYjpqhQMDMHETV1UjJsaClDiv4LjnUHLGus64LjOeT6c2cXE83onhDqNWy7qACIip55pqUU+wkrtBYgzHGW3CG+eRliiC/pHXpehYXecVa1wkbwPIElJJcLDwfgCRwf0jfzfVHDXG4HQ6YZ7njZ7TpjaQ8dcghgaau2p+pXm7Ampy2ZLLJflZNe9gLc6cE5a6gKBsLcg6TIhxwRBG7KZdc1bLhTVDUy0AJaxtNImdx/hczkAtWAqDwJY6Q05HUsdxBOq2eT1IrbGpPhSIcjoitwIEBBsaQNbqzVJR7fZsMzCWRzhLrcIOv2C+zoh/t/K+mkZpyo/ttxTgGccRzjs8PT2xfMqykatw7kZMXGuzp/OJR/w/yIi1M0i1IC8LfOAx2uAHqLkQwOL2T09P+O677/DD9z/g/ft3+N1/8rt49fIVwjTgcDzgs88+Ra3cMDjsd9iNA96+/gHv377BbrfHNA746ddfNWAPUstp7TDPM9Z1xSR6S+fLGefLCX/653+K4DyC93j/9B5EhMtywW63x4sXL8RsqiClBTEvqJXrahU251qDgd8YC0rtzYzT6SwAIzNaefqHNQdjyliWpTXUjDVwMMiXM2JKuFyvDIoE32LpdVlAYpSAymSHCrCer+QvfIZEGOswjR4uMJsyyahuMYAxTHZIS2xunxznqK8powCQ5q+8FpWNmjnp5FpDMAVyhCLsXj13gdr0dTk/JQAZh2GCMqwqgCVGWMtncnOLREEp2mgDrAmyh2Sh1toZUbQ9EysUqOV9JFHLcYOtudiXzPmoMQgj773f+Ee/wBdffdWIMj/m9aOBp255XVBFN0ITBH2p7f22o606QlrYqsG7Bri/n+rJbgS5cvJcJeGal7m5uWhxoXZ/7TprhTMQdB/c4RCgxVnWsyhSxNttUl5KE3bW92vMCi1eIOKwyraRazdAT2YTH6bWWRbFvEp32llYZzFOI3ct1wXPp1NjIdRapbgVW2L9fAGdxnFkAMAyGDSNugj76FnK3HVhPR/VsBHkc4OKSjnViyfq44w63uWE5is/AACSWPPBo5uiMUy2COrmd8r27+TvNRCrGx7rVo0Yh1FmhWvrci0zg2mnp2cYYzCNI+tPGHbTWte10dnViY/HVNA3uXSeWxJQ2a7coKBWKyMGVmaBDUAMyMSoQum1b/iqoCl/Xx7/YGBHAzinfwUeBGOq9uGhbIQi3TBrXEukBdFoQAXJd1CGVKkFjF8ZZq2RYcBMgCdsij/er0VE01cYMkh+AMHBBwYZFaiFJGaanJdaWRuhcDHu/W0CU0ufFeZ7U9p4ahbwIwn4gLbubAt4RcEZYQeWKsWomgYIcMQMAtPo3CCC9g86u6DV5q0o5b+vLXHSopjXFNNo1W2O166sf2xA8y3wpI/F9Pf/+NXYcRrUq7p3CvDWYkxtoskfjxY3cKr9KYhJrE9j6r+nR0ItYAaXxLetHg/6uAoRYZ7ZYSmEcMMm0bgAQ/jw9IS4zPjFV1+DDOFv/+5bvHv/AQXsHPPq1SsME9O+p92eWXmGmZaDHwQcZWHunJmlVWrBMs9YlhXn0xl5zLCG4L1F9a7dO3bWYU2SX+mYeAIs2n0CuHtI1sDJ35PcW2WxqWbANrYZ0jgtgIMmBorvKFipB/2GrVNLBdP2+P1brKu3zClOYphGfz6dZD3p2ACwzqwxMU0CVpMyL4yMShQBuRTu4W4fibC/rg2r7mLS0FmE9UcWKDbLmVlQSDsiHXzbFiXbs0FvDRSQA0Clx+6PnkoDYfRs1/WcZaSy3ScpLrd7DQowoI+g58zNoZJ57GldVvgq1wpzu78180ILmfIst9+lNt20LTBG8sPU3qMip02yJKOdnMSRxGBsPlvuh4wsa8PGQMVs0YR6szCqiLi7q+K6tVZ4Jw5kUrT5dWlrUteuGmGkmNve39rZp5RwuV6wiGsdqGKcBgwDu1qt2k2tooMk40BlKdKUiNI4OfCoB1E7d5uAacsTmKbPMUXW87piEUFwYwwcPKx0p9U9shZJz4mbeVpQs909tYK25VwAcNMEc3COwQHU2sBENqNBS4ZzjGJ7zQ1GTsYlB1FGB0mDphRYq4U2MymWZeXv6zgeehOgDldFXQQMgz7OO4B47Eq1CXUUy1rbc59S5PsKKAdx1LNOdM7ErU5jce1swCEMTeZgWRZ8+PCe974AC8F7QEwZkoyDlbzpdpcKL+wc70Nr/uXEQFoRhgwDmQxmOs+A23We+bwYBhhn8fDw0DTf1hzxfOnOys706YHNkd8ajd6HljfGFGHIYJJmHQNg/Pmn8xl2njHtdh0sI2Lb86o6pa7pbeacGVhQdg1qY04yW65PJlAlZNPH3zSCV2HdKVuXZH/FFLHMM07Pz40ZOk0ZzvXGkrIZSsn8PJ1ttQ6P9irIJYAilD2q8Z7XHTfKOa9LMWGeZ2FOcSBhRp06grNExjDwyN26sKslx4jYAAP9zCbZYCyMzTdnIvBx7i4xu2q9hv49JYXhhhdfc0qprylhBM7SILteLyiFdRmFAih6hZX3Mbj+Uw0gXfMkhzEzOqT5WrVeY9AuyPNYZj7znOO9CIkvLMnB64HZQcRaOBVNWzCVPpWQqbsnA5Wbvq3ZynHkOrNe1On8DAKwT3vRY6ube2xanRZCwDIvPIq80YAFhPDgPQbNAWU0NdfKzE6oXmBGjaXt6S0pAJARP9GJff36Nf72l7/Ey/sXqLngq599jWEIePXyJZZlxtu3b3hs23u8ffsW18sFX339NabdjkFg+c4p5+Y4rjGp1ioadAZr5Frsw4f3mMYJ+92OwcbCzpL7/R77/a7lvylrrpmh+l2ct1TZO0IqWYX9SoTrdW6SENYY1g0TwkSpBesaRa/MwLlBzAt4DeeSYWs3cdjiDldxZFP2asw9uVkXBnqn3Q5k2RCnyjmh+QukIVJXbl438smmsa34QNXEUj5AJ4+KNItZ0ECmLGBAhcdx+ejTmMXXVgmMfAEcj42RcdOMJUaACrys/5aytGtQzSlmFDIwXn4lDjKw+xEZiHQPKfbBF1M077E6Lebw4uVLPDwWXOe5s6X+A68fDTx5OQicUNWYEeRgyMF6pdZuknJ5FWEuWcujQzGvN0Kw2660PkClc9eiqPvarGCNYZbTNE3wgQ9g7WqyOn8QUAmw1QJwqKG2h1ArW/DGlLHERQ7g0rpIzlp4CSJqn9ppgFoEQ5Jn0qfUil0bPEax2S2F50m1g0NEuC4z5nVBTAnHuyOOxyM+yZ8iSzcw5YwqB/CLx8dGkdaRC+0kxpxaGVSSCgQnPdeg89y1sq6RdQ4+BO50ib4CUGHQR6606I5lFfYX/70LTrpTckJnMBJrCAn8rNRNzekMshQ2MSambgaPeWWNA2MtbCn48OEDloXHUe6Od/j8s8/hQ4D3Du/fvsPlcsHf/e03uFwuePP+Lfa7Hb788kscDgcc744wlbv12h1LJUvx2x2ptEgxoqtSpNsxTrpObCseUimMhHOkAamrme0H8k1AIe28AEtMyJk1baznzkZNBSQRpFYg+LF1xq2zIOckyC4yDuExjEEOZCcH6cp6MSXBVc9C7tL9N+AxG9V5YLCDA+80TTJKw/9fhYRJXAjm69LnmdFnh3XUkfeLaZoPqofmhCVkySCDQbFYKtaYULNmcKYl39SeAzNKVN+m5gRCRnAelagJexbIPvShMfRUT8kaYn2hLNR4YU+1EUXTWWSqfaUxBgCmceKiSBIFAj/OKuw2bQtoktXAYGrfoq0prhN6ElpLRZIDVAsEFrcWcE/iwLIBV7ZdSWVy6O8SGbgwANbyOHFOoGyAzGPIXsT8YQ2K4XVdZfOTCKAG71FByLUnkbUCQcQnU0r40z/7Ezw/PeH+4R6fffIKX3/1Jf7um2/wf/6//F8xDAE/+/nPsT/sENOKo7/HMO5gjGOXrbyglgyfCNXwH+cCQiDEZQEyFz92shjDAAggm/OCZSktvip7Qws0Z1lsv+mYoKBaZpPk3DuIi3dYxMEnt2LZiFPMFnAnJBVE1mcmhUGOooFmjCQUMuJVeWSIRWIXEBkMIQhz1aKnD7xg4squYjGtKCXBedPkZxSv1DFBTsyLsA9ZED6XLF1H/tlcRYDTDrCWELwTvRtxJ6vgpoU0YqyzOBx2rbvG4rSEJMtWWSh8ngnYV/jc0LiuQKUyXJCKJDKmgXX9pYlgH2/R81GBYeud0MXljCnbYkxGtkWfiUQINC8JNWU4GATrMbiRE7oMFHPLktbPdN4DzvFaUQBDCmFt4qjts2opNdbiBkxmsEr+Ts96EEDKlq3SmZSCK/Pa1JRAgQQP18BqVBHszYRcuADVpDYVHodY44rLsrQYMcj4rBsCiAyMFRMEAky2sN5x8bdoM25ht0ljsBtC05DUr8jslgUpccHuHBuQxFxAIu48DGMHplPG9ToDJOvGGJBzKMSA27DbYSSDFyliXRYsK+vIWJEj4HM/IqcVpALBVWOrFtMET+GGNZ8KOy0NXotiLhwtGbgKkOFz0RhpuhiD3cjNn8OhwBgrzFUee1HgVBN+6xwMHGAMcqlIJWE67OHDgHVZMK8Lvn/zA/b7HQoVFlj1js0aBByAMShG2ZCqNchxPsXCax6s/agsIRXdt3KexnVFrJLbFjGNqN1IoJSCYRxgncPDwwOzaKgDaM46BO8xr0tjuuScRXOL4/pCC5brFY+Pj3h8fMT1MouGpQhp14JqCeNxD5cSXE54/OQl7u7vcbmcEdeIb1//AO8cPvv0U3GX9bh/+Yifxl/H9XzFui5488MPiOuCuC5YlwWX0xUQZaVh2AODwWG/BxnCiVhQf1kWhCFgtz9gfX7GdRGmQvU4ONvYjdqAdNZhGkZh9uY2wvPtd9/Ch4Avv/6KnzMquzquS2OFlxR5T3pxPfO2AQpZRvjneZb7zvuMG5wTPn3JWjrWO2bfSOMMBDTjiiViBYOpIQQMYWzsw5ozjGHmmEaZmBNSqXj//gnzdYYbLAsi3w8Ywogp7BjcqSyMzbGZsC4RwIxSOHfLYkLgrUNwFfd399jtDthNOwAVl+tlk1PwvVkjg4tbzS0+JyTHkZiZq0qEUOscV7ChxLLMfIqTTq8YLMKK8uOAAGbyqodsqRXIFQXE/pZVz9fcGPfQkCqhN2duvORUWhx2xHptqbL+XzUVlSouK7PofAgwBITBsfh04ekMFAMfdBohS+FchSAB1MqMf9WHDIFZpjAQjbEjjncHAAVPH56wLIuACBVv3ryGdw6H/QF3hz1evXqB63XG5XLGNLHG0GW4sATCuqIYwpITlhyx5sg6ZH7Ayy8/x+l8xi//4A/5vCIW5PfG4v7+QUyE+MQKXkW6R/zGr/86fv6zn+Hbf/INXn//A4Yw8h69u4NzFu/fvca6LDifnnA+nVvz3hiDv/3lX7M0iOH4rvk9qYOb93h4fGygRAU7p69xwfl8xjLPmK8zRjNIg/GCkiNev/4e4zjhxYsXDTBSZiszcR3WeW4OvK2hInsrZTaPmqYJ3jnsd3sG5nJCGEbs9weskRlKi4BkDy9foJSM6XiAjpFf1gXP8wWPD4+YhhHj4dBq3ForCiXRy0t4d3rC8/MJ8Rtu0v/0Zz9hfahpbFNGVHrj0ZguIo4CFuUXjGBZFnjPQLTKYRjDY2qwvN5iYu0oQx4wXMd898O3bWJpfzjgJz/9CecIOaEaAsB6daVWLAr6Eu/VeV3grWU5FAJIxp9RKyyomS9oY4PF6plxBtzqdra6xxGM24D6gmjZ4OHQG3EAUK0BlYKDTDH8mNePBp40ObDOgWoB5c4y0G6mtkZbgipFMX/ZDftAOrWtONXEf4NQFmFWdHSebSatE5tOsQrWpFZxtgYO4eN/orUilbobY2zAE1NC2XFry27YMiYA7ch1Fob+5ccsBhiCqUwPVdS4Vt68ivQ7x+yiNTHgpHogW9qmAk3tfkriXtY+h6mgAS8idJHpakRzRxBRYWE0ql3lGXzqMC2PKYn1ctNHMrXZEfPJVARsMy1waKdShUz13qH25wt0rSIrLk5WNX9k3EIR2HmZMc/Xthlp82z1njjrhHLuYJxD2YgLN3hIDjVlZxnqrLWGPMtz7Y5pvG71PvFaENBB/tl0RUT4OqYigSIzM0lAPw10ingDHWzVQKDgRAMi2trrTENlsZjNH73TVRdmiw+mzd2rjbiuCb52DnYpq1ueXl/vEjAYt7nn8vu2AcWCv26AJe74V1kC+l8lo6h6LxXwqa2YAsCMk77St8tIcd4NAITNmtc1cctI0vuo7ERAGC+k7CrT1zz1faFbQWEz01aH3ujOalJw4+M/HLvQEj8QjyqX0m3i9UpJOjkGqj+k8ZOauJ9saoAMj0RVLtSVIckxAK1TmTJrTehDUqBIE+1S+IA8nU54fnrC8/MTvv76Szze32ONEafLBe/evcPLVy9wPB4RwiBrU7TBSEcu+d4UWXiMOUoCYxKL5ToHC8AEg5QjUhKtjdxFgXWEUNe3sgE4RBXUSvJsiojAanOCqfm6141hja2cktwTSTSM3tv+mdwp5z3PtrVooxLaseJR0yqjRAXZqoC/RI7au1m6CfS5NyBL40nljiygYxpqFNHPu1KLjLABl+sFFRXDwGLEBrs2Opul0XC5Xpp9MaG7KymNW3XgtnCRdhuprRcRxpaCC9S2q6xTas9aJ1j0HdvO2MRkjnv87LZmB9j8nq5/BXOqPAN9U2PkfHc8FqxdeT2DlR2yBYgMiBM7+d8WUNp+d21QFeqx2SiwVDWhop7HVI5ipc+Stxuk+hVGvrveG40deqYws1OSawmHRcaOWTA3C6sVqJVArSiU725tO/upWpAFmt6HEbt3w+6mO0nUgT7KtuYowKY0/Coaa8jJ+AcLEguTziioDxTDIupyXLV7a6y466heoDxvXVMpZ0BHvyoac6K5ZBE1rZ4GWEoXuZYie1bWmVFm1AasF/0xMwS0U1niHVmOnXofyHTRdJYWMC0WeO9hyGAYR2QU0AXtmRs571ouoaOeFVDuOGRv6DPWsUMdo9O1ugVtU8rCVKG279ueaOetjJnKMxnGsTUDFZynSC3uARBtOHWzlFVouv32NldMAtYba+GIm1nOe5kC4IkGZuMIO1FG/Ac7wZUB3gW2tr9esSwO0XtY67DMsQFuBWifweYBPcfSXCllFfi1IMqNkeCEkZ2BxnTpbI/cRtA5z+33lnP7DFMMCjGjjQiwVfMIFpgulceuU05ynrdwwkCHszAY+J54h5LrTUw0ZFCpP3ttRkla3ZrmRBqLCKjUGN88rpbhquq+GGYRwMIUA6oGOnateWBO4gTb1uZGW0new4lbtnMRmmApcy/nAjK5i/BDf2RzQshZWDcufBUap6V5oz9rJGC3nImkCehvYnRtUbGiP6pei0Gz8G0xi35ObEkJilLpmZAlz7ElMyvFQDQ4C4owl53UiFzrtK8p+T1aHq5rkwxA1YgWIjebjCGklFkHNDFbbZ1XvgmVYw0ZI+DD2hh7ZCyMA0t+yPrPpSIWFhXXPcomMx4FxE2xpuHTha/bjQHXL24IGHxATQVjGJAiN6S8Y7c4ZddayzljyhHBBhgrMixYW0wzhkdArcRToO+DMLCweZ3YrMJ7h8tZgF0xkagpy0QEnxUhMEvKONvqEjbo4udahV1VS0WqmQ0sSv9csnKCys+nlLgu8nobJH9CZYF5ZzHtpmZGwQZOkg0Q+nVIjICsn1Kz5K0Si6lgFXKED77nHMXCGGWkb5dwzwMUpNGSszeoJfYo61LuUavZwCPdKScscUVIUd6zN0oBjSdoume6dmspyMQZuI4802ZPt2uR+2Z0HLls9vJmcW2gprZnZYkDujaVqVzlmpTEgR/3+tHAU5i6DaklD2O6RkcqCcjsJEGgRg/UAiGmiJRjCyC1ViwLHxrWO6iInoous5U5O380ar4UJFkOFgWHSB4+64NUKbipPXxCbTP0mhSxNhBbt7cDwXIAKGtqzCJjLarQ27ZFbzvIGy2OD5R5mSWRc222+eUw8O9sOjgPdA+SQJZywg8//IBSCj7/7DOEEDb0Rw4eMa4s/JzZHafkjKcPH3gMaHAyqjYwu8BaWBdYyFFBv6rF72Y2VTeNdNM8cRffUEWpCagrqiZPtgDWwfqAWjKW9czP3lgWI3WeC8pSYcIAA8I1XttBzVR1oe45CxM8BmPw4rNXKKXgcrk2q/Wn5zOP161MI/7sq88RfMCLu0feVFJEAhX7w56fkRQ7KcrGqBsgoRRQKSB4SWB43abIBWaCWG97z4yX3IVv2dmQYIOIMzqLkrlgO13OGw0lgh94fjzngpgI62KaLtf1OvPs+1oQQsD9wyNQC/K6AinD5AIPAw/b1tJ5XiRJzPDBY5oGDH6ANw5O0koD/qqZBF+s/N0rWFfFVgKZRZ4Bj+CwOxH/KcLUgwBR8xyxxojLeebO2MgFWrVGWFzSyZeOkassoAtbAQt8OH0QVuIGBJLspgumM0MxiRaUjtcTwBo9qgdQui28sgypchKp9rwxxmZDWgsL8i7LwmOXew+169V972wQsJzXZcyskaB26rV09lLTKWGBm55wVaCqMLpat/vA462F9/css+YhBETHs986ilkEaCUimMpU42CsUF153TYQGcy6QetaWta5ygQbBpDjvQ7IvPw64/R8wmVZWKdLWDOffvYJjCFcrmesa8Q8X/Hnf/rn+NM/+VO8eLjHw90d/pPf+R1M04T/03/93+KH16+xO+xw//CAly8/wf3DA/aHA8g7FBS4ymOifpyEZaAubYB10lnGCFMrvKxVSwbrOmO+XuQ7MrWcATLHq7lWELH+WMoJJRbUvCIXAIYB8nlZmsMWMzEMxmFA8J6TeRAu59iSCWaMmDZ+V6XwHmjkbq8UjDElLOuCy/XaGCfazsgSM2POsN4jhF0vXMXNM6cFVNiMgcD07WuehY1QhGV4Rq0Zc9xht9tjd7fDEpkpw8W0bdoS//p/+p9wvpwxhAHH4xFff/V1G509n89Y1xUP9w8YxwEP9w8YxpFZL1Lk6YgIP7EqTZaCpGurommOtFHUXIEqySIBKJwoZVRmnWgCXIW9SIQw7ZvOmhb+qeS29gjEwuxtn3NciOlWqNrInvC7EZ4m7Oj+phCs1EdnsyTYdlOkV29ZZDiyPiLjG4QgjqopJil0E5zlrrae81YyBS3YmXGXkNbM49CgxtbS8fpSSWzYSxuzkrxauvi1MUCZqRc3YASwFotSKpaZi0kDD+/52e2nCcE7hVNY80k6qpUMClnshwMceThircPvX3+PWAtiZcHSeVkwjQOGMWBZWZD8OrOG2jgcMO12ePnqFfa7PY83WcvfxxDgiJnQVQBadI1PgEfsrLV4uLvntR6TAAFrC+ZnexYxbWE4zPxtCoRVPgQYHwDLluAwhHm+SHNDmlPGNSOMYA13fuVcMXKvhpE1O7RJVGuV9chCrQAwetZuRC59TVlBjwyhDsAQPscyzziOA7wPAuAxqL9GjqXWBd7rkc8ag3bwMtJQM05PzwxmS544jgNQgXhdUAQInK9X5MK6UNrUcZYlFYZhQAhDE7xd1xWVgIfHRx7VTLHl0AMBNgTcSRPlfDq35qe1bOTgrMNlmZFSRM0JJbJO6tP5WVhSzASedjvklPHuzTusy4JcCsaBx/3mZcGaEy45splIBcaBNXyGYWhg0bIsePfuHZ5PJzx9+IB1XfF0vWB3fwcQ4e0zazPt93uc5xmv379va4oMx9rz6YQUBkz3j5zcpAI/WOz3O0zDAG8tPrx9i8v5AucdBmPhNjHEBI9BDXQAXC3vs7UCrhBMMZjnFXE94en9B8zzjJcvX/J33fFZSsR7slrI6NTQdbSkOeVEsFvHIbkGWbDMEeQ8gmU2gzEGpoZWaC4L57bGAsMUmJnuHWplgLOQSCpUgjUMXqzrys5ulQ1/7o77Btw/PT3hzdsPeD5xvv3y5acYhwHH/T2Lvs/XBgQ653k83gRYsuAJUtHxY5HD9ioiVO4cR8cYWXRZJRpUCoH1dDn3jcvK4OSwk/E+I2OWVUwzeF8SAZMf+GypakrRx8hYOlcbeCrwn3C9LvKZrP1GhkCWc8F5jWKgQzKKVFud6Cy7oHpjkTLrSzEjqjtYG3IgAlImUOG61FoL7zyLWhPw8mHs36VUdiTNmWu0ZPHmDUunzPMV7HJNMIHf4/7uJeIacblcscYFl2vCX/zZn+P0/ISvP/8Su2nC7/zm72JJCe/OJ9ha4ARUUfCilIJ5XlpzzluHEjL2ux32ux3iunIcFhbxeBgwUcU9PeLu4Rl3T3dQaYK3794irhEQ3d51SairAWaH07NpDCXvHcbhJYL32MnEQHq44/NR/pRSwKQ31kT2PmAcp2aM0cCTXJHjyjXWEvHmhzeiMzcL+EYYhxHOB9RdQfIJau5wvV5FTiUwq9QYvH/3ASlmeDcgBJZa8SHAp4Tdft/AzyVGdvm0Bs4xQz6WiJxY/+rx8QGffPKqNWYulwueT8+sQWxNY0g6x6Zgzrk2aqqYRUGF9RZBRujJGFQB/nLKgDUIoRs4GNF5SjWhEvAo2lin0wnWWjaVsA7OMjOzVK7DecqlMhs/sVEMrEWKBamKg6i1GEQfEsRahdfEOmfwEAdWi5r43GrGblbH1vgbKdgOAEUa3krs4EkaQGcCiSSGEAD8h5lPPxp40k6hsbejcRp0dfyBQ8YGuZSDtQqtWB+Y/kxjDpRtZ8o09HzLLNJZ59ZWgN6nesNgYCSTO7WK6G2Bp9Zh56uECnM1Ronp7JO2UExngOj75ciFJzvn5d5pKQVGE+3Nz9+MKlS09x0E3FJ3gtbZkc5UXGOb5daRu2EYGF8JdkPltjJq0d18VBNBcQBNSjg76zPOneXFRTZbowqriPROQQ4IFbzdfBn5foq6xzXKvSURXjPqYspJpY4PGiOCb5VHa2rlDuQwgGrFOIzwzmGaJlRwgahBWA+rVYSXlQZt5ODWAp82DAA9sLXzX7VjVbpws3ZZuAtM7VrVOhdAKwJLKS2IcNLXGzf6zHl96PhfvdEPMUQoRJgXBqfITDAyj0uE9rnOusbeaZ008FhLyp01oZ02TVyrINKd7VS6flHl74+qv5PbOJbuPz2YG/BKaPenEoO2qq3ArjTSlaroYv0AyNjOyCCD5CyDkbonakWuaFbu+kz4GcneM5vAKM+bn1HtY6gND9b3lTUvB1v/HsxI/BVmo45oNcifoIwwZXSUNifdO4+6N/We904JM7lKUYYX9fXVutHKAuBL5v2/eY92fVU6wyKgreux8gFiSMbriJmp83xlgKQkAAaWAKoZ63zFOHh8+skrfPn5Z3h8uMf5+Rkf3r/H333zLa7zjFevPsG92PNqkt31VXQ8hlkX1nnutvBNkngsMvRaKNbK+9J0Paqu69XPEmy+ay65a+SUDRtCAQChgOeckYhAznemXBVtNtMLUlMKcpQRhlra/q5gxmVJItCbC6op3EFt65yZVNypLugaHoB2jIm68wyP1fXrNkbHT6kV00SmxfjKeT2PilvLozRk8Pz0hJyTjFDwvfHey3jRHiEE+OAbM0jBH2286Npp7BEC2Ja+32u9dnWe3TJV+wnKL7r5Z1+0dXs/9L8rUrvpXBYZAy2StPUmD482w3Ydktajk32telp6TXwESDwQoVzdX5AiR9mdek26ljh0dRYsUR9l6kwVTqZo861lKfQYod+9tpsrf1Pbd97+0d/QplBjZIiuohNJAiPd81q4GwoBxpven3y4cx4VwH5/gDEGh8OB9TGcAFnOYRSR35T4sx5fvMQ4jTgcDjymCDlPc273qN2/LOxXgwYklloYk/VSfAKNHaS3YgiBweamGeUaKGStYaFyZT07dyMKHePKhZu3AvC2RGNzPkOS3Z7zyRPShddY1vqdyFgGTkhAQfTOrnMOGAYcj3ewhuNrBe/9lDNLvlX5eUPte7LWShLQsTamuH6mJTa80OS+xQkiPusquDEn361pJqZ0w47VMShmuXAxr+6+Ol4bQuzxxirruWCN2kxLzUjEEAEij6B5RZSx3ZwSF67iCEUSE5hJamDRWRKdGc1rcRIHxWma8PbtW5zPDIZl6hpDbYdUyfmJwcieH7DLKskz1PyqP//NvtVgB8kXBMioAoYpmwlVWD6lsi6mdVC3NyMdfGuc5DfMiGIpAWbrtTgoX5Ysi+5iw3gt64JUMgK5Vo9sGe+QdaascWbX8M8t84pcEpZ1budHcNJITyop4FhCoCpDxSKuK4N8qcAYxyYGVh2RWa/GmAxjMu83yb+0DtDckCTXUQau5nmdsat7is81lIJKOsFAQNGxOjYvsdKAr5vnDUgOsNmlWvfpBIB+bku/sI2fktv3w+umluwTC/3/kwBfJE0UkOqRFSBt16FptQLfG9EVlGvIBV2fVMpPK47bxfEY4/v3H8QIRnJoYYvWAkQnzNbC9Y33oY2U/vDd9wjB41UuDK4LGzY1TTzTzgQdBdyeZWj5vVx/UQ56j30KpnOewPcmxYgqoOQ8L5BWp0wudN2t+XpFyVmchaV+tLoXjGj86ef49hl6b3XxMzsIkn+w1hXnXpWnf+xmfcrPK3tpTcJiqhmj2SGo4ZbhPV900qKt080ZKteg01e1dIc87xy8FcdHVG4EB9c1P4mZ3pfzM5Z5watXn2C320MZRIoPOLeZBJE1rDFAm+KtVmwNvNpqk+BD19DVekVyGWVU6/nDGfPtPtCaRvdKkQkBILdcGoTGSOdsXeUnCtqu2+zPnkfpq5+tt3mjxA5g+8P/3tePBp5STJwQC7NDN/j23xV40sWjYt6VmOEUU8TThyeUWnB3x+hrFR2NkjMDL863QleFGoskI5fr5SPQwjZ9myGEtlCV/iZ1ULtBOodZEh/4zjIrSe00jTFwIqasAFAbFUAfN0yFqb7ns9jMiiWotx4JWQCfDO0mAOAurbyaZpQEk/v7+/Y5+h30Zy6XC67XK6ZxbC4nVhLMShXZ9M61HhCMRBcWwJMXP6vSbKZ1UcW0AqhNAwPiKDYvK47HI8Zx/BXBQj+M6BaNWlTzn/P5wvoRUUcKB8ScQesqCLpvYow6JmKNwRhGBBdAdwr+deCvlor1csW6skW5ilVqV+J6vohThQacXoSp0CMfwKaNlzUaOVmZKU8tadP1RZ7fx6tukDFwLjc65+VywbSbmgC8sumMdNM1WUoyTqFMil+hvteCt29fI+eMzz77tDkphuCl4+bhA9sDK9NGnwWvly5gyBow3CEopTSAQpk/STSpoIGs8MGYsyY/GTrWGtyA4ENzg+xYDB84IJ7iRDUwsNjd7THksSWvyzW1ZMIHh/1+Yj0BEIwrSCXhcrnI+Edt97V1SkoVJpF0hclxoEyZrdRjZADJqnMLF0jGGHH4IVQSNonEIgiARQC88VoisjZYSQ1gKqgiOM73ijbJWs6FmWoCyiqtWjV8zmdhBALCJqvtnreYIsXXEDx/p8JArwEnCQCwJNZJqmAx/KQx0nvs9uxOltaFY2DOGL3HfmDasbGEb7/7BtfrBSatXJQGhzwXXJ/f46dffY5/9k9/Fz/76U9wPOzx3/5X/zX+7V/+NX7/9/8QL168xL/4F/+i6WU5N8AYD2s8nPUYh4nZobnAkEPwI3jYvUB1amQiD4yhVZQcQTaDbKe1+zAAIKzrDG0eVEBELpl9x4LBtoteCugUvG+OjzExOH/cWxjnYI2XfRKZbeMgDY+C5Xpl2nZl3bfdYc+xwrAtPZWKmnMD7xQYybVivV5BFZjDyGw6ayDKWtL5ghQNDs4PIGJNDh5lcoiZR+v2+yOmaQfrA8q6stPgdca6rDgcjhjHCV98/gWGMOB//Nf/Iz58+IDrZcY0Tdjv9/jt3/5tfPHFFy2uq0tPKYVHvCHFbslMY98k4850TT/I2c3jUhw3QcAq+oGq06djxdLsb0luf/VRwVJrA7UaHCDnmrL9QAwwF1R4cQNzYs2tZ6CKYNZa0UxAKuQatj8jCVDJoGRax09ZiesaW5FsDDvTsuhpj6HOh6atw80tEXYnoKrRh+2JpZ6lWqT28/U2RZP/wAjZJlEDwLoQOSOllYVs/QjvLLyzDUgoSYuCWZJbJxpkCTGtSCXCBQc/eOwPezjvcX9/3/QwFxFNvbt7ABHh8vIMay2++uorATDQNBZLrbCFtQcNSWFZeBzKipi1gs9RxJ2jdc2xj3NWauvqbndgEeAc+7hhEVc76HO1TVbAGIMsLLjL5cLnpHFyL/u4T8lZ1glLF6w6rqIgouli5c57TpwF9HGOr5cqkMAdbwWujLUYvcfd8YgcpdknmEIpHGO4MURwfuCzM7O+xuV8wjRwJ7yNmUku4Zxr+Zx+b2Vdn89nZmBENkixZLDOK86bdeK9b2tf9yRgOpgna63WirrvWiNyU3gdzDPKmlhDLfMZN4kjl7KV4rLi6ekJ5/MZTsSVH4538IEbD6WwML71AdZ37VPV59Mi7Xg84nA44O7uDn/4h3+Iv/mbv2nN3mlS12LRIJQRHiKDaTci+MCaLrXi3Yd3rFdzf9/OIf1uyvDX560jNXwd/P6s+1eRix76vJJqYl3J/bSDqcA8DJyXWYchDABRG0mvlBBl/EXP7TbqKWM4JJIhRIR85dg5mqmNd3FszIJWs6Pffr9vEhLv379HjBHn0xnnyxlv3vyA3W6Pw/6Iu8MRwzC08U0XJlgilJTgw4BxGPD84Ql//Zd/hePDI6bdDs/PT0gpYr/fwxiL/bRrUyLe9vuoecsW0OP7yyPsJCNki7iyad60ZZCnomeeOFOWgiVGPJ8uCEPAOE0NWDYkjDQB7Bh06qYULMkg/8FwGcvABaBjv5qXbq9ZQUEr477Mor0dUcopQTpcABG7niWIvinnFF6A2m3dB3DjgSdTcmO9kZhdaD3ovceHDx/w9u1bTNOEEAJHLapIYiiSF6WTUWM2fvrpp3DG4P/9L/8llnnBT376Mxzu7/Dqyy+YnSjupcyC5Lrg/oFrxSgTMKozlsXhsNU9Ve6v7AdnPR7uHzFOzGL6/PMvUGvFItMmT09PHNNjxvlyYaHolJBFxN45h+VhwTiOuLu7g8xbCABTYR0bRgwj379CvBdL6ver468Wzg14fHyFUlnPbJB9eD6dsSxry6VnOWvmdeW4Ple8GgImv8eLFy+BypM8OSaUIuNzhccrg/cowtBLS0KpSYxEMhxV2OAQvBUZjIRauPv3cLeTvNdB3Zb/7m//En/2p3+G3/3df4ZPP/8C4zi2EWInQHsUh1QUbngGqamXZUWmjEiA9w4usItdgUxWWMcMyVpxt9u3Gk/3pLU95vcmWm15AoCm16ZxWQX/S+b7VsCgE5t6QHCX2PYy72HbRn4VH1D9LQUyjNE6VBrH1MkYW5DxP/T6B2k8GRkrqFKwfvwhuvC34AbVLi5aamW72UI9aFQWplZnsu2cYMq5MYpKyYLESddI/hjpkCqaCWhHqatbaBBxUkggyN/Xj9gwZEQ/wTTQZsuU0oI/tQMOjalkjUVwXoo+25gMWTp+Udgx+h4ApPPdtQysNZKnds6rJmaKkDPTpMdoTsZLH9fYBE0tSPQeEG0Ow9wRXQaPunB2rhWxbXZBOalfl3aqnLFIAmZkoZxrJ7910JU9Zrs1qjqCKEBkyYBUjKnW3sXURL5WcVFkIVkrwCIRNWZPzhlekmYNWrVKR107KpvkNAQegSSZk9dRKl6PLMxu5d5lGR2x1SJGPgxC8Njv99jt9xIY+vWyQ5Ww+Igd74ioIeU//PCDBAErh4rH8biXANAF3RRVV62YrSi/1n5VOvr179nv+nwbwyDXpifF0YefrXbetZsYvBfAicddnRz2WqBrk1ELfxjABnaYsYVn5Et2GMfAz06S7TB4KCHK2wBTbVtXOuYWxYVPRyoVRKaiXbG+Dq0wsqyAi7VWcV/o338LkEO6MlsmkQSCdq9uEkxheKL2wnIVEDHlImsdiDHJ++p4xdgYkloYtJgoXSPnFdQRlwpdq+ifxXbetVFY9TBkwIpdl3548wZvXr/GH/z+/4yHu3t8+cWXbc//mz/+I7z/8B4PD3dwngVpT+cLvvvhe7x48QKvXr7C09u3OOz3+Iu/+Au8e/cB/+x/8U9xd/+Aw2GSBoLFXgSIjbPSRUqgIiLJGVjWGaqknbMyHHjfqYMgd9D4bnCnGU2PoorrFsdTND2RlrQadUIBOKHrHVJly2rcKJJctg5mawoVSWAWxGXhmANmGur7hYFdaYyAsnrGpMjj4ufzGbkwYBZCAHnH2ndQAWlhEEJBStZNAfEYuRWXMusDTHPj2bBTiXC5XJBz5pHc+3v82s9/DcYY7A9H7HY7HA57HO/uuFsocUtFLFXvq4Cp2FBtLAVrWmRgcJ/3u9K3qQFMUG0EjUVVKeXKGJRVTZv3JUBHtTkB6iP3vdvdfxbELl98BmjhUhtw2Ua7KgMFxrCwcCllA+Zuuntg8MlKY0pf+u993/f4QHK2dCMN0UhLqZ1hylwyWhdVZl7nTcGpeihWgLuelJe2/7WL3o40AoB+bc6ySLU62W1ZqXwJemZzAPXBi1mE9uT5u6pYu3UOASo9wD+xPxxaflKJmOEHzkMqanPFrbViXRlQSCnC5QIyDsVKgirXdrlcpJhkLSJ2G5JCEawpskijyH30HDRHU9YK6fvUrk21dcghOZONNGxawbr5oyCs3PCulVh4j5RcoByoIjlc24OVGT1Lc2hNLb/SdeRtkDPQMMhe2Z4bdYcxsNSB8ww+Xa9XGCkQQZBiVHJTwzmuE1CpFN6DqbnJMqhkiPB8uaJCtaio6V0Z293zWlNQG7VF2ODWIoDPyehW3j+Jz6FRQAcj8hUxJ3YgneeWY0dh9C+rjGkYwjRMGMexAWKaD7EsAa/TdVkxzzPGccTLly9l5JKLy3Vd8V5G7MgYTLupNVWNMdzMjQnPH54wTiOm3Q7jNMEFHhlJ68oyAOBxXTYiceLWmpidCgIZB0uyHirvFyfjSQpc6LNl7SPVXwTmZZZF1w1Wbop6rW2IACls1aVN7dBrLW3vlVKaS5WOT2q+pQ5eITD4ve6PIDIs1E4GcY080eC8LFX+fpV6E8Z5j/1+h/1+j2niRmVKCcaIyYaskapjGPL/VzHN2Dp302ZN3fzdRxqhOReZYND6AhyTioNzYuBiDTMZweBvQuXGB/HfwRBspQZK6QNRXU2NnSBmHta6vQYGVfR3WnOlqM5uO/hxvlxgiDXp9P2cNGSNMEuyjkdXvmfWGMQUGUggA5Dl0V+yLS71e8X53ThODdDPuUisQlsvuhaSGAY5a3A47PHVV19hvl74DLAGYwgw8CAoMFhxPj1jmWcGhh2L7YdhwG5iQ5GcFBCssNIcSeKYp0z8GFnXs9SC3W5qzuXGWUz7HY9aVm70WGswz0urrwCwOzIZLGsURtsAkDbsi4Qj1gq0lvMbAvEURmWx+FwKFnFwdc7BkYM1rOXIz8W1a67gc4hQGSyUsiXXgut8hROZjfaswRqZIThYSzBgw62aCyD6XpwiGRgK0MyEDZz4MSuYxvVWgvMWu/0Dfvqzn2IcBuwPe8QYGZCVbM85j8N+L6YPjvdcZg1d1NrOoSwSLlEMWaqcH9YaZpPpekJfM2RtY/m7hnXwT5XteHmtqMKE5KkCId4I4G4Im7ODASg1orrZ90BbqwCaJqXGHSU7MOVZM+R/+OvHu9rJQdM+SotjbA4+09lCgFDLUFnMkXjxacK8ZUmN49g6lY2urclPyVjmmYs1AY62otCa0CxpERROEhojDB7UzjKoQNWxEVCzUFfQCcQ0cjKMYuv1aQexMaa08PVM152kKxREpJNMt6qOa3fkizFyQqKMqk0hV2ttTAe9l4rAewEArARtLfo1KVWLdHb062NfMUYoE6Oxh+S6Uk4oWVhRpMwn/txUKmIuuM7s/hcC04OTyVCM1Rp2/IjXGcu8tiRo8KN0TNGQVi2YgdqTumJgrQpHBh4nAGuQZKX7yhpqRaBhe039bzpjrMFRHR941ltF7VXsmFPONkfuQrvmlDN3JcHXbA0XcdZxErfOCwiETLl1kVX8/XA4otaK59OpAUUpMQIfKQnwxEnI4XDE+XzGL3/5SxYuDB5ffPE5jsc99vsJRIRV5oJZGYsP11wIlNnhLpd8kwTddNqpS54CaGvbkGmgU07qaiAFmBySuq6NMewCMQycTKvArwrBCnijoFOqUQ6OpvoHKwfBNI4CDkjQJ2qHjzcBHkDYCPhlYa7oAaq2ySXn2+CYOZHjGWjVWagCftgGNrT1A074jOuUfb5BQEOHNntuW6xqJ62UipgjFtnPOWfRvKHGqmDg3PG4i+jJ6KWE4GQdckIW5CCFFHwK5hqYpiGQmhZXlffXeBAwDgNSXPHdt9/gj/7gD/Bf/h//S/zaz3+O/9V/+p/yQZ8L/l//z3+J7779Fl9+9TlGcQJd4oqn0wmPj4948eIFPv30U+x2O/zhH/4BfAj4P/ze/x7Tbofz+QxjLJz1OBwOmKapOXSmHNv9qiUh5YVvfbldR9oNJEk0awVQLJzjPaqM1kq9aQABUZz38HloSXGMsYlCtmKx9NFRVGZgmlI56akyfq35Z2FQ7Hq9YJ6v8MSMOjV0MMbg5cuXuNsfeVsUtFMmrivmZcHz01NzJKl1B0OTeI2wUC0zP0WKm3gE0YeBBXRLgRPWpQsBxnmJ5QQVazTW4unpCdZa3N/fY5omHI9HFgAeAvb7PY7H4w0DoFYjrHdm0XHhWQHSURMRxTZ0kyKQgE/893w2Zmn0tNiLrairJkN9UKINTGhyvRGKJiJEHU3AR+OGJMWFxCc+dyvrBy7X1uhBlbOcEV3pavbnXWVfFgGseOTWoNjO7L3RmEAHnbf3Ql3DdP2l1Nevfm8Ft/Taas2SM/TRQBL2Mb9LZecneQ8F42qVwrhjYyACnGhJOOcawKbfVcKExEF+z2HgtaR5QJb7oewM6ywGa4GgeVTB7sCsHFgZ8SylCa9mcUtkpkiWgpi7vWEot6PScj2nMztKHQ8HWO/hfde7YUAi4Xw9I5eC/TiBNvdK/6lgO6E3LLXxpHER4DOF2YdGnllu8bo3V1QHq3+GXk8pWbrvgLY2icQsR3635IwkDUIuYgW0Ndx8maYJMEBM3F0nVEzjgHEIGEQ/p8h1K5t7FQe3YRzbOtS1FUpAtqpZyTo6JWWUXBBCRTUGb9+8Qc4Zh8NB8kGHMATupm++nzLIiKjp31nP2iQ0TVjmub2/NRaPd/cI3mPcTVhTxLwsOD8/4/T03ECHdV2Bla/LeodhHOHuXbsWfQ6qz1kKjy/pWMhumuA/+wzffPNNy/NLYTdjYxgIuDsecXe8a+v97du3uF6veP7whMPhgPuHBxxQ4UPA5XLBuq7wQ4ALHvl04hH/EICUmBUrk5nWC1vzwi5k3jC4xbWJ5Kfa3BEQmXOTjJMU9yGEln9r3pA1FkqDw4oocUqp6cAUYbixNluVwpdjmTL+AP69eeYi/Hg88rgNGZzPZ25yxARr2dnQbRoVjJ2zM6ZxFmEccHd3xN3dHQ7HPQwZnE4X2RddcH4by2utmOcrSATJ9Xtu96euKQ5gtAHeWZaBnMoXaEwaGmip16rNn0VHbodb+ZLukKWgWN3EUFLkCSCuJHVbq+6NvjRPLDlJHOFYVGrF6XQCQHjpQ3MzVtYcO4ERnk/MFCs6CQGDdZnx9OE9wrBHGHZtHczzhqEtNyX4AccDWm7IzFlidzCtyTLH88v5jMv1gjEE3N/d4Td/8xe4nM/4/vvvEbzFfuK82zuLeZ5ZK+3DB6Sc8Pz8jDAM+PLLL/HyxUu8eHxsQOD1OqMmrtFKrSipCDPLY10jTqczXr9+jcvlgk8//QS73YSHxzs457A/HET/S13UTTtno7Bv5nkBQPDDgN3+gNEPsNZL3I2CBxgAXXsUAHIVZlbiM+Uyn0FEOA5Hdvb1qo+bWZcueKg5Uips1hR8nzhIpeD5fMbo1FBjJ3GvwDmD/RQkJ0hAjs1tFobgPDdTnYzVMmBWQQnQRtCyzFAjkHE84JNPXuLx8R6/+Ee/gb/6q2/w9u0Tnp6eWp0XvMfd4YjHx0ccXn2CWNgsLMo6YZmYzt7aMmBVR2s3TTd1R2skgoE21NrOR5brZSA5l4wo8iil8Mgi54aJv5tKEIBBLOssVCzfwKJ+1OBhQIsVDLXhVcHaq9o06c0+NVTR148Hon408KTAgR7ueUOb3wJPWxbKsiwNnAIIXmx8C5jtYozBNEnhaIwAKKXpGRF10MIYczPyxAFEkucKpnwRK+VrUNPOHHAbRFvAkG6ATjxy+OPOq1LdtKMTdUSpqmI/s7R0xh3g4oNyBZmuSK+FmG4kFZz2IqCbUmoIqOop6Hy+Aka8HPqhV2rB9XJtnWEWFHcgpE0xVrEuHAwY3UQrXq1lbQBjCIskWlHGccIwMBNnHDFfrzidT01QbTdBuhPihiLFnB4WXUuK2qyo0+uvnQ1R5JqHAMCYZi1cilCKyQrFr+B8YY0AL8Wk6h5smWgxMZ2fRF8FYAAxpgxQBhrzS4omIljTGU4NTBSb5JQzUDKKuEctQpf11rGzSJGiq1S8e/OWr0GseJkIaEDGIa4JOUdxxrB4+/Y9lmUGEY9Kvnj5Ai9fsnMYSTJhpVAi07WlejeXwYwtwEhEbHVdtEtlUDyPTLAmkIrhcoFonFjBE3WnFikevfdQwVbvreBYLArpWNnhJqE3RCJKT+wMVnXvRGxpoVXAXzUHKLnAVl4rWzakM5wE6RrRWCKZFlJUDara9tAgOhS6xrYAFQBsQVd5m14EarcA2wJxo/sENH0PHXvZAn0pJ2FvijZMVRYEWjHubAfjyVgBVcX1icCHnnQtSdZ2SSrI2QECYyzI9ENjmWfkFPH48IBf/OIf4fd+7/dwvVzwd99+i+WyYJlXrCljGCfEmFHKjMv5KvEOOJ+uSOkN3r59jxAC/rP/7H+Nz7/4Ai8fH+G8x06KhJwyLAGZlftBVOGsREudvaoMGqZNjDSeEzq1ahYTDfn+0vlLHJ+U7bRlnTnnIb4MvD4KH7RWAA7rHCoRHICMLEB7QinAbuLucCncvfPest33BjS0otV1FSF4du/jBKjK89dzbo0r5vmKd+/eYxcjwjC0hsR+muAdOzqRqU3k3xiLMAzYgx3qyrLgcuVC/XA8trhDxGyI4DzqxLEm54xZRPL3hz2c8wgyptyKZC0g5FwgRnaFpSdAuzFyxtXWwupMEdP2sGweBvjrRkPF9LEMLQC2jSaO+8SV3rZNps+s1ps9uQWe1OVRz3oUZRVzfpFiFOksQs3MmImrxPkGWlnpzhKMuPVoM4bHQBmAKcJ2Q+G0WFmu+lIXvi0offvfu1ZLY3BJo2oLtLVYK7GPtT56vKi6OSQXsobwcMfJ9zTy6JOCoQ1oher6aCOFeHRaOvbzuqJkbmzlshldIcJumjDJWLwpRbrP6o5VGzA8+IAZc+v4Ayw4rfmXFudpXrDWKk1CA6/CwynyeU29+VgNQM5gjRFrZOMRaw289XIWSLMAPbl1zsNIjJQuUGvkeS/j15JPbtm/AFqOWKVQKrU0AxsFAHLODfDkFwEkLod6NcQNLpLzsjlzWtajyznj9PwkY+ErwjA0mQeOHXwPHh8fAeLzh2UJSgPu9DUAKIGZxQ00kzNUR2KPx6OwV3gMeU2RwZbCGjucOGzX14Zdq2uxcMPXy2dZMggiij0vC48c1Yr7hwc+jwVktdZiXSO++/57OXs81iXi6cNzczTU0X5nPciz0YMVTUqKK1AJ3gXkUDCOnAftdnvkzGP17969x/V6hRYsvH4s3r1/D0gDAqQC71X2HBdW79+/h/fcGNHnz0yLPpERfGddK1igOn1ZQb594PGncWgyAVQqCgwz+SXnY7CHc7MhDI11VAtruiqLSRvkzlpUU5s7tTZF1Yq95MKjcDkjRx7jvHt8ADmLQqpDylpTqbIRCVB5DL1mmJzw+OoldscDvGWgYggBBAPvu6SC1lrPz8+IMWISm3hrNBYnWEsAnOBF1Nai6iDy3oLUMAxSkbCaNTYxgwpd4kMK+1oYOGbdGj1FOA8zRseHuztrEd3ZritsGQOunbDQmOytumRGCLnhNkc1prENl2VpI/KaC+poM9dDTrRYZUy9sAZXLjxSq1pj2xG7WgFDHQTXZql+GSNNtnEaWeNpXoQRzzkzasGnn3yC+XjEssxYY8Sf/vEf4cXLF/j0k09RC+cq5C0qMt69ewtuxC149+4t3r9/j3HcyajaBKfjt5JXcBAn0fqb8OnnX6CUjN2eGU8xZ6wpC3gWsB8nTPs9wjji7uEROWWcpNZU4ME61o5TYgPfbyNnnkjnFK1Pk2iLObjAEitEGiszUgayaE72PKOiVG2+cF3V2DoNRO0xP6Uq+qYDM9ISJ+AGkoMa3u8lF3y4nDinNhZKjeA/tU1bqeEyVeByWfDtt6+hGluHwx2GYY/dbodlXvD+zVvM1yv+7JvvcNjv8c3DAx4eHrDf73mMzhg2xKkVc+ykAqPado61HVWPLHgvcZsZuCkn+VluDipGoawBvvPU6uJb9uKm7iFIU7IAuaIUNDPLW5IHiYYh5ym6zzQ10rja9M8kJv9DX/+AUbuuJ9M2P0NivMc2BZ+yUFSbQC/MGgeiyO5UckhoUNYvXnJPqq1oy2jxqDR6Y8yN/gqIA1utPTlsGPpHBY1ea62VhbUF2VTT3O1D2IJsHEwYCXeWA+8Qhhak2xidPGBd1Hqv1NZWi/st8KT6I5zPiqXqJgnWhEoL5ZwzW2nnghSzsG8ISeZodRQhRU7AVOm81ophGDEMIspIaNoFMUZGQ2U0xIcBz8/POJ8vArYF1kkigkGGle4+i0FXqCA732BetAqi6TNIidlOKEC1HUxSh71aKwcma1hnpbLzVS4FxXc70htx7FobQ0rFj5mWK8+wHU1yaUIvLLaDV/pP60VsuDJwl0p367HGAo67zihaiACnZ3aHIcdBxogLkjEOuayIMWEY2P3rfD6L9pXDNO3w4sULHI8HQcRFBI/MrxRruq91fzBOdBuIeZSuyHUZ6fTjZm1W6OiJdt5lrcs90nll753QkHtRauhGR1P2EeBgoGIYWcb+tjoXRAxCGmubwF6RZ25A7GgEgIQlY73ZOO+Jq1hSVkMfq7lhA0rirvdoG480ITBWGSK9wOQY1ou17e9pJytXdP2XjwprDfbALcDWEn+JXc4xxR/GoKQiCSwDTzo+4cgix9pZQ1JAM6hu2vtqxy7GFSUl7PcHfPGFxT//5/8cf/Inf4J/9a/+FU5PZ1zOV5RS4YehJdnruvL4xThhnlcsS8S8XOGcxT/+x/8FfvGP/hHsGOTaJ8S4YllYQ6WW3Ngxui5y5+GilIQUVwE1jRySKtxMMEYPrR6TY4ooJTfwUYFTgMfUPPpYdzZcGlrpUDJDiA0V9ValUlCqjjKrmKiO3tZNN7I0sGqNrCcwTlPTryCxFNfYECPr+J3PF0A6npBrG0PgMREp2IwRRqGAZ6MxWCOL9q6xO1JpMaQJrDUGlsxmv0aQIYRxbJoQRuObninUtW9qBUyVWEe929xWbL1lJ2/BVr33ut42R3Y/1zd7v4EyFQLSKfvpY5BG98eGzi3AbEYfceP1JWtfgKe4ppZoWRCqLU1r0Kh4r7AvjbECTPTEXzuCjaElyAJJ3rBlJfP0saDFQANf9Lvov7fvTQCk8bUFnrb3Up0MAb4P2/chYqavsxZmTy2WMXjLLCMWV+aE043SvS88gqUxxToHWld2JYo6Gpfa53jnsBsnqPadlnyqGbN1R0oxsh6GaChxg4rHhpd5wen5WbQKE7vnSlzVWFZT5QLH2p6/EI+rLOuKWgFvLczABe4Gf2n7l8HbAlucMEXkTJdGnHNWmPMVee3A0zavM8aILgvnNJo3Vo3jDXjSnLOCqDQ9pwY+yYrW5oEWJaVkXK8XGbdYcADY0EH3noAb4zg2HcdlXRGvV2wZeO26uYJqz64tMd6szDTduEfFnOEUeKbeFcdmfW6lBlQkWMfj9jvWL6lRmsPa9KwFu/0eYRhEk4zX2+VybSWONbYxK4iMrNkCNb3w3mOadm0/5FxQDOu4lcLfBQAXbaItpn/02T08PMAYg8v1yiwMEXmPItre4loFzucLnHM4n88Yx7ExH4gIufIopXPuBnjS2NeajbJPgsRxZs6IA1tiyYRCvelU5Iz3RsZTN0Avu03VG2kCAjWmjJEYT3J2kOG1k4hHP70LmPZ7xJyxSLO7FF6bWYBd/syMWjJqijgcD3j56Se4Pp9Qc4YX5rk1RsAajeEG1+uMy+UMY9h9zDgPGG0E2Rb3tLlRK7tQK2tJ77sx4jZsFbjKIoafGltJz5AiF2Gl2acN/r5fLWrJIlAtVZjKuIipAM+mcBy9AWjbGSr4iu1aptvGAeeHKtliQOSAlmNVFGFeU7tnPDpWRDqk1IKiY7C1AxRKJtCmRdMA3rq1ygi1DwGgCBuTiGKzPmfJwP7uDuM44M2bA969e4tv/u6XMATcH+9a7LbGwGTC5XLiWFESzpcLLpcr7u8fcDze4cWjhRktg3sSawDO74218IGZSixfwASG0+npJvYEHxDCgGkD5E/nM1LqTJ2Yk+gux65BBwAyrl+gTXJ2ZN/tdhi1ie4AMgNK4eZSKQBKkgaSbaCKxiRltRnDLoEduCdYy+PHJVe5R17uf206u4QOkJQCXC/MMCRhmpZa5Kwz0FFOfc5EhHmOmOcPTYNqmnbY71kUfr5ccH0+4XI644fvv8eHEPDu3Tv89Kc/hbEG+92eRzZjZKF4keQwVhtnqk3L01lVRjwZVsnCwI3w3oGcTnAB/aSqgiuya7Y2EHre0nM3BfSq5BH9BOxvqQ3KJjJRu0mDHIsb8XNlQG5yonZt/+HXjwae+mbub2wksVWQRimIejGDdIZzyliWlQ8PAXCM8LWXtTtfpcjikk6sKKthVyPnPahq0anOAFy4GseFWwgDTE5YY0SKEXFZG/W1imZFAidlndFQm2GKgmg+sAG46lMAXbdFGG83Vrfb+5MEoYwpwTYaah9OaHTUDSJpiMdIcmJarSUWs6YKrPPSdKBUxHEWyvT1egUqYC0fNMaYRndWNlh79bgAwsIFwUaY1WzE33imVjpPZCXBGJo4NxH6GF3JPDfvPNSZK4qIOrOqADIWKUasS2zfQdFSdS5RBhSzQgy8MyDDh3guXHCs6yIsqQHW84iVrsTdngWCgw9c8FmLlCyqYUca7qgIu2dTVCiIV1SMkMQprCV//OQsWRgYoADOehhLLbDOM3eaJ7eHJYfgA5wP8GHA3d0DBwHRWln9Cu+dCGZa+MDzwJfLGc5zV3W/77TR25daq7JIZ3OBkoDCHQGLksDCurUnKaVUZAUHrUXNYEHxmgX8jJKkWTjPukNc4EOsrSHdHmJwSfeNJBXKaOEi1GAIwggRAV8oNkO1sRScCgkLWKUHX621vW+SBJDXEhsMACy+7YNj5qFTZzV1pIEEdR4PNJsqOknXw1Mv5BR05O/AQd/AoKjmmLpwCrDpBWBMOaGmJEwzLr6Z/Wd5RxmSvSnMFpNACggyJC1xoYOMS4zM6hAtJCPdqy3wh5qFzciju+d5xrzMuKYVYT/hJ7/+c0QpEN+8+QHX8wVP79+h5ILDQUB+I64qPuDT8VPsDzvcv3iAHwPevH7PwrKPjwh+wuAnttNeE6wU/LpHUu0aPt56kO9tlBAqrK0IobsUFpPBttkFtTAbshoGmqrGYHkulgycVw0bwlQGBqBKap00SwYm8MHNIDxLfedaJDHk56KsOS36Yoy4ZjYB+OTzz7Db7fD46gVqrVhyhCMGghxxEfv+6QnLuuD4+ID7uyNevnzZxkvGMKKWDrpXAshauDCgpoi8StfWWHz+yadwzuHVy5cIga20G+ht+CyYdiNKLlibnmACJYIfAgiyDqQho6LO4zi2gqyFfMOi+zUTd7jk71tRKiyMXDbOcgJqKnOmFVuS3KOdW9SSbH0/ZVaoWx3QgVkLTmBTShxHrEXJZcNqQhsFvraR9gIn+m3ODQjeAZXjYivE16UdcE41ReS6Gi0dXYdRX1oYKLBtjGqxaO7yMUtJ7ymPL+nLGsvjVXJ+KDigbqeqsaiaGVuWamdpcrd/nmN732nH9tBRYs+aWEh2XSPrzzxXTPsdwhAwz8yOWoQ1MoSA0/mE73/4Hh/evcVut8PPfvYz3N/fschp4ZEyEIP+RhoY48DjHdjtPvretYmnOmmWDaOwTIlDdcz8XMMwMHhYShvLvVyvOJ/PWJcF4zjhJ19/Daf3QXIGsgwuZdFc2u0P3PgRBmWtzPhA6Sx7ZbKlmFCJCwlD1DU/pSCsmZ8Hs3K1q95ZIL2ja1BKRlxWzjfmBYfdHtM4tXxlFiYaBCQtKWOdF1yIEO4djDNYI58LKScZp2c2lPEOsWSk+YrdbsfmKtLEQiYG1zbi5Oom64fQHKiUWe2dRwhh0xRlDUAFwJRBz/uK859FRnbWZYG6JJHcryoIb5gGBATkmCW3tJiOB4yHA3+OuPDVWnG+XoALsN/v4Jzj9xbAtIEs0iS+v7tHqRX7w4RSCx4fX7SYeD6dcbmc8frNG2bx1wJDFv/Rf/Qf43h3xOFwB+uM6GqGJuBewQwtQDUW2QlRAVPIui7WSt58RSilMfqnfeB9JWuOLeUXxGVFzewKqc58T09PzdTj4fGRGQqZDWrmZeGxqBCw2/E4VowMfj99eOK8NLBjlXceGonP5zOPUD3xzzy8eIQRxoz3Ho+Pj22PNDYfMQDoh8CjkaczPnz4gForPnl8wG6aoHqfqnmbpRlClNmK3hpMwkrrTSECpz4F3lsxkfKKWkmNpzk0u+d571GpSAODC/FxGLs5gLVNRJ8EyOVzQsFVZTb3qZImkKx1Cbm/l02xZZ8yuQHwPnTQ9qPfUXBKHRobGUAAvw7eMtuFyCIME8glkPXcRCgVzrE+znzlGPHDDz/AOYfj4ShTJxYBoY1pEhFiYo03ZsJ5HO5cq3PPzxXrMuP1u7cAgF//jV/Hh6eXMNZgXVf82Z/8CXb7ifNcyYV+/ms/k2/FTK5pt8flfMbbt+/w5s1bjOMOP//5zzAOo4ArAoxZCwvAem6SxbQixYgPTydm0K0zj6DRW4TgWUdNpnPI8ASJNnXWdcU0TZimHdaV9dBUc3cYRpSccbnOICj7jZAi72tS3S+qMBQAMjBWDHak4V/Bml92M0ZnjWoHc5NdmTdV6pqCgst8wbqsOD0/8/qvpWEA3LizuH+4k3iwIGfWvaUKmAJcnp6ZlVY5H5umvUzOJNRsULOBpQTnuUZ3xyP+ye/8DuK64rd++7fw7t07fP/993g6n/D+L57wichY3N/fIxgPEzYMXXWdHFgbUMuUrGAowCOH3kMIeg3466QUzo2tFcf4YpBiRooFPvjWECZDrK1NAuGWTsdQXELfjwyJhqE0J/Xfc0YmSL1n2l4i0qdQ8RGU9e99/WjgaYswV0GfFbveFvFAp/OrPgokuVYbcv6eJCCOtiJZ0Jpn923rClRSkUgSkWXuUEk0a+iuMQam8EbLhW2z9fDTl6KnHXjSl9ww0iKasGFxt/dXUW9lZWliqR0CHsuIWNcVrtibRFgTvC2TSRHIPhJYW5Bu91P0beLG8UW1F1TLSn9WE3JnbLtmfT6QrkXU/y/fWhNgWUG8obUIMfz+Vv5o56N1c6gLPBfq91OTw213SkVjW2IPtMImiYAidxDkZwiNXqkoNIDm0KYaXIAK1PZiiKnyLGze5mHbOuxPXYu+0ta0BrTNs5fnpuCRsqqISlvDqP3njNHrC+3ac8yNjTQMAx4eHhl6KKynkXOBdfy5aou+qXfa9TMzpCd0VYKDPt+t8Pftn3qz3vXvihSV3PkrHOS0QCJqBelNxwsFN3foJt5weqEaapogUuWkHwUg21kwjGHWm6KvlNKAJz40FU2q7Z7ovrKujyL2cbqeUDcWRruH+n15n207Z6RCkB81FTTZqpAxU8PifVQk6qqdu3YLhHVppfBXADtnpuN3J4qWJbVES2OkCsATGQGdZNyuP+IG9hc5pCpxQnp8uJcxpow1LSBLuFzPyCJgqh2QEEYMw4iHhzvc3d0hjAPYsUqLPdFVMRbWZBgqXVtP0HojotClFBGKJt0MYN0H/gMo64M7iU3nRtdAJQG7+8G1ZfMBQCFicdRUBKwW1lMbseB7hqoaKoCrfZxnGx/aarUGu8MBu2lCGAYGDsQpERJHUJVNUlgId7/HbpqQU8Zcu+5f1Uepha21MKVT8L13OOz3GALrczltisia12esXVQT1+ZkqDo+VdZLi+3E97tpZcn3Umbf37dPSdZbEYBXdbOIGAjszBx5H4kT2+aJ3k917tyCNJzU0M316H/T9+0/W3t+kGQ9J7m2yt1KPX+MdTAm3fx+Lh9rE5ib5/wxi3G7trqugf63Xz0btqATx4ZbBpR+oW3+05oZsi40LvFSqujGG2jXBojLbYtdcgaQ5BprajG7SoxIiS3Sm0mIfA/nHCepy4K5MYG4AEgxSUIuz0LAQu1iboGxBjoqM9NaWNnb7fwhZtmZ2s+MDBk5rregHTtU9hGcLQNOzyzVsrPWNSHkLuuw2QPgWEGFc0JTZSRUc712Jsv/LfVm7daKm+fY/si9KYkFYMswbZ4xRANL2WI9Nm0TeU3DswiZ26LFueSI0kFun99uAYEsCRu49mfhul5dqQUm23b2NXBN8gB1oVQIs+U3GyOZLDmrk067t77ltdwo7YWdcRYGDkfLznyX61Vy39wYZ9u9VQo3mPXaNafTDrkXDdRpmmCtQ/ADnp9POJ9OyLnAO9809+4fH7ETsBOo7b5rzGQ5iOHm+fGZyCORbe8LTbtUZsar/hUbWNim8YXKja0UY8sBNU7M89x+VnOPEmPf+/IQrOERWAa2mb0IYh1abWbrua1aoSmlJviv+07BKudcMyoCeMwSmzNiXVcsM7uFPx4PfJ9Klga5LAxoY62P4VhhTuv9ITm3ay1Ng9LYft84b0J7DtYySFDEREC798ZyDcbN5W4isG2C9+ela+Z2eqHWDhRtWRQ9lGxi+abmdLagyrPWs1j3evtNzWE3sT2XAhRuDnGNCTnXeHKhuApQFkY+SbrG4P35fEIIA3a7HeebmzyUm+gMiFSBGw1B9EjR7lcF8OHpCYYIr169wB0KPv30FX74/jXevX2HWgtiiPAD5wvHhyO/b4aw/R1yybJvgLhGGSm0GCyD3ilxnVFygSkFMFxPZf0jOWeqBauQN6xzSGNmEG3oms3alNJxct13yurtf5eh5hEtl6gS8MR8g/eYhfM8bpkLQLXHKqCPDWtNARBIxk43xwfXk4V1pK7zte011pXzTafWhwEmG54YKLzvWV6A435OzKom67Ts4HMhF5S0qfnB+/B4OKDWiv1+DxDh6ekJb9+/w+l8hh8HxJwwTKO4uXeXeSsjdsqONwri6NkMcKOLCNqabfWRLmagNw2Jx9tTZL0nW/n6ue5g0zS+p3LvNddpmJNsuKrtcEV3tP4qjXBCemP67mx79mPQ99/1+gcxnhT9iylimef25RmRt43NowJap9OJg3jhDRdcELyfOzylVlyXFQy4cGZMxoFkdEFza5FgAIC2gXTsZBDquaLmSdxYcs6tO9KTv64no0BN685419xdSuWHbgBQ5oRBadss1sabqVFhNas3jD660HV5YoowIOlG3doJL8uCZeVRjw4m1HYgzfOMy+WC6/WKMLKu1LIwVXAcBzjnsZumhtg38U+iphWhCLW1/HyUlfX4+CAOGEGukwVWvTjzEAhTGEC7imEcRJOCD6Ux2EYb1teaWMA0BGYd6Vw1I/1GRuX4XlrvYcg0PZN1XRFyABlCqhk2RQTRA3h8fGjPU+f5NdlJIsKqVqBbNllM3I2Ky4qoo3JcGco+6wdYAwNqT3AAMNPJGBjP+iLXy9yek/cezg94uH9kjRWr45EsUrlgwTRN8N4jKP1Zfibl2DYpH1CAcwxo5ZhRwSOMWkSlzPo1wr+HjRnWKKzE110NUGsf+9SIomNo6ixzvV6h41BFEnA+vHl2P4StVTEAVO4oo6PjLbQYpluXUhBrlYkzag4tNSlrsLK7ZTWokQ+p7G1LxvmtdAShsBhhkdFWw65iul/JiH6Q3Yjd2u7upB1MGNWjkQOzFsDwiG5MzDJYF3bwsfI8tyBuFLBwTcyyYn0qBgJiTqzRxF8X13UBamU2FG3AOvREZ51nTmqsjs0ZRc25+C+cwBnrcFWhViwsPLibRPfNSKJskEoAWYsDKsI6sAOZMVhLFV2VhOfrjGIcXsKhZB5x9SFgvz/w+FYY8JOffIWXL1/C+RHrmppocVxmJEnQjWG76/l6lfXJoJOKQrLLF4/aqR37ukYYk1v3WTV9SunrVhsKOXOSP05TE0Pse7yzU/izACKL/X6AcY6FugUkKjIiQoIHWhBiYn0mXT+73QHGedzd3zeNMO7qWQyjx25/4NFdcHewyjryQ8BPfvIT3B2OePXiJcYwMvvSOdbeqLznmvmCtSAKcM62GPv4cA9nLTvXpYRnZSaU3hDhazFwwcM4giW/Af1vE/jtSA1wC7Cuy4IyV1gpwJU5pj+fSm4j2UaAP9oAD2zmYVrncBszt6BB66xv96iwAnUkoQEqWqhnBtq890hLRM46ws86fcF4BM8uVM7bNoq4ZTGVWmFvgCd+qSBwa6hs7om+tqMYRGj7XhkwZUNZb+MTkuxuWZJrmqWQ74CX3qdt04uTfy2cOfnjfOK2ObS9TjJmI5oq45cic8Djuvza7fg8vL+/b9cwBGYrONFi4bO4tEZgTfyc5vXa7omuO2UMaZ5inUEqBbEmiIUdEpjduaz8M957lFyxXldo19oHD2s9vvj8C6xxxfn5JGvL8vkGZu/BmjaC2poHct+3rB5jSUZ9NQGvkluoS1lto5gA21R7Y1pDqEIAIjkP1nW9KRQhBWfwgTXFnEdFZ8fpWUVEOBwOstc4D3WWRwCvceEciQgkP1vAI8DrypbkzjlhfrM7Kp+Nt9qExhjZn7mtPwaoDIINbf0552C8ui+KqLnkSSkmLOuMuK6IYn4BQtNAHceRnd5G/p4F4rpUK+bLRQTOB1QAixieFCnQQIDzFqUS1sTi3RlJzu2IeWY3w2VZkUQb0DmHr37ytbB/xKiILgg+4PHxBfb7A1JMePf+LUotOByZ9bbEFTlFpBTbPtD86/Hxkfdj7vpZH2s6Ui1w5LA/HlBLwWm+IOSAoRb4IcDLeZdzxbt377iOyAkUVzzNZ9DgcffqBTvveY9CQKwFxRC8H7C/v+OxzpywpBXxksS9qgiTgRnzKUZczxd8+PABp9MJhzvWFLx7uBdAy7Y46rzj3LpU1CojhoYwOCeMfodzecb56bnFo8v5AhRgXZJ8Hx75HmQPsfi5hTGs89VlMdCcvAHWe6pVxs2h2jEcE+dlwdOHJ7nProE7PHrXWaY6SgZwnmCNEQCmoMTS1kNb79bChSBNv968YH+ogryqXhXn6mR5IiSX2nLMLEYzgx+QCuePqrHHZwFJLUjt/zPIykwupkPeFuPM7AjwroBQ5DsTxtGjloTT6YRpSkB5AAqP2uv+SAISahN5iWsjBCiQTMYilYr/z//3/8ej9Rb48vPP8L/73/5v8K9//w+wLCtOpxNOpxP2hz2MNfjmu79jdtluz0waHzANI9yDYymTnPCX//YvsNvv8Gu/9mu4zjO++fYbmdDIeHh4xG6/x36/h/ceL1++amdeSsyqXZaFm20kYIKMVvthBGppAux6bgHA8/MZORWcA5tnOWuRwYCW9wQ4PlNSTvwewqAaAhsZFWthiZAq2vXwueS03cnPpKo8BRBGrlF6A8oAxiHnzm7WqYiKjGoKYCwsCLvB41oSYl4By3nH/WECsEPOPDI6jgOzTUNo58bl+QQAzbn6h+u1uYJerhfY4DEvC959eI/vfvgeFcDDwwMeHx/xT//pf8wjeyGIW7htOk6T1FwNfAWnlEXOSaIKCOtLG0cEGcHV3JMcak0MJAronVNGkbyu2sqjjtLUU5S2NraCTrIUnjgS/VkioOb+mVQrUBIg5ioKRH7c2P33vX408KSubktc2/y8Fn0baPrm1ZM7I11LI9O6fCgUmQ2WBmlzOvqYaaGYptplaweJ2iHz91/zNuEloqYF1GyeN8modmsL8RXq3/3KjZTrEWliNJIZyZyvc4DZJKgpoZB032tFEacWBZhijAxwkYrGVgAMxpzPZ1yvV8zzzPS/BqTdatfo/dkWvKDe8dIAbIxpAB0nQpbp9USwUkiQsAYqaqMosnhudzswxraOn94dS9wZrRumlHaRebxKHa8262Nz/7C55iYcSn2sQ0fxnPNQy1NlnTU9LhmpyZXHOJZlQZx5JMnpWoEyBW7XRuvcV+5OEGhTBJu29m02UvjnVnxZ5xCGYcPQMiJ0LgLa7XuY/nc6hmm0MtysQ/4XAF2rqrGHSHQpNHHvN/N231W076jfT1lnhA7oshBy75ZrIs+3SDuq2onq3QW62fMkT1OuW1BzY7pDW/vFIk8+szhqkfnV0rpzXTR++6UIyoLh+9iCtHyykZii7pTbzlZbYUTSLcpQvSgiHgXSeMHYV+1aD5mvnYzcA/k+Sglu3ZzC4uitc46uObUtlIp0R6sltq3XwyGLiHmpkmSrkLBp37utGWKwrFreo6VWOM/OSfv9AW5dYWPC/nBkcNM67npLMXE83sEHj+ADDsc7TLsdKrgLpkATdzKZYq7UaG0B1VJRjPbx+OEY0YXRJkRs7Fdq/5TmYovXG2UsABo3qDdZ5Jlt47DGghACu4p6J4fjZj0Kw8HIZ5WcMZuZn5EPGI3BOHI33UsC3I5VYnC61op5WZBS5CTBe4zD2GzNNR41sIeojfpQ1f1FKNU018XgedRB18W6rq0lqwANKmBsRU7CrHO2rf2Pz6LW1dcksAeAfp7xnW07ttY+drftWXGs6exJIgGrqMp9vAXsafNZrSqAgon890S06ch1sfIirA8QNSH33gEVXTQrlsgb8dqqa81aZtrIvWynsQAWWkRtge1tovwxiNe/F4P323xGWSBGYlgHiIqwVRV4utWP3OYXevZub1lzPdJxiO19qL3jyYUrQMVI7GK9M+0sa7zesjyGYcDhoI5BrgnktuuTu62i/rpeiAi2cuNJE3+U3unWNahxb8v66ueEmAVkbliwIQyBREfLC4vDbJ6BjltXUNuvhK5PWEoRFnN/XkX0s26elsRePn9rjwNEjd3bAXD+7lokO9PHs5xz8MGLsLJ2dLHZF1q025azpsKaQvwEu1MaYQOa59xBGiJeO0BjKula3p6tyuj4FfC2slu0gsQV4PMEen6yxIVBdxZttwn9zGq6OrViVYdgaTLrnutahvzbRLXtNwUoNR913reRu9PphHmeMQyDMEqZpVetxgMecTXEzsbOWgH1Kvb7HTf0ZkKKmkd1Z7ZmQARA3TSrFGFUuBHBMVW1iAwKcfGdSoYRTVOjDUkVPJZ9V4kBQ+MsBjs2gxgooGVNP3fk3ramn6w7J0LBykhQMEzvl7EWwzRyUxQtg9rkpWhH0jZXrZXZVTsZ1YZ8Tx1D3p5nOgas8Zx7o3omqylFv6+6TPQzgb4uG3smZxBJ/UcGFZwLZ2HuMutS/ifXz7Is/Qzr7492/TomqOyq/qqb3xNmsDGA7U0dZ+1HDZptjO+1pD4LYHPmo6L/qDA+Gtuhbq6FxZeZvWex308YwtCelV4/r4XUwGI9L0ol3pdCntDvU0qV0b3XsAS8vDvi+enpBmRtzO+UUYibEMpuKlkAL8nN5vkKoOLp6QnX6wXv37+TG26wrAucdxjHAURdi8xaB2MzyNh2Nisg2qdfePKj63UBxYhZkHGolDlfrhXkjNx3bJ4J1waatXcGWc8het3fz3auk9QopecB+vj0Z0Fcf4dxZJArsuxNFs0uMgZmWZm5X01bq6gs5J1rf1uYilJYukFjjCFuwmyZeTyGmQVUE5bVNOHh4aHpE2tsYMzENCdFQ11LrdTCUzpaS232QNF/NYZNnKTBqjK9tRb0lud2b/e9dsMm7NtqswM2f9HOdgG9GhKLticaoaD/8j/o9aOBp+9f/9BGvfSQORwPmIbQAzj0YXSggztAG1aCYbZQSjwLP4vziHMGQwjN3YX/Tro9hbvqMWW+EdZyt8JzV1grFS2e9cZvBYiJCBdhAKnbiYJchgg5JqTSbZj1AWkBvU1oBZuRGWfAEANAzlsMhjso5+sF67pgua4tIc4p4/x8akXoGleknLFrDiF8iOdccDqd8N133zVGll7ztJ/YBUk6u+qCxkkEI5lMre4ID7vSpDaHH2OENYQ4z8B9ac42sqRYqCwlTMOIw26/cZbxAkwpo4aaXkDwgg6j3gQDa4UdYZ2ARGIlaQAYgiELTzLPGjoVMaUEEmCJ2RA7OOkgx8guPpfzGevSdbYuMSKn3MYRY4xYlwVpZScqJywZdrHpSeZ2dK8CAmABzoX2M8u64v3T+/ZZnFgC93f3mHYTPv38k5vDE9iweVowrTCmIgRGro0hARkSyLDgX63itlCqrC+SQ6a7ZQTnYTwBW40nOVC1Y6BiunpokfdYwdbabT9FDpSKwE/TroEH2uXStZpzP1T1+1TITDIAAyuCnrXZl/qNZgWjVgJZVUJas4gHsshjzKq/1kXEFdhs1P0QYAzgnWlxhmOOhQn8/f1GULFmZk9pPOGxBaDEFbmKfhQZSSItQF3rZY0J6lJTUZGElltlP5WioFJBigKe2YqcCtYl8s2n2nTS2l4Uy4xaTANOmXYf2ZGkAqfTGbUW7HYTgApjAWOJXWRkZtF5C7KEWIACg2GMMn6wY+HwdcU0jOx2lRJnc4VdNQ8HFq1UUUVnRSMpZ7jBcxxx4oCVE9jfx8DYKuN4SeIKsySt5f1v7QjveJb+dJ6Rc0GMWvAzsymlLFR+tP2ho1QtsQc4wagK+hEc9a6q9x673Q4wQDVozQgFJC1XzkhrgnMGwTucTmdcrwt2uwO8DxsXJNaKiTmxHoYWz6Xg+++/w7pG3B+ZHboLAywIl8uMWglDGDGvS2PXMqt0U+SVj0AZAV5yZYbp+cy2wk6ZGUSArzDZ4HrlzuHucIAbOMHWgvnjke0GmucsY8NogFCRhMNKcdr2ou4J0sNMLaorF0xWR+VrG8VqgFPDGyp3x6pAh8aikmF2UK2swWVEz00KLW18tIqEgCr/3RrAEYtIh4HBOi5ul7ZWANFh3BQ4qjWpwFDba9sux0cv/T7689rM4duR5b8RvDChkTR546I81402YM0g6sX5dnxEPwtQFhx/7hJZ+8NkWbNGgEbY1kzJKAKiGBhHcCYgpwKTWKSvorLQt7jjaDNrt9tzLBeTiDVGXOe1aW1lYWnruim561O165GzNq0RqbJmE49Ouc6U0zWoIHzZjMZlAYm9gXcBdy/vOtC0AeaYEc8xUXhJyCkjIWK+XBsrNATf4hUqM/qIqOUklgQkItG4JEJaY1vrtRSs0slf11U0PhKOhzsMYcDd8cjFrHz3YRh7U0TWlmm55aZCkd9pBSu4WfF8Obfnr2B5jom/p4DrupenaWpngZEmrZ7bp9OJz2hxb1UmOYDGrCmVv3sqGTFFXK8XbrzNC+6OR9wdjo0BHMXQ5u3bdyjCUIcAc+fLGc+nE8djIhTi2KEuVOzoxo9kLRlZJgyICHfHI8xosCs7LMuM5+dnfPfdd3h6esJXX38NFzyUGZtzgrMeIVjUmpFzbPfqxeMjjDXwgzJiHnG9XnE5ndvaWpdFzs25rYEiQLAyka1lfbigTAIwGKCM5XllRnoIgR34yCBMI0xKMI7PobVm1rIZWF+Qam0jccpQuszXTfHI92lyrOm0O06twWAM68wZZ7E7HBor8/HFIyqAd+/eSZ0gOWnoBiW6z/T8uF5ZJ+wXv/hF21NPHz5gXVaxvAfn1ibCprXVQBy6SwOc14VZf67yZxlLyLr/G6DN61vlT1TOI8WE3W4P7zzmhQvsjIppnPD5p5+KtAK7YZERrR9izdVtI2kbI1OFjH5xweshI61a49UOvmmdN45jywX1PQ04BzDOtcYQIOYGxsIZh4J6A6br2aYNzBw3+r01AzWjyL0JIeDg9/id3/kt1FxaHl1KBNAZTuyqy0xScgalZqwxIy4RceE1H5zH1z/5Gm/fvsF//9//dygp4r9ZV+yPd7i7f8TLly9xOBx4DHRDWiAyWJcFr7/7Hk5cdfVZxcQOg3/0R3+A6/WKt2/f4nh3h4fHB6zzFc4QZu+5KUHMQvWe86r93iKu041AepOrKToKHRqTtun2YkCKCecLM1u9G1uz1Mg4p5P8TBQ4MQweBgZ5FXaYodYocBLn1CzDWYuCDE5f+FyPqYIKyQg3P3sfAoZwxPc/fI83797xswObavGY7BneOdxNe1hrcLy/w/OH9zifznh+ekbKCYfdHj547FLk9WI9xt0O47RDTEoO4Zf1HjkyM3NeF1yXGT//tZ/j4eGBGxIp4a/+6q9QSsXpdGIduWlE8B7eMavbkmHGt0yNcf6Z2mekzHxBbXoipgbW5VqQI+cfbf0bczOyq9MgtRRpTvSXZtsKB7a/3UoNGannqzYcJLdqoNTf38z7973+QYwnLQSss+KSsekC4P9P2d81yZIk14HgUftw94jIzPtZ1d1Ag0STI0s+cnZ2Zfb/P6ys7DNfZoUCcgCyge6u7vuRmRHh7mam83BUzTwLIFmb5EVV182M9A8zNdWjR885JLxAv2k/SJ3l5B2Wbef3uRjgZHa53qUkZTvC6EAWgCNidMYDP2fddqA1s66vCAidEukdUX+WIQSEFmnxHTjn7sE1QKAS+sx3FwYNEXKg9BN45EE2qQlHSuzAl9gGciFnd1mopeJ2veGPf/xjT3ySzcDj3dMAPqxwL/tObaX0lj6cvECDjQy2OqyChQmD28Q6a8MRfO9yQYFtXQFtXQDegatgxYYnc3SvSX0OvGlD3cziM0WizMF0lgD0dn8/WNhBSoeucK10l7CFgqOAnXd7UQEcEnhtDVUEYoDSuq643+/Y1g1TnpjMVdNnWMnK2/bNKJPLAdm3dx6THahvNS0cZOG1773rWWo5sJyArdoowhSRJi+SPPHxrokVfTnYIzHwxcADVYHrivH3WaGv1nGRAIGzu7SPdtZ6ti6ErUgxXF7QNTtgS7aam12te2fW8HBktyEEjoF2gKoXcSZELgK4Lkgv5Oz+LNHvDCD76xbIGvROeTHh/BBiL25dR8HT9eARxJZPCA7cOQA1BM9ZaHItEjwYHTtYQIR4Z/5tUFTIiA8m7p/iQUvoUBAx3gUPrYb4q4GGAYpC5yUxEDaY0LklpdrYnWLngOBCaxVVgX0bhWwQoTW54RTRkirXAYqRIJNrIPGyBAERITjAPtnvTkgxYZ4yRBu1SqofVEBOGcvpbB1nB0ND/+yj1gEZCIzdbLKQCSUh2TnAxCWGgBCYZLrWQUz83vt9M3Ce46O1VaixzPx7mZ3ygPXutRjgJJ0jy39j8e7MMq4ZTs+SQcB3iAGYgLFpnmZcLg+c8ffuqMdpGJuk8RAvtaC1ClGeEVPOSCGhbMX0M6QX3q4d4OfYEI02VkxPiKW7R7qwbowJsLjMnS4o4LlTKgsgb4wA/1z3qmcKdr/VhDE7yyfYuDgM/PDEQISdM9U+698/SincDusIdnBJRpPBW1/uRtr3sVMw1daJLVZVAoEN6EwFL9yDv0/bbxFiha47Y9Y3VsGdzeTdH0G/Hk+IjuDT6KC+1fY4PkDeM6AaRu6h47k4Y8AvmlpG+FmOMa7hWEx54djPnUOh4zmJvxvmDkDUMfZ2jMfw3yeANjsjoHZWpA7S9zyiqY1Auo7hsIVXgbGILH45wam1N//0gloAaD26RqKP2vfn6q82DKYQjDhQS+1dYwmMwfu+o1UCXlAD12WwOoqatpNpkWkTG7dDb0L5Pm8dvOJL87jq70sN3EsxAjnbvqQ7qLaG2XKxmGN/j8d16mcTgVL/KzdF8FElj88V15dX7GXHvhcyx6eZNvQpwc0oVhv30zbE+xvLqwHs2f09Pz/T3UjQm2WtsVkA09TytR8sZ5sm7U1Kyzg8VHQga9s2e198J8uyuA/UaLwoNRBzTKitoCgBLoq/t55Pu3aRCMcRmzY8Pj3ix1/9gMvlgtP5jBgDamHTrhSTHAC6dIYXn/49/pznaTZGQe1Fcba8z6UBXLtGtXWw77j/a2PesG0bbvc7ojFZi+XQ941Nmr0UiivnBc7kicK16eD/y4vZsh9dVn2fYuylY7MAAOZ5QXKXO2voupMtAJNWKKhrMxYKJQpc45E5Ve1aeDHxLEsxQybGYGI+R6bnIAMAYKMM6OuubR6vYCY3sbO5jtpzvZC1/bltKx0vr69orSHNZA/WWkftkJzFbEyt5Cw33yvGVq1quSLfcRM2mGOMtmeaMcLfMlh9j/hT7/kv2OQ7ltPFdCZrsb/HiL+qb78Xbv4iBOsAyl2o8neE4PpFrBecoDDOQz5PtQ0nltw1W9tlL/j2/Ruu16sRDmiaE3PGcnnAtJx6Tj7AJop3H8+619fXDjz5et9LIVg/zxAA7wx0+vjpE06ns+0bdCOIEMigo+QDG1Mx0CnN2ftiIIP/3tbXLPPelJhrnc8n289eD3qObzWHw3sCkP1k52bz6YIxgQIIYmTQVb5sBDv7YGuJjGjP7QEoG3sIEdO8oFkzPJkjOxu3ARWCmDKmacblsSHniQ3Bfcf58mCs19n0l+jIvZeCYsCTr5QQbUzfxPXfv3vfTQZ8jbx//57yQBMlZnyyyX/OmYMC1u7OJu35gxtmwNbS4Vw47k0RZ4jbVAwTMMuTOUHRJPSY6+u7L9i+cO0fZvXqGomAdMAJvjesHnrzw7/g6xcDT3QPEMScsJxOeHp66kXR0Dnyg03hmkI96FvB6cJ4/r9PpwU5JSx+eABQS0ZaSCaMxUQ955HgiwXh2/XKTohZFeZgzmSRbBVOFnMUJ4ZEbalolNAD8ORMtTizqPIXn3OGtogaaqcgO4PKRy0A9I4VhAe8a1w4sHO/3fH121f8p//0n/Dt23d8+fIFnz//gHfv36O1Sq0mC851I8CwTBOZQIfuQ5pSf4atVoqkmTicv/K2c2FvpiEShYux7pWFsgqur1dcr/aepgl1YYLkDkkhiLn2pL6Jtrqh1oLb7c4EbiI9GjEip0jNFa5Vo55bMeEC5ZHwwrazGPVDzAXWum4O0F0SfE2USoG/Wimkd71e8fLyivV+x/und+xG1oa2F9xfr70z8/TuHR4eH8j8qBRYjjGaoxTp1KUMYXYeHG4VyU5V02oaVrVbrW+1AFBMpxnzaaa+gelVCUKnT4sBOMGED52xorDOKeSNnbyz3jh6BHNzZFC+31fs+0YhOwiZAh4oAiiyWgpaMSE4VQrKqqKq3V8toNLcKOKW0+kw9y+ozbWIBDEMantxJ0RWQgYOaHfpiIHgUouMBcUE8bd9R7ZAv7UdeynI5oTioyyqBDuagzQipKrWitN86jpMjKXG6NPQGVq7xwx75s7WGF+DFUGHsMNYkNHj1QA+ArrcQ2mKfT1Q9Lj1rmfb1Q4Cs9dN2Rg5M501vfuvinmaCDzZqMe+reiMu5iQU8a67mioWGZqHdHdaiIDRQBIQ1VG2RAIBsfEkcUFA+zQU0GrBY9nusy0ulucGm5DHagzOClG2NinaZtU7cmxd7v9UPER52w0cx6cDeLVKxRpjtCguD+z859SMieghqAJLQJzmgfwIIJtd1vdYM0F9H96LIhiydVegaDQoMZYE2zbvY+zBAAJEVESUkh4eHgEhDpdHfRkDsRYjmyaeyvW9c4RuxixmIZCDAG3652sg8USftNvggx9Paf+t9aw180SdwPdA9+dO1hRc29H2dgdhbqTl6IqO1zJGMOu6dJdnXQwcmG/b9u3Xny69kzXiNFDWm3PkoKe5U1x7W53BDa1Jziu1cGCZGjijY8c4tTZ9tW2sah38WJYojsSF+muN82seyPYoax17+xc19w6nU5w2reCDZoQAjQwOaaG4iiwgKGr5/H1+Mdgpd5o8G5qa6PYGqMqnqTZvVfGSJ93VnXGWOs0dwcij6BTB57MuvkIVAZbx34e9LPPEX0hEzFCoFU4ymn3m1X773TAf913ssQNWKiN+hr+/ENK8NRfiqCGiv2+H5ikvk8oxNy2gobS78GdAtetHL53sKUU4BhIq1jL6MC6o+a+F7In1S2a4xtQZSt7b/hoteFli0mza1PuO9wW3cVsOwDTAQEBAkwyIKFNXDfbvuP1+RlrU0QVpJwwX5Y3Ra03SvX4PKI3I2DNFwJhwfPcpvjyl7/g9fWK79+fsSwLLpcLPnx4j8fHB7hz1+vzC1QVt3RFzrnnJKp0pvOipNWGP/7xj8iZz+V8PuPh4QGlVu55HBlkQ3dqniacT2fM88w8WG1QRYDHx0fUVvH6+sp1Ok2YZv5RO6O+fftma5mM9WlecFuvuJuT6raumPPUQfx93/Ht21cECfjxxx/wm7/6DWKKuFwuVshNaEq9yX3bcb/d0FqBtop5esCUU9csqetgd6SYsSxnZvIG5m/bhmnKgzGmag69BbUCOScC+/YVhI2L1ui0+JcvXzDNM+bTgmKiwc/Xlz5K9hAf8G6hw+i+74iTaR+aoPc//eM/0uXu/XuOElpztsPyOjTHOvM9BFzOZ6RpsOthdcy279z7U8J937FdN7L08wAUpmmi7mQtqBtNaZZlIYiYJ8zTYkxRYCtbZ4hVqxN8zLTsBAwWmy5p6w53FfPPO+akx73w8PCA+/2OEAK+/OULXl+u+PLtK1QV7z99RBDBuq6Yp6lrhqYUcd/WzqbtwcEabU0bAVd71g4KA2TNR2N6sZH+FtyfrBbzfM9HalU5tdFa61b0ZdvfxKkQQq8HmsVGznIwRxeYpIEAKtp1UteYeu7oTchpmjFP2c5mGw02PUsHq/ymStmxryv+4e//Hj/9+c94ebmiNcXT43s8nk/47Y8/4LaueLndLNeh9IKIWO7PNfP8/IyvX78a6DTWybrSDf3d+/e4PFzwm9/8Cp8+f8LnH34g2KPA9XbHXiq2rZCVr2x97XBmK7VlW2tmcDUcmXcTsFalq3oIEdPUgBxwuZCxU4yNWa2pgMajR43Vy/NWOUYuJGaUUplT2gTVsWHULO7mkPpanU0r+H7f4CY7tbL5LzHi4d07a0gMNhBagYSIHQFznrE8POLy+AhRRZoXbOsdl8tl5AxgeVBbw36/j/VncYVSFwSJHx9nfPz4yRpGABoNH379468YDypJE/f7Hc7aSimx9rK8ZjOm3cgXYmeZuolNNDkHtQvUGGx81M+psdaqjaQzdgZAEknEwYfzDqCdfYnAjITA/E/ZTPJmFuznWc9ag/Mw1fFLvn4x8PTp0yeIBAb0lJAjX3roj4xXz25UgluZqy+cXkAzyabYLUcb0BpaKV1TJzroke3hR+9CBUP3KbJdSkHdHRDi727WiXXdJCLiwnxL6NYwTXN/1E1dd8no50q0OFqCTcoxO/rs4Am2dTskryNhb0VRGhOl19cXbNuOeZ4AaNdq2k1MrNSCl1cmHg/nEwUSncZr3fCYpC8g3zjOYOqIppKNUEo1QdaECmc8FRPZo4jafbuZoO4EKvo37PsKVaLcefKxST7z5iJwO3UsYs7IKaKdYGKvuXdtkgXw1ayk1YAnNEVFRcXOd6x8P8KH3zujKgpnMvRgzWrF7pUgUEwRpZDxBFgHxZIqDYKQE05PD/1gP5/OmJcF2SiMMXLjKYCqDXshyNe0AqZd4AAq2UcBoQjXSKvIU6Y+jjHjgqHU6+1unZvKgrPUzqw4nZfeoRW7Xx6kPr6mPZB795eskYhpmpGiAHPE9Uqw8fu3b0aLPQ+WRRM+62aJsgmRO/C6FaA2QdEA7zs48JoiZ/9dxyeYmDg7eHzXtTGwuy5NNN0aFXMVSbQ7b6pAIai87UzCawNC42EkCiSD3Bu037+EiICDkwIEMUyAVuyloQRADahK3jXnT3aQEuJdJ1h3iutPjWU22COHoKwDcKq1onoCz+jbhfskBARlLABsbaoCDQa4SXcyLK0BgXRhqbV35FVpjQ7AuoCBo8cWjdQYPpOB6+fLCTH5iLIBdLWgKos5KCieGoC0TNY1qqgiFBT07ko1Hb1+mB+0qGqxnxPs2iBxtxgU4K4ONiHdwTgm0gEQJv45R1QDSzowKRQmPp9PPGyvN445lIrTcqJwNRpqA9b1CgG78NCIGDJHEhvgmkjcz4LdCt9k2j9aG6TxHdWdI5Bl2zgWIRFTbpA5AkGQp4S27iy+AmcAvCObIl2LpmnC/XbFvm/IKffkFIA5PQVoEkgK5kb0lpUyWjC+z7Xb4UIZX7wbKjK0Pkj5074+pxg4EuhaVoFnkQcKVU+R+bypi+duaoWMVNsh7BxGi2mHUTvrVjbXp+nFq8dldD0rB3xw2KEOYDkwAwxtgWPToKkHfNg6dD0kjPudItCC6RywmM8CIAYkkKGTzBULpjHh54ZGNefMCE6Cje61ipJ12As9tTwjdMBC98M4rgbEKH0d62FcsgPSajouMnRnHMyJEoBpnOMDvIWNTzMWqWkAwc58ssnQdYwUVqzAxKdDQDIg7Ki505Qs5vvKYjCGCDdPaYXjUBqYCNdSEERwvpxZHOy7jZ6tZGtGNo9UmBvwVxirNOV+TvlIq49xjsLaCvyAro+nGN/DBuSOvWyoypxrmpKBcwFL10vhu9EUkDBB0cb6CQSp+9npei1+9oBMGfHkGBijhe4y2tREXjk622rrmk6q/P5aqzXMQpeIyD62wMSrA9it2ai4mubHXvH08IRlWnBaTmTYXF+RUkCthQ1ZAF++fcO6rnh9ecX79+/wt//6b41J5M5JbM45s7eP6nbnU3QwpLWGHDMkRFpp+5cIBboNjNzKjloKXl/pHjcKiL2PZmoQtCqHQpqg8P16xbbdUfcdAYrcJxUimmmPPj4+IqdssZzreN92bPcb9v0bIGRiQJmHk93ZsJcGMfau6wXuO8eRN6kIoSBPXCcSImLKXG+BIH4SwYTpDevLJxd4TlSkEPD+4QlTzLjMJzxcHrCEjApFTILHywNjIcgCR2PTFsaMGgyqgPcf3iOlhPPlwhgoQw8uCmsOH+1bt42s2Fqxt4q4pV54Sgx2jdTJmVIkUzqSjQhjWIQQELLJANg4nYC5UDbBZM8tIQMUlxgQmhu3OPBRelxjum1SDQYIDDbLaPh4kzRNEy6ZJhwhJpwvN5wfLqiNDfkpT7iZ+6EYm6k2innHECG2x1DHtWoo0NAw5YAoCbXaGRMY5ZtdSxAfhQZiZl7keX6xc821k2DAU210clM96KUB1Be1mESwlmBHKQPITi5DYCyaAF5fDCybyU4xMXZxIgKvx8e2u4OzWDbeGnKM0Cl3h9vr6xUhUA/vfD7j6eMH7H/5gvX7M4qN6/36Vz/gfD7h8ekJEGDb6DL58dNHrNuGfS80C7AxYW+C5TzhdDkjhIz1vsMZ7TEkhByx5KUDy60VlDbeeXYZF1sHyc6A1lofxxXhmFZKybyP2AQKluAwl2AgIFrgILkBJDEg5Ex5BGFO9haos4aK1eIEIffOam/a2DzxfFwV0hqmSHMJXzPOatvWlXvyeoW0Cq0F+8qG/vPXb2i1IIXUAVRn4XnCRgYVMC80lklTRq1AXTeU2nC/q00A8Jn2/NHiRq0N19crlrzgslwwxUT2fxjyPr0RqJYvWMUWPN875lGqbEDBuWMAMCYYKtC1YwMUWhqNrFR6XuBn9AgRCqiMzxMMjcgwmo5BYbIW6OuCcWaIu//3vn4x8PThw0crMnIfBRNeNYxk2qV/urr5ITA48t+KFdwWKASANEE14S2OlLjzkzFvnM6udtCEgHtt2NcdtbitJ7/IbuLTcuBJ+7XZqM4Ujd5KJ45mSbuqAoWb83y2cSaQ4krxWFYQ9+3eg5gvECK6XKz37Y4vX79i3VZ8+vwBIQTcbnfc72sHnWqruF5fsW8b3j89QRR97tvtOYN1/o70Uqc+js17pNbZWBwETRr24iySitJ2rPsdeU6YlmyMyoa9bCh1B5RJbDYnHAJPLCabAU8P8/J29DGOLm7KCTFECqHXCj2MrjkbrBU6KXVinhU4nlh1xpuO59oaHSVE3WEIpt+0WXHLgorFJCA54vRwIeMsEyDNaSDKsMJ5LyuTeB9DYhV/2NpqQaZBCvVsAB5Gi1ndxkhZ6lYK1uqW1IJtXXG737oYusiHTjG2bY6mzUZ6XAwUcPE8gQONGTJlpMhxIdJMK56/P8OF/XOeuI2tK0PqcrDfwoKtacXegNqAalAxNVkCNUICxyXFXSykdUDZ17wKRSSdkdHvRGof/6yFB2u19biZg11TFgo1VB5SgVTXQXi2ArwnOVbkhwTVQLCm0gY5akRMAtfIgnCNyuHnvePie8YL6tiJjfyevYxRAia/rpFjIpsyQK0+TtsGKNrHg4zRkDJB5loLOLaagF0IRlonr1QC2znmDn50ENvAqMn24OlyglPlYWCdVrsmZm4AqGkyT5maVkVQRFAtVveOq/gInxXtlnju6za0Qmxsg2K72b8TPkZFoM5cTRAhQv2pmPjOaJzHvRQDk4XTaYFA8e1uwFNtmKYMCZMlYorr9RUC2CilApr6M4l2wNaesFQEjb2Lyc+AgWjUh9hMV49rAUaZJpCLbbdC1kbtrOidshdLiiklbNuK5XTqowPO0kUUIFGzIeSIydiom7vvefDqBbd39dD3v0OffQwrjfsNBlZ40phMkNyBiQ4OHcCcfrZawcCYRmDYv/ooqZ9basCT7evGivvNelFVSE6I3qWGdPt3O2HHuXSI9ceRAzhWBnsGPbZ5gsvbmDKfgbhekAAIAZLoGPYmr/BzgqRHqLE90YBori1+RvrzqX10QoBowBiYuMEZPrACzxhmzbrXfYRYtXckvekQLE508M2BOhljYw7ScMTYnq0DT60ZO9p6jJb8KQ6izmqMbbsXreP9sKFHG+gQAk7Lua/VVgta2RlnALLCY8QyzcbkaqjrHdf7HafTiSxKY+6gDeZYiBEhx76c/KxupXUGJ9/joPEzToy8yqULSktIdYdqtTGwjNNpQUruRMgmIeNI4uhhDCjNz0qL18VB8djXYmvUvgrmEOuZ83H0VOyZLjOZ9hR49fdvz91cZFtQAviJhb0zz3s+qyPHKRvzG0++nx6eUFvF5fKAv3z5C759+wJqOhZcDKz49v07Xl5e8I//7ff4zW9+g7/+69+SdXm/9307lxnOqiBIfDTfMMF+k1WY44wYEnKMPR9ojcBHqbVrIJVS8PpyhbPWRAVBKiSZI18I0EBtvGojN2QokQnaakEEwY3JGDnaeG48PDxgWRacTmfUQibDT9efcLve8O3bN8QY8fGHz2yqzUtnmu+tQmq1sSHqpQ7WPnOai5wRgo+UozemY/IcZrgq9TE3H+0357vT+YzzfML7h6ee51Uoagh4vFwIGsTIs71SXDxEiqa7HkuMEe/0PUIIfaKh2HhTiAExZEA5mkPmIUcq91AQio3XWVAJps2mVmCnFNFapJ4QF6/FObqPojZs97XrgEUInah7fLU9G5grWz8DwIiftXAtrFfqU7HfeMy/HNgU0/v08B+6xmJKCSElnB9WPN6fUEvpExb3O408YmAeOqkasBvhzprNR36VY4waeK7WENHaMJQQsIlNEkDs51DOE0IMWG1UtlbmnlprB++bay8ZGNV0jDOq7dMCghxT5phg0d3G6QGYzqFWmHB6tHEv05ptxYSlV2NNzXBzimBmBSn4NVs+oA0pBmDKWOYZyzRTewqKZc44nc94fP8OX1+uuG8FIVSkFPDu/Xt8+vQRnz5/BAS43Sngf7txXz0/P2NeJuQp44dPPyIlutw5EAEI1nWHy0FkG+Oc59nivWKvZNB2WZc0mKtHdi7fi6ekNBtI1pxqewHUQRJ0MEjREDSSddgfsIEqgdIMCKk/e7Xm7ThrCehGCBoCquWOI2pzr0hjrehsb7qxh37drw1Au+PldkUrG8q+mQj7Ddv1jgDB0/kRIQR8//6dExvbRtf7lFBBzVPJ7zCnGWkS6K5ounU2ZLKGxbKckFLGNOeRa9WG+/WO8F5wXs4QB85E7Dn34pd1rerI/eyc67kGgYmOeYyUy/M61v5NPPdQno+WYx4GVPn/HYT2pK2D2daAFx9tRR+/I/Ck6HqwPVj8j79+MfDkjg2jU1574uwX6OKMEsecpgNPPt5RTAC6NdqEuk5EM3s+xRB81mqSLT52FUwgcCdIkKeIlOVtUmovoCkPrdYa5uk06N8HhH+aEtRQfrdrDYfDq7aGvRQyf5xBVIeT2pirZIBtTbGcZpwuM673V9y3G3766SfUWmmj+vqCbduwzDN+/atf48tf/oxv3/6Cv/vPBafTCb/97d9gmia8XF/pPHA64eHhAY9Pj7iYIOG+2ZjaPHOBNDrSpRAYwIsJWIriNC/QSXE+nbCXgoeHh14kx7RABHh5pnhlVYWGgPl06s9fgomK28+UVjpqTOBlsofdcL+vEKBTlTdzQTzOlrvQ9+l8MmCLC7ruxXQctDsp2A4iDVGoL+DdxsfLA07LwnnwWrFvuyX0dPdJ5pyTcu7Aynpf+xpujeN6Rz0QZ8YBLP4gQD5Qtc9y7to7qorXlxfU2mxEjdpbZd9wfX3Ffdtw3zb88MMPeNdt2xdcr1e4fkg12uX1esX9vuLh4R1yysYCEwuYkcW0jW+czmekPOH55RW1KW73lWJ3EBv9SVZw1F5orttm7ku136eD2nAAxY4ndxUbNFNLiIIgZrExB3a/St3ZUbMAxnfJP/UwsuZdLThrh6+VwIQXghhdKK9UK2AjkLXTjFtj3c/r034AQizwHgpg73qmlLouVC3aRecdDOVjYLJVuhaKdXDExQ0F6r70QC+ANhOWJjAesN5vvSivllTdb1cKw7dBrfUuDPUqWo+f2bQV5nkm49ELjkRWSm3Vuj50t+Ln8TB34UcXz4+RDDUCbCyWc45wqjVrbsW+scjrrAVlYjVNriUwAAWAScByXoxpF8luMF2AICwaoRT9FAi0NOyW7CQJiJHFYquMUSLA0wMt4V1rbEpTv1+SS8az57gA90gQsCPteUcpLDR8FC1Qw2Vd7wbIkNKvoqYtw3gRJRsjkafvfJq7uCv3jNlEB9LuW7B7NfaJtz2cpeBFCzXHFA02JuzJduW5l0KCpLdahK5h5Yk6zMDCR9E6iNG0Jyl+9vUiaGNCUvaCJCzSSimem3E7hiGsvW80L/BzkaMWASEZ1fsAjtZaUcHnLpCfjW36Oxoxv0cXQXczU7EkqClgrp4u2BmiKUIYE0zHJ/RGkNioksdvMhWN/i+MB/ZCejx5o1NQWo9rEMFyPqHVhvV+700BaoUo1pU5RIrJE4u+Fos2sgRt/57PJwIBHoOMaSMQY7+O5+jj+ikleDcVIv3+jgX0ZsYS27ZxNDVyz0sQNMtB9sq1tlt+VbYNZS/9vpgHzWit4c9//jMTXXtOp9MJgPS8pusLCtmcRmUawBkc3FOCMwY2VTD2S6M7Upgi9tsV2hqW85mivI8X6udMU88vkmtcHO4ZKoiKfh6JJGiwWGSvoK8hOz+CgiikV0W2/rwDf9TXut1vuCk1bVLMPfFvjYLt5/kEd/Hd9x21NdyeX9l8sM+JPtbXWnc06no2gc2KOQo+ffqIy+XEddo4wrZtG1KMeP/uPT68oxDtf/v9f7NiTiz2tX6GfXj/8c1Ypo8jeTPY110rBXuxES+lfELKCSkIoiZIobnItt0RY8TD5Yw8ZcwLRxc3Ez1mM1UADaj7jn0ruF/vdPecKCBO0WWeF+fzwxuNO3eVKqViPi1I84SHxwfEmPDw5I6LuZsNzNNs62CA8t4sCEIWbACsfjCDmpihoI5hDREpjpyc99+6rpiC0xfrbtMKvSluI9wIWGbu09PljBRiZyxIbz4QSKOeqqDsO15fXm00PNGZLyVs1sy53a9QJbvuqPVE3VayaF9eX/mulWzKdWO+kaels/Omae7N9/v9jr//+7/H09MTfv3rX3PE0DVoVbHtBkCfzx1ErNVdkRn8y859zqYoG9ywve0N1Td5MQ4Ok/uG9XZjDmjXfbmcD9o1zOeDu3cFwEcktQFr2Xim7wa4G2t4SpkNrMqxQzrnwgC2ubMQ02RmVYks4SUudv7QxXHft+F+GQNi81aYAmrs0oMMg8eEPo5so9a1VZsWQAdJPBfdNpqqpBSxlx3Pz88AYCLunG4g2x8o4lrBBBubAjFNSDngd//23+KvfvtbfPnyBQDw4eMTStnx8vKd+TUUHz99xLunR+6ZaaIBioEa0zTjdLrgw8dPcNMLJyQAFL423Ic5ueW3rVbcrnfmOjapMuUJ677i9XaFmwq9e/euy6H4+nK8qFQ60hPEsJwBgn3nePz15aU3TbadmrvzPCPnjIeHi53hHP/qMg6CrlHmsjVkeisQgmmENrhGLvM8sO4DUdZgcdlZzWXfsTtQY+9IRPDhHUHfnDOWaaEe330FWkNeZtxvN/zDf/uv2PYd+7bj4ekJD09P+Pb9C7Z9xY8761jf37/59W+QAvVib9c71nXr4O1kY7pRAh7PE374+A5REsp+HxqcVvI6R93r4rqqNTxMMkB88mDU1loPxBvLiaLhMtU4+F7nKbRPOJDx7lqvPgfD8wWB9IQmxwzMz1V7njrOasd4funXLwaeHGgZC1D7RXoCd7QX7XR7W0gdhLLEJSabgT0Wqfan0/S9MLYRIBHp3R2CTaEnaUcti1r5MjxZy+ZO1tE4NcedA1jlD/PozsfDoPaX7H/a4Tph90bGDQNjnnjYhyB4eXnFtm24Xl+xrUTGU6Rg7bevf8G2b/jpzz8h5wkfP33qDItJXd8p4nw54/HxAdM023yoWvAEtCiSCprRyN1RDEBPAmA035xzvx86hAnkSsq1z/4HY9LEnhCjj5PUVvqzYOGF3v0r5kzihZ8/K2eeAOiOXjHy+eyFmlN+6LVa4U6DADdktsM/26iIgoLes8xMboxJVdtAgf36c86doumiuX44Hl0b/HD1sQ+/3wDp6HtKGZBAdwlzItv3HftqQF4MWO93fP/6jbpR2vD+3fsOmvRkqKldC5/jum643e44LQ9IkQeFAHABbO9wltpI904Jt3WDlkKGDgSh7MiWEDcDmXxtFrtnp64GIgWHPexB3/acBe3O6PExIf5Vp+YfxewVQwOp6mHOHn4I8rnyX6UnlgiCoZYxehe+1wEfdfMt6rCVb2N+vmMPx2L0+CVO0W6eOGwjcAMEvNuwj2aS4iO6/C/VRJ89Bg0guiJGUpBr2XsS4w4+9/sd63rv8SLGM0h39kLe159YAhs7g8yfk+sXVK0Q/3/mOBRd1B/OTOJnhYD+HpqNL/lhpG08Owzc5pDwv9WBUh1AglPKXQPMKcz+nl2QMNn6jXbgcgQBfV87c0FEMNvB7KNCwZK0DpAe3rpfRy2FQGiQfhPaqv0ZjCCCe3sHC+Fr0BoQ3vn0WlUx9Jo6gBKGA6aC7BmolbRK++5+lQwYtufs9zXtDlFq3SXXj4gpIk3DCc8LnXz4bwRDBlPqzdkro8HjLm8aTbOoKWJraDJAJm1WGDf091sLk3bfK8H039xVduzQwyhwMKHPw7nt1+R78Hj9g+XE59STocPPwfai77NoidYRSBagxydggFzH9eyrZZztnkeIrT0bxwEZ1jzr3HTBnxPPJS80RUfu48mXnyVH5po72TQDJMXingvZd4DNGlyeTB5zpn4eHYAq/11J1UYILHEU6fc1zt/SjSS0NpSNwMmUOba13mz0J7O5lHM2Ud9RuLjVdQgcB25i+0UwRhTfwIKMQL5lk+1nj0ezacd4A831MRXoybd/jkA4KutjH3DmLX9XUIW2SABT2tgLxmBr/XN8u3PnyOEZe34SSSe2sQVApNL9NuYOPDCe0CG363eGQHqdnZMc128IJvIuFpdiIBv8fDl3uYVSeC48PDxgmjIulwfc7zf85esX5IPGlb+PnDI+fhj7vOdgx6IZsD3tBQmdFz2XcV221qjXRkaB6TjaudN1WfqeQtdmofMhGUkpJJTA0fookSNieUZMdMeiriPZIE1NnkA4FpZiwuly5vdOU9dxy9aQ0Vb7SnCQgCyu4d7c8xZVoA15jXbYPyMP8IKWa6HU0msU39JiccWZ+6fTiSYceernoetN7tj7Gcim5wZkXyvMHd1hz80uuoGPuvB77C5zR004qKLYe3WtNojChdJVCSx9//69j3/76K3nc67vs5xOAGzc3s8ry29qqf28iDEizZM1S4Y7q+fHx32pzbV4yFKTQP3dnHJnx7SqKHG4+o74beLgtfacNkqEjwVRHyuhhYZatb9TgpkZMNCHjLIIRyijNyfaEAmH9wbCsKsfhTMOejRDT7QfrvCahk2uDcWYYOa4Z+e6COMnlE7R2+ZGAv4u7Xm5DER32PN7Snj/4QNUFcvphBAEn3/4iOfv3/Dt+ZuNDSvO5xOe3j1hMvf4ZrlDTgkKQcpgvWlGAbUWvF6vb+p1HtnWsLOa2puv2rQzTfe9dCC41orz+dzdf51p40G7VY6g0VQmIEUThDdTp9vt2vfw/X7vn5mnjPNlQYSzqbTfq0C892+NLDJ9NYycik11HsE+6TTqNxJA2MzivdfDGe25dE4JMp8Qko3pxojaZpRMuQoBz7jX6xXrRmaZ5Iw0z3h5ecV9veLyQGaxg0rLPGOZJ5yXGc/pFdfrDff7itYG+2qKw1Rmvd1xv6393A/Nzls/X43cs1ujIMTWzde8ptv3nXHLaytg1LXOQOsorC0+OTTF7DwRieg12rF2EpczAGiEZXWC5T8Kbzha3ez4zy/4+sXAk1OlwyHpOR7k/ncigoG/ja9mHRy+fIqxNQOGfPaKXRAm96VWZENTOabkmkU8UF0ADa5DtA3dpdZotbjeuYn2qYyHaoBVQ+v35IBTjGk8eHvIsUVs28ZOggEaLRll0+ZcXWCs2jhQEMHnz59wOp3wH//jf8Tr6yvmecbHjx/w//x//G/4p3/6R/zd3/0d3r97QgqC//f/5/+L5+cXnB8u+NWvfoV//+//Pd69e4cff/wRT++e8Pj0hGVeEFPs9PvWONcaq6AUajW8vr7itt7tYKHocG0V19uVrJyUkCzhrbVhN5aQBLqX7bXi5fqK8/mMaZn6M2bgKHh5eYYosEx0PinbTiQ/SA8sXsgdu4tl37GvG84nUg/nEzvD274xaZvNzcoO5NwFdHnQCIa7Rtc5UMW2bt39L83JrHPt9Zkj4Hq/47Zuxk5hQqCgdkI9jEAdLdHrPph9AJPw6+sNX759dXkRXK9XbNuG1+cXbNuK5+dnxBBwXk7469/+Fr/91/+6oyg//eEn5GnC5CwKYddpX3egAUkSbq9XbPeNYtIpES0XgTS632zbahpcCR8+fkJrDV++fsNeC7aXly7Qz994KKB8T1TTnBLB3liMTMl0C0KCSkRDRFBQwNoO2WAFpLMsOOTFz8gxkp1SG7ZSsd637kxGNs0G2H5vNoqK6OAID7HOXjLdFMYIdprP5xOWthzmi83ZLZgOgRYydHQUmg7qALUDhNV0LXwkeFs3A/12HIXm0Ud2Fa2IHSiZHeJ1p4C8ddZ87SgUD2fuTRYgtR+0FBK80QCgUb/iwdg9PPgZuM/nC5blhHmejJHoLpamrdNGscH1GHr9m4JpbdmByfUZ0FTgLsQuOArrjDYES/hXiCj1liJHz87zgmSdIAdoXSQ+ZjtA52zx0oTHtaLs1G+KVpS1wnG783KBIODp4Ybb7Y6X11ceYgpziws4LcsbccJSCvUZaiX4Ecd7jQZy8nYqSuWIseDgjGadFzENEOq3CSQJTpPb/CZAgX3dIGi439m5DqZDESRAEg/0vbJvtFVzYQrSC25R07Kwi2pG+Xfqf4g9/8aUJztXON5DZlPCtCyMf2Ec2iF5MgB7vwOkcZDOvxxYTUm6kYOD8rfrDQCQ8wQf2fFRomoFxJQmzNMF27ZCm6IURYQiRu1gs9vVl+pFduX4+eE6PNZ488B1pbZtWFM74FaamnHpAVgGsBUfbQ2HgodFMF29hCYZVsyIADEKEBIggZbTbYAR/eer9v3L71HkJSNYsSawAtGswpmgmy4JbMxenWXJzZdiQpjiweqeAHSxWJty6vGCCZx2Vzo/y7KviZ+dmQ7SQ8SMM/i8hz6WgaHGFpoiJRBu9zsp/9dbZx87aHm93UYMbUxgp3nGMk0ABH3kG+3AILeisZjOVIi4325WdHixN8DqaZr684gxQj5ScHieJ4RILTWIoPQ1bWN6MtwbVRxUUKiSOWDYEUdXgkByMqDowHK1qqiU2kd9gMG2V1UT0J4x2/54/v6CUtjwiiliOc19bN9ELDCfJuSWUJUx/3rjnopCkfN5mpEj35k3SS/L5S3YKoJpmXHed8zLbMLTjOmvr6+43m74/vxM4ClnOiPNbDTureJ646jyCdZQ8GIqcLwyZxaltVSs2zNiinhYyC7LOXeh5WLCwJ8+fex7jvqGDTFkxDjh9eUF+16wrvuhUM44nS7Q0nB9vuPx8YFA4uOFzNcoFhvZNJsmRT2dOhMdcOMUQVVvFhYIgJRMAkMUIZt+jjVKHx8fAQNYfa3Pt9QZ4964cIFbF1HvRXcdTBCxl+Fn8+lE1oi7HjuYFyWilYrr+mq6V4nvJTKf3LeNY4f73tfWulK6oRsDxIBp4RjTZNfnUhEE1Fg9f5SPvUHOxh3fUdu2fm7c1zugwO12w+vrK86XC0KMeL1eqccVBOv1hn3f8fLywnG4lGx8Nfdc9n6/YffJDgl4enoPHwcOKXBPNX1TqPu502yELcXEsV8xNoQo7usNslrjRHxEa5AHWmkoSpAipYwwRSzLxL9TNZZMYe4fInJa0Jrivm68vkDtvowJqrD4zTw6YDRUs8UeZ6A6UzGbOYs7MV6vV/6MgY+CoWGT0gQzvEYtlYyXupt8wjB4glDvR2LA2aQ9rtcrcpqQ02Q6uoov375BASxHbVAbwXRywuXxZCA9NbTevfuAL1++AkGRJk6+TKZTKyFCEUACM8+32/dXmgxUAr0uas9cwRyPJWKZMl3ZasO7pydAB1CxriskCJ6ent6A3tfrtU/J5GTGKaZ5FCBWJxTcDCii0/iK78/PPYdzttx9pfzIcl4oPj/PaDa5IRKZ9xvIB2PDx8izN/iZaOtTRcHkSvq+TSnxeoqZaCiJC5KE7t527UEE5+VE7a5SWF8Z+C0xoe4FeZrxb/9v/w4vr6/46c8/4b6u+K+//28c5xPBy/dXrHe60//pDz/h7//z3+Pdu3f4/PETHh8uNJQ4m3O6MzmFk1X366tNc7h2nyDE3LEDkmY23K43vLy+0gQkkAvVGt+VQs2MI3bwy2vt1hqWmTnl3rhupzSYazRQAbS0US9bDlJKxbrtyBNlHvr0WkwOTVlzhwy63vARoRFcz1n/x1+/GHiCNw+suPs5dbmzlA4QucWd8R8OX26DSNHeEYwZyI+/lG0XR9fUikPVQ1HdLNkwRJa0Qv89Qx1/JLlWJLRhc/qmO9r/OUAoZ2+5ExdUuuCrzz02S6IUpMeqjm7H5XLGu6cn/OpXP2LfN/z0pz9hShHn04LHhweUUrtbycePH/H09IR3797hfLngZONvIQSb5TS2gALR3HUkBDp7QbGFrXdcWyHYArGEzSiIONIbLcHFIYnzB8FDh7ouzXWMuErZ0VEGwkHztG5VCN2qWVtDs+TFXSTY0WbXMloyym6Gd/EErcmbhezdvtLMUrYyuPjnDacJ6TVbq61r2Dgo5gWTHDshdq/VkrPBjgBC4xjCvu10VUw2Xgoxi02CYjlPuFwueHh8xLunJ1yvd5S94H4n6JXzQ79O77SkmKB5rEcvqGprduiir3G/t5wSZ39j4KFuorFvwDkXHz4UrJ3V07sAgIsNqpoVsaPuVjw3OwicMeKCsiSFeuEBA/X8c4ND4849OMQIR8WPvTQ5/FONNisQYSyQysJN5PBuxfcl8DYGoT8n7+wU76oaC8eTr33foJp7oQo4cCMWnBWtcv2WfUezwtVFnAG30eU7rXDHus3WRflnhbWDSu6keLvdkfOM08kBBGeZSH9Ofd16LOp/540d6xRJf9p2XbZ+ZYB7ii7T1vdp4L8gWEc6mnOjyCiGIQZ4xLfP+bB9bHTKLlIHSyUlJk/NRpf83QjwhuV03OP9Pg7nitgLF4yu9+jQaP+ZHtMjBphjn5OSMxSpXaE2JuhsCvg6s5Ev3tdg1YhIv8VjM8mvXVvrjFh/Zl5AiGl48ZnaGJF1wxx4esvW08PeePOk/9nv7cwnEGA7Jo9k1jWIsIAopeJ+3zrLNEhEQugxpjWFVLX4yn5a33s4gLt+bhyaNQBGbuAMpUNc/p91xPrdCaxLb2N43ggIBu6ZgLgz3oQPFC59JofrorapMfN85KApkmtE2bmWnBHoP2fvLGB08noC3O8zjhgKX39EG/sIfmidKeTf5edcZ4vbO3TBUHtgNv4c+v/uo9L+3iHW/PcRxjaKxQNYDdBMw2MmBDbqYtpacnw/vv/HpdBwQg7n12BQIkhncTjw1HXvUupNrx72MYCicf5qZ6D4Oni7F9CZBw5E8FfLAGIA0yDj3yl8mXrCrX2tOKvE/7uPdhz/qJDVKMbuTBOborKOdzQABW7yZnslGUjamX+WfyqA8+Xcm677vmPdNqScuibfuq0cVfZ8rGk/W4/X6+ulKc9M7oEGiWZOY1qd/jOMCTy/k733oRmlQOA79gnGfjrb7/EGq2jFlCcs84JlWSxntxGYMN6p62m5xfcxhvb167WE/YnWVCla+rvqfw7TDQBlOzy+9DwcOoCEn5296uvMx5Lsv3uc9Odb9p2gp++dQ63Tc1x///9C3eD71cd6QordsZE/pB1A9gYoGzjGGJfaY5KAkgNaG8d+a8NpOZm2J3re6tpdx5h/ZKjwDKgcf9x3SGDzKWmirq6xcJyJ+vN7OtZ0o2Zqhx38s3qi/xw3ojbLP3yWyADC4yRJinmcKdIOuSnXrHheBj/7x/g583o7cyxG+HtzpghH/mrPYUKIkENsB9D3C8CR+p+/V+ZALs9CqQZfjw5oprQjJcb7Yqw3z7eBMbIcmuu0GaPKRsc4QnfC5eGCGCKKgawhREQzDqguTi+mn2q6XZ0pDurgaQD129wx1feyAQnQwVD2GO5rx1lRnT3Y2EDSpl1jtjMjMdZcP3/lkM8I6wuX/fB41kDTIxJrPaaD8dQbfGq6sbZOjK6OI4vTr3/khby3f5Y9cSFxb6njCG/XugIIMeHp3TvEnFBaxffv3wlihoAYxIxnIrTRwX1bN6SYMOcZc86YJ3OGtEPUJ0Cq5V/uDqdwiRLGeUkEcZgpEGdoVQGbOvDRe7/fWgiYu+NwNVOlnDKC0sAHOvKuY5OGzD0CUf4MnIFZWwNqRbSzHq7fqAdc5O3Otz2IX/T1i4GnnGcevmb9Jz3zHgHYhUf9ECA7xW6QmQ5Uh6CyyLD0PFI/ndWjNmtbNjoNlNJ6Z+O+ki3js/VlI0W3AxUiWJazibQmhABcr68Y1DJ/6exY12pB2qjb1cRK/Hial6k/i3mabdHxJW136hntde8v2BOwf/fv/h1qrfj06ROWecbD5YLHyyN+/PSZn98q/uq3f4OX11f8h//wH/Dhwwf89W//FQB0OivA2e7WnB5NHRhVxaYVEgUpzXicEi7tES/XFwuCBdhW6KtAA0g9BQBt3b3ODyUXDVwWztq3UnG3RewI+sPlYl3NmQKVtxtSstHBeUae+XPQUbCGEIDzuY9oqDI5gyqidbeOycUYgzNBwDYCbKkV923F/b7ifr/j6fERy+nELqgqXl9fba3aARZK7/xXO7AkGYtEbf36aAcE93VHKRW369U6JXQ/bLVgLwUiEctytmdkNPFCpPx3f/s7PDw84POnT1xXrWG9b1hrxfV6xTRN+PDhA+1lM8d4pmk6aGKV7r5TtWIv7PZEo/svy9LBRygF9M7LjG1jsBmyJh5g+J5LHbbETs/0uBGCMfiU42P3+wp3lKmtoFbXewBcG6gaw2SeTgiR/23fyXbqOkEQzt9Pw90gm2NY8IMF7Ir5LLsIhWRFhli3+nzxfYNq43iuUPNBgkDUuqCGynNZjbGwViv2+4p1XdlRnGfEEHC7kQ1Qth1tqqjL1EdgY+Yzvl6v2EvBt68303VzMGRQm9M8mbsjO7Zlr9jXO759+9YTFLJoct9j5/MZIqQf/+UvX/Cf//N/xt/+7e/MvTAjIBr4ZHR7bVjL3kHtPs7sCRkM4EjRqzX+LELvQsMc8GCxpKkipwgRWkk31V5AJwdLxKxep8SCZKdmg9i4kOtFeHEQQwC8uEQDxfjpQJVzwq9/82vu2ZdXPH//ThamMUh9lCDnbN3fO9wK29dCqWWAreoMLztTvJw3LanQBet5DkgfNxF2NGME7Htmc8BsBm76e3LNh6ZkHL5lEBLMi2Ekrb0odPDFmhLxwOTyv1zsLNGDlg8OPweQJaRAB6ijuwEB6I52h/PfryeEYIVn7GdEaw3fvz+j7DvWG/fD9+8vmGcmuOt9AyCDpWK/rzbpYwH+jvzvmwFPLo4rbbQIDFt4w9CDoIMcx5jeBW9t7DVlYxGHyLGOViw5tjjUtSqYG6RkzDtzQWQrb4zri637kCL2bTctRyvAXZ/fuubVrtkZAb4H1UAkW5BMzEz7DQBeX1/RWsPD04WmAKcTIIrSKE4cc7azohjrAxSYZrb9z8C4auCln58+VtObOHaNqmT1CGhq0mrrLCi1gtZjftMGDTxDv39nfJpPCx6fnrqGhAOzquw0dwZbiJjS3MHk6fzwBuDda6Uj0+VizlbDVU0D88IGY7Qe8sXOqrBipTXYnh6FMiy+ufaZWhIdDoUwDmuK6y8AoIgrVPtYExRdLsDv7fJwQWuVOi1BERY6w2kAdm1AqaaxE/H4/h3zgvNimpQNc54w5Rld2NyYC2qAkBeeUB9NqGSsiODl+RnTPOPx3Tts24ZPnz/jH/7rP+Dv/+EfMFnhslcyRapSbHeeZzZCSoEP38Z4R0oFIXIE+t37d2QpxoBWyIBY79T82rbdCgvXLFI0FYg0NC2WZyuAhPOF+U/ZC6IAkwimc8YUyciapgnzMiNEAbxAhOtoNnMJ1D5KfNQOYsySPtK65ImNyMaJBoIkdC+mfmVE3WuvFFUGk43FPi3lZ2OFrxtdr33srdme4jkaDASiRMS3P31FLZXyE0ImRww0XlnOJ8x14X83wIEMPjryue5aygmz5WhjIbKmcPmM7oh42O/R5BNiNsZDDNh3Nq20KLQ2/PlPP3UX7xgjfvvXf8MR7cwx7RiNpZsTPn36ZJqiZB3O04x93bHWwSh/eX5BKQXfv79gmic8fXyH8+mEp4fHzozzOE6JCYIVCt5PzBGTjwIe9rKPQ/ZR486KdOc+G7EH8P15SFakNCHFjFoFKXrOyvxUtXVmWwjmGnsAsF2vylm1qtRoywY2hRAsp+Mazyng6fGMGLhefK1uO9c+97KaHqvVRSkCmDqzhIB+wf1e+oj6blpArSpeX6895tzurwgxdZZ4kKHTtu105vbl8Hq9QRBwOb/Dv/pX/wafPn3GH/7wB/zj7/+A528vOJ/O+Df/5n+x9c36wBt3p9MJtTHXnwNlV75+/YpmjXGkCkmMhTEPwfjTsvT3CwEkjiaRawuu64qyF3x/+YaUEi7nC2LMOBmri4tigK2llJ7Lsb4pnaHoAFUpxaZPSDDIecKUgc10hIPpNbHpJ52p1Q6s+mgHgJ+pu+mbpWgAKhTF9O68xoMAVZVab2BKRnZP4hna6C6f5wnvL2f8KIK//d3v8Pz8jOeXF2Qhe+m2rmimOcV4TDzi29fvmPIEkYTLhUw26mY1aDPiSqSWqyTXCFSsa0WQhlkSgAiZTlgkI+YTyr6i1p2AVGvUbywF2/2Obdtwv98HKGp/VMnuna2eDyEMA6Gg1EtEMSDZc/7BLG1NUbYdyeL4MgVz3QbdCQP6pJqQFv9G2/N/9vWLgSfudaeeW7CxpKB/j/iiPSBr+lZzxYNUH4dwgUYdwrHFkyoP2DH0LoyYXoajhrSSJZXeu5YhBps3z/0gqLWZ5WZDMfAqBCHibbo1Vrd1lNWBqZ/f37btEOyjmN98ppnfN8YPBI8Pj1AQrPJAl/OE9+/eg6h/w+9+929wX+/49OkzzuczgNHtI9KM3sV0PYTWDjo9HcmWnhD6821a0e2PjeEVQ+wuBI+PD7bZUk8aXQQVlhRECUCA2cVLR4y7hoPRhnu30GBrsU0GpSaV67ocHiiv0WiaDoL1//1mAdINoZTa34mLIlc9rjfOwfv17KWgOBsHZo8r6CCYinRnnt2FI2OCRLWFDECCua1EzMuCaSZtcZonxExHrPcfPuC0nDDNC4NsIaXeFwUFz4dmCTCKanYFrSA6dOJ686ezowYzBCImvE5Ghdp7YfPB21z8d7WEvwdgsQAS3haLXdeD/wMiycbHtLPAKGqtEN0hkcXCvm1jD4B7O2B0e51O2pdH/42D1UPmgr5Z9+xMMllXeFdXO0sSqr0L2j/SvlysfjRcpLc2krng5DiE7L0Y2Qxkfb2+di0DQLqFrrPUsgFUXgxWmPFBNS0C63A2DW/ed2ssfl5eXrFvO3Ke+jWo4s3+YEeojRjkoOJhd7iOjLOQOgtH4T2TN10OD1PBhPhjEoTGTp8AEAPc6XDI9xJjRGzt7fNVmCikFQIK+/5Dt8sv2WJTygmn8wJFQ5oSRWdTMrFVAggQRWppFKgg0GISiQQZrcXiujutvX1uXFfoa8N1ZvxcYtPDXe/4c14kAejdd++sOsNT7bmSeUMvkWMHHzjE/oD+Xvhj6ljX6Lg5G0ut4MYo9nusFGMHH9hQ415t/4r8sy5UB/3tfmIU7FvDt29f7ewk4483xN99Op0gwrF4vsKRHvhzyzn/C8ys45N/ew2D8fE2Rh8/1793xKbB2OodV9MHAQAX7cZYfnDnlyi0bPZuaLAYTrKUx7sRa1S17xk/Y7m2KVjuuoRSx7tigh7sjENnXXnDxJcA2S9iIMDQUQDesj6OX8w5tJ/Vx2fp+wri7LZ+lA3GINCdvBAIDAZt0IruphtCRJ4yHh4ecD6fsSxLB/aaaexQY5AxKEqwZLT1BlJffyJYJhp5TDnbHva1D1TxGvFwBvnz5yccchuPGWIMiWNOKYc9AhNuBVDRxyetrqBGjGkSER+tfU+TISYU+lcl0NbYAHU3vP7HE0J/xg4EGisAiiFArQ16YHe40lQQExX2J+bgsJhLnlI81vOzZVnYkKoFt/uNcRWHd9+f+wCie4c6UH4BVkT6fyfD4K2Gl4SAVkFtThQ0rH2tBlurFLS2s8s0WaaQkAObZxKNZYfBFHY3XL43i6cOkPmalZF3qFnME/BhUdgZRfqWseAjvGJ7tYCA9Xq/Q0WQHAz3ws5qgf4hje9oNKqo4VZs7Fh8vamSETLBRui0s/qcrbHb+HkpBdkmDqI1Uo41jwrouGnvTwyIGesftif8d7PGgoeL0LCcyCpzuQSP0xKsMXF4RimnDqp1kE4b6AxngNpkIEgadYC69qWD1aWY/k+0PN4dBMez9fdgK5T3B4GEaGe0Agbgs5yg/i7EtJIUCKYvQ/YSoMFG5/tNjXOQ+0fegCJdi+pwtjcDfaMMoeoQBFEUMQbMcwZ1DD2mecwfLoieD3gtItCDTtehISCKdVNj83BdABypAoBtX5Gys+PHBIPn6CLjPBQ1fceYcT5dkFPEvhdMmeBBzpkaXjs11LxZZ1PwI5cXriXKJZgsy5v6bPyTKRTH5QDPHxm7950C2a436jlvs/XkerKqiigmVB8iUgKWeekAtwNPnluLNQspkUCzHK4lYySrPRehJEGfxrAcjBpIrTtddwA0BKA1FA5y2yP2+O0mH0NV1v+acY9norYRQxzEiSGgGekigmSNlFeeO8Ua+cYmb3vFlDnuWavvPf9lYrV65B4JAaoVKsxHIT6VJX2tp5QBsPkAAE0DlmVGrcncr8c5fWyo2Hbs0wvAMfcdzR7AGW/oOYqDxeKxxcGXw7o5Znpec9Z2mBT6n3z9/zVqJzB3MVYoGOKy6DfbX7NqR7mPXw46HRXQy14skJv4b6FL2WSd1nmZ0ddaYyG273SYu91uaLVhShT4y0tCniacTgtyZjFzu1FnZb1RSLsW6vnkaaLAWIwGYgzxZy7w1qlnngiGEPD8+kwdCH/qTZByxHwyN6oYueia4vPnHxBCwO31hrpXvJir3Q8//Io6Gdrw+YdfQ8FDrtaK52/fOw2+J5wg0pi8Q2woLxjOOEZvGjOOWs4TGRlzMvTZdJZO00zmTYr49OEdACFwByYJPmYlFhyiIf0pZygUayuQyI5pMBaEgpRDtaQ6ROvmHhgaYgH35/Tvsq5AAwJGt8SDpzMPaqPAtqPbacpoDhQYCAflSMn9tsJ7q+4M4tpO6rQ8MaFXoSXr7XoFlAfn4+MjQoy43e7WuYu9i+SMJS84nh4frSsyrOubrfP3799Zh4R7JyUmHE6TT2mwCYodeN5xv13XXvh3xoF1t51mO5+pIxE+BLzc7/j28tIBSU9HvDPbMIQtowGvfUQxcC9Hc4Cjcxxt3CmC3vB9f6UugwG+t3KDBEWM5oq1jxn4xTqHeymIkTo2x+JdDoVysHHCZMwJ1/aiKDTZYDzMFSHZ4eFAgg52zpuCVmFW38ZOCRE5DdbC4yPtUnNKqGVoMrELSGvV6+2KporT6YR5XvD+3bnf37xMpueCfs2tNTKr9h21VSzphNPpwuJVadVIRgkAALLMSURBVMUrEnDfdtyuV/zX//p7pJjw4w+/weXyaO5WZFpmCyvUFvKxS66FEZcOCQt8DIW0WG2MBX5oDDCj9j0dQkAKAcmYbGJFhu6rJX2tJ1g5R0hAp16HQHZVrWNEIdqYbLQE1feY0dvQ0JDnjPk0492HdwDouNhaQ0Ls50JQawSAcbgzFht1BeY8Wzxg4VRLo62xsT3ECpggAoRo49uhx3Y3O0iTgaNlOEd5UePxtprgcgrBkiA/D8gSUBmH23G0yNeFfznDEzYa7AP/vh5bcxEbW7etdZ05iHbQSex9eLJnUdWaDhbbLIn37lUwiuGcM+7XK/7P//O/IOcJP/zwI+73G75+/cKOc0ocIRZFqGJ7e+7P1K+z3+Nh/PC49zwfAHwU6+0oy8/BM0+E3I0RYiMKNtq8bzvE4vJWq+UYoxDxbNrZZSmOog5CtypVRdGGFtw9jb+zNo7ATc6Abq2D1eu6Da0MRR/b8YT+fD73ca9pioBE3O90Sr1eX/s9TfOM+bRgnpfeLWdutPfn8HPw6V/qHDqA5/81mpNZtfMvTTSmiAYybK0AMWA6LZBEseDXbzzPLg8PeHx8wF/99V9hmhfMy4LX16vdM/fHspjuiCiff2MBV5S5WmsNSXmPj34GTlMvNJw12Grt1+zgkz9HkqCGmHWz9yxCpmFtXNfRxq59hLs1YN/dKAS9sBEDm7e7OViafXotDTkl6kwFZkytbkBTTJMxiucZKkCJ8qYxd0yvXWqAjHcD/xpZKVoArYpdS197EgUxZ4JcjULfSUZOl6fJCtkhOP3+/Qd8fH7G8/MLnp9furOUgy4cpw8IMQGWl1YHFgww7nuyDSFo5hdjpCKkGVV33Pc7dN3R9Irz+Yx5nrEsb1mheaHu5rxMZDbq2NNVN2gLZOyAwJMjrx43mNNpHwfprKDWUFFQVS1mA6U1Yy9aPmqjeCKC5bQYa5qjjtt9w+12w5+/fMHcGtI8IQubCCFGBFVMmlkveFFXa/88MqHptFytaIRSB2aamcM4M2K53/qarrXi+YVTBeu6QlLEEvgM8jyZmYVpvgLUaLP4Qm1E1hu9+LPctSkAW2M5TUiWxeVEvUVv5hWfBClbz4X4Gc3y+mS/W+zdF9RWEKNAQsaH9N7yIn8fE7Q2vHx/7rHGnReD5ajv37/nVMMyj4azNZ5UuVLUkF/qJwao5wIg7OKOalwWghgy8mnx/nYHAyZjym/bCm9AsslkY3Mh4uvXr525HmPE09OjrX17HAKjcgjutzuCAJdTwjTN+PD+yYCwHpYQQ8C27vj2/MxrmCes2rBf916n7abp9fBwxjRlLKeM6zXi5eW514p0cBs5S20Fy7Lgw/v3EKELcK2eE47mg0AQY0aKGct0wuV8RkwBnz/9iNYqvn9/xrquZDE1iqJP84Rwka7DSOauN4cFl8vF2GB0jIcY+9QAKK/VS6u4rXcI6PHuZ48bWX3+/BkhzIgpoPq5vAMCNQCw4XR5sKmZCZIyZndFxqhpSht5ssJ0Jy1q+Ai8OtAX+fml7uC0heX8IVAHrVXEnWeiS4xIpENe2w/SGbb+vG4kaBvMQZtXGCxvPZ1P8GkEz1dcFuXx8oB3j09W13tMq9i2tU8ywGLXttka2F0gPUApOIoYElIamkzM1Wof13SWuDdM0xyR8gxo6jF3njIgZJdtG2Pgy8sLXl9fOxAbY+j1pbsSH3EMb0SrOlMsohMcTOsKEtGsmaaVjC2k0QDxPevg9mr1wS/5+sXAU7QEfhQFFPF2d6X+sPgv/aX3WtATLEUPJi5quO87bre1/+9qoyGkdweUncDBaiK9pVJHxZlRIQhytqInkiaeIoujVqt1TsQC2sHNwccGHCnsh8HPizqOrex7wWaiX6UUxJBsYUYAyexJDYhrA3wTCT14AVy0N1vcCrNxb83G6fiM2JHSPrrhBV2oXBx7YUIeJEBDQ6jDDtlG7dH2CmmKh+XUC5UpkzIqNufsuhYOA4tFpAbtoxsQcidKKRQ4jcF0YoxlFUdC7ayZjigfAKTRxbfvOaKjdmh4Z8UPJy8ifEHnnAlwHccNohcUts0jNUCaHexdnFqOnXoTA7V5ZTqZTCaMOUEwCusQKBC5nOZ+sEfTfZhmL874TGJKSBqhSAQbICboaTpN4geNAioDcGq83kF19utU60KzEBY4C09Qg4kmi9BSuNbesfLE2YvlWhvCxC7NG20yUQJPkVagMp4ME9d954jIdreixNB4G5CupWHfN2zrhuV0MoSdoNxko5StVCAqtaPgTm6t7yt2uN0t0jWoXFOKiQxrvACoiUX3IoaHbO+IB8BdhryQdDChNT733cSDX/aXPrbiGgn3dcW27TidL4gp4nK+IOcJ83KytR2QTXDUgbRgSWZMCbG0HgcIyNAhyTt7BBkC5mXBMp/w7ukdHi4P3RKbxaUznKwjFGMvtP19eufav2qtBCiCIBxmukccZiHnz8owDQNA/DARaBcxHN2TYqYO3hnh7x0AgjZFA0WX9TBWEEJADtk/GopmLCn+HDtqFbtdb7LxumPn7rhf+31CDQCyWXhPEg5sQMW4J6fsiwz9G1Xtzjme9HhD0EEkOLijIzaSTzMc97yQZpLi5+MAV7U3NJozkztz5804su92e6+uwcBCDkDUXghHe0fS3yXBZXEWMTDiXxtrwIumsl/xpz/+AdM0UwRVFbUywUZQLKf5EOOOWjh+X+i6Y54L+NlWx9Iw8NGKVIxum3/m2zVsb90wpRgiWmzQpAYgj8XemWwyxNQJYtQR7+x3TdkEUesYx+ouZI0Npn0zjaMQbKzWu+gHbRdbXz7yPE8T2VX9rNL+fDkmyVheU+zvewCMPtr6s8adP4A3X2LdS+m6icfEDwbcd3YkCCLneer3GLkAsFge8Pj40HUjtTWsJpTc3AlP2ZzzmF2r6x62fg8hcRwhmfttg2KvhdfvADnsrD9cc9ey6rAp9wn5g4eKiOiNfS875E3R9bm2zYEne5e1eW1lzZLBKIHFfh/dEwOMQwimz9g6QEuQrV99z1cBDM0OYaOuWaHRajNQWXvHXgNoOgDpzUv/nS5zQNaasSUqAaLz6YQfPv+A8+mMbdu7BflkjHnXavN7gOevAERKzy+CsJHkbFz06Ca25vfOEgspIcfQgRXvGVAUmw+BsaAv3z4ShxbgpkjiiV/f/lYPNIIiFMll3qRtNKFCoCi4S2t4nIgx4XzmWD0ix3EchAHIOFcAT++eEGPqulVuGDPYktr/tFJ7Y9ABxyQc671fb1DYdYqY7hfXxdDFPIygRpqFONCz3u9wp1tAOwuqM0+k9prAa5dp4iibg2naxnlUTK/H72e7rwgxcJQ3BCAmMqxbwbLMAGYbmw0d5IPYuHTOKLKbizSA1rDtKyhabI0K138VatO67lPM/PloNdVYR4J20Lr12qUeXH+Pmp59usXiO5lTsWuBecGfkrFq4YLwBmy1Ci1sikx5QoBg2zc2Z20UPZg8RRdyN4AtWFG/bzuu13vPmx1aDiJI2caU7dyPEuzdBdRWrRoxJ1sF0PgZp9Op5wxusDTNBBfmifXE+XQCbFRYjSF7ZKMIZDhwQzuAwvoz9njt5ASANUmecs+DQwze5+sxvELQLEbUVrAbS8jF7Rtc9xbjWVgMSJlgx7ZvEDH2n4HZYuewGtjPNcr8UA4NyGDSOX6PIhxTPcaHAJgGInpzFTAWTkhkCQVOC7TKPMtBKM/t+/mKke8CA3d4yzBmktFJJdpQK/AvkWK8WUkTLTY7m6LHF1VqsN1ud/j0WWd1WZ0GZ2EDZMbWgmZOyMX0Zj2nTJltZ60KQxQZsQ0QAoAaWdu4qPrlcsE0TXh8fOy5izsSpj72bs/a7pHMNRxq9iOjntdJEycbb24VCAGtDsDOz5/OSvaa4hd8/WLgKWU/LNEPexxeuoh0qqpbyY4i5djF438sxljaVoor3sx68CiirKcIRcS+K/ZScbuvvYOzrrSlPZ8XxCljmp0VAiQrolurVLNvDUFggo2jsPCH7SijJ9C9Kwf0QBxCwO16x/V6NWSxYsmLHSwMYCnmngT5gt+23YrQIfK5F2oG+feQkbXjfr8zkC0Xe9amOwJgmsZICgDs685g1YsW73JZgaOko4oqns4PCBKQD/ddtNjo2VFjwhKHptAwtE6qJVP7XmxkZtifi1OZDyAQACKlnlAGpxjz3fcgYH/6YS5kpxx1UVzImQkvOxFqIEu3RDZqdUAEpCG2yo3tnXYdbIjju/UF6o5wD5dHTNM8PtvWeLJu6fly6lbQKb0Vm2QREQx0UEBqv0HVzTqw2veAQLmXVYFqe0oHnbdb0WIAtFrbP9t39qqxWdHgSYrYO2LRxbn5DLK2YhhsCBEgRDpYzTnxuiyoUYB7xbpuWNcraeVpAhAQLQ7wMN+wrnecTgtSdIcaBlF2XDZAI5oHe1WkVKEhIKYJIv6e9VAk8vmoys+YfwK3KSYwcSjcRRCUbitelHgAEqFIHw8Nutx9+fJnALAgTPDvfl+x7wUfPn3G6Xzq7CjgqBNEt83+/FUhoSLuBTlrdxBrrSFPE5mVgdop1+sVgOB0fsDjwwM+f/qMaSZltq95S2wCjMJviTntqU0w+ODk11lXKogqIM8D/e99HRxdPMXWYojeFTKmioHIzgwqpZobmDteYax328RqzIUjEMOuczCXUq4zru/SgaL7SotqH5P2ZkB2G3M9NCzEwSrTHeN8KYBhOd+fB352LplQOmBgtxVOvcatLEj8M6Zpor134OBIs2Q7WqIGY16MRgU/g7a/6M+4gXptPvLiIwSdLWuxxUEuKPoZOCV29gPIrGrB9G7U6dPjwC/bxg6eFZwi4HhxrQYE6QCeSsHtdsOXL3/Bjz/+iPfv/4qOWaWQ8h2A02Ux9yL0REzfKD8by6OPBXOfMdY62wg9MR9A6YjDR2HQN/FMvfvrmmVAQe1NAAAHA4rQmw7aqLexFzoZ7TtF7OXMAMncyZPFwcASVezVxidy6nHPmShdmFZ5Hr7/8KHHzRxTB+u5brIx9PbeQKt7RMtWTFvCPwSpHQwYSbLt2vFPL46YjLDg9GesJlKsgobawR6JEfPpNMRuQ0BsCadCgOXjx0/IkzFt94J1vXVmq4uT1n0HmmkdmUGGf+V54midjQBpEFQQoA7BxvLEQCaggzXOcvLCdRR90XJHi3/N1+wQjVZV/g5nxa+l5wUDeOZHl0q2K4TsR7WzamebHiLaQUNP1HPOEA0IQeEANXTkowC66YWt+AFkGLsECu4LNFSvOazQbl4YxtCLeL+vbdugK+/hcmGjY11XW0tkOM3zAjJYrLsvNgIT2PFHcycye3aRDZJWa9dkVYUxNxX3dWV+IxyBXsxZ1M9SEeB0JrOrtepLsYPwDXTQCmrvS/z9yZvn5XmWN/g6A95irwRBROyNIm/CkvUTkY2JpkKwIcbU3WSneTaNyo9979TWcDetFp6LxqIw0LKWUYcsy0IA4ySopeKndUOtQEyWY+87R1UlcvxK9c2ac7afC8S31oC73bs1JQfw1LDv6ONhLhB8cnH2aHlkIxNrN61UbWRflrLj25evmKYJl/OF7wLRtIU2PLx7IgjhTY0YDdwRxJxMrsRGMqXRjW67Mw436jDmNPX4dDqdMNWKPE+ULZnnXvwTFBp/YhijorxPczM7sOAJMknfKxLS4SwAgNqdoruL2sLnN89krbXKxlUIDcs8Q+YJ28axfE4DMAAE169tA2AWKErZBvDlDOUQ+rrPkjDlxGdk5+wyz9R3LQXa6JZGp02FM4sfHh44AhcibrcrtlrxcD7Ryfzpkc6S04lxa3fR/IBgzyCK7xQxp7hKkN1GHVOKOJ/P6HpLHrOmbM5wHHvLpmXV7Lwk8AQ0EWx1t/i3A0LdKxFBRe3gpMeJDqI1Th6s28oGhZMl1HSpDHCUGIxRVCynDN1Nky7qpUslHIGnvRQIGsKAMbimDqnGYOIkA2P78eHpECCDWfW2qTUaqG+AJ9EuYVGbm5IpnJHs19fB61rRhOvEGyCl1++w97Ihx4j5oFvssZBngyKwywktG+VhoJ1AU1uxZv0jAKA0avgJAsX/xfS17cziVAy1gx1k8lHgY4zyGhZg3tTiqKU4rX7Im+1+PN+GnSsAoMHeoJH2u8ZnGLmog4i/5OuXA08WxHrKcES6LHi41sHRVcWTUacvryacd71ee+dCwA5vpZhRD1ZlL9iVdNb7/Ybvz9/6Z/p844cPT5iXmQg9T13EKIBWJhjRtGp00LyPD+tIa+9sHBxHV0IvME7LghQiUmDnaTJ9lhgzQhCs9xXJugSSxgtlvpL67/bfRUvrihAyYhIGBaJcUICaVLaAS7FZZDvkmyHw0GHR6lTFzVDxfSMV9zS7hbgtC1UGPbHkCV6g2zuNPrJAMfK1bGjajOYaOsNBRRBae9OB7hvcEmZBOGwAw7J7kdW68KL9BX8Wamwo7WvJab3tCCTYBit7hRrgqCCQ5KLz1Clg8JYDEt4ai+MU2UXLOXN+XTzYB6T42IGGlJNZpNLqUtU7gy7oxs5RrQUSFAhA3UrvFqva+I9FzL2Yq5pFT2crbBbcY4xkpy0LnUgs2Dia7kAjwA6D9s0vvePhoI9CTYtCoFoBHAS5A3pydqvaxzS3bcf1esPryyvutzvtWlVxx2oMsTNS4jgnZ71dOLDx37WSA+MFXgNUua7VC34c2VxvXWxCEMAZZxgiimoAjCfBDnQGL2RNAEjAQDtNUy8074VgtRdkd3NYowFBxnma8P79R4RIsfwQI1QC2oh6XJ9VB8gOxy8DJGaEBEyLuUxYh7w19Gvwg5cFRkJIof/xfWwpOZxNxK1hDC4fQ+ggmLHKmo2n2iHnNNpjMeuC3YxDg+nkxYGoml6a43WeFDJR4qMe74ggEaDZGaxkpdZaMYcZQUbh7tfYQbLWTGsrooY2Eh7xveRXHazW8+SCrIpejAMGdorpUXBxuf4FH4frVqF32+tWbO8RmN3Xva8Nsft+eHwwSv2p30NVgdbSEyVAzB3Fku7aOturGfBeDAwuxorwjjsThQYRG0lXdLavN0CK2r3rWEMx6Li3ptjW3UBY2PmTTUjSNXncPSriw4cPeHx4hEjAb/7qN/ibv/ktfvrpJ7y8vuLx8bEnXS7C2+D6LbD757itv4fjWeqsLt/fb2jjgr7+jmORzvi53e7G2CzIiaNsAjE2wdDk8jXviR0BhYKgnqTy3KermDN2A9knauCnsqHjCSs1owKkth4znD18Op2QTTflWNhDgaoF2sYoUIqmHffhPTulrfV10sTfqYGMHWcbDLy+ovw89H8EZ3cNkMudWv1M92Q7xohtpz10iAFZfCSYbFwCEK3bLvv5SlYNQW5tap1z5m1ICTqP652XU3dh6zkgrAlmADGU6wBmQmSEDriznx7yRI83KYxYNjrTA1hWaNfQ2+oON67poEPhZxfrvIcYgUibdcaPCmcaV2M1UYxNcb8TlIrF4lrKvRh0BnKtBdKMAegFmAEnu4047n5dgv7u/cxzNjd1/Q6FiQg1t+QRXk3d76uBgmt/rw6eUtOqQWtFaN5MM/Z6iIgCoDXsZsDDQpJ5Vtn3nhv52ZcibcxT5r0ty2B1+1eQgJjCAcTSzsDu4EIHjzHAbgGmZTadpGB5r+Wugj523FOjIOjq0QbUtv5+K1rVzpoSiQhRcDpfLNZVAyc4PUCQiTlaipETCt6Ma41rW2FaKhTm3vcdr6+v2MuOdVuRKtnN8zwBqrhdr9i3Dd/+8gUhBFyfnxFiQsxjFIZTNeMs2uI69EkN+E6BjNa6FTQ5xEPLmQMEmzXZqTdJ3VKxcwUdbKXmGOuSCAmp349aY/B+u+F2v/eYliJj4+X84A+do4kx9iaxa83GxM8TBwB8XJktGa4pu+993UDtwNLPQzfHICqsAxSstRsxeFx3I4umir1W3J+fEWPEuk6H+oVrbE7ZgKM0YukIqgYcuds1f3drjH232+aZHM6nE8ehrT748OERpTRc77sBaIopZ+SUsa5XMiltY7smTi2NI3Iz39007ZjnhSx2maAt4H5bTS6kmulMAptmQhYSWAOXVlDud6SUkaYJioZiGjut0UgqCtets9sg6Ow2BVAan0XKE2ICpgzM82LTRawjmgE1X799hQKYpwlTyjjlCQDH0poZ9Wwm1P/y/IIgYlrAxhLy2s8as6EGRInIkm3N75Ag3d1dgc6SZdOkAW0jU78Fm8QBWts7mARbZ1Ag2p6XAGxb6aCyi//7+XwcKzsymLg8BjHE4VPPE1Wl63RVB/khaJVOl67NRHBase/Nzv/Y30WPgR47I9dgtjHLbd2H9l6lecppobmCh1CyNy0PDwFNOIYsvU4PmKaF0xchGRusdGM21zMUM0vjjzngzzratWOHU++Y1mqg2L4DswjyZjyR7omMpdEapFNgvfRLvn75qJ0HRvXm2xFsGMklgE6NbyaW3LQZJd4DQO20Slf/TzEyiRB3uon9kL3dbpxjfH7hGxUg50ekFHG5nHE6LRaUfC4TBJ6MdxjDQEBxuHb/d74YWyl2IoYOKAzWyGTOG1BaWHI8JhoFumDbVoR5RhbpY4njMAo9uPrvK4XouYRoLi3ROkfGUKjs4on42JdA1brlYqizFcBdb6Bpt+nd9x0pRpznxW5LelD2xdQZBDoS+xDpksEDesyUpykDQYyRYUMnioPDjBcSx2fphWwbyYVtKE98D9/aQRO3vu7vxv50oEYGqNEqZ8CbDIp2dwVyweKDvbEqIAZ4hRi7A6GLDAZjM83TZIVO6Ifitq/GAhlsKOZUB1aJ/b+91C7KDcBozYxJpdQ+bglQswPCuWoou3Ga7DByYW9LsiUO4A5iXV2MPdgBEh1svjyFvq64xlgMEMS0or4QqAsSse8Vt9uK6/WG2/UKh21rpT4a91zCPGWs66A2870VVA39PfMr9M/QvibQ2RCuXZFiMtByfPm6CSFaPKEQaDh+E8Z9O1jijAU9rDMH47yb7MlDShnLcsLl8RHzvGAv1J4ga++4nG19N5cvkv7fRCJi1F6QHbsex86Ld0r5ZVpK0QXWx+9wFlH72R4gkOB5uvS97fHXi6Jma70Z28YtmFsb9Nq+QcePdtBp3PWIlT1GiFg3y++volaY0OagVntC7VbBx0I7hGgtkgPwZIfqm1jd01wDUfrl2b1bgeNnlHfk/BkdgSe/ndqLAHbFt23Htq5Y7+sY4Q0B0BNOp9NoGDQe6tXjSN9rLHarklWGSJBUBVAbga3rzp+3ZJ4uTvqGzaPeUlLuFe/Q9jXR6gB3LK4OJhtHSIN9btdNUDZjvDurCkx5xo8//Ihf/epXfaTktJyQD9pl3MJW1jrw1FyPp+K4S7uWRxsi9K0NFqyDQF1D8fB+AZ5ZZS+o+wadG05mJz9G2dCBw2EIMGJcdg0g+4oxYYjgSv/9rhlDpvtgDsEBuiDdUhog+22aJizLZEWzWa2rspvcWtffIaM44ZwTu6JNsZWCbacrZ/9dh5zj2PTq+9Fu9vjcf55zjdGx8d/9HYQaezEyGNEgW1UVWllQVbdsFx8xSMbwc1fKwUScDgDQNOVe9IiIsQc5DgE1IM8lGIyoF3ro8vbfkT1iyT1GjHbg3JMLP/tqY5e6+M9a11Zg19GaxW2C1hAH5cxcxhIQ3/sOhu6FYGRsCs2ZBU4HU0Y+K6L9mbIpIsbkKCjasHfGMu+31trBldBGPnn88mecI8XZYwiY80ymWb6/YeEVe05ahy6Wrx1naQnQRzF8b3bgvA5NrfHeucfcoZVAa7RG1WF9SYSLtGdbK/45x3Hhfl+BP5vMRau041lv4uViwJmDE0fwyYI478feGSrytHCv2zXlLNBoDA+pCK1h1XsXvoblhCG0MZbaWmdk8ZwSzA8P3SVqLzvKvvd95wfjttIV9G6uZ7dXasOczmdqMmrrz/U0z2gSOsjr43UAkAKBk1a4poJpp0gc8aq2hr0WNnNs3MdHuZ09T8ZJ+me6nTlllFKxF4o6u0sbfzddLNNs76VU/t4+co/u4CbR1zoTRvGkUT12Sx/Dd7a9s0EA7Tk5lPFss3vZ7mt33nNWLcdQE6ppZJFFFHrO6bk2oIgwgDhPgIjlSh7PR7yMBpR56G3N2GbNG9OJrnNTRhShRleqWPeKWg1QtVWybxFVxjt0VjabchmuCJ8b9XNpxEUA0Bu3TZsBfBF2yXCjhBgMKFzvWESQZWJMbM6y4voNMGmPGJn76GE8zWoyiuinDmN6TngTMin3uqM0xe31xlhbGzQ3JAMTmpKho1Dc1w37tuHl9RUpRpwUAGxM8nB+hBBQtVKPy2qBUt+6BAPoGr8SyO7SSgAOByYwdfEatlos2al2dgdjqwo2Y1j5Hma+5nVlG2fzm/jnciW9EjnUTNY4N6H1ag3eZOOCbS+IiSkrJxQEKBY/jJU0vkaMD4EC6jkFwAbi6RpuwBmAKSU2ui0WstZBFzuHPRMRIFp8cOasSOhsbj/XghkMeMPHQ6yfSz4mCKix5dH3iGJoaUef3RxlgOUwb+9RgP78f8nXLxcXt4fpWg7Rf1uvXZzlxCTyiP4TFVVAFK0V7GXDy+sztMFm2Ccs88monOZYV6tpNQEf3j/i86d3+F9+99s+A+5aO5cLdWVKqZaoxSHaZmhov9RDQesJUAhuV8zr38sYC1Ar2Hqx0zjLz/EH6fT0bdvhHX8XKuZo3CHJcCsm+LxtQzUWk0hCiBkPD49vnqPnw17Qc42S7ZEy9Sju+95nsf3ubjsL6yklpGlCPi+QvrgM4xUuvtUOCxaCxlAwYElswc/nxQKaWQaDHbI5Z26ODie8FUb1xGsAW3ZYCTfU/Xbv+gjJACBf+W6T6uDfMi+kNO4r0X8bKyulIEqCBu2BZlkWwAUdkQAcxzR4ECUHgdQ7kcDZ5qiLsXBicPFtsSJuB7vAXDMhjpn1WuxgaQ37TvG7AAbbvVLgXCPp28/P33C73/D8+ox3797hfDnju4k53p6fMeWMv/7rv0FtjTbPBqB1AMK62965bKX24BljQpBBxxQRahWZK4MniNXYYBReduYAmUqvbTNdkoRleUDOS6fzrhu55Pd1BRQUEo9AnrwTMVgQBHY4JgDLJXfTjIp2iJxO1MjKyVrqGHoKjDWN4GZTKHZLIiP1IExPxQtKHrLUeyGApUBoWE3sj6OQEx4e+O4/fvxoVO65JwMxJR7mpuG01+qoHjyJ9dKJsSawa2HPGQIkpUaYBCaAIcZu1dqgvRPELp7HhgEcdqBEbd6/DrH9DvQYZX1XjyvoMYusKHZYVRXBRtcIOJFRVKsxgGz8yym1MSTEAOQ8v9m3huAAYAfHu94eNx2YDSGhNlL0j0DD0FcJiFFwbEIlmTAYHWJaLwZ07s0YUozvQVy7ryEItcliEHAUEhanmtUxb0ELVqH8h65AK228l8rxxiklSNdtiyiFXcLglGUBAWSllkNPmJEhAOpOECgasI8ATDGhasVdOU4+zRNCiqZRMsZCmzaLexW37dZjkLtK9lgUgNBnXBQpTbY2mMCV4gWnW9BzbweJ+Jvf/uu+J2OK+PL1G5bTCb9aFsBH+KxDl8we+6jV4c0Cdzz5eRMnhIBqCXA290+3Nafo5wBd+gMF9VtiiFDT5yil9AZInjJijv1nvaunpvlQasPWNnseTM6X+QwRjq0AAlHpjDaOqjp7Dt1Z0l1w8zShzHwPUQK0Vtxfr3z3AMq+435fjdUiWGw0swaei7t3gUNAFBCcLzua2YRrayh2zh0Bp+OzBDw55n9vMsR5S6ldC9B/fozzmHaP/ZwqtZdqrdhvBUEC3r9/erPnO0PJ1nOSBEh6c00TBF2Xc9tQthWa5w7sEQwc7NOym15PNQDcxoTdJZSghgNv0te6qmIzJmo0tlI2MVV3YPL/2yxK9JzO/tteud72uiPuEXBWNRGMDtAogMmKOAkJ2ugktxcylaeJotoAoCJYC2UTEKUXOLACaYeiikJj6HFSW0Px7wFz3Rgj6l6wqxVeFreDBKhwn1el01orFa0wT/TzFoEx+nyaWaDXUXwxLlJryM8Dd3Pe94pSldbyKWIKGJqSdu3QwKK2NaCF3mR2gLXYuQ3LE11Tyb8cVPICKMVosT5RuN1ykm0nQzO20BuybgKTF547t/sdtTVcb3dEIdvZncy0WXM6jpggMJFgY8W0UpESWSuKMZIaVCExIEa1hgDZUYCZjqSI9x8/4PryglZKB2O0NmigZmoUwcVGn7Z99/rVKjoy7lNIZKZUxfXlta/PbdtR9oIP7z9QO9LWxDRltIbOnKut4vHhAQrgdFqY6+0FIZoGpL2cPGXLaaM5OW4AgNXGuVtTzKcz8rJ0dqA3jLz4DJENvdt67+/SLdpnOwuZQ1hD2s4rtUYAwZeI5Xwi62/bDTg+NLPtPedpYu5mQt3TlEFNJjLqamvAXdGas9UdYGeOyhjN6ZkAMSFnTtBEGxkVE+NXO1PdhfV2vfe1eb3e8PL8Hf/H//H/w/V6xePjBZONrsWYkKcFp9MZj09P8OZXytTjcj2jnCbEkHA60bxpLw2n8xkQxR//8E9sZi1sTueFzCzm8WJ5Jc++lHifr69X1FpQywaIolpTUgRIyaZgCkfl5jx1zTnfgaWOXMKJDZxgYG0oAKYQEROQQ8QpTjj99l+jtWqmOA1bKWQUCs08mo39SeC4X04Zl8uD6VmGHks7gx4KVYpue87aWuoC+zzXas/PuJbRGYxQGxe33CUrc8iyOYmlojVjPKo3B3m/2/3OeGBxVeAsydrPOIJ3gjQxpuScqMVYK0gO4nQMRBCSdnHxME0Q02pjPrXZth+jbGpKTm52ldIRKG7YKgXWVRQhRSBEqJ3jX59feHZm7od5WeC1euhAHkwv0cAuCR1vic507+xc6/hEXtkgLozci/mB+HF1OIsDJNhUQWS+SQMIH7EE66x+6HL6KYf8M/Dtv//1i4EnOZzuI9S//dKGDhx5khIik3AHc5xitm+uvs5RNRYkvDFSeMdoxDRRzPPx8dKLBA9kybomIgYyHYCwjoDj58CTJb8YgRE9UGpH/dT+D5Pc4W4H+6ymOARGBbR1cCAmsfEie8kUXrLZ3QYXYvPPEhGEbA4c234oNMf9MMAbtm20UZ/Td+o0AEPWqfUQ7ID2jqDYy/SeoJ+ZdEYBnVFsvMXHsbzDvO21P7d+3XZdOKw3dmzs3xQdkOnAE9CTUG0NUhXt0EVUHffgJBAGKYXsMsDWw7tR4Qx7UBOvhFEsTZzNAaJkzLsp5f6sbHEgpYg8JQjZj4PlJ0IhTViHqVO9R/J8FDlulWLVubt6cH15l/q+rrjd77jd7zhfLlZYultEMaFJgnNFC8Q1b457zpFrVRtdMRteey8ch/GZ52RjTQYm9oTfgQPpICd1EErvIqTEYsyBJxfkq0ZpbxgdT38mP2dCxhTR6Z3W+WvgyJADq77Q1dZAU58K1w7Zj4A5gHV/5sdg7AAHT5IBNocQkUQQTJMg59wBT4WY/AgTTdfdCbZuvLvHdz6Ktf5l4BQPbRt/DQ5qinUCqxWR1JlS5RiQA00ewNSDrGmi+YFwjOlH5pDAwVyyAVpx8X3TM1ACPTHa8+gKgB4FBkvRBUYH43HsW18zHBNxUNmLZ3TgOmpkt+0QV98wmHwN+nuxLm+wUSI5Dvnbz1cbU4t2XdqckdMsSdHOfuDm8UUyCtW+P60j5owgP5A7A8A7Sc7isc3R10F8q+0WRKy7yT0bMGIHbHQhaEDN/H05UzdjmqZe0AEsqBzj8y5oZ7eUas/HHZE4li5A15sb7LMB/vI5m96ZCM6Xcwdbi3XDp4n7oEHHlIt1FYfuoo51B2N6yNhbb9g6tueOOoqureVCmc7GIOPE9OYQCTuasKyDChKo3TaAp6HJWBvHxjh6Vjp7MBvoXg04FghNELatg6F+/mts7LaG0BkniBHNr71SSFkAA+oJHDdbGzEYEzxSTyMGsREsAo/OvPZrhrqU6ACe/Hzz44h/52CnjbBhnC9+Tvp76bIGVsBHB31BlpyD9FHGGQEZ+7411zXxv3fQVkyzj+6sKjbS1BpayAgOoDRj3AgAs79uxqrqbq1dmNaBJ7t+yx9a4HuhPleAahxCuEHAxqUl0P0Zjdg4mnY2ws9vwF5jH4fsDrj2xb1ijHQdZ7g7sgYff3CgSdA1YPQYRwR9hNYRSrFn4xfrsaKfWerrwtitAlBtwuPSAGp30wQSA+OmzAZh9RzQ1hU8VlrUI+hUulSDn32STLup1c6q9/XjDSuP/Q5s0R0XQB/fGzHnGFub5fg8p6UzI/qZ1UgXbo3FDIKBya0hiRn09M8kCzGIdo2msnMMJCr68xFx90MWzTElZPVcXnvzUJvr/flnW65h78gb0fvM8fuehfi1WKz3+HlkPAZhQ9qbpYGbtscrz8u8qapQc12lrmGRwZijDiaL73mZkWpDS3RuZMOTzIsBALr4vmLsDliMjchh6uzycCg++U8zZ2iDBYww9hJELBWx2GU1mDkM9d8TTO+Vo/f/AvAEMbmLBo3uDB3gY3QhOphlzM1wGF/0M8Wfr4FB9bBfPZ69yQ2V4IuPHfrnuc7W9+/fzSHvSv1WI0I8Pb0DJODh6annN2wmCNrGvVurUh/V9DtjFNNCFlQ1bTysyJMiL5MV7cfnLh4YuG8tvz7uJ4Z/1jM9TqifXwSjvBb4+R++u2Duu/b71CQ/RIAYTdO2QOSKvRSUrfZnLNVzXjbmqds0IefJUis1rc2R7/e6pNX+7mtr1AvymrDXtmHcf6/J7T/B8vAocF0tr8elsmbxz+PPGbtbAGe6Mq9tPZb4nwCYZI2BXfxpMKEcjQw5fL7nxVqMROA1MBjGR655qFX8zLE4VFV7XQvhuRaUjKO6712SCNI6uwn2+WL57CET63V8tXwPVnP4tXj+1NdCX2uHCz/WUhj7TOwAU/8kbWgqHZAKh3PNv3x//JKvXw48Hf4fYBvHgpwnMSxcYd0VdlmmnDBNAW0nEv/yvOK+7rivNqqUA1ITJmKmI5JyhmpDTASY8hQRM0VW8xyR44S9UPD2vm9MmFJmILQOlHcz/YFApCe90U/aIFasGUURCreEa6XxNdjM52rjObUU5DTT2c3GGdwdpBfbCZAUISmh2d/N0wwoAQbEBJn9OQ73NIEx/quP30ws7mvFZodVNq2JWtl9m2fXmYp9fnee5z4ikFLqs5kw1gxUbc6bG7vUhtv9hlorris1fFKM5twjNkfNLpIDArUVbOvax3ncxWDOtKFt6hRIdog3T9agfcwlgDThaclQALsntNqQpoQc+N8bgJrohqaJxVdEQq6zIa+k2maJCEkQp4iIiKwRaBGqASmJaZUYXdH1ZLqOgfREKsXY91RTNaF0ACEgBzIcrjcG6i4IfzqNzaJARECO1AfIkeKZt9utz00HCZjihLIVvL6+9nG/y/kJIQTcd9Jel2Umq65sXSMg59jXWlBFaTuasvtQNrLAri+vUFX88KsfSWmOPhblhTmwrxs4UMH3m1KggOvuhwbXQLbkBqA49rqt+PrlK+pOfRlVQU7D8S8EY/4EFtiSM39tVdS2UuMhMJgmBUIFUDYEMHmrlUXkeJ4RqIJyZ5GQs6AFgQaKHisGSEpWkVGTlfs4pQnTNLMTjsY1GoJ1gvgs3NnOxTX9kMpeDKo5y9n10XWEz89npF043VYTXKshaMO3P/8J9/uKh4cH7tX7Fdl0w4JcLNkytwnboz4umk30eLj1KMWsjfnnwBwTwoJ145itd1Nh48ESBSoNe6sUmAc7jMXCHkVsjcETzQFts+ivMEBNDok6i5d1K4hJEbUS5A5CurLAxkfeFh4OOkUHSkzgEskL1toLr6oUrVzvV46CSuigUhOggiPPMSZ494xjAkA1oBwykurn79+xrhuW+YwYIiZz+mLyZYCBO7IkE2UVJvX7wc2FBVYd99Zjh43n2igIc03e8/zOYoTpFYUczSzDtmVzOcno/STESsYGIpkGiMHk7gb4466PnvB4EyLGiL3sXWDYVgmqVty2OxOKALIdxJlxlkTyGKTLl9Hv0RTum/cWYJa+BxSKnDIdYArp5LfXOwSCKWe4a9z19or1fseT28UnAj55mgjWRa7N7WDKEexMmU2/pDSajHz78gWvr6+4r3dM08wxh/gn5JTw9PTUWX7fvn3F169fsW8c5fjw/j1yyrhfr1iWBadlRt13lH1DLQTXB/Wf5+2UM9DIGlg3aimJAiUVmgjEgEQyPMsCm+7SCogm7GuxkS1KAcSJLALJyWy496HPYKL7KSfGEw1WMJWe0/io8Lqune2YUsL5tOB2v+G2Fmy3Feu24f7yihAEL9+TNSksedSxp6eJ8gFp4vfkieYACsF9pYmEa5hJtITcgLXSdpRqTEtIz22aKrvnSvaqQBGrsU8aOpAWMuNCMfZqrYqyFWxVu/aHs8sZk7Q7Yu1Nbb0ZG0yV0gAgM72oopa9F685sQFV6h1BBfNpAZCRp3cUi17vPBeKGhAuCJE5XtF9FFqeX9ranHK2cRDL79rSCyQvViIE0sgg5+N3MAo9rqu5CV0uM/Yt4L/8lz9iM1HtT59/wNP7J0QR1BDw+vKKWsn8rkHQWrTjtmHbgW0jKxoKPD3MSDkiTeL4mLGiGl5fXvD9251TCCnh6fGpSxXEELhX7jfc7yvmZULKHLkXCdgNhHFXrwGoA5ezjR1Z0ZdtT0UEi/fUo+LPMh9b1w0SAqZ56bGtgUDb88sLAMGUKLjeWqP2TSLDKgg1s05Txtmeu1/P7XaDF5oxkYWST2RbuwNUaw2TnvCID7jf7xzNbxV1b9Ses/dVO+ABIAiiayglc4CbjDVYBriclYzM23bFXjfEFNGydtmL19dXvL5e8Xp9pYNmpn5sjBEfP3/uYLoa+JMnjkXebhvHRZvlIW5goUDIASkIIGwAvtxeUZs5r8WAKfEMCeGEdd2w7wXzaeE4rVkWauNAfG10FN/2HXvdULWyTogRU6Jj8uk0s060eXAH7RSKLKbJlIHaijG07GSqPC+au4qCRkNxmhgPxZrt24o0LQgxYDmf0Nrcm+yeq4rlaWzOE+xqbTO3vYoginme8PnzD3h4fCJzqhZ8+/a9uxjP24Z1WxGDIAq6cUVtZBeV7y/U/1oWi4mMkw00jxFJeH19xSwF76anfkYSSKVTnjbFeie7eTItXppkEZD0kbCQIppWbMUma/YVy3zC4+WhA/gpRqiBkgSZGU+2sh3egzOWxUBUQEURU0CKM07TbMw2wW6s1XXbmCe2wtpwmbDvO7adQCii6f9I7ELzCtYPwWqfWvfemMiuzyVklQsW7PuKfdu6o66arEJMgoICDXv/b1XVDGlsVNfWFtNCRSt7N1Dyr7fNcKDVHUUrfISRgFRCFIG4W3JpgDRoCnQptX3O8V4y3Msx7qliL2TyhcRRyiMohJZQ9hX3W0WeIvKUee6IIE0L90hwPMU1thq0Re4F+5hqTZWQAvxkKXVHbYPw4ejZtrtrekVOGVOesJmDrR6now2sFCFIX/cGrTtaCMxtoxg+wVHRKc/jDEwm22PaYMChFv7vfP3yUTsDDRydtdcJ+HHamjmODGvyfWfSW/bSHyaLIrN0FLIx2N0CkU0wvyZjRTqFz4MOVwDGIrOEKTiM5ysL4xKdOkhx9IMGCAYlDyI2r0+Wg8+CvEmuQ4DGkZSpgVwDIRUg8iV1tkwwBNGDjkjv4h2p5tQ5YFJUI4tczm8zmLB4al1At3cBZCyyYDOWYeJ/4AEY7D4H6wCH6w1xFDlNm4nrAmLBO7jeijrSyc6si9uOTgjXiN+r96eDCJp1kx2tbWKWmCn17lTfvHBEWEa3UMZ77c8vuMinv2YHFw/3FiIgEVCKpfNgaAY8mRheDB1JBkYniICwoEM19q62ysP9bg6Luzl38JJ5Dap01Sm1wQzG7e+DCdNlZAMW6NgW+rhHSzYeYWBXTKXrMnjCAdEeVL3DKML3X9tB+FdgdPdgXQ57Lv44gS78ynsm40/s+6Lp75DpJHCkO4aAnElJDSkiByZ9R0FSX/s+7gO4rpBbxvL6a6lo0gB1Qe7UWzYdMPbl1TgOpdEvfnRcPT45s1IPC9JFXWOgULnrffU45u/cDyaPGxjPyb7hsHtcY80Ocf4X/k5H/bVhu29ozYtNHCjJ41d7MU6GiB7E/v+lL/4O13ioB+BpaOcc9GIc8PHNadfOLeviwg4qHe7OO0T9TRkDwjdEhxlYEEgTjoG4coatofHo5M1n2y/letTxLtUFnzGu2QUsg8VvrgmxazO9gzBEaN/8HrvUWipK2XsXtutKCH9OdOiLMIkNiObk6iMxbvXbf4sAb69W+pr1sSB/eh0chemaiT9jHN6LnUn/kietfy5+th7/hfXvz9s7774PWi8AMBgWbwCk43vSHtOiJY/NzmcB+ohMv9/xxga46FvQGJye9Lfa7L97d8072d41Hffqmle+5Mig5Sj2y8sLRYQNMHYjgX2ruO57PytTSiYYvkNb645hU+LYxl4Lzucznp6e0N2XzGWTQLpgmEkM7bhqTavOLrNHR12O0YmMdp673TDPbdtKVgzg0I3neoSN9QdoUKhw9JgJboO3dZoSUnTGiHNiyfAZ4/IiYuYZNvIkbRSHh9XnLJtWmddoI/DqFyxh6Hkc9wbfuYHFzePRiCPD2bCvLq6vHrMNcJGxlgFrNmmDNO5PT/Q708buu5qOmgPW4/PMTba52LGDPGPtNfB9k+ltg77GMoQBcyKCLIkFjXeXPbYe406PjW/3tP/bGzbK4Vk4Q8y12dxcxX/mvt6xl4Ipj7FaiI8b8uypbG1TeByu+MIcz+/L9ZtiPuZKDZD6Rg9FwWdNXSoFAkfvbtcbXl9fcbtFio1//kxGdK2d2abOyrPnW0slG7C5dbkL8joLoPXn7Fp58PVtI9adY2BxTJuiYDivhiiIGhFr6GCoDl+9vi6ckRb6fh06ci7gDhDszQtHocXHyUBwSow9FbRBUrScq9q4PoWHQxjPcjDnmRVHEyh2Nrwquls3m4s80+/3O2S9Q6xJlnPuTXMyp3bUSpOlaoxSbxCMnNz1zJw9p71uKQYcVIuROYce25gfobN+q50XzviPMaBas1PEJedtPduzci3Cfqb1XB2styR0bSo7elkPRDM4sDzJ3ePIwPVzfeR3HJ0i4BvSW+dE3oNA1BjGtXVXRAUgIWJeTn1E2UHDycf11HOlw24OgXIfTQEbZQ0q0MARpaCBUgUNHBuOBOy8OcXjoY3PtVSUMdHAK4VpO9l16jiPuWaGjpFfV/CYBDIEIYIWRpwaz97/ZTQCvdnEcxk2as+aorWGqI3i38ephh4/tL8Tsb30JvZ39iYjgmS/TiXDU50dW03Qe2ROYpMerAVtNK8vJDuXAvPAaOZStXY+8cjlO4OX56Uc3oX/HfesNfVVKJQtvt5GzXII5/0cYNPbz27PfwZj1WtTrwP5Dg8AYEpsUMo4Ibhv2CAO9n4BdAdYxzHUNx2zzJESHuob18jrLn7HPM/+2d9Pz08Mc2njWVjS2z+bv5Fvq73Njv+HX78YeHIxZTmgpQzeoWsIvF5fsZfSUfPb7YayV+zbYBJ4B5GuWAnn87kv7maz+VOekGNATAw2A8H2US/YHLQ9yAZI2BFCpICmAE1HAZzNhtA3wr7vkDYcoUIIQ9iwWZFhu6fV5s8a80yUbzEL1Foq50wl2DUxSWpuP64NwcQrm42K+EGUUzYB42r261ZgNzoD1UqdoHmeMM3zPwONUmAxsJue07YxkY5zfJtAWCJbS0HZ954wNlO7T8nd2Cr2dcf19RXh4cEsGslgWbfVqL9pFIC+2aShdreYEQjjofDx4sUFQZMBRp48hhB6Qsmk0PVgrEi3Q4QssIBk7ycgoMajiKYlGYVihFM2wT8NXUAT8fC5sATTr1st2Pn6jgSUyCbbsW0bvn35hpfn176eST2NiGHqegDbvuK+Fazm3uJCrClNmBBwvowN6vTfh8cLUk6ohZpEf/rTnyAiuK3DwtS/wu7P1AXNKyhNRA21UnbMc0aKCfOUkK3g4Lob3AfX1JHE0LGtO4I0ZGMfJNMmum6bvXsHUxXv3j+Mbo8lVS4mTGtVkAEQoiUgARLJGGi1dveD2/Vq65l/N6dMar4exoXARKmWhmYSGiEG61jaOqzDqYIuVTZ+l6hJFGLAJBO7O0Kdgrt1taPY+IFTxW1uW3uleCzGFa6xwBxwjACFnm6hr5c//fEPeHl+xtPTE54eHnE5X/rakSBACOwelh2PT49AyKYxRgFXXyNqz4P3KDYSwY4rY4b2rhtd+nBIbAfAzbDmI1SjU0MdLts/rWHfay+KU0wQTq0CMNo0qEHQtAKoqAq0Kj3pGy5gx8KWe6s0ivNTT2qMtPn3Vi9yLRmQJFjOJyvG7HsNgGiqndlJYKnR6ruNsSFVxbquuN2uOJ1OuFwecDpdAAhNLlqzpIZFUI4Bacq9I+wH/DTT0pfdfUCrwsEnZ4LasU1HRysge3KhNv7lLB7vtlkCHQITRVtpfOeH2CcGaHSjCvtcrRx5pSXvAOVzztYpZUzVVrFu0keBxQqwPhriZ15jUiyKDtps24ZmjaSxtwfLcKtDUFatWIwGMp9OJ1RjYXq2fVoWPFzOXSAz5aE7QuaX0j2wAzLogNVWgefnZ/zd3/0dlmXB4+MDPn/6jMvljN///vf4/vwd//RP/4haK06nE87nMz6+/4AQaBP+9etXfP/+jO/fv6O1hpeXZ7x//wHn88XWx8XAnYZpThTqtZjma2qeF+SpYN4LxPRWPB4VG0vetp2W7dMEh+UocswOc4Niaxs7/fc7GwQxoO0VWsngcXCIWg47gdnQesECKwiLPX/ygfm7QiRbcponIArmZYY2xW1duzYHgVyOnmdjgIiQfaCNzBwJAkmMoeeDVqAXZvfdtav8oobjbNcCM8MZERCU67pL1qhpNnqmBjb283HvnwOQfX4c3c8pUTNpW3uM8Rpn3zcCVkH653kcLHtBgWKaySa7vd4QAp1kfZ25/hvAQuzycIFMk3WpuUf3nSLULCyMDasYY5o6AJMBRhyAM1VUYyi4KY9FWQB0NrutG75+o8PXx4+fMc8n/l1V3EpFjQlNAtbWIPuOgqudZ9QwmS8zpsBR+8Us18kutYaH0BH44fGBLmNWWPAc5ygpVKG14Y8//YSf/vwTXam14X/9X//veHx67OA0pwLIOvO4sskdJUZUs3lf1xXueHocyUrJCn3wDKu14vZ6hRdF0RjkxUyL7jvfz7pSTyam0MWq79uNz7iO4qsDCmkwMVRbH4c/GiSklJCmjHahvEcxlqTv/2LaURnA7XbDfVuNeUt2Vwixn0unZTFQbeR7vp79GVyvdJ2rO0WUp2nCH/7whx6jQgh4eHjAPM94enrCuq54eXnBaTlhmWc8vXtPbbqNRgYQOQATCqD2++NEAvD89VuvU5Zl6Z9/Os243lY0LXh4IAtsLzvZ+1YTQBaKptexlkUVqNx3IVAGxXNDB5hbMz3MwGbwlE9wGQeCoqFLs5C507BtNvYq0fR7BCqUa2iF5+F8Wvo563ElaAJEO/M759z1oI6jbABd3bwO3fcdX758YZyzXEMB0LlMkSK1fpxlut9XTsDECHc3e3h4QDufyGirFS/X136WOpjlcTTZyL1rjUWL5aojp5sxA2IAWw1olQ1dGouYvIM35kDIhf+dwvUONiJazPFx7T5tQ5C3bAVJMyLQXcxDlB5zVcmYTgKyrx0cq9SKy4lsl93WBnQw9fv9prPFi4JagWZM31orrrcb5I5DfcX154YfPsLL/NMbcax5T6dTf69lM3MAgeXqoQNZAhuDB8Ghrj+Wh7YnwHjN3M4hdA8l2nUUfUTdgc6qjWvSBL897gRb8wCZdgoMDV5j6jmT2FmF1G7muw0YRmVHJ1cvC702O7qrk2BmgJcx37b7hpitxrKfdy1sxyP5akmyYU5dIZK7tvE4Z90OhDydZjXXL/n6xcBTqS5uaugghGCUJf/cmNIDuMJsGPeGUhRTmAbVENLHcjzwVhtbSCH1IKAob1HFMMQI/Yt6JG6dObq7jrx6EIKh6V5wAUSdqX8zxmhk5CjwLqFfA5MpZ0tZMaABMZCxBDGHokYAwynzgNPJHWjWzu7phbUdSloN7IKJW8N0CXqiws9wdhk7vq1v7E6nVJsXBVF5bV60eEFgzBPrisSYkDMPIBdZ9Q0ZhEjzsZvuz9bXBOB5sHXbjomXF77WnQwdPbUEpxRuUhkF17GzKUJRQoH0ZxKCCdvBkHPVnugY3N7Rexyu1wta/90+U/2GkWH/10EohIDqtCDwes7ni42EMkDte7E1othM9PzIOnHb72qaC4Oay699pxXmtu0GRFjiZrpArlHhQAsA6ywb+GG00xATUlbMOXNm3TqcEiKC5eDNDiEyTUIfdfBuJTvro0s8OibepdG+Jt1xhEwnrj0/LH7uZtWMHeh6Va6dQ1CMgY123sPG9LDTrXPoe0hsTts2hGJ8tgg0qYHASu0QtL5u1f/0TgZn4b3Ti8PazoHvuPWiSNndUtfWOXYuPbrZqrRnQVespY+/ckxlAE+8eCZQEALufs9co+hrkcmEJQViDAModeFsTCwKr4vb1dsj41/5jFt3kerb5bAfFAoVtWsEEDA6GsZElCa+7DqL02OG+JPwz23VnpV0AM33o50eHSQHRvz2gzWmOJo69owtLezrT8S7OugxxxmVJzMO8E4mLPaJJSTwPRaiAe6Z51o1Ojl8vEiQQAF1eOEMapQ4WO1L0p7im/vs7DO7i3GmCrQZcxKCIuVNLOoz9WqDTx7TADjDb1DObe232s2h+PwEGTyLUPb++73hMRIsxk5nUIjZ9DbVLkvjr8JdazuABv8M36gwJkrtXewYYx8R8fPcmYouJIswklqO+ylizGi14fn6jOv1Os6+1rCcFpzPJxaXecLpdOJIyLpBIHgxTT8AeHl5wfV6xeVygYjg+/dntKb4/e9/j0+fPmGeZ8bwWszpKyG5zp7F3KbjnPf16JvJ176fx6WUrtHgDOhg6zVr5tpxbZdSzRxA+++i86w9y0ZHnA5cC/oa4rOyxNjAPzJsE997YZOoVLIl1nVFiqmP8wQN2MuGGgIma+BVYwJFDZ0l6OdPOWi8UUPFVoBpJTEma8954CAMrFtvDOCho+P6Jq0/S55BtNTGz5JviOcb4+c4YmLnXRpgpifUfHe+hxwsU4sH2hsY/LxD/mJd/aZkOEgfMbSGhTFO+s//DHhqqtQwPcY+iztqI2dbbwxyVE6b4vnlFff7HafzGdM04fLwgJRyt+RWCL49P2NfN2pU5ox3794ZmJuQp4wpc4QkwMeIBRUO9gyB8BQi2Qk20m8HLF2dChsp2/2O++2G6yvHtb59+wrVhsvDA/Nay9ugvH6PDQCwtd2aHSyAuxyDjPfaDITbDXB0Jl/TZi5obABDgevr1c6rA8DJR0oWjXC0HDoYwq2RPReijdeXgm1foapY5gUuaM9cigAV1ApJW0cKjgzC3nNuDUuPyWIgk42MW+7384JxMKBguT+fGc8xTipMlsN5jHF3vGpTJNu2IoXYG4Sta6g5QM68p6mYxA5zzmXKqDFiX1dziOTzf319RSmF+ZuN1a/ramvU9q+dXw6IC6jhK5ZHdf5Ea52swB02cgEeDaknYt1WXgiSOevN/8ghxpEkwHrJtQ6DHTlNm41gHdgsFqe8RlWlw7WPAPv93O73N2uxj8wi9Ds4RvpeT9hnOluo1YoCy7G1cS+rYt8oNUOyg/Q45DliFBMv9xhp6yRYXtUsl4tmvkHpgwBnm/nZIL2mc8aZGGuI+mxHsM2/mEeQjKBgLa7F2LpiMioKjs9rRaiKPM+QZRl1mj27znyyvCNYTgpon9q4Xl/h2rN2GtKgKKSRy9hYHaW7BqA4Ta432+A73qcommEUKUQgMm64uzwnROy8VJien+lGgbHCZSzEsAIX63YGIpo3uE1TD0MHz50Gxz0Ndq5i6F0Ge8/OABavQ7RBK7qcTauVGn4IUKN2VAMkszmO+jLxugPwnB8AqHsKGJM3DM1WT9N8r/b6vY1zSSGA+M+h710HKdW/x3La2lrXL/slX78YeNpNAyOHbAZtjpr6oQ+EFBEFyKpYtzuut1e0KtBGEbMYkukoiTFq3MGGhfYyn3E6nZBz4hz07YpuQxzGQcCDng+o24ce5rMB0JnnSGcVAUciiexWC4zLsiCH3LMScSDDrjNHjhSlliy47/D5WRdgdUANKr3o4SVTgchZKQ6e+YHqyaNa4r+tdAOEaUtMmRpHtdCS18u51kw3ad/w8vLcu4+OoDoDaM5012qVYsNQsj2y21vCksemmIzG610hfzf+2dLYyRXfwPbAnNLfO3UOXoTw5lqYlDCplonofCkGtpj+lwB9c9CNCP0dO4OCXbE4DvBQAAPFfHTGqBAsmlwkmPuyA33ov2uM3gzQzhFgZz4JWmSg80Lk06fPOJ3PeH7mYX03jYJ9L0S9e5INgkJo7BI2t/mkbbFv5uv1jqbU2iq1WhIaoRCOhOQBBMLuwPdkiEy0AQa1lCIu5zOmPGFe5kH19p9UExAPESEQZKrW6TFkqTvmjT1kRY+PU9SK1BoQQt+XzQp9Oiz2mye41ao5sZEN55MEohz5yCkhJ44yNJHuFeFXzRG/Q0BSGONErU5l4Od8OEU7KWZLdk1DQULk6Io9P4518EimTqaNSBmA4GxLVXQGEL8qoOzQ+drk8+HfBrDbF4TuN1DF5XLpOl4sBm1dBkFTs2G2tZqTdVXNle6Y8tBNRBDnOBJabbhvq3WTWHjn4AkvTZg6eUvFaPIwLay3oJOPYKkcErggaF2g8gCoC6BqDJuUkMxitscIL+AaRWFjBMRYTm/WlY5iU9sACAHTKhHaT6uqT64yFsSMGLJ9L4XH2bHESMIzwSZn1vb9dme3PJiemzcZUs6YlwU5J9zur6i19hGEmIy1EDNNGA6dSW/CRE+SxQEtdFp3OyTivkGOz8EP9SIVCLsxmVj8BV+bjeOwwQEtB5y8sG/NHFctmU8s7n1PpkwHnriPUXEvuP3C+nsBO9R15/tTiwcQ6Ul/jwcHlorYGvF7Kmahra0hJoKw8zwh5TisuK2zVmux/endeU8vA+ZpRtkLvn37hu/fv+N6vUH1Bnz/jsvljIeHC3LOOJ1OeP/+PW63G/74T39A2Xfs5rRba8XXr1+xrlvXf/ry5Qu+f/8OVcXvfvc7fPz4Effbjdbq15sxTT4ipQwo11A/13ydq8AR4mDJsDNJ13VFFGNCRAOrM59jlNSZJ+t9JYBsAKPrtZRy70lta9TaYK71dh/5iFPToT3DEcSMEAO2tqOWhm3fcbvd8Je//KUzvGKKCClg35uNI2cECEqtiCDYfjwnVRWbOQkDBF5LMV095eiuj/47kOn/7Mm86AHwhLEnPX/in6au+0gcZCTW/Bbv3IugFzYxZYJtlhNu20bw1a3hD+u0NRaNITHBpibaoWB2sMLWfFXqikZjE0kMCJKg5p5UzCJ7CDDgzUhmiBHlwDAUCUCczLluY3MiUlertIqf/vwX7NuK9x8/4nQ64cPHzyil4na7wyxt8Ic//gnP37/j4XLGw+WCDx8+IOeEZZkxT2w+tVqA1rrTUjUhfhr72Blrz/R+v6PuO2BaInOecK0V99sdt+sV15cXvLw8o9SKP/zTH3C/3fHr3mBqff+rjfzVUqAh4L4NBhkECEr2e5BAt9t9x75x3Oz59aXn9bVVy0cUywK8e3wiq+l2hUij9olQWiAGQQpka4cQUFH6mImzWfx837YN67riT3/6E0opeP/+PZZlwfuPHzi6F0fOFXPt+1RVgTBsWUNKyPPcXZbV9V526tqkWEbR54WynwkNcHdsAScQQuA7uZwvqMbeV1V8+/YNt+sNfzZdUTIlMuZ5xu36itWL20A3Oq9jfIIghYCAhOW08Hq2DXut2KC43W749u2bsaUzPn76ATlnXI2RviyLfZaDwoxRAYJkIJVaIe41QGnuSDu08vrLb4AGanXu22ouv+DZcgCdmNeHrruYloSQA+631fKjAkUEjQcq1o0NFc9DQwjYrJaQxGbHPM/QfYeW3dipDS/fv6PsBfM0IcWI8+nMc8fyJCM3H2KP2tCWxX7Lr+pe+MfOh2gsvnXdoAqkZLqQIfR6bTgHxq7l2SyeuzFQsWmCaeL3TokgcdmLH7t97/m+dSIIEDoRwL/v7ZfXyg0IQKk7tKg982x5nd92QCu85mVZuqug5wGbAWxdMD4EiLAx+PLygn3fcbu9IsZoeqcJKeXeiPI95CQPb+DTEGXCskzYtju23QdpB3OyrJs5CGYm46qdROFrrzUnYQC1Chp2ELAROmCqIgY+83k+A6iQWg14aTY2WPvEEADu50hShBs8qSpu6x2lFhRz4UwxQOIwlRli9w1auKb2bffNhWJ1DYHYNiZJzGnx+P4sae/nIxlNXt8S8HQzIN+7/qNev/jG63WOUPuNrOqxdkQCG2lCYJMNyjrIEb/g6xcDT9G6RyGFUZDbCxPLvSYhjdCpjaTbCWo1tkLwcZyGb9+/ckEFLqjz+WysgExgaLfN44d0GGN6HsTrwd0udq2BoWfEZ2zsDDAZ6oDAwB/Qu8WWwMQwOphv6WTR/mljW44C2ke5zbMXHkEEYgUdneqkj+uFGEwLq2JdV2pWfCeI9O7hsb/8aomc9QThmgzBEt7TvHTUvpWKvbVe2B1BHE8WWzXrcFjHDugHfM6ZgoYpcczHwAqnOUat/f79UDge6h0RtUDRF4Z91c0YXbqxm1q9U89xqJSiMeuKFUTUJKCels3LiqPcMtbEbAyISM2obM51yQEZ03Yi68oui3f+Zm35YdGse8mDwfWBIk7LGSIRpzPFoNmJZiByUKmas4ICWDfqQHFcU7Asp15Ue5COpsEkgd2Vhhm5NcwmjBqso5Vi7Cy3Tv8PAW57DuH6ixK6pgPg3R6jiFthWvaKulfsykMrOGhbHQRVHhbpwK6yxG8vDJi39Y6UIrZasdsfH/0ZHWZjYYWIfeMI7v1+x152s60ddr1TnuhQafflAvdHULNbcGMETf+nx4GhE2YFe+aopagihWR7kv1zZzD4HlcAMac3+jWd+RStYFFAQ0QL9c3fW7RgYQUyDkqtyDnjcrng8fGxJ9Gqpp+ROBpM6i+sc2hAM7RvnSCDQdTUNZ2CCbUmICsulwcelstE58Y+AjiuzxPfLmAZI3K23+PrUj02+L4IcCeOLnQZk/epOvBGfQsbJYEV4RiASBTOqXf8Sr0HB4qiHmKHH2Bj/EHYTVH0A7//HhwOSjB+ZxuxJaPmAIGK2y9XlG0jwGsjFKUULLIgLWlY8FqXWKsxiHaCSCERPJWYBuCjamudcT/4ODFMA0NcoxBdUw2HQ5r379oPg3Xh7FDXypAUPAfo3+Pn22BWjVgcjVXijlRv4wfvwQHMIZB5NMsYWgQhvdWAUYxx2BCCsRvseWAAl2JNo3kxl8yc0LRh28cYO3VTxtgq2gDWpnlCDBEv319xvV7x05/+RIH4ZUGpBXvZ8e37N4gM4wqBdMfKWnnGerJcasU073j/4T1ynvC//+//L+zbhtv9htZaL0TdFdQlAVIy8d6mJlCLDvyHEBDV7a3ZVEpTfvMeeY+WUFsl488ogE0upNQTQEfaW+P5EWMiy7AaeLMXtFQhicC9qmK3BHnfd2sIBAgCoiiNMRLw4fEdHpYzzstia5Z7f6/FWFwVr7erGYwYC8SAS2dWU69Q+wh09bNP2cmndqLvfy51wtUOMilg4tp93Ro4pX0VNPuM1kEnH1FyTaGycfSCwNI/lxgA2MFnKtJ6fAlCFmvo+9BOLBkaa54/OfDksTgdgHPvvG+V42X1wADw2Nu1j+y+vZkRE92ck53NU04o+25MvmLAeMByOuF0otsWWfsV63rDH/70E75++4aX52dobVhSxpInOreqQvcCxICYx0iz51UODHMkTkZu3BrW252ujbV1TaFlnvHx0ye8XF/x9fs3nKxg//z5Ex4fn0Yebud2Sgll23uxowCWebbQr3285MgEUlW8vL5gva/48vUrQog4n0/cb62i7RXrfEcSjuItU8aUIkpKPfaIckS1iQBWW0AItJHxk3qdljL//dPnz/9Xe2/SNEmSXIk9NTN3j4hvya2qqxewIYMeCOc0J4KcAw+kUOYXU+avzHCIZQAMgEZ3VWVlfkssbovy8FTNPLIbmGqh9C2sJTsrM7/wcHczU1N9+vQpWnO2P4POhtaDXhEZALmxD73jJ3+Ga3iZF+zmhaxFt5kbX1xEzIdzgXwy3VszFrwwcREsIZ1SxG6/kF1WGw53e+x23sQlYppn3B3usNsv3BvgeyETzxIDjSXVrTXUXIwZwsTn4XBAA5BVsVsW7JadAV9Megf3oYUyCCw/nOHMQlSz9ba3+FzGdgnBBKcBacK1G4KxNrg33DdM88zuZb77TT+pFTLRnYkMCVjXgra6rRn7tJge25SSEQKCsVQFLXANVm2odZTQstvsaKqQUsRuWXhmerzUGkkPgfrE7gcDghS5j4sl9eHxSozdV82FYulkHNJvmI0F7zponRFsts6B2xBoF2qlXVEopLEUU9rwL9x+eSzqJV3NKp/4bs0nsbmpzcAUTwYo38c0L0y6+nkFQS2M0zyBtK4XHCyh6v6P//yUJozSae5tb+Lkvr6/f57JwGG/A8BzRJXnqvsFNsNg6foFnpzydS1QAvBqFSW5EIwz/7nVhhxWi5HkmvGjCtUNOQLovlpriuPxtR8NLkkAUDRcTKif38VmZq4lzQt19KFXapCbyeSFQoEQ3INFlND1x0rJyOuFsjIx4fX1GefzGS8Gxv/Zv/kz+kQxEribZvNJPDHoFVYsi/SEVAjBSD3RAF5n8Xo0TH8uBSdvNPogdlaLAX1ifr9v494J2RjYP2b84cDThnURugfNEaLXRoZe810LJUG8zrNWRSkNL8/PnVHx7u07fPX+PeZlZqb5lI16uXHMNt/rL3nLyAh9s40N6KRQB0VY4uPYzTawRL9etHaYAtjC7dHf1XeJOLUU3dnyAACAieYxAGvausD6bAY4hIhq2kyvL6+4XC744fuPmFLC/eHOnpNCnfzVrsrClokdJJZlYabNHGUtSnFxA32uUegwDIIH0Xa9yYLHaZo6o8GdLkdEIwbTyBHppu50DnFUD0yAEVABgBbSCWtjdrznyM1pZIbJlPHtxXqJg9eS0+Ed87el/08GPMUQLftltWWyoTu7V7u5hgNL7vw4KllbuwouljhhmmcriSvWtYXv4HQ69YBOAkupzqcTNZKOrxAJ+OlPf2Zi4q6vULnWgoNP0tOOAQYC6dhPtZ56kAxY9y4hqOsd1cTfhwMxJgwOYZ13K8WElumItNaweDe1NtqnpxSR4tTfCR0vQSmKnCtejxfEyG42tfGQW+aJqD68DMhL7ehgXS4rLhe2NJ+niQyTyKBynpy5MkCkL7XdfI9XHe2J+34z27OuK4EnKMRaFXs3HQeeWi9fJL24qkKcaQPp13JgEiCb0/eTAyK/CzwZANy8S15BMkf2cDhgmia8no6dKp/scx4UyGbPcl94+OJB27VdJ+vHMokimJcZh7s9gg7WhX+CFOejL3w7hKa+xnKtA5yFZaxMt6BVZx3Yie32MzDA6VoAfe+xq93QkUEP+KAWHNCIQIFeQtDn2MDYvscdPBoYNt8/I7kORnr5jNurNFWzUeNz3kbZ7eXlfOq2oc20qZ5xC86QdGBG2WkVkSL1QdBLcLZz4oBwb2ZhNx4QribQzygAA8jvNkjHGhegd8IL0bJ5dg13jsW7tQJbjRxfn26bHVwC0MFF8dbZVj5W6sgy+s+mlLpWHaeO97Bl3NTWAGndifZ94WsjpIgUE2LiO66lcl/Z+nX7Pg4M/jYlJkV+e/wWnz99xg8ffwAAPLx5xGUFmb/Pz1gvZ+ocWuAbQ+xJk/P5zM51+70BTwUPj4+4u7vDv/nTP8Pz8xP+8q/+X7TW8PHjR/j2C4HXWteVuou5DidPjGExkWFDZ5JnR0iDwu6+h4j0veQ2vDMXpolgcUzWbEFNH9Lsn7CkSxr30eVy7iBbbIo0m2RBoG0vpSKJDGdYApJQM2I3z2iqeHi4x5rZual0tg7feTsfMU0z5t2+21FfazynI0Sq2ZYGZ1deAbHKpJJFxZsSVE4tmag6GBPul9i+ENsY0veGObcYpUz5siLGgDQNP8C7+PJ6pkOngLo9NzCb1au2R+3etuK5W+CJ/hQAmI0LW0uMPqelll5uR5Za7KC9mvNfK7uz8h5id+LnaeraPV5N4GDImzdvjM3NoOJyueC3//zP+Id/+Efc3d1htyxYphm7aSLw1BSaM2ROiDp04bzbc5g4n7UQnBqgaMO6knnn2iQCYF4W7A8HfP/pI+bdgr0tlPfv3+Pu7v7Kx0wWWHd7Zv+b58XsE2UgmEwrKK30+Tqdjji+HvHph098d3UkJWouSKeEFAX73Q5vH9/wmVLqdr0nQ4WC5tNyMN8p9ffdO3TZueU6lf3+U0Iuue9RgEFjB+UBTGEy8HxFcubRRLZMzeMc7TYcDpCwc5vPw/AbHaAeNjUmdjX+9OkHlFLw4eEDbfHEjliH/aHrSpVMcGUy8fPSsiV5Fb6p68qErgCYpxlv374FQiDwVHfYW2IUAJsaKbp/MSWW5E5T6qymhi1o2DoI5502FQAqDNAwnd3V7EQDWGIV6c+nMBLYFhkU3529QY1gXQtyzeYzjb1bSqW9t45p0Xz6IIKK4W87K3Lrt4kQMAKoPSgK1DWTAFEKk5GIBrqsKMW6rd8l2pXq3ToBsRI9Z6pczmcG/eb/CIA5Jdpg86k84eF2UaA9+UZ9Xt4HE+fmeyolS7xp03aISb80rT3U6QkgiZCgQLXkq9kuLaxe8GRNSgnr5dLjumaMR3b8PEEAJItLPNmGECDGrBklx9QzZHKZTD4CT4p1XTGliJQMkGVdXU8k+H5w36RpRalrf85gxXYOIpVM4FPP51FNZftwnudxxrgbu/GNmrbeSMSThOcziQHzMnVpFAFjShE7D62DalUWxUkcTEhHIbwsmwlx7bIMhjASzrEEe84Z6+WC15enLg3x8fvv8fT0hE+fPkFE8PWHr3Cw0ut5ESy7CNdJ63a+UC+7wSqQDCtJFAOmt1zruE/DAmKgNIUagcKfZMg3XSfkCTwZwHwNB/2r40cDT1dC3MCVY9kPhu7UcuKWZYF6Rl3n/mJrrdjvGPSIBOx2OwgYgNRSiKmliYK2QjZOz6q2ATj5/fgGZdDoiKVnxQma8Z3xfudloYEMnpEQxChdV4Q/6gcREeUgbCvoQBNgAIMO4+sCbLWzP2J3LPf70WLwcrlgPb7ikldkE7tb13XUIVt2WkRwPl9wvqzckEFwf3+PKU12SAAifBdRQg+ottmnEJjZUHPg3IFkjbB0uqgbr+2cboEnB3YUQGkKlIJSM5qKVbYJ2Gyb8y+B9cq9ZbAq30egboR3KvDnzblaRokBa5omsoz2B4QgKKt1onBntgdiwcCyXvHLdr18CgMFWzfk3g2xOn0SZsCiUEtEpbfbnuIEDTwlm3UuMUTFwKAJ+/2MNU94fX3C8/MLfvvtb/H+/Qd8+OorvL58RslniJLifjjsurilxe4dTDgcDiZOq3Z/rbNxgjFY9tOMdc34/oePyDnjXAtCiCiulzbNDG7tYG+ikCoAGnLhIVLWzBI7CWgx0vEozEJdLufugE8znVXXOql1U6tsjgUppqzVL4VrXpuBSBAL0DJyPvUOgDFGlnZMCRINLAzB8RCuns4aoUPcDBBp0gYAYKCIG02AB6iLnnpL8Gm3jNSJ2MGhlc0F4gSVNoQZhWLxKbGOHAA1A+zGvPucNq4Z79jn76aBiYLaKi4543Q590P8nFdcakEppjsFwZoz1pL7Ot4ZUzQZtTymBaoVOa8d74n07GDQEqbEDORcCySwRlwsS007NTpr7ff7Dug5qOIA8kBjjVmoAjL0m4GOrlU0dOFcYy1GBt3U9Kg9QwTL5Htzg2oBuArfqTM5O3BhnRwhoXe388SA48FbsFEssFZjkXlJabDWr5Bk2XIuENcjcxCsSECKmVR6Yy6garcDLZveWcmIMeDusIe0COmHMDex2NryZ22o0GD71vRfVLUD5r7Su06NMB0mDQgmcj6nhU6qZbBDGiC5t1x3gKwEBhTVkgriYHkIBPfM3ouAmT84Q2vzc2BCptaGUFu3/93JsDvvyRUdzmEPzm0FqUgHFgAYYGJAhJg2R6Cn4u52M7CMYDUgaTg3pTTkfMb5fEFtDT//+c+xritejs/IeUWtBc/PrtOyYEqT6TdRD2aeZysnY9azd68TYYlLENzd3+NXv/pznM4nHF9fLEBpuLu7w7LQbqeYMCW+I9LyqYPTzze7Zq4ryqXgkteu8ebgU0gRaAHHpycGJNGFRy3hFajzJvZ3fMnmV+QLS2VVsJt3gLGd61rwdDrTTzEttBCsGQRM8yJEhJ0xW+19x2qBxjSRDdCoMaiNDQXmecb93R1E1crVeL0arPNYVYhSD0pVUWLrQdLWL7Jd0s87zx5rc3CIw8tVIR4sMWmhGhDhADITKCWzdKyLPRfarWT6eCpsMe32bxtoNhAU0iAdUPDEYHNGeRwlHOfzGa1RA6eWjP1uhmpEcLtWK/K6dmFtD3K3yRNPJFQdjVemeeY5XAqgDSkQZGfSkp7JbBqN2VkC5xXH4xFPz09IAXj/5gGPb95gtyy42y+Yp8TrmX6gWtmT34MzPLHasWm+dA2FwZoE7Hd7TKZvIkItV++29eHrr7A77M3GB7x99w4C4OX1FaUwkbrf73F/T/20tFuQgpWXWqOGdV2BpJ0ZFWPEFHnmTjFR02rZ4enpCf/4D/+9+zYsz02ojd9B9s+CZb8g5Ihq536w73Px5dJMeF8CEJWMtoDuL7vuYowR4NHKcnb7fK3VoJDr0p8gAXd7JonpWycraaZNSMaILSX3ta9okCi0G6rIJXQ9TYXpW630ufa7PQ53B3z19Vc4nU74m7/9G0CBu7s7PD4+4v7hvicrfd/nukKL9u5VlD8wgHuK0BasFDfj6ekJEJa79bPVynXE1vHT58/cA6cjdrudlSdHVpgEAgsGtWM37TpYX4qVjNnZnRs7EpfG/R6EyVnaZMYNpVagNUzJSmBj7WdLaQ1aS9dCTYsxuzdlVNHiINoeylVAB1txEsp7vJ6O5l8N0ESjGIDB7zuvBIxqaZjtsymQkVrWI2pTrGeLK5v5IgorG1wxz0xyHvYLAcyWEQMQQDu+dl06BVqxc1s600rMB4M2svXtAFbXG7LkZ0oRay7W8ZIl1c38nRC8LN5sPrSzU5xPMU1W9iVqjcBWvJ5Ow26LYG9MxUvOVkbY8O133+Mf//HXZIpNQ0PzcDhsAD07D62EjYnSCfvdYZyHEnB8YWK+d563M09tY3kqotaK3BmGFn+LQosH5NS9zTmjqiJtwN96uYw9DkBLQ+9+aSzzUlhGtix72ueQulyOWPG0w3xkkQUAbEaxFjZeWXPuJABtFTEIdjOb1AQruyzN9X832r2Rfuwlr/j89Bl//3f/zbRh91gvF5S8GnDa8J//83+BCJu6ffX11/jVr36FZVkwzQvKuknKC88xtTWgAjb4cjDfjBL9DAAGil3y6mkfMuOaWhWYJQaNzGHhRdea9AZqP2b8aODJ2QD/2ugZjkYqWUqxB33dOERShVOyEhr19p0euHgLY9ZN+ubi9cd3AAN08n8bYATQI1kDOLYjJjp7UxxoMbP3Xz4zTJxVzMm+BtrCF3/e/mpNIaGZ0C/BMzeiTv3PtXQ9n5zzcMh01FJnEwGNU0I09X6yKCZuSqXDMJt46razgV8rpQRHzIZR4OLpZRubgK4Hlpt33YMegN0rxMvtAHVrZtfhtclO2b4TvzPFEGL2n+kZ08aIJkZq/jjoWK2W2Y3QFnl1gA2N3+GBFIxG64ePO7+w7/E94lkyiyO6uKaGiYw1M3qlZLjAfUps3znNnIdpYiYhr2eINOwWdmYMQhHqKUXMU8I8szMIUXCYkGwzLYYJYi1BSza9jFqZFRUCStEZBsqDOoTW182osR0AKdunq4FHNNwpCYS9UhksNzVxWO5bisnz5biYajXdizBNw+jAWY/WscWD0jTZHHsG1dmOFbPNqYNKITo9Vbl2fA0HY4zYIaPACFr9Z4M5Cx2xH8F4SmDnDwMGuP5sX1vPbjqiASINLhTLEtkAGMjFfQADYkzrRq18ygQFR6neyGo4ExDBaveV2m1delhId64lD5pyjLRBwQNGOqV9MmWseQeeQiDoI4EaQtVL8QR97/r+9SDIhUc3W77bDL8/VQ940deHRNtDdksemHA9jjKxBnRNIbcXfi890HQ0z22LUHeqLyzbo74GNrt+i/oYckvvtgOWm8xL8EzTho0ZY0QLERpGAwc6AXwO18Nip6mGshZojMDeFmLDuIceWNv/t9btWPAuiZ2VJaDgo/TPqrp2E4A2sl8pis3ZxHMwDZadBgf9hsZNBXoGazvn3e7b/UWjzzvArUBfU8E0tcQAq2snQsbcbKZvm3S6Oo8x1p+IsNzZg6sOeoW+HnxnuCjw9pc3z3Dm4939PeL5hOfjk5XY0GEmKKwoU7nqZNSTVvZdk4HBntlUsOzpzdu3CM+BLLjqLOlNKakltRx8ZZZx+DbBEldaYOX1vF//LjKqJwQ0FNOy6EkiGTppEgAJsQvDQ7hGaquICARiDLDPeaXje1mBELAYWMXyKXooXpYaktj6biau2iDCbjpRB+OttYY5Tfw1TZbpr6COjrNQuplhAkDVANRhx9FBpe5l+cIcv29+ptsrdX/EkhtBh423n9dKKKD7S5W6kqqwTO2177JlMTnoOpxngtMiilClA4DehRmgrcvrSsC6FCRViEa0Qr+gGptiux983Q0BfQ+nbK0HBh4jMENnMMP2aDIh2VbJsD6fT7hczsjriiklPNzf4fH+DsuyYFkm0wf0d9WMrdB6WUetleeOddxlsjZa81+eh8mqG5zx43tWFNgf9lj2S2eWAEKAwfyEy3pBTBG5LKavEnsAOhIdrQfH3YebAqAJ8iBY5pnPmFdk04WiP1ERS4Qqdcq+vnyFECP2cY/QBts7bhIzTRtcMJJajsPnp3ZURqgBEZZ8Ugdh0M8DTyxxDeom4GIpjLZG7VILTb20KU2UDSk1mx9jYIsaOGD6KyEYo8oqCHLJWNcLwW5J2O0X1Fbx+voKVcU0T1Y+Kn0d+5aqBrJ1Xwx+bqIH9ZzPNoTD46gc2OqoOfvN12YM0tk7niBwVoTrlfmar9qg2W2XN0gxpvPmCMTmGWhMg717IEIgraFaUr419+dHEJysdNLjse4aNCaMyNAUYwclsq1zBjQiiELCZOW17lfY/rVS0l7J0bQnCMSCdLXuw6rSz1htZMRqEiBGdpSGmuaY0ENslUm97gcQXOpawdj6qlxzwfWv2nhlQUy3LruOF8N5dcfL2KHbth+6+W+IMCkksNJIykM4iO6g8N5Ksk0aCYDgclnx9PSEeWE31FrrlTYw2ae2JqtazM9kiJco8txsxq5MkOTtYoY/GiC9oUkDK2aoP8on64CHDFKFN+vY+sutVgT1EnAYKGsKDrbg6c+q/bKzx+dD6aX4UvVnSyGgAgjV/O9SUU2zFepJXwe1Xd+5WsOUcBV3+yi14vV4ZJmmKtlHzSUbFE9Pzyi14PV4hAL4+uuvcX9/zzm0c9n9HgJFdv/i8Um1ONtiN2CcjRi6xyJemq2sdto8d3fTdVQ06KYr6/9o/GjgyalXPSjtTudwbKY0QZtirS4W7Q7GyFwvC9vx7feG7ufcDSiN1zjo2Vu6dYPjhmBbk+msJvWsRGOtavQs7uYt9VIRu/6lNrs3dGGw2gMJp3OD92CbU8Lm8LR34A6HT9g0TchrxrlVLHZAp8ROSPlSeFju9wh5heSMl+dnXC4X/Okvf4nF6MjruuJ0OuGyZqy54MPDAw53hy6Su+YLqeaFrUujBbi+0AUsbxIM7QNmGbk4nJbuYq69C4gZeJa2jfI8Zh34nKU0lNpM3M/elpDFU5VsjmL139U3eQOCgU9+uMAWec4V0URQl3kxxkfqzwKo1ZYPp9E3i68B3udYF2pGwDdWd+6o/mtGCmgVWC8Z59OglQKAs9UA607gGXlRY22xpXouDHhSivjqw3t8/dUH7BbSlpd/86ekTq4mLDiRaRIDN3/NDVNMiHNCLStayx00cxaKqJAaK9apLka8ebjDaYp4eWbb5BhYduTZuxRjX7+n8wVNFbmaFkZMkJSoL2F7Jxgj7O37Nx0QS5FCy5fzGZd1xcePH6lFVlfLphXAa+kNTFovF2sh6hTtaMBnuIpbW2uYYyIT0VlvMCDdMxJQFKegGygkUAQNfjKhtEpD3yqzUTrWwmTlL5Yrh2H+EHDtI0QgDh2aageCd7pRsxXaHPjhXlnz+rvC+33fVLMcEcuyR0wz5jl1urpIwJTmsaZaRSuVwII4FVuQQiLz7sLWyNsSlS3jR+Gskmtjn3NB1owQrEy1DeAJBs6lZI6mCkLg/tyCAnSoBuhEqq4xC61rD8FIAj1kBJaeddwKaHoHRJbvSQcyPeMYY7KDdQRCPWj0WLR6N6vWHQo7JsEAVFhu48G/NlzWbPfH8opcuWe1sVQuRcHD/YPdWzCGUiT7tHkQrlhzQSwNp9cLpnnCXkLX3nMczMvMmwOFoB5VVLbChYh1AdPe2UYVQ5sEYmcHKeEObgVjfzUd517ANaM1WamJi0+68+G20deng6i+z5o5Gq5HWMGMqHdcdN6os6V89CBKxvnnTIAQwugiZAmkaWb74GaBLBkn0h1ts3QQCGZruFD6Wc8MXW2NIL8tfEXD4+Mj8Pzc22MD1NWrtULeBUzLTKe5nzO5J3lKKbwvBT5/furipdM04/2Hr/HDx49Yn5/x/cePmKYJh7sHLPbzABCSYI67zqYWEcwLQfkwx67r4/vVS2tc4DrFhJoLPn/6hBgSlmVH4dlcEOeJYE5QK3e1EvIWgEp2T+0lB7yhyVgb/R1hUwbJhcbzu5nwOEyQu7DDHctTBHuzT4sxjvWyouaMy2ntwMm0LIgxYZl3EGOtuQXy8iyySTLPG3EOiPmMtV2BpMU07UZSzG0b/YqYrCzA5tAZ784swgZYLqUgzi76bSCoth5kOXPZ302x82oLvLPcnLY8RrJ30awzVWt4/uETUpqwzDNy4XpSy96PEn7Od6kVoko9OPNPspC1dTlfIAKspsHZFJhSxId3b7s+3eV0oo5ZXq0Mg9qK79+/xy9+8XMsxqAOgW3ZyRoIBAvPF5zWC3KrXB8xQkNArhX//I//hBgCHh8fsdvtcHd311nJfiZO5quLhq5b6XPtJWfOoJqXxcqmaPvXnClQH1kGAlXUIhaMMTIeGkp2zqgipohdOuDn8y/w1dc/wZ/86S/x8Ycf8O133+HX//xrfPrut/j09GRi+RVfffUBf/Znf8Z1FQWayEoJFh1GGaXBlECIkMoMozegeHkhoLPf77HMC+KbcCWbYe4GIAG7/d3VmVVK6baXCa+Cw/7epEao4Xo+n81msgSdZe8v3HfCBNo8J6w54/V4wvPzM56fnvDdd98ihIA3b95imhL+/b//98g54/n5GTFGlg/vd2RSeMm3DDZdbXVzJuh4GEs+rJVC3Ak8H7UU+utg9zQR4GCVGstC/dfdYvILrfRGCd66PYSIphWXM9fRZV0xpbmfdx4baWMHx5obiiXKFG0D3PJ82e32m/PLkvaFsUmUaJ1CDXASS2q30kuL1svRfB36YPPhHnGZENPbbv/SlBBisPkzYD00zPPCNTnRMfIkQYwRX+0/QBWohczX4/HEd5E8+QtAjPWSqcn0/u3bkUg2KRcvAZ6ntFmj0sHMVhRscEofmo0ilr5ffB22maBEKRmtFOz3B0CCzT1P15gi5rjg5fiKy7r2PX5eVy6JlJAAzLa3q+mTxhh7if27d+9Ra0HJGQ9v3uKbUnC5nAneBvq4xxPL3HjujgoiQIyV2joQlbOtvxARU0WKimmSrjPGxgtcCymxKUpO7EJZygqalTa0siKdJteOKyVTm1C8Sotrh8Lz0crnhu70SFAA0Ib1PJpSTFNCMu6TqKCdz/ZmaRud3NFahTRqX4dN196mDTW7RrI3BolWwl9RhO/im5/9DO8+vMfXX3/dgfcfvv8Bx9cjfvnLX1LkPwScTkf87d/9HSCC//cv/xL39/e4u7vDh6+/wuHuDtMyQyxZxvmfDPCsSEZ8yKV2v8j9BSYgvXy+9DPLTYcn3ac4oKOgzZIj2wZM//r4AxhP9tUD6upGwjPJhucOxNKDg83NbCnPQIPX7HvQQWfWf5pT69/hzJReAgDp37O9Jwc4/F6u4jIPZCxLJsF1AwbSqrh23uF/bg3QoZcBj0k7uOK1m9TWob5OAhopfFvgJISA2CJSa52KP88LgwjrkKaq1F2yoNEzpwLPtlbbNAwsXNNhPCbfQM9EizgR6SrjID3Y3LxnaA9wOluhjhrV/g6wnU9bnHad8QJHJkI3k3HFhhIXpky93howAPLKKbVIzxfKdj1tgiNVdGeXRl4tiA/9Hv1umznj/ky9C1x3XBkeOSumg5e2hlyEPCUeDC6KPU+zlVBE9Pb1qsh57etl8kyTBdUu9OaIdDBAb7sYU4yY02RGlX8Odp1Ro/wl2wzwEg4H48ieEkQw6GBZj2VizTF3IeApRdQSsHopZIodvPBfI2PD0fd2YHmIxmCBlGulXa+d/lm53nvegnxcd1BavC1pZ0FaYBdj7PPIVvSeD9ugBdvrW+rOtdp0Ow9EZPr6uHLibE3qZo4c5IkxYZpYOudAaTI9D147oIl1xjT21nafEHwcTMHfzY3AMiv283Zvzlzw/JR3NvGsO2/1S7vMV9PtfJ8D28c6HPC+A7a21GyCf3zzz4OdJn4m2Pf7jwq6E+AAjF/36kL20rfvwrOxIsNuCYZN7venJlhqSEdTQFQ6iyU4WLv5shAE2pgEgAXMh/sDDnc7u6fW78ZXqMDEie17tgGMNsW1/ePfufCjzxEz430hmGN+zeDwdylAZ/Mw42XrwZ43uk6Vf7Ma88rn0SZhuxa89XBwBED8E9rvW6SfrldzMZIym/v15JCBIFfOiXS+2dX528GHTdaZtiT05JKXxfaSgs3+rM278DnAV/u71+39qvYESkreZWiHaZoR04TT+dg7fDYDNvhMQubxRpsuJlLWtSayiq7WsfTgExit3HMukClYJp1ldlf7BGNPUocQZKds1jrnzPW6nA3g4ODQ7mEX2crOOUL7PzRPAoKOQN3ZUq4JWK2DnUIRKgMIL+PpLM+m8BKiIYlgbJXtHtDB2PNFqDzu+nqAlXY5e1pk+AHi9kQFpZYvDwuEL503t2ENm/Xnviu63RO/P5uzcX6MpF0tFZfLansrGNOpdcBnKwEx7M/4Xvc7K6ipJUAvi1IVKz8b5+lF7LRW7o1oSbk4zdgf9tjvdgbyC1nMfb2pARK8fjDWEOy+vPslZPjkw6fb+n3uI/GsobBv7jaGpZkOJAfM84zt8HVKH8Sew+ZvqwnS+ZcW+KVpYvONmWWg5/WCp+cnnM9n4OkJpVa8vL5gt9/1QLq1hggmk52Jc2VrbN25HfB59XLJeZpQYxznv/1y/5RSRBZMYsQ2fpatOZtuJ89+Cegi8R6mtM1eLLVgikwyuTi/24V1zd1e7JYzoAvu7h/gTZvYQEP6+mTwvbWtzkQY+6szO6xWvHStI64t7mpOuTcQmFxmY5q7cPa2k6QIG81uXfJm4skixuCLTH6x8iD0Ndf3vjURgK3LWpX73fx7Z1RTGiRQQsLmdzBkNme9xUXruiLnFaWYj2qJOLFktkKRSwaKdMHrIBG1NpxeTx3Y8UoCZ1SPCpwMqcNOA7D5MJsD7mkEsKTQpBagpg9plUGxV+dcn7Njb6LHOZ1JZGLPfC8BKUQUWMl9JXPHbZACfV91+2knR7cDtjaoi5hQ57lrF3YKuc1F3OgBKxTI0n0Gt6uNhzcU3glunIf+cK2p6Rm9UnB9mfD+/TuLOQCvWAlm671rda2UMuh+0ebM8HOv2fk0jLwvtwZFuGog4fM2WLHYnB9f4A82tU5QQD8v5foaIBDr8Yjbn+7YbGIfT+KGEBCXiCXs8PbtW5zPJ5yOAc/puTvKvK6Y/zNRr66WK4KDVyZxfumrjRJ+KzGUgGB2wD3Ufj9AZxj6A/uzc4/gi65+4Dv1M/1HjB8NPC1WQ1ytJKmZ0+yUTjf80JFBnaYJa8nsXmNhhrNSPHvbQSvfYOh+VwdMnJrbqhItrU6CsNIYoyz3A6JT5KwEyOj0I+jmtdZ1RZoiQkhXQRV0GOVt++DLesGac880T9PcW9BSdJmaTavRFJ1y2lRYM6yuT0MUebHMxL/98z9nJnKlsNgPHz9immfcPz5gNo2KYvoytVY0kWH8nf4PGLVyvNvgeibJ2jA7IyGMeQgWEHatg03mOpg4X865i5v3NWDOTafk+QHteoxGf0x20CBYR6VqtcaqbPELHnLzPOPucLBSGcHxeOShAG7I3W535dSN0okRnDprqwGgVDINDWAglBl7EaPWKk19aQ251P4sEoe4I6BolnlFGICOO2knq4f21s0UzW1Ywe4KtVWPHBBCwGW94PuPHxGDYJoSZusmyBa0o1TMtbXSPMPOF5zPFyvJpKi8t6+HCtI8Y94v1lmndtZGShT8dj2k0jyDk1n6NyXsZuv+0chyi5EZJgZZ1Kd6++YReb/DP/36NwgAfvLhvbWtnvp1JiunmeZkWYKJQdtRkaaIRSx7HyPS5Pod6Ib9CsAUd0INFDCnzYNTZyj5Z7z6aTah0HmaLPsaANNwah1crD3gZ8CV+nx2Ef867BowAleWAIdevjvAEbXyD7Hvn9maOHG/dW0na5s8p981vcnYOtQUscBSTENpoycz9rogr8UyqwwmuUfUtqC3MqaGXTBgolayDMgWsMt1PRkA4rRvpfA6KM4ujf/tZcnR9321AwEjEz7tF6QAyJwQ1N+18MDVAOimE6bZfrJH7B48SLQDV0I05s2GpVap/cBOQNLbprse4dir1HBxUVAIjA1FDSBVmM5Zs/esgCh2dwtKDvjur7/F68srjq+v+OWf/hI/+8VPe+lqZ0aGjQ1WMpSaVlwuQ6DWbfUWzKeuXe42jXqDIPCgdIwVCoTN8wQgBO3OMIRlcizBaF1PK+dipQjDbmUv70Kys0nRAhkhfqYkz2ZZBlbcVqpCN0CviLAEXASz8P2fz+d+T75/ktlt2ZylPTg2rSeCfGw7LVyQqMog7HKhvkFubGvtTNbD4Q4lV5wOZ56dm5L15+dnBpPLjJwzXl9fuwaLA/X9ec321Vp7B8pSKmJM+PS3n3uioNaCHz7/YOuD3bDu3tyzdHjDLNN1RdCt7zIYNrtlQS0V3373Pc4ntkU/HCa8//C+s0okBpboGg7loqYhJQSJSCF1pqeXhefqOpCAd61UYy6v6wUlZ7wcyQA4X84IErCbufbRFEmmofUAoOWCCiDrilwq1pLpuIYAlIqqglgrgqKzu1Zjm20zn2KCsc68Uu8YWbxUyMBTCEJHC7Bxxq4HW3wLBDPq+Yznp6fupx0OB65dRWfoi7BTmELRSgWEulY+n162E4V6dM52ba1hnmZMKfUOrKfTGbkUPL+8skOTaXY4cL4Fqbh9CGo2jJJYVUWGorWAE0ZX5vGw/O6SGUR651zvOry3TmSeUa9o2B/uqH2k4wzroM1Vl6fWBaY/fP1V11tMm+SXi5q3Bs65AkCw+V1xOh0NjC1Wes4z8eHhActuh8c3j/BOvwClIhx0gQFOIZBNvSy7fkZ5qUqxs9nZECEGvHn7Bvv9Hj/95hucLxf89V//NZ6fn3F8fcX3Ivj++++7T353d7i2r5nd7JKVnuhayBBLCYf9AbtpwevTC0ptbMqh1Brcnh/YxCjBSrPdJyZbQBDTjI8fP+L19RUCAg0fPnywpgxmF5o3RapWLWGl8trw+dMLA8i1WHcvakbFGPHph88QETyeLtjv9/jZz37e52qZF8zTjJqPfb0AlBmArSrvwum+5WoMbE+81xR7lUNMCTEkzDNLleM+2To59DUoIvQ34AnMaEB2RIOghoAwEbRih92I8/liSXIyAw/LYmuBa16hVi5dUdYT44x1pa9o9jp4mbiBFg4oexdPjxtzviDnFZ8/fcLxRJsHAeZph3mZ8fjmobOXnj4/42gsM8Y+FLx/enrBm8c3+NnPfo43b97g8eGeVQ5oaAZOrK2hqJ1rIizXNb2brT/QRFBaxXld8fz8jN2yYF4WE8NuSG1IFvg+EzhThZU4pWbUVjGZ9qNr0gkaJEbM02KyDBmfPv6AGCN+8s1P0JrivF6gtaE0xZwmpJDoz+rQJL5cLogxYZ5m7N+9R/wqIlsMIebXPX3mOvRSXPeFJ0xkp5kmmqqiGGOm1lP3Df0z+/2eayUX/PXf/T3+7//0n/Du3Vu8//Ae//E//l/48/d/jufnZzL3TRf2sL/rlRWLLJha6oLr25iM3zP2bi6ZjXyM+aStoIqgptDXi9uO0R24Ioahjdy7nZdNEt93VxjxtwixhKqskAm2f8VAriCBQNFagFkQJiuBl4Dzeur3nOwsA+inqwBrWfFf/ut/QS7FpEqozbjsd3j38B7zsmBZFjy+eYP7+3tcnLxizzdPTAgE7+wt7ABJsN/lUrTrFboUjeMDal36OpayTagCCE2d7Pujxo8vtXPUvA1j7JRGZk48inT024AgWCce2OHvwUafOwtwNpQu1zyhrNf1PfgHPcPnT+4d33odrW7uuaPh6CiyG54YRkkVUb7NgePfeTUMnDBtl/G5wZKIndERLCPHQN+R56bGyhIXkhSoBGRl5mZvivX7/Z6HZAyICqPTenkLA6gA30Cj9KJVR2MNVGpDW0owykL6PAEdVNoCgVBFs82ibRyYXmLoQMUAEPwwcN9RrhaiqhfGjOyWZ2ZgQXmvS7bvxMaI+L0NlNq+owNQ/m+tC7z1id8kEpoqWy0aaNM213aQh+iug6OtA63XawO9Gx6/m9kGaIO20bo829ynid2R1jWz+5tQyHxdKYJIG2BO8GaNOxhSjNa/ruzeEJIJ8YYAiLVdrd65o4Dd6bZbfGh/xMC2ma4dpVZSRQTctHqaZ4+MnhoT7g8HQAS7ZUeWVUo9Q4uJNsEPpj6HsNr9wAo3rpcGYnLGdLDfGbQbqNkDWO7j/gy9pAFoW2E2Q/udXeNAKoJAmvAdb9D7of2mhtqboW3SW7Qm22cCila68xl6+Ry6E9TtUSDLyRkjXrLlXd7GOh3AFjDYSx6MeWDmjILOZoED7aPNc6neMtxthDEW4c6t2+3xrijCvgGut7bSnl/8Pm1uts643z+DL4MEN4CcH00q45dzilzM3S/Ov3MA26da+u+9bMZLUGX8O7vrjPp7dxS8hTkwNMvGuzag3W2MP6S4y2dBfAp4fPuIeZlxd7fH45sHbDXYvQ7Nz5/+LBKs5buzwKQHMH5u/L5smweIqm5PSs+yDbtT0No4//ya3uzCWa9kp9Z+X1+ut212desvBKPF6ua+toDTZisaSMSzegs4+fjyLO2+g3rGElZKnGyNGRhmJVFkDRsYbOe2Bu8wiV7y5dnZZo7htix/nGnXZ8n5fCboEApipEDqtmwwJv6dZ/pjSlh2C/x08zI737fB1tnIHDIQiSH1veO2fLffQxU4HY+4rCyxmZfFKPJizzrese8/8brbgB6YSxA0MW2n6MwnS9Kgmf9AoXvVgDmxfIw6E1yb0bL7Ps/cH+Y3dN+ATEqVgAg2lPCOiMy8GmPDSjwEgHek8gTdYJNg8zPGLPL97IDnxo9SdV+Qa1MEmGrqc9BTUEItIDRFMzxYw3hOB1VohgPQbK56x4A29oLNWQgBGuNGPzB1Bpzb4y9touvowZgbv2+vb/1OC10YeLtIqzIBgDC0ymDZbMVIJjhwFULsfpWftS3E3sBDIMjitmOBd1LqXffGY8OBEv73ABNzzjifTgTUGt+lzxFBbV+D0jWettpoPt/uv7q98ARDLw2V8U5jjNjNCyYDi04//Rme7x/w7XffIcaE15dXE/GfUOYZdSodDPHO21u7R/fCYxXpYupTMvDV/KDtXPp7lu01YImeEMCSUHb+7OwjnykZZywTfBG7paLGimWe7bw60Wcs1hGsKU7HU2eK0Bd8QW0Nd/ePcDY5wb8BXMzT6EQM6IjXYGcaNjpnwSovUkRoAVVYhsMutb4Xza/Y/E8M2Ha9pmhgi5c3prCJ25qX4VMHTa2cjesxdBaRhACZElmGTaEQLJY8dEY4gSeuGzbSIJtKm+vy8P2mFDCXibIIU2TDmaa99Mmnv9ZmJdaLgRzOWItWfTLDu+k5dWL80h5PhmighvlujGFa9ylE0Bl4EGFSyLuQW2zh+6XbMm2AtX4KmzPF2ezny4VJiKgG7oX+ee/u+OmHT0gTgXPf595UyjU8e8dTW+PuHzc7d8d9WGLQ105fE8OlBHxeru2ginZQR1vD0bTKai44nU94fnmmhmUCy/YiUFumNloQQNgcCdIQopg8QTO/w33G1nUit/u0QVlaa++VAdPv+q/DflPbTgMTPP6OxNZ6jx3M5rr0g48Q2XRisHXR40uttO3rhWW5Wl3vbiS5XW5D3e7tdvjw4T3mecL9/R0TEXbuL/OCZb/D/cMDvCt8jKmfbz2mbYpWRgk1z3CYjfMqiOEHhkDGGKrNsI5H9HPE/55zqtDOVr72//6l8aOBJxfbbHU4n63SSAZz0reTCVgAINQd8KA4V8/Ck00TIlFe73anqgNt33QsAIbjHYxy54c7nUweevMyQat2fQh3HACyYERk08UidGa7l9jUjUbHFmDgc0WrQeVB7vRMNAb9qixBmsLUg6rjke3Tay5w7RkIUAq6Dg3FGekkxxjxs1/8fOjm5NXq5Z3eyYhn3k39MP/yUFx17c4blJlvByMACjs7AdCDnWIaSB6Qwd6bvzt3OtQcLQfa6BQGYNgb26CAA1/++cp+T+iLPLhFbkaNPfdnqZXvJJlGxFbX68oRkG2ACQOMNll5DCqxyvg374JD/ZdquiNWXgOy5NY8nMZSi7Ei+OcpzXZAsexmvWTUoshr7XX/Pn749AmlVQY2zaj6iZmz19cTVAUxcT0+3N33zIcDT6VWrGtmh8PzGc8v1DR5fHwk8DOz5CDXi9XAj7lyh7U1HtzJnBO2KCfTqWTvqsE3WNQdJmY6XOA8xQk//eantmbMIUiDxZEiI3Kn+J5Op364uoOOAEgC6oXdk7gXY/9Mq43AFwjOBg193/p6jWLt6oXBtrNGFMqOZr6ma8Wa1/65eTbNI3qcQ8QVG32hEBE0dgaMeHcob5TQWt//MfraHrXbDmjzAGGWneyT2g8TwMVsPUCx/dU1gPh8MVJ7YS3ZgMTanZnQuH6LBder6bnRb7cyXfh1XOvJO3MIiraudTJq4NkWFsCGvowuuKpWStOadjBIMai9tJeDdYjmQLJadxtbBwIgeskCRnvZGIDGmn3AsSzen7PetPj3uN6adoA3mvO71XuBBW5QC2qspLHAwMBM54YloHRkJwuc0Mj++bf/868gkFEWuwkr6KhV6udgBJYMoMhIET+QrUy76xraz/MsG+vWz5Iu7gp0ajb3MrtQDmZF62up62MJdXXWNSNIsXbCYTClNvPrTFHbGb37VO0G3cps2mhDLdtgUihaHkrpIMIWYPPfq2Xjt3/nTLi0G4F6qQXn84rarBSuFXasihRBDogUW84VMc64v3/AeT0jt4J0WQfIY36Fn/m6+fvaGtvWlwptwH5/wG73886Oco2Lr7/+CQBg2e8wzRM+7Oe+NtOUmAEvfJYu6BnFGJX0c6ZpQr6sm5bvwE9+9g1enl/wN3/116hPzyi54quf/AQfDgfaMGM7wfeR2t4TMBSRxhKOEA3/tGITa11Nh1OgTTDvZrQSaVtrRVu4h+s6zlSW0szWqbaiNrVOd/zvBtP+aA0Jitg8mWAlOuZA57xivVzQy3wlkeGy7Gy+G5l0m2glhXjlZ1QLdnsJt/lqrUU4tl8rz667Bzrjl3Pm3g4CzRXa3NPg34UYkObJWHGrATiBOiGszrKglaw46oRYaYGVOHrb87u7u56k9FGrQrR2e57iDDGxXgdt3C6kSEZwTAQkyRKln5LXYkxF2qC7uz3SZN2iAkuzO9PRnS7za6aF+nBNG6IIJoTeKIFrBDitq7GFKVi95ssmQWeAeXNBZc5XLy9FwHpe8fz03H11rwl+emL7708/sBPbw+M9Hh4eyPqdpu5Xub/qZ4aDXn4P2w5zxTo+T5aCnneUonj/9i1O5wv+6//zX/H6esT3v/kOu/0Ob98+Yk0Jc4xI+x0Dx3nDooXjnTyXXY/vw/uvAADZ2JZalGsposcZAygcgFgQQZyppYIQcXd/hxAZF4jFNmLdsnuiO/JMzvOOIGaMyGvGy/MReS1YLytKJpvs299+i5eXF7x79w7zPOPl5YXdrJUasXd3d9z3lQmSOFOCobWGl5dnglKZiTeWmLnGF5MZDgzuD2Q+tqqYpmUDrLLEMcaIOS8ElaZka3hCyQRfJ0uAqvKclzTBG96cTSP0cjr1BhDOGpumhBRmpJnJy2Xingv3D1xtSoZ2sdhORNCC5XyskODucKD/nWM/S319vXn7Buvlgm+//RaXdUWBEw4mixkbHh4fMU8zjscT1jXj06cn1Nrw5pGyGfO0ByQSDOYJPyo2VAnazJ6AUDgr1FPsYsiTApAYrCtjRbmMygbVFTFG3KdRtk3/ggmoALLeAwTZWHGfPz9jiuxufhdnpDki7SaUVHB8fcXxeMRvf/MbvP/wAf/u3/07rGvGZTVfWD2hKKxISRFzTKz8aIUdxNvQLt5NM6II7g6HcYZBrZyNiYlSKwTN9MzYIMBjWK/C8Ljo29/8Fq1SjPzl9RmXfMbzS0PVM3I9IU3AWo5Yy4r7+0fGEpdnFJ2B0Hp3t/3uDsE6R3q1FR3cYWOkxu5HNW0Wo7hdN1CxuUwEQe9SVhJCQJ9qigNIbWA8kwJLXUtxkJnnVZpmQAJCqx3kzNbptZzPyLngfL509mBI1BhzaZB5mrie17V3Cfzmm6+QzK7UWvFyfOWjhohpnnE4HJBL7XHimvMQXDdC0HrmPk4poZoou0sDbIkqImJzVlGV573SSYQYloOOA7noPgBYJQh+3PgDGE+Aawm5zyCyDb4Ga6Rn/JTLk7uOQaG3qB3ZWvQD2dHH7kDbAlHAQCELSABuSkMcFY7AymDjdJTfAh1aRoIKm/InNG7C4pnV3kVqUNb94HLx82DXIk3OtaT8mWGOr3VRCgPkIUA3ygrJAKsdDV52O3j9ZtOGy0px4bjJJJfMhV9AAz5PySZnIPH+PslIU2uByXKcIAFVimUipb+rWqyLmlrwFNhAUtvIGnX9BgDsOaHQ3nbds4obAFi2ei6DhTZYFNLnn46YB7BtdD3bMjKwRdmH5pIbDAcatyAVP8RyOg+mHEAVAC00Y6PAylkwtCYkAtKgjcFCK+gZGlVBrQw6W6PB5Ttee7bAkfnT5UQUHQyGP3966uvhm5+qlV2SeszsJ0U2GXAL2tp6R5vj8YjPn36wA4vdmx7ePMKFMr0rW6K4C9tgiq9JsS6LfLcOAXrpZBDfx35o0il3epEzbwJgwRE1qEZ20Cib3V4wSGL2dQDJ3rlQAru9NctYcS1uvHnb2zHQTInZmqKkzwcL5qGClgmCiz23SmDm0oIKP5Q4pbb+0sZhsPXoNmNOzBy6zofaWg0bJ1Sb2HrndSgcPFQHRlqBto/lEQbWmD2Jxk8l48t1Uvi2RwDQzNbEnmkvthfzWjoYTfszvlOVe7g0hWgDggGx1p5cxJhZEWiNtjPJKIdy/SxHlL2On9fwPWI20t/x1Zv0hdDfSPcNFF5aI8zoweaJhpz335RglP23YhySIbAkVMKEGqxDYC0o2hDsnGrNywLF9jiDKe7/aiUIDQkB00znmclbxWg+d81QYLmki8+7DRMr5zG75M9udnQYRH7GWbYdnFF2sayt9vXlWTkCpdxHtXp2zCAvZ1PZXKtlovx8clFl/uyYGwZPzPgWLzcN1k1Lfc9zZmDvw5/N0MC+Z+HnhQREBCxh7vpKUcRE8rPZZz+/tQeACm6Tlp3ODqDyc5F3gDglaGJ5Qa0VaztzvlFRWsF5zXg9nvHydOTZEQLiNCH2jLmJk5ZiGW1m7aKwnO/15RklZ+x2Cw53d0CECeQz8PfzKQSwM5KBriICqWZXRFhySgSb79Ec4lKKgd3S3+HOSoJ//oufdcB2XhIUlcmvBkxT6uBeX4fO0A7XZx59DUGCRWbufyifJUSWH9dgorMGYnm5RIgCSOvBRF/bSgDdHBv6NZ6ASQmwDl2lFJyOZ4I3MdkeqfxsY4vmbTZ0mzH18qAuERADAqw1uv18A8lJ2mx/Cuf0cHfPbnPhzI6NtZpvSJvRoKiNAspRp34u1VwIqDU+aYoMJJj0qAACK0Tc3paCy/kCQDG9fYuQEkpt7LybEt9fENRCoWX1RGvOnRnlR6XCWXfeLc33sDMMWvd9xs86W8H2jTFcRYadEQsCkvBs7MzNbsrUSs/dHiryuaBFADX0a6kOuxcS5zMY+P8BH7A/7JDXjFILnp9fkDP1itZMTR0JwOGwQzAWhgqbznRmm9n4Zj60hIRoXWRbUSC0ztad54XJG1SsraJUxVoJRD++fYt5t0OyjsC73R5RImqhjplGSxCK6/pIX2e1tN4EYZ7YNGOaZ1iug2cNaOup48VzNsXJ3l8b/gAagjakACxTRAoLBIJlcv1Ll/fI0Mr5OJ1OqMZC0KbY7xeEADQtmJeZJZWtYbfbddv9y1/+TxQGhmDNF+RPFwLmy4LDwwEpTlh2C1qteHkd/p3bKl9n0bqtpihIQRCaSZiUhqIrWqVcCIHkxi7MFutsJU5SFHZYRTcP3JfBqjAgmOIEmQW4A+pSe+yVwkgohzKkUhh4RXPCCW4U6wJG3TmeVdXiwnwmu3JdMyCCNRQrb0xQBIQ04/7hEbtScSlWVeD+qgqWZTagDYhxos/UCPikaCWHiQCYx21dCzZ6FzE/DwKmifM95EiC+aiKGFgylrtmHgGA0GOx0M/TrsupwvOwl7cJUhLs9zs7BxoaCqpmoAkaKh4f7pFiwKenz2itmnSDVWKIQAPotytY+aGw85A+RDEmffTD2c61KSTEKSBJ6NIsSEBEpf6vsXhcA42VFREt8pnmyPLLt49vuJ8C8M1Pf4r/8L/9B8TEbpq73R1ejyekOCMsiQCPAjIzHqqlIYbIfSCMgWBVP85+3fpHXj3F8kKyA3n2SPdNQzJtxMa9mYwteakZUStUp84kbsyadl5sg+seV6jQl/WY1bt1V/MBXiyhVXPtZ/kULRlWCprtK4mBZdxBSIAoQGkNxWJvmSae64HYxOWyolpsy+ZeBhSB+1GF89SECWc/D7yzHjscwzAN99OdQUxfPZo9TjrOYwR+1qu2fqcLzb8yfjzwZDTyAeeM9oXbMrPh4KJPPtHFgaZtr7rN1vabMvEyYOgHuFaCgyrNAC3PnIbgRsGCJg9mJLAm11ERmH5TCFDLaqNU5JpRWu3aIgDs4HTHWjoq6c8ZzFgYvOYPbPfAe/dF6J8D0MEn1dqFJQG2qnWQxTtlTCkNzQ0AuRXLphZMCQiemYM7MRuqv+nYFGOTOTARhULYYqJ/ringwFOwLI8HsWIdJK7KI+BYngV4gAWi9owWiLmwYjdUbawgd5zIbguIUxzsheRtzrerZQRADjY6Eoum0MLysi78BgueYKhz1TG93YEdJYbav8eeJSRzQt0pGp2zSHTTrrv1ejyB2kG5b+RSSRc9no5knbWGdc34+PEHlFxRcsW8W3C4PzBIiujADunODnowk3w+n/D6+oIffvieLZzbivv7O9zdLSiZaLdnGKN3bTCwphl40Vsb94wjnUJtfNIRYDBg6ICwzZ/YzoqmJeJ0fZ4OdGgccFYzas5YSWmCo+Te+rNoNTBisNYcVKqqQN2APcaKKrUgmdYJbyygGdPMO0BVa8HNg1t7hkycHy50yXtArRiZYbCr01h1/IizkBgIDGcrWJlLZy81YPQeNRaJlRZIEssQSLcLLqsMjV2IUb3M0fZMB55Qob2cknoAEEGI3iltANsug1BaswyMvwNBkgik0Jk2xZ8xhr6uPevp9lDFBNodbIAxxJIBFhu818EPn9QOzA/rYUwqOjyAAU9KQLZnsAyp6jbVAq4QgSgRSRJqDKgt4HjmHiPbyj7ajAVVmXXyoLTV0gPCGBLmLnGlo4ugvbBgzCwPZqtqL1cNFt6l4Cyh0u2JCCzgcaPCZw/BGXt8h62yucHlckGyjmbBSqkkUPS5IqBW67BnuAOaB5+8Dv1D6UkdQK2EyDvR0plVMFngnUm9g0wy9kzO1tHLgBJ12oQX8RsAJ42BQQDLK5ISCFwrna1ojnM+rxu/YITa3UaLoAayPlohoBsRux2e5wUhJDw/P0OrorRsLNWKtRac1oyXlxOePr0gzQnTPCFOM6Z5gXcqnFJCBoO8aEzSKAnSMl6fnnBOR0gSvNGM+TAzy5smlrtH6rSE4JpWAVHESmIMbApg57UNKOR2tzO1N0Kj+8OC/Z6/vIMtk3KjycWUXHBc3HWBbNihqoriXd7Ad5bAhNNWvy0ZU0ytrKdWdpJyhh/9LUCF+nfsQkaAOphjjX5GNmgtfNZp4toqiny+4PXTE/Z3exwe75nIszMW2nBZyQJJadhVAa50DS+XCyQI7h/uAfHUloG9MGfXfI0UCTzdPzxgXS9IKaLmglatk5P4XmRSqQFIzRndQF4zci505CUi7idAFA2uv0NArZn9zCXjdD4hBpbmhBhRasU8zdgte0gi+PP6+mqgdu3sAAK79KGCrcEGs/PiMZCfRAY8Sexndy8FMS/cu2N551AvWxbzpWff/w6iY8QDMUWgNZQs0AKs54IYAZ2CJZNcd0cMKOMZ4eyF+/s7QAXn0xnr5YJ/+Id/wOvxiOPlhDVnnI4vmKaIt4+PYKfiGaeSUbVhGpZ/lIA5+0ltTZeKVi2ZG8g6WWXFuRUULUAG1pXr5e37dyg5cz4C17Fap9uMzO5k+8VKrFIH4VoBylqw1spATBKmBOytuYqKxTSZANW6ZlzOJ9RaOiPL7WzQiqgRCBUpAGFOCCDzkTqTAPVNrYGNldEdX196J7wYI968ecS0TNynBgrGEHB3d4ff/OY3EBH86le/gqri17/+NY7HI15fX/GYV7TDHfZ3FJnf7XeU1PCEhyWtnU1LkNXZQQFJBLFR36lc6MsiAKfzmWyOFtCWsYZEYABUgOUDsWaPYQysNOaDNgJ/KU6Yp6Un+GprJtDvMYntC5dCSICEhmaJ2OL2CA2zkE0F8/PXwo6Ql5J7SdO0zJiX0cr+8c07JoBPmcmWQq3bFNOmFDRiniuWZTeAXgMPvDzafWeCSo3Akx1pKU4EaKMBuOqJuxGLpZiwzDPWtWANmYnAACzLHqqK4/MRCgKC7mtyvQACngUxBISJmlutVdRWoJJRTCBQFXj75gHznPD0+ozaKo7HY2cAtQBoDJhCJOGiUOfOhdsniYxjqoHCoP8MAebFJjxRcziXCokBFRWXC4FUrTrWAgKB4MQOpQsoGTNJRKkFr/mEP/mTP8FPvv4pE0lacdg/4OX5hDlR0zeCccwc2cV6zRnTgfqpJV+gugIyAyEYuGRkDnsZURJEIjSaDmE5QaEGftPmiFWviHpSnQnxU1mZnGqKWWbTqjTg3k6xKrAy8wqEgNgMGBMhwaI1rpdS8PTyDDTQLwoRIU2IdrY20+FrqkjzhN1uZtJYG4qBZV6pIdMEwl/0Qc7nC1qgbrFrMHnZuu99ia7vSr8sQBBasBjT3dNq78CSHdB+nWhrP7ofZ6W4DpoCrCgbUfS/Pn408ORjy2byPztzZstM8aG2EGJgh69m1C/XFIKOjJyHJyxVCURntbENc6NoqkBQhRl3b70OYfDXDZgEeM2vb0beDPrP+8FX14y6ZpzWM3LNxvAR3B3uLG5UE0CsdsgP57EzisxxggXUMfAePFjXpnZtLlDPLkfLiFgOCOuZzhnbwFOgGGYcTqdTL0cUMeEzjFrXbelGKWXoBgTBvFs6CEV6bWLAKHKtnVFdU8QDYfvdHrmzz3xNQ/oCdcdU6O1cAZDEecwg+fl3taYwHGsLpIIFuQHbjWNApdefq0La6HqUS7H5aH3DqQF71TKXTZnR0zYC6mbOeGuVgI2j26IIxtRzQDGvGSsanl9esebc7ymvGSEo2ASCGkDnyxlrXrEsNGyfPv2A19dX/PM//QaHwx3ePL7DvYnZKiiWvFaKkWqICAY4nE4XPL++4rJmgggxYQoBu/0e87wACJhm6/I0JbKdzCBM8wJVwZotsKsVxQ7G5O0+Ge2TZAHXI2pd8Jz+i1jMOdYawQEXLjVANYyaaWY3ObcerDmA7bpIrXrmkPXUbGkrxjiIXTdAFEPwG2I/I1hLxuWScTweKdY4L5z3YKC1KqaQMEkykJCOJUxDxHCUTemHZQbt/rz7BRqze1uBcxeSdHylM4XsGQLo+EzGWjGUg5eDi/EZWATQ1mkdNeEGYDrF39+n2sG3BRnEba2OrhXuAPgedMAM12XpA20DerOI0Jl96LosIwDitaKl8MWcHltWtul9nYz69X4f/mUdjrJDDJadCeBaceAe5uw1E84VivMyM27ZxpS6XgZpwgbKKSBYezAfIgEE774URE0cnxTiDoz1wxidIacYpSEwkGow9EycUau9iK0uEn/WmXdrW/uZ6aV37IhULEiiW+G20h0GZxJVsSrG0MZ1xbJ1ieUc0VksDjj1RT4MLdmRzHxSy4f35+LdVIdHB0h9loChxyNu82EMKqPU11aGaOfV2rF9tfEfwuZM9e6irRY8PT3j6ekZpSha9WcTzDtqgYR5xrLs8eHDT/D28RHPnz/j+fUZCsU33/wU8zxBGhnDyzThuTzheFnJ1AHw229/Q42lywV384T379/j7uEeu93OSp1CL4cHuOciYLpdoTNaJUrPHnbGmzt8Dlxuzue+mADsdjvTp5n7z2Y7V1xs3qbFAOlq9rNd7cdtwmpdV5yOx/73Hphv9SQ8oec/E1McLC4RNG/AsAXOHFy37raXC8tAL+eCz58+42/++r/h4e0D3nx4hw9v3+DusDcmMIVtyXBonYmTIuexl0HCAe5xf6qCJsCl0PexHq+4qJXn57wxOnyv2cqS1zVbeSGQUumAMVlwBiba3uF7Me2a1rCuK8uYWzVWbsPhcMAyz7i/v7fEDpMffX6NUUT2LueulzEY85dMaStfVCZSVZyVR/aUKDBbK3Ofn620QWuta/sFEQRNpgtmQZGVRpscFtDLIWDlkzyw/FxXNJSaEcXbfFuzER1+XKsNa1vRkTKwocqHDx/w+OYRX33zFZ6envC3/+1v0NSarjTqPaKswx8we96Z6U0ZgPcDyW1JtVI/E3yvo7HG9jpQdPYgWf6hJ6ibKp6en3lWT0x+kclMwfl5SkjCQF8AdhlsgFr5NrvdFc5TILDrdrtaibA0L5WO2Nwhaq34p1//E0IIuHu4N8ak+ftRLAkHePObl5cXhBBw2O/JxrIkal4L9vsDYgrUtEoRy45Cwm/fvu3JmjVn4HTq22BKE9u+19Zth+/tvF5o3tMeCiDXhjUXJjUQEaZo5fkRUWYs84IYJ0RJYCOmYOeb+Xlm79yOcx6Gnd/aqJgiEoCUJmqWXi5MLIaNZmEg8Mh4p2G9lM6eyRloLXSfv/tfBgaVppBSCKBK6Mkkul6xVwQQeNrYZe5QgvSbdc8lJr3c2SVZoJ48ZQOBmisu5hP6d4qAOlEhIE5MwlB+holl15Xz75rnBQI1Nnc0tpDFyX5sbHzrmCITsBbPie1ZgJ9///495mVnjEwmzFdlQ5aqzroPV9elDaS8xGRaXefzGTlnvLy8YJom3N3d9bhgWSYAM3a7eexpRymV51FBRUXDWhWhghqAAtzfPdD3qA66K5oWnE9nPF0uCBLw4d2HDnqXM0XQm7J0bkpeJdUsyZfgzamgQ6dWXa9KYGdN63bZ/eKm2hWlKZNAJiBA3bVLOyN7tYgMgfXOrlXGMiUXaGhogfGOQCGRJXFv375laVqTzsh2+ZceZpSMZoQY11JTY+AFGfGIgJ3CRQSIAnXgCYImZP27RaW7qhu9twbVQLtrLDgx34wVxoE+kusf6vBdh40b55Js/JsfO/4g4GkLMv1rP3M1DHgR+zcPKLRuQhBzgv3zTo/jg4n7qti2QtUQ4fX7Hoh6RoPXCT2aFA+MtzvYruSMoPVywVqoi0NK5Ph3ZwthUzZhJDUzPKUHXgGAqANURrGVBmnMMtdc0QRo0Y2UZc1tk/ZDNdA4el3s6XTqteN0SPbdaLkGiyOXv2Psp2Toaxq6CU5j99IVCajSejYOqIR9rBwBoDPooYM/G3ANMnkU/iWDqPVPbX/02uH4Esz07oQi1EPwd90FjBs3Yt2UzbiQM0AnjeUpZh4U/Xc0F1FtaBYsOZAgCjRryRsiMIeBlbGbVcHLywtOncLK545RMC+B3d6UmTl2QST4czod8frygufnJzOmCfMyY1kWnFdmv6rRWkNraGBAs2Z2dlpLoeMeIwATQJxmkIFk2hHJO7lx7iZzcKq9l9YapLIFbggMvP2ZRYYP70Gxr6utQGafc0FnxCiox0SVOVzNI9cX57M3AbD15KeqgxxiKHsIAZMFrk6r7qeq7XQRAmk5Z6yXFblkpK470jqbK0yCyUU/+/NasCHS0fuxsp1ReW3ntoezU84RxBx5C9JAB0gtMxKMai++H/y7fu+17bBU9L3lgb8DT/2dboJavjc7BNUOFd9x+sV3uKcm9hlzktQdkLbdg7QRTUYdvDtfHXQ2bMN/bcOHXjonG4jJQDPzBfv9cZlY4iEEaL/w5n2Z08cl5kC2ibcGwZRYMuH6Om4XeNZwTMIub571DcIuIskFq6/KX4Df8xLtHYN0a0cdMbQD+q1vABbYwb91av2dFg9wOphgew7jGtVAh6atM7LUxWmal6wEZrEkGJPFOre5nbb77+/amBgKEGi2f29mg0QHgzU4m9HWtfjMGCisje/OAfwvgZHtGgQGK9WBKbH972BOa4rj8YjvvvsOpyO7Hd3f32FZZny9vKN2UIpYlgMOhwfs5xnHx0d8+/23WPOKN28ekWLEerkgGfB0DJHnud3H89NnHE8nJAv67+/vsd+ze5ODI9E0f3rDNbvXpq5Ep4AH+hggnNizbf0ZX/8+GXRgU9eB2r4r11/zd60GckobgOXvAk9D1+p4PF7Zi5RSn2e1NevX24qbuq3xQG4Ap7Cy1QBgCE03VZwvK55fXvDtt9/inM8oqHi42+Mx3vf17cAT9z8TC4iDEQ4AqU72Tsf505T+b8mZHX0iu1uWklFqxWW9IEWTHLDPeVv6dbXOa5VdlhCYzJtmlmAO0NRLpzjrzToyrdal2H2X3bJgv9uzo2zi+hO19W97yktkfA24VhSBS9owgvtqARNLnWFrMFpQPE0TopdFYgAHHiT1LnnCoCMo2Qx8vxtDbGeTa/Z5qXY/64Rrq7Zqc2tMZgNxxNk/loBlkM/nCsEToIo4R6QU8et/WhBEenerrXaXry3/87CVYx30227cX0VHYtGHMzwRBCGOjsIiBCn9maCKy5kaVlIooIxlR0ZCYIIR0fnGlF+Al/z3xgYVvcxqA5B33wjbMxn9+VpreH56hkT63/M8Y1litwcxJLRAHkNrDKiniQzLDNf441pelhkhBjw9P2OeGfjP1hXwcjxjXVfUWmASPmSKBLI8fM1o086gK7Xa+uMqKJUdbnMuROSaMfQgmCd2zYsO2G6kBPweeZZc+3s+x92PtPmhbAhZdEHYaTjY3zm50+0j4y4mM1LkGeSl5t3+9eew3+37qvl6wYEnCIJMfc5iDOZnaLeHwLZZ0DinWRJHQBNo3UeyAMw6xrWeRCVr0BiyiV2puZ9gXY35/WOf8v7YCEgRBXZ/ES0487J1u+jvksLwQ9MvhNBzSyEEHO7v6RNZLBljpNB2BVR43iePUd0XV4zyNJPGOJ0oFfL6+op5JtvIJhzeeVFkHntDSQIouWC9XFCDogkBOjGdwRAjlnlBF5k30/D8/Bnn86WfX+/evOtrGgB1ijPZrDHsRgUCrPNyB6DJkncpD2fbxRShLUBb3sTKwzceyRfzRi0JX8yH7NpRNs9j/mCAVu2+fa9yCPQjDnt2yZMKSIyQGC3RVgcq0Vr/hZ7QMGDoCluhrQwivasijxl2CvbbGsk+9xn73fZ159I3vjeYzAi926+v8W1yyO0cwbdtgvzHjT+wq92//Mt/xm/GbyLGiGiCdAD6geQ375lnR8+6YalKkTMlODXFiOVw1w8dd56bVnT0D6HrhiACUE5gcSeqcaNvxQKbBFQrP4sh4uGeCvFsK5hxOZ3Gz6ppBlim8LDseuYlCgN/Onc0MAoP3iJrzVHR8ugwV7QBqaIFGiyvewaIMr++vlKc73Lpzs6bN28wzzOzPBACKDbf18CQx9TSdWrc4AWjcA7nmci8quDULmSNwQPyAeTAjZQFOmPjOi0THZFtm7XQ40/drKW+rghqeODuB5iXowR35f1+65hHD6RK13ZqfWMF4zj74ThQWTusiHwApsVUjd1DWr6xfBKft9RKcGeacXo+4nh8wXpZUUvB6yvXx+PDPbt7VMXxfMR5zQgJ1qGBrKD379/i/v4Obx7fQBXIZcXz8xM+flygYAZ1t99DNCAXhSPzFYJpt8PH//6P+OHjR3z46gPuDge8e/8VRATH8xlGAsW8mGh4jPBukoCg5mJrQwBzlr16xipwut/EjI7tReHcxuCB6BfGxebB37tgM38bR22IwZtdSKxPjtFYM8YqQ2AtfAxxgANgoLcWsgabKiRNiIniftWo0zAhelW2UaUwd2Vr8JQxzzyEGTtvgG4LZnhg2DoxIyvR2VVxOHB++FjGrCntVNWhvyNi5VCbQ4nOUfjSdJvjoxs2jZWh2L+7ALjfc1RmxbQpdKLNaeqaPaOzYbOSv1pZPsFW84EaT8qAh9pm2m2Hj+GQDRsfRQBvVw4hrdqysleok4FN/mexP3cQcusoQrvGncjQLek2t20cA/UyKQKJ6GuOazRZVi9KQI0VqMLscebh7nR5hQDVWmY7a83FQ822dEBFYZpvw2DVyjIvUUCrn3vmGHn2zU5+hQM9zJz1RAFGhthLZtKkmObF9N3MaTchzVoy1kvB+ZKRS6Y45xItSLUW2CEhJme0ynBKbBmqgV9irAVVOmtqQZ53Z3PxeClWwp6G/ob2l24OkaCXPZSccV5XOMutr4Y+l22sd1z7C8kC9JRmFM2W7SbT6Xg84Xg84a/+6i8xzxP+j//zf8ebwx7vPnwANQYVaWIHuq8+fCBrtxK02FvGd7fMtIGt4Te/+Q2enp5wPJ4QU8T/+r/8Be4e7nH/5hGSyFZNIXZn3UsUtsGn0qjZewjYTPpmZ2MjzA+LU7gepuhd/Iaugn9+niY0S7QoyEJ0QMltzzYYJwA+AMS8rmzrvrHD8zyTFQF04ddlt5h2TxhBxvmMUkdzDCYxBhik0njGa8XxRGDm9eWEWjK++eYneL0c8fd///d4vDtgv8wQUeqeNG6kNJleDMS6gDFjDwMNmuuQwJhBUFQQ5MqlINhBc3x5tdIJanPtdws0VqBFYA0s12qC1ka54/HYgINgmredv2hp+cxsaqKVTQHIPm3sMjxNeHv/iMnYWV4S3+1lM20pc9R5zgTTjzEWrK2KqtbZ2JaMg5u94Y4B/p5o83IsF6h2Rqxrr6hU1EDfp0BQhUFVw8hUp0Abk9GMtcHzKs1Tv7/BmquAFOS8bsBHA7tAgPj4ymdtrSDEiMfpDd69fYu/+Iu/QC0Fec1IKeF0PGE9X1Ba7bqGVQJZBJdL74g9zzNjBS9NUgJdq7HX2kaSIlrZXA/wrNsW1PzNID1Jvdsv/TCOUTAnVytRnt9WWu7+p5/jguuGBF3E32yZxy3uS4iY7pDSbwsh4Oe/+Dkg0rv6aaPkA7QYEGXdxlodotgQ1JxxfD0ixID94WBHC9lb63rB56fPuD/c4d2797jfH7BfdhT+h1opq8IbjCRLuLVakc8XAz1ZNVByxrkUPH1mc4O8Vty/ucfhbo/9/oB5mvFw98b0s3bWjIkl37XVnrz1s7K53W/DZyBrvnWQJVRau+x6hV6LiMF8cYBsnmdMCfAKL1Hp2q/erDmC/tSkBKjWdaVYszGbmNDkfZa6Dp9BI2LEkDawTpIhhh4rdGAtAKgNwb40SjHwt1kJv2nThQAH9M7nC5ddnKD+XQ0oubHqxJgsg3kqSEgeRcE1mfxskZHNoj+eZngHP2/8Ue2Mh0TEJFhkdK2GnT/sSaGUnFDFulrjAEu8SWP5dikFL9mT4cUIEBnn8wnffvwO7969w/v377EWhdRNTGD3UK1ioqmV8seIVAVAQ7Z4batJ613pCGwlPNzfQwA21RJFrRnznPD+/XtosHViYaljBgWejPU5r922jYR3MNKmV+tQ87lVIDT6tZ6kCf164/G6Tp1Vd3A+AiQ5FORYlO8BoFSCWrv9zrQrA4qODrcQIFiiu6rpQT0/I0WSE5Y0EzTnJuC6UADqkg2uA8rn8iVrN8yYHe5nKBK4BnznOQbgNy/BAUmeyVDXlMUGaLbnD5u5/wPGH1xqtx2/L6Ppf+9DrGRm+/P+79tg1Df6NrD1biAeeI1uUbK5nk/2QPn8Gr2F5SaIgscIm9ioB8tCDSoHnmozQ2YHPmnKQ+S8WqYlWjbY78s1EQYExFLAJgrSVAlwONDhQVtMo17SNQ8ceHK6oR9Y0zRZltmAnh7gfjEfmyDOHWfPzvhtKizAELm+hj3DuKT+7v/3fxyf2YawfjDhix/74j/7z17dq3g+Uq6u/SXY6Qbcp/j3XbtPuBsHwVUW2z/jjBC1H+3ZANDYeGmMZwGLZWwcmaZB5bqZg4M/vDKzmKTnn88rjsczSsnUgQgEUtw8uFaZs30kROSccTqfEQK7J7gTXE8nuCi5lxJhs474jG56+tvoZlLGH8Y+6nOyiaf8sz8S2d7+3JefEdcL2mi7ORoWLUNztQ5URslXzwpop49umUC+332vVqGgPrsiuUkeANE207p9QQ5we5ZSYexF+y4vA/TreVDew0+7bs/MYbMfMPaRXK1pA53+hVfspRbBGAOAYSW+7jV03TjtNmjjCNo6YS239Ht2IMjt8PYdbRMF/syumwK1LN7Gftjr2x7Dm7/167qtuf4ev4ZfSixY983t79076vUN78CWWrfCAHbENL0Ctecej2V7vBEMxMYG9P/QL5yJzb9rd679Lx301r5nRPzd+9yM9doP76u15Bm1bph6IOMBSi2FjmGtZEpEtdJsGBAkV3vB38n2XaliAGz2UB1Y6g9o+0xCn6PftanXo+k2eTD+fnu2/x53of8M7zeYs4S+Xwi6rPj06TPmOfX1vywLSmlYqzmwIbDcskWUknvA6CzfNFmXnVp7h5g0Jbx79w77uwPCPNnEDdZHv69+j5t31h90s/av9kC3BNcPq7/H5mzOXup6efBxfZb+voSfXbJfz4OZETwNZl1fbwZIbX91wN0Sdbapxt7COMcVzkgonfm02y14PR9xOp06CyNsHHVs1npnigQvfSMA1itXgZ7lb14yYYGg6LYUqpozvH3f/JPq+J3vq2727fVCZDJNUQoIIlnQpCADN8XE5J9r/23sDvreub6miDP6uCe+9I3cydgmZL5kjfSOS/Z3LAPZ+Ndq3998S1OrkcEGuiYWFFxTcPY3T6Tt/W39cKgHju3qPoxAZXpahAWjhT3eYel8PuP0eoTIAEg92YrAIKkaGNJEAGNVDXYU+lnVv3fDePrSiAy78rvGhaBPIDsqhKvKiP7M7u/ZO2nKivhrXxRjzW7mql9osxTMumO/3wNgMkJ7AoWaPdM0EnO1CWKJvXy5mXyHCMup0P3OgtPpjB9++AG1VEzTjDkm7ObFynVcy2+8CW8yBLU5rBVeU6TKsurz+WLlfQRvmifXYkSy7lvxi0Sis3f7fLjt8Pe49dF9NdrzAwbSNe325XfOBYH5XEwAWzvPEfDa+/dqESaZh0TA9TzZvLTNl2zO1lG14P7v8IKDkNnsawAApVyc6T8mfNy4OvvdQe9wdfa7XbIVw9e3+fiVf7JxKH0fuz32uBjaNu/djyQnHITxbu1SXp6J5sw9QVA1qQ30vcrkT7E1aV1Ljfl0d3dnr7GNQoSt74AB9vjZ+aVt636xjsRXSoIYp85e8gs3ZUnXnCY0IbMfxdm72u+bMZrYZzZn5RfLa2OQbc9od4mYYMG1nbj66Ma3skG7vPmZzc+rTbCTKSKCJcb02rewd6iWxIMSqNfQyGDwd+xrzmIH/3z3K/s7550QRrcGRRgr79or8TN084yq3c++jgs2T/k7cd2/ELh8+Un9fcjRbdzGbdzGbdzGbdzGbdzGbdzGbdzGbdzGbdzG/88R/sc/chu3cRu3cRu3cRu3cRu3cRu3cRu3cRu3cRu38YePG/B0G7dxG7dxG7dxG7dxG7dxG7dxG7dxG7dxG3+UcQOebuM2buM2buM2buM2buM2buM2buM2buM2buOPMm7A023cxm3cxm3cxm3cxm3cxm3cxm3cxm3cxm38UcYNeLqN27iN27iN27iN27iN27iN27iN27iN27iNP8q4AU+3cRu3cRu3cRu3cRu3cRu3cRu3cRu3cRu38UcZN+DpNm7jNm7jNm7jNm7jNm7jNm7jNm7jNm7jNv4o4wY83cZt3MZt3MZt3MZt3MZt3MZt3MZt3MZt3MYfZdyAp9u4jdu4jdu4jdu4jdu4jdu4jdu4jdu4jdv4o4z/D/d9s0c5amrdAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "save_dir = '/home/mshukor/ofa_adastra'\n",
+ "\n",
+ "text = question+\" \"+result[0]['answer']\n",
+ "print(text)\n",
+ "plt.figure(figsize=(15, 15))\n",
+ "plt.axis('off')\n",
+ "\n",
+ "plt.imshow(image)\n",
+ "\n",
+ "save_path = save_dir + '/results/vqa/'+\"_\".join(text.split(' '))+\".jpg\"\n",
+ "plt.savefig(save_path, bbox_inches='tight')\n",
+ "\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "86526b6d-a2e5-4d18-b147-3357299d6819",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c1c5e4ba-50f8-422f-9392-192aeef0da0f",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "ofa",
+ "language": "python",
+ "name": "ofa"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/Video_Captioning.ipynb b/Video_Captioning.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..2faefba5a48f8ba761888fddbe905f18b7aed0ab
--- /dev/null
+++ b/Video_Captioning.ipynb
@@ -0,0 +1,383 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "55df6d0d-71cf-4110-81ed-7c0d3ce58e43",
+ "metadata": {},
+ "source": [
+ "## Import"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "0abe9574-05f7-4684-b586-033827b89c32",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "74e70729-b658-4ffd-9d8b-ae42a2d1b212",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "import numpy as np\n",
+ "from fairseq import utils, tasks\n",
+ "from fairseq import checkpoint_utils\n",
+ "from utils.eval_utils import eval_step\n",
+ "from tasks.mm_tasks.caption import CaptionTask\n",
+ "from models.unival import UnIVALModel\n",
+ "from PIL import Image\n",
+ "\n",
+ "import random\n",
+ "from torchvision.transforms import functional as F\n",
+ "from torchvision.transforms import InterpolationMode\n",
+ "\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "# turn on cuda if GPU is available\n",
+ "use_cuda = torch.cuda.is_available()\n",
+ "# use fp16 only when GPU is available\n",
+ "use_fp16 = False\n",
+ "import os "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "ce03a870-2852-410e-97c4-59461d08f60a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ".register_task_cls(cls)>"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Register refcoco task\n",
+ "tasks.register_task('video_caption', CaptionTask)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "58361680-3e90-4fff-962e-2ff67c1e7289",
+ "metadata": {},
+ "source": [
+ "### Load model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "id": "adb79611-7563-4fb6-a576-f31050f8438e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "self.sample_patch_num 784\n",
+ "self.sample_audio_patch_num None\n",
+ "self.sample_video_patch_num None\n",
+ "self.with_cls False\n",
+ "Loading: all_resnext101\n",
+ "use bn: \n",
+ "load pretrained_model /data/mshukor/logs/ofa/best_models/resnext-101-kinetics.pth\n",
+ "_IncompatibleKeys(missing_keys=[], unexpected_keys=['fc.weight', 'fc.bias'])\n",
+ "unival\n",
+ "getattr(args, \"stop_on_max_len\", False) False\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Load pretrained ckpt & config\n",
+ "\n",
+ "checkpoint_path = '/data/mshukor/logs/ofa/best_models/unival_video_caption_stage_1/checkpoint_best.pt'\n",
+ "video_model_path = '/data/mshukor/logs/ofa/best_models/resnext-101-kinetics.pth'\n",
+ "\n",
+ "overrides={\"eval_cider\":False, \"beam\":5, \"max_len_b\":22, \"no_repeat_ngram_size\":3, \"seed\":7, \"unnormalized\": False,\n",
+ " \"bpe_dir\":\"utils/BPE\", \"video_model_path\": video_model_path,}\n",
+ "\n",
+ "models, cfg, task = checkpoint_utils.load_model_ensemble_and_task(\n",
+ " utils.split_paths(checkpoint_path),\n",
+ " arg_overrides=overrides\n",
+ " )\n",
+ "\n",
+ "# Move models to GPU\n",
+ "for model in models:\n",
+ " model.eval()\n",
+ " if use_fp16:\n",
+ " model.half()\n",
+ " if use_cuda and not cfg.distributed_training.pipeline_model_parallel:\n",
+ " model.cuda()\n",
+ " model.prepare_for_inference_(cfg)\n",
+ "\n",
+ "# Initialize generator\n",
+ "generator = task.build_generator(models, cfg.generation)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e79aad39-1424-47d5-8cd4-6ab77ea46fb4",
+ "metadata": {},
+ "source": [
+ "### Preprocess"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "id": "576a3e84-a6aa-446d-adab-fef9499318fc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Image transform\n",
+ "from torchvision import transforms\n",
+ "mean = [0.5, 0.5, 0.5]\n",
+ "std = [0.5, 0.5, 0.5]\n",
+ "\n",
+ "\n",
+ "\n",
+ "type_transform = transforms.Lambda(lambda x: x.float().div(255.0))\n",
+ "patch_video_resize_transform = transforms.Compose([\n",
+ " transforms.CenterCrop(cfg.task.patch_frame_size),\n",
+ " type_transform, \n",
+ " transforms.Normalize(mean=mean, std=std),\n",
+ " ])\n",
+ "\n",
+ "# video process\n",
+ "from data.video_utils import VIDEO_READER_FUNCS\n",
+ "\n",
+ "video_reader = VIDEO_READER_FUNCS['decord'] \n",
+ "\n",
+ "def process_video(video_path, max_num_frames=16, num_frames=16, sample_type='rand',):\n",
+ " \n",
+ " # video \n",
+ " data_path = os.path.join(video_path)\n",
+ "\n",
+ " frames, frame_indices, video_duration = video_reader(\n",
+ " data_path, num_frames, sample_type, max_num_frames=max_num_frames\n",
+ " )\n",
+ "\n",
+ " patch_video = patch_video_resize_transform(frames)\n",
+ " patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w)\n",
+ "\n",
+ " return patch_video.unsqueeze(0)\n",
+ " \n",
+ "\n",
+ "# Text preprocess\n",
+ "bos_item = torch.LongTensor([task.src_dict.bos()])\n",
+ "eos_item = torch.LongTensor([task.src_dict.eos()])\n",
+ "pad_idx = task.src_dict.pad()\n",
+ "def encode_text(text, length=None, append_bos=False, append_eos=False):\n",
+ " s = task.tgt_dict.encode_line(\n",
+ " line=task.bpe.encode(text),\n",
+ " add_if_not_exist=False,\n",
+ " append_eos=False\n",
+ " ).long()\n",
+ " if length is not None:\n",
+ " s = s[:length]\n",
+ " if append_bos:\n",
+ " s = torch.cat([bos_item, s])\n",
+ " if append_eos:\n",
+ " s = torch.cat([s, eos_item])\n",
+ " return s\n",
+ "\n",
+ "# Construct input for caption task\n",
+ "def construct_sample(video_path):\n",
+ " \n",
+ " patch_video = process_video(video_path, max_num_frames=16, num_frames=cfg.task.num_frames, sample_type=cfg.task.sample_type,)\n",
+ " patch_image = torch.zeros((3, cfg.task.patch_image_size, cfg.task.patch_image_size)) \n",
+ " \n",
+ " patch_type = torch.tensor([1])\n",
+ " patch_mask = torch.tensor([True])\n",
+ " src_text = encode_text(\" what does the video describe?\", append_bos=True, append_eos=True).unsqueeze(0)\n",
+ " src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])\n",
+ " sample = {\n",
+ " \"id\":np.array(['42']),\n",
+ " \"net_input\": {\n",
+ " \"src_tokens\": src_text,\n",
+ " \"src_lengths\": src_length,\n",
+ " \"patch_videos\": patch_video,\n",
+ " \"patch_images\": patch_image,\n",
+ " \"patch_masks\": patch_mask,\n",
+ " \"patch_types\": patch_type,\n",
+ " }\n",
+ " }\n",
+ " return sample\n",
+ " \n",
+ "# Function to turn FP32 to FP16\n",
+ "def apply_half(t):\n",
+ " if t.dtype is torch.float32:\n",
+ " return t.to(dtype=torch.half)\n",
+ " return t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f96f776e-9aa0-4271-b881-311851cc033c",
+ "metadata": {},
+ "source": [
+ "### Inference"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 157,
+ "id": "6f8ddf8c-82e2-411c-baa3-850da02f1996",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "torch.Size([1, 3, 16, 384, 384])\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " Your browser does not support the video tag.\n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 157,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "save_dir = '/home/mshukor/ofa_adastra'\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "video_path = '/data/mshukor/data/video/msrvtt/examples/test/video7019.mp4' # a man is sitting in a chair and talking\n",
+ "# video_path = '/data/mshukor/data/video/msrvtt/examples/test/video7038.mp4' # a person is cooking something in a pan\n",
+ "# video_path = '/data/mshukor/data/video/msrvtt/examples/test/video7021.mp4' # a group of people are playing baseball\n",
+ "# video_path = '/data/mshukor/data/video/msrvtt/examples/test/video7068.mp4' # a man and a woman are talking to each other\n",
+ "# video_path = '/data/mshukor/data/video/msrvtt/examples/test/video7017.mp4' # a person is playing a video game\n",
+ "# video_path = '/data/mshukor/data/video/msrvtt/examples/test/video7014.mp4' # a girl is singing on the voice\n",
+ "\n",
+ "\n",
+ "\n",
+ "# video_path = '/data/mshukor/data/video/msrvtt/examples/video1065.mp4'\n",
+ "\n",
+ "# limitations\n",
+ "video_path = '/data/mshukor/data/video/msrvtt/examples/test/video7055.mp4' # a man is driving a car\n",
+ "\n",
+ "\n",
+ "sample = construct_sample(video_path)\n",
+ "sample = utils.move_to_cuda(sample) if use_cuda else sample\n",
+ "sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3690f53b-3594-4d8f-81c8-c8ed0931c00b",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 158,
+ "id": "4651039c-b8c0-4687-871e-b42cb13b2984",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "tensor([1], device='cuda:0')\n",
+ "torch.Size([1, 2048, 1, 12, 12])\n"
+ ]
+ }
+ ],
+ "source": [
+ "from utils.eval_utils import eval_caption\n",
+ "\n",
+ "with torch.no_grad():\n",
+ " result, scores = eval_caption(task, generator, models, sample)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 159,
+ "id": "712150d4-f28c-4538-870f-b33f775725d5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "a man is driving a car\n"
+ ]
+ }
+ ],
+ "source": [
+ "caption = result[0]['caption']\n",
+ "print(caption)\n",
+ "\n",
+ "from IPython.display import Video\n",
+ "Video(video_path, embed=True)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "303d531f-dba3-40b9-a1ff-1be92d8c188a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d2db0cc0-5cd2-48dd-b900-56331d53b1df",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "ofa",
+ "language": "python",
+ "name": "ofa"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/__pycache__/trainer.cpython-37.pyc b/__pycache__/trainer.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d45408c7d97a4a9b9412b31fe83d5e2247d6516d
Binary files /dev/null and b/__pycache__/trainer.cpython-37.pyc differ
diff --git a/__pycache__/trainer.cpython-38.pyc b/__pycache__/trainer.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3e5e412ca3de6fc55b83791850ff5b56c902775d
Binary files /dev/null and b/__pycache__/trainer.cpython-38.pyc differ
diff --git a/__pycache__/trainer.cpython-39.pyc b/__pycache__/trainer.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0d036bb3ccd694958b0692301b503ef3e3448362
Binary files /dev/null and b/__pycache__/trainer.cpython-39.pyc differ
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..e5c8b3737584fc5d200078924aaa29dc76343148
--- /dev/null
+++ b/app.py
@@ -0,0 +1,297 @@
+import os
+
+os.system('cd fairseq;'
+ 'pip install ./; cd ..')
+os.system('ls -l')
+
+import torch
+import numpy as np
+import gradio as gr
+import cv2
+from PIL import Image
+from torchvision import transforms
+
+from fairseq import utils, tasks, options
+from fairseq import checkpoint_utils
+from fairseq.dataclass.utils import convert_namespace_to_omegaconf
+
+from tasks.mm_tasks.caption import CaptionTask
+from tasks.mm_tasks.refcoco import RefcocoTask
+from tasks.mm_tasks.vqa_gen import VqaGenTask
+
+
+def move2gpu(models, cfg):
+ for model in models:
+ model.eval()
+ if use_fp16:
+ model.half()
+ if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
+ model.cuda()
+ model.prepare_for_inference_(cfg)
+
+
+def construct_transform(patch_image_size):
+ mean = [0.5, 0.5, 0.5]
+ std = [0.5, 0.5, 0.5]
+
+ patch_resize_transform = transforms.Compose([
+ lambda image: image.convert("RGB"),
+ transforms.Resize((patch_image_size, patch_image_size), interpolation=Image.BICUBIC),
+ transforms.ToTensor(),
+ transforms.Normalize(mean=mean, std=std),
+ ])
+
+ return patch_resize_transform
+
+
+# Register tasks
+tasks.register_task('caption', CaptionTask)
+tasks.register_task('refcoco', RefcocoTask)
+tasks.register_task('vqa_gen', VqaGenTask)
+# turn on cuda if GPU is available
+use_cuda = torch.cuda.is_available()
+# use fp16 only when GPU is available
+use_fp16 = False
+
+# # download checkpoints
+# os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/caption_demo.pt; '
+# 'mkdir -p checkpoints; mv caption_demo.pt checkpoints/caption_demo.pt')
+# os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/refcoco_demo.pt; '
+# 'mkdir -p checkpoints; mv refcoco_demo.pt checkpoints/refcoco_demo.pt')
+# os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/general_demo.pt; '
+# 'mkdir -p checkpoints; mv general_demo.pt checkpoints/general_demo.pt')
+
+
+checkpoint_path = 'checkpoints/unival_s2_hs/checkpoint1.pt'
+
+# Load ckpt & config for Image Captioning
+caption_overrides={"eval_cider":False, "beam":5, "max_len_b":22, "no_repeat_ngram_size":3, "seed":7, "unnormalized": False,
+ "bpe_dir":"utils/BPE", "video_model_path": None,}
+
+caption_models, caption_cfg, caption_task = checkpoint_utils.load_model_ensemble_and_task(
+ utils.split_paths(checkpoint_path),
+ arg_overrides=caption_overrides
+)
+
+# Load ckpt & config for Refcoco
+refcoco_overrides = {"bpe_dir":"utils/BPE", "video_model_path": None}
+
+refcoco_models, refcoco_cfg, refcoco_task = checkpoint_utils.load_model_ensemble_and_task(
+ utils.split_paths(checkpoint_path),
+ arg_overrides=refcoco_overrides
+)
+refcoco_cfg.common.seed = 7
+refcoco_cfg.generation.beam = 5
+refcoco_cfg.generation.min_len = 4
+refcoco_cfg.generation.max_len_a = 0
+refcoco_cfg.generation.max_len_b = 4
+refcoco_cfg.generation.no_repeat_ngram_size = 3
+
+# Load pretrained ckpt & config for VQA
+parser = options.get_generation_parser()
+input_args = ["", "--task=vqa_gen", "--beam=100", "--unnormalized", f"--path={checkpoint_path}", "--bpe-dir=utils/BPE"]
+args = options.parse_args_and_arch(parser, input_args)
+vqa_cfg = convert_namespace_to_omegaconf(args)
+vqa_task = tasks.setup_task(vqa_cfg.task)
+vqa_models, vqa_cfg = checkpoint_utils.load_model_ensemble(
+ utils.split_paths(vqa_cfg.common_eval.path),
+ task=vqa_task
+)
+
+# Load pretrained ckpt & config for Generic Interface
+parser = options.get_generation_parser()
+input_args = ["", "--task=refcoco", "--beam=10", f"--path={checkpoint_path}", "--bpe-dir=utils/BPE", "--no-repeat-ngram-size=3", "--patch-image-size=384"]
+args = options.parse_args_and_arch(parser, input_args)
+general_cfg = convert_namespace_to_omegaconf(args)
+general_task = tasks.setup_task(general_cfg.task)
+general_models, general_cfg = checkpoint_utils.load_model_ensemble(
+ utils.split_paths(general_cfg.common_eval.path),
+ task=general_task
+)
+
+# move models to gpu
+move2gpu(caption_models, caption_cfg)
+move2gpu(refcoco_models, refcoco_cfg)
+move2gpu(vqa_models, vqa_cfg)
+move2gpu(general_models, general_cfg)
+
+# Initialize generator
+caption_generator = caption_task.build_generator(caption_models, caption_cfg.generation)
+refcoco_generator = refcoco_task.build_generator(refcoco_models, refcoco_cfg.generation)
+vqa_generator = vqa_task.build_generator(vqa_models, vqa_cfg.generation)
+vqa_generator.zero_shot = True
+vqa_generator.constraint_trie = None
+general_generator = general_task.build_generator(general_models, general_cfg.generation)
+
+# Construct image transforms
+caption_transform = construct_transform(caption_cfg.task.patch_image_size)
+refcoco_transform = construct_transform(refcoco_cfg.task.patch_image_size)
+vqa_transform = construct_transform(vqa_cfg.task.patch_image_size)
+general_transform = construct_transform(general_cfg.task.patch_image_size)
+
+# Text preprocess
+bos_item = torch.LongTensor([caption_task.src_dict.bos()])
+eos_item = torch.LongTensor([caption_task.src_dict.eos()])
+pad_idx = caption_task.src_dict.pad()
+
+
+def get_symbols_to_strip_from_output(generator):
+ if hasattr(generator, "symbols_to_strip_from_output"):
+ return generator.symbols_to_strip_from_output
+ else:
+ return {generator.bos, generator.eos}
+
+
+def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None):
+ x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator))
+ token_result = []
+ bin_result = []
+ img_result = []
+ for token in x.strip().split():
+ if token.startswith('Paper | Github Repo "
+
+io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
+ title=title, description=description, article=article, examples=examples, cache_examples=False)
+io.launch()
\ No newline at end of file
diff --git a/checkpoints.md b/checkpoints.md
new file mode 100644
index 0000000000000000000000000000000000000000..49ba067eaf68099f0c39214f79e62ed4a00ed743
--- /dev/null
+++ b/checkpoints.md
@@ -0,0 +1,36 @@
+# Checkpoints
+
+We provide links for you to download our checkpoints, including pretrained and finetuned models on different tasks. If you would like to use OFA with Transformers, please download checkpoints at [https://huggingface.co/OFA-Sys](https://huggingface.co/OFA-Sys), and check the code in the branch `feature/add_transformers`.
+
+## Pretraining
+* Pre-trained checkpoint (OFA-Huge) (~930M parameters)
+* Pre-trained checkpoint (OFA-Large) (~470M parameters)
+* Pre-trained checkpoint (OFA-Base) (~180M parameters)
+* Pre-trained checkpoint (OFA-Medium) (~93M parameters)
+* Pre-trained checkpoint (OFA-Tiny) (~33M parameters)
+
+## Finetuning (OFA-Huge)
+* Finetuned checkpoint for Caption on COCO
+
+## Finetuning (OFA-Large)
+
+* Finetuned checkpoint for Caption on COCO
+* Finetuned checkpoint for Caption on COCO During Stage1 Finetuning
+* Finetuned checkpoint for RefCOCO
+* Finetuned checkpoint for RefCOCO+
+* Finetuned checkpoint for RefCOCOg
+* Finetuned checkpoint for VQAv2
+* Finetuned checkpoint for SNLI-VE
+* Finetuned checkpoint for Text-to-Image Generation on COCO && CLIP checkpoint && VQGAN checkpoint
+* Finetuned checkpoint for ImageNet-1K
+* Finetuned checkpoint for Gigaword
+
+
+## Finetuning (OFA-Base)
+* Finetuned base checkpoint for Caption on COCO
+* Finetuned base checkpoint for RefCOCO
+* Finetuned base checkpoint for RefCOCO+
+* Finetuned base checkpoint for RefCOCOg
+* Finetuned base checkpoint for VQAv2
+* Finetuned base checkpoint for SNLI-VE
+* Finetuned base checkpoint for Text-to-Image Generation on COCO
diff --git a/checkpoints/unival_s2_hs/checkpoint1.pt b/checkpoints/unival_s2_hs/checkpoint1.pt
new file mode 100644
index 0000000000000000000000000000000000000000..8ab9c28a7789d4e2544ef9fe935885c2cd7eb031
--- /dev/null
+++ b/checkpoints/unival_s2_hs/checkpoint1.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0b062bb0fa7c45266ee36326391e355724cccaee3119a9d3ee55d93488838a33
+size 2570641445
diff --git a/checkpoints_cn.md b/checkpoints_cn.md
new file mode 100644
index 0000000000000000000000000000000000000000..c77173e4f10cdd5ed8d55f7b67c1a32c1f39c9fb
--- /dev/null
+++ b/checkpoints_cn.md
@@ -0,0 +1,82 @@
+# Checkpoints (OFA-CN)
+
+We provide checkpoints of OFA-CN, which is the Chinese version of OFA. We provide Base-size and Large-size models, including pretrained and finetuned models on image captioning and referring expression comprehension. Note that we translated the texts in the RefCOCO(-/+/g) datasets and finetuned OFA-CN on them. We plan to release the related new datasets in the near future.
+
+
+## Checkpoints
+Below we provide the links for downloading the Chinese OFA checkpoints.
+
+### Pretraining
+* Pretrained checkpoint (OFA-CN-Large) (~443M parameters)
+* Pretrained checkpoint (OFA-CN-Base) (~160M parameters)
+
+### Finetuning (OFA-Large)
+* Finetuned checkpoint for MUGE Caption (Stage 1)
+* Finetuned checkpoint for RefCOCO-CN
+* Finetuned checkpoint for RefCOCO+-CN
+* Finetuned checkpoint for RefCOCOg-CN
+
+### Finetuning (OFA-Base)
+* Finetuned checkpoint for MUGE Caption (Stage 1)
+* Finetuned checkpoint for RefCOCO-CN
+* Finetuned checkpoint for RefCOCO+-CN
+* Finetuned checkpoint for RefCOCOg-CN
+
+
+## Model Card
+Below we provide the basic information of the base-size and large-size OFA-CN.
+
+
+
+ Model #Params Backbone Hidden Size Intermediate Size #Heads #Enc. Layers #Dec. Layers
+
+
+ OFABase 160M ResNet101 768 3072 12 6 6
+
+
+ OFALarge 443M ResNet152 1024 4096 16 12 12
+
+
+
+
+
+## Results
+Below we provide the results of OFA-CN and the baselines for comparison.
+
+### [MUGE Caption]("https://tianchi.aliyun.com/muge")
+
+
+ Model BLEU@4 ROUGE-L CIDEr-D
+
+
+ Trm 7.33 51.51 11.00
+
+
+ M6 16.19 55.06 30.75
+
+
+ OFABase 26.23 58.95 50.70
+
+
+ OFALarge 27.32 59.20 53.51
+
+
+
+### RefCOCO-CN Series
+
+
+ Model RefCOCO(val/testA/testB) RefCOCO+(val/testA/testB) RefCOCOg(val/test-u)
+
+
+ OFABase (random-init) 30.13/35.07/25.03 17.89/20.90/15.83 20.30/20.45
+
+
+ OFABase 82.18/86.07/76.68 69.38/77.26/60.14 73.57/72.53
+
+
+ OFALarge 82.84/86.54 /76.5071.30/78.56/61.85 71.96/71.30
+
+
+
+
+
diff --git a/colab.md b/colab.md
new file mode 100644
index 0000000000000000000000000000000000000000..9529d9f7542a4da12e3b638fd3833d7d9ed16d93
--- /dev/null
+++ b/colab.md
@@ -0,0 +1,9 @@
+# Colab Notebooks
+
+We provide Colab notebooks of different downstream tasks for you guys to enjoy OFA. See below.
+
+* [Image Captioning in Huggingface Transformers](https://colab.research.google.com/drive/1Ho81RBV8jysZ7e0FhsSCk_v938QeDuy3?usp=sharing)
+* [Generic Interface](https://colab.research.google.com/drive/1jogyZ-2rdHU3XxZOf3TBfhex1XHqX-1m?usp=sharing#scrollTo=s9Vni6YUZOpC) (using different instructions to perform various tasks with just one model.)
+* [Image Captioning](https://colab.research.google.com/drive/1Q4eNhhhLcgOP4hHqwZwU1ijOlabgve1W?usp=sharing)
+* [Referring Expression Comprehension](https://colab.research.google.com/drive/1AHQNRdaUpRTgr3XySHSlba8aXwBAjwPB?usp=sharing)
+* [Open-Domain Visual Question Answering](https://colab.research.google.com/drive/14v6OQe_MxV_HMnsiKfnEeMR1UMqhzZNb?usp=sharing)
diff --git a/criterions/__init__.py b/criterions/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..433122bf77581a752ec8c0069d402d0ecc72d7de
--- /dev/null
+++ b/criterions/__init__.py
@@ -0,0 +1,5 @@
+from .label_smoothed_cross_entropy import AdjustLabelSmoothedCrossEntropyCriterion
+from .clip_scst_loss import ClipScstRewardCriterion
+from .label_smoothed_encouraging_loss import AdjustLabelSmoothedEncouragingLossCriterion
+from .label_smoothed_cross_entropy_scst import AdjustLabelSmoothedCrossEntropySCSTCriterion
+from .refcoco_scst_loss import RefCOCOScstRewardCriterion
\ No newline at end of file
diff --git a/criterions/__pycache__/__init__.cpython-37.pyc b/criterions/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d56e6da6ddfe75c381f1ed07c962b6bf659a7626
Binary files /dev/null and b/criterions/__pycache__/__init__.cpython-37.pyc differ
diff --git a/criterions/__pycache__/__init__.cpython-38.pyc b/criterions/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ab3872c940ae4f363259aebbee3668e0465b164b
Binary files /dev/null and b/criterions/__pycache__/__init__.cpython-38.pyc differ
diff --git a/criterions/__pycache__/__init__.cpython-39.pyc b/criterions/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..056acfcce62a8de4328bedb5d90c4f536e91fd8f
Binary files /dev/null and b/criterions/__pycache__/__init__.cpython-39.pyc differ
diff --git a/criterions/__pycache__/clip_scst_loss.cpython-37.pyc b/criterions/__pycache__/clip_scst_loss.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b5e4c8f86d87fc2d344d001ec7323e380e908896
Binary files /dev/null and b/criterions/__pycache__/clip_scst_loss.cpython-37.pyc differ
diff --git a/criterions/__pycache__/clip_scst_loss.cpython-38.pyc b/criterions/__pycache__/clip_scst_loss.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c375c17948a21d5e30b04cb22058ba3fd3f98a73
Binary files /dev/null and b/criterions/__pycache__/clip_scst_loss.cpython-38.pyc differ
diff --git a/criterions/__pycache__/clip_scst_loss.cpython-39.pyc b/criterions/__pycache__/clip_scst_loss.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4e8d9b81cbcdf315b35d4572cf2088404f0a513e
Binary files /dev/null and b/criterions/__pycache__/clip_scst_loss.cpython-39.pyc differ
diff --git a/criterions/__pycache__/label_smoothed_cross_entropy.cpython-37.pyc b/criterions/__pycache__/label_smoothed_cross_entropy.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d83f3373456a46a5178a6841d602a9f0722ee5ff
Binary files /dev/null and b/criterions/__pycache__/label_smoothed_cross_entropy.cpython-37.pyc differ
diff --git a/criterions/__pycache__/label_smoothed_cross_entropy.cpython-38.pyc b/criterions/__pycache__/label_smoothed_cross_entropy.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5ed2fc31e8e8a18100d7215b32fd71dccc66cb0d
Binary files /dev/null and b/criterions/__pycache__/label_smoothed_cross_entropy.cpython-38.pyc differ
diff --git a/criterions/__pycache__/label_smoothed_cross_entropy.cpython-39.pyc b/criterions/__pycache__/label_smoothed_cross_entropy.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f1bdb45cef4b8580d1c538f697b828072bd80b37
Binary files /dev/null and b/criterions/__pycache__/label_smoothed_cross_entropy.cpython-39.pyc differ
diff --git a/criterions/__pycache__/label_smoothed_cross_entropy_scst.cpython-39.pyc b/criterions/__pycache__/label_smoothed_cross_entropy_scst.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cba30ead44f37b8e2617ec3d9215df3b7fdfb71c
Binary files /dev/null and b/criterions/__pycache__/label_smoothed_cross_entropy_scst.cpython-39.pyc differ
diff --git a/criterions/__pycache__/label_smoothed_encouraging_loss.cpython-37.pyc b/criterions/__pycache__/label_smoothed_encouraging_loss.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e959325cc45f1f8e998db6de35c2eea3d32b64e5
Binary files /dev/null and b/criterions/__pycache__/label_smoothed_encouraging_loss.cpython-37.pyc differ
diff --git a/criterions/__pycache__/label_smoothed_encouraging_loss.cpython-38.pyc b/criterions/__pycache__/label_smoothed_encouraging_loss.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d1fcb4bf4551126fabc509897993b4b0882e67e5
Binary files /dev/null and b/criterions/__pycache__/label_smoothed_encouraging_loss.cpython-38.pyc differ
diff --git a/criterions/__pycache__/label_smoothed_encouraging_loss.cpython-39.pyc b/criterions/__pycache__/label_smoothed_encouraging_loss.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4ea2295960179cb1f8d54352c69315e2f0bc354f
Binary files /dev/null and b/criterions/__pycache__/label_smoothed_encouraging_loss.cpython-39.pyc differ
diff --git a/criterions/__pycache__/refcoco_scst_loss.cpython-39.pyc b/criterions/__pycache__/refcoco_scst_loss.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5521a9ebea9523ed53754c0248eddf30dd2bea48
Binary files /dev/null and b/criterions/__pycache__/refcoco_scst_loss.cpython-39.pyc differ
diff --git a/criterions/__pycache__/scst_loss.cpython-37.pyc b/criterions/__pycache__/scst_loss.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7d0329cb28ae598fc7fff04ec5c8d277067aa395
Binary files /dev/null and b/criterions/__pycache__/scst_loss.cpython-37.pyc differ
diff --git a/criterions/__pycache__/scst_loss.cpython-38.pyc b/criterions/__pycache__/scst_loss.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0a3f7e26dc012295a6db8ca087b117bcb53752a6
Binary files /dev/null and b/criterions/__pycache__/scst_loss.cpython-38.pyc differ
diff --git a/criterions/__pycache__/scst_loss.cpython-39.pyc b/criterions/__pycache__/scst_loss.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c1e1d3bc1495447a6831a880872595a52c40316e
Binary files /dev/null and b/criterions/__pycache__/scst_loss.cpython-39.pyc differ
diff --git a/criterions/clip_scst_loss.py b/criterions/clip_scst_loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..5e2c5bbd804e55cb7f4e51ba1a6a1c0e5392c1a7
--- /dev/null
+++ b/criterions/clip_scst_loss.py
@@ -0,0 +1,277 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+import math
+from dataclasses import dataclass, field
+from typing import Optional
+from PIL import Image
+from torchvision import transforms
+
+import torch
+import numpy as np
+from fairseq import metrics
+from fairseq.data import data_utils
+from fairseq.criterions import FairseqCriterion, register_criterion
+from fairseq.dataclass import FairseqDataclass
+from fairseq import utils
+from omegaconf import II
+
+from models import clip
+
+
+def custom_to_pil(x):
+ x = x.detach().cpu()
+ x = torch.clamp(x, -1., 1.)
+ x = (x + 1.) / 2.
+ x = x.permute(1, 2, 0).numpy()
+ x = (255 * x).astype(np.uint8)
+ x = Image.fromarray(x)
+ if not x.mode == "RGB":
+ x = x.convert("RGB")
+ return x
+
+
+def scst_loss(lprobs, target, reward, ignore_index=None, reduce=True):
+ loss = -lprobs.gather(dim=-1, index=target.unsqueeze(-1)).squeeze() * reward.unsqueeze(-1)
+ if ignore_index is not None:
+ pad_mask = target.eq(ignore_index)
+ loss.masked_fill_(pad_mask, 0.0)
+ ntokens = (~pad_mask).sum()
+ else:
+ loss = loss.squeeze(-1)
+ ntokens = target.numel()
+ if reduce:
+ loss = loss.sum()
+ return loss, ntokens
+
+
+@dataclass
+class ClipScstRewardCriterionConfig(FairseqDataclass):
+ ignore_prefix_size: int = field(
+ default=0,
+ metadata={"help": "Ignore first N tokens"},
+ )
+ sentence_avg: bool = II("optimization.sentence_avg")
+ constraint_range: Optional[str] = field(
+ default=None,
+ metadata={"help": "constraint range"}
+ )
+
+
+@register_criterion(
+ "clip_scst_reward_criterion", dataclass=ClipScstRewardCriterionConfig
+)
+class ClipScstRewardCriterion(FairseqCriterion):
+ CLIP_REWARD_WEIGHT = 2.5
+
+ def __init__(
+ self,
+ task,
+ sentence_avg,
+ ignore_prefix_size=0,
+ constraint_range=None
+ ):
+ super().__init__(task)
+ self.sentence_avg = sentence_avg
+ self.ignore_prefix_size = ignore_prefix_size
+
+ self.constraint_start = None
+ self.constraint_end = None
+ if constraint_range is not None:
+ constraint_start, constraint_end = constraint_range.split(',')
+ self.constraint_start = int(constraint_start)
+ self.constraint_end = int(constraint_end)
+
+ def forward(self, model, sample, update_num=0, reduce=True):
+ """Compute the loss for the given sample.
+
+ Returns a tuple with three elements:
+ 1) the loss
+ 2) the sample size, which is used as the denominator for the gradient
+ 3) logging outputs to display while training
+ """
+ loss, score, ntokens, nsentences = self.compute_loss(model, sample, reduce=reduce)
+
+ sample_size = (
+ nsentences if self.sentence_avg else ntokens
+ )
+ logging_output = {
+ "loss": loss.data,
+ "score": score,
+ "ntokens": ntokens,
+ "nsentences": nsentences,
+ "sample_size": sample_size,
+ }
+ return loss, sample_size, logging_output
+
+ def _calculate_clip_scores(self, gen_res, gt_text, device):
+ '''
+ gen_res: generated images, list of Image
+ gt_text: input captions.
+ device: device for clip model
+ '''
+ batch_size = len(gt_text)
+ gen_res_size = len(gen_res)
+ img_per_seq = gen_res_size // batch_size
+
+ hyp_images = torch.stack(
+ [self.task.clip_preprocess(gen_image) for gen_image in gen_res], dim=0
+ ).to(device)
+
+ clip_input = clip.tokenize([text for text in gt_text]).to(device)
+ with torch.no_grad():
+ image_features = self.task.clip_model.encode_image(hyp_images)
+ text_features = self.task.clip_model.encode_text(clip_input)
+ image_features /= image_features.norm(dim=-1, keepdim=True)
+ text_features /= text_features.norm(dim=-1, keepdim=True)
+ image_features = image_features.view(batch_size, img_per_seq, -1)
+ text_features = text_features.view(batch_size, 1, -1)
+ ti_similarity = image_features @ text_features.transpose(1, 2)
+ ti_similarity = ti_similarity.view(-1)
+
+ scores = self.CLIP_REWARD_WEIGHT * ti_similarity
+ return scores
+
+ def get_generator_out(self, model, sample):
+ model.eval()
+ with torch.no_grad():
+ self.task.scst_generator.model.eval()
+ gen_out = self.task.scst_generator.generate([model], sample)
+
+ gen_target = []
+ gen_res = []
+ gt_text = []
+ for i in range(len(gen_out)):
+ with torch.no_grad():
+ tokens = torch.stack([item['tokens'][:-1] for item in gen_out[i]], dim=0)
+ tokens += -len(self.task.src_dict) + self.task.cfg.code_dict_size + self.task.cfg.num_bins
+ images = self.task.image_tokenizer.decode_code(
+ tokens.view(-1, self.task.cfg.code_image_size // 8, self.task.cfg.code_image_size // 8)
+ )
+ images = [custom_to_pil(image) for image in images]
+
+ gen_target += [item['tokens'] for item in gen_out[i]]
+ gen_res += images
+ gt_text.append(
+ self.task.bpe.decode(
+ self.task.tgt_dict.string(
+ utils.strip_pad(sample['net_input']['src_tokens'][i], self.padding_idx).cpu().int()
+ )
+ )[38:] # remove task instruction.
+ )
+
+ return gen_target, gen_res, gt_text
+
+ def get_reward_and_scores(self, gen_res, gt_text, device):
+ batch_size = len(gt_text)
+ gen_res_size = len(gen_res)
+ img_per_sample = gen_res_size // batch_size
+
+ scores = self._calculate_clip_scores(gen_res, gt_text, device)
+ sc_ = scores.reshape(batch_size, img_per_sample)
+ baseline = (sc_.sum(1, keepdim=True) - sc_) / (sc_.shape[1] - 1)
+ # sample - baseline
+ reward = scores.reshape(batch_size, img_per_sample)
+ reward = reward - baseline
+ reward = reward.view(-1)
+
+ return reward, scores
+
+ def get_net_output(self, model, sample, gen_target):
+ def merge(sample_list, eos=self.task.tgt_dict.eos(), move_eos_to_beginning=False):
+ return data_utils.collate_tokens(
+ sample_list,
+ pad_idx=self.padding_idx,
+ eos_idx=eos,
+ left_pad=False,
+ move_eos_to_beginning=move_eos_to_beginning,
+ )
+
+ batch_size = len(sample["target"])
+ gen_target_size = len(gen_target)
+ img_per_sample = gen_target_size // batch_size
+
+ model.train()
+ sample_src_tokens = torch.repeat_interleave(
+ sample['net_input']['src_tokens'], img_per_sample, dim=0
+ )
+ sample_src_lengths = torch.repeat_interleave(
+ sample['net_input']['src_lengths'], img_per_sample, dim=0
+ )
+ sample_code_masks = torch.repeat_interleave(
+ sample['net_input']['code_masks'], img_per_sample, dim=0
+ )
+ gen_prev_output_tokens = torch.as_tensor(
+ merge(gen_target, eos=self.task.tgt_dict.bos(), move_eos_to_beginning=True),
+ device=sample["target"].device, dtype=torch.int64
+ )
+ gen_target_tokens = torch.as_tensor(
+ merge(gen_target), device=sample["target"].device, dtype=torch.int64
+ )
+ net_output = model(
+ src_tokens=sample_src_tokens, src_lengths=sample_src_lengths,
+ code_masks=sample_code_masks, prev_output_tokens=gen_prev_output_tokens
+ )
+
+ return net_output, gen_target_tokens
+
+ def get_lprobs_and_target(self, model, net_output, gen_target):
+ if self.constraint_start is not None and self.constraint_end is not None:
+ net_output[0][:, :, 4:self.constraint_start] = -math.inf
+ net_output[0][:, :, self.constraint_end:] = -math.inf
+ lprobs = model.get_normalized_probs(net_output, log_probs=True)
+ if self.ignore_prefix_size > 0:
+ if getattr(lprobs, "batch_first", False):
+ lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
+ gen_target = gen_target[:, self.ignore_prefix_size :].contiguous()
+ else:
+ lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous()
+ gen_target = gen_target[self.ignore_prefix_size :, :].contiguous()
+ return lprobs, gen_target
+
+ def compute_loss(self, model, sample, reduce=True):
+ gen_target, gen_res, gt_text = self.get_generator_out(model, sample)
+ reward, scores = self.get_reward_and_scores(gen_res, gt_text, device=sample["target"].device)
+ net_output, gen_target_tokens = self.get_net_output(model, sample, gen_target)
+ gen_lprobs, gen_target_tokens = self.get_lprobs_and_target(model, net_output, gen_target_tokens)
+ loss, ntokens = scst_loss(gen_lprobs, gen_target_tokens, reward, ignore_index=self.padding_idx, reduce=reduce)
+ nsentences = gen_target_tokens.size(0)
+
+ return loss, scores.sum(), ntokens, nsentences
+
+ @classmethod
+ def reduce_metrics(cls, logging_outputs) -> None:
+ """Aggregate logging outputs from data parallel training."""
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
+ score_sum = sum(log.get("score", 0) for log in logging_outputs)
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
+
+ metrics.log_scalar(
+ "loss", loss_sum / sample_size, sample_size, round=3
+ )
+ metrics.log_scalar(
+ "score", score_sum / nsentences, nsentences, round=3
+ )
+
+ metrics.log_scalar(
+ "ntokens", ntokens, 1, round=3
+ )
+ metrics.log_scalar(
+ "nsentences", nsentences, 1, round=3
+ )
+ metrics.log_scalar(
+ "sample_size", sample_size, 1, round=3
+ )
+
+ @staticmethod
+ def logging_outputs_can_be_summed() -> bool:
+ """
+ Whether the logging outputs returned by `forward` can be summed
+ across workers prior to calling `reduce_metrics`. Setting this
+ to True will improves distributed training speed.
+ """
+ return True
diff --git a/criterions/label_smoothed_cross_entropy.py b/criterions/label_smoothed_cross_entropy.py
new file mode 100644
index 0000000000000000000000000000000000000000..d88e91e402b05b316e0677cc9f7bca6260def794
--- /dev/null
+++ b/criterions/label_smoothed_cross_entropy.py
@@ -0,0 +1,346 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+import math
+from dataclasses import dataclass, field
+from typing import Optional
+
+import torch
+import torch.nn.functional as F
+import numpy as np
+from fairseq import metrics, utils
+from fairseq.criterions import FairseqCriterion, register_criterion
+from fairseq.dataclass import FairseqDataclass
+from omegaconf import II
+
+
+@dataclass
+class AdjustLabelSmoothedCrossEntropyCriterionConfig(FairseqDataclass):
+ label_smoothing: float = field(
+ default=0.0,
+ metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
+ )
+ report_accuracy: bool = field(
+ default=False,
+ metadata={"help": "report accuracy metric"},
+ )
+ ignore_prefix_size: int = field(
+ default=0,
+ metadata={"help": "Ignore first N tokens"},
+ )
+ ignore_eos: bool = field(
+ default=False,
+ metadata={"help": "Ignore eos token"},
+ )
+ sentence_avg: bool = II("optimization.sentence_avg")
+ drop_worst_ratio: float = field(
+ default=0.0,
+ metadata={"help": "ratio for discarding bad samples"},
+ )
+ drop_worst_after: int = field(
+ default=0,
+ metadata={"help": "steps for discarding bad samples"},
+ )
+ use_rdrop: bool = field(
+ default=False, metadata={"help": "use R-Drop"}
+ )
+ reg_alpha: float = field(
+ default=1.0, metadata={"help": "weight for R-Drop"}
+ )
+ sample_patch_num: int = field(
+ default=196, metadata={"help": "sample patches for v1"}
+ )
+ constraint_range: Optional[str] = field(
+ default=None,
+ metadata={"help": "constraint range"}
+ )
+
+
+def construct_rdrop_sample(x):
+ if isinstance(x, dict):
+ for key in x:
+ x[key] = construct_rdrop_sample(x[key])
+ return x
+ elif isinstance(x, torch.Tensor):
+ return x.repeat(2, *([1] * (x.dim()-1)))
+ elif isinstance(x, int):
+ return x * 2
+ elif isinstance(x, np.ndarray):
+ return x.repeat(2)
+ else:
+ raise NotImplementedError
+
+
+def kl_loss(p, q):
+ p_loss = F.kl_div(p, torch.exp(q), reduction='sum')
+ q_loss = F.kl_div(q, torch.exp(p), reduction='sum')
+ loss = (p_loss + q_loss) / 2
+ return loss
+
+
+def label_smoothed_nll_loss(
+ lprobs, target, epsilon, update_num, reduce=True,
+ drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0,
+ constraint_masks=None, constraint_start=None, constraint_end=None
+):
+ if target.dim() == lprobs.dim() - 1:
+ target = target.unsqueeze(-1)
+ nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1)
+ if constraint_masks is not None:
+ smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1)
+ eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6)
+ elif constraint_start is not None and constraint_end is not None:
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
+ smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1)
+ eps_i = epsilon / (len(constraint_range) - 1 + 1e-6)
+ else:
+ smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1)
+ eps_i = epsilon / (lprobs.size(-1) - 1)
+ loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
+ if drop_worst_ratio > 0 and update_num > drop_worst_after:
+ if use_rdrop:
+ true_batch_size = loss.size(0) // 2
+ _, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False)
+ loss = torch.cat([loss[indices], loss[indices+true_batch_size]])
+ nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]])
+ lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]])
+ else:
+ loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False)
+ nll_loss = nll_loss[indices]
+ lprobs = lprobs[indices]
+
+ ntokens = loss.numel()
+ nll_loss = nll_loss.sum()
+ loss = loss.sum()
+ if use_rdrop:
+ true_batch_size = lprobs.size(0) // 2
+ p = lprobs[:true_batch_size]
+ q = lprobs[true_batch_size:]
+ if constraint_start is not None and constraint_end is not None:
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
+ p = p[:, constraint_range]
+ q = q[:, constraint_range]
+ loss += kl_loss(p, q) * reg_alpha
+
+ return loss, nll_loss, ntokens
+
+
+@register_criterion(
+ "adjust_label_smoothed_cross_entropy", dataclass=AdjustLabelSmoothedCrossEntropyCriterionConfig
+)
+class AdjustLabelSmoothedCrossEntropyCriterion(FairseqCriterion):
+ def __init__(
+ self,
+ task,
+ sentence_avg,
+ label_smoothing,
+ ignore_prefix_size=0,
+ ignore_eos=False,
+ report_accuracy=False,
+ drop_worst_ratio=0,
+ drop_worst_after=0,
+ use_rdrop=False,
+ reg_alpha=1.0,
+ sample_patch_num=196,
+ constraint_range=None
+ ):
+ super().__init__(task)
+ self.sentence_avg = sentence_avg
+ self.eps = label_smoothing
+ self.ignore_prefix_size = ignore_prefix_size
+ self.ignore_eos = ignore_eos
+ self.report_accuracy = report_accuracy
+ self.drop_worst_ratio = drop_worst_ratio
+ self.drop_worst_after = drop_worst_after
+ self.use_rdrop = use_rdrop
+ self.reg_alpha = reg_alpha
+ self.sample_patch_num = sample_patch_num
+
+ self.constraint_start = None
+ self.constraint_end = None
+ if constraint_range is not None:
+ constraint_start, constraint_end = constraint_range.split(',')
+ self.constraint_start = int(constraint_start)
+ self.constraint_end = int(constraint_end)
+
+ def forward(self, model, sample, update_num=0, reduce=True):
+ """Compute the loss for the given sample.
+
+ Returns a tuple with three elements:
+ 1) the loss
+ 2) the sample size, which is used as the denominator for the gradient
+ 3) logging outputs to display while training
+ """
+ if isinstance(sample, list):
+ if self.sample_patch_num > 0:
+ sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num
+ # change to support len(samples) > 2
+ loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce)
+ loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce)
+ loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2
+ sample_size = 1
+ logging_output = {
+ "loss": loss.data,
+ "loss_v1": loss_v1.data,
+ "loss_v2": loss_v2.data,
+ "nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2,
+ "ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"],
+ "nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"],
+ "sample_size": 1,
+ "sample_size_v1": sample_size_v1,
+ "sample_size_v2": sample_size_v2,
+ }
+ return loss, sample_size, logging_output
+
+ if self.use_rdrop:
+ construct_rdrop_sample(sample)
+
+ net_output = model(**sample["net_input"])
+ loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce)
+ sample_size = (
+ sample["target"].size(0) if self.sentence_avg else ntokens
+ )
+ logging_output = {
+ "loss": loss.data,
+ "nll_loss": nll_loss.data,
+ "ntokens": sample["ntokens"],
+ "nsentences": sample["nsentences"],
+ "sample_size": sample_size,
+ }
+ if self.report_accuracy:
+ n_correct, total = self.compute_accuracy(model, net_output, sample)
+ logging_output["n_correct"] = utils.item(n_correct.data)
+ logging_output["total"] = utils.item(total.data)
+
+ return loss, sample_size, logging_output
+
+ def get_lprobs_and_target(self, model, net_output, sample):
+ conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1
+ constraint_masks = None
+ if "constraint_masks" in sample and sample["constraint_masks"] is not None:
+ constraint_masks = sample["constraint_masks"]
+ net_output[0].masked_fill_(~constraint_masks, -math.inf)
+ if self.constraint_start is not None and self.constraint_end is not None:
+ net_output[0][:, :, 4:self.constraint_start] = -math.inf
+ net_output[0][:, :, self.constraint_end:] = -math.inf
+ lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf
+ target = model.get_targets(sample, net_output)
+ if self.ignore_prefix_size > 0:
+ lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
+ target = target[:, self.ignore_prefix_size :].contiguous()
+ if constraint_masks is not None:
+ constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous()
+ if self.ignore_eos:
+ bsz, seq_len, embed_dim = lprobs.size()
+ eos_indices = target.eq(self.task.tgt_dict.eos())
+ lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
+ target = target[~eos_indices].reshape(bsz, seq_len-1)
+ if constraint_masks is not None:
+ constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
+ if constraint_masks is not None:
+ constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1))
+ return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks
+
+ def compute_loss(self, model, net_output, sample, update_num, reduce=True):
+ lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample)
+ if constraint_masks is not None:
+ constraint_masks = constraint_masks[target != self.padding_idx]
+ # print(target.shape, self.padding_idx, lprobs.shape, target, lprobs)
+ lprobs = lprobs[target != self.padding_idx]
+ target = target[target != self.padding_idx]
+ loss, nll_loss, ntokens = label_smoothed_nll_loss(
+ lprobs,
+ target,
+ self.eps,
+ update_num,
+ reduce=reduce,
+ drop_worst_ratio=self.drop_worst_ratio,
+ drop_worst_after=self.drop_worst_after,
+ use_rdrop=self.use_rdrop,
+ reg_alpha=self.reg_alpha,
+ constraint_masks=constraint_masks,
+ constraint_start=self.constraint_start,
+ constraint_end=self.constraint_end
+ )
+ return loss, nll_loss, ntokens
+
+ def compute_accuracy(self, model, net_output, sample):
+ lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
+ mask = target.ne(self.padding_idx)
+ n_correct = torch.sum(
+ lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
+ )
+ total = torch.sum(mask)
+ return n_correct, total
+
+ @classmethod
+ def reduce_metrics(cls, logging_outputs) -> None:
+ """Aggregate logging outputs from data parallel training."""
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
+ loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs)
+ loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs)
+ nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
+ sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs)
+ sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs)
+
+ metrics.log_scalar(
+ "loss", loss_sum / sample_size, sample_size, round=3
+ )
+ metrics.log_scalar(
+ "loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3
+ )
+ metrics.log_scalar(
+ "loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3
+ )
+ metrics.log_scalar(
+ "nll_loss", nll_loss_sum / sample_size, ntokens, round=3
+ )
+ metrics.log_derived(
+ "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
+ )
+
+ metrics.log_scalar(
+ "ntokens", ntokens, 1, round=3
+ )
+ metrics.log_scalar(
+ "nsentences", nsentences, 1, round=3
+ )
+ metrics.log_scalar(
+ "sample_size", sample_size, 1, round=3
+ )
+ metrics.log_scalar(
+ "sample_size_v1", sample_size_v1, 1, round=3
+ )
+ metrics.log_scalar(
+ "sample_size_v2", sample_size_v2, 1, round=3
+ )
+
+ total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
+ if total > 0:
+ metrics.log_scalar("total", total)
+ n_correct = utils.item(
+ sum(log.get("n_correct", 0) for log in logging_outputs)
+ )
+ metrics.log_scalar("n_correct", n_correct)
+ metrics.log_derived(
+ "accuracy",
+ lambda meters: round(
+ meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
+ )
+ if meters["total"].sum > 0
+ else float("nan"),
+ )
+
+ @staticmethod
+ def logging_outputs_can_be_summed() -> bool:
+ """
+ Whether the logging outputs returned by `forward` can be summed
+ across workers prior to calling `reduce_metrics`. Setting this
+ to True will improves distributed training speed.
+ """
+ return True
diff --git a/criterions/label_smoothed_cross_entropy_scst.py b/criterions/label_smoothed_cross_entropy_scst.py
new file mode 100644
index 0000000000000000000000000000000000000000..083a8e49de6e360b42700a0cd48ca595302ea834
--- /dev/null
+++ b/criterions/label_smoothed_cross_entropy_scst.py
@@ -0,0 +1,555 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+import math
+from dataclasses import dataclass, field
+from typing import Optional
+
+import torch
+import torch.nn.functional as F
+import numpy as np
+from fairseq import metrics, utils
+from fairseq.criterions import FairseqCriterion, register_criterion
+from fairseq.dataclass import FairseqDataclass
+from omegaconf import II
+
+
+from mapcalc import calculate_map, calculate_map_range
+
+@dataclass
+class AdjustLabelSmoothedCrossEntropySCSTCriterionConfig(FairseqDataclass):
+ label_smoothing: float = field(
+ default=0.0,
+ metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
+ )
+ report_accuracy: bool = field(
+ default=False,
+ metadata={"help": "report accuracy metric"},
+ )
+ ignore_prefix_size: int = field(
+ default=0,
+ metadata={"help": "Ignore first N tokens"},
+ )
+ ignore_eos: bool = field(
+ default=False,
+ metadata={"help": "Ignore eos token"},
+ )
+ sentence_avg: bool = II("optimization.sentence_avg")
+ drop_worst_ratio: float = field(
+ default=0.0,
+ metadata={"help": "ratio for discarding bad samples"},
+ )
+ drop_worst_after: int = field(
+ default=0,
+ metadata={"help": "steps for discarding bad samples"},
+ )
+ use_rdrop: bool = field(
+ default=False, metadata={"help": "use R-Drop"}
+ )
+ reg_alpha: float = field(
+ default=1.0, metadata={"help": "weight for R-Drop"}
+ )
+ sample_patch_num: int = field(
+ default=196, metadata={"help": "sample patches for v1"}
+ )
+ constraint_range: Optional[str] = field(
+ default=None,
+ metadata={"help": "constraint range"}
+ )
+ acc_thresh: Optional[float] = field(
+ default=None, metadata={"help": "acc thresh for refcoco"}
+ )
+ metric: Optional[str] = field(
+ default='acc',
+ metadata={"help": "metric"}
+ )
+
+ max_area_size: Optional[float] = field(
+ default=None, metadata={"help": "max_area_size"}
+ )
+
+ min_area_size: Optional[float] = field(
+ default=None, metadata={"help": "min_area_size"}
+ )
+ logprob: Optional[bool] = field(
+ default=False, metadata={"help": "maximise log prob"}
+ )
+
+ pos_reward: Optional[float] = field(
+ default=None, metadata={"help": "pos_reward"}
+ )
+
+ neg_reward: Optional[float] = field(
+ default=None, metadata={"help": "neg_reward"}
+ )
+
+ reinforce: Optional[bool] = field(
+ default=False, metadata={"help": "reinforce"}
+ )
+
+ lambda_reinforce: Optional[float] = field(
+ default=0, metadata={"help": "lambda_reinforce"}
+ )
+
+
+
+def construct_rdrop_sample(x):
+ if isinstance(x, dict):
+ for key in x:
+ x[key] = construct_rdrop_sample(x[key])
+ return x
+ elif isinstance(x, torch.Tensor):
+ return x.repeat(2, *([1] * (x.dim()-1)))
+ elif isinstance(x, int):
+ return x * 2
+ elif isinstance(x, np.ndarray):
+ return x.repeat(2)
+ else:
+ raise NotImplementedError
+
+
+def kl_loss(p, q):
+ p_loss = F.kl_div(p, torch.exp(q), reduction='sum')
+ q_loss = F.kl_div(q, torch.exp(p), reduction='sum')
+ loss = (p_loss + q_loss) / 2
+ return loss
+
+
+def label_smoothed_nll_loss(
+ lprobs, target, epsilon, update_num, reduce=True,
+ drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0,
+ constraint_masks=None, constraint_start=None, constraint_end=None
+):
+ if target.dim() == lprobs.dim() - 1:
+ target = target.unsqueeze(-1)
+ nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1)
+ if constraint_masks is not None:
+ smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1)
+ eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6)
+ elif constraint_start is not None and constraint_end is not None:
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
+ smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1)
+ eps_i = epsilon / (len(constraint_range) - 1 + 1e-6)
+ else:
+ smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1)
+ eps_i = epsilon / (lprobs.size(-1) - 1)
+ loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
+ if drop_worst_ratio > 0 and update_num > drop_worst_after:
+ if use_rdrop:
+ true_batch_size = loss.size(0) // 2
+ _, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False)
+ loss = torch.cat([loss[indices], loss[indices+true_batch_size]])
+ nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]])
+ lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]])
+ else:
+ loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False)
+ nll_loss = nll_loss[indices]
+ lprobs = lprobs[indices]
+
+ ntokens = loss.numel()
+ nll_loss = nll_loss.sum()
+ # loss = loss.sum()
+ if use_rdrop:
+ true_batch_size = lprobs.size(0) // 2
+ p = lprobs[:true_batch_size]
+ q = lprobs[true_batch_size:]
+ if constraint_start is not None and constraint_end is not None:
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
+ p = p[:, constraint_range]
+ q = q[:, constraint_range]
+ loss = loss + ((kl_loss(p, q) * reg_alpha)/loss.shape[0])
+
+ return loss, nll_loss, ntokens
+
+
+@register_criterion(
+ "adjust_label_smoothed_cross_entropy_scst", dataclass=AdjustLabelSmoothedCrossEntropySCSTCriterionConfig
+)
+class AdjustLabelSmoothedCrossEntropySCSTCriterion(FairseqCriterion):
+ def __init__(
+ self,
+ task,
+ sentence_avg,
+ label_smoothing,
+ ignore_prefix_size=0,
+ ignore_eos=False,
+ report_accuracy=False,
+ drop_worst_ratio=0,
+ drop_worst_after=0,
+ use_rdrop=False,
+ reg_alpha=1.0,
+ sample_patch_num=196,
+ constraint_range=None,
+ acc_thresh=None,
+ metric='acc',
+ max_area_size=None,
+ min_area_size=None,
+ logprob=False,
+ pos_reward=None,
+ neg_reward=None,
+ reinforce=False,
+ lambda_reinforce=0,
+ ):
+ super().__init__(task)
+ self.sentence_avg = sentence_avg
+ self.eps = label_smoothing
+ self.ignore_prefix_size = ignore_prefix_size
+ self.ignore_eos = ignore_eos
+ self.report_accuracy = report_accuracy
+ self.drop_worst_ratio = drop_worst_ratio
+ self.drop_worst_after = drop_worst_after
+ self.use_rdrop = use_rdrop
+ self.reg_alpha = reg_alpha
+ self.sample_patch_num = sample_patch_num
+
+
+
+ self.constraint_start = None
+ self.constraint_end = None
+ if constraint_range is not None:
+ constraint_start, constraint_end = constraint_range.split(',')
+ self.constraint_start = int(constraint_start)
+ self.constraint_end = int(constraint_end)
+
+ self.acc_thresh = acc_thresh
+ self.metric = metric
+ self.min_area_size = min_area_size
+ self.max_area_size = max_area_size
+ self.logprob = logprob
+
+ self.pos_reward = pos_reward
+ self.neg_reward = neg_reward
+
+ self.reinforce = reinforce
+ self.lambda_reinforce = lambda_reinforce
+
+ def get_generator_out(self, model, sample):
+
+ model.eval()
+ with torch.no_grad():
+ self.task.scst_generator.model.eval()
+ gen_out = self.task.scst_generator.generate([model], sample)
+
+ hyps, refs = [], []
+ for i in range(len(gen_out)):
+ hyps.append(gen_out[i][0]["tokens"][:-1] - len(self.task.src_dict) + self.task.cfg.num_bins)
+ refs.append(sample["target"][i][:-1] - len(self.task.src_dict) + self.task.cfg.num_bins)
+
+ return torch.stack(hyps, dim=0), torch.stack(refs, dim=0)
+
+ def _calculate_map_score(self, hyps, refs, thresh=0.5):
+
+
+ ground_truth = {
+ 'boxes': refs.cpu().numpy().tolist(),
+
+ 'labels': [1 for i in range(refs.shape[0])]
+ }
+
+ result_dict = {
+ 'boxes': hyps.cpu().numpy().tolist(),
+
+ 'labels': [1 for i in range(hyps.shape[0])],
+ }
+
+ score = calculate_map(ground_truth, result_dict, thresh)
+
+ score = torch.tensor(score).unsqueeze(0).repeat(refs.shape[0]).to(hyps.device)
+ return score
+
+ def _calculate_ap_score(self, hyps, refs, thresh=0.5, min_area_size=None, max_area_size=None):
+ interacts = torch.cat(
+ [torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]),
+ torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])],
+ dim=1
+ )
+ area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1]) ## x1, y1, x2, y2, x1 < x2
+ area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1])
+ interacts_w = interacts[:, 2] - interacts[:, 0]
+ interacts_h = interacts[:, 3] - interacts[:, 1]
+ area_interacts = interacts_w * interacts_h
+ ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6)
+
+
+ if max_area_size is not None and min_area_size is not None:
+ ious = ious * (torch.logical_or(area_targets < max_area_size, area_targets > min_area_size).float())
+
+ elif min_area_size is not None:
+ ious = ious * (area_targets > min_area_size).float()
+
+ elif max_area_size is not None:
+ ious = ious * (area_targets < max_area_size).float()
+
+ if thresh is None:
+ return ious
+ else:
+ return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float()
+
+ def reward_step(self, sample, model):
+
+ hyps, refs = self.get_generator_out(model, sample)
+ hyps = hyps / (self.task.cfg.num_bins - 1) * self.task.cfg.max_image_size
+ refs = refs / (self.task.cfg.num_bins - 1) * self.task.cfg.max_image_size
+ hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
+ hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
+ refs[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
+ refs[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
+
+ # scores = self._calculate_ap_score(hyps, refs)
+ if self.metric == 'acc':
+ scores = self._calculate_ap_score(hyps, sample['region_coords'].float(), thresh=self.acc_thresh,
+ min_area_size=self.min_area_size, max_area_size=self.max_area_size)
+ elif self.metric == 'map':
+ scores = self._calculate_map_score(hyps, sample['region_coords'].float(), thresh=self.acc_thresh)
+ else:
+ raise NotImplemented
+
+ # logging_output["_score_sum"] = scores.sum().item()
+ # logging_output["_score_cnt"] = scores.size(0)
+
+ if self.pos_reward:
+ scores = torch.where(scores > 0, self.pos_reward, scores)
+ if self.neg_reward:
+ scores = torch.where(scores == 0, self.neg_reward, scores)
+
+
+ return scores
+
+ def forward(self, model, sample, update_num=0, reduce=True):
+ """Compute the loss for the given sample.
+
+ Returns a tuple with three elements:
+ 1) the loss
+ 2) the sample size, which is used as the denominator for the gradient
+ 3) logging outputs to display while training
+ """
+ if isinstance(sample, list):
+ if self.sample_patch_num > 0:
+ sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num
+ # change to support len(samples) > 2
+ loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce)
+ loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce)
+ loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2
+ sample_size = 1
+ logging_output = {
+ "loss": loss.data,
+ "loss_v1": loss_v1.data,
+ "loss_v2": loss_v2.data,
+ "nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2,
+ "ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"],
+ "nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"],
+ "sample_size": 1,
+ "sample_size_v1": sample_size_v1,
+ "sample_size_v2": sample_size_v2,
+ "reward": (logging_output_v1["reward"] + logging_output_v2["reward"])/2,
+ }
+ return loss, sample_size, logging_output
+
+ if self.use_rdrop:
+ construct_rdrop_sample(sample)
+
+ ### scst
+ reward = self.reward_step(sample, model) # shape = bs
+ model.train()
+ net_output = model(**sample["net_input"])
+ loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce, reward=reward)
+
+
+
+
+ # loss = loss*reward
+
+ loss = loss.sum()
+ sample_size = (
+ sample["target"].size(0) if self.sentence_avg else ntokens
+ )
+ logging_output = {
+ "loss": loss.data,
+ "nll_loss": nll_loss.data,
+ "ntokens": sample["ntokens"],
+ "nsentences": sample["nsentences"],
+ "sample_size": sample_size,
+ "reward": reward.mean(),
+ }
+ if self.report_accuracy:
+ n_correct, total = self.compute_accuracy(model, net_output, sample)
+ logging_output["n_correct"] = utils.item(n_correct.data)
+ logging_output["total"] = utils.item(total.data)
+
+ return loss, sample_size, logging_output
+
+ def get_lprobs_and_target(self, model, net_output, sample, reward=None):
+ conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1
+ constraint_masks = None
+ if "constraint_masks" in sample and sample["constraint_masks"] is not None:
+ constraint_masks = sample["constraint_masks"]
+ net_output[0].masked_fill_(~constraint_masks, -math.inf)
+ if self.constraint_start is not None and self.constraint_end is not None:
+ net_output[0][:, :, 4:self.constraint_start] = -math.inf
+ net_output[0][:, :, self.constraint_end:] = -math.inf
+ lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf
+ target = model.get_targets(sample, net_output)
+ if self.ignore_prefix_size > 0:
+ lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
+ target = target[:, self.ignore_prefix_size :].contiguous()
+ if constraint_masks is not None:
+ constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous()
+ if self.ignore_eos:
+ bsz, seq_len, embed_dim = lprobs.size()
+ eos_indices = target.eq(self.task.tgt_dict.eos())
+ lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
+ target = target[~eos_indices].reshape(bsz, seq_len-1)
+ if constraint_masks is not None:
+ constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
+ if constraint_masks is not None:
+ constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1))
+
+ if reward is not None:
+ reward = reward.unsqueeze(1).unsqueeze(1)
+ lprobs = lprobs*reward
+ return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks
+
+ def compute_loss(self, model, net_output, sample, update_num, reduce=True, reward=None):
+ lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample, reward=reward)
+
+ if constraint_masks is not None:
+ constraint_masks = constraint_masks[target != self.padding_idx]
+ # print(target.shape, self.padding_idx, lprobs.shape, target, lprobs)
+ lprobs = lprobs[target != self.padding_idx]
+ target = target[target != self.padding_idx]
+
+
+ loss, nll_loss, ntokens = label_smoothed_nll_loss(
+ lprobs,
+ target,
+ self.eps,
+ update_num,
+ reduce=reduce,
+ drop_worst_ratio=self.drop_worst_ratio,
+ drop_worst_after=self.drop_worst_after,
+ use_rdrop=self.use_rdrop,
+ reg_alpha=self.reg_alpha,
+ constraint_masks=constraint_masks,
+ constraint_start=self.constraint_start,
+ constraint_end=self.constraint_end
+ )
+
+ if self.logprob and self.reinforce:
+ # print(-lprobs.max(dim=-1)[0].squeeze(-1).sum(), loss)
+ if self.lambda_reinforce > 0:
+ lprobs_, target_, constraint_masks_ = self.get_lprobs_and_target(model, net_output, sample, reward=None)
+
+ loss_, _, ntokens = label_smoothed_nll_loss(
+ lprobs_,
+ target_,
+ self.eps,
+ update_num,
+ reduce=reduce,
+ drop_worst_ratio=self.drop_worst_ratio,
+ drop_worst_after=self.drop_worst_after,
+ use_rdrop=self.use_rdrop,
+ reg_alpha=self.reg_alpha,
+ constraint_masks=constraint_masks_,
+ constraint_start=self.constraint_start,
+ constraint_end=self.constraint_end
+ )
+ # print(-lprobs.max(dim=-1)[0].squeeze(-1).sum(), loss_)
+ # loss = -lprobs.max(dim=-1)[0].squeeze(-1).sum()*self.lambda_reinforce + loss_
+
+ loss = loss*self.lambda_reinforce + loss_ # only supervised with more weights via reward
+
+ else:
+ loss = -lprobs.max(dim=-1)[0].squeeze(-1).sum()
+
+ elif self.logprob:
+ loss = nll_loss
+
+ return loss, nll_loss, ntokens
+
+ def compute_accuracy(self, model, net_output, sample):
+ lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
+ mask = target.ne(self.padding_idx)
+ n_correct = torch.sum(
+ lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
+ )
+ total = torch.sum(mask)
+ return n_correct, total
+
+ @classmethod
+ def reduce_metrics(cls, logging_outputs) -> None:
+ """Aggregate logging outputs from data parallel training."""
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
+ loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs)
+ loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs)
+ nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
+ sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs)
+ sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs)
+
+
+ reward = sum(log.get("reward", 0) for log in logging_outputs)
+
+ metrics.log_scalar(
+ "loss", loss_sum / sample_size, sample_size, round=3
+ )
+ metrics.log_scalar(
+ "loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3
+ )
+ metrics.log_scalar(
+ "loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3
+ )
+ metrics.log_scalar(
+ "nll_loss", nll_loss_sum / sample_size, ntokens, round=3
+ )
+ metrics.log_derived(
+ "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
+ )
+
+ metrics.log_scalar(
+ "ntokens", ntokens, 1, round=3
+ )
+ metrics.log_scalar(
+ "nsentences", nsentences, 1, round=3
+ )
+ metrics.log_scalar(
+ "sample_size", sample_size, 1, round=3
+ )
+ metrics.log_scalar(
+ "sample_size_v1", sample_size_v1, 1, round=3
+ )
+ metrics.log_scalar(
+ "sample_size_v2", sample_size_v2, 1, round=3
+ )
+
+ metrics.log_scalar(
+ "reward", reward / sample_size, sample_size, round=3
+ )
+
+ total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
+ if total > 0:
+ metrics.log_scalar("total", total)
+ n_correct = utils.item(
+ sum(log.get("n_correct", 0) for log in logging_outputs)
+ )
+ metrics.log_scalar("n_correct", n_correct)
+ metrics.log_derived(
+ "accuracy",
+ lambda meters: round(
+ meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
+ )
+ if meters["total"].sum > 0
+ else float("nan"),
+ )
+
+ @staticmethod
+ def logging_outputs_can_be_summed() -> bool:
+ """
+ Whether the logging outputs returned by `forward` can be summed
+ across workers prior to calling `reduce_metrics`. Setting this
+ to True will improves distributed training speed.
+ """
+ return True
diff --git a/criterions/label_smoothed_encouraging_loss.py b/criterions/label_smoothed_encouraging_loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..c55ea9eb93bc57356fe0be78c74b4d5233744548
--- /dev/null
+++ b/criterions/label_smoothed_encouraging_loss.py
@@ -0,0 +1,395 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+from dataclasses import dataclass, field
+from typing import Optional
+
+import torch
+import torch.nn.functional as F
+import numpy as np
+from fairseq import metrics, utils
+from fairseq.criterions import FairseqCriterion, register_criterion
+from fairseq.dataclass import FairseqDataclass
+from omegaconf import II
+
+
+@dataclass
+class AdjustLabelSmoothedEncouragingLossConfig(FairseqDataclass):
+ label_smoothing: float = field(
+ default=0.0,
+ metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
+ )
+ report_accuracy: bool = field(
+ default=False,
+ metadata={"help": "report accuracy metric"},
+ )
+ ignore_prefix_size: int = field(
+ default=0,
+ metadata={"help": "Ignore first N tokens"},
+ )
+ ignore_eos: bool = field(
+ default=False,
+ metadata={"help": "Ignore eos token"},
+ )
+ sentence_avg: bool = II("optimization.sentence_avg")
+ drop_worst_ratio: float = field(
+ default=0.0,
+ metadata={"help": "ratio for discarding bad samples"},
+ )
+ drop_worst_after: int = field(
+ default=0,
+ metadata={"help": "steps for discarding bad samples"},
+ )
+ use_rdrop: bool = field(
+ default=False, metadata={"help": "use R-Drop"}
+ )
+ reg_alpha: float = field(
+ default=1.0, metadata={"help": "weight for R-Drop"}
+ )
+ sample_patch_num: int = field(
+ default=196, metadata={"help": "sample patchs for v1"}
+ )
+ constraint_range: Optional[str] = field(
+ default=None,
+ metadata={"help": "constraint range"}
+ )
+ log_end: float = field(
+ default=0.75,
+ metadata={"help": "higher log_end is for cases with higher performance,"
+ " we recommend 0.75 or 0.5 as your first try."}
+ )
+ drop_best_ratio: float = field(
+ default=0.0,
+ metadata={"help": "ratio for discarding best samples"},
+ )
+ drop_best_after: int = field(
+ default=0,
+ metadata={"help": "steps for discarding best samples"},
+ )
+
+
+
+def construct_rdrop_sample(x):
+ if isinstance(x, dict):
+ for key in x:
+ x[key] = construct_rdrop_sample(x[key])
+ return x
+ elif isinstance(x, torch.Tensor):
+ return x.repeat(2, *([1] * (x.dim()-1)))
+ elif isinstance(x, int):
+ return x * 2
+ elif isinstance(x, np.ndarray):
+ return x.repeat(2)
+ else:
+ raise NotImplementedError
+
+
+def kl_loss(p, q):
+ p_loss = F.kl_div(p, torch.exp(q), reduction='sum')
+ q_loss = F.kl_div(q, torch.exp(p), reduction='sum')
+ loss = (p_loss + q_loss) / 2
+ return loss
+
+
+def label_smoothed_nll_loss(
+ lprobs, target, epsilon, update_num, reduce=True,
+ drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0,
+ constraint_masks=None, constraint_start=None, constraint_end=None, drop_best_ratio=0.0,
+ drop_best_after=0,
+):
+ if target.dim() == lprobs.dim() - 1:
+ target = target.unsqueeze(-1)
+ nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1)
+ if constraint_masks is not None:
+ smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1)
+ eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6)
+ elif constraint_start is not None and constraint_end is not None:
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
+ smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1)
+ eps_i = epsilon / (len(constraint_range) - 1 + 1e-6)
+ else:
+ smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1)
+ eps_i = epsilon / (lprobs.size(-1) - 1)
+ loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
+ if drop_worst_ratio > 0 and update_num > drop_worst_after:
+ if use_rdrop:
+ true_batch_size = loss.size(0) // 2
+ _, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False)
+ loss = torch.cat([loss[indices], loss[indices+true_batch_size]])
+ nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]])
+ lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]])
+ else:
+ loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False)
+ nll_loss = nll_loss[indices]
+ lprobs = lprobs[indices]
+ target = target[indices]
+ if update_num > drop_best_after:
+ loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_best_ratio)), largest=True)
+ nll_loss = nll_loss[indices]
+ lprobs = lprobs[indices]
+ target = target[indices]
+
+ ntokens = loss.numel()
+ nll_loss = nll_loss.sum()
+ loss = loss.sum()
+ if use_rdrop:
+ true_batch_size = lprobs.size(0) // 2
+ p = lprobs[:true_batch_size]
+ q = lprobs[true_batch_size:]
+ if constraint_start is not None and constraint_end is not None:
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
+ p = p[:, constraint_range]
+ q = q[:, constraint_range]
+ loss += kl_loss(p, q) * reg_alpha
+
+ return loss, nll_loss, ntokens,lprobs,target
+
+
+@register_criterion(
+ "adjust_label_smoothed_encouraging_loss", dataclass=AdjustLabelSmoothedEncouragingLossConfig
+)
+class AdjustLabelSmoothedEncouragingLossCriterion(FairseqCriterion):
+ def __init__(
+ self,
+ task,
+ sentence_avg,
+ label_smoothing,
+ ignore_prefix_size=0,
+ ignore_eos=False,
+ report_accuracy=False,
+ drop_worst_ratio=0,
+ drop_worst_after=0,
+ use_rdrop=False,
+ reg_alpha=1.0,
+ sample_patch_num=196,
+ constraint_range=None,
+ log_end=0.75,
+ drop_best_ratio=0.0,
+ drop_best_after=0,
+ ):
+ super().__init__(task)
+ self.sentence_avg = sentence_avg
+ self.eps = label_smoothing
+ self.ignore_prefix_size = ignore_prefix_size
+ self.ignore_eos = ignore_eos
+ self.report_accuracy = report_accuracy
+ self.drop_worst_ratio = drop_worst_ratio
+ self.drop_worst_after = drop_worst_after
+ self.use_rdrop = use_rdrop
+ self.reg_alpha = reg_alpha
+ self.sample_patch_num = sample_patch_num
+
+ self.constraint_start = None
+ self.constraint_end = None
+ if constraint_range is not None:
+ constraint_start, constraint_end = constraint_range.split(',')
+ self.constraint_start = int(constraint_start)
+ self.constraint_end = int(constraint_end)
+ self.log_end = log_end
+ self.drop_best_ratio = drop_best_ratio
+ self.drop_best_after = drop_best_after
+ print('el, self.log_end=', self.log_end)
+ # @staticmethod
+ # def add_args(parser):
+ # """Add criterion-specific arguments to the parser."""
+ # # fmt: off
+ # parser.add_argument('--log_end', type=float, default=1.0)
+
+ def forward(self, model, sample, update_num=0, reduce=True):
+ """Compute the loss for the given sample.
+
+ Returns a tuple with three elements:
+ 1) the loss
+ 2) the sample size, which is used as the denominator for the gradient
+ 3) logging outputs to display while training
+ """
+ if isinstance(sample, list):
+ if self.sample_patch_num > 0:
+ sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num
+ loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce)
+ loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce)
+ loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2
+ sample_size = 1
+ logging_output = {
+ "loss": loss.data,
+ "loss_v1": loss_v1.data,
+ "loss_v2": loss_v2.data,
+ "nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2,
+ "ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"],
+ "nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"],
+ "sample_size": 1,
+ "sample_size_v1": sample_size_v1,
+ "sample_size_v2": sample_size_v2,
+ }
+ return loss, sample_size, logging_output
+
+ if self.use_rdrop:
+ construct_rdrop_sample(sample)
+
+ net_output = model(**sample["net_input"])
+ loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce)
+ sample_size = (
+ sample["target"].size(0) if self.sentence_avg else ntokens
+ )
+ logging_output = {
+ "loss": loss.data,
+ "nll_loss": nll_loss.data,
+ "ntokens": sample["ntokens"],
+ "nsentences": sample["nsentences"],
+ "sample_size": sample_size,
+ }
+ if self.report_accuracy:
+ n_correct, total = self.compute_accuracy(model, net_output, sample)
+ logging_output["n_correct"] = utils.item(n_correct.data)
+ logging_output["total"] = utils.item(total.data)
+ return loss, sample_size, logging_output
+
+ def get_lprobs_and_target(self, model, net_output, sample):
+ conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1
+ constraint_masks = None
+ if "constraint_masks" in sample and sample["constraint_masks"] is not None:
+ constraint_masks = sample["constraint_masks"]
+ net_output[0].masked_fill_(~constraint_masks, -math.inf)
+ if self.constraint_start is not None and self.constraint_end is not None:
+ net_output[0][:, :, 4:self.constraint_start] = -math.inf
+ net_output[0][:, :, self.constraint_end:] = -math.inf
+ lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf
+ target = model.get_targets(sample, net_output)
+ if self.ignore_prefix_size > 0:
+ lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
+ target = target[:, self.ignore_prefix_size :].contiguous()
+ if constraint_masks is not None:
+ constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous()
+ if self.ignore_eos:
+ bsz, seq_len, embed_dim = lprobs.size()
+ eos_indices = target.eq(self.task.tgt_dict.eos())
+ lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
+ target = target[~eos_indices].reshape(bsz, seq_len-1)
+ if constraint_masks is not None:
+ constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
+ if constraint_masks is not None:
+ constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1))
+ return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks
+
+ def compute_loss(self, model, net_output, sample, update_num, reduce=True):
+ lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample)
+ if constraint_masks is not None:
+ constraint_masks = constraint_masks[target != self.padding_idx]
+ lprobs = lprobs[target != self.padding_idx]
+ target = target[target != self.padding_idx]
+ loss, nll_loss, ntokens, lprobs, target = label_smoothed_nll_loss(
+ lprobs,
+ target,
+ self.eps,
+ update_num,
+ reduce=reduce,
+ drop_worst_ratio=self.drop_worst_ratio,
+ drop_worst_after=self.drop_worst_after,
+ use_rdrop=self.use_rdrop,
+ reg_alpha=self.reg_alpha,
+ constraint_masks=constraint_masks,
+ constraint_start=self.constraint_start,
+ constraint_end=self.constraint_end
+ )
+ # for encouraging loss
+ probs = torch.exp(lprobs)
+ bonus = torch.log(torch.clamp((torch.ones_like(probs) - probs), min=1e-5)) # likelihood bonus
+ log_end = self.log_end
+ if log_end != 1.0: # e.g. 0.9
+ y_log_end = torch.log(torch.ones_like(probs) - log_end)
+ bonus_after_log_end = 1 / (log_end - torch.ones_like(probs)) * (probs - log_end) + y_log_end
+ # x:log_end, y torch.log(torch.clamp((torch.ones_like(probs) - probs), min=self.cl_eps))
+ bonus = torch.where(probs > log_end, bonus_after_log_end, bonus)
+ c_loss = F.nll_loss(
+ -bonus,
+ target.view(-1),
+ reduction='sum',
+ )
+ smoothing_c_loss = bonus.sum(dim=-1)
+ smoothing_c_loss = smoothing_c_loss.sum()
+ c_loss = c_loss * (1 - self.eps) + (self.eps / lprobs.size(-1)) * smoothing_c_loss
+ loss = loss + c_loss
+ # end for encouraging loss
+ return loss, nll_loss, ntokens
+
+ def compute_accuracy(self, model, net_output, sample):
+ lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
+ mask = target.ne(self.padding_idx)
+ n_correct = torch.sum(
+ lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
+ )
+ total = torch.sum(mask)
+ return n_correct, total
+
+ @classmethod
+ def reduce_metrics(cls, logging_outputs) -> None:
+ """Aggregate logging outputs from data parallel training."""
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
+ loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs)
+ loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs)
+ nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
+ sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs)
+ sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs)
+
+ metrics.log_scalar(
+ "loss", loss_sum / sample_size, sample_size, round=3
+ )
+ metrics.log_scalar(
+ "loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3
+ )
+ metrics.log_scalar(
+ "loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3
+ )
+ metrics.log_scalar(
+ "nll_loss", nll_loss_sum / sample_size, ntokens, round=3
+ )
+ metrics.log_derived(
+ "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
+ )
+
+ metrics.log_scalar(
+ "ntokens", ntokens, 1, round=3
+ )
+ metrics.log_scalar(
+ "nsentences", nsentences, 1, round=3
+ )
+ metrics.log_scalar(
+ "sample_size", sample_size, 1, round=3
+ )
+ metrics.log_scalar(
+ "sample_size_v1", sample_size_v1, 1, round=3
+ )
+ metrics.log_scalar(
+ "sample_size_v2", sample_size_v2, 1, round=3
+ )
+
+ total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
+ if total > 0:
+ metrics.log_scalar("total", total)
+ n_correct = utils.item(
+ sum(log.get("n_correct", 0) for log in logging_outputs)
+ )
+ metrics.log_scalar("n_correct", n_correct)
+ metrics.log_derived(
+ "accuracy",
+ lambda meters: round(
+ meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
+ )
+ if meters["total"].sum > 0
+ else float("nan"),
+ )
+
+ @staticmethod
+ def logging_outputs_can_be_summed() -> bool:
+ """
+ Whether the logging outputs returned by `forward` can be summed
+ across workers prior to calling `reduce_metrics`. Setting this
+ to True will improves distributed training speed.
+ """
+ return True
diff --git a/criterions/refcoco_scst_loss.py b/criterions/refcoco_scst_loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..28001a7d626a68ea80990809bea493b3e279617c
--- /dev/null
+++ b/criterions/refcoco_scst_loss.py
@@ -0,0 +1,427 @@
+# Modified from OFA code.
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+import math
+import string
+from dataclasses import dataclass, field
+from collections import OrderedDict
+from typing import Optional
+
+import torch
+from fairseq import metrics, utils
+from fairseq.criterions import FairseqCriterion, register_criterion
+from fairseq.dataclass import FairseqDataclass
+from omegaconf import II
+
+from data import data_utils
+from utils.cider.pyciderevalcap.ciderD.ciderD import CiderD
+
+
+
+def scst_loss(lprobs, target, reward, ignore_index=None, reduce=True, ce=False):
+
+ if ce:
+ loss = -lprobs.gather(dim=-1, index=target.unsqueeze(-1)).squeeze(-1)
+ elif isinstance(reward, float):
+ loss = -lprobs.gather(dim=-1, index=target.unsqueeze(-1)).squeeze() * reward
+ else:
+ loss = -lprobs.gather(dim=-1, index=target.unsqueeze(-1)).squeeze() * reward.unsqueeze(-1)
+
+ if ignore_index is not None:
+ pad_mask = target.eq(ignore_index)
+ loss.masked_fill_(pad_mask, 0.0)
+ ntokens = (~pad_mask).sum()
+ else:
+ loss = loss.squeeze(-1)
+ ntokens = target.numel()
+ if reduce:
+ loss = loss.sum()
+ return loss, ntokens
+
+
+@dataclass
+class RefCOCOScstRewardCriterionConfig(FairseqDataclass):
+ scst_cider_cached_tokens: Optional[str] = field(
+ default="coco-train-words.p",
+ metadata={"help": "path to cached cPickle file used to calculate CIDEr scores"},
+ )
+ ignore_prefix_size: int = field(
+ default=0,
+ metadata={"help": "Ignore first N tokens"},
+ )
+ sentence_avg: bool = II("optimization.sentence_avg")
+ constraint_range: Optional[str] = field(
+ default=None,
+ metadata={"help": "constraint range"}
+ )
+
+
+ acc_thresh: Optional[float] = field(
+ default=None, metadata={"help": "acc thresh for refcoco"}
+ )
+ metric: Optional[str] = field(
+ default='acc',
+ metadata={"help": "metric"}
+ )
+
+ max_area_size: Optional[float] = field(
+ default=None, metadata={"help": "max_area_size"}
+ )
+
+ min_area_size: Optional[float] = field(
+ default=None, metadata={"help": "min_area_size"}
+ )
+ logprob: Optional[bool] = field(
+ default=False, metadata={"help": "maximise log prob"}
+ )
+
+ pos_reward: Optional[float] = field(
+ default=None, metadata={"help": "pos_reward"}
+ )
+
+ neg_reward: Optional[float] = field(
+ default=None, metadata={"help": "neg_reward"}
+ )
+
+ reinforce: Optional[bool] = field(
+ default=False, metadata={"help": "reinforce"}
+ )
+
+ lambda_reinforce: Optional[float] = field(
+ default=0, metadata={"help": "lambda_reinforce"}
+ )
+
+ medium_area: Optional[bool] = field(
+ default=False, metadata={"help": "reinforce"}
+ )
+
+@register_criterion(
+ "refcoco_scst_reward_criterion", dataclass=RefCOCOScstRewardCriterionConfig
+)
+class RefCOCOScstRewardCriterion(FairseqCriterion):
+ CIDER_REWARD_WEIGHT = 1
+
+ def __init__(
+ self,
+ task,
+ scst_cider_cached_tokens,
+ sentence_avg,
+ ignore_prefix_size=0,
+ constraint_range=None,
+ acc_thresh=None,
+ metric='acc',
+ max_area_size=None,
+ min_area_size=None,
+ logprob=False,
+ pos_reward=None,
+ neg_reward=None,
+ reinforce=False,
+ lambda_reinforce=0,
+ medium_area=False,
+ ):
+ super().__init__(task)
+ self.sentence_avg = sentence_avg
+ self.ignore_prefix_size = ignore_prefix_size
+ self.transtab = str.maketrans({key: None for key in string.punctuation})
+
+ self.constraint_start = None
+ self.constraint_end = None
+ if constraint_range is not None:
+ constraint_start, constraint_end = constraint_range.split(',')
+ self.constraint_start = int(constraint_start)
+ self.constraint_end = int(constraint_end)
+
+ self.metric = metric
+ print("metric", metric)
+
+ self.acc_thresh = acc_thresh
+ self.metric = metric
+ self.min_area_size = min_area_size
+ self.max_area_size = max_area_size
+ self.logprob = logprob
+
+ self.pos_reward = pos_reward
+ self.neg_reward = neg_reward
+
+ self.reinforce = reinforce
+ self.lambda_reinforce = lambda_reinforce
+
+ self.medium_area = medium_area
+
+
+
+
+ def forward(self, model, sample, update_num=0, reduce=True):
+ """Compute the loss for the given sample.
+
+ Returns a tuple with three elements:
+ 1) the loss
+ 2) the sample size, which is used as the denominator for the gradient
+ 3) logging outputs to display while training
+ """
+ loss, score, ntokens, nsentences = self.compute_loss(model, sample, reduce=reduce)
+
+ sample_size = (
+ nsentences if self.sentence_avg else ntokens
+ )
+ logging_output = {
+ "loss": loss.data,
+ "score": score,
+ "ntokens": ntokens,
+ "nsentences": nsentences,
+ "sample_size": sample_size,
+ }
+ return loss, sample_size, logging_output
+
+ def _calculate_eval_scores(self, gen_res, gt_idx, gt_res):
+ '''
+ gen_res: generated captions, list of str
+ gt_idx: list of int, of the same length as gen_res
+ gt_res: ground truth captions, list of list of str.
+ gen_res[i] corresponds to gt_res[gt_idx[i]]
+ Each image can have multiple ground truth captions
+ '''
+
+ gen_res_size = len(gen_res)
+
+ res = OrderedDict()
+ for i in range(gen_res_size):
+ res[i] = [self._wrap_sentence(gen_res[i].strip().translate(self.transtab))]
+
+ gts = OrderedDict()
+ gt_res_ = [
+ [self._wrap_sentence(gt_res[i][j].strip().translate(self.transtab)) for j in range(len(gt_res[i]))]
+ for i in range(len(gt_res))
+ ]
+ for i in range(gen_res_size):
+ gts[i] = gt_res_[gt_idx[i]]
+
+ res_ = [{'image_id':i, 'caption': res[i]} for i in range(len(res))]
+
+ # replace with other metrics
+ if self.metric != 'cider':
+ predicts = [res[i][0] if isinstance(res[i], list) else res[i] for i in range(len(res))]
+
+ answers = [gts[i] for i in range(gen_res_size)]
+
+ results = self.evaluator.run_evaluation(predicts, answers)
+ batch_cider_scores = results[self.metric]
+
+ batch_cider_scores = torch.tensor(batch_cider_scores).repeat(gen_res_size)
+ else:
+ _, batch_cider_scores = self.scst_cider_scorer.compute_score(gts, res_)
+
+ scores = self.CIDER_REWARD_WEIGHT * batch_cider_scores
+ return scores
+
+ @classmethod
+ def _wrap_sentence(self, s):
+ # ensure the sentence ends with token
+ # in order to keep consisitent with cider_cached_tokens
+ r = s.strip()
+ if r.endswith('.'):
+ r = r[:-1]
+ r += ' '
+ return r
+
+
+ def get_generator_out(self, model, sample):
+
+
+ model.eval()
+ with torch.no_grad():
+ self.task.scst_generator.model.eval()
+ gen_out = self.task.scst_generator.generate([model], sample)
+
+ gen_target = []
+ gen_res = []
+ gt_res = []
+ for i in range(len(gen_out)):
+ gen_res.append(gen_out[i][0]["tokens"][:-1] - len(self.task.src_dict) + self.task.cfg.num_bins)
+ gt_res.append(sample["target"][i][:-1] - len(self.task.src_dict) + self.task.cfg.num_bins)
+ gen_target.append(gen_out[i][0]["tokens"][:-1].int().cpu())
+
+ return gen_target, gen_res, gt_res
+
+ def _calculate_ap_score(self, hyps, refs, thresh=0.5, min_area_size=None, max_area_size=None, medium_area=False):
+ interacts = torch.cat(
+ [torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]),
+ torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])],
+ dim=1
+ )
+ area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1]) ## x1, y1, x2, y2, x1 < x2
+ area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1])
+ interacts_w = interacts[:, 2] - interacts[:, 0]
+ interacts_h = interacts[:, 3] - interacts[:, 1]
+ area_interacts = interacts_w * interacts_h
+ ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6)
+
+
+ if max_area_size is not None and min_area_size is not None:
+ if medium_area:
+ ious = ious * (torch.logical_and(area_targets > max_area_size, area_targets < min_area_size).float())
+
+ else:
+ ious = ious * (torch.logical_or(area_targets < max_area_size, area_targets > min_area_size).float())
+
+ elif min_area_size is not None:
+ if medium_area:
+ ious = ious * (area_targets < min_area_size).float() # as max areas
+ else:
+ ious = ious * (area_targets > min_area_size).float()
+
+ elif max_area_size is not None:
+ if medium_area:
+ ious = ious * (area_targets > max_area_size).float()
+ else:
+ ious = ious * (area_targets < max_area_size).float()
+
+ if thresh is None:
+ return ious
+ else:
+ return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float()
+
+
+ def get_reward_and_scores(self, gen_res, gt_res, device, sample):
+
+
+ hyps_, refs_ = torch.stack(gen_res, dim=0), torch.stack(gt_res, dim=0)
+
+ hyps = hyps_ / (self.task.cfg.num_bins - 1) * self.task.cfg.max_image_size
+ refs = refs_ / (self.task.cfg.num_bins - 1) * self.task.cfg.max_image_size
+
+ hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
+ hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
+ refs[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
+ refs[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
+
+ if self.metric == 'acc':
+ scores = self._calculate_ap_score(hyps, sample['region_coords'].float(), thresh=self.acc_thresh,
+ min_area_size=self.min_area_size, max_area_size=self.max_area_size, medium_area=self.medium_area)
+ else:
+ raise NotImplemented
+
+
+ if self.pos_reward:
+ scores = torch.where(scores > 0, self.pos_reward, scores)
+ if self.neg_reward:
+ scores = torch.where(scores == 0, self.neg_reward, scores)
+
+ return scores, scores
+
+
+ def get_net_output(self, model, sample, gen_target):
+ def merge(sample_list, eos=self.task.tgt_dict.eos(), move_eos_to_beginning=False):
+ return data_utils.collate_tokens(
+ sample_list,
+ pad_idx=self.padding_idx,
+ eos_idx=eos,
+ left_pad=False,
+ move_eos_to_beginning=move_eos_to_beginning,
+ )
+
+ batch_size = len(sample["target"])
+ gen_target_size = len(gen_target)
+ seq_per_img = gen_target_size // batch_size
+
+ model.train()
+ sample_src_tokens = torch.repeat_interleave(
+ sample['net_input']['src_tokens'], seq_per_img, dim=0
+ )
+ sample_src_lengths = torch.repeat_interleave(
+ sample['net_input']['src_lengths'], seq_per_img, dim=0
+ )
+ sample_patch_images = torch.repeat_interleave(
+ sample['net_input']['patch_images'], seq_per_img, dim=0
+ )
+ sample_patch_masks = torch.repeat_interleave(
+ sample['net_input']['patch_masks'], seq_per_img, dim=0
+ )
+ gen_prev_output_tokens = torch.as_tensor(
+ merge(gen_target, eos=self.task.tgt_dict.bos(), move_eos_to_beginning=True),
+ device=sample["target"].device, dtype=torch.int64
+ )
+ gen_target_tokens = torch.as_tensor(
+ merge(gen_target), device=sample["target"].device, dtype=torch.int64
+ )
+
+ net_output = model(
+ src_tokens=sample_src_tokens, src_lengths=sample_src_lengths,
+ patch_images=sample_patch_images, patch_masks=sample_patch_masks,
+ prev_output_tokens=gen_prev_output_tokens
+ )
+
+ return net_output, gen_target_tokens
+
+ def get_lprobs_and_target(self, model, net_output, gen_target):
+ if self.constraint_start is not None and self.constraint_end is not None:
+ net_output[0][:, :, 4:self.constraint_start] = -math.inf
+ net_output[0][:, :, self.constraint_end:] = -math.inf
+ lprobs = model.get_normalized_probs(net_output, log_probs=True)
+ if self.ignore_prefix_size > 0:
+ if getattr(lprobs, "batch_first", False):
+ lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
+ gen_target = gen_target[:, self.ignore_prefix_size :].contiguous()
+ else:
+ lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous()
+ gen_target = gen_target[self.ignore_prefix_size :, :].contiguous()
+ return lprobs, gen_target
+
+ def compute_loss(self, model, sample, reduce=True):
+ gen_target, gen_res, gt_res = self.get_generator_out(model, sample)
+ reward, scores = self.get_reward_and_scores(gen_res, gt_res, device=sample["target"].device, sample=sample)
+
+ net_output, gen_target_tokens = self.get_net_output(model, sample, gen_target)
+
+ gen_lprobs, gen_target_tokens = self.get_lprobs_and_target(model, net_output, gen_target_tokens)
+ loss, ntokens = scst_loss(gen_lprobs, gen_target_tokens, reward, ignore_index=self.padding_idx, reduce=reduce)
+ nsentences = gen_target_tokens.size(0)
+
+ if self.lambda_reinforce > 0:
+ target = model.get_targets(sample, net_output)[:, :-1] # ignore eos token
+ if self.ignore_prefix_size > 0:
+ target = target[:, self.ignore_prefix_size :].contiguous()
+
+ loss_ce, ntokens_ = scst_loss(gen_lprobs, target, reward=1, ignore_index=self.padding_idx, reduce=reduce, ce=True)
+
+ loss = loss_ce + self.lambda_reinforce*loss
+
+ return loss, scores.sum(), ntokens, nsentences
+
+ @classmethod
+ def reduce_metrics(cls, logging_outputs) -> None:
+ """Aggregate logging outputs from data parallel training."""
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
+ score_sum = sum(log.get("score", 0) for log in logging_outputs)
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
+
+ metrics.log_scalar(
+ "loss", loss_sum / sample_size, sample_size, round=3
+ )
+ metrics.log_scalar(
+ "score", score_sum / nsentences, nsentences, round=3
+ )
+
+ metrics.log_scalar(
+ "ntokens", ntokens, 1, round=3
+ )
+ metrics.log_scalar(
+ "nsentences", nsentences, 1, round=3
+ )
+ metrics.log_scalar(
+ "sample_size", sample_size, 1, round=3
+ )
+
+ @staticmethod
+ def logging_outputs_can_be_summed() -> bool:
+ """
+ Whether the logging outputs returned by `forward` can be summed
+ across workers prior to calling `reduce_metrics`. Setting this
+ to True will improves distributed training speed.
+ """
+ return True
diff --git a/data/.ipynb_checkpoints/file_dataset-checkpoint.py b/data/.ipynb_checkpoints/file_dataset-checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..c42f5d82b01b3982404cd72171cf108bebcfa779
--- /dev/null
+++ b/data/.ipynb_checkpoints/file_dataset-checkpoint.py
@@ -0,0 +1,107 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+import os
+import torch
+import pickle
+
+
+class FileDataset:
+ def __init__(self, file_path, selected_col_ids=None, dtypes=None, separator="\t", cached_index=False):
+ self.file_path = file_path
+ assert os.path.exists(self.file_path), "Error: The local datafile {} not exists!".format(self.file_path)
+
+ self.separator = separator
+ if selected_col_ids is None:
+ # default to all fields
+ self.selected_col_ids = list(
+ range(len(open(self.file_path).readline().rstrip("\n").split(self.separator))))
+ else:
+ self.selected_col_ids = [int(col_id) for col_id in selected_col_ids.split(",")]
+ if dtypes is None:
+ # default to str
+ self.dtypes = [str for col_id in self.selected_col_ids]
+ else:
+ self.dtypes = [eval(col_dtype) for col_dtype in dtypes.split(",")]
+ assert len(self.dtypes) == len(self.selected_col_ids)
+
+ self.data_cnt = 0
+ try:
+ self.slice_id = torch.distributed.get_rank()
+ self.slice_count = torch.distributed.get_world_size()
+ except Exception:
+ self.slice_id = 0
+ self.slice_count = 1
+ self.cached_index = cached_index
+ self._init_seek_index()
+ self._reader = self._get_reader()
+ print("file {} slice_id {} row count {} total row count {}".format(
+ self.file_path, self.slice_id, self.row_count, self.total_row_count)
+ )
+
+ def _init_seek_index(self):
+ if self.cached_index:
+ cache_path = "{}.index".format(self.file_path)
+ assert os.path.exists(cache_path), "cache file {} not exists!".format(cache_path)
+ self.total_row_count, self.lineid_to_offset = pickle.load(open(cache_path, "rb"))
+ print("local datafile {} slice_id {} use cached row_count and line_idx-to-offset mapping".format(
+ self.file_path, self.slice_id))
+ else:
+ # make an iteration over the file to get row_count and line_idx-to-offset mapping
+ fp = open(self.file_path, "r")
+ print("local datafile {} slice_id {} begin to initialize row_count and line_idx-to-offset mapping".format(
+ self.file_path, self.slice_id))
+ self.total_row_count = 0
+ offset = 0
+ self.lineid_to_offset = []
+ for line in fp:
+ self.lineid_to_offset.append(offset)
+ self.total_row_count += 1
+ offset += len(line.encode('utf-8'))
+ self._compute_start_pos_and_row_count()
+ print("local datafile {} slice_id {} finished initializing row_count and line_idx-to-offset mapping".format(
+ self.file_path, self.slice_id))
+
+ def _compute_start_pos_and_row_count(self):
+ self.row_count = self.total_row_count // self.slice_count
+ if self.slice_id < self.total_row_count - self.row_count * self.slice_count:
+ self.row_count += 1
+ self.start_pos = self.row_count * self.slice_id
+ else:
+ self.start_pos = self.row_count * self.slice_id + (self.total_row_count - self.row_count * self.slice_count)
+
+ def _get_reader(self):
+ fp = open(self.file_path, "r")
+ fp.seek(self.lineid_to_offset[self.start_pos])
+ return fp
+
+ def _seek(self, offset=0):
+ try:
+ print("slice_id {} seek offset {}".format(self.slice_id, self.start_pos + offset))
+ self._reader.seek(self.lineid_to_offset[self.start_pos + offset])
+ self.data_cnt = offset
+ except Exception:
+ print("slice_id {} seek offset {}".format(self.slice_id, offset))
+ self._reader.seek(self.lineid_to_offset[offset])
+ self.data_cnt = offset
+
+ def __del__(self):
+ self._reader.close()
+
+ def __len__(self):
+ return self.row_count
+
+ def get_total_row_count(self):
+ return self.total_row_count
+
+ def __getitem__(self, index):
+ if self.data_cnt == self.row_count:
+ print("reach the end of datafile, start a new reader")
+ self.data_cnt = 0
+ self._reader = self._get_reader()
+ column_l = self._reader.readline().rstrip("\n").split(self.separator)
+ self.data_cnt += 1
+ column_l = [dtype(column_l[col_id]) for col_id, dtype in zip(self.selected_col_ids, self.dtypes)]
+ return column_l
diff --git a/data/__init__.py b/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/data/__pycache__/__init__.cpython-37.pyc b/data/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0b05ed4e7640fb8ff578c1a33f41f97c7571118c
Binary files /dev/null and b/data/__pycache__/__init__.cpython-37.pyc differ
diff --git a/data/__pycache__/__init__.cpython-38.pyc b/data/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0bcdc42675567249d0c398930f6315cc983ce66d
Binary files /dev/null and b/data/__pycache__/__init__.cpython-38.pyc differ
diff --git a/data/__pycache__/__init__.cpython-39.pyc b/data/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f76d1ba6dee423dbc68be6dec6d827c01de0f94c
Binary files /dev/null and b/data/__pycache__/__init__.cpython-39.pyc differ
diff --git a/data/__pycache__/audio_utils.cpython-37.pyc b/data/__pycache__/audio_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3dbf691206ac24f7d367c1962a29ae6ffc9b0f56
Binary files /dev/null and b/data/__pycache__/audio_utils.cpython-37.pyc differ
diff --git a/data/__pycache__/audio_utils.cpython-39.pyc b/data/__pycache__/audio_utils.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..401ef7e024e2f6f5c2e194f3dcb75faf6b2875a4
Binary files /dev/null and b/data/__pycache__/audio_utils.cpython-39.pyc differ
diff --git a/data/__pycache__/data_utils.cpython-37.pyc b/data/__pycache__/data_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cddc4dcaceccf3a91fe304c59bb6a06ea258f565
Binary files /dev/null and b/data/__pycache__/data_utils.cpython-37.pyc differ
diff --git a/data/__pycache__/data_utils.cpython-38.pyc b/data/__pycache__/data_utils.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8d427680e033242eb922026eb6681d1a317587f6
Binary files /dev/null and b/data/__pycache__/data_utils.cpython-38.pyc differ
diff --git a/data/__pycache__/data_utils.cpython-39.pyc b/data/__pycache__/data_utils.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..27cc8e0992f8ada898938d36a3b54d9b0f3225bf
Binary files /dev/null and b/data/__pycache__/data_utils.cpython-39.pyc differ
diff --git a/data/__pycache__/file_dataset.cpython-37.pyc b/data/__pycache__/file_dataset.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e2111eef5c2f1e64e2bab1f45a4b6073c4000457
Binary files /dev/null and b/data/__pycache__/file_dataset.cpython-37.pyc differ
diff --git a/data/__pycache__/file_dataset.cpython-38.pyc b/data/__pycache__/file_dataset.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0035548105d63fa449b2c59c9c898de5b1099a27
Binary files /dev/null and b/data/__pycache__/file_dataset.cpython-38.pyc differ
diff --git a/data/__pycache__/file_dataset.cpython-39.pyc b/data/__pycache__/file_dataset.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8140dc03925eb1813ab09eb5c6ed97206fae291c
Binary files /dev/null and b/data/__pycache__/file_dataset.cpython-39.pyc differ
diff --git a/data/__pycache__/ofa_dataset.cpython-37.pyc b/data/__pycache__/ofa_dataset.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5868256a7de3a92d785537c760ac000830a1e2ca
Binary files /dev/null and b/data/__pycache__/ofa_dataset.cpython-37.pyc differ
diff --git a/data/__pycache__/ofa_dataset.cpython-38.pyc b/data/__pycache__/ofa_dataset.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..381603dd3e05b962e2e188ba09bf2f6f8102fbec
Binary files /dev/null and b/data/__pycache__/ofa_dataset.cpython-38.pyc differ
diff --git a/data/__pycache__/ofa_dataset.cpython-39.pyc b/data/__pycache__/ofa_dataset.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6b42ef36a258eadaa5051b4856e1588eff512643
Binary files /dev/null and b/data/__pycache__/ofa_dataset.cpython-39.pyc differ
diff --git a/data/__pycache__/video_utils.cpython-37.pyc b/data/__pycache__/video_utils.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dd56360f979d041f4aa8a403873cb2d0e1011837
Binary files /dev/null and b/data/__pycache__/video_utils.cpython-37.pyc differ
diff --git a/data/__pycache__/video_utils.cpython-39.pyc b/data/__pycache__/video_utils.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..548972d07354df5133623c5331e501244f7a0a4a
Binary files /dev/null and b/data/__pycache__/video_utils.cpython-39.pyc differ
diff --git a/data/audio_utils.py b/data/audio_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..841513b517616922ce3a55eef1fd099b306d3f26
--- /dev/null
+++ b/data/audio_utils.py
@@ -0,0 +1,199 @@
+# https://github.com/LAION-AI/CLAP/blob/df65ca0f6c3062dc554132cb40e74f4915084b21/src/training/data.py#L469
+
+from functools import partial
+import soundfile as sf
+import io
+import numpy as np
+import torch
+
+import torchaudio
+import torchvision
+
+import torch.nn.functional as F
+
+
+AUDIO_CFG = {
+ "sample_rate": 48000,
+ "audio_length": 1024,
+ "clip_samples": 480000,
+ "mel_bins": 64,
+ "window_size": 1024,
+ "hop_size": 480,
+ "fmin": 50,
+ "fmax": 14000,
+ "class_num": 527,
+ }
+
+class dotdict(dict):
+ """dot.notation access to dictionary attributes"""
+ __getattr__ = dict.get
+ __setattr__ = dict.__setitem__
+ __delattr__ = dict.__delitem__
+
+class Map(dict):
+ """
+ Example:
+ m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
+ """
+ def __init__(self, *args, **kwargs):
+ super(Map, self).__init__(*args, **kwargs)
+ for arg in args:
+ if isinstance(arg, dict):
+ for k, v in arg.iteritems():
+ self[k] = v
+
+ if kwargs:
+ for k, v in kwargs.iteritems():
+ self[k] = v
+
+ def __getattr__(self, attr):
+ return self.get(attr)
+
+ def __setattr__(self, key, value):
+ self.__setitem__(key, value)
+
+ def __setitem__(self, key, value):
+ super(Map, self).__setitem__(key, value)
+ self.__dict__.update({key: value})
+
+ def __delattr__(self, item):
+ self.__delitem__(item)
+
+ def __delitem__(self, key):
+ super(Map, self).__delitem__(key)
+ del self.__dict__[key]
+
+
+def int16_to_float32(x):
+ return (x / 32767.0).astype(np.float32)
+
+
+def float32_to_int16(x):
+ x = np.clip(x, a_min=-1., a_max=1.)
+ return (x * 32767.).astype(np.int16)
+
+
+def get_mel(audio_data,audio_cfg):
+ # mel shape: (n_mels, T)
+ mel = torchaudio.transforms.MelSpectrogram(
+ sample_rate=audio_cfg['sample_rate'],
+ n_fft=audio_cfg['window_size'],
+ win_length=audio_cfg['window_size'],
+ hop_length=audio_cfg['hop_size'],
+ center=True,
+ pad_mode="reflect",
+ power=2.0,
+ norm=None,
+ onesided=True,
+ n_mels=audio_cfg['mel_bins'],
+ f_min=audio_cfg['fmin'],
+ f_max=audio_cfg['fmax']
+ )(audio_data)
+
+ # we use log mel spectrogram as input
+ mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel)
+ return mel.T # (T, n_mels)
+
+
+def get_audio_features(sample, audio_data, max_len, data_truncating, data_filling, audio_cfg):
+ """
+ Calculate and add audio features to sample.
+ Sample: a dict containing all the data of current sample.
+ audio_data: a tensor of shape (T) containing audio data.
+ max_len: the maximum length of audio data.
+ data_truncating: the method of truncating data.
+ data_filling: the method of filling data.
+ audio_cfg: a dict containing audio configuration. Comes from model_cfg['audio_cfg'].
+ """
+ with torch.no_grad():
+ if len(audio_data) > max_len:
+ if data_truncating == "rand_trunc":
+ longer = torch.tensor([True])
+ elif data_truncating == "fusion":
+ # fusion
+ mel = get_mel(audio_data, audio_cfg)
+ # split to three parts
+ chunk_frames = max_len // audio_cfg['hop_size']+1 # the +1 related to how the spectrogram is computed
+ total_frames = mel.shape[0]
+ if chunk_frames == total_frames:
+ # there is a corner case where the audio length is
+ # larger than max_len but smaller than max_len+hop_size.
+ # In this case, we just use the whole audio.
+ mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
+ sample["mel_fusion"] = mel_fusion
+ longer = torch.tensor([False])
+ else:
+ ranges = np.array_split(list(range(0, total_frames-chunk_frames+1)), 3)
+ # print('total_frames-chunk_frames:', total_frames-chunk_frames,
+ # 'len(audio_data):', len(audio_data),
+ # 'chunk_frames:', chunk_frames,
+ # 'total_frames:', total_frames)
+ if len(ranges[1]) == 0:
+ # if the audio is too short, we just use the first chunk
+ ranges[1] = [0]
+ if len(ranges[2]) == 0:
+ # if the audio is too short, we just use the first chunk
+ ranges[2] = [0]
+ # randomly choose index for each part
+ idx_front = np.random.choice(ranges[0])
+ idx_middle = np.random.choice(ranges[1])
+ idx_back = np.random.choice(ranges[2])
+ # select mel
+ mel_chunk_front = mel[idx_front:idx_front+chunk_frames, :]
+ mel_chunk_middle = mel[idx_middle:idx_middle+chunk_frames, :]
+ mel_chunk_back = mel[idx_back:idx_back+chunk_frames, :]
+
+ # shrink the mel
+ mel_shrink = torchvision.transforms.Resize(size=[chunk_frames, 64])(mel[None])[0]
+ # logging.info(f"mel_shrink.shape: {mel_shrink.shape}")
+
+ # stack
+ mel_fusion = torch.stack([mel_chunk_front, mel_chunk_middle, mel_chunk_back, mel_shrink], dim=0)
+ sample["mel_fusion"] = mel_fusion
+ longer = torch.tensor([True])
+ else:
+ raise NotImplementedError(
+ f"data_truncating {data_truncating} not implemented"
+ )
+ # random crop to max_len (for compatibility)
+ overflow = len(audio_data) - max_len
+ idx = np.random.randint(0, overflow + 1)
+ audio_data = audio_data[idx: idx + max_len]
+
+ else: # padding if too short
+ if len(audio_data) < max_len: # do nothing if equal
+ if data_filling == "repeatpad":
+ n_repeat = int(max_len/len(audio_data))
+ audio_data = audio_data.repeat(n_repeat)
+ # audio_data = audio_data.unsqueeze(0).unsqueeze(0).unsqueeze(0)
+ # audio_data = F.interpolate(audio_data,size=max_len,mode="bicubic")[0,0,0]
+ audio_data = F.pad(
+ audio_data,
+ (0, max_len - len(audio_data)),
+ mode="constant",
+ value=0,
+ )
+ elif data_filling == "pad":
+ audio_data = F.pad(
+ audio_data,
+ (0, max_len - len(audio_data)),
+ mode="constant",
+ value=0,
+ )
+ elif data_filling == "repeat":
+ n_repeat = int(max_len/len(audio_data))
+ audio_data = audio_data.repeat(n_repeat+1)[:max_len]
+ else:
+ raise NotImplementedError(
+ f"data_filling {data_filling} not implemented"
+ )
+ if data_truncating == 'fusion':
+ mel = get_mel(audio_data, audio_cfg)
+ mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
+ sample["mel_fusion"] = mel_fusion
+ longer = torch.tensor([False])
+
+ sample["longer"] = longer
+ sample["waveform"] = audio_data
+
+ return sample
\ No newline at end of file
diff --git a/data/data_utils.py b/data/data_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..d45beb1aca2e55b1ca9b2c01ce1a869ad9a2121d
--- /dev/null
+++ b/data/data_utils.py
@@ -0,0 +1,601 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+try:
+ from collections.abc import Iterable
+except ImportError:
+ from collections import Iterable
+import contextlib
+import itertools
+import logging
+import re
+import warnings
+from typing import Optional, Tuple
+
+import numpy as np
+import torch
+
+from fairseq.file_io import PathManager
+from fairseq import utils
+import os
+
+logger = logging.getLogger(__name__)
+
+
+def infer_language_pair(path):
+ """Infer language pair from filename: .-.(...).idx"""
+ src, dst = None, None
+ for filename in PathManager.ls(path):
+ parts = filename.split(".")
+ if len(parts) >= 3 and len(parts[1].split("-")) == 2:
+ return parts[1].split("-")
+ return src, dst
+
+
+def collate_tokens(
+ values,
+ pad_idx,
+ eos_idx=None,
+ left_pad=False,
+ move_eos_to_beginning=False,
+ pad_to_length=None,
+ pad_to_multiple=1,
+ pad_to_bsz=None,
+):
+ """Convert a list of 1d tensors into a padded 2d tensor."""
+ size = max(v.size(0) for v in values)
+ size = size if pad_to_length is None else max(size, pad_to_length)
+ if pad_to_multiple != 1 and size % pad_to_multiple != 0:
+ size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple)
+
+ def copy_tensor(src, dst):
+ assert dst.numel() == src.numel()
+ if move_eos_to_beginning:
+ if eos_idx is None:
+ # if no eos_idx is specified, then use the last token in src
+ dst[0] = src[-1]
+ else:
+ dst[0] = eos_idx
+ dst[1:] = src[:-1]
+ else:
+ dst.copy_(src)
+
+ if values[0].dim() == 1:
+ res = values[0].new(len(values), size).fill_(pad_idx)
+ elif values[0].dim() == 2:
+ assert move_eos_to_beginning is False
+ res = values[0].new(len(values), size, values[0].size(1)).fill_(pad_idx)
+ else:
+ raise NotImplementedError
+
+ for i, v in enumerate(values):
+ copy_tensor(v, res[i][size - len(v) :] if left_pad else res[i][: len(v)])
+ return res
+
+
+def load_indexed_dataset(
+ path, dictionary=None, dataset_impl=None, combine=False, default="cached"
+):
+ """A helper function for loading indexed datasets.
+
+ Args:
+ path (str): path to indexed dataset (e.g., 'data-bin/train')
+ dictionary (~fairseq.data.Dictionary): data dictionary
+ dataset_impl (str, optional): which dataset implementation to use. If
+ not provided, it will be inferred automatically. For legacy indexed
+ data we use the 'cached' implementation by default.
+ combine (bool, optional): automatically load and combine multiple
+ datasets. For example, if *path* is 'data-bin/train', then we will
+ combine 'data-bin/train', 'data-bin/train1', ... and return a
+ single ConcatDataset instance.
+ """
+ import fairseq.data.indexed_dataset as indexed_dataset
+ from fairseq.data.concat_dataset import ConcatDataset
+
+ datasets = []
+ for k in itertools.count():
+ path_k = path + (str(k) if k > 0 else "")
+ try:
+ path_k = indexed_dataset.get_indexed_dataset_to_local(path_k)
+ except Exception as e:
+ if "StorageException: [404] Path not found" in str(e):
+ logger.warning(f"path_k: {e} not found")
+ else:
+ raise e
+
+ dataset_impl_k = dataset_impl
+ if dataset_impl_k is None:
+ dataset_impl_k = indexed_dataset.infer_dataset_impl(path_k)
+ dataset = indexed_dataset.make_dataset(
+ path_k,
+ impl=dataset_impl_k or default,
+ fix_lua_indexing=True,
+ dictionary=dictionary,
+ )
+ if dataset is None:
+ break
+ logger.info("loaded {:,} examples from: {}".format(len(dataset), path_k))
+ datasets.append(dataset)
+ if not combine:
+ break
+ if len(datasets) == 0:
+ return None
+ elif len(datasets) == 1:
+ return datasets[0]
+ else:
+ return ConcatDataset(datasets)
+
+
+@contextlib.contextmanager
+def numpy_seed(seed, *addl_seeds):
+ """Context manager which seeds the NumPy PRNG with the specified seed and
+ restores the state afterward"""
+ if seed is None:
+ yield
+ return
+ if len(addl_seeds) > 0:
+ seed = int(hash((seed, *addl_seeds)) % 1e6)
+ state = np.random.get_state()
+ np.random.seed(seed)
+ try:
+ yield
+ finally:
+ np.random.set_state(state)
+
+
+def collect_filtered(function, iterable, filtered):
+ """
+ Similar to :func:`filter` but collects filtered elements in ``filtered``.
+
+ Args:
+ function (callable): function that returns ``False`` for elements that
+ should be filtered
+ iterable (iterable): iterable to filter
+ filtered (list): list to store filtered elements
+ """
+ for el in iterable:
+ if function(el):
+ yield el
+ else:
+ filtered.append(el)
+
+
+def _filter_by_size_dynamic(indices, size_fn, max_positions, raise_exception=False):
+ def compare_leq(a, b):
+ return a <= b if not isinstance(a, tuple) else max(a) <= b
+
+ def check_size(idx):
+ if isinstance(max_positions, float) or isinstance(max_positions, int):
+ return size_fn(idx) <= max_positions
+ elif isinstance(max_positions, dict):
+ idx_size = size_fn(idx)
+ assert isinstance(idx_size, dict)
+ intersect_keys = set(max_positions.keys()) & set(idx_size.keys())
+ return all(
+ all(
+ a is None or b is None or a <= b
+ for a, b in zip(idx_size[key], max_positions[key])
+ )
+ for key in intersect_keys
+ )
+ else:
+ # For MultiCorpusSampledDataset, will generalize it later
+ if not isinstance(size_fn(idx), Iterable):
+ return all(size_fn(idx) <= b for b in max_positions)
+ return all(
+ a is None or b is None or a <= b
+ for a, b in zip(size_fn(idx), max_positions)
+ )
+
+ ignored = []
+ itr = collect_filtered(check_size, indices, ignored)
+ indices = np.fromiter(itr, dtype=np.int64, count=-1)
+ return indices, ignored
+
+
+def filter_by_size(indices, dataset, max_positions, raise_exception=False):
+ """
+ [deprecated] Filter indices based on their size.
+ Use `FairseqDataset::filter_indices_by_size` instead.
+
+ Args:
+ indices (List[int]): ordered list of dataset indices
+ dataset (FairseqDataset): fairseq dataset instance
+ max_positions (tuple): filter elements larger than this size.
+ Comparisons are done component-wise.
+ raise_exception (bool, optional): if ``True``, raise an exception if
+ any elements are filtered (default: False).
+ """
+ warnings.warn(
+ "data_utils.filter_by_size is deprecated. "
+ "Use `FairseqDataset::filter_indices_by_size` instead.",
+ stacklevel=2,
+ )
+ if isinstance(max_positions, float) or isinstance(max_positions, int):
+ if hasattr(dataset, "sizes") and isinstance(dataset.sizes, np.ndarray):
+ ignored = indices[dataset.sizes[indices] > max_positions].tolist()
+ indices = indices[dataset.sizes[indices] <= max_positions]
+ elif (
+ hasattr(dataset, "sizes")
+ and isinstance(dataset.sizes, list)
+ and len(dataset.sizes) == 1
+ ):
+ ignored = indices[dataset.sizes[0][indices] > max_positions].tolist()
+ indices = indices[dataset.sizes[0][indices] <= max_positions]
+ else:
+ indices, ignored = _filter_by_size_dynamic(
+ indices, dataset.size, max_positions
+ )
+ else:
+ indices, ignored = _filter_by_size_dynamic(indices, dataset.size, max_positions)
+
+ if len(ignored) > 0 and raise_exception:
+ raise Exception(
+ (
+ "Size of sample #{} is invalid (={}) since max_positions={}, "
+ "skip this example with --skip-invalid-size-inputs-valid-test"
+ ).format(ignored[0], dataset.size(ignored[0]), max_positions)
+ )
+ if len(ignored) > 0:
+ logger.warning(
+ (
+ "{} samples have invalid sizes and will be skipped, "
+ "max_positions={}, first few sample ids={}"
+ ).format(len(ignored), max_positions, ignored[:10])
+ )
+ return indices
+
+
+def filter_paired_dataset_indices_by_size(src_sizes, tgt_sizes, indices, max_sizes):
+ """Filter a list of sample indices. Remove those that are longer
+ than specified in max_sizes.
+
+ Args:
+ indices (np.array): original array of sample indices
+ max_sizes (int or list[int] or tuple[int]): max sample size,
+ can be defined separately for src and tgt (then list or tuple)
+
+ Returns:
+ np.array: filtered sample array
+ list: list of removed indices
+ """
+ if max_sizes is None:
+ return indices, []
+ if type(max_sizes) in (int, float):
+ max_src_size, max_tgt_size = max_sizes, max_sizes
+ else:
+ max_src_size, max_tgt_size = max_sizes
+ if tgt_sizes is None:
+ ignored = indices[src_sizes[indices] > max_src_size]
+ else:
+ ignored = indices[
+ (src_sizes[indices] > max_src_size) | (tgt_sizes[indices] > max_tgt_size)
+ ]
+ if len(ignored) > 0:
+ if tgt_sizes is None:
+ indices = indices[src_sizes[indices] <= max_src_size]
+ else:
+ indices = indices[
+ (src_sizes[indices] <= max_src_size)
+ & (tgt_sizes[indices] <= max_tgt_size)
+ ]
+ return indices, ignored.tolist()
+
+
+def batch_by_size(
+ indices,
+ num_tokens_fn,
+ num_tokens_vec=None,
+ max_tokens=None,
+ max_sentences=None,
+ required_batch_size_multiple=1,
+ fixed_shapes=None,
+):
+ """
+ Yield mini-batches of indices bucketed by size. Batches may contain
+ sequences of different lengths.
+
+ Args:
+ indices (List[int]): ordered list of dataset indices
+ num_tokens_fn (callable): function that returns the number of tokens at
+ a given index
+ num_tokens_vec (List[int], optional): precomputed vector of the number
+ of tokens for each index in indices (to enable faster batch generation)
+ max_tokens (int, optional): max number of tokens in each batch
+ (default: None).
+ max_sentences (int, optional): max number of sentences in each
+ batch (default: None).
+ required_batch_size_multiple (int, optional): require batch size to
+ be less than N or a multiple of N (default: 1).
+ fixed_shapes (List[Tuple[int, int]], optional): if given, batches will
+ only be created with the given shapes. *max_sentences* and
+ *required_batch_size_multiple* will be ignored (default: None).
+ """
+ try:
+ from fairseq.data.data_utils_fast import (
+ batch_by_size_fn,
+ batch_by_size_vec,
+ batch_fixed_shapes_fast,
+ )
+ except ImportError:
+ raise ImportError(
+ "Please build Cython components with: "
+ "`python setup.py build_ext --inplace`"
+ )
+ except ValueError:
+ raise ValueError(
+ "Please build (or rebuild) Cython components with `python setup.py build_ext --inplace`."
+ )
+
+ # added int() to avoid TypeError: an integer is required
+ max_tokens = (
+ int(max_tokens) if max_tokens is not None else -1
+ )
+ max_sentences = max_sentences if max_sentences is not None else -1
+ bsz_mult = required_batch_size_multiple
+
+ if not isinstance(indices, np.ndarray):
+ indices = np.fromiter(indices, dtype=np.int64, count=-1)
+
+ if num_tokens_vec is not None and not isinstance(num_tokens_vec, np.ndarray):
+ num_tokens_vec = np.fromiter(num_tokens_vec, dtype=np.int64, count=-1)
+
+ if fixed_shapes is None:
+ if num_tokens_vec is None:
+ return batch_by_size_fn(
+ indices,
+ num_tokens_fn,
+ max_tokens,
+ max_sentences,
+ bsz_mult,
+ )
+ else:
+ return batch_by_size_vec(
+ indices,
+ num_tokens_vec,
+ max_tokens,
+ max_sentences,
+ bsz_mult,
+ )
+
+ else:
+ fixed_shapes = np.array(fixed_shapes, dtype=np.int64)
+ sort_order = np.lexsort(
+ [
+ fixed_shapes[:, 1].argsort(), # length
+ fixed_shapes[:, 0].argsort(), # bsz
+ ]
+ )
+ fixed_shapes_sorted = fixed_shapes[sort_order]
+ return batch_fixed_shapes_fast(indices, num_tokens_fn, fixed_shapes_sorted)
+
+
+def post_process(sentence: str, symbol: str):
+ if symbol == "sentencepiece":
+ sentence = sentence.replace(" ", "").replace("\u2581", " ").strip()
+ elif symbol == "wordpiece":
+ sentence = sentence.replace(" ", "").replace("_", " ").strip()
+ elif symbol == "letter":
+ sentence = sentence.replace(" ", "").replace("|", " ").strip()
+ elif symbol == "silence":
+ import re
+ sentence = sentence.replace("", "")
+ sentence = re.sub(' +', ' ', sentence).strip()
+ elif symbol == "_EOW":
+ sentence = sentence.replace(" ", "").replace("_EOW", " ").strip()
+ elif symbol in {"subword_nmt", "@@ ", "@@"}:
+ if symbol == "subword_nmt":
+ symbol = "@@ "
+ sentence = (sentence + " ").replace(symbol, "").rstrip()
+ elif symbol == "none":
+ pass
+ elif symbol is not None:
+ raise NotImplementedError(f"Unknown post_process option: {symbol}")
+ return sentence
+
+
+def compute_mask_indices(
+ shape: Tuple[int, int],
+ padding_mask: Optional[torch.Tensor],
+ mask_prob: float,
+ mask_length: int,
+ mask_type: str = "static",
+ mask_other: float = 0.0,
+ min_masks: int = 0,
+ no_overlap: bool = False,
+ min_space: int = 0,
+) -> np.ndarray:
+ """
+ Computes random mask spans for a given shape
+
+ Args:
+ shape: the the shape for which to compute masks.
+ should be of size 2 where first element is batch size and 2nd is timesteps
+ padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
+ mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
+ number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
+ however due to overlaps, the actual number will be smaller (unless no_overlap is True)
+ mask_type: how to compute mask lengths
+ static = fixed size
+ uniform = sample from uniform distribution [mask_other, mask_length*2]
+ normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
+ poisson = sample from possion distribution with lambda = mask length
+ min_masks: minimum number of masked spans
+ no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
+ min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
+ """
+
+ bsz, all_sz = shape
+ mask = np.full((bsz, all_sz), False)
+
+ all_num_mask = int(
+ # add a random number for probabilistic rounding
+ mask_prob * all_sz / float(mask_length)
+ + np.random.rand()
+ )
+
+ all_num_mask = max(min_masks, all_num_mask)
+
+ mask_idcs = []
+ for i in range(bsz):
+ if padding_mask is not None:
+ sz = all_sz - padding_mask[i].long().sum().item()
+ num_mask = int(
+ # add a random number for probabilistic rounding
+ mask_prob * sz / float(mask_length)
+ + np.random.rand()
+ )
+ num_mask = max(min_masks, num_mask)
+ else:
+ sz = all_sz
+ num_mask = all_num_mask
+
+ if mask_type == "static":
+ lengths = np.full(num_mask, mask_length)
+ elif mask_type == "uniform":
+ lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
+ elif mask_type == "normal":
+ lengths = np.random.normal(mask_length, mask_other, size=num_mask)
+ lengths = [max(1, int(round(x))) for x in lengths]
+ elif mask_type == "poisson":
+ lengths = np.random.poisson(mask_length, size=num_mask)
+ lengths = [int(round(x)) for x in lengths]
+ else:
+ raise Exception("unknown mask selection " + mask_type)
+
+ if sum(lengths) == 0:
+ lengths[0] = min(mask_length, sz - 1)
+
+ if no_overlap:
+ mask_idc = []
+
+ def arrange(s, e, length, keep_length):
+ span_start = np.random.randint(s, e - length)
+ mask_idc.extend(span_start + i for i in range(length))
+
+ new_parts = []
+ if span_start - s - min_space >= keep_length:
+ new_parts.append((s, span_start - min_space + 1))
+ if e - span_start - keep_length - min_space > keep_length:
+ new_parts.append((span_start + length + min_space, e))
+ return new_parts
+
+ parts = [(0, sz)]
+ min_length = min(lengths)
+ for length in sorted(lengths, reverse=True):
+ lens = np.fromiter(
+ (e - s if e - s >= length + min_space else 0 for s, e in parts),
+ np.int,
+ )
+ l_sum = np.sum(lens)
+ if l_sum == 0:
+ break
+ probs = lens / np.sum(lens)
+ c = np.random.choice(len(parts), p=probs)
+ s, e = parts.pop(c)
+ parts.extend(arrange(s, e, length, min_length))
+ mask_idc = np.asarray(mask_idc)
+ else:
+ min_len = min(lengths)
+ if sz - min_len <= num_mask:
+ min_len = sz - num_mask - 1
+
+ mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
+
+ mask_idc = np.asarray(
+ [
+ mask_idc[j] + offset
+ for j in range(len(mask_idc))
+ for offset in range(lengths[j])
+ ]
+ )
+
+ mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
+
+ min_len = min([len(m) for m in mask_idcs])
+ for i, mask_idc in enumerate(mask_idcs):
+ if len(mask_idc) > min_len:
+ mask_idc = np.random.choice(mask_idc, min_len, replace=False)
+ mask[i, mask_idc] = True
+
+ return mask
+
+
+def get_mem_usage():
+ try:
+ import psutil
+
+ mb = 1024 * 1024
+ return f"used={psutil.virtual_memory().used / mb}Mb; avail={psutil.virtual_memory().available / mb}Mb"
+ except ImportError:
+ return "N/A"
+
+
+# lens: torch.LongTensor
+# returns: torch.BoolTensor
+def lengths_to_padding_mask(lens):
+ bsz, max_lens = lens.size(0), torch.max(lens).item()
+ mask = torch.arange(max_lens).to(lens.device).view(1, max_lens)
+ mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens)
+ return mask
+
+
+# lens: torch.LongTensor
+# returns: torch.BoolTensor
+def lengths_to_mask(lens):
+ return ~lengths_to_padding_mask(lens)
+
+
+def get_buckets(sizes, num_buckets):
+ buckets = np.unique(
+ np.percentile(
+ sizes,
+ np.linspace(0, 100, num_buckets + 1),
+ interpolation='lower',
+ )[1:]
+ )
+ return buckets
+
+
+def get_bucketed_sizes(orig_sizes, buckets):
+ sizes = np.copy(orig_sizes)
+ assert np.min(sizes) >= 0
+ start_val = -1
+ for end_val in buckets:
+ mask = (sizes > start_val) & (sizes <= end_val)
+ sizes[mask] = end_val
+ start_val = end_val
+ return sizes
+
+
+
+def _find_extra_valid_paths(dataset_path: str) -> set:
+ paths = utils.split_paths(dataset_path)
+ all_valid_paths = set()
+ for sub_dir in paths:
+ contents = PathManager.ls(sub_dir)
+ valid_paths = [c for c in contents if re.match("valid*[0-9].*", c) is not None]
+ all_valid_paths |= {os.path.basename(p) for p in valid_paths}
+ # Remove .bin, .idx etc
+ roots = {os.path.splitext(p)[0] for p in all_valid_paths}
+ return roots
+
+
+def raise_if_valid_subsets_unintentionally_ignored(train_cfg) -> None:
+ """Raises if there are paths matching 'valid*[0-9].*' which are not combined or ignored."""
+ if (
+ train_cfg.dataset.ignore_unused_valid_subsets
+ or train_cfg.dataset.combine_valid_subsets
+ or train_cfg.dataset.disable_validation
+ or not hasattr(train_cfg.task, "data")
+ ):
+ return
+ other_paths = _find_extra_valid_paths(train_cfg.task.data)
+ specified_subsets = train_cfg.dataset.valid_subset.split(",")
+ ignored_paths = [p for p in other_paths if p not in specified_subsets]
+ if ignored_paths:
+ advice = "Set --combine-val to combine them or --ignore-unused-valid-subsets to ignore them."
+ msg = f"Valid paths {ignored_paths} will be ignored. {advice}"
+ raise ValueError(msg)
diff --git a/data/file_dataset.py b/data/file_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..785e3abc951ee1c5346f6799daeab46682d2569a
--- /dev/null
+++ b/data/file_dataset.py
@@ -0,0 +1,113 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+import os
+import torch
+import pickle
+
+
+class FileDataset:
+ def __init__(self, file_path, selected_col_ids=None, dtypes=None, separator="\t", cached_index=False):
+ self.file_path = file_path
+ assert os.path.exists(self.file_path), "Error: The local datafile {} not exists!".format(self.file_path)
+
+ self.separator = separator
+ if selected_col_ids is None:
+ # default to all fields
+ self.selected_col_ids = list(
+ range(len(open(self.file_path).readline().rstrip("\n").split(self.separator))))
+ else:
+ self.selected_col_ids = [int(col_id) for col_id in selected_col_ids.split(",")]
+ if dtypes is None:
+ # default to str
+ self.dtypes = [str for col_id in self.selected_col_ids]
+ else:
+ self.dtypes = [eval(col_dtype) for col_dtype in dtypes.split(",")]
+ assert len(self.dtypes) == len(self.selected_col_ids)
+
+ self.data_cnt = 0
+ try:
+ self.slice_id = torch.distributed.get_rank()
+ self.slice_count = torch.distributed.get_world_size()
+ except Exception:
+ self.slice_id = 0
+ self.slice_count = 1
+ self.cached_index = cached_index
+ self._init_seek_index()
+ self._reader = self._get_reader()
+ print("file {} slice_id {} row count {} total row count {}".format(
+ self.file_path, self.slice_id, self.row_count, self.total_row_count)
+ )
+
+ def _init_seek_index(self):
+ if self.cached_index:
+ cache_path = "{}.index".format(self.file_path)
+ assert os.path.exists(cache_path), "cache file {} not exists!".format(cache_path)
+ self.total_row_count, self.lineid_to_offset = pickle.load(open(cache_path, "rb"))
+ print("local datafile {} slice_id {} use cached row_count and line_idx-to-offset mapping".format(
+ self.file_path, self.slice_id))
+ else:
+ # make an iteration over the file to get row_count and line_idx-to-offset mapping
+ fp = open(self.file_path, "rb")
+ print("local datafile {} slice_id {} begin to initialize row_count and line_idx-to-offset mapping".format(
+ self.file_path, self.slice_id))
+ self.total_row_count = 0
+ offset = 0
+ self.lineid_to_offset = []
+ for line in fp:
+ self.lineid_to_offset.append(offset)
+ self.total_row_count += 1
+ # offset += len(line.encode('utf-8'))
+ offset += len(line) #fp.tell() #len(line)
+ self._compute_start_pos_and_row_count()
+ print("local datafile {} slice_id {} finished initializing row_count and line_idx-to-offset mapping".format(
+ self.file_path, self.slice_id))
+
+ def _compute_start_pos_and_row_count(self):
+ self.row_count = self.total_row_count // self.slice_count
+ if self.slice_id < self.total_row_count - self.row_count * self.slice_count:
+ self.row_count += 1
+ self.start_pos = self.row_count * self.slice_id
+ else:
+ self.start_pos = self.row_count * self.slice_id + (self.total_row_count - self.row_count * self.slice_count)
+
+ def _get_reader(self):
+ fp = open(self.file_path, "r")
+ fp.seek(self.lineid_to_offset[self.start_pos])
+ return fp
+
+ def _seek(self, offset=0):
+ try:
+ print("slice_id {} seek offset {}".format(self.slice_id, self.start_pos + offset))
+ self._reader.seek(self.lineid_to_offset[self.start_pos + offset])
+ self.data_cnt = offset
+ except Exception:
+ print("slice_id {} seek offset {}".format(self.slice_id, offset))
+ self._reader.seek(self.lineid_to_offset[offset])
+ self.data_cnt = offset
+
+ def __del__(self):
+ self._reader.close()
+
+ def __len__(self):
+ return self.row_count
+
+ def get_total_row_count(self):
+ return self.total_row_count
+
+ def __getitem__(self, index):
+ if self.data_cnt == self.row_count:
+ print("reach the end of datafile, start a new reader")
+ self.data_cnt = 0
+ self._reader = self._get_reader()
+ column_l = self._reader.readline().rstrip("\n").split(self.separator)
+
+ self.data_cnt += 1
+ # try:
+ column_l = [dtype(column_l[col_id]) for col_id, dtype in zip(self.selected_col_ids, self.dtypes)]
+ # except:
+ # print(column_l, self.data_cnt, self.start_pos, self.slice_id)
+ # print(self._reader.readline().rstrip("\n").split(self.separator))
+ return column_l
diff --git a/data/mm_data/__init__.py b/data/mm_data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/data/mm_data/__pycache__/__init__.cpython-37.pyc b/data/mm_data/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9cc96a919a52349508b0418b24a37ec845fa2e4e
Binary files /dev/null and b/data/mm_data/__pycache__/__init__.cpython-37.pyc differ
diff --git a/data/mm_data/__pycache__/__init__.cpython-38.pyc b/data/mm_data/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e3f80c5c42fc1db7fbe333cab6ea538ed2f1f04d
Binary files /dev/null and b/data/mm_data/__pycache__/__init__.cpython-38.pyc differ
diff --git a/data/mm_data/__pycache__/__init__.cpython-39.pyc b/data/mm_data/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ea34f6f80defd44f6fdb624dfb6fdd6386c588d1
Binary files /dev/null and b/data/mm_data/__pycache__/__init__.cpython-39.pyc differ
diff --git a/data/mm_data/__pycache__/audio_caption_dataset.cpython-37.pyc b/data/mm_data/__pycache__/audio_caption_dataset.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..408a8101e91bb4f79b10c86fd32adb2d54d5889b
Binary files /dev/null and b/data/mm_data/__pycache__/audio_caption_dataset.cpython-37.pyc differ
diff --git a/data/mm_data/__pycache__/audio_caption_dataset.cpython-39.pyc b/data/mm_data/__pycache__/audio_caption_dataset.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..61ebf49f606f037ae7975ed5a818449f7bf2010e
Binary files /dev/null and b/data/mm_data/__pycache__/audio_caption_dataset.cpython-39.pyc differ
diff --git a/data/mm_data/__pycache__/caption_dataset.cpython-37.pyc b/data/mm_data/__pycache__/caption_dataset.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f67c6aac8feff7c88cd5b63918eda0f19d93a307
Binary files /dev/null and b/data/mm_data/__pycache__/caption_dataset.cpython-37.pyc differ
diff --git a/data/mm_data/__pycache__/caption_dataset.cpython-38.pyc b/data/mm_data/__pycache__/caption_dataset.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..37124af1221e6ed911791e0bfe176bf84757ac19
Binary files /dev/null and b/data/mm_data/__pycache__/caption_dataset.cpython-38.pyc differ
diff --git a/data/mm_data/__pycache__/caption_dataset.cpython-39.pyc b/data/mm_data/__pycache__/caption_dataset.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b85aee3dd701d53b0357e55ac66950279f7f9213
Binary files /dev/null and b/data/mm_data/__pycache__/caption_dataset.cpython-39.pyc differ
diff --git a/data/mm_data/__pycache__/image_gen_dataset.cpython-37.pyc b/data/mm_data/__pycache__/image_gen_dataset.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f281d2dfd2903dddcb3caf4531f2ce1a4cfed006
Binary files /dev/null and b/data/mm_data/__pycache__/image_gen_dataset.cpython-37.pyc differ
diff --git a/data/mm_data/__pycache__/image_gen_dataset.cpython-38.pyc b/data/mm_data/__pycache__/image_gen_dataset.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a07f3184fee42b55f7eeff2ba657a7d6225e5d5b
Binary files /dev/null and b/data/mm_data/__pycache__/image_gen_dataset.cpython-38.pyc differ
diff --git a/data/mm_data/__pycache__/image_gen_dataset.cpython-39.pyc b/data/mm_data/__pycache__/image_gen_dataset.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..618e6d912165c3b67fb5b44332a44c008a035707
Binary files /dev/null and b/data/mm_data/__pycache__/image_gen_dataset.cpython-39.pyc differ
diff --git a/data/mm_data/__pycache__/refcoco_dataset.cpython-37.pyc b/data/mm_data/__pycache__/refcoco_dataset.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c8915b158ed164820216f16023cc50744490ed9c
Binary files /dev/null and b/data/mm_data/__pycache__/refcoco_dataset.cpython-37.pyc differ
diff --git a/data/mm_data/__pycache__/refcoco_dataset.cpython-38.pyc b/data/mm_data/__pycache__/refcoco_dataset.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..171d1ef131763c53719aed13651dfd276bcdb0e8
Binary files /dev/null and b/data/mm_data/__pycache__/refcoco_dataset.cpython-38.pyc differ
diff --git a/data/mm_data/__pycache__/refcoco_dataset.cpython-39.pyc b/data/mm_data/__pycache__/refcoco_dataset.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d0a74358520145fbe043e90d2f41ae7f9f24f934
Binary files /dev/null and b/data/mm_data/__pycache__/refcoco_dataset.cpython-39.pyc differ
diff --git a/data/mm_data/__pycache__/snli_ve_dataset.cpython-37.pyc b/data/mm_data/__pycache__/snli_ve_dataset.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9e86e9c93a00494d3f7e221853393a0eb15cb63f
Binary files /dev/null and b/data/mm_data/__pycache__/snli_ve_dataset.cpython-37.pyc differ
diff --git a/data/mm_data/__pycache__/snli_ve_dataset.cpython-38.pyc b/data/mm_data/__pycache__/snli_ve_dataset.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6473259b100bd2735f47b8e48ff3b1abf07d1cf1
Binary files /dev/null and b/data/mm_data/__pycache__/snli_ve_dataset.cpython-38.pyc differ
diff --git a/data/mm_data/__pycache__/snli_ve_dataset.cpython-39.pyc b/data/mm_data/__pycache__/snli_ve_dataset.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2c5934a7d67c4168480659c176f87396cb4a69e7
Binary files /dev/null and b/data/mm_data/__pycache__/snli_ve_dataset.cpython-39.pyc differ
diff --git a/data/mm_data/__pycache__/video_caption_dataset.cpython-37.pyc b/data/mm_data/__pycache__/video_caption_dataset.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..455ae64ce50e75cf5696a96281b98d62f7c1196c
Binary files /dev/null and b/data/mm_data/__pycache__/video_caption_dataset.cpython-37.pyc differ
diff --git a/data/mm_data/__pycache__/video_caption_dataset.cpython-39.pyc b/data/mm_data/__pycache__/video_caption_dataset.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a13a8b39a2e3c61edf3c75da828cfcee06a48150
Binary files /dev/null and b/data/mm_data/__pycache__/video_caption_dataset.cpython-39.pyc differ
diff --git a/data/mm_data/__pycache__/video_vqa_gen_dataset.cpython-37.pyc b/data/mm_data/__pycache__/video_vqa_gen_dataset.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..24def918d420e373bacf49ec981c43586dda689e
Binary files /dev/null and b/data/mm_data/__pycache__/video_vqa_gen_dataset.cpython-37.pyc differ
diff --git a/data/mm_data/__pycache__/video_vqa_gen_dataset.cpython-39.pyc b/data/mm_data/__pycache__/video_vqa_gen_dataset.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0eb079847f4856a64c354fd48fdd8b011bd80e41
Binary files /dev/null and b/data/mm_data/__pycache__/video_vqa_gen_dataset.cpython-39.pyc differ
diff --git a/data/mm_data/__pycache__/vqa_gen_dataset.cpython-37.pyc b/data/mm_data/__pycache__/vqa_gen_dataset.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b6b507f7ac6f75a0905793423be808500752e42c
Binary files /dev/null and b/data/mm_data/__pycache__/vqa_gen_dataset.cpython-37.pyc differ
diff --git a/data/mm_data/__pycache__/vqa_gen_dataset.cpython-38.pyc b/data/mm_data/__pycache__/vqa_gen_dataset.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7634670548700371efa3a52c4b2faf515d1dcec3
Binary files /dev/null and b/data/mm_data/__pycache__/vqa_gen_dataset.cpython-38.pyc differ
diff --git a/data/mm_data/__pycache__/vqa_gen_dataset.cpython-39.pyc b/data/mm_data/__pycache__/vqa_gen_dataset.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bcb558f22cf11c56f4ec0839cd8b95180dcf43d6
Binary files /dev/null and b/data/mm_data/__pycache__/vqa_gen_dataset.cpython-39.pyc differ
diff --git a/data/mm_data/audio_caption_dataset.py b/data/mm_data/audio_caption_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..bbb0b53180b6790b2abbe51ebed03119f1e3188c
--- /dev/null
+++ b/data/mm_data/audio_caption_dataset.py
@@ -0,0 +1,254 @@
+# Modified from OFA code.
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+from io import BytesIO
+
+import logging
+import warnings
+import string
+
+import numpy as np
+import torch
+
+from PIL import Image, ImageFile
+
+from data import data_utils
+from data.ofa_dataset import OFADataset
+
+
+import os
+import random
+
+import soundfile as sf
+
+import torchaudio
+
+
+from data.audio_utils import get_audio_features, int16_to_float32, float32_to_int16, AUDIO_CFG
+
+ImageFile.LOAD_TRUNCATED_IMAGES = True
+ImageFile.MAX_IMAGE_PIXELS = None
+Image.MAX_IMAGE_PIXELS = None
+
+logger = logging.getLogger(__name__)
+warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
+
+IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
+IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
+
+
+
+
+
+def collate(samples, pad_idx, eos_idx):
+ if len(samples) == 0:
+ return {}
+
+ def merge(key):
+ return data_utils.collate_tokens(
+ [s[key] for s in samples],
+ pad_idx,
+ eos_idx=eos_idx,
+ )
+
+ id = np.array([s["id"] for s in samples])
+ src_tokens = merge("source")
+ src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
+
+ patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
+ patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
+
+ patch_videos = torch.stack([sample['patch_video'] for sample in samples], dim=0)
+ patch_types = torch.cat([sample['patch_type'] for sample in samples])
+ patch_audios = torch.stack([sample['patch_audio'] for sample in samples], dim=0)
+
+
+
+ prev_output_tokens = None
+ target = None
+ if samples[0].get("target", None) is not None:
+ target = merge("target")
+ tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples])
+ ntokens = tgt_lengths.sum().item()
+
+ if samples[0].get("prev_output_tokens", None) is not None:
+ prev_output_tokens = merge("prev_output_tokens")
+ else:
+ ntokens = src_lengths.sum().item()
+
+ batch = {
+ "id": id,
+ "nsentences": len(samples),
+ "ntokens": ntokens,
+ "net_input": {
+ "src_tokens": src_tokens,
+ "src_lengths": src_lengths,
+ "patch_images": patch_images,
+ "patch_masks": patch_masks,
+ "prev_output_tokens": prev_output_tokens,
+ "patch_videos": patch_videos,
+ "patch_types": patch_types,
+ "patch_audios": patch_audios,
+ },
+ "target": target,
+ }
+
+ return batch
+
+
+class CaptionDataset(OFADataset):
+ def __init__(
+ self,
+ split,
+ dataset,
+ bpe,
+ src_dict,
+ tgt_dict=None,
+ max_src_length=128,
+ max_tgt_length=30,
+ patch_image_size=224,
+ imagenet_default_mean_and_std=False,
+ scst=False,
+ image_dir='/gpfsscratch/rech/dyf/ugz83ue/data',
+ audio_cfg=AUDIO_CFG,
+ max_audio_len = 480000,
+ num_frames=4,
+ sample_rate = 48000,
+ audio_sample_rate=False,
+ ast=False,
+ mode='train',
+ mel_bins=64,
+
+ ):
+ super().__init__(split, dataset, bpe, src_dict, tgt_dict)
+ self.max_src_length = max_src_length
+ self.max_tgt_length = max_tgt_length
+ self.patch_image_size = patch_image_size
+ self.scst = scst
+
+ self.image_dir = image_dir
+
+ self.sample_rate = sample_rate
+
+ self.transtab = str.maketrans({key: None for key in string.punctuation})
+
+
+ # video
+ self.num_frames = num_frames
+
+ # audio
+ self.audio_cfg = audio_cfg
+ self.max_audio_len = max_audio_len
+
+ self.audio_sample_rate = audio_sample_rate
+
+
+
+ if type(bpe).__name__ == 'GPT2BPE':
+ self.prompt = " what does the video describe?"
+ else:
+ raise NotImplemented
+
+ # for AST encoder
+ self.ast = ast
+ self.target_length = 1024 # 1024
+ self.mode = split # train
+ self.freqm_p = 24
+ self.timem_p = 96
+ self.skip_norm = False
+ self.noise = False
+ self.norm_mean = -4.2677393
+ self.norm_std = 4.5689974
+ self.freqm = torchaudio.transforms.FrequencyMasking(self.freqm_p)
+ self.timem = torchaudio.transforms.TimeMasking(self.timem_p)
+ self.mel_bins = mel_bins
+
+ def __getitem__(self, index):
+ uniq_id, image, caption = self.dataset[index]
+
+
+ # audio
+ image_path = os.path.join(self.image_dir, image)
+ data_path = image_path
+
+
+ try:
+
+ # load the waveform of the shape (T,), should resample to 48000
+ if not self.audio_sample_rate:
+ audio_data, orig_sr = sf.read(data_path) # no sample rate
+ if audio_data.ndim>1:
+ audio_data = np.mean(audio_data,axis=1)
+ audio_data = int16_to_float32(float32_to_int16(audio_data))
+ audio_data = torch.tensor(audio_data).float() # (T)
+ else:
+ audio_data, orig_sr = torchaudio.load(data_path)
+ audio_data = torchaudio.transforms.Resample(orig_sr, self.sample_rate)(audio_data[0])
+
+ sample = {}
+
+ sample = get_audio_features(
+ sample, audio_data, self.max_audio_len,
+ data_truncating='rand_trunc',
+ data_filling='repeatpad',
+ audio_cfg=self.audio_cfg
+ )
+ except Exception as e:
+ new_index = random.randint(0, len(self) - 1)
+ logger.warning(
+ f"Caught exception {e} when loading video {data_path}, "
+ f"randomly sample a new video as replacement"
+ )
+ return self.__getitem__(new_index)
+
+ waveform = sample['waveform']
+ patch_audio = waveform
+
+
+ patch_type = torch.tensor([2])
+
+ patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
+ patch_video = torch.zeros((3, self.num_frames, self.patch_image_size, self.patch_image_size))
+
+
+ patch_mask = torch.tensor([True])
+
+ if self.split == 'train' and not self.scst:
+ caption = caption.translate(self.transtab).strip()
+ caption_token_list = caption.strip().split()
+ tgt_caption = ' '.join(caption_token_list[:self.max_tgt_length])
+ else:
+ caption = ' '.join(caption.strip().split())
+ caption_list = [cap.translate(self.transtab).strip() for cap in caption.strip().split('&&')]
+ tgt_caption = '&&'.join(caption_list)
+ src_item = self.encode_text(self.prompt)
+ tgt_item = self.encode_text(" {}".format(tgt_caption))
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ target_item = torch.cat([tgt_item, self.eos_item])
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_mask": patch_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "patch_type": patch_type,
+ "patch_video": patch_video,
+ "patch_audio": patch_audio,
+ }
+ return example
+
+ def collater(self, samples, pad_to_length=None):
+ """Merge a list of samples to form a mini-batch.
+ Args:
+ samples (List[dict]): samples to collate
+ Returns:
+ dict: a mini-batch containing the data of the task
+ """
+ return collate(samples, pad_idx=self.pad, eos_idx=self.eos)
diff --git a/data/mm_data/caption_dataset.py b/data/mm_data/caption_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..cb95b6b6d766103556c1ccd0ea458edc7dfe740d
--- /dev/null
+++ b/data/mm_data/caption_dataset.py
@@ -0,0 +1,195 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+from io import BytesIO
+
+import logging
+import warnings
+import string
+
+import numpy as np
+import torch
+import base64
+from torchvision import transforms
+
+from PIL import Image, ImageFile
+
+from data import data_utils
+from data.ofa_dataset import OFADataset
+
+ImageFile.LOAD_TRUNCATED_IMAGES = True
+ImageFile.MAX_IMAGE_PIXELS = None
+Image.MAX_IMAGE_PIXELS = None
+
+logger = logging.getLogger(__name__)
+warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
+
+IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
+IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
+
+from utils.vision_helper import RandomAugment
+import utils.transforms as T
+
+import os
+
+def collate(samples, pad_idx, eos_idx):
+ if len(samples) == 0:
+ return {}
+
+ def merge(key):
+ return data_utils.collate_tokens(
+ [s[key] for s in samples],
+ pad_idx,
+ eos_idx=eos_idx,
+ )
+
+ id = np.array([s["id"] for s in samples])
+ src_tokens = merge("source")
+ src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
+
+ patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
+ patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
+
+ patch_types = torch.cat([sample['patch_type'] for sample in samples])
+
+ prev_output_tokens = None
+ target = None
+ if samples[0].get("target", None) is not None:
+ target = merge("target")
+ tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples])
+ ntokens = tgt_lengths.sum().item()
+
+ if samples[0].get("prev_output_tokens", None) is not None:
+ prev_output_tokens = merge("prev_output_tokens")
+ else:
+ ntokens = src_lengths.sum().item()
+
+ batch = {
+ "id": id,
+ "nsentences": len(samples),
+ "ntokens": ntokens,
+ "net_input": {
+ "src_tokens": src_tokens,
+ "src_lengths": src_lengths,
+ "patch_images": patch_images,
+ "patch_masks": patch_masks,
+ "prev_output_tokens": prev_output_tokens,
+ "patch_types": patch_types,
+ },
+ "target": target,
+ }
+
+
+ return batch
+
+
+class CaptionDataset(OFADataset):
+ def __init__(
+ self,
+ split,
+ dataset,
+ bpe,
+ src_dict,
+ tgt_dict=None,
+ max_src_length=128,
+ max_tgt_length=30,
+ patch_image_size=224,
+ imagenet_default_mean_and_std=False,
+ scst=False,
+ use_dataaug=False,
+ read_from_img_path=False,
+ image_dir='/gpfsscratch/rech/dyf/ugz83ue/data',
+ ):
+ super().__init__(split, dataset, bpe, src_dict, tgt_dict)
+ self.max_src_length = max_src_length
+ self.max_tgt_length = max_tgt_length
+ self.patch_image_size = patch_image_size
+ self.scst = scst
+
+ self.transtab = str.maketrans({key: None for key in string.punctuation})
+
+ self.read_from_img_path = read_from_img_path
+
+ if imagenet_default_mean_and_std:
+ mean = IMAGENET_DEFAULT_MEAN
+ std = IMAGENET_DEFAULT_STD
+ else:
+ mean = [0.5, 0.5, 0.5]
+ std = [0.5, 0.5, 0.5]
+ self.split = split
+ if self.split != 'train' or not use_dataaug:
+ self.patch_resize_transform = transforms.Compose([
+ lambda image: image.convert("RGB"),
+ transforms.Resize((patch_image_size, patch_image_size), interpolation=Image.BICUBIC),
+ transforms.ToTensor(),
+ transforms.Normalize(mean=mean, std=std),
+ ])
+ else:
+ scales = np.arange(patch_image_size, 481).tolist()
+ self.patch_resize_transform = transforms.Compose([
+ lambda image: image.convert("RGB"),
+ T.RandomResize(scales, max_size=672),
+ transforms.CenterCrop(patch_image_size),
+ RandomAugment(2, 7, isPIL=True, augs=['Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness',
+ 'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
+ transforms.ToTensor(),
+ transforms.Normalize(mean=mean, std=std),
+ ])
+
+ if type(bpe).__name__ == 'GPT2BPE':
+ self.prompt = " what does the image describe?"
+ elif type(bpe).__name__ == 'BertBPE':
+ self.prompt = "图片描述了什么内容?"
+
+ self.image_dir = image_dir
+
+ def __getitem__(self, index):
+ uniq_id, image, caption = self.dataset[index]
+
+ if self.read_from_img_path or '.jpg' in image:
+ image_path = os.path.join(self.image_dir, image)
+ image = Image.open(image_path).convert("RGB")
+ else:
+ image = Image.open(BytesIO(base64.urlsafe_b64decode(image)))
+
+ patch_image = self.patch_resize_transform(image)
+ patch_mask = torch.tensor([True])
+
+ if self.split == 'train' and not self.scst:
+ caption = caption.translate(self.transtab).strip()
+ caption_token_list = caption.strip().split()
+ tgt_caption = ' '.join(caption_token_list[:self.max_tgt_length])
+ else:
+ caption = ' '.join(caption.strip().split())
+ caption_list = [cap.translate(self.transtab).strip() for cap in caption.strip().split('&&')]
+ tgt_caption = '&&'.join(caption_list)
+ src_item = self.encode_text(self.prompt)
+ tgt_item = self.encode_text(" {}".format(tgt_caption))
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ target_item = torch.cat([tgt_item, self.eos_item])
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+
+ patch_type = torch.tensor([0])
+
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_mask": patch_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "patch_type": patch_type,
+ }
+ return example
+
+ def collater(self, samples, pad_to_length=None):
+ """Merge a list of samples to form a mini-batch.
+ Args:
+ samples (List[dict]): samples to collate
+ Returns:
+ dict: a mini-batch containing the data of the task
+ """
+ return collate(samples, pad_idx=self.pad, eos_idx=self.eos)
diff --git a/data/mm_data/image_gen_dataset.py b/data/mm_data/image_gen_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..c78b7358fe3c4a1b7b401c5718f898e9c57732ce
--- /dev/null
+++ b/data/mm_data/image_gen_dataset.py
@@ -0,0 +1,171 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+from io import BytesIO
+
+import logging
+import warnings
+import base64
+import random
+
+import numpy as np
+import torch
+
+from PIL import Image, ImageFile
+from itertools import chain
+from data.ofa_dataset import OFADataset
+from data import data_utils
+
+from PIL import Image
+from io import BytesIO
+import base64
+
+ImageFile.LOAD_TRUNCATED_IMAGES = True
+ImageFile.MAX_IMAGE_PIXELS = None
+Image.MAX_IMAGE_PIXELS = None
+
+logger = logging.getLogger(__name__)
+warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
+
+
+def collate(
+ samples,
+ pad_idx,
+ eos_idx,
+ left_pad_source=False,
+ left_pad_target=False,
+):
+ if len(samples) == 0:
+ return {}
+
+ def merge(key, left_pad, move_eos_to_beginning=False):
+ return data_utils.collate_tokens(
+ [s[key] for s in samples],
+ pad_idx,
+ eos_idx,
+ left_pad,
+ move_eos_to_beginning,
+ )
+
+ id = np.array([s["id"] for s in samples])
+ src_tokens = merge("source", left_pad=left_pad_source)
+ # sort by descending source length
+ src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
+
+ code_images = np.array([s["code_image"] for s in samples])
+ code_masks = torch.cat([sample['code_mask'] for sample in samples])
+
+ prev_output_tokens = None
+ target = None
+ if samples[0].get("target", None) is not None:
+ target = merge("target", left_pad=left_pad_target)
+ tgt_lengths = torch.LongTensor(
+ [s["target"].ne(pad_idx).long().sum() for s in samples]
+ )
+ ntokens = tgt_lengths.sum().item()
+
+ if samples[0].get("prev_output_tokens", None) is not None:
+ prev_output_tokens = merge("prev_output_tokens", left_pad=left_pad_target)
+ else:
+ ntokens = src_lengths.sum().item()
+
+ batch = {
+ "id": id,
+ "nsentences": len(samples),
+ "ntokens": ntokens,
+ "net_input": {
+ "src_tokens": src_tokens,
+ "src_lengths": src_lengths,
+ "code_masks": code_masks,
+ "prev_output_tokens": prev_output_tokens
+ },
+ "code_images": code_images,
+ "target": target
+ }
+
+ return batch
+
+
+def preprocess_vqgan(x):
+ x = 2. * x - 1.
+ return x
+
+
+class ImageGenDataset(OFADataset):
+ def __init__(
+ self,
+ split,
+ dataset,
+ bpe,
+ src_dict,
+ tgt_dict=None,
+ max_src_length=128,
+ code_dict_size=8192,
+ code_image_size=256,
+ num_bins=1000
+ ):
+ super().__init__(split, dataset, bpe, src_dict, tgt_dict)
+ self.max_src_length = max_src_length
+
+ self.code_dict_size = code_dict_size
+ self.num_codes = (code_image_size // 8) ** 2
+ self.num_bins = num_bins
+
+ slice_id = self.dataset.slice_id
+ empty_img = Image.new('RGB', (code_image_size, code_image_size))
+ empty_img.save(f'temp_{slice_id}.png')
+ img = Image.open(f'temp_{slice_id}.png')
+ img_buffer = BytesIO()
+ img.save(img_buffer, format=img.format)
+ byte_data = img_buffer.getvalue()
+ self.empty_image_base64 = base64.urlsafe_b64encode(byte_data)
+
+ def __getitem__(self, index):
+
+ data = self.dataset[index]
+ if len(data) == 2:
+ uniq_id, text = data
+ image_code = [0] * 1024
+ image = self.empty_image_base64
+ elif len(data) == 3:
+ uniq_id, text, image_code = data
+ image_code = [int(num) for num in image_code.strip().split()]
+ image = self.empty_image_base64
+ elif len(data) == 4:
+ uniq_id, image, text, image_code = data
+ image_code = [int(num) for num in image_code.strip().split()]
+ else:
+ raise NotImplementedError
+ code_mask = torch.tensor([True])
+ image_code = torch.LongTensor(image_code)
+ tgt_item = image_code + len(self.src_dict) - self.code_dict_size - self.num_bins
+ target_item = torch.cat([tgt_item, self.eos_item])
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+
+ caption_token_list = text.strip().split()
+ caption = ' '.join(caption_token_list[:self.max_src_length])
+ src_item = self.encode_text(
+ " what is the complete image? caption: {}".format(caption),
+ append_bos=True,
+ append_eos=True
+ )
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "code_mask": code_mask,
+ "code_image": image,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item
+ }
+ return example
+
+ def collater(self, samples, pad_to_length=None):
+ """Merge a list of samples to form a mini-batch.
+ Args:
+ samples (List[dict]): samples to collate
+ Returns:
+ dict: a mini-batch containing the data of the task
+ """
+ return collate(samples, pad_idx=self.pad, eos_idx=self.eos)
diff --git a/data/mm_data/refcoco_dataset.py b/data/mm_data/refcoco_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..b9484c4c17c8f5264c159b43980ff8b6070b66e8
--- /dev/null
+++ b/data/mm_data/refcoco_dataset.py
@@ -0,0 +1,174 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+from io import BytesIO
+
+import logging
+import warnings
+
+import numpy as np
+import torch
+import base64
+import utils.transforms as T
+
+from PIL import Image, ImageFile
+
+from data import data_utils
+from data.ofa_dataset import OFADataset
+
+ImageFile.LOAD_TRUNCATED_IMAGES = True
+ImageFile.MAX_IMAGE_PIXELS = None
+Image.MAX_IMAGE_PIXELS = None
+
+logger = logging.getLogger(__name__)
+warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
+
+IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
+IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
+
+
+def collate(samples, pad_idx, eos_idx):
+ if len(samples) == 0:
+ return {}
+
+ def merge(key):
+ return data_utils.collate_tokens(
+ [s[key] for s in samples],
+ pad_idx,
+ eos_idx=eos_idx,
+ )
+
+ id = np.array([s["id"] for s in samples])
+ src_tokens = merge("source")
+ src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
+
+ patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
+ patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
+
+ w_resize_ratios = torch.stack([s["w_resize_ratio"] for s in samples], dim=0)
+ h_resize_ratios = torch.stack([s["h_resize_ratio"] for s in samples], dim=0)
+ region_coords = torch.stack([s['region_coord'] for s in samples], dim=0)
+
+ prev_output_tokens = None
+ target = None
+ if samples[0].get("target", None) is not None:
+ target = merge("target")
+ tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples])
+ ntokens = tgt_lengths.sum().item()
+
+ if samples[0].get("prev_output_tokens", None) is not None:
+ prev_output_tokens = merge("prev_output_tokens")
+ else:
+ ntokens = src_lengths.sum().item()
+
+ batch = {
+ "id": id,
+ "nsentences": len(samples),
+ "ntokens": ntokens,
+ "net_input": {
+ "src_tokens": src_tokens,
+ "src_lengths": src_lengths,
+ "patch_images": patch_images,
+ "patch_masks": patch_masks,
+ "prev_output_tokens": prev_output_tokens,
+ },
+ "target": target,
+ "w_resize_ratios": w_resize_ratios,
+ "h_resize_ratios": h_resize_ratios,
+ "region_coords": region_coords
+ }
+
+ return batch
+
+
+class RefcocoDataset(OFADataset):
+ def __init__(
+ self,
+ split,
+ dataset,
+ bpe,
+ src_dict,
+ tgt_dict=None,
+ max_src_length=80,
+ max_tgt_length=30,
+ patch_image_size=512,
+ imagenet_default_mean_and_std=False,
+ num_bins=1000,
+ max_image_size=512
+ ):
+ super().__init__(split, dataset, bpe, src_dict, tgt_dict)
+ self.max_src_length = max_src_length
+ self.max_tgt_length = max_tgt_length
+ self.patch_image_size = patch_image_size
+ self.num_bins = num_bins
+
+ if imagenet_default_mean_and_std:
+ mean = IMAGENET_DEFAULT_MEAN
+ std = IMAGENET_DEFAULT_STD
+ else:
+ mean = [0.5, 0.5, 0.5]
+ std = [0.5, 0.5, 0.5]
+
+ # for positioning
+ self.positioning_transform = T.Compose([
+ T.RandomResize([patch_image_size], max_size=patch_image_size),
+ T.ToTensor(),
+ T.Normalize(mean=mean, std=std, max_image_size=max_image_size)
+ ])
+
+ if type(bpe).__name__ == 'GPT2BPE':
+ self.prompt = ' which region does the text " {} " describe?'
+ elif type(bpe).__name__ == 'BertBPE':
+ self.prompt = '这段文字" {} "描述的是哪个区域?'
+
+ def __getitem__(self, index):
+ uniq_id, base64_str, text, region_coord = self.dataset[index]
+
+ image = Image.open(BytesIO(base64.urlsafe_b64decode(base64_str))).convert("RGB")
+ w, h = image.size
+ boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])}
+ x0, y0, x1, y1 = region_coord.strip().split(',')
+ region = torch.tensor([float(x0), float(y0), float(x1), float(y1)])
+ boxes_target["boxes"] = torch.tensor([[float(x0), float(y0), float(x1), float(y1)]])
+ boxes_target["labels"] = np.array([0])
+ boxes_target["area"] = torch.tensor([(float(x1) - float(x0)) * (float(y1) - float(y0))])
+
+ patch_image, patch_boxes = self.positioning_transform(image, boxes_target)
+ resize_h, resize_w = patch_boxes["size"][0], patch_boxes["size"][1]
+ patch_mask = torch.tensor([True])
+ quant_x0 = "".format(int((patch_boxes["boxes"][0][0] * (self.num_bins - 1)).round()))
+ quant_y0 = "".format(int((patch_boxes["boxes"][0][1] * (self.num_bins - 1)).round()))
+ quant_x1 = "".format(int((patch_boxes["boxes"][0][2] * (self.num_bins - 1)).round()))
+ quant_y1 = "".format(int((patch_boxes["boxes"][0][3] * (self.num_bins - 1)).round()))
+ region_coord = "{} {} {} {}".format(quant_x0, quant_y0, quant_x1, quant_y1)
+ src_caption = self.pre_caption(text, self.max_src_length)
+ src_item = self.encode_text(self.prompt.format(src_caption))
+ tgt_item = self.encode_text(region_coord, use_bpe=False)
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ target_item = torch.cat([tgt_item, self.eos_item])
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_mask": patch_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "w_resize_ratio": resize_w / w,
+ "h_resize_ratio": resize_h / h,
+ "region_coord": region
+ }
+ return example
+
+ def collater(self, samples, pad_to_length=None):
+ """Merge a list of samples to form a mini-batch.
+ Args:
+ samples (List[dict]): samples to collate
+ Returns:
+ dict: a mini-batch containing the data of the task
+ """
+ return collate(samples, pad_idx=self.pad, eos_idx=self.eos)
diff --git a/data/mm_data/snli_ve_dataset.py b/data/mm_data/snli_ve_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..b086340835e99268f25acf060e5d8c12856d3bce
--- /dev/null
+++ b/data/mm_data/snli_ve_dataset.py
@@ -0,0 +1,204 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+from io import BytesIO
+
+import logging
+import warnings
+
+import numpy as np
+import torch
+import base64
+from torchvision import transforms
+
+from PIL import Image, ImageFile
+
+from data import data_utils
+from data.ofa_dataset import OFADataset
+
+ImageFile.LOAD_TRUNCATED_IMAGES = True
+ImageFile.MAX_IMAGE_PIXELS = None
+Image.MAX_IMAGE_PIXELS = None
+
+logger = logging.getLogger(__name__)
+warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
+
+IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
+IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
+
+
+def collate(samples, pad_idx, eos_idx):
+ if len(samples) == 0:
+ return {}
+
+ def merge(key):
+ return data_utils.collate_tokens(
+ [s[key] for s in samples],
+ pad_idx,
+ eos_idx=eos_idx,
+ )
+
+ id = np.array([s["id"] for s in samples])
+ src_tokens = merge("source")
+ src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
+
+ patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
+ patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
+
+ ref_dict = None
+ if samples[0].get("ref_dict", None) is not None:
+ ref_dict = np.array([s['ref_dict'] for s in samples])
+
+ constraint_masks = None
+ if samples[0].get("constraint_mask", None) is not None:
+ constraint_masks = merge("constraint_mask")
+
+ decoder_prompts = None
+ if samples[0].get("decoder_prompt", None) is not None:
+ decoder_prompts = np.array([s['decoder_prompt'].tolist() for s in samples])
+
+ prev_output_tokens = None
+ target = None
+ if samples[0].get("target", None) is not None:
+ target = merge("target")
+ tgt_lengths = torch.LongTensor(
+ [s["target"].ne(pad_idx).long().sum() for s in samples]
+ )
+ ntokens = tgt_lengths.sum().item()
+
+ if samples[0].get("prev_output_tokens", None) is not None:
+ prev_output_tokens = merge("prev_output_tokens")
+ else:
+ ntokens = src_lengths.sum().item()
+
+ batch = {
+ "id": id,
+ "nsentences": len(samples),
+ "ntokens": ntokens,
+ "net_input": {
+ "src_tokens": src_tokens,
+ "src_lengths": src_lengths,
+ "patch_images": patch_images,
+ "patch_masks": patch_masks,
+ "prev_output_tokens": prev_output_tokens
+ },
+ "ref_dict": ref_dict,
+ "constraint_masks": constraint_masks,
+ "decoder_prompts": decoder_prompts,
+ "target": target
+ }
+
+ return batch
+
+
+class SnliVeDataset(OFADataset):
+ def __init__(
+ self,
+ split,
+ dataset,
+ bpe,
+ src_dict,
+ tgt_dict=None,
+ max_src_length=80,
+ max_tgt_length=30,
+ patch_image_size=224,
+ add_caption=False,
+ constraint_trie=None,
+ imagenet_default_mean_and_std=False,
+ prompt_type="none"
+ ):
+ super().__init__(split, dataset, bpe, src_dict, tgt_dict)
+ self.max_src_length = max_src_length
+ self.max_tgt_length = max_tgt_length
+ self.patch_image_size = patch_image_size
+
+ self.add_caption = add_caption
+ self.constraint_trie = constraint_trie
+ self.prompt_type = prompt_type
+
+ if imagenet_default_mean_and_std:
+ mean = IMAGENET_DEFAULT_MEAN
+ std = IMAGENET_DEFAULT_STD
+ else:
+ mean = [0.5, 0.5, 0.5]
+ std = [0.5, 0.5, 0.5]
+
+ self.patch_resize_transform = transforms.Compose([
+ lambda image: image.convert("RGB"),
+ transforms.Resize((patch_image_size, patch_image_size), interpolation=Image.BICUBIC),
+ transforms.ToTensor(),
+ transforms.Normalize(mean=mean, std=std),
+ ])
+
+ def __getitem__(self, index):
+ uniq_id, image, hypothesis, caption, label = self.dataset[index]
+ if label == 'contradiction':
+ label = 'no'
+ elif label == 'entailment':
+ label = 'yes'
+ elif label == 'neutral':
+ label = 'maybe'
+ else:
+ raise NotImplementedError
+
+ image = Image.open(BytesIO(base64.urlsafe_b64decode(image)))
+ patch_image = self.patch_resize_transform(image)
+ patch_mask = torch.tensor([True])
+
+ hypothesis = self.pre_caption(hypothesis, self.max_src_length)
+ src_item = self.encode_text(' does the image describe " {} "?'.format(hypothesis))
+ tgt_item = self.encode_text(" {}".format(label))
+ ref_dict = {label: 1.0}
+
+ # print(self.add_caption)
+ if self.add_caption:
+ caption = self.pre_caption(caption, self.max_src_length)
+ src_item = self.encode_text(' can image and text1 " {} " imply text2 " {} "?'.format(caption, hypothesis))
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ if self.prompt_type == 'none':
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+ target_item = torch.cat([prev_output_item[1:], self.eos_item])
+ decoder_prompt = self.bos_item
+ elif self.prompt_type == 'src':
+ prev_output_item = torch.cat([src_item, tgt_item])
+ target_item = torch.cat([prev_output_item[1:], self.eos_item])
+ decoder_prompt = src_item
+ elif self.prompt_type == 'prev_output':
+ prev_output_item = torch.cat([src_item[:-1], tgt_item])
+ target_item = torch.cat([prev_output_item[1:], self.eos_item])
+ decoder_prompt = src_item[:-1]
+ else:
+ raise NotImplementedError
+ target_item[:-len(tgt_item)-1] = self.tgt_dict.pad()
+
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_mask": patch_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "decoder_prompt": decoder_prompt,
+ "ref_dict": ref_dict,
+ }
+ if self.constraint_trie is not None:
+ constraint_mask = torch.zeros((len(target_item), len(self.tgt_dict))).bool()
+ start_idx = len(target_item) - len(tgt_item) - 1
+ for i in range(len(target_item)-len(tgt_item)-1, len(target_item)):
+ constraint_prefix_token = [self.tgt_dict.bos()] + target_item[start_idx:i].tolist()
+ constraint_nodes = self.constraint_trie.get_next_layer(constraint_prefix_token)
+ constraint_mask[i][constraint_nodes] = True
+ example["constraint_mask"] = constraint_mask
+ return example
+
+ def collater(self, samples, pad_to_length=None):
+ """Merge a list of samples to form a mini-batch.
+ Args:
+ samples (List[dict]): samples to collate
+ Returns:
+ dict: a mini-batch containing the data of the task
+ """
+ return collate(samples, pad_idx=self.pad, eos_idx=self.eos)
diff --git a/data/mm_data/video_caption_dataset.py b/data/mm_data/video_caption_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..da0567003293658a5b3c3686b6f43f0e7a1cdc24
--- /dev/null
+++ b/data/mm_data/video_caption_dataset.py
@@ -0,0 +1,248 @@
+# Modified from OFA code.
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+
+import logging
+import warnings
+import string
+
+import numpy as np
+import torch
+from torchvision import transforms
+
+from PIL import Image, ImageFile
+
+from data import data_utils
+from data.ofa_dataset import OFADataset
+
+from data.video_utils import VIDEO_READER_FUNCS
+
+import os
+import random
+
+ImageFile.LOAD_TRUNCATED_IMAGES = True
+ImageFile.MAX_IMAGE_PIXELS = None
+Image.MAX_IMAGE_PIXELS = None
+
+logger = logging.getLogger(__name__)
+warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
+
+IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
+IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
+
+
+def collate(samples, pad_idx, eos_idx):
+ if len(samples) == 0:
+ return {}
+
+ def merge(key):
+ return data_utils.collate_tokens(
+ [s[key] for s in samples],
+ pad_idx,
+ eos_idx=eos_idx,
+ )
+
+ id = np.array([s["id"] for s in samples])
+ src_tokens = merge("source")
+ src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
+
+ patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
+ patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
+
+ patch_videos = torch.stack([sample['patch_video'] for sample in samples], dim=0)
+ patch_types = torch.cat([sample['patch_type'] for sample in samples])
+
+ prev_output_tokens = None
+ target = None
+ if samples[0].get("target", None) is not None:
+ target = merge("target")
+ tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples])
+ ntokens = tgt_lengths.sum().item()
+
+ if samples[0].get("prev_output_tokens", None) is not None:
+ prev_output_tokens = merge("prev_output_tokens")
+ else:
+ ntokens = src_lengths.sum().item()
+
+ batch = {
+ "id": id,
+ "nsentences": len(samples),
+ "ntokens": ntokens,
+ "net_input": {
+ "src_tokens": src_tokens,
+ "src_lengths": src_lengths,
+ "patch_images": patch_images,
+ "patch_masks": patch_masks,
+ "prev_output_tokens": prev_output_tokens,
+ "patch_videos": patch_videos,
+ "patch_types": patch_types,
+ },
+ "target": target,
+ }
+
+ return batch
+
+
+class CaptionDataset(OFADataset):
+ def __init__(
+ self,
+ split,
+ dataset,
+ bpe,
+ src_dict,
+ tgt_dict=None,
+ max_src_length=128,
+ max_tgt_length=30,
+ patch_image_size=224,
+ imagenet_default_mean_and_std=False,
+ scst=False,
+ image_dir='/gpfsscratch/rech/dyf/ugz83ue/data',
+ patch_frame_size=224,
+ num_frames=4,
+ sample_type='rand',
+ use_dataaug=False,
+ ):
+ super().__init__(split, dataset, bpe, src_dict, tgt_dict)
+ self.max_src_length = max_src_length
+ self.max_tgt_length = max_tgt_length
+ self.patch_image_size = patch_image_size
+ self.scst = scst
+
+ self.image_dir = image_dir
+
+ self.transtab = str.maketrans({key: None for key in string.punctuation})
+
+ if imagenet_default_mean_and_std:
+ mean = IMAGENET_DEFAULT_MEAN
+ std = IMAGENET_DEFAULT_STD
+ else:
+ mean = [0.5, 0.5, 0.5]
+ std = [0.5, 0.5, 0.5]
+
+
+
+ self.split = split
+ type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
+ if self.split != 'train' or not use_dataaug:
+ self.patch_video_resize_transform = transforms.Compose([
+ transforms.CenterCrop(patch_frame_size),
+ type_transform,
+ transforms.Normalize(mean=mean, std=std),
+ ])
+ logger.info("val split, do not use random augmentation.")
+ else:
+ aug_transform = transforms.RandAugment()
+ self.patch_video_resize_transform = transforms.Compose(
+ [
+ aug_transform,
+ transforms.RandomResizedCrop(
+ patch_frame_size,
+ scale=(0.5, 1.0),
+ interpolation=transforms.InterpolationMode.BICUBIC,
+ ),
+ transforms.RandomHorizontalFlip(),
+ type_transform,
+ transforms.Normalize(mean=mean, std=std),
+ ]
+ )
+
+
+ logger.info("train split, use random augmentation.")
+
+
+ # video
+ self.num_frames = num_frames
+ self.sample_type = sample_type
+ self.video_reader = VIDEO_READER_FUNCS['decord']
+ self.max_num_frames = num_frames
+ if type(bpe).__name__ == 'GPT2BPE':
+ self.prompt = " what does the video describe?"
+ else:
+ raise NotImplemented
+
+ self.num_tries = 4
+
+ def __getitem__(self, index, tries=0, other_dataset=None):
+ uniq_id, image, caption = self.dataset[index]
+
+
+ # video
+ image_path = os.path.join(self.image_dir, image)
+ data_path = image_path
+
+ max_num_frames = self.max_num_frames
+
+
+ try:
+
+ frames, frame_indices, video_duration = self.video_reader(
+ data_path, self.num_frames, self.sample_type, max_num_frames=max_num_frames
+ )
+
+
+ except Exception as e:
+ new_index = random.randint(0, len(self) - 1)
+ logger.warning(
+ f"Caught exception {e} when loading video {data_path}, "
+ f"randomly sample a new video as replacement"
+ )
+ if tries < self.num_tries:
+ return self.__getitem__(new_index, tries=tries+1, other_dataset=other_dataset)
+ else:
+ print("Videos are too corrupted, try increase the num_tries")
+ raise
+
+
+
+
+
+ patch_video = self.patch_video_resize_transform(frames)
+ patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w)
+
+
+ patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
+ patch_type = torch.tensor([1])
+
+
+
+
+ patch_mask = torch.tensor([True])
+
+ if self.split == 'train' and not self.scst:
+ caption = caption.translate(self.transtab).strip()
+ caption_token_list = caption.strip().split()
+ tgt_caption = ' '.join(caption_token_list[:self.max_tgt_length])
+ else:
+ caption = ' '.join(caption.strip().split())
+ caption_list = [cap.translate(self.transtab).strip() for cap in caption.strip().split('&&')]
+ tgt_caption = '&&'.join(caption_list)
+ src_item = self.encode_text(self.prompt)
+ tgt_item = self.encode_text(" {}".format(tgt_caption))
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ target_item = torch.cat([tgt_item, self.eos_item])
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_mask": patch_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "patch_type": patch_type,
+ "patch_video": patch_video,
+ }
+ return example
+
+ def collater(self, samples, pad_to_length=None):
+ """Merge a list of samples to form a mini-batch.
+ Args:
+ samples (List[dict]): samples to collate
+ Returns:
+ dict: a mini-batch containing the data of the task
+ """
+ return collate(samples, pad_idx=self.pad, eos_idx=self.eos)
diff --git a/data/mm_data/video_vqa_gen_dataset.py b/data/mm_data/video_vqa_gen_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..1a32ad2ba2942b15f8b78da540fe9d3bab67a752
--- /dev/null
+++ b/data/mm_data/video_vqa_gen_dataset.py
@@ -0,0 +1,286 @@
+# Modified from OFA code.
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+from io import BytesIO
+
+import logging
+import warnings
+
+import numpy as np
+import torch
+from torchvision import transforms
+
+from PIL import Image, ImageFile
+
+from data import data_utils
+from data.ofa_dataset import OFADataset
+
+ImageFile.LOAD_TRUNCATED_IMAGES = True
+ImageFile.MAX_IMAGE_PIXELS = None
+Image.MAX_IMAGE_PIXELS = None
+
+logger = logging.getLogger(__name__)
+warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
+
+
+import os
+
+from data.video_utils import VIDEO_READER_FUNCS
+
+
+IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
+IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
+
+
+def collate(samples, pad_idx, eos_idx):
+ if len(samples) == 0:
+ return {}
+
+ def merge(key):
+ return data_utils.collate_tokens(
+ [s[key] for s in samples],
+ pad_idx,
+ eos_idx=eos_idx,
+ )
+
+ id = np.array([s["id"] for s in samples])
+ src_tokens = merge("source")
+ src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
+
+ patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
+ patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
+
+ patch_videos = torch.stack([sample['patch_video'] for sample in samples], dim=0)
+ patch_types = torch.cat([sample['patch_type'] for sample in samples])
+
+ conf = None
+ if samples[0].get("conf", None) is not None:
+ conf = torch.cat([s['conf'] for s in samples], dim=0)
+
+ ref_dict = None
+ if samples[0].get("ref_dict", None) is not None:
+ ref_dict = np.array([s['ref_dict'] for s in samples])
+
+ constraint_masks = None
+ if samples[0].get("constraint_mask", None) is not None:
+ constraint_masks = merge("constraint_mask")
+
+ decoder_prompts = None
+ if samples[0].get("decoder_prompt", None) is not None:
+ decoder_prompts = np.array([s['decoder_prompt'].tolist() for s in samples])
+
+ prefix_tokens = None
+ if samples[0].get("decoder_prompt", None) is not None:
+ prefix_tokens = merge("decoder_prompt")
+ prefix_tokens = prefix_tokens[:, 1:]
+
+ prev_output_tokens = None
+ target = None
+ if samples[0].get("target", None) is not None:
+ target = merge("target")
+ tgt_lengths = torch.LongTensor(
+ [s["target"].ne(pad_idx).long().sum() for s in samples]
+ )
+ ntokens = tgt_lengths.sum().item()
+
+ if samples[0].get("prev_output_tokens", None) is not None:
+ prev_output_tokens = merge("prev_output_tokens")
+ else:
+ ntokens = src_lengths.sum().item()
+
+ batch = {
+ "id": id,
+ "nsentences": len(samples),
+ "ntokens": ntokens,
+ "net_input": {
+ "src_tokens": src_tokens,
+ "src_lengths": src_lengths,
+ "patch_images": patch_images,
+ "patch_masks": patch_masks,
+ "prev_output_tokens": prev_output_tokens,
+ "patch_videos": patch_videos,
+ "patch_types": patch_types,
+ },
+ "conf": conf,
+ "ref_dict": ref_dict,
+ "constraint_masks": constraint_masks,
+ "decoder_prompts": decoder_prompts,
+ "target": target,
+ "prefix_tokens": prefix_tokens
+ }
+
+ return batch
+
+
+class VidVqaGenDataset(OFADataset):
+ def __init__(
+ self,
+ split,
+ dataset,
+ bpe,
+ src_dict,
+ tgt_dict=None,
+ max_src_length=128,
+ max_object_length=30,
+ max_tgt_length=30,
+ patch_image_size=224,
+ add_object=False,
+ constraint_trie=None,
+ imagenet_default_mean_and_std=False,
+ prompt_type="none",
+ image_dir='/gpfsscratch/rech/dyf/ugz83ue/data',
+ patch_frame_size=224,
+ num_frames=4,
+ sample_type='rand',
+ use_dataaug=False,
+ ):
+ super().__init__(split, dataset, bpe, src_dict, tgt_dict)
+ self.max_src_length = max_src_length
+ self.max_object_length = max_object_length
+ self.max_tgt_length = max_tgt_length
+ self.patch_image_size = patch_image_size
+
+ self.add_object = add_object
+ self.constraint_trie = constraint_trie
+ self.prompt_type = prompt_type
+
+ self.image_dir = image_dir
+
+ if imagenet_default_mean_and_std:
+ mean = IMAGENET_DEFAULT_MEAN
+ std = IMAGENET_DEFAULT_STD
+ else:
+ mean = [0.5, 0.5, 0.5]
+ std = [0.5, 0.5, 0.5]
+
+ self.split = split
+ type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
+
+ if self.split != 'train' or not use_dataaug:
+ self.patch_video_resize_transform = transforms.Compose([
+ transforms.CenterCrop(patch_frame_size),
+ type_transform,
+ transforms.Normalize(mean=mean, std=std),
+ ])
+ logger.info("val split, do not use random augmentation.")
+ else:
+ aug_transform = transforms.RandAugment()
+ self.patch_video_resize_transform = transforms.Compose(
+ [
+ aug_transform,
+ transforms.RandomResizedCrop(
+ patch_frame_size,
+ scale=(0.5, 1.0),
+ interpolation=transforms.InterpolationMode.BICUBIC,
+ ),
+ transforms.RandomHorizontalFlip(),
+ type_transform,
+ transforms.Normalize(mean=mean, std=std),
+ ]
+ )
+
+
+ logger.info("train split, use random augmentation.")
+
+ # video
+ self.num_frames = num_frames
+ self.sample_type = sample_type
+ self.video_reader = VIDEO_READER_FUNCS['decord']
+ self.max_num_frames = num_frames
+
+
+ def __getitem__(self, index):
+ item = self.dataset[index]
+ if len(item) == 5:
+ uniq_id, image, question, ref, predict_objects = item
+ else:
+ uniq_id, image, question, ref, predict_objects, caption = item
+
+ # video
+ image_path = os.path.join(self.image_dir, image)
+ data_path = image_path
+ max_num_frames = self.max_num_frames
+ frames, frame_indices, video_duration = self.video_reader(
+ data_path, self.num_frames, self.sample_type, max_num_frames=max_num_frames
+ )
+
+
+
+ patch_video = self.patch_video_resize_transform(frames)
+
+ patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w)
+
+
+
+ patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
+ patch_type = torch.tensor([1])
+ patch_mask = torch.tensor([True])
+
+ question = self.pre_question(question, self.max_src_length)
+ question = question + '?' if not question.endswith('?') else question
+ src_item = self.encode_text(' {}'.format(question))
+
+ ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in ref.split('&&')}
+ answer = max(ref_dict, key=ref_dict.get)
+ conf = torch.tensor([ref_dict[answer]])
+ tgt_item = self.encode_text(" {}".format(answer))
+
+ if self.add_object and predict_objects is not None:
+ predict_object_seq = ' '.join(predict_objects.strip().split('&&')[:self.max_object_length])
+ predict_object_item = self.encode_text(" object: {}".format(predict_object_seq))
+ src_item = torch.cat([src_item, predict_object_item])
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ if self.prompt_type == 'none':
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+ target_item = torch.cat([prev_output_item[1:], self.eos_item])
+ decoder_prompt = self.bos_item
+ elif self.prompt_type == 'src':
+ prev_output_item = torch.cat([src_item, tgt_item])
+ target_item = torch.cat([prev_output_item[1:], self.eos_item])
+ decoder_prompt = src_item
+ elif self.prompt_type == 'prev_output':
+ prev_output_item = torch.cat([src_item[:-1], tgt_item])
+ target_item = torch.cat([prev_output_item[1:], self.eos_item])
+ decoder_prompt = src_item[:-1]
+ else:
+ raise NotImplementedError
+ target_item[:-len(tgt_item)-1] = self.tgt_dict.pad()
+
+
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_video": patch_video,
+ "patch_mask": patch_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "decoder_prompt": decoder_prompt,
+ "ref_dict": ref_dict,
+ "conf": conf,
+ "patch_type": patch_type,
+ }
+
+ if self.constraint_trie is not None:
+ constraint_mask = torch.zeros((len(target_item), len(self.tgt_dict))).bool()
+ start_idx = len(target_item) - len(tgt_item) - 1
+ for i in range(len(target_item)-len(tgt_item)-1, len(target_item)):
+ constraint_prefix_token = [self.tgt_dict.bos()] + target_item[start_idx:i].tolist()
+ constraint_nodes = self.constraint_trie.get_next_layer(constraint_prefix_token)
+ constraint_mask[i][constraint_nodes] = True
+ example["constraint_mask"] = constraint_mask
+
+ return example
+
+ def collater(self, samples, pad_to_length=None):
+ """Merge a list of samples to form a mini-batch.
+ Args:
+ samples (List[dict]): samples to collate
+ Returns:
+ dict: a mini-batch containing the data of the task
+ """
+ return collate(samples, pad_idx=self.pad, eos_idx=self.eos)
diff --git a/data/mm_data/vqa_gen_dataset.py b/data/mm_data/vqa_gen_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..8dba6361891dc863d9b522ab20575f2dee075a9b
--- /dev/null
+++ b/data/mm_data/vqa_gen_dataset.py
@@ -0,0 +1,241 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+from io import BytesIO
+
+import logging
+import warnings
+
+import numpy as np
+import torch
+import base64
+from torchvision import transforms
+
+from PIL import Image, ImageFile
+
+from data import data_utils
+from data.ofa_dataset import OFADataset
+
+ImageFile.LOAD_TRUNCATED_IMAGES = True
+ImageFile.MAX_IMAGE_PIXELS = None
+Image.MAX_IMAGE_PIXELS = None
+
+logger = logging.getLogger(__name__)
+warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
+
+IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
+IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
+
+import os
+
+def collate(samples, pad_idx, eos_idx):
+ if len(samples) == 0:
+ return {}
+
+ def merge(key):
+ return data_utils.collate_tokens(
+ [s[key] for s in samples],
+ pad_idx,
+ eos_idx=eos_idx,
+ )
+
+ id = np.array([s["id"] for s in samples])
+ src_tokens = merge("source")
+ src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
+
+ patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
+ patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
+
+ patch_types = torch.cat([sample['patch_type'] for sample in samples])
+
+
+ conf = None
+ if samples[0].get("conf", None) is not None:
+ conf = torch.cat([s['conf'] for s in samples], dim=0)
+
+ ref_dict = None
+ if samples[0].get("ref_dict", None) is not None:
+ ref_dict = np.array([s['ref_dict'] for s in samples])
+
+ constraint_masks = None
+ if samples[0].get("constraint_mask", None) is not None:
+ constraint_masks = merge("constraint_mask")
+
+ decoder_prompts = None
+ if samples[0].get("decoder_prompt", None) is not None:
+ decoder_prompts = np.array([s['decoder_prompt'].tolist() for s in samples])
+
+ prefix_tokens = None
+ if samples[0].get("decoder_prompt", None) is not None:
+ prefix_tokens = merge("decoder_prompt")
+ prefix_tokens = prefix_tokens[:, 1:]
+
+ prev_output_tokens = None
+ target = None
+ if samples[0].get("target", None) is not None:
+ target = merge("target")
+ tgt_lengths = torch.LongTensor(
+ [s["target"].ne(pad_idx).long().sum() for s in samples]
+ )
+ ntokens = tgt_lengths.sum().item()
+
+ if samples[0].get("prev_output_tokens", None) is not None:
+ prev_output_tokens = merge("prev_output_tokens")
+ else:
+ ntokens = src_lengths.sum().item()
+
+ batch = {
+ "id": id,
+ "nsentences": len(samples),
+ "ntokens": ntokens,
+ "net_input": {
+ "src_tokens": src_tokens,
+ "src_lengths": src_lengths,
+ "patch_images": patch_images,
+ "patch_masks": patch_masks,
+ "prev_output_tokens": prev_output_tokens,
+ "patch_types": patch_types,
+ },
+ "conf": conf,
+ "ref_dict": ref_dict,
+ "constraint_masks": constraint_masks,
+ "decoder_prompts": decoder_prompts,
+ "target": target,
+ "prefix_tokens": prefix_tokens
+ }
+
+ return batch
+
+
+class VqaGenDataset(OFADataset):
+ def __init__(
+ self,
+ split,
+ dataset,
+ bpe,
+ src_dict,
+ tgt_dict=None,
+ max_src_length=128,
+ max_object_length=30,
+ max_tgt_length=30,
+ patch_image_size=224,
+ add_object=False,
+ constraint_trie=None,
+ imagenet_default_mean_and_std=False,
+ prompt_type="none",
+ image_dir='/gpfsscratch/rech/dyf/ugz83ue/data',
+ read_from_img_path=False,
+ ):
+ super().__init__(split, dataset, bpe, src_dict, tgt_dict)
+ self.max_src_length = max_src_length
+ self.max_object_length = max_object_length
+ self.max_tgt_length = max_tgt_length
+ self.patch_image_size = patch_image_size
+
+ self.add_object = add_object
+ self.constraint_trie = constraint_trie
+ self.prompt_type = prompt_type
+
+ if imagenet_default_mean_and_std:
+ mean = IMAGENET_DEFAULT_MEAN
+ std = IMAGENET_DEFAULT_STD
+ else:
+ mean = [0.5, 0.5, 0.5]
+ std = [0.5, 0.5, 0.5]
+
+ self.patch_resize_transform = transforms.Compose([
+ lambda image: image.convert("RGB"),
+ transforms.Resize((patch_image_size, patch_image_size), interpolation=Image.BICUBIC),
+ transforms.ToTensor(),
+ transforms.Normalize(mean=mean, std=std),
+ ])
+
+ self.image_dir = image_dir
+ self.read_from_img_path = read_from_img_path
+
+
+ def __getitem__(self, index):
+ item = self.dataset[index]
+ if len(item) == 5:
+ uniq_id, image, question, ref, predict_objects = item
+ else:
+ uniq_id, image, question, ref, predict_objects, caption = item
+
+ # print(self.image_dir, image, item)
+ if self.read_from_img_path or '.jpg' in image:
+
+ image_path = os.path.join(self.image_dir, image)
+
+ image = Image.open(image_path).convert("RGB")
+ else:
+ image = Image.open(BytesIO(base64.urlsafe_b64decode(image)))
+
+
+ patch_image = self.patch_resize_transform(image)
+ patch_mask = torch.tensor([True])
+
+ question = self.pre_question(question, self.max_src_length)
+ question = question + '?' if not question.endswith('?') else question
+ src_item = self.encode_text(' {}'.format(question))
+
+ ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in ref.split('&&')}
+ answer = max(ref_dict, key=ref_dict.get)
+ conf = torch.tensor([ref_dict[answer]])
+ tgt_item = self.encode_text(" {}".format(answer))
+
+ if self.add_object and predict_objects is not None:
+ predict_object_seq = ' '.join(predict_objects.strip().split('&&')[:self.max_object_length])
+ predict_object_item = self.encode_text(" object: {}".format(predict_object_seq))
+ src_item = torch.cat([src_item, predict_object_item])
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ if self.prompt_type == 'none':
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+ target_item = torch.cat([prev_output_item[1:], self.eos_item])
+ decoder_prompt = self.bos_item
+ elif self.prompt_type == 'src':
+ prev_output_item = torch.cat([src_item, tgt_item])
+ target_item = torch.cat([prev_output_item[1:], self.eos_item])
+ decoder_prompt = src_item
+ elif self.prompt_type == 'prev_output':
+ prev_output_item = torch.cat([src_item[:-1], tgt_item])
+ target_item = torch.cat([prev_output_item[1:], self.eos_item])
+ decoder_prompt = src_item[:-1]
+ else:
+ raise NotImplementedError
+ target_item[:-len(tgt_item)-1] = self.tgt_dict.pad()
+
+ patch_type = torch.tensor([0])
+
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_mask": patch_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "decoder_prompt": decoder_prompt,
+ "ref_dict": ref_dict,
+ "conf": conf,
+ "patch_type": patch_type,
+ }
+ if self.constraint_trie is not None:
+ constraint_mask = torch.zeros((len(target_item), len(self.tgt_dict))).bool()
+ start_idx = len(target_item) - len(tgt_item) - 1
+ for i in range(len(target_item)-len(tgt_item)-1, len(target_item)):
+ constraint_prefix_token = [self.tgt_dict.bos()] + target_item[start_idx:i].tolist()
+ constraint_nodes = self.constraint_trie.get_next_layer(constraint_prefix_token)
+ constraint_mask[i][constraint_nodes] = True
+ example["constraint_mask"] = constraint_mask
+ return example
+
+ def collater(self, samples, pad_to_length=None):
+ """Merge a list of samples to form a mini-batch.
+ Args:
+ samples (List[dict]): samples to collate
+ Returns:
+ dict: a mini-batch containing the data of the task
+ """
+ return collate(samples, pad_idx=self.pad, eos_idx=self.eos)
diff --git a/data/ofa_dataset.py b/data/ofa_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..fa30b24c858bb36da1179a53aef717b54d6b22f3
--- /dev/null
+++ b/data/ofa_dataset.py
@@ -0,0 +1,79 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+import logging
+import re
+import torch.utils.data
+from fairseq.data import FairseqDataset
+
+logger = logging.getLogger(__name__)
+
+
+class OFADataset(FairseqDataset):
+ def __init__(self, split, dataset, bpe, src_dict, tgt_dict):
+ self.split = split
+ self.dataset = dataset
+ self.bpe = bpe
+ self.src_dict = src_dict
+ self.tgt_dict = tgt_dict
+
+ self.bos = src_dict.bos()
+ self.eos = src_dict.eos()
+ self.pad = src_dict.pad()
+ self.bos_item = torch.LongTensor([self.bos])
+ self.eos_item = torch.LongTensor([self.eos])
+
+ def __len__(self):
+ return len(self.dataset)
+
+ def encode_text(self, text, length=None, append_bos=False, append_eos=False, use_bpe=True):
+ s = self.tgt_dict.encode_line(
+ line=self.bpe.encode(text) if use_bpe else text,
+ add_if_not_exist=False,
+ append_eos=False
+ ).long()
+ if length is not None:
+ s = s[:length]
+ if append_bos:
+ s = torch.cat([self.bos_item, s])
+ if append_eos:
+ s = torch.cat([s, self.eos_item])
+ return s
+
+ def pre_question(self, question, max_ques_words=None):
+ question = question.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ')
+
+ question = re.sub(
+ r"\s{2,}",
+ ' ',
+ question,
+ )
+ question = question.rstrip('\n')
+ question = question.strip(' ')
+
+ # truncate question
+ question_words = question.split(' ')
+ if max_ques_words is not None and len(question_words) > max_ques_words:
+ question = ' '.join(question_words[:max_ques_words])
+
+ return question
+
+ def pre_caption(self, caption, max_words=None):
+ caption = caption.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ').replace('', 'person')
+
+ caption = re.sub(
+ r"\s{2,}",
+ ' ',
+ caption,
+ )
+ caption = caption.rstrip('\n')
+ caption = caption.strip(' ')
+
+ # truncate caption
+ caption_words = caption.split(' ')
+ if max_words is not None and len(caption_words) > max_words:
+ caption = ' '.join(caption_words[:max_words])
+
+ return caption
diff --git a/data/pretrain_data/.ipynb_checkpoints/unify_dataset-checkpoint.py b/data/pretrain_data/.ipynb_checkpoints/unify_dataset-checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..8b9929e11369f99700ff9006d89515f524269fd3
--- /dev/null
+++ b/data/pretrain_data/.ipynb_checkpoints/unify_dataset-checkpoint.py
@@ -0,0 +1,650 @@
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+from io import BytesIO
+
+import math
+import logging
+import random
+import warnings
+
+import numpy as np
+import torch
+import base64
+from torchvision import transforms
+
+from PIL import Image, ImageFile
+
+from data import data_utils
+from data.ofa_dataset import OFADataset
+from utils.vision_helper import RandomAugment
+import utils.transforms as T
+
+ImageFile.LOAD_TRUNCATED_IMAGES = True
+ImageFile.MAX_IMAGE_PIXELS = None
+Image.MAX_IMAGE_PIXELS = None
+
+logger = logging.getLogger(__name__)
+warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
+
+
+def get_whole_word_mask(bpe, dictionary):
+ if bpe is not None:
+
+ def is_beginning_of_word(i):
+ if i < dictionary.nspecial:
+ # special elements are always considered beginnings
+ return True
+ tok = dictionary[i]
+ if tok.startswith("madeupword"):
+ return True
+ try:
+ return bpe.is_beginning_of_word(tok)
+ except ValueError:
+ return True
+
+ mask_whole_words = torch.ByteTensor(
+ list(map(is_beginning_of_word, range(len(dictionary))))
+ )
+ return mask_whole_words
+ return None
+
+
+def collate(samples, pad_idx, eos_idx):
+ if len(samples) == 0:
+ return {}
+
+ def merge(key):
+ return data_utils.collate_tokens(
+ [s[key] for s in samples],
+ pad_idx,
+ eos_idx=eos_idx,
+ )
+
+ id = np.array([s["id"] for s in samples])
+ src_tokens = merge("source")
+ src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
+
+ patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
+ patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
+
+ code_masks = None
+ if samples[0].get("code_mask", None) is not None:
+ code_masks = torch.cat([sample['code_mask'] for sample in samples])
+
+ conf = torch.cat([s['conf'] for s in samples], dim=0)
+
+ prev_output_tokens = None
+ target = None
+ if samples[0].get("target", None) is not None:
+ target = merge("target")
+ tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples])
+ ntokens = tgt_lengths.sum().item()
+
+ if samples[0].get("prev_output_tokens", None) is not None:
+ prev_output_tokens = merge("prev_output_tokens")
+ else:
+ ntokens = src_lengths.sum().item()
+
+ batch = {
+ "id": id,
+ "nsentences": len(samples),
+ "ntokens": ntokens,
+ "net_input": {
+ "src_tokens": src_tokens,
+ "src_lengths": src_lengths,
+ "patch_images": patch_images,
+ "patch_masks": patch_masks,
+ "code_masks": code_masks,
+ "prev_output_tokens": prev_output_tokens
+ },
+ "target": target,
+ "conf": conf
+ }
+
+ return batch
+
+
+class UnifyDataset(OFADataset):
+ def __init__(
+ self,
+ split,
+ dataset,
+ bpe,
+ src_dict,
+ tgt_dict=None,
+ max_src_length=128,
+ max_tgt_length=30,
+ seed=7,
+ code_dict_size=8192,
+ num_bins=1000,
+ patch_image_size=384,
+ code_image_size=128,
+ pure_text_dataset=None,
+ pure_image_dataset=None,
+ detection_dataset=None,
+ all_object_list=None,
+ all_caption_list=None,
+ type2ans_dict=None,
+ ans2type_dict=None,
+ max_image_size=512,
+ mask_ratio=0.3,
+ random_ratio=0.0,
+ keep_ratio=0.0,
+ mask_length="span-poisson",
+ poisson_lambda=3.0,
+ replace_length=1,
+ read_from_img_path=False,
+ ):
+ super().__init__(split, dataset, bpe, src_dict, tgt_dict)
+ self.max_src_length = max_src_length
+ self.max_tgt_length = max_tgt_length
+ self.seed = seed
+ self.code_dict_size = code_dict_size
+ self.num_bins = num_bins
+ self.patch_image_size = patch_image_size
+ self.code_image_size = code_image_size
+
+ self.pure_text_dataset = pure_text_dataset
+ self.pure_image_dataset = pure_image_dataset
+ self.detection_dataset = detection_dataset
+ self.epoch = 0
+
+ self.all_object_list = all_object_list
+ self.all_caption_list = all_caption_list
+ self.type2ans_dict = type2ans_dict
+ self.ans2type_dict = ans2type_dict
+
+ self.mask_ratio = mask_ratio
+ self.random_ratio = random_ratio
+ self.keep_ratio = keep_ratio
+ self.mask_length = mask_length
+ self.poisson_lambda = poisson_lambda
+ self.replace_length = replace_length
+ if self.replace_length not in [-1, 0, 1]:
+ raise ValueError(f"invalid arg: replace_length={self.replace_length}")
+ if self.mask_length not in ["subword", "word", "span-poisson"]:
+ raise ValueError(f"invalid arg: mask-length={self.mask_length}")
+ if self.mask_length == "subword" and self.replace_length not in [0, 1]:
+ raise ValueError(f"if using subwords, use replace-length=1 or 0")
+
+ self.mask_idx = src_dict.index("")
+ self.mask_whole_word = (
+ get_whole_word_mask(self.bpe, self.src_dict)
+ if self.mask_length != "subword"
+ else None
+ )
+ self.mask_span_distribution = None
+ if self.mask_length == "span-poisson":
+ _lambda = self.poisson_lambda
+ lambda_to_the_k = 1
+ e_to_the_minus_lambda = math.exp(-_lambda)
+ k_factorial = 1
+ ps = []
+ for k in range(0, 128):
+ ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial)
+ lambda_to_the_k *= _lambda
+ k_factorial *= k + 1
+ if ps[-1] < 0.0000001:
+ break
+ ps = torch.FloatTensor(ps)
+ self.mask_span_distribution = torch.distributions.Categorical(ps)
+
+ self.pos_tgt_item = self.encode_text(" yes")
+ self.neg_tgt_item = self.encode_text(" no")
+
+ self.mask_left = self.mask_top = int(0.5 * self.code_image_size)
+ self.mask_right = self.mask_bottom = int(1.5 * self.code_image_size)
+ self.mask_ids = [
+ i*self.code_image_size*2+j
+ for i in range(self.code_image_size*2) for j in range(self.code_image_size*2)
+ if not (self.mask_left <= i < self.mask_right and self.mask_top <= j < self.mask_bottom)
+ ]
+
+ scales = np.arange(patch_image_size, 481).tolist()
+
+ # for image-text pair
+ self.patch_resize_transform = transforms.Compose([
+ T.RandomResize(scales, max_size=672),
+ transforms.CenterCrop(patch_image_size),
+ RandomAugment(2, 7, isPIL=True, augs=['Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness',
+ 'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
+ transforms.ToTensor(),
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
+ ])
+ # for pure image
+ self.patch_crop_transform = transforms.Compose([
+ transforms.ToTensor(),
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
+ ])
+ # for detection
+ self.detection_transform = T.Compose([
+ T.RandomHorizontalFlip(),
+ T.LargeScaleJitter(output_size=self.code_image_size*2, aug_scale_min=1.0, aug_scale_max=1.5),
+ T.ToTensor(),
+ T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_image_size=max_image_size)
+ ])
+ # for visual grounding
+ self.visual_grounding_transform = T.Compose([
+ T.RandomResize(scales, max_size=672),
+ T.ObjectCenterCrop((patch_image_size, patch_image_size)),
+ T.ToTensor(),
+ T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_image_size=max_image_size)
+ ])
+
+ self.read_from_img_path = read_from_img_path
+
+ def set_epoch(self, epoch, **unused):
+ self.epoch = epoch
+
+ def get_negative_caption(self, caption, gt_objects):
+ prob = random.random()
+ if gt_objects is not None and gt_objects != '' and prob > 0.6:
+ gt_object = random.choice(gt_objects.strip().split('&&'))
+ negative_object = random.choice(self.all_object_list[:-1])
+ negative_object = self.all_object_list[-1] if negative_object == gt_object else negative_object
+ negative_caption = caption.replace(gt_object, negative_object)
+ else:
+ negative_caption = random.choice(self.all_caption_list)
+ return negative_caption
+
+ def get_negative_answer(self, answer, conf):
+ prob = random.random()
+ if conf > (prob + 0.1) and answer in self.ans2type_dict:
+ negative_answer_type = self.ans2type_dict[answer]
+ if negative_answer_type == 'how many' and answer.isdigit() and prob > 0.5:
+ negative_answer = int(answer) + random.choice([-1, 1]) if answer != 0 else 1
+ else:
+ negative_answer_list = self.type2ans_dict[negative_answer_type]
+ negative_answer = random.choice(negative_answer_list[:-1])
+ negative_answer = negative_answer_list[-1] if negative_answer == answer else negative_answer
+ return negative_answer
+
+ negative_answer_list = self.type2ans_dict['other']
+ negative_answer = random.choice(negative_answer_list[:-1])
+ negative_answer = negative_answer_list[-1] if negative_answer == answer else negative_answer
+ return negative_answer
+
+ def process_image_text_pair(self, index):
+ uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = self.dataset[index]
+ if self.read_from_img_path:
+ image = Image.open(image).convert("RGB")
+ else:
+ image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB")
+ patch_image = self.patch_resize_transform(image) if type != 'visual_grounding' else None
+ patch_mask = torch.tensor([True])
+ conf = torch.tensor([1.0])
+ if type == 'caption':
+ tgt_caption = self.pre_caption(caption, self.max_tgt_length)
+ pos_src_caption = self.pre_caption(caption, self.max_src_length)
+ neg_src_caption = self.pre_caption(self.get_negative_caption(caption, gt_objects), self.max_src_length)
+ src_item = self.encode_text(" what does the image describe?")
+ tgt_item = self.encode_text(" {}".format(tgt_caption))
+ pos_src_item = self.encode_text(' does the image describe " {} "?'.format(pos_src_caption))
+ neg_src_item = self.encode_text(' does the image describe " {} "?'.format(neg_src_caption))
+ elif type == 'qa':
+ question = self.pre_question(question, self.max_src_length)
+ ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in refs.split('&&')}
+ answer = max(ref_dict, key=ref_dict.get)
+ conf = ref_dict[answer]
+ src_item = self.encode_text(" {}".format(question))
+ tgt_item = self.encode_text(" {}".format(answer))
+ conf = torch.tensor([conf])
+ pos_src_item = self.encode_text(' what is the answer to question " {} ". is " {} "?'.format(question, answer))
+ neg_src_item = self.encode_text(
+ ' what is the answer to question " {} ". is " {} "?'.format(question, self.get_negative_answer(answer, conf))
+ )
+ elif type == 'visual_grounding':
+ conf = torch.tensor([1.0])
+ w, h = image.size
+ boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])}
+ x0, y0, x1, y1 = refs.strip().split(',')
+ boxes_target["boxes"] = torch.tensor([[float(x0), float(y0), float(x1), float(y1)]])
+ boxes_target["labels"] = np.array([0])
+ boxes_target["area"] = torch.tensor([(float(x1) - float(x0)) * (float(y1) - float(y0))])
+ patch_image, boxes_target = self.visual_grounding_transform(image, boxes_target)
+ quant_x0 = "".format(int((boxes_target["boxes"][0][0] * (self.num_bins - 1)).round()))
+ quant_y0 = "".format(int((boxes_target["boxes"][0][1] * (self.num_bins - 1)).round()))
+ quant_x1 = "".format(int((boxes_target["boxes"][0][2] * (self.num_bins - 1)).round()))
+ quant_y1 = "".format(int((boxes_target["boxes"][0][3] * (self.num_bins - 1)).round()))
+ region_coord = "{} {} {} {}".format(quant_x0, quant_y0, quant_x1, quant_y1)
+ src_caption = self.pre_caption(caption, self.max_src_length)
+ src_item = self.encode_text(' which region does the text " {} " describe?'.format(src_caption))
+ tgt_item = self.encode_text(region_coord, use_bpe=False)
+ else:
+ logger.info('type {} is not implemented'.format(type))
+ raise NotImplementedError
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ target_item = torch.cat([tgt_item, self.eos_item])
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+ pos_src_item = torch.cat([self.bos_item, pos_src_item, self.eos_item]) if type != 'visual_grounding' else None
+ neg_src_item = torch.cat([self.bos_item, neg_src_item, self.eos_item]) if type != 'visual_grounding' else None
+
+ if type == 'caption' and dataset_name == 'cc12m':
+ target_item[:2] = self.src_dict.pad()
+ target_item[-1] = self.eos_item
+
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_mask": patch_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "conf": conf,
+ }
+
+ examples = [example]
+ prob = random.random()
+ if type == 'visual_grounding':
+ region_example = example.copy()
+ region_prefix_item = self.encode_text(' what does the region describe? region:')
+ region_coord_item = self.encode_text('{}'.format(region_coord), use_bpe=False)
+ region_src_item = torch.cat([region_prefix_item, region_coord_item])
+ region_tgt_item = self.encode_text(' {}'.format(self.pre_caption(caption, self.max_tgt_length)))
+ region_example["source"] = torch.cat([self.bos_item, region_src_item, self.eos_item])
+ region_example["target"] = torch.cat([region_tgt_item, self.eos_item])
+ region_example["prev_output_tokens"] = torch.cat([self.bos_item, region_tgt_item])
+ region_example["conf"] = torch.tensor([1.0])
+ examples.append(region_example)
+ elif prob >= 0.5 and self.split == 'train':
+ pos_example = example.copy()
+ pos_example["source"] = pos_src_item
+ pos_example["target"] = torch.cat([self.pos_tgt_item, self.eos_item])
+ pos_example["prev_output_tokens"] = torch.cat([self.bos_item, self.pos_tgt_item])
+ examples.append(pos_example)
+ elif self.split == 'train':
+ neg_example = example.copy()
+ neg_example["source"] = neg_src_item
+ neg_example["target"] = torch.cat([self.neg_tgt_item, self.eos_item])
+ neg_example["prev_output_tokens"] = torch.cat([self.bos_item, self.neg_tgt_item])
+ examples.append(neg_example)
+ return examples
+
+ def process_pure_text(self, index):
+ patch_image = torch.zeros((3, self.code_image_size*2, self.code_image_size*2))
+ patch_mask = torch.tensor([False])
+ code_mask = torch.tensor([False])
+ conf = torch.tensor([2.0])
+
+ examples = []
+ for _ in range(2):
+ uniq_id, text = self.pure_text_dataset[index]
+ text = text.strip().lower()
+ text_item = self.encode_text(" {}".format(text), length=512)
+ text_item = text_item[-256:]
+ text_item = torch.cat([self.bos_item, text_item, self.eos_item])
+ mask_text_item = self.add_whole_word_mask(text_item.clone(), self.mask_ratio)
+ prefix_item = self.encode_text(' what is the complete text of " "?')
+ src_item = torch.cat([prefix_item[:-2], mask_text_item[1:-1], prefix_item[-2:]])
+ tgt_item = text_item[1:-1]
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ target_item = torch.cat([tgt_item, self.eos_item])
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_mask": patch_mask,
+ "code_mask": code_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "conf": conf,
+ }
+ examples.append(example)
+
+ return examples
+
+ def process_pure_image(self, index):
+ image_id, image, code = self.pure_image_dataset[index]
+
+ if self.read_from_img_path:
+ image = Image.open(image).convert("RGB")
+ else:
+ image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB")
+
+ patch_image = self.patch_crop_transform(image)
+ patch_image[:, self.mask_top:self.mask_bottom, self.mask_left:self.mask_right] = 0
+ patch_mask = torch.tensor([True])
+ src_item = self.encode_text(" what is the image in the middle part?")
+ image_code = torch.LongTensor([int(num) for num in code.strip().split()])
+ tgt_item = image_code + len(self.src_dict) - self.code_dict_size - self.num_bins
+ code_mask = torch.tensor([True])
+ conf = torch.tensor([2.0])
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ target_item = torch.cat([tgt_item, self.eos_item])
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+
+ example = {
+ "id": image_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_mask": patch_mask,
+ "code_mask": code_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "conf": conf,
+ }
+ return [example]
+
+ def process_detection(self, index):
+ image_id, image, label = self.detection_dataset[index]
+
+ if self.read_from_img_path:
+ image = Image.open(image).convert("RGB")
+ else:
+ image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB")
+
+ w, h = image.size
+ boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])}
+ label_list = label.strip().split('&&')
+ for label in label_list:
+ x0, y0, x1, y1, cat_id, cat = label.strip().split(',', 5)
+ boxes_target["boxes"].append([float(x0), float(y0), float(x1), float(y1)])
+ boxes_target["labels"].append(cat)
+ boxes_target["area"].append((float(x1) - float(x0)) * (float(y1) - float(y0)))
+ boxes_target["boxes"] = torch.tensor(boxes_target["boxes"])
+ boxes_target["labels"] = np.array(boxes_target["labels"])
+ boxes_target["area"] = torch.tensor(boxes_target["area"])
+
+ patch_image, boxes_target = self.detection_transform(image, boxes_target)
+ patch_mask = torch.tensor([True])
+ code_mask = torch.tensor([False])
+ conf = torch.tensor([2.0])
+
+ quant_boxes = []
+ for i, box in enumerate(boxes_target["boxes"]):
+ quant_boxes.extend(["".format(int((pos * (self.num_bins - 1)).round())) for pos in box[:4]])
+ quant_boxes.append(self.bpe.encode(' {}'.format(boxes_target["labels"][i])))
+ src_item = self.encode_text(' what are the objects in the image?')
+ tgt_item = self.encode_text(' '.join(quant_boxes), use_bpe=False)
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ target_item = torch.cat([tgt_item, self.eos_item])
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+
+ example = {
+ "id": image_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_mask": patch_mask,
+ "code_mask": code_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "conf": conf,
+ }
+ return [example]
+
+ def __getitem__(self, index):
+ with data_utils.numpy_seed(self.seed, self.epoch):
+ pair_samples = self.process_image_text_pair(index)
+ extra_samples = []
+ if self.split == 'train' and self.dataset.data_cnt % 8 == 0:
+ extra_samples += self.process_pure_text(0) if self.pure_text_dataset else []
+ extra_samples += self.process_pure_image(0) if self.pure_image_dataset else []
+ extra_samples += self.process_detection(0) if self.detection_dataset else []
+ return pair_samples, extra_samples
+
+ def word_starts(self, source):
+ if self.mask_whole_word is not None:
+ is_word_start = self.mask_whole_word.gather(0, source)
+ else:
+ is_word_start = torch.ones(source.size())
+ is_word_start[0] = 0
+ is_word_start[-1] = 0
+ return is_word_start
+
+ def add_whole_word_mask(self, source, p):
+ is_word_start = self.word_starts(source)
+ num_to_mask = int(math.ceil(is_word_start.float().sum() * p))
+ num_inserts = 0
+ if num_to_mask == 0:
+ return source
+
+ if self.mask_span_distribution is not None:
+ lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,))
+
+ # Make sure we have enough to mask
+ cum_length = torch.cumsum(lengths, 0)
+ while cum_length[-1] < num_to_mask:
+ lengths = torch.cat(
+ [
+ lengths,
+ self.mask_span_distribution.sample(sample_shape=(num_to_mask,)),
+ ],
+ dim=0,
+ )
+ cum_length = torch.cumsum(lengths, 0)
+
+ # Trim to masking budget
+ i = 0
+ while cum_length[i] < num_to_mask:
+ i += 1
+ lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1])
+ num_to_mask = i + 1
+ lengths = lengths[:num_to_mask]
+
+ # Handle 0-length mask (inserts) separately
+ lengths = lengths[lengths > 0]
+ num_inserts = num_to_mask - lengths.size(0)
+ num_to_mask -= num_inserts
+ if num_to_mask == 0:
+ return self.add_insertion_noise(source, num_inserts / source.size(0))
+
+ assert (lengths > 0).all()
+ else:
+ lengths = torch.ones((num_to_mask,)).long()
+ assert is_word_start[-1] == 0
+ word_starts = is_word_start.nonzero(as_tuple=False)
+ indices = word_starts[
+ torch.randperm(word_starts.size(0))[:num_to_mask]
+ ].squeeze(1)
+ mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio
+
+ source_length = source.size(0)
+ assert source_length - 1 not in indices
+ to_keep = torch.ones(source_length, dtype=torch.bool)
+ is_word_start[
+ -1
+ ] = 255 # acts as a long length, so spans don't go over the end of doc
+ if self.replace_length == 0:
+ to_keep[indices] = 0
+ else:
+ # keep index, but replace it with [MASK]
+ source[indices] = self.mask_idx
+ source[indices[mask_random]] = torch.randint(
+ 4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
+ )
+
+ if self.mask_span_distribution is not None:
+ assert len(lengths.size()) == 1
+ assert lengths.size() == indices.size()
+ lengths -= 1
+ while indices.size(0) > 0:
+ assert lengths.size() == indices.size()
+ lengths -= is_word_start[indices + 1].long()
+ uncompleted = lengths >= 0
+ indices = indices[uncompleted] + 1
+ mask_random = mask_random[uncompleted]
+ lengths = lengths[uncompleted]
+ if self.replace_length != -1:
+ # delete token
+ to_keep[indices] = 0
+ else:
+ # keep index, but replace it with [MASK]
+ source[indices] = self.mask_idx
+ source[indices[mask_random]] = torch.randint(
+ 4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
+ )
+ else:
+ # A bit faster when all lengths are 1
+ while indices.size(0) > 0:
+ uncompleted = is_word_start[indices + 1] == 0
+ indices = indices[uncompleted] + 1
+ mask_random = mask_random[uncompleted]
+ if self.replace_length != -1:
+ # delete token
+ to_keep[indices] = 0
+ else:
+ # keep index, but replace it with [MASK]
+ source[indices] = self.mask_idx
+ source[indices[mask_random]] = torch.randint(
+ 4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
+ )
+
+ assert source_length - 1 not in indices
+
+ source = source[to_keep]
+
+ if num_inserts > 0:
+ source = self.add_insertion_noise(source, num_inserts / source.size(0))
+
+ return source
+
+ def add_insertion_noise(self, tokens, p):
+ if p == 0.0:
+ return tokens
+
+ num_tokens = len(tokens)
+ n = int(math.ceil(num_tokens * p))
+
+ noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1
+ noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool)
+ noise_mask[noise_indices] = 1
+ result = torch.LongTensor(n + len(tokens)).fill_(-1)
+
+ num_random = int(math.ceil(n * self.random_ratio))
+ result[noise_indices[num_random:]] = self.mask_idx
+ result[noise_indices[:num_random]] = torch.randint(
+ low=4, high=len(self.tgt_dict)-self.code_dict_size-self.num_bins, size=(num_random,)
+ )
+
+ result[~noise_mask] = tokens
+
+ assert (result >= 0).all()
+ return result
+
+ def collater(self, samples, pad_to_length=None):
+ """Merge samples of different tasks to form two mini-batches.
+ Args:
+ samples (List[Tuple]): samples to collate
+ Returns:
+ Tuple[dict]: two mini-batch containing the data of different tasks
+ """
+
+ samples_v1 = [] # containing image-text pairs
+ samples_v2 = [] # containing detection data, text data and image data
+ for sample_tuple in samples:
+ samples_v1 += sample_tuple[0]
+ samples_v2 += sample_tuple[1]
+ if samples_v2 != []:
+ res_v1 = collate(samples_v1, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
+ res_v2 = collate(samples_v2, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
+ return res_v1, res_v2
+ else:
+ res_v1 = collate(samples_v1, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
+ return res_v1
diff --git a/data/pretrain_data/__pycache__/unify_dataset.cpython-37.pyc b/data/pretrain_data/__pycache__/unify_dataset.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..88f23e503dd57bbb4e1d7f6d43b25f1fb0f38c4b
Binary files /dev/null and b/data/pretrain_data/__pycache__/unify_dataset.cpython-37.pyc differ
diff --git a/data/pretrain_data/__pycache__/unify_dataset.cpython-38.pyc b/data/pretrain_data/__pycache__/unify_dataset.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f46057fd6ccf05c9a4d676bcb4ee4ef2a58ac6f6
Binary files /dev/null and b/data/pretrain_data/__pycache__/unify_dataset.cpython-38.pyc differ
diff --git a/data/pretrain_data/__pycache__/unify_dataset.cpython-39.pyc b/data/pretrain_data/__pycache__/unify_dataset.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..55cc94deb0ee02404a461ab308f8cfd479222309
Binary files /dev/null and b/data/pretrain_data/__pycache__/unify_dataset.cpython-39.pyc differ
diff --git a/data/pretrain_data/unify_dataset.py b/data/pretrain_data/unify_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..a7a4f4cc87af62864a2bd055b4d3de96ae7e0579
--- /dev/null
+++ b/data/pretrain_data/unify_dataset.py
@@ -0,0 +1,1087 @@
+# Modified from OFA code.
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+from io import BytesIO
+
+import math
+import logging
+import random
+import warnings
+
+import numpy as np
+import torch
+import base64
+from torchvision import transforms
+
+from PIL import Image, ImageFile
+
+from data import data_utils
+from data.ofa_dataset import OFADataset
+from utils.vision_helper import RandomAugment
+import utils.transforms as T
+
+import os
+
+from data.video_utils import VIDEO_READER_FUNCS
+from torchvision.transforms import InterpolationMode
+
+# audio
+from data.audio_utils import get_audio_features, int16_to_float32, float32_to_int16, AUDIO_CFG
+import soundfile as sf
+import librosa
+
+from decord.bridge import to_torch
+import decord
+
+
+import random
+
+ImageFile.LOAD_TRUNCATED_IMAGES = True
+ImageFile.MAX_IMAGE_PIXELS = None
+Image.MAX_IMAGE_PIXELS = None
+
+logger = logging.getLogger(__name__)
+warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
+
+
+def get_whole_word_mask(bpe, dictionary):
+ if bpe is not None:
+
+ def is_beginning_of_word(i):
+ if i < dictionary.nspecial:
+ # special elements are always considered beginnings
+ return True
+ tok = dictionary[i]
+ if tok.startswith("madeupword"):
+ return True
+ try:
+ return bpe.is_beginning_of_word(tok)
+ except ValueError:
+ return True
+
+ mask_whole_words = torch.ByteTensor(
+ list(map(is_beginning_of_word, range(len(dictionary))))
+ )
+ return mask_whole_words
+ return None
+
+
+def collate(samples, pad_idx, eos_idx):
+ if len(samples) == 0:
+ return {}
+
+ def merge(key, samples=samples):
+ return data_utils.collate_tokens(
+ [s[key] for s in samples],
+ pad_idx,
+ eos_idx=eos_idx,
+ )
+
+
+ id = np.array([s["id"] for s in samples])
+ src_tokens = merge("source")
+ src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
+
+ patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
+ patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
+
+
+
+ patch_videos = torch.stack([sample['patch_video'] for sample in samples], dim=0)
+ patch_types = torch.cat([sample['patch_type'] for sample in samples])
+
+ patch_audios = torch.stack([sample['patch_audio'] for sample in samples], dim=0)
+
+
+ code_masks = None
+ if samples[0].get("code_mask", None) is not None:
+ code_masks = torch.cat([sample['code_mask'] for sample in samples])
+
+ conf = torch.cat([s['conf'] for s in samples], dim=0)
+
+ prev_output_tokens = None
+ target = None
+ if samples[0].get("target", None) is not None:
+ target = merge("target")
+ tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples])
+ ntokens = tgt_lengths.sum().item()
+
+ if samples[0].get("prev_output_tokens", None) is not None:
+ prev_output_tokens = merge("prev_output_tokens")
+ else:
+ ntokens = src_lengths.sum().item()
+
+ batch = {
+ "id": id,
+ "nsentences": len(samples),
+ "ntokens": ntokens,
+ "net_input": {
+ "src_tokens": src_tokens,
+ "src_lengths": src_lengths,
+ "patch_images": patch_images,
+ "patch_videos": patch_videos,
+ "patch_masks": patch_masks,
+ "code_masks": code_masks,
+ "prev_output_tokens": prev_output_tokens,
+ "patch_types": patch_types,
+ "patch_audios": patch_audios,
+ },
+ "target": target,
+ "conf": conf
+ }
+
+
+ return batch
+
+
+class UnifyDataset(OFADataset):
+ def __init__(
+ self,
+ split,
+ dataset,
+ bpe,
+ src_dict,
+ tgt_dict=None,
+ max_src_length=128,
+ max_tgt_length=30,
+ seed=7,
+ code_dict_size=8192,
+ num_bins=1000,
+ patch_image_size=384,
+ code_image_size=128,
+ all_object_list=None,
+ all_caption_list=None,
+ type2ans_dict=None,
+ ans2type_dict=None,
+ max_image_size=512,
+ mask_ratio=0.3,
+ random_ratio=0.0,
+ keep_ratio=0.0,
+ mask_length="span-poisson",
+ poisson_lambda=3.0,
+ replace_length=1,
+ read_from_img_path=False,
+ image_dir='/gpfsscratch/rech/dyf/ugz83ue/data',
+ no_image_transform=False,
+ patch_frame_size=224,
+ num_frames=4,
+ num_tries=2,
+ video_cnt=2,
+ all_caption_video_list=None,
+ audio_cfg=AUDIO_CFG,
+ max_audio_len = 480000,
+ sample_rate=48000,
+ audio_cnt=2,
+ all_caption_audio_list=None,
+ audio_dataset=None,
+ video_dataset=None,
+ sample_type='rand',
+ image_text_dataset=None,
+ image_text_cnt=1,
+ other_data_cnt=8,
+ init_image_text_dataset=None,
+ init_text_dataset=None,
+ init_dataset_epoch=0,
+ image_text_vqa_dataset=None,
+ image_text_vqa_cnt=1,
+ image_text_ground_dataset=None,
+ image_text_ground_cnt=1,
+ only_video_data=None,
+ only_audio_data=None,
+ video_text_dataset=None,
+ video_text_cnt=1,
+ audio_text_dataset=None,
+ audio_text_cnt=1,
+ audio_with_video=False,
+ ):
+ super().__init__(split, dataset, bpe, src_dict, tgt_dict)
+ self.max_src_length = max_src_length
+ self.max_tgt_length = max_tgt_length
+ self.seed = seed
+ self.code_dict_size = code_dict_size
+ self.num_bins = num_bins
+ self.patch_image_size = patch_image_size
+ self.code_image_size = code_image_size
+ self.patch_frame_size = patch_frame_size
+
+
+
+ self.image_text_dataset = image_text_dataset
+ self.image_text_cnt = image_text_cnt
+
+ self.image_text_ground_dataset = image_text_ground_dataset
+ self.image_text_ground_cnt = image_text_ground_cnt
+
+ self.image_text_vqa_dataset = image_text_vqa_dataset
+ self.image_text_vqa_cnt = image_text_vqa_cnt
+
+ self.other_data_cnt = other_data_cnt
+ # audio
+ self.audio_dataset = audio_dataset
+ self.audio_cnt=audio_cnt
+ self.epoch = 0
+ self.audio_with_video = audio_with_video
+
+ ## video
+ self.video_text_dataset = video_text_dataset
+ self.video_text_cnt = video_text_cnt
+
+ self.audio_text_dataset = audio_text_dataset
+ self.audio_text_cnt = audio_text_cnt
+
+
+ # init dataset
+ self.init_image_text_dataset = init_image_text_dataset
+ self.init_dataset_epoch = init_dataset_epoch
+
+ self.init_text_dataset = init_text_dataset
+
+ self.sample_rate = sample_rate
+
+
+ self.all_object_list = all_object_list
+ self.all_caption_list = all_caption_list
+ self.type2ans_dict = type2ans_dict
+ self.ans2type_dict = ans2type_dict
+
+ self.mask_ratio = mask_ratio
+ self.random_ratio = random_ratio
+ self.keep_ratio = keep_ratio
+ self.mask_length = mask_length
+ self.poisson_lambda = poisson_lambda
+ self.replace_length = replace_length
+ if self.replace_length not in [-1, 0, 1]:
+ raise ValueError(f"invalid arg: replace_length={self.replace_length}")
+ if self.mask_length not in ["subword", "word", "span-poisson"]:
+ raise ValueError(f"invalid arg: mask-length={self.mask_length}")
+ if self.mask_length == "subword" and self.replace_length not in [0, 1]:
+ raise ValueError(f"if using subwords, use replace-length=1 or 0")
+
+ self.mask_idx = src_dict.index("")
+ self.mask_whole_word = (
+ get_whole_word_mask(self.bpe, self.src_dict)
+ if self.mask_length != "subword"
+ else None
+ )
+ self.mask_span_distribution = None
+ if self.mask_length == "span-poisson":
+ _lambda = self.poisson_lambda
+ lambda_to_the_k = 1
+ e_to_the_minus_lambda = math.exp(-_lambda)
+ k_factorial = 1
+ ps = []
+ for k in range(0, 128):
+ ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial)
+ lambda_to_the_k *= _lambda
+ k_factorial *= k + 1
+ if ps[-1] < 0.0000001:
+ break
+ ps = torch.FloatTensor(ps)
+ self.mask_span_distribution = torch.distributions.Categorical(ps)
+
+ self.pos_tgt_item = self.encode_text(" yes")
+ self.neg_tgt_item = self.encode_text(" no")
+
+ self.mask_left = self.mask_top = int(0.5 * self.code_image_size)
+ self.mask_right = self.mask_bottom = int(1.5 * self.code_image_size)
+ self.mask_ids = [
+ i*self.code_image_size*2+j
+ for i in range(self.code_image_size*2) for j in range(self.code_image_size*2)
+ if not (self.mask_left <= i < self.mask_right and self.mask_top <= j < self.mask_bottom)
+ ]
+
+ scales = np.arange(patch_image_size, 481).tolist()
+
+ # video
+ self.video_cnt = video_cnt
+ self.video_dataset = video_dataset
+ self.num_tries = num_tries
+ type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
+
+ # for image-text pair
+ if no_image_transform:
+ self.patch_resize_transform = transforms.Compose([
+ transforms.CenterCrop(patch_image_size),
+ transforms.ToTensor(),
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
+ ])
+ self.patch_video_resize_transform = transforms.Compose([
+ transforms.CenterCrop(patch_frame_size),
+ type_transform,
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
+ ])
+ else:
+ self.patch_resize_transform = transforms.Compose([
+ T.RandomResize(scales, max_size=672),
+ transforms.CenterCrop(patch_image_size),
+ RandomAugment(2, 7, isPIL=True, augs=['Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness',
+ 'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']),
+ transforms.ToTensor(),
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
+ ])
+
+ self.patch_video_resize_transform = transforms.Compose([
+ transforms.RandomResizedCrop(patch_frame_size, scale=(0.5, 1.0),
+ interpolation=InterpolationMode.BICUBIC,),
+ transforms.RandomHorizontalFlip(),
+ transforms.RandAugment(),
+ type_transform,
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
+ ])
+
+
+
+ # for visual grounding
+ self.visual_grounding_transform = T.Compose([
+ T.RandomResize(scales, max_size=672),
+ T.ObjectCenterCrop((patch_image_size, patch_image_size)),
+ T.ToTensor(),
+ T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_image_size=max_image_size)
+ ])
+
+ self.read_from_img_path = read_from_img_path
+ self.image_dir = image_dir
+
+ # video
+ self.num_frames = num_frames
+ self.sample_type = sample_type # fps1 rand
+ self.video_reader = VIDEO_READER_FUNCS['decord']
+ self.all_caption_video_list = all_caption_video_list
+
+
+
+
+ # audio
+ self.audio_cfg = audio_cfg
+ self.max_audio_len = max_audio_len
+ self.all_caption_audio_list = all_caption_audio_list
+
+
+ self.only_video_data = only_video_data
+ self.only_audio_data = only_audio_data
+
+ def set_epoch(self, epoch, **unused):
+ self.epoch = epoch
+
+ def get_negative_caption(self, caption, gt_objects):
+ prob = random.random()
+ if gt_objects is not None and gt_objects != '' and prob > 0.6:
+ gt_object = random.choice(gt_objects.strip().split('&&'))
+ negative_object = random.choice(self.all_object_list[:-1])
+ negative_object = self.all_object_list[-1] if negative_object == gt_object else negative_object
+ negative_caption = caption.replace(gt_object, negative_object)
+ else:
+ negative_caption = random.choice(self.all_caption_list)
+ return negative_caption
+
+ def get_negative_caption_video(self, caption, gt_objects):
+ prob = random.random()
+ if gt_objects is not None and gt_objects != '' and prob > 0.6:
+ gt_object = random.choice(gt_objects.strip().split('&&'))
+ negative_object = random.choice(self.all_object_list[:-1])
+ negative_object = self.all_object_list[-1] if negative_object == gt_object else negative_object
+ negative_caption = caption.replace(gt_object, negative_object)
+ else:
+ negative_caption = random.choice(self.all_caption_video_list)
+ return negative_caption
+
+ def get_negative_caption_audio(self, caption, gt_objects):
+ prob = random.random()
+ if gt_objects is not None and gt_objects != '' and prob > 0.6:
+ gt_object = random.choice(gt_objects.strip().split('&&'))
+ negative_object = random.choice(self.all_object_list[:-1])
+ negative_object = self.all_object_list[-1] if negative_object == gt_object else negative_object
+ negative_caption = caption.replace(gt_object, negative_object)
+ else:
+ negative_caption = random.choice(self.all_caption_audio_list)
+ return negative_caption
+
+ def get_negative_answer(self, answer, conf):
+ prob = random.random()
+ if conf > (prob + 0.1) and answer in self.ans2type_dict:
+ negative_answer_type = self.ans2type_dict[answer]
+ if negative_answer_type == 'how many' and answer.isdigit() and prob > 0.5:
+ negative_answer = int(answer) + random.choice([-1, 1]) if answer != 0 else 1
+ else:
+ negative_answer_list = self.type2ans_dict[negative_answer_type]
+ negative_answer = random.choice(negative_answer_list[:-1])
+ negative_answer = negative_answer_list[-1] if negative_answer == answer else negative_answer
+ return negative_answer
+
+ negative_answer_list = self.type2ans_dict['other']
+ negative_answer = random.choice(negative_answer_list[:-1])
+ negative_answer = negative_answer_list[-1] if negative_answer == answer else negative_answer
+ return negative_answer
+
+ def process_image_text_pair(self, index, other_dataset=None):
+
+ if other_dataset is None:
+ uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = self.dataset[index]
+ else:
+ uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = other_dataset[index]
+
+ if 'video' in type:
+ patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
+ patch_audio = torch.zeros(self.max_audio_len)
+ patch_mask = torch.tensor([True])
+ patch_type = torch.tensor([1])
+
+ image_path = os.path.join(self.image_dir, image)
+ data_path = image_path
+ try:
+ max_num_frames = self.max_num_frames if hasattr(self, "max_num_frames") else -1
+ frames, frame_indices, video_duration = self.video_reader(
+ data_path, self.num_frames, self.sample_type, max_num_frames=max_num_frames
+ )
+ except Exception as e:
+ new_index = random.randint(0, len(self) - 1)
+ logger.warning(
+ f"Caught exception {e} when loading video {data_path}, "
+ f"randomly sample a new video as replacement"
+ )
+ return self.process_image_text_pair(new_index, other_dataset=other_dataset)
+
+ patch_video = self.patch_video_resize_transform(frames)
+
+ patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w)
+
+
+ conf = torch.tensor([1.0])
+
+ if type == 'video_caption':
+ tgt_caption = self.pre_caption(caption, self.max_tgt_length)
+ pos_src_caption = self.pre_caption(caption, self.max_src_length)
+ # assume the same negative samples as in for images, to test if distribution os video captions are different
+ neg_src_caption = self.pre_caption(self.get_negative_caption_video(caption, gt_objects), self.max_src_length)
+ src_item = self.encode_text(" what does the video describe?")
+ tgt_item = self.encode_text(" {}".format(tgt_caption))
+ pos_src_item = self.encode_text(' does the video describe " {} "?'.format(pos_src_caption))
+ neg_src_item = self.encode_text(' does the video describe " {} "?'.format(neg_src_caption))
+ else:
+ print(type, "not implemented")
+ assert NotImplemented
+ elif 'audio' in type:
+ patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
+ patch_video = torch.zeros((3, self.num_frames, self.patch_image_size, self.patch_image_size))
+ patch_mask = torch.tensor([True])
+ patch_type = torch.tensor([2])
+
+ image_path = os.path.join(self.image_dir, image)
+ data_path = image_path
+
+
+ try:
+ audio_data, orig_sr = librosa.load(data_path, sr=self.audio_cfg['sample_rate']) #sf.read(io.BytesIO(data_path))
+ audio_data = int16_to_float32(float32_to_int16(audio_data))
+ audio_data = torch.tensor(audio_data).float() # (T)
+ # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
+ if len(audio_data) == 0:
+ logger.warning(
+ f"Caught exception {e} when loading audio {data_path}, "
+ f"randomly sample a new audio as replacement"
+ )
+ return self.process_image_text_pair(new_index)
+
+ sample = {}
+
+ sample = get_audio_features(
+ sample, audio_data, self.max_audio_len,
+ data_truncating='fusion',
+ data_filling='repeatpad',
+ audio_cfg=self.audio_cfg
+ )
+ except Exception as e:
+ new_index = random.randint(0, len(self) - 1)
+ logger.warning(
+ f"Caught exception {e} when loading audio {data_path}, "
+ f"randomly sample a new audio as replacement"
+ )
+ return self.process_image_text_pair(new_index)
+
+
+
+ patch_audio = sample['waveform']
+
+
+
+ conf = torch.tensor([1.0])
+
+ if type == 'audio_caption':
+ tgt_caption = self.pre_caption(caption, self.max_tgt_length)
+ pos_src_caption = self.pre_caption(caption, self.max_src_length)
+ # assume the same negative samples as in for images, to test if distribution os video captions are different
+ neg_src_caption = self.pre_caption(self.get_negative_caption_audio(caption, gt_objects), self.max_src_length)
+ src_item = self.encode_text(" what does the audio describe?")
+ tgt_item = self.encode_text(" {}".format(tgt_caption))
+ pos_src_item = self.encode_text(' does the audio describe " {} "?'.format(pos_src_caption))
+ neg_src_item = self.encode_text(' does the audio describe " {} "?'.format(neg_src_caption))
+ else:
+ print(type, "not implemented")
+ assert NotImplemented
+
+
+ else:
+ # dummy video
+ patch_video = torch.zeros((3, self.num_frames, self.patch_frame_size, self.patch_frame_size))
+ patch_audio = torch.zeros(self.max_audio_len)
+ patch_type = torch.tensor([0])
+ try:
+ if self.read_from_img_path:
+ image_path = os.path.join(self.image_dir, image)
+ image = Image.open(image_path).convert("RGB")
+ else:
+ image = Image.open(BytesIO(base64.urlsafe_b64decode(image))).convert("RGB")
+ except Exception as e:
+ new_index = random.randint(0, len(self) - 1)
+ logger.warning(
+ f"Caught exception {e} when loading image {image_path}, "
+ f"randomly sample a new image as replacement"
+ )
+ return self.process_image_text_pair(new_index)
+
+ patch_image = self.patch_resize_transform(image) if type != 'visual_grounding' else None
+ patch_mask = torch.tensor([True])
+ conf = torch.tensor([1.0])
+ if type == 'caption':
+ tgt_caption = self.pre_caption(caption, self.max_tgt_length)
+ pos_src_caption = self.pre_caption(caption, self.max_src_length)
+ neg_src_caption = self.pre_caption(self.get_negative_caption(caption, gt_objects), self.max_src_length)
+ src_item = self.encode_text(" what does the image describe?")
+ tgt_item = self.encode_text(" {}".format(tgt_caption))
+ pos_src_item = self.encode_text(' does the image describe " {} "?'.format(pos_src_caption))
+ neg_src_item = self.encode_text(' does the image describe " {} "?'.format(neg_src_caption))
+ elif type == 'qa':
+ question = self.pre_question(question, self.max_src_length)
+ ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in refs.split('&&')}
+ answer = max(ref_dict, key=ref_dict.get)
+ conf = ref_dict[answer]
+ src_item = self.encode_text(" {}".format(question))
+ tgt_item = self.encode_text(" {}".format(answer))
+ conf = torch.tensor([conf])
+ pos_src_item = self.encode_text(' what is the answer to question " {} ". is " {} "?'.format(question, answer))
+ neg_src_item = self.encode_text(
+ ' what is the answer to question " {} ". is " {} "?'.format(question, self.get_negative_answer(answer, conf))
+ )
+ elif type == 'visual_grounding':
+ conf = torch.tensor([1.0])
+ w, h = image.size
+ boxes_target = {"boxes": [], "labels": [], "area": [], "size": torch.tensor([h, w])}
+ x0, y0, x1, y1 = refs.strip().split(',')
+ boxes_target["boxes"] = torch.tensor([[float(x0), float(y0), float(x1), float(y1)]])
+ boxes_target["labels"] = np.array([0])
+ boxes_target["area"] = torch.tensor([(float(x1) - float(x0)) * (float(y1) - float(y0))])
+ patch_image, boxes_target = self.visual_grounding_transform(image, boxes_target)
+ quant_x0 = "".format(int((boxes_target["boxes"][0][0] * (self.num_bins - 1)).round()))
+ quant_y0 = "".format(int((boxes_target["boxes"][0][1] * (self.num_bins - 1)).round()))
+ quant_x1 = "".format(int((boxes_target["boxes"][0][2] * (self.num_bins - 1)).round()))
+ quant_y1 = "".format(int((boxes_target["boxes"][0][3] * (self.num_bins - 1)).round()))
+ region_coord = "{} {} {} {}".format(quant_x0, quant_y0, quant_x1, quant_y1)
+ src_caption = self.pre_caption(caption, self.max_src_length)
+ src_item = self.encode_text(' which region does the text " {} " describe?'.format(src_caption))
+ tgt_item = self.encode_text(region_coord, use_bpe=False)
+ else:
+ logger.info('type {} is not implemented'.format(type))
+ raise NotImplementedError
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ target_item = torch.cat([tgt_item, self.eos_item])
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+ pos_src_item = torch.cat([self.bos_item, pos_src_item, self.eos_item]) if type != 'visual_grounding' else None
+ neg_src_item = torch.cat([self.bos_item, neg_src_item, self.eos_item]) if type != 'visual_grounding' else None
+
+ if type == 'caption' and dataset_name == 'cc12m':
+ target_item[:2] = self.src_dict.pad()
+ target_item[-1] = self.eos_item
+
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_video": patch_video,
+ "patch_mask": patch_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "conf": conf,
+ "patch_type": patch_type,
+ "patch_audio": patch_audio,
+ }
+
+ examples = [example]
+ prob = random.random()
+ if type == 'visual_grounding':
+ region_example = example.copy()
+ region_prefix_item = self.encode_text(' what does the region describe? region:')
+ region_coord_item = self.encode_text('{}'.format(region_coord), use_bpe=False)
+ region_src_item = torch.cat([region_prefix_item, region_coord_item])
+ region_tgt_item = self.encode_text(' {}'.format(self.pre_caption(caption, self.max_tgt_length)))
+ region_example["source"] = torch.cat([self.bos_item, region_src_item, self.eos_item])
+ region_example["target"] = torch.cat([region_tgt_item, self.eos_item])
+ region_example["prev_output_tokens"] = torch.cat([self.bos_item, region_tgt_item])
+ region_example["conf"] = torch.tensor([1.0])
+ examples.append(region_example)
+ elif prob >= 0.5 and self.split == 'train':
+ pos_example = example.copy()
+ pos_example["source"] = pos_src_item
+ pos_example["target"] = torch.cat([self.pos_tgt_item, self.eos_item])
+ pos_example["prev_output_tokens"] = torch.cat([self.bos_item, self.pos_tgt_item])
+ examples.append(pos_example)
+ elif self.split == 'train':
+ neg_example = example.copy()
+ neg_example["source"] = neg_src_item
+ neg_example["target"] = torch.cat([self.neg_tgt_item, self.eos_item])
+ neg_example["prev_output_tokens"] = torch.cat([self.bos_item, self.neg_tgt_item])
+ examples.append(neg_example)
+
+
+
+ return examples
+
+ def process_video_text_pair(self, index, tries=0, other_dataset=None):
+
+ if other_dataset is not None:
+ uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = other_dataset[index]
+ else:
+ uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = self.video_dataset[index]
+
+
+ patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
+ patch_audio = torch.zeros(self.max_audio_len)
+ patch_mask = torch.tensor([True])
+ patch_type = torch.tensor([1])
+
+ image_path = os.path.join(self.image_dir, image)
+ data_path = image_path
+ try:
+ max_num_frames = self.max_num_frames if hasattr(self, "max_num_frames") else -1
+ frames, frame_indices, video_duration = self.video_reader(
+ data_path, self.num_frames, self.sample_type, max_num_frames=max_num_frames
+ )
+ except Exception as e:
+ new_index = random.randint(0, len(self) - 1)
+ logger.warning(
+ f"Caught exception {e} when loading video {data_path}, "
+ f"randomly sample a new video as replacement"
+ )
+ if tries < self.num_tries:
+ return self.process_video_text_pair(new_index, tries=tries+1, other_dataset=other_dataset)
+ else:
+ print("Videos are too corrupted, try increase the num_tries")
+ raise
+
+ patch_video = self.patch_video_resize_transform(frames)
+
+ patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w)
+
+
+ conf = torch.tensor([1.0])
+
+ if type == 'video_caption':
+ tgt_caption = self.pre_caption(caption, self.max_tgt_length)
+ pos_src_caption = self.pre_caption(caption, self.max_src_length)
+ # assume the same negative samples as in for images, to test if distribution os video captions are different
+ neg_src_caption = self.pre_caption(self.get_negative_caption_video(caption, gt_objects), self.max_src_length)
+ src_item = self.encode_text(" what does the video describe?")
+ tgt_item = self.encode_text(" {}".format(tgt_caption))
+ pos_src_item = self.encode_text(' does the video describe " {} "?'.format(pos_src_caption))
+ neg_src_item = self.encode_text(' does the video describe " {} "?'.format(neg_src_caption))
+
+ elif type == 'video_qa':
+
+ question = self.pre_question(question, self.max_src_length)
+ ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in refs.split('&&')}
+ answer = max(ref_dict, key=ref_dict.get)
+ conf = ref_dict[answer]
+ src_item = self.encode_text(" {}".format(question))
+ tgt_item = self.encode_text(" {}".format(answer))
+ conf = torch.tensor([conf])
+ pos_src_item = self.encode_text(' what is the answer to question " {} ". is " {} "?'.format(question, answer))
+ neg_src_item = self.encode_text(
+ ' what is the answer to question " {} ". is " {} "?'.format(question, self.get_negative_answer(answer, conf))
+ )
+ else:
+ print(type, "not implemented")
+ assert NotImplemented
+
+
+
+
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ target_item = torch.cat([tgt_item, self.eos_item])
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+ pos_src_item = torch.cat([self.bos_item, pos_src_item, self.eos_item]) if type != 'visual_grounding' else None
+ neg_src_item = torch.cat([self.bos_item, neg_src_item, self.eos_item]) if type != 'visual_grounding' else None
+
+
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_video": patch_video,
+ "patch_mask": patch_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "conf": conf,
+ "patch_type": patch_type,
+ "patch_audio": patch_audio,
+ }
+
+ examples = [example]
+ prob = random.random()
+ if prob >= 0.5 and self.split == 'train':
+ pos_example = example.copy()
+ pos_example["source"] = pos_src_item
+ pos_example["target"] = torch.cat([self.pos_tgt_item, self.eos_item])
+ pos_example["prev_output_tokens"] = torch.cat([self.bos_item, self.pos_tgt_item])
+ examples.append(pos_example)
+ elif self.split == 'train':
+ neg_example = example.copy()
+ neg_example["source"] = neg_src_item
+ neg_example["target"] = torch.cat([self.neg_tgt_item, self.eos_item])
+ neg_example["prev_output_tokens"] = torch.cat([self.bos_item, self.neg_tgt_item])
+ examples.append(neg_example)
+
+
+
+
+ return examples
+
+ def process_audio_text_pair(self, index, other_dataset=None):
+
+ if other_dataset is not None:
+ uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = other_dataset[index]
+ else:
+ uniq_id, image, caption, question, refs, gt_objects, dataset_name, type = self.audio_dataset[index]
+
+
+
+
+ image_path = os.path.join(self.image_dir, image)
+ data_path = image_path
+
+ try:
+ if '.mp4' in data_path: # extract audio from video
+ audio_reader = decord.AudioReader(data_path, sample_rate=self.audio_cfg['sample_rate'], mono=True,)
+ audio_data = to_torch(audio_reader[:]).squeeze(0)
+ # audio_reader.seek(0)
+ else:
+ audio_data, orig_sr = sf.read(data_path)
+ if audio_data.ndim>1:
+ audio_data = np.mean(audio_data,axis=1)
+ audio_data = int16_to_float32(float32_to_int16(audio_data)) # can we skip it?
+ audio_data = torch.tensor(audio_data).float() # (T)
+
+
+ if len(audio_data) == 0:
+ logger.warning(
+ f"Caught exception {e} when loading audio {data_path}, "
+ f"randomly sample a new audio as replacement"
+ )
+ return self.process_audio_text_pair(new_index)
+
+ sample = {}
+
+ sample = get_audio_features(
+ sample, audio_data, self.max_audio_len,
+ data_truncating='rand_trunc',
+ data_filling='repeatpad',
+ audio_cfg=self.audio_cfg
+ )
+
+
+ except Exception as e:
+ new_index = random.randint(0, len(self) - 1)
+ logger.warning(
+ f"Caught exception {e} when loading audio {data_path}, "
+ f"randomly sample a new audio as replacement"
+ )
+ return self.process_audio_text_pair(new_index, other_dataset=other_dataset)
+
+
+ patch_audio = sample['waveform']
+
+ patch_image = torch.zeros((3, self.patch_image_size, self.patch_image_size))
+ patch_video = torch.zeros((3, self.num_frames, self.patch_frame_size, self.patch_frame_size))
+
+ patch_mask = torch.tensor([True])
+
+ patch_type = torch.tensor([2])
+
+
+
+ conf = torch.tensor([1.0])
+
+ if 'caption' in type:
+ tgt_caption = self.pre_caption(caption, self.max_tgt_length)
+ pos_src_caption = self.pre_caption(caption, self.max_src_length)
+ # assume the same negative samples as in for images, to test if distribution os video captions are different
+ neg_src_caption = self.pre_caption(self.get_negative_caption_audio(caption, gt_objects), self.max_src_length)
+ src_item = self.encode_text(" what does the audio describe?")
+ tgt_item = self.encode_text(" {}".format(tgt_caption))
+ pos_src_item = self.encode_text(' does the audio describe " {} "?'.format(pos_src_caption))
+ neg_src_item = self.encode_text(' does the audio describe " {} "?'.format(neg_src_caption))
+ else:
+ print(type, "not implemented")
+ assert NotImplemented
+
+
+
+ src_item = torch.cat([self.bos_item, src_item, self.eos_item])
+ target_item = torch.cat([tgt_item, self.eos_item])
+ prev_output_item = torch.cat([self.bos_item, tgt_item])
+ pos_src_item = torch.cat([self.bos_item, pos_src_item, self.eos_item]) if type != 'visual_grounding' else None
+ neg_src_item = torch.cat([self.bos_item, neg_src_item, self.eos_item]) if type != 'visual_grounding' else None
+
+
+ example = {
+ "id": uniq_id,
+ "source": src_item,
+ "patch_image": patch_image,
+ "patch_video": patch_video,
+ "patch_mask": patch_mask,
+ "target": target_item,
+ "prev_output_tokens": prev_output_item,
+ "conf": conf,
+ "patch_type": patch_type,
+ "patch_audio": patch_audio,
+ }
+
+ examples = [example]
+ prob = random.random()
+ if prob >= 0.5 and self.split == 'train':
+ pos_example = example.copy()
+ pos_example["source"] = pos_src_item
+ pos_example["target"] = torch.cat([self.pos_tgt_item, self.eos_item])
+ pos_example["prev_output_tokens"] = torch.cat([self.bos_item, self.pos_tgt_item])
+ examples.append(pos_example)
+ elif self.split == 'train':
+ neg_example = example.copy()
+ neg_example["source"] = neg_src_item
+ neg_example["target"] = torch.cat([self.neg_tgt_item, self.eos_item])
+ neg_example["prev_output_tokens"] = torch.cat([self.bos_item, self.neg_tgt_item])
+ examples.append(neg_example)
+
+
+
+
+ return examples
+
+
+ def __getitem__(self, index):
+ with data_utils.numpy_seed(self.seed, self.epoch):
+
+ extra_samples = []
+
+
+
+
+ if self.only_video_data is not None:
+ pair_samples = self.process_video_text_pair(index, other_dataset=self.dataset)
+
+ elif self.only_audio_data is not None:
+ pair_samples = self.process_audio_text_pair(index, other_dataset=self.dataset)
+ else:
+ pair_samples = self.process_image_text_pair(index)
+
+
+ if self.split == 'train' and self.dataset.data_cnt % self.image_text_vqa_cnt == 0:
+ if self.image_text_vqa_dataset:
+ pair_samples += self.process_image_text_pair(0, other_dataset=self.image_text_vqa_dataset)
+
+ if self.split == 'train' and self.dataset.data_cnt % self.image_text_ground_cnt == 0:
+ if self.image_text_ground_dataset:
+ pair_samples += self.process_image_text_pair(0, other_dataset=self.image_text_ground_dataset)
+
+
+ if self.split == 'train' and self.dataset.data_cnt % self.image_text_cnt == 0:
+ if self.image_text_dataset:
+ pair_samples += self.process_image_text_pair(0, other_dataset=self.image_text_dataset)
+
+
+
+ if self.split == 'train' and self.dataset.data_cnt % self.audio_cnt == 0:
+ if self.audio_with_video:
+ extra_samples += self.process_audio_text_pair(0) if self.audio_dataset else []
+ else:
+ pair_samples += self.process_audio_text_pair(0) if self.audio_dataset else []
+
+ if self.split == 'train' and self.dataset.data_cnt % self.audio_text_cnt == 0:
+ if self.audio_text_dataset:
+ if self.audio_with_video:
+ extra_samples += self.process_audio_text_pair(0, other_dataset=self.audio_text_dataset)
+ else:
+ pair_samples += self.process_audio_text_pair(0, other_dataset=self.audio_text_dataset)
+
+
+ if self.split == 'train' and self.dataset.data_cnt % self.video_cnt == 0:
+ extra_samples += self.process_video_text_pair(0) if self.video_dataset else []
+
+ if self.split == 'train' and self.dataset.data_cnt % self.video_text_cnt == 0:
+ if self.video_text_dataset:
+ extra_samples += self.process_video_text_pair(0, other_dataset=self.video_text_dataset)
+
+
+ return pair_samples, extra_samples
+
+ def word_starts(self, source):
+ if self.mask_whole_word is not None:
+ is_word_start = self.mask_whole_word.gather(0, source)
+ else:
+ is_word_start = torch.ones(source.size())
+ is_word_start[0] = 0
+ is_word_start[-1] = 0
+ return is_word_start
+
+ def add_whole_word_mask(self, source, p):
+ is_word_start = self.word_starts(source)
+ num_to_mask = int(math.ceil(is_word_start.float().sum() * p))
+ num_inserts = 0
+ if num_to_mask == 0:
+ return source
+
+ if self.mask_span_distribution is not None:
+ lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,))
+
+ # Make sure we have enough to mask
+ cum_length = torch.cumsum(lengths, 0)
+ while cum_length[-1] < num_to_mask:
+ lengths = torch.cat(
+ [
+ lengths,
+ self.mask_span_distribution.sample(sample_shape=(num_to_mask,)),
+ ],
+ dim=0,
+ )
+ cum_length = torch.cumsum(lengths, 0)
+
+ # Trim to masking budget
+ i = 0
+ while cum_length[i] < num_to_mask:
+ i += 1
+ lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1])
+ num_to_mask = i + 1
+ lengths = lengths[:num_to_mask]
+
+ # Handle 0-length mask (inserts) separately
+ lengths = lengths[lengths > 0]
+ num_inserts = num_to_mask - lengths.size(0)
+ num_to_mask -= num_inserts
+ if num_to_mask == 0:
+ return self.add_insertion_noise(source, num_inserts / source.size(0))
+
+ assert (lengths > 0).all()
+ else:
+ lengths = torch.ones((num_to_mask,)).long()
+ assert is_word_start[-1] == 0
+ word_starts = is_word_start.nonzero(as_tuple=False)
+ indices = word_starts[
+ torch.randperm(word_starts.size(0))[:num_to_mask]
+ ].squeeze(1)
+ mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio
+
+ source_length = source.size(0)
+ assert source_length - 1 not in indices
+ to_keep = torch.ones(source_length, dtype=torch.bool)
+ is_word_start[
+ -1
+ ] = 255 # acts as a long length, so spans don't go over the end of doc
+ if self.replace_length == 0:
+ to_keep[indices] = 0
+ else:
+ # keep index, but replace it with [MASK]
+ source[indices] = self.mask_idx
+ source[indices[mask_random]] = torch.randint(
+ 4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
+ )
+
+ if self.mask_span_distribution is not None:
+ assert len(lengths.size()) == 1
+ assert lengths.size() == indices.size()
+ lengths -= 1
+ while indices.size(0) > 0:
+ assert lengths.size() == indices.size()
+ lengths -= is_word_start[indices + 1].long()
+ uncompleted = lengths >= 0
+ indices = indices[uncompleted] + 1
+ mask_random = mask_random[uncompleted]
+ lengths = lengths[uncompleted]
+ if self.replace_length != -1:
+ # delete token
+ to_keep[indices] = 0
+ else:
+ # keep index, but replace it with [MASK]
+ source[indices] = self.mask_idx
+ source[indices[mask_random]] = torch.randint(
+ 4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
+ )
+ else:
+ # A bit faster when all lengths are 1
+ while indices.size(0) > 0:
+ uncompleted = is_word_start[indices + 1] == 0
+ indices = indices[uncompleted] + 1
+ mask_random = mask_random[uncompleted]
+ if self.replace_length != -1:
+ # delete token
+ to_keep[indices] = 0
+ else:
+ # keep index, but replace it with [MASK]
+ source[indices] = self.mask_idx
+ source[indices[mask_random]] = torch.randint(
+ 4, len(self.tgt_dict) - self.code_dict_size - self.num_bins, size=(mask_random.sum(),)
+ )
+
+ assert source_length - 1 not in indices
+
+ source = source[to_keep]
+
+ if num_inserts > 0:
+ source = self.add_insertion_noise(source, num_inserts / source.size(0))
+
+ return source
+
+ def add_insertion_noise(self, tokens, p):
+ if p == 0.0:
+ return tokens
+
+ num_tokens = len(tokens)
+ n = int(math.ceil(num_tokens * p))
+
+ noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1
+ noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool)
+ noise_mask[noise_indices] = 1
+ result = torch.LongTensor(n + len(tokens)).fill_(-1)
+
+ num_random = int(math.ceil(n * self.random_ratio))
+ result[noise_indices[num_random:]] = self.mask_idx
+ result[noise_indices[:num_random]] = torch.randint(
+ low=4, high=len(self.tgt_dict)-self.code_dict_size-self.num_bins, size=(num_random,)
+ )
+
+ result[~noise_mask] = tokens
+
+ assert (result >= 0).all()
+ return result
+
+ def collater(self, samples, pad_to_length=None):
+ """Merge samples of different tasks to form two mini-batches.
+ Args:
+ samples (List[Tuple]): samples to collate
+ Returns:
+ Tuple[dict]: two mini-batch containing the data of different tasks
+ """
+
+ samples_v1 = [] # containing image-text pairs
+ samples_v2 = [] # containing detection data, text data and image data
+ for sample_tuple in samples:
+ samples_v1 += sample_tuple[0]
+ samples_v2 += sample_tuple[1]
+ if samples_v2 != []:
+ res_v1 = collate(samples_v1, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
+ res_v2 = collate(samples_v2, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
+ return res_v1, res_v2
+ else:
+ res_v1 = collate(samples_v1, pad_idx=self.src_dict.pad(), eos_idx=self.eos)
+ return res_v1
diff --git a/data/video_utils.py b/data/video_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..e7b613e5bafe964865863d55389f9acbf9d60160
--- /dev/null
+++ b/data/video_utils.py
@@ -0,0 +1,125 @@
+"""
+Modified from https://github.com/m-bain/frozen-in-time/blob/22a91d78405ec6032fdf521ae1ff5573358e632f/base/base_dataset.py
+"""
+import random
+import av
+import decord
+import torch
+import numpy as np
+import math
+# decord.bridge.set_bridge("torch")
+
+from decord.bridge import to_torch
+
+def pts_to_secs(pts: int, time_base: float, start_pts: int) -> float:
+ """
+ Converts a present time with the given time base and start_pts offset to seconds.
+
+ Returns:
+ time_in_seconds (float): The corresponding time in seconds.
+
+ https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/data/utils.py#L54-L64
+ """
+ if pts == math.inf:
+ return math.inf
+
+ return int(pts - start_pts) * time_base
+
+
+def get_pyav_video_duration(video_reader):
+ video_stream = video_reader.streams.video[0]
+ video_duration = pts_to_secs(
+ video_stream.duration,
+ video_stream.time_base,
+ video_stream.start_time
+ )
+ return float(video_duration)
+
+
+def get_frame_indices_by_fps():
+ pass
+
+
+def get_frame_indices(num_frames, vlen, sample='rand', fix_start=None, input_fps=1, max_num_frames=-1):
+ if sample in ["rand", "middle"]:
+ acc_samples = min(num_frames, vlen)
+ # split the video into `acc_samples` intervals, and sample from each interval.
+ intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
+ ranges = []
+ for idx, interv in enumerate(intervals[:-1]):
+ ranges.append((interv, intervals[idx + 1] - 1))
+ if sample == 'rand':
+ try:
+ frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
+ except:
+ frame_indices = np.random.permutation(vlen)[:acc_samples]
+ frame_indices.sort()
+ frame_indices = list(frame_indices)
+ elif fix_start is not None:
+ frame_indices = [x[0] + fix_start for x in ranges]
+ elif sample == 'middle':
+ frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
+ else:
+ raise NotImplementedError
+
+ if len(frame_indices) < num_frames: # padded with last frame
+ padded_frame_indices = [frame_indices[-1]] * num_frames
+ padded_frame_indices[:len(frame_indices)] = frame_indices
+ frame_indices = padded_frame_indices
+ elif "fps" in sample: # fps0.5, sequentially sample frames at 0.5 fps
+ output_fps = float(sample[3:])
+ duration = float(vlen) / input_fps
+ delta = 1 / output_fps # gap between frames, this is also the clip length each frame represents
+ frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
+ frame_indices = np.around(frame_seconds * input_fps).astype(int)
+ frame_indices = [e for e in frame_indices if e < vlen]
+
+ if max_num_frames > 0 and len(frame_indices) > max_num_frames:
+ frame_indices = frame_indices[:max_num_frames]
+ # frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames)
+ else:
+ raise ValueError
+ return frame_indices
+
+
+def read_frames_av(video_path, num_frames, sample='rand', fix_start=None, max_num_frames=-1):
+ reader = av.open(video_path)
+ frames = [torch.from_numpy(f.to_rgb().to_ndarray()) for f in reader.decode(video=0)]
+ vlen = len(frames)
+ duration = get_pyav_video_duration(reader)
+ fps = vlen / float(duration)
+ frame_indices = get_frame_indices(
+ num_frames, vlen, sample=sample, fix_start=fix_start,
+ input_fps=fps, max_num_frames=max_num_frames
+ )
+ frames = torch.stack([frames[idx] for idx in frame_indices]) # (T, H, W, C), torch.uint8
+ frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8
+ return frames, frame_indices, duration
+
+# decord.bridge.set_bridge("torch")
+def read_frames_decord(video_path, num_frames, sample='rand', fix_start=None, max_num_frames=-1):
+ video_reader = decord.VideoReader(video_path, num_threads=1)
+ vlen = len(video_reader)
+ fps = video_reader.get_avg_fps()
+ duration = vlen / float(fps)
+ frame_indices = get_frame_indices(
+ num_frames, vlen, sample=sample, fix_start=fix_start,
+ input_fps=fps, max_num_frames=max_num_frames
+ )
+ frames = video_reader.get_batch(frame_indices) # (T, H, W, C), torch.uint8
+ frames = to_torch(frames)
+ # try:
+ # print(type(frames))
+ # frames = frames.asnumpy()
+ # frames = torch.from_numpy(frames)
+ # except:
+ # print("expt", type(frames))
+ # pass
+ frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8
+ return frames, frame_indices, duration
+
+
+VIDEO_READER_FUNCS = {
+ 'av': read_frames_av,
+ 'decord': read_frames_decord
+}
diff --git a/datasets.md b/datasets.md
new file mode 100644
index 0000000000000000000000000000000000000000..58eb16a511fbeb10240423d6ec8577da446700fa
--- /dev/null
+++ b/datasets.md
@@ -0,0 +1,44 @@
+# Datasets
+
+We provide links to download our preprocessed dataset. If you would like to process the data on your own, we will soon provide scripts for you to do so.
+
+## Pretraining
+ * A small subset of the pretraining data
+
+ The pretraining datasets used in OFA are all publicly available. Here we provide the public links to these data, it is recommended that you download the data from the links first, and then process the downloaded dataset into a similar format as the examples we provided.
+- _CC12M_: https://github.com/google-research-datasets/conceptual-12m
+- _CC3M_: https://github.com/google-research-datasets/conceptual-captions
+- _SBU_: https://www.cs.virginia.edu/~vicente/sbucaptions
+- _COCO_: https://cocodataset.org/#home
+- _VG_: https://visualgenome.org/
+- _VQAv2_: https://visualqa.org/
+- _GQA_: https://cs.stanford.edu/people/dorarad/gqa/about.html
+- _RefCOCO_/_RefCOCO+_/RefCOCOg: https://github.com/lichengunc/refer
+- _OpenImages_: https://storage.googleapis.com/openimages/web/index.html
+- _Object365_: https://www.objects365.org/overview.html
+- _YFCC100M (subset)_: https://github.com/openai/CLIP/blob/main/data/yfcc100m.md
+- _ImageNet-21K_: https://image-net.org/index.php
+- _Pile_: https://pile.eleuther.ai
+
+## Vision & Language Tasks
+ * Dataset for Caption
+ * Dataset for RefCOCO
+ * Dataset for RefCOCO+
+ * Dataset for RefCOCOg
+ * Dataset for VQAv2 (we have also provided chunked parts of the dataset files for more convenient downloading, please refer to issue #68 )
+ * Dataset for SNLI-VE
+ * Dataset for Text-to-Image Genearion
+ * Dataset for Text-to-Image Genearion (with original id)
+
+## Vision Tasks
+ * Dataset for ImageNet-1K
+
+## Language Tasks
+ * Dataset for COLA
+ * Dataset for MNLI
+ * Dataset for MRPC
+ * Dataset for QNLI
+ * Dataset for QQP
+ * Dataset for RTE
+ * Dataset for SST2
+ * Dataset for Gigaword
diff --git a/evaluate.py b/evaluate.py
new file mode 100644
index 0000000000000000000000000000000000000000..a67400d9520d10bb331c1d1c26d94404cdbbf631
--- /dev/null
+++ b/evaluate.py
@@ -0,0 +1,239 @@
+#!/usr/bin/env python3 -u
+# Copyright 2022 The OFA-Sys Team.
+# All rights reserved.
+# This source code is licensed under the Apache 2.0 license
+# found in the LICENSE file in the root directory.
+
+import logging
+import os
+import sys
+
+import numpy as np
+import torch
+from fairseq import distributed_utils, options, tasks, utils
+from fairseq.dataclass.utils import convert_namespace_to_omegaconf
+from fairseq.logging import progress_bar
+from fairseq.utils import reset_logging
+from omegaconf import DictConfig
+
+from utils import checkpoint_utils
+from utils.eval_utils import eval_step, merge_results
+from utils.zero_shot_utils import zero_shot_step
+
+logging.basicConfig(
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
+ datefmt="%Y-%m-%d %H:%M:%S",
+ level=os.environ.get("LOGLEVEL", "INFO").upper(),
+ stream=sys.stdout,
+)
+logger = logging.getLogger("ofa.evaluate")
+
+from utils.utils import print_trainable_params_percentage, setup_for_distributed
+
+def apply_half(t):
+ if t.dtype is torch.float32:
+ return t.to(dtype=torch.half)
+ return t
+
+
+def main(cfg: DictConfig, **kwargs):
+ utils.import_user_module(cfg.common)
+
+ setup_for_distributed(distributed_utils.is_master(cfg.distributed_training))
+
+ reset_logging()
+ # logger.info(cfg)
+
+ assert (
+ cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
+ ), "Must specify batch size either with --max-tokens or --batch-size"
+
+ # Fix seed for stochastic decoding
+ if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
+ np.random.seed(cfg.common.seed)
+ utils.set_torch_seed(cfg.common.seed)
+
+ use_fp16 = cfg.common.fp16
+ use_cuda = torch.cuda.is_available() and not cfg.common.cpu
+
+ if use_cuda:
+ torch.cuda.set_device(cfg.distributed_training.device_id)
+
+ # Load ensemble
+ overrides = eval(cfg.common_eval.model_overrides)
+ # Deal with beam-search / all-candidate VQA eval
+ if cfg.task._name == "vqa_gen":
+ overrides['val_inference_type'] = "beamsearch" if kwargs['beam_search_vqa_eval'] else "allcand"
+
+ logger.info("loading model(s) from {}".format(cfg.common_eval.path))
+
+ # print("cfg", cfg)
+ # print(kwargs)
+ # cfg.model.num_frames = kwargs["num_frames"]
+ # cfg.model.patch_frame_size = kwargs["patch_frame_size"]
+ # print("cfg.model", cfg.model)
+ # strict = getattr(kwargs, 'strict', True)
+ strict = kwargs['strict']
+ logger.info('load checkpoint, strict:{}'.format(strict))
+
+ if kwargs["zero_shot"]:
+ for arg_name, arg_val in overrides.items():
+ cfg.task[arg_name] = arg_val
+ # print("Zero-shot eval", cfg.task, cfg)
+
+ if hasattr(cfg.task, "add_caption"):
+ cfg.task.add_caption = False
+ print("cfg.task", cfg.task)
+ task = tasks.setup_task(cfg.task)
+ # cfg.criterion.sample_patch_num = 776
+
+
+ models, saved_cfg = checkpoint_utils.load_model_ensemble(
+ utils.split_paths(cfg.common_eval.path),
+ arg_overrides=overrides,
+ task=task,
+ suffix=cfg.checkpoint.checkpoint_suffix,
+ strict=((cfg.checkpoint.checkpoint_shard_count == 1) and strict),
+ num_shards=cfg.checkpoint.checkpoint_shard_count,
+ )
+ for m in models:
+ m.encoder.sample_patch_num = 776
+ saved_cfg.task = cfg.task
+ # print("saved_cfg", saved_cfg)
+ else:
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
+ utils.split_paths(cfg.common_eval.path),
+ arg_overrides=overrides,
+ suffix=cfg.checkpoint.checkpoint_suffix,
+ strict=((cfg.checkpoint.checkpoint_shard_count == 1) and strict),
+ num_shards=cfg.checkpoint.checkpoint_shard_count,
+ )
+
+
+
+ # task.cfg['evaluate_cfg'] = cfg.task
+ # print(task.cfg)
+ kwargs['evaluate_cfg'] = cfg.task
+ # print(kwargs)
+ # loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
+ task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)
+
+ # Move models to GPU
+ for model, ckpt_path in zip(models, utils.split_paths(cfg.common_eval.path)):
+ if kwargs['ema_eval']:
+ logger.info("loading EMA weights from {}".format(ckpt_path))
+ model.load_state_dict(checkpoint_utils.load_ema_from_checkpoint(ckpt_path)['model'])
+ model.eval()
+ print("use fp16", use_fp16)
+ if use_fp16:
+
+ model.half()
+ if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
+ model.cuda()
+ model.prepare_for_inference_(cfg)
+
+ # Load dataset (possibly sharded)
+ itr = task.get_batch_iterator(
+ dataset=task.dataset(cfg.dataset.gen_subset),
+ max_tokens=cfg.dataset.max_tokens,
+ max_sentences=cfg.dataset.batch_size,
+ max_positions=utils.resolve_max_positions(
+ task.max_positions(), *[m.max_positions() for m in models]
+ ),
+ ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
+ required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
+ seed=cfg.common.seed,
+ num_shards=cfg.distributed_training.distributed_world_size,
+ shard_id=cfg.distributed_training.distributed_rank,
+ num_workers=cfg.dataset.num_workers,
+ data_buffer_size=cfg.dataset.data_buffer_size,
+ ).next_epoch_itr(shuffle=False)
+ progress = progress_bar.progress_bar(
+ itr,
+ log_format=cfg.common.log_format,
+ log_interval=cfg.common.log_interval,
+ default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
+ )
+
+ # Initialize generator
+ generator = task.build_generator(models, cfg.generation)
+
+ results = []
+ score_sum = torch.FloatTensor([0]).cuda()
+ score_cnt = torch.FloatTensor([0]).cuda()
+
+ score_sum_list = []
+ score_cnt_list = []
+ for sample in progress:
+ if "net_input" not in sample:
+ continue
+ sample = utils.move_to_cuda(sample) if use_cuda else sample
+ sample = utils.apply_to_sample(apply_half, sample) if cfg.common.fp16 else sample
+ with torch.no_grad():
+ if kwargs["zero_shot"] and kwargs['noconstraints']:
+ result, scores = zero_shot_step(task, generator, models, sample)
+ else:
+ result, scores = eval_step(task, generator, models, sample, **kwargs)
+ ### else refcoco res, score, other_scores
+
+ # print(scores)
+ scalar = False
+ if isinstance(scores, list):
+ if not isinstance(scores[0], list):
+ try:
+ tmp = sum(scores[0])
+ scalar=False
+ except:
+ scalar=True
+ # print(scalar)
+ # print(sum(scores[0]))
+ if isinstance(scores, list) and not scalar:
+ names = result[0]
+ result = result[1]
+ if len(score_sum_list) == 0:
+ score_sum_list = [torch.FloatTensor([0]).cuda() for i in range(len(scores))]
+ score_cnt_list = [torch.FloatTensor([0]).cuda() for i in range(len(scores))]
+
+ for i in range(len(scores)):
+
+
+ score_sum_list[i] += sum(scores[i]) if scores[i] is not None else 0
+ score_cnt_list[i] += len(scores[i]) if scores[i] is not None else 0
+ else:
+ for i in range(len(scores)):
+ score_sum_list[i] += sum(scores[i]) if scores[i] is not None else 0
+ score_cnt_list[i] += len(scores[i]) if scores[i] is not None else 0
+ else:
+ score_sum += sum(scores) if scores is not None else 0
+ score_cnt += len(scores) if scores is not None else 0
+ results += result
+ progress.log({"sentences": sample["nsentences"]})
+
+
+ ### merge per metric
+ if len(score_sum_list) > 0:
+ print(names, len(score_sum_list))
+ for i in range(len(score_sum_list)):
+ print(names[i])
+ merge_results(task, cfg, logger, score_cnt_list[i], score_sum_list[i], results)
+ else:
+ merge_results(task, cfg, logger, score_cnt, score_sum, results)
+
+
+def cli_main():
+ parser = options.get_generation_parser()
+ parser.add_argument("--ema-eval", action='store_true', help="Use EMA weights to make evaluation.")
+ parser.add_argument("--beam-search-vqa-eval", action='store_true', help="Use beam search for vqa evaluation (faster inference speed but sub-optimal result), if not specified, we compute scores for each answer in the candidate set, which is slower but can obtain best result.")
+ parser.add_argument("--zero-shot", action='store_true')
+ parser.add_argument("--strict", action='store_false')
+ parser.add_argument("--noconstraints", action='store_true')
+ args = options.parse_args_and_arch(parser)
+ cfg = convert_namespace_to_omegaconf(args)
+ distributed_utils.call_main(
+ cfg, main, ema_eval=args.ema_eval, beam_search_vqa_eval=args.beam_search_vqa_eval,
+ zero_shot=args.zero_shot, strict=args.strict, noconstraints=args.noconstraints
+ )
+
+
+if __name__ == "__main__":
+ cli_main()
diff --git a/fairseq/.github/ISSUE_TEMPLATE.md b/fairseq/.github/ISSUE_TEMPLATE.md
new file mode 100644
index 0000000000000000000000000000000000000000..5c4c4493e4a8e5386b927e4f4554df925955d129
--- /dev/null
+++ b/fairseq/.github/ISSUE_TEMPLATE.md
@@ -0,0 +1,3 @@
+## 👉 [Please follow one of these issue templates](https://github.com/pytorch/fairseq/issues/new/choose) 👈
+
+Note: to keep the backlog clean and actionable, issues may be immediately closed if they do not follow one of the above issue templates.
diff --git a/fairseq/.github/ISSUE_TEMPLATE/bug_report.md b/fairseq/.github/ISSUE_TEMPLATE/bug_report.md
new file mode 100644
index 0000000000000000000000000000000000000000..aa15123d8ef25c2de745572563505cf0ddc4e351
--- /dev/null
+++ b/fairseq/.github/ISSUE_TEMPLATE/bug_report.md
@@ -0,0 +1,43 @@
+---
+name: 🐛 Bug Report
+about: Submit a bug report to help us improve
+labels: 'bug, needs triage'
+---
+
+## 🐛 Bug
+
+
+
+### To Reproduce
+
+Steps to reproduce the behavior (**always include the command you ran**):
+
+1. Run cmd '....'
+2. See error
+
+
+
+
+#### Code sample
+
+
+### Expected behavior
+
+
+
+### Environment
+
+ - fairseq Version (e.g., 1.0 or main):
+ - PyTorch Version (e.g., 1.0)
+ - OS (e.g., Linux):
+ - How you installed fairseq (`pip`, source):
+ - Build command you used (if compiling from source):
+ - Python version:
+ - CUDA/cuDNN version:
+ - GPU models and configuration:
+ - Any other relevant information:
+
+### Additional context
+
+
diff --git a/fairseq/.github/ISSUE_TEMPLATE/documentation.md b/fairseq/.github/ISSUE_TEMPLATE/documentation.md
new file mode 100644
index 0000000000000000000000000000000000000000..3a6e2e9ea4bb71102122c17ff53051eb3770cb5e
--- /dev/null
+++ b/fairseq/.github/ISSUE_TEMPLATE/documentation.md
@@ -0,0 +1,15 @@
+---
+name: 📚 Documentation/Typos
+about: Report an issue related to documentation or a typo
+labels: 'documentation, needs triage'
+---
+
+## 📚 Documentation
+
+For typos and doc fixes, please go ahead and:
+
+1. Create an issue.
+2. Fix the typo.
+3. Submit a PR.
+
+Thanks!
diff --git a/fairseq/.github/ISSUE_TEMPLATE/feature_request.md b/fairseq/.github/ISSUE_TEMPLATE/feature_request.md
new file mode 100644
index 0000000000000000000000000000000000000000..93c8668041f8a7af29e4c11e905d8b56b946dd51
--- /dev/null
+++ b/fairseq/.github/ISSUE_TEMPLATE/feature_request.md
@@ -0,0 +1,24 @@
+---
+name: 🚀 Feature Request
+about: Submit a proposal/request for a new feature
+labels: 'enhancement, help wanted, needs triage'
+---
+
+## 🚀 Feature Request
+
+
+### Motivation
+
+
+
+### Pitch
+
+
+
+### Alternatives
+
+
+
+### Additional context
+
+
diff --git a/fairseq/.github/ISSUE_TEMPLATE/how-to-question.md b/fairseq/.github/ISSUE_TEMPLATE/how-to-question.md
new file mode 100644
index 0000000000000000000000000000000000000000..04f3f15d3ed391e26ca87f726ae88f30d1d414ab
--- /dev/null
+++ b/fairseq/.github/ISSUE_TEMPLATE/how-to-question.md
@@ -0,0 +1,33 @@
+---
+name: ❓ Questions/Help
+about: If you have questions, please first search existing issues and docs
+labels: 'question, needs triage'
+---
+
+## ❓ Questions and Help
+
+### Before asking:
+1. search the issues.
+2. search the docs.
+
+
+
+#### What is your question?
+
+#### Code
+
+
+
+#### What have you tried?
+
+#### What's your environment?
+
+ - fairseq Version (e.g., 1.0 or main):
+ - PyTorch Version (e.g., 1.0)
+ - OS (e.g., Linux):
+ - How you installed fairseq (`pip`, source):
+ - Build command you used (if compiling from source):
+ - Python version:
+ - CUDA/cuDNN version:
+ - GPU models and configuration:
+ - Any other relevant information:
diff --git a/fairseq/.github/PULL_REQUEST_TEMPLATE.md b/fairseq/.github/PULL_REQUEST_TEMPLATE.md
new file mode 100644
index 0000000000000000000000000000000000000000..d005e2df4f717ea4844a8320981d77d96e425a52
--- /dev/null
+++ b/fairseq/.github/PULL_REQUEST_TEMPLATE.md
@@ -0,0 +1,16 @@
+# Before submitting
+
+- [ ] Was this discussed/approved via a Github issue? (no need for typos, doc improvements)
+- [ ] Did you read the [contributor guideline](https://github.com/pytorch/fairseq/blob/main/CONTRIBUTING.md)?
+- [ ] Did you make sure to update the docs?
+- [ ] Did you write any new necessary tests?
+
+## What does this PR do?
+Fixes # (issue).
+
+## PR review
+Anyone in the community is free to review the PR once the tests have passed.
+If we didn't discuss your PR in Github issues there's a high chance it will not be merged.
+
+## Did you have fun?
+Make sure you had fun coding 🙃
diff --git a/fairseq/.github/stale.yml b/fairseq/.github/stale.yml
new file mode 100644
index 0000000000000000000000000000000000000000..b12867dab005e7a7608d4c7138a67d409c76f7ae
--- /dev/null
+++ b/fairseq/.github/stale.yml
@@ -0,0 +1,30 @@
+# Configuration for probot-stale - https://github.com/probot/stale
+# Mostly copied from github.com/facebook/react/blob/master/.github/stale.yml
+# Number of days of inactivity before an issue becomes stale
+daysUntilStale: 90
+# Number of days of inactivity before a stale issue is closed
+daysUntilClose: 7
+# Issues with these labels will never be considered stale
+exemptLabels:
+ - bug
+# Label to use when marking an issue as stale
+staleLabel: stale
+issues:
+ # Comment to post when marking an issue as stale.
+ markComment: >
+ This issue has been automatically marked as stale.
+ **If this issue is still affecting you, please leave any comment** (for example, "bump"), and we'll keep it open.
+ We are sorry that we haven't been able to prioritize it yet. If you have any new additional information, please include it with your comment!
+ # Comment to post when closing a stale issue.
+ closeComment: >
+ Closing this issue after a prolonged period of inactivity. If this issue is still present in the latest release, please create a new issue with up-to-date information. Thank you!
+pulls:
+ # Comment to post when marking a pull request as stale.
+ markComment: >
+ This pull request has been automatically marked as stale.
+ **If this pull request is still relevant, please leave any comment** (for example, "bump"), and we'll keep it open.
+ We are sorry that we haven't been able to prioritize reviewing it yet. Your contribution is very much appreciated.
+ # Comment to post when closing a stale pull request.
+ closeComment: >
+ Closing this pull request after a prolonged period of inactivity. If this issue is still present in the latest release, please ask for this pull request to be reopened. Thank you!
+
diff --git a/fairseq/.github/workflows/build.yml b/fairseq/.github/workflows/build.yml
new file mode 100644
index 0000000000000000000000000000000000000000..981b59416f176121eded2aedfc1af6ea9ee19c84
--- /dev/null
+++ b/fairseq/.github/workflows/build.yml
@@ -0,0 +1,55 @@
+name: build
+
+on:
+ # Trigger the workflow on push to main or any pull request
+ push:
+ branches:
+ - main
+ pull_request:
+
+jobs:
+ build:
+
+ strategy:
+ max-parallel: 4
+ matrix:
+ platform: [ubuntu-latest, macos-latest]
+ python-version: [3.6, 3.7]
+
+ runs-on: ${{ matrix.platform }}
+
+ steps:
+ - uses: actions/checkout@v2
+
+ - name: Set up Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+
+ - name: Conditionally install pytorch
+ if: matrix.platform == 'windows-latest'
+ run: pip3 install torch -f https://download.pytorch.org/whl/torch_stable.html
+
+ - name: Install locally
+ run: |
+ python -m pip install --upgrade pip
+ git submodule update --init --recursive
+ python setup.py build_ext --inplace
+ python -m pip install --editable .
+
+ - name: Install optional test requirements
+ run: |
+ python -m pip install iopath transformers pyarrow
+ python -m pip install git+https://github.com/facebookresearch/fairscale.git@main
+
+ - name: Lint with flake8
+ run: |
+ pip install flake8
+ # stop the build if there are Python syntax errors or undefined names
+ flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics --extend-exclude fairseq/model_parallel/megatron
+ # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
+ flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --extend-exclude fairseq/model_parallel/megatron
+
+ - name: Run tests
+ run: |
+ python setup.py test
diff --git a/fairseq/.github/workflows/build_wheels.yml b/fairseq/.github/workflows/build_wheels.yml
new file mode 100644
index 0000000000000000000000000000000000000000..7261708596f0c781cf670119cb63c811f9c0d50c
--- /dev/null
+++ b/fairseq/.github/workflows/build_wheels.yml
@@ -0,0 +1,41 @@
+name: build_wheels
+
+on:
+ push:
+ branches:
+ - v[0-9]+.[0-9]+.[x0-9]+
+ tags:
+ - v*
+
+jobs:
+ build_wheels:
+ name: Build wheels on ${{ matrix.os }}
+ runs-on: ${{ matrix.os }}
+ strategy:
+ matrix:
+ os: [ubuntu-latest, macos-latest]
+
+ steps:
+ - uses: actions/checkout@v2
+
+ - name: Install Python
+ uses: actions/setup-python@v2
+ with:
+ python-version: '3.7'
+
+ - name: Install cibuildwheel
+ run: |
+ python -m pip install cibuildwheel
+
+ - name: Build wheels for CPython
+ run: |
+ python -m cibuildwheel --output-dir dist
+ env:
+ CIBW_BUILD: "cp36-*64 cp37-*64 cp38-*64"
+ CIBW_MANYLINUX_X86_64_IMAGE: manylinux1
+ CIBW_BEFORE_BUILD: git submodule update --init --recursive && pip install .
+
+ - uses: actions/upload-artifact@v2
+ with:
+ name: wheels
+ path: ./dist/*.whl
diff --git a/fairseq/.gitignore b/fairseq/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..4112804793c441354e6a2e6398075eea72ab6c0a
--- /dev/null
+++ b/fairseq/.gitignore
@@ -0,0 +1,136 @@
+# JetBrains PyCharm IDE
+.idea/
+
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# macOS dir files
+.DS_Store
+
+# Distribution / packaging
+.Python
+env/
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+
+# Checkpoints
+checkpoints
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+.hypothesis/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# pyenv
+.python-version
+
+# celery beat schedule file
+celerybeat-schedule
+
+# SageMath parsed files
+*.sage.py
+
+# dotenv
+.env
+
+# virtualenv
+.venv
+venv/
+ENV/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+
+# Generated files
+/fairseq/temporal_convolution_tbc
+/fairseq/modules/*_layer/*_forward.cu
+/fairseq/modules/*_layer/*_backward.cu
+/fairseq/version.py
+
+# data
+data-bin/
+
+# reranking
+/examples/reranking/rerank_data
+
+# Cython-generated C++ source files
+/fairseq/data/data_utils_fast.cpp
+/fairseq/data/token_block_utils_fast.cpp
+
+# VSCODE
+.vscode/ftp-sync.json
+.vscode/settings.json
+
+# Experimental Folder
+experimental/*
+
+# Weights and Biases logs
+wandb/
diff --git a/fairseq/.gitmodules b/fairseq/.gitmodules
new file mode 100644
index 0000000000000000000000000000000000000000..07a55d45d4f0bed755dbfc1f440f214ed43d206a
--- /dev/null
+++ b/fairseq/.gitmodules
@@ -0,0 +1,4 @@
+[submodule "fairseq/model_parallel/megatron"]
+ path = fairseq/model_parallel/megatron
+ url = https://github.com/ngoyal2707/Megatron-LM
+ branch = fairseq
diff --git a/fairseq/CODE_OF_CONDUCT.md b/fairseq/CODE_OF_CONDUCT.md
new file mode 100644
index 0000000000000000000000000000000000000000..a0cbeaab7650bf08267fbdbc9bb54e845c88f392
--- /dev/null
+++ b/fairseq/CODE_OF_CONDUCT.md
@@ -0,0 +1,77 @@
+# Code of Conduct
+
+## Our Pledge
+
+In the interest of fostering an open and welcoming environment, we as
+contributors and maintainers pledge to make participation in our project and
+our community a harassment-free experience for everyone, regardless of age, body
+size, disability, ethnicity, sex characteristics, gender identity and expression,
+level of experience, education, socio-economic status, nationality, personal
+appearance, race, religion, or sexual identity and orientation.
+
+## Our Standards
+
+Examples of behavior that contributes to creating a positive environment
+include:
+
+* Using welcoming and inclusive language
+* Being respectful of differing viewpoints and experiences
+* Gracefully accepting constructive criticism
+* Focusing on what is best for the community
+* Showing empathy towards other community members
+
+Examples of unacceptable behavior by participants include:
+
+* The use of sexualized language or imagery and unwelcome sexual attention or
+ advances
+* Trolling, insulting/derogatory comments, and personal or political attacks
+* Public or private harassment
+* Publishing others' private information, such as a physical or electronic
+ address, without explicit permission
+* Other conduct which could reasonably be considered inappropriate in a
+ professional setting
+
+## Our Responsibilities
+
+Project maintainers are responsible for clarifying the standards of acceptable
+behavior and are expected to take appropriate and fair corrective action in
+response to any instances of unacceptable behavior.
+
+Project maintainers have the right and responsibility to remove, edit, or
+reject comments, commits, code, wiki edits, issues, and other contributions
+that are not aligned to this Code of Conduct, or to ban temporarily or
+permanently any contributor for other behaviors that they deem inappropriate,
+threatening, offensive, or harmful.
+
+## Scope
+
+This Code of Conduct applies within all project spaces, and it also applies when
+an individual is representing the project or its community in public spaces.
+Examples of representing a project or community include using an official
+project e-mail address, posting via an official social media account, or acting
+as an appointed representative at an online or offline event. Representation of
+a project may be further defined and clarified by project maintainers.
+
+## Enforcement
+
+Instances of abusive, harassing, or otherwise unacceptable behavior may be
+reported by contacting the project team at . All
+complaints will be reviewed and investigated and will result in a response that
+is deemed necessary and appropriate to the circumstances. The project team is
+obligated to maintain confidentiality with regard to the reporter of an incident.
+Further details of specific enforcement policies may be posted separately.
+
+Project maintainers who do not follow or enforce the Code of Conduct in good
+faith may face temporary or permanent repercussions as determined by other
+members of the project's leadership.
+
+## Attribution
+
+This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
+available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
+
+[homepage]: https://www.contributor-covenant.org
+
+For answers to common questions about this code of conduct, see
+https://www.contributor-covenant.org/faq
+
diff --git a/fairseq/CONTRIBUTING.md b/fairseq/CONTRIBUTING.md
new file mode 100644
index 0000000000000000000000000000000000000000..3930c46196b7b6082cacc76fd5808b49677ae805
--- /dev/null
+++ b/fairseq/CONTRIBUTING.md
@@ -0,0 +1,28 @@
+# Contributing to Facebook AI Research Sequence-to-Sequence Toolkit (fairseq)
+We want to make contributing to this project as easy and transparent as
+possible.
+
+## Pull Requests
+We actively welcome your pull requests.
+
+1. Fork the repo and create your branch from `main`.
+2. If you've added code that should be tested, add tests.
+3. If you've changed APIs, update the documentation.
+4. Ensure the test suite passes.
+5. Make sure your code lints.
+6. If you haven't already, complete the Contributor License Agreement ("CLA").
+
+## Contributor License Agreement ("CLA")
+In order to accept your pull request, we need you to submit a CLA. You only need
+to do this once to work on any of Facebook's open source projects.
+
+Complete your CLA here:
+
+## Issues
+We use GitHub issues to track public bugs. Please ensure your description is
+clear and has sufficient instructions to be able to reproduce the issue.
+
+## License
+By contributing to Facebook AI Research Sequence-to-Sequence Toolkit (fairseq),
+you agree that your contributions will be licensed under the LICENSE file in
+the root directory of this source tree.
diff --git a/fairseq/LICENSE b/fairseq/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..b96dcb0480a0b0be0727976e5202a1e7b23edc3f
--- /dev/null
+++ b/fairseq/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) Facebook, Inc. and its affiliates.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/fairseq/README.md b/fairseq/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..dd687174808a6ff341f597eb6a4cc9a1687d74a1
--- /dev/null
+++ b/fairseq/README.md
@@ -0,0 +1,229 @@
+
+
+
+
+
+
+
+
+
+
+--------------------------------------------------------------------------------
+
+Fairseq(-py) is a sequence modeling toolkit that allows researchers and
+developers to train custom models for translation, summarization, language
+modeling and other text generation tasks.
+
+We provide reference implementations of various sequence modeling papers:
+
+List of implemented papers
+
+* **Convolutional Neural Networks (CNN)**
+ + [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
+ + [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
+ + [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
+ + [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
+ + [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
+* **LightConv and DynamicConv models**
+ + [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
+* **Long Short-Term Memory (LSTM) networks**
+ + Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015)
+* **Transformer (self-attention) networks**
+ + Attention Is All You Need (Vaswani et al., 2017)
+ + [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
+ + [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
+ + [Adaptive Input Representations for Neural Language Modeling (Baevski and Auli, 2018)](examples/language_model/README.adaptive_inputs.md)
+ + [Lexically constrained decoding with dynamic beam allocation (Post & Vilar, 2018)](examples/constrained_decoding/README.md)
+ + [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (Dai et al., 2019)](examples/truncated_bptt/README.md)
+ + [Adaptive Attention Span in Transformers (Sukhbaatar et al., 2019)](examples/adaptive_span/README.md)
+ + [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
+ + [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
+ + [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
+ + [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md )
+ + [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
+ + [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
+ + [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md)
+ + [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md)
+ + [Generating Medical Reports from Patient-Doctor Conversations Using Sequence-to-Sequence Models (Enarvi et al., 2020)](examples/pointer_generator/README.md)
+ + [Linformer: Self-Attention with Linear Complexity (Wang et al., 2020)](examples/linformer/README.md)
+ + [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md)
+ + [Deep Transformers with Latent Depth (Li et al., 2020)](examples/latent_depth/README.md)
+ + [Unsupervised Cross-lingual Representation Learning for Speech Recognition (Conneau et al., 2020)](https://arxiv.org/abs/2006.13979)
+ + [Robust wav2vec 2.0: Analyzing Domain Shift in Self-Supervised Pre-Training (Hsu, et al., 2021)](https://arxiv.org/abs/2104.01027)
+ + [Unsupervised Speech Recognition (Baevski, et al., 2021)](https://arxiv.org/abs/2105.11084)
+* **Non-autoregressive Transformers**
+ + Non-Autoregressive Neural Machine Translation (Gu et al., 2017)
+ + Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement (Lee et al. 2018)
+ + Insertion Transformer: Flexible Sequence Generation via Insertion Operations (Stern et al. 2019)
+ + Mask-Predict: Parallel Decoding of Conditional Masked Language Models (Ghazvininejad et al., 2019)
+ + [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
+* **Finetuning**
+ + [Better Fine-Tuning by Reducing Representational Collapse (Aghajanyan et al. 2020)](examples/rxf/README.md)
+
+
+
+### What's New:
+
+* September 2021 [`master` branch renamed to `main`](https://github.com/github/renaming).
+* July 2021 [Released DrNMT code](examples/discriminative_reranking_nmt/README.md)
+* July 2021 [Released Robust wav2vec 2.0 model](examples/wav2vec/README.md)
+* June 2021 [Released XLMR-XL and XLMR-XXL models](examples/xlmr/README.md)
+* May 2021 [Released Unsupervised Speech Recognition code](examples/wav2vec/unsupervised/README.md)
+* March 2021 [Added full parameter and optimizer state sharding + CPU offloading](examples/fully_sharded_data_parallel/README.md)
+* February 2021 [Added LASER training code](examples/laser/README.md)
+* December 2020: [Added Adaptive Attention Span code](examples/adaptive_span/README.md)
+* December 2020: [GottBERT model and code released](examples/gottbert/README.md)
+* November 2020: Adopted the [Hydra](https://github.com/facebookresearch/hydra) configuration framework
+ * [see documentation explaining how to use it for new and existing projects](docs/hydra_integration.md)
+* November 2020: [fairseq 0.10.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.10.0)
+* October 2020: [Added R3F/R4F (Better Fine-Tuning) code](examples/rxf/README.md)
+* October 2020: [Deep Transformer with Latent Depth code released](examples/latent_depth/README.md)
+* October 2020: [Added CRISS models and code](examples/criss/README.md)
+
+Previous updates
+
+* September 2020: [Added Linformer code](examples/linformer/README.md)
+* September 2020: [Added pointer-generator networks](examples/pointer_generator/README.md)
+* August 2020: [Added lexically constrained decoding](examples/constrained_decoding/README.md)
+* August 2020: [wav2vec2 models and code released](examples/wav2vec/README.md)
+* July 2020: [Unsupervised Quality Estimation code released](examples/unsupervised_quality_estimation/README.md)
+* May 2020: [Follow fairseq on Twitter](https://twitter.com/fairseq)
+* April 2020: [Monotonic Multihead Attention code released](examples/simultaneous_translation/README.md)
+* April 2020: [Quant-Noise code released](examples/quant_noise/README.md)
+* April 2020: [Initial model parallel support and 11B parameters unidirectional LM released](examples/megatron_11b/README.md)
+* March 2020: [Byte-level BPE code released](examples/byte_level_bpe/README.md)
+* February 2020: [mBART model and code released](examples/mbart/README.md)
+* February 2020: [Added tutorial for back-translation](https://github.com/pytorch/fairseq/tree/main/examples/backtranslation#training-your-own-model-wmt18-english-german)
+* December 2019: [fairseq 0.9.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.9.0)
+* November 2019: [VizSeq released (a visual analysis toolkit for evaluating fairseq models)](https://facebookresearch.github.io/vizseq/docs/getting_started/fairseq_example)
+* November 2019: [CamemBERT model and code released](examples/camembert/README.md)
+* November 2019: [BART model and code released](examples/bart/README.md)
+* November 2019: [XLM-R models and code released](examples/xlmr/README.md)
+* September 2019: [Nonautoregressive translation code released](examples/nonautoregressive_translation/README.md)
+* August 2019: [WMT'19 models released](examples/wmt19/README.md)
+* July 2019: fairseq relicensed under MIT license
+* July 2019: [RoBERTa models and code released](examples/roberta/README.md)
+* June 2019: [wav2vec models and code released](examples/wav2vec/README.md)
+
+
+
+### Features:
+
+* multi-GPU training on one machine or across multiple machines (data and model parallel)
+* fast generation on both CPU and GPU with multiple search algorithms implemented:
+ + beam search
+ + Diverse Beam Search ([Vijayakumar et al., 2016](https://arxiv.org/abs/1610.02424))
+ + sampling (unconstrained, top-k and top-p/nucleus)
+ + [lexically constrained decoding](examples/constrained_decoding/README.md) (Post & Vilar, 2018)
+* [gradient accumulation](https://fairseq.readthedocs.io/en/latest/getting_started.html#large-mini-batch-training-with-delayed-updates) enables training with large mini-batches even on a single GPU
+* [mixed precision training](https://fairseq.readthedocs.io/en/latest/getting_started.html#training-with-half-precision-floating-point-fp16) (trains faster with less GPU memory on [NVIDIA tensor cores](https://developer.nvidia.com/tensor-cores))
+* [extensible](https://fairseq.readthedocs.io/en/latest/overview.html): easily register new models, criterions, tasks, optimizers and learning rate schedulers
+* [flexible configuration](docs/hydra_integration.md) based on [Hydra](https://github.com/facebookresearch/hydra) allowing a combination of code, command-line and file based configuration
+* [full parameter and optimizer state sharding](examples/fully_sharded_data_parallel/README.md)
+* [offloading parameters to CPU](examples/fully_sharded_data_parallel/README.md)
+
+We also provide [pre-trained models for translation and language modeling](#pre-trained-models-and-examples)
+with a convenient `torch.hub` interface:
+
+``` python
+en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
+en2de.translate('Hello world', beam=5)
+# 'Hallo Welt'
+```
+
+See the PyTorch Hub tutorials for [translation](https://pytorch.org/hub/pytorch_fairseq_translation/)
+and [RoBERTa](https://pytorch.org/hub/pytorch_fairseq_roberta/) for more examples.
+
+# Requirements and Installation
+
+* [PyTorch](http://pytorch.org/) version >= 1.5.0
+* Python version >= 3.6
+* For training new models, you'll also need an NVIDIA GPU and [NCCL](https://github.com/NVIDIA/nccl)
+* **To install fairseq** and develop locally:
+
+``` bash
+git clone https://github.com/pytorch/fairseq
+cd fairseq
+pip install --editable ./
+
+# on MacOS:
+# CFLAGS="-stdlib=libc++" pip install --editable ./
+
+# to install the latest stable release (0.10.x)
+# pip install fairseq
+```
+
+* **For faster training** install NVIDIA's [apex](https://github.com/NVIDIA/apex) library:
+
+``` bash
+git clone https://github.com/NVIDIA/apex
+cd apex
+pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
+ --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
+ --global-option="--fast_multihead_attn" ./
+```
+
+* **For large datasets** install [PyArrow](https://arrow.apache.org/docs/python/install.html#using-pip): `pip install pyarrow`
+* If you use Docker make sure to increase the shared memory size either with `--ipc=host` or `--shm-size`
+ as command line options to `nvidia-docker run` .
+
+# Getting Started
+
+The [full documentation](https://fairseq.readthedocs.io/) contains instructions
+for getting started, training new models and extending fairseq with new model
+types and tasks.
+
+# Pre-trained models and examples
+
+We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below,
+as well as example training and evaluation commands.
+
+* [Translation](examples/translation/README.md): convolutional and transformer models are available
+* [Language Modeling](examples/language_model/README.md): convolutional and transformer models are available
+
+We also have more detailed READMEs to reproduce results from specific papers:
+
+* [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md)
+* [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md)
+* [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md)
+* [Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)](examples/quant_noise/README.md)
+* [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
+* [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
+* [Reducing Transformer Depth on Demand with Structured Dropout (Fan et al., 2019)](examples/layerdrop/README.md)
+* [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md)
+* [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
+* [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
+* [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
+* [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
+* [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
+* [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
+* [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
+* [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
+* [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
+* [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
+* [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
+* [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/README.conv.md)
+
+# Join the fairseq community
+
+* Twitter: https://twitter.com/fairseq
+* Facebook page: https://www.facebook.com/groups/fairseq.users
+* Google group: https://groups.google.com/forum/#!forum/fairseq-users
+
+# License
+
+fairseq(-py) is MIT-licensed.
+The license applies to the pre-trained models as well.
+
+# Citation
+
+Please cite as:
+
+``` bibtex
+@inproceedings{ott2019fairseq,
+ title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
+ author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
+ booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
+ year = {2019},
+}
+```
diff --git a/fairseq/docs/Makefile b/fairseq/docs/Makefile
new file mode 100644
index 0000000000000000000000000000000000000000..c2f5b1a89cfc9e02d1bb09027d9e1e520ba53d53
--- /dev/null
+++ b/fairseq/docs/Makefile
@@ -0,0 +1,20 @@
+# Minimal makefile for Sphinx documentation
+#
+
+# You can set these variables from the command line.
+SPHINXOPTS =
+SPHINXBUILD = python -msphinx
+SPHINXPROJ = fairseq
+SOURCEDIR = .
+BUILDDIR = _build
+
+# Put it first so that "make" without argument is like "make help".
+help:
+ @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
+
+.PHONY: help Makefile
+
+# Catch-all target: route all unknown targets to Sphinx using the new
+# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
+%: Makefile
+ @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
\ No newline at end of file
diff --git a/fairseq/docs/_static/theme_overrides.css b/fairseq/docs/_static/theme_overrides.css
new file mode 100644
index 0000000000000000000000000000000000000000..2a0764193625e1a6fd66ff8af2ccdd0ad6369188
--- /dev/null
+++ b/fairseq/docs/_static/theme_overrides.css
@@ -0,0 +1,9 @@
+.wy-table-responsive table td kbd {
+ white-space: nowrap;
+}
+.wy-table-responsive table td {
+ white-space: normal !important;
+}
+.wy-table-responsive {
+ overflow: visible !important;
+}
diff --git a/fairseq/docs/command_line_tools.rst b/fairseq/docs/command_line_tools.rst
new file mode 100644
index 0000000000000000000000000000000000000000..c16300ff5cd42d9a6c0070c2d9bec3a802eacfad
--- /dev/null
+++ b/fairseq/docs/command_line_tools.rst
@@ -0,0 +1,85 @@
+.. _Command-line Tools:
+
+Command-line Tools
+==================
+
+Fairseq provides several command-line tools for training and evaluating models:
+
+- :ref:`fairseq-preprocess`: Data pre-processing: build vocabularies and binarize training data
+- :ref:`fairseq-train`: Train a new model on one or multiple GPUs
+- :ref:`fairseq-generate`: Translate pre-processed data with a trained model
+- :ref:`fairseq-interactive`: Translate raw text with a trained model
+- :ref:`fairseq-score`: BLEU scoring of generated translations against reference translations
+- :ref:`fairseq-eval-lm`: Language model evaluation
+
+
+.. _fairseq-preprocess:
+
+fairseq-preprocess
+~~~~~~~~~~~~~~~~~~
+.. automodule:: fairseq_cli.preprocess
+
+ .. argparse::
+ :module: fairseq.options
+ :func: get_preprocessing_parser
+ :prog: fairseq-preprocess
+
+
+.. _fairseq-train:
+
+fairseq-train
+~~~~~~~~~~~~~
+.. automodule:: fairseq_cli.train
+
+ .. argparse::
+ :module: fairseq.options
+ :func: get_training_parser
+ :prog: fairseq-train
+
+
+.. _fairseq-generate:
+
+fairseq-generate
+~~~~~~~~~~~~~~~~
+.. automodule:: fairseq_cli.generate
+
+ .. argparse::
+ :module: fairseq.options
+ :func: get_generation_parser
+ :prog: fairseq-generate
+
+
+.. _fairseq-interactive:
+
+fairseq-interactive
+~~~~~~~~~~~~~~~~~~~
+.. automodule:: fairseq_cli.interactive
+
+ .. argparse::
+ :module: fairseq.options
+ :func: get_interactive_generation_parser
+ :prog: fairseq-interactive
+
+
+.. _fairseq-score:
+
+fairseq-score
+~~~~~~~~~~~~~
+.. automodule:: fairseq_cli.score
+
+ .. argparse::
+ :module: fairseq_cli.score
+ :func: get_parser
+ :prog: fairseq-score
+
+
+.. _fairseq-eval-lm:
+
+fairseq-eval-lm
+~~~~~~~~~~~~~~~
+.. automodule:: fairseq_cli.eval_lm
+
+ .. argparse::
+ :module: fairseq.options
+ :func: get_eval_lm_parser
+ :prog: fairseq-eval-lm
diff --git a/fairseq/docs/conf.py b/fairseq/docs/conf.py
new file mode 100644
index 0000000000000000000000000000000000000000..87b0db98c77d0c240c030a0b48354c86b84358d1
--- /dev/null
+++ b/fairseq/docs/conf.py
@@ -0,0 +1,134 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+#
+# fairseq documentation build configuration file, created by
+# sphinx-quickstart on Fri Aug 17 21:45:30 2018.
+#
+# This file is execfile()d with the current directory set to its
+# containing dir.
+#
+# Note that not all possible configuration values are present in this
+# autogenerated file.
+#
+# All configuration values have a default; values that are commented out
+# serve to show the default.
+
+# If extensions (or modules to document with autodoc) are in another directory,
+# add these directories to sys.path here. If the directory is relative to the
+# documentation root, use os.path.abspath to make it absolute, like shown here.
+
+import os
+import sys
+from fairseq import __version__
+
+
+# source code directory, relative to this file, for sphinx-autobuild
+sys.path.insert(0, os.path.abspath(".."))
+
+source_suffix = [".rst"]
+
+# -- General configuration ------------------------------------------------
+
+# If your documentation needs a minimal Sphinx version, state it here.
+#
+# needs_sphinx = '1.0'
+
+# Add any Sphinx extension module names here, as strings. They can be
+# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
+# ones.
+extensions = [
+ "sphinx.ext.autodoc",
+ "sphinx.ext.intersphinx",
+ "sphinx.ext.viewcode",
+ "sphinx.ext.napoleon",
+ "sphinxarg.ext",
+]
+
+# Add any paths that contain templates here, relative to this directory.
+templates_path = ["_templates"]
+
+# The master toctree document.
+master_doc = "index"
+
+# General information about the project.
+project = "fairseq"
+copyright = "Facebook AI Research (FAIR)"
+author = "Facebook AI Research (FAIR)"
+
+github_doc_root = "https://github.com/pytorch/fairseq/tree/main/docs/"
+
+# The version info for the project you're documenting, acts as replacement for
+# |version| and |release|, also used in various other places throughout the
+# built documents.
+#
+# The short X.Y version.
+version = __version__
+# The full version, including alpha/beta/rc tags.
+release = __version__
+
+# The language for content autogenerated by Sphinx. Refer to documentation
+# for a list of supported languages.
+#
+# This is also used if you do content translation via gettext catalogs.
+# Usually you set "language" from the command line for these cases.
+language = None
+
+# List of patterns, relative to source directory, that match files and
+# directories to ignore when looking for source files.
+# This patterns also effect to html_static_path and html_extra_path
+exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
+
+# The name of the Pygments (syntax highlighting) style to use.
+pygments_style = "sphinx"
+highlight_language = "python"
+
+# If true, `todo` and `todoList` produce output, else they produce nothing.
+todo_include_todos = False
+
+
+# -- Options for HTML output ----------------------------------------------
+
+# The theme to use for HTML and HTML Help pages. See the documentation for
+# a list of builtin themes.
+#
+html_theme = "sphinx_rtd_theme"
+
+# Theme options are theme-specific and customize the look and feel of a theme
+# further. For a list of options available for each theme, see the
+# documentation.
+#
+# html_theme_options = {}
+
+# Add any paths that contain custom static files (such as style sheets) here,
+# relative to this directory. They are copied after the builtin static files,
+# so a file named "default.css" will overwrite the builtin "default.css".
+html_static_path = ["_static"]
+
+html_context = {
+ "css_files": [
+ "_static/theme_overrides.css", # override wide tables in RTD theme
+ ],
+}
+
+# Custom sidebar templates, must be a dictionary that maps document names
+# to template names.
+#
+# This is required for the alabaster theme
+# refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars
+# html_sidebars = {
+# '**': [
+# 'about.html',
+# 'navigation.html',
+# 'relations.html', # needs 'show_related': True theme option to display
+# 'searchbox.html',
+# 'donate.html',
+# ]
+# }
+
+
+# Example configuration for intersphinx: refer to the Python standard library.
+intersphinx_mapping = {
+ "numpy": ("http://docs.scipy.org/doc/numpy/", None),
+ "python": ("https://docs.python.org/", None),
+ "torch": ("https://pytorch.org/docs/master/", None),
+}
diff --git a/fairseq/docs/criterions.rst b/fairseq/docs/criterions.rst
new file mode 100644
index 0000000000000000000000000000000000000000..d6b8ca6b671a32d0da4aca7b18626e0df58a7258
--- /dev/null
+++ b/fairseq/docs/criterions.rst
@@ -0,0 +1,31 @@
+.. role:: hidden
+ :class: hidden-section
+
+.. _Criterions:
+
+Criterions
+==========
+
+Criterions compute the loss function given the model and batch, roughly::
+
+ loss = criterion(model, batch)
+
+.. automodule:: fairseq.criterions
+ :members:
+
+.. autoclass:: fairseq.criterions.FairseqCriterion
+ :members:
+ :undoc-members:
+
+.. autoclass:: fairseq.criterions.adaptive_loss.AdaptiveLoss
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.criterions.composite_loss.CompositeLoss
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.criterions.cross_entropy.CrossEntropyCriterion
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.criterions.label_smoothed_cross_entropy.LabelSmoothedCrossEntropyCriterion
+ :members:
+ :undoc-members:
diff --git a/fairseq/docs/data.rst b/fairseq/docs/data.rst
new file mode 100644
index 0000000000000000000000000000000000000000..6a390cb336ab3c5fb28edec7448abc35a8e22bbb
--- /dev/null
+++ b/fairseq/docs/data.rst
@@ -0,0 +1,58 @@
+.. role:: hidden
+ :class: hidden-section
+
+.. module:: fairseq.data
+
+Data Loading and Utilities
+==========================
+
+.. _datasets:
+
+Datasets
+--------
+
+**Datasets** define the data format and provide helpers for creating
+mini-batches.
+
+.. autoclass:: fairseq.data.FairseqDataset
+ :members:
+.. autoclass:: fairseq.data.LanguagePairDataset
+ :members:
+.. autoclass:: fairseq.data.MonolingualDataset
+ :members:
+
+**Helper Datasets**
+
+These datasets wrap other :class:`fairseq.data.FairseqDataset` instances and
+provide additional functionality:
+
+.. autoclass:: fairseq.data.BacktranslationDataset
+ :members:
+.. autoclass:: fairseq.data.ConcatDataset
+ :members:
+.. autoclass:: fairseq.data.ResamplingDataset
+ :members:
+.. autoclass:: fairseq.data.RoundRobinZipDatasets
+ :members:
+.. autoclass:: fairseq.data.TransformEosDataset
+ :members:
+
+
+Dictionary
+----------
+
+.. autoclass:: fairseq.data.Dictionary
+ :members:
+
+
+Iterators
+---------
+
+.. autoclass:: fairseq.data.CountingIterator
+ :members:
+.. autoclass:: fairseq.data.EpochBatchIterator
+ :members:
+.. autoclass:: fairseq.data.GroupedIterator
+ :members:
+.. autoclass:: fairseq.data.ShardedIterator
+ :members:
diff --git a/fairseq/docs/docutils.conf b/fairseq/docs/docutils.conf
new file mode 100644
index 0000000000000000000000000000000000000000..526acffd32d16217160aee917db2b120354f20f0
--- /dev/null
+++ b/fairseq/docs/docutils.conf
@@ -0,0 +1,2 @@
+[writers]
+option-limit=0
diff --git a/fairseq/docs/fairseq_logo.png b/fairseq/docs/fairseq_logo.png
new file mode 100644
index 0000000000000000000000000000000000000000..75472cbb5ff78acc8716ad9121ed421f17f96c9a
Binary files /dev/null and b/fairseq/docs/fairseq_logo.png differ
diff --git a/fairseq/docs/getting_started.rst b/fairseq/docs/getting_started.rst
new file mode 100644
index 0000000000000000000000000000000000000000..745ad7763cee67a8dec25bdd7ba7b79cbe0b7754
--- /dev/null
+++ b/fairseq/docs/getting_started.rst
@@ -0,0 +1,216 @@
+Evaluating Pre-trained Models
+=============================
+
+First, download a pre-trained model along with its vocabularies:
+
+.. code-block:: console
+
+ > curl https://dl.fbaipublicfiles.com/fairseq/models/wmt14.v2.en-fr.fconv-py.tar.bz2 | tar xvjf -
+
+This model uses a `Byte Pair Encoding (BPE)
+vocabulary `__, so we'll have to apply
+the encoding to the source text before it can be translated. This can be
+done with the
+`apply\_bpe.py `__
+script using the ``wmt14.en-fr.fconv-cuda/bpecodes`` file. ``@@`` is
+used as a continuation marker and the original text can be easily
+recovered with e.g. ``sed s/@@ //g`` or by passing the ``--remove-bpe``
+flag to :ref:`fairseq-generate`. Prior to BPE, input text needs to be tokenized
+using ``tokenizer.perl`` from
+`mosesdecoder `__.
+
+Let's use :ref:`fairseq-interactive` to generate translations interactively.
+Here, we use a beam size of 5 and preprocess the input with the Moses
+tokenizer and the given Byte-Pair Encoding vocabulary. It will automatically
+remove the BPE continuation markers and detokenize the output.
+
+.. code-block:: console
+
+ > MODEL_DIR=wmt14.en-fr.fconv-py
+ > fairseq-interactive \
+ --path $MODEL_DIR/model.pt $MODEL_DIR \
+ --beam 5 --source-lang en --target-lang fr \
+ --tokenizer moses \
+ --bpe subword_nmt --bpe-codes $MODEL_DIR/bpecodes
+ | loading model(s) from wmt14.en-fr.fconv-py/model.pt
+ | [en] dictionary: 44206 types
+ | [fr] dictionary: 44463 types
+ | Type the input sentence and press return:
+ Why is it rare to discover new marine mammal species?
+ S-0 Why is it rare to discover new marine mam@@ mal species ?
+ H-0 -0.0643349438905716 Pourquoi est-il rare de découvrir de nouvelles espèces de mammifères marins?
+ P-0 -0.0763 -0.1849 -0.0956 -0.0946 -0.0735 -0.1150 -0.1301 -0.0042 -0.0321 -0.0171 -0.0052 -0.0062 -0.0015
+
+This generation script produces three types of outputs: a line prefixed
+with *O* is a copy of the original source sentence; *H* is the
+hypothesis along with an average log-likelihood; and *P* is the
+positional score per token position, including the
+end-of-sentence marker which is omitted from the text.
+
+Other types of output lines you might see are *D*, the detokenized hypothesis,
+*T*, the reference target, *A*, alignment info, *E* the history of generation steps.
+
+See the `README `__ for a
+full list of pre-trained models available.
+
+Training a New Model
+====================
+
+The following tutorial is for machine translation. For an example of how
+to use Fairseq for other tasks, such as :ref:`language modeling`, please see the
+``examples/`` directory.
+
+Data Pre-processing
+-------------------
+
+Fairseq contains example pre-processing scripts for several translation
+datasets: IWSLT 2014 (German-English), WMT 2014 (English-French) and WMT
+2014 (English-German). To pre-process and binarize the IWSLT dataset:
+
+.. code-block:: console
+
+ > cd examples/translation/
+ > bash prepare-iwslt14.sh
+ > cd ../..
+ > TEXT=examples/translation/iwslt14.tokenized.de-en
+ > fairseq-preprocess --source-lang de --target-lang en \
+ --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
+ --destdir data-bin/iwslt14.tokenized.de-en
+
+This will write binarized data that can be used for model training to
+``data-bin/iwslt14.tokenized.de-en``.
+
+Training
+--------
+
+Use :ref:`fairseq-train` to train a new model. Here a few example settings that work
+well for the IWSLT 2014 dataset:
+
+.. code-block:: console
+
+ > mkdir -p checkpoints/fconv
+ > CUDA_VISIBLE_DEVICES=0 fairseq-train data-bin/iwslt14.tokenized.de-en \
+ --optimizer nag --lr 0.25 --clip-norm 0.1 --dropout 0.2 --max-tokens 4000 \
+ --arch fconv_iwslt_de_en --save-dir checkpoints/fconv
+
+By default, :ref:`fairseq-train` will use all available GPUs on your machine. Use the
+``CUDA_VISIBLE_DEVICES`` environment variable to select specific GPUs and/or to
+change the number of GPU devices that will be used.
+
+Also note that the batch size is specified in terms of the maximum
+number of tokens per batch (``--max-tokens``). You may need to use a
+smaller value depending on the available GPU memory on your system.
+
+Generation
+----------
+
+Once your model is trained, you can generate translations using
+:ref:`fairseq-generate` **(for binarized data)** or
+:ref:`fairseq-interactive` **(for raw text)**:
+
+.. code-block:: console
+
+ > fairseq-generate data-bin/iwslt14.tokenized.de-en \
+ --path checkpoints/fconv/checkpoint_best.pt \
+ --batch-size 128 --beam 5
+ | [de] dictionary: 35475 types
+ | [en] dictionary: 24739 types
+ | data-bin/iwslt14.tokenized.de-en test 6750 examples
+ | model fconv
+ | loaded checkpoint trainings/fconv/checkpoint_best.pt
+ S-721 danke .
+ T-721 thank you .
+ ...
+
+To generate translations with only a CPU, use the ``--cpu`` flag. BPE
+continuation markers can be removed with the ``--remove-bpe`` flag.
+
+Advanced Training Options
+=========================
+
+Large mini-batch training with delayed updates
+----------------------------------------------
+
+The ``--update-freq`` option can be used to accumulate gradients from
+multiple mini-batches and delay updating, creating a larger effective
+batch size. Delayed updates can also improve training speed by reducing
+inter-GPU communication costs and by saving idle time caused by variance
+in workload across GPUs. See `Ott et al.
+(2018) `__ for more details.
+
+To train on a single GPU with an effective batch size that is equivalent
+to training on 8 GPUs:
+
+.. code-block:: console
+
+ > CUDA_VISIBLE_DEVICES=0 fairseq-train --update-freq 8 (...)
+
+Training with half precision floating point (FP16)
+--------------------------------------------------
+
+.. note::
+
+ FP16 training requires a Volta GPU and CUDA 9.1 or greater
+
+Recent GPUs enable efficient half precision floating point computation,
+e.g., using `Nvidia Tensor Cores
+`__.
+Fairseq supports FP16 training with the ``--fp16`` flag:
+
+.. code-block:: console
+
+ > fairseq-train --fp16 (...)
+
+Distributed training
+--------------------
+
+Distributed training in fairseq is implemented on top of ``torch.distributed``.
+The easiest way to launch jobs is with the `torch.distributed.launch
+`__ tool.
+
+For example, to train a large English-German Transformer model on 2 nodes each
+with 8 GPUs (in total 16 GPUs), run the following command on each node,
+replacing ``node_rank=0`` with ``node_rank=1`` on the second node and making
+sure to update ``--master_addr`` to the IP address of the first node:
+
+.. code-block:: console
+
+ > python -m torch.distributed.launch --nproc_per_node=8 \
+ --nnodes=2 --node_rank=0 --master_addr="192.168.1.1" \
+ --master_port=12345 \
+ $(which fairseq-train) data-bin/wmt16_en_de_bpe32k \
+ --arch transformer_vaswani_wmt_en_de_big --share-all-embeddings \
+ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
+ --lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 --warmup-updates 4000 \
+ --lr 0.0005 \
+ --dropout 0.3 --weight-decay 0.0 --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
+ --max-tokens 3584 \
+ --max-epoch 70 \
+ --fp16
+
+On SLURM clusters, fairseq will automatically detect the number of nodes and
+GPUs, but a port number must be provided:
+
+.. code-block:: console
+
+ > salloc --gpus=16 --nodes 2 (...)
+ > srun fairseq-train --distributed-port 12345 (...).
+
+Sharding very large datasets
+----------------------------
+
+It can be challenging to train over very large datasets, particularly if your
+machine does not have much system RAM. Most tasks in fairseq support training
+over "sharded" datasets, in which the original dataset has been preprocessed
+into non-overlapping chunks (or "shards").
+
+For example, instead of preprocessing all your data into a single "data-bin"
+directory, you can split the data and create "data-bin1", "data-bin2", etc.
+Then you can adapt your training command like so:
+
+.. code-block:: console
+
+ > fairseq-train data-bin1:data-bin2:data-bin3 (...)
+
+Training will now iterate over each shard, one by one, with each shard
+corresponding to an "epoch", thus reducing system memory usage.
diff --git a/fairseq/docs/hydra_integration.md b/fairseq/docs/hydra_integration.md
new file mode 100644
index 0000000000000000000000000000000000000000..6a15298382a6a16dfc4c5a4a812ea1cd0477ed52
--- /dev/null
+++ b/fairseq/docs/hydra_integration.md
@@ -0,0 +1,284 @@
+## Hydra
+
+[Hydra](https://github.com/facebookresearch/hydra) is an open-source Python
+framework that simplifies the development of research and other complex
+applications. The key feature is the ability to dynamically create a
+hierarchical configuration by composition and override it through config files
+and the command line. The name Hydra comes from its ability to run multiple
+similar jobs - much like a Hydra with multiple heads.
+
+## Motivation
+
+Until recently, all components in fairseq were configured through a shared
+`args` namespace that was created at application startup. Components declared
+their own `add_args` method to update the argparse parser, hoping that the names
+would not clash with arguments from other components. While this model works for
+smaller applications, as fairseq grew and became integrated into other
+applications, this became problematic. In order to determine how to configure
+each component, one needed to a) examine what args were added by this component,
+and b) read the code to figure out what shared arguments it is using that were
+added in other places. Reproducing models involved sharing commands that often
+contained dozens of command line switches.
+
+The model described above is still supported by fairseq for backward
+compatibility, but will be deprecated some time in the future.
+
+New components in fairseq should now create a dataclass that encapsulates all
+parameters required to configure this component. The dataclass is registered
+along with the component, and fairseq takes care of constructing and providing
+this configuration object to the component's constructor. Note that sharing
+parameters can optionally still work, but one has to explicitly point to the
+"source of truth" (see inheritance example below). These changes make components
+in fairseq more independent and re-usable by other applications: all that is
+needed to create a component is to initialize its dataclass and overwrite some
+of the defaults.
+
+While configuring fairseq through command line (using either the legacy argparse
+based or the new Hydra based entry points) is still fully supported, you can now
+take advantage of configuring fairseq completely or piece-by-piece through
+hierarchical YAML configuration files. These files can also be shipped as
+examples that others can use to run an identically configured job.
+
+Additionally, Hydra has a rich and growing [library of
+plugins](https://github.com/facebookresearch/hydra/tree/master/plugins) that
+provide functionality such as hyperparameter sweeping (including using bayesian
+optimization through the [Ax](https://github.com/facebook/Ax) library), job
+launching across various platforms, and more.
+
+## Creating or migrating components
+
+In general, each new (or updated) component should provide a companion
+[dataclass](https://www.python.org/dev/peps/pep-0557/). These dataclass are
+typically located in the same file as the component and are passed as arguments
+to the `register_*()` functions. Top-level configs that should be present in
+every fairseq application are placed in the
+[global](fairseq/dataclass/configs.py) config file and added to the
+`FairseqConfig` object.
+
+Each dataclass is a plain-old-data object, similar to a `NamedTuple`. These
+classes are decorated with a `@dataclass` decorator, and typically inherit from
+`FairseqDataclass` (which adds some functionality for backward compatibility).
+Each field must have a type, and generally has metadata (such as a help string)
+and a default value. Only primitive types or other config objects are allowed as
+data types for each field.
+
+#### Example:
+
+```python
+from dataclasses import dataclass, field
+from fairseq.dataclass import FairseqDataclass
+
+@dataclass
+class InteractiveConfig(FairseqDataclass):
+ buffer_size: int = field(
+ default=0,
+ metadata={
+ "help": "read this many sentences into a buffer before processing them"
+ },
+ )
+ input: str = field(
+ default="-",
+ metadata={"help": "file to read from; use - for stdin"},
+ )
+```
+
+### Inherting values
+
+Some components require sharing a value. For example, a learning rate scheduler
+and an optimizer may both need to know the initial learning rate value. One can
+declare a field that, by default, will inherit its value from another config
+node in the same hierarchy:
+
+```python
+@dataclass
+FairseqAdamConfig(FairseqDataclass):
+ ...
+ lr: List[float] = II("optimization.lr")
+ ...
+```
+
+`II("optimization.lr")` is syntactic sugar for `"${optimization.lr}"`, which is
+the value one can use in a YAML config file or through command line to achieve
+the same effect. Note that this assumes that there is an "optimization" config
+object in the root config and it has a field called "lr".
+
+### Tasks and Models
+
+Creating Tasks and Models works same as before, except that legacy
+implementations now inherit from `LegacyFairseq*` base classes, while new
+components inherit from `FairseqTask` and `FairseqModel` and provide a dataclass
+to the `register_*()` functions.
+
+#### Task example:
+
+```python
+@dataclass
+class LanguageModelingConfig(FairseqDataclass):
+ data: Optional[str] = field(
+ default=None, metadata={"help": "path to data directory"}
+ )
+ ...
+
+@register_task("language_modeling", dataclass=LanguageModelingConfig)
+class LanguageModelingTask(FairseqTask):
+ ...
+ @classmethod
+ def setup_task(cls, cfg: LanguageModelingConfig):
+ ...
+```
+
+#### Model example:
+
+```python
+@dataclass
+class TransformerLanguageModelConfig(FairseqDataclass):
+ activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
+ default="relu", metadata={"help": "activation function to use"}
+ )
+ dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
+ ...
+
+@register_model("transformer_lm", dataclass=TransformerLanguageModelConfig)
+class TransformerLanguageModel(FairseqLanguageModel):
+ ...
+ @classmethod
+ def build_model(cls, cfg: TransformerLanguageModelConfig, task: FairseqTask):
+ ...
+```
+
+### Other components
+
+Other components work as before, but they now take their configuration dataclass
+as the only constructor argument:
+
+```python
+@dataclass
+class MosesTokenizerConfig(FairseqDataclass):
+ source_lang: str = field(default="en", metadata={"help": "source language"})
+ ...
+
+@register_tokenizer("moses", dataclass=MosesTokenizerConfig)
+class MosesTokenizer(object):
+ def __init__(self, cfg: MosesTokenizerConfig):
+ ...
+```
+
+Note that if you are adding a new registry for a new set of components, you need
+to add it to the `FairseqConfig` object in `fairseq/dataclass/configs.py`:
+
+```python
+@dataclass
+class FairseqConfig(object):
+ ...
+ my_new_registry: Any = None
+```
+
+## Training with `fairseq-hydra-train`
+
+To fully take advantage of configuration flexibility offered by Hydra, you may
+want to train new models using the `fairseq-hydra-train` entry point. Legacy CLI
+tools such as `fairseq-train` will remain supported for the foreseeable future
+but will be deprecated eventually.
+
+On startup, Hydra will create a configuration object that contains a hierarchy
+of all the necessary dataclasses populated with their default values in the
+code. The default values are overwritten by values found in YAML files in
+`fairseq/config` directory (which currently sets minimal defaults) and then
+further overwritten by values provided through command line arguments.
+
+Some of the most common use cases are shown below:
+
+### 1. Override default values through command line:
+
+```shell script
+$ fairseq-hydra-train \
+ distributed_training.distributed_world_size=1 \
+ dataset.batch_size=2 \
+ task.data=data-bin \
+ model=transformer_lm/transformer_lm_gpt \
+ task=language_modeling \
+ optimization.max_update=5000
+```
+
+Note that along with explicitly providing values for parameters such as
+`dataset.batch_size`, this also tells Hydra to overlay configuration found in
+`fairseq/config/model/transformer_lm/transformer_lm_gpt.yaml` over the default
+values in the dataclass. If you want to train a model without specifying a
+particular architecture you can simply specify `model=transformer_lm`. This only
+works for migrated tasks and models.
+
+### 2. Replace bundled configs with an external config:
+
+```shell script
+$ fairseq-hydra-train \
+ --config-dir /path/to/external/configs \
+ --config-name wiki103
+```
+
+where `/path/to/external/configs/wiki103.yaml` contains:
+
+```yaml
+# @package _group_
+
+model:
+ _name: transformer_lm
+distributed_training:
+ distributed_world_size: 1
+dataset:
+ batch_size: 2
+task:
+ _name: language_modeling
+ data: /path/to/data
+ add_bos_token: false
+ max_target_positions: 1024
+optimization:
+ max_update: 50000
+ lr: [ 0.25 ]
+criterion: cross_entropy
+optimizer: adam
+lr_scheduler:
+ _name: cosine
+```
+
+Note that here bundled configs from `fairseq/config` directory are not used,
+however the defaults from each dataclass will still be used (unless overwritten
+by your external config).
+
+Additionally you can choose to break up your configs by creating a directory
+structure in the same location as your main config file, with the names of the
+top-level fields (such as "model", "dataset", etc), and placing config files
+with meaningful names that would populate that specific section of your
+top-level config file (for example, you might have
+`model/small_transformer_lm.yaml`, `model/big_transformer_lm.yaml`, etc). You
+can then specify the correct configuration via command line, defaults in the
+main config, or even launch all of them as a sweep (see Hydra documentation on
+how to do this).
+
+### 3. Add an external config directory to Hydra search path:
+
+This allows combining default configuration (including using any bundled config
+files), while specifying your own config files for some parts of the
+configuration.
+
+```shell script
+$ fairseq-hydra-train \
+ distributed_training.distributed_world_size=1 \
+ dataset.batch_size=2 \
+ task.data=/path/to/data/ \
+ model=transformer_lm/2_layers \
+ task=language_modeling \
+ optimization.max_update=5000 \
+ --config-dir /path/to/external/configs
+```
+
+where `/path/to/external/configs` has the following structure:
+```
+.
++-- model
+| +-- transformer_lm
+| | +-- 2_layers.yaml
+```
+
+and `2_layers.yaml` contains a copy of `transformer_lm_gpt.yaml` but with
+`decoder_layers` set to 2. You can add other configs to configure other
+components as well.
diff --git a/fairseq/docs/index.rst b/fairseq/docs/index.rst
new file mode 100644
index 0000000000000000000000000000000000000000..591db86cdf49e6f0a7a6686df2150f11418e90d0
--- /dev/null
+++ b/fairseq/docs/index.rst
@@ -0,0 +1,49 @@
+.. fairseq documentation master file, created by
+ sphinx-quickstart on Fri Aug 17 21:45:30 2018.
+ You can adapt this file completely to your liking, but it should at least
+ contain the root `toctree` directive.
+
+:github_url: https://github.com/pytorch/fairseq
+
+
+fairseq documentation
+=====================
+
+Fairseq is a sequence modeling toolkit written in `PyTorch
+ `_ that allows researchers and developers to
+train custom models for translation, summarization, language modeling and other
+text generation tasks.
+
+.. toctree::
+ :maxdepth: 1
+ :caption: Getting Started
+
+ getting_started
+ command_line_tools
+
+.. toctree::
+ :maxdepth: 1
+ :caption: Extending Fairseq
+
+ overview
+ tutorial_simple_lstm
+ tutorial_classifying_names
+
+.. toctree::
+ :maxdepth: 2
+ :caption: Library Reference
+
+ tasks
+ models
+ criterions
+ optim
+ lr_scheduler
+ data
+ modules
+
+
+Indices and tables
+==================
+
+* :ref:`genindex`
+* :ref:`search`
diff --git a/fairseq/docs/lr_scheduler.rst b/fairseq/docs/lr_scheduler.rst
new file mode 100644
index 0000000000000000000000000000000000000000..bbc09dc22e6a7ac05137954e0b9c80ca030f62f4
--- /dev/null
+++ b/fairseq/docs/lr_scheduler.rst
@@ -0,0 +1,34 @@
+.. role:: hidden
+ :class: hidden-section
+
+.. _Learning Rate Schedulers:
+
+Learning Rate Schedulers
+========================
+
+Learning Rate Schedulers update the learning rate over the course of training.
+Learning rates can be updated after each update via :func:`step_update` or at
+epoch boundaries via :func:`step`.
+
+.. automodule:: fairseq.optim.lr_scheduler
+ :members:
+
+.. autoclass:: fairseq.optim.lr_scheduler.FairseqLRScheduler
+ :members:
+ :undoc-members:
+
+.. autoclass:: fairseq.optim.lr_scheduler.cosine_lr_scheduler.CosineSchedule
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.optim.lr_scheduler.fixed_schedule.FixedSchedule
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.optim.lr_scheduler.inverse_square_root_schedule.InverseSquareRootSchedule
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.optim.lr_scheduler.reduce_lr_on_plateau.ReduceLROnPlateau
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.optim.lr_scheduler.triangular_lr_scheduler.TriangularSchedule
+ :members:
+ :undoc-members:
diff --git a/fairseq/docs/make.bat b/fairseq/docs/make.bat
new file mode 100644
index 0000000000000000000000000000000000000000..35c5085de318190514ee3b48d10060aa57a4fa50
--- /dev/null
+++ b/fairseq/docs/make.bat
@@ -0,0 +1,36 @@
+@ECHO OFF
+
+pushd %~dp0
+
+REM Command file for Sphinx documentation
+
+if "%SPHINXBUILD%" == "" (
+ set SPHINXBUILD=python -msphinx
+)
+set SOURCEDIR=.
+set BUILDDIR=_build
+set SPHINXPROJ=fairseq
+
+if "%1" == "" goto help
+
+%SPHINXBUILD% >NUL 2>NUL
+if errorlevel 9009 (
+ echo.
+ echo.The Sphinx module was not found. Make sure you have Sphinx installed,
+ echo.then set the SPHINXBUILD environment variable to point to the full
+ echo.path of the 'sphinx-build' executable. Alternatively you may add the
+ echo.Sphinx directory to PATH.
+ echo.
+ echo.If you don't have Sphinx installed, grab it from
+ echo.http://sphinx-doc.org/
+ exit /b 1
+)
+
+%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
+goto end
+
+:help
+%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
+
+:end
+popd
diff --git a/fairseq/docs/models.rst b/fairseq/docs/models.rst
new file mode 100644
index 0000000000000000000000000000000000000000..054622d587c3b7f01f17f442919140755acd8f9e
--- /dev/null
+++ b/fairseq/docs/models.rst
@@ -0,0 +1,104 @@
+.. role:: hidden
+ :class: hidden-section
+
+.. module:: fairseq.models
+
+.. _Models:
+
+Models
+======
+
+A Model defines the neural network's ``forward()`` method and encapsulates all
+of the learnable parameters in the network. Each model also provides a set of
+named *architectures* that define the precise network configuration (e.g.,
+embedding dimension, number of layers, etc.).
+
+Both the model type and architecture are selected via the ``--arch``
+command-line argument. Once selected, a model may expose additional command-line
+arguments for further configuration.
+
+.. note::
+
+ All fairseq Models extend :class:`BaseFairseqModel`, which in turn extends
+ :class:`torch.nn.Module`. Thus any fairseq Model can be used as a
+ stand-alone Module in other PyTorch code.
+
+
+Convolutional Neural Networks (CNN)
+-----------------------------------
+
+.. module:: fairseq.models.fconv
+.. autoclass:: fairseq.models.fconv.FConvModel
+ :members:
+.. autoclass:: fairseq.models.fconv.FConvEncoder
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.models.fconv.FConvDecoder
+ :members:
+
+
+Long Short-Term Memory (LSTM) networks
+--------------------------------------
+
+.. module:: fairseq.models.lstm
+.. autoclass:: fairseq.models.lstm.LSTMModel
+ :members:
+.. autoclass:: fairseq.models.lstm.LSTMEncoder
+ :members:
+.. autoclass:: fairseq.models.lstm.LSTMDecoder
+ :members:
+
+
+Transformer (self-attention) networks
+-------------------------------------
+
+.. module:: fairseq.models.transformer
+.. autoclass:: fairseq.models.transformer.TransformerModel
+ :members:
+.. autoclass:: fairseq.models.transformer.TransformerEncoder
+ :members:
+.. autoclass:: fairseq.models.transformer.TransformerEncoderLayer
+ :members:
+.. autoclass:: fairseq.models.transformer.TransformerDecoder
+ :members:
+.. autoclass:: fairseq.models.transformer.TransformerDecoderLayer
+ :members:
+
+
+Adding new models
+-----------------
+
+.. currentmodule:: fairseq.models
+.. autofunction:: fairseq.models.register_model
+.. autofunction:: fairseq.models.register_model_architecture
+.. autoclass:: fairseq.models.BaseFairseqModel
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.models.FairseqEncoderDecoderModel
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.models.FairseqEncoderModel
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.models.FairseqLanguageModel
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.models.FairseqMultiModel
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.models.FairseqEncoder
+ :members:
+.. autoclass:: fairseq.models.CompositeEncoder
+ :members:
+.. autoclass:: fairseq.models.FairseqDecoder
+ :members:
+
+
+.. _Incremental decoding:
+
+Incremental decoding
+--------------------
+
+.. autoclass:: fairseq.models.FairseqIncrementalDecoder
+ :members:
+ :undoc-members:
diff --git a/fairseq/docs/modules.rst b/fairseq/docs/modules.rst
new file mode 100644
index 0000000000000000000000000000000000000000..9631c93d4682286e1cea1ddd961d3f6ab06f2589
--- /dev/null
+++ b/fairseq/docs/modules.rst
@@ -0,0 +1,9 @@
+Modules
+=======
+
+Fairseq provides several stand-alone :class:`torch.nn.Module` classes that may
+be helpful when implementing a new :class:`~fairseq.models.BaseFairseqModel`.
+
+.. automodule:: fairseq.modules
+ :members:
+ :undoc-members:
diff --git a/fairseq/docs/optim.rst b/fairseq/docs/optim.rst
new file mode 100644
index 0000000000000000000000000000000000000000..c3326456bd9291a1d05bd3316bef5c9fb25c6c49
--- /dev/null
+++ b/fairseq/docs/optim.rst
@@ -0,0 +1,38 @@
+.. role:: hidden
+ :class: hidden-section
+
+.. _optimizers:
+
+Optimizers
+==========
+
+Optimizers update the Model parameters based on the gradients.
+
+.. automodule:: fairseq.optim
+ :members:
+
+.. autoclass:: fairseq.optim.FairseqOptimizer
+ :members:
+ :undoc-members:
+
+.. autoclass:: fairseq.optim.adadelta.Adadelta
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.optim.adagrad.Adagrad
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.optim.adafactor.FairseqAdafactor
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.optim.adam.FairseqAdam
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.optim.fp16_optimizer.FP16Optimizer
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.optim.nag.FairseqNAG
+ :members:
+ :undoc-members:
+.. autoclass:: fairseq.optim.sgd.SGD
+ :members:
+ :undoc-members:
diff --git a/fairseq/docs/overview.rst b/fairseq/docs/overview.rst
new file mode 100644
index 0000000000000000000000000000000000000000..026b3b5c7b21d071d8b8a3405898977c760d05b8
--- /dev/null
+++ b/fairseq/docs/overview.rst
@@ -0,0 +1,74 @@
+Overview
+========
+
+Fairseq can be extended through user-supplied `plug-ins
+`_. We support five kinds of
+plug-ins:
+
+- :ref:`Models` define the neural network architecture and encapsulate all of the
+ learnable parameters.
+- :ref:`Criterions` compute the loss function given the model outputs and targets.
+- :ref:`Tasks` store dictionaries and provide helpers for loading/iterating over
+ Datasets, initializing the Model/Criterion and calculating the loss.
+- :ref:`Optimizers` update the Model parameters based on the gradients.
+- :ref:`Learning Rate Schedulers` update the learning rate over the course of
+ training.
+
+**Training Flow**
+
+Given a ``model``, ``criterion``, ``task``, ``optimizer`` and ``lr_scheduler``,
+fairseq implements the following high-level training flow::
+
+ for epoch in range(num_epochs):
+ itr = task.get_batch_iterator(task.dataset('train'))
+ for num_updates, batch in enumerate(itr):
+ task.train_step(batch, model, criterion, optimizer)
+ average_and_clip_gradients()
+ optimizer.step()
+ lr_scheduler.step_update(num_updates)
+ lr_scheduler.step(epoch)
+
+where the default implementation for ``task.train_step`` is roughly::
+
+ def train_step(self, batch, model, criterion, optimizer, **unused):
+ loss = criterion(model, batch)
+ optimizer.backward(loss)
+ return loss
+
+**Registering new plug-ins**
+
+New plug-ins are *registered* through a set of ``@register`` function
+decorators, for example::
+
+ @register_model('my_lstm')
+ class MyLSTM(FairseqEncoderDecoderModel):
+ (...)
+
+Once registered, new plug-ins can be used with the existing :ref:`Command-line
+Tools`. See the Tutorial sections for more detailed walkthroughs of how to add
+new plug-ins.
+
+**Loading plug-ins from another directory**
+
+New plug-ins can be defined in a custom module stored in the user system. In
+order to import the module, and make the plugin available to *fairseq*, the
+command line supports the ``--user-dir`` flag that can be used to specify a
+custom location for additional modules to load into *fairseq*.
+
+For example, assuming this directory tree::
+
+ /home/user/my-module/
+ └── __init__.py
+
+with ``__init__.py``::
+
+ from fairseq.models import register_model_architecture
+ from fairseq.models.transformer import transformer_vaswani_wmt_en_de_big
+
+ @register_model_architecture('transformer', 'my_transformer')
+ def transformer_mmt_big(args):
+ transformer_vaswani_wmt_en_de_big(args)
+
+it is possible to invoke the :ref:`fairseq-train` script with the new architecture with::
+
+ fairseq-train ... --user-dir /home/user/my-module -a my_transformer --task translation
diff --git a/fairseq/docs/requirements.txt b/fairseq/docs/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c734a1f04f1c108d84d3a07643ac93adf6485f13
--- /dev/null
+++ b/fairseq/docs/requirements.txt
@@ -0,0 +1,2 @@
+sphinx<2.0
+sphinx-argparse
diff --git a/fairseq/docs/tasks.rst b/fairseq/docs/tasks.rst
new file mode 100644
index 0000000000000000000000000000000000000000..5f65c3c866865e50332d8e6ca012a4a81e7bea74
--- /dev/null
+++ b/fairseq/docs/tasks.rst
@@ -0,0 +1,61 @@
+.. role:: hidden
+ :class: hidden-section
+
+.. module:: fairseq.tasks
+
+.. _Tasks:
+
+Tasks
+=====
+
+Tasks store dictionaries and provide helpers for loading/iterating over
+Datasets, initializing the Model/Criterion and calculating the loss.
+
+Tasks can be selected via the ``--task`` command-line argument. Once selected, a
+task may expose additional command-line arguments for further configuration.
+
+Example usage::
+
+ # setup the task (e.g., load dictionaries)
+ task = fairseq.tasks.setup_task(args)
+
+ # build model and criterion
+ model = task.build_model(args)
+ criterion = task.build_criterion(args)
+
+ # load datasets
+ task.load_dataset('train')
+ task.load_dataset('valid')
+
+ # iterate over mini-batches of data
+ batch_itr = task.get_batch_iterator(
+ task.dataset('train'), max_tokens=4096,
+ )
+ for batch in batch_itr:
+ # compute the loss
+ loss, sample_size, logging_output = task.get_loss(
+ model, criterion, batch,
+ )
+ loss.backward()
+
+
+Translation
+-----------
+
+.. autoclass:: fairseq.tasks.translation.TranslationTask
+
+.. _language modeling:
+
+Language Modeling
+-----------------
+
+.. autoclass:: fairseq.tasks.language_modeling.LanguageModelingTask
+
+
+Adding new tasks
+----------------
+
+.. autofunction:: fairseq.tasks.register_task
+.. autoclass:: fairseq.tasks.FairseqTask
+ :members:
+ :undoc-members:
diff --git a/fairseq/docs/tutorial_classifying_names.rst b/fairseq/docs/tutorial_classifying_names.rst
new file mode 100644
index 0000000000000000000000000000000000000000..b02fec0489a86e7b1ccec481342fa4fbd93a80ae
--- /dev/null
+++ b/fairseq/docs/tutorial_classifying_names.rst
@@ -0,0 +1,415 @@
+Tutorial: Classifying Names with a Character-Level RNN
+======================================================
+
+In this tutorial we will extend fairseq to support *classification* tasks. In
+particular we will re-implement the PyTorch tutorial for `Classifying Names with
+a Character-Level RNN `_
+in fairseq. It is recommended to quickly skim that tutorial before beginning
+this one.
+
+This tutorial covers:
+
+1. **Preprocessing the data** to create dictionaries.
+2. **Registering a new Model** that encodes an input sentence with a simple RNN
+ and predicts the output label.
+3. **Registering a new Task** that loads our dictionaries and dataset.
+4. **Training the Model** using the existing command-line tools.
+5. **Writing an evaluation script** that imports fairseq and allows us to
+ interactively evaluate our model on new inputs.
+
+
+1. Preprocessing the data
+-------------------------
+
+The original tutorial provides raw data, but we'll work with a modified version
+of the data that is already tokenized into characters and split into separate
+train, valid and test sets.
+
+Download and extract the data from here:
+`tutorial_names.tar.gz `_
+
+Once extracted, let's preprocess the data using the :ref:`fairseq-preprocess`
+command-line tool to create the dictionaries. While this tool is primarily
+intended for sequence-to-sequence problems, we're able to reuse it here by
+treating the label as a "target" sequence of length 1. We'll also output the
+preprocessed files in "raw" format using the ``--dataset-impl`` option to
+enhance readability:
+
+.. code-block:: console
+
+ > fairseq-preprocess \
+ --trainpref names/train --validpref names/valid --testpref names/test \
+ --source-lang input --target-lang label \
+ --destdir names-bin --dataset-impl raw
+
+After running the above command you should see a new directory,
+:file:`names-bin/`, containing the dictionaries for *inputs* and *labels*.
+
+
+2. Registering a new Model
+--------------------------
+
+Next we'll register a new model in fairseq that will encode an input sentence
+with a simple RNN and predict the output label. Compared to the original PyTorch
+tutorial, our version will also work with batches of data and GPU Tensors.
+
+First let's copy the simple RNN module implemented in the `PyTorch tutorial
+`_.
+Create a new file named :file:`fairseq/models/rnn_classifier.py` with the
+following contents::
+
+ import torch
+ import torch.nn as nn
+
+ class RNN(nn.Module):
+
+ def __init__(self, input_size, hidden_size, output_size):
+ super(RNN, self).__init__()
+
+ self.hidden_size = hidden_size
+
+ self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
+ self.i2o = nn.Linear(input_size + hidden_size, output_size)
+ self.softmax = nn.LogSoftmax(dim=1)
+
+ def forward(self, input, hidden):
+ combined = torch.cat((input, hidden), 1)
+ hidden = self.i2h(combined)
+ output = self.i2o(combined)
+ output = self.softmax(output)
+ return output, hidden
+
+ def initHidden(self):
+ return torch.zeros(1, self.hidden_size)
+
+We must also *register* this model with fairseq using the
+:func:`~fairseq.models.register_model` function decorator. Once the model is
+registered we'll be able to use it with the existing :ref:`Command-line Tools`.
+
+All registered models must implement the :class:`~fairseq.models.BaseFairseqModel`
+interface, so we'll create a small wrapper class in the same file and register
+it in fairseq with the name ``'rnn_classifier'``::
+
+ from fairseq.models import BaseFairseqModel, register_model
+
+ # Note: the register_model "decorator" should immediately precede the
+ # definition of the Model class.
+
+ @register_model('rnn_classifier')
+ class FairseqRNNClassifier(BaseFairseqModel):
+
+ @staticmethod
+ def add_args(parser):
+ # Models can override this method to add new command-line arguments.
+ # Here we'll add a new command-line argument to configure the
+ # dimensionality of the hidden state.
+ parser.add_argument(
+ '--hidden-dim', type=int, metavar='N',
+ help='dimensionality of the hidden state',
+ )
+
+ @classmethod
+ def build_model(cls, args, task):
+ # Fairseq initializes models by calling the ``build_model()``
+ # function. This provides more flexibility, since the returned model
+ # instance can be of a different type than the one that was called.
+ # In this case we'll just return a FairseqRNNClassifier instance.
+
+ # Initialize our RNN module
+ rnn = RNN(
+ # We'll define the Task in the next section, but for now just
+ # notice that the task holds the dictionaries for the "source"
+ # (i.e., the input sentence) and "target" (i.e., the label).
+ input_size=len(task.source_dictionary),
+ hidden_size=args.hidden_dim,
+ output_size=len(task.target_dictionary),
+ )
+
+ # Return the wrapped version of the module
+ return FairseqRNNClassifier(
+ rnn=rnn,
+ input_vocab=task.source_dictionary,
+ )
+
+ def __init__(self, rnn, input_vocab):
+ super(FairseqRNNClassifier, self).__init__()
+
+ self.rnn = rnn
+ self.input_vocab = input_vocab
+
+ # The RNN module in the tutorial expects one-hot inputs, so we can
+ # precompute the identity matrix to help convert from indices to
+ # one-hot vectors. We register it as a buffer so that it is moved to
+ # the GPU when ``cuda()`` is called.
+ self.register_buffer('one_hot_inputs', torch.eye(len(input_vocab)))
+
+ def forward(self, src_tokens, src_lengths):
+ # The inputs to the ``forward()`` function are determined by the
+ # Task, and in particular the ``'net_input'`` key in each
+ # mini-batch. We'll define the Task in the next section, but for
+ # now just know that *src_tokens* has shape `(batch, src_len)` and
+ # *src_lengths* has shape `(batch)`.
+ bsz, max_src_len = src_tokens.size()
+
+ # Initialize the RNN hidden state. Compared to the original PyTorch
+ # tutorial we'll also handle batched inputs and work on the GPU.
+ hidden = self.rnn.initHidden()
+ hidden = hidden.repeat(bsz, 1) # expand for batched inputs
+ hidden = hidden.to(src_tokens.device) # move to GPU
+
+ for i in range(max_src_len):
+ # WARNING: The inputs have padding, so we should mask those
+ # elements here so that padding doesn't affect the results.
+ # This is left as an exercise for the reader. The padding symbol
+ # is given by ``self.input_vocab.pad()`` and the unpadded length
+ # of each input is given by *src_lengths*.
+
+ # One-hot encode a batch of input characters.
+ input = self.one_hot_inputs[src_tokens[:, i].long()]
+
+ # Feed the input to our RNN.
+ output, hidden = self.rnn(input, hidden)
+
+ # Return the final output state for making a prediction
+ return output
+
+Finally let's define a *named architecture* with the configuration for our
+model. This is done with the :func:`~fairseq.models.register_model_architecture`
+function decorator. Thereafter this named architecture can be used with the
+``--arch`` command-line argument, e.g., ``--arch pytorch_tutorial_rnn``::
+
+ from fairseq.models import register_model_architecture
+
+ # The first argument to ``register_model_architecture()`` should be the name
+ # of the model we registered above (i.e., 'rnn_classifier'). The function we
+ # register here should take a single argument *args* and modify it in-place
+ # to match the desired architecture.
+
+ @register_model_architecture('rnn_classifier', 'pytorch_tutorial_rnn')
+ def pytorch_tutorial_rnn(args):
+ # We use ``getattr()`` to prioritize arguments that are explicitly given
+ # on the command-line, so that the defaults defined below are only used
+ # when no other value has been specified.
+ args.hidden_dim = getattr(args, 'hidden_dim', 128)
+
+
+3. Registering a new Task
+-------------------------
+
+Now we'll register a new :class:`~fairseq.tasks.FairseqTask` that will load our
+dictionaries and dataset. Tasks can also control how the data is batched into
+mini-batches, but in this tutorial we'll reuse the batching provided by
+:class:`fairseq.data.LanguagePairDataset`.
+
+Create a new file named :file:`fairseq/tasks/simple_classification.py` with the
+following contents::
+
+ import os
+ import torch
+
+ from fairseq.data import Dictionary, LanguagePairDataset
+ from fairseq.tasks import FairseqTask, register_task
+
+
+ @register_task('simple_classification')
+ class SimpleClassificationTask(LegacyFairseqTask):
+
+ @staticmethod
+ def add_args(parser):
+ # Add some command-line arguments for specifying where the data is
+ # located and the maximum supported input length.
+ parser.add_argument('data', metavar='FILE',
+ help='file prefix for data')
+ parser.add_argument('--max-positions', default=1024, type=int,
+ help='max input length')
+
+ @classmethod
+ def setup_task(cls, args, **kwargs):
+ # Here we can perform any setup required for the task. This may include
+ # loading Dictionaries, initializing shared Embedding layers, etc.
+ # In this case we'll just load the Dictionaries.
+ input_vocab = Dictionary.load(os.path.join(args.data, 'dict.input.txt'))
+ label_vocab = Dictionary.load(os.path.join(args.data, 'dict.label.txt'))
+ print('| [input] dictionary: {} types'.format(len(input_vocab)))
+ print('| [label] dictionary: {} types'.format(len(label_vocab)))
+
+ return SimpleClassificationTask(args, input_vocab, label_vocab)
+
+ def __init__(self, args, input_vocab, label_vocab):
+ super().__init__(args)
+ self.input_vocab = input_vocab
+ self.label_vocab = label_vocab
+
+ def load_dataset(self, split, **kwargs):
+ """Load a given dataset split (e.g., train, valid, test)."""
+
+ prefix = os.path.join(self.args.data, '{}.input-label'.format(split))
+
+ # Read input sentences.
+ sentences, lengths = [], []
+ with open(prefix + '.input', encoding='utf-8') as file:
+ for line in file:
+ sentence = line.strip()
+
+ # Tokenize the sentence, splitting on spaces
+ tokens = self.input_vocab.encode_line(
+ sentence, add_if_not_exist=False,
+ )
+
+ sentences.append(tokens)
+ lengths.append(tokens.numel())
+
+ # Read labels.
+ labels = []
+ with open(prefix + '.label', encoding='utf-8') as file:
+ for line in file:
+ label = line.strip()
+ labels.append(
+ # Convert label to a numeric ID.
+ torch.LongTensor([self.label_vocab.add_symbol(label)])
+ )
+
+ assert len(sentences) == len(labels)
+ print('| {} {} {} examples'.format(self.args.data, split, len(sentences)))
+
+ # We reuse LanguagePairDataset since classification can be modeled as a
+ # sequence-to-sequence task where the target sequence has length 1.
+ self.datasets[split] = LanguagePairDataset(
+ src=sentences,
+ src_sizes=lengths,
+ src_dict=self.input_vocab,
+ tgt=labels,
+ tgt_sizes=torch.ones(len(labels)), # targets have length 1
+ tgt_dict=self.label_vocab,
+ left_pad_source=False,
+ # Since our target is a single class label, there's no need for
+ # teacher forcing. If we set this to ``True`` then our Model's
+ # ``forward()`` method would receive an additional argument called
+ # *prev_output_tokens* that would contain a shifted version of the
+ # target sequence.
+ input_feeding=False,
+ )
+
+ def max_positions(self):
+ """Return the max input length allowed by the task."""
+ # The source should be less than *args.max_positions* and the "target"
+ # has max length 1.
+ return (self.args.max_positions, 1)
+
+ @property
+ def source_dictionary(self):
+ """Return the source :class:`~fairseq.data.Dictionary`."""
+ return self.input_vocab
+
+ @property
+ def target_dictionary(self):
+ """Return the target :class:`~fairseq.data.Dictionary`."""
+ return self.label_vocab
+
+ # We could override this method if we wanted more control over how batches
+ # are constructed, but it's not necessary for this tutorial since we can
+ # reuse the batching provided by LanguagePairDataset.
+ #
+ # def get_batch_iterator(
+ # self, dataset, max_tokens=None, max_sentences=None, max_positions=None,
+ # ignore_invalid_inputs=False, required_batch_size_multiple=1,
+ # seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1,
+ # data_buffer_size=0, disable_iterator_cache=False,
+ # ):
+ # (...)
+
+
+4. Training the Model
+---------------------
+
+Now we're ready to train the model. We can use the existing :ref:`fairseq-train`
+command-line tool for this, making sure to specify our new Task (``--task
+simple_classification``) and Model architecture (``--arch
+pytorch_tutorial_rnn``):
+
+.. note::
+
+ You can also configure the dimensionality of the hidden state by passing the
+ ``--hidden-dim`` argument to :ref:`fairseq-train`.
+
+.. code-block:: console
+
+ > fairseq-train names-bin \
+ --task simple_classification \
+ --arch pytorch_tutorial_rnn \
+ --optimizer adam --lr 0.001 --lr-shrink 0.5 \
+ --max-tokens 1000
+ (...)
+ | epoch 027 | loss 1.200 | ppl 2.30 | wps 15728 | ups 119.4 | wpb 116 | bsz 116 | num_updates 3726 | lr 1.5625e-05 | gnorm 1.290 | clip 0% | oom 0 | wall 32 | train_wall 21
+ | epoch 027 | valid on 'valid' subset | valid_loss 1.41304 | valid_ppl 2.66 | num_updates 3726 | best 1.41208
+ | done training in 31.6 seconds
+
+The model files should appear in the :file:`checkpoints/` directory.
+
+
+5. Writing an evaluation script
+-------------------------------
+
+Finally we can write a short script to evaluate our model on new inputs. Create
+a new file named :file:`eval_classifier.py` with the following contents::
+
+ from fairseq import checkpoint_utils, data, options, tasks
+
+ # Parse command-line arguments for generation
+ parser = options.get_generation_parser(default_task='simple_classification')
+ args = options.parse_args_and_arch(parser)
+
+ # Setup task
+ task = tasks.setup_task(args)
+
+ # Load model
+ print('| loading model from {}'.format(args.path))
+ models, _model_args = checkpoint_utils.load_model_ensemble([args.path], task=task)
+ model = models[0]
+
+ while True:
+ sentence = input('\nInput: ')
+
+ # Tokenize into characters
+ chars = ' '.join(list(sentence.strip()))
+ tokens = task.source_dictionary.encode_line(
+ chars, add_if_not_exist=False,
+ )
+
+ # Build mini-batch to feed to the model
+ batch = data.language_pair_dataset.collate(
+ samples=[{'id': -1, 'source': tokens}], # bsz = 1
+ pad_idx=task.source_dictionary.pad(),
+ eos_idx=task.source_dictionary.eos(),
+ left_pad_source=False,
+ input_feeding=False,
+ )
+
+ # Feed batch to the model and get predictions
+ preds = model(**batch['net_input'])
+
+ # Print top 3 predictions and their log-probabilities
+ top_scores, top_labels = preds[0].topk(k=3)
+ for score, label_idx in zip(top_scores, top_labels):
+ label_name = task.target_dictionary.string([label_idx])
+ print('({:.2f})\t{}'.format(score, label_name))
+
+Now we can evaluate our model interactively. Note that we have included the
+original data path (:file:`names-bin/`) so that the dictionaries can be loaded:
+
+.. code-block:: console
+
+ > python eval_classifier.py names-bin --path checkpoints/checkpoint_best.pt
+ | [input] dictionary: 64 types
+ | [label] dictionary: 24 types
+ | loading model from checkpoints/checkpoint_best.pt
+
+ Input: Satoshi
+ (-0.61) Japanese
+ (-1.20) Arabic
+ (-2.86) Italian
+
+ Input: Sinbad
+ (-0.30) Arabic
+ (-1.76) English
+ (-4.08) Russian
diff --git a/fairseq/docs/tutorial_simple_lstm.rst b/fairseq/docs/tutorial_simple_lstm.rst
new file mode 100644
index 0000000000000000000000000000000000000000..f52988507c5da5125668e143bd2bfe4df117b41c
--- /dev/null
+++ b/fairseq/docs/tutorial_simple_lstm.rst
@@ -0,0 +1,518 @@
+Tutorial: Simple LSTM
+=====================
+
+In this tutorial we will extend fairseq by adding a new
+:class:`~fairseq.models.FairseqEncoderDecoderModel` that encodes a source
+sentence with an LSTM and then passes the final hidden state to a second LSTM
+that decodes the target sentence (without attention).
+
+This tutorial covers:
+
+1. **Writing an Encoder and Decoder** to encode/decode the source/target
+ sentence, respectively.
+2. **Registering a new Model** so that it can be used with the existing
+ :ref:`Command-line tools`.
+3. **Training the Model** using the existing command-line tools.
+4. **Making generation faster** by modifying the Decoder to use
+ :ref:`Incremental decoding`.
+
+
+1. Building an Encoder and Decoder
+----------------------------------
+
+In this section we'll define a simple LSTM Encoder and Decoder. All Encoders
+should implement the :class:`~fairseq.models.FairseqEncoder` interface and
+Decoders should implement the :class:`~fairseq.models.FairseqDecoder` interface.
+These interfaces themselves extend :class:`torch.nn.Module`, so FairseqEncoders
+and FairseqDecoders can be written and used in the same ways as ordinary PyTorch
+Modules.
+
+
+Encoder
+~~~~~~~
+
+Our Encoder will embed the tokens in the source sentence, feed them to a
+:class:`torch.nn.LSTM` and return the final hidden state. To create our encoder
+save the following in a new file named :file:`fairseq/models/simple_lstm.py`::
+
+ import torch.nn as nn
+ from fairseq import utils
+ from fairseq.models import FairseqEncoder
+
+ class SimpleLSTMEncoder(FairseqEncoder):
+
+ def __init__(
+ self, args, dictionary, embed_dim=128, hidden_dim=128, dropout=0.1,
+ ):
+ super().__init__(dictionary)
+ self.args = args
+
+ # Our encoder will embed the inputs before feeding them to the LSTM.
+ self.embed_tokens = nn.Embedding(
+ num_embeddings=len(dictionary),
+ embedding_dim=embed_dim,
+ padding_idx=dictionary.pad(),
+ )
+ self.dropout = nn.Dropout(p=dropout)
+
+ # We'll use a single-layer, unidirectional LSTM for simplicity.
+ self.lstm = nn.LSTM(
+ input_size=embed_dim,
+ hidden_size=hidden_dim,
+ num_layers=1,
+ bidirectional=False,
+ batch_first=True,
+ )
+
+ def forward(self, src_tokens, src_lengths):
+ # The inputs to the ``forward()`` function are determined by the
+ # Task, and in particular the ``'net_input'`` key in each
+ # mini-batch. We discuss Tasks in the next tutorial, but for now just
+ # know that *src_tokens* has shape `(batch, src_len)` and *src_lengths*
+ # has shape `(batch)`.
+
+ # Note that the source is typically padded on the left. This can be
+ # configured by adding the `--left-pad-source "False"` command-line
+ # argument, but here we'll make the Encoder handle either kind of
+ # padding by converting everything to be right-padded.
+ if self.args.left_pad_source:
+ # Convert left-padding to right-padding.
+ src_tokens = utils.convert_padding_direction(
+ src_tokens,
+ padding_idx=self.dictionary.pad(),
+ left_to_right=True
+ )
+
+ # Embed the source.
+ x = self.embed_tokens(src_tokens)
+
+ # Apply dropout.
+ x = self.dropout(x)
+
+ # Pack the sequence into a PackedSequence object to feed to the LSTM.
+ x = nn.utils.rnn.pack_padded_sequence(x, src_lengths, batch_first=True)
+
+ # Get the output from the LSTM.
+ _outputs, (final_hidden, _final_cell) = self.lstm(x)
+
+ # Return the Encoder's output. This can be any object and will be
+ # passed directly to the Decoder.
+ return {
+ # this will have shape `(bsz, hidden_dim)`
+ 'final_hidden': final_hidden.squeeze(0),
+ }
+
+ # Encoders are required to implement this method so that we can rearrange
+ # the order of the batch elements during inference (e.g., beam search).
+ def reorder_encoder_out(self, encoder_out, new_order):
+ """
+ Reorder encoder output according to `new_order`.
+
+ Args:
+ encoder_out: output from the ``forward()`` method
+ new_order (LongTensor): desired order
+
+ Returns:
+ `encoder_out` rearranged according to `new_order`
+ """
+ final_hidden = encoder_out['final_hidden']
+ return {
+ 'final_hidden': final_hidden.index_select(0, new_order),
+ }
+
+
+Decoder
+~~~~~~~
+
+Our Decoder will predict the next word, conditioned on the Encoder's final
+hidden state and an embedded representation of the previous target word -- which
+is sometimes called *teacher forcing*. More specifically, we'll use a
+:class:`torch.nn.LSTM` to produce a sequence of hidden states that we'll project
+to the size of the output vocabulary to predict each target word.
+
+::
+
+ import torch
+ from fairseq.models import FairseqDecoder
+
+ class SimpleLSTMDecoder(FairseqDecoder):
+
+ def __init__(
+ self, dictionary, encoder_hidden_dim=128, embed_dim=128, hidden_dim=128,
+ dropout=0.1,
+ ):
+ super().__init__(dictionary)
+
+ # Our decoder will embed the inputs before feeding them to the LSTM.
+ self.embed_tokens = nn.Embedding(
+ num_embeddings=len(dictionary),
+ embedding_dim=embed_dim,
+ padding_idx=dictionary.pad(),
+ )
+ self.dropout = nn.Dropout(p=dropout)
+
+ # We'll use a single-layer, unidirectional LSTM for simplicity.
+ self.lstm = nn.LSTM(
+ # For the first layer we'll concatenate the Encoder's final hidden
+ # state with the embedded target tokens.
+ input_size=encoder_hidden_dim + embed_dim,
+ hidden_size=hidden_dim,
+ num_layers=1,
+ bidirectional=False,
+ )
+
+ # Define the output projection.
+ self.output_projection = nn.Linear(hidden_dim, len(dictionary))
+
+ # During training Decoders are expected to take the entire target sequence
+ # (shifted right by one position) and produce logits over the vocabulary.
+ # The *prev_output_tokens* tensor begins with the end-of-sentence symbol,
+ # ``dictionary.eos()``, followed by the target sequence.
+ def forward(self, prev_output_tokens, encoder_out):
+ """
+ Args:
+ prev_output_tokens (LongTensor): previous decoder outputs of shape
+ `(batch, tgt_len)`, for teacher forcing
+ encoder_out (Tensor, optional): output from the encoder, used for
+ encoder-side attention
+
+ Returns:
+ tuple:
+ - the last decoder layer's output of shape
+ `(batch, tgt_len, vocab)`
+ - the last decoder layer's attention weights of shape
+ `(batch, tgt_len, src_len)`
+ """
+ bsz, tgt_len = prev_output_tokens.size()
+
+ # Extract the final hidden state from the Encoder.
+ final_encoder_hidden = encoder_out['final_hidden']
+
+ # Embed the target sequence, which has been shifted right by one
+ # position and now starts with the end-of-sentence symbol.
+ x = self.embed_tokens(prev_output_tokens)
+
+ # Apply dropout.
+ x = self.dropout(x)
+
+ # Concatenate the Encoder's final hidden state to *every* embedded
+ # target token.
+ x = torch.cat(
+ [x, final_encoder_hidden.unsqueeze(1).expand(bsz, tgt_len, -1)],
+ dim=2,
+ )
+
+ # Using PackedSequence objects in the Decoder is harder than in the
+ # Encoder, since the targets are not sorted in descending length order,
+ # which is a requirement of ``pack_padded_sequence()``. Instead we'll
+ # feed nn.LSTM directly.
+ initial_state = (
+ final_encoder_hidden.unsqueeze(0), # hidden
+ torch.zeros_like(final_encoder_hidden).unsqueeze(0), # cell
+ )
+ output, _ = self.lstm(
+ x.transpose(0, 1), # convert to shape `(tgt_len, bsz, dim)`
+ initial_state,
+ )
+ x = output.transpose(0, 1) # convert to shape `(bsz, tgt_len, hidden)`
+
+ # Project the outputs to the size of the vocabulary.
+ x = self.output_projection(x)
+
+ # Return the logits and ``None`` for the attention weights
+ return x, None
+
+
+2. Registering the Model
+------------------------
+
+Now that we've defined our Encoder and Decoder we must *register* our model with
+fairseq using the :func:`~fairseq.models.register_model` function decorator.
+Once the model is registered we'll be able to use it with the existing
+:ref:`Command-line Tools`.
+
+All registered models must implement the
+:class:`~fairseq.models.BaseFairseqModel` interface. For sequence-to-sequence
+models (i.e., any model with a single Encoder and Decoder), we can instead
+implement the :class:`~fairseq.models.FairseqEncoderDecoderModel` interface.
+
+Create a small wrapper class in the same file and register it in fairseq with
+the name ``'simple_lstm'``::
+
+ from fairseq.models import FairseqEncoderDecoderModel, register_model
+
+ # Note: the register_model "decorator" should immediately precede the
+ # definition of the Model class.
+
+ @register_model('simple_lstm')
+ class SimpleLSTMModel(FairseqEncoderDecoderModel):
+
+ @staticmethod
+ def add_args(parser):
+ # Models can override this method to add new command-line arguments.
+ # Here we'll add some new command-line arguments to configure dropout
+ # and the dimensionality of the embeddings and hidden states.
+ parser.add_argument(
+ '--encoder-embed-dim', type=int, metavar='N',
+ help='dimensionality of the encoder embeddings',
+ )
+ parser.add_argument(
+ '--encoder-hidden-dim', type=int, metavar='N',
+ help='dimensionality of the encoder hidden state',
+ )
+ parser.add_argument(
+ '--encoder-dropout', type=float, default=0.1,
+ help='encoder dropout probability',
+ )
+ parser.add_argument(
+ '--decoder-embed-dim', type=int, metavar='N',
+ help='dimensionality of the decoder embeddings',
+ )
+ parser.add_argument(
+ '--decoder-hidden-dim', type=int, metavar='N',
+ help='dimensionality of the decoder hidden state',
+ )
+ parser.add_argument(
+ '--decoder-dropout', type=float, default=0.1,
+ help='decoder dropout probability',
+ )
+
+ @classmethod
+ def build_model(cls, args, task):
+ # Fairseq initializes models by calling the ``build_model()``
+ # function. This provides more flexibility, since the returned model
+ # instance can be of a different type than the one that was called.
+ # In this case we'll just return a SimpleLSTMModel instance.
+
+ # Initialize our Encoder and Decoder.
+ encoder = SimpleLSTMEncoder(
+ args=args,
+ dictionary=task.source_dictionary,
+ embed_dim=args.encoder_embed_dim,
+ hidden_dim=args.encoder_hidden_dim,
+ dropout=args.encoder_dropout,
+ )
+ decoder = SimpleLSTMDecoder(
+ dictionary=task.target_dictionary,
+ encoder_hidden_dim=args.encoder_hidden_dim,
+ embed_dim=args.decoder_embed_dim,
+ hidden_dim=args.decoder_hidden_dim,
+ dropout=args.decoder_dropout,
+ )
+ model = SimpleLSTMModel(encoder, decoder)
+
+ # Print the model architecture.
+ print(model)
+
+ return model
+
+ # We could override the ``forward()`` if we wanted more control over how
+ # the encoder and decoder interact, but it's not necessary for this
+ # tutorial since we can inherit the default implementation provided by
+ # the FairseqEncoderDecoderModel base class, which looks like:
+ #
+ # def forward(self, src_tokens, src_lengths, prev_output_tokens):
+ # encoder_out = self.encoder(src_tokens, src_lengths)
+ # decoder_out = self.decoder(prev_output_tokens, encoder_out)
+ # return decoder_out
+
+Finally let's define a *named architecture* with the configuration for our
+model. This is done with the :func:`~fairseq.models.register_model_architecture`
+function decorator. Thereafter this named architecture can be used with the
+``--arch`` command-line argument, e.g., ``--arch tutorial_simple_lstm``::
+
+ from fairseq.models import register_model_architecture
+
+ # The first argument to ``register_model_architecture()`` should be the name
+ # of the model we registered above (i.e., 'simple_lstm'). The function we
+ # register here should take a single argument *args* and modify it in-place
+ # to match the desired architecture.
+
+ @register_model_architecture('simple_lstm', 'tutorial_simple_lstm')
+ def tutorial_simple_lstm(args):
+ # We use ``getattr()`` to prioritize arguments that are explicitly given
+ # on the command-line, so that the defaults defined below are only used
+ # when no other value has been specified.
+ args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 256)
+ args.encoder_hidden_dim = getattr(args, 'encoder_hidden_dim', 256)
+ args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 256)
+ args.decoder_hidden_dim = getattr(args, 'decoder_hidden_dim', 256)
+
+
+3. Training the Model
+---------------------
+
+Now we're ready to train the model. We can use the existing :ref:`fairseq-train`
+command-line tool for this, making sure to specify our new Model architecture
+(``--arch tutorial_simple_lstm``).
+
+.. note::
+
+ Make sure you've already preprocessed the data from the IWSLT example in the
+ :file:`examples/translation/` directory.
+
+.. code-block:: console
+
+ > fairseq-train data-bin/iwslt14.tokenized.de-en \
+ --arch tutorial_simple_lstm \
+ --encoder-dropout 0.2 --decoder-dropout 0.2 \
+ --optimizer adam --lr 0.005 --lr-shrink 0.5 \
+ --max-tokens 12000
+ (...)
+ | epoch 052 | loss 4.027 | ppl 16.30 | wps 420805 | ups 39.7 | wpb 9841 | bsz 400 | num_updates 20852 | lr 1.95313e-05 | gnorm 0.218 | clip 0% | oom 0 | wall 529 | train_wall 396
+ | epoch 052 | valid on 'valid' subset | valid_loss 4.74989 | valid_ppl 26.91 | num_updates 20852 | best 4.74954
+
+The model files should appear in the :file:`checkpoints/` directory. While this
+model architecture is not very good, we can use the :ref:`fairseq-generate` script to
+generate translations and compute our BLEU score over the test set:
+
+.. code-block:: console
+
+ > fairseq-generate data-bin/iwslt14.tokenized.de-en \
+ --path checkpoints/checkpoint_best.pt \
+ --beam 5 \
+ --remove-bpe
+ (...)
+ | Translated 6750 sentences (153132 tokens) in 17.3s (389.12 sentences/s, 8827.68 tokens/s)
+ | Generate test with beam=5: BLEU4 = 8.18, 38.8/12.1/4.7/2.0 (BP=1.000, ratio=1.066, syslen=139865, reflen=131146)
+
+
+4. Making generation faster
+---------------------------
+
+While autoregressive generation from sequence-to-sequence models is inherently
+slow, our implementation above is especially slow because it recomputes the
+entire sequence of Decoder hidden states for every output token (i.e., it is
+``O(n^2)``). We can make this significantly faster by instead caching the
+previous hidden states.
+
+In fairseq this is called :ref:`Incremental decoding`. Incremental decoding is a
+special mode at inference time where the Model only receives a single timestep
+of input corresponding to the immediately previous output token (for teacher
+forcing) and must produce the next output incrementally. Thus the model must
+cache any long-term state that is needed about the sequence, e.g., hidden
+states, convolutional states, etc.
+
+To implement incremental decoding we will modify our model to implement the
+:class:`~fairseq.models.FairseqIncrementalDecoder` interface. Compared to the
+standard :class:`~fairseq.models.FairseqDecoder` interface, the incremental
+decoder interface allows ``forward()`` methods to take an extra keyword argument
+(*incremental_state*) that can be used to cache state across time-steps.
+
+Let's replace our ``SimpleLSTMDecoder`` with an incremental one::
+
+ import torch
+ from fairseq.models import FairseqIncrementalDecoder
+
+ class SimpleLSTMDecoder(FairseqIncrementalDecoder):
+
+ def __init__(
+ self, dictionary, encoder_hidden_dim=128, embed_dim=128, hidden_dim=128,
+ dropout=0.1,
+ ):
+ # This remains the same as before.
+ super().__init__(dictionary)
+ self.embed_tokens = nn.Embedding(
+ num_embeddings=len(dictionary),
+ embedding_dim=embed_dim,
+ padding_idx=dictionary.pad(),
+ )
+ self.dropout = nn.Dropout(p=dropout)
+ self.lstm = nn.LSTM(
+ input_size=encoder_hidden_dim + embed_dim,
+ hidden_size=hidden_dim,
+ num_layers=1,
+ bidirectional=False,
+ )
+ self.output_projection = nn.Linear(hidden_dim, len(dictionary))
+
+ # We now take an additional kwarg (*incremental_state*) for caching the
+ # previous hidden and cell states.
+ def forward(self, prev_output_tokens, encoder_out, incremental_state=None):
+ if incremental_state is not None:
+ # If the *incremental_state* argument is not ``None`` then we are
+ # in incremental inference mode. While *prev_output_tokens* will
+ # still contain the entire decoded prefix, we will only use the
+ # last step and assume that the rest of the state is cached.
+ prev_output_tokens = prev_output_tokens[:, -1:]
+
+ # This remains the same as before.
+ bsz, tgt_len = prev_output_tokens.size()
+ final_encoder_hidden = encoder_out['final_hidden']
+ x = self.embed_tokens(prev_output_tokens)
+ x = self.dropout(x)
+ x = torch.cat(
+ [x, final_encoder_hidden.unsqueeze(1).expand(bsz, tgt_len, -1)],
+ dim=2,
+ )
+
+ # We will now check the cache and load the cached previous hidden and
+ # cell states, if they exist, otherwise we will initialize them to
+ # zeros (as before). We will use the ``utils.get_incremental_state()``
+ # and ``utils.set_incremental_state()`` helpers.
+ initial_state = utils.get_incremental_state(
+ self, incremental_state, 'prev_state',
+ )
+ if initial_state is None:
+ # first time initialization, same as the original version
+ initial_state = (
+ final_encoder_hidden.unsqueeze(0), # hidden
+ torch.zeros_like(final_encoder_hidden).unsqueeze(0), # cell
+ )
+
+ # Run one step of our LSTM.
+ output, latest_state = self.lstm(x.transpose(0, 1), initial_state)
+
+ # Update the cache with the latest hidden and cell states.
+ utils.set_incremental_state(
+ self, incremental_state, 'prev_state', latest_state,
+ )
+
+ # This remains the same as before
+ x = output.transpose(0, 1)
+ x = self.output_projection(x)
+ return x, None
+
+ # The ``FairseqIncrementalDecoder`` interface also requires implementing a
+ # ``reorder_incremental_state()`` method, which is used during beam search
+ # to select and reorder the incremental state.
+ def reorder_incremental_state(self, incremental_state, new_order):
+ # Load the cached state.
+ prev_state = utils.get_incremental_state(
+ self, incremental_state, 'prev_state',
+ )
+
+ # Reorder batches according to *new_order*.
+ reordered_state = (
+ prev_state[0].index_select(1, new_order), # hidden
+ prev_state[1].index_select(1, new_order), # cell
+ )
+
+ # Update the cached state.
+ utils.set_incremental_state(
+ self, incremental_state, 'prev_state', reordered_state,
+ )
+
+Finally, we can rerun generation and observe the speedup:
+
+.. code-block:: console
+
+ # Before
+
+ > fairseq-generate data-bin/iwslt14.tokenized.de-en \
+ --path checkpoints/checkpoint_best.pt \
+ --beam 5 \
+ --remove-bpe
+ (...)
+ | Translated 6750 sentences (153132 tokens) in 17.3s (389.12 sentences/s, 8827.68 tokens/s)
+ | Generate test with beam=5: BLEU4 = 8.18, 38.8/12.1/4.7/2.0 (BP=1.000, ratio=1.066, syslen=139865, reflen=131146)
+
+ # After
+
+ > fairseq-generate data-bin/iwslt14.tokenized.de-en \
+ --path checkpoints/checkpoint_best.pt \
+ --beam 5 \
+ --remove-bpe
+ (...)
+ | Translated 6750 sentences (153132 tokens) in 5.5s (1225.54 sentences/s, 27802.94 tokens/s)
+ | Generate test with beam=5: BLEU4 = 8.18, 38.8/12.1/4.7/2.0 (BP=1.000, ratio=1.066, syslen=139865, reflen=131146)
diff --git a/fairseq/examples/.gitignore b/fairseq/examples/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..1ef816f2cd7b4a9aa7adf8bd5635a644834738f1
--- /dev/null
+++ b/fairseq/examples/.gitignore
@@ -0,0 +1,2 @@
+!*/*.sh
+!*/*.md
diff --git a/fairseq/examples/__init__.py b/fairseq/examples/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..44bb24ae614941f23fea29c56d60167650c39bcb
--- /dev/null
+++ b/fairseq/examples/__init__.py
@@ -0,0 +1,9 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+try:
+ from fairseq.version import __version__ # noqa
+except ImportError:
+ pass
diff --git a/fairseq/examples/adaptive_span/README.md b/fairseq/examples/adaptive_span/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..d5224fb2894606a2a8027e01e224be190776ecfe
--- /dev/null
+++ b/fairseq/examples/adaptive_span/README.md
@@ -0,0 +1,90 @@
+# Adaptive Span
+
+Adaptive Span is a novel self-attention mechanism that can learn its optimal
+attention span. This allows us to extend significantly the maximum context size
+used in Transformer, while maintaining control over their memory footprint
+and computational time. It uses the Truncated BPTT technique for training,
+as in [transformerXL](https://github.com/pytorch/fairseq/blob/main/examples/truncated_bptt/README.md).
+
+Adaptive Span was introduced by paper:
+[Adaptive Attention Span in Transformers](https://arxiv.org/abs/1905.07799),
+which achieved state-of-the-art language modeling results at the time of publication.
+
+We manage to reproduce their result in fairseq and keep most of the
+[original implementation](https://github.com/facebookresearch/adaptive-span) untouched.
+You can refer to the their sweep file as well if any combination of hyperparameter is not clear.
+
+##### 0. Setup
+
+First you need to process the Enwik8 dataset, we use the pre-tokenized dataset
+from [adaptive span paper](https://github.com/facebookresearch/adaptive-span/blob/master/get_data.sh).
+You can download the dataset, and then run:
+```bash
+fairseq-preprocess --only-source --trainpref ~/data/enwik8/train.txt \
+ --validpref ~/data/enwik8/valid.txt --testpref ~/data/enwik8/test.txt \
+ --destdir ~/data/enwik8/data-bin/ --joined-dictionary --workers 20
+```
+
+##### 1. Train a Adaptive Span model on Enwik8
+
+We will train a 12-layer Adaptive Span model following the [hyperparameters
+used in the original
+paper](https://github.com/facebookresearch/adaptive-span/blob/master/experiments/enwik8.sh).
+
+The following command assumes 4 GPUs, so that the total batch size is 64
+sequences (4 x 16). Training should take 2-3 days on 4 V100 GPUs:
+```bash
+CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-train \
+ --user-dir examples/adaptive_span \
+ --data ~/data/enwik8/data-bin/ \
+ --fp16 --fp16-no-flatten-grads --max-update 600000 \
+ --task truncated_bptt_lm --tokens-per-sample 512 --arch adaptive_span \
+ --n-layer 12 --d-model 512 --n-head 8 --d-inner 2048 --dropout 0.3 \
+ --attn-span 8192 --optimizer adagrad_with_grad_clip --adagrad-clip 0.03 \
+ --validate-interval-updates 1000 \
+ --lr-scheduler fixed --warmup-updates 32000 --batch-size-valid 32 \
+ --lr 0.07 --criterion adaptive_span_loss --batch-size 16 --update-freq 1 \
+ --seed 2 --log-format json --log-interval 25 --aux-loss-scaler 5e-07
+```
+This should land around 1.05 on validation, 1.03 on test. You can lower the
+--aux-loss-scaler for better performance (longer span). It gives ~0.03 bpc
+improvement to the transformerXL baseline here.
+If training on a single GPU, set `--update-freq=4` to accumulate 4x gradients
+and simulate training on 4 GPUs.
+You can also reproduce the transformerXL result on enwik8 using this code base.
+It should land around 1.06 on test,matching the [original paper](https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/run_enwik8_base.sh).
+You can try by
+```bash
+CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-train \
+ --user-dir examples/truncated_bptt \
+ ~/data/enwik8/data-bin/ \
+ --task truncated_bptt_lm --fp16 --max-update 400000 \
+ --tokens-per-sample 512 --arch transformer_xl --n-layer 12 \
+ --d-model 512 --n-head 8 --d-head 64 --d-inner 2048 --dropout 0.1 \
+ --dropatt 0.0 --mem-len 512 --optimizer adam --clip-norm 0.25 \
+ --lr-scheduler cosine --warmup-updates 0 \
+ --lr 0.0 --lr 0.00025 --batch-size 15 \
+ --update-freq 1 --seed 2 --log-format json --log-interval 25 \
+ --fp16
+```
+
+##### 2. Evaluate
+For Adaptive Span:
+```bash
+fairseq-eval-lm ~/data/enwik8/data-bin/ --path model/checkpoint_best.pt \
+ --user-dir examples/adaptive_span \
+ --task truncated_bptt_lm --batch-size 8 --tokens-per-sample 512 --gen-subset test
+```
+For Transformer-XL evaluation:
+```bash
+fairseq-eval-lm ~/data/enwik8/data-bin/ --path model/checkpoint_best.pt \
+ --user-dir examples/truncated_bptt/ --task truncated_bptt_lm --batch-size 8 \
+ --tokens-per-sample 80 \
+ --model-overrides '{"mem_len":2100,"clamp_len":820,"same_length":True}' \
+ --gen-subset valid
+```
+
+*Note:* During training the model saw 512 tokens of context
+(``--tokens-per-sample=512``), with batch size 8. These settings match the evaluation
+settings from [the original
+paper](https://github.com/facebookresearch/adaptive-span/blob/master/experiments/enwik8.sh).
diff --git a/fairseq/examples/adaptive_span/__init__.py b/fairseq/examples/adaptive_span/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e0a142a769360e1140bf814c532eaf841f1d52d8
--- /dev/null
+++ b/fairseq/examples/adaptive_span/__init__.py
@@ -0,0 +1,19 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import importlib
+import os
+
+# automatically import any Python files in the current directory
+cur_dir = os.path.dirname(__file__)
+for file in os.listdir(cur_dir):
+ path = os.path.join(cur_dir, file)
+ if (
+ not file.startswith("_")
+ and not file.startswith(".")
+ and (file.endswith(".py") or os.path.isdir(path))
+ ):
+ mod_name = file[: file.find(".py")] if file.endswith(".py") else file
+ module = importlib.import_module(__name__ + "." + mod_name)
diff --git a/fairseq/examples/adaptive_span/adagrad_with_grad_clip.py b/fairseq/examples/adaptive_span/adagrad_with_grad_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..585ce184ab2d6bbde0d2f7fcafd6536fa8f6d8b6
--- /dev/null
+++ b/fairseq/examples/adaptive_span/adagrad_with_grad_clip.py
@@ -0,0 +1,128 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from torch.optim import Adagrad
+
+from fairseq.optim import LegacyFairseqOptimizer, register_optimizer
+
+
+@register_optimizer("adagrad_with_grad_clip")
+class FairseqAdagradWithGradClip(LegacyFairseqOptimizer):
+ def __init__(self, args, params):
+ super().__init__(args)
+ self._optimizer = AdagradWithGradClip(params, **self.optimizer_config)
+
+ @staticmethod
+ def add_args(parser):
+ """Add optimizer-specific arguments to the parser."""
+ # fmt: off
+ parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD',
+ help='weight decay')
+ parser.add_argument('--adagrad-clip', default=0.0, type=float, metavar='D',
+ help='internal grad clip')
+ # fmt: on
+
+ @property
+ def optimizer_config(self):
+ """
+ Return a kwarg dictionary that will be used to override optimizer
+ args stored in checkpoints. This allows us to load a checkpoint and
+ resume training using a different set of optimizer args, e.g., with a
+ different learning rate.
+ """
+ return {
+ "lr": self.args.lr[0],
+ "weight_decay": self.args.weight_decay,
+ "grad_clip": self.args.adagrad_clip,
+ }
+
+ @property
+ def supports_flat_params(self):
+ return False
+
+
+def _clip_grad(clr, grad, group_grad_clip):
+ if group_grad_clip > 0:
+ norm = grad.norm(2).item()
+ if norm > group_grad_clip:
+ clr *= group_grad_clip / (norm + 1e-10)
+ return clr
+
+
+class AdagradWithGradClip(Adagrad):
+ """Adagrad algorithm with custom gradient clipping"""
+
+ def __init__(
+ self,
+ params,
+ lr=1e-2,
+ lr_decay=0,
+ weight_decay=0,
+ initial_accumulator_value=0,
+ grad_clip=0,
+ ):
+ Adagrad.__init__(
+ self,
+ params,
+ lr=lr,
+ lr_decay=lr_decay,
+ weight_decay=weight_decay,
+ initial_accumulator_value=initial_accumulator_value,
+ )
+ self.defaults["grad_clip"] = grad_clip
+ self.param_groups[0].setdefault("grad_clip", grad_clip)
+
+ def step(self, closure=None):
+ loss = None
+ if closure is not None:
+ loss = closure()
+
+ for group in self.param_groups:
+ for p in group["params"]:
+ if p.grad is None:
+ continue
+
+ grad = p.grad.data
+ state = self.state[p]
+
+ state["step"] += 1
+
+ if group["weight_decay"] != 0:
+ if p.grad.data.is_sparse:
+ raise RuntimeError(
+ "weight_decay option is "
+ "not compatible with sparse "
+ "gradients"
+ )
+ grad = grad.add(group["weight_decay"], p.data)
+
+ clr = group["lr"] / (1 + (state["step"] - 1) * group["lr_decay"])
+
+ # clip
+ clr = _clip_grad(clr=clr, grad=grad, group_grad_clip=group["grad_clip"])
+
+ if grad.is_sparse:
+ # the update is non-linear so indices must be unique
+ grad = grad.coalesce()
+ grad_indices = grad._indices()
+ grad_values = grad._values()
+ size = grad.size()
+
+ def make_sparse(values):
+ constructor = grad.new
+ if grad_indices.dim() == 0 or values.dim() == 0:
+ return constructor().resize_as_(grad)
+ return constructor(grad_indices, values, size)
+
+ state["sum"].add_(make_sparse(grad_values.pow(2)))
+ std = state["sum"]._sparse_mask(grad)
+ std_values = std._values().sqrt_().add_(1e-10)
+ p.data.add_(-clr, make_sparse(grad_values / std_values))
+ else:
+ state["sum"].addcmul_(1, grad, grad)
+ std = state["sum"].sqrt().add_(1e-10)
+ p.data.addcdiv_(-clr, grad, std)
+
+ return loss
diff --git a/fairseq/examples/adaptive_span/adaptive_span_attention.py b/fairseq/examples/adaptive_span/adaptive_span_attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..07f757bb8e1a8a67b1124175ee338c8735aa8d65
--- /dev/null
+++ b/fairseq/examples/adaptive_span/adaptive_span_attention.py
@@ -0,0 +1,160 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+import math
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class AdaptiveMask(nn.Module):
+ """Soft masking function for adaptive size.
+ It masks out the last K values of an input. The masking value
+ goes from 1 to 0 gradually, so K can be learned with
+ back-propagation.
+ Args:
+ max_size: maximum size (i.e. input dimension)
+ ramp_size: size of the ramp going from 0 to 1
+ init_val: initial size proportion not to be masked out
+ shape: learn multiple sizes independent of each other
+ """
+
+ def __init__(self, max_size, ramp_size, init_val=0, shape=(1,)):
+ nn.Module.__init__(self)
+ self._max_size = max_size
+ self._ramp_size = ramp_size
+ self.current_val = nn.Parameter(torch.zeros(*shape) + init_val)
+ mask_template = torch.linspace(1 - max_size, 0, steps=max_size)
+ self.register_buffer("mask_template", mask_template)
+
+ def forward(self, x):
+ mask = self.mask_template.float() + self.current_val.float() * self._max_size
+ mask = mask / self._ramp_size + 1
+ mask = mask.clamp(0, 1)
+ if x.size(-1) < self._max_size:
+ # the input could have been trimmed beforehand to save computation
+ mask = mask.narrow(-1, self._max_size - x.size(-1), x.size(-1))
+ x = (x * mask).type_as(x)
+ return x
+
+ def get_current_max_size(self, include_ramp=True):
+ current_size = math.ceil(self.current_val.max().item() * self._max_size)
+ if include_ramp:
+ current_size += self._ramp_size
+ current_size = max(0, min(self._max_size, current_size))
+ return current_size
+
+ def get_current_avg_size(self, include_ramp=True):
+ current_size = math.ceil(
+ self.current_val.float().mean().item() * self._max_size
+ )
+ if include_ramp:
+ current_size += self._ramp_size
+ current_size = max(0, min(self._max_size, current_size))
+ return current_size
+
+ def clamp_param(self):
+ """this need to be called after each update"""
+ self.current_val.data.clamp_(0, 1)
+
+
+class AdaptiveSpan(nn.Module):
+ """Adaptive attention span for Transformerself.
+ This module learns an attention span length from data for each
+ self-attention head.
+ Args:
+ attn_span: maximum attention span
+ adapt_span_loss: loss coefficient for the span length
+ adapt_span_ramp: length of the masking ramp
+ adapt_span_init: initial size ratio
+ adapt_span_cache: adapt cache size to reduce memory usage
+ """
+
+ def __init__(
+ self,
+ attn_span,
+ adapt_span_ramp,
+ adapt_span_init,
+ n_head,
+ adapt_span_layer,
+ **kargs
+ ):
+ nn.Module.__init__(self)
+ self._max_span = attn_span
+ self._n_head = n_head
+ self._adapt_span_layer = adapt_span_layer
+ if self._adapt_span_layer:
+ self._mask = AdaptiveMask(
+ max_size=self._max_span,
+ ramp_size=adapt_span_ramp,
+ init_val=adapt_span_init,
+ )
+ else:
+ self._mask = AdaptiveMask(
+ max_size=self._max_span,
+ ramp_size=adapt_span_ramp,
+ init_val=adapt_span_init,
+ shape=(n_head, 1, 1),
+ )
+
+ def forward(self, attn, normalize=True):
+ """mask attention with the right span"""
+ # batch and head dimensions are merged together, so separate them first
+ self.clamp_param()
+ if self._adapt_span_layer:
+ attn = self._mask(attn)
+ else:
+ B = attn.size(0) # batch size
+ M = attn.size(1) # block size
+ attn = attn.reshape(B // self._n_head, self._n_head, M, -1)
+ attn = self._mask(attn)
+ attn = attn.view(B, M, -1)
+ return attn
+
+ def get_trim_len(self):
+ """how much of memory can be trimmed to reduce computation"""
+ L = self._max_span
+ trim_len = min(L - 1, L - self._mask.get_current_max_size())
+ # too fine granularity might be bad for the memory management
+ trim_len = math.floor(trim_len / 64) * 64
+ return trim_len
+
+ def trim_memory(self, query, key, value, key_pe):
+ """trim out unnecessary memory beforehand to reduce computation"""
+ trim_len = self.get_trim_len()
+ cache_size = key.size(1) - query.size(1)
+ trim_len_cache = trim_len - (self._max_span - cache_size)
+ if trim_len_cache > 0:
+ key = key[:, trim_len_cache:, :]
+ value = value[:, trim_len_cache:, :]
+ elif trim_len_cache < 0:
+ # cache is too short! this happens when validation resumes
+ # after a lot of updates.
+ key = F.pad(key, [0, 0, -trim_len_cache, 0])
+ value = F.pad(value, [0, 0, -trim_len_cache, 0])
+ if trim_len > 0:
+ if key_pe is not None:
+ key_pe = key_pe[:, :, trim_len:]
+ return key, value, key_pe
+
+ def get_cache_size(self):
+ """determine how long the cache should be"""
+ trim_len = self.get_trim_len()
+ # give a buffer of 64 steps since a span might increase
+ # in future updates
+ return min(self._max_span, self._max_span - trim_len + 64)
+
+ def get_loss(self):
+ """a loss term for regularizing the span length"""
+ return self._max_span * self._mask.current_val.float().mean()
+
+ def get_current_max_span(self):
+ return self._mask.get_current_max_size()
+
+ def get_current_avg_span(self):
+ return self._mask.get_current_avg_size()
+
+ def clamp_param(self):
+ self._mask.clamp_param()
diff --git a/fairseq/examples/adaptive_span/adaptive_span_loss.py b/fairseq/examples/adaptive_span/adaptive_span_loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..056245807e5f8d313a8ad5be68aea4e285f4f580
--- /dev/null
+++ b/fairseq/examples/adaptive_span/adaptive_span_loss.py
@@ -0,0 +1,106 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+from dataclasses import dataclass
+
+import torch.nn.functional as F
+from fairseq import metrics, utils
+from fairseq.criterions import register_criterion
+from fairseq.criterions.cross_entropy import CrossEntropyCriterion
+from fairseq.dataclass import FairseqDataclass
+from omegaconf import II
+
+
+@dataclass
+class AdaptiveSpanCriterionConfig(FairseqDataclass):
+ sentence_avg: bool = II("optimization.sentence_avg")
+
+
+@register_criterion("adaptive_span_loss", dataclass=AdaptiveSpanCriterionConfig)
+class AdaptiveSpanCriterion(CrossEntropyCriterion):
+ def __init__(self, task, sentence_avg):
+ super().__init__(task, sentence_avg)
+
+ def forward(self, model, sample, reduce=True):
+ """Compute the loss for the given sample.
+
+ Returns a tuple with three elements:
+ 1) the loss here is summed, different from the adaptive span code
+ 2) the sample size, which is used as the denominator for the gradient
+ 3) logging outputs to display while training
+ """
+ net_output = model(**sample["net_input"])
+ loss, aux_loss, avg_span, max_span = self.compute_loss(
+ model, net_output, sample, reduce=reduce
+ )
+ sample_size = (
+ sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
+ )
+ loss /= sample_size
+ total_loss = loss + aux_loss
+ sample_size = 1
+
+ logging_output = {
+ "loss": loss.data,
+ "ntokens": sample["ntokens"],
+ "nsentences": sample["target"].size(0),
+ "sample_size": sample_size,
+ "total_loss": total_loss.data,
+ "avg_span": avg_span * sample_size,
+ "max_span": max_span * sample_size,
+ }
+ return total_loss, sample_size, logging_output
+
+ def compute_loss(self, model, net_output, sample, reduce=True):
+ loss, _ = super().compute_loss(model, net_output, sample, reduce)
+ aux_loss = model.get_aux_loss()
+ avg_span = model.get_current_avg_span()
+ max_span = model.get_current_max_span()
+ return loss, aux_loss, avg_span, max_span
+
+ @staticmethod
+ def reduce_metrics(logging_outputs) -> None:
+ """Aggregate logging outputs from data parallel training."""
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
+ total_loss_sum = sum(log.get("total_loss", 0) for log in logging_outputs)
+ avg_span_sum = sum(log.get("avg_span", 0) for log in logging_outputs)
+ max_span_sum = sum(log.get("max_span", 0) for log in logging_outputs)
+
+ # we divide by log(2) to convert the loss from base e to base 2
+ metrics.log_scalar(
+ "loss", loss_sum / sample_size / math.log(2), sample_size, round=3
+ )
+ metrics.log_scalar("avg_span", avg_span_sum / sample_size, sample_size, round=3)
+ metrics.log_scalar("max_span", max_span_sum / sample_size, sample_size, round=3)
+ # total loss contains the L1 norm on adaptive-span
+ metrics.log_scalar(
+ "total_loss",
+ total_loss_sum / sample_size / math.log(2),
+ sample_size,
+ round=3,
+ )
+ if sample_size != ntokens:
+ metrics.log_scalar(
+ "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
+ )
+ metrics.log_derived(
+ "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
+ )
+ else:
+ metrics.log_derived(
+ "ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
+ )
+
+ @staticmethod
+ def logging_outputs_can_be_summed() -> bool:
+ """
+ Whether the logging outputs returned by `forward` can be summed
+ across workers prior to calling `reduce_metrics`. Setting this
+ to True will improves distributed training speed.
+ """
+ return True
diff --git a/fairseq/examples/adaptive_span/adaptive_span_model.py b/fairseq/examples/adaptive_span/adaptive_span_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..d96c95b85dbcf29e9384cc6d8d9630d2489991b2
--- /dev/null
+++ b/fairseq/examples/adaptive_span/adaptive_span_model.py
@@ -0,0 +1,263 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from fairseq.modules.layer_norm import LayerNorm
+
+from .adaptive_span_attention import AdaptiveSpan
+
+# Size notations:
+# B = batch_size, H = d_model, M = block_size, L = attn_span
+
+
+def _skew(X, pad_value):
+ """shift every row 1 step to right"""
+ # X = B x M x L
+ B, M, L = X.size()
+ X = F.pad(X, (0, M + 1), value=pad_value) # B x M x (L+M+1)
+ X = X.view(B, -1) # B x ML+MM+M
+ X = X[:, :-M] # B x ML+MM
+ X = X.view(B, M, M + L) # B x M x L+M
+ return X
+
+
+def _unskew(X):
+ """reverse _skew operation"""
+ # X = B x M x L+M
+ B, M, L = X.size()
+ L -= M
+ X = X.view(B, -1) # B x ML+MM
+ X = F.pad(X, (0, M)) # B x ML+MM+M
+ X = X.view(B, M, M + L + 1) # B x M x L+M+1
+ X = X[:, :, :L] # B x M x L
+ return X
+
+
+class SeqAttention(nn.Module):
+ """Sequential self-attention layer.
+ Each token will attend to its previous fixed number of steps.
+ Note that attention doesn't include the current step itself.
+ """
+
+ def __init__(self, d_model, n_head, attn_span, dropout, adapt_span_layer, **kargs):
+ nn.Module.__init__(self)
+ self.dropout = nn.Dropout(dropout)
+ self.d_model = d_model # size of a single head
+ self.attn_span = attn_span
+ self.adaptive_span = AdaptiveSpan(
+ attn_span=attn_span,
+ n_head=n_head,
+ adapt_span_layer=adapt_span_layer,
+ **kargs
+ )
+
+ def forward(self, query, key, value, key_pe):
+ # query size = B x M x H
+ # key, value sizes = B x (M+L) x H
+
+ key, value, key_pe = self.adaptive_span.trim_memory(query, key, value, key_pe)
+
+ # compute attention from context
+ # B x M (dest) x (M+L) (src)
+ attn_cont = torch.matmul(query, key.transpose(-1, -2))
+ attn_cont = _unskew(attn_cont) # B x M x L
+
+ # compute the effect of position embedding
+ attn_pos = torch.matmul(query, key_pe) # B x M x L_pos
+ attn = attn_cont + attn_pos
+
+ attn = attn / math.sqrt(self.d_model) # B x M X L_pos
+
+ attn = F.softmax(attn.float(), dim=-1).type_as(attn)
+
+ # trim attention lengths according to the learned span
+ attn = self.adaptive_span(attn)
+
+ attn = self.dropout(attn) # B x M X L_pos
+
+ attn_cont = _skew(attn, 0) # B x M X (L+M)
+ out = torch.matmul(attn_cont, value) # B x M x H
+ return out
+
+ def get_cache_size(self):
+ return self.adaptive_span.get_cache_size()
+
+
+class MultiHeadSeqAttention(nn.Module):
+ def __init__(self, d_model, n_head, **kargs):
+ nn.Module.__init__(self)
+ assert d_model % n_head == 0
+ self.n_head = n_head
+ self.head_dim = d_model // n_head
+ self.attn = SeqAttention(d_model=self.head_dim, n_head=n_head, **kargs)
+ self.proj_query = nn.Linear(d_model, d_model, bias=False)
+ nn.init.xavier_normal_(self.proj_query.weight)
+ self.proj_out = nn.Linear(d_model, d_model, bias=False)
+ nn.init.xavier_normal_(self.proj_out.weight)
+ self.proj_val = nn.Linear(d_model, d_model, bias=False)
+ nn.init.xavier_normal_(self.proj_val.weight)
+ self.proj_key = nn.Linear(d_model, d_model, bias=False)
+ nn.init.xavier_normal_(self.proj_key.weight)
+
+ def head_reshape(self, x):
+ K = self.n_head
+ D = self.head_dim
+ x = x.view(x.size()[:-1] + (K, D)) # B x (M+L) x K x D
+ x = x.transpose(1, 2).contiguous() # B x K x (M+L) x D
+ x = x.view(-1, x.size(-2), x.size(-1)) # B_K x (M+L) x D
+ return x
+
+ def forward(self, query, key, value, key_pe):
+ B = query.size(0)
+ K = self.n_head
+ D = self.head_dim
+ M = query.size(1)
+
+ query = self.proj_query(query)
+ query = self.head_reshape(query)
+ value = self.proj_val(value)
+ value = self.head_reshape(value)
+ key = self.proj_key(key)
+ key = self.head_reshape(key)
+
+ out = self.attn(query, key, value, key_pe) # B_K x M x D
+ out = out.view(B, K, M, D) # B x K x M x D
+ out = out.transpose(1, 2).contiguous() # B x M x K x D
+ out = out.view(B, M, -1) # B x M x K_D
+ out = self.proj_out(out)
+ return out
+
+
+class FeedForwardLayer(nn.Module):
+ def __init__(self, d_model, d_inner, dropout, **kargs):
+ nn.Module.__init__(self)
+ self.fc1 = nn.Linear(d_model, d_inner)
+ self.fc2 = nn.Linear(d_inner, d_model)
+ nn.init.xavier_uniform_(self.fc1.weight)
+ nn.init.xavier_uniform_(self.fc2.weight)
+ self.dropout = nn.Dropout(dropout)
+
+ def forward(self, h):
+ h1 = F.relu(self.fc1(h))
+ h1 = self.dropout(h1)
+ h2 = self.fc2(h1)
+ return h2
+
+
+class TransformerSeqLayer(nn.Module):
+ def __init__(self, d_model, **kargs):
+ nn.Module.__init__(self)
+ self.attn = MultiHeadSeqAttention(d_model=d_model, **kargs)
+ self.norm1 = LayerNorm(d_model)
+ self.ff = FeedForwardLayer(d_model=d_model, **kargs)
+ self.norm2 = LayerNorm(d_model)
+
+ def forward(self, h, h_cache, key_pe):
+ # h = B x M x H
+ # h_cache = B x L x H
+ h_all = torch.cat([h_cache, h], dim=1) # B x (M+L) x H
+ attn_out = self.attn(h, h_all, h_all, key_pe)
+ h = self.norm1(h + attn_out) # B x M x H
+ if self.ff is not None:
+ ff_out = self.ff(h)
+ out = self.norm2(h + ff_out) # B x M x H
+ else:
+ out = h
+ return out
+
+ def get_cache_size(self):
+ return self.attn.attn.get_cache_size()
+
+
+class TransformerSeq(nn.Module):
+ def __init__(
+ self,
+ vocab_size,
+ d_model,
+ n_head,
+ n_layer,
+ attn_span,
+ emb_dropout,
+ aux_loss_scaler,
+ adapt_span_layer,
+ **kargs
+ ):
+ nn.Module.__init__(self)
+ # token embeddings
+ self.in_emb = nn.Embedding(vocab_size, d_model)
+ nn.init.normal_(self.in_emb.weight, mean=0, std=d_model ** -0.5)
+ self.out_emb = nn.Linear(d_model, vocab_size)
+ self.aux_loss_scaler = aux_loss_scaler
+ if emb_dropout > 0:
+ self.emb_dropout = nn.Dropout(emb_dropout)
+ else:
+ self.emb_dropout = None
+ # position embeddings
+ self.key_pe = nn.Parameter(torch.randn(1, d_model // n_head, attn_span))
+
+ self.layers = nn.ModuleList()
+ self.layers.extend(
+ TransformerSeqLayer(
+ d_model=d_model,
+ n_head=n_head,
+ attn_span=attn_span,
+ adapt_span_layer=adapt_span_layer,
+ **kargs
+ )
+ for _ in range(n_layer)
+ )
+
+ def forward(self, x, h_cache, target=None):
+ # x size = B x M
+ block_size = x.size(1)
+ h = self.in_emb(x) # B x M x H
+ if self.emb_dropout is not None:
+ h = self.emb_dropout(h)
+
+ h_cache_next = []
+ for l, layer in enumerate(self.layers):
+ cache_size = layer.attn.attn.get_cache_size()
+ if cache_size > block_size:
+ h_cache_next_l = torch.cat(
+ [h_cache[l][:, -cache_size + block_size :, :], h], dim=1
+ ).detach()
+ else:
+ h_cache_next_l = h[:, -cache_size:, :].detach()
+ h_cache_next.append(h_cache_next_l)
+ h = layer(h, h_cache[l], self.key_pe) # B x M x H
+
+ if self.emb_dropout is not None:
+ h = self.emb_dropout(h)
+
+ out = F.log_softmax(self.out_emb(h).float(), dim=-1).type_as(h)
+ dummy_loss = None
+
+ return out, h_cache_next, dummy_loss
+
+ def get_aux_loss(self):
+ loss = 0.0
+ for layer in self.layers:
+ loss += layer.attn.attn.adaptive_span.get_loss()
+ return self.aux_loss_scaler * loss
+
+ def get_current_max_span(self):
+ max_span = 0.0
+ for layer in self.layers:
+ max_span = max(
+ max_span, layer.attn.attn.adaptive_span.get_current_max_span()
+ )
+ return max_span
+
+ def get_current_avg_span(self):
+ avg_span = 0.0
+ for layer in self.layers:
+ avg_span += layer.attn.attn.adaptive_span.get_current_avg_span()
+ return avg_span / len(self.layers)
diff --git a/fairseq/examples/adaptive_span/adaptive_span_model_wrapper.py b/fairseq/examples/adaptive_span/adaptive_span_model_wrapper.py
new file mode 100644
index 0000000000000000000000000000000000000000..5b147fe11f9d730438d036321a2d4a5d776efaa2
--- /dev/null
+++ b/fairseq/examples/adaptive_span/adaptive_span_model_wrapper.py
@@ -0,0 +1,145 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+from dataclasses import dataclass
+from typing import Dict, List, Optional
+
+import torch
+from fairseq.dataclass import FairseqDataclass
+from fairseq.models import (
+ FairseqIncrementalDecoder,
+ FairseqLanguageModel,
+ register_model,
+)
+from .adaptive_span_model import TransformerSeq as AdaptiveSpanTransformerModel
+
+
+logger = logging.getLogger(__name__)
+
+
+@dataclass
+class AdaptiveSpanSmallConfig(FairseqDataclass):
+ # defaults come from https://github.com/facebookresearch/adaptive-span/blob/master/experiments/enwik8_small.sh
+ vocab_size: int = 50
+ d_model: int = 256
+ n_head: int = 4
+ d_inner: int = 1024
+ n_layer: int = 8
+ attn_span: int = 1024
+ dropout: float = 0.0
+ emb_dropout: float = 0.0
+ adapt_span_ramp: int = 32
+ adapt_span_init: float = 0.0
+ aux_loss_scaler: float = 0.000002
+ adapt_span_layer: bool = False
+
+
+@register_model("adaptive_span", dataclass=AdaptiveSpanSmallConfig)
+class AdaptiveSpanTransformer(FairseqLanguageModel):
+ @classmethod
+ def build_model(cls, cfg: AdaptiveSpanSmallConfig, task):
+ return cls(AdaptiveSpanDecoder(cfg, task))
+
+ def get_aux_loss(self):
+ return self.decoder.get_aux_loss()
+
+ def get_current_max_span(self):
+ return self.decoder.get_current_max_span()
+
+ def get_current_avg_span(self):
+ return self.decoder.get_current_avg_span()
+
+
+class AdaptiveSpanDecoder(FairseqIncrementalDecoder):
+ def __init__(self, cfg, task):
+
+ super().__init__(task.target_dictionary)
+
+ self.config = cfg
+ config = AdaptiveSpanSmallConfig(
+ vocab_size=len(task.target_dictionary),
+ d_model=cfg.d_model,
+ n_head=cfg.n_head,
+ d_inner=cfg.d_inner,
+ n_layer=cfg.n_layer,
+ attn_span=cfg.attn_span,
+ dropout=cfg.dropout,
+ emb_dropout=cfg.emb_dropout,
+ adapt_span_ramp=cfg.adapt_span_ramp,
+ adapt_span_init=cfg.adapt_span_init,
+ aux_loss_scaler=cfg.aux_loss_scaler,
+ adapt_span_layer=cfg.adapt_span_layer,
+ )
+ logger.info(config)
+ self.model = AdaptiveSpanTransformerModel(**config.__dict__)
+
+ self._mems = None
+
+ def forward(
+ self,
+ src_tokens,
+ incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None,
+ encoder_out=None,
+ ):
+ bsz = src_tokens.size(0)
+ if incremental_state is not None: # used during inference
+ mems = self.get_incremental_state("mems")
+ src_tokens = src_tokens[:, -1:] # only keep the most recent token
+ else:
+ mems = self._mems
+
+ if mems is None:
+ # first time init
+ mems = self.init_hid_cache(bsz)
+ output = self.model(x=src_tokens, h_cache=mems,)
+ if incremental_state is not None:
+ self.set_incremental_state(incremental_state, "mems", output[1])
+ else:
+ self._mems = output[1]
+ return (output[0],)
+
+ def max_positions(self):
+ return self.config.attn_span
+
+ def init_hid_cache(self, batch_sz):
+ hid = []
+ for layer in self.model.layers:
+ param = next(self.model.parameters())
+ h = torch.zeros(
+ batch_sz,
+ layer.get_cache_size(),
+ self.config.d_model,
+ dtype=param.dtype,
+ device=param.device,
+ )
+ hid.append(h)
+ return hid
+
+ def get_aux_loss(self):
+ return self.model.get_aux_loss()
+
+ def get_current_max_span(self):
+ return self.model.get_current_max_span()
+
+ def get_current_avg_span(self):
+ return self.model.get_current_avg_span()
+
+ def reorder_incremental_state(
+ self,
+ incremental_state: Dict[str, Dict[str, Optional[torch.Tensor]]],
+ new_order: torch.Tensor,
+ ):
+ """Reorder incremental state.
+
+ This will be called when the order of the input has changed from the
+ previous time step. A typical use case is beam search, where the input
+ order changes between time steps based on the selection of beams.
+ """
+ raise NotImplementedError("This is required for generation/beam search")
+ # mems = self.get_incremental_state(incremental_state, "mems")
+ # if mems is not None:
+ # new_mems = [mems_i.index_select(1, new_order) for mems_i in mems]
+ # self.set_incremental_state(incremental_state, "mems", new_mems)
diff --git a/fairseq/examples/adaptive_span/truncated_bptt_lm_task.py b/fairseq/examples/adaptive_span/truncated_bptt_lm_task.py
new file mode 100644
index 0000000000000000000000000000000000000000..02be0e7fb4213b98798c85b79e9046e9990b97fc
--- /dev/null
+++ b/fairseq/examples/adaptive_span/truncated_bptt_lm_task.py
@@ -0,0 +1,281 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+from dataclasses import dataclass, field
+from typing import List, Optional, Tuple
+
+import torch
+from fairseq import utils
+from fairseq.data import (
+ Dictionary,
+ TokenBlockDataset,
+ data_utils,
+ iterators,
+)
+from fairseq.dataclass import FairseqDataclass
+from fairseq.distributed import utils as dist_utils
+from fairseq.tasks import FairseqTask, register_task
+from omegaconf import II
+
+
+logger = logging.getLogger(__name__)
+
+
+@dataclass
+class TruncatedBPTTLMConfig(FairseqDataclass):
+ data: str = field(default="???", metadata={"help": "path to data directory"})
+ tokens_per_sample: int = field(
+ default=1024,
+ metadata={"help": "max number of tokens per sequence"},
+ )
+ batch_size: int = II("dataset.batch_size")
+ # Some models use *max_target_positions* to know how many positional
+ # embeddings to learn. We use II(...) to make it default to
+ # *tokens_per_sample*, but in principle there could be more positional
+ # embeddings than tokens in a single batch. This may also be irrelevant for
+ # custom model implementations.
+ max_target_positions: int = II("task.tokens_per_sample")
+ # these will be populated automatically if not provided
+ data_parallel_rank: Optional[int] = None
+ data_parallel_size: Optional[int] = None
+
+
+@register_task("truncated_bptt_lm", dataclass=TruncatedBPTTLMConfig)
+class TruncatedBPTTLMTask(FairseqTask):
+ def __init__(self, cfg: TruncatedBPTTLMConfig):
+ super().__init__(cfg)
+
+ if cfg.data_parallel_rank is None or cfg.data_parallel_size is None:
+ if torch.distributed.is_initialized():
+ cfg.data_parallel_rank = dist_utils.get_data_parallel_rank()
+ cfg.data_parallel_size = dist_utils.get_data_parallel_world_size()
+ else:
+ cfg.data_parallel_rank = 0
+ cfg.data_parallel_size = 1
+
+ # load the dictionary
+ paths = utils.split_paths(cfg.data)
+ assert len(paths) > 0
+ self.dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
+ logger.info("dictionary: {} types".format(len(self.dictionary)))
+
+ def load_dataset(self, split, epoch=1, combine=False, **kwargs):
+ """Load a given dataset split (e.g., train, valid, test)"""
+
+ # support sharded datasets
+ paths = utils.split_paths(self.cfg.data)
+ assert len(paths) > 0
+ data_path = paths[(epoch - 1) % len(paths)]
+ split_path = os.path.join(data_path, split)
+
+ # each element of *data* will be a tensorized line from the original
+ # text dataset, similar to ``open(split_path).readlines()``
+ data = data_utils.load_indexed_dataset(
+ split_path, self.dictionary, combine=combine
+ )
+ if data is None:
+ raise FileNotFoundError(
+ "Dataset not found: {} ({})".format(split, split_path)
+ )
+
+ # this is similar to ``data.view(-1).split(tokens_per_sample)``
+ data = TokenBlockDataset(
+ data,
+ data.sizes,
+ block_size=self.cfg.tokens_per_sample,
+ pad=None, # unused
+ eos=None, # unused
+ break_mode="none",
+ )
+
+ self.datasets[split] = TruncatedBPTTDataset(
+ data=data,
+ bsz_per_shard=self.cfg.batch_size,
+ shard_id=self.cfg.data_parallel_rank,
+ num_shards=self.cfg.data_parallel_size,
+ )
+
+ def dataset(self, split):
+ return self.datasets[split]
+
+ def get_batch_iterator(
+ self, dataset, num_workers=0, epoch=1, data_buffer_size=0, **kwargs
+ ):
+ return iterators.EpochBatchIterator(
+ dataset=dataset,
+ collate_fn=self._collate_fn,
+ num_workers=num_workers,
+ epoch=epoch,
+ buffer_size=data_buffer_size,
+ # we don't use the batching functionality from EpochBatchIterator;
+ # instead every item in *dataset* is a whole batch
+ batch_sampler=[[i] for i in range(len(dataset))],
+ disable_shuffling=True,
+ )
+
+ def _collate_fn(self, items: List[List[torch.Tensor]]):
+ # we don't use fairseq's batching functionality, so we expect a single
+ # Tensor of type List[torch.Tensor]
+ assert len(items) == 1
+
+ # item will have shape B x T (the last batch may have length < T)
+ id, item = items[0]
+ item = data_utils.collate_tokens(item, pad_idx=self.source_dictionary.pad())
+ B, T = item.size()
+
+ # shift item one position over and append a padding token for the target
+ target = torch.nn.functional.pad(
+ item[:, 1:], (0, 1, 0, 0), value=self.target_dictionary.pad()
+ )
+
+ # fairseq expects batches to have the following structure
+ return {
+ "id": torch.tensor([id]*item.size(0)),
+ "net_input": {
+ "src_tokens": item,
+ },
+ "target": target,
+ "nsentences": item.size(0),
+ "ntokens": item.numel(),
+ }
+
+ def build_dataset_for_inference(
+ self, src_tokens: List[torch.Tensor], src_lengths: List[int], **kwargs
+ ) -> torch.utils.data.Dataset:
+ eos = self.source_dictionary.eos()
+ dataset = TokenBlockDataset(
+ src_tokens,
+ src_lengths,
+ block_size=None, # ignored for "eos" break mode
+ pad=self.source_dictionary.pad(),
+ eos=eos,
+ break_mode="eos",
+ )
+
+ class Dataset(torch.utils.data.Dataset):
+ def __getitem__(self, i):
+ item = dataset[i]
+ if item[-1] == eos:
+ # remove eos to support generating with a prefix
+ item = item[:-1]
+ return (i, [item])
+
+ def __len__(self):
+ return len(dataset)
+
+ return Dataset()
+
+ def inference_step(
+ self, generator, models, sample, prefix_tokens=None, constraints=None
+ ):
+ with torch.no_grad():
+ if constraints is not None:
+ raise NotImplementedError
+
+ # SequenceGenerator doesn't use *src_tokens* directly, we need to
+ # pass the *prefix_tokens* argument instead.
+ if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement():
+ prefix_tokens = sample["net_input"]["src_tokens"]
+
+ # begin generation with the end-of-sentence token
+ bos_token = self.source_dictionary.eos()
+
+ return generator.generate(
+ models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token
+ )
+
+ def eval_lm_dataloader(
+ self,
+ dataset,
+ max_tokens: Optional[int] = 36000,
+ batch_size: Optional[int] = None,
+ max_positions: Optional[int] = None,
+ num_shards: int = 1,
+ shard_id: int = 0,
+ num_workers: int = 1,
+ data_buffer_size: int = 10,
+ context_window: int = 0,
+ ):
+ if context_window > 0:
+ raise NotImplementedError(
+ "Transformer-XL doesn't need --context-window, try "
+ "--model-overrides '{\"mem_len\":42}' instead "
+ )
+ return self.get_batch_iterator(
+ dataset=dataset,
+ max_tokens=max_tokens,
+ max_sentences=batch_size,
+ max_positions=max_positions,
+ ignore_invalid_inputs=True,
+ num_shards=num_shards,
+ shard_id=shard_id,
+ num_workers=num_workers,
+ data_buffer_size=data_buffer_size,
+ ).next_epoch_itr(shuffle=False)
+
+ @property
+ def source_dictionary(self):
+ return self.dictionary
+
+ @property
+ def target_dictionary(self):
+ return self.dictionary
+
+
+class TruncatedBPTTDataset(torch.utils.data.Dataset):
+ def __init__(
+ self,
+ data: List[torch.Tensor], # ordered list of items
+ bsz_per_shard, # number of items processed per GPUs per forward
+ shard_id, # current GPU ID
+ num_shards, # number of GPUs
+ ):
+ super().__init__()
+ self.data = data
+
+ def batchify(data, bsz):
+ # Work out how cleanly we can divide the dataset into bsz parts.
+ nbatch = data.size(0) // bsz
+ # Trim off any extra elements that wouldn't cleanly fit (remainders).
+ data = data.narrow(0, 0, nbatch * bsz)
+ # Evenly divide the data across the bsz batches.
+ data = data.view(bsz, -1).contiguous()
+ return data
+
+ # total number of sequences processed by all GPUs in each forward pass
+ global_batch_size = bsz_per_shard * num_shards
+
+ """
+ With a 16 item dataset, bsz_per_shard=2 and num_shards=3,
+ *indices* might look like:
+
+ indices = [[0, 1],
+ [2, 3],
+ [4, 5],
+ [6, 7],
+ [8, 9],
+ [10, 11]]
+
+ The size of the TruncatedBPTTDataset instance will be 2,
+ and shard 1 will see items:
+
+ [(0, [data[4], data[6]]),
+ (1, [data[5], data[7]])]
+ """
+ indices = batchify(torch.arange(len(data)), global_batch_size)
+ assert indices.size(0) == global_batch_size
+
+ self.my_indices = indices[
+ shard_id * bsz_per_shard : (shard_id + 1) * bsz_per_shard
+ ]
+ assert self.my_indices.size(0) == bsz_per_shard
+
+ def __len__(self):
+ return self.my_indices.size(1)
+
+ def __getitem__(self, i) -> Tuple[int, List[torch.Tensor]]:
+ return (i, [self.data[idx] for idx in self.my_indices[:, i]])
diff --git a/fairseq/examples/backtranslation/README.md b/fairseq/examples/backtranslation/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..73675f1125d80f58aa824db67d8970504d4d6b2a
--- /dev/null
+++ b/fairseq/examples/backtranslation/README.md
@@ -0,0 +1,297 @@
+# Understanding Back-Translation at Scale (Edunov et al., 2018)
+
+This page includes pre-trained models from the paper [Understanding Back-Translation at Scale (Edunov et al., 2018)](https://arxiv.org/abs/1808.09381).
+
+## Pre-trained models
+
+Model | Description | Dataset | Download
+---|---|---|---
+`transformer.wmt18.en-de` | Transformer ([Edunov et al., 2018](https://arxiv.org/abs/1808.09381)) WMT'18 winner | [WMT'18 English-German](http://www.statmt.org/wmt18/translation-task.html) | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz) See NOTE in the archive
+
+## Example usage (torch.hub)
+
+We require a few additional Python dependencies for preprocessing:
+```bash
+pip install subword_nmt sacremoses
+```
+
+Then to generate translations from the full model ensemble:
+```python
+import torch
+
+# List available models
+torch.hub.list('pytorch/fairseq') # [..., 'transformer.wmt18.en-de', ... ]
+
+# Load the WMT'18 En-De ensemble
+en2de_ensemble = torch.hub.load(
+ 'pytorch/fairseq', 'transformer.wmt18.en-de',
+ checkpoint_file='wmt18.model1.pt:wmt18.model2.pt:wmt18.model3.pt:wmt18.model4.pt:wmt18.model5.pt',
+ tokenizer='moses', bpe='subword_nmt')
+
+# The ensemble contains 5 models
+len(en2de_ensemble.models)
+# 5
+
+# Translate
+en2de_ensemble.translate('Hello world!')
+# 'Hallo Welt!'
+```
+
+## Training your own model (WMT'18 English-German)
+
+The following instructions can be adapted to reproduce the models from the paper.
+
+
+#### Step 1. Prepare parallel data and optionally train a baseline (English-German) model
+
+First download and preprocess the data:
+```bash
+# Download and prepare the data
+cd examples/backtranslation/
+bash prepare-wmt18en2de.sh
+cd ../..
+
+# Binarize the data
+TEXT=examples/backtranslation/wmt18_en_de
+fairseq-preprocess \
+ --joined-dictionary \
+ --source-lang en --target-lang de \
+ --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
+ --destdir data-bin/wmt18_en_de --thresholdtgt 0 --thresholdsrc 0 \
+ --workers 20
+
+# Copy the BPE code into the data-bin directory for future use
+cp examples/backtranslation/wmt18_en_de/code data-bin/wmt18_en_de/code
+```
+
+(Optionally) Train a baseline model (English-German) using just the parallel data:
+```bash
+CHECKPOINT_DIR=checkpoints_en_de_parallel
+fairseq-train --fp16 \
+ data-bin/wmt18_en_de \
+ --source-lang en --target-lang de \
+ --arch transformer_wmt_en_de_big --share-all-embeddings \
+ --dropout 0.3 --weight-decay 0.0 \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
+ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
+ --lr 0.001 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
+ --max-tokens 3584 --update-freq 16 \
+ --max-update 30000 \
+ --save-dir $CHECKPOINT_DIR
+# Note: the above command assumes 8 GPUs. Adjust `--update-freq` if you have a
+# different number of GPUs.
+```
+
+Average the last 10 checkpoints:
+```bash
+python scripts/average_checkpoints.py \
+ --inputs $CHECKPOINT_DIR \
+ --num-epoch-checkpoints 10 \
+ --output $CHECKPOINT_DIR/checkpoint.avg10.pt
+```
+
+Evaluate BLEU:
+```bash
+# tokenized BLEU on newstest2017:
+bash examples/backtranslation/tokenized_bleu.sh \
+ wmt17 \
+ en-de \
+ data-bin/wmt18_en_de \
+ data-bin/wmt18_en_de/code \
+ $CHECKPOINT_DIR/checkpoint.avg10.pt
+# BLEU4 = 29.57, 60.9/35.4/22.9/15.5 (BP=1.000, ratio=1.014, syslen=63049, reflen=62152)
+# compare to 29.46 in Table 1, which is also for tokenized BLEU
+
+# generally it's better to report (detokenized) sacrebleu though:
+bash examples/backtranslation/sacrebleu.sh \
+ wmt17 \
+ en-de \
+ data-bin/wmt18_en_de \
+ data-bin/wmt18_en_de/code \
+ $CHECKPOINT_DIR/checkpoint.avg10.pt
+# BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.4.3 = 29.0 60.6/34.7/22.4/14.9 (BP = 1.000 ratio = 1.013 hyp_len = 62099 ref_len = 61287)
+```
+
+
+#### Step 2. Back-translate monolingual German data
+
+Train a reverse model (German-English) to do the back-translation:
+```bash
+CHECKPOINT_DIR=checkpoints_de_en_parallel
+fairseq-train --fp16 \
+ data-bin/wmt18_en_de \
+ --source-lang de --target-lang en \
+ --arch transformer_wmt_en_de_big --share-all-embeddings \
+ --dropout 0.3 --weight-decay 0.0 \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
+ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
+ --lr 0.001 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
+ --max-tokens 3584 --update-freq 16 \
+ --max-update 30000 \
+ --save-dir $CHECKPOINT_DIR
+# Note: the above command assumes 8 GPUs. Adjust `--update-freq` if you have a
+# different number of GPUs.
+```
+
+Let's evaluate the back-translation (BT) model to make sure it is well trained:
+```bash
+bash examples/backtranslation/sacrebleu.sh \
+ wmt17 \
+ de-en \
+ data-bin/wmt18_en_de \
+ data-bin/wmt18_en_de/code \
+ $CHECKPOINT_DIR/checkpoint_best.py
+# BLEU+case.mixed+lang.de-en+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.4.3 = 34.9 66.9/41.8/28.5/19.9 (BP = 0.983 ratio = 0.984 hyp_len = 63342 ref_len = 64399)
+# compare to the best system from WMT'17 which scored 35.1: http://matrix.statmt.org/matrix/systems_list/1868
+```
+
+Next prepare the monolingual data:
+```bash
+# Download and prepare the monolingual data
+# By default the script samples 25M monolingual sentences, which after
+# deduplication should be just over 24M sentences. These are split into 25
+# shards, each with 1M sentences (except for the last shard).
+cd examples/backtranslation/
+bash prepare-de-monolingual.sh
+cd ../..
+
+# Binarize each shard of the monolingual data
+TEXT=examples/backtranslation/wmt18_de_mono
+for SHARD in $(seq -f "%02g" 0 24); do \
+ fairseq-preprocess \
+ --only-source \
+ --source-lang de --target-lang en \
+ --joined-dictionary \
+ --srcdict data-bin/wmt18_en_de/dict.de.txt \
+ --testpref $TEXT/bpe.monolingual.dedup.${SHARD} \
+ --destdir data-bin/wmt18_de_mono/shard${SHARD} \
+ --workers 20; \
+ cp data-bin/wmt18_en_de/dict.en.txt data-bin/wmt18_de_mono/shard${SHARD}/; \
+done
+```
+
+Now we're ready to perform back-translation over the monolingual data. The
+following command generates via sampling, but it's possible to use greedy
+decoding (`--beam 1`), beam search (`--beam 5`),
+top-k sampling (`--sampling --beam 1 --sampling-topk 10`), etc.:
+```bash
+mkdir backtranslation_output
+for SHARD in $(seq -f "%02g" 0 24); do \
+ fairseq-generate --fp16 \
+ data-bin/wmt18_de_mono/shard${SHARD} \
+ --path $CHECKPOINT_DIR/checkpoint_best.pt \
+ --skip-invalid-size-inputs-valid-test \
+ --max-tokens 4096 \
+ --sampling --beam 1 \
+ > backtranslation_output/sampling.shard${SHARD}.out; \
+done
+```
+
+After BT, use the `extract_bt_data.py` script to re-combine the shards, extract
+the back-translations and apply length ratio filters:
+```bash
+python examples/backtranslation/extract_bt_data.py \
+ --minlen 1 --maxlen 250 --ratio 1.5 \
+ --output backtranslation_output/bt_data --srclang en --tgtlang de \
+ backtranslation_output/sampling.shard*.out
+
+# Ensure lengths are the same:
+# wc -l backtranslation_output/bt_data.{en,de}
+# 21795614 backtranslation_output/bt_data.en
+# 21795614 backtranslation_output/bt_data.de
+# 43591228 total
+```
+
+Binarize the filtered BT data and combine it with the parallel data:
+```bash
+TEXT=backtranslation_output
+fairseq-preprocess \
+ --source-lang en --target-lang de \
+ --joined-dictionary \
+ --srcdict data-bin/wmt18_en_de/dict.en.txt \
+ --trainpref $TEXT/bt_data \
+ --destdir data-bin/wmt18_en_de_bt \
+ --workers 20
+
+# We want to train on the combined data, so we'll symlink the parallel + BT data
+# in the wmt18_en_de_para_plus_bt directory. We link the parallel data as "train"
+# and the BT data as "train1", so that fairseq will combine them automatically
+# and so that we can use the `--upsample-primary` option to upsample the
+# parallel data (if desired).
+PARA_DATA=$(readlink -f data-bin/wmt18_en_de)
+BT_DATA=$(readlink -f data-bin/wmt18_en_de_bt)
+COMB_DATA=data-bin/wmt18_en_de_para_plus_bt
+mkdir -p $COMB_DATA
+for LANG in en de; do \
+ ln -s ${PARA_DATA}/dict.$LANG.txt ${COMB_DATA}/dict.$LANG.txt; \
+ for EXT in bin idx; do \
+ ln -s ${PARA_DATA}/train.en-de.$LANG.$EXT ${COMB_DATA}/train.en-de.$LANG.$EXT; \
+ ln -s ${BT_DATA}/train.en-de.$LANG.$EXT ${COMB_DATA}/train1.en-de.$LANG.$EXT; \
+ ln -s ${PARA_DATA}/valid.en-de.$LANG.$EXT ${COMB_DATA}/valid.en-de.$LANG.$EXT; \
+ ln -s ${PARA_DATA}/test.en-de.$LANG.$EXT ${COMB_DATA}/test.en-de.$LANG.$EXT; \
+ done; \
+done
+```
+
+
+#### 3. Train an English-German model over the combined parallel + BT data
+
+Finally we can train a model over the parallel + BT data:
+```bash
+CHECKPOINT_DIR=checkpoints_en_de_parallel_plus_bt
+fairseq-train --fp16 \
+ data-bin/wmt18_en_de_para_plus_bt \
+ --upsample-primary 16 \
+ --source-lang en --target-lang de \
+ --arch transformer_wmt_en_de_big --share-all-embeddings \
+ --dropout 0.3 --weight-decay 0.0 \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
+ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
+ --lr 0.0007 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
+ --max-tokens 3584 --update-freq 16 \
+ --max-update 100000 \
+ --save-dir $CHECKPOINT_DIR
+# Note: the above command assumes 8 GPUs. Adjust `--update-freq` if you have a
+# different number of GPUs.
+```
+
+Average the last 10 checkpoints:
+```bash
+python scripts/average_checkpoints.py \
+ --inputs $CHECKPOINT_DIR \
+ --num-epoch-checkpoints 10 \
+ --output $CHECKPOINT_DIR/checkpoint.avg10.pt
+```
+
+Evaluate BLEU:
+```bash
+# tokenized BLEU on newstest2017:
+bash examples/backtranslation/tokenized_bleu.sh \
+ wmt17 \
+ en-de \
+ data-bin/wmt18_en_de \
+ data-bin/wmt18_en_de/code \
+ $CHECKPOINT_DIR/checkpoint.avg10.pt
+# BLEU4 = 32.35, 64.4/38.9/26.2/18.3 (BP=0.977, ratio=0.977, syslen=60729, reflen=62152)
+# compare to 32.35 in Table 1, which is also for tokenized BLEU
+
+# generally it's better to report (detokenized) sacrebleu:
+bash examples/backtranslation/sacrebleu.sh \
+ wmt17 \
+ en-de \
+ data-bin/wmt18_en_de \
+ data-bin/wmt18_en_de/code \
+ $CHECKPOINT_DIR/checkpoint.avg10.pt
+# BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.4.3 = 31.5 64.3/38.2/25.6/17.6 (BP = 0.971 ratio = 0.971 hyp_len = 59515 ref_len = 61287)
+```
+
+
+## Citation
+```bibtex
+@inproceedings{edunov2018backtranslation,
+ title = {Understanding Back-Translation at Scale},
+ author = {Edunov, Sergey and Ott, Myle and Auli, Michael and Grangier, David},
+ booktitle = {Conference of the Association for Computational Linguistics (ACL)},
+ year = 2018,
+}
+```
diff --git a/fairseq/examples/backtranslation/deduplicate_lines.py b/fairseq/examples/backtranslation/deduplicate_lines.py
new file mode 100644
index 0000000000000000000000000000000000000000..50e458328c80b71c42a66d473381ca7e98d294da
--- /dev/null
+++ b/fairseq/examples/backtranslation/deduplicate_lines.py
@@ -0,0 +1,41 @@
+#!/usr/bin/python3
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import fileinput
+import hashlib
+import sys
+from multiprocessing import Pool
+
+
+def get_hashes_and_lines(raw_line):
+ hash = hashlib.md5(raw_line).hexdigest()
+ return hash, raw_line
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--workers", type=int, default=10)
+ parser.add_argument("files", nargs="*", help="input files")
+ args = parser.parse_args()
+
+ seen = set()
+ with fileinput.input(args.files, mode="rb") as h:
+ pool = Pool(args.workers)
+ results = pool.imap_unordered(get_hashes_and_lines, h, 1000)
+ for i, (hash, raw_line) in enumerate(results):
+ if hash not in seen:
+ seen.add(hash)
+ sys.stdout.buffer.write(raw_line)
+ if i % 1000000 == 0:
+ print(i, file=sys.stderr, end="", flush=True)
+ elif i % 100000 == 0:
+ print(".", file=sys.stderr, end="", flush=True)
+ print(file=sys.stderr, flush=True)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/backtranslation/extract_bt_data.py b/fairseq/examples/backtranslation/extract_bt_data.py
new file mode 100644
index 0000000000000000000000000000000000000000..e766391e873d0d9a9561d67d5864934b2fad0681
--- /dev/null
+++ b/fairseq/examples/backtranslation/extract_bt_data.py
@@ -0,0 +1,72 @@
+#!/usr/bin/env python
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import fileinput
+
+from tqdm import tqdm
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description=(
+ "Extract back-translations from the stdout of fairseq-generate. "
+ "If there are multiply hypotheses for a source, we only keep the first one. "
+ )
+ )
+ parser.add_argument("--output", required=True, help="output prefix")
+ parser.add_argument(
+ "--srclang", required=True, help="source language (extracted from H-* lines)"
+ )
+ parser.add_argument(
+ "--tgtlang", required=True, help="target language (extracted from S-* lines)"
+ )
+ parser.add_argument("--minlen", type=int, help="min length filter")
+ parser.add_argument("--maxlen", type=int, help="max length filter")
+ parser.add_argument("--ratio", type=float, help="ratio filter")
+ parser.add_argument("files", nargs="*", help="input files")
+ args = parser.parse_args()
+
+ def validate(src, tgt):
+ srclen = len(src.split(" ")) if src != "" else 0
+ tgtlen = len(tgt.split(" ")) if tgt != "" else 0
+ if (
+ (args.minlen is not None and (srclen < args.minlen or tgtlen < args.minlen))
+ or (
+ args.maxlen is not None
+ and (srclen > args.maxlen or tgtlen > args.maxlen)
+ )
+ or (
+ args.ratio is not None
+ and (max(srclen, tgtlen) / float(min(srclen, tgtlen)) > args.ratio)
+ )
+ ):
+ return False
+ return True
+
+ def safe_index(toks, index, default):
+ try:
+ return toks[index]
+ except IndexError:
+ return default
+
+ with open(args.output + "." + args.srclang, "w") as src_h, open(
+ args.output + "." + args.tgtlang, "w"
+ ) as tgt_h:
+ for line in tqdm(fileinput.input(args.files)):
+ if line.startswith("S-"):
+ tgt = safe_index(line.rstrip().split("\t"), 1, "")
+ elif line.startswith("H-"):
+ if tgt is not None:
+ src = safe_index(line.rstrip().split("\t"), 2, "")
+ if validate(src, tgt):
+ print(src, file=src_h)
+ print(tgt, file=tgt_h)
+ tgt = None
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/backtranslation/prepare-de-monolingual.sh b/fairseq/examples/backtranslation/prepare-de-monolingual.sh
new file mode 100644
index 0000000000000000000000000000000000000000..5e67b2b3bcf27d3436031453e796e58a0ae79ec4
--- /dev/null
+++ b/fairseq/examples/backtranslation/prepare-de-monolingual.sh
@@ -0,0 +1,98 @@
+#!/bin/bash
+
+SCRIPTS=mosesdecoder/scripts
+TOKENIZER=$SCRIPTS/tokenizer/tokenizer.perl
+NORM_PUNC=$SCRIPTS/tokenizer/normalize-punctuation.perl
+REM_NON_PRINT_CHAR=$SCRIPTS/tokenizer/remove-non-printing-char.perl
+BPEROOT=subword-nmt/subword_nmt
+
+
+BPE_CODE=wmt18_en_de/code
+SUBSAMPLE_SIZE=25000000
+LANG=de
+
+
+OUTDIR=wmt18_${LANG}_mono
+orig=orig
+tmp=$OUTDIR/tmp
+mkdir -p $OUTDIR $tmp
+
+
+URLS=(
+ "http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2007.de.shuffled.gz"
+ "http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2008.de.shuffled.gz"
+ "http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2009.de.shuffled.gz"
+ "http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2010.de.shuffled.gz"
+ "http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2011.de.shuffled.gz"
+ "http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2012.de.shuffled.gz"
+ "http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.de.shuffled.gz"
+ "http://www.statmt.org/wmt15/training-monolingual-news-crawl-v2/news.2014.de.shuffled.v2.gz"
+ "http://data.statmt.org/wmt16/translation-task/news.2015.de.shuffled.gz"
+ "http://data.statmt.org/wmt17/translation-task/news.2016.de.shuffled.gz"
+ "http://data.statmt.org/wmt18/translation-task/news.2017.de.shuffled.deduped.gz"
+)
+FILES=(
+ "news.2007.de.shuffled.gz"
+ "news.2008.de.shuffled.gz"
+ "news.2009.de.shuffled.gz"
+ "news.2010.de.shuffled.gz"
+ "news.2011.de.shuffled.gz"
+ "news.2012.de.shuffled.gz"
+ "news.2013.de.shuffled.gz"
+ "news.2014.de.shuffled.v2.gz"
+ "news.2015.de.shuffled.gz"
+ "news.2016.de.shuffled.gz"
+ "news.2017.de.shuffled.deduped.gz"
+)
+
+
+cd $orig
+for ((i=0;i<${#URLS[@]};++i)); do
+ file=${FILES[i]}
+ if [ -f $file ]; then
+ echo "$file already exists, skipping download"
+ else
+ url=${URLS[i]}
+ wget "$url"
+ fi
+done
+cd ..
+
+
+if [ -f $tmp/monolingual.${SUBSAMPLE_SIZE}.${LANG} ]; then
+ echo "found monolingual sample, skipping shuffle/sample/tokenize"
+else
+ gzip -c -d -k $(for FILE in "${FILES[@]}"; do echo $orig/$FILE; done) \
+ | shuf -n $SUBSAMPLE_SIZE \
+ | perl $NORM_PUNC $LANG \
+ | perl $REM_NON_PRINT_CHAR \
+ | perl $TOKENIZER -threads 8 -a -l $LANG \
+ > $tmp/monolingual.${SUBSAMPLE_SIZE}.${LANG}
+fi
+
+
+if [ -f $tmp/bpe.monolingual.${SUBSAMPLE_SIZE}.${LANG} ]; then
+ echo "found BPE monolingual sample, skipping BPE step"
+else
+ python $BPEROOT/apply_bpe.py -c $BPE_CODE \
+ < $tmp/monolingual.${SUBSAMPLE_SIZE}.${LANG} \
+ > $tmp/bpe.monolingual.${SUBSAMPLE_SIZE}.${LANG}
+fi
+
+
+if [ -f $tmp/bpe.monolingual.dedup.${SUBSAMPLE_SIZE}.${LANG} ]; then
+ echo "found deduplicated monolingual sample, skipping deduplication step"
+else
+ python deduplicate_lines.py $tmp/bpe.monolingual.${SUBSAMPLE_SIZE}.${LANG} \
+ > $tmp/bpe.monolingual.dedup.${SUBSAMPLE_SIZE}.${LANG}
+fi
+
+
+if [ -f $OUTDIR/bpe.monolingual.dedup.00.de ]; then
+ echo "found sharded data, skipping sharding step"
+else
+ split --lines 1000000 --numeric-suffixes \
+ --additional-suffix .${LANG} \
+ $tmp/bpe.monolingual.dedup.${SUBSAMPLE_SIZE}.${LANG} \
+ $OUTDIR/bpe.monolingual.dedup.
+fi
diff --git a/fairseq/examples/backtranslation/prepare-wmt18en2de.sh b/fairseq/examples/backtranslation/prepare-wmt18en2de.sh
new file mode 100644
index 0000000000000000000000000000000000000000..f6fd275307db50ca84c299440ae02dce49064030
--- /dev/null
+++ b/fairseq/examples/backtranslation/prepare-wmt18en2de.sh
@@ -0,0 +1,135 @@
+#!/bin/bash
+# Adapted from https://github.com/facebookresearch/MIXER/blob/master/prepareData.sh
+
+echo 'Cloning Moses github repository (for tokenization scripts)...'
+git clone https://github.com/moses-smt/mosesdecoder.git
+
+echo 'Cloning Subword NMT repository (for BPE pre-processing)...'
+git clone https://github.com/rsennrich/subword-nmt.git
+
+SCRIPTS=mosesdecoder/scripts
+TOKENIZER=$SCRIPTS/tokenizer/tokenizer.perl
+CLEAN=$SCRIPTS/training/clean-corpus-n.perl
+NORM_PUNC=$SCRIPTS/tokenizer/normalize-punctuation.perl
+REM_NON_PRINT_CHAR=$SCRIPTS/tokenizer/remove-non-printing-char.perl
+BPEROOT=subword-nmt/subword_nmt
+BPE_TOKENS=32000
+
+URLS=(
+ "http://statmt.org/wmt13/training-parallel-europarl-v7.tgz"
+ "http://statmt.org/wmt13/training-parallel-commoncrawl.tgz"
+ "http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz"
+ "http://data.statmt.org/wmt18/translation-task/rapid2016.tgz"
+ "http://data.statmt.org/wmt17/translation-task/dev.tgz"
+ "http://statmt.org/wmt14/test-full.tgz"
+)
+FILES=(
+ "training-parallel-europarl-v7.tgz"
+ "training-parallel-commoncrawl.tgz"
+ "training-parallel-nc-v13.tgz"
+ "rapid2016.tgz"
+ "dev.tgz"
+ "test-full.tgz"
+)
+CORPORA=(
+ "training/europarl-v7.de-en"
+ "commoncrawl.de-en"
+ "training-parallel-nc-v13/news-commentary-v13.de-en"
+ "rapid2016.de-en"
+)
+
+if [ ! -d "$SCRIPTS" ]; then
+ echo "Please set SCRIPTS variable correctly to point to Moses scripts."
+ exit 1
+fi
+
+OUTDIR=wmt18_en_de
+
+src=en
+tgt=de
+lang=en-de
+prep=$OUTDIR
+tmp=$prep/tmp
+orig=orig
+
+mkdir -p $orig $tmp $prep
+
+cd $orig
+
+for ((i=0;i<${#URLS[@]};++i)); do
+ file=${FILES[i]}
+ if [ -f $file ]; then
+ echo "$file already exists, skipping download"
+ else
+ url=${URLS[i]}
+ wget "$url"
+ if [ -f $file ]; then
+ echo "$url successfully downloaded."
+ else
+ echo "$url not successfully downloaded."
+ exit 1
+ fi
+ if [ ${file: -4} == ".tgz" ]; then
+ tar zxvf $file
+ elif [ ${file: -4} == ".tar" ]; then
+ tar xvf $file
+ fi
+ fi
+done
+cd ..
+
+echo "pre-processing train data..."
+for l in $src $tgt; do
+ rm $tmp/train.tags.$lang.tok.$l
+ for f in "${CORPORA[@]}"; do
+ cat $orig/$f.$l | \
+ perl $NORM_PUNC $l | \
+ perl $REM_NON_PRINT_CHAR | \
+ perl $TOKENIZER -threads 8 -a -l $l >> $tmp/train.tags.$lang.tok.$l
+ done
+done
+
+echo "pre-processing test data..."
+for l in $src $tgt; do
+ if [ "$l" == "$src" ]; then
+ t="src"
+ else
+ t="ref"
+ fi
+ grep '\s*//g' | \
+ sed -e 's/\s*<\/seg>\s*//g' | \
+ sed -e "s/\’/\'/g" | \
+ perl $TOKENIZER -threads 8 -a -l $l > $tmp/test.$l
+ echo ""
+done
+
+echo "splitting train and valid..."
+for l in $src $tgt; do
+ awk '{if (NR%100 == 0) print $0; }' $tmp/train.tags.$lang.tok.$l > $tmp/valid.$l
+ awk '{if (NR%100 != 0) print $0; }' $tmp/train.tags.$lang.tok.$l > $tmp/train.$l
+done
+
+TRAIN=$tmp/train.de-en
+BPE_CODE=$prep/code
+rm -f $TRAIN
+for l in $src $tgt; do
+ cat $tmp/train.$l >> $TRAIN
+done
+
+echo "learn_bpe.py on ${TRAIN}..."
+python $BPEROOT/learn_bpe.py -s $BPE_TOKENS < $TRAIN > $BPE_CODE
+
+for L in $src $tgt; do
+ for f in train.$L valid.$L test.$L; do
+ echo "apply_bpe.py to ${f}..."
+ python $BPEROOT/apply_bpe.py -c $BPE_CODE < $tmp/$f > $tmp/bpe.$f
+ done
+done
+
+perl $CLEAN -ratio 1.5 $tmp/bpe.train $src $tgt $prep/train 1 250
+perl $CLEAN -ratio 1.5 $tmp/bpe.valid $src $tgt $prep/valid 1 250
+
+for L in $src $tgt; do
+ cp $tmp/bpe.test.$L $prep/test.$L
+done
diff --git a/fairseq/examples/backtranslation/sacrebleu.sh b/fairseq/examples/backtranslation/sacrebleu.sh
new file mode 100644
index 0000000000000000000000000000000000000000..a70da23f48e2699297799611412783d4560dc45a
--- /dev/null
+++ b/fairseq/examples/backtranslation/sacrebleu.sh
@@ -0,0 +1,37 @@
+#!/bin/bash
+
+if [ $# -ne 5 ]; then
+ echo "usage: $0 [dataset=wmt14/full] [langpair=en-de] [databin] [bpecode] [model]"
+ exit
+fi
+
+
+DATASET=$1
+LANGPAIR=$2
+DATABIN=$3
+BPECODE=$4
+MODEL=$5
+
+SRCLANG=$(echo $LANGPAIR | cut -d '-' -f 1)
+TGTLANG=$(echo $LANGPAIR | cut -d '-' -f 2)
+
+
+BPEROOT=examples/backtranslation/subword-nmt/subword_nmt
+if [ ! -e $BPEROOT ]; then
+ BPEROOT=subword-nmt/subword_nmt
+ if [ ! -e $BPEROOT ]; then
+ echo 'Cloning Subword NMT repository (for BPE pre-processing)...'
+ git clone https://github.com/rsennrich/subword-nmt.git
+ fi
+fi
+
+
+sacrebleu -t $DATASET -l $LANGPAIR --echo src \
+| sacremoses tokenize -a -l $SRCLANG -q \
+| python $BPEROOT/apply_bpe.py -c $BPECODE \
+| fairseq-interactive $DATABIN --path $MODEL \
+ -s $SRCLANG -t $TGTLANG \
+ --beam 5 --remove-bpe --buffer-size 1024 --max-tokens 8000 \
+| grep ^H- | cut -f 3- \
+| sacremoses detokenize -l $TGTLANG -q \
+| sacrebleu -t $DATASET -l $LANGPAIR
diff --git a/fairseq/examples/backtranslation/tokenized_bleu.sh b/fairseq/examples/backtranslation/tokenized_bleu.sh
new file mode 100644
index 0000000000000000000000000000000000000000..c6d6aaa193f6059299bc98909324fe4b9b060372
--- /dev/null
+++ b/fairseq/examples/backtranslation/tokenized_bleu.sh
@@ -0,0 +1,46 @@
+#!/bin/bash
+
+if [ $# -ne 5 ]; then
+ echo "usage: $0 [dataset=wmt14/full] [langpair=en-de] [databin] [bpecode] [model]"
+ exit
+fi
+
+
+DATASET=$1
+LANGPAIR=$2
+DATABIN=$3
+BPECODE=$4
+MODEL=$5
+
+SRCLANG=$(echo $LANGPAIR | cut -d '-' -f 1)
+TGTLANG=$(echo $LANGPAIR | cut -d '-' -f 2)
+
+
+BPEROOT=examples/backtranslation/subword-nmt/subword_nmt
+if [ ! -e $BPEROOT ]; then
+ BPEROOT=subword-nmt/subword_nmt
+ if [ ! -e $BPEROOT ]; then
+ echo 'Cloning Subword NMT repository (for BPE pre-processing)...'
+ git clone https://github.com/rsennrich/subword-nmt.git
+ fi
+fi
+
+
+TMP_REF=$(mktemp)
+
+sacrebleu -t $DATASET -l $LANGPAIR --echo ref -q \
+| sacremoses normalize -l $TGTLANG -q \
+| sacremoses tokenize -a -l $TGTLANG -q \
+> $TMP_REF
+
+sacrebleu -t $DATASET -l $LANGPAIR --echo src -q \
+| sacremoses normalize -l $SRCLANG -q \
+| sacremoses tokenize -a -l $SRCLANG -q \
+| python $BPEROOT/apply_bpe.py -c $BPECODE \
+| fairseq-interactive $DATABIN --path $MODEL \
+ -s $SRCLANG -t $TGTLANG \
+ --beam 5 --remove-bpe --buffer-size 1024 --max-tokens 8000 \
+| grep ^H- | cut -f 3- \
+| fairseq-score --ref $TMP_REF
+
+rm -f $TMP_REF
diff --git a/fairseq/examples/bart/README.glue.md b/fairseq/examples/bart/README.glue.md
new file mode 100644
index 0000000000000000000000000000000000000000..a010934e1e6dec491eb1c704ec02ba7405760510
--- /dev/null
+++ b/fairseq/examples/bart/README.glue.md
@@ -0,0 +1,99 @@
+# Fine-tuning BART on GLUE tasks
+
+### 1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands:
+```bash
+wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py
+python download_glue_data.py --data_dir glue_data --tasks all
+```
+
+### 2) Preprocess GLUE task data (same as RoBERTa):
+```bash
+./examples/roberta/preprocess_GLUE_tasks.sh glue_data
+```
+`glue_task_name` is one of the following:
+`{ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA}`
+Use `ALL` for preprocessing all the glue tasks.
+
+### 3) Fine-tuning on GLUE task:
+Example fine-tuning cmd for `RTE` task
+```bash
+TOTAL_NUM_UPDATES=2036 # 10 epochs through RTE for bsz 16
+WARMUP_UPDATES=61 # 6 percent of the number of updates
+LR=1e-05 # Peak LR for polynomial LR scheduler.
+NUM_CLASSES=2
+MAX_SENTENCES=16 # Batch size.
+BART_PATH=/path/to/bart/model.pt
+
+CUDA_VISIBLE_DEVICES=0,1 fairseq-train RTE-bin/ \
+ --restore-file $BART_PATH \
+ --batch-size $MAX_SENTENCES \
+ --max-tokens 4400 \
+ --task sentence_prediction \
+ --add-prev-output-tokens \
+ --layernorm-embedding \
+ --share-all-embeddings \
+ --share-decoder-input-output-embed \
+ --reset-optimizer --reset-dataloader --reset-meters \
+ --required-batch-size-multiple 1 \
+ --init-token 0 \
+ --arch bart_large \
+ --criterion sentence_prediction \
+ --num-classes $NUM_CLASSES \
+ --dropout 0.1 --attention-dropout 0.1 \
+ --weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 \
+ --clip-norm 0.0 \
+ --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
+ --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
+ --max-epoch 10 \
+ --find-unused-parameters \
+ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric;
+```
+
+For each of the GLUE task, you will need to use following cmd-line arguments:
+
+Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B
+---|---|---|---|---|---|---|---|---
+`--num-classes` | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1
+`--lr` | 5e-6 | 1e-5 | 1e-5 | 1e-5 | 5e-6 | 2e-5 | 2e-5 | 2e-5
+`bsz` | 128 | 32 | 32 | 32 | 128 | 64 | 64 | 32
+`--total-num-update` | 30968 | 33112 | 113272 | 1018 | 5233 | 1148 | 1334 | 1799
+`--warmup-updates` | 1858 | 1986 | 6796 | 61 | 314 | 68 | 80 | 107
+
+For `STS-B` additionally add `--regression-target --best-checkpoint-metric loss` and remove `--maximize-best-checkpoint-metric`.
+
+**Note:**
+
+a) `--total-num-updates` is used by `--polynomial_decay` scheduler and is calculated for `--max-epoch=10` and `--batch-size=32/64/128` depending on the task.
+
+b) Above cmd-args and hyperparams are tested on Nvidia `V100` GPU with `32gb` of memory for each task. Depending on the GPU memory resources available to you, you can use increase `--update-freq` and reduce `--batch-size`.
+
+### Inference on GLUE task
+After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using following python code snippet:
+
+```python
+from fairseq.models.bart import BARTModel
+
+bart = BARTModel.from_pretrained(
+ 'checkpoints/',
+ checkpoint_file='checkpoint_best.pt',
+ data_name_or_path='RTE-bin'
+)
+
+label_fn = lambda label: bart.task.label_dictionary.string(
+ [label + bart.task.label_dictionary.nspecial]
+)
+ncorrect, nsamples = 0, 0
+bart.cuda()
+bart.eval()
+with open('glue_data/RTE/dev.tsv') as fin:
+ fin.readline()
+ for index, line in enumerate(fin):
+ tokens = line.strip().split('\t')
+ sent1, sent2, target = tokens[1], tokens[2], tokens[3]
+ tokens = bart.encode(sent1, sent2)
+ prediction = bart.predict('sentence_classification_head', tokens).argmax().item()
+ prediction_label = label_fn(prediction)
+ ncorrect += int(prediction_label == target)
+ nsamples += 1
+print('| Accuracy: ', float(ncorrect)/float(nsamples))
+```
diff --git a/fairseq/examples/bart/README.md b/fairseq/examples/bart/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..4050a724ee6a2f20c9998a95df48c58b64764ab1
--- /dev/null
+++ b/fairseq/examples/bart/README.md
@@ -0,0 +1,228 @@
+# BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
+
+[https://arxiv.org/abs/1910.13461](https://arxiv.org/abs/1910.13461)
+
+## Introduction
+
+BART is sequence-to-sequence model trained with denoising as pretraining objective. We show that this pretraining objective is more generic and show that we can match [RoBERTa](../roberta) results on SQuAD and GLUE and gain state-of-the-art results on summarization (XSum, CNN dataset), long form generative question answering (ELI5) and dialog response genration (ConvAI2). See the associated paper for more details.
+
+## Pre-trained models
+
+Model | Description | # params | Download
+---|---|---|---
+`bart.base` | BART model with 6 encoder and decoder layers | 140M | [bart.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.base.tar.gz)
+`bart.large` | BART model with 12 encoder and decoder layers | 400M | [bart.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz)
+`bart.large.mnli` | `bart.large` finetuned on `MNLI` | 400M | [bart.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.mnli.tar.gz)
+`bart.large.cnn` | `bart.large` finetuned on `CNN-DM` | 400M | [bart.large.cnn.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.cnn.tar.gz)
+`bart.large.xsum` | `bart.large` finetuned on `Xsum` | 400M | [bart.large.xsum.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/bart.large.xsum.tar.gz)
+
+## Results
+
+**[GLUE (Wang et al., 2019)](https://gluebenchmark.com/)**
+_(dev set, single model, single-task finetuning)_
+
+Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B
+---|---|---|---|---|---|---|---|---
+`roberta.large` | 90.2 | 94.7 | 92.2 | 86.6 | 96.4 | 90.9 | 68.0 | 92.4
+`bart.large` | 89.9 | 94.9 | 92.5 | 87.0 | 96.6 | 90.4 | 62.8 | 91.2
+
+**[SQuAD (Rajpurkar et al., 2018)](https://rajpurkar.github.io/SQuAD-explorer/)**
+_(dev set, no additional data used)_
+
+Model | SQuAD 1.1 EM/F1 | SQuAD 2.0 EM/F1
+---|---|---
+`roberta.large` | 88.9/94.6 | 86.5/89.4
+`bart.large` | 88.8/94.6 | 86.1/89.2
+
+**[CNN/Daily Mail](http://nlpprogress.com/english/summarization.html)**
+_(test set, no additional data used)_
+
+Model | R1 | R2 | RL
+---|---|---|---
+`BERTSUMEXTABS` | 42.13 | 19.60 | 39.18
+`bart.large` | 44.16 | 21.28 | 40.90
+
+## Example usage
+
+##### Load BART from torch.hub (PyTorch >= 1.1):
+```python
+import torch
+bart = torch.hub.load('pytorch/fairseq', 'bart.large')
+bart.eval() # disable dropout (or leave in train mode to finetune)
+```
+
+##### Load BART (for PyTorch 1.0 or custom models):
+```python
+# Download bart.large model
+wget https://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz
+tar -xzvf bart.large.tar.gz
+
+# Load the model in fairseq
+from fairseq.models.bart import BARTModel
+bart = BARTModel.from_pretrained('/path/to/bart.large', checkpoint_file='model.pt')
+bart.eval() # disable dropout (or leave in train mode to finetune)
+```
+
+##### Apply Byte-Pair Encoding (BPE) to input text:
+```python
+tokens = bart.encode('Hello world!')
+assert tokens.tolist() == [0, 31414, 232, 328, 2]
+bart.decode(tokens) # 'Hello world!'
+```
+
+##### Extract features from BART:
+```python
+# Extract the last layer's features
+last_layer_features = bart.extract_features(tokens)
+assert last_layer_features.size() == torch.Size([1, 5, 1024])
+
+# Extract all layer's features from decoder (layer 0 is the embedding layer)
+all_layers = bart.extract_features(tokens, return_all_hiddens=True)
+assert len(all_layers) == 13
+assert torch.all(all_layers[-1] == last_layer_features)
+```
+
+##### Use BART for sentence-pair classification tasks:
+```python
+# Download BART already finetuned for MNLI
+bart = torch.hub.load('pytorch/fairseq', 'bart.large.mnli')
+bart.eval() # disable dropout for evaluation
+
+# Encode a pair of sentences and make a prediction
+tokens = bart.encode('BART is a seq2seq model.', 'BART is not sequence to sequence.')
+bart.predict('mnli', tokens).argmax() # 0: contradiction
+
+# Encode another pair of sentences
+tokens = bart.encode('BART is denoising autoencoder.', 'BART is version of autoencoder.')
+bart.predict('mnli', tokens).argmax() # 2: entailment
+```
+
+##### Register a new (randomly initialized) classification head:
+```python
+bart.register_classification_head('new_task', num_classes=3)
+logprobs = bart.predict('new_task', tokens)
+```
+
+##### Batched prediction:
+```python
+import torch
+from fairseq.data.data_utils import collate_tokens
+
+bart = torch.hub.load('pytorch/fairseq', 'bart.large.mnli')
+bart.eval()
+
+batch_of_pairs = [
+ ['BART is a seq2seq model.', 'BART is not sequence to sequence.'],
+ ['BART is denoising autoencoder.', 'BART is version of autoencoder.'],
+]
+
+batch = collate_tokens(
+ [bart.encode(pair[0], pair[1]) for pair in batch_of_pairs], pad_idx=1
+)
+
+logprobs = bart.predict('mnli', batch)
+print(logprobs.argmax(dim=1))
+# tensor([0, 2])
+```
+
+##### Using the GPU:
+```python
+bart.cuda()
+bart.predict('new_task', tokens)
+```
+
+#### Filling masks:
+
+BART can be used to fill multiple `` tokens in the input.
+```python
+bart = torch.hub.load('pytorch/fairseq', 'bart.base')
+bart.eval()
+bart.fill_mask(['The cat on the .'], topk=3, beam=10)
+# [[('The cat was on the ground.', tensor(-0.6183)), ('The cat was on the floor.', tensor(-0.6798)), ('The cat sleeps on the couch.', tensor(-0.6830))]]
+```
+
+Note that by default we enforce the output length to match the input length.
+This can be disabled by setting ``match_source_len=False``:
+```
+bart.fill_mask(['The cat on the .'], topk=3, beam=10, match_source_len=False)
+# [[('The cat was on the ground.', tensor(-0.6185)), ('The cat was asleep on the couch.', tensor(-0.6276)), ('The cat was on the floor.', tensor(-0.6800))]]
+```
+
+Example code to fill masks for a batch of sentences using GPU
+```
+bart.cuda()
+bart.fill_mask(['The cat on the .', 'The dog on the .'], topk=3, beam=10)
+# [[('The cat was on the ground.', tensor(-0.6183)), ('The cat was on the floor.', tensor(-0.6798)), ('The cat sleeps on the couch.', tensor(-0.6830))], [('The dog was on the ground.', tensor(-0.6190)), ('The dog lay on the ground.', tensor(-0.6711)),
+('The dog was asleep on the couch', tensor(-0.6796))]]
+```
+
+#### Evaluating the `bart.large.mnli` model:
+
+Example python code snippet to evaluate accuracy on the MNLI `dev_matched` set.
+```python
+label_map = {0: 'contradiction', 1: 'neutral', 2: 'entailment'}
+ncorrect, nsamples = 0, 0
+bart.cuda()
+bart.eval()
+with open('glue_data/MNLI/dev_matched.tsv') as fin:
+ fin.readline()
+ for index, line in enumerate(fin):
+ tokens = line.strip().split('\t')
+ sent1, sent2, target = tokens[8], tokens[9], tokens[-1]
+ tokens = bart.encode(sent1, sent2)
+ prediction = bart.predict('mnli', tokens).argmax().item()
+ prediction_label = label_map[prediction]
+ ncorrect += int(prediction_label == target)
+ nsamples += 1
+ print('| Accuracy: ', float(ncorrect)/float(nsamples))
+# Expected output: 0.9010
+```
+
+#### Evaluating the `bart.large.cnn` model:
+- Follow instructions [here](https://github.com/abisee/cnn-dailymail) to download and process into data-files such that `test.source` and `test.target` has one line for each non-tokenized sample.
+- For simpler preprocessing, you can also `wget https://cdn-datasets.huggingface.co/summarization/cnn_dm_v2.tgz`, although there is no guarantee of identical scores
+- `huggingface/transformers` has a simpler interface that supports [single-gpu](https://github.com/huggingface/transformers/blob/master/examples/legacy/seq2seq/run_eval.py) and [multi-gpu](https://github.com/huggingface/transformers/blob/master/examples/legacy/seq2seq/run_distributed_eval.py) beam search.
+ In `huggingface/transformers`, the BART models' paths are `facebook/bart-large-cnn` and `facebook/bart-large-xsum`.
+
+In `fairseq`, summaries can be generated using:
+
+```bash
+cp data-bin/cnn_dm/dict.source.txt checkpoints/
+python examples/bart/summarize.py \
+ --model-dir pytorch/fairseq \
+ --model-file bart.large.cnn \
+ --src cnn_dm/test.source \
+ --out cnn_dm/test.hypo
+```
+
+For calculating rouge, install `files2rouge` from [here](https://github.com/pltrdy/files2rouge).
+
+```bash
+export CLASSPATH=/path/to/stanford-corenlp-full-2016-10-31/stanford-corenlp-3.7.0.jar
+
+# Tokenize hypothesis and target files.
+cat test.hypo | java edu.stanford.nlp.process.PTBTokenizer -ioFileList -preserveLines > test.hypo.tokenized
+cat test.target | java edu.stanford.nlp.process.PTBTokenizer -ioFileList -preserveLines > test.hypo.target
+files2rouge test.hypo.tokenized test.hypo.target
+# Expected output: (ROUGE-2 Average_F: 0.21238)
+```
+
+
+## Finetuning
+
+- [Finetuning on GLUE](README.glue.md)
+- [Finetuning on CNN-DM](README.summarization.md)
+
+## Citation
+
+```bibtex
+@article{lewis2019bart,
+ title = {BART: Denoising Sequence-to-Sequence Pre-training for Natural
+Language Generation, Translation, and Comprehension},
+ author = {Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and
+ Abdelrahman Mohamed and Omer Levy and Veselin Stoyanov
+ and Luke Zettlemoyer },
+ journal={arXiv preprint arXiv:1910.13461},
+ year = {2019},
+}
+```
diff --git a/fairseq/examples/bart/README.summarization.md b/fairseq/examples/bart/README.summarization.md
new file mode 100644
index 0000000000000000000000000000000000000000..8727584f2b2bdd880c6cd3abbf39b75dfbf4a67c
--- /dev/null
+++ b/fairseq/examples/bart/README.summarization.md
@@ -0,0 +1,102 @@
+# Fine-tuning BART on CNN-Dailymail summarization task
+
+### 1) Download the CNN and Daily Mail data and preprocess it into data files with non-tokenized cased samples.
+
+Follow the instructions [here](https://github.com/abisee/cnn-dailymail) to download the original CNN and Daily Mail datasets. To preprocess the data, refer to the pointers in [this issue](https://github.com/pytorch/fairseq/issues/1391) or check out the code [here](https://github.com/artmatsak/cnn-dailymail).
+
+Follow the instructions [here](https://github.com/EdinburghNLP/XSum) to download the original Extreme Summarization datasets, or check out the code [here](https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset), Please keep the raw dataset and make sure no tokenization nor BPE on the dataset.
+
+### 2) BPE preprocess:
+
+```bash
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt'
+
+TASK=cnn_dm
+for SPLIT in train val
+do
+ for LANG in source target
+ do
+ python -m examples.roberta.multiprocessing_bpe_encoder \
+ --encoder-json encoder.json \
+ --vocab-bpe vocab.bpe \
+ --inputs "$TASK/$SPLIT.$LANG" \
+ --outputs "$TASK/$SPLIT.bpe.$LANG" \
+ --workers 60 \
+ --keep-empty;
+ done
+done
+```
+
+### 3) Binarize dataset:
+```bash
+fairseq-preprocess \
+ --source-lang "source" \
+ --target-lang "target" \
+ --trainpref "${TASK}/train.bpe" \
+ --validpref "${TASK}/val.bpe" \
+ --destdir "${TASK}-bin/" \
+ --workers 60 \
+ --srcdict dict.txt \
+ --tgtdict dict.txt;
+```
+
+### 4) Fine-tuning on CNN-DM summarization task:
+Example fine-tuning CNN-DM
+```bash
+TOTAL_NUM_UPDATES=20000
+WARMUP_UPDATES=500
+LR=3e-05
+MAX_TOKENS=2048
+UPDATE_FREQ=4
+BART_PATH=/path/to/bart/model.pt
+
+CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 fairseq-train cnn_dm-bin \
+ --restore-file $BART_PATH \
+ --max-tokens $MAX_TOKENS \
+ --task translation \
+ --source-lang source --target-lang target \
+ --truncate-source \
+ --layernorm-embedding \
+ --share-all-embeddings \
+ --share-decoder-input-output-embed \
+ --reset-optimizer --reset-dataloader --reset-meters \
+ --required-batch-size-multiple 1 \
+ --arch bart_large \
+ --criterion label_smoothed_cross_entropy \
+ --label-smoothing 0.1 \
+ --dropout 0.1 --attention-dropout 0.1 \
+ --weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.999)" --adam-eps 1e-08 \
+ --clip-norm 0.1 \
+ --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
+ --fp16 --update-freq $UPDATE_FREQ \
+ --skip-invalid-size-inputs-valid-test \
+ --find-unused-parameters;
+```
+Above is expected to run on `1` node with `8 32gb-V100`.
+Expected training time is about `5 hours`. Training time can be reduced with distributed training on `4` nodes and `--update-freq 1`.
+
+Use TOTAL_NUM_UPDATES=15000 UPDATE_FREQ=2 for Xsum task
+
+### Inference for CNN-DM test data using above trained checkpoint.
+After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using `eval_cnn.py`, for example
+
+```bash
+cp data-bin/cnn_dm/dict.source.txt checkpoints/
+python examples/bart/summarize.py \
+ --model-dir checkpoints \
+ --model-file checkpoint_best.pt \
+ --src cnn_dm/test.source \
+ --out cnn_dm/test.hypo
+```
+For XSUM, which uses beam=6, lenpen=1.0, max_len_b=60, min_len=10:
+```bash
+cp data-bin/cnn_dm/dict.source.txt checkpoints/
+python examples/bart/summarize.py \
+ --model-dir checkpoints \
+ --model-file checkpoint_best.pt \
+ --src cnn_dm/test.source \
+ --out cnn_dm/test.hypo \
+ --xsum-kwargs
+```
diff --git a/fairseq/examples/bart/summarize.py b/fairseq/examples/bart/summarize.py
new file mode 100644
index 0000000000000000000000000000000000000000..04435f80e39c2d9d894696dae7cba5b381e13da9
--- /dev/null
+++ b/fairseq/examples/bart/summarize.py
@@ -0,0 +1,100 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+from fairseq.models.bart import BARTModel
+import argparse
+
+XSUM_KWARGS = dict(beam=6, lenpen=1.0, max_len_b=60, min_len=10, no_repeat_ngram_size=3)
+CNN_KWARGS = dict(beam=4, lenpen=2.0, max_len_b=140, min_len=55, no_repeat_ngram_size=3)
+
+
+@torch.no_grad()
+def generate(bart, infile, outfile="bart_hypo.txt", bsz=32, n_obs=None, **eval_kwargs):
+ count = 1
+
+ # if n_obs is not None: bsz = min(bsz, n_obs)
+
+ with open(infile) as source, open(outfile, "w") as fout:
+ sline = source.readline().strip()
+ slines = [sline]
+ for sline in source:
+ if n_obs is not None and count > n_obs:
+ break
+ if count % bsz == 0:
+ hypotheses_batch = bart.sample(slines, **eval_kwargs)
+ for hypothesis in hypotheses_batch:
+ fout.write(hypothesis + "\n")
+ fout.flush()
+ slines = []
+
+ slines.append(sline.strip())
+ count += 1
+
+ if slines != []:
+ hypotheses_batch = bart.sample(slines, **eval_kwargs)
+ for hypothesis in hypotheses_batch:
+ fout.write(hypothesis + "\n")
+ fout.flush()
+
+
+def main():
+ """
+ Usage::
+
+ python examples/bart/summarize.py \
+ --model-dir $HOME/bart.large.cnn \
+ --model-file model.pt \
+ --src $HOME/data-bin/cnn_dm/test.source
+ """
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--model-dir",
+ required=True,
+ type=str,
+ default="bart.large.cnn/",
+ help="path containing model file and src_dict.txt",
+ )
+ parser.add_argument(
+ "--model-file",
+ default="checkpoint_best.pt",
+ help="where in model_dir are weights saved",
+ )
+ parser.add_argument(
+ "--src", default="test.source", help="text to summarize", type=str
+ )
+ parser.add_argument(
+ "--out", default="test.hypo", help="where to save summaries", type=str
+ )
+ parser.add_argument("--bsz", default=32, help="where to save summaries", type=int)
+ parser.add_argument(
+ "--n", default=None, help="how many examples to summarize", type=int
+ )
+ parser.add_argument(
+ "--xsum-kwargs",
+ action="store_true",
+ default=False,
+ help="if true use XSUM_KWARGS else CNN_KWARGS",
+ )
+ args = parser.parse_args()
+ eval_kwargs = XSUM_KWARGS if args.xsum_kwargs else CNN_KWARGS
+ if args.model_dir == "pytorch/fairseq":
+ bart = torch.hub.load("pytorch/fairseq", args.model_file)
+ else:
+ bart = BARTModel.from_pretrained(
+ args.model_dir,
+ checkpoint_file=args.model_file,
+ data_name_or_path=args.model_dir,
+ )
+ bart = bart.eval()
+ if torch.cuda.is_available():
+ bart = bart.cuda().half()
+ generate(
+ bart, args.src, bsz=args.bsz, n_obs=args.n, outfile=args.out, **eval_kwargs
+ )
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/byte_level_bpe/README.md b/fairseq/examples/byte_level_bpe/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..657092660eae42d20f67647417623b8b8cb7b66c
--- /dev/null
+++ b/fairseq/examples/byte_level_bpe/README.md
@@ -0,0 +1,88 @@
+# Neural Machine Translation with Byte-Level Subwords
+
+https://arxiv.org/abs/1909.03341
+
+We provide an implementation of byte-level byte-pair encoding (BBPE), taking IWSLT 2017 Fr-En translation as
+example.
+
+## Data
+Get data and generate fairseq binary dataset:
+```bash
+bash ./get_data.sh
+```
+
+## Model Training
+Train Transformer model with Bi-GRU embedding contextualization (implemented in `gru_transformer.py`):
+```bash
+# VOCAB=bytes
+# VOCAB=chars
+VOCAB=bbpe2048
+# VOCAB=bpe2048
+# VOCAB=bbpe4096
+# VOCAB=bpe4096
+# VOCAB=bpe16384
+```
+```bash
+fairseq-train "data/bin_${VOCAB}" --task translation --user-dir examples/byte_level_bpe/gru_transformer \
+ --arch gru_transformer --encoder-layers 2 --decoder-layers 2 --dropout 0.3 --share-all-embeddings \
+ --optimizer adam --adam-betas '(0.9, 0.98)' \
+ --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
+ --log-format 'simple' --log-interval 100 --save-dir "checkpoints/${VOCAB}" \
+ --batch-size 100 --max-update 100000 --update-freq 2
+```
+
+## Generation
+`fairseq-generate` requires bytes (BBPE) decoder to convert byte-level representation back to characters:
+```bash
+# BPE=--bpe bytes
+# BPE=--bpe characters
+BPE=--bpe byte_bpe --sentencepiece-model-path data/spm_bbpe2048.model
+# BPE=--bpe sentencepiece --sentencepiece-model data/spm_bpe2048.model
+# BPE=--bpe byte_bpe --sentencepiece-model-path data/spm_bbpe4096.model
+# BPE=--bpe sentencepiece --sentencepiece-model data/spm_bpe4096.model
+# BPE=--bpe sentencepiece --sentencepiece-model data/spm_bpe16384.model
+```
+
+```bash
+fairseq-generate "data/bin_${VOCAB}" --task translation --user-dir examples/byte_level_bpe/gru_transformer \
+ --source-lang fr --gen-subset test --sacrebleu --path "checkpoints/${VOCAB}/checkpoint_last.pt" \
+ --tokenizer moses --moses-target-lang en ${BPE}
+```
+When using `fairseq-interactive`, bytes (BBPE) encoder/decoder is required to tokenize input data and detokenize model predictions:
+```bash
+fairseq-interactive "data/bin_${VOCAB}" --task translation --user-dir examples/byte_level_bpe/gru_transformer \
+ --path "checkpoints/${VOCAB}/checkpoint_last.pt" --input data/test.fr --tokenizer moses --moses-source-lang fr \
+ --moses-target-lang en ${BPE} --buffer-size 1000 --max-tokens 10000
+```
+
+## Results
+| Vocabulary | Model | BLEU |
+|:-------------:|:-------------:|:-------------:|
+| Joint BPE 16k ([Kudo, 2018](https://arxiv.org/abs/1804.10959)) | 512d LSTM 2+2 | 33.81 |
+| Joint BPE 16k | Transformer base 2+2 (w/ GRU) | 36.64 (36.72) |
+| Joint BPE 4k | Transformer base 2+2 (w/ GRU) | 35.49 (36.10) |
+| Joint BBPE 4k | Transformer base 2+2 (w/ GRU) | 35.61 (35.82) |
+| Joint BPE 2k | Transformer base 2+2 (w/ GRU) | 34.87 (36.13) |
+| Joint BBPE 2k | Transformer base 2+2 (w/ GRU) | 34.98 (35.43) |
+| Characters | Transformer base 2+2 (w/ GRU) | 31.78 (33.30) |
+| Bytes | Transformer base 2+2 (w/ GRU) | 31.57 (33.62) |
+
+
+## Citation
+```
+@misc{wang2019neural,
+ title={Neural Machine Translation with Byte-Level Subwords},
+ author={Changhan Wang and Kyunghyun Cho and Jiatao Gu},
+ year={2019},
+ eprint={1909.03341},
+ archivePrefix={arXiv},
+ primaryClass={cs.CL}
+}
+```
+
+
+## Contact
+Changhan Wang ([changhan@fb.com](mailto:changhan@fb.com)),
+Kyunghyun Cho ([kyunghyuncho@fb.com](mailto:kyunghyuncho@fb.com)),
+Jiatao Gu ([jgu@fb.com](mailto:jgu@fb.com))
diff --git a/fairseq/examples/byte_level_bpe/get_bitext.py b/fairseq/examples/byte_level_bpe/get_bitext.py
new file mode 100644
index 0000000000000000000000000000000000000000..6ac1eeec1e6167ec6bafd76b37173ee6987cae7e
--- /dev/null
+++ b/fairseq/examples/byte_level_bpe/get_bitext.py
@@ -0,0 +1,254 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import argparse
+import os
+import os.path as op
+from collections import namedtuple
+from multiprocessing import cpu_count
+from typing import List, Optional
+
+import sentencepiece as sp
+from fairseq.data.encoders.byte_bpe import ByteBPE
+from fairseq.data.encoders.byte_utils import byte_encode
+from fairseq.data.encoders.bytes import Bytes
+from fairseq.data.encoders.characters import Characters
+from fairseq.data.encoders.moses_tokenizer import MosesTokenizer
+from fairseq.data.encoders.sentencepiece_bpe import SentencepieceBPE
+
+
+SPLITS = ["train", "valid", "test"]
+
+
+def _convert_xml(in_path: str, out_path: str):
+ with open(in_path) as f, open(out_path, "w") as f_o:
+ for s in f:
+ ss = s.strip()
+ if not ss.startswith("", "").split('">')
+ assert len(ss) == 2
+ f_o.write(ss[1].strip() + "\n")
+
+
+def _convert_train(in_path: str, out_path: str):
+ with open(in_path) as f, open(out_path, "w") as f_o:
+ for s in f:
+ ss = s.strip()
+ if ss.startswith("<"):
+ continue
+ f_o.write(ss.strip() + "\n")
+
+
+def _get_bytes(in_path: str, out_path: str):
+ with open(in_path) as f, open(out_path, "w") as f_o:
+ for s in f:
+ f_o.write(Bytes.encode(s.strip()) + "\n")
+
+
+def _get_chars(in_path: str, out_path: str):
+ with open(in_path) as f, open(out_path, "w") as f_o:
+ for s in f:
+ f_o.write(Characters.encode(s.strip()) + "\n")
+
+
+def pretokenize(in_path: str, out_path: str, src: str, tgt: str):
+ Args = namedtuple(
+ "Args",
+ [
+ "moses_source_lang",
+ "moses_target_lang",
+ "moses_no_dash_splits",
+ "moses_no_escape",
+ ],
+ )
+ args = Args(
+ moses_source_lang=src,
+ moses_target_lang=tgt,
+ moses_no_dash_splits=False,
+ moses_no_escape=False,
+ )
+ pretokenizer = MosesTokenizer(args)
+ with open(in_path) as f, open(out_path, "w") as f_o:
+ for s in f:
+ f_o.write(pretokenizer.encode(s.strip()) + "\n")
+
+
+def _convert_to_bchar(in_path_prefix: str, src: str, tgt: str, out_path: str):
+ with open(out_path, "w") as f_o:
+ for lang in [src, tgt]:
+ with open(f"{in_path_prefix}.{lang}") as f:
+ for s in f:
+ f_o.write(byte_encode(s.strip()) + "\n")
+
+
+def _get_bpe(in_path: str, model_prefix: str, vocab_size: int):
+ arguments = [
+ f"--input={in_path}",
+ f"--model_prefix={model_prefix}",
+ f"--model_type=bpe",
+ f"--vocab_size={vocab_size}",
+ "--character_coverage=1.0",
+ "--normalization_rule_name=identity",
+ f"--num_threads={cpu_count()}",
+ ]
+ sp.SentencePieceTrainer.Train(" ".join(arguments))
+
+
+def _apply_bbpe(model_path: str, in_path: str, out_path: str):
+ Args = namedtuple("Args", ["sentencepiece_model_path"])
+ args = Args(sentencepiece_model_path=model_path)
+ tokenizer = ByteBPE(args)
+ with open(in_path) as f, open(out_path, "w") as f_o:
+ for s in f:
+ f_o.write(tokenizer.encode(s.strip()) + "\n")
+
+
+def _apply_bpe(model_path: str, in_path: str, out_path: str):
+ Args = namedtuple("Args", ["sentencepiece_model"])
+ args = Args(sentencepiece_model=model_path)
+ tokenizer = SentencepieceBPE(args)
+ with open(in_path) as f, open(out_path, "w") as f_o:
+ for s in f:
+ f_o.write(tokenizer.encode(s.strip()) + "\n")
+
+
+def _concat_files(in_paths: List[str], out_path: str):
+ with open(out_path, "w") as f_o:
+ for p in in_paths:
+ with open(p) as f:
+ for r in f:
+ f_o.write(r)
+
+
+def preprocess_iwslt17(
+ root: str,
+ src: str,
+ tgt: str,
+ bpe_size: Optional[int],
+ need_chars: bool,
+ bbpe_size: Optional[int],
+ need_bytes: bool,
+):
+ # extract bitext
+ in_root = op.join(root, f"{src}-{tgt}")
+ for lang in [src, tgt]:
+ _convert_train(
+ op.join(in_root, f"train.tags.{src}-{tgt}.{lang}"),
+ op.join(root, f"train.{lang}"),
+ )
+ _convert_xml(
+ op.join(in_root, f"IWSLT17.TED.dev2010.{src}-{tgt}.{lang}.xml"),
+ op.join(root, f"valid.{lang}"),
+ )
+ _convert_xml(
+ op.join(in_root, f"IWSLT17.TED.tst2015.{src}-{tgt}.{lang}.xml"),
+ op.join(root, f"test.{lang}"),
+ )
+ # pre-tokenize
+ for lang in [src, tgt]:
+ for split in SPLITS:
+ pretokenize(
+ op.join(root, f"{split}.{lang}"),
+ op.join(root, f"{split}.moses.{lang}"),
+ src,
+ tgt,
+ )
+ # tokenize with BPE vocabulary
+ if bpe_size is not None:
+ # learn vocabulary
+ concated_train_path = op.join(root, "train.all")
+ _concat_files(
+ [op.join(root, "train.moses.fr"), op.join(root, "train.moses.en")],
+ concated_train_path,
+ )
+ bpe_model_prefix = op.join(root, f"spm_bpe{bpe_size}")
+ _get_bpe(concated_train_path, bpe_model_prefix, bpe_size)
+ os.remove(concated_train_path)
+ # apply
+ for lang in [src, tgt]:
+ for split in SPLITS:
+ _apply_bpe(
+ bpe_model_prefix + ".model",
+ op.join(root, f"{split}.moses.{lang}"),
+ op.join(root, f"{split}.moses.bpe{bpe_size}.{lang}"),
+ )
+ # tokenize with bytes vocabulary
+ if need_bytes:
+ for lang in [src, tgt]:
+ for split in SPLITS:
+ _get_bytes(
+ op.join(root, f"{split}.moses.{lang}"),
+ op.join(root, f"{split}.moses.bytes.{lang}"),
+ )
+ # tokenize with characters vocabulary
+ if need_chars:
+ for lang in [src, tgt]:
+ for split in SPLITS:
+ _get_chars(
+ op.join(root, f"{split}.moses.{lang}"),
+ op.join(root, f"{split}.moses.chars.{lang}"),
+ )
+ # tokenize with byte-level BPE vocabulary
+ if bbpe_size is not None:
+ # learn vocabulary
+ bchar_path = op.join(root, "train.bchar")
+ _convert_to_bchar(op.join(root, "train.moses"), src, tgt, bchar_path)
+ bbpe_model_prefix = op.join(root, f"spm_bbpe{bbpe_size}")
+ _get_bpe(bchar_path, bbpe_model_prefix, bbpe_size)
+ os.remove(bchar_path)
+ # apply
+ for lang in [src, tgt]:
+ for split in SPLITS:
+ _apply_bbpe(
+ bbpe_model_prefix + ".model",
+ op.join(root, f"{split}.moses.{lang}"),
+ op.join(root, f"{split}.moses.bbpe{bbpe_size}.{lang}"),
+ )
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--root", type=str, default="data")
+ parser.add_argument(
+ "--bpe-vocab",
+ default=None,
+ type=int,
+ help="Generate tokenized bitext with BPE of size K."
+ "Default to None (disabled).",
+ )
+ parser.add_argument(
+ "--bbpe-vocab",
+ default=None,
+ type=int,
+ help="Generate tokenized bitext with BBPE of size K."
+ "Default to None (disabled).",
+ )
+ parser.add_argument(
+ "--byte-vocab",
+ action="store_true",
+ help="Generate tokenized bitext with bytes vocabulary",
+ )
+ parser.add_argument(
+ "--char-vocab",
+ action="store_true",
+ help="Generate tokenized bitext with chars vocabulary",
+ )
+ args = parser.parse_args()
+
+ preprocess_iwslt17(
+ args.root,
+ "fr",
+ "en",
+ args.bpe_vocab,
+ args.char_vocab,
+ args.bbpe_vocab,
+ args.byte_vocab,
+ )
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/byte_level_bpe/get_data.sh b/fairseq/examples/byte_level_bpe/get_data.sh
new file mode 100644
index 0000000000000000000000000000000000000000..c3d55d4925a6e6e23d12d293f093c1ae14acf76e
--- /dev/null
+++ b/fairseq/examples/byte_level_bpe/get_data.sh
@@ -0,0 +1,47 @@
+#!/bin/bash
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+PY_BIN_ROOT=
+
+# PyPI dependency
+${PY_BIN_ROOT}pip install sentencepiece sacremoses
+
+# Get data
+if [ ! -d "data" ]; then
+ mkdir data
+fi
+
+if [ ! -f "data/fr-en.tgz" ]; then
+ wget https://wit3.fbk.eu/archive/2017-01-trnted/texts/fr/en/fr-en.tgz -P data
+ tar xvf data/fr-en.tgz -C data
+fi
+${PY_BIN_ROOT}python get_bitext.py --bpe-vocab 16384 --byte-vocab --char-vocab
+for VOCAB_SIZE in 2048 4096; do
+ ${PY_BIN_ROOT}python get_bitext.py --bpe-vocab ${VOCAB_SIZE} --bbpe-vocab ${VOCAB_SIZE}
+done
+rm -r data/fr-en data/fr-en.tgz
+
+# Generate binary dataset
+${PY_BIN_ROOT}/fairseq-preprocess --source-lang fr --target-lang en --destdir data/bin_bpe16384 --joined-dictionary \
+ --workers "$(nproc)" --trainpref data/train.moses.bpe16384 --validpref data/valid.moses.bpe16384 \
+ --testpref data/test.moses.bpe16384
+
+${PY_BIN_ROOT}/fairseq-preprocess --source-lang fr --target-lang en --destdir data/bin_bytes --joined-dictionary \
+ --workers "$(nproc)" --trainpref data/train.moses.bytes --validpref data/valid.moses.bytes \
+ --testpref data/test.moses.bytes
+
+${PY_BIN_ROOT}/fairseq-preprocess --source-lang fr --target-lang en --destdir data/bin_chars --joined-dictionary \
+ --workers "$(nproc)" --trainpref data/train.moses.chars --validpref data/valid.moses.chars \
+ --testpref data/test.moses.chars
+
+for VOCAB_SIZE in 2048 4096; do
+ for TYPE in bbpe bpe; do
+ ${PY_BIN_ROOT}/fairseq-preprocess --source-lang fr --target-lang en --destdir "data/bin_${TYPE}${VOCAB_SIZE}" \
+ --joined-dictionary --workers "$(nproc)" --trainpref "data/train.moses.${TYPE}${VOCAB_SIZE}" \
+ --validpref "data/valid.moses.${TYPE}${VOCAB_SIZE}" --testpref "data/test.moses.${TYPE}${VOCAB_SIZE}"
+ done
+done
diff --git a/fairseq/examples/byte_level_bpe/gru_transformer.py b/fairseq/examples/byte_level_bpe/gru_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..d4efa93a4d75da71c78e786d7f62101ef3266af4
--- /dev/null
+++ b/fairseq/examples/byte_level_bpe/gru_transformer.py
@@ -0,0 +1,107 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch.nn as nn
+import torch.nn.functional as F
+from fairseq.models import register_model, register_model_architecture
+from fairseq.models.transformer import TransformerEncoder, TransformerModel
+
+
+@register_model("gru_transformer")
+class GRUTransformerModel(TransformerModel):
+ @classmethod
+ def build_encoder(cls, args, src_dict, embed_tokens):
+ return GRUTransformerEncoder(args, src_dict, embed_tokens)
+
+
+class GRUTransformerEncoder(TransformerEncoder):
+ def __init__(self, args, dictionary, embed_tokens):
+ super().__init__(args, dictionary, embed_tokens)
+ self.emb_ctx = nn.GRU(
+ input_size=embed_tokens.embedding_dim,
+ hidden_size=embed_tokens.embedding_dim // 2,
+ num_layers=1,
+ bidirectional=True,
+ )
+
+ def forward_embedding(self, src_tokens):
+ # embed tokens and positions
+ x = embed = self.embed_scale * self.embed_tokens(src_tokens)
+ if self.embed_positions is not None:
+ x = embed + self.embed_positions(src_tokens)
+
+ # contextualize embeddings
+ x = x.transpose(0, 1)
+ x = self.dropout_module(x)
+ x, _ = self.emb_ctx.forward(x)
+ x = x.transpose(0, 1)
+
+ if self.layernorm_embedding is not None:
+ x = self.layernorm_embedding(x)
+ x = self.dropout_module(x)
+ return x, embed
+
+
+@register_model_architecture("gru_transformer", "gru_transformer")
+def gru_transformer_base_architecture(args):
+ args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
+ args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
+ args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
+ args.encoder_layers = getattr(args, "encoder_layers", 6)
+ args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
+ args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
+ args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
+ args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
+ args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
+ args.decoder_ffn_embed_dim = getattr(
+ args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
+ )
+ args.decoder_layers = getattr(args, "decoder_layers", 6)
+ args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
+ args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
+ args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
+ args.attention_dropout = getattr(args, "attention_dropout", 0.0)
+ args.activation_dropout = getattr(args, "activation_dropout", 0.0)
+ args.activation_fn = getattr(args, "activation_fn", "relu")
+ args.dropout = getattr(args, "dropout", 0.1)
+ args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
+ args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
+ args.share_decoder_input_output_embed = getattr(
+ args, "share_decoder_input_output_embed", False
+ )
+ args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
+ args.no_token_positional_embeddings = getattr(
+ args, "no_token_positional_embeddings", False
+ )
+ args.adaptive_input = getattr(args, "adaptive_input", False)
+ args.no_cross_attention = getattr(args, "no_cross_attention", False)
+ args.cross_self_attention = getattr(args, "cross_self_attention", False)
+ args.layer_wise_attention = getattr(args, "layer_wise_attention", False)
+
+ args.decoder_output_dim = getattr(
+ args, "decoder_output_dim", args.decoder_embed_dim
+ )
+ args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
+
+ args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
+ args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
+
+
+@register_model_architecture("gru_transformer", "gru_transformer_big")
+def gru_transformer_big(args):
+ args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
+ args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
+ args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
+ args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
+ args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
+ args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
+ args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
+ args.dropout = getattr(args, "dropout", 0.3)
+ gru_transformer_base_architecture(args)
diff --git a/fairseq/examples/camembert/README.md b/fairseq/examples/camembert/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..5ef4fe3f151bb468712f3be935ea5bb1b1360bf7
--- /dev/null
+++ b/fairseq/examples/camembert/README.md
@@ -0,0 +1,75 @@
+# CamemBERT: a Tasty French Language Model
+
+## Introduction
+
+[CamemBERT](https://arxiv.org/abs/1911.03894) is a pretrained language model trained on 138GB of French text based on RoBERTa.
+
+Also available in [github.com/huggingface/transformers](https://github.com/huggingface/transformers/).
+
+## Pre-trained models
+
+| Model | #params | Download | Arch. | Training data |
+|--------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------|
+| `camembert` / `camembert-base` | 110M | [camembert-base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz) | Base | OSCAR (138 GB of text) |
+| `camembert-large` | 335M | [camembert-large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-large.tar.gz) | Large | CCNet (135 GB of text) |
+| `camembert-base-ccnet` | 110M | [camembert-base-ccnet.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base-ccnet.tar.gz) | Base | CCNet (135 GB of text) |
+| `camembert-base-wikipedia-4gb` | 110M | [camembert-base-wikipedia-4gb.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base-wikipedia-4gb.tar.gz) | Base | Wikipedia (4 GB of text) |
+| `camembert-base-oscar-4gb` | 110M | [camembert-base-oscar-4gb.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base-oscar-4gb.tar.gz) | Base | Subsample of OSCAR (4 GB of text) |
+| `camembert-base-ccnet-4gb` | 110M | [camembert-base-ccnet-4gb.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert-base-ccnet-4gb.tar.gz) | Base | Subsample of CCNet (4 GB of text) |
+
+## Example usage
+
+### fairseq
+##### Load CamemBERT from torch.hub (PyTorch >= 1.1):
+```python
+import torch
+camembert = torch.hub.load('pytorch/fairseq', 'camembert')
+camembert.eval() # disable dropout (or leave in train mode to finetune)
+```
+
+##### Load CamemBERT (for PyTorch 1.0 or custom models):
+```python
+# Download camembert model
+wget https://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz
+tar -xzvf camembert.tar.gz
+
+# Load the model in fairseq
+from fairseq.models.roberta import CamembertModel
+camembert = CamembertModel.from_pretrained('/path/to/camembert')
+camembert.eval() # disable dropout (or leave in train mode to finetune)
+```
+
+##### Filling masks:
+```python
+masked_line = 'Le camembert est :)'
+camembert.fill_mask(masked_line, topk=3)
+# [('Le camembert est délicieux :)', 0.4909118115901947, ' délicieux'),
+# ('Le camembert est excellent :)', 0.10556942224502563, ' excellent'),
+# ('Le camembert est succulent :)', 0.03453322499990463, ' succulent')]
+```
+
+##### Extract features from Camembert:
+```python
+# Extract the last layer's features
+line = "J'aime le camembert !"
+tokens = camembert.encode(line)
+last_layer_features = camembert.extract_features(tokens)
+assert last_layer_features.size() == torch.Size([1, 10, 768])
+
+# Extract all layer's features (layer 0 is the embedding layer)
+all_layers = camembert.extract_features(tokens, return_all_hiddens=True)
+assert len(all_layers) == 13
+assert torch.all(all_layers[-1] == last_layer_features)
+```
+
+## Citation
+If you use our work, please cite:
+
+```bibtex
+@inproceedings{martin2020camembert,
+ title={CamemBERT: a Tasty French Language Model},
+ author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
+ booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
+ year={2020}
+}
+```
diff --git a/fairseq/examples/constrained_decoding/README.md b/fairseq/examples/constrained_decoding/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..e04b8b6a018214c8233fa87fd91d46a6dd1519d4
--- /dev/null
+++ b/fairseq/examples/constrained_decoding/README.md
@@ -0,0 +1,123 @@
+# (Vectorized) Lexically constrained decoding with dynamic beam allocation
+
+This page provides instructions for how to use lexically constrained decoding in Fairseq.
+Fairseq implements the code described in the following papers:
+
+* [Fast Lexically Constrained Decoding With Dynamic Beam Allocation](https://www.aclweb.org/anthology/N18-1119/) (Post & Vilar, 2018)
+* [Improved Lexically Constrained Decoding for Translation and Monolingual Rewriting](https://www.aclweb.org/anthology/N19-1090/) (Hu et al., 2019)
+
+## Quick start
+
+Constrained search is enabled by adding the command-line argument `--constraints` to `fairseq-interactive`.
+Constraints are appended to each line of input, separated by tabs. Each constraint (one or more tokens)
+is a separate field.
+
+The following command, using [Fairseq's WMT19 German--English model](https://github.com/pytorch/fairseq/blob/main/examples/wmt19/README.md),
+translates the sentence *Die maschinelle Übersetzung ist schwer zu kontrollieren.* with the constraints
+"hard" and "to influence".
+
+ echo -e "Die maschinelle Übersetzung ist schwer zu kontrollieren.\thard\ttoinfluence" \
+ | normalize.py | tok.py \
+ | fairseq-interactive /path/to/model \
+ --path /path/to/model/model1.pt \
+ --bpe fastbpe \
+ --bpe-codes /path/to/model/bpecodes \
+ --constraints \
+ -s de -t en \
+ --beam 10
+
+(tok.py and normalize.py can be found in the same directory as this README; they are just shortcuts around Fairseq's WMT19 preprocessing).
+This will generate the following output:
+
+ [snip]
+ S-0 Die masch@@ in@@ elle Über@@ setzung ist schwer zu kontrollieren .
+ W-0 1.844 seconds
+ C-0 hard
+ C-0 influence
+ H-0 -1.5333266258239746 Mach@@ ine trans@@ lation is hard to influence .
+ D-0 -1.5333266258239746 Machine translation is hard to influence .
+ P-0 -0.5434 -0.1423 -0.1930 -0.1415 -0.2346 -1.8031 -0.1701 -11.7727 -0.1815 -0.1511
+
+By default, constraints are generated in the order supplied, with any number (zero or more) of tokens generated
+between constraints. If you wish for the decoder to order the constraints, then use `--constraints unordered`.
+Note that you may want to use a larger beam.
+
+## Implementation details
+
+The heart of the implementation is in `fairseq/search.py`, which adds a `LexicallyConstrainedBeamSearch` instance.
+This instance of beam search tracks the progress of each hypothesis in the beam through the set of constraints
+provided for each input sentence. It does this using one of two classes, both found in `fairseq/token_generation_contstraints.py`:
+
+* OrderedConstraintState: assumes the `C` input constraints will be generated in the provided order
+* UnorderedConstraintState: tries to apply `C` (phrasal) constraints in all `C!` orders
+
+## Differences from Sockeye
+
+There are a number of [differences from Sockeye's implementation](https://awslabs.github.io/sockeye/inference.html#lexical-constraints).
+
+* Generating constraints in the order supplied (the default option here) is not available in Sockeye.
+* Due to an improved beam allocation method, there is no need to prune the beam.
+* Again due to better allocation, beam sizes as low as 10 or even 5 are often sufficient.
+* [The vector extensions described in Hu et al.](https://github.com/edwardjhu/sockeye/tree/trie_constraints) (NAACL 2019) were never merged
+ into the main Sockeye branch.
+
+## Citation
+
+The paper first describing lexical constraints for seq2seq decoding is:
+
+```bibtex
+@inproceedings{hokamp-liu-2017-lexically,
+ title = "Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search",
+ author = "Hokamp, Chris and
+ Liu, Qun",
+ booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
+ month = jul,
+ year = "2017",
+ address = "Vancouver, Canada",
+ publisher = "Association for Computational Linguistics",
+ url = "https://www.aclweb.org/anthology/P17-1141",
+ doi = "10.18653/v1/P17-1141",
+ pages = "1535--1546",
+}
+```
+
+The fairseq implementation uses the extensions described in
+
+```bibtex
+@inproceedings{post-vilar-2018-fast,
+ title = "Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation",
+ author = "Post, Matt and
+ Vilar, David",
+ booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
+ month = jun,
+ year = "2018",
+ address = "New Orleans, Louisiana",
+ publisher = "Association for Computational Linguistics",
+ url = "https://www.aclweb.org/anthology/N18-1119",
+ doi = "10.18653/v1/N18-1119",
+ pages = "1314--1324",
+}
+```
+
+and
+
+```bibtex
+@inproceedings{hu-etal-2019-improved,
+ title = "Improved Lexically Constrained Decoding for Translation and Monolingual Rewriting",
+ author = "Hu, J. Edward and
+ Khayrallah, Huda and
+ Culkin, Ryan and
+ Xia, Patrick and
+ Chen, Tongfei and
+ Post, Matt and
+ Van Durme, Benjamin",
+ booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
+ month = jun,
+ year = "2019",
+ address = "Minneapolis, Minnesota",
+ publisher = "Association for Computational Linguistics",
+ url = "https://www.aclweb.org/anthology/N19-1090",
+ doi = "10.18653/v1/N19-1090",
+ pages = "839--850",
+}
+```
diff --git a/fairseq/examples/constrained_decoding/normalize.py b/fairseq/examples/constrained_decoding/normalize.py
new file mode 100755
index 0000000000000000000000000000000000000000..4ae2b5111ba025acb9e1613865c92fdc339a58d5
--- /dev/null
+++ b/fairseq/examples/constrained_decoding/normalize.py
@@ -0,0 +1,27 @@
+#!/usr/bin/env python3
+#
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import sys
+
+from sacremoses.normalize import MosesPunctNormalizer
+
+
+def main(args):
+ normalizer = MosesPunctNormalizer(lang=args.lang, penn=args.penn)
+ for line in sys.stdin:
+ print(normalizer.normalize(line.rstrip()), flush=True)
+
+
+if __name__ == "__main__":
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--lang", "-l", default="en")
+ parser.add_argument("--penn", "-p", action="store_true")
+ args = parser.parse_args()
+
+ main(args)
diff --git a/fairseq/examples/constrained_decoding/tok.py b/fairseq/examples/constrained_decoding/tok.py
new file mode 100755
index 0000000000000000000000000000000000000000..b1f888a8c0d1b8ec7174859476cc3222456e0d2c
--- /dev/null
+++ b/fairseq/examples/constrained_decoding/tok.py
@@ -0,0 +1,34 @@
+#!/usr/bin/env python3
+#
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import sys
+
+import sacremoses
+
+
+def main(args):
+ """Tokenizes, preserving tabs"""
+ mt = sacremoses.MosesTokenizer(lang=args.lang)
+
+ def tok(s):
+ return mt.tokenize(s, return_str=True)
+
+ for line in sys.stdin:
+ parts = list(map(tok, line.split("\t")))
+ print(*parts, sep="\t", flush=True)
+
+
+if __name__ == "__main__":
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--lang", "-l", default="en")
+ parser.add_argument("--penn", "-p", action="store_true")
+ parser.add_argument("--fields", "-f", help="fields to tokenize")
+ args = parser.parse_args()
+
+ main(args)
diff --git a/fairseq/examples/conv_seq2seq/README.md b/fairseq/examples/conv_seq2seq/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..95fe7e7909a77ee0e50fe31d4b8be38daa8f3be7
--- /dev/null
+++ b/fairseq/examples/conv_seq2seq/README.md
@@ -0,0 +1,25 @@
+# Convolutional Sequence to Sequence Learning (Gehring et al., 2017)
+
+## Pre-trained models
+
+Description | Dataset | Model | Test set(s)
+---|---|---|---
+Convolutional ([Gehring et al., 2017](https://arxiv.org/abs/1705.03122)) | [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt14.v2.en-fr.fconv-py.tar.bz2) | newstest2014: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.v2.en-fr.newstest2014.tar.bz2) newstest2012/2013: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.v2.en-fr.ntst1213.tar.bz2)
+Convolutional ([Gehring et al., 2017](https://arxiv.org/abs/1705.03122)) | [WMT14 English-German](http://statmt.org/wmt14/translation-task.html#Download) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-de.fconv-py.tar.bz2) | newstest2014: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.en-de.newstest2014.tar.bz2)
+Convolutional ([Gehring et al., 2017](https://arxiv.org/abs/1705.03122)) | [WMT17 English-German](http://statmt.org/wmt17/translation-task.html#Download) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt17.v2.en-de.fconv-py.tar.bz2) | newstest2014: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt17.v2.en-de.newstest2014.tar.bz2)
+
+## Example usage
+
+See the [translation README](../translation/README.md) for instructions on reproducing results for WMT'14 En-De and
+WMT'14 En-Fr using the `fconv_wmt_en_de` and `fconv_wmt_en_fr` model architectures.
+
+## Citation
+
+```bibtex
+@inproceedings{gehring2017convs2s,
+ title = {Convolutional Sequence to Sequence Learning},
+ author = {Gehring, Jonas, and Auli, Michael and Grangier, David and Yarats, Denis and Dauphin, Yann N},
+ booktitle = {Proc. of ICML},
+ year = 2017,
+}
+```
diff --git a/fairseq/examples/criss/README.md b/fairseq/examples/criss/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..4689ed7c10497a5100b28fe6d6801a7c089da569
--- /dev/null
+++ b/fairseq/examples/criss/README.md
@@ -0,0 +1,61 @@
+# Cross-lingual Retrieval for Iterative Self-Supervised Training
+
+https://arxiv.org/pdf/2006.09526.pdf
+
+## Introduction
+
+CRISS is a multilingual sequence-to-sequnce pretraining method where mining and training processes are applied iteratively, improving cross-lingual alignment and translation ability at the same time.
+
+## Requirements:
+
+* faiss: https://github.com/facebookresearch/faiss
+* mosesdecoder: https://github.com/moses-smt/mosesdecoder
+* flores: https://github.com/facebookresearch/flores
+* LASER: https://github.com/facebookresearch/LASER
+
+## Unsupervised Machine Translation
+##### 1. Download and decompress CRISS checkpoints
+```
+cd examples/criss
+wget https://dl.fbaipublicfiles.com/criss/criss_3rd_checkpoints.tar.gz
+tar -xf criss_checkpoints.tar.gz
+```
+##### 2. Download and preprocess Flores test dataset
+Make sure to run all scripts from examples/criss directory
+```
+bash download_and_preprocess_flores_test.sh
+```
+
+##### 3. Run Evaluation on Sinhala-English
+```
+bash unsupervised_mt/eval.sh
+```
+
+## Sentence Retrieval
+##### 1. Download and preprocess Tatoeba dataset
+```
+bash download_and_preprocess_tatoeba.sh
+```
+
+##### 2. Run Sentence Retrieval on Tatoeba Kazakh-English
+```
+bash sentence_retrieval/sentence_retrieval_tatoeba.sh
+```
+
+## Mining
+##### 1. Install faiss
+Follow instructions on https://github.com/facebookresearch/faiss/blob/master/INSTALL.md
+##### 2. Mine pseudo-parallel data between Kazakh and English
+```
+bash mining/mine_example.sh
+```
+
+## Citation
+```bibtex
+@article{tran2020cross,
+ title={Cross-lingual retrieval for iterative self-supervised training},
+ author={Tran, Chau and Tang, Yuqing and Li, Xian and Gu, Jiatao},
+ journal={arXiv preprint arXiv:2006.09526},
+ year={2020}
+}
+```
diff --git a/fairseq/examples/criss/download_and_preprocess_flores_test.sh b/fairseq/examples/criss/download_and_preprocess_flores_test.sh
new file mode 100644
index 0000000000000000000000000000000000000000..ed4b390fbdee3991efeb298050e12065d7fe605b
--- /dev/null
+++ b/fairseq/examples/criss/download_and_preprocess_flores_test.sh
@@ -0,0 +1,64 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+SPM_ENCODE=flores/scripts/spm_encode.py
+DATA=data_tmp
+SPM_MODEL=criss_checkpoints/sentence.bpe.model
+DICT=criss_checkpoints/dict.txt
+
+download_data() {
+ CORPORA=$1
+ URL=$2
+
+ if [ -f $CORPORA ]; then
+ echo "$CORPORA already exists, skipping download"
+ else
+ echo "Downloading $URL"
+ wget $URL -O $CORPORA --no-check-certificate || rm -f $CORPORA
+ if [ -f $CORPORA ]; then
+ echo "$URL successfully downloaded."
+ else
+ echo "$URL not successfully downloaded."
+ rm -f $CORPORA
+ fi
+ fi
+}
+
+if [[ -f flores ]]; then
+ echo "flores already cloned"
+else
+ git clone https://github.com/facebookresearch/flores
+fi
+
+mkdir -p $DATA
+download_data $DATA/wikipedia_en_ne_si_test_sets.tgz "https://github.com/facebookresearch/flores/raw/master/data/wikipedia_en_ne_si_test_sets.tgz"
+pushd $DATA
+pwd
+tar -vxf wikipedia_en_ne_si_test_sets.tgz
+popd
+
+
+for lang in ne_NP si_LK; do
+ datadir=$DATA/${lang}-en_XX-flores
+ rm -rf $datadir
+ mkdir -p $datadir
+ TEST_PREFIX=$DATA/wikipedia_en_ne_si_test_sets/wikipedia.test
+ python $SPM_ENCODE \
+ --model ${SPM_MODEL} \
+ --output_format=piece \
+ --inputs ${TEST_PREFIX}.${lang:0:2}-en.${lang:0:2} ${TEST_PREFIX}.${lang:0:2}-en.en \
+ --outputs $datadir/test.bpe.${lang}-en_XX.${lang} $datadir/test.bpe.${lang}-en_XX.en_XX
+
+ # binarize data
+ fairseq-preprocess \
+ --source-lang ${lang} --target-lang en_XX \
+ --testpref $datadir/test.bpe.${lang}-en_XX \
+ --destdir $datadir \
+ --srcdict ${DICT} \
+ --joined-dictionary \
+ --workers 4
+done
diff --git a/fairseq/examples/criss/download_and_preprocess_tatoeba.sh b/fairseq/examples/criss/download_and_preprocess_tatoeba.sh
new file mode 100644
index 0000000000000000000000000000000000000000..7ed64f017d5e62695ba73745c840507b994abc0f
--- /dev/null
+++ b/fairseq/examples/criss/download_and_preprocess_tatoeba.sh
@@ -0,0 +1,46 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+SPM_ENCODE=flores/scripts/spm_encode.py
+DATA=data_tmp
+SPM_MODEL=criss_checkpoints/sentence.bpe.model
+DICT=criss_checkpoints/dict.txt
+
+if [[ -f flores ]]; then
+ echo "flores already cloned"
+else
+ git clone https://github.com/facebookresearch/flores
+fi
+if [[ -f LASER ]]; then
+ echo "LASER already cloned"
+else
+ git clone https://github.com/facebookresearch/LASER
+fi
+mkdir -p data_tmp
+declare -A lang_tatoeba_map=( ["ar_AR"]="ara" ["de_DE"]="deu" ["es_XX"]="spa" ["et_EE"]="est" ["fi_FI"]="fin" ["fr_XX"]="fra" ["hi_IN"]="hin" ["it_IT"]="ita" ["ja_XX"]="jpn" ["ko_KR"]="kor" ["kk_KZ"]="kaz" ["nl_XX"]="nld" ["ru_RU"]="rus" ["tr_TR"]="tur" ["vi_VN"]="vie" ["zh_CN"]="cmn")
+for lang in ar_AR de_DE es_XX et_EE fi_FI fr_XX hi_IN it_IT ja_XX kk_KZ ko_KR nl_XX ru_RU tr_TR vi_VN zh_CN; do
+ lang_tatoeba=${lang_tatoeba_map[$lang]}
+ echo $lang_tatoeba
+ datadir=$DATA/${lang}-en_XX-tatoeba
+ rm -rf $datadir
+ mkdir -p $datadir
+ TEST_PREFIX=LASER/data/tatoeba/v1/tatoeba
+ python $SPM_ENCODE \
+ --model ${SPM_MODEL} \
+ --output_format=piece \
+ --inputs ${TEST_PREFIX}.${lang_tatoeba}-eng.${lang_tatoeba} ${TEST_PREFIX}.${lang_tatoeba}-eng.eng \
+ --outputs $datadir/test.bpe.${lang}-en_XX.${lang} $datadir/test.bpe.${lang}-en_XX.en_XX
+
+ # binarize data
+ fairseq-preprocess \
+ --source-lang ${lang} --target-lang en_XX \
+ --testpref $datadir/test.bpe.${lang}-en_XX \
+ --destdir $datadir \
+ --srcdict ${DICT} \
+ --joined-dictionary \
+ --workers 4
+done
diff --git a/fairseq/examples/criss/mining/mine.py b/fairseq/examples/criss/mining/mine.py
new file mode 100644
index 0000000000000000000000000000000000000000..c872da196fe0df776622365748ad7963fee1f0a0
--- /dev/null
+++ b/fairseq/examples/criss/mining/mine.py
@@ -0,0 +1,240 @@
+#!/usr/bin/env python3 -u
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+import argparse
+import glob
+from subprocess import check_call
+
+try:
+ import faiss
+
+ has_faiss = True
+except ImportError:
+ has_faiss = False
+import numpy as np
+
+
+GB = 1024 * 1024 * 1024
+
+
+def call(cmd):
+ print(cmd)
+ check_call(cmd, shell=True)
+
+
+def get_batches(directory, lang, prefix="all_avg_pool"):
+ print(f"Finding in {directory}/{prefix}.{lang}*")
+ files = glob.glob(f"{directory}/{prefix}.{lang}*")
+ emb_files = []
+ txt_files = []
+ for emb_fi in files:
+ emb_files.append(emb_fi)
+ txt_fi = emb_fi.replace(prefix, "sentences")
+ txt_files.append(txt_fi)
+ return emb_files, txt_files
+
+
+def load_batch(emb_file, dim):
+ embeddings = np.fromfile(emb_file, dtype=np.float32)
+ num_rows = int(embeddings.shape[0] / dim)
+ embeddings = embeddings.reshape((num_rows, dim))
+ faiss.normalize_L2(embeddings)
+ return embeddings
+
+
+def knnGPU_sharded(x_batches_f, y_batches_f, dim, k, direction="x2y"):
+ if not has_faiss:
+ raise ImportError("Please install Faiss")
+ sims = []
+ inds = []
+ xfrom = 0
+ xto = 0
+ for x_batch_f in x_batches_f:
+ yfrom = 0
+ yto = 0
+ x_batch = load_batch(x_batch_f, dim)
+ xto = xfrom + x_batch.shape[0]
+ bsims, binds = [], []
+ for y_batch_f in y_batches_f:
+ y_batch = load_batch(y_batch_f, dim)
+ neighbor_size = min(k, y_batch.shape[0])
+ yto = yfrom + y_batch.shape[0]
+ print("{}-{} -> {}-{}".format(xfrom, xto, yfrom, yto))
+ idx = faiss.IndexFlatIP(dim)
+ idx = faiss.index_cpu_to_all_gpus(idx)
+ idx.add(y_batch)
+ bsim, bind = idx.search(x_batch, neighbor_size)
+
+ bsims.append(bsim)
+ binds.append(bind + yfrom)
+ yfrom += y_batch.shape[0]
+ del idx
+ del y_batch
+ bsims = np.concatenate(bsims, axis=1)
+ binds = np.concatenate(binds, axis=1)
+ aux = np.argsort(-bsims, axis=1)
+ sim_batch = np.zeros((x_batch.shape[0], k), dtype=np.float32)
+ ind_batch = np.zeros((x_batch.shape[0], k), dtype=np.int64)
+ for i in range(x_batch.shape[0]):
+ for j in range(k):
+ sim_batch[i, j] = bsims[i, aux[i, j]]
+ ind_batch[i, j] = binds[i, aux[i, j]]
+ sims.append(sim_batch)
+ inds.append(ind_batch)
+ xfrom += x_batch.shape[0]
+ del x_batch
+ sim = np.concatenate(sims, axis=0)
+ ind = np.concatenate(inds, axis=0)
+ return sim, ind
+
+
+def score(sim, fwd_mean, bwd_mean, margin):
+ return margin(sim, (fwd_mean + bwd_mean) / 2)
+
+
+def score_candidates(
+ sim_mat, candidate_inds, fwd_mean, bwd_mean, margin, verbose=False
+):
+ print(" - scoring {:d} candidates".format(sim_mat.shape[0]))
+ scores = np.zeros(candidate_inds.shape)
+ for i in range(scores.shape[0]):
+ for j in range(scores.shape[1]):
+ k = int(candidate_inds[i, j])
+ scores[i, j] = score(sim_mat[i, j], fwd_mean[i], bwd_mean[k], margin)
+ return scores
+
+
+def load_text(files):
+ all_sentences = []
+ for fi in files:
+ with open(fi) as sentence_fi:
+ for line in sentence_fi:
+ all_sentences.append(line.strip())
+ print(f"Read {len(all_sentences)} sentences")
+ return all_sentences
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser(description="Mine bitext")
+ parser.add_argument("--src-lang", help="Source language")
+ parser.add_argument("--tgt-lang", help="Target language")
+ parser.add_argument(
+ "--dict-path", help="Path to dictionary file", default="dict.txt"
+ )
+ parser.add_argument(
+ "--spm-path", help="Path to SPM model file", default="sentence.bpe.model"
+ )
+ parser.add_argument("--dim", type=int, default=1024, help="Embedding dimension")
+ parser.add_argument("--mem", type=int, default=5, help="Memory in GB")
+ parser.add_argument("--src-dir", help="Source directory")
+ parser.add_argument("--tgt-dir", help="Target directory")
+ parser.add_argument("--output", help="Output path")
+ parser.add_argument(
+ "--neighborhood", type=int, default=4, help="Embedding dimension"
+ )
+ parser.add_argument(
+ "--threshold", type=float, default=1.06, help="Threshold on mined bitext"
+ )
+ parser.add_argument(
+ "--valid-size",
+ type=int,
+ default=2000,
+ help="Number of sentences used for validation set",
+ )
+ parser.add_argument(
+ "--min-count",
+ type=int,
+ default=50000,
+ help="Min num sentences used for each language",
+ )
+ args = parser.parse_args()
+
+ x_batches_f, x_sents_f = get_batches(args.src_dir, args.src_lang)
+ y_batches_f, y_sents_f = get_batches(args.tgt_dir, args.tgt_lang)
+ margin = lambda a, b: a / b
+ y2x_sim, y2x_ind = knnGPU_sharded(
+ y_batches_f, x_batches_f, args.dim, args.neighborhood, direction="y2x"
+ )
+ x2y_sim, x2y_ind = knnGPU_sharded(
+ x_batches_f, y_batches_f, args.dim, args.neighborhood, direction="x2y"
+ )
+
+ x2y_mean = x2y_sim.mean(axis=1)
+ y2x_mean = y2x_sim.mean(axis=1)
+ fwd_scores = score_candidates(x2y_sim, x2y_ind, x2y_mean, y2x_mean, margin)
+ bwd_scores = score_candidates(y2x_sim, y2x_ind, y2x_mean, x2y_mean, margin)
+ fwd_best = x2y_ind[np.arange(x2y_sim.shape[0]), fwd_scores.argmax(axis=1)]
+ bwd_best = y2x_ind[np.arange(y2x_sim.shape[0]), bwd_scores.argmax(axis=1)]
+ indices = np.stack(
+ (
+ np.concatenate((np.arange(x2y_ind.shape[0]), bwd_best)),
+ np.concatenate((fwd_best, np.arange(y2x_ind.shape[0]))),
+ ),
+ axis=1,
+ )
+ scores = np.concatenate((fwd_scores.max(axis=1), bwd_scores.max(axis=1)))
+
+ x_sentences = load_text(x_sents_f)
+ y_sentences = load_text(y_sents_f)
+
+ threshold = args.threshold
+ min_count = args.min_count
+ seen_src, seen_trg = set(), set()
+ directory = args.output
+ call(f"mkdir -p {directory}")
+ src_out = open(
+ f"{directory}/all.{args.src_lang}",
+ mode="w",
+ encoding="utf-8",
+ errors="surrogateescape",
+ )
+ tgt_out = open(
+ f"{directory}/all.{args.tgt_lang}",
+ mode="w",
+ encoding="utf-8",
+ errors="surrogateescape",
+ )
+ scores_out = open(
+ f"{directory}/all.scores", mode="w", encoding="utf-8", errors="surrogateescape"
+ )
+ count = 0
+ for i in np.argsort(-scores):
+ src_ind, trg_ind = indices[i]
+ if src_ind not in seen_src and trg_ind not in seen_trg:
+ seen_src.add(src_ind)
+ seen_trg.add(trg_ind)
+ if scores[i] > threshold or count < min_count:
+ if x_sentences[src_ind]:
+ print(scores[i], file=scores_out)
+ print(x_sentences[src_ind], file=src_out)
+ print(y_sentences[trg_ind], file=tgt_out)
+ count += 1
+ else:
+ print(f"Ignoring sentence: {x_sentences[src_ind]}")
+ src_out.close()
+ tgt_out.close()
+ scores_out.close()
+
+ print(f"Found {count} pairs for threshold={threshold}")
+ with open(f"{directory}/all.{args.src_lang}") as all_s, open(
+ f"{directory}/all.{args.tgt_lang}"
+ ) as all_t, open(f"{directory}/valid.{args.src_lang}", "w") as valid_s, open(
+ f"{directory}/valid.{args.tgt_lang}", "w"
+ ) as valid_t, open(
+ f"{directory}/train.{args.src_lang}", "w"
+ ) as train_s, open(
+ f"{directory}/train.{args.tgt_lang}", "w"
+ ) as train_t:
+ count = 0
+ for s_line, t_line in zip(all_s, all_t):
+ s_line = s_line.split("\t")[1]
+ t_line = t_line.split("\t")[1]
+ if count >= args.valid_size:
+ train_s.write(s_line)
+ train_t.write(t_line)
+ else:
+ valid_s.write(s_line)
+ valid_t.write(t_line)
+ count += 1
diff --git a/fairseq/examples/criss/mining/mine_example.sh b/fairseq/examples/criss/mining/mine_example.sh
new file mode 100644
index 0000000000000000000000000000000000000000..ace995ac44665f99d904b6a89d7fbbce24103afe
--- /dev/null
+++ b/fairseq/examples/criss/mining/mine_example.sh
@@ -0,0 +1,103 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+#
+source_lang=kk_KZ
+target_lang=en_XX
+MODEL=criss_checkpoints/criss.3rd.pt
+SPM=criss_checkpoints/sentence.bpe.model
+SPLIT=test
+LANG_DICT=criss_checkpoints/lang_dict.txt
+SPM_ENCODE=flores/scripts/spm_encode.py
+SAVE_ENCODER=save_encoder.py
+ENCODER_SAVE_ROOT=sentence_embeddings/$MODEL
+DICT=criss_checkpoints/dict.txt
+THRESHOLD=1.02
+MIN_COUNT=500
+
+DATA_DIR=data_tmp
+SAVE_DIR=mining/${source_lang}_${target_lang}_mined
+ENCODER_SAVE_DIR=${ENCODER_SAVE_ROOT}/${source_lang}-${target_lang}
+INPUT_DIR=$DATA_DIR/${source_lang}-${target_lang}-tatoeba
+
+mkdir -p $ENCODER_SAVE_DIR/${target_lang}
+mkdir -p $ENCODER_SAVE_DIR/${source_lang}
+mkdir -p $SAVE_DIR
+
+## Save encoder outputs
+
+# Save encoder outputs for source sentences
+python $SAVE_ENCODER \
+ ${INPUT_DIR} \
+ --path ${MODEL} \
+ --task translation_multi_simple_epoch \
+ --lang-pairs ${source_lang}-${target_lang} \
+ --lang-dict ${LANG_DICT} \
+ --gen-subset ${SPLIT} \
+ --bpe 'sentencepiece' \
+ -s ${source_lang} -t ${target_lang} \
+ --sentencepiece-model ${SPM} \
+ --remove-bpe 'sentencepiece' \
+ --beam 1 \
+ --lang-tok-style mbart \
+ --encoder-save-dir ${ENCODER_SAVE_DIR}/${source_lang}
+
+## Save encoder outputs for target sentences
+python $SAVE_ENCODER \
+ ${INPUT_DIR} \
+ --path ${MODEL} \
+ --lang-pairs ${source_lang}-${target_lang} \
+ --lang-dict ${LANG_DICT} \
+ --task translation_multi_simple_epoch \
+ --gen-subset ${SPLIT} \
+ --bpe 'sentencepiece' \
+ -t ${source_lang} -s ${target_lang} \
+ --sentencepiece-model ${SPM} \
+ --remove-bpe 'sentencepiece' \
+ --beam 1 \
+ --lang-tok-style mbart \
+ --encoder-save-dir ${ENCODER_SAVE_DIR}/${target_lang}
+
+## Mining
+python mining/mine.py \
+ --src-lang ${source_lang} \
+ --tgt-lang ${target_lang} \
+ --dim 1024 \
+ --mem 10 \
+ --neighborhood 4 \
+ --src-dir ${ENCODER_SAVE_DIR}/${source_lang} \
+ --tgt-dir ${ENCODER_SAVE_DIR}/${target_lang} \
+ --output $SAVE_DIR \
+ --threshold ${THRESHOLD} \
+ --min-count ${MIN_COUNT} \
+ --valid-size 100 \
+ --dict-path ${DICT} \
+ --spm-path ${SPM} \
+
+
+## Process and binarize mined data
+python $SPM_ENCODE \
+ --model ${SPM} \
+ --output_format=piece \
+ --inputs mining/${source_lang}_${target_lang}_mined/train.${source_lang} mining/${source_lang}_${target_lang}_mined/train.${target_lang} \
+ --outputs mining/${source_lang}_${target_lang}_mined/train.bpe.${source_lang} mining/${source_lang}_${target_lang}_mined/train.bpe.${target_lang}
+
+python $SPM_ENCODE \
+ --model ${SPM} \
+ --output_format=piece \
+ --inputs mining/${source_lang}_${target_lang}_mined/valid.${source_lang} mining/${source_lang}_${target_lang}_mined/valid.${target_lang} \
+ --outputs mining/${source_lang}_${target_lang}_mined/valid.bpe.${source_lang} mining/${source_lang}_${target_lang}_mined/valid.bpe.${target_lang}
+
+
+fairseq-preprocess \
+ --source-lang ${source_lang} \
+ --target-lang ${target_lang} \
+ --trainpref mining/${source_lang}_${target_lang}_mined/train.bpe \
+ --validpref mining/${source_lang}_${target_lang}_mined/valid.bpe \
+ --destdir mining/${source_lang}_${target_lang}_mined \
+ --srcdict ${DICT} \
+ --joined-dictionary \
+ --workers 8
diff --git a/fairseq/examples/criss/save_encoder.py b/fairseq/examples/criss/save_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..24a842e4092663c79c92a299fa85747b7c0bed64
--- /dev/null
+++ b/fairseq/examples/criss/save_encoder.py
@@ -0,0 +1,214 @@
+#!/usr/bin/env python3 -u
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+"""
+Translate pre-processed data with a trained model.
+"""
+
+import numpy as np
+import torch
+from fairseq import checkpoint_utils, options, progress_bar, tasks, utils
+from fairseq.sequence_generator import EnsembleModel
+from fairseq.utils import safe_hasattr
+
+
+def get_avg_pool(
+ models, sample, prefix_tokens, src_dict, remove_bpe, has_langtok=False
+):
+ model = EnsembleModel(models)
+
+ # model.forward normally channels prev_output_tokens into the decoder
+ # separately, but SequenceGenerator directly calls model.encoder
+ encoder_input = {
+ k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens"
+ }
+
+ # compute the encoder output for each beam
+ encoder_outs = model.forward_encoder(encoder_input)
+ np_encoder_outs = encoder_outs[0].encoder_out.cpu().numpy().astype(np.float32)
+ encoder_mask = 1 - encoder_outs[0].encoder_padding_mask.cpu().numpy().astype(
+ np.float32
+ )
+ encoder_mask = np.expand_dims(encoder_mask.T, axis=2)
+ if has_langtok:
+ encoder_mask = encoder_mask[1:, :, :]
+ np_encoder_outs = np_encoder_outs[1, :, :]
+ masked_encoder_outs = encoder_mask * np_encoder_outs
+ avg_pool = (masked_encoder_outs / encoder_mask.sum(axis=0)).sum(axis=0)
+ return avg_pool
+
+
+def main(args):
+ assert args.path is not None, "--path required for generation!"
+ assert (
+ not args.sampling or args.nbest == args.beam
+ ), "--sampling requires --nbest to be equal to --beam"
+ assert (
+ args.replace_unk is None or args.raw_text
+ ), "--replace-unk requires a raw text dataset (--raw-text)"
+
+ args.beam = 1
+ utils.import_user_module(args)
+
+ if args.max_tokens is None:
+ args.max_tokens = 12000
+ print(args)
+ use_cuda = torch.cuda.is_available() and not args.cpu
+
+ # Load dataset splits
+ task = tasks.setup_task(args)
+ task.load_dataset(args.gen_subset)
+
+ # Set dictionaries
+ try:
+ src_dict = getattr(task, "source_dictionary", None)
+ except NotImplementedError:
+ src_dict = None
+ tgt_dict = task.target_dictionary
+
+ # Load ensemble
+ print("| loading model(s) from {}".format(args.path))
+ models, _model_args = checkpoint_utils.load_model_ensemble(
+ args.path.split(":"),
+ arg_overrides=eval(args.model_overrides),
+ task=task,
+ )
+
+ # Optimize ensemble for generation
+ for model in models:
+ model.make_generation_fast_(
+ beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
+ need_attn=args.print_alignment,
+ )
+ if args.fp16:
+ model.half()
+ if use_cuda:
+ model.cuda()
+
+ # Load alignment dictionary for unknown word replacement
+ # (None if no unknown word replacement, empty if no path to align dictionary)
+ align_dict = utils.load_align_dict(args.replace_unk)
+
+ # Load dataset (possibly sharded)
+ itr = task.get_batch_iterator(
+ dataset=task.dataset(args.gen_subset),
+ max_tokens=args.max_tokens,
+ max_positions=utils.resolve_max_positions(
+ task.max_positions(),
+ ),
+ ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
+ required_batch_size_multiple=args.required_batch_size_multiple,
+ num_shards=args.num_shards,
+ shard_id=args.shard_id,
+ num_workers=args.num_workers,
+ ).next_epoch_itr(shuffle=False)
+
+ num_sentences = 0
+ source_sentences = []
+ shard_id = 0
+ all_avg_pool = None
+ encoder_has_langtok = (
+ safe_hasattr(task.args, "encoder_langtok")
+ and task.args.encoder_langtok is not None
+ and safe_hasattr(task.args, "lang_tok_replacing_bos_eos")
+ and not task.args.lang_tok_replacing_bos_eos
+ )
+ with progress_bar.build_progress_bar(args, itr) as t:
+ for sample in t:
+ if sample is None:
+ print("Skipping None")
+ continue
+ sample = utils.move_to_cuda(sample) if use_cuda else sample
+ if "net_input" not in sample:
+ continue
+
+ prefix_tokens = None
+ if args.prefix_size > 0:
+ prefix_tokens = sample["target"][:, : args.prefix_size]
+
+ with torch.no_grad():
+ avg_pool = get_avg_pool(
+ models,
+ sample,
+ prefix_tokens,
+ src_dict,
+ args.post_process,
+ has_langtok=encoder_has_langtok,
+ )
+ if all_avg_pool is not None:
+ all_avg_pool = np.concatenate((all_avg_pool, avg_pool))
+ else:
+ all_avg_pool = avg_pool
+
+ if not isinstance(sample["id"], list):
+ sample_ids = sample["id"].tolist()
+ else:
+ sample_ids = sample["id"]
+ for i, sample_id in enumerate(sample_ids):
+ # Remove padding
+ src_tokens = utils.strip_pad(
+ sample["net_input"]["src_tokens"][i, :], tgt_dict.pad()
+ )
+
+ # Either retrieve the original sentences or regenerate them from tokens.
+ if align_dict is not None:
+ src_str = task.dataset(args.gen_subset).src.get_original_text(
+ sample_id
+ )
+ else:
+ if src_dict is not None:
+ src_str = src_dict.string(src_tokens, args.post_process)
+ else:
+ src_str = ""
+
+ if not args.quiet:
+ if src_dict is not None:
+ print("S-{}\t{}".format(sample_id, src_str))
+
+ source_sentences.append(f"{sample_id}\t{src_str}")
+
+ num_sentences += sample["nsentences"]
+ if all_avg_pool.shape[0] >= 1000000:
+ with open(
+ f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}",
+ "w",
+ ) as avg_pool_file:
+ all_avg_pool.tofile(avg_pool_file)
+ with open(
+ f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}",
+ "w",
+ ) as sentence_file:
+ sentence_file.writelines(f"{line}\n" for line in source_sentences)
+ all_avg_pool = None
+ source_sentences = []
+ shard_id += 1
+
+ if all_avg_pool is not None:
+ with open(
+ f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}", "w"
+ ) as avg_pool_file:
+ all_avg_pool.tofile(avg_pool_file)
+ with open(
+ f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}", "w"
+ ) as sentence_file:
+ sentence_file.writelines(f"{line}\n" for line in source_sentences)
+ return None
+
+
+def cli_main():
+ parser = options.get_generation_parser()
+ parser.add_argument(
+ "--encoder-save-dir",
+ default="",
+ type=str,
+ metavar="N",
+ help="directory to save encoder outputs",
+ )
+ args = options.parse_args_and_arch(parser)
+ main(args)
+
+
+if __name__ == "__main__":
+ cli_main()
diff --git a/fairseq/examples/criss/sentence_retrieval/encoder_analysis.py b/fairseq/examples/criss/sentence_retrieval/encoder_analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..b41bfbe38789ba14e6a5ea938c75d761424c00ab
--- /dev/null
+++ b/fairseq/examples/criss/sentence_retrieval/encoder_analysis.py
@@ -0,0 +1,92 @@
+#!/usr/bin/env python3 -u
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+import argparse
+import glob
+
+import numpy as np
+
+
+DIM = 1024
+
+
+def compute_dist(source_embs, target_embs, k=5, return_sim_mat=False):
+ target_ids = [tid for tid in target_embs]
+ source_mat = np.stack(source_embs.values(), axis=0)
+ normalized_source_mat = source_mat / np.linalg.norm(
+ source_mat, axis=1, keepdims=True
+ )
+ target_mat = np.stack(target_embs.values(), axis=0)
+ normalized_target_mat = target_mat / np.linalg.norm(
+ target_mat, axis=1, keepdims=True
+ )
+ sim_mat = normalized_source_mat.dot(normalized_target_mat.T)
+ if return_sim_mat:
+ return sim_mat
+ neighbors_map = {}
+ for i, sentence_id in enumerate(source_embs):
+ idx = np.argsort(sim_mat[i, :])[::-1][:k]
+ neighbors_map[sentence_id] = [target_ids[tid] for tid in idx]
+ return neighbors_map
+
+
+def load_embeddings(directory, LANGS):
+ sentence_embeddings = {}
+ sentence_texts = {}
+ for lang in LANGS:
+ sentence_embeddings[lang] = {}
+ sentence_texts[lang] = {}
+ lang_dir = f"{directory}/{lang}"
+ embedding_files = glob.glob(f"{lang_dir}/all_avg_pool.{lang}.*")
+ for embed_file in embedding_files:
+ shard_id = embed_file.split(".")[-1]
+ embeddings = np.fromfile(embed_file, dtype=np.float32)
+ num_rows = embeddings.shape[0] // DIM
+ embeddings = embeddings.reshape((num_rows, DIM))
+
+ with open(f"{lang_dir}/sentences.{lang}.{shard_id}") as sentence_file:
+ for idx, line in enumerate(sentence_file):
+ sentence_id, sentence = line.strip().split("\t")
+ sentence_texts[lang][sentence_id] = sentence
+ sentence_embeddings[lang][sentence_id] = embeddings[idx, :]
+
+ return sentence_embeddings, sentence_texts
+
+
+def compute_accuracy(directory, LANGS):
+ sentence_embeddings, sentence_texts = load_embeddings(directory, LANGS)
+
+ top_1_accuracy = {}
+
+ top1_str = " ".join(LANGS) + "\n"
+ for source_lang in LANGS:
+ top_1_accuracy[source_lang] = {}
+ top1_str += f"{source_lang} "
+ for target_lang in LANGS:
+ top1 = 0
+ top5 = 0
+ neighbors_map = compute_dist(
+ sentence_embeddings[source_lang], sentence_embeddings[target_lang]
+ )
+ for sentence_id, neighbors in neighbors_map.items():
+ if sentence_id == neighbors[0]:
+ top1 += 1
+ if sentence_id in neighbors[:5]:
+ top5 += 1
+ n = len(sentence_embeddings[target_lang])
+ top1_str += f"{top1/n} "
+ top1_str += "\n"
+
+ print(top1_str)
+ print(top1_str, file=open(f"{directory}/accuracy", "w"))
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser(description="Analyze encoder outputs")
+ parser.add_argument("directory", help="Source language corpus")
+ parser.add_argument("--langs", help="List of langs")
+ args = parser.parse_args()
+ langs = args.langs.split(",")
+ compute_accuracy(args.directory, langs)
diff --git a/fairseq/examples/criss/sentence_retrieval/sentence_retrieval_tatoeba.sh b/fairseq/examples/criss/sentence_retrieval/sentence_retrieval_tatoeba.sh
new file mode 100644
index 0000000000000000000000000000000000000000..0428d8bef9d426ac3e664cd281ce0b688f5f580f
--- /dev/null
+++ b/fairseq/examples/criss/sentence_retrieval/sentence_retrieval_tatoeba.sh
@@ -0,0 +1,59 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+#
+source_lang=kk_KZ
+target_lang=en_XX
+MODEL=criss_checkpoints/criss.3rd.pt
+SPM=criss_checkpoints/sentence.bpe.model
+SPLIT=test
+LANG_DICT=criss_checkpoints/lang_dict.txt
+ENCODER_ANALYSIS=sentence_retrieval/encoder_analysis.py
+SAVE_ENCODER=save_encoder.py
+ENCODER_SAVE_ROOT=sentence_embeddings/$MODEL
+
+
+
+DATA_DIR=data_tmp
+INPUT_DIR=$DATA_DIR/${source_lang}-${target_lang}-tatoeba
+ENCODER_SAVE_DIR=${ENCODER_SAVE_ROOT}/${source_lang}-${target_lang}
+mkdir -p $ENCODER_SAVE_DIR/${target_lang}
+mkdir -p $ENCODER_SAVE_DIR/${source_lang}
+
+# Save encoder outputs for source sentences
+python $SAVE_ENCODER \
+ ${INPUT_DIR} \
+ --path ${MODEL} \
+ --task translation_multi_simple_epoch \
+ --lang-dict ${LANG_DICT} \
+ --gen-subset ${SPLIT} \
+ --bpe 'sentencepiece' \
+ --lang-pairs ${source_lang}-${target_lang} \
+ -s ${source_lang} -t ${target_lang} \
+ --sentencepiece-model ${SPM} \
+ --remove-bpe 'sentencepiece' \
+ --beam 1 \
+ --lang-tok-style mbart \
+ --encoder-save-dir ${ENCODER_SAVE_DIR}/${source_lang}
+
+# Save encoder outputs for target sentences
+python $SAVE_ENCODER \
+ ${INPUT_DIR} \
+ --path ${MODEL} \
+ --lang-dict ${LANG_DICT} \
+ --task translation_multi_simple_epoch \
+ --gen-subset ${SPLIT} \
+ --bpe 'sentencepiece' \
+ --lang-pairs ${target_lang}-${source_lang} \
+ -t ${source_lang} -s ${target_lang} \
+ --sentencepiece-model ${SPM} \
+ --remove-bpe 'sentencepiece' \
+ --beam 1 \
+ --lang-tok-style mbart \
+ --encoder-save-dir ${ENCODER_SAVE_DIR}/${target_lang}
+
+# Analyze sentence retrieval accuracy
+python $ENCODER_ANALYSIS --langs "${source_lang},${target_lang}" ${ENCODER_SAVE_DIR}
diff --git a/fairseq/examples/criss/unsupervised_mt/eval.sh b/fairseq/examples/criss/unsupervised_mt/eval.sh
new file mode 100644
index 0000000000000000000000000000000000000000..03b773ed5a522eb82186fea8ffbb6c557e14b6d3
--- /dev/null
+++ b/fairseq/examples/criss/unsupervised_mt/eval.sh
@@ -0,0 +1,37 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+#
+SRC=si_LK
+TGT=en_XX
+MODEL=criss_checkpoints/criss.3rd.pt
+
+MULTIBLEU=mosesdecoder/scripts/generic/multi-bleu.perl
+MOSES=mosesdecoder
+REPLACE_UNICODE_PUNCT=$MOSES/scripts/tokenizer/replace-unicode-punctuation.perl
+NORM_PUNC=$MOSES/scripts/tokenizer/normalize-punctuation.perl
+REM_NON_PRINT_CHAR=$MOSES/scripts/tokenizer/remove-non-printing-char.perl
+TOKENIZER=$MOSES/scripts/tokenizer/tokenizer.perl
+GEN_TMP_DIR=gen_tmp
+LANG_DICT=criss_checkpoints/lang_dict.txt
+
+if [ ! -d "mosesdecoder" ]; then
+ git clone https://github.com/moses-smt/mosesdecoder
+fi
+mkdir -p $GEN_TMP_DIR
+fairseq-generate data_tmp/${SRC}-${TGT}-flores \
+ --task translation_multi_simple_epoch \
+ --max-tokens 2000 \
+ --path ${MODEL} \
+ --skip-invalid-size-inputs-valid-test \
+ --beam 5 --lenpen 1.0 --gen-subset test \
+ --remove-bpe=sentencepiece \
+ --source-lang ${SRC} --target-lang ${TGT} \
+ --decoder-langtok --lang-pairs 'en_XX-ar_AR,en_XX-de_DE,en_XX-es_XX,en_XX-fr_XX,en_XX-hi_IN,en_XX-it_IT,en_XX-ja_XX,en_XX-ko_KR,en_XX-nl_XX,en_XX-ru_RU,en_XX-zh_CN,en_XX-tr_TR,en_XX-vi_VN,en_XX-ro_RO,en_XX-my_MM,en_XX-ne_NP,en_XX-si_LK,en_XX-cs_CZ,en_XX-lt_LT,en_XX-kk_KZ,en_XX-gu_IN,en_XX-fi_FI,en_XX-et_EE,en_XX-lv_LV,ar_AR-en_XX,cs_CZ-en_XX,de_DE-en_XX,es_XX-en_XX,et_EE-en_XX,fi_FI-en_XX,fr_XX-en_XX,gu_IN-en_XX,hi_IN-en_XX,it_IT-en_XX,ja_XX-en_XX,kk_KZ-en_XX,ko_KR-en_XX,lt_LT-en_XX,lv_LV-en_XX,my_MM-en_XX,ne_NP-en_XX,nl_XX-en_XX,ro_RO-en_XX,ru_RU-en_XX,si_LK-en_XX,tr_TR-en_XX,vi_VN-en_XX,zh_CN-en_XX,ar_AR-es_XX,es_XX-ar_AR,ar_AR-hi_IN,hi_IN-ar_AR,ar_AR-zh_CN,zh_CN-ar_AR,cs_CZ-es_XX,es_XX-cs_CZ,cs_CZ-hi_IN,hi_IN-cs_CZ,cs_CZ-zh_CN,zh_CN-cs_CZ,de_DE-es_XX,es_XX-de_DE,de_DE-hi_IN,hi_IN-de_DE,de_DE-zh_CN,zh_CN-de_DE,es_XX-hi_IN,hi_IN-es_XX,es_XX-zh_CN,zh_CN-es_XX,et_EE-es_XX,es_XX-et_EE,et_EE-hi_IN,hi_IN-et_EE,et_EE-zh_CN,zh_CN-et_EE,fi_FI-es_XX,es_XX-fi_FI,fi_FI-hi_IN,hi_IN-fi_FI,fi_FI-zh_CN,zh_CN-fi_FI,fr_XX-es_XX,es_XX-fr_XX,fr_XX-hi_IN,hi_IN-fr_XX,fr_XX-zh_CN,zh_CN-fr_XX,gu_IN-es_XX,es_XX-gu_IN,gu_IN-hi_IN,hi_IN-gu_IN,gu_IN-zh_CN,zh_CN-gu_IN,hi_IN-zh_CN,zh_CN-hi_IN,it_IT-es_XX,es_XX-it_IT,it_IT-hi_IN,hi_IN-it_IT,it_IT-zh_CN,zh_CN-it_IT,ja_XX-es_XX,es_XX-ja_XX,ja_XX-hi_IN,hi_IN-ja_XX,ja_XX-zh_CN,zh_CN-ja_XX,kk_KZ-es_XX,es_XX-kk_KZ,kk_KZ-hi_IN,hi_IN-kk_KZ,kk_KZ-zh_CN,zh_CN-kk_KZ,ko_KR-es_XX,es_XX-ko_KR,ko_KR-hi_IN,hi_IN-ko_KR,ko_KR-zh_CN,zh_CN-ko_KR,lt_LT-es_XX,es_XX-lt_LT,lt_LT-hi_IN,hi_IN-lt_LT,lt_LT-zh_CN,zh_CN-lt_LT,lv_LV-es_XX,es_XX-lv_LV,lv_LV-hi_IN,hi_IN-lv_LV,lv_LV-zh_CN,zh_CN-lv_LV,my_MM-es_XX,es_XX-my_MM,my_MM-hi_IN,hi_IN-my_MM,my_MM-zh_CN,zh_CN-my_MM,ne_NP-es_XX,es_XX-ne_NP,ne_NP-hi_IN,hi_IN-ne_NP,ne_NP-zh_CN,zh_CN-ne_NP,nl_XX-es_XX,es_XX-nl_XX,nl_XX-hi_IN,hi_IN-nl_XX,nl_XX-zh_CN,zh_CN-nl_XX,ro_RO-es_XX,es_XX-ro_RO,ro_RO-hi_IN,hi_IN-ro_RO,ro_RO-zh_CN,zh_CN-ro_RO,ru_RU-es_XX,es_XX-ru_RU,ru_RU-hi_IN,hi_IN-ru_RU,ru_RU-zh_CN,zh_CN-ru_RU,si_LK-es_XX,es_XX-si_LK,si_LK-hi_IN,hi_IN-si_LK,si_LK-zh_CN,zh_CN-si_LK,tr_TR-es_XX,es_XX-tr_TR,tr_TR-hi_IN,hi_IN-tr_TR,tr_TR-zh_CN,zh_CN-tr_TR,vi_VN-es_XX,es_XX-vi_VN,vi_VN-hi_IN,hi_IN-vi_VN,vi_VN-zh_CN,zh_CN-vi_VN' \
+ --lang-dict ${LANG_DICT} --lang-tok-style 'mbart' --sampling-method 'temperature' --sampling-temperature '1.0' > $GEN_TMP_DIR/${SRC}_${TGT}.gen
+cat $GEN_TMP_DIR/${SRC}_${TGT}.gen | grep -P "^T-" | cut -f2 | $REPLACE_UNICODE_PUNCT | $NORM_PUNC -l ${TGT:0:2} | $REM_NON_PRINT_CHAR | $TOKENIZER -no-escape ${TGT:0:2} > $GEN_TMP_DIR/${SRC}_${TGT}.hyp
+cat $GEN_TMP_DIR/${SRC}_${TGT}.gen | grep -P "^H-" | cut -f3 | $REPLACE_UNICODE_PUNCT | $NORM_PUNC -l ${TGT:0:2} | $REM_NON_PRINT_CHAR | $TOKENIZER -no-escape ${TGT:0:2} > $GEN_TMP_DIR/${SRC}_${TGT}.ref
+${MULTIBLEU} $GEN_TMP_DIR/${SRC}_${TGT}.ref < $GEN_TMP_DIR/${SRC}_${TGT}.hyp
diff --git a/fairseq/examples/cross_lingual_language_model/README.md b/fairseq/examples/cross_lingual_language_model/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..af9128e39e5925e9411d162c2f24a19e4532d618
--- /dev/null
+++ b/fairseq/examples/cross_lingual_language_model/README.md
@@ -0,0 +1,77 @@
+# Cross-Lingual Language Model Pre-training
+
+Below are some details for training Cross-Lingual Language Models (XLM) - similar to the ones presented in [Lample & Conneau, 2019](https://arxiv.org/pdf/1901.07291.pdf) - in Fairseq. The current implementation only supports the Masked Language Model (MLM) from the paper above.
+
+## Downloading and Tokenizing Monolingual Data
+
+Pointers to the monolingual data from wikipedia, used for training the XLM-style MLM model as well as details on processing (tokenization and BPE) it can be found in the [XLM Github Repository](https://github.com/facebookresearch/XLM#download--preprocess-monolingual-data).
+
+Let's assume the following for the code snippets in later sections to work
+- Processed data is in the folder: monolingual_data/processed
+- Each language has 3 files for train, test and validation. For example we have the following files for English:
+ train.en, valid.en
+- We are training a model for 5 languages: Arabic (ar), German (de), English (en), Hindi (hi) and French (fr)
+- The vocabulary file is monolingual_data/processed/vocab_mlm
+
+
+## Fairseq Pre-processing and Binarization
+
+Pre-process and binarize the data with the MaskedLMDictionary and cross_lingual_lm task
+
+```bash
+# Ensure the output directory exists
+DATA_DIR=monolingual_data/fairseq_processed
+mkdir -p "$DATA_DIR"
+
+for lg in ar de en hi fr
+do
+
+ fairseq-preprocess \
+ --task cross_lingual_lm \
+ --srcdict monolingual_data/processed/vocab_mlm \
+ --only-source \
+ --trainpref monolingual_data/processed/train \
+ --validpref monolingual_data/processed/valid \
+ --testpref monolingual_data/processed/test \
+ --destdir monolingual_data/fairseq_processed \
+ --workers 20 \
+ --source-lang $lg
+
+ # Since we only have a source language, the output file has a None for the
+ # target language. Remove this
+
+ for stage in train test valid
+
+ sudo mv "$DATA_DIR/$stage.$lg-None.$lg.bin" "$stage.$lg.bin"
+ sudo mv "$DATA_DIR/$stage.$lg-None.$lg.idx" "$stage.$lg.idx"
+
+ done
+
+done
+```
+
+## Train a Cross-lingual Language Model similar to the XLM MLM model
+
+Use the following command to train the model on 5 languages.
+
+```
+fairseq-train \
+--task cross_lingual_lm monolingual_data/fairseq_processed \
+--save-dir checkpoints/mlm \
+--max-update 2400000 --save-interval 1 --no-epoch-checkpoints \
+--arch xlm_base \
+--optimizer adam --lr-scheduler reduce_lr_on_plateau \
+--lr-shrink 0.5 --lr 0.0001 --stop-min-lr 1e-09 \
+--dropout 0.1 \
+--criterion legacy_masked_lm_loss \
+--max-tokens 2048 --tokens-per-sample 256 --attention-dropout 0.1 \
+--dataset-impl lazy --seed 0 \
+--masked-lm-only \
+--monolingual-langs 'ar,de,en,hi,fr' --num-segment 5 \
+--ddp-backend=legacy_ddp
+```
+
+Some Notes:
+- Using tokens_per_sample greater than 256 can cause OOM (out-of-memory) issues. Usually since MLM packs in streams of text, this parameter doesn't need much tuning.
+- The Evaluation workflow for computing MLM Perplexity on test data is in progress.
+- Finetuning this model on a downstream task is something which is not currently available.
diff --git a/fairseq/examples/discriminative_reranking_nmt/README.md b/fairseq/examples/discriminative_reranking_nmt/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..b155e855f2f94e30ad22262f260008fda8ac1804
--- /dev/null
+++ b/fairseq/examples/discriminative_reranking_nmt/README.md
@@ -0,0 +1,202 @@
+# Discriminative Reranking for Neural Machine Translation
+https://aclanthology.org/2021.acl-long.563/
+
+This folder contains source code for training DrNMT, a discriminatively trained reranker for neural machine translation.
+
+## Data preparation
+1. Follow the instructions under `examples/translation` to build a base MT model. Prepare three files, one with source sentences, one with ground truth target sentences, and one with hypotheses generated from the base MT model. Each line in the file contains one sentence in raw text (i.e. no sentencepiece, etc.). Below is an example of the files with _N_ hypotheses for each source sentence.
+
+```
+# Example of the source sentence file: (The file should contain L lines.)
+
+source_sentence_1
+source_sentence_2
+source_sentence_3
+...
+source_sentence_L
+
+# Example of the target sentence file: (The file should contain L lines.)
+
+target_sentence_1
+target_sentence_2
+target_sentence_3
+...
+target_sentence_L
+
+# Example of the hypotheses file: (The file should contain L*N lines.)
+
+source_sentence_1_hypo_1
+source_sentence_1_hypo_2
+...
+source_sentence_1_hypo_N
+source_sentence_2_hypo_1
+...
+source_sentence_2_hypo_N
+...
+source_sentence_L_hypo_1
+...
+source_sentence_L_hypo_N
+```
+
+2. Download the [XLMR model](https://github.com/fairinternal/fairseq-py/tree/main/examples/xlmr#pre-trained-models).
+```
+wget https://dl.fbaipublicfiles.com/fairseq/models/xlmr.base.tar.gz
+tar zxvf xlmr.base.tar.gz
+
+# The folder should contain dict.txt, model.pt and sentencepiece.bpe.model.
+```
+
+3. Prepare scores and BPE data.
+* `N`: Number of hypotheses per each source sentence. We use 50 in the paper.
+* `SPLIT`: Name of the data split, i.e. train, valid, test. Use split_name, split_name1, split_name2, ..., if there are multiple datasets for a split, e.g. train, train1, valid, valid1.
+* `NUM_SHARDS`: Number of shards. Set this to 1 for non-train splits.
+* `METRIC`: The metric for DrNMT to optimize for. We support either `bleu` or `ter`.
+```
+# For each data split, e.g. train, valid, test, etc., run the following:
+
+SOURCE_FILE=/path/to/source_sentence_file
+TARGET_FILE=/path/to/target_sentence_file
+HYPO_FILE=/path/to/hypo_file
+XLMR_DIR=/path/to/xlmr
+OUTPUT_DIR=/path/to/output
+
+python scripts/prep_data.py \
+ --input-source ${SOURCE_FILE} \
+ --input-target ${TARGET_FILE} \
+ --input-hypo ${HYPO_FILE} \
+ --output-dir ${OUTPUT_DIR} \
+ --split $SPLIT
+ --beam $N \
+ --sentencepiece-model ${XLMR_DIR}/sentencepiece.bpe.model \
+ --metric $METRIC \
+ --num-shards ${NUM_SHARDS}
+
+# The script will create ${OUTPUT_DIR}/$METRIC with ${NUM_SHARDS} splits.
+# Under split*/input_src, split*/input_tgt and split*/$METRIC, there will be $SPLIT.bpe and $SPLIT.$METRIC files, respectively.
+
+```
+
+4. Pre-process the data into fairseq format.
+```
+# use comma to separate if there are more than one train or valid set
+for suffix in src tgt ; do
+ fairseq-preprocess --only-source \
+ --trainpref ${OUTPUT_DIR}/$METRIC/split1/input_${suffix}/train.bpe \
+ --validpref ${OUTPUT_DIR}/$METRIC/split1/input_${suffix}/valid.bpe \
+ --destdir ${OUTPUT_DIR}/$METRIC/split1/input_${suffix} \
+ --workers 60 \
+ --srcdict ${XLMR_DIR}/dict.txt
+done
+
+for i in `seq 2 ${NUM_SHARDS}`; do
+ for suffix in src tgt ; do
+ fairseq-preprocess --only-source \
+ --trainpref ${OUTPUT_DIR}/$METRIC/split${i}/input_${suffix}/train.bpe \
+ --destdir ${OUTPUT_DIR}/$METRIC/split${i}/input_${suffix} \
+ --workers 60 \
+ --srcdict ${XLMR_DIR}/dict.txt
+
+ ln -s ${OUTPUT_DIR}/$METRIC/split1/input_${suffix}/valid* ${OUTPUT_DIR}/$METRIC/split${i}/input_${suffix}/.
+ done
+
+ ln -s ${OUTPUT_DIR}/$METRIC/split1/$METRIC/valid* ${OUTPUT_DIR}/$METRIC/split${i}/$METRIC/.
+done
+```
+
+## Training
+
+```
+EXP_DIR=/path/to/exp
+
+# An example of training the model with the config for De-En experiment in the paper.
+# The config uses 16 GPUs and 50 hypotheses.
+# For training with fewer number of GPUs, set
+# distributed_training.distributed_world_size=k +optimization.update_freq='[x]' where x = 16/k
+# For training with fewer number of hypotheses, set
+# task.mt_beam=N dataset.batch_size=N dataset.required_batch_size_multiple=N
+
+fairseq-hydra-train -m \
+ --config-dir config/ --config-name deen \
+ task.data=${OUTPUT_DIR}/$METRIC/split1/ \
+ task.num_data_splits=${NUM_SHARDS} \
+ model.pretrained_model=${XLMR_DIR}/model.pt \
+ common.user_dir=${FAIRSEQ_ROOT}/examples/discriminative_reranking_nmt \
+ checkpoint.save_dir=${EXP_DIR}
+
+```
+
+## Inference & scoring
+Perform DrNMT reranking (fw + reranker score)
+1. Tune weights on valid sets.
+```
+# genrate N hypotheses with the base MT model (fw score)
+VALID_SOURCE_FILE=/path/to/source_sentences # one sentence per line, converted to the sentencepiece used by the base MT model
+VALID_TARGET_FILE=/path/to/target_sentences # one sentence per line in raw text, i.e. no sentencepiece and tokenization
+MT_MODEL=/path/to/mt_model
+MT_DATA_PATH=/path/to/mt_data
+
+cat ${VALID_SOURCE_FILE} | \
+ fairseq-interactive ${MT_DATA_PATH} \
+ --max-tokens 4000 --buffer-size 16 \
+ --num-workers 32 --path ${MT_MODEL} \
+ --beam $N --nbest $N \
+ --post-process sentencepiece &> valid-hypo.out
+
+# replace "bleu" with "ter" to optimize for TER
+python drnmt_rerank.py \
+ ${OUTPUT_DIR}/$METRIC/split1/ \
+ --path ${EXP_DIR}/checkpoint_best.pt \
+ --in-text valid-hypo.out \
+ --results-path ${EXP_DIR} \
+ --gen-subset valid \
+ --target-text ${VALID_TARGET_FILE} \
+ --user-dir ${FAIRSEQ_ROOT}/examples/discriminative_reranking_nmt \
+ --bpe sentencepiece \
+ --sentencepiece-model ${XLMR_DIR}/sentencepiece.bpe.model \
+ --beam $N \
+ --batch-size $N \
+ --metric bleu \
+ --tune
+
+```
+
+2. Apply best weights on test sets
+```
+# genrate N hypotheses with the base MT model (fw score)
+TEST_SOURCE_FILE=/path/to/source_sentences # one sentence per line, converted to the sentencepiece used by the base MT model
+
+cat ${TEST_SOURCE_FILE} | \
+ fairseq-interactive ${MT_DATA_PATH} \
+ --max-tokens 4000 --buffer-size 16 \
+ --num-workers 32 --path ${MT_MODEL} \
+ --beam $N --nbest $N \
+ --post-process sentencepiece &> test-hypo.out
+
+# replace "bleu" with "ter" to evaluate TER
+# Add --target-text for evaluating BLEU/TER,
+# otherwise the script will only generate the hypotheses with the highest scores only.
+python drnmt_rerank.py \
+ ${OUTPUT_DIR}/$METRIC/split1/ \
+ --path ${EXP_DIR}/checkpoint_best.pt \
+ --in-text test-hypo.out \
+ --results-path ${EXP_DIR} \
+ --gen-subset test \
+ --user-dir ${FAIRSEQ_ROOT}/examples/discriminative_reranking_nmt \
+ --bpe sentencepiece \
+ --sentencepiece-model ${XLMR_DIR}/sentencepiece.bpe.model \
+ --beam $N \
+ --batch-size $N \
+ --metric bleu \
+ --fw-weight ${BEST_FW_WEIGHT} \
+ --lenpen ${BEST_LENPEN}
+```
+
+## Citation
+```bibtex
+@inproceedings{lee2021discriminative,
+ title={Discriminative Reranking for Neural Machine Translation},
+ author={Lee, Ann and Auli, Michael and Ranzato, Marc'Aurelio},
+ booktitle={ACL},
+ year={2021}
+}
+```
diff --git a/fairseq/examples/discriminative_reranking_nmt/__init__.py b/fairseq/examples/discriminative_reranking_nmt/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..0278f6a27340c7ff7e207d09348483d1b0d3a100
--- /dev/null
+++ b/fairseq/examples/discriminative_reranking_nmt/__init__.py
@@ -0,0 +1 @@
+from . import criterions, models, tasks # noqa
diff --git a/fairseq/examples/discriminative_reranking_nmt/config/deen.yaml b/fairseq/examples/discriminative_reranking_nmt/config/deen.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3fc2d5fcf5bacbb842d181fcfcde80e55331fed7
--- /dev/null
+++ b/fairseq/examples/discriminative_reranking_nmt/config/deen.yaml
@@ -0,0 +1,56 @@
+# @package _group_
+
+common:
+ fp16: true
+ log_format: json
+ log_interval: 50
+ seed: 2
+
+checkpoint:
+ no_epoch_checkpoints: true
+ best_checkpoint_metric: bleu
+ maximize_best_checkpoint_metric: true
+
+task:
+ _name: discriminative_reranking_nmt
+ data: ???
+ num_data_splits: ???
+ include_src: true
+ mt_beam: 50
+ eval_target_metric: true
+ target_metric: bleu
+
+dataset:
+ batch_size: 50
+ num_workers: 6
+ required_batch_size_multiple: 50
+ valid_subset: ???
+
+criterion:
+ _name: kl_divergence_rereanking
+ target_dist_norm: minmax
+ temperature: 0.5
+
+optimization:
+ max_epoch: 200
+ lr: [0.00005]
+ update_freq: [32]
+
+optimizer:
+ _name: adam
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 8000
+ total_num_update: 320000
+
+model:
+ _name: discriminative_nmt_reranker
+ pretrained_model: ???
+ classifier_dropout: 0.2
+
+distributed_training:
+ ddp_backend: no_c10d
+ distributed_world_size: 16
diff --git a/fairseq/examples/discriminative_reranking_nmt/criterions/__init__.py b/fairseq/examples/discriminative_reranking_nmt/criterions/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..7c257c2700f015cb123a976584aef72f0429eb0c
--- /dev/null
+++ b/fairseq/examples/discriminative_reranking_nmt/criterions/__init__.py
@@ -0,0 +1,6 @@
+from .discriminative_reranking_criterion import KLDivergenceRerankingCriterion
+
+
+__all__ = [
+ "KLDivergenceRerankingCriterion",
+]
diff --git a/fairseq/examples/discriminative_reranking_nmt/criterions/discriminative_reranking_criterion.py b/fairseq/examples/discriminative_reranking_nmt/criterions/discriminative_reranking_criterion.py
new file mode 100644
index 0000000000000000000000000000000000000000..0b02ce18772454697e61f827d96d76ad361b9cd1
--- /dev/null
+++ b/fairseq/examples/discriminative_reranking_nmt/criterions/discriminative_reranking_criterion.py
@@ -0,0 +1,138 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+from dataclasses import dataclass, field
+
+import torch
+import torch.nn.functional as F
+
+from fairseq import metrics, utils
+from fairseq.criterions import FairseqCriterion, register_criterion
+from fairseq.dataclass import ChoiceEnum, FairseqDataclass
+
+
+_EPSILON = torch.finfo(torch.float32).eps
+TARGET_DIST_NORM_CHOICES = ChoiceEnum(["none", "minmax"])
+
+
+@dataclass
+class KLDivergenceRerankingCriterionConfig(FairseqDataclass):
+ target_dist_norm: TARGET_DIST_NORM_CHOICES = field(
+ default="none",
+ metadata={"help": "method to normalize the range of target scores"},
+ )
+ temperature: float = field(
+ default=1.0,
+ metadata={"help": "temperature in softmax for target distributions"},
+ )
+ forward_batch_size: int = field(
+ default=32,
+ metadata={
+ "help": "number of hypotheses per batch for model forward (set a value smaller than --mt-beam to avoid OOM when training with a large beam size)"
+ },
+ )
+
+
+@register_criterion(
+ "kl_divergence_rereanking", dataclass=KLDivergenceRerankingCriterionConfig
+)
+class KLDivergenceRerankingCriterion(FairseqCriterion):
+ def __init__(
+ self, task, target_dist_norm, temperature, forward_batch_size,
+ ):
+ super().__init__(task)
+ self.target_dist_norm = target_dist_norm
+ self.temperature = temperature
+ self.forward_batch_size = forward_batch_size
+
+ def forward(self, model, sample, reduce=True):
+ """Compute the loss for the given sample.
+
+ Returns a tuple with three elements:
+ 1) the loss
+ 2) the sample size, which is used as the denominator for the gradient
+ 3) logging outputs to display while training
+ """
+
+ sample_size = sample["id"].numel()
+ assert sample_size % self.task.cfg.mt_beam == 0, (
+ f"sample_size ({sample_size}) cannot be divided by beam size ({self.task.cfg.mt_beam})."
+ f"Please set --required-batch-size-multiple={self.task.cfg.mt_beam}."
+ )
+
+ # split into smaller batches for model forward
+ batch_out = []
+ for i in range(0, sample_size, self.forward_batch_size):
+ j = min(i + self.forward_batch_size, sample_size)
+
+ out = model(
+ src_tokens=sample["net_input"]["src_tokens"][i:j, :],
+ src_lengths=sample["net_input"]["src_lengths"][i:j],
+ )
+
+ batch_out.append(
+ model.sentence_forward(out, sample["net_input"]["src_tokens"][i:j, :])
+ )
+
+ batch_out = torch.cat(batch_out, dim=0).view(
+ self.task.cfg.mt_beam, sample_size // self.task.cfg.mt_beam, -1
+ ) # T x B x C
+ if model.joint_classification == "sent":
+ batch_out = model.joint_forward(batch_out)
+ scores = model.classification_forward(batch_out.view(sample_size, 1, -1)).view(
+ -1, self.task.cfg.mt_beam
+ ) # input: B x T x C
+
+ loss = self.compute_kl_loss(
+ scores, sample["target"][:, 0].view(-1, self.task.cfg.mt_beam)
+ )
+
+ sample_size = sample_size // self.task.cfg.mt_beam
+
+ logging_output = {
+ "loss": loss.detach(),
+ "ntokens": sample["ntokens"],
+ "nsentences": sample_size * self.task.cfg.mt_beam,
+ "sample_size": sample_size,
+ "scores": scores.detach(),
+ }
+
+ return loss, sample_size, logging_output
+
+ def compute_kl_loss(self, logits, target):
+ norm_target = target
+ if self.target_dist_norm == "minmax":
+ min_v = torch.min(target, 1, keepdim=True).values
+ max_v = torch.max(target, 1, keepdim=True).values
+ norm_target = (target - min_v) / (max_v - min_v + _EPSILON)
+
+ target_dist = F.softmax(
+ norm_target / self.temperature, dim=-1, dtype=torch.float32
+ )
+ model_dist = F.log_softmax(logits, dim=-1, dtype=torch.float32)
+ loss = -(target_dist * model_dist - target_dist * target_dist.log()).sum()
+ return loss
+
+ @staticmethod
+ def reduce_metrics(logging_outputs) -> None:
+ """Aggregate logging outputs from data parallel training."""
+ loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
+
+ sample_size = utils.item(
+ sum(log.get("sample_size", 0) for log in logging_outputs)
+ )
+
+ loss = loss_sum / sample_size / math.log(2)
+ metrics.log_scalar("loss", loss, sample_size, round=3)
+
+ @staticmethod
+ def logging_outputs_can_be_summed() -> bool:
+ """
+ Whether the logging outputs returned by `forward` can be summed
+ across workers prior to calling `reduce_metrics`. Setting this
+ to True will improves distributed training speed.
+ """
+ return True
diff --git a/fairseq/examples/discriminative_reranking_nmt/drnmt_rerank.py b/fairseq/examples/discriminative_reranking_nmt/drnmt_rerank.py
new file mode 100644
index 0000000000000000000000000000000000000000..2e0fc2bd29aedb0b477b7cc8e2c3b606acdd454a
--- /dev/null
+++ b/fairseq/examples/discriminative_reranking_nmt/drnmt_rerank.py
@@ -0,0 +1,364 @@
+#!/usr/bin/env python3 -u
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+"""
+Score raw text with a trained model.
+"""
+
+from collections import namedtuple
+import logging
+from multiprocessing import Pool
+import sys
+import os
+import random
+
+import numpy as np
+import sacrebleu
+import torch
+
+from fairseq import checkpoint_utils, options, utils
+
+
+logger = logging.getLogger("fairseq_cli.drnmt_rerank")
+logger.setLevel(logging.INFO)
+
+Batch = namedtuple("Batch", "ids src_tokens src_lengths")
+
+
+pool_init_variables = {}
+
+
+def init_loaded_scores(mt_scores, model_scores, hyp, ref):
+ global pool_init_variables
+ pool_init_variables["mt_scores"] = mt_scores
+ pool_init_variables["model_scores"] = model_scores
+ pool_init_variables["hyp"] = hyp
+ pool_init_variables["ref"] = ref
+
+
+def parse_fairseq_gen(filename, task):
+ source = {}
+ hypos = {}
+ scores = {}
+ with open(filename, "r", encoding="utf-8") as f:
+ for line in f:
+ line = line.strip()
+ if line.startswith("S-"): # source
+ uid, text = line.split("\t", 1)
+ uid = int(uid[2:])
+ source[uid] = text
+ elif line.startswith("D-"): # hypo
+ uid, score, text = line.split("\t", 2)
+ uid = int(uid[2:])
+ if uid not in hypos:
+ hypos[uid] = []
+ scores[uid] = []
+ hypos[uid].append(text)
+ scores[uid].append(float(score))
+ else:
+ continue
+
+ source_out = [source[i] for i in range(len(hypos))]
+ hypos_out = [h for i in range(len(hypos)) for h in hypos[i]]
+ scores_out = [s for i in range(len(scores)) for s in scores[i]]
+
+ return source_out, hypos_out, scores_out
+
+
+def read_target(filename):
+ with open(filename, "r", encoding="utf-8") as f:
+ output = [line.strip() for line in f]
+ return output
+
+
+def make_batches(args, src, hyp, task, max_positions, encode_fn):
+ assert len(src) * args.beam == len(
+ hyp
+ ), f"Expect {len(src) * args.beam} hypotheses for {len(src)} source sentences with beam size {args.beam}. Got {len(hyp)} hypotheses intead."
+ hyp_encode = [
+ task.source_dictionary.encode_line(encode_fn(h), add_if_not_exist=False).long()
+ for h in hyp
+ ]
+ if task.cfg.include_src:
+ src_encode = [
+ task.source_dictionary.encode_line(
+ encode_fn(s), add_if_not_exist=False
+ ).long()
+ for s in src
+ ]
+ tokens = [(src_encode[i // args.beam], h) for i, h in enumerate(hyp_encode)]
+ lengths = [(t1.numel(), t2.numel()) for t1, t2 in tokens]
+ else:
+ tokens = [(h,) for h in hyp_encode]
+ lengths = [(h.numel(),) for h in hyp_encode]
+
+ itr = task.get_batch_iterator(
+ dataset=task.build_dataset_for_inference(tokens, lengths),
+ max_tokens=args.max_tokens,
+ max_sentences=args.batch_size,
+ max_positions=max_positions,
+ ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
+ ).next_epoch_itr(shuffle=False)
+
+ for batch in itr:
+ yield Batch(
+ ids=batch["id"],
+ src_tokens=batch["net_input"]["src_tokens"],
+ src_lengths=batch["net_input"]["src_lengths"],
+ )
+
+
+def decode_rerank_scores(args):
+ if args.max_tokens is None and args.batch_size is None:
+ args.batch_size = 1
+
+ logger.info(args)
+
+ use_cuda = torch.cuda.is_available() and not args.cpu
+
+ # Load ensemble
+ logger.info("loading model(s) from {}".format(args.path))
+ models, _model_args, task = checkpoint_utils.load_model_ensemble_and_task(
+ [args.path], arg_overrides=eval(args.model_overrides),
+ )
+
+ for model in models:
+ if args.fp16:
+ model.half()
+ if use_cuda:
+ model.cuda()
+
+ # Initialize generator
+ generator = task.build_generator(args)
+
+ # Handle tokenization and BPE
+ tokenizer = task.build_tokenizer(args)
+ bpe = task.build_bpe(args)
+
+ def encode_fn(x):
+ if tokenizer is not None:
+ x = tokenizer.encode(x)
+ if bpe is not None:
+ x = bpe.encode(x)
+ return x
+
+ max_positions = utils.resolve_max_positions(
+ task.max_positions(), *[model.max_positions() for model in models]
+ )
+
+ src, hyp, mt_scores = parse_fairseq_gen(args.in_text, task)
+ model_scores = {}
+ logger.info("decode reranker score")
+ for batch in make_batches(args, src, hyp, task, max_positions, encode_fn):
+ src_tokens = batch.src_tokens
+ src_lengths = batch.src_lengths
+ if use_cuda:
+ src_tokens = src_tokens.cuda()
+ src_lengths = src_lengths.cuda()
+
+ sample = {
+ "net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths},
+ }
+ scores = task.inference_step(generator, models, sample)
+
+ for id, sc in zip(batch.ids.tolist(), scores.tolist()):
+ model_scores[id] = sc[0]
+
+ model_scores = [model_scores[i] for i in range(len(model_scores))]
+
+ return src, hyp, mt_scores, model_scores
+
+
+def get_score(mt_s, md_s, w1, lp, tgt_len):
+ return mt_s / (tgt_len ** lp) * w1 + md_s
+
+
+def get_best_hyps(mt_scores, md_scores, hypos, fw_weight, lenpen, beam):
+ assert len(mt_scores) == len(md_scores) and len(mt_scores) == len(hypos)
+ hypo_scores = []
+ best_hypos = []
+ best_scores = []
+ offset = 0
+ for i in range(len(hypos)):
+ tgt_len = len(hypos[i].split())
+ hypo_scores.append(
+ get_score(mt_scores[i], md_scores[i], fw_weight, lenpen, tgt_len)
+ )
+
+ if (i + 1) % beam == 0:
+ max_i = np.argmax(hypo_scores)
+ best_hypos.append(hypos[offset + max_i])
+ best_scores.append(hypo_scores[max_i])
+ hypo_scores = []
+ offset += beam
+ return best_hypos, best_scores
+
+
+def eval_metric(args, hypos, ref):
+ if args.metric == "bleu":
+ score = sacrebleu.corpus_bleu(hypos, [ref]).score
+ else:
+ score = sacrebleu.corpus_ter(hypos, [ref]).score
+
+ return score
+
+
+def score_target_hypo(args, fw_weight, lp):
+ mt_scores = pool_init_variables["mt_scores"]
+ model_scores = pool_init_variables["model_scores"]
+ hyp = pool_init_variables["hyp"]
+ ref = pool_init_variables["ref"]
+ best_hypos, _ = get_best_hyps(
+ mt_scores, model_scores, hyp, fw_weight, lp, args.beam
+ )
+ rerank_eval = None
+ if ref:
+ rerank_eval = eval_metric(args, best_hypos, ref)
+ print(f"fw_weight {fw_weight}, lenpen {lp}, eval {rerank_eval}")
+
+ return rerank_eval
+
+
+def print_result(best_scores, best_hypos, output_file):
+ for i, (s, h) in enumerate(zip(best_scores, best_hypos)):
+ print(f"{i}\t{s}\t{h}", file=output_file)
+
+
+def main(args):
+ utils.import_user_module(args)
+
+ src, hyp, mt_scores, model_scores = decode_rerank_scores(args)
+
+ assert (
+ not args.tune or args.target_text is not None
+ ), "--target-text has to be set when tuning weights"
+ if args.target_text:
+ ref = read_target(args.target_text)
+ assert len(src) == len(
+ ref
+ ), f"different numbers of source and target sentences ({len(src)} vs. {len(ref)})"
+
+ orig_best_hypos = [hyp[i] for i in range(0, len(hyp), args.beam)]
+ orig_eval = eval_metric(args, orig_best_hypos, ref)
+
+ if args.tune:
+ logger.info("tune weights for reranking")
+
+ random_params = np.array(
+ [
+ [
+ random.uniform(
+ args.lower_bound_fw_weight, args.upper_bound_fw_weight
+ ),
+ random.uniform(args.lower_bound_lenpen, args.upper_bound_lenpen),
+ ]
+ for k in range(args.num_trials)
+ ]
+ )
+
+ logger.info("launching pool")
+ with Pool(
+ 32,
+ initializer=init_loaded_scores,
+ initargs=(mt_scores, model_scores, hyp, ref),
+ ) as p:
+ rerank_scores = p.starmap(
+ score_target_hypo,
+ [
+ (args, random_params[i][0], random_params[i][1],)
+ for i in range(args.num_trials)
+ ],
+ )
+ if args.metric == "bleu":
+ best_index = np.argmax(rerank_scores)
+ else:
+ best_index = np.argmin(rerank_scores)
+ best_fw_weight = random_params[best_index][0]
+ best_lenpen = random_params[best_index][1]
+ else:
+ assert (
+ args.lenpen is not None and args.fw_weight is not None
+ ), "--lenpen and --fw-weight should be set"
+ best_fw_weight, best_lenpen = args.fw_weight, args.lenpen
+
+ best_hypos, best_scores = get_best_hyps(
+ mt_scores, model_scores, hyp, best_fw_weight, best_lenpen, args.beam
+ )
+
+ if args.results_path is not None:
+ os.makedirs(args.results_path, exist_ok=True)
+ output_path = os.path.join(
+ args.results_path, "generate-{}.txt".format(args.gen_subset),
+ )
+ with open(output_path, "w", buffering=1, encoding="utf-8") as o:
+ print_result(best_scores, best_hypos, o)
+ else:
+ print_result(best_scores, best_hypos, sys.stdout)
+
+ if args.target_text:
+ rerank_eval = eval_metric(args, best_hypos, ref)
+ print(f"before reranking, {args.metric.upper()}:", orig_eval)
+ print(
+ f"after reranking with fw_weight={best_fw_weight}, lenpen={best_lenpen}, {args.metric.upper()}:",
+ rerank_eval,
+ )
+
+
+def cli_main():
+ parser = options.get_generation_parser(interactive=True)
+
+ parser.add_argument(
+ "--in-text",
+ default=None,
+ required=True,
+ help="text from fairseq-interactive output, containing source sentences and hypotheses",
+ )
+ parser.add_argument("--target-text", default=None, help="reference text")
+ parser.add_argument("--metric", type=str, choices=["bleu", "ter"], default="bleu")
+ parser.add_argument(
+ "--tune",
+ action="store_true",
+ help="if set, tune weights on fw scores and lenpen instead of applying fixed weights for reranking",
+ )
+ parser.add_argument(
+ "--lower-bound-fw-weight",
+ default=0.0,
+ type=float,
+ help="lower bound of search space",
+ )
+ parser.add_argument(
+ "--upper-bound-fw-weight",
+ default=3,
+ type=float,
+ help="upper bound of search space",
+ )
+ parser.add_argument(
+ "--lower-bound-lenpen",
+ default=0.0,
+ type=float,
+ help="lower bound of search space",
+ )
+ parser.add_argument(
+ "--upper-bound-lenpen",
+ default=3,
+ type=float,
+ help="upper bound of search space",
+ )
+ parser.add_argument(
+ "--fw-weight", type=float, default=None, help="weight on the fw model score"
+ )
+ parser.add_argument(
+ "--num-trials",
+ default=1000,
+ type=int,
+ help="number of trials to do for random search",
+ )
+
+ args = options.parse_args_and_arch(parser)
+ main(args)
+
+
+if __name__ == "__main__":
+ cli_main()
diff --git a/fairseq/examples/discriminative_reranking_nmt/models/__init__.py b/fairseq/examples/discriminative_reranking_nmt/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..c593ea5f1842794bfcc952fc93c679a5f16aeb98
--- /dev/null
+++ b/fairseq/examples/discriminative_reranking_nmt/models/__init__.py
@@ -0,0 +1,6 @@
+from .discriminative_reranking_model import DiscriminativeNMTReranker
+
+
+__all__ = [
+ "DiscriminativeNMTReranker",
+]
diff --git a/fairseq/examples/discriminative_reranking_nmt/models/discriminative_reranking_model.py b/fairseq/examples/discriminative_reranking_nmt/models/discriminative_reranking_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..e4b5887f825df36f4e1e0384f38fefe790e485e6
--- /dev/null
+++ b/fairseq/examples/discriminative_reranking_nmt/models/discriminative_reranking_model.py
@@ -0,0 +1,365 @@
+from dataclasses import dataclass, field
+import os
+
+import torch
+import torch.nn as nn
+
+from fairseq import utils
+from fairseq.dataclass import ChoiceEnum, FairseqDataclass
+from fairseq.models import (
+ BaseFairseqModel,
+ register_model,
+)
+
+from fairseq.models.roberta.model import RobertaClassificationHead
+
+from fairseq.modules import (
+ LayerNorm,
+ TransformerSentenceEncoder,
+ TransformerSentenceEncoderLayer,
+)
+
+
+ACTIVATION_FN_CHOICES = ChoiceEnum(utils.get_available_activation_fns())
+JOINT_CLASSIFICATION_CHOICES = ChoiceEnum(["none", "sent"])
+SENTENCE_REP_CHOICES = ChoiceEnum(["head", "meanpool", "maxpool"])
+
+
+def update_init_roberta_model_state(state):
+ """
+ update the state_dict of a Roberta model for initializing
+ weights of the BertRanker
+ """
+ for k in list(state.keys()):
+ if ".lm_head." in k or "version" in k:
+ del state[k]
+ continue
+ # remove 'encoder/decoder.sentence_encoder.' from the key
+ assert k.startswith("encoder.sentence_encoder.") or k.startswith(
+ "decoder.sentence_encoder."
+ ), f"Cannot recognize parameter name {k}"
+ if "layernorm_embedding" in k:
+ new_k = k.replace(".layernorm_embedding.", ".emb_layer_norm.")
+ state[new_k[25:]] = state[k]
+ else:
+ state[k[25:]] = state[k]
+ del state[k]
+
+
+class BaseRanker(nn.Module):
+ def __init__(self, args, task):
+ super().__init__()
+
+ self.separator_token = task.dictionary.eos()
+ self.padding_idx = task.dictionary.pad()
+
+ def forward(self, src_tokens):
+ raise NotImplementedError
+
+ def get_segment_labels(self, src_tokens):
+ segment_boundary = (src_tokens == self.separator_token).long()
+ segment_labels = (
+ segment_boundary.cumsum(dim=1)
+ - segment_boundary
+ - (src_tokens == self.padding_idx).long()
+ )
+
+ return segment_labels
+
+ def get_positions(self, src_tokens, segment_labels):
+ segment_positions = (
+ torch.arange(src_tokens.shape[1])
+ .to(src_tokens.device)
+ .repeat(src_tokens.shape[0], 1)
+ )
+ segment_boundary = (src_tokens == self.separator_token).long()
+ _, col_idx = (segment_positions * segment_boundary).nonzero(as_tuple=True)
+ col_idx = torch.cat([torch.zeros(1).type_as(col_idx), col_idx])
+ offset = torch.cat(
+ [
+ torch.zeros(1).type_as(segment_boundary),
+ segment_boundary.sum(dim=1).cumsum(dim=0)[:-1],
+ ]
+ )
+ segment_positions -= col_idx[segment_labels + offset.unsqueeze(1)] * (
+ segment_labels != 0
+ )
+
+ padding_mask = src_tokens.ne(self.padding_idx)
+ segment_positions = (segment_positions + 1) * padding_mask.type_as(
+ segment_positions
+ ) + self.padding_idx
+
+ return segment_positions
+
+
+class BertRanker(BaseRanker):
+ def __init__(self, args, task):
+ super(BertRanker, self).__init__(args, task)
+
+ init_model = getattr(args, "pretrained_model", "")
+ self.joint_layers = nn.ModuleList()
+ if os.path.isfile(init_model):
+ print(f"initialize weight from {init_model}")
+
+ from fairseq import hub_utils
+
+ x = hub_utils.from_pretrained(
+ os.path.dirname(init_model),
+ checkpoint_file=os.path.basename(init_model),
+ )
+
+ in_state_dict = x["models"][0].state_dict()
+ init_args = x["args"].model
+
+ num_positional_emb = init_args.max_positions + task.dictionary.pad() + 1
+
+ # follow the setup in roberta
+ self.model = TransformerSentenceEncoder(
+ padding_idx=task.dictionary.pad(),
+ vocab_size=len(task.dictionary),
+ num_encoder_layers=getattr(
+ args, "encoder_layers", init_args.encoder_layers
+ ),
+ embedding_dim=init_args.encoder_embed_dim,
+ ffn_embedding_dim=init_args.encoder_ffn_embed_dim,
+ num_attention_heads=init_args.encoder_attention_heads,
+ dropout=init_args.dropout,
+ attention_dropout=init_args.attention_dropout,
+ activation_dropout=init_args.activation_dropout,
+ num_segments=2, # add language embeddings
+ max_seq_len=num_positional_emb,
+ offset_positions_by_padding=False,
+ encoder_normalize_before=True,
+ apply_bert_init=True,
+ activation_fn=init_args.activation_fn,
+ freeze_embeddings=args.freeze_embeddings,
+ n_trans_layers_to_freeze=args.n_trans_layers_to_freeze,
+ )
+
+ # still need to learn segment embeddings as we added a second language embedding
+ if args.freeze_embeddings:
+ for p in self.model.segment_embeddings.parameters():
+ p.requires_grad = False
+
+ update_init_roberta_model_state(in_state_dict)
+ print("loading weights from the pretrained model")
+ self.model.load_state_dict(
+ in_state_dict, strict=False
+ ) # ignore mismatch in language embeddings
+
+ ffn_embedding_dim = init_args.encoder_ffn_embed_dim
+ num_attention_heads = init_args.encoder_attention_heads
+ dropout = init_args.dropout
+ attention_dropout = init_args.attention_dropout
+ activation_dropout = init_args.activation_dropout
+ activation_fn = init_args.activation_fn
+
+ classifier_embed_dim = getattr(
+ args, "embed_dim", init_args.encoder_embed_dim
+ )
+ if classifier_embed_dim != init_args.encoder_embed_dim:
+ self.transform_layer = nn.Linear(
+ init_args.encoder_embed_dim, classifier_embed_dim
+ )
+ else:
+ self.model = TransformerSentenceEncoder(
+ padding_idx=task.dictionary.pad(),
+ vocab_size=len(task.dictionary),
+ num_encoder_layers=args.encoder_layers,
+ embedding_dim=args.embed_dim,
+ ffn_embedding_dim=args.ffn_embed_dim,
+ num_attention_heads=args.attention_heads,
+ dropout=args.dropout,
+ attention_dropout=args.attention_dropout,
+ activation_dropout=args.activation_dropout,
+ max_seq_len=task.max_positions()
+ if task.max_positions()
+ else args.tokens_per_sample,
+ num_segments=2,
+ offset_positions_by_padding=False,
+ encoder_normalize_before=args.encoder_normalize_before,
+ apply_bert_init=args.apply_bert_init,
+ activation_fn=args.activation_fn,
+ )
+
+ classifier_embed_dim = args.embed_dim
+ ffn_embedding_dim = args.ffn_embed_dim
+ num_attention_heads = args.attention_heads
+ dropout = args.dropout
+ attention_dropout = args.attention_dropout
+ activation_dropout = args.activation_dropout
+ activation_fn = args.activation_fn
+
+ self.joint_classification = args.joint_classification
+ if args.joint_classification == "sent":
+ if args.joint_normalize_before:
+ self.joint_layer_norm = LayerNorm(classifier_embed_dim)
+ else:
+ self.joint_layer_norm = None
+
+ self.joint_layers = nn.ModuleList(
+ [
+ TransformerSentenceEncoderLayer(
+ embedding_dim=classifier_embed_dim,
+ ffn_embedding_dim=ffn_embedding_dim,
+ num_attention_heads=num_attention_heads,
+ dropout=dropout,
+ attention_dropout=attention_dropout,
+ activation_dropout=activation_dropout,
+ activation_fn=activation_fn,
+ )
+ for _ in range(args.num_joint_layers)
+ ]
+ )
+
+ self.classifier = RobertaClassificationHead(
+ classifier_embed_dim,
+ classifier_embed_dim,
+ 1, # num_classes
+ "tanh",
+ args.classifier_dropout,
+ )
+
+ def forward(self, src_tokens, src_lengths):
+ segment_labels = self.get_segment_labels(src_tokens)
+ positions = self.get_positions(src_tokens, segment_labels)
+
+ inner_states, _ = self.model(
+ tokens=src_tokens,
+ segment_labels=segment_labels,
+ last_state_only=True,
+ positions=positions,
+ )
+
+ return inner_states[-1].transpose(0, 1) # T x B x C -> B x T x C
+
+ def sentence_forward(self, encoder_out, src_tokens=None, sentence_rep="head"):
+ # encoder_out: B x T x C
+ if sentence_rep == "head":
+ x = encoder_out[:, :1, :]
+ else: # 'meanpool', 'maxpool'
+ assert src_tokens is not None, "meanpool requires src_tokens input"
+ segment_labels = self.get_segment_labels(src_tokens)
+ padding_mask = src_tokens.ne(self.padding_idx)
+ encoder_mask = segment_labels * padding_mask.type_as(segment_labels)
+
+ if sentence_rep == "meanpool":
+ ntokens = torch.sum(encoder_mask, dim=1, keepdim=True)
+ x = torch.sum(
+ encoder_out * encoder_mask.unsqueeze(2), dim=1, keepdim=True
+ ) / ntokens.unsqueeze(2).type_as(encoder_out)
+ else: # 'maxpool'
+ encoder_out[
+ (encoder_mask == 0).unsqueeze(2).repeat(1, 1, encoder_out.shape[-1])
+ ] = -float("inf")
+ x, _ = torch.max(encoder_out, dim=1, keepdim=True)
+
+ if hasattr(self, "transform_layer"):
+ x = self.transform_layer(x)
+
+ return x # B x 1 x C
+
+ def joint_forward(self, x):
+ # x: T x B x C
+ if self.joint_layer_norm:
+ x = self.joint_layer_norm(x.transpose(0, 1))
+ x = x.transpose(0, 1)
+
+ for layer in self.joint_layers:
+ x, _ = layer(x, self_attn_padding_mask=None)
+ return x
+
+ def classification_forward(self, x):
+ # x: B x T x C
+ return self.classifier(x)
+
+
+@dataclass
+class DiscriminativeNMTRerankerConfig(FairseqDataclass):
+ pretrained_model: str = field(
+ default="", metadata={"help": "pretrained model to load"}
+ )
+ sentence_rep: SENTENCE_REP_CHOICES = field(
+ default="head",
+ metadata={
+ "help": "method to transform the output of the transformer stack to a sentence-level representation"
+ },
+ )
+
+ dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
+ attention_dropout: float = field(
+ default=0.0, metadata={"help": "dropout probability for attention weights"}
+ )
+ activation_dropout: float = field(
+ default=0.0, metadata={"help": "dropout probability after activation in FFN"}
+ )
+ classifier_dropout: float = field(
+ default=0.0, metadata={"help": "classifier dropout probability"}
+ )
+ embed_dim: int = field(default=768, metadata={"help": "embedding dimension"})
+ ffn_embed_dim: int = field(
+ default=2048, metadata={"help": "embedding dimension for FFN"}
+ )
+ encoder_layers: int = field(default=12, metadata={"help": "num encoder layers"})
+ attention_heads: int = field(default=8, metadata={"help": "num attention heads"})
+ encoder_normalize_before: bool = field(
+ default=False, metadata={"help": "apply layernorm before each encoder block"}
+ )
+ apply_bert_init: bool = field(
+ default=False, metadata={"help": "use custom param initialization for BERT"}
+ )
+ activation_fn: ACTIVATION_FN_CHOICES = field(
+ default="relu", metadata={"help": "activation function to use"}
+ )
+ freeze_embeddings: bool = field(
+ default=False, metadata={"help": "freeze embeddings in the pretrained model"}
+ )
+ n_trans_layers_to_freeze: int = field(
+ default=0,
+ metadata={
+ "help": "number of layers to freeze in the pretrained transformer model"
+ },
+ )
+
+ # joint classfication
+ joint_classification: JOINT_CLASSIFICATION_CHOICES = field(
+ default="none",
+ metadata={"help": "method to compute joint features for classification"},
+ )
+ num_joint_layers: int = field(
+ default=1, metadata={"help": "number of joint layers"}
+ )
+ joint_normalize_before: bool = field(
+ default=False,
+ metadata={"help": "apply layer norm on the input to the joint layer"},
+ )
+
+
+@register_model(
+ "discriminative_nmt_reranker", dataclass=DiscriminativeNMTRerankerConfig
+)
+class DiscriminativeNMTReranker(BaseFairseqModel):
+ @classmethod
+ def build_model(cls, args, task):
+ model = BertRanker(args, task)
+ return DiscriminativeNMTReranker(args, model)
+
+ def __init__(self, args, model):
+ super().__init__()
+
+ self.model = model
+ self.sentence_rep = args.sentence_rep
+ self.joint_classification = args.joint_classification
+
+ def forward(self, src_tokens, src_lengths, **kwargs):
+ return self.model(src_tokens, src_lengths)
+
+ def sentence_forward(self, encoder_out, src_tokens):
+ return self.model.sentence_forward(encoder_out, src_tokens, self.sentence_rep)
+
+ def joint_forward(self, x):
+ return self.model.joint_forward(x)
+
+ def classification_forward(self, x):
+ return self.model.classification_forward(x)
diff --git a/fairseq/examples/discriminative_reranking_nmt/scripts/prep_data.py b/fairseq/examples/discriminative_reranking_nmt/scripts/prep_data.py
new file mode 100755
index 0000000000000000000000000000000000000000..7aa7d37edc2c3e4c1d293911b753abf2ef597a7e
--- /dev/null
+++ b/fairseq/examples/discriminative_reranking_nmt/scripts/prep_data.py
@@ -0,0 +1,136 @@
+#!/usr/bin/env python
+
+import argparse
+from multiprocessing import Pool
+from pathlib import Path
+
+import sacrebleu
+import sentencepiece as spm
+
+
+def read_text_file(filename):
+ with open(filename, "r") as f:
+ output = [line.strip() for line in f]
+
+ return output
+
+
+def get_bleu(in_sent, target_sent):
+ bleu = sacrebleu.corpus_bleu([in_sent], [[target_sent]])
+ out = " ".join(
+ map(str, [bleu.score, bleu.sys_len, bleu.ref_len] + bleu.counts + bleu.totals)
+ )
+ return out
+
+
+def get_ter(in_sent, target_sent):
+ ter = sacrebleu.corpus_ter([in_sent], [[target_sent]])
+ out = " ".join(map(str, [ter.score, ter.num_edits, ter.ref_length]))
+ return out
+
+
+def init(sp_model):
+ global sp
+ sp = spm.SentencePieceProcessor()
+ sp.Load(sp_model)
+
+
+def process(source_sent, target_sent, hypo_sent, metric):
+ source_bpe = " ".join(sp.EncodeAsPieces(source_sent))
+ hypo_bpe = [" ".join(sp.EncodeAsPieces(h)) for h in hypo_sent]
+
+ if metric == "bleu":
+ score_str = [get_bleu(h, target_sent) for h in hypo_sent]
+ else: # ter
+ score_str = [get_ter(h, target_sent) for h in hypo_sent]
+
+ return source_bpe, hypo_bpe, score_str
+
+
+def main(args):
+ assert (
+ args.split.startswith("train") or args.num_shards == 1
+ ), "--num-shards should be set to 1 for valid and test sets"
+ assert (
+ args.split.startswith("train")
+ or args.split.startswith("valid")
+ or args.split.startswith("test")
+ ), "--split should be set to train[n]/valid[n]/test[n]"
+
+ source_sents = read_text_file(args.input_source)
+ target_sents = read_text_file(args.input_target)
+
+ num_sents = len(source_sents)
+ assert num_sents == len(
+ target_sents
+ ), f"{args.input_source} and {args.input_target} should have the same number of sentences."
+
+ hypo_sents = read_text_file(args.input_hypo)
+ assert (
+ len(hypo_sents) % args.beam == 0
+ ), f"Number of hypotheses ({len(hypo_sents)}) cannot be divided by beam size ({args.beam})."
+
+ hypo_sents = [
+ hypo_sents[i : i + args.beam] for i in range(0, len(hypo_sents), args.beam)
+ ]
+ assert num_sents == len(
+ hypo_sents
+ ), f"{args.input_hypo} should contain {num_sents * args.beam} hypotheses but only has {len(hypo_sents) * args.beam}. (--beam={args.beam})"
+
+ output_dir = args.output_dir / args.metric
+ for ns in range(args.num_shards):
+ print(f"processing shard {ns+1}/{args.num_shards}")
+ shard_output_dir = output_dir / f"split{ns+1}"
+ source_output_dir = shard_output_dir / "input_src"
+ hypo_output_dir = shard_output_dir / "input_tgt"
+ metric_output_dir = shard_output_dir / args.metric
+
+ source_output_dir.mkdir(parents=True, exist_ok=True)
+ hypo_output_dir.mkdir(parents=True, exist_ok=True)
+ metric_output_dir.mkdir(parents=True, exist_ok=True)
+
+ if args.n_proc > 1:
+ with Pool(
+ args.n_proc, initializer=init, initargs=(args.sentencepiece_model,)
+ ) as p:
+ output = p.starmap(
+ process,
+ [
+ (source_sents[i], target_sents[i], hypo_sents[i], args.metric)
+ for i in range(ns, num_sents, args.num_shards)
+ ],
+ )
+ else:
+ init(args.sentencepiece_model)
+ output = [
+ process(source_sents[i], target_sents[i], hypo_sents[i], args.metric)
+ for i in range(ns, num_sents, args.num_shards)
+ ]
+
+ with open(source_output_dir / f"{args.split}.bpe", "w") as s_o, open(
+ hypo_output_dir / f"{args.split}.bpe", "w"
+ ) as h_o, open(metric_output_dir / f"{args.split}.{args.metric}", "w") as m_o:
+ for source_bpe, hypo_bpe, score_str in output:
+ assert len(hypo_bpe) == len(score_str)
+ for h, m in zip(hypo_bpe, score_str):
+ s_o.write(f"{source_bpe}\n")
+ h_o.write(f"{h}\n")
+ m_o.write(f"{m}\n")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--input-source", type=Path, required=True)
+ parser.add_argument("--input-target", type=Path, required=True)
+ parser.add_argument("--input-hypo", type=Path, required=True)
+ parser.add_argument("--output-dir", type=Path, required=True)
+ parser.add_argument("--split", type=str, required=True)
+ parser.add_argument("--beam", type=int, required=True)
+ parser.add_argument("--sentencepiece-model", type=str, required=True)
+ parser.add_argument("--metric", type=str, choices=["bleu", "ter"], default="bleu")
+ parser.add_argument("--num-shards", type=int, default=1)
+ parser.add_argument("--n-proc", type=int, default=8)
+
+ args = parser.parse_args()
+
+ main(args)
diff --git a/fairseq/examples/discriminative_reranking_nmt/tasks/__init__.py b/fairseq/examples/discriminative_reranking_nmt/tasks/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..2d78ca98708121261aa365738a65c051b5b40626
--- /dev/null
+++ b/fairseq/examples/discriminative_reranking_nmt/tasks/__init__.py
@@ -0,0 +1,6 @@
+from .discriminative_reranking_task import DiscriminativeRerankingNMTTask
+
+
+__all__ = [
+ "DiscriminativeRerankingNMTTask",
+]
diff --git a/fairseq/examples/discriminative_reranking_nmt/tasks/discriminative_reranking_task.py b/fairseq/examples/discriminative_reranking_nmt/tasks/discriminative_reranking_task.py
new file mode 100644
index 0000000000000000000000000000000000000000..0e7fbba888c1ddd118da8238d644b4ab571177ff
--- /dev/null
+++ b/fairseq/examples/discriminative_reranking_nmt/tasks/discriminative_reranking_task.py
@@ -0,0 +1,475 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from dataclasses import dataclass, field
+
+import itertools
+import logging
+import os
+
+import numpy as np
+import torch
+
+from fairseq import metrics
+from fairseq.data import (
+ ConcatDataset,
+ ConcatSentencesDataset,
+ data_utils,
+ Dictionary,
+ IdDataset,
+ indexed_dataset,
+ NestedDictionaryDataset,
+ NumSamplesDataset,
+ NumelDataset,
+ PrependTokenDataset,
+ RawLabelDataset,
+ RightPadDataset,
+ SortDataset,
+ TruncateDataset,
+ TokenBlockDataset,
+)
+from fairseq.dataclass import ChoiceEnum, FairseqDataclass
+from fairseq.tasks import FairseqTask, register_task
+from omegaconf import II, MISSING
+
+
+EVAL_BLEU_ORDER = 4
+TARGET_METRIC_CHOICES = ChoiceEnum(["bleu", "ter"])
+
+logger = logging.getLogger(__name__)
+
+
+@dataclass
+class DiscriminativeRerankingNMTConfig(FairseqDataclass):
+ data: str = field(default=MISSING, metadata={"help": "path to data directory"})
+ num_data_splits: int = field(
+ default=1, metadata={"help": "total number of data splits"}
+ )
+ no_shuffle: bool = field(
+ default=False, metadata={"help": "do not shuffle training data"}
+ )
+ max_positions: int = field(
+ default=512, metadata={"help": "number of positional embeddings to learn"}
+ )
+ include_src: bool = field(
+ default=False, metadata={"help": "include source sentence"}
+ )
+ mt_beam: int = field(default=50, metadata={"help": "beam size of input hypotheses"})
+ eval_target_metric: bool = field(
+ default=False,
+ metadata={"help": "evaluation with the target metric during validation"},
+ )
+ target_metric: TARGET_METRIC_CHOICES = field(
+ default="bleu", metadata={"help": "name of the target metric to optimize for"}
+ )
+ train_subset: str = field(
+ default=II("dataset.train_subset"),
+ metadata={"help": "data subset to use for training (e.g. train, valid, test)"},
+ )
+ seed: int = field(
+ default=II("common.seed"),
+ metadata={"help": "pseudo random number generator seed"},
+ )
+
+
+class RerankerScorer(object):
+ """Scores the target for a given (source (optional), target) input."""
+
+ def __init__(self, args, mt_beam):
+ self.mt_beam = mt_beam
+
+ @torch.no_grad()
+ def generate(self, models, sample, **kwargs):
+ """Score a batch of translations."""
+ net_input = sample["net_input"]
+
+ assert len(models) == 1, "does not support model ensemble"
+ model = models[0]
+
+ bs = net_input["src_tokens"].shape[0]
+ assert (
+ model.joint_classification == "none" or bs % self.mt_beam == 0
+ ), f"invalid batch size ({bs}) for joint classification with beam size ({self.mt_beam})"
+
+ model.eval()
+ logits = model(**net_input)
+
+ batch_out = model.sentence_forward(logits, net_input["src_tokens"])
+ if model.joint_classification == "sent":
+ batch_out = model.joint_forward(
+ batch_out.view(self.mt_beam, bs // self.mt_beam, -1)
+ )
+ scores = model.classification_forward(
+ batch_out.view(bs, 1, -1)
+ ) # input: B x T x C
+
+ return scores
+
+
+@register_task(
+ "discriminative_reranking_nmt", dataclass=DiscriminativeRerankingNMTConfig
+)
+class DiscriminativeRerankingNMTTask(FairseqTask):
+ """
+ Translation rerank task.
+ The input can be either (src, tgt) sentence pairs or tgt sentence only.
+ """
+
+ cfg: DiscriminativeRerankingNMTConfig
+
+ def __init__(self, cfg: DiscriminativeRerankingNMTConfig, data_dictionary=None):
+ super().__init__(cfg)
+ self.dictionary = data_dictionary
+ self._max_positions = cfg.max_positions
+ # args.tokens_per_sample = self._max_positions
+ # self.num_classes = 1 # for model
+
+ @classmethod
+ def load_dictionary(cls, cfg, filename):
+ """Load the dictionary from the filename"""
+ dictionary = Dictionary.load(filename)
+ dictionary.add_symbol("") # for loading pretrained XLMR model
+
+ return dictionary
+
+ @classmethod
+ def setup_task(cls, cfg: DiscriminativeRerankingNMTConfig, **kwargs):
+ # load data dictionary (assume joint dictionary)
+ data_path = cfg.data
+ data_dict = cls.load_dictionary(
+ cfg, os.path.join(data_path, "input_src/dict.txt")
+ )
+
+ logger.info("[input] src dictionary: {} types".format(len(data_dict)))
+
+ return DiscriminativeRerankingNMTTask(cfg, data_dict)
+
+ def load_dataset(self, split, epoch=0, combine=False, **kwargs):
+ """Load a given dataset split (e.g., train, valid, test)."""
+ if self.cfg.data.endswith("1"):
+ data_shard = (epoch - 1) % self.cfg.num_data_splits + 1
+ data_path = self.cfg.data[:-1] + str(data_shard)
+ else:
+ data_path = self.cfg.data
+
+ def get_path(type, data_split):
+ return os.path.join(data_path, str(type), data_split)
+
+ def make_dataset(type, dictionary, data_split, combine):
+ split_path = get_path(type, data_split)
+
+ dataset = data_utils.load_indexed_dataset(
+ split_path, dictionary, combine=combine,
+ )
+ return dataset
+
+ def load_split(data_split, metric):
+ input_src = None
+ if self.cfg.include_src:
+ input_src = make_dataset(
+ "input_src", self.dictionary, data_split, combine=False
+ )
+ assert input_src is not None, "could not find dataset: {}".format(
+ get_path("input_src", data_split)
+ )
+
+ input_tgt = make_dataset(
+ "input_tgt", self.dictionary, data_split, combine=False
+ )
+ assert input_tgt is not None, "could not find dataset: {}".format(
+ get_path("input_tgt", data_split)
+ )
+
+ label_path = f"{get_path(metric, data_split)}.{metric}"
+ assert os.path.exists(label_path), f"could not find dataset: {label_path}"
+
+ np_labels = np.loadtxt(label_path)
+ if self.cfg.target_metric == "ter":
+ np_labels = -np_labels
+ label = RawLabelDataset(np_labels)
+
+ return input_src, input_tgt, label
+
+ src_datasets = []
+ tgt_datasets = []
+ label_datasets = []
+
+ if split == self.cfg.train_subset:
+ for k in itertools.count():
+ split_k = "train" + (str(k) if k > 0 else "")
+ prefix = os.path.join(data_path, "input_tgt", split_k)
+ if not indexed_dataset.dataset_exists(prefix, impl=None):
+ if k > 0:
+ break
+ else:
+ raise FileNotFoundError(f"Dataset not found: {prefix}")
+ input_src, input_tgt, label = load_split(
+ split_k, self.cfg.target_metric
+ )
+ src_datasets.append(input_src)
+ tgt_datasets.append(input_tgt)
+ label_datasets.append(label)
+ else:
+ input_src, input_tgt, label = load_split(split, self.cfg.target_metric)
+ src_datasets.append(input_src)
+ tgt_datasets.append(input_tgt)
+ label_datasets.append(label)
+
+ if len(tgt_datasets) == 1:
+ input_tgt, label = tgt_datasets[0], label_datasets[0]
+ if self.cfg.include_src:
+ input_src = src_datasets[0]
+ else:
+ input_tgt = ConcatDataset(tgt_datasets)
+ label = ConcatDataset(label_datasets)
+ if self.cfg.include_src:
+ input_src = ConcatDataset(src_datasets)
+
+ input_tgt = TruncateDataset(input_tgt, self.cfg.max_positions)
+ if self.cfg.include_src:
+ input_src = PrependTokenDataset(input_src, self.dictionary.bos())
+ input_src = TruncateDataset(input_src, self.cfg.max_positions)
+ src_lengths = NumelDataset(input_src, reduce=False)
+ src_tokens = ConcatSentencesDataset(input_src, input_tgt)
+ else:
+ src_tokens = PrependTokenDataset(input_tgt, self.dictionary.bos())
+ src_lengths = NumelDataset(src_tokens, reduce=False)
+
+ dataset = {
+ "id": IdDataset(),
+ "net_input": {
+ "src_tokens": RightPadDataset(
+ src_tokens, pad_idx=self.source_dictionary.pad(),
+ ),
+ "src_lengths": src_lengths,
+ },
+ "nsentences": NumSamplesDataset(),
+ "ntokens": NumelDataset(src_tokens, reduce=True),
+ "target": label,
+ }
+
+ dataset = NestedDictionaryDataset(dataset, sizes=[src_tokens.sizes],)
+
+ assert len(dataset) % self.cfg.mt_beam == 0, (
+ "dataset size (%d) is not a multiple of beam size (%d)"
+ % (len(dataset), self.cfg.mt_beam)
+ )
+
+ # no need to shuffle valid/test sets
+ if not self.cfg.no_shuffle and split == self.cfg.train_subset:
+
+ # need to keep all hypothese together
+ start_idx = np.arange(0, len(dataset), self.cfg.mt_beam)
+ with data_utils.numpy_seed(self.cfg.seed + epoch):
+ np.random.shuffle(start_idx)
+
+ idx = np.arange(0, self.cfg.mt_beam)
+ shuffle = np.tile(idx, (len(start_idx), 1)).reshape(-1) + np.tile(
+ start_idx, (self.cfg.mt_beam, 1)
+ ).transpose().reshape(-1)
+
+ dataset = SortDataset(dataset, sort_order=[shuffle],)
+
+ logger.info(f"Loaded {split} with #samples: {len(dataset)}")
+
+ self.datasets[split] = dataset
+ return self.datasets[split]
+
+ def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs):
+ assert not self.cfg.include_src or len(src_tokens[0]) == 2
+ input_src = None
+ if self.cfg.include_src:
+ input_src = TokenBlockDataset(
+ [t[0] for t in src_tokens],
+ [l[0] for l in src_lengths],
+ block_size=None, # ignored for "eos" break mode
+ pad=self.source_dictionary.pad(),
+ eos=self.source_dictionary.eos(),
+ break_mode="eos",
+ )
+ input_src = PrependTokenDataset(input_src, self.dictionary.bos())
+ input_src = TruncateDataset(input_src, self.cfg.max_positions)
+
+ input_tgt = TokenBlockDataset(
+ [t[-1] for t in src_tokens],
+ [l[-1] for l in src_lengths],
+ block_size=None, # ignored for "eos" break mode
+ pad=self.source_dictionary.pad(),
+ eos=self.source_dictionary.eos(),
+ break_mode="eos",
+ )
+ input_tgt = TruncateDataset(input_tgt, self.cfg.max_positions)
+ if self.cfg.include_src:
+ src_tokens = ConcatSentencesDataset(input_src, input_tgt)
+ src_lengths = NumelDataset(input_src, reduce=False)
+ else:
+ input_tgt = PrependTokenDataset(input_tgt, self.dictionary.bos())
+ src_tokens = input_tgt
+ src_lengths = NumelDataset(src_tokens, reduce=False)
+
+ dataset = {
+ "id": IdDataset(),
+ "net_input": {
+ "src_tokens": RightPadDataset(
+ src_tokens, pad_idx=self.source_dictionary.pad(),
+ ),
+ "src_lengths": src_lengths,
+ },
+ "nsentences": NumSamplesDataset(),
+ "ntokens": NumelDataset(src_tokens, reduce=True),
+ }
+
+ return NestedDictionaryDataset(dataset, sizes=[src_tokens.sizes],)
+
+ def build_model(self, cfg: FairseqDataclass):
+ return super().build_model(cfg)
+
+ def build_generator(self, args):
+ return RerankerScorer(args, mt_beam=self.cfg.mt_beam)
+
+ def max_positions(self):
+ return self._max_positions
+
+ @property
+ def source_dictionary(self):
+ return self.dictionary
+
+ @property
+ def target_dictionary(self):
+ return self.dictionary
+
+ def create_dummy_batch(self, device):
+ dummy_target = (
+ torch.zeros(self.cfg.mt_beam, EVAL_BLEU_ORDER * 2 + 3).long().to(device)
+ if not self.cfg.eval_ter
+ else torch.zeros(self.cfg.mt_beam, 3).long().to(device)
+ )
+
+ return {
+ "id": torch.zeros(self.cfg.mt_beam, 1).long().to(device),
+ "net_input": {
+ "src_tokens": torch.zeros(self.cfg.mt_beam, 4).long().to(device),
+ "src_lengths": torch.ones(self.cfg.mt_beam, 1).long().to(device),
+ },
+ "nsentences": 0,
+ "ntokens": 0,
+ "target": dummy_target,
+ }
+
+ def train_step(
+ self, sample, model, criterion, optimizer, update_num, ignore_grad=False
+ ):
+ if ignore_grad and sample is None:
+ sample = self.create_dummy_batch(model.device)
+
+ return super().train_step(
+ sample, model, criterion, optimizer, update_num, ignore_grad
+ )
+
+ def valid_step(self, sample, model, criterion):
+ if sample is None:
+ sample = self.create_dummy_batch(model.device)
+
+ loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
+
+ if not self.cfg.eval_target_metric:
+ return loss, sample_size, logging_output
+
+ scores = logging_output["scores"]
+
+ if self.cfg.target_metric == "bleu":
+ assert sample["target"].shape[1] == EVAL_BLEU_ORDER * 2 + 3, (
+ "target does not contain enough information ("
+ + str(sample["target"].shape[1])
+ + "for evaluating BLEU"
+ )
+
+ max_id = torch.argmax(scores, dim=1)
+ select_id = max_id + torch.arange(
+ 0, sample_size * self.cfg.mt_beam, self.cfg.mt_beam
+ ).to(max_id.device)
+ bleu_data = sample["target"][select_id, 1:].sum(0).data
+
+ logging_output["_bleu_sys_len"] = bleu_data[0]
+ logging_output["_bleu_ref_len"] = bleu_data[1]
+
+ for i in range(EVAL_BLEU_ORDER):
+ logging_output["_bleu_counts_" + str(i)] = bleu_data[2 + i]
+ logging_output["_bleu_totals_" + str(i)] = bleu_data[
+ 2 + EVAL_BLEU_ORDER + i
+ ]
+
+ elif self.cfg.target_metric == "ter":
+ assert sample["target"].shape[1] == 3, (
+ "target does not contain enough information ("
+ + str(sample["target"].shape[1])
+ + "for evaluating TER"
+ )
+
+ max_id = torch.argmax(scores, dim=1)
+ select_id = max_id + torch.arange(
+ 0, sample_size * self.cfg.mt_beam, self.cfg.mt_beam
+ ).to(max_id.device)
+ ter_data = sample["target"][select_id, 1:].sum(0).data
+
+ logging_output["_ter_num_edits"] = -ter_data[0]
+ logging_output["_ter_ref_len"] = -ter_data[1]
+
+ return loss, sample_size, logging_output
+
+ def reduce_metrics(self, logging_outputs, criterion):
+ super().reduce_metrics(logging_outputs, criterion)
+
+ if not self.cfg.eval_target_metric:
+ return
+
+ def sum_logs(key):
+ return sum(log.get(key, 0) for log in logging_outputs)
+
+ if self.cfg.target_metric == "bleu":
+ counts, totals = [], []
+ for i in range(EVAL_BLEU_ORDER):
+ counts.append(sum_logs("_bleu_counts_" + str(i)))
+ totals.append(sum_logs("_bleu_totals_" + str(i)))
+
+ if max(totals) > 0:
+ # log counts as numpy arrays -- log_scalar will sum them correctly
+ metrics.log_scalar("_bleu_counts", np.array(counts))
+ metrics.log_scalar("_bleu_totals", np.array(totals))
+ metrics.log_scalar("_bleu_sys_len", sum_logs("_bleu_sys_len"))
+ metrics.log_scalar("_bleu_ref_len", sum_logs("_bleu_ref_len"))
+
+ def compute_bleu(meters):
+ import inspect
+ import sacrebleu
+
+ fn_sig = inspect.getfullargspec(sacrebleu.compute_bleu)[0]
+ if "smooth_method" in fn_sig:
+ smooth = {"smooth_method": "exp"}
+ else:
+ smooth = {"smooth": "exp"}
+ bleu = sacrebleu.compute_bleu(
+ correct=meters["_bleu_counts"].sum,
+ total=meters["_bleu_totals"].sum,
+ sys_len=meters["_bleu_sys_len"].sum,
+ ref_len=meters["_bleu_ref_len"].sum,
+ **smooth,
+ )
+ return round(bleu.score, 2)
+
+ metrics.log_derived("bleu", compute_bleu)
+ elif self.cfg.target_metric == "ter":
+ num_edits = sum_logs("_ter_num_edits")
+ ref_len = sum_logs("_ter_ref_len")
+
+ if ref_len > 0:
+ metrics.log_scalar("_ter_num_edits", num_edits)
+ metrics.log_scalar("_ter_ref_len", ref_len)
+
+ def compute_ter(meters):
+ score = meters["_ter_num_edits"].sum / meters["_ter_ref_len"].sum
+ return round(score.item(), 2)
+
+ metrics.log_derived("ter", compute_ter)
diff --git a/fairseq/examples/fast_noisy_channel/README.md b/fairseq/examples/fast_noisy_channel/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..f2631a8c34d11bdf7d351c6807b6fe415f5715e1
--- /dev/null
+++ b/fairseq/examples/fast_noisy_channel/README.md
@@ -0,0 +1,345 @@
+# Language Models not just for Pre-training: Fast Online Neural Noisy Channel Modeling
+
+## Introduction
+- [Yee et al. (2019)](https://www.aclweb.org/anthology/D19-1571.pdf) introduce a simple and effective noisy channel modeling approach for neural machine translation. However, the noisy channel online decoding approach introduced in this paper is too slow to be practical.
+- To address this, [Bhosale et al. (2020)](http://www.statmt.org/wmt20/pdf/2020.wmt-1.68.pdf) introduces 3 simple approximations to make this approach very fast and practical without much loss in accuracy.
+- This README provides intructions on how to run online decoding or generation with the noisy channel modeling approach, including ways to make it very fast without much loss in accuracy.
+
+## Noisy Channel Modeling
+
+[Yee et al. (2019)](https://www.aclweb.org/anthology/D19-1571.pdf) applies the Bayes Rule to predict `P(y|x)`, the probability of the target `y` given the source `x`.
+```P(y|x) = P(x|y) * P(y) / P(x)```
+- `P(x|y)` predicts the source `x` given the target `y` and is referred to as the **channel model**
+- `P(y)` is a **language model** over the target `y`
+- `P(x)` is generally not modeled since it is constant for all `y`.
+
+We use Transformer models to parameterize the direct model `P(y|x)`, the channel model `P(x|y)` and the language model `P(y)`.
+
+During online decoding with beam search, we generate the top `K2` candidates per beam and score them with the following linear combination of the channel model, the language model as well as the direct model scores.
+
+```(1 / t) * log(P(y|x) + (1 / s) * ( λ1 * log(P(x|y)) + λ2 * log(P(y) ) )```
+- `t` - Target Prefix Length
+- `s` - Source Length
+- `λ1` - Channel Model Weight
+- `λ2` - Language Model Weight
+
+The top `beam_size` candidates based on the above combined scores are chosen to continue the beams in beam search. In beam search with a direct model alone, the scores from the direct model `P(y|x)` are used to choose the top candidates in beam search.
+
+This framework provides a great way to utlize strong target language models trained on large amounts of unlabeled data. Language models can prefer targets unrelated to the source, so we also need a channel model whose role is to ensure that the target preferred by the language model also translates back to the source.
+
+### Training Translation Models and Language Models
+
+For training Transformer models in fairseq for machine translation, refer to instructions [here](https://github.com/pytorch/fairseq/tree/main/examples/translation)
+
+For training Transformer models in fairseq for language modeling, refer to instructions [here](https://github.com/pytorch/fairseq/tree/main/examples/language_model)
+
+### Generation with Language Model for German-English translation with fairseq
+
+Here are instructions to generate using a direct model and a target-side language model.
+
+Note:
+- Download and install fairseq as per instructions [here](https://github.com/pytorch/fairseq)
+- Preprocess and binarize the dataset as per instructions in section [Test Data Preprocessing](#test-data-preprocessing)
+
+```sh
+binarized_data=data_dir/binarized
+direct_model=de_en_seed4.pt
+lm_model=en_lm.pt
+lm_data=lm_data
+wget https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/direct_models/seed4.pt -O ${direct_model}
+wget https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/lm_model/transformer_lm.pt -O ${lm_model}
+mkdir -p ${lm_data}
+wget https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/lm_model/lm_dict/dict.txt -O ${lm_data}/dict.txt
+
+k2=10
+lenpen=0.16
+lm_wt=0.14
+fairseq-generate ${binarized_data} \
+ --user-dir examples/fast_noisy_channel \
+ --beam 5 \
+ --path ${direct_model} \
+ --lm-model ${lm_model} \
+ --lm-data ${lm_data} \
+ --k2 ${k2} \
+ --combine-method lm_only \
+ --task noisy_channel_translation \
+ --lenpen ${lenpen} \
+ --lm-wt ${lm_wt} \
+ --gen-subset valid \
+ --remove-bpe \
+ --fp16 \
+ --batch-size 10
+```
+### Noisy Channel Generation for German-English translation with fairseq
+
+Here are instructions for noisy channel generation with a direct model, channel model and language model as explained in section [Noisy Channel Modeling](#noisy-channel-modeling).
+
+Note:
+- Download and install fairseq as per instructions [here](https://github.com/pytorch/fairseq)
+- Preprocess and binarize the dataset as per instructions in section [Test Data Preprocessing](#test-data-preprocessing)
+
+```sh
+binarized_data=data_dir/binarized
+direct_model=de_en_seed4.pt
+lm_model=en_lm.pt
+lm_data=lm_data
+ch_model=en_de.big.seed4.pt
+wget https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/direct_models/seed4.pt -O ${direct_model}
+wget https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/lm_model/transformer_lm.pt -O ${lm_model}
+mkdir -p ${lm_data}
+wget https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/lm_model/lm_dict/dict.txt -O ${lm_data}/dict.txt
+wget https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/big.seed4.pt -O ${ch_model}
+
+k2=10
+lenpen=0.21
+lm_wt=0.50
+bw_wt=0.30
+fairseq-generate ${binarized_data} \
+ --user-dir examples/fast_noisy_channel \
+ --beam 5 \
+ --path ${direct_model} \
+ --lm-model ${lm_model} \
+ --lm-data ${lm_data} \
+ --channel-model ${ch_model} \
+ --k2 ${k2} \
+ --combine-method noisy_channel \
+ --task noisy_channel_translation \
+ --lenpen ${lenpen} \
+ --lm-wt ${lm_wt} \
+ --ch-wt ${bw_wt} \
+ --gen-subset test \
+ --remove-bpe \
+ --fp16 \
+ --batch-size 1
+```
+## Fast Noisy Channel Modeling
+
+[Bhosale et al. (2020)](http://www.statmt.org/wmt20/pdf/2020.wmt-1.68.pdf) introduces 3 approximations that speed up online noisy channel decoding -
+- Smaller channel models (`Tranformer Base` with 1 encoder and decoder layer each vs. `Transformer Big`)
+ - This involves training a channel model that is possibly smaller and less accurate in terms of BLEU than a channel model of the same size as the direct model.
+ - Since the role of the channel model is mainly to assign low scores to generations from the language model if they don't translate back to the source, we may not need the most accurate channel model for this purpose.
+- Smaller output vocabulary size for the channel model (~30,000 -> ~1000)
+ - The channel model doesn't need to score the full output vocabulary, it just needs to score the source tokens, which are completely known.
+ - This is specified using the arguments `--channel-scoring-type src_vocab --top-k-vocab 500`
+ - This means that the output vocabulary for the channel model will be the source tokens for all examples in the batch and the top-K most frequent tokens in the vocabulary
+ - This reduces the memory consumption needed to store channel model scores significantly
+- Smaller number of candidates (`k2`) scored per beam
+ - This is specified by reducing the argument `--k2`
+
+
+### Fast Noisy Channel Generation for German-English translation with fairseq
+
+Here are instructions for **fast** noisy channel generation with a direct model, channel model and language model as explained in section [Fast Noisy Channel Modeling](#fast-noisy-channel-modeling). The main differences are that we use a smaller channel model, reduce `--k2`, set `--channel-scoring-type src_vocab --top-k-vocab 500` and increase the `--batch-size`.
+
+Note:
+- Download and install fairseq as per instructions [here](https://github.com/pytorch/fairseq)
+- Preprocess and binarize the dataset as per instructions in section [Test Data Preprocessing](#test-data-preprocessing)
+
+```sh
+binarized_data=data_dir/binarized
+direct_model=de_en_seed4.pt
+lm_model=en_lm.pt
+lm_data=lm_data
+small_ch_model=en_de.base_1_1.seed4.pt
+wget https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/direct_models/seed4.pt -O ${direct_model}
+wget https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/lm_model/transformer_lm.pt -O ${lm_model}
+mkdir -p ${lm_data}
+wget https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/lm_model/lm_dict/dict.txt -O ${lm_data}/dict.txt
+wget https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/base_1_1.seed4.pt -O ${small_ch_model}
+
+k2=3
+lenpen=0.23
+lm_wt=0.58
+bw_wt=0.26
+fairseq-generate ${binarized_data} \
+ --user-dir examples/fast_noisy_channel \
+ --beam 5 \
+ --path ${direct_model} \
+ --lm-model ${lm_model} \
+ --lm-data ${lm_data} \
+ --channel-model ${small_ch_model} \
+ --k2 ${k2} \
+ --combine-method noisy_channel \
+ --task noisy_channel_translation \
+ --lenpen ${lenpen} \
+ --lm-wt ${lm_wt} \
+ --ch-wt ${bw_wt} \
+ --gen-subset test \
+ --remove-bpe \
+ --fp16 \
+ --batch-size 50 \
+ --channel-scoring-type src_vocab --top-k-vocab 500
+```
+
+## Test Data Preprocessing
+
+For preprocessing and binarizing the test sets for Romanian-English and German-English translation, we use the following script -
+
+```sh
+FAIRSEQ=/path/to/fairseq
+cd $FAIRSEQ
+SCRIPTS=$FAIRSEQ/mosesdecoder/scripts
+if [ ! -d "${SCRIPTS}" ]; then
+ echo 'Cloning Moses github repository (for tokenization scripts)...'
+ git clone https://github.com/moses-smt/mosesdecoder.git
+fi
+TOKENIZER=$SCRIPTS/tokenizer/tokenizer.perl
+NORMALIZE=$SCRIPTS/tokenizer/normalize-punctuation.perl
+
+s=de
+t=en
+test=wmt18
+
+mkdir -p data_dir
+
+# Tokenization
+if [ $s == "ro" ] ; then
+ # Note: Get normalise-romanian.py and remove-diacritics.py from
+ # https://github.com/rsennrich/wmt16-scripts/tree/master/preprocess
+ sacrebleu -t $test -l $s-$t --echo src | \
+ $NORMALIZE -l $s | \
+ python normalise-romanian.py | \
+ python remove-diacritics.py | \
+ $TOKENIZER -l $s -a -q > data_dir/$test.$s-$t.$s
+else
+ sacrebleu -t $test -l $s-$t --echo src | perl $NORMALIZE -l $s | perl $TOKENIZER -threads 8 -a -l $s > data_dir/$test.$s-$t.$s
+fi
+
+sacrebleu -t $test -l $s-$t --echo ref | perl $NORMALIZE -l $t | perl $TOKENIZER -threads 8 -a -l $t > data_dir/$test.$s-$t.$t
+
+
+# Applying BPE
+src_bpe_code=/path/to/source/language/bpe/code
+tgt_bpe_code=/path/to/target/language/bpe/code
+src_dict=/path/to/source/language/dict
+tgt_dict=/path/to/target/language/dict
+
+FASTBPE=$FAIRSEQ/fastBPE
+if [ ! -d "${FASTBPE}" ] ; then
+ git clone https://github.com/glample/fastBPE.git
+ # Follow compilation instructions at https://github.com/glample/fastBPE
+ g++ -std=c++11 -pthread -O3 fastBPE/main.cc -IfastBPE -o fast
+fi
+
+${FASTBPE}/fast applybpe data_dir/bpe.$test.$s-$t.$s data_dir/$test.$s-$t.$s ${src_bpe_code}
+${FASTBPE}/fast applybpe data_dir/bpe.$test.$s-$t.$s data_dir/$test.$s-$t.$s ${tgt_bpe_code}
+
+fairseq-preprocess -s $s -t $t \
+ --testpref data_dir/bpe.$test.$s-$t \
+ --destdir data_dir/binarized \
+ --srcdict ${src_dict} \
+ --tgtdict ${tgt_dict}
+```
+
+## Calculating BLEU
+
+```sh
+DETOKENIZER=$SCRIPTS/tokenizer/detokenizer.perl
+cat ${generation_output} | grep -P "^H" | sort -V | cut -f 3- | $DETOKENIZER -l $t -q -a | sacrebleu -t $test -l $s-$t
+```
+
+
+## Romanian-English Translation
+
+The direct and channel models are trained using bitext data (WMT16) combined with backtranslated data (The monolingual data used for backtranslation comes from http://data.statmt.org/rsennrich/wmt16_backtranslations/ (Sennrich et al., 2016c))
+
+The backtranslated data is generated using an ensemble of 3 English-Romanian models trained on bitext training data (WMT16) with unrestricted sampling.
+
+### BPE Codes and Dictionary
+
+We learn a joint BPE vocabulary of 18K types on the bitext training data which is used for both the source and target.
+||Path|
+|----------|------|
+| BPE Code | [joint_bpe_18k](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/bpe_18k) |
+| Dictionary | [dict](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/dict) |
+
+### Direct Models
+For Ro-En with backtranslation, the direct and channel models use a Transformer-Big architecture.
+
+| Seed | Model |
+|----|----|
+| 2 | [ro_en_seed2.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/direct_models/seed2.pt)
+| 4 | [ro_en_seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/direct_models/seed4.pt)
+| 6 | [ro_en_seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/direct_models/seed6.pt)
+
+### Channel Models
+For channel models, we follow the same steps as for the direct models. But backtranslated data is generated in the opposite direction using [this Romanian monolingual data](http://data.statmt.org/rsennrich/wmt16_backtranslations/).
+The best lenpen, LM weight and CH weight are obtained by sweeping over the validation set (wmt16/dev) using beam 5.
+| Model Size | Lenpen | LM Weight | CH Weight | Seed 2 | Seed 4 | Seed 6 |
+|----|----|----|----|----|----|----|
+| `big` | 0.84 | 0.64 | 0.56 | [big.seed2.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/channel_models/big.seed2.pt) | [big.seed2.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/channel_models/big.seed2.pt) | [big.seed2.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/channel_models/big.seed2.pt) |
+| `base_1_1` | 0.63 | 0.40 | 0.37 | [base_1_1.seed2.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/channel_models/base_1_1.seed2.pt) | [base_1_1.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/channel_models/base_1_1.seed4.pt) | [base_1_1.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/channel_models/base_1_1.seed6.pt) |
+
+### Language Model
+The model is trained on de-duplicated English Newscrawl data from 2007-2018 comprising 186 million sentences or 4.5B words after normalization and tokenization.
+| | Path |
+|----|----|
+| `--lm-model` | [transformer_en_lm](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/lm_model/transformer_lm.pt) |
+| `--lm-data` | [lm_data](https://dl.fbaipublicfiles.com/fast_noisy_channel/ro_en/lm_model/lm_dict)
+
+## German-English Translation
+
+### BPE Codes and Dictionaries
+
+| | Path|
+|----------|------|
+| Source BPE Code | [de_bpe_code_24K](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/de_bpe_code_24K) |
+| Target BPE Code | [en_bpe_code_24K](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/en_bpe_code_24K)
+| Source Dictionary | [de_dict](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/de_dict) |
+| Target Dictionary | [en_dict](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/en_dict) |
+
+### Direct Models
+We train on WMT’19 training data. Following [Ng et al., 2019](http://statmt.org/wmt19/pdf/53/WMT33.pdf), we apply language identification filtering and remove sentences longer than 250 tokens as well as sentence pairs with a source/target length ratio exceeding 1.5. This results in 26.8M sentence pairs.
+We use the Transformer-Big architecture for the direct model.
+
+| Seed | Model |
+|:----:|----|
+| 4 | [de_en_seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/direct_models/seed4.pt)
+| 5 | [de_en_seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/direct_models/seed5.pt)
+| 6 | [de_en_seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/direct_models/seed6.pt)
+
+### Channel Models
+
+We train on WMT’19 training data. Following [Ng et al., 2019](http://statmt.org/wmt19/pdf/53/WMT33.pdf), we apply language identification filtering and remove sentences longer than 250 tokens as well as sentence pairs with a source/target length ratio exceeding 1.5. This results in 26.8M sentence pairs.
+
+| Model Size | Seed 4 | Seed 5 | Seed 6 |
+|----|----|----|----|
+| `big` | [big.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/big.seed4.pt) | [big.seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/big.seed5.pt) | [big.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/big.seed6.pt) |
+| `big_1_1` | [big_1_1.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/big_1_1.seed4.pt) | [big_1_1.seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/big_1_1.seed5.pt) | [big_1_1.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/big_1_1.seed6.pt) |
+| `base` | [base.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/base.seed4.pt) | [base.seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/base.seed5.pt) | [base.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/base.seed6.pt) |
+| `base_1_1` | [base_1_1.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/base_1_1.seed4.pt) | [base_1_1.seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/base_1_1.seed5.pt) | [base_1_1.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/base_1_1.seed6.pt) |
+| `half` | [half.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/half.seed4.pt) | [half.seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/half.seed5.pt) | [half.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/half.seed6.pt) |
+| `half_1_1` | [half_1_1.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/half_1_1.seed4.pt) | [half_1_1.seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/half_1_1.seed5.pt) | [half_1_1.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/half_1_1.seed6.pt) |
+| `quarter` | [quarter.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/quarter.seed4.pt) | [quarter.seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/quarter.seed5.pt) | [quarter.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/quarter.seed6.pt) |
+| `quarter_1_1` | [quarter_1_1.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/quarter_1_1.seed4.pt) | [quarter_1_1.seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/quarter_1_1.seed5.pt) | [quarter_1_1.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/quarter_1_1.seed6.pt) |
+| `8th` | [8th.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/8th.seed4.pt) | [8th.seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/8th.seed5.pt) | [8th.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/8th.seed6.pt) |
+| `8th_1_1` | [8th_1_1.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/8th_1_1.seed4.pt) | [8th_1_1.seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/8th_1_1.seed5.pt) | [8th_1_1.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/8th_1_1.seed6.pt) |
+| `16th` | [16th.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/16th.seed4.pt) | [16th.seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/16th.seed5.pt) | [16th.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/16th.seed6.pt) |
+| `16th_1_1` | [16th_1_1.seed4.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/16th_1_1.seed4.pt) | [16th_1_1.seed5.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/16th_1_1.seed5.pt) | [16th_1_1.seed6.pt](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/channel_models/16th_1_1.seed6.pt) |
+
+### Language Model
+The model is trained on de-duplicated English Newscrawl data from 2007-2018 comprising 186 million sentences or 4.5B words after normalization and tokenization.
+| | Path |
+|----|----|
+| `--lm-model` | [transformer_en_lm](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/lm_model/transformer_lm.pt) |
+| `--lm-data` | [lm_data](https://dl.fbaipublicfiles.com/fast_noisy_channel/de_en/lm_model/lm_dict/)
+
+
+## Citation
+
+```bibtex
+@inproceedings{bhosale2020language,
+ title={Language Models not just for Pre-training: Fast Online Neural Noisy Channel Modeling},
+ author={Shruti Bhosale and Kyra Yee and Sergey Edunov and Michael Auli},
+ booktitle={Proceedings of the Fifth Conference on Machine Translation (WMT)},
+ year={2020},
+}
+
+@inproceedings{yee2019simple,
+ title={Simple and Effective Noisy Channel Modeling for Neural Machine Translation},
+ author={Yee, Kyra and Dauphin, Yann and Auli, Michael},
+ booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
+ pages={5700--5705},
+ year={2019}
+}
+```
diff --git a/fairseq/examples/fast_noisy_channel/__init__.py b/fairseq/examples/fast_noisy_channel/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b248c3a24e12ad3da885a7f328c714942de2e6b
--- /dev/null
+++ b/fairseq/examples/fast_noisy_channel/__init__.py
@@ -0,0 +1,8 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from . import noisy_channel_translation # noqa
+from . import noisy_channel_sequence_generator # noqa
+from . import noisy_channel_beam_search # noqa
diff --git a/fairseq/examples/fast_noisy_channel/noisy_channel_beam_search.py b/fairseq/examples/fast_noisy_channel/noisy_channel_beam_search.py
new file mode 100644
index 0000000000000000000000000000000000000000..23869ebcd0c438f36e310c8ccddd3b5c07a71182
--- /dev/null
+++ b/fairseq/examples/fast_noisy_channel/noisy_channel_beam_search.py
@@ -0,0 +1,71 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+from fairseq.search import Search
+
+
+class NoisyChannelBeamSearch(Search):
+
+ def __init__(self, tgt_dict):
+ super().__init__(tgt_dict)
+ self.fw_scores_buf = None
+ self.lm_scores_buf = None
+
+ def _init_buffers(self, t):
+ # super()._init_buffers(t)
+ if self.fw_scores_buf is None:
+ self.scores_buf = t.new()
+ self.indices_buf = torch.LongTensor().to(device=t.device)
+ self.beams_buf = torch.LongTensor().to(device=t.device)
+ self.fw_scores_buf = t.new()
+ self.lm_scores_buf = t.new()
+
+ def combine_fw_bw(self, combine_method, fw_cum, bw, step):
+ if combine_method == "noisy_channel":
+ fw_norm = fw_cum.div(step + 1)
+ lprobs = bw + fw_norm
+ elif combine_method == "lm_only":
+ lprobs = bw + fw_cum
+
+ return lprobs
+
+ def step(self, step, fw_lprobs, scores, bw_lprobs, lm_lprobs, combine_method):
+ self._init_buffers(fw_lprobs)
+ bsz, beam_size, vocab_size = fw_lprobs.size()
+
+ if step == 0:
+ # at the first step all hypotheses are equally likely, so use
+ # only the first beam
+ fw_lprobs = fw_lprobs[:, ::beam_size, :].contiguous()
+ bw_lprobs = bw_lprobs[:, ::beam_size, :].contiguous()
+ # nothing to add since we are at the first step
+ fw_lprobs_cum = fw_lprobs
+
+ else:
+ # make probs contain cumulative scores for each hypothesis
+ raw_scores = (scores[:, :, step - 1].unsqueeze(-1))
+ fw_lprobs_cum = (fw_lprobs.add(raw_scores))
+
+ combined_lprobs = self.combine_fw_bw(combine_method, fw_lprobs_cum, bw_lprobs, step)
+
+ # choose the top k according to the combined noisy channel model score
+ torch.topk(
+ combined_lprobs.view(bsz, -1),
+ k=min(
+ # Take the best 2 x beam_size predictions. We'll choose the first
+ # beam_size of these which don't predict eos to continue with.
+ beam_size * 2,
+ combined_lprobs.view(bsz, -1).size(1) - 1, # -1 so we never select pad
+ ),
+ out=(self.scores_buf, self.indices_buf),
+ )
+ # save corresponding fw and lm scores
+ self.fw_scores_buf = torch.gather(fw_lprobs_cum.view(bsz, -1), 1, self.indices_buf)
+ self.lm_scores_buf = torch.gather(lm_lprobs.view(bsz, -1), 1, self.indices_buf)
+ # Project back into relative indices and beams
+ self.beams_buf = self.indices_buf // vocab_size
+ self.indices_buf.fmod_(vocab_size)
+ return self.scores_buf, self.fw_scores_buf, self.lm_scores_buf, self.indices_buf, self.beams_buf
diff --git a/fairseq/examples/fast_noisy_channel/noisy_channel_sequence_generator.py b/fairseq/examples/fast_noisy_channel/noisy_channel_sequence_generator.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea8fae98e87e9f3e69bc51987703a6429eb0c92a
--- /dev/null
+++ b/fairseq/examples/fast_noisy_channel/noisy_channel_sequence_generator.py
@@ -0,0 +1,842 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import Dict, List, Optional
+
+import math
+import numpy as np
+
+import torch
+import torch.nn.functional as F
+from torch import Tensor
+
+from .noisy_channel_beam_search import NoisyChannelBeamSearch
+from fairseq.sequence_generator import EnsembleModel
+
+
+class NoisyChannelSequenceGenerator(object):
+ def __init__(
+ self,
+ combine_method,
+ tgt_dict,
+ src_dict=None,
+ beam_size=1,
+ max_len_a=0,
+ max_len_b=200,
+ min_len=1,
+ len_penalty=1.0,
+ unk_penalty=0.0,
+ retain_dropout=False,
+ temperature=1.0,
+ match_source_len=False,
+ no_repeat_ngram_size=0,
+ normalize_scores=True,
+ channel_models=None,
+ k2=10,
+ ch_weight=1.0,
+ channel_scoring_type='log_norm',
+ top_k_vocab=0,
+ lm_models=None,
+ lm_dict=None,
+ lm_weight=1.0,
+ normalize_lm_scores_by_tgt_len=False,
+ ):
+ """Generates translations of a given source sentence,
+ using beam search with noisy channel decoding.
+
+ Args:
+ combine_method (string, optional): Method to combine direct, LM and
+ channel model scores (default: None)
+ tgt_dict (~fairseq.data.Dictionary): target dictionary
+ src_dict (~fairseq.data.Dictionary): source dictionary
+ beam_size (int, optional): beam width (default: 1)
+ max_len_a/b (int, optional): generate sequences of maximum length
+ ax + b, where x is the source length
+ min_len (int, optional): the minimum length of the generated output
+ (not including end-of-sentence)
+ len_penalty (float, optional): length penalty, where <1.0 favors
+ shorter, >1.0 favors longer sentences (default: 1.0)
+ unk_penalty (float, optional): unknown word penalty, where <0
+ produces more unks, >0 produces fewer (default: 0.0)
+ retain_dropout (bool, optional): use dropout when generating
+ (default: False)
+ temperature (float, optional): temperature, where values
+ >1.0 produce more uniform samples and values <1.0 produce
+ sharper samples (default: 1.0)
+ match_source_len (bool, optional): outputs should match the source
+ length (default: False)
+ no_repeat_ngram_size (int, optional): Size of n-grams that we avoid
+ repeating in the generation (default: 0)
+ normalize_scores (bool, optional): normalize scores by the length
+ of the output (default: True)
+ channel_models (List[~fairseq.models.FairseqModel]): ensemble of models
+ translating from the target to the source
+ k2 (int, optional): Top K2 candidates to score per beam at each step (default:10)
+ ch_weight (int, optional): Weight associated with the channel model score
+ assuming that the direct model score has weight 1.0 (default: 1.0)
+ channel_scoring_type (str, optional): String specifying how to score
+ the channel model (default: 'log_norm')
+ top_k_vocab (int, optional): If `channel_scoring_type` is `'src_vocab'` or
+ `'src_vocab_batched'`, then this parameter specifies the number of
+ most frequent tokens to include in the channel model output vocabulary,
+ in addition to the source tokens in the input batch (default: 0)
+ lm_models (List[~fairseq.models.FairseqModel]): ensemble of models
+ generating text in the target language
+ lm_dict (~fairseq.data.Dictionary): LM Model dictionary
+ lm_weight (int, optional): Weight associated with the LM model score
+ assuming that the direct model score has weight 1.0 (default: 1.0)
+ normalize_lm_scores_by_tgt_len (bool, optional): Should we normalize LM scores
+ by the target length? By default, we normalize the combination of
+ LM and channel model scores by the source length
+ """
+ self.pad = tgt_dict.pad()
+ self.unk = tgt_dict.unk()
+ self.eos = tgt_dict.eos()
+ self.vocab_size = len(tgt_dict)
+ self.beam_size = beam_size
+ # the max beam size is the dictionary size - 1, since we never select pad
+ self.beam_size = min(beam_size, self.vocab_size - 1)
+ self.max_len_a = max_len_a
+ self.max_len_b = max_len_b
+ self.min_len = min_len
+ self.normalize_scores = normalize_scores
+ self.len_penalty = len_penalty
+ self.unk_penalty = unk_penalty
+ self.retain_dropout = retain_dropout
+ self.temperature = temperature
+ self.match_source_len = match_source_len
+ self.no_repeat_ngram_size = no_repeat_ngram_size
+ self.channel_models = channel_models
+ self.src_dict = src_dict
+ self.tgt_dict = tgt_dict
+ self.combine_method = combine_method
+ self.k2 = k2
+ self.ch_weight = ch_weight
+ self.channel_scoring_type = channel_scoring_type
+ self.top_k_vocab = top_k_vocab
+ self.lm_models = lm_models
+ self.lm_dict = lm_dict
+ self.lm_weight = lm_weight
+ self.log_softmax_fn = torch.nn.LogSoftmax(dim=1)
+ self.normalize_lm_scores_by_tgt_len = normalize_lm_scores_by_tgt_len
+
+ self.share_tgt_dict = (self.lm_dict == self.tgt_dict)
+ self.tgt_to_lm = make_dict2dict(tgt_dict, lm_dict)
+
+ self.ch_scoring_bsz = 3072
+
+ assert temperature > 0, '--temperature must be greater than 0'
+
+ self.search = NoisyChannelBeamSearch(tgt_dict)
+
+ @torch.no_grad()
+ def generate(
+ self,
+ models,
+ sample,
+ prefix_tokens=None,
+ bos_token=None,
+ **kwargs
+ ):
+ """Generate a batch of translations.
+ Args:
+ models (List[~fairseq.models.FairseqModel]): ensemble of models
+ sample (dict): batch
+ prefix_tokens (torch.LongTensor, optional): force decoder to begin
+ with these tokens
+ """
+ model = EnsembleModel(models)
+ incremental_states = torch.jit.annotate(
+ List[Dict[str, Dict[str, Optional[Tensor]]]],
+ [
+ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {})
+ for i in range(model.models_size)
+ ],
+ )
+ if not self.retain_dropout:
+ model.eval()
+
+ # model.forward normally channels prev_output_tokens into the decoder
+ # separately, but SequenceGenerator directly calls model.encoder
+ encoder_input = {
+ k: v for k, v in sample['net_input'].items()
+ if k != 'prev_output_tokens'
+ }
+ src_tokens = encoder_input['src_tokens']
+ src_lengths_no_eos = (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1)
+ input_size = src_tokens.size()
+ # batch dimension goes first followed by source lengths
+ bsz = input_size[0]
+ src_len = input_size[1]
+ beam_size = self.beam_size
+
+ if self.match_source_len:
+ max_len = src_lengths_no_eos.max().item()
+ else:
+ max_len = min(
+ int(self.max_len_a * src_len + self.max_len_b),
+ # exclude the EOS marker
+ model.max_decoder_positions() - 1,
+ )
+
+ # compute the encoder output for each beam
+ encoder_outs = model.forward_encoder(encoder_input)
+ new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1)
+ new_order = new_order.to(src_tokens.device).long()
+ encoder_outs = model.reorder_encoder_out(encoder_outs, new_order)
+
+ src_lengths = encoder_input['src_lengths']
+ # initialize buffers
+ scores = src_tokens.new(bsz * beam_size, max_len + 1).float().fill_(0)
+ lm_prefix_scores = src_tokens.new(bsz * beam_size).float().fill_(0)
+
+ scores_buf = scores.clone()
+ tokens = src_tokens.new(bsz * beam_size, max_len + 2).long().fill_(self.pad)
+ tokens_buf = tokens.clone()
+ tokens[:, 0] = self.eos if bos_token is None else bos_token
+
+ # reorder source tokens so they may be used as a reference in generating P(S|T)
+ src_tokens = reorder_all_tokens(src_tokens, src_lengths, self.src_dict.eos_index)
+
+ src_tokens = src_tokens.repeat(1, beam_size).view(-1, src_len)
+ src_lengths = src_lengths.view(bsz, -1).repeat(1, beam_size).view(bsz*beam_size, -1)
+
+ attn, attn_buf = None, None
+ nonpad_idxs = None
+
+ # The cands_to_ignore indicates candidates that should be ignored.
+ # For example, suppose we're sampling and have already finalized 2/5
+ # samples. Then the cands_to_ignore would mark 2 positions as being ignored,
+ # so that we only finalize the remaining 3 samples.
+ cands_to_ignore = src_tokens.new_zeros(bsz, beam_size).eq(-1) # forward and backward-compatible False mask
+
+ # list of completed sentences
+ finalized = [[] for i in range(bsz)]
+ finished = [False for i in range(bsz)]
+ num_remaining_sent = bsz
+
+ # number of candidate hypos per step
+ cand_size = 2 * beam_size # 2 x beam size in case half are EOS
+
+ # offset arrays for converting between different indexing schemes
+ bbsz_offsets = (torch.arange(0, bsz) * beam_size).unsqueeze(1).type_as(tokens)
+ cand_offsets = torch.arange(0, cand_size).type_as(tokens)
+
+ # helper function for allocating buffers on the fly
+ buffers = {}
+
+ def buffer(name, type_of=tokens): # noqa
+ if name not in buffers:
+ buffers[name] = type_of.new()
+ return buffers[name]
+
+ def is_finished(sent, step, unfin_idx):
+ """
+ Check whether we've finished generation for a given sentence, by
+ comparing the worst score among finalized hypotheses to the best
+ possible score among unfinalized hypotheses.
+ """
+ assert len(finalized[sent]) <= beam_size
+ if len(finalized[sent]) == beam_size:
+ return True
+ return False
+
+ def finalize_hypos(step, bbsz_idx, eos_scores, combined_noisy_channel_eos_scores):
+ """
+ Finalize the given hypotheses at this step, while keeping the total
+ number of finalized hypotheses per sentence <= beam_size.
+
+ Note: the input must be in the desired finalization order, so that
+ hypotheses that appear earlier in the input are preferred to those
+ that appear later.
+
+ Args:
+ step: current time step
+ bbsz_idx: A vector of indices in the range [0, bsz*beam_size),
+ indicating which hypotheses to finalize
+ eos_scores: A vector of the same size as bbsz_idx containing
+ fw scores for each hypothesis
+ combined_noisy_channel_eos_scores: A vector of the same size as bbsz_idx containing
+ combined noisy channel scores for each hypothesis
+ """
+ assert bbsz_idx.numel() == eos_scores.numel()
+
+ # clone relevant token and attention tensors
+ tokens_clone = tokens.index_select(0, bbsz_idx)
+ tokens_clone = tokens_clone[:, 1:step + 2] # skip the first index, which is EOS
+ assert not tokens_clone.eq(self.eos).any()
+ tokens_clone[:, step] = self.eos
+ attn_clone = attn.index_select(0, bbsz_idx)[:, :, 1:step+2] if attn is not None else None
+
+ # compute scores per token position
+ pos_scores = scores.index_select(0, bbsz_idx)[:, :step+1]
+ pos_scores[:, step] = eos_scores
+ # convert from cumulative to per-position scores
+ pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1]
+
+ # normalize sentence-level scores
+ if self.normalize_scores:
+ combined_noisy_channel_eos_scores /= (step + 1) ** self.len_penalty
+
+ cum_unfin = []
+ prev = 0
+ for f in finished:
+ if f:
+ prev += 1
+ else:
+ cum_unfin.append(prev)
+
+ sents_seen = set()
+ for i, (idx, score) in enumerate(zip(bbsz_idx.tolist(), combined_noisy_channel_eos_scores.tolist())):
+ unfin_idx = idx // beam_size
+ sent = unfin_idx + cum_unfin[unfin_idx]
+
+ sents_seen.add((sent, unfin_idx))
+
+ if self.match_source_len and step > src_lengths_no_eos[unfin_idx]:
+ score = -math.inf
+
+ def get_hypo():
+
+ if attn_clone is not None:
+ # remove padding tokens from attn scores
+ hypo_attn = attn_clone[i][nonpad_idxs[sent]]
+ _, alignment = hypo_attn.max(dim=0)
+ else:
+ hypo_attn = None
+ alignment = None
+
+ return {
+ 'tokens': tokens_clone[i],
+ 'score': score,
+ 'attention': hypo_attn, # src_len x tgt_len
+ 'alignment': alignment,
+ 'positional_scores': pos_scores[i],
+ }
+
+ if len(finalized[sent]) < beam_size:
+ finalized[sent].append(get_hypo())
+
+ newly_finished = []
+ for sent, unfin_idx in sents_seen:
+ # check termination conditions for this sentence
+ if not finished[sent] and is_finished(sent, step, unfin_idx):
+ finished[sent] = True
+ newly_finished.append(unfin_idx)
+ return newly_finished
+
+ def noisy_channel_rescoring(lprobs, beam_size, bsz, src_tokens, tokens, k):
+ """Rescore the top k hypothesis from each beam using noisy channel modeling
+ Returns:
+ new_fw_lprobs: the direct model probabilities after pruning the top k
+ new_ch_lm_lprobs: the combined channel and language model probabilities
+ new_lm_lprobs: the language model probabilities after pruning the top k
+ """
+ with torch.no_grad():
+ lprobs_size = lprobs.size()
+ if prefix_tokens is not None and step < prefix_tokens.size(1):
+ probs_slice = lprobs.view(bsz, -1, lprobs.size(-1))[:, 0, :]
+ cand_scores = torch.gather(
+ probs_slice, dim=1,
+ index=prefix_tokens[:, step].view(-1, 1).data
+ ).expand(-1, beam_size).contiguous().view(bsz*beam_size, 1)
+ cand_indices = prefix_tokens[:, step].view(-1, 1).expand(bsz, beam_size).data.contiguous().view(bsz*beam_size, 1)
+
+ # need to calculate and save fw and lm probs for prefix tokens
+ fw_top_k = cand_scores
+ fw_top_k_idx = cand_indices
+ k = 1
+ else:
+ # take the top k best words for every sentence in batch*beam
+ fw_top_k, fw_top_k_idx = torch.topk(lprobs.view(beam_size*bsz, -1), k=k)
+ eos_idx = torch.nonzero(fw_top_k_idx.view(bsz*beam_size*k, -1) == self.eos)[:, 0]
+ ch_scores = fw_top_k.new_full((beam_size*bsz*k, ), 0)
+ src_size = torch.sum(src_tokens[:, :] != self.src_dict.pad_index, dim=1, keepdim=True, dtype=fw_top_k.dtype)
+
+ if self.combine_method != "lm_only":
+ temp_src_tokens_full = src_tokens[:, :].repeat(1, k).view(bsz*beam_size*k, -1)
+ not_padding = temp_src_tokens_full[:, 1:] != self.src_dict.pad_index
+ cur_tgt_size = step+2
+
+ # add eos to all candidate sentences except those that already end in eos
+ eos_tokens = tokens[:, 0].repeat(1, k).view(-1, 1)
+ eos_tokens[eos_idx] = self.tgt_dict.pad_index
+
+ if step == 0:
+ channel_input = torch.cat((fw_top_k_idx.view(-1, 1), eos_tokens), 1)
+ else:
+ # move eos from beginning to end of target sentence
+ channel_input = torch.cat((tokens[:, 1:step + 1].repeat(1, k).view(-1, step), fw_top_k_idx.view(-1, 1), eos_tokens), 1)
+
+ ch_input_lengths = torch.tensor(np.full(channel_input.size(0), cur_tgt_size))
+ ch_input_lengths[eos_idx] = cur_tgt_size-1
+ if self.channel_scoring_type == "unnormalized":
+ ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths)
+ ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True)
+ del ch_encoder_output
+ ch_intermed_scores = channel_model.decoder.unnormalized_scores_given_target(ch_decoder_output, target_ids=temp_src_tokens_full[:, 1:])
+ ch_intermed_scores = ch_intermed_scores.float()
+ ch_intermed_scores *= not_padding.float()
+ ch_scores = torch.sum(ch_intermed_scores, dim=1)
+ elif self.channel_scoring_type == "k2_separate":
+ for k_idx in range(k):
+ k_eos_tokens = eos_tokens[k_idx::k, :]
+ if step == 0:
+ k_ch_input = torch.cat((fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1)
+ else:
+ # move eos from beginning to end of target sentence
+ k_ch_input = torch.cat((tokens[:, 1:step + 1], fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1)
+ k_ch_input_lengths = ch_input_lengths[k_idx::k]
+ k_ch_output = channel_model(k_ch_input, k_ch_input_lengths, src_tokens)
+ k_ch_lprobs = channel_model.get_normalized_probs(k_ch_output, log_probs=True)
+ k_ch_intermed_scores = torch.gather(k_ch_lprobs[:, :-1, :], 2, src_tokens[:, 1:].unsqueeze(2)).squeeze(2)
+ k_ch_intermed_scores *= not_padding.float()
+ ch_scores[k_idx::k] = torch.sum(k_ch_intermed_scores, dim=1)
+ elif self.channel_scoring_type == "src_vocab":
+ ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths)
+ ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True)
+
+ del ch_encoder_output
+ ch_lprobs = normalized_scores_with_batch_vocab(
+ channel_model.decoder,
+ ch_decoder_output, src_tokens, k, bsz, beam_size,
+ self.src_dict.pad_index, top_k=self.top_k_vocab)
+ ch_scores = torch.sum(ch_lprobs, dim=1)
+ elif self.channel_scoring_type == "src_vocab_batched":
+ ch_bsz_size = temp_src_tokens_full.shape[0]
+ ch_lprobs_list = [None] * len(range(0, ch_bsz_size, self.ch_scoring_bsz))
+ for i, start_idx in enumerate(range(0, ch_bsz_size, self.ch_scoring_bsz)):
+ end_idx = min(start_idx + self.ch_scoring_bsz, ch_bsz_size)
+ temp_src_tokens_full_batch = temp_src_tokens_full[start_idx:end_idx, :]
+ channel_input_batch = channel_input[start_idx:end_idx, :]
+ ch_input_lengths_batch = ch_input_lengths[start_idx:end_idx]
+ ch_encoder_output_batch = channel_model.encoder(channel_input_batch, src_lengths=ch_input_lengths_batch)
+ ch_decoder_output_batch, _ = channel_model.decoder(temp_src_tokens_full_batch, encoder_out=ch_encoder_output_batch, features_only=True)
+ ch_lprobs_list[i] = normalized_scores_with_batch_vocab(
+ channel_model.decoder,
+ ch_decoder_output_batch, src_tokens, k, bsz, beam_size,
+ self.src_dict.pad_index, top_k=self.top_k_vocab,
+ start_idx=start_idx, end_idx=end_idx)
+ ch_lprobs = torch.cat(ch_lprobs_list, dim=0)
+ ch_scores = torch.sum(ch_lprobs, dim=1)
+ else:
+ ch_output = channel_model(channel_input, ch_input_lengths, temp_src_tokens_full)
+ ch_lprobs = channel_model.get_normalized_probs(ch_output, log_probs=True)
+ ch_intermed_scores = torch.gather(ch_lprobs[:, :-1, :], 2, temp_src_tokens_full[:, 1:].unsqueeze(2)).squeeze().view(bsz*beam_size*k, -1)
+ ch_intermed_scores *= not_padding.float()
+ ch_scores = torch.sum(ch_intermed_scores, dim=1)
+
+ else:
+ cur_tgt_size = 0
+ ch_scores = ch_scores.view(bsz*beam_size, k)
+ expanded_lm_prefix_scores = lm_prefix_scores.unsqueeze(1).expand(-1, k).flatten()
+
+ if self.share_tgt_dict:
+ lm_scores = get_lm_scores(lm, tokens[:, :step + 1].view(-1, step+1), lm_incremental_states, fw_top_k_idx.view(-1, 1), torch.tensor(np.full(tokens.size(0), step+1)), k)
+ else:
+ new_lm_input = dict2dict(tokens[:, :step + 1].view(-1, step+1), self.tgt_to_lm)
+ new_cands = dict2dict(fw_top_k_idx.view(-1, 1), self.tgt_to_lm)
+ lm_scores = get_lm_scores(lm, new_lm_input, lm_incremental_states, new_cands, torch.tensor(np.full(tokens.size(0), step+1)), k)
+
+ lm_scores.add_(expanded_lm_prefix_scores)
+ ch_lm_scores = combine_ch_lm(self.combine_method, ch_scores, lm_scores, src_size, cur_tgt_size)
+ # initialize all as min value
+ new_fw_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1)
+ new_ch_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1)
+ new_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1)
+ new_fw_lprobs[:, self.pad] = -math.inf
+ new_ch_lm_lprobs[:, self.pad] = -math.inf
+ new_lm_lprobs[:, self.pad] = -math.inf
+
+ new_fw_lprobs.scatter_(1, fw_top_k_idx, fw_top_k)
+ new_ch_lm_lprobs.scatter_(1, fw_top_k_idx, ch_lm_scores)
+ new_lm_lprobs.scatter_(1, fw_top_k_idx, lm_scores.view(-1, k))
+ return new_fw_lprobs, new_ch_lm_lprobs, new_lm_lprobs
+
+ def combine_ch_lm(combine_type, ch_scores, lm_scores1, src_size, tgt_size):
+ if self.channel_scoring_type == "unnormalized":
+ ch_scores = self.log_softmax_fn(
+ ch_scores.view(-1, self.beam_size * self.k2)
+ ).view(ch_scores.shape)
+ ch_scores = ch_scores * self.ch_weight
+ lm_scores1 = lm_scores1 * self.lm_weight
+
+ if combine_type == "lm_only":
+ # log P(T|S) + log P(T)
+ ch_scores = lm_scores1.view(ch_scores.size())
+ elif combine_type == "noisy_channel":
+ # 1/t log P(T|S) + 1/s log P(S|T) + 1/t log P(T)
+ if self.normalize_lm_scores_by_tgt_len:
+ ch_scores.div_(src_size)
+ lm_scores_norm = lm_scores1.view(ch_scores.size()).div(tgt_size)
+ ch_scores.add_(lm_scores_norm)
+ # 1/t log P(T|S) + 1/s log P(S|T) + 1/s log P(T)
+ else:
+ ch_scores.add_(lm_scores1.view(ch_scores.size()))
+ ch_scores.div_(src_size)
+
+ return ch_scores
+
+ if self.channel_models is not None:
+ channel_model = self.channel_models[0] # assume only one channel_model model
+ else:
+ channel_model = None
+
+ lm = EnsembleModel(self.lm_models)
+ lm_incremental_states = torch.jit.annotate(
+ List[Dict[str, Dict[str, Optional[Tensor]]]],
+ [
+ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {})
+ for i in range(lm.models_size)
+ ],
+ )
+
+ reorder_state = None
+ batch_idxs = None
+ for step in range(max_len + 1): # one extra step for EOS marker
+ # reorder decoder internal states based on the prev choice of beams
+ if reorder_state is not None:
+ if batch_idxs is not None:
+ # update beam indices to take into account removed sentences
+ corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as(batch_idxs)
+ reorder_state.view(-1, beam_size).add_(corr.unsqueeze(-1) * beam_size)
+ model.reorder_incremental_state(incremental_states, reorder_state)
+ encoder_outs = model.reorder_encoder_out(encoder_outs, reorder_state)
+
+ lm.reorder_incremental_state(lm_incremental_states, reorder_state)
+
+ fw_lprobs, avg_attn_scores = model.forward_decoder(
+ tokens[:, :step + 1], encoder_outs, incremental_states, temperature=self.temperature,
+ )
+
+ fw_lprobs[:, self.pad] = -math.inf # never select pad
+ fw_lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty
+ fw_lprobs, ch_lm_lprobs, lm_lprobs = noisy_channel_rescoring(fw_lprobs, beam_size, bsz, src_tokens, tokens, self.k2)
+
+ # handle min and max length constraints
+ if step >= max_len:
+ fw_lprobs[:, :self.eos] = -math.inf
+ fw_lprobs[:, self.eos + 1:] = -math.inf
+ elif step < self.min_len:
+ fw_lprobs[:, self.eos] = -math.inf
+
+ # handle prefix tokens (possibly with different lengths)
+ if prefix_tokens is not None and step < prefix_tokens.size(1):
+ prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1)
+ prefix_mask = prefix_toks.ne(self.pad)
+
+ prefix_fw_lprobs = fw_lprobs.gather(-1, prefix_toks.unsqueeze(-1))
+ fw_lprobs[prefix_mask] = -math.inf
+ fw_lprobs[prefix_mask] = fw_lprobs[prefix_mask].scatter_(
+ -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_fw_lprobs
+ )
+
+ prefix_ch_lm_lprobs = ch_lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1))
+ ch_lm_lprobs[prefix_mask] = -math.inf
+ ch_lm_lprobs[prefix_mask] = ch_lm_lprobs[prefix_mask].scatter_(
+ -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_ch_lm_lprobs
+ )
+
+ prefix_lm_lprobs = lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1))
+ lm_lprobs[prefix_mask] = -math.inf
+ lm_lprobs[prefix_mask] = lm_lprobs[prefix_mask].scatter_(
+ -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lm_lprobs
+ )
+
+ # if prefix includes eos, then we should make sure tokens and
+ # scores are the same across all beams
+ eos_mask = prefix_toks.eq(self.eos)
+ if eos_mask.any():
+ # validate that the first beam matches the prefix
+ first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[:, 0, 1:step + 1]
+ eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0]
+ target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step]
+ assert (first_beam == target_prefix).all()
+
+ def replicate_first_beam(tensor, mask):
+ tensor = tensor.view(-1, beam_size, tensor.size(-1))
+ tensor[mask] = tensor[mask][:, :1, :]
+ return tensor.view(-1, tensor.size(-1))
+
+ # copy tokens, scores and lprobs from the first beam to all beams
+ tokens = replicate_first_beam(tokens, eos_mask_batch_dim)
+ scores = replicate_first_beam(scores, eos_mask_batch_dim)
+
+ fw_lprobs = replicate_first_beam(fw_lprobs, eos_mask_batch_dim)
+ ch_lm_lprobs = replicate_first_beam(ch_lm_lprobs, eos_mask_batch_dim)
+ lm_lprobs = replicate_first_beam(lm_lprobs, eos_mask_batch_dim)
+
+ if self.no_repeat_ngram_size > 0:
+ # for each beam and batch sentence, generate a list of previous ngrams
+ gen_ngrams = [{} for bbsz_idx in range(bsz * beam_size)]
+ for bbsz_idx in range(bsz * beam_size):
+ gen_tokens = tokens[bbsz_idx].tolist()
+ for ngram in zip(*[gen_tokens[i:] for i in range(self.no_repeat_ngram_size)]):
+ gen_ngrams[bbsz_idx][tuple(ngram[:-1])] = \
+ gen_ngrams[bbsz_idx].get(tuple(ngram[:-1]), []) + [ngram[-1]]
+
+ # Record attention scores
+ if avg_attn_scores is not None:
+ if attn is None:
+ attn = scores.new(bsz * beam_size, src_tokens.size(1), max_len + 2)
+ attn_buf = attn.clone()
+ nonpad_idxs = src_tokens.ne(self.pad)
+ attn[:, :, step + 1].copy_(avg_attn_scores)
+
+ scores = scores.type_as(fw_lprobs)
+ scores_buf = scores_buf.type_as(fw_lprobs)
+
+ self.search.set_src_lengths(src_lengths_no_eos)
+
+ if self.no_repeat_ngram_size > 0:
+ def calculate_banned_tokens(bbsz_idx):
+ # before decoding the next token, prevent decoding of ngrams that have already appeared
+ ngram_index = tuple(tokens[bbsz_idx, step + 2 - self.no_repeat_ngram_size:step + 1].tolist())
+ return gen_ngrams[bbsz_idx].get(ngram_index, [])
+
+ if step + 2 - self.no_repeat_ngram_size >= 0:
+ # no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
+ banned_tokens = [calculate_banned_tokens(bbsz_idx) for bbsz_idx in range(bsz * beam_size)]
+ else:
+ banned_tokens = [[] for bbsz_idx in range(bsz * beam_size)]
+
+ for bbsz_idx in range(bsz * beam_size):
+ fw_lprobs[bbsz_idx, banned_tokens[bbsz_idx]] = -math.inf
+
+ combined_noisy_channel_scores, fw_lprobs_top_k, lm_lprobs_top_k, cand_indices, cand_beams = self.search.step(
+ step,
+ fw_lprobs.view(bsz, -1, self.vocab_size),
+ scores.view(bsz, beam_size, -1)[:, :, :step], ch_lm_lprobs.view(bsz, -1, self.vocab_size),
+ lm_lprobs.view(bsz, -1, self.vocab_size), self.combine_method
+ )
+
+ # cand_bbsz_idx contains beam indices for the top candidate
+ # hypotheses, with a range of values: [0, bsz*beam_size),
+ # and dimensions: [bsz, cand_size]
+ cand_bbsz_idx = cand_beams.add(bbsz_offsets)
+
+ # finalize hypotheses that end in eos (except for candidates to be ignored)
+ eos_mask = cand_indices.eq(self.eos)
+ eos_mask[:, :beam_size] &= ~cands_to_ignore
+
+ # only consider eos when it's among the top beam_size indices
+ eos_bbsz_idx = torch.masked_select(
+ cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size]
+ )
+
+ finalized_sents = set()
+ if eos_bbsz_idx.numel() > 0:
+ eos_scores = torch.masked_select(
+ fw_lprobs_top_k[:, :beam_size], mask=eos_mask[:, :beam_size]
+ )
+ combined_noisy_channel_eos_scores = torch.masked_select(
+ combined_noisy_channel_scores[:, :beam_size],
+ mask=eos_mask[:, :beam_size],
+ )
+
+ # finalize hypo using channel model score
+ finalized_sents = finalize_hypos(
+ step, eos_bbsz_idx, eos_scores, combined_noisy_channel_eos_scores)
+
+ num_remaining_sent -= len(finalized_sents)
+
+ assert num_remaining_sent >= 0
+ if num_remaining_sent == 0:
+ break
+
+ if len(finalized_sents) > 0:
+ new_bsz = bsz - len(finalized_sents)
+
+ # construct batch_idxs which holds indices of batches to keep for the next pass
+ batch_mask = cand_indices.new_ones(bsz)
+ batch_mask[cand_indices.new(finalized_sents)] = 0
+ batch_idxs = torch.nonzero(batch_mask).squeeze(-1)
+
+ eos_mask = eos_mask[batch_idxs]
+ cand_beams = cand_beams[batch_idxs]
+ bbsz_offsets.resize_(new_bsz, 1)
+ cand_bbsz_idx = cand_beams.add(bbsz_offsets)
+
+ lm_lprobs_top_k = lm_lprobs_top_k[batch_idxs]
+
+ fw_lprobs_top_k = fw_lprobs_top_k[batch_idxs]
+ cand_indices = cand_indices[batch_idxs]
+ if prefix_tokens is not None:
+ prefix_tokens = prefix_tokens[batch_idxs]
+ src_lengths_no_eos = src_lengths_no_eos[batch_idxs]
+ cands_to_ignore = cands_to_ignore[batch_idxs]
+
+ scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
+ scores_buf.resize_as_(scores)
+ tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
+ tokens_buf.resize_as_(tokens)
+ src_tokens = src_tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
+ src_lengths = src_lengths.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
+ lm_prefix_scores = lm_prefix_scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1).squeeze()
+
+ if attn is not None:
+ attn = attn.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, attn.size(1), -1)
+ attn_buf.resize_as_(attn)
+ bsz = new_bsz
+ else:
+ batch_idxs = None
+
+ # Set active_mask so that values > cand_size indicate eos or
+ # ignored hypos and values < cand_size indicate candidate
+ # active hypos. After this, the min values per row are the top
+ # candidate active hypos.
+ eos_mask[:, :beam_size] |= cands_to_ignore
+ active_mask = torch.add(
+ eos_mask.type_as(cand_offsets) * cand_size,
+ cand_offsets[: eos_mask.size(1)],
+ )
+
+ # get the top beam_size active hypotheses, which are just the hypos
+ # with the smallest values in active_mask
+ active_hypos, new_cands_to_ignore = buffer('active_hypos'), buffer('new_cands_to_ignore')
+ torch.topk(
+ active_mask, k=beam_size, dim=1, largest=False,
+ out=(new_cands_to_ignore, active_hypos)
+ )
+
+ # update cands_to_ignore to ignore any finalized hypos
+ cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size]
+ assert (~cands_to_ignore).any(dim=1).all()
+
+ active_bbsz_idx = buffer('active_bbsz_idx')
+ torch.gather(
+ cand_bbsz_idx, dim=1, index=active_hypos,
+ out=active_bbsz_idx,
+ )
+ active_scores = torch.gather(
+ fw_lprobs_top_k, dim=1, index=active_hypos,
+ out=scores[:, step].view(bsz, beam_size),
+ )
+
+ active_bbsz_idx = active_bbsz_idx.view(-1)
+ active_scores = active_scores.view(-1)
+
+ # copy tokens and scores for active hypotheses
+ torch.index_select(
+ tokens[:, :step + 1], dim=0, index=active_bbsz_idx,
+ out=tokens_buf[:, :step + 1],
+ )
+ torch.gather(
+ cand_indices, dim=1, index=active_hypos,
+ out=tokens_buf.view(bsz, beam_size, -1)[:, :, step + 1],
+ )
+ if step > 0:
+ torch.index_select(
+ scores[:, :step], dim=0, index=active_bbsz_idx,
+ out=scores_buf[:, :step],
+ )
+ torch.gather(
+ fw_lprobs_top_k, dim=1, index=active_hypos,
+ out=scores_buf.view(bsz, beam_size, -1)[:, :, step],
+ )
+ torch.gather(
+ lm_lprobs_top_k, dim=1, index=active_hypos,
+ out=lm_prefix_scores.view(bsz, beam_size)
+ )
+
+ # copy attention for active hypotheses
+ if attn is not None:
+ torch.index_select(
+ attn[:, :, :step + 2], dim=0, index=active_bbsz_idx,
+ out=attn_buf[:, :, :step + 2],
+ )
+
+ # swap buffers
+ tokens, tokens_buf = tokens_buf, tokens
+ scores, scores_buf = scores_buf, scores
+ if attn is not None:
+ attn, attn_buf = attn_buf, attn
+
+ # reorder incremental state in decoder
+ reorder_state = active_bbsz_idx
+
+ # sort by score descending
+ for sent in range(len(finalized)):
+ finalized[sent] = sorted(finalized[sent], key=lambda r: r['score'], reverse=True)
+
+ return finalized
+
+
+def get_lm_scores(model, input_tokens, incremental_states, cand_tokens, input_len, k):
+ with torch.no_grad():
+ lm_lprobs, avg_attn_scores = model.forward_decoder(
+ input_tokens, encoder_outs=None, incremental_states=incremental_states,
+ )
+
+ lm_lprobs_size = lm_lprobs.size(0)
+ probs_next_wrd = torch.gather(lm_lprobs.repeat(1, k).view(lm_lprobs_size*k, -1), 1, cand_tokens).squeeze().view(-1)
+
+ return probs_next_wrd
+
+
+def make_dict2dict(old_dict, new_dict):
+ dict2dict_map = {}
+ for sym in old_dict.symbols:
+ dict2dict_map[old_dict.index(sym)] = new_dict.index(sym)
+ return dict2dict_map
+
+
+def dict2dict(tokens, dict2dict_map):
+ if tokens.device == torch.device('cpu'):
+ tokens_tmp = tokens
+ else:
+ tokens_tmp = tokens.cpu()
+ return tokens_tmp.map_(
+ tokens_tmp,
+ lambda _, val, dict2dict_map=dict2dict_map : dict2dict_map[float(val)]
+ ).to(tokens.device)
+
+
+def reorder_tokens(tokens, lengths, eos):
+ # reorder source tokens so they may be used as reference for P(S|T)
+ return torch.cat((tokens.new([eos]), tokens[-lengths:-1], tokens[:-lengths]), 0)
+
+
+def reorder_all_tokens(tokens, lengths, eos):
+ # used to reorder src tokens from [ .. ] to [ ...]
+ # so source tokens can be used to predict P(S|T)
+ return torch.stack([reorder_tokens(token, length, eos) for token, length in zip(tokens, lengths)])
+
+
+def normalized_scores_with_batch_vocab(
+ model_decoder, features, target_ids, k, bsz, beam_size,
+ pad_idx, top_k=0, vocab_size_meter=None, start_idx=None,
+ end_idx=None, **kwargs):
+ """
+ Get normalized probabilities (or log probs) from a net's output
+ w.r.t. vocab consisting of target IDs in the batch
+ """
+ if model_decoder.adaptive_softmax is None:
+ weight = model_decoder.output_projection.weight
+ vocab_ids = torch.unique(
+ torch.cat(
+ (torch.unique(target_ids), torch.arange(top_k, device=target_ids.device))
+ )
+ )
+ id_map = dict(zip(vocab_ids.tolist(), range(len(vocab_ids))))
+ mapped_target_ids = target_ids.cpu().apply_(
+ lambda x, id_map=id_map: id_map[x]
+ ).to(target_ids.device)
+ expanded_target_ids = mapped_target_ids[:, :].repeat(1, k).view(bsz*beam_size*k, -1)
+ if start_idx is not None and end_idx is not None:
+ expanded_target_ids = expanded_target_ids[start_idx:end_idx, :]
+ logits = F.linear(features, weight[vocab_ids, :])
+ log_softmax = F.log_softmax(logits, dim=-1, dtype=torch.float32)
+ intermed_scores = torch.gather(
+ log_softmax[:, :-1, :],
+ 2,
+ expanded_target_ids[:, 1:].unsqueeze(2),
+ ).squeeze()
+ not_padding = expanded_target_ids[:, 1:] != pad_idx
+ intermed_scores *= not_padding.float()
+ return intermed_scores
+ else:
+ raise ValueError("adaptive softmax doesn't work with " +
+ "`normalized_scores_with_batch_vocab()`")
diff --git a/fairseq/examples/fast_noisy_channel/noisy_channel_translation.py b/fairseq/examples/fast_noisy_channel/noisy_channel_translation.py
new file mode 100644
index 0000000000000000000000000000000000000000..b74bdfd456f9b7c546ce528173c77431b4f57ac1
--- /dev/null
+++ b/fairseq/examples/fast_noisy_channel/noisy_channel_translation.py
@@ -0,0 +1,127 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from fairseq.tasks.translation import TranslationTask
+from fairseq.tasks.language_modeling import LanguageModelingTask
+from fairseq import checkpoint_utils
+import argparse
+from fairseq.tasks import register_task
+import torch
+
+
+@register_task("noisy_channel_translation")
+class NoisyChannelTranslation(TranslationTask):
+ """
+ Rescore the top k candidates from each beam using noisy channel modeling
+ """
+
+ @staticmethod
+ def add_args(parser):
+ """Add task-specific arguments to the parser."""
+ TranslationTask.add_args(parser)
+ # fmt: off
+ parser.add_argument('--channel-model', metavar='FILE',
+ help='path to P(S|T) model. P(S|T) and P(T|S) must share source and target dictionaries.')
+ parser.add_argument('--combine-method', default='lm_only',
+ choices=['lm_only', 'noisy_channel'],
+ help="""method for combining direct and channel model scores.
+ lm_only: decode with P(T|S)P(T)
+ noisy_channel: decode with 1/t P(T|S) + 1/s(P(S|T)P(T))""")
+ parser.add_argument('--normalize-lm-scores-by-tgt-len', action='store_true', default=False,
+ help='normalize lm score by target length instead of source length')
+ parser.add_argument('--channel-scoring-type', default='log_norm', choices=['unnormalized', 'log_norm', 'k2_separate', 'src_vocab', 'src_vocab_batched'],
+ help="Normalize bw scores with log softmax or return bw scores without log softmax")
+ parser.add_argument('--top-k-vocab', default=0, type=int,
+ help='top k vocab IDs to use with `src_vocab` in channel model scoring')
+ parser.add_argument('--k2', default=50, type=int,
+ help='the top k2 candidates to rescore with the noisy channel model for each beam')
+ parser.add_argument('--ch-wt', default=1, type=float,
+ help='weight for the channel model')
+ parser.add_argument('--lm-model', metavar='FILE',
+ help='path to lm model file, to model P(T). P(T) must share the same vocab as the direct model on the target side')
+ parser.add_argument('--lm-data', metavar='FILE',
+ help='path to lm model training data for target language, used to properly load LM with correct dictionary')
+ parser.add_argument('--lm-wt', default=1, type=float,
+ help='the weight of the lm in joint decoding')
+ # fmt: on
+
+ def build_generator(
+ self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None
+ ):
+ if getattr(args, "score_reference", False):
+ raise NotImplementedError()
+ else:
+ from .noisy_channel_sequence_generator import NoisyChannelSequenceGenerator
+ use_cuda = torch.cuda.is_available() and not self.args.cpu
+ assert self.args.lm_model is not None, '--lm-model required for noisy channel generation!'
+ assert self.args.lm_data is not None, '--lm-data required for noisy channel generation to map between LM and bitext vocabs'
+ if self.args.channel_model is not None:
+ import copy
+ ch_args_task = copy.deepcopy(self.args)
+ tmp = ch_args_task.source_lang
+ ch_args_task.source_lang = ch_args_task.target_lang
+ ch_args_task.target_lang = tmp
+ ch_args_task._name = 'translation'
+ channel_task = TranslationTask.setup_task(ch_args_task)
+
+ arg_dict = {}
+ arg_dict['task'] = 'language_modeling'
+ arg_dict['sample_break_mode'] = 'eos'
+ arg_dict['data'] = self.args.lm_data
+ arg_dict['output_dictionary_size'] = -1
+ lm_args = argparse.Namespace(**arg_dict)
+ lm_task = LanguageModelingTask.setup_task(lm_args)
+ lm_dict = lm_task.output_dictionary
+
+ if self.args.channel_model is not None:
+ channel_models, _ = checkpoint_utils.load_model_ensemble(self.args.channel_model.split(':'), task=channel_task)
+
+ for model in channel_models:
+ model.make_generation_fast_(
+ beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
+ need_attn=args.print_alignment,
+ )
+ if self.args.fp16:
+ model.half()
+ if use_cuda:
+ model.cuda()
+ else:
+ channel_models = None
+
+ lm_models, _ = checkpoint_utils.load_model_ensemble(self.args.lm_model.split(':'), task=lm_task)
+
+ for model in lm_models:
+ model.make_generation_fast_(
+ beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
+ need_attn=args.print_alignment,
+ )
+ if self.args.fp16:
+ model.half()
+ if use_cuda:
+ model.cuda()
+ return NoisyChannelSequenceGenerator(
+ combine_method=self.args.combine_method,
+ tgt_dict=self.target_dictionary,
+ src_dict=self.source_dictionary,
+ beam_size=getattr(args, 'beam', 5),
+ max_len_a=getattr(args, 'max_len_a', 0),
+ max_len_b=getattr(args, 'max_len_b', 200),
+ min_len=getattr(args, 'min_len', 1),
+ len_penalty=getattr(args, 'lenpen', 1),
+ unk_penalty=getattr(args, 'unkpen', 0),
+ temperature=getattr(args, 'temperature', 1.),
+ match_source_len=getattr(args, 'match_source_len', False),
+ no_repeat_ngram_size=getattr(args, 'no_repeat_ngram_size', 0),
+ normalize_scores=(not getattr(args, 'unnormalized', False)),
+ channel_models=channel_models,
+ k2=getattr(self.args, 'k2', 50),
+ ch_weight=getattr(self.args, 'ch_wt', 1),
+ channel_scoring_type=self.args.channel_scoring_type,
+ top_k_vocab=self.args.top_k_vocab,
+ lm_models=lm_models,
+ lm_dict=lm_dict,
+ lm_weight=getattr(self.args, 'lm_wt', 1),
+ normalize_lm_scores_by_tgt_len=getattr(self.args, 'normalize_lm_scores_by_tgt_len', False),
+ )
diff --git a/fairseq/examples/flores101/README.md b/fairseq/examples/flores101/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..635c13f40bd0ccab704735bc5c26ea0192ea98cd
--- /dev/null
+++ b/fairseq/examples/flores101/README.md
@@ -0,0 +1,223 @@
+
+
+
+
+# Flores101: Large-Scale Multilingual Machine Translation
+
+## Introduction
+
+Baseline pretrained models for small and large tracks of WMT 21 Large-Scale Multilingual Machine Translation competition.
+
+Flores Task at WMT 21: http://www.statmt.org/wmt21/large-scale-multilingual-translation-task.html
+
+Flores announement blog post: https://ai.facebook.com/blog/flores-researchers-kick-off-multilingual-translation-challenge-at-wmt-and-call-for-compute-grants/
+
+
+
+## Pretrained models
+
+Model | Num layers | Embed dimension | FFN dimension| Vocab Size | #params | Download
+---|---|---|---|---|---|---
+`flores101_mm100_615M` | 12 | 1024 | 4096 | 256,000 | 615M | https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_615M.tar.gz
+`flores101_mm100_175M` | 6 | 512 | 2048 | 256,000 | 175M | https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_175M.tar.gz
+
+
+These models are trained similar to [M2M-100](https://arxiv.org/abs/2010.11125) with additional support for the languages that are part of the WMT Large-Scale Multilingual Machine Translation track. Full list of languages can be found at the bottom.
+
+
+## Example Generation code
+
+### Download model, sentencepiece vocab
+
+```bash
+fairseq=/path/to/fairseq
+cd $fairseq
+
+# Download 615M param model.
+wget https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_615M.tar.gz
+
+# Extract
+tar -xvzf flores101_mm100_615M.tar.gz
+```
+
+### Encode using our SentencePiece Model
+Note: Install SentencePiece from [here](https://github.com/google/sentencepiece)
+
+
+```bash
+fairseq=/path/to/fairseq
+cd $fairseq
+
+# Download example dataset From German to French
+sacrebleu --echo src -l de-fr -t wmt19 | head -n 20 > raw_input.de-fr.de
+sacrebleu --echo ref -l de-fr -t wmt19 | head -n 20 > raw_input.de-fr.fr
+
+for lang in de fr ; do
+ python scripts/spm_encode.py \
+ --model flores101_mm100_615M/sentencepiece.bpe.model \
+ --output_format=piece \
+ --inputs=raw_input.de-fr.${lang} \
+ --outputs=spm.de-fr.${lang}
+done
+```
+
+### Binarization
+
+```bash
+fairseq-preprocess \
+ --source-lang de --target-lang fr \
+ --testpref spm.de-fr \
+ --thresholdsrc 0 --thresholdtgt 0 \
+ --destdir data_bin \
+ --srcdict flores101_mm100_615M/dict.txt --tgtdict flores101_mm100_615M/dict.txt
+```
+
+### Generation
+
+
+```bash
+fairseq-generate \
+ data_bin \
+ --batch-size 1 \
+ --path flores101_mm100_615M/model.pt \
+ --fixed-dictionary flores101_mm100_615M/dict.txt \
+ -s de -t fr \
+ --remove-bpe 'sentencepiece' \
+ --beam 5 \
+ --task translation_multi_simple_epoch \
+ --lang-pairs flores101_mm100_615M/language_pairs.txt \
+ --decoder-langtok --encoder-langtok src \
+ --gen-subset test \
+ --fp16 \
+ --dataset-impl mmap \
+ --distributed-world-size 1 --distributed-no-spawn
+```
+
+### Supported Languages and lang code
+
+Language | lang code
+---|---
+Akrikaans | af
+Amharic | am
+Arabic | ar
+Assamese | as
+Asturian | ast
+Aymara | ay
+Azerbaijani | az
+Bashkir | ba
+Belarusian | be
+Bulgarian | bg
+Bengali | bn
+Breton | br
+Bosnian | bs
+Catalan | ca
+Cebuano | ceb
+Chokwe | cjk
+Czech | cs
+Welsh | cy
+Danish | da
+German | de
+Dyula| dyu
+Greek | el
+English | en
+Spanish | es
+Estonian | et
+Persian | fa
+Fulah | ff
+Finnish | fi
+French | fr
+Western Frisian | fy
+Irish | ga
+Scottish Gaelic | gd
+Galician | gl
+Gujarati | gu
+Hausa | ha
+Hebrew | he
+Hindi | hi
+Croatian | hr
+Haitian Creole | ht
+Hungarian | hu
+Armenian | hy
+Indonesian | id
+Igbo | ig
+Iloko | ilo
+Icelandic | is
+Italian | it
+Japanese | ja
+Javanese | jv
+Georgian | ka
+Kachin | kac
+Kamba | kam
+Kabuverdianu | kea
+Kongo | kg
+Kazakh | kk
+Central Khmer | km
+Kimbundu | kmb
+Northern Kurdish | kmr
+Kannada | kn
+Korean | ko
+Kurdish | ku
+Kyrgyz | ky
+Luxembourgish | lb
+Ganda | lg
+Lingala | ln
+Lao | lo
+Lithuanian | lt
+Luo | luo
+Latvian | lv
+Malagasy | mg
+Maori | mi
+Macedonian | mk
+Malayalam | ml
+Mongolian | mn
+Marathi | mr
+Malay | ms
+Maltese | mt
+Burmese | my
+Nepali | ne
+Dutch | nl
+Norwegian | no
+Northern Sotho | ns
+Nyanja | ny
+Occitan | oc
+Oromo | om
+Oriya | or
+Punjabi | pa
+Polish | pl
+Pashto | ps
+Portuguese | pt
+Quechua | qu
+Romanian | ro
+Russian | ru
+Sindhi | sd
+Shan | shn
+Sinhala | si
+Slovak | sk
+Slovenian | sl
+Shona | sn
+Somali | so
+Albanian | sq
+Serbian | sr
+Swati | ss
+Sundanese | su
+Swedish | sv
+Swahili | sw
+Tamil | ta
+Telugu | te
+Tajik | tg
+Thai | th
+Tigrinya | ti
+Tagalog | tl
+Tswana | tn
+Turkish | tr
+Ukrainian | uk
+Umbundu | umb
+Urdu | ur
+Uzbek | uz
+Vietnamese | vi
+Wolof | wo
+Xhosa | xh
+Yiddish | yi
+Yoruba | yo
+Chinese| zh
+Zulu | zu
diff --git a/fairseq/examples/flores101/flores_logo.png b/fairseq/examples/flores101/flores_logo.png
new file mode 100644
index 0000000000000000000000000000000000000000..d4d1455c6eab608ff5317ce885183cd213564273
Binary files /dev/null and b/fairseq/examples/flores101/flores_logo.png differ
diff --git a/fairseq/examples/fully_sharded_data_parallel/README.md b/fairseq/examples/fully_sharded_data_parallel/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..b9e44fef48bee5faeee27b3d1d1b1eb96b6a477f
--- /dev/null
+++ b/fairseq/examples/fully_sharded_data_parallel/README.md
@@ -0,0 +1,177 @@
+# Fully Sharded Data Parallel (FSDP)
+
+## Overview
+Recent work by [Microsoft](https://arxiv.org/abs/1910.02054) and
+[Google](https://arxiv.org/abs/2004.13336) has shown that data parallel
+training can be made significantly more efficient by sharding the model
+parameters and optimizer state across data parallel workers. These ideas are
+encapsulated in the new **`FullyShardedDataParallel` (FSDP)** wrapper provided
+by [fairscale](https://github.com/facebookresearch/fairscale/).
+
+Compared to PyTorch DDP:
+* FSDP produces identical results as PyTorch DDP (it's still synchronous data parallel training)
+* FSDP shards parameters (FP16 + FP32) and optimizer state across data parallel GPUs
+* FSDP is faster than PyTorch DDP because the optimizer step is sharded, and the communication can be overlapped with the forward pass
+* FSDP enables training 13B parameter models on 8 GPUs and 175B parameter models on 128 GPUs
+
+FSDP is fully supported in fairseq via the following new arguments:
+* `--ddp-backend=fully_sharded`: enables full sharding via FSDP
+* `--cpu-offload`: offloads the optimizer state and FP32 model copy to CPU (combine with `--optimizer=cpu_adam`)
+* `--no-reshard-after-forward`: increases training speed for large models (1B+ params) and is similar to ZeRO stage 2
+* other popular options (`--fp16`, `--update-freq`, `--checkpoint-activations`, `--offload-activations`, etc.) continue to work as normal
+
+Limitations
+
+FSDP currently has several limitations compared to fairseq's default DDP backend (PyTorch DDP):
+* while FSDP is full compatible with pointwise Optimizers (e.g., Adam, AdamW, Adadelta, Adamax, SGD, etc.), it is not currently compatible with non-pointwise Optimizers (e.g., Adagrad, Adafactor, LAMB, etc.)
+* FSDP depends on flattening the parameters, so models that currently require `--fp16-no-flatten-grads` may not be supported
+
+See the [fairscale docs](https://fairscale.readthedocs.io/en/latest/api/nn/fsdp_tips.html) for a more detailed
+explanation of these and other limitations.
+
+
+
+How it works
+
+
+
+See the [fairscale docs](https://fairscale.readthedocs.io/en/latest/api/nn/fsdp_tips.html) for a more detailed
+explanation of how FSDP works.
+
+
+
+## Example usage
+
+The following examples illustrate how to train a very large language model with
+13 billion parameters on 1 GPU by offloading parameters and optimizer states to
+CPU, or on 8 GPUs by fully sharding the params and optimizer states across GPUs.
+
+These examples use the WikiText-103 dataset for demonstration purposes, but
+in practice a much larger dataset will be needed to achieve good results.
+Follow the [instructions here](https://github.com/pytorch/fairseq/blob/main/examples/roberta/README.pretraining.md#1-preprocess-the-data)
+to preprocess the WikiText-103 dataset using the GPT-2/RoBERTa vocabulary.
+
+### 13B params on 1 V100 GPU (with CPU offloading)
+
+The following command trains a 13B parameter GPT-3 model on a single V100 GPU
+using the `--cpu-offload` feature to offload parameters and optimizer states to
+CPU. In this setting, the optimizer step (Adam) happens on CPU. We also use the
+`--checkpoint-activations` feature (sometimes called [gradient checkpointing](https://pytorch.org/docs/stable/checkpoint.html)),
+which further saves memory in exchange for a small increase in computation.
+
+**Requirements:**
+- Install the latest master version of fairscale: `pip install git+https://github.com/facebookresearch/fairscale.git@master`
+- You'll need 32GB of GPU memory and ~256GB of system memory to train the 13B param model.
+- If you have less system memory, the 6.7B param model can be trained with ~128GB of system memory, just set `--arch transformer_lm_gpt3_6_7`
+- We use the CPU Adam optimizer from [DeepSpeed](https://github.com/microsoft/DeepSpeed), so you'll need to `pip install deepspeed` before running the command.
+
+**Notes:**
+- The command will take ~5 minutes to start training, during which time it will appear to be hung, since randomly initializing 13B weights can be slow.
+- The `--cpu-offload` feature requires training in mixed precision (`--fp16`).
+- Tune the `OMP_NUM_THREADS` env variable for best performance with CPU offloading.
+- The example command below stops training after 10 steps (`--max-update 10`) and does not save checkpoints (`--no-save`).
+
+```bash
+OMP_NUM_THREADS=20 CUDA_VISIBLE_DEVICES=0 \
+ fairseq-train data-bin/wikitext-103-roberta-bpe-bin \
+ --ddp-backend fully_sharded --fp16 --fp16-init-scale 4 \
+ --cpu-offload --checkpoint-activations \
+ --task language_modeling --tokens-per-sample 2048 --batch-size 8 \
+ --arch transformer_lm_gpt3_13 \
+ --optimizer cpu_adam --adam-betas "(0.9,0.98)" \
+ --lr 0.0001 --lr-scheduler polynomial_decay --warmup-updates 5 --total-num-update 10 \
+ --max-update 10 --no-save --log-format json --log-interval 1
+```
+
+Example output
+
+```
+(...)
+2021-03-08 12:29:51 | INFO | fairseq_cli.train | num. model params: 13,110,865,920 (num. trained: 13,110,865,920)
+(...)
+2021-03-08 12:29:51 | INFO | fairseq_cli.train | training on 1 devices (GPUs/TPUs)
+2021-03-08 12:29:51 | INFO | fairseq_cli.train | max tokens per GPU = None and batch size per GPU = 8
+(...)
+Adam Optimizer #0 is created with AVX2 arithmetic capability.
+Config: alpha=0.000100, betas=(0.900000, 0.980000), weight_decay=0.000000, adam_w=1
+(...)
+2021-03-08 12:31:36 | INFO | train_inner | {"epoch": 1, "update": 0.0, "loss": "16.475", "ppl": "91120.8", "wps": "0", "ups": "0", "wpb": "16384", "bsz": "8", "num_updates": "1", "lr": "2e-05", "gnorm": "20.751", "loss_scale": "4", "train_wall": "99", "gb_free": "9.3", "wall": "105"}
+2021-03-08 12:32:33 | INFO | train_inner | {"epoch": 1, "update": 0.0, "loss": "16.446", "ppl": "89281.6", "wps": "288.7", "ups": "0.02", "wpb": "16384", "bsz": "8", "num_updates": "2", "lr": "4e-05", "gnorm": "19.777", "loss_scale": "4", "train_wall": "57", "gb_free": "9.3", "wall": "161"}
+2021-03-08 12:33:12 | INFO | fairseq.trainer | NOTE: gradient overflow detected, ignoring gradient, setting loss scale to: 2.0
+2021-03-08 12:33:51 | INFO | fairseq.trainer | NOTE: gradient overflow detected, ignoring gradient, setting loss scale to: 1.0
+2021-03-08 12:34:45 | INFO | train_inner | {"epoch": 1, "update": 0.001, "loss": "25.22", "ppl": "3.90691e+07", "wps": "123.4", "ups": "0.01", "wpb": "16384", "bsz": "8", "num_updates": "3", "lr": "6e-05", "gnorm": "131.281", "loss_scale": "1", "train_wall": "133", "gb_free": "9.3", "wall": "294"}
+2021-03-08 12:35:43 | INFO | train_inner | {"epoch": 1, "update": 0.001, "loss": "18.079", "ppl": "276809", "wps": "285.5", "ups": "0.02", "wpb": "16384", "bsz": "8", "num_updates": "4", "lr": "8e-05", "gnorm": "13.776", "loss_scale": "1", "train_wall": "57", "gb_free": "9.3", "wall": "351"}
+2021-03-08 12:36:35 | INFO | train_inner | {"epoch": 1, "update": 0.001, "loss": "23.729", "ppl": "1.39088e+07", "wps": "316.7", "ups": "0.02", "wpb": "16384", "bsz": "8", "num_updates": "5", "lr": "0.0001", "gnorm": "72.774", "loss_scale": "1", "train_wall": "52", "gb_free": "9.3", "wall": "403"}
+2021-03-08 12:37:28 | INFO | train_inner | {"epoch": 1, "update": 0.001, "loss": "20.429", "ppl": "1.41203e+06", "wps": "307.6", "ups": "0.02", "wpb": "16384", "bsz": "8", "num_updates": "6", "lr": "8e-05", "gnorm": "60.846", "loss_scale": "1", "train_wall": "53", "gb_free": "9.3", "wall": "456"}
+2021-03-08 12:38:27 | INFO | train_inner | {"epoch": 1, "update": 0.001, "loss": "18.965", "ppl": "511684", "wps": "279.4", "ups": "0.02", "wpb": "16384", "bsz": "8", "num_updates": "7", "lr": "6e-05", "gnorm": "22.687", "loss_scale": "1", "train_wall": "59", "gb_free": "9.3", "wall": "515"}
+2021-03-08 12:39:18 | INFO | train_inner | {"epoch": 1, "update": 0.001, "loss": "18.345", "ppl": "332887", "wps": "319.1", "ups": "0.02", "wpb": "16384", "bsz": "8", "num_updates": "8", "lr": "4e-05", "gnorm": "8.451", "loss_scale": "1", "train_wall": "51", "gb_free": "9.3", "wall": "566"}
+2021-03-08 12:40:11 | INFO | train_inner | {"epoch": 1, "update": 0.002, "loss": "18.262", "ppl": "314336", "wps": "305.9", "ups": "0.02", "wpb": "16384", "bsz": "8", "num_updates": "9", "lr": "2e-05", "gnorm": "6.457", "loss_scale": "1", "train_wall": "54", "gb_free": "9.3", "wall": "620"}
+2021-03-08 12:41:04 | INFO | train_inner | {"epoch": 1, "update": 0.002, "loss": "17.556", "ppl": "192686", "wps": "311.8", "ups": "0.02", "wpb": "16384", "bsz": "8", "num_updates": "10", "lr": "0", "gnorm": "5.796", "loss_scale": "1", "train_wall": "53", "gb_free": "9.3", "wall": "673"}
+2021-03-08 12:41:04 | INFO | fairseq_cli.train | Stopping training due to num_updates: 10 >= max_update: 10
+2021-03-08 12:41:04 | INFO | fairseq_cli.train | begin validation on "valid" subset
+2021-03-08 12:43:15 | INFO | valid | {"epoch": 1, "valid_loss": "17.953", "valid_ppl": "253807", "valid_wps": "1868.4", "valid_wpb": "15400.2", "valid_bsz": "7.6", "valid_num_updates": "10"}
+2021-03-08 12:43:15 | INFO | fairseq_cli.train | end of epoch 1 (average epoch stats below)
+2021-03-08 12:43:15 | INFO | train | {"epoch": 1, "train_loss": "19.351", "train_ppl": "668509", "train_wps": "210.9", "train_ups": "0.01", "train_wpb": "16384", "train_bsz": "8", "train_num_updates": "10", "train_lr": "0", "train_gnorm": "36.26", "train_loss_scale": "1", "train_train_wall": "667", "train_gb_free": "9.3", "train_wall": "804"}
+2021-03-08 12:43:15 | INFO | fairseq_cli.train | done training in 798.6 seconds
+```
+
+
+
+### 13B params on 8 V100 GPUs (with full parameter + optimizer state sharding)
+
+FSDP can also shard the parameters and optimizer states across multiple GPUs,
+reducing memory requirements significantly. On 8 x 32GB GPUs, sharding enables
+training the same 13B parameter model *without offloading the parameters to
+CPU*. However, without CPU offloading we'd only be able to fit a batch size of
+1 per GPU, which would cause training speed to suffer.
+
+We obtain the best performance on 8 GPUs by combining full sharding and CPU
+offloading. The following command trains the same 13B parameter GPT-3 model as
+before on 8 x 32GB V100 GPUs; training speed increases superlinearly from ~310
+words per second to ~3200 words per second.
+
+```bash
+OMP_NUM_THREADS=20 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
+ fairseq-train data-bin/wikitext-103-roberta-bpe-bin \
+ --ddp-backend fully_sharded --fp16 --fp16-init-scale 4 \
+ --cpu-offload --checkpoint-activations \
+ --task language_modeling --tokens-per-sample 2048 --batch-size 8 \
+ --arch transformer_lm_gpt3_13 \
+ --optimizer cpu_adam --adam-betas "(0.9,0.98)" \
+ --lr 0.0001 --lr-scheduler polynomial_decay --warmup-updates 5 --total-num-update 10 \
+ --max-update 10 --no-save --log-format json --log-interval 1
+```
+
+Example output
+
+```
+(...)
+2021-03-08 18:04:09 | INFO | fairseq_cli.train | num. model params: 13,110,865,920 (num. trained: 13,110,865,920)
+(...)
+2021-03-08 18:04:09 | INFO | fairseq_cli.train | training on 8 devices (GPUs/TPUs)
+2021-03-08 18:04:09 | INFO | fairseq_cli.train | max tokens per GPU = None and batch size per GPU = 8
+(...)
+Adam Optimizer #0 is created with AVX2 arithmetic capability.
+Config: alpha=0.000100, betas=(0.900000, 0.980000), weight_decay=0.000000, adam_w=1
+(...)
+2021-03-08 18:05:06 | INFO | train_inner | {"epoch": 1, "update": 0.001, "loss": "16.408", "ppl": "86945.6", "wps": "0", "ups": "0", "wpb": "131072", "bsz": "64", "num_updates": "1", "lr": "2e-05", "gnorm": "18.27", "loss_scale": "4", "train_wall": "47", "gb_free": "9.3", "wall": "56"}
+2021-03-08 18:05:45 | INFO | train_inner | {"epoch": 1, "update": 0.002, "loss": "16.352", "ppl": "83644.3", "wps": "3283.4", "ups": "0.03", "wpb": "131072", "bsz": "64", "num_updates": "2", "lr": "4e-05", "gnorm": "18.411", "loss_scale": "4", "train_wall": "40", "gb_free": "9.3", "wall": "96"}
+2021-03-08 18:06:21 | INFO | fairseq.trainer | NOTE: gradient overflow detected, ignoring gradient, setting loss scale to: 2.0
+2021-03-08 18:06:56 | INFO | fairseq.trainer | NOTE: gradient overflow detected, ignoring gradient, setting loss scale to: 1.0
+2021-03-08 18:07:37 | INFO | train_inner | {"epoch": 1, "update": 0.006, "loss": "23.682", "ppl": "1.34537e+07", "wps": "1176.6", "ups": "0.01", "wpb": "131072", "bsz": "64", "num_updates": "3", "lr": "6e-05", "gnorm": "119.682", "loss_scale": "1", "train_wall": "111", "gb_free": "9.3", "wall": "208"}
+2021-03-08 18:08:18 | INFO | train_inner | {"epoch": 1, "update": 0.007, "loss": "18.988", "ppl": "519921", "wps": "3189.1", "ups": "0.02", "wpb": "131072", "bsz": "64", "num_updates": "4", "lr": "8e-05", "gnorm": "14.934", "loss_scale": "1", "train_wall": "41", "gb_free": "9.3", "wall": "249"}
+2021-03-08 18:08:59 | INFO | train_inner | {"epoch": 1, "update": 0.008, "loss": "20.08", "ppl": "1.10798e+06", "wps": "3223.1", "ups": "0.02", "wpb": "131072", "bsz": "64", "num_updates": "5", "lr": "0.0001", "gnorm": "59.92", "loss_scale": "1", "train_wall": "41", "gb_free": "9.3", "wall": "289"}
+2021-03-08 18:09:39 | INFO | train_inner | {"epoch": 1, "update": 0.009, "loss": "18.323", "ppl": "327980", "wps": "3256.6", "ups": "0.02", "wpb": "131072", "bsz": "64", "num_updates": "6", "lr": "8e-05", "gnorm": "37.425", "loss_scale": "1", "train_wall": "40", "gb_free": "9.3", "wall": "330"}
+2021-03-08 18:10:20 | INFO | train_inner | {"epoch": 1, "update": 0.01, "loss": "17.264", "ppl": "157354", "wps": "3188.7", "ups": "0.02", "wpb": "131072", "bsz": "64", "num_updates": "7", "lr": "6e-05", "gnorm": "10.824", "loss_scale": "1", "train_wall": "41", "gb_free": "9.3", "wall": "371"}
+2021-03-08 18:11:01 | INFO | train_inner | {"epoch": 1, "update": 0.011, "loss": "16.794", "ppl": "113647", "wps": "3230", "ups": "0.02", "wpb": "131072", "bsz": "64", "num_updates": "8", "lr": "4e-05", "gnorm": "5.616", "loss_scale": "1", "train_wall": "41", "gb_free": "9.3", "wall": "411"}
+2021-03-08 18:11:39 | INFO | train_inner | {"epoch": 1, "update": 0.012, "loss": "16.706", "ppl": "106938", "wps": "3384", "ups": "0.03", "wpb": "131072", "bsz": "64", "num_updates": "9", "lr": "2e-05", "gnorm": "5.318", "loss_scale": "1", "train_wall": "39", "gb_free": "9.3", "wall": "450"}
+2021-03-08 18:12:19 | INFO | train_inner | {"epoch": 1, "update": 0.013, "loss": "16.548", "ppl": "95796.2", "wps": "3274.4", "ups": "0.02", "wpb": "131072", "bsz": "64", "num_updates": "10", "lr": "0", "gnorm": "5.22", "loss_scale": "1", "train_wall": "40", "gb_free": "9.3", "wall": "490"}
+2021-03-08 18:12:19 | INFO | fairseq_cli.train | Stopping training due to num_updates: 10 >= max_update: 10
+2021-03-08 18:12:19 | INFO | fairseq_cli.train | begin validation on "valid" subset
+2021-03-08 18:12:45 | INFO | valid | {"epoch": 1, "valid_loss": "16.624", "valid_ppl": "101000", "valid_wps": "10855.9", "valid_wpb": "123202", "valid_bsz": "60.5", "valid_num_updates": "10"}
+2021-03-08 18:12:45 | INFO | fairseq_cli.train | end of epoch 1 (average epoch stats below)
+2021-03-08 18:12:45 | INFO | train | {"epoch": 1, "train_loss": "18.114", "train_ppl": "283776", "train_wps": "2567.8", "train_ups": "0.02", "train_wpb": "131072", "train_bsz": "64", "train_num_updates": "10", "train_lr": "0", "train_gnorm": "29.562", "train_loss_scale": "1", "train_train_wall": "480", "train_gb_free": "9.3", "train_wall": "516"}
+2021-03-08 18:12:45 | INFO | fairseq_cli.train | done training in 509.9 seconds
+```
+
+
diff --git a/fairseq/examples/gottbert/README.md b/fairseq/examples/gottbert/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..1d58feb279a4a50222290546c3bb285d3cea98e6
--- /dev/null
+++ b/fairseq/examples/gottbert/README.md
@@ -0,0 +1,64 @@
+# GottBERT: a pure German language model
+
+## Introduction
+
+[GottBERT](http://arxiv.org/abs/2012.02110) is a pretrained language model trained on 145GB of German text based on RoBERTa.
+
+## Example usage
+
+### fairseq
+##### Load GottBERT from torch.hub (PyTorch >= 1.1):
+```python
+import torch
+gottbert = torch.hub.load('pytorch/fairseq', 'gottbert-base')
+gottbert.eval() # disable dropout (or leave in train mode to finetune)
+```
+
+##### Load GottBERT (for PyTorch 1.0 or custom models):
+```python
+# Download gottbert model
+wget https://dl.gottbert.de/fairseq/models/gottbert-base.tar.gz
+tar -xzvf gottbert.tar.gz
+
+# Load the model in fairseq
+from fairseq.models.roberta import GottbertModel
+gottbert = GottbertModel.from_pretrained('/path/to/gottbert')
+gottbert.eval() # disable dropout (or leave in train mode to finetune)
+```
+
+##### Filling masks:
+```python
+masked_line = 'Gott ist ! :)'
+gottbert.fill_mask(masked_line, topk=3)
+# [('Gott ist gut ! :)', 0.3642110526561737, ' gut'),
+# ('Gott ist überall ! :)', 0.06009674072265625, ' überall'),
+# ('Gott ist großartig ! :)', 0.0370681993663311, ' großartig')]
+```
+
+##### Extract features from GottBERT
+
+```python
+# Extract the last layer's features
+line = "Der erste Schluck aus dem Becher der Naturwissenschaft macht atheistisch , aber auf dem Grunde des Bechers wartet Gott !"
+tokens = gottbert.encode(line)
+last_layer_features = gottbert.extract_features(tokens)
+assert last_layer_features.size() == torch.Size([1, 27, 768])
+
+# Extract all layer's features (layer 0 is the embedding layer)
+all_layers = gottbert.extract_features(tokens, return_all_hiddens=True)
+assert len(all_layers) == 13
+assert torch.all(all_layers[-1] == last_layer_features)
+```
+## Citation
+If you use our work, please cite:
+
+```bibtex
+@misc{scheible2020gottbert,
+ title={GottBERT: a pure German Language Model},
+ author={Raphael Scheible and Fabian Thomczyk and Patric Tippmann and Victor Jaravine and Martin Boeker},
+ year={2020},
+ eprint={2012.02110},
+ archivePrefix={arXiv},
+ primaryClass={cs.CL}
+}
+```
diff --git a/fairseq/examples/hubert/README.md b/fairseq/examples/hubert/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..b501a6eb2a047d4adb6f297436c1c002c926a09f
--- /dev/null
+++ b/fairseq/examples/hubert/README.md
@@ -0,0 +1,115 @@
+# HuBERT
+
+## Pre-trained and fine-tuned (ASR) models
+Model | Pretraining Data | Finetuning Dataset | Model
+|---|---|---|---
+HuBERT Base (~95M params) | [Librispeech](http://www.openslr.org/12) 960 hr | No finetuning (Pretrained Model) | [download](https://dl.fbaipublicfiles.com/hubert/hubert_base_ls960.pt)
+HuBERT Large (~316M params) | [Libri-Light](https://github.com/facebookresearch/libri-light) 60k hr | No finetuning (Pretrained Model) | [download](https://dl.fbaipublicfiles.com/hubert/hubert_large_ll60k.pt)
+HuBERT Extra Large (~1B params) | [Libri-Light](https://github.com/facebookresearch/libri-light) 60k hr | No finetuning (Pretrained Model) | [download](https://dl.fbaipublicfiles.com/hubert/hubert_xtralarge_ll60k.pt)
+HuBERT Large | [Libri-Light](https://github.com/facebookresearch/libri-light) 60k hr | [Librispeech](http://www.openslr.org/12) 960 hr | [download](https://dl.fbaipublicfiles.com/hubert/hubert_large_ll60k_finetune_ls960.pt)
+HuBERT Extra Large | [Libri-Light](https://github.com/facebookresearch/libri-light) 60k hr | [Librispeech](http://www.openslr.org/12) 960 hr | [download](https://dl.fbaipublicfiles.com/hubert/hubert_xtralarge_ll60k_finetune_ls960.pt)
+
+## Load a model
+```
+ckpt_path = "/path/to/the/checkpoint.pt"
+models, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
+model = models[0]
+```
+
+## Train a new model
+
+### Data preparation
+
+Follow the steps in `./simple_kmeans` to create:
+- `{train,valid}.tsv` waveform list files
+- `{train,valid}.km` frame-aligned pseudo label files.
+The `label_rate` is the same as the feature frame rate used for clustering,
+which is 100Hz for MFCC features and 50Hz for HuBERT features by default.
+
+### Pre-train a HuBERT model
+
+Suppose `{train,valid}.tsv` are saved at `/path/to/data`, `{train,valid}.km`
+are saved at `/path/to/labels`, and the label rate is 100Hz.
+
+To train a base model (12 layer transformer), run:
+```sh
+$ python fairseq_cli/hydra_train.py \
+ --config-dir /path/to/fairseq-py/examples/hubert/config/pretrain \
+ --config-name hubert_base_librispeech \
+ task.data=/path/to/data task.label_dir=/path/to/labels model.label_rate=100
+```
+
+### Fine-tune a HuBERT model with a CTC loss
+
+Suppose `{train,valid}.tsv` are saved at `/path/to/data`, and their
+corresponding character transcripts `{train,valid}.ltr` are saved at
+`/path/to/trans`.
+
+To fine-tune a pre-trained HuBERT model at `/path/to/checkpoint`, run
+```sh
+$ python fairseq_cli/hydra_train.py \
+ --config-dir /path/to/fairseq-py/examples/hubert/config/finetune \
+ --config-name base_10h \
+ task.data=/path/to/data task.label_dir=/path/to/trans \
+ model.w2v_path=/path/to/checkpoint
+```
+
+### Decode a HuBERT model
+
+Suppose the `test.tsv` and `test.ltr` are the waveform list and transcripts of
+the split to be decoded, saved at `/path/to/data`, and the fine-tuned model is
+saved at `/path/to/checkpoint`. We support three decoding modes:
+- Viterbi decoding: greedy decoding without a language model
+- KenLM decoding: decoding with an arpa-format KenLM n-gram language model
+- Fairseq-LM deocding: decoding with a Fairseq neural language model
+
+
+#### Viterbi decoding
+
+`task.normalize` needs to be consistent with the value used during fine-tuning.
+Decoding results will be saved at
+`/path/to/experiment/directory/decode/viterbi/test`.
+
+```sh
+$ python examples/speech_recognition/new/infer.py \
+ --config-dir /path/to/fairseq-py/examples/hubert/config/decode \
+ --config-name infer_viterbi \
+ task.data=/path/to/data \
+ task.normalize=[true|false] \
+ decoding.exp_dir=/path/to/experiment/directory \
+ common_eval.path=/path/to/checkpoint
+ dataset.gen_subset=test \
+```
+
+#### KenLM / Fairseq-LM decoding
+
+Suppose the pronunciation lexicon and the n-gram LM are saved at
+`/path/to/lexicon` and `/path/to/arpa`, respectively. Decoding results will be
+saved at `/path/to/experiment/directory/decode/kenlm/test`.
+
+```sh
+$ python examples/speech_recognition/new/infer.py \
+ --config-dir /path/to/fairseq-py/examples/hubert/config/decode \
+ --config-name infer_kenlm \
+ task.data=/path/to/data \
+ task.normalize=[true|false] \
+ decoding.exp_dir=/path/to/experiment/directory \
+ common_eval.path=/path/to/checkpoint
+ dataset.gen_subset=test \
+ decoding.decoder.lexicon=/path/to/lexicon \
+ decoding.decoder.lmpath=/path/to/arpa
+```
+
+The command above uses the default decoding hyperparameter, which can be found
+in `examples/speech_recognition/hydra/decoder.py`. These parameters can be
+configured from the command line. For example, to search with a beam size of
+500, we can append the command above with `decoding.decoder.beam=500`.
+Important parameters include:
+- decoding.decoder.beam
+- decoding.decoder.beamthreshold
+- decoding.decoder.lmweight
+- decoding.decoder.wordscore
+- decoding.decoder.silweight
+
+To decode with a Fairseq LM, use `--config-name infer_fsqlm` instead, and
+change the path of lexicon and LM accordingly.
diff --git a/fairseq/examples/hubert/config/decode/ax_sweep/ngram.yaml b/fairseq/examples/hubert/config/decode/ax_sweep/ngram.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5a02df1f7da7eebfebe4018ef2758a716fbab646
--- /dev/null
+++ b/fairseq/examples/hubert/config/decode/ax_sweep/ngram.yaml
@@ -0,0 +1,33 @@
+# @package _global_
+
+common_eval:
+ results_path: ${decoding.exp_dir}/decode/${decoding.decoder.name}_ax/${dataset.gen_subset}
+
+hydra:
+ sweeper:
+ ax_config:
+ max_trials: 60
+ early_stop:
+ minimize: true
+ max_epochs_without_improvement: 10
+ epsilon: 0.025
+ experiment:
+ name: ${dataset.gen_subset}
+ objective_name: wer
+ minimize: true
+ parameter_constraints: null
+ outcome_constraints: null
+ status_quo: null
+ client:
+ verbose_logging: false
+ random_seed: null
+ params:
+ decoding.decoder.lmweight:
+ type: range
+ bounds: [0.0, 8.0]
+ decoding.decoder.wordscore:
+ type: range
+ bounds: [-5.0, 5.0]
+ decoding.decoder.silweight:
+ type: range
+ bounds: [-10.0, 0.0]
diff --git a/fairseq/examples/hubert/config/decode/ax_sweep/transformer.yaml b/fairseq/examples/hubert/config/decode/ax_sweep/transformer.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..85ed3bd1a5a44871260f572786044c28f441add6
--- /dev/null
+++ b/fairseq/examples/hubert/config/decode/ax_sweep/transformer.yaml
@@ -0,0 +1,33 @@
+# @package _global_
+
+common_eval:
+ results_path: ${decoding.exp_dir}/decode/${decoding.decoder.name}_ax/${dataset.gen_subset}
+
+hydra:
+ sweeper:
+ ax_config:
+ max_trials: 60
+ early_stop:
+ minimize: true
+ max_epochs_without_improvement: 10
+ epsilon: 0.025
+ experiment:
+ name: ${dataset.gen_subset}
+ objective_name: wer
+ minimize: true
+ parameter_constraints: null
+ outcome_constraints: null
+ status_quo: null
+ client:
+ verbose_logging: false
+ random_seed: null
+ params:
+ decoding.decoder.lmweight:
+ type: range
+ bounds: [0.0, 4.0]
+ decoding.decoder.wordscore:
+ type: range
+ bounds: [-5.0, 5.0]
+ decoding.decoder.silweight:
+ type: range
+ bounds: [-8.0, 0.0]
diff --git a/fairseq/examples/hubert/config/decode/infer_fsqlm.yaml b/fairseq/examples/hubert/config/decode/infer_fsqlm.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..026ad8db89a0673969a99fed6e1e84fc41fc7a1a
--- /dev/null
+++ b/fairseq/examples/hubert/config/decode/infer_fsqlm.yaml
@@ -0,0 +1,36 @@
+# @package _group_
+
+defaults:
+ - model: null
+
+hydra:
+ run:
+ dir: ${common_eval.results_path}/beam${decoding.beam}_th${decoding.beamthreshold}_lmw${decoding.lmweight}_wrd${decoding.wordscore}_sil${decoding.silweight}
+ sweep:
+ dir: ${common_eval.results_path}
+ subdir: beam${decoding.beam}_th${decoding.beamthreshold}_lmw${decoding.lmweight}_wrd${decoding.wordscore}_sil${decoding.silweight}
+
+task:
+ _name: hubert_pretraining
+ single_target: true
+ fine_tuning: true
+ data: ???
+ normalize: ???
+
+decoding:
+ type: fairseqlm
+ lexicon: ???
+ lmpath: ???
+ beamthreshold: 25
+ beam: 500
+ lmweight: 2
+ wordscore: -1
+ silweight: 0
+ unique_wer_file: true
+common_eval:
+ results_path: ???
+ path: ???
+ post_process: letter
+dataset:
+ max_tokens: 1100000
+ gen_subset: ???
diff --git a/fairseq/examples/hubert/config/decode/infer_kenlm.yaml b/fairseq/examples/hubert/config/decode/infer_kenlm.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..04642aeb6530133ab44e12e11e3d1661e3b9c32c
--- /dev/null
+++ b/fairseq/examples/hubert/config/decode/infer_kenlm.yaml
@@ -0,0 +1,36 @@
+# @package _group_
+
+defaults:
+ - model: null
+
+hydra:
+ run:
+ dir: ${common_eval.results_path}/beam${decoding.beam}_th${decoding.beamthreshold}_lmw${decoding.lmweight}_wrd${decoding.wordscore}_sil${decoding.silweight}
+ sweep:
+ dir: ${common_eval.results_path}
+ subdir: beam${decoding.beam}_th${decoding.beamthreshold}_lmw${decoding.lmweight}_wrd${decoding.wordscore}_sil${decoding.silweight}
+
+task:
+ _name: hubert_pretraining
+ single_target: true
+ fine_tuning: true
+ data: ???
+ normalize: ???
+
+decoding:
+ type: kenlm
+ lexicon: ???
+ lmpath: ???
+ beamthreshold: 100
+ beam: 500
+ lmweight: 2
+ wordscore: -1
+ silweight: 0
+ unique_wer_file: true
+common_eval:
+ results_path: ???
+ path: ???
+ post_process: letter
+dataset:
+ max_tokens: 1100000
+ gen_subset: ???
diff --git a/fairseq/examples/hubert/config/decode/infer_viterbi.yaml b/fairseq/examples/hubert/config/decode/infer_viterbi.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..4afc74c18ca890e1a20c6beabeb9059dd0f480f4
--- /dev/null
+++ b/fairseq/examples/hubert/config/decode/infer_viterbi.yaml
@@ -0,0 +1,29 @@
+# @package _group_
+
+defaults:
+ - model: null
+
+hydra:
+ run:
+ dir: ${common_eval.results_path}/viterbi
+ sweep:
+ dir: ${common_eval.results_path}
+ subdir: viterbi
+
+task:
+ _name: hubert_pretraining
+ single_target: true
+ fine_tuning: true
+ data: ???
+ normalize: ???
+
+decoding:
+ type: viterbi
+ unique_wer_file: true
+common_eval:
+ results_path: ???
+ path: ???
+ post_process: letter
+dataset:
+ max_tokens: 1100000
+ gen_subset: ???
diff --git a/fairseq/examples/hubert/config/decode/run/submitit_slurm.yaml b/fairseq/examples/hubert/config/decode/run/submitit_slurm.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0b8065832ecacf9dd4fe4e99c87941e00fb3ef7f
--- /dev/null
+++ b/fairseq/examples/hubert/config/decode/run/submitit_slurm.yaml
@@ -0,0 +1,17 @@
+# @package _global_
+hydra:
+ launcher:
+ cpus_per_task: ${distributed_training.distributed_world_size}
+ gpus_per_node: ${distributed_training.distributed_world_size}
+ tasks_per_node: ${hydra.launcher.gpus_per_node}
+ nodes: 1
+ mem_gb: 200
+ timeout_min: 4320
+ max_num_timeout: 50
+ name: ${hydra.job.config_name}
+ submitit_folder: ${hydra.sweep.dir}/submitit
+
+distributed_training:
+ distributed_world_size: 1
+ distributed_no_spawn: true
+ distributed_port: 29761
diff --git a/fairseq/examples/hubert/config/decode/run/submitit_slurm_8gpu.yaml b/fairseq/examples/hubert/config/decode/run/submitit_slurm_8gpu.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..2f669f376312dbfe4611cc08f4996a314155fb87
--- /dev/null
+++ b/fairseq/examples/hubert/config/decode/run/submitit_slurm_8gpu.yaml
@@ -0,0 +1,17 @@
+# @package _global_
+hydra:
+ launcher:
+ cpus_per_task: ${distributed_training.distributed_world_size}
+ gpus_per_node: ${distributed_training.distributed_world_size}
+ tasks_per_node: ${hydra.launcher.gpus_per_node}
+ nodes: 1
+ mem_gb: 200
+ timeout_min: 4320
+ max_num_timeout: 50
+ name: ${hydra.job.config_name}
+ submitit_folder: ${hydra.sweep.dir}/submitit
+
+distributed_training:
+ distributed_world_size: 8
+ distributed_no_spawn: true
+ distributed_port: 29761
diff --git a/fairseq/examples/hubert/config/finetune/base_10h.yaml b/fairseq/examples/hubert/config/finetune/base_10h.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a22c7c0347f792221f209bcfba7ba380a69f90a8
--- /dev/null
+++ b/fairseq/examples/hubert/config/finetune/base_10h.yaml
@@ -0,0 +1,100 @@
+# @package _group_
+
+common:
+ fp16: true
+ log_format: json
+ log_interval: 200
+ tensorboard_logdir: tblog
+ seed: 1337
+
+checkpoint:
+ save_interval: 5
+ keep_interval_updates: 1
+ no_epoch_checkpoints: true
+ best_checkpoint_metric: wer
+
+distributed_training:
+ ddp_backend: c10d
+ find_unused_parameters: true
+ distributed_world_size: 1
+ distributed_port: 29671
+ nprocs_per_node: 8
+
+task:
+ _name: hubert_pretraining
+ data: ???
+ fine_tuning: true
+ label_dir: ???
+ normalize: false # must be consistent with pre-training
+ labels: ["ltr"]
+ single_target: true
+
+dataset:
+ num_workers: 0
+ max_tokens: 3200000
+ validate_after_updates: ${model.freeze_finetune_updates}
+ validate_interval: 5
+ train_subset: train
+ valid_subset: valid
+
+criterion:
+ _name: ctc
+ zero_infinity: true
+
+optimization:
+ max_update: 25000
+ lr: [2e-5]
+ sentence_avg: true
+ update_freq: [1]
+
+optimizer:
+ _name: adam
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-08
+
+lr_scheduler:
+ _name: tri_stage
+ warmup_steps: 8000
+ hold_steps: 0
+ decay_steps: 72000
+ final_lr_scale: 0.05
+
+model:
+ _name: hubert_ctc
+ w2v_path: ???
+ apply_mask: true
+ mask_selection: static
+ mask_length: 10
+ mask_other: 0
+ mask_prob: 0.75
+ mask_channel_selection: static
+ mask_channel_length: 64
+ mask_channel_other: 0
+ mask_channel_prob: 0.5
+ layerdrop: 0.1
+ dropout: 0.0
+ activation_dropout: 0.1
+ attention_dropout: 0.0
+ feature_grad_mult: 0.0
+ freeze_finetune_updates: 10000
+
+hydra:
+ job:
+ config:
+ override_dirname:
+ kv_sep: '-'
+ item_sep: '__'
+ exclude_keys:
+ - run
+ - task.data
+ - task.label_dir
+ - model.w2v_path
+ - dataset.train_subset
+ - dataset.valid_subset
+ - criterion.wer_kenlm_model
+ - criterion.wer_lexicon
+ run:
+ dir: ???
+ sweep:
+ dir: ???
+ subdir: ${hydra.job.config_name}__${hydra.job.override_dirname}
diff --git a/fairseq/examples/hubert/config/finetune/ckpt/it1.yaml b/fairseq/examples/hubert/config/finetune/ckpt/it1.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..2af96b3f72746f85feb13e7efcbdab6602b293de
--- /dev/null
+++ b/fairseq/examples/hubert/config/finetune/ckpt/it1.yaml
@@ -0,0 +1,7 @@
+# @package _global_
+
+task:
+ normalize: false
+
+model:
+ w2v_path: /checkpoint/wnhsu/w2v/hubert_final/iter1/hubert.km.randcrop.pmw1_0.puw0_0.grpnorm.ml10.mp0_8.untie.mxsz250000.ufreq1.maxtok1400000.MU400k.s1337.ngpu32/checkpoint_last.pt
diff --git a/fairseq/examples/hubert/config/finetune/lm/ls_4gram.yaml b/fairseq/examples/hubert/config/finetune/lm/ls_4gram.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8c7728ad29965d3cf18605808a893bc442afd56b
--- /dev/null
+++ b/fairseq/examples/hubert/config/finetune/lm/ls_4gram.yaml
@@ -0,0 +1,7 @@
+# @package _global_
+
+criterion:
+ wer_kenlm_model: /checkpoint/abdo/old_checkpoint02/datasets/librispeech/4-gram.bin
+ wer_lexicon: /checkpoint/abdo/old_checkpoint02/datasets/librispeech/10h/raw/lexicon_ltr.lst
+ wer_lm_weight: 2.0
+ wer_word_score: -1.0
diff --git a/fairseq/examples/hubert/config/finetune/run/submitit_reg.yaml b/fairseq/examples/hubert/config/finetune/run/submitit_reg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..27509503e7b306c07742fbed2fc5726d001bb7df
--- /dev/null
+++ b/fairseq/examples/hubert/config/finetune/run/submitit_reg.yaml
@@ -0,0 +1,20 @@
+# @package _global_
+
+hydra:
+ launcher:
+ cpus_per_task: 8
+ gpus_per_node: 8
+ tasks_per_node: ${hydra.launcher.gpus_per_node}
+ nodes: 1
+ comment: null
+ mem_gb: 384
+ timeout_min: 4320
+ max_num_timeout: 100
+ constraint: volta32gb
+ name: ${hydra.job.config_name}/${hydra.job.override_dirname}
+ submitit_folder: ${hydra.sweep.dir}/submitit/%j
+
+distributed_training:
+ distributed_world_size: 8
+ distributed_port: 29671
+ nprocs_per_node: 8
diff --git a/fairseq/examples/hubert/config/pretrain/data/iter1.yaml b/fairseq/examples/hubert/config/pretrain/data/iter1.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0a1b65d802c83128c53f32b21807fa5e51da6cc9
--- /dev/null
+++ b/fairseq/examples/hubert/config/pretrain/data/iter1.yaml
@@ -0,0 +1,8 @@
+# @package _global_
+
+task:
+ label_dir: ???
+ labels: ["km"]
+
+model:
+ label_rate: 100
diff --git a/fairseq/examples/hubert/config/pretrain/data/iter2.yaml b/fairseq/examples/hubert/config/pretrain/data/iter2.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..2d4bfe61cc638af9de48e92c58994e435fba2abf
--- /dev/null
+++ b/fairseq/examples/hubert/config/pretrain/data/iter2.yaml
@@ -0,0 +1,8 @@
+# @package _global_
+
+task:
+ label_dir: ???
+ labels: ["km"]
+
+model:
+ label_rate: 50
diff --git a/fairseq/examples/hubert/config/pretrain/hubert_base_librispeech.yaml b/fairseq/examples/hubert/config/pretrain/hubert_base_librispeech.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..bd84461a163866f622b01bf6d36b4de6215f3d97
--- /dev/null
+++ b/fairseq/examples/hubert/config/pretrain/hubert_base_librispeech.yaml
@@ -0,0 +1,97 @@
+# @package _group_
+
+common:
+ fp16: true
+ log_format: json
+ log_interval: 200
+ seed: 1337
+ tensorboard_logdir: tblog
+
+checkpoint:
+ save_interval_updates: 25000
+ keep_interval_updates: 1
+ no_epoch_checkpoints: true
+
+
+distributed_training:
+ ddp_backend: no_c10d
+ distributed_backend: 'nccl'
+ distributed_world_size: 32
+ distributed_port: 29671
+ nprocs_per_node: 8
+ find_unused_parameters: true
+
+task:
+ _name: hubert_pretraining
+ data: ???
+ label_dir: ???
+ labels: ???
+ label_rate: ${model.label_rate}
+ sample_rate: 16000
+ max_sample_size: 250000
+ min_sample_size: 32000
+ pad_audio: false
+ random_crop: true
+ normalize: false # must be consistent with extractor
+
+dataset:
+ num_workers: 6
+ max_tokens: 1400000
+ skip_invalid_size_inputs_valid_test: true
+ validate_interval: 5
+ validate_interval_updates: 10000
+
+criterion:
+ _name: hubert
+ pred_masked_weight: 1.0
+ pred_nomask_weight: 0.0
+ loss_weights: [10,]
+
+optimization:
+ max_update: 400000
+ lr: [0.0005]
+ clip_norm: 10.0
+
+optimizer:
+ _name: adam
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+ weight_decay: 0.01
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 32000
+
+model:
+ _name: hubert
+ label_rate: ???
+ skip_masked: false
+ skip_nomask: false
+ mask_prob: 0.80
+ extractor_mode: default
+ conv_feature_layers: '[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2'
+ final_dim: 256
+ encoder_layerdrop: 0.05
+ dropout_input: 0.1
+ dropout_features: 0.1
+ dropout: 0.1
+ attention_dropout: 0.1
+ feature_grad_mult: 0.1
+ untie_final_proj: true
+ activation_dropout: 0.0
+
+hydra:
+ job:
+ config:
+ override_dirname:
+ kv_sep: '-'
+ item_sep: '__'
+ exclude_keys:
+ - run
+ - task.data
+ - task.label_dir
+ run:
+ dir: ???
+ sweep:
+ dir: ???
+ subdir: ${hydra.job.config_name}__${hydra.job.override_dirname}
diff --git a/fairseq/examples/hubert/config/pretrain/hubert_large_librivox.yaml b/fairseq/examples/hubert/config/pretrain/hubert_large_librivox.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a5192b5f29b53aa8391a0ab67b6238c0d0b4985e
--- /dev/null
+++ b/fairseq/examples/hubert/config/pretrain/hubert_large_librivox.yaml
@@ -0,0 +1,101 @@
+# @package _group_
+
+common:
+ fp16: true
+ log_format: json
+ log_interval: 200
+ seed: 1337
+ tensorboard_logdir: tblog
+
+checkpoint:
+ save_interval_updates: 25000
+ keep_interval_updates: 1
+ no_epoch_checkpoints: true
+
+
+distributed_training:
+ ddp_backend: no_c10d
+ distributed_backend: 'nccl'
+ distributed_world_size: 128
+ distributed_port: 29671
+ nprocs_per_node: 8
+ find_unused_parameters: true
+
+task:
+ _name: hubert_pretraining
+ data: ???
+ label_dir: ???
+ labels: ???
+ label_rate: ${model.label_rate}
+ sample_rate: 16000
+ max_sample_size: 250000
+ min_sample_size: 32000
+ pad_audio: false
+ random_crop: true
+ normalize: true # must be consistent with extractor
+
+dataset:
+ num_workers: 6
+ max_tokens: 900000
+ skip_invalid_size_inputs_valid_test: true
+ validate_interval: 5
+ validate_interval_updates: 10000
+
+criterion:
+ _name: hubert
+ pred_masked_weight: 1.0
+ pred_nomask_weight: 0.0
+ loss_weights: [10,]
+
+optimization:
+ max_update: 400000
+ lr: [0.0015]
+ clip_norm: 1.0
+
+optimizer:
+ _name: adam
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+ weight_decay: 0.01
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 32000
+
+model:
+ _name: hubert
+ label_rate: ???
+ encoder_layers: 24
+ encoder_embed_dim: 1024
+ encoder_ffn_embed_dim: 4096
+ encoder_attention_heads: 16
+ final_dim: 768
+ skip_masked: false
+ skip_nomask: false
+ mask_prob: 0.80
+ extractor_mode: layer_norm
+ conv_feature_layers: '[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2'
+ encoder_layerdrop: 0.0
+ dropout_input: 0.0
+ dropout_features: 0.0
+ dropout: 0.0
+ attention_dropout: 0.0
+ layer_norm_first: true
+ feature_grad_mult: 1.0
+ untie_final_proj: true
+ activation_dropout: 0.0
+
+hydra:
+ job:
+ config:
+ override_dirname:
+ kv_sep: '-'
+ item_sep: '__'
+ exclude_keys:
+ - run
+ - task.data
+ run:
+ dir: /checkpoint/wnhsu/w2v/hubert_final/hydra_pt
+ sweep:
+ dir: /checkpoint/wnhsu/w2v/hubert_final/hydra_pt
+ subdir: ${hydra.job.config_name}__${hydra.job.override_dirname}
diff --git a/fairseq/examples/hubert/config/pretrain/hubert_xlarge_librivox.yaml b/fairseq/examples/hubert/config/pretrain/hubert_xlarge_librivox.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..34e8f2bfb93863db122f694785b80857713ceb05
--- /dev/null
+++ b/fairseq/examples/hubert/config/pretrain/hubert_xlarge_librivox.yaml
@@ -0,0 +1,101 @@
+# @package _group_
+
+common:
+ fp16: true
+ log_format: json
+ log_interval: 200
+ seed: 1337
+ tensorboard_logdir: tblog
+
+checkpoint:
+ save_interval_updates: 25000
+ keep_interval_updates: 1
+ no_epoch_checkpoints: true
+
+
+distributed_training:
+ ddp_backend: no_c10d
+ distributed_backend: 'nccl'
+ distributed_world_size: 256
+ distributed_port: 29671
+ nprocs_per_node: 8
+ find_unused_parameters: true
+
+task:
+ _name: hubert_pretraining
+ data: ???
+ label_dir: ???
+ labels: ???
+ label_rate: ${model.label_rate}
+ sample_rate: 16000
+ max_sample_size: 250000
+ min_sample_size: 32000
+ pad_audio: false
+ random_crop: true
+ normalize: true # must be consistent with extractor
+
+dataset:
+ num_workers: 6
+ max_tokens: 360000
+ skip_invalid_size_inputs_valid_test: true
+ validate_interval: 5
+ validate_interval_updates: 10000
+
+criterion:
+ _name: hubert
+ pred_masked_weight: 1.0
+ pred_nomask_weight: 0.0
+ loss_weights: [10,]
+
+optimization:
+ max_update: 400000
+ lr: [0.003]
+ clip_norm: 1.0
+
+optimizer:
+ _name: adam
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+ weight_decay: 0.01
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 32000
+
+model:
+ _name: hubert
+ label_rate: ???
+ encoder_layers: 48
+ encoder_embed_dim: 1280
+ encoder_ffn_embed_dim: 5120
+ encoder_attention_heads: 16
+ final_dim: 1024
+ skip_masked: false
+ skip_nomask: false
+ mask_prob: 0.80
+ extractor_mode: layer_norm
+ conv_feature_layers: '[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2'
+ encoder_layerdrop: 0.0
+ dropout_input: 0.0
+ dropout_features: 0.0
+ dropout: 0.0
+ attention_dropout: 0.0
+ layer_norm_first: true
+ feature_grad_mult: 1.0
+ untie_final_proj: true
+ activation_dropout: 0.0
+
+hydra:
+ job:
+ config:
+ override_dirname:
+ kv_sep: '-'
+ item_sep: '__'
+ exclude_keys:
+ - run
+ - task.data
+ run:
+ dir: /checkpoint/wnhsu/w2v/hubert_final/hydra_pt
+ sweep:
+ dir: /checkpoint/wnhsu/w2v/hubert_final/hydra_pt
+ subdir: ${hydra.job.config_name}__${hydra.job.override_dirname}
diff --git a/fairseq/examples/hubert/config/pretrain/run/submitit_reg.yaml b/fairseq/examples/hubert/config/pretrain/run/submitit_reg.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..46c979cd2835fe026b0a532a54533904d1001e54
--- /dev/null
+++ b/fairseq/examples/hubert/config/pretrain/run/submitit_reg.yaml
@@ -0,0 +1,20 @@
+# @package _global_
+
+hydra:
+ launcher:
+ cpus_per_task: 8
+ gpus_per_node: 8
+ tasks_per_node: ${hydra.launcher.gpus_per_node}
+ nodes: 4
+ comment: null
+ mem_gb: 384
+ timeout_min: 4320
+ max_num_timeout: 100
+ constraint: volta32gb
+ name: ${hydra.job.config_name}/${hydra.job.override_dirname}
+ submitit_folder: ${hydra.sweep.dir}/submitit/%j
+
+distributed_training:
+ distributed_world_size: 32
+ distributed_port: 29671
+ nprocs_per_node: 8
diff --git a/fairseq/examples/hubert/measure_teacher_quality.py b/fairseq/examples/hubert/measure_teacher_quality.py
new file mode 100644
index 0000000000000000000000000000000000000000..92279b2214bb2ba4a99aea92098907ef4f55821b
--- /dev/null
+++ b/fairseq/examples/hubert/measure_teacher_quality.py
@@ -0,0 +1,241 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import numpy as np
+import os.path as op
+import re
+from tabulate import tabulate
+from collections import Counter
+
+
+def comp_purity(p_xy, axis):
+ max_p = p_xy.max(axis=axis)
+ marg_p = p_xy.sum(axis=axis)
+ indv_pur = max_p / marg_p
+ aggr_pur = max_p.sum()
+ return indv_pur, aggr_pur
+
+
+def comp_entropy(p):
+ return (-p * np.log(p + 1e-8)).sum()
+
+
+def comp_norm_mutual_info(p_xy):
+ p_x = p_xy.sum(axis=1, keepdims=True)
+ p_y = p_xy.sum(axis=0, keepdims=True)
+ pmi = np.log(p_xy / np.matmul(p_x, p_y) + 1e-8)
+ mi = (p_xy * pmi).sum()
+ h_x = comp_entropy(p_x)
+ h_y = comp_entropy(p_y)
+ return mi, mi / h_x, mi / h_y, h_x, h_y
+
+
+def pad(labs, n):
+ if n == 0:
+ return np.array(labs)
+ return np.concatenate([[labs[0]] * n, labs, [labs[-1]] * n])
+
+
+def comp_avg_seg_dur(labs_list):
+ n_frms = 0
+ n_segs = 0
+ for labs in labs_list:
+ labs = np.array(labs)
+ edges = np.zeros(len(labs)).astype(bool)
+ edges[0] = True
+ edges[1:] = labs[1:] != labs[:-1]
+ n_frms += len(edges)
+ n_segs += edges.astype(int).sum()
+ return n_frms / n_segs
+
+
+def comp_joint_prob(uid2refs, uid2hyps):
+ """
+ Args:
+ pad: padding for spliced-feature derived labels
+ """
+ cnts = Counter()
+ skipped = []
+ abs_frmdiff = 0
+ for uid in uid2refs:
+ if uid not in uid2hyps:
+ skipped.append(uid)
+ continue
+ refs = uid2refs[uid]
+ hyps = uid2hyps[uid]
+ abs_frmdiff += abs(len(refs) - len(hyps))
+ min_len = min(len(refs), len(hyps))
+ refs = refs[:min_len]
+ hyps = hyps[:min_len]
+ cnts.update(zip(refs, hyps))
+ tot = sum(cnts.values())
+
+ ref_set = sorted({ref for ref, _ in cnts.keys()})
+ hyp_set = sorted({hyp for _, hyp in cnts.keys()})
+ ref2pid = dict(zip(ref_set, range(len(ref_set))))
+ hyp2lid = dict(zip(hyp_set, range(len(hyp_set))))
+ # print(hyp_set)
+ p_xy = np.zeros((len(ref2pid), len(hyp2lid)), dtype=float)
+ for (ref, hyp), cnt in cnts.items():
+ p_xy[ref2pid[ref], hyp2lid[hyp]] = cnt
+ p_xy /= p_xy.sum()
+ return p_xy, ref2pid, hyp2lid, tot, abs_frmdiff, skipped
+
+
+def read_phn(tsv_path, rm_stress=True):
+ uid2phns = {}
+ with open(tsv_path) as f:
+ for line in f:
+ uid, phns = line.rstrip().split("\t")
+ phns = phns.split(",")
+ if rm_stress:
+ phns = [re.sub("[0-9]", "", phn) for phn in phns]
+ uid2phns[uid] = phns
+ return uid2phns
+
+
+def read_lab(tsv_path, lab_path, pad_len=0, upsample=1):
+ """
+ tsv is needed to retrieve the uids for the labels
+ """
+ with open(tsv_path) as f:
+ f.readline()
+ uids = [op.splitext(op.basename(line.rstrip().split()[0]))[0] for line in f]
+ with open(lab_path) as f:
+ labs_list = [pad(line.rstrip().split(), pad_len).repeat(upsample) for line in f]
+ assert len(uids) == len(labs_list)
+ return dict(zip(uids, labs_list))
+
+
+def main_lab_lab(
+ tsv_dir,
+ lab_dir,
+ lab_name,
+ lab_sets,
+ ref_dir,
+ ref_name,
+ pad_len=0,
+ upsample=1,
+ verbose=False,
+):
+ # assume tsv_dir is the same for both the reference and the hypotheses
+ tsv_dir = lab_dir if tsv_dir is None else tsv_dir
+
+ uid2refs = {}
+ for s in lab_sets:
+ uid2refs.update(read_lab(f"{tsv_dir}/{s}.tsv", f"{ref_dir}/{s}.{ref_name}"))
+
+ uid2hyps = {}
+ for s in lab_sets:
+ uid2hyps.update(
+ read_lab(
+ f"{tsv_dir}/{s}.tsv", f"{lab_dir}/{s}.{lab_name}", pad_len, upsample
+ )
+ )
+ _main(uid2refs, uid2hyps, verbose)
+
+
+def main_phn_lab(
+ tsv_dir,
+ lab_dir,
+ lab_name,
+ lab_sets,
+ phn_dir,
+ phn_sets,
+ pad_len=0,
+ upsample=1,
+ verbose=False,
+):
+ uid2refs = {}
+ for s in phn_sets:
+ uid2refs.update(read_phn(f"{phn_dir}/{s}.tsv"))
+
+ uid2hyps = {}
+ tsv_dir = lab_dir if tsv_dir is None else tsv_dir
+ for s in lab_sets:
+ uid2hyps.update(
+ read_lab(
+ f"{tsv_dir}/{s}.tsv", f"{lab_dir}/{s}.{lab_name}", pad_len, upsample
+ )
+ )
+ _main(uid2refs, uid2hyps, verbose)
+
+
+def _main(uid2refs, uid2hyps, verbose):
+ (p_xy, ref2pid, hyp2lid, tot, frmdiff, skipped) = comp_joint_prob(
+ uid2refs, uid2hyps
+ )
+ ref_pur_by_hyp, ref_pur = comp_purity(p_xy, axis=0)
+ hyp_pur_by_ref, hyp_pur = comp_purity(p_xy, axis=1)
+ (mi, mi_norm_by_ref, mi_norm_by_hyp, h_ref, h_hyp) = comp_norm_mutual_info(p_xy)
+ outputs = {
+ "ref pur": ref_pur,
+ "hyp pur": hyp_pur,
+ "H(ref)": h_ref,
+ "H(hyp)": h_hyp,
+ "MI": mi,
+ "MI/H(ref)": mi_norm_by_ref,
+ "ref segL": comp_avg_seg_dur(uid2refs.values()),
+ "hyp segL": comp_avg_seg_dur(uid2hyps.values()),
+ "p_xy shape": p_xy.shape,
+ "frm tot": tot,
+ "frm diff": frmdiff,
+ "utt tot": len(uid2refs),
+ "utt miss": len(skipped),
+ }
+ print(tabulate([outputs.values()], outputs.keys(), floatfmt=".4f"))
+
+
+if __name__ == "__main__":
+ """
+ compute quality of labels with respect to phone or another labels if set
+ """
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("tsv_dir")
+ parser.add_argument("lab_dir")
+ parser.add_argument("lab_name")
+ parser.add_argument("--lab_sets", default=["valid"], type=str, nargs="+")
+ parser.add_argument(
+ "--phn_dir",
+ default="/checkpoint/wnhsu/data/librispeech/960h/fa/raw_phn/phone_frame_align_v1",
+ )
+ parser.add_argument(
+ "--phn_sets", default=["dev-clean", "dev-other"], type=str, nargs="+"
+ )
+ parser.add_argument("--pad_len", default=0, type=int, help="padding for hypotheses")
+ parser.add_argument(
+ "--upsample", default=1, type=int, help="upsample factor for hypotheses"
+ )
+ parser.add_argument("--ref_lab_dir", default="")
+ parser.add_argument("--ref_lab_name", default="")
+ parser.add_argument("--verbose", action="store_true")
+ args = parser.parse_args()
+
+ if args.ref_lab_dir and args.ref_lab_name:
+ main_lab_lab(
+ args.tsv_dir,
+ args.lab_dir,
+ args.lab_name,
+ args.lab_sets,
+ args.ref_lab_dir,
+ args.ref_lab_name,
+ args.pad_len,
+ args.upsample,
+ args.verbose,
+ )
+ else:
+ main_phn_lab(
+ args.tsv_dir,
+ args.lab_dir,
+ args.lab_name,
+ args.lab_sets,
+ args.phn_dir,
+ args.phn_sets,
+ args.pad_len,
+ args.upsample,
+ args.verbose,
+ )
diff --git a/fairseq/examples/hubert/simple_kmeans/README.md b/fairseq/examples/hubert/simple_kmeans/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..cd17da3b3e6f3e39083f7a76a56ff46c3a63b929
--- /dev/null
+++ b/fairseq/examples/hubert/simple_kmeans/README.md
@@ -0,0 +1,71 @@
+# Sharded Feature Extraction and K-means Application
+
+This folder contains scripts for preparing HUBERT labels from tsv files, the
+steps are:
+1. feature extraction
+2. k-means clustering
+3. k-means application
+
+
+## Data preparation
+
+`*.tsv` files contains a list of audio, where each line is the root, and
+following lines are the subpath for each audio:
+```
+
+
+
+...
+```
+
+
+## Feature extraction
+
+### MFCC feature
+Suppose the tsv file is at `${tsv_dir}/${split}.tsv`. To extract 39-D
+mfcc+delta+ddelta features for the 1st iteration HUBERT training, run:
+```sh
+python dump_mfcc_feature.py ${tsv_dir} ${split} ${nshard} ${rank} ${feat_dir}
+```
+This would shard the tsv file into `${nshard}` and extract features for the
+`${rank}`-th shard, where rank is an integer in `[0, nshard-1]`. Features would
+be saved at `${feat_dir}/${split}_${rank}_${nshard}.{npy,len}`.
+
+
+### HUBERT feature
+To extract features from the `${layer}`-th transformer layer of a trained
+HUBERT model saved at `${ckpt_path}`, run:
+```sh
+python dump_hubert_feature.py ${tsv_dir} ${split} ${ckpt_path} ${layer} ${nshard} ${rank} ${feat_dir}
+```
+Features would also be saved at `${feat_dir}/${split}_${rank}_${nshard}.{npy,len}`.
+
+- if out-of-memory, decrease the chunk size with `--max_chunk`
+
+
+## K-means clustering
+To fit a k-means model with `${n_clusters}` clusters on 10% of the `${split}` data, run
+```sh
+python learn_kmeans.py ${feat_dir} ${split} ${nshard} ${km_path} ${n_cluster} --percent 0.1
+```
+This saves the k-means model to `${km_path}`.
+
+- set `--precent -1` to use all data
+- more kmeans options can be found with `-h` flag
+
+
+## K-means application
+To apply a trained k-means model `${km_path}` to obtain labels for `${split}`, run
+```sh
+python dump_km_label.py ${feat_dir} ${split} ${km_path} ${nshard} ${rank} ${lab_dir}
+```
+This would extract labels for the `${rank}`-th shard out of `${nshard}` shards
+and dump them to `${lab_dir}/${split}_${rank}_${shard}.km`
+
+
+Finally, merge shards for `${split}` by running
+```sh
+for rank in $(seq 0 $((nshard - 1))); do
+ cat $lab_dir/${split}_${rank}_${nshard}.km
+done > $lab_dir/${split}.km
+```
diff --git a/fairseq/examples/hubert/simple_kmeans/dump_hubert_feature.py b/fairseq/examples/hubert/simple_kmeans/dump_hubert_feature.py
new file mode 100644
index 0000000000000000000000000000000000000000..5c7b67f8b1967ca515c5f7606253b46f903ea37e
--- /dev/null
+++ b/fairseq/examples/hubert/simple_kmeans/dump_hubert_feature.py
@@ -0,0 +1,93 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+import sys
+
+import fairseq
+import soundfile as sf
+import torch
+import torch.nn.functional as F
+
+from feature_utils import get_path_iterator, dump_feature
+
+
+logging.basicConfig(
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
+ datefmt="%Y-%m-%d %H:%M:%S",
+ level=os.environ.get("LOGLEVEL", "INFO").upper(),
+ stream=sys.stdout,
+)
+logger = logging.getLogger("dump_hubert_feature")
+
+
+class HubertFeatureReader(object):
+ def __init__(self, ckpt_path, layer, max_chunk=1600000):
+ (
+ model,
+ cfg,
+ task,
+ ) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
+ self.model = model[0].eval().cuda()
+ self.task = task
+ self.layer = layer
+ self.max_chunk = max_chunk
+ logger.info(f"TASK CONFIG:\n{self.task.cfg}")
+ logger.info(f" max_chunk = {self.max_chunk}")
+
+ def read_audio(self, path, ref_len=None):
+ wav, sr = sf.read(path)
+ assert sr == self.task.cfg.sample_rate, sr
+ if wav.ndim == 2:
+ wav = wav.mean(-1)
+ assert wav.ndim == 1, wav.ndim
+ if ref_len is not None and abs(ref_len - len(wav)) > 160:
+ logging.warning(f"ref {ref_len} != read {len(wav)} ({path})")
+ return wav
+
+ def get_feats(self, path, ref_len=None):
+ x = self.read_audio(path, ref_len)
+ with torch.no_grad():
+ x = torch.from_numpy(x).float().cuda()
+ if self.task.cfg.normalize:
+ x = F.layer_norm(x, x.shape)
+ x = x.view(1, -1)
+
+ feat = []
+ for start in range(0, x.size(1), self.max_chunk):
+ x_chunk = x[:, start: start + self.max_chunk]
+ feat_chunk, _ = self.model.extract_features(
+ source=x_chunk,
+ padding_mask=None,
+ mask=False,
+ output_layer=self.layer,
+ )
+ feat.append(feat_chunk)
+ return torch.cat(feat, 1).squeeze(0)
+
+
+def main(tsv_dir, split, ckpt_path, layer, nshard, rank, feat_dir, max_chunk):
+ reader = HubertFeatureReader(ckpt_path, layer, max_chunk)
+ generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank)
+ dump_feature(reader, generator, num, split, nshard, rank, feat_dir)
+
+
+if __name__ == "__main__":
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("tsv_dir")
+ parser.add_argument("split")
+ parser.add_argument("ckpt_path")
+ parser.add_argument("layer", type=int)
+ parser.add_argument("nshard", type=int)
+ parser.add_argument("rank", type=int)
+ parser.add_argument("feat_dir")
+ parser.add_argument("--max_chunk", type=int, default=1600000)
+ args = parser.parse_args()
+ logger.info(args)
+
+ main(**vars(args))
diff --git a/fairseq/examples/hubert/simple_kmeans/dump_hubert_feature_s2t.py b/fairseq/examples/hubert/simple_kmeans/dump_hubert_feature_s2t.py
new file mode 100644
index 0000000000000000000000000000000000000000..6fff4faf44a92d42504559ecea8ec1047d2e5f14
--- /dev/null
+++ b/fairseq/examples/hubert/simple_kmeans/dump_hubert_feature_s2t.py
@@ -0,0 +1,92 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import csv
+import io
+import logging
+import os
+import os.path as op
+import sys
+
+from dump_hubert_feature import HubertFeatureReader
+from feature_utils import get_shard_range, dump_feature
+from fairseq.data.audio.audio_utils import get_waveform
+from fairseq.data.audio.speech_to_text_dataset import (
+ read_from_uncompressed_zip,
+)
+
+
+logging.basicConfig(
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
+ datefmt="%Y-%m-%d %H:%M:%S",
+ level=os.environ.get("LOGLEVEL", "INFO").upper(),
+ stream=sys.stdout,
+)
+logger = logging.getLogger("dump_hubert_feature_s2t")
+
+
+class HubertFeatureReaderS2T(HubertFeatureReader):
+ def read_audio(self, path, ref_len=None):
+ path, *extra = path.split(":")
+ assert len(extra) == 2
+ assert path.endswith(".zip")
+
+ data = read_from_uncompressed_zip(path, int(extra[0]), int(extra[1]))
+ f = io.BytesIO(data)
+ wav, sr = get_waveform(f)
+ assert sr == self.task.cfg.sample_rate, sr
+ if wav.ndim == 2:
+ wav = wav.mean(-1)
+ assert wav.ndim == 1, wav.ndim
+ if ref_len is not None and abs(ref_len - len(wav)) > 160:
+ logging.warning(f"ref {ref_len} != read {len(wav)} ({path})")
+ return wav
+
+
+def get_path_iterator(root, tsv, nshard, rank):
+ with open(tsv) as f:
+ reader = csv.DictReader(
+ f,
+ delimiter="\t",
+ quotechar=None,
+ doublequote=False,
+ lineterminator="\n",
+ quoting=csv.QUOTE_NONE,
+ )
+ subpaths = [op.join(root, e["audio"]) for e in reader]
+ start, end = get_shard_range(len(subpaths), nshard, rank)
+ subpaths = subpaths[start:end]
+ def iterate():
+ for subpath in subpaths:
+ yield op.join(root, subpath), None
+ return iterate, len(subpaths)
+
+
+def main(
+ root, tsv_path, ckpt_path, layer, nshard, rank, feat_dir, split, max_chunk
+):
+ reader = HubertFeatureReaderS2T(ckpt_path, layer, max_chunk)
+ generator, num = get_path_iterator(root, tsv_path, nshard, rank)
+ dump_feature(reader, generator, num, split, nshard, rank, feat_dir)
+
+
+
+if __name__ == "__main__":
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("root")
+ parser.add_argument("tsv_path")
+ parser.add_argument("ckpt_path")
+ parser.add_argument("layer", type=int)
+ parser.add_argument("nshard", type=int)
+ parser.add_argument("rank", type=int)
+ parser.add_argument("feat_dir")
+ parser.add_argument("split")
+ parser.add_argument("--max_chunk", type=int, default=1600000)
+ args = parser.parse_args()
+ logger.info(args)
+
+ main(**vars(args))
diff --git a/fairseq/examples/hubert/simple_kmeans/dump_km_label.py b/fairseq/examples/hubert/simple_kmeans/dump_km_label.py
new file mode 100644
index 0000000000000000000000000000000000000000..8871307804d3f1e5c7cc49061614c69df26ab1ee
--- /dev/null
+++ b/fairseq/examples/hubert/simple_kmeans/dump_km_label.py
@@ -0,0 +1,98 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+import sys
+
+import numpy as np
+
+import joblib
+import torch
+import tqdm
+
+logging.basicConfig(
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
+ datefmt="%Y-%m-%d %H:%M:%S",
+ level=os.environ.get("LOGLEVEL", "INFO").upper(),
+ stream=sys.stdout,
+)
+logger = logging.getLogger("dump_km_label")
+
+
+class ApplyKmeans(object):
+ def __init__(self, km_path):
+ self.km_model = joblib.load(km_path)
+ self.C_np = self.km_model.cluster_centers_.transpose()
+ self.Cnorm_np = (self.C_np ** 2).sum(0, keepdims=True)
+
+ self.C = torch.from_numpy(self.C_np)
+ self.Cnorm = torch.from_numpy(self.Cnorm_np)
+ if torch.cuda.is_available():
+ self.C = self.C.cuda()
+ self.Cnorm = self.Cnorm.cuda()
+
+ def __call__(self, x):
+ if isinstance(x, torch.Tensor):
+ dist = (
+ x.pow(2).sum(1, keepdim=True)
+ - 2 * torch.matmul(x, self.C)
+ + self.Cnorm
+ )
+ return dist.argmin(dim=1).cpu().numpy()
+ else:
+ dist = (
+ (x ** 2).sum(1, keepdims=True)
+ - 2 * np.matmul(x, self.C_np)
+ + self.Cnorm_np
+ )
+ return np.argmin(dist, axis=1)
+
+
+def get_feat_iterator(feat_dir, split, nshard, rank):
+ feat_path = f"{feat_dir}/{split}_{rank}_{nshard}.npy"
+ leng_path = f"{feat_dir}/{split}_{rank}_{nshard}.len"
+ with open(leng_path, "r") as f:
+ lengs = [int(line.rstrip()) for line in f]
+ offsets = [0] + np.cumsum(lengs[:-1]).tolist()
+
+ def iterate():
+ feat = np.load(feat_path, mmap_mode="r")
+ assert feat.shape[0] == (offsets[-1] + lengs[-1])
+ for offset, leng in zip(offsets, lengs):
+ yield feat[offset: offset + leng]
+
+ return iterate, len(lengs)
+
+
+def dump_label(feat_dir, split, km_path, nshard, rank, lab_dir):
+ apply_kmeans = ApplyKmeans(km_path)
+ generator, num = get_feat_iterator(feat_dir, split, nshard, rank)
+ iterator = generator()
+
+ lab_path = f"{lab_dir}/{split}_{rank}_{nshard}.km"
+ os.makedirs(lab_dir, exist_ok=True)
+ with open(lab_path, "w") as f:
+ for feat in tqdm.tqdm(iterator, total=num):
+ # feat = torch.from_numpy(feat).cuda()
+ lab = apply_kmeans(feat).tolist()
+ f.write(" ".join(map(str, lab)) + "\n")
+ logger.info("finished successfully")
+
+
+if __name__ == "__main__":
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("feat_dir")
+ parser.add_argument("split")
+ parser.add_argument("km_path")
+ parser.add_argument("nshard", type=int)
+ parser.add_argument("rank", type=int)
+ parser.add_argument("lab_dir")
+ args = parser.parse_args()
+ logging.info(str(args))
+
+ dump_label(**vars(args))
diff --git a/fairseq/examples/hubert/simple_kmeans/dump_mfcc_feature.py b/fairseq/examples/hubert/simple_kmeans/dump_mfcc_feature.py
new file mode 100644
index 0000000000000000000000000000000000000000..70d0016663b7d0b90033f4eb301b527f2c92a3f8
--- /dev/null
+++ b/fairseq/examples/hubert/simple_kmeans/dump_mfcc_feature.py
@@ -0,0 +1,78 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+import sys
+
+import soundfile as sf
+import torch
+import torchaudio
+
+from feature_utils import get_path_iterator, dump_feature
+
+logging.basicConfig(
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
+ datefmt="%Y-%m-%d %H:%M:%S",
+ level=os.environ.get("LOGLEVEL", "INFO").upper(),
+ stream=sys.stdout,
+)
+logger = logging.getLogger("dump_mfcc_feature")
+
+
+class MfccFeatureReader(object):
+ def __init__(self, sample_rate):
+ self.sample_rate = sample_rate
+
+ def read_audio(self, path, ref_len=None):
+ wav, sr = sf.read(path)
+ assert sr == self.sample_rate, sr
+ if wav.ndim == 2:
+ wav = wav.mean(-1)
+ assert wav.ndim == 1, wav.ndim
+ if ref_len is not None and abs(ref_len - len(wav)) > 160:
+ logging.warning(f"ref {ref_len} != read {len(wav)} ({path})")
+ return wav
+
+ def get_feats(self, path, ref_len=None):
+ x = self.read_audio(path, ref_len)
+ with torch.no_grad():
+ x = torch.from_numpy(x).float()
+ x = x.view(1, -1)
+
+ mfccs = torchaudio.compliance.kaldi.mfcc(
+ waveform=x,
+ sample_frequency=self.sample_rate,
+ use_energy=False,
+ ) # (time, freq)
+ mfccs = mfccs.transpose(0, 1) # (freq, time)
+ deltas = torchaudio.functional.compute_deltas(mfccs)
+ ddeltas = torchaudio.functional.compute_deltas(deltas)
+ concat = torch.cat([mfccs, deltas, ddeltas], dim=0)
+ concat = concat.transpose(0, 1).contiguous() # (freq, time)
+ return concat
+
+
+def main(tsv_dir, split, nshard, rank, feat_dir, sample_rate):
+ reader = MfccFeatureReader(sample_rate)
+ generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank)
+ dump_feature(reader, generator, num, split, nshard, rank, feat_dir)
+
+
+
+if __name__ == "__main__":
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("tsv_dir")
+ parser.add_argument("split")
+ parser.add_argument("nshard", type=int)
+ parser.add_argument("rank", type=int)
+ parser.add_argument("feat_dir")
+ parser.add_argument("--sample_rate", type=int, default=16000)
+ args = parser.parse_args()
+ logger.info(args)
+
+ main(**vars(args))
diff --git a/fairseq/examples/hubert/simple_kmeans/dump_w2v2_feature.py b/fairseq/examples/hubert/simple_kmeans/dump_w2v2_feature.py
new file mode 100644
index 0000000000000000000000000000000000000000..a1f0d902acf0756580a1f4604feee8fc499a9a63
--- /dev/null
+++ b/fairseq/examples/hubert/simple_kmeans/dump_w2v2_feature.py
@@ -0,0 +1,95 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+import sys
+
+import fairseq
+import soundfile as sf
+import torch
+import torch.nn.functional as F
+
+from feature_utils import get_path_iterator, dump_feature
+
+
+logging.basicConfig(
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
+ datefmt="%Y-%m-%d %H:%M:%S",
+ level=os.environ.get("LOGLEVEL", "INFO").upper(),
+ stream=sys.stdout,
+)
+logger = logging.getLogger("dump_w2v2_feature")
+
+
+class Wav2Vec2FeatureReader(object):
+ def __init__(self, ckpt_path, layer, max_chunk=1600000):
+ (
+ model,
+ cfg,
+ task,
+ ) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
+ self.model = model[0].eval().cuda()
+ self.task = task
+ self.layer = layer # assume this is 1-based like HuBERT
+ self.max_chunk = max_chunk
+ logger.info(f"TASK CONFIG:\n{self.task.cfg}")
+ logger.info(f" max_chunk = {self.max_chunk}")
+ logger.info(f" model:\n{self.model}")
+
+ def read_audio(self, path, ref_len=None):
+ wav, sr = sf.read(path)
+ assert sr == self.task.cfg.sample_rate, sr
+ if wav.ndim == 2:
+ wav = wav.mean(-1)
+ assert wav.ndim == 1, wav.ndim
+ if ref_len is not None and abs(ref_len - len(wav)) > 160:
+ logging.warning(f"ref {ref_len} != read {len(wav)} ({path})")
+ return wav
+
+ def get_feats(self, path, ref_len=None):
+ x = self.read_audio(path, ref_len)
+ with torch.no_grad():
+ x = torch.from_numpy(x).float().cuda()
+ if self.task.cfg.normalize:
+ x = F.layer_norm(x, x.shape)
+ x = x.view(1, -1)
+
+ feat = []
+ for start in range(0, x.size(1), self.max_chunk):
+ x_chunk = x[:, start: start + self.max_chunk]
+ res = self.model.extract_features(
+ source=x_chunk,
+ padding_mask=None,
+ mask=False,
+ layer=self.layer - 1,
+ )
+ feat_chunk = res["x"]
+ feat.append(feat_chunk)
+ return torch.cat(feat, 1).squeeze(0)
+
+
+def main(tsv_dir, split, ckpt_path, layer, nshard, rank, feat_dir, max_chunk):
+ reader = Wav2Vec2FeatureReader(ckpt_path, layer, max_chunk)
+ generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank)
+ dump_feature(reader, generator, num, split, nshard, rank, feat_dir)
+
+
+if __name__ == "__main__":
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("tsv_dir")
+ parser.add_argument("split")
+ parser.add_argument("ckpt_path")
+ parser.add_argument("layer", type=int)
+ parser.add_argument("nshard", type=int)
+ parser.add_argument("rank", type=int)
+ parser.add_argument("feat_dir")
+ parser.add_argument("--max_chunk", type=int, default=1600000)
+ args = parser.parse_args()
+ logger.info(args)
+
+ main(**vars(args))
diff --git a/fairseq/examples/hubert/simple_kmeans/feature_utils.py b/fairseq/examples/hubert/simple_kmeans/feature_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..f80bc4569768fac181133cdc8f76d1230e03bff6
--- /dev/null
+++ b/fairseq/examples/hubert/simple_kmeans/feature_utils.py
@@ -0,0 +1,66 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+import sys
+
+import tqdm
+from npy_append_array import NpyAppendArray
+
+
+logging.basicConfig(
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
+ datefmt="%Y-%m-%d %H:%M:%S",
+ level=os.environ.get("LOGLEVEL", "INFO").upper(),
+ stream=sys.stdout,
+)
+logger = logging.getLogger("feature_utils")
+
+
+def get_shard_range(tot, nshard, rank):
+ assert rank < nshard and rank >= 0, f"invaid rank/nshard {rank}/{nshard}"
+ start = round(tot / nshard * rank)
+ end = round(tot / nshard * (rank + 1))
+ assert start < end, f"start={start}, end={end}"
+ logger.info(
+ f"rank {rank} of {nshard}, process {end-start} "
+ f"({start}-{end}) out of {tot}"
+ )
+ return start, end
+
+
+def get_path_iterator(tsv, nshard, rank):
+ with open(tsv, "r") as f:
+ root = f.readline().rstrip()
+ lines = [line.rstrip() for line in f]
+ start, end = get_shard_range(len(lines), nshard, rank)
+ lines = lines[start:end]
+ def iterate():
+ for line in lines:
+ subpath, nsample = line.split("\t")
+ yield f"{root}/{subpath}", int(nsample)
+ return iterate, len(lines)
+
+
+def dump_feature(reader, generator, num, split, nshard, rank, feat_dir):
+ iterator = generator()
+
+ feat_path = f"{feat_dir}/{split}_{rank}_{nshard}.npy"
+ leng_path = f"{feat_dir}/{split}_{rank}_{nshard}.len"
+
+ os.makedirs(feat_dir, exist_ok=True)
+ if os.path.exists(feat_path):
+ os.remove(feat_path)
+
+ feat_f = NpyAppendArray(feat_path)
+ with open(leng_path, "w") as leng_f:
+ for path, nsample in tqdm.tqdm(iterator, total=num):
+ feat = reader.get_feats(path, nsample)
+ feat_f.append(feat.cpu().numpy())
+ leng_f.write(f"{len(feat)}\n")
+ logger.info("finished successfully")
+
+
diff --git a/fairseq/examples/hubert/simple_kmeans/learn_kmeans.py b/fairseq/examples/hubert/simple_kmeans/learn_kmeans.py
new file mode 100644
index 0000000000000000000000000000000000000000..113ac655b8c0a585fe43797e99674e445098edd0
--- /dev/null
+++ b/fairseq/examples/hubert/simple_kmeans/learn_kmeans.py
@@ -0,0 +1,146 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+import sys
+
+import numpy as np
+from sklearn.cluster import MiniBatchKMeans
+
+import joblib
+
+logging.basicConfig(
+ format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
+ datefmt="%Y-%m-%d %H:%M:%S",
+ level=os.environ.get("LOGLEVEL", "INFO").upper(),
+ stream=sys.stdout,
+)
+logger = logging.getLogger("learn_kmeans")
+
+
+def get_km_model(
+ n_clusters,
+ init,
+ max_iter,
+ batch_size,
+ tol,
+ max_no_improvement,
+ n_init,
+ reassignment_ratio,
+):
+ return MiniBatchKMeans(
+ n_clusters=n_clusters,
+ init=init,
+ max_iter=max_iter,
+ batch_size=batch_size,
+ verbose=1,
+ compute_labels=False,
+ tol=tol,
+ max_no_improvement=max_no_improvement,
+ init_size=None,
+ n_init=n_init,
+ reassignment_ratio=reassignment_ratio,
+ )
+
+
+def load_feature_shard(feat_dir, split, nshard, rank, percent):
+ feat_path = f"{feat_dir}/{split}_{rank}_{nshard}.npy"
+ leng_path = f"{feat_dir}/{split}_{rank}_{nshard}.len"
+ with open(leng_path, "r") as f:
+ lengs = [int(line.rstrip()) for line in f]
+ offsets = [0] + np.cumsum(lengs[:-1]).tolist()
+
+ if percent < 0:
+ return np.load(feat_path, mmap_mode="r")
+ else:
+ nsample = int(np.ceil(len(lengs) * percent))
+ indices = np.random.choice(len(lengs), nsample, replace=False)
+ feat = np.load(feat_path, mmap_mode="r")
+ sampled_feat = np.concatenate(
+ [feat[offsets[i]: offsets[i] + lengs[i]] for i in indices], axis=0
+ )
+ logger.info(
+ (
+ f"sampled {nsample} utterances, {len(sampled_feat)} frames "
+ f"from shard {rank}/{nshard}"
+ )
+ )
+ return sampled_feat
+
+
+def load_feature(feat_dir, split, nshard, seed, percent):
+ assert percent <= 1.0
+ feat = np.concatenate(
+ [
+ load_feature_shard(feat_dir, split, nshard, r, percent)
+ for r in range(nshard)
+ ],
+ axis=0,
+ )
+ logging.info(f"loaded feature with dimension {feat.shape}")
+ return feat
+
+
+def learn_kmeans(
+ feat_dir,
+ split,
+ nshard,
+ km_path,
+ n_clusters,
+ seed,
+ percent,
+ init,
+ max_iter,
+ batch_size,
+ tol,
+ n_init,
+ reassignment_ratio,
+ max_no_improvement,
+):
+ np.random.seed(seed)
+ feat = load_feature(feat_dir, split, nshard, seed, percent)
+ km_model = get_km_model(
+ n_clusters,
+ init,
+ max_iter,
+ batch_size,
+ tol,
+ max_no_improvement,
+ n_init,
+ reassignment_ratio,
+ )
+ km_model.fit(feat)
+ joblib.dump(km_model, km_path)
+
+ inertia = -km_model.score(feat) / len(feat)
+ logger.info("total intertia: %.5f", inertia)
+ logger.info("finished successfully")
+
+
+if __name__ == "__main__":
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("feat_dir", type=str)
+ parser.add_argument("split", type=str)
+ parser.add_argument("nshard", type=int)
+ parser.add_argument("km_path", type=str)
+ parser.add_argument("n_clusters", type=int)
+ parser.add_argument("--seed", default=0, type=int)
+ parser.add_argument(
+ "--percent", default=-1, type=float, help="sample a subset; -1 for all"
+ )
+ parser.add_argument("--init", default="k-means++")
+ parser.add_argument("--max_iter", default=100, type=int)
+ parser.add_argument("--batch_size", default=10000, type=int)
+ parser.add_argument("--tol", default=0.0, type=float)
+ parser.add_argument("--max_no_improvement", default=100, type=int)
+ parser.add_argument("--n_init", default=20, type=int)
+ parser.add_argument("--reassignment_ratio", default=0.0, type=float)
+ args = parser.parse_args()
+ logging.info(str(args))
+
+ learn_kmeans(**vars(args))
diff --git a/fairseq/examples/hubert/update_ckpt.py b/fairseq/examples/hubert/update_ckpt.py
new file mode 100644
index 0000000000000000000000000000000000000000..53c9e74ea613e30aa5c22614e658f2b7272bac0c
--- /dev/null
+++ b/fairseq/examples/hubert/update_ckpt.py
@@ -0,0 +1,22 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+
+src_ckpt = "/checkpoint/wnhsu/w2v/archived/hubert_base_ls960_it2.pt"
+ref_ckpt = "/checkpoint/wnhsu/w2v/hubert_icassp_oss_v3/iter2_km100-400k-grp-L6/oss.km500_p0_1_s334.pmw1_0.puw0_0.grpnorm.ml10.mp0_8.untie.mxsz250000.ufreq1.maxtok1400000.MU100k.s1337.ngpu32/checkpoint_last.pt"
+new_ckpt = "/checkpoint/wnhsu/w2v/archived/hubert_base_ls960_it2_updated.pt"
+
+
+def update_state(state):
+ state["model"]["label_embs_concat"] = state["model"].pop("label_embs")
+ state["args"].task = "hubert_pretraining"
+ state["args"].labels = f"['{state['args'].labels}']"
+ return state
+
+
+src_state = torch.load(src_ckpt)
+src_state = update_state(src_state)
+torch.save(src_state, new_ckpt)
diff --git a/fairseq/examples/joint_alignment_translation/README.md b/fairseq/examples/joint_alignment_translation/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..cd9c0ea65f5292198296a8f427b42e01b584e2d9
--- /dev/null
+++ b/fairseq/examples/joint_alignment_translation/README.md
@@ -0,0 +1,89 @@
+# Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)
+
+This page includes instructions for training models described in [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](https://arxiv.org/abs/1909.02074).
+
+## Training a joint alignment-translation model on WMT'18 En-De
+
+##### 1. Extract and preprocess the WMT'18 En-De data
+```bash
+./prepare-wmt18en2de_no_norm_no_escape_no_agressive.sh
+```
+
+##### 2. Generate alignments from statistical alignment toolkits e.g. Giza++/FastAlign.
+In this example, we use FastAlign.
+```bash
+git clone git@github.com:clab/fast_align.git
+pushd fast_align
+mkdir build
+cd build
+cmake ..
+make
+popd
+ALIGN=fast_align/build/fast_align
+paste bpe.32k/train.en bpe.32k/train.de | awk -F '\t' '{print $1 " ||| " $2}' > bpe.32k/train.en-de
+$ALIGN -i bpe.32k/train.en-de -d -o -v > bpe.32k/train.align
+```
+
+##### 3. Preprocess the dataset with the above generated alignments.
+```bash
+fairseq-preprocess \
+ --source-lang en --target-lang de \
+ --trainpref bpe.32k/train \
+ --validpref bpe.32k/valid \
+ --testpref bpe.32k/test \
+ --align-suffix align \
+ --destdir binarized/ \
+ --joined-dictionary \
+ --workers 32
+```
+
+##### 4. Train a model
+```bash
+fairseq-train \
+ binarized \
+ --arch transformer_wmt_en_de_big_align --share-all-embeddings \
+ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --activation-fn relu\
+ --lr 0.0002 --lr-scheduler inverse_sqrt --warmup-updates 4000 --warmup-init-lr 1e-07 \
+ --dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \
+ --max-tokens 3500 --label-smoothing 0.1 \
+ --save-dir ./checkpoints --log-interval 1000 --max-update 60000 \
+ --keep-interval-updates -1 --save-interval-updates 0 \
+ --load-alignments --criterion label_smoothed_cross_entropy_with_alignment \
+ --fp16
+```
+
+Note that the `--fp16` flag requires you have CUDA 9.1 or greater and a Volta GPU or newer.
+
+If you want to train the above model with big batches (assuming your machine has 8 GPUs):
+- add `--update-freq 8` to simulate training on 8x8=64 GPUs
+- increase the learning rate; 0.0007 works well for big batches
+
+##### 5. Evaluate and generate the alignments (BPE level)
+```bash
+fairseq-generate \
+ binarized --gen-subset test --print-alignment \
+ --source-lang en --target-lang de \
+ --path checkpoints/checkpoint_best.pt --beam 5 --nbest 1
+```
+
+##### 6. Other resources.
+The code for:
+1. preparing alignment test sets
+2. converting BPE level alignments to token level alignments
+3. symmetrizing bidirectional alignments
+4. evaluating alignments using AER metric
+can be found [here](https://github.com/lilt/alignment-scripts)
+
+## Citation
+
+```bibtex
+@inproceedings{garg2019jointly,
+ title = {Jointly Learning to Align and Translate with Transformer Models},
+ author = {Garg, Sarthak and Peitz, Stephan and Nallasamy, Udhyakumar and Paulik, Matthias},
+ booktitle = {Conference on Empirical Methods in Natural Language Processing (EMNLP)},
+ address = {Hong Kong},
+ month = {November},
+ url = {https://arxiv.org/abs/1909.02074},
+ year = {2019},
+}
+```
diff --git a/fairseq/examples/joint_alignment_translation/prepare-wmt18en2de_no_norm_no_escape_no_agressive.sh b/fairseq/examples/joint_alignment_translation/prepare-wmt18en2de_no_norm_no_escape_no_agressive.sh
new file mode 100755
index 0000000000000000000000000000000000000000..e3efeb21d302ef8d9eae8f1d4b06434c593705f6
--- /dev/null
+++ b/fairseq/examples/joint_alignment_translation/prepare-wmt18en2de_no_norm_no_escape_no_agressive.sh
@@ -0,0 +1,118 @@
+#!/bin/bash
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+echo 'Cloning Moses github repository (for tokenization scripts)...'
+git clone https://github.com/moses-smt/mosesdecoder.git
+
+SCRIPTS=mosesdecoder/scripts
+TOKENIZER=$SCRIPTS/tokenizer/tokenizer.perl
+CLEAN=$SCRIPTS/training/clean-corpus-n.perl
+REM_NON_PRINT_CHAR=$SCRIPTS/tokenizer/remove-non-printing-char.perl
+
+URLS=(
+ "http://statmt.org/wmt13/training-parallel-europarl-v7.tgz"
+ "http://statmt.org/wmt13/training-parallel-commoncrawl.tgz"
+ "http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz"
+ "http://data.statmt.org/wmt18/translation-task/rapid2016.tgz"
+ "http://data.statmt.org/wmt17/translation-task/dev.tgz"
+ "http://statmt.org/wmt14/test-full.tgz"
+)
+CORPORA=(
+ "training/europarl-v7.de-en"
+ "commoncrawl.de-en"
+ "training-parallel-nc-v13/news-commentary-v13.de-en"
+ "rapid2016.de-en"
+)
+
+if [ ! -d "$SCRIPTS" ]; then
+ echo "Please set SCRIPTS variable correctly to point to Moses scripts."
+ exit
+fi
+
+src=en
+tgt=de
+lang=en-de
+prep=wmt18_en_de
+tmp=$prep/tmp
+orig=orig
+dev=dev/newstest2012
+codes=32000
+bpe=bpe.32k
+
+mkdir -p $orig $tmp $prep $bpe
+
+cd $orig
+
+for ((i=0;i<${#URLS[@]};++i)); do
+ url=${URLS[i]}
+ file=$(basename $url)
+ if [ -f $file ]; then
+ echo "$file already exists, skipping download"
+ else
+ wget "$url"
+ if [ -f $file ]; then
+ echo "$url successfully downloaded."
+ else
+ echo "$url not successfully downloaded."
+ exit 1
+ fi
+ if [ ${file: -4} == ".tgz" ]; then
+ tar zxvf $file
+ elif [ ${file: -4} == ".tar" ]; then
+ tar xvf $file
+ fi
+ fi
+done
+cd ..
+
+echo "pre-processing train data..."
+for l in $src $tgt; do
+ rm -rf $tmp/train.tags.$lang.tok.$l
+ for f in "${CORPORA[@]}"; do
+ cat $orig/$f.$l | \
+ perl $REM_NON_PRINT_CHAR | \
+ perl $TOKENIZER -threads 8 -l $l -no-escape >> $tmp/train.tags.$lang.tok.$l
+ done
+done
+
+echo "pre-processing test data..."
+for l in $src $tgt; do
+ if [ "$l" == "$src" ]; then
+ t="src"
+ else
+ t="ref"
+ fi
+ grep '\s*//g' | \
+ sed -e 's/\s*<\/seg>\s*//g' | \
+ sed -e "s/\’/\'/g" | \
+ perl $TOKENIZER -threads 8 -l $l -no-escape > $tmp/test.$l
+ echo ""
+done
+
+# apply length filtering before BPE
+perl $CLEAN -ratio 1.5 $tmp/train.tags.$lang.tok $src $tgt $tmp/train 1 100
+
+# use newstest2012 for valid
+echo "pre-processing valid data..."
+for l in $src $tgt; do
+ rm -rf $tmp/valid.$l
+ cat $orig/$dev.$l | \
+ perl $REM_NON_PRINT_CHAR | \
+ perl $TOKENIZER -threads 8 -l $l -no-escape >> $tmp/valid.$l
+done
+
+mkdir output
+mv $tmp/{train,valid,test}.{$src,$tgt} output
+
+#BPE
+git clone https://github.com/glample/fastBPE.git
+pushd fastBPE
+g++ -std=c++11 -pthread -O3 fastBPE/main.cc -IfastBPE -o fast
+popd
+fastBPE/fast learnbpe $codes output/train.$src output/train.$tgt > $bpe/codes
+for split in {train,valid,test}; do for lang in {en,de}; do fastBPE/fast applybpe $bpe/$split.$lang output/$split.$lang $bpe/codes; done; done
diff --git a/fairseq/examples/language_model/README.adaptive_inputs.md b/fairseq/examples/language_model/README.adaptive_inputs.md
new file mode 100644
index 0000000000000000000000000000000000000000..6650d58f37f320aa46402d59ce6494b2dd1c3faa
--- /dev/null
+++ b/fairseq/examples/language_model/README.adaptive_inputs.md
@@ -0,0 +1,39 @@
+# Adaptive Input Representations for Neural Language Modeling (Baevski and Auli, 2018)
+
+## Pre-trained models
+
+Description | Parameters | Dataset | Model and Test set(s)
+---|---:|---|---
+Adaptive Inputs ([Baevski and Auli, 2018](https://arxiv.org/abs/1809.10853)) | 1026M | [Google Billion Words](https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_gbw_huge.tar.bz2)
+Adaptive Inputs ([Baevski and Auli, 2018](https://arxiv.org/abs/1809.10853)) | 247M | [WikiText-103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_wiki103.v2.tar.bz2)
+
+## Training an LM with adaptive inputs
+
+First, see the general [language modeling README](README.md) for instructions on
+preprocessing the WikiText-103 data.
+
+Then use the following training command to train a model with adaptive inputs
+using the `transformer_lm_wiki103` model architecture:
+```bash
+fairseq-train --task language_modeling \
+ data-bin/wikitext-103 \
+ --save-dir checkpoints/transformer_wikitext-103 \
+ --arch transformer_lm_wiki103 \
+ --max-update 286000 --lr 1.0 --t-mult 2 --lr-period-updates 270000 --lr-scheduler cosine --lr-shrink 0.75 \
+ --warmup-updates 16000 --warmup-init-lr 1e-07 --stop-min-lr 1e-09 --optimizer nag --min-lr 0.0001 --clip-norm 0.1 \
+ --criterion adaptive_loss --max-tokens 3072 --update-freq 3 --tokens-per-sample 3072 --seed 1 \
+ --sample-break-mode none --skip-invalid-size-inputs-valid-test --ddp-backend=legacy_ddp
+```
+
+## Citation
+
+```bibtex
+@inproceedings{
+ baevski2018adaptive,
+ title={Adaptive Input Representations for Neural Language Modeling},
+ author={Alexei Baevski and Michael Auli},
+ booktitle={International Conference on Learning Representations},
+ year={2019},
+ url={https://openreview.net/forum?id=ByxZX20qFQ},
+}
+```
diff --git a/fairseq/examples/language_model/README.conv.md b/fairseq/examples/language_model/README.conv.md
new file mode 100644
index 0000000000000000000000000000000000000000..1ff8635906cf278208be4714e0ef805a6a6b4da1
--- /dev/null
+++ b/fairseq/examples/language_model/README.conv.md
@@ -0,0 +1,40 @@
+# Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)
+
+## Example usage
+
+First download and preprocess the data following the main [language modeling README](README.md).
+
+Then to train a convolutional LM using the `fconv_lm_dauphin_wikitext103`
+architecture:
+```bash
+fairseq-train --task language_modeling \
+ data-bin/wikitext-103 \
+ --save-dir checkpoints/fconv_wikitext-103 \
+ --arch fconv_lm_dauphin_wikitext103 \
+ --adaptive-softmax-cutoff 10000,20000,200000 \
+ --dropout 0.2 \
+ --criterion adaptive_loss \
+ --optimizer nag --clip-norm 0.1 --weight-decay 5e-06 \
+ --lr 1.0 --lr-scheduler reduce_lr_on_plateau --lr-shrink 0.5 \
+ --max-tokens 1024 --tokens-per-sample 1024 \
+ --ddp-backend legacy_ddp \
+ --max-epoch 35
+```
+
+And evaluate with:
+```bash
+fairseq-eval-lm data-bin/wikitext-103 --path checkpoints/fconv_wiki103/checkpoint_best.pt
+```
+
+## Citation
+
+```bibtex
+@inproceedings{dauphin2017language,
+ title={Language Modeling with Gated Convolutional Networks},
+ author={Dauphin, Yann N and Fan, Angela and Auli, Michael and Grangier, David},
+ booktitle={Proceedings of the 34th International Conference on Machine Learning-Volume 70},
+ pages={933--941},
+ year={2017},
+ organization={JMLR}
+}
+```
diff --git a/fairseq/examples/language_model/README.md b/fairseq/examples/language_model/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..e78ea48e08dc99b69751923762107a8f8a9a5e3e
--- /dev/null
+++ b/fairseq/examples/language_model/README.md
@@ -0,0 +1,123 @@
+# Neural Language Modeling
+
+## Pre-trained models
+
+Model | Description | Dataset | Download
+---|---|---|---
+`transformer_lm.gbw.adaptive_huge` | Adaptive Inputs ([Baevski and Auli, 2018](https://arxiv.org/abs/1809.10853)) 1026M params | [Google Billion Words](https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_gbw_huge.tar.bz2)
+`transformer_lm.wiki103.adaptive` | Adaptive Inputs ([Baevski and Auli, 2018](https://arxiv.org/abs/1809.10853)) 247M params | [WikiText-103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_wiki103.v2.tar.bz2)
+`transformer_lm.wmt19.en` | English LM ([Ng et al., 2019](https://arxiv.org/abs/1907.06616)) | [WMT News Crawl](http://data.statmt.org/news-crawl/) | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.gz)
+`transformer_lm.wmt19.de` | German LM ([Ng et al., 2019](https://arxiv.org/abs/1907.06616)) | [WMT News Crawl](http://data.statmt.org/news-crawl/) | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.de.tar.gz)
+`transformer_lm.wmt19.ru` | Russian LM ([Ng et al., 2019](https://arxiv.org/abs/1907.06616)) | [WMT News Crawl](http://data.statmt.org/news-crawl/) | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.ru.tar.gz)
+
+## Example usage
+
+We require a few additional Python dependencies for preprocessing:
+```bash
+pip install fastBPE sacremoses
+```
+
+To sample from a language model using PyTorch Hub:
+```python
+import torch
+
+# List available models
+torch.hub.list('pytorch/fairseq') # [..., 'transformer_lm.wmt19.en', ...]
+
+# Load an English LM trained on WMT'19 News Crawl data
+en_lm = torch.hub.load('pytorch/fairseq', 'transformer_lm.wmt19.en', tokenizer='moses', bpe='fastbpe')
+en_lm.eval() # disable dropout
+
+# Move model to GPU
+en_lm.cuda()
+
+# Sample from the language model
+en_lm.sample('Barack Obama', beam=1, sampling=True, sampling_topk=10, temperature=0.8)
+# "Barack Obama is coming to Sydney and New Zealand (...)"
+
+# Compute perplexity for a sequence
+en_lm.score('Barack Obama is coming to Sydney and New Zealand')['positional_scores'].mean().neg().exp()
+# tensor(15.1474)
+
+# The same interface can be used with custom models as well
+from fairseq.models.transformer_lm import TransformerLanguageModel
+custom_lm = TransformerLanguageModel.from_pretrained('/path/to/model/dir', 'checkpoint100.pt', tokenizer='moses', bpe='fastbpe')
+custom_lm.sample('Barack Obama', beam=5)
+# "Barack Obama (...)"
+```
+
+## Training a transformer language model with the CLI tools
+
+### 1) Preprocess the data
+
+First download and prepare the [WikiText-103 dataset](https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/):
+```bash
+cd examples/language_model/
+bash prepare-wikitext-103.sh
+cd ../..
+```
+
+Next preprocess/binarize the data:
+```bash
+TEXT=examples/language_model/wikitext-103
+fairseq-preprocess \
+ --only-source \
+ --trainpref $TEXT/wiki.train.tokens \
+ --validpref $TEXT/wiki.valid.tokens \
+ --testpref $TEXT/wiki.test.tokens \
+ --destdir data-bin/wikitext-103 \
+ --workers 20
+```
+
+### 2) Train a language model
+
+Next we'll train a basic transformer language model on wikitext-103. For more
+advanced usage, see the [adaptive inputs README](README.adaptive_inputs.md).
+
+To train a basic LM (assumes 2 GPUs):
+```
+$ fairseq-train --task language_modeling \
+ data-bin/wikitext-103 \
+ --save-dir checkpoints/transformer_wikitext-103 \
+ --arch transformer_lm --share-decoder-input-output-embed \
+ --dropout 0.1 \
+ --optimizer adam --adam-betas '(0.9, 0.98)' --weight-decay 0.01 --clip-norm 0.0 \
+ --lr 0.0005 --lr-scheduler inverse_sqrt --warmup-updates 4000 --warmup-init-lr 1e-07 \
+ --tokens-per-sample 512 --sample-break-mode none \
+ --max-tokens 2048 --update-freq 16 \
+ --fp16 \
+ --max-update 50000
+```
+
+If you run out of memory, try reducing `--max-tokens` (max number of tokens per
+batch) or `--tokens-per-sample` (max sequence length). You can also adjust
+`--update-freq` to accumulate gradients and simulate training on a different
+number of GPUs.
+
+### 3) Evaluate
+
+```bash
+fairseq-eval-lm data-bin/wikitext-103 \
+ --path checkpoints/transformer_wiki103/checkpoint_best.pt \
+ --batch-size 2 \
+ --tokens-per-sample 512 \
+ --context-window 400
+# | Evaluated 245569 tokens in 56.1s (4379.02 tokens/s)
+# | Loss: 3.4164, Perplexity: 30.46
+```
+
+*Note:* The `--context-window` option controls how much context is provided to
+each token when computing perplexity. When the window size is 0, the dataset is
+chunked into segments of length 512 and perplexity is computed over each segment
+normally. However, this results in worse (higher) perplexity since tokens that
+appear earlier in each segment have less conditioning. When the maximum window
+size is used (511 in this case), then we compute perplexity for each token
+fully conditioned on 511 tokens of context. This slows down evaluation
+significantly, since we must run a separate forward pass for every token in the
+dataset, but results in better (lower) perplexity.
+
+
+## Convolutional language models
+
+Please see the [convolutional LM README](README.conv.md) for instructions on
+training convolutional language models.
diff --git a/fairseq/examples/language_model/prepare-wikitext-103.sh b/fairseq/examples/language_model/prepare-wikitext-103.sh
new file mode 100644
index 0000000000000000000000000000000000000000..751302156f0a6829af9c2ee5e0e2ca62c2cd4187
--- /dev/null
+++ b/fairseq/examples/language_model/prepare-wikitext-103.sh
@@ -0,0 +1,33 @@
+#!/bin/bash
+# Adapted from https://github.com/facebookresearch/MIXER/blob/master/prepareData.sh
+
+URLS=(
+ "https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip"
+)
+FILES=(
+ "wikitext-103-v1.zip"
+)
+
+for ((i=0;i<${#URLS[@]};++i)); do
+ file=${FILES[i]}
+ if [ -f $file ]; then
+ echo "$file already exists, skipping download"
+ else
+ url=${URLS[i]}
+ wget "$url"
+ if [ -f $file ]; then
+ echo "$url successfully downloaded."
+ else
+ echo "$url not successfully downloaded."
+ exit -1
+ fi
+ if [ ${file: -4} == ".tgz" ]; then
+ tar zxvf $file
+ elif [ ${file: -4} == ".tar" ]; then
+ tar xvf $file
+ elif [ ${file: -4} == ".zip" ]; then
+ unzip $file
+ fi
+ fi
+done
+cd ..
diff --git a/fairseq/examples/laser/README.md b/fairseq/examples/laser/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..66acada04f58fa235cd312753f144f6f1e5f4a33
--- /dev/null
+++ b/fairseq/examples/laser/README.md
@@ -0,0 +1,144 @@
+# LASER Language-Agnostic SEntence Representations
+
+LASER is a library to calculate and use multilingual sentence embeddings.
+
+You can find more information about LASER and how to use it on the official [LASER repository](https://github.com/facebookresearch/LASER).
+
+This folder contains source code for training LASER embeddings.
+
+
+## Prepare data and configuration file
+
+Binarize your data with fairseq, as described [here](https://fairseq.readthedocs.io/en/latest/getting_started.html#data-pre-processing).
+
+Create a json config file with this format:
+```
+{
+ "src_vocab": "/path/to/spm.src.cvocab",
+ "tgt_vocab": "/path/to/spm.tgt.cvocab",
+ "train": [
+ {
+ "type": "translation",
+ "id": 0,
+ "src": "/path/to/srclang1-tgtlang0/train.srclang1",
+ "tgt": "/path/to/srclang1-tgtlang0/train.tgtlang0"
+ },
+ {
+ "type": "translation",
+ "id": 1,
+ "src": "/path/to/srclang1-tgtlang1/train.srclang1",
+ "tgt": "/path/to/srclang1-tgtlang1/train.tgtlang1"
+ },
+ {
+ "type": "translation",
+ "id": 0,
+ "src": "/path/to/srclang2-tgtlang0/train.srclang2",
+ "tgt": "/path/to/srclang2-tgtlang0/train.tgtlang0"
+ },
+ {
+ "type": "translation",
+ "id": 1,
+ "src": "/path/to/srclang2-tgtlang1/train.srclang2",
+ "tgt": "/path/to/srclang2-tgtlang1/train.tgtlang1"
+ },
+ ...
+ ],
+ "valid": [
+ {
+ "type": "translation",
+ "id": 0,
+ "src": "/unused",
+ "tgt": "/unused"
+ }
+ ]
+}
+```
+where paths are paths to binarized indexed fairseq dataset files.
+`id` represents the target language id.
+
+
+## Training Command Line Example
+
+```
+fairseq-train \
+ /path/to/configfile_described_above.json \
+ --user-dir examples/laser/laser_src \
+ --log-interval 100 --log-format simple \
+ --task laser --arch laser_lstm \
+ --save-dir . \
+ --optimizer adam \
+ --lr 0.001 \
+ --lr-scheduler inverse_sqrt \
+ --clip-norm 5 \
+ --warmup-updates 90000 \
+ --update-freq 2 \
+ --dropout 0.0 \
+ --encoder-dropout-out 0.1 \
+ --max-tokens 2000 \
+ --max-epoch 50 \
+ --encoder-bidirectional \
+ --encoder-layers 5 \
+ --encoder-hidden-size 512 \
+ --decoder-layers 1 \
+ --decoder-hidden-size 2048 \
+ --encoder-embed-dim 320 \
+ --decoder-embed-dim 320 \
+ --decoder-lang-embed-dim 32 \
+ --warmup-init-lr 0.001 \
+ --disable-validation
+```
+
+
+## Applications
+
+We showcase several applications of multilingual sentence embeddings
+with code to reproduce our results (in the directory "tasks").
+
+* [**Cross-lingual document classification**](https://github.com/facebookresearch/LASER/tree/master/tasks/mldoc) using the
+ [*MLDoc*](https://github.com/facebookresearch/MLDoc) corpus [2,6]
+* [**WikiMatrix**](https://github.com/facebookresearch/LASER/tree/master/tasks/WikiMatrix)
+ Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia [7]
+* [**Bitext mining**](https://github.com/facebookresearch/LASER/tree/master/tasks/bucc) using the
+ [*BUCC*](https://comparable.limsi.fr/bucc2018/bucc2018-task.html) corpus [3,5]
+* [**Cross-lingual NLI**](https://github.com/facebookresearch/LASER/tree/master/tasks/xnli)
+ using the [*XNLI*](https://www.nyu.edu/projects/bowman/xnli/) corpus [4,5,6]
+* [**Multilingual similarity search**](https://github.com/facebookresearch/LASER/tree/master/tasks/similarity) [1,6]
+* [**Sentence embedding of text files**](https://github.com/facebookresearch/LASER/tree/master/tasks/embed)
+ example how to calculate sentence embeddings for arbitrary text files in any of the supported language.
+
+**For all tasks, we use exactly the same multilingual encoder, without any task specific optimization or fine-tuning.**
+
+
+
+## References
+
+[1] Holger Schwenk and Matthijs Douze,
+ [*Learning Joint Multilingual Sentence Representations with Neural Machine Translation*](https://aclanthology.info/papers/W17-2619/w17-2619),
+ ACL workshop on Representation Learning for NLP, 2017
+
+[2] Holger Schwenk and Xian Li,
+ [*A Corpus for Multilingual Document Classification in Eight Languages*](http://www.lrec-conf.org/proceedings/lrec2018/pdf/658.pdf),
+ LREC, pages 3548-3551, 2018.
+
+[3] Holger Schwenk,
+ [*Filtering and Mining Parallel Data in a Joint Multilingual Space*](http://aclweb.org/anthology/P18-2037)
+ ACL, July 2018
+
+[4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov,
+ [*XNLI: Cross-lingual Sentence Understanding through Inference*](https://aclweb.org/anthology/D18-1269),
+ EMNLP, 2018.
+
+[5] Mikel Artetxe and Holger Schwenk,
+ [*Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings*](https://arxiv.org/abs/1811.01136)
+ arXiv, Nov 3 2018.
+
+[6] Mikel Artetxe and Holger Schwenk,
+ [*Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond*](https://arxiv.org/abs/1812.10464)
+ arXiv, Dec 26 2018.
+
+[7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman,
+ [*WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia*](https://arxiv.org/abs/1907.05791)
+ arXiv, July 11 2019.
+
+[8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin
+ [*CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB*](https://arxiv.org/abs/1911.04944)
diff --git a/fairseq/examples/laser/laser_src/__init__.py b/fairseq/examples/laser/laser_src/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9ffbd656d8786e421008fb4cb0d1d8911dc8330c
--- /dev/null
+++ b/fairseq/examples/laser/laser_src/__init__.py
@@ -0,0 +1,8 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from .laser_task import * # noqa
+from .laser_lstm import * # noqa
+from .laser_transformer import * # noqa
diff --git a/fairseq/examples/laser/laser_src/laser_lstm.py b/fairseq/examples/laser/laser_src/laser_lstm.py
new file mode 100644
index 0000000000000000000000000000000000000000..10df90e002d5a7dd74a571dbc3b328c130c57a0a
--- /dev/null
+++ b/fairseq/examples/laser/laser_src/laser_lstm.py
@@ -0,0 +1,585 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from fairseq import options, utils
+
+from fairseq.models import (
+ FairseqEncoder,
+ FairseqIncrementalDecoder,
+ FairseqEncoderDecoderModel,
+ register_model,
+ register_model_architecture,
+)
+
+
+@register_model("laser_lstm")
+class LSTMModel(FairseqEncoderDecoderModel):
+ def __init__(self, encoder, decoder):
+ super().__init__(encoder, decoder)
+
+ def forward(
+ self,
+ src_tokens,
+ src_lengths,
+ prev_output_tokens=None,
+ tgt_tokens=None,
+ tgt_lengths=None,
+ target_language_id=None,
+ dataset_name="",
+ ):
+ assert target_language_id is not None
+
+ src_encoder_out = self.encoder(src_tokens, src_lengths, dataset_name)
+ return self.decoder(
+ prev_output_tokens, src_encoder_out, lang_id=target_language_id
+ )
+
+ @staticmethod
+ def add_args(parser):
+ """Add model-specific arguments to the parser."""
+ parser.add_argument(
+ "--dropout",
+ default=0.1,
+ type=float,
+ metavar="D",
+ help="dropout probability",
+ )
+ parser.add_argument(
+ "--encoder-embed-dim",
+ type=int,
+ metavar="N",
+ help="encoder embedding dimension",
+ )
+ parser.add_argument(
+ "--encoder-embed-path",
+ default=None,
+ type=str,
+ metavar="STR",
+ help="path to pre-trained encoder embedding",
+ )
+ parser.add_argument(
+ "--encoder-hidden-size", type=int, metavar="N", help="encoder hidden size"
+ )
+ parser.add_argument(
+ "--encoder-layers", type=int, metavar="N", help="number of encoder layers"
+ )
+ parser.add_argument(
+ "--encoder-bidirectional",
+ action="store_true",
+ help="make all layers of encoder bidirectional",
+ )
+ parser.add_argument(
+ "--decoder-embed-dim",
+ type=int,
+ metavar="N",
+ help="decoder embedding dimension",
+ )
+ parser.add_argument(
+ "--decoder-embed-path",
+ default=None,
+ type=str,
+ metavar="STR",
+ help="path to pre-trained decoder embedding",
+ )
+ parser.add_argument(
+ "--decoder-hidden-size", type=int, metavar="N", help="decoder hidden size"
+ )
+ parser.add_argument(
+ "--decoder-layers", type=int, metavar="N", help="number of decoder layers"
+ )
+ parser.add_argument(
+ "--decoder-out-embed-dim",
+ type=int,
+ metavar="N",
+ help="decoder output embedding dimension",
+ )
+ parser.add_argument(
+ "--decoder-zero-init",
+ type=str,
+ metavar="BOOL",
+ help="initialize the decoder hidden/cell state to zero",
+ )
+ parser.add_argument(
+ "--decoder-lang-embed-dim",
+ type=int,
+ metavar="N",
+ help="decoder language embedding dimension",
+ )
+ parser.add_argument(
+ "--fixed-embeddings",
+ action="store_true",
+ help="keep embeddings fixed (ENCODER ONLY)",
+ ) # TODO Also apply to decoder embeddings?
+
+ # Granular dropout settings (if not specified these default to --dropout)
+ parser.add_argument(
+ "--encoder-dropout-in",
+ type=float,
+ metavar="D",
+ help="dropout probability for encoder input embedding",
+ )
+ parser.add_argument(
+ "--encoder-dropout-out",
+ type=float,
+ metavar="D",
+ help="dropout probability for encoder output",
+ )
+ parser.add_argument(
+ "--decoder-dropout-in",
+ type=float,
+ metavar="D",
+ help="dropout probability for decoder input embedding",
+ )
+ parser.add_argument(
+ "--decoder-dropout-out",
+ type=float,
+ metavar="D",
+ help="dropout probability for decoder output",
+ )
+
+ @classmethod
+ def build_model(cls, args, task):
+ """Build a new model instance."""
+ # make sure that all args are properly defaulted (in case there are any new ones)
+ base_architecture(args)
+
+ def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim):
+ num_embeddings = len(dictionary)
+ padding_idx = dictionary.pad()
+ embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
+ embed_dict = utils.parse_embedding(embed_path)
+ utils.print_embed_overlap(embed_dict, dictionary)
+ return utils.load_embedding(embed_dict, dictionary, embed_tokens)
+
+ pretrained_encoder_embed = None
+ if args.encoder_embed_path:
+ pretrained_encoder_embed = load_pretrained_embedding_from_file(
+ args.encoder_embed_path, task.source_dictionary, args.encoder_embed_dim
+ )
+ pretrained_decoder_embed = None
+ if args.decoder_embed_path:
+ pretrained_decoder_embed = load_pretrained_embedding_from_file(
+ args.decoder_embed_path, task.target_dictionary, args.decoder_embed_dim
+ )
+
+ num_langs = task.num_tasks if hasattr(task, "num_tasks") else 0
+
+ encoder = LSTMEncoder(
+ dictionary=task.source_dictionary,
+ embed_dim=args.encoder_embed_dim,
+ hidden_size=args.encoder_hidden_size,
+ num_layers=args.encoder_layers,
+ dropout_in=args.encoder_dropout_in,
+ dropout_out=args.encoder_dropout_out,
+ bidirectional=args.encoder_bidirectional,
+ pretrained_embed=pretrained_encoder_embed,
+ fixed_embeddings=args.fixed_embeddings,
+ )
+ decoder = LSTMDecoder(
+ dictionary=task.target_dictionary,
+ embed_dim=args.decoder_embed_dim,
+ hidden_size=args.decoder_hidden_size,
+ out_embed_dim=args.decoder_out_embed_dim,
+ num_layers=args.decoder_layers,
+ dropout_in=args.decoder_dropout_in,
+ dropout_out=args.decoder_dropout_out,
+ zero_init=options.eval_bool(args.decoder_zero_init),
+ encoder_embed_dim=args.encoder_embed_dim,
+ encoder_output_units=encoder.output_units,
+ pretrained_embed=pretrained_decoder_embed,
+ num_langs=num_langs,
+ lang_embed_dim=args.decoder_lang_embed_dim,
+ )
+ return cls(encoder, decoder)
+
+
+class LSTMEncoder(FairseqEncoder):
+ """LSTM encoder."""
+
+ def __init__(
+ self,
+ dictionary,
+ embed_dim=512,
+ hidden_size=512,
+ num_layers=1,
+ dropout_in=0.1,
+ dropout_out=0.1,
+ bidirectional=False,
+ left_pad=True,
+ pretrained_embed=None,
+ padding_value=0.0,
+ fixed_embeddings=False,
+ ):
+ super().__init__(dictionary)
+ self.num_layers = num_layers
+ self.dropout_in = dropout_in
+ self.dropout_out = dropout_out
+ self.bidirectional = bidirectional
+ self.hidden_size = hidden_size
+
+ num_embeddings = len(dictionary)
+ self.padding_idx = dictionary.pad()
+ if pretrained_embed is None:
+ self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
+ else:
+ self.embed_tokens = pretrained_embed
+ if fixed_embeddings:
+ self.embed_tokens.weight.requires_grad = False
+
+ self.lstm = LSTM(
+ input_size=embed_dim,
+ hidden_size=hidden_size,
+ num_layers=num_layers,
+ dropout=self.dropout_out if num_layers > 1 else 0.0,
+ bidirectional=bidirectional,
+ )
+ self.left_pad = left_pad
+ self.padding_value = padding_value
+
+ self.output_units = hidden_size
+ if bidirectional:
+ self.output_units *= 2
+
+ def forward(self, src_tokens, src_lengths, dataset_name):
+ if self.left_pad:
+ # convert left-padding to right-padding
+ src_tokens = utils.convert_padding_direction(
+ src_tokens,
+ self.padding_idx,
+ left_to_right=True,
+ )
+
+ bsz, seqlen = src_tokens.size()
+
+ # embed tokens
+ x = self.embed_tokens(src_tokens)
+ x = F.dropout(x, p=self.dropout_in, training=self.training)
+
+ # B x T x C -> T x B x C
+ x = x.transpose(0, 1)
+
+ # pack embedded source tokens into a PackedSequence
+ try:
+ packed_x = nn.utils.rnn.pack_padded_sequence(x, src_lengths.data.tolist())
+ except BaseException:
+ raise Exception(f"Packing failed in dataset {dataset_name}")
+
+ # apply LSTM
+ if self.bidirectional:
+ state_size = 2 * self.num_layers, bsz, self.hidden_size
+ else:
+ state_size = self.num_layers, bsz, self.hidden_size
+ h0 = x.data.new(*state_size).zero_()
+ c0 = x.data.new(*state_size).zero_()
+ packed_outs, (final_hiddens, final_cells) = self.lstm(packed_x, (h0, c0))
+
+ # unpack outputs and apply dropout
+ x, _ = nn.utils.rnn.pad_packed_sequence(
+ packed_outs, padding_value=self.padding_value
+ )
+ x = F.dropout(x, p=self.dropout_out, training=self.training)
+ assert list(x.size()) == [seqlen, bsz, self.output_units]
+
+ if self.bidirectional:
+
+ def combine_bidir(outs):
+ return torch.cat(
+ [
+ torch.cat([outs[2 * i], outs[2 * i + 1]], dim=0).view(
+ 1, bsz, self.output_units
+ )
+ for i in range(self.num_layers)
+ ],
+ dim=0,
+ )
+
+ final_hiddens = combine_bidir(final_hiddens)
+ final_cells = combine_bidir(final_cells)
+
+ encoder_padding_mask = src_tokens.eq(self.padding_idx).t()
+
+ # Set padded outputs to -inf so they are not selected by max-pooling
+ padding_mask = src_tokens.eq(self.padding_idx).t().unsqueeze(-1)
+ if padding_mask.any():
+ x = x.float().masked_fill_(padding_mask, float("-inf")).type_as(x)
+
+ # Build the sentence embedding by max-pooling over the encoder outputs
+ sentemb = x.max(dim=0)[0]
+
+ return {
+ "sentemb": sentemb,
+ "encoder_out": (x, final_hiddens, final_cells),
+ "encoder_padding_mask": encoder_padding_mask
+ if encoder_padding_mask.any()
+ else None,
+ }
+
+ def reorder_encoder_out(self, encoder_out_dict, new_order):
+ encoder_out_dict["sentemb"] = encoder_out_dict["sentemb"].index_select(
+ 0, new_order
+ )
+ encoder_out_dict["encoder_out"] = tuple(
+ eo.index_select(1, new_order) for eo in encoder_out_dict["encoder_out"]
+ )
+ if encoder_out_dict["encoder_padding_mask"] is not None:
+ encoder_out_dict["encoder_padding_mask"] = encoder_out_dict[
+ "encoder_padding_mask"
+ ].index_select(1, new_order)
+ return encoder_out_dict
+
+ def max_positions(self):
+ """Maximum input length supported by the encoder."""
+ return int(1e5) # an arbitrary large number
+
+
+class LSTMDecoder(FairseqIncrementalDecoder):
+ """LSTM decoder."""
+
+ def __init__(
+ self,
+ dictionary,
+ embed_dim=512,
+ hidden_size=512,
+ out_embed_dim=512,
+ num_layers=1,
+ dropout_in=0.1,
+ dropout_out=0.1,
+ zero_init=False,
+ encoder_embed_dim=512,
+ encoder_output_units=512,
+ pretrained_embed=None,
+ num_langs=1,
+ lang_embed_dim=0,
+ ):
+ super().__init__(dictionary)
+ self.dropout_in = dropout_in
+ self.dropout_out = dropout_out
+ self.hidden_size = hidden_size
+
+ num_embeddings = len(dictionary)
+ padding_idx = dictionary.pad()
+ if pretrained_embed is None:
+ self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
+ else:
+ self.embed_tokens = pretrained_embed
+
+ self.layers = nn.ModuleList(
+ [
+ LSTMCell(
+ input_size=encoder_output_units + embed_dim + lang_embed_dim
+ if layer == 0
+ else hidden_size,
+ hidden_size=hidden_size,
+ )
+ for layer in range(num_layers)
+ ]
+ )
+ if hidden_size != out_embed_dim:
+ self.additional_fc = Linear(hidden_size, out_embed_dim)
+ self.fc_out = Linear(out_embed_dim, num_embeddings, dropout=dropout_out)
+
+ if zero_init:
+ self.sentemb2init = None
+ else:
+ self.sentemb2init = Linear(
+ encoder_output_units, 2 * num_layers * hidden_size
+ )
+
+ if lang_embed_dim == 0:
+ self.embed_lang = None
+ else:
+ self.embed_lang = nn.Embedding(num_langs, lang_embed_dim)
+ nn.init.uniform_(self.embed_lang.weight, -0.1, 0.1)
+
+ def forward(
+ self, prev_output_tokens, encoder_out_dict, incremental_state=None, lang_id=0
+ ):
+ sentemb = encoder_out_dict["sentemb"]
+ encoder_out = encoder_out_dict["encoder_out"]
+
+ if incremental_state is not None:
+ prev_output_tokens = prev_output_tokens[:, -1:]
+ bsz, seqlen = prev_output_tokens.size()
+
+ # get outputs from encoder
+ encoder_outs, _, _ = encoder_out[:3]
+ srclen = encoder_outs.size(0)
+
+ # embed tokens
+ x = self.embed_tokens(prev_output_tokens)
+ x = F.dropout(x, p=self.dropout_in, training=self.training)
+
+ # embed language identifier
+ if self.embed_lang is not None:
+ lang_ids = prev_output_tokens.data.new_full((bsz,), lang_id)
+ langemb = self.embed_lang(lang_ids)
+ # TODO Should we dropout here???
+
+ # B x T x C -> T x B x C
+ x = x.transpose(0, 1)
+
+ # initialize previous states (or get from cache during incremental generation)
+ cached_state = utils.get_incremental_state(
+ self, incremental_state, "cached_state"
+ )
+ if cached_state is not None:
+ prev_hiddens, prev_cells, input_feed = cached_state
+ else:
+ num_layers = len(self.layers)
+ if self.sentemb2init is None:
+ prev_hiddens = [
+ x.data.new(bsz, self.hidden_size).zero_() for i in range(num_layers)
+ ]
+ prev_cells = [
+ x.data.new(bsz, self.hidden_size).zero_() for i in range(num_layers)
+ ]
+ else:
+ init = self.sentemb2init(sentemb)
+ prev_hiddens = [
+ init[:, (2 * i) * self.hidden_size : (2 * i + 1) * self.hidden_size]
+ for i in range(num_layers)
+ ]
+ prev_cells = [
+ init[
+ :,
+ (2 * i + 1) * self.hidden_size : (2 * i + 2) * self.hidden_size,
+ ]
+ for i in range(num_layers)
+ ]
+ input_feed = x.data.new(bsz, self.hidden_size).zero_()
+
+ attn_scores = x.data.new(srclen, seqlen, bsz).zero_()
+ outs = []
+ for j in range(seqlen):
+ if self.embed_lang is None:
+ input = torch.cat((x[j, :, :], sentemb), dim=1)
+ else:
+ input = torch.cat((x[j, :, :], sentemb, langemb), dim=1)
+
+ for i, rnn in enumerate(self.layers):
+ # recurrent cell
+ hidden, cell = rnn(input, (prev_hiddens[i], prev_cells[i]))
+
+ # hidden state becomes the input to the next layer
+ input = F.dropout(hidden, p=self.dropout_out, training=self.training)
+
+ # save state for next time step
+ prev_hiddens[i] = hidden
+ prev_cells[i] = cell
+
+ out = hidden
+ out = F.dropout(out, p=self.dropout_out, training=self.training)
+
+ # input feeding
+ input_feed = out
+
+ # save final output
+ outs.append(out)
+
+ # cache previous states (no-op except during incremental generation)
+ utils.set_incremental_state(
+ self,
+ incremental_state,
+ "cached_state",
+ (prev_hiddens, prev_cells, input_feed),
+ )
+
+ # collect outputs across time steps
+ x = torch.cat(outs, dim=0).view(seqlen, bsz, self.hidden_size)
+
+ # T x B x C -> B x T x C
+ x = x.transpose(1, 0)
+
+ # srclen x tgtlen x bsz -> bsz x tgtlen x srclen
+ attn_scores = attn_scores.transpose(0, 2)
+
+ # project back to size of vocabulary
+ if hasattr(self, "additional_fc"):
+ x = self.additional_fc(x)
+ x = F.dropout(x, p=self.dropout_out, training=self.training)
+ x = self.fc_out(x)
+
+ return x, attn_scores
+
+ def reorder_incremental_state(self, incremental_state, new_order):
+ super().reorder_incremental_state(incremental_state, new_order)
+ cached_state = utils.get_incremental_state(
+ self, incremental_state, "cached_state"
+ )
+ if cached_state is None:
+ return
+
+ def reorder_state(state):
+ if isinstance(state, list):
+ return [reorder_state(state_i) for state_i in state]
+ return state.index_select(0, new_order)
+
+ new_state = tuple(map(reorder_state, cached_state))
+ utils.set_incremental_state(self, incremental_state, "cached_state", new_state)
+
+ def max_positions(self):
+ """Maximum output length supported by the decoder."""
+ return int(1e5) # an arbitrary large number
+
+
+def Embedding(num_embeddings, embedding_dim, padding_idx):
+ m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
+ nn.init.uniform_(m.weight, -0.1, 0.1)
+ nn.init.constant_(m.weight[padding_idx], 0)
+ return m
+
+
+def LSTM(input_size, hidden_size, **kwargs):
+ m = nn.LSTM(input_size, hidden_size, **kwargs)
+ for name, param in m.named_parameters():
+ if "weight" in name or "bias" in name:
+ param.data.uniform_(-0.1, 0.1)
+ return m
+
+
+def LSTMCell(input_size, hidden_size, **kwargs):
+ m = nn.LSTMCell(input_size, hidden_size, **kwargs)
+ for name, param in m.named_parameters():
+ if "weight" in name or "bias" in name:
+ param.data.uniform_(-0.1, 0.1)
+ return m
+
+
+def Linear(in_features, out_features, bias=True, dropout=0):
+ """Weight-normalized Linear layer (input: N x T x C)"""
+ m = nn.Linear(in_features, out_features, bias=bias)
+ m.weight.data.uniform_(-0.1, 0.1)
+ if bias:
+ m.bias.data.uniform_(-0.1, 0.1)
+ return m
+
+
+@register_model_architecture("laser_lstm", "laser_lstm")
+def base_architecture(args):
+ args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
+ args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
+ args.encoder_hidden_size = getattr(
+ args, "encoder_hidden_size", args.encoder_embed_dim
+ )
+ args.encoder_layers = getattr(args, "encoder_layers", 1)
+ args.encoder_bidirectional = getattr(args, "encoder_bidirectional", False)
+ args.encoder_dropout_in = getattr(args, "encoder_dropout_in", args.dropout)
+ args.encoder_dropout_out = getattr(args, "encoder_dropout_out", args.dropout)
+ args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
+ args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
+ args.decoder_hidden_size = getattr(
+ args, "decoder_hidden_size", args.decoder_embed_dim
+ )
+ args.decoder_layers = getattr(args, "decoder_layers", 1)
+ args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512)
+ args.decoder_dropout_in = getattr(args, "decoder_dropout_in", args.dropout)
+ args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout)
+ args.decoder_zero_init = getattr(args, "decoder_zero_init", "0")
+ args.decoder_lang_embed_dim = getattr(args, "decoder_lang_embed_dim", 0)
+ args.fixed_embeddings = getattr(args, "fixed_embeddings", False)
diff --git a/fairseq/examples/laser/laser_src/laser_task.py b/fairseq/examples/laser/laser_src/laser_task.py
new file mode 100644
index 0000000000000000000000000000000000000000..e4152fde6861488acc3595fa25c456bf60f134b9
--- /dev/null
+++ b/fairseq/examples/laser/laser_src/laser_task.py
@@ -0,0 +1,331 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+from collections import OrderedDict, defaultdict
+import json
+import os
+import logging
+from argparse import ArgumentError
+
+from fairseq import options, models
+from fairseq.data import (
+ data_utils,
+ Dictionary,
+ LanguagePairDataset,
+ IndexedDataset,
+ FairseqDataset,
+)
+from .multitask_data_utils import (
+ MultitaskDatasetWrapper,
+ MultidatasetEpochBatchIterator,
+)
+
+
+from fairseq.tasks import LegacyFairseqTask, register_task
+
+logger = logging.getLogger(__name__)
+
+
+@register_task("laser")
+class LaserTask(LegacyFairseqTask):
+ @staticmethod
+ def add_args(parser):
+ """Add task-specific arguments to the parser."""
+ parser.add_argument(
+ "configfile", metavar="PATH", help="dataset configuration file in json"
+ )
+ parser.add_argument(
+ "--weighting-alpha",
+ type=float,
+ default=None,
+ help="alpha for automatic weighting",
+ )
+ parser.add_argument(
+ "--raw-text", action="store_true", help="load raw text dataset"
+ )
+ parser.add_argument(
+ "--left-pad-source",
+ default="True",
+ type=str,
+ metavar="BOOL",
+ help="pad the source on the left (default: True)",
+ )
+ parser.add_argument(
+ "--left-pad-target",
+ default="False",
+ type=str,
+ metavar="BOOL",
+ help="pad the target on the left (default: False)",
+ )
+ try:
+ parser.add_argument(
+ "--max-source-positions",
+ default=1024,
+ type=int,
+ metavar="N",
+ help="max number of tokens in the source sequence",
+ )
+ parser.add_argument(
+ "--max-target-positions",
+ default=1024,
+ type=int,
+ metavar="N",
+ help="max number of tokens in the target sequence",
+ )
+ except ArgumentError:
+ # this might have already been defined. Once we transition this to hydra it should be fine to add it here.
+ pass
+
+ def __init__(self, args, config, src_dictionary, tgt_dictionary, num_tasks):
+ super().__init__(args)
+ self.config = config
+ self.src_dictionary = src_dictionary
+ self.tgt_dictionary = tgt_dictionary
+ self.num_tasks = num_tasks
+
+ @classmethod
+ def setup_task(cls, args, **kwargs):
+ with open(args.configfile, "r") as f:
+ config = json.load(f)
+ num_tasks = max(dataset["id"] for dataset in config["train"]) + 1
+
+ args.left_pad_source = options.eval_bool(args.left_pad_source)
+ args.left_pad_target = options.eval_bool(args.left_pad_target)
+
+ src_dictionary = Dictionary.load(config["src_vocab"])
+ tgt_dictionary = Dictionary.load(config["tgt_vocab"])
+
+ logger.info(
+ "| src Dictionary {} : {} types".format(
+ config["src_vocab"], len(src_dictionary)
+ )
+ )
+ logger.info(
+ "| tgt Dictionary {} : {} types".format(
+ config["tgt_vocab"], len(tgt_dictionary)
+ )
+ )
+
+ return cls(args, config, src_dictionary, tgt_dictionary, num_tasks)
+
+ # Experimental overriding for backtranslation
+ def build_model(self, args):
+ model = models.build_model(args, self)
+ return model
+
+ def dataset(self, split):
+ if split not in self.datasets:
+ raise KeyError("Dataset not loaded: " + split)
+ return self.datasets[split]
+
+ def load_dataset(self, split, epoch=1, **kwargs):
+ """Load a dataset split."""
+
+ def indexed_dataset(path, dictionary):
+ if self.args.raw_text:
+ raise Exception("Unable to handle raw text.")
+ dataset = IndexedDataset(path, fix_lua_indexing=True)
+
+ return dataset
+
+ pair_datasets = OrderedDict()
+
+ if split == "valid":
+ self.datasets[split] = pair_datasets
+ return
+
+ if split not in self.config:
+ raise FileNotFoundError(
+ "Dataset not found in config file: {}".format(split)
+ )
+
+ size_by_corpus = defaultdict(int)
+ size_sum = 0
+ size_sum_with_subsampling = 0
+ init_pair_datasets = {}
+
+ for dataset_config in self.config[split]:
+ src_path = os.path.dirname(dataset_config["src"])
+ corpus_name = src_path.split("/")[-2]
+ language_pair_name = src_path.split("/")[-1]
+ pair_datasets_key = corpus_name + "-" + language_pair_name
+
+ logger.info(f"loading... {pair_datasets_key}")
+ if "src" in dataset_config:
+ src_dataset = indexed_dataset(
+ dataset_config["src"], self.src_dictionary
+ )
+ else:
+ src_dataset = None
+
+ if "tgt" in dataset_config:
+ tgt_dataset = indexed_dataset(
+ dataset_config["tgt"], self.tgt_dictionary
+ )
+ else:
+ tgt_dataset = None
+
+ dataset = LanguagePairDataset(
+ src_dataset,
+ src_dataset.sizes,
+ self.src_dictionary,
+ tgt_dataset,
+ tgt_dataset.sizes,
+ self.tgt_dictionary,
+ left_pad_source=self.args.left_pad_source,
+ left_pad_target=self.args.left_pad_target,
+ )
+
+ if pair_datasets_key in init_pair_datasets:
+ logger.warning(
+ f"Ignoring already added {pair_datasets_key}. "
+ f"Consider using `sample` key in order to upsample."
+ )
+ else:
+ init_pair_datasets[pair_datasets_key] = {
+ "dataset": dataset,
+ "sample": dataset_config.get("sample", None),
+ "id": dataset_config.get("id", None),
+ "len": len(dataset),
+ }
+
+ length_sum = 0
+ weighted_freqs_sum = 0
+ freq_per_dataset = {}
+ vmax = 0
+ vmin = 1
+ weighted_freq_per_dataset = {}
+
+ if self.args.weighting_alpha:
+ for key in init_pair_datasets:
+ if init_pair_datasets[key]["sample"] is None:
+ length_sum += len(init_pair_datasets[key]["dataset"])
+
+ for key in init_pair_datasets:
+ if init_pair_datasets[key]["sample"] is None:
+ val = float(init_pair_datasets[key]["len"]) / length_sum
+ freq_per_dataset[key] = val
+ weighted_freqs_sum += val ** self.args.weighting_alpha
+
+ for key in freq_per_dataset:
+ val = (
+ freq_per_dataset[key] ** self.args.weighting_alpha
+ / weighted_freqs_sum
+ )
+ vmin = min(vmin, val)
+ vmax = max(vmax, val)
+ weighted_freq_per_dataset[key] = val
+
+ for pair_datasets_key in init_pair_datasets:
+ dataset_config = init_pair_datasets[pair_datasets_key]
+ dataset = dataset_config["dataset"]
+ sample = dataset_config["sample"]
+ if sample is None:
+ sample = 1.0
+
+ if pair_datasets_key in weighted_freq_per_dataset:
+ w = vmax / weighted_freq_per_dataset[pair_datasets_key]
+ sample = w
+
+ sample = round(sample)
+
+ initial_sample = sample
+ initial_pair_datasets_key = pair_datasets_key
+
+ while sample >= 1.0:
+ assert (
+ pair_datasets_key not in pair_datasets
+ ), f"{pair_datasets_key} already in"
+ size_sum_with_subsampling += len(dataset)
+ pair_datasets[pair_datasets_key] = MultitaskDatasetWrapper(
+ dataset, dataset_config.get("id", 0), 1.0, name=pair_datasets_key
+ )
+ size_sum += len(dataset)
+ sample -= 1.0
+ pair_datasets_key += "-up"
+
+ assert sample < 1e-6, f"sample remains > 0 {pair_datasets_key}"
+
+ logger.info(
+ f"added pair {initial_pair_datasets_key} length {len(dataset)} new_length = {len(dataset)*initial_sample}"
+ )
+ size_by_corpus[corpus_name] += len(dataset)
+
+ self.datasets[split] = pair_datasets
+ logger.info(
+ f"Datasets number = {len(self.datasets[split])} size = {size_sum} size_sum_with_subsampling = {size_sum_with_subsampling}"
+ )
+
+ @property
+ def source_dictionary(self):
+ return self.src_dictionary
+
+ @property
+ def target_dictionary(self):
+ return self.tgt_dictionary
+
+ def get_batch_iterator(
+ self,
+ dataset,
+ max_tokens=None,
+ max_sentences=None,
+ max_positions=None,
+ ignore_invalid_inputs=False,
+ required_batch_size_multiple=1,
+ seed=1,
+ num_shards=1,
+ shard_id=0,
+ num_workers=0,
+ epoch=1,
+ data_buffer_size=0,
+ disable_iterator_cache=False,
+ ):
+
+ assert isinstance(dataset, OrderedDict)
+ assert len(dataset)
+ assert isinstance(dataset[next(iter(dataset))], FairseqDataset)
+
+ # initialize the dataset with the correct starting epoch
+ for _, dt in dataset.items():
+ dt.set_epoch(epoch)
+
+ indices = OrderedDict()
+ batch_sampler = OrderedDict()
+
+ with data_utils.numpy_seed(seed + epoch):
+ for key, dt in dataset.items():
+ logger.info(f"\t ordered_indices {key}")
+ indices[key] = dt.ordered_indices()
+
+ # filter examples that are too large
+ if max_positions is not None:
+ for key, dt in dataset.items():
+ logger.info(f"\t filter_by_size {key}")
+ indices[key], ignored = dt.filter_indices_by_size(
+ indices[key], max_positions
+ )
+
+ for key, dt in dataset.items():
+ logger.info(f"\t batch_by_size {key}")
+ batch_sampler[key] = data_utils.batch_by_size(
+ indices[key],
+ dt.num_tokens,
+ max_tokens=max_tokens,
+ max_sentences=max_sentences,
+ required_batch_size_multiple=required_batch_size_multiple,
+ )
+
+ epoch_iter = MultidatasetEpochBatchIterator(
+ dataset=dataset,
+ batch_sampler=batch_sampler,
+ seed=seed,
+ num_shards=num_shards,
+ shard_id=shard_id,
+ num_workers=num_workers,
+ epoch=epoch,
+ )
+
+ return epoch_iter
diff --git a/fairseq/examples/laser/laser_src/laser_transformer.py b/fairseq/examples/laser/laser_src/laser_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..0be030994ff87334ca0392302374693f7f2c61b3
--- /dev/null
+++ b/fairseq/examples/laser/laser_src/laser_transformer.py
@@ -0,0 +1,354 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+
+from typing import Any, Dict, List, Optional
+from torch import Tensor
+
+import torch
+import torch.nn as nn
+
+from fairseq.models import (
+ FairseqEncoderDecoderModel,
+ register_model,
+ register_model_architecture,
+)
+from fairseq.models.transformer import (
+ base_architecture,
+ Embedding,
+ TransformerModel,
+ TransformerEncoder,
+ TransformerDecoder,
+)
+from fairseq.modules import (
+ TransformerDecoderLayer,
+)
+
+logger = logging.getLogger(__name__)
+
+
+@register_model("laser_transformer")
+class LaserTransformerModel(FairseqEncoderDecoderModel):
+ """Train Transformer for LASER task
+
+ Requires --task laser
+ """
+
+ def __init__(self, encoder, decoder):
+ super().__init__(encoder, decoder)
+
+ def forward(
+ self,
+ src_tokens,
+ src_lengths,
+ prev_output_tokens=None,
+ tgt_tokens=None,
+ tgt_lengths=None,
+ target_language_id=-1,
+ dataset_name="",
+ ):
+ laser_encoder_out = self.encoder(src_tokens, src_lengths)
+ return self.decoder(
+ prev_output_tokens, laser_encoder_out, lang_id=target_language_id
+ )
+
+ @staticmethod
+ def add_args(parser):
+ """Add model-specific arguments to the parser."""
+ TransformerModel.add_args(parser)
+ parser.add_argument(
+ "--decoder-lang-embed-dim",
+ type=int,
+ metavar="N",
+ help="decoder language embedding dimension",
+ )
+
+ @classmethod
+ def build_model(cls, args, task):
+ base_laser_transformer_architecture(args)
+
+ num_langs = task.num_tasks if hasattr(task, "num_tasks") else 0
+
+ def load_embed_tokens(dictionary, embed_dim):
+ num_embeddings = len(dictionary)
+ padding_idx = dictionary.pad()
+
+ return Embedding(num_embeddings, embed_dim, padding_idx)
+
+ encoder_embed_tokens = load_embed_tokens(
+ task.source_dictionary, args.encoder_embed_dim
+ )
+ decoder_embed_tokens = load_embed_tokens(
+ task.target_dictionary, args.decoder_embed_dim
+ )
+ num_langs = task.num_tasks if hasattr(task, "num_tasks") else 0
+
+ encoder = LaserTransformerEncoder(
+ args, task.source_dictionary, encoder_embed_tokens
+ )
+
+ decoder = LaserTransformerDecoder(
+ args,
+ task.target_dictionary,
+ decoder_embed_tokens,
+ num_langs=num_langs,
+ lang_embed_dim=args.decoder_lang_embed_dim,
+ )
+
+ return cls(encoder, decoder)
+
+
+class LaserTransformerEncoder(TransformerEncoder):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ def forward(self, src_tokens, *args, **kwargs):
+ encoder_out = super().forward(src_tokens, *args, **kwargs)
+
+ x = encoder_out["encoder_out"][0] # T x B x C
+ padding_mask = src_tokens.eq(self.padding_idx).t().unsqueeze(-1)
+
+ if padding_mask.any():
+ x = x.float().masked_fill_(padding_mask, float("-inf")).type_as(x)
+
+ # Build the sentence embedding by max-pooling over the encoder outputs
+ sentemb = x.max(dim=0)[0]
+
+ # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in
+ # `foward` so we use a dictionary instead.
+ # TorchScript does not support mixed values so the values are all lists.
+ # The empty list is equivalent to None.
+ return {"sentemb": [sentemb]} # B x C
+
+ @torch.jit.export
+ def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order):
+ """
+ Same as the one in transformer.py, with new_sentemb
+ """
+ if len(encoder_out["sentemb"]) == 0:
+ new_sentemb = []
+ else:
+ new_sentemb = [encoder_out["sentemb"][0].index_select(0, new_order)]
+
+ return {
+ "sentemb": new_sentemb, # B x C
+ }
+
+
+class LaserTransformerDecoder(TransformerDecoder):
+ def __init__(self, args, dictionary, *kargs, **kwargs):
+ self.num_langs = kwargs.get("num_langs", 1)
+ self.lang_embed_dim = kwargs.get("lang_embed_dim", 0)
+ kwargs.pop("num_langs", None)
+ kwargs.pop("lang_embed_dim", None)
+
+ super().__init__(args, dictionary, *kargs, **kwargs, no_encoder_attn=True)
+
+ if self.lang_embed_dim == 0:
+ self.embed_lang = None
+ else:
+ self.embed_lang = nn.Embedding(self.num_langs, self.lang_embed_dim)
+ nn.init.uniform_(self.embed_lang.weight, -0.1, 0.1)
+
+ if self.output_projection is not None:
+ laser_output_embed_dim = (
+ self.output_embed_dim + self.lang_embed_dim + args.encoder_embed_dim
+ )
+ self.output_projection = nn.Linear(
+ laser_output_embed_dim, len(dictionary), bias=False
+ )
+ nn.init.normal_(
+ self.output_projection.weight,
+ mean=0,
+ std=laser_output_embed_dim ** -0.5,
+ )
+
+ def build_decoder_layer(self, args, no_encoder_attn=False):
+ decoder_embed_dim = args.decoder_embed_dim
+ args.decoder_embed_dim = (
+ decoder_embed_dim + self.lang_embed_dim + args.encoder_embed_dim
+ )
+ res = TransformerDecoderLayer(args, no_encoder_attn=True)
+ args.decoder_embed_dim = decoder_embed_dim
+
+ return res
+
+ def extract_features(
+ self,
+ prev_output_tokens,
+ encoder_out: Optional[Dict[str, List[Tensor]]],
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ full_context_alignment: bool = False,
+ alignment_layer: Optional[int] = None,
+ alignment_heads: Optional[int] = None,
+ lang_id: Optional[int] = None,
+ ):
+ """
+ Similar to *forward* but only return features.
+
+ Includes several features from "Jointly Learning to Align and
+ Translate with Transformer Models" (Garg et al., EMNLP 2019).
+
+ Args:
+ full_context_alignment (bool, optional): don't apply
+ auto-regressive mask to self-attention (default: False).
+ alignment_layer (int, optional): return mean alignment over
+ heads at this layer (default: last layer).
+ alignment_heads (int, optional): only average alignment over
+ this many heads (default: all heads).
+
+ Returns:
+ tuple:
+ - the decoder's features of shape `(batch, tgt_len, embed_dim)`
+ - a dictionary with any model-specific outputs
+ """
+ if alignment_layer is None:
+ alignment_layer = self.num_layers - 1
+
+ # embed positions
+ positions = (
+ self.embed_positions(
+ prev_output_tokens, incremental_state=incremental_state
+ )
+ if self.embed_positions is not None
+ else None
+ )
+
+ if incremental_state is not None:
+ prev_output_tokens = prev_output_tokens[:, -1:]
+ if positions is not None:
+ positions = positions[:, -1:]
+
+ bsz, seqlen = prev_output_tokens.size()
+
+ # embed tokens and positions
+ x = self.embed_scale * self.embed_tokens(prev_output_tokens)
+
+ if self.quant_noise is not None:
+ x = self.quant_noise(x)
+
+ if self.project_in_dim is not None:
+ x = self.project_in_dim(x)
+
+ if positions is not None:
+ x += positions
+
+ if self.layernorm_embedding is not None:
+ x = self.layernorm_embedding(x)
+
+ x = self.dropout_module(x)
+
+ # B x T x C -> T x B x C
+ x = x.transpose(0, 1)
+
+ if self.embed_lang is not None:
+ lang_ids = prev_output_tokens.data.new_full((bsz,), lang_id)
+ langemb = self.embed_lang(lang_ids)
+ langemb = langemb.unsqueeze(0)
+ repeat_vals = [x.shape[0] // langemb.shape[0]] + [-1] * (
+ len(langemb.shape) - 1
+ )
+ x = torch.cat((x, langemb.expand(*repeat_vals)), dim=-1)
+
+ sentemb = encoder_out["sentemb"][0]
+ sentemb = sentemb.unsqueeze(0)
+
+ repeat_vals = [x.shape[0] // sentemb.shape[0]] + [-1] * (len(sentemb.shape) - 1)
+ x = torch.cat((x, sentemb.expand(*repeat_vals)), dim=-1)
+
+ self_attn_padding_mask: Optional[Tensor] = None
+ if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any():
+ self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx)
+
+ # decoder layers
+ attn: Optional[Tensor] = None
+ inner_states: List[Optional[Tensor]] = [x]
+ for idx, layer in enumerate(self.layers):
+ if incremental_state is None and not full_context_alignment:
+ self_attn_mask = self.buffered_future_mask(x)
+ else:
+ self_attn_mask = None
+
+ x, layer_attn, _ = layer(
+ x,
+ None,
+ None,
+ incremental_state,
+ self_attn_mask=self_attn_mask,
+ self_attn_padding_mask=self_attn_padding_mask,
+ need_attn=bool((idx == alignment_layer)),
+ need_head_weights=bool((idx == alignment_layer)),
+ )
+ inner_states.append(x)
+ if layer_attn is not None and idx == alignment_layer:
+ attn = layer_attn.float().to(x)
+
+ if attn is not None:
+ if alignment_heads is not None:
+ attn = attn[:alignment_heads]
+
+ # average probabilities over heads
+ attn = attn.mean(dim=0)
+
+ if self.layer_norm is not None:
+ x = self.layer_norm(x)
+
+ # T x B x C -> B x T x C
+ x = x.transpose(0, 1)
+
+ if self.project_out_dim is not None:
+ x = self.project_out_dim(x)
+
+ return x, {"attn": [attn], "inner_states": inner_states}
+
+ def forward(
+ self,
+ prev_output_tokens,
+ encoder_out: Optional[Dict[str, List[Tensor]]] = None,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ features_only: bool = False,
+ alignment_layer: Optional[int] = None,
+ alignment_heads: Optional[int] = None,
+ src_lengths: Optional[Any] = None,
+ return_all_hiddens: bool = False,
+ lang_id: Optional[int] = None,
+ ):
+ """
+ Args:
+ prev_output_tokens (LongTensor): previous decoder outputs of shape
+ `(batch, tgt_len)`, for teacher forcing
+ encoder_out (optional): output from the encoder, used for
+ encoder-side attention
+ incremental_state (dict): dictionary used for storing state during
+ :ref:`Incremental decoding`
+ features_only (bool, optional): only return features without
+ applying output layer (default: False).
+
+ Returns:
+ tuple:
+ - the decoder's output of shape `(batch, tgt_len, vocab)`
+ - a dictionary with any model-specific outputs
+ """
+
+ assert lang_id is not None
+
+ x, extra = self.extract_features(
+ prev_output_tokens,
+ encoder_out=encoder_out,
+ incremental_state=incremental_state,
+ alignment_layer=alignment_layer,
+ alignment_heads=alignment_heads,
+ lang_id=lang_id,
+ )
+ if not features_only:
+ x = self.output_layer(x)
+ return x, extra
+
+
+@register_model_architecture("laser_transformer", "laser_transformer")
+def base_laser_transformer_architecture(args):
+ base_architecture(args)
+ args.decoder_lang_embed_dim = getattr(args, "decoder_lang_embed_dim", 0)
diff --git a/fairseq/examples/laser/laser_src/multitask_data_utils.py b/fairseq/examples/laser/laser_src/multitask_data_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..b05caea26793bf5112a7abc29d76225f578f3ebe
--- /dev/null
+++ b/fairseq/examples/laser/laser_src/multitask_data_utils.py
@@ -0,0 +1,143 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from collections import OrderedDict
+
+import numpy as np
+
+from fairseq.data import BaseWrapperDataset, FairseqDataset, iterators
+
+
+class MultiItr(object):
+ def __init__(self, itr):
+ self.itr = itr
+ self._counts = [0 for x in itr]
+
+ def __len__(self):
+ return sum(len(itr) for itr in self.itr)
+
+ def __iter__(self):
+ return self
+
+ def __next__(self):
+ ratios = [count / len(itr) for count, itr in zip(self._counts, self.itr)]
+ idx = ratios.index(min(ratios))
+ self._counts[idx] += 1
+ return next(self.itr[idx])
+
+
+class MultidatasetEpochBatchIterator(iterators.EpochBatchIterating):
+ """A wrapper around multiple epoch batch iterators."""
+
+ def __init__(
+ self,
+ dataset,
+ batch_sampler,
+ seed=1,
+ num_shards=1,
+ shard_id=0,
+ num_workers=0,
+ epoch=1,
+ ):
+
+ assert isinstance(dataset, OrderedDict)
+ assert len(dataset)
+ assert isinstance(dataset[next(iter(dataset))], FairseqDataset)
+
+ self.iterators = []
+
+ self.epoch = epoch
+ for key, dt in dataset.items():
+ epoch_iter = iterators.EpochBatchIterator(
+ dataset=dt,
+ collate_fn=dt.collater,
+ batch_sampler=batch_sampler[key],
+ seed=seed,
+ num_shards=num_shards,
+ shard_id=shard_id,
+ num_workers=0,
+ epoch=epoch,
+ )
+ self.iterators.append(epoch_iter)
+
+ def __len__(self):
+ return sum(len(itr) for itr in self.iterators)
+
+ def next_epoch_itr(self, shuffle=True, fix_batches_to_gpus=False):
+ # `self.epoch += 1` should be handled by underlying `EpochBatchIterator`s.
+ return MultiItr(
+ [
+ itr.next_epoch_itr(
+ shuffle=shuffle, fix_batches_to_gpus=fix_batches_to_gpus
+ )
+ for itr in self.iterators
+ ]
+ )
+
+ def end_of_epoch(self):
+ return all(itr.end_of_epoch() for itr in self.iterators)
+
+ @property
+ def next_epoch_idx(self):
+ """Return the epoch index after *next_epoch_itr* is called."""
+
+ epochs = [itr.next_epoch_idx for itr in self.iterators]
+ self.epoch = epochs[0]
+ assert all(epoch == self.epoch for epoch in epochs)
+
+ return self.epoch
+
+ @property
+ def iterations_in_epoch(self):
+ return sum(itr.iterations_in_epoch for itr in self.iterators)
+
+ def state_dict(self):
+ return {
+ "iterators": [it.state_dict() for it in self.iterators],
+ "epoch": self.epoch,
+ }
+
+ def load_state_dict(self, state_dict):
+ self.epoch = state_dict["epoch"]
+ for it, d in zip(self.iterators, state_dict["iterators"]):
+ it.load_state_dict(d)
+
+
+class MultitaskDatasetWrapper(BaseWrapperDataset):
+ """A wrapper for a multitask dataset."""
+
+ def __init__(self, dataset, target_language_id, sample=1.0, name=""):
+ super().__init__(dataset)
+ self.target_language_id = target_language_id
+ self.sample = sample
+ self.name = name
+
+ def collater(self, *args, **kwargs):
+ ans = self.dataset.collater(*args, **kwargs)
+ if "net_input" in ans:
+ ans["net_input"]["target_language_id"] = self.target_language_id
+ ans["net_input"]["dataset_name"] = self.name
+ return ans
+
+ def num_tokens(self, *args, **kwargs):
+ return self.dataset.num_tokens(*args, **kwargs)
+
+ def ordered_indices(self, *args, **kwargs):
+ indices = self.dataset.ordered_indices(*args, **kwargs)
+ # Hacky solution for sampling
+ size = int(self.sample * indices.shape[0])
+
+ return indices.take(np.sort(np.random.permutation(indices.shape[0])[:size]))
+
+ def size(self, index: int):
+ return self.dataset.size(index)
+
+ @property
+ def supports_prefetch(self):
+ """Whether this dataset supports prefetching."""
+ return getattr(self.dataset, "supports_prefetch", False)
+
+ def prefetch(self, indices):
+ return self.dataset.prefetch(indices)
diff --git a/fairseq/examples/latent_depth/README.md b/fairseq/examples/latent_depth/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..7774c333053b95d15b180fdfc3ee3cd817790520
--- /dev/null
+++ b/fairseq/examples/latent_depth/README.md
@@ -0,0 +1,77 @@
+# Deep Transformers with Latent Depth (Li et al., 2020)
+
+[https://arxiv.org/abs/2009.13102](https://arxiv.org/abs/2009.13102).
+
+## Introduction
+
+We present a probabilistic framework to automatically learn which layer(s) to use by learning the posterior distributions of layer selection. As an extension of this framework, we propose a novel method to train one shared Transformer network for multilingual machine translation with different layer selection posteriors for each language pair.
+
+## Training a multilingual model with latent depth
+
+Below is an example of training with latent depth in decoder for one-to-many (O2M) related languages. We use the same preprocessed (numberized and binarized) TED8 dataset as in [Balancing Training for Multilingual Neural Machine Translation (Wang et al., 2020)](https://github.com/cindyxinyiwang/multiDDS), which could be generated by [the script](https://github.com/cindyxinyiwang/multiDDS/blob/multiDDS/util_scripts/prepare_multilingual_data.sh) the author provided.
+```bash
+lang_pairs_str="eng-aze,eng-bel,eng-ces,eng-glg,eng-por,eng-rus,eng-slk,eng-tur"
+databin_dir=
+
+fairseq-train ${databin_dir} \
+ --user-dir examples/latent_depth/latent_depth_src \
+ --lang-pairs "${lang_pairs_str}" \
+ --arch multilingual_transformer_iwslt_de_en \
+ --task multilingual_translation_latent_depth \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
+ --share-encoders \
+ --share-decoders \
+ --decoder-langtok \
+ --share-decoder-input-output-embed \
+ --dropout 0.3 --attention-dropout 0.3 \
+ --optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \
+ --lr-scheduler inverse_sqrt --stop-min-lr 1e-9 --warmup-init-lr 1e-7 --warmup-updates 8000 \
+ --max-tokens 4096 --update-freq 1 \
+ --lr 0.0015 \
+ --clip-norm 1.0 \
+ --seed 2 \
+ --ddp-backend=legacy_ddp \
+ --encoder-layers 12 \
+ --decoder-layers 24 \
+ --decoder-latent-layer \
+ --sparsity-weight 0.1 \
+ --anneal-updates 5000 \
+ --soft-update 500 \
+ --target-layers 12 \
+ --share-weight 0.1
+```
+## Inference command
+
+```bash
+lang_pairs_str="eng-aze,eng-bel,eng-ces,eng-glg,eng-por,eng-rus,eng-slk,eng-tur"
+databin_dir=
+model_path=
+src_lang=
+tgt_lang=
+gen_data=
+
+fairseq-generate ${databin_dir} \
+ --path ${model_path} \
+ --task multilingual_translation_latent_depth \
+ --decoder-latent-layer \
+ --lang-pairs "${lang_pairs_str}" \
+ -s ${src_lang} -t ${tgt_lang} \
+ --gen-subset $gen_data \
+ --scoring sacrebleu \
+ --remove-bpe 'sentencepiece' \
+ --lenpen 1.0 \
+ --beam 5 \
+ --decoder-langtok \
+ --max-tokens 4096
+```
+
+
+## Citation
+```bibtex
+@article{li2020deep,
+ title={Deep Transformers with Latent Depth},
+ author={Li, Xian and Stickland, Asa Cooper and Tang, Yuqing and Kong, Xiang},
+ journal={arXiv preprint arXiv:2009.13102},
+ year={2020}
+}
+```
diff --git a/fairseq/examples/latent_depth/latent_depth_src/__init__.py b/fairseq/examples/latent_depth/latent_depth_src/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..c5fa76039ff98c18d3c14b5f4a8f73ffe644de11
--- /dev/null
+++ b/fairseq/examples/latent_depth/latent_depth_src/__init__.py
@@ -0,0 +1,9 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from . import multilingual_translation_latent_depth # noqa
+from .loss import latent_depth # noqa
+from .models import latent_multilingual_transformer # noqa
+from .modules import latent_layers # noqa
diff --git a/fairseq/examples/latent_depth/latent_depth_src/loss/__init__.py b/fairseq/examples/latent_depth/latent_depth_src/loss/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/fairseq/examples/latent_depth/latent_depth_src/loss/latent_depth.py b/fairseq/examples/latent_depth/latent_depth_src/loss/latent_depth.py
new file mode 100644
index 0000000000000000000000000000000000000000..a3b9535ecac3ec403868681a8b50c1fbe1c90dfe
--- /dev/null
+++ b/fairseq/examples/latent_depth/latent_depth_src/loss/latent_depth.py
@@ -0,0 +1,99 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+
+import torch
+from torch.nn.modules.loss import _Loss
+
+
+class LatentLayersKLLoss(_Loss):
+ def __init__(self, args):
+ super().__init__()
+ self.args = args
+
+ def forward(self, layer_samples, lang_idx, update_num, sample_size):
+ prior = self.args.prior
+ samples = layer_samples[lang_idx]
+ eps = 1e-7
+ if prior == "uniform":
+ # uniform prior
+ kl_loss = (samples * (torch.log(samples + eps) - math.log(0.5))).sum(-1)
+ elif prior == "agged_posterior":
+ # aggregated posterior
+ y_t = torch.stack([x.detach() for x in layer_samples], dim=0)
+ agged_q = torch.sum(y_t, dim=0)
+ row_norm = agged_q.sum(-1)
+ normed_agg_q = agged_q / row_norm
+ kl_loss = (
+ samples * (torch.log(samples + eps) - torch.log(normed_agg_q + eps))
+ ).sum(-1)
+ else:
+ raise NotImplementedError("The specified prior is not implemented.")
+
+ # normalized by number of layers
+ kl_loss /= layer_samples[0].size()[0]
+ kl_weight = min(
+ self.args.sparsity_weight,
+ (update_num - self.args.soft_update)
+ * self.args.sparsity_weight
+ / self.args.anneal_updates,
+ )
+ kl_loss *= kl_weight * sample_size
+ return kl_loss
+
+
+class LatentLayersSparsityLoss(_Loss):
+ def __init__(self, args):
+ super().__init__()
+ self.args = args
+
+ def is_valid(self, update_num):
+ if self.args.target_layers <= 0:
+ return False
+ return update_num > (self.args.soft_update + self.args.anneal_updates)
+
+ def forward(self, layer_samples_list, update_num, sample_size):
+ batch_loss = 0
+ share_loss = 0
+ global_sparsity_loss = 0
+ layer_samples = torch.stack(layer_samples_list, dim=0)
+ if (
+ self.args.target_layers > 0 or self.args.share_weight > 0
+ ) and update_num > (self.args.soft_update + self.args.anneal_updates):
+ # anneal sparsity weight
+ if update_num < (self.args.anneal_updates + self.args.soft_update):
+ weight_anneal = 0
+ elif update_num < (2 * self.args.anneal_updates + self.args.soft_update):
+ weight_anneal = (
+ (update_num - self.args.soft_update - self.args.anneal_updates)
+ * self.args.share_weight
+ / self.args.anneal_updates
+ )
+ else:
+ weight_anneal = 1
+ # compute ratio among languages
+ layer_utilization = torch.sum(layer_samples, dim=0)
+ layer_utilization /= layer_samples.size()[0]
+ if self.args.share_weight > 0:
+ # encouraging sharing across languages
+ share_loss = sum(
+ -1.0 * v * math.log(v) for v in layer_utilization if v > 0
+ )
+ batch_loss += (
+ weight_anneal * self.args.share_weight * sample_size * share_loss
+ )
+ if self.args.target_layers > 0:
+ # computed expected number of layers selected
+ expeted_layers = sum(layer_utilization)
+ # compute l2 loss wrt target number of layers
+ global_sparsity_loss = (expeted_layers - self.args.target_layers) ** 2
+ batch_loss += (
+ weight_anneal
+ * self.args.share_weight
+ * sample_size
+ * global_sparsity_loss
+ )
+ return batch_loss
diff --git a/fairseq/examples/latent_depth/latent_depth_src/models/__init__.py b/fairseq/examples/latent_depth/latent_depth_src/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/fairseq/examples/latent_depth/latent_depth_src/models/latent_multilingual_transformer.py b/fairseq/examples/latent_depth/latent_depth_src/models/latent_multilingual_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..9e7b655feee0042d42ac2b13cec5f1d2a88e201e
--- /dev/null
+++ b/fairseq/examples/latent_depth/latent_depth_src/models/latent_multilingual_transformer.py
@@ -0,0 +1,76 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from fairseq.models import register_model, register_model_architecture
+from fairseq.models.multilingual_transformer import MultilingualTransformerModel
+from fairseq.models.transformer import (
+ TransformerDecoder,
+ TransformerEncoder,
+ base_architecture,
+)
+from fairseq.utils import safe_hasattr
+
+from .latent_transformer import LatentTransformerDecoder, LatentTransformerEncoder
+
+
+@register_model("latent_multilingual_transformer")
+class LatentMultilingualTransformerModel(MultilingualTransformerModel):
+ """A variant of standard multilingual Transformer models which encoder and/or
+ decoders supports latent depth, as is in "Deep Transformer with Latent Depth"
+ (https://arxiv.org/abs/2009.13102).
+ """
+
+ @staticmethod
+ def add_args(parser):
+ """Add model-specific arguments to the parser."""
+ MultilingualTransformerModel.add_args(parser)
+ parser.add_argument(
+ '--soft-select',
+ action='store_true',
+ help='use soft samples in training an inference',
+ )
+ parser.add_argument(
+ '--sampling-tau',
+ type=float,
+ default=5.,
+ help='sampling temperature',
+ )
+
+ @classmethod
+ def _get_module_class(cls, is_encoder, args, lang_dict, embed_tokens, langs):
+ if is_encoder:
+ if safe_hasattr(args, "encoder_latent_layer") and args.encoder_latent_layer:
+ return LatentTransformerEncoder(
+ args, lang_dict, embed_tokens, num_logits=len(langs)
+ )
+ else:
+ return TransformerEncoder(args, lang_dict, embed_tokens)
+ else:
+ if safe_hasattr(args, "decoder_latent_layer") and args.decoder_latent_layer:
+ return LatentTransformerDecoder(
+ args, lang_dict, embed_tokens, num_logits=len(langs)
+ )
+ else:
+ return TransformerDecoder(args, lang_dict, embed_tokens)
+
+
+@register_model_architecture(
+ "latent_multilingual_transformer", "latent_multilingual_transformer"
+)
+def latent_multilingual_architecture(args):
+ args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
+ args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024)
+ args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
+ args.encoder_layers = getattr(args, "encoder_layers", 12)
+ args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
+ args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024)
+ args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
+ args.decoder_layers = getattr(args, "decoder_layers", 24)
+ args.share_encoders = getattr(args, "share_encoders", True)
+ args.share_decoders = getattr(args, "share_decoders", True)
+ args.share_encoder_embeddings = getattr(args, "share_encoder_embeddings", True)
+ args.share_decoder_embeddings = getattr(args, "share_decoder_embeddings", True)
+
+ base_architecture(args)
diff --git a/fairseq/examples/latent_depth/latent_depth_src/models/latent_transformer.py b/fairseq/examples/latent_depth/latent_depth_src/models/latent_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..6a825301a452bd935deafdaf78fa2427ca9a469e
--- /dev/null
+++ b/fairseq/examples/latent_depth/latent_depth_src/models/latent_transformer.py
@@ -0,0 +1,156 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import Any, Dict, Optional
+
+import torch.nn as nn
+from fairseq.models.fairseq_encoder import EncoderOut
+from fairseq.models.transformer import TransformerDecoder, TransformerEncoder
+from fairseq.modules import TransformerDecoderLayer, TransformerEncoderLayer
+from torch import Tensor
+
+from ..modules.latent_layers import LayerSelect
+
+
+class LatentTransformerEncoder(TransformerEncoder):
+ """Latent depth (https://arxiv.org/abs/2009.13102) implemented in
+ TransformerEncoder.
+ """
+
+ def __init__(self, args, dictionary, embed_tokens, num_logits=1):
+ self.num_logits = num_logits
+ self.num_layers = args.encoder_layers
+ super().__init__(args, dictionary, embed_tokens)
+ self.layer_select = LayerSelect(
+ num_layers=self.num_layers,
+ num_logits=self.num_logits,
+ soft_select=getattr(args, "soft_select", False),
+ sampling_tau=getattr(args, "sampling_tau", 5.),
+ )
+ self.lang_idx = None
+ self.layers = nn.ModuleList(
+ [self._build_encoder_layer(args, idx) for idx in range(args.encoder_layers)]
+ )
+
+ def set_lang_idx(self, lang_idx):
+ self.lang_idx = lang_idx
+
+ def _build_encoder_layer(self, args, idx=None):
+ return LatentTransformerEncoderLayer(args, idx, layer_select=self.layer_select)
+
+ def forward(self, src_tokens, src_lengths, return_all_hiddens: bool = False):
+ self.layer_select.sample(self.lang_idx)
+ return super().forward(src_tokens, src_lengths, return_all_hiddens)
+
+
+class LatentTransformerEncoderLayer(TransformerEncoderLayer):
+ """Encoder layer with each (non_residual) block weighted by samples of Bernouli
+ or Gumbel Signmoid samples.
+
+ Args:
+ args (argparse.Namespace): parsed command-line arguments from standard
+ TransformerEncoderLayer.
+ idx (int): layer index (used to retrieve samples).
+ layer_select (LayerSelect, optional): instance of LayerSelect module with logits
+ parameters and sampling method.
+ """
+
+ def __init__(self, args, idx, layer_select=None):
+ super().__init__(args)
+ self.idx = idx
+ self.layer_select = layer_select
+
+ def residual_connection(self, x, residual):
+ return residual + x * self.layer_select(self.idx)
+
+
+class LatentTransformerDecoder(TransformerDecoder):
+ """Latent depth (https://arxiv.org/abs/2009.13102) implemented in
+ TransformerDecoder.
+ """
+
+ def __init__(
+ self, args, dictionary, embed_tokens, no_encoder_attn=False, num_logits=1
+ ):
+ self.num_logits = num_logits
+ self.num_layers = args.decoder_layers
+ super().__init__(
+ args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn
+ )
+ self.layer_select = LayerSelect(
+ num_layers=self.num_layers,
+ num_logits=self.num_logits,
+ soft_select=getattr(args, "soft_select", False),
+ sampling_tau=getattr(args, "sampling_tau", 5.),
+ )
+ self.lang_idx = None
+ self.layers = nn.ModuleList(
+ [
+ self._build_decoder_layer(args, no_encoder_attn, idx)
+ for idx in range(args.decoder_layers)
+ ]
+ )
+
+ def set_lang_idx(self, lang_idx):
+ self.lang_idx = lang_idx
+
+ def _build_decoder_layer(self, args, no_encoder_attn=False, idx=None):
+ return LatentTransformerDecoderLayer(
+ args, idx, layer_select=self.layer_select, no_encoder_attn=no_encoder_attn
+ )
+
+ def forward(
+ self,
+ prev_output_tokens,
+ encoder_out: Optional[EncoderOut] = None,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ features_only: bool = False,
+ alignment_layer: Optional[int] = None,
+ alignment_heads: Optional[int] = None,
+ src_lengths: Optional[Any] = None,
+ return_all_hiddens: bool = False,
+ ):
+ self.layer_select.sample(self.lang_idx)
+ return super().forward(
+ prev_output_tokens=prev_output_tokens,
+ encoder_out=encoder_out,
+ incremental_state=incremental_state,
+ features_only=features_only,
+ alignment_layer=alignment_layer,
+ src_lengths=src_lengths,
+ return_all_hiddens=return_all_hiddens,
+ )
+
+
+class LatentTransformerDecoderLayer(TransformerDecoderLayer):
+ """Decoder layer with each (non_residual) block weighted by samples of Bernouli
+ or Gumbel Signmoid samples.
+
+ Args:
+ args (argparse.Namespace): parsed command-line arguments from standard
+ TransformerDecoderLayer.
+ idx (int): layer index (used to retrieve samples).
+ layer_select (LayerSelect, optional): instance of LayerSelect module with logits
+ parameters and sampling method.
+ no_encoder_attn (bool, optional): whether to attend to encoder outputs
+ (default: False).
+
+ """
+
+ def __init__(
+ self,
+ args,
+ idx,
+ layer_select=None,
+ no_encoder_attn=False,
+ add_bias_kv=False,
+ add_zero_attn=False,
+ ):
+ super().__init__(args, no_encoder_attn, add_bias_kv, add_zero_attn)
+ self.idx = idx
+ self.layer_select = layer_select
+
+ def residual_connection(self, x, residual):
+ return residual + x * self.layer_select(self.idx)
diff --git a/fairseq/examples/latent_depth/latent_depth_src/modules/__init__.py b/fairseq/examples/latent_depth/latent_depth_src/modules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/fairseq/examples/latent_depth/latent_depth_src/modules/latent_layers.py b/fairseq/examples/latent_depth/latent_depth_src/modules/latent_layers.py
new file mode 100644
index 0000000000000000000000000000000000000000..2be05d5535cb05b16f61603a7356df2326bf2e23
--- /dev/null
+++ b/fairseq/examples/latent_depth/latent_depth_src/modules/latent_layers.py
@@ -0,0 +1,75 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+import torch.nn as nn
+
+
+class LayerSelect(nn.Module):
+ """Compute samples (from a Gumbel-Sigmoid distribution) which is used as
+ either (soft) weighting or (hard) selection of residual connection.
+ https://arxiv.org/abs/2009.13102
+ """
+ def __init__(self, num_layers, num_logits, soft_select=False, sampling_tau=5.):
+ super(LayerSelect, self).__init__()
+ self.layer_logits = torch.nn.Parameter(
+ torch.Tensor(num_logits, num_layers),
+ requires_grad=True,
+ )
+ self.hard_select = not soft_select
+ self.tau = sampling_tau
+ self.detach_grad = False
+ self.layer_samples = [None] * num_logits
+
+ def sample(self, logit_idx):
+ """To leverage the efficiency of distributed training, samples for all
+ layers are computed at once for each logit_idx. Logits are parameters
+ learnt independent of each other.
+
+ Args:
+ logit_idx: The index of logit parameters used for sampling.
+ """
+ assert logit_idx is not None
+ self.samples = self._gumbel_sigmoid(
+ self.layer_logits[logit_idx, :].detach()
+ if self.detach_grad
+ else self.layer_logits[logit_idx, :],
+ dim=-1,
+ tau=self.tau,
+ hard=self.hard_select,
+ )
+ self.layer_samples[logit_idx] = self.samples
+
+ def forward(self, i):
+ sample = self.samples[i]
+ return sample
+
+ def _gumbel_sigmoid(
+ self, logits, tau=1, hard=False, eps=1e-10, dim=-1, threshold=0.5
+ ):
+ # ~Gumbel(0,1)
+ gumbels1 = (
+ -torch.empty_like(logits, memory_format=torch.legacy_contiguous_format)
+ .exponential_()
+ .log()
+ )
+ gumbels2 = (
+ -torch.empty_like(logits, memory_format=torch.legacy_contiguous_format)
+ .exponential_()
+ .log()
+ )
+ # Difference of two gumbels because we apply a sigmoid
+ gumbels1 = (logits + gumbels1 - gumbels2) / tau
+ y_soft = gumbels1.sigmoid()
+ if hard:
+ # Straight through.
+ y_hard = torch.zeros_like(
+ logits, memory_format=torch.legacy_contiguous_format
+ ).masked_fill(y_soft > threshold, 1.0)
+ ret = y_hard - y_soft.detach() + y_soft
+ else:
+ # Reparametrization trick.
+ ret = y_soft
+ return ret
diff --git a/fairseq/examples/latent_depth/latent_depth_src/multilingual_translation_latent_depth.py b/fairseq/examples/latent_depth/latent_depth_src/multilingual_translation_latent_depth.py
new file mode 100644
index 0000000000000000000000000000000000000000..8cc2a7174b765b7ad8808489196e12082a91a2d7
--- /dev/null
+++ b/fairseq/examples/latent_depth/latent_depth_src/multilingual_translation_latent_depth.py
@@ -0,0 +1,195 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from fairseq.tasks import register_task
+from fairseq.tasks.multilingual_translation import MultilingualTranslationTask
+from fairseq.utils import safe_hasattr
+
+from .loss.latent_depth import LatentLayersKLLoss, LatentLayersSparsityLoss
+
+
+@register_task("multilingual_translation_latent_depth")
+class MultilingualTranslationTaskLatentDepth(MultilingualTranslationTask):
+ """A task for multiple translation with latent depth.
+
+ See `"Deep Transformer with Latent Depth"
+ (Li et al., 2020) `_.
+ """
+
+ @staticmethod
+ def add_args(parser):
+ """Add task-specific arguments to the parser."""
+ # fmt: off
+ MultilingualTranslationTask.add_args(parser)
+ parser.add_argument('--encoder-latent-layer', action='store_true', help='latent layer selection in encoder')
+ parser.add_argument('--decoder-latent-layer', action='store_true', help='latent layer selection in decoder')
+ parser.add_argument('--target-layers', default=-1, type=int,
+ help='number of effective layers to learn; -1 means no constraint')
+ parser.add_argument('--sparsity-weight', default=0.0, type=float,
+ help='weight for sparsity loss')
+ parser.add_argument('--share-weight', default=0.0, type=float,
+ help='weight for sharing loss')
+ parser.add_argument('--soft-update', default=1, type=int,
+ help='number of updates with soft sampling')
+ parser.add_argument('--anneal-updates', default=1, type=int,
+ help='number of updates to anneal the KL loss weight')
+ parser.add_argument('--prior', default="uniform", type=str,
+ help='prior used for computing KL loss')
+ # fmt: on
+
+ def __init__(self, args, dicts, training):
+ super().__init__(args, dicts, training)
+ self.src_langs, self.tgt_langs = zip(
+ *[(lang.split("-")[0], lang.split("-")[1]) for lang in args.lang_pairs]
+ )
+ if self.training and self.encoder_latent_layer:
+ assert self.args.share_encoders
+ if self.training and self.decoder_latent_layer:
+ assert self.args.share_decoders
+ if training or self.encoder_latent_layer or self.decoder_latent_layer:
+ self.lang_pairs = args.lang_pairs
+ else:
+ self.lang_pairs = ["{}-{}".format(args.source_lang, args.target_lang)]
+ self.eval_lang_pairs = self.lang_pairs
+ self.model_lang_pairs = self.lang_pairs
+ if self.training and (self.encoder_latent_layer or self.decoder_latent_layer):
+ self.kl_loss = LatentLayersKLLoss(self.args)
+ self.sparsity_loss = LatentLayersSparsityLoss(self.args)
+
+ def _per_lang_pair_train_loss(
+ self, lang_pair, model, update_num, criterion, sample, optimizer, ignore_grad
+ ):
+ src, tgt = lang_pair.split("-")
+ if self.encoder_latent_layer:
+ src_lang_idx = self.src_lang_idx_dict[src]
+ model.models[lang_pair].encoder.set_lang_idx(src_lang_idx)
+ model.models[lang_pair].encoder.layer_select.hard_select = (
+ update_num > self.args.soft_update
+ )
+ if self.decoder_latent_layer:
+ tgt_lang_idx = self.tgt_lang_idx_dict[tgt]
+ model.models[lang_pair].decoder.set_lang_idx(tgt_lang_idx)
+ model.models[lang_pair].decoder.layer_select.hard_select = (
+ update_num > self.args.soft_update
+ )
+
+ loss, sample_size, logging_output = criterion(
+ model.models[lang_pair], sample[lang_pair]
+ )
+ if self.encoder_latent_layer:
+ none_samples = sum(
+ 1 if x is None else 0
+ for x in model.models[lang_pair].encoder.layer_select.layer_samples
+ )
+ if none_samples == 0 or self.args.prior != "agged_posterior":
+ loss += self.kl_loss(
+ model.models[lang_pair].encoder.layer_select.layer_samples,
+ src_lang_idx,
+ update_num,
+ sample_size,
+ )
+ if self.decoder_latent_layer:
+ none_samples = sum(
+ 1 if x is None else 0
+ for x in model.models[lang_pair].decoder.layer_select.layer_samples
+ )
+ if none_samples == 0 or self.args.prior != "agged_posterior":
+ loss += self.kl_loss(
+ model.models[lang_pair].decoder.layer_select.layer_samples,
+ tgt_lang_idx,
+ update_num,
+ sample_size,
+ )
+ if ignore_grad:
+ loss *= 0
+
+ if hasattr(self, "sparsity_loss") and self.sparsity_loss.is_valid(update_num):
+ # need to retain the graph if sparsity loss needs to be added
+ loss.backward(retain_graph=True)
+ else:
+ optimizer.backward(loss)
+
+ return loss, sample_size, logging_output
+
+ def train_step(
+ self, sample, model, criterion, optimizer, update_num, ignore_grad=False
+ ):
+ agg_loss, agg_sample_size, agg_logging_output = super().train_step(
+ sample, model, criterion, optimizer, update_num, ignore_grad
+ )
+ # compute auxiliary loss from layere sparsity, based on all samples from all languages
+ if hasattr(self, "sparsity_loss") and self.sparsity_loss.is_valid(update_num):
+ sparsity_loss = 0
+ if self.encoder_latent_layer:
+ sparsity_loss += self.sparsity_loss(
+ next(
+ iter(model.models.values())
+ ).encoder.layer_select.layer_samples,
+ update_num,
+ agg_sample_size,
+ )
+ if self.decoder_latent_layer:
+ sparsity_loss += self.sparsity_loss(
+ next(
+ iter(model.models.values())
+ ).decoder.layer_select.layer_samples,
+ update_num,
+ agg_sample_size,
+ )
+ if sparsity_loss > 0:
+ optimizer.backward(sparsity_loss)
+ return agg_loss, agg_sample_size, agg_logging_output
+
+ def _per_lang_pair_valid_loss(self, lang_pair, model, criterion, sample):
+ src, tgt = lang_pair.split("-")
+ if self.encoder_latent_layer:
+ src_lang_idx = self.src_lang_idx_dict[src]
+ model.models[lang_pair].encoder.set_lang_idx(src_lang_idx)
+ if self.decoder_latent_layer:
+ tgt_lang_idx = self.tgt_lang_idx_dict[tgt]
+ model.models[lang_pair].decoder.set_lang_idx(tgt_lang_idx)
+ loss, sample_size, logging_output = criterion(
+ model.models[lang_pair], sample[lang_pair]
+ )
+ return loss, sample_size, logging_output
+
+ def inference_step(
+ self, generator, models, sample, prefix_tokens=None, constraints=None
+ ):
+ if self.encoder_latent_layer or self.decoder_latent_layer:
+ for model in models:
+ if self.encoder_latent_layer:
+ assert model.encoder.layer_select is not None
+ src_lang_idx = self.src_lang_idx_dict[self.args.source_lang]
+ model.encoder.set_lang_idx(src_lang_idx)
+ if self.decoder_latent_layer:
+ assert model.decoder.layer_select is not None
+ tgt_lang_idx = self.tgt_lang_idx_dict[self.args.target_lang]
+ model.decoder.set_lang_idx(tgt_lang_idx)
+ return super().inference_step(
+ generator, models, sample, prefix_tokens, constraints
+ )
+
+ @property
+ def encoder_latent_layer(self):
+ return (
+ safe_hasattr(self.args, "encoder_latent_layer")
+ and self.args.encoder_latent_layer
+ )
+
+ @property
+ def decoder_latent_layer(self):
+ return (
+ safe_hasattr(self.args, "decoder_latent_layer")
+ and self.args.decoder_latent_layer
+ )
+
+ @property
+ def src_lang_idx_dict(self):
+ return {lang: lang_idx for lang_idx, lang in enumerate(self.src_langs)}
+
+ @property
+ def tgt_lang_idx_dict(self):
+ return {lang: lang_idx for lang_idx, lang in enumerate(self.tgt_langs)}
diff --git a/fairseq/examples/layerdrop/README.md b/fairseq/examples/layerdrop/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..4d48ee9615e1458e1e889635dc9938e427a7f64a
--- /dev/null
+++ b/fairseq/examples/layerdrop/README.md
@@ -0,0 +1,154 @@
+# Reducing Transformer Depth on Demand with Structured Dropout (Fan et al., 2019)
+This page contains information for how to train models with LayerDrop, based on this [paper](https://arxiv.org/abs/1909.11556).
+
+## Citation:
+If you found this technique useful, please cite our paper:
+```bibtex
+@article{fan2019reducing,
+ title={Reducing Transformer Depth on Demand with Structured Dropout},
+ author={Fan, Angela and Grave, Edouard and Joulin, Armand},
+ journal={arXiv preprint arXiv:1909.11556},
+ year={2019}
+}
+```
+
+## Pre-trained models
+
+Model | Description | Download
+---|---|---
+`layerdrop_wmt_en_de_12_6` | Transformer + LayerDrop 0.2 trained on WMT16 en-de with 12 encoder and 6 decoder layers | [layerdrop_wmt_en_de_12_6.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/layerdrop_wmt_en_de_12_6.tar.gz)
+`roberta_layerdrop.base` | RoBERTa Base + LayerDrop 0.2 | [roberta_layerdrop.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta_layerdrop.base.qnli.tar.gz)
+`roberta_layerdrop.large` | RoBERTa Large + LayerDrop 0.2 | [roberta_layerdrop.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta_layerdrop.large.tar.gz)
+`roberta_layerdrop.large.mnli` | `roberta_layerdrop.large` finetuned on [MNLI](http://www.nyu.edu/projects/bowman/multinli) | [roberta_layerdrop.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta_layerdrop.large.mnli.tar.gz)
+`roberta_layerdrop.large.qnli` | `roberta_layerdrop.large` finetuned on [QNLI](https://arxiv.org/abs/1804.07461) | [roberta_layerdrop.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta_layerdrop.large.qnli.tar.gz)
+
+
+Evaluate performance of these pre-trained models:
+```bash
+# Example for Machine Translation
+fairseq-generate /path/to/bped/wmt/data --path nmt_checkpoint.pt \
+ --beam 8 --lenpen 0.4 \
+ --batch-size 64 \
+ --remove-bpe \
+ --gen-subset test > wmt16_gen.txt
+bash scripts/compound_split_bleu.sh wmt16_gen.txt
+# prints BLEU4 = 30.17
+```
+
+```python
+# Example for RoBERTa + LayerDrop finetuned on MNLI:
+from fairseq.models.roberta import RobertaModel
+
+roberta_layerdrop = RobertaModel.from_pretrained(
+ '/path/to/MNLI/model',
+ checkpoint_file='mnli_checkpoint.pt',
+ data_name_or_path='/path/to/MNLI/data/MNLI-bin'
+)
+label_map = {0: 'contradiction', 2: 'neutral', 1: 'entailment'}
+ncorrect, nsamples = 0, 0
+roberta_layerdrop.cuda()
+roberta_layerdrop.eval()
+with open('/path/to/MNLI/data/dev_matched.tsv') as fin:
+ fin.readline()
+ for index, line in enumerate(fin):
+ tokens = line.strip().split('\t')
+ sent1, sent2, target = tokens[8], tokens[9], tokens[-1]
+ tokens = roberta_layerdrop.encode(sent1, sent2)
+ prediction = roberta_layerdrop.predict('sentence_classification_head', tokens).argmax().item()
+ prediction_label = label_map[prediction]
+ ncorrect += int(prediction_label == target)
+ nsamples += 1
+print('| Accuracy: ', float(ncorrect)/float(nsamples))
+# prints | Accuracy: 0.9026999490575649
+
+
+# Example for RoBERTa + LayerDrop finetuned on QNLI:
+roberta = RobertaModel.from_pretrained(
+ '/path/to/QNLI/model',
+ checkpoint_file='qnli_checkpoint.pt',
+ data_name_or_path='/path/to/QNLI/data/QNLI-bin'
+)
+
+label_fn = lambda label: roberta.task.label_dictionary.string(
+ [label + roberta.task.target_dictionary.nspecial]
+)
+ncorrect, nsamples = 0, 0
+roberta.cuda()
+roberta.eval()
+with open('/path/to/QNLI/data/dev.tsv') as fin:
+ fin.readline()
+ for index, line in enumerate(fin):
+ tokens = line.strip().split('\t')
+ sent1, sent2, target = tokens[1], tokens[2], tokens[3]
+ tokens = roberta.encode(sent1, sent2)
+ prediction = roberta.predict('sentence_classification_head', tokens).argmax().item()
+ prediction_label = label_fn(prediction)
+ ncorrect += int(prediction_label == target)
+ nsamples += 1
+print('| Accuracy: ', float(ncorrect)/float(nsamples))
+# prints | Accuracy: 0.9480139117700896
+```
+
+
+## Example usage
+
+To train a model with LayerDrop, add the following flags. We recommend 0.2, a value that worked well in our experiments. For Language Models that are decoder-only, you need only the decoder flag. For RoBERTa, an encoder, you need only the encoder flag. The encoder and decoder LayerDrop values can be set differently.
+```
+--encoder-layerdrop 0.2 --decoder-layerdrop 0.2
+```
+
+To prune a model that has been trained with LayerDrop, add the following flags followed by a comma separated list of which layers you would like to keep.
+```
+--encoder-layers-to-keep 0,2,4,6,8,10,12,14 --decoder-layers-to-keep 0,2,4,6,8,10,12,14
+```
+Setting these flags should print a message such as:
+```
+| Pruning model to specified layer configuration
+```
+You should also see a smaller number of parameters in the model, for example the 16-Layer Transformer Language Model prints:
+```
+num. model params: 246933504
+```
+while a model pruned to 8 Layers prints:
+```
+num. model params: 146163712
+```
+
+If you would like to pick up training with a model that has been pruned, simply adding these flags is sufficient. If you would like to use a script that only does evaluation (no training), you may need to pass an override command. A specific example would be for language modeling:
+```bash
+fairseq-eval-lm /path/to/wikitext-103 \
+ --path /path/to/model/checkpoint.pt \
+ --model-overrides "{'decoder_layers_to_keep':'0,2,4,6,8,10,12,14'}"
+```
+This model override command overrides the training parameters and updates the model arguments so that the pruned model is run instead of the full model.
+
+## Reproduce Paper Results
+
+Looking to reproduce the results in the paper?
+
+1. For Translation on WMT16 en-de, we followed this setting [here](https://github.com/pytorch/fairseq/blob/main/examples/scaling_nmt/README.md)
+2. To train RoBERTa, we followed this setting [here](https://github.com/pytorch/fairseq/tree/main/examples/roberta)
+3. To train Language Models on Wikitext-103, we followed this setting [here](https://github.com/pytorch/fairseq/tree/main/examples/language_model)
+
+
+## Tips
+
+1. If you would like to train large models with better performance, LayerDrop should be set to a smaller value such as 0.1 or 0.2. Too much LayerDrop will mean the model has too much regularization, so may not reach the best performance. Since LayerDrop adds regularization, you may achieve the best performance by slightly reducing the amount of standard dropout (for example, reduce by 0.1).
+
+2. If you would like to train large models to be pruned and made smaller, LayerDrop should be set to a larger value such as 0.5 if you want to prune very aggressively (such as removing half the network or more). If you would like to prune fewer layers away, LayerDrop can be set to a smaller value such as 0.2. Our experiments were conducted with low values of LayerDrop (such as 0.1 and 0.2), for reference.
+
+3. When pruning layers at inference time, it is best to spread out the layers remaining so they are evenly spaced throughout the network. For example, if you want to remove 50% of the network, keeping every other layer is good.
+
+
+## FAQ
+
+1. How did the sharing layers experiment work? In an appendix (https://openreview.net/pdf?id=SylO2yStDr) we added an experiment on Wikitext-103 language modeling that combined LayerDrop with Weight Sharing. We shared chunks of 2 layers such that every other layer had shared weights. For example, if our network has layers 1 through 6, then layer 1 and 2 are shared, layer 3 and 4 are shared, and layer 5 and 6 are shared.
+
+2. LayerDrop hasn't been helping in my setting? During training time, LayerDrop can help regularize your network. This is most important if your network is already overfitting - if your network is underfitting, it is possible LayerDrop is adding too much regularization. We recommend using smaller values (such as 0.1 or 0.2) and also decreasing the quantity of standard dropout (for example, reduce by 0.1).
+
+3. Can you train a model without LayerDrop and finetune with LayerDrop (e.g. for BERT)? In our experiments, we did not see great performance. Models such as RoBERTa have trained for a long time in the pre-training setting, so only finetuning with LayerDrop for a few epochs on a downstream task such as MNLI does not achieve the robustness required for successful pruning.
+
+
+## Having an issue or have a question?
+
+Please open an issue in this repository with the details of your question. Thanks!
diff --git a/fairseq/examples/linformer/README.md b/fairseq/examples/linformer/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..f8b36bc691cb8f5bf82942e07b6d9c014387bdd8
--- /dev/null
+++ b/fairseq/examples/linformer/README.md
@@ -0,0 +1,22 @@
+# Linformer: Self-Attention with Linear Complexity (Wang et al., 2020)
+
+This example contains code to train Linformer models as described in our paper
+[Linformer: Self-Attention with Linear Complexity](https://arxiv.org/abs/2006.04768).
+
+## Training a new Linformer RoBERTa model
+
+You can mostly follow the [RoBERTa pretraining README](/examples/roberta/README.pretraining.md),
+updating your training command with `--user-dir examples/linformer/linformer_src --arch linformer_roberta_base`.
+
+## Citation
+
+If you use our work, please cite:
+
+```bibtex
+@article{wang2020linformer,
+ title={Linformer: Self-Attention with Linear Complexity},
+ author={Wang, Sinong and Li, Belinda and Khabsa, Madian and Fang, Han and Ma, Hao},
+ journal={arXiv preprint arXiv:2006.04768},
+ year={2020}
+}
+```
diff --git a/fairseq/examples/linformer/linformer_src/__init__.py b/fairseq/examples/linformer/linformer_src/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..1c52f135ea6f99d0effe8ce1f7d77cbd66be3745
--- /dev/null
+++ b/fairseq/examples/linformer/linformer_src/__init__.py
@@ -0,0 +1,6 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from .models import linformer_roberta # noqa
diff --git a/fairseq/examples/linformer/linformer_src/models/__init__.py b/fairseq/examples/linformer/linformer_src/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/fairseq/examples/linformer/linformer_src/models/linformer_roberta.py b/fairseq/examples/linformer/linformer_src/models/linformer_roberta.py
new file mode 100644
index 0000000000000000000000000000000000000000..b7bdbb11057d0ba791c2f8c7fb1e77507c90172e
--- /dev/null
+++ b/fairseq/examples/linformer/linformer_src/models/linformer_roberta.py
@@ -0,0 +1,120 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+"""
+Linformer: Self-Attention with Linear Complexity
+"""
+
+import logging
+
+import torch
+from fairseq import utils
+from fairseq.models import register_model, register_model_architecture
+from fairseq.models.roberta import (
+ init_bert_params,
+ roberta_base_architecture,
+ roberta_large_architecture,
+ RobertaEncoder,
+ RobertaModel,
+)
+from fairseq.utils import safe_hasattr
+
+from ..modules.linformer_sentence_encoder import LinformerTransformerEncoder
+
+
+logger = logging.getLogger(__name__)
+
+
+@register_model("linformer_roberta")
+class LinformerModel(RobertaModel):
+ @staticmethod
+ def add_args(parser):
+ RobertaModel.add_args(parser)
+
+ # add args for Linformer
+ parser.add_argument(
+ "--compressed", type=int, help="compressed ratio of sequence length"
+ )
+ parser.add_argument(
+ "--shared-kv-compressed",
+ type=int,
+ help="share compressed matrix between k and v, in each layer",
+ )
+ parser.add_argument(
+ "--shared-layer-kv-compressed",
+ type=int,
+ help="share compressed matrix between k and v and across all layers",
+ )
+ parser.add_argument(
+ "--freeze-compress",
+ type=int,
+ help="freeze the parameters in compressed layer",
+ )
+
+ @classmethod
+ def build_model(cls, args, task):
+ """Build a new model instance."""
+
+ # make sure all arguments are present
+ base_architecture(args)
+
+ if not safe_hasattr(args, "max_positions"):
+ args.max_positions = args.tokens_per_sample
+
+ encoder = LinformerEncoder(args, task.source_dictionary)
+ return cls(args, encoder)
+
+
+class LinformerEncoder(RobertaEncoder):
+ """Linformer encoder."""
+
+ def __init__(self, args, dictionary):
+ super().__init__(args, dictionary)
+ self.register_buffer("version", torch.tensor(2))
+
+ def build_encoder(self, args, dictionary, embed_tokens):
+ encoder = LinformerTransformerEncoder(args, dictionary, embed_tokens)
+ encoder.apply(init_bert_params)
+ return encoder
+
+ def upgrade_state_dict_named(self, state_dict, name):
+ super().upgrade_state_dict_named(state_dict, name)
+ prefix = name + "." if name != "" else ""
+
+ # some old checkpoints had weight sharing implemented incorrectly
+ # (note: this was correct in the original paper code)
+ if utils.item(state_dict.get(f"{prefix}version", torch.tensor(1))) < 2:
+ state_dict[f"{prefix}version"] = torch.tensor(1)
+ # check if input embeddings and output embeddings were tied
+ if not torch.allclose(
+ state_dict[f"{prefix}sentence_encoder.embed_tokens.weight"],
+ state_dict[f"{prefix}lm_head.weight"],
+ ):
+ # they weren't tied, re-init the LM head without weight sharing
+ self.lm_head = self.build_lm_head(
+ embed_dim=self.args.encoder_embed_dim,
+ output_dim=len(self.dictionary),
+ activation_fn=self.args.activation_fn,
+ weight=None, # don't share weights
+ )
+
+
+@register_model_architecture("linformer_roberta", "linformer_roberta")
+def base_architecture(args):
+ args.compressed = getattr(args, "compressed", 4)
+ args.shared_kv_compressed = getattr(args, "shared_kv_compressed", 0)
+ args.shared_layer_kv_compressed = getattr(args, "shared_layer_kv_compressed", 0)
+ args.freeze_compress = getattr(args, "freeze_compress", 0)
+ roberta_base_architecture(args)
+
+
+@register_model_architecture("linformer_roberta", "linformer_roberta_base")
+def linformer_roberta_base_architecture(args):
+ base_architecture(args)
+
+
+@register_model_architecture("linformer_roberta", "linformer_roberta_large")
+def linformer_roberta_large_architecture(args):
+ roberta_large_architecture(args)
+ base_architecture(args)
diff --git a/fairseq/examples/linformer/linformer_src/modules/__init__.py b/fairseq/examples/linformer/linformer_src/modules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder.py b/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..44f7989bd863329f763aa62b78df2eb42b3084ea
--- /dev/null
+++ b/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder.py
@@ -0,0 +1,54 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+
+import torch.nn as nn
+from fairseq.models.transformer import TransformerEncoder
+
+from .linformer_sentence_encoder_layer import LinformerTransformerEncoderLayer
+
+
+class LinformerTransformerEncoder(TransformerEncoder):
+ """
+ Implementation for a Bi-directional Linformer based Sentence Encoder used
+ in BERT/XLM style pre-trained models.
+
+ This first computes the token embedding using the token embedding matrix,
+ position embeddings (if specified) and segment embeddings
+ (if specified). After applying the specified number of
+ LinformerEncoderLayers, it outputs all the internal states of the
+ encoder as well as the final representation associated with the first
+ token (usually CLS token).
+
+ Input:
+ - tokens: B x T matrix representing sentences
+ - segment_labels: B x T matrix representing segment label for tokens
+
+ Output:
+ - a tuple of the following:
+ - a list of internal model states used to compute the
+ predictions where each tensor has shape T x B x C
+ - sentence representation associated with first input token
+ in format B x C.
+ """
+
+ def __init__(self, args, dictionary, embed_tokens):
+ self.compress_layer = None
+ super().__init__(args, dictionary, embed_tokens)
+
+ def build_encoder_layer(self, args):
+ if self.args.shared_layer_kv_compressed == 1 and self.compress_layer is None:
+ compress_layer = nn.Linear(
+ self.args.max_positions,
+ self.args.max_positions // self.args.compressed,
+ )
+ # intialize parameters for compressed layer
+ nn.init.xavier_uniform_(compress_layer.weight, gain=1 / math.sqrt(2))
+ if self.args.freeze_compress == 1:
+ compress_layer.weight.requires_grad = False
+ self.compress_layer = compress_layer
+
+ return LinformerTransformerEncoderLayer(args, self.compress_layer)
diff --git a/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder_layer.py b/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder_layer.py
new file mode 100644
index 0000000000000000000000000000000000000000..7e2caa03400129ac0bb34ae35274cdf46f27a055
--- /dev/null
+++ b/fairseq/examples/linformer/linformer_src/modules/linformer_sentence_encoder_layer.py
@@ -0,0 +1,65 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+from fairseq import utils
+from fairseq.modules import TransformerEncoderLayer
+
+from .multihead_linear_attention import MultiheadLinearAttention
+
+
+class LinformerTransformerEncoderLayer(TransformerEncoderLayer):
+ """
+ Implements a Linformer Encoder Layer used in BERT/XLM style pre-trained
+ models.
+ """
+
+ def __init__(self, args, shared_compress_layer):
+ # wrap in a list so it's not automatically registered by PyTorch
+ self.shared_compress_layer = [shared_compress_layer]
+
+ super().__init__(args)
+
+ self.register_buffer("version", torch.tensor(2))
+
+ def build_self_attention(self, embed_dim, args):
+ return MultiheadLinearAttention(
+ embed_dim,
+ args.encoder_attention_heads,
+ dropout=args.dropout,
+ self_attention=True,
+ q_noise=args.quant_noise_pq,
+ qn_block_size=args.quant_noise_pq_block_size,
+ compressed=args.compressed,
+ max_seq_len=args.max_positions,
+ shared_kv_compressed=args.shared_kv_compressed,
+ shared_compress_layer=self.shared_compress_layer[0],
+ freeze_compress=args.freeze_compress,
+ )
+
+ def upgrade_state_dict_named(self, state_dict, name):
+ super().upgrade_state_dict_named(state_dict, name)
+ prefix = name + "." if name != "" else ""
+
+ # some old checkpoints had weight sharing implemented incorrectly
+ # (note: this was correct in the original paper code)
+ if utils.item(state_dict.get(f"{prefix}version", torch.tensor(1))) < 2:
+ state_dict[f"{prefix}version"] = torch.tensor(1)
+ # check compression layer sharing
+ if f"{prefix}shared_compress_layer.weight" in state_dict:
+ # reinitialize block without sharing compression layer to match
+ # old behavior
+ self.shared_compress_layer = [
+ torch.nn.Linear(
+ self.shared_compress_layer[0].weight.size(1),
+ self.shared_compress_layer[0].weight.size(0),
+ )
+ ]
+ self.self_attn = self.build_self_attention(self.embed_dim, self.args)
+ # delete shared_compress_layer, since it's already copied to
+ # self_attn.compress_k.weight
+ del state_dict[f"{prefix}shared_compress_layer.weight"]
+ if f"{prefix}shared_compress_layer.bias" in state_dict:
+ del state_dict[f"{prefix}shared_compress_layer.bias"]
diff --git a/fairseq/examples/linformer/linformer_src/modules/multihead_linear_attention.py b/fairseq/examples/linformer/linformer_src/modules/multihead_linear_attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..6be1007279217c5de644e8b054f5d14a19f06c55
--- /dev/null
+++ b/fairseq/examples/linformer/linformer_src/modules/multihead_linear_attention.py
@@ -0,0 +1,481 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+from typing import Dict, Optional, Tuple
+
+import torch
+import torch.nn.functional as F
+from fairseq import utils
+from fairseq.incremental_decoding_utils import with_incremental_state
+from fairseq.modules.quant_noise import quant_noise
+from torch import Tensor, nn
+from torch.nn import Parameter
+
+
+@with_incremental_state
+class MultiheadLinearAttention(nn.Module):
+ """Multi-headed linformer attention.
+
+ Projects the key and values down to the compressed dimension, before computing self-attention.
+
+ See "Linformer: Self-Attention with Linear Complexity" for more details.
+ """
+
+ def __init__(
+ self,
+ embed_dim,
+ num_heads,
+ kdim=None,
+ vdim=None,
+ dropout=0.0,
+ bias=True,
+ add_bias_kv=False,
+ add_zero_attn=False,
+ self_attention=False,
+ encoder_decoder_attention=False,
+ q_noise=0.0,
+ qn_block_size=8,
+ compressed=1,
+ max_seq_len=256,
+ shared_kv_compressed=0,
+ shared_compress_layer=None,
+ freeze_compress=0,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.kdim = kdim if kdim is not None else embed_dim
+ self.vdim = vdim if vdim is not None else embed_dim
+ self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
+
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ assert (
+ self.head_dim * num_heads == self.embed_dim
+ ), "embed_dim must be divisible by num_heads"
+ self.scaling = self.head_dim ** -0.5
+
+ self.self_attention = self_attention
+ self.encoder_decoder_attention = encoder_decoder_attention
+
+ assert not self.self_attention or self.qkv_same_dim, (
+ "Self-attention requires query, key and " "value to be of the same size"
+ )
+
+ self.k_proj = quant_noise(
+ nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size
+ )
+ self.v_proj = quant_noise(
+ nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
+ )
+ self.q_proj = quant_noise(
+ nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
+ )
+
+ # used for compress sequence to subsequence
+ if shared_compress_layer is None:
+ self.compress_seq_len = max_seq_len // compressed
+ self.compress_k = nn.Linear(max_seq_len, self.compress_seq_len, bias=False)
+ if shared_kv_compressed == 0:
+ self.compress_v = nn.Linear(
+ max_seq_len, self.compress_seq_len, bias=False
+ )
+ self.layerwise_sharing = False
+ else:
+ self.compress_k = shared_compress_layer
+ if shared_kv_compressed == 0:
+ self.compress_v = shared_compress_layer
+ self.layerwise_sharing = True
+ self.shared_kv_compressed = shared_kv_compressed
+
+ self.out_proj = quant_noise(
+ nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
+ )
+
+ if add_bias_kv:
+ self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
+ self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
+ else:
+ self.bias_k = self.bias_v = None
+
+ self.add_zero_attn = add_zero_attn
+
+ self.reset_parameters()
+
+ if freeze_compress == 1:
+ self.compress_k.weight.requires_grad = False
+ if shared_kv_compressed == 0:
+ self.compress_v.weight.requires_grad = False
+
+ self.onnx_trace = False
+
+ def prepare_for_onnx_export_(self):
+ self.onnx_trace = True
+
+ def reset_parameters(self):
+ if self.qkv_same_dim:
+ # Empirically observed the convergence to be much better with
+ # the scaled initialization
+ nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
+ nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
+ nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
+ if (
+ not self.layerwise_sharing
+ ): # otherwise, we already initialize the parameters
+ nn.init.xavier_uniform_(self.compress_k.weight, gain=1 / math.sqrt(2))
+ if self.shared_kv_compressed == 0:
+ nn.init.xavier_uniform_(
+ self.compress_v.weight, gain=1 / math.sqrt(2)
+ )
+ else:
+ nn.init.xavier_uniform_(self.k_proj.weight)
+ nn.init.xavier_uniform_(self.v_proj.weight)
+ nn.init.xavier_uniform_(self.q_proj.weight)
+ if (
+ not self.layerwise_sharing
+ ): # otherwise, we already initialize the parameters
+ nn.init.xavier_uniform_(self.compress_k.weight)
+ if self.shared_kv_compressed == 0:
+ nn.init.xavier_uniform_(self.compress_v.weight)
+
+ nn.init.xavier_uniform_(self.out_proj.weight)
+ if self.out_proj.bias is not None:
+ nn.init.constant_(self.out_proj.bias, 0.0)
+ if self.bias_k is not None:
+ nn.init.xavier_normal_(self.bias_k)
+ if self.bias_v is not None:
+ nn.init.xavier_normal_(self.bias_v)
+
+ def forward(
+ self,
+ query,
+ key: Optional[Tensor],
+ value: Optional[Tensor],
+ key_padding_mask: Optional[Tensor] = None,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ need_weights: bool = True,
+ static_kv: bool = False,
+ attn_mask: Optional[Tensor] = None,
+ before_softmax: bool = False,
+ need_head_weights: bool = False,
+ ) -> Tuple[Tensor, Optional[Tensor]]:
+ """Input shape: Time x Batch x Channel
+
+ Args:
+ key_padding_mask (ByteTensor, optional): mask to exclude
+ keys that are pads, of shape `(batch, src_len)`, where
+ padding elements are indicated by 1s.
+ need_weights (bool, optional): return the attention weights,
+ averaged over heads (default: False).
+ attn_mask (ByteTensor, optional): typically used to
+ implement causal attention, where the mask prevents the
+ attention from looking forward in time (default: None).
+ before_softmax (bool, optional): return the raw attention
+ weights and values before the attention softmax.
+ need_head_weights (bool, optional): return the attention
+ weights for each head. Implies *need_weights*. Default:
+ return the average attention weights over all heads.
+ """
+ if need_head_weights:
+ need_weights = True
+
+ tgt_len, bsz, embed_dim = query.size()
+ assert embed_dim == self.embed_dim
+ assert list(query.size()) == [tgt_len, bsz, embed_dim]
+
+ if incremental_state is not None:
+ saved_state = self._get_input_buffer(incremental_state)
+ if saved_state is not None and "prev_key" in saved_state:
+ # previous time steps are cached - no need to recompute
+ # key and value if they are static
+ if static_kv:
+ assert self.encoder_decoder_attention and not self.self_attention
+ key = value = None
+ else:
+ saved_state = None
+
+ if self.self_attention:
+ q = self.q_proj(query)
+
+ k_input = query.permute(1, 2, 0).contiguous() # B * C * T
+ k_input = (
+ F.linear(k_input, self.compress_k.weight[:, 0:tgt_len])
+ .permute(2, 0, 1)
+ .contiguous()
+ )
+ k = self.k_proj(k_input)
+
+ v_input = query.permute(1, 2, 0).contiguous() # B * C * T
+ if self.shared_kv_compressed == 0:
+ v_input = (
+ F.linear(v_input, self.compress_v.weight[:, 0:tgt_len])
+ .permute(2, 0, 1)
+ .contiguous()
+ )
+ if self.shared_kv_compressed == 1: # use shared kv compressed linear layer
+ v_input = (
+ F.linear(v_input, self.compress_k.weight[:, 0:tgt_len])
+ .permute(2, 0, 1)
+ .contiguous()
+ )
+ v = self.v_proj(v_input)
+ elif self.encoder_decoder_attention:
+ # encoder-decoder attention
+ q = self.q_proj(query)
+ if key is None:
+ assert value is None
+ k = v = None
+ else:
+ k = self.k_proj(key)
+ v = self.v_proj(key)
+
+ else:
+ assert key is not None and value is not None
+ q = self.q_proj(query)
+ k = self.k_proj(key)
+ v = self.v_proj(value)
+ q *= self.scaling
+
+ if self.bias_k is not None:
+ assert self.bias_v is not None
+ k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
+ v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
+ if attn_mask is not None:
+ attn_mask = torch.cat(
+ [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
+ )
+ if key_padding_mask is not None:
+ key_padding_mask = torch.cat(
+ [
+ key_padding_mask,
+ key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
+ ],
+ dim=1,
+ )
+
+ q = (
+ q.contiguous()
+ .view(tgt_len, bsz * self.num_heads, self.head_dim)
+ .transpose(0, 1)
+ )
+ if k is not None:
+ k = (
+ k.contiguous()
+ .view(-1, bsz * self.num_heads, self.head_dim)
+ .transpose(0, 1)
+ )
+ if v is not None:
+ v = (
+ v.contiguous()
+ .view(-1, bsz * self.num_heads, self.head_dim)
+ .transpose(0, 1)
+ )
+
+ if saved_state is not None:
+ # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
+ if "prev_key" in saved_state:
+ _prev_key = saved_state["prev_key"]
+ assert _prev_key is not None
+ prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
+ if static_kv:
+ k = prev_key
+ else:
+ assert k is not None
+ k = torch.cat([prev_key, k], dim=1)
+ if "prev_value" in saved_state:
+ _prev_value = saved_state["prev_value"]
+ assert _prev_value is not None
+ prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
+ if static_kv:
+ v = prev_value
+ else:
+ assert v is not None
+ v = torch.cat([prev_value, v], dim=1)
+ prev_key_padding_mask: Optional[Tensor] = None
+ if "prev_key_padding_mask" in saved_state:
+ prev_key_padding_mask = saved_state["prev_key_padding_mask"]
+ assert k is not None and v is not None
+ key_padding_mask = MultiheadLinearAttention._append_prev_key_padding_mask(
+ key_padding_mask=key_padding_mask,
+ prev_key_padding_mask=prev_key_padding_mask,
+ batch_size=bsz,
+ src_len=k.size(1),
+ static_kv=static_kv,
+ )
+
+ saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
+ saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
+ saved_state["prev_key_padding_mask"] = key_padding_mask
+ # In this branch incremental_state is never None
+ assert incremental_state is not None
+ incremental_state = self._set_input_buffer(incremental_state, saved_state)
+ assert k is not None
+ src_len = k.size(1)
+
+ if self.add_zero_attn:
+ assert v is not None
+ src_len += 1
+ k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
+ v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
+ if attn_mask is not None:
+ attn_mask = torch.cat(
+ [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
+ )
+
+ attn_weights = torch.bmm(q, k.transpose(1, 2))
+ attn_weights = MultiheadLinearAttention.apply_sparse_mask(
+ attn_weights, tgt_len, src_len, bsz
+ )
+
+ assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
+
+ if attn_mask is not None:
+ attn_mask = attn_mask.unsqueeze(0)
+ if self.onnx_trace:
+ attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
+ attn_weights += attn_mask
+
+ if before_softmax:
+ return attn_weights, v
+
+ attn_weights_float = utils.softmax(
+ attn_weights, dim=-1, onnx_trace=self.onnx_trace
+ )
+ attn_weights = attn_weights_float.type_as(attn_weights)
+ attn_probs = F.dropout(
+ attn_weights,
+ p=self.dropout,
+ training=self.training,
+ )
+ assert v is not None
+ attn = torch.bmm(attn_probs, v)
+ assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
+ if self.onnx_trace and attn.size(1) == 1:
+ # when ONNX tracing a single decoder step (sequence length == 1)
+ # the transpose is a no-op copy before view, thus unnecessary
+ attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
+ else:
+ attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
+ attn = self.out_proj(attn)
+ attn_weights: Optional[Tensor] = None
+ if need_weights:
+ attn_weights = attn_weights_float.view(
+ bsz, self.num_heads, tgt_len, src_len
+ ).transpose(1, 0)
+ if not need_head_weights:
+ # average attention weights over heads
+ attn_weights = attn_weights.mean(dim=0)
+
+ return attn, attn_weights
+
+ @staticmethod
+ def _append_prev_key_padding_mask(
+ key_padding_mask: Optional[Tensor],
+ prev_key_padding_mask: Optional[Tensor],
+ batch_size: int,
+ src_len: int,
+ static_kv: bool,
+ ) -> Optional[Tensor]:
+ # saved key padding masks have shape (bsz, seq_len)
+ if prev_key_padding_mask is not None and static_kv:
+ new_key_padding_mask = prev_key_padding_mask
+ elif prev_key_padding_mask is not None and key_padding_mask is not None:
+ new_key_padding_mask = torch.cat(
+ [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
+ )
+ # During incremental decoding, as the padding token enters and
+ # leaves the frame, there will be a time when prev or current
+ # is None
+ elif prev_key_padding_mask is not None:
+ filler = torch.zeros(
+ (batch_size, src_len - prev_key_padding_mask.size(1)),
+ device=prev_key_padding_mask.device,
+ )
+ new_key_padding_mask = torch.cat(
+ [prev_key_padding_mask.float(), filler.float()], dim=1
+ )
+ elif key_padding_mask is not None:
+ filler = torch.zeros(
+ (batch_size, src_len - key_padding_mask.size(1)),
+ device=key_padding_mask.device,
+ )
+ new_key_padding_mask = torch.cat(
+ [filler.float(), key_padding_mask.float()], dim=1
+ )
+ else:
+ new_key_padding_mask = prev_key_padding_mask
+ return new_key_padding_mask
+
+ @torch.jit.export
+ def reorder_incremental_state(
+ self,
+ incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
+ new_order: Tensor,
+ ):
+ """Reorder buffered internal state (for incremental generation)."""
+ input_buffer = self._get_input_buffer(incremental_state)
+ if input_buffer is not None:
+ for k in input_buffer.keys():
+ input_buffer_k = input_buffer[k]
+ if input_buffer_k is not None:
+ if self.encoder_decoder_attention and input_buffer_k.size(
+ 0
+ ) == new_order.size(0):
+ break
+ input_buffer[k] = input_buffer_k.index_select(0, new_order)
+ incremental_state = self._set_input_buffer(incremental_state, input_buffer)
+ return incremental_state
+
+ def _get_input_buffer(
+ self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
+ ) -> Dict[str, Optional[Tensor]]:
+ result = self.get_incremental_state(incremental_state, "attn_state")
+ if result is not None:
+ return result
+ else:
+ empty_result: Dict[str, Optional[Tensor]] = {}
+ return empty_result
+
+ def _set_input_buffer(
+ self,
+ incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
+ buffer: Dict[str, Optional[Tensor]],
+ ):
+ return self.set_incremental_state(incremental_state, "attn_state", buffer)
+
+ def apply_sparse_mask(attn_weights, tgt_len: int, src_len: int, bsz: int):
+ return attn_weights
+
+ def upgrade_state_dict_named(self, state_dict, name):
+ prefix = name + "." if name != "" else ""
+ items_to_add = {}
+ keys_to_remove = []
+ for k in state_dict.keys():
+ if k.endswith(prefix + "in_proj_weight"):
+ # in_proj_weight used to be q + k + v with same dimensions
+ dim = int(state_dict[k].shape[0] / 3)
+ items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
+ items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
+ items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
+
+ keys_to_remove.append(k)
+
+ k_bias = prefix + "in_proj_bias"
+ if k_bias in state_dict.keys():
+ dim = int(state_dict[k].shape[0] / 3)
+ items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
+ items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
+ dim : 2 * dim
+ ]
+ items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
+
+ keys_to_remove.append(prefix + "in_proj_bias")
+
+ for k in keys_to_remove:
+ del state_dict[k]
+
+ for key, value in items_to_add.items():
+ state_dict[key] = value
diff --git a/fairseq/examples/m2m_100/README.md b/fairseq/examples/m2m_100/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..02a68a5f0919a26a0468069bed46a5b1abc78941
--- /dev/null
+++ b/fairseq/examples/m2m_100/README.md
@@ -0,0 +1,241 @@
+# Beyond English-Centric Multilingual Machine Translation
+
+## Introduction
+In this work, we create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages. Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively with the best single systems of WMT.
+
+If you are new to using fairseq, read the following walkthrough. Otherwise, skip to the sections below.
+
+0. **Generation Data**
+
+To download the generation data, follow the below commands. Note that all datasets need to be detokenized *before* applying SPM in the data preprocessing step. If you use these evaluation datasets, please cite their associated papers.
+```bash
+# WMT - use sacrebleu, example here:
+sacrebleu -t wmt14 -l fr-en --echo src > wmt.test.fr-en.fr
+sacrebleu -t wmt14 -l fr-en --echo ref > wmt.test.fr-en.en
+
+# WAT
+wget http://lotus.kuee.kyoto-u.ac.jp/WAT/my-en-data/wat2020.my-en.zip
+unzip wat2020.my-en.zip
+
+# FLORES
+# download from: https://github.com/facebookresearch/flores
+
+# TED - need to detokenize with Moses!
+# from: https://github.com/neulab/word-embeddings-for-nmt
+wget http://phontron.com/data/ted_talks.tar.gz
+
+# Autshumato
+# request to download: https://repo.sadilar.org/handle/20.500.12185/397
+
+# Tatoeba Challenge
+# available here: https://github.com/Helsinki-NLP/Tatoeba-Challenge
+```
+
+1. **Training Data**
+
+To produce the training data, we use a combination of [CCMatrix](https://arxiv.org/abs/1911.04944) and [CCAligned](https://arxiv.org/abs/1911.06154). Check out the instructions [here](https://github.com/facebookresearch/LASER/tree/master/tasks/CCMatrix) to download the raw data.
+
+2. **Preprocess Data**
+
+After downloading raw data, you will need to postprocess the data, then apply SPM, then binarize. Note that it is very important you run the postprocessing script, because this removes any instance of the evaluation data in the mined training data.
+
+```bash
+# preprocess data
+
+# remove sentences with more than 50% punctuation
+python /path/to/fairseq/examples/m2m_100/process_data/remove_too_much_punc.py
+
+# deduplicate training data
+paste /path/to/datadir/train.$src /path/to/datadir/train.$tgt | awk '!x[$0]++' > /path/to/datadir/train.dedup
+echo "keeping $(wc -l /path/to/datadir/train.dedup) bitext out of $(wc -l /path/to/datadir/train.$src)"
+cut -f1 /path/to/datadir/train.dedup > /path/to/datadir/train.$src
+cut -f2 /path/to/datadir/train.dedup > /path/to/datadir/train.$tgt
+
+# remove all instances of evaluation data from the training data
+python /path/to/fairseq/examples/m2m_100/process_data/dedup_data.py
+
+# frequency cleaning
+wget https://dl.fbaipublicfiles.com/m2m_100/histograms.tar.gz
+tar -xvzf histograms.tar.gz
+python /path/to/fairseq/examples/m2m_100/process_data/clean_histogram.py --src $src --tgt $tgt --src-file /path/to/source/file --tgt-file /path/to/output/file --src-output-file source_output.$src --tgt-output-file target_output.$tgt --histograms /path/to/histograms
+
+# apply SPM
+wget https://dl.fbaipublicfiles.com/m2m_100/spm.128k.model
+python /path/to/fairseq/scripts/spm_encode.py \
+ --model spm.128k.model \
+ --output_format=piece \
+ --inputs=/path/to/input/file/here \
+ --outputs=/path/to/output/file/here
+
+# length ratio cleaning
+perl mosesdecoder/scripts/training/clean-corpus-n.perl --ratio 3 /path/to/training/data/train.spm.$src-$tgt $src $tgt /path/to/output/directory/train.spm.$src-$tgt 1 250
+
+# binarize data
+wget https://dl.fbaipublicfiles.com/m2m_100/data_dict.128k.txt
+fairseq-preprocess \
+ --source-lang $src --target-lang $tgt \
+ --testpref spm.$src.$tgt \
+ --thresholdsrc 0 --thresholdtgt 0 \
+ --destdir data_bin \
+ --srcdict data_dict.128k.txt --tgtdict data_dict.128k.txt
+```
+
+3. **Training Scripts**
+
+To reproduce the training of our models, we train with fairseq-py's multilingual translation [task](https://github.com/pytorch/fairseq/tree/main/examples/multilingual). If you are interested in model parallel training, also check out [fairscale](https://github.com/facebookresearch/fairscale).
+
+4. **Generation**
+
+To generate from our models, follow the the commands in the generation section below.
+
+
+If you use any of the resources listed here, please cite:
+```bibtex
+@article{fan2020beyond,
+ title={Beyond English-Centric Multilingual Machine Translation},
+ author={Fan, Angela and Bhosale, Shruti and Schwenk, Holger and Ma, Zhiyi and El-Kishky, Ahmed and Goyal, Siddharth and Baines, Mandeep and Celebi, Onur and Wenzek, Guillaume and Chaudhary, Vishrav and Goyal, Naman and Birch, Tom and Liptchinsky, Vitaliy and Edunov, Sergey and Grave, Edouard and Auli, Michael and Joulin, Armand},
+ journal={arXiv preprint},
+ year={2020}
+}
+
+@article{schwenk2019ccmatrix,
+ title={Ccmatrix: Mining billions of high-quality parallel sentences on the web},
+ author={Schwenk, Holger and Wenzek, Guillaume and Edunov, Sergey and Grave, Edouard and Joulin, Armand},
+ journal={arXiv preprint arXiv:1911.04944},
+ year={2019}
+}
+
+@article{el2019massive,
+ title={A Massive Collection of Cross-Lingual Web-Document Pairs},
+ author={El-Kishky, Ahmed and Chaudhary, Vishrav and Guzman, Francisco and Koehn, Philipp},
+ journal={arXiv preprint arXiv:1911.06154},
+ year={2019}
+}
+```
+
+
+## Trained Models
+
+### 418M and 1.2B Model
+We include the last checkpoint for both of these models.
+
+```bash
+wget https://dl.fbaipublicfiles.com/m2m_100/model_dict.128k.txt
+wget https://dl.fbaipublicfiles.com/m2m_100/language_pairs_small_models.txt
+
+# 418M parameter model
+wget https://dl.fbaipublicfiles.com/m2m_100/418M_last_checkpoint.pt
+
+# 1.2B parameter model
+wget https://dl.fbaipublicfiles.com/m2m_100/1.2B_last_checkpoint.pt
+
+# Generation:
+fairseq-generate $binarized_data_path --batch-size 32 --path $path_to_model --fixed-dictionary model_dict.128k.txt -s en -t fr --remove-bpe 'sentencepiece' --beam 5 --task translation_multi_simple_epoch --lang-pairs language_pairs_small_models.txt --decoder-langtok --encoder-langtok src --gen-subset test > gen_out
+```
+
+### 12B Model
+12B parameter model trained on many-to-many training data for 100 languages. We include the last checkpoint, average of last 5 checkpoints, average of last 10 checkpoints. There isn't a universally best choice out of these three, but all three versions are pretty close in accuracy. You can either sweep over the 3 checkpoints on a dev test and use the best performing checkpoint for final testing. Or the last checkpoint can be a good default choice.
+
+**Model Download Links**
+Configuration | 2 32GB GPUs | 4 16GB GPUs | 6 12GB GPUs | 8 8GB GPUs
+:--|:--|:--|:--|:--
+Last Checkpoint | [12b_last_chk_2_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_last_chk_2_gpus.pt) | [12b_last_chk_4_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_last_chk_4_gpus.pt) | [12b_last_chk_6_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_last_chk_6_gpus.pt) | [12b_last_chk_8_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_last_chk_8_gpus.pt)
+Average of last 5 checkpoints | [12b_avg5_chk_2_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg5_chk_2_gpus.pt) | [12b_avg5_chk_4_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg5_chk_4_gpus.pt) | [12b_avg5_chk_6_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg5_chk_6_gpus.pt) | [12b_avg5_chk_8_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg5_chk_8_gpus.pt)
+Average of last 10 checkpoints | [12b_avg10_chk_2_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg10_chk_2_gpus.pt) | [12b_avg10_chk_4_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg10_chk_4_gpus.pt) | [12b_avg10_chk_6_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg10_chk_6_gpus.pt) | [12b_avg10_chk_8_gpus.pt](https://dl.fbaipublicfiles.com/m2m_100/12b_avg10_chk_8_gpus.pt)
+
+**Generation Arguments**
+Configuration | 2 32GB GPUs | 4 16GB GPUs | 6 12GB GPUs | 8 8GB GPUs
+:--|:--|:--|:--|:--
+`--pipeline-encoder-balance` | `[26]` | `[1,15,10]` | `[1,9,9,7]` | `[1,6,6,6,7]`
+`--pipeline-encoder-devices` | `[0]` | `[0,1,0]` | `[0,1,2,0]` | `[0,4,5,1,0]`
+`--pipeline-decoder-balance` | `[3,22,1]` | `[3,11,11,1]` | `[3,7,7,8,1]` | `[1,6,6,6,6,1]`
+`--pipeline-decoder-devices` | `[0,1,0]` | `[0,2,3,0]` | `[0,3,4,5,0]` | `[0,2,6,7,3,0]`
+
+
+## SentencePiece Model
+
+```bash
+wget https://dl.fbaipublicfiles.com/m2m_100/spm.128k.model
+```
+
+## Generation with M2M-100
+
+### Encode using our SentencePiece Model
+
+Note: Install SentencePiece from [here](https://github.com/google/sentencepiece)
+
+```bash
+fairseq=/path/to/fairseq
+cd $fairseq
+sacrebleu --echo src -l de-fr -t wmt19 | head -n 20 > raw_input.de-fr.de
+sacrebleu --echo ref -l de-fr -t wmt19 | head -n 20 > raw_input.de-fr.fr
+wget https://dl.fbaipublicfiles.com/m2m_100/spm.128k.model
+for lang in de fr ; do
+ python scripts/spm_encode.py \
+ --model spm.128k.model \
+ --output_format=piece \
+ --inputs=raw_input.de-fr.${lang} \
+ --outputs=spm.de-fr.${lang}
+done
+```
+
+### Binarization
+
+```bash
+wget https://dl.fbaipublicfiles.com/m2m_100/data_dict.128k.txt
+fairseq-preprocess \
+ --source-lang de --target-lang fr \
+ --testpref spm.de-fr \
+ --thresholdsrc 0 --thresholdtgt 0 \
+ --destdir data_bin \
+ --srcdict data_dict.128k.txt --tgtdict data_dict.128k.txt
+```
+
+### Generation for the 12B model
+
+Note that generation can currently be run using 2 32GB / 4 16GB / 6 12GB / 8 8GB GPUs, and the corresponding model checkpoints and pipeline arguments can be found in the [12B Model Section](#12b-model).
+Generation on CPUs will be added in the future.
+
+```bash
+wget https://dl.fbaipublicfiles.com/m2m_100/model_dict.128k.txt
+wget https://dl.fbaipublicfiles.com/m2m_100/language_pairs.txt
+wget https://dl.fbaipublicfiles.com/m2m_100/12b_last_chk_4_gpus.pt
+fairseq-generate \
+ data_bin \
+ --batch-size 1 \
+ --path 12b_last_chk_4_gpus.pt \
+ --fixed-dictionary model_dict.128k.txt \
+ -s de -t fr \
+ --remove-bpe 'sentencepiece' \
+ --beam 5 \
+ --task translation_multi_simple_epoch \
+ --lang-pairs language_pairs.txt \
+ --decoder-langtok --encoder-langtok src \
+ --gen-subset test \
+ --fp16 \
+ --dataset-impl mmap \
+ --distributed-world-size 1 --distributed-no-spawn \
+ --pipeline-model-parallel \
+ --pipeline-chunks 1 \
+ --pipeline-encoder-balance '[1,15,10]' \
+ --pipeline-encoder-devices '[0,1,0]' \
+ --pipeline-decoder-balance '[3,11,11,1]' \
+ --pipeline-decoder-devices '[0,2,3,0]' > gen_out
+```
+## Evaluation with M2M-100
+
+### Tokenization
+
+Note: Refer to tokenizers/README.md for more details on tokenization.
+
+```bash
+cd ${fairseq}/examples/m2m_100
+cat ${fairseq}/gen_out | grep -P "^H" | sort -V | cut -f 3- | sh tok.sh fr > hyp
+cat ${fairseq}/raw_input.de-fr.fr | sh tok.sh fr > ref
+```
+
+### BLEU
+
+```bash
+sacrebleu -tok 'none' ref < hyp
+```
diff --git a/fairseq/examples/m2m_100/install_dependecies.sh b/fairseq/examples/m2m_100/install_dependecies.sh
new file mode 100755
index 0000000000000000000000000000000000000000..82a1054745264a56fbec4a8eb593884f8a42bd08
--- /dev/null
+++ b/fairseq/examples/m2m_100/install_dependecies.sh
@@ -0,0 +1,78 @@
+#!/usr/bin/env bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+CWD=`pwd`
+INSTALL_PATH=$CWD/tokenizers/thirdparty
+
+MOSES=$INSTALL_PATH/mosesdecoder
+if [ ! -d $MOSES ]; then
+ echo 'Cloning Moses github repository (for tokenization scripts)...'
+ git clone https://github.com/moses-smt/mosesdecoder.git $MOSES
+ cd $MOSES
+ # To deal with differences in handling ' vs "
+ git checkout 03578921cc1a03402
+ cd -
+fi
+
+WMT16_SCRIPTS=$INSTALL_PATH/wmt16-scripts
+if [ ! -d $WMT16_SCRIPTS ]; then
+ echo 'Cloning Romanian tokenization scripts'
+ git clone https://github.com/rsennrich/wmt16-scripts.git $WMT16_SCRIPTS
+fi
+
+KYTEA=$INSTALL_PATH/kytea
+if [ ! -f $KYTEA/bin/kytea ]; then
+ git clone https://github.com/neubig/kytea.git $KYTEA
+ cd $KYTEA
+ autoreconf -i
+ ./configure --prefix=`pwd`
+ make
+ make install
+ cd ..
+fi
+
+export MECAB=$INSTALL_PATH/mecab-0.996-ko-0.9.2
+if [ ! -f $MECAB/bin/mecab ]; then
+ cd $INSTALL_PATH
+ curl -LO https://bitbucket.org/eunjeon/mecab-ko/downloads/mecab-0.996-ko-0.9.2.tar.gz
+ tar zxfv mecab-0.996-ko-0.9.2.tar.gz
+ cd mecab-0.996-ko-0.9.2/
+ ./configure --prefix=`pwd`
+ make
+ make install
+
+ cd ..
+ curl -LO https://bitbucket.org/eunjeon/mecab-ko-dic/downloads/mecab-ko-dic-2.1.1-20180720.tar.gz
+ tar zxfv mecab-ko-dic-2.1.1-20180720.tar.gz
+ cd mecab-ko-dic-2.1.1-20180720/
+ ./autogen.sh
+ ./configure --prefix=`pwd` --with-dicdir=$MECAB/lib/mecab/dic/mecab-ko-dic --with-mecab-config=$MECAB/bin/mecab-config
+ make
+ sh -c 'echo "dicdir=$MECAB/lib/mecab/dic/mecab-ko-dic" > $MECAB/etc/mecabrc'
+ make install
+ cd $CWD
+fi
+
+INDIC_RESOURCES_PATH=$INSTALL_PATH/indic_nlp_resources
+if [ ! -d $INDIC_RESOURCES_PATH ]; then
+ echo 'Cloning indic_nlp_resources'
+ git clone https://github.com/anoopkunchukuttan/indic_nlp_resources.git $INDIC_RESOURCES_PATH
+fi
+
+
+if [ ! -f $INSTALL_PATH/seg_my.py ]; then
+ cd $INSTALL_PATH
+ wget http://lotus.kuee.kyoto-u.ac.jp/WAT/my-en-data/wat2020.my-en.zip
+ unzip wat2020.my-en.zip
+ # switch to python3
+ cat wat2020.my-en/myseg.py |sed 's/^sys.std/###sys.std/g' | sed 's/### sys/sys/g' | sed 's/unichr/chr/g' > seg_my.py
+ cd $CWD
+fi
+
+
+pip install pythainlp sacrebleu indic-nlp-library
+
diff --git a/fairseq/examples/m2m_100/process_data/clean_histogram.py b/fairseq/examples/m2m_100/process_data/clean_histogram.py
new file mode 100644
index 0000000000000000000000000000000000000000..e24e073dc0eb43c76e2ce717f52bb848c5b026b8
--- /dev/null
+++ b/fairseq/examples/m2m_100/process_data/clean_histogram.py
@@ -0,0 +1,52 @@
+import argparse
+
+parser = argparse.ArgumentParser()
+parser.add_argument('--src', type=str, help='Source language')
+parser.add_argument('--tgt', type=str, help='Target language')
+parser.add_argument('--src-file', type=str, help='Input source file')
+parser.add_argument('--tgt-file', type=str, help='Input target file')
+parser.add_argument('--src-output-file', type=str, help='Output source file')
+parser.add_argument('--tgt-output-file', type=str, help='Output target file')
+parser.add_argument('--threshold', type=float, default=0.5, help='Threshold')
+parser.add_argument('--threshold-character', type=str, default=']', help='Threshold character')
+parser.add_argument('--histograms', type=str, help='Path to histograms')
+
+args = parser.parse_args()
+
+
+def read_hist(f):
+ ch = []
+ for line in f:
+ c = line[0]
+ if c == args.threshold_character:
+ break
+ ch.append(c)
+ return ch
+
+
+with(open("{}/{}".format(args.histograms, args.src), 'r', encoding='utf8')) as f:
+ ch1 = read_hist(f)
+
+with(open("{}/{}".format(args.histograms, args.tgt), 'r', encoding='utf8')) as f:
+ ch2 = read_hist(f)
+
+print("Accepted characters for {}: {}".format(args.src, ch1))
+print("Accepted characters for {}: {}".format(args.tgt, ch2))
+
+with open(args.src_file, 'r', encoding='utf8') as fs1, open(args.tgt_file, 'r', encoding='utf8') as fs2, open(args.src_output_file, 'w', encoding='utf8') as fos1, open(args.tgt_output_file, 'w', encoding='utf8') as fos2:
+ ls1 = fs1.readline()
+ ls2 = fs2.readline()
+
+ while ls1 or ls2:
+ cnt1 = len([c for c in ls1.strip() if c in ch1])
+ cnt2 = len([c for c in ls2.strip() if c in ch2])
+
+ if cnt1 / len(ls1) > args.threshold and cnt2 / len(ls2) > args.threshold:
+ fos1.write(ls1)
+ fos2.write(ls2)
+ else:
+ print("{} {} {} \n{} {} {}".format(args.src, cnt1 / len(ls1), ls1.strip(), args.tgt, cnt2 / len(ls2), ls2.strip()))
+
+ ls1 = fs1.readline()
+ ls2 = fs2.readline()
+
\ No newline at end of file
diff --git a/fairseq/examples/m2m_100/process_data/dedup_data.py b/fairseq/examples/m2m_100/process_data/dedup_data.py
new file mode 100644
index 0000000000000000000000000000000000000000..58d9ed1cd17b3ba70772a6d9adab709785495fd9
--- /dev/null
+++ b/fairseq/examples/m2m_100/process_data/dedup_data.py
@@ -0,0 +1,91 @@
+import argparse
+from collections import namedtuple
+import os
+
+DATADIR = "/path/to/train_data"
+DEDUP_FROM_DIR = "/path/to/eval/data"
+OUTPUT_DIR = "/path/to/output/data"
+
+
+def main(args):
+ languages = set()
+ for language_directory in os.listdir(DATADIR):
+ if "_" in language_directory:
+ src, tgt = language_directory.split("_")
+ languages.add(LanguagePair(src=src, tgt=tgt))
+
+ data = existing_data()
+ train_languages = sorted(languages)
+ for language_pair in train_languages[args.start_index:args.start_index + args.size]:
+ print(language_pair)
+ dedup(language_pair, data)
+
+
+LanguagePair = namedtuple("LanguagePair", ["src", "tgt"])
+
+
+def existing_data():
+ data = set()
+ for file in os.listdir(DEDUP_FROM_DIR):
+ with open(os.path.join(DEDUP_FROM_DIR, file)) as f:
+ data |= set(f.readlines())
+ return data
+
+def dedup(language_pair, data, verbose=True, output=True):
+ train_filenames = LanguagePair(
+ src=f"{DATADIR}/{language_pair.src}_{language_pair.tgt}/train.{language_pair.src}",
+ tgt=f"{DATADIR}/{language_pair.src}_{language_pair.tgt}/train.{language_pair.tgt}",
+ )
+
+ output_filenames = LanguagePair(
+ src=f"{OUTPUT_DIR}/train.dedup.{language_pair.src}-{language_pair.tgt}.{language_pair.src}",
+ tgt=f"{OUTPUT_DIR}/train.dedup.{language_pair.src}-{language_pair.tgt}.{language_pair.tgt}"
+ )
+
+ # If output exists, skip this pair. It has already been done.
+ if (os.path.exists(output_filenames.src) and
+ os.path.exists(output_filenames.tgt)):
+ if verbose:
+ print(f"{language_pair.src}-{language_pair.tgt} already done.")
+ return
+
+ if verbose:
+ print(f"{language_pair.src}-{language_pair.tgt} ready, will check dups.")
+
+ # If there is no output, no need to actually do the loop.
+ if not output:
+ return
+
+ if os.path.exists(train_filenames.src) and os.path.exists(train_filenames.tgt):
+ with open(train_filenames.src) as f:
+ train_source = f.readlines()
+
+ with open(train_filenames.tgt) as f:
+ train_target = f.readlines()
+
+ # do dedup
+ new_train_source = []
+ new_train_target = []
+ for i, train_line in enumerate(train_source):
+ if train_line not in data and train_target[i] not in data:
+ new_train_source.append(train_line)
+ new_train_target.append(train_target[i])
+
+ assert len(train_source) == len(train_target)
+ assert len(new_train_source) == len(new_train_target)
+ assert len(new_train_source) <= len(train_source)
+
+ with open(output_filenames.src, "w") as o:
+ for line in new_train_source:
+ o.write(line)
+
+ with open(output_filenames.tgt, "w") as o:
+ for line in new_train_target:
+ o.write(line)
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument("-s", "--start-index", required=True, type=int)
+ parser.add_argument("-n", "--size", required=True, type=int)
+ main(parser.parse_args())
diff --git a/fairseq/examples/m2m_100/process_data/remove_too_much_punc.py b/fairseq/examples/m2m_100/process_data/remove_too_much_punc.py
new file mode 100644
index 0000000000000000000000000000000000000000..6c280de2403daffab477ac88e2008a68b9e61ff0
--- /dev/null
+++ b/fairseq/examples/m2m_100/process_data/remove_too_much_punc.py
@@ -0,0 +1,36 @@
+import gzip
+import argparse
+from string import punctuation
+
+def len_no_punc(s, punc):
+ return len([ch for ch in s if ch in punc])
+
+def filter_overpunc(len_npunc, len_sen):
+ return len_npunc < 0.5*len_sen
+
+def main(args):
+ punc = punctuation + "—|–"
+ print('Processing file {}'.format(args.input))
+ with gzip.open(args.input, 'rt', encoding=args.encoding) as tsv:
+ with open(args.bitext + '.' + args.src_lang, 'wt', encoding=args.encoding) as fsrc:
+ with open(args.bitext + '.' + args.tgt_lang, 'wt', encoding=args.encoding) as ftgt:
+ line = tsv.readline()
+ fields = line.split('\t')
+
+ src, tgt = fields[1], fields[2]
+
+ nchar_npunc_src = len_no_punc(src, punc)
+ nchar_npunc_tgt = len_no_punc(tgt, punc)
+
+ if filter_overpunc(nchar_npunc_src, len(src)) and filter_overpunc(nchar_npunc_tgt, len(tgt)):
+ fsrc.write(src.strip() + '\n')
+ ftgt.write(tgt.strip() + '\n')
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--input", required=True, type=str)
+ parser.add_argument('--encoding', default='utf-8', help='character encoding for input/output')
+ parser.add_argument('--bitext', type=str, required=True, help='language direction')
+ parser.add_argument('--src-lang', type=str, required=True, help='Source language')
+ parser.add_argument('--tgt-lang', type=str, required=True, help='Target language')
+ main(parser.parse_args())
diff --git a/fairseq/examples/m2m_100/tok.sh b/fairseq/examples/m2m_100/tok.sh
new file mode 100755
index 0000000000000000000000000000000000000000..ba2ec5a2f3f4794d2e528d3a6574bf05abe1d043
--- /dev/null
+++ b/fairseq/examples/m2m_100/tok.sh
@@ -0,0 +1,83 @@
+#!/usr/bin/env bash
+# Copyright (c) 2019-present, Facebook, Inc.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+#
+
+set -e
+
+TOKENIZERS_SCRIPTS=tokenizers
+INSTALL_PATH=$TOKENIZERS_SCRIPTS/thirdparty
+
+N_THREADS=8
+
+lg=$1
+
+MOSES=$INSTALL_PATH/mosesdecoder
+REPLACE_UNICODE_PUNCT=$MOSES/scripts/tokenizer/replace-unicode-punctuation.perl
+NORM_PUNC=$MOSES/scripts/tokenizer/normalize-punctuation.perl
+REM_NON_PRINT_CHAR=$MOSES/scripts/tokenizer/remove-non-printing-char.perl
+TOKENIZER=$MOSES/scripts/tokenizer/tokenizer.perl
+
+# special tokenization for Romanian
+WMT16_SCRIPTS=$INSTALL_PATH/wmt16-scripts
+
+NORMALIZE_ROMANIAN=$WMT16_SCRIPTS/preprocess/normalise-romanian.py
+REMOVE_DIACRITICS=$WMT16_SCRIPTS/preprocess/remove-diacritics.py
+
+# Burmese
+MY_SEGMENT=$INSTALL_PATH/seg_my.py
+
+# Arabic
+AR_TOKENIZER=$TOKENIZERS_SCRIPTS/tokenizer_ar.sh
+
+# Korean
+KO_SEGMENT=$TOKENIZERS_SCRIPTS/seg_ko.sh
+
+# Japanese
+JA_SEGMENT=$TOKENIZERS_SCRIPTS/seg_ja.sh
+
+# Indic
+IN_TOKENIZER=$TOKENIZERS_SCRIPTS/tokenize_indic.py
+INDIC_RESOURCES_PATH=$INSTALL_PATH/indic_nlp_resources
+
+# Thai
+THAI_TOKENIZER=$TOKENIZERS_SCRIPTS/tokenize_thai.py
+
+# Chinese
+CHINESE_TOKENIZER=$TOKENIZERS_SCRIPTS/tokenize_zh.py
+
+# Chinese
+if [ "$lg" = "zh" ]; then
+ cat - | $REPLACE_UNICODE_PUNCT | $NORM_PUNC -l $lg | $REM_NON_PRINT_CHAR | python $CHINESE_TOKENIZER
+# Thai
+elif [ "$lg" = "th" ]; then
+ cat - | python $THAI_TOKENIZER
+# Japanese
+elif [ "$lg" = "ja" ]; then
+ cat - | $REPLACE_UNICODE_PUNCT | $NORM_PUNC -l $lg | $REM_NON_PRINT_CHAR | ${JA_SEGMENT}
+# Korean
+elif [ "$lg" = "ko" ]; then
+ cat - | $REM_NON_PRINT_CHAR | ${KO_SEGMENT}
+# Romanian
+elif [ "$lg" = "ro" ]; then
+ cat - | $REPLACE_UNICODE_PUNCT | $NORM_PUNC -l $lg | $REM_NON_PRINT_CHAR | $NORMALIZE_ROMANIAN | $REMOVE_DIACRITICS | $TOKENIZER -no-escape -threads $N_THREADS -l $lg
+# Burmese
+elif [ "$lg" = "my" ]; then
+ cat - | python ${MY_SEGMENT}
+# Arabic
+elif [ "$lg" = "ar" ]; then
+ cat - | ${AR_TOKENIZER}
+# Indic
+elif [ "$lg" = "ne" ]; then
+ cat - | python ${IN_TOKENIZER} $lg
+elif [ "$lg" = "si" ]; then
+ cat - | python ${IN_TOKENIZER} $lg
+elif [ "$lg" = "hi" ]; then
+ cat - | python ${IN_TOKENIZER} $lg
+# other languages
+else
+ cat - | $REPLACE_UNICODE_PUNCT | $NORM_PUNC -l $lg | $REM_NON_PRINT_CHAR | $TOKENIZER -no-escape -threads $N_THREADS -l $lg
+fi
diff --git a/fairseq/examples/m2m_100/tokenizers/README.md b/fairseq/examples/m2m_100/tokenizers/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..e116932bc80572f221cff6472a7b1eea7032925d
--- /dev/null
+++ b/fairseq/examples/m2m_100/tokenizers/README.md
@@ -0,0 +1,18 @@
+# M2M-100 Tokenization
+
+We apply different tokenization strategies for different languages following the existing literature. Here we provide tok.sh a tokenizer that can be used to reproduce our results.
+
+To reproduce the results, follow these steps:
+
+```
+tgt_lang=...
+reference_translation=...
+cat generation_output | grep -P "^H" | sort -V | cut -f 3- | sh tok.sh $tgt_lang > hyp
+cat $reference_translation |sh tok.sh $tgt_lang > ref
+sacrebleu -tok 'none' ref < hyp
+```
+
+## Installation
+
+Tools needed for all the languages except Arabic can be installed by running install_dependencies.sh
+If you want to evaluate Arabic models, please follow the instructions provided here: http://alt.qcri.org/tools/arabic-normalizer/ to install
diff --git a/fairseq/examples/m2m_100/tokenizers/seg_ja.sh b/fairseq/examples/m2m_100/tokenizers/seg_ja.sh
new file mode 100755
index 0000000000000000000000000000000000000000..be6f5ca5fe4ac8e8c786a439caaed1d1314f1aef
--- /dev/null
+++ b/fairseq/examples/m2m_100/tokenizers/seg_ja.sh
@@ -0,0 +1,11 @@
+#!/usr/bin/env bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+SCRIPT=`realpath $0`
+KYTEA=`dirname $SCRIPT`/thirdparty/kytea
+export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$KYTEA/lib:/usr/local/lib
+export PATH=$PATH:"$KYTEA/bin"
+
+cat - | tr -d "[:blank:]" | kytea -notags
diff --git a/fairseq/examples/m2m_100/tokenizers/seg_ko.sh b/fairseq/examples/m2m_100/tokenizers/seg_ko.sh
new file mode 100755
index 0000000000000000000000000000000000000000..c523d92634d9b61b97bbcdbfd17dfc33465bfc09
--- /dev/null
+++ b/fairseq/examples/m2m_100/tokenizers/seg_ko.sh
@@ -0,0 +1,12 @@
+#!/usr/bin/env bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+SCRIPT=`realpath $0`
+MECAB=`dirname $SCRIPT`/thirdparty/mecab-0.996-ko-0.9.2
+
+export PATH=$PATH:"$MECAB/bin":"$MECAB/lib"
+export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:"$MECAB/lib"
+
+cat - | mecab -O wakati
diff --git a/fairseq/examples/m2m_100/tokenizers/thirdparty/.gitignore b/fairseq/examples/m2m_100/tokenizers/thirdparty/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..19eb6a9dd705ac583f22ecb60d9b744987e27ff1
--- /dev/null
+++ b/fairseq/examples/m2m_100/tokenizers/thirdparty/.gitignore
@@ -0,0 +1,12 @@
+seg_my.py
+indic_nlp_library/
+indic_nlp_resources/
+kytea/
+mecab-0.996-ko-0.9.2.tar.gz
+mecab-0.996-ko-0.9.2/
+mosesdecoder/
+wat2020.my-en.zip
+wat2020.my-en/
+wmt16-scripts/
+mecab-ko-dic-2.1.1-20180720/
+mecab-ko-dic-2.1.1-20180720.tar.gz
\ No newline at end of file
diff --git a/fairseq/examples/m2m_100/tokenizers/tokenize_indic.py b/fairseq/examples/m2m_100/tokenizers/tokenize_indic.py
new file mode 100644
index 0000000000000000000000000000000000000000..a44fad07f7c718f99cccd445f33c62b0e3c562f4
--- /dev/null
+++ b/fairseq/examples/m2m_100/tokenizers/tokenize_indic.py
@@ -0,0 +1,23 @@
+#!/usr/bin/env python3
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+# Use: echo {text} | python tokenize_indic.py {language}
+
+import sys
+
+from indicnlp.normalize.indic_normalize import IndicNormalizerFactory
+from indicnlp.tokenize.indic_tokenize import trivial_tokenize
+
+
+factory = IndicNormalizerFactory()
+normalizer = factory.get_normalizer(
+ sys.argv[1], remove_nuktas=False, nasals_mode="do_nothing"
+)
+
+for line in sys.stdin:
+ normalized_line = normalizer.normalize(line.strip())
+ tokenized_line = " ".join(trivial_tokenize(normalized_line, sys.argv[1]))
+ print(tokenized_line)
diff --git a/fairseq/examples/m2m_100/tokenizers/tokenize_thai.py b/fairseq/examples/m2m_100/tokenizers/tokenize_thai.py
new file mode 100644
index 0000000000000000000000000000000000000000..9c72cb89056f6fc92a8963415e5f3a1e61b33a5b
--- /dev/null
+++ b/fairseq/examples/m2m_100/tokenizers/tokenize_thai.py
@@ -0,0 +1,13 @@
+#!/usr/bin/env python3
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import sys
+
+from pythainlp import word_tokenize
+
+
+for line in sys.stdin:
+ print(" ".join(word_tokenize(line.strip())))
diff --git a/fairseq/examples/m2m_100/tokenizers/tokenize_zh.py b/fairseq/examples/m2m_100/tokenizers/tokenize_zh.py
new file mode 100644
index 0000000000000000000000000000000000000000..674b5849cba829cf4f07a69369e9cc6eed376d4c
--- /dev/null
+++ b/fairseq/examples/m2m_100/tokenizers/tokenize_zh.py
@@ -0,0 +1,14 @@
+#!/usr/bin/env python3
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import fileinput
+
+import sacrebleu
+
+
+for line in fileinput.input():
+ print(sacrebleu.tokenize_zh(line))
diff --git a/fairseq/examples/m2m_100/tokenizers/tokenizer_ar.sh b/fairseq/examples/m2m_100/tokenizers/tokenizer_ar.sh
new file mode 100755
index 0000000000000000000000000000000000000000..ad35d7adf28dc9b23d13a6a3fec0b12cb760e855
--- /dev/null
+++ b/fairseq/examples/m2m_100/tokenizers/tokenizer_ar.sh
@@ -0,0 +1,27 @@
+#!/usr/bin/env sh
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+#
+# Please follow the instructions here http://alt.qcri.org/tools/arabic-normalizer/
+# to install tools needed for Arabic
+
+echo "Please install Arabic tools: http://alt.qcri.org/tools/arabic-normalizer/"
+echo "Then update environment variables in tokenizer_ar.sh"
+exit 1
+
+SVMTOOL=...
+GOMOSESGO=...
+QCRI_ARABIC_NORMALIZER=...
+
+export PERL5LIB="$SVMTOOL/lib":"$GOMOSESGO/bin/MADA-3.2":$PERL5LIB
+
+
+tempfile=$(mktemp)
+cat - > $tempfile
+
+cd $QCRI_ARABIC_NORMALIZER
+
+bash qcri_normalizer_mada3.2_aramorph1.2.1.sh $tempfile
+cat $tempfile.mada_norm-aramorph.europarl_tok
diff --git a/fairseq/examples/mbart/README.md b/fairseq/examples/mbart/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..a45e37243c2c5d4027f79cf71498ca58bbac7d98
--- /dev/null
+++ b/fairseq/examples/mbart/README.md
@@ -0,0 +1,123 @@
+# MBART: Multilingual Denoising Pre-training for Neural Machine Translation
+[https://arxiv.org/abs/2001.08210]
+
+## Introduction
+
+MBART is a sequence-to-sequence denoising auto-encoder pre-trained on large-scale monolingual corpora in many languages using the BART objective. mBART is one of the first methods for pre-training a complete sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only on the encoder, decoder, or reconstructing parts of the text.
+
+## Pre-trained models
+
+Model | Description | # params | Download
+---|---|---|---
+`mbart.CC25` | mBART model with 12 encoder and decoder layers trained on 25 languages' monolingual corpus | 610M | [mbart.CC25.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.cc25.v2.tar.gz)
+`mbart.ft.ro_en` | finetune mBART cc25 model on ro-en language pairs | 610M | [mbart.cc25.ft.enro.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.cc25.ft.enro.tar.gz)
+
+## Results
+
+**[WMT16 EN-RO](https://www.statmt.org/wmt16/translation-task.html)**
+
+_(test set, no additional data used)_
+
+Model | en-ro | ro-en
+---|---|---
+`Random` | 34.3 | 34.0
+`mbart.cc25` | 37.7 | 37.8
+`mbart.enro.bilingual` | 38.5 | 38.5
+
+## BPE data
+# download model
+wget https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.cc25.v2.tar.gz
+tar -xzvf mbart.CC25.tar.gz
+# bpe data
+install SPM [here](https://github.com/google/sentencepiece)
+```bash
+SPM=/path/to/sentencepiece/build/src/spm_encode
+MODEL=sentence.bpe.model
+${SPM} --model=${MODEL} < ${DATA}/${TRAIN}.${SRC} > ${DATA}/${TRAIN}.spm.${SRC} &
+${SPM} --model=${MODEL} < ${DATA}/${TRAIN}.${TGT} > ${DATA}/${TRAIN}.spm.${TGT} &
+${SPM} --model=${MODEL} < ${DATA}/${VALID}.${SRC} > ${DATA}/${VALID}.spm.${SRC} &
+${SPM} --model=${MODEL} < ${DATA}/${VALID}.${TGT} > ${DATA}/${VALID}.spm.${TGT} &
+${SPM} --model=${MODEL} < ${DATA}/${TEST}.${SRC} > ${DATA}/${TEST}.spm.${SRC} &
+${SPM} --model=${MODEL} < ${DATA}/${TEST}.${TGT} > ${DATA}/${TEST}.spm.${TGT} &
+```
+
+## Preprocess data
+
+```bash
+DICT=dict.txt
+fairseq-preprocess \
+ --source-lang ${SRC} \
+ --target-lang ${TGT} \
+ --trainpref ${DATA}/${TRAIN}.spm \
+ --validpref ${DATA}/${VALID}.spm \
+ --testpref ${DATA}/${TEST}.spm \
+ --destdir ${DEST}/${NAME} \
+ --thresholdtgt 0 \
+ --thresholdsrc 0 \
+ --srcdict ${DICT} \
+ --tgtdict ${DICT} \
+ --workers 70
+```
+
+## Finetune on EN-RO
+Finetune on mbart CC25
+
+```bash
+PRETRAIN=mbart.cc25 # fix if you moved the downloaded checkpoint
+langs=ar_AR,cs_CZ,de_DE,en_XX,es_XX,et_EE,fi_FI,fr_XX,gu_IN,hi_IN,it_IT,ja_XX,kk_KZ,ko_KR,lt_LT,lv_LV,my_MM,ne_NP,nl_XX,ro_RO,ru_RU,si_LK,tr_TR,vi_VN,zh_CN
+
+fairseq-train path_2_data \
+ --encoder-normalize-before --decoder-normalize-before \
+ --arch mbart_large --layernorm-embedding \
+ --task translation_from_pretrained_bart \
+ --source-lang en_XX --target-lang ro_RO \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.2 \
+ --optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \
+ --lr-scheduler polynomial_decay --lr 3e-05 --warmup-updates 2500 --total-num-update 40000 \
+ --dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \
+ --max-tokens 1024 --update-freq 2 \
+ --save-interval 1 --save-interval-updates 5000 --keep-interval-updates 10 --no-epoch-checkpoints \
+ --seed 222 --log-format simple --log-interval 2 \
+ --restore-file $PRETRAIN \
+ --reset-optimizer --reset-meters --reset-dataloader --reset-lr-scheduler \
+ --langs $langs \
+ --ddp-backend legacy_ddp
+```
+## Generate on EN-RO
+Get sacrebleu on finetuned en-ro model
+
+get tokenizer [here](https://github.com/rsennrich/wmt16-scripts)
+```bash
+wget https://dl.fbaipublicfiles.com/fairseq/models/mbart/mbart.cc25.ft.enro.tar.gz
+tar -xzvf mbart.cc25.ft.enro.tar.gz
+```
+
+```bash
+model_dir=MBART_finetuned_enro # fix if you moved the checkpoint
+
+fairseq-generate path_2_data \
+ --path $model_dir/model.pt \
+ --task translation_from_pretrained_bart \
+ --gen-subset test \
+ -t ro_RO -s en_XX \
+ --bpe 'sentencepiece' --sentencepiece-model $model_dir/sentence.bpe.model \
+ --sacrebleu --remove-bpe 'sentencepiece' \
+ --batch-size 32 --langs $langs > en_ro
+
+cat en_ro | grep -P "^H" |sort -V |cut -f 3- | sed 's/\[ro_RO\]//g' |$TOKENIZER ro > en_ro.hyp
+cat en_ro | grep -P "^T" |sort -V |cut -f 2- | sed 's/\[ro_RO\]//g' |$TOKENIZER ro > en_ro.ref
+sacrebleu -tok 'none' -s 'none' en_ro.ref < en_ro.hyp
+```
+
+## Citation
+
+```bibtex
+@article{liu2020multilingual,
+ title={Multilingual Denoising Pre-training for Neural Machine Translation},
+ author={Yinhan Liu and Jiatao Gu and Naman Goyal and Xian Li and Sergey Edunov and Marjan Ghazvininejad and Mike Lewis and Luke Zettlemoyer},
+ year={2020},
+ eprint={2001.08210},
+ archivePrefix={arXiv},
+ primaryClass={cs.CL}
+}
+```
diff --git a/fairseq/examples/megatron_11b/README.md b/fairseq/examples/megatron_11b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..945c96c91e2e2d93466abc28d90bc25a1e7dd471
--- /dev/null
+++ b/fairseq/examples/megatron_11b/README.md
@@ -0,0 +1,161 @@
+# Megatron-11b
+
+Megatron-11b is a unidirectional language model with `11B` parameters based on [Megatron-LM](https://arxiv.org/pdf/1909.08053.pdf). Following the original Megatron work, we trained the model using intra-layer model parallelism with each layer's parameters split across 8 GPUs.
+
+Megatron-11b is trained on the same data and uses the same byte-pair encoding (BPE) as [RoBERTa](https://arxiv.org/pdf/1907.11692.pdf).
+
+## Pre-trained models
+
+Model | Description | # params | # filesize | Download
+---|---|---|---|---
+`megatron_11b` | megatron_11b unidirectional language model | 11B | 19Gb | [megatron_11b.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/model_parallel/megatron_11b.tar.gz)
+
+#### Architecture:
+
+Param | Value
+---|---
+embed_dim | 3072
+ffn_dim | 3072 * 6
+layers | 72
+attention heads | 32
+
+#### Training details:
+
+Param | value
+---|---
+bsz | 512
+num_updates | 300,000
+peak_lr | 1.5e-04
+lr scheduler | inverse_sqrt
+clip norm | 0.0
+
+
+## Example training command (model parallel)
+
+Megatron-11b contains too many parameters to train on a single GPU. Following
+the original Megatron work, we adopt an intra-layer model parallel training
+approach in which each layer's parameters are split across multiple GPUs and
+activations and gradients are communicated during the forward/backward pass,
+respectively. We similarly split the loss computation using the
+`vocab_parallel_cross_entropy` criterion.
+
+The following training command illustrates how to do model parallel training in
+fairseq. We assume that each machine (node) has 8 GPUs among which to split the
+model parameters (`--model-parallel-size 8`). If you have access to multiple
+nodes, you may combine this with data parallel training by increasing
+`--distributed-world-size`.
+
+To train Megatron-11b on a single node:
+
+
+```bash
+fairseq-train \
+ --distributed-world-size 8 \
+ --memory-efficient-fp16 \
+ --num-workers 2 \
+ --model-parallel-size 8 \
+ --criterion vocab_parallel_cross_entropy \
+ --task language_modeling \
+ --sample-break-mode none \
+ --tokens-per-sample 1024 \
+ --arch transformer_lm_megatron_11b \
+ --share-decoder-input-output-embed \
+ --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 --clip-norm 0.0 \
+ --lr-scheduler inverse_sqrt --lr 0.00015 \
+ --warmup-updates 3000 --weight-decay 0.01 \
+ --dropout 0.1 --attention-dropout 0.1 \
+ --batch-size 2 \
+ --max-update 300000;
+```
+
+Note: Above was tested on `DGX-1` box, with `8xV100-32Gb` GPUs.
+
+## Results
+
+**[Wikitext103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/)**
+
+Model | Valid perplexity | Test perplexity
+---|---|---
+`megatron_11b` | 10.64 | 10.54
+
+
+## Evaluating `megatron_11b` on Wikitext-103
+
+#### 1. Downloading Megatron-11b
+```bash
+# WARNING: this file is 19GB
+wget https://dl.fbaipublicfiles.com/fairseq/models/model_parallel/megatron_11b.tar.gz
+tar -xzvf megatron_11b.tar.gz
+```
+
+#### 2. Download Wikitext-103
+```bash
+wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
+unzip wikitext-103-raw-v1.zip
+```
+
+#### 3. Detokenize test tokens
+Megatron-11b uses a byte-level BPE that expects raw (untokenized) input. Since
+the wikitext-103 dataset comes tokenized, we apply a simple detokenization
+process to restore the untokenized test set:
+
+```bash
+python -m examples.megatron_11b.detok wikitext-103-raw/wiki.test.raw > wikitext-103-raw/wiki.test.detok
+```
+
+#### 4. BPE encoding
+```bash
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
+
+python -m examples.roberta.multiprocessing_bpe_encoder \
+ --encoder-json encoder.json \
+ --vocab-bpe vocab.bpe \
+ --inputs "wikitext-103-raw/wiki.test.detok" \
+ --outputs "wikitext-103-raw/wiki.test.bpe" \
+ --workers 60;
+```
+
+#### 5. Fairseq binarize
+```bash
+fairseq-preprocess \
+ --only-source \
+ --testpref wikitext-103-raw/wiki.test.bpe \
+ --srcdict megatron_11b/dict.txt \
+ --destdir wikitext103-bin;
+```
+
+#### 6. Evaluating perplexity.
+We can now evaluate perplexity on the test set. Note that because we've modified
+the test set (via detokenization and BPE), the perplexity reported by
+`fairseq-eval-lm` needs to be renormalized.
+
+Compute unnormalized perplexity:
+
+```bash
+DATA_PATH=wikitext103-bin/
+fairseq-eval-lm \
+ $DATA_PATH \
+ --path megatron_11b/model.pt \
+ --task language_modeling \
+ --gen-subset test \
+ --batch-size 8 \
+ --criterion cross_entropy \
+ --context-window 992 \
+ --distributed-world-size 8 \
+ --model-parallel-size 8;
+# Expected PPL (unnormalized_ppl): [8.46]
+# Note: the eval command needs to run on 8 GPUs for the released model
+```
+Renormalizing formula: `2 ^ ( log_2(unnormalized_PPL) * (270847 / 245566))`.
+PPL After normalization: `10.54`
+
+To renormalize the perplexity, we must account for the change in token count
+after detokenizing and appling BPE. The formula for this is:
+`2 ^ ( log_2(unnormalized_PPL) * (new_token_cnt / orig_token_cnt))`
+
+For the wikitext-103 test set, the original token count is `245566` and the
+token count after detokenization and applying BPE is `270847`.
+
+The perplexity after renormalization is:
+`2 ^ ( log_2(8.46) * (270847 / 245566)) = 10.54`
diff --git a/fairseq/examples/megatron_11b/detok.py b/fairseq/examples/megatron_11b/detok.py
new file mode 100644
index 0000000000000000000000000000000000000000..49921b28a1f35c6216b5ed85729453524e7a049d
--- /dev/null
+++ b/fairseq/examples/megatron_11b/detok.py
@@ -0,0 +1,32 @@
+#!/usr/bin/env python3 -u
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import fileinput
+
+import sacremoses
+
+
+def main():
+ parser = argparse.ArgumentParser(description="")
+ parser.add_argument("files", nargs="*", help="input files")
+ args = parser.parse_args()
+
+ detok = sacremoses.MosesDetokenizer()
+
+ for line in fileinput.input(args.files, openhook=fileinput.hook_compressed):
+ print(
+ detok.detokenize(line.strip().split(" "))
+ .replace(" @", "")
+ .replace("@ ", "")
+ .replace(" =", "=")
+ .replace("= ", "=")
+ .replace(" – ", "–")
+ )
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/multilingual/ML50_langs.txt b/fairseq/examples/multilingual/ML50_langs.txt
new file mode 100644
index 0000000000000000000000000000000000000000..558abbc785072629de8000e343fc02a32c0afb97
--- /dev/null
+++ b/fairseq/examples/multilingual/ML50_langs.txt
@@ -0,0 +1,52 @@
+ar_AR
+cs_CZ
+de_DE
+en_XX
+es_XX
+et_EE
+fi_FI
+fr_XX
+gu_IN
+hi_IN
+it_IT
+ja_XX
+kk_KZ
+ko_KR
+lt_LT
+lv_LV
+my_MM
+ne_NP
+nl_XX
+ro_RO
+ru_RU
+si_LK
+tr_TR
+vi_VN
+zh_CN
+af_ZA
+az_AZ
+bn_IN
+fa_IR
+he_IL
+hr_HR
+id_ID
+ka_GE
+km_KH
+mk_MK
+ml_IN
+mn_MN
+mr_IN
+pl_PL
+ps_AF
+pt_XX
+sv_SE
+sw_KE
+ta_IN
+te_IN
+th_TH
+tl_XX
+uk_UA
+ur_PK
+xh_ZA
+gl_ES
+sl_SI
\ No newline at end of file
diff --git a/fairseq/examples/multilingual/README.md b/fairseq/examples/multilingual/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..46ff9c351b1030e0729f89f246e0cd86444c1633
--- /dev/null
+++ b/fairseq/examples/multilingual/README.md
@@ -0,0 +1,158 @@
+# Multilingual Translation
+
+[[Multilingual Translation with Extensible Multilingual Pretraining and Finetuning, https://arxiv.org/abs/2008.00401]](https://arxiv.org/abs/2008.00401)
+
+## Introduction
+
+This work is for training multilingual translation models with multiple bitext datasets. This multilingual translation framework supports (see [[training section]](#Training) and [[finetuning section]](#Finetuning) for examples)
+
+* temperature based sampling over unbalancing datasets of different translation directions
+ - --sampling-method' with
+ choices=['uniform', 'temperature', 'concat']
+ - --sampling-temperature
+* configurable to automatically add source and/or target language tokens to source/target sentences using data which are prepared in the same way as bilignual training
+ - --encoder-langtok with choices=['src', 'tgt', None] to specify whether to add source or target language tokens to the source sentences
+ - --decoder-langtok (binary option) to specify whether to add target language tokens to the target sentences or not
+* finetuning mBART pretrained models for multilingual translation
+ - --finetune-from-model to specify the path from which to load the pretrained model
+
+## Preprocessing data
+Multilingual training requires a joint BPE vocab. Please follow [mBART's preprocessing steps](https://github.com/pytorch/fairseq/tree/main/examples/mbart#bpe-data) to reuse our pretrained sentence-piece model.
+
+You can also train a joint BPE model on your own dataset and then follow the steps in [[link]](https://github.com/pytorch/fairseq/tree/main/examples/translation#multilingual-translation).
+
+## Training
+
+
+```bash
+lang_pairs=
+path_2_data=
+lang_list=
+
+fairseq-train $path_2_data \
+ --encoder-normalize-before --decoder-normalize-before \
+ --arch transformer --layernorm-embedding \
+ --task translation_multi_simple_epoch \
+ --sampling-method "temperature" \
+ --sampling-temperature 1.5 \
+ --encoder-langtok "src" \
+ --decoder-langtok \
+ --lang-dict "$lang_list" \
+ --lang-pairs "$lang_pairs" \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.2 \
+ --optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \
+ --lr-scheduler inverse_sqrt --lr 3e-05 --warmup-updates 2500 --max-update 40000 \
+ --dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \
+ --max-tokens 1024 --update-freq 2 \
+ --save-interval 1 --save-interval-updates 5000 --keep-interval-updates 10 --no-epoch-checkpoints \
+ --seed 222 --log-format simple --log-interval 2
+```
+
+## Finetuning
+We can also finetune multilingual models from a monolingual pretrained models, e.g. [mMBART](https://github.com/pytorch/fairseq/tree/main/examples/mbart).
+```bash
+lang_pairs=
+path_2_data=
+lang_list=
+pretrained_model=
+
+fairseq-train $path_2_data \
+ --finetune-from-model $pretrained_model \
+ --encoder-normalize-before --decoder-normalize-before \
+ --arch transformer --layernorm-embedding \
+ --task translation_multi_simple_epoch \
+ --sampling-method "temperature" \
+ --sampling-temperature 1.5 \
+ --encoder-langtok "src" \
+ --decoder-langtok \
+ --lang-dict "$lang_list" \
+ --lang-pairs "$lang_pairs" \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.2 \
+ --optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \
+ --lr-scheduler inverse_sqrt --lr 3e-05 --warmup-updates 2500 --max-update 40000 \
+ --dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \
+ --max-tokens 1024 --update-freq 2 \
+ --save-interval 1 --save-interval-updates 5000 --keep-interval-updates 10 --no-epoch-checkpoints \
+ --seed 222 --log-format simple --log-interval 2
+```
+## Generate
+The following command uses the multilingual task (translation_multi_simple_epoch) to generate translation from $source_lang to $target_lang on the test dataset. During generaton, the source language tokens are added to source sentences and the target language tokens are added as the starting token to decode target sentences. Options --lang-dict and --lang-pairs are needed to tell the generation process the ordered list of languages and translation directions that the trained model are awared of; they will need to be consistent with the training.
+
+```bash
+model=
+source_lang=
+target_lang=
+
+fairseq-generate $path_2_data \
+ --path $model \
+ --task translation_multi_simple_epoch \
+ --gen-subset test \
+ --source-lang $source_lang \
+ --target-lang $target_lang
+ --sacrebleu --remove-bpe 'sentencepiece'\
+ --batch-size 32 \
+ --encoder-langtok "src" \
+ --decoder-langtok \
+ --lang-dict "$lang_list" \
+ --lang-pairs "$lang_pairs" > ${source_lang}_${target_lang}.txt
+```
+Fairseq will generate translation into a file {source_lang}_${target_lang}.txt with sacreblue at the end.
+
+You can also use costomized tokenizer to compare the performance with the literature. For example, you get a tokenizer [here](https://github.com/rsennrich/wmt16-scripts) and do the following:
+```bash
+TOKENIZER=
+TOK_CMD=<"$TOKENIZER $target_lang" or cat for sacrebleu>
+
+cat {source_lang}_${target_lang}.txt | grep -P "^H" |sort -V |cut -f 3- |$TOK_CMD > ${source_lang}_${target_lang}.hyp
+cat {source_lang}_${target_lang}.txt | grep -P "^T" |sort -V |cut -f 2- |$TOK_CMD > ${source_lang}_${target_lang}.ref
+sacrebleu -tok 'none' -s 'none' ${source_lang}_${target_lang}.ref < ${source_lang}_${target_lang}.hyp
+```
+
+# mBART50 models
+
+* [mMBART 50 pretrained model](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.pretrained.tar.gz).
+* [mMBART 50 finetuned many-to-one](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.n1.tar.gz).
+* [mMBART 50 finetuned one-to-many](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.1n.tar.gz).
+* [mMBART 50 finetuned many-to-many](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.nn.tar.gz).
+
+Please download and extract from the above tarballs. Each tarball contains
+* The fairseq model checkpoint: model.pt
+* The list of supported languages: ML50_langs.txt
+* Sentence piece model: sentence.bpe.model
+* Fairseq dictionary of each language: dict.{lang}.txt (please replace lang with a language specified in ML50_langs.txt)
+
+To use the trained models,
+* use the tool [binarize.py](./data_scripts/binarize.py) to binarize your data using sentence.bpe.model and dict.{lang}.txt, and copy the dictionaries to your data path
+* then run the generation command:
+```bash
+path_2_data=
+model=/model.pt
+lang_list=/ML50_langs.txt
+source_lang=
+target_lang=
+
+fairseq-generate $path_2_data \
+ --path $model \
+ --task translation_multi_simple_epoch \
+ --gen-subset test \
+ --source-lang $source_lang \
+ --target-lang $target_lang
+ --sacrebleu --remove-bpe 'sentencepiece'\
+ --batch-size 32 \
+ --encoder-langtok "src" \
+ --decoder-langtok \
+ --lang-dict "$lang_list"
+```
+
+## Citation
+
+```bibtex
+@article{tang2020multilingual,
+ title={Multilingual Translation with Extensible Multilingual Pretraining and Finetuning},
+ author={Yuqing Tang and Chau Tran and Xian Li and Peng-Jen Chen and Naman Goyal and Vishrav Chaudhary and Jiatao Gu and Angela Fan},
+ year={2020},
+ eprint={2008.00401},
+ archivePrefix={arXiv},
+ primaryClass={cs.CL}
+}
+```
diff --git a/fairseq/examples/multilingual/data_scripts/README.md b/fairseq/examples/multilingual/data_scripts/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..cc610c0c9e936a5ae4659ceda691c6db6d387296
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/README.md
@@ -0,0 +1,24 @@
+
+# Install dependency
+```bash
+pip install -r requirement.txt
+```
+
+# Download the data set
+```bash
+export WORKDIR_ROOT=
+
+```
+The downloaded data will be at $WORKDIR_ROOT/ML50
+
+# preprocess the data
+Install SPM [here](https://github.com/google/sentencepiece)
+```bash
+export WORKDIR_ROOT=
+export SPM_PATH=
+```
+* $WORKDIR_ROOT/ML50/raw: extracted raw data
+* $WORKDIR_ROOT/ML50/dedup: dedup data
+* $WORKDIR_ROOT/ML50/clean: data with valid and test sentences removed from the dedup data
+
+
diff --git a/fairseq/examples/multilingual/data_scripts/binarize.py b/fairseq/examples/multilingual/data_scripts/binarize.py
new file mode 100755
index 0000000000000000000000000000000000000000..ee54c6aabf021ca526743f8f1f67b91889e1e335
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/binarize.py
@@ -0,0 +1,200 @@
+import shutil
+import os, sys
+from subprocess import check_call, check_output
+import glob
+import argparse
+import shutil
+import pathlib
+import itertools
+
+def call_output(cmd):
+ print(f"Executing: {cmd}")
+ ret = check_output(cmd, shell=True)
+ print(ret)
+ return ret
+
+def call(cmd):
+ print(cmd)
+ check_call(cmd, shell=True)
+
+
+WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None)
+
+if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip():
+ print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."')
+ sys.exit(-1)
+
+SPM_PATH = os.environ.get('SPM_PATH', None)
+
+if SPM_PATH is None or not SPM_PATH.strip():
+ print("Please install sentence piecence from https://github.com/google/sentencepiece and set SPM_PATH pointing to the installed spm_encode.py. Exitting...")
+ sys.exit(-1)
+
+
+SPM_MODEL = f'{WORKDIR_ROOT}/sentence.bpe.model'
+SPM_VOCAB = f'{WORKDIR_ROOT}/dict_250k.txt'
+
+SPM_ENCODE = f'{SPM_PATH}'
+
+if not os.path.exists(SPM_MODEL):
+ call(f"wget https://dl.fbaipublicfiles.com/fairseq/models/mbart50/sentence.bpe.model -O {SPM_MODEL}")
+
+
+if not os.path.exists(SPM_VOCAB):
+ call(f"wget https://dl.fbaipublicfiles.com/fairseq/models/mbart50/dict_250k.txt -O {SPM_VOCAB}")
+
+
+
+def get_data_size(raw):
+ cmd = f'wc -l {raw}'
+ ret = call_output(cmd)
+ return int(ret.split()[0])
+
+def encode_spm(model, direction, prefix='', splits=['train', 'test', 'valid'], pairs_per_shard=None):
+ src, tgt = direction.split('-')
+
+ for split in splits:
+ src_raw, tgt_raw = f'{RAW_DIR}/{split}{prefix}.{direction}.{src}', f'{RAW_DIR}/{split}{prefix}.{direction}.{tgt}'
+ if os.path.exists(src_raw) and os.path.exists(tgt_raw):
+ cmd = f"""python {SPM_ENCODE} \
+ --model {model}\
+ --output_format=piece \
+ --inputs {src_raw} {tgt_raw} \
+ --outputs {BPE_DIR}/{direction}{prefix}/{split}.bpe.{src} {BPE_DIR}/{direction}{prefix}/{split}.bpe.{tgt} """
+ print(cmd)
+ call(cmd)
+
+
+def binarize_(
+ bpe_dir,
+ databin_dir,
+ direction, spm_vocab=SPM_VOCAB,
+ splits=['train', 'test', 'valid'],
+):
+ src, tgt = direction.split('-')
+
+ try:
+ shutil.rmtree(f'{databin_dir}', ignore_errors=True)
+ os.mkdir(f'{databin_dir}')
+ except OSError as error:
+ print(error)
+ cmds = [
+ "fairseq-preprocess",
+ f"--source-lang {src} --target-lang {tgt}",
+ f"--destdir {databin_dir}/",
+ f"--workers 8",
+ ]
+ if isinstance(spm_vocab, tuple):
+ src_vocab, tgt_vocab = spm_vocab
+ cmds.extend(
+ [
+ f"--srcdict {src_vocab}",
+ f"--tgtdict {tgt_vocab}",
+ ]
+ )
+ else:
+ cmds.extend(
+ [
+ f"--joined-dictionary",
+ f"--srcdict {spm_vocab}",
+ ]
+ )
+ input_options = []
+ if 'train' in splits and glob.glob(f"{bpe_dir}/train.bpe*"):
+ input_options.append(
+ f"--trainpref {bpe_dir}/train.bpe",
+ )
+ if 'valid' in splits and glob.glob(f"{bpe_dir}/valid.bpe*"):
+ input_options.append(f"--validpref {bpe_dir}/valid.bpe")
+ if 'test' in splits and glob.glob(f"{bpe_dir}/test.bpe*"):
+ input_options.append(f"--testpref {bpe_dir}/test.bpe")
+ if len(input_options) > 0:
+ cmd = " ".join(cmds + input_options)
+ print(cmd)
+ call(cmd)
+
+
+def binarize(
+ databin_dir,
+ direction, spm_vocab=SPM_VOCAB, prefix='',
+ splits=['train', 'test', 'valid'],
+ pairs_per_shard=None,
+):
+ def move_databin_files(from_folder, to_folder):
+ for bin_file in glob.glob(f"{from_folder}/*.bin") \
+ + glob.glob(f"{from_folder}/*.idx") \
+ + glob.glob(f"{from_folder}/dict*"):
+ try:
+ shutil.move(bin_file, to_folder)
+ except OSError as error:
+ print(error)
+ bpe_databin_dir = f"{BPE_DIR}/{direction}{prefix}_databin"
+ bpe_dir = f"{BPE_DIR}/{direction}{prefix}"
+ if pairs_per_shard is None:
+ binarize_(bpe_dir, bpe_databin_dir, direction, spm_vocab=spm_vocab, splits=splits)
+ move_databin_files(bpe_databin_dir, databin_dir)
+ else:
+ # binarize valid and test which will not be sharded
+ binarize_(
+ bpe_dir, bpe_databin_dir, direction,
+ spm_vocab=spm_vocab, splits=[s for s in splits if s != "train"])
+ for shard_bpe_dir in glob.glob(f"{bpe_dir}/shard*"):
+ path_strs = os.path.split(shard_bpe_dir)
+ shard_str = path_strs[-1]
+ shard_folder = f"{bpe_databin_dir}/{shard_str}"
+ databin_shard_folder = f"{databin_dir}/{shard_str}"
+ print(f'working from {shard_folder} to {databin_shard_folder}')
+ os.makedirs(databin_shard_folder, exist_ok=True)
+ binarize_(
+ shard_bpe_dir, shard_folder, direction,
+ spm_vocab=spm_vocab, splits=["train"])
+
+ for test_data in glob.glob(f"{bpe_databin_dir}/valid.*") + glob.glob(f"{bpe_databin_dir}/test.*"):
+ filename = os.path.split(test_data)[-1]
+ try:
+ os.symlink(test_data, f"{databin_shard_folder}/{filename}")
+ except OSError as error:
+ print(error)
+ move_databin_files(shard_folder, databin_shard_folder)
+
+
+def load_langs(path):
+ with open(path) as fr:
+ langs = [l.strip() for l in fr]
+ return langs
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--data_root", default=f"{WORKDIR_ROOT}/ML50")
+ parser.add_argument("--raw-folder", default='raw')
+ parser.add_argument("--bpe-folder", default='bpe')
+ parser.add_argument("--databin-folder", default='databin')
+
+ args = parser.parse_args()
+
+ DATA_PATH = args.data_root #'/private/home/yuqtang/public_data/ML50'
+ RAW_DIR = f'{DATA_PATH}/{args.raw_folder}'
+ BPE_DIR = f'{DATA_PATH}/{args.bpe_folder}'
+ DATABIN_DIR = f'{DATA_PATH}/{args.databin_folder}'
+ os.makedirs(BPE_DIR, exist_ok=True)
+
+ raw_files = itertools.chain(
+ glob.glob(f'{RAW_DIR}/train*'),
+ glob.glob(f'{RAW_DIR}/valid*'),
+ glob.glob(f'{RAW_DIR}/test*'),
+ )
+
+ directions = [os.path.split(file_path)[-1].split('.')[1] for file_path in raw_files]
+
+ for direction in directions:
+ prefix = ""
+ splits = ['train', 'valid', 'test']
+ try:
+ shutil.rmtree(f'{BPE_DIR}/{direction}{prefix}', ignore_errors=True)
+ os.mkdir(f'{BPE_DIR}/{direction}{prefix}')
+ os.makedirs(DATABIN_DIR, exist_ok=True)
+ except OSError as error:
+ print(error)
+ spm_model, spm_vocab = SPM_MODEL, SPM_VOCAB
+ encode_spm(spm_model, direction=direction, splits=splits)
+ binarize(DATABIN_DIR, direction, spm_vocab=spm_vocab, splits=splits)
diff --git a/fairseq/examples/multilingual/data_scripts/check_iswlt_test_data.py b/fairseq/examples/multilingual/data_scripts/check_iswlt_test_data.py
new file mode 100644
index 0000000000000000000000000000000000000000..f8e2eb0f15699f1b458a8445d0c1dd6229a21f77
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/check_iswlt_test_data.py
@@ -0,0 +1,67 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import os, sys
+import subprocess
+import re
+from subprocess import check_call, check_output
+
+WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None)
+
+if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip():
+ print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."')
+ sys.exit(-1)
+
+
+BLEU_REGEX = re.compile("^BLEU\\S* = (\\S+) ")
+def run_eval_bleu(cmd):
+ output = check_output(cmd, shell=True, stderr=subprocess.STDOUT).decode("utf-8").strip()
+ print(output)
+ bleu = -1.0
+ for line in output.strip().split('\n'):
+ m = BLEU_REGEX.search(line)
+ if m is not None:
+ bleu = m.groups()[0]
+ bleu = float(bleu)
+ break
+ return bleu
+
+def check_data_test_bleu(raw_folder, data_lang_pairs):
+ not_matchings = []
+ for sacrebleu_set, src_tgts in data_lang_pairs:
+ for src_tgt in src_tgts:
+ print(f'checking test bleus for: {src_tgt} at {sacrebleu_set}')
+ src, tgt = src_tgt.split('-')
+ ssrc, stgt = src[:2], tgt[:2]
+ if os.path.exists(f'{raw_folder}/test.{tgt}-{src}.{src}'):
+ # reversed direction may have different test set
+ test_src = f'{raw_folder}/test.{tgt}-{src}.{src}'
+ else:
+ test_src = f'{raw_folder}/test.{src}-{tgt}.{src}'
+ cmd1 = f'cat {test_src} | sacrebleu -t "{sacrebleu_set}" -l {stgt}-{ssrc}; [ $? -eq 0 ] || echo ""'
+ test_tgt = f'{raw_folder}/test.{src}-{tgt}.{tgt}'
+ cmd2 = f'cat {test_tgt} | sacrebleu -t "{sacrebleu_set}" -l {ssrc}-{stgt}; [ $? -eq 0 ] || echo ""'
+ bleu1 = run_eval_bleu(cmd1)
+ if bleu1 != 100.0:
+ not_matchings.append(f'{sacrebleu_set}:{src_tgt} source side not matching: {test_src}')
+ bleu2 = run_eval_bleu(cmd2)
+ if bleu2 != 100.0:
+ not_matchings.append(f'{sacrebleu_set}:{src_tgt} target side not matching: {test_tgt}')
+ return not_matchings
+
+if __name__ == "__main__":
+ to_data_path = f'{WORKDIR_ROOT}/iwsltv2'
+ not_matching = check_data_test_bleu(
+ f'{to_data_path}/raw',
+ [
+ ('iwslt17', ['en_XX-ar_AR', 'en_XX-ko_KR', 'ar_AR-en_XX', 'ko_KR-en_XX']),
+ ('iwslt17', ['en_XX-it_IT', 'en_XX-nl_XX', 'it_IT-en_XX', 'nl_XX-en_XX']),
+ ('iwslt17/tst2015', ['en_XX-vi_VN', "vi_VN-en_XX"]),
+ ]
+ )
+ if len(not_matching) > 0:
+ print('the following datasets do not have matching test datasets:\n\t', '\n\t'.join(not_matching))
+
diff --git a/fairseq/examples/multilingual/data_scripts/check_self_overlaps.py b/fairseq/examples/multilingual/data_scripts/check_self_overlaps.py
new file mode 100644
index 0000000000000000000000000000000000000000..07b338dcfd2d7f10317608274631d0edd93ba889
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/check_self_overlaps.py
@@ -0,0 +1,103 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import os
+import glob
+import argparse
+from utils.dedup import deup
+import sys
+
+WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None)
+
+if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip():
+ print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."')
+ sys.exit(-1)
+
+def get_directions(folder):
+ raw_files = glob.glob(f'{folder}/train*')
+ directions = [os.path.split(file_path)[-1].split('.')[1] for file_path in raw_files]
+ return directions
+
+def diff_list(lhs, rhs):
+ return set(lhs).difference(set(rhs))
+
+def check_diff(
+ from_src_file, from_tgt_file,
+ to_src_file, to_tgt_file,
+):
+ seen_in_from = set()
+ seen_src_in_from = set()
+ seen_tgt_in_from = set()
+ from_count = 0
+ with open(from_src_file, encoding='utf-8') as fsrc, \
+ open(from_tgt_file, encoding='utf-8') as ftgt:
+ for s, t in zip(fsrc, ftgt):
+ seen_in_from.add((s, t))
+ seen_src_in_from.add(s)
+ seen_tgt_in_from.add(t)
+ from_count += 1
+ common = 0
+ common_src = 0
+ common_tgt = 0
+ to_count = 0
+ seen = set()
+
+ with open(to_src_file, encoding='utf-8') as fsrc, \
+ open(to_tgt_file, encoding='utf-8') as ftgt:
+ for s, t in zip(fsrc, ftgt):
+ to_count += 1
+ if (s, t) not in seen:
+ if (s, t) in seen_in_from:
+ common += 1
+ if s in seen_src_in_from:
+ common_src += 1
+ seen_src_in_from.remove(s)
+ if t in seen_tgt_in_from:
+ common_tgt += 1
+ seen_tgt_in_from.remove(t)
+ seen.add((s, t))
+ return common, common_src, common_tgt, from_count, to_count
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--folder", type=str, required=True,
+ help="the data folder ")
+ parser.add_argument("--split", type=str, default='test',
+ help="split (valid, test) to check against training data")
+ parser.add_argument('--directions', type=str, default=None, required=False)
+
+ args = parser.parse_args()
+
+ if args.directions is None:
+ directions = set(get_directions(args.folder))
+ directions = sorted(directions)
+ else:
+ directions = args.directions.split(',')
+ directions = sorted(set(directions))
+
+ results = []
+ print(f'checking where {args.split} split data are in training')
+ print(f'direction\tcommon_count\tsrc common\ttgt common\tfrom_size\tto_size')
+
+ for direction in directions:
+ src, tgt = direction.split('-')
+ from_src_file = f'{args.folder}/{args.split}.{src}-{tgt}.{src}'
+ from_tgt_file = f'{args.folder}/{args.split}.{src}-{tgt}.{tgt}'
+ if not os.path.exists(from_src_file):
+ # some test/valid data might in reverse directinos:
+ from_src_file = f'{args.folder}/{args.split}.{tgt}-{src}.{src}'
+ from_tgt_file = f'{args.folder}/{args.split}.{tgt}-{src}.{tgt}'
+ to_src_file = f'{args.folder}/train.{src}-{tgt}.{src}'
+ to_tgt_file = f'{args.folder}/train.{src}-{tgt}.{tgt}'
+ if not os.path.exists(to_src_file) or not os.path.exists(from_src_file):
+ continue
+ r = check_diff(from_src_file, from_tgt_file, to_src_file, to_tgt_file)
+ results.append(r)
+ print(f'{direction}\t', '\t'.join(map(str, r)))
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/multilingual/data_scripts/check_valid_test_overlaps.py b/fairseq/examples/multilingual/data_scripts/check_valid_test_overlaps.py
new file mode 100644
index 0000000000000000000000000000000000000000..40fa9aecdf9108e095feb3661236453c0f7ed7c4
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/check_valid_test_overlaps.py
@@ -0,0 +1,124 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import os
+import argparse
+import pandas as pd
+import sys
+
+
+WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None)
+
+if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip():
+ print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."')
+ sys.exit(-1)
+
+def load_langs(path):
+ with open(path) as fr:
+ langs = [l.strip() for l in fr]
+ return langs
+
+
+
+def load_sentences(raw_data, split, direction):
+ src, tgt = direction.split('-')
+ src_path = f"{raw_data}/{split}.{direction}.{src}"
+ tgt_path = f"{raw_data}/{split}.{direction}.{tgt}"
+ if os.path.exists(src_path) and os.path.exists(tgt_path):
+ return [(src, open(src_path).read().splitlines()), (tgt, open(tgt_path).read().splitlines())]
+ else:
+ return []
+
+def swap_direction(d):
+ src, tgt = d.split('-')
+ return f'{tgt}-{src}'
+
+def get_all_test_data(raw_data, directions, split='test'):
+ test_data = [
+ x
+ for dd in directions
+ for d in [dd, swap_direction(dd)]
+ for x in load_sentences(raw_data, split, d)
+ ]
+ # all_test_data = {s for _, d in test_data for s in d}
+ all_test_data = {}
+ for lang, d in test_data:
+ for s in d:
+ s = s.strip()
+ lgs = all_test_data.get(s, set())
+ lgs.add(lang)
+ all_test_data[s] = lgs
+ return all_test_data, test_data
+
+
+def check_train_sentences(src_path, tgt_path, direction, all_test_data, mess_up_train={}):
+ # src, tgt = direction.split('-')
+ print(f'check training data for {direction} in {src_path} and {tgt_path}')
+ size = 0
+ overlapped_size_counted_dup = 0
+ if not os.path.exists(tgt_path) or not os.path.exists(src_path):
+ return mess_up_train, size, overlapped_size_counted_dup
+
+ with open(src_path) as f, open(tgt_path) as g:
+ for src_line, tgt_line in zip(f, g):
+ s = src_line.strip()
+ t = tgt_line.strip()
+ size += 1
+ if s in all_test_data:
+ langs = mess_up_train.get(s, set())
+ langs.add(direction)
+ mess_up_train[s] = langs
+ overlapped_size_counted_dup += 1
+ if t in all_test_data:
+ langs = mess_up_train.get(t, set())
+ langs.add(direction)
+ mess_up_train[t] = langs
+ overlapped_size_counted_dup += 1
+ print(f'{direction}: size={size}, overlapped={overlapped_size_counted_dup}')
+ return mess_up_train, size, overlapped_size_counted_dup
+
+def check_train_all(raw_data, directions, all_test_data):
+ mess_up_train = {}
+ data_sizes = {}
+ # raw_data = '~chau/data-bin/MineBART/multilingual_mined_100M/en_XX/et_EE-en_XX/all.{en_XX, et_EE}'
+ print(f'checking training data againsts # {len(all_test_data)} sentences')
+ print(f'example test data: ', [s for i, s in enumerate(all_test_data.keys()) if i < 10])
+ for direction in directions:
+ src, tgt = direction.split('-')
+ path = f'{raw_data}/en_XX/{direction}/all'
+ src_path = f'{path}.{src}'
+ tgt_path = f'{path}.{tgt}'
+ print(f'checking {src_path} {tgt_path}')
+ _, size, overlapped_size_counted_dup = check_train_sentences(src_path, tgt_path, direction, all_test_data, mess_up_train)
+ data_sizes[direction] = (size, overlapped_size_counted_dup)
+ return mess_up_train, data_sizes
+
+
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--folder", type=str, required=True,
+ help="the data folder ")
+ parser.add_argument("--test-data", type=str, required=True,
+ help="the test data folder ")
+ parser.add_argument('--directions', type=str, default=None, required=False)
+
+ args = parser.parse_args()
+ directions = args.directions.split(',')
+ directions = sorted(set(directions))
+
+ results = []
+ # print(f'checking where {args.split} split data are in training')
+ # print(f'direction\tcommon_count\tsrc common\ttgt common\tfrom_size\tto_size')
+ raw_data = args.folder
+ all_test_data, test_data = get_all_test_data(args.test_data, directions, split='test')
+ mess_up_train, data_sizes = check_train_all(raw_data, directions, all_test_data)
+ print(data_sizes)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/multilingual/data_scripts/dedup_all.py b/fairseq/examples/multilingual/data_scripts/dedup_all.py
new file mode 100644
index 0000000000000000000000000000000000000000..ef39c05ee606aaeda1d9e94970932d2241a8b281
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/dedup_all.py
@@ -0,0 +1,52 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+
+import os
+import glob
+import argparse
+from utils.dedup import deup
+
+import sys
+WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None)
+
+if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip():
+ print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."')
+ sys.exit(-1)
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--from-folder", type=str, required=True,
+ help="the data folder to be dedup")
+ parser.add_argument("--to-folder", type=str, required=True,
+ help="the data folder to save deduped data")
+ parser.add_argument('--directions', type=str, default=None, required=False)
+
+ args = parser.parse_args()
+
+ if args.directions is None:
+ raw_files = glob.glob(f'{args.from_folder}/train*')
+
+ directions = [os.path.split(file_path)[-1].split('.')[1] for file_path in raw_files]
+ else:
+ directions = args.directions.split(',')
+ directions = sorted(set(directions))
+
+ for direction in directions:
+ src, tgt = direction.split('-')
+ src_file = f'{args.from_folder}/train.{src}-{tgt}.{src}'
+ tgt_file = f'{args.from_folder}/train.{src}-{tgt}.{tgt}'
+ src_file_out = f'{args.to_folder}/train.{src}-{tgt}.{src}'
+ tgt_file_out = f'{args.to_folder}/train.{src}-{tgt}.{tgt}'
+ assert src_file != src_file_out
+ assert tgt_file != tgt_file_out
+ print(f'deduping {src_file}, {tgt_file}')
+ deup(src_file, tgt_file, src_file_out, tgt_file_out)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/multilingual/data_scripts/download_ML50_v1.sh b/fairseq/examples/multilingual/data_scripts/download_ML50_v1.sh
new file mode 100644
index 0000000000000000000000000000000000000000..99fbc75920836a4b4bbdbd6b523749843288e450
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/download_ML50_v1.sh
@@ -0,0 +1,30 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+if [ -z $WORKDIR_ROOT ] ;
+then
+ echo "please specify your working directory root in environment variable WORKDIR_ROOT. Exitting..."
+ exit
+fi
+
+# first run download_wmt20.sh; it will install a few useful tools for other scripts
+# TODO: need to print out instructions on downloading a few files which requires manually authentication from the websites
+bash ./download_wmt20.sh
+
+python ./download_wmt19_and_before.py
+bash ./download_wat19_my.sh
+python ./download_ted_and_extract.py
+bash ./download_lotus.sh
+bash ./download_iitb.sh
+bash ./download_af_xh.sh
+
+
+# IWSLT downloading URLs have changed in between; TODO: fix them:
+bash ./download_iwslt_and_extract.sh
+
+# TODO: globalvoices URLs changed; need to be fixed
+bash ./download_flores_data.sh
diff --git a/fairseq/examples/multilingual/data_scripts/download_af_xh.sh b/fairseq/examples/multilingual/data_scripts/download_af_xh.sh
new file mode 100644
index 0000000000000000000000000000000000000000..a78fbbbbccb6f6ae005a1f03b97f083a2d958ebe
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/download_af_xh.sh
@@ -0,0 +1,164 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+# set -x -e
+
+if [ -z $WORKDIR_ROOT ] ;
+then
+ echo "please specify your working directory root in environment variable WORKDIR_ROOT. Exitting..."
+ exit
+fi
+
+
+# put intermediate files
+TMP_DIR=$WORKDIR_ROOT/temp/af_xhv2
+# output {train,valid,test} files to dest
+DEST=${WORKDIR_ROOT}/ML50/raw
+
+
+
+ROOT=${WORKDIR_ROOT}
+UTILS=$PWD/utils
+TMX2CORPUS="${UTILS}/tmx2corpus"
+TMX_TOOL="python ${TMX2CORPUS}/tmx2corpus.py"
+
+mkdir -p $TMP_DIR
+mkdir -p $DEST
+mkdir -p $UTILS
+
+function download_opus(){
+ src=$1
+ tgt=$2
+ subset=$3
+ ulr=$4
+
+ mkdir extract_$subset.$src-$tgt
+ pushd extract_$subset.$src-$tgt
+ if [ ! -f "$subset.$src-$tgt.tmx.gz" ]; then
+ wget $url -O "$subset.$src-$tgt.tmx.gz"
+ gzip -d "$subset.$src-$tgt.tmx.gz"
+ f=$subset.$src-$tgt.tmx
+ $TMX_TOOL $f
+ mv bitext.$src ../$subset.$src-$tgt.$src
+ mv bitext.$tgt ../$subset.$src-$tgt.$tgt
+ fi
+ popd
+}
+
+function concat_subsets(){
+ src=$1
+ tgt=$2
+ subsets=$3
+ src_train=raw_train.$src-$tgt.$src
+ tgt_train=raw_train.$src-$tgt.$tgt
+ > $src_train
+ > $tgt_train
+ for subset in $subsets; do
+ cat $subset.$src-$tgt.$src >> $src_train
+ cat $subset.$src-$tgt.$tgt >> $tgt_train
+ done
+}
+
+
+
+function get_seeded_random()
+{
+ seed="$1"
+ openssl enc -aes-256-ctr -pass pass:"$seed" -nosalt \
+ /dev/null
+}
+
+function split_train_valid(){
+ src=$1
+ tgt=$2
+ raw_src_train=raw_train.$src-$tgt.$src
+ raw_tgt_train=raw_train.$src-$tgt.$tgt
+
+ shuf --random-source=<(get_seeded_random 43) $raw_src_train > shuffled.$src-$tgt.$src
+ shuf --random-source=<(get_seeded_random 43) $raw_tgt_train > shuffled.$src-$tgt.$tgt
+
+ head -n 1500 shuffled.$src-$tgt.$src > valid.$src-$tgt.$src
+ head -n 1500 shuffled.$src-$tgt.$tgt > valid.$src-$tgt.$tgt
+
+ tail +1501 shuffled.$src-$tgt.$src > train.$src-$tgt.$src
+ tail +1501 shuffled.$src-$tgt.$tgt > train.$src-$tgt.$tgt
+}
+
+function copy2dst(){
+ lsrc=$1
+ ltgt=$2
+ src=${lsrc:0:2}
+ tgt=${ltgt:0:2}
+
+
+ cp valid.$src-$tgt.$src $DEST/valid.$lsrc-$ltgt.$lsrc
+ cp valid.$src-$tgt.$tgt $DEST/valid.$lsrc-$ltgt.$ltgt
+
+ cp train.$src-$tgt.$src $DEST/train.$lsrc-$ltgt.$lsrc
+ cp train.$src-$tgt.$tgt $DEST/train.$lsrc-$ltgt.$ltgt
+}
+
+
+
+
+#for xh-en
+declare -A xh_en_urls
+xh_en_urls=(
+ [Tatoeba]=https://object.pouta.csc.fi/OPUS-Tatoeba/v20190709/tmx/en-xh.tmx.gz
+ [wikimedia]=https://object.pouta.csc.fi/OPUS-wikimedia/v20190628/tmx/en-xh.tmx.gz
+ [memat]=https://object.pouta.csc.fi/OPUS-memat/v1/tmx/en-xh.tmx.gz
+ [uedin]=https://object.pouta.csc.fi/OPUS-bible-uedin/v1/tmx/en-xh.tmx.gz
+ [GNOME]=https://object.pouta.csc.fi/OPUS-GNOME/v1/tmx/en-xh.tmx.gz
+ [XhosaNavy]=https://object.pouta.csc.fi/OPUS-XhosaNavy/v1/tmx/en-xh.tmx.gz
+ [KDE4]=https://object.pouta.csc.fi/OPUS-KDE4/v2/tmx/en-xh.tmx.gz
+ [Ubuntu]=https://object.pouta.csc.fi/OPUS-Ubuntu/v14.10/tmx/en-xh.tmx.gz
+)
+
+mkdir $TMP_DIR/xh-en
+pushd $TMP_DIR/xh-en
+for k in "${!xh_en_urls[@]}"
+do
+ name=$k
+ url=${xh_en_urls[$k]}
+ echo "$name: $url"
+ download_opus xh en $name $ulr
+done
+concat_subsets xh en "${!xh_en_urls[@]}"
+split_train_valid xh en
+copy2dst xh_ZA en_XX
+popd
+
+
+##
+#for af-en
+declare -A af_en_urls
+af_en_urls=(
+ [Tatoeba]=https://object.pouta.csc.fi/OPUS-Tatoeba/v20190709/tmx/af-en.tmx.gz
+ [uedin]=https://object.pouta.csc.fi/OPUS-bible-uedin/v1/tmx/af-en.tmx.gz
+ [GNOME]=https://object.pouta.csc.fi/OPUS-GNOME/v1/tmx/af-en.tmx.gz
+ [QED]=https://object.pouta.csc.fi/OPUS-QED/v2.0a/tmx/af-en.tmx.gz
+ [KDE4]=https://object.pouta.csc.fi/OPUS-KDE4/v2/tmx/af-en.tmx.gz
+ [OpenSubtitles]=https://object.pouta.csc.fi/OPUS-OpenSubtitles/v2018/tmx/af-en.tmx.gz
+ [SPC]=https://object.pouta.csc.fi/OPUS-SPC/v1/tmx/af-en.tmx.gz
+ [Ubuntu]=https://object.pouta.csc.fi/OPUS-Ubuntu/v14.10/tmx/af-en.tmx.gz
+)
+
+mkdir $TMP_DIR/af-en
+pushd $TMP_DIR/af-en
+for k in "${!af_en_urls[@]}"
+do
+ name=$k
+ url=${af_en_urls[$k]}
+ echo "$name: $url"
+ download_opus af en $name $ulr
+done
+concat_subsets af en "${!af_en_urls[@]}"
+split_train_valid af en
+copy2dst af_ZA en_XX
+popd
+
+
diff --git a/fairseq/examples/multilingual/data_scripts/download_flores_data.sh b/fairseq/examples/multilingual/data_scripts/download_flores_data.sh
new file mode 100644
index 0000000000000000000000000000000000000000..e6175ce0c38b06a1ebddaeca808f71b47f77f500
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/download_flores_data.sh
@@ -0,0 +1,246 @@
+#!/bin/bash
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+#
+
+if [ -z $WORKDIR_ROOT ] ;
+then
+ echo "please specify your working directory root in environment variable WORKDIR_ROOT. Exitting..."
+ exit
+fi
+
+
+set -e
+set -o pipefail
+
+SRC=en
+SI_TGT=si
+NE_TGT=ne
+
+DESTDIR=${WORKDIR_ROOT}/ML50/raw/
+
+ROOT=${WORKDIR_ROOT}/tmp
+mkdir -p $ROOT
+DATA=$ROOT/data
+NE_ROOT=$DATA/all-clean-ne
+SI_ROOT=$DATA/all-clean-si
+
+mkdir -p $DATA $NE_ROOT $SI_ROOT
+
+SI_OPUS_DATASETS=(
+ "$SI_ROOT/GNOME.en-si"
+ "$SI_ROOT/Ubuntu.en-si"
+ "$SI_ROOT/KDE4.en-si"
+ "$SI_ROOT/OpenSubtitles.en-si"
+)
+
+SI_OPUS_URLS=(
+ "https://object.pouta.csc.fi/OPUS-GNOME/v1/moses/en-si.txt.zip"
+ "https://object.pouta.csc.fi/OPUS-Ubuntu/v14.10/moses/en-si.txt.zip"
+ "https://object.pouta.csc.fi/OPUS-KDE4/v2/moses/en-si.txt.zip"
+ "https://object.pouta.csc.fi/OPUS-OpenSubtitles/v2018/moses/en-si.txt.zip"
+)
+
+NE_OPUS_DATASETS=(
+ "$NE_ROOT/GNOME.en-ne"
+ "$NE_ROOT/Ubuntu.en-ne"
+ "$NE_ROOT/KDE4.en-ne"
+)
+
+NE_OPUS_URLS=(
+ "https://object.pouta.csc.fi/OPUS-GNOME/v1/moses/en-ne.txt.zip"
+ "https://object.pouta.csc.fi/OPUS-Ubuntu/v14.10/moses/en-ne.txt.zip"
+ "https://object.pouta.csc.fi/OPUS-KDE4/v2/moses/en-ne.txt.zip"
+)
+
+REMOVE_FILE_PATHS=()
+
+# Download data
+download_data() {
+ CORPORA=$1
+ URL=$2
+
+ if [ -f $CORPORA ]; then
+ echo "$CORPORA already exists, skipping download"
+ else
+ echo "Downloading $URL"
+ wget $URL -O $CORPORA --no-check-certificate || rm -f $CORPORA
+ if [ -f $CORPORA ]; then
+ echo "$URL successfully downloaded."
+ else
+ echo "$URL not successfully downloaded."
+ rm -f $CORPORA
+ exit -1
+ fi
+ fi
+}
+
+# Example: download_opus_data $LANG_ROOT $TGT
+download_opus_data() {
+ LANG_ROOT=$1
+ TGT=$2
+
+ if [ "$TGT" = "si" ]; then
+ URLS=("${SI_OPUS_URLS[@]}")
+ DATASETS=("${SI_OPUS_DATASETS[@]}")
+ else
+ URLS=("${NE_OPUS_URLS[@]}")
+ DATASETS=("${NE_OPUS_DATASETS[@]}")
+ fi
+
+ # Download and extract data
+ for ((i=0;i<${#URLS[@]};++i)); do
+ URL=${URLS[i]}
+ CORPORA=${DATASETS[i]}
+
+ download_data $CORPORA $URL
+ unzip -o $CORPORA -d $LANG_ROOT
+ REMOVE_FILE_PATHS+=( $CORPORA $CORPORA.xml $CORPORA.ids $LANG_ROOT/README $LANG_ROOT/LICENSE )
+ done
+
+ cat ${DATASETS[0]}.$SRC ${DATASETS[1]}.$SRC ${DATASETS[2]}.$SRC > $LANG_ROOT/GNOMEKDEUbuntu.$SRC-$TGT.$SRC
+ cat ${DATASETS[0]}.$TGT ${DATASETS[1]}.$TGT ${DATASETS[2]}.$TGT > $LANG_ROOT/GNOMEKDEUbuntu.$SRC-$TGT.$TGT
+
+ REMOVE_FILE_PATHS+=( ${DATASETS[0]}.$SRC ${DATASETS[1]}.$SRC ${DATASETS[2]}.$SRC )
+ REMOVE_FILE_PATHS+=( ${DATASETS[0]}.$TGT ${DATASETS[1]}.$TGT ${DATASETS[2]}.$TGT )
+}
+
+download_opus_data $SI_ROOT $SI_TGT
+cp ${SI_OPUS_DATASETS[3]}.$SRC $SI_ROOT/OpenSubtitles2018.$SRC-$SI_TGT.$SRC
+cp ${SI_OPUS_DATASETS[3]}.$SI_TGT $SI_ROOT/OpenSubtitles2018.$SRC-$SI_TGT.$SI_TGT
+REMOVE_FILE_PATHS+=( ${SI_OPUS_DATASETS[3]}.$SRC ${SI_OPUS_DATASETS[3]}.$SI_TGT )
+
+download_opus_data $NE_ROOT $NE_TGT
+
+
+# Download and extract Global Voices data
+GLOBAL_VOICES="$NE_ROOT/globalvoices.2018q4.ne-en"
+GLOBAL_VOICES_URL="http://www.casmacat.eu/corpus/global-voices/globalvoices.ne-en.xliff.gz"
+
+download_data $GLOBAL_VOICES.gz $GLOBAL_VOICES_URL
+gunzip -Nf $GLOBAL_VOICES.gz
+
+sed -ne 's?.*\(.*\) .*?\1?p' $GLOBAL_VOICES > $GLOBAL_VOICES.$NE_TGT
+sed -ne 's?.*]*>\(.*\) .*?\1?p' $GLOBAL_VOICES > $GLOBAL_VOICES.$SRC
+
+REMOVE_FILE_PATHS+=( $GLOBAL_VOICES )
+
+# Download and extract the bible dataset
+BIBLE_TOOLS=bible-corpus-tools
+XML_BIBLES=XML_Bibles
+XML_BIBLES_DUP=XML_Bibles_dup
+
+if [ ! -e $BIBLE_TOOLS ]; then
+ echo "Cloning bible-corpus-tools repository..."
+ git clone https://github.com/christos-c/bible-corpus-tools.git
+fi
+
+mkdir -p $BIBLE_TOOLS/bin $XML_BIBLES $XML_BIBLES_DUP
+javac -cp "$BIBLE_TOOLS/lib/*" -d $BIBLE_TOOLS/bin $BIBLE_TOOLS/src/bible/readers/*.java $BIBLE_TOOLS/src/bible/*.java
+
+download_data bible.tar.gz "https://github.com/christos-c/bible-corpus/archive/v1.2.1.tar.gz"
+tar xvzf bible.tar.gz
+
+cp bible-corpus-1.2.1/bibles/{Greek.xml,English.xml,Nepali.xml} $XML_BIBLES/
+cp bible-corpus-1.2.1/bibles/{Greek.xml,English-WEB.xml,Nepali.xml} $XML_BIBLES_DUP/
+
+java -cp $BIBLE_TOOLS/lib/*:$BIBLE_TOOLS/bin bible.CreateMLBooks $XML_BIBLES
+java -cp $BIBLE_TOOLS/lib/*:$BIBLE_TOOLS/bin bible.CreateMLBooks $XML_BIBLES_DUP
+java -cp $BIBLE_TOOLS/lib/*:$BIBLE_TOOLS/bin bible.CreateVerseAlignedBooks $XML_BIBLES
+java -cp $BIBLE_TOOLS/lib/*:$BIBLE_TOOLS/bin bible.CreateVerseAlignedBooks $XML_BIBLES_DUP
+
+cat $XML_BIBLES/aligned/*/English.txt > $NE_ROOT/bible.$SRC-$NE_TGT.$SRC
+cat $XML_BIBLES/aligned/*/Nepali.txt > $NE_ROOT/bible.$SRC-$NE_TGT.$NE_TGT
+cat $XML_BIBLES_DUP/aligned/*/English-WEB.txt > $NE_ROOT/bible_dup.$SRC-$NE_TGT.$SRC
+cat $XML_BIBLES_DUP/aligned/*/Nepali.txt > $NE_ROOT/bible_dup.$SRC-$NE_TGT.$NE_TGT
+REMOVE_FILE_PATHS+=( bible-corpus-1.2.1 bible.tar.gz $BIBLE_TOOLS $XML_BIBLES $XML_BIBLES_DUP )
+
+# Download and extract the Penn Treebank dataset
+NE_TAGGED=$ROOT/new_submissions_parallel_corpus_project_Nepal
+NE_TAGGED_URL="http://www.cle.org.pk/Downloads/ling_resources/parallelcorpus/NepaliTaggedCorpus.zip"
+EN_TAGGED_PATCH_URL="https://dl.fbaipublicfiles.com/fairseq/data/nepali-penn-treebank.en.patch"
+NE_TAGGED_PATCH_URL="https://dl.fbaipublicfiles.com/fairseq/data/nepali-penn-treebank.ne.patch"
+MOSES=mosesdecoder
+MOSES_TOK=$MOSES/scripts/tokenizer
+EN_PATCH_REGEX="{s:\\\/:\/:g;s/\*\T\*\-\n+//g;s/\-LCB\-/\{/g;s/\-RCB\-/\}/g; s/\-LSB\-/\[/g; s/\-RSB\-/\]/g;s/\-LRB\-/\(/g; s/\-RRB\-/\)/g; s/\'\'/\"/g; s/\`\`/\"/g; s/\ +\'s\ +/\'s /g; s/\ +\'re\ +/\'re /g; s/\"\ +/\"/g; s/\ +\"/\"/g; s/\ n't([\ \.\"])/n't\1/g; s/\r+(.)/\1/g;}"
+NE_PATCH_REGEX="{s:\p{Cf}::g;s:\\\/:\/:g;s/\*\T\*\-\n+//g;s/\-LCB\-/\{/g;s/\-RCB\-/\}/g; s/\-LSB\-/\[/g; s/\-RSB\-/\]/g;s/\-LRB\-/\(/g; s/\-RRB\-/\)/g; s/\'\'/\"/g; s/\`\`/\"/g; s/\ +\'s\ +/\'s /g; s/\ +\'re\ +/\'re /g; s/\"\ +/\"/g; s/\ +\"/\"/g; s/\ n't([\ \.\"])/n't\1/g; s/\r+(.)/\1/g;}"
+
+download_data $DATA/nepali-penn-treebank.$SRC.patch $EN_TAGGED_PATCH_URL
+download_data $DATA/nepali-penn-treebank.$NE_TGT.patch $NE_TAGGED_PATCH_URL
+download_data original.zip $NE_TAGGED_URL
+unzip -o original.zip -d $ROOT
+
+cat $NE_TAGGED/00.txt $NE_TAGGED/01.txt $NE_TAGGED/02.txt > $NE_TAGGED/nepali-penn-treebank.$SRC
+cat $NE_TAGGED/00ne_revised.txt $NE_TAGGED/01ne_revised.txt $NE_TAGGED/02ne_revised.txt > $NE_TAGGED/nepali-penn-treebank.$NE_TGT
+
+patch $NE_TAGGED/nepali-penn-treebank.$SRC -i $DATA/nepali-penn-treebank.$SRC.patch -o $NE_TAGGED/nepali-penn-treebank-patched.$SRC
+patch $NE_TAGGED/nepali-penn-treebank.$NE_TGT -i $DATA/nepali-penn-treebank.$NE_TGT.patch -o $NE_TAGGED/nepali-penn-treebank-patched.$NE_TGT
+
+if [ ! -e $MOSES ]; then
+ echo "Cloning moses repository..."
+ git clone https://github.com/moses-smt/mosesdecoder.git
+fi
+
+cat $NE_TAGGED/nepali-penn-treebank-patched.$SRC | \
+ perl -anpe "$EN_PATCH_REGEX" | \
+ $MOSES_TOK/tokenizer.perl -l $SRC | \
+ $MOSES_TOK/detokenizer.perl -l $SRC > $NE_ROOT/nepali-penn-treebank.$SRC
+
+cat $NE_TAGGED/nepali-penn-treebank-patched.$NE_TGT | \
+ perl -CIO -anpe "$NE_PATCH_REGEX" | \
+ $MOSES_TOK/detokenizer.perl -l $SRC > $NE_ROOT/nepali-penn-treebank.$NE_TGT
+
+
+# Download nepali dictionary data
+NE_DICT=$NE_ROOT/dictionaries
+download_data $NE_DICT "http://www.seas.upenn.edu/~nlp/resources/TACL-data-release/dictionaries.tar.gz"
+tar xvzf $NE_DICT
+cp dictionaries/dict.ne $NE_ROOT/dictionary.$NE_TGT-$SRC
+REMOVE_FILE_PATHS+=( $NE_DICT dictionaries )
+
+REMOVE_FILE_PATHS+=( $MOSES $NE_TAGGED original.zip $DATA/nepali-penn-treebank.$SRC.patch $DATA/nepali-penn-treebank.$NE_TGT.patch )
+
+
+# Remove the temporary files
+for ((i=0;i<${#REMOVE_FILE_PATHS[@]};++i)); do
+ rm -rf ${REMOVE_FILE_PATHS[i]}
+done
+
+# Copy the training data
+si=si_LK
+ne=ne_NP
+en=en_XX
+cat $SI_ROOT/GNOMEKDEUbuntu.en-si.si $SI_ROOT/OpenSubtitles2018.en-si.si > $DESTDIR/train.$si-$en.$si
+cat $SI_ROOT/GNOMEKDEUbuntu.en-si.en $SI_ROOT/OpenSubtitles2018.en-si.en > $DESTDIR/train.$si-$en.$en
+
+cat $NE_ROOT/bible_dup.en-ne.ne $NE_ROOT/bible.en-ne.ne $NE_ROOT/globalvoices.2018q4.ne-en.ne $NE_ROOT/GNOMEKDEUbuntu.en-ne.ne $NE_ROOT/nepali-penn-treebank.ne > $DESTDIR/train.$ne-$en.$ne
+cat $NE_ROOT/bible_dup.en-ne.en $NE_ROOT/bible.en-ne.en $NE_ROOT/globalvoices.2018q4.ne-en.en $NE_ROOT/GNOMEKDEUbuntu.en-ne.en $NE_ROOT/nepali-penn-treebank.en > $DESTDIR/train.$ne-$en.$en
+
+
+#Download the test sets
+wget https://github.com/facebookresearch/flores/raw/master/data/wikipedia_en_ne_si_test_sets.tgz
+tar -xvzf wikipedia_en_ne_si_test_sets.tgz
+
+cp wikipedia_en_ne_si_test_sets/wikipedia.dev.ne-en.ne $DESTDIR/valid.$ne-$en.$ne
+cp wikipedia_en_ne_si_test_sets/wikipedia.dev.ne-en.en $DESTDIR/valid.$ne-$en.$en
+
+cp wikipedia_en_ne_si_test_sets/wikipedia.dev.si-en.si $DESTDIR/valid.$si-$en.$si
+cp wikipedia_en_ne_si_test_sets/wikipedia.dev.si-en.en $DESTDIR/valid.$si-$en.$en
+
+cp wikipedia_en_ne_si_test_sets/wikipedia.devtest.ne-en.ne $DESTDIR/devtest.$ne-$en.$ne
+cp wikipedia_en_ne_si_test_sets/wikipedia.devtest.ne-en.en $DESTDIR/devtest.$ne-$en.$en
+
+cp wikipedia_en_ne_si_test_sets/wikipedia.devtest.si-en.si $DESTDIR/devtest.$si-$en.$si
+cp wikipedia_en_ne_si_test_sets/wikipedia.devtest.si-en.en $DESTDIR/devtest.$si-$en.$en
+
+cp wikipedia_en_ne_si_test_sets/wikipedia.test.ne-en.ne $DESTDIR/test.$ne-$en.$ne
+cp wikipedia_en_ne_si_test_sets/wikipedia.test.ne-en.en $DESTDIR/test.$ne-$en.$en
+
+cp wikipedia_en_ne_si_test_sets/wikipedia.test.si-en.si $DESTDIR/test.$si-$en.$si
+cp wikipedia_en_ne_si_test_sets/wikipedia.test.si-en.en $DESTDIR/test.$si-$en.$en
+
+rm -rf wikipedia_en_ne_si_test_sets.tgz wikipedia_en_ne_si_test_sets
diff --git a/fairseq/examples/multilingual/data_scripts/download_iitb.sh b/fairseq/examples/multilingual/data_scripts/download_iitb.sh
new file mode 100644
index 0000000000000000000000000000000000000000..a884e20839e2a41a57405cb6af362e37bd16ab6f
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/download_iitb.sh
@@ -0,0 +1,35 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+if [ -z $WORKDIR_ROOT ] ;
+then
+ echo "please specify your working directory root in environment variable WORKDIR_ROOT. Exitting..."
+ exit
+fi
+
+IITB=$WORKDIR_ROOT/IITB
+mkdir -p $IITB
+pushd $IITB
+
+wget http://www.cfilt.iitb.ac.in/~moses/iitb_en_hi_parallel/iitb_corpus_download/parallel.tgz
+tar -xvzf parallel.tgz
+
+wget http://www.cfilt.iitb.ac.in/~moses/iitb_en_hi_parallel/iitb_corpus_download/dev_test.tgz
+tar -xvzf dev_test.tgz
+
+DESTDIR=${WORKDIR_ROOT}/ML50/raw/
+
+cp parallel/IITB.en-hi.en $DESTDIR/train.hi_IN-en_XX.en_XX
+cp parallel/IITB.en-hi.hi $DESTDIR/train.hi_IN-en_XX.hi_IN
+
+cp dev_test/dev.en $DESTDIR/valid.hi_IN-en_XX.en_XX
+cp dev_test/dev.hi $DESTDIR/valid.hi_IN-en_XX.hi_IN
+
+cp dev_test/test.en $DESTDIR/test.hi_IN-en_XX.en_XX
+cp dev_test/test.hi $DESTDIR/test.hi_IN-en_XX.hi_IN
+popd
\ No newline at end of file
diff --git a/fairseq/examples/multilingual/data_scripts/download_iwslt_and_extract.sh b/fairseq/examples/multilingual/data_scripts/download_iwslt_and_extract.sh
new file mode 100644
index 0000000000000000000000000000000000000000..ca3591b3db1715f136773d62e4b9b9ede97d436c
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/download_iwslt_and_extract.sh
@@ -0,0 +1,225 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+#echo 'Cloning Moses github repository (for tokenization scripts)...'
+#git clone https://github.com/moses-smt/mosesdecoder.git
+
+if [ -z $WORKDIR_ROOT ] ;
+then
+ echo "please specify your working directory root in environment variable WORKDIR_ROOT. Exitting..."
+ exit
+fi
+
+
+
+data_root=${WORKDIR_ROOT}/iwsltv2
+DESTDIR=${WORKDIR_ROOT}/ML50/raw
+
+
+langs="ar_AR it_IT nl_XX ko_KR vi_VN"
+echo "data_root: $data_root"
+
+download_path=${data_root}/downloads
+raw=${DESTDIR}
+tmp=${data_root}/tmp
+orig=${data_root}/orig
+
+mkdir -p $download_path $orig $raw $tmp
+#######################
+download_iwslt(){
+ iwslt_key=$1
+ src=$2
+ tgt=$3
+ save_prefix=$4
+ pushd ${download_path}
+ if [[ ! -f ${save_prefix}$src-$tgt.tgz ]]; then
+ wget https://wit3.fbk.eu/archive/${iwslt_key}/texts/$src/$tgt/$src-$tgt.tgz -O ${save_prefix}$src-$tgt.tgz
+ [ $? -eq 0 ] && return 0
+ fi
+ popd
+}
+
+extract_iwslt(){
+ src=$1
+ tgt=$2
+ prefix=$3
+ pushd $orig
+ tar zxvf ${download_path}/${prefix}$src-${tgt}.tgz
+ popd
+}
+
+generate_train(){
+ lsrc=$1
+ ltgt=$2
+ src=${lsrc:0:2}
+ tgt=${ltgt:0:2}
+ for ll in $lsrc $ltgt; do
+ l=${ll:0:2}
+ f="$orig/*/train.tags.$src-$tgt.$l"
+ f_raw=$raw/train.$lsrc-$ltgt.$ll
+ cat $f \
+ | grep -v '' \
+ | grep -v '' \
+ | grep -v '' \
+ | grep -v '' \
+ | grep -v '' \
+ | sed -e 's///g' \
+ | sed -e 's/<\/title>//g' \
+ | sed -e 's///g' \
+ | sed -e 's/<\/description>//g' \
+ | sed 's/^\s*//g' \
+ | sed 's/\s*$//g' \
+ > $f_raw
+ [ $? -eq 0 ] && echo "extracted $f to $f_raw"
+ done
+ return 0
+}
+
+convert_valid_test(){
+ src=$1
+ tgt=$2
+ for l in $src $tgt; do
+ echo "lang: ${l}"
+ for o in `ls $orig/*/IWSLT*.TED*.$src-$tgt.$l.xml`; do
+ fname=${o##*/}
+ f=$tmp/${fname%.*}
+ echo "$o => $f"
+ grep '\s*//g' \
+ | sed -e 's/\s*<\/seg>\s*//g' \
+ | sed -e "s/\’/\'/g" \
+ > $f
+ echo ""
+ done
+ done
+}
+
+generate_subset(){
+ lsrc=$1
+ ltgt=$2
+ src=${lsrc:0:2}
+ tgt=${ltgt:0:2}
+ subset=$3
+ prefix=$4
+ for ll in $lsrc $ltgt; do
+ l=${ll:0:2}
+ f=$tmp/$prefix.${src}-${tgt}.$l
+ if [[ -f $f ]]; then
+ cp $f $raw/$subset.${lsrc}-$ltgt.${ll}
+ fi
+ done
+}
+#################
+
+echo "downloading iwslt training and dev data"
+# using multilingual for it, nl
+download_iwslt "2017-01-trnmted" DeEnItNlRo DeEnItNlRo
+download_iwslt "2017-01-trnted" ar en
+download_iwslt "2017-01-trnted" en ar
+download_iwslt "2017-01-trnted" ko en
+download_iwslt "2017-01-trnted" en ko
+download_iwslt "2015-01" vi en
+download_iwslt "2015-01" en vi
+
+echo "donwloading iwslt test data"
+download_iwslt "2017-01-mted-test" it en "test."
+download_iwslt "2017-01-mted-test" en it "test."
+download_iwslt "2017-01-mted-test" nl en "test."
+download_iwslt "2017-01-mted-test" en nl "test."
+
+download_iwslt "2017-01-ted-test" ar en "test."
+download_iwslt "2017-01-ted-test" en ar "test."
+download_iwslt "2017-01-ted-test" ko en "test."
+download_iwslt "2017-01-ted-test" en ko "test."
+download_iwslt "2015-01-test" vi en "test."
+download_iwslt "2015-01-test" en vi "test."
+
+echo "extract training data tar balls"
+extract_iwslt DeEnItNlRo DeEnItNlRo
+extract_iwslt ar en
+extract_iwslt en ar
+extract_iwslt ko en
+extract_iwslt en ko
+extract_iwslt vi en
+extract_iwslt en vi
+
+
+echo "extracting iwslt test data"
+for lang in $langs; do
+ l=${lang:0:2}
+ extract_iwslt $l en "test."
+ extract_iwslt en $l "test."
+done
+
+echo "convert dev and test data"
+for lang in $langs; do
+ s_lang=${lang:0:2}
+ convert_valid_test $s_lang en
+ convert_valid_test en $s_lang
+done
+
+
+
+echo "creating training data into $raw"
+for lang in $langs; do
+ generate_train $lang en_XX
+ generate_train en_XX $lang
+done
+
+echo "creating iwslt dev data into raw"
+generate_subset en_XX vi_VN valid "IWSLT15.TED.tst2013"
+generate_subset vi_VN en_XX valid "IWSLT15.TED.tst2013"
+
+generate_subset en_XX ar_AR valid "IWSLT17.TED.tst2016"
+generate_subset ar_AR en_XX valid "IWSLT17.TED.tst2016"
+generate_subset en_XX ko_KR valid "IWSLT17.TED.tst2016"
+generate_subset ko_KR en_XX valid "IWSLT17.TED.tst2016"
+
+
+generate_subset en_XX it_IT valid "IWSLT17.TED.tst2010"
+generate_subset it_IT en_XX valid "IWSLT17.TED.tst2010"
+generate_subset en_XX nl_XX valid "IWSLT17.TED.tst2010"
+generate_subset nl_XX en_XX valid "IWSLT17.TED.tst2010"
+
+echo "creating iswslt test data into raw"
+generate_subset en_XX vi_VN test "IWSLT15.TED.tst2015"
+generate_subset vi_VN en_XX test "IWSLT15.TED.tst2015"
+
+generate_subset en_XX ar_AR test "IWSLT17.TED.tst2017"
+generate_subset ar_AR en_XX test "IWSLT17.TED.tst2017"
+generate_subset en_XX ko_KR test "IWSLT17.TED.tst2017"
+generate_subset ko_KR en_XX test "IWSLT17.TED.tst2017"
+
+generate_subset en_XX it_IT test "IWSLT17.TED.tst2017.mltlng"
+generate_subset it_IT en_XX test "IWSLT17.TED.tst2017.mltlng"
+generate_subset en_XX nl_XX test "IWSLT17.TED.tst2017.mltlng"
+generate_subset nl_XX en_XX test "IWSLT17.TED.tst2017.mltlng"
+
+# normalze iwslt directions into x-en
+pushd $raw
+for lang in $langs; do
+ for split in test valid; do
+ x_en_f1=$split.$lang-en_XX.en_XX
+ x_en_f2=$split.$lang-en_XX.${lang}
+
+ en_x_f1=$split.en_XX-$lang.en_XX
+ en_x_f2=$split.en_XX-$lang.${lang}
+
+ if [ -f $en_x_f1 ] && [ ! -f $x_en_f1 ]; then
+ echo "cp $en_x_f1 $x_en_f1"
+ cp $en_x_f1 $x_en_f1
+ fi
+ if [ -f $x_en_f2 ] && [ ! -f $x_en_f2 ]; then
+ echo "cp $en_x_f2 $x_en_f2"
+ cp $en_x_f2 $x_en_f2
+ fi
+ done
+done
+popd
\ No newline at end of file
diff --git a/fairseq/examples/multilingual/data_scripts/download_lotus.sh b/fairseq/examples/multilingual/data_scripts/download_lotus.sh
new file mode 100644
index 0000000000000000000000000000000000000000..c08c701314a8e575637deff78381ab02c2ef6728
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/download_lotus.sh
@@ -0,0 +1,46 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+if [ -z $WORKDIR_ROOT ] ;
+then
+ echo "please specify your working directory root in environment variable WORKDIR_ROOT. Exitting..."
+ exit
+fi
+
+
+SRCDIR=$WORKDIR_ROOT/indic_languages_corpus
+DESTDIR=${WORKDIR_ROOT}/ML50/raw/
+mkdir -p $SRCDIR
+mkdir -p $DESTDIR
+
+cd $SRCDIR
+wget http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/indic_languages_corpus.tar.gz
+tar -xvzf indic_languages_corpus.tar.gz
+
+SRC_EXTRACT_DIR=$SRCDIR/indic_languages_corpus/bilingual
+
+cp $SRC_EXTRACT_DIR/ml-en/train.ml $DESTDIR/train.ml_IN-en_XX.ml_IN
+cp $SRC_EXTRACT_DIR/ml-en/train.en $DESTDIR/train.ml_IN-en_XX.en_XX
+cp $SRC_EXTRACT_DIR/ml-en/dev.ml $DESTDIR/valid.ml_IN-en_XX.ml_IN
+cp $SRC_EXTRACT_DIR/ml-en/dev.en $DESTDIR/valid.ml_IN-en_XX.en_XX
+cp $SRC_EXTRACT_DIR/ml-en/test.ml $DESTDIR/test.ml_IN-en_XX.ml_IN
+cp $SRC_EXTRACT_DIR/ml-en/test.en $DESTDIR/test.ml_IN-en_XX.en_XX
+
+cp $SRC_EXTRACT_DIR/ur-en/train.ur $DESTDIR/train.ur_PK-en_XX.ur_PK
+cp $SRC_EXTRACT_DIR/ur-en/train.en $DESTDIR/train.ur_PK-en_XX.en_XX
+cp $SRC_EXTRACT_DIR/ur-en/dev.ur $DESTDIR/valid.ur_PK-en_XX.ur_PK
+cp $SRC_EXTRACT_DIR/ur-en/dev.en $DESTDIR/valid.ur_PK-en_XX.en_XX
+cp $SRC_EXTRACT_DIR/ur-en/test.ur $DESTDIR/test.ur_PK-en_XX.ur_PK
+cp $SRC_EXTRACT_DIR/ur-en/test.en $DESTDIR/test.ur_PK-en_XX.en_XX
+
+cp $SRC_EXTRACT_DIR/te-en/train.te $DESTDIR/train.te_IN-en_XX.te_IN
+cp $SRC_EXTRACT_DIR/te-en/train.en $DESTDIR/train.te_IN-en_XX.en_XX
+cp $SRC_EXTRACT_DIR/te-en/dev.te $DESTDIR/valid.te_IN-en_XX.te_IN
+cp $SRC_EXTRACT_DIR/te-en/dev.en $DESTDIR/valid.te_IN-en_XX.en_XX
+cp $SRC_EXTRACT_DIR/te-en/test.te $DESTDIR/test.te_IN-en_XX.te_IN
+cp $SRC_EXTRACT_DIR/te-en/test.en $DESTDIR/test.te_IN-en_XX.en_XX
diff --git a/fairseq/examples/multilingual/data_scripts/download_ted_and_extract.py b/fairseq/examples/multilingual/data_scripts/download_ted_and_extract.py
new file mode 100644
index 0000000000000000000000000000000000000000..eb756680fa7dc31a14ba45c216776a6d60c16b60
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/download_ted_and_extract.py
@@ -0,0 +1,338 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import itertools
+import os
+import csv
+from collections import defaultdict
+from six.moves import zip
+import io
+import wget
+import sys
+
+from subprocess import check_call, check_output
+
+# scripts and data locations
+CWD = os.getcwd()
+UTILS = f"{CWD}/utils"
+
+MOSES = f"{UTILS}/mosesdecoder"
+
+WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None)
+
+if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip():
+ print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."')
+ sys.exit(-1)
+
+
+# please donwload mosesdecoder here:
+detok_cmd = f'{MOSES}/scripts/tokenizer/detokenizer.perl'
+
+
+def call(cmd):
+ print(f"Executing: {cmd}")
+ check_call(cmd, shell=True)
+
+class MultiLingualAlignedCorpusReader(object):
+ """A class to read TED talk dataset
+ """
+
+ def __init__(self, corpus_path, delimiter='\t',
+ target_token=True, bilingual=True, corpus_type='file',
+ lang_dict={'source': ['fr'], 'target': ['en']},
+ eval_lang_dict=None, zero_shot=False,
+ detok=True,
+ ):
+
+ self.empty_line_flag = 'NULL'
+ self.corpus_path = corpus_path
+ self.delimiter = delimiter
+ self.bilingual = bilingual
+ self.lang_dict = lang_dict
+ self.lang_set = set()
+ self.target_token = target_token
+ self.zero_shot = zero_shot
+ self.eval_lang_dict = eval_lang_dict
+ self.corpus_type = corpus_type
+ self.detok = detok
+
+ for list_ in self.lang_dict.values():
+ for lang in list_:
+ self.lang_set.add(lang)
+
+ self.data = dict()
+ self.data['train'] = self.read_aligned_corpus(split_type='train')
+ self.data['test'] = self.read_aligned_corpus(split_type='test')
+ self.data['dev'] = self.read_aligned_corpus(split_type='dev')
+
+ def read_data(self, file_loc_):
+ data_list = list()
+ with io.open(file_loc_, 'r', encoding='utf8') as fp:
+ for line in fp:
+ try:
+ text = line.strip()
+ except IndexError:
+ text = self.empty_line_flag
+ data_list.append(text)
+ return data_list
+
+ def filter_text(self, dict_):
+ if self.target_token:
+ field_index = 1
+ else:
+ field_index = 0
+ data_dict = defaultdict(list)
+ list1 = dict_['source']
+ list2 = dict_['target']
+ for sent1, sent2 in zip(list1, list2):
+ try:
+ src_sent = ' '.join(sent1.split()[field_index: ])
+ except IndexError:
+ src_sent = 'NULL'
+
+ if src_sent.find(self.empty_line_flag) != -1 or len(src_sent) == 0:
+ continue
+
+ elif sent2.find(self.empty_line_flag) != -1 or len(sent2) == 0:
+ continue
+
+ else:
+ data_dict['source'].append(sent1)
+ data_dict['target'].append(sent2)
+ return data_dict
+
+ def read_file(self, split_type, data_type):
+ return self.data[split_type][data_type]
+
+ def save_file(self, path_, split_type, data_type, lang):
+ tok_file = tok_file_name(path_, lang)
+ with io.open(tok_file, 'w', encoding='utf8') as fp:
+ for line in self.data[split_type][data_type]:
+ fp.write(line + '\n')
+ if self.detok:
+ de_tok(tok_file, lang)
+
+ def add_target_token(self, list_, lang_id):
+ new_list = list()
+ token = '__' + lang_id + '__'
+ for sent in list_:
+ new_list.append(token + ' ' + sent)
+ return new_list
+
+ def read_from_single_file(self, path_, s_lang, t_lang):
+ data_dict = defaultdict(list)
+ with io.open(path_, 'r', encoding='utf8') as fp:
+ reader = csv.DictReader(fp, delimiter='\t', quoting=csv.QUOTE_NONE)
+ for row in reader:
+ data_dict['source'].append(row[s_lang])
+ data_dict['target'].append(row[t_lang])
+
+ if self.target_token:
+ text = self.add_target_token(data_dict['source'], t_lang)
+ data_dict['source'] = text
+
+ return data_dict['source'], data_dict['target']
+
+ def read_aligned_corpus(self, split_type='train'):
+ data_dict = defaultdict(list)
+ iterable = []
+ s_list = []
+ t_list = []
+
+ if self.zero_shot:
+ if split_type == "train":
+ iterable = zip(self.lang_dict['source'], self.lang_dict['target'])
+ else:
+ iterable = zip(self.eval_lang_dict['source'], self.eval_lang_dict['target'])
+
+ elif self.bilingual:
+ iterable = itertools.product(self.lang_dict['source'], self.lang_dict['target'])
+
+ for s_lang, t_lang in iterable:
+ if s_lang == t_lang:
+ continue
+ if self.corpus_type == 'file':
+ split_type_file_path = os.path.join(self.corpus_path,
+ "all_talks_{}.tsv".format(split_type))
+ s_list, t_list = self.read_from_single_file(split_type_file_path,
+ s_lang=s_lang,
+ t_lang=t_lang)
+ data_dict['source'] += s_list
+ data_dict['target'] += t_list
+ new_data_dict = self.filter_text(data_dict)
+ return new_data_dict
+
+
+def read_langs(corpus_path):
+ split_type_file_path = os.path.join(corpus_path, 'extracted',
+ "all_talks_dev.tsv")
+ with io.open(split_type_file_path, 'r', encoding='utf8') as fp:
+ reader = csv.DictReader(fp, delimiter='\t', quoting=csv.QUOTE_NONE)
+ header = next(reader)
+ return [k for k in header.keys() if k != 'talk_name']
+
+def extra_english(corpus_path, split):
+ split_type_file_path = os.path.join(corpus_path,
+ f"all_talks_{split}.tsv")
+ output_split_type_file_path = os.path.join(corpus_path,
+ f"all_talks_{split}.en")
+ with io.open(split_type_file_path, 'r', encoding='utf8') as fp, io.open(output_split_type_file_path, 'w', encoding='utf8') as fw:
+ reader = csv.DictReader(fp, delimiter='\t', quoting=csv.QUOTE_NONE)
+ for row in reader:
+ line = row['en']
+ fw.write(line + '\n')
+ de_tok(output_split_type_file_path, 'en')
+
+
+
+def tok_file_name(filename, lang):
+ seps = filename.split('.')
+ seps.insert(-1, 'tok')
+ tok_file = '.'.join(seps)
+ return tok_file
+
+def de_tok(tok_file, lang):
+ # seps = tok_file.split('.')
+ # seps.insert(-1, 'detok')
+ # de_tok_file = '.'.join(seps)
+ de_tok_file = tok_file.replace('.tok.', '.')
+ cmd = 'perl {detok_cmd} -l {lang} < {tok_file} > {de_tok_file}'.format(
+ detok_cmd=detok_cmd, tok_file=tok_file,
+ de_tok_file=de_tok_file, lang=lang[:2])
+ call(cmd)
+
+def extra_bitex(
+ ted_data_path,
+ lsrc_lang,
+ ltrg_lang,
+ target_token,
+ output_data_path,
+):
+ def get_ted_lang(lang):
+ long_langs = ['pt-br', 'zh-cn', 'zh-tw', 'fr-ca']
+ if lang[:5] in long_langs:
+ return lang[:5]
+ elif lang[:4] =='calv':
+ return lang[:5]
+ elif lang in ['pt_BR', 'zh_CN', 'zh_TW', 'fr_CA']:
+ return lang.lower().replace('_', '-')
+ return lang[:2]
+ src_lang = get_ted_lang(lsrc_lang)
+ trg_lang = get_ted_lang(ltrg_lang)
+ train_lang_dict={'source': [src_lang], 'target': [trg_lang]}
+ eval_lang_dict = {'source': [src_lang], 'target': [trg_lang]}
+
+ obj = MultiLingualAlignedCorpusReader(corpus_path=ted_data_path,
+ lang_dict=train_lang_dict,
+ target_token=target_token,
+ corpus_type='file',
+ eval_lang_dict=eval_lang_dict,
+ zero_shot=False,
+ bilingual=True)
+
+ os.makedirs(output_data_path, exist_ok=True)
+ lsrc_lang = lsrc_lang.replace('-', '_')
+ ltrg_lang = ltrg_lang.replace('-', '_')
+ obj.save_file(output_data_path + f"/train.{lsrc_lang}-{ltrg_lang}.{lsrc_lang}",
+ split_type='train', data_type='source', lang=src_lang)
+ obj.save_file(output_data_path + f"/train.{lsrc_lang}-{ltrg_lang}.{ltrg_lang}",
+ split_type='train', data_type='target', lang=trg_lang)
+
+ obj.save_file(output_data_path + f"/test.{lsrc_lang}-{ltrg_lang}.{lsrc_lang}",
+ split_type='test', data_type='source', lang=src_lang)
+ obj.save_file(output_data_path + f"/test.{lsrc_lang}-{ltrg_lang}.{ltrg_lang}",
+ split_type='test', data_type='target', lang=trg_lang)
+
+ obj.save_file(output_data_path + f"/valid.{lsrc_lang}-{ltrg_lang}.{lsrc_lang}",
+ split_type='dev', data_type='source', lang=src_lang)
+ obj.save_file(output_data_path + f"/valid.{lsrc_lang}-{ltrg_lang}.{ltrg_lang}",
+ split_type='dev', data_type='target', lang=trg_lang)
+
+
+def bar_custom(current, total, width=80):
+ print("Downloading: %d%% [%d / %d] Ks" % (current / total * 100, current / 1000, total / 1000), end='\r')
+
+
+def download_and_extract(download_to, extract_to):
+ url = 'http://phontron.com/data/ted_talks.tar.gz'
+ filename = f"{download_to}/ted_talks.tar.gz"
+ if os.path.exists(filename):
+ print(f'{filename} has already been downloaded so skip')
+ else:
+ filename = wget.download(url, filename, bar=bar_custom)
+ if os.path.exists(f'{extract_to}/all_talks_train.tsv'):
+ print(f'Already extracted so skip')
+ else:
+ extract_cmd = f'tar xzfv "{filename}" -C "{extract_to}"'
+ call(extract_cmd)
+
+
+if __name__ == "__main__":
+ import argparse
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--ted_data_path', type=str, default=WORKDIR_ROOT, required=False)
+ parser.add_argument(
+ '--direction-list',
+ type=str,
+ # default=None,
+ #for ML50
+ default=(
+ "bn_IN-en_XX,he_IL-en_XX,fa_IR-en_XX,id_ID-en_XX,sv_SE-en_XX,pt_XX-en_XX,ka_GE-en_XX,ka_GE-en_XX,th_TH-en_XX,"
+ "mr_IN-en_XX,hr_HR-en_XX,uk_UA-en_XX,az_AZ-en_XX,mk_MK-en_XX,gl_ES-en_XX,sl_SI-en_XX,mn_MN-en_XX,"
+ #non-english directions
+ # "fr_XX-de_DE," # replaced with wmt20
+ # "ja_XX-ko_KR,es_XX-pt_XX,ru_RU-sv_SE,hi_IN-bn_IN,id_ID-ar_AR,cs_CZ-pl_PL,ar_AR-tr_TR"
+ ),
+ required=False)
+ parser.add_argument('--target-token', action='store_true', default=False)
+ parser.add_argument('--extract-all-english', action='store_true', default=False)
+
+ args = parser.parse_args()
+
+ import sys
+ import json
+
+ # TED Talks data directory
+ ted_data_path = args.ted_data_path
+
+ download_to = f'{ted_data_path}/downloads'
+ extract_to = f'{ted_data_path}/extracted'
+
+ #DESTDIR=${WORKDIR_ROOT}/ML50/raw/
+ output_path = f'{ted_data_path}/ML50/raw'
+ os.makedirs(download_to, exist_ok=True)
+ os.makedirs(extract_to, exist_ok=True)
+ os.makedirs(output_path, exist_ok=True)
+ download_and_extract(download_to, extract_to)
+
+
+ if args.extract_all_english:
+ for split in ['train', 'dev', 'test']:
+ extra_english(ted_data_path, split)
+ exit(0)
+ if args.direction_list is not None:
+ directions = args.direction_list.strip().split(',')
+ directions = [tuple(d.strip().split('-', 1)) for d in directions if d]
+ else:
+ langs = read_langs(ted_data_path)
+ # directions = [
+ # '{}.{}'.format(src, tgt)
+ # for src in langs
+ # for tgt in langs
+ # if src < tgt
+ # ]
+ directions = [('en', tgt) for tgt in langs if tgt != 'en']
+ print(f'num directions={len(directions)}: {directions}')
+
+ for src_lang, trg_lang in directions:
+ print('--working on {}-{}'.format(src_lang, trg_lang))
+ extra_bitex(
+ extract_to,
+ src_lang,
+ trg_lang,
+ target_token=args.target_token,
+ output_data_path=output_path
+ )
diff --git a/fairseq/examples/multilingual/data_scripts/download_wat19_my.sh b/fairseq/examples/multilingual/data_scripts/download_wat19_my.sh
new file mode 100644
index 0000000000000000000000000000000000000000..c1e2d47287a29af4576e7a63641e8152ecb63c44
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/download_wat19_my.sh
@@ -0,0 +1,36 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+if [ -z $WORKDIR_ROOT ] ;
+then
+ echo "please specify your working directory root in environment variable WORKDIR_ROOT. Exitting..."
+ exit
+fi
+
+
+SRCDIR=$WORKDIR_ROOT/indic_languages_corpus
+DESTDIR=$WORKDIR_ROOT/ML50/raw
+mkdir -p $SRCDIR
+mkdir -p $DESTDIR
+
+WAT_MY_EN=wat2020.my-en.zip
+cd $SRCDIR
+# please refer to http://lotus.kuee.kyoto-u.ac.jp/WAT/my-en-data/ for latest URL if the following url expired
+#- The data used for WAT2020 are identical to those used in WAT2019.
+wget http://lotus.kuee.kyoto-u.ac.jp/WAT/my-en-data/$WAT_MY_EN
+unzip $WAT_MY_EN
+
+
+SRC_EXTRACT_DIR=$SRCDIR/wat2020.my-en/alt
+
+cp $SRC_EXTRACT_DIR/train.alt.en $DESTDIR/train.my_MM-en_XX.en_XX
+cp $SRC_EXTRACT_DIR/train.alt.my $DESTDIR/train.my_MM-en_XX.my_MM
+cp $SRC_EXTRACT_DIR/dev.alt.en $DESTDIR/valid.my_MM-en_XX.en_XX
+cp $SRC_EXTRACT_DIR/dev.alt.my $DESTDIR/valid.my_MM-en_XX.my_MM
+cp $SRC_EXTRACT_DIR/test.alt.en $DESTDIR/test.my_MM-en_XX.en_XX
+cp $SRC_EXTRACT_DIR/test.alt.my $DESTDIR/test.my_MM-en_XX.my_MM
diff --git a/fairseq/examples/multilingual/data_scripts/download_wmt19_and_before.py b/fairseq/examples/multilingual/data_scripts/download_wmt19_and_before.py
new file mode 100644
index 0000000000000000000000000000000000000000..3465731eb3e55047c44d1b336a97e99cb3a89a53
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/download_wmt19_and_before.py
@@ -0,0 +1,899 @@
+from typing import NamedTuple, List
+from urllib.parse import urlparse
+import os, sys
+import subprocess
+from subprocess import check_call, check_output
+import glob
+import wget
+import re
+import multiprocessing as mp
+from functools import partial
+import pathlib
+from collections import OrderedDict
+
+WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None)
+
+if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip():
+ print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."')
+ sys.exit(-1)
+
+# scripts and data locations
+CWD = os.getcwd()
+UTILS = f"{CWD}/utils"
+
+MOSES = f"{UTILS}/mosesdecoder"
+SGM_TOOL = f'{MOSES}/scripts/ems/support/input-from-sgm.perl'
+
+TMX2CORPUS = f"{UTILS}/tmx2corpus"
+TMX_TOOL = f'python {TMX2CORPUS}/tmx2corpus.py'
+
+to_data_path = f'{WORKDIR_ROOT}/wmt'
+download_to = f'{to_data_path}/downloads'
+manually_downloads = f'{to_data_path}/downloads'
+extract_to = f'{to_data_path}/extracted'
+#DESTDIR=${WORKDIR_ROOT}/ML50/raw/
+raw_data = f'{WORKDIR_ROOT}/ML50/raw'
+####
+
+class DLDataset(NamedTuple):
+ name: str
+ train_urls: List[str]
+ valid_urls: List[str]
+ test_urls: List[str]
+ train_files_patterns: List[str] = []
+ valid_files_patterns: List[str] = []
+ test_files_patterns: List[str] = []
+
+
+
+def bar_custom(current, total, width=80):
+ print("Downloading: %d%% [%d / %d] Ks" % (current / total * 100, current / 1000, total / 1000), end='\r')
+
+def get_downloaded_file(dl_folder, url):
+ if isinstance(url, tuple):
+ url, f = url
+ else:
+ url_f = urlparse(url)
+ # f = os.path.split(url_f.path)[-1]
+ f = '_'.join(url_f.path.split('/')[1:])
+ return url, f"{dl_folder}/{f}"
+
+def download_parts_and_combine(dl_folder, urls, filename):
+ parts = []
+ for url_record in urls:
+ url, part_file = get_downloaded_file(dl_folder, url_record)
+ if os.path.exists(part_file):
+ print(f'{part_file} has already been downloaded so skip')
+ else:
+ part_file = wget.download(url, part_file, bar=bar_custom)
+ parts.append(part_file)
+
+ def get_combine_cmd(parts):
+ #default as tar.gz.??
+ return f'cat {" ".join(parts)} > {filename}'
+
+ combine_cmd = get_combine_cmd(parts)
+ call(combine_cmd, debug=True)
+ return filename
+
+def download_a_url(dl_folder, url):
+ url, filename = get_downloaded_file(dl_folder, url)
+ if os.path.exists(filename):
+ print(f'{filename} has already been downloaded so skip')
+ return filename
+
+ print(f'downloading {url} to {filename}')
+ if isinstance(url, list) or isinstance(url, tuple):
+ download_parts_and_combine(dl_folder, url, filename)
+ else:
+ wget.download(url, filename, bar=bar_custom)
+ print(f'dowloaded: {filename}')
+ return filename
+
+def download_files(dl_folder, urls, completed_urls={}):
+ for url_record in urls:
+ url, _ = get_downloaded_file(dl_folder, url_record)
+ filename = download_a_url(dl_folder, url_record)
+ completed_urls[str(url)] = filename
+ return completed_urls
+
+def check_need_manual_downalod(dl_folder, to_manually_download_urls):
+ to_be_manually_dowloaded = []
+ manually_completed_urls = {}
+ for url_record, instruction in to_manually_download_urls:
+ url, filename = get_downloaded_file(dl_folder, url_record)
+ if not os.path.exists(filename):
+ print(f'{url} need to be download manually, please download it manually following {instruction}; and copy it to {filename}')
+ to_be_manually_dowloaded.append((url, filename))
+ else:
+ manually_completed_urls[url] = filename
+ # if len(to_be_manually_dowloaded) > 0:
+ # raise ValueError('Missing files that need to be downloaded manually; stop the process now.')
+ return to_be_manually_dowloaded
+
+def download_dataset(to_folder, dl_dataset, completed_urls={}):
+ download_files(to_folder, dl_dataset.train_urls, completed_urls)
+ download_files(to_folder, dl_dataset.valid_urls, completed_urls)
+ download_files(to_folder, dl_dataset.test_urls, completed_urls)
+ print('completed downloading')
+ return completed_urls
+
+def call(cmd, debug=False):
+ if debug:
+ print(cmd)
+ check_call(cmd, shell=True)
+
+
+def get_extract_name(file_path):
+ path = os.path.split(file_path)
+ return path[-1] + '_extract' #.split('.')[0]
+
+def extract_file(downloaded_file, extract_folder, get_extract_name=get_extract_name, debug=False):
+ extract_name = get_extract_name(downloaded_file)
+ extract_to = f'{extract_folder}/{extract_name}'
+ os.makedirs(extract_to, exist_ok=True)
+ if os.path.exists(f'{extract_to}/DONE'):
+ print(f'{downloaded_file} has already been extracted to {extract_to} so skip')
+ return extract_to
+ def get_extract_cmd(filename):
+ if filename.endswith('.tgz') or filename.endswith('tar.gz'):
+ return f'tar xzfv {filename} -C {extract_to}'
+ elif filename.endswith('.gz.tar'):
+ return f'tar xfv {filename} -C {extract_to}; (cd {extract_to}; gzip -d *.gz; [ $? -eq 0 ] || gzip -d */*.gz)'
+ elif filename.endswith('.tar'):
+ return f'tar xfv {filename} -C {extract_to}'
+ elif filename.endswith('.gz'):
+ return f'cp {filename} {extract_to}; (cd {extract_to}; gzip -d *.gz)'
+ elif filename.endswith('.zip'):
+ return f'unzip {filename} -d {extract_to}'
+ extract_cmd = get_extract_cmd(downloaded_file)
+ print(f'extracting {downloaded_file}')
+ if isinstance(extract_cmd, list):
+ for c in extract_cmd:
+ call(c, debug=debug)
+ else:
+ call(extract_cmd, debug=debug)
+ call(f'echo DONE > {extract_to}/DONE')
+ return extract_to
+
+
+def extract_all_files(
+ completed_urls, extract_folder,
+ get_extract_name=get_extract_name,
+ completed_extraction={},
+ debug=False):
+ extracted_folders = OrderedDict()
+ for url, downloaded_file in set(completed_urls.items()):
+ if downloaded_file in completed_extraction:
+ print(f'{downloaded_file} is already extracted; so skip')
+ continue
+ folder = extract_file(downloaded_file, extract_folder, get_extract_name, debug)
+ extracted_folders[url] = folder
+ return extracted_folders
+
+
+def my_glob(folder):
+ for p in [f'{folder}/*', f'{folder}/*/*', f'{folder}/*/*/*']:
+ for f in glob.glob(p):
+ yield f
+
+
+def sgm2raw(sgm, debug):
+ to_file = sgm[0:len(sgm) - len('.sgm')]
+ if os.path.exists(to_file):
+ debug and print(f'{sgm} already converted to {to_file}; so skip')
+ return to_file
+ cmd = f'{SGM_TOOL} < {sgm} > {to_file}'
+ call(cmd, debug)
+ return to_file
+
+def tmx2raw(tmx, debug):
+ to_file = tmx[0:len(tmx) - len('.tmx')]
+ to_folder = os.path.join(*os.path.split(tmx)[:-1])
+ if os.path.exists(f'{to_folder}/bitext.en'):
+ debug and print(f'{tmx} already extracted to {to_file}; so skip')
+ return to_file
+ cmd = f'(cd {to_folder}; {TMX_TOOL} {tmx})'
+ call(cmd, debug)
+ return to_file
+
+CZENG16_REGEX = re.compile(r'.*?data.plaintext-format/0[0-9]train$')
+WMT19_WIKITITLES_REGEX = re.compile(r'.*?wikititles-v1.(\w\w)-en.tsv.gz')
+TSV_REGEX = re.compile(r'.*?(\w\w)-(\w\w).tsv$')
+
+
+
+def cut_wikitles(wiki_file, debug):
+ # different languages have different file names:
+ if wiki_file.endswith('wiki/fi-en/titles.fi-en'):
+ to_file1 = f'{wiki_file}.fi'
+ to_file2 = f'{wiki_file}.en'
+ BACKSLASH = '\\'
+ cmd1 = f"cat {wiki_file} | sed 's/|||/{BACKSLASH}t/g' |cut -f1 |awk '{{$1=$1}};1' > {to_file1}"
+ cmd2 = f"cat {wiki_file} | sed 's/|||/{BACKSLASH}t/g' |cut -f2 |awk '{{$1=$1}};1' > {to_file2}"
+# elif WMT19_WIKITITLES_REGEX.match(wiki_file):
+# src = WMT19_WIKITITLES_REGEX.match(wiki_file).groups()[0]
+# to_file1 = f'{wiki_file}.{src}'
+# to_file2 = f'{wiki_file}.en'
+# cmd1 = f"cat {wiki_file} | cut -f1 |awk '{{$1=$1}};1' > {to_file1}"
+# cmd2 = f"cat {wiki_file} | cut -f2 |awk '{{$1=$1}};1' > {to_file2}"
+ else:
+ return None
+ if os.path.exists(to_file1) and os.path.exists(to_file2):
+ debug and print(f'{wiki_file} already processed to {to_file1} and {to_file2}; so skip')
+ return wiki_file
+
+ call(cmd1, debug=debug)
+ call(cmd2, debug=debug)
+ return wiki_file
+
+def cut_tsv(file, debug):
+ m = TSV_REGEX.match(file)
+ if m is None:
+ raise ValueError(f'{file} is not matching tsv pattern')
+ src = m.groups()[0]
+ tgt = m.groups()[1]
+
+ to_file1 = f'{file}.{src}'
+ to_file2 = f'{file}.{tgt}'
+ cmd1 = f"cat {file} | cut -f1 |awk '{{$1=$1}};1' > {to_file1}"
+ cmd2 = f"cat {file} | cut -f2 |awk '{{$1=$1}};1' > {to_file2}"
+ if os.path.exists(to_file1) and os.path.exists(to_file2):
+ debug and print(f'{file} already processed to {to_file1} and {to_file2}; so skip')
+ return file
+
+ call(cmd1, debug=debug)
+ call(cmd2, debug=debug)
+ return file
+
+
+def convert_file_if_needed(file, debug):
+ if file.endswith('.sgm'):
+ return sgm2raw(file, debug)
+ elif file.endswith('.tmx'):
+ return tmx2raw(file, debug)
+ elif file.endswith('wiki/fi-en/titles.fi-en'):
+ return cut_wikitles(file, debug)
+# elif WMT19_WIKITITLES_REGEX.match(file):
+# return cut_wikitles(file, debug)
+ elif file.endswith('.tsv'):
+ return cut_tsv(file, debug)
+ elif CZENG16_REGEX.match(file):
+ return convert2czeng17(file, debug)
+ else:
+ return file
+
+
+def convert_files_if_needed(extracted_foldrs, my_glob=my_glob, debug=False):
+ return {
+ url: list(sorted(set(convert_file_if_needed(f, debug)) for f in sorted(set(my_glob(folder)))))
+ for url, folder in extracted_foldrs.items()
+ }
+
+def match_patt(file_path, file_pattern, src, tgt, lang):
+ return file_pattern.format(src=src, tgt=tgt, lang=lang) in file_path
+
+def match_patts(file_path, file_patterns, src, tgt, lang):
+ for file_pattern in file_patterns:
+ params = { k: v for k, v in [('src', src), ('tgt', tgt), ('lang', lang)] if k in file_pattern}
+ matching = file_pattern.format(**params)
+
+ if isinstance(file_pattern, tuple):
+ pattern, directions = file_pattern
+ if f'{src}-{tgt}' in directions and matching in file_path:
+ return True
+ else:
+ if matching in file_path:
+ return True
+ return False
+
+def extracted_glob(extracted_folder, file_patterns, src, tgt, lang):
+ def get_matching_pattern(file_pattern):
+ params = {
+ k: v
+ for k, v in [('src', src), ('tgt', tgt), ('lang', lang)]
+ if '{' + k + '}' in file_pattern
+ }
+ file_pattern = re.sub(r'{src:(.*?)}', r'\1' if lang == src else '', file_pattern)
+ file_pattern = re.sub(r'{tgt:(.*?)}', r'\1' if lang == tgt else '', file_pattern)
+ file_pattern = file_pattern.format(**params)
+ return file_pattern
+ for file_pattern in file_patterns:
+ if isinstance(file_pattern, tuple):
+ file_pattern, lang_pairs = file_pattern
+ if f'{src}-{tgt}' not in lang_pairs:
+ continue
+# print('working on pattern: ', file_pattern, lang_pairs )
+ matching_pattern = get_matching_pattern(file_pattern)
+ if matching_pattern is None:
+ continue
+ glob_patterns = f'{extracted_folder}/{matching_pattern}'
+# print('glob_patterns: ', glob_patterns)
+ for f in glob.glob(glob_patterns):
+ yield f
+
+# for debug usage
+def all_extracted_files(split, src, tgt, extracted_folders, split_urls):
+ def get_url(url):
+ if isinstance(url, tuple):
+ url, downloaded_file = url
+ return url
+ return [
+ f
+ for url in split_urls
+ for f in my_glob(extracted_folders[str(get_url(url))])
+ ]
+
+def concat_files(split, src, tgt, extracted_folders, split_urls, path_patterns, to_folder, debug=False):
+# if debug:
+# print('extracted files to be filtered by patterns: ',
+# '\n\t'.join(sorted(all_extracted_files(split, src, tgt, extracted_folders, split_urls))))
+ for lang in [src, tgt]:
+ to_file = f'{to_folder}/{split}.{src}-{tgt}.{lang}'
+ s_src, s_tgt, s_lang = src.split('_')[0], tgt.split('_')[0], lang.split('_')[0]
+ files = []
+ for url in split_urls:
+ if isinstance(url, tuple):
+ url, downloaded_file = url
+ if str(url) not in extracted_folders:
+ print(f'warning: {url} not in extracted files')
+ for extracted_file in set(
+ extracted_glob(
+ extracted_folders[str(url)], path_patterns,
+ s_src, s_tgt, s_lang)):
+ files.append(extracted_file)
+ if len(files) == 0:
+ print('warning: ', f'No files found for split {to_file}')
+ continue
+ files = sorted(set(files))
+ print(f'concating {len(files)} files into {to_file}')
+ cmd = ['cat'] + [f'"{f}"' for f in files] + [f'>{to_file}']
+ cmd = " ".join(cmd)
+ call(cmd, debug=debug)
+
+UTILS = os.path.join(pathlib.Path(__file__).parent, 'utils')
+LID_MODEL = f'{download_to}/lid.176.bin'
+LID_MULTI = f'{UTILS}/fasttext_multi_filter.py'
+
+def lid_filter(split, src, tgt, from_folder, to_folder, debug=False):
+ if not os.path.exists(LID_MODEL):
+ call(f'wget -nc https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin -O {LID_MODEL}')
+ from_prefix = f'{from_folder}/{split}.{src}-{tgt}'
+ to_prefix = f'{to_folder}/{split}.{src}-{tgt}'
+ if os.path.exists(f'{from_prefix}.{src}') and os.path.exists(f'{from_prefix}.{tgt}'):
+ s_src, s_tgt = src.split('_')[0], tgt.split('_')[0]
+ cmd = (
+ f'python {LID_MULTI} --model {LID_MODEL} --inputs {from_prefix}.{src} {from_prefix}.{tgt} '
+ f'--langs {s_src} {s_tgt} --outputs {to_prefix}.{src} {to_prefix}.{tgt}'
+ )
+ print(f'filtering {from_prefix}')
+ call(cmd, debug=debug)
+
+def concat_into_splits(dl_dataset, src, tgt, extracted_folders, to_folder, debug):
+ to_folder_tmp = f"{to_folder}_tmp"
+ os.makedirs(to_folder_tmp, exist_ok=True)
+ concat_files('train', src, tgt,
+ extracted_folders,
+ split_urls=dl_dataset.train_urls,
+ path_patterns=dl_dataset.train_files_patterns,
+ to_folder=to_folder_tmp, debug=debug)
+ lid_filter('train', src, tgt, to_folder_tmp, to_folder, debug)
+
+ concat_files('valid', src, tgt,
+ extracted_folders,
+ split_urls=dl_dataset.valid_urls,
+ path_patterns=dl_dataset.valid_files_patterns,
+ to_folder=to_folder, debug=debug)
+ concat_files('test', src, tgt,
+ extracted_folders,
+ split_urls=dl_dataset.test_urls,
+ path_patterns=dl_dataset.test_files_patterns,
+ to_folder=to_folder, debug=debug)
+
+
+def download_multi(dl_folder, extract_folder, urls, num_processes=8, debug=False):
+ pool = mp.Pool(processes=num_processes)
+ download_f = partial(download_a_url, dl_folder)
+ downloaded_files = pool.imap_unordered(download_f, urls)
+ pool.close()
+ pool.join()
+
+BLEU_REGEX = re.compile("^BLEU\\S* = (\\S+) ")
+def run_eval_bleu(cmd):
+ output = check_output(cmd, shell=True, stderr=subprocess.STDOUT).decode("utf-8").strip()
+ print(output)
+ bleu = -1.0
+ for line in output.strip().split('\n'):
+ m = BLEU_REGEX.search(line)
+ if m is not None:
+ bleu = m.groups()[0]
+ bleu = float(bleu)
+ break
+ return bleu
+
+def check_wmt_test_bleu(raw_folder, wmt_lang_pairs):
+ not_matchings = []
+ for wmt, src_tgts in wmt_lang_pairs:
+ for src_tgt in src_tgts:
+ print(f'checking test bleus for: {src_tgt} at {wmt}')
+ src, tgt = src_tgt.split('-')
+ ssrc, stgt = src[:2], tgt[:2]
+ if os.path.exists(f'{raw_folder}/test.{tgt}-{src}.{src}'):
+ # reversed direction may have different test set
+ test_src = f'{raw_folder}/test.{tgt}-{src}.{src}'
+ else:
+ test_src = f'{raw_folder}/test.{src}-{tgt}.{src}'
+ cmd1 = f'cat {test_src} | sacrebleu -t "{wmt}" -l {stgt}-{ssrc}; [ $? -eq 0 ] || echo ""'
+ test_tgt = f'{raw_folder}/test.{src}-{tgt}.{tgt}'
+ cmd2 = f'cat {test_tgt} | sacrebleu -t "{wmt}" -l {ssrc}-{stgt}; [ $? -eq 0 ] || echo ""'
+ bleu1 = run_eval_bleu(cmd1)
+ if bleu1 != 100.0:
+ not_matchings.append(f'{wmt}:{src_tgt} source side not matching: {test_src}')
+ bleu2 = run_eval_bleu(cmd2)
+ if bleu2 != 100.0:
+ not_matchings.append(f'{wmt}:{src_tgt} target side not matching: {test_tgt}')
+ return not_matchings
+
+def download_and_extract(
+ to_folder, lang_pairs, dl_dataset,
+ to_manually_download_urls,
+ completed_urls={}, completed_extraction={},
+ debug=False):
+
+ dl_folder = f'{to_folder}/downloads'
+ extract_folder = f'{to_folder}/extracted'
+ raw_folder = f'{to_folder}/raw'
+ lid_filtered = f'{to_folder}/lid_filtered'
+
+ os.makedirs(extract_folder, exist_ok=True)
+ os.makedirs(raw_folder, exist_ok=True)
+ os.makedirs(lid_filtered, exist_ok=True)
+
+
+ to_be_manually_dowloaded = check_need_manual_downalod(dl_folder, to_manually_download_urls)
+
+ completed_urls = download_dataset(
+ dl_folder, dl_dataset, completed_urls)
+ if debug:
+ print('completed urls: ', completed_urls)
+
+
+ extracted_folders = extract_all_files(
+ completed_urls,
+ extract_folder=extract_folder,
+ completed_extraction=completed_extraction,
+ debug=debug)
+ if debug:
+ print('download files have been extracted to folders: ', extracted_folders)
+
+ converted_files = convert_files_if_needed(extracted_folders, debug=False)
+ for src_tgt in lang_pairs:
+ print(f'working on {dl_dataset.name}: {src_tgt}')
+ src, tgt = src_tgt.split('-')
+ concat_into_splits(dl_dataset,
+ src=src, tgt=tgt,
+ extracted_folders=extracted_folders,
+ to_folder=raw_folder, debug=debug)
+ print('completed data into: ', raw_folder)
+
+def download_czang16(download_to, username=None):
+ wgets = [
+ f'wget --user={username} --password=czeng -P {download_to} http://ufallab.ms.mff.cuni.cz/~bojar/czeng16-data/data-plaintext-format.{i}.tar'
+ for i in range(10)]
+ cmds = []
+ for i, cmd in enumerate(wgets):
+ filename = f'{download_to}/data-plaintext-format.{i}.tar'
+ if os.path.exists(filename):
+ print(f'{filename} has already been downloaded; so skip')
+ continue
+ cmds.append(cmd)
+ if cmds and username is None:
+ raise ValueError('No czeng username is given; please register at http://ufal.mff.cuni.cz/czeng/czeng16 to obtain username to download')
+ for cmd in cmds:
+ call(cmd)
+ print('done with downloading czeng1.6')
+
+def download_czeng17_script(download_to, extract_folder, debug=False):
+ url = 'http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip'
+ filename = f'{download_to}/convert_czeng16_to_17.pl.zip'
+ extract_to = f'{extract_folder}/{get_extract_name(filename)}'
+ script_path = f'{extract_to}/convert_czeng16_to_17.pl'
+
+ if not os.path.exists(script_path):
+ wget.download(url, filename, bar=bar_custom)
+ extract_to = extract_file(f'{download_to}/convert_czeng16_to_17.pl.zip', extract_folder, get_extract_name=get_extract_name, debug=debug)
+ return script_path
+
+czeng17_script_path = ""
+def convert2czeng17(file, debug):
+ en_file = f'{file}.en'
+ cs_file = f'{file}.cs'
+
+ if not os.path.exists(en_file) or not os.path.exists(cs_file):
+ cs_cmd = f'cat {file} | perl {czeng17_script_path} | cut -f3 > {cs_file}'
+ en_cmd = f'cat {file} | perl {czeng17_script_path} | cut -f4 > {en_file}'
+ call(cs_cmd, debug)
+ call(en_cmd, debug)
+ else:
+ print(f'already extracted: {en_file} and {cs_file}')
+ return file
+
+def extract_czeng17(extract_folder, debug=False):
+ url = 'http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip'
+ filename = f'{download_to}/convert_czeng16_to_17.pl.zip'
+ extract_to = f'{extract_folder}/{get_extract_name(filename)}'
+ script_path = f'{extract_to}/convert_czeng16_to_17.pl'
+
+ if not os.path.exists(script_path):
+ wget.download(url, filename, bar=bar_custom)
+ extract_to = extract_file(f'{download_to}/convert_czeng16_to_17.pl.zip', extract_folder, get_extract_name=get_extract_name, debug=debug)
+ return script_path
+
+#########
+# definitions of wmt data sources
+# for es-en
+# Punctuation in the official test sets will be encoded with ASCII characters (not complex Unicode characters) as much as possible. You may want to normalize your system's output before submission. You are able able to use a rawer version of the test sets that does not have this normalization.
+# script to normalize punctuation: http://www.statmt.org/wmt11/normalize-punctuation.perl
+wmt13_es_en = DLDataset(
+ name='wmt13_es-en',
+ train_urls=[
+ 'http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz',
+ 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz',
+ 'http://www.statmt.org/wmt13/training-parallel-un.tgz',
+ 'http://www.statmt.org/wmt13/training-parallel-nc-v8.tgz',
+ ],
+ valid_urls=[
+ ('http://www.statmt.org/wmt13/dev.tgz', 'wmt13_dev.tgz')
+ ],
+ test_urls=[
+ ('http://www.statmt.org/wmt13/test.tgz', 'wmt13_test.tgz')
+ ],
+ train_files_patterns=[
+ ('*/europarl-v7.{src}-{tgt}.{lang}', ['es-en']),
+ ('*commoncrawl.{src}-{tgt}.{lang}', ['es-en']),
+ ('*/news-commentary-v8.{src}-{tgt}.{lang}', ['es-en']),
+ ('un/*undoc.2000.{src}-{tgt}.{lang}', ['es-en']),
+ ] ,
+ valid_files_patterns=[
+ ('dev/newstest2012.{lang}', ['es-en'])
+ ],
+ test_files_patterns=[
+ ('test/newstest*.{lang}', ['es-en'])
+ ],
+)
+
+wmt14_de_fr_en = DLDataset(
+ name='wmt14_de_fr_en',
+ train_urls=[
+ 'http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz',
+ 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz',
+ 'http://www.statmt.org/wmt13/training-parallel-un.tgz',
+ 'http://www.statmt.org/wmt14/training-parallel-nc-v9.tgz',
+ ('http://www.statmt.org/wmt10/training-giga-fren.tar', 'training-giga-fren.gz.tar'), #it is actuall a gz.tar
+ ],
+ valid_urls=[
+ ('http://www.statmt.org/wmt14/dev.tgz', 'wmt14_dev.tgz'),
+ ],
+ test_urls=[
+ ('http://www.statmt.org/wmt14/test-full.tgz', 'wmt14_test_full.tgz'), # cleaned test sets
+ ],
+ train_files_patterns=[
+ ('*/europarl-v7.{src}-{tgt}.{lang}', ['fr-en', 'de-en']),
+ ('*commoncrawl.{src}-{tgt}.{lang}', ['fr-en', 'de-en']),
+ ('*/*news-commentary-v9.{src}-{tgt}.{lang}', ['fr-en', 'de-en']),
+ ('un/undoc.2000.{src}-{tgt}.{lang}', ['fr-en']),
+ ('*giga-{src}{tgt}*{lang}', ['fr-en'])
+ ],
+ valid_files_patterns=[
+ ('dev/newstest2013.{lang}', ['fr-en', 'de-en'])
+ ],
+ test_files_patterns=[
+ ('test-full/newstest*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['en-de', 'de-en', 'fr-en', 'en-fr']),
+ ],
+)
+
+# pip install git+https://github.com/amake/tmx2corpus.git
+wmt16_ro_en = DLDataset(
+ name='wmt16_ro-en',
+ train_urls=[
+ ('http://data.statmt.org/wmt16/translation-task/training-parallel-ep-v8.tgz', 'wmt16_training-parallel-ep-v8.tgz'),
+ ('http://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-ro.tmx.gz', 'en-ro.tmx.gz'),
+ ],
+ valid_urls=[
+ ('http://data.statmt.org/wmt16/translation-task/dev-romanian-updated.tgz', 'wmt16_dev.tgz')
+ ],
+ test_urls=[
+ ('http://data.statmt.org/wmt16/translation-task/test.tgz', 'wmt16_test.tgz')
+ ],
+ train_files_patterns=[
+ ('*/*europarl-v8.{src}-{tgt}.{lang}', ['ro-en']),
+ ('bitext.{lang}', ['ro-en']) #setimes from tmux
+ ] ,
+ valid_files_patterns=[
+ ('dev/newsdev2016*{src}{tgt}*.{lang}', ['ro-en', 'ro-en'])
+ ],
+ test_files_patterns=[
+ ('test/newstest*{src}{tgt}*.{lang}', ['ro-en', 'en-ro'])
+ ],
+)
+
+cwmt_wmt_instruction = 'cwmt download instruction at: http://nlp.nju.edu.cn/cwmt-wmt'
+wmt17_fi_lv_tr_zh_en_manual_downloads = [
+ # fake urls to have unique keys for the data
+ ( ('http://nlp.nju.edu.cn/cwmt-wmt/CASIA2015.zip', 'CASIA2015.zip'), cwmt_wmt_instruction),
+ ( ('http://nlp.nju.edu.cn/cwmt-wmt/CASICT2011.zip', 'CASICT2011.zip'), cwmt_wmt_instruction),
+ ( ('http://nlp.nju.edu.cn/cwmt-wmt/CASICT2015.zip', 'CASICT2015.zip'), cwmt_wmt_instruction),
+ ( ('http://nlp.nju.edu.cn/cwmt-wmt/Datum2015.zip', 'Datum2015.zip'), cwmt_wmt_instruction),
+ ( ('http://nlp.nju.edu.cn/cwmt-wmt/Datum2017.zip', 'Datum2017.zip'), cwmt_wmt_instruction),
+ ( ('http://nlp.nju.edu.cn/cwmt-wmt/NEU2017.zip', 'NEU2017.zip'), cwmt_wmt_instruction),
+]
+wmt17_fi_lv_tr_zh_en = DLDataset(
+ name='wmt17_fi_lv_tr_zh_en',
+ train_urls=[
+ ('http://data.statmt.org/wmt17/translation-task/training-parallel-ep-v8.tgz', 'wmt17_training-parallel-ep-v8.tgz'),
+ 'http://data.statmt.org/wmt17/translation-task/training-parallel-nc-v12.tgz',
+ 'http://www.statmt.org/wmt15/wiki-titles.tgz',
+ ('http://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-tr.tmx.gz', 'en-tr.tmx.gz'),
+ ('http://data.statmt.org/wmt17/translation-task/rapid2016.tgz', 'wmt17_rapid2016.tgz'),
+ 'http://data.statmt.org/wmt17/translation-task/leta.v1.tgz',
+ 'http://data.statmt.org/wmt17/translation-task/dcep.lv-en.v1.tgz',
+ 'http://data.statmt.org/wmt17/translation-task/books.lv-en.v1.tgz',
+ (('https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-zh.tar.gz.00',
+ 'https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-zh.tar.gz.01',), 'UNv1.0.en-zh.tar.gz'),
+ #manually download files:
+ ('http://nlp.nju.edu.cn/cwmt-wmt/CASIA2015.zip', 'CASIA2015.zip'),
+ ('http://nlp.nju.edu.cn/cwmt-wmt/CASICT2011.zip', 'CASICT2011.zip'),
+ ('http://nlp.nju.edu.cn/cwmt-wmt/CASICT2015.zip', 'CASICT2015.zip'),
+ ('http://nlp.nju.edu.cn/cwmt-wmt/Datum2015.zip', 'Datum2015.zip'),
+ ('http://nlp.nju.edu.cn/cwmt-wmt/Datum2017.zip', 'Datum2017.zip'),
+ ('http://nlp.nju.edu.cn/cwmt-wmt/NEU2017.zip', 'NEU2017.zip'),
+ ],
+ valid_urls=[
+ ('http://data.statmt.org/wmt17/translation-task/dev.tgz', 'wmt17_dev.tgz'),
+ ],
+ test_urls=[
+ #NEW: Improved translations for zh test sets
+ ('http://data.statmt.org/wmt17/translation-task/test-update-1.tgz', 'wmt17_test_zh_en.tgz'),
+ ('http://data.statmt.org/wmt17/translation-task/test.tgz', 'wmt17_test_others.tgz')
+ ],
+ train_files_patterns=[
+ ('casict*/cas*{src:ch}{tgt:en}.txt', ['zh-en', 'zh-en'] ),
+ ('casia*/cas*{src:ch}{tgt:en}.txt', ['zh-en', 'zh-en'] ),
+ ('dataum*/Book*{src:cn}{tgt:en}.txt', ['zh-en', 'zh-en']),
+ ('neu*/NEU*{src:cn}{tgt:en}.txt', ['zh-en', 'zh-en'] ),
+ ('*/*UNv1.0.en-zh.{src:zh}{tgt:en}', ['zh-en']),
+ ('training/*news-commentary-v12.{src}-{tgt}.{lang}', ['zh-en', ]),
+
+ ('*/*europarl-v8.{src}-{tgt}.{lang}', ['fi-en', 'lv-en']),
+ ('wiki/fi-en/titles.{src}-{tgt}.{lang}', ['fi-en', ]),
+ ('rapid2016.{tgt}-{src}.{lang}', ['fi-en', 'lv-en']),
+ ('*/leta.{lang}', ['lv-en']),
+ ('*/dcep.{lang}', ['lv-en']),
+ ('*/farewell.{lang}', ['lv-en']),
+ ('bitext.{lang}', ['tr-en']),
+ ] ,
+ valid_files_patterns=[
+ ('dev/newsdev2017*{src}{tgt}-{src:src}{tgt:ref}.{lang}',
+ [
+ 'fi-en', 'lv-en', 'tr-en', 'zh-en',
+ 'en-fi', 'en-lv', 'en-tr', 'en-zh'
+ ]),
+ ('dev/newstest2016*{src}{tgt}-{src:src}{tgt:ref}.{lang}',
+ [
+ 'fi-en', 'tr-en',
+ 'en-fi', 'en-tr',
+ ]),
+ ],
+ test_files_patterns=[
+ ('test/newstest2017-{src}{tgt}-{src:src}{tgt:ref}.{lang}',
+ [
+ 'fi-en', 'lv-en', 'tr-en',
+ 'en-fi', 'en-lv', 'en-tr',
+ ]),
+ ('newstest2017-{src}{tgt}-{src:src}{tgt:ref}.{lang}',
+ [
+ 'zh-en',
+ 'en-zh'
+ ]),
+ ],
+)
+
+czeng_instruction = 'download instruction at: http://ufal.mff.cuni.cz/czeng/czeng16'
+#alternative: use the prepared data but detokenize it?
+wmt18_cs_et_en_manual_downloads = [
+#for cs, need to register and download; Register and download CzEng 1.6.
+#Better results can be obtained by using a subset of sentences, released under a new version name CzEng 1.7.
+ # ((f'http://ufallab.ms.mff.cuni.cz/~bojar/czeng16-data/data-plaintext-format.{i}.tar',
+ # f'data-plaintext-format.{i}.tar'), czeng_instruction)
+ # for i in range(10)
+]
+
+wmt18_cs_et_en = DLDataset(
+ name='wmt18_cs_et_en',
+ train_urls=[
+ 'http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz',
+ 'http://data.statmt.org/wmt18/translation-task/training-parallel-ep-v8.tgz',
+ 'https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-cs.zipporah0-dedup-clean.tgz',
+ 'https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-et.zipporah0-dedup-clean.tgz',
+ 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz',
+ 'http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz',
+ ('http://data.statmt.org/wmt18/translation-task/rapid2016.tgz', 'wmt18_rapid2016.tgz'),
+ # (tuple(
+ # (f'http://ufallab.ms.mff.cuni.cz/~bojar/czeng16-data/data-plaintext-format.{i}.tar',
+ # f'data-plaintext-format.{i}.tar')
+ # for i in range(10)
+ # ),
+ # 'czeng16_data_plaintext.gz.tar'),
+ ],
+ valid_urls=[
+ ('http://data.statmt.org/wmt18/translation-task/dev.tgz', 'wmt18_dev.tgz'),
+ ],
+ test_urls=[
+ ('http://data.statmt.org/wmt18/translation-task/test.tgz', 'wmt18_test.tgz'),
+ ],
+ train_files_patterns=[
+ # ('*/*europarl-v7.{src}-{tgt}.{lang}', ['cs-en']),
+ ('*/*europarl-v8.{src}-{tgt}.{lang}', ['et-en']),
+ # ('*paracrawl-release1.{tgt}-{src}.zipporah0-dedup-clean.{lang}', ['cs-en', 'et-en']),
+ ('*paracrawl-release1.{tgt}-{src}.zipporah0-dedup-clean.{lang}', ['et-en']),
+ # ('*commoncrawl.{src}-{tgt}.{lang}', ['cs-en']),
+ # ('*/news-commentary-v13.{src}-{tgt}.{lang}', ['cs-en']),
+ # ('data.plaintext-format/*train.{lang}', ['cs-en']),
+ ('rapid2016.{tgt}-{src}.{lang}', ['et-en']),
+ ] ,
+ valid_files_patterns=[
+ ('dev/newsdev2018*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['et-en']),
+ # ('dev/newstest2017*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['cs-en'])
+ ],
+ test_files_patterns=[
+ ('test/newstest2018-{src}{tgt}-{src:src}{tgt:ref}.{lang}',
+ # ['cs-en', 'et-en']),
+ ['et-en']),
+ ]
+)
+
+ru_en_yandex_instruction = 'Yandex Corpus download instruction at: https://translate.yandex.ru/corpus?lang=en'
+wmt19_ru_gu_kk_lt_manual_downloads = [
+ (('https://translate.yandex.ru/corpus?lang=en', 'wmt19_1mcorpus.zip'), ru_en_yandex_instruction)
+]
+wmt19_ru_gu_kk_lt = DLDataset(
+ name='wmt19_ru_gu_kk_lt',
+ train_urls=[
+ 'http://www.statmt.org/europarl/v9/training/europarl-v9.lt-en.tsv.gz',
+ 'https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-lt.bicleaner07.tmx.gz',
+ 'https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-ru.zipporah0-dedup-clean.tgz',
+ 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz',
+ 'http://data.statmt.org/news-commentary/v14/training/news-commentary-v14-wmt19.en-kk.tsv.gz',
+ 'http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.en-ru.tsv.gz',
+ 'http://data.statmt.org/wikititles/v1/wikititles-v1.kk-en.tsv.gz',
+ 'http://data.statmt.org/wikititles/v1/wikititles-v1.ru-en.tsv.gz',
+ 'http://data.statmt.org/wikititles/v1/wikititles-v1.kk-en.tsv.gz',
+ 'http://data.statmt.org/wikititles/v1/wikititles-v1.lt-en.tsv.gz',
+ 'http://data.statmt.org/wikititles/v1/wikititles-v1.gu-en.tsv.gz',
+ (('https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-ru.tar.gz.00',
+ 'https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-ru.tar.gz.01',
+ 'https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-ru.tar.gz.02',),
+ 'wmt19_UNv1.0.en-ru.tar.gz'),
+ 'https://tilde-model.s3-eu-west-1.amazonaws.com/rapid2016.en-lt.tmx.zip',
+ ('https://translate.yandex.ru/corpus?lang=en', 'wmt19_1mcorpus.zip'),
+ ],
+ valid_urls=[
+ ('http://data.statmt.org/wmt19/translation-task/dev.tgz', 'wmt19_dev.tgz'),
+ ],
+ test_urls=[
+ ('http://data.statmt.org/wmt19/translation-task/test.tgz', 'wmt19_test.tgz'),
+ ],
+ train_files_patterns=[
+ ('*europarl-v9.{src}-{tgt}.tsv.{lang}', ['lt-en']),
+ #paracrawl
+ ('*paracrawl-release1.{tgt}-{src}.zipporah0-dedup-clean.{lang}', ['ru-en']),
+ ('bitext.{lang}', ['lt-en',]),
+ ('*commoncrawl.{src}-{tgt}.{lang}', ['ru-en',]),
+ ('*news-commentary-v14-wmt19.{tgt}-{src}.tsv.{lang}', ['kk-en', ]),
+ ('*news-commentary-v14.{tgt}-{src}.tsv.{lang}', ['ru-en']),
+ #yandex
+ ('corpus.{tgt}_{src}.1m.{lang}', ['ru-en']),
+ ('wikititles_v1_wikititles-v1.{src}-{tgt}.tsv.{lang}', ['ru-en', 'kk-en', 'lt-en', 'gu-en']),
+ ('*/UNv1.0.{tgt}-{src}.{lang}', ['ru-en']),
+ #rapid
+ ('bitext.{lang}', ['lt-en'])
+ ],
+ valid_files_patterns=[
+ ('dev/newsdev2019*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['gu-en', 'kk-en', 'lt-en']),
+ ('dev/newstest2018*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['ru-en']),
+ ],
+ test_files_patterns=[
+ ('sgm/newstest2019-{src}{tgt}-{src:src}{tgt:ref}.{lang}',
+ ['ru-en', 'gu-en', 'kk-en', 'lt-en', 'en-ru', 'en-gu', 'en-kk', 'en-lt']),
+ ]
+)
+
+
+#########
+
+if __name__ == "__main__":
+ # speed up the downloads with multiple processing
+ dl_folder = f'{to_data_path}/downloads'
+ extract_folder = f'{to_data_path}/extracted'
+
+ urls = [
+ url
+ for dataset in [wmt13_es_en, wmt14_de_fr_en, wmt16_ro_en, wmt18_cs_et_en, wmt19_ru_gu_kk_lt]
+ for urls in [dataset.train_urls, dataset.valid_urls, dataset.test_urls]
+ for url in urls
+ ]
+ urls = set(urls)
+ download_multi(dl_folder, extract_folder, urls, num_processes=8, debug=True)
+
+ # check manually downlaods
+ to_manually_download_urls = (
+ wmt17_fi_lv_tr_zh_en_manual_downloads + wmt18_cs_et_en_manual_downloads + wmt19_ru_gu_kk_lt_manual_downloads
+ )
+ to_be_manually_dowloaded = check_need_manual_downalod(dl_folder, to_manually_download_urls)
+ if len(to_be_manually_dowloaded) > 0:
+ print('Missing files that need to be downloaded manually; stop the process now.')
+ exit(-1)
+
+ completed_urls = {}
+ completed_extraction = {}
+ def work_on_wmt(directions, wmt_data):
+ download_and_extract(
+ to_data_path,
+ directions,
+ wmt_data,
+ to_manually_download_urls=to_manually_download_urls,
+ completed_urls=completed_urls, completed_extraction=completed_extraction, debug=True)
+
+ work_on_wmt(
+ ['es_XX-en_XX'],
+ wmt13_es_en,)
+ work_on_wmt(
+ [
+ 'fr_XX-en_XX', 'en_XX-fr_XX',
+ # 'en_XX-de_DE', 'de_DE-en_XX',
+ ],
+ wmt14_de_fr_en,)
+ work_on_wmt(
+ ['ro_RO-en_XX', 'en_XX-ro_XX'],
+ wmt16_ro_en,)
+ work_on_wmt(
+ [
+ # 'zh_CN-en_XX',
+ 'lv_LV-en_XX', 'fi_FI-en_XX', 'tr_TR-en_XX',
+ #in case the reversed directions have different train/valid/test data
+ # 'en_XX-zh_CN',
+ 'en_XX-lv_LV', 'en_XX-fi_FI', 'en_XX-tr_TR',
+ ],
+ wmt17_fi_lv_tr_zh_en, )
+ # czeng17_script_path = download_czeng17_script(download_to, extract_to, debug=False)
+ # cz_username = None
+ work_on_wmt(
+ [
+ # 'cs_CZ-en_XX',
+ 'et_EE-en_XX'],
+ wmt18_cs_et_en,)
+ work_on_wmt(
+ [
+ # 'ru_RU-en_XX', 'en_XX-ru_RU',
+ 'gu_IN-en_XX', 'kk_KZ-en_XX', 'lt_LT-en_XX',
+ #in case the reversed directions have different train/valid/test data
+ 'en_XX-gu_IN', 'en_XX-kk_KZ', 'en_XX-lt_LT'
+ ],
+ wmt19_ru_gu_kk_lt,)
+
+ not_matching = check_wmt_test_bleu(
+ f'{to_data_path}/raw',
+ [
+ ('wmt13', ['es_XX-en_XX']),
+ ('wmt14/full', ['fr_XX-en_XX',]),
+ ('wmt16', ['ro_RO-en_XX',]),
+ # ('wmt17/improved', ['zh_CN-en_XX']),
+ ('wmt17', [ 'lv_LV-en_XX', 'fi_FI-en_XX', 'tr_TR-en_XX']),
+ ('wmt18', ['cs_CZ-en_XX', 'et_EE-en_XX']),
+ ('wmt19', ['gu_IN-en_XX', 'kk_KZ-en_XX', 'lt_LT-en_XX']),
+ #'ru_RU-en_XX',
+ ]
+ )
+ if len(not_matching) > 0:
+ print('the following datasets do not have matching test datasets:\n\t', '\n\t'.join(not_matching))
+
diff --git a/fairseq/examples/multilingual/data_scripts/download_wmt20.sh b/fairseq/examples/multilingual/data_scripts/download_wmt20.sh
new file mode 100644
index 0000000000000000000000000000000000000000..31cd5c76b75081331ae03c5ea70ea7ddebaa06e1
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/download_wmt20.sh
@@ -0,0 +1,547 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+if [ -z $WORKDIR_ROOT ] ;
+then
+ echo "please specify your working directory root in environment variable WORKDIR_ROOT. Exitting..."
+ exit
+fi
+
+
+
+set -x -e
+
+# TODO update the workdir and dest dir name
+# put fasttext model
+WORKDIR=$WORKDIR_ROOT
+# put intermediate files
+TMP_DIR=$WORKDIR_ROOT/tmp/tmp_wmt20_lowres_download
+# output {train,valid,test} files to dest
+DEST=$WORKDIR_ROOT/ML50/raw
+
+UTILS=$PWD/utils
+
+# per dataset locations
+COMMONCRAWL_DIR=$TMP_DIR/commoncrawl
+YANDEX_CORPUS=$WORKDIR_ROOT/wmt20/official/ru/yandex/1mcorpus.zip
+# unzipped
+CZENG_CORPUS=$WORKDIR_ROOT/wmt20/official/cs/czeng/czeng20-train
+CCMT_DIR=$WORKDIR_ROOT/wmt20/official/zh/ccmt/parallel
+
+download_and_select() {
+ SUBFOLDER=$1
+ URL=$2
+ UNCOMPRESS_CMD=$3
+ LANG=$4
+ INPUT_FILEPATH=$5
+ if [[ $# -gt 5 ]]; then
+ LANG_COL=$6
+ EN_COL=$7
+ fi
+
+ mkdir -p $SUBFOLDER
+ cd $SUBFOLDER
+ wget -nc --content-disposition $URL
+ $UNCOMPRESS_CMD
+
+ if [[ $# -gt 5 ]]; then
+ cut -f$LANG_COL $INPUT_FILEPATH > $INPUT_FILEPATH.$LANG
+ cut -f$EN_COL $INPUT_FILEPATH > $INPUT_FILEPATH.en
+ fi
+ cd ..
+
+ ln -sf $SUBFOLDER/$INPUT_FILEPATH.$LANG $SUBFOLDER.$LANG
+ ln -sf $SUBFOLDER/$INPUT_FILEPATH.en $SUBFOLDER.en
+}
+
+prepare_lid() {
+ pip install fasttext
+
+ # TODO specify global workdir
+ MODEL=$WORKDIR/fasttext/lid.176.bin
+ LID_MULTI=$UTILS/fasttext_multi_filter.py
+
+ if [ ! -f "$MODEL" ]; then
+ echo "downloading fasttext lid model..."
+ mkdir -p $WORKDIR/fasttext
+ wget -nc https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin -O $MODEL
+ fi
+}
+
+prepare_moses() {
+ pushd $UTILS
+ echo 'Cloning Moses github repository (for tokenization scripts)...'
+ git clone https://github.com/moses-smt/mosesdecoder.git
+ popd
+}
+
+lid_filter() {
+ # TODO specify global workdir
+ MODEL=$WORKDIR/fasttext/lid.176.bin
+ LID_MULTI=$UTILS/fasttext_multi_filter.py
+
+ prepare_lid
+
+ SRC=$1
+ SRC_FILE=$2
+ SRC_OUTPUT=$3
+ TGT=$4
+ TGT_FILE=$5
+ TGT_OUTPUT=$6
+ python $LID_MULTI --model $MODEL --inputs $SRC_FILE $TGT_FILE --langs $SRC $TGT --outputs $SRC_OUTPUT $TGT_OUTPUT
+}
+
+prepare_ja_ted() {
+ mkdir -p ted
+ cd ted
+
+ wget -nc https://wit3.fbk.eu/archive/2017-01-trnted//texts/en/ja/en-ja.tgz
+ tar -zxvf en-ja.tgz
+ cat en-ja/train.tags.en-ja.en | grep -v -P "^[ ]*\<" | sed 's/^[ \t]*//g' | sed 's/[ \t]*$//g' > en-ja/train.en-ja.en
+ cat en-ja/train.tags.en-ja.ja | grep -v -P "^[ ]*\<" | sed 's/^[ \t]*//g' | sed 's/[ \t]*$//g' > en-ja/train.en-ja.ja
+
+ cd ..
+ ln -sf ted/en-ja/train.en-ja.ja ted.ja
+ ln -sf ted/en-ja/train.en-ja.en ted.en
+}
+
+prepare_ja() {
+ OUTPUT_DIR=$TMP_DIR/ja
+ mkdir -p $OUTPUT_DIR
+ cd $OUTPUT_DIR
+
+ download_and_select paracrawl "http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/release/2.0/bitext/en-ja.tar.gz" "tar -zxvf en-ja.tar.gz" ja en-ja/en-ja.bicleaner05.txt 4 3 &
+ download_and_select newscommentary "http://data.statmt.org/news-commentary/v15/training/news-commentary-v15.en-ja.tsv.gz" "gunzip -f news-commentary-v15.en-ja.tsv.gz" ja news-commentary-v15.en-ja.tsv 2 1 &
+ download_and_select wikititles "http://data.statmt.org/wikititles/v2/wikititles-v2.ja-en.tsv.gz" "gunzip -f wikititles-v2.ja-en.tsv.gz" ja wikititles-v2.ja-en.tsv 1 2 &
+ download_and_select wikimatrix "http://data.statmt.org/wmt20/translation-task/WikiMatrix/WikiMatrix.v1.en-ja.langid.tsv.gz" "gunzip -f WikiMatrix.v1.en-ja.langid.tsv.gz" ja WikiMatrix.v1.en-ja.langid.tsv 3 2 &
+ download_and_select subtitle "https://nlp.stanford.edu/projects/jesc/data/split.tar.gz" "tar -zxvf split.tar.gz" ja split/train 2 1 &
+ download_and_select kftt "http://www.phontron.com/kftt/download/kftt-data-1.0.tar.gz" "tar -zxvf kftt-data-1.0.tar.gz" ja kftt-data-1.0/data/orig/kyoto-train &
+
+ prepare_ja_ted &
+
+ # ted data needs to
+
+ wait
+
+ # remove previous results
+ rm -f all.??
+ find ./ -maxdepth 1 -name "*.ja" | sort -V | xargs cat > all.ja
+ find ./ -maxdepth 1 -name "*.en" | sort -V | xargs cat > all.en
+ lid_filter ja all.ja $DEST/train.ja_XX-en_XX.ja_XX en all.en $DEST/train.ja_XX-en_XX.en_XX
+}
+
+prepare_ta() {
+ OUTPUT_DIR=$TMP_DIR/ta
+ mkdir -p $OUTPUT_DIR
+ cd $OUTPUT_DIR
+
+ download_and_select wikititles "http://data.statmt.org/wikititles/v2/wikititles-v2.ta-en.tsv.gz" "gunzip -f wikititles-v2.ta-en.tsv.gz" ta wikititles-v2.ta-en.tsv 1 2 &
+ download_and_select wikimatrix "http://data.statmt.org/wmt20/translation-task/WikiMatrix/WikiMatrix.v1.en-ta.langid.tsv.gz" "gunzip -f WikiMatrix.v1.en-ta.langid.tsv.gz" ta WikiMatrix.v1.en-ta.langid.tsv 3 2 &
+ download_and_select pmindia "http://data.statmt.org/pmindia/v1/parallel/pmindia.v1.ta-en.tsv" "" ta pmindia.v1.ta-en.tsv 2 1 &
+ download_and_select tanzil "https://object.pouta.csc.fi/OPUS-Tanzil/v1/moses/en-ta.txt.zip" "unzip en-ta.txt.zip" ta Tanzil.en-ta &
+ download_and_select pib "http://preon.iiit.ac.in/~jerin/resources/datasets/pib-v0.tar" "tar -xvf pib-v0.tar" ta pib/en-ta/train &
+ download_and_select mkb "http://preon.iiit.ac.in/~jerin/resources/datasets/mkb-v0.tar" "tar -xvf mkb-v0.tar" ta mkb/en-ta/mkb &
+ download_and_select ufal "http://ufal.mff.cuni.cz/~ramasamy/parallel/data/v2/en-ta-parallel-v2.tar.gz" "tar -zxvf en-ta-parallel-v2.tar.gz" ta en-ta-parallel-v2/corpus.bcn.train &
+
+ wait
+
+ # need special handling for nlpc
+ mkdir -p nlpc
+ cd nlpc
+ wget -nc https://raw.githubusercontent.com/nlpc-uom/English-Tamil-Parallel-Corpus/master/En-Ta%20Corpus/En-Ta%20English.txt
+ wget -nc https://github.com/nlpc-uom/English-Tamil-Parallel-Corpus/raw/master/En-Ta%20Corpus/En-Ta%20Tamil.txt
+ tail -n +4 "En-Ta English.txt" > en-ta.en
+ tail -n +4 "En-Ta Tamil.txt" > en-ta.ta
+ cd ..
+ ln -sf nlpc/en-ta.en nlpc.en
+ ln -sf nlpc/en-ta.ta nlpc.ta
+
+ # remove previous results
+ rm -f all.??
+ find ./ -maxdepth 1 -name "*.ta" | sort -V | xargs cat > all.ta
+ find ./ -maxdepth 1 -name "*.en" | sort -V | xargs cat > all.en
+ lid_filter ta all.ta $DEST/train.ta_IN-en_XX.ta_IN en all.en $DEST/train.ta_IN-en_XX.en_XX
+}
+
+prepare_iu() {
+ OUTPUT_DIR=$TMP_DIR/iu
+ mkdir -p $OUTPUT_DIR
+ cd $OUTPUT_DIR
+
+ download_and_select nh "https://nrc-digital-repository.canada.ca/eng/view/dataset/?id=c7e34fa7-7629-43c2-bd6d-19b32bf64f60" "tar -zxvf Nunavut-Hansard-Inuktitut-English-Parallel-Corpus-3.0.1.tgz" iu Nunavut-Hansard-Inuktitut-English-Parallel-Corpus-3.0/NunavutHansard > /dev/null &
+ download_and_select wikititles "http://data.statmt.org/wikititles/v2/wikititles-v2.iu-en.tsv.gz" "gunzip -f wikititles-v2.iu-en.tsv.gz" iu wikititles-v2.iu-en.tsv 1 2 &
+
+ wait
+
+ # remove previous results
+ rm -f all.??
+ find ./ -maxdepth 1 -name "*.iu" | sort -V | xargs cat | nh/Nunavut-Hansard-Inuktitut-English-Parallel-Corpus-3.0/scripts/normalize-iu-spelling.pl > all.iu
+ find ./ -maxdepth 1 -name "*.en" | sort -V | xargs cat > all.en
+ paste all.iu all.en | awk -F $'\t' '$1!=""&&$2!=""' > all.iuen
+ cut -f1 all.iuen > $DEST/train.iu_CA-en_XX.iu_CA
+ cut -f2 all.iuen > $DEST/train.iu_CA-en_XX.en_XX
+}
+
+prepare_km() {
+ OUTPUT_DIR=$TMP_DIR/km
+ mkdir -p $OUTPUT_DIR
+ cd $OUTPUT_DIR
+
+ download_and_select paracrawl "http://data.statmt.org/wmt20/translation-task/ps-km/wmt20-sent.en-km.xz" "unxz wmt20-sent.en-km.zx" km wmt20-sent.en-km 2 1 &
+
+ # km-parallel has multiple sets, concat all of them together
+ mkdir -p opus
+ cd opus
+ wget -nc "http://data.statmt.org/wmt20/translation-task/ps-km/km-parallel.tgz"
+ tar -zxvf km-parallel.tgz
+ find ./km-parallel -maxdepth 1 -name "*.km" | sort -V | xargs cat > opus.km
+ find ./km-parallel -maxdepth 1 -name "*.en" | sort -V | xargs cat > opus.en
+ cd ..
+ ln -sf opus/opus.km .
+ ln -sf opus/opus.en .
+
+ wait
+
+ # remove previous results
+ rm -f all.??
+ find ./ -maxdepth 1 -name "*.km" | sort -V | xargs cat > all.km
+ find ./ -maxdepth 1 -name "*.en" | sort -V | xargs cat > all.en
+ lid_filter km all.km $DEST/train.km_KH-en_XX.km_KH en all.en $DEST/train.km_KH-en_XX.en_XX
+}
+
+prepare_ps() {
+ OUTPUT_DIR=$TMP_DIR/ps
+ mkdir -p $OUTPUT_DIR
+ cd $OUTPUT_DIR
+
+ download_and_select paracrawl "http://data.statmt.org/wmt20/translation-task/ps-km/wmt20-sent.en-ps.xz" "unxz wmt20-sent.en-ps.xz" ps wmt20-sent.en-ps 2 1 &
+ download_and_select wikititles "http://data.statmt.org/wikititles/v2/wikititles-v2.ps-en.tsv.gz" "gunzip -f wikititles-v2.ps-en.tsv.gz" ps wikititles-v2.ps-en.tsv 1 2 &
+ # ps-parallel has multiple sets, concat all of them together
+ mkdir -p opus
+ cd opus
+ wget -nc "http://data.statmt.org/wmt20/translation-task/ps-km/ps-parallel.tgz"
+ tar -zxvf ps-parallel.tgz
+ find ./ps-parallel -maxdepth 1 -name "*.ps" | sort -V | xargs cat > opus.ps
+ find ./ps-parallel -maxdepth 1 -name "*.en" | sort -V | xargs cat > opus.en
+ cd ..
+ ln -sf opus/opus.ps opus.ps
+ ln -sf opus/opus.en opus.en
+
+ wait
+
+ # remove previous results
+ rm -f all.??
+ find ./ -maxdepth 1 -name "*.ps" | sort -V | xargs cat > all.ps
+ find ./ -maxdepth 1 -name "*.en" | sort -V | xargs cat > all.en
+ lid_filter ps all.ps $DEST/train.ps_AF-en_XX.ps_AF en all.en $DEST/train.ps_AF-en_XX.en_XX
+}
+
+download_commoncrawl() {
+ mkdir -p $COMMONCRAWL_DIR
+ cd $COMMONCRAWL_DIR
+
+ wget -nc "http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz"
+ tar -zxvf training-parallel-commoncrawl.tgz
+}
+link_commoncrawl() {
+ LANG=$1
+ ln -sf $COMMONCRAWL_DIR/commoncrawl.$LANG-en.en commoncrawl.en
+ ln -sf $COMMONCRAWL_DIR/commoncrawl.$LANG-en.$LANG commoncrawl.$LANG
+}
+
+strip_xlf() {
+ INPUT_FILE=$1
+ SRC=$2
+ TGT=$3
+ grep ']*>//g' | sed 's/<[^<>]*>$//g' > $INPUT_FILE.$SRC
+ grep ']*>//g' | sed 's/<[^<>]*>$//g' > $INPUT_FILE.$TGT
+}
+
+download_and_process_tilde() {
+ URL=$1
+ UNCOMPRESS_CMD=$2
+ FILENAME=$3
+ LANG=$4
+ PROCESS_CMD=$5
+
+ mkdir -p tilde
+ cd tilde
+ wget -nc $URL
+ $UNCOMPRESS_CMD
+ echo "executing cmd"
+ echo $PROCESS_CMD
+ $PROCESS_CMD
+ cd ..
+ ln -sf tilde/$FILENAME.$LANG tilde.$LANG
+ ln -sf tilde/$FILENAME.en tilde.en
+}
+
+prepare_cs() {
+ OUTPUT_DIR=$TMP_DIR/cs
+ mkdir -p $OUTPUT_DIR
+ cd $OUTPUT_DIR
+
+ #download_and_select europarl "http://www.statmt.org/europarl/v10/training/europarl-v10.cs-en.tsv.gz" "gunzip europarl-v10.cs-en.tsv.gz" cs europarl-v10.cs-en.tsv 1 2 &
+ #download_and_select paracrawl "https://s3.amazonaws.com/web-language-models/paracrawl/release5.1/en-cs.txt.gz" "gunzip en-cs.txt.gz" cs en-cs.txt 2 1 &
+ #link_commoncrawl cs
+ #download_and_select newscommentary "http://data.statmt.org/news-commentary/v15/training/news-commentary-v15.cs-en.tsv.gz" "gunzip news-commentary-v15.cs-en.tsv.gz" cs news-commentary-v15.cs-en.tsv 1 2 &
+ #download_and_select wikititles "http://data.statmt.org/wikititles/v2/wikititles-v2.cs-en.tsv.gz" "gunzip wikititles-v2.cs-en.tsv.gz" cs wikititles-v2.cs-en.tsv 1 2 &
+ #download_and_process_tilde "http://data.statmt.org/wmt20/translation-task/rapid/RAPID_2019.cs-en.xlf.gz" "gunzip RAPID_2019.cs-en.xlf.gz" RAPID_2019.cs-en.xlf cs "strip_xlf RAPID_2019.cs-en.xlf cs en" &
+ #download_and_select wikimatrix "http://data.statmt.org/wmt20/translation-task/WikiMatrix/WikiMatrix.v1.cs-en.langid.tsv.gz" "gunzip WikiMatrix.v1.cs-en.langid.tsv.gz" cs WikiMatrix.v1.cs-en.langid.tsv 2 3 &
+
+ #wait
+
+ # remove previous results
+ #rm -f all.??
+ #find ./ -maxdepth 1 -name "*.cs" | sort -V | xargs cat > all.cs
+ #find ./ -maxdepth 1 -name "*.en" | sort -V | xargs cat > all.en
+ if [ -z $CZENG_CORPUS ] ;
+ then
+ echo "Please download CZENG_CORPUS manually and place them at $CZENG_CORPUS. Exitting..."
+ exit
+ fi
+ cat $CZENG_CORPUS | sed '/^$/d' | cut -f5 > all.cs
+ cat $CZENG_CORPUS | sed '/^$/d' | cut -f6 > all.en
+
+ lid_filter cs all.cs $DEST/train.cs_CZ-en_XX.cs_CZ en all.en $DEST/train.cs_CZ-en_XX.en_XX
+}
+
+prepare_de() {
+ OUTPUT_DIR=$TMP_DIR/de
+ mkdir -p $OUTPUT_DIR
+ cd $OUTPUT_DIR
+
+ download_and_select europarl "http://www.statmt.org/europarl/v10/training/europarl-v10.de-en.tsv.gz" "gunzip europarl-v10.de-en.tsv.gz" de europarl-v10.de-en.tsv 1 2 &
+ download_and_select paracrawl "https://s3.amazonaws.com/web-language-models/paracrawl/release5.1/en-de.txt.gz" "gunzip en-de.txt.gz" de en-de.txt 2 1 &
+ link_commoncrawl de
+ download_and_select newscommentary "http://data.statmt.org/news-commentary/v15/training/news-commentary-v15.de-en.tsv.gz" "gunzip news-commentary-v15.de-en.tsv.gz" de news-commentary-v15.de-en.tsv 1 2 &
+ download_and_select wikititles "http://data.statmt.org/wikititles/v2/wikititles-v2.de-en.tsv.gz" "gunzip wikititles-v2.de-en.tsv.gz" de wikititles-v2.de-en.tsv 1 2 &
+ download_and_process_tilde "http://data.statmt.org/wmt20/translation-task/rapid/RAPID_2019.de-en.xlf.gz" "gunzip RAPID_2019.de-en.xlf.gz" RAPID_2019.de-en.xlf de "strip_xlf RAPID_2019.de-en.xlf de en" &
+ download_and_select wikimatrix "http://data.statmt.org/wmt20/translation-task/WikiMatrix/WikiMatrix.v1.de-en.langid.tsv.gz" "gunzip WikiMatrix.v1.de-en.langid.tsv.gz" de WikiMatrix.v1.de-en.langid.tsv 2 3 &
+
+ wait
+
+ # remove previous results
+ rm -f all.??
+ find ./ -maxdepth 1 -name "*.de" | sort -V | xargs cat > all.de
+ find ./ -maxdepth 1 -name "*.en" | sort -V | xargs cat > all.en
+ lid_filter de all.de $DEST/train.de_DE-en_XX.de_DE en all.en $DEST/train.de_DE-en_XX.en_XX
+}
+
+prepare_tmx() {
+ TMX_FILE=$1
+ git clone https://github.com/amake/TMX2Corpus $UTILS/tmx2corpus
+ pip install tinysegmenter
+
+ python $UTILS/tmx2corpus/tmx2corpus.py $TMX_FILE
+}
+
+prepare_pl() {
+ OUTPUT_DIR=$TMP_DIR/pl
+ mkdir -p $OUTPUT_DIR
+ cd $OUTPUT_DIR
+
+ # download_and_select europarl "http://www.statmt.org/europarl/v10/training/europarl-v10.pl-en.tsv.gz" "gunzip europarl-v10.pl-en.tsv.gz" pl europarl-v10.pl-en.tsv 1 2 &
+ # download_and_select paracrawl "https://s3.amazonaws.com/web-language-models/paracrawl/release5.1/en-pl.txt.gz" "gunzip en-pl.txt.gz" pl en-pl.txt 2 1 &
+ # download_and_select wikititles "http://data.statmt.org/wikititles/v2/wikititles-v2.pl-en.tsv.gz" "gunzip wikititles-v2.pl-en.tsv.gz" pl wikititles-v2.pl-en.tsv 1 2 &
+ download_and_select tilde "https://tilde-model.s3-eu-west-1.amazonaws.com/rapid2019.en-pl.tmx.zip" "gunzip rapid2019.en-pl.tmx.zip" bitext pl "prepare_tmx RAPID_2019.UNIQUE.en-pl.tmx" &
+ # download_and_select wikimatrix "http://data.statmt.org/wmt20/translation-task/WikiMatrix/WikiMatrix.v1.en-pl.langid.tsv.gz" "gunzip WikiMatrix.v1.en-pl.langid.tsv.gz" pl WikiMatrix.v1.en-pl.langid.tsv 3 2 &
+
+ wait
+
+ # remove previous results
+ rm -f all.??
+ find ./ -maxdepth 1 -name "*.pl" | sort -V | xargs cat > all.pl
+ find ./ -maxdepth 1 -name "*.en" | sort -V | xargs cat > all.en
+ lid_filter pl all.pl $DEST/train.pl_PL-en_XX.pl_PL en all.en $DEST/train.pl_PL-en_XX.en_XX
+}
+
+prepare_uncorpus() {
+ $URLS=$1
+ $FILES=$2
+
+ mkdir -p uncorpus
+ cd uncorpus
+
+ for URL in $URLS; do
+ wget -nc $URL
+ done
+ cat $FILES > uncorpus.tar.gz
+ tar -zxvf uncorpus.tar.gz
+
+ cd ..
+ ln -sf uncorpus/en-$LANG/UNv1.0.en-$LANG.$LANG uncorpus.$LANG
+ ln -sf uncorpus/en-$LANG/UNv1.0.en-$LANG.en uncorpus.en
+}
+
+prepare_yandex() {
+ mkdir -p yandex
+ cd yandex
+ unzip $YANDEX_CORPUS ./
+ cd ..
+ ln -s yandex/corpus.en_ru.1m.en yandex.en
+ ln -s yandex/corpus.en_ru.1m.ru yandex.ru
+}
+
+prepare_ru() {
+ OUTPUT_DIR=$TMP_DIR/ru
+ mkdir -p $OUTPUT_DIR
+ cd $OUTPUT_DIR
+
+ download_and_select paracrawl "https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-ru.zipporah0-dedup-clean.tgz" "tar -zxvf paracrawl-release1.en-ru.zipporah0-dedup-clean.tgz" ru paracrawl-release1.en-ru.zipporah0-dedup-clean &
+ link_commoncrawl ru
+ download_and_select newscommentary "http://data.statmt.org/news-commentary/v15/training/news-commentary-v15.en-ru.tsv.gz" "gunzip news-commentary-v15.en-ru.tsv.gz" ru news-commentary-v15.en-ru.tsv 2 1 &
+ prepare_yandex &
+ download_and_select wikititles "http://data.statmt.org/wikititles/v2/wikititles-v2.ru-en.tsv.gz" "gunzip wikititles-v2.ru-en.tsv.gz" ru wikititles-v2.ru-en.tsv 1 2 &
+ prepare_uncorpus "https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-ru.tar.gz.00 https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-ru.tar.gz.01 https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-ru.tar.gz.02" "UNv1.0.en-ru.tar.gz.00 UNv1.0.en-ru.tar.gz.01 UNv1.0.en-ru.tar.gz.02" &
+ download_and_select wikimatrix "http://data.statmt.org/wmt20/translation-task/WikiMatrix/WikiMatrix.v1.en-ru.langid.tsv.gz" "gunzip WikiMatrix.v1.en-ru.langid.tsv.gz" ru WikiMatrix.v1.en-ru.langid.tsv 3 2 &
+
+ wait
+
+ # remove previous results
+ rm -f all.??
+ find ./ -maxdepth 1 -name "*.ru" | sort -V | xargs cat > all.ru
+ find ./ -maxdepth 1 -name "*.en" | sort -V | xargs cat > all.en
+ lid_filter ru all.ru $DEST/train.ru_RU-en_XX.ru_RU en all.en $DEST/train.ru_RU-en_XX.en_XX
+}
+
+prepare_ccmt() {
+ mkdir -p ccmt
+ cd ccmt
+ # assume ccmt data is already unzipped under CCMT_DIR folder
+ cat $CCMT_DIR/datum2017/Book*_cn.txt | sed 's/ //g' > datum2017.detok.zh
+ cat $CCMT_DIR/datum2017/Book*_en.txt > datum2017.detok.en
+ cat $CCMT_DIR/casict2011/casict-A_ch.txt $CCMT_DIR/casict2011/casict-B_ch.txt $CCMT_DIR/casict2015/casict2015_ch.txt $CCMT_DIR/datum2015/datum_ch.txt $CCMT_DIR/neu2017/NEU_cn.txt datum2017.detok.zh > ccmt.zh
+ cat $CCMT_DIR/casict2011/casict-A_en.txt $CCMT_DIR/casict2011/casict-B_en.txt $CCMT_DIR/casict2015/casict2015_en.txt $CCMT_DIR/datum2015/datum_en.txt $CCMT_DIR/neu2017/NEU_en.txt datum2017.detok.en > ccmt.en
+ cd ..
+ ln -sf ccmt/ccmt.zh ccmt.zh
+ ln -sf ccmt/ccmt.en ccmt.en
+}
+
+prepare_zh() {
+ OUTPUT_DIR=$TMP_DIR/zh
+ mkdir -p $OUTPUT_DIR
+ cd $OUTPUT_DIR
+
+ download_and_select newscommentary "http://data.statmt.org/news-commentary/v15/training/news-commentary-v15.en-zh.tsv.gz" "gunzip news-commentary-v15.en-zh.tsv.gz" zh news-commentary-v15.en-zh.tsv 2 1 &
+ download_and_select wikititles "http://data.statmt.org/wikititles/v2/wikititles-v2.zh-en.tsv.gz" "gunzip wikititles-v2.zh-en.tsv.gz" zh wikititles-v2.zh-en.tsv 1 2 &
+ prepare_uncorpus "https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-zh.tar.gz.00 https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-zh.tar.gz.01" "UNv1.0.en-zh.tar.gz.00 UNv1.0.en-zh.tar.gz.01" &
+ prepare_ccmt &
+ download_and_select wikimatrix "http://data.statmt.org/wmt20/translation-task/WikiMatrix/WikiMatrix.v1.en-zh.langid.tsv.gz" "gunzip WikiMatrix.v1.en-zh.langid.tsv.gz" zh WikiMatrix.v1.en-zh.langid.tsv 3 2 &
+
+ wait
+
+ # remove previous results
+ rm -f all.??
+ find ./ -maxdepth 1 -name "*.zh" | sort -V | xargs cat > all.zh
+ find ./ -maxdepth 1 -name "*.en" | sort -V | xargs cat > all.en
+ lid_filter zh all.zh $DEST/train.zh_CN-en_XX.zh_CN en all.en $DEST/train.zh_CN-en_XX.en_XX
+}
+
+prepare_tests() {
+ OUTPUT_DIR=$TMP_DIR
+ mkdir -p $OUTPUT_DIR
+ cd $OUTPUT_DIR
+ wget -nc http://data.statmt.org/wmt20/translation-task/dev.tgz
+ tar -zxvf dev.tgz
+ cd dev
+
+ cat newsdev2020-jaen-src.ja.sgm | $UTILS/strip_sgm.sh > newsdev2020-jaen.ja
+ cat newsdev2020-jaen-ref.en.sgm | $UTILS/strip_sgm.sh > newsdev2020-jaen.en
+ split newsdev2020-jaen.ja -a 0 -n r/1/2 > $DEST/valid.ja_XX-en_XX.ja_XX
+ split newsdev2020-jaen.en -a 0 -n r/1/2 > $DEST/valid.ja_XX-en_XX.en_XX
+ split newsdev2020-jaen.ja -a 0 -n r/2/2 > $DEST/test.ja_XX-en_XX.ja_XX
+ split newsdev2020-jaen.en -a 0 -n r/2/2 > $DEST/test.ja_XX-en_XX.en_XX
+
+ cat newsdev2020-iuen-src.iu.sgm | strip_sgm.sh > newsdev2020-iuen.iu
+ cat newsdev2020-iuen-ref.en.sgm | strip_sgm.sh > newsdev2020-iuen.en
+ split newsdev2020-iuen.iu -a 0 -n r/1/2 > $DEST/valid.iu_CA-en_XX.iu_CA
+ split newsdev2020-iuen.en -a 0 -n r/1/2 > $DEST/valid.iu_CA-en_XX.en_XX
+ split newsdev2020-iuen.iu -a 0 -n r/2/2 > $DEST/test.iu_CA-en_XX.iu_CA
+ split newsdev2020-iuen.en -a 0 -n r/2/2 > $DEST/test.iu_CA-en_XX.en_XX
+
+ cat newsdev2020-taen-src.ta.sgm | strip_sgm.sh > newsdev2020-taen.ta
+ cat newsdev2020-taen-ref.en.sgm | strip_sgm.sh > newsdev2020-taen.en
+ split newsdev2020-taen.ta -a 0 -n r/1/2 > $DEST/valid.ta_IN-en_XX.ta_IN
+ split newsdev2020-taen.en -a 0 -n r/1/2 > $DEST/valid.ta_IN-en_XX.en_XX
+ split newsdev2020-taen.ta -a 0 -n r/2/2 > $DEST/test.ta_IN-en_XX.ta_IN
+ split newsdev2020-taen.en -a 0 -n r/2/2 > $DEST/test.ta_IN-en_XX.en_XX
+
+ cp wikipedia.dev.km-en.km $DEST/valid.km_KH-en_XX.km_KH
+ cp wikipedia.dev.km-en.en $DEST/valid.km_KH-en_XX.en_XX
+ cp wikipedia.devtest.km-en.km $DEST/test.km_KH-en_XX.km_KH
+ cp wikipedia.devtest.km-en.en $DEST/test.km_KH-en_XX.en_XX
+
+ cp wikipedia.dev.ps-en.ps $DEST/valid.ps_AF-en_XX.ps_AF
+ cp wikipedia.dev.ps-en.en $DEST/valid.ps_AF-en_XX.en_XX
+ cp wikipedia.devtest.ps-en.ps $DEST/test.ps_AF-en_XX.ps_AF
+ cp wikipedia.devtest.ps-en.en $DEST/test.ps_AF-en_XX.en_XX
+
+ cat newsdev2020-plen-src.pl.sgm | strip_sgm.sh > newsdev2020-plen.pl
+ cat newsdev2020-plen-ref.en.sgm | strip_sgm.sh > newsdev2020-plen.en
+ split newsdev2020-plen.pl -a 0 -n r/1/2 > $DEST/valid.pl_PL-en_XX.pl_PL
+ split newsdev2020-plen.en -a 0 -n r/1/2 > $DEST/valid.pl_PL-en_XX.en_XX
+ split newsdev2020-plen.pl -a 0 -n r/2/2 > $DEST/test.pl_PL-en_XX.pl_PL
+ split newsdev2020-plen.en -a 0 -n r/2/2 > $DEST/test.pl_PL-en_XX.en_XX
+
+ cat newstest2018-encs-src.en.sgm | strip_sgm.sh > $DEST/valid.en_XX-cs_CZ.en_XX
+ cat newstest2018-encs-ref.cs.sgm | strip_sgm.sh > $DEST/valid.en_XX-cs_CZ.cs_CZ
+ cat newstest2019-encs-src.en.sgm | strip_sgm.sh > $DEST/test.en_XX-cs_CZ.en_XX
+ cat newstest2019-encs-ref.cs.sgm | strip_sgm.sh > $DEST/test.en_XX-cs_CZ.cs_CZ
+
+ cat newstest2018-deen-src.de.sgm | strip_sgm.sh > $DEST/valid.de_DE-en_XX.de_DE
+ cat newstest2018-deen-ref.en.sgm | strip_sgm.sh > $DEST/valid.de_DE-en_XX.en_XX
+ cat newstest2018-ende-src.en.sgm | strip_sgm.sh > $DEST/valid.en_XX-de_DE.en_XX
+ cat newstest2018-ende-ref.de.sgm | strip_sgm.sh > $DEST/valid.en_XX-de_DE.de_DE
+ cat newstest2019-deen-src.de.sgm | strip_sgm.sh > $DEST/test.de_DE-en_XX.de_DE
+ cat newstest2019-deen-ref.en.sgm | strip_sgm.sh > $DEST/test.de_DE-en_XX.en_XX
+ cat newstest2019-ende-src.en.sgm | strip_sgm.sh > $DEST/test.en_XX-de_DE.en_XX
+ cat newstest2019-ende-ref.de.sgm | strip_sgm.sh > $DEST/test.en_XX-de_DE.de_DE
+
+ cat newstest2018-ruen-src.ru.sgm | strip_sgm.sh > $DEST/valid.ru_RU-en_XX.ru_RU
+ cat newstest2018-ruen-ref.en.sgm | strip_sgm.sh > $DEST/valid.ru_RU-en_XX.en_XX
+ cat newstest2018-enru-src.en.sgm | strip_sgm.sh > $DEST/valid.en_XX-ru_RU.en_XX
+ cat newstest2018-enru-ref.ru.sgm | strip_sgm.sh > $DEST/valid.en_XX-ru_RU.ru_RU
+ cat newstest2019-ruen-src.ru.sgm | strip_sgm.sh > $DEST/test.ru_RU-en_XX.ru_RU
+ cat newstest2019-ruen-ref.en.sgm | strip_sgm.sh > $DEST/test.ru_RU-en_XX.en_XX
+ cat newstest2019-enru-src.en.sgm | strip_sgm.sh > $DEST/test.en_XX-ru_RU.en_XX
+ cat newstest2019-enru-ref.ru.sgm | strip_sgm.sh > $DEST/test.en_XX-ru_RU.ru_RU
+
+ cat newstest2018-zhen-src.zh.sgm | strip_sgm.sh > $DEST/valid.zh_CN-en_XX.zh_CN
+ cat newstest2018-zhen-ref.en.sgm | strip_sgm.sh > $DEST/valid.zh_CN-en_XX.en_XX
+ cat newstest2018-enzh-src.en.sgm | strip_sgm.sh > $DEST/valid.en_XX-zh_CN.en_XX
+ cat newstest2018-enzh-ref.zh.sgm | strip_sgm.sh > $DEST/valid.en_XX-zh_CN.zh_CN
+ cat newstest2019-zhen-src.zh.sgm | strip_sgm.sh > $DEST/test.zh_CN-en_XX.zh_CN
+ cat newstest2019-zhen-ref.en.sgm | strip_sgm.sh > $DEST/test.zh_CN-en_XX.en_XX
+ cat newstest2019-enzh-src.en.sgm | strip_sgm.sh > $DEST/test.en_XX-zh_CN.en_XX
+ cat newstest2019-enzh-ref.zh.sgm | strip_sgm.sh > $DEST/test.en_XX-zh_CN.zh_CN
+}
+
+mkdir -p $DEST
+
+prepare_lid
+prepare_moses
+download_commoncrawl
+
+prepare_ja &
+prepare_ta &
+prepare_km &
+prepare_ps &
+prepare_iu &
+prepare_cs &
+prepare_de &
+prepare_pl &
+prepare_ru &
+prepare_zh &
+
+# prepare valid/test set
+prepare_tests &
+
+# wait
+
+# TODO remove intermediate files
+# rm -rf $TMP_DIR
diff --git a/fairseq/examples/multilingual/data_scripts/preprocess_ML50_v1.sh b/fairseq/examples/multilingual/data_scripts/preprocess_ML50_v1.sh
new file mode 100644
index 0000000000000000000000000000000000000000..4655936149cab212b3cfa14f306d71153729f9d7
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/preprocess_ML50_v1.sh
@@ -0,0 +1,27 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+if [ -z $WORKDIR_ROOT ] ;
+then
+ echo "please specify your working directory root in environment variable WORKDIR_ROOT. Exitting..."
+ exit
+fi
+
+if [ -z $SPM_PATH ] ;
+then
+ echo "Please install sentence piecence from https://github.com/google/sentencepiece and set SPM_PATH pointing to the installed spm_encode.py. Exitting..."
+ exit
+fi
+
+ML50=${WORKDIR_ROOT}/ML50
+
+mkdir -p $ML50/dedup
+mkdir -p $ML50/cleaned_dedup
+
+python ./dedup_all.py --from-folder $ML50/raw --to-folder $ML50/dedup
+python ./remove_valid_test_in_train.py --from-folder $ML50/dedup --to-folder $ML50/clean
+python ./binarize.py --raw-folder $ML50/clean
\ No newline at end of file
diff --git a/fairseq/examples/multilingual/data_scripts/remove_valid_test_in_train.py b/fairseq/examples/multilingual/data_scripts/remove_valid_test_in_train.py
new file mode 100755
index 0000000000000000000000000000000000000000..ef618adef7c7d010f8de38fb5ebeb5a35d2d3cac
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/remove_valid_test_in_train.py
@@ -0,0 +1,290 @@
+import os, sys
+import glob, itertools
+import pandas as pd
+
+WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None)
+
+if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip():
+ print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."')
+ sys.exit(-1)
+
+
+def load_langs(path):
+ with open(path) as fr:
+ langs = [l.strip() for l in fr]
+ return langs
+
+
+
+def load_sentences(raw_data, split, direction):
+ src, tgt = direction.split('-')
+ src_path = f"{raw_data}/{split}.{direction}.{src}"
+ tgt_path = f"{raw_data}/{split}.{direction}.{tgt}"
+ if os.path.exists(src_path) and os.path.exists(tgt_path):
+ return [(src, open(src_path).read().splitlines()), (tgt, open(tgt_path).read().splitlines())]
+ else:
+ return []
+
+def swap_direction(d):
+ src, tgt = d.split('-')
+ return f'{tgt}-{src}'
+
+def get_all_test_data(raw_data, directions, split='test'):
+ test_data = [
+ x
+ for dd in directions
+ for d in [dd, swap_direction(dd)]
+ for x in load_sentences(raw_data, split, d)
+ ]
+ # all_test_data = {s for _, d in test_data for s in d}
+ all_test_data = {}
+ for lang, d in test_data:
+ for s in d:
+ s = s.strip()
+ lgs = all_test_data.get(s, set())
+ lgs.add(lang)
+ all_test_data[s] = lgs
+ return all_test_data, test_data
+
+def check_train_sentences(raw_data, direction, all_test_data, mess_up_train={}):
+ src, tgt = direction.split('-')
+ tgt_path = f"{raw_data}/train.{direction}.{tgt}"
+ src_path = f"{raw_data}/train.{direction}.{src}"
+ print(f'check training data in {raw_data}/train.{direction}')
+ size = 0
+ if not os.path.exists(tgt_path) or not os.path.exists(src_path):
+ return mess_up_train, size
+ with open(src_path) as f, open(tgt_path) as g:
+ for src_line, tgt_line in zip(f, g):
+ s = src_line.strip()
+ t = tgt_line.strip()
+ size += 1
+ if s in all_test_data:
+ langs = mess_up_train.get(s, set())
+ langs.add(direction)
+ mess_up_train[s] = langs
+ if t in all_test_data:
+ langs = mess_up_train.get(t, set())
+ langs.add(direction)
+ mess_up_train[t] = langs
+ return mess_up_train, size
+
+def check_train_all(raw_data, directions, all_test_data):
+ mess_up_train = {}
+ data_sizes = {}
+ for direction in directions:
+ _, size = check_train_sentences(raw_data, direction, all_test_data, mess_up_train)
+ data_sizes[direction] = size
+ return mess_up_train, data_sizes
+
+def count_train_in_other_set(mess_up_train):
+ train_in_others = [(direction, s) for s, directions in mess_up_train.items() for direction in directions]
+ counts = {}
+ for direction, s in train_in_others:
+ counts[direction] = counts.get(direction, 0) + 1
+ return counts
+
+def train_size_if_remove_in_otherset(data_sizes, mess_up_train):
+ counts_in_other = count_train_in_other_set(mess_up_train)
+ remain_sizes = []
+ for direction, count in counts_in_other.items():
+ remain_sizes.append((direction, data_sizes[direction] - count, data_sizes[direction], count, 100 * count / data_sizes[direction] ))
+ return remain_sizes
+
+
+def remove_messed_up_sentences(raw_data, direction, mess_up_train, mess_up_train_pairs, corrected_langs):
+ split = 'train'
+ src_lang, tgt_lang = direction.split('-')
+
+ tgt = f"{raw_data}/{split}.{direction}.{tgt_lang}"
+ src = f"{raw_data}/{split}.{direction}.{src_lang}"
+ print(f'working on {direction}: ', src, tgt)
+ if not os.path.exists(tgt) or not os.path.exists(src) :
+ return
+
+ corrected_tgt = f"{to_folder}/{split}.{direction}.{tgt_lang}"
+ corrected_src = f"{to_folder}/{split}.{direction}.{src_lang}"
+ line_num = 0
+ keep_num = 0
+ with open(src, encoding='utf8',) as fsrc, \
+ open(tgt, encoding='utf8',) as ftgt, \
+ open(corrected_src, 'w', encoding='utf8') as fsrc_corrected, \
+ open(corrected_tgt, 'w', encoding='utf8') as ftgt_corrected:
+ for s, t in zip(fsrc, ftgt):
+ s = s.strip()
+ t = t.strip()
+ if t not in mess_up_train \
+ and s not in mess_up_train \
+ and (s, t) not in mess_up_train_pairs \
+ and (t, s) not in mess_up_train_pairs:
+ corrected_langs.add(direction)
+ print(s, file=fsrc_corrected)
+ print(t, file=ftgt_corrected)
+ keep_num += 1
+ line_num += 1
+ if line_num % 1000 == 0:
+ print(f'completed {line_num} lines', end='\r')
+ return line_num, keep_num
+
+##########
+
+
+def merge_valid_test_messup(mess_up_train_valid, mess_up_train_test):
+ merged_mess = []
+ for s in set(list(mess_up_train_valid.keys()) + list(mess_up_train_test.keys())):
+ if not s:
+ continue
+ valid = mess_up_train_valid.get(s, set())
+ test = mess_up_train_test.get(s, set())
+ merged_mess.append((s, valid | test))
+ return dict(merged_mess)
+
+
+
+#########
+def check_train_pairs(raw_data, direction, all_test_data, mess_up_train={}):
+ src, tgt = direction.split('-')
+ #a hack; TODO: check the reversed directions
+ path1 = f"{raw_data}/train.{src}-{tgt}.{src}"
+ path2 = f"{raw_data}/train.{src}-{tgt}.{tgt}"
+ if not os.path.exists(path1) or not os.path.exists(path2) :
+ return
+
+ with open(path1) as f1, open(path2) as f2:
+ for src_line, tgt_line in zip(f1, f2):
+ s = src_line.strip()
+ t = tgt_line.strip()
+ if (s, t) in all_test_data or (t, s) in all_test_data:
+ langs = mess_up_train.get( (s, t), set())
+ langs.add(src)
+ langs.add(tgt)
+ mess_up_train[(s, t)] = langs
+
+
+def load_pairs(raw_data, split, direction):
+ src, tgt = direction.split('-')
+ src_f = f"{raw_data}/{split}.{direction}.{src}"
+ tgt_f = f"{raw_data}/{split}.{direction}.{tgt}"
+ if tgt != 'en_XX':
+ src_f, tgt_f = tgt_f, src_f
+ if os.path.exists(src_f) and os.path.exists(tgt_f):
+ return list(zip(open(src_f).read().splitlines(),
+ open(tgt_f).read().splitlines(),
+ ))
+ else:
+ return []
+
+# skip_langs = ['cs_CZ', 'en_XX', 'tl_XX', 'tr_TR']
+def get_messed_up_test_pairs(split, directions):
+ test_pairs = [
+ (d, load_pairs(raw_data, split, d))
+ for d in directions
+ ]
+ # all_test_data = {s for _, d in test_data for s in d}
+ all_test_pairs = {}
+ for direction, d in test_pairs:
+ src, tgt = direction.split('-')
+ for s in d:
+ langs = all_test_pairs.get(s, set())
+ langs.add(src)
+ langs.add(tgt)
+ all_test_pairs[s] = langs
+ mess_up_train_pairs = {}
+ for direction in directions:
+ check_train_pairs(raw_data, direction, all_test_pairs, mess_up_train_pairs)
+ return all_test_pairs, mess_up_train_pairs
+
+
+
+if __name__ == "__main__":
+ #######
+ import argparse
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ '--from-folder',
+ required=True,
+ type=str)
+ parser.add_argument(
+ '--to-folder',
+ required=True,
+ type=str)
+ parser.add_argument(
+ '--directions',
+ default=None,
+ type=str)
+
+
+ args = parser.parse_args()
+ raw_data = args.from_folder
+ to_folder = args.to_folder
+ os.makedirs(to_folder, exist_ok=True)
+
+ if args.directions:
+ directions = args.directions.split(',')
+ else:
+ raw_files = itertools.chain(
+ glob.glob(f'{raw_data}/train*'),
+ glob.glob(f'{raw_data}/valid*'),
+ glob.glob(f'{raw_data}/test*'),
+ )
+ directions = [os.path.split(file_path)[-1].split('.')[1] for file_path in raw_files]
+ print('working on directions: ', directions)
+
+ ##########
+
+
+
+ all_test_data, test_data = get_all_test_data(raw_data, directions, 'test')
+ print('==loaded test data==')
+ all_valid_data, valid_data = get_all_test_data(raw_data, directions, 'valid')
+ print('==loaded valid data==')
+ all_valid_test_data = merge_valid_test_messup(all_test_data, all_valid_data)
+ mess_up_train, data_sizes = check_train_all(raw_data, directions, all_valid_test_data)
+ print('training messing up with valid, test data:', len(mess_up_train))
+ data_situation = train_size_if_remove_in_otherset(data_sizes, mess_up_train)
+ df = pd.DataFrame(data_situation, columns=['direction', 'train_size_after_remove', 'orig_size', 'num_to_remove', 'remove_percent'])
+ df.sort_values('remove_percent', ascending=False)
+ df.to_csv(f'{raw_data}/clean_summary.tsv', sep='\t')
+ print(f'projected data clean summary in: {raw_data}/clean_summary.tsv')
+
+ # correct the dataset:
+ all_test_pairs, mess_up_test_train_pairs = get_messed_up_test_pairs('test', directions)
+ all_valid_pairs, mess_up_valid_train_pairs = get_messed_up_test_pairs('valid', directions)
+
+ all_messed_pairs = set(mess_up_test_train_pairs.keys()).union(set(mess_up_valid_train_pairs.keys()))
+ corrected_directions = set()
+
+ real_data_situation = []
+ for direction in directions:
+ org_size, new_size = remove_messed_up_sentences(raw_data, direction, mess_up_train, all_messed_pairs, corrected_directions)
+ if org_size == 0:
+ print(f"{direction} has size 0")
+ continue
+ real_data_situation.append(
+ (direction, new_size, org_size, org_size - new_size, (org_size - new_size) / org_size * 100)
+ )
+ print('corrected directions: ', corrected_directions)
+ df = pd.DataFrame(real_data_situation, columns=['direction', 'train_size_after_remove', 'orig_size', 'num_to_remove', 'remove_percent'])
+ df.sort_values('remove_percent', ascending=False)
+ df.to_csv(f'{raw_data}/actual_clean_summary.tsv', sep='\t')
+ print(f'actual data clean summary (which can be different from the projected one because of duplications) in: {raw_data}/actual_clean_summary.tsv')
+
+ import shutil
+ for direction in directions:
+ src_lang, tgt_lang = direction.split('-')
+ for split in ['train', 'valid', 'test']:
+ # copying valid, test and uncorrected train
+ if direction in corrected_directions and split == 'train':
+ continue
+ tgt = f"{raw_data}/{split}.{direction}.{tgt_lang}"
+ src = f"{raw_data}/{split}.{direction}.{src_lang}"
+ if not (os.path.exists(src) and os.path.exists(tgt)):
+ continue
+ corrected_tgt = f"{to_folder}/{split}.{direction}.{tgt_lang}"
+ corrected_src = f"{to_folder}/{split}.{direction}.{src_lang}"
+ print(f'copying {src} to {corrected_src}')
+ shutil.copyfile(src, corrected_src)
+ print(f'copying {tgt} to {corrected_tgt}')
+ shutil.copyfile(tgt, corrected_tgt)
+
+ print('completed')
\ No newline at end of file
diff --git a/fairseq/examples/multilingual/data_scripts/requirement.txt b/fairseq/examples/multilingual/data_scripts/requirement.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e85d7d540e08a1407f92dfb2311972a1a5a30123
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/requirement.txt
@@ -0,0 +1,2 @@
+wget
+pandas
\ No newline at end of file
diff --git a/fairseq/examples/multilingual/data_scripts/utils/dedup.py b/fairseq/examples/multilingual/data_scripts/utils/dedup.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6fed8c695cf218d3502d6ed8d23015520c0e179
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/utils/dedup.py
@@ -0,0 +1,41 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import argparse
+
+def deup(src_file, tgt_file, src_file_out, tgt_file_out):
+ seen = set()
+ dup_count = 0
+ with open(src_file, encoding='utf-8') as fsrc, \
+ open(tgt_file, encoding='utf-8') as ftgt, \
+ open(src_file_out, 'w', encoding='utf-8') as fsrc_out, \
+ open(tgt_file_out, 'w', encoding='utf-8') as ftgt_out:
+ for s, t in zip(fsrc, ftgt):
+ if (s, t) not in seen:
+ fsrc_out.write(s)
+ ftgt_out.write(t)
+ seen.add((s, t))
+ else:
+ dup_count += 1
+ print(f'number of duplication: {dup_count}')
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--src-file", type=str, required=True,
+ help="src file")
+ parser.add_argument("--tgt-file", type=str, required=True,
+ help="tgt file")
+ parser.add_argument("--src-file-out", type=str, required=True,
+ help="src ouptut file")
+ parser.add_argument("--tgt-file-out", type=str, required=True,
+ help="tgt ouput file")
+ args = parser.parse_args()
+ deup(args.src_file, args.tgt_file, args.src_file_out, args.tgt_file_out)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/multilingual/data_scripts/utils/fasttext_multi_filter.py b/fairseq/examples/multilingual/data_scripts/utils/fasttext_multi_filter.py
new file mode 100644
index 0000000000000000000000000000000000000000..41b38ba5bef20cb043921ac61820db8689189a5a
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/utils/fasttext_multi_filter.py
@@ -0,0 +1,63 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+#!/bin/python
+
+import fasttext
+from multiprocessing import Pool
+import contextlib
+import sys
+import argparse
+from functools import partial
+import io
+
+model = None
+def init(model_path):
+ global model
+ model = fasttext.load_model(model_path)
+
+def pred(lines):
+ return lines, [model.predict(line.strip())[0][0][9:] for line in lines]
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--model", type=str, required=True,
+ help="model to load")
+ parser.add_argument("--inputs", nargs="+", default=['-'],
+ help="input files to filter")
+ parser.add_argument("--langs", nargs="+", required=True,
+ help="lang ids of each input file")
+ parser.add_argument("--outputs", nargs="+", default=['-'],
+ help="path to save lid filtered outputs")
+ parser.add_argument("--num-workers", type=int, metavar="N", default=10,
+ help="number of processes in parallel")
+ args = parser.parse_args()
+
+ assert len(args.inputs) == len(args.langs) and len(args.inputs) == len(args.outputs)
+
+ with contextlib.ExitStack() as stack:
+ inputs = [
+ stack.enter_context(open(input, "r", encoding="utf-8", newline="\n", errors="replace"))
+ if input != "-" else io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8', errors="replace")
+ for input in args.inputs
+ ]
+ outputs = [
+ stack.enter_context(open(output, "w", encoding="utf-8", newline="\n"))
+ if output != "-" else sys.stdout
+ for output in args.outputs
+ ]
+ with Pool(args.num_workers, initializer=partial(init, args.model)) as p:
+ skip_cnt = 0
+ for lines, preds in p.imap(pred, list(zip(*inputs)), chunksize=500):
+ if not all(a == b for a, b in zip(preds, args.langs)):
+ skip_cnt += 1
+ continue
+ for line, output_h in zip(lines, outputs):
+ print(line.strip(), file=output_h)
+ print(f"Skipped {skip_cnt} lines.")
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/multilingual/data_scripts/utils/strip_sgm.sh b/fairseq/examples/multilingual/data_scripts/utils/strip_sgm.sh
new file mode 100755
index 0000000000000000000000000000000000000000..7f4f61d7b1a46f51a1221de6b336cb70b5a0b8b3
--- /dev/null
+++ b/fairseq/examples/multilingual/data_scripts/utils/strip_sgm.sh
@@ -0,0 +1 @@
+grep "seg id" | sed 's///g' | sed 's/<\/seg>//g'
diff --git a/fairseq/examples/multilingual/finetune_multilingual_model.sh b/fairseq/examples/multilingual/finetune_multilingual_model.sh
new file mode 100644
index 0000000000000000000000000000000000000000..25960c5dc8a02e5580b61837099770a082b4dd83
--- /dev/null
+++ b/fairseq/examples/multilingual/finetune_multilingual_model.sh
@@ -0,0 +1,32 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+path_2_data=$1 # which contains binarized data for each directions
+lang_list=$2 #
+lang_pairs=$3 #a list language pairs to train multilingual models, e.g. "en-fr,en-cs,fr-en,cs-en"
+# pretrained can be an mBART pretrained model as well
+pretrained_model=$4 #
+
+
+fairseq-train "$path_2_data" \
+ --encoder-normalize-before --decoder-normalize-before \
+ --arch transformer --layernorm-embedding \
+ --task translation_multi_simple_epoch \
+ --finetune-from-model "$pretrained_model" \
+ --sampling-method "temperature" \
+ --sampling-temperature "1.5" \
+ --encoder-langtok "src" \
+ --decoder-langtok \
+ --lang-dict "$lang_list" \
+ --lang-pairs "$lang_pairs" \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.2 \
+ --optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \
+ --lr-scheduler inverse_sqrt --lr 3e-05 --warmup-updates 2500 --max-update 40000 \
+ --dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \
+ --max-tokens 1024 --update-freq 2 \
+ --save-interval 1 --save-interval-updates 5000 --keep-interval-updates 10 --no-epoch-checkpoints \
+ --seed 222 --log-format simple --log-interval 2
diff --git a/fairseq/examples/multilingual/multilingual_fairseq_gen.sh b/fairseq/examples/multilingual/multilingual_fairseq_gen.sh
new file mode 100644
index 0000000000000000000000000000000000000000..65aa322d7daaa428015de98abe4664a6a4164bfd
--- /dev/null
+++ b/fairseq/examples/multilingual/multilingual_fairseq_gen.sh
@@ -0,0 +1,26 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+lang_pairs="en-fr,en-cs,fr-en,cs-en"
+path_2_data=$1 #
+lang_list=$2 #
+model=$3 #
+source_lang=cs
+target_lang=en
+
+fairseq-generate "$path_2_data" \
+ --path "$model" \
+ --task translation_multi_simple_epoch \
+ --gen-subset test \
+ --source-lang "$source_lang" \
+ --target-lang "$target_lang" \
+ --sacrebleu --remove-bpe 'sentencepiece'\
+ --batch-size 32 \
+ --encoder-langtok "src" \
+ --decoder-langtok \
+ --lang-dict "$lang_list" \
+ --lang-pairs "$lang_pairs"
diff --git a/fairseq/examples/multilingual/train_multilingual_model.sh b/fairseq/examples/multilingual/train_multilingual_model.sh
new file mode 100644
index 0000000000000000000000000000000000000000..cc050bd3f02de8a2f303737f187442d2eb80e4ef
--- /dev/null
+++ b/fairseq/examples/multilingual/train_multilingual_model.sh
@@ -0,0 +1,28 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+path_2_data=$1 # which contains binarized data for each directions
+lang_list=$2 #
+lang_pairs=$3 #a list language pairs to train multilingual models, e.g. "en-fr,en-cs,fr-en,cs-en"
+
+fairseq-train "$path_2_data" \
+ --encoder-normalize-before --decoder-normalize-before \
+ --arch transformer --layernorm-embedding \
+ --task translation_multi_simple_epoch \
+ --sampling-method "temperature" \
+ --sampling-temperature 1.5 \
+ --encoder-langtok "src" \
+ --decoder-langtok \
+ --lang-dict "$lang_list" \
+ --lang-pairs "$lang_pairs" \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.2 \
+ --optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \
+ --lr-scheduler inverse_sqrt --lr 3e-05 --warmup-updates 2500 --max-update 40000 \
+ --dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \
+ --max-tokens 1024 --update-freq 2 \
+ --save-interval 1 --save-interval-updates 5000 --keep-interval-updates 10 --no-epoch-checkpoints \
+ --seed 222 --log-format simple --log-interval 2
diff --git a/fairseq/examples/noisychannel/README.md b/fairseq/examples/noisychannel/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..9d101aa874ec36ff3bb5c1166169a4c4f38ffe2b
--- /dev/null
+++ b/fairseq/examples/noisychannel/README.md
@@ -0,0 +1,72 @@
+# Simple and Effective Noisy Channel Modeling for Neural Machine Translation (Yee et al., 2019)
+This page contains pointers to pre-trained models as well as instructions on how to run the reranking scripts.
+
+## Citation:
+```bibtex
+@inproceedings{yee2019simple,
+ title = {Simple and Effective Noisy Channel Modeling for Neural Machine Translation},
+ author = {Kyra Yee and Yann Dauphin and Michael Auli},
+ booktitle = {Conference on Empirical Methods in Natural Language Processing},
+ year = {2019},
+}
+```
+
+## Pre-trained Models:
+
+Model | Description | Download
+---|---|---
+`transformer.noisychannel.de-en` | De->En Forward Model | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/forward_de2en.tar.bz2)
+`transformer.noisychannel.en-de` | En->De Channel Model | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/backward_en2de.tar.bz2)
+`transformer_lm.noisychannel.en` | En Language model | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/reranking_en_lm.tar.bz2)
+
+Test Data: [newstest_wmt17](https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/wmt17test.tar.bz2)
+
+## Example usage
+
+```
+mkdir rerank_example
+curl https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/forward_de2en.tar.bz2 | tar xvjf - -C rerank_example
+curl https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/backward_en2de.tar.bz2 | tar xvjf - -C rerank_example
+curl https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/reranking_en_lm.tar.bz2 | tar xvjf - -C rerank_example
+curl https://dl.fbaipublicfiles.com/fairseq/models/noisychannel/wmt17test.tar.bz2 | tar xvjf - -C rerank_example
+
+beam=50
+num_trials=1000
+fw_name=fw_model_ex
+bw_name=bw_model_ex
+lm_name=lm_ex
+data_dir=rerank_example/hyphen-splitting-mixed-case-wmt17test-wmt14bpe
+data_dir_name=wmt17
+lm=rerank_example/lm/checkpoint_best.pt
+lm_bpe_code=rerank_example/lm/bpe32k.code
+lm_dict=rerank_example/lm/dict.txt
+batch_size=32
+bw=rerank_example/backward_en2de.pt
+fw=rerank_example/forward_de2en.pt
+
+# reranking with P(T|S) P(S|T) and P(T)
+python examples/noisychannel/rerank_tune.py $data_dir --tune-param lenpen weight1 weight3 \
+ --lower-bound 0 0 0 --upper-bound 3 3 3 --data-dir-name $data_dir_name \
+ --num-trials $num_trials --source-lang de --target-lang en --gen-model $fw \
+ -n $beam --batch-size $batch_size --score-model2 $fw --score-model1 $bw \
+ --backwards1 --weight2 1 \
+ -lm $lm --lm-dict $lm_dict --lm-name en_newscrawl --lm-bpe-code $lm_bpe_code \
+ --model2-name $fw_name --model1-name $bw_name --gen-model-name $fw_name
+
+# reranking with P(T|S) and P(T)
+python examples/noisychannel/rerank_tune.py $data_dir --tune-param lenpen weight3 \
+ --lower-bound 0 0 --upper-bound 3 3 --data-dir-name $data_dir_name \
+ --num-trials $num_trials --source-lang de --target-lang en --gen-model $fw \
+ -n $beam --batch-size $batch_size --score-model1 $fw \
+ -lm $lm --lm-dict $lm_dict --lm-name en_newscrawl --lm-bpe-code $lm_bpe_code \
+ --model1-name $fw_name --gen-model-name $fw_name
+
+# to run with a preconfigured set of hyperparameters for the lenpen and model weights, using rerank.py instead.
+python examples/noisychannel/rerank.py $data_dir \
+ --lenpen 0.269 --weight1 1 --weight2 0.929 --weight3 0.831 \
+ --data-dir-name $data_dir_name --source-lang de --target-lang en --gen-model $fw \
+ -n $beam --batch-size $batch_size --score-model2 $fw --score-model1 $bw --backwards1 \
+ -lm $lm --lm-dict $lm_dict --lm-name en_newscrawl --lm-bpe-code $lm_bpe_code \
+ --model2-name $fw_name --model1-name $bw_name --gen-model-name $fw_name
+```
+
diff --git a/fairseq/examples/noisychannel/__init__.py b/fairseq/examples/noisychannel/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..89f1aef4f6328d25425e0bcabb42dfffd2ed35f0
--- /dev/null
+++ b/fairseq/examples/noisychannel/__init__.py
@@ -0,0 +1,6 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from .rerank_options import * # noqa
diff --git a/fairseq/examples/noisychannel/rerank.py b/fairseq/examples/noisychannel/rerank.py
new file mode 100644
index 0000000000000000000000000000000000000000..bb80d11a67cd75764a89f6f41915b0348ae96e92
--- /dev/null
+++ b/fairseq/examples/noisychannel/rerank.py
@@ -0,0 +1,428 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+from multiprocessing import Pool
+
+import numpy as np
+from fairseq import options
+from fairseq.data import dictionary
+from fairseq.scoring import bleu
+
+from examples.noisychannel import (
+ rerank_generate,
+ rerank_options,
+ rerank_score_bw,
+ rerank_score_lm,
+ rerank_utils,
+)
+
+
+def score_target_hypo(
+ args, a, b, c, lenpen, target_outfile, hypo_outfile, write_hypos, normalize
+):
+
+ print("lenpen", lenpen, "weight1", a, "weight2", b, "weight3", c)
+ gen_output_lst, bitext1_lst, bitext2_lst, lm_res_lst = load_score_files(args)
+ dict = dictionary.Dictionary()
+ scorer = scorer = bleu.Scorer(
+ bleu.BleuConfig(
+ pad=dict.pad(),
+ eos=dict.eos(),
+ unk=dict.unk(),
+ )
+ )
+
+ ordered_hypos = {}
+ ordered_targets = {}
+
+ for shard_id in range(len(bitext1_lst)):
+ bitext1 = bitext1_lst[shard_id]
+ bitext2 = bitext2_lst[shard_id]
+ gen_output = gen_output_lst[shard_id]
+ lm_res = lm_res_lst[shard_id]
+
+ total = len(bitext1.rescore_source.keys())
+ source_lst = []
+ hypo_lst = []
+ score_lst = []
+ reference_lst = []
+ j = 1
+ best_score = -math.inf
+
+ for i in range(total):
+ # length is measured in terms of words, not bpe tokens, since models may not share the same bpe
+ target_len = len(bitext1.rescore_hypo[i].split())
+
+ if lm_res is not None:
+ lm_score = lm_res.score[i]
+ else:
+ lm_score = 0
+
+ if bitext2 is not None:
+ bitext2_score = bitext2.rescore_score[i]
+ bitext2_backwards = bitext2.backwards
+ else:
+ bitext2_score = None
+ bitext2_backwards = None
+
+ score = rerank_utils.get_score(
+ a,
+ b,
+ c,
+ target_len,
+ bitext1.rescore_score[i],
+ bitext2_score,
+ lm_score=lm_score,
+ lenpen=lenpen,
+ src_len=bitext1.source_lengths[i],
+ tgt_len=bitext1.target_lengths[i],
+ bitext1_backwards=bitext1.backwards,
+ bitext2_backwards=bitext2_backwards,
+ normalize=normalize,
+ )
+
+ if score > best_score:
+ best_score = score
+ best_hypo = bitext1.rescore_hypo[i]
+
+ if j == gen_output.num_hypos[i] or j == args.num_rescore:
+ j = 1
+ hypo_lst.append(best_hypo)
+ score_lst.append(best_score)
+ source_lst.append(bitext1.rescore_source[i])
+ reference_lst.append(bitext1.rescore_target[i])
+
+ best_score = -math.inf
+ best_hypo = ""
+ else:
+ j += 1
+
+ gen_keys = list(sorted(gen_output.no_bpe_target.keys()))
+
+ for key in range(len(gen_keys)):
+ if args.prefix_len is None:
+ assert hypo_lst[key] in gen_output.no_bpe_hypo[gen_keys[key]], (
+ "pred and rescore hypo mismatch: i: "
+ + str(key)
+ + ", "
+ + str(hypo_lst[key])
+ + str(gen_keys[key])
+ + str(gen_output.no_bpe_hypo[key])
+ )
+ sys_tok = dict.encode_line(hypo_lst[key])
+ ref_tok = dict.encode_line(gen_output.no_bpe_target[gen_keys[key]])
+ scorer.add(ref_tok, sys_tok)
+
+ else:
+ full_hypo = rerank_utils.get_full_from_prefix(
+ hypo_lst[key], gen_output.no_bpe_hypo[gen_keys[key]]
+ )
+ sys_tok = dict.encode_line(full_hypo)
+ ref_tok = dict.encode_line(gen_output.no_bpe_target[gen_keys[key]])
+ scorer.add(ref_tok, sys_tok)
+
+ # if only one set of hyper parameters is provided, write the predictions to a file
+ if write_hypos:
+ # recover the orinal ids from n best list generation
+ for key in range(len(gen_output.no_bpe_target)):
+ if args.prefix_len is None:
+ assert hypo_lst[key] in gen_output.no_bpe_hypo[gen_keys[key]], (
+ "pred and rescore hypo mismatch:"
+ + "i:"
+ + str(key)
+ + str(hypo_lst[key])
+ + str(gen_output.no_bpe_hypo[key])
+ )
+ ordered_hypos[gen_keys[key]] = hypo_lst[key]
+ ordered_targets[gen_keys[key]] = gen_output.no_bpe_target[
+ gen_keys[key]
+ ]
+
+ else:
+ full_hypo = rerank_utils.get_full_from_prefix(
+ hypo_lst[key], gen_output.no_bpe_hypo[gen_keys[key]]
+ )
+ ordered_hypos[gen_keys[key]] = full_hypo
+ ordered_targets[gen_keys[key]] = gen_output.no_bpe_target[
+ gen_keys[key]
+ ]
+
+ # write the hypos in the original order from nbest list generation
+ if args.num_shards == (len(bitext1_lst)):
+ with open(target_outfile, "w") as t:
+ with open(hypo_outfile, "w") as h:
+ for key in range(len(ordered_hypos)):
+ t.write(ordered_targets[key])
+ h.write(ordered_hypos[key])
+
+ res = scorer.result_string(4)
+ if write_hypos:
+ print(res)
+ score = rerank_utils.parse_bleu_scoring(res)
+ return score
+
+
+def match_target_hypo(args, target_outfile, hypo_outfile):
+ """combine scores from the LM and bitext models, and write the top scoring hypothesis to a file"""
+ if len(args.weight1) == 1:
+ res = score_target_hypo(
+ args,
+ args.weight1[0],
+ args.weight2[0],
+ args.weight3[0],
+ args.lenpen[0],
+ target_outfile,
+ hypo_outfile,
+ True,
+ args.normalize,
+ )
+ rerank_scores = [res]
+ else:
+ print("launching pool")
+ with Pool(32) as p:
+ rerank_scores = p.starmap(
+ score_target_hypo,
+ [
+ (
+ args,
+ args.weight1[i],
+ args.weight2[i],
+ args.weight3[i],
+ args.lenpen[i],
+ target_outfile,
+ hypo_outfile,
+ False,
+ args.normalize,
+ )
+ for i in range(len(args.weight1))
+ ],
+ )
+
+ if len(rerank_scores) > 1:
+ best_index = np.argmax(rerank_scores)
+ best_score = rerank_scores[best_index]
+ print("best score", best_score)
+ print("best lenpen", args.lenpen[best_index])
+ print("best weight1", args.weight1[best_index])
+ print("best weight2", args.weight2[best_index])
+ print("best weight3", args.weight3[best_index])
+ return (
+ args.lenpen[best_index],
+ args.weight1[best_index],
+ args.weight2[best_index],
+ args.weight3[best_index],
+ best_score,
+ )
+
+ else:
+ return (
+ args.lenpen[0],
+ args.weight1[0],
+ args.weight2[0],
+ args.weight3[0],
+ rerank_scores[0],
+ )
+
+
+def load_score_files(args):
+ if args.all_shards:
+ shard_ids = list(range(args.num_shards))
+ else:
+ shard_ids = [args.shard_id]
+
+ gen_output_lst = []
+ bitext1_lst = []
+ bitext2_lst = []
+ lm_res1_lst = []
+
+ for shard_id in shard_ids:
+ using_nbest = args.nbest_list is not None
+ (
+ pre_gen,
+ left_to_right_preprocessed_dir,
+ right_to_left_preprocessed_dir,
+ backwards_preprocessed_dir,
+ lm_preprocessed_dir,
+ ) = rerank_utils.get_directories(
+ args.data_dir_name,
+ args.num_rescore,
+ args.gen_subset,
+ args.gen_model_name,
+ shard_id,
+ args.num_shards,
+ args.sampling,
+ args.prefix_len,
+ args.target_prefix_frac,
+ args.source_prefix_frac,
+ )
+
+ rerank1_is_gen = (
+ args.gen_model == args.score_model1 and args.source_prefix_frac is None
+ )
+ rerank2_is_gen = (
+ args.gen_model == args.score_model2 and args.source_prefix_frac is None
+ )
+
+ score1_file = rerank_utils.rescore_file_name(
+ pre_gen,
+ args.prefix_len,
+ args.model1_name,
+ target_prefix_frac=args.target_prefix_frac,
+ source_prefix_frac=args.source_prefix_frac,
+ backwards=args.backwards1,
+ )
+ if args.score_model2 is not None:
+ score2_file = rerank_utils.rescore_file_name(
+ pre_gen,
+ args.prefix_len,
+ args.model2_name,
+ target_prefix_frac=args.target_prefix_frac,
+ source_prefix_frac=args.source_prefix_frac,
+ backwards=args.backwards2,
+ )
+ if args.language_model is not None:
+ lm_score_file = rerank_utils.rescore_file_name(
+ pre_gen, args.prefix_len, args.lm_name, lm_file=True
+ )
+
+ # get gen output
+ predictions_bpe_file = pre_gen + "/generate_output_bpe.txt"
+ if using_nbest:
+ print("Using predefined n-best list from interactive.py")
+ predictions_bpe_file = args.nbest_list
+ gen_output = rerank_utils.BitextOutputFromGen(
+ predictions_bpe_file,
+ bpe_symbol=args.post_process,
+ nbest=using_nbest,
+ prefix_len=args.prefix_len,
+ target_prefix_frac=args.target_prefix_frac,
+ )
+
+ if rerank1_is_gen:
+ bitext1 = gen_output
+ else:
+ bitext1 = rerank_utils.BitextOutput(
+ score1_file,
+ args.backwards1,
+ args.right_to_left1,
+ args.post_process,
+ args.prefix_len,
+ args.target_prefix_frac,
+ args.source_prefix_frac,
+ )
+
+ if args.score_model2 is not None or args.nbest_list is not None:
+ if rerank2_is_gen:
+ bitext2 = gen_output
+ else:
+ bitext2 = rerank_utils.BitextOutput(
+ score2_file,
+ args.backwards2,
+ args.right_to_left2,
+ args.post_process,
+ args.prefix_len,
+ args.target_prefix_frac,
+ args.source_prefix_frac,
+ )
+
+ assert (
+ bitext2.source_lengths == bitext1.source_lengths
+ ), "source lengths for rescoring models do not match"
+ assert (
+ bitext2.target_lengths == bitext1.target_lengths
+ ), "target lengths for rescoring models do not match"
+ else:
+ if args.diff_bpe:
+ assert args.score_model2 is None
+ bitext2 = gen_output
+ else:
+ bitext2 = None
+
+ if args.language_model is not None:
+ lm_res1 = rerank_utils.LMOutput(
+ lm_score_file,
+ args.lm_dict,
+ args.prefix_len,
+ args.post_process,
+ args.target_prefix_frac,
+ )
+ else:
+ lm_res1 = None
+
+ gen_output_lst.append(gen_output)
+ bitext1_lst.append(bitext1)
+ bitext2_lst.append(bitext2)
+ lm_res1_lst.append(lm_res1)
+ return gen_output_lst, bitext1_lst, bitext2_lst, lm_res1_lst
+
+
+def rerank(args):
+ if type(args.lenpen) is not list:
+ args.lenpen = [args.lenpen]
+ if type(args.weight1) is not list:
+ args.weight1 = [args.weight1]
+ if type(args.weight2) is not list:
+ args.weight2 = [args.weight2]
+ if type(args.weight3) is not list:
+ args.weight3 = [args.weight3]
+ if args.all_shards:
+ shard_ids = list(range(args.num_shards))
+ else:
+ shard_ids = [args.shard_id]
+
+ for shard_id in shard_ids:
+ (
+ pre_gen,
+ left_to_right_preprocessed_dir,
+ right_to_left_preprocessed_dir,
+ backwards_preprocessed_dir,
+ lm_preprocessed_dir,
+ ) = rerank_utils.get_directories(
+ args.data_dir_name,
+ args.num_rescore,
+ args.gen_subset,
+ args.gen_model_name,
+ shard_id,
+ args.num_shards,
+ args.sampling,
+ args.prefix_len,
+ args.target_prefix_frac,
+ args.source_prefix_frac,
+ )
+ rerank_generate.gen_and_reprocess_nbest(args)
+ rerank_score_bw.score_bw(args)
+ rerank_score_lm.score_lm(args)
+
+ if args.write_hypos is None:
+ write_targets = pre_gen + "/matched_targets"
+ write_hypos = pre_gen + "/matched_hypos"
+ else:
+ write_targets = args.write_hypos + "_targets" + args.gen_subset
+ write_hypos = args.write_hypos + "_hypos" + args.gen_subset
+
+ if args.all_shards:
+ write_targets += "_all_shards"
+ write_hypos += "_all_shards"
+
+ (
+ best_lenpen,
+ best_weight1,
+ best_weight2,
+ best_weight3,
+ best_score,
+ ) = match_target_hypo(args, write_targets, write_hypos)
+
+ return best_lenpen, best_weight1, best_weight2, best_weight3, best_score
+
+
+def cli_main():
+ parser = rerank_options.get_reranking_parser()
+ args = options.parse_args_and_arch(parser)
+ rerank(args)
+
+
+if __name__ == "__main__":
+ cli_main()
diff --git a/fairseq/examples/noisychannel/rerank_generate.py b/fairseq/examples/noisychannel/rerank_generate.py
new file mode 100644
index 0000000000000000000000000000000000000000..daeeae059a677a9fcd7c370be087f1f5c189bc52
--- /dev/null
+++ b/fairseq/examples/noisychannel/rerank_generate.py
@@ -0,0 +1,397 @@
+#!/usr/bin/env python3 -u
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+"""
+Generate n-best translations using a trained model.
+"""
+
+import os
+import subprocess
+from contextlib import redirect_stdout
+
+from fairseq import options
+from fairseq_cli import generate, preprocess
+
+from examples.noisychannel import rerank_options, rerank_utils
+
+
+def gen_and_reprocess_nbest(args):
+ if args.score_dict_dir is None:
+ args.score_dict_dir = args.data
+ if args.prefix_len is not None:
+ assert (
+ args.right_to_left1 is False
+ ), "prefix length not compatible with right to left models"
+ assert (
+ args.right_to_left2 is False
+ ), "prefix length not compatible with right to left models"
+
+ if args.nbest_list is not None:
+ assert args.score_model2 is None
+
+ if args.backwards1:
+ scorer1_src = args.target_lang
+ scorer1_tgt = args.source_lang
+ else:
+ scorer1_src = args.source_lang
+ scorer1_tgt = args.target_lang
+
+ store_data = (
+ os.path.join(os.path.dirname(__file__)) + "/rerank_data/" + args.data_dir_name
+ )
+ if not os.path.exists(store_data):
+ os.makedirs(store_data)
+
+ (
+ pre_gen,
+ left_to_right_preprocessed_dir,
+ right_to_left_preprocessed_dir,
+ backwards_preprocessed_dir,
+ lm_preprocessed_dir,
+ ) = rerank_utils.get_directories(
+ args.data_dir_name,
+ args.num_rescore,
+ args.gen_subset,
+ args.gen_model_name,
+ args.shard_id,
+ args.num_shards,
+ args.sampling,
+ args.prefix_len,
+ args.target_prefix_frac,
+ args.source_prefix_frac,
+ )
+ assert not (
+ args.right_to_left1 and args.backwards1
+ ), "backwards right to left not supported"
+ assert not (
+ args.right_to_left2 and args.backwards2
+ ), "backwards right to left not supported"
+ assert not (
+ args.prefix_len is not None and args.target_prefix_frac is not None
+ ), "target prefix frac and target prefix len incompatible"
+
+ # make directory to store generation results
+ if not os.path.exists(pre_gen):
+ os.makedirs(pre_gen)
+
+ rerank1_is_gen = (
+ args.gen_model == args.score_model1 and args.source_prefix_frac is None
+ )
+ rerank2_is_gen = (
+ args.gen_model == args.score_model2 and args.source_prefix_frac is None
+ )
+
+ if args.nbest_list is not None:
+ rerank2_is_gen = True
+
+ # make directories to store preprossed nbest list for reranking
+ if not os.path.exists(left_to_right_preprocessed_dir):
+ os.makedirs(left_to_right_preprocessed_dir)
+ if not os.path.exists(right_to_left_preprocessed_dir):
+ os.makedirs(right_to_left_preprocessed_dir)
+ if not os.path.exists(lm_preprocessed_dir):
+ os.makedirs(lm_preprocessed_dir)
+ if not os.path.exists(backwards_preprocessed_dir):
+ os.makedirs(backwards_preprocessed_dir)
+
+ score1_file = rerank_utils.rescore_file_name(
+ pre_gen,
+ args.prefix_len,
+ args.model1_name,
+ target_prefix_frac=args.target_prefix_frac,
+ source_prefix_frac=args.source_prefix_frac,
+ backwards=args.backwards1,
+ )
+ if args.score_model2 is not None:
+ score2_file = rerank_utils.rescore_file_name(
+ pre_gen,
+ args.prefix_len,
+ args.model2_name,
+ target_prefix_frac=args.target_prefix_frac,
+ source_prefix_frac=args.source_prefix_frac,
+ backwards=args.backwards2,
+ )
+
+ predictions_bpe_file = pre_gen + "/generate_output_bpe.txt"
+
+ using_nbest = args.nbest_list is not None
+
+ if using_nbest:
+ print("Using predefined n-best list from interactive.py")
+ predictions_bpe_file = args.nbest_list
+
+ else:
+ if not os.path.isfile(predictions_bpe_file):
+ print("STEP 1: generate predictions using the p(T|S) model with bpe")
+ print(args.data)
+ param1 = [
+ args.data,
+ "--path",
+ args.gen_model,
+ "--shard-id",
+ str(args.shard_id),
+ "--num-shards",
+ str(args.num_shards),
+ "--nbest",
+ str(args.num_rescore),
+ "--batch-size",
+ str(args.batch_size),
+ "--beam",
+ str(args.num_rescore),
+ "--batch-size",
+ str(args.num_rescore),
+ "--gen-subset",
+ args.gen_subset,
+ "--source-lang",
+ args.source_lang,
+ "--target-lang",
+ args.target_lang,
+ ]
+ if args.sampling:
+ param1 += ["--sampling"]
+
+ gen_parser = options.get_generation_parser()
+ input_args = options.parse_args_and_arch(gen_parser, param1)
+
+ print(input_args)
+ with open(predictions_bpe_file, "w") as f:
+ with redirect_stdout(f):
+ generate.main(input_args)
+
+ gen_output = rerank_utils.BitextOutputFromGen(
+ predictions_bpe_file,
+ bpe_symbol=args.post_process,
+ nbest=using_nbest,
+ prefix_len=args.prefix_len,
+ target_prefix_frac=args.target_prefix_frac,
+ )
+
+ if args.diff_bpe:
+ rerank_utils.write_reprocessed(
+ gen_output.no_bpe_source,
+ gen_output.no_bpe_hypo,
+ gen_output.no_bpe_target,
+ pre_gen + "/source_gen_bpe." + args.source_lang,
+ pre_gen + "/target_gen_bpe." + args.target_lang,
+ pre_gen + "/reference_gen_bpe." + args.target_lang,
+ )
+ bitext_bpe = args.rescore_bpe_code
+ bpe_src_param = [
+ "-c",
+ bitext_bpe,
+ "--input",
+ pre_gen + "/source_gen_bpe." + args.source_lang,
+ "--output",
+ pre_gen + "/rescore_data." + args.source_lang,
+ ]
+ bpe_tgt_param = [
+ "-c",
+ bitext_bpe,
+ "--input",
+ pre_gen + "/target_gen_bpe." + args.target_lang,
+ "--output",
+ pre_gen + "/rescore_data." + args.target_lang,
+ ]
+
+ subprocess.call(
+ [
+ "python",
+ os.path.join(
+ os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py"
+ ),
+ ]
+ + bpe_src_param,
+ shell=False,
+ )
+
+ subprocess.call(
+ [
+ "python",
+ os.path.join(
+ os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py"
+ ),
+ ]
+ + bpe_tgt_param,
+ shell=False,
+ )
+
+ if (not os.path.isfile(score1_file) and not rerank1_is_gen) or (
+ args.score_model2 is not None
+ and not os.path.isfile(score2_file)
+ and not rerank2_is_gen
+ ):
+ print(
+ "STEP 2: process the output of generate.py so we have clean text files with the translations"
+ )
+
+ rescore_file = "/rescore_data"
+ if args.prefix_len is not None:
+ prefix_len_rescore_file = rescore_file + "prefix" + str(args.prefix_len)
+ if args.target_prefix_frac is not None:
+ target_prefix_frac_rescore_file = (
+ rescore_file + "target_prefix_frac" + str(args.target_prefix_frac)
+ )
+ if args.source_prefix_frac is not None:
+ source_prefix_frac_rescore_file = (
+ rescore_file + "source_prefix_frac" + str(args.source_prefix_frac)
+ )
+
+ if not args.right_to_left1 or not args.right_to_left2:
+ if not args.diff_bpe:
+ rerank_utils.write_reprocessed(
+ gen_output.source,
+ gen_output.hypo,
+ gen_output.target,
+ pre_gen + rescore_file + "." + args.source_lang,
+ pre_gen + rescore_file + "." + args.target_lang,
+ pre_gen + "/reference_file",
+ bpe_symbol=args.post_process,
+ )
+ if args.prefix_len is not None:
+ bw_rescore_file = prefix_len_rescore_file
+ rerank_utils.write_reprocessed(
+ gen_output.source,
+ gen_output.hypo,
+ gen_output.target,
+ pre_gen + prefix_len_rescore_file + "." + args.source_lang,
+ pre_gen + prefix_len_rescore_file + "." + args.target_lang,
+ pre_gen + "/reference_file",
+ prefix_len=args.prefix_len,
+ bpe_symbol=args.post_process,
+ )
+ elif args.target_prefix_frac is not None:
+ bw_rescore_file = target_prefix_frac_rescore_file
+ rerank_utils.write_reprocessed(
+ gen_output.source,
+ gen_output.hypo,
+ gen_output.target,
+ pre_gen
+ + target_prefix_frac_rescore_file
+ + "."
+ + args.source_lang,
+ pre_gen
+ + target_prefix_frac_rescore_file
+ + "."
+ + args.target_lang,
+ pre_gen + "/reference_file",
+ bpe_symbol=args.post_process,
+ target_prefix_frac=args.target_prefix_frac,
+ )
+ else:
+ bw_rescore_file = rescore_file
+
+ if args.source_prefix_frac is not None:
+ fw_rescore_file = source_prefix_frac_rescore_file
+ rerank_utils.write_reprocessed(
+ gen_output.source,
+ gen_output.hypo,
+ gen_output.target,
+ pre_gen
+ + source_prefix_frac_rescore_file
+ + "."
+ + args.source_lang,
+ pre_gen
+ + source_prefix_frac_rescore_file
+ + "."
+ + args.target_lang,
+ pre_gen + "/reference_file",
+ bpe_symbol=args.post_process,
+ source_prefix_frac=args.source_prefix_frac,
+ )
+ else:
+ fw_rescore_file = rescore_file
+
+ if args.right_to_left1 or args.right_to_left2:
+ rerank_utils.write_reprocessed(
+ gen_output.source,
+ gen_output.hypo,
+ gen_output.target,
+ pre_gen + "/right_to_left_rescore_data." + args.source_lang,
+ pre_gen + "/right_to_left_rescore_data." + args.target_lang,
+ pre_gen + "/right_to_left_reference_file",
+ right_to_left=True,
+ bpe_symbol=args.post_process,
+ )
+
+ print("STEP 3: binarize the translations")
+ if (
+ not args.right_to_left1
+ or args.score_model2 is not None
+ and not args.right_to_left2
+ or not rerank1_is_gen
+ ):
+
+ if args.backwards1 or args.backwards2:
+ if args.backwards_score_dict_dir is not None:
+ bw_dict = args.backwards_score_dict_dir
+ else:
+ bw_dict = args.score_dict_dir
+ bw_preprocess_param = [
+ "--source-lang",
+ scorer1_src,
+ "--target-lang",
+ scorer1_tgt,
+ "--trainpref",
+ pre_gen + bw_rescore_file,
+ "--srcdict",
+ bw_dict + "/dict." + scorer1_src + ".txt",
+ "--tgtdict",
+ bw_dict + "/dict." + scorer1_tgt + ".txt",
+ "--destdir",
+ backwards_preprocessed_dir,
+ ]
+ preprocess_parser = options.get_preprocessing_parser()
+ input_args = preprocess_parser.parse_args(bw_preprocess_param)
+ preprocess.main(input_args)
+
+ preprocess_param = [
+ "--source-lang",
+ scorer1_src,
+ "--target-lang",
+ scorer1_tgt,
+ "--trainpref",
+ pre_gen + fw_rescore_file,
+ "--srcdict",
+ args.score_dict_dir + "/dict." + scorer1_src + ".txt",
+ "--tgtdict",
+ args.score_dict_dir + "/dict." + scorer1_tgt + ".txt",
+ "--destdir",
+ left_to_right_preprocessed_dir,
+ ]
+ preprocess_parser = options.get_preprocessing_parser()
+ input_args = preprocess_parser.parse_args(preprocess_param)
+ preprocess.main(input_args)
+
+ if args.right_to_left1 or args.right_to_left2:
+ preprocess_param = [
+ "--source-lang",
+ scorer1_src,
+ "--target-lang",
+ scorer1_tgt,
+ "--trainpref",
+ pre_gen + "/right_to_left_rescore_data",
+ "--srcdict",
+ args.score_dict_dir + "/dict." + scorer1_src + ".txt",
+ "--tgtdict",
+ args.score_dict_dir + "/dict." + scorer1_tgt + ".txt",
+ "--destdir",
+ right_to_left_preprocessed_dir,
+ ]
+ preprocess_parser = options.get_preprocessing_parser()
+ input_args = preprocess_parser.parse_args(preprocess_param)
+ preprocess.main(input_args)
+
+ return gen_output
+
+
+def cli_main():
+ parser = rerank_options.get_reranking_parser()
+ args = options.parse_args_and_arch(parser)
+ gen_and_reprocess_nbest(args)
+
+
+if __name__ == "__main__":
+ cli_main()
diff --git a/fairseq/examples/noisychannel/rerank_options.py b/fairseq/examples/noisychannel/rerank_options.py
new file mode 100644
index 0000000000000000000000000000000000000000..de91939e6635bdf33c9dc330116be07d9e8be6a2
--- /dev/null
+++ b/fairseq/examples/noisychannel/rerank_options.py
@@ -0,0 +1,149 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from fairseq import options
+
+
+def get_reranking_parser(default_task="translation"):
+ parser = options.get_parser("Generation and reranking", default_task)
+ add_reranking_args(parser)
+ return parser
+
+
+def get_tuning_parser(default_task="translation"):
+ parser = options.get_parser("Reranking tuning", default_task)
+ add_reranking_args(parser)
+ add_tuning_args(parser)
+ return parser
+
+
+def add_reranking_args(parser):
+ group = parser.add_argument_group("Reranking")
+ # fmt: off
+ group.add_argument('--score-model1', '-s1', type=str, metavar='FILE', required=True,
+ help='path to first model or ensemble of models for rescoring')
+ group.add_argument('--score-model2', '-s2', type=str, metavar='FILE', required=False,
+ help='path to second model or ensemble of models for rescoring')
+ group.add_argument('--num-rescore', '-n', type=int, metavar='N', default=10,
+ help='the number of candidate hypothesis to rescore')
+ group.add_argument('-bz', '--batch-size', type=int, metavar='N', default=128,
+ help='batch size for generating the nbest list')
+ group.add_argument('--gen-subset', default='test', metavar='SET', choices=['test', 'train', 'valid'],
+ help='data subset to generate (train, valid, test)')
+ group.add_argument('--gen-model', default=None, metavar='FILE',
+ help='the model to generate translations')
+ group.add_argument('-b1', '--backwards1', action='store_true',
+ help='whether or not the first model group is backwards')
+ group.add_argument('-b2', '--backwards2', action='store_true',
+ help='whether or not the second model group is backwards')
+ group.add_argument('-a', '--weight1', default=1, nargs='+', type=float,
+ help='the weight(s) of the first model')
+ group.add_argument('-b', '--weight2', default=1, nargs='+', type=float,
+ help='the weight(s) of the second model, or the gen model if using nbest from interactive.py')
+ group.add_argument('-c', '--weight3', default=1, nargs='+', type=float,
+ help='the weight(s) of the third model')
+
+ # lm arguments
+ group.add_argument('-lm', '--language-model', default=None, metavar='FILE',
+ help='language model for target language to rescore translations')
+ group.add_argument('--lm-dict', default=None, metavar='FILE',
+ help='the dict of the language model for the target language')
+ group.add_argument('--lm-name', default=None,
+ help='the name of the language model for the target language')
+ group.add_argument('--lm-bpe-code', default=None, metavar='FILE',
+ help='the bpe code for the language model for the target language')
+ group.add_argument('--data-dir-name', default=None,
+ help='name of data directory')
+ group.add_argument('--lenpen', default=1, nargs='+', type=float,
+ help='length penalty: <1.0 favors shorter, >1.0 favors longer sentences')
+ group.add_argument('--score-dict-dir', default=None,
+ help='the directory with dictionaries for the scoring models')
+ group.add_argument('--right-to-left1', action='store_true',
+ help='whether the first model group is a right to left model')
+ group.add_argument('--right-to-left2', action='store_true',
+ help='whether the second model group is a right to left model')
+ group.add_argument('--post-process', '--remove-bpe', default='@@ ',
+ help='the bpe symbol, used for the bitext and LM')
+ group.add_argument('--prefix-len', default=None, type=int,
+ help='the length of the target prefix to use in rescoring (in terms of words wo bpe)')
+ group.add_argument('--sampling', action='store_true',
+ help='use sampling instead of beam search for generating n best list')
+ group.add_argument('--diff-bpe', action='store_true',
+ help='bpe for rescoring and nbest list not the same')
+ group.add_argument('--rescore-bpe-code', default=None,
+ help='bpe code for rescoring models')
+ group.add_argument('--nbest-list', default=None,
+ help='use predefined nbest list in interactive.py format')
+ group.add_argument('--write-hypos', default=None,
+ help='filename prefix to write hypos to')
+ group.add_argument('--ref-translation', default=None,
+ help='reference translation to use with nbest list from interactive.py')
+ group.add_argument('--backwards-score-dict-dir', default=None,
+ help='the directory with dictionaries for the backwards model,'
+ 'if None then it is assumed the fw and backwards models share dictionaries')
+
+ # extra scaling args
+ group.add_argument('--gen-model-name', default=None,
+ help='the name of the models that generated the nbest list')
+ group.add_argument('--model1-name', default=None,
+ help='the name of the set for model1 group ')
+ group.add_argument('--model2-name', default=None,
+ help='the name of the set for model2 group')
+ group.add_argument('--shard-id', default=0, type=int,
+ help='the id of the shard to generate')
+ group.add_argument('--num-shards', default=1, type=int,
+ help='the number of shards to generate across')
+ group.add_argument('--all-shards', action='store_true',
+ help='use all shards')
+ group.add_argument('--target-prefix-frac', default=None, type=float,
+ help='the fraction of the target prefix to use in rescoring (in terms of words wo bpe)')
+ group.add_argument('--source-prefix-frac', default=None, type=float,
+ help='the fraction of the source prefix to use in rescoring (in terms of words wo bpe)')
+ group.add_argument('--normalize', action='store_true',
+ help='whether to normalize by src and target len')
+ # fmt: on
+ return group
+
+
+def add_tuning_args(parser):
+ group = parser.add_argument_group("Tuning")
+
+ group.add_argument(
+ "--lower-bound",
+ default=[-0.7],
+ nargs="+",
+ type=float,
+ help="lower bound of search space",
+ )
+ group.add_argument(
+ "--upper-bound",
+ default=[3],
+ nargs="+",
+ type=float,
+ help="upper bound of search space",
+ )
+ group.add_argument(
+ "--tune-param",
+ default=["lenpen"],
+ nargs="+",
+ choices=["lenpen", "weight1", "weight2", "weight3"],
+ help="the parameter(s) to tune",
+ )
+ group.add_argument(
+ "--tune-subset",
+ default="valid",
+ choices=["valid", "test", "train"],
+ help="the subset to tune on ",
+ )
+ group.add_argument(
+ "--num-trials",
+ default=1000,
+ type=int,
+ help="number of trials to do for random search",
+ )
+ group.add_argument(
+ "--share-weights", action="store_true", help="share weight2 and weight 3"
+ )
+ return group
diff --git a/fairseq/examples/noisychannel/rerank_score_bw.py b/fairseq/examples/noisychannel/rerank_score_bw.py
new file mode 100644
index 0000000000000000000000000000000000000000..b0bc913651bd76667e25c214acb70f2bca19e185
--- /dev/null
+++ b/fairseq/examples/noisychannel/rerank_score_bw.py
@@ -0,0 +1,143 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import os
+from contextlib import redirect_stdout
+
+from fairseq import options
+from fairseq_cli import generate
+
+from examples.noisychannel import rerank_options, rerank_utils
+
+
+def score_bw(args):
+ if args.backwards1:
+ scorer1_src = args.target_lang
+ scorer1_tgt = args.source_lang
+ else:
+ scorer1_src = args.source_lang
+ scorer1_tgt = args.target_lang
+
+ if args.score_model2 is not None:
+ if args.backwards2:
+ scorer2_src = args.target_lang
+ scorer2_tgt = args.source_lang
+ else:
+ scorer2_src = args.source_lang
+ scorer2_tgt = args.target_lang
+
+ rerank1_is_gen = (
+ args.gen_model == args.score_model1 and args.source_prefix_frac is None
+ )
+ rerank2_is_gen = (
+ args.gen_model == args.score_model2 and args.source_prefix_frac is None
+ )
+
+ (
+ pre_gen,
+ left_to_right_preprocessed_dir,
+ right_to_left_preprocessed_dir,
+ backwards_preprocessed_dir,
+ lm_preprocessed_dir,
+ ) = rerank_utils.get_directories(
+ args.data_dir_name,
+ args.num_rescore,
+ args.gen_subset,
+ args.gen_model_name,
+ args.shard_id,
+ args.num_shards,
+ args.sampling,
+ args.prefix_len,
+ args.target_prefix_frac,
+ args.source_prefix_frac,
+ )
+
+ score1_file = rerank_utils.rescore_file_name(
+ pre_gen,
+ args.prefix_len,
+ args.model1_name,
+ target_prefix_frac=args.target_prefix_frac,
+ source_prefix_frac=args.source_prefix_frac,
+ backwards=args.backwards1,
+ )
+
+ if args.score_model2 is not None:
+ score2_file = rerank_utils.rescore_file_name(
+ pre_gen,
+ args.prefix_len,
+ args.model2_name,
+ target_prefix_frac=args.target_prefix_frac,
+ source_prefix_frac=args.source_prefix_frac,
+ backwards=args.backwards2,
+ )
+
+ if args.right_to_left1:
+ rerank_data1 = right_to_left_preprocessed_dir
+ elif args.backwards1:
+ rerank_data1 = backwards_preprocessed_dir
+ else:
+ rerank_data1 = left_to_right_preprocessed_dir
+
+ gen_param = ["--batch-size", str(128), "--score-reference", "--gen-subset", "train"]
+ if not rerank1_is_gen and not os.path.isfile(score1_file):
+ print("STEP 4: score the translations for model 1")
+
+ model_param1 = [
+ "--path",
+ args.score_model1,
+ "--source-lang",
+ scorer1_src,
+ "--target-lang",
+ scorer1_tgt,
+ ]
+ gen_model1_param = [rerank_data1] + gen_param + model_param1
+
+ gen_parser = options.get_generation_parser()
+ input_args = options.parse_args_and_arch(gen_parser, gen_model1_param)
+
+ with open(score1_file, "w") as f:
+ with redirect_stdout(f):
+ generate.main(input_args)
+
+ if (
+ args.score_model2 is not None
+ and not os.path.isfile(score2_file)
+ and not rerank2_is_gen
+ ):
+ print("STEP 4: score the translations for model 2")
+
+ if args.right_to_left2:
+ rerank_data2 = right_to_left_preprocessed_dir
+ elif args.backwards2:
+ rerank_data2 = backwards_preprocessed_dir
+ else:
+ rerank_data2 = left_to_right_preprocessed_dir
+
+ model_param2 = [
+ "--path",
+ args.score_model2,
+ "--source-lang",
+ scorer2_src,
+ "--target-lang",
+ scorer2_tgt,
+ ]
+ gen_model2_param = [rerank_data2] + gen_param + model_param2
+
+ gen_parser = options.get_generation_parser()
+ input_args = options.parse_args_and_arch(gen_parser, gen_model2_param)
+
+ with open(score2_file, "w") as f:
+ with redirect_stdout(f):
+ generate.main(input_args)
+
+
+def cli_main():
+ parser = rerank_options.get_reranking_parser()
+ args = options.parse_args_and_arch(parser)
+ score_bw(args)
+
+
+if __name__ == "__main__":
+ cli_main()
diff --git a/fairseq/examples/noisychannel/rerank_score_lm.py b/fairseq/examples/noisychannel/rerank_score_lm.py
new file mode 100644
index 0000000000000000000000000000000000000000..e80948d78b02561cbd09d72c319222105f41f6bb
--- /dev/null
+++ b/fairseq/examples/noisychannel/rerank_score_lm.py
@@ -0,0 +1,81 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import os
+
+from fairseq import options
+
+from examples.noisychannel import rerank_options, rerank_utils
+
+
+def score_lm(args):
+ using_nbest = args.nbest_list is not None
+ (
+ pre_gen,
+ left_to_right_preprocessed_dir,
+ right_to_left_preprocessed_dir,
+ backwards_preprocessed_dir,
+ lm_preprocessed_dir,
+ ) = rerank_utils.get_directories(
+ args.data_dir_name,
+ args.num_rescore,
+ args.gen_subset,
+ args.gen_model_name,
+ args.shard_id,
+ args.num_shards,
+ args.sampling,
+ args.prefix_len,
+ args.target_prefix_frac,
+ args.source_prefix_frac,
+ )
+
+ predictions_bpe_file = pre_gen + "/generate_output_bpe.txt"
+ if using_nbest:
+ print("Using predefined n-best list from interactive.py")
+ predictions_bpe_file = args.nbest_list
+
+ gen_output = rerank_utils.BitextOutputFromGen(
+ predictions_bpe_file, bpe_symbol=args.post_process, nbest=using_nbest
+ )
+
+ if args.language_model is not None:
+ lm_score_file = rerank_utils.rescore_file_name(
+ pre_gen, args.prefix_len, args.lm_name, lm_file=True
+ )
+
+ if args.language_model is not None and not os.path.isfile(lm_score_file):
+ print("STEP 4.5: language modeling for P(T)")
+ if args.lm_bpe_code is None:
+ bpe_status = "no bpe"
+ elif args.lm_bpe_code == "shared":
+ bpe_status = "shared"
+ else:
+ bpe_status = "different"
+
+ rerank_utils.lm_scoring(
+ lm_preprocessed_dir,
+ bpe_status,
+ gen_output,
+ pre_gen,
+ args.lm_dict,
+ args.lm_name,
+ args.language_model,
+ args.lm_bpe_code,
+ 128,
+ lm_score_file,
+ args.target_lang,
+ args.source_lang,
+ prefix_len=args.prefix_len,
+ )
+
+
+def cli_main():
+ parser = rerank_options.get_reranking_parser()
+ args = options.parse_args_and_arch(parser)
+ score_lm(args)
+
+
+if __name__ == "__main__":
+ cli_main()
diff --git a/fairseq/examples/noisychannel/rerank_tune.py b/fairseq/examples/noisychannel/rerank_tune.py
new file mode 100644
index 0000000000000000000000000000000000000000..b2e8b7594a370b2462f77252d54d7ef80e290f7c
--- /dev/null
+++ b/fairseq/examples/noisychannel/rerank_tune.py
@@ -0,0 +1,102 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import random
+
+import numpy as np
+from fairseq import options
+
+from examples.noisychannel import rerank, rerank_options
+
+
+def random_search(args):
+ param_values = []
+ tuneable_parameters = ["lenpen", "weight1", "weight2", "weight3"]
+ initial_params = [args.lenpen, args.weight1, args.weight2, args.weight3]
+ for i, elem in enumerate(initial_params):
+ if type(elem) is not list:
+ initial_params[i] = [elem]
+ else:
+ initial_params[i] = elem
+
+ tune_parameters = args.tune_param.copy()
+ for i in range(len(args.tune_param)):
+ assert args.upper_bound[i] >= args.lower_bound[i]
+ index = tuneable_parameters.index(args.tune_param[i])
+ del tuneable_parameters[index]
+ del initial_params[index]
+
+ tune_parameters += tuneable_parameters
+ param_values += initial_params
+ random.seed(args.seed)
+
+ random_params = np.array(
+ [
+ [
+ random.uniform(args.lower_bound[i], args.upper_bound[i])
+ for i in range(len(args.tune_param))
+ ]
+ for k in range(args.num_trials)
+ ]
+ )
+ set_params = np.array(
+ [
+ [initial_params[i][0] for i in range(len(tuneable_parameters))]
+ for k in range(args.num_trials)
+ ]
+ )
+ random_params = np.concatenate((random_params, set_params), 1)
+
+ rerank_args = vars(args).copy()
+ if args.nbest_list:
+ rerank_args["gen_subset"] = "test"
+ else:
+ rerank_args["gen_subset"] = args.tune_subset
+
+ for k in range(len(tune_parameters)):
+ rerank_args[tune_parameters[k]] = list(random_params[:, k])
+
+ if args.share_weights:
+ k = tune_parameters.index("weight2")
+ rerank_args["weight3"] = list(random_params[:, k])
+
+ rerank_args = argparse.Namespace(**rerank_args)
+ best_lenpen, best_weight1, best_weight2, best_weight3, best_score = rerank.rerank(
+ rerank_args
+ )
+ rerank_args = vars(args).copy()
+ rerank_args["lenpen"] = [best_lenpen]
+ rerank_args["weight1"] = [best_weight1]
+ rerank_args["weight2"] = [best_weight2]
+ rerank_args["weight3"] = [best_weight3]
+
+ # write the hypothesis from the valid set from the best trial
+
+ if args.gen_subset != "valid":
+ rerank_args["gen_subset"] = "valid"
+ rerank_args = argparse.Namespace(**rerank_args)
+ rerank.rerank(rerank_args)
+
+ # test with the best hyperparameters on gen subset
+ rerank_args = vars(args).copy()
+ rerank_args["gen_subset"] = args.gen_subset
+ rerank_args["lenpen"] = [best_lenpen]
+ rerank_args["weight1"] = [best_weight1]
+ rerank_args["weight2"] = [best_weight2]
+ rerank_args["weight3"] = [best_weight3]
+ rerank_args = argparse.Namespace(**rerank_args)
+ rerank.rerank(rerank_args)
+
+
+def cli_main():
+ parser = rerank_options.get_tuning_parser()
+ args = options.parse_args_and_arch(parser)
+
+ random_search(args)
+
+
+if __name__ == "__main__":
+ cli_main()
diff --git a/fairseq/examples/noisychannel/rerank_utils.py b/fairseq/examples/noisychannel/rerank_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..2c6bf1b1afbb089cf5e84f720eb7a067479fbcbc
--- /dev/null
+++ b/fairseq/examples/noisychannel/rerank_utils.py
@@ -0,0 +1,850 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+import os
+import re
+import subprocess
+from contextlib import redirect_stdout
+
+from fairseq import options
+from fairseq_cli import eval_lm, preprocess
+
+
+def reprocess(fle):
+ # takes in a file of generate.py translation generate_output
+ # returns a source dict and hypothesis dict, where keys are the ID num (as a string)
+ # and values and the corresponding source and translation. There may be several translations
+ # per source, so the values for hypothesis_dict are lists.
+ # parses output of generate.py
+
+ with open(fle, "r") as f:
+ txt = f.read()
+
+ """reprocess generate.py output"""
+ p = re.compile(r"[STHP][-]\d+\s*")
+ hp = re.compile(r"(\s*[-]?\d+[.]?\d+\s*)|(\s*(-inf)\s*)")
+ source_dict = {}
+ hypothesis_dict = {}
+ score_dict = {}
+ target_dict = {}
+ pos_score_dict = {}
+ lines = txt.split("\n")
+
+ for line in lines:
+ line += "\n"
+ prefix = re.search(p, line)
+ if prefix is not None:
+ assert len(prefix.group()) > 2, "prefix id not found"
+ _, j = prefix.span()
+ id_num = prefix.group()[2:]
+ id_num = int(id_num)
+ line_type = prefix.group()[0]
+ if line_type == "H":
+ h_txt = line[j:]
+ hypo = re.search(hp, h_txt)
+ assert (
+ hypo is not None
+ ), "regular expression failed to find the hypothesis scoring"
+ _, i = hypo.span()
+ score = hypo.group()
+ if id_num in hypothesis_dict:
+ hypothesis_dict[id_num].append(h_txt[i:])
+ score_dict[id_num].append(float(score))
+ else:
+ hypothesis_dict[id_num] = [h_txt[i:]]
+ score_dict[id_num] = [float(score)]
+
+ elif line_type == "S":
+ source_dict[id_num] = line[j:]
+ elif line_type == "T":
+ target_dict[id_num] = line[j:]
+ elif line_type == "P":
+ pos_scores = (line[j:]).split()
+ pos_scores = [float(x) for x in pos_scores]
+ if id_num in pos_score_dict:
+ pos_score_dict[id_num].append(pos_scores)
+ else:
+ pos_score_dict[id_num] = [pos_scores]
+
+ return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict
+
+
+def reprocess_nbest(fle):
+ """reprocess interactive.py output"""
+ with open(fle, "r") as f:
+ txt = f.read()
+
+ source_dict = {}
+ hypothesis_dict = {}
+ score_dict = {}
+ target_dict = {}
+ pos_score_dict = {}
+ lines = txt.split("\n")
+
+ hp = re.compile(r"[-]?\d+[.]?\d+")
+ j = -1
+
+ for _i, line in enumerate(lines):
+ line += "\n"
+ line_type = line[0]
+
+ if line_type == "H":
+ hypo = re.search(hp, line)
+ _, start_index = hypo.span()
+ score = hypo.group()
+ if j in score_dict:
+ score_dict[j].append(float(score))
+ hypothesis_dict[j].append(line[start_index:].strip("\t"))
+ else:
+ score_dict[j] = [float(score)]
+ hypothesis_dict[j] = [line[start_index:].strip("\t")]
+ elif line_type == "O":
+ j += 1
+ source_dict[j] = line[2:]
+ # we don't have the targets for interactive.py
+ target_dict[j] = "filler"
+
+ elif line_type == "P":
+ pos_scores = [float(pos_score) for pos_score in line.split()[1:]]
+ if j in pos_score_dict:
+ pos_score_dict[j].append(pos_scores)
+ else:
+ pos_score_dict[j] = [pos_scores]
+
+ assert source_dict.keys() == hypothesis_dict.keys()
+ assert source_dict.keys() == pos_score_dict.keys()
+ assert source_dict.keys() == score_dict.keys()
+
+ return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict
+
+
+def write_reprocessed(
+ sources,
+ hypos,
+ targets,
+ source_outfile,
+ hypo_outfile,
+ target_outfile,
+ right_to_left=False,
+ prefix_len=None,
+ bpe_symbol=None,
+ target_prefix_frac=None,
+ source_prefix_frac=None,
+):
+
+ """writes nbest hypothesis for rescoring"""
+ assert not (
+ prefix_len is not None and target_prefix_frac is not None
+ ), "in writing reprocessed, only one type of prefix may be used"
+ assert not (
+ prefix_len is not None and source_prefix_frac is not None
+ ), "in writing reprocessed, only one type of prefix may be used"
+ assert not (
+ target_prefix_frac is not None and source_prefix_frac is not None
+ ), "in writing reprocessed, only one type of prefix may be used"
+
+ with open(source_outfile, "w") as source_file, open(
+ hypo_outfile, "w"
+ ) as hypo_file, open(target_outfile, "w") as target_file:
+
+ assert len(sources) == len(hypos), "sources and hypos list length mismatch"
+ if right_to_left:
+ for i in range(len(sources)):
+ for j in range(len(hypos[i])):
+ if prefix_len is None:
+ hypo_file.write(make_right_to_left(hypos[i][j]) + "\n")
+ else:
+ raise NotImplementedError()
+ source_file.write(make_right_to_left(sources[i]) + "\n")
+ target_file.write(make_right_to_left(targets[i]) + "\n")
+ else:
+ for i in sorted(sources.keys()):
+ for j in range(len(hypos[i])):
+ if prefix_len is not None:
+ shortened = (
+ get_prefix_no_bpe(hypos[i][j], bpe_symbol, prefix_len)
+ + "\n"
+ )
+ hypo_file.write(shortened)
+ source_file.write(sources[i])
+ target_file.write(targets[i])
+ elif target_prefix_frac is not None:
+ num_words, shortened, num_bpe_tokens = calc_length_from_frac(
+ hypos[i][j], target_prefix_frac, bpe_symbol
+ )
+ shortened += "\n"
+ hypo_file.write(shortened)
+ source_file.write(sources[i])
+ target_file.write(targets[i])
+ elif source_prefix_frac is not None:
+ num_words, shortened, num_bpe_tokensn = calc_length_from_frac(
+ sources[i], source_prefix_frac, bpe_symbol
+ )
+ shortened += "\n"
+ hypo_file.write(hypos[i][j])
+ source_file.write(shortened)
+ target_file.write(targets[i])
+ else:
+ hypo_file.write(hypos[i][j])
+ source_file.write(sources[i])
+ target_file.write(targets[i])
+
+
+def calc_length_from_frac(bpe_sentence, prefix_frac, bpe_symbol):
+ # return number of words, (not bpe tokens) that we want
+ no_bpe_sen = remove_bpe(bpe_sentence, bpe_symbol)
+ len_sen = len(no_bpe_sen.split())
+
+ num_words = math.ceil(len_sen * prefix_frac)
+ prefix = get_prefix_no_bpe(bpe_sentence, bpe_symbol, num_words)
+ num_bpe_tokens = len(prefix.split())
+ return num_words, prefix, num_bpe_tokens
+
+
+def get_prefix(sentence, prefix_len):
+ """assuming no bpe, gets the prefix of the sentence with prefix_len words"""
+ tokens = sentence.strip("\n").split()
+ if prefix_len >= len(tokens):
+ return sentence.strip("\n")
+ else:
+ return " ".join(tokens[:prefix_len])
+
+
+def get_prefix_no_bpe(sentence, bpe_symbol, prefix_len):
+ if bpe_symbol is None:
+ return get_prefix(sentence, prefix_len)
+ else:
+ return " ".join(get_prefix_from_len(sentence.split(), bpe_symbol, prefix_len))
+
+
+def get_prefix_from_len(sentence, bpe_symbol, prefix_len):
+ """get the prefix of sentence with bpe, with prefix len in terms of words, not bpe tokens"""
+ bpe_count = sum([bpe_symbol.strip(" ") in t for t in sentence[:prefix_len]])
+ if bpe_count == 0:
+ return sentence[:prefix_len]
+ else:
+ return sentence[:prefix_len] + get_prefix_from_len(
+ sentence[prefix_len:], bpe_symbol, bpe_count
+ )
+
+
+def get_num_bpe_tokens_from_len(sentence, bpe_symbol, prefix_len):
+ """given a prefix length in terms of words, return the number of bpe tokens"""
+ prefix = get_prefix_no_bpe(sentence, bpe_symbol, prefix_len)
+ assert len(remove_bpe(prefix, bpe_symbol).split()) <= prefix_len
+ return len(prefix.split(" "))
+
+
+def make_right_to_left(line):
+ tokens = line.split()
+ tokens.reverse()
+ new_line = " ".join(tokens)
+ return new_line
+
+
+def remove_bpe(line, bpe_symbol):
+ line = line.replace("\n", "")
+ line = (line + " ").replace(bpe_symbol, "").rstrip()
+ return line + ("\n")
+
+
+def remove_bpe_dict(pred_dict, bpe_symbol):
+ new_dict = {}
+ for i in pred_dict:
+ if type(pred_dict[i]) == list:
+ new_list = [remove_bpe(elem, bpe_symbol) for elem in pred_dict[i]]
+ new_dict[i] = new_list
+ else:
+ new_dict[i] = remove_bpe(pred_dict[i], bpe_symbol)
+ return new_dict
+
+
+def parse_bleu_scoring(line):
+ p = re.compile(r"(BLEU4 = )\d+[.]\d+")
+ res = re.search(p, line)
+ assert res is not None, line
+ return float(res.group()[8:])
+
+
+def get_full_from_prefix(hypo_prefix, hypos):
+ """given a hypo prefix, recover the first hypo from the list of complete hypos beginning with that prefix"""
+ for hypo in hypos:
+ hypo_prefix = hypo_prefix.strip("\n")
+ len_prefix = len(hypo_prefix)
+ if hypo[:len_prefix] == hypo_prefix:
+ return hypo
+ # no match found
+ raise Exception()
+
+
+def get_score(
+ a,
+ b,
+ c,
+ target_len,
+ bitext_score1,
+ bitext_score2=None,
+ lm_score=None,
+ lenpen=None,
+ src_len=None,
+ tgt_len=None,
+ bitext1_backwards=False,
+ bitext2_backwards=False,
+ normalize=False,
+):
+ if bitext1_backwards:
+ bitext1_norm = src_len
+ else:
+ bitext1_norm = tgt_len
+ if bitext_score2 is not None:
+ if bitext2_backwards:
+ bitext2_norm = src_len
+ else:
+ bitext2_norm = tgt_len
+ else:
+ bitext2_norm = 1
+ bitext_score2 = 0
+ if normalize:
+ score = (
+ a * bitext_score1 / bitext1_norm
+ + b * bitext_score2 / bitext2_norm
+ + c * lm_score / src_len
+ )
+ else:
+ score = a * bitext_score1 + b * bitext_score2 + c * lm_score
+
+ if lenpen is not None:
+ score /= (target_len) ** float(lenpen)
+
+ return score
+
+
+class BitextOutput(object):
+ def __init__(
+ self,
+ output_file,
+ backwards,
+ right_to_left,
+ bpe_symbol,
+ prefix_len=None,
+ target_prefix_frac=None,
+ source_prefix_frac=None,
+ ):
+ """process output from rescoring"""
+ source, hypo, score, target, pos_score = reprocess(output_file)
+ if backwards:
+ self.hypo_fracs = source_prefix_frac
+ else:
+ self.hypo_fracs = target_prefix_frac
+
+ # remove length penalty so we can use raw scores
+ score, num_bpe_tokens = get_score_from_pos(
+ pos_score, prefix_len, hypo, bpe_symbol, self.hypo_fracs, backwards
+ )
+ source_lengths = {}
+ target_lengths = {}
+
+ assert hypo.keys() == source.keys(), "key mismatch"
+ if backwards:
+ tmp = hypo
+ hypo = source
+ source = tmp
+ for i in source:
+ # since we are reranking, there should only be one hypo per source sentence
+ if backwards:
+ len_src = len(source[i][0].split())
+ # record length without
+ if len_src == num_bpe_tokens[i][0] - 1:
+ source_lengths[i] = num_bpe_tokens[i][0] - 1
+ else:
+ source_lengths[i] = num_bpe_tokens[i][0]
+
+ target_lengths[i] = len(hypo[i].split())
+
+ source[i] = remove_bpe(source[i][0], bpe_symbol)
+ target[i] = remove_bpe(target[i], bpe_symbol)
+ hypo[i] = remove_bpe(hypo[i], bpe_symbol)
+
+ score[i] = float(score[i][0])
+ pos_score[i] = pos_score[i][0]
+
+ else:
+ len_tgt = len(hypo[i][0].split())
+ # record length without
+ if len_tgt == num_bpe_tokens[i][0] - 1:
+ target_lengths[i] = num_bpe_tokens[i][0] - 1
+ else:
+ target_lengths[i] = num_bpe_tokens[i][0]
+
+ source_lengths[i] = len(source[i].split())
+
+ if right_to_left:
+ source[i] = remove_bpe(make_right_to_left(source[i]), bpe_symbol)
+ target[i] = remove_bpe(make_right_to_left(target[i]), bpe_symbol)
+ hypo[i] = remove_bpe(make_right_to_left(hypo[i][0]), bpe_symbol)
+ score[i] = float(score[i][0])
+ pos_score[i] = pos_score[i][0]
+ else:
+ assert (
+ len(hypo[i]) == 1
+ ), "expected only one hypothesis per source sentence"
+ source[i] = remove_bpe(source[i], bpe_symbol)
+ target[i] = remove_bpe(target[i], bpe_symbol)
+ hypo[i] = remove_bpe(hypo[i][0], bpe_symbol)
+ score[i] = float(score[i][0])
+ pos_score[i] = pos_score[i][0]
+
+ self.rescore_source = source
+ self.rescore_hypo = hypo
+ self.rescore_score = score
+ self.rescore_target = target
+ self.rescore_pos_score = pos_score
+ self.backwards = backwards
+ self.right_to_left = right_to_left
+ self.target_lengths = target_lengths
+ self.source_lengths = source_lengths
+
+
+class BitextOutputFromGen(object):
+ def __init__(
+ self,
+ predictions_bpe_file,
+ bpe_symbol=None,
+ nbest=False,
+ prefix_len=None,
+ target_prefix_frac=None,
+ ):
+ if nbest:
+ (
+ pred_source,
+ pred_hypo,
+ pred_score,
+ pred_target,
+ pred_pos_score,
+ ) = reprocess_nbest(predictions_bpe_file)
+ else:
+ pred_source, pred_hypo, pred_score, pred_target, pred_pos_score = reprocess(
+ predictions_bpe_file
+ )
+
+ assert len(pred_source) == len(pred_hypo)
+ assert len(pred_source) == len(pred_score)
+ assert len(pred_source) == len(pred_target)
+ assert len(pred_source) == len(pred_pos_score)
+
+ # remove length penalty so we can use raw scores
+ pred_score, num_bpe_tokens = get_score_from_pos(
+ pred_pos_score, prefix_len, pred_hypo, bpe_symbol, target_prefix_frac, False
+ )
+
+ self.source = pred_source
+ self.target = pred_target
+ self.score = pred_score
+ self.pos_score = pred_pos_score
+ self.hypo = pred_hypo
+ self.target_lengths = {}
+ self.source_lengths = {}
+
+ self.no_bpe_source = remove_bpe_dict(pred_source.copy(), bpe_symbol)
+ self.no_bpe_hypo = remove_bpe_dict(pred_hypo.copy(), bpe_symbol)
+ self.no_bpe_target = remove_bpe_dict(pred_target.copy(), bpe_symbol)
+
+ # indexes to match those from the rescoring models
+ self.rescore_source = {}
+ self.rescore_target = {}
+ self.rescore_pos_score = {}
+ self.rescore_hypo = {}
+ self.rescore_score = {}
+ self.num_hypos = {}
+ self.backwards = False
+ self.right_to_left = False
+
+ index = 0
+
+ for i in sorted(pred_source.keys()):
+ for j in range(len(pred_hypo[i])):
+
+ self.target_lengths[index] = len(self.hypo[i][j].split())
+ self.source_lengths[index] = len(self.source[i].split())
+
+ self.rescore_source[index] = self.no_bpe_source[i]
+ self.rescore_target[index] = self.no_bpe_target[i]
+ self.rescore_hypo[index] = self.no_bpe_hypo[i][j]
+ self.rescore_score[index] = float(pred_score[i][j])
+ self.rescore_pos_score[index] = pred_pos_score[i][j]
+ self.num_hypos[index] = len(pred_hypo[i])
+ index += 1
+
+
+def get_score_from_pos(
+ pos_score_dict, prefix_len, hypo_dict, bpe_symbol, hypo_frac, backwards
+):
+ score_dict = {}
+ num_bpe_tokens_dict = {}
+ assert prefix_len is None or hypo_frac is None
+ for key in pos_score_dict:
+ score_dict[key] = []
+ num_bpe_tokens_dict[key] = []
+ for i in range(len(pos_score_dict[key])):
+ if prefix_len is not None and not backwards:
+ num_bpe_tokens = get_num_bpe_tokens_from_len(
+ hypo_dict[key][i], bpe_symbol, prefix_len
+ )
+ score_dict[key].append(sum(pos_score_dict[key][i][:num_bpe_tokens]))
+ num_bpe_tokens_dict[key].append(num_bpe_tokens)
+ elif hypo_frac is not None:
+ num_words, shortened, hypo_prefix_len = calc_length_from_frac(
+ hypo_dict[key][i], hypo_frac, bpe_symbol
+ )
+ score_dict[key].append(sum(pos_score_dict[key][i][:hypo_prefix_len]))
+ num_bpe_tokens_dict[key].append(hypo_prefix_len)
+ else:
+ score_dict[key].append(sum(pos_score_dict[key][i]))
+ num_bpe_tokens_dict[key].append(len(pos_score_dict[key][i]))
+ return score_dict, num_bpe_tokens_dict
+
+
+class LMOutput(object):
+ def __init__(
+ self,
+ lm_score_file,
+ lm_dict=None,
+ prefix_len=None,
+ bpe_symbol=None,
+ target_prefix_frac=None,
+ ):
+ (
+ lm_sentences,
+ lm_sen_scores,
+ lm_sen_pos_scores,
+ lm_no_bpe_sentences,
+ lm_bpe_tokens,
+ ) = parse_lm(
+ lm_score_file,
+ prefix_len=prefix_len,
+ bpe_symbol=bpe_symbol,
+ target_prefix_frac=target_prefix_frac,
+ )
+
+ self.sentences = lm_sentences
+ self.score = lm_sen_scores
+ self.pos_score = lm_sen_pos_scores
+ self.lm_dict = lm_dict
+ self.no_bpe_sentences = lm_no_bpe_sentences
+ self.bpe_tokens = lm_bpe_tokens
+
+
+def parse_lm(input_file, prefix_len=None, bpe_symbol=None, target_prefix_frac=None):
+ """parse output of eval_lm"""
+ with open(input_file, "r") as f:
+ text = f.readlines()
+ text = text[7:]
+ cleaned_text = text[:-2]
+
+ sentences = {}
+ sen_scores = {}
+ sen_pos_scores = {}
+ no_bpe_sentences = {}
+ num_bpe_tokens_dict = {}
+ for _i, line in enumerate(cleaned_text):
+ tokens = line.split()
+ if tokens[0].isdigit():
+ line_id = int(tokens[0])
+ scores = [float(x[1:-1]) for x in tokens[2::2]]
+ sentences[line_id] = " ".join(tokens[1::2][:-1]) + "\n"
+ if bpe_symbol is not None:
+ # exclude symbol to match output from generate.py
+ bpe_sen = " ".join(tokens[1::2][:-1]) + "\n"
+ no_bpe_sen = remove_bpe(bpe_sen, bpe_symbol)
+ no_bpe_sentences[line_id] = no_bpe_sen
+
+ if prefix_len is not None:
+ num_bpe_tokens = get_num_bpe_tokens_from_len(
+ bpe_sen, bpe_symbol, prefix_len
+ )
+ sen_scores[line_id] = sum(scores[:num_bpe_tokens])
+ num_bpe_tokens_dict[line_id] = num_bpe_tokens
+ elif target_prefix_frac is not None:
+ num_words, shortened, target_prefix_len = calc_length_from_frac(
+ bpe_sen, target_prefix_frac, bpe_symbol
+ )
+ sen_scores[line_id] = sum(scores[:target_prefix_len])
+ num_bpe_tokens_dict[line_id] = target_prefix_len
+ else:
+ sen_scores[line_id] = sum(scores)
+ num_bpe_tokens_dict[line_id] = len(scores)
+
+ sen_pos_scores[line_id] = scores
+
+ return sentences, sen_scores, sen_pos_scores, no_bpe_sentences, num_bpe_tokens_dict
+
+
+def get_directories(
+ data_dir_name,
+ num_rescore,
+ gen_subset,
+ fw_name,
+ shard_id,
+ num_shards,
+ sampling=False,
+ prefix_len=None,
+ target_prefix_frac=None,
+ source_prefix_frac=None,
+):
+ nbest_file_id = (
+ "nbest_"
+ + str(num_rescore)
+ + "_subset_"
+ + gen_subset
+ + "_fw_name_"
+ + fw_name
+ + "_shard_"
+ + str(shard_id)
+ + "_of_"
+ + str(num_shards)
+ )
+
+ if sampling:
+ nbest_file_id += "_sampling"
+
+ # the directory containing all information for this nbest list
+ pre_gen = (
+ os.path.join(os.path.dirname(__file__))
+ + "/rerank_data/"
+ + data_dir_name
+ + "/"
+ + nbest_file_id
+ )
+ # the directory to store the preprocessed nbest list, for left to right rescoring
+ left_to_right_preprocessed_dir = pre_gen + "/left_to_right_preprocessed"
+ if source_prefix_frac is not None:
+ left_to_right_preprocessed_dir = (
+ left_to_right_preprocessed_dir + "/prefix_frac" + str(source_prefix_frac)
+ )
+ # the directory to store the preprocessed nbest list, for right to left rescoring
+ right_to_left_preprocessed_dir = pre_gen + "/right_to_left_preprocessed"
+ # the directory to store the preprocessed nbest list, for backwards rescoring
+ backwards_preprocessed_dir = pre_gen + "/backwards"
+ if target_prefix_frac is not None:
+ backwards_preprocessed_dir = (
+ backwards_preprocessed_dir + "/prefix_frac" + str(target_prefix_frac)
+ )
+ elif prefix_len is not None:
+ backwards_preprocessed_dir = (
+ backwards_preprocessed_dir + "/prefix_" + str(prefix_len)
+ )
+
+ # the directory to store the preprocessed nbest list, for rescoring with P(T)
+ lm_preprocessed_dir = pre_gen + "/lm_preprocessed"
+
+ return (
+ pre_gen,
+ left_to_right_preprocessed_dir,
+ right_to_left_preprocessed_dir,
+ backwards_preprocessed_dir,
+ lm_preprocessed_dir,
+ )
+
+
+def lm_scoring(
+ preprocess_directory,
+ bpe_status,
+ gen_output,
+ pre_gen,
+ cur_lm_dict,
+ cur_lm_name,
+ cur_language_model,
+ cur_lm_bpe_code,
+ batch_size,
+ lm_score_file,
+ target_lang,
+ source_lang,
+ prefix_len=None,
+):
+ if prefix_len is not None:
+ assert (
+ bpe_status == "different"
+ ), "bpe status must be different to use prefix len"
+ if bpe_status == "no bpe":
+ # run lm on output without bpe
+ write_reprocessed(
+ gen_output.no_bpe_source,
+ gen_output.no_bpe_hypo,
+ gen_output.no_bpe_target,
+ pre_gen + "/rescore_data_no_bpe.de",
+ pre_gen + "/rescore_data_no_bpe.en",
+ pre_gen + "/reference_file_no_bpe",
+ )
+
+ preprocess_lm_param = [
+ "--only-source",
+ "--trainpref",
+ pre_gen + "/rescore_data_no_bpe." + target_lang,
+ "--srcdict",
+ cur_lm_dict,
+ "--destdir",
+ preprocess_directory,
+ ]
+ preprocess_parser = options.get_preprocessing_parser()
+ input_args = preprocess_parser.parse_args(preprocess_lm_param)
+ preprocess.main(input_args)
+
+ eval_lm_param = [
+ preprocess_directory,
+ "--path",
+ cur_language_model,
+ "--output-word-probs",
+ "--batch-size",
+ str(batch_size),
+ "--max-tokens",
+ "1024",
+ "--sample-break-mode",
+ "eos",
+ "--gen-subset",
+ "train",
+ ]
+
+ eval_lm_parser = options.get_eval_lm_parser()
+ input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param)
+
+ with open(lm_score_file, "w") as f:
+ with redirect_stdout(f):
+ eval_lm.main(input_args)
+
+ elif bpe_status == "shared":
+ preprocess_lm_param = [
+ "--only-source",
+ "--trainpref",
+ pre_gen + "/rescore_data." + target_lang,
+ "--srcdict",
+ cur_lm_dict,
+ "--destdir",
+ preprocess_directory,
+ ]
+ preprocess_parser = options.get_preprocessing_parser()
+ input_args = preprocess_parser.parse_args(preprocess_lm_param)
+ preprocess.main(input_args)
+
+ eval_lm_param = [
+ preprocess_directory,
+ "--path",
+ cur_language_model,
+ "--output-word-probs",
+ "--batch-size",
+ str(batch_size),
+ "--sample-break-mode",
+ "eos",
+ "--gen-subset",
+ "train",
+ ]
+
+ eval_lm_parser = options.get_eval_lm_parser()
+ input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param)
+
+ with open(lm_score_file, "w") as f:
+ with redirect_stdout(f):
+ eval_lm.main(input_args)
+
+ elif bpe_status == "different":
+ rescore_file = pre_gen + "/rescore_data_no_bpe"
+ rescore_bpe = pre_gen + "/rescore_data_new_bpe"
+
+ rescore_file += "."
+ rescore_bpe += "."
+
+ write_reprocessed(
+ gen_output.no_bpe_source,
+ gen_output.no_bpe_hypo,
+ gen_output.no_bpe_target,
+ rescore_file + source_lang,
+ rescore_file + target_lang,
+ pre_gen + "/reference_file_no_bpe",
+ bpe_symbol=None,
+ )
+
+ # apply LM bpe to nbest list
+ bpe_src_param = [
+ "-c",
+ cur_lm_bpe_code,
+ "--input",
+ rescore_file + target_lang,
+ "--output",
+ rescore_bpe + target_lang,
+ ]
+ subprocess.call(
+ [
+ "python",
+ os.path.join(
+ os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py"
+ ),
+ ]
+ + bpe_src_param,
+ shell=False,
+ )
+ # uncomment to use fastbpe instead of subword-nmt bpe
+ # bpe_src_param = [rescore_bpe+target_lang, rescore_file+target_lang, cur_lm_bpe_code]
+ # subprocess.call(["/private/home/edunov/fastBPE/fast", "applybpe"] + bpe_src_param, shell=False)
+
+ preprocess_dir = preprocess_directory
+
+ preprocess_lm_param = [
+ "--only-source",
+ "--trainpref",
+ rescore_bpe + target_lang,
+ "--srcdict",
+ cur_lm_dict,
+ "--destdir",
+ preprocess_dir,
+ ]
+ preprocess_parser = options.get_preprocessing_parser()
+ input_args = preprocess_parser.parse_args(preprocess_lm_param)
+ preprocess.main(input_args)
+
+ eval_lm_param = [
+ preprocess_dir,
+ "--path",
+ cur_language_model,
+ "--output-word-probs",
+ "--batch-size",
+ str(batch_size),
+ "--max-tokens",
+ "1024",
+ "--sample-break-mode",
+ "eos",
+ "--gen-subset",
+ "train",
+ ]
+
+ eval_lm_parser = options.get_eval_lm_parser()
+ input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param)
+
+ with open(lm_score_file, "w") as f:
+ with redirect_stdout(f):
+ eval_lm.main(input_args)
+
+
+def rescore_file_name(
+ nbest_dir,
+ prefix_len,
+ scorer_name,
+ lm_file=False,
+ target_prefix_frac=None,
+ source_prefix_frac=None,
+ backwards=None,
+):
+ if lm_file:
+ score_file = nbest_dir + "/lm_score_translations_model_" + scorer_name + ".txt"
+ else:
+ score_file = nbest_dir + "/" + scorer_name + "_score_translations.txt"
+ if backwards:
+ if prefix_len is not None:
+ score_file += "prefix_len" + str(prefix_len)
+ elif target_prefix_frac is not None:
+ score_file += "target_prefix_frac" + str(target_prefix_frac)
+ else:
+ if source_prefix_frac is not None:
+ score_file += "source_prefix_frac" + str(source_prefix_frac)
+ return score_file
diff --git a/fairseq/examples/nonautoregressive_translation/README.md b/fairseq/examples/nonautoregressive_translation/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..8793e225c99732c42c9c19e22075cde37c73341d
--- /dev/null
+++ b/fairseq/examples/nonautoregressive_translation/README.md
@@ -0,0 +1,146 @@
+# Non-autoregressive Neural Machine Translation (NAT)
+
+This page mainly includes instructions for reproducing results from the following papers
+* [Levenshtein Transformer (Gu et al., 2019)](https://arxiv.org/abs/1905.11006).
+* [Understanding Knowledge Distillation in Non-autoregressive Machine Translation (Zhou et al., 2019)](https://arxiv.org/abs/1911.02727).
+
+We also provided our own implementations for several popular non-autoregressive-based models as reference:
+* [Non-Autoregressive Neural Machine Translation (Gu et al., 2017)](https://arxiv.org/abs/1711.02281)
+* [Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement (Lee et al., 2018)](https://arxiv.org/abs/1802.06901)
+* [Insertion Transformer: Flexible Sequence Generation via Insertion Operations (Stern et al., 2019)](https://arxiv.org/abs/1902.03249)
+* [Mask-Predict: Parallel Decoding of Conditional Masked Language Models (Ghazvininejad et al., 2019)](https://arxiv.org/abs/1904.09324v2)
+* [Fast Structured Decoding for Sequence Models (Sun et al., 2019)](https://arxiv.org/abs/1910.11555)
+
+## Dataset
+
+First, follow the [instructions to download and preprocess the WMT'14 En-De dataset](../translation#wmt14-english-to-german-convolutional).
+Make sure to learn a joint vocabulary by passing the `--joined-dictionary` option to `fairseq-preprocess`.
+
+### Knowledge Distillation
+Following [Gu et al. 2019](https://arxiv.org/abs/1905.11006), [knowledge distillation](https://arxiv.org/abs/1606.07947) from an autoregressive model can effectively simplify the training data distribution, which is sometimes essential for NAT-based models to learn good translations.
+The easiest way of performing distillation is to follow the [instructions of training a standard transformer model](../translation) on the same data, and then decode the training set to produce a distillation dataset for NAT.
+
+### Download
+We also provided the preprocessed [original](http://dl.fbaipublicfiles.com/nat/original_dataset.zip) and [distillation](http://dl.fbaipublicfiles.com/nat/distill_dataset.zip) datasets. Please build the binarized dataset on your own.
+
+
+## Train a model
+
+Then we can train a nonautoregressive model using the `translation_lev` task and a new criterion `nat_loss`.
+Use the `--noise` flag to specify the input noise used on the target sentences.
+In default, we run the task for *Levenshtein Transformer*, with `--noise='random_delete'`. Full scripts to run other models can also be found [here](./scripts.md).
+
+The following command will train a *Levenshtein Transformer* on the binarized dataset.
+
+```bash
+fairseq-train \
+ data-bin/wmt14_en_de_distill \
+ --save-dir checkpoints \
+ --ddp-backend=legacy_ddp \
+ --task translation_lev \
+ --criterion nat_loss \
+ --arch levenshtein_transformer \
+ --noise random_delete \
+ --share-all-embeddings \
+ --optimizer adam --adam-betas '(0.9,0.98)' \
+ --lr 0.0005 --lr-scheduler inverse_sqrt \
+ --stop-min-lr '1e-09' --warmup-updates 10000 \
+ --warmup-init-lr '1e-07' --label-smoothing 0.1 \
+ --dropout 0.3 --weight-decay 0.01 \
+ --decoder-learned-pos \
+ --encoder-learned-pos \
+ --apply-bert-init \
+ --log-format 'simple' --log-interval 100 \
+ --fixed-validation-seed 7 \
+ --max-tokens 8000 \
+ --save-interval-updates 10000 \
+ --max-update 300000
+```
+
+## Translate
+
+Once a model is trained, we can generate translations using an `iterative_refinement_generator` which will based on the model's initial output and iteratively read and greedily refine the translation until (1) the model predicts the same translations for two consecutive iterations; or (2) the generator reaches the maximum iterations (`--iter-decode-max-iter`). Use `--print-step` to check the actual # of iteration for each sentence.
+
+For *Levenshtein Transformer*, it sometimes helps to apply a `--iter-decode-eos-penalty` (typically, 0~3) to penalize the model finishing generation too early and generating too short translations.
+
+For example, to generate with `--iter-decode-max-iter=9`:
+```bash
+fairseq-generate \
+ data-bin/wmt14_en_de_distill \
+ --gen-subset test \
+ --task translation_lev \
+ --path checkpoints/checkpoint_best.pt \
+ --iter-decode-max-iter 9 \
+ --iter-decode-eos-penalty 0 \
+ --beam 1 --remove-bpe \
+ --print-step \
+ --batch-size 400
+```
+In the end of the generation, we can see the tokenized BLEU score for the translation.
+
+## Advanced Decoding Methods
+### Ensemble
+The NAT models use special implementations of [ensembling](https://github.com/fairinternal/fairseq-py/blob/b98d88da52f2f21f1b169bab8c70c1c4ca19a768/fairseq/sequence_generator.py#L522) to support iterative refinement and a variety of parallel operations in different models, while it shares the same API as standard autoregressive models as follows:
+```bash
+fairseq-generate \
+ data-bin/wmt14_en_de_distill \
+ --gen-subset test \
+ --task translation_lev \
+ --path checkpoint_1.pt:checkpoint_2.pt:checkpoint_3.pt \
+ --iter-decode-max-iter 9 \
+ --iter-decode-eos-penalty 0 \
+ --beam 1 --remove-bpe \
+ --print-step \
+ --batch-size 400
+```
+We use ``:`` to split multiple models. Note that, not all NAT models support ensembling for now.
+
+
+### Length-beam
+For models that predict lengths before decoding (e.g. the vanilla NAT, Mask-Predict, etc), it is possible to improve the translation quality by varying the target lengths around the predicted value, and translating the same example multiple times in parallel. We can select the best translation with the highest scores defined by your model's output.
+
+Note that, not all models support length beams. For models which dynamically change the lengths (e.g. *Insertion Transformer*, *Levenshtein Transformer*), the same trick does not apply.
+
+### Re-ranking
+If the model generates multiple translations with length beam, we can also introduce an autoregressive model to rerank the translations considering scoring from an autoregressive model is much faster than decoding from that.
+
+For example, to generate translations with length beam and reranking,
+```bash
+fairseq-generate \
+ data-bin/wmt14_en_de_distill \
+ --gen-subset test \
+ --task translation_lev \
+ --path checkpoints/checkpoint_best.pt:at_checkpoints/checkpoint_best.pt \
+ --iter-decode-max-iter 9 \
+ --iter-decode-eos-penalty 0 \
+ --iter-decode-with-beam 9 \
+ --iter-decode-with-external-reranker \
+ --beam 1 --remove-bpe \
+ --print-step \
+ --batch-size 100
+```
+Note that we need to make sure the autoregressive model shares the same vocabulary as our target non-autoregressive model.
+
+
+## Citation
+
+```bibtex
+@incollection{NIPS2019_9297,
+ title = {Levenshtein Transformer},
+ author = {Gu, Jiatao and Wang, Changhan and Zhao, Junbo},
+ booktitle = {Advances in Neural Information Processing Systems 32},
+ editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
+ pages = {11179--11189},
+ year = {2019},
+ publisher = {Curran Associates, Inc.},
+ url = {http://papers.nips.cc/paper/9297-levenshtein-transformer.pdf}
+}
+```
+```bibtex
+@article{zhou2019understanding,
+ title={Understanding Knowledge Distillation in Non-autoregressive Machine Translation},
+ author={Zhou, Chunting and Neubig, Graham and Gu, Jiatao},
+ journal={arXiv preprint arXiv:1911.02727},
+ year={2019}
+}
+```
diff --git a/fairseq/examples/nonautoregressive_translation/scripts.md b/fairseq/examples/nonautoregressive_translation/scripts.md
new file mode 100644
index 0000000000000000000000000000000000000000..9d3d7b67dc08440b5f4d1c5a7ffcd4bd6e76c14f
--- /dev/null
+++ b/fairseq/examples/nonautoregressive_translation/scripts.md
@@ -0,0 +1,179 @@
+# Examples of Training scripts for Non-autoregressive Machine Translation models
+
+### Non-autoregressive Transformer (NAT, Gu et al., 2017)
+Note that we need to have an additional module to perform "length prediction" (`--length-loss-factor`) before generating the whole sequence.
+```bash
+fairseq-train \
+ data-bin/wmt14_en_de_distill \
+ --save-dir checkpoints \
+ --ddp-backend=legacy_ddp \
+ --task translation_lev \
+ --criterion nat_loss \
+ --arch nonautoregressive_transformer \
+ --noise full_mask \
+ --share-all-embeddings \
+ --optimizer adam --adam-betas '(0.9,0.98)' \
+ --lr 0.0005 --lr-scheduler inverse_sqrt \
+ --stop-min-lr '1e-09' --warmup-updates 10000 \
+ --warmup-init-lr '1e-07' --label-smoothing 0.1 \
+ --dropout 0.3 --weight-decay 0.01 \
+ --decoder-learned-pos \
+ --encoder-learned-pos \
+ --pred-length-offset \
+ --length-loss-factor 0.1 \
+ --apply-bert-init \
+ --log-format 'simple' --log-interval 100 \
+ --fixed-validation-seed 7 \
+ --max-tokens 8000 \
+ --save-interval-updates 10000 \
+ --max-update 300000
+```
+
+### Fast Structured Decoding for Sequence Models (NAT-CRF, Sun et al., 2019)
+Note that we implemented a low-rank appromixated CRF model by setting `--crf-lowrank-approx=32` and `--crf-beam-approx=64` as discribed in the original paper. All other settings are the same as the vanilla NAT model.
+```bash
+fairseq-train \
+ data-bin/wmt14_en_de_distill \
+ --save-dir checkpoints \
+ --ddp-backend=legacy_ddp \
+ --task translation_lev \
+ --criterion nat_loss \
+ --arch nacrf_transformer \
+ --noise full_mask \
+ --share-all-embeddings \
+ --optimizer adam --adam-betas '(0.9,0.98)' \
+ --lr 0.0005 --lr-scheduler inverse_sqrt \
+ --stop-min-lr '1e-09' --warmup-updates 10000 \
+ --warmup-init-lr '1e-07' --label-smoothing 0.1 \
+ --dropout 0.3 --weight-decay 0.01 \
+ --decoder-learned-pos \
+ --encoder-learned-pos \
+ --pred-length-offset \
+ --length-loss-factor 0.1 \
+ --word-ins-loss-factor 0.5 \
+ --crf-lowrank-approx 32 \
+ --crf-beam-approx 64 \
+ --apply-bert-init \
+ --log-format 'simple' --log-interval 100 \
+ --fixed-validation-seed 7 \
+ --max-tokens 8000 \
+ --save-interval-updates 10000 \
+ --max-update 300000
+```
+
+
+### Non-autoregressive Transformer with Iterative Refinement (iNAT, Lee et al., 2018)
+Note that `--train-step` means how many iterations of refinement we used during training, and `--dae-ratio` controls the ratio of denoising auto-encoder training described in the original paper.
+```bash
+fairseq-train \
+ data-bin/wmt14_en_de_distill \
+ --save-dir checkpoints \
+ --ddp-backend=legacy_ddp \
+ --task translation_lev \
+ --criterion nat_loss \
+ --arch iterative_nonautoregressive_transformer \
+ --noise full_mask \
+ --share-all-embeddings \
+ --optimizer adam --adam-betas '(0.9,0.98)' \
+ --lr 0.0005 --lr-scheduler inverse_sqrt \
+ --stop-min-lr '1e-09' --warmup-updates 10000 \
+ --warmup-init-lr '1e-07' --label-smoothing 0.1 \
+ --dropout 0.3 --weight-decay 0.01 \
+ --decoder-learned-pos \
+ --encoder-learned-pos \
+ --pred-length-offset \
+ --length-loss-factor 0.1 \
+ --train-step 4 \
+ --dae-ratio 0.5 \
+ --stochastic-approx \
+ --apply-bert-init \
+ --log-format 'simple' --log-interval 100 \
+ --fixed-validation-seed 7 \
+ --max-tokens 8000 \
+ --save-interval-updates 10000 \
+ --max-update 300000
+```
+
+### Insertion Transformer (InsT, Stern et al., 2019)
+Note that we need to specify the "slot-loss" (uniform or balanced tree) described in the original paper. Here we use `--label-tau` to control the temperature.
+
+```bash
+fairseq-train \
+ data-bin/wmt14_en_de_distill \
+ --save-dir checkpoints \
+ --ddp-backend=legacy_ddp \
+ --task translation_lev \
+ --criterion nat_loss \
+ --arch insertion_transformer \
+ --noise random_delete \
+ --share-all-embeddings \
+ --optimizer adam --adam-betas '(0.9,0.98)' \
+ --lr 0.0005 --lr-scheduler inverse_sqrt \
+ --stop-min-lr '1e-09' --warmup-updates 10000 \
+ --warmup-init-lr '1e-07' --label-smoothing 0.1 \
+ --dropout 0.3 --weight-decay 0.01 \
+ --decoder-learned-pos \
+ --encoder-learned-pos \
+ --apply-bert-init \
+ --log-format 'simple' --log-interval 100 \
+ --fixed-validation-seed 7 \
+ --max-tokens 8000 \
+ --save-interval-updates 10000 \
+ --max-update 300000
+```
+
+
+### Mask Predict (CMLM, Ghazvininejad et al., 2019)
+```bash
+fairseq-train \
+ data-bin/wmt14_en_de_distill \
+ --save-dir checkpoints \
+ --ddp-backend=legacy_ddp \
+ --task translation_lev \
+ --criterion nat_loss \
+ --arch cmlm_transformer \
+ --noise random_mask \
+ --share-all-embeddings \
+ --optimizer adam --adam-betas '(0.9,0.98)' \
+ --lr 0.0005 --lr-scheduler inverse_sqrt \
+ --stop-min-lr '1e-09' --warmup-updates 10000 \
+ --warmup-init-lr '1e-07' --label-smoothing 0.1 \
+ --dropout 0.3 --weight-decay 0.01 \
+ --decoder-learned-pos \
+ --encoder-learned-pos \
+ --apply-bert-init \
+ --log-format 'simple' --log-interval 100 \
+ --fixed-validation-seed 7 \
+ --max-tokens 8000 \
+ --save-interval-updates 10000 \
+ --max-update 300000
+```
+
+
+
+
+### Levenshtein Transformer (LevT, Gu et al., 2019)
+```bash
+fairseq-train \
+ data-bin/wmt14_en_de_distill \
+ --save-dir checkpoints \
+ --ddp-backend=legacy_ddp \
+ --task translation_lev \
+ --criterion nat_loss \
+ --arch levenshtein_transformer \
+ --noise random_delete \
+ --share-all-embeddings \
+ --optimizer adam --adam-betas '(0.9,0.98)' \
+ --lr 0.0005 --lr-scheduler inverse_sqrt \
+ --stop-min-lr '1e-09' --warmup-updates 10000 \
+ --warmup-init-lr '1e-07' --label-smoothing 0.1 \
+ --dropout 0.3 --weight-decay 0.01 \
+ --decoder-learned-pos \
+ --encoder-learned-pos \
+ --apply-bert-init \
+ --log-format 'simple' --log-interval 100 \
+ --fixed-validation-seed 7 \
+ --max-tokens 8000 \
+ --save-interval-updates 10000 \
+ --max-update 300000
+```
diff --git a/fairseq/examples/paraphraser/README.md b/fairseq/examples/paraphraser/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..3810311f30f99f0a07fd8e5d3723bffeba9948c3
--- /dev/null
+++ b/fairseq/examples/paraphraser/README.md
@@ -0,0 +1,46 @@
+# Paraphrasing with round-trip translation and mixture of experts
+
+Machine translation models can be used to paraphrase text by translating it to
+an intermediate language and back (round-trip translation).
+
+This example shows how to paraphrase text by first passing it to an
+English-French translation model, followed by a French-English [mixture of
+experts translation model](/examples/translation_moe).
+
+##### 0. Setup
+
+Clone fairseq from source and install necessary dependencies:
+```bash
+git clone https://github.com/pytorch/fairseq.git
+cd fairseq
+pip install --editable .
+pip install sacremoses sentencepiece
+```
+
+##### 1. Download models
+```bash
+wget https://dl.fbaipublicfiles.com/fairseq/models/paraphraser.en-fr.tar.gz
+wget https://dl.fbaipublicfiles.com/fairseq/models/paraphraser.fr-en.hMoEup.tar.gz
+tar -xzvf paraphraser.en-fr.tar.gz
+tar -xzvf paraphraser.fr-en.hMoEup.tar.gz
+```
+
+##### 2. Paraphrase
+```bash
+python examples/paraphraser/paraphrase.py \
+ --en2fr paraphraser.en-fr \
+ --fr2en paraphraser.fr-en.hMoEup
+# Example input:
+# The new date for the Games, postponed for a year in response to the coronavirus pandemic, gives athletes time to recalibrate their training schedules.
+# Example outputs:
+# Delayed one year in response to the coronavirus pandemic, the new date of the Games gives athletes time to rebalance their training schedule.
+# The new date of the Games, which was rescheduled one year in response to the coronavirus (CV) pandemic, gives athletes time to rebalance their training schedule.
+# The new date of the Games, postponed one year in response to the coronavirus pandemic, provides athletes with time to rebalance their training schedule.
+# The Games' new date, postponed one year in response to the coronavirus pandemic, gives athletes time to rebalance their training schedule.
+# The new Games date, postponed one year in response to the coronavirus pandemic, gives the athletes time to rebalance their training schedule.
+# The new date of the Games, which was postponed one year in response to the coronavirus pandemic, gives the athletes time to rebalance their training schedule.
+# The new date of the Games, postponed one year in response to the coronavirus pandemic, gives athletes time to rebalance their training schedule.
+# The new date of the Games, postponed one year in response to the coronavirus pandemic, gives athletes time to re-balance their training schedule.
+# The new date of the Games, postponed one year in response to the coronavirus pandemic, gives the athletes time to rebalance their schedule of training.
+# The new date of the Games, postponed one year in response to the pandemic of coronavirus, gives the athletes time to rebalance their training schedule.
+```
diff --git a/fairseq/examples/paraphraser/paraphrase.py b/fairseq/examples/paraphraser/paraphrase.py
new file mode 100644
index 0000000000000000000000000000000000000000..d3422fb3db9a381b73a854d2379df214ebe544a2
--- /dev/null
+++ b/fairseq/examples/paraphraser/paraphrase.py
@@ -0,0 +1,85 @@
+#!/usr/bin/env python3 -u
+
+import argparse
+import fileinput
+import logging
+import os
+import sys
+
+from fairseq.models.transformer import TransformerModel
+
+
+logging.getLogger().setLevel(logging.INFO)
+
+
+def main():
+ parser = argparse.ArgumentParser(description="")
+ parser.add_argument("--en2fr", required=True, help="path to en2fr model")
+ parser.add_argument(
+ "--fr2en", required=True, help="path to fr2en mixture of experts model"
+ )
+ parser.add_argument(
+ "--user-dir", help="path to fairseq examples/translation_moe/src directory"
+ )
+ parser.add_argument(
+ "--num-experts",
+ type=int,
+ default=10,
+ help="(keep at 10 unless using a different model)",
+ )
+ parser.add_argument(
+ "files",
+ nargs="*",
+ default=["-"],
+ help='input files to paraphrase; "-" for stdin',
+ )
+ args = parser.parse_args()
+
+ if args.user_dir is None:
+ args.user_dir = os.path.join(
+ os.path.dirname(os.path.dirname(os.path.abspath(__file__))), # examples/
+ "translation_moe",
+ "src",
+ )
+ if os.path.exists(args.user_dir):
+ logging.info("found user_dir:" + args.user_dir)
+ else:
+ raise RuntimeError(
+ "cannot find fairseq examples/translation_moe/src "
+ "(tried looking here: {})".format(args.user_dir)
+ )
+
+ logging.info("loading en2fr model from:" + args.en2fr)
+ en2fr = TransformerModel.from_pretrained(
+ model_name_or_path=args.en2fr,
+ tokenizer="moses",
+ bpe="sentencepiece",
+ ).eval()
+
+ logging.info("loading fr2en model from:" + args.fr2en)
+ fr2en = TransformerModel.from_pretrained(
+ model_name_or_path=args.fr2en,
+ tokenizer="moses",
+ bpe="sentencepiece",
+ user_dir=args.user_dir,
+ task="translation_moe",
+ ).eval()
+
+ def gen_paraphrases(en):
+ fr = en2fr.translate(en)
+ return [
+ fr2en.translate(fr, inference_step_args={"expert": i})
+ for i in range(args.num_experts)
+ ]
+
+ logging.info("Type the input sentence and press return:")
+ for line in fileinput.input(args.files):
+ line = line.strip()
+ if len(line) == 0:
+ continue
+ for paraphrase in gen_paraphrases(line):
+ print(paraphrase)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/pay_less_attention_paper/README.md b/fairseq/examples/pay_less_attention_paper/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..5adab11f4dc3461f9e7126ac391b04e703616e6b
--- /dev/null
+++ b/fairseq/examples/pay_less_attention_paper/README.md
@@ -0,0 +1,176 @@
+# Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)
+
+This page contains pointers to pre-trained models as well as instructions on how to train new models for [our paper](https://arxiv.org/abs/1901.10430).
+
+## Citation:
+```bibtex
+@inproceedings{wu2018pay,
+ title = {Pay Less Attention with Lightweight and Dynamic Convolutions},
+ author = {Felix Wu and Angela Fan and Alexei Baevski and Yann Dauphin and Michael Auli},
+ booktitle = {International Conference on Learning Representations},
+ year = {2019},
+ url = {https://arxiv.org/abs/1901.10430},
+}
+```
+
+## Translation
+
+### Pre-trained models
+For some datasets we release models without GLUs which are faster at inference.
+
+Model | Description | Dataset | Download
+---|---|---|---
+`lightconv.no_glu.iwslt14.de-en` | LightConv (without GLUs) | [IWSLT14 German-English](https://wit3.fbk.eu/archive/2014-01/texts/de/en/de-en.tgz) | model: [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.lightconv.tar.gz) IWSLT14 test: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/iwslt14.de-en.test.tar.bz2)
+`dynamicconv.no_glu.iwslt14.de-en` | DynamicConv (without GLUs) | [IWSLT14 German-English](https://wit3.fbk.eu/archive/2014-01/texts/de/en/de-en.tgz) | model: [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.dynamicconv.tar.gz) IWSLT14 test: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/iwslt14.de-en.test.tar.bz2)
+`lightconv.no_glu.wmt16.en-de` | LightConv (without GLUs) | [WMT16 English-German](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8) | model: [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv.tar.gz) newstest2014 (shared vocab): [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt16.en-de.joined-dict.newstest2014.tar.bz2)
+`dynamicconv.no_glu.wmt16.en-de` | DynamicConv (without GLUs) | [WMT16 English-German](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8) | model: [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv.tar.gz) newstest2014 (shared vocab): [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt16.en-de.joined-dict.newstest2014.tar.bz2)
+`lightconv.glu.wmt16.en-de` | LightConv | [WMT16 English-German](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8) | model: [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz) newstest2014 (shared vocab): [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt16.en-de.joined-dict.newstest2014.tar.bz2)
+`dynamicconv.glu.wmt16.en-de` | DynamicConv | [WMT16 English-German](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8) | model: [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz) newstest2014 (shared vocab): [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt16.en-de.joined-dict.newstest2014.tar.bz2)
+`lightconv.glu.wmt14.en-fr` | LightConv | [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) | model: [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.lightconv-glu.tar.gz) newstest2014: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.en-fr.joined-dict.newstest2014.tar.bz2)
+`dynamicconv.glu.wmt14.en-fr` | DynamicConv | [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) | model: [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.dynamicconv-glu.tar.gz) newstest2014: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.en-fr.joined-dict.newstest2014.tar.bz2)
+`lightconv.glu.wmt17.zh-en` | LightConv | [WMT17 Chinese-English](http://statmt.org/wmt17/translation-task.html#Download) | model: [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.lightconv-glu.tar.gz) newstest2017: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt17.zh-en.newstest2017.tar.bz2)
+`dynamicconv.glu.wmt17.zh-en` | DynamicConv | [WMT17 Chinese-English](http://statmt.org/wmt17/translation-task.html#Download) | model: [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.dynamicconv-glu.tar.gz) newstest2017: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt17.zh-en.newstest2017.tar.bz2)
+
+### Memory-Efficient CUDA Kernels
+
+Since the PyTorch implementations of Light/Dynamic conv are quite memory intensive, we have developed CUDA kernels that implement the light and dynamic convolution operator in a memory-efficient and performant manner. For large sequence lengths, these kernels save about 50% memory compared to the PyTorch equivalent.
+
+To install the kernels, use the commands below. Once installed, they will automatically be used in place of the PyTorch implementations whenever a light or dynamic convolution is used.
+
+```sh
+# to install lightconv
+cd fairseq/modules/lightconv_layer
+python cuda_function_gen.py
+python setup.py install
+
+# to install dynamicconv
+cd fairseq/modules/dynamicconv_layer
+python cuda_function_gen.py
+python setup.py install
+```
+
+### Example usage (torch.hub)
+
+We require a few additional Python dependencies for preprocessing:
+```bash
+pip install sacremoses subword_nmt
+```
+
+Interactive translation via PyTorch Hub:
+```python
+import torch
+
+# List available models
+torch.hub.list('pytorch/fairseq') # [..., 'lightconv.glu.wmt17.zh-en', ... ]
+
+# Load a transformer trained on WMT'16 En-De
+zh2en = torch.hub.load('pytorch/fairseq', 'lightconv.glu.wmt17.zh-en', tokenizer='moses', bpe='subword_nmt')
+
+# The underlying model is available under the *models* attribute
+assert isinstance(zh2en.models[0], fairseq.models.lightconv.LightConvModel)
+
+# Translate a sentence
+zh2en.translate('你好 世界')
+# 'Hello World'
+```
+
+Loading custom models:
+```python
+from fairseq.models.lightconv import LightConvModel
+en2fr = LightConvModel.from_pretrained(
+ '/path/to/checkpoints',
+ checkpoint_file='checkpoint_best.pt',
+ data_name_or_path='data-bin/wmt14_en_fr',
+ bpe='subword_nmt',
+ bpe_codes='data-bin/wmt14_en_fr/en.code'
+)
+en2fr.translate('Hello world!')
+# 'Bonjour le monde'
+```
+
+### Preprocessing the training datasets
+
+Please follow the instructions in [`examples/translation/README.md`](../translation/README.md) to preprocess the data.
+
+### Training and evaluation options:
+To use the model without GLU, please set `--encoder-glu 0 --decoder-glu 0`.
+For LightConv, please use `--encoder-conv-type lightweight --decoder-conv-type lightweight`, otherwise the default is DynamicConv.
+For best BLEU results, lenpen may need to be manually tuned.
+
+To use the CUDA kernels, first install the PyTorch modules using the commands
+above. Once the CUDA modules are installed, they will automatically be used
+instead of the PyTorch modules.
+
+### IWSLT14 De-En
+Training and evaluating DynamicConv (without GLU) on a GPU:
+```sh
+# Training
+SAVE="save/dynamic_conv_iwslt"
+mkdir -p $SAVE
+CUDA_VISIBLE_DEVICES=0 $(which fairseq-train) data-bin/iwslt14.tokenized.de-en \
+ --clip-norm 0 --optimizer adam --lr 0.0005 \
+ --source-lang de --target-lang en --max-tokens 4000 --no-progress-bar \
+ --log-interval 100 --stop-min-lr '1e-09' --weight-decay 0.0001 \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
+ --lr-scheduler inverse_sqrt \
+ --ddp-backend=legacy_ddp \
+ --max-update 50000 --warmup-updates 4000 --warmup-init-lr '1e-07' \
+ --adam-betas '(0.9, 0.98)' --keep-last-epochs 10 \
+ -a lightconv_iwslt_de_en --save-dir $SAVE \
+ --dropout 0.3 --attention-dropout 0.1 --weight-dropout 0.1 \
+ --encoder-glu 0 --decoder-glu 0
+python scripts/average_checkpoints.py --inputs $SAVE \
+ --num-epoch-checkpoints 10 --output "${SAVE}/checkpoint_last10_avg.pt"
+
+# Evaluation
+CUDA_VISIBLE_DEVICES=0 fairseq-generate data-bin/iwslt14.tokenized.de-en --path "${SAVE}/checkpoint_last10_avg.pt" --batch-size 128 --beam 4 --remove-bpe --lenpen 1 --gen-subset test --quiet
+```
+
+### WMT16 En-De
+Training and evaluating DynamicConv (with GLU) on WMT16 En-De using cosine scheduler on one machine with 8 V100 GPUs:
+```sh
+# Training
+SAVE="save/dynamic_conv_wmt16en2de"
+mkdir -p $SAVE
+python -m torch.distributed.launch --nproc_per_node 8 $(which fairseq-train) \
+ data-bin/wmt16_en_de_bpe32k --fp16 --log-interval 100 --no-progress-bar \
+ --max-update 30000 --share-all-embeddings --optimizer adam \
+ --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --weight-decay 0.0 \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
+ --stop-min-lr 1e-09 --update-freq 16 --attention-dropout 0.1 --keep-last-epochs 10 \
+ --ddp-backend=legacy_ddp --max-tokens 3584 \
+ --lr-scheduler cosine --warmup-init-lr 1e-7 --warmup-updates 10000 \
+ --lr-shrink 1 --lr 0.001 --min-lr 1e-7 --warmup-init-lr 1e-07 \
+ --t-mult 1 --lr-period-updates 20000 \
+ --arch lightconv_wmt_en_de_big --save-dir $SAVE \
+ --dropout 0.3 --attention-dropout 0.1 --weight-dropout 0.1 \
+ --encoder-glu 1 --decoder-glu 1
+
+# Evaluation
+CUDA_VISIBLE_DEVICES=0 fairseq-generate data-bin/wmt16.en-de.joined-dict.newstest2014 --path "${SAVE}/checkpoint_best.pt" --batch-size 128 --beam 5 --remove-bpe --lenpen 0.5 --gen-subset test > wmt16_gen.txt
+bash scripts/compound_split_bleu.sh wmt16_gen.txt
+```
+
+### WMT14 En-Fr
+Training DynamicConv (with GLU) on WMT14 En-Fr using cosine scheduler on one machine with 8 V100 GPUs:
+```sh
+# Training
+SAVE="save/dynamic_conv_wmt14en2fr"
+mkdir -p $SAVE
+python -m torch.distributed.launch --nproc_per_node 8 $(which fairseq-train) \
+ data-bin/wmt14_en_fr --fp16 --log-interval 100 --no-progress-bar \
+ --max-update 30000 --share-all-embeddings --optimizer adam \
+ --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --weight-decay 0.0 \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
+ --stop-min-lr 1e-09 --update-freq 16 --attention-dropout 0.1 --keep-last-epochs 10 \
+ --ddp-backend=legacy_ddp --max-tokens 3584 \
+ --lr-scheduler cosine --warmup-init-lr 1e-7 --warmup-updates 10000 \
+ --lr-shrink 1 --lr 0.001 --min-lr 1e-7 --warmup-init-lr 1e-07 \
+ --t-mult 1 --lr-period-updates 70000 \
+ --arch lightconv_wmt_en_fr_big --save-dir $SAVE \
+ --dropout 0.1 --attention-dropout 0.1 --weight-dropout 0.1 \
+ --encoder-glu 1 --decoder-glu 1
+
+# Evaluation
+CUDA_VISIBLE_DEVICES=0 fairseq-generate data-bin/wmt14.en-fr.joined-dict.newstest2014 --path "${SAVE}/checkpoint_best.pt" --batch-size 128 --beam 5 --remove-bpe --lenpen 0.9 --gen-subset test
+```
diff --git a/fairseq/examples/pointer_generator/README.md b/fairseq/examples/pointer_generator/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..60965708254aae2174812ea6686a9807825b7fb6
--- /dev/null
+++ b/fairseq/examples/pointer_generator/README.md
@@ -0,0 +1,82 @@
+# Transformer with Pointer-Generator Network
+
+This page describes the `transformer_pointer_generator` model that incorporates
+a pointing mechanism in the Transformer model that facilitates copying of input
+words to the output. This architecture is described in [Enarvi et al. (2020)](https://www.aclweb.org/anthology/2020.nlpmc-1.4/).
+
+## Background
+
+The pointer-generator network was introduced in [See et al. (2017)](https://arxiv.org/abs/1704.04368)
+for RNN encoder-decoder attention models. A similar mechanism can be
+incorporated in a Transformer model by reusing one of the many attention
+distributions for pointing. The attention distribution over the input words is
+interpolated with the normal output distribution over the vocabulary words. This
+allows the model to generate words that appear in the input, even if they don't
+appear in the vocabulary, helping especially with small vocabularies.
+
+## Implementation
+
+The mechanism for copying out-of-vocabulary words from the input has been
+implemented differently to See et al. In their [implementation](https://github.com/abisee/pointer-generator)
+they convey the word identities through the model in order to be able to produce
+words that appear in the input sequence but not in the vocabulary. A different
+approach was taken in the Fairseq implementation to keep it self-contained in
+the model file, avoiding any changes to the rest of the code base. Copying
+out-of-vocabulary words is possible by pre-processing the input and
+post-processing the output. This is described in detail in the next section.
+
+## Usage
+
+The training and evaluation procedure is outlined below. You can also find a
+more detailed example for the XSum dataset on [this page](README.xsum.md).
+
+##### 1. Create a vocabulary and extend it with source position markers
+
+The pointing mechanism is especially helpful with small vocabularies, if we are
+able to recover the identities of any out-of-vocabulary words that are copied
+from the input. For this purpose, the model allows extending the vocabulary with
+special tokens that can be used in place of `` tokens to identify different
+input positions. For example, the user may add ``, ``, ``,
+etc. to the end of the vocabulary, after the normal words. Below is an example
+of how to create a vocabulary of 10000 most common words and add 1000 input
+position markers.
+
+```bash
+vocab_size=10000
+position_markers=1000
+export LC_ALL=C
+cat train.src train.tgt |
+ tr -s '[:space:]' '\n' |
+ sort |
+ uniq -c |
+ sort -k1,1bnr -k2 |
+ head -n "$((vocab_size - 4))" |
+ awk '{ print $2 " " $1 }' >dict.pg.txt
+python3 -c "[print(' 0'.format(n)) for n in range($position_markers)]" >>dict.pg.txt
+```
+
+##### 2. Preprocess the text data
+
+The idea is that any `` tokens in the text are replaced with `` if
+it appears in the first input position, `` if it appears in the second
+input position, and so on. This can be achieved using the `preprocess.py` script
+that is provided in this directory.
+
+##### 3. Train a model
+
+The number of these special tokens is given to the model with the
+`--source-position-markers` argument—the model simply maps all of these to the
+same word embedding as ``.
+
+The attention distribution that is used for pointing is selected using the
+`--alignment-heads` and `--alignment-layer` command-line arguments in the same
+way as with the `transformer_align` model.
+
+##### 4. Generate text and postprocess it
+
+When using the model to generate text, you want to preprocess the input text in
+the same way that training data was processed, replacing out-of-vocabulary words
+with `` tokens. If any of these tokens are copied to the output, the
+actual words can be retrieved from the unprocessed input text. Any ``
+token should be replaced with the word at position N in the original input
+sequence. This can be achieved using the `postprocess.py` script.
diff --git a/fairseq/examples/pointer_generator/README.xsum.md b/fairseq/examples/pointer_generator/README.xsum.md
new file mode 100644
index 0000000000000000000000000000000000000000..ac3a8c3ddc96cd9810b45d49f6b361e43de1e9fb
--- /dev/null
+++ b/fairseq/examples/pointer_generator/README.xsum.md
@@ -0,0 +1,180 @@
+## Training a pointer-generator model on the Extreme Summarization dataset
+
+##### 1. Download the Extreme Summarization data and preprocess it
+
+Follow the instructions [here](https://github.com/EdinburghNLP/XSum) to obtain
+the original Extreme Summarization dataset. You should have six files,
+{train,validation,test}.{document,summary}.
+
+##### 2. Create a vocabulary and extend it with source position markers
+
+```bash
+vocab_size=10000
+position_markers=1000
+export LC_ALL=C
+cat train.document train.summary |
+ tr -s '[:space:]' '\n' |
+ sort |
+ uniq -c |
+ sort -k1,1bnr -k2 |
+ head -n "$((vocab_size - 4))" |
+ awk '{ print $2 " " $1 }' >dict.pg.txt
+python3 -c "[print(' 0'.format(n)) for n in range($position_markers)]" >>dict.pg.txt
+```
+
+This creates the file dict.pg.txt that contains the 10k most frequent words,
+followed by 1k source position markers:
+
+```
+the 4954867
+. 4157552
+, 3439668
+to 2212159
+a 1916857
+of 1916820
+and 1823350
+...
+ 0
+ 0
+ 0
+ 0
+ 0
+...
+```
+
+##### 2. Preprocess the text data
+
+```bash
+./preprocess.py --source train.document --target train.summary --vocab <(cut -d' ' -f1 dict.pg.txt) --source-out train.pg.src --target-out train.pg.tgt
+./preprocess.py --source validation.document --target validation.summary --vocab <(cut -d' ' -f1 dict.pg.txt) --source-out valid.pg.src --target-out valid.pg.tgt
+./preprocess.py --source test.document --vocab <(cut -d' ' -f1 dict.pg.txt) --source-out test.pg.src
+```
+
+The data should now contain `` tokens in place of out-of-vocabulary words.
+
+##### 3. Binarize the dataset:
+
+```bash
+fairseq-preprocess \
+ --source-lang src \
+ --target-lang tgt \
+ --trainpref train.pg \
+ --validpref valid.pg \
+ --destdir bin \
+ --workers 60 \
+ --srcdict dict.pg.txt \
+ --joined-dictionary
+```
+
+##### 3. Train a model
+
+```bash
+total_updates=20000
+warmup_updates=500
+lr=0.001
+max_tokens=4096
+update_freq=4
+pointer_layer=-2
+
+CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 fairseq-train bin \
+ --user-dir examples/pointer_generator/pointer_generator_src \
+ --max-tokens "$max_tokens" \
+ --task translation \
+ --source-lang src --target-lang tgt \
+ --truncate-source \
+ --layernorm-embedding \
+ --share-all-embeddings \
+ --encoder-normalize-before \
+ --decoder-normalize-before \
+ --required-batch-size-multiple 1 \
+ --arch transformer_pointer_generator \
+ --alignment-layer "$pointer_layer" \
+ --alignment-heads 1 \
+ --source-position-markers 1000 \
+ --criterion label_smoothed_cross_entropy \
+ --label-smoothing 0.1 \
+ --dropout 0.1 --attention-dropout 0.1 \
+ --weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.999)" --adam-eps 1e-08 \
+ --clip-norm 0.1 \
+ --lr-scheduler inverse_sqrt --lr "$lr" --max-update "$total_updates" --warmup-updates "$warmup_updates" \
+ --update-freq "$update_freq" \
+ --skip-invalid-size-inputs-valid-test
+```
+
+Above we specify that our dictionary contains 1000 source position markers, and
+that we want to use one attention head from the penultimate decoder layer for
+pointing. It should run in 5.5 hours on one node with eight 32GB V100 GPUs. The
+logged messages confirm that dictionary indices above 10000 will be mapped to
+the `` embedding:
+
+```
+2020-09-24 20:43:53 | INFO | fairseq.tasks.translation | [src] dictionary: 11000 types
+2020-09-24 20:43:53 | INFO | fairseq.tasks.translation | [tgt] dictionary: 11000 types
+2020-09-24 20:43:53 | INFO | fairseq.data.data_utils | loaded 11332 examples from: bin/valid.src-tgt.src
+2020-09-24 20:43:53 | INFO | fairseq.data.data_utils | loaded 11332 examples from: bin/valid.src-tgt.tgt
+2020-09-24 20:43:53 | INFO | fairseq.tasks.translation | bin valid src-tgt 11332 examples
+2020-09-24 20:43:53 | INFO | fairseq.models.transformer_pg | dictionary indices from 10000 to 10999 will be mapped to 3
+```
+
+##### 4. Summarize the test sequences
+
+```bash
+batch_size=32
+beam_size=6
+max_length=60
+length_penalty=1.0
+
+fairseq-interactive bin \
+ --user-dir examples/pointer_generator/pointer_generator_src \
+ --batch-size "$batch_size" \
+ --task translation \
+ --source-lang src --target-lang tgt \
+ --path checkpoints/checkpoint_last.pt \
+ --input test.pg.src \
+ --buffer-size 200 \
+ --max-len-a 0 \
+ --max-len-b "$max_length" \
+ --lenpen "$length_penalty" \
+ --beam "$beam_size" \
+ --skip-invalid-size-inputs-valid-test |
+ tee generate.out
+grep ^H generate.out | cut -f 3- >generate.hyp
+```
+
+Now you should have the generated sequences in `generate.hyp`. They contain
+`` tokens that the model has copied from the source sequence. In order to
+retrieve the original words, we need the unprocessed source sequences from
+`test.document`.
+
+##### 5. Process the generated output
+
+Since we skipped too long inputs when producing `generate.hyp`, we also have to
+skip too long sequences now that we read `test.document`.
+
+```bash
+./postprocess.py \
+ --source <(awk 'NF<1024' test.document) \
+ --target generate.hyp \
+ --target-out generate.hyp.processed
+```
+
+Now you'll find the final sequences from `generate.hyp.processed`, with
+`` replaced with the original word from the source sequence.
+
+##### An example of a summarized sequence
+
+The original source document in `test.document`:
+
+> de roon moved to teesside in june 2016 for an initial # 8.8 m fee and played 33 premier league games last term . the netherlands international , 26 , scored five goals in 36 league and cup games during his spell at boro . meanwhile , manager garry monk confirmed the championship club 's interest in signing chelsea midfielder lewis baker . `` he 's a target and one of many that we 've had throughout the summer months , '' said monk . find all the latest football transfers on our dedicated page .
+
+The preprocessed source document in `test.src.pg`:
+
+> de \ moved to \ in june 2016 for an initial # \ m fee and played 33 premier league games last term . the netherlands international , 26 , scored five goals in 36 league and cup games during his spell at boro . meanwhile , manager garry monk confirmed the championship club 's interest in signing chelsea midfielder lewis baker . `` he 's a target and one of many that we 've had throughout the summer months , '' said monk . find all the latest football transfers on our dedicated page .
+
+The generated summary in `generate.hyp`:
+
+> middlesbrough striker \ de \ has joined spanish side \ on a season-long loan .
+
+The generated summary after postprocessing in `generate.hyp.processed`:
+
+> middlesbrough striker \ de roon has joined spanish side \ on a season-long loan .
diff --git a/fairseq/examples/pointer_generator/pointer_generator_src/__init__.py b/fairseq/examples/pointer_generator/pointer_generator_src/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..c361ff6bd616512fe2521387665de1ad1aff66d0
--- /dev/null
+++ b/fairseq/examples/pointer_generator/pointer_generator_src/__init__.py
@@ -0,0 +1,6 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from . import transformer_pg # noqa
diff --git a/fairseq/examples/pointer_generator/pointer_generator_src/transformer_pg.py b/fairseq/examples/pointer_generator/pointer_generator_src/transformer_pg.py
new file mode 100644
index 0000000000000000000000000000000000000000..4ccf30f4eb154f8fab1e285934fb973a2d1166cb
--- /dev/null
+++ b/fairseq/examples/pointer_generator/pointer_generator_src/transformer_pg.py
@@ -0,0 +1,518 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+from typing import Any, Dict, Optional, List, Tuple
+
+import torch
+import torch.nn as nn
+from fairseq import utils
+from fairseq.models import register_model, register_model_architecture
+from fairseq.models.transformer import (
+ DEFAULT_MAX_SOURCE_POSITIONS,
+ DEFAULT_MAX_TARGET_POSITIONS,
+ TransformerDecoder,
+ TransformerEncoder,
+ TransformerModel,
+ base_architecture,
+)
+from torch import Tensor
+
+
+logger = logging.getLogger(__name__)
+
+
+@register_model("transformer_pointer_generator")
+class TransformerPointerGeneratorModel(TransformerModel):
+ """
+ Transformer model from `"Attention Is All You Need" (Vaswani et al, 2017)
+ `_, augmented with a pointer-generator
+ network from `"Get To The Point: Summarization with Pointer-Generator
+ Networks" (See et al, 2017) `_.
+
+ Args:
+ encoder (TransformerPointerGeneratorEncoder): the encoder
+ decoder (TransformerPointerGeneratorDecoder): the decoder
+
+ The Transformer pointer-generator model provides the following named
+ architectures and command-line arguments:
+
+ .. argparse::
+ :ref: fairseq.models.transformer_pointer_generator_parser
+ :prog:
+ """
+
+ @staticmethod
+ def add_args(parser):
+ """Add model-specific arguments to the parser."""
+ # fmt: off
+ TransformerModel.add_args(parser)
+ parser.add_argument('--alignment-heads', type=int, metavar='N',
+ help='number of attention heads to be used for '
+ 'pointing')
+ parser.add_argument('--alignment-layer', type=int, metavar='I',
+ help='layer number to be used for pointing (0 '
+ 'corresponding to the bottommost layer)')
+ parser.add_argument('--source-position-markers', type=int, metavar='N',
+ help='dictionary includes N additional items that '
+ 'represent an OOV token at a particular input '
+ 'position')
+ parser.add_argument('--force-generation', type=float, metavar='P',
+ default=None,
+ help='set the vocabulary distribution weight to P, '
+ 'instead of predicting it from the input (1.0 '
+ 'corresponding to generation, 0.0 to pointing)')
+ # fmt: on
+
+ @classmethod
+ def build_model(cls, args, task):
+ """Build a new model instance."""
+
+ # make sure all arguments are present in older models
+ base_architecture(args)
+
+ if args.encoder_layers_to_keep:
+ args.encoder_layers = len(args.encoder_layers_to_keep.split(","))
+ if args.decoder_layers_to_keep:
+ args.decoder_layers = len(args.decoder_layers_to_keep.split(","))
+
+ if getattr(args, "max_source_positions", None) is None:
+ args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
+ if getattr(args, "max_target_positions", None) is None:
+ args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS
+ if getattr(args, "source_position_markers", None) is None:
+ args.source_position_markers = args.max_source_positions
+
+ src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
+ if src_dict != tgt_dict:
+ raise ValueError("Pointer-generator requires a joined dictionary")
+
+ def build_embedding(dictionary, embed_dim, path=None):
+ # The dictionary may include additional items that can be used in
+ # place of the normal OOV token and that all map to the same
+ # embedding. Using a different token for each input position allows
+ # one to restore the word identities from the original source text.
+ num_embeddings = len(dictionary) - args.source_position_markers
+ padding_idx = dictionary.pad()
+ unk_idx = dictionary.unk()
+ logger.info(
+ "dictionary indices from {0} to {1} will be mapped to {2}".format(
+ num_embeddings, len(dictionary) - 1, unk_idx
+ )
+ )
+ emb = Embedding(num_embeddings, embed_dim, padding_idx, unk_idx)
+ # if provided, load from preloaded dictionaries
+ if path:
+ embed_dict = utils.parse_embedding(path)
+ utils.load_embedding(embed_dict, dictionary, emb)
+ return emb
+
+ if args.share_all_embeddings:
+ if args.encoder_embed_dim != args.decoder_embed_dim:
+ raise ValueError(
+ "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
+ )
+ if args.decoder_embed_path and (
+ args.decoder_embed_path != args.encoder_embed_path
+ ):
+ raise ValueError(
+ "--share-all-embeddings not compatible with --decoder-embed-path"
+ )
+ encoder_embed_tokens = build_embedding(
+ src_dict, args.encoder_embed_dim, args.encoder_embed_path
+ )
+ decoder_embed_tokens = encoder_embed_tokens
+ args.share_decoder_input_output_embed = True
+ else:
+ encoder_embed_tokens = build_embedding(
+ src_dict, args.encoder_embed_dim, args.encoder_embed_path
+ )
+ decoder_embed_tokens = build_embedding(
+ tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
+ )
+
+ encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens)
+ decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens)
+ return cls(args, encoder, decoder)
+
+ @classmethod
+ def build_encoder(cls, args, src_dict, embed_tokens):
+ return TransformerPointerGeneratorEncoder(args, src_dict, embed_tokens)
+
+ @classmethod
+ def build_decoder(cls, args, tgt_dict, embed_tokens):
+ return TransformerPointerGeneratorDecoder(args, tgt_dict, embed_tokens)
+
+
+class TransformerPointerGeneratorEncoder(TransformerEncoder):
+ """
+ Transformer encoder consisting of *args.encoder_layers* layers. Each layer
+ is a :class:`TransformerEncoderLayer`. The pointer-generator variant adds
+ the source tokens to the encoder output as these are otherwise not passed
+ to the decoder.
+ """
+
+ def forward(
+ self,
+ src_tokens,
+ src_lengths: Optional[Tensor] = None,
+ return_all_hiddens: bool = False,
+ token_embeddings: Optional[Tensor] = None
+ ):
+ """
+ Runs the `forward()` method of the parent Transformer class. Then adds
+ the source tokens into the encoder output tuple.
+
+ While it might be more elegant that the model would pass the source
+ tokens to the `forward()` method of the decoder too, this would require
+ changes to `SequenceGenerator`.
+
+ Args:
+ src_tokens (torch.LongTensor): tokens in the source language of
+ shape `(batch, src_len)`
+ src_lengths (torch.LongTensor): lengths of each source sentence of
+ shape `(batch)`
+ return_all_hiddens (bool, optional): also return all of the
+ intermediate hidden states (default: False).
+ token_embeddings (torch.Tensor, optional): precomputed embeddings
+ default `None` will recompute embeddings
+
+ Returns:
+ namedtuple:
+ - **encoder_out** (Tensor): the last encoder layer's output of
+ shape `(src_len, batch, embed_dim)`
+ - **encoder_padding_mask** (ByteTensor): the positions of
+ padding elements of shape `(batch, src_len)`
+ - **encoder_embedding** (Tensor): the (scaled) embedding lookup
+ of shape `(batch, src_len, embed_dim)`
+ - **encoder_states** (List[Tensor]): all intermediate
+ hidden states of shape `(src_len, batch, embed_dim)`.
+ Only populated if *return_all_hiddens* is True.
+ - **src_tokens** (Tensor): input token ids of shape
+ `(batch, src_len)`
+ """
+ encoder_out = self.forward_scriptable(src_tokens,
+ src_lengths,
+ return_all_hiddens,
+ token_embeddings)
+
+ # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in
+ # `forward` so we use a dictionary instead.
+ # TorchScript does not support mixed values so the values are all lists.
+ # The empty list is equivalent to None.
+ return {
+ "encoder_out": encoder_out["encoder_out"], # T x B x C
+ "encoder_padding_mask": encoder_out["encoder_padding_mask"], # B x T
+ "encoder_embedding": encoder_out["encoder_embedding"], # B x T x C
+ "encoder_states": encoder_out["encoder_states"], # List[T x B x C]
+ "src_tokens": [src_tokens], # B x T
+ "src_lengths": [],
+ }
+
+
+class TransformerPointerGeneratorDecoder(TransformerDecoder):
+ """
+ Transformer decoder consisting of *args.decoder_layers* layers. Each layer
+ is a :class:`TransformerDecoderLayer`. The pointer-generator variant mixes
+ the output probabilities with an attention distribution in the output layer.
+
+ Args:
+ args (argparse.Namespace): parsed command-line arguments
+ dictionary (~fairseq.data.Dictionary): decoding dictionary
+ embed_tokens (torch.nn.Embedding): output embedding
+ """
+
+ def __init__(self, args, dictionary, embed_tokens):
+ super().__init__(args, dictionary, embed_tokens, no_encoder_attn=False)
+
+ # In the pointer-generator model these arguments define the decoder
+ # layer and the number of attention heads that will be averaged to
+ # create the alignment for pointing.
+ self.alignment_heads = args.alignment_heads
+ self.alignment_layer = args.alignment_layer
+
+ input_embed_dim = embed_tokens.embedding_dim
+
+ # Generation probabilities / interpolation coefficients are predicted
+ # from the current decoder input embedding and the decoder output, which
+ # is the size of output_embed_dim.
+ p_gen_input_size = input_embed_dim + self.output_embed_dim
+ self.project_p_gens = nn.Linear(p_gen_input_size, 1)
+ nn.init.zeros_(self.project_p_gens.bias)
+
+ # The dictionary may include a separate entry for an OOV token in each
+ # input position, so that their identity can be restored from the
+ # original source text.
+ self.num_types = len(dictionary)
+ self.num_oov_types = args.source_position_markers
+ self.num_embeddings = self.num_types - self.num_oov_types
+ self.force_p_gen = args.force_generation
+
+ def forward(
+ self,
+ prev_output_tokens,
+ encoder_out: Optional[Dict[str, List[Tensor]]] = None,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ features_only: bool = False,
+ alignment_layer: Optional[int] = 0,
+ alignment_heads: Optional[int] = 1,
+ src_lengths: Optional[Any] = None,
+ return_all_hiddens: bool = False,
+ ):
+ """
+ Args:
+ prev_output_tokens (LongTensor): previous decoder outputs of shape
+ `(batch, tgt_len)`, for teacher forcing
+ encoder_out (optional): output from the encoder, used for
+ encoder-side attention
+ incremental_state (dict, optional): dictionary used for storing
+ state during :ref:`Incremental decoding`
+ features_only (bool, optional): only return features without
+ applying output layer (default: False)
+ alignment_layer (int, optional): 0-based index of the layer to be
+ used for pointing (default: 0)
+ alignment_heads (int, optional): number of attention heads to be
+ used for pointing (default: 1)
+
+ Returns:
+ tuple:
+ - the decoder's output of shape `(batch, tgt_len, vocab)`
+ - a dictionary with any model-specific outputs
+ """
+ # The normal Transformer model doesn't pass the alignment_layer and
+ # alignment_heads parameters correctly. We use our local variables.
+ x, extra = self.extract_features(
+ prev_output_tokens,
+ encoder_out=encoder_out,
+ incremental_state=incremental_state,
+ alignment_layer=self.alignment_layer,
+ alignment_heads=self.alignment_heads,
+ )
+ if not features_only:
+ # Embedding the tokens again for generation probability prediction,
+ # so that we don't have to reimplement the whole extract_features()
+ # method.
+ if incremental_state is not None:
+ prev_output_tokens = prev_output_tokens[:, -1:]
+ prev_output_embed = self.embed_tokens(prev_output_tokens)
+ prev_output_embed *= self.embed_scale
+ predictors = torch.cat((prev_output_embed, x), 2)
+ p_gens = self.project_p_gens(predictors)
+ p_gens = torch.sigmoid(p_gens.float())
+ # Torchscript complains if encoder_out or attn are None because
+ # `output_layer()` signature expects tensors instead
+ attn: Optional[Tensor] = extra["attn"][0]
+ assert encoder_out is not None
+ assert attn is not None
+ x = self.output_layer(x, attn, encoder_out["src_tokens"][0], p_gens)
+ return x, extra
+
+ def output_layer(
+ self,
+ features: Tensor,
+ attn: Tensor,
+ src_tokens: Tensor,
+ p_gens: Tensor
+ ) -> Tensor:
+ """
+ Project features to the vocabulary size and mix with the attention
+ distributions.
+ """
+ if self.force_p_gen is not None:
+ p_gens = self.force_p_gen
+
+ # project back to size of vocabulary
+ if self.adaptive_softmax is None:
+ logits = self.output_projection(features)
+ else:
+ logits = features
+
+ batch_size = logits.shape[0]
+ output_length = logits.shape[1]
+ assert logits.shape[2] == self.num_embeddings
+ assert src_tokens.shape[0] == batch_size
+ src_length = src_tokens.shape[1]
+
+ # The final output distribution will be a mixture of the normal output
+ # distribution (softmax of logits) and attention weights.
+ gen_dists = self.get_normalized_probs_scriptable(
+ (logits, None), log_probs=False, sample=None
+ )
+ gen_dists = torch.mul(gen_dists, p_gens)
+ padding_size = (batch_size, output_length, self.num_oov_types)
+ padding = gen_dists.new_zeros(padding_size)
+ gen_dists = torch.cat((gen_dists, padding), 2)
+ assert gen_dists.shape[2] == self.num_types
+
+ # Scatter attention distributions to distributions over the extended
+ # vocabulary in a tensor of shape [batch_size, output_length,
+ # vocab_size]. Each attention weight will be written into a location
+ # that is for other dimensions the same as in the index tensor, but for
+ # the third dimension it's the value of the index tensor (the token ID).
+ attn = torch.mul(attn.float(), 1 - p_gens)
+ index = src_tokens[:, None, :]
+ index = index.expand(batch_size, output_length, src_length)
+ attn_dists_size = (batch_size, output_length, self.num_types)
+ attn_dists = attn.new_zeros(attn_dists_size)
+ attn_dists.scatter_add_(2, index, attn.float())
+
+ # Final distributions, [batch_size, output_length, num_types].
+ return gen_dists + attn_dists
+
+ def get_normalized_probs(
+ self,
+ net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
+ log_probs: bool,
+ sample: Optional[Dict[str, Tensor]] = None,
+ ):
+ """
+ Get normalized probabilities (or log probs) from a net's output.
+ Pointer-generator network output is already normalized.
+ """
+ probs = net_output[0]
+ # Make sure the probabilities are greater than zero when returning log
+ # probabilities.
+ return probs.clamp(1e-10, 1.0).log() if log_probs else probs
+
+
+class Embedding(nn.Embedding):
+ r"""A simple lookup table that stores embeddings of a fixed dictionary and size.
+ This module is often used to store word embeddings and retrieve them using indices.
+ The input to the module is a list of indices, and the output is the corresponding
+ word embeddings. This subclass differs from the standard PyTorch Embedding class by
+ allowing additional vocabulary entries that will be mapped to the unknown token
+ embedding.
+ Args:
+ num_embeddings (int): size of the dictionary of embeddings
+ embedding_dim (int): the size of each embedding vector
+ padding_idx (int): Pads the output with the embedding vector at :attr:`padding_idx`
+ (initialized to zeros) whenever it encounters the index.
+ unk_idx (int): Maps all token indices that are greater than or equal to
+ num_embeddings to this index.
+ Attributes:
+ weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
+ initialized from :math:`\mathcal{N}(0, 1)`
+ Shape:
+ - Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract
+ - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
+ .. note::
+ Keep in mind that only a limited number of optimizers support
+ sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
+ :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
+ .. note::
+ With :attr:`padding_idx` set, the embedding vector at
+ :attr:`padding_idx` is initialized to all zeros. However, note that this
+ vector can be modified afterwards, e.g., using a customized
+ initialization method, and thus changing the vector used to pad the
+ output. The gradient for this vector from :class:`~torch.nn.Embedding`
+ is always zero.
+ """
+ __constants__ = ["unk_idx"]
+
+ # Torchscript: Inheriting from Embedding class produces an error when exporting to Torchscript
+ # -> RuntimeError: Unable to cast Python instance to C++ type (compile in debug mode for details
+ # It's happening because max_norm attribute from nn.Embedding is None by default and it cannot be
+ # cast to a C++ type
+ def __init__(
+ self,
+ num_embeddings: int,
+ embedding_dim: int,
+ padding_idx: Optional[int],
+ unk_idx: int,
+ max_norm: Optional[float] = float("inf"),
+ ):
+ super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx, max_norm=max_norm)
+ self.unk_idx = unk_idx
+ nn.init.normal_(self.weight, mean=0, std=embedding_dim ** -0.5)
+ nn.init.constant_(self.weight[padding_idx], 0)
+
+ def forward(self, input):
+ input = torch.where(
+ input >= self.num_embeddings, torch.ones_like(input) * self.unk_idx, input
+ )
+ return nn.functional.embedding(
+ input, self.weight, self.padding_idx, self.max_norm,
+ self.norm_type, self.scale_grad_by_freq, self.sparse
+ )
+
+
+@register_model_architecture(
+ "transformer_pointer_generator", "transformer_pointer_generator"
+)
+def transformer_pointer_generator(args):
+ args.alignment_heads = getattr(args, "alignment_heads", 1)
+ args.alignment_layer = getattr(args, "alignment_layer", -1)
+ base_architecture(args)
+ if args.alignment_layer < 0:
+ args.alignment_layer = args.decoder_layers + args.alignment_layer
+
+
+@register_model_architecture(
+ "transformer_pointer_generator", "transformer_pointer_generator_iwslt_de_en"
+)
+def transformer_pointer_generator_iwslt_de_en(args):
+ args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
+ args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024)
+ args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
+ args.encoder_layers = getattr(args, "encoder_layers", 6)
+ args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
+ args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024)
+ args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
+ args.decoder_layers = getattr(args, "decoder_layers", 6)
+ transformer_pointer_generator(args)
+
+
+@register_model_architecture(
+ "transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de"
+)
+def transformer_pointer_generator_wmt_en_de(args):
+ transformer_pointer_generator(args)
+
+
+# Transformer pointer-generator with the base Transformer parameters as used in
+# the "Attention Is All You Need" paper (Vaswani et al., 2017)
+@register_model_architecture(
+ "transformer_pointer_generator",
+ "transformer_pointer_generator_vaswani_wmt_en_de_big",
+)
+def transformer_pointer_generator_vaswani_wmt_en_de_big(args):
+ args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
+ args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
+ args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
+ args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
+ args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
+ args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
+ args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
+ args.dropout = getattr(args, "dropout", 0.3)
+ transformer_pointer_generator(args)
+
+
+@register_model_architecture(
+ "transformer_pointer_generator",
+ "transformer_pointer_generator_vaswani_wmt_en_fr_big",
+)
+def transformer_pointer_generator_vaswani_wmt_en_fr_big(args):
+ args.dropout = getattr(args, "dropout", 0.1)
+ transformer_pointer_generator_vaswani_wmt_en_de_big(args)
+
+
+@register_model_architecture(
+ "transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de_big"
+)
+def transformer_pointer_generator_wmt_en_de_big(args):
+ args.attention_dropout = getattr(args, "attention_dropout", 0.1)
+ transformer_pointer_generator_vaswani_wmt_en_de_big(args)
+
+
+# default parameters used in tensor2tensor implementation
+@register_model_architecture(
+ "transformer_pointer_generator", "transformer_pointer_generator_wmt_en_de_big_t2t"
+)
+def transformer_pointer_generator_wmt_en_de_big_t2t(args):
+ args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
+ args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
+ args.attention_dropout = getattr(args, "attention_dropout", 0.1)
+ args.activation_dropout = getattr(args, "activation_dropout", 0.1)
+ transformer_pointer_generator_vaswani_wmt_en_de_big(args)
diff --git a/fairseq/examples/pointer_generator/postprocess.py b/fairseq/examples/pointer_generator/postprocess.py
new file mode 100755
index 0000000000000000000000000000000000000000..b213aed80fd1e3d86f975256fcb7d9d4c16ca857
--- /dev/null
+++ b/fairseq/examples/pointer_generator/postprocess.py
@@ -0,0 +1,96 @@
+#!/usr/bin/env python3
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import re
+import sys
+
+
+class OOVIndexError(IndexError):
+ def __init__(self, pos, source_seq, target_seq):
+ super(OOVIndexError, self).__init__(
+ "A tag in the target sequence refers to a position that is "
+ "outside the source sequence. Most likely there was a mismatch in "
+ "provided source and target sequences. Otherwise this would mean that "
+ "the pointing mechanism somehow attended to a position that is past "
+ "the actual sequence end."
+ )
+ self.source_pos = pos
+ self.source_seq = source_seq
+ self.target_seq = target_seq
+
+
+def replace_oovs(source_in, target_in, target_out):
+ """Replaces tokens in the target text with the corresponding word in
+ the source text.
+ """
+
+ oov_re = re.compile("^$")
+
+ for source_seq, target_seq in zip(source_in, target_in):
+ target_seq_out = []
+
+ pos_to_word = source_seq.strip().split()
+ for token in target_seq.strip().split():
+ m = oov_re.match(token)
+ if m:
+ pos = int(m.group(1))
+ if pos >= len(pos_to_word):
+ raise OOVIndexError(pos, source_seq, target_seq)
+ token_out = pos_to_word[pos]
+ else:
+ token_out = token
+ target_seq_out.append(token_out)
+ target_out.write(" ".join(target_seq_out) + "\n")
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Replaces tokens in target sequences with words from "
+ "the corresponding position in the source sequence."
+ )
+ parser.add_argument(
+ "--source", type=str, help="text file with source sequences", required=True
+ )
+ parser.add_argument(
+ "--target", type=str, help="text file with target sequences", required=True
+ )
+ parser.add_argument(
+ "--target-out",
+ type=str,
+ help="where to write target sequences without " "entries",
+ required=True,
+ )
+ args = parser.parse_args()
+
+ target_in = (
+ open(args.target, "r", encoding="utf-8") if args.target is not None else None
+ )
+ target_out = (
+ open(args.target_out, "w", encoding="utf-8")
+ if args.target_out is not None
+ else None
+ )
+ with open(args.source, "r", encoding="utf-8") as source_in, open(
+ args.target, "r", encoding="utf-8"
+ ) as target_in, open(args.target_out, "w", encoding="utf-8") as target_out:
+ replace_oovs(source_in, target_in, target_out)
+
+
+if __name__ == "__main__":
+ try:
+ main()
+ except OOVIndexError as e:
+ print(e, file=sys.stderr)
+ print("Source sequence:", e.source_seq.strip(), file=sys.stderr)
+ print("Target sequence:", e.target_seq.strip(), file=sys.stderr)
+ print(
+ "Source sequence length:",
+ len(e.source_seq.strip().split()),
+ file=sys.stderr,
+ )
+ print("The offending tag points to:", e.source_pos)
+ sys.exit(2)
diff --git a/fairseq/examples/pointer_generator/preprocess.py b/fairseq/examples/pointer_generator/preprocess.py
new file mode 100755
index 0000000000000000000000000000000000000000..f72ca7d3d97e12ab7b405dcff314bdb6c0a78755
--- /dev/null
+++ b/fairseq/examples/pointer_generator/preprocess.py
@@ -0,0 +1,102 @@
+#!/usr/bin/env python3
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+from itertools import zip_longest
+
+
+def replace_oovs(source_in, target_in, vocabulary, source_out, target_out):
+ """Replaces out-of-vocabulary words in source and target text with ,
+ where N in is the position of the word in the source sequence.
+ """
+
+ def format_unk(pos):
+ return "".format(pos)
+
+ if target_in is None:
+ target_in = []
+
+ for seq_num, (source_seq, target_seq) in enumerate(
+ zip_longest(source_in, target_in)
+ ):
+ source_seq_out = []
+ target_seq_out = []
+
+ word_to_pos = dict()
+ for position, token in enumerate(source_seq.strip().split()):
+ if token in vocabulary:
+ token_out = token
+ else:
+ if token in word_to_pos:
+ oov_pos = word_to_pos[token]
+ else:
+ word_to_pos[token] = position
+ oov_pos = position
+ token_out = format_unk(oov_pos)
+ source_seq_out.append(token_out)
+ source_out.write(" ".join(source_seq_out) + "\n")
+
+ if target_seq is not None:
+ for token in target_seq.strip().split():
+ if token in word_to_pos:
+ token_out = format_unk(word_to_pos[token])
+ else:
+ token_out = token
+ target_seq_out.append(token_out)
+ if target_out is not None:
+ target_out.write(" ".join(target_seq_out) + "\n")
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Replaces out-of-vocabulary words in both source and target "
+ "sequences with tokens that indicate the position of the word "
+ "in the source sequence."
+ )
+ parser.add_argument(
+ "--source", type=str, help="text file with source sequences", required=True
+ )
+ parser.add_argument(
+ "--target", type=str, help="text file with target sequences", default=None
+ )
+ parser.add_argument("--vocab", type=str, help="vocabulary file", required=True)
+ parser.add_argument(
+ "--source-out",
+ type=str,
+ help="where to write source sequences with entries",
+ required=True,
+ )
+ parser.add_argument(
+ "--target-out",
+ type=str,
+ help="where to write target sequences with entries",
+ default=None,
+ )
+ args = parser.parse_args()
+
+ with open(args.vocab, encoding="utf-8") as vocab:
+ vocabulary = vocab.read().splitlines()
+
+ target_in = (
+ open(args.target, "r", encoding="utf-8") if args.target is not None else None
+ )
+ target_out = (
+ open(args.target_out, "w", encoding="utf-8")
+ if args.target_out is not None
+ else None
+ )
+ with open(args.source, "r", encoding="utf-8") as source_in, open(
+ args.source_out, "w", encoding="utf-8"
+ ) as source_out:
+ replace_oovs(source_in, target_in, vocabulary, source_out, target_out)
+ if target_in is not None:
+ target_in.close()
+ if target_out is not None:
+ target_out.close()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/quant_noise/README.md b/fairseq/examples/quant_noise/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..a04d7e4e8a077f11c9f63cfa3d1f20e2b899be8c
--- /dev/null
+++ b/fairseq/examples/quant_noise/README.md
@@ -0,0 +1,298 @@
+# Training with Quantization Noise for Extreme Model Compression ({Fan\*, Stock\*} *et al.*, 2020)
+This page contains information for how to train and quantize models with Quantization Noise, for both scalar quantization like `int8` and Iterative Product Quantization.
+Check out our paper [here](https://arxiv.org/abs/2004.07320).
+
+Looking for pretrained models? They will be added shortly.
+Looking for code to train vision models? We are working on open sourcing our code as part of ClassyVision. Please check back, but note that both the Scalar and Iterative Product Quantization counterparts of the `nn.Conv2d` module are already included in this release.
+
+**Contents**:
+- [Walk through of code](#walk-through-the-code)
+- [Reproduce NLP Results](#looking-to-reproduce-the-nlp-results-in-the-paper)
+- [Reproduce Vision Results](#looking-to-reproduce-the-vision-results-in-the-paper)
+
+
+## Citation
+```bibtex
+@article{fan2020training,
+ title={Training with Quantization Noise for Extreme Model Compression},
+ author={Angela Fan* and Pierre Stock* and and Benjamin Graham and Edouard Grave and Remi Gribonval and Herve Jegou and Armand Joulin},
+ year={2020},
+ eprint={2004.07320},
+ archivePrefix={arXiv},
+ primaryClass={cs.ML}
+}
+```
+
+## Walk through the code
+
+Training a model with Quant-Noise improves the performance in subsequent inference-time quantization by training models to be robust to quantization. This technique is useful for both scalar and product quantization methods, as well as multiple domains. We detail below our approach to train, quantize models and integrate our code to quantize your favorite models.
+
+### Scalar Quantization
+
+Unlike the section [Iterative Product Quantization](#iterative-product-quantization) which gives state-of-the-art compression, this section showcases the usefulness of our approach for simple scalar quantization baselines such as int8 using on-GPU Fake Quantization.
+
+#### Training
+
+Scalar quantization with Quant-Noise consists in randomly quantizing a proportion `p` of the weights during training. Scalar quantization is implemented [here](https://github.com/pytorch/fairseq/tree/main/fairseq/modules/quantization/scalar) under the form of Fake Quantization, meaning that we emulate int8 on GPU by quantizing and de-quantizing both the weights and the activations. We rely on PyTorch's [quantization primitives](https://github.com/pytorch/pytorch/tree/master/torch/quantization).
+
+To train a model with Quant-Noise, add the following flag:
+```
+--quant-noise-scalar 0.5
+```
+Large values of noise make the network easier to quantize but may result in higher non-quantized test and validation perplexities.
+
+#### Quantization
+
+When evaluating a network, all quantized modules and activation hooks automatically switch to `p=1` so the validation accuracy reported by Fairseq is actually the quantized one, nothing more to do.
+
+
+#### Integration with your own code
+
+Looking to quantize your own models with Quant-Noise + Scalar Quantization?
+- Use the function `quantize_model_` implemented [here](https://github.com/pytorch/fairseq/tree/main/fairseq/modules/quantization/scalar/utils.py) to (1) replace all your modules by their quantized counterparts and (2) add hooks to those modules to quantize the activations.
+- Then, perform your training as usual. Note that in `eval()` mode, the network is always fully quantized (weights and activations) by default (`p=1`).
+
+
+
+### Iterative Product Quantization
+
+
+Iterative Product Quantization with Quant-Noise proceeds in two steps. First, a model must be trained uncompressed with Quant-Noise. Second, the model must be quantized with iPQ. Note that we implement here the simplest form of noise, which consists in randomly dropping a proportion `p` of blocks, and that worked as well as assigning those blocks to their current centroid.
+
+#### Training
+
+To train a model with Quant-Noise, add the following flags:
+```
+--quant-noise-pq 0.1 --quant-noise-pq-block-size 8
+```
+`quant-noise-pq` controls how much dropout is applied to the blocks of the weight matrix. `quant-noise-pq-block-size` controls the size of the weight matrix blocks.
+We recommend training with 0.05 to 0.2 Quant-Noise, a value that worked well in our experiments. For the block-size, we recommend training with block-size of 8. Note that the block size must be a multiple of `input_features`, see the size checks [here](https://github.com/pytorch/fairseq/tree/main/fairseq/modules/quant_noise.py). Large block sizes result in higher compression ratio but may induce a loss in accuracy.
+
+We currently support training Transformer based models, such as sequence-to-sequence, language models, and BERT architectures. The `quant_noise` function [here](https://github.com/pytorch/fairseq/tree/main/fairseq/modules/quant_noise.py) wraps a module. It splits a weight matrix into blocks and applies random dropout to these blocks.
+In the Transformer architectures, quant-noise is applied to the input and output embeddings, the attention, and the FFN.
+
+Quant-Noise can also be combined with **LayerDrop** (see [here](https://github.com/pytorch/fairseq/tree/main/examples/layerdrop)) to add its pruning effect to the quantized model and make the model even smaller. We recommend training with LayerDrop 0.1 or 0.2.
+
+#### Quantization
+
+We implement an improved version of product quantization from Stock et al, **iPQ**, described [here](https://arxiv.org/abs/1907.05686), see code with old API [here](https://github.com/facebookresearch/kill-the-bits). Note that we improved the iPQ API in terms of both compute speed and usability as described below.
+
+For the particular case of PQ, quantization is made sequentially. We recommend first quantizing the FFNs, then the EMBs, and finally the ATTNs. Quantization is done in two sub-steps:
+- First, perform `n` steps of Product Quantization (generally `n=20` is enough).
+- Then, finetune the obtained centroids.
+
+#### Integration with your own code
+
+Looking to quantize your own models with Quant-Noise + iPQ?
+- First wrap your modules with the `quant_noise` function [here](https://github.com/pytorch/fairseq/tree/main/fairseq/modules/quant_noise.py), which is module-agnostic and train your favorite model.
+- Then, quantize your trained model using the code [here](https://github.com/pytorch/fairseq/tree/main/fairseq/modules/quantization/pq). This can be done *without any changes to your training loop*. Below is an example code for integration.
+Note that we tried our approach only on Transformers and various Convolutional Models such as EfficientNets.
+
+```python
+from fairseq.modules.quantization.pq import quantize_model_, SizeTracker
+
+# get configuration parameters
+n_centroids_config = config["n_centroids"]
+block_sizes_config = config["block_sizes"]
+layers_to_quantize = config["layers_to_quantize"]
+
+# size tracker for keeping track of assignments, centroids and non-compressed sizes
+size_tracker = SizeTracker(model)
+
+# Quantize model by stages
+for step in range(len(layers_to_quantize)):
+
+ # quantize model in-place
+ quantized_layers = quantize_model_(
+ model,
+ size_tracker,
+ layers_to_quantize,
+ block_sizes_config,
+ n_centroids_config,
+ step=step,
+ )
+ logger.info(f"Finetuning stage {step}, quantized layers: {quantized_layers}")
+ logger.info(f"{size_tracker}")
+
+ # Don't forget to re-create/update trainer/optimizer since model parameters have changed
+ optimizer = ...
+
+ # Finetune the centroids with your usual training loop for a few epochs
+ trainer.train_epoch()
+```
+
+
+## Looking to reproduce the NLP results in the paper?
+
+We detail below how to reproduce the state-of-the-art results in reported in the paper for Quant-Noise + Iterative Product Quantization.
+
+### Training with Quant-Noise
+
+To **train** RoBERTa + QuantNoise, we followed this setting [here](https://github.com/pytorch/fairseq/tree/main/examples/roberta).
+The following command can be used to train a RoBERTa Base + QuantNoise model:
+
+```bash
+TOTAL_UPDATES=125000
+WARMUP_UPDATES=10000
+PEAK_LR=0.0005
+TOKENS_PER_SAMPLE=512
+MAX_POSITIONS=512
+MAX_SENTENCES=16
+UPDATE_FREQ=2
+DATA_DIR=/path/to/data/here
+
+fairseq-train $DATA_DIR \
+ --task masked_lm --criterion masked_lm --arch roberta_base \
+ --sample-break-mode complete \
+ --tokens-per-sample $TOKENS_PER_SAMPLE --max-positions $MAX_POSITIONS \
+ --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-6 \
+ --clip-norm 0.0 \
+ --lr-scheduler polynomial_decay --lr $PEAK_LR \
+ --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_UPDATES \
+ --dropout 0.1 --attention-dropout 0.1 \
+ --weight-decay 0.01 \
+ --batch-size $MAX_SENTENCES \
+ --update-freq $UPDATE_FREQ --max-update $TOTAL_UPDATES \
+ --save-dir checkpoint/roberta \
+ --ddp-backend legacy_ddp --encoder-layerdrop 0.2 \
+ --quant-noise-pq 0.2 --quant-noise-pq-block-size 8 --untie-weights-roberta
+```
+
+To **finetune** RoBERTa + QuantNoise, we followed this setting [here](https://github.com/pytorch/fairseq/blob/main/examples/roberta/README.glue.md).
+The following command can be used to finetune a RoBERTa Base + QuantNoise model on the RTE dataset:
+
+```bash
+TOTAL_NUM_UPDATES=2036
+WARMUP_UPDATES=122
+LR=2e-05
+NUM_CLASSES=2
+MAX_SENTENCES=16
+ROBERTA_PATH=/path/to/roberta_quantnoise/model.pt
+
+fairseq-train /path/to/rte/data/ \
+ --restore-file $ROBERTA_PATH \
+ --max-positions 512 \
+ --batch-size $MAX_SENTENCES \
+ --max-tokens 4400 \
+ --task sentence_prediction \
+ --reset-optimizer --reset-dataloader --reset-meters \
+ --required-batch-size-multiple 1 \
+ --init-token 0 --separator-token 2 \
+ --arch roberta_large \
+ --criterion sentence_prediction \
+ --num-classes $NUM_CLASSES \
+ --dropout 0.1 --attention-dropout 0.1 \
+ --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
+ --clip-norm 0.0 \
+ --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
+ --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
+ --max-epoch 10 \
+ --find-unused-parameters \
+ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
+ --ddp-backend legacy_ddp \
+ --quant-noise-pq 0.2 --quant-noise-pq-block-size 8
+```
+
+To **train** Language Models on Wikitext-103, we followed this setting [here](https://github.com/pytorch/fairseq/tree/main/examples/language_model).
+The following command can be used to train a Transformer + QuantNoise model on Wikitext-103:
+
+```bash
+fairseq-train --task language_modeling /path/to/wikitext-103/data \
+ --save-dir checkpoints/transformer_wikitext-103 \
+ --adaptive-input --adaptive-input-cutoff 20000,60000 --adaptive-input-factor 4 \
+ --adaptive-softmax-cutoff 20000,60000 --adaptive-softmax-dropout 0.2 --adaptive-softmax-factor 4.0 \
+ --tie-adaptive-proj --tie-adaptive-weights \
+ --arch transformer_lm_gbw \
+ --attention-dropout 0.1 --dropout 0.2 --relu-dropout 0.1 \
+ --clip-norm 0.1 --criterion adaptive_loss \
+ --ddp-backend legacy_ddp \
+ --decoder-attention-heads 8 --decoder-embed-dim 1024 --decoder-ffn-embed-dim 4096 --decoder-input-dim 1024 \
+ --decoder-layers 16 --decoder-normalize-before --decoder-output-dim 1024 \
+ --min-lr 0.0001 --lr-period-updates 270000 --lr-scheduler cosine --lr-shrink 0.75 --lr 1.0 --t-mult 2.0 \
+ --max-tokens 3072 --tokens-per-sample 3072 --momentum 0.99 --optimizer nag \
+ --sample-break-mode none --update-freq 3 \
+ --warmup-init-lr 1e-07 --warmup-updates 16000 \
+ --weight-decay 0 --seed 1 --stop-min-lr 1e-09 \
+ --quant-noise-pq 0.05 --quant-noise-pq-block-size 8
+```
+
+To **evaluate** this model, note you need to use the `eval.py` script. The following command can be used to evaluate:
+
+```bash
+fairseq-eval-lm /path/to/wikitext-103/data --path /path/to/model/checkpoint \
+ --sample-break-mode complete \
+ --max-tokens 3072 \
+ --context-window 2560 \
+ --softmax-batch 1024 \
+ --gen-subset valid
+```
+and change the `--gen-subset` to `test` if you would like to evaluate on the test set instead.
+
+
+### Iterative Product Quantization
+
+To quantize the finetuned RoBERTa model, we use this command on 1 GPU. This should run in a day.
+```bash
+TOTAL_NUM_UPDATES=6108 # 2036 updates for each iteration
+WARMUP_UPDATES=122
+LR=2e-05
+NUM_CLASSES=2
+MAX_SENTENCES=16
+fairseq-train --task sentence_prediction /path/to/data/ \
+ --restore-file $ROBERTA_PATH \
+ --save-dir checkpoints/roberta_finetuned \
+ --max-positions 512 \
+ --batch-size $MAX_SENTENCES \
+ --max-tokens 4400 \
+ --init-token 0 --separator-token 2 \
+ --arch roberta_large \
+ --criterion sentence_prediction \
+ --num-classes $NUM_CLASSES \
+ --dropout 0.1 --attention-dropout 0.1 \
+ --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
+ --clip-norm 0.0 --lr-scheduler polynomial_decay \
+ --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
+ --no-progress-bar --skip-invalid-size-inputs-valid-test --ddp-backend legacy_ddp \
+ --quantization-config-path /path/to/config/yaml
+```
+
+To quantize the trained Language Model, we use this command on 8 V100 23GB GPUs. This should run in a couple of hours.
+```bash
+fairseq-train --task language_modeling /path/to/wikitext-103/data \
+ --save-dir checkpoints/transformer_wikitext-103 \
+ --adaptive-input --adaptive-input-cutoff 20000,60000 --adaptive-input-factor 4 \
+ --adaptive-softmax-cutoff 20000,60000 --adaptive-softmax-dropout 0.2 --adaptive-softmax-factor 4.0 \
+ --arch transformer_lm_gbw \
+ --attention-dropout 0.1 --dropout 0.2 --relu-dropout 0.1 \
+ --bucket-cap-mb 25 --char-embedder-highway-layers 2 --character-embedding-dim 4 \
+ --clip-norm 0.1 --criterion adaptive_loss \
+ --ddp-backend legacy_ddp \
+ --decoder-attention-heads 8 --decoder-embed-dim 1024 --decoder-ffn-embed-dim 4096 --decoder-input-dim 1024 --decoder-layers 16 --decoder-normalize-before --decoder-output-dim 1024 \
+ --fp16 --keep-last-epochs -1 \
+ --min-lr 0.0001 --lr-period-updates 270000 --lr-scheduler cosine --lr-shrink 0.75 --lr 0.05 --stop-min-lr 1e-09 \
+ --max-tokens 2944 --tokens-per-sample 2944\
+ --momentum 0.99 --no-epoch-checkpoints --no-progress-bar --optimizer nag --required-batch-size-multiple 8 \
+ --sample-break-mode none --t-mult 2.0 --skip-invalid-size-inputs-valid-test \
+ --tie-adaptive-proj --tie-adaptive-weights --update-freq 3 --weight-decay 0 --seed 1 \
+ --log-interval 100 --no-progress-bar --skip-invalid-size-inputs-valid-test \
+ --restore-file path/to/trained/lm/with/quant/noise \
+ --max-update 13500 --quantization-config-path /path/to/config/yaml
+```
+If you have less capacity or if your distributed training freezes, try reducing `--max-tokens` and `--tokens-per-sample` (this may reduce the quantized accuracy a bit).
+
+### Remarks
+
+We try to keep the open-sourced code as readable and as easy-to-plug as possible. Therefore, we did not test it for the following cases:
+- Scalar quantization with RoBERTa.
+- Quantization with iPQ and `int8` combined.
+
+If you have trouble adapting it, we will be more than happy to help!
+
+## Looking to reproduce the Vision results in the paper?
+
+We are working on open sourcing our code as part of ClassyVision. Please check back.
+
+
+## Having an issue or have a question?
+
+Please open an issue in this repository with the details of your question. Thanks!
diff --git a/fairseq/examples/quant_noise/transformer_quantization_config.yaml b/fairseq/examples/quant_noise/transformer_quantization_config.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d4be14a93a3593f8e6dc66c3b05061bfdde3e0e0
--- /dev/null
+++ b/fairseq/examples/quant_noise/transformer_quantization_config.yaml
@@ -0,0 +1,33 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+# This file defines example configuration arguments for quantizing
+# a transformer model with product quantization
+
+# Number of Centroids for Product Quantization, by default 256 (byte-aligned)
+n_centroids:
+ Linear:
+ key: in_features
+ value: {"*": 256}
+ Embedding:
+ key: embedding_dim
+ value: {"*": 256}
+
+# Block Sizes for Product Quantization
+# We suggest: 8 for FFN, 4 for ATTN, 4 for embedding projections, 8 for embeddings
+block_sizes:
+ Linear:
+ key: fuzzy_name
+ value: {fc: 8, attn: 4, emb: 4}
+ Embedding:
+ key: fuzzy_name
+ value: {emb: 8}
+
+# Layers to Quantize Sequentially
+# We suggest: first FFN, then EMB, then ATTN
+layers_to_quantize:
+ - decoder\\.layers\\.\d+\\.fc[12]
+ - decoder\\.embed_tokens\\.embeddings\\.[012]\\.[01]
+ - decoder\\.layers\\.\d+\\.self_attn\\.(k_proj|v_proj|q_proj|out_proj)
diff --git a/fairseq/examples/roberta/README.custom_classification.md b/fairseq/examples/roberta/README.custom_classification.md
new file mode 100644
index 0000000000000000000000000000000000000000..7254bb7d178760ef5b847901bbcac3711af33ca2
--- /dev/null
+++ b/fairseq/examples/roberta/README.custom_classification.md
@@ -0,0 +1,168 @@
+# Finetuning RoBERTa on a custom classification task
+
+This example shows how to finetune RoBERTa on the IMDB dataset, but should illustrate the process for most classification tasks.
+
+### 1) Get the data
+
+```bash
+wget http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
+tar zxvf aclImdb_v1.tar.gz
+```
+
+
+### 2) Format data
+
+`IMDB` data has one data-sample in each file, below python code-snippet converts it one file for train and valid each for ease of processing.
+```python
+import argparse
+import os
+import random
+from glob import glob
+
+random.seed(0)
+
+def main(args):
+ for split in ['train', 'test']:
+ samples = []
+ for class_label in ['pos', 'neg']:
+ fnames = glob(os.path.join(args.datadir, split, class_label) + '/*.txt')
+ for fname in fnames:
+ with open(fname) as fin:
+ line = fin.readline()
+ samples.append((line, 1 if class_label == 'pos' else 0))
+ random.shuffle(samples)
+ out_fname = 'train' if split == 'train' else 'dev'
+ f1 = open(os.path.join(args.datadir, out_fname + '.input0'), 'w')
+ f2 = open(os.path.join(args.datadir, out_fname + '.label'), 'w')
+ for sample in samples:
+ f1.write(sample[0] + '\n')
+ f2.write(str(sample[1]) + '\n')
+ f1.close()
+ f2.close()
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--datadir', default='aclImdb')
+ args = parser.parse_args()
+ main(args)
+```
+
+
+### 3) BPE encode
+
+Run `multiprocessing_bpe_encoder`, you can also do this in previous step for each sample but that might be slower.
+```bash
+# Download encoder.json and vocab.bpe
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
+
+for SPLIT in train dev; do
+ python -m examples.roberta.multiprocessing_bpe_encoder \
+ --encoder-json encoder.json \
+ --vocab-bpe vocab.bpe \
+ --inputs "aclImdb/$SPLIT.input0" \
+ --outputs "aclImdb/$SPLIT.input0.bpe" \
+ --workers 60 \
+ --keep-empty
+done
+```
+
+
+### 4) Preprocess data
+
+```bash
+# Download fairseq dictionary.
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt'
+
+fairseq-preprocess \
+ --only-source \
+ --trainpref "aclImdb/train.input0.bpe" \
+ --validpref "aclImdb/dev.input0.bpe" \
+ --destdir "IMDB-bin/input0" \
+ --workers 60 \
+ --srcdict dict.txt
+
+fairseq-preprocess \
+ --only-source \
+ --trainpref "aclImdb/train.label" \
+ --validpref "aclImdb/dev.label" \
+ --destdir "IMDB-bin/label" \
+ --workers 60
+
+```
+
+
+### 5) Run training
+
+```bash
+TOTAL_NUM_UPDATES=7812 # 10 epochs through IMDB for bsz 32
+WARMUP_UPDATES=469 # 6 percent of the number of updates
+LR=1e-05 # Peak LR for polynomial LR scheduler.
+HEAD_NAME=imdb_head # Custom name for the classification head.
+NUM_CLASSES=2 # Number of classes for the classification task.
+MAX_SENTENCES=8 # Batch size.
+ROBERTA_PATH=/path/to/roberta.large/model.pt
+
+CUDA_VISIBLE_DEVICES=0 fairseq-train IMDB-bin/ \
+ --restore-file $ROBERTA_PATH \
+ --max-positions 512 \
+ --batch-size $MAX_SENTENCES \
+ --max-tokens 4400 \
+ --task sentence_prediction \
+ --reset-optimizer --reset-dataloader --reset-meters \
+ --required-batch-size-multiple 1 \
+ --init-token 0 --separator-token 2 \
+ --arch roberta_large \
+ --criterion sentence_prediction \
+ --classification-head-name $HEAD_NAME \
+ --num-classes $NUM_CLASSES \
+ --dropout 0.1 --attention-dropout 0.1 \
+ --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
+ --clip-norm 0.0 \
+ --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
+ --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
+ --max-epoch 10 \
+ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
+ --shorten-method "truncate" \
+ --find-unused-parameters \
+ --update-freq 4
+```
+
+The above command will finetune RoBERTa-large with an effective batch-size of 32
+sentences (`--batch-size=8 --update-freq=4`). The expected
+`best-validation-accuracy` after 10 epochs is ~96.5%.
+
+If you run out of GPU memory, try decreasing `--batch-size` and increase
+`--update-freq` to compensate.
+
+
+### 6) Load model using hub interface
+
+Now we can load the trained model checkpoint using the RoBERTa hub interface.
+
+Assuming your checkpoints are stored in `checkpoints/`:
+```python
+from fairseq.models.roberta import RobertaModel
+roberta = RobertaModel.from_pretrained(
+ 'checkpoints',
+ checkpoint_file='checkpoint_best.pt',
+ data_name_or_path='IMDB-bin'
+)
+roberta.eval() # disable dropout
+```
+
+Finally you can make predictions using the `imdb_head` (or whatever you set
+`--classification-head-name` to during training):
+```python
+label_fn = lambda label: roberta.task.label_dictionary.string(
+ [label + roberta.task.label_dictionary.nspecial]
+)
+
+tokens = roberta.encode('Best movie this year')
+pred = label_fn(roberta.predict('imdb_head', tokens).argmax().item())
+assert pred == '1' # positive
+
+tokens = roberta.encode('Worst movie ever')
+pred = label_fn(roberta.predict('imdb_head', tokens).argmax().item())
+assert pred == '0' # negative
+```
diff --git a/fairseq/examples/roberta/README.glue.md b/fairseq/examples/roberta/README.glue.md
new file mode 100644
index 0000000000000000000000000000000000000000..4f596d55af99fba3cdf58b1d5ff3d8f8dbf4383d
--- /dev/null
+++ b/fairseq/examples/roberta/README.glue.md
@@ -0,0 +1,64 @@
+# Finetuning RoBERTa on GLUE tasks
+
+### 1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands:
+```bash
+wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py
+python download_glue_data.py --data_dir glue_data --tasks all
+```
+
+### 2) Preprocess GLUE task data:
+```bash
+./examples/roberta/preprocess_GLUE_tasks.sh glue_data
+```
+`glue_task_name` is one of the following:
+`{ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA}`
+Use `ALL` for preprocessing all the glue tasks.
+
+### 3) Fine-tuning on GLUE task:
+Example fine-tuning cmd for `RTE` task
+```bash
+ROBERTA_PATH=/path/to/roberta/model.pt
+
+CUDA_VISIBLE_DEVICES=0 fairseq-hydra-train -config-dir examples/roberta/config/finetuning --config-name rte \
+task.data=RTE-bin checkpoint.restore_file=$ROBERTA_PATH
+```
+
+There are additional config files for each of the GLUE tasks in the examples/roberta/config/finetuning directory.
+
+**Note:**
+
+a) Above cmd-args and hyperparams are tested on one Nvidia `V100` GPU with `32gb` of memory for each task. Depending on the GPU memory resources available to you, you can use increase `--update-freq` and reduce `--batch-size`.
+
+b) All the settings in above table are suggested settings based on our hyperparam search within a fixed search space (for careful comparison across models). You might be able to find better metrics with wider hyperparam search.
+
+### Inference on GLUE task
+After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using following python code snippet:
+
+```python
+from fairseq.models.roberta import RobertaModel
+
+roberta = RobertaModel.from_pretrained(
+ 'checkpoints/',
+ checkpoint_file='checkpoint_best.pt',
+ data_name_or_path='RTE-bin'
+)
+
+label_fn = lambda label: roberta.task.label_dictionary.string(
+ [label + roberta.task.label_dictionary.nspecial]
+)
+ncorrect, nsamples = 0, 0
+roberta.cuda()
+roberta.eval()
+with open('glue_data/RTE/dev.tsv') as fin:
+ fin.readline()
+ for index, line in enumerate(fin):
+ tokens = line.strip().split('\t')
+ sent1, sent2, target = tokens[1], tokens[2], tokens[3]
+ tokens = roberta.encode(sent1, sent2)
+ prediction = roberta.predict('sentence_classification_head', tokens).argmax().item()
+ prediction_label = label_fn(prediction)
+ ncorrect += int(prediction_label == target)
+ nsamples += 1
+print('| Accuracy: ', float(ncorrect)/float(nsamples))
+
+```
diff --git a/fairseq/examples/roberta/README.md b/fairseq/examples/roberta/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..ed4d5df52ccea01216276054a1f253d0d16c0409
--- /dev/null
+++ b/fairseq/examples/roberta/README.md
@@ -0,0 +1,296 @@
+# RoBERTa: A Robustly Optimized BERT Pretraining Approach
+
+https://arxiv.org/abs/1907.11692
+
+## Introduction
+
+RoBERTa iterates on BERT's pretraining procedure, including training the model longer, with bigger batches over more data; removing the next sentence prediction objective; training on longer sequences; and dynamically changing the masking pattern applied to the training data. See the associated paper for more details.
+
+### What's New:
+
+- December 2020: German model (GottBERT) is available: [GottBERT](https://github.com/pytorch/fairseq/tree/main/examples/gottbert).
+- January 2020: Italian model (UmBERTo) is available from Musixmatch Research: [UmBERTo](https://github.com/musixmatchresearch/umberto).
+- November 2019: French model (CamemBERT) is available: [CamemBERT](https://github.com/pytorch/fairseq/tree/main/examples/camembert).
+- November 2019: Multilingual encoder (XLM-RoBERTa) is available: [XLM-R](https://github.com/pytorch/fairseq/tree/main/examples/xlmr).
+- September 2019: TensorFlow and TPU support via the [transformers library](https://github.com/huggingface/transformers).
+- August 2019: RoBERTa is now supported in the [pytorch-transformers library](https://github.com/huggingface/pytorch-transformers).
+- August 2019: Added [tutorial for finetuning on WinoGrande](https://github.com/pytorch/fairseq/tree/main/examples/roberta/wsc#roberta-training-on-winogrande-dataset).
+- August 2019: Added [tutorial for pretraining RoBERTa using your own data](README.pretraining.md).
+
+## Pre-trained models
+
+Model | Description | # params | Download
+---|---|---|---
+`roberta.base` | RoBERTa using the BERT-base architecture | 125M | [roberta.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz)
+`roberta.large` | RoBERTa using the BERT-large architecture | 355M | [roberta.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz)
+`roberta.large.mnli` | `roberta.large` finetuned on [MNLI](http://www.nyu.edu/projects/bowman/multinli) | 355M | [roberta.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.mnli.tar.gz)
+`roberta.large.wsc` | `roberta.large` finetuned on [WSC](wsc/README.md) | 355M | [roberta.large.wsc.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.wsc.tar.gz)
+
+## Results
+
+**[GLUE (Wang et al., 2019)](https://gluebenchmark.com/)**
+_(dev set, single model, single-task finetuning)_
+
+Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B
+---|---|---|---|---|---|---|---|---
+`roberta.base` | 87.6 | 92.8 | 91.9 | 78.7 | 94.8 | 90.2 | 63.6 | 91.2
+`roberta.large` | 90.2 | 94.7 | 92.2 | 86.6 | 96.4 | 90.9 | 68.0 | 92.4
+`roberta.large.mnli` | 90.2 | - | - | - | - | - | - | -
+
+**[SuperGLUE (Wang et al., 2019)](https://super.gluebenchmark.com/)**
+_(dev set, single model, single-task finetuning)_
+
+Model | BoolQ | CB | COPA | MultiRC | RTE | WiC | WSC
+---|---|---|---|---|---|---|---
+`roberta.large` | 86.9 | 98.2 | 94.0 | 85.7 | 89.5 | 75.6 | -
+`roberta.large.wsc` | - | - | - | - | - | - | 91.3
+
+**[SQuAD (Rajpurkar et al., 2018)](https://rajpurkar.github.io/SQuAD-explorer/)**
+_(dev set, no additional data used)_
+
+Model | SQuAD 1.1 EM/F1 | SQuAD 2.0 EM/F1
+---|---|---
+`roberta.large` | 88.9/94.6 | 86.5/89.4
+
+**[RACE (Lai et al., 2017)](http://www.qizhexie.com/data/RACE_leaderboard.html)**
+_(test set)_
+
+Model | Accuracy | Middle | High
+---|---|---|---
+`roberta.large` | 83.2 | 86.5 | 81.3
+
+**[HellaSwag (Zellers et al., 2019)](https://rowanzellers.com/hellaswag/)**
+_(test set)_
+
+Model | Overall | In-domain | Zero-shot | ActivityNet | WikiHow
+---|---|---|---|---|---
+`roberta.large` | 85.2 | 87.3 | 83.1 | 74.6 | 90.9
+
+**[Commonsense QA (Talmor et al., 2019)](https://www.tau-nlp.org/commonsenseqa)**
+_(test set)_
+
+Model | Accuracy
+---|---
+`roberta.large` (single model) | 72.1
+`roberta.large` (ensemble) | 72.5
+
+**[Winogrande (Sakaguchi et al., 2019)](https://arxiv.org/abs/1907.10641)**
+_(test set)_
+
+Model | Accuracy
+---|---
+`roberta.large` | 78.1
+
+**[XNLI (Conneau et al., 2018)](https://arxiv.org/abs/1809.05053)**
+_(TRANSLATE-TEST)_
+
+Model | en | fr | es | de | el | bg | ru | tr | ar | vi | th | zh | hi | sw | ur
+---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---
+`roberta.large.mnli` | 91.3 | 82.91 | 84.27 | 81.24 | 81.74 | 83.13 | 78.28 | 76.79 | 76.64 | 74.17 | 74.05 | 77.5 | 70.9 | 66.65 | 66.81
+
+## Example usage
+
+##### Load RoBERTa from torch.hub (PyTorch >= 1.1):
+```python
+import torch
+roberta = torch.hub.load('pytorch/fairseq', 'roberta.large')
+roberta.eval() # disable dropout (or leave in train mode to finetune)
+```
+
+##### Load RoBERTa (for PyTorch 1.0 or custom models):
+```python
+# Download roberta.large model
+wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz
+tar -xzvf roberta.large.tar.gz
+
+# Load the model in fairseq
+from fairseq.models.roberta import RobertaModel
+roberta = RobertaModel.from_pretrained('/path/to/roberta.large', checkpoint_file='model.pt')
+roberta.eval() # disable dropout (or leave in train mode to finetune)
+```
+
+##### Apply Byte-Pair Encoding (BPE) to input text:
+```python
+tokens = roberta.encode('Hello world!')
+assert tokens.tolist() == [0, 31414, 232, 328, 2]
+roberta.decode(tokens) # 'Hello world!'
+```
+
+##### Extract features from RoBERTa:
+```python
+# Extract the last layer's features
+last_layer_features = roberta.extract_features(tokens)
+assert last_layer_features.size() == torch.Size([1, 5, 1024])
+
+# Extract all layer's features (layer 0 is the embedding layer)
+all_layers = roberta.extract_features(tokens, return_all_hiddens=True)
+assert len(all_layers) == 25
+assert torch.all(all_layers[-1] == last_layer_features)
+```
+
+##### Use RoBERTa for sentence-pair classification tasks:
+```python
+# Download RoBERTa already finetuned for MNLI
+roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
+roberta.eval() # disable dropout for evaluation
+
+# Encode a pair of sentences and make a prediction
+tokens = roberta.encode('Roberta is a heavily optimized version of BERT.', 'Roberta is not very optimized.')
+roberta.predict('mnli', tokens).argmax() # 0: contradiction
+
+# Encode another pair of sentences
+tokens = roberta.encode('Roberta is a heavily optimized version of BERT.', 'Roberta is based on BERT.')
+roberta.predict('mnli', tokens).argmax() # 2: entailment
+```
+
+##### Register a new (randomly initialized) classification head:
+```python
+roberta.register_classification_head('new_task', num_classes=3)
+logprobs = roberta.predict('new_task', tokens) # tensor([[-1.1050, -1.0672, -1.1245]], grad_fn=)
+```
+
+##### Batched prediction:
+```python
+import torch
+from fairseq.data.data_utils import collate_tokens
+
+roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
+roberta.eval()
+
+batch_of_pairs = [
+ ['Roberta is a heavily optimized version of BERT.', 'Roberta is not very optimized.'],
+ ['Roberta is a heavily optimized version of BERT.', 'Roberta is based on BERT.'],
+ ['potatoes are awesome.', 'I like to run.'],
+ ['Mars is very far from earth.', 'Mars is very close.'],
+]
+
+batch = collate_tokens(
+ [roberta.encode(pair[0], pair[1]) for pair in batch_of_pairs], pad_idx=1
+)
+
+logprobs = roberta.predict('mnli', batch)
+print(logprobs.argmax(dim=1))
+# tensor([0, 2, 1, 0])
+```
+
+##### Using the GPU:
+```python
+roberta.cuda()
+roberta.predict('new_task', tokens) # tensor([[-1.1050, -1.0672, -1.1245]], device='cuda:0', grad_fn=)
+```
+
+## Advanced usage
+
+#### Filling masks:
+
+RoBERTa can be used to fill `` tokens in the input. Some examples from the
+[Natural Questions dataset](https://ai.google.com/research/NaturalQuestions/):
+```python
+roberta.fill_mask('The first Star wars movie came out in ', topk=3)
+# [('The first Star wars movie came out in 1977', 0.9504708051681519, ' 1977'), ('The first Star wars movie came out in 1978', 0.009986862540245056, ' 1978'), ('The first Star wars movie came out in 1979', 0.009574787691235542, ' 1979')]
+
+roberta.fill_mask('Vikram samvat calender is official in ', topk=3)
+# [('Vikram samvat calender is official in India', 0.21878819167613983, ' India'), ('Vikram samvat calender is official in Delhi', 0.08547237515449524, ' Delhi'), ('Vikram samvat calender is official in Gujarat', 0.07556215673685074, ' Gujarat')]
+
+roberta.fill_mask(' is the common currency of the European Union', topk=3)
+# [('Euro is the common currency of the European Union', 0.9456493854522705, 'Euro'), ('euro is the common currency of the European Union', 0.025748178362846375, 'euro'), ('€ is the common currency of the European Union', 0.011183084920048714, '€')]
+```
+
+#### Pronoun disambiguation (Winograd Schema Challenge):
+
+RoBERTa can be used to disambiguate pronouns. First install spaCy and download the English-language model:
+```bash
+pip install spacy
+python -m spacy download en_core_web_lg
+```
+
+Next load the `roberta.large.wsc` model and call the `disambiguate_pronoun`
+function. The pronoun should be surrounded by square brackets (`[]`) and the
+query referent surrounded by underscores (`_`), or left blank to return the
+predicted candidate text directly:
+```python
+roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.wsc', user_dir='examples/roberta/wsc')
+roberta.cuda() # use the GPU (optional)
+
+roberta.disambiguate_pronoun('The _trophy_ would not fit in the brown suitcase because [it] was too big.')
+# True
+roberta.disambiguate_pronoun('The trophy would not fit in the brown _suitcase_ because [it] was too big.')
+# False
+
+roberta.disambiguate_pronoun('The city councilmen refused the demonstrators a permit because [they] feared violence.')
+# 'The city councilmen'
+roberta.disambiguate_pronoun('The city councilmen refused the demonstrators a permit because [they] advocated violence.')
+# 'demonstrators'
+```
+
+See the [RoBERTA Winograd Schema Challenge (WSC) README](wsc/README.md) for more details on how to train this model.
+
+#### Extract features aligned to words:
+
+By default RoBERTa outputs one feature vector per BPE token. You can instead
+realign the features to match [spaCy's word-level tokenization](https://spacy.io/usage/linguistic-features#tokenization)
+with the `extract_features_aligned_to_words` method. This will compute a
+weighted average of the BPE-level features for each word and expose them in
+spaCy's `Token.vector` attribute:
+```python
+doc = roberta.extract_features_aligned_to_words('I said, "hello RoBERTa."')
+assert len(doc) == 10
+for tok in doc:
+ print('{:10}{} (...)'.format(str(tok), tok.vector[:5]))
+# tensor([-0.1316, -0.0386, -0.0832, -0.0477, 0.1943], grad_fn=) (...)
+# I tensor([ 0.0559, 0.1541, -0.4832, 0.0880, 0.0120], grad_fn=) (...)
+# said tensor([-0.1565, -0.0069, -0.8915, 0.0501, -0.0647], grad_fn=) (...)
+# , tensor([-0.1318, -0.0387, -0.0834, -0.0477, 0.1944], grad_fn=) (...)
+# " tensor([-0.0486, 0.1818, -0.3946, -0.0553, 0.0981], grad_fn=) (...)
+# hello tensor([ 0.0079, 0.1799, -0.6204, -0.0777, -0.0923], grad_fn=) (...)
+# RoBERTa tensor([-0.2339, -0.1184, -0.7343, -0.0492, 0.5829], grad_fn=) (...)
+# . tensor([-0.1341, -0.1203, -0.1012, -0.0621, 0.1892], grad_fn=) (...)
+# " tensor([-0.1341, -0.1203, -0.1012, -0.0621, 0.1892], grad_fn=) (...)
+# tensor([-0.0930, -0.0392, -0.0821, 0.0158, 0.0649], grad_fn=) (...)
+```
+
+#### Evaluating the `roberta.large.mnli` model:
+
+Example python code snippet to evaluate accuracy on the MNLI `dev_matched` set.
+```python
+label_map = {0: 'contradiction', 1: 'neutral', 2: 'entailment'}
+ncorrect, nsamples = 0, 0
+roberta.cuda()
+roberta.eval()
+with open('glue_data/MNLI/dev_matched.tsv') as fin:
+ fin.readline()
+ for index, line in enumerate(fin):
+ tokens = line.strip().split('\t')
+ sent1, sent2, target = tokens[8], tokens[9], tokens[-1]
+ tokens = roberta.encode(sent1, sent2)
+ prediction = roberta.predict('mnli', tokens).argmax().item()
+ prediction_label = label_map[prediction]
+ ncorrect += int(prediction_label == target)
+ nsamples += 1
+print('| Accuracy: ', float(ncorrect)/float(nsamples))
+# Expected output: 0.9060
+```
+
+## Finetuning
+
+- [Finetuning on GLUE](README.glue.md)
+- [Finetuning on custom classification tasks (e.g., IMDB)](README.custom_classification.md)
+- [Finetuning on Winograd Schema Challenge (WSC)](wsc/README.md)
+- [Finetuning on Commonsense QA (CQA)](commonsense_qa/README.md)
+
+## Pretraining using your own data
+
+See the [tutorial for pretraining RoBERTa using your own data](README.pretraining.md).
+
+## Citation
+
+```bibtex
+@article{liu2019roberta,
+ title = {RoBERTa: A Robustly Optimized BERT Pretraining Approach},
+ author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and
+ Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and
+ Luke Zettlemoyer and Veselin Stoyanov},
+ journal={arXiv preprint arXiv:1907.11692},
+ year = {2019},
+}
+```
diff --git a/fairseq/examples/roberta/README.pretraining.md b/fairseq/examples/roberta/README.pretraining.md
new file mode 100644
index 0000000000000000000000000000000000000000..a4e7453529111fdd198be637d911d1764cb96c0e
--- /dev/null
+++ b/fairseq/examples/roberta/README.pretraining.md
@@ -0,0 +1,84 @@
+# Pretraining RoBERTa using your own data
+
+This tutorial will walk you through pretraining RoBERTa over your own data.
+
+### 1) Preprocess the data
+
+Data should be preprocessed following the [language modeling format](/examples/language_model), i.e. each document should be separated by an empty line (only useful with `--sample-break-mode complete_doc`). Lines will be concatenated as a 1D text stream during training.
+
+We'll use the [WikiText-103 dataset](https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/)
+to demonstrate how to preprocess raw text data with the GPT-2 BPE. Of course
+this dataset is quite small, so the resulting pretrained model will perform
+poorly, but it gives the general idea.
+
+First download the dataset:
+```bash
+wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
+unzip wikitext-103-raw-v1.zip
+```
+
+Next encode it with the GPT-2 BPE:
+```bash
+mkdir -p gpt2_bpe
+wget -O gpt2_bpe/encoder.json https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
+wget -O gpt2_bpe/vocab.bpe https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe
+for SPLIT in train valid test; do \
+ python -m examples.roberta.multiprocessing_bpe_encoder \
+ --encoder-json gpt2_bpe/encoder.json \
+ --vocab-bpe gpt2_bpe/vocab.bpe \
+ --inputs wikitext-103-raw/wiki.${SPLIT}.raw \
+ --outputs wikitext-103-raw/wiki.${SPLIT}.bpe \
+ --keep-empty \
+ --workers 60; \
+done
+```
+
+Finally preprocess/binarize the data using the GPT-2 fairseq dictionary:
+```bash
+wget -O gpt2_bpe/dict.txt https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt
+fairseq-preprocess \
+ --only-source \
+ --srcdict gpt2_bpe/dict.txt \
+ --trainpref wikitext-103-raw/wiki.train.bpe \
+ --validpref wikitext-103-raw/wiki.valid.bpe \
+ --testpref wikitext-103-raw/wiki.test.bpe \
+ --destdir data-bin/wikitext-103 \
+ --workers 60
+```
+
+### 2) Train RoBERTa base
+```bash
+DATA_DIR=data-bin/wikitext-103
+
+fairseq-hydra-train -m --config-dir examples/roberta/config/pretraining \
+--config-name base task.data=$DATA_DIR
+```
+
+**Note:** You can optionally resume training the released RoBERTa base model by
+adding `checkpoint.restore_file=/path/to/roberta.base/model.pt`.
+
+**Note:** The above command assumes training on 8x32GB V100 GPUs. Each GPU uses
+a batch size of 16 sequences (`dataset.batch_size`) and accumulates gradients to
+further increase the batch size by 16x (`optimization.update_freq`), for a total batch size
+of 2048 sequences. If you have fewer GPUs or GPUs with less memory you may need
+to reduce `dataset.batch_size` and increase dataset.update_freq to compensate.
+Alternatively if you have more GPUs you can decrease `dataset.update_freq` accordingly
+to increase training speed.
+
+**Note:** The learning rate and batch size are tightly connected and need to be
+adjusted together. We generally recommend increasing the learning rate as you
+increase the batch size according to the following table (although it's also
+dataset dependent, so don't rely on the following values too closely):
+
+batch size | peak learning rate
+---|---
+256 | 0.0001
+2048 | 0.0005
+8192 | 0.0007
+
+### 3) Load your pretrained model
+```python
+from fairseq.models.roberta import RobertaModel
+roberta = RobertaModel.from_pretrained('checkpoints', 'checkpoint_best.pt', 'path/to/data')
+assert isinstance(roberta.model, torch.nn.Module)
+```
diff --git a/fairseq/examples/roberta/README.race.md b/fairseq/examples/roberta/README.race.md
new file mode 100644
index 0000000000000000000000000000000000000000..13c917e8eca6621e91dce541c7e41436b38cbdc1
--- /dev/null
+++ b/fairseq/examples/roberta/README.race.md
@@ -0,0 +1,68 @@
+# Finetuning RoBERTa on RACE tasks
+
+### 1) Download the data from RACE website (http://www.cs.cmu.edu/~glai1/data/race/)
+
+### 2) Preprocess RACE data:
+```bash
+python ./examples/roberta/preprocess_RACE.py --input-dir --output-dir
+./examples/roberta/preprocess_RACE.sh
+```
+
+### 3) Fine-tuning on RACE:
+
+```bash
+MAX_EPOCH=5 # Number of training epochs.
+LR=1e-05 # Peak LR for fixed LR scheduler.
+NUM_CLASSES=4
+MAX_SENTENCES=1 # Batch size per GPU.
+UPDATE_FREQ=8 # Accumulate gradients to simulate training on 8 GPUs.
+DATA_DIR=/path/to/race-output-dir
+ROBERTA_PATH=/path/to/roberta/model.pt
+
+CUDA_VISIBLE_DEVICES=0,1 fairseq-train $DATA_DIR --ddp-backend=legacy_ddp \
+ --restore-file $ROBERTA_PATH \
+ --reset-optimizer --reset-dataloader --reset-meters \
+ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
+ --task sentence_ranking \
+ --num-classes $NUM_CLASSES \
+ --init-token 0 --separator-token 2 \
+ --max-option-length 128 \
+ --max-positions 512 \
+ --shorten-method "truncate" \
+ --arch roberta_large \
+ --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
+ --criterion sentence_ranking \
+ --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-06 \
+ --clip-norm 0.0 \
+ --lr-scheduler fixed --lr $LR \
+ --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
+ --batch-size $MAX_SENTENCES \
+ --required-batch-size-multiple 1 \
+ --update-freq $UPDATE_FREQ \
+ --max-epoch $MAX_EPOCH
+```
+
+**Note:**
+
+a) As contexts in RACE are relatively long, we are using smaller batch size per GPU while increasing update-freq to achieve larger effective batch size.
+
+b) Above cmd-args and hyperparams are tested on one Nvidia `V100` GPU with `32gb` of memory for each task. Depending on the GPU memory resources available to you, you can use increase `--update-freq` and reduce `--batch-size`.
+
+c) The setting in above command is based on our hyperparam search within a fixed search space (for careful comparison across models). You might be able to find better metrics with wider hyperparam search.
+
+### 4) Evaluation:
+
+```
+DATA_DIR=/path/to/race-output-dir # data directory used during training
+MODEL_PATH=/path/to/checkpoint_best.pt # path to the finetuned model checkpoint
+PREDS_OUT=preds.tsv # output file path to save prediction
+TEST_SPLIT=test # can be test (Middle) or test1 (High)
+fairseq-validate \
+ $DATA_DIR \
+ --valid-subset $TEST_SPLIT \
+ --path $MODEL_PATH \
+ --batch-size 1 \
+ --task sentence_ranking \
+ --criterion sentence_ranking \
+ --save-predictions $PREDS_OUT
+```
diff --git a/fairseq/examples/roberta/commonsense_qa/README.md b/fairseq/examples/roberta/commonsense_qa/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..7f386decd87d93bf701e2e313c7fea39d982224f
--- /dev/null
+++ b/fairseq/examples/roberta/commonsense_qa/README.md
@@ -0,0 +1,99 @@
+# Finetuning RoBERTa on Commonsense QA
+
+We follow a similar approach to [finetuning RACE](../README.race.md). Specifically
+for each question we construct five inputs, one for each of the five candidate
+answer choices. Each input is constructed by concatenating the question and
+candidate answer. We then encode each input and pass the resulting "[CLS]"
+representations through a fully-connected layer to predict the correct answer.
+We train with a standard cross-entropy loss.
+
+We also found it helpful to prepend a prefix of `Q:` to the question and `A:` to
+the answer. The complete input format is:
+```
+ Q: Where would I not want a fox? A: hen house
+```
+
+Our final submission is based on a hyperparameter search over the learning rate
+(1e-5, 2e-5, 3e-5), batch size (8, 16), number of training steps (2000, 3000,
+4000) and random seed. We selected the model with the best performance on the
+development set after 100 trials.
+
+### 1) Download data from the Commonsense QA website (https://www.tau-nlp.org/commonsenseqa)
+```bash
+bash examples/roberta/commonsense_qa/download_cqa_data.sh
+```
+
+### 2) Finetune
+
+```bash
+MAX_UPDATES=3000 # Number of training steps.
+WARMUP_UPDATES=150 # Linearly increase LR over this many steps.
+LR=1e-05 # Peak LR for polynomial LR scheduler.
+MAX_SENTENCES=16 # Batch size.
+SEED=1 # Random seed.
+ROBERTA_PATH=/path/to/roberta/model.pt
+DATA_DIR=data/CommonsenseQA
+
+# we use the --user-dir option to load the task from
+# the examples/roberta/commonsense_qa directory:
+FAIRSEQ_PATH=/path/to/fairseq
+FAIRSEQ_USER_DIR=${FAIRSEQ_PATH}/examples/roberta/commonsense_qa
+
+CUDA_VISIBLE_DEVICES=0 fairseq-train --fp16 --ddp-backend=legacy_ddp \
+ $DATA_DIR \
+ --user-dir $FAIRSEQ_USER_DIR \
+ --restore-file $ROBERTA_PATH \
+ --reset-optimizer --reset-dataloader --reset-meters \
+ --no-epoch-checkpoints --no-last-checkpoints --no-save-optimizer-state \
+ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
+ --task commonsense_qa --init-token 0 --bpe gpt2 \
+ --arch roberta_large --max-positions 512 \
+ --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
+ --criterion sentence_ranking --num-classes 5 \
+ --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-06 --clip-norm 0.0 \
+ --lr-scheduler polynomial_decay --lr $LR \
+ --warmup-updates $WARMUP_UPDATES --total-num-update $MAX_UPDATES \
+ --batch-size $MAX_SENTENCES \
+ --max-update $MAX_UPDATES \
+ --log-format simple --log-interval 25 \
+ --seed $SEED
+```
+
+The above command assumes training on 1 GPU with 32GB of RAM. For GPUs with
+less memory, decrease `--batch-size` and increase `--update-freq`
+accordingly to compensate.
+
+### 3) Evaluate
+```python
+import json
+import torch
+from fairseq.models.roberta import RobertaModel
+from examples.roberta import commonsense_qa # load the Commonsense QA task
+roberta = RobertaModel.from_pretrained('checkpoints', 'checkpoint_best.pt', 'data/CommonsenseQA')
+roberta.eval() # disable dropout
+roberta.cuda() # use the GPU (optional)
+nsamples, ncorrect = 0, 0
+with open('data/CommonsenseQA/valid.jsonl') as h:
+ for line in h:
+ example = json.loads(line)
+ scores = []
+ for choice in example['question']['choices']:
+ input = roberta.encode(
+ 'Q: ' + example['question']['stem'],
+ 'A: ' + choice['text'],
+ no_separator=True
+ )
+ score = roberta.predict('sentence_classification_head', input, return_logits=True)
+ scores.append(score)
+ pred = torch.cat(scores).argmax()
+ answer = ord(example['answerKey']) - ord('A')
+ nsamples += 1
+ if pred == answer:
+ ncorrect += 1
+
+print('Accuracy: ' + str(ncorrect / float(nsamples)))
+# Accuracy: 0.7846027846027847
+```
+
+The above snippet is not batched, which makes it quite slow. See [instructions
+for batched prediction with RoBERTa](https://github.com/pytorch/fairseq/tree/main/examples/roberta#batched-prediction).
diff --git a/fairseq/examples/roberta/commonsense_qa/__init__.py b/fairseq/examples/roberta/commonsense_qa/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..42d21f35eb3dd33a053dcf0edd5eadd2dff11294
--- /dev/null
+++ b/fairseq/examples/roberta/commonsense_qa/__init__.py
@@ -0,0 +1,6 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from . import commonsense_qa_task # noqa
diff --git a/fairseq/examples/roberta/commonsense_qa/commonsense_qa_task.py b/fairseq/examples/roberta/commonsense_qa/commonsense_qa_task.py
new file mode 100644
index 0000000000000000000000000000000000000000..216093f7087a61060767babf5a3f3f4e716a4dfe
--- /dev/null
+++ b/fairseq/examples/roberta/commonsense_qa/commonsense_qa_task.py
@@ -0,0 +1,190 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import json
+import os
+
+import numpy as np
+import torch
+from fairseq.data import (
+ Dictionary,
+ IdDataset,
+ ListDataset,
+ NestedDictionaryDataset,
+ NumelDataset,
+ NumSamplesDataset,
+ RawLabelDataset,
+ RightPadDataset,
+ SortDataset,
+ data_utils,
+ encoders,
+)
+from fairseq.tasks import LegacyFairseqTask, register_task
+
+
+@register_task("commonsense_qa")
+class CommonsenseQATask(LegacyFairseqTask):
+ """Task to finetune RoBERTa for Commonsense QA."""
+
+ @staticmethod
+ def add_args(parser):
+ """Add task-specific arguments to the parser."""
+ parser.add_argument(
+ "data", metavar="DIR", help="path to data directory; we load .jsonl"
+ )
+ parser.add_argument(
+ "--init-token",
+ type=int,
+ default=None,
+ help="add token at the beginning of each batch item",
+ )
+ parser.add_argument("--num-classes", type=int, default=5)
+
+ def __init__(self, args, vocab):
+ super().__init__(args)
+ self.vocab = vocab
+ self.mask = vocab.add_symbol("")
+
+ self.bpe = encoders.build_bpe(args)
+
+ @classmethod
+ def load_dictionary(cls, filename):
+ """Load the dictionary from the filename
+
+ Args:
+ filename (str): the filename
+ """
+ dictionary = Dictionary.load(filename)
+ dictionary.add_symbol("")
+ return dictionary
+
+ @classmethod
+ def setup_task(cls, args, **kwargs):
+ assert (
+ args.criterion == "sentence_ranking"
+ ), "Must set --criterion=sentence_ranking"
+
+ # load data and label dictionaries
+ vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt"))
+ print("| dictionary: {} types".format(len(vocab)))
+
+ return cls(args, vocab)
+
+ def load_dataset(
+ self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs
+ ):
+ """Load a given dataset split.
+
+ Args:
+ split (str): name of the split (e.g., train, valid, test)
+ """
+
+ def binarize(s, append_bos=False):
+ if self.bpe is not None:
+ s = self.bpe.encode(s)
+ tokens = self.vocab.encode_line(
+ s,
+ append_eos=True,
+ add_if_not_exist=False,
+ ).long()
+ if append_bos and self.args.init_token is not None:
+ tokens = torch.cat([tokens.new([self.args.init_token]), tokens])
+ return tokens
+
+ if data_path is None:
+ data_path = os.path.join(self.args.data, split + ".jsonl")
+ if not os.path.exists(data_path):
+ raise FileNotFoundError("Cannot find data: {}".format(data_path))
+
+ src_tokens = [[] for i in range(self.args.num_classes)]
+ src_lengths = [[] for i in range(self.args.num_classes)]
+ labels = []
+
+ with open(data_path) as h:
+ for line in h:
+ example = json.loads(line.strip())
+ if "answerKey" in example:
+ label = ord(example["answerKey"]) - ord("A")
+ labels.append(label)
+ question = example["question"]["stem"]
+ assert len(example["question"]["choices"]) == self.args.num_classes
+ # format: ` Q: Where would I not want a fox? A: hen house `
+ question = "Q: " + question
+ question_toks = binarize(question, append_bos=True)
+ for i, choice in enumerate(example["question"]["choices"]):
+ src = "A: " + choice["text"]
+ src_bin = torch.cat([question_toks, binarize(src)])
+ src_tokens[i].append(src_bin)
+ src_lengths[i].append(len(src_bin))
+ assert all(
+ len(src_tokens[0]) == len(src_tokens[i])
+ for i in range(self.args.num_classes)
+ )
+ assert len(src_tokens[0]) == len(src_lengths[0])
+ assert len(labels) == 0 or len(labels) == len(src_tokens[0])
+
+ for i in range(self.args.num_classes):
+ src_lengths[i] = np.array(src_lengths[i])
+ src_tokens[i] = ListDataset(src_tokens[i], src_lengths[i])
+ src_lengths[i] = ListDataset(src_lengths[i])
+
+ dataset = {
+ "id": IdDataset(),
+ "nsentences": NumSamplesDataset(),
+ "ntokens": NumelDataset(src_tokens[0], reduce=True),
+ }
+
+ for i in range(self.args.num_classes):
+ dataset.update(
+ {
+ "net_input{}".format(i + 1): {
+ "src_tokens": RightPadDataset(
+ src_tokens[i],
+ pad_idx=self.source_dictionary.pad(),
+ ),
+ "src_lengths": src_lengths[i],
+ }
+ }
+ )
+
+ if len(labels) > 0:
+ dataset.update({"target": RawLabelDataset(labels)})
+
+ dataset = NestedDictionaryDataset(
+ dataset,
+ sizes=[np.maximum.reduce([src_token.sizes for src_token in src_tokens])],
+ )
+
+ with data_utils.numpy_seed(self.args.seed):
+ dataset = SortDataset(
+ dataset,
+ # shuffle
+ sort_order=[np.random.permutation(len(dataset))],
+ )
+
+ print("| Loaded {} with {} samples".format(split, len(dataset)))
+
+ self.datasets[split] = dataset
+ return self.datasets[split]
+
+ def build_model(self, args):
+ from fairseq import models
+
+ model = models.build_model(args, self)
+
+ model.register_classification_head(
+ "sentence_classification_head",
+ num_classes=1,
+ )
+
+ return model
+
+ @property
+ def source_dictionary(self):
+ return self.vocab
+
+ @property
+ def target_dictionary(self):
+ return self.vocab
diff --git a/fairseq/examples/roberta/commonsense_qa/download_cqa_data.sh b/fairseq/examples/roberta/commonsense_qa/download_cqa_data.sh
new file mode 100644
index 0000000000000000000000000000000000000000..5f300093fa0a0feb819d8b6aed307b59e3891d01
--- /dev/null
+++ b/fairseq/examples/roberta/commonsense_qa/download_cqa_data.sh
@@ -0,0 +1,14 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+OUTDIR=data/CommonsenseQA
+
+mkdir -p $OUTDIR
+
+wget -O $OUTDIR/train.jsonl https://s3.amazonaws.com/commensenseqa/train_rand_split.jsonl
+wget -O $OUTDIR/valid.jsonl https://s3.amazonaws.com/commensenseqa/dev_rand_split.jsonl
+wget -O $OUTDIR/test.jsonl https://s3.amazonaws.com/commensenseqa/test_rand_split_no_answers.jsonl
+wget -O $OUTDIR/dict.txt https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt
diff --git a/fairseq/examples/roberta/config/finetuning/cola.yaml b/fairseq/examples/roberta/config/finetuning/cola.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ac76611201275fcee6311b625599ea0863c92898
--- /dev/null
+++ b/fairseq/examples/roberta/config/finetuning/cola.yaml
@@ -0,0 +1,59 @@
+# @package _group_
+
+common:
+ fp16: true
+ fp16_init_scale: 4
+ threshold_loss_scale: 1
+ fp16_scale_window: 128
+ log_format: json
+ log_interval: 200
+
+task:
+ _name: sentence_prediction
+ data: ???
+ init_token: 0
+ separator_token: 2
+ num_classes: 2
+ max_positions: 512
+
+checkpoint:
+ restore_file: ???
+ reset_optimizer: true
+ reset_dataloader: true
+ reset_meters: true
+ best_checkpoint_metric: accuracy
+ maximize_best_checkpoint_metric: true
+ no_epoch_checkpoints: true
+
+distributed_training:
+ find_unused_parameters: true
+ distributed_world_size: 1
+
+criterion:
+ _name: sentence_prediction
+
+dataset:
+ batch_size: 16
+ required_batch_size_multiple: 1
+ max_tokens: 4400
+
+optimizer:
+ _name: adam
+ weight_decay: 0.1
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 320
+
+optimization:
+ clip_norm: 0.0
+ lr: [1e-05]
+ max_update: 5336
+ max_epoch: 10
+
+model:
+ _name: roberta
+ dropout: 0.1
+ attention_dropout: 0.1
diff --git a/fairseq/examples/roberta/config/finetuning/mnli.yaml b/fairseq/examples/roberta/config/finetuning/mnli.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5be10c362fdadae49e5a6018ef74095892903914
--- /dev/null
+++ b/fairseq/examples/roberta/config/finetuning/mnli.yaml
@@ -0,0 +1,59 @@
+# @package _group_
+
+common:
+ fp16: true
+ fp16_init_scale: 4
+ threshold_loss_scale: 1
+ fp16_scale_window: 128
+ log_format: json
+ log_interval: 200
+
+task:
+ _name: sentence_prediction
+ data: ???
+ init_token: 0
+ separator_token: 2
+ num_classes: 3
+ max_positions: 512
+
+checkpoint:
+ restore_file: ???
+ reset_optimizer: true
+ reset_dataloader: true
+ reset_meters: true
+ best_checkpoint_metric: accuracy
+ maximize_best_checkpoint_metric: true
+ no_epoch_checkpoints: true
+
+distributed_training:
+ find_unused_parameters: true
+ distributed_world_size: 1
+
+criterion:
+ _name: sentence_prediction
+
+dataset:
+ batch_size: 32
+ required_batch_size_multiple: 1
+ max_tokens: 4400
+
+optimizer:
+ _name: adam
+ weight_decay: 0.1
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 7432
+
+optimization:
+ clip_norm: 0.0
+ lr: [1e-05]
+ max_update: 123873
+ max_epoch: 10
+
+model:
+ _name: roberta
+ dropout: 0.1
+ attention_dropout: 0.1
diff --git a/fairseq/examples/roberta/config/finetuning/mrpc.yaml b/fairseq/examples/roberta/config/finetuning/mrpc.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..aa8b7db393ed00dd9b403ba009de70bf18a75309
--- /dev/null
+++ b/fairseq/examples/roberta/config/finetuning/mrpc.yaml
@@ -0,0 +1,59 @@
+# @package _group_
+
+common:
+ fp16: true
+ fp16_init_scale: 4
+ threshold_loss_scale: 1
+ fp16_scale_window: 128
+ log_format: json
+ log_interval: 200
+
+task:
+ _name: sentence_prediction
+ data: ???
+ init_token: 0
+ separator_token: 2
+ num_classes: 2
+ max_positions: 512
+
+checkpoint:
+ restore_file: ???
+ reset_optimizer: true
+ reset_dataloader: true
+ reset_meters: true
+ best_checkpoint_metric: accuracy
+ maximize_best_checkpoint_metric: true
+ no_epoch_checkpoints: true
+
+distributed_training:
+ find_unused_parameters: true
+ distributed_world_size: 1
+
+criterion:
+ _name: sentence_prediction
+
+dataset:
+ batch_size: 16
+ required_batch_size_multiple: 1
+ max_tokens: 4400
+
+optimizer:
+ _name: adam
+ weight_decay: 0.1
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 137
+
+optimization:
+ clip_norm: 0.0
+ lr: [1e-05]
+ max_update: 2296
+ max_epoch: 10
+
+model:
+ _name: roberta
+ dropout: 0.1
+ attention_dropout: 0.1
diff --git a/fairseq/examples/roberta/config/finetuning/qnli.yaml b/fairseq/examples/roberta/config/finetuning/qnli.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b4595b090ee23b74bb3924c09704702c4208e395
--- /dev/null
+++ b/fairseq/examples/roberta/config/finetuning/qnli.yaml
@@ -0,0 +1,59 @@
+# @package _group_
+
+common:
+ fp16: true
+ fp16_init_scale: 4
+ threshold_loss_scale: 1
+ fp16_scale_window: 128
+ log_format: json
+ log_interval: 200
+
+task:
+ _name: sentence_prediction
+ data: ???
+ init_token: 0
+ separator_token: 2
+ num_classes: 2
+ max_positions: 512
+
+checkpoint:
+ restore_file: ???
+ reset_optimizer: true
+ reset_dataloader: true
+ reset_meters: true
+ best_checkpoint_metric: accuracy
+ maximize_best_checkpoint_metric: true
+ no_epoch_checkpoints: true
+
+distributed_training:
+ find_unused_parameters: true
+ distributed_world_size: 1
+
+criterion:
+ _name: sentence_prediction
+
+dataset:
+ batch_size: 32
+ required_batch_size_multiple: 1
+ max_tokens: 4400
+
+optimizer:
+ _name: adam
+ weight_decay: 0.1
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 1986
+
+optimization:
+ clip_norm: 0.0
+ lr: [1e-05]
+ max_update: 33112
+ max_epoch: 10
+
+model:
+ _name: roberta
+ dropout: 0.1
+ attention_dropout: 0.1
diff --git a/fairseq/examples/roberta/config/finetuning/qqp.yaml b/fairseq/examples/roberta/config/finetuning/qqp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5a2b2ed743963af1f558927f226d993c66fbd45c
--- /dev/null
+++ b/fairseq/examples/roberta/config/finetuning/qqp.yaml
@@ -0,0 +1,59 @@
+# @package _group_
+
+common:
+ fp16: true
+ fp16_init_scale: 4
+ threshold_loss_scale: 1
+ fp16_scale_window: 128
+ log_format: json
+ log_interval: 200
+
+task:
+ _name: sentence_prediction
+ data: ???
+ init_token: 0
+ separator_token: 2
+ num_classes: 2
+ max_positions: 512
+
+checkpoint:
+ restore_file: ???
+ reset_optimizer: true
+ reset_dataloader: true
+ reset_meters: true
+ best_checkpoint_metric: accuracy
+ maximize_best_checkpoint_metric: true
+ no_epoch_checkpoints: true
+
+distributed_training:
+ find_unused_parameters: true
+ distributed_world_size: 1
+
+criterion:
+ _name: sentence_prediction
+
+dataset:
+ batch_size: 32
+ required_batch_size_multiple: 1
+ max_tokens: 4400
+
+optimizer:
+ _name: adam
+ weight_decay: 0.1
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 28318
+
+optimization:
+ clip_norm: 0.0
+ lr: [1e-05]
+ max_update: 113272
+ max_epoch: 10
+
+model:
+ _name: roberta
+ dropout: 0.1
+ attention_dropout: 0.1
diff --git a/fairseq/examples/roberta/config/finetuning/rte.yaml b/fairseq/examples/roberta/config/finetuning/rte.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..73184650117e5f1ce5ec4542a0076eaf3044c2a3
--- /dev/null
+++ b/fairseq/examples/roberta/config/finetuning/rte.yaml
@@ -0,0 +1,59 @@
+# @package _group_
+
+common:
+ fp16: true
+ fp16_init_scale: 4
+ threshold_loss_scale: 1
+ fp16_scale_window: 128
+ log_format: json
+ log_interval: 200
+
+task:
+ _name: sentence_prediction
+ data: ???
+ init_token: 0
+ separator_token: 2
+ num_classes: 2
+ max_positions: 512
+
+checkpoint:
+ restore_file: ???
+ reset_optimizer: true
+ reset_dataloader: true
+ reset_meters: true
+ best_checkpoint_metric: accuracy
+ maximize_best_checkpoint_metric: true
+ no_epoch_checkpoints: true
+
+distributed_training:
+ find_unused_parameters: true
+ distributed_world_size: 1
+
+criterion:
+ _name: sentence_prediction
+
+dataset:
+ batch_size: 16
+ required_batch_size_multiple: 1
+ max_tokens: 4400
+
+optimizer:
+ _name: adam
+ weight_decay: 0.1
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 122
+
+optimization:
+ clip_norm: 0.0
+ lr: [2e-05]
+ max_update: 2036
+ max_epoch: 10
+
+model:
+ _name: roberta
+ dropout: 0.1
+ attention_dropout: 0.1
diff --git a/fairseq/examples/roberta/config/finetuning/sst_2.yaml b/fairseq/examples/roberta/config/finetuning/sst_2.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a93ad2f22c4c248f043fc18d345d61e9484ed39e
--- /dev/null
+++ b/fairseq/examples/roberta/config/finetuning/sst_2.yaml
@@ -0,0 +1,59 @@
+# @package _group_
+
+common:
+ fp16: true
+ fp16_init_scale: 4
+ threshold_loss_scale: 1
+ fp16_scale_window: 128
+ log_format: json
+ log_interval: 200
+
+task:
+ _name: sentence_prediction
+ data: ???
+ init_token: 0
+ separator_token: 2
+ num_classes: 2
+ max_positions: 512
+
+checkpoint:
+ restore_file: ???
+ reset_optimizer: true
+ reset_dataloader: true
+ reset_meters: true
+ best_checkpoint_metric: accuracy
+ maximize_best_checkpoint_metric: true
+ no_epoch_checkpoints: true
+
+distributed_training:
+ find_unused_parameters: true
+ distributed_world_size: 1
+
+criterion:
+ _name: sentence_prediction
+
+dataset:
+ batch_size: 32
+ required_batch_size_multiple: 1
+ max_tokens: 4400
+
+optimizer:
+ _name: adam
+ weight_decay: 0.1
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 1256
+
+optimization:
+ clip_norm: 0.0
+ lr: [1e-05]
+ max_update: 20935
+ max_epoch: 10
+
+model:
+ _name: roberta
+ dropout: 0.1
+ attention_dropout: 0.1
diff --git a/fairseq/examples/roberta/config/finetuning/sts_b.yaml b/fairseq/examples/roberta/config/finetuning/sts_b.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..2d495221ad846162c0b3f15ea6e17d723e7ea754
--- /dev/null
+++ b/fairseq/examples/roberta/config/finetuning/sts_b.yaml
@@ -0,0 +1,58 @@
+# @package _group_
+
+common:
+ fp16: true
+ fp16_init_scale: 4
+ threshold_loss_scale: 1
+ fp16_scale_window: 128
+ log_format: json
+ log_interval: 200
+
+task:
+ _name: sentence_prediction
+ data: ???
+ init_token: 0
+ separator_token: 2
+ num_classes: 1
+ max_positions: 512
+
+checkpoint:
+ restore_file: ???
+ reset_optimizer: true
+ reset_dataloader: true
+ reset_meters: true
+ no_epoch_checkpoints: true
+
+distributed_training:
+ find_unused_parameters: true
+ distributed_world_size: 1
+
+criterion:
+ _name: sentence_prediction
+ regression_target: true
+
+dataset:
+ batch_size: 16
+ required_batch_size_multiple: 1
+ max_tokens: 4400
+
+optimizer:
+ _name: adam
+ weight_decay: 0.1
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 214
+
+optimization:
+ clip_norm: 0.0
+ lr: [2e-05]
+ max_update: 3598
+ max_epoch: 10
+
+model:
+ _name: roberta
+ dropout: 0.1
+ attention_dropout: 0.1
diff --git a/fairseq/examples/roberta/config/pretraining/base.yaml b/fairseq/examples/roberta/config/pretraining/base.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..97829908f740ba6813c895aa32019cc2760c1eb8
--- /dev/null
+++ b/fairseq/examples/roberta/config/pretraining/base.yaml
@@ -0,0 +1,42 @@
+# @package _group_
+common:
+ fp16: true
+ log_format: json
+ log_interval: 200
+
+checkpoint:
+ no_epoch_checkpoints: true
+
+task:
+ _name: masked_lm
+ data: ???
+ sample_break_mode: complete
+ tokens_per_sample: 512
+
+criterion: masked_lm
+
+dataset:
+ batch_size: 16
+ ignore_unused_valid_subsets: true
+
+optimizer:
+ _name: adam
+ weight_decay: 0.01
+ adam_betas: (0.9,0.98)
+ adam_eps: 1e-06
+
+lr_scheduler:
+ _name: polynomial_decay
+ warmup_updates: 10000
+
+optimization:
+ clip_norm: 0
+ lr: [0.0005]
+ max_update: 125000
+ update_freq: [16]
+
+model:
+ _name: roberta
+ max_positions: 512
+ dropout: 0.1
+ attention_dropout: 0.1
diff --git a/fairseq/examples/roberta/multiprocessing_bpe_encoder.py b/fairseq/examples/roberta/multiprocessing_bpe_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..43fe0451bf4d5762d734314075b1402c2a8db2bb
--- /dev/null
+++ b/fairseq/examples/roberta/multiprocessing_bpe_encoder.py
@@ -0,0 +1,130 @@
+#!/usr/bin/env python
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import contextlib
+import sys
+from collections import Counter
+from multiprocessing import Pool
+
+from fairseq.data.encoders.gpt2_bpe import get_encoder
+
+
+def main():
+ """
+ Helper script to encode raw text with the GPT-2 BPE using multiple processes.
+
+ The encoder.json and vocab.bpe files can be obtained here:
+ - https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
+ - https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe
+ """
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--encoder-json",
+ help="path to encoder.json",
+ )
+ parser.add_argument(
+ "--vocab-bpe",
+ type=str,
+ help="path to vocab.bpe",
+ )
+ parser.add_argument(
+ "--inputs",
+ nargs="+",
+ default=["-"],
+ help="input files to filter/encode",
+ )
+ parser.add_argument(
+ "--outputs",
+ nargs="+",
+ default=["-"],
+ help="path to save encoded outputs",
+ )
+ parser.add_argument(
+ "--keep-empty",
+ action="store_true",
+ help="keep empty lines",
+ )
+ parser.add_argument("--workers", type=int, default=20)
+ args = parser.parse_args()
+
+ assert len(args.inputs) == len(
+ args.outputs
+ ), "number of input and output paths should match"
+
+ with contextlib.ExitStack() as stack:
+ inputs = [
+ stack.enter_context(open(input, "r", encoding="utf-8"))
+ if input != "-"
+ else sys.stdin
+ for input in args.inputs
+ ]
+ outputs = [
+ stack.enter_context(open(output, "w", encoding="utf-8"))
+ if output != "-"
+ else sys.stdout
+ for output in args.outputs
+ ]
+
+ encoder = MultiprocessingEncoder(args)
+ pool = Pool(args.workers, initializer=encoder.initializer)
+ encoded_lines = pool.imap(encoder.encode_lines, zip(*inputs), 100)
+
+ stats = Counter()
+ for i, (filt, enc_lines) in enumerate(encoded_lines, start=1):
+ if filt == "PASS":
+ for enc_line, output_h in zip(enc_lines, outputs):
+ print(enc_line, file=output_h)
+ else:
+ stats["num_filtered_" + filt] += 1
+ if i % 10000 == 0:
+ print("processed {} lines".format(i), file=sys.stderr)
+
+ for k, v in stats.most_common():
+ print("[{}] filtered {} lines".format(k, v), file=sys.stderr)
+
+
+class MultiprocessingEncoder(object):
+ def __init__(self, args):
+ self.args = args
+
+ def initializer(self):
+ global bpe
+ bpe = get_encoder(self.args.encoder_json, self.args.vocab_bpe)
+
+ def encode(self, line):
+ global bpe
+ ids = bpe.encode(line)
+ return list(map(str, ids))
+
+ def decode(self, tokens):
+ global bpe
+ return bpe.decode(tokens)
+
+ def encode_lines(self, lines):
+ """
+ Encode a set of lines. All lines will be encoded together.
+ """
+ enc_lines = []
+ for line in lines:
+ line = line.strip()
+ if len(line) == 0 and not self.args.keep_empty:
+ return ["EMPTY", None]
+ tokens = self.encode(line)
+ enc_lines.append(" ".join(tokens))
+ return ["PASS", enc_lines]
+
+ def decode_lines(self, lines):
+ dec_lines = []
+ for line in lines:
+ tokens = map(int, line.strip().split())
+ dec_lines.append(self.decode(tokens))
+ return ["PASS", dec_lines]
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/roberta/preprocess_GLUE_tasks.sh b/fairseq/examples/roberta/preprocess_GLUE_tasks.sh
new file mode 100755
index 0000000000000000000000000000000000000000..7f215a3b53e1c4a7b1f0320102915a49d84a5015
--- /dev/null
+++ b/fairseq/examples/roberta/preprocess_GLUE_tasks.sh
@@ -0,0 +1,185 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+# raw glue data as downloaded by glue download script (https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
+if [[ $# -ne 2 ]]; then
+ echo "Run as following:"
+ echo "./examples/roberta/preprocess_GLUE_tasks.sh "
+ exit 1
+fi
+
+GLUE_DATA_FOLDER=$1
+
+# download bpe encoder.json, vocabulary and fairseq dictionary
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt'
+
+TASKS=$2 # QQP
+
+if [ "$TASKS" = "ALL" ]
+then
+ TASKS="QQP MNLI QNLI MRPC RTE STS-B SST-2 CoLA"
+fi
+
+for TASK in $TASKS
+do
+ echo "Preprocessing $TASK"
+
+ TASK_DATA_FOLDER="$GLUE_DATA_FOLDER/$TASK"
+ echo "Raw data as downloaded from glue website: $TASK_DATA_FOLDER"
+
+ SPLITS="train dev test"
+ INPUT_COUNT=2
+ if [ "$TASK" = "QQP" ]
+ then
+ INPUT_COLUMNS=( 4 5 )
+ TEST_INPUT_COLUMNS=( 2 3 )
+ LABEL_COLUMN=6
+ elif [ "$TASK" = "MNLI" ]
+ then
+ SPLITS="train dev_matched dev_mismatched test_matched test_mismatched"
+ INPUT_COLUMNS=( 9 10 )
+ TEST_INPUT_COLUMNS=( 9 10 )
+ DEV_LABEL_COLUMN=16
+ LABEL_COLUMN=12
+ elif [ "$TASK" = "QNLI" ]
+ then
+ INPUT_COLUMNS=( 2 3 )
+ TEST_INPUT_COLUMNS=( 2 3 )
+ LABEL_COLUMN=4
+ elif [ "$TASK" = "MRPC" ]
+ then
+ INPUT_COLUMNS=( 4 5 )
+ TEST_INPUT_COLUMNS=( 4 5 )
+ LABEL_COLUMN=1
+ elif [ "$TASK" = "RTE" ]
+ then
+ INPUT_COLUMNS=( 2 3 )
+ TEST_INPUT_COLUMNS=( 2 3 )
+ LABEL_COLUMN=4
+ elif [ "$TASK" = "STS-B" ]
+ then
+ INPUT_COLUMNS=( 8 9 )
+ TEST_INPUT_COLUMNS=( 8 9 )
+ LABEL_COLUMN=10
+ # Following are single sentence tasks.
+ elif [ "$TASK" = "SST-2" ]
+ then
+ INPUT_COLUMNS=( 1 )
+ TEST_INPUT_COLUMNS=( 2 )
+ LABEL_COLUMN=2
+ INPUT_COUNT=1
+ elif [ "$TASK" = "CoLA" ]
+ then
+ INPUT_COLUMNS=( 4 )
+ TEST_INPUT_COLUMNS=( 2 )
+ LABEL_COLUMN=2
+ INPUT_COUNT=1
+ fi
+
+ # Strip out header and filter lines that don't have expected number of fields.
+ rm -rf "$TASK_DATA_FOLDER/processed"
+ mkdir -p "$TASK_DATA_FOLDER/processed"
+ for SPLIT in $SPLITS
+ do
+ # CoLA train and dev doesn't have header.
+ if [[ ( "$TASK" = "CoLA") && ( "$SPLIT" != "test" ) ]]
+ then
+ cp "$TASK_DATA_FOLDER/$SPLIT.tsv" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp";
+ else
+ tail -n +2 "$TASK_DATA_FOLDER/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp";
+ fi
+
+ # Remove unformatted lines from train and dev files for QQP dataset.
+ if [[ ( "$TASK" = "QQP") && ( "$SPLIT" != "test" ) ]]
+ then
+ awk -F '\t' -v NUM_FIELDS=6 'NF==NUM_FIELDS{print}{}' "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp" > "$TASK_DATA_FOLDER/processed/$SPLIT.tsv";
+ else
+ cp "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv";
+ fi
+ rm "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp";
+ done
+
+ # Split into input0, input1 and label
+ for SPLIT in $SPLITS
+ do
+ for INPUT_TYPE in $(seq 0 $((INPUT_COUNT-1)))
+ do
+ if [[ "$SPLIT" != test* ]]
+ then
+ COLUMN_NUMBER=${INPUT_COLUMNS[$INPUT_TYPE]}
+ else
+ COLUMN_NUMBER=${TEST_INPUT_COLUMNS[$INPUT_TYPE]}
+ fi
+ cut -f"$COLUMN_NUMBER" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.raw.input$INPUT_TYPE";
+ done
+
+ if [[ "$SPLIT" != test* ]]
+ then
+ if [ "$TASK" = "MNLI" ] && [ "$SPLIT" != "train" ]
+ then
+ cut -f"$DEV_LABEL_COLUMN" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.label";
+ else
+ cut -f"$LABEL_COLUMN" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.label";
+ fi
+ fi
+
+ # BPE encode.
+ for INPUT_TYPE in $(seq 0 $((INPUT_COUNT-1)))
+ do
+ LANG="input$INPUT_TYPE"
+ echo "BPE encoding $SPLIT/$LANG"
+ python -m examples.roberta.multiprocessing_bpe_encoder \
+ --encoder-json encoder.json \
+ --vocab-bpe vocab.bpe \
+ --inputs "$TASK_DATA_FOLDER/processed/$SPLIT.raw.$LANG" \
+ --outputs "$TASK_DATA_FOLDER/processed/$SPLIT.$LANG" \
+ --workers 60 \
+ --keep-empty;
+ done
+ done
+
+ # Remove output directory.
+ rm -rf "$TASK-bin"
+
+ DEVPREF="$TASK_DATA_FOLDER/processed/dev.LANG"
+ TESTPREF="$TASK_DATA_FOLDER/processed/test.LANG"
+ if [ "$TASK" = "MNLI" ]
+ then
+ DEVPREF="$TASK_DATA_FOLDER/processed/dev_matched.LANG,$TASK_DATA_FOLDER/processed/dev_mismatched.LANG"
+ TESTPREF="$TASK_DATA_FOLDER/processed/test_matched.LANG,$TASK_DATA_FOLDER/processed/test_mismatched.LANG"
+ fi
+
+ # Run fairseq preprocessing:
+ for INPUT_TYPE in $(seq 0 $((INPUT_COUNT-1)))
+ do
+ LANG="input$INPUT_TYPE"
+ fairseq-preprocess \
+ --only-source \
+ --trainpref "$TASK_DATA_FOLDER/processed/train.$LANG" \
+ --validpref "${DEVPREF//LANG/$LANG}" \
+ --testpref "${TESTPREF//LANG/$LANG}" \
+ --destdir "$TASK-bin/$LANG" \
+ --workers 60 \
+ --srcdict dict.txt;
+ done
+ if [[ "$TASK" != "STS-B" ]]
+ then
+ fairseq-preprocess \
+ --only-source \
+ --trainpref "$TASK_DATA_FOLDER/processed/train.label" \
+ --validpref "${DEVPREF//LANG/label}" \
+ --destdir "$TASK-bin/label" \
+ --workers 60;
+ else
+ # For STS-B output range is converted to be between: [0.0, 1.0]
+ mkdir -p "$TASK-bin/label"
+ awk '{print $1 / 5.0 }' "$TASK_DATA_FOLDER/processed/train.label" > "$TASK-bin/label/train.label"
+ awk '{print $1 / 5.0 }' "$TASK_DATA_FOLDER/processed/dev.label" > "$TASK-bin/label/valid.label"
+ fi
+done
diff --git a/fairseq/examples/roberta/preprocess_RACE.py b/fairseq/examples/roberta/preprocess_RACE.py
new file mode 100644
index 0000000000000000000000000000000000000000..cdd66072718ccb6033304c97926271909a17f9d6
--- /dev/null
+++ b/fairseq/examples/roberta/preprocess_RACE.py
@@ -0,0 +1,102 @@
+#!/usr/bin/env python
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import json
+import os
+import re
+
+
+class InputExample:
+ def __init__(self, paragraph, qa_list, label):
+ self.paragraph = paragraph
+ self.qa_list = qa_list
+ self.label = label
+
+
+def get_examples(data_dir, set_type):
+ """
+ Extract paragraph and question-answer list from each json file
+ """
+ examples = []
+
+ levels = ["middle", "high"]
+ set_type_c = set_type.split("-")
+ if len(set_type_c) == 2:
+ levels = [set_type_c[1]]
+ set_type = set_type_c[0]
+ for level in levels:
+ cur_dir = os.path.join(data_dir, set_type, level)
+ for filename in os.listdir(cur_dir):
+ cur_path = os.path.join(cur_dir, filename)
+ with open(cur_path, "r") as f:
+ cur_data = json.load(f)
+ answers = cur_data["answers"]
+ options = cur_data["options"]
+ questions = cur_data["questions"]
+ context = cur_data["article"].replace("\n", " ")
+ context = re.sub(r"\s+", " ", context)
+ for i in range(len(answers)):
+ label = ord(answers[i]) - ord("A")
+ qa_list = []
+ question = questions[i]
+ for j in range(4):
+ option = options[i][j]
+ if "_" in question:
+ qa_cat = question.replace("_", option)
+ else:
+ qa_cat = " ".join([question, option])
+ qa_cat = re.sub(r"\s+", " ", qa_cat)
+ qa_list.append(qa_cat)
+ examples.append(InputExample(context, qa_list, label))
+
+ return examples
+
+
+def main():
+ """
+ Helper script to extract paragraphs questions and answers from RACE datasets.
+ """
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--input-dir",
+ help="input directory for downloaded RACE dataset",
+ )
+ parser.add_argument(
+ "--output-dir",
+ help="output directory for extracted data",
+ )
+ args = parser.parse_args()
+
+ if not os.path.exists(args.output_dir):
+ os.makedirs(args.output_dir, exist_ok=True)
+
+ for set_type in ["train", "dev", "test-middle", "test-high"]:
+ examples = get_examples(args.input_dir, set_type)
+ qa_file_paths = [
+ os.path.join(args.output_dir, set_type + ".input" + str(i + 1))
+ for i in range(4)
+ ]
+ qa_files = [open(qa_file_path, "w") for qa_file_path in qa_file_paths]
+ outf_context_path = os.path.join(args.output_dir, set_type + ".input0")
+ outf_label_path = os.path.join(args.output_dir, set_type + ".label")
+ outf_context = open(outf_context_path, "w")
+ outf_label = open(outf_label_path, "w")
+ for example in examples:
+ outf_context.write(example.paragraph + "\n")
+ for i in range(4):
+ qa_files[i].write(example.qa_list[i] + "\n")
+ outf_label.write(str(example.label) + "\n")
+
+ for f in qa_files:
+ f.close()
+ outf_label.close()
+ outf_context.close()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/roberta/preprocess_RACE.sh b/fairseq/examples/roberta/preprocess_RACE.sh
new file mode 100755
index 0000000000000000000000000000000000000000..932d2ab6e521fecc7d0297f26a8c43857541ef3b
--- /dev/null
+++ b/fairseq/examples/roberta/preprocess_RACE.sh
@@ -0,0 +1,59 @@
+#!/bin/bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+# data should be downloaded and processed with reprocess_RACE.py
+if [[ $# -ne 2 ]]; then
+ echo "Run as following:"
+ echo "./examples/roberta/preprocess_RACE.sh "
+ exit 1
+fi
+
+RACE_DATA_FOLDER=$1
+OUT_DATA_FOLDER=$2
+
+# download bpe encoder.json, vocabulary and fairseq dictionary
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
+wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt'
+
+SPLITS="train dev test-middle test-high"
+INPUT_TYPES="input0 input1 input2 input3 input4"
+for INPUT_TYPE in $INPUT_TYPES
+do
+ for SPLIT in $SPLITS
+ do
+ echo "BPE encoding $SPLIT/$INPUT_TYPE"
+ python -m examples.roberta.multiprocessing_bpe_encoder \
+ --encoder-json encoder.json \
+ --vocab-bpe vocab.bpe \
+ --inputs "$RACE_DATA_FOLDER/$SPLIT.$INPUT_TYPE" \
+ --outputs "$RACE_DATA_FOLDER/$SPLIT.$INPUT_TYPE.bpe" \
+ --workers 10 \
+ --keep-empty;
+
+ done
+done
+
+for INPUT_TYPE in $INPUT_TYPES
+ do
+ LANG="input$INPUT_TYPE"
+ fairseq-preprocess \
+ --only-source \
+ --trainpref "$RACE_DATA_FOLDER/train.$INPUT_TYPE.bpe" \
+ --validpref "$RACE_DATA_FOLDER/dev.$INPUT_TYPE.bpe" \
+ --testpref "$RACE_DATA_FOLDER/test-middle.$INPUT_TYPE.bpe,$RACE_DATA_FOLDER/test-high.$INPUT_TYPE.bpe" \
+ --destdir "$OUT_DATA_FOLDER/$INPUT_TYPE" \
+ --workers 10 \
+ --srcdict dict.txt;
+done
+
+rm -rf "$OUT_DATA_FOLDER/label"
+mkdir -p "$OUT_DATA_FOLDER/label"
+cp "$RACE_DATA_FOLDER/train.label" "$OUT_DATA_FOLDER/label/"
+cp "$RACE_DATA_FOLDER/dev.label" "$OUT_DATA_FOLDER/label/valid.label"
+cp "$RACE_DATA_FOLDER/test-middle.label" "$OUT_DATA_FOLDER/label/test.label"
+cp "$RACE_DATA_FOLDER/test-high.label" "$OUT_DATA_FOLDER/label/test1.label"
diff --git a/fairseq/examples/roberta/wsc/README.md b/fairseq/examples/roberta/wsc/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..21a045d999739836a17574593292e42131315ae9
--- /dev/null
+++ b/fairseq/examples/roberta/wsc/README.md
@@ -0,0 +1,125 @@
+# Finetuning RoBERTa on Winograd Schema Challenge (WSC) data
+
+The following instructions can be used to finetune RoBERTa on the WSC training
+data provided by [SuperGLUE](https://super.gluebenchmark.com/).
+
+Note that there is high variance in the results. For our GLUE/SuperGLUE
+submission we swept over the learning rate (1e-5, 2e-5, 3e-5), batch size (16,
+32, 64) and total number of updates (500, 1000, 2000, 3000), as well as the
+random seed. Out of ~100 runs we chose the best 7 models and ensembled them.
+
+**Approach:** The instructions below use a slightly different loss function than
+what's described in the original RoBERTa arXiv paper. In particular,
+[Kocijan et al. (2019)](https://arxiv.org/abs/1905.06290) introduce a margin
+ranking loss between `(query, candidate)` pairs with tunable hyperparameters
+alpha and beta. This is supported in our code as well with the `--wsc-alpha` and
+`--wsc-beta` arguments. However, we achieved slightly better (and more robust)
+results on the development set by instead using a single cross entropy loss term
+over the log-probabilities for the query and all mined candidates. **The
+candidates are mined using spaCy from each input sentence in isolation, so the
+approach remains strictly pointwise.** This reduces the number of
+hyperparameters and our best model achieved 92.3% development set accuracy,
+compared to ~90% accuracy for the margin loss. Later versions of the RoBERTa
+arXiv paper will describe this updated formulation.
+
+### 1) Download the WSC data from the SuperGLUE website:
+```bash
+wget https://dl.fbaipublicfiles.com/glue/superglue/data/v2/WSC.zip
+unzip WSC.zip
+
+# we also need to copy the RoBERTa dictionary into the same directory
+wget -O WSC/dict.txt https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt
+```
+
+### 2) Finetune over the provided training data:
+```bash
+TOTAL_NUM_UPDATES=2000 # Total number of training steps.
+WARMUP_UPDATES=250 # Linearly increase LR over this many steps.
+LR=2e-05 # Peak LR for polynomial LR scheduler.
+MAX_SENTENCES=16 # Batch size per GPU.
+SEED=1 # Random seed.
+ROBERTA_PATH=/path/to/roberta/model.pt
+
+# we use the --user-dir option to load the task and criterion
+# from the examples/roberta/wsc directory:
+FAIRSEQ_PATH=/path/to/fairseq
+FAIRSEQ_USER_DIR=${FAIRSEQ_PATH}/examples/roberta/wsc
+
+CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-train WSC/ \
+ --restore-file $ROBERTA_PATH \
+ --reset-optimizer --reset-dataloader --reset-meters \
+ --no-epoch-checkpoints --no-last-checkpoints --no-save-optimizer-state \
+ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
+ --valid-subset val \
+ --fp16 --ddp-backend legacy_ddp \
+ --user-dir $FAIRSEQ_USER_DIR \
+ --task wsc --criterion wsc --wsc-cross-entropy \
+ --arch roberta_large --bpe gpt2 --max-positions 512 \
+ --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
+ --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-06 \
+ --lr-scheduler polynomial_decay --lr $LR \
+ --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_NUM_UPDATES \
+ --batch-size $MAX_SENTENCES \
+ --max-update $TOTAL_NUM_UPDATES \
+ --log-format simple --log-interval 100 \
+ --seed $SEED
+```
+
+The above command assumes training on 4 GPUs, but you can achieve the same
+results on a single GPU by adding `--update-freq=4`.
+
+### 3) Evaluate
+```python
+from fairseq.models.roberta import RobertaModel
+from examples.roberta.wsc import wsc_utils # also loads WSC task and criterion
+roberta = RobertaModel.from_pretrained('checkpoints', 'checkpoint_best.pt', 'WSC/')
+roberta.cuda()
+nsamples, ncorrect = 0, 0
+for sentence, label in wsc_utils.jsonl_iterator('WSC/val.jsonl', eval=True):
+ pred = roberta.disambiguate_pronoun(sentence)
+ nsamples += 1
+ if pred == label:
+ ncorrect += 1
+print('Accuracy: ' + str(ncorrect / float(nsamples)))
+# Accuracy: 0.9230769230769231
+```
+
+## RoBERTa training on WinoGrande dataset
+We have also provided `winogrande` task and criterion for finetuning on the
+[WinoGrande](https://mosaic.allenai.org/projects/winogrande) like datasets
+where there are always two candidates and one is correct.
+It's more efficient implementation for such subcases.
+
+```bash
+TOTAL_NUM_UPDATES=23750 # Total number of training steps.
+WARMUP_UPDATES=2375 # Linearly increase LR over this many steps.
+LR=1e-05 # Peak LR for polynomial LR scheduler.
+MAX_SENTENCES=32 # Batch size per GPU.
+SEED=1 # Random seed.
+ROBERTA_PATH=/path/to/roberta/model.pt
+
+# we use the --user-dir option to load the task and criterion
+# from the examples/roberta/wsc directory:
+FAIRSEQ_PATH=/path/to/fairseq
+FAIRSEQ_USER_DIR=${FAIRSEQ_PATH}/examples/roberta/wsc
+
+cd fairseq
+CUDA_VISIBLE_DEVICES=0 fairseq-train winogrande_1.0/ \
+ --restore-file $ROBERTA_PATH \
+ --reset-optimizer --reset-dataloader --reset-meters \
+ --no-epoch-checkpoints --no-last-checkpoints --no-save-optimizer-state \
+ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
+ --valid-subset val \
+ --fp16 --ddp-backend legacy_ddp \
+ --user-dir $FAIRSEQ_USER_DIR \
+ --task winogrande --criterion winogrande \
+ --wsc-margin-alpha 5.0 --wsc-margin-beta 0.4 \
+ --arch roberta_large --bpe gpt2 --max-positions 512 \
+ --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
+ --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-06 \
+ --lr-scheduler polynomial_decay --lr $LR \
+ --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_NUM_UPDATES \
+ --batch-size $MAX_SENTENCES \
+ --max-update $TOTAL_NUM_UPDATES \
+ --log-format simple --log-interval 100
+```
diff --git a/fairseq/examples/roberta/wsc/__init__.py b/fairseq/examples/roberta/wsc/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..78afa4728eeed96142900118f6452730023466c9
--- /dev/null
+++ b/fairseq/examples/roberta/wsc/__init__.py
@@ -0,0 +1,7 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from . import wsc_criterion # noqa
+from . import wsc_task # noqa
diff --git a/fairseq/examples/roberta/wsc/wsc_criterion.py b/fairseq/examples/roberta/wsc/wsc_criterion.py
new file mode 100644
index 0000000000000000000000000000000000000000..ed0251fdecc3573228ad271f1090aaf914b48cd1
--- /dev/null
+++ b/fairseq/examples/roberta/wsc/wsc_criterion.py
@@ -0,0 +1,167 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+
+import torch
+import torch.nn.functional as F
+from fairseq import utils
+from fairseq.criterions import LegacyFairseqCriterion, register_criterion
+from fairseq.data import encoders
+
+
+@register_criterion("wsc")
+class WSCCriterion(LegacyFairseqCriterion):
+ def __init__(self, args, task):
+ super().__init__(args, task)
+ if self.args.save_predictions is not None:
+ self.prediction_h = open(self.args.save_predictions, "w")
+ else:
+ self.prediction_h = None
+ self.bpe = encoders.build_bpe(args.bpe)
+ self.tokenizer = encoders.build_tokenizer(args.tokenizer)
+
+ def __del__(self):
+ if self.prediction_h is not None:
+ self.prediction_h.close()
+
+ @staticmethod
+ def add_args(parser):
+ """Add criterion-specific arguments to the parser."""
+ parser.add_argument("--wsc-margin-alpha", type=float, metavar="A", default=1.0)
+ parser.add_argument("--wsc-margin-beta", type=float, metavar="B", default=0.0)
+ parser.add_argument(
+ "--wsc-cross-entropy",
+ action="store_true",
+ help="use cross entropy formulation instead of margin loss",
+ )
+ parser.add_argument(
+ "--save-predictions", metavar="FILE", help="file to save predictions to"
+ )
+
+ def get_masked_input(self, tokens, mask):
+ masked_tokens = tokens.clone()
+ masked_tokens[mask] = self.task.mask
+ return masked_tokens
+
+ def get_lprobs(self, model, tokens, mask):
+ logits, _ = model(src_tokens=self.get_masked_input(tokens, mask))
+ lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float)
+ scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1)
+ mask = mask.type_as(scores)
+ scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1)
+ return scores
+
+ def get_loss(self, query_lprobs, cand_lprobs):
+ if self.args.wsc_cross_entropy:
+ return F.cross_entropy(
+ torch.cat([query_lprobs, cand_lprobs]).unsqueeze(0),
+ query_lprobs.new([0]).long(),
+ )
+ else:
+ return (
+ -query_lprobs
+ + self.args.wsc_margin_alpha
+ * (cand_lprobs - query_lprobs + self.args.wsc_margin_beta).clamp(min=0)
+ ).sum()
+
+ def forward(self, model, sample, reduce=True):
+ # compute loss and accuracy
+ loss, nloss = 0.0, 0
+ ncorrect, nqueries = 0, 0
+
+ for i, label in enumerate(sample["labels"]):
+ query_lprobs = self.get_lprobs(
+ model,
+ sample["query_tokens"][i].unsqueeze(0),
+ sample["query_masks"][i].unsqueeze(0),
+ )
+ cand_lprobs = self.get_lprobs(
+ model,
+ sample["candidate_tokens"][i],
+ sample["candidate_masks"][i],
+ )
+
+ pred = (query_lprobs >= cand_lprobs).all().item()
+
+ if label is not None:
+ label = 1 if label else 0
+ ncorrect += 1 if pred == label else 0
+ nqueries += 1
+
+ if label:
+ # only compute a loss for positive instances
+ nloss += 1
+ loss += self.get_loss(query_lprobs, cand_lprobs)
+
+ id = sample["id"][i].item()
+ if self.prediction_h is not None:
+ print("{}\t{}\t{}".format(id, pred, label), file=self.prediction_h)
+
+ if nloss == 0:
+ loss = torch.tensor(0.0, requires_grad=True)
+
+ sample_size = nqueries if nqueries > 0 else 1
+ logging_output = {
+ "loss": utils.item(loss.data) if reduce else loss.data,
+ "ntokens": sample["ntokens"],
+ "nsentences": sample["nsentences"],
+ "sample_size": sample_size,
+ "ncorrect": ncorrect,
+ "nqueries": nqueries,
+ }
+ return loss, sample_size, logging_output
+
+ @staticmethod
+ def aggregate_logging_outputs(logging_outputs):
+ """Aggregate logging outputs from data parallel training."""
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
+
+ agg_output = {
+ "loss": loss_sum / sample_size / math.log(2),
+ "ntokens": ntokens,
+ "nsentences": nsentences,
+ "sample_size": sample_size,
+ }
+
+ ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs)
+ nqueries = sum(log.get("nqueries", 0) for log in logging_outputs)
+ if nqueries > 0:
+ agg_output["accuracy"] = ncorrect / float(nqueries)
+
+ return agg_output
+
+
+@register_criterion("winogrande")
+class WinograndeCriterion(WSCCriterion):
+ def forward(self, model, sample, reduce=True):
+ # compute loss and accuracy
+ query_lprobs = self.get_lprobs(
+ model,
+ sample["query_tokens"],
+ sample["query_masks"],
+ )
+ cand_lprobs = self.get_lprobs(
+ model,
+ sample["candidate_tokens"],
+ sample["candidate_masks"],
+ )
+ pred = query_lprobs >= cand_lprobs
+ loss = self.get_loss(query_lprobs, cand_lprobs)
+
+ sample_size = sample["query_tokens"].size(0)
+ ncorrect = pred.sum().item()
+ logging_output = {
+ "loss": utils.item(loss.data) if reduce else loss.data,
+ "ntokens": sample["ntokens"],
+ "nsentences": sample["nsentences"],
+ "sample_size": sample_size,
+ "ncorrect": ncorrect,
+ "nqueries": sample_size,
+ }
+ return loss, sample_size, logging_output
diff --git a/fairseq/examples/roberta/wsc/wsc_task.py b/fairseq/examples/roberta/wsc/wsc_task.py
new file mode 100644
index 0000000000000000000000000000000000000000..602ea737ed75a33fddf44dd859e999ecfce2730d
--- /dev/null
+++ b/fairseq/examples/roberta/wsc/wsc_task.py
@@ -0,0 +1,401 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import json
+import os
+import tempfile
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from fairseq import utils
+from fairseq.data import (
+ Dictionary,
+ IdDataset,
+ ListDataset,
+ NestedDictionaryDataset,
+ NumelDataset,
+ NumSamplesDataset,
+ PadDataset,
+ SortDataset,
+ data_utils,
+ encoders,
+)
+from fairseq.tasks import LegacyFairseqTask, register_task
+
+from . import wsc_utils
+
+
+@register_task("wsc")
+class WSCTask(LegacyFairseqTask):
+ """Task to finetune RoBERTa for Winograd Schemas."""
+
+ @staticmethod
+ def add_args(parser):
+ """Add task-specific arguments to the parser."""
+ parser.add_argument(
+ "data", metavar="DIR", help="path to data directory; we load .jsonl"
+ )
+ parser.add_argument(
+ "--init-token",
+ type=int,
+ default=None,
+ help="add token at the beginning of each batch item",
+ )
+
+ def __init__(self, args, vocab):
+ super().__init__(args)
+ self.vocab = vocab
+ self.mask = vocab.add_symbol("")
+
+ self.bpe = encoders.build_bpe(args)
+ self.tokenizer = encoders.build_tokenizer(args)
+
+ # hack to handle GPT-2 BPE, which includes leading spaces
+ if args.bpe == "gpt2":
+ self.leading_space = True
+ self.trailing_space = False
+ else:
+ self.leading_space = False
+ self.trailing_space = True
+
+ @classmethod
+ def load_dictionary(cls, filename):
+ """Load the dictionary from the filename
+
+ Args:
+ filename (str): the filename
+ """
+ dictionary = Dictionary.load(filename)
+ dictionary.add_symbol("")
+ return dictionary
+
+ @classmethod
+ def setup_task(cls, args, **kwargs):
+ assert args.criterion == "wsc", "Must set --criterion=wsc"
+
+ # load data and label dictionaries
+ vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt"))
+ print("| dictionary: {} types".format(len(vocab)))
+
+ return cls(args, vocab)
+
+ def binarize(self, s: str, append_eos: bool = False):
+ if self.tokenizer is not None:
+ s = self.tokenizer.encode(s)
+ if self.bpe is not None:
+ s = self.bpe.encode(s)
+ tokens = self.vocab.encode_line(
+ s,
+ append_eos=append_eos,
+ add_if_not_exist=False,
+ ).long()
+ if self.args.init_token is not None:
+ tokens = torch.cat([tokens.new([self.args.init_token]), tokens])
+ return tokens
+
+ def binarize_with_mask(self, txt, prefix, suffix, leading_space, trailing_space):
+ toks = self.binarize(
+ prefix + leading_space + txt + trailing_space + suffix,
+ append_eos=True,
+ )
+ mask = torch.zeros_like(toks, dtype=torch.bool)
+ mask_start = len(self.binarize(prefix))
+ mask_size = len(self.binarize(leading_space + txt))
+ mask[mask_start : mask_start + mask_size] = 1
+ return toks, mask
+
+ def load_dataset(
+ self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs
+ ):
+ """Load a given dataset split.
+
+ Args:
+ split (str): name of the split (e.g., train, valid, test)
+ """
+ if data_path is None:
+ data_path = os.path.join(self.args.data, split + ".jsonl")
+ if not os.path.exists(data_path):
+ raise FileNotFoundError("Cannot find data: {}".format(data_path))
+
+ query_tokens = []
+ query_masks = []
+ query_lengths = []
+ candidate_tokens = []
+ candidate_masks = []
+ candidate_lengths = []
+ labels = []
+
+ for sentence, pronoun_span, query, label in wsc_utils.jsonl_iterator(data_path):
+ prefix = sentence[: pronoun_span.start].text
+ suffix = sentence[pronoun_span.end :].text_with_ws
+
+ # spaCy spans include trailing spaces, but we need to know about
+ # leading spaces for the GPT-2 BPE
+ leading_space = (
+ " " if sentence[: pronoun_span.start].text_with_ws.endswith(" ") else ""
+ )
+ trailing_space = " " if pronoun_span.text_with_ws.endswith(" ") else ""
+
+ # get noun phrases, excluding pronouns and anything overlapping with the query
+ cand_spans = wsc_utils.filter_noun_chunks(
+ wsc_utils.extended_noun_chunks(sentence),
+ exclude_pronouns=True,
+ exclude_query=query,
+ exact_match=False,
+ )
+
+ if query is not None:
+ query_toks, query_mask = self.binarize_with_mask(
+ query, prefix, suffix, leading_space, trailing_space
+ )
+ query_len = len(query_toks)
+ else:
+ query_toks, query_mask, query_len = None, None, 0
+
+ query_tokens.append(query_toks)
+ query_masks.append(query_mask)
+ query_lengths.append(query_len)
+
+ cand_toks, cand_masks = [], []
+ for cand_span in cand_spans:
+ toks, mask = self.binarize_with_mask(
+ cand_span.text,
+ prefix,
+ suffix,
+ leading_space,
+ trailing_space,
+ )
+ cand_toks.append(toks)
+ cand_masks.append(mask)
+
+ # collate candidates
+ cand_toks = data_utils.collate_tokens(cand_toks, pad_idx=self.vocab.pad())
+ cand_masks = data_utils.collate_tokens(cand_masks, pad_idx=0)
+ assert cand_toks.size() == cand_masks.size()
+
+ candidate_tokens.append(cand_toks)
+ candidate_masks.append(cand_masks)
+ candidate_lengths.append(cand_toks.size(1))
+
+ labels.append(label)
+
+ query_lengths = np.array(query_lengths)
+ query_tokens = ListDataset(query_tokens, query_lengths)
+ query_masks = ListDataset(query_masks, query_lengths)
+
+ candidate_lengths = np.array(candidate_lengths)
+ candidate_tokens = ListDataset(candidate_tokens, candidate_lengths)
+ candidate_masks = ListDataset(candidate_masks, candidate_lengths)
+
+ labels = ListDataset(labels, [1] * len(labels))
+
+ dataset = {
+ "id": IdDataset(),
+ "query_tokens": query_tokens,
+ "query_masks": query_masks,
+ "candidate_tokens": candidate_tokens,
+ "candidate_masks": candidate_masks,
+ "labels": labels,
+ "nsentences": NumSamplesDataset(),
+ "ntokens": NumelDataset(query_tokens, reduce=True),
+ }
+
+ nested_dataset = NestedDictionaryDataset(
+ dataset,
+ sizes=[query_lengths],
+ )
+
+ with data_utils.numpy_seed(self.args.seed):
+ shuffle = np.random.permutation(len(query_tokens))
+ dataset = SortDataset(
+ nested_dataset,
+ # shuffle
+ sort_order=[shuffle],
+ )
+
+ if return_only:
+ return dataset
+
+ self.datasets[split] = dataset
+ return self.datasets[split]
+
+ def build_dataset_for_inference(self, sample_json):
+ with tempfile.NamedTemporaryFile(buffering=0) as h:
+ h.write((json.dumps(sample_json) + "\n").encode("utf-8"))
+ dataset = self.load_dataset(
+ "disambiguate_pronoun",
+ data_path=h.name,
+ return_only=True,
+ )
+ return dataset
+
+ def disambiguate_pronoun(self, model, sentence, use_cuda=False):
+ sample_json = wsc_utils.convert_sentence_to_json(sentence)
+ dataset = self.build_dataset_for_inference(sample_json)
+ sample = dataset.collater([dataset[0]])
+ if use_cuda:
+ sample = utils.move_to_cuda(sample)
+
+ def get_masked_input(tokens, mask):
+ masked_tokens = tokens.clone()
+ masked_tokens[mask.bool()] = self.mask
+ return masked_tokens
+
+ def get_lprobs(tokens, mask):
+ logits, _ = model(src_tokens=get_masked_input(tokens, mask))
+ lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float)
+ scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1)
+ mask = mask.type_as(scores)
+ scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1)
+ return scores
+
+ cand_lprobs = get_lprobs(
+ sample["candidate_tokens"][0],
+ sample["candidate_masks"][0],
+ )
+ if sample["query_tokens"][0] is not None:
+ query_lprobs = get_lprobs(
+ sample["query_tokens"][0].unsqueeze(0),
+ sample["query_masks"][0].unsqueeze(0),
+ )
+ return (query_lprobs >= cand_lprobs).all().item() == 1
+ else:
+ best_idx = cand_lprobs.argmax().item()
+ full_cand = sample["candidate_tokens"][0][best_idx]
+ mask = sample["candidate_masks"][0][best_idx]
+ toks = full_cand[mask.bool()]
+ return self.bpe.decode(self.source_dictionary.string(toks)).strip()
+
+ @property
+ def source_dictionary(self):
+ return self.vocab
+
+ @property
+ def target_dictionary(self):
+ return self.vocab
+
+
+@register_task("winogrande")
+class WinograndeTask(WSCTask):
+ """
+ Task for WinoGrande dataset. Efficient implementation for Winograd schema
+ tasks with exactly two candidates, one of which is correct.
+ """
+
+ @classmethod
+ def setup_task(cls, args, **kwargs):
+ assert args.criterion == "winogrande", "Must set --criterion=winogrande"
+
+ # load data and label dictionaries
+ vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt"))
+ print("| dictionary: {} types".format(len(vocab)))
+
+ return cls(args, vocab)
+
+ def load_dataset(
+ self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs
+ ):
+ """Load a given dataset split.
+
+ Args:
+ split (str): name of the split (e.g., train, valid, test)
+ """
+ if data_path is None:
+ data_path = os.path.join(self.args.data, split + ".jsonl")
+ if not os.path.exists(data_path):
+ raise FileNotFoundError("Cannot find data: {}".format(data_path))
+
+ query_tokens = []
+ query_masks = []
+ query_lengths = []
+ candidate_tokens = []
+ candidate_masks = []
+ candidate_lengths = []
+
+ itr = wsc_utils.winogrande_jsonl_iterator(data_path, eval=(split == "test"))
+
+ for sample in itr:
+ sentence, pronoun_span, query, cand_text = sample
+ prefix = sentence[: pronoun_span[0]].rstrip()
+ suffix = sentence[pronoun_span[1] :]
+
+ leading_space = " " if sentence[: pronoun_span[0]].endswith(" ") else ""
+ trailing_space = ""
+
+ if query is not None:
+ query_toks, query_mask = self.binarize_with_mask(
+ query,
+ prefix,
+ suffix,
+ leading_space,
+ trailing_space,
+ )
+ query_len = len(query_toks)
+ else:
+ query_toks, query_mask, query_len = None, None, 0
+
+ query_tokens.append(query_toks)
+ query_masks.append(query_mask)
+ query_lengths.append(query_len)
+
+ cand_toks, cand_mask = self.binarize_with_mask(
+ cand_text,
+ prefix,
+ suffix,
+ leading_space,
+ trailing_space,
+ )
+
+ candidate_tokens.append(cand_toks)
+ candidate_masks.append(cand_mask)
+ candidate_lengths.append(cand_toks.size(0))
+
+ query_lengths = np.array(query_lengths)
+
+ def get_pad_dataset_fn(tokens, length, pad_idx):
+ return PadDataset(
+ ListDataset(tokens, length),
+ pad_idx=pad_idx,
+ left_pad=False,
+ )
+
+ query_tokens = get_pad_dataset_fn(query_tokens, query_lengths, self.vocab.pad())
+ query_masks = get_pad_dataset_fn(query_masks, query_lengths, 0)
+
+ candidate_lengths = np.array(candidate_lengths)
+ candidate_tokens = get_pad_dataset_fn(
+ candidate_tokens, candidate_lengths, self.vocab.pad()
+ )
+ candidate_masks = get_pad_dataset_fn(candidate_masks, candidate_lengths, 0)
+
+ dataset = {
+ "id": IdDataset(),
+ "query_tokens": query_tokens,
+ "query_masks": query_masks,
+ "candidate_tokens": candidate_tokens,
+ "candidate_masks": candidate_masks,
+ "nsentences": NumSamplesDataset(),
+ "ntokens": NumelDataset(query_tokens, reduce=True),
+ }
+
+ nested_dataset = NestedDictionaryDataset(
+ dataset,
+ sizes=[query_lengths],
+ )
+
+ with data_utils.numpy_seed(self.args.seed):
+ shuffle = np.random.permutation(len(query_tokens))
+ dataset = SortDataset(
+ nested_dataset,
+ # shuffle
+ sort_order=[shuffle],
+ )
+
+ if return_only:
+ return dataset
+
+ self.datasets[split] = dataset
+ return self.datasets[split]
diff --git a/fairseq/examples/roberta/wsc/wsc_utils.py b/fairseq/examples/roberta/wsc/wsc_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..da6ba74383a2490e1108609f315f44ad4b3bf002
--- /dev/null
+++ b/fairseq/examples/roberta/wsc/wsc_utils.py
@@ -0,0 +1,241 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import json
+from functools import lru_cache
+
+
+def convert_sentence_to_json(sentence):
+ if "_" in sentence:
+ prefix, rest = sentence.split("_", 1)
+ query, rest = rest.split("_", 1)
+ query_index = len(prefix.rstrip().split(" "))
+ else:
+ query, query_index = None, None
+
+ prefix, rest = sentence.split("[", 1)
+ pronoun, rest = rest.split("]", 1)
+ pronoun_index = len(prefix.rstrip().split(" "))
+
+ sentence = sentence.replace("_", "").replace("[", "").replace("]", "")
+
+ return {
+ "idx": 0,
+ "text": sentence,
+ "target": {
+ "span1_index": query_index,
+ "span1_text": query,
+ "span2_index": pronoun_index,
+ "span2_text": pronoun,
+ },
+ }
+
+
+def extended_noun_chunks(sentence):
+ noun_chunks = {(np.start, np.end) for np in sentence.noun_chunks}
+ np_start, cur_np = 0, "NONE"
+ for i, token in enumerate(sentence):
+ np_type = token.pos_ if token.pos_ in {"NOUN", "PROPN"} else "NONE"
+ if np_type != cur_np:
+ if cur_np != "NONE":
+ noun_chunks.add((np_start, i))
+ if np_type != "NONE":
+ np_start = i
+ cur_np = np_type
+ if cur_np != "NONE":
+ noun_chunks.add((np_start, len(sentence)))
+ return [sentence[s:e] for (s, e) in sorted(noun_chunks)]
+
+
+def find_token(sentence, start_pos):
+ found_tok = None
+ for tok in sentence:
+ if tok.idx == start_pos:
+ found_tok = tok
+ break
+ return found_tok
+
+
+def find_span(sentence, search_text, start=0):
+ search_text = search_text.lower()
+ for tok in sentence[start:]:
+ remainder = sentence[tok.i :].text.lower()
+ if remainder.startswith(search_text):
+ len_to_consume = len(search_text)
+ start_idx = tok.idx
+ for next_tok in sentence[tok.i :]:
+ end_idx = next_tok.idx + len(next_tok.text)
+ if end_idx - start_idx == len_to_consume:
+ span = sentence[tok.i : next_tok.i + 1]
+ return span
+ return None
+
+
+@lru_cache(maxsize=1)
+def get_detokenizer():
+ from sacremoses import MosesDetokenizer
+
+ detok = MosesDetokenizer(lang="en")
+ return detok
+
+
+@lru_cache(maxsize=1)
+def get_spacy_nlp():
+ import en_core_web_lg
+
+ nlp = en_core_web_lg.load()
+ return nlp
+
+
+def jsonl_iterator(input_fname, positive_only=False, ngram_order=3, eval=False):
+ detok = get_detokenizer()
+ nlp = get_spacy_nlp()
+
+ with open(input_fname) as fin:
+ for line in fin:
+ sample = json.loads(line.strip())
+
+ if positive_only and "label" in sample and not sample["label"]:
+ # only consider examples where the query is correct
+ continue
+
+ target = sample["target"]
+
+ # clean up the query
+ query = target["span1_text"]
+ if query is not None:
+ if "\n" in query:
+ continue
+ if query.endswith(".") or query.endswith(","):
+ query = query[:-1]
+
+ # split tokens
+ tokens = sample["text"].split(" ")
+
+ def strip_pronoun(x):
+ return x.rstrip('.,"')
+
+ # find the pronoun
+ pronoun_idx = target["span2_index"]
+ pronoun = strip_pronoun(target["span2_text"])
+ if strip_pronoun(tokens[pronoun_idx]) != pronoun:
+ # hack: sometimes the index is misaligned
+ if strip_pronoun(tokens[pronoun_idx + 1]) == pronoun:
+ pronoun_idx += 1
+ else:
+ raise Exception("Misaligned pronoun!")
+ assert strip_pronoun(tokens[pronoun_idx]) == pronoun
+
+ # split tokens before and after the pronoun
+ before = tokens[:pronoun_idx]
+ after = tokens[pronoun_idx + 1 :]
+
+ # the GPT BPE attaches leading spaces to tokens, so we keep track
+ # of whether we need spaces before or after the pronoun
+ leading_space = " " if pronoun_idx > 0 else ""
+ trailing_space = " " if len(after) > 0 else ""
+
+ # detokenize
+ before = detok.detokenize(before, return_str=True)
+ pronoun = detok.detokenize([pronoun], return_str=True)
+ after = detok.detokenize(after, return_str=True)
+
+ # hack: when the pronoun ends in a period (or comma), move the
+ # punctuation to the "after" part
+ if pronoun.endswith(".") or pronoun.endswith(","):
+ after = pronoun[-1] + trailing_space + after
+ pronoun = pronoun[:-1]
+
+ # hack: when the "after" part begins with a comma or period, remove
+ # the trailing space
+ if after.startswith(".") or after.startswith(","):
+ trailing_space = ""
+
+ # parse sentence with spacy
+ sentence = nlp(before + leading_space + pronoun + trailing_space + after)
+
+ # find pronoun span
+ start = len(before + leading_space)
+ first_pronoun_tok = find_token(sentence, start_pos=start)
+ pronoun_span = find_span(sentence, pronoun, start=first_pronoun_tok.i)
+ assert pronoun_span.text == pronoun
+
+ if eval:
+ # convert to format where pronoun is surrounded by "[]" and
+ # query is surrounded by "_"
+ query_span = find_span(sentence, query)
+ query_with_ws = "_{}_{}".format(
+ query_span.text,
+ (" " if query_span.text_with_ws.endswith(" ") else ""),
+ )
+ pronoun_with_ws = "[{}]{}".format(
+ pronoun_span.text,
+ (" " if pronoun_span.text_with_ws.endswith(" ") else ""),
+ )
+ if query_span.start < pronoun_span.start:
+ first = (query_span, query_with_ws)
+ second = (pronoun_span, pronoun_with_ws)
+ else:
+ first = (pronoun_span, pronoun_with_ws)
+ second = (query_span, query_with_ws)
+ sentence = (
+ sentence[: first[0].start].text_with_ws
+ + first[1]
+ + sentence[first[0].end : second[0].start].text_with_ws
+ + second[1]
+ + sentence[second[0].end :].text
+ )
+ yield sentence, sample.get("label", None)
+ else:
+ yield sentence, pronoun_span, query, sample.get("label", None)
+
+
+def winogrande_jsonl_iterator(input_fname, eval=False):
+ with open(input_fname) as fin:
+ for line in fin:
+ sample = json.loads(line.strip())
+ sentence, option1, option2 = (
+ sample["sentence"],
+ sample["option1"],
+ sample["option2"],
+ )
+
+ pronoun_span = (sentence.index("_"), sentence.index("_") + 1)
+
+ if eval:
+ query, cand = option1, option2
+ else:
+ query = option1 if sample["answer"] == "1" else option2
+ cand = option2 if sample["answer"] == "1" else option1
+ yield sentence, pronoun_span, query, cand
+
+
+def filter_noun_chunks(
+ chunks, exclude_pronouns=False, exclude_query=None, exact_match=False
+):
+ if exclude_pronouns:
+ chunks = [
+ np
+ for np in chunks
+ if (np.lemma_ != "-PRON-" and not all(tok.pos_ == "PRON" for tok in np))
+ ]
+
+ if exclude_query is not None:
+ excl_txt = [exclude_query.lower()]
+ filtered_chunks = []
+ for chunk in chunks:
+ lower_chunk = chunk.text.lower()
+ found = False
+ for excl in excl_txt:
+ if (
+ not exact_match and (lower_chunk in excl or excl in lower_chunk)
+ ) or lower_chunk == excl:
+ found = True
+ break
+ if not found:
+ filtered_chunks.append(chunk)
+ chunks = filtered_chunks
+
+ return chunks
diff --git a/fairseq/examples/rxf/README.md b/fairseq/examples/rxf/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..22a1cc47df23c7e0ebbf0ad805031478d1b4a95e
--- /dev/null
+++ b/fairseq/examples/rxf/README.md
@@ -0,0 +1,52 @@
+[Better Fine-Tuning by Reducing Representational Collapse](https://arxiv.org/abs/2008.03156)
+=====================
+This repo contains the code to replicate all experiments from the _Better Fine-Tuning by Reducing Representational Collapse_ paper excluding the probing results.
+
+The R3F sentence prediction criterion is registered as `sentence_prediction_r3f` while the label smoothing version of it is implemented as `label_smoothed_cross_entropy_r3f`. The R4F version of the sentence prediction criterion can be achieved by applying spectral norm to the classification head via the `--spectral-norm-classification-head` parameter.
+
+## Hyper-parameters
+Our methods introduce 3 new hyper-parameters; `--eps` which sets the standard deviation or range of the distribution we're sampling from, `--r3f-lambda` which controls the combining of logistic loss and noisy KL loss and `--noise-type` which controls which parametric distribution we use ('normal', 'uniform').
+
+For example to run R3F on RTE from GLUE
+
+```
+TOTAL_NUM_UPDATES=3120
+WARMUP_UPDATES=187
+LR=1e-05
+NUM_CLASSES=2
+MAX_SENTENCES=8 # Batch size.
+ROBERTA_PATH=/path/to/roberta/model.pt
+
+CUDA_VISIBLE_DEVICES=0 fairseq-train RTE-bin \
+ --restore-file $ROBERTA_PATH \
+ --max-positions 512 \
+ --max-sentences $MAX_SENTENCES \
+ --max-tokens 4400 \
+ --task sentence_prediction \
+ --reset-optimizer --reset-dataloader --reset-meters \
+ --required-batch-size-multiple 1 \
+ --init-token 0 --separator-token 2 \
+ --arch roberta_large \
+ --criterion sentence_prediction_r3f \
+ --num-classes $NUM_CLASSES \
+ --dropout 0.1 --attention-dropout 0.1 \
+ --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
+ --clip-norm 0.0 \
+ --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
+ --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
+ --max-epoch 10 \
+ --find-unused-parameters \
+ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \
+ --noise-type uniform --r3f-lambda 0.7 \
+ --user-dir examples/rxf/rxf_src
+```
+
+## Citation
+```bibtex
+@article{aghajanyan2020better,
+ title={Better Fine-Tuning by Reducing Representational Collapse},
+ author={Aghajanyan, Armen and Shrivastava, Akshat and Gupta, Anchit and Goyal, Naman and Zettlemoyer, Luke and Gupta, Sonal},
+ journal={arXiv preprint arXiv:2008.03156},
+ year={2020}
+}
+```
diff --git a/fairseq/examples/rxf/__init__.py b/fairseq/examples/rxf/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..b24cb6b797b4159c9862bab1f882ee6ae95614ab
--- /dev/null
+++ b/fairseq/examples/rxf/__init__.py
@@ -0,0 +1,6 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from . import rxf_src # noqa
diff --git a/fairseq/examples/rxf/rxf_src/__init__.py b/fairseq/examples/rxf/rxf_src/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..306e232d6f386b26153864601114e162080dcee4
--- /dev/null
+++ b/fairseq/examples/rxf/rxf_src/__init__.py
@@ -0,0 +1,6 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from . import label_smoothed_cross_entropy_r3f, sentence_prediction_r3f # noqa
diff --git a/fairseq/examples/rxf/rxf_src/label_smoothed_cross_entropy_r3f.py b/fairseq/examples/rxf/rxf_src/label_smoothed_cross_entropy_r3f.py
new file mode 100644
index 0000000000000000000000000000000000000000..079db13e61c5ef46d1b1d288012145148eb0be04
--- /dev/null
+++ b/fairseq/examples/rxf/rxf_src/label_smoothed_cross_entropy_r3f.py
@@ -0,0 +1,157 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+
+import torch
+import torch.nn.functional as F
+from fairseq import metrics, utils
+from fairseq.criterions import FairseqCriterion, register_criterion
+from fairseq.criterions.label_smoothed_cross_entropy import label_smoothed_nll_loss
+
+
+@register_criterion("label_smoothed_cross_entropy_r3f")
+class LabelSmoothedCrossEntropyR3FCriterion(FairseqCriterion):
+ def __init__(
+ self, task, sentence_avg, label_smoothing, eps, r3f_lambda, noise_type
+ ):
+ super().__init__(task)
+ self.sentence_avg = sentence_avg
+ self.label_smoothing = label_smoothing
+ self.eps = eps
+ self.r3f_lambda = r3f_lambda
+ self.noise_type = noise_type
+ if self.noise_type in {"normal"}:
+ self.noise_sampler = torch.distributions.normal.Normal(
+ loc=0.0, scale=self.eps
+ )
+ elif self.noise_type == "uniform":
+ self.noise_sampler = torch.distributions.uniform.Uniform(
+ low=-self.eps, high=self.eps
+ )
+ else:
+ raise Exception(f"unrecognized noise type {self.noise_type}")
+
+ @staticmethod
+ def add_args(parser):
+ """Add criterion-specific arguments to the parser."""
+ # fmt: off
+ parser.add_argument('--label-smoothing', default=0., type=float, metavar='D',
+ help='epsilon for label smoothing, 0 means no label smoothing')
+ parser.add_argument('--eps', type=float, default=1e-5,
+ help='noise eps')
+ parser.add_argument('--r3f-lambda', type=float, default=1.0,
+ help='lambda for combining logistic loss and noisy KL loss')
+ parser.add_argument('--noise-type', type=str, default='normal',
+ choices=['normal', 'uniform'],
+ help='type of noises')
+ # fmt: on
+
+ def _get_symm_kl(self, noised_logits, input_logits):
+ return (
+ F.kl_div(
+ F.log_softmax(noised_logits, dim=-1, dtype=torch.float32),
+ F.softmax(input_logits, dim=-1, dtype=torch.float32),
+ None,
+ None,
+ "sum",
+ )
+ + F.kl_div(
+ F.log_softmax(input_logits, dim=-1, dtype=torch.float32),
+ F.softmax(noised_logits, dim=-1, dtype=torch.float32),
+ None,
+ None,
+ "sum",
+ )
+ ) / noised_logits.size(0)
+
+ def forward(self, model, sample, reduce=True):
+ """Compute the loss for the given sample.
+
+ Returns a tuple with three elements:
+ 1) the loss
+ 2) the sample size, which is used as the denominator for the gradient
+ 3) logging outputs to display while training
+ """
+ token_embeddings = model.encoder.embed_tokens(sample["net_input"]["src_tokens"])
+ input_logits, extra = model(**sample["net_input"])
+ loss, nll_loss = self.compute_loss(
+ model, (input_logits, extra), sample, reduce=reduce
+ )
+ sample_size = (
+ sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
+ )
+
+ if model.training:
+ noise = self.noise_sampler.sample(sample_shape=token_embeddings.shape).to(
+ token_embeddings
+ )
+ noised_embeddings = token_embeddings.clone() + noise
+
+ noised_logits, _ = model(
+ **sample["net_input"], token_embeddings=noised_embeddings
+ )
+ symm_kl = self._get_symm_kl(noised_logits, input_logits)
+
+ if model.training:
+ symm_kl = symm_kl * sample_size
+ loss = loss + self.r3f_lambda * symm_kl
+
+ logging_output = {
+ "loss": loss.data,
+ "nll_loss": nll_loss.data,
+ "ntokens": sample["ntokens"],
+ "nsentences": sample["target"].size(0),
+ "sample_size": sample_size,
+ }
+
+ if model.training:
+ logging_output.update(
+ symm_kl=utils.item(symm_kl.data) if reduce else symm_kl.data
+ )
+
+ return loss, sample_size, logging_output
+
+ def compute_loss(self, model, net_output, sample, reduce=True):
+ lprobs = model.get_normalized_probs(net_output, log_probs=True)
+ lprobs = lprobs.view(-1, lprobs.size(-1))
+ target = model.get_targets(sample, net_output).view(-1, 1)
+ loss, nll_loss = label_smoothed_nll_loss(
+ lprobs,
+ target,
+ self.label_smoothing,
+ ignore_index=self.padding_idx,
+ reduce=reduce,
+ )
+ return loss, nll_loss
+
+ @staticmethod
+ def reduce_metrics(logging_outputs) -> None:
+ """Aggregate logging outputs from data parallel training."""
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
+ nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
+ symm_kl_sum = sum(log.get("symm_kl", 0) for log in logging_outputs)
+
+ metrics.log_scalar("symm_kl", symm_kl_sum / sample_size, sample_size, round=3)
+ metrics.log_scalar(
+ "loss", loss_sum / sample_size / math.log(2), sample_size, round=3
+ )
+ metrics.log_scalar(
+ "nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3
+ )
+ metrics.log_derived(
+ "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
+ )
+
+ @staticmethod
+ def logging_outputs_can_be_summed() -> bool:
+ """
+ Whether the logging outputs returned by `forward` can be summed
+ across workers prior to calling `reduce_metrics`. Setting this
+ to True will improves distributed training speed.
+ """
+ return True
diff --git a/fairseq/examples/rxf/rxf_src/sentence_prediction_r3f.py b/fairseq/examples/rxf/rxf_src/sentence_prediction_r3f.py
new file mode 100644
index 0000000000000000000000000000000000000000..6ecffd6b143debb1c67adccd77a6aaed194ec55a
--- /dev/null
+++ b/fairseq/examples/rxf/rxf_src/sentence_prediction_r3f.py
@@ -0,0 +1,171 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+
+import torch
+import torch.nn.functional as F
+from fairseq import utils
+from fairseq.criterions import FairseqCriterion, register_criterion
+
+
+@register_criterion("sentence_prediction_r3f")
+class SentencePredictionR3F(FairseqCriterion):
+ def __init__(
+ self,
+ task,
+ eps,
+ r3f_lambda,
+ noise_type,
+ classification_head_name,
+ regression_target,
+ ):
+ super().__init__(task)
+ self.eps = eps
+ self.r3f_lambda = r3f_lambda
+ self.noise_type = noise_type
+ self.classification_head_name = classification_head_name
+ self.regression_target = regression_target
+ if self.noise_type in {"normal"}:
+ self.noise_sampler = torch.distributions.normal.Normal(
+ loc=0.0, scale=self.eps
+ )
+ elif self.noise_type == "uniform":
+ self.noise_sampler = torch.distributions.uniform.Uniform(
+ low=-self.eps, high=self.eps
+ )
+ else:
+ raise Exception(f"unrecognized noise type {self.noise_type}")
+
+ @staticmethod
+ def add_args(parser):
+ # fmt: off
+ parser.add_argument('--eps', type=float, default=1e-5,
+ help='noise eps')
+ parser.add_argument('--r3f-lambda', type=float, default=1.0,
+ help='lambda for combining logistic loss and noisy KL loss')
+ parser.add_argument('--noise-type', type=str, default='uniform',
+ choices=['normal', 'uniform'],
+ help='type of noises for RXF methods')
+ parser.add_argument('--classification-head-name',
+ default='sentence_classification_head',
+ help='name of the classification head to use')
+ parser.add_argument('--regression-target', action='store_true')
+ # fmt: on
+
+ def _get_symm_kl(self, noised_logits, input_logits):
+ return (
+ F.kl_div(
+ F.log_softmax(noised_logits, dim=-1, dtype=torch.float32),
+ F.softmax(input_logits, dim=-1, dtype=torch.float32),
+ None,
+ None,
+ "sum",
+ )
+ + F.kl_div(
+ F.log_softmax(input_logits, dim=-1, dtype=torch.float32),
+ F.softmax(noised_logits, dim=-1, dtype=torch.float32),
+ None,
+ None,
+ "sum",
+ )
+ ) / noised_logits.size(0)
+
+ def forward(self, model, sample, reduce=True):
+ """Compute the loss for the given sample.
+
+ Returns a tuple with three elements:
+ 1) the loss
+ 2) the sample size, which is used as the denominator for the gradient
+ 3) logging outputs to display while training
+ """
+ assert (
+ hasattr(model, "classification_heads")
+ and self.classification_head_name in model.classification_heads
+ ), "model must provide sentence classification head for --criterion=sentence_prediction"
+
+ token_embeddings = model.encoder.sentence_encoder.embed_tokens(
+ sample["net_input"]["src_tokens"]
+ )
+ input_logits, _ = model(
+ **sample["net_input"],
+ features_only=True,
+ classification_head_name=self.classification_head_name,
+ token_embeddings=token_embeddings,
+ )
+ if model.training and self.noise_sampler:
+ noise = self.noise_sampler.sample(sample_shape=token_embeddings.shape).to(
+ token_embeddings
+ )
+ noised_embeddings = token_embeddings.detach().clone() + noise
+
+ noised_logits, _ = model(
+ **sample["net_input"],
+ features_only=True,
+ classification_head_name=self.classification_head_name,
+ token_embeddings=noised_embeddings,
+ )
+ symm_kl = self._get_symm_kl(noised_logits, input_logits)
+ else:
+ symm_kl = 0
+
+ targets = model.get_targets(sample, [input_logits]).view(-1)
+ sample_size = targets.numel()
+
+ if not self.regression_target:
+ loss = F.nll_loss(
+ F.log_softmax(input_logits, dim=-1, dtype=torch.float32),
+ targets,
+ reduction="sum",
+ )
+ if model.training:
+ symm_kl = symm_kl * sample_size
+ loss = loss + self.r3f_lambda * symm_kl
+ else:
+ logits = input_logits.squeeze().float()
+ targets = targets.float()
+ loss = F.mse_loss(logits, targets, reduction="sum")
+
+ logging_output = {
+ "loss": utils.item(loss.data) if reduce else loss.data,
+ "ntokens": sample["ntokens"],
+ "nsentences": sample_size,
+ "sample_size": sample_size,
+ }
+
+ if not self.regression_target:
+ preds = input_logits.max(dim=1)[1]
+ logging_output.update(ncorrect=(preds == targets).sum().item())
+
+ if model.training and self.noise_sampler:
+ logging_output.update(
+ symm_kl=utils.item(symm_kl.data) if reduce else symm_kl.data
+ )
+ return loss, sample_size, logging_output
+
+ @staticmethod
+ def aggregate_logging_outputs(logging_outputs):
+ """Aggregate logging outputs from data parallel training."""
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
+ symm_kl_sum = sum(log.get("symm_kl", 0) for log in logging_outputs)
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
+
+ agg_output = {
+ "loss": loss_sum / sample_size / math.log(2),
+ "symm_kl": symm_kl_sum / sample_size,
+ "ntokens": ntokens,
+ "nsentences": nsentences,
+ "sample_size": sample_size,
+ }
+
+ if len(logging_outputs) > 0 and "ncorrect" in logging_outputs[0]:
+ ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs)
+ agg_output.update(accuracy=ncorrect / nsentences)
+
+ if sample_size != ntokens:
+ agg_output["nll_loss"] = loss_sum / ntokens / math.log(2)
+ return agg_output
diff --git a/fairseq/examples/scaling_nmt/README.md b/fairseq/examples/scaling_nmt/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..0cc3360c3bbd58fe35a51591db8f081fc8576877
--- /dev/null
+++ b/fairseq/examples/scaling_nmt/README.md
@@ -0,0 +1,114 @@
+# Scaling Neural Machine Translation (Ott et al., 2018)
+
+This page includes instructions for reproducing results from the paper [Scaling Neural Machine Translation (Ott et al., 2018)](https://arxiv.org/abs/1806.00187).
+
+## Pre-trained models
+
+Model | Description | Dataset | Download
+---|---|---|---
+`transformer.wmt14.en-fr` | Transformer ([Ott et al., 2018](https://arxiv.org/abs/1806.00187)) | [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) | model: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-fr.joined-dict.transformer.tar.bz2) newstest2014: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.en-fr.joined-dict.newstest2014.tar.bz2)
+`transformer.wmt16.en-de` | Transformer ([Ott et al., 2018](https://arxiv.org/abs/1806.00187)) | [WMT16 English-German](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8) | model: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt16.en-de.joined-dict.transformer.tar.bz2) newstest2014: [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt16.en-de.joined-dict.newstest2014.tar.bz2)
+
+## Training a new model on WMT'16 En-De
+
+First download the [preprocessed WMT'16 En-De data provided by Google](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8).
+
+Then:
+
+##### 1. Extract the WMT'16 En-De data
+```bash
+TEXT=wmt16_en_de_bpe32k
+mkdir -p $TEXT
+tar -xzvf wmt16_en_de.tar.gz -C $TEXT
+```
+
+##### 2. Preprocess the dataset with a joined dictionary
+```bash
+fairseq-preprocess \
+ --source-lang en --target-lang de \
+ --trainpref $TEXT/train.tok.clean.bpe.32000 \
+ --validpref $TEXT/newstest2013.tok.bpe.32000 \
+ --testpref $TEXT/newstest2014.tok.bpe.32000 \
+ --destdir data-bin/wmt16_en_de_bpe32k \
+ --nwordssrc 32768 --nwordstgt 32768 \
+ --joined-dictionary \
+ --workers 20
+```
+
+##### 3. Train a model
+```bash
+fairseq-train \
+ data-bin/wmt16_en_de_bpe32k \
+ --arch transformer_vaswani_wmt_en_de_big --share-all-embeddings \
+ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
+ --lr 0.0005 --lr-scheduler inverse_sqrt --warmup-updates 4000 --warmup-init-lr 1e-07 \
+ --dropout 0.3 --weight-decay 0.0 \
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
+ --max-tokens 3584 \
+ --fp16
+```
+
+Note that the `--fp16` flag requires you have CUDA 9.1 or greater and a Volta GPU or newer.
+
+***IMPORTANT:*** You will get better performance by training with big batches and
+increasing the learning rate. If you want to train the above model with big batches
+(assuming your machine has 8 GPUs):
+- add `--update-freq 16` to simulate training on 8x16=128 GPUs
+- increase the learning rate; 0.001 works well for big batches
+
+##### 4. Evaluate
+
+Now we can evaluate our trained model.
+
+Note that the original [Attention Is All You Need](https://arxiv.org/abs/1706.03762)
+paper used a couple tricks to achieve better BLEU scores. We use these same tricks in
+the Scaling NMT paper, so it's important to apply them when reproducing our results.
+
+First, use the [average_checkpoints.py](/scripts/average_checkpoints.py) script to
+average the last few checkpoints. Averaging the last 5-10 checkpoints is usually
+good, but you may need to adjust this depending on how long you've trained:
+```bash
+python scripts/average_checkpoints \
+ --inputs /path/to/checkpoints \
+ --num-epoch-checkpoints 10 \
+ --output checkpoint.avg10.pt
+```
+
+Next, generate translations using a beam width of 4 and length penalty of 0.6:
+```bash
+fairseq-generate \
+ data-bin/wmt16_en_de_bpe32k \
+ --path checkpoint.avg10.pt \
+ --beam 4 --lenpen 0.6 --remove-bpe > gen.out
+```
+
+Finally, we apply the ["compound splitting" script](/scripts/compound_split_bleu.sh) to
+add spaces around dashes. For example "Café-Liebhaber" would become three tokens:
+"Café - Liebhaber". This typically results in larger BLEU scores, but it is not
+appropriate to compare these inflated scores to work which does not include this trick.
+This trick was used in the [original AIAYN code](https://github.com/tensorflow/tensor2tensor/blob/fc9335c0203685cbbfe2b30c92db4352d8f60779/tensor2tensor/utils/get_ende_bleu.sh),
+so we used it in the Scaling NMT paper as well. That said, it's strongly advised to
+report [sacrebleu](https://github.com/mjpost/sacrebleu) scores instead.
+
+To compute "compound split" tokenized BLEU (not recommended!):
+```bash
+bash scripts/compound_split_bleu.sh gen.out
+# BLEU4 = 29.29, 60.3/35.0/22.8/15.3 (BP=1.000, ratio=1.004, syslen=64763, reflen=64496)
+```
+
+To compute detokenized BLEU with sacrebleu (preferred):
+```bash
+bash scripts/sacrebleu.sh wmt14/full en de gen.out
+# BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt14/full+tok.13a+version.1.4.3 = 28.6 59.3/34.3/22.1/14.9 (BP = 1.000 ratio = 1.016 hyp_len = 63666 ref_len = 62688)
+```
+
+## Citation
+
+```bibtex
+@inproceedings{ott2018scaling,
+ title = {Scaling Neural Machine Translation},
+ author = {Ott, Myle and Edunov, Sergey and Grangier, David and Auli, Michael},
+ booktitle = {Proceedings of the Third Conference on Machine Translation (WMT)},
+ year = 2018,
+}
+```
diff --git a/fairseq/examples/shuffled_word_order/README.finetuning.md b/fairseq/examples/shuffled_word_order/README.finetuning.md
new file mode 100644
index 0000000000000000000000000000000000000000..ecbcb65884640c3327a2cbaef8aad4f3cfe812f7
--- /dev/null
+++ b/fairseq/examples/shuffled_word_order/README.finetuning.md
@@ -0,0 +1,135 @@
+# Fine-tuning details
+
+For each task (GLUE and PAWS), we perform hyperparam search for each model, and report the mean and standard deviation across 5 seeds of the best model. First, get the datasets following the instructions in [RoBERTa fine-tuning README](../roberta/README.glue.md). Alternatively, you can use [huggingface datasets](https://huggingface.co/docs/datasets/) to get the task data:
+
+```python
+from datasets import load_dataset
+import pandas as pd
+from pathlib import Path
+
+key2file = {
+"paws": {
+ "loc": "paws_data",
+ "columns": ["id", "sentence1", "sentence2", "label"],
+ "train": "train.tsv",
+ "validation": "dev.tsv",
+ "test": "test.tsv"
+ }
+}
+
+task_data = load_dataset("paws", "labeled_final")
+task_config = key2file["paws"]
+save_path = Path(task_config["loc"])
+save_path.mkdir(exist_ok=True, parents=True)
+for key, fl in task_config.items():
+ if key in ["loc", "columns"]:
+ continue
+ print(f"Reading {key}")
+ columns = task_config["columns"]
+ df = pd.DataFrame(task_data[key])
+ print(df.columns)
+ df = df[columns]
+ print(f"Got {len(df)} records")
+ save_loc = save_path / fl
+ print(f"Saving to : {save_loc}")
+ df.to_csv(save_loc, sep="\t", header=None, index=None)
+
+```
+
+- Preprocess using RoBERTa GLUE preprocessing script, while keeping in mind the column numbers for `sentence1`, `sentence2` and `label` (which is 0,1,2 if you save the data according to the above example.)
+- Then, fine-tuning is performed similarly to RoBERTa (for example, in case of RTE):
+
+```bash
+TOTAL_NUM_UPDATES=30875 # 10 epochs through RTE for bsz 16
+WARMUP_UPDATES=1852 # 6 percent of the number of updates
+LR=2e-05 # Peak LR for polynomial LR scheduler.
+NUM_CLASSES=2
+MAX_SENTENCES=16 # Batch size.
+SHUFFLED_ROBERTA_PATH=/path/to/shuffled_roberta/model.pt
+
+CUDA_VISIBLE_DEVICES=0 fairseq-train RTE-bin/ \
+ --restore-file $SHUFFLED_ROBERTA_PATH \
+ --max-positions 512 \
+ --batch-size $MAX_SENTENCES \
+ --max-tokens 4400 \
+ --task sentence_prediction \
+ --reset-optimizer --reset-dataloader --reset-meters \
+ --required-batch-size-multiple 1 \
+ --init-token 0 --separator-token 2 \
+ --arch roberta_large \
+ --criterion sentence_prediction \
+ --num-classes $NUM_CLASSES \
+ --dropout 0.1 --attention-dropout 0.1 \
+ --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
+ --clip-norm 0.0 \
+ --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
+ --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \
+ --max-epoch 10 \
+ --find-unused-parameters \
+ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric;
+```
+
+- `TOTAL_NUM_UPDATES` is computed based on the `--batch_size` value and the dataset size.
+- `WARMUP_UPDATES` is computed as 6% of `TOTAL_NUM_UPDATES`
+- Best hyperparam of `--lr` and `--batch_size` is reported below:
+
+## `--lr`
+
+| | name | RTE | MRPC | SST-2 | CoLA | QQP | QNLI | MNLI | PAWS |
+| --: | :----------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: |
+| 0 | original | 2e-05 | 2e-05 | 1e-05 | 2e-05 | 1e-05 | 1e-05 | 1e-05 | 2e-05 |
+| 1 | n_1 | 2e-05 | 1e-05 | 1e-05 | 1e-05 | 3e-05 | 1e-05 | 2e-05 | 2e-05 |
+| 2 | n_2 | 2e-05 | 2e-05 | 1e-05 | 1e-05 | 2e-05 | 1e-05 | 1e-05 | 3e-05 |
+| 3 | n_3 | 3e-05 | 1e-05 | 2e-05 | 2e-05 | 3e-05 | 1e-05 | 1e-05 | 2e-05 |
+| 4 | n_4 | 3e-05 | 1e-05 | 2e-05 | 2e-05 | 2e-05 | 1e-05 | 1e-05 | 2e-05 |
+| 5 | r512 | 1e-05 | 3e-05 | 2e-05 | 2e-05 | 3e-05 | 2e-05 | 3e-05 | 2e-05 |
+| 6 | rand_corpus | 2e-05 | 1e-05 | 3e-05 | 1e-05 | 3e-05 | 3e-05 | 3e-05 | 2e-05 |
+| 7 | rand_uniform | 2e-05 | 1e-05 | 3e-05 | 2e-05 | 3e-05 | 3e-05 | 3e-05 | 1e-05 |
+| 8 | rand_init | 1e-05 | 1e-05 | 3e-05 | 1e-05 | 1e-05 | 1e-05 | 2e-05 | 1e-05 |
+| 9 | no_pos | 1e-05 | 3e-05 | 2e-05 | 1e-05 | 1e-05 | 1e-05 | 1e-05 | 1e-05 |
+
+## `--batch_size`
+
+| | name | RTE | MRPC | SST-2 | CoLA | QQP | QNLI | MNLI | PAWS |
+| --: | :----------- | --: | ---: | ----: | ---: | --: | ---: | ---: | ---: |
+| 0 | orig | 16 | 16 | 32 | 16 | 16 | 32 | 32 | 16 |
+| 1 | n_1 | 32 | 32 | 16 | 32 | 32 | 16 | 32 | 16 |
+| 2 | n_2 | 32 | 16 | 32 | 16 | 32 | 32 | 16 | 32 |
+| 3 | n_3 | 32 | 32 | 16 | 32 | 32 | 16 | 32 | 32 |
+| 4 | n_4 | 32 | 16 | 32 | 16 | 32 | 32 | 32 | 32 |
+| 5 | r512 | 32 | 16 | 16 | 32 | 32 | 16 | 16 | 16 |
+| 6 | rand_corpus | 16 | 16 | 16 | 16 | 32 | 16 | 16 | 32 |
+| 7 | rand_uniform | 16 | 32 | 16 | 16 | 32 | 16 | 16 | 16 |
+| 8 | rand_init | 16 | 16 | 32 | 16 | 16 | 16 | 32 | 16 |
+| 9 | no_pos | 16 | 32 | 16 | 16 | 32 | 16 | 16 | 16 |
+
+- Perform inference similar to RoBERTa as well:
+
+```python
+from fairseq.models.roberta import RobertaModel
+
+roberta = RobertaModel.from_pretrained(
+ 'checkpoints/',
+ checkpoint_file='checkpoint_best.pt',
+ data_name_or_path='PAWS-bin'
+)
+
+label_fn = lambda label: roberta.task.label_dictionary.string(
+ [label + roberta.task.label_dictionary.nspecial]
+)
+ncorrect, nsamples = 0, 0
+roberta.cuda()
+roberta.eval()
+with open('paws_data/dev.tsv') as fin:
+ fin.readline()
+ for index, line in enumerate(fin):
+ tokens = line.strip().split('\t')
+ sent1, sent2, target = tokens[0], tokens[1], tokens[2]
+ tokens = roberta.encode(sent1, sent2)
+ prediction = roberta.predict('sentence_classification_head', tokens).argmax().item()
+ prediction_label = label_fn(prediction)
+ ncorrect += int(prediction_label == target)
+ nsamples += 1
+print('| Accuracy: ', float(ncorrect)/float(nsamples))
+
+```
diff --git a/fairseq/examples/shuffled_word_order/README.md b/fairseq/examples/shuffled_word_order/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..f20483849a8ca33bf349b57882a79155ba593bf1
--- /dev/null
+++ b/fairseq/examples/shuffled_word_order/README.md
@@ -0,0 +1,84 @@
+# Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little
+
+[https://arxiv.org/abs/2104.06644](https://arxiv.org/abs/2104.06644)
+
+## Introduction
+
+In this work, we pre-train [RoBERTa](../roberta) base on various word shuffled variants of BookWiki corpus (16GB). We observe that a word shuffled pre-trained model achieves surprisingly good scores on GLUE, PAWS and several parametric probing tasks. Please read our paper for more details on the experiments.
+
+## Pre-trained models
+
+| Model | Description | Download |
+| ------------------------------------- | -------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------- |
+| `roberta.base.orig` | RoBERTa (base) trained on natural corpus | [roberta.base.orig.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.orig.tar.gz) |
+| `roberta.base.shuffle.n1` | RoBERTa (base) trained on n=1 gram sentence word shuffled data | [roberta.base.shuffle.n1.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n1.tar.gz) |
+| `roberta.base.shuffle.n2` | RoBERTa (base) trained on n=2 gram sentence word shuffled data | [roberta.base.shuffle.n2.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n2.tar.gz) |
+| `roberta.base.shuffle.n3` | RoBERTa (base) trained on n=3 gram sentence word shuffled data | [roberta.base.shuffle.n3.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n3.tar.gz) |
+| `roberta.base.shuffle.n4` | RoBERTa (base) trained on n=4 gram sentence word shuffled data | [roberta.base.shuffle.n4.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n4.tar.gz) |
+| `roberta.base.shuffle.512` | RoBERTa (base) trained on unigram 512 word block shuffled data | [roberta.base.shuffle.512.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.512.tar.gz) |
+| `roberta.base.shuffle.corpus` | RoBERTa (base) trained on unigram corpus word shuffled data | [roberta.base.shuffle.corpus.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.corpus.tar.gz) |
+| `roberta.base.shuffle.corpus_uniform` | RoBERTa (base) trained on unigram corpus word shuffled data, where all words are uniformly sampled | [roberta.base.shuffle.corpus_uniform.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.corpus_uniform.tar.gz) |
+| `roberta.base.nopos` | RoBERTa (base) without positional embeddings, trained on natural corpus | [roberta.base.nopos.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.nopos.tar.gz) |
+
+## Results
+
+[GLUE (Wang et al, 2019)](https://gluebenchmark.com/) & [PAWS (Zhang et al, 2019)](https://github.com/google-research-datasets/paws) _(dev set, single model, single-task fine-tuning, median of 5 seeds)_
+
+| name | CoLA | MNLI | MRPC | PAWS | QNLI | QQP | RTE | SST-2 |
+| :----------------------------------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: |
+| `roberta.base.orig` | 61.4 | 86.11 | 89.19 | 94.46 | 92.53 | 91.26 | 74.64 | 93.92 |
+| `roberta.base.shuffle.n1` | 35.15 | 82.64 | 86 | 89.97 | 89.02 | 91.01 | 69.02 | 90.47 |
+| `roberta.base.shuffle.n2` | 54.37 | 83.43 | 86.24 | 93.46 | 90.44 | 91.36 | 70.83 | 91.79 |
+| `roberta.base.shuffle.n3` | 48.72 | 83.85 | 86.36 | 94.05 | 91.69 | 91.24 | 70.65 | 92.02 |
+| `roberta.base.shuffle.n4` | 58.64 | 83.77 | 86.98 | 94.32 | 91.69 | 91.4 | 70.83 | 92.48 |
+| `roberta.base.shuffle.512` | 12.76 | 77.52 | 79.61 | 84.77 | 85.19 | 90.2 | 56.52 | 86.34 |
+| `roberta.base.shuffle.corpus` | 0 | 71.9 | 70.52 | 58.52 | 71.11 | 85.52 | 53.99 | 83.35 |
+| `roberta.base.shuffle.corpus_random` | 9.19 | 72.33 | 70.76 | 58.42 | 77.76 | 85.93 | 53.99 | 84.04 |
+| `roberta.base.nopos` | 0 | 63.5 | 72.73 | 57.08 | 77.72 | 87.87 | 54.35 | 83.24 |
+
+For more results on probing tasks, please refer to [our paper](https://arxiv.org/abs/2104.06644).
+
+## Example Usage
+
+Follow the same usage as in [RoBERTa](https://github.com/pytorch/fairseq/tree/main/examples/roberta) to load and test your models:
+
+```python
+# Download roberta.base.shuffle.n1 model
+wget https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n1.tar.gz
+tar -xzvf roberta.base.shuffle.n1.tar.gz
+
+# Load the model in fairseq
+from fairseq.models.roberta import RoBERTaModel
+roberta = RoBERTaModel.from_pretrained('/path/to/roberta.base.shuffle.n1', checkpoint_file='model.pt')
+roberta.eval() # disable dropout (or leave in train mode to finetune)
+```
+
+**Note**: The model trained without positional embeddings (`roberta.base.nopos`) is a modified `RoBERTa` model, where the positional embeddings are not used. Thus, the typical `from_pretrained` method on fairseq version of RoBERTa will not be able to load the above model weights. To do so, construct a new `RoBERTaModel` object by setting the flag `use_positional_embeddings` to `False` (or [in the latest code](https://github.com/pytorch/fairseq/blob/main/fairseq/models/roberta/model.py#L543), set `no_token_positional_embeddings` to `True`), and then load the individual weights.
+
+## Fine-tuning Evaluation
+
+We provide the trained fine-tuned models on MNLI here for each model above for quick evaluation (1 seed for each model). Please refer to [finetuning details](README.finetuning.md) for the parameters of these models. Follow [RoBERTa](https://github.com/pytorch/fairseq/tree/main/examples/roberta) instructions to evaluate these models.
+
+| Model | MNLI M Dev Accuracy | Link |
+| :----------------------------------------- | :------------------ | :--------------------------------------------------------------------------------------------------------------- |
+| `roberta.base.orig.mnli` | 86.14 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.orig.mnli.tar.gz) |
+| `roberta.base.shuffle.n1.mnli` | 82.55 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n1.mnli.tar.gz) |
+| `roberta.base.shuffle.n2.mnli` | 83.21 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n2.mnli.tar.gz) |
+| `roberta.base.shuffle.n3.mnli` | 83.89 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n3.mnli.tar.gz) |
+| `roberta.base.shuffle.n4.mnli` | 84.00 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n4.mnli.tar.gz) |
+| `roberta.base.shuffle.512.mnli` | 77.22 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.512.mnli.tar.gz) |
+| `roberta.base.shuffle.corpus.mnli` | 71.88 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.corpus.mnli.tar.gz) |
+| `roberta.base.shuffle.corpus_uniform.mnli` | 72.46 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.corpus_uniform.mnli.tar.gz) |
+
+## Citation
+
+```bibtex
+@misc{sinha2021masked,
+ title={Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little},
+ author={Koustuv Sinha and Robin Jia and Dieuwke Hupkes and Joelle Pineau and Adina Williams and Douwe Kiela},
+ year={2021},
+ eprint={2104.06644},
+ archivePrefix={arXiv},
+ primaryClass={cs.CL}
+}
+```
diff --git a/fairseq/examples/simultaneous_translation/README.md b/fairseq/examples/simultaneous_translation/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..62a005e0ec6f15af9015d335e34b45df6ed89b6c
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/README.md
@@ -0,0 +1,5 @@
+# Simultaneous Translation
+Examples of simultaneous translation in fairseq
+- [English-to-Japanese text-to-text wait-k model](docs/enja-waitk.md)
+- [English-to-Germen text-to-text monotonic multihead attention model](docs/ende-mma.md)
+- [English-to-Germen speech-to-text simultaneous translation model](../speech_to_text/docs/simulst_mustc_example.md)
diff --git a/fairseq/examples/simultaneous_translation/__init__.py b/fairseq/examples/simultaneous_translation/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5835316ba9b23c0d99d1a8f109ee047682211546
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/__init__.py
@@ -0,0 +1,6 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from . import models # noqa
diff --git a/fairseq/examples/simultaneous_translation/docs/ende-mma.md b/fairseq/examples/simultaneous_translation/docs/ende-mma.md
new file mode 100644
index 0000000000000000000000000000000000000000..241d604a3b31a37755da68aad6ff47d46891d3fc
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/docs/ende-mma.md
@@ -0,0 +1,74 @@
+# Simultaneous Machine Translation
+
+This directory contains the code for the paper [Monotonic Multihead Attention](https://openreview.net/forum?id=Hyg96gBKPS)
+
+## Prepare Data
+
+[Please follow the instructions to download and preprocess the WMT'15 En-De dataset.](https://github.com/pytorch/fairseq/tree/simulastsharedtask/examples/translation#prepare-wmt14en2desh)
+
+Another example of training an English to Japanese model can be found [here](docs/enja.md)
+
+## Training
+
+- MMA-IL
+
+```shell
+fairseq-train \
+ data-bin/wmt15_en_de_32k \
+ --simul-type infinite_lookback \
+ --user-dir $FAIRSEQ/example/simultaneous_translation \
+ --mass-preservation \
+ --criterion latency_augmented_label_smoothed_cross_entropy \
+ --latency-weight-avg 0.1 \
+ --max-update 50000 \
+ --arch transformer_monotonic_iwslt_de_en save_dir_key=lambda \
+ --optimizer adam --adam-betas '(0.9, 0.98)' \
+ --lr-scheduler 'inverse_sqrt' \
+ --warmup-init-lr 1e-7 --warmup-updates 4000 \
+ --lr 5e-4 --stop-min-lr 1e-9 --clip-norm 0.0 --weight-decay 0.0001\
+ --dropout 0.3 \
+ --label-smoothing 0.1\
+ --max-tokens 3584
+```
+
+- MMA-H
+
+```shell
+fairseq-train \
+ data-bin/wmt15_en_de_32k \
+ --simul-type hard_aligned \
+ --user-dir $FAIRSEQ/example/simultaneous_translation \
+ --mass-preservation \
+ --criterion latency_augmented_label_smoothed_cross_entropy \
+ --latency-weight-var 0.1 \
+ --max-update 50000 \
+ --arch transformer_monotonic_iwslt_de_en save_dir_key=lambda \
+ --optimizer adam --adam-betas '(0.9, 0.98)' \
+ --lr-scheduler 'inverse_sqrt' \
+ --warmup-init-lr 1e-7 --warmup-updates 4000 \
+ --lr 5e-4 --stop-min-lr 1e-9 --clip-norm 0.0 --weight-decay 0.0001\
+ --dropout 0.3 \
+ --label-smoothing 0.1\
+ --max-tokens 3584
+```
+
+- wait-k
+
+```shell
+fairseq-train \
+ data-bin/wmt15_en_de_32k \
+ --simul-type wait-k \
+ --waitk-lagging 3 \
+ --user-dir $FAIRSEQ/example/simultaneous_translation \
+ --mass-preservation \
+ --criterion latency_augmented_label_smoothed_cross_entropy \
+ --max-update 50000 \
+ --arch transformer_monotonic_iwslt_de_en save_dir_key=lambda \
+ --optimizer adam --adam-betas '(0.9, 0.98)' \
+ --lr-scheduler 'inverse_sqrt' \
+ --warmup-init-lr 1e-7 --warmup-updates 4000 \
+ --lr 5e-4 --stop-min-lr 1e-9 --clip-norm 0.0 --weight-decay 0.0001\
+ --dropout 0.3 \
+ --label-smoothing 0.1\
+ --max-tokens 3584
+```
diff --git a/fairseq/examples/simultaneous_translation/docs/enja-waitk.md b/fairseq/examples/simultaneous_translation/docs/enja-waitk.md
new file mode 100644
index 0000000000000000000000000000000000000000..fb9d82576f80b4405564a99774fc98ac2fe6ad3b
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/docs/enja-waitk.md
@@ -0,0 +1,106 @@
+# An example of English to Japaneses Simultaneous Translation System
+
+This is an example of training and evaluating a transformer *wait-k* English to Japanese simultaneous text-to-text translation model.
+
+## Data Preparation
+This section introduces the data preparation for training and evaluation.
+If you only want to evaluate the model, please jump to [Inference & Evaluation](#inference-&-evaluation)
+
+For illustration, we only use the following subsets of the available data from [WMT20 news translation task](http://www.statmt.org/wmt20/translation-task.html), which results in 7,815,391 sentence pairs.
+- News Commentary v16
+- Wiki Titles v3
+- WikiMatrix V1
+- Japanese-English Subtitle Corpus
+- The Kyoto Free Translation Task Corpus
+
+We use WMT20 development data as development set. Training `transformer_vaswani_wmt_en_de_big` model on such amount of data will result in 17.3 BLEU with greedy search and 19.7 with beam (10) search. Notice that a better performance can be achieved with the full WMT training data.
+
+We use [sentencepiece](https://github.com/google/sentencepiece) toolkit to tokenize the data with a vocabulary size of 32000.
+Additionally, we filtered out the sentences longer than 200 words after tokenization.
+Assuming the tokenized text data is saved at `${DATA_DIR}`,
+we prepare the data binary with the following command.
+
+```bash
+fairseq-preprocess \
+ --source-lang en --target-lang ja \
+ --trainpref ${DATA_DIR}/train \
+ --validpref ${DATA_DIR}/dev \
+ --testpref ${DATA_DIR}/test \
+ --destdir ${WMT20_ENJA_DATA_BIN} \
+ --nwordstgt 32000 --nwordssrc 32000 \
+ --workers 20
+```
+
+## Simultaneous Translation Model Training
+To train a wait-k `(k=10)` model.
+```bash
+fairseq-train ${WMT20_ENJA_DATA_BIN} \
+ --save-dir ${SAVEDIR}
+ --simul-type waitk \
+ --waitk-lagging 10 \
+ --max-epoch 70 \
+ --arch transformer_monotonic_vaswani_wmt_en_de_big \
+ --optimizer adam \
+ --adam-betas '(0.9, 0.98)' \
+ --lr-scheduler inverse_sqrt \
+ --warmup-init-lr 1e-07 \
+ --warmup-updates 4000 \
+ --lr 0.0005 \
+ --stop-min-lr 1e-09 \
+ --clip-norm 10.0 \
+ --dropout 0.3 \
+ --weight-decay 0.0 \
+ --criterion label_smoothed_cross_entropy \
+ --label-smoothing 0.1 \
+ --max-tokens 3584
+```
+This command is for training on 8 GPUs. Equivalently, the model can be trained on one GPU with `--update-freq 8`.
+
+## Inference & Evaluation
+First of all, install [SimulEval](https://github.com/facebookresearch/SimulEval) for evaluation.
+
+```bash
+git clone https://github.com/facebookresearch/SimulEval.git
+cd SimulEval
+pip install -e .
+```
+
+The following command is for the evaluation.
+Assuming the source and reference files are `${SRC_FILE}` and `${REF_FILE}`, the sentencepiece model file for English is saved at `${SRC_SPM_PATH}`
+
+
+```bash
+simuleval \
+ --source ${SRC_FILE} \
+ --target ${TGT_FILE} \
+ --data-bin ${WMT20_ENJA_DATA_BIN} \
+ --sacrebleu-tokenizer ja-mecab \
+ --eval-latency-unit char \
+ --no-space \
+ --src-splitter-type sentencepiecemodel \
+ --src-splitter-path ${SRC_SPM_PATH} \
+ --agent ${FAIRSEQ}/examples/simultaneous_translation/agents/simul_trans_text_agent_enja.py \
+ --model-path ${SAVE_DIR}/${CHECKPOINT_FILENAME} \
+ --output ${OUTPUT} \
+ --scores
+```
+
+The `--data-bin` should be the same in previous sections if you prepare the data from the scratch.
+If only for evaluation, a prepared data directory can be found [here](https://dl.fbaipublicfiles.com/simultaneous_translation/wmt20_enja_medium_databin.tgz) and a pretrained checkpoint (wait-k=10 model) can be downloaded from [here](https://dl.fbaipublicfiles.com/simultaneous_translation/wmt20_enja_medium_wait10_ckpt.pt).
+
+The output should look like this:
+```bash
+{
+ "Quality": {
+ "BLEU": 11.442253287568398
+ },
+ "Latency": {
+ "AL": 8.6587861866951,
+ "AP": 0.7863304776251316,
+ "DAL": 9.477850951194764
+ }
+}
+```
+The latency is evaluated by characters (`--eval-latency-unit`) on the target side. The latency is evaluated with `sacrebleu` with `MeCab` tokenizer `--sacrebleu-tokenizer ja-mecab`. `--no-space` indicates that do not add space when merging the predicted words.
+
+If `--output ${OUTPUT}` option is used, the detailed log and scores will be stored under the `${OUTPUT}` directory.
diff --git a/fairseq/examples/simultaneous_translation/eval/agents/simul_t2t_enja.py b/fairseq/examples/simultaneous_translation/eval/agents/simul_t2t_enja.py
new file mode 100644
index 0000000000000000000000000000000000000000..8f3c8703ca37398b9d389ce5181bdfac2333cdf2
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/eval/agents/simul_t2t_enja.py
@@ -0,0 +1,226 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import os
+
+from fairseq import checkpoint_utils, tasks
+import sentencepiece as spm
+import torch
+
+try:
+ from simuleval import READ_ACTION, WRITE_ACTION, DEFAULT_EOS
+ from simuleval.agents import TextAgent
+except ImportError:
+ print("Please install simuleval 'pip install simuleval'")
+
+
+BOS_PREFIX = "\u2581"
+
+
+class SimulTransTextAgentJA(TextAgent):
+ """
+ Simultaneous Translation
+ Text agent for Japanese
+ """
+ def __init__(self, args):
+
+ # Whether use gpu
+ self.gpu = getattr(args, "gpu", False)
+
+ # Max len
+ self.max_len = args.max_len
+
+ # Load Model
+ self.load_model_vocab(args)
+
+ # build word splitter
+ self.build_word_splitter(args)
+
+ self.eos = DEFAULT_EOS
+
+ def initialize_states(self, states):
+ states.incremental_states = dict()
+ states.incremental_states["online"] = dict()
+
+ def to_device(self, tensor):
+ if self.gpu:
+ return tensor.cuda()
+ else:
+ return tensor.cpu()
+
+ def load_model_vocab(self, args):
+
+ filename = args.model_path
+ if not os.path.exists(filename):
+ raise IOError("Model file not found: {}".format(filename))
+
+ state = checkpoint_utils.load_checkpoint_to_cpu(filename)
+
+ task_args = state["cfg"]["task"]
+ task_args.data = args.data_bin
+
+ task = tasks.setup_task(task_args)
+
+ # build model for ensemble
+ state["cfg"]["model"].load_pretrained_encoder_from = None
+ state["cfg"]["model"].load_pretrained_decoder_from = None
+
+ self.model = task.build_model(state["cfg"]["model"])
+ self.model.load_state_dict(state["model"], strict=True)
+ self.model.eval()
+ self.model.share_memory()
+
+ if self.gpu:
+ self.model.cuda()
+
+ # Set dictionary
+ self.dict = {}
+ self.dict["tgt"] = task.target_dictionary
+ self.dict["src"] = task.source_dictionary
+
+ @staticmethod
+ def add_args(parser):
+ # fmt: off
+ parser.add_argument('--model-path', type=str, required=True,
+ help='path to your pretrained model.')
+ parser.add_argument("--data-bin", type=str, required=True,
+ help="Path of data binary")
+ parser.add_argument("--max-len", type=int, default=100,
+ help="Max length of translation")
+ parser.add_argument("--tgt-splitter-type", type=str, default="SentencePiece",
+ help="Subword splitter type for target text.")
+ parser.add_argument("--tgt-splitter-path", type=str, default=None,
+ help="Subword splitter model path for target text.")
+ parser.add_argument("--src-splitter-type", type=str, default="SentencePiece",
+ help="Subword splitter type for source text.")
+ parser.add_argument("--src-splitter-path", type=str, default=None,
+ help="Subword splitter model path for source text.")
+ # fmt: on
+ return parser
+
+ def build_word_splitter(self, args):
+ self.spm = {}
+ for lang in ['src', 'tgt']:
+ if getattr(args, f'{lang}_splitter_type', None):
+ path = getattr(args, f'{lang}_splitter_path', None)
+ if path:
+ self.spm[lang] = spm.SentencePieceProcessor()
+ self.spm[lang].Load(path)
+
+ def segment_to_units(self, segment, states):
+ # Split a full word (segment) into subwords (units)
+ return self.spm['src'].EncodeAsPieces(segment)
+
+ def update_model_encoder(self, states):
+ if len(states.units.source) == 0:
+ return
+
+ src_indices = [
+ self.dict['src'].index(x)
+ for x in states.units.source.value
+ ]
+
+ if states.finish_read():
+ # Append the eos index when the prediction is over
+ src_indices += [self.dict["tgt"].eos_index]
+
+ src_indices = self.to_device(
+ torch.LongTensor(src_indices).unsqueeze(0)
+ )
+ src_lengths = self.to_device(
+ torch.LongTensor([src_indices.size(1)])
+ )
+
+ states.encoder_states = self.model.encoder(src_indices, src_lengths)
+
+ torch.cuda.empty_cache()
+
+ def update_states_read(self, states):
+ # Happens after a read action.
+ self.update_model_encoder(states)
+
+ def units_to_segment(self, units, states):
+ # Merge sub words (units) to full word (segment).
+ # For Japanese, we can directly send
+ # the untokenized token to server except the BOS token
+ # with following option
+ # --sacrebleu-tokenizer MeCab
+ # --eval-latency-unit char
+ # --no-space
+ token = units.value.pop()
+
+ if (
+ token == self.dict["tgt"].eos_word
+ or len(states.segments.target) > self.max_len
+ ):
+ return DEFAULT_EOS
+
+ if BOS_PREFIX == token:
+ return None
+ if token[0] == BOS_PREFIX:
+ return token[1:]
+ else:
+ return token
+
+ def policy(self, states):
+
+ if not getattr(states, "encoder_states", None):
+ # No encoder states, read a token first
+ return READ_ACTION
+
+ # encode previous predicted target tokens
+ tgt_indices = self.to_device(
+ torch.LongTensor(
+ [self.model.decoder.dictionary.eos()]
+ + [
+ self.dict['tgt'].index(x)
+ for x in states.units.target.value
+ if x is not None
+ ]
+ ).unsqueeze(0)
+ )
+
+ # Current steps
+ states.incremental_states["steps"] = {
+ "src": states.encoder_states["encoder_out"][0].size(0),
+ "tgt": 1 + len(states.units.target),
+ }
+
+ # Online only means the reading is not finished
+ states.incremental_states["online"]["only"] = (
+ torch.BoolTensor([not states.finish_read()])
+ )
+
+ x, outputs = self.model.decoder.forward(
+ prev_output_tokens=tgt_indices,
+ encoder_out=states.encoder_states,
+ incremental_state=states.incremental_states,
+ )
+
+ states.decoder_out = x
+
+ torch.cuda.empty_cache()
+
+ if outputs.action == 0:
+ return READ_ACTION
+ else:
+ return WRITE_ACTION
+
+ def predict(self, states):
+ # Predict target token from decoder states
+ decoder_states = states.decoder_out
+
+ lprobs = self.model.get_normalized_probs(
+ [decoder_states[:, -1:]], log_probs=True
+ )
+
+ index = lprobs.argmax(dim=-1)[0, 0].item()
+
+ if index != self.dict['tgt'].eos_index:
+ token = self.dict['tgt'].string([index])
+ else:
+ token = self.dict['tgt'].eos_word
+
+ return token
diff --git a/fairseq/examples/simultaneous_translation/models/__init__.py b/fairseq/examples/simultaneous_translation/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..257a96593ff7af93c206c066d8db4ad795b2ae36
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/models/__init__.py
@@ -0,0 +1,15 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import importlib
+import os
+
+
+for file in sorted(os.listdir(os.path.dirname(__file__))):
+ if file.endswith(".py") and not file.startswith("_"):
+ model_name = file[: file.find(".py")]
+ importlib.import_module(
+ "examples.simultaneous_translation.models." + model_name
+ )
diff --git a/fairseq/examples/simultaneous_translation/models/convtransformer_simul_trans.py b/fairseq/examples/simultaneous_translation/models/convtransformer_simul_trans.py
new file mode 100644
index 0000000000000000000000000000000000000000..4a26422f650cf13ee7d4e8d2228b50ec49876fb8
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/models/convtransformer_simul_trans.py
@@ -0,0 +1,204 @@
+# Copyright (c) 2017-present, Facebook, Inc.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the LICENSE file in
+# the root directory of this source tree. An additional grant of patent rights
+# can be found in the PATENTS file in the same directory.
+
+from fairseq import checkpoint_utils
+from fairseq.models import (
+ register_model,
+ register_model_architecture,
+)
+from fairseq.models.speech_to_text import (
+ ConvTransformerModel,
+ convtransformer_espnet,
+ ConvTransformerEncoder,
+)
+from fairseq.models.speech_to_text.modules.augmented_memory_attention import (
+ augmented_memory,
+ SequenceEncoder,
+ AugmentedMemoryConvTransformerEncoder,
+)
+
+from torch import nn, Tensor
+from typing import Dict, List
+from fairseq.models.speech_to_text.modules.emformer import NoSegAugmentedMemoryTransformerEncoderLayer
+
+@register_model("convtransformer_simul_trans")
+class SimulConvTransformerModel(ConvTransformerModel):
+ """
+ Implementation of the paper:
+
+ SimulMT to SimulST: Adapting Simultaneous Text Translation to
+ End-to-End Simultaneous Speech Translation
+
+ https://www.aclweb.org/anthology/2020.aacl-main.58.pdf
+ """
+
+ @staticmethod
+ def add_args(parser):
+ super(SimulConvTransformerModel, SimulConvTransformerModel).add_args(parser)
+ parser.add_argument(
+ "--train-monotonic-only",
+ action="store_true",
+ default=False,
+ help="Only train monotonic attention",
+ )
+
+ @classmethod
+ def build_decoder(cls, args, task, embed_tokens):
+ tgt_dict = task.tgt_dict
+
+ from examples.simultaneous_translation.models.transformer_monotonic_attention import (
+ TransformerMonotonicDecoder,
+ )
+
+ decoder = TransformerMonotonicDecoder(args, tgt_dict, embed_tokens)
+
+ if getattr(args, "load_pretrained_decoder_from", None):
+ decoder = checkpoint_utils.load_pretrained_component_from_model(
+ component=decoder, checkpoint=args.load_pretrained_decoder_from
+ )
+ return decoder
+
+
+@register_model_architecture(
+ "convtransformer_simul_trans", "convtransformer_simul_trans_espnet"
+)
+def convtransformer_simul_trans_espnet(args):
+ convtransformer_espnet(args)
+
+
+@register_model("convtransformer_augmented_memory")
+@augmented_memory
+class AugmentedMemoryConvTransformerModel(SimulConvTransformerModel):
+ @classmethod
+ def build_encoder(cls, args):
+ encoder = SequenceEncoder(args, AugmentedMemoryConvTransformerEncoder(args))
+
+ if getattr(args, "load_pretrained_encoder_from", None) is not None:
+ encoder = checkpoint_utils.load_pretrained_component_from_model(
+ component=encoder, checkpoint=args.load_pretrained_encoder_from
+ )
+
+ return encoder
+
+
+@register_model_architecture(
+ "convtransformer_augmented_memory", "convtransformer_augmented_memory"
+)
+def augmented_memory_convtransformer_espnet(args):
+ convtransformer_espnet(args)
+
+
+# ============================================================================ #
+# Convtransformer
+# with monotonic attention decoder
+# with emformer encoder
+# ============================================================================ #
+
+
+class ConvTransformerEmformerEncoder(ConvTransformerEncoder):
+ def __init__(self, args):
+ super().__init__(args)
+ stride = self.conv_layer_stride(args)
+ trf_left_context = args.segment_left_context // stride
+ trf_right_context = args.segment_right_context // stride
+ context_config = [trf_left_context, trf_right_context]
+ self.transformer_layers = nn.ModuleList(
+ [
+ NoSegAugmentedMemoryTransformerEncoderLayer(
+ input_dim=args.encoder_embed_dim,
+ num_heads=args.encoder_attention_heads,
+ ffn_dim=args.encoder_ffn_embed_dim,
+ num_layers=args.encoder_layers,
+ dropout_in_attn=args.dropout,
+ dropout_on_attn=args.dropout,
+ dropout_on_fc1=args.dropout,
+ dropout_on_fc2=args.dropout,
+ activation_fn=args.activation_fn,
+ context_config=context_config,
+ segment_size=args.segment_length,
+ max_memory_size=args.max_memory_size,
+ scaled_init=True, # TODO: use constant for now.
+ tanh_on_mem=args.amtrf_tanh_on_mem,
+ )
+ ]
+ )
+ self.conv_transformer_encoder = ConvTransformerEncoder(args)
+
+ def forward(self, src_tokens, src_lengths):
+ encoder_out: Dict[str, List[Tensor]] = self.conv_transformer_encoder(src_tokens, src_lengths.to(src_tokens.device))
+ output = encoder_out["encoder_out"][0]
+ encoder_padding_masks = encoder_out["encoder_padding_mask"]
+
+ return {
+ "encoder_out": [output],
+ # This is because that in the original implementation
+ # the output didn't consider the last segment as right context.
+ "encoder_padding_mask": [encoder_padding_masks[0][:, : output.size(0)]] if len(encoder_padding_masks) > 0
+ else [],
+ "encoder_embedding": [],
+ "encoder_states": [],
+ "src_tokens": [],
+ "src_lengths": [],
+ }
+
+ @staticmethod
+ def conv_layer_stride(args):
+ # TODO: make it configurable from the args
+ return 4
+
+
+@register_model("convtransformer_emformer")
+class ConvtransformerEmformer(SimulConvTransformerModel):
+ @staticmethod
+ def add_args(parser):
+ super(ConvtransformerEmformer, ConvtransformerEmformer).add_args(parser)
+
+ parser.add_argument(
+ "--segment-length",
+ type=int,
+ metavar="N",
+ help="length of each segment (not including left context / right context)",
+ )
+ parser.add_argument(
+ "--segment-left-context",
+ type=int,
+ help="length of left context in a segment",
+ )
+ parser.add_argument(
+ "--segment-right-context",
+ type=int,
+ help="length of right context in a segment",
+ )
+ parser.add_argument(
+ "--max-memory-size",
+ type=int,
+ default=-1,
+ help="Right context for the segment.",
+ )
+ parser.add_argument(
+ "--amtrf-tanh-on-mem",
+ default=False,
+ action="store_true",
+ help="whether to use tanh on memory vector",
+ )
+
+ @classmethod
+ def build_encoder(cls, args):
+ encoder = ConvTransformerEmformerEncoder(args)
+ if getattr(args, "load_pretrained_encoder_from", None):
+ encoder = checkpoint_utils.load_pretrained_component_from_model(
+ component=encoder, checkpoint=args.load_pretrained_encoder_from
+ )
+ return encoder
+
+
+@register_model_architecture(
+ "convtransformer_emformer",
+ "convtransformer_emformer",
+)
+def convtransformer_emformer_base(args):
+ convtransformer_espnet(args)
diff --git a/fairseq/examples/simultaneous_translation/models/transformer_monotonic_attention.py b/fairseq/examples/simultaneous_translation/models/transformer_monotonic_attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..7b9414b0eb3b30c935478cd5b8a894168bd8cc98
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/models/transformer_monotonic_attention.py
@@ -0,0 +1,302 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import Dict, List, NamedTuple, Optional
+
+import torch
+import torch.nn as nn
+from examples.simultaneous_translation.modules.monotonic_transformer_layer import (
+ TransformerMonotonicDecoderLayer,
+ TransformerMonotonicEncoderLayer,
+)
+from fairseq.models import (
+ register_model,
+ register_model_architecture,
+)
+from fairseq.models.transformer import (
+ TransformerModel,
+ TransformerEncoder,
+ TransformerDecoder,
+ base_architecture,
+ transformer_iwslt_de_en,
+ transformer_vaswani_wmt_en_de_big,
+ tiny_architecture
+)
+from torch import Tensor
+
+DEFAULT_MAX_SOURCE_POSITIONS = 1024
+DEFAULT_MAX_TARGET_POSITIONS = 1024
+READ_ACTION = 0
+WRITE_ACTION = 1
+
+TransformerMonotonicDecoderOut = NamedTuple(
+ "TransformerMonotonicDecoderOut",
+ [
+ ("action", int),
+ ("p_choose", Optional[Tensor]),
+ ("attn_list", Optional[List[Optional[Dict[str, Tensor]]]]),
+ ("encoder_out", Optional[Dict[str, List[Tensor]]]),
+ ("encoder_padding_mask", Optional[Tensor]),
+ ],
+)
+
+
+@register_model("transformer_unidirectional")
+class TransformerUnidirectionalModel(TransformerModel):
+ @classmethod
+ def build_encoder(cls, args, src_dict, embed_tokens):
+ return TransformerMonotonicEncoder(args, src_dict, embed_tokens)
+
+
+@register_model("transformer_monotonic")
+class TransformerModelSimulTrans(TransformerModel):
+ @classmethod
+ def build_encoder(cls, args, src_dict, embed_tokens):
+ return TransformerMonotonicEncoder(args, src_dict, embed_tokens)
+
+ @classmethod
+ def build_decoder(cls, args, tgt_dict, embed_tokens):
+ return TransformerMonotonicDecoder(args, tgt_dict, embed_tokens)
+
+
+class TransformerMonotonicEncoder(TransformerEncoder):
+ def __init__(self, args, dictionary, embed_tokens):
+ super().__init__(args, dictionary, embed_tokens)
+
+ self.dictionary = dictionary
+ self.layers = nn.ModuleList([])
+ self.layers.extend(
+ [
+ TransformerMonotonicEncoderLayer(args)
+ for i in range(args.encoder_layers)
+ ]
+ )
+
+
+class TransformerMonotonicDecoder(TransformerDecoder):
+ """
+ Transformer decoder consisting of *args.decoder_layers* layers. Each layer
+ is a :class:`TransformerDecoderLayer`.
+
+ Args:
+ args (argparse.Namespace): parsed command-line arguments
+ dictionary (~fairseq.data.Dictionary): decoding dictionary
+ embed_tokens (torch.nn.Embedding): output embedding
+ no_encoder_attn (bool, optional): whether to attend to encoder outputs
+ (default: False).
+ """
+
+ def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
+ super().__init__(args, dictionary, embed_tokens, no_encoder_attn=False)
+
+ self.dictionary = dictionary
+ self.layers = nn.ModuleList([])
+ self.layers.extend(
+ [
+ TransformerMonotonicDecoderLayer(args)
+ for _ in range(args.decoder_layers)
+ ]
+ )
+ self.policy_criterion = getattr(args, "policy_criterion", "any")
+ self.num_updates = None
+
+ def set_num_updates(self, num_updates):
+ self.num_updates = num_updates
+
+ def pre_attention(
+ self,
+ prev_output_tokens,
+ encoder_out_dict: Dict[str, List[Tensor]],
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ ):
+ positions = (
+ self.embed_positions(
+ prev_output_tokens,
+ incremental_state=incremental_state,
+ )
+ if self.embed_positions is not None
+ else None
+ )
+
+ if incremental_state is not None:
+ prev_output_tokens = prev_output_tokens[:, -1:]
+ if positions is not None:
+ positions = positions[:, -1:]
+ # embed tokens and positions
+ x = self.embed_scale * self.embed_tokens(prev_output_tokens)
+
+ if self.project_in_dim is not None:
+ x = self.project_in_dim(x)
+
+ if positions is not None:
+ x += positions
+
+ x = self.dropout_module(x)
+
+ # B x T x C -> T x B x C
+ x = x.transpose(0, 1)
+
+ encoder_out = encoder_out_dict["encoder_out"][0]
+
+ if "encoder_padding_mask" in encoder_out_dict:
+ encoder_padding_mask = (
+ encoder_out_dict["encoder_padding_mask"][0]
+ if encoder_out_dict["encoder_padding_mask"]
+ and len(encoder_out_dict["encoder_padding_mask"]) > 0
+ else None
+ )
+ else:
+ encoder_padding_mask = None
+
+ return x, encoder_out, encoder_padding_mask
+
+ def post_attention(self, x):
+ if self.layer_norm is not None:
+ x = self.layer_norm(x)
+
+ # T x B x C -> B x T x C
+ x = x.transpose(0, 1)
+
+ if self.project_out_dim is not None:
+ x = self.project_out_dim(x)
+
+ return x
+
+ def clean_cache(
+ self,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
+ end_id: Optional[int] = None,
+ ):
+ """
+ Clean cache in the monotonic layers.
+ The cache is generated because of a forward pass of decoder has run but no prediction,
+ so that the self attention key value in decoder is written in the incremental state.
+ end_id is the last idx of the layers
+ """
+ if end_id is None:
+ end_id = len(self.layers)
+
+ for index, layer in enumerate(self.layers):
+ if index < end_id:
+ layer.prune_incremental_state(incremental_state)
+
+ def extract_features(
+ self,
+ prev_output_tokens,
+ encoder_out: Optional[Dict[str, List[Tensor]]],
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ full_context_alignment: bool = False, # unused
+ alignment_layer: Optional[int] = None, # unused
+ alignment_heads: Optional[int] = None, # unsed
+ ):
+ """
+ Similar to *forward* but only return features.
+
+ Returns:
+ tuple:
+ - the decoder's features of shape `(batch, tgt_len, embed_dim)`
+ - a dictionary with any model-specific outputs
+ """
+ # incremental_state = None
+ assert encoder_out is not None
+ (x, encoder_outs, encoder_padding_mask) = self.pre_attention(
+ prev_output_tokens, encoder_out, incremental_state
+ )
+ attn = None
+ inner_states = [x]
+ attn_list: List[Optional[Dict[str, Tensor]]] = []
+
+ p_choose = torch.tensor([1.0])
+
+ for i, layer in enumerate(self.layers):
+
+ x, attn, _ = layer(
+ x=x,
+ encoder_out=encoder_outs,
+ encoder_padding_mask=encoder_padding_mask,
+ incremental_state=incremental_state,
+ self_attn_mask=self.buffered_future_mask(x)
+ if incremental_state is None
+ else None,
+ )
+
+ inner_states.append(x)
+ attn_list.append(attn)
+
+ if incremental_state is not None:
+ if_online = incremental_state["online"]["only"]
+ assert if_online is not None
+ if if_online.to(torch.bool):
+ # Online indicates that the encoder states are still changing
+ assert attn is not None
+ if self.policy_criterion == "any":
+ # Any head decide to read than read
+ head_read = layer.encoder_attn._get_monotonic_buffer(incremental_state)["head_read"]
+ assert head_read is not None
+ if head_read.any():
+ # We need to prune the last self_attn saved_state
+ # if model decide not to read
+ # otherwise there will be duplicated saved_state
+ self.clean_cache(incremental_state, i + 1)
+
+ return x, TransformerMonotonicDecoderOut(
+ action=0,
+ p_choose=p_choose,
+ attn_list=None,
+ encoder_out=None,
+ encoder_padding_mask=None,
+ )
+
+ x = self.post_attention(x)
+
+ return x, TransformerMonotonicDecoderOut(
+ action=1,
+ p_choose=p_choose,
+ attn_list=attn_list,
+ encoder_out=encoder_out,
+ encoder_padding_mask=encoder_padding_mask,
+ )
+
+
+@register_model_architecture("transformer_monotonic", "transformer_monotonic")
+def base_monotonic_architecture(args):
+ base_architecture(args)
+ args.encoder_unidirectional = getattr(args, "encoder_unidirectional", False)
+
+
+@register_model_architecture(
+ "transformer_monotonic", "transformer_monotonic_iwslt_de_en"
+)
+def transformer_monotonic_iwslt_de_en(args):
+ transformer_iwslt_de_en(args)
+ base_monotonic_architecture(args)
+
+
+# parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017)
+@register_model_architecture(
+ "transformer_monotonic", "transformer_monotonic_vaswani_wmt_en_de_big"
+)
+def transformer_monotonic_vaswani_wmt_en_de_big(args):
+ transformer_vaswani_wmt_en_de_big(args)
+
+
+@register_model_architecture(
+ "transformer_monotonic", "transformer_monotonic_vaswani_wmt_en_fr_big"
+)
+def transformer_monotonic_vaswani_wmt_en_fr_big(args):
+ transformer_monotonic_vaswani_wmt_en_fr_big(args)
+
+
+@register_model_architecture(
+ "transformer_unidirectional", "transformer_unidirectional_iwslt_de_en"
+)
+def transformer_unidirectional_iwslt_de_en(args):
+ transformer_iwslt_de_en(args)
+
+
+@register_model_architecture("transformer_monotonic", "transformer_monotonic_tiny")
+def monotonic_tiny_architecture(args):
+ tiny_architecture(args)
+ base_monotonic_architecture(args)
diff --git a/fairseq/examples/simultaneous_translation/modules/__init__.py b/fairseq/examples/simultaneous_translation/modules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..f5ea180f9b4cdb27cd553439b6df9d743105f18c
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/modules/__init__.py
@@ -0,0 +1,23 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import os
+import importlib
+from fairseq import registry
+
+(
+ build_monotonic_attention,
+ register_monotonic_attention,
+ MONOTONIC_ATTENTION_REGISTRY,
+ _,
+) = registry.setup_registry("--simul-type")
+
+for file in sorted(os.listdir(os.path.dirname(__file__))):
+ if file.endswith(".py") and not file.startswith("_"):
+ model_name = file[: file.find(".py")]
+ importlib.import_module(
+ "examples.simultaneous_translation.modules." + model_name
+ )
diff --git a/fairseq/examples/simultaneous_translation/modules/fixed_pre_decision.py b/fairseq/examples/simultaneous_translation/modules/fixed_pre_decision.py
new file mode 100644
index 0000000000000000000000000000000000000000..3991414aed3800f301e4097e819d3064bb549c37
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/modules/fixed_pre_decision.py
@@ -0,0 +1,190 @@
+from functools import partial
+
+import torch
+from torch import Tensor
+import math
+import torch.nn.functional as F
+
+from . import register_monotonic_attention
+from .monotonic_multihead_attention import (
+ MonotonicAttention,
+ MonotonicInfiniteLookbackAttention,
+ WaitKAttention
+)
+from typing import Dict, Optional
+
+
+def fixed_pooling_monotonic_attention(monotonic_attention):
+ def create_model(monotonic_attention, klass):
+ class FixedStrideMonotonicAttention(monotonic_attention):
+ def __init__(self, args):
+ self.waitk_lagging = 0
+ self.num_heads = 0
+ self.noise_mean = 0.0
+ self.noise_var = 0.0
+ super().__init__(args)
+ self.pre_decision_type = args.fixed_pre_decision_type
+ self.pre_decision_ratio = args.fixed_pre_decision_ratio
+ self.pre_decision_pad_threshold = args.fixed_pre_decision_pad_threshold
+ assert self.pre_decision_ratio > 1
+
+ if args.fixed_pre_decision_type == "average":
+ self.pooling_layer = torch.nn.AvgPool1d(
+ kernel_size=self.pre_decision_ratio,
+ stride=self.pre_decision_ratio,
+ ceil_mode=True,
+ )
+ elif args.fixed_pre_decision_type == "last":
+
+ def last(key):
+ if key.size(2) < self.pre_decision_ratio:
+ return key
+ else:
+ k = key[
+ :,
+ :,
+ self.pre_decision_ratio - 1:: self.pre_decision_ratio,
+ ].contiguous()
+ if key.size(-1) % self.pre_decision_ratio != 0:
+ k = torch.cat([k, key[:, :, -1:]], dim=-1).contiguous()
+ return k
+
+ self.pooling_layer = last
+ else:
+ raise NotImplementedError
+
+ @staticmethod
+ def add_args(parser):
+ super(
+ FixedStrideMonotonicAttention, FixedStrideMonotonicAttention
+ ).add_args(parser)
+ parser.add_argument(
+ "--fixed-pre-decision-ratio",
+ type=int,
+ required=True,
+ help=(
+ "Ratio for the fixed pre-decision,"
+ "indicating how many encoder steps will start"
+ "simultaneous decision making process."
+ ),
+ )
+ parser.add_argument(
+ "--fixed-pre-decision-type",
+ default="average",
+ choices=["average", "last"],
+ help="Pooling type",
+ )
+ parser.add_argument(
+ "--fixed-pre-decision-pad-threshold",
+ type=float,
+ default=0.3,
+ help="If a part of the sequence has pad"
+ ",the threshold the pooled part is a pad.",
+ )
+
+ def insert_zeros(self, x):
+ bsz_num_heads, tgt_len, src_len = x.size()
+ stride = self.pre_decision_ratio
+ weight = F.pad(torch.ones(1, 1, 1).to(x), (stride - 1, 0))
+ x_upsample = F.conv_transpose1d(
+ x.view(-1, src_len).unsqueeze(1),
+ weight,
+ stride=stride,
+ padding=0,
+ )
+ return x_upsample.squeeze(1).view(bsz_num_heads, tgt_len, -1)
+
+ def p_choose(
+ self,
+ query: Optional[Tensor],
+ key: Optional[Tensor],
+ key_padding_mask: Optional[Tensor] = None,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ ):
+ assert key is not None
+ assert query is not None
+ src_len = key.size(0)
+ tgt_len = query.size(0)
+ batch_size = query.size(1)
+
+ key_pool = self.pooling_layer(key.transpose(0, 2)).transpose(0, 2)
+
+ if key_padding_mask is not None:
+ key_padding_mask_pool = (
+ self.pooling_layer(key_padding_mask.unsqueeze(0).float())
+ .squeeze(0)
+ .gt(self.pre_decision_pad_threshold)
+ )
+ # Make sure at least one element is not pad
+ key_padding_mask_pool[:, 0] = 0
+ else:
+ key_padding_mask_pool = None
+
+ if incremental_state is not None:
+ # The floor instead of ceil is used for inference
+ # But make sure the length key_pool at least 1
+ if (
+ max(1, math.floor(key.size(0) / self.pre_decision_ratio))
+ ) < key_pool.size(0):
+ key_pool = key_pool[:-1]
+ if key_padding_mask_pool is not None:
+ key_padding_mask_pool = key_padding_mask_pool[:-1]
+
+ p_choose_pooled = self.p_choose_from_qk(
+ query,
+ key_pool,
+ key_padding_mask_pool,
+ incremental_state=incremental_state,
+ )
+
+ # Upsample, interpolate zeros
+ p_choose = self.insert_zeros(p_choose_pooled)
+
+ if p_choose.size(-1) < src_len:
+ # Append zeros if the upsampled p_choose is shorter than src_len
+ p_choose = torch.cat(
+ [
+ p_choose,
+ torch.zeros(
+ p_choose.size(0),
+ tgt_len,
+ src_len - p_choose.size(-1)
+ ).to(p_choose)
+ ],
+ dim=2
+ )
+ else:
+ # can be larger than src_len because we used ceil before
+ p_choose = p_choose[:, :, :src_len]
+ p_choose[:, :, -1] = p_choose_pooled[:, :, -1]
+
+ assert list(p_choose.size()) == [
+ batch_size * self.num_heads,
+ tgt_len,
+ src_len,
+ ]
+
+ return p_choose
+
+ FixedStrideMonotonicAttention.__name__ = klass.__name__
+ return FixedStrideMonotonicAttention
+
+ return partial(create_model, monotonic_attention)
+
+
+@register_monotonic_attention("waitk_fixed_pre_decision")
+@fixed_pooling_monotonic_attention(WaitKAttention)
+class WaitKAttentionFixedStride:
+ pass
+
+
+@register_monotonic_attention("hard_aligned_fixed_pre_decision")
+@fixed_pooling_monotonic_attention(MonotonicAttention)
+class MonotonicAttentionFixedStride:
+ pass
+
+
+@register_monotonic_attention("infinite_lookback_fixed_pre_decision")
+@fixed_pooling_monotonic_attention(MonotonicInfiniteLookbackAttention)
+class MonotonicInfiniteLookbackAttentionFixedStride:
+ pass
diff --git a/fairseq/examples/simultaneous_translation/modules/monotonic_multihead_attention.py b/fairseq/examples/simultaneous_translation/modules/monotonic_multihead_attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..11ef60c9458c6d24e45b20a8eab030c18e6801e5
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/modules/monotonic_multihead_attention.py
@@ -0,0 +1,519 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+
+import torch
+from torch import Tensor
+import torch.nn as nn
+
+from examples.simultaneous_translation.utils.p_choose_strategy import (
+ learnable_p_choose,
+ waitk_p_choose
+)
+
+from examples.simultaneous_translation.utils.monotonic_attention import (
+ expected_alignment_from_p_choose,
+ expected_soft_attention,
+ mass_preservation,
+)
+from fairseq.modules import MultiheadAttention
+
+from . import register_monotonic_attention
+from typing import Dict, Optional
+
+
+@register_monotonic_attention("hard_aligned")
+class MonotonicAttention(MultiheadAttention):
+ """
+ Abstract class of monotonic attentions
+ """
+ k_in_proj: Dict[str, nn.Linear]
+ q_in_proj: Dict[str, nn.Linear]
+
+ def __init__(self, args):
+ super().__init__(
+ embed_dim=args.decoder_embed_dim,
+ num_heads=args.decoder_attention_heads,
+ kdim=getattr(args, "encoder_embed_dim", None),
+ vdim=getattr(args, "encoder_embed_dim", None),
+ dropout=args.attention_dropout,
+ encoder_decoder_attention=True,
+ )
+
+ self.soft_attention = False
+
+ self.eps = getattr(args, "attention_eps", True)
+ self.mass_preservation = getattr(args, "mass_preservation", True)
+
+ self.noise_type = args.noise_type
+ self.noise_mean = args.noise_mean
+ self.noise_var = args.noise_var
+
+ self.energy_bias_init = args.energy_bias_init
+ self.energy_bias = (
+ nn.Parameter(self.energy_bias_init * torch.ones([1]))
+ if args.energy_bias is True
+ else 0
+ )
+
+ self.k_in_proj = {"monotonic": self.k_proj}
+ self.q_in_proj = {"monotonic": self.q_proj}
+ self.chunk_size = None
+
+ @staticmethod
+ def add_args(parser):
+ # fmt: off
+ parser.add_argument('--no-mass-preservation', action="store_false",
+ dest="mass_preservation",
+ help='Do not stay on the last token when decoding')
+ parser.add_argument('--mass-preservation', action="store_true",
+ dest="mass_preservation",
+ help='Stay on the last token when decoding')
+ parser.set_defaults(mass_preservation=True)
+ parser.add_argument('--noise-var', type=float, default=1.0,
+ help='Variance of discretness noise')
+ parser.add_argument('--noise-mean', type=float, default=0.0,
+ help='Mean of discretness noise')
+ parser.add_argument('--noise-type', type=str, default="flat",
+ help='Type of discretness noise')
+ parser.add_argument('--energy-bias', action="store_true",
+ default=False,
+ help='Bias for energy')
+ parser.add_argument('--energy-bias-init', type=float, default=-2.0,
+ help='Initial value of the bias for energy')
+ parser.add_argument('--attention-eps', type=float, default=1e-6,
+ help='Epsilon when calculating expected attention')
+
+ def energy_from_qk(
+ self,
+ query: Tensor,
+ key: Tensor,
+ energy_type: str,
+ key_padding_mask: Optional[Tensor] = None,
+ bias: int = 0
+ ):
+ """
+ Compute energy from query and key
+ q_func_value is a tuple looks like
+ (q_proj_func, q_tensor)
+ q_tensor size: bsz, tgt_len, emb_dim
+ k_tensor size: bsz, src_len, emb_dim
+ key_padding_mask size: bsz, src_len
+ attn_mask: bsz, src_len
+ """
+
+ length, bsz, _ = query.size()
+ q = self.q_in_proj[energy_type].forward(query)
+ q = (
+ q.contiguous()
+ .view(length, bsz * self.num_heads, self.head_dim)
+ .transpose(0, 1)
+ )
+ q = q * self.scaling
+ length, bsz, _ = key.size()
+ k = self.k_in_proj[energy_type].forward(key)
+ k = (
+ k.contiguous()
+ .view(length, bsz * self.num_heads, self.head_dim)
+ .transpose(0, 1)
+ )
+
+ energy = torch.bmm(q, k.transpose(1, 2)) + bias
+
+ if key_padding_mask is not None:
+ energy = energy.masked_fill(
+ key_padding_mask.unsqueeze(1).to(torch.bool),
+ - float("inf")
+ )
+
+ return energy
+
+ def p_choose_from_qk(self, query, key, key_padding_mask, incremental_states=None):
+ monotonic_energy = self.energy_from_qk(
+ query,
+ key,
+ "monotonic",
+ key_padding_mask=key_padding_mask,
+ bias=self.energy_bias,
+ )
+
+ p_choose = learnable_p_choose(
+ monotonic_energy,
+ self.noise_mean,
+ self.noise_var,
+ self.training
+ )
+ return p_choose
+
+ def p_choose(self, query, key, key_padding_mask, incremental_states=None):
+ return self.p_choose_from_qk(self, query, key, key_padding_mask)
+
+ def monotonic_attention_process_infer(
+ self,
+ query: Optional[Tensor],
+ key: Optional[Tensor],
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
+ ):
+ """
+ Monotonic attention at inference time
+ Notice that this function is designed for simuleval not sequence_generator
+ """
+ assert query is not None
+ assert key is not None
+
+ if query.size(1) != 1:
+ raise RuntimeError(
+ "Simultaneous translation models don't support batch decoding."
+ )
+ # 1. compute stepwise probability
+ p_choose = self.p_choose(
+ query, key, None, incremental_state
+ ).squeeze(1)
+
+ # 2. Compute the alpha
+ src_len = key.size(0)
+ # Maximum steps allows in this iteration
+ max_steps = src_len - 1 if self.mass_preservation else src_len
+ monotonic_cache = self._get_monotonic_buffer(incremental_state)
+ # Step for each head
+ monotonic_step = monotonic_cache.get(
+ 'head_step',
+ p_choose.new_zeros(1, self.num_heads).long()
+ )
+ assert monotonic_step is not None
+ finish_read = monotonic_step.eq(max_steps)
+ p_choose_i = torch.tensor(1)
+
+ while finish_read.sum().item() < self.num_heads:
+ # p_choose: self.num_heads, src_len
+ # only choose the p at monotonic steps
+ # p_choose_i: 1, self.num_heads
+ p_choose_i = (
+ p_choose.gather(
+ 1,
+ monotonic_step
+ .clamp(0, src_len - 1),
+ )
+ )
+
+ read_one_step = (
+ (p_choose_i < 0.5)
+ .type_as(monotonic_step)
+ .masked_fill(finish_read, 0)
+ )
+ # 1 x bsz
+ # sample actions on unfinished seq
+ # 0 means stay, finish reading
+ # 1 means leave, continue reading
+
+ monotonic_step += read_one_step
+
+ finish_read = monotonic_step.eq(max_steps) | (read_one_step == 0)
+
+ # p_choose at last steps
+ p_choose_i = (
+ p_choose.gather(
+ 1,
+ monotonic_step
+ .clamp(0, src_len - 1),
+ )
+ )
+
+ monotonic_cache["head_step"] = monotonic_step
+ # Whether a head is looking for new input
+ monotonic_cache["head_read"] = (
+ monotonic_step.eq(max_steps) & (p_choose_i < 0.5)
+ )
+ self._set_monotonic_buffer(incremental_state, monotonic_cache)
+
+ # 2. Update alpha
+ alpha = (
+ p_choose
+ .new_zeros([self.num_heads, src_len])
+ .scatter(
+ 1,
+ (monotonic_step)
+ .view(self.num_heads, 1).clamp(0, src_len - 1),
+ 1
+ )
+ )
+
+ if not self.mass_preservation:
+ alpha = alpha.masked_fill(
+ (monotonic_step == max_steps)
+ .view(self.num_heads, 1),
+ 0
+ )
+
+ # 4. Compute Beta
+ if self.soft_attention:
+ monotonic_step = monotonic_step.t()
+ beta_mask = torch.arange(src_len).expand_as(alpha).gt(monotonic_step).unsqueeze(1)
+ # If it's soft attention just do softmax on current context
+ soft_energy = self.energy_from_qk(
+ query,
+ key,
+ "soft"
+ )
+ beta = torch.nn.functional.softmax(
+ soft_energy.masked_fill(beta_mask, -float("inf")), dim=-1
+ )
+ # It could happen that a head doesn't move at all
+ beta = beta.masked_fill(monotonic_step.eq(0).unsqueeze(1), 0)
+ else:
+ # If it's hard attention just select the last state
+ beta = alpha
+
+ return p_choose, alpha, beta
+
+ def monotonic_attention_process_train(
+ self,
+ query: Optional[Tensor],
+ key: Optional[Tensor],
+ key_padding_mask: Optional[Tensor] = None,
+ ):
+ """
+ Calculating monotonic attention process for training
+ Including:
+ stepwise probability: p_choose
+ expected hard alignment: alpha
+ expected soft attention: beta
+ """
+ assert query is not None
+ assert key is not None
+
+ # 1. compute stepwise probability
+ p_choose = self.p_choose_from_qk(query, key, key_padding_mask)
+
+ # 2. compute expected_alignment
+ alpha = expected_alignment_from_p_choose(
+ p_choose,
+ key_padding_mask,
+ eps=self.eps,
+ )
+
+ if self.mass_preservation:
+ alpha = mass_preservation(
+ alpha, key_padding_mask
+ )
+
+ # 3. compute expected soft attention (soft aligned model only)
+ if self.soft_attention:
+ soft_energy = self.energy_from_qk(
+ query,
+ key,
+ "soft",
+ key_padding_mask=None,
+ )
+
+ beta = expected_soft_attention(
+ alpha,
+ soft_energy,
+ padding_mask=key_padding_mask,
+ chunk_size=self.chunk_size,
+ eps=self.eps,
+ )
+ else:
+ beta = alpha
+ soft_energy = alpha
+
+ return p_choose, alpha, beta, soft_energy
+
+ def forward(
+ self,
+ query: Optional[Tensor],
+ key: Optional[Tensor],
+ value: Optional[Tensor],
+ key_padding_mask: Optional[Tensor] = None,
+ attn_mask: Optional[Tensor] = None,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ need_weights: bool = True, static_kv: bool = False, need_head_weights: bool = False,
+ ):
+ """
+ query: tgt_len, bsz, embed_dim
+ key: src_len, bsz, embed_dim
+ value: src_len, bsz, embed_dim
+ """
+
+ assert attn_mask is None
+ assert query is not None
+ assert key is not None
+ assert value is not None
+
+ tgt_len, bsz, embed_dim = query.size()
+ src_len = value.size(0)
+
+ if key_padding_mask is not None:
+ assert not key_padding_mask[:, 0].any(), (
+ "Only right padding is supported."
+ )
+ key_padding_mask = (
+ key_padding_mask
+ .unsqueeze(1)
+ .expand([bsz, self.num_heads, src_len])
+ .contiguous()
+ .view(-1, src_len)
+ )
+
+ if incremental_state is not None:
+ # Inference
+ (
+ p_choose, alpha, beta
+ ) = self.monotonic_attention_process_infer(
+ query, key, incremental_state
+ )
+ soft_energy = beta
+ else:
+ # Train
+ (
+ p_choose, alpha, beta, soft_energy
+ ) = self.monotonic_attention_process_train(
+ query, key, key_padding_mask
+ )
+
+ v = self.v_proj(value)
+ length, bsz, _ = v.size()
+ v = (
+ v.contiguous()
+ .view(length, bsz * self.num_heads, self.head_dim)
+ .transpose(0, 1)
+ )
+
+ attn = torch.bmm(beta.type_as(v), v)
+
+ attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
+
+ attn = self.out_proj(attn)
+
+ p_choose = p_choose.view(bsz, self.num_heads, tgt_len, src_len)
+ alpha = alpha.view(bsz, self.num_heads, tgt_len, src_len)
+ beta = beta.view(bsz, self.num_heads, tgt_len, src_len)
+
+ return attn, {
+ "p_choose": p_choose,
+ "alpha": alpha,
+ "beta": beta,
+ }
+
+ def _get_monotonic_buffer(self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]):
+ maybe_incremental_state = self.get_incremental_state(
+ incremental_state,
+ 'monotonic',
+ )
+ if maybe_incremental_state is None:
+ typed_empty_dict: Dict[str, Optional[Tensor]] = {}
+ return typed_empty_dict
+ else:
+ return maybe_incremental_state
+
+ def _set_monotonic_buffer(self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], buffer: Dict[str, Optional[Tensor]]):
+ self.set_incremental_state(
+ incremental_state,
+ 'monotonic',
+ buffer,
+ )
+
+
+@register_monotonic_attention("infinite_lookback")
+class MonotonicInfiniteLookbackAttention(
+ MonotonicAttention
+):
+ def __init__(self, args):
+ super().__init__(args)
+ self.soft_attention = True
+ self.init_soft_attention()
+
+ def init_soft_attention(self):
+ self.k_proj_soft = nn.Linear(self.kdim, self.embed_dim, bias=True)
+ self.q_proj_soft = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
+ self.k_in_proj["soft"] = self.k_proj_soft
+ self.q_in_proj["soft"] = self.q_proj_soft
+
+ if self.qkv_same_dim:
+ # Empirically observed the convergence to be much better with
+ # the scaled initialization
+ nn.init.xavier_uniform_(
+ self.k_in_proj["soft"].weight, gain=1 / math.sqrt(2)
+ )
+ nn.init.xavier_uniform_(
+ self.q_in_proj["soft"].weight, gain=1 / math.sqrt(2)
+ )
+ else:
+ nn.init.xavier_uniform_(self.k_in_proj["soft"].weight)
+ nn.init.xavier_uniform_(self.q_in_proj["soft"].weight)
+
+
+@register_monotonic_attention("waitk")
+class WaitKAttention(
+ MonotonicInfiniteLookbackAttention
+):
+ """
+ STACL: Simultaneous Translation with Implicit Anticipation and
+ Controllable Latency using Prefix-to-Prefix Framework
+ https://www.aclweb.org/anthology/P19-1289/
+ """
+ def __init__(self, args):
+ super().__init__(args)
+ self.q_in_proj["soft"] = self.q_in_proj["monotonic"]
+ self.k_in_proj["soft"] = self.k_in_proj["monotonic"]
+
+ self.waitk_lagging = args.waitk_lagging
+ assert self.waitk_lagging > 0, (
+ f"Lagging has to been larger than 0, get {self.waitk_lagging}."
+ )
+
+ @staticmethod
+ def add_args(parser):
+ super(
+ MonotonicInfiniteLookbackAttention,
+ MonotonicInfiniteLookbackAttention
+ ).add_args(parser)
+
+ parser.add_argument(
+ "--waitk-lagging", type=int, required=True, help="Wait K lagging"
+ )
+
+ def p_choose_from_qk(
+ self,
+ query: Optional[Tensor],
+ key: Optional[Tensor],
+ key_padding_mask: Optional[Tensor] = None,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ ):
+ assert query is not None
+ assert key is not None
+
+ p_choose = waitk_p_choose(
+ tgt_len=query.size(0),
+ src_len=key.size(0),
+ bsz=query.size(1) * self.num_heads,
+ waitk_lagging=self.waitk_lagging,
+ key_padding_mask=key_padding_mask,
+ incremental_state=incremental_state,
+ )
+
+ return p_choose.to(query)
+
+
+@register_monotonic_attention("chunkwise")
+class ChunkwiseAttention(
+ MonotonicInfiniteLookbackAttention
+):
+ def __init__(self, args):
+ super().__init__(args)
+ self.chunk_size = args.mocha_chunk_size
+ assert self.chunk_size > 1
+
+ @staticmethod
+ def add_args(parser):
+ super(
+ MonotonicInfiniteLookbackAttention
+ ).add_args(parser)
+
+ parser.add_argument(
+ "--mocha-chunk-size", type=int,
+ required=True, help="Mocha chunk size"
+ )
diff --git a/fairseq/examples/simultaneous_translation/modules/monotonic_transformer_layer.py b/fairseq/examples/simultaneous_translation/modules/monotonic_transformer_layer.py
new file mode 100644
index 0000000000000000000000000000000000000000..94bd71fb9c46a64a8b6e1960f47dfc43b78dda43
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/modules/monotonic_transformer_layer.py
@@ -0,0 +1,182 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from fairseq.modules import TransformerDecoderLayer, TransformerEncoderLayer
+
+from . import build_monotonic_attention
+
+from typing import Dict, Optional, List
+
+from torch import Tensor
+import torch
+
+
+class TransformerMonotonicEncoderLayer(TransformerEncoderLayer):
+ def forward(self, x, encoder_padding_mask):
+ seq_len, _, _ = x.size()
+ attn_mask = x.new_ones([seq_len, seq_len]).triu(1)
+ attn_mask = attn_mask.masked_fill(attn_mask.bool(), float("-inf"))
+ return super().forward(x, encoder_padding_mask, attn_mask)
+
+
+class TransformerMonotonicDecoderLayer(TransformerDecoderLayer):
+ def __init__(self, args):
+ super().__init__(args)
+
+ assert args.simul_type is not None, "A --simul-type is needed."
+ self.encoder_attn = build_monotonic_attention(args)
+
+ def prune_incremental_state(
+ self,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
+ ):
+ input_buffer = self.self_attn._get_input_buffer(incremental_state)
+ for key in ["prev_key", "prev_value"]:
+ input_buffer_key = input_buffer[key]
+ assert input_buffer_key is not None
+ if input_buffer_key.size(2) > 1:
+ input_buffer[key] = input_buffer_key[:, :, :-1, :]
+ else:
+ typed_empty_dict: Dict[str, Optional[Tensor]] = {}
+ input_buffer = typed_empty_dict
+ break
+ assert incremental_state is not None
+ self.self_attn._set_input_buffer(incremental_state, input_buffer)
+
+ def forward(
+ self,
+ x,
+ encoder_out: Optional[Tensor] = None,
+ encoder_padding_mask: Optional[Tensor] = None,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ prev_self_attn_state: Optional[List[Tensor]] = None,
+ prev_attn_state: Optional[List[Tensor]] = None,
+ self_attn_mask: Optional[Tensor] = None,
+ self_attn_padding_mask: Optional[Tensor] = None,
+ need_attn: bool = False,
+ need_head_weights: bool = False,
+ ):
+ """
+ Args:
+ x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
+ encoder_padding_mask (ByteTensor, optional): binary
+ ByteTensor of shape `(batch, src_len)` where padding
+ elements are indicated by ``1``.
+ need_attn (bool, optional): return attention weights
+ need_head_weights (bool, optional): return attention weights
+ for each head (default: return average over heads).
+
+ Returns:
+ encoded output of shape `(seq_len, batch, embed_dim)`
+ """
+ if need_head_weights:
+ need_attn = True
+
+ residual = x
+ if self.normalize_before:
+ x = self.self_attn_layer_norm(x)
+ if prev_self_attn_state is not None:
+ prev_key, prev_value = prev_self_attn_state[:2]
+ saved_state: Dict[str, Optional[Tensor]] = {
+ "prev_key": prev_key,
+ "prev_value": prev_value,
+ }
+ if len(prev_self_attn_state) >= 3:
+ saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
+ assert incremental_state is not None
+ self.self_attn._set_input_buffer(incremental_state, saved_state)
+ _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
+ if self.cross_self_attention and not (
+ incremental_state is not None
+ and _self_attn_input_buffer is not None
+ and "prev_key" in _self_attn_input_buffer
+ ):
+ if self_attn_mask is not None:
+ assert encoder_out is not None
+ self_attn_mask = torch.cat(
+ (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
+ )
+ if self_attn_padding_mask is not None:
+ if encoder_padding_mask is None:
+ assert encoder_out is not None
+ encoder_padding_mask = self_attn_padding_mask.new_zeros(
+ encoder_out.size(1), encoder_out.size(0)
+ )
+ self_attn_padding_mask = torch.cat(
+ (encoder_padding_mask, self_attn_padding_mask), dim=1
+ )
+ assert encoder_out is not None
+ y = torch.cat((encoder_out, x), dim=0)
+ else:
+ y = x
+
+ x, attn = self.self_attn(
+ query=x,
+ key=y,
+ value=y,
+ key_padding_mask=self_attn_padding_mask,
+ incremental_state=incremental_state,
+ need_weights=False,
+ attn_mask=self_attn_mask,
+ )
+ x = self.dropout_module(x)
+ x = self.residual_connection(x, residual)
+ if not self.normalize_before:
+ x = self.self_attn_layer_norm(x)
+
+ assert self.encoder_attn is not None
+ residual = x
+ if self.normalize_before:
+ x = self.encoder_attn_layer_norm(x)
+ if prev_attn_state is not None:
+ prev_key, prev_value = prev_attn_state[:2]
+ saved_state: Dict[str, Optional[Tensor]] = {
+ "prev_key": prev_key,
+ "prev_value": prev_value,
+ }
+ if len(prev_attn_state) >= 3:
+ saved_state["prev_key_padding_mask"] = prev_attn_state[2]
+ assert incremental_state is not None
+ self.encoder_attn._set_input_buffer(incremental_state, saved_state)
+
+ x, attn = self.encoder_attn(
+ query=x,
+ key=encoder_out,
+ value=encoder_out,
+ key_padding_mask=encoder_padding_mask,
+ incremental_state=incremental_state,
+ static_kv=True,
+ need_weights=need_attn or (not self.training and self.need_attn),
+ need_head_weights=need_head_weights,
+ )
+ x = self.dropout_module(x)
+ x = self.residual_connection(x, residual)
+ if not self.normalize_before:
+ x = self.encoder_attn_layer_norm(x)
+
+ residual = x
+ if self.normalize_before:
+ x = self.final_layer_norm(x)
+
+ x = self.activation_fn(self.fc1(x))
+ x = self.activation_dropout_module(x)
+ x = self.fc2(x)
+ x = self.dropout_module(x)
+ x = self.residual_connection(x, residual)
+ if not self.normalize_before:
+ x = self.final_layer_norm(x)
+ if self.onnx_trace and incremental_state is not None:
+ saved_state = self.self_attn._get_input_buffer(incremental_state)
+ assert saved_state is not None
+ if self_attn_padding_mask is not None:
+ self_attn_state = [
+ saved_state["prev_key"],
+ saved_state["prev_value"],
+ saved_state["prev_key_padding_mask"],
+ ]
+ else:
+ self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
+ return x, attn, self_attn_state
+ return x, attn, None
diff --git a/fairseq/examples/simultaneous_translation/tests/test_text_models.py b/fairseq/examples/simultaneous_translation/tests/test_text_models.py
new file mode 100644
index 0000000000000000000000000000000000000000..127adfa6337333ba5ae598fcd158956def0d520f
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/tests/test_text_models.py
@@ -0,0 +1,407 @@
+import argparse
+import unittest
+from typing import Any, Dict
+
+import torch
+from examples.simultaneous_translation.models import (
+ transformer_monotonic_attention
+)
+
+
+from tests.test_roberta import FakeTask
+
+
+DEFAULT_CONFIG = {
+ "attention_eps": 1e-6,
+ "mass_preservation": True,
+ "noise_type": "flat",
+ "noise_mean": 0.0,
+ "noise_var": 1.0,
+ "energy_bias_init": -2,
+ "energy_bias": True
+}
+
+
+PAD_INDEX = 1
+
+
+def generate_config(overrides_kv):
+ new_dict = {key: value for key, value in DEFAULT_CONFIG.items()}
+ for key, value in overrides_kv.items():
+ new_dict[key] = value
+ return new_dict
+
+
+def make_sample_with_padding(longer_src=False) -> Dict[str, Any]:
+ tokens_1 = torch.LongTensor(
+ [
+ [2, 10, 11, 12, 13, 14, 15, 10, 11, 12, 13, 14, 15, 2],
+ [
+ 2, 11, 12, 14, 15, 10, 11, 12, 13, 14, 15, 2,
+ PAD_INDEX, PAD_INDEX
+ ],
+ ]
+ )
+ tokens_2 = torch.LongTensor(
+ [
+ [2, 11, 12, 13, 14, 2, PAD_INDEX, PAD_INDEX],
+ [2, 11, 22, 33, 2, PAD_INDEX, PAD_INDEX, PAD_INDEX]
+ ]
+ )
+ if longer_src:
+ src_tokens = tokens_1[:, 1:]
+ prev_output_tokens = tokens_2
+ else:
+ src_tokens = tokens_2[:, 1:8]
+ prev_output_tokens = tokens_1
+
+ src_lengths = src_tokens.ne(PAD_INDEX).sum(dim=1).long()
+
+ sample = {
+ "net_input": {
+ "src_tokens": src_tokens,
+ "prev_output_tokens": prev_output_tokens,
+ "src_lengths": src_lengths,
+ },
+ "target": prev_output_tokens[:, 1:],
+ }
+ return sample
+
+
+def build_transformer_monotonic_attention(**extra_args: Any):
+ overrides = {
+ # Use characteristics dimensions
+ "encoder_embed_dim": 12,
+ "encoder_ffn_embed_dim": 14,
+ "decoder_embed_dim": 12,
+ "decoder_ffn_embed_dim": 14,
+ # Disable dropout so we have comparable tests.
+ "dropout": 0,
+ "attention_dropout": 0,
+ "activation_dropout": 0,
+ "encoder_layerdrop": 0,
+ }
+ overrides.update(extra_args)
+ # Overrides the defaults from the parser
+ args = argparse.Namespace(**overrides)
+ transformer_monotonic_attention.monotonic_tiny_architecture(args)
+
+ torch.manual_seed(0)
+ task = FakeTask(args)
+ return (
+ transformer_monotonic_attention
+ .TransformerModelSimulTrans
+ .build_model(args, task)
+ )
+
+
+def expected_alignment_formula(
+ p_choose,
+ mass_perservation=True,
+ padding_mask=None
+):
+ # Online and Linear-Time Attention by Enforcing Monotonic Alignments
+ # https://arxiv.org/pdf/1704.00784.pdf
+ # Eq 18, 19
+ bsz, tgt_len, src_len = p_choose.size()
+ alpha = torch.zeros_like(p_choose)
+
+ if padding_mask is not None:
+ bsz_pad = padding_mask.size(0)
+ num_heads = int(bsz / bsz_pad)
+ padding_mask = (
+ padding_mask
+ .unsqueeze(1)
+ .expand([bsz_pad, num_heads, src_len])
+ .contiguous()
+ .view(-1, src_len)
+ )
+
+ p_choose = p_choose.masked_fill(padding_mask.unsqueeze(1), 0)
+
+ for bsz_i in range(bsz):
+ for i in range(tgt_len):
+ for j in range(src_len):
+ if i == 0:
+ if j == 0:
+ # First source token
+ alpha[bsz_i, i, j] = p_choose[bsz_i, i, j]
+ else:
+ # First target token
+ alpha[bsz_i, i, j] = (
+ p_choose[bsz_i, i, j]
+ * torch.prod(
+ 1 - p_choose[bsz_i, i, :j]
+ )
+ )
+ else:
+ alpha[bsz_i, i, j] = alpha[bsz_i, i - 1, j]
+ for k in range(j):
+ alpha[bsz_i, i, j] += (
+ alpha[bsz_i, i - 1, k]
+ * torch.prod(
+ 1 - p_choose[bsz_i, i, k:j]
+ )
+ )
+ alpha[bsz_i, i, j] *= p_choose[bsz_i, i, j]
+
+ alpha = alpha.masked_fill(padding_mask.unsqueeze(1), 0)
+
+ if mass_perservation:
+ alpha = mass_perservation_formula(alpha, False, padding_mask)
+
+ return alpha
+
+
+def mass_perservation_formula(alpha, left_padding=False, padding_mask=None):
+ if padding_mask is None or alpha.size(-1) == 1:
+ if alpha.size(-1) > 1:
+ alpha[:, :, -1] = 1 - alpha[:, :, :-1].sum(dim=-1)
+ return alpha
+
+ src_lens = (padding_mask.logical_not()).sum(dim=1).long()
+
+ bsz, tgt_len, src_len = alpha.size()
+
+ assert (
+ not left_padding
+ or (left_padding and (not padding_mask[:, 0].any()))
+ )
+
+ alpha = alpha.masked_fill(padding_mask.unsqueeze(1), 0)
+
+ for bsz_i in range(bsz):
+ if left_padding:
+ alpha[bsz_i, :, -1] = (
+ 1 - alpha[bsz_i, :, :-1].sum(dim=-1)
+ )
+ else:
+ alpha[bsz_i, :, src_lens[bsz_i] - 1] = (
+ 1 - alpha[bsz_i, :, :src_lens[bsz_i] - 1].sum(dim=-1)
+ )
+
+ return alpha
+
+
+def expected_soft_attention_formula(
+ alpha,
+ soft_energy,
+ padding_mask=None,
+ chunksize=1e10,
+):
+ # Monotonic Infinite Lookback Attention for Simultaneous Machine Translation
+ # https://arxiv.org/pdf/1906.05218.pdf
+ # Eq 14
+
+ # Monotonic Chunkwise Attention
+ # https://arxiv.org/abs/1712.05382
+ # Eq 17
+ bsz, tgt_len, src_len = alpha.size()
+ beta = torch.zeros_like(alpha)
+
+ if padding_mask is not None:
+ bsz_pad = padding_mask.size(0)
+ num_heads = int(bsz / bsz_pad)
+ # Expanding for potential head dimension
+ padding_mask = (
+ padding_mask
+ .unsqueeze(1)
+ .expand([bsz_pad, num_heads, src_len])
+ .contiguous()
+ .view(-1, src_len)
+ )
+ soft_energy = soft_energy.masked_fill(padding_mask.unsqueeze(1), float('-inf'))
+
+ for bsz_i in range(bsz):
+ for i in range(tgt_len):
+ for j in range(src_len):
+ for k in range(j, min([src_len, j + chunksize])):
+ if not padding_mask[bsz_i, j]:
+ beta[bsz_i, i, j] += (
+ alpha[bsz_i, i, k] * torch.exp(soft_energy[bsz_i, i, j])
+ / torch.sum(torch.exp(soft_energy[bsz_i, i, max([0, k - chunksize + 1]):k + 1]))
+ )
+ return beta
+
+
+class MonotonicAttentionTestAbstractClass(object):
+ def test_forward(self):
+ sample = make_sample_with_padding()
+ out, _ = self.model.forward(**sample["net_input"])
+ loss = out.sum()
+ loss.backward()
+
+ def test_p_choose(self):
+ sample = make_sample_with_padding()
+ _, extra_out = self.model.forward(**sample["net_input"])
+ for item in extra_out.attn_list:
+ p_choose = item["p_choose"]
+ self.assertTrue(p_choose.le(1.0).all())
+ self.assertTrue(p_choose.ge(0.0).all())
+
+ def test_expected_alignment(self):
+ for longer_src in [True, False]:
+ sample = make_sample_with_padding(longer_src)
+ _, extra_out = self.model.forward(**sample["net_input"])
+ for item in extra_out.attn_list:
+ p_choose = item["p_choose"]
+ alpha_system = item["alpha"]
+ self.assertTrue(p_choose.size() == alpha_system.size())
+ bsz, num_head, tgt_len, src_len = alpha_system.size()
+ alpha_system = alpha_system.view(-1, tgt_len, src_len)
+ p_choose = p_choose.view(-1, tgt_len, src_len)
+
+ alpha_real = expected_alignment_formula(
+ p_choose,
+ self.model.decoder.layers[0].encoder_attn.mass_preservation,
+ sample["net_input"]["src_tokens"].eq(PAD_INDEX)
+ )
+
+ self.assertTrue(
+ torch.abs(alpha_system - alpha_real).le(5e-5).all(),
+ )
+
+
+class HardMonotonicAttentionTestCase(
+ unittest.TestCase,
+ MonotonicAttentionTestAbstractClass
+):
+ def setUp(self):
+ self.model = build_transformer_monotonic_attention(
+ **generate_config({"simul_type": "hard_aligned"})
+ )
+
+
+class InfiniteLookbackTestCase(
+ unittest.TestCase,
+ MonotonicAttentionTestAbstractClass
+):
+ def setUp(self):
+ self.model = build_transformer_monotonic_attention(
+ **generate_config(
+ {
+ "simul_type": "infinite_lookback"
+ }
+ )
+ )
+ self.model.train()
+
+ def test_fp16_for_long_input(self):
+ sample = {
+ "net_input": {
+ "src_tokens": torch.LongTensor([7] * 1000 + [2]).cuda().unsqueeze(0),
+ "prev_output_tokens": torch.LongTensor([7] * 1000 + [2]).cuda().unsqueeze(0),
+ "src_lengths": torch.LongTensor([1000]).cuda(),
+ },
+ "target": torch.LongTensor([2] + [7] * 1000).unsqueeze(0).cuda()
+ }
+ self.model.cuda().half()
+ _, extra_out = self.model.forward(**sample["net_input"])
+ for item in extra_out.attn_list:
+ for key in ["p_choose", "alpha", "beta", "soft_energy"]:
+ self.assertFalse(torch.isnan(item[key]).any())
+
+ def test_expected_attention(self):
+ for longer_src in [True, False]:
+ sample = make_sample_with_padding(longer_src)
+ _, extra_out = self.model.forward(**sample["net_input"])
+ for item in extra_out.attn_list:
+ p_choose = item["p_choose"]
+ alpha_system = item["alpha"]
+ beta_system = item["beta"]
+ soft_energy_system = item["soft_energy"]
+ self.assertTrue(beta_system.size() == alpha_system.size())
+ self.assertTrue(p_choose.size() == alpha_system.size())
+
+ bsz, num_head, tgt_len, src_len = alpha_system.size()
+
+ alpha_system = alpha_system.view(-1, tgt_len, src_len)
+ beta_system = beta_system.view(-1, tgt_len, src_len)
+ p_choose = p_choose.view(-1, tgt_len, src_len)
+ soft_energy_system = soft_energy_system.view(-1, tgt_len, src_len)
+
+ alpha_real = expected_alignment_formula(
+ p_choose,
+ self.model.decoder.layers[0].encoder_attn.mass_preservation,
+ sample["net_input"]["src_tokens"].eq(PAD_INDEX)
+ )
+
+ beta_real = expected_soft_attention_formula(
+ alpha_real,
+ soft_energy_system,
+ sample["net_input"]["src_tokens"].eq(PAD_INDEX),
+ chunksize=getattr(
+ self.model.decoder.layers[0].encoder_attn,
+ "chunk_size",
+ int(1e10)
+ )
+ )
+
+ self.assertTrue(
+ torch.abs(beta_system - beta_real).le(1e-5).all(),
+ )
+
+
+class ChunkwiswTestCase(
+ InfiniteLookbackTestCase
+):
+ def setUp(self):
+ self.model = build_transformer_monotonic_attention(
+ **generate_config(
+ {
+ "simul_type": "chunkwise",
+ "mocha_chunk_size": 3
+ }
+ )
+ )
+
+
+class WaitkTestCase(InfiniteLookbackTestCase):
+ def setUp(self):
+ self.model = build_transformer_monotonic_attention(
+ **generate_config(
+ {
+ "simul_type": "waitk",
+ "waitk_lagging": 3,
+ }
+ )
+ )
+
+ def check_waitk(self, p_choose, lagging, padding_mask):
+ bsz, tgt_len, src_len = p_choose.size()
+ for bsz_i in range(bsz):
+ for i in range(tgt_len):
+ for j in range(src_len):
+ if not padding_mask[bsz_i, j]:
+ if j - i == lagging - 1:
+ self.assertTrue(p_choose[bsz_i, i, j] == 1)
+ else:
+ self.assertTrue(p_choose[bsz_i, i, j] == 0)
+
+ def test_waitk_p_choose(self):
+ for longer_src in [True, False]:
+ for k in [1, 3, 10, 20, 100]:
+ sample = make_sample_with_padding(longer_src)
+ model = build_transformer_monotonic_attention(
+ **generate_config(
+ {
+ "simul_type": "waitk",
+ "waitk_lagging": k,
+ }
+ )
+ )
+ model.train()
+ _, extra_out = model.forward(**sample["net_input"])
+ for item in extra_out.attn_list:
+ p_choose = item["p_choose"]
+ bsz, num_heads, tgt_len, src_len = p_choose.size()
+ padding_mask = sample["net_input"]["src_tokens"].eq(PAD_INDEX)
+ padding_mask = (
+ padding_mask
+ .unsqueeze(1)
+ .expand([bsz, num_heads, src_len])
+ .contiguous()
+ .view(-1, src_len)
+ )
+ p_choose = p_choose.view(bsz * num_heads, tgt_len, src_len)
+ self.check_waitk(p_choose, k, padding_mask)
diff --git a/fairseq/examples/simultaneous_translation/utils/__init__.py b/fairseq/examples/simultaneous_translation/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..1e9ce844f59a4211061392084cc81075e6bab19f
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/utils/__init__.py
@@ -0,0 +1,14 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import importlib
+import os
+
+
+# automatically import any Python files in the criterions/ directory
+for file in sorted(os.listdir(os.path.dirname(__file__))):
+ if file.endswith(".py") and not file.startswith("_"):
+ module = file[: file.find(".py")]
+ importlib.import_module("examples.simultaneous_translation.utils." + module)
diff --git a/fairseq/examples/simultaneous_translation/utils/functions.py b/fairseq/examples/simultaneous_translation/utils/functions.py
new file mode 100644
index 0000000000000000000000000000000000000000..590a6c11cea222ac9096b19f0e3dfe1b71b6c10b
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/utils/functions.py
@@ -0,0 +1,125 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+
+
+def prob_check(tensor, eps=1e-10):
+ assert not torch.isnan(tensor).any(), (
+ "Nan in a probability tensor."
+ )
+ # Add the eps here to prevent errors introduced by precision
+ assert tensor.le(1.0 + eps).all() and tensor.ge(0.0 - eps).all(), (
+ "Incorrect values in a probability tensor"
+ ", 0.0 <= tensor <= 1.0"
+ )
+
+
+def exclusive_cumprod(tensor, dim: int, eps: float = 1e-10):
+ """
+ Implementing exclusive cumprod.
+ There is cumprod in pytorch, however there is no exclusive mode.
+ cumprod(x) = [x1, x1x2, x2x3x4, ..., prod_{i=1}^n x_i]
+ exclusive means
+ cumprod(x) = [1, x1, x1x2, x1x2x3, ..., prod_{i=1}^{n-1} x_i]
+ """
+ tensor_size = list(tensor.size())
+ tensor_size[dim] = 1
+ return_tensor = safe_cumprod(
+ torch.cat([torch.ones(tensor_size).type_as(tensor), tensor], dim=dim),
+ dim=dim,
+ eps=eps,
+ )
+
+ if dim == 0:
+ return return_tensor[:-1]
+ elif dim == 1:
+ return return_tensor[:, :-1]
+ elif dim == 2:
+ return return_tensor[:, :, :-1]
+ else:
+ raise RuntimeError(
+ "Cumprod on dimension 3 and more is not implemented"
+ )
+
+
+def safe_cumprod(tensor, dim: int, eps: float = 1e-10):
+ """
+ An implementation of cumprod to prevent precision issue.
+ cumprod(x)
+ = [x1, x1x2, x1x2x3, ....]
+ = [exp(log(x1)), exp(log(x1) + log(x2)), exp(log(x1) + log(x2) + log(x3)), ...]
+ = exp(cumsum(log(x)))
+ """
+
+ if (tensor + eps < 0).any().item():
+ raise RuntimeError(
+ "Safe cumprod can only take non-negative tensors as input."
+ "Consider use torch.cumprod if you want to calculate negative values."
+ )
+
+ log_tensor = torch.log(tensor + eps)
+ cumsum_log_tensor = torch.cumsum(log_tensor, dim)
+ exp_cumsum_log_tensor = torch.exp(cumsum_log_tensor)
+ return exp_cumsum_log_tensor
+
+
+def moving_sum(x, start_idx: int, end_idx: int):
+ """
+ From MONOTONIC CHUNKWISE ATTENTION
+ https://arxiv.org/pdf/1712.05382.pdf
+ Equation (18)
+
+ x = [x_1, x_2, ..., x_N]
+ MovingSum(x, start_idx, end_idx)_n = Sigma_{m=n−(start_idx−1)}^{n+end_idx-1} x_m
+ for n in {1, 2, 3, ..., N}
+
+ x : src_len, batch_size
+ start_idx : start idx
+ end_idx : end idx
+
+ Example
+ src_len = 5
+ batch_size = 3
+ x =
+ [[ 0, 5, 10],
+ [ 1, 6, 11],
+ [ 2, 7, 12],
+ [ 3, 8, 13],
+ [ 4, 9, 14]]
+
+ MovingSum(x, 3, 1) =
+ [[ 0, 5, 10],
+ [ 1, 11, 21],
+ [ 3, 18, 33],
+ [ 6, 21, 36],
+ [ 9, 24, 39]]
+
+ MovingSum(x, 1, 3) =
+ [[ 3, 18, 33],
+ [ 6, 21, 36],
+ [ 9, 24, 39],
+ [ 7, 17, 27],
+ [ 4, 9, 14]]
+ """
+ # TODO: Make dimension configurable
+ assert start_idx > 0 and end_idx > 0
+ batch_size, tgt_len, src_len = x.size()
+ x = x.view(-1, src_len).unsqueeze(1)
+ # batch_size, 1, src_len
+ moving_sum_weight = torch.ones([1, 1, end_idx + start_idx - 1]).type_as(x)
+
+ moving_sum = torch.nn.functional.conv1d(
+ x, moving_sum_weight, padding=start_idx + end_idx - 1
+ ).squeeze(1)
+
+ moving_sum = moving_sum[:, end_idx:-start_idx]
+
+ assert src_len == moving_sum.size(1)
+ assert batch_size * tgt_len == moving_sum.size(0)
+
+ moving_sum = moving_sum.view(batch_size, tgt_len, src_len)
+
+ return moving_sum
diff --git a/fairseq/examples/simultaneous_translation/utils/monotonic_attention.py b/fairseq/examples/simultaneous_translation/utils/monotonic_attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..61dbb112bfd5ea7b92f2739f046910f486bb0153
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/utils/monotonic_attention.py
@@ -0,0 +1,198 @@
+from typing import Optional
+import torch
+from torch import Tensor
+
+from examples.simultaneous_translation.utils.functions import (
+ exclusive_cumprod,
+ prob_check,
+ moving_sum,
+)
+
+
+def expected_alignment_from_p_choose(
+ p_choose: Tensor,
+ padding_mask: Optional[Tensor] = None,
+ eps: float = 1e-6
+):
+ """
+ Calculating expected alignment for from stepwise probability
+
+ Reference:
+ Online and Linear-Time Attention by Enforcing Monotonic Alignments
+ https://arxiv.org/pdf/1704.00784.pdf
+
+ q_ij = (1 − p_{ij−1})q_{ij−1} + a+{i−1j}
+ a_ij = p_ij q_ij
+
+ Parallel solution:
+ ai = p_i * cumprod(1 − pi) * cumsum(a_i / cumprod(1 − pi))
+
+ ============================================================
+ Expected input size
+ p_choose: bsz, tgt_len, src_len
+ """
+ prob_check(p_choose)
+
+ # p_choose: bsz, tgt_len, src_len
+ bsz, tgt_len, src_len = p_choose.size()
+ dtype = p_choose.dtype
+
+ p_choose = p_choose.float()
+
+ if padding_mask is not None:
+ p_choose = p_choose.masked_fill(padding_mask.unsqueeze(1), 0.0)
+
+ # cumprod_1mp : bsz, tgt_len, src_len
+ cumprod_1mp = exclusive_cumprod(1 - p_choose, dim=2, eps=eps)
+ cumprod_1mp_clamp = torch.clamp(cumprod_1mp, eps, 1.0)
+
+ alpha_0 = p_choose.new_zeros([bsz, 1, src_len])
+ alpha_0[:, :, 0] = 1.0
+
+ previous_alpha = [alpha_0]
+
+ for i in range(tgt_len):
+ # p_choose: bsz , tgt_len, src_len
+ # cumprod_1mp_clamp : bsz, tgt_len, src_len
+ # previous_alpha[i]: bsz, 1, src_len
+ # alpha_i: bsz, src_len
+ alpha_i = (
+ p_choose[:, i]
+ * cumprod_1mp[:, i]
+ * torch.cumsum(
+ previous_alpha[i][:, 0] / cumprod_1mp_clamp[:, i], dim=1
+ )
+ ).clamp(0, 1.0)
+
+ previous_alpha.append(alpha_i.unsqueeze(1))
+
+ # alpha: bsz * num_heads, tgt_len, src_len
+ alpha = torch.cat(previous_alpha[1:], dim=1)
+
+ # Mix precision to prevent overflow for fp16
+ alpha = alpha.type(dtype)
+
+ prob_check(alpha)
+
+ return alpha
+
+
+def expected_soft_attention(
+ alpha: Tensor,
+ soft_energy: Tensor,
+ padding_mask: Optional[Tensor] = None,
+ chunk_size: Optional[int] = None,
+ eps: float = 1e-10
+):
+ """
+ Function to compute expected soft attention for
+ monotonic infinite lookback attention from
+ expected alignment and soft energy.
+
+ Reference:
+ Monotonic Chunkwise Attention
+ https://arxiv.org/abs/1712.05382
+
+ Monotonic Infinite Lookback Attention for Simultaneous Machine Translation
+ https://arxiv.org/abs/1906.05218
+
+ alpha: bsz, tgt_len, src_len
+ soft_energy: bsz, tgt_len, src_len
+ padding_mask: bsz, src_len
+ left_padding: bool
+ """
+ if padding_mask is not None:
+ alpha = alpha.masked_fill(padding_mask.unsqueeze(1), 0.0)
+ soft_energy = soft_energy.masked_fill(
+ padding_mask.unsqueeze(1), -float("inf")
+ )
+
+ prob_check(alpha)
+
+ dtype = alpha.dtype
+
+ alpha = alpha.float()
+ soft_energy = soft_energy.float()
+
+ soft_energy = soft_energy - soft_energy.max(dim=2, keepdim=True)[0]
+ exp_soft_energy = torch.exp(soft_energy) + eps
+
+ if chunk_size is not None:
+ # Chunkwise
+ beta = (
+ exp_soft_energy
+ * moving_sum(
+ alpha / (eps + moving_sum(exp_soft_energy, chunk_size, 1)),
+ 1, chunk_size
+ )
+ )
+ else:
+ # Infinite lookback
+ # Notice that infinite lookback is a special case of chunkwise
+ # where chunksize = inf
+ inner_items = alpha / (eps + torch.cumsum(exp_soft_energy, dim=2))
+
+ beta = (
+ exp_soft_energy
+ * torch.cumsum(inner_items.flip(dims=[2]), dim=2)
+ .flip(dims=[2])
+ )
+
+ if padding_mask is not None:
+ beta = beta.masked_fill(
+ padding_mask.unsqueeze(1).to(torch.bool), 0.0)
+
+ # Mix precision to prevent overflow for fp16
+ beta = beta.type(dtype)
+
+ beta = beta.clamp(0, 1)
+
+ prob_check(beta)
+
+ return beta
+
+
+def mass_preservation(
+ alpha: Tensor,
+ padding_mask: Optional[Tensor] = None,
+ left_padding: bool = False
+):
+ """
+ Function to compute the mass perservation for alpha.
+ This means that the residual weights of alpha will be assigned
+ to the last token.
+
+ Reference:
+ Monotonic Infinite Lookback Attention for Simultaneous Machine Translation
+ https://arxiv.org/abs/1906.05218
+
+ alpha: bsz, tgt_len, src_len
+ padding_mask: bsz, src_len
+ left_padding: bool
+ """
+
+ prob_check(alpha)
+
+ if padding_mask is not None:
+ if not left_padding:
+ assert not padding_mask[:, 0].any(), (
+ "Find padding on the beginning of the sequence."
+ )
+ alpha = alpha.masked_fill(padding_mask.unsqueeze(1), 0.0)
+
+ if left_padding or padding_mask is None:
+ residuals = 1 - alpha[:, :, :-1].sum(dim=-1).clamp(0, 1)
+ alpha[:, :, -1] = residuals
+ else:
+ # right padding
+ _, tgt_len, src_len = alpha.size()
+ residuals = 1 - alpha.sum(dim=-1, keepdim=True).clamp(0, 1)
+ src_lens = src_len - padding_mask.sum(dim=1, keepdim=True)
+ src_lens = src_lens.expand(-1, tgt_len).contiguous()
+ # add back the last value
+ residuals += alpha.gather(2, src_lens.unsqueeze(2) - 1)
+ alpha = alpha.scatter(2, src_lens.unsqueeze(2) - 1, residuals)
+
+ prob_check(alpha)
+
+ return alpha
diff --git a/fairseq/examples/simultaneous_translation/utils/p_choose_strategy.py b/fairseq/examples/simultaneous_translation/utils/p_choose_strategy.py
new file mode 100644
index 0000000000000000000000000000000000000000..724c6912a62d48fc61988cac1434a4f5c8754521
--- /dev/null
+++ b/fairseq/examples/simultaneous_translation/utils/p_choose_strategy.py
@@ -0,0 +1,126 @@
+from typing import Optional, Dict
+from torch import Tensor
+import torch
+
+
+def waitk_p_choose(
+ tgt_len: int,
+ src_len: int,
+ bsz: int,
+ waitk_lagging: int,
+ key_padding_mask: Optional[Tensor] = None,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None
+):
+
+ max_src_len = src_len
+ if incremental_state is not None:
+ # Retrieve target length from incremental states
+ # For inference the length of query is always 1
+ max_tgt_len = incremental_state["steps"]["tgt"]
+ assert max_tgt_len is not None
+ max_tgt_len = int(max_tgt_len)
+ else:
+ max_tgt_len = tgt_len
+
+ if max_src_len < waitk_lagging:
+ if incremental_state is not None:
+ max_tgt_len = 1
+ return torch.zeros(
+ bsz, max_tgt_len, max_src_len
+ )
+
+ # Assuming the p_choose looks like this for wait k=3
+ # src_len = 6, max_tgt_len = 5
+ # [0, 0, 1, 0, 0, 0, 0]
+ # [0, 0, 0, 1, 0, 0, 0]
+ # [0, 0, 0, 0, 1, 0, 0]
+ # [0, 0, 0, 0, 0, 1, 0]
+ # [0, 0, 0, 0, 0, 0, 1]
+ # linearize the p_choose matrix:
+ # [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0...]
+ # The indices of linearized matrix that equals 1 is
+ # 2 + 6 * 0
+ # 3 + 6 * 1
+ # ...
+ # n + src_len * n + k - 1 = n * (src_len + 1) + k - 1
+ # n from 0 to max_tgt_len - 1
+ #
+ # First, generate the indices (activate_indices_offset: bsz, max_tgt_len)
+ # Second, scatter a zeros tensor (bsz, max_tgt_len * src_len)
+ # with activate_indices_offset
+ # Third, resize the tensor to (bsz, max_tgt_len, src_len)
+
+ activate_indices_offset = (
+ (
+ torch.arange(max_tgt_len) * (max_src_len + 1)
+ + waitk_lagging - 1
+ )
+ .unsqueeze(0)
+ .expand(bsz, max_tgt_len)
+ .long()
+ )
+
+ if key_padding_mask is not None:
+ if key_padding_mask[:, 0].any():
+ # Left padding
+ activate_indices_offset += (
+ key_padding_mask.sum(dim=1, keepdim=True)
+ )
+
+ # Need to clamp the indices that are too large
+ activate_indices_offset = (
+ activate_indices_offset
+ .clamp(
+ 0,
+ min(
+ [
+ max_tgt_len,
+ max_src_len - waitk_lagging + 1
+ ]
+ ) * max_src_len - 1
+ )
+ )
+
+ p_choose = torch.zeros(bsz, max_tgt_len * max_src_len)
+
+ p_choose = p_choose.scatter(
+ 1,
+ activate_indices_offset,
+ 1.0
+ ).view(bsz, max_tgt_len, max_src_len)
+
+ if key_padding_mask is not None:
+ p_choose = p_choose.to(key_padding_mask)
+ p_choose = p_choose.masked_fill(key_padding_mask.unsqueeze(1), 0)
+
+ if incremental_state is not None:
+ p_choose = p_choose[:, -1:]
+
+ return p_choose.float()
+
+
+def learnable_p_choose(
+ energy,
+ noise_mean: float = 0.0,
+ noise_var: float = 0.0,
+ training: bool = True
+):
+ """
+ Calculating step wise prob for reading and writing
+ 1 to read, 0 to write
+ energy: bsz, tgt_len, src_len
+ """
+
+ noise = 0
+ if training:
+ # add noise here to encourage discretness
+ noise = (
+ torch.normal(noise_mean, noise_var, energy.size())
+ .type_as(energy)
+ .to(energy.device)
+ )
+
+ p_choose = torch.sigmoid(energy + noise)
+
+ # p_choose: bsz * self.num_heads, tgt_len, src_len
+ return p_choose
diff --git a/fairseq/examples/speech_recognition/README.md b/fairseq/examples/speech_recognition/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..17030bf0fd50bb843a508e13e97ed436eae33287
--- /dev/null
+++ b/fairseq/examples/speech_recognition/README.md
@@ -0,0 +1,83 @@
+### 2021 Update: We are merging this example into the [S2T framework](../speech_to_text), which supports more generic speech-to-text tasks (e.g. speech translation) and more flexible data processing pipelines. Please stay tuned.
+
+# Speech Recognition
+`examples/speech_recognition` is implementing ASR task in Fairseq, along with needed features, datasets, models and loss functions to train and infer model described in [Transformers with convolutional context for ASR (Abdelrahman Mohamed et al., 2019)](https://arxiv.org/abs/1904.11660).
+
+
+## Additional dependencies
+On top of main fairseq dependencies there are couple more additional requirements.
+
+1) Please follow the instructions to install [torchaudio](https://github.com/pytorch/audio). This is required to compute audio fbank features.
+2) [Sclite](http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm#sclite_name_0) is used to measure WER. Sclite can be downloaded and installed from source from sctk package [here](http://www.openslr.org/4/). Training and inference doesn't require Sclite dependency.
+3) [sentencepiece](https://github.com/google/sentencepiece) is required in order to create dataset with word-piece targets.
+
+## Preparing librispeech data
+```
+./examples/speech_recognition/datasets/prepare-librispeech.sh $DIR_TO_SAVE_RAW_DATA $DIR_FOR_PREPROCESSED_DATA
+```
+
+## Training librispeech data
+```
+python train.py $DIR_FOR_PREPROCESSED_DATA --save-dir $MODEL_PATH --max-epoch 80 --task speech_recognition --arch vggtransformer_2 --optimizer adadelta --lr 1.0 --adadelta-eps 1e-8 --adadelta-rho 0.95 --clip-norm 10.0 --max-tokens 5000 --log-format json --log-interval 1 --criterion cross_entropy_acc --user-dir examples/speech_recognition/
+```
+
+## Inference for librispeech
+`$SET` can be `test_clean` or `test_other`
+Any checkpoint in `$MODEL_PATH` can be selected. In this example we are working with `checkpoint_last.pt`
+```
+python examples/speech_recognition/infer.py $DIR_FOR_PREPROCESSED_DATA --task speech_recognition --max-tokens 25000 --nbest 1 --path $MODEL_PATH/checkpoint_last.pt --beam 20 --results-path $RES_DIR --batch-size 40 --gen-subset $SET --user-dir examples/speech_recognition/
+```
+
+## Inference for librispeech
+```
+sclite -r ${RES_DIR}/ref.word-checkpoint_last.pt-${SET}.txt -h ${RES_DIR}/hypo.word-checkpoint_last.pt-${SET}.txt -i rm -o all stdout > $RES_REPORT
+```
+`Sum/Avg` row from first table of the report has WER
+
+## Using flashlight (previously called [wav2letter](https://github.com/facebookresearch/wav2letter)) components
+[flashlight](https://github.com/facebookresearch/flashlight) now has integration with fairseq. Currently this includes:
+
+* AutoSegmentationCriterion (ASG)
+* flashlight-style Conv/GLU model
+* flashlight's beam search decoder
+
+To use these, follow the instructions on [this page](https://github.com/facebookresearch/flashlight/tree/master/bindings/python) to install python bindings.
+
+## Training librispeech data (flashlight style, Conv/GLU + ASG loss)
+Training command:
+```
+python train.py $DIR_FOR_PREPROCESSED_DATA --save-dir $MODEL_PATH --max-epoch 100 --task speech_recognition --arch w2l_conv_glu_enc --batch-size 4 --optimizer sgd --lr 0.3,0.8 --momentum 0.8 --clip-norm 0.2 --max-tokens 50000 --log-format json --log-interval 100 --num-workers 0 --sentence-avg --criterion asg_loss --asg-transitions-init 5 --max-replabel 2 --linseg-updates 8789 --user-dir examples/speech_recognition
+```
+
+Note that ASG loss currently doesn't do well with word-pieces. You should prepare a dataset with character targets by setting `nbpe=31` in `prepare-librispeech.sh`.
+
+## Inference for librispeech (flashlight decoder, n-gram LM)
+Inference command:
+```
+python examples/speech_recognition/infer.py $DIR_FOR_PREPROCESSED_DATA --task speech_recognition --seed 1 --nbest 1 --path $MODEL_PATH/checkpoint_last.pt --gen-subset $SET --results-path $RES_DIR --w2l-decoder kenlm --kenlm-model $KENLM_MODEL_PATH --lexicon $LEXICON_PATH --beam 200 --beam-threshold 15 --lm-weight 1.5 --word-score 1.5 --sil-weight -0.3 --criterion asg_loss --max-replabel 2 --user-dir examples/speech_recognition
+```
+
+`$KENLM_MODEL_PATH` should be a standard n-gram language model file. `$LEXICON_PATH` should be a flashlight-style lexicon (list of known words and their spellings). For ASG inference, a lexicon line should look like this (note the repetition labels):
+```
+doorbell D O 1 R B E L 1 ▁
+```
+For CTC inference with word-pieces, repetition labels are not used and the lexicon should have most common spellings for each word (one can use sentencepiece's `NBestEncodeAsPieces` for this):
+```
+doorbell ▁DOOR BE LL
+doorbell ▁DOOR B E LL
+doorbell ▁DO OR BE LL
+doorbell ▁DOOR B EL L
+doorbell ▁DOOR BE L L
+doorbell ▁DO OR B E LL
+doorbell ▁DOOR B E L L
+doorbell ▁DO OR B EL L
+doorbell ▁DO O R BE LL
+doorbell ▁DO OR BE L L
+```
+Lowercase vs. uppercase matters: the *word* should match the case of the n-gram language model (i.e. `$KENLM_MODEL_PATH`), while the *spelling* should match the case of the token dictionary (i.e. `$DIR_FOR_PREPROCESSED_DATA/dict.txt`).
+
+## Inference for librispeech (flashlight decoder, viterbi only)
+Inference command:
+```
+python examples/speech_recognition/infer.py $DIR_FOR_PREPROCESSED_DATA --task speech_recognition --seed 1 --nbest 1 --path $MODEL_PATH/checkpoint_last.pt --gen-subset $SET --results-path $RES_DIR --w2l-decoder viterbi --criterion asg_loss --max-replabel 2 --user-dir examples/speech_recognition
+```
diff --git a/fairseq/examples/speech_recognition/__init__.py b/fairseq/examples/speech_recognition/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..0278f6a27340c7ff7e207d09348483d1b0d3a100
--- /dev/null
+++ b/fairseq/examples/speech_recognition/__init__.py
@@ -0,0 +1 @@
+from . import criterions, models, tasks # noqa
diff --git a/fairseq/examples/speech_recognition/criterions/ASG_loss.py b/fairseq/examples/speech_recognition/criterions/ASG_loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..41f50bbd70388ce723f2d316d4e9776bcd6be3c9
--- /dev/null
+++ b/fairseq/examples/speech_recognition/criterions/ASG_loss.py
@@ -0,0 +1,170 @@
+#!/usr/bin/env python3
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+from examples.speech_recognition.data.replabels import pack_replabels
+from fairseq import utils
+from fairseq.criterions import FairseqCriterion, register_criterion
+
+
+@register_criterion("asg_loss")
+class ASGCriterion(FairseqCriterion):
+ @staticmethod
+ def add_args(parser):
+ group = parser.add_argument_group("ASG Loss")
+ group.add_argument(
+ "--asg-transitions-init",
+ help="initial diagonal value of transition matrix",
+ type=float,
+ default=0.0,
+ )
+ group.add_argument(
+ "--max-replabel", help="maximum # of replabels", type=int, default=2
+ )
+ group.add_argument(
+ "--linseg-updates",
+ help="# of training updates to use LinSeg initialization",
+ type=int,
+ default=0,
+ )
+ group.add_argument(
+ "--hide-linseg-messages",
+ help="hide messages about LinSeg initialization",
+ action="store_true",
+ )
+
+ def __init__(
+ self,
+ task,
+ silence_token,
+ asg_transitions_init,
+ max_replabel,
+ linseg_updates,
+ hide_linseg_messages,
+ ):
+ from flashlight.lib.sequence.criterion import ASGLoss, CriterionScaleMode
+
+ super().__init__(task)
+ self.tgt_dict = task.target_dictionary
+ self.eos = self.tgt_dict.eos()
+ self.silence = (
+ self.tgt_dict.index(silence_token)
+ if silence_token in self.tgt_dict
+ else None
+ )
+ self.max_replabel = max_replabel
+
+ num_labels = len(self.tgt_dict)
+ self.asg = ASGLoss(num_labels, scale_mode=CriterionScaleMode.TARGET_SZ_SQRT)
+ self.asg.trans = torch.nn.Parameter(
+ asg_transitions_init * torch.eye(num_labels), requires_grad=True
+ )
+
+ self.linseg_progress = torch.nn.Parameter(
+ torch.tensor([0], dtype=torch.int), requires_grad=False
+ )
+ self.linseg_maximum = linseg_updates
+ self.linseg_message_state = "none" if hide_linseg_messages else "start"
+
+ @classmethod
+ def build_criterion(cls, args, task):
+ return cls(
+ task,
+ args.silence_token,
+ args.asg_transitions_init,
+ args.max_replabel,
+ args.linseg_updates,
+ args.hide_linseg_messages,
+ )
+
+ def linseg_step(self):
+ if not self.training:
+ return False
+ if self.linseg_progress.item() < self.linseg_maximum:
+ if self.linseg_message_state == "start":
+ print("| using LinSeg to initialize ASG")
+ self.linseg_message_state = "finish"
+ self.linseg_progress.add_(1)
+ return True
+ elif self.linseg_message_state == "finish":
+ print("| finished LinSeg initialization")
+ self.linseg_message_state = "none"
+ return False
+
+ def replace_eos_with_silence(self, tgt):
+ if tgt[-1] != self.eos:
+ return tgt
+ elif self.silence is None or (len(tgt) > 1 and tgt[-2] == self.silence):
+ return tgt[:-1]
+ else:
+ return tgt[:-1] + [self.silence]
+
+ def forward(self, model, sample, reduce=True):
+ """Compute the loss for the given sample.
+
+ Returns a tuple with three elements:
+ 1) the loss
+ 2) the sample size, which is used as the denominator for the gradient
+ 3) logging outputs to display while training
+ """
+
+ net_output = model(**sample["net_input"])
+ emissions = net_output["encoder_out"].transpose(0, 1).contiguous()
+ B = emissions.size(0)
+ T = emissions.size(1)
+ device = emissions.device
+
+ target = torch.IntTensor(B, T)
+ target_size = torch.IntTensor(B)
+ using_linseg = self.linseg_step()
+
+ for b in range(B):
+ initial_target_size = sample["target_lengths"][b].item()
+ if initial_target_size == 0:
+ raise ValueError("target size cannot be zero")
+
+ tgt = sample["target"][b, :initial_target_size].tolist()
+ tgt = self.replace_eos_with_silence(tgt)
+ tgt = pack_replabels(tgt, self.tgt_dict, self.max_replabel)
+ tgt = tgt[:T]
+
+ if using_linseg:
+ tgt = [tgt[t * len(tgt) // T] for t in range(T)]
+
+ target[b][: len(tgt)] = torch.IntTensor(tgt)
+ target_size[b] = len(tgt)
+
+ loss = self.asg.forward(emissions, target.to(device), target_size.to(device))
+
+ if reduce:
+ loss = torch.sum(loss)
+
+ sample_size = (
+ sample["target"].size(0) if self.args.sentence_avg else sample["ntokens"]
+ )
+ logging_output = {
+ "loss": utils.item(loss.data) if reduce else loss.data,
+ "ntokens": sample["ntokens"],
+ "nsentences": sample["target"].size(0),
+ "sample_size": sample_size,
+ }
+ return loss, sample_size, logging_output
+
+ @staticmethod
+ def aggregate_logging_outputs(logging_outputs):
+ """Aggregate logging outputs from data parallel training."""
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
+ agg_output = {
+ "loss": loss_sum / nsentences,
+ "ntokens": ntokens,
+ "nsentences": nsentences,
+ "sample_size": sample_size,
+ }
+ return agg_output
diff --git a/fairseq/examples/speech_recognition/criterions/__init__.py b/fairseq/examples/speech_recognition/criterions/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..579abd2ace1b14b80f5e53e5c96583e4d5b14c52
--- /dev/null
+++ b/fairseq/examples/speech_recognition/criterions/__init__.py
@@ -0,0 +1,17 @@
+import importlib
+import os
+
+
+# ASG loss requires flashlight bindings
+files_to_skip = set()
+try:
+ import flashlight.lib.sequence.criterion
+except ImportError:
+ files_to_skip.add("ASG_loss.py")
+
+for file in sorted(os.listdir(os.path.dirname(__file__))):
+ if file.endswith(".py") and not file.startswith("_") and file not in files_to_skip:
+ criterion_name = file[: file.find(".py")]
+ importlib.import_module(
+ "examples.speech_recognition.criterions." + criterion_name
+ )
diff --git a/fairseq/examples/speech_recognition/criterions/cross_entropy_acc.py b/fairseq/examples/speech_recognition/criterions/cross_entropy_acc.py
new file mode 100644
index 0000000000000000000000000000000000000000..7c4d8ba3802a2da9467c42b0aa18653c7bbb2ec9
--- /dev/null
+++ b/fairseq/examples/speech_recognition/criterions/cross_entropy_acc.py
@@ -0,0 +1,130 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from __future__ import absolute_import, division, print_function, unicode_literals
+
+import logging
+import math
+
+import torch
+import torch.nn.functional as F
+from fairseq import utils
+from fairseq.criterions import FairseqCriterion, register_criterion
+
+
+@register_criterion("cross_entropy_acc")
+class CrossEntropyWithAccCriterion(FairseqCriterion):
+ def __init__(self, task, sentence_avg):
+ super().__init__(task)
+ self.sentence_avg = sentence_avg
+
+ def compute_loss(self, model, net_output, target, reduction, log_probs):
+ # N, T -> N * T
+ target = target.view(-1)
+ lprobs = model.get_normalized_probs(net_output, log_probs=log_probs)
+ if not hasattr(lprobs, "batch_first"):
+ logging.warning(
+ "ERROR: we need to know whether "
+ "batch first for the net output; "
+ "you need to set batch_first attribute for the return value of "
+ "model.get_normalized_probs. Now, we assume this is true, but "
+ "in the future, we will raise exception instead. "
+ )
+ batch_first = getattr(lprobs, "batch_first", True)
+ if not batch_first:
+ lprobs = lprobs.transpose(0, 1)
+
+ # N, T, D -> N * T, D
+ lprobs = lprobs.view(-1, lprobs.size(-1))
+ loss = F.nll_loss(
+ lprobs, target, ignore_index=self.padding_idx, reduction=reduction
+ )
+ return lprobs, loss
+
+ def get_logging_output(self, sample, target, lprobs, loss):
+ target = target.view(-1)
+ mask = target != self.padding_idx
+ correct = torch.sum(
+ lprobs.argmax(1).masked_select(mask) == target.masked_select(mask)
+ )
+ total = torch.sum(mask)
+ sample_size = (
+ sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
+ )
+
+ logging_output = {
+ "loss": utils.item(loss.data), # * sample['ntokens'],
+ "ntokens": sample["ntokens"],
+ "nsentences": sample["target"].size(0),
+ "sample_size": sample_size,
+ "correct": utils.item(correct.data),
+ "total": utils.item(total.data),
+ "nframes": torch.sum(sample["net_input"]["src_lengths"]).item(),
+ }
+
+ return sample_size, logging_output
+
+ def forward(self, model, sample, reduction="sum", log_probs=True):
+ """Computes the cross entropy with accuracy metric for the given sample.
+
+ This is similar to CrossEntropyCriterion in fairseq, but also
+ computes accuracy metrics as part of logging
+
+ Args:
+ logprobs (Torch.tensor) of shape N, T, D i.e.
+ batchsize, timesteps, dimensions
+ targets (Torch.tensor) of shape N, T i.e batchsize, timesteps
+
+ Returns:
+ tuple: With three elements:
+ 1) the loss
+ 2) the sample size, which is used as the denominator for the gradient
+ 3) logging outputs to display while training
+
+ TODO:
+ * Currently this Criterion will only work with LSTMEncoderModels or
+ FairseqModels which have decoder, or Models which return TorchTensor
+ as net_output.
+ We need to make a change to support all FairseqEncoder models.
+ """
+ net_output = model(**sample["net_input"])
+ target = model.get_targets(sample, net_output)
+ lprobs, loss = self.compute_loss(
+ model, net_output, target, reduction, log_probs
+ )
+ sample_size, logging_output = self.get_logging_output(
+ sample, target, lprobs, loss
+ )
+ return loss, sample_size, logging_output
+
+ @staticmethod
+ def aggregate_logging_outputs(logging_outputs):
+ """Aggregate logging outputs from data parallel training."""
+ correct_sum = sum(log.get("correct", 0) for log in logging_outputs)
+ total_sum = sum(log.get("total", 0) for log in logging_outputs)
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
+ nframes = sum(log.get("nframes", 0) for log in logging_outputs)
+ agg_output = {
+ "loss": loss_sum / sample_size / math.log(2) if sample_size > 0 else 0.0,
+ # if args.sentence_avg, then sample_size is nsentences, then loss
+ # is per-sentence loss; else sample_size is ntokens, the loss
+ # becomes per-output token loss
+ "ntokens": ntokens,
+ "nsentences": nsentences,
+ "nframes": nframes,
+ "sample_size": sample_size,
+ "acc": correct_sum * 100.0 / total_sum if total_sum > 0 else 0.0,
+ "correct": correct_sum,
+ "total": total_sum,
+ # total is the number of validate tokens
+ }
+ if sample_size != ntokens:
+ agg_output["nll_loss"] = loss_sum / ntokens / math.log(2)
+ # loss: per output token loss
+ # nll_loss: per sentence loss
+ return agg_output
diff --git a/fairseq/examples/speech_recognition/data/__init__.py b/fairseq/examples/speech_recognition/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..47bb6e24ddf25aa4fd5bf0fe9672f89099efb9b4
--- /dev/null
+++ b/fairseq/examples/speech_recognition/data/__init__.py
@@ -0,0 +1,11 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from .asr_dataset import AsrDataset
+
+
+__all__ = [
+ "AsrDataset",
+]
diff --git a/fairseq/examples/speech_recognition/data/asr_dataset.py b/fairseq/examples/speech_recognition/data/asr_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..63a6fcac85d73b1fce8e4d044b4209b1b67fa8ce
--- /dev/null
+++ b/fairseq/examples/speech_recognition/data/asr_dataset.py
@@ -0,0 +1,122 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import os
+
+import numpy as np
+from fairseq.data import FairseqDataset
+
+from . import data_utils
+from .collaters import Seq2SeqCollater
+
+
+class AsrDataset(FairseqDataset):
+ """
+ A dataset representing speech and corresponding transcription.
+
+ Args:
+ aud_paths: (List[str]): A list of str with paths to audio files.
+ aud_durations_ms (List[int]): A list of int containing the durations of
+ audio files.
+ tgt (List[torch.LongTensor]): A list of LongTensors containing the indices
+ of target transcriptions.
+ tgt_dict (~fairseq.data.Dictionary): target vocabulary.
+ ids (List[str]): A list of utterance IDs.
+ speakers (List[str]): A list of speakers corresponding to utterances.
+ num_mel_bins (int): Number of triangular mel-frequency bins (default: 80)
+ frame_length (float): Frame length in milliseconds (default: 25.0)
+ frame_shift (float): Frame shift in milliseconds (default: 10.0)
+ """
+
+ def __init__(
+ self,
+ aud_paths,
+ aud_durations_ms,
+ tgt,
+ tgt_dict,
+ ids,
+ speakers,
+ num_mel_bins=80,
+ frame_length=25.0,
+ frame_shift=10.0,
+ ):
+ assert frame_length > 0
+ assert frame_shift > 0
+ assert all(x > frame_length for x in aud_durations_ms)
+ self.frame_sizes = [
+ int(1 + (d - frame_length) / frame_shift) for d in aud_durations_ms
+ ]
+
+ assert len(aud_paths) > 0
+ assert len(aud_paths) == len(aud_durations_ms)
+ assert len(aud_paths) == len(tgt)
+ assert len(aud_paths) == len(ids)
+ assert len(aud_paths) == len(speakers)
+ self.aud_paths = aud_paths
+ self.tgt_dict = tgt_dict
+ self.tgt = tgt
+ self.ids = ids
+ self.speakers = speakers
+ self.num_mel_bins = num_mel_bins
+ self.frame_length = frame_length
+ self.frame_shift = frame_shift
+
+ self.s2s_collater = Seq2SeqCollater(
+ 0,
+ 1,
+ pad_index=self.tgt_dict.pad(),
+ eos_index=self.tgt_dict.eos(),
+ move_eos_to_beginning=True,
+ )
+
+ def __getitem__(self, index):
+ import torchaudio
+ import torchaudio.compliance.kaldi as kaldi
+
+ tgt_item = self.tgt[index] if self.tgt is not None else None
+
+ path = self.aud_paths[index]
+ if not os.path.exists(path):
+ raise FileNotFoundError("Audio file not found: {}".format(path))
+ sound, sample_rate = torchaudio.load_wav(path)
+ output = kaldi.fbank(
+ sound,
+ num_mel_bins=self.num_mel_bins,
+ frame_length=self.frame_length,
+ frame_shift=self.frame_shift,
+ )
+ output_cmvn = data_utils.apply_mv_norm(output)
+
+ return {"id": index, "data": [output_cmvn.detach(), tgt_item]}
+
+ def __len__(self):
+ return len(self.aud_paths)
+
+ def collater(self, samples):
+ """Merge a list of samples to form a mini-batch.
+
+ Args:
+ samples (List[int]): sample indices to collate
+
+ Returns:
+ dict: a mini-batch suitable for forwarding with a Model
+ """
+ return self.s2s_collater.collate(samples)
+
+ def num_tokens(self, index):
+ return self.frame_sizes[index]
+
+ def size(self, index):
+ """Return an example's size as a float or tuple. This value is used when
+ filtering a dataset with ``--max-positions``."""
+ return (
+ self.frame_sizes[index],
+ len(self.tgt[index]) if self.tgt is not None else 0,
+ )
+
+ def ordered_indices(self):
+ """Return an ordered list of indices. Batches will be constructed based
+ on this order."""
+ return np.arange(len(self))
diff --git a/fairseq/examples/speech_recognition/data/collaters.py b/fairseq/examples/speech_recognition/data/collaters.py
new file mode 100644
index 0000000000000000000000000000000000000000..6acfec876b87e5a00bc92083b1181301a2a18e3f
--- /dev/null
+++ b/fairseq/examples/speech_recognition/data/collaters.py
@@ -0,0 +1,131 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+"""
+ This module contains collection of classes which implement
+ collate functionalities for various tasks.
+
+ Collaters should know what data to expect for each sample
+ and they should pack / collate them into batches
+"""
+
+
+from __future__ import absolute_import, division, print_function, unicode_literals
+
+import numpy as np
+import torch
+from fairseq.data import data_utils as fairseq_data_utils
+
+
+class Seq2SeqCollater(object):
+ """
+ Implements collate function mainly for seq2seq tasks
+ This expects each sample to contain feature (src_tokens) and
+ targets.
+ This collator is also used for aligned training task.
+ """
+
+ def __init__(
+ self,
+ feature_index=0,
+ label_index=1,
+ pad_index=1,
+ eos_index=2,
+ move_eos_to_beginning=True,
+ ):
+ self.feature_index = feature_index
+ self.label_index = label_index
+ self.pad_index = pad_index
+ self.eos_index = eos_index
+ self.move_eos_to_beginning = move_eos_to_beginning
+
+ def _collate_frames(self, frames):
+ """Convert a list of 2d frames into a padded 3d tensor
+ Args:
+ frames (list): list of 2d frames of size L[i]*f_dim. Where L[i] is
+ length of i-th frame and f_dim is static dimension of features
+ Returns:
+ 3d tensor of size len(frames)*len_max*f_dim where len_max is max of L[i]
+ """
+ len_max = max(frame.size(0) for frame in frames)
+ f_dim = frames[0].size(1)
+ res = frames[0].new(len(frames), len_max, f_dim).fill_(0.0)
+
+ for i, v in enumerate(frames):
+ res[i, : v.size(0)] = v
+
+ return res
+
+ def collate(self, samples):
+ """
+ utility function to collate samples into batch for speech recognition.
+ """
+ if len(samples) == 0:
+ return {}
+
+ # parse samples into torch tensors
+ parsed_samples = []
+ for s in samples:
+ # skip invalid samples
+ if s["data"][self.feature_index] is None:
+ continue
+ source = s["data"][self.feature_index]
+ if isinstance(source, (np.ndarray, np.generic)):
+ source = torch.from_numpy(source)
+ target = s["data"][self.label_index]
+ if isinstance(target, (np.ndarray, np.generic)):
+ target = torch.from_numpy(target).long()
+ elif isinstance(target, list):
+ target = torch.LongTensor(target)
+
+ parsed_sample = {"id": s["id"], "source": source, "target": target}
+ parsed_samples.append(parsed_sample)
+ samples = parsed_samples
+
+ id = torch.LongTensor([s["id"] for s in samples])
+ frames = self._collate_frames([s["source"] for s in samples])
+ # sort samples by descending number of frames
+ frames_lengths = torch.LongTensor([s["source"].size(0) for s in samples])
+ frames_lengths, sort_order = frames_lengths.sort(descending=True)
+ id = id.index_select(0, sort_order)
+ frames = frames.index_select(0, sort_order)
+
+ target = None
+ target_lengths = None
+ prev_output_tokens = None
+ if samples[0].get("target", None) is not None:
+ ntokens = sum(len(s["target"]) for s in samples)
+ target = fairseq_data_utils.collate_tokens(
+ [s["target"] for s in samples],
+ self.pad_index,
+ self.eos_index,
+ left_pad=False,
+ move_eos_to_beginning=False,
+ )
+ target = target.index_select(0, sort_order)
+ target_lengths = torch.LongTensor(
+ [s["target"].size(0) for s in samples]
+ ).index_select(0, sort_order)
+ prev_output_tokens = fairseq_data_utils.collate_tokens(
+ [s["target"] for s in samples],
+ self.pad_index,
+ self.eos_index,
+ left_pad=False,
+ move_eos_to_beginning=self.move_eos_to_beginning,
+ )
+ prev_output_tokens = prev_output_tokens.index_select(0, sort_order)
+ else:
+ ntokens = sum(len(s["source"]) for s in samples)
+
+ batch = {
+ "id": id,
+ "ntokens": ntokens,
+ "net_input": {"src_tokens": frames, "src_lengths": frames_lengths},
+ "target": target,
+ "target_lengths": target_lengths,
+ "nsentences": len(samples),
+ }
+ if prev_output_tokens is not None:
+ batch["net_input"]["prev_output_tokens"] = prev_output_tokens
+ return batch
diff --git a/fairseq/examples/speech_recognition/data/data_utils.py b/fairseq/examples/speech_recognition/data/data_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..cc4729e63c8ef551b29617d1169a44c24f509ad0
--- /dev/null
+++ b/fairseq/examples/speech_recognition/data/data_utils.py
@@ -0,0 +1,100 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+
+
+def calc_mean_invstddev(feature):
+ if len(feature.size()) != 2:
+ raise ValueError("We expect the input feature to be 2-D tensor")
+ mean = feature.mean(0)
+ var = feature.var(0)
+ # avoid division by ~zero
+ eps = 1e-8
+ if (var < eps).any():
+ return mean, 1.0 / (torch.sqrt(var) + eps)
+ return mean, 1.0 / torch.sqrt(var)
+
+
+def apply_mv_norm(features):
+ # If there is less than 2 spectrograms, the variance cannot be computed (is NaN)
+ # and normalization is not possible, so return the item as it is
+ if features.size(0) < 2:
+ return features
+ mean, invstddev = calc_mean_invstddev(features)
+ res = (features - mean) * invstddev
+ return res
+
+
+def lengths_to_encoder_padding_mask(lengths, batch_first=False):
+ """
+ convert lengths (a 1-D Long/Int tensor) to 2-D binary tensor
+
+ Args:
+ lengths: a (B, )-shaped tensor
+
+ Return:
+ max_length: maximum length of B sequences
+ encoder_padding_mask: a (max_length, B) binary mask, where
+ [t, b] = 0 for t < lengths[b] and 1 otherwise
+
+ TODO:
+ kernelize this function if benchmarking shows this function is slow
+ """
+ max_lengths = torch.max(lengths).item()
+ bsz = lengths.size(0)
+ encoder_padding_mask = torch.arange(
+ max_lengths
+ ).to( # a (T, ) tensor with [0, ..., T-1]
+ lengths.device
+ ).view( # move to the right device
+ 1, max_lengths
+ ).expand( # reshape to (1, T)-shaped tensor
+ bsz, -1
+ ) >= lengths.view( # expand to (B, T)-shaped tensor
+ bsz, 1
+ ).expand(
+ -1, max_lengths
+ )
+ if not batch_first:
+ return encoder_padding_mask.t(), max_lengths
+ else:
+ return encoder_padding_mask, max_lengths
+
+
+def encoder_padding_mask_to_lengths(
+ encoder_padding_mask, max_lengths, batch_size, device
+):
+ """
+ convert encoder_padding_mask (2-D binary tensor) to a 1-D tensor
+
+ Conventionally, encoder output contains a encoder_padding_mask, which is
+ a 2-D mask in a shape (T, B), whose (t, b) element indicate whether
+ encoder_out[t, b] is a valid output (=0) or not (=1). Occasionally, we
+ need to convert this mask tensor to a 1-D tensor in shape (B, ), where
+ [b] denotes the valid length of b-th sequence
+
+ Args:
+ encoder_padding_mask: a (T, B)-shaped binary tensor or None; if None,
+ indicating all are valid
+ Return:
+ seq_lengths: a (B,)-shaped tensor, where its (b, )-th element is the
+ number of valid elements of b-th sequence
+
+ max_lengths: maximum length of all sequence, if encoder_padding_mask is
+ not None, max_lengths must equal to encoder_padding_mask.size(0)
+
+ batch_size: batch size; if encoder_padding_mask is
+ not None, max_lengths must equal to encoder_padding_mask.size(1)
+
+ device: which device to put the result on
+ """
+ if encoder_padding_mask is None:
+ return torch.Tensor([max_lengths] * batch_size).to(torch.int32).to(device)
+
+ assert encoder_padding_mask.size(0) == max_lengths, "max_lengths does not match"
+ assert encoder_padding_mask.size(1) == batch_size, "batch_size does not match"
+
+ return max_lengths - torch.sum(encoder_padding_mask, dim=0)
diff --git a/fairseq/examples/speech_recognition/data/replabels.py b/fairseq/examples/speech_recognition/data/replabels.py
new file mode 100644
index 0000000000000000000000000000000000000000..441f1bd432b95865fc981c6c695cee299b07ed62
--- /dev/null
+++ b/fairseq/examples/speech_recognition/data/replabels.py
@@ -0,0 +1,70 @@
+#!/usr/bin/env python3
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+"""
+Replabel transforms for use with flashlight's ASG criterion.
+"""
+
+
+def replabel_symbol(i):
+ """
+ Replabel symbols used in flashlight, currently just "1", "2", ...
+ This prevents training with numeral tokens, so this might change in the future
+ """
+ return str(i)
+
+
+def pack_replabels(tokens, dictionary, max_reps):
+ """
+ Pack a token sequence so that repeated symbols are replaced by replabels
+ """
+ if len(tokens) == 0 or max_reps <= 0:
+ return tokens
+
+ replabel_value_to_idx = [0] * (max_reps + 1)
+ for i in range(1, max_reps + 1):
+ replabel_value_to_idx[i] = dictionary.index(replabel_symbol(i))
+
+ result = []
+ prev_token = -1
+ num_reps = 0
+ for token in tokens:
+ if token == prev_token and num_reps < max_reps:
+ num_reps += 1
+ else:
+ if num_reps > 0:
+ result.append(replabel_value_to_idx[num_reps])
+ num_reps = 0
+ result.append(token)
+ prev_token = token
+ if num_reps > 0:
+ result.append(replabel_value_to_idx[num_reps])
+ return result
+
+
+def unpack_replabels(tokens, dictionary, max_reps):
+ """
+ Unpack a token sequence so that replabels are replaced by repeated symbols
+ """
+ if len(tokens) == 0 or max_reps <= 0:
+ return tokens
+
+ replabel_idx_to_value = {}
+ for i in range(1, max_reps + 1):
+ replabel_idx_to_value[dictionary.index(replabel_symbol(i))] = i
+
+ result = []
+ prev_token = -1
+ for token in tokens:
+ try:
+ for _ in range(replabel_idx_to_value[token]):
+ result.append(prev_token)
+ prev_token = -1
+ except KeyError:
+ result.append(token)
+ prev_token = token
+ return result
diff --git a/fairseq/examples/speech_recognition/datasets/asr_prep_json.py b/fairseq/examples/speech_recognition/datasets/asr_prep_json.py
new file mode 100644
index 0000000000000000000000000000000000000000..b8db8ff16691158fae034a8ab3faad622b351caf
--- /dev/null
+++ b/fairseq/examples/speech_recognition/datasets/asr_prep_json.py
@@ -0,0 +1,125 @@
+#!/usr/bin/env python3
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from __future__ import absolute_import, division, print_function, unicode_literals
+
+import argparse
+import concurrent.futures
+import json
+import multiprocessing
+import os
+from collections import namedtuple
+from itertools import chain
+
+import sentencepiece as spm
+from fairseq.data import Dictionary
+
+
+MILLISECONDS_TO_SECONDS = 0.001
+
+
+def process_sample(aud_path, lable, utt_id, sp, tgt_dict):
+ import torchaudio
+
+ input = {}
+ output = {}
+ si, ei = torchaudio.info(aud_path)
+ input["length_ms"] = int(
+ si.length / si.channels / si.rate / MILLISECONDS_TO_SECONDS
+ )
+ input["path"] = aud_path
+
+ token = " ".join(sp.EncodeAsPieces(lable))
+ ids = tgt_dict.encode_line(token, append_eos=False)
+ output["text"] = lable
+ output["token"] = token
+ output["tokenid"] = ", ".join(map(str, [t.tolist() for t in ids]))
+ return {utt_id: {"input": input, "output": output}}
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--audio-dirs",
+ nargs="+",
+ default=["-"],
+ required=True,
+ help="input directories with audio files",
+ )
+ parser.add_argument(
+ "--labels",
+ required=True,
+ help="aggregated input labels with format per line",
+ type=argparse.FileType("r", encoding="UTF-8"),
+ )
+ parser.add_argument(
+ "--spm-model",
+ required=True,
+ help="sentencepiece model to use for encoding",
+ type=argparse.FileType("r", encoding="UTF-8"),
+ )
+ parser.add_argument(
+ "--dictionary",
+ required=True,
+ help="file to load fairseq dictionary from",
+ type=argparse.FileType("r", encoding="UTF-8"),
+ )
+ parser.add_argument("--audio-format", choices=["flac", "wav"], default="wav")
+ parser.add_argument(
+ "--output",
+ required=True,
+ type=argparse.FileType("w"),
+ help="path to save json output",
+ )
+ args = parser.parse_args()
+
+ sp = spm.SentencePieceProcessor()
+ sp.Load(args.spm_model.name)
+
+ tgt_dict = Dictionary.load(args.dictionary)
+
+ labels = {}
+ for line in args.labels:
+ (utt_id, label) = line.split(" ", 1)
+ labels[utt_id] = label
+ if len(labels) == 0:
+ raise Exception("No labels found in ", args.labels_path)
+
+ Sample = namedtuple("Sample", "aud_path utt_id")
+ samples = []
+ for path, _, files in chain.from_iterable(
+ os.walk(path) for path in args.audio_dirs
+ ):
+ for f in files:
+ if f.endswith(args.audio_format):
+ if len(os.path.splitext(f)) != 2:
+ raise Exception("Expect file name. Got: ", f)
+ utt_id = os.path.splitext(f)[0]
+ if utt_id not in labels:
+ continue
+ samples.append(Sample(os.path.join(path, f), utt_id))
+
+ utts = {}
+ num_cpu = multiprocessing.cpu_count()
+ with concurrent.futures.ThreadPoolExecutor(max_workers=num_cpu) as executor:
+ future_to_sample = {
+ executor.submit(
+ process_sample, s.aud_path, labels[s.utt_id], s.utt_id, sp, tgt_dict
+ ): s
+ for s in samples
+ }
+ for future in concurrent.futures.as_completed(future_to_sample):
+ try:
+ data = future.result()
+ except Exception as exc:
+ print("generated an exception: ", exc)
+ else:
+ utts.update(data)
+ json.dump({"utts": utts}, args.output, indent=4)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/speech_recognition/datasets/prepare-librispeech.sh b/fairseq/examples/speech_recognition/datasets/prepare-librispeech.sh
new file mode 100755
index 0000000000000000000000000000000000000000..9e9297f08947027685ff508bfa91ff26b0d8ea0c
--- /dev/null
+++ b/fairseq/examples/speech_recognition/datasets/prepare-librispeech.sh
@@ -0,0 +1,88 @@
+#!/usr/bin/env bash
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+# Prepare librispeech dataset
+
+base_url=www.openslr.org/resources/12
+train_dir=train_960
+
+if [ "$#" -ne 2 ]; then
+ echo "Usage: $0 "
+ echo "e.g.: $0 /tmp/librispeech_raw/ ~/data/librispeech_final"
+ exit 1
+fi
+
+download_dir=${1%/}
+out_dir=${2%/}
+
+fairseq_root=~/fairseq-py/
+mkdir -p ${out_dir}
+cd ${out_dir} || exit
+
+nbpe=5000
+bpemode=unigram
+
+if [ ! -d "$fairseq_root" ]; then
+ echo "$0: Please set correct fairseq_root"
+ exit 1
+fi
+
+echo "Data Download"
+for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
+ url=$base_url/$part.tar.gz
+ if ! wget -P $download_dir $url; then
+ echo "$0: wget failed for $url"
+ exit 1
+ fi
+ if ! tar -C $download_dir -xvzf $download_dir/$part.tar.gz; then
+ echo "$0: error un-tarring archive $download_dir/$part.tar.gz"
+ exit 1
+ fi
+done
+
+echo "Merge all train packs into one"
+mkdir -p ${download_dir}/LibriSpeech/${train_dir}/
+for part in train-clean-100 train-clean-360 train-other-500; do
+ mv ${download_dir}/LibriSpeech/${part}/* $download_dir/LibriSpeech/${train_dir}/
+done
+echo "Merge train text"
+find ${download_dir}/LibriSpeech/${train_dir}/ -name '*.txt' -exec cat {} \; >> ${download_dir}/LibriSpeech/${train_dir}/text
+
+# Use combined dev-clean and dev-other as validation set
+find ${download_dir}/LibriSpeech/dev-clean/ ${download_dir}/LibriSpeech/dev-other/ -name '*.txt' -exec cat {} \; >> ${download_dir}/LibriSpeech/valid_text
+find ${download_dir}/LibriSpeech/test-clean/ -name '*.txt' -exec cat {} \; >> ${download_dir}/LibriSpeech/test-clean/text
+find ${download_dir}/LibriSpeech/test-other/ -name '*.txt' -exec cat {} \; >> ${download_dir}/LibriSpeech/test-other/text
+
+
+dict=data/lang_char/${train_dir}_${bpemode}${nbpe}_units.txt
+encoded=data/lang_char/${train_dir}_${bpemode}${nbpe}_encoded.txt
+fairseq_dict=data/lang_char/${train_dir}_${bpemode}${nbpe}_fairseq_dict.txt
+bpemodel=data/lang_char/${train_dir}_${bpemode}${nbpe}
+echo "dictionary: ${dict}"
+echo "Dictionary preparation"
+mkdir -p data/lang_char/
+echo " 3" > ${dict}
+echo " 2" >> ${dict}
+echo " 1" >> ${dict}
+cut -f 2- -d" " ${download_dir}/LibriSpeech/${train_dir}/text > data/lang_char/input.txt
+spm_train --input=data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000 --unk_id=3 --eos_id=2 --pad_id=1 --bos_id=-1 --character_coverage=1
+spm_encode --model=${bpemodel}.model --output_format=piece < data/lang_char/input.txt > ${encoded}
+cat ${encoded} | tr ' ' '\n' | sort | uniq | awk '{print $0 " " NR+3}' >> ${dict}
+cat ${encoded} | tr ' ' '\n' | sort | uniq -c | awk '{print $2 " " $1}' > ${fairseq_dict}
+wc -l ${dict}
+
+echo "Prepare train and test jsons"
+for part in train_960 test-other test-clean; do
+ python ${fairseq_root}/examples/speech_recognition/datasets/asr_prep_json.py --audio-dirs ${download_dir}/LibriSpeech/${part} --labels ${download_dir}/LibriSpeech/${part}/text --spm-model ${bpemodel}.model --audio-format flac --dictionary ${fairseq_dict} --output ${part}.json
+done
+# fairseq expects to find train.json and valid.json during training
+mv train_960.json train.json
+
+echo "Prepare valid json"
+python ${fairseq_root}/examples/speech_recognition/datasets/asr_prep_json.py --audio-dirs ${download_dir}/LibriSpeech/dev-clean ${download_dir}/LibriSpeech/dev-other --labels ${download_dir}/LibriSpeech/valid_text --spm-model ${bpemodel}.model --audio-format flac --dictionary ${fairseq_dict} --output valid.json
+
+cp ${fairseq_dict} ./dict.txt
+cp ${bpemodel}.model ./spm.model
diff --git a/fairseq/examples/speech_recognition/infer.py b/fairseq/examples/speech_recognition/infer.py
new file mode 100644
index 0000000000000000000000000000000000000000..6e9a878af46242ced57cfcd0e876a3d2ef3820ae
--- /dev/null
+++ b/fairseq/examples/speech_recognition/infer.py
@@ -0,0 +1,427 @@
+#!/usr/bin/env python3 -u
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+"""
+Run inference for pre-processed data with a trained model.
+"""
+
+import ast
+import logging
+import math
+import os
+import sys
+
+import editdistance
+import numpy as np
+import torch
+from fairseq import checkpoint_utils, options, progress_bar, tasks, utils
+from fairseq.data.data_utils import post_process
+from fairseq.logging.meters import StopwatchMeter, TimeMeter
+
+
+logging.basicConfig()
+logging.root.setLevel(logging.INFO)
+logging.basicConfig(level=logging.INFO)
+logger = logging.getLogger(__name__)
+
+
+def add_asr_eval_argument(parser):
+ parser.add_argument("--kspmodel", default=None, help="sentence piece model")
+ parser.add_argument(
+ "--wfstlm", default=None, help="wfstlm on dictonary output units"
+ )
+ parser.add_argument(
+ "--rnnt_decoding_type",
+ default="greedy",
+ help="wfstlm on dictonary\
+output units",
+ )
+ try:
+ parser.add_argument(
+ "--lm-weight",
+ "--lm_weight",
+ type=float,
+ default=0.2,
+ help="weight for lm while interpolating with neural score",
+ )
+ except:
+ pass
+ parser.add_argument(
+ "--rnnt_len_penalty", default=-0.5, help="rnnt length penalty on word level"
+ )
+ parser.add_argument(
+ "--w2l-decoder",
+ choices=["viterbi", "kenlm", "fairseqlm"],
+ help="use a w2l decoder",
+ )
+ parser.add_argument("--lexicon", help="lexicon for w2l decoder")
+ parser.add_argument("--unit-lm", action="store_true", help="if using a unit lm")
+ parser.add_argument("--kenlm-model", "--lm-model", help="lm model for w2l decoder")
+ parser.add_argument("--beam-threshold", type=float, default=25.0)
+ parser.add_argument("--beam-size-token", type=float, default=100)
+ parser.add_argument("--word-score", type=float, default=1.0)
+ parser.add_argument("--unk-weight", type=float, default=-math.inf)
+ parser.add_argument("--sil-weight", type=float, default=0.0)
+ parser.add_argument(
+ "--dump-emissions",
+ type=str,
+ default=None,
+ help="if present, dumps emissions into this file and exits",
+ )
+ parser.add_argument(
+ "--dump-features",
+ type=str,
+ default=None,
+ help="if present, dumps features into this file and exits",
+ )
+ parser.add_argument(
+ "--load-emissions",
+ type=str,
+ default=None,
+ help="if present, loads emissions from this file",
+ )
+ return parser
+
+
+def check_args(args):
+ # assert args.path is not None, "--path required for generation!"
+ # assert args.results_path is not None, "--results_path required for generation!"
+ assert (
+ not args.sampling or args.nbest == args.beam
+ ), "--sampling requires --nbest to be equal to --beam"
+ assert (
+ args.replace_unk is None or args.raw_text
+ ), "--replace-unk requires a raw text dataset (--raw-text)"
+
+
+def get_dataset_itr(args, task, models):
+ return task.get_batch_iterator(
+ dataset=task.dataset(args.gen_subset),
+ max_tokens=args.max_tokens,
+ max_sentences=args.batch_size,
+ max_positions=(sys.maxsize, sys.maxsize),
+ ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
+ required_batch_size_multiple=args.required_batch_size_multiple,
+ num_shards=args.num_shards,
+ shard_id=args.shard_id,
+ num_workers=args.num_workers,
+ data_buffer_size=args.data_buffer_size,
+ ).next_epoch_itr(shuffle=False)
+
+
+def process_predictions(
+ args, hypos, sp, tgt_dict, target_tokens, res_files, speaker, id
+):
+ for hypo in hypos[: min(len(hypos), args.nbest)]:
+ hyp_pieces = tgt_dict.string(hypo["tokens"].int().cpu())
+
+ if "words" in hypo:
+ hyp_words = " ".join(hypo["words"])
+ else:
+ hyp_words = post_process(hyp_pieces, args.post_process)
+
+ if res_files is not None:
+ print(
+ "{} ({}-{})".format(hyp_pieces, speaker, id),
+ file=res_files["hypo.units"],
+ )
+ print(
+ "{} ({}-{})".format(hyp_words, speaker, id),
+ file=res_files["hypo.words"],
+ )
+
+ tgt_pieces = tgt_dict.string(target_tokens)
+ tgt_words = post_process(tgt_pieces, args.post_process)
+
+ if res_files is not None:
+ print(
+ "{} ({}-{})".format(tgt_pieces, speaker, id),
+ file=res_files["ref.units"],
+ )
+ print(
+ "{} ({}-{})".format(tgt_words, speaker, id), file=res_files["ref.words"]
+ )
+
+ if not args.quiet:
+ logger.info("HYPO:" + hyp_words)
+ logger.info("TARGET:" + tgt_words)
+ logger.info("___________________")
+
+ hyp_words = hyp_words.split()
+ tgt_words = tgt_words.split()
+ return editdistance.eval(hyp_words, tgt_words), len(tgt_words)
+
+
+def prepare_result_files(args):
+ def get_res_file(file_prefix):
+ if args.num_shards > 1:
+ file_prefix = f"{args.shard_id}_{file_prefix}"
+ path = os.path.join(
+ args.results_path,
+ "{}-{}-{}.txt".format(
+ file_prefix, os.path.basename(args.path), args.gen_subset
+ ),
+ )
+ return open(path, "w", buffering=1)
+
+ if not args.results_path:
+ return None
+
+ return {
+ "hypo.words": get_res_file("hypo.word"),
+ "hypo.units": get_res_file("hypo.units"),
+ "ref.words": get_res_file("ref.word"),
+ "ref.units": get_res_file("ref.units"),
+ }
+
+
+def optimize_models(args, use_cuda, models):
+ """Optimize ensemble for generation"""
+ for model in models:
+ model.make_generation_fast_(
+ beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
+ need_attn=args.print_alignment,
+ )
+ if args.fp16:
+ model.half()
+ if use_cuda:
+ model.cuda()
+
+
+class ExistingEmissionsDecoder(object):
+ def __init__(self, decoder, emissions):
+ self.decoder = decoder
+ self.emissions = emissions
+
+ def generate(self, models, sample, **unused):
+ ids = sample["id"].cpu().numpy()
+ try:
+ emissions = np.stack(self.emissions[ids])
+ except:
+ print([x.shape for x in self.emissions[ids]])
+ raise Exception("invalid sizes")
+ emissions = torch.from_numpy(emissions)
+ return self.decoder.decode(emissions)
+
+
+def main(args, task=None, model_state=None):
+ check_args(args)
+
+ if args.max_tokens is None and args.batch_size is None:
+ args.max_tokens = 4000000
+ logger.info(args)
+
+ use_cuda = torch.cuda.is_available() and not args.cpu
+
+ logger.info("| decoding with criterion {}".format(args.criterion))
+
+ task = tasks.setup_task(args)
+
+ # Load ensemble
+ if args.load_emissions:
+ models, criterions = [], []
+ task.load_dataset(args.gen_subset)
+ else:
+ logger.info("| loading model(s) from {}".format(args.path))
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
+ utils.split_paths(args.path, separator="\\"),
+ arg_overrides=ast.literal_eval(args.model_overrides),
+ task=task,
+ suffix=args.checkpoint_suffix,
+ strict=(args.checkpoint_shard_count == 1),
+ num_shards=args.checkpoint_shard_count,
+ state=model_state,
+ )
+ optimize_models(args, use_cuda, models)
+ task.load_dataset(args.gen_subset, task_cfg=saved_cfg.task)
+
+
+ # Set dictionary
+ tgt_dict = task.target_dictionary
+
+ logger.info(
+ "| {} {} {} examples".format(
+ args.data, args.gen_subset, len(task.dataset(args.gen_subset))
+ )
+ )
+
+ # hack to pass transitions to W2lDecoder
+ if args.criterion == "asg_loss":
+ raise NotImplementedError("asg_loss is currently not supported")
+ # trans = criterions[0].asg.trans.data
+ # args.asg_transitions = torch.flatten(trans).tolist()
+
+ # Load dataset (possibly sharded)
+ itr = get_dataset_itr(args, task, models)
+
+ # Initialize generator
+ gen_timer = StopwatchMeter()
+
+ def build_generator(args):
+ w2l_decoder = getattr(args, "w2l_decoder", None)
+ if w2l_decoder == "viterbi":
+ from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder
+
+ return W2lViterbiDecoder(args, task.target_dictionary)
+ elif w2l_decoder == "kenlm":
+ from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder
+
+ return W2lKenLMDecoder(args, task.target_dictionary)
+ elif w2l_decoder == "fairseqlm":
+ from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder
+
+ return W2lFairseqLMDecoder(args, task.target_dictionary)
+ else:
+ print(
+ "only flashlight decoders with (viterbi, kenlm, fairseqlm) options are supported at the moment"
+ )
+
+ # please do not touch this unless you test both generate.py and infer.py with audio_pretraining task
+ generator = build_generator(args)
+
+ if args.load_emissions:
+ generator = ExistingEmissionsDecoder(
+ generator, np.load(args.load_emissions, allow_pickle=True)
+ )
+ logger.info("loaded emissions from " + args.load_emissions)
+
+ num_sentences = 0
+
+ if args.results_path is not None and not os.path.exists(args.results_path):
+ os.makedirs(args.results_path)
+
+ max_source_pos = (
+ utils.resolve_max_positions(
+ task.max_positions(), *[model.max_positions() for model in models]
+ ),
+ )
+
+ if max_source_pos is not None:
+ max_source_pos = max_source_pos[0]
+ if max_source_pos is not None:
+ max_source_pos = max_source_pos[0] - 1
+
+ if args.dump_emissions:
+ emissions = {}
+ if args.dump_features:
+ features = {}
+ models[0].bert.proj = None
+ else:
+ res_files = prepare_result_files(args)
+ errs_t = 0
+ lengths_t = 0
+ with progress_bar.build_progress_bar(args, itr) as t:
+ wps_meter = TimeMeter()
+ for sample in t:
+ sample = utils.move_to_cuda(sample) if use_cuda else sample
+ if "net_input" not in sample:
+ continue
+
+ prefix_tokens = None
+ if args.prefix_size > 0:
+ prefix_tokens = sample["target"][:, : args.prefix_size]
+
+ gen_timer.start()
+ if args.dump_emissions:
+ with torch.no_grad():
+ encoder_out = models[0](**sample["net_input"])
+ emm = models[0].get_normalized_probs(encoder_out, log_probs=True)
+ emm = emm.transpose(0, 1).cpu().numpy()
+ for i, id in enumerate(sample["id"]):
+ emissions[id.item()] = emm[i]
+ continue
+ elif args.dump_features:
+ with torch.no_grad():
+ encoder_out = models[0](**sample["net_input"])
+ feat = encoder_out["encoder_out"].transpose(0, 1).cpu().numpy()
+ for i, id in enumerate(sample["id"]):
+ padding = (
+ encoder_out["encoder_padding_mask"][i].cpu().numpy()
+ if encoder_out["encoder_padding_mask"] is not None
+ else None
+ )
+ features[id.item()] = (feat[i], padding)
+ continue
+ hypos = task.inference_step(generator, models, sample, prefix_tokens)
+ num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
+ gen_timer.stop(num_generated_tokens)
+
+ for i, sample_id in enumerate(sample["id"].tolist()):
+ speaker = None
+ # id = task.dataset(args.gen_subset).ids[int(sample_id)]
+ id = sample_id
+ toks = (
+ sample["target"][i, :]
+ if "target_label" not in sample
+ else sample["target_label"][i, :]
+ )
+ target_tokens = utils.strip_pad(toks, tgt_dict.pad()).int().cpu()
+ # Process top predictions
+ errs, length = process_predictions(
+ args,
+ hypos[i],
+ None,
+ tgt_dict,
+ target_tokens,
+ res_files,
+ speaker,
+ id,
+ )
+ errs_t += errs
+ lengths_t += length
+
+ wps_meter.update(num_generated_tokens)
+ t.log({"wps": round(wps_meter.avg)})
+ num_sentences += (
+ sample["nsentences"] if "nsentences" in sample else sample["id"].numel()
+ )
+
+ wer = None
+ if args.dump_emissions:
+ emm_arr = []
+ for i in range(len(emissions)):
+ emm_arr.append(emissions[i])
+ np.save(args.dump_emissions, emm_arr)
+ logger.info(f"saved {len(emissions)} emissions to {args.dump_emissions}")
+ elif args.dump_features:
+ feat_arr = []
+ for i in range(len(features)):
+ feat_arr.append(features[i])
+ np.save(args.dump_features, feat_arr)
+ logger.info(f"saved {len(features)} emissions to {args.dump_features}")
+ else:
+ if lengths_t > 0:
+ wer = errs_t * 100.0 / lengths_t
+ logger.info(f"WER: {wer}")
+
+ logger.info(
+ "| Processed {} sentences ({} tokens) in {:.1f}s ({:.2f}"
+ "sentences/s, {:.2f} tokens/s)".format(
+ num_sentences,
+ gen_timer.n,
+ gen_timer.sum,
+ num_sentences / gen_timer.sum,
+ 1.0 / gen_timer.avg,
+ )
+ )
+ logger.info("| Generate {} with beam={}".format(args.gen_subset, args.beam))
+ return task, wer
+
+
+def make_parser():
+ parser = options.get_generation_parser()
+ parser = add_asr_eval_argument(parser)
+ return parser
+
+
+def cli_main():
+ parser = make_parser()
+ args = options.parse_args_and_arch(parser)
+ main(args)
+
+
+if __name__ == "__main__":
+ cli_main()
diff --git a/fairseq/examples/speech_recognition/kaldi/__init__.py b/fairseq/examples/speech_recognition/kaldi/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/fairseq/examples/speech_recognition/kaldi/add-self-loop-simple.cc b/fairseq/examples/speech_recognition/kaldi/add-self-loop-simple.cc
new file mode 100644
index 0000000000000000000000000000000000000000..e18fb62df52ab85d7802615d8619b0fd94a08f8c
--- /dev/null
+++ b/fairseq/examples/speech_recognition/kaldi/add-self-loop-simple.cc
@@ -0,0 +1,94 @@
+/*
+ * Copyright (c) Facebook, Inc. and its affiliates.
+ *
+ * This source code is licensed under the MIT license found in the
+ * LICENSE file in the root directory of this source tree.
+ */
+
+#include
+#include "fstext/fstext-lib.h" // @manual
+#include "util/common-utils.h" // @manual
+
+/*
+ * This program is to modify a FST without self-loop by:
+ * for each incoming arc with non-eps input symbol, add a self-loop arc
+ * with that non-eps symbol as input and eps as output.
+ *
+ * This is to make sure the resultant FST can do deduplication for repeated
+ * symbols, which is very common in acoustic model
+ *
+ */
+namespace {
+int32 AddSelfLoopsSimple(fst::StdVectorFst* fst) {
+ typedef fst::MutableArcIterator IterType;
+
+ int32 num_states_before = fst->NumStates();
+ fst::MakePrecedingInputSymbolsSame(false, fst);
+ int32 num_states_after = fst->NumStates();
+ KALDI_LOG << "There are " << num_states_before
+ << " states in the original FST; "
+ << " after MakePrecedingInputSymbolsSame, there are "
+ << num_states_after << " states " << std::endl;
+
+ auto weight_one = fst::StdArc::Weight::One();
+
+ int32 num_arc_added = 0;
+
+ fst::StdArc self_loop_arc;
+ self_loop_arc.weight = weight_one;
+
+ int32 num_states = fst->NumStates();
+ std::vector> incoming_non_eps_label_per_state(num_states);
+
+ for (int32 state = 0; state < num_states; state++) {
+ for (IterType aiter(fst, state); !aiter.Done(); aiter.Next()) {
+ fst::StdArc arc(aiter.Value());
+ if (arc.ilabel != 0) {
+ incoming_non_eps_label_per_state[arc.nextstate].insert(arc.ilabel);
+ }
+ }
+ }
+
+ for (int32 state = 0; state < num_states; state++) {
+ if (!incoming_non_eps_label_per_state[state].empty()) {
+ auto& ilabel_set = incoming_non_eps_label_per_state[state];
+ for (auto it = ilabel_set.begin(); it != ilabel_set.end(); it++) {
+ self_loop_arc.ilabel = *it;
+ self_loop_arc.olabel = 0;
+ self_loop_arc.nextstate = state;
+ fst->AddArc(state, self_loop_arc);
+ num_arc_added++;
+ }
+ }
+ }
+ return num_arc_added;
+}
+
+void print_usage() {
+ std::cout << "add-self-loop-simple usage:\n"
+ "\tadd-self-loop-simple \n";
+}
+} // namespace
+
+int main(int argc, char** argv) {
+ if (argc != 3) {
+ print_usage();
+ exit(1);
+ }
+
+ auto input = argv[1];
+ auto output = argv[2];
+
+ auto fst = fst::ReadFstKaldi(input);
+ auto num_states = fst->NumStates();
+ KALDI_LOG << "Loading FST from " << input << " with " << num_states
+ << " states." << std::endl;
+
+ int32 num_arc_added = AddSelfLoopsSimple(fst);
+ KALDI_LOG << "Adding " << num_arc_added << " self-loop arcs " << std::endl;
+
+ fst::WriteFstKaldi(*fst, std::string(output));
+ KALDI_LOG << "Writing FST to " << output << std::endl;
+
+ delete fst;
+}
diff --git a/fairseq/examples/speech_recognition/kaldi/config/kaldi_initializer.yaml b/fairseq/examples/speech_recognition/kaldi/config/kaldi_initializer.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..be9ba98f55463d41d5d5ea35e306abc0886dbead
--- /dev/null
+++ b/fairseq/examples/speech_recognition/kaldi/config/kaldi_initializer.yaml
@@ -0,0 +1,8 @@
+# @package _group_
+
+data_dir: ???
+fst_dir: ???
+in_labels: ???
+kaldi_root: ???
+lm_arpa: ???
+blank_symbol:
diff --git a/fairseq/examples/speech_recognition/kaldi/kaldi_decoder.py b/fairseq/examples/speech_recognition/kaldi/kaldi_decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..5f62cc58ae8c0c5a3ba7d17713fedf0abc302942
--- /dev/null
+++ b/fairseq/examples/speech_recognition/kaldi/kaldi_decoder.py
@@ -0,0 +1,244 @@
+#!/usr/bin/env python3
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from concurrent.futures import ThreadPoolExecutor
+import logging
+from omegaconf import MISSING
+import os
+import torch
+from typing import Optional
+import warnings
+
+
+from dataclasses import dataclass
+from fairseq.dataclass import FairseqDataclass
+from .kaldi_initializer import KaldiInitializerConfig, initalize_kaldi
+
+
+logger = logging.getLogger(__name__)
+
+
+@dataclass
+class KaldiDecoderConfig(FairseqDataclass):
+ hlg_graph_path: Optional[str] = None
+ output_dict: str = MISSING
+
+ kaldi_initializer_config: Optional[KaldiInitializerConfig] = None
+
+ acoustic_scale: float = 0.5
+ max_active: int = 10000
+ beam_delta: float = 0.5
+ hash_ratio: float = 2.0
+
+ is_lattice: bool = False
+ lattice_beam: float = 10.0
+ prune_interval: int = 25
+ determinize_lattice: bool = True
+ prune_scale: float = 0.1
+ max_mem: int = 0
+ phone_determinize: bool = True
+ word_determinize: bool = True
+ minimize: bool = True
+
+ num_threads: int = 1
+
+
+class KaldiDecoder(object):
+ def __init__(
+ self,
+ cfg: KaldiDecoderConfig,
+ beam: int,
+ nbest: int = 1,
+ ):
+ try:
+ from kaldi.asr import FasterRecognizer, LatticeFasterRecognizer
+ from kaldi.base import set_verbose_level
+ from kaldi.decoder import (
+ FasterDecoder,
+ FasterDecoderOptions,
+ LatticeFasterDecoder,
+ LatticeFasterDecoderOptions,
+ )
+ from kaldi.lat.functions import DeterminizeLatticePhonePrunedOptions
+ from kaldi.fstext import read_fst_kaldi, SymbolTable
+ except:
+ warnings.warn(
+ "pykaldi is required for this functionality. Please install from https://github.com/pykaldi/pykaldi"
+ )
+
+ # set_verbose_level(2)
+
+ self.acoustic_scale = cfg.acoustic_scale
+ self.nbest = nbest
+
+ if cfg.hlg_graph_path is None:
+ assert (
+ cfg.kaldi_initializer_config is not None
+ ), "Must provide hlg graph path or kaldi initializer config"
+ cfg.hlg_graph_path = initalize_kaldi(cfg.kaldi_initializer_config)
+
+ assert os.path.exists(cfg.hlg_graph_path), cfg.hlg_graph_path
+
+ if cfg.is_lattice:
+ self.dec_cls = LatticeFasterDecoder
+ opt_cls = LatticeFasterDecoderOptions
+ self.rec_cls = LatticeFasterRecognizer
+ else:
+ assert self.nbest == 1, "nbest > 1 requires lattice decoder"
+ self.dec_cls = FasterDecoder
+ opt_cls = FasterDecoderOptions
+ self.rec_cls = FasterRecognizer
+
+ self.decoder_options = opt_cls()
+ self.decoder_options.beam = beam
+ self.decoder_options.max_active = cfg.max_active
+ self.decoder_options.beam_delta = cfg.beam_delta
+ self.decoder_options.hash_ratio = cfg.hash_ratio
+
+ if cfg.is_lattice:
+ self.decoder_options.lattice_beam = cfg.lattice_beam
+ self.decoder_options.prune_interval = cfg.prune_interval
+ self.decoder_options.determinize_lattice = cfg.determinize_lattice
+ self.decoder_options.prune_scale = cfg.prune_scale
+ det_opts = DeterminizeLatticePhonePrunedOptions()
+ det_opts.max_mem = cfg.max_mem
+ det_opts.phone_determinize = cfg.phone_determinize
+ det_opts.word_determinize = cfg.word_determinize
+ det_opts.minimize = cfg.minimize
+ self.decoder_options.det_opts = det_opts
+
+ self.output_symbols = {}
+ with open(cfg.output_dict, "r") as f:
+ for line in f:
+ items = line.rstrip().split()
+ assert len(items) == 2
+ self.output_symbols[int(items[1])] = items[0]
+
+ logger.info(f"Loading FST from {cfg.hlg_graph_path}")
+ self.fst = read_fst_kaldi(cfg.hlg_graph_path)
+ self.symbol_table = SymbolTable.read_text(cfg.output_dict)
+
+ self.executor = ThreadPoolExecutor(max_workers=cfg.num_threads)
+
+ def generate(self, models, sample, **unused):
+ """Generate a batch of inferences."""
+ # model.forward normally channels prev_output_tokens into the decoder
+ # separately, but SequenceGenerator directly calls model.encoder
+ encoder_input = {
+ k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens"
+ }
+ emissions, padding = self.get_emissions(models, encoder_input)
+ return self.decode(emissions, padding)
+
+ def get_emissions(self, models, encoder_input):
+ """Run encoder and normalize emissions"""
+ model = models[0]
+
+ all_encoder_out = [m(**encoder_input) for m in models]
+
+ if len(all_encoder_out) > 1:
+
+ if "encoder_out" in all_encoder_out[0]:
+ encoder_out = {
+ "encoder_out": sum(e["encoder_out"] for e in all_encoder_out)
+ / len(all_encoder_out),
+ "encoder_padding_mask": all_encoder_out[0]["encoder_padding_mask"],
+ }
+ padding = encoder_out["encoder_padding_mask"]
+ else:
+ encoder_out = {
+ "logits": sum(e["logits"] for e in all_encoder_out)
+ / len(all_encoder_out),
+ "padding_mask": all_encoder_out[0]["padding_mask"],
+ }
+ padding = encoder_out["padding_mask"]
+ else:
+ encoder_out = all_encoder_out[0]
+ padding = (
+ encoder_out["padding_mask"]
+ if "padding_mask" in encoder_out
+ else encoder_out["encoder_padding_mask"]
+ )
+
+ if hasattr(model, "get_logits"):
+ emissions = model.get_logits(encoder_out, normalize=True)
+ else:
+ emissions = model.get_normalized_probs(encoder_out, log_probs=True)
+
+ return (
+ emissions.cpu().float().transpose(0, 1),
+ padding.cpu() if padding is not None and padding.any() else None,
+ )
+
+ def decode_one(self, logits, padding):
+ from kaldi.matrix import Matrix
+
+ decoder = self.dec_cls(self.fst, self.decoder_options)
+ asr = self.rec_cls(
+ decoder, self.symbol_table, acoustic_scale=self.acoustic_scale
+ )
+
+ if padding is not None:
+ logits = logits[~padding]
+
+ mat = Matrix(logits.numpy())
+
+ out = asr.decode(mat)
+
+ if self.nbest > 1:
+ from kaldi.fstext import shortestpath
+ from kaldi.fstext.utils import (
+ convert_compact_lattice_to_lattice,
+ convert_lattice_to_std,
+ convert_nbest_to_list,
+ get_linear_symbol_sequence,
+ )
+
+ lat = out["lattice"]
+
+ sp = shortestpath(lat, nshortest=self.nbest)
+
+ sp = convert_compact_lattice_to_lattice(sp)
+ sp = convert_lattice_to_std(sp)
+ seq = convert_nbest_to_list(sp)
+
+ results = []
+ for s in seq:
+ _, o, w = get_linear_symbol_sequence(s)
+ words = list(self.output_symbols[z] for z in o)
+ results.append(
+ {
+ "tokens": words,
+ "words": words,
+ "score": w.value,
+ "emissions": logits,
+ }
+ )
+ return results
+ else:
+ words = out["text"].split()
+ return [
+ {
+ "tokens": words,
+ "words": words,
+ "score": out["likelihood"],
+ "emissions": logits,
+ }
+ ]
+
+ def decode(self, emissions, padding):
+ if padding is None:
+ padding = [None] * len(emissions)
+
+ ret = list(
+ map(
+ lambda e, p: self.executor.submit(self.decode_one, e, p),
+ emissions,
+ padding,
+ )
+ )
+ return ret
diff --git a/fairseq/examples/speech_recognition/kaldi/kaldi_initializer.py b/fairseq/examples/speech_recognition/kaldi/kaldi_initializer.py
new file mode 100644
index 0000000000000000000000000000000000000000..6d2a2a4b6b809ba1106f9a57cb6f241dc083e670
--- /dev/null
+++ b/fairseq/examples/speech_recognition/kaldi/kaldi_initializer.py
@@ -0,0 +1,698 @@
+#!/usr/bin/env python3
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from dataclasses import dataclass
+import hydra
+from hydra.core.config_store import ConfigStore
+import logging
+from omegaconf import MISSING, OmegaConf
+import os
+import os.path as osp
+from pathlib import Path
+import subprocess
+from typing import Optional
+
+from fairseq.data.dictionary import Dictionary
+from fairseq.dataclass import FairseqDataclass
+
+script_dir = Path(__file__).resolve().parent
+config_path = script_dir / "config"
+
+
+logger = logging.getLogger(__name__)
+
+
+@dataclass
+class KaldiInitializerConfig(FairseqDataclass):
+ data_dir: str = MISSING
+ fst_dir: Optional[str] = None
+ in_labels: str = MISSING
+ out_labels: Optional[str] = None
+ wav2letter_lexicon: Optional[str] = None
+ lm_arpa: str = MISSING
+ kaldi_root: str = MISSING
+ blank_symbol: str = ""
+ silence_symbol: Optional[str] = None
+
+
+def create_units(fst_dir: Path, in_labels: str, vocab: Dictionary) -> Path:
+ in_units_file = fst_dir / f"kaldi_dict.{in_labels}.txt"
+ if not in_units_file.exists():
+
+ logger.info(f"Creating {in_units_file}")
+
+ with open(in_units_file, "w") as f:
+ print(" 0", file=f)
+ i = 1
+ for symb in vocab.symbols[vocab.nspecial :]:
+ if not symb.startswith("madeupword"):
+ print(f"{symb} {i}", file=f)
+ i += 1
+ return in_units_file
+
+
+def create_lexicon(
+ cfg: KaldiInitializerConfig,
+ fst_dir: Path,
+ unique_label: str,
+ in_units_file: Path,
+ out_words_file: Path,
+) -> (Path, Path):
+
+ disambig_in_units_file = fst_dir / f"kaldi_dict.{cfg.in_labels}_disambig.txt"
+ lexicon_file = fst_dir / f"kaldi_lexicon.{unique_label}.txt"
+ disambig_lexicon_file = fst_dir / f"kaldi_lexicon.{unique_label}_disambig.txt"
+ if (
+ not lexicon_file.exists()
+ or not disambig_lexicon_file.exists()
+ or not disambig_in_units_file.exists()
+ ):
+ logger.info(f"Creating {lexicon_file} (in units file: {in_units_file})")
+
+ assert cfg.wav2letter_lexicon is not None or cfg.in_labels == cfg.out_labels
+
+ if cfg.wav2letter_lexicon is not None:
+ lm_words = set()
+ with open(out_words_file, "r") as lm_dict_f:
+ for line in lm_dict_f:
+ lm_words.add(line.split()[0])
+
+ num_skipped = 0
+ total = 0
+ with open(cfg.wav2letter_lexicon, "r") as w2l_lex_f, open(
+ lexicon_file, "w"
+ ) as out_f:
+ for line in w2l_lex_f:
+ items = line.rstrip().split("\t")
+ assert len(items) == 2, items
+ if items[0] in lm_words:
+ print(items[0], items[1], file=out_f)
+ else:
+ num_skipped += 1
+ logger.debug(
+ f"Skipping word {items[0]} as it was not found in LM"
+ )
+ total += 1
+ if num_skipped > 0:
+ logger.warning(
+ f"Skipped {num_skipped} out of {total} words as they were not found in LM"
+ )
+ else:
+ with open(in_units_file, "r") as in_f, open(lexicon_file, "w") as out_f:
+ for line in in_f:
+ symb = line.split()[0]
+ if symb != "" and symb != "" and symb != "":
+ print(symb, symb, file=out_f)
+
+ lex_disambig_path = (
+ Path(cfg.kaldi_root) / "egs/wsj/s5/utils/add_lex_disambig.pl"
+ )
+ res = subprocess.run(
+ [lex_disambig_path, lexicon_file, disambig_lexicon_file],
+ check=True,
+ capture_output=True,
+ )
+ ndisambig = int(res.stdout)
+ disamib_path = Path(cfg.kaldi_root) / "egs/wsj/s5/utils/add_disambig.pl"
+ res = subprocess.run(
+ [disamib_path, "--include-zero", in_units_file, str(ndisambig)],
+ check=True,
+ capture_output=True,
+ )
+ with open(disambig_in_units_file, "wb") as f:
+ f.write(res.stdout)
+
+ return disambig_lexicon_file, disambig_in_units_file
+
+
+def create_G(
+ kaldi_root: Path, fst_dir: Path, lm_arpa: Path, arpa_base: str
+) -> (Path, Path):
+
+ out_words_file = fst_dir / f"kaldi_dict.{arpa_base}.txt"
+ grammar_graph = fst_dir / f"G_{arpa_base}.fst"
+ if not grammar_graph.exists() or not out_words_file.exists():
+ logger.info(f"Creating {grammar_graph}")
+ arpa2fst = kaldi_root / "src/lmbin/arpa2fst"
+ subprocess.run(
+ [
+ arpa2fst,
+ "--disambig-symbol=#0",
+ f"--write-symbol-table={out_words_file}",
+ lm_arpa,
+ grammar_graph,
+ ],
+ check=True,
+ )
+ return grammar_graph, out_words_file
+
+
+def create_L(
+ kaldi_root: Path,
+ fst_dir: Path,
+ unique_label: str,
+ lexicon_file: Path,
+ in_units_file: Path,
+ out_words_file: Path,
+) -> Path:
+ lexicon_graph = fst_dir / f"L.{unique_label}.fst"
+
+ if not lexicon_graph.exists():
+ logger.info(f"Creating {lexicon_graph} (in units: {in_units_file})")
+ make_lex = kaldi_root / "egs/wsj/s5/utils/make_lexicon_fst.pl"
+ fstcompile = kaldi_root / "tools/openfst-1.6.7/bin/fstcompile"
+ fstaddselfloops = kaldi_root / "src/fstbin/fstaddselfloops"
+ fstarcsort = kaldi_root / "tools/openfst-1.6.7/bin/fstarcsort"
+
+ def write_disambig_symbol(file):
+ with open(file, "r") as f:
+ for line in f:
+ items = line.rstrip().split()
+ if items[0] == "#0":
+ out_path = str(file) + "_disamig"
+ with open(out_path, "w") as out_f:
+ print(items[1], file=out_f)
+ return out_path
+
+ return None
+
+ in_disambig_sym = write_disambig_symbol(in_units_file)
+ assert in_disambig_sym is not None
+ out_disambig_sym = write_disambig_symbol(out_words_file)
+ assert out_disambig_sym is not None
+
+ try:
+ with open(lexicon_graph, "wb") as out_f:
+ res = subprocess.run(
+ [make_lex, lexicon_file], capture_output=True, check=True
+ )
+ assert len(res.stderr) == 0, res.stderr.decode("utf-8")
+ res = subprocess.run(
+ [
+ fstcompile,
+ f"--isymbols={in_units_file}",
+ f"--osymbols={out_words_file}",
+ "--keep_isymbols=false",
+ "--keep_osymbols=false",
+ ],
+ input=res.stdout,
+ capture_output=True,
+ )
+ assert len(res.stderr) == 0, res.stderr.decode("utf-8")
+ res = subprocess.run(
+ [fstaddselfloops, in_disambig_sym, out_disambig_sym],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [fstarcsort, "--sort_type=olabel"],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ out_f.write(res.stdout)
+ except subprocess.CalledProcessError as e:
+ logger.error(f"cmd: {e.cmd}, err: {e.stderr.decode('utf-8')}")
+ os.remove(lexicon_graph)
+ raise
+ except AssertionError:
+ os.remove(lexicon_graph)
+ raise
+
+ return lexicon_graph
+
+
+def create_LG(
+ kaldi_root: Path,
+ fst_dir: Path,
+ unique_label: str,
+ lexicon_graph: Path,
+ grammar_graph: Path,
+) -> Path:
+ lg_graph = fst_dir / f"LG.{unique_label}.fst"
+
+ if not lg_graph.exists():
+ logger.info(f"Creating {lg_graph}")
+
+ fsttablecompose = kaldi_root / "src/fstbin/fsttablecompose"
+ fstdeterminizestar = kaldi_root / "src/fstbin/fstdeterminizestar"
+ fstminimizeencoded = kaldi_root / "src/fstbin/fstminimizeencoded"
+ fstpushspecial = kaldi_root / "src/fstbin/fstpushspecial"
+ fstarcsort = kaldi_root / "tools/openfst-1.6.7/bin/fstarcsort"
+
+ try:
+ with open(lg_graph, "wb") as out_f:
+ res = subprocess.run(
+ [fsttablecompose, lexicon_graph, grammar_graph],
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [
+ fstdeterminizestar,
+ "--use-log=true",
+ ],
+ input=res.stdout,
+ capture_output=True,
+ )
+ res = subprocess.run(
+ [fstminimizeencoded],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [fstpushspecial],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [fstarcsort, "--sort_type=ilabel"],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ out_f.write(res.stdout)
+ except subprocess.CalledProcessError as e:
+ logger.error(f"cmd: {e.cmd}, err: {e.stderr.decode('utf-8')}")
+ os.remove(lg_graph)
+ raise
+
+ return lg_graph
+
+
+def create_H(
+ kaldi_root: Path,
+ fst_dir: Path,
+ disambig_out_units_file: Path,
+ in_labels: str,
+ vocab: Dictionary,
+ blk_sym: str,
+ silence_symbol: Optional[str],
+) -> (Path, Path, Path):
+ h_graph = (
+ fst_dir / f"H.{in_labels}{'_' + silence_symbol if silence_symbol else ''}.fst"
+ )
+ h_out_units_file = fst_dir / f"kaldi_dict.h_out.{in_labels}.txt"
+ disambig_in_units_file_int = Path(str(h_graph) + "isym_disambig.int")
+ disambig_out_units_file_int = Path(str(disambig_out_units_file) + ".int")
+ if (
+ not h_graph.exists()
+ or not h_out_units_file.exists()
+ or not disambig_in_units_file_int.exists()
+ ):
+ logger.info(f"Creating {h_graph}")
+ eps_sym = ""
+
+ num_disambig = 0
+ osymbols = []
+
+ with open(disambig_out_units_file, "r") as f, open(
+ disambig_out_units_file_int, "w"
+ ) as out_f:
+ for line in f:
+ symb, id = line.rstrip().split()
+ if line.startswith("#"):
+ num_disambig += 1
+ print(id, file=out_f)
+ else:
+ if len(osymbols) == 0:
+ assert symb == eps_sym, symb
+ osymbols.append((symb, id))
+
+ i_idx = 0
+ isymbols = [(eps_sym, 0)]
+
+ imap = {}
+
+ for i, s in enumerate(vocab.symbols):
+ i_idx += 1
+ isymbols.append((s, i_idx))
+ imap[s] = i_idx
+
+ fst_str = []
+
+ node_idx = 0
+ root_node = node_idx
+
+ special_symbols = [blk_sym]
+ if silence_symbol is not None:
+ special_symbols.append(silence_symbol)
+
+ for ss in special_symbols:
+ fst_str.append("{} {} {} {}".format(root_node, root_node, ss, eps_sym))
+
+ for symbol, _ in osymbols:
+ if symbol == eps_sym or symbol.startswith("#"):
+ continue
+
+ node_idx += 1
+ # 1. from root to emitting state
+ fst_str.append("{} {} {} {}".format(root_node, node_idx, symbol, symbol))
+ # 2. from emitting state back to root
+ fst_str.append("{} {} {} {}".format(node_idx, root_node, eps_sym, eps_sym))
+ # 3. from emitting state to optional blank state
+ pre_node = node_idx
+ node_idx += 1
+ for ss in special_symbols:
+ fst_str.append("{} {} {} {}".format(pre_node, node_idx, ss, eps_sym))
+ # 4. from blank state back to root
+ fst_str.append("{} {} {} {}".format(node_idx, root_node, eps_sym, eps_sym))
+
+ fst_str.append("{}".format(root_node))
+
+ fst_str = "\n".join(fst_str)
+ h_str = str(h_graph)
+ isym_file = h_str + ".isym"
+
+ with open(isym_file, "w") as f:
+ for sym, id in isymbols:
+ f.write("{} {}\n".format(sym, id))
+
+ with open(h_out_units_file, "w") as f:
+ for sym, id in osymbols:
+ f.write("{} {}\n".format(sym, id))
+
+ with open(disambig_in_units_file_int, "w") as f:
+ disam_sym_id = len(isymbols)
+ for _ in range(num_disambig):
+ f.write("{}\n".format(disam_sym_id))
+ disam_sym_id += 1
+
+ fstcompile = kaldi_root / "tools/openfst-1.6.7/bin/fstcompile"
+ fstaddselfloops = kaldi_root / "src/fstbin/fstaddselfloops"
+ fstarcsort = kaldi_root / "tools/openfst-1.6.7/bin/fstarcsort"
+
+ try:
+ with open(h_graph, "wb") as out_f:
+ res = subprocess.run(
+ [
+ fstcompile,
+ f"--isymbols={isym_file}",
+ f"--osymbols={h_out_units_file}",
+ "--keep_isymbols=false",
+ "--keep_osymbols=false",
+ ],
+ input=str.encode(fst_str),
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [
+ fstaddselfloops,
+ disambig_in_units_file_int,
+ disambig_out_units_file_int,
+ ],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [fstarcsort, "--sort_type=olabel"],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ out_f.write(res.stdout)
+ except subprocess.CalledProcessError as e:
+ logger.error(f"cmd: {e.cmd}, err: {e.stderr.decode('utf-8')}")
+ os.remove(h_graph)
+ raise
+ return h_graph, h_out_units_file, disambig_in_units_file_int
+
+
+def create_HLGa(
+ kaldi_root: Path,
+ fst_dir: Path,
+ unique_label: str,
+ h_graph: Path,
+ lg_graph: Path,
+ disambig_in_words_file_int: Path,
+) -> Path:
+ hlga_graph = fst_dir / f"HLGa.{unique_label}.fst"
+
+ if not hlga_graph.exists():
+ logger.info(f"Creating {hlga_graph}")
+
+ fsttablecompose = kaldi_root / "src/fstbin/fsttablecompose"
+ fstdeterminizestar = kaldi_root / "src/fstbin/fstdeterminizestar"
+ fstrmsymbols = kaldi_root / "src/fstbin/fstrmsymbols"
+ fstrmepslocal = kaldi_root / "src/fstbin/fstrmepslocal"
+ fstminimizeencoded = kaldi_root / "src/fstbin/fstminimizeencoded"
+
+ try:
+ with open(hlga_graph, "wb") as out_f:
+ res = subprocess.run(
+ [
+ fsttablecompose,
+ h_graph,
+ lg_graph,
+ ],
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [fstdeterminizestar, "--use-log=true"],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [fstrmsymbols, disambig_in_words_file_int],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [fstrmepslocal],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [fstminimizeencoded],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ out_f.write(res.stdout)
+ except subprocess.CalledProcessError as e:
+ logger.error(f"cmd: {e.cmd}, err: {e.stderr.decode('utf-8')}")
+ os.remove(hlga_graph)
+ raise
+
+ return hlga_graph
+
+
+def create_HLa(
+ kaldi_root: Path,
+ fst_dir: Path,
+ unique_label: str,
+ h_graph: Path,
+ l_graph: Path,
+ disambig_in_words_file_int: Path,
+) -> Path:
+ hla_graph = fst_dir / f"HLa.{unique_label}.fst"
+
+ if not hla_graph.exists():
+ logger.info(f"Creating {hla_graph}")
+
+ fsttablecompose = kaldi_root / "src/fstbin/fsttablecompose"
+ fstdeterminizestar = kaldi_root / "src/fstbin/fstdeterminizestar"
+ fstrmsymbols = kaldi_root / "src/fstbin/fstrmsymbols"
+ fstrmepslocal = kaldi_root / "src/fstbin/fstrmepslocal"
+ fstminimizeencoded = kaldi_root / "src/fstbin/fstminimizeencoded"
+
+ try:
+ with open(hla_graph, "wb") as out_f:
+ res = subprocess.run(
+ [
+ fsttablecompose,
+ h_graph,
+ l_graph,
+ ],
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [fstdeterminizestar, "--use-log=true"],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [fstrmsymbols, disambig_in_words_file_int],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [fstrmepslocal],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ res = subprocess.run(
+ [fstminimizeencoded],
+ input=res.stdout,
+ capture_output=True,
+ check=True,
+ )
+ out_f.write(res.stdout)
+ except subprocess.CalledProcessError as e:
+ logger.error(f"cmd: {e.cmd}, err: {e.stderr.decode('utf-8')}")
+ os.remove(hla_graph)
+ raise
+
+ return hla_graph
+
+
+def create_HLG(
+ kaldi_root: Path,
+ fst_dir: Path,
+ unique_label: str,
+ hlga_graph: Path,
+ prefix: str = "HLG",
+) -> Path:
+ hlg_graph = fst_dir / f"{prefix}.{unique_label}.fst"
+
+ if not hlg_graph.exists():
+ logger.info(f"Creating {hlg_graph}")
+
+ add_self_loop = script_dir / "add-self-loop-simple"
+ kaldi_src = kaldi_root / "src"
+ kaldi_lib = kaldi_src / "lib"
+
+ try:
+ if not add_self_loop.exists():
+ fst_include = kaldi_root / "tools/openfst-1.6.7/include"
+ add_self_loop_src = script_dir / "add-self-loop-simple.cc"
+
+ subprocess.run(
+ [
+ "c++",
+ f"-I{kaldi_src}",
+ f"-I{fst_include}",
+ f"-L{kaldi_lib}",
+ add_self_loop_src,
+ "-lkaldi-base",
+ "-lkaldi-fstext",
+ "-o",
+ add_self_loop,
+ ],
+ check=True,
+ )
+
+ my_env = os.environ.copy()
+ my_env["LD_LIBRARY_PATH"] = f"{kaldi_lib}:{my_env['LD_LIBRARY_PATH']}"
+
+ subprocess.run(
+ [
+ add_self_loop,
+ hlga_graph,
+ hlg_graph,
+ ],
+ check=True,
+ capture_output=True,
+ env=my_env,
+ )
+ except subprocess.CalledProcessError as e:
+ logger.error(f"cmd: {e.cmd}, err: {e.stderr.decode('utf-8')}")
+ raise
+
+ return hlg_graph
+
+
+def initalize_kaldi(cfg: KaldiInitializerConfig) -> Path:
+ if cfg.fst_dir is None:
+ cfg.fst_dir = osp.join(cfg.data_dir, "kaldi")
+ if cfg.out_labels is None:
+ cfg.out_labels = cfg.in_labels
+
+ kaldi_root = Path(cfg.kaldi_root)
+ data_dir = Path(cfg.data_dir)
+ fst_dir = Path(cfg.fst_dir)
+ fst_dir.mkdir(parents=True, exist_ok=True)
+
+ arpa_base = osp.splitext(osp.basename(cfg.lm_arpa))[0]
+ unique_label = f"{cfg.in_labels}.{arpa_base}"
+
+ with open(data_dir / f"dict.{cfg.in_labels}.txt", "r") as f:
+ vocab = Dictionary.load(f)
+
+ in_units_file = create_units(fst_dir, cfg.in_labels, vocab)
+
+ grammar_graph, out_words_file = create_G(
+ kaldi_root, fst_dir, Path(cfg.lm_arpa), arpa_base
+ )
+
+ disambig_lexicon_file, disambig_L_in_units_file = create_lexicon(
+ cfg, fst_dir, unique_label, in_units_file, out_words_file
+ )
+
+ h_graph, h_out_units_file, disambig_in_units_file_int = create_H(
+ kaldi_root,
+ fst_dir,
+ disambig_L_in_units_file,
+ cfg.in_labels,
+ vocab,
+ cfg.blank_symbol,
+ cfg.silence_symbol,
+ )
+ lexicon_graph = create_L(
+ kaldi_root,
+ fst_dir,
+ unique_label,
+ disambig_lexicon_file,
+ disambig_L_in_units_file,
+ out_words_file,
+ )
+ lg_graph = create_LG(
+ kaldi_root, fst_dir, unique_label, lexicon_graph, grammar_graph
+ )
+ hlga_graph = create_HLGa(
+ kaldi_root, fst_dir, unique_label, h_graph, lg_graph, disambig_in_units_file_int
+ )
+ hlg_graph = create_HLG(kaldi_root, fst_dir, unique_label, hlga_graph)
+
+ # for debugging
+ # hla_graph = create_HLa(kaldi_root, fst_dir, unique_label, h_graph, lexicon_graph, disambig_in_units_file_int)
+ # hl_graph = create_HLG(kaldi_root, fst_dir, unique_label, hla_graph, prefix="HL_looped")
+ # create_HLG(kaldi_root, fst_dir, "phnc", h_graph, prefix="H_looped")
+
+ return hlg_graph
+
+
+@hydra.main(config_path=config_path, config_name="kaldi_initializer")
+def cli_main(cfg: KaldiInitializerConfig) -> None:
+ container = OmegaConf.to_container(cfg, resolve=True, enum_to_str=True)
+ cfg = OmegaConf.create(container)
+ OmegaConf.set_struct(cfg, True)
+ initalize_kaldi(cfg)
+
+
+if __name__ == "__main__":
+
+ logging.root.setLevel(logging.INFO)
+ logging.basicConfig(level=logging.INFO)
+
+ try:
+ from hydra._internal.utils import (
+ get_args,
+ ) # pylint: disable=import-outside-toplevel
+
+ cfg_name = get_args().config_name or "kaldi_initializer"
+ except ImportError:
+ logger.warning("Failed to get config name from hydra args")
+ cfg_name = "kaldi_initializer"
+
+ cs = ConfigStore.instance()
+ cs.store(name=cfg_name, node=KaldiInitializerConfig)
+
+ cli_main()
diff --git a/fairseq/examples/speech_recognition/models/__init__.py b/fairseq/examples/speech_recognition/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..54b5a1c31243e55d384f80ef9514461cd35b15c6
--- /dev/null
+++ b/fairseq/examples/speech_recognition/models/__init__.py
@@ -0,0 +1,8 @@
+import importlib
+import os
+
+
+for file in sorted(os.listdir(os.path.dirname(__file__))):
+ if file.endswith(".py") and not file.startswith("_"):
+ model_name = file[: file.find(".py")]
+ importlib.import_module("examples.speech_recognition.models." + model_name)
diff --git a/fairseq/examples/speech_recognition/models/vggtransformer.py b/fairseq/examples/speech_recognition/models/vggtransformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..bca0ae59a8cbe2b7c337e395021c883a61d101ee
--- /dev/null
+++ b/fairseq/examples/speech_recognition/models/vggtransformer.py
@@ -0,0 +1,1020 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import math
+from collections.abc import Iterable
+
+import torch
+import torch.nn as nn
+from examples.speech_recognition.data.data_utils import lengths_to_encoder_padding_mask
+from fairseq import utils
+from fairseq.models import (
+ FairseqEncoder,
+ FairseqEncoderDecoderModel,
+ FairseqEncoderModel,
+ FairseqIncrementalDecoder,
+ register_model,
+ register_model_architecture,
+)
+from fairseq.modules import (
+ LinearizedConvolution,
+ TransformerDecoderLayer,
+ TransformerEncoderLayer,
+ VGGBlock,
+)
+
+
+@register_model("asr_vggtransformer")
+class VGGTransformerModel(FairseqEncoderDecoderModel):
+ """
+ Transformers with convolutional context for ASR
+ https://arxiv.org/abs/1904.11660
+ """
+
+ def __init__(self, encoder, decoder):
+ super().__init__(encoder, decoder)
+
+ @staticmethod
+ def add_args(parser):
+ """Add model-specific arguments to the parser."""
+ parser.add_argument(
+ "--input-feat-per-channel",
+ type=int,
+ metavar="N",
+ help="encoder input dimension per input channel",
+ )
+ parser.add_argument(
+ "--vggblock-enc-config",
+ type=str,
+ metavar="EXPR",
+ help="""
+ an array of tuples each containing the configuration of one vggblock:
+ [(out_channels,
+ conv_kernel_size,
+ pooling_kernel_size,
+ num_conv_layers,
+ use_layer_norm), ...])
+ """,
+ )
+ parser.add_argument(
+ "--transformer-enc-config",
+ type=str,
+ metavar="EXPR",
+ help=""""
+ a tuple containing the configuration of the encoder transformer layers
+ configurations:
+ [(input_dim,
+ num_heads,
+ ffn_dim,
+ normalize_before,
+ dropout,
+ attention_dropout,
+ relu_dropout), ...]')
+ """,
+ )
+ parser.add_argument(
+ "--enc-output-dim",
+ type=int,
+ metavar="N",
+ help="""
+ encoder output dimension, can be None. If specified, projecting the
+ transformer output to the specified dimension""",
+ )
+ parser.add_argument(
+ "--in-channels",
+ type=int,
+ metavar="N",
+ help="number of encoder input channels",
+ )
+ parser.add_argument(
+ "--tgt-embed-dim",
+ type=int,
+ metavar="N",
+ help="embedding dimension of the decoder target tokens",
+ )
+ parser.add_argument(
+ "--transformer-dec-config",
+ type=str,
+ metavar="EXPR",
+ help="""
+ a tuple containing the configuration of the decoder transformer layers
+ configurations:
+ [(input_dim,
+ num_heads,
+ ffn_dim,
+ normalize_before,
+ dropout,
+ attention_dropout,
+ relu_dropout), ...]
+ """,
+ )
+ parser.add_argument(
+ "--conv-dec-config",
+ type=str,
+ metavar="EXPR",
+ help="""
+ an array of tuples for the decoder 1-D convolution config
+ [(out_channels, conv_kernel_size, use_layer_norm), ...]""",
+ )
+
+ @classmethod
+ def build_encoder(cls, args, task):
+ return VGGTransformerEncoder(
+ input_feat_per_channel=args.input_feat_per_channel,
+ vggblock_config=eval(args.vggblock_enc_config),
+ transformer_config=eval(args.transformer_enc_config),
+ encoder_output_dim=args.enc_output_dim,
+ in_channels=args.in_channels,
+ )
+
+ @classmethod
+ def build_decoder(cls, args, task):
+ return TransformerDecoder(
+ dictionary=task.target_dictionary,
+ embed_dim=args.tgt_embed_dim,
+ transformer_config=eval(args.transformer_dec_config),
+ conv_config=eval(args.conv_dec_config),
+ encoder_output_dim=args.enc_output_dim,
+ )
+
+ @classmethod
+ def build_model(cls, args, task):
+ """Build a new model instance."""
+ # make sure that all args are properly defaulted
+ # (in case there are any new ones)
+ base_architecture(args)
+
+ encoder = cls.build_encoder(args, task)
+ decoder = cls.build_decoder(args, task)
+ return cls(encoder, decoder)
+
+ def get_normalized_probs(self, net_output, log_probs, sample=None):
+ # net_output['encoder_out'] is a (B, T, D) tensor
+ lprobs = super().get_normalized_probs(net_output, log_probs, sample)
+ lprobs.batch_first = True
+ return lprobs
+
+
+DEFAULT_ENC_VGGBLOCK_CONFIG = ((32, 3, 2, 2, False),) * 2
+DEFAULT_ENC_TRANSFORMER_CONFIG = ((256, 4, 1024, True, 0.2, 0.2, 0.2),) * 2
+# 256: embedding dimension
+# 4: number of heads
+# 1024: FFN
+# True: apply layerNorm before (dropout + resiaul) instead of after
+# 0.2 (dropout): dropout after MultiheadAttention and second FC
+# 0.2 (attention_dropout): dropout in MultiheadAttention
+# 0.2 (relu_dropout): dropout after ReLu
+DEFAULT_DEC_TRANSFORMER_CONFIG = ((256, 2, 1024, True, 0.2, 0.2, 0.2),) * 2
+DEFAULT_DEC_CONV_CONFIG = ((256, 3, True),) * 2
+
+
+# TODO: repace transformer encoder config from one liner
+# to explicit args to get rid of this transformation
+def prepare_transformer_encoder_params(
+ input_dim,
+ num_heads,
+ ffn_dim,
+ normalize_before,
+ dropout,
+ attention_dropout,
+ relu_dropout,
+):
+ args = argparse.Namespace()
+ args.encoder_embed_dim = input_dim
+ args.encoder_attention_heads = num_heads
+ args.attention_dropout = attention_dropout
+ args.dropout = dropout
+ args.activation_dropout = relu_dropout
+ args.encoder_normalize_before = normalize_before
+ args.encoder_ffn_embed_dim = ffn_dim
+ return args
+
+
+def prepare_transformer_decoder_params(
+ input_dim,
+ num_heads,
+ ffn_dim,
+ normalize_before,
+ dropout,
+ attention_dropout,
+ relu_dropout,
+):
+ args = argparse.Namespace()
+ args.encoder_embed_dim = None
+ args.decoder_embed_dim = input_dim
+ args.decoder_attention_heads = num_heads
+ args.attention_dropout = attention_dropout
+ args.dropout = dropout
+ args.activation_dropout = relu_dropout
+ args.decoder_normalize_before = normalize_before
+ args.decoder_ffn_embed_dim = ffn_dim
+ return args
+
+
+class VGGTransformerEncoder(FairseqEncoder):
+ """VGG + Transformer encoder"""
+
+ def __init__(
+ self,
+ input_feat_per_channel,
+ vggblock_config=DEFAULT_ENC_VGGBLOCK_CONFIG,
+ transformer_config=DEFAULT_ENC_TRANSFORMER_CONFIG,
+ encoder_output_dim=512,
+ in_channels=1,
+ transformer_context=None,
+ transformer_sampling=None,
+ ):
+ """constructor for VGGTransformerEncoder
+
+ Args:
+ - input_feat_per_channel: feature dim (not including stacked,
+ just base feature)
+ - in_channel: # input channels (e.g., if stack 8 feature vector
+ together, this is 8)
+ - vggblock_config: configuration of vggblock, see comments on
+ DEFAULT_ENC_VGGBLOCK_CONFIG
+ - transformer_config: configuration of transformer layer, see comments
+ on DEFAULT_ENC_TRANSFORMER_CONFIG
+ - encoder_output_dim: final transformer output embedding dimension
+ - transformer_context: (left, right) if set, self-attention will be focused
+ on (t-left, t+right)
+ - transformer_sampling: an iterable of int, must match with
+ len(transformer_config), transformer_sampling[i] indicates sampling
+ factor for i-th transformer layer, after multihead att and feedfoward
+ part
+ """
+ super().__init__(None)
+
+ self.num_vggblocks = 0
+ if vggblock_config is not None:
+ if not isinstance(vggblock_config, Iterable):
+ raise ValueError("vggblock_config is not iterable")
+ self.num_vggblocks = len(vggblock_config)
+
+ self.conv_layers = nn.ModuleList()
+ self.in_channels = in_channels
+ self.input_dim = input_feat_per_channel
+ self.pooling_kernel_sizes = []
+
+ if vggblock_config is not None:
+ for _, config in enumerate(vggblock_config):
+ (
+ out_channels,
+ conv_kernel_size,
+ pooling_kernel_size,
+ num_conv_layers,
+ layer_norm,
+ ) = config
+ self.conv_layers.append(
+ VGGBlock(
+ in_channels,
+ out_channels,
+ conv_kernel_size,
+ pooling_kernel_size,
+ num_conv_layers,
+ input_dim=input_feat_per_channel,
+ layer_norm=layer_norm,
+ )
+ )
+ self.pooling_kernel_sizes.append(pooling_kernel_size)
+ in_channels = out_channels
+ input_feat_per_channel = self.conv_layers[-1].output_dim
+
+ transformer_input_dim = self.infer_conv_output_dim(
+ self.in_channels, self.input_dim
+ )
+ # transformer_input_dim is the output dimension of VGG part
+
+ self.validate_transformer_config(transformer_config)
+ self.transformer_context = self.parse_transformer_context(transformer_context)
+ self.transformer_sampling = self.parse_transformer_sampling(
+ transformer_sampling, len(transformer_config)
+ )
+
+ self.transformer_layers = nn.ModuleList()
+
+ if transformer_input_dim != transformer_config[0][0]:
+ self.transformer_layers.append(
+ Linear(transformer_input_dim, transformer_config[0][0])
+ )
+ self.transformer_layers.append(
+ TransformerEncoderLayer(
+ prepare_transformer_encoder_params(*transformer_config[0])
+ )
+ )
+
+ for i in range(1, len(transformer_config)):
+ if transformer_config[i - 1][0] != transformer_config[i][0]:
+ self.transformer_layers.append(
+ Linear(transformer_config[i - 1][0], transformer_config[i][0])
+ )
+ self.transformer_layers.append(
+ TransformerEncoderLayer(
+ prepare_transformer_encoder_params(*transformer_config[i])
+ )
+ )
+
+ self.encoder_output_dim = encoder_output_dim
+ self.transformer_layers.extend(
+ [
+ Linear(transformer_config[-1][0], encoder_output_dim),
+ LayerNorm(encoder_output_dim),
+ ]
+ )
+
+ def forward(self, src_tokens, src_lengths, **kwargs):
+ """
+ src_tokens: padded tensor (B, T, C * feat)
+ src_lengths: tensor of original lengths of input utterances (B,)
+ """
+ bsz, max_seq_len, _ = src_tokens.size()
+ x = src_tokens.view(bsz, max_seq_len, self.in_channels, self.input_dim)
+ x = x.transpose(1, 2).contiguous()
+ # (B, C, T, feat)
+
+ for layer_idx in range(len(self.conv_layers)):
+ x = self.conv_layers[layer_idx](x)
+
+ bsz, _, output_seq_len, _ = x.size()
+
+ # (B, C, T, feat) -> (B, T, C, feat) -> (T, B, C, feat) -> (T, B, C * feat)
+ x = x.transpose(1, 2).transpose(0, 1)
+ x = x.contiguous().view(output_seq_len, bsz, -1)
+
+ input_lengths = src_lengths.clone()
+ for s in self.pooling_kernel_sizes:
+ input_lengths = (input_lengths.float() / s).ceil().long()
+
+ encoder_padding_mask, _ = lengths_to_encoder_padding_mask(
+ input_lengths, batch_first=True
+ )
+ if not encoder_padding_mask.any():
+ encoder_padding_mask = None
+
+ subsampling_factor = int(max_seq_len * 1.0 / output_seq_len + 0.5)
+ attn_mask = self.lengths_to_attn_mask(input_lengths, subsampling_factor)
+
+ transformer_layer_idx = 0
+
+ for layer_idx in range(len(self.transformer_layers)):
+
+ if isinstance(self.transformer_layers[layer_idx], TransformerEncoderLayer):
+ x = self.transformer_layers[layer_idx](
+ x, encoder_padding_mask, attn_mask
+ )
+
+ if self.transformer_sampling[transformer_layer_idx] != 1:
+ sampling_factor = self.transformer_sampling[transformer_layer_idx]
+ x, encoder_padding_mask, attn_mask = self.slice(
+ x, encoder_padding_mask, attn_mask, sampling_factor
+ )
+
+ transformer_layer_idx += 1
+
+ else:
+ x = self.transformer_layers[layer_idx](x)
+
+ # encoder_padding_maks is a (T x B) tensor, its [t, b] elements indicate
+ # whether encoder_output[t, b] is valid or not (valid=0, invalid=1)
+
+ return {
+ "encoder_out": x, # (T, B, C)
+ "encoder_padding_mask": encoder_padding_mask.t()
+ if encoder_padding_mask is not None
+ else None,
+ # (B, T) --> (T, B)
+ }
+
+ def infer_conv_output_dim(self, in_channels, input_dim):
+ sample_seq_len = 200
+ sample_bsz = 10
+ x = torch.randn(sample_bsz, in_channels, sample_seq_len, input_dim)
+ for i, _ in enumerate(self.conv_layers):
+ x = self.conv_layers[i](x)
+ x = x.transpose(1, 2)
+ mb, seq = x.size()[:2]
+ return x.contiguous().view(mb, seq, -1).size(-1)
+
+ def validate_transformer_config(self, transformer_config):
+ for config in transformer_config:
+ input_dim, num_heads = config[:2]
+ if input_dim % num_heads != 0:
+ msg = (
+ "ERROR in transformer config {}: ".format(config)
+ + "input dimension {} ".format(input_dim)
+ + "not dividable by number of heads {}".format(num_heads)
+ )
+ raise ValueError(msg)
+
+ def parse_transformer_context(self, transformer_context):
+ """
+ transformer_context can be the following:
+ - None; indicates no context is used, i.e.,
+ transformer can access full context
+ - a tuple/list of two int; indicates left and right context,
+ any number <0 indicates infinite context
+ * e.g., (5, 6) indicates that for query at x_t, transformer can
+ access [t-5, t+6] (inclusive)
+ * e.g., (-1, 6) indicates that for query at x_t, transformer can
+ access [0, t+6] (inclusive)
+ """
+ if transformer_context is None:
+ return None
+
+ if not isinstance(transformer_context, Iterable):
+ raise ValueError("transformer context must be Iterable if it is not None")
+
+ if len(transformer_context) != 2:
+ raise ValueError("transformer context must have length 2")
+
+ left_context = transformer_context[0]
+ if left_context < 0:
+ left_context = None
+
+ right_context = transformer_context[1]
+ if right_context < 0:
+ right_context = None
+
+ if left_context is None and right_context is None:
+ return None
+
+ return (left_context, right_context)
+
+ def parse_transformer_sampling(self, transformer_sampling, num_layers):
+ """
+ parsing transformer sampling configuration
+
+ Args:
+ - transformer_sampling, accepted input:
+ * None, indicating no sampling
+ * an Iterable with int (>0) as element
+ - num_layers, expected number of transformer layers, must match with
+ the length of transformer_sampling if it is not None
+
+ Returns:
+ - A tuple with length num_layers
+ """
+ if transformer_sampling is None:
+ return (1,) * num_layers
+
+ if not isinstance(transformer_sampling, Iterable):
+ raise ValueError(
+ "transformer_sampling must be an iterable if it is not None"
+ )
+
+ if len(transformer_sampling) != num_layers:
+ raise ValueError(
+ "transformer_sampling {} does not match with the number "
+ "of layers {}".format(transformer_sampling, num_layers)
+ )
+
+ for layer, value in enumerate(transformer_sampling):
+ if not isinstance(value, int):
+ raise ValueError("Invalid value in transformer_sampling: ")
+ if value < 1:
+ raise ValueError(
+ "{} layer's subsampling is {}.".format(layer, value)
+ + " This is not allowed! "
+ )
+ return transformer_sampling
+
+ def slice(self, embedding, padding_mask, attn_mask, sampling_factor):
+ """
+ embedding is a (T, B, D) tensor
+ padding_mask is a (B, T) tensor or None
+ attn_mask is a (T, T) tensor or None
+ """
+ embedding = embedding[::sampling_factor, :, :]
+ if padding_mask is not None:
+ padding_mask = padding_mask[:, ::sampling_factor]
+ if attn_mask is not None:
+ attn_mask = attn_mask[::sampling_factor, ::sampling_factor]
+
+ return embedding, padding_mask, attn_mask
+
+ def lengths_to_attn_mask(self, input_lengths, subsampling_factor=1):
+ """
+ create attention mask according to sequence lengths and transformer
+ context
+
+ Args:
+ - input_lengths: (B, )-shape Int/Long tensor; input_lengths[b] is
+ the length of b-th sequence
+ - subsampling_factor: int
+ * Note that the left_context and right_context is specified in
+ the input frame-level while input to transformer may already
+ go through subsampling (e.g., the use of striding in vggblock)
+ we use subsampling_factor to scale the left/right context
+
+ Return:
+ - a (T, T) binary tensor or None, where T is max(input_lengths)
+ * if self.transformer_context is None, None
+ * if left_context is None,
+ * attn_mask[t, t + right_context + 1:] = 1
+ * others = 0
+ * if right_context is None,
+ * attn_mask[t, 0:t - left_context] = 1
+ * others = 0
+ * elsif
+ * attn_mask[t, t - left_context: t + right_context + 1] = 0
+ * others = 1
+ """
+ if self.transformer_context is None:
+ return None
+
+ maxT = torch.max(input_lengths).item()
+ attn_mask = torch.zeros(maxT, maxT)
+
+ left_context = self.transformer_context[0]
+ right_context = self.transformer_context[1]
+ if left_context is not None:
+ left_context = math.ceil(self.transformer_context[0] / subsampling_factor)
+ if right_context is not None:
+ right_context = math.ceil(self.transformer_context[1] / subsampling_factor)
+
+ for t in range(maxT):
+ if left_context is not None:
+ st = 0
+ en = max(st, t - left_context)
+ attn_mask[t, st:en] = 1
+ if right_context is not None:
+ st = t + right_context + 1
+ st = min(st, maxT - 1)
+ attn_mask[t, st:] = 1
+
+ return attn_mask.to(input_lengths.device)
+
+ def reorder_encoder_out(self, encoder_out, new_order):
+ encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select(
+ 1, new_order
+ )
+ if encoder_out["encoder_padding_mask"] is not None:
+ encoder_out["encoder_padding_mask"] = encoder_out[
+ "encoder_padding_mask"
+ ].index_select(1, new_order)
+ return encoder_out
+
+
+class TransformerDecoder(FairseqIncrementalDecoder):
+ """
+ Transformer decoder consisting of *args.decoder_layers* layers. Each layer
+ is a :class:`TransformerDecoderLayer`.
+ Args:
+ args (argparse.Namespace): parsed command-line arguments
+ dictionary (~fairseq.data.Dictionary): decoding dictionary
+ embed_tokens (torch.nn.Embedding): output embedding
+ no_encoder_attn (bool, optional): whether to attend to encoder outputs.
+ Default: ``False``
+ left_pad (bool, optional): whether the input is left-padded. Default:
+ ``False``
+ """
+
+ def __init__(
+ self,
+ dictionary,
+ embed_dim=512,
+ transformer_config=DEFAULT_ENC_TRANSFORMER_CONFIG,
+ conv_config=DEFAULT_DEC_CONV_CONFIG,
+ encoder_output_dim=512,
+ ):
+
+ super().__init__(dictionary)
+ vocab_size = len(dictionary)
+ self.padding_idx = dictionary.pad()
+ self.embed_tokens = Embedding(vocab_size, embed_dim, self.padding_idx)
+
+ self.conv_layers = nn.ModuleList()
+ for i in range(len(conv_config)):
+ out_channels, kernel_size, layer_norm = conv_config[i]
+ if i == 0:
+ conv_layer = LinearizedConv1d(
+ embed_dim, out_channels, kernel_size, padding=kernel_size - 1
+ )
+ else:
+ conv_layer = LinearizedConv1d(
+ conv_config[i - 1][0],
+ out_channels,
+ kernel_size,
+ padding=kernel_size - 1,
+ )
+ self.conv_layers.append(conv_layer)
+ if layer_norm:
+ self.conv_layers.append(nn.LayerNorm(out_channels))
+ self.conv_layers.append(nn.ReLU())
+
+ self.layers = nn.ModuleList()
+ if conv_config[-1][0] != transformer_config[0][0]:
+ self.layers.append(Linear(conv_config[-1][0], transformer_config[0][0]))
+ self.layers.append(
+ TransformerDecoderLayer(
+ prepare_transformer_decoder_params(*transformer_config[0])
+ )
+ )
+
+ for i in range(1, len(transformer_config)):
+ if transformer_config[i - 1][0] != transformer_config[i][0]:
+ self.layers.append(
+ Linear(transformer_config[i - 1][0], transformer_config[i][0])
+ )
+ self.layers.append(
+ TransformerDecoderLayer(
+ prepare_transformer_decoder_params(*transformer_config[i])
+ )
+ )
+ self.fc_out = Linear(transformer_config[-1][0], vocab_size)
+
+ def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None):
+ """
+ Args:
+ prev_output_tokens (LongTensor): previous decoder outputs of shape
+ `(batch, tgt_len)`, for input feeding/teacher forcing
+ encoder_out (Tensor, optional): output from the encoder, used for
+ encoder-side attention
+ incremental_state (dict): dictionary used for storing state during
+ :ref:`Incremental decoding`
+ Returns:
+ tuple:
+ - the last decoder layer's output of shape `(batch, tgt_len,
+ vocab)`
+ - the last decoder layer's attention weights of shape `(batch,
+ tgt_len, src_len)`
+ """
+ target_padding_mask = (
+ (prev_output_tokens == self.padding_idx).to(prev_output_tokens.device)
+ if incremental_state is None
+ else None
+ )
+
+ if incremental_state is not None:
+ prev_output_tokens = prev_output_tokens[:, -1:]
+
+ # embed tokens
+ x = self.embed_tokens(prev_output_tokens)
+
+ # B x T x C -> T x B x C
+ x = self._transpose_if_training(x, incremental_state)
+
+ for layer in self.conv_layers:
+ if isinstance(layer, LinearizedConvolution):
+ x = layer(x, incremental_state)
+ else:
+ x = layer(x)
+
+ # B x T x C -> T x B x C
+ x = self._transpose_if_inference(x, incremental_state)
+
+ # decoder layers
+ for layer in self.layers:
+ if isinstance(layer, TransformerDecoderLayer):
+ x, *_ = layer(
+ x,
+ (encoder_out["encoder_out"] if encoder_out is not None else None),
+ (
+ encoder_out["encoder_padding_mask"].t()
+ if encoder_out["encoder_padding_mask"] is not None
+ else None
+ ),
+ incremental_state,
+ self_attn_mask=(
+ self.buffered_future_mask(x)
+ if incremental_state is None
+ else None
+ ),
+ self_attn_padding_mask=(
+ target_padding_mask if incremental_state is None else None
+ ),
+ )
+ else:
+ x = layer(x)
+
+ # T x B x C -> B x T x C
+ x = x.transpose(0, 1)
+
+ x = self.fc_out(x)
+
+ return x, None
+
+ def buffered_future_mask(self, tensor):
+ dim = tensor.size(0)
+ if (
+ not hasattr(self, "_future_mask")
+ or self._future_mask is None
+ or self._future_mask.device != tensor.device
+ ):
+ self._future_mask = torch.triu(
+ utils.fill_with_neg_inf(tensor.new(dim, dim)), 1
+ )
+ if self._future_mask.size(0) < dim:
+ self._future_mask = torch.triu(
+ utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1
+ )
+ return self._future_mask[:dim, :dim]
+
+ def _transpose_if_training(self, x, incremental_state):
+ if incremental_state is None:
+ x = x.transpose(0, 1)
+ return x
+
+ def _transpose_if_inference(self, x, incremental_state):
+ if incremental_state:
+ x = x.transpose(0, 1)
+ return x
+
+
+@register_model("asr_vggtransformer_encoder")
+class VGGTransformerEncoderModel(FairseqEncoderModel):
+ def __init__(self, encoder):
+ super().__init__(encoder)
+
+ @staticmethod
+ def add_args(parser):
+ """Add model-specific arguments to the parser."""
+ parser.add_argument(
+ "--input-feat-per-channel",
+ type=int,
+ metavar="N",
+ help="encoder input dimension per input channel",
+ )
+ parser.add_argument(
+ "--vggblock-enc-config",
+ type=str,
+ metavar="EXPR",
+ help="""
+ an array of tuples each containing the configuration of one vggblock
+ [(out_channels, conv_kernel_size, pooling_kernel_size,num_conv_layers), ...]
+ """,
+ )
+ parser.add_argument(
+ "--transformer-enc-config",
+ type=str,
+ metavar="EXPR",
+ help="""
+ a tuple containing the configuration of the Transformer layers
+ configurations:
+ [(input_dim,
+ num_heads,
+ ffn_dim,
+ normalize_before,
+ dropout,
+ attention_dropout,
+ relu_dropout), ]""",
+ )
+ parser.add_argument(
+ "--enc-output-dim",
+ type=int,
+ metavar="N",
+ help="encoder output dimension, projecting the LSTM output",
+ )
+ parser.add_argument(
+ "--in-channels",
+ type=int,
+ metavar="N",
+ help="number of encoder input channels",
+ )
+ parser.add_argument(
+ "--transformer-context",
+ type=str,
+ metavar="EXPR",
+ help="""
+ either None or a tuple of two ints, indicating left/right context a
+ transformer can have access to""",
+ )
+ parser.add_argument(
+ "--transformer-sampling",
+ type=str,
+ metavar="EXPR",
+ help="""
+ either None or a tuple of ints, indicating sampling factor in each layer""",
+ )
+
+ @classmethod
+ def build_model(cls, args, task):
+ """Build a new model instance."""
+ base_architecture_enconly(args)
+ encoder = VGGTransformerEncoderOnly(
+ vocab_size=len(task.target_dictionary),
+ input_feat_per_channel=args.input_feat_per_channel,
+ vggblock_config=eval(args.vggblock_enc_config),
+ transformer_config=eval(args.transformer_enc_config),
+ encoder_output_dim=args.enc_output_dim,
+ in_channels=args.in_channels,
+ transformer_context=eval(args.transformer_context),
+ transformer_sampling=eval(args.transformer_sampling),
+ )
+ return cls(encoder)
+
+ def get_normalized_probs(self, net_output, log_probs, sample=None):
+ # net_output['encoder_out'] is a (T, B, D) tensor
+ lprobs = super().get_normalized_probs(net_output, log_probs, sample)
+ # lprobs is a (T, B, D) tensor
+ # we need to transoose to get (B, T, D) tensor
+ lprobs = lprobs.transpose(0, 1).contiguous()
+ lprobs.batch_first = True
+ return lprobs
+
+
+class VGGTransformerEncoderOnly(VGGTransformerEncoder):
+ def __init__(
+ self,
+ vocab_size,
+ input_feat_per_channel,
+ vggblock_config=DEFAULT_ENC_VGGBLOCK_CONFIG,
+ transformer_config=DEFAULT_ENC_TRANSFORMER_CONFIG,
+ encoder_output_dim=512,
+ in_channels=1,
+ transformer_context=None,
+ transformer_sampling=None,
+ ):
+ super().__init__(
+ input_feat_per_channel=input_feat_per_channel,
+ vggblock_config=vggblock_config,
+ transformer_config=transformer_config,
+ encoder_output_dim=encoder_output_dim,
+ in_channels=in_channels,
+ transformer_context=transformer_context,
+ transformer_sampling=transformer_sampling,
+ )
+ self.fc_out = Linear(self.encoder_output_dim, vocab_size)
+
+ def forward(self, src_tokens, src_lengths, **kwargs):
+ """
+ src_tokens: padded tensor (B, T, C * feat)
+ src_lengths: tensor of original lengths of input utterances (B,)
+ """
+
+ enc_out = super().forward(src_tokens, src_lengths)
+ x = self.fc_out(enc_out["encoder_out"])
+ # x = F.log_softmax(x, dim=-1)
+ # Note: no need this line, because model.get_normalized_prob will call
+ # log_softmax
+ return {
+ "encoder_out": x, # (T, B, C)
+ "encoder_padding_mask": enc_out["encoder_padding_mask"], # (T, B)
+ }
+
+ def max_positions(self):
+ """Maximum input length supported by the encoder."""
+ return (1e6, 1e6) # an arbitrary large number
+
+
+def Embedding(num_embeddings, embedding_dim, padding_idx):
+ m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
+ # nn.init.uniform_(m.weight, -0.1, 0.1)
+ # nn.init.constant_(m.weight[padding_idx], 0)
+ return m
+
+
+def Linear(in_features, out_features, bias=True, dropout=0):
+ """Linear layer (input: N x T x C)"""
+ m = nn.Linear(in_features, out_features, bias=bias)
+ # m.weight.data.uniform_(-0.1, 0.1)
+ # if bias:
+ # m.bias.data.uniform_(-0.1, 0.1)
+ return m
+
+
+def LinearizedConv1d(in_channels, out_channels, kernel_size, dropout=0, **kwargs):
+ """Weight-normalized Conv1d layer optimized for decoding"""
+ m = LinearizedConvolution(in_channels, out_channels, kernel_size, **kwargs)
+ std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
+ nn.init.normal_(m.weight, mean=0, std=std)
+ nn.init.constant_(m.bias, 0)
+ return nn.utils.weight_norm(m, dim=2)
+
+
+def LayerNorm(embedding_dim):
+ m = nn.LayerNorm(embedding_dim)
+ return m
+
+
+# seq2seq models
+def base_architecture(args):
+ args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 40)
+ args.vggblock_enc_config = getattr(
+ args, "vggblock_enc_config", DEFAULT_ENC_VGGBLOCK_CONFIG
+ )
+ args.transformer_enc_config = getattr(
+ args, "transformer_enc_config", DEFAULT_ENC_TRANSFORMER_CONFIG
+ )
+ args.enc_output_dim = getattr(args, "enc_output_dim", 512)
+ args.in_channels = getattr(args, "in_channels", 1)
+ args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 128)
+ args.transformer_dec_config = getattr(
+ args, "transformer_dec_config", DEFAULT_ENC_TRANSFORMER_CONFIG
+ )
+ args.conv_dec_config = getattr(args, "conv_dec_config", DEFAULT_DEC_CONV_CONFIG)
+ args.transformer_context = getattr(args, "transformer_context", "None")
+
+
+@register_model_architecture("asr_vggtransformer", "vggtransformer_1")
+def vggtransformer_1(args):
+ args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80)
+ args.vggblock_enc_config = getattr(
+ args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]"
+ )
+ args.transformer_enc_config = getattr(
+ args,
+ "transformer_enc_config",
+ "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 14",
+ )
+ args.enc_output_dim = getattr(args, "enc_output_dim", 1024)
+ args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 128)
+ args.conv_dec_config = getattr(args, "conv_dec_config", "((256, 3, True),) * 4")
+ args.transformer_dec_config = getattr(
+ args,
+ "transformer_dec_config",
+ "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 4",
+ )
+
+
+@register_model_architecture("asr_vggtransformer", "vggtransformer_2")
+def vggtransformer_2(args):
+ args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80)
+ args.vggblock_enc_config = getattr(
+ args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]"
+ )
+ args.transformer_enc_config = getattr(
+ args,
+ "transformer_enc_config",
+ "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 16",
+ )
+ args.enc_output_dim = getattr(args, "enc_output_dim", 1024)
+ args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 512)
+ args.conv_dec_config = getattr(args, "conv_dec_config", "((256, 3, True),) * 4")
+ args.transformer_dec_config = getattr(
+ args,
+ "transformer_dec_config",
+ "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 6",
+ )
+
+
+@register_model_architecture("asr_vggtransformer", "vggtransformer_base")
+def vggtransformer_base(args):
+ args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80)
+ args.vggblock_enc_config = getattr(
+ args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]"
+ )
+ args.transformer_enc_config = getattr(
+ args, "transformer_enc_config", "((512, 8, 2048, True, 0.15, 0.15, 0.15),) * 12"
+ )
+
+ args.enc_output_dim = getattr(args, "enc_output_dim", 512)
+ args.tgt_embed_dim = getattr(args, "tgt_embed_dim", 512)
+ args.conv_dec_config = getattr(args, "conv_dec_config", "((256, 3, True),) * 4")
+ args.transformer_dec_config = getattr(
+ args, "transformer_dec_config", "((512, 8, 2048, True, 0.15, 0.15, 0.15),) * 6"
+ )
+ # Size estimations:
+ # Encoder:
+ # - vggblock param: 64*1*3*3 + 64*64*3*3 + 128*64*3*3 + 128*128*3 = 258K
+ # Transformer:
+ # - input dimension adapter: 2560 x 512 -> 1.31M
+ # - transformer_layers (x12) --> 37.74M
+ # * MultiheadAttention: 512*512*3 (in_proj) + 512*512 (out_proj) = 1.048M
+ # * FFN weight: 512*2048*2 = 2.097M
+ # - output dimension adapter: 512 x 512 -> 0.26 M
+ # Decoder:
+ # - LinearizedConv1d: 512 * 256 * 3 + 256 * 256 * 3 * 3
+ # - transformer_layer: (x6) --> 25.16M
+ # * MultiheadAttention (self-attention): 512*512*3 + 512*512 = 1.048M
+ # * MultiheadAttention (encoder-attention): 512*512*3 + 512*512 = 1.048M
+ # * FFN: 512*2048*2 = 2.097M
+ # Final FC:
+ # - FC: 512*5000 = 256K (assuming vocab size 5K)
+ # In total:
+ # ~65 M
+
+
+# CTC models
+def base_architecture_enconly(args):
+ args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 40)
+ args.vggblock_enc_config = getattr(
+ args, "vggblock_enc_config", "[(32, 3, 2, 2, True)] * 2"
+ )
+ args.transformer_enc_config = getattr(
+ args, "transformer_enc_config", "((256, 4, 1024, True, 0.2, 0.2, 0.2),) * 2"
+ )
+ args.enc_output_dim = getattr(args, "enc_output_dim", 512)
+ args.in_channels = getattr(args, "in_channels", 1)
+ args.transformer_context = getattr(args, "transformer_context", "None")
+ args.transformer_sampling = getattr(args, "transformer_sampling", "None")
+
+
+@register_model_architecture("asr_vggtransformer_encoder", "vggtransformer_enc_1")
+def vggtransformer_enc_1(args):
+ # vggtransformer_1 is the same as vggtransformer_enc_big, except the number
+ # of layers is increased to 16
+ # keep it here for backward compatiablity purpose
+ args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80)
+ args.vggblock_enc_config = getattr(
+ args, "vggblock_enc_config", "[(64, 3, 2, 2, True), (128, 3, 2, 2, True)]"
+ )
+ args.transformer_enc_config = getattr(
+ args,
+ "transformer_enc_config",
+ "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 16",
+ )
+ args.enc_output_dim = getattr(args, "enc_output_dim", 1024)
diff --git a/fairseq/examples/speech_recognition/models/w2l_conv_glu_enc.py b/fairseq/examples/speech_recognition/models/w2l_conv_glu_enc.py
new file mode 100644
index 0000000000000000000000000000000000000000..655a9b0d19d11e35511392a016f9d6b7d7aa2925
--- /dev/null
+++ b/fairseq/examples/speech_recognition/models/w2l_conv_glu_enc.py
@@ -0,0 +1,177 @@
+#!/usr/bin/env python3
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from fairseq.models import (
+ FairseqEncoder,
+ FairseqEncoderModel,
+ register_model,
+ register_model_architecture,
+)
+from fairseq.modules.fairseq_dropout import FairseqDropout
+
+
+default_conv_enc_config = """[
+ (400, 13, 170, 0.2),
+ (440, 14, 0, 0.214),
+ (484, 15, 0, 0.22898),
+ (532, 16, 0, 0.2450086),
+ (584, 17, 0, 0.262159202),
+ (642, 18, 0, 0.28051034614),
+ (706, 19, 0, 0.30014607037),
+ (776, 20, 0, 0.321156295296),
+ (852, 21, 0, 0.343637235966),
+ (936, 22, 0, 0.367691842484),
+ (1028, 23, 0, 0.393430271458),
+ (1130, 24, 0, 0.42097039046),
+ (1242, 25, 0, 0.450438317792),
+ (1366, 26, 0, 0.481969000038),
+ (1502, 27, 0, 0.51570683004),
+ (1652, 28, 0, 0.551806308143),
+ (1816, 29, 0, 0.590432749713),
+]"""
+
+
+@register_model("asr_w2l_conv_glu_encoder")
+class W2lConvGluEncoderModel(FairseqEncoderModel):
+ def __init__(self, encoder):
+ super().__init__(encoder)
+
+ @staticmethod
+ def add_args(parser):
+ """Add model-specific arguments to the parser."""
+ parser.add_argument(
+ "--input-feat-per-channel",
+ type=int,
+ metavar="N",
+ help="encoder input dimension per input channel",
+ )
+ parser.add_argument(
+ "--in-channels",
+ type=int,
+ metavar="N",
+ help="number of encoder input channels",
+ )
+ parser.add_argument(
+ "--conv-enc-config",
+ type=str,
+ metavar="EXPR",
+ help="""
+ an array of tuples each containing the configuration of one conv layer
+ [(out_channels, kernel_size, padding, dropout), ...]
+ """,
+ )
+
+ @classmethod
+ def build_model(cls, args, task):
+ """Build a new model instance."""
+ conv_enc_config = getattr(args, "conv_enc_config", default_conv_enc_config)
+ encoder = W2lConvGluEncoder(
+ vocab_size=len(task.target_dictionary),
+ input_feat_per_channel=args.input_feat_per_channel,
+ in_channels=args.in_channels,
+ conv_enc_config=eval(conv_enc_config),
+ )
+ return cls(encoder)
+
+ def get_normalized_probs(self, net_output, log_probs, sample=None):
+ lprobs = super().get_normalized_probs(net_output, log_probs, sample)
+ lprobs.batch_first = False
+ return lprobs
+
+
+class W2lConvGluEncoder(FairseqEncoder):
+ def __init__(
+ self, vocab_size, input_feat_per_channel, in_channels, conv_enc_config
+ ):
+ super().__init__(None)
+
+ self.input_dim = input_feat_per_channel
+ if in_channels != 1:
+ raise ValueError("only 1 input channel is currently supported")
+
+ self.conv_layers = nn.ModuleList()
+ self.linear_layers = nn.ModuleList()
+ self.dropouts = []
+ cur_channels = input_feat_per_channel
+
+ for out_channels, kernel_size, padding, dropout in conv_enc_config:
+ layer = nn.Conv1d(cur_channels, out_channels, kernel_size, padding=padding)
+ layer.weight.data.mul_(math.sqrt(3)) # match wav2letter init
+ self.conv_layers.append(nn.utils.weight_norm(layer))
+ self.dropouts.append(
+ FairseqDropout(dropout, module_name=self.__class__.__name__)
+ )
+ if out_channels % 2 != 0:
+ raise ValueError("odd # of out_channels is incompatible with GLU")
+ cur_channels = out_channels // 2 # halved by GLU
+
+ for out_channels in [2 * cur_channels, vocab_size]:
+ layer = nn.Linear(cur_channels, out_channels)
+ layer.weight.data.mul_(math.sqrt(3))
+ self.linear_layers.append(nn.utils.weight_norm(layer))
+ cur_channels = out_channels // 2
+
+ def forward(self, src_tokens, src_lengths, **kwargs):
+
+ """
+ src_tokens: padded tensor (B, T, C * feat)
+ src_lengths: tensor of original lengths of input utterances (B,)
+ """
+ B, T, _ = src_tokens.size()
+ x = src_tokens.transpose(1, 2).contiguous() # (B, feat, T) assuming C == 1
+
+ for layer_idx in range(len(self.conv_layers)):
+ x = self.conv_layers[layer_idx](x)
+ x = F.glu(x, dim=1)
+ x = self.dropouts[layer_idx](x)
+
+ x = x.transpose(1, 2).contiguous() # (B, T, 908)
+ x = self.linear_layers[0](x)
+ x = F.glu(x, dim=2)
+ x = self.dropouts[-1](x)
+ x = self.linear_layers[1](x)
+
+ assert x.size(0) == B
+ assert x.size(1) == T
+
+ encoder_out = x.transpose(0, 1) # (T, B, vocab_size)
+
+ # need to debug this -- find a simpler/elegant way in pytorch APIs
+ encoder_padding_mask = (
+ torch.arange(T).view(1, T).expand(B, -1).to(x.device)
+ >= src_lengths.view(B, 1).expand(-1, T)
+ ).t() # (B x T) -> (T x B)
+
+ return {
+ "encoder_out": encoder_out, # (T, B, vocab_size)
+ "encoder_padding_mask": encoder_padding_mask, # (T, B)
+ }
+
+ def reorder_encoder_out(self, encoder_out, new_order):
+ encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select(
+ 1, new_order
+ )
+ encoder_out["encoder_padding_mask"] = encoder_out[
+ "encoder_padding_mask"
+ ].index_select(1, new_order)
+ return encoder_out
+
+ def max_positions(self):
+ """Maximum input length supported by the encoder."""
+ return (1e6, 1e6) # an arbitrary large number
+
+
+@register_model_architecture("asr_w2l_conv_glu_encoder", "w2l_conv_glu_enc")
+def w2l_conv_glu_enc(args):
+ args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80)
+ args.in_channels = getattr(args, "in_channels", 1)
+ args.conv_enc_config = getattr(args, "conv_enc_config", default_conv_enc_config)
diff --git a/fairseq/examples/speech_recognition/new/README.md b/fairseq/examples/speech_recognition/new/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..5fa0e97245d3ba6db69d11222261b0644960183d
--- /dev/null
+++ b/fairseq/examples/speech_recognition/new/README.md
@@ -0,0 +1,43 @@
+# Flashlight Decoder
+
+This script runs decoding for pre-trained speech recognition models.
+
+## Usage
+
+Assuming a few variables:
+
+```bash
+checkpoint=
+data=
+lm_model=
+lexicon=
+```
+
+Example usage for decoding a fine-tuned Wav2Vec model:
+
+```bash
+python $FAIRSEQ_ROOT/examples/speech_recognition/new/infer.py --multirun \
+ task=audio_pretraining \
+ task.data=$data \
+ task.labels=ltr \
+ common_eval.path=$checkpoint \
+ decoding.type=kenlm \
+ decoding.lexicon=$lexicon \
+ decoding.lmpath=$lm_model \
+ dataset.gen_subset=dev_clean,dev_other,test_clean,test_other
+```
+
+Example usage for using Ax to sweep WER parameters (requires `pip install hydra-ax-sweeper`):
+
+```bash
+python $FAIRSEQ_ROOT/examples/speech_recognition/new/infer.py --multirun \
+ hydra/sweeper=ax \
+ task=audio_pretraining \
+ task.data=$data \
+ task.labels=ltr \
+ common_eval.path=$checkpoint \
+ decoding.type=kenlm \
+ decoding.lexicon=$lexicon \
+ decoding.lmpath=$lm_model \
+ dataset.gen_subset=dev_other
+```
diff --git a/fairseq/examples/speech_recognition/new/__init__.py b/fairseq/examples/speech_recognition/new/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/fairseq/examples/speech_recognition/new/conf/hydra/sweeper/ax.yaml b/fairseq/examples/speech_recognition/new/conf/hydra/sweeper/ax.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..fbeff17ca6b5fb0a1b44de0abe0d1a3d3d2aeeb2
--- /dev/null
+++ b/fairseq/examples/speech_recognition/new/conf/hydra/sweeper/ax.yaml
@@ -0,0 +1,26 @@
+# @package hydra.sweeper
+_target_: hydra_plugins.hydra_ax_sweeper.ax_sweeper.AxSweeper
+max_batch_size: null
+ax_config:
+ max_trials: 128
+ early_stop:
+ minimize: true
+ max_epochs_without_improvement: 32
+ epsilon: 1.0e-05
+ experiment:
+ name: ${dataset.gen_subset}
+ objective_name: wer
+ minimize: true
+ parameter_constraints: null
+ outcome_constraints: null
+ status_quo: null
+ client:
+ verbose_logging: false
+ random_seed: null
+ params:
+ decoding.lmweight:
+ type: range
+ bounds: [0.0, 5.0]
+ decoding.wordscore:
+ type: range
+ bounds: [-5.0, 5.0]
diff --git a/fairseq/examples/speech_recognition/new/conf/infer.yaml b/fairseq/examples/speech_recognition/new/conf/infer.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f176228082478fae0586a6da60a437e7b377b9ae
--- /dev/null
+++ b/fairseq/examples/speech_recognition/new/conf/infer.yaml
@@ -0,0 +1,25 @@
+# @package _group_
+
+defaults:
+ - task: null
+ - model: null
+
+hydra:
+ run:
+ dir: ${common_eval.results_path}/${dataset.gen_subset}
+ sweep:
+ dir: ${common_eval.results_path}
+ subdir: ${dataset.gen_subset}
+common_eval:
+ results_path: null
+ path: null
+ post_process: letter
+ quiet: true
+dataset:
+ max_tokens: 1000000
+ gen_subset: test
+distributed_training:
+ distributed_world_size: 1
+decoding:
+ beam: 5
+ type: viterbi
diff --git a/fairseq/examples/speech_recognition/new/decoders/__init__.py b/fairseq/examples/speech_recognition/new/decoders/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/fairseq/examples/speech_recognition/new/decoders/base_decoder.py b/fairseq/examples/speech_recognition/new/decoders/base_decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..a097969b3c0650cf8ea2ab5f8e96bbc68ea9b97f
--- /dev/null
+++ b/fairseq/examples/speech_recognition/new/decoders/base_decoder.py
@@ -0,0 +1,62 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import itertools as it
+from typing import Any, Dict, List
+
+import torch
+from fairseq.data.dictionary import Dictionary
+from fairseq.models.fairseq_model import FairseqModel
+
+
+class BaseDecoder:
+ def __init__(self, tgt_dict: Dictionary) -> None:
+ self.tgt_dict = tgt_dict
+ self.vocab_size = len(tgt_dict)
+
+ self.blank = (
+ tgt_dict.index("")
+ if "" in tgt_dict.indices
+ else tgt_dict.bos()
+ )
+ if "" in tgt_dict.indices:
+ self.silence = tgt_dict.index("")
+ elif "|" in tgt_dict.indices:
+ self.silence = tgt_dict.index("|")
+ else:
+ self.silence = tgt_dict.eos()
+
+ def generate(
+ self, models: List[FairseqModel], sample: Dict[str, Any], **unused
+ ) -> List[List[Dict[str, torch.LongTensor]]]:
+ encoder_input = {
+ k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens"
+ }
+ emissions = self.get_emissions(models, encoder_input)
+ return self.decode(emissions)
+
+ def get_emissions(
+ self,
+ models: List[FairseqModel],
+ encoder_input: Dict[str, Any],
+ ) -> torch.FloatTensor:
+ model = models[0]
+ encoder_out = model(**encoder_input)
+ if hasattr(model, "get_logits"):
+ emissions = model.get_logits(encoder_out)
+ else:
+ emissions = model.get_normalized_probs(encoder_out, log_probs=True)
+ return emissions.transpose(0, 1).float().cpu().contiguous()
+
+ def get_tokens(self, idxs: torch.IntTensor) -> torch.LongTensor:
+ idxs = (g[0] for g in it.groupby(idxs))
+ idxs = filter(lambda x: x != self.blank, idxs)
+ return torch.LongTensor(list(idxs))
+
+ def decode(
+ self,
+ emissions: torch.FloatTensor,
+ ) -> List[List[Dict[str, torch.LongTensor]]]:
+ raise NotImplementedError
diff --git a/fairseq/examples/speech_recognition/new/decoders/decoder.py b/fairseq/examples/speech_recognition/new/decoders/decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..b5bec8cf707b53104ef7a45993a5db2893d3443b
--- /dev/null
+++ b/fairseq/examples/speech_recognition/new/decoders/decoder.py
@@ -0,0 +1,32 @@
+#!/usr/bin/env python3
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import Union
+
+from fairseq.data.dictionary import Dictionary
+
+from .decoder_config import DecoderConfig, FlashlightDecoderConfig
+from .base_decoder import BaseDecoder
+
+
+def Decoder(
+ cfg: Union[DecoderConfig, FlashlightDecoderConfig], tgt_dict: Dictionary
+) -> BaseDecoder:
+
+ if cfg.type == "viterbi":
+ from .viterbi_decoder import ViterbiDecoder
+
+ return ViterbiDecoder(tgt_dict)
+ if cfg.type == "kenlm":
+ from .flashlight_decoder import KenLMDecoder
+
+ return KenLMDecoder(cfg, tgt_dict)
+ if cfg.type == "fairseqlm":
+ from .flashlight_decoder import FairseqLMDecoder
+
+ return FairseqLMDecoder(cfg, tgt_dict)
+ raise NotImplementedError(f"Invalid decoder name: {cfg.name}")
diff --git a/fairseq/examples/speech_recognition/new/decoders/decoder_config.py b/fairseq/examples/speech_recognition/new/decoders/decoder_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..659eb94a9b8187a7c126d7b439ac2742f9d72022
--- /dev/null
+++ b/fairseq/examples/speech_recognition/new/decoders/decoder_config.py
@@ -0,0 +1,70 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+from dataclasses import dataclass, field
+from typing import Optional
+
+from fairseq.dataclass.configs import FairseqDataclass
+from fairseq.dataclass.constants import ChoiceEnum
+from omegaconf import MISSING
+
+
+DECODER_CHOICES = ChoiceEnum(["viterbi", "kenlm", "fairseqlm"])
+
+
+@dataclass
+class DecoderConfig(FairseqDataclass):
+ type: DECODER_CHOICES = field(
+ default="viterbi",
+ metadata={"help": "The type of decoder to use"},
+ )
+
+
+@dataclass
+class FlashlightDecoderConfig(FairseqDataclass):
+ nbest: int = field(
+ default=1,
+ metadata={"help": "Number of decodings to return"},
+ )
+ unitlm: bool = field(
+ default=False,
+ metadata={"help": "If set, use unit language model"},
+ )
+ lmpath: str = field(
+ default=MISSING,
+ metadata={"help": "Language model for KenLM decoder"},
+ )
+ lexicon: Optional[str] = field(
+ default=None,
+ metadata={"help": "Lexicon for Flashlight decoder"},
+ )
+ beam: int = field(
+ default=50,
+ metadata={"help": "Number of beams to use for decoding"},
+ )
+ beamthreshold: float = field(
+ default=50.0,
+ metadata={"help": "Threshold for beam search decoding"},
+ )
+ beamsizetoken: Optional[int] = field(
+ default=None, metadata={"help": "Beam size to use"}
+ )
+ wordscore: float = field(
+ default=-1,
+ metadata={"help": "Word score for KenLM decoder"},
+ )
+ unkweight: float = field(
+ default=-math.inf,
+ metadata={"help": "Unknown weight for KenLM decoder"},
+ )
+ silweight: float = field(
+ default=0,
+ metadata={"help": "Silence weight for KenLM decoder"},
+ )
+ lmweight: float = field(
+ default=2,
+ metadata={"help": "Weight for LM while interpolating score"},
+ )
diff --git a/fairseq/examples/speech_recognition/new/decoders/flashlight_decoder.py b/fairseq/examples/speech_recognition/new/decoders/flashlight_decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..38c7ac492f390a367a64769d7a72fe228df097c7
--- /dev/null
+++ b/fairseq/examples/speech_recognition/new/decoders/flashlight_decoder.py
@@ -0,0 +1,431 @@
+#!/usr/bin/env python3
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import gc
+import os.path as osp
+import warnings
+from collections import deque, namedtuple
+from typing import Any, Dict, Tuple
+
+import numpy as np
+import torch
+from fairseq import tasks
+from fairseq.data.dictionary import Dictionary
+from fairseq.dataclass.utils import convert_namespace_to_omegaconf
+from fairseq.models.fairseq_model import FairseqModel
+from fairseq.utils import apply_to_sample
+from omegaconf import open_dict, OmegaConf
+
+from typing import List
+
+from .decoder_config import FlashlightDecoderConfig
+from .base_decoder import BaseDecoder
+
+try:
+ from flashlight.lib.text.decoder import (
+ LM,
+ CriterionType,
+ DecodeResult,
+ KenLM,
+ LexiconDecoder,
+ LexiconDecoderOptions,
+ LexiconFreeDecoder,
+ LexiconFreeDecoderOptions,
+ LMState,
+ SmearingMode,
+ Trie,
+ )
+ from flashlight.lib.text.dictionary import create_word_dict, load_words
+except ImportError:
+ warnings.warn(
+ "flashlight python bindings are required to use this functionality. "
+ "Please install from "
+ "https://github.com/facebookresearch/flashlight/tree/master/bindings/python"
+ )
+ LM = object
+ LMState = object
+
+
+class KenLMDecoder(BaseDecoder):
+ def __init__(self, cfg: FlashlightDecoderConfig, tgt_dict: Dictionary) -> None:
+ super().__init__(tgt_dict)
+
+ self.nbest = cfg.nbest
+ self.unitlm = cfg.unitlm
+
+ if cfg.lexicon:
+ self.lexicon = load_words(cfg.lexicon)
+ self.word_dict = create_word_dict(self.lexicon)
+ self.unk_word = self.word_dict.get_index("")
+
+ self.lm = KenLM(cfg.lmpath, self.word_dict)
+ self.trie = Trie(self.vocab_size, self.silence)
+
+ start_state = self.lm.start(False)
+ for word, spellings in self.lexicon.items():
+ word_idx = self.word_dict.get_index(word)
+ _, score = self.lm.score(start_state, word_idx)
+ for spelling in spellings:
+ spelling_idxs = [tgt_dict.index(token) for token in spelling]
+ assert (
+ tgt_dict.unk() not in spelling_idxs
+ ), f"{word} {spelling} {spelling_idxs}"
+ self.trie.insert(spelling_idxs, word_idx, score)
+ self.trie.smear(SmearingMode.MAX)
+
+ self.decoder_opts = LexiconDecoderOptions(
+ beam_size=cfg.beam,
+ beam_size_token=cfg.beamsizetoken or len(tgt_dict),
+ beam_threshold=cfg.beamthreshold,
+ lm_weight=cfg.lmweight,
+ word_score=cfg.wordscore,
+ unk_score=cfg.unkweight,
+ sil_score=cfg.silweight,
+ log_add=False,
+ criterion_type=CriterionType.CTC,
+ )
+
+ self.decoder = LexiconDecoder(
+ self.decoder_opts,
+ self.trie,
+ self.lm,
+ self.silence,
+ self.blank,
+ self.unk_word,
+ [],
+ self.unitlm,
+ )
+ else:
+ assert self.unitlm, "Lexicon-free decoding requires unit LM"
+
+ d = {w: [[w]] for w in tgt_dict.symbols}
+ self.word_dict = create_word_dict(d)
+ self.lm = KenLM(cfg.lmpath, self.word_dict)
+ self.decoder_opts = LexiconFreeDecoderOptions(
+ beam_size=cfg.beam,
+ beam_size_token=cfg.beamsizetoken or len(tgt_dict),
+ beam_threshold=cfg.beamthreshold,
+ lm_weight=cfg.lmweight,
+ sil_score=cfg.silweight,
+ log_add=False,
+ criterion_type=CriterionType.CTC,
+ )
+ self.decoder = LexiconFreeDecoder(
+ self.decoder_opts, self.lm, self.silence, self.blank, []
+ )
+
+ def get_timesteps(self, token_idxs: List[int]) -> List[int]:
+ """Returns frame numbers corresponding to every non-blank token.
+
+ Parameters
+ ----------
+ token_idxs : List[int]
+ IDs of decoded tokens.
+
+ Returns
+ -------
+ List[int]
+ Frame numbers corresponding to every non-blank token.
+ """
+ timesteps = []
+ for i, token_idx in enumerate(token_idxs):
+ if token_idx == self.blank:
+ continue
+ if i == 0 or token_idx != token_idxs[i-1]:
+ timesteps.append(i)
+ return timesteps
+
+ def decode(
+ self,
+ emissions: torch.FloatTensor,
+ ) -> List[List[Dict[str, torch.LongTensor]]]:
+ B, T, N = emissions.size()
+ hypos = []
+ for b in range(B):
+ emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0)
+ results = self.decoder.decode(emissions_ptr, T, N)
+
+ nbest_results = results[: self.nbest]
+ hypos.append(
+ [
+ {
+ "tokens": self.get_tokens(result.tokens),
+ "score": result.score,
+ "timesteps": self.get_timesteps(result.tokens),
+ "words": [
+ self.word_dict.get_entry(x) for x in result.words if x >= 0
+ ],
+ }
+ for result in nbest_results
+ ]
+ )
+ return hypos
+
+
+FairseqLMState = namedtuple(
+ "FairseqLMState",
+ [
+ "prefix",
+ "incremental_state",
+ "probs",
+ ],
+)
+
+
+class FairseqLM(LM):
+ def __init__(self, dictionary: Dictionary, model: FairseqModel) -> None:
+ super().__init__()
+
+ self.dictionary = dictionary
+ self.model = model
+ self.unk = self.dictionary.unk()
+
+ self.save_incremental = False # this currently does not work properly
+ self.max_cache = 20_000
+
+ if torch.cuda.is_available():
+ model.cuda()
+ model.eval()
+ model.make_generation_fast_()
+
+ self.states = {}
+ self.stateq = deque()
+
+ def start(self, start_with_nothing: bool) -> LMState:
+ state = LMState()
+ prefix = torch.LongTensor([[self.dictionary.eos()]])
+ incremental_state = {} if self.save_incremental else None
+ with torch.no_grad():
+ res = self.model(prefix.cuda(), incremental_state=incremental_state)
+ probs = self.model.get_normalized_probs(res, log_probs=True, sample=None)
+
+ if incremental_state is not None:
+ incremental_state = apply_to_sample(lambda x: x.cpu(), incremental_state)
+ self.states[state] = FairseqLMState(
+ prefix.numpy(), incremental_state, probs[0, -1].cpu().numpy()
+ )
+ self.stateq.append(state)
+
+ return state
+
+ def score(
+ self,
+ state: LMState,
+ token_index: int,
+ no_cache: bool = False,
+ ) -> Tuple[LMState, int]:
+ """
+ Evaluate language model based on the current lm state and new word
+ Parameters:
+ -----------
+ state: current lm state
+ token_index: index of the word
+ (can be lexicon index then you should store inside LM the
+ mapping between indices of lexicon and lm, or lm index of a word)
+ Returns:
+ --------
+ (LMState, float): pair of (new state, score for the current word)
+ """
+ curr_state = self.states[state]
+
+ def trim_cache(targ_size: int) -> None:
+ while len(self.stateq) > targ_size:
+ rem_k = self.stateq.popleft()
+ rem_st = self.states[rem_k]
+ rem_st = FairseqLMState(rem_st.prefix, None, None)
+ self.states[rem_k] = rem_st
+
+ if curr_state.probs is None:
+ new_incremental_state = (
+ curr_state.incremental_state.copy()
+ if curr_state.incremental_state is not None
+ else None
+ )
+ with torch.no_grad():
+ if new_incremental_state is not None:
+ new_incremental_state = apply_to_sample(
+ lambda x: x.cuda(), new_incremental_state
+ )
+ elif self.save_incremental:
+ new_incremental_state = {}
+
+ res = self.model(
+ torch.from_numpy(curr_state.prefix).cuda(),
+ incremental_state=new_incremental_state,
+ )
+ probs = self.model.get_normalized_probs(
+ res, log_probs=True, sample=None
+ )
+
+ if new_incremental_state is not None:
+ new_incremental_state = apply_to_sample(
+ lambda x: x.cpu(), new_incremental_state
+ )
+
+ curr_state = FairseqLMState(
+ curr_state.prefix, new_incremental_state, probs[0, -1].cpu().numpy()
+ )
+
+ if not no_cache:
+ self.states[state] = curr_state
+ self.stateq.append(state)
+
+ score = curr_state.probs[token_index].item()
+
+ trim_cache(self.max_cache)
+
+ outstate = state.child(token_index)
+ if outstate not in self.states and not no_cache:
+ prefix = np.concatenate(
+ [curr_state.prefix, torch.LongTensor([[token_index]])], -1
+ )
+ incr_state = curr_state.incremental_state
+
+ self.states[outstate] = FairseqLMState(prefix, incr_state, None)
+
+ if token_index == self.unk:
+ score = float("-inf")
+
+ return outstate, score
+
+ def finish(self, state: LMState) -> Tuple[LMState, int]:
+ """
+ Evaluate eos for language model based on the current lm state
+ Returns:
+ --------
+ (LMState, float): pair of (new state, score for the current word)
+ """
+ return self.score(state, self.dictionary.eos())
+
+ def empty_cache(self) -> None:
+ self.states = {}
+ self.stateq = deque()
+ gc.collect()
+
+
+class FairseqLMDecoder(BaseDecoder):
+ def __init__(self, cfg: FlashlightDecoderConfig, tgt_dict: Dictionary) -> None:
+ super().__init__(tgt_dict)
+
+ self.nbest = cfg.nbest
+ self.unitlm = cfg.unitlm
+
+ self.lexicon = load_words(cfg.lexicon) if cfg.lexicon else None
+ self.idx_to_wrd = {}
+
+ checkpoint = torch.load(cfg.lmpath, map_location="cpu")
+
+ if "cfg" in checkpoint and checkpoint["cfg"] is not None:
+ lm_args = checkpoint["cfg"]
+ else:
+ lm_args = convert_namespace_to_omegaconf(checkpoint["args"])
+
+ if not OmegaConf.is_dict(lm_args):
+ lm_args = OmegaConf.create(lm_args)
+
+ with open_dict(lm_args.task):
+ lm_args.task.data = osp.dirname(cfg.lmpath)
+
+ task = tasks.setup_task(lm_args.task)
+ model = task.build_model(lm_args.model)
+ model.load_state_dict(checkpoint["model"], strict=False)
+
+ self.trie = Trie(self.vocab_size, self.silence)
+
+ self.word_dict = task.dictionary
+ self.unk_word = self.word_dict.unk()
+ self.lm = FairseqLM(self.word_dict, model)
+
+ if self.lexicon:
+ start_state = self.lm.start(False)
+ for i, (word, spellings) in enumerate(self.lexicon.items()):
+ if self.unitlm:
+ word_idx = i
+ self.idx_to_wrd[i] = word
+ score = 0
+ else:
+ word_idx = self.word_dict.index(word)
+ _, score = self.lm.score(start_state, word_idx, no_cache=True)
+
+ for spelling in spellings:
+ spelling_idxs = [tgt_dict.index(token) for token in spelling]
+ assert (
+ tgt_dict.unk() not in spelling_idxs
+ ), f"{spelling} {spelling_idxs}"
+ self.trie.insert(spelling_idxs, word_idx, score)
+ self.trie.smear(SmearingMode.MAX)
+
+ self.decoder_opts = LexiconDecoderOptions(
+ beam_size=cfg.beam,
+ beam_size_token=cfg.beamsizetoken or len(tgt_dict),
+ beam_threshold=cfg.beamthreshold,
+ lm_weight=cfg.lmweight,
+ word_score=cfg.wordscore,
+ unk_score=cfg.unkweight,
+ sil_score=cfg.silweight,
+ log_add=False,
+ criterion_type=CriterionType.CTC,
+ )
+
+ self.decoder = LexiconDecoder(
+ self.decoder_opts,
+ self.trie,
+ self.lm,
+ self.silence,
+ self.blank,
+ self.unk_word,
+ [],
+ self.unitlm,
+ )
+ else:
+ assert self.unitlm, "Lexicon-free decoding requires unit LM"
+
+ d = {w: [[w]] for w in tgt_dict.symbols}
+ self.word_dict = create_word_dict(d)
+ self.lm = KenLM(cfg.lmpath, self.word_dict)
+ self.decoder_opts = LexiconFreeDecoderOptions(
+ beam_size=cfg.beam,
+ beam_size_token=cfg.beamsizetoken or len(tgt_dict),
+ beam_threshold=cfg.beamthreshold,
+ lm_weight=cfg.lmweight,
+ sil_score=cfg.silweight,
+ log_add=False,
+ criterion_type=CriterionType.CTC,
+ )
+ self.decoder = LexiconFreeDecoder(
+ self.decoder_opts, self.lm, self.silence, self.blank, []
+ )
+
+ def decode(
+ self,
+ emissions: torch.FloatTensor,
+ ) -> List[List[Dict[str, torch.LongTensor]]]:
+ B, T, N = emissions.size()
+ hypos = []
+
+ def make_hypo(result: DecodeResult) -> Dict[str, Any]:
+ hypo = {
+ "tokens": self.get_tokens(result.tokens),
+ "score": result.score,
+ }
+ if self.lexicon:
+ hypo["words"] = [
+ self.idx_to_wrd[x] if self.unitlm else self.word_dict[x]
+ for x in result.words
+ if x >= 0
+ ]
+ return hypo
+
+ for b in range(B):
+ emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0)
+ results = self.decoder.decode(emissions_ptr, T, N)
+
+ nbest_results = results[: self.nbest]
+ hypos.append([make_hypo(result) for result in nbest_results])
+ self.lm.empty_cache()
+
+ return hypos
diff --git a/fairseq/examples/speech_recognition/new/decoders/viterbi_decoder.py b/fairseq/examples/speech_recognition/new/decoders/viterbi_decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..b1c47868fa3b4e21f939b0695ede8d14ba1b168d
--- /dev/null
+++ b/fairseq/examples/speech_recognition/new/decoders/viterbi_decoder.py
@@ -0,0 +1,24 @@
+#!/usr/bin/env python3
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+
+from typing import List, Dict
+
+from .base_decoder import BaseDecoder
+
+
+class ViterbiDecoder(BaseDecoder):
+ def decode(
+ self,
+ emissions: torch.FloatTensor,
+ ) -> List[List[Dict[str, torch.LongTensor]]]:
+ def get_pred(e):
+ toks = e.argmax(dim=-1).unique_consecutive()
+ return toks[toks != self.blank]
+
+ return [[{"tokens": get_pred(x), "score": 0}] for x in emissions]
diff --git a/fairseq/examples/speech_recognition/new/infer.py b/fairseq/examples/speech_recognition/new/infer.py
new file mode 100644
index 0000000000000000000000000000000000000000..3fb67151e0dc425e02d090a62b1d83e6039e6ccb
--- /dev/null
+++ b/fairseq/examples/speech_recognition/new/infer.py
@@ -0,0 +1,471 @@
+#!/usr/bin/env python -u
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import ast
+import hashlib
+import logging
+import os
+import shutil
+import sys
+from dataclasses import dataclass, field, is_dataclass
+from pathlib import Path
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+import editdistance
+import torch
+import torch.distributed as dist
+from examples.speech_recognition.new.decoders.decoder_config import (
+ DecoderConfig,
+ FlashlightDecoderConfig,
+)
+from examples.speech_recognition.new.decoders.decoder import Decoder
+from fairseq import checkpoint_utils, distributed_utils, progress_bar, tasks, utils
+from fairseq.data.data_utils import post_process
+from fairseq.dataclass.configs import (
+ CheckpointConfig,
+ CommonConfig,
+ CommonEvalConfig,
+ DatasetConfig,
+ DistributedTrainingConfig,
+ FairseqDataclass,
+)
+from fairseq.logging.meters import StopwatchMeter, TimeMeter
+from fairseq.logging.progress_bar import BaseProgressBar
+from fairseq.models.fairseq_model import FairseqModel
+from omegaconf import OmegaConf
+
+import hydra
+from hydra.core.config_store import ConfigStore
+
+logging.root.setLevel(logging.INFO)
+logging.basicConfig(level=logging.INFO)
+logger = logging.getLogger(__name__)
+
+config_path = Path(__file__).resolve().parent / "conf"
+
+
+@dataclass
+class DecodingConfig(DecoderConfig, FlashlightDecoderConfig):
+ unique_wer_file: bool = field(
+ default=False,
+ metadata={"help": "If set, use a unique file for storing WER"},
+ )
+ results_path: Optional[str] = field(
+ default=None,
+ metadata={
+ "help": "If set, write hypothesis and reference sentences into this directory"
+ },
+ )
+
+
+@dataclass
+class InferConfig(FairseqDataclass):
+ task: Any = None
+ decoding: DecodingConfig = DecodingConfig()
+ common: CommonConfig = CommonConfig()
+ common_eval: CommonEvalConfig = CommonEvalConfig()
+ checkpoint: CheckpointConfig = CheckpointConfig()
+ distributed_training: DistributedTrainingConfig = DistributedTrainingConfig()
+ dataset: DatasetConfig = DatasetConfig()
+ is_ax: bool = field(
+ default=False,
+ metadata={
+ "help": "if true, assumes we are using ax for tuning and returns a tuple for ax to consume"
+ },
+ )
+
+
+def reset_logging():
+ root = logging.getLogger()
+ for handler in root.handlers:
+ root.removeHandler(handler)
+ root.setLevel(os.environ.get("LOGLEVEL", "INFO").upper())
+ handler = logging.StreamHandler(sys.stdout)
+ handler.setFormatter(
+ logging.Formatter(
+ fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
+ datefmt="%Y-%m-%d %H:%M:%S",
+ )
+ )
+ root.addHandler(handler)
+
+
+class InferenceProcessor:
+ cfg: InferConfig
+
+ def __init__(self, cfg: InferConfig) -> None:
+ self.cfg = cfg
+ self.task = tasks.setup_task(cfg.task)
+
+ models, saved_cfg = self.load_model_ensemble()
+ self.models = models
+ self.saved_cfg = saved_cfg
+ self.tgt_dict = self.task.target_dictionary
+
+ self.task.load_dataset(
+ self.cfg.dataset.gen_subset,
+ task_cfg=saved_cfg.task,
+ )
+ self.generator = Decoder(cfg.decoding, self.tgt_dict)
+ self.gen_timer = StopwatchMeter()
+ self.wps_meter = TimeMeter()
+ self.num_sentences = 0
+ self.total_errors = 0
+ self.total_length = 0
+
+ self.hypo_words_file = None
+ self.hypo_units_file = None
+ self.ref_words_file = None
+ self.ref_units_file = None
+
+ self.progress_bar = self.build_progress_bar()
+
+ def __enter__(self) -> "InferenceProcessor":
+ if self.cfg.decoding.results_path is not None:
+ self.hypo_words_file = self.get_res_file("hypo.word")
+ self.hypo_units_file = self.get_res_file("hypo.units")
+ self.ref_words_file = self.get_res_file("ref.word")
+ self.ref_units_file = self.get_res_file("ref.units")
+ return self
+
+ def __exit__(self, *exc) -> bool:
+ if self.cfg.decoding.results_path is not None:
+ self.hypo_words_file.close()
+ self.hypo_units_file.close()
+ self.ref_words_file.close()
+ self.ref_units_file.close()
+ return False
+
+ def __iter__(self) -> Any:
+ for sample in self.progress_bar:
+ if not self.cfg.common.cpu:
+ sample = utils.move_to_cuda(sample)
+
+ # Happens on the last batch.
+ if "net_input" not in sample:
+ continue
+ yield sample
+
+ def log(self, *args, **kwargs):
+ self.progress_bar.log(*args, **kwargs)
+
+ def print(self, *args, **kwargs):
+ self.progress_bar.print(*args, **kwargs)
+
+ def get_res_file(self, fname: str) -> None:
+ fname = os.path.join(self.cfg.decoding.results_path, fname)
+ if self.data_parallel_world_size > 1:
+ fname = f"{fname}.{self.data_parallel_rank}"
+ return open(fname, "w", buffering=1)
+
+ def merge_shards(self) -> None:
+ """Merges all shard files into shard 0, then removes shard suffix."""
+
+ shard_id = self.data_parallel_rank
+ num_shards = self.data_parallel_world_size
+
+ if self.data_parallel_world_size > 1:
+
+ def merge_shards_with_root(fname: str) -> None:
+ fname = os.path.join(self.cfg.decoding.results_path, fname)
+ logger.info("Merging %s on shard %d", fname, shard_id)
+ base_fpath = Path(f"{fname}.0")
+ with open(base_fpath, "a") as out_file:
+ for s in range(1, num_shards):
+ shard_fpath = Path(f"{fname}.{s}")
+ with open(shard_fpath, "r") as in_file:
+ for line in in_file:
+ out_file.write(line)
+ shard_fpath.unlink()
+ shutil.move(f"{fname}.0", fname)
+
+ dist.barrier() # ensure all shards finished writing
+ if shard_id == (0 % num_shards):
+ merge_shards_with_root("hypo.word")
+ if shard_id == (1 % num_shards):
+ merge_shards_with_root("hypo.units")
+ if shard_id == (2 % num_shards):
+ merge_shards_with_root("ref.word")
+ if shard_id == (3 % num_shards):
+ merge_shards_with_root("ref.units")
+ dist.barrier()
+
+ def optimize_model(self, model: FairseqModel) -> None:
+ model.make_generation_fast_()
+ if self.cfg.common.fp16:
+ model.half()
+ if not self.cfg.common.cpu:
+ model.cuda()
+
+ def load_model_ensemble(self) -> Tuple[List[FairseqModel], FairseqDataclass]:
+ arg_overrides = ast.literal_eval(self.cfg.common_eval.model_overrides)
+ models, saved_cfg = checkpoint_utils.load_model_ensemble(
+ utils.split_paths(self.cfg.common_eval.path, separator="\\"),
+ arg_overrides=arg_overrides,
+ task=self.task,
+ suffix=self.cfg.checkpoint.checkpoint_suffix,
+ strict=(self.cfg.checkpoint.checkpoint_shard_count == 1),
+ num_shards=self.cfg.checkpoint.checkpoint_shard_count,
+ )
+ for model in models:
+ self.optimize_model(model)
+ return models, saved_cfg
+
+ def get_dataset_itr(self, disable_iterator_cache: bool = False) -> None:
+ return self.task.get_batch_iterator(
+ dataset=self.task.dataset(self.cfg.dataset.gen_subset),
+ max_tokens=self.cfg.dataset.max_tokens,
+ max_sentences=self.cfg.dataset.batch_size,
+ max_positions=(sys.maxsize, sys.maxsize),
+ ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test,
+ required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
+ seed=self.cfg.common.seed,
+ num_shards=self.data_parallel_world_size,
+ shard_id=self.data_parallel_rank,
+ num_workers=self.cfg.dataset.num_workers,
+ data_buffer_size=self.cfg.dataset.data_buffer_size,
+ disable_iterator_cache=disable_iterator_cache,
+ ).next_epoch_itr(shuffle=False)
+
+ def build_progress_bar(
+ self,
+ epoch: Optional[int] = None,
+ prefix: Optional[str] = None,
+ default_log_format: str = "tqdm",
+ ) -> BaseProgressBar:
+ return progress_bar.progress_bar(
+ iterator=self.get_dataset_itr(),
+ log_format=self.cfg.common.log_format,
+ log_interval=self.cfg.common.log_interval,
+ epoch=epoch,
+ prefix=prefix,
+ tensorboard_logdir=self.cfg.common.tensorboard_logdir,
+ default_log_format=default_log_format,
+ )
+
+ @property
+ def data_parallel_world_size(self):
+ if self.cfg.distributed_training.distributed_world_size == 1:
+ return 1
+ return distributed_utils.get_data_parallel_world_size()
+
+ @property
+ def data_parallel_rank(self):
+ if self.cfg.distributed_training.distributed_world_size == 1:
+ return 0
+ return distributed_utils.get_data_parallel_rank()
+
+ def process_sentence(
+ self,
+ sample: Dict[str, Any],
+ hypo: Dict[str, Any],
+ sid: int,
+ batch_id: int,
+ ) -> Tuple[int, int]:
+ speaker = None # Speaker can't be parsed from dataset.
+
+ if "target_label" in sample:
+ toks = sample["target_label"]
+ else:
+ toks = sample["target"]
+ toks = toks[batch_id, :]
+
+ # Processes hypothesis.
+ hyp_pieces = self.tgt_dict.string(hypo["tokens"].int().cpu())
+ if "words" in hypo:
+ hyp_words = " ".join(hypo["words"])
+ else:
+ hyp_words = post_process(hyp_pieces, self.cfg.common_eval.post_process)
+
+ # Processes target.
+ target_tokens = utils.strip_pad(toks, self.tgt_dict.pad())
+ tgt_pieces = self.tgt_dict.string(target_tokens.int().cpu())
+ tgt_words = post_process(tgt_pieces, self.cfg.common_eval.post_process)
+
+ if self.cfg.decoding.results_path is not None:
+ print(f"{hyp_pieces} ({speaker}-{sid})", file=self.hypo_units_file)
+ print(f"{hyp_words} ({speaker}-{sid})", file=self.hypo_words_file)
+ print(f"{tgt_pieces} ({speaker}-{sid})", file=self.ref_units_file)
+ print(f"{tgt_words} ({speaker}-{sid})", file=self.ref_words_file)
+
+ if not self.cfg.common_eval.quiet:
+ logger.info(f"HYPO: {hyp_words}")
+ logger.info(f"REF: {tgt_words}")
+ logger.info("---------------------")
+
+ hyp_words, tgt_words = hyp_words.split(), tgt_words.split()
+
+ return editdistance.eval(hyp_words, tgt_words), len(tgt_words)
+
+ def process_sample(self, sample: Dict[str, Any]) -> None:
+ self.gen_timer.start()
+ hypos = self.task.inference_step(
+ generator=self.generator,
+ models=self.models,
+ sample=sample,
+ )
+ num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
+ self.gen_timer.stop(num_generated_tokens)
+ self.wps_meter.update(num_generated_tokens)
+
+ for batch_id, sample_id in enumerate(sample["id"].tolist()):
+ errs, length = self.process_sentence(
+ sample=sample,
+ sid=sample_id,
+ batch_id=batch_id,
+ hypo=hypos[batch_id][0],
+ )
+ self.total_errors += errs
+ self.total_length += length
+
+ self.log({"wps": round(self.wps_meter.avg)})
+ if "nsentences" in sample:
+ self.num_sentences += sample["nsentences"]
+ else:
+ self.num_sentences += sample["id"].numel()
+
+ def log_generation_time(self) -> None:
+ logger.info(
+ "Processed %d sentences (%d tokens) in %.1fs %.2f "
+ "sentences per second, %.2f tokens per second)",
+ self.num_sentences,
+ self.gen_timer.n,
+ self.gen_timer.sum,
+ self.num_sentences / self.gen_timer.sum,
+ 1.0 / self.gen_timer.avg,
+ )
+
+
+def parse_wer(wer_file: Path) -> float:
+ with open(wer_file, "r") as f:
+ return float(f.readline().strip().split(" ")[1])
+
+
+def get_wer_file(cfg: InferConfig) -> Path:
+ """Hashes the decoding parameters to a unique file ID."""
+ base_path = "wer"
+ if cfg.decoding.results_path is not None:
+ base_path = os.path.join(cfg.decoding.results_path, base_path)
+
+ if cfg.decoding.unique_wer_file:
+ yaml_str = OmegaConf.to_yaml(cfg.decoding)
+ fid = int(hashlib.md5(yaml_str.encode("utf-8")).hexdigest(), 16)
+ return Path(f"{base_path}.{fid % 1000000}")
+ else:
+ return Path(base_path)
+
+
+def main(cfg: InferConfig) -> float:
+ """Entry point for main processing logic.
+
+ Args:
+ cfg: The inferance configuration to use.
+ wer: Optional shared memory pointer for returning the WER. If not None,
+ the final WER value will be written here instead of being returned.
+
+ Returns:
+ The final WER if `wer` is None, otherwise None.
+ """
+
+ yaml_str, wer_file = OmegaConf.to_yaml(cfg.decoding), get_wer_file(cfg)
+
+ # Validates the provided configuration.
+ if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
+ cfg.dataset.max_tokens = 4000000
+ if not cfg.common.cpu and not torch.cuda.is_available():
+ raise ValueError("CUDA not found; set `cpu=True` to run without CUDA")
+
+ with InferenceProcessor(cfg) as processor:
+ for sample in processor:
+ processor.process_sample(sample)
+
+ processor.log_generation_time()
+
+ if cfg.decoding.results_path is not None:
+ processor.merge_shards()
+
+ errs_t, leng_t = processor.total_errors, processor.total_length
+
+ if cfg.common.cpu:
+ logger.warning("Merging WER requires CUDA.")
+ elif processor.data_parallel_world_size > 1:
+ stats = torch.LongTensor([errs_t, leng_t]).cuda()
+ dist.all_reduce(stats, op=dist.ReduceOp.SUM)
+ errs_t, leng_t = stats[0].item(), stats[1].item()
+
+ wer = errs_t * 100.0 / leng_t
+
+ if distributed_utils.is_master(cfg.distributed_training):
+ with open(wer_file, "w") as f:
+ f.write(
+ (
+ f"WER: {wer}\n"
+ f"err / num_ref_words = {errs_t} / {leng_t}\n\n"
+ f"{yaml_str}"
+ )
+ )
+
+ return wer
+
+
+@hydra.main(config_path=config_path, config_name="infer")
+def hydra_main(cfg: InferConfig) -> Union[float, Tuple[float, Optional[float]]]:
+ container = OmegaConf.to_container(cfg, resolve=True, enum_to_str=True)
+ cfg = OmegaConf.create(container)
+ OmegaConf.set_struct(cfg, True)
+
+ if cfg.common.reset_logging:
+ reset_logging()
+
+ # logger.info("Config:\n%s", OmegaConf.to_yaml(cfg))
+ wer = float("inf")
+
+ try:
+ if cfg.common.profile:
+ with torch.cuda.profiler.profile():
+ with torch.autograd.profiler.emit_nvtx():
+ distributed_utils.call_main(cfg, main)
+ else:
+ distributed_utils.call_main(cfg, main)
+
+ wer = parse_wer(get_wer_file(cfg))
+ except BaseException as e: # pylint: disable=broad-except
+ if not cfg.common.suppress_crashes:
+ raise
+ else:
+ logger.error("Crashed! %s", str(e))
+
+ logger.info("Word error rate: %.4f", wer)
+ if cfg.is_ax:
+ return wer, None
+
+ return wer
+
+
+def cli_main() -> None:
+ try:
+ from hydra._internal.utils import (
+ get_args,
+ ) # pylint: disable=import-outside-toplevel
+
+ cfg_name = get_args().config_name or "infer"
+ except ImportError:
+ logger.warning("Failed to get config name from hydra args")
+ cfg_name = "infer"
+
+ cs = ConfigStore.instance()
+ cs.store(name=cfg_name, node=InferConfig)
+
+ for k in InferConfig.__dataclass_fields__:
+ if is_dataclass(InferConfig.__dataclass_fields__[k].type):
+ v = InferConfig.__dataclass_fields__[k].default
+ cs.store(name=k, node=v)
+
+ hydra_main() # pylint: disable=no-value-for-parameter
+
+
+if __name__ == "__main__":
+ cli_main()
diff --git a/fairseq/examples/speech_recognition/tasks/__init__.py b/fairseq/examples/speech_recognition/tasks/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..7ac3b8dc69639c92cc129294356e9012745e3fb2
--- /dev/null
+++ b/fairseq/examples/speech_recognition/tasks/__init__.py
@@ -0,0 +1,8 @@
+import importlib
+import os
+
+
+for file in sorted(os.listdir(os.path.dirname(__file__))):
+ if file.endswith(".py") and not file.startswith("_"):
+ task_name = file[: file.find(".py")]
+ importlib.import_module("examples.speech_recognition.tasks." + task_name)
diff --git a/fairseq/examples/speech_recognition/tasks/speech_recognition.py b/fairseq/examples/speech_recognition/tasks/speech_recognition.py
new file mode 100644
index 0000000000000000000000000000000000000000..d9f011d55ff4fdfeb4c04ca790c314d685708c3a
--- /dev/null
+++ b/fairseq/examples/speech_recognition/tasks/speech_recognition.py
@@ -0,0 +1,157 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import json
+import os
+import re
+import sys
+
+import torch
+from examples.speech_recognition.data import AsrDataset
+from examples.speech_recognition.data.replabels import replabel_symbol
+from fairseq.data import Dictionary
+from fairseq.tasks import LegacyFairseqTask, register_task
+
+
+def get_asr_dataset_from_json(data_json_path, tgt_dict):
+ """
+ Parse data json and create dataset.
+ See scripts/asr_prep_json.py which pack json from raw files
+
+ Json example:
+ {
+ "utts": {
+ "4771-29403-0025": {
+ "input": {
+ "length_ms": 170,
+ "path": "/tmp/file1.flac"
+ },
+ "output": {
+ "text": "HELLO \n",
+ "token": "HE LLO",
+ "tokenid": "4815, 861"
+ }
+ },
+ "1564-142299-0096": {
+ ...
+ }
+ }
+ """
+ if not os.path.isfile(data_json_path):
+ raise FileNotFoundError("Dataset not found: {}".format(data_json_path))
+ with open(data_json_path, "rb") as f:
+ data_samples = json.load(f)["utts"]
+ assert len(data_samples) != 0
+ sorted_samples = sorted(
+ data_samples.items(),
+ key=lambda sample: int(sample[1]["input"]["length_ms"]),
+ reverse=True,
+ )
+ aud_paths = [s[1]["input"]["path"] for s in sorted_samples]
+ ids = [s[0] for s in sorted_samples]
+ speakers = []
+ for s in sorted_samples:
+ m = re.search("(.+?)-(.+?)-(.+?)", s[0])
+ speakers.append(m.group(1) + "_" + m.group(2))
+ frame_sizes = [s[1]["input"]["length_ms"] for s in sorted_samples]
+ tgt = [
+ [int(i) for i in s[1]["output"]["tokenid"].split(", ")]
+ for s in sorted_samples
+ ]
+ # append eos
+ tgt = [[*t, tgt_dict.eos()] for t in tgt]
+ return AsrDataset(aud_paths, frame_sizes, tgt, tgt_dict, ids, speakers)
+
+
+@register_task("speech_recognition")
+class SpeechRecognitionTask(LegacyFairseqTask):
+ """
+ Task for training speech recognition model.
+ """
+
+ @staticmethod
+ def add_args(parser):
+ """Add task-specific arguments to the parser."""
+ parser.add_argument("data", help="path to data directory")
+ parser.add_argument(
+ "--silence-token", default="\u2581", help="token for silence (used by w2l)"
+ )
+ parser.add_argument(
+ "--max-source-positions",
+ default=sys.maxsize,
+ type=int,
+ metavar="N",
+ help="max number of frames in the source sequence",
+ )
+ parser.add_argument(
+ "--max-target-positions",
+ default=1024,
+ type=int,
+ metavar="N",
+ help="max number of tokens in the target sequence",
+ )
+
+ def __init__(self, args, tgt_dict):
+ super().__init__(args)
+ self.tgt_dict = tgt_dict
+
+ @classmethod
+ def setup_task(cls, args, **kwargs):
+ """Setup the task (e.g., load dictionaries)."""
+ dict_path = os.path.join(args.data, "dict.txt")
+ if not os.path.isfile(dict_path):
+ raise FileNotFoundError("Dict not found: {}".format(dict_path))
+ tgt_dict = Dictionary.load(dict_path)
+
+ if args.criterion == "ctc_loss":
+ tgt_dict.add_symbol("")
+ elif args.criterion == "asg_loss":
+ for i in range(1, args.max_replabel + 1):
+ tgt_dict.add_symbol(replabel_symbol(i))
+
+ print("| dictionary: {} types".format(len(tgt_dict)))
+ return cls(args, tgt_dict)
+
+ def load_dataset(self, split, combine=False, **kwargs):
+ """Load a given dataset split.
+
+ Args:
+ split (str): name of the split (e.g., train, valid, test)
+ """
+ data_json_path = os.path.join(self.args.data, "{}.json".format(split))
+ self.datasets[split] = get_asr_dataset_from_json(data_json_path, self.tgt_dict)
+
+ def build_generator(self, models, args, **unused):
+ w2l_decoder = getattr(args, "w2l_decoder", None)
+ if w2l_decoder == "viterbi":
+ from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder
+
+ return W2lViterbiDecoder(args, self.target_dictionary)
+ elif w2l_decoder == "kenlm":
+ from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder
+
+ return W2lKenLMDecoder(args, self.target_dictionary)
+ elif w2l_decoder == "fairseqlm":
+ from examples.speech_recognition.w2l_decoder import W2lFairseqLMDecoder
+
+ return W2lFairseqLMDecoder(args, self.target_dictionary)
+ else:
+ return super().build_generator(models, args)
+
+ @property
+ def target_dictionary(self):
+ """Return the :class:`~fairseq.data.Dictionary` for the language
+ model."""
+ return self.tgt_dict
+
+ @property
+ def source_dictionary(self):
+ """Return the source :class:`~fairseq.data.Dictionary` (if applicable
+ for this task)."""
+ return None
+
+ def max_positions(self):
+ """Return the max speech and sentence length allowed by the task."""
+ return (self.args.max_source_positions, self.args.max_target_positions)
diff --git a/fairseq/examples/speech_recognition/utils/wer_utils.py b/fairseq/examples/speech_recognition/utils/wer_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..cf6f3d09ba41a46ad4d7968fb3c286dd53d15c38
--- /dev/null
+++ b/fairseq/examples/speech_recognition/utils/wer_utils.py
@@ -0,0 +1,381 @@
+#!/usr/bin/env python3
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from __future__ import absolute_import, division, print_function, unicode_literals
+
+import re
+from collections import deque
+from enum import Enum
+
+import numpy as np
+
+
+"""
+ Utility modules for computation of Word Error Rate,
+ Alignments, as well as more granular metrics like
+ deletion, insersion and substitutions.
+"""
+
+
+class Code(Enum):
+ match = 1
+ substitution = 2
+ insertion = 3
+ deletion = 4
+
+
+class Token(object):
+ def __init__(self, lbl="", st=np.nan, en=np.nan):
+ if np.isnan(st):
+ self.label, self.start, self.end = "", 0.0, 0.0
+ else:
+ self.label, self.start, self.end = lbl, st, en
+
+
+class AlignmentResult(object):
+ def __init__(self, refs, hyps, codes, score):
+ self.refs = refs # std::deque
+ self.hyps = hyps # std::deque
+ self.codes = codes # std::deque
+ self.score = score # float
+
+
+def coordinate_to_offset(row, col, ncols):
+ return int(row * ncols + col)
+
+
+def offset_to_row(offset, ncols):
+ return int(offset / ncols)
+
+
+def offset_to_col(offset, ncols):
+ return int(offset % ncols)
+
+
+def trimWhitespace(str):
+ return re.sub(" +", " ", re.sub(" *$", "", re.sub("^ *", "", str)))
+
+
+def str2toks(str):
+ pieces = trimWhitespace(str).split(" ")
+ toks = []
+ for p in pieces:
+ toks.append(Token(p, 0.0, 0.0))
+ return toks
+
+
+class EditDistance(object):
+ def __init__(self, time_mediated):
+ self.time_mediated_ = time_mediated
+ self.scores_ = np.nan # Eigen::Matrix
+ self.backtraces_ = (
+ np.nan
+ ) # Eigen::Matrix backtraces_;
+ self.confusion_pairs_ = {}
+
+ def cost(self, ref, hyp, code):
+ if self.time_mediated_:
+ if code == Code.match:
+ return abs(ref.start - hyp.start) + abs(ref.end - hyp.end)
+ elif code == Code.insertion:
+ return hyp.end - hyp.start
+ elif code == Code.deletion:
+ return ref.end - ref.start
+ else: # substitution
+ return abs(ref.start - hyp.start) + abs(ref.end - hyp.end) + 0.1
+ else:
+ if code == Code.match:
+ return 0
+ elif code == Code.insertion or code == Code.deletion:
+ return 3
+ else: # substitution
+ return 4
+
+ def get_result(self, refs, hyps):
+ res = AlignmentResult(refs=deque(), hyps=deque(), codes=deque(), score=np.nan)
+
+ num_rows, num_cols = self.scores_.shape
+ res.score = self.scores_[num_rows - 1, num_cols - 1]
+
+ curr_offset = coordinate_to_offset(num_rows - 1, num_cols - 1, num_cols)
+
+ while curr_offset != 0:
+ curr_row = offset_to_row(curr_offset, num_cols)
+ curr_col = offset_to_col(curr_offset, num_cols)
+
+ prev_offset = self.backtraces_[curr_row, curr_col]
+
+ prev_row = offset_to_row(prev_offset, num_cols)
+ prev_col = offset_to_col(prev_offset, num_cols)
+
+ res.refs.appendleft(curr_row - 1) # Note: this was .push_front() in C++
+ res.hyps.appendleft(curr_col - 1)
+ if curr_row - 1 == prev_row and curr_col == prev_col:
+ res.codes.appendleft(Code.deletion)
+ elif curr_row == prev_row and curr_col - 1 == prev_col:
+ res.codes.appendleft(Code.insertion)
+ else:
+ # assert(curr_row - 1 == prev_row and curr_col - 1 == prev_col)
+ ref_str = refs[res.refs[0]].label
+ hyp_str = hyps[res.hyps[0]].label
+
+ if ref_str == hyp_str:
+ res.codes.appendleft(Code.match)
+ else:
+ res.codes.appendleft(Code.substitution)
+
+ confusion_pair = "%s -> %s" % (ref_str, hyp_str)
+ if confusion_pair not in self.confusion_pairs_:
+ self.confusion_pairs_[confusion_pair] = 1
+ else:
+ self.confusion_pairs_[confusion_pair] += 1
+
+ curr_offset = prev_offset
+
+ return res
+
+ def align(self, refs, hyps):
+ if len(refs) == 0 and len(hyps) == 0:
+ return np.nan
+
+ # NOTE: we're not resetting the values in these matrices because every value
+ # will be overridden in the loop below. If this assumption doesn't hold,
+ # be sure to set all entries in self.scores_ and self.backtraces_ to 0.
+ self.scores_ = np.zeros((len(refs) + 1, len(hyps) + 1))
+ self.backtraces_ = np.zeros((len(refs) + 1, len(hyps) + 1))
+
+ num_rows, num_cols = self.scores_.shape
+
+ for i in range(num_rows):
+ for j in range(num_cols):
+ if i == 0 and j == 0:
+ self.scores_[i, j] = 0.0
+ self.backtraces_[i, j] = 0
+ continue
+
+ if i == 0:
+ self.scores_[i, j] = self.scores_[i, j - 1] + self.cost(
+ None, hyps[j - 1], Code.insertion
+ )
+ self.backtraces_[i, j] = coordinate_to_offset(i, j - 1, num_cols)
+ continue
+
+ if j == 0:
+ self.scores_[i, j] = self.scores_[i - 1, j] + self.cost(
+ refs[i - 1], None, Code.deletion
+ )
+ self.backtraces_[i, j] = coordinate_to_offset(i - 1, j, num_cols)
+ continue
+
+ # Below here both i and j are greater than 0
+ ref = refs[i - 1]
+ hyp = hyps[j - 1]
+ best_score = self.scores_[i - 1, j - 1] + (
+ self.cost(ref, hyp, Code.match)
+ if (ref.label == hyp.label)
+ else self.cost(ref, hyp, Code.substitution)
+ )
+
+ prev_row = i - 1
+ prev_col = j - 1
+ ins = self.scores_[i, j - 1] + self.cost(None, hyp, Code.insertion)
+ if ins < best_score:
+ best_score = ins
+ prev_row = i
+ prev_col = j - 1
+
+ delt = self.scores_[i - 1, j] + self.cost(ref, None, Code.deletion)
+ if delt < best_score:
+ best_score = delt
+ prev_row = i - 1
+ prev_col = j
+
+ self.scores_[i, j] = best_score
+ self.backtraces_[i, j] = coordinate_to_offset(
+ prev_row, prev_col, num_cols
+ )
+
+ return self.get_result(refs, hyps)
+
+
+class WERTransformer(object):
+ def __init__(self, hyp_str, ref_str, verbose=True):
+ self.ed_ = EditDistance(False)
+ self.id2oracle_errs_ = {}
+ self.utts_ = 0
+ self.words_ = 0
+ self.insertions_ = 0
+ self.deletions_ = 0
+ self.substitutions_ = 0
+
+ self.process(["dummy_str", hyp_str, ref_str])
+
+ if verbose:
+ print("'%s' vs '%s'" % (hyp_str, ref_str))
+ self.report_result()
+
+ def process(self, input): # std::vector&& input
+ if len(input) < 3:
+ print(
+ "Input must be of the form ... [ , got ",
+ len(input),
+ " inputs:",
+ )
+ return None
+
+ # Align
+ # std::vector] hyps;
+ # std::vector refs;
+
+ hyps = str2toks(input[-2])
+ refs = str2toks(input[-1])
+
+ alignment = self.ed_.align(refs, hyps)
+ if alignment is None:
+ print("Alignment is null")
+ return np.nan
+
+ # Tally errors
+ ins = 0
+ dels = 0
+ subs = 0
+ for code in alignment.codes:
+ if code == Code.substitution:
+ subs += 1
+ elif code == Code.insertion:
+ ins += 1
+ elif code == Code.deletion:
+ dels += 1
+
+ # Output
+ row = input
+ row.append(str(len(refs)))
+ row.append(str(ins))
+ row.append(str(dels))
+ row.append(str(subs))
+ # print(row)
+
+ # Accumulate
+ kIdIndex = 0
+ kNBestSep = "/"
+
+ pieces = input[kIdIndex].split(kNBestSep)
+
+ if len(pieces) == 0:
+ print(
+ "Error splitting ",
+ input[kIdIndex],
+ " on '",
+ kNBestSep,
+ "', got empty list",
+ )
+ return np.nan
+
+ id = pieces[0]
+ if id not in self.id2oracle_errs_:
+ self.utts_ += 1
+ self.words_ += len(refs)
+ self.insertions_ += ins
+ self.deletions_ += dels
+ self.substitutions_ += subs
+ self.id2oracle_errs_[id] = [ins, dels, subs]
+ else:
+ curr_err = ins + dels + subs
+ prev_err = np.sum(self.id2oracle_errs_[id])
+ if curr_err < prev_err:
+ self.id2oracle_errs_[id] = [ins, dels, subs]
+
+ return 0
+
+ def report_result(self):
+ # print("---------- Summary ---------------")
+ if self.words_ == 0:
+ print("No words counted")
+ return
+
+ # 1-best
+ best_wer = (
+ 100.0
+ * (self.insertions_ + self.deletions_ + self.substitutions_)
+ / self.words_
+ )
+
+ print(
+ "\tWER = %0.2f%% (%i utts, %i words, %0.2f%% ins, "
+ "%0.2f%% dels, %0.2f%% subs)"
+ % (
+ best_wer,
+ self.utts_,
+ self.words_,
+ 100.0 * self.insertions_ / self.words_,
+ 100.0 * self.deletions_ / self.words_,
+ 100.0 * self.substitutions_ / self.words_,
+ )
+ )
+
+ def wer(self):
+ if self.words_ == 0:
+ wer = np.nan
+ else:
+ wer = (
+ 100.0
+ * (self.insertions_ + self.deletions_ + self.substitutions_)
+ / self.words_
+ )
+ return wer
+
+ def stats(self):
+ if self.words_ == 0:
+ stats = {}
+ else:
+ wer = (
+ 100.0
+ * (self.insertions_ + self.deletions_ + self.substitutions_)
+ / self.words_
+ )
+ stats = dict(
+ {
+ "wer": wer,
+ "utts": self.utts_,
+ "numwords": self.words_,
+ "ins": self.insertions_,
+ "dels": self.deletions_,
+ "subs": self.substitutions_,
+ "confusion_pairs": self.ed_.confusion_pairs_,
+ }
+ )
+ return stats
+
+
+def calc_wer(hyp_str, ref_str):
+ t = WERTransformer(hyp_str, ref_str, verbose=0)
+ return t.wer()
+
+
+def calc_wer_stats(hyp_str, ref_str):
+ t = WERTransformer(hyp_str, ref_str, verbose=0)
+ return t.stats()
+
+
+def get_wer_alignment_codes(hyp_str, ref_str):
+ """
+ INPUT: hypothesis string, reference string
+ OUTPUT: List of alignment codes (intermediate results from WER computation)
+ """
+ t = WERTransformer(hyp_str, ref_str, verbose=0)
+ return t.ed_.align(str2toks(ref_str), str2toks(hyp_str)).codes
+
+
+def merge_counts(x, y):
+ # Merge two hashes which have 'counts' as their values
+ # This can be used for example to merge confusion pair counts
+ # conf_pairs = merge_counts(conf_pairs, stats['confusion_pairs'])
+ for k, v in y.items():
+ if k not in x:
+ x[k] = 0
+ x[k] += v
+ return x
diff --git a/fairseq/examples/speech_recognition/w2l_decoder.py b/fairseq/examples/speech_recognition/w2l_decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..fbf2d3524ee40bd0d08b6a9560047d96e49b6045
--- /dev/null
+++ b/fairseq/examples/speech_recognition/w2l_decoder.py
@@ -0,0 +1,486 @@
+#!/usr/bin/env python3
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+"""
+Flashlight decoders.
+"""
+
+import gc
+import itertools as it
+import os.path as osp
+from typing import List
+import warnings
+from collections import deque, namedtuple
+
+import numpy as np
+import torch
+from examples.speech_recognition.data.replabels import unpack_replabels
+from fairseq import tasks
+from fairseq.utils import apply_to_sample
+from omegaconf import open_dict
+from fairseq.dataclass.utils import convert_namespace_to_omegaconf
+
+
+try:
+ from flashlight.lib.text.dictionary import create_word_dict, load_words
+ from flashlight.lib.sequence.criterion import CpuViterbiPath, get_data_ptr_as_bytes
+ from flashlight.lib.text.decoder import (
+ CriterionType,
+ LexiconDecoderOptions,
+ KenLM,
+ LM,
+ LMState,
+ SmearingMode,
+ Trie,
+ LexiconDecoder,
+ )
+except:
+ warnings.warn(
+ "flashlight python bindings are required to use this functionality. Please install from https://github.com/facebookresearch/flashlight/tree/master/bindings/python"
+ )
+ LM = object
+ LMState = object
+
+
+class W2lDecoder(object):
+ def __init__(self, args, tgt_dict):
+ self.tgt_dict = tgt_dict
+ self.vocab_size = len(tgt_dict)
+ self.nbest = args.nbest
+
+ # criterion-specific init
+ self.criterion_type = CriterionType.CTC
+ self.blank = (
+ tgt_dict.index("")
+ if "" in tgt_dict.indices
+ else tgt_dict.bos()
+ )
+ if "" in tgt_dict.indices:
+ self.silence = tgt_dict.index("")
+ elif "|" in tgt_dict.indices:
+ self.silence = tgt_dict.index("|")
+ else:
+ self.silence = tgt_dict.eos()
+ self.asg_transitions = None
+
+ def generate(self, models, sample, **unused):
+ """Generate a batch of inferences."""
+ # model.forward normally channels prev_output_tokens into the decoder
+ # separately, but SequenceGenerator directly calls model.encoder
+ encoder_input = {
+ k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens"
+ }
+ emissions = self.get_emissions(models, encoder_input)
+ return self.decode(emissions)
+
+ def get_emissions(self, models, encoder_input):
+ """Run encoder and normalize emissions"""
+ model = models[0]
+ encoder_out = model(**encoder_input)
+ if hasattr(model, "get_logits"):
+ emissions = model.get_logits(encoder_out) # no need to normalize emissions
+ else:
+ emissions = model.get_normalized_probs(encoder_out, log_probs=True)
+ return emissions.transpose(0, 1).float().cpu().contiguous()
+
+ def get_tokens(self, idxs):
+ """Normalize tokens by handling CTC blank, ASG replabels, etc."""
+ idxs = (g[0] for g in it.groupby(idxs))
+ idxs = filter(lambda x: x != self.blank, idxs)
+ return torch.LongTensor(list(idxs))
+
+
+class W2lViterbiDecoder(W2lDecoder):
+ def __init__(self, args, tgt_dict):
+ super().__init__(args, tgt_dict)
+
+ def decode(self, emissions):
+ B, T, N = emissions.size()
+ hypos = []
+ if self.asg_transitions is None:
+ transitions = torch.FloatTensor(N, N).zero_()
+ else:
+ transitions = torch.FloatTensor(self.asg_transitions).view(N, N)
+ viterbi_path = torch.IntTensor(B, T)
+ workspace = torch.ByteTensor(CpuViterbiPath.get_workspace_size(B, T, N))
+ CpuViterbiPath.compute(
+ B,
+ T,
+ N,
+ get_data_ptr_as_bytes(emissions),
+ get_data_ptr_as_bytes(transitions),
+ get_data_ptr_as_bytes(viterbi_path),
+ get_data_ptr_as_bytes(workspace),
+ )
+ return [
+ [{"tokens": self.get_tokens(viterbi_path[b].tolist()), "score": 0}]
+ for b in range(B)
+ ]
+
+
+class W2lKenLMDecoder(W2lDecoder):
+ def __init__(self, args, tgt_dict):
+ super().__init__(args, tgt_dict)
+
+ self.unit_lm = getattr(args, "unit_lm", False)
+
+ if args.lexicon:
+ self.lexicon = load_words(args.lexicon)
+ self.word_dict = create_word_dict(self.lexicon)
+ self.unk_word = self.word_dict.get_index("")
+
+ self.lm = KenLM(args.kenlm_model, self.word_dict)
+ self.trie = Trie(self.vocab_size, self.silence)
+
+ start_state = self.lm.start(False)
+ for i, (word, spellings) in enumerate(self.lexicon.items()):
+ word_idx = self.word_dict.get_index(word)
+ _, score = self.lm.score(start_state, word_idx)
+ for spelling in spellings:
+ spelling_idxs = [tgt_dict.index(token) for token in spelling]
+ assert (
+ tgt_dict.unk() not in spelling_idxs
+ ), f"{spelling} {spelling_idxs}"
+ self.trie.insert(spelling_idxs, word_idx, score)
+ self.trie.smear(SmearingMode.MAX)
+
+ self.decoder_opts = LexiconDecoderOptions(
+ beam_size=args.beam,
+ beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))),
+ beam_threshold=args.beam_threshold,
+ lm_weight=args.lm_weight,
+ word_score=args.word_score,
+ unk_score=args.unk_weight,
+ sil_score=args.sil_weight,
+ log_add=False,
+ criterion_type=self.criterion_type,
+ )
+
+ if self.asg_transitions is None:
+ N = 768
+ # self.asg_transitions = torch.FloatTensor(N, N).zero_()
+ self.asg_transitions = []
+
+ self.decoder = LexiconDecoder(
+ self.decoder_opts,
+ self.trie,
+ self.lm,
+ self.silence,
+ self.blank,
+ self.unk_word,
+ self.asg_transitions,
+ self.unit_lm,
+ )
+ else:
+ assert args.unit_lm, "lexicon free decoding can only be done with a unit language model"
+ from flashlight.lib.text.decoder import LexiconFreeDecoder, LexiconFreeDecoderOptions
+
+ d = {w: [[w]] for w in tgt_dict.symbols}
+ self.word_dict = create_word_dict(d)
+ self.lm = KenLM(args.kenlm_model, self.word_dict)
+ self.decoder_opts = LexiconFreeDecoderOptions(
+ beam_size=args.beam,
+ beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))),
+ beam_threshold=args.beam_threshold,
+ lm_weight=args.lm_weight,
+ sil_score=args.sil_weight,
+ log_add=False,
+ criterion_type=self.criterion_type,
+ )
+ self.decoder = LexiconFreeDecoder(
+ self.decoder_opts, self.lm, self.silence, self.blank, []
+ )
+
+ def get_timesteps(self, token_idxs: List[int]) -> List[int]:
+ """Returns frame numbers corresponding to every non-blank token.
+
+ Parameters
+ ----------
+ token_idxs : List[int]
+ IDs of decoded tokens.
+
+ Returns
+ -------
+ List[int]
+ Frame numbers corresponding to every non-blank token.
+ """
+ timesteps = []
+ for i, token_idx in enumerate(token_idxs):
+ if token_idx == self.blank:
+ continue
+ if i == 0 or token_idx != token_idxs[i-1]:
+ timesteps.append(i)
+ return timesteps
+
+ def decode(self, emissions):
+ B, T, N = emissions.size()
+ hypos = []
+ for b in range(B):
+ emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0)
+ results = self.decoder.decode(emissions_ptr, T, N)
+
+ nbest_results = results[: self.nbest]
+ hypos.append(
+ [
+ {
+ "tokens": self.get_tokens(result.tokens),
+ "score": result.score,
+ "timesteps": self.get_timesteps(result.tokens),
+ "words": [
+ self.word_dict.get_entry(x) for x in result.words if x >= 0
+ ],
+ }
+ for result in nbest_results
+ ]
+ )
+ return hypos
+
+
+FairseqLMState = namedtuple("FairseqLMState", ["prefix", "incremental_state", "probs"])
+
+
+class FairseqLM(LM):
+ def __init__(self, dictionary, model):
+ LM.__init__(self)
+ self.dictionary = dictionary
+ self.model = model
+ self.unk = self.dictionary.unk()
+
+ self.save_incremental = False # this currently does not work properly
+ self.max_cache = 20_000
+
+ model.cuda()
+ model.eval()
+ model.make_generation_fast_()
+
+ self.states = {}
+ self.stateq = deque()
+
+ def start(self, start_with_nothing):
+ state = LMState()
+ prefix = torch.LongTensor([[self.dictionary.eos()]])
+ incremental_state = {} if self.save_incremental else None
+ with torch.no_grad():
+ res = self.model(prefix.cuda(), incremental_state=incremental_state)
+ probs = self.model.get_normalized_probs(res, log_probs=True, sample=None)
+
+ if incremental_state is not None:
+ incremental_state = apply_to_sample(lambda x: x.cpu(), incremental_state)
+ self.states[state] = FairseqLMState(
+ prefix.numpy(), incremental_state, probs[0, -1].cpu().numpy()
+ )
+ self.stateq.append(state)
+
+ return state
+
+ def score(self, state: LMState, token_index: int, no_cache: bool = False):
+ """
+ Evaluate language model based on the current lm state and new word
+ Parameters:
+ -----------
+ state: current lm state
+ token_index: index of the word
+ (can be lexicon index then you should store inside LM the
+ mapping between indices of lexicon and lm, or lm index of a word)
+
+ Returns:
+ --------
+ (LMState, float): pair of (new state, score for the current word)
+ """
+ curr_state = self.states[state]
+
+ def trim_cache(targ_size):
+ while len(self.stateq) > targ_size:
+ rem_k = self.stateq.popleft()
+ rem_st = self.states[rem_k]
+ rem_st = FairseqLMState(rem_st.prefix, None, None)
+ self.states[rem_k] = rem_st
+
+ if curr_state.probs is None:
+ new_incremental_state = (
+ curr_state.incremental_state.copy()
+ if curr_state.incremental_state is not None
+ else None
+ )
+ with torch.no_grad():
+ if new_incremental_state is not None:
+ new_incremental_state = apply_to_sample(
+ lambda x: x.cuda(), new_incremental_state
+ )
+ elif self.save_incremental:
+ new_incremental_state = {}
+
+ res = self.model(
+ torch.from_numpy(curr_state.prefix).cuda(),
+ incremental_state=new_incremental_state,
+ )
+ probs = self.model.get_normalized_probs(
+ res, log_probs=True, sample=None
+ )
+
+ if new_incremental_state is not None:
+ new_incremental_state = apply_to_sample(
+ lambda x: x.cpu(), new_incremental_state
+ )
+
+ curr_state = FairseqLMState(
+ curr_state.prefix, new_incremental_state, probs[0, -1].cpu().numpy()
+ )
+
+ if not no_cache:
+ self.states[state] = curr_state
+ self.stateq.append(state)
+
+ score = curr_state.probs[token_index].item()
+
+ trim_cache(self.max_cache)
+
+ outstate = state.child(token_index)
+ if outstate not in self.states and not no_cache:
+ prefix = np.concatenate(
+ [curr_state.prefix, torch.LongTensor([[token_index]])], -1
+ )
+ incr_state = curr_state.incremental_state
+
+ self.states[outstate] = FairseqLMState(prefix, incr_state, None)
+
+ if token_index == self.unk:
+ score = float("-inf")
+
+ return outstate, score
+
+ def finish(self, state: LMState):
+ """
+ Evaluate eos for language model based on the current lm state
+
+ Returns:
+ --------
+ (LMState, float): pair of (new state, score for the current word)
+ """
+ return self.score(state, self.dictionary.eos())
+
+ def empty_cache(self):
+ self.states = {}
+ self.stateq = deque()
+ gc.collect()
+
+
+class W2lFairseqLMDecoder(W2lDecoder):
+ def __init__(self, args, tgt_dict):
+ super().__init__(args, tgt_dict)
+
+ self.unit_lm = getattr(args, "unit_lm", False)
+
+ self.lexicon = load_words(args.lexicon) if args.lexicon else None
+ self.idx_to_wrd = {}
+
+ checkpoint = torch.load(args.kenlm_model, map_location="cpu")
+
+ if "cfg" in checkpoint and checkpoint["cfg"] is not None:
+ lm_args = checkpoint["cfg"]
+ else:
+ lm_args = convert_namespace_to_omegaconf(checkpoint["args"])
+
+ with open_dict(lm_args.task):
+ lm_args.task.data = osp.dirname(args.kenlm_model)
+
+ task = tasks.setup_task(lm_args.task)
+ model = task.build_model(lm_args.model)
+ model.load_state_dict(checkpoint["model"], strict=False)
+
+ self.trie = Trie(self.vocab_size, self.silence)
+
+ self.word_dict = task.dictionary
+ self.unk_word = self.word_dict.unk()
+ self.lm = FairseqLM(self.word_dict, model)
+
+ if self.lexicon:
+ start_state = self.lm.start(False)
+ for i, (word, spellings) in enumerate(self.lexicon.items()):
+ if self.unit_lm:
+ word_idx = i
+ self.idx_to_wrd[i] = word
+ score = 0
+ else:
+ word_idx = self.word_dict.index(word)
+ _, score = self.lm.score(start_state, word_idx, no_cache=True)
+
+ for spelling in spellings:
+ spelling_idxs = [tgt_dict.index(token) for token in spelling]
+ assert (
+ tgt_dict.unk() not in spelling_idxs
+ ), f"{spelling} {spelling_idxs}"
+ self.trie.insert(spelling_idxs, word_idx, score)
+ self.trie.smear(SmearingMode.MAX)
+
+ self.decoder_opts = LexiconDecoderOptions(
+ beam_size=args.beam,
+ beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))),
+ beam_threshold=args.beam_threshold,
+ lm_weight=args.lm_weight,
+ word_score=args.word_score,
+ unk_score=args.unk_weight,
+ sil_score=args.sil_weight,
+ log_add=False,
+ criterion_type=self.criterion_type,
+ )
+
+ self.decoder = LexiconDecoder(
+ self.decoder_opts,
+ self.trie,
+ self.lm,
+ self.silence,
+ self.blank,
+ self.unk_word,
+ [],
+ self.unit_lm,
+ )
+ else:
+ assert args.unit_lm, "lexicon free decoding can only be done with a unit language model"
+ from flashlight.lib.text.decoder import LexiconFreeDecoder, LexiconFreeDecoderOptions
+
+ d = {w: [[w]] for w in tgt_dict.symbols}
+ self.word_dict = create_word_dict(d)
+ self.lm = KenLM(args.kenlm_model, self.word_dict)
+ self.decoder_opts = LexiconFreeDecoderOptions(
+ beam_size=args.beam,
+ beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))),
+ beam_threshold=args.beam_threshold,
+ lm_weight=args.lm_weight,
+ sil_score=args.sil_weight,
+ log_add=False,
+ criterion_type=self.criterion_type,
+ )
+ self.decoder = LexiconFreeDecoder(
+ self.decoder_opts, self.lm, self.silence, self.blank, []
+ )
+
+ def decode(self, emissions):
+ B, T, N = emissions.size()
+ hypos = []
+
+ def idx_to_word(idx):
+ if self.unit_lm:
+ return self.idx_to_wrd[idx]
+ else:
+ return self.word_dict[idx]
+
+ def make_hypo(result):
+ hypo = {"tokens": self.get_tokens(result.tokens), "score": result.score}
+ if self.lexicon:
+ hypo["words"] = [idx_to_word(x) for x in result.words if x >= 0]
+ return hypo
+
+ for b in range(B):
+ emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0)
+ results = self.decoder.decode(emissions_ptr, T, N)
+
+ nbest_results = results[: self.nbest]
+ hypos.append([make_hypo(result) for result in nbest_results])
+ self.lm.empty_cache()
+
+ return hypos
diff --git a/fairseq/examples/speech_synthesis/README.md b/fairseq/examples/speech_synthesis/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..4a3ae54b857c43621c9fb67ee4b214584beec835
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/README.md
@@ -0,0 +1,16 @@
+Speech Synthesis (S^2)
+===
+
+Speech synthesis with fairseq.
+
+- Autoregressive and non-autoregressive models
+- Multi-speaker synthesis
+- Audio preprocessing
+- Automatic metrics
+- Similar data configuration as [S2T](../speech_to_text/README.md)
+
+
+## Examples
+- [Single-speaker synthesis on LJSpeech](docs/ljspeech_example.md)
+- [Multi-speaker synthesis on VCTK](docs/vctk_example.md)
+- [Multi-speaker synthesis on Common Voice](docs/common_voice_example.md)
diff --git a/fairseq/examples/speech_synthesis/__init__.py b/fairseq/examples/speech_synthesis/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..6264236915a7269a4d920ee8213004374dd86a9a
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/__init__.py
@@ -0,0 +1,4 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/fairseq/examples/speech_synthesis/data_utils.py b/fairseq/examples/speech_synthesis/data_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..f43a4a90046fb9ee4944dc06ba377c1faade141d
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/data_utils.py
@@ -0,0 +1,320 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import os
+from pathlib import Path
+from typing import Optional, List, Dict
+import zipfile
+import tempfile
+from dataclasses import dataclass
+from itertools import groupby
+
+import torch
+import torch.nn.functional as F
+import numpy as np
+from tqdm import tqdm
+
+from examples.speech_to_text.data_utils import load_tsv_to_dicts
+from fairseq.data.audio.audio_utils import TTSSpectrogram, TTSMelScale
+
+
+def trim_or_pad_to_target_length(
+ data_1d_or_2d: np.ndarray, target_length: int
+) -> np.ndarray:
+ assert len(data_1d_or_2d.shape) in {1, 2}
+ delta = data_1d_or_2d.shape[0] - target_length
+ if delta >= 0: # trim if being longer
+ data_1d_or_2d = data_1d_or_2d[: target_length]
+ else: # pad if being shorter
+ if len(data_1d_or_2d.shape) == 1:
+ data_1d_or_2d = np.concatenate(
+ [data_1d_or_2d, np.zeros(-delta)], axis=0
+ )
+ else:
+ data_1d_or_2d = np.concatenate(
+ [data_1d_or_2d, np.zeros((-delta, data_1d_or_2d.shape[1]))],
+ axis=0
+ )
+ return data_1d_or_2d
+
+
+def extract_logmel_spectrogram(
+ waveform: torch.Tensor, sample_rate: int,
+ output_path: Optional[Path] = None, win_length: int = 1024,
+ hop_length: int = 256, n_fft: int = 1024,
+ win_fn: callable = torch.hann_window, n_mels: int = 80,
+ f_min: float = 0., f_max: float = 8000, eps: float = 1e-5,
+ overwrite: bool = False, target_length: Optional[int] = None
+):
+ if output_path is not None and output_path.is_file() and not overwrite:
+ return
+
+ spectrogram_transform = TTSSpectrogram(
+ n_fft=n_fft, win_length=win_length, hop_length=hop_length,
+ window_fn=win_fn
+ )
+ mel_scale_transform = TTSMelScale(
+ n_mels=n_mels, sample_rate=sample_rate, f_min=f_min, f_max=f_max,
+ n_stft=n_fft // 2 + 1
+ )
+ spectrogram = spectrogram_transform(waveform)
+ mel_spec = mel_scale_transform(spectrogram)
+ logmel_spec = torch.clamp(mel_spec, min=eps).log()
+ assert len(logmel_spec.shape) == 3 and logmel_spec.shape[0] == 1
+ logmel_spec = logmel_spec.squeeze().t() # D x T -> T x D
+ if target_length is not None:
+ trim_or_pad_to_target_length(logmel_spec, target_length)
+
+ if output_path is not None:
+ np.save(output_path.as_posix(), logmel_spec)
+ else:
+ return logmel_spec
+
+
+def extract_pitch(
+ waveform: torch.Tensor, sample_rate: int,
+ output_path: Optional[Path] = None, hop_length: int = 256,
+ log_scale: bool = True, phoneme_durations: Optional[List[int]] = None
+):
+ if output_path is not None and output_path.is_file():
+ return
+
+ try:
+ import pyworld
+ except ImportError:
+ raise ImportError("Please install PyWORLD: pip install pyworld")
+
+ _waveform = waveform.squeeze(0).double().numpy()
+ pitch, t = pyworld.dio(
+ _waveform, sample_rate, frame_period=hop_length / sample_rate * 1000
+ )
+ pitch = pyworld.stonemask(_waveform, pitch, t, sample_rate)
+
+ if phoneme_durations is not None:
+ pitch = trim_or_pad_to_target_length(pitch, sum(phoneme_durations))
+ try:
+ from scipy.interpolate import interp1d
+ except ImportError:
+ raise ImportError("Please install SciPy: pip install scipy")
+ nonzero_ids = np.where(pitch != 0)[0]
+ interp_fn = interp1d(
+ nonzero_ids,
+ pitch[nonzero_ids],
+ fill_value=(pitch[nonzero_ids[0]], pitch[nonzero_ids[-1]]),
+ bounds_error=False,
+ )
+ pitch = interp_fn(np.arange(0, len(pitch)))
+ d_cumsum = np.cumsum(np.concatenate([np.array([0]), phoneme_durations]))
+ pitch = np.array(
+ [
+ np.mean(pitch[d_cumsum[i-1]: d_cumsum[i]])
+ for i in range(1, len(d_cumsum))
+ ]
+ )
+ assert len(pitch) == len(phoneme_durations)
+
+ if log_scale:
+ pitch = np.log(pitch + 1)
+
+ if output_path is not None:
+ np.save(output_path.as_posix(), pitch)
+ else:
+ return pitch
+
+
+def extract_energy(
+ waveform: torch.Tensor, output_path: Optional[Path] = None,
+ hop_length: int = 256, n_fft: int = 1024, log_scale: bool = True,
+ phoneme_durations: Optional[List[int]] = None
+):
+ if output_path is not None and output_path.is_file():
+ return
+
+ assert len(waveform.shape) == 2 and waveform.shape[0] == 1
+ waveform = waveform.view(1, 1, waveform.shape[1])
+ waveform = F.pad(
+ waveform.unsqueeze(1), [n_fft // 2, n_fft // 2, 0, 0],
+ mode="reflect"
+ )
+ waveform = waveform.squeeze(1)
+
+ fourier_basis = np.fft.fft(np.eye(n_fft))
+ cutoff = int((n_fft / 2 + 1))
+ fourier_basis = np.vstack(
+ [np.real(fourier_basis[:cutoff, :]),
+ np.imag(fourier_basis[:cutoff, :])]
+ )
+
+ forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
+ forward_transform = F.conv1d(
+ waveform, forward_basis, stride=hop_length, padding=0
+ )
+
+ real_part = forward_transform[:, :cutoff, :]
+ imag_part = forward_transform[:, cutoff:, :]
+ magnitude = torch.sqrt(real_part ** 2 + imag_part ** 2)
+ energy = torch.norm(magnitude, dim=1).squeeze(0).numpy()
+
+ if phoneme_durations is not None:
+ energy = trim_or_pad_to_target_length(energy, sum(phoneme_durations))
+ d_cumsum = np.cumsum(np.concatenate([np.array([0]), phoneme_durations]))
+ energy = np.array(
+ [
+ np.mean(energy[d_cumsum[i - 1]: d_cumsum[i]])
+ for i in range(1, len(d_cumsum))
+ ]
+ )
+ assert len(energy) == len(phoneme_durations)
+
+ if log_scale:
+ energy = np.log(energy + 1)
+
+ if output_path is not None:
+ np.save(output_path.as_posix(), energy)
+ else:
+ return energy
+
+
+def get_global_cmvn(feature_root: Path, output_path: Optional[Path] = None):
+ mean_x, mean_x2, n_frames = None, None, 0
+ feature_paths = feature_root.glob("*.npy")
+ for p in tqdm(feature_paths):
+ with open(p, 'rb') as f:
+ frames = np.load(f).squeeze()
+
+ n_frames += frames.shape[0]
+
+ cur_mean_x = frames.sum(axis=0)
+ if mean_x is None:
+ mean_x = cur_mean_x
+ else:
+ mean_x += cur_mean_x
+
+ cur_mean_x2 = (frames ** 2).sum(axis=0)
+ if mean_x2 is None:
+ mean_x2 = cur_mean_x2
+ else:
+ mean_x2 += cur_mean_x2
+
+ mean_x /= n_frames
+ mean_x2 /= n_frames
+ var_x = mean_x2 - mean_x ** 2
+ std_x = np.sqrt(np.maximum(var_x, 1e-10))
+
+ if output_path is not None:
+ with open(output_path, 'wb') as f:
+ np.savez(f, mean=mean_x, std=std_x)
+ else:
+ return {"mean": mean_x, "std": std_x}
+
+
+def ipa_phonemize(text, lang="en-us", use_g2p=False):
+ if use_g2p:
+ assert lang == "en-us", "g2pE phonemizer only works for en-us"
+ try:
+ from g2p_en import G2p
+ g2p = G2p()
+ return " ".join("|" if p == " " else p for p in g2p(text))
+ except ImportError:
+ raise ImportError(
+ "Please install phonemizer: pip install g2p_en"
+ )
+ else:
+ try:
+ from phonemizer import phonemize
+ from phonemizer.separator import Separator
+ return phonemize(
+ text, backend='espeak', language=lang,
+ separator=Separator(word="| ", phone=" ")
+ )
+ except ImportError:
+ raise ImportError(
+ "Please install phonemizer: pip install phonemizer"
+ )
+
+
+@dataclass
+class ForceAlignmentInfo(object):
+ tokens: List[str]
+ frame_durations: List[int]
+ start_sec: Optional[float]
+ end_sec: Optional[float]
+
+
+def get_mfa_alignment_by_sample_id(
+ textgrid_zip_path: str, sample_id: str, sample_rate: int,
+ hop_length: int, silence_phones: List[str] = ("sil", "sp", "spn")
+) -> ForceAlignmentInfo:
+ try:
+ import tgt
+ except ImportError:
+ raise ImportError("Please install TextGridTools: pip install tgt")
+
+ filename = f"{sample_id}.TextGrid"
+ out_root = Path(tempfile.gettempdir())
+ tgt_path = out_root / filename
+ with zipfile.ZipFile(textgrid_zip_path) as f_zip:
+ f_zip.extract(filename, path=out_root)
+ textgrid = tgt.io.read_textgrid(tgt_path.as_posix())
+ os.remove(tgt_path)
+
+ phones, frame_durations = [], []
+ start_sec, end_sec, end_idx = 0, 0, 0
+ for t in textgrid.get_tier_by_name("phones")._objects:
+ s, e, p = t.start_time, t.end_time, t.text
+ # Trim leading silences
+ if len(phones) == 0:
+ if p in silence_phones:
+ continue
+ else:
+ start_sec = s
+ phones.append(p)
+ if p not in silence_phones:
+ end_sec = e
+ end_idx = len(phones)
+ r = sample_rate / hop_length
+ frame_durations.append(int(np.round(e * r) - np.round(s * r)))
+ # Trim tailing silences
+ phones = phones[:end_idx]
+ frame_durations = frame_durations[:end_idx]
+
+ return ForceAlignmentInfo(
+ tokens=phones, frame_durations=frame_durations, start_sec=start_sec,
+ end_sec=end_sec
+ )
+
+
+def get_mfa_alignment(
+ textgrid_zip_path: str, sample_ids: List[str], sample_rate: int,
+ hop_length: int
+) -> Dict[str, ForceAlignmentInfo]:
+ return {
+ i: get_mfa_alignment_by_sample_id(
+ textgrid_zip_path, i, sample_rate, hop_length
+ ) for i in tqdm(sample_ids)
+ }
+
+
+def get_unit_alignment(
+ id_to_unit_tsv_path: str, sample_ids: List[str]
+) -> Dict[str, ForceAlignmentInfo]:
+ id_to_units = {
+ e["id"]: e["units"] for e in load_tsv_to_dicts(id_to_unit_tsv_path)
+ }
+ id_to_units = {i: id_to_units[i].split() for i in sample_ids}
+ id_to_units_collapsed = {
+ i: [uu for uu, _ in groupby(u)] for i, u in id_to_units.items()
+ }
+ id_to_durations = {
+ i: [len(list(g)) for _, g in groupby(u)] for i, u in id_to_units.items()
+ }
+
+ return {
+ i: ForceAlignmentInfo(
+ tokens=id_to_units_collapsed[i], frame_durations=id_to_durations[i],
+ start_sec=None, end_sec=None
+ )
+ for i in sample_ids
+ }
diff --git a/fairseq/examples/speech_synthesis/docs/common_voice_example.md b/fairseq/examples/speech_synthesis/docs/common_voice_example.md
new file mode 100644
index 0000000000000000000000000000000000000000..40e841b284a7e34b458b286eb0bb60e33c0601da
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/docs/common_voice_example.md
@@ -0,0 +1,56 @@
+[[Back]](..)
+
+# Common Voice
+
+[Common Voice](https://commonvoice.mozilla.org/en/datasets) is a public domain speech corpus with 11.2K hours of read
+speech in 76 languages (the latest version 7.0). We provide examples for building
+[Transformer](https://arxiv.org/abs/1809.08895) models on this dataset.
+
+
+## Data preparation
+[Download](https://commonvoice.mozilla.org/en/datasets) and unpack Common Voice v4 to a path `${DATA_ROOT}/${LANG_ID}`.
+Create splits and generate audio manifests with
+```bash
+python -m examples.speech_synthesis.preprocessing.get_common_voice_audio_manifest \
+ --data-root ${DATA_ROOT} \
+ --lang ${LANG_ID} \
+ --output-manifest-root ${AUDIO_MANIFEST_ROOT} --convert-to-wav
+```
+
+Then, extract log-Mel spectrograms, generate feature manifest and create data configuration YAML with
+```bash
+python -m examples.speech_synthesis.preprocessing.get_feature_manifest \
+ --audio-manifest-root ${AUDIO_MANIFEST_ROOT} \
+ --output-root ${FEATURE_MANIFEST_ROOT} \
+ --ipa-vocab --lang ${LANG_ID}
+```
+where we use phoneme inputs (`--ipa-vocab`) as example.
+
+To denoise audio and trim leading/trailing silence using signal processing based VAD, run
+```bash
+for SPLIT in dev test train; do
+ python -m examples.speech_synthesis.preprocessing.denoise_and_vad_audio \
+ --audio-manifest ${AUDIO_MANIFEST_ROOT}/${SPLIT}.audio.tsv \
+ --output-dir ${PROCESSED_DATA_ROOT} \
+ --denoise --vad --vad-agg-level 2
+done
+```
+
+
+## Training
+(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#transformer).)
+
+
+## Inference
+(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#inference).)
+
+## Automatic Evaluation
+(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#automatic-evaluation).)
+
+## Results
+
+| Language | Speakers | --arch | Params | Test MCD | Model |
+|---|---|---|---|---|---|
+| English | 200 | tts_transformer | 54M | 3.8 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2/cv4_en200_transformer_phn.tar) |
+
+[[Back]](..)
diff --git a/fairseq/examples/speech_synthesis/docs/ljspeech_example.md b/fairseq/examples/speech_synthesis/docs/ljspeech_example.md
new file mode 100644
index 0000000000000000000000000000000000000000..90c524fac8ffdc1819ec9bb36928500320337603
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/docs/ljspeech_example.md
@@ -0,0 +1,138 @@
+[[Back]](..)
+
+# LJSpeech
+
+[LJSpeech](https://keithito.com/LJ-Speech-Dataset) is a public domain TTS
+corpus with around 24 hours of English speech sampled at 22.05kHz. We provide examples for building
+[Transformer](https://arxiv.org/abs/1809.08895) and [FastSpeech 2](https://arxiv.org/abs/2006.04558)
+models on this dataset.
+
+
+## Data preparation
+
+Download data, create splits and generate audio manifests with
+```bash
+python -m examples.speech_synthesis.preprocessing.get_ljspeech_audio_manifest \
+ --output-data-root ${AUDIO_DATA_ROOT} \
+ --output-manifest-root ${AUDIO_MANIFEST_ROOT}
+```
+
+Then, extract log-Mel spectrograms, generate feature manifest and create data configuration YAML with
+```bash
+python -m examples.speech_synthesis.preprocessing.get_feature_manifest \
+ --audio-manifest-root ${AUDIO_MANIFEST_ROOT} \
+ --output-root ${FEATURE_MANIFEST_ROOT} \
+ --ipa-vocab --use-g2p
+```
+where we use phoneme inputs (`--ipa-vocab --use-g2p`) as example.
+
+FastSpeech 2 additionally requires frame durations, pitch and energy as auxiliary training targets.
+Add `--add-fastspeech-targets` to include these fields in the feature manifests. We get frame durations either from
+phoneme-level force-alignment or frame-level pseudo-text unit sequence. They should be pre-computed and specified via:
+- `--textgrid-zip ${TEXT_GRID_ZIP_PATH}` for a ZIP file, inside which there is one
+ [TextGrid](https://www.fon.hum.uva.nl/praat/manual/TextGrid.html) file per sample to provide force-alignment info.
+- `--id-to-units-tsv ${ID_TO_UNIT_TSV}` for a TSV file, where there are 2 columns for sample ID and
+ space-delimited pseudo-text unit sequence, respectively.
+
+For your convenience, we provide pre-computed
+[force-alignment](https://dl.fbaipublicfiles.com/fairseq/s2/ljspeech_mfa.zip) from
+[Montreal Forced Aligner](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) and
+[pseudo-text units](s3://dl.fbaipublicfiles.com/fairseq/s2/ljspeech_hubert.tsv) from
+[HuBERT](https://github.com/pytorch/fairseq/tree/main/examples/hubert). You can also generate them by yourself using
+a different software or model.
+
+
+## Training
+#### Transformer
+```bash
+fairseq-train ${FEATURE_MANIFEST_ROOT} --save-dir ${SAVE_DIR} \
+ --config-yaml config.yaml --train-subset train --valid-subset dev \
+ --num-workers 4 --max-tokens 30000 --max-update 200000 \
+ --task text_to_speech --criterion tacotron2 --arch tts_transformer \
+ --clip-norm 5.0 --n-frames-per-step 4 --bce-pos-weight 5.0 \
+ --dropout 0.1 --attention-dropout 0.1 --activation-dropout 0.1 \
+ --encoder-normalize-before --decoder-normalize-before \
+ --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
+ --seed 1 --update-freq 8 --eval-inference --best-checkpoint-metric mcd_loss
+```
+where `SAVE_DIR` is the checkpoint root path. We set `--update-freq 8` to simulate 8 GPUs with 1 GPU. You may want to
+update it accordingly when using more than 1 GPU.
+
+#### FastSpeech2
+```bash
+fairseq-train ${FEATURE_MANIFEST_ROOT} --save-dir ${SAVE_DIR} \
+ --config-yaml config.yaml --train-subset train --valid-subset dev \
+ --num-workers 4 --max-sentences 6 --max-update 200000 \
+ --task text_to_speech --criterion fastspeech2 --arch fastspeech2 \
+ --clip-norm 5.0 --n-frames-per-step 1 \
+ --dropout 0.1 --attention-dropout 0.1 --activation-dropout 0.1 \
+ --encoder-normalize-before --decoder-normalize-before \
+ --optimizer adam --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
+ --seed 1 --update-freq 8 --eval-inference --best-checkpoint-metric mcd_loss
+```
+
+
+## Inference
+Average the last 5 checkpoints, generate the test split spectrogram and waveform using the default Griffin-Lim vocoder:
+```bash
+SPLIT=test
+CHECKPOINT_NAME=avg_last_5
+CHECKPOINT_PATH=${SAVE_DIR}/checkpoint_${CHECKPOINT_NAME}.pt
+python scripts/average_checkpoints.py --inputs ${SAVE_DIR} \
+ --num-epoch-checkpoints 5 \
+ --output ${CHECKPOINT_PATH}
+
+python -m examples.speech_synthesis.generate_waveform ${FEATURE_MANIFEST_ROOT} \
+ --config-yaml config.yaml --gen-subset ${SPLIT} --task text_to_speech \
+ --path ${CHECKPOINT_PATH} --max-tokens 50000 --spec-bwd-max-iter 32 \
+ --dump-waveforms
+```
+which dumps files (waveform, feature, attention plot, etc.) to `${SAVE_DIR}/generate-${CHECKPOINT_NAME}-${SPLIT}`. To
+re-synthesize target waveforms for automatic evaluation, add `--dump-target`.
+
+## Automatic Evaluation
+To start with, generate the manifest for synthetic speech, which will be taken as inputs by evaluation scripts.
+```bash
+python -m examples.speech_synthesis.evaluation.get_eval_manifest \
+ --generation-root ${SAVE_DIR}/generate-${CHECKPOINT_NAME}-${SPLIT} \
+ --audio-manifest ${AUDIO_MANIFEST_ROOT}/${SPLIT}.audio.tsv \
+ --output-path ${EVAL_OUTPUT_ROOT}/eval.tsv \
+ --vocoder griffin_lim --sample-rate 22050 --audio-format flac \
+ --use-resynthesized-target
+```
+Speech recognition (ASR) models usually operate at lower sample rates (e.g. 16kHz). For the WER/CER metric,
+you may need to resample the audios accordingly --- add `--output-sample-rate 16000` for `generate_waveform.py` and
+use `--sample-rate 16000` for `get_eval_manifest.py`.
+
+
+#### WER/CER metric
+We use wav2vec 2.0 ASR model as example. [Download](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec)
+the model checkpoint and dictionary, then compute WER/CER with
+```bash
+python -m examples.speech_synthesis.evaluation.eval_asr \
+ --audio-header syn --text-header text --err-unit char --split ${SPLIT} \
+ --w2v-ckpt ${WAV2VEC2_CHECKPOINT_PATH} --w2v-dict-dir ${WAV2VEC2_DICT_DIR} \
+ --raw-manifest ${EVAL_OUTPUT_ROOT}/eval_16khz.tsv --asr-dir ${EVAL_OUTPUT_ROOT}/asr
+```
+
+#### MCD/MSD metric
+```bash
+python -m examples.speech_synthesis.evaluation.eval_sp \
+ ${EVAL_OUTPUT_ROOT}/eval.tsv --mcd --msd
+```
+
+#### F0 metrics
+```bash
+python -m examples.speech_synthesis.evaluation.eval_f0 \
+ ${EVAL_OUTPUT_ROOT}/eval.tsv --gpe --vde --ffe
+```
+
+
+## Results
+
+| --arch | Params | Test MCD | Model |
+|---|---|---|---|
+| tts_transformer | 54M | 3.8 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2/ljspeech_transformer_phn.tar) |
+| fastspeech2 | 41M | 3.8 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2/ljspeech_fastspeech2_phn.tar) |
+
+[[Back]](..)
diff --git a/fairseq/examples/speech_synthesis/docs/vctk_example.md b/fairseq/examples/speech_synthesis/docs/vctk_example.md
new file mode 100644
index 0000000000000000000000000000000000000000..2ba78f3f73d6ea30f9de89150fbbc9dd5923b6fa
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/docs/vctk_example.md
@@ -0,0 +1,51 @@
+[[Back]](..)
+
+# VCTK
+
+[VCTK](https://datashare.ed.ac.uk/handle/10283/3443) is an open English speech corpus. We provide examples
+for building [Transformer](https://arxiv.org/abs/1809.08895) models on this dataset.
+
+
+## Data preparation
+Download data, create splits and generate audio manifests with
+```bash
+python -m examples.speech_synthesis.preprocessing.get_vctk_audio_manifest \
+ --output-data-root ${AUDIO_DATA_ROOT} \
+ --output-manifest-root ${AUDIO_MANIFEST_ROOT}
+```
+
+Then, extract log-Mel spectrograms, generate feature manifest and create data configuration YAML with
+```bash
+python -m examples.speech_synthesis.preprocessing.get_feature_manifest \
+ --audio-manifest-root ${AUDIO_MANIFEST_ROOT} \
+ --output-root ${FEATURE_MANIFEST_ROOT} \
+ --ipa-vocab --use-g2p
+```
+where we use phoneme inputs (`--ipa-vocab --use-g2p`) as example.
+
+To denoise audio and trim leading/trailing silence using signal processing based VAD, run
+```bash
+for SPLIT in dev test train; do
+ python -m examples.speech_synthesis.preprocessing.denoise_and_vad_audio \
+ --audio-manifest ${AUDIO_MANIFEST_ROOT}/${SPLIT}.audio.tsv \
+ --output-dir ${PROCESSED_DATA_ROOT} \
+ --denoise --vad --vad-agg-level 3
+done
+```
+
+## Training
+(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#transformer).)
+
+## Inference
+(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#inference).)
+
+## Automatic Evaluation
+(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#automatic-evaluation).)
+
+## Results
+
+| --arch | Params | Test MCD | Model |
+|---|---|---|---|
+| tts_transformer | 54M | 3.4 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2/vctk_transformer_phn.tar) |
+
+[[Back]](..)
diff --git a/fairseq/examples/speech_synthesis/evaluation/__init__.py b/fairseq/examples/speech_synthesis/evaluation/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..6264236915a7269a4d920ee8213004374dd86a9a
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/evaluation/__init__.py
@@ -0,0 +1,4 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/fairseq/examples/speech_synthesis/evaluation/eval_asr.py b/fairseq/examples/speech_synthesis/evaluation/eval_asr.py
new file mode 100644
index 0000000000000000000000000000000000000000..005a11bfb34ca477ad9e133acd60f249e66cda47
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/evaluation/eval_asr.py
@@ -0,0 +1,128 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import editdistance
+import re
+import shutil
+import soundfile as sf
+import subprocess
+from pathlib import Path
+
+from examples.speech_to_text.data_utils import load_tsv_to_dicts
+
+
+def preprocess_text(text):
+ text = "|".join(re.sub(r"[^A-Z' ]", " ", text.upper()).split())
+ text = " ".join(text)
+ return text
+
+
+def prepare_w2v_data(
+ dict_dir, sample_rate, label, audio_paths, texts, split, data_dir
+):
+ data_dir.mkdir(parents=True, exist_ok=True)
+ shutil.copyfile(
+ dict_dir / f"dict.{label}.txt",
+ data_dir / f"dict.{label}.txt"
+ )
+ with open(data_dir / f"{split}.tsv", "w") as f:
+ f.write("/\n")
+ for audio_path in audio_paths:
+ wav, sr = sf.read(audio_path)
+ assert sr == sample_rate, f"{sr} != sample_rate"
+ nsample = len(wav)
+ f.write(f"{audio_path}\t{nsample}\n")
+ with open(data_dir / f"{split}.{label}", "w") as f:
+ for text in texts:
+ text = preprocess_text(text)
+ f.write(f"{text}\n")
+
+
+def run_asr(asr_dir, split, w2v_ckpt, w2v_label, res_dir):
+ """
+ results will be saved at
+ {res_dir}/{ref,hypo}.word-{w2v_ckpt.filename}-{split}.txt
+ """
+ cmd = ["python", "-m", "examples.speech_recognition.infer"]
+ cmd += [str(asr_dir.resolve())]
+ cmd += ["--task", "audio_finetuning", "--nbest", "1", "--quiet"]
+ cmd += ["--w2l-decoder", "viterbi", "--criterion", "ctc"]
+ cmd += ["--post-process", "letter", "--max-tokens", "4000000"]
+ cmd += ["--path", str(w2v_ckpt.resolve()), "--labels", w2v_label]
+ cmd += ["--gen-subset", split, "--results-path", str(res_dir.resolve())]
+
+ print(f"running cmd:\n{' '.join(cmd)}")
+ subprocess.run(cmd, check=True)
+
+
+def compute_error_rate(hyp_wrd_path, ref_wrd_path, unit="word"):
+ """each line is " (None-)" """
+ tokenize_line = {
+ "word": lambda x: re.sub(r" \(.*\)$", "", x.rstrip()).split(),
+ "char": lambda x: list(re.sub(r" \(.*\)$", "", x.rstrip()))
+ }.get(unit)
+ if tokenize_line is None:
+ raise ValueError(f"{unit} not supported")
+
+ inds = [int(re.sub(r"\D*(\d*)\D*", r"\1", line))
+ for line in open(hyp_wrd_path)]
+ hyps = [tokenize_line(line) for line in open(hyp_wrd_path)]
+ refs = [tokenize_line(line) for line in open(ref_wrd_path)]
+ assert(len(hyps) == len(refs))
+ err_rates = [
+ editdistance.eval(hyp, ref) / len(ref) for hyp, ref in zip(hyps, refs)
+ ]
+ ind_to_err_rates = {i: e for i, e in zip(inds, err_rates)}
+ return ind_to_err_rates
+
+
+def main(args):
+ samples = load_tsv_to_dicts(args.raw_manifest)
+ ids = [
+ sample[args.id_header] if args.id_header else "" for sample in samples
+ ]
+ audio_paths = [sample[args.audio_header] for sample in samples]
+ texts = [sample[args.text_header] for sample in samples]
+
+ prepare_w2v_data(
+ args.w2v_dict_dir,
+ args.w2v_sample_rate,
+ args.w2v_label,
+ audio_paths,
+ texts,
+ args.split,
+ args.asr_dir
+ )
+ run_asr(args.asr_dir, args.split, args.w2v_ckpt, args.w2v_label, args.asr_dir)
+ ind_to_err_rates = compute_error_rate(
+ args.asr_dir / f"hypo.word-{args.w2v_ckpt.name}-{args.split}.txt",
+ args.asr_dir / f"ref.word-{args.w2v_ckpt.name}-{args.split}.txt",
+ args.err_unit,
+ )
+
+ uer_path = args.asr_dir / f"uer_{args.err_unit}.{args.split}.tsv"
+ with open(uer_path, "w") as f:
+ f.write("id\taudio\tuer\n")
+ for ind, (id_, audio_path) in enumerate(zip(ids, audio_paths)):
+ f.write(f"{id_}\t{audio_path}\t{ind_to_err_rates[ind]:.4f}\n")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--raw-manifest", required=True, type=Path)
+ parser.add_argument("--asr-dir", required=True, type=Path)
+ parser.add_argument("--id-header", default="id", type=str)
+ parser.add_argument("--audio-header", default="audio", type=str)
+ parser.add_argument("--text-header", default="src_text", type=str)
+ parser.add_argument("--split", default="raw", type=str)
+ parser.add_argument("--w2v-ckpt", required=True, type=Path)
+ parser.add_argument("--w2v-dict-dir", required=True, type=Path)
+ parser.add_argument("--w2v-sample-rate", default=16000, type=int)
+ parser.add_argument("--w2v-label", default="ltr", type=str)
+ parser.add_argument("--err-unit", default="word", type=str)
+ args = parser.parse_args()
+
+ main(args)
diff --git a/fairseq/examples/speech_synthesis/evaluation/eval_f0.py b/fairseq/examples/speech_synthesis/evaluation/eval_f0.py
new file mode 100644
index 0000000000000000000000000000000000000000..df721d683113b44957149cfc3cddaba36520a22c
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/evaluation/eval_f0.py
@@ -0,0 +1,266 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+"""
+Signal processing-based evaluation using waveforms
+"""
+import numpy as np
+import os.path as op
+
+import torchaudio
+import tqdm
+from tabulate import tabulate
+
+from examples.speech_synthesis.utils import (
+ gross_pitch_error, voicing_decision_error, f0_frame_error
+)
+from examples.speech_synthesis.evaluation.eval_sp import load_eval_spec
+
+
+def difference_function(x, n, tau_max):
+ """
+ Compute difference function of data x. This solution is implemented directly
+ with Numpy fft.
+
+
+ :param x: audio data
+ :param n: length of data
+ :param tau_max: integration window size
+ :return: difference function
+ :rtype: list
+ """
+
+ x = np.array(x, np.float64)
+ w = x.size
+ tau_max = min(tau_max, w)
+ x_cumsum = np.concatenate((np.array([0.]), (x * x).cumsum()))
+ size = w + tau_max
+ p2 = (size // 32).bit_length()
+ nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32)
+ size_pad = min(x * 2 ** p2 for x in nice_numbers if x * 2 ** p2 >= size)
+ fc = np.fft.rfft(x, size_pad)
+ conv = np.fft.irfft(fc * fc.conjugate())[:tau_max]
+ return x_cumsum[w:w - tau_max:-1] + x_cumsum[w] - x_cumsum[:tau_max] - \
+ 2 * conv
+
+
+def cumulative_mean_normalized_difference_function(df, n):
+ """
+ Compute cumulative mean normalized difference function (CMND).
+
+ :param df: Difference function
+ :param n: length of data
+ :return: cumulative mean normalized difference function
+ :rtype: list
+ """
+
+ # scipy method
+ cmn_df = df[1:] * range(1, n) / np.cumsum(df[1:]).astype(float)
+ return np.insert(cmn_df, 0, 1)
+
+
+def get_pitch(cmdf, tau_min, tau_max, harmo_th=0.1):
+ """
+ Return fundamental period of a frame based on CMND function.
+
+ :param cmdf: Cumulative Mean Normalized Difference function
+ :param tau_min: minimum period for speech
+ :param tau_max: maximum period for speech
+ :param harmo_th: harmonicity threshold to determine if it is necessary to
+ compute pitch frequency
+ :return: fundamental period if there is values under threshold, 0 otherwise
+ :rtype: float
+ """
+ tau = tau_min
+ while tau < tau_max:
+ if cmdf[tau] < harmo_th:
+ while tau + 1 < tau_max and cmdf[tau + 1] < cmdf[tau]:
+ tau += 1
+ return tau
+ tau += 1
+
+ return 0 # if unvoiced
+
+
+def compute_yin(sig, sr, w_len=512, w_step=256, f0_min=100, f0_max=500,
+ harmo_thresh=0.1):
+ """
+
+ Compute the Yin Algorithm. Return fundamental frequency and harmonic rate.
+
+ https://github.com/NVIDIA/mellotron adaption of
+ https://github.com/patriceguyot/Yin
+
+ :param sig: Audio signal (list of float)
+ :param sr: sampling rate (int)
+ :param w_len: size of the analysis window (samples)
+ :param w_step: size of the lag between two consecutives windows (samples)
+ :param f0_min: Minimum fundamental frequency that can be detected (hertz)
+ :param f0_max: Maximum fundamental frequency that can be detected (hertz)
+ :param harmo_thresh: Threshold of detection. The yalgorithmù return the
+ first minimum of the CMND function below this threshold.
+
+ :returns:
+
+ * pitches: list of fundamental frequencies,
+ * harmonic_rates: list of harmonic rate values for each fundamental
+ frequency value (= confidence value)
+ * argmins: minimums of the Cumulative Mean Normalized DifferenceFunction
+ * times: list of time of each estimation
+ :rtype: tuple
+ """
+
+ tau_min = int(sr / f0_max)
+ tau_max = int(sr / f0_min)
+
+ # time values for each analysis window
+ time_scale = range(0, len(sig) - w_len, w_step)
+ times = [t/float(sr) for t in time_scale]
+ frames = [sig[t:t + w_len] for t in time_scale]
+
+ pitches = [0.0] * len(time_scale)
+ harmonic_rates = [0.0] * len(time_scale)
+ argmins = [0.0] * len(time_scale)
+
+ for i, frame in enumerate(frames):
+ # Compute YIN
+ df = difference_function(frame, w_len, tau_max)
+ cm_df = cumulative_mean_normalized_difference_function(df, tau_max)
+ p = get_pitch(cm_df, tau_min, tau_max, harmo_thresh)
+
+ # Get results
+ if np.argmin(cm_df) > tau_min:
+ argmins[i] = float(sr / np.argmin(cm_df))
+ if p != 0: # A pitch was found
+ pitches[i] = float(sr / p)
+ harmonic_rates[i] = cm_df[p]
+ else: # No pitch, but we compute a value of the harmonic rate
+ harmonic_rates[i] = min(cm_df)
+
+ return pitches, harmonic_rates, argmins, times
+
+
+def extract_f0(samples):
+ f0_samples = []
+ for sample in tqdm.tqdm(samples):
+ if not op.isfile(sample["ref"]) or not op.isfile(sample["syn"]):
+ f0_samples.append(None)
+ continue
+
+ # assume single channel
+ yref, sr = torchaudio.load(sample["ref"])
+ ysyn, _sr = torchaudio.load(sample["syn"])
+ yref, ysyn = yref[0], ysyn[0]
+ assert sr == _sr, f"{sr} != {_sr}"
+
+ yref_f0 = compute_yin(yref, sr)
+ ysyn_f0 = compute_yin(ysyn, sr)
+
+ f0_samples += [
+ {
+ "ref": yref_f0,
+ "syn": ysyn_f0
+ }
+ ]
+
+ return f0_samples
+
+
+def eval_f0_error(samples, distortion_fn):
+ results = []
+ for sample in tqdm.tqdm(samples):
+ if sample is None:
+ results.append(None)
+ continue
+ # assume single channel
+ yref_f, _, _, yref_t = sample["ref"]
+ ysyn_f, _, _, ysyn_t = sample["syn"]
+
+ yref_f = np.array(yref_f)
+ yref_t = np.array(yref_t)
+ ysyn_f = np.array(ysyn_f)
+ ysyn_t = np.array(ysyn_t)
+
+ distortion = distortion_fn(yref_t, yref_f, ysyn_t, ysyn_f)
+ results.append((distortion.item(),
+ len(yref_f),
+ len(ysyn_f)
+ ))
+ return results
+
+
+def eval_gross_pitch_error(samples):
+ return eval_f0_error(samples, gross_pitch_error)
+
+
+def eval_voicing_decision_error(samples):
+ return eval_f0_error(samples, voicing_decision_error)
+
+
+def eval_f0_frame_error(samples):
+ return eval_f0_error(samples, f0_frame_error)
+
+
+def print_results(results, show_bin):
+ results = np.array(list(filter(lambda x: x is not None, results)))
+
+ np.set_printoptions(precision=3)
+
+ def _print_result(results):
+ res = {
+ "nutt": len(results),
+ "error": results[:, 0].mean(),
+ "std": results[:, 0].std(),
+ "dur_ref": int(results[:, 1].sum()),
+ "dur_syn": int(results[:, 2].sum()),
+ }
+ print(tabulate([res.values()], res.keys(), floatfmt=".4f"))
+
+ print(">>>> ALL")
+ _print_result(results)
+
+ if show_bin:
+ edges = [0, 200, 400, 600, 800, 1000, 2000, 4000]
+ for i in range(1, len(edges)):
+ mask = np.logical_and(results[:, 1] >= edges[i-1],
+ results[:, 1] < edges[i])
+ if not mask.any():
+ continue
+ bin_results = results[mask]
+ print(f">>>> ({edges[i-1]}, {edges[i]})")
+ _print_result(bin_results)
+
+
+def main(eval_f0, gpe, vde, ffe, show_bin):
+ samples = load_eval_spec(eval_f0)
+ if gpe or vde or ffe:
+ f0_samples = extract_f0(samples)
+
+ if gpe:
+ print("===== Evaluate Gross Pitch Error =====")
+ results = eval_gross_pitch_error(f0_samples)
+ print_results(results, show_bin)
+ if vde:
+ print("===== Evaluate Voicing Decision Error =====")
+ results = eval_voicing_decision_error(f0_samples)
+ print_results(results, show_bin)
+ if ffe:
+ print("===== Evaluate F0 Frame Error =====")
+ results = eval_f0_frame_error(f0_samples)
+ print_results(results, show_bin)
+
+
+if __name__ == "__main__":
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("eval_f0")
+ parser.add_argument("--gpe", action="store_true")
+ parser.add_argument("--vde", action="store_true")
+ parser.add_argument("--ffe", action="store_true")
+ parser.add_argument("--show-bin", action="store_true")
+ args = parser.parse_args()
+
+ main(args.eval_f0, args.gpe, args.vde, args.ffe, args.show_bin)
diff --git a/fairseq/examples/speech_synthesis/evaluation/eval_sp.py b/fairseq/examples/speech_synthesis/evaluation/eval_sp.py
new file mode 100644
index 0000000000000000000000000000000000000000..702c4980389624f788abc0b42cdf54757a52512f
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/evaluation/eval_sp.py
@@ -0,0 +1,131 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+"""
+Signal processing-based evaluation using waveforms
+"""
+
+import csv
+import numpy as np
+import os.path as op
+
+import torch
+import tqdm
+from tabulate import tabulate
+import torchaudio
+
+from examples.speech_synthesis.utils import batch_mel_spectral_distortion
+from fairseq.tasks.text_to_speech import batch_mel_cepstral_distortion
+
+
+def load_eval_spec(path):
+ with open(path) as f:
+ reader = csv.DictReader(f, delimiter='\t')
+ samples = list(reader)
+ return samples
+
+
+def eval_distortion(samples, distortion_fn, device="cuda"):
+ nmiss = 0
+ results = []
+ for sample in tqdm.tqdm(samples):
+ if not op.isfile(sample["ref"]) or not op.isfile(sample["syn"]):
+ nmiss += 1
+ results.append(None)
+ continue
+ # assume single channel
+ yref, sr = torchaudio.load(sample["ref"])
+ ysyn, _sr = torchaudio.load(sample["syn"])
+ yref, ysyn = yref[0].to(device), ysyn[0].to(device)
+ assert sr == _sr, f"{sr} != {_sr}"
+
+ distortion, extra = distortion_fn([yref], [ysyn], sr, None)[0]
+ _, _, _, _, _, pathmap = extra
+ nins = torch.sum(pathmap.sum(dim=1) - 1) # extra frames in syn
+ ndel = torch.sum(pathmap.sum(dim=0) - 1) # missing frames from syn
+ results.append(
+ (distortion.item(), # path distortion
+ pathmap.size(0), # yref num frames
+ pathmap.size(1), # ysyn num frames
+ pathmap.sum().item(), # path length
+ nins.item(), # insertion
+ ndel.item(), # deletion
+ )
+ )
+ return results
+
+
+def eval_mel_cepstral_distortion(samples, device="cuda"):
+ return eval_distortion(samples, batch_mel_cepstral_distortion, device)
+
+
+def eval_mel_spectral_distortion(samples, device="cuda"):
+ return eval_distortion(samples, batch_mel_spectral_distortion, device)
+
+
+def print_results(results, show_bin):
+ results = np.array(list(filter(lambda x: x is not None, results)))
+
+ np.set_printoptions(precision=3)
+
+ def _print_result(results):
+ dist, dur_ref, dur_syn, dur_ali, nins, ndel = results.sum(axis=0)
+ res = {
+ "nutt": len(results),
+ "dist": dist,
+ "dur_ref": int(dur_ref),
+ "dur_syn": int(dur_syn),
+ "dur_ali": int(dur_ali),
+ "dist_per_ref_frm": dist/dur_ref,
+ "dist_per_syn_frm": dist/dur_syn,
+ "dist_per_ali_frm": dist/dur_ali,
+ "ins": nins/dur_ref,
+ "del": ndel/dur_ref,
+ }
+ print(tabulate(
+ [res.values()],
+ res.keys(),
+ floatfmt=".4f"
+ ))
+
+ print(">>>> ALL")
+ _print_result(results)
+
+ if show_bin:
+ edges = [0, 200, 400, 600, 800, 1000, 2000, 4000]
+ for i in range(1, len(edges)):
+ mask = np.logical_and(results[:, 1] >= edges[i-1],
+ results[:, 1] < edges[i])
+ if not mask.any():
+ continue
+ bin_results = results[mask]
+ print(f">>>> ({edges[i-1]}, {edges[i]})")
+ _print_result(bin_results)
+
+
+def main(eval_spec, mcd, msd, show_bin):
+ samples = load_eval_spec(eval_spec)
+ device = "cpu"
+ if mcd:
+ print("===== Evaluate Mean Cepstral Distortion =====")
+ results = eval_mel_cepstral_distortion(samples, device)
+ print_results(results, show_bin)
+ if msd:
+ print("===== Evaluate Mean Spectral Distortion =====")
+ results = eval_mel_spectral_distortion(samples, device)
+ print_results(results, show_bin)
+
+
+if __name__ == "__main__":
+ import argparse
+ parser = argparse.ArgumentParser()
+ parser.add_argument("eval_spec")
+ parser.add_argument("--mcd", action="store_true")
+ parser.add_argument("--msd", action="store_true")
+ parser.add_argument("--show-bin", action="store_true")
+ args = parser.parse_args()
+
+ main(args.eval_spec, args.mcd, args.msd, args.show_bin)
diff --git a/fairseq/examples/speech_synthesis/evaluation/get_eval_manifest.py b/fairseq/examples/speech_synthesis/evaluation/get_eval_manifest.py
new file mode 100644
index 0000000000000000000000000000000000000000..a28cd607a096844438f6a3ba6b007d94d67d1bc8
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/evaluation/get_eval_manifest.py
@@ -0,0 +1,58 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import csv
+from pathlib import Path
+
+
+def main(args):
+ """
+ `uid syn ref text`
+ """
+ in_root = Path(args.generation_root).resolve()
+ ext = args.audio_format
+ with open(args.audio_manifest) as f, open(args.output_path, "w") as f_out:
+ reader = csv.DictReader(
+ f, delimiter="\t", quotechar=None, doublequote=False,
+ lineterminator="\n", quoting=csv.QUOTE_NONE
+ )
+ header = ["id", "syn", "ref", "text", "speaker"]
+ f_out.write("\t".join(header) + "\n")
+ for row in reader:
+ dir_name = f"{ext}_{args.sample_rate}hz_{args.vocoder}"
+ id_ = row["id"]
+ syn = (in_root / dir_name / f"{id_}.{ext}").as_posix()
+ ref = row["audio"]
+ if args.use_resynthesized_target:
+ ref = (in_root / f"{dir_name}_tgt" / f"{id_}.{ext}").as_posix()
+ sample = [id_, syn, ref, row["tgt_text"], row["speaker"]]
+ f_out.write("\t".join(sample) + "\n")
+ print(f"wrote evaluation file to {args.output_path}")
+
+
+if __name__ == "__main__":
+ import argparse
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--generation-root", help="output directory for generate_waveform.py"
+ )
+ parser.add_argument(
+ "--audio-manifest",
+ help="used to determine the original utterance ID and text"
+ )
+ parser.add_argument(
+ "--output-path", help="path to output evaluation spec file"
+ )
+ parser.add_argument(
+ "--use-resynthesized-target", action="store_true",
+ help="use resynthesized reference instead of the original audio"
+ )
+ parser.add_argument("--vocoder", type=str, default="griffin_lim")
+ parser.add_argument("--sample-rate", type=int, default=22_050)
+ parser.add_argument("--audio-format", type=str, default="wav")
+ args = parser.parse_args()
+
+ main(args)
diff --git a/fairseq/examples/speech_synthesis/generate_waveform.py b/fairseq/examples/speech_synthesis/generate_waveform.py
new file mode 100644
index 0000000000000000000000000000000000000000..bfc2ef8eb3d91366caf7609d75aa1795ab0ed8f9
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/generate_waveform.py
@@ -0,0 +1,191 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import logging
+import matplotlib.pyplot as plt
+import numpy as np
+from pathlib import Path
+import soundfile as sf
+import sys
+import torch
+import torchaudio
+
+from fairseq import checkpoint_utils, options, tasks, utils
+from fairseq.logging import progress_bar
+from fairseq.tasks.text_to_speech import plot_tts_output
+from fairseq.data.audio.text_to_speech_dataset import TextToSpeechDataset
+
+
+logging.basicConfig()
+logging.root.setLevel(logging.INFO)
+logging.basicConfig(level=logging.INFO)
+logger = logging.getLogger(__name__)
+
+
+def make_parser():
+ parser = options.get_speech_generation_parser()
+ parser.add_argument("--dump-features", action="store_true")
+ parser.add_argument("--dump-waveforms", action="store_true")
+ parser.add_argument("--dump-attentions", action="store_true")
+ parser.add_argument("--dump-eos-probs", action="store_true")
+ parser.add_argument("--dump-plots", action="store_true")
+ parser.add_argument("--dump-target", action="store_true")
+ parser.add_argument("--output-sample-rate", default=22050, type=int)
+ parser.add_argument("--teacher-forcing", action="store_true")
+ parser.add_argument(
+ "--audio-format", type=str, default="wav", choices=["wav", "flac"]
+ )
+ return parser
+
+
+def postprocess_results(
+ dataset: TextToSpeechDataset, sample, hypos, resample_fn, dump_target
+):
+ def to_np(x):
+ return None if x is None else x.detach().cpu().numpy()
+
+ sample_ids = [dataset.ids[i] for i in sample["id"].tolist()]
+ texts = sample["src_texts"]
+ attns = [to_np(hypo["attn"]) for hypo in hypos]
+ eos_probs = [to_np(hypo.get("eos_prob", None)) for hypo in hypos]
+ feat_preds = [to_np(hypo["feature"]) for hypo in hypos]
+ wave_preds = [to_np(resample_fn(h["waveform"])) for h in hypos]
+ if dump_target:
+ feat_targs = [to_np(hypo["targ_feature"]) for hypo in hypos]
+ wave_targs = [to_np(resample_fn(h["targ_waveform"])) for h in hypos]
+ else:
+ feat_targs = [None for _ in hypos]
+ wave_targs = [None for _ in hypos]
+
+ return zip(sample_ids, texts, attns, eos_probs, feat_preds, wave_preds,
+ feat_targs, wave_targs)
+
+
+def dump_result(
+ is_na_model,
+ args,
+ vocoder,
+ sample_id,
+ text,
+ attn,
+ eos_prob,
+ feat_pred,
+ wave_pred,
+ feat_targ,
+ wave_targ,
+):
+ sample_rate = args.output_sample_rate
+ out_root = Path(args.results_path)
+ if args.dump_features:
+ feat_dir = out_root / "feat"
+ feat_dir.mkdir(exist_ok=True, parents=True)
+ np.save(feat_dir / f"{sample_id}.npy", feat_pred)
+ if args.dump_target:
+ feat_tgt_dir = out_root / "feat_tgt"
+ feat_tgt_dir.mkdir(exist_ok=True, parents=True)
+ np.save(feat_tgt_dir / f"{sample_id}.npy", feat_targ)
+ if args.dump_attentions:
+ attn_dir = out_root / "attn"
+ attn_dir.mkdir(exist_ok=True, parents=True)
+ np.save(attn_dir / f"{sample_id}.npy", attn.numpy())
+ if args.dump_eos_probs and not is_na_model:
+ eos_dir = out_root / "eos"
+ eos_dir.mkdir(exist_ok=True, parents=True)
+ np.save(eos_dir / f"{sample_id}.npy", eos_prob)
+
+ if args.dump_plots:
+ images = [feat_pred.T] if is_na_model else [feat_pred.T, attn]
+ names = ["output"] if is_na_model else ["output", "alignment"]
+ if feat_targ is not None:
+ images = [feat_targ.T] + images
+ names = [f"target (idx={sample_id})"] + names
+ if is_na_model:
+ plot_tts_output(images, names, attn, "alignment", suptitle=text)
+ else:
+ plot_tts_output(images, names, eos_prob, "eos prob", suptitle=text)
+ plot_dir = out_root / "plot"
+ plot_dir.mkdir(exist_ok=True, parents=True)
+ plt.savefig(plot_dir / f"{sample_id}.png")
+ plt.close()
+
+ if args.dump_waveforms:
+ ext = args.audio_format
+ if wave_pred is not None:
+ wav_dir = out_root / f"{ext}_{sample_rate}hz_{vocoder}"
+ wav_dir.mkdir(exist_ok=True, parents=True)
+ sf.write(wav_dir / f"{sample_id}.{ext}", wave_pred, sample_rate)
+ if args.dump_target and wave_targ is not None:
+ wav_tgt_dir = out_root / f"{ext}_{sample_rate}hz_{vocoder}_tgt"
+ wav_tgt_dir.mkdir(exist_ok=True, parents=True)
+ sf.write(wav_tgt_dir / f"{sample_id}.{ext}", wave_targ, sample_rate)
+
+
+def main(args):
+ assert(args.dump_features or args.dump_waveforms or args.dump_attentions
+ or args.dump_eos_probs or args.dump_plots)
+ if args.max_tokens is None and args.batch_size is None:
+ args.max_tokens = 8000
+ logger.info(args)
+
+ use_cuda = torch.cuda.is_available() and not args.cpu
+ task = tasks.setup_task(args)
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
+ [args.path],
+ task=task,
+ )
+ model = models[0].cuda() if use_cuda else models[0]
+ # use the original n_frames_per_step
+ task.args.n_frames_per_step = saved_cfg.task.n_frames_per_step
+ task.load_dataset(args.gen_subset, task_cfg=saved_cfg.task)
+
+ data_cfg = task.data_cfg
+ sample_rate = data_cfg.config.get("features", {}).get("sample_rate", 22050)
+ resample_fn = {
+ False: lambda x: x,
+ True: lambda x: torchaudio.sox_effects.apply_effects_tensor(
+ x.detach().cpu().unsqueeze(0), sample_rate,
+ [['rate', str(args.output_sample_rate)]]
+ )[0].squeeze(0)
+ }.get(args.output_sample_rate != sample_rate)
+ if args.output_sample_rate != sample_rate:
+ logger.info(f"resampling to {args.output_sample_rate}Hz")
+
+ generator = task.build_generator([model], args)
+ itr = task.get_batch_iterator(
+ dataset=task.dataset(args.gen_subset),
+ max_tokens=args.max_tokens,
+ max_sentences=args.batch_size,
+ max_positions=(sys.maxsize, sys.maxsize),
+ ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
+ required_batch_size_multiple=args.required_batch_size_multiple,
+ num_shards=args.num_shards,
+ shard_id=args.shard_id,
+ num_workers=args.num_workers,
+ data_buffer_size=args.data_buffer_size,
+ ).next_epoch_itr(shuffle=False)
+
+ Path(args.results_path).mkdir(exist_ok=True, parents=True)
+ is_na_model = getattr(model, "NON_AUTOREGRESSIVE", False)
+ dataset = task.dataset(args.gen_subset)
+ vocoder = task.args.vocoder
+ with progress_bar.build_progress_bar(args, itr) as t:
+ for sample in t:
+ sample = utils.move_to_cuda(sample) if use_cuda else sample
+ hypos = generator.generate(model, sample, has_targ=args.dump_target)
+ for result in postprocess_results(
+ dataset, sample, hypos, resample_fn, args.dump_target
+ ):
+ dump_result(is_na_model, args, vocoder, *result)
+
+
+def cli_main():
+ parser = make_parser()
+ args = options.parse_args_and_arch(parser)
+ main(args)
+
+
+if __name__ == "__main__":
+ cli_main()
diff --git a/fairseq/examples/speech_synthesis/preprocessing/__init__.py b/fairseq/examples/speech_synthesis/preprocessing/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..6264236915a7269a4d920ee8213004374dd86a9a
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/__init__.py
@@ -0,0 +1,4 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/fairseq/examples/speech_synthesis/preprocessing/denoise_and_vad_audio.py b/fairseq/examples/speech_synthesis/preprocessing/denoise_and_vad_audio.py
new file mode 100644
index 0000000000000000000000000000000000000000..4e13b38a5d3fb44dd3969e6afcb8f202274ee3b7
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/denoise_and_vad_audio.py
@@ -0,0 +1,204 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+import os
+import csv
+import tempfile
+from collections import defaultdict
+from pathlib import Path
+
+import torchaudio
+try:
+ import webrtcvad
+except ImportError:
+ raise ImportError("Please install py-webrtcvad: pip install webrtcvad")
+import pandas as pd
+from tqdm import tqdm
+
+from examples.speech_synthesis.preprocessing.denoiser.pretrained import master64
+import examples.speech_synthesis.preprocessing.denoiser.utils as utils
+from examples.speech_synthesis.preprocessing.vad import (
+ frame_generator, vad_collector, read_wave, write_wave, FS_MS, THRESHOLD,
+ SCALE
+)
+from examples.speech_to_text.data_utils import save_df_to_tsv
+
+
+log = logging.getLogger(__name__)
+
+PATHS = ["after_denoise", "after_vad"]
+MIN_T = 0.05
+
+
+def generate_tmp_filename(extension="txt"):
+ return tempfile._get_default_tempdir() + "/" + \
+ next(tempfile._get_candidate_names()) + "." + extension
+
+
+def convert_sr(inpath, sr, output_path=None):
+ if not output_path:
+ output_path = generate_tmp_filename("wav")
+ cmd = f"sox {inpath} -r {sr} {output_path}"
+ os.system(cmd)
+ return output_path
+
+
+def apply_vad(vad, inpath):
+ audio, sample_rate = read_wave(inpath)
+ frames = frame_generator(FS_MS, audio, sample_rate)
+ frames = list(frames)
+ segments = vad_collector(sample_rate, FS_MS, 300, vad, frames)
+ merge_segments = list()
+ timestamp_start = 0.0
+ timestamp_end = 0.0
+ # removing start, end, and long sequences of sils
+ for i, segment in enumerate(segments):
+ merge_segments.append(segment[0])
+ if i and timestamp_start:
+ sil_duration = segment[1] - timestamp_end
+ if sil_duration > THRESHOLD:
+ merge_segments.append(int(THRESHOLD / SCALE) * (b'\x00'))
+ else:
+ merge_segments.append(int((sil_duration / SCALE)) * (b'\x00'))
+ timestamp_start = segment[1]
+ timestamp_end = segment[2]
+ segment = b''.join(merge_segments)
+ return segment, sample_rate
+
+
+def write(wav, filename, sr=16_000):
+ # Normalize audio if it prevents clipping
+ wav = wav / max(wav.abs().max().item(), 1)
+ torchaudio.save(filename, wav.cpu(), sr, encoding="PCM_S",
+ bits_per_sample=16)
+
+
+def process(args):
+ # making sure we are requested either denoise or vad
+ if not args.denoise and not args.vad:
+ log.error("No denoise or vad is requested.")
+ return
+
+ log.info("Creating out directories...")
+ if args.denoise:
+ out_denoise = Path(args.output_dir).absolute().joinpath(PATHS[0])
+ out_denoise.mkdir(parents=True, exist_ok=True)
+ if args.vad:
+ out_vad = Path(args.output_dir).absolute().joinpath(PATHS[1])
+ out_vad.mkdir(parents=True, exist_ok=True)
+
+ log.info("Loading pre-trained speech enhancement model...")
+ model = master64().to(args.device)
+
+ log.info("Building the VAD model...")
+ vad = webrtcvad.Vad(int(args.vad_agg_level))
+
+ # preparing the output dict
+ output_dict = defaultdict(list)
+
+ log.info(f"Parsing input manifest: {args.audio_manifest}")
+ with open(args.audio_manifest, "r") as f:
+ manifest_dict = csv.DictReader(f, delimiter="\t")
+ for row in tqdm(manifest_dict):
+ filename = str(row["audio"])
+
+ final_output = filename
+ keep_sample = True
+ n_frames = row["n_frames"]
+ snr = -1
+ if args.denoise:
+ output_path_denoise = out_denoise.joinpath(Path(filename).name)
+ # convert to 16khz in case we use a differet sr
+ tmp_path = convert_sr(final_output, 16000)
+
+ # loading audio file and generating the enhanced version
+ out, sr = torchaudio.load(tmp_path)
+ out = out.to(args.device)
+ estimate = model(out)
+ estimate = (1 - args.dry_wet) * estimate + args.dry_wet * out
+ write(estimate[0], str(output_path_denoise), sr)
+
+ snr = utils.cal_snr(out, estimate)
+ snr = snr.cpu().detach().numpy()[0][0]
+ final_output = str(output_path_denoise)
+
+ if args.vad:
+ output_path_vad = out_vad.joinpath(Path(filename).name)
+ sr = torchaudio.info(final_output).sample_rate
+ if sr in [16000, 32000, 48000]:
+ tmp_path = final_output
+ elif sr < 16000:
+ tmp_path = convert_sr(final_output, 16000)
+ elif sr < 32000:
+ tmp_path = convert_sr(final_output, 32000)
+ else:
+ tmp_path = convert_sr(final_output, 48000)
+ # apply VAD
+ segment, sample_rate = apply_vad(vad, tmp_path)
+ if len(segment) < sample_rate * MIN_T:
+ keep_sample = False
+ print((
+ f"WARNING: skip {filename} because it is too short "
+ f"after VAD ({len(segment) / sample_rate} < {MIN_T})"
+ ))
+ else:
+ if sample_rate != sr:
+ tmp_path = generate_tmp_filename("wav")
+ write_wave(tmp_path, segment, sample_rate)
+ convert_sr(tmp_path, sr,
+ output_path=str(output_path_vad))
+ else:
+ write_wave(str(output_path_vad), segment, sample_rate)
+ final_output = str(output_path_vad)
+ segment, _ = torchaudio.load(final_output)
+ n_frames = segment.size(1)
+
+ if keep_sample:
+ output_dict["id"].append(row["id"])
+ output_dict["audio"].append(final_output)
+ output_dict["n_frames"].append(n_frames)
+ output_dict["tgt_text"].append(row["tgt_text"])
+ output_dict["speaker"].append(row["speaker"])
+ output_dict["src_text"].append(row["src_text"])
+ output_dict["snr"].append(snr)
+
+ out_tsv_path = Path(args.output_dir) / Path(args.audio_manifest).name
+ log.info(f"Saving manifest to {out_tsv_path.as_posix()}")
+ save_df_to_tsv(pd.DataFrame.from_dict(output_dict), out_tsv_path)
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--audio-manifest", "-i", required=True,
+ type=str, help="path to the input manifest.")
+ parser.add_argument(
+ "--output-dir", "-o", required=True, type=str,
+ help="path to the output dir. it will contain files after denoising and"
+ " vad"
+ )
+ parser.add_argument("--vad-agg-level", "-a", type=int, default=2,
+ help="the aggresive level of the vad [0-3].")
+ parser.add_argument(
+ "--dry-wet", "-dw", type=float, default=0.01,
+ help="the level of linear interpolation between noisy and enhanced "
+ "files."
+ )
+ parser.add_argument(
+ "--device", "-d", type=str, default="cpu",
+ help="the device to be used for the speech enhancement model: "
+ "cpu | cuda."
+ )
+ parser.add_argument("--denoise", action="store_true",
+ help="apply a denoising")
+ parser.add_argument("--vad", action="store_true", help="apply a VAD")
+ args = parser.parse_args()
+
+ process(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/speech_synthesis/preprocessing/denoiser/__init__.py b/fairseq/examples/speech_synthesis/preprocessing/denoiser/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..6264236915a7269a4d920ee8213004374dd86a9a
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/denoiser/__init__.py
@@ -0,0 +1,4 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/fairseq/examples/speech_synthesis/preprocessing/denoiser/demucs.py b/fairseq/examples/speech_synthesis/preprocessing/denoiser/demucs.py
new file mode 100644
index 0000000000000000000000000000000000000000..3f70e73d6a37d32e05b6cf0e87f42e13c467cd52
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/denoiser/demucs.py
@@ -0,0 +1,473 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+# author: adefossez
+
+import math
+import time
+
+import torch as th
+from torch import nn
+from torch.nn import functional as F
+
+from .resample import downsample2, upsample2
+from .utils import capture_init
+
+
+class BLSTM(nn.Module):
+ def __init__(self, dim, layers=2, bi=True):
+ super().__init__()
+ klass = nn.LSTM
+ self.lstm = klass(
+ bidirectional=bi, num_layers=layers, hidden_size=dim, input_size=dim
+ )
+ self.linear = None
+ if bi:
+ self.linear = nn.Linear(2 * dim, dim)
+
+ def forward(self, x, hidden=None):
+ x, hidden = self.lstm(x, hidden)
+ if self.linear:
+ x = self.linear(x)
+ return x, hidden
+
+
+def rescale_conv(conv, reference):
+ std = conv.weight.std().detach()
+ scale = (std / reference)**0.5
+ conv.weight.data /= scale
+ if conv.bias is not None:
+ conv.bias.data /= scale
+
+
+def rescale_module(module, reference):
+ for sub in module.modules():
+ if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d)):
+ rescale_conv(sub, reference)
+
+
+class Demucs(nn.Module):
+ """
+ Demucs speech enhancement model.
+ Args:
+ - chin (int): number of input channels.
+ - chout (int): number of output channels.
+ - hidden (int): number of initial hidden channels.
+ - depth (int): number of layers.
+ - kernel_size (int): kernel size for each layer.
+ - stride (int): stride for each layer.
+ - causal (bool): if false, uses BiLSTM instead of LSTM.
+ - resample (int): amount of resampling to apply to the input/output.
+ Can be one of 1, 2 or 4.
+ - growth (float): number of channels is multiplied by this for every layer.
+ - max_hidden (int): maximum number of channels. Can be useful to
+ control the size/speed of the model.
+ - normalize (bool): if true, normalize the input.
+ - glu (bool): if true uses GLU instead of ReLU in 1x1 convolutions.
+ - rescale (float): controls custom weight initialization.
+ See https://arxiv.org/abs/1911.13254.
+ - floor (float): stability flooring when normalizing.
+
+ """
+ @capture_init
+ def __init__(self,
+ chin=1,
+ chout=1,
+ hidden=48,
+ depth=5,
+ kernel_size=8,
+ stride=4,
+ causal=True,
+ resample=4,
+ growth=2,
+ max_hidden=10_000,
+ normalize=True,
+ glu=True,
+ rescale=0.1,
+ floor=1e-3):
+
+ super().__init__()
+ if resample not in [1, 2, 4]:
+ raise ValueError("Resample should be 1, 2 or 4.")
+
+ self.chin = chin
+ self.chout = chout
+ self.hidden = hidden
+ self.depth = depth
+ self.kernel_size = kernel_size
+ self.stride = stride
+ self.causal = causal
+ self.floor = floor
+ self.resample = resample
+ self.normalize = normalize
+
+ self.encoder = nn.ModuleList()
+ self.decoder = nn.ModuleList()
+ activation = nn.GLU(1) if glu else nn.ReLU()
+ ch_scale = 2 if glu else 1
+
+ for index in range(depth):
+ encode = []
+ encode += [
+ nn.Conv1d(chin, hidden, kernel_size, stride),
+ nn.ReLU(),
+ nn.Conv1d(hidden, hidden * ch_scale, 1), activation,
+ ]
+ self.encoder.append(nn.Sequential(*encode))
+
+ decode = []
+ decode += [
+ nn.Conv1d(hidden, ch_scale * hidden, 1), activation,
+ nn.ConvTranspose1d(hidden, chout, kernel_size, stride),
+ ]
+ if index > 0:
+ decode.append(nn.ReLU())
+ self.decoder.insert(0, nn.Sequential(*decode))
+ chout = hidden
+ chin = hidden
+ hidden = min(int(growth * hidden), max_hidden)
+
+ self.lstm = BLSTM(chin, bi=not causal)
+ if rescale:
+ rescale_module(self, reference=rescale)
+
+ def valid_length(self, length):
+ """
+ Return the nearest valid length to use with the model so that
+ there is no time steps left over in a convolutions, e.g. for all
+ layers, size of the input - kernel_size % stride = 0.
+
+ If the mixture has a valid length, the estimated sources
+ will have exactly the same length.
+ """
+ length = math.ceil(length * self.resample)
+ for _ in range(self.depth):
+ length = math.ceil((length - self.kernel_size) / self.stride) + 1
+ length = max(length, 1)
+ for _ in range(self.depth):
+ length = (length - 1) * self.stride + self.kernel_size
+ length = int(math.ceil(length / self.resample))
+ return int(length)
+
+ @property
+ def total_stride(self):
+ return self.stride ** self.depth // self.resample
+
+ def forward(self, mix):
+ if mix.dim() == 2:
+ mix = mix.unsqueeze(1)
+
+ if self.normalize:
+ mono = mix.mean(dim=1, keepdim=True)
+ std = mono.std(dim=-1, keepdim=True)
+ mix = mix / (self.floor + std)
+ else:
+ std = 1
+ length = mix.shape[-1]
+ x = mix
+ x = F.pad(x, (0, self.valid_length(length) - length))
+ if self.resample == 2:
+ x = upsample2(x)
+ elif self.resample == 4:
+ x = upsample2(x)
+ x = upsample2(x)
+ skips = []
+ for encode in self.encoder:
+ x = encode(x)
+ skips.append(x)
+ x = x.permute(2, 0, 1)
+ x, _ = self.lstm(x)
+ x = x.permute(1, 2, 0)
+ for decode in self.decoder:
+ skip = skips.pop(-1)
+ x = x + skip[..., :x.shape[-1]]
+ x = decode(x)
+ if self.resample == 2:
+ x = downsample2(x)
+ elif self.resample == 4:
+ x = downsample2(x)
+ x = downsample2(x)
+
+ x = x[..., :length]
+ return std * x
+
+
+def fast_conv(conv, x):
+ """
+ Faster convolution evaluation if either kernel size is 1
+ or length of sequence is 1.
+ """
+ batch, chin, length = x.shape
+ chout, chin, kernel = conv.weight.shape
+ assert batch == 1
+ if kernel == 1:
+ x = x.view(chin, length)
+ out = th.addmm(conv.bias.view(-1, 1),
+ conv.weight.view(chout, chin), x)
+ elif length == kernel:
+ x = x.view(chin * kernel, 1)
+ out = th.addmm(conv.bias.view(-1, 1),
+ conv.weight.view(chout, chin * kernel), x)
+ else:
+ out = conv(x)
+ return out.view(batch, chout, -1)
+
+
+class DemucsStreamer:
+ """
+ Streaming implementation for Demucs. It supports being fed with any amount
+ of audio at a time. You will get back as much audio as possible at that
+ point.
+
+ Args:
+ - demucs (Demucs): Demucs model.
+ - dry (float): amount of dry (e.g. input) signal to keep. 0 is maximum
+ noise removal, 1 just returns the input signal. Small values > 0
+ allows to limit distortions.
+ - num_frames (int): number of frames to process at once. Higher values
+ will increase overall latency but improve the real time factor.
+ - resample_lookahead (int): extra lookahead used for the resampling.
+ - resample_buffer (int): size of the buffer of previous inputs/outputs
+ kept for resampling.
+ """
+ def __init__(self, demucs,
+ dry=0,
+ num_frames=1,
+ resample_lookahead=64,
+ resample_buffer=256):
+ device = next(iter(demucs.parameters())).device
+ self.demucs = demucs
+ self.lstm_state = None
+ self.conv_state = None
+ self.dry = dry
+ self.resample_lookahead = resample_lookahead
+ resample_buffer = min(demucs.total_stride, resample_buffer)
+ self.resample_buffer = resample_buffer
+ self.frame_length = demucs.valid_length(1) + \
+ demucs.total_stride * (num_frames - 1)
+ self.total_length = self.frame_length + self.resample_lookahead
+ self.stride = demucs.total_stride * num_frames
+ self.resample_in = th.zeros(demucs.chin, resample_buffer, device=device)
+ self.resample_out = th.zeros(
+ demucs.chin, resample_buffer, device=device
+ )
+
+ self.frames = 0
+ self.total_time = 0
+ self.variance = 0
+ self.pending = th.zeros(demucs.chin, 0, device=device)
+
+ bias = demucs.decoder[0][2].bias
+ weight = demucs.decoder[0][2].weight
+ chin, chout, kernel = weight.shape
+ self._bias = bias.view(-1, 1).repeat(1, kernel).view(-1, 1)
+ self._weight = weight.permute(1, 2, 0).contiguous()
+
+ def reset_time_per_frame(self):
+ self.total_time = 0
+ self.frames = 0
+
+ @property
+ def time_per_frame(self):
+ return self.total_time / self.frames
+
+ def flush(self):
+ """
+ Flush remaining audio by padding it with zero. Call this
+ when you have no more input and want to get back the last chunk of audio.
+ """
+ pending_length = self.pending.shape[1]
+ padding = th.zeros(
+ self.demucs.chin, self.total_length, device=self.pending.device
+ )
+ out = self.feed(padding)
+ return out[:, :pending_length]
+
+ def feed(self, wav):
+ """
+ Apply the model to mix using true real time evaluation.
+ Normalization is done online as is the resampling.
+ """
+ begin = time.time()
+ demucs = self.demucs
+ resample_buffer = self.resample_buffer
+ stride = self.stride
+ resample = demucs.resample
+
+ if wav.dim() != 2:
+ raise ValueError("input wav should be two dimensional.")
+ chin, _ = wav.shape
+ if chin != demucs.chin:
+ raise ValueError(f"Expected {demucs.chin} channels, got {chin}")
+
+ self.pending = th.cat([self.pending, wav], dim=1)
+ outs = []
+ while self.pending.shape[1] >= self.total_length:
+ self.frames += 1
+ frame = self.pending[:, :self.total_length]
+ dry_signal = frame[:, :stride]
+ if demucs.normalize:
+ mono = frame.mean(0)
+ variance = (mono**2).mean()
+ self.variance = variance / self.frames + \
+ (1 - 1 / self.frames) * self.variance
+ frame = frame / (demucs.floor + math.sqrt(self.variance))
+ frame = th.cat([self.resample_in, frame], dim=-1)
+ self.resample_in[:] = frame[:, stride - resample_buffer:stride]
+
+ if resample == 4:
+ frame = upsample2(upsample2(frame))
+ elif resample == 2:
+ frame = upsample2(frame)
+ # remove pre sampling buffer
+ frame = frame[:, resample * resample_buffer:]
+ # remove extra samples after window
+ frame = frame[:, :resample * self.frame_length]
+
+ out, extra = self._separate_frame(frame)
+ padded_out = th.cat([self.resample_out, out, extra], 1)
+ self.resample_out[:] = out[:, -resample_buffer:]
+ if resample == 4:
+ out = downsample2(downsample2(padded_out))
+ elif resample == 2:
+ out = downsample2(padded_out)
+ else:
+ out = padded_out
+
+ out = out[:, resample_buffer // resample:]
+ out = out[:, :stride]
+
+ if demucs.normalize:
+ out *= math.sqrt(self.variance)
+ out = self.dry * dry_signal + (1 - self.dry) * out
+ outs.append(out)
+ self.pending = self.pending[:, stride:]
+
+ self.total_time += time.time() - begin
+ if outs:
+ out = th.cat(outs, 1)
+ else:
+ out = th.zeros(chin, 0, device=wav.device)
+ return out
+
+ def _separate_frame(self, frame):
+ demucs = self.demucs
+ skips = []
+ next_state = []
+ first = self.conv_state is None
+ stride = self.stride * demucs.resample
+ x = frame[None]
+ for idx, encode in enumerate(demucs.encoder):
+ stride //= demucs.stride
+ length = x.shape[2]
+ if idx == demucs.depth - 1:
+ # This is sligthly faster for the last conv
+ x = fast_conv(encode[0], x)
+ x = encode[1](x)
+ x = fast_conv(encode[2], x)
+ x = encode[3](x)
+ else:
+ if not first:
+ prev = self.conv_state.pop(0)
+ prev = prev[..., stride:]
+ tgt = (length - demucs.kernel_size) // demucs.stride + 1
+ missing = tgt - prev.shape[-1]
+ offset = length - demucs.kernel_size - \
+ demucs.stride * (missing - 1)
+ x = x[..., offset:]
+ x = encode[1](encode[0](x))
+ x = fast_conv(encode[2], x)
+ x = encode[3](x)
+ if not first:
+ x = th.cat([prev, x], -1)
+ next_state.append(x)
+ skips.append(x)
+
+ x = x.permute(2, 0, 1)
+ x, self.lstm_state = demucs.lstm(x, self.lstm_state)
+ x = x.permute(1, 2, 0)
+ # In the following, x contains only correct samples, i.e. the one
+ # for which each time position is covered by two window of the upper
+ # layer. extra contains extra samples to the right, and is used only as
+ # a better padding for the online resampling.
+ extra = None
+ for idx, decode in enumerate(demucs.decoder):
+ skip = skips.pop(-1)
+ x += skip[..., :x.shape[-1]]
+ x = fast_conv(decode[0], x)
+ x = decode[1](x)
+
+ if extra is not None:
+ skip = skip[..., x.shape[-1]:]
+ extra += skip[..., :extra.shape[-1]]
+ extra = decode[2](decode[1](decode[0](extra)))
+ x = decode[2](x)
+ next_state.append(
+ x[..., -demucs.stride:] - decode[2].bias.view(-1, 1)
+ )
+ if extra is None:
+ extra = x[..., -demucs.stride:]
+ else:
+ extra[..., :demucs.stride] += next_state[-1]
+ x = x[..., :-demucs.stride]
+
+ if not first:
+ prev = self.conv_state.pop(0)
+ x[..., :demucs.stride] += prev
+ if idx != demucs.depth - 1:
+ x = decode[3](x)
+ extra = decode[3](extra)
+ self.conv_state = next_state
+ return x[0], extra[0]
+
+
+def test():
+ import argparse
+ parser = argparse.ArgumentParser(
+ "denoiser.demucs",
+ description="Benchmark the streaming Demucs implementation, as well as "
+ "checking the delta with the offline implementation.")
+ parser.add_argument("--depth", default=5, type=int)
+ parser.add_argument("--resample", default=4, type=int)
+ parser.add_argument("--hidden", default=48, type=int)
+ parser.add_argument("--sample_rate", default=16000, type=float)
+ parser.add_argument("--device", default="cpu")
+ parser.add_argument("-t", "--num_threads", type=int)
+ parser.add_argument("-f", "--num_frames", type=int, default=1)
+ args = parser.parse_args()
+ if args.num_threads:
+ th.set_num_threads(args.num_threads)
+ sr = args.sample_rate
+ sr_ms = sr / 1000
+ demucs = Demucs(
+ depth=args.depth, hidden=args.hidden, resample=args.resample
+ ).to(args.device)
+ x = th.randn(1, int(sr * 4)).to(args.device)
+ out = demucs(x[None])[0]
+ streamer = DemucsStreamer(demucs, num_frames=args.num_frames)
+ out_rt = []
+ frame_size = streamer.total_length
+ with th.no_grad():
+ while x.shape[1] > 0:
+ out_rt.append(streamer.feed(x[:, :frame_size]))
+ x = x[:, frame_size:]
+ frame_size = streamer.demucs.total_stride
+ out_rt.append(streamer.flush())
+ out_rt = th.cat(out_rt, 1)
+ model_size = sum(p.numel() for p in demucs.parameters()) * 4 / 2**20
+ initial_lag = streamer.total_length / sr_ms
+ tpf = 1000 * streamer.time_per_frame
+ print(f"model size: {model_size:.1f}MB, ", end='')
+ print(f"delta batch/streaming: {th.norm(out - out_rt) / th.norm(out):.2%}")
+ print(f"initial lag: {initial_lag:.1f}ms, ", end='')
+ print(f"stride: {streamer.stride * args.num_frames / sr_ms:.1f}ms")
+ print(f"time per frame: {tpf:.1f}ms, ", end='')
+ rtf = (1000 * streamer.time_per_frame) / (streamer.stride / sr_ms)
+ print(f"RTF: {rtf:.2f}")
+ print(f"Total lag with computation: {initial_lag + tpf:.1f}ms")
+
+
+if __name__ == "__main__":
+ test()
diff --git a/fairseq/examples/speech_synthesis/preprocessing/denoiser/pretrained.py b/fairseq/examples/speech_synthesis/preprocessing/denoiser/pretrained.py
new file mode 100644
index 0000000000000000000000000000000000000000..2fa846075b6872cdcc0baebca0b9acbb9ffcd287
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/denoiser/pretrained.py
@@ -0,0 +1,81 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+# author: adefossez
+
+import logging
+
+import torch.hub
+
+from .demucs import Demucs
+from .utils import deserialize_model
+
+logger = logging.getLogger(__name__)
+ROOT = "https://dl.fbaipublicfiles.com/adiyoss/denoiser/"
+DNS_48_URL = ROOT + "dns48-11decc9d8e3f0998.th"
+DNS_64_URL = ROOT + "dns64-a7761ff99a7d5bb6.th"
+MASTER_64_URL = ROOT + "master64-8a5dfb4bb92753dd.th"
+
+
+def _demucs(pretrained, url, **kwargs):
+ model = Demucs(**kwargs)
+ if pretrained:
+ state_dict = torch.hub.load_state_dict_from_url(url, map_location='cpu')
+ model.load_state_dict(state_dict)
+ return model
+
+
+def dns48(pretrained=True):
+ return _demucs(pretrained, DNS_48_URL, hidden=48)
+
+
+def dns64(pretrained=True):
+ return _demucs(pretrained, DNS_64_URL, hidden=64)
+
+
+def master64(pretrained=True):
+ return _demucs(pretrained, MASTER_64_URL, hidden=64)
+
+
+def add_model_flags(parser):
+ group = parser.add_mutually_exclusive_group(required=False)
+ group.add_argument(
+ "-m", "--model_path", help="Path to local trained model."
+ )
+ group.add_argument(
+ "--dns48", action="store_true",
+ help="Use pre-trained real time H=48 model trained on DNS."
+ )
+ group.add_argument(
+ "--dns64", action="store_true",
+ help="Use pre-trained real time H=64 model trained on DNS."
+ )
+ group.add_argument(
+ "--master64", action="store_true",
+ help="Use pre-trained real time H=64 model trained on DNS and Valentini."
+ )
+
+
+def get_model(args):
+ """
+ Load local model package or torchhub pre-trained model.
+ """
+ if args.model_path:
+ logger.info("Loading model from %s", args.model_path)
+ pkg = torch.load(args.model_path)
+ model = deserialize_model(pkg)
+ elif args.dns64:
+ logger.info("Loading pre-trained real time H=64 model trained on DNS.")
+ model = dns64()
+ elif args.master64:
+ logger.info(
+ "Loading pre-trained real time H=64 model trained on DNS and Valentini."
+ )
+ model = master64()
+ else:
+ logger.info("Loading pre-trained real time H=48 model trained on DNS.")
+ model = dns48()
+ logger.debug(model)
+ return model
diff --git a/fairseq/examples/speech_synthesis/preprocessing/denoiser/resample.py b/fairseq/examples/speech_synthesis/preprocessing/denoiser/resample.py
new file mode 100644
index 0000000000000000000000000000000000000000..1222addc424d4f898d602009e4032907241aadfe
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/denoiser/resample.py
@@ -0,0 +1,79 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+# author: adefossez
+
+import math
+
+import torch as th
+from torch.nn import functional as F
+
+
+def sinc(t):
+ """sinc.
+
+ :param t: the input tensor
+ """
+ return th.where(t == 0, th.tensor(1., device=t.device, dtype=t.dtype),
+ th.sin(t) / t)
+
+
+def kernel_upsample2(zeros=56):
+ """kernel_upsample2.
+
+ """
+ win = th.hann_window(4 * zeros + 1, periodic=False)
+ winodd = win[1::2]
+ t = th.linspace(-zeros + 0.5, zeros - 0.5, 2 * zeros)
+ t *= math.pi
+ kernel = (sinc(t) * winodd).view(1, 1, -1)
+ return kernel
+
+
+def upsample2(x, zeros=56):
+ """
+ Upsampling the input by 2 using sinc interpolation.
+ Smith, Julius, and Phil Gossett. "A flexible sampling-rate conversion method."
+ ICASSP'84. IEEE International Conference on Acoustics, Speech, and Signal Processing.
+ Vol. 9. IEEE, 1984.
+ """
+ *other, time = x.shape
+ kernel = kernel_upsample2(zeros).to(x)
+ out = F.conv1d(x.view(-1, 1, time), kernel, padding=zeros)[..., 1:].view(
+ *other, time
+ )
+ y = th.stack([x, out], dim=-1)
+ return y.view(*other, -1)
+
+
+def kernel_downsample2(zeros=56):
+ """kernel_downsample2.
+
+ """
+ win = th.hann_window(4 * zeros + 1, periodic=False)
+ winodd = win[1::2]
+ t = th.linspace(-zeros + 0.5, zeros - 0.5, 2 * zeros)
+ t.mul_(math.pi)
+ kernel = (sinc(t) * winodd).view(1, 1, -1)
+ return kernel
+
+
+def downsample2(x, zeros=56):
+ """
+ Downsampling the input by 2 using sinc interpolation.
+ Smith, Julius, and Phil Gossett. "A flexible sampling-rate conversion method."
+ ICASSP'84. IEEE International Conference on Acoustics, Speech, and Signal Processing.
+ Vol. 9. IEEE, 1984.
+ """
+ if x.shape[-1] % 2 != 0:
+ x = F.pad(x, (0, 1))
+ xeven = x[..., ::2]
+ xodd = x[..., 1::2]
+ *other, time = xodd.shape
+ kernel = kernel_downsample2(zeros).to(x)
+ out = xeven + F.conv1d(
+ xodd.view(-1, 1, time), kernel, padding=zeros
+ )[..., :-1].view(*other, time)
+ return out.view(*other, -1).mul(0.5)
diff --git a/fairseq/examples/speech_synthesis/preprocessing/denoiser/utils.py b/fairseq/examples/speech_synthesis/preprocessing/denoiser/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..734d047f1bb8e3aa98c88e152eee7f91fea3d814
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/denoiser/utils.py
@@ -0,0 +1,176 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# All rights reserved.
+#
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+# author: adefossez
+
+import functools
+import logging
+from contextlib import contextmanager
+import inspect
+import time
+
+logger = logging.getLogger(__name__)
+
+EPS = 1e-8
+
+
+def capture_init(init):
+ """capture_init.
+
+ Decorate `__init__` with this, and you can then
+ recover the *args and **kwargs passed to it in `self._init_args_kwargs`
+ """
+ @functools.wraps(init)
+ def __init__(self, *args, **kwargs):
+ self._init_args_kwargs = (args, kwargs)
+ init(self, *args, **kwargs)
+
+ return __init__
+
+
+def deserialize_model(package, strict=False):
+ """deserialize_model.
+
+ """
+ klass = package['class']
+ if strict:
+ model = klass(*package['args'], **package['kwargs'])
+ else:
+ sig = inspect.signature(klass)
+ kw = package['kwargs']
+ for key in list(kw):
+ if key not in sig.parameters:
+ logger.warning("Dropping inexistant parameter %s", key)
+ del kw[key]
+ model = klass(*package['args'], **kw)
+ model.load_state_dict(package['state'])
+ return model
+
+
+def copy_state(state):
+ return {k: v.cpu().clone() for k, v in state.items()}
+
+
+def serialize_model(model):
+ args, kwargs = model._init_args_kwargs
+ state = copy_state(model.state_dict())
+ return {"class": model.__class__, "args": args, "kwargs": kwargs, "state": state}
+
+
+@contextmanager
+def swap_state(model, state):
+ """
+ Context manager that swaps the state of a model, e.g:
+
+ # model is in old state
+ with swap_state(model, new_state):
+ # model in new state
+ # model back to old state
+ """
+ old_state = copy_state(model.state_dict())
+ model.load_state_dict(state)
+ try:
+ yield
+ finally:
+ model.load_state_dict(old_state)
+
+
+def pull_metric(history, name):
+ out = []
+ for metrics in history:
+ if name in metrics:
+ out.append(metrics[name])
+ return out
+
+
+class LogProgress:
+ """
+ Sort of like tqdm but using log lines and not as real time.
+ Args:
+ - logger: logger obtained from `logging.getLogger`,
+ - iterable: iterable object to wrap
+ - updates (int): number of lines that will be printed, e.g.
+ if `updates=5`, log every 1/5th of the total length.
+ - total (int): length of the iterable, in case it does not support
+ `len`.
+ - name (str): prefix to use in the log.
+ - level: logging level (like `logging.INFO`).
+ """
+ def __init__(self,
+ logger,
+ iterable,
+ updates=5,
+ total=None,
+ name="LogProgress",
+ level=logging.INFO):
+ self.iterable = iterable
+ self.total = total or len(iterable)
+ self.updates = updates
+ self.name = name
+ self.logger = logger
+ self.level = level
+
+ def update(self, **infos):
+ self._infos = infos
+
+ def __iter__(self):
+ self._iterator = iter(self.iterable)
+ self._index = -1
+ self._infos = {}
+ self._begin = time.time()
+ return self
+
+ def __next__(self):
+ self._index += 1
+ try:
+ value = next(self._iterator)
+ except StopIteration:
+ raise
+ else:
+ return value
+ finally:
+ log_every = max(1, self.total // self.updates)
+ # logging is delayed by 1 it, in order to have the metrics from update
+ if self._index >= 1 and self._index % log_every == 0:
+ self._log()
+
+ def _log(self):
+ self._speed = (1 + self._index) / (time.time() - self._begin)
+ infos = " | ".join(f"{k.capitalize()} {v}" for k, v in self._infos.items())
+ if self._speed < 1e-4:
+ speed = "oo sec/it"
+ elif self._speed < 0.1:
+ speed = f"{1/self._speed:.1f} sec/it"
+ else:
+ speed = f"{self._speed:.1f} it/sec"
+ out = f"{self.name} | {self._index}/{self.total} | {speed}"
+ if infos:
+ out += " | " + infos
+ self.logger.log(self.level, out)
+
+
+def colorize(text, color):
+ """
+ Display text with some ANSI color in the terminal.
+ """
+ code = f"\033[{color}m"
+ restore = "\033[0m"
+ return "".join([code, text, restore])
+
+
+def bold(text):
+ """
+ Display text in bold in the terminal.
+ """
+ return colorize(text, "1")
+
+
+def cal_snr(lbl, est):
+ import torch
+ y = 10.0 * torch.log10(
+ torch.sum(lbl**2, dim=-1) / (torch.sum((est-lbl)**2, dim=-1) + EPS) +
+ EPS
+ )
+ return y
diff --git a/fairseq/examples/speech_synthesis/preprocessing/get_common_voice_audio_manifest.py b/fairseq/examples/speech_synthesis/preprocessing/get_common_voice_audio_manifest.py
new file mode 100644
index 0000000000000000000000000000000000000000..a30254604311a488a1d4959f941051890ed32b2e
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/get_common_voice_audio_manifest.py
@@ -0,0 +1,140 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+from pathlib import Path
+from collections import defaultdict
+from typing import List, Dict, Tuple
+
+import pandas as pd
+import numpy as np
+import torchaudio
+from tqdm import tqdm
+
+from examples.speech_to_text.data_utils import load_df_from_tsv, save_df_to_tsv
+
+
+log = logging.getLogger(__name__)
+
+SPLITS = ["train", "dev", "test"]
+
+
+def get_top_n(
+ root: Path, n_speakers: int = 10, min_n_tokens: int = 5
+) -> pd.DataFrame:
+ df = load_df_from_tsv(root / "validated.tsv")
+ df["n_tokens"] = [len(s.split()) for s in df["sentence"]]
+ df = df[df["n_tokens"] >= min_n_tokens]
+ df["n_frames"] = [
+ torchaudio.info((root / "clips" / p).as_posix()).num_frames
+ for p in tqdm(df["path"])
+ ]
+ df["id"] = [Path(p).stem for p in df["path"]]
+ total_duration_ms = df.groupby("client_id")["n_frames"].agg(["sum"])
+ total_duration_ms = total_duration_ms.sort_values("sum", ascending=False)
+
+ top_n_total_duration_ms = total_duration_ms.head(n_speakers)
+ top_n_client_ids = set(top_n_total_duration_ms.index.tolist())
+ df_top_n = df[df["client_id"].isin(top_n_client_ids)]
+ return df_top_n
+
+
+def get_splits(
+ df, train_split_ratio=0.99, speaker_in_all_splits=False, rand_seed=0
+) -> Tuple[Dict[str, str], List[str]]:
+ np.random.seed(rand_seed)
+ dev_split_ratio = (1. - train_split_ratio) / 3
+ grouped = list(df.groupby("client_id"))
+ id_to_split = {}
+ for _, cur_df in tqdm(grouped):
+ cur_n_examples = len(cur_df)
+ if speaker_in_all_splits and cur_n_examples < 3:
+ continue
+ cur_n_train = int(cur_n_examples * train_split_ratio)
+ cur_n_dev = int(cur_n_examples * dev_split_ratio)
+ cur_n_test = cur_n_examples - cur_n_dev - cur_n_train
+ if speaker_in_all_splits and cur_n_dev * cur_n_test == 0:
+ cur_n_dev, cur_n_test = 1, 1
+ cur_n_train = cur_n_examples - cur_n_dev - cur_n_test
+ cur_indices = cur_df.index.tolist()
+ cur_shuffled_indices = np.random.permutation(cur_n_examples)
+ cur_shuffled_indices = [cur_indices[i] for i in cur_shuffled_indices]
+ cur_indices_by_split = {
+ "train": cur_shuffled_indices[:cur_n_train],
+ "dev": cur_shuffled_indices[cur_n_train: cur_n_train + cur_n_dev],
+ "test": cur_shuffled_indices[cur_n_train + cur_n_dev:]
+ }
+ for split in SPLITS:
+ for i in cur_indices_by_split[split]:
+ id_ = df["id"].loc[i]
+ id_to_split[id_] = split
+ return id_to_split, sorted(df["client_id"].unique())
+
+
+def convert_to_wav(root: Path, filenames: List[str], target_sr=16_000):
+ out_root = root / "wav"
+ out_root.mkdir(exist_ok=True, parents=True)
+ print("Converting to WAV...")
+ for n in tqdm(filenames):
+ in_path = (root / "clips" / n).as_posix()
+ waveform, sr = torchaudio.load(in_path)
+ converted, converted_sr = torchaudio.sox_effects.apply_effects_tensor(
+ waveform, sr, [["rate", str(target_sr)], ["channels", "1"]]
+ )
+ out_path = (out_root / Path(n).with_suffix(".wav").name).as_posix()
+ torchaudio.save(out_path, converted, converted_sr, encoding="PCM_S",
+ bits_per_sample=16)
+
+
+def process(args):
+ data_root = Path(args.data_root).absolute() / args.lang
+
+ # Generate TSV manifest
+ print("Generating manifest...")
+
+ df_top_n = get_top_n(data_root)
+ id_to_split, speakers = get_splits(df_top_n)
+
+ if args.convert_to_wav:
+ convert_to_wav(data_root, df_top_n["path"].tolist())
+
+ manifest_by_split = {split: defaultdict(list) for split in SPLITS}
+ for sample in tqdm(df_top_n.to_dict(orient="index").values()):
+ sample_id = sample["id"]
+ split = id_to_split[sample_id]
+ manifest_by_split[split]["id"].append(sample_id)
+ if args.convert_to_wav:
+ audio_path = data_root / "wav" / f"{sample_id}.wav"
+ else:
+ audio_path = data_root / "clips" / f"{sample_id}.mp3"
+ manifest_by_split[split]["audio"].append(audio_path.as_posix())
+ manifest_by_split[split]["n_frames"].append(sample["n_frames"])
+ manifest_by_split[split]["tgt_text"].append(sample["sentence"])
+ manifest_by_split[split]["speaker"].append(sample["client_id"])
+ manifest_by_split[split]["src_text"].append(sample["sentence"])
+
+ output_root = Path(args.output_manifest_root).absolute()
+ output_root.mkdir(parents=True, exist_ok=True)
+ for split in SPLITS:
+ save_df_to_tsv(
+ pd.DataFrame.from_dict(manifest_by_split[split]),
+ output_root / f"{split}.audio.tsv"
+ )
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--data-root", "-d", required=True, type=str)
+ parser.add_argument("--output-manifest-root", "-m", required=True, type=str)
+ parser.add_argument("--lang", "-l", required=True, type=str)
+ parser.add_argument("--convert-to-wav", action="store_true")
+ args = parser.parse_args()
+
+ process(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/speech_synthesis/preprocessing/get_feature_manifest.py b/fairseq/examples/speech_synthesis/preprocessing/get_feature_manifest.py
new file mode 100644
index 0000000000000000000000000000000000000000..516f2cc469af9b417126dea1988698adac41d8ab
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/get_feature_manifest.py
@@ -0,0 +1,233 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+from pathlib import Path
+import shutil
+from tempfile import NamedTemporaryFile
+from collections import Counter, defaultdict
+
+import pandas as pd
+import torchaudio
+from tqdm import tqdm
+
+from fairseq.data.audio.audio_utils import convert_waveform
+from examples.speech_to_text.data_utils import (
+ create_zip,
+ gen_config_yaml,
+ gen_vocab,
+ get_zip_manifest,
+ load_tsv_to_dicts,
+ save_df_to_tsv
+)
+from examples.speech_synthesis.data_utils import (
+ extract_logmel_spectrogram, extract_pitch, extract_energy, get_global_cmvn,
+ ipa_phonemize, get_mfa_alignment, get_unit_alignment
+)
+
+
+log = logging.getLogger(__name__)
+
+
+def process(args):
+ assert "train" in args.splits
+ out_root = Path(args.output_root).absolute()
+ out_root.mkdir(exist_ok=True)
+
+ print("Fetching data...")
+ audio_manifest_root = Path(args.audio_manifest_root).absolute()
+ samples = []
+ for s in args.splits:
+ for e in load_tsv_to_dicts(audio_manifest_root / f"{s}.audio.tsv"):
+ e["split"] = s
+ samples.append(e)
+ sample_ids = [s["id"] for s in samples]
+
+ # Get alignment info
+ id_to_alignment = None
+ if args.textgrid_zip is not None:
+ assert args.id_to_units_tsv is None
+ id_to_alignment = get_mfa_alignment(
+ args.textgrid_zip, sample_ids, args.sample_rate, args.hop_length
+ )
+ elif args.id_to_units_tsv is not None:
+ # assume identical hop length on the unit sequence
+ id_to_alignment = get_unit_alignment(args.id_to_units_tsv, sample_ids)
+
+ # Extract features and pack features into ZIP
+ feature_name = "logmelspec80"
+ zip_path = out_root / f"{feature_name}.zip"
+ pitch_zip_path = out_root / "pitch.zip"
+ energy_zip_path = out_root / "energy.zip"
+ gcmvn_npz_path = out_root / "gcmvn_stats.npz"
+ if zip_path.exists() and gcmvn_npz_path.exists():
+ print(f"{zip_path} and {gcmvn_npz_path} exist.")
+ else:
+ feature_root = out_root / feature_name
+ feature_root.mkdir(exist_ok=True)
+ pitch_root = out_root / "pitch"
+ energy_root = out_root / "energy"
+ if args.add_fastspeech_targets:
+ pitch_root.mkdir(exist_ok=True)
+ energy_root.mkdir(exist_ok=True)
+ print("Extracting Mel spectrogram features...")
+ for sample in tqdm(samples):
+ waveform, sample_rate = torchaudio.load(sample["audio"])
+ waveform, sample_rate = convert_waveform(
+ waveform, sample_rate, normalize_volume=args.normalize_volume,
+ to_sample_rate=args.sample_rate
+ )
+ sample_id = sample["id"]
+ target_length = None
+ if id_to_alignment is not None:
+ a = id_to_alignment[sample_id]
+ target_length = sum(a.frame_durations)
+ if a.start_sec is not None and a.end_sec is not None:
+ start_frame = int(a.start_sec * sample_rate)
+ end_frame = int(a.end_sec * sample_rate)
+ waveform = waveform[:, start_frame: end_frame]
+ extract_logmel_spectrogram(
+ waveform, sample_rate, feature_root / f"{sample_id}.npy",
+ win_length=args.win_length, hop_length=args.hop_length,
+ n_fft=args.n_fft, n_mels=args.n_mels, f_min=args.f_min,
+ f_max=args.f_max, target_length=target_length
+ )
+ if args.add_fastspeech_targets:
+ assert id_to_alignment is not None
+ extract_pitch(
+ waveform, sample_rate, pitch_root / f"{sample_id}.npy",
+ hop_length=args.hop_length, log_scale=True,
+ phoneme_durations=id_to_alignment[sample_id].frame_durations
+ )
+ extract_energy(
+ waveform, energy_root / f"{sample_id}.npy",
+ hop_length=args.hop_length, n_fft=args.n_fft,
+ log_scale=True,
+ phoneme_durations=id_to_alignment[sample_id].frame_durations
+ )
+ print("ZIPing features...")
+ create_zip(feature_root, zip_path)
+ get_global_cmvn(feature_root, gcmvn_npz_path)
+ shutil.rmtree(feature_root)
+ if args.add_fastspeech_targets:
+ create_zip(pitch_root, pitch_zip_path)
+ shutil.rmtree(pitch_root)
+ create_zip(energy_root, energy_zip_path)
+ shutil.rmtree(energy_root)
+
+ print("Fetching ZIP manifest...")
+ audio_paths, audio_lengths = get_zip_manifest(zip_path)
+ pitch_paths, pitch_lengths, energy_paths, energy_lengths = [None] * 4
+ if args.add_fastspeech_targets:
+ pitch_paths, pitch_lengths = get_zip_manifest(pitch_zip_path)
+ energy_paths, energy_lengths = get_zip_manifest(energy_zip_path)
+ # Generate TSV manifest
+ print("Generating manifest...")
+ manifest_by_split = {split: defaultdict(list) for split in args.splits}
+ for sample in tqdm(samples):
+ sample_id, split = sample["id"], sample["split"]
+ normalized_utt = sample["tgt_text"]
+ if id_to_alignment is not None:
+ normalized_utt = " ".join(id_to_alignment[sample_id].tokens)
+ elif args.ipa_vocab:
+ normalized_utt = ipa_phonemize(
+ normalized_utt, lang=args.lang, use_g2p=args.use_g2p
+ )
+ manifest_by_split[split]["id"].append(sample_id)
+ manifest_by_split[split]["audio"].append(audio_paths[sample_id])
+ manifest_by_split[split]["n_frames"].append(audio_lengths[sample_id])
+ manifest_by_split[split]["tgt_text"].append(normalized_utt)
+ manifest_by_split[split]["speaker"].append(sample["speaker"])
+ manifest_by_split[split]["src_text"].append(sample["src_text"])
+ if args.add_fastspeech_targets:
+ assert id_to_alignment is not None
+ duration = " ".join(
+ str(d) for d in id_to_alignment[sample_id].frame_durations
+ )
+ manifest_by_split[split]["duration"].append(duration)
+ manifest_by_split[split]["pitch"].append(pitch_paths[sample_id])
+ manifest_by_split[split]["energy"].append(energy_paths[sample_id])
+ for split in args.splits:
+ save_df_to_tsv(
+ pd.DataFrame.from_dict(manifest_by_split[split]),
+ out_root / f"{split}.tsv"
+ )
+ # Generate vocab
+ vocab_name, spm_filename = None, None
+ if id_to_alignment is not None or args.ipa_vocab:
+ vocab = Counter()
+ for t in manifest_by_split["train"]["tgt_text"]:
+ vocab.update(t.split(" "))
+ vocab_name = "vocab.txt"
+ with open(out_root / vocab_name, "w") as f:
+ for s, c in vocab.most_common():
+ f.write(f"{s} {c}\n")
+ else:
+ spm_filename_prefix = "spm_char"
+ spm_filename = f"{spm_filename_prefix}.model"
+ with NamedTemporaryFile(mode="w") as f:
+ for t in manifest_by_split["train"]["tgt_text"]:
+ f.write(t + "\n")
+ f.flush() # needed to ensure gen_vocab sees dumped text
+ gen_vocab(Path(f.name), out_root / spm_filename_prefix, "char")
+ # Generate speaker list
+ speakers = sorted({sample["speaker"] for sample in samples})
+ speakers_path = out_root / "speakers.txt"
+ with open(speakers_path, "w") as f:
+ for speaker in speakers:
+ f.write(f"{speaker}\n")
+ # Generate config YAML
+ win_len_t = args.win_length / args.sample_rate
+ hop_len_t = args.hop_length / args.sample_rate
+ extra = {
+ "sample_rate": args.sample_rate,
+ "features": {
+ "type": "spectrogram+melscale+log",
+ "eps": 1e-2, "n_mels": args.n_mels, "n_fft": args.n_fft,
+ "window_fn": "hann", "win_length": args.win_length,
+ "hop_length": args.hop_length, "sample_rate": args.sample_rate,
+ "win_len_t": win_len_t, "hop_len_t": hop_len_t,
+ "f_min": args.f_min, "f_max": args.f_max,
+ "n_stft": args.n_fft // 2 + 1
+ }
+ }
+ if len(speakers) > 1:
+ extra["speaker_set_filename"] = "speakers.txt"
+ gen_config_yaml(
+ out_root, spm_filename=spm_filename, vocab_name=vocab_name,
+ audio_root=out_root.as_posix(), input_channels=None,
+ input_feat_per_channel=None, specaugment_policy=None,
+ cmvn_type="global", gcmvn_path=gcmvn_npz_path, extra=extra
+ )
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--audio-manifest-root", "-m", required=True, type=str)
+ parser.add_argument("--output-root", "-o", required=True, type=str)
+ parser.add_argument("--splits", "-s", type=str, nargs="+",
+ default=["train", "dev", "test"])
+ parser.add_argument("--ipa-vocab", action="store_true")
+ parser.add_argument("--use-g2p", action="store_true")
+ parser.add_argument("--lang", type=str, default="en-us")
+ parser.add_argument("--win-length", type=int, default=1024)
+ parser.add_argument("--hop-length", type=int, default=256)
+ parser.add_argument("--n-fft", type=int, default=1024)
+ parser.add_argument("--n-mels", type=int, default=80)
+ parser.add_argument("--f-min", type=int, default=20)
+ parser.add_argument("--f-max", type=int, default=8000)
+ parser.add_argument("--sample-rate", type=int, default=22050)
+ parser.add_argument("--normalize-volume", "-n", action="store_true")
+ parser.add_argument("--textgrid-zip", type=str, default=None)
+ parser.add_argument("--id-to-units-tsv", type=str, default=None)
+ parser.add_argument("--add-fastspeech-targets", action="store_true")
+ args = parser.parse_args()
+
+ process(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/speech_synthesis/preprocessing/get_ljspeech_audio_manifest.py b/fairseq/examples/speech_synthesis/preprocessing/get_ljspeech_audio_manifest.py
new file mode 100644
index 0000000000000000000000000000000000000000..7ec1fb7521b8a9b821d28bcaaaedb034f6e95e0b
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/get_ljspeech_audio_manifest.py
@@ -0,0 +1,70 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+from pathlib import Path
+from collections import defaultdict
+
+import pandas as pd
+from torchaudio.datasets import LJSPEECH
+from tqdm import tqdm
+
+from examples.speech_to_text.data_utils import save_df_to_tsv
+
+
+log = logging.getLogger(__name__)
+
+SPLITS = ["train", "dev", "test"]
+
+
+def process(args):
+ out_root = Path(args.output_data_root).absolute()
+ out_root.mkdir(parents=True, exist_ok=True)
+
+ # Generate TSV manifest
+ print("Generating manifest...")
+ # following FastSpeech's splits
+ dataset = LJSPEECH(out_root.as_posix(), download=True)
+ id_to_split = {}
+ for x in dataset._flist:
+ id_ = x[0]
+ speaker = id_.split("-")[0]
+ id_to_split[id_] = {
+ "LJ001": "test", "LJ002": "test", "LJ003": "dev"
+ }.get(speaker, "train")
+ manifest_by_split = {split: defaultdict(list) for split in SPLITS}
+ progress = tqdm(enumerate(dataset), total=len(dataset))
+ for i, (waveform, _, utt, normalized_utt) in progress:
+ sample_id = dataset._flist[i][0]
+ split = id_to_split[sample_id]
+ manifest_by_split[split]["id"].append(sample_id)
+ audio_path = f"{dataset._path}/{sample_id}.wav"
+ manifest_by_split[split]["audio"].append(audio_path)
+ manifest_by_split[split]["n_frames"].append(len(waveform[0]))
+ manifest_by_split[split]["tgt_text"].append(normalized_utt)
+ manifest_by_split[split]["speaker"].append("ljspeech")
+ manifest_by_split[split]["src_text"].append(utt)
+
+ manifest_root = Path(args.output_manifest_root).absolute()
+ manifest_root.mkdir(parents=True, exist_ok=True)
+ for split in SPLITS:
+ save_df_to_tsv(
+ pd.DataFrame.from_dict(manifest_by_split[split]),
+ manifest_root / f"{split}.audio.tsv"
+ )
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--output-data-root", "-d", required=True, type=str)
+ parser.add_argument("--output-manifest-root", "-m", required=True, type=str)
+ args = parser.parse_args()
+
+ process(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/speech_synthesis/preprocessing/get_speaker_embedding.py b/fairseq/examples/speech_synthesis/preprocessing/get_speaker_embedding.py
new file mode 100644
index 0000000000000000000000000000000000000000..0e3e4c5cd7aef15dae0b41b0ec7b33e17f66597f
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/get_speaker_embedding.py
@@ -0,0 +1,89 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import argparse
+from collections import defaultdict
+from itertools import chain
+from pathlib import Path
+
+import numpy as np
+import torchaudio
+import torchaudio.sox_effects as ta_sox
+import yaml
+from tqdm import tqdm
+
+from examples.speech_to_text.data_utils import load_tsv_to_dicts
+from examples.speech_synthesis.preprocessing.speaker_embedder import SpkrEmbedder
+
+
+def extract_embedding(audio_path, embedder):
+ wav, sr = torchaudio.load(audio_path) # 2D
+ if sr != embedder.RATE:
+ wav, sr = ta_sox.apply_effects_tensor(
+ wav, sr, [["rate", str(embedder.RATE)]]
+ )
+ try:
+ emb = embedder([wav[0].cuda().float()]).cpu().numpy()
+ except RuntimeError:
+ emb = None
+ return emb
+
+
+def process(args):
+ print("Fetching data...")
+ raw_manifest_root = Path(args.raw_manifest_root).absolute()
+ samples = [load_tsv_to_dicts(raw_manifest_root / (s + ".tsv"))
+ for s in args.splits]
+ samples = list(chain(*samples))
+ with open(args.config, "r") as f:
+ config = yaml.load(f, Loader=yaml.FullLoader)
+ with open(f"{config['audio_root']}/{config['speaker_set_filename']}") as f:
+ speaker_to_id = {r.strip(): i for i, r in enumerate(f)}
+
+ embedder = SpkrEmbedder(args.ckpt).cuda()
+ speaker_to_cnt = defaultdict(float)
+ speaker_to_emb = defaultdict(float)
+ for sample in tqdm(samples, desc="extract emb"):
+ emb = extract_embedding(sample["audio"], embedder)
+ if emb is not None:
+ speaker_to_cnt[sample["speaker"]] += 1
+ speaker_to_emb[sample["speaker"]] += emb
+ if len(speaker_to_emb) != len(speaker_to_id):
+ missed = set(speaker_to_id) - set(speaker_to_emb.keys())
+ print(
+ f"WARNING: missing embeddings for {len(missed)} speaker:\n{missed}"
+ )
+ speaker_emb_mat = np.zeros((len(speaker_to_id), len(emb)), float)
+ for speaker in speaker_to_emb:
+ idx = speaker_to_id[speaker]
+ emb = speaker_to_emb[speaker]
+ cnt = speaker_to_cnt[speaker]
+ speaker_emb_mat[idx, :] = emb / cnt
+ speaker_emb_name = "speaker_emb.npy"
+ speaker_emb_path = f"{config['audio_root']}/{speaker_emb_name}"
+ np.save(speaker_emb_path, speaker_emb_mat)
+ config["speaker_emb_filename"] = speaker_emb_name
+
+ with open(args.new_config, "w") as f:
+ yaml.dump(config, f)
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--raw-manifest-root", "-m", required=True, type=str)
+ parser.add_argument("--splits", "-s", type=str, nargs="+",
+ default=["train"])
+ parser.add_argument("--config", "-c", required=True, type=str)
+ parser.add_argument("--new-config", "-n", required=True, type=str)
+ parser.add_argument("--ckpt", required=True, type=str,
+ help="speaker embedder checkpoint")
+ args = parser.parse_args()
+
+ process(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/speech_synthesis/preprocessing/get_vctk_audio_manifest.py b/fairseq/examples/speech_synthesis/preprocessing/get_vctk_audio_manifest.py
new file mode 100644
index 0000000000000000000000000000000000000000..7afa40fcd195465a225c9f251734e84fe6b3c7ef
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/get_vctk_audio_manifest.py
@@ -0,0 +1,79 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+import numpy as np
+import re
+from pathlib import Path
+from collections import defaultdict
+
+import pandas as pd
+from torchaudio.datasets import VCTK
+from tqdm import tqdm
+
+from examples.speech_to_text.data_utils import save_df_to_tsv
+
+
+log = logging.getLogger(__name__)
+
+SPLITS = ["train", "dev", "test"]
+
+
+def normalize_text(text):
+ return re.sub(r"[^a-zA-Z.?!,'\- ]", '', text)
+
+
+def process(args):
+ out_root = Path(args.output_data_root).absolute()
+ out_root.mkdir(parents=True, exist_ok=True)
+
+ # Generate TSV manifest
+ print("Generating manifest...")
+ dataset = VCTK(out_root.as_posix(), download=False)
+ ids = list(dataset._walker)
+ np.random.seed(args.seed)
+ np.random.shuffle(ids)
+ n_train = len(ids) - args.n_dev - args.n_test
+ _split = ["train"] * n_train + ["dev"] * args.n_dev + ["test"] * args.n_test
+ id_to_split = dict(zip(ids, _split))
+ manifest_by_split = {split: defaultdict(list) for split in SPLITS}
+ progress = tqdm(enumerate(dataset), total=len(dataset))
+ for i, (waveform, _, text, speaker_id, _) in progress:
+ sample_id = dataset._walker[i]
+ _split = id_to_split[sample_id]
+ audio_dir = Path(dataset._path) / dataset._folder_audio / speaker_id
+ audio_path = audio_dir / f"{sample_id}.wav"
+ text = normalize_text(text)
+ manifest_by_split[_split]["id"].append(sample_id)
+ manifest_by_split[_split]["audio"].append(audio_path.as_posix())
+ manifest_by_split[_split]["n_frames"].append(len(waveform[0]))
+ manifest_by_split[_split]["tgt_text"].append(text)
+ manifest_by_split[_split]["speaker"].append(speaker_id)
+ manifest_by_split[_split]["src_text"].append(text)
+
+ manifest_root = Path(args.output_manifest_root).absolute()
+ manifest_root.mkdir(parents=True, exist_ok=True)
+ for _split in SPLITS:
+ save_df_to_tsv(
+ pd.DataFrame.from_dict(manifest_by_split[_split]),
+ manifest_root / f"{_split}.audio.tsv"
+ )
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--output-data-root", "-d", required=True, type=str)
+ parser.add_argument("--output-manifest-root", "-m", required=True, type=str)
+ parser.add_argument("--n-dev", default=50, type=int)
+ parser.add_argument("--n-test", default=100, type=int)
+ parser.add_argument("--seed", "-s", default=1234, type=int)
+ args = parser.parse_args()
+
+ process(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/speech_synthesis/preprocessing/speaker_embedder/__init__.py b/fairseq/examples/speech_synthesis/preprocessing/speaker_embedder/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..3b178676ba322ef613df42977cb498101f841b09
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/speaker_embedder/__init__.py
@@ -0,0 +1,135 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import librosa
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.utils.data
+import torchaudio
+
+
+EMBEDDER_PARAMS = {
+ 'num_mels': 40,
+ 'n_fft': 512,
+ 'emb_dim': 256,
+ 'lstm_hidden': 768,
+ 'lstm_layers': 3,
+ 'window': 80,
+ 'stride': 40,
+}
+
+
+def set_requires_grad(nets, requires_grad=False):
+ """Set requies_grad=Fasle for all the networks to avoid unnecessary
+ computations
+ Parameters:
+ nets (network list) -- a list of networks
+ requires_grad (bool) -- whether the networks require gradients or not
+ """
+ if not isinstance(nets, list):
+ nets = [nets]
+ for net in nets:
+ if net is not None:
+ for param in net.parameters():
+ param.requires_grad = requires_grad
+
+
+class LinearNorm(nn.Module):
+ def __init__(self, hp):
+ super(LinearNorm, self).__init__()
+ self.linear_layer = nn.Linear(hp["lstm_hidden"], hp["emb_dim"])
+
+ def forward(self, x):
+ return self.linear_layer(x)
+
+
+class SpeechEmbedder(nn.Module):
+ def __init__(self, hp):
+ super(SpeechEmbedder, self).__init__()
+ self.lstm = nn.LSTM(hp["num_mels"],
+ hp["lstm_hidden"],
+ num_layers=hp["lstm_layers"],
+ batch_first=True)
+ self.proj = LinearNorm(hp)
+ self.hp = hp
+
+ def forward(self, mel):
+ # (num_mels, T) -> (num_mels, T', window)
+ mels = mel.unfold(1, self.hp["window"], self.hp["stride"])
+ mels = mels.permute(1, 2, 0) # (T', window, num_mels)
+ x, _ = self.lstm(mels) # (T', window, lstm_hidden)
+ x = x[:, -1, :] # (T', lstm_hidden), use last frame only
+ x = self.proj(x) # (T', emb_dim)
+ x = x / torch.norm(x, p=2, dim=1, keepdim=True) # (T', emb_dim)
+
+ x = x.mean(dim=0)
+ if x.norm(p=2) != 0:
+ x = x / x.norm(p=2)
+ return x
+
+
+class SpkrEmbedder(nn.Module):
+ RATE = 16000
+
+ def __init__(
+ self,
+ embedder_path,
+ embedder_params=EMBEDDER_PARAMS,
+ rate=16000,
+ hop_length=160,
+ win_length=400,
+ pad=False,
+ ):
+ super(SpkrEmbedder, self).__init__()
+ embedder_pt = torch.load(embedder_path, map_location="cpu")
+ self.embedder = SpeechEmbedder(embedder_params)
+ self.embedder.load_state_dict(embedder_pt)
+ self.embedder.eval()
+ set_requires_grad(self.embedder, requires_grad=False)
+ self.embedder_params = embedder_params
+
+ self.register_buffer('mel_basis', torch.from_numpy(
+ librosa.filters.mel(
+ sr=self.RATE,
+ n_fft=self.embedder_params["n_fft"],
+ n_mels=self.embedder_params["num_mels"])
+ )
+ )
+
+ self.resample = None
+ if rate != self.RATE:
+ self.resample = torchaudio.transforms.Resample(rate, self.RATE)
+ self.hop_length = hop_length
+ self.win_length = win_length
+ self.pad = pad
+
+ def get_mel(self, y):
+ if self.pad and y.shape[-1] < 14000:
+ y = F.pad(y, (0, 14000 - y.shape[-1]))
+
+ window = torch.hann_window(self.win_length).to(y)
+ y = torch.stft(y, n_fft=self.embedder_params["n_fft"],
+ hop_length=self.hop_length,
+ win_length=self.win_length,
+ window=window)
+ magnitudes = torch.norm(y, dim=-1, p=2) ** 2
+ mel = torch.log10(self.mel_basis @ magnitudes + 1e-6)
+ return mel
+
+ def forward(self, inputs):
+ dvecs = []
+ for wav in inputs:
+ mel = self.get_mel(wav)
+ if mel.dim() == 3:
+ mel = mel.squeeze(0)
+ dvecs += [self.embedder(mel)]
+ dvecs = torch.stack(dvecs)
+
+ dvec = torch.mean(dvecs, dim=0)
+ dvec = dvec / torch.norm(dvec)
+
+ return dvec
diff --git a/fairseq/examples/speech_synthesis/preprocessing/vad/__init__.py b/fairseq/examples/speech_synthesis/preprocessing/vad/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9cf121081fbde2f5085ed380f0841649d143a4be
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/preprocessing/vad/__init__.py
@@ -0,0 +1,192 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import collections
+import contextlib
+import wave
+
+try:
+ import webrtcvad
+except ImportError:
+ raise ImportError("Please install py-webrtcvad: pip install webrtcvad")
+import argparse
+import os
+import logging
+from tqdm import tqdm
+
+AUDIO_SUFFIX = '.wav'
+FS_MS = 30
+SCALE = 6e-5
+THRESHOLD = 0.3
+
+
+def read_wave(path):
+ """Reads a .wav file.
+ Takes the path, and returns (PCM audio data, sample rate).
+ """
+ with contextlib.closing(wave.open(path, 'rb')) as wf:
+ num_channels = wf.getnchannels()
+ assert num_channels == 1
+ sample_width = wf.getsampwidth()
+ assert sample_width == 2
+ sample_rate = wf.getframerate()
+ assert sample_rate in (8000, 16000, 32000, 48000)
+ pcm_data = wf.readframes(wf.getnframes())
+ return pcm_data, sample_rate
+
+
+def write_wave(path, audio, sample_rate):
+ """Writes a .wav file.
+ Takes path, PCM audio data, and sample rate.
+ """
+ with contextlib.closing(wave.open(path, 'wb')) as wf:
+ wf.setnchannels(1)
+ wf.setsampwidth(2)
+ wf.setframerate(sample_rate)
+ wf.writeframes(audio)
+
+
+class Frame(object):
+ """Represents a "frame" of audio data."""
+ def __init__(self, bytes, timestamp, duration):
+ self.bytes = bytes
+ self.timestamp = timestamp
+ self.duration = duration
+
+
+def frame_generator(frame_duration_ms, audio, sample_rate):
+ """Generates audio frames from PCM audio data.
+ Takes the desired frame duration in milliseconds, the PCM data, and
+ the sample rate.
+ Yields Frames of the requested duration.
+ """
+ n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
+ offset = 0
+ timestamp = 0.0
+ duration = (float(n) / sample_rate) / 2.0
+ while offset + n < len(audio):
+ yield Frame(audio[offset:offset + n], timestamp, duration)
+ timestamp += duration
+ offset += n
+
+
+def vad_collector(sample_rate, frame_duration_ms,
+ padding_duration_ms, vad, frames):
+ """Filters out non-voiced audio frames.
+ Given a webrtcvad.Vad and a source of audio frames, yields only
+ the voiced audio.
+ Uses a padded, sliding window algorithm over the audio frames.
+ When more than 90% of the frames in the window are voiced (as
+ reported by the VAD), the collector triggers and begins yielding
+ audio frames. Then the collector waits until 90% of the frames in
+ the window are unvoiced to detrigger.
+ The window is padded at the front and back to provide a small
+ amount of silence or the beginnings/endings of speech around the
+ voiced frames.
+ Arguments:
+ sample_rate - The audio sample rate, in Hz.
+ frame_duration_ms - The frame duration in milliseconds.
+ padding_duration_ms - The amount to pad the window, in milliseconds.
+ vad - An instance of webrtcvad.Vad.
+ frames - a source of audio frames (sequence or generator).
+ Returns: A generator that yields PCM audio data.
+ """
+ num_padding_frames = int(padding_duration_ms / frame_duration_ms)
+ # We use a deque for our sliding window/ring buffer.
+ ring_buffer = collections.deque(maxlen=num_padding_frames)
+ # We have two states: TRIGGERED and NOTTRIGGERED. We start in the
+ # NOTTRIGGERED state.
+ triggered = False
+
+ voiced_frames = []
+ for frame in frames:
+ is_speech = vad.is_speech(frame.bytes, sample_rate)
+
+ # sys.stdout.write('1' if is_speech else '0')
+ if not triggered:
+ ring_buffer.append((frame, is_speech))
+ num_voiced = len([f for f, speech in ring_buffer if speech])
+ # If we're NOTTRIGGERED and more than 90% of the frames in
+ # the ring buffer are voiced frames, then enter the
+ # TRIGGERED state.
+ if num_voiced > 0.9 * ring_buffer.maxlen:
+ triggered = True
+ # We want to yield all the audio we see from now until
+ # we are NOTTRIGGERED, but we have to start with the
+ # audio that's already in the ring buffer.
+ for f, _ in ring_buffer:
+ voiced_frames.append(f)
+ ring_buffer.clear()
+ else:
+ # We're in the TRIGGERED state, so collect the audio data
+ # and add it to the ring buffer.
+ voiced_frames.append(frame)
+ ring_buffer.append((frame, is_speech))
+ num_unvoiced = len([f for f, speech in ring_buffer if not speech])
+ # If more than 90% of the frames in the ring buffer are
+ # unvoiced, then enter NOTTRIGGERED and yield whatever
+ # audio we've collected.
+ if num_unvoiced > 0.9 * ring_buffer.maxlen:
+ triggered = False
+ yield [b''.join([f.bytes for f in voiced_frames]),
+ voiced_frames[0].timestamp, voiced_frames[-1].timestamp]
+ ring_buffer.clear()
+ voiced_frames = []
+ # If we have any leftover voiced audio when we run out of input,
+ # yield it.
+ if voiced_frames:
+ yield [b''.join([f.bytes for f in voiced_frames]),
+ voiced_frames[0].timestamp, voiced_frames[-1].timestamp]
+
+
+def main(args):
+ # create output folder
+ try:
+ cmd = f"mkdir -p {args.out_path}"
+ os.system(cmd)
+ except Exception:
+ logging.error("Can not create output folder")
+ exit(-1)
+
+ # build vad object
+ vad = webrtcvad.Vad(int(args.agg))
+ # iterating over wavs in dir
+ for file in tqdm(os.listdir(args.in_path)):
+ if file.endswith(AUDIO_SUFFIX):
+ audio_inpath = os.path.join(args.in_path, file)
+ audio_outpath = os.path.join(args.out_path, file)
+ audio, sample_rate = read_wave(audio_inpath)
+ frames = frame_generator(FS_MS, audio, sample_rate)
+ frames = list(frames)
+ segments = vad_collector(sample_rate, FS_MS, 300, vad, frames)
+ merge_segments = list()
+ timestamp_start = 0.0
+ timestamp_end = 0.0
+ # removing start, end, and long sequences of sils
+ for i, segment in enumerate(segments):
+ merge_segments.append(segment[0])
+ if i and timestamp_start:
+ sil_duration = segment[1] - timestamp_end
+ if sil_duration > THRESHOLD:
+ merge_segments.append(int(THRESHOLD / SCALE)*(b'\x00'))
+ else:
+ merge_segments.append(int((sil_duration / SCALE))*(b'\x00'))
+ timestamp_start = segment[1]
+ timestamp_end = segment[2]
+ segment = b''.join(merge_segments)
+ write_wave(audio_outpath, segment, sample_rate)
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser(description='Apply vad to a file of fils.')
+ parser.add_argument('in_path', type=str, help='Path to the input files')
+ parser.add_argument('out_path', type=str,
+ help='Path to save the processed files')
+ parser.add_argument('--agg', type=int, default=3,
+ help='The level of aggressiveness of the VAD: [0-3]')
+ args = parser.parse_args()
+
+ main(args)
diff --git a/fairseq/examples/speech_synthesis/utils.py b/fairseq/examples/speech_synthesis/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..2c7b03733d2290d3834d2c68a16034198daa1e69
--- /dev/null
+++ b/fairseq/examples/speech_synthesis/utils.py
@@ -0,0 +1,101 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import numpy as np
+import torch
+from scipy.interpolate import interp1d
+import torchaudio
+
+from fairseq.tasks.text_to_speech import (
+ batch_compute_distortion, compute_rms_dist
+)
+
+
+def batch_mel_spectral_distortion(
+ y1, y2, sr, normalize_type="path", mel_fn=None
+):
+ """
+ https://arxiv.org/pdf/2011.03568.pdf
+
+ Same as Mel Cepstral Distortion, but computed on log-mel spectrograms.
+ """
+ if mel_fn is None or mel_fn.sample_rate != sr:
+ mel_fn = torchaudio.transforms.MelSpectrogram(
+ sr, n_fft=int(0.05 * sr), win_length=int(0.05 * sr),
+ hop_length=int(0.0125 * sr), f_min=20, n_mels=80,
+ window_fn=torch.hann_window
+ ).to(y1[0].device)
+ offset = 1e-6
+ return batch_compute_distortion(
+ y1, y2, sr, lambda y: torch.log(mel_fn(y) + offset).transpose(-1, -2),
+ compute_rms_dist, normalize_type
+ )
+
+
+# This code is based on
+# "https://github.com/bastibe/MAPS-Scripts/blob/master/helper.py"
+def _same_t_in_true_and_est(func):
+ def new_func(true_t, true_f, est_t, est_f):
+ assert type(true_t) is np.ndarray
+ assert type(true_f) is np.ndarray
+ assert type(est_t) is np.ndarray
+ assert type(est_f) is np.ndarray
+
+ interpolated_f = interp1d(
+ est_t, est_f, bounds_error=False, kind='nearest', fill_value=0
+ )(true_t)
+ return func(true_t, true_f, true_t, interpolated_f)
+
+ return new_func
+
+
+@_same_t_in_true_and_est
+def gross_pitch_error(true_t, true_f, est_t, est_f):
+ """The relative frequency in percent of pitch estimates that are
+ outside a threshold around the true pitch. Only frames that are
+ considered pitched by both the ground truth and the estimator (if
+ applicable) are considered.
+ """
+
+ correct_frames = _true_voiced_frames(true_t, true_f, est_t, est_f)
+ gross_pitch_error_frames = _gross_pitch_error_frames(
+ true_t, true_f, est_t, est_f
+ )
+ return np.sum(gross_pitch_error_frames) / np.sum(correct_frames)
+
+
+def _gross_pitch_error_frames(true_t, true_f, est_t, est_f, eps=1e-8):
+ voiced_frames = _true_voiced_frames(true_t, true_f, est_t, est_f)
+ true_f_p_eps = [x + eps for x in true_f]
+ pitch_error_frames = np.abs(est_f / true_f_p_eps - 1) > 0.2
+ return voiced_frames & pitch_error_frames
+
+
+def _true_voiced_frames(true_t, true_f, est_t, est_f):
+ return (est_f != 0) & (true_f != 0)
+
+
+def _voicing_decision_error_frames(true_t, true_f, est_t, est_f):
+ return (est_f != 0) != (true_f != 0)
+
+
+@_same_t_in_true_and_est
+def f0_frame_error(true_t, true_f, est_t, est_f):
+ gross_pitch_error_frames = _gross_pitch_error_frames(
+ true_t, true_f, est_t, est_f
+ )
+ voicing_decision_error_frames = _voicing_decision_error_frames(
+ true_t, true_f, est_t, est_f
+ )
+ return (np.sum(gross_pitch_error_frames) +
+ np.sum(voicing_decision_error_frames)) / (len(true_t))
+
+
+@_same_t_in_true_and_est
+def voicing_decision_error(true_t, true_f, est_t, est_f):
+ voicing_decision_error_frames = _voicing_decision_error_frames(
+ true_t, true_f, est_t, est_f
+ )
+ return np.sum(voicing_decision_error_frames) / (len(true_t))
diff --git a/fairseq/examples/speech_text_joint_to_text/README.md b/fairseq/examples/speech_text_joint_to_text/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..e071d241e0e02b35d3aac777ac09b4ef3be9119f
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/README.md
@@ -0,0 +1,46 @@
+# Joint Speech Text training in Fairseq
+An extension of Fairseq s2t project with the speech to text task enhanced by the co-trained text to text mapping task. More details about Fairseq s2t can be found [here](../speech_to_text/README.md)
+
+## Examples
+Examples of speech text joint training in fairseq
+- [English-to-German MuST-C model](docs/ende-mustc.md)
+- [IWSLT 2021 Multilingual Speech Translation](docs/iwslt2021.md)
+
+## Citation
+Please cite as:
+```
+@inproceedings{Tang2021AGM,
+ title={A General Multi-Task Learning Framework to Leverage Text Data for Speech to Text Tasks},
+ author={Yun Tang and J. Pino and Changhan Wang and Xutai Ma and Dmitriy Genzel},
+ booktitle={ICASSP},
+ year={2021}
+}
+
+@inproceedings{Tang2021IST,
+ title = {Improving Speech Translation by Understanding and Learning from the Auxiliary Text Translation Task},
+ author = {Yun Tang and Juan Pino and Xian Li and Changhan Wang and Dmitriy Genzel},
+ booktitle = {ACL},
+ year = {2021},
+}
+
+@inproceedings{Tang2021FST,
+ title = {FST: the FAIR Speech Translation System for the IWSLT21 Multilingual Shared Task},
+ author = {Yun Tang and Hongyu Gong and Xian Li and Changhan Wang and Juan Pino and Holger Schwenk and Naman Goyal},
+ booktitle = {IWSLT},
+ year = {2021},
+}
+
+@inproceedings{wang2020fairseqs2t,
+ title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq},
+ author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino},
+ booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations},
+ year = {2020},
+}
+
+@inproceedings{ott2019fairseq,
+ title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
+ author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
+ booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
+ year = {2019},
+}
+```
diff --git a/fairseq/examples/speech_text_joint_to_text/__init__.py b/fairseq/examples/speech_text_joint_to_text/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..239d2e69f9a235095dee1ea7b3a94164a77273f5
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/__init__.py
@@ -0,0 +1,6 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+from . import tasks, criterions, models # noqa
diff --git a/fairseq/examples/speech_text_joint_to_text/configs/mustc_noise.list b/fairseq/examples/speech_text_joint_to_text/configs/mustc_noise.list
new file mode 100644
index 0000000000000000000000000000000000000000..02eeac4e009f77b765004272f59a1618214da18d
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/configs/mustc_noise.list
@@ -0,0 +1,49 @@
+"(Applause) NOISE
+"(Laughter) VOICE
+"(Laughter)" VOICE
+(Applause) NOISE
+(Applause). NOISE
+(Audience) VOICE
+(Audio) NOISE
+(Beat) NOISE
+(Beatboxing) VOICE
+(Beep) NOISE
+(Beeps) NOISE
+(Cheering) VOICE
+(Cheers) VOICE
+(Claps) NOISE
+(Clicking) NOISE
+(Clunk) NOISE
+(Coughs) NOISE
+(Drums) NOISE
+(Explosion) NOISE
+(Gasps) VOICE
+(Guitar) NOISE
+(Honk) NOISE
+(Laugher) VOICE
+(Laughing) VOICE
+(Laughs) VOICE
+(Laughter) VOICE
+(Laughter). VOICE
+(Laughter)... VOICE
+(Mumbling) VOICE
+(Music) NOISE
+(Noise) NOISE
+(Recording) VOICE
+(Ringing) NOISE
+(Shouts) VOICE
+(Sigh) VOICE
+(Sighs) VOICE
+(Silence) NOISE
+(Singing) VOICE
+(Sings) VOICE
+(Spanish) VOICE
+(Static) NOISE
+(Tones) NOISE
+(Trumpet) NOISE
+(Video) NOISE
+(Video): NOISE
+(Voice-over) NOISE
+(Whistle) NOISE
+(Whistling) NOISE
+(video): NOISE
diff --git a/fairseq/examples/speech_text_joint_to_text/criterions/__init__.py b/fairseq/examples/speech_text_joint_to_text/criterions/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..7faae73119321af0b34fe8e26499a2ef5577291a
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/criterions/__init__.py
@@ -0,0 +1,15 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import importlib
+import os
+
+
+for file in os.listdir(os.path.dirname(__file__)):
+ if file.endswith(".py") and not file.startswith("_"):
+ criterion_name = file[: file.find(".py")]
+ importlib.import_module(
+ "examples.speech_text_joint_to_text.criterions." + criterion_name
+ )
diff --git a/fairseq/examples/speech_text_joint_to_text/criterions/text_guide_cross_entropy_acc.py b/fairseq/examples/speech_text_joint_to_text/criterions/text_guide_cross_entropy_acc.py
new file mode 100644
index 0000000000000000000000000000000000000000..0d356e5a10241716b58a5bc04a9d204a72553ff8
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/criterions/text_guide_cross_entropy_acc.py
@@ -0,0 +1,223 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+import math
+
+import torch
+import torch.nn.functional as F
+from fairseq.criterions import FairseqCriterion, register_criterion
+from fairseq.criterions.label_smoothed_cross_entropy import label_smoothed_nll_loss
+from fairseq import metrics, utils
+
+
+@register_criterion("guided_label_smoothed_cross_entropy_with_accuracy")
+class GuidedCrossEntAccCriterion(FairseqCriterion):
+ def __init__(
+ self,
+ task,
+ sentence_avg,
+ guide_alpha,
+ text_input_cost_ratio,
+ label_smoothing,
+ disable_text_guide_update_num=0,
+ attentive_cost_regularization=0,
+ ):
+ """
+ guide_alpha: alpha to inteplate nll and kd loss
+ text_input_cost_ratio: loss ratio for text only input data
+ label_smoothing: label smoothing ratio
+ disable_text_guide_update_num: only use nll loss for the first N updates
+ attentive_cost_regularization: ratio fo attentive cost
+ """
+ super().__init__(task)
+ self.alpha = guide_alpha
+ self.attn_beta = attentive_cost_regularization
+ self.sentence_avg = sentence_avg
+ self.eps = label_smoothing
+ self.text_input_cost_ratio = text_input_cost_ratio
+ self.disable_update_num = disable_text_guide_update_num
+ assert self.alpha >= 0 and self.alpha <= 1.0
+
+ @staticmethod
+ def add_args(parser):
+ """Add criterion-specific arguments to the parser."""
+ # fmt: off
+ parser.add_argument('--label-smoothing', default=0., type=float, metavar='D',
+ help='epsilon for label smoothing, 0 means no label smoothing')
+ # fmt: off
+ parser.add_argument('--guide-alpha', default=0., type=float, metavar='D',
+ help='alpha to merge kd cost from text to speech input with ce loss')
+ # fmt: off
+ parser.add_argument('--disable-text-guide-update-num', default=0, type=int, metavar='D',
+ help='disable guided target from text for the first N updates.')
+ parser.add_argument("--attentive-cost-regularization", default=0.0, type=float, metavar='D',
+ help="use encoder attentive loss regularization with cost ratio D")
+ parser.add_argument("--attentive-cost-without-normalize", action='store_true',
+ help="Don't do normalization during attentive cost computation")
+
+ def forward(self, model, sample, reduce=True):
+ reduction = 'sum' if reduce else 'none'
+ net_input = sample["net_input"]
+ net_output = model(**net_input)
+ attn_cost = None
+ lprobs = model.get_normalized_probs(net_output, log_probs=True)
+ is_dual_input = True if net_input['src_tokens'] is not None and net_input.get('src_txt_tokens') is not None else False
+ target = model.get_targets(sample, net_output)
+ src_token_num = 0
+ if is_dual_input:
+ # lprobs_spch from speech encoder and lprobs_text from text encoder
+ lprobs_spch, lprobs_text = torch.chunk(lprobs, 2)
+ lprobs_spch.batch_first = lprobs.batch_first
+ lprobs_text.batch_first = lprobs.batch_first
+
+ speech_loss, speech_nll_loss, speech_correct, speech_total = \
+ self.guide_loss_and_acc(model, lprobs_spch, lprobs_text, target, reduce=(reduction == 'sum'))
+ text_loss, text_nll_loss, text_correct, text_total = self.compute_loss_and_acc(model, lprobs_text, target, reduction=reduction)
+ loss = (speech_loss + text_loss)
+ nll_loss = (speech_nll_loss + text_nll_loss)
+ correct = speech_correct + text_correct
+ total = speech_total + text_total
+
+ attn_cost = net_output[1].get('attn_cost')
+ if attn_cost is not None:
+ # attn_cost is batch_first and padding tokens have been masked already
+ src_token_num = attn_cost.ne(0).sum()
+ attn_cost = attn_cost.sum()
+ loss = loss + attn_cost * self.attn_beta
+ else:
+ attn_cost = 0
+ else:
+ loss, nll_loss, correct, total = self.compute_loss_and_acc(model, lprobs, target, reduction=reduction)
+ if sample["net_input"]['src_tokens'] is None: # text input only
+ loss = loss * self.text_input_cost_ratio
+ speech_loss = None
+ speech_nll_loss = None
+
+ sample_size, logging_output = self.get_logging_output(
+ sample, loss, nll_loss, correct, total, src_token_num, speech_loss, speech_nll_loss, attn_cost, is_dual_input
+ )
+ return loss, sample_size, logging_output
+
+ def compute_loss_and_acc(self, model, lprobs, target, reduction='sum'):
+ if not lprobs.batch_first:
+ lprobs = lprobs.transpose(0, 1)
+ lprobs = lprobs.view(-1, lprobs.size(-1)) # -> (B x T) x C
+ target = target.view(-1)
+ loss, nll_loss = label_smoothed_nll_loss(
+ lprobs, target, self.eps, ignore_index=self.padding_idx, reduce=(reduction == 'sum'),
+ )
+
+ mask = target.ne(self.padding_idx)
+ correct = torch.sum(lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask)))
+ total = torch.sum(mask)
+ return loss, nll_loss, correct, total
+
+ def guide_loss_and_acc(self, model, lprobs, lprobs_teacher, target, reduce=True):
+ """ lprobs_teacher is used as guide for lprobs """
+ if self.alpha == 0.0 or model.num_updates < self.disable_update_num:
+ return self.compute_loss_and_acc(model, lprobs, target, reduction=('sum' if reduce else 'none'))
+ if not lprobs.batch_first:
+ lprobs = lprobs.transpose(0, 1)
+ lprobs_teacher = lprobs_teacher.transpose(0, 1)
+
+ lprobs = lprobs.view(-1, lprobs.size(-1)).float() # -> (B x T) x C
+ lprobs_teacher = lprobs_teacher.view(-1, lprobs_teacher.size(-1)).float() # -> (B x T) x C
+ target = target.view(-1)
+ loss = F.nll_loss(lprobs, target, ignore_index=self.padding_idx, reduction='sum' if reduce else 'none')
+ nll_loss = loss
+ probs_teacher = lprobs_teacher.exp().masked_fill_(target.unsqueeze(-1).eq(self.padding_idx), 0)
+ probs_teacher = probs_teacher.detach()
+ guide_loss = -(probs_teacher*lprobs).sum() if reduce else -(probs_teacher*lprobs).sum(-1, keepdim=True)
+ loss = self.alpha*guide_loss + (1.0 - self.alpha)*loss
+
+ mask = target.ne(self.padding_idx)
+ correct = torch.sum(lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask)))
+ total = torch.sum(mask)
+ return loss, nll_loss, correct, total
+
+ def get_logging_output(
+ self,
+ sample,
+ loss,
+ nll_loss,
+ correct,
+ total,
+ src_token_num=0,
+ speech_loss=None,
+ speech_nll_loss=None,
+ attn_cost=None,
+ is_dual_input=False,
+ ):
+
+ sample_size = (
+ sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
+ )
+ mul_size = 2 if is_dual_input else 1
+
+ logging_output = {
+ "loss": utils.item(loss.data), # * sample['ntokens'],
+ "nll_loss": utils.item(nll_loss.data), # * sample['ntokens'],
+ "ntokens": sample["ntokens"]*mul_size,
+ "nsentences": sample["target"].size(0)*mul_size,
+ "sample_size": sample_size*mul_size,
+ "correct": utils.item(correct.data),
+ "total": utils.item(total.data),
+ "src_token_num": utils.item(src_token_num.data) if src_token_num > 0 else 0,
+ "nframes": torch.sum(sample["net_input"]["src_lengths"]).item(),
+ }
+
+ if speech_loss is not None:
+ logging_output["speech_loss"] = utils.item(speech_loss.data)
+ logging_output["speech_nll_loss"] = utils.item(speech_nll_loss.data)
+ logging_output["sample_size_speech_cost"] = sample_size
+ logging_output["speech_attn_loss"] = attn_cost
+
+ return sample_size*mul_size, logging_output
+
+ @staticmethod
+ def aggregate_logging_outputs(logging_outputs):
+ """Aggregate logging outputs from data parallel training."""
+ correct_sum = sum(log.get("correct", 0) for log in logging_outputs)
+ total_sum = sum(log.get("total", 0) for log in logging_outputs)
+ src_token_sum = sum(log.get("src_token_num", 0) for log in logging_outputs)
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
+ nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
+ nframes = sum(log.get("nframes", 0) for log in logging_outputs)
+ speech_loss_sum = sum(log.get("speech_loss", 0) for log in logging_outputs)
+ speech_nll_loss_sum = sum(log.get("speech_nll_loss", 0) for log in logging_outputs)
+ speech_attn_loss_sum = sum(log.get("speech_attn_loss", 0) for log in logging_outputs)
+ sample_size_speech = sum(log.get("sample_size_speech_cost", 0) for log in logging_outputs)
+
+ agg_output = {
+ "loss": loss_sum / sample_size / math.log(2) if sample_size > 0 else 0.0,
+ "nll_loss": nll_loss_sum / sample_size / math.log(2) if sample_size > 0 else 0.0,
+ # if args.sentence_avg, then sample_size is nsentences, and loss
+ # is per-sentence loss; else sample_size is ntokens, and the loss
+ # becomes per-output token loss
+ "speech_loss": speech_loss_sum / sample_size_speech / math.log(2) if sample_size_speech > 0 else 0.0,
+ "speech_nll_loss": speech_nll_loss_sum / sample_size_speech / math.log(2) if sample_size_speech > 0 else 0.0,
+ "speech_attn_loss": speech_attn_loss_sum / src_token_sum / math.log(2) if src_token_sum > 0 else 0.0,
+ "ntokens": ntokens,
+ "nsentences": nsentences,
+ "nframes": nframes,
+ "sample_size": sample_size,
+ "acc": correct_sum * 100.0 / total_sum if total_sum > 0 else 0.0,
+ "correct": correct_sum,
+ "total": total_sum,
+ "src_token_num": src_token_sum,
+ # total is the number of validate tokens
+ }
+ return agg_output
+
+ @classmethod
+ def reduce_metrics(cls, logging_outputs):
+ """Aggregate logging outputs from data parallel training."""
+ agg_logging_outputs = cls.aggregate_logging_outputs(logging_outputs)
+ for k, v in agg_logging_outputs.items():
+ if k in {'nsentences', 'ntokens', 'sample_size'}:
+ continue
+ metrics.log_scalar(k, v, round=3)
diff --git a/fairseq/examples/speech_text_joint_to_text/docs/ende-mustc.md b/fairseq/examples/speech_text_joint_to_text/docs/ende-mustc.md
new file mode 100644
index 0000000000000000000000000000000000000000..2897c4e27b053d4fd65b37fb7e586679dffed1ba
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/docs/ende-mustc.md
@@ -0,0 +1,112 @@
+[[Back]](..)
+
+# Joint Speech Text Training for the MuST-C English to German Speech Translation task
+
+Joint Training Baseline: it is based on paper ["A general multi-task learning framework to leverage text data for speech to text tasks"](https://arxiv.org/pdf/2010.11338.pdf)
+
+Enhanced Joint Training: the joint training is enhanced with pre-trained models, cross attentive regularization and online knowledge distillation based on paper ["Improving Speech Translation by Understanding and Learning from the Auxiliary Text Translation Task"](https://research.fb.com/publications/improving-speech-translation-by-understanding-and-learning-from-the-auxiliary-text-translation-task)
+
+## Prepare Data
+#### Download files
+- Sentence piece model [spm.model](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/must_c/en_de/spm.model)
+- Dictionary [dict.txt](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/must_c/en_de/dict.txt)
+- config [config.yaml](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/must_c/en_de/config.yaml)
+#### Prepare MuST-C data set
+- [Please follow the data preparation in the S2T example](https://github.com/pytorch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md)
+- Append src_text in the tsv file with phoneme representation.
+```bash
+ python examples/speech_text_joint_to_text/scripts/g2p_encode.py \
+ --lower-case --do-filter --use-word-start --no-punc \
+ --reserve-word examples/speech_text_joint_to_text/configs/mustc_noise.list \
+ --data-path ${must_c_en_de_src_text} \
+ --out-path ${must_c_en_de_src_text_pho}
+```
+- Update tsv data with src_text generated above and save to $MANIFEST_ROOT
+- Prepare phoneme dictionary and save to $MANIFEST_ROOT as [src_dict.txt](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/must_c/en_de/src_dict.txt)
+#### Prepare WMT text data
+- [Download wmt data](https://github.com/pytorch/fairseq/blob/main/examples/translation/prepare-wmt14en2de.sh)
+- Convert source text (English) into phoneme representation as above
+- Generate binary parallel file for training (as translation example) and save data in $parallel_text_data
+
+## Training
+The model is trained with 8 v100 GPUs.
+
+#### Download pretrained models
+- [pretrain_encoder](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_multilingual_asr_transformer_m.pt)
+- [pretrain_nmt](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/must_c/en_de/checkpoint_mt.pt)
+
+#### Training scripts
+- Jointly trained model from scratch
+```bash
+python train.py ${MANIFEST_ROOT} \
+ --save-dir ${save_dir} \
+ --num-workers 8 \
+ --task speech_text_joint_to_text \
+ --arch dualinputs2ttransformer_s \
+ --user-dir examples/speech_text_joint_to_text \
+ --max-epoch 100 --update-mix-data \
+ --optimizer adam --lr-scheduler inverse_sqrt \
+ --lr 0.001 --update-freq 4 --clip-norm 10.0 \
+ --criterion guided_label_smoothed_cross_entropy_with_accuracy \
+ --label-smoothing 0.1 --max-tokens 10000 --max-tokens-text 10000 \
+ --max-positions-text 400 --seed 2 --speech-encoder-layers 12 \
+ --text-encoder-layers 6 --encoder-shared-layers 6 --decoder-layers 6 \
+ --dropout 0.1 --warmup-updates 20000 \
+ --text-sample-ratio 0.25 --parallel-text-data ${parallel_text_data} \
+ --text-input-cost-ratio 0.5 --enc-grad-mult 2.0 --add-speech-eos \
+ --log-format json --langpairs en-de --noise-token '"'"'▁NOISE'"'"' \
+ --mask-text-ratio 0.0 --max-tokens-valid 20000 --ddp-backend no_c10d \
+ --log-interval 100 --data-buffer-size 50 --config-yaml config.yaml \
+ --keep-last-epochs 10
+```
+- Jointly trained model with good initialization, cross attentive loss and online knowledge distillation
+```bash
+python train.py ${MANIFEST_ROOT} \
+ --save-dir ${save_dir} \
+ --num-workers 8 \
+ --task speech_text_joint_to_text \
+ --arch dualinputs2ttransformer_m \
+ --user-dir examples/speech_text_joint_to_text \
+ --max-epoch 100 --update-mix-data \
+ --optimizer adam --lr-scheduler inverse_sqrt \
+ --lr 0.002 --update-freq 4 --clip-norm 10.0 \
+ --criterion guided_label_smoothed_cross_entropy_with_accuracy \
+ --guide-alpha 0.8 --disable-text-guide-update-num 5000 \
+ --label-smoothing 0.1 --max-tokens 10000 --max-tokens-text 10000 \
+ --max-positions-text 400 --seed 2 --speech-encoder-layers 12 \
+ --text-encoder-layers 6 --encoder-shared-layers 6 --decoder-layers 6 \
+ --dropout 0.1 --warmup-updates 20000 --attentive-cost-regularization 0.02 \
+ --text-sample-ratio 0.25 --parallel-text-data ${parallel_text_data} \
+ --text-input-cost-ratio 0.5 --enc-grad-mult 2.0 --add-speech-eos \
+ --log-format json --langpairs en-de --noise-token '"'"'▁NOISE'"'"' \
+ --mask-text-ratio 0.0 --max-tokens-valid 20000 --ddp-backend no_c10d \
+ --log-interval 100 --data-buffer-size 50 --config-yaml config.yaml \
+ --load-pretrain-speech-encoder ${pretrain_encoder} \
+ --load-pretrain-decoder ${pretrain_nmt} \
+ --load-pretrain-text-encoder-last ${pretrain_nmt} \
+ --keep-last-epochs 10
+```
+
+## Evaluation
+```bash
+python ./fairseq_cli/generate.py \
+ ${MANIFEST_ROOT} \
+ --task speech_text_joint_to_text \
+ --max-tokens 25000 \
+ --nbest 1 \
+ --results-path ${infer_results} \
+ --batch-size 512 \
+ --path ${model} \
+ --gen-subset tst-COMMON \
+ --config-yaml config_spm.yaml \
+ --scoring sacrebleu \
+ --beam 5 --lenpen 1.0 \
+ --user-dir examples/speech_text_joint_to_text \
+ --load-speech-only
+```
+
+## Results (Joint training with initialization + CAR + online KD)
+|Direction|En-De | En-Es | En-Fr |
+|---|---|---|---|
+|BLEU|27.4| 31.2 | 37.6 |
+|checkpoint | [link](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/must_c/en_de/checkpoint_ave_10.pt) |[link](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/must_c/en_es/checkpoint_ave_10.pt)|[link](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/must_c/en_fr/checkpoint_ave_10.pt)|
diff --git a/fairseq/examples/speech_text_joint_to_text/docs/iwslt2021.md b/fairseq/examples/speech_text_joint_to_text/docs/iwslt2021.md
new file mode 100644
index 0000000000000000000000000000000000000000..920ff271c2e178c7a4ca3c7c8ce57a2f28653969
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/docs/iwslt2021.md
@@ -0,0 +1,76 @@
+[[Back]](..)
+
+# Joint Speech Text Training for the 2021 IWSLT multilingual speech translation
+
+This directory contains the code from paper ["FST: the FAIR Speech Translation System for the IWSLT21 Multilingual Shared Task"](https://arxiv.org/pdf/2107.06959.pdf).
+
+## Prepare Data
+#### Download files
+- Sentence piece model [spm.model](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/spm.model)
+- Dictionary [tgt_dict.txt](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/dict.txt)
+- Config [config.yaml](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/config.yaml)
+
+#### Prepare
+- [Please follow the data preparation in speech-to-text](https://github.com/pytorch/fairseq/blob/main/examples/speech_to_text/docs/mtedx_example.md)
+
+
+
+## Training
+
+#### Download pretrained models
+- [Pretrained mbart model](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/mbart.pt)
+- [Pretrained w2v model](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/xlsr_53_56k.pt)
+
+
+#### Training scripts
+
+```bash
+python train.py ${MANIFEST_ROOT} \
+ --save-dir ${save_dir} \
+ --user-dir examples/speech_text_joint_to_text \
+ --train-subset train_es_en_tedx,train_es_es_tedx,train_fr_en_tedx,train_fr_es_tedx,train_fr_fr_tedx,train_it_it_tedx,train_pt_en_tedx,train_pt_pt_tedx \
+ --valid-subset valid_es_en_tedx,valid_es_es_tedx,valid_es_fr_tedx,valid_es_it_tedx,valid_es_pt_tedx,valid_fr_en_tedx,valid_fr_es_tedx,valid_fr_fr_tedx,valid_fr_pt_tedx,valid_it_en_tedx,valid_it_es_tedx,valid_it_it_tedx,valid_pt_en_tedx,valid_pt_es_tedx,valid_pt_pt_tedx \
+ --config-yaml config.yaml --ddp-backend no_c10d \
+ --num-workers 2 --task speech_text_joint_to_text \
+ --criterion guided_label_smoothed_cross_entropy_with_accuracy \
+ --label-smoothing 0.3 --guide-alpha 0.8 \
+ --disable-text-guide-update-num 5000 --arch dualinputxmtransformer_base \
+ --max-tokens 500000 --max-sentences 3 --max-tokens-valid 800000 \
+ --max-source-positions 800000 --enc-grad-mult 2.0 \
+ --attentive-cost-regularization 0.02 --optimizer adam \
+ --clip-norm 1.0 --log-format simple --log-interval 200 \
+ --keep-last-epochs 5 --seed 1 \
+ --w2v-path ${w2v_path} \
+ --load-pretrained-mbart-from ${mbart_path} \
+ --max-update 1000000 --update-freq 4 \
+ --skip-invalid-size-inputs-valid-test \
+ --skip-encoder-projection --save-interval 1 \
+ --attention-dropout 0.3 --mbart-dropout 0.3 \
+ --finetune-w2v-params all --finetune-mbart-decoder-params all \
+ --finetune-mbart-encoder-params all --stack-w2v-mbart-encoder \
+ --drop-w2v-layers 12 --normalize \
+ --lr 5e-05 --lr-scheduler inverse_sqrt --warmup-updates 5000
+```
+
+## Evaluation
+```bash
+python ./fairseq_cli/generate.py
+ ${MANIFEST_ROOT} \
+ --task speech_text_joint_to_text \
+ --user-dir ./examples/speech_text_joint_to_text \
+ --load-speech-only --gen-subset test_es_en_tedx \
+ --path ${model} \
+ --max-source-positions 800000 \
+ --skip-invalid-size-inputs-valid-test \
+ --config-yaml config.yaml \
+ --infer-target-lang en \
+ --max-tokens 800000 \
+ --beam 5 \
+ --results-path ${RESULTS_DIR} \
+ --scoring sacrebleu
+```
+The trained model can be downloaded [here](https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/checkpoint17.pt)
+
+|direction|es_en|fr_en|pt_en|it_en|fr_es|pt_es|it_es|es_es|fr_fr|pt_pt|it_it|
+|---|---|---|---|---|---|---|---|---|---|---|---|
+|BLEU|31.62|36.93|35.07|27.12|38.87|35.57|34.13|74.59|74.64|70.84|69.76|
diff --git a/fairseq/examples/speech_text_joint_to_text/models/__init__.py b/fairseq/examples/speech_text_joint_to_text/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..7a394c7e4f25bfef8603596ca3629e65ca7b0d8b
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/models/__init__.py
@@ -0,0 +1,14 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import importlib
+import os
+
+for file in os.listdir(os.path.dirname(__file__)):
+ if file.endswith(".py") and not file.startswith("_"):
+ model_name = file[: file.find(".py")]
+ importlib.import_module(
+ "examples.speech_text_joint_to_text.models." + model_name
+ )
diff --git a/fairseq/examples/speech_text_joint_to_text/models/s2t_dualinputtransformer.py b/fairseq/examples/speech_text_joint_to_text/models/s2t_dualinputtransformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..7970a3c71401b4835ba09158ea06134418afa065
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/models/s2t_dualinputtransformer.py
@@ -0,0 +1,1090 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+from collections import namedtuple
+
+import torch
+import torch.nn as nn
+from fairseq import checkpoint_utils
+from fairseq import utils
+from fairseq.models import (
+ FairseqEncoder,
+ FairseqDecoder,
+ FairseqEncoderDecoderModel,
+ register_model,
+ register_model_architecture,
+)
+from fairseq.models.fairseq_encoder import EncoderOut
+from fairseq.models.speech_to_text import (
+ TransformerDecoder,
+ S2TTransformerEncoder,
+)
+from fairseq.models.transformer import TransformerEncoder
+from fairseq.modules import (
+ TransformerEncoderLayer,
+ GradMultiply,
+ LayerNorm,
+)
+
+logger = logging.getLogger(__name__)
+
+
+class SpeechEoSEncoder(FairseqEncoder):
+ def __init__(self, encoder, eos_num, feat_dim, adapter_type="None", adapter_dim=0):
+ super().__init__(None)
+ self.encoder = encoder
+ self.eos_num = eos_num # downsampling rate for speech input feature
+ self.eos_emb = (
+ nn.Parameter(torch.zeros(1, feat_dim), requires_grad=True)
+ if eos_num > 0
+ else None
+ )
+ self.adapter = self.add_adapter(adapter_type, adapter_dim)
+
+ def add_adapter(self, adapter_type, adapter_dim):
+ def _make_identity(linear, eps=1e-5):
+ assert isinstance(linear, nn.Linear)
+ linear.weight.data.mul_(eps)
+ linear.weight.data.fill_diagonal_(1.0)
+ if linear.bias is not None:
+ linear.bias.data.mul_(eps)
+
+ adapter = None
+ if adapter_type == "Linear":
+ assert adapter_dim > 0
+ adapter = nn.Sequential(
+ nn.Linear(adapter_dim, adapter_dim), LayerNorm(adapter_dim)
+ )
+ # initialize the adapter as identity matrix first
+ _make_identity(adapter[0])
+
+ elif adapter_type == "MLP":
+ assert adapter_dim > 0
+ # assume the model is pre-norm model
+ adapter = nn.Sequential(
+ nn.Linear(adapter_dim, 2 * adapter_dim),
+ nn.ReLU(),
+ nn.Linear(2 * adapter_dim, adapter_dim),
+ LayerNorm(adapter_dim),
+ )
+ _make_identity(adapter[0])
+ _make_identity(adapter[2])
+ return adapter
+
+ def add_eos(self, src_tokens, src_lengths):
+ bsz, max_seq_len, fdim = src_tokens.size()
+ if self.eos_num > 0:
+ src_token_eos = torch.zeros(
+ [bsz, max_seq_len + self.eos_num, fdim],
+ dtype=src_tokens.dtype,
+ device=src_tokens.device,
+ )
+ src_token_eos[:, :max_seq_len] = src_tokens
+ for bi in range(bsz):
+ src_token_eos[bi][
+ src_lengths[bi] : src_lengths[bi] + self.eos_num
+ ] = self.eos_emb.expand(self.eos_num, fdim)
+ src_lengths = src_lengths + self.eos_num
+ src_tokens = src_token_eos
+ return src_tokens, src_lengths
+
+ def apply_adapter(self, enc_out):
+ if self.adapter is None:
+ return enc_out
+ rst = self.adapter(enc_out.encoder_out)
+ if enc_out.encoder_padding_mask is not None:
+ rst.masked_fill_(
+ enc_out.encoder_padding_mask.transpose(0, 1).unsqueeze(-1), 0
+ )
+ return EncoderOut(
+ encoder_out=rst,
+ encoder_padding_mask=enc_out.encoder_padding_mask,
+ encoder_embedding=enc_out.encoder_embedding,
+ encoder_states=enc_out.encoder_states,
+ src_tokens=enc_out.src_tokens,
+ src_lengths=enc_out.src_lengths,
+ )
+
+ def forward(self, src_tokens, src_lengths=None, return_all_hiddens=False, **kwargs):
+ """
+ src_tokens: padded tensor (B, T, C * feat)
+ src_lengths: tensor of original lengths of input utterances (B,)
+ """
+ src_tokens, src_lengths = self.add_eos(src_tokens, src_lengths)
+ enc_out = self.encoder(src_tokens, src_lengths, return_all_hiddens)
+ enc_out = self.apply_adapter(enc_out)
+ return enc_out
+
+ def reorder_encoder_out(self, encoder_out, new_order):
+ return self.encoder.reorder_encoder_out(encoder_out, new_order)
+
+
+class DualInputEncoder(FairseqEncoder):
+ def __init__(
+ self,
+ args,
+ spch_encoder,
+ text_encoder,
+ dictionary,
+ cross_attentive_loss_before_last_layer=-1,
+ ):
+ super().__init__(dictionary)
+
+ self.spch_encoder = spch_encoder
+ self.text_encoder = text_encoder
+ self.enc_grad_mult = args.enc_grad_mult
+ self.cross_attentive_loss_before_last_layer = (
+ cross_attentive_loss_before_last_layer
+ )
+ self.use_cross_attentive_loss = (
+ False if cross_attentive_loss_before_last_layer <= -1 else True
+ )
+ self.enc2_along_grad_mult = args.enc2_along_grad_mult
+
+ @classmethod
+ def set_shared_layer(cls, share_level, src_layer, tgt_layer):
+ """
+ share parameters from tgt_layer to src_layer
+ share_level:
+ 0: share everything
+ 1: share everything but different model
+ 2: share weight but not bias, layernorm
+ """
+ if share_level == 0:
+ return tgt_layer
+ if isinstance(src_layer, nn.Linear):
+ return tgt_layer
+ if isinstance(src_layer, TransformerEncoderLayer):
+ assert src_layer.embed_dim == tgt_layer.embed_dim
+ assert src_layer.normalize_before == tgt_layer.normalize_before
+ if share_level == 1:
+ src_layer.fc1 = tgt_layer.fc1
+ src_layer.fc2 = tgt_layer.fc2
+ src_layer.self_attn = tgt_layer.self_attn
+ src_layer.final_layer_norm = tgt_layer.final_layer_norm
+ src_layer.self_attn_layer_norm = tgt_layer.self_attn_layer_norm
+ src_layer.layernorm_embedding = tgt_layer.layernorm_embedding
+ else:
+ src_layer.fc1.weight = tgt_layer.fc1.weight
+ src_layer.fc2.weight = tgt_layer.fc2.weight
+ src_layer.self_attn.k_proj.weight = tgt_layer.self_attn.k_proj.weight
+ src_layer.self_attn.v_proj.weight = tgt_layer.self_attn.v_proj.weight
+ src_layer.self_attn.q_proj.weight = tgt_layer.self_attn.q_proj.weight
+ src_layer.self_attn.out_proj.weight = (
+ tgt_layer.self_attn.out_proj.weight
+ )
+ else:
+ if share_level == 1:
+ return tgt_layer
+ return src_layer
+
+ @classmethod
+ def build_spch_encoder(cls, args):
+ cfg = {
+ "input_feat_per_channel": args.input_feat_per_channel,
+ "input_channels": args.input_channels,
+ "conv_kernel_sizes": args.conv_kernel_sizes,
+ "conv_channels": args.conv_channels,
+ "encoder_embed_dim": args.encoder_embed_dim,
+ "encoder_ffn_embed_dim": args.encoder_ffn_embed_dim,
+ "encoder_layers": args.speech_encoder_layers,
+ "encoder_layerdrop": args.encoder_layerdrop,
+ "encoder_attention_heads": args.encoder_attention_heads,
+ "max_source_positions": args.max_source_positions,
+ "dropout": args.dropout,
+ "encoder_normalize_before": args.encoder_normalize_before,
+ "activation_dropout": args.activation_dropout,
+ "attention_dropout": args.attention_dropout,
+ "activation_fn": args.activation_fn,
+ "layernorm_embedding": args.layernorm_embedding,
+ "no_token_positional_embeddings": args.no_token_positional_embeddings,
+ "no_scale_embedding": args.no_scale_embedding,
+ "quant_noise_pq": args.quant_noise_pq,
+ "encoder_freezing_updates": 0,
+ }
+ model_args = namedtuple("args", cfg.keys())(*cfg.values())
+ spch_encoder = S2TTransformerEncoder(model_args)
+ if args.add_speech_eos:
+ spch_encoder = SpeechEoSEncoder(
+ spch_encoder,
+ 2 * len(args.conv_kernel_sizes.split(",")),
+ args.input_feat_per_channel,
+ adapter_type=getattr(args, "speech_encoder_adapter_type", "None"),
+ adapter_dim=args.encoder_embed_dim,
+ )
+ return spch_encoder
+
+ @classmethod
+ def build_text_encoder(cls, args, src_dictionary, spch_encoder):
+ if args.encoder_shared_layers > 0:
+ mx_shared_layers = (
+ args.speech_encoder_layers
+ if args.speech_encoder_layers < args.text_encoder_layers
+ else args.text_encoder_layers
+ )
+ args.encoder_shared_layers = (
+ args.encoder_shared_layers
+ if args.encoder_shared_layers <= mx_shared_layers
+ else mx_shared_layers
+ )
+ cfg = {
+ "encoder_embed_dim": args.encoder_text_embed_dim,
+ "encoder_ffn_embed_dim": args.encoder_ffn_embed_dim,
+ "encoder_layers": args.text_encoder_layers,
+ "encoder_layerdrop": args.encoder_layerdrop,
+ "encoder_attention_heads": args.encoder_attention_heads,
+ "encoder_learned_pos": args.encoder_learned_pos,
+ "max_source_positions": args.max_source_positions,
+ "dropout": args.dropout,
+ "encoder_normalize_before": args.encoder_normalize_before,
+ "activation_dropout": args.activation_dropout,
+ "attention_dropout": args.attention_dropout,
+ "activation_fn": args.activation_fn,
+ "adaptive_input": args.adaptive_input,
+ "no_token_positional_embeddings": args.no_token_positional_embeddings,
+ "no_scale_embedding": args.no_scale_embedding,
+ "quant_noise_pq": args.quant_noise_pq,
+ }
+ model_args = namedtuple("args", cfg.keys())(*cfg.values())
+ enc_emb = nn.Embedding(
+ len(src_dictionary), model_args.encoder_embed_dim, src_dictionary.pad()
+ )
+ text_encoder = TransformerEncoder(model_args, src_dictionary, enc_emb)
+ if args.add_speech_eos:
+ spch_encoder = spch_encoder.encoder
+ if args.encoder_shared_layers > 0:
+ text_encoder.layer_norm = cls.set_shared_layer(
+ args.encoder_shared_layer_level,
+ text_encoder.layer_norm,
+ spch_encoder.layer_norm,
+ )
+ for i, ly in enumerate(
+ spch_encoder.transformer_layers[-args.encoder_shared_layers :]
+ ):
+ ly_id = i + args.text_encoder_layers - args.encoder_shared_layers
+ assert isinstance(text_encoder.layers[ly_id], type(ly))
+ text_encoder.layers[ly_id] = cls.set_shared_layer(
+ args.encoder_shared_layer_level,
+ text_encoder.layers[ly_id],
+ ly,
+ )
+ return text_encoder
+
+ def mult_rst_grad(self, rst, ratio):
+ assert isinstance(rst, dict) # instead of EncoderOut
+ assert len(rst["encoder_out"]) == 1
+ rst["encoder_out"][0] = GradMultiply.apply(rst["encoder_out"][0], ratio)
+ return rst
+
+ def process_attentive_loss_states(self, rst, interstates):
+ assert isinstance(rst, dict) # instead of EncoderOut
+ rst["encoder_states"] = interstates
+ return rst
+
+ def forward(
+ self,
+ src_tokens,
+ src_lengths=None,
+ src_txt_tokens=None,
+ src_txt_lengths=None,
+ **kwargs
+ ):
+ """
+ Args:
+ src_tokens: padded tensor (B, T, C * feat)
+ src_lengths: tensor of original lengths of input utterances (speech) (B,)
+ src_txt_tokens: padded tensor (B, T)
+ src_txt_lengths: tensor of original lengths of input utterances (text) (B,)
+ """
+ # src_tokens only: inference
+ # src_tokens, src_lengths: speech only training
+ # src_txt_tokens, src_txt_lengths: text only training
+ # all valid: speech + text training
+
+ if src_tokens is None and src_txt_tokens is None:
+ raise ValueError(
+ "src_tokens and src_txt_tokens cannot be None at the same time"
+ )
+ ret1 = None
+ ret2 = None
+ return_all_hiddens = False
+ if src_tokens is not None:
+ if (
+ self.use_cross_attentive_loss and src_txt_tokens is not None
+ ): # remove self.training so we can get attn score during validation step
+ return_all_hiddens = True
+ ret1 = self.spch_encoder(
+ src_tokens, src_lengths, return_all_hiddens=return_all_hiddens
+ )
+
+ if self.use_cross_attentive_loss and src_txt_tokens is not None:
+ assert self.cross_attentive_loss_before_last_layer < len(
+ ret1["encoder_states"]
+ )
+ ret1 = self.process_attentive_loss_states(
+ ret1,
+ ret1["encoder_states"][
+ -self.cross_attentive_loss_before_last_layer - 1
+ ],
+ )
+
+ if src_txt_tokens is not None:
+ ret2 = self.text_encoder(
+ src_txt_tokens, src_txt_lengths, return_all_hiddens=return_all_hiddens
+ )
+ if return_all_hiddens:
+ if self.cross_attentive_loss_before_last_layer == len(
+ self.text_encoder.layers
+ ):
+ text_embedding, _ = self.text_encoder.forward_embedding(
+ src_txt_tokens
+ )
+ text_embedding = text_embedding.transpose(0, 1)
+ ret2 = self.process_attentive_loss_states(ret2, text_embedding)
+ else:
+ assert self.cross_attentive_loss_before_last_layer < len(
+ self.text_encoder.layers
+ )
+ ret2 = self.process_attentive_loss_states(
+ ret2,
+ ret2["encoder_states"][
+ -self.cross_attentive_loss_before_last_layer - 1
+ ],
+ )
+
+ def merge_output(rst1, rst2):
+ if rst1 is None:
+ if not (self.enc2_along_grad_mult == 1.0 or self.training):
+ rst2 = self.mult_rst_grad(rst2, self.enc2_along_grad_mult)
+ return rst2
+ if rst2 is None:
+ return rst1
+ if self.enc_grad_mult != 1.0 and self.training:
+ rst1 = self.mult_rst_grad(rst1, self.enc_grad_mult)
+ rst2 = self.mult_rst_grad(rst2, self.enc_grad_mult)
+ rst = (rst1, rst2)
+ return rst
+
+ return merge_output(ret1, ret2)
+
+ def reorder_encoder_out(self, encoder_out, new_order):
+ assert self.training is False # used for inference only
+ return self.spch_encoder.reorder_encoder_out(encoder_out, new_order)
+
+
+# TransformerMultiInputDecoder: take one or two encoder inputs
+class TransformerMultiInputDecoder(FairseqDecoder):
+ def __init__(
+ self,
+ dictionary,
+ spch_decoder,
+ text_decoder,
+ compute_cross_attentive_loss=False,
+ cross_attentive_loss_with_norm=True,
+ cross_attentive_loss_reverse=False,
+ ):
+
+ super().__init__(dictionary)
+ self.spch_decoder = spch_decoder
+ self.text_decoder = text_decoder
+ self.compute_cross_attentive_loss = compute_cross_attentive_loss
+ self.cross_attentive_loss_with_norm = cross_attentive_loss_with_norm
+ self.cross_attentive_loss_reverse = cross_attentive_loss_reverse
+
+ @classmethod
+ def share_spchdecoder(cls, task_args, text_decoder, spch_decoder):
+ if task_args.decoder_shared_layer_level == 0:
+ return text_decoder
+ assert text_decoder.embed_tokens == spch_decoder.embed_tokens
+ spch_decoder.project_in_dim = text_decoder.project_in_dim
+ spch_decoder.embed_positions = text_decoder.embed_positions
+ spch_decoder.layernorm_embedding = text_decoder.layernorm_embedding
+ spch_decoder.project_out_dim = text_decoder.project_out_dim
+ spch_decoder.adaptive_softmax = text_decoder.adaptive_softmax
+ if task_args.decoder_shared_layer_level == 1:
+ spch_decoder.output_projection = text_decoder.output_projection
+ spch_decoder.layer_norm = text_decoder.layer_norm
+ else: # 2
+ spch_decoder.output_projection.weight = (
+ text_decoder.output_projection.weight
+ )
+ for i, ly in enumerate(text_decoder.layers):
+ sly = spch_decoder.layers[i]
+ sly.self_attn = ly.self_attn
+ sly.self_attn_layer_norm = ly.self_attn_layer_norm
+ # sly.encoder_attn = ly.encoder_attn
+ if (
+ task_args.decoder_shared_layer_level == 1
+ ): # share everything, but under different models
+ sly.encoder_attn = ly.encoder_attn
+ sly.encoder_attn_layer_norm = ly.encoder_attn_layer_norm
+ sly.fc1 = ly.fc1
+ sly.fc2 = ly.fc2
+ sly.final_layer_norm = ly.final_layer_norm
+ else: # task_args.decoder_shared_layer_level == 2: #separated encoder_attn_layer_norm and bias
+ sly.encoder_attn.k_proj.weight = ly.encoder_attn.k_proj.weight
+ sly.encoder_attn.v_proj.weight = ly.encoder_attn.v_proj.weight
+ sly.encoder_attn.q_proj.weight = ly.encoder_attn.q_proj.weight
+ sly.encoder_attn.out_proj.weight = ly.encoder_attn.out_proj.weight
+ sly.fc1.weight = ly.fc1.weight
+ sly.fc2.weight = ly.fc2.weight
+
+ return spch_decoder
+
+ def cross_attentive_loss(
+ self, teacher_states, student_states, teacher_masking, student_masking, eps=1e-6
+ ):
+ x = teacher_states.transpose(0, 1) # from T X B X D to B X T X D
+ y = student_states.transpose(0, 1)
+ if self.cross_attentive_loss_with_norm:
+ x = x / (x.norm(dim=2, keepdim=True) + eps)
+ y = y / (y.norm(dim=2, keepdim=True) + eps)
+ dim = x.size(-1)
+ # lengths: batch X seqLen
+ sim_scores_xy = torch.bmm(x, y.transpose(1, 2)) # batch X lenx X leny ]
+ if y.dtype == torch.float16:
+ sim_scores_xy = sim_scores_xy.float()
+ y = y.float()
+ x = x.float()
+ if teacher_masking != []:
+ assert len(teacher_masking) == 1
+ sim_scores_xy = sim_scores_xy.masked_fill(
+ teacher_masking[0].unsqueeze(-1), float("-inf")
+ )
+ if student_masking != []:
+ sim_scores_xy = sim_scores_xy.masked_fill(
+ student_masking[0].unsqueeze(1), float("-inf")
+ )
+ # do masking
+ y_weights = utils.softmax(sim_scores_xy, dim=-1)
+ if teacher_masking != []:
+ y_weights = y_weights.masked_fill(teacher_masking[0].unsqueeze(-1), 0)
+ x_reconstruct_from_y = torch.bmm(y_weights, y)
+
+ sim_scores_xx = torch.bmm(x, x.transpose(1, 2)) # batch X lenx X lenx ]
+ x_weights = utils.softmax(sim_scores_xx, dim=-1)
+ if teacher_masking != []:
+ x_weights = x_weights.masked_fill(teacher_masking[0].unsqueeze(-1), 0)
+
+ # no gradient for teacher state
+ x_reconstruct_from_x = torch.bmm(x_weights, x).detach()
+ cost = (x_reconstruct_from_x - x_reconstruct_from_y).norm(dim=2)
+ if teacher_masking != []:
+ cost = cost.masked_fill(teacher_masking[0], 0)
+
+ if not self.cross_attentive_loss_with_norm:
+ cost = cost / dim
+ return cost
+
+ def forward(
+ self,
+ prev_output_tokens,
+ encoder_out,
+ incremental_state=None,
+ has_txt_input=False,
+ **kwargs
+ ):
+ """
+ Args:
+ prev_output_tokens (LongTensor): previous decoder outputs of shape
+ `(batch, tgt_len)`, for input feeding/teacher forcing. If there are
+ two or more input during training, they will share the same prev_output_tokens
+ encoder_out (tuple[Tensor]): output from the encoder, used for
+ encoder-side attention. It will be tuple if there are more inputs, but a tensor
+ if only one input
+ incremental_state ([dict]): dictionary used for storing state during
+ :ref:`Incremental decoding`. It is only valid for inference, only from single
+ input
+ Returns:
+ tuple:
+ - the last decoder layer's output of shape `(batch, tgt_len,
+ vocab)`. If there are N inputs, batch will be N bigger than a single input
+ - the last decoder layer's attention weights of shape `(batch,
+ tgt_len, src_len)`
+ """
+ assert not isinstance(encoder_out, EncoderOut)
+ if isinstance(encoder_out, tuple): # training with mulitple input
+ rst = []
+ assert len(encoder_out) == 2
+ for i, eo in enumerate(encoder_out):
+ assert incremental_state is None
+ if i == 0:
+ rst.append(
+ self.spch_decoder(prev_output_tokens, eo, incremental_state)
+ )
+ else:
+ rst.append(
+ self.text_decoder(prev_output_tokens, eo, incremental_state)
+ )
+ dec_out = torch.cat([r[0] for r in rst], dim=0)
+ attn_cost = None
+ if self.compute_cross_attentive_loss:
+ assert isinstance(encoder_out[0], dict)
+ if self.cross_attentive_loss_reverse:
+ attn_cost = self.cross_attentive_loss(
+ teacher_states=encoder_out[1]["encoder_states"], # text_states
+ student_states=encoder_out[0]["encoder_states"], # spch_states
+ teacher_masking=encoder_out[1]["encoder_padding_mask"],
+ student_masking=encoder_out[0]["encoder_padding_mask"],
+ )
+ else:
+ attn_cost = self.cross_attentive_loss(
+ teacher_states=encoder_out[0]["encoder_states"], # spch_states
+ student_states=encoder_out[1]["encoder_states"], # text_states
+ teacher_masking=encoder_out[0]["encoder_padding_mask"],
+ student_masking=encoder_out[1]["encoder_padding_mask"],
+ )
+
+ return (dec_out, {"attn_cost": attn_cost})
+ else: # inference or training with one input
+ if has_txt_input:
+ return self.text_decoder(
+ prev_output_tokens, encoder_out, incremental_state
+ )
+ return self.spch_decoder(prev_output_tokens, encoder_out, incremental_state)
+
+
+# Note:
+# dual input transformer:
+# encoder: S2TTransformerEncoder for speech + TransformerEncoder for text
+# decoder: TransformerDecoder for text
+@register_model("dual_input_s2t_transformer")
+class DualInputS2TTransformerModel(FairseqEncoderDecoderModel):
+ def __init__(self, encoder, decoder):
+ super().__init__(encoder, decoder)
+ self.num_updates = 0
+
+ def max_positions(self):
+ return None # it is provided in task
+
+ @staticmethod
+ def add_args(parser):
+ """Add model-specific arguments to the parser."""
+ # encoder 1: S2TTransformerEncoder for speech
+ parser.add_argument(
+ "--conv-kernel-sizes",
+ type=str,
+ metavar="N",
+ help="kernel sizes of Conv1d subsampling layers",
+ )
+ parser.add_argument(
+ "--conv-channels",
+ type=int,
+ metavar="N",
+ help="# of channels in Conv1d subsampling layers",
+ )
+ parser.add_argument(
+ "--enc-output-dim",
+ type=int,
+ metavar="N",
+ help="""
+ encoder output dimension, can be None. If specified, projecting the
+ transformer output to the specified dimension""",
+ )
+ # standard Transformer
+ parser.add_argument(
+ "--activation-fn",
+ type=str,
+ default="relu",
+ choices=utils.get_available_activation_fns(),
+ help="activation function to use",
+ )
+ parser.add_argument(
+ "--dropout", type=float, metavar="D", help="dropout probability"
+ )
+ parser.add_argument(
+ "--attention-dropout",
+ type=float,
+ metavar="D",
+ help="dropout probability for attention weights",
+ )
+ parser.add_argument(
+ "--activation-dropout",
+ "--relu-dropout",
+ type=float,
+ metavar="D",
+ help="dropout probability after activation in FFN.",
+ )
+ parser.add_argument(
+ "--encoder-embed-dim",
+ type=int,
+ metavar="N",
+ help="encoder embedding dimension",
+ )
+ parser.add_argument(
+ "--encoder-text-embed-dim",
+ type=int,
+ metavar="N",
+ help="encoder text embedding dimension",
+ )
+ parser.add_argument(
+ "--encoder-ffn-embed-dim",
+ type=int,
+ metavar="N",
+ help="encoder embedding dimension for FFN",
+ )
+ parser.add_argument(
+ "--encoder-attention-heads",
+ type=int,
+ metavar="N",
+ help="num encoder attention heads",
+ )
+ parser.add_argument(
+ "--decoder-embed-dim",
+ type=int,
+ metavar="N",
+ help="decoder embedding dimension",
+ )
+ parser.add_argument(
+ "--decoder-ffn-embed-dim",
+ type=int,
+ metavar="N",
+ help="decoder embedding dimension for FFN",
+ )
+ parser.add_argument(
+ "--decoder-layers", type=int, metavar="N", help="num decoder layers"
+ )
+ parser.add_argument(
+ "--decoder-attention-heads",
+ type=int,
+ metavar="N",
+ help="num decoder attention heads",
+ )
+ parser.add_argument(
+ "--layernorm-embedding",
+ action="store_true",
+ help="add layernorm to embedding",
+ )
+ parser.add_argument(
+ "--no-scale-embedding",
+ action="store_true",
+ help="if True, dont scale embeddings",
+ )
+ # non-standard transformer parameters
+ parser.add_argument(
+ "--speech-encoder-layers",
+ type=int,
+ metavar="N",
+ help="num speech encoder layers",
+ )
+ parser.add_argument(
+ "--text-encoder-layers",
+ type=int,
+ metavar="N",
+ help="num text encoder layers",
+ )
+ parser.add_argument(
+ "--encoder-shared-layers",
+ type=int,
+ metavar="N",
+ help="num shared encoder layers",
+ )
+ parser.add_argument(
+ "--encoder-shared-layer-level",
+ type=int,
+ metavar="N",
+ default=0,
+ choices=[0, 1, 2],
+ help="share layer level 0: all share 1: all share with separate model 2: share weight but not bias and layernorm",
+ )
+
+ parser.add_argument(
+ "--decoder-shared-layer-level",
+ default=0,
+ choices=[0, 1, 2],
+ type=int,
+ metavar="N",
+ help="0: share everything; 1: share everything with different model 2: no share layer_norm and bias",
+ )
+ ###
+ parser.add_argument(
+ "--text-input-cost-ratio",
+ type=float,
+ default=1.0,
+ metavar="V",
+ help="text input cost ratio relative to speech input cost",
+ )
+ parser.add_argument(
+ "--init-scale",
+ type=float,
+ default=1.0,
+ metavar="V",
+ help="scale the initial weight by given factor",
+ )
+ parser.add_argument(
+ "--enc-grad-mult",
+ type=float,
+ metavar="V",
+ default=1.0,
+ help="multiply enc1 and enc2 gradient by V",
+ )
+ parser.add_argument(
+ "--enc2-along-grad-mult",
+ type=float,
+ metavar="V",
+ default=1.0,
+ help="multiply enc2 gradient by V if only enc2 is used",
+ )
+ parser.add_argument(
+ "--load-pretrain-encoder",
+ type=str,
+ default="",
+ metavar="EXPR",
+ help=""" path to the pretrained encoder """,
+ )
+ parser.add_argument(
+ "--load-pretrain-speech-encoder",
+ type=str,
+ default="",
+ metavar="EXPR",
+ help=""" path to the pretrained speech encoder """,
+ )
+ parser.add_argument(
+ "--load-pretrain-text-encoder",
+ type=str,
+ default="",
+ metavar="EXPR",
+ help=""" path to the pretrained text encoder """,
+ )
+ parser.add_argument(
+ "--load-pretrain-text-encoder-last",
+ type=str,
+ default="",
+ metavar="EXPR",
+ help=""" path to the pretrained text encoder """,
+ )
+ parser.add_argument(
+ "--load-pretrain-decoder",
+ type=str,
+ metavar="EXPR",
+ default="",
+ help=""" path to the pretrained encoder """,
+ )
+ parser.add_argument(
+ "--add-speech-eos",
+ action="store_true",
+ help="add eos token at the end of input feature",
+ )
+ parser.add_argument(
+ "--speech-encoder-adapter-type",
+ type=str,
+ metavar="EXPR",
+ default="None",
+ choices=["None", "Linear", "MLP"],
+ help="add speech encoder adapter",
+ )
+
+ @classmethod
+ def build_encoder(cls, args, task):
+ spch_encoder = DualInputEncoder.build_spch_encoder(args)
+ text_encoder = DualInputEncoder.build_text_encoder(
+ args, task.src_dict, spch_encoder
+ )
+ cross_attentive_loss_before_last_layer = (
+ 0 if getattr(args, "attentive_cost_regularization", 0.0) > 0.0 else -1
+ )
+ encoder = DualInputEncoder(
+ args,
+ spch_encoder,
+ text_encoder,
+ task.src_dict,
+ cross_attentive_loss_before_last_layer,
+ )
+ if args.init_scale != 1.0:
+ with torch.no_grad():
+ for param in encoder.parameters():
+ param.data.mul_(args.init_scale)
+ if args.load_pretrain_text_encoder != "":
+ checkpoint_utils.load_pretrained_component_from_model(
+ text_encoder, args.load_pretrain_text_encoder
+ )
+ if args.load_pretrain_speech_encoder != "":
+ if hasattr(spch_encoder, "encoder"):
+ checkpoint_utils.load_pretrained_component_from_model(
+ spch_encoder.encoder, args.load_pretrain_speech_encoder
+ )
+ else:
+ checkpoint_utils.load_pretrained_component_from_model(
+ spch_encoder, args.load_pretrain_speech_encoder
+ )
+ if (
+ args.load_pretrain_text_encoder_last != ""
+ ): # if share encoder, speech encoder parameters will be used.
+ # It provides a chance to use pre-trained mt encoder instead
+ checkpoint_utils.load_pretrained_component_from_model(
+ text_encoder, args.load_pretrain_text_encoder_last
+ )
+
+ if args.load_pretrain_encoder != "":
+ checkpoint_utils.load_pretrained_component_from_model(
+ encoder, args.load_pretrain_encoder
+ )
+ return encoder
+
+ @classmethod
+ def build_decoder(cls, args, task):
+ dec_cfg = {
+ "decoder_layerdrop": args.decoder_layerdrop,
+ "share_decoder_input_output_embed": args.share_decoder_input_output_embed,
+ "decoder_embed_dim": args.decoder_embed_dim,
+ "max_target_positions": args.max_target_positions,
+ "dropout": args.dropout,
+ "encoder_learned_pos": args.encoder_learned_pos,
+ "decoder_learned_pos": args.decoder_learned_pos,
+ "layernorm_embedding": args.layernorm_embedding,
+ "decoder_normalize_before": args.decoder_normalize_before,
+ "activation_dropout": args.activation_dropout,
+ "attention_dropout": args.attention_dropout,
+ "decoder_ffn_embed_dim": args.decoder_ffn_embed_dim,
+ "decoder_layers": args.decoder_layers,
+ "decoder_attention_heads": args.decoder_attention_heads,
+ "decoder_output_dim": args.decoder_embed_dim,
+ "no_scale_embedding": args.no_scale_embedding,
+ "adaptive_input": args.adaptive_input,
+ "quant_noise_pq": args.quant_noise_pq,
+ "adaptive_softmax_cutoff": args.adaptive_softmax_cutoff,
+ "tie_adaptive_weights": args.tie_adaptive_weights,
+ "no_token_positional_embeddings": args.no_token_positional_embeddings,
+ }
+ dec_cfg = namedtuple("args", dec_cfg.keys())(*dec_cfg.values())
+ dec_emb = nn.Embedding(
+ len(task.target_dictionary),
+ args.decoder_embed_dim,
+ task.target_dictionary.pad(),
+ )
+ compute_cross_attentive_loss = (
+ True if getattr(args, "attentive_cost_regularization", 0.0) > 0.0 else False
+ )
+ cross_attentive_loss_without_norm = getattr(
+ args, "attentive_cost_without_normalize", False
+ )
+ cross_attentive_loss_reverse = (
+ False # getattr(args, "attentive_cost_reverse", False)
+ )
+
+ text_decoder = TransformerDecoder(dec_cfg, task.target_dictionary, dec_emb)
+ spch_decoder = TransformerDecoder(dec_cfg, task.target_dictionary, dec_emb)
+ spch_decoder = TransformerMultiInputDecoder.share_spchdecoder(
+ args, text_decoder, spch_decoder
+ )
+ decoder = TransformerMultiInputDecoder(
+ dictionary=task.target_dictionary,
+ spch_decoder=spch_decoder,
+ text_decoder=text_decoder,
+ compute_cross_attentive_loss=compute_cross_attentive_loss,
+ cross_attentive_loss_with_norm=True
+ if not cross_attentive_loss_without_norm
+ else False,
+ cross_attentive_loss_reverse=cross_attentive_loss_reverse,
+ )
+ if args.init_scale != 1.0:
+ with torch.no_grad():
+ for param in decoder.parameters():
+ param.data.mul_(args.init_scale)
+ if args.load_pretrain_decoder != "":
+ try:
+ checkpoint_utils.load_pretrained_component_from_model(
+ decoder, args.load_pretrain_decoder
+ )
+ except RuntimeError:
+ checkpoint_utils.load_pretrained_component_from_model(
+ decoder.text_decoder, args.load_pretrain_decoder
+ )
+ if args.decoder_shared_layer_level > 0:
+ checkpoint_utils.load_pretrained_component_from_model(
+ decoder.spch_decoder, args.load_pretrain_decoder
+ )
+
+ return decoder
+
+ @classmethod
+ def build_model(cls, args, task):
+ """Build a new model instance."""
+ # make sure that all args are properly defaulted
+ # (in case there are any new ones)
+ dualinputs2ttransformer_base(args)
+
+ encoder = cls.build_encoder(args, task)
+ decoder = cls.build_decoder(args, task)
+ return cls(encoder, decoder)
+
+ def get_normalized_probs(self, net_output, log_probs, sample=None):
+ # net_output['encoder_out'] is a (B, T, D) tensor
+ lprobs = super().get_normalized_probs(net_output, log_probs, sample)
+ lprobs.batch_first = True
+ return lprobs
+
+ def set_num_updates(self, num_updates):
+ """Set the number of parameters updates."""
+ super().set_num_updates(num_updates)
+ self.num_updates = num_updates
+
+ def forward(
+ self,
+ src_tokens,
+ src_lengths,
+ prev_output_tokens,
+ use_encoder_outputs=False,
+ src_txt_tokens=None,
+ src_txt_lengths=None,
+ mode="sup_speech",
+ **kwargs
+ ):
+ """
+ Run the forward pass for an encoder-decoder model.
+
+ First feed a batch of source tokens through the encoder. Then, feed the
+ encoder output and previous decoder outputs (i.e., teacher forcing) to
+ the decoder to produce the next outputs::
+
+ encoder_out = self.encoder(src_tokens, src_lengths)
+ return self.decoder(prev_output_tokens, encoder_out)
+
+ Args:
+ src_tokens (LongTensor): tokens in the source language of shape
+ `(batch, src_len)`
+ src_lengths (LongTensor): source sentence lengths of shape `(batch)`
+ prev_output_tokens (LongTensor): previous decoder outputs of shape
+ `(batch, tgt_len)`, for teacher forcing
+ mode = 'sup_speech' or 'text'
+
+ Returns:
+ tuple:
+ - the decoder's output of shape `(batch, tgt_len, vocab)`
+ - a dictionary with any model-specific outputs
+ """
+ if mode == "text":
+ assert src_txt_tokens is None
+ src_txt_tokens = src_tokens
+ src_txt_lengths = src_lengths
+ src_tokens = None
+ src_lengths = None
+ encoder_out = self.encoder(
+ src_tokens,
+ src_lengths=src_lengths,
+ src_txt_tokens=src_txt_tokens,
+ src_txt_lengths=src_txt_lengths,
+ **kwargs
+ )
+ has_txt_input = True if src_txt_tokens is not None else False
+ decoder_out = self.decoder(
+ prev_output_tokens,
+ encoder_out=encoder_out,
+ has_txt_input=has_txt_input,
+ **kwargs
+ )
+ if use_encoder_outputs:
+ return decoder_out, encoder_out
+ return decoder_out
+
+
+@register_model_architecture(
+ "dual_input_s2t_transformer", "dualinputs2ttransformer_base"
+)
+def dualinputs2ttransformer_base(args):
+ args.encoder_freezing_updates = getattr(args, "encoder_freezing_updates", 0)
+ # Convolutional subsampler
+ args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80)
+ args.conv_kernel_sizes = getattr(args, "conv_kernel_sizes", "5,5")
+ args.conv_channels = getattr(args, "conv_channels", 1024)
+ # Transformer
+ args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
+ args.encoder_text_embed_dim = getattr(
+ args, "encoder_text_embed_dim", args.encoder_embed_dim
+ )
+ args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
+ args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
+ args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
+ args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
+ args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
+
+ args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
+ args.decoder_ffn_embed_dim = getattr(
+ args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
+ )
+ args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
+ args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
+ args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
+ args.dropout = getattr(args, "dropout", 0.1)
+ args.attention_dropout = getattr(args, "attention_dropout", args.dropout)
+ args.activation_dropout = getattr(args, "activation_dropout", args.dropout)
+ args.activation_fn = getattr(args, "activation_fn", "relu")
+ args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
+ args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
+ args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
+ args.share_decoder_input_output_embed = getattr(
+ args, "share_decoder_input_output_embed", False
+ )
+ args.no_token_positional_embeddings = getattr(
+ args, "no_token_positional_embeddings", False
+ )
+ args.adaptive_input = getattr(args, "adaptive_input", False)
+ args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0)
+ args.decoder_output_dim = getattr(
+ args, "decoder_output_dim", args.decoder_embed_dim
+ )
+ args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
+ args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
+ args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
+
+ args.speech_encoder_layers = getattr(args, "speech_encoder_layers", 10)
+ args.text_encoder_layers = getattr(args, "text_encoder_layers", 6)
+ args.encoder_shared_layers = getattr(args, "encoder_shared_layers", 0)
+ args.decoder_layers = getattr(args, "decoder_layers", 6)
+
+ args.add_speech_eos = getattr(args, "add_speech_eos", False)
+
+
+@register_model_architecture("dual_input_s2t_transformer", "dualinputs2ttransformer_s")
+def dualinputs2ttransformer_s(args):
+ args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
+ args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 256 * 4)
+ args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
+ args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
+ args.dropout = getattr(args, "dropout", 0.1)
+ args.speech_encoder_layers = getattr(args, "speech_encoder_layers", 7)
+ args.text_encoder_layers = getattr(args, "text_encoder_layers", 7)
+ args.decoder_layers = getattr(args, "decoder_layers", 7)
+ dualinputs2ttransformer_base(args)
+
+
+@register_model_architecture("dual_input_s2t_transformer", "dualinputs2ttransformer_m")
+def dualinputs2ttransformer_m(args):
+ args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
+ args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 512 * 4)
+ args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
+ args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
+ args.dropout = getattr(args, "dropout", 0.15)
+ args.speech_encoder_layers = getattr(args, "speech_encoder_layers", 10)
+ args.text_encoder_layers = getattr(args, "text_encoder_layers", 6)
+ args.decoder_layers = getattr(args, "decoder_layers", 6)
+ dualinputs2ttransformer_base(args)
+
+
+@register_model_architecture("dual_input_s2t_transformer", "dualinputs2ttransformer_b")
+def dualinputs2ttransformer_b(args):
+ args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
+ args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 768 * 4)
+ args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12)
+ args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12)
+ args.dropout = getattr(args, "dropout", 0.15)
+ args.speech_encoder_layers = getattr(args, "speech_encoder_layers", 12)
+ args.text_encoder_layers = getattr(args, "text_encoder_layers", 6)
+ args.decoder_layers = getattr(args, "decoder_layers", 6)
+ dualinputs2ttransformer_base(args)
+
+
+@register_model_architecture("dual_input_s2t_transformer", "dualinputs2ttransformer_l")
+def dualinputs2ttransformer_l(args):
+ args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
+ args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024 * 4)
+ args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
+ args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
+ args.dropout = getattr(args, "dropout", 0.2)
+ args.speech_encoder_layers = getattr(args, "speech_encoder_layers", 12)
+ args.text_encoder_layers = getattr(args, "text_encoder_layers", 6)
+ args.decoder_layers = getattr(args, "decoder_layers", 6)
+ dualinputs2ttransformer_base(args)
diff --git a/fairseq/examples/speech_text_joint_to_text/models/s2t_dualinputxmtransformer.py b/fairseq/examples/speech_text_joint_to_text/models/s2t_dualinputxmtransformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..50683e6d7c8c0db5b8f019e5f7f5fb8c6dfd9f66
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/models/s2t_dualinputxmtransformer.py
@@ -0,0 +1,585 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import copy
+
+import torch.nn as nn
+from fairseq import checkpoint_utils
+from fairseq import utils
+from fairseq.data.data_utils import lengths_to_padding_mask
+from fairseq.models import (
+ register_model,
+ register_model_architecture,
+ FairseqEncoder,
+)
+from fairseq.models.speech_to_text import XMTransformerModel, Wav2VecEncoderWithAdaptor
+from fairseq.models.speech_to_text.xm_transformer import (
+ set_default_adaptor_args,
+ set_default_w2v_encoder_args,
+)
+from fairseq.models.transformer import TransformerEncoder, TransformerDecoder
+from fairseq.models.wav2vec import TransformerSentenceEncoderLayer
+from fairseq.utils import safe_hasattr
+
+from .s2t_dualinputtransformer import (
+ DualInputS2TTransformerModel,
+ TransformerMultiInputDecoder,
+ DualInputEncoder,
+)
+
+
+class TransformerSentenceEncoderLayerStd(TransformerSentenceEncoderLayer):
+ def __init__(self, sent_enc_layer):
+ super(TransformerSentenceEncoderLayer, self).__init__()
+ self.embedding_dim = sent_enc_layer.embedding_dim
+ self.dropout = sent_enc_layer.dropout
+ self.activation_dropout = sent_enc_layer.activation_dropout
+
+ # Initialize blocks
+ self.activation_fn = sent_enc_layer.activation_fn
+ self.self_attn = sent_enc_layer.self_attn
+
+ self.dropout1 = sent_enc_layer.dropout1
+ self.dropout2 = sent_enc_layer.dropout2
+ self.dropout3 = sent_enc_layer.dropout3
+
+ self.layer_norm_first = sent_enc_layer.layer_norm_first
+
+ # layer norm associated with the self attention layer
+ self.self_attn_layer_norm = sent_enc_layer.self_attn_layer_norm
+ self.fc1 = sent_enc_layer.fc1
+ self.fc2 = sent_enc_layer.fc2
+
+ # layer norm associated with the position wise feed-forward NN
+ self.final_layer_norm = sent_enc_layer.final_layer_norm
+
+ def forward(
+ self,
+ x,
+ self_attn_mask=None,
+ self_attn_padding_mask=None,
+ need_weights=None,
+ att_args=None,
+ ):
+ x, attn = super().forward(
+ x, self_attn_mask, self_attn_padding_mask, need_weights, att_args
+ )
+ return x
+
+
+# TODO retire SharedEncoder
+class SharedEncoder(FairseqEncoder):
+ def __init__(self, wav2vec_enc, mbart_enc, adaptor, shared_layers):
+ super().__init__(None)
+ self.w2v_encoder = wav2vec_enc
+ self.shared_layers = self.w2v_encoder.w2v_model.encoder.layers[-shared_layers:]
+ self.w2v_encoder.w2v_model.encoder.layers = (
+ self.w2v_encoder.w2v_model.encoder.layers[:-shared_layers]
+ )
+ self.adaptor = adaptor
+ if self.shared_layers[-1].layer_norm_first:
+ self.final_layer_norm = mbart_enc.layer_norm
+ else:
+ mbart_enc.layer_norm = None
+ self.final_layer_norm = None
+ shared_layer_from = len(mbart_enc.layers) - shared_layers
+ if shared_layer_from < 0:
+ shared_layer_from = 0
+ for layer_id, layer in enumerate(self.shared_layers):
+ mbart_enc.layers[
+ shared_layer_from + layer_id
+ ] = TransformerSentenceEncoderLayerStd(layer)
+
+ def forward(self, src_tokens, src_lengths=None, **kwargs):
+ padding_mask = lengths_to_padding_mask(src_lengths)
+ if not padding_mask.any():
+ padding_mask = None
+
+ out = self.w2v_encoder.forward(src_tokens, padding_mask, tbc=True)
+ x = out["encoder_out"]
+ enc_padding_mask = None
+ if out["encoder_padding_mask"] is not None:
+ enc_padding_mask = out["encoder_padding_mask"].transpose(
+ 0, 1
+ ) # T X B --> B X T
+
+ x, enc_padding_mask = self.adaptor(x, enc_padding_mask)
+ for layer in self.shared_layers:
+ x, _ = layer(x, enc_padding_mask)
+ if self.final_layer_norm is not None:
+ x = self.final_layer_norm(x)
+
+ return {
+ "encoder_out": [x], # T x B x C
+ "encoder_padding_mask": [enc_padding_mask]
+ if enc_padding_mask is not None
+ else [], # B x T
+ "encoder_embedding": [], # B x T x C
+ "encoder_states": [], # List[T x B x C]
+ "src_tokens": [],
+ "src_lengths": [],
+ }
+
+
+class StackedWav2VecEncoderWithAdaptor(FairseqEncoder):
+ def __init__(
+ self,
+ wav2vec_enc,
+ mbart_enc_layers,
+ mbart_layer_norm,
+ adaptor,
+ drop_w2v_layers=0,
+ ):
+ super().__init__(None)
+ self.w2v_encoder = wav2vec_enc
+ self.adaptor = adaptor
+ self.mbart_encoder_layers = mbart_enc_layers
+ self.final_layer_norm = mbart_layer_norm
+ if drop_w2v_layers > 0:
+ self.w2v_encoder.w2v_model.encoder.layers = (
+ self.w2v_encoder.w2v_model.encoder.layers[:-drop_w2v_layers]
+ )
+
+ def forward(self, src_tokens, src_lengths=None, return_all_hiddens=False, **kwargs):
+ padding_mask = lengths_to_padding_mask(src_lengths)
+ if not padding_mask.any():
+ padding_mask = None
+
+ out = self.w2v_encoder.forward(src_tokens, padding_mask, tbc=True)
+ x = out["encoder_out"]
+ enc_padding_mask = None
+ if out["encoder_padding_mask"] is not None:
+ enc_padding_mask = out["encoder_padding_mask"].transpose(
+ 0, 1
+ ) # T X B --> B X T
+
+ x, enc_padding_mask = self.adaptor(x, enc_padding_mask)
+ encoder_states = []
+ for layer in self.mbart_encoder_layers:
+ x = layer(x, enc_padding_mask)
+ if return_all_hiddens:
+ encoder_states.append(x)
+ if self.final_layer_norm is not None:
+ x = self.final_layer_norm(x)
+
+ return {
+ "encoder_out": [x], # T x B x C
+ "encoder_padding_mask": [enc_padding_mask]
+ if enc_padding_mask is not None
+ else [], # B x T
+ "encoder_embedding": [], # B x T x C
+ "encoder_states": encoder_states, # List[T x B x C]
+ "src_tokens": [],
+ "src_lengths": [],
+ }
+
+ def reorder_encoder_out(self, encoder_out, new_order):
+ new_encoder_out = (
+ []
+ if len(encoder_out["encoder_out"]) == 0
+ else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]]
+ )
+
+ new_encoder_padding_mask = (
+ []
+ if len(encoder_out["encoder_padding_mask"]) == 0
+ else [
+ x.index_select(0, new_order)
+ for x in encoder_out["encoder_padding_mask"]
+ ]
+ )
+
+ new_encoder_embedding = (
+ []
+ if len(encoder_out["encoder_embedding"]) == 0
+ else [
+ x.index_select(0, new_order) for x in encoder_out["encoder_embedding"]
+ ]
+ )
+
+ encoder_states = encoder_out["encoder_states"]
+ if len(encoder_states) > 0:
+ for idx, state in enumerate(encoder_states):
+ encoder_states[idx] = state.index_select(1, new_order)
+
+ return {
+ "encoder_out": new_encoder_out, # T x B x C
+ "encoder_padding_mask": new_encoder_padding_mask, # B x T
+ "encoder_embedding": new_encoder_embedding, # B x T x C
+ "encoder_states": encoder_states, # List[T x B x C]
+ "src_tokens": [], # B x T
+ "src_lengths": [], # B x 1
+ }
+
+
+# Note:
+# dual input transformer:
+# encoder: wav2vec for speech + mbart encoder for text
+# decoder: mbart decoder for text
+@register_model("dual_input_xm_transformer")
+class DualInputXMTransformerModel(DualInputS2TTransformerModel):
+ def __init__(self, encoder, decoder):
+ super().__init__(encoder, decoder)
+
+ @staticmethod
+ def add_args(parser):
+ """Add model-specific arguments to the parser."""
+ # wav2vec encoder
+ Wav2VecEncoderWithAdaptor.add_args(parser)
+ # add_decoder_args(parser)
+ # mbart Transformer
+ parser.add_argument(
+ "--activation-fn",
+ type=str,
+ default="relu",
+ choices=utils.get_available_activation_fns(),
+ help="activation function to use",
+ )
+
+ parser.add_argument(
+ "--mbart-dropout", type=float, metavar="D", help="dropout probability"
+ )
+ parser.add_argument(
+ "--mbart-attention-dropout",
+ type=float,
+ metavar="D",
+ help="dropout probability for attention weights",
+ )
+ parser.add_argument(
+ "--mbart-activation-dropout",
+ type=float,
+ metavar="D",
+ help="dropout probability after activation in FFN.",
+ )
+
+ parser.add_argument(
+ "--encoder-embed-dim",
+ type=int,
+ metavar="N",
+ help="encoder embedding dimension",
+ )
+ parser.add_argument(
+ "--encoder-ffn-embed-dim",
+ type=int,
+ metavar="N",
+ help="encoder embedding dimension for FFN",
+ )
+ parser.add_argument(
+ "--encoder-layers", type=int, metavar="N", help="num encoder layers"
+ )
+ parser.add_argument(
+ "--encoder-attention-heads",
+ type=int,
+ metavar="N",
+ help="num encoder attention heads",
+ )
+ parser.add_argument(
+ "--encoder-normalize-before",
+ action="store_true",
+ help="apply layernorm before each encoder block",
+ )
+
+ parser.add_argument(
+ "--decoder-embed-dim",
+ type=int,
+ metavar="N",
+ help="decoder embedding dimension",
+ )
+ parser.add_argument(
+ "--decoder-ffn-embed-dim",
+ type=int,
+ metavar="N",
+ help="decoder embedding dimension for FFN",
+ )
+ parser.add_argument(
+ "--decoder-layers", type=int, metavar="N", help="num decoder layers"
+ )
+ parser.add_argument(
+ "--decoder-attention-heads",
+ type=int,
+ metavar="N",
+ help="num decoder attention heads",
+ )
+ parser.add_argument(
+ "--decoder-normalize-before",
+ action="store_true",
+ help="apply layernorm before each decoder block",
+ )
+ parser.add_argument(
+ "--layernorm-embedding",
+ action="store_true",
+ help="add layernorm to embedding",
+ )
+ parser.add_argument(
+ "--no-scale-embedding",
+ action="store_true",
+ help="if True, dont scale embeddings",
+ )
+ parser.add_argument(
+ "--load-pretrained-mbart-from",
+ type=str,
+ metavar="STR",
+ help="model to take text encoder decoder weights from (for initialization)",
+ )
+ # parser.add_argument("--finetune-w2v-params", type=str, metavar="STR",
+ # help="comma-separated param strings to finetune.")
+ parser.add_argument(
+ "--finetune-mbart-decoder-params",
+ type=str,
+ metavar="STR",
+ help="comma-separated param strings to finetune.",
+ )
+ parser.add_argument(
+ "--finetune-mbart-encoder-params",
+ type=str,
+ metavar="STR",
+ help="comma-separated param strings to finetune.",
+ )
+ parser.add_argument(
+ "--skip-encoder-projection",
+ action="store_true",
+ help="skip the projection layer in encoder",
+ )
+
+ parser.add_argument(
+ "--enc-grad-mult",
+ type=float,
+ metavar="V",
+ default=1.0,
+ help="multiply enc1 and enc2 gradient by V",
+ )
+ parser.add_argument(
+ "--enc2-along-grad-mult",
+ type=float,
+ metavar="V",
+ default=1.0,
+ help="multiply enc2 gradient by V if only enc2 is used",
+ )
+ parser.add_argument(
+ "--text-input-cost-ratio",
+ type=float,
+ default=1.0,
+ metavar="V",
+ help="text input cost ratio relative to speech input cost",
+ )
+ parser.add_argument(
+ "--stack-w2v-mbart-encoder",
+ action="store_true",
+ help="stack w2v and mbart encoder",
+ )
+ parser.add_argument(
+ "--stack-w2v-mbart-nonorm-encoder",
+ action="store_true",
+ help="stack w2v and mbart encoder",
+ )
+ parser.add_argument(
+ "--no-final-norm-decoder", action="store_true", help="no layer norm"
+ )
+ parser.add_argument(
+ "--drop-w2v-layers",
+ type=int,
+ default=0,
+ metavar="N",
+ help="drop w2v encoder layers",
+ )
+
+ parser.add_argument(
+ "--share-w2v-text-encoder",
+ action="store_true",
+ help="share w2v encoder layers with text encoder",
+ )
+ parser.add_argument(
+ "--shared-w2v-layers",
+ type=int,
+ default=0,
+ metavar="N",
+ help="shared encoder layers from w2v encoder",
+ )
+
+ @classmethod
+ def build_encoder(cls, args, task):
+ _args = copy.deepcopy(args)
+ _args.dropout = args.mbart_dropout
+ _args.attention_dropout = args.mbart_attention_dropout
+ _args.activation_dropout = args.mbart_activation_dropout
+ _args.max_source_positions = 1024
+ enc_emb = nn.Embedding(
+ len(task.src_dict), _args.encoder_embed_dim, task.src_dict.pad()
+ )
+ text_encoder = TransformerEncoder(_args, task.src_dict, enc_emb)
+ spch_encoder = Wav2VecEncoderWithAdaptor(args)
+ if getattr(args, "load_pretrained_mbart_from", None):
+ text_encoder = checkpoint_utils.load_pretrained_component_from_model(
+ component=text_encoder, checkpoint=args.load_pretrained_mbart_from
+ )
+ if getattr(args, "stack_w2v_mbart_encoder", False):
+ assert getattr(args, "share_w2v_text_encoder", False) is False
+ spch_encoder = StackedWav2VecEncoderWithAdaptor(
+ spch_encoder.w2v_encoder,
+ text_encoder.layers,
+ text_encoder.layer_norm,
+ spch_encoder.adaptor,
+ args.drop_w2v_layers,
+ )
+ elif getattr(args, "stack_w2v_mbart_nonorm_encoder", False):
+ text_encoder.layer_norm = None
+ spch_encoder = StackedWav2VecEncoderWithAdaptor(
+ spch_encoder.w2v_encoder,
+ text_encoder.layers,
+ text_encoder.layer_norm,
+ spch_encoder.adaptor,
+ args.drop_w2v_layers,
+ )
+ elif getattr(args, "share_w2v_text_encoder", False):
+ spch_encoder = SharedEncoder(
+ spch_encoder.w2v_encoder,
+ text_encoder,
+ spch_encoder.adaptor,
+ args.shared_w2v_layers,
+ )
+
+ for k, p in spch_encoder.named_parameters():
+ # Freeze pretrained models by default
+ if safe_hasattr(
+ args, "finetune_w2v_params"
+ ) and XMTransformerModel.finetune_params(args.finetune_w2v_params, k):
+ p.requires_grad = True
+ else:
+ p.requires_grad = False
+ for k, p in text_encoder.named_parameters():
+ # Freeze pretrained models by default
+ if safe_hasattr(
+ args, "finetune_mbart_encoder_params"
+ ) and XMTransformerModel.finetune_params(
+ args.finetune_mbart_encoder_params, k
+ ):
+ p.requires_grad = True
+ else:
+ p.requires_grad = False
+ cross_attentive_loss_before_last_layer = (
+ 0 if getattr(args, "attentive_cost_regularization", 0.0) > 0.0 else -1
+ )
+ encoder = DualInputEncoder(
+ args,
+ spch_encoder,
+ text_encoder,
+ task.src_dict,
+ cross_attentive_loss_before_last_layer,
+ )
+ return encoder
+
+ @classmethod
+ def build_decoder(cls, args, task):
+ _args = copy.deepcopy(args)
+ _args.dropout = args.mbart_dropout
+ _args.attention_dropout = args.mbart_attention_dropout
+ _args.activation_dropout = args.mbart_activation_dropout
+ _args.max_target_positions = 1024
+ dec_emb = nn.Embedding(
+ len(task.tgt_dict), _args.encoder_embed_dim, task.tgt_dict.pad()
+ )
+ decoder = TransformerDecoder(_args, task.tgt_dict, dec_emb)
+ if getattr(args, "load_pretrained_mbart_from", None):
+ decoder = checkpoint_utils.load_pretrained_component_from_model(
+ component=decoder, checkpoint=args.load_pretrained_mbart_from
+ )
+ if getattr(args, "no_final_norm_decoder", False):
+ decoder.layer_norm = None
+ for k, p in decoder.named_parameters():
+ # Freeze pretrained models by default
+ if safe_hasattr(
+ args, "finetune_mbart_decoder_params"
+ ) and XMTransformerModel.finetune_params(
+ args.finetune_mbart_decoder_params, k
+ ):
+ p.requires_grad = True
+ else:
+ p.requires_grad = False
+
+ compute_cross_attentive_loss = (
+ True if getattr(args, "attentive_cost_regularization", 0.0) > 0.0 else False
+ )
+ cross_attentive_loss_without_norm = getattr(
+ args, "attentive_cost_without_normalize", False
+ )
+ cross_attentive_loss_reverse = (
+ False # getattr(args, "attentive_cost_reverse", False)
+ )
+ decoder = TransformerMultiInputDecoder(
+ dictionary=task.target_dictionary,
+ spch_decoder=decoder,
+ text_decoder=decoder,
+ compute_cross_attentive_loss=compute_cross_attentive_loss,
+ cross_attentive_loss_with_norm=True
+ if not cross_attentive_loss_without_norm
+ else False,
+ cross_attentive_loss_reverse=cross_attentive_loss_reverse,
+ )
+ return decoder
+
+ @classmethod
+ def build_model(cls, args, task):
+ """Build a new model instance."""
+ # make sure that all args are properly defaulted
+ # (in case there are any new ones)
+ dualinputxmtransformer_base(args)
+
+ encoder = cls.build_encoder(args, task)
+ decoder = cls.build_decoder(args, task)
+ return cls(encoder, decoder)
+
+
+@register_model_architecture("dual_input_xm_transformer", "dualinputxmtransformer_base")
+def dualinputxmtransformer_base(args):
+ # wav2vec encoder
+ set_default_w2v_encoder_args(args)
+ set_default_adaptor_args(args)
+
+ # mbart model
+ args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
+ args.encoder_ffn_embed_dim = getattr(
+ args, "encoder_ffn_embed_dim", 4 * args.encoder_embed_dim
+ )
+ args.encoder_layers = getattr(args, "encoder_layers", 12)
+ args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
+ args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
+ args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
+ args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
+
+ args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
+ args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
+ args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4 * 1024)
+ args.decoder_layers = getattr(args, "decoder_layers", 12)
+ args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
+ args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
+ args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True)
+ args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0)
+
+ args.adaptive_input = getattr(args, "adaptive_input", False)
+
+ args.mbart_attention_dropout = getattr(args, "mbart_attention_dropout", 0.0)
+ args.mbart_activation_dropout = getattr(args, "mbart_activation_dropout", 0.0)
+ args.mbart_dropout = getattr(args, "mbart_dropout", 0.1)
+ args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
+ args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
+ args.share_decoder_input_output_embed = getattr(
+ args, "share_decoder_input_output_embed", True
+ )
+ args.no_token_positional_embeddings = getattr(
+ args, "no_token_positional_embeddings", False
+ )
+
+ args.decoder_output_dim = getattr(
+ args, "decoder_output_dim", args.decoder_embed_dim
+ )
+ args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
+
+ args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
+ args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
+ args.layernorm_embedding = getattr(args, "layernorm_embedding", True)
+
+ args.activation_fn = getattr(args, "activation_fn", "gelu")
+ args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh")
+ args.pooler_dropout = getattr(args, "pooler_dropout", 0.0)
diff --git a/fairseq/examples/speech_text_joint_to_text/scripts/g2p_encode.py b/fairseq/examples/speech_text_joint_to_text/scripts/g2p_encode.py
new file mode 100644
index 0000000000000000000000000000000000000000..9db779396f492e3f71b08d7b895beb81d8e46bc9
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/scripts/g2p_encode.py
@@ -0,0 +1,191 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import itertools
+import logging
+import re
+import time
+
+from g2p_en import G2p
+
+logger = logging.getLogger(__name__)
+
+FAIL_SENT = "FAILED_SENTENCE"
+
+
+def parse():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--data-path", type=str, required=True)
+ parser.add_argument("--out-path", type=str, required=True)
+ parser.add_argument("--lower-case", action="store_true")
+ parser.add_argument("--do-filter", action="store_true")
+ parser.add_argument("--use-word-start", action="store_true")
+ parser.add_argument("--dup-vowel", default=1, type=int)
+ parser.add_argument("--dup-consonant", default=1, type=int)
+ parser.add_argument("--no-punc", action="store_true")
+ parser.add_argument("--reserve-word", type=str, default="")
+ parser.add_argument(
+ "--reserve-first-column",
+ action="store_true",
+ help="first column is sentence id",
+ )
+ ###
+ parser.add_argument("--parallel-process-num", default=1, type=int)
+ parser.add_argument("--logdir", default="")
+ args = parser.parse_args()
+ return args
+
+
+def process_sent(sent, g2p, res_wrds, args):
+ sents = pre_process_sent(sent, args.do_filter, args.lower_case, res_wrds)
+ pho_seqs = [do_g2p(g2p, s, res_wrds, i == 0) for i, s in enumerate(sents)]
+ pho_seq = (
+ [FAIL_SENT]
+ if [FAIL_SENT] in pho_seqs
+ else list(itertools.chain.from_iterable(pho_seqs))
+ )
+ if args.no_punc:
+ pho_seq = remove_punc(pho_seq)
+ if args.dup_vowel > 1 or args.dup_consonant > 1:
+ pho_seq = dup_pho(pho_seq, args.dup_vowel, args.dup_consonant)
+ if args.use_word_start:
+ pho_seq = add_word_start(pho_seq)
+ return " ".join(pho_seq)
+
+
+def remove_punc(sent):
+ ns = []
+ regex = re.compile("[^a-zA-Z0-9 ]")
+ for p in sent:
+ if (not regex.search(p)) or p == FAIL_SENT:
+ if p == " " and (len(ns) == 0 or ns[-1] == " "):
+ continue
+ ns.append(p)
+ return ns
+
+
+def do_g2p(g2p, sent, res_wrds, is_first_sent):
+ if sent in res_wrds:
+ pho_seq = [res_wrds[sent]]
+ else:
+ pho_seq = g2p(sent)
+ if not is_first_sent:
+ pho_seq = [" "] + pho_seq # add space to separate
+ return pho_seq
+
+
+def pre_process_sent(sent, do_filter, lower_case, res_wrds):
+ if do_filter:
+ sent = re.sub("-", " ", sent)
+ sent = re.sub("—", " ", sent)
+ if len(res_wrds) > 0:
+ wrds = sent.split()
+ wrds = ["SPLIT_ME " + w + " SPLIT_ME" if w in res_wrds else w for w in wrds]
+ sents = [x.strip() for x in " ".join(wrds).split("SPLIT_ME") if x.strip() != ""]
+ else:
+ sents = [sent]
+ if lower_case:
+ sents = [s.lower() if s not in res_wrds else s for s in sents]
+ return sents
+
+
+def dup_pho(sent, dup_v_num, dup_c_num):
+ """
+ duplicate phoneme defined as cmudict
+ http://www.speech.cs.cmu.edu/cgi-bin/cmudict
+ """
+ if dup_v_num == 1 and dup_c_num == 1:
+ return sent
+ ns = []
+ for p in sent:
+ ns.append(p)
+ if re.search(r"\d$", p):
+ for i in range(1, dup_v_num):
+ ns.append(f"{p}-{i}P")
+ elif re.search(r"\w", p):
+ for i in range(1, dup_c_num):
+ ns.append(f"{p}-{i}P")
+ return ns
+
+
+def add_word_start(sent):
+ ns = []
+ do_add = True
+ ws = "▁"
+ for p in sent:
+ if do_add:
+ p = ws + p
+ do_add = False
+ if p == " ":
+ do_add = True
+ else:
+ ns.append(p)
+ return ns
+
+
+def load_reserve_word(reserve_word):
+ if reserve_word == "":
+ return []
+ with open(reserve_word, "r") as fp:
+ res_wrds = [x.strip().split() for x in fp.readlines() if x.strip() != ""]
+ assert sum([0 if len(x) == 2 else 1 for x in res_wrds]) == 0
+ res_wrds = dict(res_wrds)
+ return res_wrds
+
+
+def process_sents(sents, args):
+ g2p = G2p()
+ out_sents = []
+ res_wrds = load_reserve_word(args.reserve_word)
+ for sent in sents:
+ col1 = ""
+ if args.reserve_first_column:
+ col1, sent = sent.split(None, 1)
+ sent = process_sent(sent, g2p, res_wrds, args)
+ if args.reserve_first_column and col1 != "":
+ sent = f"{col1} {sent}"
+ out_sents.append(sent)
+ return out_sents
+
+
+def main():
+ args = parse()
+ out_sents = []
+ with open(args.data_path, "r") as fp:
+ sent_list = [x.strip() for x in fp.readlines()]
+ if args.parallel_process_num > 1:
+ try:
+ import submitit
+ except ImportError:
+ logger.warn(
+ "submitit is not found and only one job is used to process the data"
+ )
+ submitit = None
+
+ if args.parallel_process_num == 1 or submitit is None:
+ out_sents = process_sents(sent_list, args)
+ else:
+ # process sentences with parallel computation
+ lsize = len(sent_list) // args.parallel_process_num + 1
+ executor = submitit.AutoExecutor(folder=args.logdir)
+ executor.update_parameters(timeout_min=1000, cpus_per_task=4)
+ jobs = []
+ for i in range(args.parallel_process_num):
+ job = executor.submit(
+ process_sents, sent_list[lsize * i : lsize * (i + 1)], args
+ )
+ jobs.append(job)
+ is_running = True
+ while is_running:
+ time.sleep(5)
+ is_running = sum([job.done() for job in jobs]) < len(jobs)
+ out_sents = list(itertools.chain.from_iterable([job.result() for job in jobs]))
+ with open(args.out_path, "w") as fp:
+ fp.write("\n".join(out_sents) + "\n")
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/speech_text_joint_to_text/tasks/__init__.py b/fairseq/examples/speech_text_joint_to_text/tasks/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..d878278475fb24cf6b97d66d784e657567f5aa80
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/tasks/__init__.py
@@ -0,0 +1,12 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import importlib
+import os
+
+for file in os.listdir(os.path.dirname(__file__)):
+ if file.endswith(".py") and not file.startswith("_"):
+ task_name = file[: file.find(".py")]
+ importlib.import_module("examples.speech_text_joint_to_text.tasks." + task_name)
diff --git a/fairseq/examples/speech_text_joint_to_text/tasks/speech_text_joint.py b/fairseq/examples/speech_text_joint_to_text/tasks/speech_text_joint.py
new file mode 100644
index 0000000000000000000000000000000000000000..f2b3966d2d6b103f3dc2ff170c12ab9663875684
--- /dev/null
+++ b/fairseq/examples/speech_text_joint_to_text/tasks/speech_text_joint.py
@@ -0,0 +1,372 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+import logging
+import os
+from argparse import Namespace
+from pathlib import Path
+
+import torch
+from fairseq.data import (
+ encoders,
+ Dictionary,
+ ResamplingDataset,
+ TransformEosLangPairDataset,
+ ConcatDataset,
+)
+from fairseq.data.iterators import GroupedEpochBatchIterator
+from fairseq.data.audio.multi_modality_dataset import (
+ MultiModalityDataset,
+ LangPairMaskDataset,
+ ModalityDatasetItem,
+)
+from fairseq.data.audio.speech_to_text_dataset import SpeechToTextDataset, SpeechToTextDatasetCreator
+from fairseq.data.audio.speech_to_text_joint_dataset import (
+ S2TJointDataConfig,
+ SpeechToTextJointDatasetCreator,
+)
+from fairseq.tasks import register_task
+from fairseq.tasks.speech_to_text import SpeechToTextTask
+from fairseq.tasks.translation import load_langpair_dataset
+
+logger = logging.getLogger(__name__)
+LANG_TAG_TEMPLATE = ""
+
+
+@register_task("speech_text_joint_to_text")
+class SpeechTextJointToTextTask(SpeechToTextTask):
+ """
+ Task for joint training speech and text to text.
+ """
+
+ @classmethod
+ def add_args(cls, parser):
+ """Add task-specific arguments to the parser."""
+ super(SpeechTextJointToTextTask, cls).add_args(parser)
+ ###
+ parser.add_argument(
+ "--parallel-text-data",
+ default="",
+ help="path to parallel text data directory",
+ )
+ parser.add_argument(
+ "--max-tokens-text",
+ type=int,
+ metavar="N",
+ help="maximum tokens for encoder text input ",
+ )
+ parser.add_argument(
+ "--max-positions-text",
+ type=int,
+ metavar="N",
+ default=400,
+ help="maximum tokens for per encoder text input ",
+ )
+ parser.add_argument(
+ "--langpairs",
+ default=None,
+ metavar="S",
+ help='language pairs for text training, separated with ","',
+ )
+ parser.add_argument(
+ "--speech-sample-ratio",
+ default=1,
+ type=float,
+ metavar="N",
+ help="Multiple Ratio for speech dataset with transcripts ",
+ )
+ parser.add_argument(
+ "--text-sample-ratio",
+ default=1,
+ type=float,
+ metavar="N",
+ help="Multiple Ratio for text set ",
+ )
+ parser.add_argument(
+ "--update-mix-data",
+ action="store_true",
+ help="use mixed data in one update when update-freq > 1",
+ )
+ parser.add_argument(
+ "--load-speech-only",
+ action="store_true",
+ help="load speech data only",
+ )
+ parser.add_argument(
+ "--mask-text-ratio",
+ type=float,
+ metavar="V",
+ default=0.0,
+ help="mask V source tokens for text only mode",
+ )
+ parser.add_argument(
+ "--mask-text-type",
+ default="random",
+ choices=["random", "tail"],
+ help="mask text typed",
+ )
+ parser.add_argument(
+ "--noise-token",
+ default="",
+ help="noise token for masking src text tokens if mask-text-ratio > 0",
+ )
+ parser.add_argument(
+ "--infer-target-lang",
+ default="",
+ metavar="S",
+ help="target language for inference",
+ )
+
+ def __init__(self, args, src_dict, tgt_dict, infer_tgt_lang_id=None):
+ super().__init__(args, tgt_dict)
+ self.src_dict = src_dict
+ self.data_cfg = S2TJointDataConfig(Path(args.data) / args.config_yaml)
+ assert self.tgt_dict.pad() == self.src_dict.pad()
+ assert self.tgt_dict.eos() == self.src_dict.eos()
+ self.speech_only = args.load_speech_only
+ self._infer_tgt_lang_id = infer_tgt_lang_id
+
+ @classmethod
+ def setup_task(cls, args, **kwargs):
+ """Setup the task (e.g., load dictionaries)."""
+ data_cfg = S2TJointDataConfig(Path(args.data) / args.config_yaml)
+ tgt_dict_path = Path(args.data) / data_cfg.vocab_filename
+ src_dict_path = Path(args.data) / data_cfg.src_vocab_filename
+ if (not os.path.isfile(src_dict_path)) or (not os.path.isfile(tgt_dict_path)):
+ raise FileNotFoundError("Dict not found: {}".format(args.data))
+ src_dict = Dictionary.load(src_dict_path.as_posix())
+ tgt_dict = Dictionary.load(tgt_dict_path.as_posix())
+
+ print("| src dictionary: {} types".format(len(src_dict)))
+ print("| tgt dictionary: {} types".format(len(tgt_dict)))
+
+ if args.parallel_text_data != "":
+ if not os.path.isabs(args.parallel_text_data):
+ args.parallel_text_data = os.path.join(
+ args.data, args.parallel_text_data
+ )
+
+ if args.langpairs is None:
+ raise Exception(
+ "Could not infer language pair, please provide it explicitly"
+ )
+ infer_tgt_lang_id = None
+ if args.infer_target_lang != "" and data_cfg.prepend_tgt_lang_tag_no_change:
+ tgt_lang_tag = SpeechToTextDataset.LANG_TAG_TEMPLATE.format(
+ args.infer_target_lang
+ )
+ infer_tgt_lang_id = tgt_dict.index(tgt_lang_tag)
+ assert infer_tgt_lang_id != tgt_dict.unk()
+ return cls(args, src_dict, tgt_dict, infer_tgt_lang_id=infer_tgt_lang_id)
+
+ def load_langpair_dataset(self, prepend_tgt_lang_tag=False, sampling_alpha=1.0, epoch=0):
+ lang_pairs = []
+ text_dataset = None
+ split = "train"
+ for lp in self.args.langpairs.split(","):
+ src, tgt = lp.split("-")
+ text_dataset = load_langpair_dataset(
+ self.args.parallel_text_data,
+ split,
+ src,
+ self.src_dict,
+ tgt,
+ self.tgt_dict,
+ combine=True,
+ dataset_impl=None,
+ upsample_primary=1,
+ left_pad_source=False,
+ left_pad_target=False,
+ max_source_positions=self.args.max_positions_text,
+ max_target_positions=self.args.max_target_positions,
+ load_alignments=False,
+ truncate_source=False,
+ )
+ if prepend_tgt_lang_tag:
+ # TODO
+ text_dataset = TransformEosLangPairDataset(
+ text_dataset,
+ src_eos=self.src_dict.eos(),
+ tgt_bos=self.tgt_dict.eos(), # 'prev_output_tokens' starts with eos
+ new_tgt_bos=self.tgt_dict.index(LANG_TAG_TEMPLATE.format(tgt)),
+ )
+ lang_pairs.append(text_dataset)
+ if len(lang_pairs) > 1:
+ if sampling_alpha != 1.0:
+ size_ratios = SpeechToTextDatasetCreator.get_size_ratios(
+ self.args.langpairs.split(","),
+ [len(s) for s in lang_pairs],
+ alpha=sampling_alpha,
+ )
+ lang_pairs = [
+ ResamplingDataset(
+ d, size_ratio=r, epoch=epoch, replace=(r >= 1.0)
+ )
+ for d, r in zip(lang_pairs, size_ratios)
+ ]
+ return ConcatDataset(lang_pairs)
+ return text_dataset
+
+ def inference_step(
+ self, generator, models, sample, prefix_tokens=None, constraints=None
+ ):
+ with torch.no_grad():
+ return generator.generate(
+ models,
+ sample,
+ prefix_tokens=prefix_tokens,
+ constraints=constraints,
+ bos_token=self._infer_tgt_lang_id,
+ )
+
+ def build_src_tokenizer(self, args):
+ logger.info(f"src-pre-tokenizer: {self.data_cfg.src_pre_tokenizer}")
+ return encoders.build_tokenizer(Namespace(**self.data_cfg.src_pre_tokenizer))
+
+ def build_src_bpe(self, args):
+ logger.info(f"tokenizer: {self.data_cfg.src_bpe_tokenizer}")
+ return encoders.build_bpe(Namespace(**self.data_cfg.src_bpe_tokenizer))
+
+ def load_dataset(self, split, epoch=1, combine=False, **kwargs):
+ """Load a given dataset split.
+
+ Args:
+ split (str): name of the split (e.g., train, valid, test)
+ """
+ is_train_split = split.startswith("train")
+ pre_tokenizer = self.build_tokenizer(self.args)
+ bpe_tokenizer = self.build_bpe(self.args)
+ src_pre_tokenizer = self.build_src_tokenizer(self.args)
+ src_bpe_tokenizer = self.build_src_bpe(self.args)
+ ast_dataset = SpeechToTextJointDatasetCreator.from_tsv(
+ self.args.data,
+ self.data_cfg,
+ split,
+ self.tgt_dict,
+ src_dict=None if self.speech_only else self.src_dict,
+ pre_tokenizer=pre_tokenizer,
+ bpe_tokenizer=bpe_tokenizer,
+ src_pre_tokenizer=src_pre_tokenizer,
+ src_bpe_tokenizer=src_bpe_tokenizer,
+ is_train_split=is_train_split,
+ epoch=epoch,
+ seed=self.args.seed,
+ )
+ noise_token_id = -1
+ text_dataset = None
+ if self.args.parallel_text_data != "" and is_train_split:
+ text_dataset = self.load_langpair_dataset(
+ self.data_cfg.prepend_tgt_lang_tag_no_change,
+ 1.0,
+ epoch=epoch,
+ )
+ if self.args.mask_text_ratio > 0:
+ # add mask
+ noise_token_id = (
+ self.src_dict.unk()
+ if self.args.noise_token == ""
+ else self.src_dict.index(self.args.noise_token)
+ )
+ text_dataset = LangPairMaskDataset(
+ text_dataset,
+ src_bos=self.src_dict.bos(),
+ src_eos=self.src_dict.eos(),
+ noise_id=noise_token_id,
+ mask_ratio=self.args.mask_text_ratio,
+ mask_type=self.args.mask_text_type,
+ )
+
+ if text_dataset is not None:
+ mdsets = [
+ ModalityDatasetItem(
+ "sup_speech",
+ ast_dataset,
+ (self.args.max_source_positions, self.args.max_target_positions),
+ self.args.max_tokens,
+ self.args.batch_size,
+ ),
+ ModalityDatasetItem(
+ "text",
+ text_dataset,
+ (self.args.max_positions_text, self.args.max_target_positions),
+ self.args.max_tokens_text
+ if self.args.max_tokens_text is not None
+ else self.args.max_tokens,
+ self.args.batch_size,
+ ),
+ ]
+ ast_dataset = MultiModalityDataset(mdsets)
+ self.datasets[split] = ast_dataset
+
+ @property
+ def target_dictionary(self):
+ """Return the :class:`~fairseq.data.Dictionary` for the language
+ model."""
+ return self.tgt_dict
+
+ @property
+ def source_dictionary(self):
+ """Return the source :class:`~fairseq.data.Dictionary` (if applicable
+ for this task)."""
+ return None if self.speech_only else self.src_dict
+
+ def get_batch_iterator(
+ self,
+ dataset,
+ max_tokens=None,
+ max_sentences=None,
+ max_positions=None,
+ ignore_invalid_inputs=False,
+ required_batch_size_multiple=1,
+ seed=1,
+ num_shards=1,
+ shard_id=0,
+ num_workers=0,
+ epoch=0,
+ data_buffer_size=0,
+ disable_iterator_cache=False,
+ ):
+
+ if not isinstance(dataset, MultiModalityDataset):
+ return super(SpeechTextJointToTextTask, self).get_batch_iterator(
+ dataset,
+ max_tokens,
+ max_sentences,
+ max_positions,
+ ignore_invalid_inputs,
+ required_batch_size_multiple,
+ seed,
+ num_shards,
+ shard_id,
+ num_workers,
+ epoch,
+ data_buffer_size,
+ disable_iterator_cache,
+ )
+
+ mult_ratio = [self.args.speech_sample_ratio, self.args.text_sample_ratio]
+ assert len(dataset.datasets) == 2
+
+ # initialize the dataset with the correct starting epoch
+ dataset.set_epoch(epoch)
+
+ batch_samplers = dataset.get_batch_samplers(
+ mult_ratio, required_batch_size_multiple, seed
+ )
+
+ # return a reusable, sharded iterator
+ epoch_iter = GroupedEpochBatchIterator(
+ dataset=dataset,
+ collate_fn=dataset.collater,
+ batch_samplers=batch_samplers,
+ seed=seed,
+ num_shards=num_shards,
+ shard_id=shard_id,
+ num_workers=num_workers,
+ epoch=epoch,
+ mult_rate=1 if self.args.update_mix_data else max(self.args.update_freq),
+ buffer_size=data_buffer_size,
+ )
+ self.dataset_to_epoch_iter[dataset] = {} # refresh it every epoch
+ return epoch_iter
diff --git a/fairseq/examples/speech_to_text/README.md b/fairseq/examples/speech_to_text/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..f639d300d342f8de1392c98bfc44ec8690188539
--- /dev/null
+++ b/fairseq/examples/speech_to_text/README.md
@@ -0,0 +1,77 @@
+# Speech-to-Text (S2T) Modeling
+
+[https://www.aclweb.org/anthology/2020.aacl-demo.6](https://www.aclweb.org/anthology/2020.aacl-demo.6.pdf)
+
+Speech recognition (ASR) and speech-to-text translation (ST) with fairseq.
+
+## Data Preparation
+S2T modeling data consists of source speech features, target text and other optional information
+(source text, speaker id, etc.). Fairseq S2T uses per-dataset-split TSV manifest files
+to store these information. Each data field is represented by a column in the TSV file.
+
+Unlike text token embeddings, speech features (e.g. log mel-scale filter banks) are usually fixed
+during model training and can be pre-computed. The manifest file contains the path to
+either the feature file in NumPy format or the WAV/FLAC audio file. For the latter,
+features will be extracted on-the-fly by fairseq S2T. Optionally, feature/audio files can be packed
+into uncompressed ZIP files (then accessed via byte offset and length) to improve I/O performance.
+
+Fairseq S2T also employs a YAML file for data related configurations: tokenizer type and dictionary path
+for the target text, feature transforms such as CMVN (cepstral mean and variance normalization) and SpecAugment,
+temperature-based resampling, etc.
+
+## Model Training
+Fairseq S2T uses the unified `fairseq-train` interface for model training. It requires arguments `--task speech_to_text`,
+ `--arch ` and `--config-yaml `.
+
+## Inference & Evaluation
+Fairseq S2T uses the unified `fairseq-generate`/`fairseq-interactive` interface for inference and evaluation. It
+requires arguments `--task speech_to_text` and `--config-yaml `. The interactive console takes
+audio paths (one per line) as inputs.
+
+
+## Examples
+- [Speech Recognition (ASR) on LibriSpeech](docs/librispeech_example.md)
+
+- [Speech-to-Text Translation (ST) on MuST-C](docs/mustc_example.md)
+
+- [Speech-to-Text Translation (ST) on CoVoST 2](docs/covost_example.md)
+
+- [Speech-to-Text Translation (ST) on Multilingual TEDx](docs/mtedx_example.md)
+- [Simultaneous Speech-to-Text Translation (SimulST) on MuST-C](docs/simulst_mustc_example.md)
+
+## Updates
+- 02/04/2021: Added interactive decoding (`fairseq-interactive`) support. Examples:
+ [ASR (LibriSpeech)](docs/librispeech_example.md#interactive-decoding)
+ and [ST (CoVoST 2)](docs/covost_example.md#interactive-decoding).
+- 01/08/2021: Several fixes for S2T Transformer model, inference-time de-tokenization, scorer configuration and data
+ preparation scripts. We also add pre-trained models to the examples and revise the instructions.
+ Breaking changes: the data preparation scripts now extract filterbank features without CMVN. CMVN is instead applied
+ on-the-fly (defined in the config YAML).
+
+## What's Next
+- We are migrating the old fairseq [ASR example](../speech_recognition) into this S2T framework and
+ merging the features from both sides.
+- The following papers also base their experiments on fairseq S2T. We are adding more examples for replication.
+ - [Improving Cross-Lingual Transfer Learning for End-to-End Speech Recognition with Speech Translation (Wang et al., 2020)](https://arxiv.org/abs/2006.05474)
+ - [Self-Supervised Representations Improve End-to-End Speech Translation (Wu et al., 2020)](https://arxiv.org/abs/2006.12124)
+ - [Self-Training for End-to-End Speech Translation (Pino et al., 2020)](https://arxiv.org/abs/2006.02490)
+ - [CoVoST: A Diverse Multilingual Speech-To-Text Translation Corpus (Wang et al., 2020)](https://arxiv.org/abs/2002.01320)
+ - [Harnessing Indirect Training Data for End-to-End Automatic Speech Translation: Tricks of the Trade (Pino et al., 2019)](https://arxiv.org/abs/1909.06515)
+
+## Citation
+Please cite as:
+```
+@inproceedings{wang2020fairseqs2t,
+ title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq},
+ author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino},
+ booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations},
+ year = {2020},
+}
+
+@inproceedings{ott2019fairseq,
+ title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
+ author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
+ booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
+ year = {2019},
+}
+```
diff --git a/fairseq/examples/speech_to_text/data_utils.py b/fairseq/examples/speech_to_text/data_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..41afac0bf8f6d70e06bee1a34e220ab396ec247d
--- /dev/null
+++ b/fairseq/examples/speech_to_text/data_utils.py
@@ -0,0 +1,382 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import csv
+from pathlib import Path
+import zipfile
+from functools import reduce
+from multiprocessing import cpu_count
+from typing import Any, Dict, List, Optional, Union
+import io
+
+import numpy as np
+import pandas as pd
+import sentencepiece as sp
+from fairseq.data.audio.audio_utils import (
+ convert_waveform, _get_kaldi_fbank, _get_torchaudio_fbank, is_npy_data,
+ is_sf_audio_data
+)
+import torch
+import soundfile as sf
+from tqdm import tqdm
+
+
+UNK_TOKEN, UNK_TOKEN_ID = "", 3
+BOS_TOKEN, BOS_TOKEN_ID = "", 0
+EOS_TOKEN, EOS_TOKEN_ID = " ", 2
+PAD_TOKEN, PAD_TOKEN_ID = "", 1
+
+
+def gen_vocab(
+ input_path: Path, output_path_prefix: Path, model_type="bpe",
+ vocab_size=1000, special_symbols: Optional[List[str]] = None
+):
+ # Train SentencePiece Model
+ arguments = [
+ f"--input={input_path.as_posix()}",
+ f"--model_prefix={output_path_prefix.as_posix()}",
+ f"--model_type={model_type}",
+ f"--vocab_size={vocab_size}",
+ "--character_coverage=1.0",
+ f"--num_threads={cpu_count()}",
+ f"--unk_id={UNK_TOKEN_ID}",
+ f"--bos_id={BOS_TOKEN_ID}",
+ f"--eos_id={EOS_TOKEN_ID}",
+ f"--pad_id={PAD_TOKEN_ID}",
+ ]
+ if special_symbols is not None:
+ _special_symbols = ",".join(special_symbols)
+ arguments.append(f"--user_defined_symbols={_special_symbols}")
+ sp.SentencePieceTrainer.Train(" ".join(arguments))
+ # Export fairseq dictionary
+ spm = sp.SentencePieceProcessor()
+ spm.Load(output_path_prefix.as_posix() + ".model")
+ vocab = {i: spm.IdToPiece(i) for i in range(spm.GetPieceSize())}
+ assert (
+ vocab.get(UNK_TOKEN_ID) == UNK_TOKEN
+ and vocab.get(PAD_TOKEN_ID) == PAD_TOKEN
+ and vocab.get(BOS_TOKEN_ID) == BOS_TOKEN
+ and vocab.get(EOS_TOKEN_ID) == EOS_TOKEN
+ )
+ vocab = {
+ i: s
+ for i, s in vocab.items()
+ if s not in {UNK_TOKEN, BOS_TOKEN, EOS_TOKEN, PAD_TOKEN}
+ }
+ with open(output_path_prefix.as_posix() + ".txt", "w") as f_out:
+ for _, s in sorted(vocab.items(), key=lambda x: x[0]):
+ f_out.write(f"{s} 1\n")
+
+
+def extract_fbank_features(
+ waveform: torch.FloatTensor,
+ sample_rate: int,
+ output_path: Optional[Path] = None,
+ n_mel_bins: int = 80,
+ overwrite: bool = False,
+):
+ if output_path is not None and output_path.is_file() and not overwrite:
+ return
+
+ _waveform = convert_waveform(waveform, sample_rate, to_mono=True)
+ # Kaldi compliance: 16-bit signed integers
+ _waveform = _waveform * (2 ** 15)
+ _waveform = _waveform.numpy()
+
+ features = _get_kaldi_fbank(_waveform, sample_rate, n_mel_bins)
+ if features is None:
+ features = _get_torchaudio_fbank(_waveform, sample_rate, n_mel_bins)
+ if features is None:
+ raise ImportError(
+ "Please install pyKaldi or torchaudio to enable fbank feature extraction"
+ )
+
+ if output_path is not None:
+ np.save(output_path.as_posix(), features)
+ return features
+
+
+def create_zip(data_root: Path, zip_path: Path):
+ paths = list(data_root.glob("*.npy"))
+ with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_STORED) as f:
+ for path in tqdm(paths):
+ f.write(path, arcname=path.name)
+
+
+def get_zip_manifest(
+ zip_path: Path, zip_root: Optional[Path] = None, is_audio=False
+):
+ _zip_path = Path.joinpath(zip_root or Path(""), zip_path)
+ with zipfile.ZipFile(_zip_path, mode="r") as f:
+ info = f.infolist()
+ paths, lengths = {}, {}
+ for i in tqdm(info):
+ utt_id = Path(i.filename).stem
+ offset, file_size = i.header_offset + 30 + len(i.filename), i.file_size
+ paths[utt_id] = f"{zip_path.as_posix()}:{offset}:{file_size}"
+ with open(_zip_path, "rb") as f:
+ f.seek(offset)
+ byte_data = f.read(file_size)
+ assert len(byte_data) > 1
+ if is_audio:
+ assert is_sf_audio_data(byte_data), i
+ else:
+ assert is_npy_data(byte_data), i
+ byte_data_fp = io.BytesIO(byte_data)
+ if is_audio:
+ lengths[utt_id] = sf.info(byte_data_fp).frames
+ else:
+ lengths[utt_id] = np.load(byte_data_fp).shape[0]
+ return paths, lengths
+
+
+def gen_config_yaml(
+ manifest_root: Path,
+ spm_filename: Optional[str] = None,
+ vocab_name: Optional[str] = None,
+ yaml_filename: str = "config.yaml",
+ specaugment_policy: Optional[str] = "lb",
+ prepend_tgt_lang_tag: bool = False,
+ sampling_alpha: Optional[float] = None,
+ input_channels: Optional[int] = 1,
+ input_feat_per_channel: Optional[int] = 80,
+ audio_root: str = "",
+ cmvn_type: str = "utterance",
+ gcmvn_path: Optional[Path] = None,
+ extra=None
+):
+ manifest_root = manifest_root.absolute()
+ writer = S2TDataConfigWriter(manifest_root / yaml_filename)
+ assert spm_filename is not None or vocab_name is not None
+ vocab_name = spm_filename.replace(".model", ".txt") if vocab_name is None \
+ else vocab_name
+ writer.set_vocab_filename(vocab_name)
+ if input_channels is not None:
+ writer.set_input_channels(input_channels)
+ if input_feat_per_channel is not None:
+ writer.set_input_feat_per_channel(input_feat_per_channel)
+ specaugment_setters = {
+ "lb": writer.set_specaugment_lb_policy,
+ "ld": writer.set_specaugment_ld_policy,
+ "sm": writer.set_specaugment_sm_policy,
+ "ss": writer.set_specaugment_ss_policy,
+ }
+ specaugment_setter = specaugment_setters.get(specaugment_policy, None)
+ if specaugment_setter is not None:
+ specaugment_setter()
+ if spm_filename is not None:
+ writer.set_bpe_tokenizer(
+ {
+ "bpe": "sentencepiece",
+ "sentencepiece_model": (manifest_root / spm_filename).as_posix(),
+ }
+ )
+ if prepend_tgt_lang_tag:
+ writer.set_prepend_tgt_lang_tag(True)
+ if sampling_alpha is not None:
+ writer.set_sampling_alpha(sampling_alpha)
+
+ if cmvn_type not in ["global", "utterance"]:
+ raise NotImplementedError
+
+ if specaugment_policy is not None:
+ writer.set_feature_transforms(
+ "_train", [f"{cmvn_type}_cmvn", "specaugment"]
+ )
+ writer.set_feature_transforms("*", [f"{cmvn_type}_cmvn"])
+
+ if cmvn_type == "global":
+ if gcmvn_path is None:
+ raise ValueError("Please provide path of global cmvn file.")
+ else:
+ writer.set_global_cmvn(gcmvn_path.as_posix())
+
+ if len(audio_root) > 0:
+ writer.set_audio_root(audio_root)
+
+ if extra is not None:
+ writer.set_extra(extra)
+ writer.flush()
+
+
+def load_df_from_tsv(path: Union[str, Path]) -> pd.DataFrame:
+ _path = path if isinstance(path, str) else path.as_posix()
+ return pd.read_csv(
+ _path,
+ sep="\t",
+ header=0,
+ encoding="utf-8",
+ escapechar="\\",
+ quoting=csv.QUOTE_NONE,
+ na_filter=False,
+ )
+
+
+def save_df_to_tsv(dataframe, path: Union[str, Path]):
+ _path = path if isinstance(path, str) else path.as_posix()
+ dataframe.to_csv(
+ _path,
+ sep="\t",
+ header=True,
+ index=False,
+ encoding="utf-8",
+ escapechar="\\",
+ quoting=csv.QUOTE_NONE,
+ )
+
+
+def load_tsv_to_dicts(path: Union[str, Path]) -> List[dict]:
+ with open(path, "r") as f:
+ reader = csv.DictReader(
+ f,
+ delimiter="\t",
+ quotechar=None,
+ doublequote=False,
+ lineterminator="\n",
+ quoting=csv.QUOTE_NONE,
+ )
+ rows = [dict(e) for e in reader]
+ return rows
+
+
+def filter_manifest_df(
+ df, is_train_split=False, extra_filters=None, min_n_frames=5, max_n_frames=3000
+):
+ filters = {
+ "no speech": df["audio"] == "",
+ f"short speech (<{min_n_frames} frames)": df["n_frames"] < min_n_frames,
+ "empty sentence": df["tgt_text"] == "",
+ }
+ if is_train_split:
+ filters[f"long speech (>{max_n_frames} frames)"] = df["n_frames"] > max_n_frames
+ if extra_filters is not None:
+ filters.update(extra_filters)
+ invalid = reduce(lambda x, y: x | y, filters.values())
+ valid = ~invalid
+ print(
+ "| "
+ + ", ".join(f"{n}: {f.sum()}" for n, f in filters.items())
+ + f", total {invalid.sum()} filtered, {valid.sum()} remained."
+ )
+ return df[valid]
+
+
+def cal_gcmvn_stats(features_list):
+ features = np.concatenate(features_list)
+ square_sums = (features ** 2).sum(axis=0)
+ mean = features.mean(axis=0)
+ features = np.subtract(features, mean)
+ var = square_sums / features.shape[0] - mean ** 2
+ std = np.sqrt(np.maximum(var, 1e-8))
+ return {"mean": mean.astype("float32"), "std": std.astype("float32")}
+
+
+class S2TDataConfigWriter(object):
+ DEFAULT_VOCAB_FILENAME = "dict.txt"
+ DEFAULT_INPUT_FEAT_PER_CHANNEL = 80
+ DEFAULT_INPUT_CHANNELS = 1
+
+ def __init__(self, yaml_path: Path):
+ try:
+ import yaml
+ except ImportError:
+ print("Please install PyYAML for S2T data config YAML files")
+ self.yaml = yaml
+ self.yaml_path = yaml_path
+ self.config = {}
+
+ def flush(self):
+ with open(self.yaml_path, "w") as f:
+ self.yaml.dump(self.config, f)
+
+ def set_audio_root(self, audio_root=""):
+ self.config["audio_root"] = audio_root
+
+ def set_vocab_filename(self, vocab_filename: str = "dict.txt"):
+ self.config["vocab_filename"] = vocab_filename
+
+ def set_specaugment(
+ self,
+ time_wrap_w: int,
+ freq_mask_n: int,
+ freq_mask_f: int,
+ time_mask_n: int,
+ time_mask_t: int,
+ time_mask_p: float,
+ ):
+ self.config["specaugment"] = {
+ "time_wrap_W": time_wrap_w,
+ "freq_mask_N": freq_mask_n,
+ "freq_mask_F": freq_mask_f,
+ "time_mask_N": time_mask_n,
+ "time_mask_T": time_mask_t,
+ "time_mask_p": time_mask_p,
+ }
+
+ def set_specaugment_lb_policy(self):
+ self.set_specaugment(
+ time_wrap_w=0,
+ freq_mask_n=1,
+ freq_mask_f=27,
+ time_mask_n=1,
+ time_mask_t=100,
+ time_mask_p=1.0,
+ )
+
+ def set_specaugment_ld_policy(self):
+ self.set_specaugment(
+ time_wrap_w=0,
+ freq_mask_n=2,
+ freq_mask_f=27,
+ time_mask_n=2,
+ time_mask_t=100,
+ time_mask_p=1.0,
+ )
+
+ def set_specaugment_sm_policy(self):
+ self.set_specaugment(
+ time_wrap_w=0,
+ freq_mask_n=2,
+ freq_mask_f=15,
+ time_mask_n=2,
+ time_mask_t=70,
+ time_mask_p=0.2,
+ )
+
+ def set_specaugment_ss_policy(self):
+ self.set_specaugment(
+ time_wrap_w=0,
+ freq_mask_n=2,
+ freq_mask_f=27,
+ time_mask_n=2,
+ time_mask_t=70,
+ time_mask_p=0.2,
+ )
+
+ def set_input_channels(self, input_channels: int = 1):
+ self.config["input_channels"] = input_channels
+
+ def set_input_feat_per_channel(self, input_feat_per_channel: int = 80):
+ self.config["input_feat_per_channel"] = input_feat_per_channel
+
+ def set_bpe_tokenizer(self, bpe_tokenizer: Dict[str, Any]):
+ self.config["bpe_tokenizer"] = bpe_tokenizer
+
+ def set_global_cmvn(self, stats_npz_path: str):
+ self.config["global_cmvn"] = {"stats_npz_path": stats_npz_path}
+
+ def set_feature_transforms(self, split: str, transforms: List[str]):
+ if "transforms" not in self.config:
+ self.config["transforms"] = {}
+ self.config["transforms"][split] = transforms
+
+ def set_prepend_tgt_lang_tag(self, flag: bool = True):
+ self.config["prepend_tgt_lang_tag"] = flag
+
+ def set_sampling_alpha(self, sampling_alpha: float = 1.0):
+ self.config["sampling_alpha"] = sampling_alpha
+
+ def set_extra(self, data):
+ self.config.update(data)
diff --git a/fairseq/examples/speech_to_text/docs/covost_example.md b/fairseq/examples/speech_to_text/docs/covost_example.md
new file mode 100644
index 0000000000000000000000000000000000000000..16447f041e4751f79d9f7848b33ef2ff943d63c2
--- /dev/null
+++ b/fairseq/examples/speech_to_text/docs/covost_example.md
@@ -0,0 +1,102 @@
+[[Back]](..)
+
+# S2T Example: ST on CoVoST
+We replicate the experiments in
+[CoVoST 2 and Massively Multilingual Speech-to-Text Translation (Wang et al., 2020)](https://arxiv.org/abs/2007.10310).
+
+## Data Preparation
+[Download](https://commonvoice.mozilla.org/en/datasets) and unpack Common Voice v4 to a path
+`${COVOST_ROOT}/${SOURCE_LANG_ID}`, then preprocess it with
+```bash
+# additional Python packages for S2T data processing/model training
+pip install pandas torchaudio sentencepiece
+
+# En ASR
+python examples/speech_to_text/prep_covost_data.py \
+ --data-root ${COVOST_ROOT} --vocab-type char --src-lang en
+# ST
+python examples/speech_to_text/prep_covost_data.py \
+ --data-root ${COVOST_ROOT} --vocab-type char \
+ --src-lang fr --tgt-lang en
+```
+The generated files (manifest, features, vocabulary and data configuration) will be added to
+`${COVOST_ROOT}/${SOURCE_LANG_ID}`.
+
+Download our vocabulary files if you want to use our pre-trained models:
+- ASR: [En](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_en_asr_vocab_char.zip)
+- ST: [Fr-En](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_fr_en_st_vocab_char.zip), [De-En](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_de_en_st_vocab_char.zip), [Es-En](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_es_en_st_vocab_char.zip), [Ca-En](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_ca_en_st_vocab_char.zip), [En-De](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_en_de_st_vocab_char.zip), [En-Ca](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_en_ca_st_vocab_char.zip), [En-Fa](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_en_fa_st_vocab_char.zip), [En-Et](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_en_et_st_vocab_char.zip)
+
+## ASR
+#### Training
+We train an En ASR model for encoder pre-training of all ST models:
+```bash
+fairseq-train ${COVOST_ROOT}/en \
+ --config-yaml config_asr_en.yaml --train-subset train_asr_en --valid-subset dev_asr_en \
+ --save-dir ${ASR_SAVE_DIR} --num-workers 4 --max-tokens 50000 --max-update 60000 \
+ --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
+ --report-accuracy --arch s2t_transformer_s --dropout 0.15 --optimizer adam --lr 2e-3 \
+ --lr-scheduler inverse_sqrt --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8
+```
+where `ASR_SAVE_DIR` is the checkpoint root path. We set `--update-freq 8` to simulate 8 GPUs with 1 GPU.
+You may want to update it accordingly when using more than 1 GPU.
+
+#### Inference & Evaluation
+```bash
+CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
+python scripts/average_checkpoints.py \
+ --inputs ${ASR_SAVE_DIR} --num-epoch-checkpoints 10 \
+ --output "${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}"
+fairseq-generate ${COVOST_ROOT}/en \
+ --config-yaml config_asr_en.yaml --gen-subset test_asr_en --task speech_to_text \
+ --path ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 \
+ --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct
+```
+#### Results
+| --arch | Params | En | Model |
+|---|---|---|---|
+| s2t_transformer_s | 31M | 25.6 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_en_asr_transformer_s.pt) |
+
+## ST
+#### Training
+Fr-En as example:
+```bash
+fairseq-train ${COVOST_ROOT}/fr \
+ --config-yaml config_st_fr_en.yaml --train-subset train_st_fr_en --valid-subset dev_st_fr_en \
+ --save-dir ${ST_SAVE_DIR} --num-workers 4 --max-update 30000 --max-tokens 40000 \ # --max-tokens 50000 for en-*
+ --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --report-accuracy \
+ --arch s2t_transformer_s --encoder-freezing-updates 1000 --optimizer adam --lr 2e-3 \
+ --lr-scheduler inverse_sqrt --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8 \
+ --load-pretrained-encoder-from ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}
+```
+where `ST_SAVE_DIR` is the checkpoint root path. The ST encoder is pre-trained by En ASR for faster training and better
+performance: `--load-pretrained-encoder-from `. We set `--update-freq 8` to simulate 8 GPUs with 1 GPU.
+You may want to update it accordingly when using more than 1 GPU.
+
+#### Inference & Evaluation
+Average the last 10 checkpoints and evaluate on test split:
+```bash
+CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
+python scripts/average_checkpoints.py \
+ --inputs ${ST_SAVE_DIR} --num-epoch-checkpoints 10 \
+ --output "${ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"
+fairseq-generate ${COVOST_ROOT}/fr \
+ --config-yaml config_st_fr_en.yaml --gen-subset test_st_fr_en --task speech_to_text \
+ --path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \
+ --max-tokens 50000 --beam 5 --scoring sacrebleu
+```
+
+## Interactive Decoding
+Launch the interactive console via
+```bash
+fairseq-interactive ${COVOST_ROOT}/fr --config-yaml config_st_fr_en.yaml \
+ --task speech_to_text --path ${SAVE_DIR}/${CHECKPOINT_FILENAME} \
+ --max-tokens 50000 --beam 5
+```
+Type in WAV/FLAC/OGG audio paths (one per line) after the prompt.
+
+#### Results
+| --arch | Params | Fr-En | De-En | Es-En | Ca-En | En-De | En-Ca | En-Fa | En-Et | Model |
+|---|---|---|---|---|---|---|---|---|---|---|
+| s2t_transformer_s | 31M | [27.2](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_fr_en_st_transformer_s.pt) | [17.7](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_de_en_st_transformer_s.pt) | [23.1](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_es_en_st_transformer_s.pt) | [19.3](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_ca_en_st_transformer_s.pt) | [16.1](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_en_de_st_transformer_s.pt) | [21.6](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_en_ca_st_transformer_s.pt) | [12.9](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_en_fa_st_transformer_s.pt) | [12.8](https://dl.fbaipublicfiles.com/fairseq/s2t/covost2_en_et_st_transformer_s.pt) | (<-Download) |
+
+[[Back]](..)
diff --git a/fairseq/examples/speech_to_text/docs/librispeech_example.md b/fairseq/examples/speech_to_text/docs/librispeech_example.md
new file mode 100644
index 0000000000000000000000000000000000000000..4040fda9426027537036ba987d087a43e734bfd9
--- /dev/null
+++ b/fairseq/examples/speech_to_text/docs/librispeech_example.md
@@ -0,0 +1,69 @@
+[[Back]](..)
+
+# S2T Example: Speech Recognition (ASR) on LibriSpeech
+[LibriSpeech](https://www.danielpovey.com/files/2015_icassp_librispeech.pdf) is a de-facto standard English ASR
+benchmark. We provide competitive
+vanilla [Transformer](https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf) baselines.
+
+## Data preparation
+Download and preprocess LibriSpeech data with
+```bash
+# additional Python packages for S2T data processing/model training
+pip install pandas torchaudio sentencepiece
+
+python examples/speech_to_text/prep_librispeech_data.py \
+ --output-root ${LS_ROOT} --vocab-type unigram --vocab-size 10000
+```
+where `LS_ROOT` is the root path for downloaded data as well as generated files (manifest, features, vocabulary and
+data configuration).
+
+[Download](https://dl.fbaipublicfiles.com/fairseq/s2t/librispeech_vocab_unigram10000.zip) our vocabulary files
+if you want to use our pre-trained models.
+
+## Training
+```bash
+fairseq-train ${LS_ROOT} --save-dir ${SAVE_DIR} \
+ --config-yaml config.yaml --train-subset train-clean-100,train-clean-360,train-other-500 --valid-subset dev-clean,dev-other \
+ --num-workers 4 --max-tokens 40000 --max-update 300000 \
+ --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --report-accuracy \
+ --arch s2t_transformer_s --share-decoder-input-output-embed \
+ --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt --warmup-updates 10000 \
+ --clip-norm 10.0 --seed 1 --update-freq 8
+```
+where `SAVE_DIR` is the checkpoint root path. Here we use `--arch s2t_transformer_s` (31M parameters) as example.
+For better performance, you may switch to `s2t_transformer_m` (71M, with `--lr 1e-3`) or `s2t_transformer_l`
+(268M, with `--lr 5e-4`). We set `--update-freq 8` to simulate 8 GPUs with 1 GPU. You may want to update it accordingly
+when using more than 1 GPU.
+
+## Inference & Evaluation
+Average the last 10 checkpoints and evaluate on the 4 splits
+(`dev-clean`, `dev-other`, `test-clean` and `test-other`):
+```bash
+CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
+python scripts/average_checkpoints.py --inputs ${SAVE_DIR} \
+ --num-epoch-checkpoints 10 \
+ --output "${SAVE_DIR}/${CHECKPOINT_FILENAME}"
+for SUBSET in dev-clean dev-other test-clean test-other; do
+ fairseq-generate ${LS_ROOT} --config-yaml config.yaml --gen-subset ${SUBSET} \
+ --task speech_to_text --path ${SAVE_DIR}/${CHECKPOINT_FILENAME} \
+ --max-tokens 50000 --beam 5 --scoring wer
+done
+```
+
+## Interactive Decoding
+Launch the interactive console via
+```bash
+fairseq-interactive ${LS_ROOT} --config-yaml config.yaml --task speech_to_text \
+ --path ${SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5
+```
+Type in WAV/FLAC/OGG audio paths (one per line) after the prompt.
+
+## Results
+
+| --arch | Params | dev-clean | dev-other | test-clean | test-other | Model |
+|---|---|---|---|---|---|---|
+| s2t_transformer_s | 30M | 3.8 | 8.9 | 4.4 | 9.0 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2t/librispeech_transformer_s.pt) |
+| s2t_transformer_m | 71M | 3.2 | 8.0 | 3.4 | 7.9 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2t/librispeech_transformer_m.pt) |
+| s2t_transformer_l | 268M | 3.0 | 7.5 | 3.2 | 7.5 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2t/librispeech_transformer_l.pt) |
+
+[[Back]](..)
diff --git a/fairseq/examples/speech_to_text/docs/mtedx_example.md b/fairseq/examples/speech_to_text/docs/mtedx_example.md
new file mode 100644
index 0000000000000000000000000000000000000000..25b4556affbf5bc141b103095d15fffef6225c0e
--- /dev/null
+++ b/fairseq/examples/speech_to_text/docs/mtedx_example.md
@@ -0,0 +1,200 @@
+[[Back]](..)
+
+# S2T Example: Speech Translation (ST) on Multilingual TEDx
+
+[Multilingual TEDx](https://arxiv.org/abs/2102.01757) is multilingual corpus for speech recognition and
+speech translation. The data is derived from TEDx talks in 8 source languages
+with translations to a subset of 5 target languages.
+
+## Data Preparation
+[Download](http://openslr.org/100/) and unpack Multilingual TEDx data to a path
+`${MTEDX_ROOT}/${LANG_PAIR}`, then preprocess it with
+```bash
+# additional Python packages for S2T data processing/model training
+pip install pandas torchaudio soundfile sentencepiece
+
+# Generate TSV manifests, features, vocabulary
+# and configuration for each language
+python examples/speech_to_text/prep_mtedx_data.py \
+ --data-root ${MTEDX_ROOT} --task asr \
+ --vocab-type unigram --vocab-size 1000
+python examples/speech_to_text/prep_mtedx_data.py \
+ --data-root ${MTEDX_ROOT} --task st \
+ --vocab-type unigram --vocab-size 1000
+
+# Add vocabulary and configuration for joint data
+# (based on the manifests and features generated above)
+python examples/speech_to_text/prep_mtedx_data.py \
+ --data-root ${MTEDX_ROOT} --task asr --joint \
+ --vocab-type unigram --vocab-size 8000
+python examples/speech_to_text/prep_mtedx_data.py \
+ --data-root ${MTEDX_ROOT} --task st --joint \
+ --vocab-type unigram --vocab-size 8000
+```
+The generated files (manifest, features, vocabulary and data configuration) will be added to
+`${MTEDX_ROOT}/${LANG_PAIR}` (per-language data) and `MTEDX_ROOT` (joint data).
+
+
+## ASR
+#### Training
+Spanish as example:
+```bash
+fairseq-train ${MTEDX_ROOT}/es-es \
+ --config-yaml config_asr.yaml --train-subset train_asr --valid-subset valid_asr \
+ --save-dir ${ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-epoch 200 \
+ --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \
+ --arch s2t_transformer_xs --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \
+ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --dropout 0.3 --label-smoothing 0.1 \
+ --load-pretrained-encoder-from ${PRETRAINED_ENCODER} \
+ --skip-invalid-size-inputs-valid-test \
+ --keep-last-epochs 10 --update-freq 8 --patience 10
+```
+For joint model (using ASR data from all 8 languages):
+```bash
+fairseq-train ${MTEDX_ROOT} \
+ --config-yaml config_asr.yaml \
+ --train-subset train_es-es_asr,train_fr-fr_asr,train_pt-pt_asr,train_it-it_asr,train_ru-ru_asr,train_el-el_asr,train_ar-ar_asr,train_de-de_asr \
+ --valid-subset valid_es-es_asr,valid_fr-fr_asr,valid_pt-pt_asr,valid_it-it_asr,valid_ru-ru_asr,valid_el-el_asr,valid_ar-ar_asr,valid_de-de_asr \
+ --save-dir ${MULTILINGUAL_ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-epoch 200 \
+ --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \
+ --arch s2t_transformer_s --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \
+ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --dropout 0.3 --label-smoothing 0.1 \
+ --skip-invalid-size-inputs-valid-test \
+ --keep-last-epochs 10 --update-freq 8 --patience 10 \
+ --ignore-prefix-size 1
+```
+where `MULTILINGUAL_ASR_SAVE_DIR` is the checkpoint root path. We set `--update-freq 8` to simulate 8 GPUs
+with 1 GPU. You may want to update it accordingly when using more than 1 GPU.
+For multilingual models, we prepend target language ID token as target BOS, which should be excluded from
+the training loss via `--ignore-prefix-size 1`.
+
+#### Inference & Evaluation
+```bash
+CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
+python scripts/average_checkpoints.py \
+ --inputs ${ASR_SAVE_DIR} --num-epoch-checkpoints 10 \
+ --output "${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}"
+
+fairseq-generate ${MTEDX_ROOT}/es-es \
+ --config-yaml config_asr.yaml --gen-subset test --task speech_to_text \
+ --path ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 \
+ --skip-invalid-size-inputs-valid-test \
+ --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct --remove-bpe
+
+# For models trained on joint data
+CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
+python scripts/average_checkpoints.py \
+ --inputs ${MULTILINGUAL_ASR_SAVE_DIR} --num-epoch-checkpoints 10 \
+ --output "${MULTILINGUAL_ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}"
+
+for LANG in es fr pt it ru el ar de; do
+ fairseq-generate ${MTEDX_ROOT} \
+ --config-yaml config_asr.yaml --gen-subset test_${LANG}-${LANG}_asr --task speech_to_text \
+ --prefix-size 1 --path ${MULTILINGUAL_ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} \
+ --max-tokens 40000 --beam 5 \
+ --skip-invalid-size-inputs-valid-test \
+ --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct --remove-bpe
+done
+```
+#### Results
+| Data | --arch | Params | Es | Fr | Pt | It | Ru | El | Ar | De |
+|--------------|--------------------|--------|------|------|------|------|------|-------|-------|-------|
+| Monolingual | s2t_transformer_xs | 10M | 46.4 | 45.6 | 54.8 | 48.0 | 74.7 | 109.5 | 104.4 | 111.1 |
+
+
+## ST
+#### Training
+Es-En as example:
+```bash
+fairseq-train ${MTEDX_ROOT}/es-en \
+ --config-yaml config_st.yaml --train-subset train_st --valid-subset valid_st \
+ --save-dir ${ST_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-epoch 200 \
+ --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \
+ --arch s2t_transformer_xs --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \
+ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --dropout 0.3 --label-smoothing 0.1 \
+ --load-pretrained-encoder-from ${PRETRAINED_ENCODER} \
+ --skip-invalid-size-inputs-valid-test \
+ --keep-last-epochs 10 --update-freq 8 --patience 10
+```
+For multilingual model (all 12 directions):
+```bash
+fairseq-train ${MTEDX_ROOT} \
+ --config-yaml config_st.yaml \
+ --train-subset train_el-en_st,train_es-en_st,train_es-fr_st,train_es-it_st,train_es-pt_st,train_fr-en_st,train_fr-es_st,train_fr-pt_st,train_it-en_st,train_it-es_st,train_pt-en_st,train_pt-es_st,train_ru-en_st \
+ --valid-subset valid_el-en_st,valid_es-en_st,valid_es-fr_st,valid_es-it_st,valid_es-pt_st,valid_fr-en_st,valid_fr-es_st,valid_fr-pt_st,valid_it-en_st,valid_it-es_st,valid_pt-en_st,valid_pt-es_st,valid_ru-en_st \
+ --save-dir ${MULTILINGUAL_ST_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-epoch 200 \
+ --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \
+ --arch s2t_transformer_s --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \
+ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --dropout 0.3 --label-smoothing 0.1 \
+ --skip-invalid-size-inputs-valid-test \
+ --keep-last-epochs 10 --update-freq 8 --patience 10 \
+ --ignore-prefix-size 1 \
+ --load-pretrained-encoder-from ${PRETRAINED_ENCODER}
+```
+where `ST_SAVE_DIR` (`MULTILINGUAL_ST_SAVE_DIR`) is the checkpoint root path. The ST encoder is pre-trained by ASR
+for faster training and better performance: `--load-pretrained-encoder-from <(JOINT_)ASR checkpoint path>`. We set
+`--update-freq 8` to simulate 8 GPUs with 1 GPU. You may want to update it accordingly when using more than 1 GPU.
+For multilingual models, we prepend target language ID token as target BOS, which should be excluded from
+the training loss via `--ignore-prefix-size 1`.
+
+#### Inference & Evaluation
+Average the last 10 checkpoints and evaluate on the `test` split:
+```bash
+CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
+python scripts/average_checkpoints.py \
+ --inputs ${ST_SAVE_DIR} --num-epoch-checkpoints 10 \
+ --output "${ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"
+
+fairseq-generate ${MTEDX_ROOT}/es-en \
+ --config-yaml config_st.yaml --gen-subset test --task speech_to_text \
+ --path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \
+ --max-tokens 50000 --beam 5 --scoring sacrebleu --remove-bpe
+
+# For multilingual models
+python scripts/average_checkpoints.py \
+ --inputs ${MULTILINGUAL_ST_SAVE_DIR} --num-epoch-checkpoints 10 \
+ --output "${MULTILINGUAL_ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"
+
+for LANGPAIR in es-en es-fr es-pt fr-en fr-es fr-pt pt-en pt-es it-en it-es ru-en el-en; do
+ fairseq-generate ${MTEDX_ROOT} \
+ --config-yaml config_st.yaml --gen-subset test_${LANGPAIR}_st --task speech_to_text \
+ --prefix-size 1 --path ${MULTILINGUAL_ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \
+ --max-tokens 40000 --beam 5 \
+ --skip-invalid-size-inputs-valid-test \
+ --scoring sacrebleu --remove-bpe
+done
+```
+For multilingual models, we force decoding from the target language ID token (as BOS) via `--prefix-size 1`.
+
+#### Results
+| Data | --arch | Params | Es-En | Es-Pt | Es-Fr | Fr-En | Fr-Es | Fr-Pt | Pt-En | Pt-Es | It-En | It-Es | Ru-En | El-En |
+|--------------|--------------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
+| Bilingual | s2t_transformer_xs | 10M | 7.0 | 12.2 | 1.7 | 8.9 | 10.6 | 7.9 | 8.1 | 8.7 | 6.4 | 1.0 | 0.7 | 0.6 |
+| Multilingual | s2t_transformer_s | 31M | 12.3 | 17.4 | 6.1 | 12.0 | 13.6 | 13.2 | 12.0 | 13.7 | 10.7 | 13.1 | 0.6 | 0.8 |
+
+
+## Citation
+Please cite as:
+```
+@misc{salesky2021mtedx,
+ title={Multilingual TEDx Corpus for Speech Recognition and Translation},
+ author={Elizabeth Salesky and Matthew Wiesner and Jacob Bremerman and Roldano Cattoni and Matteo Negri and Marco Turchi and Douglas W. Oard and Matt Post},
+ year={2021},
+}
+
+@inproceedings{wang2020fairseqs2t,
+ title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq},
+ author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino},
+ booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations},
+ year = {2020},
+}
+
+@inproceedings{ott2019fairseq,
+ title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
+ author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
+ booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
+ year = {2019},
+}
+```
+
+[[Back]](..)
diff --git a/fairseq/examples/speech_to_text/docs/mustc_example.md b/fairseq/examples/speech_to_text/docs/mustc_example.md
new file mode 100644
index 0000000000000000000000000000000000000000..c95ef3e15660107c3384f87c1680f005044e7f3b
--- /dev/null
+++ b/fairseq/examples/speech_to_text/docs/mustc_example.md
@@ -0,0 +1,155 @@
+[[Back]](..)
+
+# S2T Example: Speech Translation (ST) on MuST-C
+
+[MuST-C](https://www.aclweb.org/anthology/N19-1202) is multilingual speech-to-text translation corpus with
+8-language translations on English TED talks. We match the state-of-the-art performance in
+[ESPNet-ST](https://arxiv.org/pdf/2004.10234.pdf) with a simpler model training pipeline.
+
+## Data Preparation
+[Download](https://ict.fbk.eu/must-c) and unpack MuST-C data to a path
+`${MUSTC_ROOT}/en-${TARGET_LANG_ID}`, then preprocess it with
+```bash
+# additional Python packages for S2T data processing/model training
+pip install pandas torchaudio soundfile sentencepiece
+
+# Generate TSV manifests, features, vocabulary
+# and configuration for each language
+python examples/speech_to_text/prep_mustc_data.py \
+ --data-root ${MUSTC_ROOT} --task asr \
+ --vocab-type unigram --vocab-size 5000
+python examples/speech_to_text/prep_mustc_data.py \
+ --data-root ${MUSTC_ROOT} --task st \
+ --vocab-type unigram --vocab-size 8000
+
+# Add vocabulary and configuration for joint data
+# (based on the manifests and features generated above)
+python examples/speech_to_text/prep_mustc_data.py \
+ --data-root ${MUSTC_ROOT} --task asr --joint \
+ --vocab-type unigram --vocab-size 10000
+python examples/speech_to_text/prep_mustc_data.py \
+ --data-root ${MUSTC_ROOT} --task st --joint \
+ --vocab-type unigram --vocab-size 10000
+```
+The generated files (manifest, features, vocabulary and data configuration) will be added to
+`${MUSTC_ROOT}/en-${TARGET_LANG_ID}` (per-language data) and `MUSTC_ROOT` (joint data).
+
+Download our vocabulary files if you want to use our pre-trained models:
+- ASR: [En-De](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_de_asr_vocab_unigram5000.zip), [En-Nl](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_nl_asr_vocab_unigram5000.zip), [En-Es](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_es_asr_vocab_unigram5000.zip), [En-Fr](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_fr_asr_vocab_unigram5000.zip), [En-It](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_it_asr_vocab_unigram5000.zip), [En-Pt](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_pt_asr_vocab_unigram5000.zip), [En-Ro](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ro_asr_vocab_unigram5000.zip), [En-Ru](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ru_asr_vocab_unigram5000.zip), [Joint](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_joint_asr_vocab_unigram10000.zip)
+- ST: [En-De](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_de_st_vocab_unigram8000.zip), [En-Nl](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_nl_st_vocab_unigram8000.zip), [En-Es](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_es_st_vocab_unigram8000.zip), [En-Fr](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_fr_st_vocab_unigram8000.zip), [En-It](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_it_st_vocab_unigram8000.zip), [En-Pt](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_pt_st_vocab_unigram8000.zip), [En-Ro](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ro_st_vocab_unigram8000.zip), [En-Ru](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ru_st_vocab_unigram8000.zip), [Multilingual](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_multilingual_st_vocab_unigram10000.zip)
+
+## ASR
+#### Training
+En-De as example:
+```bash
+fairseq-train ${MUSTC_ROOT}/en-de \
+ --config-yaml config_asr.yaml --train-subset train_asr --valid-subset dev_asr \
+ --save-dir ${ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-update 100000 \
+ --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --report-accuracy \
+ --arch s2t_transformer_s --optimizer adam --lr 1e-3 --lr-scheduler inverse_sqrt \
+ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8
+```
+For joint model (using ASR data from all 8 directions):
+```bash
+fairseq-train ${MUSTC_ROOT} \
+ --config-yaml config_asr.yaml \
+ --train-subset train_de_asr,train_nl_asr,train_es_asr,train_fr_asr,train_it_asr,train_pt_asr,train_ro_asr,train_ru_asr \
+ --valid-subset dev_de_asr,dev_nl_asr,dev_es_asr,dev_fr_asr,dev_it_asr,dev_pt_asr,dev_ro_asr,dev_ru_asr \
+ --save-dir ${JOINT_ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-update 100000 \
+ --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --report-accuracy \
+ --arch s2t_transformer_s --optimizer adam --lr 1e-3 --lr-scheduler inverse_sqrt \
+ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8
+```
+where `ASR_SAVE_DIR` (`JOINT_ASR_SAVE_DIR`) is the checkpoint root path. We set `--update-freq 8` to simulate 8 GPUs
+with 1 GPU. You may want to update it accordingly when using more than 1 GPU.
+
+#### Inference & Evaluation
+```bash
+CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
+python scripts/average_checkpoints.py \
+ --inputs ${ASR_SAVE_DIR} --num-epoch-checkpoints 10 \
+ --output "${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}"
+fairseq-generate ${MUSTC_ROOT}/en-de \
+ --config-yaml config_asr.yaml --gen-subset tst-COMMON_asr --task speech_to_text \
+ --path ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 \
+ --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct
+
+# For models trained on joint data
+python scripts/average_checkpoints.py \
+ --inputs ${JOINT_ASR_SAVE_DIR} --num-epoch-checkpoints 10 \
+ --output "${JOINT_ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}"
+for LANG in de nl es fr it pt ro ru; do
+ fairseq-generate ${MUSTC_ROOT} \
+ --config-yaml config_asr.yaml --gen-subset tst-COMMON_${LANG}_asr --task speech_to_text \
+ --path ${JOINT_ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 \
+ --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct
+done
+```
+#### Results
+| Data | --arch | Params | En-De | En-Nl | En-Es | En-Fr | En-It | En-Pt | En-Ro | En-Ru | Model |
+|---|---|---|---|---|---|---|---|---|---|---|---|
+| Single | s2t_transformer_s | 31M | [18.2](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_de_asr_transformer_s.pt) | [17.6](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_nl_asr_transformer_s.pt) | [17.7](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_es_asr_transformer_s.pt) | [17.2](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_fr_asr_transformer_s.pt) | [17.9](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_it_asr_transformer_s.pt) | [19.1](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_pt_asr_transformer_s.pt) | [18.1](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ro_asr_transformer_s.pt) | [17.7](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ru_asr_transformer_s.pt) | (<-Download) |
+| Joint | s2t_transformer_m | 76M | 16.8 | 16.7 | 16.9 | 16.9 | 17.0 | 17.4 | 17.0 | 16.9 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_joint_asr_transformer_m.pt) |
+
+## ST
+#### Training
+En-De as example:
+```bash
+fairseq-train ${MUSTC_ROOT}/en-de \
+ --config-yaml config_st.yaml --train-subset train_st --valid-subset dev_st \
+ --save-dir ${ST_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-update 100000 \
+ --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --report-accuracy \
+ --arch s2t_transformer_s --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \
+ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8 \
+ --load-pretrained-encoder-from ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}
+```
+For multilingual model (all 8 directions):
+```bash
+fairseq-train ${MUSTC_ROOT} \
+ --config-yaml config_st.yaml \
+ --train-subset train_de_st,train_nl_st,train_es_st,train_fr_st,train_it_st,train_pt_st,train_ro_st,train_ru_st \
+ --valid-subset dev_de_st,dev_nl_st,dev_es_st,dev_fr_st,dev_it_st,dev_pt_st,dev_ro_st,dev_ru_st \
+ --save-dir ${MULTILINGUAL_ST_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-update 100000 \
+ --task speech_to_text --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --report-accuracy \
+ --arch s2t_transformer_s --ignore-prefix-size 1 --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \
+ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8 \
+ --load-pretrained-encoder-from ${JOINT_ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}
+```
+where `ST_SAVE_DIR` (`MULTILINGUAL_ST_SAVE_DIR`) is the checkpoint root path. The ST encoder is pre-trained by ASR
+for faster training and better performance: `--load-pretrained-encoder-from <(JOINT_)ASR checkpoint path>`. We set
+`--update-freq 8` to simulate 8 GPUs with 1 GPU. You may want to update it accordingly when using more than 1 GPU.
+For multilingual models, we prepend target language ID token as target BOS, which should be excluded from
+the training loss via `--ignore-prefix-size 1`.
+
+#### Inference & Evaluation
+Average the last 10 checkpoints and evaluate on the `tst-COMMON` split:
+```bash
+CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt
+python scripts/average_checkpoints.py \
+ --inputs ${ST_SAVE_DIR} --num-epoch-checkpoints 10 \
+ --output "${ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"
+fairseq-generate ${MUSTC_ROOT}/en-de \
+ --config-yaml config_st.yaml --gen-subset tst-COMMON_st --task speech_to_text \
+ --path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \
+ --max-tokens 50000 --beam 5 --scoring sacrebleu
+
+# For multilingual models
+python scripts/average_checkpoints.py \
+ --inputs ${MULTILINGUAL_ST_SAVE_DIR} --num-epoch-checkpoints 10 \
+ --output "${MULTILINGUAL_ST_SAVE_DIR}/${CHECKPOINT_FILENAME}"
+for LANG in de nl es fr it pt ro ru; do
+ fairseq-generate ${MUSTC_ROOT} \
+ --config-yaml config_st.yaml --gen-subset tst-COMMON_${LANG}_st --task speech_to_text \
+ --prefix-size 1 --path ${MULTILINGUAL_ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \
+ --max-tokens 50000 --beam 5 --scoring sacrebleu
+done
+```
+For multilingual models, we force decoding from the target language ID token (as BOS) via `--prefix-size 1`.
+
+#### Results
+| Data | --arch | Params | En-De | En-Nl | En-Es | En-Fr | En-It | En-Pt | En-Ro | En-Ru | Model |
+|---|---|---|---|---|---|---|---|---|---|---|---|
+| Bilingual | s2t_transformer_s | 31M | [22.7](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_de_st_transformer_s.pt) | [27.3](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_nl_st_transformer_s.pt) | [27.2](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_es_st_transformer_s.pt) | [32.9](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_fr_st_transformer_s.pt) | [22.7](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_it_st_transformer_s.pt) | [28.1](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_pt_st_transformer_s.pt) | [21.9](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ro_st_transformer_s.pt) | [15.3](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_ru_st_transformer_s.pt) | (<-Download) |
+| Multilingual | s2t_transformer_m | 76M | 24.5 | 28.6 | 28.2 | 34.9 | 24.6 | 31.1 | 23.8 | 16.0 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2t/mustc_multilingual_st_transformer_m.pt) |
+
+[[Back]](..)
diff --git a/fairseq/examples/speech_to_text/docs/simulst_mustc_example.md b/fairseq/examples/speech_to_text/docs/simulst_mustc_example.md
new file mode 100644
index 0000000000000000000000000000000000000000..f3b5a413a27bbe2700da3f418460aa0a7c41abdd
--- /dev/null
+++ b/fairseq/examples/speech_to_text/docs/simulst_mustc_example.md
@@ -0,0 +1,190 @@
+# Simultaneous Speech Translation (SimulST) on MuST-C
+
+This is a tutorial of training and evaluating a transformer *wait-k* simultaneous model on MUST-C English-Germen Dataset, from [SimulMT to SimulST: Adapting Simultaneous Text Translation to End-to-End Simultaneous Speech Translation](https://www.aclweb.org/anthology/2020.aacl-main.58.pdf).
+
+[MuST-C](https://www.aclweb.org/anthology/N19-1202) is multilingual speech-to-text translation corpus with 8-language translations on English TED talks.
+
+## Data Preparation
+This section introduces the data preparation for training and evaluation.
+If you only want to evaluate the model, please jump to [Inference & Evaluation](#inference--evaluation)
+
+[Download](https://ict.fbk.eu/must-c) and unpack MuST-C data to a path
+`${MUSTC_ROOT}/en-${TARGET_LANG_ID}`, then preprocess it with
+```bash
+# Additional Python packages for S2T data processing/model training
+pip install pandas torchaudio sentencepiece
+
+# Generate TSV manifests, features, vocabulary,
+# global cepstral and mean estimation,
+# and configuration for each language
+cd fairseq
+
+python examples/speech_to_text/prep_mustc_data.py \
+ --data-root ${MUSTC_ROOT} --task asr \
+ --vocab-type unigram --vocab-size 10000 \
+ --cmvn-type global
+
+python examples/speech_to_text/prep_mustc_data.py \
+ --data-root ${MUSTC_ROOT} --task st \
+ --vocab-type unigram --vocab-size 10000 \
+ --cmvn-type global
+```
+
+## ASR Pretraining
+We need a pretrained offline ASR model. Assuming the save directory of the ASR model is `${ASR_SAVE_DIR}`.
+The following command (and the subsequent training commands in this tutorial) assume training on 1 GPU (you can also train on 8 GPUs and remove the `--update-freq 8` option).
+```
+fairseq-train ${MUSTC_ROOT}/en-de \
+ --config-yaml config_asr.yaml --train-subset train_asr --valid-subset dev_asr \
+ --save-dir ${ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-update 100000 \
+ --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \
+ --arch convtransformer_espnet --optimizer adam --lr 0.0005 --lr-scheduler inverse_sqrt \
+ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8
+```
+A pretrained ASR checkpoint can be downloaded [here](https://dl.fbaipublicfiles.com/simultaneous_translation/must_c_v1_en_de_pretrained_asr)
+
+## Simultaneous Speech Translation Training
+
+### Wait-K with fixed pre-decision module
+Fixed pre-decision indicates that the model operate simultaneous policy on the boundaries of fixed chunks.
+Here is a example of fixed pre-decision ratio 7 (the simultaneous decision is made every 7 encoder states) and
+a wait-3 policy model. Assuming the save directory is `${ST_SAVE_DIR}`
+```bash
+ fairseq-train ${MUSTC_ROOT}/en-de \
+ --config-yaml config_st.yaml --train-subset train_st --valid-subset dev_st \
+ --save-dir ${ST_SAVE_DIR} --num-workers 8 \
+ --optimizer adam --lr 0.0001 --lr-scheduler inverse_sqrt --clip-norm 10.0 \
+ --criterion label_smoothed_cross_entropy \
+ --warmup-updates 4000 --max-update 100000 --max-tokens 40000 --seed 2 \
+ --load-pretrained-encoder-from ${ASR_SAVE_DIR}/checkpoint_best.pt \
+ --task speech_to_text \
+ --arch convtransformer_simul_trans_espnet \
+ --simul-type waitk_fixed_pre_decision \
+ --waitk-lagging 3 \
+ --fixed-pre-decision-ratio 7 \
+ --update-freq 8
+
+```
+### Monotonic multihead attention with fixed pre-decision module
+```
+ fairseq-train ${MUSTC_ROOT}/en-de \
+ --config-yaml config_st.yaml --train-subset train_st --valid-subset dev_st \
+ --save-dir ${ST_SAVE_DIR} --num-workers 8 \
+ --optimizer adam --lr 0.0001 --lr-scheduler inverse_sqrt --clip-norm 10.0 \
+ --warmup-updates 4000 --max-update 100000 --max-tokens 40000 --seed 2 \
+ --load-pretrained-encoder-from ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} \
+ --task speech_to_text \
+ --criterion latency_augmented_label_smoothed_cross_entropy \
+ --latency-weight-avg 0.1 \
+ --arch convtransformer_simul_trans_espnet \
+ --simul-type infinite_lookback_fixed_pre_decision \
+ --fixed-pre-decision-ratio 7 \
+ --update-freq 8
+```
+## Inference & Evaluation
+[SimulEval](https://github.com/facebookresearch/SimulEval) is used for evaluation.
+The following command is for evaluation.
+
+```
+git clone https://github.com/facebookresearch/SimulEval.git
+cd SimulEval
+pip install -e .
+
+simuleval \
+ --agent ${FAIRSEQ}/examples/speech_to_text/simultaneous_translation/agents/fairseq_simul_st_agent.py
+ --source ${SRC_LIST_OF_AUDIO}
+ --target ${TGT_FILE}
+ --data-bin ${MUSTC_ROOT}/en-de \
+ --config config_st.yaml \
+ --model-path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \
+ --output ${OUTPUT} \
+ --scores
+```
+
+The source file `${SRC_LIST_OF_AUDIO}` is a list of paths of audio files. Assuming your audio files stored at `/home/user/data`,
+it should look like this
+
+```bash
+/home/user/data/audio-1.wav
+/home/user/data/audio-2.wav
+```
+
+Each line of target file `${TGT_FILE}` is the translation for each audio file input.
+```bash
+Translation_1
+Translation_2
+```
+The evaluation runs on the original MUSTC segmentation.
+The following command will generate the wav list and text file for a evaluation set `${SPLIT}` (chose from `dev`, `tst-COMMON` and `tst-HE`) in MUSTC to `${EVAL_DATA}`.
+```bash
+python ${FAIRSEQ}/examples/speech_to_text/seg_mustc_data.py \
+ --data-root ${MUSTC_ROOT} --lang de \
+ --split ${SPLIT} --task st \
+ --output ${EVAL_DATA}
+```
+
+The `--data-bin` and `--config` should be the same in previous section if you prepare the data from the scratch.
+If only for evaluation, a prepared data directory can be found [here](https://dl.fbaipublicfiles.com/simultaneous_translation/must_c_v1.0_en_de_databin.tgz). It contains
+- `spm_unigram10000_st.model`: a sentencepiece model binary.
+- `spm_unigram10000_st.txt`: the dictionary file generated by the sentencepiece model.
+- `gcmvn.npz`: the binary for global cepstral mean and variance.
+- `config_st.yaml`: the config yaml file. It looks like this.
+You will need to set the absolute paths for `sentencepiece_model` and `stats_npz_path` if the data directory is downloaded.
+```yaml
+bpe_tokenizer:
+ bpe: sentencepiece
+ sentencepiece_model: ABS_PATH_TO_SENTENCEPIECE_MODEL
+global_cmvn:
+ stats_npz_path: ABS_PATH_TO_GCMVN_FILE
+input_channels: 1
+input_feat_per_channel: 80
+sampling_alpha: 1.0
+specaugment:
+ freq_mask_F: 27
+ freq_mask_N: 1
+ time_mask_N: 1
+ time_mask_T: 100
+ time_mask_p: 1.0
+ time_wrap_W: 0
+transforms:
+ '*':
+ - global_cmvn
+ _train:
+ - global_cmvn
+ - specaugment
+vocab_filename: spm_unigram10000_st.txt
+```
+
+Notice that once a `--data-bin` is set, the `--config` is the base name of the config yaml, not the full path.
+
+Set `--model-path` to the model checkpoint.
+A pretrained checkpoint can be downloaded from [here](https://dl.fbaipublicfiles.com/simultaneous_translation/convtransformer_wait5_pre7), which is a wait-5 model with a pre-decision of 280 ms.
+
+The result of this model on `tst-COMMON` is:
+```bash
+{
+ "Quality": {
+ "BLEU": 13.94974229366959
+ },
+ "Latency": {
+ "AL": 1751.8031870037803,
+ "AL_CA": 2338.5911762796536,
+ "AP": 0.7931395378788959,
+ "AP_CA": 0.9405103863210942,
+ "DAL": 1987.7811616943081,
+ "DAL_CA": 2425.2751560926167
+ }
+}
+```
+
+If `--output ${OUTPUT}` option is used, the detailed log and scores will be stored under the `${OUTPUT}` directory.
+
+
+The quality is measured by detokenized BLEU. So make sure that the predicted words sent to the server are detokenized.
+
+The latency metrics are
+* Average Proportion
+* Average Lagging
+* Differentiable Average Lagging
+
+Again they will also be evaluated on detokenized text.
diff --git a/fairseq/examples/speech_to_text/prep_covost_data.py b/fairseq/examples/speech_to_text/prep_covost_data.py
new file mode 100644
index 0000000000000000000000000000000000000000..411e9b55152ea4a8e345e8c2d18431958c4f4c07
--- /dev/null
+++ b/fairseq/examples/speech_to_text/prep_covost_data.py
@@ -0,0 +1,279 @@
+#!/usr/bin/env python3
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+from pathlib import Path
+import shutil
+from tempfile import NamedTemporaryFile
+from typing import Optional, Tuple
+
+import pandas as pd
+import torchaudio
+from examples.speech_to_text.data_utils import (
+ create_zip,
+ extract_fbank_features,
+ filter_manifest_df,
+ gen_config_yaml,
+ gen_vocab,
+ get_zip_manifest,
+ load_df_from_tsv,
+ save_df_to_tsv,
+)
+from torch import Tensor
+from torch.utils.data import Dataset
+from torchaudio.datasets.utils import download_url, extract_archive
+from tqdm import tqdm
+
+
+log = logging.getLogger(__name__)
+
+
+MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"]
+
+
+class CoVoST(Dataset):
+ """Create a Dataset for CoVoST (https://github.com/facebookresearch/covost).
+
+ Args:
+ root (str): root path to the dataset and generated manifests/features
+ source_language (str): source (audio) language
+ target_language (str, optional): target (text) language,
+ None for no translation (default: None)
+ version (int, optional): CoVoST version. (default: 2)
+ download (bool, optional): Whether to download the dataset if it is not
+ found at root path. (default: ``False``).
+ """
+
+ COVOST_URL_TEMPLATE = (
+ "https://dl.fbaipublicfiles.com/covost/"
+ "covost_v2.{src_lang}_{tgt_lang}.tsv.tar.gz"
+ )
+
+ VERSIONS = {2}
+ SPLITS = ["train", "dev", "test"]
+
+ XX_EN_LANGUAGES = {
+ 1: ["fr", "de", "nl", "ru", "es", "it", "tr", "fa", "sv-SE", "mn", "zh-CN"],
+ 2: [
+ "fr",
+ "de",
+ "es",
+ "ca",
+ "it",
+ "ru",
+ "zh-CN",
+ "pt",
+ "fa",
+ "et",
+ "mn",
+ "nl",
+ "tr",
+ "ar",
+ "sv-SE",
+ "lv",
+ "sl",
+ "ta",
+ "ja",
+ "id",
+ "cy",
+ ],
+ }
+ EN_XX_LANGUAGES = {
+ 1: [],
+ 2: [
+ "de",
+ "tr",
+ "fa",
+ "sv-SE",
+ "mn",
+ "zh-CN",
+ "cy",
+ "ca",
+ "sl",
+ "et",
+ "id",
+ "ar",
+ "ta",
+ "lv",
+ "ja",
+ ],
+ }
+
+ def __init__(
+ self,
+ root: str,
+ split: str,
+ source_language: str,
+ target_language: Optional[str] = None,
+ version: int = 2,
+ ) -> None:
+ assert version in self.VERSIONS and split in self.SPLITS
+ assert source_language is not None
+ self.no_translation = target_language is None
+ if not self.no_translation:
+ assert "en" in {source_language, target_language}
+ if source_language == "en":
+ assert target_language in self.EN_XX_LANGUAGES[version]
+ else:
+ assert source_language in self.XX_EN_LANGUAGES[version]
+ else:
+ # Hack here so that we can get "split" column from CoVoST TSV.
+ # Note that we use CoVoST train split for ASR which is an extension
+ # to Common Voice train split.
+ target_language = "de" if source_language == "en" else "en"
+
+ self.root: Path = Path(root)
+
+ cv_tsv_path = self.root / "validated.tsv"
+ assert cv_tsv_path.is_file()
+
+ covost_url = self.COVOST_URL_TEMPLATE.format(
+ src_lang=source_language, tgt_lang=target_language
+ )
+ covost_archive = self.root / Path(covost_url).name
+ if not covost_archive.is_file():
+ download_url(covost_url, self.root.as_posix(), hash_value=None)
+ extract_archive(covost_archive.as_posix())
+
+ cv_tsv = load_df_from_tsv(cv_tsv_path)
+ covost_tsv = load_df_from_tsv(
+ self.root / Path(covost_url).name.replace(".tar.gz", "")
+ )
+ df = pd.merge(
+ left=cv_tsv[["path", "sentence", "client_id"]],
+ right=covost_tsv[["path", "translation", "split"]],
+ how="inner",
+ on="path",
+ )
+ if split == "train":
+ df = df[(df["split"] == split) | (df["split"] == f"{split}_covost")]
+ else:
+ df = df[df["split"] == split]
+ data = df.to_dict(orient="index").items()
+ data = [v for k, v in sorted(data, key=lambda x: x[0])]
+ self.data = []
+ for e in data:
+ try:
+ path = self.root / "clips" / e["path"]
+ _ = torchaudio.info(path.as_posix())
+ self.data.append(e)
+ except RuntimeError:
+ pass
+
+ def __getitem__(
+ self, n: int
+ ) -> Tuple[Tensor, int, str, str, Optional[str], str, str]:
+ """Load the n-th sample from the dataset.
+
+ Args:
+ n (int): The index of the sample to be loaded
+
+ Returns:
+ tuple: ``(waveform, sample_rate, sentence, translation, speaker_id,
+ sample_id)``
+ """
+ data = self.data[n]
+ path = self.root / "clips" / data["path"]
+ waveform, sample_rate = torchaudio.load(path)
+ sentence = data["sentence"]
+ translation = None if self.no_translation else data["translation"]
+ speaker_id = data["client_id"]
+ _id = data["path"].replace(".mp3", "")
+ return waveform, sample_rate, sentence, translation, speaker_id, _id
+
+ def __len__(self) -> int:
+ return len(self.data)
+
+
+def process(args):
+ root = Path(args.data_root).absolute() / args.src_lang
+ if not root.is_dir():
+ raise NotADirectoryError(f"{root} does not exist")
+ # Extract features
+ feature_root = root / "fbank80"
+ feature_root.mkdir(exist_ok=True)
+ for split in CoVoST.SPLITS:
+ print(f"Fetching split {split}...")
+ dataset = CoVoST(root, split, args.src_lang, args.tgt_lang)
+ print("Extracting log mel filter bank features...")
+ for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
+ extract_fbank_features(
+ waveform, sample_rate, feature_root / f"{utt_id}.npy"
+ )
+ # Pack features into ZIP
+ zip_path = root / "fbank80.zip"
+ print("ZIPing features...")
+ create_zip(feature_root, zip_path)
+ print("Fetching ZIP manifest...")
+ audio_paths, audio_lengths = get_zip_manifest(zip_path)
+ # Generate TSV manifest
+ print("Generating manifest...")
+ train_text = []
+ task = f"asr_{args.src_lang}"
+ if args.tgt_lang is not None:
+ task = f"st_{args.src_lang}_{args.tgt_lang}"
+ for split in CoVoST.SPLITS:
+ manifest = {c: [] for c in MANIFEST_COLUMNS}
+ dataset = CoVoST(root, split, args.src_lang, args.tgt_lang)
+ for _, _, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset):
+ manifest["id"].append(utt_id)
+ manifest["audio"].append(audio_paths[utt_id])
+ manifest["n_frames"].append(audio_lengths[utt_id])
+ manifest["tgt_text"].append(src_utt if args.tgt_lang is None else tgt_utt)
+ manifest["speaker"].append(speaker_id)
+ is_train_split = split.startswith("train")
+ if is_train_split:
+ train_text.extend(manifest["tgt_text"])
+ df = pd.DataFrame.from_dict(manifest)
+ df = filter_manifest_df(df, is_train_split=is_train_split)
+ save_df_to_tsv(df, root / f"{split}_{task}.tsv")
+ # Generate vocab
+ vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
+ spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{task}"
+ with NamedTemporaryFile(mode="w") as f:
+ for t in train_text:
+ f.write(t + "\n")
+ gen_vocab(
+ Path(f.name),
+ root / spm_filename_prefix,
+ args.vocab_type,
+ args.vocab_size
+ )
+ # Generate config YAML
+ gen_config_yaml(
+ root,
+ spm_filename=spm_filename_prefix + ".model",
+ yaml_filename=f"config_{task}.yaml",
+ specaugment_policy="lb",
+ )
+ # Clean up
+ shutil.rmtree(feature_root)
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--data-root", "-d", required=True, type=str,
+ help="data root with sub-folders for each language /"
+ )
+ parser.add_argument(
+ "--vocab-type",
+ default="unigram",
+ required=True,
+ type=str,
+ choices=["bpe", "unigram", "char"],
+ ),
+ parser.add_argument("--vocab-size", default=1000, type=int)
+ parser.add_argument("--src-lang", "-s", required=True, type=str)
+ parser.add_argument("--tgt-lang", "-t", type=str)
+ args = parser.parse_args()
+
+ process(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/speech_to_text/prep_librispeech_data.py b/fairseq/examples/speech_to_text/prep_librispeech_data.py
new file mode 100644
index 0000000000000000000000000000000000000000..f379fa7bf195f48ad6b2ed3dbd93a5fbeb7abf79
--- /dev/null
+++ b/fairseq/examples/speech_to_text/prep_librispeech_data.py
@@ -0,0 +1,119 @@
+#!/usr/bin/env python3
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+from pathlib import Path
+import shutil
+from tempfile import NamedTemporaryFile
+
+import pandas as pd
+from examples.speech_to_text.data_utils import (
+ create_zip,
+ extract_fbank_features,
+ gen_config_yaml,
+ gen_vocab,
+ get_zip_manifest,
+ save_df_to_tsv,
+)
+from torchaudio.datasets import LIBRISPEECH
+from tqdm import tqdm
+
+
+log = logging.getLogger(__name__)
+
+SPLITS = [
+ "train-clean-100",
+ "train-clean-360",
+ "train-other-500",
+ "dev-clean",
+ "dev-other",
+ "test-clean",
+ "test-other",
+]
+
+MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"]
+
+
+def process(args):
+ out_root = Path(args.output_root).absolute()
+ out_root.mkdir(exist_ok=True)
+ # Extract features
+ feature_root = out_root / "fbank80"
+ feature_root.mkdir(exist_ok=True)
+ for split in SPLITS:
+ print(f"Fetching split {split}...")
+ dataset = LIBRISPEECH(out_root.as_posix(), url=split, download=True)
+ print("Extracting log mel filter bank features...")
+ for wav, sample_rate, _, spk_id, chapter_no, utt_no in tqdm(dataset):
+ sample_id = f"{spk_id}-{chapter_no}-{utt_no}"
+ extract_fbank_features(
+ wav, sample_rate, feature_root / f"{sample_id}.npy"
+ )
+ # Pack features into ZIP
+ zip_path = out_root / "fbank80.zip"
+ print("ZIPing features...")
+ create_zip(feature_root, zip_path)
+ print("Fetching ZIP manifest...")
+ audio_paths, audio_lengths = get_zip_manifest(zip_path)
+ # Generate TSV manifest
+ print("Generating manifest...")
+ train_text = []
+ for split in SPLITS:
+ manifest = {c: [] for c in MANIFEST_COLUMNS}
+ dataset = LIBRISPEECH(out_root.as_posix(), url=split)
+ for _, _, utt, spk_id, chapter_no, utt_no in tqdm(dataset):
+ sample_id = f"{spk_id}-{chapter_no}-{utt_no}"
+ manifest["id"].append(sample_id)
+ manifest["audio"].append(audio_paths[sample_id])
+ manifest["n_frames"].append(audio_lengths[sample_id])
+ manifest["tgt_text"].append(utt.lower())
+ manifest["speaker"].append(spk_id)
+ save_df_to_tsv(
+ pd.DataFrame.from_dict(manifest), out_root / f"{split}.tsv"
+ )
+ if split.startswith("train"):
+ train_text.extend(manifest["tgt_text"])
+ # Generate vocab
+ vocab_size = "" if args.vocab_type == "char" else str(args.vocab_size)
+ spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size}"
+ with NamedTemporaryFile(mode="w") as f:
+ for t in train_text:
+ f.write(t + "\n")
+ gen_vocab(
+ Path(f.name),
+ out_root / spm_filename_prefix,
+ args.vocab_type,
+ args.vocab_size,
+ )
+ # Generate config YAML
+ gen_config_yaml(
+ out_root,
+ spm_filename=spm_filename_prefix + ".model",
+ specaugment_policy="ld"
+ )
+ # Clean up
+ shutil.rmtree(feature_root)
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--output-root", "-o", required=True, type=str)
+ parser.add_argument(
+ "--vocab-type",
+ default="unigram",
+ required=True,
+ type=str,
+ choices=["bpe", "unigram", "char"],
+ ),
+ parser.add_argument("--vocab-size", default=10000, type=int)
+ args = parser.parse_args()
+
+ process(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/speech_to_text/prep_mtedx_data.py b/fairseq/examples/speech_to_text/prep_mtedx_data.py
new file mode 100644
index 0000000000000000000000000000000000000000..2dfd6317631f56b7fd1e31da98f29f79681ba972
--- /dev/null
+++ b/fairseq/examples/speech_to_text/prep_mtedx_data.py
@@ -0,0 +1,271 @@
+#!/usr/bin/env python3
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+import os
+from pathlib import Path
+import shutil
+from itertools import groupby
+from tempfile import NamedTemporaryFile
+from typing import Tuple
+
+import pandas as pd
+import soundfile as sf
+from examples.speech_to_text.data_utils import (
+ create_zip,
+ extract_fbank_features,
+ filter_manifest_df,
+ gen_config_yaml,
+ gen_vocab,
+ get_zip_manifest,
+ load_df_from_tsv,
+ save_df_to_tsv,
+)
+import torch
+from torch.utils.data import Dataset
+from tqdm import tqdm
+
+from fairseq.data.audio.audio_utils import get_waveform, convert_waveform
+
+
+log = logging.getLogger(__name__)
+
+
+MANIFEST_COLUMNS = [
+ "id", "audio", "n_frames", "tgt_text", "speaker", "tgt_lang"
+]
+
+
+class mTEDx(Dataset):
+ """
+ Create a Dataset for Multilingual TEDx.
+ Each item is a tuple of the form: waveform, sample_rate, source utterance,
+ target utterance, speaker_id, utterance_id
+ """
+
+ SPLITS = ["train", "valid", "test"]
+ LANGPAIRS = ["es-es", "fr-fr", "pt-pt", "it-it", "ru-ru", "el-el", "ar-ar",
+ "de-de", "es-en", "es-fr", "es-pt", "es-it", "fr-en", "fr-es",
+ "fr-pt", "pt-en", "pt-es", "it-en", "it-es", "ru-en", "el-en"]
+
+ def __init__(self, root: str, lang: str, split: str) -> None:
+ assert split in self.SPLITS and lang in self.LANGPAIRS
+ _root = Path(root) / f"{lang}" / "data" / split
+ wav_root, txt_root = _root / "wav", _root / "txt"
+ assert _root.is_dir() and wav_root.is_dir() and txt_root.is_dir()
+ # Load audio segments
+ try:
+ import yaml
+ except ImportError:
+ print(
+ "Please install PyYAML to load the Multilingual TEDx YAML files"
+ )
+ with open(txt_root / f"{split}.yaml") as f:
+ segments = yaml.load(f, Loader=yaml.BaseLoader)
+ # Load source and target utterances
+ src, tgt = lang.split("-")
+ for _lang in [src, tgt]:
+ with open(txt_root / f"{split}.{_lang}") as f:
+ utterances = [r.strip() for r in f]
+ assert len(segments) == len(utterances)
+ for i, u in enumerate(utterances):
+ segments[i][_lang] = u
+ # Gather info
+ self.data = []
+ for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]):
+ wav_filename = wav_filename.replace(".wav", ".flac")
+ wav_path = wav_root / wav_filename
+ sample_rate = sf.info(wav_path.as_posix()).samplerate
+ seg_group = sorted(_seg_group, key=lambda x: float(x["offset"]))
+ for i, segment in enumerate(seg_group):
+ offset = int(float(segment["offset"]) * sample_rate)
+ n_frames = int(float(segment["duration"]) * sample_rate)
+ _id = f"{wav_path.stem}_{i}"
+ self.data.append(
+ (
+ wav_path.as_posix(),
+ offset,
+ n_frames,
+ sample_rate,
+ segment[src],
+ segment[tgt],
+ segment["speaker_id"],
+ tgt,
+ _id,
+ )
+ )
+
+ def __getitem__(
+ self, n: int
+ ) -> Tuple[torch.Tensor, int, str, str, str, str, str]:
+ wav_path, offset, n_frames, sr, src_utt, tgt_utt, spk_id, tgt_lang, \
+ utt_id = self.data[n]
+ waveform, _ = get_waveform(wav_path, frames=n_frames, start=offset)
+ waveform = torch.from_numpy(waveform)
+ return waveform, sr, src_utt, tgt_utt, spk_id, tgt_lang, utt_id
+
+ def __len__(self) -> int:
+ return len(self.data)
+
+
+def process(args):
+ root = Path(args.data_root).absolute()
+ for lang in mTEDx.LANGPAIRS:
+ cur_root = root / f"{lang}"
+ if not cur_root.is_dir():
+ print(f"{cur_root.as_posix()} does not exist. Skipped.")
+ continue
+ # Extract features
+ audio_root = cur_root / ("flac" if args.use_audio_input else "fbank80")
+ audio_root.mkdir(exist_ok=True)
+ for split in mTEDx.SPLITS:
+ print(f"Fetching split {split}...")
+ dataset = mTEDx(root.as_posix(), lang, split)
+ if args.use_audio_input:
+ print("Converting audios...")
+ for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
+ tgt_sample_rate = 16_000
+ _wavform, _ = convert_waveform(
+ waveform, sample_rate, to_mono=True,
+ to_sample_rate=tgt_sample_rate
+ )
+ sf.write(
+ (audio_root / f"{utt_id}.flac").as_posix(),
+ _wavform.numpy(), tgt_sample_rate
+ )
+ else:
+ print("Extracting log mel filter bank features...")
+ for waveform, sample_rate, _, _, _, _, utt_id in tqdm(dataset):
+ extract_fbank_features(
+ waveform, sample_rate, audio_root / f"{utt_id}.npy"
+ )
+ # Pack features into ZIP
+ zip_path = cur_root / f"{audio_root.name}.zip"
+ print("ZIPing audios/features...")
+ create_zip(audio_root, zip_path)
+ print("Fetching ZIP manifest...")
+ audio_paths, audio_lengths = get_zip_manifest(zip_path)
+ # Generate TSV manifest
+ print("Generating manifest...")
+ train_text = []
+ for split in mTEDx.SPLITS:
+ is_train_split = split.startswith("train")
+ manifest = {c: [] for c in MANIFEST_COLUMNS}
+ ds = mTEDx(args.data_root, lang, split)
+ for _, _, src_utt, tgt_utt, spk_id, tgt_lang, utt_id in tqdm(ds):
+ manifest["id"].append(utt_id)
+ manifest["audio"].append(audio_paths[utt_id])
+ manifest["n_frames"].append(audio_lengths[utt_id])
+ manifest["tgt_text"].append(
+ src_utt if args.task == "asr" else tgt_utt
+ )
+ manifest["speaker"].append(spk_id)
+ manifest["tgt_lang"].append(tgt_lang)
+ if is_train_split:
+ train_text.extend(manifest["tgt_text"])
+ df = pd.DataFrame.from_dict(manifest)
+ df = filter_manifest_df(df, is_train_split=is_train_split)
+ save_df_to_tsv(df, cur_root / f"{split}_{args.task}.tsv")
+ # Generate vocab
+ v_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
+ spm_filename_prefix = f"spm_{args.vocab_type}{v_size_str}_{args.task}"
+ with NamedTemporaryFile(mode="w") as f:
+ for t in train_text:
+ f.write(t + "\n")
+ gen_vocab(
+ Path(f.name),
+ cur_root / spm_filename_prefix,
+ args.vocab_type,
+ args.vocab_size,
+ )
+ # Generate config YAML
+ if args.use_audio_input:
+ gen_config_yaml(
+ cur_root,
+ spm_filename=spm_filename_prefix + ".model",
+ yaml_filename=f"config_{args.task}.yaml",
+ specaugment_policy=None,
+ extra={"use_audio_input": True}
+ )
+ else:
+ gen_config_yaml(
+ cur_root,
+ spm_filename=spm_filename_prefix + ".model",
+ yaml_filename=f"config_{args.task}.yaml",
+ specaugment_policy="lb",
+ )
+ # Clean up
+ shutil.rmtree(audio_root)
+
+
+def process_joint(args):
+ cur_root = Path(args.data_root)
+ assert all((cur_root / f"{lang}").is_dir() for lang in mTEDx.LANGPAIRS), \
+ "do not have downloaded data available for all languages"
+ # Generate vocab
+ vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
+ spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{args.task}"
+ with NamedTemporaryFile(mode="w") as f:
+ for lang in mTEDx.LANGPAIRS:
+ tsv_path = cur_root / f"{lang}" / f"train_{args.task}.tsv"
+ df = load_df_from_tsv(tsv_path)
+ for t in df["tgt_text"]:
+ f.write(t + "\n")
+ special_symbols = None
+ if args.joint:
+ # Add tgt_lang tags to dict
+ special_symbols = list(
+ {f'' for lang in mTEDx.LANGPAIRS}
+ )
+ gen_vocab(
+ Path(f.name),
+ cur_root / spm_filename_prefix,
+ args.vocab_type,
+ args.vocab_size,
+ special_symbols=special_symbols
+ )
+ # Generate config YAML
+ gen_config_yaml(
+ cur_root,
+ spm_filename=spm_filename_prefix + ".model",
+ yaml_filename=f"config_{args.task}.yaml",
+ specaugment_policy="ld",
+ prepend_tgt_lang_tag=(args.joint),
+ )
+ # Make symbolic links to manifests
+ for lang in mTEDx.LANGPAIRS:
+ for split in mTEDx.SPLITS:
+ src_path = cur_root / f"{lang}" / f"{split}_{args.task}.tsv"
+ desc_path = cur_root / f"{split}_{lang}_{args.task}.tsv"
+ if not desc_path.is_symlink():
+ os.symlink(src_path, desc_path)
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--data-root", "-d", required=True, type=str)
+ parser.add_argument(
+ "--vocab-type",
+ default="unigram",
+ required=True,
+ type=str,
+ choices=["bpe", "unigram", "char"],
+ ),
+ parser.add_argument("--vocab-size", default=8000, type=int)
+ parser.add_argument("--task", type=str, choices=["asr", "st"])
+ parser.add_argument("--joint", action="store_true", help="")
+ parser.add_argument("--use-audio-input", action="store_true")
+ args = parser.parse_args()
+
+ if args.joint:
+ process_joint(args)
+ else:
+ process(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/speech_to_text/prep_mustc_data.py b/fairseq/examples/speech_to_text/prep_mustc_data.py
new file mode 100644
index 0000000000000000000000000000000000000000..3f0d3fcbd9437999f86d5a39e3d18ba9669f5894
--- /dev/null
+++ b/fairseq/examples/speech_to_text/prep_mustc_data.py
@@ -0,0 +1,291 @@
+#!/usr/bin/env python3
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+import os
+from pathlib import Path
+import shutil
+from itertools import groupby
+from tempfile import NamedTemporaryFile
+from typing import Tuple
+
+import numpy as np
+import pandas as pd
+import soundfile as sf
+from examples.speech_to_text.data_utils import (
+ create_zip,
+ extract_fbank_features,
+ filter_manifest_df,
+ gen_config_yaml,
+ gen_vocab,
+ get_zip_manifest,
+ load_df_from_tsv,
+ save_df_to_tsv,
+ cal_gcmvn_stats,
+)
+import torch
+from torch.utils.data import Dataset
+from tqdm import tqdm
+
+from fairseq.data.audio.audio_utils import get_waveform, convert_waveform
+
+
+log = logging.getLogger(__name__)
+
+
+MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"]
+
+
+class MUSTC(Dataset):
+ """
+ Create a Dataset for MuST-C. Each item is a tuple of the form:
+ waveform, sample_rate, source utterance, target utterance, speaker_id,
+ utterance_id
+ """
+
+ SPLITS = ["train", "dev", "tst-COMMON", "tst-HE"]
+ LANGUAGES = ["de", "es", "fr", "it", "nl", "pt", "ro", "ru"]
+
+ def __init__(self, root: str, lang: str, split: str) -> None:
+ assert split in self.SPLITS and lang in self.LANGUAGES
+ _root = Path(root) / f"en-{lang}" / "data" / split
+ wav_root, txt_root = _root / "wav", _root / "txt"
+ assert _root.is_dir() and wav_root.is_dir() and txt_root.is_dir()
+ # Load audio segments
+ try:
+ import yaml
+ except ImportError:
+ print("Please install PyYAML to load the MuST-C YAML files")
+ with open(txt_root / f"{split}.yaml") as f:
+ segments = yaml.load(f, Loader=yaml.BaseLoader)
+ # Load source and target utterances
+ for _lang in ["en", lang]:
+ with open(txt_root / f"{split}.{_lang}") as f:
+ utterances = [r.strip() for r in f]
+ assert len(segments) == len(utterances)
+ for i, u in enumerate(utterances):
+ segments[i][_lang] = u
+ # Gather info
+ self.data = []
+ for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]):
+ wav_path = wav_root / wav_filename
+ sample_rate = sf.info(wav_path.as_posix()).samplerate
+ seg_group = sorted(_seg_group, key=lambda x: x["offset"])
+ for i, segment in enumerate(seg_group):
+ offset = int(float(segment["offset"]) * sample_rate)
+ n_frames = int(float(segment["duration"]) * sample_rate)
+ _id = f"{wav_path.stem}_{i}"
+ self.data.append(
+ (
+ wav_path.as_posix(),
+ offset,
+ n_frames,
+ sample_rate,
+ segment["en"],
+ segment[lang],
+ segment["speaker_id"],
+ _id,
+ )
+ )
+
+ def __getitem__(
+ self, n: int
+ ) -> Tuple[torch.Tensor, int, str, str, str, str]:
+ wav_path, offset, n_frames, sr, src_utt, tgt_utt, spk_id, \
+ utt_id = self.data[n]
+ waveform, _ = get_waveform(wav_path, frames=n_frames, start=offset)
+ waveform = torch.from_numpy(waveform)
+ return waveform, sr, src_utt, tgt_utt, spk_id, utt_id
+
+ def __len__(self) -> int:
+ return len(self.data)
+
+
+def process(args):
+ root = Path(args.data_root).absolute()
+ for lang in MUSTC.LANGUAGES:
+ cur_root = root / f"en-{lang}"
+ if not cur_root.is_dir():
+ print(f"{cur_root.as_posix()} does not exist. Skipped.")
+ continue
+ # Extract features
+ audio_root = cur_root / ("flac" if args.use_audio_input else "fbank80")
+ audio_root.mkdir(exist_ok=True)
+
+ for split in MUSTC.SPLITS:
+ print(f"Fetching split {split}...")
+ dataset = MUSTC(root.as_posix(), lang, split)
+ if args.use_audio_input:
+ print("Converting audios...")
+ for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
+ tgt_sample_rate = 16_000
+ _wavform, _ = convert_waveform(
+ waveform, sample_rate, to_mono=True,
+ to_sample_rate=tgt_sample_rate
+ )
+ sf.write(
+ (audio_root / f"{utt_id}.flac").as_posix(),
+ _wavform.numpy(), tgt_sample_rate
+ )
+ else:
+ print("Extracting log mel filter bank features...")
+ gcmvn_feature_list = []
+ if split == 'train' and args.cmvn_type == "global":
+ print("And estimating cepstral mean and variance stats...")
+
+ for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
+ features = extract_fbank_features(
+ waveform, sample_rate, audio_root / f"{utt_id}.npy"
+ )
+ if split == 'train' and args.cmvn_type == "global":
+ if len(gcmvn_feature_list) < args.gcmvn_max_num:
+ gcmvn_feature_list.append(features)
+
+ if split == 'train' and args.cmvn_type == "global":
+ # Estimate and save cmv
+ stats = cal_gcmvn_stats(gcmvn_feature_list)
+ with open(cur_root / "gcmvn.npz", "wb") as f:
+ np.savez(f, mean=stats["mean"], std=stats["std"])
+
+ # Pack features into ZIP
+ zip_path = cur_root / f"{audio_root.name}.zip"
+ print("ZIPing audios/features...")
+ create_zip(audio_root, zip_path)
+ print("Fetching ZIP manifest...")
+ audio_paths, audio_lengths = get_zip_manifest(zip_path)
+ # Generate TSV manifest
+ print("Generating manifest...")
+ train_text = []
+ for split in MUSTC.SPLITS:
+ is_train_split = split.startswith("train")
+ manifest = {c: [] for c in MANIFEST_COLUMNS}
+ dataset = MUSTC(args.data_root, lang, split)
+ for _, _, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset):
+ manifest["id"].append(utt_id)
+ manifest["audio"].append(audio_paths[utt_id])
+ manifest["n_frames"].append(audio_lengths[utt_id])
+ manifest["tgt_text"].append(
+ src_utt if args.task == "asr" else tgt_utt
+ )
+ manifest["speaker"].append(speaker_id)
+ if is_train_split:
+ train_text.extend(manifest["tgt_text"])
+ df = pd.DataFrame.from_dict(manifest)
+ df = filter_manifest_df(df, is_train_split=is_train_split)
+ save_df_to_tsv(df, cur_root / f"{split}_{args.task}.tsv")
+ # Generate vocab
+ v_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
+ spm_filename_prefix = f"spm_{args.vocab_type}{v_size_str}_{args.task}"
+ with NamedTemporaryFile(mode="w") as f:
+ for t in train_text:
+ f.write(t + "\n")
+ gen_vocab(
+ Path(f.name),
+ cur_root / spm_filename_prefix,
+ args.vocab_type,
+ args.vocab_size,
+ )
+ # Generate config YAML
+ if args.use_audio_input:
+ gen_config_yaml(
+ cur_root,
+ spm_filename=spm_filename_prefix + ".model",
+ yaml_filename=f"config_{args.task}.yaml",
+ specaugment_policy=None,
+ extra={"use_audio_input": True}
+ )
+ else:
+ gen_config_yaml(
+ cur_root,
+ spm_filename=spm_filename_prefix + ".model",
+ yaml_filename=f"config_{args.task}.yaml",
+ specaugment_policy="lb",
+ cmvn_type=args.cmvn_type,
+ gcmvn_path=(
+ cur_root / "gcmvn.npz" if args.cmvn_type == "global"
+ else None
+ ),
+ )
+ # Clean up
+ shutil.rmtree(audio_root)
+
+
+def process_joint(args):
+ cur_root = Path(args.data_root)
+ assert all(
+ (cur_root / f"en-{lang}").is_dir() for lang in MUSTC.LANGUAGES
+ ), "do not have downloaded data available for all 8 languages"
+ # Generate vocab
+ vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
+ spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{args.task}"
+ with NamedTemporaryFile(mode="w") as f:
+ for lang in MUSTC.LANGUAGES:
+ tsv_path = cur_root / f"en-{lang}" / f"train_{args.task}.tsv"
+ df = load_df_from_tsv(tsv_path)
+ for t in df["tgt_text"]:
+ f.write(t + "\n")
+ special_symbols = None
+ if args.task == 'st':
+ special_symbols = [f'' for lang in MUSTC.LANGUAGES]
+ gen_vocab(
+ Path(f.name),
+ cur_root / spm_filename_prefix,
+ args.vocab_type,
+ args.vocab_size,
+ special_symbols=special_symbols
+ )
+ # Generate config YAML
+ gen_config_yaml(
+ cur_root,
+ spm_filename=spm_filename_prefix + ".model",
+ yaml_filename=f"config_{args.task}.yaml",
+ specaugment_policy="ld",
+ prepend_tgt_lang_tag=(args.task == "st"),
+ )
+ # Make symbolic links to manifests
+ for lang in MUSTC.LANGUAGES:
+ for split in MUSTC.SPLITS:
+ src_path = cur_root / f"en-{lang}" / f"{split}_{args.task}.tsv"
+ desc_path = cur_root / f"{split}_{lang}_{args.task}.tsv"
+ if not desc_path.is_symlink():
+ os.symlink(src_path, desc_path)
+
+
+def main():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--data-root", "-d", required=True, type=str)
+ parser.add_argument(
+ "--vocab-type",
+ default="unigram",
+ required=True,
+ type=str,
+ choices=["bpe", "unigram", "char"],
+ ),
+ parser.add_argument("--vocab-size", default=8000, type=int)
+ parser.add_argument("--task", type=str, choices=["asr", "st"])
+ parser.add_argument("--joint", action="store_true", help="")
+ parser.add_argument(
+ "--cmvn-type", default="utterance",
+ choices=["global", "utterance"],
+ help="The type of cepstral mean and variance normalization"
+ )
+ parser.add_argument(
+ "--gcmvn-max-num", default=150000, type=int,
+ help="Maximum number of sentences to use to estimate global mean and "
+ "variance"
+ )
+ parser.add_argument("--use-audio-input", action="store_true")
+ args = parser.parse_args()
+
+ if args.joint:
+ process_joint(args)
+ else:
+ process(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/fairseq/examples/speech_to_text/seg_mustc_data.py b/fairseq/examples/speech_to_text/seg_mustc_data.py
new file mode 100644
index 0000000000000000000000000000000000000000..1ee665d6399729afe17d790d872eff34de124900
--- /dev/null
+++ b/fairseq/examples/speech_to_text/seg_mustc_data.py
@@ -0,0 +1,54 @@
+#!/usr/bin/env python3
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+from pathlib import Path
+import soundfile as sf
+from examples.speech_to_text.prep_mustc_data import (
+ MUSTC
+)
+
+from tqdm import tqdm
+
+log = logging.getLogger(__name__)
+
+
+def main(args):
+ root = Path(args.data_root).absolute()
+ lang = args.lang
+ split = args.split
+
+ cur_root = root / f"en-{lang}"
+ assert cur_root.is_dir(), (
+ f"{cur_root.as_posix()} does not exist. Skipped."
+ )
+
+ dataset = MUSTC(root.as_posix(), lang, split)
+ output = Path(args.output).absolute()
+ output.mkdir(exist_ok=True)
+ f_text = open(output / f"{split}.{lang}", "w")
+ f_wav_list = open(output / f"{split}.wav_list", "w")
+ for waveform, sample_rate, _, text, _, utt_id in tqdm(dataset):
+ sf.write(
+ output / f"{utt_id}.wav",
+ waveform.squeeze(0).numpy(),
+ samplerate=int(sample_rate)
+ )
+ f_text.write(text + "\n")
+ f_wav_list.write(str(output / f"{utt_id}.wav") + "\n")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--data-root", "-d", required=True, type=str)
+ parser.add_argument("--task", required=True, type=str, choices=["asr", "st"])
+ parser.add_argument("--lang", required=True, type=str)
+ parser.add_argument("--output", required=True, type=str)
+ parser.add_argument("--split", required=True, choices=MUSTC.SPLITS)
+ args = parser.parse_args()
+
+ main(args)
diff --git a/fairseq/examples/speech_to_text/simultaneous_translation/agents/fairseq_simul_st_agent.py b/fairseq/examples/speech_to_text/simultaneous_translation/agents/fairseq_simul_st_agent.py
new file mode 100644
index 0000000000000000000000000000000000000000..61617a1739ce196abba1e9a6f9ad9e9f4b37b9c1
--- /dev/null
+++ b/fairseq/examples/speech_to_text/simultaneous_translation/agents/fairseq_simul_st_agent.py
@@ -0,0 +1,363 @@
+import math
+import os
+import json
+import numpy as np
+import torch
+import torchaudio.compliance.kaldi as kaldi
+import yaml
+from fairseq import checkpoint_utils, tasks
+from fairseq.file_io import PathManager
+
+try:
+ from simuleval import READ_ACTION, WRITE_ACTION, DEFAULT_EOS
+ from simuleval.agents import SpeechAgent
+ from simuleval.states import ListEntry, SpeechStates
+except ImportError:
+ print("Please install simuleval 'pip install simuleval'")
+
+SHIFT_SIZE = 10
+WINDOW_SIZE = 25
+SAMPLE_RATE = 16000
+FEATURE_DIM = 80
+BOW_PREFIX = "\u2581"
+
+
+class OnlineFeatureExtractor:
+ """
+ Extract speech feature on the fly.
+ """
+
+ def __init__(self, args):
+ self.shift_size = args.shift_size
+ self.window_size = args.window_size
+ assert self.window_size >= self.shift_size
+
+ self.sample_rate = args.sample_rate
+ self.feature_dim = args.feature_dim
+ self.num_samples_per_shift = int(self.shift_size * self.sample_rate / 1000)
+ self.num_samples_per_window = int(self.window_size * self.sample_rate / 1000)
+ self.len_ms_to_samples = lambda x: x * self.sample_rate / 1000
+ self.previous_residual_samples = []
+ self.global_cmvn = args.global_cmvn
+
+ def clear_cache(self):
+ self.previous_residual_samples = []
+
+ def __call__(self, new_samples):
+ samples = self.previous_residual_samples + new_samples
+ if len(samples) < self.num_samples_per_window:
+ self.previous_residual_samples = samples
+ return
+
+ # num_frames is the number of frames from the new segment
+ num_frames = math.floor(
+ (len(samples) - self.len_ms_to_samples(self.window_size - self.shift_size))
+ / self.num_samples_per_shift
+ )
+
+ # the number of frames used for feature extraction
+ # including some part of thte previous segment
+ effective_num_samples = int(
+ num_frames * self.len_ms_to_samples(self.shift_size)
+ + self.len_ms_to_samples(self.window_size - self.shift_size)
+ )
+
+ input_samples = samples[:effective_num_samples]
+ self.previous_residual_samples = samples[
+ num_frames * self.num_samples_per_shift:
+ ]
+
+ torch.manual_seed(1)
+ output = kaldi.fbank(
+ torch.FloatTensor(input_samples).unsqueeze(0),
+ num_mel_bins=self.feature_dim,
+ frame_length=self.window_size,
+ frame_shift=self.shift_size,
+ ).numpy()
+
+ output = self.transform(output)
+
+ return torch.from_numpy(output)
+
+ def transform(self, input):
+ if self.global_cmvn is None:
+ return input
+
+ mean = self.global_cmvn["mean"]
+ std = self.global_cmvn["std"]
+
+ x = np.subtract(input, mean)
+ x = np.divide(x, std)
+ return x
+
+
+class TensorListEntry(ListEntry):
+ """
+ Data structure to store a list of tensor.
+ """
+
+ def append(self, value):
+
+ if len(self.value) == 0:
+ self.value = value
+ return
+
+ self.value = torch.cat([self.value] + [value], dim=0)
+
+ def info(self):
+ return {
+ "type": str(self.new_value_type),
+ "length": self.__len__(),
+ "value": "" if type(self.value) is list else self.value.size(),
+ }
+
+
+class FairseqSimulSTAgent(SpeechAgent):
+
+ speech_segment_size = 40 # in ms, 4 pooling ratio * 10 ms step size
+
+ def __init__(self, args):
+ super().__init__(args)
+
+ self.eos = DEFAULT_EOS
+
+ self.gpu = getattr(args, "gpu", False)
+
+ self.args = args
+
+ self.load_model_vocab(args)
+
+ if getattr(
+ self.model.decoder.layers[0].encoder_attn,
+ 'pre_decision_ratio',
+ None
+ ) is not None:
+ self.speech_segment_size *= (
+ self.model.decoder.layers[0].encoder_attn.pre_decision_ratio
+ )
+
+ args.global_cmvn = None
+ if args.config:
+ with open(os.path.join(args.data_bin, args.config), "r") as f:
+ config = yaml.load(f, Loader=yaml.BaseLoader)
+
+ if "global_cmvn" in config:
+ args.global_cmvn = np.load(config["global_cmvn"]["stats_npz_path"])
+
+ if args.global_stats:
+ with PathManager.open(args.global_stats, "r") as f:
+ global_cmvn = json.loads(f.read())
+ self.global_cmvn = {"mean": global_cmvn["mean"], "std": global_cmvn["stddev"]}
+
+ self.feature_extractor = OnlineFeatureExtractor(args)
+
+ self.max_len = args.max_len
+
+ self.force_finish = args.force_finish
+
+ torch.set_grad_enabled(False)
+
+ def build_states(self, args, client, sentence_id):
+ # Initialize states here, for example add customized entry to states
+ # This function will be called at beginning of every new sentence
+ states = SpeechStates(args, client, sentence_id, self)
+ self.initialize_states(states)
+ return states
+
+ def to_device(self, tensor):
+ if self.gpu:
+ return tensor.cuda()
+ else:
+ return tensor.cpu()
+
+ @staticmethod
+ def add_args(parser):
+ # fmt: off
+ parser.add_argument('--model-path', type=str, required=True,
+ help='path to your pretrained model.')
+ parser.add_argument("--data-bin", type=str, required=True,
+ help="Path of data binary")
+ parser.add_argument("--config", type=str, default=None,
+ help="Path to config yaml file")
+ parser.add_argument("--global-stats", type=str, default=None,
+ help="Path to json file containing cmvn stats")
+ parser.add_argument("--tgt-splitter-type", type=str, default="SentencePiece",
+ help="Subword splitter type for target text")
+ parser.add_argument("--tgt-splitter-path", type=str, default=None,
+ help="Subword splitter model path for target text")
+ parser.add_argument("--user-dir", type=str, default="examples/simultaneous_translation",
+ help="User directory for simultaneous translation")
+ parser.add_argument("--max-len", type=int, default=200,
+ help="Max length of translation")
+ parser.add_argument("--force-finish", default=False, action="store_true",
+ help="Force the model to finish the hypothsis if the source is not finished")
+ parser.add_argument("--shift-size", type=int, default=SHIFT_SIZE,
+ help="Shift size of feature extraction window.")
+ parser.add_argument("--window-size", type=int, default=WINDOW_SIZE,
+ help="Window size of feature extraction window.")
+ parser.add_argument("--sample-rate", type=int, default=SAMPLE_RATE,
+ help="Sample rate")
+ parser.add_argument("--feature-dim", type=int, default=FEATURE_DIM,
+ help="Acoustic feature dimension.")
+
+ # fmt: on
+ return parser
+
+ def load_model_vocab(self, args):
+
+ filename = args.model_path
+ if not os.path.exists(filename):
+ raise IOError("Model file not found: {}".format(filename))
+
+ state = checkpoint_utils.load_checkpoint_to_cpu(filename)
+
+ task_args = state["cfg"]["task"]
+ task_args.data = args.data_bin
+
+ if args.config is not None:
+ task_args.config_yaml = args.config
+
+ task = tasks.setup_task(task_args)
+
+ # build model for ensemble
+ state["cfg"]["model"].load_pretrained_encoder_from = None
+ state["cfg"]["model"].load_pretrained_decoder_from = None
+ self.model = task.build_model(state["cfg"]["model"])
+ self.model.load_state_dict(state["model"], strict=True)
+ self.model.eval()
+ self.model.share_memory()
+
+ if self.gpu:
+ self.model.cuda()
+
+ # Set dictionary
+ self.dict = {}
+ self.dict["tgt"] = task.target_dictionary
+
+ def initialize_states(self, states):
+ self.feature_extractor.clear_cache()
+ states.units.source = TensorListEntry()
+ states.units.target = ListEntry()
+ states.incremental_states = dict()
+
+ def segment_to_units(self, segment, states):
+ # Convert speech samples to features
+ features = self.feature_extractor(segment)
+ if features is not None:
+ return [features]
+ else:
+ return []
+
+ def units_to_segment(self, units, states):
+ # Merge sub word to full word.
+ if self.model.decoder.dictionary.eos() == units[0]:
+ return DEFAULT_EOS
+
+ segment = []
+ if None in units.value:
+ units.value.remove(None)
+
+ for index in units:
+ if index is None:
+ units.pop()
+ token = self.model.decoder.dictionary.string([index])
+ if token.startswith(BOW_PREFIX):
+ if len(segment) == 0:
+ segment += [token.replace(BOW_PREFIX, "")]
+ else:
+ for j in range(len(segment)):
+ units.pop()
+
+ string_to_return = ["".join(segment)]
+
+ if self.model.decoder.dictionary.eos() == units[0]:
+ string_to_return += [DEFAULT_EOS]
+
+ return string_to_return
+ else:
+ segment += [token.replace(BOW_PREFIX, "")]
+
+ if (
+ len(units) > 0
+ and self.model.decoder.dictionary.eos() == units[-1]
+ or len(states.units.target) > self.max_len
+ ):
+ tokens = [self.model.decoder.dictionary.string([unit]) for unit in units]
+ return ["".join(tokens).replace(BOW_PREFIX, "")] + [DEFAULT_EOS]
+
+ return None
+
+ def update_model_encoder(self, states):
+ if len(states.units.source) == 0:
+ return
+ src_indices = self.to_device(
+ states.units.source.value.unsqueeze(0)
+ )
+ src_lengths = self.to_device(
+ torch.LongTensor([states.units.source.value.size(0)])
+ )
+
+ states.encoder_states = self.model.encoder(src_indices, src_lengths)
+ torch.cuda.empty_cache()
+
+ def update_states_read(self, states):
+ # Happens after a read action.
+ self.update_model_encoder(states)
+
+ def policy(self, states):
+ if not getattr(states, "encoder_states", None):
+ return READ_ACTION
+
+ tgt_indices = self.to_device(
+ torch.LongTensor(
+ [self.model.decoder.dictionary.eos()]
+ + [x for x in states.units.target.value if x is not None]
+ ).unsqueeze(0)
+ )
+
+ states.incremental_states["steps"] = {
+ "src": states.encoder_states["encoder_out"][0].size(0),
+ "tgt": 1 + len(states.units.target),
+ }
+
+ states.incremental_states["online"] = {"only": torch.tensor(not states.finish_read())}
+
+ x, outputs = self.model.decoder.forward(
+ prev_output_tokens=tgt_indices,
+ encoder_out=states.encoder_states,
+ incremental_state=states.incremental_states,
+ )
+
+ states.decoder_out = x
+
+ states.decoder_out_extra = outputs
+
+ torch.cuda.empty_cache()
+
+ if outputs.action == 0:
+ return READ_ACTION
+ else:
+ return WRITE_ACTION
+
+ def predict(self, states):
+ decoder_states = states.decoder_out
+
+ lprobs = self.model.get_normalized_probs(
+ [decoder_states[:, -1:]], log_probs=True
+ )
+
+ index = lprobs.argmax(dim=-1)
+
+ index = index[0, 0].item()
+
+ if (
+ self.force_finish
+ and index == self.model.decoder.dictionary.eos()
+ and not states.finish_read()
+ ):
+ # If we want to force finish the translation
+ # (don't stop before finish reading), return a None
+ # self.model.decoder.clear_cache(states.incremental_states)
+ index = None
+
+ return index
diff --git a/fairseq/examples/stories/README.md b/fairseq/examples/stories/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..588941eddc5f0280f5254affd40ef49de874c885
--- /dev/null
+++ b/fairseq/examples/stories/README.md
@@ -0,0 +1,66 @@
+# Hierarchical Neural Story Generation (Fan et al., 2018)
+
+The following commands provide an example of pre-processing data, training a model, and generating text for story generation with the WritingPrompts dataset.
+
+## Pre-trained models
+
+Description | Dataset | Model | Test set(s)
+---|---|---|---
+Stories with Convolutional Model ([Fan et al., 2018](https://arxiv.org/abs/1805.04833)) | [WritingPrompts](https://dl.fbaipublicfiles.com/fairseq/data/writingPrompts.tar.gz) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/stories_checkpoint.tar.bz2) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/stories_test.tar.bz2)
+
+We provide sample stories generated by the [convolutional seq2seq model](https://dl.fbaipublicfiles.com/fairseq/data/seq2seq_stories.txt) and [fusion model](https://dl.fbaipublicfiles.com/fairseq/data/fusion_stories.txt) from [Fan et al., 2018](https://arxiv.org/abs/1805.04833). The corresponding prompts for the fusion model can be found [here](https://dl.fbaipublicfiles.com/fairseq/data/fusion_prompts.txt). Note that there are unk in the file, as we modeled a small full vocabulary (no BPE or pre-training). We did not use these unk prompts for human evaluation.
+
+## Dataset
+
+The dataset can be downloaded like this:
+
+```bash
+cd examples/stories
+curl https://dl.fbaipublicfiles.com/fairseq/data/writingPrompts.tar.gz | tar xvzf -
+```
+
+and contains a train, test, and valid split. The dataset is described here: https://arxiv.org/abs/1805.04833. We model only the first 1000 words of each story, including one newLine token.
+
+## Example usage
+
+First we will preprocess the dataset. Note that the dataset release is the full data, but the paper models the first 1000 words of each story. Here is example code that trims the dataset to the first 1000 words of each story:
+```python
+data = ["train", "test", "valid"]
+for name in data:
+ with open(name + ".wp_target") as f:
+ stories = f.readlines()
+ stories = [" ".join(i.split()[0:1000]) for i in stories]
+ with open(name + ".wp_target", "w") as o:
+ for line in stories:
+ o.write(line.strip() + "\n")
+```
+
+Once we've trimmed the data we can binarize it and train our model:
+```bash
+# Binarize the dataset:
+export TEXT=examples/stories/writingPrompts
+fairseq-preprocess --source-lang wp_source --target-lang wp_target \
+ --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
+ --destdir data-bin/writingPrompts --padding-factor 1 --thresholdtgt 10 --thresholdsrc 10
+
+# Train the model:
+fairseq-train data-bin/writingPrompts -a fconv_self_att_wp --lr 0.25 --optimizer nag --clip-norm 0.1 --max-tokens 1500 --lr-scheduler reduce_lr_on_plateau --decoder-attention True --encoder-attention False --criterion label_smoothed_cross_entropy --weight-decay .0000001 --label-smoothing 0 --source-lang wp_source --target-lang wp_target --gated-attention True --self-attention True --project-input True --pretrained False
+
+# Train a fusion model:
+# add the arguments: --pretrained True --pretrained-checkpoint path/to/checkpoint
+
+# Generate:
+# Note: to load the pretrained model at generation time, you need to pass in a model-override argument to communicate to the fusion model at generation time where you have placed the pretrained checkpoint. By default, it will load the exact path of the fusion model's pretrained model from training time. You should use model-override if you have moved the pretrained model (or are using our provided models). If you are generating from a non-fusion model, the model-override argument is not necessary.
+
+fairseq-generate data-bin/writingPrompts --path /path/to/trained/model/checkpoint_best.pt --batch-size 32 --beam 1 --sampling --sampling-topk 10 --temperature 0.8 --nbest 1 --model-overrides "{'pretrained_checkpoint':'/path/to/pretrained/model/checkpoint'}"
+```
+
+## Citation
+```bibtex
+@inproceedings{fan2018hierarchical,
+ title = {Hierarchical Neural Story Generation},
+ author = {Fan, Angela and Lewis, Mike and Dauphin, Yann},
+ booktitle = {Conference of the Association for Computational Linguistics (ACL)},
+ year = 2018,
+}
+```
diff --git a/fairseq/examples/textless_nlp/gslm/README.md b/fairseq/examples/textless_nlp/gslm/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..7a76ffd57c066c20af94aa3fca24c18e2ba4c3dd
--- /dev/null
+++ b/fairseq/examples/textless_nlp/gslm/README.md
@@ -0,0 +1,21 @@
+# Generative Spoken Language Modeling
+
+* [Paper](https://arxiv.org/abs/2102.01192)
+* [Demo](https://speechbot.github.io/gslm/index.html)
+
+We build and evaluate generative speech2speech systems using [Log Mel Filtebank](https://pytorch.org/audio/stable/compliance.kaldi.html#fbank), [Modified CPC](https://github.com/facebookresearch/CPC_audio), [HuBERT Base](https://github.com/pytorch/fairseq/tree/main/examples/hubert) and [Wav2Vec 2.0 Large](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec). Our system is composed of three components, namely, *speech2unit*, *ulm* and *unit2speech*. We explain about models and usage of these components in their respective sub-directories. See the links below.
+
+## Speech to Unit Model (speech2unit)
+Speech to unit model is used for quantizing raw speech into learned discrete speech units. [More details](speech2unit)
+
+## Unit Language Model (ulm)
+Unit Language Model is a generative language model trained on discrete speech units. [More details](ulm)
+
+## Unit to Speech Model (unit2speech)
+Unit to speech model is used for synthesizing speech from discrete speech units. [More details](unit2speech)
+
+## Metrics
+We show how to compute ASR based metrics as well as zero-shot metrics proposed in our paper [here](metrics).
+
+## Tools
+We share two tools to resynthesize a given spoken utterance, and generate novel spoken language given a spoken prompt. [More detail](tools)
diff --git a/fairseq/examples/textless_nlp/gslm/metrics/README.md b/fairseq/examples/textless_nlp/gslm/metrics/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..0a63e2f0d844ce157f9502c82738aac2a0de3f0c
--- /dev/null
+++ b/fairseq/examples/textless_nlp/gslm/metrics/README.md
@@ -0,0 +1,10 @@
+# GSLM Metrics
+
+## ASR Metrics
+The suite of metrics here uses an ASR model to transcribe the synthesized speech into text, and then uses text-based metrics. We also use word error rate from ASR transcription itself as one of the metrics. [More details](asr_metrics)
+
+## ABX Metrics
+We use [ABX](https://www.semanticscholar.org/paper/ABX-Discriminability-Measures-and-Applications-Schatz/13d3537228f728c1063cc83743cb118bba3367a0) to evaluate how well-separated phonetic categories are with quantized representations. [More details](abx_metrics)
+
+## sWUGGY and sBLIMP
+We refer to [ZeroSpeech challenge](https://www.zerospeech.com/2021/track_s.html#scoring-based-metrics) for details on the sWUGGY and sBLIMP metrics.
diff --git a/fairseq/examples/textless_nlp/gslm/metrics/abx_metrics/README.md b/fairseq/examples/textless_nlp/gslm/metrics/abx_metrics/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..aa2560f0453403fb5846c387848c78b037c79cb2
--- /dev/null
+++ b/fairseq/examples/textless_nlp/gslm/metrics/abx_metrics/README.md
@@ -0,0 +1,77 @@
+# ABX-based evaluation
+
+ABX is used to evaluate the quality of the obtained discrete units.
+
+The life cycle of the ABX-based evaluation for the Speech-to-Unit contains the following steps:
+1. Training an acoustic model (or use an existing acoustic model) ([description](./../..))
+2. Perform quantization of speech by learning a K-means clustering model ([description](./../..))
+3. Compute discrete features for ABX computation using the learned clusters
+4. Compute the ABX score over the discrete features taking advantage of [libri-light's ABX evaluation script][ll-abx]
+
+Here we assume that you already went throught the first two steps and focus solely on extracting features and computing ABX scores.
+
+## Libri-light setup
+
+Follow [libri-light's instructions][ll-instructions] for installation and [ABX evaluation setup][ll-abx] (including the download of the data items required for ABX computation).
+
+## Computing ABX
+
+### Dumping quantized features
+
+The first step for the ABX computation is to dump the quantized representations corresponding to the test files.
+
+```shell
+TYPE="hubert"
+LAYER=6
+CKPT_PATH=""
+KM_MODEL_PATH=""
+
+SUBSET="dev-clean"
+MANIFEST=""
+DATA_DIR="/$SUBSET"
+
+PYTHONPATH=. python examples/textless_nlp/gslm/metrics/abx_metrics/dump_abx_feats.py \
+ --feature_type $TYPE \
+ --kmeans_model_path $KM_MODEL_PATH \
+ --checkpoint_path $CKPT_PATH \
+ --layer $LAYER \
+ --manifest_path $MANIFEST \
+ --out_dir_path $DATA_DIR \
+ --extension ".flac"
+```
+
+Again the manifest file follows the same structure than elsewhere in the codebase.
+
+### Compute ABX with Libri-light
+
+Use libri-light's `eval_ABX.py` script (within the appropriate environment set up) as followed:
+
+```shell
+LIBRILIGHT_ROOT=""
+
+SUBSET="dev-clean"
+DATA_DIR="/$SUBSET"
+ITEM_FILE_PATH="$LIBRILIGHT_ROOT/eval/ABX_data/$SUBSET.item"
+OUT_DIR="/$SUBSET"
+
+FILE_EXTENSION=".npy"
+FEATURE_SIZE=0.02 # depends on the model used
+
+PYTHONPATH=$LIBRILIGHT_ROOT \
+ python $LIBRILIGHT_ROOT/eval/eval_ABX.py \
+ $DATA_DIR \
+ $ITEM_FILE_PATH \
+ --file_extension $FILE_EXTENSION \
+ --feature_size $FEATURE_SIZE \
+ --out $OUT_DIR \
+ --mode "all"
+```
+
+Note that `FEATURE_SIZE` will depend on the model type you are using to extract the acoustic features:
+* For HuBERT and Wav2Vec2.0, use `FEATURE_SIZE=0.02`
+* For CPC and Log Mel, use `FEATURE_SIZE=0.01`
+
+If you have a gpu available, make sure you add the `--cuda` flag for faster computation.
+
+[ll-instructions]: https://github.com/facebookresearch/libri-light
+[ll-abx]: https://github.com/facebookresearch/libri-light/tree/master/eval#abx
diff --git a/fairseq/examples/textless_nlp/gslm/metrics/abx_metrics/dump_abx_feats.py b/fairseq/examples/textless_nlp/gslm/metrics/abx_metrics/dump_abx_feats.py
new file mode 100644
index 0000000000000000000000000000000000000000..41cf558970608fa5a9241e91e59ba214b609dc73
--- /dev/null
+++ b/fairseq/examples/textless_nlp/gslm/metrics/abx_metrics/dump_abx_feats.py
@@ -0,0 +1,107 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import logging
+import os
+
+import joblib
+import numpy as np
+
+from examples.textless_nlp.gslm.speech2unit.clustering.utils import get_audio_files
+from examples.textless_nlp.gslm.speech2unit.pretrained.utils import get_features
+
+def get_logger():
+ log_format = "[%(asctime)s] [%(levelname)s]: %(message)s"
+ logging.basicConfig(format=log_format, level=logging.INFO)
+ logger = logging.getLogger(__name__)
+ return logger
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ description="Quantize using K-means clustering over acoustic features."
+ )
+ parser.add_argument(
+ "--feature_type",
+ type=str,
+ choices=["logmel", "hubert", "w2v2", "cpc"],
+ default=None,
+ required=True,
+ help="Acoustic feature type",
+ )
+ parser.add_argument(
+ "--kmeans_model_path",
+ type=str,
+ required=True,
+ help="K-means model file path to use for inference",
+ )
+ parser.add_argument(
+ "--manifest_path",
+ type=str,
+ default=None,
+ help="Manifest file containing the root dir and file names",
+ )
+ parser.add_argument(
+ "--checkpoint_path",
+ type=str,
+ help="Pretrained model checkpoint",
+ )
+ parser.add_argument(
+ "--layer",
+ type=int,
+ help="The layer of the pretrained model to extract features from",
+ default=-1,
+ )
+ parser.add_argument(
+ "--out_dir_path",
+ required=True,
+ type=str,
+ help="File path of quantized output.",
+ )
+ parser.add_argument(
+ "--extension", type=str, default=".flac", help="Features file path"
+ )
+ return parser
+
+
+def one_hot(feat, n_clusters):
+ return np.eye(n_clusters)[feat]
+
+def main(args, logger):
+ # Feature extraction
+ logger.info(f"Extracting {args.feature_type} acoustic features...")
+ features_batch = get_features(
+ feature_type=args.feature_type,
+ checkpoint_path=args.checkpoint_path,
+ layer=args.layer,
+ manifest_path=args.manifest_path,
+ sample_pct=1.0,
+ flatten=False,
+ )
+ logger.info(f"Features extracted for {len(features_batch)} utterances.\n")
+ logger.info(f"Dimensionality of representation = {features_batch[0].shape[1]}")
+
+ logger.info(f"Loading K-means model from {args.kmeans_model_path} ...")
+ kmeans_model = joblib.load(open(args.kmeans_model_path, "rb"))
+ kmeans_model.verbose = False
+
+ _, fnames, _ = get_audio_files(args.manifest_path)
+
+ os.makedirs(args.out_dir_path, exist_ok=True)
+ logger.info(f"Writing quantized features to {args.out_dir_path}")
+ for i, feats in enumerate(features_batch):
+ pred = kmeans_model.predict(feats)
+ emb = one_hot(pred, kmeans_model.n_clusters)
+ base_fname = os.path.basename(fnames[i]).rstrip(args.extension)
+ output_path = os.path.join(args.out_dir_path, f"{base_fname}.npy")
+ with open(output_path, "wb") as f:
+ np.save(f, emb)
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ logger = get_logger()
+ logger.info(args)
+ main(args, logger)
diff --git a/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/README.md b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..90741f42b0b070f2a91b63c8badb817c6aa24230
--- /dev/null
+++ b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/README.md
@@ -0,0 +1,87 @@
+# ASR-based evaluation
+
+Overall, the life cycle of the ASR-based evaluation for an ULM contains the following steps:
+ 1. Training an ULM and sampling from it [[description]](./../../ulm)
+ 2. Running UTS on the sampled unit sequences [[description]](./../../unit2speech)
+ 3. Pre-processing for the ASR (down-sampling to 16 KHz, aligning length of the generated audio with ground-truth utterances)
+ 4. Running ASR
+ 5. Calculation of the post-ASR evaluation metrics
+
+Here we assume that you have already went throught the first two steps and focus on the rest.
+
+## Preprocessing
+### Down-sampling to 16KHz
+The bulk conversion can be done by running
+```bash
+ python $FAIRSEQ_ROOT/examples/textless_nlp/gslm/unit2speech/convert_to_16k.py $UTS_OUTPUT $UTS_OUTPUT_DOWNSAMPLE
+ ```
+ where `$UTS_OUTPUT` specifies the directory with the generated audio and `$UTS_OUTPUT_DOWNSAMPLE` is the directory where downsampled audio would be saved.
+
+ ### Matching by length
+This step is somewhat optional. However, if you want to compare the fluency and diversity of a generated speech utterance to that of the ground-truth speech with the same prefix, it is a good idea to force them to be of the same length.
+```bash
+python $FAIRSEQ_ROOT/examples/textless_nlp/asr_metrics/cut_as.py \
+ --samples_dir=$UTS_OUTPUT_DOWNSAMPLE --out_dir=$UTS_OUTPUT_DOWNSAMPLE_CUT \
+ --prompts_description=data/ground_truth_continuation_dev.json
+```
+
+Here `ground_truth_continuation_dev.json` is a json file with ground-truth text from LibriSpeech dev-clean, associated with some meta-data (assuming the evaluation is done on dev-clean). This file can be downloaded [[here]](https://dl.fbaipublicfiles.com/textless_nlp/gslm/eval_data/ground_truth_continuation_dev.json). A similar file for the test-clean is [[here]](https://dl.fbaipublicfiles.com/textless_nlp/gslm/eval_data/ground_truth_continuation_test.json). These files are used for the evaluation and contain texts for audio sequences that are at least 6s long.
+
+## Running ASR
+We use a pre-trained wav2vec model to run the ASR step. We firstly need to prepare manifest files which, roughly, tell the ASR system which files we want to transcribe. You can find more details and download the `960h_scratch.pt` checkpoint
+[[here]](https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/README.md)). To run ASR, you would also need to
+install KenLM, Flashlight decoder, and download the KenLM 4-gram English language model.
+
+```bash
+ python $FAIRSEQ_ROOT/examples/wav2vec/wav2vec_manifest.py \
+ $UTS_OUTPUT_DOWNSAMPLE_CUT --valid-percent 0.0 --dest $MANIFEST_DIR --ext wav
+```
+where `$UTS_OUTPUT_DOWNSAMPLE_CUT` speficies the directory with the preprocessed UTS outputs and `$MANIFEST_DIR` is the output directory.
+
+We will be running an out-of-the-box evaluation script which requires ground-truth transcripts to measure quality metrics. We are only
+interested in the transcripts (and we don't have ground-truth outputs for when our ULM generated!), hence we will just generate
+some dummy transcripts instead:
+```bash
+cp $FAIRSEQ_ROOT/examples/textless_nlp/gslm/asr_metrics/misc/dict.ltr.txt $MANIFEST_DIR
+python $FAIRSEQ_ROOT/examples/textless_nlp/gslm/asr_metrics/misc/dummy_asr_data.py --tsv=$MANIFEST_DIR/train.tsv \
+ --output-dir=$MANIFEST_DIR
+```
+
+Now we are ready for running ASR:
+```
+mkdir -p asr
+python $FAIRSEQ_ROOT/examples/speech_recognition/infer.py \
+ $MANIFEST_DIR \
+ --task audio_pretraining --nbest 1 --path 960h_scratch.pt \
+ --gen-subset=train --results-path $PATH_TO_ASR_OUTPUT \
+ --w2l-decoder kenlm --lm-model 4-gram.bin \
+ --lexicon librispeech/lexicon_ltr.lst --word-score -1 \
+ --sil-weight 0 --lm-weight 2 --criterion ctc --labels ltr --max-tokens 300000 --remove-bpe letter
+```
+where `lexicon_ltr.lst` is the LibriSpeech lexicon and `$PATH_TO_ASR_OUTPUT` is the output directory (can be downloaded [[here]](https://dl.fbaipublicfiles.com/textless_nlp/gslm/eval_data/lexicon_ltr.lst)).
+
+## Evaluation metrics
+We run evaluation on the 1_000 shortest sequences that are at least 6s long. To filter those from the ASR transcript, we additionally provide each metric script with the paths to the manifest and `ground_truth_continuation_*` files.
+
+### Perplexity (PPX)
+To get a PPX metric estimate on an ASR transcript, you need to run the following command:
+```bash
+python ppx.py $PATH_TO_ASR_OUTPUT/hypo.word-960h_scratch.pt-train.txt --cut-tail\
+ --manifest=$MANIFEST_DIR/train.tsv --prompts-description=data/ground_truth_continuation_dev.json
+```
+where `--cut-tail` tells the script to ignore the last token on each line (ASR puts the sequence ID there).
+
+### Self- and Auto-BLEU
+```bash
+python self_bleu.py $PATH_TO_ASR_OUTPUT/hypo.word-960h_scratch.pt-train.txt --cut-tail \
+ --manifest=$MANIFEST_DIR/train.tsv --prompts-description=data/ground_truth_continuation_dev.json
+```
+
+### Continuation-BLEU
+```bash
+python continuation_eval.py --asr-transcript $PATH_TO_ASR_OUTPUT/hypo.word-960h_scratch.pt-train.txt \
+ --manifest=$MANIFEST_DIR/train.tsv --prompts-description=data/ground_truth_continuation_dev.json
+```
+
+### AUC
+Based on the metrics calculated above, we can estimate the AUC of the perplexity/diversity trade-off. We provide an illustration in a [Colab notebook](https://colab.research.google.com/drive/1pVPfOVax_PU3MkYdHRSsa-SI8GBUldNt?usp=sharing).
diff --git a/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/continuation_eval.py b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/continuation_eval.py
new file mode 100644
index 0000000000000000000000000000000000000000..72b92a341dcd1b82035af72b8a6b4edc65783ecc
--- /dev/null
+++ b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/continuation_eval.py
@@ -0,0 +1,99 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+from collections import defaultdict
+import numpy as np
+from misc.bleu_utils import sentence_bleu
+import json
+import warnings
+
+
+def get_args():
+ import argparse
+
+ parser = argparse.ArgumentParser("Tool to calculate Continuation-BLEU2")
+ parser.add_argument('--asr-transcript', type=str,
+ help='Path to the transcript file.')
+ parser.add_argument('--prompts-description', type=str,
+ help='Path to the ground-truth continuation')
+ parser.add_argument('--manifest', type=str, required=True)
+ parser.add_argument('--take-shortest', type=int, default=1000)
+
+ args = parser.parse_args()
+
+ return args
+
+
+def main():
+ # NLTK produces warnings
+ warnings.filterwarnings("ignore")
+
+ args = get_args()
+
+ with open(args.prompts_description, 'r') as fin:
+ original_continuations = json.loads(fin.read())
+
+ sequence2length = [(k, v[0]) for k, v in original_continuations.items()]
+ assert all(float(v) >= 6.0 for (_, v) in sequence2length) # 6 seconds
+
+ sequence2length.sort(key=lambda x: x[1])
+ to_take = set(v[0] for v in sequence2length[:args.take_shortest])
+
+ with open(args.manifest, 'r') as fin:
+ fin.readline()
+
+ linenum2file = dict([
+ (i, l.split("__")[0]) for (i, l) in enumerate(fin)
+ ])
+
+ max_files = max(linenum2file.keys())
+ continuations = defaultdict(list)
+
+ mean_length_after = 0
+ n_examples = 0
+
+ with open(args.asr_transcript, 'r') as fin:
+ for line in fin:
+ n_examples += 1
+ line = line.split()
+ sequence_id = int(line[-1].split('-')[1][:-1])
+
+ assert sequence_id <= max_files
+
+ sequence_name = linenum2file[sequence_id]
+
+ continuations[sequence_name].append(line[:-1])
+ mean_length_after += len(line)
+
+ mean_length_after /= n_examples
+ print(f'Mean length of continuations, in words: {mean_length_after}')
+ metric_values = []
+
+ mean_ground_truth_words = 0
+ n_examples = 0
+ n_candidates = 0
+
+ for k, candidates in continuations.items():
+ if k not in to_take:
+ continue
+
+ n_examples += 1
+
+ ground_truth = original_continuations[k][1].split()
+ n_candidates += len(candidates)
+ bleu = sentence_bleu(candidates, ground_truth, weights=(
+ 0.5, 0.5), no_length_penalty=True, averaging_mode="geometric")
+ mean_ground_truth_words += len(ground_truth)
+
+ metric_values.append(bleu)
+
+ n = len(metric_values)
+ print(
+ f'Median BLEU over {n} examples: {np.median(metric_values)} +- {np.std(metric_values) / np.sqrt(n)}')
+
+
+if __name__ == '__main__':
+ main()
diff --git a/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/misc/bleu_utils.py b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/misc/bleu_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..75cc5272d367c4f3be98d698b512a529bdb2e4f5
--- /dev/null
+++ b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/misc/bleu_utils.py
@@ -0,0 +1,166 @@
+"""
+
+TODO: the code is take from Apache-2 Licensed NLTK: make sure we do this properly!
+
+
+Copied over from nltk.tranlate.bleu_score. This code has two major changes:
+ - allows to turn off length/brevity penalty --- it has no sense for self-bleu,
+ - allows to use arithmetic instead of geometric mean
+"""
+
+import math
+import sys
+from fractions import Fraction
+import warnings
+from collections import Counter
+from nltk.translate.bleu_score import modified_precision, closest_ref_length, brevity_penalty, SmoothingFunction
+
+
+def corpus_bleu(
+ list_of_references,
+ hypotheses,
+ weights=(0.25, 0.25, 0.25, 0.25),
+ smoothing_function=None,
+ auto_reweigh=False,
+ averaging_mode="geometric",
+ no_length_penalty=False
+):
+ """
+ Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
+ the hypotheses and their respective references.
+
+ Instead of averaging the sentence level BLEU scores (i.e. marco-average
+ precision), the original BLEU metric (Papineni et al. 2002) accounts for
+ the micro-average precision (i.e. summing the numerators and denominators
+ for each hypothesis-reference(s) pairs before the division).
+
+ >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
+ ... 'ensures', 'that', 'the', 'military', 'always',
+ ... 'obeys', 'the', 'commands', 'of', 'the', 'party']
+ >>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
+ ... 'ensures', 'that', 'the', 'military', 'will', 'forever',
+ ... 'heed', 'Party', 'commands']
+ >>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
+ ... 'guarantees', 'the', 'military', 'forces', 'always',
+ ... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
+ >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
+ ... 'army', 'always', 'to', 'heed', 'the', 'directions',
+ ... 'of', 'the', 'party']
+
+ >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
+ ... 'interested', 'in', 'world', 'history']
+ >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
+ ... 'because', 'he', 'read', 'the', 'book']
+
+ >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
+ >>> hypotheses = [hyp1, hyp2]
+ >>> corpus_bleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
+ 0.5920...
+
+ The example below show that corpus_bleu() is different from averaging
+ sentence_bleu() for hypotheses
+
+ >>> score1 = sentence_bleu([ref1a, ref1b, ref1c], hyp1)
+ >>> score2 = sentence_bleu([ref2a], hyp2)
+ >>> (score1 + score2) / 2 # doctest: +ELLIPSIS
+ 0.6223...
+
+ :param list_of_references: a corpus of lists of reference sentences, w.r.t. hypotheses
+ :type list_of_references: list(list(list(str)))
+ :param hypotheses: a list of hypothesis sentences
+ :type hypotheses: list(list(str))
+ :param weights: weights for unigrams, bigrams, trigrams and so on
+ :type weights: list(float)
+ :param smoothing_function:
+ :type smoothing_function: SmoothingFunction
+ :param auto_reweigh: Option to re-normalize the weights uniformly.
+ :type auto_reweigh: bool
+ :return: The corpus-level BLEU score.
+ :rtype: float
+ """
+ # Before proceeding to compute BLEU, perform sanity checks.
+
+ p_numerators = Counter() # Key = ngram order, and value = no. of ngram matches.
+ p_denominators = Counter() # Key = ngram order, and value = no. of ngram in ref.
+ hyp_lengths, ref_lengths = 0, 0
+
+ assert len(list_of_references) == len(hypotheses), (
+ "The number of hypotheses and their reference(s) should be the " "same "
+ )
+
+ # Iterate through each hypothesis and their corresponding references.
+ for references, hypothesis in zip(list_of_references, hypotheses):
+ # For each order of ngram, calculate the numerator and
+ # denominator for the corpus-level modified precision.
+ for i, _ in enumerate(weights, start=1):
+ p_i = modified_precision(references, hypothesis, i)
+ p_numerators[i] += p_i.numerator
+ p_denominators[i] += p_i.denominator
+
+ # Calculate the hypothesis length and the closest reference length.
+ # Adds them to the corpus-level hypothesis and reference counts.
+ hyp_len = len(hypothesis)
+ hyp_lengths += hyp_len
+ ref_lengths += closest_ref_length(references, hyp_len)
+
+ # Calculate corpus-level brevity penalty.
+ if no_length_penalty and averaging_mode == 'geometric':
+ bp = 1.0
+ elif no_length_penalty and averaging_mode == 'arithmetic':
+ bp = 0.0
+ else:
+ assert not no_length_penalty
+ assert averaging_mode != 'arithmetic', 'Not sure how to apply length penalty when aurithmetic mode'
+ bp = brevity_penalty(ref_lengths, hyp_lengths)
+
+ # Uniformly re-weighting based on maximum hypothesis lengths if largest
+ # order of n-grams < 4 and weights is set at default.
+ if auto_reweigh:
+ if hyp_lengths < 4 and weights == (0.25, 0.25, 0.25, 0.25):
+ weights = (1 / hyp_lengths,) * hyp_lengths
+
+ # Collects the various precision values for the different ngram orders.
+ p_n = [
+ Fraction(p_numerators[i], p_denominators[i], _normalize=False)
+ for i, _ in enumerate(weights, start=1)
+ ]
+
+ # Returns 0 if there's no matching n-grams
+ # We only need to check for p_numerators[1] == 0, since if there's
+ # no unigrams, there won't be any higher order ngrams.
+ if p_numerators[1] == 0:
+ return 0
+
+ # If there's no smoothing, set use method0 from SmoothinFunction class.
+ if not smoothing_function:
+ smoothing_function = SmoothingFunction().method0
+ # Smoothen the modified precision.
+ # Note: smoothing_function() may convert values into floats;
+ # it tries to retain the Fraction object as much as the
+ # smoothing method allows.
+ p_n = smoothing_function(
+ p_n, references=references, hypothesis=hypothesis, hyp_len=hyp_lengths
+ )
+
+ if averaging_mode == "geometric":
+ s = (w_i * math.log(p_i) for w_i, p_i in zip(weights, p_n))
+ s = bp * math.exp(math.fsum(s))
+ elif averaging_mode == "arithmetic":
+ s = (w_i * p_i for w_i, p_i in zip(weights, p_n))
+ s = math.fsum(s)
+
+ return s
+
+
+def sentence_bleu(
+ references,
+ hypothesis,
+ weights=(0.25, 0.25, 0.25, 0.25),
+ smoothing_function=None,
+ auto_reweigh=False,
+ averaging_mode="geometric",
+ no_length_penalty=False
+):
+ return corpus_bleu(
+ [references], [hypothesis], weights, smoothing_function, auto_reweigh, averaging_mode, no_length_penalty
+ )
\ No newline at end of file
diff --git a/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/misc/cut_as.py b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/misc/cut_as.py
new file mode 100644
index 0000000000000000000000000000000000000000..5b7e1e968564b84c47049c5cc69c9d6b8fafe0e9
--- /dev/null
+++ b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/misc/cut_as.py
@@ -0,0 +1,69 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import torchaudio
+import argparse
+import json
+import pathlib
+
+
+def get_args():
+ parser = argparse.ArgumentParser(
+ "Assuring generated audio have the same length as ground-truth audio")
+ parser.add_argument('--samples_dir', required=True, type=str)
+ parser.add_argument('--out_dir', required=True, type=str)
+ parser.add_argument('--prompts_description', required=True, type=str)
+ return parser.parse_args()
+
+
+def cut(src, tgt, l):
+ x, sr = torchaudio.load(str(src))
+ assert sr == 16_000
+
+ x = x.squeeze()
+ target_frames = int(l * sr)
+
+ flag = 0
+ if target_frames <= x.size(0):
+ x = x[:target_frames]
+ flag = 1
+ else:
+ flag = 0
+ torchaudio.save(str(tgt), x.unsqueeze(0), sr)
+ return flag
+
+
+def main():
+ args = get_args()
+ tgt_dir = pathlib.Path(args.out_dir)
+ tgt_dir.mkdir(exist_ok=True, parents=True)
+
+ total_files, sufficiently_long = 0, 0
+
+ with open(args.prompts_description, 'r') as f:
+ description = json.loads(f.read())
+
+ for src_f in pathlib.Path(args.samples_dir).glob('*.wav'):
+ name_prompt = src_f.with_suffix('').name.split('__')[0]
+
+ assert name_prompt in description, f'Cannot find {name_prompt}!'
+
+ target_length = description[name_prompt][0]
+ tgt_f = tgt_dir / (src_f.name)
+
+ is_long_enough = cut(src_f, tgt_f, target_length)
+ sufficiently_long += is_long_enough
+ if not is_long_enough:
+ print(f'{src_f} is not long enough')
+
+ total_files += 1
+
+ print(
+ f'Total files: {total_files}; sufficiently long: {sufficiently_long}')
+
+
+if __name__ == '__main__':
+ main()
diff --git a/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/misc/dict.ltr.txt b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/misc/dict.ltr.txt
new file mode 100644
index 0000000000000000000000000000000000000000..69929e1666c8182148d83ef4332e4c677bb90e5a
--- /dev/null
+++ b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/misc/dict.ltr.txt
@@ -0,0 +1,28 @@
+| 94802
+E 51860
+T 38431
+A 33152
+O 31495
+N 28855
+I 28794
+H 27187
+S 26071
+R 23546
+D 18289
+L 16308
+U 12400
+M 10685
+W 10317
+C 9844
+F 9062
+G 8924
+Y 8226
+P 6890
+B 6339
+V 3936
+K 3456
+' 1023
+X 636
+J 598
+Q 437
+Z 213
diff --git a/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/ppx.py b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/ppx.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6a40e4d359bdcae6d64f53ba06d8a533aec01ac
--- /dev/null
+++ b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/ppx.py
@@ -0,0 +1,122 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import torch
+import numpy as np
+import warnings
+
+
+def get_target_sequences(manifest, ground_truth, to_take=1000):
+ import json
+ import pathlib
+
+ with open(ground_truth, 'r') as fin:
+ original_continuations = json.loads(fin.read())
+
+ sequence2length = [(k, v[0]) for k, v in original_continuations.items()]
+ assert all(float(v) >= 6.0 for (_, v) in sequence2length) # 6 seconds
+
+ sequence2length.sort(key=lambda x: x[1])
+ to_take_sequences = set(v[0] for v in sequence2length[:to_take])
+ to_take_ids = []
+
+ with open(manifest, 'r') as f:
+ f.readline()
+
+ for i, line in enumerate(f.readlines()):
+ seq_id = line.split()[0]
+ seq_id = pathlib.Path(seq_id).name.split('__')[0]
+
+ if seq_id in to_take_sequences:
+ to_take_ids.append(i)
+
+ print(f'Took {len(to_take_ids)} ids')
+ return set(to_take_ids)
+
+
+def get_args():
+ import argparse
+
+ parser = argparse.ArgumentParser("Evaluate PPX metric of a transcript.")
+ parser.add_argument('--asr-transcript', type=str,
+ help='Path to the transcript file.')
+ parser.add_argument('--cut-id', action='store_true',
+ help='Whether cut the first token (typically a seq id)')
+ parser.add_argument('--cut-tail', action='store_true',
+ help='Whether cut the last token (typically a speaker id)')
+
+ parser.add_argument('--manifest', type=str, default=None)
+ parser.add_argument('--prompts-description', type=str, default=None)
+
+ args = parser.parse_args()
+
+ return args
+
+
+def main():
+ args = get_args()
+
+ lm = torch.hub.load(
+ 'pytorch/fairseq', 'transformer_lm.wmt19.en', tokenizer='moses', bpe='fastbpe')
+
+ lm.eval().cuda() # disable dropout
+
+ if args.manifest is None and args.prompts_description is None:
+ target_ids = None
+ else:
+ target_ids = get_target_sequences(
+ args.manifest, args.prompts_description)
+
+ with open(args.asr_transcript, 'r') as fin:
+ lines = fin.readlines()
+
+ if target_ids is not None:
+ filtered = []
+ for line in lines:
+ line_id = line.split()[-1]
+ line_id = int(line_id.split('-')[1][:-1])
+ if line_id in target_ids:
+ filtered.append(line)
+ lines = filtered
+ else:
+ pass
+
+ if args.cut_id:
+ lines = [' '.join(x.split()[1:]) for x in lines]
+ if args.cut_tail:
+ lines = [' '.join(x.split()[:-1]) for x in lines]
+ lines = [x.strip().lower() for x in lines]
+
+ def get_logprob(sent): return \
+ lm.score(sent)['positional_scores'].mean().neg().item()
+
+ logprobs = [get_logprob(l) for l in lines]
+
+ filtered = [x for x in logprobs if not np.isnan(x)]
+ if len(filtered) != len(logprobs):
+ warnings.warn("NaNs detected!")
+ logprobs = filtered
+
+ perplexities = [np.exp(l) for l in logprobs]
+
+ for name, stats in [('logprob', logprobs), ('perplexity', perplexities)]:
+ mean = np.mean(stats)
+ sem = np.std(stats) / np.sqrt(len(stats))
+
+ median = np.median(stats)
+ interval = list(np.percentile(stats, [10, 90]))
+
+ mean, sem, median, percentile10, percentile90 = [
+ round(x, 2) for x in [mean, sem, median] + interval]
+
+ print(name)
+ print(f"\tMean {mean} +- {sem}")
+ print(
+ f"\tMedian {median}, 90% confidence interval {percentile10}...{percentile90}")
+
+
+if __name__ == '__main__':
+ main()
diff --git a/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/self_auto_bleu.py b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/self_auto_bleu.py
new file mode 100644
index 0000000000000000000000000000000000000000..062bb82f669f63a537b6ee8df4d42d292eb2575e
--- /dev/null
+++ b/fairseq/examples/textless_nlp/gslm/metrics/asr_metrics/self_auto_bleu.py
@@ -0,0 +1,201 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+
+import numpy as np
+import nltk
+from misc.bleu_utils import sentence_bleu
+import warnings
+
+
+def get_target_sequences(manifest, ground_truth, to_take=1000):
+ import json
+ import pathlib
+
+ with open(ground_truth, 'r') as fin:
+ original_continuations = json.loads(fin.read())
+
+ sequence2length = [(k, v[0]) for k, v in original_continuations.items()]
+ assert all(float(v) >= 6.0 for (_, v) in sequence2length) # 6 seconds
+
+ sequence2length.sort(key=lambda x: x[1])
+ to_take_sequences = set(v[0] for v in sequence2length[:to_take])
+ to_take_ids = []
+
+ with open(manifest, 'r') as f:
+ f.readline()
+
+ for i, line in enumerate(f.readlines()):
+ seq_id = line.split()[0]
+ seq_id = pathlib.Path(seq_id).name.split('__')[0]
+
+ if seq_id in to_take_sequences:
+ to_take_ids.append(i)
+
+ print(f'Took {len(to_take_ids)} ids')
+ return set(to_take_ids)
+
+
+def get_args():
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--asr-transcript', type=str,
+ help='Path to the transcript file.')
+
+ parser.add_argument('--manifest', required=True)
+ parser.add_argument('--prompts-description', required=True)
+
+ parser.add_argument('--cut-id', action='store_true',
+ help='Whether cut the first token (typically a seq id)')
+ parser.add_argument('--cut-tail', action='store_true',
+ help='Whether cut the last token (typically a speaker id)')
+ parser.add_argument('--debug', action='store_true')
+
+ args = parser.parse_args()
+
+ return args
+
+
+def get_self_bleu(utterances, averaging_mode, weights):
+ self_bleu = []
+
+ for i in range(len(utterances)):
+ hypo = utterances[i]
+ rest = utterances[:i] + utterances[i+1:]
+
+ self_bleu.append(sentence_bleu(rest, hypo, weights,
+ no_length_penalty=True, averaging_mode=averaging_mode))
+
+ return self_bleu
+
+
+def get_self_bleu2_arithmetic(utterances):
+ weights = (0.5, 0.5) # equal weight for unigrams and bigrams
+ return get_self_bleu(utterances, averaging_mode='arithmetic', weights=weights)
+
+
+def get_self_bleu2_geometric(utterances):
+ weights = (0.5, 0.5)
+ return get_self_bleu(utterances, averaging_mode='geometric', weights=weights)
+
+
+def get_auto_bleu2_arithmetic(utterances):
+ weights = (0.5, 0.5)
+ return [auto_bleu(u, mean_mode='arithmetic', weights=weights) for u in utterances]
+
+
+def get_auto_bleu2_geometric(utterances):
+ weights = (0.5, 0.5)
+ return [auto_bleu(u, mean_mode='geometric', weights=weights) for u in utterances]
+
+
+def get_auto_bleu3_geometric(utterances):
+ weights = (1./3, 1./3, 1./3)
+ return [auto_bleu(u, mean_mode='geometric', weights=weights) for u in utterances]
+
+
+def get_auto_bleu3_arithmetic(utterances):
+ weights = (1./3, 1./3, 1./3)
+ return [auto_bleu(u, mean_mode='arithmetic', weights=weights) for u in utterances]
+
+
+def get_self_bleu3_arithmetic(utterances):
+ weights = (1./3, 1./3, 1./3)
+ return get_self_bleu(utterances, averaging_mode='arithmetic', weights=weights)
+
+
+def get_self_bleu3_geometric(utterances):
+ weights = (1./3, 1./3, 1./3)
+ return get_self_bleu(utterances, averaging_mode='geometric', weights=weights)
+
+
+def auto_bleu(sentence, weights, mean_mode='arithmetic'):
+ if len(sentence) <= 1:
+ return 0
+
+ N = len(weights)
+
+ bleu_n = np.zeros([N])
+ for n in range(N):
+ targ_ngrams = list(nltk.ngrams(sentence, n+1))
+ for p in range(len(targ_ngrams)):
+ left = sentence[:p]
+ right = sentence[(p+n+1):]
+ rest_ngrams = list(nltk.ngrams(left, n+1)) + \
+ list(nltk.ngrams(right, n+1))
+ # compute the nb of matching ngrams
+ bleu_n[n] += targ_ngrams[p] in rest_ngrams
+ bleu_n[n] /= len(targ_ngrams) # average them to get a proportion
+
+ weights = np.array(weights)
+ if mean_mode == 'arithmetic':
+ return (bleu_n * weights).sum()
+ elif mean_mode == 'geometric':
+ return (bleu_n ** weights).prod()
+ else:
+ raise ValueError(f'Unknown agggregation mode {mean_mode}')
+
+
+def main():
+ from multiprocessing import Pool
+
+ args = get_args()
+ target_ids = get_target_sequences(args.manifest, args.prompts_description)
+
+ with open(args.asr_transcript, 'r') as fin:
+ lines = fin.readlines()
+
+ terms = [x.strip().split() for x in lines]
+ filtered = []
+ for term in terms:
+ line_id = int(term[-1].split('-')[1][:-1])
+ if line_id in target_ids:
+ filtered.append(term)
+ terms = filtered
+
+ if args.cut_id:
+ terms = [x[1:] for x in terms]
+ if args.cut_tail:
+ terms = [x[:-1] for x in terms]
+
+ if args.debug:
+ terms = terms[:10]
+
+ tasks = [
+ ('Self-BLEU2-arithmetic', get_self_bleu2_arithmetic),
+ ('Self-BLEU2-geometric', get_self_bleu2_geometric),
+ ('Auto-BLEU2-arithmetic', get_auto_bleu2_arithmetic),
+ ('Auto-BLEU2-geometric', get_auto_bleu2_geometric),
+
+ ('Self-BLEU3-arithmetic', get_self_bleu3_arithmetic),
+ ('Self-BLEU3-geometric', get_self_bleu3_geometric),
+ ('Auto-BLEU3-arithmetic', get_auto_bleu3_arithmetic),
+ ('Auto-BLEU3-geometric', get_auto_bleu3_geometric),
+ ]
+
+ n_processes = min(16, len(tasks))
+ with Pool(n_processes) as pool:
+ metrics = pool.map(run_f, [(t[1], terms) for t in tasks])
+
+ for (metric_name, _), metric in zip(tasks, metrics):
+ metric, sem = np.mean(metric), np.std(metric) / np.sqrt(len(metric))
+
+ metric, sem = [
+ round(100 * x, 2) for x in [metric, sem]
+ ]
+
+ print(f'{metric_name} {metric} +- {sem}')
+
+
+def run_f(task_params):
+ f, terms = task_params
+ return f(terms)
+
+
+if __name__ == '__main__':
+ # NLTK produces warnings
+ warnings.filterwarnings("ignore")
+
+ main()
diff --git a/fairseq/examples/textless_nlp/gslm/speech2unit/README.md b/fairseq/examples/textless_nlp/gslm/speech2unit/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..1a3d131ec165f12e37906420fc2c284a7223bda2
--- /dev/null
+++ b/fairseq/examples/textless_nlp/gslm/speech2unit/README.md
@@ -0,0 +1,71 @@
+# Speech to Unit Model (speech2unit)
+
+## Acoustic Model
+For quantizing speech we learn a K-means clustering over acoustic representations for which we either use Log-Mel Filterbank or pretrained acoustic representation models. For using pretrained models, please download from their respective locations linked below.
+* [Modified CPC](https://dl.fbaipublicfiles.com/textless_nlp/gslm/cpc/cpc_big_ll6kh_top_ctc.pt)
+* [HuBERT-Base](https://dl.fbaipublicfiles.com/hubert/hubert_base_ls960.pt)
+* [Wav2Vec 2.0-Base](https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_vox_new.pt)
+
+## Quantization Model
+You can download pretrained quantized model from the list below.
+
+K-Means Model | Download Link
+|-|-
+Log Mel Filterbank + KM50 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/logmel/km50/km.bin)
+Log Mel Filterbank + KM100 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/logmel/km100/km.bin)
+Log Mel Filterbank + KM200 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/logmel/km200/km.bin)
+Log Mel Filterbank + KM500 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/logmel/km500/km.bin)
+Modified CPC + KM50 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/cpc/km50/km.bin)
+Modified CPC + KM100 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/cpc/km100/km.bin)
+Modified CPC + KM200 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/cpc/km200/km.bin)
+Modified CPC + KM500 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/cpc/km500/km.bin)
+HuBERT Base + KM50 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/hubert/km50/km.bin)
+HuBERT Base + KM100 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/hubert/km100/km.bin)
+HuBERT Base + KM200 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/hubert/km200/km.bin)
+HuBERT Base + KM500 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/hubert/km500/km.bin)
+wav2vec 2.0 Large + KM50 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/w2v2/km50/km.bin)
+wav2vec 2.0 Large + KM100 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/w2v2/km100/km.bin)
+wav2vec 2.0 Large + KM200 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/w2v2/km200/km.bin)
+wav2vec 2.0 Large + KM500 | [download](https://dl.fbaipublicfiles.com/textless_nlp/gslm/w2v2/km500/km.bin)
+
+### Quantization
+For quantizing speech with a given acoustic representation, please follow the steps below.
+1. Learn K-means clustering model
+```
+N_CLUSTERS=
+TYPE=
+CKPT_PATH=
+LAYER=
+MANIFEST=